We Claim:

1. A compound represented by formula I:

1

wherein,

n is 1-4;

R represents independently for each occurrence H, alkyl, aryl, -CH₂-aryl, -C(O)-alkyl, -C(O)-aryl, or -Si(alkyl)₃;

 R^1 and R^2 are independently H, -CH₂-aryl, -C(O)-alkyl, -C(O)-aryl, -Si(alkyl)₃; or R^1 and R^2 taken together are C(CH₃)₂, P(O)OH, or P(O)OR⁵;

R³ is amino, -N₃, or -NH₃X;

R4 represents independently for each occurrence H, alkyl, aryl, -CH₂-aryl, -C(O)-alkyl, -C(O)-aryl, -Si(alkyl)₃, or -P(O)(OR 5)₂;

R⁵ represents independently for each occurrence H, Li+, Li+, Na+, K+, Rb+, Cs+, aryl, or an optionally substituted alkyl group; and

X is a halogen, alkyl carboxylate, or aryl carboxylate.

- 2. The compound of claim 1, wherein n is 1, 2, or 3.
- 3. The compound of claim 1, wherein n is 3.
- 4. The compound of claim 1, wherein R is H.
- 5. The compound of claim 1, wherein R¹ and R² taken together are P(O)OR⁵.
- 6. The compound of claim 1, wherein R³ is N₃.
- 7. The compound of claim 1, wherein R³ is -NH₃X.
- 8. The compound of claim 1, wherein R⁴ represents independently for each occurrence H, -CH₂Ph, or -Si(alkyl)₃;

WO 2004/005532 PCT/US2003/021564

9. The compound of claim 1, wherein R^4 represents independently for each occurrence H_v - CH_2Ph_v -or $P(O)OR^5$; and R^5 is an optionally substituted alkyl group.

10. The compound of claim 1, wherein said compound of formula I is selected from the group consisting of:

11. A compound represented by formula II:

II

wherein,

n is 1-4;

R represents independently for each occurrence H, alkyl, aryl, -CH₂-aryl, -C(O)-alkyl, -C(O)-aryl, or -Si(alkyl)₃;

 R^1 is -(CH₂)_mCH=CH₂ or trichloroacetimidate; and m is 1-6.

- 12. The compound of claim 11, wherein n is 2 or 3.
- 13. The compound of claim 11, wherein n is 3.
- 14. The compound of claim 11, wherein m is 3.
- 15. The compound of claim 11, wherein R represents independently for each occurrence -CH₂-aryl or -Si(alkyl)₃.
- 16. The compound of claim 11, wherein R represents independently for each occurrence benzyl or -Si(iPr)₃.
- 17. The compound of claim 11, wherein R¹ is trichloroacetimidate and R represents independently for each occurrence benzyl or -Si(iPr)₃. and
- 18. The compound of claim 11, wherein said compound of formula II is selected from the group consisting of:

19. A method of preparing glycosylphosphatidylinositol glycans as depicted in Scheme 5:

Scheme 5

wherein,

R represents independently for each occurrence H, alkyl, aryl, -CH2-aryl, -C(O)-alkyl, -C(O)-aryl, or -Si(alkyl) $_3$;

 R^1 and R^2 are independently H, -CH₂-aryl, -C(O)-alkyl, -C(O)-aryl, -Si(alkyl)₃; or R^1 and R^2 taken together are C(CH₃)₂, P(O)OH, or P(O)OR⁵;

 R^3 is amino, -N₃, or -NH₃X;

R⁵ represents independently for each occurrence H, Li+, Li+, Na+, K+, Rb+, Cs+, aryl, or an optionally substituted alkyl group;

R6 is alkyl or aryl;

 R^7 is alkyl, aryl, -CH₂-aryl, -C(O)-alkyl, -C(O)-aryl, or -Si(alkyl)₃; and X is a halogen, alkyl carboxylate, or aryl carboxylate.

- 20. The method of claim 19, wherein R is -CH₂-aryl.
- 21. The method of claim 19, wherein R1 and R2 taken together are C(CH3)2.

WO 2004/005532 PCT/US2003/021564

- 22. The method of claim 19, wherein R³ is -N₃.
- 23. The method of claim 19, wherein R6 is alkyl.
- 24. The method of claim 19, wherein R7 is -C(O)-alkyl.
- 25. The method of claim 19, wherein R is benzyl, R^1 and R^2 taken together are $C(CH_3)_2$, and R^3 is $-N_3$.
- 26. The method of claim 19, wherein R is benzyl, R^1 and R^2 taken together are $C(CH_3)_2$, R^3 is $-N_3$, and R^6 is ethyl.
- 27. A method of preparing glycosylphosphatidylinositol glycans, comprising the steps of:

binding a mannopyranoside to a solid support to provide a first substrate, reacting said first substrate with a mannopyranose trichloroacetimidate to give a disaccharide bound to said solid support, reacting said disaccharide with a mannopyranose trichloroacetimidate to give a triisaccharide bound to said solid support, reacting said trisaccharide with a mannopyranose trichloroacetimidate to give a tetrasaccharide bound to said solid support, and cleaving said tetrasaccharide from said solid support.

- 28. The method of claim 27, wherein said mannopyranoside is bound to said solid support through a glycosidic linkage.
- 29. The method of claim 27, wherein said tetrasaccharide is cleaved from said solid support using Grubbs' catalyst.
- 30. The method of claim 27, wherein said tetrasaccharide is represented by formula VI:

 \mathbf{VI}