Importing required Libraries

```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
import warnings
warnings.filterwarnings("ignore")
```

Download the dataset from the link available above.:

```
In [2]:

df=pd.read_csv(r"C:\Users\Irfan\Downloads\dataframe_.csv")
df.drop(df.filter(regex="Unnamed"),axis=1, inplace=True)
```

In [3]:

df

Out[3]:

	input	output
0	-122.740667	-130.572085
1	-121.531419	-129.938929
2	-134.917019	-130.141832
3	-120.605951	-125.760932
4	-129.894781	-112.785214
1692	25.410184	-76.380902
1693	29.537304	-82.796934
1694	31.633331	-87.000000
1695	29.091458	-104.943052
1696	17.145296	-101.726894

1697 rows × 2 columns

Basic Exploration::

In [4]:

In [5]:

df.describe()

Out[5]:

	input	output
count	1696.000000	1696.000000
mean	1.159933	-34.088017
std	79.005970	65.771112
min	-134.962839	-132.422167
25%	-63.386506	-80.026767
50%	10.195194	-50.470981
75%	70.264109	-11.000000
max	134.605775	134.425495

Drop duplicates

```
In [6]:
print(df.duplicated().sum())
df.drop_duplicates(inplace=True)
606
```

Missing values:

```
In [7]:

df.isnull().sum()

Out[7]:
input   1
output   1
dtype: int64

In [8]:

df.dropna(inplace=True)
```

In [9]:

```
num=df.select_dtypes(include='number')
cat=df.select_dtypes(exclude='number')
```

In [10]:

```
for i in num:
    sns.boxplot(df[i])
    plt.show()
```


In [11]:

```
df.isnull().sum()
```

Out[11]:

input 0
output 0
dtype: int64

```
In [12]:

df

Out[12]:

input output

0 -122.740667 -130.572085
```

 0
 -122.740667
 -130.572085

 1
 -121.531419
 -129.938929

 2
 -134.917019
 -130.141832

 3
 -120.605951
 -125.760932

 4
 -129.894781
 -112.785214

 ...
 ...
 ...

 1105
 -112.018496
 121.096397

 1107
 -119.954237
 123.609122

 1108
 -109.942155
 127.197394

 1109
 -111.515368
 128.170885

 1110
 -110.344221
 123.087950

1090 rows × 2 columns

In [13]:

```
import os
os.getcwd()
df.to_csv('C:\\Users\\Irfan\\Machine Learning\\df.csv')
```

In [14]

```
df=pd.read_csv("df.csv")
df.drop(df.filter(regex="Unnamed"),axis=1, inplace=True)
df
```

Out[14]:

	input	output
0	-122.740667	-130.572085
1	-121.531419	-129.938929
2	-134.917019	-130.141832
3	-120.605951	-125.760932
4	-129.894781	-112.785214
1085	-112.018496	121.096397
1086	-119.954237	123.609122
1087	-109.942155	127.197394
1088	-111.515368	128.170885
1089	-110.344221	123.087950

1090 rows × 2 columns

- Inputvariables:input
- Target variable:output
- Type:Supervised Learning(since target variable is given).
- Task:Regression
- Identify the Evaluation Metric.
- Regression task: Mean Absolute Error

In [15]:

```
X=df[["input"]]
y=df[['output']]
```

```
In [16]:
```

Split the dataset into Training and Testing (recommended 75:25 split).

In [17]:

```
from sklearn.model_selection import train_test_split
X_train,X_test,y_train,y_test=train_test_split(X,y,test_size=0.25,random_state=42)
print(X_train.shape,y_train.shape)
print(X_test.shape,y_test.shape)

(817, 1) (817, 1)
(273, 1) (273, 1)
```

Train_data

```
In [18]:
```

Out[18]:

```
input

92 -0.971544

695 -0.101785

1050 1.370721

759 -0.977240

294 0.907271
...

330 1.464943

466 1.345194

121 -0.748031

1044 1.604825

860 -1.746129

817 rows × 1 columns
```

Test data

```
In [20]:
```

```
X_test_num=X_test.select_dtypes(include=['float64'])
```

In [21]:

Out[21]:

	input
834	-1.410798
940	0.248286
1084	-1.597815
1005	0.992130
760	-1.079884
566	0.703859
299	0.965640
939	0.432393
60	-1.588474
445	1.054469

273 rows × 1 columns

In [22]:

```
Algorithm=[]
mean_absolute_error=[]
```

Traning Linear Regression

In [23]:

```
from sklearn.linear_model import LinearRegression
classifier = LinearRegression()
classifier.fit(X_train_num_rescaled, y_train)
y_test_pred = classifier.predict(X_test_num_rescaled)
from sklearn import metrics
a=metrics.mean_absolute_error(y_test,y_test_pred)
Algorithm.append("LinearRegression")
mean_absolute_error.append(a)
print(a)
```

43.85740160235116

In [24]:

```
sns.histplot(y_test, color='pink',kde=True)
sns.histplot(y_test_pred, color='green',kde=True);
```


Training-KNN Regression

In [25]:

```
from sklearn.neighbors import KNeighborsRegressor
classifier=KNeighborsRegressor()
classifier.fit(X_train_num_rescaled,y_train)
y_test_pred=classifier.predict(X_test_num_rescaled)
from sklearn import metrics
a=metrics.mean_absolute_error(y_test,y_test_pred)
Algorithm.append("KNeighborsRegressor")
mean_absolute_error.append(a)
print(a)
```

23.367927419547254

In [26]:

```
sns.histplot(y_test, color='pink',kde=True)
sns.histplot(y_test_pred, color='green',kde=True);
```


Training-Support vector Regression

In [27]:

```
from sklearn.svm import SVR
classifier=SVR()
classifier.fit(X_train_num_rescaled,y_train)
y_test_pred=classifier.predict(X_test_num_rescaled)
from sklearn import metrics
a=metrics.mean_absolute_error(y_test,y_test_pred)
Algorithm.append("SVR")
mean_absolute_error.append(a)
print(a)
```

24.9156375496118

In [28]:

sns.histplot(y_test, color='pink',kde=True)
sns.histplot(y_test_pred, color='green',kde=True);

Training-Decision Tree Regression

In [29]:

```
from sklearn.tree import DecisionTreeRegressor
classifier=DecisionTreeRegressor()
classifier.fit(X_train_num_rescaled,y_train)
y_test_pred=classifier.predict(X_test_num_rescaled)
from sklearn import metrics
a=metrics.mean_absolute_error(y_test,y_test_pred)
Algorithm.append("DecisionTreeRegressor")
mean_absolute_error.append(a)
print(a)
```

29.161937218296703

In [30]:

```
sns.histplot(y_test, color='pink',kde=True)
sns.histplot(y_test_pred, color='green',kde=True);
```


Ensemble

Training-Random Forest Regression

In [31]:

```
from sklearn.ensemble import RandomForestRegressor
classifier=RandomForestRegressor()
classifier.fit(X_train_num_rescaled,y_train)
y_test_pred=classifier.predict(X_test_num_rescaled)
from sklearn import metrics
a=metrics.mean_absolute_error(y_test,y_test_pred)
Algorithm.append("RandomForestRegressor")
mean_absolute_error.append(a)
print(a)
```

25.131624863839875

In [32]:

sns.histplot(y_test, color='pink',kde=True)
sns.histplot(y_test_pred, color='green',kde=True);

Training-Adaboost Regression

In [33]:

```
from sklearn.ensemble import AdaBoostRegressor
classifier=AdaBoostRegressor()
classifier.fit(X_train_num_rescaled,y_train)
y_test_pred=classifier.predict(X_test_num_rescaled)
from sklearn import metrics
a=metrics.mean_absolute_error(y_test,y_test_pred)
Algorithm.append("AdaBoostRegressor")
mean_absolute_error.append(a)
print(a)
```

28.665753947303866

In [34]:

```
sns.histplot(y_test, color='pink',kde=True)
sns.histplot(y_test_pred, color='green',kde=True);
```


Training-Gradiant boost decision tree Regression

In [35]:

```
from sklearn.ensemble import GradientBoostingRegressor
classifier=GradientBoostingRegressor()
classifier.fit(X_train_num_rescaled,y_train)
y_test_pred=classifier.predict(X_test_num_rescaled)
from sklearn import metrics
a=metrics.mean_absolute_error(y_test,y_test_pred)
Algorithm.append("GradientBoostingRegressor")
mean_absolute_error.append(a)
print(a)
```

22.62282287088458

In [36]:

```
sns.histplot(y_test, color='pink',kde=True)
sns.histplot(y_test_pred, color='green',kde=True);
```


In [37]:

overview=pd.DataFrame({"mean_absolute_error":mean_absolute_error,},index=Algorithm)

In [38]:

overview

Out[38]:

	mean_absolute_error
LinearRegression	43.857402
KNeighborsRegressor	23.367927
SVR	24.915638
DecisionTreeRegressor	29.161937
RandomForestRegressor	25.131625
AdaBoostRegressor	28.665754
GradientBoostingRegressor	22.622823

In [39]:

overview.plot(kind='pie',subplots=True,explode=[0,0,0,0,0,0,0.1],title='Mean Absolute Error',ylabel=' ',autopct='%.2f') plt.legend(bbox_to_anchor=(1.5,1));

In [63]:

```
overview.T.plot(kind='bar',width=0.8,align='center')
plt.legend(bbox_to_anchor=(1,1))
plt.xticks(fontsize=12);
```


Conclusion:

- Gradiant boost decision tree Regression algorithm is the best model for Medical Cost Prediction
- Becuase Gradiant boost decision tree Regression mean absolute error is less compare to the other models .

Exploratory Data Analysis

Univariate Analysis

In [41]:

num

Out[41]:

	input	output
0	-122.740667	-130.572085
1	-121.531419	-129.938929
2	-134.917019	-130.141832
3	-120.605951	-125.760932
4	-129.894781	-112.785214
1105	-112.018496	121.096397
1107	-119.954237	123.609122
1108	-109.942155	127.197394
1109	-111.515368	128.170885
1110	-110.344221	123.087950

1090 rows × 2 columns

In [62]:

```
fig,axes=plt.subplots(1,2,figsize=(15,5))
sns.distplot(x=df['input'],ax=axes[0],color='green')
sns.distplot(x=df['output'],ax=axes[1],color='black')
plt.show()
```


Observation:

- In input column the most of the values lies between -100 to 100.
- In output column the most of the values lies between -100 to 0.

In [67]:

Observation:

• input and outut have postive correlation

In [59]:

sns.pairplot(data=df);

