DIAGONALISATION

EXERCICE 1.

 $E = R^3$ est rapporté à sa base canonique $e = \{e_1, e_2, e_3\}$. f est l'endomorphisme de matrice M dans cette base :

$$M = \left(\begin{array}{rrr} 1 & -1 & 1 \\ -2 & 0 & -1 \\ -2 & -2 & 1 \end{array} \right)$$

- 1. Déterminer son polynôme caractéristique.
- 2. Calculer ses valeurs propres.
- 3. Donner une base des sous-espaces propres.
- 4. Décider si *f* est diagonalisable.
- 5. Donner éventuellement l'expression diagonalisée.
- 6. Vérifier en utilisant les matrices de changement de base.

EXERCICE 2.

Faire, pour la matrice A suivante, une étude semblable à celle de l'exercice 1 pour la matrice M:

$$A = \left(\begin{array}{rrrr} 3 & 5 & -5 \\ -5 & -7 & 5 \\ -5 & -5 & 3 \end{array} \right)$$

EXERCICE 3.

 $E=R^3$ est rapporté à sa base canonique $e=\{e_1,e_2,e_3\}$. f est l'endomorphisme de matrice B dans cette base :

$$B = \left(\begin{array}{cccc} 3 & 1 & 1 \\ -1 & 1 & -1 \\ 0 & 0 & 1 \end{array}\right)$$

- 1. Déterminer son polynôme caractéristique.
- 2. Calculer ses valeurs propres.
- 3. Donner une base des sous-espaces propres.
- 4. Décider si *f* est diagonalisable.
- 5. Donner éventuellement l'expression diagonalisée.
- 6. Vérifier en utilisant les matrices de changement de base.

EXERCICE 4.

Faire, pour la matrice C suivante, une étude semblable à celle de l'exercice 3 pour la matrice B:

$$C = \left(\begin{array}{rrrr} 3 & -1 & 1 & -1 \\ 0 & 1 & 0 & 0 \\ -4 & 2 & -1 & 2 \\ -2 & 1 & -1 & 2 \end{array} \right)$$

EXERCICE 5.

Soit M une matrice 5×5 réelle dont le polynôme caractéristique est :

$$P(X) = (X + 1)^{2} (X - 2)^{3}$$
.

- 1. Quelles sont les valeurs propres de *M*?
- 2. *M* est-elle diagonalisable ?
- 3. On suppose de plus que les sous-espaces propres sont de dimension 2. Que conclure ?

EXERCICE 6.

 $E = \mathbb{R}^4$ est rapporté à sa base canonique $e = \{e_1, e_2, e_3, e_4\}$. f est l'endomorphisme de matrice M dans cette base :

$$M = \left(\begin{array}{ccccc} 2 & 0 & 0 & 0 \\ 4 & -6 & 4 & 4 \\ 4 & -4 & 2 & 4 \\ 0 & -4 & 4 & 2 \end{array}\right)$$

- 1. Quelle est la matrice de $g = f^2$ dans la base $\{e\}$?
- 2. Quels sont les vecteurs propres et les valeurs propres de g?
- 3. Montrer que si λ est une valeur propre de f, alors $\mu = \lambda^2$ est valeur propre de g.
- 4. En déduire les seules valeurs propres possibles pour f.
 5. Pour un vecteur x quelconque de E, montrer que :

$$f(x) + 2x \in Ker(f - 2id_E)$$

$$f(x) - 2x \in Ker(f + 2id_E)$$

- 6. Construire un système de générateurs de *E* formé de vecteurs propres de *f*.
- 7. Diagonaliser f, soit directement, soit en utilisant ce qui précède.

EXERCICE 7.

Etudier le rang, l'image, le noyau, les sous-espaces propres, le polynôme caractéristique et le polynôme minimal de l'opérateur associé à :

$$A = \left(\begin{array}{cccc} -1/2 & -1/2 & 1/2 \\ -1/2 & 1/2 & 1/2 \\ 0 & 0 & 1 \end{array} \right).$$

Peut-on diagonaliser cette matrice?

EXERCICE 8.

Etudier le rang, l'image, le noyau, les sous-espaces propres, le polynôme caractéristique et le polynôme minimal de l'opérateur associé à :

$$\boldsymbol{B} = \left(\begin{array}{rrr} 1 & 0 & -1 \\ 1 & 1 & -2 \\ 1 & -1 & 0 \end{array} \right).$$

Peut-on diagonaliser cette matrice?

EXERCICE 9.

Etudier le rang, l'image, le noyau, les sous-espaces propres, le polynôme caractéristique et le polynôme minimal de l'opérateur associé à :

$$C = \left(\begin{array}{rrr} 0 & 7 & -6 \\ -1 & 4 & 0 \\ 0 & 2 & -2 \end{array} \right).$$

Peut-on diagonaliser cette matrice?

EXERCICE 10.

Etudier le rang, l'image, le noyau, les sous-espaces propres, le polynôme caractéristique et le polynôme minimal de l'opérateur associé à :

$$D = \left(\begin{array}{cccc} 0 & 0 & 4 & 0 \\ -2 & 1 & 4 & 1 \\ 0 & 0 & 2 & 0 \\ -4 & 0 & 8 & 2 \end{array} \right).$$

Peut-on diagonaliser cette matrice?

EXERCICE 11.

Etudier la matrice à n lignes et n colonnes :

$$F = \left(\begin{array}{cccc} 1 & 1 & \cdots & 1 \\ 1 & 1 & \cdots & 1 \\ \vdots & \vdots & \ddots & \vdots \\ 1 & 1 & \cdots & 1 \end{array} \right)$$

EXERCICE 12.

Etudier la matrice à n lignes et n colonnes :

$$G = \left(\begin{array}{cccc} 0 & \cdots & 0 & 1 \\ 0 & \cdots & 1 & 0 \\ \vdots & \ddots & \vdots & \vdots \\ 1 & \cdots & 0 & 0 \end{array} \right)$$

EXERCICE 13.

Etudier la matrice à n lignes et n colonnes :

$$H = \left(\begin{array}{cccc} \alpha & \beta & \cdots & \beta \\ \beta & \alpha & \ddots & \vdots \\ \vdots & \ddots & \ddots & \beta \\ \beta & \cdots & \beta & \alpha \end{array} \right)$$

EXERCICE 14.

Soit A une matrice symétrique réelle à n lignes et n colonnes telle qu'il existe un entier k vérifiant $A^k = I_n$. Montrer que $A^2 = I_n$.

EXERCICE 15.

Vrai ou Faux.

E est un espace vectoriel de dimension finie sur un corps de nombres complexes K. Soit f un endomorphisme de E. Id est l'application identique. Donnez votre opinion sur les assertions suivantes (à justifier par une démonstration).

01. Si $f^2 = f$, alors f est inversible.

02. Si f est inversible, alors f^{-1} est diagonalisable.

03. Si f est diagonalisable, alors f est inversible. 04. Si f est inversible, alors f^2 l'est aussi. 05. Si f est diagonalisable, alors f^2 l'est aussi.

06. Si $f^2 = f$, alors f est diagonalisable. 07. Si $f^2 = Id$, alors f est inversible.

08. Si f est inversible et diagonalisable, alors f^{-1} est diagonalisable.

09. Si la matrice de f par rapport à une base $\{u\}$ est symétrique, alors f est diagonalisable.

10. Le noyau de f est un sous-espace propre de f.

11. L'image et le noyau d'un endomorphisme diagonalisable et non inversible forment une somme directe.

12. Si une matrice à éléments dans R est diagonalisable et inversible, son inverse est diagonalisable.

13. La somme de deux endomorphismes diagonalisables dans \mathbb{R}^2 n'est pas forcément diagonalisable.

14. La matrice:

$$A = \left(\begin{array}{rrr} 3 & 0 & 8 \\ 3 & 1 & -6 \\ -2 & 0 & -5 \end{array} \right)$$

est diagonalisable.

DIAGONALISATION

EXERCICE 1.

 $E = R^3$ est rapporté à sa base canonique $e = \{e_1, e_2, e_3\}$. f est l'endomorphisme de matrice M dans cette base :

$$M = \left(\begin{array}{rrrr} 1 & -1 & 1 \\ -2 & 0 & -1 \\ -2 & -2 & 1 \end{array}\right)$$

- 1. Déterminer son polynôme caractéristique.
- 2. Calculer ses valeurs propres.
- 3. Donner une base des sous-espaces propres.
- 4. Décider si f est diagonalisable.
- 5. Donner éventuellement l'expression diagonalisée.
- 6. Vérifier en utilisant les matrices de changement de base.

SOLUTION.

1°/ Polynôme caractéristique.

Le polynôme caractéristique de la matrice

$$M = \left(\begin{array}{rrr} 1 & -1 & 1 \\ -2 & 0 & -1 \\ -2 & -2 & 1 \end{array} \right)$$

est le déterminant de la matrice $M - \lambda i d_E$.

$$P(\lambda) = D\acute{e}t (M - \lambda id_E) = \left| egin{array}{cccc} 1 - \lambda & -1 & 1 \\ -2 & -\lambda & -1 \\ -2 & -2 & 1 - \lambda \end{array} \right|.$$

On ne change pas la valeur du déterminant en ajoutant la 2^e ligne à la 1^e :

$$\begin{vmatrix} 1-\lambda & -1 & 1 \\ -2 & -\lambda & -1 \\ -2 & -2 & 1-\lambda \end{vmatrix} = \begin{vmatrix} -1-\lambda & -1-\lambda & 0 \\ -2 & -\lambda & -1 \\ -2 & -2 & 1-\lambda \end{vmatrix}$$

On peut mettre – $(1 + \lambda)$ en facteur dans la 1^e ligne :

$$\begin{vmatrix} 1-\lambda & -1 & 1 \\ -2 & -\lambda & -1 \\ -2 & -2 & 1-\lambda \end{vmatrix} = -(1+\lambda) \begin{vmatrix} 1 & 1 & 0 \\ -2 & -\lambda & -1 \\ -2 & -2 & 1-\lambda \end{vmatrix}$$

On ne change pas la valeur du déterminant en retranchant la 1^e colonne de la 2^e.

$$\begin{vmatrix} 1-\lambda & -1 & 1 \\ -2 & -\lambda & -1 \\ -2 & -2 & 1-\lambda \end{vmatrix} = -(1+\lambda) \begin{vmatrix} 1 & 0 & 0 \\ -2 & 2-\lambda & -1 \\ -2 & 0 & 1-\lambda \end{vmatrix}$$

On peut développer le déterminant par rapport à la 1^e ligne.

$$\begin{vmatrix} 1-\lambda & -1 & 1 \\ -2 & -\lambda & -1 \\ -2 & -2 & 1-\lambda \end{vmatrix} = -(1+\lambda) \begin{vmatrix} 2-\lambda & -1 \\ 0 & 1-\lambda \end{vmatrix}$$

On peut développer le déterminant par rapport à la 1^e colonne.

$$\begin{vmatrix} 1-\lambda & -1 & 1 \\ -2 & -\lambda & -1 \\ -2 & -2 & 1-\lambda \end{vmatrix} = -(1+\lambda)(2-\lambda)(1-\lambda)$$

Le polynôme caractéristique de la matrice M est $P(\lambda) = -(\lambda+1)(\lambda-1)(\lambda-2)$

2°/ Valeurs propres.

Les valeurs propres de la matrice M sont les racines du polynôme caractéristique : -1, 1, 2. Ces racines sont toutes trois réelles et simples.

Les valeurs propres de la matrice M sont $\lambda_1 = -1$, $\lambda_2 = 1$, $\lambda_3 = 2$.

3°/ Sous-espaces propres.

Comme les valeurs propres sont réelles et distinctes, chaque sous-espace propre est de dimension 1 et engendré par un vecteur propre quelconque pour la valeur propre correspondante.

Le sous-espace propre pour une valeur propre λ est le noyau de la matrice $M - \lambda I$.

• pour la valeur propre $\lambda_1 = -1$, $M - \lambda_1 I = \begin{bmatrix} 2 & 1 & 1 \\ -2 & 1 & -1 \\ -2 & -2 & 2 \end{bmatrix}$. Réduisons cette matrice :

$$\left(\begin{array}{ccc}
2 & -1 & 1 \\
-2 & 1 & -1 \\
-2 & -2 & 2
\end{array}\right) \qquad \left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)$$

Ajoutons la
$$2^{e}$$
 colonne à la 3^{e} , et ajoutons deux fois la 2^{e} colonne à la 1^{e}

$$\begin{pmatrix}
0 & -1 & 0 \\
0 & 1 & 0 \\
-6 & -2 & 0
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 0 & 0 \\
2 & 1 & 1 \\
0 & 0 & 1
\end{pmatrix}$$

La matrice $M - \lambda_1 I$ est de rang 2 (les deux premières colonnes de la matrice réduite forment une famille libre

de vecteurs), et son noyau a pour base par le vecteur $a_1 = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$.

• pour la valeur propre $\lambda_2 = 1$, $M - \lambda_2 I = \begin{pmatrix} 0 & -1 & 1 \\ -2 & -1 & -1 \\ -2 & -2 & 0 \end{pmatrix}$. Réduisons cette matrice : $\begin{pmatrix} 0 & -1 & 1 \\ -2 & -1 & -1 \\ -2 & -2 & 0 \end{pmatrix}$ Soustravors de la 1° de la

$$\begin{pmatrix}
0 & -1 & 1 \\
-2 & -1 & -1 \\
-2 & -2 & 0
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{pmatrix}$$

Soustrayons de la 1^e colonne la somme des deux autres, puis ajoutons à la 2^e colonne la 3^e:

$$\left(\begin{array}{ccc}
0 & 0 & 1 \\
0 & -2 & -1 \\
0 & -2 & 0
\end{array}\right)$$

$$\left(\begin{array}{ccc}
1 & 0 & 0 \\
-1 & 1 & 0 \\
-1 & 1 & 1
\end{array}\right)$$

La matrice $M - \lambda_2 I$ est de rang 2 (les deux dernières colonnes de la matrice réduite forment une famille libre

de vecteurs), et son noyau a pour base par le vecteur
$$a_2 = \begin{pmatrix} 1 \\ -1 \\ -1 \end{pmatrix}$$
.

• pour la valeur propre
$$\lambda_3 = 2$$
, $M - \lambda_3 I = \begin{pmatrix} -1 & -1 & 1 \\ -2 & -2 & -1 \\ -2 & -2 & -1 \end{pmatrix}$. Réduisons cette matrice :

$$\begin{pmatrix}
-1 & -1 & 1 \\
-2 & -2 & -1 \\
-2 & -2 & -1
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{pmatrix}$$

Soustrayons de la 1^e colonne la 2^e, puis ajoutons à la 2^e colonne la 3^e

$$\begin{pmatrix}
0 & 0 & 1 \\
0 & -3 & -1 \\
0 & -3 & -1
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 0 & 0 \\
-1 & 1 & 0 \\
0 & 1 & 1
\end{pmatrix}$$

La matrice $M - \lambda_3 I$ est de rang 2 (les deux dernières colonnes de la matrice réduite forment une famille libre

de vecteurs), et son noyau a pour base par le vecteur
$$a_3 = \begin{pmatrix} 1 \\ -1 \\ 0 \end{pmatrix}$$
.

4°/ Diagonalisation.

Le *polynôme minimal* de M est $(\lambda + 1)(\lambda - 1)(\lambda - 2)$. Ses racines sont réelles et d'ordre 1 : la matrice M est donc diagonalisable.

Soit
$$P = \begin{pmatrix} 0 & 1 & 1 \\ 1 & -1 & -1 \\ 1 & -1 & 0 \end{pmatrix}$$
 la matrice des vecteurs propres $\{a_1, a_2, a_3\} : P^{-1} = \begin{pmatrix} 1 & 1 & 0 \\ 1 & 1 & -1 \\ 0 & -1 & 1 \end{pmatrix}$. On a :
$$P^{-1}MP = \begin{pmatrix} 1 & 1 & 0 \\ 1 & 1 & -1 \\ 0 & -1 & 1 \end{pmatrix} \begin{pmatrix} 1 & -1 & 1 \\ -2 & 0 & -1 \\ -2 & 2 & 1 \end{pmatrix} \begin{pmatrix} 0 & 1 & 1 \\ 1 & -1 & -1 \\ 1 & -1 & 0 \end{pmatrix} = \begin{pmatrix} -1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \end{pmatrix}$$
La matrice P set la matrice du changement de base $[id, \{a\}, \{a\}]$. La relation précédente montre que l'en a :

La matrice P est la matrice du changement de base $[id_E, \{a\}, \{e\}]$. La relation précédente montre que l'on a :

$$[f,\{a\},\{a\}] = [id_E,\{e\},\{a\}][f,\{e\},\{e\}][id_E,\{a\},\{e\}] = \begin{pmatrix} -1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \end{pmatrix}.$$

L'endomorphisme f se décompose donc en :

- une homothétie de rapport -1 (symétrie) sur l'axe défini $a_1 = \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix} = e_2 + e_3$;
- une homothétie de rapport 1 (identité) sur l'axe défini par $a_2 = \begin{pmatrix} 1 \\ -1 \\ 1 \end{pmatrix} = e_1 e_2 e_3$;
- une homothétie de rapport 2 sur l'axe défini par $a_3 = \begin{bmatrix} 1 \\ -1 \\ 0 \end{bmatrix} = e_1 e_2$.

Les vecteurs de la base canonique sont donnés, en fonction de la base propre, par :

$$e_1 = a_1 + a_2$$

 $e_2 = a_1 + a_2 - a_3$
 $e_3 = a_3 - a_2$

EXERCICE 2.

Faire, pour la matrice A suivante, une étude semblable à celle de l'exercice 1 pour la matrice M:

$$A = \begin{pmatrix} 3 & 5 & -5 \\ -5 & -7 & 5 \\ -5 & -5 & 3 \end{pmatrix}$$

SOLUTION.

1°/ Polynôme caractéristique.

$$P''(\lambda) = D\acute{e}t (A - \lambda I) = \begin{vmatrix} 3 - \lambda & 5 & -5 \\ -5 & -7 - \lambda & 5 \\ -5 & -5 & 3 - \lambda \end{vmatrix}$$

On ne change pas la valeur du déterminant en ajoutant la 3^e colonne à la 2^e.

$$P^{-}(\lambda) = \begin{vmatrix} 3-\lambda & 0 & -5 \\ -5 & -2-\lambda & 5 \\ -5 & -2-\lambda & 3-\lambda \end{vmatrix}$$

On peut mettre en facteur dans le déterminant le facteur commun – $(2 + \lambda)$ de la 2^e colonne.

$$P^{-}(\lambda) = -(2 + \lambda)$$

$$\begin{vmatrix}
3 - \lambda & 0 & -5 \\
-5 & 1 & 5 \\
-5 & 1 & 3 - \lambda
\end{vmatrix}$$

On ne change pas la valeur du déterminant en ajoutant 5 fois la 2^e colonne à la 1^e colonne.

$$P''(\lambda) = -(2 + \lambda)$$

$$\begin{vmatrix}
3 - \lambda & 0 & -5 \\
0 & 1 & 5 \\
0 & 1 & 3 - \lambda
\end{vmatrix}$$

On ne change pas la valeur du déterminant en retranchant la 2^e ligne de la 3^e.

$$P''(\lambda) = -(2+\lambda)$$

$$\begin{vmatrix}
3-\lambda & 0 & -5 \\
0 & 1 & 5 \\
0 & 0 & -2-\lambda
\end{vmatrix}$$

On peut développer le déterminant par rapport à la 1^e colonne.

$$P''(\lambda) = -(2+\lambda)(3-\lambda) \begin{vmatrix} 1 & 5 \\ 0 & -2-\lambda \end{vmatrix}.$$

On peut développer le déterminant par rapport à la 1^e colonne.

$$P''(\lambda) = (2 + \lambda)(3 - \lambda)(2 + \lambda).$$

$$P(\lambda) = -(\lambda + 2)^{2} (\lambda - 3)$$

2°/ Polynôme minimal.

Le théorème de Hamilton-Cailey donne : $(A + 2I)^2 (A - 3I) = 0$. On a, en fait : (A + 2I)(A - 3I) = 0. Ceci signifie que le **polynôme minimal** de la matrice A est $(\lambda + 2)(\lambda - 3)$. Les racines du polynôme minimal sont simples et réelles. Il en résulte que la matrice A est diagonalisable.

3°/ Valeurs propres.

Les valeurs propres de la matrice A sont les racines de son polynôme caractéristique : $\lambda_1 = -2$ et $\lambda_2 = 3$. Le *spectre* de A est $\{-2; 3\}$.

4°/ Vecteurs propres.

• Le sous-espace propre relativement à la valeur propre $\lambda_1 = -2$ est le noyau de la matrice

$$A + 2I = 5 \left(\begin{array}{rrrr} 1 & 1 & -1 \\ -1 & -1 & 1 \\ -1 & -1 & 1 \end{array} \right).$$

Réduisons cette matrice :

$$\begin{pmatrix}
1 & 1 & -1 \\
-1 & -1 & 1 \\
-1 & -1 & 1
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{pmatrix}$$

Ajoutons la 3^e colonne à la 1^e et à la 2^e :

$$\left(\begin{array}{ccc} 0 & 0 & -1 \\ 0 & 0 & 1 \\ 0 & 0 & 1 \end{array}\right) \qquad \left(\begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 1 & 1 & 1 \end{array}\right)$$

Ce calcul montre que la matrice A + 2I est de rang 1, et que les vecteurs $a_1 = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$ et $a_2 = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$

forment une base de son noyau. On peut donc prendre les vecteurs a_1 et a_2 comme base du sous-espace propre pour la valeur propre $\lambda_1 = -2$.

Le sous-espace propre relativement à la valeur propre $\lambda_1 = 3$ est le noyau de la matrice

$$A - 3I = 5 \left(\begin{array}{rrr} 0 & 1 & -1 \\ -1 & -2 & 1 \\ -1 & -1 & 0 \end{array} \right).$$

Réduisons cette matrice :
$$\begin{pmatrix} 0 & 1 & -1 \\ -1 & -2 & 1 \\ -1 & -1 & 0 \end{pmatrix} \qquad \qquad \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

Retranchons de la 1^e colonne, la somme des deux autres, puis ajoutons à la 2^e colonne la 3^e:

$$\left(\begin{array}{ccc}
0 & 0 & -1 \\
0 & -1 & 1 \\
0 & -1 & 0
\end{array}\right)$$

$$\left(\begin{array}{ccc}
1 & 0 & 0 \\
-1 & 1 & 0 \\
-1 & 1 & 1
\end{array}\right)$$

Ce calcul montre que la matrice A - 3I est de rang 2, et que le vecteur $a_3 = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$ forme une base de son

noyau. On peut donc prendre le vecteur a_3 comme base du sous-espace propre pour la valeur propre $\lambda_2 = 3$.

5°/ Diagonalisation.

Soit
$$P = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & -1 \\ 1 & 1 & -1 \end{pmatrix}$$
 une matrice de vecteurs propres de A . Son inverse est $P^{-1} = \begin{pmatrix} 0 & -1 & 1 \\ 1 & 2 & -1 \\ 1 & 1 & -1 \end{pmatrix}$.
$$P^{-1}AP = \begin{pmatrix} 0 & -1 & 1 \\ 1 & 2 & -1 \\ 1 & 1 & -1 \end{pmatrix} \begin{pmatrix} 3 & 5 & -5 \\ -5 & -7 & 5 \\ -5 & -5 & 3 \end{pmatrix} \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & -1 \\ 1 & 1 & -1 \end{pmatrix} = \begin{pmatrix} -2 & 0 & 0 \\ 0 & -2 & 0 \\ 0 & 0 & 3 \end{pmatrix}$$

C'est la matrice diagonale des valeurs propres de la matrice A. La matrice A est donc diagonalisable, ce qui résulte aussi du fait qu'il existe une base formée de vecteurs propres.

EXERCICE 3.

 $E = R^3$ est rapporté à sa base canonique $e = \{e_1, e_2, e_3\}$. f est l'endomorphisme de matrice B dans cette base :

$$B = \left(\begin{array}{rrrr} 3 & 1 & 1 \\ -1 & 1 & -1 \\ 0 & 0 & 1 \end{array}\right)$$

- 1. Déterminer son polynôme caractéristique.
- 2. Calculer ses valeurs propres.
- 3. Donner une base des sous-espaces propres.
- 4. Décider si f est diagonalisable.
- 5. Donner éventuellement l'expression diagonalisée.
- 6. Vérifier en utilisant les matrices de changement de base.

SOLUTION.

1°/ Polynôme caractéristique.

$$P(\lambda) = D\acute{e}t (B - \lambda I) = \begin{vmatrix} 3 - \lambda & 1 & 1 \\ -1 & 1 - \lambda & -1 \\ 0 & 0 & 1 - \lambda \end{vmatrix}.$$

On peut développer le déterminant par rapport à la 1^e colonne :

n peut developper le déterminant par rapport à la 1° colonne :
$$P(\lambda) = (3 - \lambda) \begin{vmatrix} 1 - \lambda & -1 \\ 0 & 1 - \lambda \end{vmatrix} + \begin{vmatrix} 1 & 1 \\ 0 & 1 - \lambda \end{vmatrix} = (3 - \lambda)(1 - \lambda)^2 + (1 - \lambda) = (1 - \lambda)[(3 - \lambda)(1 - \lambda) + 1]$$

$$P(\lambda) = (1 - \lambda)(\lambda^2 - 4\lambda + 4) = -(\lambda - 1)(\lambda - 2)^2$$

$$P(\lambda) = -(\lambda - 1)(\lambda - 2)^2$$

2°/ Polynôme minimal.

Le théorème de Hamilton-Cailey donne : $(B - I)(B - 2I)^2 = 0$. On a : $(B - I)(B - 2I) = \begin{bmatrix} 1 & 1 & 0 \\ -1 & -1 & 0 \end{bmatrix}$

donc le polynôme minimal de la matrice B est le polynôme $(\lambda - 1)(\lambda - 2)^2$. Les racines du polynôme minimal sont réelles, mais ne sont pas simples. Il en résulte que la matrice B n'est pas diagonalisable.

3°/ Valeurs propres.

Les valeurs propres de la matrice B sont les racines de son polynôme caractéristique : 1 et 2. Le spectre est l'ensemble {1; 2}.

4°/ Vecteurs propres.

Les vecteurs propres pour la valeur propre $\lambda_1 = 1$ forment le noyau de la matrice $B - \lambda_1 I = \begin{bmatrix} 2 & 1 & 1 \\ -1 & 0 & -1 \\ 0 & 0 & 0 \end{bmatrix}$

Réduisons cette matrice :

$$\left(\begin{array}{ccc}
2 & 1 & 1 \\
-1 & 0 & -1 \\
0 & 0 & 0
\end{array}\right)$$

$$\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)$$

Retranchons de la 1^e colonne la somme des deux autres ; retranchons de la 3^e colonne, la 2^e :

$$\left(\begin{array}{ccc} 0 & 1 & 0 \\ 0 & 0 & -1 \\ 0 & 0 & 0 \end{array}\right) \qquad \left(\begin{array}{ccc} 1 & 0 & 0 \\ -1 & 1 & -1 \\ -1 & 0 & 1 \end{array}\right)$$

Ce calcul montre que la matrice B-I est de rang 2 et que son noyau, de dimension 1, est engendré par le

$$a_1 = \begin{pmatrix} 1 \\ -1 \\ -1 \end{pmatrix}$$
.

Les vecteurs propres pour la valeur propre $\lambda_2 = 2$ forment le noyau de la matrice $B - \lambda_2 I = \begin{pmatrix} 1 & 1 & 1 \\ -1 & -1 & -1 \\ 0 & 0 & 1 \end{pmatrix}$

Réduisons cette matrice :

$$\begin{pmatrix} 1 & 1 & 1 \\ -1 & -1 & -1 \\ 0 & 0 & -1 \end{pmatrix} \qquad \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$
Retranchons de la 1^e colonne la 2^e, puis retranchons de la 2^e colonne la 3^e:

$$\left(\begin{array}{ccc} 0 & 0 & 1 \\ 0 & 0 & -1 \\ 0 & 1 & -1 \end{array}\right) \qquad \left(\begin{array}{ccc} 1 & 0 & 0 \\ -1 & 1 & 0 \\ 0 & -1 & 1 \end{array}\right)$$

Ce calcul montre que la matrice B-2I est de rang 2 et que son noyau, de dimension 1, est engendré par le vecteur propre

$$a_2 = \left(\begin{array}{c} 1 \\ -1 \\ 0 \end{array}\right).$$

5°/ Diagonalisation.

Comme $E = \mathbb{R}^3$ n'est pas somme directe de sous-espace propres, la matrice B n'est pas diagonalisable. On peut cependant la triangulariser en prenant, pour compléter la famille $\{a_1, a_2\}$ de vecteur propres en une base de E, un vecteur a_3 dans l'image de B-I mais n'appartenant pas au noyau de B-2 I, par exemple, le vecteur

$$a_3 = \left(\begin{array}{c} 1 \\ 0 \\ 0 \end{array} \right).$$

6°/ Triangularisation.

Soit $P = \begin{pmatrix} -1 & 1 & 1 \\ 1 & -1 & 0 \\ 1 & 0 & 0 \end{pmatrix}$ la matrice des vecteurs de la famille $a = \{a_1, a_2, a_3\}$. Comme la famille a est une

base de
$$E$$
, la matrice P est inversible, son inverse est $P^{-1} = \begin{pmatrix} 0 & 0 & 1 \\ 0 & -1 & 1 \\ 1 & 1 & 0 \end{pmatrix}$ et l'on a :
$$P^{-1}BP = \begin{pmatrix} 0 & 0 & 1 \\ 0 & -1 & 1 \\ 1 & 1 & 0 \end{pmatrix} \begin{pmatrix} 3 & 1 & 1 \\ -1 & 1 & -1 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} -1 & 1 & 1 \\ 1 & -1 & 0 \\ 1 & 0 & 0 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 2 & 1 \\ 0 & 0 & 2 \end{pmatrix}.$$

Le résultat n'est pas une matrice diagonale, mais une matrice dont la restriction au sous-espace engendré par les vecteurs $\{a_2, a_3\}$ est triangulaire.
vecteurs $\{u_2, u_3\}$ est triangulaire.

EXERCICE 4.

Faire, pour la matrice C suivante, une étude semblable à celle de l'exercice 3 pour la matrice B:

$$C = \left(\begin{array}{rrrr} 3 & -1 & 1 & -1 \\ 0 & 1 & 0 & 0 \\ -4 & 2 & -1 & 2 \\ -2 & 1 & -1 & 2 \end{array} \right)$$

SOLUTION.

1°/ Polynôme caractéristique.

$$P(\lambda) = D\acute{e}t (C - \lambda I) = \begin{vmatrix} 3 - \lambda & -1 & 1 & -1 \\ 0 & 1 - \lambda & 0 & 0 \\ -4 & 2 & -1 - \lambda & 2 \\ -2 & 1 & -1 & 2 - \lambda \end{vmatrix}.$$

On ne change pas la valeur du déterminant en ajoutant la 3^e colonne à la 2^e et à la 4^e.

$$P(\lambda) = \begin{vmatrix} 3-\lambda & 0 & 1 & 0 \\ 0 & 1-\lambda & 0 & 0 \\ -4 & 1-\lambda & -1-\lambda & 1-\lambda \\ -2 & 0 & -1 & 1-\lambda \end{vmatrix}.$$

On peut mettre en facteur $(1 - \lambda)$ dans la 2^e colonne et dans la 4^e colonne.

$$P(\lambda) = (1 - \lambda)^{2} \begin{vmatrix} 3 - \lambda & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ -4 & 1 & -1 - \lambda & 1 \\ -2 & 0 & -1 & 1 \end{vmatrix}.$$

On ne change pas la valeur du déterminant en retranchant la 2^e ligne de la 3^e.

$$P(\lambda) = (1 - \lambda)^{2} \begin{vmatrix} 3 - \lambda & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ -4 & 0 & -1 - \lambda & 1 \\ -2 & 0 & -1 & 1 \end{vmatrix}.$$

On peut développer le déterminant par rapport à la 2^e colonne.

$$P(\lambda) = (1 - \lambda)^2$$
 $\begin{vmatrix}
3 - \lambda & 1 & 0 \\
-4 & -1 - \lambda & 1 \\
-2 & -1 & 1
\end{vmatrix}$.

On ne change pas la valeur du déterminant en retranchant la 3e ligne de la 2e.

$$P(\lambda) = (1 - \lambda)^{2} \begin{vmatrix} 3 - \lambda & 1 & 0 \\ -2 & -\lambda & 0 \\ -2 & -1 & 1 \end{vmatrix}.$$

On peut développer le déterminant par rapport à la 3^e colonne.

$$P(\lambda) = (1 - \lambda)^{2} \begin{vmatrix} 3 - \lambda & 1 \\ -2 & -\lambda \end{vmatrix}.$$

On peut développer le déterminant par rapport à la 1^e colonne.

$$P(\lambda) = (1 - \lambda)^{2} (-\lambda (3 - \lambda) + 2) = (\lambda - 1)^{2} (\lambda^{2} - 3 \lambda + 2) = (\lambda - 1)^{3} (\lambda - 2)$$

$$P(\lambda) = (\lambda - 1)^{3} (\lambda - 2)$$

2°/ Polynôme minimal

Le théorème de Hamilton-Cailey donne : $(C-I)^3$ (C-2I)=0. Le produit (C-I)(C-2I) est nul, donc le polynôme minimal de la matrice C est $(\lambda - 1)(\lambda - 2)$. Ses racines sont réelles et simples. Il en résulte que :

- 1. la matrice *C* est diagonalisable,
- 2. il existe une base formée de vecteurs propres.
- 3. la matrice C 2I est de rang 3; son noyau, sous-espace propre pour la valeur propre 2, est de dimension 1, c'est l'image de la matrice C - I: Im(C - 2I) = Ker(C - I)
- 4. la matrice C-I est de rang 1 : son noyau, sous-espace propre pour la valeur propre 1, est de dimension 3, c'est l'image de la matrice C-2I: Im(C-I) = Ker(C-2I).
- 5. $R^4 = Ker(C-2I) \oplus Ker(C-I)$

3°/ Valeurs propres.

Les valeurs propres de la matrice C sont les racines du polynôme caractéristique $P(\lambda)$: $\lambda_1 = 1$ et $\lambda_2 = 2$. Le spectre de C est $\{1; 2\}$.

•
$$(C-I) = \begin{pmatrix} 2 & -1 & 1 & -1 \\ 0 & 0 & 0 & 0 \\ -4 & 2 & -2 & 2 \\ -2 & 1 & -1 & 1 \end{pmatrix}$$
. On peut la réduire de la façon suivante :
$$\begin{pmatrix} 2 & -1 & 1 & -1 \\ -2 & 1 & -1 & 1 \\ 0 & 0 & 0 & 0 \\ -4 & 2 & -2 & 2 \\ 2 & 1 & -1 & 1 \end{pmatrix}$$

$$\begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

Ajouter à la 1^e colonne 2 fois la 2^e, ajouter à la 2^e colonne la 3^e, ajouter à la 4^e colonne la 3^e :

$$\begin{pmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & -2 & 0 \\ 0 & 0 & -1 & 0 \end{pmatrix}$$

$$\begin{pmatrix} 1 & 0 & 0 & 0 \\ 2 & 1 & 0 & 0 \\ 0 & 1 & 1 & 1 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

Ce calcul montre que la matrice C-I est de rang 1. Son noyau a pour base les vecteurs :

$$a_{1} = \begin{pmatrix} 1 \\ 2 \\ 0 \\ 0 \end{pmatrix} \quad a_{2} = \begin{pmatrix} 0 \\ 1 \\ 1 \\ 0 \end{pmatrix} \quad a_{3} = \begin{pmatrix} 0 \\ 0 \\ 1 \\ 1 \end{pmatrix}$$

Ces vecteurs sont vecteurs propres pour la valeur propre triple 1.

Son image a pour base le vecteur $a_4 = \begin{bmatrix} 0 \\ -2 \end{bmatrix}$. Ce vecteur est vecteur propre pour la valeur propre simple 2.

• La famille $\{a_1, a_2, a_3, a_4\}$ forme une base de E constituée de vecteurs propres. $E = \mathbb{R}^4$ est somme directe de sous-espaces propres de dimension 1.

5°/ Diagonalisation.

Comme il existe une base formée de vecteurs propres, la matrice C est diagonalisable. Soit P la matrice des vecteurs propres $\{a_1, a_2, a_3, a_4\}$:

$$P = \left(\begin{array}{rrrr} 1 & 0 & 0 & 1 \\ 2 & 1 & 0 & 0 \\ 0 & 1 & 1 & -2 \\ 0 & 0 & 1 & -1 \end{array}\right)$$

Comme la famille $a = \{a_1, a_2, a_3, a_4\}$ est une base, la matrice P est la matrice de changement de base :

 $P = [id_E, \{a\}, \{e\}]$

Cette matrice est inversible, son inverse est :

$$P^{-1} = \begin{pmatrix} -1 & 1 & -1 & 1 \\ 2 & -1 & 2 & -2 \\ 2 & -1 & 1 & 0 \\ 2 & -1 & 1 & -1 \end{pmatrix}$$

et l'on a:

$$P^{-1}CP = \left(\begin{array}{cccc} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 2 \end{array} \right)$$

C'est la matrice diagonale des valeurs propres. Cette diagonalisation montre que l'endomorphisme f de matrice C sur la base canonique de \mathbb{R}^4 peut se décomposer en :

- application identique dans le sous-espace propre engendré par les vecteurs $\{a_1, a_2, a_3\}$,
- homothétie de rapport 2 dans le sous-espace propre engendré par le vecteur a_4 .

EXERCICE 5.

Soit M une matrice 5×5 réelle dont le polynôme caractéristique est :

$$P(X) = (X + 1)^{2} (X - 2)^{3}$$
.

- 1. Quelles sont les valeurs propres de M?
- 2. *M* est-elle diagonalisable ?
- 3. On suppose de plus que les sous-espaces propres sont de dimension 2. Que conclure ?

SOLUTION.

1°/ Valeurs propres.

La matrice M a, par hypothèse, pour polynôme caractéristique : $P(\lambda) = (\lambda + 1)^2 (\lambda - 2)^3$. Les valeurs propres de la matrice M sont les racines du polynôme caractéristique, ce sont donc les nombres -1 et 2. La valeur propre -1 est d'ordre de multiplicité 2, la valeur propre 2 est d'ordre de multiplicité 3. La matrice M possède donc un sousespace propre pour la valeur propre -1 et un sous-espace propre pour la valeur propre 2.

2°/ Diagonalisation.

Cependant le polynôme caractéristique ne permet pas de conclure quand au caractère diagonalisable ou non de la matrice M. Pour que la matrice M soit diagonalisable, il faudrait que le polynôme minimal de la matrice M soit

$$P_u(\lambda) = (\lambda + 1)(\lambda - 2)$$

de telle sorte que la matrice (M+I) soit de rang 3 et la matrice (M-2I) de rang 2. Dans ce cas, le noyau de la matrice (M+I), c'est-à-dire le sous-espace propre relativement à la valeur propre -1, serait de dimension 2 et le noyau de la matrice (M-2I), c'est-à-dire le sous-espace propre relativement à la valeur propre 2, serait de dimension 3.

3°/ Dimension des sous-espaces propres.

La matrice M n'est diagonalisable que si, pour toute valeur propre, la dimension du sous-espace propre correspondant est égale à l'ordre de multiplicité de la valeur propre dans le polynôme caractéristique de la matrice.

Dans le cas où les sous-espaces propres sont tous deux de dimension 2, la dimension du sous-espace propre relatif à la valeur propre -1 est égale à l'ordre de multiplicité de cette valeur propre dans le polynôme caractéristique, de sorte que la restriction de M à ce sous-espace propre est diagonalisable et sa diagonalisée comportera uniquement des -1 sur la diagonale.

La dimension du sous-espace propre relatif à la valeur propre 2, par contre, n'est pas égale à l'ordre de multiplicité de la valeur propre 2 dans le polynôme caractéristique et la restriction de M au noyau de la matrice $(M+I)^2$ conservera une partie triangulaire.

Le polynôme minimal de la matrice M est $(\lambda + 1)^2 (\lambda - 2)^2$ et il est possible de trouver une base de R^5 dans laquelle la matrice de l'endomorphisme de matrice M dans la base canonique prend la forme :

$$\left(\begin{array}{cccccc} -1 & 0 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 & 0 \\ 0 & 0 & 2 & 0 & 0 \\ 0 & 0 & 0 & 2 & 1 \\ 0 & 0 & 0 & 0 & 2 \end{array}\right).$$

EXERCICE 6.

 $E = \mathbb{R}^4$ est rapporté à sa base canonique $e = \{e_1, e_2, e_3, e_4\}$. f est l'endomorphisme de matrice M dans cette base :

$$M = \begin{pmatrix} 2 & 0 & 0 & 0 \\ 4 & -6 & 4 & 4 \\ 4 & -4 & 2 & 4 \\ 0 & -4 & 4 & 2 \end{pmatrix}$$

- 1. Quelle est la matrice de $g = f^2$ dans la base $\{e\}$?
- 2. Quels sont les vecteurs propres et les valeurs propres de *g* ?
- 3. Montrer que si λ est une valeur propre de f, alors $\mu = \lambda^2$ est valeur propre de g.
- 4. En déduire les seules valeurs propres possibles pour f.
- 5. Pour un vecteur x quelconque de E, montrer que :

$$f(x) + 2 x \in Ker (f - 2 id_E)$$

$$f(x) - 2 x \in Ker (f + 2 id_E)$$

- 6. Construire un système de générateurs de *E* formé de vecteurs propres de *f*.
- 7. Diagonaliser f, soit directement, soit en utilisant ce qui précède.

SOLUTION.

1°/ Carré de la matrice M.

Si f est l'endomorphisme de matrice M dans la base canonique de \mathbb{R}^4 , l'endomorphisme $g = f^2$ a pour matrice dans la base canonique le carré M^2 de la matrice M.

$$M = \begin{pmatrix} 2 & 0 & 0 & 0 \\ 4 & -6 & 4 & 4 \\ 4 & -4 & 2 & 4 \\ 0 & -4 & 4 & 2 \end{pmatrix} \Rightarrow M^2 = \begin{pmatrix} 4 & 0 & 0 & 0 \\ 0 & 4 & 0 & 0 \\ 0 & 0 & 4 & 0 \\ 0 & 0 & 0 & 4 \end{pmatrix} = 4I.$$

Cette relation montre que l'on a : (M-2I)(M+2I) = 0, donc le polynôme minimal de la matrice M est : $P_u(X) = (X-2)(X+2)$

Les valeurs propres de M^2 sont les racines du polynôme caractéristique $(X-4)^4$ de M^2 . Il y en a une seule, 4, d'ordre de multiplicité 4.

La matrice M^2 a une seule valeur propre, 4.

3° / Valeurs propres de la matrice M.

Soit λ une valeur propre de M. Pour tout vecteur propre x relativement à cette valeur propre on a $f(x) = \lambda x$, donc $g(x) = f(f(x)) = f(\lambda x) = \lambda f(x) = \lambda^2 x$. Il en résulte que $\mu = \lambda^2$ est valeur propre de g, donc de la matrice M^2 et que x est vecteur propre pour cette valeur propre.

Comme la seule valeur propre de M^2 est 4, les valeurs propres de M vérifient $\lambda^2 = 4$. Les seules valeurs propres possibles de M sont donc -2 et 2.

On a déjà observé que le polynôme minimal de la matrice M est

$$P_u(X) = (X-2)(X+2)$$

Les racines du polynôme minimal de M sont aussi des racines du polynôme caractéristique de M, de sorte que les deux valeurs -2 et 2 sont des racines du polynôme caractéristique de M: ce sont toutes deux des valeurs propres de M. Comme ce sont les seules valeurs possibles pour les valeurs propres, on en conclue :

Les valeurs propres de la matrice M sont -2 et 2.

4°/ Sous-espaces propres.

Pour tout vecteur x de E, on a :

$$(f-2 id_E)(f(x) + 2 x) = (M-2 I)(M+2 I) x = 0$$

 $(f+2 id_E)(f(x) - 2 x) = (M+2 I)(M-2 I) x = 0$

puisque (M-2I)(M+2I) = (M+2I)(M-2I) x = 0.

d'où les relations:

$$f(x) + 2x \in Ker(f-2id_E)$$

$$f(x) - 2x \in Ker(f+2id_E)$$

Ces relations montrent que l'image de $(f + 2 id_E)$ est dans le noyau de $(f - 2 id_E)$ et inversement, l'image de $(f - 2 id_E)$ est dans le noyau de $(f + 2 id_E)$.

Considérons alors, par exemple, la matrice M-2 I. On peut réduire cette matrice pour calculer son rang. On arrivera à une matrice comportant un certain nombre de colonnes de zéros qui définissent le noyau de $(f-2 id_E)$, c'est-à-dire le sous-espace propre pour la valeur propre 2. Les autres colonnes donnent l'image de $(f-2 id_E)$, c'est-à-dire le sous-espace complémentaire du sous-espace propre pour la valeur propre 2. Ce sous-espace est le noyau de $(f+2 id_E)$, c'est-à-dire le sous-espace propre pour la valeur propre -2.

5°/ Base de vecteurs propres.

Comme le polynôme minimal de la matrice M ne comporte que des racines simples, la matrice M est diagonalisable et l'on peut trouver une base formée de vecteurs propres. Pour déterminer une telle base, réduisons la matrice M-2 I.

$$M-2I = \begin{pmatrix} 0 & 0 & 0 & 0 \\ 4 & -8 & 4 & 4 \\ 4 & -4 & 0 & 4 \\ 0 & -4 & 4 & 0 \end{pmatrix} \qquad \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

Soustraire la 1^e colonne de la 4^e. Ajouter la somme de la 1^e et de la 3^e colonnes à la 2^e.

$$\begin{pmatrix}
0 & 0 & 0 & 0 \\
4 & 0 & 4 & 0 \\
4 & 0 & 0 & 0 \\
0 & 0 & 4 & 0
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 1 & 0 & -1 \\
0 & 1 & 0 & 0 \\
0 & 1 & 1 & 0 \\
0 & 0 & 0 & 1
\end{pmatrix}$$

Ce calcul montre que:

- La matrice M-2I est de rang 2 : son image est de dimension 2, son noyau est de dimension 2.
- On peut prendre pour vecteurs propres relativement à la valeur propre 2 les vecteurs $\begin{bmatrix} 1 \\ 1 \\ 1 \\ 0 \end{bmatrix}$ et $\begin{bmatrix} -1 \\ 0 \\ 1 \\ 0 \end{bmatrix}$.
- On peut prendre pour vecteurs propres pour la valeur propre -2 les vecteurs $\begin{bmatrix} 0 \\ 1 \\ 1 \\ 0 \end{bmatrix}$ et $\begin{bmatrix} 0 \\ 1 \\ 0 \\ 1 \end{bmatrix}$.
- Les valeurs propres -2 et 2 sont toutes deux des valeurs propres doubles. Le polynôme caractéristique de la matrice M est donc $P(\lambda) = (\lambda^2 4)^2 = (\lambda 2)^2 (\lambda + 2)^2$.

Les vecteurs
$$a_1 = \begin{pmatrix} 0 \\ 1 \\ 1 \\ 0 \end{pmatrix}$$
, $a_2 = \begin{pmatrix} 0 \\ 1 \\ 0 \\ 1 \end{pmatrix}$, $a_3 = \begin{pmatrix} 1 \\ 1 \\ 1 \\ 0 \end{pmatrix}$, $a_4 = \begin{pmatrix} -1 \\ 0 \\ 0 \\ 1 \end{pmatrix}$ forment une base de vecteurs

propres.

6° / Diagonalisation de la matrice M.

Soit
$$P = \begin{pmatrix} 0 & 0 & 1 & -1 \\ 1 & 1 & 1 & 0 \\ 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \end{pmatrix}$$
 la matrice formée des vecteurs propres. $P^{-1} = \begin{pmatrix} -1 & 1 & 0 & -1 \\ 0 & 1 & -1 & 0 \\ 1 & -1 & 1 & 1 \\ 0 & -1 & 1 & 1 \end{pmatrix}$
$$P^{-1}MP = \begin{pmatrix} -2 & 0 & 0 & 0 \\ 0 & -2 & 0 & 0 \\ 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 2 \end{pmatrix}$$

La matrice obtenue est diagonale, avec, sur la diagonale, les valeurs propres avec leurs ordres de multiplicité.

EXERCICE 7.

Etudier le rang, l'image, le noyau, les sous-espaces propres, le polynôme caractéristique et le polynôme minimal de l'opérateur associé à :

$$A = \left(\begin{array}{rrr} -1/2 & -1/2 & 1/2 \\ -1/2 & 1/2 & 1/2 \\ 0 & 0 & 1 \end{array} \right).$$

Peut-on diagonaliser cette matrice?

SOLUTION.

1° / Réduction de la matrice A.

Réduisons la matrice A.

$$\frac{1}{2} \begin{pmatrix}
-1 & -1 & 1 \\
-1 & 1 & 1 \\
0 & 0 & 2
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{pmatrix}$$

Ajouter la 1^e colonne à la 2^e et à la 3^e.

Agouter in a recomme a in 2 et a in 3 :

$$\frac{1}{2} \begin{pmatrix}
-1 & -2 & 0 \\
-1 & 0 & 0 \\
0 & 0 & 2
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 1 & 1 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{pmatrix}$$

Multiplier par -2 la 1^e colonne. Multiplier par -1 la 2^e colonne. Retrancher la 2^e colonne de la 1^e. Echanger la 1^e et la 2^e colonnes.

Ce calcul montre que :

- La matrice A est de rang 3 : son image est \mathbb{R}^3 , son noyau est $\{0\}$
- La matrice A est inversible et son inverse est $A^{-1} = \begin{pmatrix} -1 & -1 & 1 \\ -1 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$.

2°/ Polynôme caractéristique.

$$P(\lambda) = D\acute{e}t (A - \lambda I) = \begin{vmatrix} -0.5 - \lambda & -0.5 & 0.5 \\ -0.5 & 0.5 - \lambda & 0.5 \\ 0 & 0 & 1 - \lambda \end{vmatrix}.$$

On peut développer le déterminant par rapport à la 3^e ligne.

Problem (a) a figure of the determinant par rapport a far a figure.

Problem (A) =
$$(1 - \lambda)$$
 | $\begin{vmatrix} -0.5 - \lambda & -0.5 \\ -0.5 & 0.5 - \lambda \end{vmatrix}$ | $= (1 - \lambda) [(\lambda - 0.5)(\lambda + 0.5) - 0.5^2]$

Problem (A) = $(1 - \lambda)(\lambda^2 - 2 \times 0.5^2) = -(\lambda - 1)(\lambda^2 - 0.5)$

$$P(\lambda) = -(\lambda + \frac{\sqrt{2}}{2})(\lambda - \frac{\sqrt{2}}{2})(\lambda - 1)$$

3°/ Valeurs propres.

La matrice A a trois valeurs propres simples distinctes, $-\frac{\sqrt{2}}{2}$, $\frac{\sqrt{2}}{2}$, 1.

4°/ Polynôme minimal.

Comme le polynôme caractéristique est produit de facteurs de premier degré distincts, ces facteurs forment aussi le polynôme minimal de la matrice, c'est-à-dire le polynôme unitaire de degré minimal tel que $P_u(A) = 0$.

$$P_u(\lambda) = (\lambda + \frac{\sqrt{2}}{2})(\lambda - \frac{\sqrt{2}}{2})(\lambda - 1)$$

5°/ Vecteurs propres.

Les trois valeurs propres sont réelles et distinctes. Les sous-espaces propres sont donc de dimension 1, leur somme est directe et égale à \mathbb{R}^3 .

• Pour vecteur propre relativement à la valeur propre $-\frac{\sqrt{2}}{2}$, on peut prendre n'importe quelle combinaison linéaire non nulle des colonnes de la matrice

$$(A - \frac{\sqrt{2}}{2}I)(A - I) = A(A - I) - \frac{\sqrt{2}}{2}(A - I) = \frac{1}{2} \left(\begin{array}{ccc} 2 & 1 & -1 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{array} \right) - \frac{\sqrt{2}}{2} \left(\begin{array}{ccc} -3 & -1 & 1 \\ -1 & -1 & 1 \\ 0 & 0 & 0 \end{array} \right)$$

par exemple 2 fois la différence entre la 1e et la 2e colonnes :

$$a_1 = \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix} + \sqrt{2} \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} = \begin{pmatrix} 1 + \sqrt{2} \\ 1 \\ 0 \end{pmatrix}$$

• Pour vecteur propre relativement à la valeur propre $\frac{\sqrt{2}}{2}$, on peut prendre n'importe quelle combinaison linéaire non nulle des colonnes de la matrice

$$(A + \frac{\sqrt{2}}{2}I)(A - I) = A(A - I) + \frac{\sqrt{2}}{2}(A - I) = \frac{1}{2} \left(\begin{array}{ccc} 2 & 1 & -1 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{array} \right) + \frac{\sqrt{2}}{2} \left(\begin{array}{ccc} -3 & -1 & 1 \\ -1 & -1 & 1 \\ 0 & 0 & 0 \end{array} \right)$$

par exemple 2 fois la différence entre la 1e et la 2e colonnes :

$$a_2 = \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix} - \sqrt{2} \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} = \begin{pmatrix} 1 - \sqrt{2} \\ 1 \\ 0 \end{pmatrix}$$

• Pour vecteur propre relativement à la valeur propre 1, on peut prendre n'importe quelle combinaison linéaire non nulle des colonnes de la matrice

$$(A + \frac{\sqrt{2}}{2}I)(A - \frac{\sqrt{2}}{2}I) = A^2 - \frac{1}{2}I = \frac{1}{2} \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 1 \end{pmatrix}$$

par exemple le vecteur
$$a_3 = \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix}$$
.

6°/ Diagonalisation.

Soit *P* la matrice des vecteurs propres,

$$P = \begin{pmatrix} 1 + \sqrt{2} & 1 - \sqrt{2} & 0 \\ 1 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix}; P^{-1} = \frac{\sqrt{2}}{4} \begin{pmatrix} 1 & -1 + \sqrt{2} & 1 - \sqrt{2} \\ -1 & 1 + \sqrt{2} & -1 - \sqrt{2} \\ 0 & 0 & 2\sqrt{2} \end{pmatrix};$$
$$P^{-1}AP = \frac{1}{2} \begin{pmatrix} -\sqrt{2} & 0 & 0 \\ 0 & \sqrt{2} & 0 \\ 0 & 0 & 2 \end{pmatrix}$$

EXERCICE 8.

Etudier le rang, l'image, le noyau, les sous-espaces propres, le polynôme caractéristique et le polynôme minimal de l'opérateur associé à :

$$B = \left(\begin{array}{rrr} 1 & 0 & -1 \\ 1 & 1 & -2 \\ 1 & -1 & 0 \end{array} \right).$$

Peut-on diagonaliser cette matrice?

SOLUTION.

1°/ Réduction de la matrice B.

Réduisons la matrice B.

$$\begin{pmatrix}
1 & 0 & -1 \\
1 & 1 & -2 \\
1 & -1 & 0
\end{pmatrix}
\qquad
\begin{pmatrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{pmatrix}$$

Ajouter la somme de 1^e et de la 2^e colonnes à la 3^e.

Ce calcul montre que:

• La matrice B est de rang 2 : son image est de dimension 2, son noyau est de dimension 1.

• L'image de B est engendrée par la famille libre $\left\{ \begin{array}{c} 1\\1\\1 \end{array} \right\}$; $\left\{ \begin{array}{c} 0\\1\\-1 \end{array} \right\}$, tirée de la la matrice de gauche.

• Le noyau de B est engendré par le vecteur $\begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$, tiré de la matrice de droite.

• Si f est l'endomorphisme de matrice B dans la base canonique de R^3 , on a :

$$f(e_{1}) = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}, f(e_{2}) = \begin{pmatrix} 0 \\ 1 \\ -1 \end{pmatrix}, f(e_{3}) = \begin{pmatrix} -1 \\ -2 \\ 0 \end{pmatrix},$$

$$f^{2}(e_{1}) = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}, f^{2}(e_{2}) = f(e_{2}) - f(e_{3}) = \begin{pmatrix} 1 \\ 3 \\ -1 \end{pmatrix}, f^{2}(e_{3}) = -f(e_{1}) - 2f(e_{2}) = \begin{pmatrix} -1 \\ -3 \\ 1 \end{pmatrix}$$

$$\bullet B = \begin{pmatrix} 1 & 0 & -1 \\ 1 & 1 & -2 \\ 1 & -1 & 0 \end{pmatrix} \Rightarrow B^{2} = \begin{pmatrix} 0 & 1 & -1 \\ 0 & 3 & -3 \\ 0 & -1 & 1 \end{pmatrix} \Rightarrow B^{3} = \begin{pmatrix} 0 & 2 & -2 \\ 0 & 6 & -6 \\ 0 & -2 & 2 \end{pmatrix} = 2B^{2}.$$

•
$$B^2(B-2I)=0$$

•
$$B(B-2I) = \begin{pmatrix} -1 & 0 & -1 \\ 1 & -1 & -2 \\ 1 & -1 & -2 \end{pmatrix}$$
.

2°/ Polynôme caractéristique.

$$P(\lambda) = D\acute{e}t (B - \lambda I) = \begin{vmatrix} 1 - \lambda & 0 & -1 \\ 1 & 1 - \lambda & -2 \\ 1 & -1 & -\lambda \end{vmatrix}.$$

On peut développer le déterminant par rapport à la 1^e ligne.
$$P(\lambda) = (1 - \lambda) \begin{vmatrix} 1 - \lambda & -2 \\ -1 & -\lambda \end{vmatrix} - \begin{vmatrix} 1 & 1 - \lambda \\ 1 & -1 \end{vmatrix} = (1 - \lambda)(\lambda^2 - \lambda - 2) - (\lambda - 2) = -\lambda^3 + 2\lambda^2 = -\lambda^2(\lambda - 2)$$

$$P(\lambda) = -\lambda^2(\lambda - 2)$$

Ce résultat confirme le résultat obtenu pour la matrice $B: B^2 (B-2I) = 0$, c'est le théorème de Hamilton-Cailey.

3°/ Valeurs propres.

Les valeurs propres de la matrice B sont les racines du polynôme caractéristique, 0 et 2. La valeur propre 0 est racine double. La valeur propre 2 est racine simple.

4°/ Polynôme minimal.

La relation $B(B-2I) \neq 0$ confirme que le polynôme minimal de la matrice B est $\lambda^2(\lambda-2)$.

5°/ Vecteurs propres.

• Pour vecteur propre pour la valeur propre 0, on peut prendre n'importe quelle combinaison linéaire non nulle

des colonnes de la matrice
$$B(B-2I) = \begin{pmatrix} -2 & 1 & 1 \\ -2 & 1 & 1 \\ -2 & 1 & 1 \end{pmatrix}$$
, par exemple le vecteur $a_1 = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$.

Le noyau de la matrice B(B-2I) est un sous-espace vectoriel de dimension 2, mais le noyau de B est de dimension 1, comme on l'a vu plus haut.

Pour vecteur propre relativement à la valeur propre 2, on peut prendre n'importe quelle combinaison linéaire

non nulle des colonnes de la matrice
$$B^2 = \begin{pmatrix} 0 & 1 & -1 \\ 0 & 3 & -3 \\ 0 & -1 & 1 \end{pmatrix}$$
, par exemple le vecteur $a_3 = \begin{pmatrix} 1 \\ 3 \\ -1 \end{pmatrix}$. La

matrice B^2 est de rang 1, son noyau est de dimension 2, engendré par les vecteurs e_1 et $e_2 + e_3$, comme on le voit en faisant la somme des 2^e et 3^e colonnes de la matrice B^2 .

- Comme le vecteur $a_2 = e_1$ est linéairement indépendant des vecteurs a_1 et a_3 , on peut compléter la famille libre $\{a_1, a_3\}$ en une base de R^3 avec le vecteur $a_2 = e_1$.
- Les vecteurs propres $\{a_1, a_2, a_3\}$ forment une base de \mathbb{R}^3 , mais ce n'est pas une matrice de vecteurs propres, de sorte que la matrice B n'est pas diagonalisable.

6°/ Triangularisation.

Soit
$$P = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 0 & 3 \\ 1 & 0 & -1 \end{pmatrix}$$
, la matrice de la base a . $P^{-1} = \frac{1}{4} \begin{pmatrix} 0 & 1 & 3 \\ 4 & -2 & -2 \\ 0 & 1 & -1 \end{pmatrix}$.
$$P^{-1}BP = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 2 \end{pmatrix}$$

La matrice obtenue comporte sur la diagonale les valeurs propres de B avec leur ordre de multiplicité : double pour 0, simple pour 2.

Dans le sous-espace de base $\{a_1, a_2\}$, la restriction de l'endomorphisme f défini par la matrice B n'est pas diagonal, il a pour matrice sur $\{a_1, a_2\}$ $\begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$: pour un $x = x_1 a_1 + x_2 a_2$ du plan engendré par a_1 et a_2 ,

$$B x = x_2 a_1.$$

Dans le sous-espace de base a_3 , la restriction de l'endomorphisme f défini par la matrice B est une homothétie de rapport 2.

$$R^3 = Ker B \oplus R e_1 \oplus Ker (B-2 I)$$

EXERCICE 9.

Etudier le rang, l'image, le noyau, les sous-espaces propres, le polynôme caractéristique et le polynôme minimal de l'opérateur associé à :

$$C = \left(\begin{array}{rrr} 0 & 7 & -6 \\ -1 & 4 & 0 \\ 0 & 2 & -2 \end{array} \right).$$

Peut-on diagonaliser cette matrice?

SOLUTION.

1°/ Déterminant.

$$\begin{vmatrix} 0 & 7 & -6 \\ -1 & 4 & 0 \\ 0 & 2 & -2 \end{vmatrix} = 12 - 14 = -2 \neq 0$$
. La matrice C est inversible. 0 n'est pas valeur propre. La matrice C est

de rang 3, son image est \mathbb{R}^3 tout entier, son noyau est réduit à 0.

2°/ Polynôme caractéristique.

$$P(\lambda) = D\acute{e}t (C - \lambda I) = \begin{vmatrix} -\lambda & 7 & -6 \\ -1 & 4 - \lambda & 0 \\ 0 & 2 & -2 - \lambda \end{vmatrix}$$

On peut développer le déterminant par rapport à la première colonne :
$$P(\lambda) = -\lambda (\lambda - 4)(\lambda + 2) + (-14 - 7 \lambda + 12) = -\lambda (\lambda^2 - 2 \lambda - 8) - 2 - 7 \lambda = -\lambda^3 + 2 \lambda^2 + \lambda - 2$$

$$P(\lambda) = -\lambda^2 (\lambda - 2) + (\lambda - 2) = (\lambda - 2)(1 - \lambda^2) = -(\lambda + 1)(\lambda - 1)(\lambda - 2)$$

$$P(\lambda) = (\lambda - 2)(1 - \lambda^2)$$

3°/ Valeurs propres.

Les valeurs propres de la matrice C sont les racines du polynôme caractéristique : -1, 1, 2. Il y a trois valeurs propres réelles simples distinctes.

4°/ Vecteurs propres.

Comme les trois valeurs propres sont distinctes, il y a trois sous-espaces propres de dimension 1.

Comme les trois valeurs propres sont distinctes, il y a trois sous-espaces propres de dimension
$$(C-I)(C-2I) = \begin{pmatrix} -5 & -5 & 30 \\ -1 & -1 & 6 \\ -2 & -2 & 12 \end{pmatrix} \Rightarrow \text{Sous-espace propre pour } \lambda_1 = -1 : R \begin{pmatrix} 5 \\ 1 \\ 2 \end{pmatrix}.$$

$$(C+I)(C-2I) = \begin{pmatrix} -9 & 9 & 18 \\ -3 & 3 & 6 \\ -2 & 2 & 4 \end{pmatrix} \Rightarrow \text{Sous-espace propre pour } \lambda_2 = 1 : R \begin{pmatrix} 9 \\ 3 \\ 2 \end{pmatrix}.$$

$$(C+I)(C-I) = \begin{pmatrix} -8 & 16 & 12 \\ -4 & 8 & 6 \\ -2 & 4 & 3 \end{pmatrix} \Rightarrow \text{Sous-espace propre pour } \lambda_3 = 2 : R \begin{pmatrix} 4 \\ 2 \\ 1 \end{pmatrix}.$$

$$(C+I)(C-2I) = \begin{pmatrix} -9 & 9 & 18 \\ -3 & 3 & 6 \\ -2 & 2 & 4 \end{pmatrix} \Rightarrow \text{Sous-espace propre pour } \lambda_2 = 1 : R \begin{pmatrix} 9 \\ 3 \\ 2 \end{pmatrix}.$$

$$(C+I)(C-I) = \begin{pmatrix} -8 & 16 & 12 \\ -4 & 8 & 6 \\ -2 & 4 & 3 \end{pmatrix} \Rightarrow \text{Sous-espace propre pour } \lambda_3 = 2 : R \begin{pmatrix} 4 \\ 2 \\ 1 \end{pmatrix}.$$

5°/ Diagonalisation.

Les vecteurs
$$a_1 = \begin{pmatrix} 5 \\ 1 \\ 2 \end{pmatrix}$$
, $a_2 = \begin{pmatrix} 9 \\ 3 \\ 2 \end{pmatrix}$, $a_3 = \begin{pmatrix} 4 \\ 2 \\ 1 \end{pmatrix}$, forment une base. Dans cette base, la matrice de

l'endomorphisme f, de matrice C dans la base canonique, est diagonale car $f(a_1) = -a_1$, $f(a_2) = a_2$, $f(a_3) = 2a_3$.

$$[f,\{a\},\{a\}] = \begin{pmatrix} -1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \end{pmatrix} = \begin{pmatrix} 5 & 9 & 4 \\ 1 & 3 & 2 \\ 2 & 2 & 1 \end{pmatrix}^{-1} \begin{pmatrix} 0 & 7 & -6 \\ -1 & 4 & 0 \\ 0 & 2 & -2 \end{pmatrix} \begin{pmatrix} 5 & 9 & 4 \\ 1 & 3 & 2 \\ 2 & 2 & 1 \end{pmatrix}$$

$$\frac{1}{6} \begin{pmatrix} -1 & -1 & 6 \\ 3 & -3 & -6 \\ -4 & 8 & 6 \end{pmatrix} \begin{pmatrix} 0 & 7 & -6 \\ -1 & 4 & 0 \\ 0 & 2 & -2 \end{pmatrix} \begin{pmatrix} 5 & 9 & 4 \\ 1 & 3 & 2 \\ 2 & 2 & 1 \end{pmatrix} = \begin{pmatrix} -1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \end{pmatrix}$$

EXERCICE 10.

Etudier le rang, l'image, le noyau, les sous-espaces propres, le polynôme caractéristique et le polynôme minimal de l'opérateur associé à :

$$D = \left(\begin{array}{cccc} 0 & 0 & 4 & 0 \\ -2 & 1 & 4 & 1 \\ 0 & 0 & 2 & 0 \\ -4 & 0 & 8 & 2 \end{array} \right).$$

Peut-on diagonaliser cette matrice?

SOLUTION.

1°/ Déterminant.

$$\begin{vmatrix}
0 & 0 & 4 & 0 \\
-2 & 1 & 4 & 1 \\
0 & 0 & 2 & 0 \\
-4 & 0 & 8 & 2
\end{vmatrix} = 0 \text{ car la } 1^{\text{e}} \text{ et la } 4^{\text{e}} \text{ colonnes sont proportion nelles.}$$

2°/ Polynôme caractéristique.

$$P(\lambda) = D\acute{e}t (D - \lambda I) = \begin{vmatrix} -\lambda & 0 & 4 & 0 \\ -2 & 1 - \lambda & 4 & 1 \\ 0 & 0 & 2 - \lambda & 0 \\ -4 & 0 & 8 & 2 - \lambda \end{vmatrix}.$$

Développons par rapport à la 2^e colonne

$$P(\lambda) = (1-\lambda) \begin{vmatrix} -\lambda & 4 & 0 \\ 0 & 2-\lambda & 0 \\ -4 & 8 & 2-\lambda \end{vmatrix}.$$

Développons par rapport à la 2° colonne :
$$P(\lambda) = (1-\lambda) \begin{vmatrix} -\lambda & 4 & 0 \\ 0 & 2-\lambda & 0 \\ -4 & 8 & 2-\lambda \end{vmatrix}.$$
Développons par rapport à la 3° colonne :
$$P(\lambda) = (1-\lambda)(2-\lambda) \begin{vmatrix} -\lambda & 4 \\ 0 & 2-\lambda \end{vmatrix} = \lambda (\lambda - 1)(2-\lambda)^2$$

$$P(\lambda) = \lambda (\lambda - 1)(\lambda - 2)^2$$

3°/ Valeurs propres.

Les valeurs propres de la matrice D sont les racines du polynôme caractéristique : 0, 1, 2 (racine double).

4°/ Vecteurs propres.

$$D(D-I)(D-2I)=0$$

$$(D-I)(D-2I) = \begin{pmatrix} 2 & 0 & -4 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 4 & 0 & -8 & 0 \end{pmatrix} \Rightarrow a_1 = \begin{pmatrix} 1 \\ 0 \\ 0 \\ 2 \end{pmatrix}$$
est vecteur propre pour la valeur propre 0.

Réduisons la matrice

$$\left(\begin{array}{ccccc}
0 & 0 & 4 & 0 \\
-2 & 1 & 4 & 1 \\
0 & 0 & 2 & 0 \\
-4 & 0 & 8 & 2
\end{array}\right)$$

$$\left(\begin{array}{cccccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right)$$

Ajouter 2 fois la 4^e colonne à la 1^e. Retrancher la 2^e colonne de la 4^e.

$$\begin{pmatrix} 0 & 0 & 4 & 0 \\ 0 & 1 & 4 & 0 \\ 0 & 0 & 2 & 0 \\ 0 & 0 & 8 & 2 \end{pmatrix}$$

$$\begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & -1 \\ 0 & 0 & 1 & 0 \\ 2 & 0 & 0 & 1 \end{pmatrix}$$

Ce calcul montre que la matrice D est de rang 3. Son noyau, qui est le sous-espace propre pour la valeur propre 0, est de dimension 1, donc la vecteur a_1 forme à lui seul une base du sous-espace propre pour la valeur propre 0.

$$D(D-2I) = \begin{pmatrix} 0 & 0 & 0 & 0 \\ -2 & -1 & 4 & 1 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix} \Rightarrow a_2 = \begin{pmatrix} 0 \\ 1 \\ 0 \\ 0 \end{pmatrix}$$
 est une base du sous-espace propre pour la valeur propre

1.

$$D(D-I) = \begin{pmatrix} 0 & 0 & 4 & 0 \\ -4 & 0 & 8 & 2 \\ 0 & 0 & 2 & 0 \\ -4 & 0 & 8 & 2 \end{pmatrix} \Rightarrow a_3 = \begin{pmatrix} 0 \\ 1 \\ 0 \\ 1 \end{pmatrix} \text{ et } a_4 = \begin{pmatrix} 2 \\ 0 \\ 1 \\ 0 \end{pmatrix} \text{ forment une base du sous-espace propre}$$

pour la valeur propre 2, qui est de dimension 2

5°/ Diagonalisation.

Comme il existe une base $a = \{a_1, a_2, a_3, a_4\}$ formée de vecteur propres, la matrice D est diagonalisable :

$$[f,\{a\},\{a\}] = \left(\begin{array}{cccc} 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 2 \end{array}\right)$$

La matrice du changement de base est :

$$[id_E, \{a\}, \{e\}] = \left(\begin{array}{cccc} 1 & 0 & 0 & 2 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 2 & 0 & 1 & 0 \end{array}\right)$$

Ceci traduit les formules :

$$a_1 = e_1 + 2 e_4$$
 $a_2 = e_2$
 $a_3 = e_2 + e_4$
 $a_4 = 2 e_1 + e_3$

On a alors:

$$\begin{aligned} e_2 &= a_2 \\ e_4 &= a_3 - e_2 = a_3 - a_2 \\ e_1 &= a_1 - 2 \ e_4 = a_1 - 2 \ (a_3 - a_2) \\ e_3 &= a_4 - 2 \ e_1 = a_4 - 2 \ (a_1 + 2 \ a_2 - 2 \ a_3) \end{aligned}$$

$$[id_E, \{e\}, \{a\}] = \begin{pmatrix} 1 & 0 & -2 & 0 \\ 2 & 1 & -4 & -1 \\ -2 & 0 & 4 & 1 \\ 0 & 0 & 1 & 0 \end{pmatrix} = [id_E, \{a\}, \{e\}]^{-1}$$

$$\begin{pmatrix} 1 & 0 & -2 & 0 \\ 2 & 1 & -4 & -1 \\ -2 & 0 & 4 & 1 \\ 0 & 0 & 1 & 0 \end{pmatrix} \begin{pmatrix} 0 & 0 & 4 & 0 \\ -2 & 1 & 4 & 1 \\ 0 & 0 & 2 & 0 \\ -4 & 0 & 8 & 2 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 & 2 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 2 & 0 & 1 & 0 \end{pmatrix} = \begin{pmatrix} 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 2 \end{pmatrix}$$

EXERCICE 11.

Etudier la matrice à n lignes et n colonnes :

$$F = \left(\begin{array}{cccc} 1 & 1 & \cdots & 1 \\ 1 & 1 & \cdots & 1 \\ \vdots & \vdots & \ddots & \vdots \\ 1 & 1 & \cdots & 1 \end{array} \right)$$

SOLUTION.

La matrice F, à n lignes et n colonnes, est de rang 1. Son noyau est donc de dimension n-1 et a pour base la famille $\{e_2-e_1, e_3-e_1, \ldots, e_n-e_1\}$. Dans la base $a=\{e_1, e_2-e_1, e_3-e_1, \ldots, e_n-e_1\}$, la matrice de l'endomorphisme f de matrice F dans la base canonique est donnée par les images des vecteurs de base :

$$f(e_1) = e_1 + e_2 + \dots + e_n = n \ e_1 + (e_2 - e_1) + \dots + (e_n - e_1)$$

 $f(e_i - e_1) = 0$

$$[f,\{a\},\{a\}] = \left(\begin{array}{cccc} n & 0 & \dots & 0 \\ 1 & 0 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 1 & 0 & \dots & 0 \end{array}\right).$$

Le polynôme caractéristique est $P(\lambda) = (n - \lambda)(-\lambda)^{n}$

Les valeurs propres de f sont donc 0 (valeur propre d'ordre n-1) et n, valeur propre simple. La relation :

$$f(e_1) = n e_1 + (e_2 - e_1) + ... + (e_n - e_1)$$

donne

$$f(f(e_1)) = f(ne_1) + f(e_2 - e_1) + \dots + f(e_n - e_1) = n f(e_1)$$

et cette relation montre que le vecteur non nul :

$$f(e_1) = n e_1 + (e_2 - e_1) + \dots + (e_n - e_1) = e_1 + e_2 + \dots + e_n$$

est vecteur propre pour la valeur propre n.

Dans la base $b = \{e_1 + e_2 + \dots + e_n, e_2 - e_1, e_3 - e_1, \dots, e_n - e_1\}$, la matrice de l'endomorphisme f de matrice F dans la base canonique est diagonale :

$$[f,\{b\},\{b\}] = \left(\begin{array}{cccc} n & 0 & \dots & 0 \\ 0 & 0 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & 0 \end{array}\right).$$

et la matrice du changement de base est :

$$[id_E, \{b\}, \{e\}] = \begin{pmatrix} 1 & -1 & \dots & -1 \\ 1 & 1 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 1 & 0 & \dots & 1 \end{pmatrix}$$

Son inverse est la matrice des composantes des e_i sur la base b:

$$b_{1} - (b_{2} + \dots + b_{n}) = n e_{1}$$

$$e_{1} = \frac{1}{n} b_{1} - \frac{1}{n} b_{2} - \dots - \frac{1}{n} b_{n}$$

$$e_{i} = b_{i} + e_{1} = b_{i} + \frac{1}{n} (b_{1} - b_{2} - \dots - b_{n}) = \frac{1}{n} b_{1} - \frac{1}{n} b_{2} - \dots + \frac{n-1}{n} b_{i} - \dots - \frac{1}{n} b_{n}$$

$$[id_{E}, \{e\}, \{b\}] = \frac{1}{n} \begin{pmatrix} 1 & 1 & \dots & 1 \\ -1 & n-1 & \dots & -1 \\ \vdots & \vdots & \ddots & \vdots \\ -1 & -1 & \dots & n-1 \end{pmatrix}$$

Diagonalisation.

$$\frac{1}{n} \begin{pmatrix} 1 & 1 & \dots & 1 \\ -1 & n-1 & \dots & -1 \\ \vdots & \vdots & \ddots & \vdots \\ -1 & -1 & \dots & n-1 \end{pmatrix} \begin{pmatrix} 1 & 1 & \dots & 1 \\ 1 & 1 & \dots & 1 \\ \vdots & \vdots & \ddots & \vdots \\ 1 & 1 & \dots & 1 \end{pmatrix} \begin{pmatrix} 1 & -1 & \dots & -1 \\ 1 & 1 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 1 & 0 & \dots & 1 \end{pmatrix} = \begin{pmatrix} n & 0 & \dots & 0 \\ 0 & 0 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & 0 \end{pmatrix}$$

EXERCICE 12.

Etudier la matrice à n lignes et n colonnes :

$$G = \left(\begin{array}{cccc} 0 & \cdots & 0 & 1 \\ 0 & \cdots & 1 & 0 \\ \vdots & \ddots & \vdots & \vdots \\ 1 & \cdots & 0 & 0 \end{array} \right)$$

SOLUTION.

Remarques générales.

G est une matrice réelle symétrique. Son déterminant est $(-1)^{\frac{1}{2}}$, comme on le voit par récurrence :

$$D\acute{e}t\left(G_{1}\right) =1$$

$$D\acute{e}t(G_n) = (-1)^n D\acute{e}t(G_{n-1})$$

On remarque aussi que $G^2 = I$.

Soit f l'endomorphisme de matrice G dans la base canonique. Le changement de base $a_i = e_{n+1-i}$, soit

$$[id_E,\{a\},\{e\}] = \left(egin{array}{cccc} 0 & \cdots & 0 & 1 \ 0 & \cdots & 1 & 0 \ dots & \ddots & dots & dots \ 1 & \cdots & 0 & 0 \end{array}
ight) = G$$

donne:

$$f(a_i) = f(e_{n+1-i}) = e_i$$

d'où:

$$[f,\{a\},\{e\}] = \left(\begin{array}{cccc} 1 & 0 & \cdots & 0 \\ 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 1 \end{array}\right)$$

La relation $G^2 = I$ montre que $G^{-1} = G$, donc :

$$[id_E, \{e\}, \{a\}] = [id_E, \{a\}, \{e\}] = G$$
$$[f, \{a\}, \{a\}] = [id_E, \{e\}, \{a\}][f, \{a\}, \{e\}] = G$$

La matrice de G est invarante dans ce changement de base.

On a aussi (G-I)(G+I)=0, donc le polynôme minimal de G est $P_u(\lambda)=(\lambda+1)$ $(\lambda-1)$. Les valeurs propres de G sont donc -1 et 1.

On a

$$f(e_1 + e_2 + ... + e_n) = e_1 + e_2 + ... + e_n$$

donc $e_1 + e_2 + ... + e_n$ est toujours vecteur propre pour la valeur propre 1.

Polynôme caractéristique et valeurs propres.

1^{er} cas: n est pair, n = 2 k.

Dans ce cas, il n'y a pas de 1 sur la diagonale de G. Le polynôme caractéristique de G est :

$$P(\lambda) = D\acute{e}t(G - \lambda I) = \begin{vmatrix} -\lambda & \cdots & 0 & 0 & \cdots & 1 \\ \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\ 0 & \cdots & -\lambda & 1 & \cdots & 0 \\ 0 & \cdots & 1 & -\lambda & \cdots & 0 \\ \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\ 1 & \cdots & 0 & 0 & \cdots & -\lambda \end{vmatrix}$$

On ne change pas la valeur du déterminant en ajoutant λ fois la dernière colonne à la première :

$$P(\lambda) = \begin{vmatrix} 0 & \cdots & 0 & 0 & \cdots & 1 \\ \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\ 0 & \cdots & -\lambda & 1 & \cdots & 0 \\ 0 & \cdots & 1 & -\lambda & \cdots & 0 \\ \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\ 1 - \lambda^2 & \cdots & 0 & 0 & \cdots & -\lambda \end{vmatrix}$$

On peut développer le déterminant par rapport à la 1^e colonne, puis le déterminant restant par rapport à la 1^e ligne

$$P_n(\lambda) = (-1)^n (1 - \lambda^2) \times (-1)^{n-1} \ P_{n-2}(\lambda) = -(1 - \lambda^2) \ P_{n-2}(\lambda) \ .$$
 Avec $P_2(\lambda) = (\lambda^2 - 1) = -(1 - \lambda^2)$, il vient par récurrence :

P_n (
$$\lambda$$
), il vient par récurrence :
$$P_n(\lambda) = (-1)^k (1 - \lambda^2)^k = (\lambda + 1)^k (\lambda - 1)^k$$

Les valeurs propres de G sont donc -1 et 1, avec, pour chacune un ordre de multiplicité égal à $k = \frac{n}{2}$.

2^{e} cas: *n* est impair, n = 2 k + 1.

Dans ce cas, il y a un 1 sur la diagonale de G.

$$P(\lambda) = \begin{vmatrix} -\lambda & \cdots & 0 & 0 & 0 & \cdots & 1 \\ \vdots & \ddots & \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & \cdots & -\lambda & 0 & 1 & \cdots & 0 \\ 0 & \cdots & 0 & 1 - \lambda & 0 & \cdots & 0 \\ 0 & \cdots & 1 & 0 & -\lambda & \cdots & 0 \\ \vdots & \ddots & \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & \cdots & 0 & 0 & 0 & \cdots & -\lambda \end{vmatrix}$$

On ne change pas la valeur du déterminant en ajoutant à la 1^e colonne λ fois la dernière colonne :

$$P(\lambda) = \begin{vmatrix} 0 & \cdots & 0 & 0 & 0 & \cdots & 1 \\ \vdots & \ddots & \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & \cdots & -\lambda & 0 & 1 & \cdots & 0 \\ 0 & \cdots & 0 & 1 - \lambda & 0 & \cdots & 0 \\ 0 & \cdots & 1 & 0 & -\lambda & \cdots & 0 \\ \vdots & \ddots & \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 - \lambda^2 & \cdots & 0 & 0 & 0 & \cdots & -\lambda \end{vmatrix}$$

Développons le déterminant par rapport à la 1^e colonne, puis le déterminant restant par rapport à la 1^e ligne :

$$P_n(\lambda) = (-1)^n (1 - \lambda^2) \times (-1)^{n-1} P_{n-2}(\lambda) = -(1 - \lambda^2) P_{n-2}(\lambda)$$

Avec $P_1(\lambda) = (1 - \lambda)$, il vient par récurrence :

$$P_n(\lambda) = (-1)^k (1 - \lambda^2)(1 - \lambda) = (-1)^k (1 + \lambda)^k (1 - \lambda)^{k+1} = -(\lambda + 1)^k (\lambda - 1)^{k+1}.$$

 $P_n(\lambda) = (-1)^k (1 - \lambda^2)(1 - \lambda) = (-1)^k (1 + \lambda)^k (1 - \lambda)^{k+1} = -(\lambda + 1)^k (\lambda - 1)^{k+1}.$ Les valeurs propres de G sont -1 et 1, -1 est d'ordre $k = \frac{n-1}{2}$, 1 est d'ordre $k + 1 = \frac{n+1}{2}$.

Vecteurs propres.

En raison de la symétrie de la matrice de G, nous allons considérer les vecteurs $e_i + e_{n+1-i}$.

$$f(e_i + e_{n+1-i}) = f(e_i) + f(e_{n+1-i}) = e_{n+1-i} + e_i = e_i + e_{n+1-i}$$

Le vecteur $e_i + e_{n+1-i}$ est toujours vecteur propre pour la valeur propre 1, pour tout i de 1 à $\left|\frac{n}{2}\right|$ (partie entière

de $\frac{n}{2}$). Nous obtenons ainsi k vecteurs propres si n = 2 k ou si n = 2 k + 1. A ces k vecteurs, il convient d'ajouter

le vecteur d'indice central e_{k+1} lorsque n est impair : ce vecteur est invariant par la matrice G, il correspond au 1 de la diagonale de G, donc il est vecteur propre pour la valeur propre 1.

Ces k ou k+1 vecteurs forment une famille libre de façon évidente car la matrice de leurs composantes sur la base canonique comporte une diagonale de 1 avec des 0 au-dessus.

Si l'on considère maintenant les vecteurs $e_i - e_{n+1-i}$, il vient :

$$f(e_i - e_{n+1-i}) = f(e_i) - f(e_{n+1-i}) = e_{n+1-i} - e_i = -(e_i - e_{n+1-i})$$

Le vecteur $e_i - e_{n+1-i}$ est vecteur propre pour la valeur propre -1, pour tout i de 1 à $\left[\frac{n}{2}\right]$.

Nous obtenons ainsi k vecteurs propres si n = 2 k ou si n = 2 k + 1. Les k vecteurs obtenus forment aussi une famille libre.

Les n vecteurs ainsi définis forment une base de vecteurs propres.

Diagonalisation.

Comme il existe une base formée de vecteurs propres, la matrice G est diagonalisable, avec, sur la diagonale, k fois la valeur propre -1 et k (n pair) ou k+1 (n impair) fois la valeur propre 1.

EXERCICE 13.

Etudier la matrice à n lignes et n colonnes :

$$H = \left(\begin{array}{cccc} \alpha & \beta & \cdots & \beta \\ \beta & \alpha & \ddots & \vdots \\ \vdots & \ddots & \ddots & \beta \\ \beta & \cdots & \beta & \alpha \end{array} \right)$$

SOLUTION.

La matrice *H* est une matrice symétrique. Ses valeurs propres sont donc réelles.

Déterminant.

On ne change pas la valeur du déterminant en ajoutant à la 1^e colonne la somme des n-1 autres colonnes :

$$D\acute{e}t (H) = \left| \begin{array}{ccc} \alpha & \beta & \cdots & \beta \\ \beta & \alpha & \ddots & \vdots \\ \vdots & \ddots & \ddots & \beta \\ \beta & \cdots & \beta & \alpha \end{array} \right| = \left| \begin{array}{ccc} \alpha + (n-1) \beta & \beta & \cdots & \beta \\ \alpha + (n-1) \beta & \alpha & \ddots & \vdots \\ \vdots & \ddots & \ddots & \beta \\ \alpha + (n-1) \beta & \cdots & \beta & \alpha \end{array} \right|$$

On peut mettre en facteur $\alpha + (n-1) \beta$ dans la 1^e colonne :

$$D\acute{e}t (H) = (\alpha + (n-1) \beta) \begin{vmatrix} 1 & \beta & \cdots & \beta \\ 1 & \alpha & \ddots & \vdots \\ \vdots & \ddots & \ddots & \beta \\ 1 & \cdots & \beta & \alpha \end{vmatrix}$$

On ne change pas la valeur du déterminant en retranchant β fois la 1^e colonne de chacune des (n-1) autres :

$$D\acute{e}t (H) = (\alpha + (n-1) \beta) \begin{vmatrix} 1 & 0 & \cdots & 0 \\ 1 & \alpha - \beta & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 1 & 0 & \cdots & \alpha - \beta \end{vmatrix}.$$

On peut développer le déterminant par rapport à la 1^e ligne :

$$D\acute{e}t (H) = (\alpha + (n-1)\beta) (\alpha - \beta)^{n-1}$$

Polynôme caractéristique.

 $P(\lambda) = D\acute{e}t (H - \lambda I)$ s'obtient en remplaçant α par $(\alpha - \lambda)$ dans le déterminant de H:

$$P(\lambda) = (\alpha + (n-1)\beta - \lambda)(\alpha - \beta - \lambda)^{n-1}$$

Valeurs propres.

La matrice *H* a 2 valeurs propres :

Polynôme minimal.

$$H - (\alpha - \beta) I = \begin{pmatrix} \beta & \beta & \cdots & \beta \\ \beta & \beta & \cdots & \beta \\ \vdots & \vdots & \ddots & \vdots \\ \beta & \beta & \cdots & \beta \end{pmatrix}.$$

 $\begin{bmatrix} 1 \\ \vdots \end{bmatrix}$ est le vecteur dont les composantes sont les sommes des lignes de la matrice H, donc :

$$H \begin{pmatrix} 1 \\ 1 \\ \vdots \\ 1 \end{pmatrix} = (\alpha + (n-1) \beta) \begin{pmatrix} 1 \\ 1 \\ \vdots \\ 1 \end{pmatrix}, \text{ soit } (H - (\alpha + (n-1) \beta) I) \begin{pmatrix} 1 \\ 1 \\ \vdots \\ 1 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ \vdots \\ 0 \end{pmatrix} \text{ et, par conséquent,}$$

comme toutes les colonnes de la matrice $H - (\alpha - \beta)I$ sont proportionnelles au vecteur $\begin{vmatrix} 1 \\ \vdots \end{vmatrix}$, le produit de

matrices $(H - (\alpha + (n-1)\beta)I)(H - (\alpha - \beta)I)$ est nul. Le polynôme minimal de la matrice H est donc:

$$P_u(\lambda) = (\lambda - (\alpha + (n-1)\beta))(\lambda - (\alpha - \beta))$$

Vecteurs propres.

Vecteurs propres.

Réduisons la matrice
$$H - (\alpha + (n-1)\beta) I = \begin{pmatrix} -(n-1)\beta & \beta & \cdots & \beta \\ \beta & -(n-1)\beta & \cdots & \beta \\ \vdots & \vdots & \ddots & \vdots \\ \beta & \beta & \cdots & -(n-1)\beta \end{pmatrix} :$$

$$\begin{pmatrix} -(n-1)\beta & \beta & \cdots & \beta \\ \beta & -(n-1)\beta & \cdots & \beta \\ \vdots & \vdots & \ddots & \vdots \\ \beta & \beta & \cdots & -(n-1)\beta \end{pmatrix} \qquad \begin{pmatrix} 1 & 0 & \cdots & 0 \\ 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 1 \end{pmatrix}$$

Ajouter à la 1^e colonne la somme des $(n-1)$ autres colonnes

Ajouter à la 1^e colonne la somme des (n-1) autres colonnes

$$\begin{pmatrix}
0 & \beta & \cdots & \beta \\
0 & -(n-1)\beta & \cdots & \beta \\
\vdots & \vdots & \ddots & \vdots \\
0 & \beta & \cdots & -(n-1)\beta
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 0 & \cdots & 0 \\
1 & 1 & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
1 & 0 & \cdots & 1
\end{pmatrix}$$

Ce calcul montre que le vecteur $a_1 = \begin{pmatrix} 1 \\ 1 \\ \vdots \end{pmatrix}$ est dans le noyau de $H - (\alpha + (n-1)\beta)I$. Comme la valeur

propre $(\alpha + (n-1)\beta)$ est simple, le sous-espace propre correspondant est de dimension 1 : le vecteur a_1 est donc une base du noyau de $H - (\alpha + (n-1)\beta)I$.

La matrice $H - (\alpha - \beta)I$ a toutes ses colonnes identiques. Pour $\beta \neq 0$, on voit, en soustrayant la 1^e colonne de chacune des autres que :

- cette matrice est de rang 1,
- son noyau a pour base la famille de vecteurs $\{e_2-e_1, e_3-e_1, \dots, e_n-e_1\}$: ces vecteurs sont donc des vecteurs propres de la matrice H pour la valeur propre $\alpha - \beta$. On note $a_i = e_i - e_1$, pour $i \ge 2$.

Diagonalisation.

Les vecteurs $\{a_1, a_2, \dots, a_n\}$ forment (comme pour la matrice F) une base de \mathbb{R}^n . Dans cette base, la matrice de l'endomorphisme f de matrice H dans la base canonique est diagonale :

$$[f,\{a\},\{a\}] = \left(\begin{array}{cccc} \alpha + (n-1)\beta & 0 & \cdots & 0 \\ 0 & \alpha - \beta & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \alpha - \beta \end{array} \right).$$

EXERCICE 14.

Soit A une matrice symétrique réelle à n lignes et n colonnes telle qu'il existe un entier k vérifiant $A^k = I_n$. Montrer que

SOLUTION.

Soit A une matrice réelle symétrique à n lignes et n colonnes telle qu'il existe un entier k > 1 vérifiant $A^k = I_n$. A est la matrice d'une endomorphisme f de \mathbb{R}^n . On sait qu'alors existe dans \mathbb{R}^n une base formée de vecteurs propres. Soit $a = \{a_1, \ldots, a_n\}$ une telle base. On sait aussi que toutes les racines du polynôme caractéristique sont réelles, donc toutes les valeurs propres sont réelles. Soit λ_i ces valeurs propres, $i=1,\ldots,n$. Certaines des valeurs propres peuvent être multiples.

Soit $x = \sum_{i=1}^{t=n} x_i a_i$ un vecteur quelconque de \mathbb{R}^n . On a :

$$f^{k}(x) = x \text{ donc } \sum_{i=1}^{i=n} x_{i} \lambda_{i}^{k} a_{i} = \sum_{i=1}^{i=n} x_{i} a_{i}$$

Comme les a_i forment une base, on obtient , pour tout i , $\lambda_i^{\ k}=1$.

$$\lambda_i^{k} = 1$$

Comme λ_i est réel, c'est que $\lambda_i = \pm 1$, donc

$$\lambda_i^2 = 1$$
.

On a alors:

$$f^{2}(x) = \sum_{i=1}^{i=n} x_{i} \lambda_{i}^{2} a_{i} = \sum_{i=1}^{i=n} x_{i} a_{i} = x$$

d'où $f^2 = id_E$ et

$$A^2 = I_n.$$

EXERCICE 15.

Vrai ou Faux.

E est un espace vectoriel de dimension finie sur un corps de nombres complexes K. Soit f un endomorphisme de E. Id est l'application identique. Donnez votre opinion sur les assertions suivantes (à justifier par une démonstration).

- 01. Si $f^2 = f$, alors f est inversible.
- 02. Si f est inversible, alors f^{-1} est diagonalisable.
- 03. Si f est diagonalisable, alors f est inversible.
- 04. Si f est inversible, alors f^2 l'est aussi.
- 05. Si f est diagonalisable, alors f^2 l'est aussi.
- 06. Si $f^2 = f$, alors f est diagonalisable. 07. Si $f^2 = Id$, alors f est inversible.
- 08. Si f est inversible et diagonalisable, alors f^{-1} est diagonalisable.
- 09. Si la matrice de f par rapport à une base $\{u\}$ est symétrique, alors f est diagonalisable.
- 10. Le noyau de f est un sous-espace propre de f.
- 11. L'image et le noyau d'un endomorphisme diagonalisable et non inversible forment une somme directe.
- 12. Si une matrice à éléments dans R est diagonalisable et inversible, son inverse est diagonalisable.
- 13. La somme de deux endomorphismes diagonalisables dans R^2 n'est pas forcément diagonalisable.
- 14. La matrice:

$$A = \left(\begin{array}{rrr} 3 & 0 & 8 \\ 3 & 1 & -6 \\ -2 & 0 & -5 \end{array} \right)$$

est diagonalisable.

SOLUTION.

01. Endomorphisme idempotent.

Faux.

Soit f un endomorphisme de E vérifiant $f^2 = f$. On a alors $D\acute{e}t$ (f^2) = $D\acute{e}t$ (f), soit : $(D\acute{e}t(f))^2 = D\acute{e}t(f)$

d'où $D\acute{e}t(f) = 0$ ou $D\acute{e}t(f) = 1$. Si $D\acute{e}t(f) = 1$, f est inversible, mais si $D\acute{e}t(f) = 0$, f n'est pas inversible. Par exemple, si l'on prend pour f le projecteur sur le premier axe canonique :

$$f: (x_1, x_2, \dots, x_n) \mapsto (x_1, 0, \dots, 0)$$

 $f^2(x_1, x_2, \dots, x_n) = f(f(x_1, x_2, \dots, x_n)) = f(x_1, 0, \dots, 0) = (x_1, 0, \dots, 0) = f(x_1, x_2, \dots, x_n)$ donc $f^2 = f$, mais le noyau de f est l'ensemble des vecteurs dont la première composante est nulle : c'est un sousespace vectoriel de dimension n-1: il n'est pas réduit à 0 dès que n est strictement plus grand que 1. Comme le noyau n'est pas réduit à 0, f n'est pas inversible.

$$f^2 = f + f$$
 est inversible

02. Endomorphisme inversible.

L'endomorphisme inverse f^{-1} possède les mêmes sous-espaces propres que f avec pour valeurs propres les inverses des valeurs propres de f, ce qui résulte de :

$$f(x) = \lambda x \iff f^{-1}(x) = \lambda^{-1} x$$

Dire que E possède une base formée de vecteurs propres pour f est donc équivalent à dire que E possède une base formée de vecteurs propres pour f^{-1} . Donc, pour un endomorphisme inversible, f^{-1} est diagonalisable si et seulement si, f est diagonalisable. Or il existe des endomorphismes inversibles non diagonalisables, par exemple une rotation d'angle θ dans \mathbb{R}^2 , donc :

$$f$$
 inversible $\Longrightarrow f^{-1}$ diagonalisable

03. Endomorphisme diagonalisable.

Faux.

Il existe des endomorphismes diagonalisables non inversibles. Exemple : le projecteur sur l'axe des x dans R^2 . Sa matrice dans la base canonique est $\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$. Cette matrice est diagonale, mais comme 0 est valeur propre (le déterminant est nul), elle n'est pas inversible.

04. Carré d'un endomorphisme inversible.

Vrai.

$$f$$
 inversible \iff $D\acute{e}tf \neq 0 \iff$ $(D\acute{e}tf)^2 \neq 0 \iff$ $D\acute{e}tf^2 \neq 0 \iff$ f^2 inversible f inversible f inversible

05. Carré d'un endomorphisme diagonalisable.

Vrai.

$$f(x) = \lambda x \Longrightarrow f^2(x) = f(\lambda x) = \lambda f(x) = \lambda^2 x$$

Tout vecteur propre pour f est vecteur propre pour f^2 . Donc s'il existe une base formée de vecteurs propres pour f, cette base est formée de vecteurs propres pour f^2 . Il en résulte que :

$$f$$
 diagonalisable \Longrightarrow f^2 diagonalisable

06. Endomorphisme idempotent.

Vrai.

Un endomorphisme idempotent est, par définition, un projecteur. Tout projecteur f est diagonalisable car E est somme directe du noyau et de l'image du projecteur, et, dans le noyau, f est nul, et, dans l'image, f est l'application identique, donc

$$f^2 = f \Longrightarrow f$$
 est diagonalisable

07. Endomorphisme involutif.

Vrai.

$$f^2 = Id \iff f \circ f = Id \iff f = f^{-1} \implies f$$
 est inversible
$$f^2 = Id \implies f$$
 est inversible

08. Endomorphisme inversible et diagonalisable.

Vrai.

Dans 3.02, nous avons vu que, pour un endomorphisme inversible, f^{-1} est diagonalisable si et seulement si, f est diagonalisable. Donc

$$f$$
 inversible et diagonalisable $\Longrightarrow f^{-1}$ diagonalisable

09. Endomorphisme symétrique.

On sait que toute matrice réelle symétrique est diagonalisable, mais que dire des matrices complexes symétriques ? L'extension des matrices réelles symétriques au cas complexe est constitué par les matrices hermitiennes (c'està-dire dont la transposée est égale à la conjuguée) : toute matrice hermitienne est diagonalisable, et, plus généralement, tout endomorphisme normal est diagonalisable (un endomorphisme est normal si, et seulement si, il commute avec son adjoint; tout endomorphisme unitaire, c'est-à-dire inversible et de déterminant 1, est normal ; tout endomorphisme hermitien est normal)

Considérons par exemple la matrice $A = \begin{pmatrix} 0 & i \\ i & 2 \end{pmatrix}$. C'est une matrice symétrique. Son polynôme

caractéristique est $-\lambda (2 - \lambda) - i^2 = \lambda^2 - 2 \lambda + 1 = (\lambda - 1)^2$. Il y a donc une seule valeur propre $\lambda = 1$. On a : $A - I = \begin{pmatrix} -1 & i \\ i & 1 \end{pmatrix}$

$$A - I = \left(\begin{array}{cc} -1 & i \\ i & 1 \end{array}\right)$$

Cette matrice est de rang 1 et son noyau a pour base le vecteur $e_1 - i e_2$. Le sous-espace propre pour la valeur propre 1, est de dimension 1, différente de l'ordre de multiplicité 2 de la valeur propre dans le polynôme caractéristique : donc la matrice A n'est pas diagonalisable, et on a construit un exemple de matrice symétrique non diagonalisable.

$$f$$
 symétrique $\Longrightarrow f$ diagonalisable

10. Noyau d'un endomorphisme.

Faux.

$$x \in Kerf \iff f(x) = 0 \iff f(x) = 0.x$$

On voit donc que, pour que Ker f soit sous-espace propre pour la valeur propre 0, il faut et il suffit qu'il ne soit pas réduit à 0, donc il faut et il suffit que $D\acute{e}t f = 0$.

$$Ker f$$
 sous-espace propre de $f \iff D\acute{e}t f = 0$

Comme il existe évidement des endomorphismes dont le déterminant n'est pas nul, il existe des endomorphismes dont le noyau n'est pas un sous-espace propre.

Somme directe de l'image et du noyau d'un endomorphisme.

Vrai.

$$x \in Ker f \cap Im f \Longrightarrow (f(x) = 0 \text{ et } (\exists y \in E)(x = f(y)))$$

 f diagonalisable \Longrightarrow Il existe une base $a = \{a_1, \ldots, a_n\}$ formée de vecteurs propres
 $y \in E \Longrightarrow y = \Sigma_i \ y_i \ a_i$
 $x = f(y) = \Sigma_i \ y_i \ f(a_i) = \Sigma_i \ y_i \ \lambda_i \ a_i \Longrightarrow f(x) = \Sigma_i \ y_i \ \lambda_i f(a_i) = \Sigma_i \ y_i \ \lambda_i^2 \ a_i$
 $f(x) = 0 \Longrightarrow (\forall i)(y_i \ \lambda_i^2 = 0) \Longrightarrow (\forall i)(y_i = 0 \text{ ou } \lambda_i = 0) \Longrightarrow (\forall i)(y_i \ \lambda_i = 0) \Longrightarrow x = 0.$
L'image et le noyau de f forment donc une somme directe.

12. Inverse d'une matrice diagonalisable.

Vrai.

Soit M une matrice inversible et diagonalisable. Elle est semblable à une matrice diagonale : il existe donc une matrice *P* telle que :

$$M = P^{-1}AP$$

où A est une matrice diagonale, ayant pour éléments de la diagonale principale, les valeurs propres de M. Comme M est inversible, son déterminant, produit des valeurs propres, n'est pas nul, donc 0 n'est pas valeur propre : aucun élément de la diagonale principale de A n'est nul. Alors A est inversible et son inverse est la matrice diagonale dont les éléments de la diagonale principale sont les inverses des éléments de la diagonale principale de A.

$$M^{-1} = (P^{-1}AP)^{-1} = P^{-1}A^{-1}P$$

Comme la matrice A^{-1} est une matrice diagonale, la matrice M^{-1} est diagonalisable.

13. Somme de deux endomorphismes diagonalisables.

Vrai.

Considérons par exemple l'endomorphisme f_1 , de matrice $\left(egin{array}{cc} 1 & 0 \\ 1 & 0 \end{array}
ight)$ dans la base canonique, et

l'endomorphisme f_2 , de matrice $\left(\begin{array}{cc} 0 & -1 \\ 0 & 1 \end{array}\right)$ dans la base canonique.

Le polynôme caractéristique de f_1 est $P_1(\lambda) = \lambda(\lambda - 1)$: f_1 a deux valeurs propres réelles distinctes, c'est un endomorphisme diagonalisable.

Le polynôme caractéristique de f_2 est P_2 (λ) = λ (λ – 1) : f_2 a deux valeurs propres réelles distinctes, c'est un endomorphisme diagonalisable.

La somme $f = f_1 + f_2$ a pour matrice dans la base canonique $\begin{pmatrix} 1 & 0 \\ 1 & 0 \end{pmatrix} + \begin{pmatrix} 0 & -1 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & -1 \\ 1 & 1 \end{pmatrix}$. Son

polynôme caractéristique est $P(\lambda) = (1 - \lambda)^2 + 1$. Il n'est jamais nul, donc f n'a pas de valeur propre réelle et n'est donc pas diagonalisable.

14. Matrice diagonalisable?

Faux.

Le polynôme caractéristique de la matrice A est :

$$P(\lambda) = (3 - \lambda)(1 - \lambda)(-5 - \lambda) + 16(1 - \lambda) = (1 - \lambda)((3 - \lambda)(-5 - \lambda) + 16) = (1 - \lambda)(\lambda^2 + 2\lambda + 1)$$

$$P(\lambda) = -(\lambda + 1)^2(\lambda - 1)$$

Le polynôme minimal est donné par :

$$(A+I)(A-I) \neq 0 \Longrightarrow P_u(\lambda) = (\lambda+1)^2(\lambda-1)$$

La matrice A + I a sa première et sa troisième colonnes proportionnelles : elle est de rang 2, le sous-espace propre pour la valeur propre -1 est de dimension 1, différente de l'ordre de multiplicité de la valeur propre -1 dans le polynôme caractéristique, donc la matrice A n'est pas diagonalisable.