The Kodonian Project

Christoph Kovacs

2025-06-01

Table of contents

Lis	st of	gures	3
Lis	st of	ables	4
W	elcon		5
Pr	eface		6
FΑ	.Q		7
1		Site 10	
	1.1	$MathJax - mhchem \dots 1$	
	1.2	R	
	1.3	$Python \dots 1$	
	1.4	Running Code	
	1.5	ASCII Table	4
	1.6	2D Molecule	6
		1.6.1 References	8
		1.6.2 Supplementary Material	8
Αŗ	pen	ices 19	9
Α	hello	19	9
В	Арр	ndix 1 20	0

List of Figures

1.1	Matrix	12
1.2	A flowchart	14
1.3		17

List of Tables

1.3 Codon assignments for the Standard Code, contracted by the first two nucleotide bases. 13

Welcome

i Purpose & Goal

The Kodonian Project seeks to demonstrate that the Universal Genetic Code contains an embedded signal—an intentional, structured message—suggesting a deeper informational or even extraterrestrial origin behind the blueprint of life on Earth.

Preface

here we go... $\,$

1 + 1

[1] 2

FAQ

Find here answers to common questions around the topic of our Genetic Code Signal research.

i Are we serious?

Yes

Who is the main contributor of this project?

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Duis sagittis posuere ligula sit amet lacinia. Duis dignissim pellentesque magna, rhoncus congue sapien finibus mollis. Ut eu sem laoreet, vehicula ipsum in, convallis erat. Vestibulum magna sem, blandit pulvinar augue sit amet, auctor malesuada sapien. Nullam faucibus leo eget eros hendrerit, non laoreet ipsum lacinia. Curabitur cursus diam elit, non tempus ante volutpat a. Quisque hendrerit blandit purus non fringilla. Integer sit amet elit viverra ante dapibus semper. Vestibulum viverra rutrum enim, at luctus enim posuere eu. Orci varius natoque penatibus et magnis dis parturient montes, nascetur ridiculus mus.

i Has research in this area been conducted elsewhere?

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Duis sagittis posuere ligula sit amet lacinia. Duis dignissim pellentesque magna, rhoncus congue sapien finibus mollis. Ut eu sem laoreet, vehicula ipsum in, convallis erat. Vestibulum magna sem, blandit pulvinar augue sit amet, auctor malesuada sapien. Nullam faucibus leo eget eros

hendrerit, non laoreet ipsum lacinia. Curabitur cursus diam elit, non tempus ante volutpat a. Quisque hendrerit blandit purus non fringilla. Integer sit amet elit viverra ante dapibus semper. Vestibulum viverra rutrum enim, at luctus enim posuere eu. Orci varius natoque penatibus et magnis dis parturient montes, nascetur ridiculus mus.

i What are the strongest arguments for a signal in the Genetic Code?

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Duis sagittis posuere ligula sit amet lacinia. Duis dignissim pellentesque magna, rhoncus congue sapien finibus mollis. Ut eu sem laoreet, vehicula ipsum in, convallis erat. Vestibulum magna sem, blandit pulvinar augue sit amet, auctor malesuada sapien. Nullam faucibus leo eget eros hendrerit, non laoreet ipsum lacinia. Curabitur cursus diam elit, non tempus ante volutpat a. Quisque hendrerit blandit purus non fringilla. Integer sit amet elit viverra ante dapibus semper. Vestibulum viverra rutrum enim, at luctus enim posuere eu. Orci varius natoque penatibus et magnis dis parturient montes, nascetur ridiculus mus.

What are the strongest arguments against a signal in the Genetic Code?

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Duis sagittis posuere ligula sit amet lacinia. Duis dignissim pellentesque magna, rhoncus congue sapien finibus mollis. Ut eu sem laoreet, vehicula ipsum in, convallis erat. Vestibulum magna sem, blandit pulvinar augue sit amet, auctor malesuada sapien. Nullam faucibus leo eget eros hendrerit, non laoreet ipsum lacinia. Curabitur cursus diam elit, non tempus ante volutpat a. Quisque hendrerit blandit purus non fringilla. Integer sit amet elit viverra ante dapibus semper. Vestibulum viverra rutrum enim, at luctus enim posuere eu. Orci varius natoque penatibus et magnis dis parturient montes, nascetur ridiculus mus.

i Evolution did it, didn't it?

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Duis sagittis posuere ligula sit amet lacinia. Duis dignissim pellentesque magna, rhoncus congue sapien finibus mollis. Ut eu sem laoreet, vehicula ipsum in, convallis erat. Vestibulum magna sem, blandit pulvinar augue sit amet, auctor malesuada sapien. Nullam faucibus leo eget eros hendrerit, non laoreet ipsum lacinia. Curabitur cursus diam elit, non tempus ante volutpat a. Quisque hendrerit blandit purus non fringilla. Integer sit amet elit viverra ante dapibus semper. Vestibulum viverra rutrum enim, at luctus enim posuere eu. Orci varius natoque penatibus et magnis dis parturient montes, nascetur ridiculus mus.

1 Demo Site

1.1 MathJax - mhchem

1.2 R

1+1

1.3 Python

Quarto enables you to weave together content and executable code into a finished document. To learn more about Quarto see https://quarto.org.

```
db_table(
   'SELECT name, symbol3, symbol1, nuclsum_b, nuclsum_s, nuclsum_t FROM amino_acids ORDER BY nu
   headers=['Name', 'Short Name', 'Symbol', 'Block Sum', 'Side Chain Sum', 'Total Sum'])
```

Name	Short Name	Symbol	Block Sum	Side Chain Sum	Total Sum
STOP	Stop	*	0	0	0
Glycine	Gly	G	74	1	75
Alanine	Ala	A	74	15	89
Serine	Ser	\mathbf{S}	74	31	105
Proline	Pro	P	74	41	115
Valine	Val	V	74	43	117
Threonine	Thr	${ m T}$	74	45	119
Cysteine	Cys	\mathbf{C}	74	47	121
Leucine	Leu	L	74	57	131
Isoleucine	Ile	I	74	57	131
Asparagine	Asn	N	74	58	132

Name	Short Name	Symbol	Block Sum	Side Chain Sum	Total Sum
Aspartic Acid	Asp	D	74	59	133
Lysine	Lys	K	74	72	146
Glutamine	Gln	Q	74	72	146
Glutamic Acid	Glu	${ m E}$	74	73	147
Methionine/START	Met	M	74	75	149
Histidine	His	Η	74	81	155
Phenylalanine	Phe	\mathbf{F}	74	91	165
Arginine	Arg	\mathbf{R}	74	100	174
Tyrosine	Tyr	Y	74	107	181
Tryptophane	Trp	W	74	130	204

i Expand for a list of Genetic Code variants

Source

Id	Species
$\overline{\text{GC01}}$	Standard Code
GC02	Vertebrate Mitochondrial Code
GC03	Yeast Mitochondrial Code
GC04	Mold, Protozoan, Coelenterate Mitochondrial Code
GC05	Invertebrate Mitochondrial Code
GC06	Ciliate, Dasycladacean and Hexamita Nuclear Code
GC07	Deleted Kinetoplast Code
GC09	Echinoderm and Flatworm Mitochondrial Code
GC10	Euplotid Nuclear Code
GC11	Bacterial, Archaeal and Plant Plastid Code
GC12	Alternative Yeast Nuclear Code
GC13	Ascidian Mitochondrial Code
GC14	Alternative Flatworm Mitochondrial Code
GC15	Blepharisma Nuclear Code
GC16	Chlorophycean Mitochondrial Code
GC21	Trematode Mitochondrial Code
GC22	Scenedesmus Obliquus Mitochondrial Code
GC23	Thraustochytrium Mitochondrial Code
GC24	Pterobranchia Mitochondrial Code
GC25	Candidate Division SR1 and Gracilibacteria Code
GC26	Pachysolen Tannophilus Nuclear Code

GG	Gly	GA	Asp G l u	AG	Ser Arg	АА	Asn Lys	
	75		280		279		278	1517
GC	A l a	GT	Val	AC	Thr	AT	lle Met	41 x 37
	89		117		119		280	
CG	Arg	CA	His G i n	TG	Cys Stop Trp	TA	Tyr Stop	
	174		301		325		181	1628
СС	Pro	СТ	Leu	TC	Ser	П	Phe Leu	44 x 37
	115		131		105		296	
		92	22	20	3145			
		25	60 :	x 37	85 x 37			

Figure 1.1: Matrix

GC27	Karyorelict Nuclear Code
GC28	Condylostoma Nuclear Code
GC29	Mesodinium Nuclear Code
GC30	Peritrich Nuclear Code
GC31	Blastocrithidia Nuclear Code
GC32	Balanophoraceae Plastid Code
GC33	Cephalodiscidae Mitochondrial Code
GC34	Enterosoma Code
GC35	Peptacetobacter Code
GC36	Anaerococcus and Onthovivens Code
GC37	Absconditabacterales Code

Codon	Amino Acids	Nucleon BL	Nucleon SC	Table 1.3: Codon assignments for the Nucleon Total Standard Code, contracted by the
\overline{AA}	N, K	74	58	132 ^{first} two nucleotide bases.
AC	$\mathbf{T}^{'}$	74	45	119
\overline{AG}	S, R	74	31	105
AT	I, M	74	57	131
CA	H, Q	74	81	155
CC	P	74	41	115
CG	\mathbf{R}	74	100	174
CT	L	74	57	131
GA	D, E	74	59	133
GC	A	74	15	89
GG	G	74	1	75
GT	V	74	43	117
TA	Y, *	74	107	181
TC	S	74	31	105
TG	C, *, W	74	47	121
TT	F L	74	91	165

1.4 Running Code

When you click the **Render** button a document will be generated that includes both content and the output of embedded code. You can embed code like this:

1.5 ASCII Table

	0	1	2	3	4	5	6	7	8	9	A	В	С	D	Е	F
0								•						7		
1				!!	\P	§			\uparrow	\downarrow	\rightarrow	\leftarrow				
2		!	"	#	\$	%	&	,	()	*	+	,	-		/
3	0	1	2	3	4	5	6	7	8	9	:	;	<	=	>	?
4	@	A	В	\mathbf{C}	D	\mathbf{E}	F	G	Η	I	J	K	\mathbf{L}	Μ	Ν	Ο
5	Ρ	Q	\mathbf{R}	S	Τ	U	V	W	X	Y	\mathbf{Z}	[\]	^	_
6	4	a	b	\mathbf{c}	d	e	f	g	h	i	j	k	l	m	n	O
7	p	q	r	\mathbf{S}	\mathbf{t}	u	v	w	X	у	\mathbf{Z}	{		}	~	
8	Ç	ü	é	â	ä	à	$ {a}$	ç	ê	ë	è	ï	î	ì	Ä	Å
9	É	æ	Æ	ô	ö	ò	û	ù	ÿ	Ö	Ü	¢	£	¥		f
Α	á	í	ó	ú	$\tilde{\mathrm{n}}$	Ñ	$\underline{\mathbf{a}}$	\mathbf{O}	į		\neg	$\frac{1}{2}$	$\frac{1}{4}$	i	«	>>
В																
\mathbf{C}																
D																
\mathbf{E}		ß	Γ		\sum		μ		Φ	Θ	Ω		∞			
F		\pm					÷		0			$\sqrt{}$		2		

A full width figure.

Reach and engagement of campaigns

Low Reach

High Reach

$$\begin{bmatrix} G & A \\ C & T \end{bmatrix} \otimes \begin{bmatrix} G & A \\ C & T \end{bmatrix} = \begin{bmatrix} GG & GA & AG & AA \\ GC & GT & AC & AT \\ CG & CA & TG & TA \\ CC & CT & TC & TT \end{bmatrix}$$

1.6 2D Molecule

As outlined by Crick and Orgel (1973), pp. 16-18, we find this below. Also by referencing this, we end up there¹, as outlined in Figure 1.2. Also refer to Figure 1.1 for more details.

This is a span that has the class Crick, F. H. C., and L. E. Orgel. 1973. aside which places it in the marging): without a tentumbero.1016/00 19-1035(73)90110-3.

¹ Here is the footnote.

- 1.6.1 References
- 1.6.2 Supplementary Material

A hello

B Appendix 1

here we go...

1 + 1

[1] 2