Classification of the Irreducible Representations of the Affine Hecke algebra of Type B_2 with Unequal Parameters

Naoya Enomoto Research Institute for Mathematical Science Kyoto University henon@kurims.kyoto-u.ac.jp

1 Introduction

The representation theory of the affine Hecke algebras has two different approaches. One is a geometric approach and the other is a combinatorial one.

In the equal parameter case, affine Hecke algebras are constructed using equivariant K-groups, and their irreducible representations are constructed on Borel-Moore homologies. By this method, their irreducible representations are parameterized by the index triples ([CG],[KL]). On the other hand, G. Lusztig classified the irreducible representations in the unequal parameter case. His ideas are to use equivariant cohomologies and graded Hecke algebras ([Lus89],[LusI],[LusII],[LusIII]).

Although the geometric approach will give us a powerful method for the classification, but it does not tell us the detailed structure of irreducible representations. Thus it is important to construct them explicitly in combinatorial approach.

Using semi-normal representations and the generalized Young tableaux, A. Ram constructed calibrated irreducible representations with equal parameters ([Ram1]). Furthermore C. Kriloff and A. Ram constructed irreducible calibrated representations of graded Hecke algebras ([KR]). However, we cannot always construct irreducible representations by combinatorial manner.

A. Ram classified irreducible representations of affine Hecke algebras of type A_1 , A_2 , B_2 , G_2 in equal parameter case ([Ram2]). But there are some mistakes in his list of irreducible representations and his construction of induced representation of type B_2 .

In this paper, we will correct his list about type B_2 and also classify the irreducible representations in the unequal parameter case. There are three one-parameter families of calibrated irreducible representations and some other irreducible representations.

Acknowledgement. I would like to thank Professor M. Kashiwara and Professor S. Ariki for their advices and suggestions, and Mathematica for its power of calculation.

Z Freininaries

2.1 Affine Hecke algebra

We will use following notations.

 (R,R^+,Π) a root system of finite type, its positive roots and simple roots, Q,P the root lattice and the weight lattice of R, Q^\vee,P^\vee the coroot lattice and the coweight lattice of R the Weyl group of R, $\ell(w)$ the length of $w\in W$

We put $\Pi = \{\alpha_i\}_{i \in I}$, and denote by s_i the simple reflection associated with α_i . First we define the Iwahori-Hecke algebra of W.

Definition 2.1. Let $\{q_i\}_{i\in I}$ be indeterminates. Then the *Iwahori-Hecke algebra* \mathcal{H} of W is the associative algebra over \mathbb{C} (q_i) defined by following generators and relations;

generators
$$T_i$$
 $(i \in I)$
relations $(T_i - q_i)(T_i + q_i^{-1}) = 0$ $(i \in I)$,
 $T_i T_j T_i \cdots = T_j T_i T_j \cdots$,

where $m_{ij} = 2, 3, 4, 6$ according to $\langle \alpha_i, \alpha_i^{\vee} \rangle \langle \alpha_i \alpha_i^{\vee} \rangle = 0, 1, 2, 3$.

Remark 1. Indeterminates q_i, q_j must be equal if and only if α_i, α_j are in the same W-orbit in R. If all q_i are equal, we call the equal parameter case, and otherwise, the unequal parameter case.

For a reduced expression $s_{i_1}s_{i_2}\cdots s_{i_r}$ of $w\in W$, we define $T_w=T_{i_1}T_{i_2}\cdots T_{i_r}$. This does not depend on the choice of reduced expressions.

Let us define the affine Hecke algebras.

Definition 2.2. The affine Hecke algebra $\widehat{\mathcal{H}}$ is the associative algebra over \mathbb{C} $(q_i; i \in I)$ defined by following generators and relations;

generators
$$T_{w}X^{\lambda} \quad (w \in W, \lambda \in P^{\vee}),$$
relations
$$(T_{i} - q_{i})(T_{i} + q_{i}^{-1}) = 0 \quad (i \in I),$$

$$T_{w}T_{w'} = T_{ww'} \quad \text{if} \quad \ell(w) + \ell(w') = \ell(ww') \quad (w, w' \in W),$$

$$X^{\lambda}X^{\mu} = X^{\lambda + \mu} \quad (\lambda, \mu \in P^{\vee}),$$

$$X^{\lambda}T_{i} = T_{i}X^{s_{i}\lambda} + (q_{i} - q_{i}^{-1})\frac{X^{\lambda} - X^{s_{i}\lambda}}{1 - X^{-\alpha_{i}^{\vee}}} \quad (i \in I).$$

2.2 Principal series representations and their irreducibility

Let us put $X^{P^{\vee}} = \{X^{\lambda} | \lambda \in P^{\vee}\}$ and let $\chi : X^{P^{\vee}} \to \mathbb{C}^*$ be a character of $X^{P^{\vee}}$.

Definition 2.3. Let \mathbb{C} v_{χ} be the one-dimensional representation of \mathbb{C} [X] defined by

$$X^{\lambda} \cdot v_{\chi} = \chi(X^{\lambda})v_{\chi}.$$

We call $M(\chi) = \operatorname{Ind}_{\mathbb{C}[X]}^{\widehat{\mathcal{H}}} \mathbb{C} v_{\chi} = \widehat{\mathcal{H}} \otimes_{\mathbb{C}[X]} \mathbb{C} v_{\chi}$ the principal representation of $\widehat{\mathcal{H}}$ associated with χ .

2

Note that $\operatorname{Res}_{\mathcal{H}}^{\mathcal{H}} M(\chi)$ is isomorphic to the regular representation of \mathcal{H} , so that $\dim M(\chi) = |W|$.

We put

$$q_{\alpha} = q_i \text{ for } \alpha^{\vee} \in W\alpha_i^{\vee} \ (i \in I).$$

Theorem 2.1 (Kato's Criterion of Irreducibility). Let us put

$$P(\chi) = \{\alpha^{\vee} > 0 | \chi(X^{\alpha^{\vee}}) = q_{\alpha}^{\pm 2} \}.$$

Then $M(\chi)$ is irreducible if and only if $P(\chi) = \phi$.

For any finite-dimensional representation of $\widehat{\mathcal{H}}$ we put

$$\begin{array}{rcl} M_{\chi} &=& \{v \in M | X^{\lambda}v = \chi(X^{\lambda})v \text{ for any } X^{\lambda} \in X\}, \\ M_{\chi}^{\text{gen}} &=& \left\{v \in M \,\middle|\, \begin{array}{l} \text{there exists } k > 0 \text{ such that} \\ (X^{\lambda} - \chi(X^{\lambda}))^k v = 0 \text{ for any } X^{\lambda} \in X \end{array}\right\}. \end{array}$$

Then $M = \bigoplus_{x \in T} M_t^{\text{gen}}$ is the generalized weight decomposition of M.

Proposition 2.1. If M is a simple $\widehat{\mathcal{H}}$ -module with $M_{\chi} \neq 0$, then M is a quotient of $M(\chi)$.

Definition 2.4. A finite-dimensional representation M of $\widehat{\mathcal{H}}$ is calibrated (or X-semisimple) if $M_{\chi}^{\text{gen}} = M_{\chi}$ (for all χ).

2.3 W-action Lemma

Let us define the action of Weyl group W as the following;

$$(w \cdot \chi)(X^{\lambda}) = \chi(X^{w^{-1}\lambda}) \ (w \in W, \lambda \in P^{\vee}).$$

The following proposition is well known.

Proposition 2.2 (W-action Lemma).

- (1) If $M(\chi) \cong M(\chi')$, then there exists $w \in W$ such that $\chi = w\chi$.
- (2) The representations $M(\chi)$ and $M(w\chi)$ have the same composition factors.

2.4 Specialization lemma

Let \mathbb{K} be a field and \mathbb{S} a discrete valuation ring such that \mathbb{K} is the fraction field of \mathbb{S} . Let us denote the $\mathfrak{m}=(\pi)$ the maximal ideal of \mathbb{S} and let $\mathbb{F}=\mathbb{S}/\mathfrak{m}$ be the residue field of \mathbb{S} . Let $K(\widehat{\mathcal{H}}_{\mathbb{F}}$ -mod) be the Grothendieck group of the category of finite-dimensional representations of $\widehat{\mathcal{H}}_{\mathbb{F}}$.

the following lemma is well-known (e.g. see $[\mathbf{Ari},\, \mathrm{Lemma}\,\, 13.16].)$

Lemma 2.1 (Specialization Lemma). Let V be an $\widehat{\mathcal{H}}_{\mathbb{K}}$ -module and L an $\widehat{\mathcal{H}}_{\mathbb{S}}$ -submodule of V which is an \mathbb{S} -lattice of full rank. Then $[L \otimes \mathbb{F}] \in K(\widehat{\mathcal{H}}_{\mathbb{F}}$ -mod) is determined by V and does not depend on the choice of L.

2.5 Key results for type D_2

Let us consider the type B_2 ;

$$P^{\vee} = \mathbb{Z} \ \varepsilon_1 \oplus \mathbb{Z} \ \varepsilon_2, \ R^{\vee} = \{\alpha_1^{\vee} = \varepsilon_1 - \varepsilon_2, \alpha_2^{\vee} = 2\varepsilon_2\}, \ X_i = X^{\varepsilon_i}.$$

 $s_1\varepsilon_1 = \varepsilon_2, \ s_1\varepsilon_2 = \varepsilon_1, \ s_2\varepsilon_1 = \varepsilon_1, \ s_2\varepsilon_2 = -\varepsilon_2$

Let us recall the definition of affine Hecke algebra of type B_2 with unequal parameters.

Definition 2.5. The affine Hecke algebra $\widehat{\mathcal{H}}$ of type B_2 is the associative algebra over \mathbb{C} (p,q) defined by the following generators and relations;

generators
$$T_1, T_2, X_1, X_2$$

relations $(T_1 - q)(T_1 + q^{-1}) = 0$, $(T_2 - p)(T_2 + p^{-1}) = 0$,
 $T_1T_2T_1T_2 = T_2T_1T_2T_1$,
 $T_1X_2T_1 = X_1$, $T_2X_2^{-1}T_2 = X_2$,
 $T_2X_1 = X_1T_2$, $X_1X_2 = X_2X_1$.

We will use the following four subalgebras of $\widehat{\mathcal{H}}(B_2)$;

$$\widehat{\mathcal{H}}_1 = \langle T_1, X_1, X_2 \rangle, \quad \widehat{\mathcal{H}}_2 = \langle T_2, X_1, X_2 \rangle, \quad \mathcal{H} = \langle T_1, T_2 \rangle, \quad \mathbb{C} [X_1, X_2] \subset \widehat{\mathcal{H}}.$$

Lemma 2.2 (Decomposition Lemma). Suppose $\chi(X^{\alpha_i}) = q_i^2$, and let ρ_1, ρ_2 be the following 1-dimensional representations of $\widehat{\mathcal{H}}_i = \langle T_i, X_j (1 \leq j \leq 2) \rangle \subset \widehat{\mathcal{H}}$;

$$\rho_1(X_j) = \chi(X_j), \ \rho_1(T_i) = q_i, \ \rho_2(X_j) = (s_i\chi)(X_j), \ \rho_2(T_i) = -q_i^{-1}.$$

Then there exists the following short exact sequence;

$$0 \to \operatorname{Ind}_{\widehat{\mathcal{H}}_i}^{\widehat{\mathcal{H}}} \rho_2 \to M(\chi) \to \operatorname{Ind}_{\widehat{\mathcal{H}}_i}^{\widehat{\mathcal{H}}} \rho_1 \to 0$$

3 Classification

3.1 Method

Let M be an irreducible representation which is not principal. Then M appears in some $M(\chi)$. By Kato's criterion (Theorem 2.1), $P(\chi) \neq \phi$. Using W-action Lemma (Lemma 2.2), we may assume $P(\chi) \ni \alpha_1$ or α_2 . thus we obtain the following Lemma. We will use the notation $-\chi$ defined by $(-\chi)(X_i) = -\chi(X_i)$ (i = 1, 2).

Lemma 3.1. Except irreducible principal series representations, any finite-dimensional irreducible representation appears in the principal representations associated with the following characters as their composition factors;

χ	χ_a	χ_b	χ_c	$\chi_d^{(1)}$	$\chi_d^{(2)}$	$\chi_d^{(3)}$	$\chi_d^{(4)}$	$\chi_d^{(5)}$	$\chi_f(v)$	$\chi_g(u)$
$\chi(X_1)$	q^2p	q^2p^{-1}	$-p^{-1}$	q^2	q	p	1	1	pv	q^2u
$\chi(X_2)$	p	p^{-1}	p	1	q^{-1}	p	p	p	p	u

and
$$-\chi_a, -\chi_b, -\chi_d^{(1)}, -\chi_d^{(2)}, -\chi_d^{(3)}, -\chi_d^{(4)}, -\chi_d^{(5)}, -\chi_f(v)$$
, where
$$v \neq \pm p^{-2}, \pm p^{-1}, \pm 1, q^{\pm 2}, q^{\pm 2}p^{-2},$$

$$u \neq \pm p^{\pm 1}, \pm 1, \pm q^{-2}, \pm q^{-1}, \pm q^{-2}p^{\pm 1},$$

Note 1. Two principal series representations $M(-\chi_c)$ and $M(\chi_c)$ have same composition factors, because of W-action lemma (Lemma 2.2). By replacing u with -u, we don't need to consider $-\chi_a(u)$.

Finaly, we must determine the composition factors of $M(\chi)$ for above characters, and we must prove their irreducibility. But using the decomposition lemma, we consider the representations induced from $\widehat{\mathcal{H}}_i$. We will show the examples and some proofs in the following section.

3.2 Some examples and proofs

Example 3.1. We consider the principal series representation $M(\chi_d^{(5)})$. Let $\rho_1^{d^{(5)}}$ and $\rho_2^{d^{(5)}}$ be the following 1-dimensional representations of $\widehat{\mathcal{H}}_2$;

	X_1	X_2	T_2
$ ho_1^{d^{(5)}}$	-1	p	p
$ ho_2^{d^{(5)}}$	-1	$-p^{-1}$	$-p^{-1}$

Since $\chi_d^{(5)}(\alpha_2^{\vee}) = p^2$, we can apply the decompose lemma (Lemma 2.2) to $M(\chi_d^{(5)})$.

Lemma 3.2. Suppose $p \neq -q^{\pm 2}$. Then $\operatorname{Ind}_{\widehat{\mathcal{H}}_2}^{\widehat{\mathcal{H}}} \rho_1^{d^{(5)}}$ and $\operatorname{Ind}_{\widehat{\mathcal{H}}_2}^{\widehat{\mathcal{H}}} \rho_2^{d^{(5)}}$ are 4-dimensional non-calibrated irreducible representations.

Proof. We consider the case of $\operatorname{Ind}_{\widehat{\mathcal{H}}_2}^{\widehat{\mathcal{H}}} \rho_1^{d^{(5)}}$. These simultaneous eigenvalues of X_1 and X_2 are (p,-1),(-1,p), and the multiplicity of each eigenvalues is two. We can find the following representation matrices;

$$T_1 = \begin{pmatrix} \frac{p(q^2-1)}{(1+p)q} & -\frac{(p-1)(q^2-1)}{(1+p)q} & 1 & -\frac{p(q^2-1)^2}{(1+p)^2q^2} \\ 0 & \frac{p(q^2-1)}{(1+p)q} & 0 & \frac{(p+q^2)(1+pq^2)}{(1+p)^2q^2} \\ \frac{(p+q^2)(1+pq^2)}{(1+p)^2q^2} & \frac{(1-p+p^2)(q^2-1)^2}{(1+p)^2q^2} & \frac{(q^2-1)}{(1+p)q} & \frac{(p-1)(q^2-1)(p+q^2)(1+pq^2)}{(1+p)^3q^3} \\ 0 & 1 & 0 & \frac{(q^2-1)}{(1+p)q} \end{pmatrix},$$

$$T_2 = \begin{pmatrix} 1 \\ 1 & \frac{(p^2-1)}{p} \\ p & p \end{pmatrix},$$

$$X_1 = \begin{pmatrix} p \\ p \\ -1 & -\frac{(-1+p)(p+q^2)(1+pq^2)}{p(1+p)q^2} \\ -1 \end{pmatrix}, X_2 = \begin{pmatrix} -1 & -\frac{p^2-1}{p} \\ -1 \\ p & p \end{pmatrix}.$$

Since $p \neq -q^{\pm 2}$ and p, q are not a root of unity, the non-diagonal component with respect to (p, -1), (-1, p) in X_1 and X_2 don't vanish. Thus the dimension of each simultaneous eigenspaces is just one. Let v_1, v_2 be the simultaneous eigenvectors with respect to (p, -1), (-1, p). We have

$$T_1v_1 = \frac{p(q^2 - 1)}{(1 + p)q}v_1 + \frac{(p + q^2)(1 + pq^2)}{(1 + p)^2q^2}v_2, \quad T_1v_2 = \frac{q^2 - 1}{(1 + p)q}v_2 + v_1,$$

and $p \neq -q^{\pm 2}$. If there exists a submodule $0 \neq U$ of $\operatorname{Ind}_{\widehat{\mathcal{H}}_2}^{\widehat{\mathcal{H}}} \rho_1^{d^{(5)}}$, then U contains v_1 or v_2 . If v_2 is conteined in U, then v_1 is contained in U, and vice versa. Therefore $\langle v_1, v_2, T_2 v_1, T_1 T_2 v_1 \rangle \subset U$. This implies that $U = \operatorname{Ind}_{\widehat{\mathcal{H}}_2}^{\widehat{\mathcal{H}}} \rho_1^{d^{(5)}}$, and $\operatorname{Ind}_{\widehat{\mathcal{H}}_2}^{\widehat{\mathcal{H}}} \rho_1^{d^{(5)}}$ is irreducible. Similarly, we can show that $\operatorname{Ind}_{\widehat{\mathcal{H}}_2}^{\widehat{\mathcal{H}}} \rho_2^{d^{(5)}}$ is irreducible.

Example 3.2. We consider $M(\chi_a)$. Let ρ_1^a and ρ_2^a be the following 1-dimensional

representations of \mathcal{H}_2 ;

	X_1	X_2	T_2
ρ_1^a	q^2p	p	p
$ ho_2^a$	q^2p	$-p^{-1}$	$-p^{-1}$

Since $\chi_a(\alpha_2^{\vee}) = p^2$, we can apply the decompose lemma (Lemma 2.2) to $M(\chi_a)$.

Lemma 3.3. Suppose $p \neq \pm q^{-1}, \pm q^{-2}, p^2 \neq -q^{-2}$. Then $\operatorname{Ind}_{\hat{\mathcal{H}}_2}^{\hat{\mathcal{H}}} \rho_1^a$ and $\operatorname{Ind}_{\hat{\mathcal{H}}_2}^{\hat{\mathcal{H}}} \rho_2^a$ have 1-and 3-dimensional calibrated irreducible composition factors. More precisely,

(1) $\operatorname{Ind}_{\hat{\mathcal{H}}_2}^{\mathcal{H}} \rho_1^a$ have two composition factors which are presented by the following representation matricies;

- \bullet $X_1 = pq^2$, $X_2 = p$, $T_1 = q$, $T_2 = p$.
- \bullet U_a^1 :

$$X_{1} = \begin{pmatrix} p & p & p^{-1}q^{-2} \\ p^{-1}q^{-2} & p \end{pmatrix}, \quad X_{2} = \begin{pmatrix} pq^{2} & p^{-1}q^{-2} \\ p^{-1}q^{-2} & p \end{pmatrix},$$

$$T_{1} = \begin{pmatrix} -q^{-1} & \frac{p^{2}q(q^{2}-1)}{(p^{2}q^{2}-1)} & \frac{(p^{2}-1)(p^{2}q^{4}-1)}{(p^{2}q^{2}-1)^{2}} \\ 1 & -\frac{(q^{2}-1)}{q(p^{2}q^{2}-1)} \end{pmatrix}, \quad T_{2} = \begin{pmatrix} \frac{p(p^{2}-1)q^{4}}{(p^{2}q^{4}-1)} & \frac{(q^{4}-1)(p^{4}q^{4}-1)}{(p^{2}q^{4}-1)} \\ 1 & -\frac{p^{2}-1}{p(p^{2}q^{4}-1)} \\ p \end{pmatrix}.$$

(2) $\operatorname{Ind}_{\widehat{\mathcal{H}}_2}^{\widehat{\mathcal{H}}} \rho_2^a$ have two composition factors which are presented by the following representation matricies:

- $X_1 = p^{-1}q^{-2}$, $X_2 = p^{-1}$, $T_1 = -q^{-1}$, $T_2 = -p^{-1}$.
- \bullet U_a^2 :

$$\begin{split} X_1 &= \begin{pmatrix} p^{-1} \\ pq^2 \\ p^{-1} \end{pmatrix}, \ X_2 &= \begin{pmatrix} pq^2 \\ p^{-1} \\ p^{-1}q^{-2} \end{pmatrix}, \\ T_1 &= \begin{pmatrix} -\frac{q^2-1}{q(p^2q^2-1)} & 1 \\ \frac{(p^2-1)(p^2q^4-1)}{(p^2q^2-1)^2} & \frac{p^2q(q^2-1)}{(p^2q^2-1)} \\ q \end{pmatrix}, \ T_2 &= \begin{pmatrix} \frac{p(p^2-1)}{(p^2q^4-1)} & \frac{(q^4-1)(p^4q^4-1)}{(p^2q^4-1)^2} \\ -p^{-1} \\ 1 & -\frac{p^2-1}{p(p^2q^4-1)} \end{pmatrix}. \end{split}$$

Example 3.3. We consider $M(\chi_b)$. Let ρ_1^b and ρ_2^b be the following 1-dimensional representations of $\widehat{\mathcal{H}}_1$;

	X_1	X_2	T_1
$ ho_1^b$	q^2p^{-1}	p^{-1}	q
$ ho_2^b$	p^{-1}	q^2p^{-1}	$-q^{-1}$

Since $\chi_a(\alpha_1^{\vee}) = q^2$, we can apply the decompose lemma (Lemma 2.2) to $M(\chi_b)$.

Lemma 3.4. (1) Suppose $p \neq \pm q, \pm q^2, p^2 \neq -q^2$. Then $\operatorname{Ind}_{\widehat{\mathcal{H}}_1}^{\widehat{\mathcal{H}}} \rho_1^b$ and $\operatorname{Ind}_{\widehat{\mathcal{H}}_1}^{\widehat{\mathcal{H}}} \rho_2^b$ have 1-and 3-dimensional calibrated irreducible composition factors which are calibrated and presented by the following representation matrices;

6

- (i) case $\operatorname{Ind}_{\widehat{\mathcal{H}}_1}^{\widehat{\mathcal{H}}} \rho_1^b$;
 - $X_1 = q^2 p^{-1}$, $X_2 = p^{-1}$, $T_1 = q$, $T_2 = -p^{-1}$.

 \bullet U_h^{\perp} :

$$X_{1} = \begin{pmatrix} q^{2}p^{-1} & p \\ & p \end{pmatrix}, \ X_{2} = \begin{pmatrix} p & pq^{-2} \\ & pq^{-2} \end{pmatrix},$$

$$T_{1} = \begin{pmatrix} \frac{q(q^{2}-1)}{q^{2}-p^{2}} & -\frac{(p^{2}-1)(q^{4}-p^{2})}{(q^{2}-p^{2})^{2}} \\ & q & \\ 1 & -\frac{p^{2}(q^{2}-1)}{(q^{2}-p^{2})q} \end{pmatrix}, \ T_{2} = \begin{pmatrix} p & p(p^{2}-1) & 1 \\ & p^{2}-q^{4} & 1 \\ & -\frac{(p^{2}-q^{2})(q^{4}-1)(p^{2}+q^{2})}{(p^{2}-q^{4})^{2}} & -\frac{(p^{2}-1)q^{4}}{p(p^{2}-q^{4})} \end{pmatrix}.$$

- (ii) case $\operatorname{Ind}_{\widehat{\mathcal{H}}_1}^{\widehat{\mathcal{H}}} \rho_2^b$;
 - $X_1 = pq^{-2}$, $X_2 = p$, $T_1 = -q^{-1}$, $T_2 = -p$.
 - U_b^2 :

$$\begin{split} X_1 &= \binom{pq^{-2}}{p^{-1}}, \ X_2 &= \binom{p^{-1}}{pq^{-2}} \\ T_1 &= \binom{-\frac{p^2(q^2-1)}{q^2-p^2}}{(q^2-p^2)^2} \frac{1}{(q^2-p^2)} \\ -\frac{(p^2-1)(q^4-p^2)}{(q^2-p^2)^2} \frac{(q^2-1)q}{(q^2-p^2)} \\ -q^{-1} \end{pmatrix}, \\ T_2 &= \binom{-p^{-1}}{\frac{p(p^2-1)}{p^2-q^4}} \frac{1}{-\frac{(p^2-q^2)(q^4-1)(p^2+q^2)}{(p^2-q^4)^2} - \frac{(p^2-1)q^4}{p(p^2-q^4)}} \\ -\frac{(p^2-q^2)(q^4-1)(p^2+q^2)}{(p^2-q^4)^2} - \frac{(p^2-1)q^4}{p(p^2-q^4)} \end{pmatrix}. \end{split}$$

- (2) Suppose p=q. Then they have 1-dimensional composition factor and 3-dimensional non-calibrated composition factor which are presented by the following representation matrices;
- (i) case $\operatorname{Ind}_{\widehat{\mathcal{H}}_1}^{\widehat{\mathcal{H}}} \rho_1^b$;
 - $X_1 = q$, $X_2 = q^{-1}$, $T_1 = q$, $T_2 = -q^{-1}$.
 - U_b^1 :

$$X_{1} = \begin{pmatrix} q & q^{2} \\ q & q^{2} \\ q \end{pmatrix}, X_{2} = \begin{pmatrix} q^{-1} & \frac{1+2q^{2}}{q} \\ q & -q^{2} \\ q & q \end{pmatrix},$$

$$T_{1} = \begin{pmatrix} q & \frac{1+2q^{2}}{q^{2}} \\ -q^{-1} \\ \frac{q^{2}-1}{q^{2}} & q \end{pmatrix}, T_{2} = \begin{pmatrix} -q^{-1} & \frac{1+q^{2}}{q(q^{2}-1)} \\ 1 & q & -\frac{1}{q^{2}-1} \\ q & q \end{pmatrix}.$$

- (ii) case $\operatorname{Ind}_{\widehat{\mathcal{H}}_1}^{\widehat{\mathcal{H}}} \rho_2^b$;
 - $X_1 = q^{-1}$, $X_2 = q$, $T_1 = -q^{-1}$, $T_2 = q$.
 - \bullet U_b^2 :

$$X_{1} = \begin{pmatrix} q^{-1} & -\frac{q^{2}-1}{q^{3}} \\ q^{-1} & q^{-1} \end{pmatrix}, X_{2} = \begin{pmatrix} q^{-1} & \frac{q^{2}-1}{q^{3}} \\ q & \frac{(q^{2}-1)(q^{2}+2)}{q} \\ q^{-1} \end{pmatrix},$$

$$T_{1} = \begin{pmatrix} q \\ q(2+q^{2}) & -q^{-1} \\ -q & -q^{-1} \end{pmatrix}, T_{2} = \begin{pmatrix} -q^{-1} & q^{-1} & q \\ q & q(q^{2}+1) \\ -q^{-1} \end{pmatrix}.$$

- (3) Suppose $p = q^2$. Then they have 1-dimensional composition factor and 3-dimensional non-calibrated composition factor which are presented by the following representation matrices;
- (i) case $\operatorname{Ind}_{\widehat{\mathcal{H}}_1}^{\widehat{\mathcal{H}}} \rho_1^b$;
 - $X_1 = 1$, $X_2 = q^{-2}$, $T_1 = q$, $T_2 = -q^{-2}$.
 - \bullet U_h^1 :

$$X_{1} = \begin{pmatrix} 1 & q^{2} & \\ & q^{2} \end{pmatrix}, \ X_{2} = \begin{pmatrix} q^{2} & \\ & 1 & \frac{q^{4}-1}{q^{2}} \\ 1 & & 1 \end{pmatrix},$$

$$T_{1} = \begin{pmatrix} -q^{-1} & -\frac{(q^{2}+1)^{2}}{q^{2}} \\ 1 & & q & \frac{q^{2}+1}{q} \\ 1 & & q \end{pmatrix}, \ T_{2} = \begin{pmatrix} q^{2} & \\ & 1 \\ & 1 & \frac{q^{4}-1}{q^{2}} \end{pmatrix}.$$

- (ii) case $\operatorname{Ind}_{\widehat{\mathcal{H}}_1}^{\widehat{\mathcal{H}}} \rho_2^b$:
 - $X_1 = 1$, $X_2 = q^2$, $T_1 = -q^{-1}$, $T_2 = q^2$.
 - \bullet U_b^2 :

$$X_{1} = \begin{pmatrix} q^{-2} \\ q^{-2} \\ 1 \end{pmatrix}, \ X_{2} = \begin{pmatrix} 1 & \frac{q^{4}-1}{q^{2}} \\ 1 & q^{-2} \end{pmatrix},$$

$$T_{1} = \begin{pmatrix} -q^{-1} & \frac{q^{2}+1}{q} & \frac{(q^{2}+1)^{2}}{q^{2}} \\ -q^{-1} & 1 & q \end{pmatrix}, \ T_{2} = \begin{pmatrix} 1 & \frac{q^{4}-1}{q^{2}} \\ 1 & q^{-2} \end{pmatrix}.$$

Example 3.4. We consider $M(\chi_c)$. Let ρ_1^c and ρ_2^c be the following 1-dimensional representations of $\widehat{\mathcal{H}}_2$;

	X_1	X_2	T_2
$ ho_1^c$	$-p^{-1}$	p	p
$ ho_2^c$	$-p^{-1}$	$-p^{-1}$	$-p^{-1}$

Since $\chi_c(\alpha_2^{\vee}) = p^2$, we can apply the decompose lemma (Lemma 2.2) to $M(\chi_c)$.

Lemma 3.5. (1) Suppose $p^2 \neq -q^{\pm 2}$. Ind $\hat{\mathcal{H}}_{\hat{\mathcal{H}}_2} \rho_1^c$ and Ind $\hat{\mathcal{H}}_2 \rho_2^c$ have two 2-dimensional irreducible calibrated composition factors which are presented by the following representation matricies;

composition factors of $\operatorname{Ind}_{\widehat{\mathcal{H}}_2}^{\widehat{\mathcal{H}}} \rho_1^c$;

	X_1	X_2	T_1	T_2
U_c^1	$\begin{pmatrix} p \\ -p \end{pmatrix}$	$\begin{pmatrix} -p \\ p \end{pmatrix}$	$\begin{pmatrix} \frac{q^2 - 1}{2q} & \frac{(1 + q^2)^2}{4q^2} \\ 1 & \frac{q^2 - 1}{2q} \end{pmatrix}$	$\begin{pmatrix} p \\ p \end{pmatrix}$
U_c^3	$\left(\begin{array}{cc} -p^{-1} & \\ & p \end{array}\right)$	$\left(\begin{smallmatrix}p\\&-p^{-1}\end{smallmatrix}\right)$	$\begin{pmatrix} \frac{q^2 - 1}{(p^2 + 1)q} & \frac{(p^2 + q^2)(1 + p^2 q^2)}{(p^2 + 1)^2 q^2} \\ 1 & \frac{p^2(q^2 - 1)}{(p^2 + 1)q} \end{pmatrix}$	$\left(\begin{smallmatrix}p\\&-p^{-1}\end{smallmatrix}\right)$

composition factors of $\operatorname{Ind}_{\widehat{\mathcal{H}}_2}^{\widehat{\mathcal{H}}} \rho_2^c$;

	X_1	X_2	T_1	T_2
U_c^2	$\left(\begin{array}{c} -p^{-1} \\ p^{-1} \end{array}\right)$	$\left(\begin{array}{c}p^{-1}\\-p^{-1}\end{array}\right)$	$\begin{pmatrix} \frac{q^2 - 1}{2q} & \frac{(1 + q^2)^2}{4q^2} \\ 1 & \frac{q^2 - 1}{2q} \end{pmatrix}$	$\left(\begin{array}{c} -p^{-1} \\ -p^{-1} \end{array}\right)$
U_c^4	$\left(\begin{array}{c}p^{-1}\\-p\end{array}\right)$	$\left(\begin{array}{c}-p\\p^{-1}\end{array}\right)$	$\begin{pmatrix} \frac{q^2 - 1}{(p^2 + 1)q} & \frac{(p^2 + q^2)(1 + p^2 q^2)}{(p^2 + 1)^2 q^2} \\ 1 & \frac{p^2(q^2 - 1)}{(p^2 + 1)q} \end{pmatrix}$	$\left(\begin{smallmatrix}p\\&-p^{-1}\end{smallmatrix}\right)$

sition factor and two 1-dimensional composition factors. And their representation matrices are obtained by putting $p^2 = -q^2$ in above matrices, since specialization lemma (Lemma 2.1). More precisely, U_c^1, U_c^2 are irreducible, but U_c^3, U_c^4 have two 1-dimensional composition factors.

3.3 Classification Theorem

By the preceding Examples and Lemmas, we obtain the following classification theorem. First, let us define the 1-dimensional representations of $\widehat{\mathcal{H}}_i$ in addition to the notation in the preceding Examples and Lemmas;

$ \widehat{\mathcal{H}}_1 $	$ ho_1^{d^{(1)}}$	$ ho_2^{d^{(1)}}$	$ ho_1^{d^{(2)}}$	$ ho_2^{d^{(2)}}$	$\rho_1^g(u)$	$\rho_2^g(u)$
X_1	q^2	1	q	q^{-1}	q^2u	u
X_2	1	q^2	q^{-1}	q	u	q^2u
T_1	\overline{q}	$-q^{-1}$	\overline{q}	$-q^{-1}$	\overline{q}	$-q^{-1}$

$ \widehat{\mathcal{H}}_2 $	$ ho_1^{d^{(3)}}$	$ ho_2^{d^{(3)}}$	$ ho_1^{d^{(4)}}$	$ ho_2^{d^{(4)}}$	$\rho_1^f(v)$	$ \rho_2^f(v) $
X_1	p	p	1	1	pv	pv
X_2	p	p^{-1}	p	p^{-1}	p	p^{-1}
T_2	p	$-p^{-1}$	p	$-p^{-1}$	p	$-p^{-1}$

Theorem 3.1. Suppose that p and q are not a root of unity. The finite-dimensional irreducible representations of type B_2 with unequal parameters are given by the following lists depending on the relation of parameters.

(0) The principal series representations $M(\chi)$, where $\chi \neq \pm \chi_a, \pm \chi_b, \chi_c, \pm \chi_d^{(j)}$ $(1 \leq j \leq 5), \pm \chi_f(v), \chi_g(u)$ and their W-orbits, are irreducible.

(1) For any p, q, there are eight 1-dimensional (irreducible) representations defined by

X_1	q^2p	$q^{-2}p^{-1}$	q^2p^{-1}	$q^{-2}p$	$-q^2p$	$-q^{-2}p^{-1}$	$-q^2p^{-1}$	$-q^{-2}p$
X_2	p	p^{-1}	p^{-1}	p	-p	$-p^{-1}$	$-p^{-1}$	-p
T_1	q	$-q^{-1}$	q	$-q^{-1}$	q	$-q^{-1}$	q	$-q^{-1}$
T_2	p	$-p^{-1}$	$-p^{-1}$	p	p	$-p^{-1}$	$-p^{-1}$	p

(2) For any p, q,

$$\begin{split} & \operatorname{Ind}_{\hat{\mathcal{H}}_{2}}^{\hat{\mathcal{H}}} \, \rho_{1}^{f}(v), \, \operatorname{Ind}_{\hat{\mathcal{H}}_{2}}^{\hat{\mathcal{H}}} \, \rho_{2}^{f}(v), \, \operatorname{Ind}_{\hat{\mathcal{H}}_{2}}^{\hat{\mathcal{H}}}(-\rho_{1}^{f}(v)), \, \operatorname{Ind}_{\hat{\mathcal{H}}_{2}}^{\hat{\mathcal{H}}}(-\rho_{2}^{f}(v)) \\ & \text{with } v \neq \pm p^{-2}, \pm p^{-1}, \pm 1, q^{\pm 2}, q^{\pm 2}p^{-2} \\ & \operatorname{Ind}_{\hat{\mathcal{H}}_{1}}^{\hat{\mathcal{H}}} \, \rho_{1}^{g}(u), \, \, \operatorname{Ind}_{\hat{\mathcal{H}}_{1}}^{\hat{\mathcal{H}}} \, \rho_{2}^{g}(u) \, \, \text{with } u \neq \pm p^{\pm 1}, \pm 1, \pm q^{-2}, \pm q^{-1}, \pm q^{-2}p^{\pm 1} \end{split}$$

are 4-dimensional one parameter families of irreducible representations and calibrated. They are not isomorphic to each other.

- (3) When p, q are generic i.e. $p \neq \pm q^{\pm 2}, \pm q^{\pm 1}$ and $p^2 \neq -q^{\pm 2}$, the remaining finite-dimensional irreducible representations are the following;
 - (I) U_c^i ($1 \le i \le 4$) which are 2-dimensional and calibrated.
 - (II) $U_a^i, U_b^i, U_{-a}^i, U_{-b}^i$ (i = 1, 2) which are 3-dimensional and calibrated.

(III)

$$\begin{split} & \operatorname{Ind}_{\widehat{\mathcal{H}}_{1}}^{\widehat{\mathcal{H}}} \, \rho_{j}^{d^{(i)}}, \operatorname{Ind}_{\widehat{\mathcal{H}}_{1}}^{\widehat{\mathcal{H}}} (-\rho_{j}^{d^{(i)}}) \, \, (j=1,2,i=1,2), \\ & \operatorname{Ind}_{\widehat{\mathcal{H}}_{2}}^{\widehat{\mathcal{H}}} \, \rho_{j}^{d^{(i)}}, \operatorname{Ind}_{\widehat{\mathcal{H}}_{2}}^{\widehat{\mathcal{H}}} (-\rho_{j}^{d^{(i)}}) \, \, (j=1,2,i=3,4,5) \end{split}$$

which are 4-dimensional and non-calibrated.

- (4) When $p = q^2$, the remaining finite-dimensional irreducible representations are the following:
 - (I) U_c^i ($1 \le i \le 4$) which are 2-dimensional and calibrated.
 - (II) $U_a^i, U_{-a}^i, (i=1,2)$ which are 3-dimensional and calibrated.
 - (III) $U_b^i, U_{-b}^i, (i = 1, 2)$ which are 3-dimensional and non-calibrated.

(IV)

$$\begin{split} & \operatorname{Ind}_{\widehat{\mathcal{H}}_{1}}^{\widehat{\mathcal{H}}} \, \rho_{j}^{d^{(i)}}, \operatorname{Ind}_{\widehat{\mathcal{H}}_{1}}^{\widehat{\mathcal{H}}} (-\rho_{j}^{d^{(i)}}) \, \, (j=1,2,i=2), \\ & \operatorname{Ind}_{\widehat{\mathcal{H}}_{2}}^{\widehat{\mathcal{H}}} \, \rho_{j}^{d^{(i)}}, \operatorname{Ind}_{\widehat{\mathcal{H}}_{2}}^{\widehat{\mathcal{H}}} (-\rho_{j}^{d^{(i)}}) \, \, (j=1,2,i=3,5) \end{split}$$

which are 4-dimensional and non-calibrated.

- (5) When p = q, the remaining finite-dimensional irreducible representations are the following;
 - (I) U_c^i $(1 \le i \le 4)$ which are 2-dimensional and calibrated.
 - (II) $U_a^i, U_{-a}^i, (i = 1, 2)$ which are 3-dimensional and calibrated.
 - (III) U_b^i, U_{-b}^i , (i = 1, 2) which are 3-dimensional and non-calibrated.

(IV)

$$\operatorname{Ind}_{\widehat{\mathcal{H}}_{1}}^{\widehat{\mathcal{H}}} \rho_{j}^{d^{(i)}}, \operatorname{Ind}_{\widehat{\mathcal{H}}_{1}}^{\widehat{\mathcal{H}}} (-\rho_{j}^{d^{(i)}}) \ (j = 1, 2, i = 1),$$
$$\operatorname{Ind}_{\widehat{\mathcal{H}}_{2}}^{\widehat{\mathcal{H}}} \rho_{j}^{d^{(i)}}, \operatorname{Ind}_{\widehat{\mathcal{H}}_{2}}^{\widehat{\mathcal{H}}} (-\rho_{j}^{d^{(i)}}) \ (j = 1, 2, i = 4, 5)$$

which are 4-dimensional and non-calibrated.

- (6) When $p^2 = -q^2$, the remaining finite-dimensional irreducible representations are the following;
 - (I) U_c^i (i = 1, 2) which are 2-dimensional and calibrated.
 - (II) $U_a^i, U_{-a}^i, (1 \le i \le 2)$ which are 3-dimensional and calibrated.

(III)

$$\begin{split} & \operatorname{Ind}_{\widehat{\mathcal{H}}_{1}}^{\widehat{\mathcal{H}}} \, \rho_{j}^{d^{(i)}}, \operatorname{Ind}_{\widehat{\mathcal{H}}_{1}}^{\widehat{\mathcal{H}}} (-\rho_{j}^{d^{(i)}}) \, \, (j=1,2,i=1,2), \\ & \operatorname{Ind}_{\widehat{\mathcal{H}}_{2}}^{\widehat{\mathcal{H}}} \, \rho_{j}^{d^{(i)}}, \operatorname{Ind}_{\widehat{\mathcal{H}}_{2}}^{\widehat{\mathcal{H}}} (-\rho_{j}^{d^{(i)}}) \, \, (j=1,2,i=3,4,5) \end{split}$$

which are 4-dimensional and non-calibrated.

(7) Using the following automorphisms of $\widehat{\mathcal{H}}$

$$X_1 \mapsto X_1, X_2 \mapsto X_2, T_1 \mapsto T_1, T_2 \mapsto -T_2, q \mapsto q, p \mapsto \mp p^{\pm 1}$$

the cases of $p = \pm q^{-2}$, $-q^2$ reduces the case (4). Similarly, the cases of $p = \pm q^{-1}$, -q reduces the case (5). The case of $p^2 = -q^{-2}$ also reduces the case (6).

Note 2. In [Ram2], Ram dealt equal parameter case i.e. p = q case. However the case $\chi_d^{(5)}$ does not appear in his list. Also he did not explicitly list $-\chi_a, -\chi_b, -\chi_d^{(1)}, -\chi_d^{(4)}, -\chi_d^{(5)}$ and $-\chi_f$.

4 Tables of irreducible representations

We will summarize about the dimension of composition factors and their calibratability. Note that we will omit the principal series representation $M(-\chi)$ and their composition factors in the following tables.

4.1 p, q generic case (i.e. $p \neq \pm q^{-1}, \pm q^{-1}$ and $p^{-1} \neq -q^{-1}$)

	$\chi(X_1)$	$\chi(X_2)$	$P(\chi)$	\dim	calibrated?
χ_a	q^2p	p	$\{\alpha_1, \alpha_2\}$	1	0
				3	\circ
				3	0
	2 _1	_1	()	1	0
χ_b	q^2p^{-1}	p^{-1}	$\{\alpha_1, \alpha_2\}$	1	
				3	
				3 1	
2/	$-p^{-1}$	m	$\{\alpha_2, 2\alpha_1 + \alpha_2\}$	2	
χ_c	-p	p	$\{\alpha_2, 2\alpha_1 + \alpha_2\}$		
				$\frac{2}{2}$	
				$\begin{array}{c} 2 \\ 2 \\ 2 \end{array}$	000000000000000000000000000000000000000
$\chi_d^{(1)}$	q^2	1	$\{\alpha_1, \alpha_1 + \alpha_2\}$	4	×
				4	×
$\chi_d^{(2)}$	q	q^{-1}	$\{\alpha_1\}$	4	×
				4	×
$\chi_d^{(3)}$	p	p	$\{\alpha_2, 2\alpha_1 + \alpha_2\}$	4	×
				4	×
$\chi_d^{(4)}$	1	p	$\{\alpha_2\}$	4	×
				4	×
$\chi_d^{(5)}$	-1	p	$\{\alpha_2\}$	4	×
				4	×
$\chi_f(v)$	pv	p	$\{\alpha_2\}$	4	\bigcirc
				4	0
$\chi_g(u)$	q^2u	u	$\{\alpha_1\}$	4	
				4	\cup

4.2 p = q case; equal parameter case

	$\chi(X_1)$	$\chi(X_2)$	$P(\chi)$	dim	calibrated?
χ_a	q^3	q	$\{\alpha_1, \alpha_2\}$	1	0
				3	\bigcirc
				3	\bigcirc
				1	\circ
χ_b	q	q^{-1}	$\{\alpha_1, \alpha_2, 2\alpha_1 + \alpha_2\}$	1	\bigcirc
				3	×
				3	×
				1	\circ
χ_c	$-q^{-1}$	q	$\{\alpha_2, 2\alpha_1 + \alpha_2\}$	2	\circ
				$\begin{array}{c} 2 \\ 2 \\ 2 \end{array}$	\circ
				2	\circ
				2	\circ
$\chi_d^{(1)}$	q^2	1	$\{\alpha_1, \alpha_1 + \alpha_2\}$	4	×
				4	×
$\chi_d^{(4)}$	1	q	$\{\alpha_2\}$	4	×
		_		4	×
$\chi_d^{(5)}$	-1	p	$\{\alpha_2\}$	4	×
- u			, ,	4	×
$\chi_f(v)$	qv	q	$\{\alpha_2\}$	4	0
				4	\bigcirc
$\chi_g(u)$	q^2u	u	$\{\alpha_1\}$	4	0
				4	\bigcirc

4.3 $p = q^2$ case

	$\chi(X_1)$	$\chi(X_2)$	$P(\chi)$	dim	calibrated?
χ_a	q^4	q^2	$\{\alpha_1,\alpha_2\}$	1	0
				3	\circ
				3	\circ
				1	\circ
χ_b	1	q^{-2}	$\{\alpha_1,\alpha_2,\alpha_1+\alpha_2\}$	1	\circ
				3	×
				3	×
				1	\circ
χ_c	$-q^{-2}$	q^2	$\{\alpha_2, 2\alpha_1 + \alpha_2\}$	2	\circ
				2	\circ
				2 2 2	0
				2	\circ
$\chi_d^{(2)}$	q	q^{-1}	$\{\alpha_1\}$	4	×
				4	×
$\chi_d^{(3)}$	q^2	q^2	$\{\alpha_2, 2\alpha_1 + \alpha_2\}$	4	×
				4	×
$\chi_d^{(5)}$	-1	q^2	$\{\alpha_2\}$	4	×
a a				4	×
$\chi_f(v)$	q^2v	q^2	$\{\alpha_2\}$	4	0
				4	
$\chi_g(u)$	q^2u	u	$\{\alpha_1\}$	4	0
				4	\circ

4.4 $p^2 = -q^2$ case

	$\chi(X_1)$	$\chi(X_2)$	$P(\chi)$	dim	calibrated?
χ_a	$-p^3$	p	$\{\alpha_1, \alpha_2\}$	1	0
				3	\circ
				3	Ŏ
	1		()	1	0
χ_c	$-p^{-1}$	p	$\{\alpha_1, \alpha_2, 2\alpha_1 + \alpha_2\}$	1	00000
				1	0
				1	0
				1	0
				$\frac{2}{2}$	
(1)	9	1	(,)		
$\chi_d^{(1)}$	$-p^2$	1	$\{\alpha_1, \alpha_1 + \alpha_2\}$	4	×
(2)	. /		()	4	×
$\chi_d^{(2)}$	$\pm p\sqrt{-1}$	$\pm p\sqrt{-1}$	$\{\alpha_1\}$	4	×
(3)				4	×
$\chi_d^{(3)}$	p	p	$\{\alpha_2, 2\alpha_1 + \alpha_2\}$	4	×
(4)				4	×
$\chi_d^{(4)}$	1	p	$\{\alpha_2\}$	4	×
				4	×
$\chi_d^{(5)}$	-1	p	$\{\alpha_2\}$	4	×
				4	×
$\chi_f(v)$	pv	p	$\{\alpha_2\}$	4	0
				4	0
$\chi_g(u)$	$-p^2u$	u	$\{\alpha_1\}$	4	\circ
				4	\circ

references

- [Ari] S. Ariki, Representations of Quantum Algebras and Combinatorics of Young Tableaux, Amer. Math. Soc. Univ. Lec. Ser. vol.26, 2002
- [CG] N. Chriss, V. Ginzburg, Representation Theory and Complex Geometry, Birkhäuser, 1997
- [JK] G. James, A. Kerber, *The Representation Theory of the Symmetric Group*, Encyclopedia of mathematics and its applications, **16**, Addison-Wesley, 1981
- [Kato] S. Kato, Irreducibility of principal representations for Hecke algebras of affine type, J. Fac. Sci. Univ. Tokyo Sect. IA Math 28, 1981, 929-943
- [KL] D. Kazhdan, G. Lusztig, Proof of Delingre-Langlands Conjecture for Hecke Algebras, Invent. math. 87, 153-215, 1987
- [KR] C. Kriloff, A. Ram, Representations of graded Hecke algebras, Representation Theory, 6, 2002, 31-69 (electronic)
- [Lus89] G. Lusztig, Affine Hecke algebras and their graded version, J. Amer. Math. Soc. 2, 1989, 599-635
- [LusI] G. Lustzig, Cuspidal local systems and graded Hecke algebras I, Publ. Math. I.H.E.S. 67, 1989, 145-202
- [LusII] G. Lusztig, Cuspidal local systems and graded Hecke algebras II, Representations of groups, (B.Allison and G.Cli eds.) Canad. Math. Soc. Conf. Proc., vol.16, Amer. Math. Soc. 1955, 217-275
- [LusIII] G. Lusztig, Cuspidal local systems and graded Hecke algebras III, Representation Theory 6, 2002, 202-242 (electronic)
- [Ram1] A. Ram, Affine Hecke Algebras and generalized standard Young tableaux, J. Algebra, 230, 2003, 367-415
- [Ram2] A. Ram, Representations of rank two affine Hecke algebras, Advances Algebra and Geometry, Univ. Hyderabad conference 2001(C.Musili ed.), Hindustan Book Agency, 2003, 57-91