Computer-Aided Diagnosis for Prostate Cancer using mp-MRI

PhD Defence 28th November 2016

Guillaume Lemaître

Universitat de Girona - ViCOROB Université de Bourgogne Franche-Comté - LE21

Supervised by:

Robert Martí - Fabrice Mériaudeau Jordi Freixenet - Paul M. Walker

- Introduction
- 2 State-of-the-art
- 3 I2CVB
- 4 Toward a mp-MRI CAD for CaP
- **5** Experiments & validation

Motivations
The prostate organ
Prostate carcinoma
Screening
CAD and mp-MRI
Research objectives

- 2 State-of-the-art
- **3** 12CVB
- 4 Toward a mp-MRI CAD for CaP
- 5 Experiments & validation

Motivations

of cancer cases

(b) # of cancer deaths

Implications, image source¹

- 2nd most frequently diagnosed men cancer
- Accounting for 7.1% of overall cancers diagnosed
- Accounting for 3.4% of overall cancers death

¹J. Ferlay et al. "Estimates of worldwide burden of cancer in 2008: GLOBOCAN 2008". In: Int. J. Cancer 127.12 (Dec. 2010), pp. 2893-2917.

The prostate organ

Anatomy

Localization of the prostate organ, image $source^2$

Characteristics

Height: 3 cmDepth: 2.5 cmWeight: 7 g to 16 g

²Geckomedia. *Natom Anatomy*. French. June 2011. url: http://www.natomshop.com/.

The prostate organ

Anatomy

(a) Transverse plane

(b) Sagittal plane

Prostate zones - AFT: anterior fibromuscular tissue, CZ: central zone, ED: ejaculatory duct, NVB: neurovascular bundle, PUT: periurethral tissue, PZ: peripheral zone, U: urethra, TZ: transitional zone, B: base, M: median, A: apex; image source³

³Y. J. Choi et al. "Functional MR imaging of prostate cancer". In: *Radiographics* 27 (2007), pp. 63–75.

Prostate carcinoma (CaP)

CaP development

- ► Slow-growing → 85 %
- ► Fast-growing \rightarrow 15 %
- ► CaPs in CG are more aggressive

Zonal predisposition

- \triangleright PZ \rightarrow 70 % to 80 %
- ightharpoonup TZ ightharpoonup 10 % to 20 %
- ightharpoonup CG ightharpoonup 5 %

Goals

- Detect CaP
- ► Distinguish slow- from fast-growing CaP
- ► Active surveillance *vs.* prostatectomy/other treatments

Prostate-specific antigen

- $ightharpoonup > 10 \, \mathrm{ng} \, \mathrm{mL}^{-1} o \mathrm{biopsy}$
 - From 4 ng mL⁻¹ to 10 ng mL⁻¹ $\rightarrow \frac{\bullet}{1000} > 15\% \rightarrow \text{biopsy}$
 - X Not reliable

"Blind" transrectal ultrasound biopsy

- ► Take samples from different locations
- ► Grade using Gleason score
- X Invasive procedure
- X Lead to false positives & negatives

Prostate-specific antigen

- $ightharpoonup > 10 \, \mathrm{ng} \, \mathrm{mL}^{-1} o \mathrm{biopsy}$
- From 4 ng mL^{-1} to 10 ng mL^{-1} $\rightarrow \frac{\bullet}{\bullet + \bullet} > 15\% \rightarrow \text{biopsy}$
- X Not reliable

"Blind" transrectal ultrasound biopsy

- ► Take samples from different locations
- ► Grade using Gleason score
- X Invasive procedure
- X Lead to false positives & negatives

Prostate-specific antigen

- $ightharpoonup > 10 \, \text{ng mL}^{-1} \rightarrow \text{biopsy}$
- From 4 ng mL⁻¹ to 10 ng mL⁻¹ \rightarrow \rightarrow $> 15\% \rightarrow \text{biopsy}$
- X Not reliable

"Blind" transrectal ultrasound biopsy

protein-linked PSA

Prostate-specific antigen

- $ightharpoonup > 10 \, \mathrm{ng} \, \mathrm{mL}^{-1}
 ightarrow \mathrm{biopsy}$
- ightharpoonup From 4 ng mL $^{-1}$ to 10 ng mL $^{-1}$

$$\rightarrow \frac{\bullet}{1} > 15\% \rightarrow \text{biopsy}$$

X Not reliable

"Blind" transrectal ultrasound biopsy

- ► Take samples from different locations
- ► Grade using Gleason score
- X Invasive procedure
- X Lead to false positives & negatives

Image source: https://goo.gl/fEVQXQ

Prostate-specific antigen

- $ightharpoonup > 10 \, \mathrm{ng} \, \mathrm{mL}^{-1}
 ightarrow \mathrm{biopsy}$
- From 4 ng mL^{-1} to 10 ng mL^{-1}

$$\rightarrow \frac{\bullet}{\bullet + \bullet} > 15\% \rightarrow \text{biopsy}$$

X Not reliable

"Blind" transrectal ultrasound biopsy

- ► Take samples from different locations
- Grade using Gleason score
- Invasive procedure
- X Lead to false positives & negatives

Image source: https://goo.gl/fEVQXQ

Prostate-specific antigen

- $ightharpoonup > 10 \, \text{ng mL}^{-1} \rightarrow \text{biopsy}$
- From 4 ng mL⁻¹ to 10 ng mL⁻¹ $\rightarrow \frac{\bullet}{\bullet + \bullet} > 15\% \rightarrow \text{biopsy}$
- X Not reliable

"Blind" transrectal ultrasound biopsy

- ► Take samples from different locations
- Grade using Gleason score
- Invasive procedure
- X Lead to false positives & negatives

Pros

✓ Reduce CaP-related mortality from 21 % to 44 %⁴

Cons

- X Up to 30 % of over-diagnosis⁵
- V Up to 35 % of undiagnosed CaP⁶
- X Biopsies are invasive

⁴Fritz H. Schröder et al. "Prostate-cancer mortality at 11 years of follow-up". In: New England Journal of Medicine 366.11 (2012), pp. 981-990.

⁵G. P. Haas et al. "Needle biopsies on autopsy prostates: sensitivity of cancer detection based on true prevalence". In: J. Natl. Cancer Inst. 99.19 (Oct. 2007), pp. 1484-1489.

⁶A. V. Taira et al. "Performance of transperineal template-guided mapping biopsy in detecting prostate cancer in the initial and repeat biopsy setting". In: Prostate Cancer Prostatic Dis. 13.1 (Mar. 2010), pp. 71-77.

CAD and mp-MRI

Current trendy techniques: mp-MRI

✓ Less invasive technique

Human diagnosis using mp-MRI

- Need further investigation of the mp-MRI modalities
- X Low repeatability
 - Observer limitations
 - Complexity of clinical cases

Emergence of CAD

- ► CADe → detection of potential lesions
- ► CADx → diagnosis regarding those lesions

Research objectives

Propose a mp-MRI CAD for CaP

- Study and investigate the state-of-the-art on MRI CAD for CaP
- Identify the scientific barriers
- Design a mp-MRI CAD addressing these issues
- ► Investigate and analyze the proposed CAD

- Introduction
- 2 State-of-the-art MRI modalities CAD for CaP
- **3** 12CVE
- 4 Toward a mp-MRI CAD for CaP
- 5 Experiments & validation

T₂W-MR

(a) Healthy

(b) CaP PZ

(c) CaP CG

Healthy

- ► Intermediate to high-signal intensity (SI) in PZ
- ► Low-SI in CG

CaP

- ► Low-SI
- ▶ Round and ill-defined mass in PZ
- ► Homogeneous with ill-defined edges in CG

T₂W-MRI

(d) Healthy

(e) CaP PZ

(f) CaP CG

Pros

- Highest spatial resolution
- Anatomy nicely depicted

Cons

- ► Low sensitivity in CG
- Lower specificity due to outliers

DCE-MRI

Green: healthy - Red: CaP

Healthy

- Slower wash-in, wash-out, time-to-peak enhancement
- ► Lower integral under the curve, max SI

CaP

- ► Faster wash-in, wash-out, time-to-peak enhancement
- ► Higher integral under the curve, max SI

DCE-MRI

Green: healthy - Red: CaP

Pros

► Information about vascularity

Cons

- ► Spatial mis-registration
- Lower spatial resolution than T₂W-MRI
- Difficult detection in CG

DW-MRI - ADC

(a) DW MRI

(b) ADC

Healthy

► DW-MRI: lower SI

► ADC: higher-SI

CaP

► DW-MRI: higher SI

► ADC: lower-SI

DW-MRI - ADC

(c) DW MRI

(d) ADC

Pros

- ▶ Information about tissue structure
- ► ADC correlated with Gleason score

Cons

- ► Poor spatial resolution
- ► Variability of the ADC coefficient

MRSI

(a) Healthy

(b) CaP

Healthy

- ► High citrate
- ► Moderate choline and spermine

CaP

- Decrease of citrate and spermine
- ► Increase of choline

MRS

(C) Healthy

Pros

► Citrate correlated with Gleason score

Cons

- Low spatial resolution
- Variation inter-patients

Full CAD for detection and diagnosis of CaP

Common CAD framework based on MRI images used to detect CaP

- ✓ 3 modalities better than 2
- Texture and edge features are predominant
- ✓ Features selection/extraction tends to improve performance
- ✓ Pre-eminence of SVM and ensemble classifier (i.e., AdaBoost, RF, etc.)

- ✓ 3 modalities better than 2
- ✓ Texture and edge features are predominant
- √ Features selection/extraction tends
 to improve performance
- ✓ Pre-eminence of SVM and ensemble classifier (i.e., AdaBoost, RF, etc.)

- ✓ 3 modalities better than 2
- √ Texture and edge features are predominant
- √ Features selection/extraction tends to improve performance
- Pre-eminence of SVM and ensemble classifier (i.e., AdaBoost, RF, etc.)

- ✓ 3 modalities better than 2
- ✓ Texture and edge features are predominant
- √ Features selection/extraction tends to improve performance
- ✓ Pre-eminence of SVM and ensemble classifier (i.e., AdaBoost, RF, etc.)

Conclusions

- √ 3 modalities better than 2
- ✓ Texture and edge features are predominant
- √ Features selection/extraction tends to improve performance
- ✓ Pre-eminence of SVM and ensemble classifier (i.e., AdaBoost, RF, etc.)

- No publicly available mp-MRI dataset
- X Only 1 study used 4 MRI modalities
- X A lot of features are extracted in 2D
- X Limited work regarding selection/extraction
- X No work regarding data balancing
- X No source code available of any CAD

- No publicly available mp-MRI dataset
- X Only 1 study used 4 MRI modalities
- X Limited work on data normalization
- X A lot of features are extracted in 2D
- X Limited work regarding selection/extraction
- X No work regarding data balancing
- X No source code available of any CAD

- X No publicly available mp-MRI dataset
- X Only 1 study used 4 MRI modalities
- X Limited work on data normalization
- X A lot of features are extracted in 2D
- X Limited work regarding selection/extraction
- X No work regarding data balancing
- X No source code available of any CAD

- No publicly available mp-MRI dataset
- X Only 1 study used 4 MRI modalities
- X Limited work on data normalization
- X A lot of features are extracted in 2D
- X Limited work regarding selection/extraction
- X No work regarding data balancing
- X No source code available of any CAD

- No publicly available mp-MRI dataset
- X Only 1 study used 4 MRI modalities
- X Limited work on data normalization
- X A lot of features are extracted in 2D
- X Limited work regarding selection/extraction
- X No work regarding data balancing
- X No source code available of any CAD

- No publicly available mp-MRI dataset
- X Only 1 study used 4 MRI modalities
- X Limited work on data normalization
- X A lot of features are extracted in 2D
- X Limited work regarding selection/extraction
- X No work regarding data balancing
- X No source code available of any CAD

Conclusions

- √ 3 modalities better than 2
- ✓ Texture and edge features are predominant
- √ Features selection/extraction tends to improve performance
- ✓ Pre-eminence of SVM and ensemble classifier (i.e., AdaBoost, RF, etc.)

- No publicly available mp-MRI dataset
- X Only 1 study used 4 MRI modalities
- X Limited work on data normalization
- X A lot of features are extracted in 2D
- X Limited work regarding selection/extraction
- X No work regarding data balancing
- X No source code available of any CAD

CAD for CaP

Conclusions

- ✓ 3 modalities better than 2
- √ Texture and edge features are predominant
- √ Features selection/extraction tends to improve performance
- ✓ Pre-eminence of SVM and ensemble classifier (i.e., AdaBoost, RF, etc.)

Scientific and technical challenges

- No publicly available mp-MRI dataset
- X Only 1 study used 4 MRI modalities
- X Limited work on data normalization
- X A lot of features are extracted in 2D
- X Limited work regarding selection/extraction
- X No work regarding data balancing
- X No source code available of any CAD

Research objectives

- Collect a mp-MRI dataset
- Design a CAD for CaP using all mp-MRI modalities
- Investigate normalization, feature selection/extraction, data balancing
- ► Implement 3D features
- Release source code and dataset

- 3 I2CVB

Mp-MRI prostate datasets Open source initiative **I2CVB**

- 4 Toward a mp-MRI CAD for CaP
- **5** Experiments & validation

Mp-MRI prostate datasets

1.5 T General Electric scanner

- ► T₂W-MRI, DW-MRI, DCE-MRI, and MRSI
- ► Ground-truth (GT) for CaP, PZ, and CG associated to T₂W-MRI modality
- ▶ Healthy: $4 \text{ vs. } \mathsf{CaP}$: { PZ : 14 + 3, CG : 0 + 3 }

3 T Siemens scanner

- ▶ T₂W-MRI, ADC, DCE-MRI, and MRSI
- ► GT for CaP, PZ, and CG associated to T₂W-MRI modality
- ► Additional GT of the prostate for DCE-MRI and ADC
- ▶ Healthy: 2 vs. CaP: $\{ PZ: 12 + 2, CG: 3 + 2 \}$

Mp-MRI prostate datasets

1.5 T General Electric scanner

- ► T₂W-MRI, DW-MRI, DCE-MRI, and MRSI
- ► Ground-truth (GT) for CaP, PZ, and CG associated to T₂W-MRI modality
- ► Healthy: 4 vs. CaP: $\{ PZ: 14 + 3, CG: 0 + 3 \}$

3 T Siemens scanner

- ► T₂W-MRI, ADC, DCE-MRI, and MRSI
- ► GT for CaP, PZ, and CG associated to T₂W-MRI modality
- Additional GT of the prostate for DCE-MRI and ADC
- ▶ Healthy: 2 vs. CaP: $\{ PZ: 12 + 2, CG: 3 + 2 \}$

Introduction

Open source initiative

protoclass toolbox

- Data management
- ► Features detection

imbalanced-learn toolbox⁷

Part of the scikit-learn-contrib projects

Third-party toolboxes

IP[y]: IPython
Interactive Computing

⁷Guillaume Lemaitre et al. "Imbalanced-learn: A Python Toolbox to Tackle the Curse of Imbalanced Datasets in Machine Learning". In: Journal of Machine Learning Research (2017).

A web platform

Hub for our different resources

- ► GitHub for our source codes
- Zenodo for our datasets
- ► HAL, arXiv, ResearchGate for our publications

Manifesto

I₂C√β Vision

Ease the access to make research

I₂C√₃ Mission

Open data; evaluation methods; comparison framework; reporting platform

I2CV3 Protagonists

 Research groups and individuals from all walks of life to shape an open community

I₂C√⁄β Strategy

 Use successful practises from Free Software and Quality Management

- 2 State-of-the-art
- **3** 12CVB
- 4 Toward a mp-MRI CAD for CaP

Image regularization

T₂W-MRI normalization
DCE-MRI normalization
MRSI pre-processing
Segmentation & registration

CADe-CADx

Features detection
Data balancing
Features selection/extraction
Features classification

Toward a mp-MRI CAD for CaP

Image regularization

$\mathsf{T}_2\mathsf{W}\text{-}\mathsf{MRI}$ normalization

DCE-MRI normalization

MRSI pre-processing

Image regularization

Segmentation & registration

$\mathsf{T}_2\mathsf{W}\text{-}\mathsf{MRI}$ and ADC map

DCE-MRI

MRSI

Anatomical features

$\mathsf{T}_2\mathsf{W}\text{-}\mathsf{MRI}$ normalization

DCE-MRI normalization

Introduction

Standalone modalities

Coarse combination

Data balancing

Introduction

Features selection/extraction

Fine-tuned combination

MRSI benefit

