香港考試及評核局2014年香港中學交憑考試

化學 試卷二

本試卷必須用中文作答 一小時完卷(上午十一時四十五分至下午十二時四十五分)

考生須知

- (一) 本試卷共有甲、乙和丙三部。考生須選答任何兩部中的全部試題。
- (二) 答案須寫在所提供的 DSE(D) 答題簿內,每題(非指分題)必須另起新頁作答。
- (三) 本試卷的第 8 頁印有周期表。考生可從該周期表得到元素的原子序及相對原子質量。

考試結束前不可將試卷攜離試場

甲部 工業化學

回答試題的**所有**部分。

1. (a) 回答以下短問題:

- (ii) 在室溫下,糖可在有酵母的情況下藉發酵生成乙醇。寫出酵母的功用,並解釋 爲什麼在高溫時這功用會失效。 (2 分)
- (iii) 丙種維生素可從水果中獲得。解釋爲什麼仍有需要在工業上合成丙種維生素。 (1 分)
- (iv) 寫出從氯鹼工業生產的**兩個**重要化學品。 (1分)

(b) 在某溫度下研習以下反應的動力學:

$$BrO_3^-(aq) + 6I^-(aq) + 6H^+(aq) \rightarrow 3I_2(aq) + Br^-(aq) + 3H_2O(1)$$

在只改變 BrO_3 (aq) 的初始濃度而其他實驗條件相同下,進行了幾次實驗以量度生成 I_2 (aq) 的初速。以下坐標圖顯示這幾次實驗得到的結果:

- (i) 「初速」一詞是什麼意思? (1 分)
- (ii) 建議一方法(附以理據)來跟隨生成 I₂(aq) 的進度。 (2 分)
- (iii) 参照以上坐標圖,推定對應 $BrO_3^-(aq)$ 的反應級數。 (2 分)

2014-DSE-CHEM 2-2

1. (b) (iv) 下表列出在相同溫度下,爲同一反應進行了兩次實驗的資料:

	初期	始濃度 / mol d	生成 I2(aq) 的初速	
	BrO₃ (aq)	I (aq)	H ⁺ (aq)	/ mol dm ⁻³ s ⁻¹
第1次	0.17	0.15	0.10	2.30×10^{-3}
第2次	0.17	0.30	0.20	1.84×10^{-2}

- (1) 已知對應 $\Gamma(aq)$ 的反應級數是 1, 推定對應 $H^{\dagger}(aq)$ 的反應級數。
- (2) 基於第 1 次實驗,推定在實驗條件下對應 BrO_3 (aq) 的反應初速。 (3 分)
- (c) 閱讀以下有關哈柏法的短文,並回答隨後的問題。

哈柏法是一個重要的工業過程。它需要天然氣和空氣作為原料。為加快哈柏法所涉及的反應,使用了多孔式的鐵催化劑以提升催化劑的效率。哈柏法也需要適當的反應溫度及壓強。此外,在制定最佳反應條件為約 500 ℃和 200 atm 前,考慮了兩個與化學有關的因素。於這些條件下,在平衡時的反應產率約為 20 %。在沒有改變最佳反應條件下,通過一些設計,可令過程中氫的整體轉化百分率顯著增加。

(i) 解釋爲什麼哈柏法是一個重要的工業過程。 (1 分)

(ii) 爲什麼哈柏法需要天然氣作爲原料? (1分)

(iii) 解釋爲什麼把催化劑製成多孔式可提升催化劑的效率。 (1 分)

(iv) 寫出在制定最佳反應溫度與壓強前所考慮了的**兩個**與化學有關的因素。 (2 分)

(v) 提出一個設計,在沒有改變最佳反應條件下,可令過程中氮的整體轉化百分率 顯著增加。 (1分)

(vi) 南美洲國家智利有很多天然硝酸鹽礦。歷史告訴我們,哈柏法的成功曾引致對智利社會的一些衝擊。舉出其中一個衝擊。 (1分)

甲部完

乙部 物料化學

回答試題的**所有**部分。

- 2. (a) 回答以下短問題:
 - (i) 爲以下各金屬晶體結構略繪一個晶胞:
 - (1) 立方緊密裝填結構
 - (2) 體心立方結構

(2分)

(ii) 寫出呈液晶特性的物質的分子的**兩個**結構特徵。

(2分)

(iii) 把下列塑料分類爲熱塑性塑膠和熱固性塑膠:

聚氯乙烯、聚苯乙烯、脲甲醛

(1分)

- (b) 硅酸鹽和陶瓷均是用途廣泛的重要物料。
 - (i) (1) 寫出硅酸鹽和陶瓷的一個共同結構特徵。
 - (2) 寫出獲取硅酸鹽和陶瓷的途徑的不同之處。

(2分)

- (ii) 滑石是常用的硅酸鹽物料,其化學式為 Mg₃(Si₄O₁₀)(OH)₂。
 - (1) 寫出滑石的硅酸鹽重複單位的化學式。
 - (2) 石英也是硅酸鹽物料。解釋爲什麼滑石與石英的硬度差異甚大。

(4分)

(iii) 提出爲什麼陶瓷適合製造切割工具。

(1分)

2. (c) 下圖顯示一個以聚乙烯(PE)製造的止咳水膠樽:

(i) 建議一個製造這膠樽的成型方法。

(1分)

- (ii) 寫出**兩種**常見的 PE。從分子層面,解釋哪一種 PE 較適合用來製造這膠樽。 (2分)
- (iii) 從分子層面,解釋爲什麼以聚對苯二甲酸乙二酯 (PET) 製造的膠樽,一般會比以 PE 製造的膠樽較硬。 (2 分)
- (iv) 有些人從環保的角度建議,由使用 PE 和 PET 轉向使用聚乳酸 (PLA) 來製造這類 膠樽。下面顯示 PLA 的重複單位:

$$\begin{array}{c|c} & CH_3 & O \\ & \parallel & \parallel \\ O - C - C \\ & \parallel & \end{array}$$

- (1) 已知 PLA 可由乳酸經酯化作用聚合製得。寫出乳酸的結構。
- (2) 解釋爲什麼這轉向可能對環境友善。
- (3) 舉出以PLA廣泛取代PE和PET的一個潛在問題。

(3分)

乙部完

丙部 分析化學

回答試題的**所有**部分。

- 3. (a) 回答以下短問題:
 - (i) 為下列各項建議一化學測試以顯示它們的存在:
 - (1) HCl(g)

(2) C=o 官能基

(4分)

(ii) 下列哪一化學品最適合用來乾燥乙酸乙酯?

無水硫酸鎂 、 濃硫酸 、 固態氫氧化鈉

(1分)

(b) 一粉狀石灰石樣本主要含有 CaCO₃, 並有小量 MgCO₃ 和 FeCl₃。在一實驗中進行了下列 各步驟以測定在該樣本中 CaCO₃ 的質量百分率。

步驟 1: 把 2.025 g 的該石灰石樣本加進過量的 6 M HCl(aq) 中。

步驟2: 把所得混合物微熱直至沒有進一步反應的跡象,繼而讓它冷卻至室溫。

步驟 3: 把冷卻了的混合物以蒸餾水稀釋,加入 $NH_3(aq)$ 把它製至微鹼性以沉澱存在

的 Fe3+(aq) 離子。

步驟 4: 把所得混合物過濾以收集濾液。

步驟 5: 把過量的草酸銨溶液 (NH₄)₂C₂O₄(aq) 加入該濾液,並繼而把所得混合物用

NH₃(aq) 製至微鹼性,以選擇性地沉澱出所生成的草酸鈣。

步驟 6: 把該混合物過濾。在清洗及乾燥後,集得 2.374 g 的草酸鈣固體。

(i) 爲什麼在步驟2中需把混合物加熱?

(1分)

- (ii) (1) 怎樣知道在步驟2中所涉及的反應在什麼時候已經完成?
 - (2) 寫出在步驟3中的觀察。

(2分)

(iii) 已知草酸鎂可溶於鹼性溶液,但草酸鈣不可。計算在該石灰石樣本中, CaCO₃ 的質量百分率。

(3分)

(iv) 寫出在這實驗中所用的定量分析方法。

(1分)

- 3. (c) 在室溫下,T ($C_xH_yO_z$) 是一無色油狀液體,且不與水混和。再者, T 不與 NaHCO₃(aq) 反應。
 - (i) 一個 T 的樣本含某有機酸雜質。概述藉使用 NaHCO₃(aq) 和戊烷把這樣本提純的 各實驗步縣。 (2 分)
 - (ii) 参考以下資料,推定T可能具有的官能基(一個或多個)。
 - (I) T <u>不是</u>酯,並且它與托倫斯試劑得出陰性結果。
 - (II) T 給出以下的紅外光譜:

特徵紅外吸收波數域 (伸展式)

鍵合	化合物類別	波數域 / cm ⁻¹
C=C		1610至1680
C=O	醛、酮、羧酸及其衍生物	1680至1800
C≡C	·	2070 至 2250
C≡N		2200 至 2280
OH	帶「氫鍵」的酸	2500 至 3300
С–Н	烷、烯及芳烴	2840 至 3095
О–Н	帶「氫鍵」的醇及酚	3230 至 3670
N-H	胺	3350 至 3500

(3分)

(iii) T的質譜在 m/z = 134 處呈現一個母峰,並在 m/z = 43 和 91 處各呈現一個強峰。為在 m/z = 43 和 134 的訊號,分別提出一個對應的化學物種。

(2分)

(iv) 繪畫 T 的一個可能結構。

(1分)

丙部完 試卷完

PERIODIC TABLE 周期表

硹
ō
GR

	_						****		_	_			.			_			\neg		
ć	2	He	4.0	10	Ne	20.2	18	Ar	40.0	36	X	83.8	54	. ×	1313	98	2	300	(777)		
			ΛΠ	6	Œ	19.0	17	ວ	35.5	35	Ŗ	79.9	53		126.9	85	At	010	(210)		
		ļ	I	∞	0	16.0	16	S	32.1	34	Š	79.0	52	ع ا	127.6	84	Ъ	(000)	(507)		
		;	>	7	Z	14.0	15	Ь	31.0	33	As	74.9	51	5	121.8	83	Æ	209.0	20,00		
		ļ	≥	9	ပ	12.0	14	is.	28.1	32	g	72.6	50	S.	118.7	82	Pb	207.2			
		į	 ≡	5	m	10.8	13	Ψ	27.0	31	g _a	2.69	49	П	114.8	81	I	204.4			
			L			!							\vdash		112.4	-			1		
										. 67	Ĉ	63.5	47	Ag	107.9	6/	Ψn	197.0			
							雪雪								106.4				1		
							相對原子質量						\vdash		102.9				1		
number 原子序									l					_	101.1			_	1		
							ve atomic mass		1						(98)				1		
/ atomic						, /	relative		J						95.9				1		
			٦	/					Ţ			—t			\neg				┰		
	7	= -	,						- 1			\rightarrow		_	92.9						
										22	Ë	47.9	40	Zr	91.2	72	Hţ	178.5	104	Rf	(261)
										21	Š	45.0	36	X	6.88	* 75	Гa	138.9	** 68	Ac	(227)
		H		4. E	p c	9.0	77	26 E	24.3	20	రా	40.1	38	S	87.6	26	Ba	137.3	88	Ra	(226)
		_	,	 ^_	ے د	6.9	= 2	- R	25.0		×	39.1	37	₽	85.5	55	් ර	132.9	87	F	(223)
			L								-										

_	_			_	_				-
	7		175.0	1.0.0	103	2		(080)	
	20	Ϋ́	173.0	21.7.0	_ 102		Ž	(050)	77
	69	Ę	168.9		101		PΜ	(950)	7
	98	(32	1673		901		Ŧ	C50	
ļ	<u>'</u>	Н	164.9		66	, ,	ES	(252)	1
	99	Ď	162.5		86	(כ	(150)	
	60	Tp	158.9		97		ΒK	(747)	
	40	g G	157.3		96	ζ	Ę	(247)	
5	S	E	152.0		95	1	AIII	(243)	
5	70	Sm	150.4		94	Ď.	'nj	(244)	
7.7	10	Ъ	(145)	1	93	Ž	7	(237)	ì
09	3	PZ	144.2	1	77	=	>	238.0	
€0	2	Pr	140.9	2	7.	ď	4	(231)	
χ.	,	రి	140.1	2	9	4	1	232.0	
*				*					