

Graph Algorithms 2

Outline

- Prim's algorithm
- Kruskal's algorithm
- A* Search algorithm
- Max Flow Problem
- Bipartite graph

Tree vs Graph

- Trees are undirected graphs (not all undirected graphs are trees)
- Trees do not have cycles
- Trees are connected graphs, connected acyclic undirected graphs
- If a tree has n vertices, then it has n-1 edges
 - Less than n 1 edges -> Disconnected
 - More than n-1 edges -> There is a cycle

Spanning Trees

- Input: a **connected** undirected graph G with n vertices
- Find such a subgraph:
 - Keep all the n vertices
 - Keep n-1 edges
 - The subgraph is connected
- The subgraph is a spanning tree
 - Not unique
 - For G with positive edge weights: Minimum spanning tree (MST) is a spanning tree that minimizes the sum of weights

Sum of weights:26

 v_4

22

V7

 v_5

V3

Sum of weights:25

Sum of weights:21

Minimum spanning tree (MST)

- What if edge weights are not all distinct?
 - Greedy MST algorithms still correct if equal weights are present!

- What if graph is not connected?
 - No MST, but there is a minimum spanning forest = MST of each component

- How to represent the MST
 - A list of edges (with weights)

Prim's Algorithm

- Basic idea: Grow the tree in successive stages
- Initially, the tree has one vertex and no edge
- In each iteration, add one vertex and one edge to the tree
- Throughout, maintain the properties of trees:
 - Connectivity
 - No cycle: disregard if the vertices are visited
- The algorithm runs in n iterations (n is the number of vertices)

U: vertices of spanning tree

- Pick any vertex in the graph
- Maybe pick v_1
- Add v_1 to ${\mathcal U}$

$$\mathcal{U} = \{v_1\}$$

SINGAPORE INSTITUTE OF TECHNOLOGY

- The edges connecting $\mathcal U$ to $\mathcal V \backslash \mathcal U$: $e_{1,2}, e_{1,3}, e_{1,4}$
- Among them, $e_{\mathrm{1,4}}$ has the smallest weight, record it
- Add v_4 to ${\mathcal U}$

$$\mathcal{U} = \{v_1\}$$

• The edges connecting $\mathcal U$ to $\mathcal V \backslash \mathcal U$: $e_{1,2}, e_{1,3}$

$$e_{4,2}, e_{4,3}, e_{4,5}, e_{4,6}, e_{4,7}$$

- ullet Among them, $e_{1,2}$ has the smallest weight, record it
- Add v_2 to ${\mathcal U}$

$$\mathcal{U} = \{v_1, v_4, v_2\}$$

• The edges connecting $\mathcal U$ to $\mathcal V \backslash \mathcal U$:

$$e_{1,3}$$
 $e_{4,3}, e_{4,5}, e_{4,6}, e_{4,7}$
 $e_{2,5}$

- Among them, $e_{4,3}$ has the smallest weight, record it
- Add v_3 to \mathcal{U} .

$$U = \{v_1, v_4, v_2, v_3\}$$

• The edges connecting $\mathcal U$ to $\mathcal V \backslash \mathcal U$:

$$e_{4,5}, e_{4,6}, e_{4,7} \\ e_{2,5} \\ e_{3,6}$$

- Among them, $e_{4,7}$ has the smallest weight, record it
- Add v_7 to ${\mathcal U}$

$$\mathcal{U} = \{v_1, v_4, v_2, v_3, v_7\}$$

• The edges connecting $\mathcal U$ to $\mathcal V \backslash \mathcal U$:

$$e_{4,5}, e_{4,6}$$
 $e_{2,5}$
 $e_{3,6}$
 $e_{7,5}, e_{7,6}$

- Among them, $e_{7,6}$ has the smallest weight, record it
- Add v_6 to ${\cal U}$

$$\mathcal{U} = \{v_1, v_4, v_2, v_3, v_7, v_6\}$$

• The edges connecting u to $v \setminus u$:

$$e_{4,5} \\ e_{2,5} \\ e_{7,5}$$

- Among them, $e_{7,5}$ has the smallest weight, record it
- Add v_5 to ${\mathcal U}$
- After this
 - Now $\mathcal{U}=\mathcal{V}$. (All the vertices have been added to \mathcal{U} .)
 - Return the tree:

$$\{e_{1,4}, e_{1,2}, e_{4,3}, e_{4,7}, e_{7,6}, e_{7,5}\}$$

$$\mathcal{U} = \{v_1, v_4, v_2, v_3, v_7, v_6, v_5\}$$

Prim's Algorithm

- 1. Initialize
 - Let \mathcal{T} (the set of edges in the MST) be an empty set
 - ${f \cdot}$ Create an array minWeight of size n (number of nodes) to store the minimum weight of an edge that connects each node to the MST
 - Initialize minWeight[start] = 0 (starting node with 0 cost to itself) and all other values in minWeight to infinity
 - ${f \cdot}$ Create an array inMST of size n to keep track of whether each node is in the MST, initialize all values in visited to false
- 2. While \mathcal{T} has fewer than n-1 edges
 - ullet Find the unvisited node u with the minimum value in minWeight
 - ullet Mark u as visited and add it to the MST
 - For each neighbor v of u:

If v is unvisited and the edge weight (u,v) is less than minWeight[v] update minWeight[v] to the weight of (u,v)

3. Return \mathcal{T}

```
// Prim's algorithm without priority queue
void prim(int start, vector<vector<int>>& graph) {
    int n = graph.size();
    vector<bool> inMST(n, false); // Track nodes in MST
    vector<pair<int, int>> mstEdges; // Store edges in MST
    int totalCost = 0;
    inMST[start] = true; // Add starting node to MST
    for (int count = 1; count < n; ++count) { // Repeat until all nodes are in MST</pre>
        int minWeight = INT MAX;
        int u = -1, v = -1;
        // Find the minimum weight edge (u, v) with u in MST and v not in MST
        for (int i = 0; i < n; ++i) {
            if (inMST[i]) {
                for (int j = 0; j < n; ++j) {
                    if (!inMST[j] && graph[i][j] < minWeight) {</pre>
                        minWeight = graph[i][j];
                        u = i;
                        v = j;
        // Add edge (u, v) to MST
        if (u != -1 && v != -1) {
            inMST[v] = true;
            totalCost += minWeight;
            mstEdges.push back({u, v});
```


Improving using priority queue

- Challenge: Find the min weight edge with exactly one endpoint in ${\mathcal U}$
- ullet Solution: Maintain a PQ of edges with (at least) one endpoint in ${\mathcal U}$
 - Key = edge; priority = weight of edge
 - Delete-min to determine next edge $e_{u,v}$ to add to ${\mathcal U}$
 - Disregard if both endpoints u and v are unvisited (both in \mathcal{U})
 - Otherwise, let v be the unvisited vertex (not in \mathcal{U}):
 - add to PQ any edge incident to v (assuming other endpoint not in \mathcal{U})
 - add e to ${\mathcal U}$ and mark v as visited

Minimum edge weight data structure	Time complexity
adjacency matrix, searching	$O(n^2)$
binary heap, priority queue	O(mlog(n))

n: # of vertices, m: # of edges

```
MST-Prim(G, V, E){
 for(each x∈V){
   cost(x)=∞;
   parent(x)=Null;
 Choose a node u to be the source or starting point;
 cost(u)=0;
 Insert all vertices to a priority queue PQ;
 while (PQ≠Ø){
   x = PQ.Extract_Min();
   for (each neighbor, y of x){
          if (y!∈U && w(x,y)<cost(y)){
             cost(y)=w(x,y);
             parent(y)=x;
             PQ.Decrease_Key(y, cost(y));
```


Kruskal's algorithm

- Prim's Algorithm: vertex-wise; Kruskal's algorithm: edge-wise
- Basic idea: Maintain a forest, i.e., a collection of trees
- Initially, there are n trees; every vertex is a tree
- Each iteration examines one edge; the edge may be chosen so that two trees are merged
- Stop when there is only one tree
- The algorithm runs in at most m iterations (Because there are m edges)

Preparation

SINGAPORE INSTITUTE OF TECHNOLOGY

- Build a queue of edges
- Sorted so that the weights are in ascending order

 $T = \emptyset$. (Record the selected edges.)

Edge	Weight
(1,4)	1
(6,7)	1
(1,2)	2
(3,4)	2
(2,4)	3
(1,3)	4
(4,7)	4
(3,6)	5
(5,7)	6
(4,5)	7
(4,6)	8
(2,5)	10

- Dequeue and get the edge (1, 4)
- v_1 and v_4 are not in the same tree.
- Thus accept edge (1, 4)
- Append (1, 4) to ${\mathcal T}$

$$\mathcal{T} = \left\{ e_{1,4} \right\}$$

Edge	Weight
(1,4)	1
(6,7)	1
(1,2)	2
(3,4)	2
(2,4)	3
(1,3)	4
(4,7)	4
(3,6)	5
(5,7)	6
(4,5)	7
(4,6)	8
(2,5)	10

- Dequeue and get the edge (6, 7)
- v_6 and v_7 are not in the same tree
- Thus accept edge (6, 7)
- Append (6, 7) to ${\mathcal T}$

$$\mathcal{T} = \{e_{1,4}, e_{6,7}\}$$

Edge	Weight
(6,7)	1
(1,2)	2
(3,4)	2
(2,4)	3
(1,3)	4
(4,7)	4
(3,6)	5
(5,7)	6
(4,5)	7
(4,6)	8
(2,5)	10

- Dequeue and get the edge (1, 2)
- v_1 and v_2 are not in the same tree
- Thus accept edge (1, 2)
- Append (1, 2) to ${\mathcal T}$

$$\mathcal{T} = \{e_{1,4}, e_{6,7}, e_{1,2}\}$$

Edge	Weight
(1,2)	2
(3,4)	2
(2,4)	3
(1,3)	4
(4,7)	4
(3,6)	5
(5,7)	6
(4,5)	7
(4,6)	8
(2,5)	10

- Dequeue and get the edge (3, 4)
- v_3 and v_4 are not in the same tree
- Thus accept edge (3, 4)
- Append (3, 4) to ${\mathcal T}$

$$\mathcal{T} = \{e_{1,4}, e_{6,7}, e_{1,2}, e_{3,4}\}$$

Edge	Weight
(3,4)	2
(2,4)	3
(1,3)	4
(4,7)	4
(3,6)	5
(5,7)	6
(4,5)	7
(4,6)	8
(2,5)	10

- Dequeue and get the edge (2, 4)
- v_2 and v_4 are in the same tree
- Thus reject edge (2, 4)

$$\mathcal{T} = \{e_{1,4}, e_{6,7}, e_{1,2}, e_{3,4}\}$$

Edge	Weight
(2,4)	3
(1,3)	4
(4,7)	4
(3,6)	5
(5,7)	6
(4,5)	7
(4,6)	8
(2,5)	10

- Dequeue and get the edge (1, 3)
- v_1 and v_3 are in the same tree
- Thus reject edge (1, 3)

$$\mathcal{T} = \{e_{1,4}, e_{6,7}, e_{1,2}, e_{3,4}\}$$

Edge	Weight
(1,3)	4
(4,7)	4
(3,6)	5
(5,7)	6
(4,5)	7
(4,6)	8
(2,5)	10

- Dequeue and get the edge (4, 7)
- v_4 and v_7 are not in the same tree
- Thus accept edge (4, 7)
- Append (4, 7) to ${\mathcal T}$

$\mathcal{T} = \{e_{1,4}, e_{6,7}, e_{1,2}, e_{3,4}, e_{4,7}\}$	$= \{e_{1,4}, e_{6,7}, e_{1,2}, e_3\}$	$e_{4,7}$
---	--	-----------

Edge	Weight
(4,7)	4
(3,6)	5
(5,7)	6
(4,5)	7
(4,6)	8
(2,5)	10

- Dequeue and get the edge (3, 6)
- v_3 and v_6 are in the same tree
- Thus reject edge (3, 6)

Edge	Weight
(3,6)	5
(5,7)	6
(4,5)	7
(4,6)	8
(2,5)	10

$$\mathcal{T} = \{e_{1,4}, e_{6,7}, e_{1,2}, e_{3,4}, e_{4,7}\}$$

- Dequeue and get the edge (5, 7)
- v_5 and v_7 are not in the same tree
- Thus accept edge (5, 7)
- Append (5, 7) to $\mathcal T$

- After this
 - All the vertices are connected
 - Return the edges ${\mathcal T}$

Edge	Weight
(5,7)	6
(4,5)	7
(4,6)	8
(2,5)	10

$$\mathcal{T} = \left\{ e_{1,4}, e_{6,7}, e_{1,2}, e_{3,4}, e_{4,7}, e_{5,7} \right\}$$

Kruskal's Algorithm

- 1. Put all the edges of the input graph into a queue
- 2. Sort the queue so that the weights are in ascending order
- 3. Let set \mathcal{T} (which stores the selected edges) be the empty set
- 4. While $\mathcal T$ has fewer than n-1 edges Get an edge: $e_{u,v} \leftarrow$ dequeue() If u and v are in different trees, then add $e_{u,v}$ to $\mathcal T$ and merge the two trees.
- 5. Return \mathcal{T}

Using Disjoint Sets Data Structure

- How to decide whether two vertices are in the same tree?
- Solution: Using disjoint sets data structure. Put vertices of a tree in the same set. Deciding whether two vertices belong to the same set costs near O(1) time. Find()
- How to merge two trees? Union()

Disjoint Subsets

- Definition: $A \cap B = \emptyset$ -> A and B are disjoint subsets.
- Example: $A = \{1,2,3\}$ and $B = \{4,5\}$; share no same item -> disjoint.
- Object set: 0, 1, 2, 3, 4, 5
- Disjoint subset: {0} {1} { 2 3 4 } { 5 6 }
 - Set A: { 0 }
 - Set B: { 1 }
 - Set C: { 2, 3, 4 }
 - Set D: { 5, 6 }

- Common operations:
 - Find: find(item) -> Set ID, i.e., find(3) -> C.
 - Union: union(A, B) -> new subset AUB = { 0, 1 }.
- How to support fast find and union?
- Idea: use a tree to represent each subset.

Disjoint Subsets - Trees

- Disjoint subset: {0} {1} { 2 3 9 } { 5 6 }
- Common operations:
 - Find: find(item) -> Set ID, i.e., find(3) -> C.
 - Union: union(A, B) -> new subset A∪B = { 0, 1 }.
- Tree id: the root item.
 - Each subset has one item as id. Unique?
- Data struct for each item: [Item id, Parent item id]
 - Root item: parent item is itself.
- Set 0: [0, 0] -> only one item in the subset.
- Set 1: [1, 1] -> only one item in the subset.
- Set 2: a) [9, 3]; b) [3, 2]; c) [2, 2]. Who is the root?
- Set 3: a) [6, 5]; b) [5, 5].

Disjoint Subsets - Find and Union

- Many ways for the find and union operations.
- Let us start with some intuitive ones.
- With the trees, what is the time complexity of find(\cdot)?
 - Worst case, O(V) items in a tree with one node per level.
 - Finding the leaf item, so take O(V) checks to the root.
- What is the time complexity of union (\cdot,\cdot) .
 - Relink both trees. O(1).
 - i.e., union(Set 0, Set 1).
 - Item 1's pointer to item 0.
- Fine for union(), but not for find().
- How to make find() faster?
 - A lot options. We cover a few here.

Disjoint Subsets - Faster Find

- Data struct for each item: [Item id, Parent item id, root id].
 - Allocate some space to record the root id for each item in the tree.
 - Object set: 0, 1, 2, 3, 5, 6, 9
 - Root id: 0, 1, 2, 2, 5, 5, 2
- Here, find() can be in O(1) time.
- But how about union? Still O(1)?
 - Merge two trees together with relinking.
 - Update all root id. O(V) operation for large trees.
- Now we presented two options:
 - Quick union O(1) with slow find O(V).
 - Quick find O(1) with slow union O(V).
- Question: why do we have a tree looks like a list?
 - For list of length O(V), O(V) time traverse.
 - Binary tree, can be O(logV) levels, much faster. But how?

Disjoint Subsets - Maintain a Balanced Tree

- Initially, build a flat tree.
- Throughout the further unions, keep flat, or balanced.
- Check our example to merge {5, 6} and {2, 3, 9}.
 - One option gives us flat tree.
 - The other option makes the tree very imbalanced.
- Intuitively, root shall come from the larger subset.
 - i.e., 2 shall be the root compared to 5.
- For implementation, how to do this?
 - How can we say which tree is larger or smaller?
- Choice 1: record tree size in root.
 - Tree size: the number of items in the tree.
 - Root from the tree with more items.
 - Smaller tree becomes a subtree.
 - Update tree size, i.e., int A + int B.
 - Time for find() being pushed to O(log|V|).

Disjoint Subsets - Applications

Edge Node

- Choice 2: record tree depth, or rank, in root.
 - Shorter tree becomes a subtree.
 - Key idea is still to balance the tree.
 - Time for find() being pushed to O(log|V|).
- More advanced options available.
 - i.e., path compression, path halving, path splitting.
 - Different options, or the combination of options, give different complexity.
 - Read references if interested.
- Applications:
 - Network connectivity.
 - Local networks -> global ne
 - Image segmentation.
 - From one pixel to one object
 - Least common ancestor.

A* Search algorithm

- DFS, BFS, Dijkstra...
 - Expand "blindly" by exploring nodes without any "intelligence" guidance towards the goal
 - Consider all directions as equally likely to lead to the goal or follow a fixed order of exploration.
 - Do not have a "sense" of direction toward the goal, meaning they operate without any preference for paths that might be closer to the target
 - Time consuming if the graph is big even with Bidirectional or Iterative Deepening improvements
- Other Improvements
 - Heuristic search: rank the directions/options based on importance (priority)
 - Only expand limited options, consider more options if cannot find Iterative Widening
 - Pruning, stop expanding for options that unlikely/unfeasible to reach the goal

Heuristic Search

- Key: Heuristic Function
- The heuristic function assigns a priority to each direction or option based on the current state, guiding the search towards the goal.
- A more accurate heuristic function leads to faster convergence on the optimal solution by reducing unnecessary exploration.
- No one-size-fits-all heuristic; need to tailored to the specific problem.
- The heuristic should be computationally efficient, as a costly heuristic can negatively impact search performance, e.g. Manhattan distance,

$$h(s) = |x_s - x_g| + |y_s - y_g|$$

```
bfs(s) {
  q = new queue()
  q.push(s), visited[s] = true
  while (!q.empty()) {
    u = q.pop() - check if meet the goal
    for each edge(u, v) {
      if (!visited[v]) {
        q.push(v)
        visited[v] = true
greedyBestFirstSearch(s) {
  q = new priority queue()
  q.push(s, h(s)), visited[s] = true
  while (!q.empty()) {
    u = q.pop() - check if meet the goal
    for each edge(u, v) {
      if (!visited[v]) {
        q.push(v, h(s))
        visited[v] = true
```

A* Search algorithm

Cost Function:

$$f(x) = g(x) + h(x)$$

- g(x): actual moving cost from the start node to the current node x
- h(x): heuristic function, representing the estimated cost from the current node x to the goal
- The priority queue returns the node x with the minimum f(x), prioritizing nodes that appear closer to the goal based on f(x)

```
function AStar (Graph, start, goal):
   create vertex priority queue Q
   distTo[start] ← 0
                                                // q(s) = 0 for the start node
   Q.add with priority(start, h(start))
                                                 // priority = h(start)
   for each vertex v in Graph.Vertices:
       if v \neq start
           prev[v] ← UNDEFINED
                                                 // Set q(v) = \infty initially
            distTo[v] ← INFINITY
           Q.add with priority(v, INFINITY)
   while Q is not empty:
       u ← Q.extract min()
                                                 // Node with lowest f(u) = g(u) + h(u)
       if u == goal:
                                                 // Goal reached
           return distTo, edgeTo
                                                 // Shortest path found
       for each neighbor v of u:
            tentative gScore ← distTo[u] + Graph.Edges(u, v)
           if tentative gScore < distTo[v]:</pre>
                edgeTo[v] ← u
                                                // Track the path
                distTo[v] ← tentative gScore
                                                // Update q(v) = q(u) + cost(u, v)
                fScore ← distTo[v] + h(v)
                                                // Calculate f(v) = g(v) + h(v)
                Q.decrease priority(v, fScore)
                                                // Update priority in Q with f(v)
                                                 // If Q is empty and goal not found
   return 0
```

IDA* (Iterative Deepening A*):

- Challenge with A*: While effective, A* can consume large amounts of memory, storing all expanded nodes in the priority queue and open/closed lists
- Solution with IDA*: Similar to Iterative Deepening Depth-First Search (IDDFS), IDA* applies a cost limit instead of a depth limit. Each iteration explores paths within a given f(x) threshold (cost limit), gradually increasing the limit in subsequent iterations
- Advantage: IDA* significantly reduces memory usage compared to A*, as it doesn't need to store the entire search tree, making it suitable for memory-constrained environments

Max Flow Problem

Max (Net) Flow = 5

- Send water from the source s to the sink t
- The edges are pipes which have certain capacities, e.g., $4m^3/s$
- How much water can flow from source s to the sink t at most?
- Inputs: A weighted directed graph, the source s, and the sink t
- Goal: Send as much water as possible from s to t
- Constraints:
 - Each edge has a weight (i.e., the capacity of the pipe)
 - The flow must not exceed the capacity

Capacity of the pipe is $4 m^3/s$ A flow of $1 m^3/s$ goes through the pipe It has a residual of $3 m^3/s$

Initialization

• Augmenting path: a path from s to t that does not contain cycles

Residual Graph

Iteration 1: find an augmenting path and update residuals

- Working on the **residual graph**
- Augmenting path: a path from s to t that does not contain cycles
- Found path $s \rightarrow v_2 \rightarrow v_4 \rightarrow t$ (Bottleneck capacity = 2)
- Update residuals: -2 for the edges, remove saturated edges

Iteration 2: find an augmenting path and update residuals

- Working on the **residual graph**
- Augmenting path: a path from s to t that does not contain cycles
- Found path $s \rightarrow v_1 \rightarrow v_3 \rightarrow t$ (Bottleneck capacity = 2)
- Update residuals: -2 for the edges, remove saturated edges

Iteration 2: find an augmenting path and update residuals

- Working on the **residual graph**
- Augmenting path: a path from s to t that does not contain cycles
- Found path $s \rightarrow v_1 \rightarrow v_4 \rightarrow t$)Bottleneck capacity = 1)
- Update residuals: -1 for the edges, remove saturated edges

Cannot find any path from source to sink

Flow = Capacity - Residual

• Amount of flow: 5, outward flow of s == inward flow of t == 5

Flow = Capacity - Residual.

Simple solution

- 1. Build a residual graph; initialize the residuals to the capacity
- 2. While augmenting path can be found:
 - 1. Find an augmenting path (on the residual graph)
 - 2. Find the bottleneck capacity x in the augmenting path
 - 3. Update the residuals (residual \leftarrow residual -x)
- 3. Flow = Capacity Residual

This simple solution may fail

- Always finds the blocking flow, may not be the maximum flow
- A flow is blocking flow if no more flow from source to sink can be found
- The "pipes" are blocked
- Maximum flow is also blocking flow
- Once a bad path is selected, the simple solution cannot make corrections

Amount of flow: 4

Ford-Fulkerson Algorithm

• Key idea: allow correction by adding backward path

Residual Graph

- Working on the **residual graph**
- Found augmenting path $s \rightarrow v_1 \rightarrow v_4 \rightarrow t$ (Bottleneck capacity = 3)
- Update residuals: -3 for the edges, remove saturated edges
- Add a backward path $t \rightarrow v_4 \rightarrow v_1 \rightarrow s$ with weight= 3

- Working on the **residual graph**
- Found augmenting path $s \rightarrow v_1 \rightarrow v_3 \rightarrow t$ (Bottleneck capacity = 1)
- Update residuals: -1 for the edges, remove saturated edges
- Add a backward path $t \rightarrow v_3 \rightarrow v_1 \rightarrow s$ with weight= 1

- Working on the **residual graph**
- Found augmenting path $s \rightarrow v_2 \rightarrow v_4 \rightarrow v_1 \rightarrow v_3 \rightarrow t$ (Bottleneck capacity = 1)
- Update residuals: -1 for the edges, remove saturated edges
- Add a backward path $t \rightarrow v_3 \rightarrow v_1 \rightarrow v_4 \rightarrow v_2 \rightarrow s$ with weight= 1
- Cannot find any path anymore

Flow = Capacity - Residual

SINGAPORE INSTITUTE OF TECHNOLOGY

• Max flow = 5

Original Graph

Residual Graph

Ford-Fulkerson bad case

- The amount of the max flow is 200
- Ford-Fulkerson algorithm may take 200 iterations to find the max flow
- In every iteration, the amount of flow increases by 1

Time Complexity

- Each iteration increases the amount of flow by at least 1
- Thus, # Iterations ≤ Amount of Max Flow
- It takes O(m) time to find a path in unweighted graph (Ignore the weights in the residual graph) (m: # of edges, f: amount of max flow)
- Thus, the per-iteration time complexity is O(m)
- The worst-case time complexity is O(fm)

Edmonds-Karp Algorithm

- Ford-Fulkerson:
- 1. Build a residual graph; initialize the residuals to the capacities
- 2. While augmenting path can be found:
 - 1. Find an augmenting path (on the residual graph)
 Improvement: Find the shortest augmenting path (on the residual graph)
 - 2. Find the bottleneck capacity x on the augmenting path
 - 3. Update the residuals (residual \leftarrow residual -x)
 - 4. Add a backward path (Along the path, all edges have weights of x)
- Improvement is Edmonds-Karp
 - When finding path, regard the residual graph as unweighted
 - This can be found by a BFS, where we apply a weight of 1 to each edge
 - Time complexity: $O(m^2n)$ (m is #edges; n is #vertices)

Dinic's Algorithm

• Based on **level graph**: only edges connect to the next BFS level. Assign levels to all nodes, level of a node is shortest distance (in terms of number of edges) of the node from source.

Dinic's Algorithm

- Construct level graph
- Find blocking flow in level graph
 - Blocking flow: if no more flow from source to sink can be found
 - Blocking flow can be found using the simple solution

Original Graph

Residual Graph

Level Graph

- Construct level graph
- Find blocking flow in level graph
- Update the residual graph, remove saturated edges
- Add flows to the residual graph as backward paths

- Construct level graph
- Find blocking flow in level graph
- Update the residual graph, remove saturated edges
- Add flows to the residual graph as backward paths

- Construct level graph
- Find blocking flow in level graph
- On the level graph, no flow can be found
- Flow = Capacity Residual

Dinic's algorithm: Time Complexity

- 1. Initially, the residual graph is a copy of the original graph
- 2. Repeat:
 - 1. Construct the level graph of the residual graph
 - 2. Find a blocking flow on the level graph
 - 3. Update the residual graph (update the weights, remove saturated edges, and add backward edges)
- Time complexity: $O(mn^2)$, (n is #vertices, m is #edges)
- Dinic's algorithm has at most n 1 iterations.
- Per-iteration time complexity is O(mn)

Bipartite Graph

- Bipartite graph: G = U, V, \mathcal{E}
- All the edges are between ${\mathcal U}$ and ${\mathcal V}$
- No edge between two vertices in ${oldsymbol{\mathcal{U}}}$
- No edge between two vertices in ${\mathcal V}$

Set $\mathcal U$

Is the graph bipartite?

- 1. Select an arbitrary vertex and assign red color to it.
- 2. BFS to color neighbors, until all vertices are colored:
 - 1. Color red vertices' neighbors as blue
 - 2. Color blue vertices' neighbors as red
 - 3. During the process, if a vertex has the same color as its neighbor, then output FALSE
- 3. If no violation is found, return TRUE in the end

Maximum-Cardinality Bipartite Matching (MCBM)

- Bipartite graph: G = U, V, \mathcal{E}
- Set ${\mathcal U}$ contains people, Set ${\mathcal V}$ contains pets
- Edges in $\mathcal E$ are people's preference
- Goal: Maximizing the cardinality of matching, 5

Greedy algorithm can fail!

Maximum-Cardinality Bipartite Matching (MCBM)

• Capacity of max-flow = Cardinality of max-matching

Augmenting path algorithm

- Given a matching
 - An alternating path is a path that begins with an unmatched vertex and whose edges belong alternately to the matching and not to the matching
 - An augmenting path is an alternating path that starts from and ends on (two different) unmatched vertices
 - The path length(total number of edges) of augmenting path must be an odd number
- Total number of unmatched edges is always greater than the number of matched edges by 1
- Switch between unmatched edges and matched edges in the augmenting path
- 2 matchings (1->5, 4->7), so that vertices 1, 4, 5, 7 are matched vertices.
- starting from an unmatched vertex 8
- unmatched edge -> matched edge -> unmatched edge...

augmenting path:

Augmenting path algorithm

3->5 cannot, thus 3 -> 6

```
Graph g_;
int num_vertices_U_, num_vertices_V_;
int total num ;
std::vector<bool> visited;
std::map<int, int> matching ; // init as -1
bool FindMatching(int u) {
    // iterating sets V
    for (unsigned int v = num_vertices_U_; v < total_num_; v++) {</pre>
        // if there is a edge between vertices from U and V
        bool is connected =
            std::find(g_.adj_list_[u].cbegin(), g_.adj_list_[u].cend(), v)
            != g .adj list [u].cend();
        // augmenting path - unmatched -> matched -> ... -> matched -> unmatched
        if (false == visited_[v] && is_connected) {
            visited [v] = true;
            // if vertex in V is not matched, we will match it
            // if it is matched already, we then go back to set U
            // we will try to figure out if the vertex from U can be
            // matched with another vertex in V
            // remember unmatched -> matched -> unmatched -> .....
            if (-1 == matching_[v] || FindMatching(matching_[v])) {
                matching_[v] = u;
                matching [u] = v;
                return true;
    return false;
```


Minimum-Weight Bipartite Matching: Hungarian Algorithm

	v_1	v_2	v_3
u_1	8	25	50
u_2	50	35	75
u_3	22	48	150

The minimum sum of weight is 50 + 35 + 22 = 107

Subtract Row Minima

	v_1	v_2	v_3		v_1	v_2	v_3		v_1	v_2	v_3		v_1	v_2	v_3
u_1	8	25	50	u_1	8	25	50	u_1	8 -8	25 -8	50 -8	u_1	0	17	42
u_2	50	35	75	u_2	50	35	75	u_2	50 -35	35 -35	75 -35	u_2	15	0	40
u_3	22	48	150	u_3	22	48	150	u_3	22 -22	48 -22	150 -22	u_3	0	26	128

Now, the row minima are zeros

Subtract Column Minima

1	v_1	v_2	v_3	• ,	v_1	v_2	v_3		v_1	v_2	v_3		v_1	v_2	v_3
u_1	0	17	42	u_1	0	17	42	u_1	0	17 -0		u_1	0	17	2
u_2	15	0	40	u_2	15	0	40	u_2	15 -0	0	40 -40	u_2	15	0	0
u_3	0	26	128	u_3	0	26	128	u_3	0 -0	26 -0		u_3	0	26	88

Now, the col minima are zeros

Repeat:

- A. Cover all the zeros with a minimum number of lines
- B. Decide whether to stop
 - If n lines are required, the algorithm stops
 - If less than n lines are required, then continue with Step C
- C. Create additional zeros
 - Find the smallest element (denote k) that is not covered by a line (k=2)
 - Subtract k from all uncovered elements
 - Add k to all the elements that are covered twice

	v_1	v_2	v_3		
u_1	0	15	0		
u_2	-1 5 +2	0	0		
u_3	0	24	86		

	v_1	v_2	v_3
u_1	0	15	0
u_2	17	0	0
u_3	0	24	86

Repeat:

- A. Cover all the zeros with a minimum number of lines
- B. Decide whether to stop
 - If n lines are required, the algorithm stops
 - If less than n lines are required, then continue with Step C.
- C. Create additional zeros
 - Find the smallest element (denote k) that is not covered by a line
 - Subtract k from all uncovered elements
 - Add k to all the elements that are covered twice

Minimum number of lines: 3, thus, stop

Output the matching

- Choose a matching among the zeros
- Think of the zeros as edges
- Select zeros if they are the only zeros in row/col

	v_1	v_2	v_3
u_1	0	15	0
u_2	17	0	0
u_3	0	24	86

	v_2	v_3
u_1	15	0
u_2	0	0
u_3	24	86

Maximum Matching and Time Complexity

- Hungarian Algorithm for Maximum Matching
 - Idea: Max Matching → Min Matching
 - Negate the signs of all the weights
 - It is equivalent to the minimum matching
 - Run the Hungarian algorithm
- Hungarian algorithm finds a minimum-weight bipartite matching.
 - It requires $\mathcal{U} = |\mathcal{V}| = n$
 - Time complexity: $O(n^3)$