Exercise 1: 1.12.3.10 Intersection of sigma algebras

 \mathcal{F}_1 and \mathcal{F}_2 are two sigma algebras of subsets of Ω . Show that

$$\mathcal{F}_1 \cap \mathcal{F}_2 \tag{1}$$

is a sigma algebra of subsets of $\Omega.$

Exercise 2: 2.6.5.6 Use Chen's Lemma

 $X \in Po(\lambda)$. Show that

$$\operatorname{E}\left[X^{n}\right] = \lambda \sum_{k=0}^{n-1} {n-1 \choose k} \operatorname{E}\left[X^{k}\right]. \tag{2}$$

Aid: Use Chen's Lemma with suitable H(x).

Solution.

Lemma 0.1. Chen's Lemma $X \in Po(\lambda)$ and H(x) is a bounded Borel function, then

$$E[XH(X)] = \lambda E[H(X+1)]. \tag{3}$$

Exercise 3: 3.8.3.1 Joint Distributions & Conditional Expectations

Let (X, Y) is a bivariate random variable, where X is discrete and Y is continuous. (X, Y) has a joint probability mass - and density function given by

$$f_{X,Y}(k,y) = \begin{cases} \frac{\partial P(X=k,Y \le y)}{\partial y} = \lambda \frac{(\lambda y)^k}{k!} e^{-2\lambda y} &, k \in \mathbb{Z}_{\ge 0}, y \in [0,\infty) \\ 0 &. \end{cases}$$
(4)

(a) Check that

$$\sum_{k=0}^{\infty} \int_{0}^{\infty} f_{X,Y}(k,y) dy = \int_{0}^{\infty} \sum_{k=0}^{\infty} f_{X,Y}(k,y) dy = 1$$
 (5)

(b) Compute the mixed moment $\mathrm{E}\left[XY\right]$ defined as

$$E[XY] = \sum_{k=0}^{\infty} \int_{0}^{\infty} f_{X,Y}(k,y)dy.$$
 (6)

 $Answer: \frac{2}{\lambda}$

- (c) Find the marginal p.m.f. of X. Answer: $X \in Ge(1/2)$
- (d) Compute the marginal density of Y here defined as

$$f_Y(y) = \begin{cases} \sum_{k=0}^{\infty} f_{X,Y}(k,y) & , y \in [0,\infty) \\ 0 & . \end{cases}$$
 (7)

 $\mathit{Answer:} Y \in \mathrm{Exp}(\tfrac{1}{\lambda})$

(e) Find

$$p_{X|Y}(k|y) = p(X = k|Y = y), k \in \mathbb{Z}_{>0}$$
 (8)

Answer: $X|Y = y \in Po(\lambda y)$.

(f) Compute $\mathrm{E}\left[X|Y=y\right]$ and then $\mathrm{E}\left[XY\right]$ using double expectation. Compare your results with (b).

Exercise 4: 3.8.3.14 Computing moments

Let (X, Y) be a bivariate r.v. such that

$$Y|X = x \in Fs(x), \quad f_X(x) = 3x^2, \quad x \in [0, 1].$$
 (9)

Compute E [Y], Var [Y], Cov (X, Y) and the p.m.f. of Y. Answer: E [Y] = $\frac{3}{2}$, Var [Y] = $\frac{9}{4}$, Cov (X, Y) = $-\frac{1}{8}$, and $p_Y(k) = \frac{18}{(k+3)(k+2)(k+1)k}$, $k \ge 1$.

Exercise 5: 4.7.2.4 Equidistribution Let $\{X_k\}_{k=1}^n$ be independent and identically distributed. Furthermore $\{a_k\}_{k=1}^n$, $a_k \in \mathbb{R}$. Set

$$Y_1 = \sum_k a_k X_k \tag{10}$$

and

$$Y_2 = \sum_{k} a_{n-k+1} X_k. (11)$$

Show that

$$Y_1 \stackrel{d}{=} Y_2. \tag{12}$$

Exercise 6: 5.8.3.11 Laplace distribution Let $\{X_k\}_{k=1}^n$ be independent and identically distributed with $X_k \in L(a), k \in [1, N_p], N_p \in Fs(p)$. N_p is independent of the varibles $\{X_k\}$. We set

$$S_{N_p} = \sum_{k=1}^{N_p} X_k. {13}$$

Show that $\sqrt{p}S_{N_p} \in L(a)$.

Exercise 7: 7.6.1.1 Mean square convergence

Assume $X_n, Y_n \in L_2(\Omega, \mathcal{F}, P) \, \forall n$ and

$$X_n \xrightarrow{2} X$$
, $Y_n \xrightarrow{2} Y$ as $n \to \infty$ (14)

Let $a, b \in \mathbb{R}$. Show that

$$aX_n + bY_n \xrightarrow{2} aX + bY \quad \text{as} \quad n \to \infty$$
 (15)

You should use the definition of mean square convergence and suitable properties of ||X|| as defined in (LN 7.3).