

# MM54HC75/MM74HC75 4-Bit Bistable Latch with Q and $\overline{Q}$ Output

### **General Description**

This 4-bit latch utilizes advanced silicon-gate CMOS technology to achieve the high noise immunity and low power consumption normally associated with standard CMOS integrated circuits. These devices can drive 10 LS-TTL loads.

This latch is ideally suited for use as temporary storage for binary information processing, input/output, and indicator units. Information present at the data (D) input is transferred to the Q output when the enable (G) is high. The Q output will follow the data input as long as the enable remains high. When the enable goes low, the information that was present at the data input at the time the transition occurred is retained at the Q output until the enable is permitted to go high again.

The 54HC/74HC logic family is functionally as well as pinout compatible with the standard 54LS/74LS logic family. All inputs are protected from damage due to static discharge by internal diode clamps to  $V_{\rm CC}$  and ground.

#### **Features**

- Typical operating frequency: 50 MHz
- Typical propagation delay: 12 ns
- Wide operating supply voltage range: 2-6V
- $\blacksquare$  Low input current: 1  $\mu$ A maximum
- Low quiescent supply current: 80 μA maximum (74HC Series)
- Fanout of 10 LS-TTL loads

## **Connection and Logic Diagrams**

#### **Dual-In-Line Package**



Order Number MM54HC75 or MM74HC75

## **Truth Table**

| Inputs |   | Outputs |                  |  |  |  |
|--------|---|---------|------------------|--|--|--|
| D      | G | Q       | Q                |  |  |  |
| L      | Н | L       | Н                |  |  |  |
| Н      | Н | Н       | L                |  |  |  |
| X      | L | $Q_0$   | $\overline{Q}_0$ |  |  |  |

H = High Level: L=Low Level

X = Don't Care

Q<sub>0</sub> = The level of Q before the transition of G



TL/F/5303-2

# Absolute Maximum Ratings (Notes 1 & 2)

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.

| Supply Voltage (V <sub>CC</sub> )                             | -0.5 to $+7.0$ V                              |
|---------------------------------------------------------------|-----------------------------------------------|
| DC Input Voltage (V <sub>IN</sub> )                           | $-1.5$ to $V_{\rm CC}$ $+$ $1.5$ $V_{\rm CC}$ |
| DC Output Voltage (V <sub>OUT</sub> )                         | $-0.5$ to $V_{\rm CC}$ + $0.5$ V              |
| Clamp Diode Current (I <sub>IK</sub> , I <sub>OK</sub> )      | $\pm$ 20 mA                                   |
| DC Output Current, per pin (I <sub>OUT</sub> )                | $\pm$ 25 mA                                   |
| DC V <sub>CC</sub> or GND Current, per pin (I <sub>CC</sub> ) | $\pm$ 50 mA                                   |
| Storage Temperature Range (T <sub>STG</sub> )                 | -65°C to $+150$ °C                            |
|                                                               |                                               |

Power Dissipation (PD)

600 mW (Note 3) 500 mW S.O. Package only 260°C

Lead Temp. (T<sub>L</sub>) (Soldering 10 seconds)

#### **Operating Conditions** Max Units Supply Voltage (V<sub>CC</sub>) DC Input or Output Voltage 0 $V_{\text{CC}}$ $(V_{IN}, V_{OUT})$ Operating Temp. Range (T<sub>A</sub>) MM74HC -40 +85

٧

°C

-55 +125MM54HC °C Input Rise or Fall Times 1000  $(t_r, t_f)$   $V_{CC} = 2.0V$ ns  $V_{CC} = 4.5V$   $V_{CC} = 6.0V$ 500 ns 400 ns

## **DC Electrical Characteristics** (Note 4)

| Symbol          | Parameter                            | Conditions                                                                                         | v <sub>cc</sub>      | T <sub>A</sub> =25°C |                    | 74HC<br>T <sub>A</sub> = -40 to 85°C | 54HC<br>T <sub>A</sub> = -55 to 125°C | Units       |  |
|-----------------|--------------------------------------|----------------------------------------------------------------------------------------------------|----------------------|----------------------|--------------------|--------------------------------------|---------------------------------------|-------------|--|
|                 |                                      |                                                                                                    |                      | Тур                  | Guaranteed Limits  |                                      |                                       |             |  |
| $V_{IH}$        | Minimum High Level Input Voltage     |                                                                                                    | 2.0V<br>4.5V         |                      | 1.5<br>3.15        | 1.5<br>3.15                          | 1.5<br>3.15                           | V<br>V      |  |
|                 |                                      |                                                                                                    | 6.0V                 |                      | 4.2                | 4.2                                  | 4.2                                   | V           |  |
| $V_{IL}$        | Maximum Low Level Input Voltage**    |                                                                                                    | 2.0V<br>4.5V<br>6.0V |                      | 0.5<br>1.35<br>1.8 | 0.5<br>1.35<br>1.8                   | 0.5<br>1.35<br>1.8                    | V<br>V<br>V |  |
| V <sub>OH</sub> | Minimum High Level<br>Output Voltage | $V_{IN} = V_{IH} \text{ or } V_{IL}$ $ I_{OUT}  \le 20 \mu A$                                      | 2.0V<br>4.5V<br>6.0V | 2.0<br>4.5<br>6.0    | 1.9<br>4.4<br>5.9  | 1.9<br>4.4<br>5.9                    | 1.9<br>4.4<br>5.9                     | V<br>V<br>V |  |
|                 |                                      | $V_{IN} = V_{IH} \text{ or } V_{IL}$ $ I_{OUT}  \le 4.0 \text{ mA}$ $ I_{OUT}  \le 5.2 \text{ mA}$ | 4.5V<br>6.0V         | 4.2<br>5.7           | 3.98<br>5.48       | 3.84<br>5.34                         | 3.7<br>5.2                            | V<br>V      |  |
| V <sub>OL</sub> | Maximum Low Level<br>Output Voltage  | $V_{IN} = V_{IH} \text{ or } V_{IL}$<br>$ I_{OUT}  \le 20 \mu A$                                   | 2.0V<br>4.5V<br>6.0V | 0<br>0<br>0          | 0.1<br>0.1<br>0.1  | 0.1<br>0.1<br>0.1                    | 0.1<br>0.1<br>0.1                     | V<br>V<br>V |  |
|                 |                                      | $V_{IN} = V_{IH} \text{ or } V_{IL}$ $ I_{OUT}  \le 4.0 \text{ mA}$ $ I_{OUT}  \le 5.2 \text{ mA}$ | 4.5V<br>6.0V         | 0.2<br>0.2           | 0.26<br>0.26       | 0.33<br>0.33                         | 0.4<br>0.4                            | V<br>V      |  |
| I <sub>IN</sub> | Maximum Input<br>Current             | V <sub>IN</sub> =V <sub>CC</sub> or GND                                                            | 6.0V                 |                      | ±0.1               | ±1.0                                 | ±1.0                                  | μΑ          |  |
| Icc             | Maximum Quiescent<br>Supply Current  | $V_{IN} = V_{CC}$ or GND $I_{OUT} = 0 \mu A$                                                       | 6.0V                 |                      | 4.0                | 40                                   | 80                                    | μΑ          |  |

Note 1: Absolute Maximum Ratings are those values beyond which damage to the device may occur.

Note 2: Unless otherwise specified all voltages are referenced to ground.

Note 3: Power Dissipation temperature derating — plastic "N" package: -12 mW/°C from 65°C to 85°C; ceramic "J" package: -12 mW/°C from 100°C to 125°C. Note 4: For a power supply of 5V  $\pm$  10% the worst case output voltages (V<sub>OH</sub>, and V<sub>OL</sub>) occur for HC at 4.5V. Thus the 4.5V values should be used when designing with this supply. Worst case V<sub>IH</sub> and V<sub>IL</sub> occur at V<sub>CC</sub> = 5.5V and 4.5V respectively. (The V<sub>IH</sub> value at 5.5V is 3.85V.) The worst case leakage current (I<sub>IN</sub>, I<sub>CC</sub>, and I<sub>O2</sub>) occur for CMOS at the higher voltage and so the 6.0V values should be used.

<sup>\*\*</sup>V<sub>IL</sub> limits are currently tested at 20% of V<sub>CC</sub>. The above V<sub>IL</sub> specification (30% of V<sub>CC</sub>) will be implemented no later than Q1, CY'89.

# AC Electrical Characteristics $v_{CC}\!=\!5\text{V},\,T_{A}\!=\!25^{\circ}\text{C},\,C_{L}\!=\!15\,\text{pF},\,t_{r}\!=\!t_{f}\!=\!6\,\text{ns}$

| Symbol                              | Parameter                                                    | Conditions | Тур | Guaranteed<br>Limit | Units |
|-------------------------------------|--------------------------------------------------------------|------------|-----|---------------------|-------|
| t <sub>PHL</sub> , t <sub>PLH</sub> | Maximum Propagation Delay, Data to Q                         |            | 14  | 23                  | ns    |
| t <sub>PHL</sub> , t <sub>PLH</sub> | Maximum Propagation Delay, Data to $\overline{Q}$            |            | 10  | 20                  | ns    |
| t <sub>PHL</sub> , t <sub>PLH</sub> | Maximum Propagation Delay, Enable to Q                       |            | 16  | 27                  | ns    |
| t <sub>PHL</sub> , t <sub>PLH</sub> | Maximum Propagation Delay, Enable to $\overline{\mathbb{Q}}$ |            | 11  | 23                  | ns    |
| ts                                  | Minimum Set Up Time                                          |            |     | 20                  | ns    |
| t <sub>H</sub>                      | Minimum Hold Time                                            |            | -2  | 0                   | ns    |
| t <sub>W</sub>                      | Minimum Pulse Width                                          |            |     | 16                  | ns    |

# AC Electrical Characteristics $C_L = 50 \text{ pF}, t_r = t_f = 6 \text{ ns}$ (unless otherwise specified)

| Symbol                              | Parameter                  | Conditions            | v <sub>cc</sub> | T <sub>A</sub> =25°C |     | 74HC<br>T <sub>A</sub> = -40 to 85°C | 54HC<br>T <sub>A</sub> = -55 to 125°C | Units |  |
|-------------------------------------|----------------------------|-----------------------|-----------------|----------------------|-----|--------------------------------------|---------------------------------------|-------|--|
|                                     |                            |                       |                 | Тур                  |     | Guaranteed                           |                                       |       |  |
| t <sub>PHL</sub> , t <sub>PLH</sub> | Maximum Propagation        |                       | 2.0V            | 37                   | 125 | 156                                  | 188                                   | ns    |  |
|                                     | Delay, Data to Q           |                       | 4.5V            | 15                   | 25  | 32                                   | 38                                    | ns    |  |
|                                     |                            |                       | 6.0V            | 14                   | 24  | 27                                   | 32                                    | ns    |  |
| $t_{PHL}$ , $t_{PLH}$               | Maximum Propagation        |                       | 2.0V            | 29                   | 110 | 138                                  | 165                                   | ns    |  |
|                                     | Delay, Data to Q           |                       | 4.5V            | 12                   | 22  | 28                                   | 33                                    | ns    |  |
|                                     |                            |                       | 6.0V            | 11                   | 19  | 24                                   | 29                                    | ns    |  |
| t <sub>PHL</sub> , t <sub>PLH</sub> | Maximum Propagation        |                       | 2.0V            | 40                   | 145 | 181                                  | 218                                   | ns    |  |
|                                     | Delay, Enable to Q         |                       | 4.5V            | 18                   | 29  | 36                                   | 44                                    | ns    |  |
|                                     |                            |                       | 6.0V            | 16                   | 25  | 31                                   | 38                                    | ns    |  |
| t <sub>PHL</sub> , t <sub>PLH</sub> | Maximum Propagation        |                       | 2.0V            | 36                   | 125 | 156                                  | 188                                   | ns    |  |
|                                     | Delay, Enable to Q         |                       | 4.5V            | 15                   | 25  | 31                                   | 38                                    | ns    |  |
|                                     |                            |                       | 6.0V            | 14                   | 22  | 28                                   | 33                                    | ns    |  |
| t <sub>s</sub>                      | Minimum Set Up Time        |                       | 2.0V            | 40                   | 100 | 125                                  | 150                                   | ns    |  |
|                                     | Data to Enable             |                       | 4.5V            | 10                   | 20  | 25                                   | 30                                    | ns    |  |
|                                     |                            |                       | 6.0V            | 9                    | 17  | 21                                   | 25                                    | ns    |  |
| t <sub>H</sub>                      | Minimum Hold Time          |                       | 2.0V            | -10                  | 0   | 0                                    | 0                                     | ns    |  |
|                                     | Enable to Data             |                       | 4.5V            | -2                   | 0   | 0                                    | 0                                     | ns    |  |
|                                     |                            |                       | 6.0V            | -2                   | 0   | 0                                    | 0                                     | ns    |  |
| t <sub>W</sub>                      | Minimum Enable Pulse Width |                       | 2.0V            | 40                   | 80  | 100                                  | 120                                   | ns    |  |
|                                     |                            |                       | 4.5V            | 11                   | 16  | 20                                   | 24                                    | ns    |  |
|                                     |                            |                       | 6.0V            | 9                    | 14  | 18                                   | 21                                    | ns    |  |
| t <sub>TLH</sub> , t <sub>THL</sub> | Maximum Output             |                       | 2.0V            | 25                   | 75  | 95                                   | 110                                   | ns    |  |
|                                     | Rise and Fall Time         |                       | 4.5V            | 7                    | 15  | 19                                   | 22                                    | ns    |  |
|                                     |                            |                       | 6.0V            | 6                    | 13  | 16                                   | 19                                    | ns    |  |
| C <sub>PD</sub>                     | Power Dissipation          | (per commonly         |                 | 40                   |     |                                      |                                       | pF    |  |
|                                     | Capacitance (Note 5)       | clocked latched pair) |                 |                      |     |                                      |                                       |       |  |
| C <sub>IN</sub>                     | Maximum Input Capacitance  |                       |                 | 5                    | 10  | 10                                   | 10                                    | pF    |  |

 $\textbf{Note 5: } C_{PD} \text{ determines the no load dynamic power consumption, } P_D = C_{PD} \ V_{CC}^2 \ f + I_{CC} \ V_{CC}, \text{ and the no load dynamic current consumption, } I_S = C_{PD} \ V_{CC} \ f + I_{CC}.$ 



#### LIFE SUPPORT POLICY

NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:

- 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform, when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
- 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.



**National Semiconductor** 

National Semiconducto Corporation 1111 West Bardin Road Arlington, TX 76017 Tel: 1(800) 272-9959 Fax: 1(800) 737-7018

**National Semiconductor** Europe

Fax: (+49) 0-180-530 85 86 Fax: (+49) U-18U-35U oo oo Email: onjwege tevm2.nsc.com Deutsch Tel: (+49) 0-180-530 85 85 English Tei: (+49) 0-180-532 78 32 Français Tei: (+49) 0-180-532 93 58 Italiano Tel: (+49) 0-180-534 16 80 National Semiconductor

Hong Kong Ltd.
13th Floor, Straight Block,
Ocean Centre, 5 Canton Rd. Tsimshatsui, Kowloon Hong Kong Tel: (852) 2737-1600 Fax: (852) 2736-9960

National Semiconductor

Japan Ltd.
Tel: 81-043-299-2309
Fax: 81-043-299-2408