

MAM₃

Mathématiques de l'ingénieur.e 1

2024-25

Exam CC no. 3

Durée 2H00. Documents non autorisés. Tous les exercices sont indépendants. Le barème prévisionnel est indiqué pour chaque exercice.

Rendre sur des copies séparées les exercices 1 et 2 d'une part, 3 et 4 d'autre part.

Exercice 1 (7 points)

1.1

Soit A>0, montrer que

$$I_A := \int_0^A rac{\sin x \, \mathrm{d}x}{x}$$

est bien définie.

1.2

Montrer que

$$I_A = \int_0^A \sin x \left(\int_0^\infty e^{-tx} \, \mathrm{d}t
ight) \! \mathrm{d}x.$$

1.3

Montrer qu'on peut appliquer le théorème de Fubini pour calculer I_A .

1.4

En déduire que

$$I_A = C + \operatorname{Im} \int_0^\infty rac{e^{A(i-t)}}{i-t} \, \mathrm{d}t$$

où ${\cal C}$ est une constante que l'on précisera.

1.5

Montrer que

$$\int_0^\infty \frac{e^{A(i-t)}}{i-t} \, \mathrm{d}t \, \leq \frac{1}{A}$$

et en déduire que I_A possède une limite que l'on précisera quand A tend vers l'infini.

Exercice 2 (5 points)

2.1

Soit $f_n(x):=(-1)^ne^{-2^nx}$, $x\geq 0$, $n\geq 0$. Montrer que

$$\sum_{n>0}\int_0^\infty |f_n(x)|\,\mathrm{d}x<\infty.$$

2.2

En déduire que l'intégrale ci-dessous est bien définie :

$$\int_0^\infty \sum_{n>0} f_n(x) \, \mathrm{d}x.$$

2.3

Déterminer la valeur de cette intégrale.

Exercice 3 (5 points)

3.1

Montrer que le produit de convolution des deux fonctions caractéristiques $\chi_{[0,1]} * \chi_{[0,2]}$ est bien défini, puis le calculer.

3.2

Soit a>0, déterminer la transformée de Fourier de $\chi_{[0,a]}.$

3.3

Déterminer la transformée de Fourier de $\chi_{[0,1]} * \chi_{[0,2]}.$

Exercice 4 (4 points)

4.1

Soient m et σ deux réels, $\sigma>0$, et soit

$$I=rac{1}{\sigma\sqrt{2\pi}}\int_{\mathbf{R}}e^{-(x-m)^2/(2\sigma^2)}\,\mathrm{d}x.$$

Effectuer le changement de variable $x=arphi(y):=\sigma y+m$ dans cette intégrale, puis en déduire sa valeur.

[Indication : on pourra retrouver cette valeur à l'aide du théorème de Fubini.]

4.2

Soit X une variable aléatoire à valeurs dans ${f R}$ de densité

$$f(x)=rac{1}{\sigma\sqrt{2\pi}}e^{-(x-m)^2/(2\sigma^2)}.$$

On pose $Y=arphi^{-1}(X)$, donner l'espérance de Y.