	Histo	ory	
Type	Author	Citation	Literature Cutoff Date
Full Evaluation	G. Gürdal, E. A. Mccutchan	NDS 136, 1 (2016)	1-Jul-2016

 $\begin{array}{lll} Q(\beta^-) = -654.6 \ 16; \ S(n) = 9218.4 \ 21; \ S(p) = 11117.5 \ 24; \ Q(\alpha) = -5983.3 \ 24 & 2012Wa38 \\ S(2n) = 15700.5 \ 21; \ S(2p) = 20679 \ 4 \ (2012Wa38). & \end{array}$

 α : Additional information 1.

⁷⁰Zn Levels

Cross Reference (XREF) Flags

		A B C D E F	⁷⁰ Cu $β$ ⁻ decay (44.5 s) ⁷⁰ Cu $β$ ⁻ decay (33 s) ⁷⁰ Cu $β$ ⁻ decay (6.6 s) ⁷⁰ Ga $ε$ decay ⁶⁸ Zn(t,p) ⁷⁰ Zn(p,p'),(pol p,p')	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
E(level) [†]	J^{π}	T _{1/2}	XREF	Comments
0.0 [‡]	0+	≥3.8×10 ¹⁸ y	ABCDEFGHIJKLMNOPQ	$\%2\beta^-$ =? $T_{1/2}$: from 2011Be39 for $2\nu2\beta^-$ decay; also determined $T_{1/2} \ge 3.2 \times 10^{19}$ for $0\nu2\beta^-$ decay. Others: $\ge 2.3 \times 10^{17}$ for $2\nu2\beta^-$ decay and $\ge 1.8 \times 10^{19}$ for $0\nu2\beta^-$ decay (2010Be41, 2010BeZO, 2009Be27, earlier results by same group as 2011Be39), $\ge 2.2 \times 10^{17}$ (2007B115, 2006Zu02), $\ge 1.3 \times 10^{16}$ for $2\nu2\beta^-$ decay and $\ge 0.7 \times 10^{18}$ for $0\nu2\beta^-$ decay (2005Da47), $\ge 1.3 \times 10^{16}$ (2003Ki08), $>4.8 \times 10^{14}$ y (1952Fr23).
884.92 [‡] 8	2+	3.65 ps <i>21</i>	ABC EFGHIJKLMNOPQ	Q=-0.233 22 (1976Ne06); μ =+0.76 4 (2009Mu06) β_2 =0.20 (1993Mo15) μ : from transient field technique in Coulomb Excitation. Others: +0.76 8 (2002Ke02), 0.82 20 (1979BrZP), 0.60 18 (1977HaZW), all from transient field technique in Coulomb Excitation, and 0.60 14 (1979Fa06) from IMPAC. T _{1/2} : weighted average of 3.67 ps 21 from DSAM and 3.60 ps 35 from RDDS, both in Coulomb Excitation. Others: 3.7 ps 12 from RDDS in 238 U(76 Ge,Xγ), 2.5 ps 2 from B(E2)=0.205 19 in (e,e'), 3.3 ps 3 from B(E2)=0.160 14 in Coulomb Excitation. J ^π : L(t,p)=2. Q: from (e,e'); extracted using anharmonic-vibrator model and is model dependent. β ₂ : from (pol p,p'). Other: 0.220 from (α,α').
1070.76 9	0+	3.90 ns 20	CEGIKL	$T_{1/2}$: from $(p,p'\gamma)$. J^{π} : $L(t,p)=0$.
1554 [@] 5 1759.16 <i>10</i>	2+	1.32 ps <i>21</i>	F H BC EF HIJKL	 μ=+0.94 44 (2009Mu06) XREF: E(1767)F(1764). J^π: L(p,p')=2, L(d,³He)=1(+3), strong population in Coulomb excitation. T_{1/2}: from DSAM in Coulomb Excitation. Others: 1.4 ps 4 from B(E2)=0.0050 13 from (e,e'), 0.24 ps +24-12 from DSAM in (n,n'γ). μ: from transient field technique in Coulomb excitation. Other: +0.84 38 from reanalysis of transient field data (2010Mo14).
1786.75 [‡] <i>10</i>	4+	2.9 ps 8	AB EF I KLMN	μ =+1.48 56 (2009Mu06)

⁷⁰Zn Levels (continued)

E(level) [†]	${ m J}^{\pi}$	$T_{1/2}$	XREF	Comments
		·		$J^{\pi} \colon L(t,p)=4.$
				$T_{1/2}$: weighted average of 2.0 ps $+9-11$ from RDDS in 238 U(76 Ge,X γ) and 3.4 ps 8 from RDDS in Coulomb Excitation. Other: 1.32 ps 14 from DSAM in Coulomb Excitation (2009Mu06).
				μ : from transient field technique in Coulomb excitation. Other: +0.84 52 from reanalysis of transient field data (2010Mo14).
1957.28 <i>12</i>	2+		C EF HI KL	Q XREF: H(1945). J^{π} : L(t,p)=2.
2140.64 <i>17</i>	0^{+}		C EF I L	XREF: F(2150)L(2126).
2375 [@] 5	$(2,1,3)^+$		F H	J^{π} : L(t,p)=0. Q XREF: Q(2300?).
2538.31 <i>11</i>	2+	0.21 ps +28-8	B F I KL	J^{π} : L(p,p')=2. $T_{1/2}$: from DSAM in (n,n' γ).
		·		J ^{π} : from L(d, 3 He)=1+3 and J=2 from $\gamma(\theta)$ in (n,n' γ). 2004Va08 in 70 Cu β^- decay (33 s) assign (3 ⁺) to this level, however, this is unlikely given its direct population in Coulomb excitation. L(p,p')=(0) is discrepant.
2665 [@] 5 2693.40 <i>11</i>	2 ⁺ 4 ⁺	0.28 ps +35-14	EF L AB EF I K	J^{π} : L(t,p)=2. $T_{1/2}$: from DSAM in (n,n' γ).
		0.20 ps . cc 1.		J^{π} : $L(p,p')=4$.
2805 [@] 5 2859.49 11	3-	0.201 ps <i>14</i>	F B EF HI K	β_3 =0.20 (1993Mo15) J ^{π} : L(t,p)=3; analyzing power consistent with 3 ⁻ in (pol p,p').
				β_3 : from (pol p,p'). $T_{1/2}$: from DSAM in Coulomb Excitation.
2895.10 [‡] <i>13</i> 2949.67 <i>18</i>	(6 ⁺) 1 ⁺ ,2 ⁺ ,3 ⁺	0.042 ps +21-14	A K MN I KL	N J^{π} : 1108 γ to 4 ⁺ , band assignment. XREF: L(?). J^{π} : M1+E2 2064 γ to 2 ⁺ . $T_{1/2}$: from DSAM in (n,n' γ).
2954 [@] 5			F	E(level): possibly the same as 2949.2-keV level, although $L(p,p')=(1)$ is discrepant with Adopted J^{π} .
2978.26 <i>23</i> 3022 [#] <i>10</i>	4+		B EF K	J^{π} : $L(t,p)=4$.
3022" 10			L	E(level): possibly the same as 3037.6-keV level, although $L(d, {}^{3}He)=(1)$ is discrepant with Adopted J^{π} .
3038.15 11	5-	1.04 ps 7	AB EF HIK MN	makes $J^{\pi}=4^-$ or 6^- unlikely. $J^{\pi}=4^-$ proposed in $(n,n'\gamma)$ based on population strength and $J^{\pi}=4^+$ proposed in $^{208}\text{Pb}(^{64}\text{Ni},X\gamma)$.
				$T_{1/2}$: from DSAM in Coulomb Excitation. Configuration= $((\pi 2p_{3/2})^2(\nu 2p_{1/2})^{-1}(\nu 1g_{9/2}))$
3222.08 10	1		I	(2004Va08). J^{π} : from $\gamma(\theta)$ in $(n,n'\gamma)$.
3235 5	3+,4+,5+		EF	E(level): from (p,p') . J^{π} : from $L(p,p')=4$.
3246.71 <i>11</i>	(3-,4+)		В	J^{π} : strong β feeding from J^{π} =3 ⁻ parent, 209 γ to 5 ⁻ , 708 γ to 2 ⁺ .
3328 [@] 5	(0 ⁺)		EF	E(level): possibily the same as the 3235-keV level. J^{π} : L(t,p)=(0).
3342.0 <i>3</i>	3-		A E H	J^{π} : $L(\alpha, \alpha') = 3$.
3419 [@] 5	(3)-		EF	J^{π} : $L(t,p)=(3)$, $L(p,p')=3$.

⁷⁰Zn Levels (continued)

3464 6 5 4 $^{+}$ A BF H JF: L(Lp)=4. 3476.8 14 A M H Signer Sign	E(level) [†]	\mathbf{J}^{π}	XREF	7	Comments				
3598 5 S F F F L J ^π L(L,p)=5, L(p,p')=5, L=1 in (d, ³ He) is discrepant.	3464 [@] 5	4+	EF H		J^{π} : L(t,p)=4.				
3598, 98, 14 3634, 99, 22, 2+ 3680° 5 0° 3710, 7 6 2° 4 EF L 37: L(t,p)=2. 3750° 5 0°, 17: 2-7) 3755, 4° 375, 4° 376, 6° 377, 7 6 2° 4 EF L 37: L(t,p)=2. 3755, 4° 375, 4° 376, 6° 377, 7 6 2° 4 EF L 37: L(t,p)=2. 375, 4° 378, 16 22 A M 388, 16 22 A M 388, 16 22 A M 388, 16 22 A M 390, 10 (5,6°) A 390, 10 (5,6°) A 390, 10 (5,6,7°) A 400, 14 0 15 (5,6,7°) A 406, 10 0 4° 4136° 10 2°, 1,1°, 3+ 4146, 13 4172° 10 5° F H 378, L(t,p)=2. 379, L(t,p)=1. 379, L(t,p)=1. 379, L(t,p)=2. 379, L(t,p)=2. 379, L(t,p)=2. 379, L(t,p)=2. 379, L(t,p)=2. 379, L(t,p)=3. 379, L(t,p)=4. 379, L(t,p)=4. 379, L(t,p)=4. 379, L(t,p)=4. 379, L(t,p)=4. 379, L(t,p)=5. 420, L(t,p)=5. 420, L(t,p)=5. 420, L(t,p)=5. 420, L(t,p)=5. 420, L(t,p)=5. 420, L(t,p)=6. 420, L(A	M	•				
$3680^{\circ} 5 0^{+} \qquad \text{EF H } L \qquad J^{\pi}; \ L(t,p)=2, \ L(t,p)=1, \ L(t,p)=3); \ L(t,p)=2, \ L(t,p)=3); \ L(t,p)=2, \ L(t,p)=3, \ L(t,p)=$		5-			J^{π} : L(t,p)=5, L(p,p')=5; L=1 in (d, ³ He) is discrepant.				
3680		2+			J^{π} : L(t,p)=2.				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3680 [@] 5	0^{+}	EF H	L	J^{π} : L(t,p)=0; L=1(+3) in (d, ³ He) is discrepant.				
3750 ${}^{\circ}$ 5 (0°,1°,2°) EF		2+							
3755.4 $^{\frac{1}{2}}$ 10 (8*) 3788.16 22 A H Set Per E(level): possible doublet; L(p,p')=(1)+4. 3844.6 5 1 Fer Per Per Per Per Per Per Per Per Per P	3750 [@] 5	$(0^-,1^-,2^-)$	EF						
3788.16 22 A 8136 5 816 27 3813 6 5 817 8184 6 6 (5.6 ⁺) A 8188 8 6 (4) ⁺ 3904.0 4 (5.6 ⁺) A 3914 10 3948 6 5 1	3755.4 [‡] 10			MN					
3844. 6 (5,6+) A FF H J ^π : L(t,p)=1. J ^π : direct β ⁻ feeding from $J^{\pi}=6^-$ parent, 2062γ to 4+. 3888. 5 (4)+ EF H J ^π : L(t,p)=4. J ^π : L(t,p)=4. J ^π : L(t,p)=2. EF J ^π : L(t,p)=2. E(level): from (t,p). J ^π : L(t,p)=3. A L(t,p)=4. J ^π : L(t,p)=4. J ^π : L(t,p)=3. A L(t,p)=4. J ^π : L(t,p)=4. J ^π : L(t,p)=3. A L(t,p)=4. J ^π : L(t,p)=5. L(t,p)=5. J ^π : L(t,p)=6. J ^π : L(t,p)=		(-)	A		6				
3848.4.6 (5,6*) A J ^π : direct β ^π feeding from J^{π} =6 ⁻ parent, 2062γ to 4*. 3888 β 5 (4)* EF h J ^π : L(p,p')=4. 3914 10 EF h J ^π : L(p,p')=4. 3994 10 EF H J ^π : L(t,p)=1. 3999 10 2* EF H J ^π : L(t,p)=2. E(level): from (t,p). J ^π : direct β ^π feeding from J^{π} =6 ⁻ parent, 963γ to 5 ⁻ . 4016 10 3*.4*.5* EF EF L(t,p)=4. 4136 β 10 2*.1*,13* EF L(t,p)=4. 4146.1 3 I J ^π : L(t,p)=4. 4146.1 3 I J ^π : L(t,p)=1. 37*: L(t,p)=4. 417.9* 10 5 ⁻ FH XREF: H(4200). J ^π : L(t,p)=5. L(t,α)=5. J ^π : L(t,p)=6. Direct β ^π feeding from J^{π} =6 ⁻ parent, 1023γ to 5 ⁻ . 4291 10 2* EF EF EF L(t,p)=6. Direct β ^π feeding from J^{π} =6 ⁻ parent, 1023γ to 5 ⁻ . 31*: L(t,p)=6. Direct β ^π feeding from J^{π} =6 ⁻ parent, 1023γ to 5 ⁻ . 4291 10 3*. 4*.5* FF L(t,p)=6. L(t,α)=6. Direct β ^π feeding from J^{π} =6 ⁻ parent, 1023γ to 5 ⁻ . 31*: L(t,p)=6. Direct β ^π feeding from J^{π} =6 ⁻ parent, 1023γ to 5 ⁻ . 31*: L(t,p)=6. Direct β ^π feeding from J^{π} =6 ⁻ parent, 1023γ to 5 ⁻ . 31*: L(t,p)=6. Direct β ^π feeding from J^{π} =6 ⁻ parent, 1023γ to 5 ⁻ . 31*: L(t,p)=6. Direct β ^π feeding from J^{π} =6 ⁻ parent, 1023γ to 5 ⁻ . 31*: L(t,p)=6. Direct β ^π feeding from J^{π} =6 ⁻ parent, 1023γ to 5 ⁻ . 31*: L(t,p)=6. Direct β ^π feeding from J^{π} =6 ⁻ parent, 1023γ to 5 ⁻ . 31*: L(t,p)=6. Direct β ^π feeding from J^{π} =6 ⁻ parent, 1023γ to 5 ⁻ . 31*: L(t,p)=6. Direct β ^π feeding from J^{π} =6 ⁻ parent, 1023γ to 5 ⁻ . 31*: L(t,p)=6. Direct β ^π feeding from J^{π} =6 ⁻ parent, 1023γ to 5 ⁻ . 31*: L(t,p)=6. Direct β ^π feeding from J^{π} =6 ⁻ parent, 1023γ to 5 ⁻ . 31*: L(t,p)=6. Direct β ^π feeding from J^{π} =6 ⁻ parent, 1026γ to 5 ⁻ . 31*: L(t,p)=6. Direct β ^π feeding from J^{π} =6 ⁻ parent, 1023γ to 5 ⁻ . 31*: L(t,p)=6. Direct β ^π feeding from J^{π} =6 ⁻ parent, 1023γ to 5 ⁻ . 31*: L(t,p)=6. Direct β ^π feeding from J^{π} =6 ⁻ parent, 1023γ to 5 ⁻ . 31*: L(t,p)=6. Direct β ^π feeding from J^{π} =6 ⁻ parent, 1026γ to 5 ⁻ . 31*: L(t,p)=6. Direct β ^π feeding from J^{π} =6 ⁻ parent, 1026γ	3813 [@] 5		EF		E(level): possible doublet; $L(p,p')=(1)+4$.				
3888 5 (4) + EF h J ^π : L(p,p')=4. J ^π : direct β ⁻ feeding from J^{π} =6 ⁻ parent, 2117γ to 4 ⁺ . 3904.0 4 (5.6 ⁺) A J ^π : direct β ⁻ feeding from J^{π} =6 ⁻ parent, 2117γ to 4 ⁺ . 3914 I^{π} EF J ^π : L(t,p)=1. 3999 I^{π} E H J ^π : L(t,p)=2. E(level): from (t,p). J ^π : L(t,p)=2. E(level): from (t,p). J ^π : L(p,p')=4. 4061.40 I^{π} EF E(level): doublet in (t,p). J ^π : L(p,p')=4. J ^π : L(t,p)=2. J ^π : L(t,p)=2. J ^π : L(t,p)=4. J ^π : L(t,p)=4. J ^π : L(t,p)=2. J ^π : L(t,p)=3. J ^π : L(t,p)=4. J ^π : L(t,p)=6. J ^π : L(t,p)=6. J ^π : L(t,p)=7. J	3844 [@] 5	1-	EF h		J^{π} : L(t,p)=1.				
3904.0 4 (5.6+) A		$(5,6^+)$	A		J^{π} : direct β^{-} feeding from $J^{\pi}=6^{-}$ parent, 2062 γ to 4 ⁺ .				
3914 $I0$ 3948 $^{\odot}$ 5 1^{-} 3999 $I0$ 2 $^{+}$ E H I^{π} : L(t,p)=1. 4001.46 $I5$ (5,6,7 $^{-}$) A 4016 $I0$ 3 $^{+}$,4 $^{+}$,5 $^{+}$ EF 406.6 $^{\odot}$ $I0$ 4 $^{+}$ 4136 $^{\odot}$ $I0$ 2 $^{+}$,1 $^{+}$ 417. L(t,p)=2. 4146.1 3 4172 $^{\odot}$ $I0$ 5 $^{-}$ 4264.5 7 (5,6,7 $^{-}$) A 4291 $I0$ 2 $^{+}$ 4308.99 $I8$ (5,6,7 $^{-}$) A 4309 $I8$ (5,6,7 $^{-}$) A 4309 $I8$ (5,6,7 $^{-}$) A 4309	3888 [@] 5	$(4)^{+}$	EF h		J^{π} : $L(p,p')=4$.				
3948 $^{\circ}$ 5 1 $^{-}$ EF H J^{π} : L(t,p)=1. 2999 10 2 $^{+}$ E H J^{π} : L(t,p)=2. E(level): from (t,p). 3 $^{+}$ 4,4 $^{+}$ 5 $^{+}$ EF J^{π} : L(p,p')=4. 4016 10 3 $^{+}$,4 $^{+}$,5 $^{+}$ EF J^{π} : L(p,p')=4. 4060 $^{\circ}$ 10 4 $^{+}$ EF J^{π} : L(p,p')=4. 4136 $^{\circ}$ 10 2 $^{+}$,1 $^{+}$,3 $^{+}$ EF J^{π} : L(p,p')=2. 4146.1 3 I J^{π} : proposed as 3 $^{-}$ in (n,n'γ) based on population strength. 4172 $^{\circ}$ 10 5 $^{-}$ F H J^{π} : L(p,p')=5, L(α,α')=5. J^{π} : direct β feeding from J^{π} =6 parent, 1226γ to 5 $^{-}$. 4291 10 2 $^{+}$ EF J^{π} : L(p,p')=4. 4144 10 3 $^{+}$,4 $^{+}$,5 $^{+}$ F J^{π} : L(p,p')=4. 4444 10 3 $^{+}$,4 $^{+}$,5 $^{+}$ F J^{π} : L(p,p')=4. 4444 10 3 $^{+}$,4 $^{+}$,5 $^{+}$ F J^{π} : L(p,p')=4. 4444 10 3 $^{+}$,4 $^{+}$,5 $^{+}$ F J^{π} : L(p,p')=4. 4588.8 3 (5,6,7) A 4710.1 5 (5,6,7) A 4849.2 3 (5,6,7) A 4935.9 † 14 (10 $^{+}$ MN 1 $^{\pi}$: direct β feeding from J^{π} =6 parent, 1271γ to 5 $^{-}$. 4710.1 5 (5,6,7) A 4935.9 † 14 (10 $^{+}$ MN 1 $^{\pi}$: direct β feeding from J^{π} =6 parent, 1270γ to 4 $^{+}$. 4935.9 † 14 (10 $^{+}$ MN 1 $^{\pi}$: direct β feeding from J^{π} =6 parent, 3062γ to 4 $^{+}$. 4935.9 † 14 (10 $^{+}$ MN 1 $^{\pi}$: direct β feeding from J^{π} =6 parent, 3062γ to 4 $^{+}$. 4935.9 † 14 (10 $^{+}$ MN 1 $^{\pi}$: direct β feeding from J^{π} =6 parent, 3062γ to 4 $^{+}$.		$(5,6^+)$			J^{π} : direct β^- feeding from $J^{\pi}=6^-$ parent, 2117 γ to 4 ⁺ .				
3999 10 2* E H J ^r : L(t,p)=2. E(level): from (t,p). 401.46 15 (5,6,7^-) A J ^r : direct β ⁻ feeding from J ^π =6 ⁻ parent, 963γ to 5 ⁻ . 4016 10 3 ⁺ ,4 ⁺ ,5 ⁺ EF E(level): doublet in (t,p). J ^r : L(t,p)=4. 406.40 16 (5,6,7^-) A J ^r : direct β ⁻ feeding from J ^π =6 ⁻ parent, 1023γ to 5 ⁻ . 4066 10 4 ⁺ EF J ^r : L(p,p')=2. 4136 10 2 ⁺ ,1 ⁺ ,3 ⁺ EF J ^π : L(p,p')=2. 4146.1 3 I J ^π : proposed as 3 ⁻ in (n,n'γ) based on population strength. 4172 10 5 ⁻ F H XREF: H(4200). J ^r : L(t,p)=5, L(α,α')=5. J ^r : direct β ⁻ feeding from J ^π =6 ⁻ parent, 1226γ to 5 ⁻ . 4291 10 2 ⁺ EF E(level): weighted average of 4297 10 from (t,p) and 4284 10 from (p,p'). J ^r : L(p,p')=4. 4308.99 18 (5,6,7 ⁻) A F J ^r : L(p,p')=4. 4444 10 3 ⁺ ,4 ⁺ ,5 ⁺ F J ^r : L(p,p')=4. 4444 10 3 ⁺ ,4 ⁺ ,5 ⁺ F J ^r : L(p,p')=4. 4444 17 (5,6,7 ⁻) A J ^r : direct β ⁻ feeding from J ^π =6 ⁻ parent, 1271γ to 5 ⁻ . 4514.27 23 (5,6,7 ⁻) A J ^r : direct β ⁻ feeding from J ^π =6 ⁻ parent, 1426.5γ to 5 ⁻ . 4788.8 3 (5,6,7 ⁻) A J ^r : direct β ⁻ feeding from J ^π =6 ⁻ parent, 1476γ to 5 ⁻ . J ^r : direct β ⁻ feeding from J ^π =6 ⁻ parent, 1751γ to 5 ⁻ . 4791.7 10 (5,6,7) A J ^r : direct β ⁻ feeding from J ^π =6 ⁻ parent, 151γ to 5 ⁻ . 4791.7 10 (5,6,7) A J ^r : direct β ⁻ feeding from J ^π =6 ⁻ parent, 3062γ to 4 ⁺ . 4935.9 14 (10 ⁺) MN J ^r : 1180.5γ to (8 ⁺), band assignment. 5061.3 5 (5,6,7) A			E						
E(level): from (t,p). 4001.46 15 (5,6,7") A 4016 10 3 ⁺ ,4 ⁺ ,5 ⁺ EF 4061.40 16 (5,6,7") A 4066 0 10 4 ⁺ EF 4136 0 10 2 ⁺ ,1 ⁺ ,3 ⁺ EF 41461.3 I 4172 10 5 ⁻ FH 4291 10 2 ⁺ EF 4308.99 18 (5,6,7") A 4508.99 18 (5,6,7") A 4508.99 18 (5,6,7") A 4508.99 18 (5,6,7") A 4508.99 18 (5,6,7") A 4608 10 3 ⁺ ,4 ⁺ ,5 ⁺ F 4508.23 (5,6,7") A 4508.23 (5,6,7") A 4518.23 (5,6,7") A 4518.24 (6,7") A 4518.25 (6,6,7") A 4528.25 (5,6,7") A 4538.3 (5,6,7") A 4538.3 (5,6,7") A 4549.2 (5,6,7") A 4558.2 (5,6,7") A 4570.1 (6,6,7") A 4570.1 (6,6,7") A 4570.1 (6,6,7") A 4570.2 (6,6,7") A 4570.2 (6,6,7") A 4570.3 (6,6,7") A 4770.1 (6,6,7") A									
4001.46 15 (5,6,7") A J^{π} : direct β" feeding from J^{π} =6" parent, 963γ to 5". E(level): doublet in (t.p). J^{π} : $L(p,p')$ =4. J^{π} : direct β" feeding from J^{π} =6" parent, 1023γ to 5". J^{π} : $L(p,p')$ =4. J^{π} : direct β" feeding from J^{π} =6" parent, 1023γ to 5". J^{π} : $L(p,p')$ =2. J^{π} : $L(p,p')$ =2. J^{π} : $L(p,p')$ =2. J^{π} : $L(p,p')$ =5. $L(p,p')$ =5. $L(p,p')$ =5. $L(p,p')$ =6. $L(p,p')$ =6. $L(p,p')$ =7. $L(p,p')$ =7. $L(p,p')$ =8. $L(p,p')$ =8. $L(p,p')$ =8. $L(p,p')$ =9. $L(p,p')$ =9. $L(p,p')$ =1. $L(p,p')$ =1. $L(p,p')$ =1. $L(p,p')$ =2. $L(p,p')$ =2. $L(p,p')$ =3. $L(p,p')$ =4. $L(p,p')$ =6. $L(p,p')$ =6. $L(p,p')$ =7. $L(p,p')$ =8. $L(p,p')$ =8. $L(p,p')$ =8. $L(p,p')$ =8. $L(p,p')$ =8. $L(p,p')$ =8. $L(p,p')$ =9. $L(p,p')$ =1. $L(p,p')$ =2. $L(p,p')$ =3. $L(p,p')$ =4. $L(p,p')$ =5. $L(p,p')$ =6. $L(p,p')$ 9. $L($	3999 <i>10</i>	2+	Е Н						
4016 10 3 ⁺ , 4 ⁺ , 5 ⁺ EF E(level): doublet in (t,p). J^{π} : L(p,p')=4. J^{π} : L(p,p')=4. J^{π} : L(p,p')=2. J^{π} : L(p,p')=5. J^{π} : L(p,p')=5. J^{π} : L(p,p')=6. J^{π} : L(p,p')=7. J^{π} : L(p,p')=8. J^{π} : L(p,p')=9. J^{π} :	4001 46 15	(5 6 7-)	Δ.						
3 Jπ: L(p,p')=4. 4061.40 16 (5,6,7−) A 4066 10 4+ EF 4136 10 2+1,+3+ EF 41440.1 3 4172 10 5− FH XREF: H(4200). Jπ: L(p,p')=5, L(α,α')=5. 4264.5 7 (5,6,7−) A 4291 10 2+ EF 4308.99 18 (5,6,7−) A 4308.99 18 (5,6,7−) A 4308.99 18 (5,6,7−) A 4444 10 3+4+5+ F 4444 10 3+4+5+ F 4444 10 3+4+5+ F 4458.8 3 (5,6,7−) A 4588.8 3 (5,6,7−) A 4710.1 5 (5,6,7−) A 4710.1 6 (5,6,7−) A 4710.1 7 (6,6,7−) A 4710.1 8 (6,6−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−									
4061.40 16 (5,6,7 ⁻) A	1010 10	5 ,. ,5							
4136 $^{\textcircled{@}}$ 10 2+,1+,3+		$(5,6,7^{-})$	A						
4146.1 3 4172 10 5 F H XREF: H(4200). J ^{π} : L(p,p')=5, L(α , α')=5. 4264.5 7 (5,6,7 A EF 4308.99 18 (5,6,7 A FF 4444 10 3+,4+,5+ FF 4464.77 17 (5,6,7 A FF 4514.27 23 (5,6,7 A FF) 4518.8 8 3 (5,6,7 A FF) 458.8 8 3 (5,6,7 A FF) 4791.1 5 (5,6,7 A FF) 4791.1 5 (5,6,7 A FF) 4791.1 5 (5,6,7 A FF) 4791.1 6 (5,6,7 A FF) 4791.1 7 10 (5,6,7 A FF) 4791.1 7 10 (5,6,7 A FF) 4791.1 7 10 (5,6,7 A FF) 4791.2 10 5 FF 4791.3 10 5 FF 47		4+	EF		J^{π} : L(t,p)=4.				
4172 $^{\textcircled{@}}$ 10 5 $^{-}$ F H XREF: H(4200). J ^π : L(p,p')=5, L(α,α')=5. 4264.5 7 (5,6,7) A J ^π : direct β feeding from J ^π =6 parent, 1226γ to 5 $^{-}$. 4291 10 2 $^{+}$ EF E(level): weighted average of 4297 10 from (t,p) and 4284 10 from (p,p'). J ^π : L(t,p)=L(p,p')=2. 4308.99 18 (5,6,7) A F J ^π : direct β feeding from J ^π =6 parent, 1271γ to 5 $^{-}$. 4367 10 3 $^{+}$, 4 $^{+}$, 5 $^{+}$ F J ^π : L(p,p')=4. 4444 10 3 $^{+}$, 4 $^{+}$, 5 $^{+}$ F J ^π : L(p,p')=4. 4464.77 17 (5,6,7) A J ^π : direct β feeding from J ^π =6 parent, 1426.5γ to 5 $^{-}$. 4514.27 23 (5,6,7) A J ^π : direct β feeding from J ^π =6 parent, 1476γ to 5 $^{-}$. 4588.8 3 (5,6,7) A J ^π : direct β feeding from J ^π =6 parent, 1551γ to 5 $^{-}$. 4710.1 5 (5,6,7) A J ^π : direct β feeding from J ^π =6 parent. 4791.7 10 (5,6,7) A J ^π : direct β feeding from J ^π =6 parent. 4849.2 3 (5,6 $^{+}$) A J ^π : direct β feeding from J ^π =6 parent. 4849.2 3 (5,6,7) A J ^π : direct β feeding from J ^π =6 parent. 4849.2 3 (5,6,7) A J ^π : direct β feeding from J ^π =6 parent. 4849.2 3 (5,6,7) A J ^π : direct β feeding from J ^π =6 parent. 4935.9 14 (10 $^{+}$) MN J ^π : 1180.5γ to (8 $^{+}$), band assignment. 5061.3 5 (5,6,7) A J ^π : direct β feeding from J ^π =6 parent.		$2^+,1^+,3^+$	EF						
3 Jπ: L(p,p')=5, L(α,α')=5. 4264.5 7 (5,6,7-) A Jπ: direct β- feeding from Jπ=6- parent, 1226γ to 5 E(level): weighted average of 4297 10 from (t,p) and 4284 10 from (p,p'). Jπ: L(t,p)=L(p,p')=2. 4308.99 18 (5,6,7-) A F Jπ: L(p,p')=4. 4444 10 3+,4+,5+ F Jπ: L(p,p')=4. 4464.77 17 (5,6,7-) A Jπ: direct β- feeding from Jπ=6- parent, 1426.5γ to 5 4514.27 23 (5,6,7-) A Jπ: direct β- feeding from Jπ=6- parent, 1476γ to 5 4588.8 3 (5,6,7-) A Jπ: direct β- feeding from Jπ=6- parent, 1271γ to 4+. 4588.8 3 (5,6,7-) A Jπ: direct β- feeding from Jπ=6- parent, 1551γ to 5 4710.1 5 (5,6,7) A Jπ: direct β- feeding from Jπ=6- parent. 4791.7 10 (5,6,7) A Jπ: direct β- feeding from Jπ=6- parent. 4791.7 10 (5,6,7) A Jπ: direct β- feeding from Jπ=6- parent. 4849.2 3 (5,6+) A Jπ: direct β- feeding from Jπ=6- parent. 4849.2 3 (5,6+) A Jπ: direct β- feeding from Jπ=6- parent. 4791.7 10 (5,6,7) A Jπ: direct β- feeding from Jπ=6- parent. 4791.7 10 (5,6,7) A Jπ: direct β- feeding from Jπ=6- parent. 4849.2 3 (5,6+) A Jπ: direct β- feeding from Jπ=6- parent. 4849.2 3 (5,6+) A Jπ: direct β- feeding from Jπ=6- parent. 4791.7 10 (5,6,7) A Jπ: direct β- feeding from Jπ=6- parent. 4791.7 10 (5,6,7) A Jπ: direct β- feeding from Jπ=6- parent. 4791.7 10 (5,6,7) A Jπ: direct β- feeding from Jπ=6- parent. 4791.7 10 (5,6,7) A Jπ: direct β- feeding from Jπ=6- parent. 4791.7 10 (5,6,7) A Jπ: direct β- feeding from Jπ=6- parent. 4791.7 10 (5,6,7) A Jπ: direct β- feeding from Jπ=6- parent. 4791.7 10 (5,6,7) A Jπ: direct β- feeding from Jπ=6- parent. 4791.7 10 (5,6,7) A Jπ: direct β- feeding from Jπ=6- parent. 4791.7 10 (5,6,7) A Jπ: direct β- feeding from Jπ=6- parent. 4791.7 10 (5,6,7) A Jπ: direct β- feeding from Jπ=6- parent. 4791.7 10 (5,6,7) A Jπ: direct β- feeding from Jπ=6- parent. 4791.7 10 (5,6,7) A Jπ: direct β- feeding from Jπ=6- parent. 4791.7 10 (5,6,7) A Jπ: direct β- feeding from Jπ=6- parent. 4791.7 10 (5,6,7) A Jπ: direct β- feeding from Jπ=6- parent. 4791.7 10 (I		J^{π} : proposed as 3 ⁻ in $(n,n'\gamma)$ based on population strength.				
4264.5 7 (5,6,7 ⁻) A J^{π} : direct β^- feeding from J^{π} =6 ⁻ parent, 1226 γ to 5 ⁻ . E(level): weighted average of 4297 10 from (t,p) and 4284 10 from (p,p γ). J^{π} : L(t,p)=L(p,p γ)=2. J^{π} : direct β^- feeding from J^{π} =6 ⁻ parent, 1271 γ to 5 ⁻ . J^{π} : L(p,p γ)=4. J^{π} : L(p,p γ)=4. J^{π} : direct β^- feeding from J^{π} =6 ⁻ parent, 1426.5 γ to 5 ⁻ . J^{π} : direct β^- feeding from J^{π} =6 ⁻ parent, 1426.5 γ to 5 ⁻ . J^{π} : direct β^- feeding from J^{π} =6 ⁻ parent, 1476 γ to 5 ⁻ . J^{π} : direct β^- feeding from J^{π} =6 ⁻ parent, 1476 γ to 5 ⁻ . J^{π} : direct β^- feeding from J^{π} =6 ⁻ parent, 171 γ to 4 ⁺ . J^{π} : direct β^- feeding from J^{π} =6 ⁻ parent, 1551 γ to 5 ⁻ . J^{π} : direct β^- feeding from J^{π} =6 ⁻ parent. J^{π} : direct β^- feeding from J^{π} =6 ⁻ parent. J^{π} : direct β^- feeding from J^{π} =6 ⁻ parent. J^{π} : direct J^{π} feeding from J^{π} =6 ⁻ parent. J^{π} : direct J^{π} feeding from J^{π} =6 ⁻ parent. J^{π} : direct J^{π} feeding from J^{π} =6 ⁻ parent. J^{π} : direct J^{π} feeding from J^{π} =6 ⁻ parent. J^{π} : direct J^{π} feeding from J^{π} =6 ⁻ parent. J^{π} : direct J^{π} feeding from J^{π} =6 ⁻ parent. J^{π} : direct J^{π} feeding from J^{π} =6 ⁻ parent. J^{π} : direct J^{π} feeding from J^{π} =6 ⁻ parent. J^{π} : direct J^{π} feeding from J^{π} =6 ⁻ parent. J^{π} : direct J^{π} feeding from J^{π} =6 ⁻ parent. J^{π} : direct J^{π} feeding from J^{π} =6 ⁻ parent. J^{π} : direct J^{π} feeding from J^{π} =6 ⁻ parent. J^{π} : direct J^{π} feeding from J^{π} =6 ⁻ parent. J^{π} : direct J^{π} feeding from J^{π} =6 ⁻ parent. J^{π} : direct J^{π} feeding from J^{π} =6 ⁻ parent. J^{π} : direct J^{π} feeding from J^{π} =6 ⁻ parent. J^{π} : direct J^{π} feeding from J^{π} =6 ⁻ parent. J^{π}	4172 [@] <i>10</i>	5-	F H						
4291 10 2+ EF E(level): weighted average of 4297 10 from (t,p) and 4284 10 from (p,p'). J^{π} : L(t,p)=L(p,p')=2. 4308.99 18 (5,6,7 ⁻) A F J^{π} : direct β^- feeding from $J^{\pi}=6^-$ parent, 1271γ to 5 ⁻ . 4367 10 3+,4+,5+ F J^{π} : L(p,p')=4. 4444 10 3+,4+,5+ F J^{π} : L(p,p')=4. 4464.77 17 (5,6,7 ⁻) A J^{π} : direct β^- feeding from $J^{\pi}=6^-$ parent, 1426.5γ to 5 ⁻ . 4514.27 23 (5,6,7 ⁻) A J^{π} : direct β^- feeding from $J^{\pi}=6^-$ parent, 1476γ to 5 ⁻ . 4588.8 3 (5,6,7 ⁻) A J^{π} : direct β^- feeding from $J^{\pi}=6^-$ parent, 2771γ to 4 ⁺ . 4588.8 3 (5,6,7 ⁻) A J^{π} : direct β^- feeding from $J^{\pi}=6^-$ parent, 1551γ to 5 ⁻ . 4710.1 5 (5,6,7) A J^{π} : direct β^- feeding from $J^{\pi}=6^-$ parent. 4791.7 10 (5,6,7) A J^{π} : direct β^- feeding from $J^{\pi}=6^-$ parent. 4849.2 3 (5,6 ⁺) A J^{π} : direct β^- feeding from $J^{\pi}=6^-$ parent. 4791.7 10 (5,6,7) A J^{π} : direct β^- feeding from $J^{\pi}=6^-$ parent. 4791.7 10 (5,6,7) A J^{π} : direct β^- feeding from $J^{\pi}=6^-$ parent. 4791.7 10 (5,6,7) A J^{π} : direct β^- feeding from $J^{\pi}=6^-$ parent. 4791.7 10 (5,6,7) A J^{π} : direct β^- feeding from $J^{\pi}=6^-$ parent. 4791.7 10 (5,6,7) A J^{π} : direct β^- feeding from $J^{\pi}=6^-$ parent. 4791.7 10 (5,6,7) A J^{π} : direct β^- feeding from $J^{\pi}=6^-$ parent. 4791.7 10 (5,6,7) A J^{π} : direct β^- feeding from $J^{\pi}=6^-$ parent. 4791.7 10 (5,6,7) A J^{π} : direct β^- feeding from $J^{\pi}=6^-$ parent. 4791.7 10 (5,6,7) A J^{π} : direct β^- feeding from $J^{\pi}=6^-$ parent. 4791.7 10 (5,6,7) A J^{π} : direct β^- feeding from $J^{\pi}=6^-$ parent. 4791.7 10 (5,6,7) A J^{π} : direct β^- feeding from $J^{\pi}=6^-$ parent. 4791.7 10 (5,6,7) A J^{π} : direct β^- feeding from $J^{\pi}=6^-$ parent. 4791.7 10 (5,6,7) A J^{π} : direct β^- feeding from $J^{\pi}=6^-$ parent. 4791.7 10 (5,6,7) A J^{π} : direct β^- feeding from $J^{\pi}=6^-$ parent. 4791.7 10 (5,6,7) A J^{π} : direct β^- feeding from J									
308.99 18 (5,6,7 ⁻) A F J ^π : L(t,p)=L(p,p')=2. 4308.99 18 (5,6,7 ⁻) A F J ^π : direct β ⁻ feeding from $J^{\pi}=6^{-}$ parent, 1271 γ to 5 ⁻ . 4367 10 3 ⁺ ,4 ⁺ ,5 ⁺ F J ^π : L(p,p')=4. 4444 10 3 ⁺ ,4 ⁺ ,5 ⁺ F J ^π : L(p,p')=4. 4464.77 17 (5,6,7 ⁻) A J ^π : direct β ⁻ feeding from $J^{\pi}=6^{-}$ parent, 1426.5 γ to 5 ⁻ . 4514.27 23 (5,6,7 ⁻) A J ^π : direct β ⁻ feeding from $J^{\pi}=6^{-}$ parent, 1476 γ to 5 ⁻ . 4558.2 3 (5,6) ⁺ A J ^π : direct β ⁻ feeding from $J^{\pi}=6^{-}$ parent, 2771 γ to 4 ⁺ . 4588.8 3 (5,6,7 ⁻) A J ^π : direct β ⁻ feeding from $J^{\pi}=6^{-}$ parent, 1551 γ to 5 ⁻ . 4710.1 5 (5,6,7) A J ^π : direct β ⁻ feeding from $J^{\pi}=6^{-}$ parent. 4791.7 10 (5,6,7) A J ^π : direct β ⁻ feeding from $J^{\pi}=6^{-}$ parent. 4849.2 3 (5,6) A J ^π : direct β ⁻ feeding from $J^{\pi}=6^{-}$ parent. 4935.9 [‡] 14 (10 ⁺) MN J ^π : 1180.5 γ to (8 ⁺), band assignment. 5061.3 5 (5,6,7) A									
4308.99 18 (5,6,7 ⁻) A F J ^π : direct β ⁻ feeding from $J^{\pi}=6^-$ parent, 1271γ to 5 ⁻ . 4367 10 3 ⁺ ,4 ⁺ ,5 ⁺ F J ^π : L(p,p')=4. 4444 10 3 ⁺ ,4 ⁺ ,5 ⁺ F J ^π : L(p,p')=4. 4464.77 17 (5,6,7 ⁻) A J ^π : direct β ⁻ feeding from $J^{\pi}=6^-$ parent, 1426.5γ to 5 ⁻ . 4514.27 23 (5,6,7 ⁻) A J ^π : direct β ⁻ feeding from $J^{\pi}=6^-$ parent, 1476γ to 5 ⁻ . 4558.2 3 (5,6) A J ^π : direct β ⁻ feeding from $J^{\pi}=6^-$ parent, 2771γ to 4 ⁺ . 4588.8 3 (5,6,7 ⁻) A J ^π : direct β ⁻ feeding from $J^{\pi}=6^-$ parent, 1551γ to 5 ⁻ . 4710.1 5 (5,6,7) A J ^π : direct β ⁻ feeding from $J^{\pi}=6^-$ parent. 4791.7 10 (5,6,7) A J ^π : direct β ⁻ feeding from $J^{\pi}=6^-$ parent. 4849.2 3 (5,6) A J ^π : direct β ⁻ feeding from $J^{\pi}=6^-$ parent. 4935.9 [‡] 14 (10 ⁺) MN J ^π : 1180.5γ to (8 ⁺), band assignment. 5061.3 5 (5,6,7) A	4291 10	21	EF						
4367 10 $3^+, 4^+, 5^+$ F J^π : $L(p, p') = 4$. 4444 10 $3^+, 4^+, 5^+$ F J^π : $L(p, p') = 4$. 4464.77 17 $(5,6,7^-)$ A J^π : direct β^- feeding from $J^\pi = 6^-$ parent, 1426.5 γ to 5^- . 4514.27 23 $(5,6,7^-)$ A J^π : direct β^- feeding from $J^\pi = 6^-$ parent, 1476 γ to 5^- . 4558.2 3 $(5,6^+)$ A J^π : direct β^- feeding from $J^\pi = 6^-$ parent, 2771 γ to 4^+ . 4588.8 3 $(5,6,7^-)$ A J^π : direct β^- feeding from $J^\pi = 6^-$ parent, 1551 γ to 5^- . 4710.1 5 $(5,6,7)$ A J^π : direct β^- feeding from $J^\pi = 6^-$ parent. 4791.7 10 $(5,6,7)$ A J^π : direct β^- feeding from $J^\pi = 6^-$ parent. 4849.2 3 $(5,6^+)$ A J^π : direct β^- feeding from $J^\pi = 6^-$ parent. 4935.9 ‡ 14 (10^+) MN J^π : 1180.5 γ to (8^+) , band assignment. 5061.3 5 $(5,6,7)$ A J^π : direct β^- feeding from $J^\pi = 6^-$ parent.	4308.99 18	$(5,6,7^{-})$	A F						
4464.77 17 (5,6,7 ⁻) A J^{π} : direct β ⁻ feeding from J^{π} =6 ⁻ parent, 1426.5γ to 5 ⁻ . 4514.27 23 (5,6,7 ⁻) A J^{π} : direct β ⁻ feeding from J^{π} =6 ⁻ parent, 1476γ to 5 ⁻ . 4558.2 3 (5,6) ⁺ A J^{π} : direct β ⁻ feeding from J^{π} =6 ⁻ parent, 2771γ to 4 ⁺ . 4588.8 3 (5,6,7 ⁻) A J^{π} : direct β ⁻ feeding from J^{π} =6 ⁻ parent, 1551γ to 5 ⁻ . 4710.1 5 (5,6,7) A J^{π} : direct β ⁻ feeding from J^{π} =6 ⁻ parent. 4791.7 10 (5,6,7) A J^{π} : direct β ⁻ feeding from J^{π} =6 ⁻ parent. 4849.2 3 (5,6) ⁺ A J^{π} : direct β ⁻ feeding from J^{π} =6 ⁻ parent, 3062γ to 4 ⁺ . 4935.9‡ 14 (10 ⁺) MN J^{π} : 1180.5γ to (8 ⁺), band assignment. 5061.3 5 (5,6,7) A J^{π} : direct β ⁻ feeding from J^{π} =6 ⁻ parent.	4367 10	3+,4+,5+							
4514.27 23 (5,6,7 ⁻) A J ^π : direct β ⁻ feeding from J^{π} =6 ⁻ parent, 1476γ to 5 ⁻ . 4558.2 3 (5,6 ⁺) A J ^π : direct β ⁻ feeding from J^{π} =6 ⁻ parent, 2771γ to 4 ⁺ . 4588.8 3 (5,6,7 ⁻) A J ^π : direct β ⁻ feeding from J^{π} =6 ⁻ parent, 1551γ to 5 ⁻ . 4710.1 5 (5,6,7) A J ^π : direct β ⁻ feeding from J^{π} =6 ⁻ parent. 4791.7 10 (5,6,7) A J ^π : direct β ⁻ feeding from J^{π} =6 ⁻ parent. 4849.2 3 (5,6 ⁺) A J ^π : direct β ⁻ feeding from J^{π} =6 ⁻ parent. 4935.9 [‡] 14 (10 ⁺) MN J ^π : 1180.5γ to (8 ⁺), band assignment. 5061.3 5 (5,6,7) A J ^π : direct β ⁻ feeding from J^{π} =6 ⁻ parent.			F						
4558.2 3 (5,6 ⁺) A J ^π : direct β ⁻ feeding from J^{π} =6 ⁻ parent, 2771γ to 4 ⁺ . 4588.8 3 (5,6,7 ⁻) A J ^π : direct β ⁻ feeding from J^{π} =6 ⁻ parent, 1551γ to 5 ⁻ . 4710.1 5 (5,6,7) A J ^π : direct β ⁻ feeding from J^{π} =6 ⁻ parent. 4791.7 10 (5,6,7) A J ^π : direct β ⁻ feeding from J^{π} =6 ⁻ parent. 4849.2 3 (5,6 ⁺) A J ^π : direct β ⁻ feeding from J^{π} =6 ⁻ parent, 3062γ to 4 ⁺ . 4935.9 [‡] 14 (10 ⁺) MN J ^π : 1180.5γ to (8 ⁺), band assignment. 5061.3 5 (5,6,7) A J ^π : direct β ⁻ feeding from J^{π} =6 ⁻ parent.					J^{π} : direct β^- feeding from $J^{\pi}=6^-$ parent, 1426.5 γ to 5 ⁻ .				
4588.8 3 (5,6,7 ⁻) A J ^π : direct β ⁻ feeding from $J^{\pi}=6^{-}$ parent, 1551γ to 5 ⁻ . 4710.1 5 (5,6,7) A J ^π : direct β ⁻ feeding from $J^{\pi}=6^{-}$ parent. 4791.7 10 (5,6,7) A J ^π : direct β ⁻ feeding from $J^{\pi}=6^{-}$ parent. 4849.2 3 (5,6 ⁺) A J ^π : direct β ⁻ feeding from $J^{\pi}=6^{-}$ parent, 3062γ to 4 ⁺ . 4935.9 [‡] 14 (10 ⁺) MN J ^π : 1180.5γ to (8 ⁺), band assignment. 5061.3 5 (5,6,7) A J ^π : direct β ⁻ feeding from $J^{\pi}=6^{-}$ parent.									
4710.1 5 (5,6,7) A J^{π} : direct β^- feeding from $J^{\pi}=6^-$ parent. 4791.7 10 (5,6,7) A J^{π} : direct β^- feeding from $J^{\pi}=6^-$ parent. 4849.2 3 (5,6 ⁺) A J^{π} : direct β^- feeding from $J^{\pi}=6^-$ parent, 3062γ to 4 ⁺ . 4935.9 [‡] 14 (10 ⁺) MN J^{π} : 1180.5γ to (8 ⁺), band assignment. 5061.3 5 (5,6,7) A J^{π} : direct β^- feeding from $J^{\pi}=6^-$ parent.					I^{π} : direct R^{-} feeding from $I^{\pi} = 6^{-}$ parent 1551 α to 5				
4791.7 10 (5,6,7) A J^{π} : direct β^- feeding from $J^{\pi}=6^-$ parent. 4849.2 3 (5,6 ⁺) A J^{π} : direct β^- feeding from $J^{\pi}=6^-$ parent, 3062γ to 4 ⁺ . 4935.9 [‡] 14 (10 ⁺) MN J^{π} : 1180.5γ to (8 ⁺), band assignment. 5061.3 5 (5,6,7) A J^{π} : direct β^- feeding from $J^{\pi}=6^-$ parent.					J^{π} : direct β^{-} feeding from $J^{\pi}=6^{-}$ parent.				
4849.2 3 (5,6 ⁺) A J^{π} : direct β^- feeding from J^{π} =6 ⁻ parent, 3062 γ to 4 ⁺ . 4935.9 [‡] 14 (10 ⁺) MN J^{π} : 1180.5 γ to (8 ⁺), band assignment. 5061.3 5 (5,6,7) A J^{π} : direct β^- feeding from J^{π} =6 ⁻ parent.									
5061.3 5 (5,6,7) A J^{π} : direct β^- feeding from $J^{\pi}=6^-$ parent.	4849.2 <i>3</i>								
	4935.9 [‡] <i>14</i>	(10^+)		MN	J^{π} : 1180.5 γ to (8 ⁺), band assignment.				
6116.2 [‡] 17 (12 ⁺) MN J^{π} : 1180.3 γ to (10 ⁺), band assignment.		(5,6,7)	Α		J^{π} : direct β^- feeding from $J^{\pi}=6^-$ parent.				
	6116.2 [‡] <i>17</i>	(12^+)		MN	J^{π} : 1180.3 γ to (10 ⁺), band assignment.				

 $^{^{\}dagger}$ From a least-squares fit to E γ , by evaluators, for levels connected by γ rays. For levels from transfer reactions, corresponding † Band(A): yrast band. # From (d,³He). @ From (p,p'),(pol p,p').

					A	dopted Leve	els, Gammas (co	ntinued)	
							γ (⁷⁰ Zn)		
$E_i(level)$	\mathbf{J}_i^{π}	$\mathrm{E}_{\gamma}^{\dagger}$	${\rm I}_{\gamma}{}^{\dagger}$	$\mathrm{E}_f \mathrm{J}_f^\pi$	Mult.‡	$\delta^{\#}$	α	$I_{(\gamma+ce)}$	Comments
884.92	2+	884.88 9	100	0.0 0+	E2		3.97×10 ⁻⁴		$\alpha(K)$ =0.000356 5; $\alpha(L)$ =3.58×10 ⁻⁵ 5; $\alpha(M)$ =5.12×10 ⁻⁶ 8; $\alpha(N)$ =2.04×10 ⁻⁷ 3 B(E2)(W.u.)=16.7 10 Mult.: from Coulomb Excitation from 0 ⁺ ground state.
1070.76	0+	185.85 [@] 3	100	884.92 2+	[E2]		0.0634		$\alpha(K)$ =0.0563 8; $\alpha(L)$ =0.00613 9; $\alpha(M)$ =0.000871 13; $\alpha(N)$ =3.07×10 ⁻⁵ 5 B(E2)(W.u.)=37.3 19 E _{γ} : other: 184.4 2 in (n,n' γ).
		1067		0.0 0+	E0			<0.3	$I_{(\gamma+ce)}$: for 100 transitions of 185.9 γ as measured in $(p,p'\gamma)$. Mult.: from internal conversion data in $(p,p'\gamma)$. E_{γ} : from $(p,p'\gamma)$.
1759.16	2+	874.33 [@] 8	100 [@] 9	884.92 2+	M1+E2	+0.75 15	3.58×10 ⁻⁴ 9		$\alpha(K)$ =0.000321 9; $\alpha(L)$ =3.21×10 ⁻⁵ 9; $\alpha(M)$ =4.61×10 ⁻⁶ 12; $\alpha(N)$ =1.85×10 ⁻⁷ 5 B(E2)(W.u.)=10 4; B(M1)(W.u.)=0.0095 23 Mult.: D+Q from $\gamma(\theta)$ in $(n,n'\gamma)$, $\Delta\pi$ =no from level scheme.
		1759.6 [@] 2	68 [@] 7	0.0 0+	[E2]		2.86×10^{-4}		$\alpha(K)=7.92\times10^{-5}\ 11;\ \alpha(L)=7.86\times10^{-6}\ 11;$ $\alpha(M)=1.127\times10^{-6}\ 16;\ \alpha(N)=4.56\times10^{-8}\ 7$ B(E2)(W.u.)=0.60 12
1786.75	4+	901.7 <i>I</i>	100	884.92 2+	[E2]		3.78×10^{-4}		$\alpha(K)$ =0.000339 5; $\alpha(L)$ =3.41×10 ⁻⁵ 5; $\alpha(M)$ =4.88×10 ⁻⁶ 7; $\alpha(N)$ =1.95×10 ⁻⁷ 3 B(E2)(W.u.)=19 6
1957.28 2140.64	2 ⁺ 0 ⁺	1072.2 [@] <i>I</i> 1255.6 ^a 2	100 100	884.92 2 ⁺ 884.92 2 ⁺					
2538.31	2+	751.5 ^a 2	≈18 ^a	1786.75 4+	[E2]		6.06×10 ⁻⁴		$\alpha(\mathrm{K}){=}0.000543~8;~\alpha(\mathrm{L}){=}5.49{\times}10^{-5}~8;~\alpha(\mathrm{M}){=}7.86{\times}10^{-6}$ $11;~\alpha(\mathrm{N}){=}3.11{\times}10^{-7}~5$ B(E2)(W.u.)=73 44
		779.1 [@] 2 1653.9 [@] 2	40 [@] 4 100 [@] 7	1759.16 2 ⁺ 884.92 2 ⁺	M1+E2	-1.5 3	2.39×10 ⁻⁴ 5		I _γ : other: 58 in (n,n'γ). $\alpha(K)=8.78\times10^{-5}$ 14; $\alpha(L)=8.72\times10^{-6}$ 14; $\alpha(M)=1.250\times10^{-6}$ 19; $\alpha(N)=5.06\times10^{-8}$ 8 B(E2)(W.u.)=4.9 +49-21; $B(M1)(W.u.)=0.0040$ +40-20 Mult.: D+Q from $\gamma(\theta)$ in (n,n'γ), $\Delta\pi=$ no from level scheme.
		2537.9 ^a 3	20 ^a	0.0 0+	[E2]		6.18×10^{-4}		$\alpha(K)=4.09\times10^{-5}$ 6; $\alpha(L)=4.05\times10^{-6}$ 6; $\alpha(M)=5.81\times10^{-7}$ 9; $\alpha(N)=2.36\times10^{-8}$ 4 B(E2)(W.u.)=0.17 10
2693.40	4+	735.5 ^a 2	11 ^a	1957.28 2+	[E2]		6.43×10^{-4}		$\alpha(K)=0.000576 \ 8; \ \alpha(L)=5.82\times10^{-5} \ 9; \ \alpha(M)=8.33\times10^{-6}$ $12; \ \alpha(N)=3.30\times10^{-7} \ 5$ $B(E2)(W.u.)=26 +26-14$
		906.5 1	92 12	1786.75 4 ⁺					C. M. GAA C. C. C.

4

γ (70Zn) (continued)

l	$E_i(level)$	\mathtt{J}_i^{π}	$\mathrm{E}_{\gamma}^{\dagger}$	${\rm I}_{\gamma}{}^{\dagger}$	E_f	\mathbf{J}_f^π	Mult.‡	$\delta^{\#}$	α	Comments
	2693.40	4+	934.9 ^a 3	30 ^a	1759.16	2+	[E2]		3.46×10 ⁻⁴	$\alpha(K)$ =0.000310 5; $\alpha(L)$ =3.12×10 ⁻⁵ 5; $\alpha(M)$ =4.46×10 ⁻⁶ 7; $\alpha(N)$ =1.782×10 ⁻⁷ 25 B(E2)(W.u.)=21 +2 <i>I</i> - <i>I</i> 2
			1809.2 ^a 3	100 ^a 16	884.92	2+	[E2]		3.04×10^{-4}	$\alpha(K)=7.51\times10^{-5} \ 11; \ \alpha(L)=7.46\times10^{-6} \ 11; \ \alpha(M)=1.069\times10^{-6} \ 15; \ \alpha(N)=4.32\times10^{-8} \ 6$ B(E2)(W.u.)=2.6 +26-15
	2859.49	3-	902		1957.28	2+				E_{γ} : observed only in Coulomb Excitation.
			1072.2 ^{&} 1	100& 13	1786.75		[E1]		1.12×10^{-4}	$\alpha(K)$ =0.0001001 14; $\alpha(L)$ =9.94×10 ⁻⁶ 14; $\alpha(M)$ =1.423×10 ⁻⁶ 20; $\alpha(N)$ =5.74×10 ⁻⁸ 8
			1100.5 2	45 <mark>&</mark> 5	1759.16	2+	[E1]		1.15×10^{-4}	B(E1)(W.u.)=0.00068 11 $\alpha(K)=9.54\times10^{-5}$ 14; $\alpha(L)=9.47\times10^{-6}$ 14; $\alpha(M)=1.356\times10^{-6}$ 19;
			1100.3** 2	43** 3	1/39.10	2.	[EI]		1.13×10	$\alpha(K) = 9.34 \times 10^{-5} 14$, $\alpha(L) = 9.47 \times 10^{-5} 14$, $\alpha(M) = 1.536 \times 10^{-5} 19$; $\alpha(N) = 5.47 \times 10^{-8} 8$ B(E1)(W.u.)=0.00028 5
			1975.0 ^{&} 4	93 & 7	884.92	2+	[E1]		6.56×10 ⁻⁴	$\alpha(K)=3.61\times10^{-5} 5$; $\alpha(L)=3.57\times10^{-6} 5$; $\alpha(M)=5.11\times10^{-7} 8$; $\alpha(N)=2.07\times10^{-8} 3$ B(E1)(W.u.)=0.000100 13
	2895.10	(6^+)	1108.4 <i>I</i>	100	1786.75					3(21)(\(\text{\text{\$\tinit\\$}\\ \\etitt{\$\text{\$\text{\$\text{\$\text{\$\text{\$\tinx{\$\text{\$\texitex{\$\text{\$\texitt{\$\text{\$\text{\$\texitex{\$\}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}
	2949.67	$1^+, 2^+, 3^+$	1191.9 ^a 3	72 ^a	1759.16					
			2064.1 ^a 2	100 ^a	884.92	2+	M1+E2	+3.8 5	4.04×10 ⁻⁴	$\alpha(K)=5.87\times10^{-5}$ 9; $\alpha(L)=5.82\times10^{-6}$ 9; $\alpha(M)=8.34\times10^{-7}$ 12; $\alpha(N)=3.38\times10^{-8}$ 5 B(E2)(W.u.)=11 +4-6; B(M1)(W.u.)=0.0022 +10-13 Mult.: D+Q from $\gamma(\theta)$ in (n,n' γ), E1+M2 excluded by comparison to RUL.
	2978.26	4+	1191.5 <mark>&</mark> 2	100	1786.75					
	3038.15	5-	1251.7 <i>I</i>	100	1786.75	4+	[E1]		1.68×10^{-4}	$\alpha(K)=7.56\times10^{-5} II; \alpha(L)=7.49\times10^{-6} II; \alpha(M)=1.073\times10^{-6} I5; \alpha(N)=4.34\times10^{-8} 6$
	3222.08	1	2155.0 ^{ac} 1	≈33 ^a	1070.76	0+				B(E1)(W.u.)=0.000195 14 E_{γ} : level energy difference gives E_{γ} =2151.3, transition not included in least-squares fitting.
			3222.0^{a} 1	$\approx 100^{a}$	0.0					
	3246.71	$(3^-,4^+)$	208.75 ^{&} 7	55 <mark>&</mark> 4	3038.15					
			387.10 5	54 <mark>&</mark> 4	2859.49					
			553.2 ^{&} 1	28 <mark>&</mark> 4	2693.40					
			708.42 7	100 & 5	2538.31					
	3342.0	3-	1460.4 ^{&} 2 1555.2 3	20 & 4 100	1786.75 1786.75					
	3476.68	3	438.2 2	22.2 10	3038.15					
			783.1 2	7.8 10	2693.40	4+				
	3598.98		1690.3 <i>2</i> 560.82 <i>8</i>	100.0 <i>16</i> 100	1786.75 3038.15					
	3370.70		300.02 0	100	5050.15	J				

S

γ (70Zn) (continued)

$E_i(level)$	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_f J_f^{π}	E_i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	\mathbf{E}_f \mathbf{J}_f^{π}
3634.99	2+	1875.8 [@] 2	100	1759.16 2+	4464.77	$(5,6,7^{-})$	988.0 <i>3</i>	28 <i>3</i>	3476.68
3710.7	2+	1951.5 ^a 6	100	1759.16 2 ⁺			1426.5 2	100 4	3038.15 5
3755.4	(8^{+})	860.3 ^b	100	2895.10 (6 ⁺)			1569.8 2	32 <i>3</i>	2895.10 (6+)
3788.16		750.0 2	63 4	3038.15 5	4514.27	$(5,6,7^{-})$	1476.1 2	100	3038.15 5
		893.1 6	100 5	2895.10 (6 ⁺)	4558.2	$(5,6^+)$	1520.1 <i>3</i>	67 5	3038.15 5
3848.4	$(5,6^+)$	2061.6 6	100	1786.75 4 ⁺			2771.2 6	100 4	1786.75 4 ⁺
3904.0	$(5,6^+)$	2117.2 4	100	1786.75 4 ⁺	4588.8	$(5,6,7^{-})$	1550.6 <i>3</i>	100	3038.15 5
4001.46	$(5,6,7^{-})$	963.3 <i>1</i>	100	3038.15 5-	4710.1	(5,6,7)	1815.0 <i>5</i>	100	2895.10 (6 ⁺)
4061.40	$(5,6,7^{-})$	584.7 <i>1</i>	100 8	3476.68	4791.7	(5,6,7)	1315 <i>1</i>	100	3476.68
		1023.3 2	70 <i>7</i>	3038.15 5	4849.2	$(5,6^+)$	1954.2 <i>3</i>	100 4	2895.10 (6 ⁺)
4146.1		1107.9 ^a 3	100	3038.15 5			3062.1 <i>6</i>	85 <i>4</i>	1786.75 4+
4264.5	$(5,6,7^{-})$	1226.3 7	100	3038.15 5-	4935.9	(10^+)	1180.5 <mark>b</mark>	100	3755.4 (8+)
4308.99	$(5,6,7^{-})$	1270.8 2	100 5	3038.15 5	5061.3	(5,6,7)	2166.2 5	100	2895.10 (6 ⁺)
		1413.9 2	43 4	2895.10 (6 ⁺)	6116.2	(12^{+})	1180.3 ^b	100	4935.9 (10 ⁺)

 $^{^{\}dagger}$ From $^{70}\mathrm{Cu}~\beta^-$ decay (44.5 s), except where noted.

[‡] From $\gamma(\theta)$ in $(n,n'\gamma)$, except where noted. # From $\gamma(\theta)$ in $(n,n'\gamma)$. @ From γ^{0} Cu β^{-} decay (6.6 s). & From γ^{0} Cu β^{-} decay (33 s).

^a From $(n,n'\gamma)$. ^b From ²⁰⁸Pb(⁶⁴Ni,X γ).

^c Placement of transition in the level scheme is uncertain.

Level Scheme

Intensities: Relative photon branching from each level

Legend

Level Scheme (continued)

Intensities: Relative photon branching from each level

---- γ Decay (Uncertain)

Band(A): Yrast band

