Performing a t-test for One Mean

```
t_test(x = <NAME OF DATASET>,
  response = <NAME OF VARIABLE>,
  conf_int = TRUE,
  conf_level = 0.90,
  alternative = "two-sided",
  mu = <VALUE OF NULL HYPOTHESIS FOR MU>)
```

Note: If you want a 95% confidence interval, you change conf level to 0.95

Note: If you are doing a one-sided hypothesis test, you change alternative to either "greater" or "less"

Obtaining 1000 Bootstrap Means

```
bootstrap <- <NAME OF DATASET> %>%
specify(response = <NAME OF VARIABLE>) %>%
generate(reps = 1000, type = "bootstrap") %>%
calculate(stat = "mean")
```

Plotting the Bootstrap Distribution

Note: This step must come after you have obtained the bootstrap means!

Obtaining the Sample Mean

```
obs_mean <- <NAME OF DATASET> %>%
specify(response = <NAME OF VARIABLE>) %>%
calculate(stat = "mean")
```

Note: This step *must* be done *before* you find your confidence interval!

Obtaining a Confidence Interval from a Bootstrap Distribution

Note: This step must come after you have obtained the bootstrap means and the observed mean!

Note: If you want a 90% confidence interval, you change level to 0.90

Scatterplot

Scatterplot with Regression Line

Fitting a Linear Regression

Note: The ~ is necessary! It has to be there!

Obtaining Coefficient Table

Note: You need to have fit the linear regression **before** this step!

Note: If you want a 90% confidence interval, you change conf.level to 0.90

Obtaining 1000 Bootstrap Slopes

Plotting the Bootstrap Distribution

Note: This is the same as plotting the bootstrap for one mean!

Obtaining the Sample Slope

Note: This step must be done before you find your confidence interval!

Obtaining a Confidence Interval from a Bootstrap Distribution

Note: This is the same as how you found a confidence interval for one mean!