Huiswerk 6

Pieter te Brake

16 maart 2024

Opgave 3.30 Laat G een groep zijn en $H \subset G$ een ondergroep. Bewijs:

(a) Voor alle $a, b \in G$ geldt: $aH = bH \iff Ha^{-1} = Hb^{-1}$.

Uitwerking: We gaan beide implicaties bewijzen. Stel dat aH = bH. Neem $x \in aH$, dan $x = ah_1$ en $x = bh_2$ voor zekere $h_1, h_2 \in H$. Dan $b^{-1}a = h_2h_1^{-1} \in H$. Stel $h = h_2h_1^{-1}$. Voor elke $h' \in H$ geldt dan $h'b^{-1} = (h'h)a^{-1} \in Ha^{-1}$ dus $Hb^{-1} \subset Ha^{-1}$. Omgekeerd geldt er $h'a^{-1} = (h'h^{-1})b^{-1} \in Hb^{-1}$ dus $Ha^{-1} \subset Hb^{-1}$. Dus $Ha^{-1} = Hb^{-1}$. Stel nu dat $Ha^{-1} = Hb^{-1}$. Neem $x \in Ha^{-1}$, dan $x = h_1a^{-1}$ en $x = h_2b^{-1}$ voor zekere $h_1, h_2 \in H$. Dan $a^{-1}b = h_1^{-1}h_2 = h \in H$. Voor elke $h' \in H$ geldt nu $bh' = a(hh') \in aH$ en $ah' = b(h_{-1}h') \in bH$ dus aH = bH.

(b) Als S een representantensysteem voor de linkernevenklassen van H in G is, dan is $S^{-1} = \{s^{-1} \mid s \in S\}$ een representantensysteem voor de rechterenevenklassen van H in G.

Uitwerking: Definieer de afbeelding $f: \{sH \mid s \in S\} \to \{Hs \mid s \in S^{-1}\}: sH \mapsto Hs^{-1}$. Als deze afbeelding bijectief is, is de stelling bewezen. Zij $s, s' \in S$ en stel s = s'. Dan geldt sH = s'H en met (a) dus $Hs^{-1} = Hs'^{-1}$. Dus f is welgedefinieerd. Neem nu $s_1, s_2 \in S$. Stel dat $Hs_1^{-1} = Hs_2^{-1}$. Dan hebben we met (a) dat $s_1H = s_2H$ dus f is injectief. Verder kunnen we voor elke $s^{-1} \in S^{-1}$ $s \in S$ kiezen zodat $f(sH) = Hs^{-1}$ en dus is f surjectief. We concluderen dat S^{-1} een representantensysteem voor de rechterenevenklassen van H in G is. \square .

(c) Er geldt $\#(G/H) = \#(H\backslash G)$.

Uitwerking: Er geldt
$$\#(G/H) = \#S = \#S^{-1} = \#(H\backslash G)$$
.

Opgave 3.31 Stel dat H_1 , H_2 ondergroepen van eindige index van een groep G zijn. Bewijs dat $H_1 \cap H_2$ ook eindige index in G heeft.

Uitwerking: Stel dat $[G: H_1] = m \in \mathbb{N}$ en $[G: H_2] = n \in \mathbb{N}$. Het is duidelijk dat $a(H_1 \cap H_2) = aH_1 \cap aH_2$ voor $a \in G$ want $ah \in a(H_1 \cap H_2) \iff h \in H_1 \wedge h \in H_2 \iff ah \in aH_1 \wedge ah \in aH_2$. Zij nu S_1 en S_2 representantensystemen voor de linkernevenklassen van respectievelijk H_1 en H_2 in G. Dan is er voor elke $a \in G$ een $s_1 \in S_1$ en $s_2 \in S_2$ zodat $aH_1 = s_1H_1$ en $aH_2 = s_2H_2$ dus $a(H_1 \cap H_2) = s_1H_1 \cap s_2H_2$. Merk op dat er hoogstens mn unieke paren (s_1, s_2)

zijn. Omdat mn eindig is zijn er dus een eindig aantal $a \in G$ die allemaal een unieke linkernevenklas $a(H_1 \cap H_2)$ opleveren. In andere woorden heeft $H_1 \cap H_2$ eindige index in G.