

ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ И ПРОЦЕССЫ УПРАВЛЕНИЯ N 1, 2007 Электронный журнал,

Электронный журнал, per. N П2375 om 07.03.97 ISSN 1817-2172

 $http://www.neva.ru/journal\\ http://www.math.spbu.ru/user/diffjournal/\\ e-mail:\ jodiff@mail.ru$

<u>Прикладные задачи</u> Численные методы

ПРИМЕНЕНИЕ МЕТОДА ЗАМКНУТЫХ ВИХРЕВЫХ РАМОК ДЛЯ ВЫЧИСЛЕНИЯ СКОРОСТИ ПЕРЕМЕЩЕНИЯ ГРАНИЦЫ РАЗДЕЛА ЖИДКОСТЕЙ В ГРУНТАХ СЛОЖНОЙ ГЕОЛОГИЧЕСКОЙ СТРУКТУРЫ

Д.Н. НИКОЛЬСКИЙ

Россия, 302026, г. Орел, ул. Комсомольская, д. 95, Орловский государственный университет, физико-математический факультет, e-mail: nikolskydn@mail.ru

Аннотация.

Предлагается модификация метода замкнутых вихревых рамок для вычисления скорости перемещения поверхности раздела жидкостей различной вязкости и плотности в модели «поршневого» вытеснения (модели Лейбензона-Маскета). Рассматривается случай неоднородного грунта.

⁰Работа выполнена при финансовой поддержке РФФИ № 06-01-96303.

1 Введение

Методы нанесения на подвижную границу раздела жидкостей квазипотенциалов (потенциалов) простого и двойного слоев позволили решить ряд двумерных задач вытеснения одной жидкости другой в однородном [1] и неоднородном [2, 3] грунтах. Этот же метод, в сочетании с методом замкнутых вихревых рамок, позволил смоделировать пространственную задачу вытеснения [4].

В данной работе для решения задачи о вычислении скорости перемещения поверхности раздела жидкостей в неоднородном грунте, также предлагается использовать квазипотенциал двойного слоя. Последнее требует численного решения интегрального уравнения, и последующего вычисления гиперсингулярного интеграла. Вычисление гиперсингулярного интеграла производится методом замкнутых вихревых рамок. Полученная численная схема тестируется на аналитическом решении частной задачи.

В отличии от [5] во-первых приводится численная схема; во-вторых интегралы, определяющие скорость перемещения поверхности раздела жидкостей позволяют построить более простую численную схему для их вычисления (нет необходимости аппроксимировать производные от искомой плотности квазипотенциала двойного слоя).

Математическая модель, построенная в данной работе, может быть использована для широкого круга задач, связанных с эволюцией поверхности раздела жидкостей. Такие задачи возникают при первичной разработке нефтяных месторождений, в задачах мониторинга окружающей среды, связанных с миграцией загрязнения.

2 Математическая модель

Рассмотрим пространственную фильтрацию в неоднородном изотропном и безграничном грунте. Пусть область течения $D \in \mathbb{R}^3$ безгранична. Резкая подвижная поверхность σ_0 делит область D на части D^- (внутренняя) и D^+ (внешняя). Область D^+ занята жидкостью с вязкостью μ_1 и плотностью ρ_1 , область $D^- - \mu_2$ и ρ_2 . Нормаль к поверхности σ_0 направлена в область D^+ .

Поверхность σ_0 считаем гладкой. Неоднородность грунта определяется коэффициентом проницаемости грунта $K(M) \in C^{(1)}(D)$. Возбудителями течения в области D являются скважины.

Согласно [6], течение жидкостей в области D описывают закон Дарси и

уравнение неразрывности

$$\vec{v}(M) = K(M)\nabla\varphi(M), \qquad \varphi(M) = -\frac{1}{\mu}\left(p - \rho\left(\vec{e}_g, \vec{r}_M\right)\right),$$
 (1)

$$\nabla \cdot \vec{v}(M) = 0. \tag{2}$$

Здесь $\vec{v}(M)$ — скорость фильтрации, $\varphi(M)$ — квазипотенциал скорости фильтрации, p — гидростатическое давление, \vec{e}_g — единичный вектор, указывающий на направление ускорения свободного падения.

Скорость перемещение частиц жидкости, находящихся на поверхности σ_0 , определим следующим образом [2]

$$\vec{v}(M) = \frac{\vec{v}^{+}(M) + \vec{v}^{-}(M)}{2}.$$
 (3)

Законы (1)-(3) записаны в безразмерных величинах. Характерные величины при этом

$$P_0 = \rho_0 g L_0, \quad V_0 = \frac{K_0 \rho_0 g}{\mu_0}, \quad T_0 = \frac{m L_0 \mu_0}{K_0 \rho_0 g},$$

где g — модуль ускорения свободного падения, m — пористость грунта.

На поверхности σ_0 выполняются условия непрерывности давлений и неразрывности фильтрационного потока [6]

$$p^{+}(M) = p^{-}(M), \quad v_n^{+}(M) = v_n^{-}(M), \quad M \in \sigma_0.$$
 (4)

Здесь «+» и «-» обозначены предельные значения соответствующих функций, при их приближении к σ_0 из областей D^+ и D^- , соответственно.

Из (1) и (2) следует, что квазипотенциал скорости фильтрации $\varphi(M)$ удовлетворяет уравнению эллиптического типа

$$\nabla_M \left(K(M) \nabla_M \varphi(M) \right) = 0. \tag{5}$$

Квазипотенциал φ будем искать в классе функций $C^{(2)}(D)$.

Ограничимся рассмотрением метагармонической (гармонической) серией сред [7], когда $\sqrt{K(M)}$ удовлетворяет метагармоническому (гармоническому при $\beta=0$) уравнению

$$\Delta_M \sqrt{K(M)} - \beta^2 \sqrt{K(M)} = 0. \tag{6}$$

В этом случае фундаментальное решение уравнения (5) имеет вид [7]

$$\Phi(M,N) = \frac{U(r_{NM}) + G(M,N)}{\sqrt{K(M)K(N)}}.$$
(7)

Причем $U(r_{NM}) = \frac{e^{-\beta r_{NM}}}{4\pi r_{NM}}$ представляет собой решение уравнения

$$\Delta_M U(r_{NM}) = \beta^2 U(r_{NM}), \tag{8}$$

а функция G(M,N) — конечная и регулярная. Когда область D безгранична G=0.

Условия (4) для квазипотенциала скорости фильтрации примут вид

$$\mu_1 \varphi^+(M) - \mu_2 \varphi^-(M) = (\rho_1 - \rho_2) (\vec{e}_g, \vec{r}_M), \qquad (9)$$

$$\left(K(M) \frac{\partial \varphi(M)}{\partial n}\right)^+ = \left(K(M) \frac{\partial \varphi(M)}{\partial n}\right)^-, \quad M \in \sigma_0.$$

Квазипотенциал скорости фильтрации $\varphi(M)$ представим в виде суммы

$$\varphi(M) = \varphi_0(M) + \varphi_*(M), \tag{10}$$

где $\varphi_0(M)$ — квазипотенциал невозмущенного течения, вызванного работой системы скважин (выписывается для конкретной зависимости коэффициента K(M)), $\varphi_*(M)$ — квазипотенциал возмущения, вызванного поверхностью σ_0 .

Квазипотенциалы $\varphi_0(M)$ и $\varphi_*(M)$ должны удовлетворять уравнению (5). С учетом (10) условия (9) примут вид:

$$\mu_1 \varphi_*^+(M) - \mu_2 \varphi_*^-(M) = (\mu_1 - \mu_2) \varphi_0(M) + (\rho_1 - \rho_2) (\vec{e}_g, \vec{r}_M), \qquad (11)$$

$$\left(K(M) \frac{\partial \varphi_*(M)}{\partial n} \right)^+ = \left(K(M) \frac{\partial \varphi_*(M)}{\partial n} \right)^-, \quad M \in \sigma_0.$$

С учетом (1) и (10) выражение (3) примет вид

$$\vec{v}(M) = \vec{v}_0(M) + \vec{v}_*(M), \quad M \in \sigma_0,$$

$$\vec{v}_0(M) = K(M)\nabla\varphi_0(M),$$

$$\vec{v}_*(M) = K(M)\frac{(\nabla\varphi_*(M))^+ + (\nabla\varphi_*(M))^-}{2}.$$
(12)

Положение поверхности раздела жидкостей σ_0 задано параметрически

$$\vec{r}_{M0} = \vec{r}_0(\kappa_1, \kappa_2), \quad \kappa_1, \kappa_2 -$$
параметры. (13)

В бесконечности для квазипотенциала φ_* выполняются условия регулярности

$$\varphi_*(M) = O\left(\frac{1}{r_{MN}}\right), \quad |v_*(M)| = |K(M)\nabla\varphi_*(M)| = O\left(\frac{1}{r_{MN}^2}\right) \tag{14}$$

при $r_{MN} \to \infty$ $(N \in D)$. Условия (14) обеспечивают единственность решения задачи сопряжения (5), (11) для квазипотенциала возмущения $\varphi_*(M)$ [8].

Таким образом, для вычисления скорости $\vec{v}(M)$ точек поверхности σ_0 нужно решить задачу сопряжения (5), (11) для квазипотенциала $\varphi_*(M)$, с учетом (14), а затем вычислить выражение, стоящее в правой части (12).

3 Основная система интегрального и дифференциального уравнений

Квазипотенциал возмущения $\varphi_*(M)$ ищем в виде потенциала двойного слоя, распределенного по σ_0 с плотностью $g(M) \in H(g(M))$ удовлетворяет условию Гельдера)

$$\varphi_*(M) = \iint_{\sigma_0} g(N, t) \Omega(M, N) d\sigma_N, \quad M \notin \sigma_0,$$

$$\Omega(M, N) = K(N) \left(\nabla_N \Phi(M, N), \vec{n}_N \right).$$
(15)

Несложно заметить, что ядро $\Omega(M,N)$ квазипотенциала $\varphi_*(M)$ представимо в виде

$$\Omega(M,N) = \sqrt{\frac{K(N)}{K(M)}} (\nabla_N U, \vec{n}_N) - \sqrt{\frac{K(N)}{K(M)}} \frac{(\nabla_N K(N), \vec{n}_N)}{2K(N)} U(M,N) + K(N) \left(\nabla_N \frac{G(M,N)}{\sqrt{K(M)K(N)}}, \vec{n}_N\right),$$

а значит скачок потенцила $\varphi_*(M)$ при переходе через σ_0 обусловлен только асимптотическим приближением в точке N вида

$$\Omega(M,N) \sim rac{(ec{r}_{NM},ec{n_N})}{r_{NM}^3}$$
 при $r_{NM}
ightarrow 0,$

что позволяет воспользоваться предельными значениями потенциала двойного слоя для уравнения Лапласа [9]

$$\varphi_*^{\pm}(M) = \iint_{\sigma_0} g(N, t)\Omega(M, N)dl_N \pm \frac{g(M)}{2}, \quad M \in \sigma_0.$$
 (16)

Потенциал $\varphi(M)$ в виде (10), с учетом свойств φ_0 и (15) удовлетворяет уравнению (5), условию регулярности (14) и второму граничному условию из

(11). Подставим (10) в первое условие из (11), с учетом (16) получим

$$g(M) - 2\lambda \int_{\sigma_0} g(N, t)\Omega(M, N)dl_N = 2\lambda \varphi_0(M) + \alpha \left(\vec{e}_g, \vec{r}_M\right), \quad M \in \sigma_0, \quad (17)$$

$$\lambda = \frac{\mu_2 - \mu_1}{\mu_2 + \mu_1}, \qquad \alpha = \frac{2(\rho_1 - \rho_2)}{\mu_2 + \mu_1}.$$

Воспользовавшись (7), представим скорость возмущения следующим образом:

$$\vec{v}_*(M) = \sqrt{K(M)} \iint_{\sigma_0} \sqrt{K(N)} g(N, t) \nabla_M \left(\nabla_N U(r_{NM}), \vec{n}_N \right) d\sigma_N -$$

$$-\nabla_M \sqrt{K(M)} \iint_{\sigma_0} \sqrt{K(N)} g(N, t) \left(\nabla_N U(r_{NM}), \vec{n}_N \right) d\sigma_N -$$

$$-\frac{\sqrt{K(M)}}{2} \iint_{\sigma_0} g(N, t) \left(\nabla_N \sqrt{K(N)}, \vec{n}_N \right) \nabla_M U(r_{NM}) d\sigma_N +$$

$$+\nabla_M \sqrt{K(M)} \iint_{\sigma_0} g(N, t) \left(\nabla_N \sqrt{K(N)}, \vec{n}_N \right) U(r_{NM}) d\sigma_N +$$

$$+K(M) \iint_{\sigma_0} K(N) g(N, t) \nabla_M \left(\nabla_N \frac{G(M, N)}{\sqrt{K(M)K(N)}}, \vec{n}_N \right) d\sigma_N, \quad M \notin \sigma_0.$$

$$(18)$$

Используя известные предельные значения для потенциалов простого и двойного слоев и их производных, а так же тот факт, что интеграл со слабой сингулярностью типа $\frac{1}{r_{NM}}$ не испытывает скачка на σ_0 [9], имеем для (18):

$$\vec{v}_{*}^{\pm}(M) = \sqrt{K(M)} \iint_{\sigma_{0}} \sqrt{K(N)} g(N, t) \nabla_{M} \left(\nabla_{N} U(r_{NM}), \vec{n}_{N}\right) d\sigma_{N} -$$

$$-\nabla_{M} \sqrt{K(M)} \iint_{\sigma_{0}} \sqrt{K(N)} g(N, t) \left(\nabla_{N} U(r_{NM}), \vec{n}_{N}\right) d\sigma_{N} +$$

$$+ \frac{\sqrt{K(M)}}{2} \iint_{\sigma_{0}} g(N, t) \left(\nabla_{N} \sqrt{K(N)}, \vec{n}_{N}\right) \nabla_{M} U(r_{NM}) d\sigma_{N} +$$

$$+ \frac{\sqrt{K(M)}}{2} \int_{\sigma_{0}} g(N, t) \left(\nabla_{N} \sqrt{K(N)}, \vec{n}_{N}\right) \nabla_{M} U(r_{NM}) d\sigma_{N} +$$

$$+ \frac{\sqrt{K(M)}}{2} \int_{\sigma_{0}} g(N, t) \left(\nabla_{N} \sqrt{K(N)}, \vec{n}_{N}\right) \nabla_{M} U(r_{NM}) d\sigma_{N} +$$

$$+ \frac{\sqrt{K(M)}}{2} \int_{\sigma_{0}} g(N, t) \left(\nabla_{N} \sqrt{K(N)}, \vec{n}_{N}\right) \nabla_{M} U(r_{NM}) d\sigma_{N} +$$

$$+\nabla_{M}\sqrt{K(M)}\iint_{\sigma_{0}}g(N,t)\left(\nabla_{N}\sqrt{K(N)},\vec{n}_{N}\right)U(r_{NM})d\sigma_{N}+$$

$$+K(M)\iint_{\sigma_{0}}K(N)g(N,t)\nabla_{M}\left(\nabla_{N}\frac{G(M,N)}{\sqrt{K(M)K(N)}},\vec{n}_{N}\right)d\sigma_{N}\pm$$

$$\pm\sqrt{K(M)}\frac{\tilde{\nabla}\left(g(M)\sqrt{K(M)}\right)}{2}\mp\frac{\nabla_{M}K(M)}{4}g(M)\mp$$

$$\mp\frac{(\nabla_{M}K(M),\vec{n}_{M})}{4}g(M)\vec{n}_{M},\quad M\in\sigma_{0}.$$

Здесь $\tilde{\nabla}_M g(M)$ — касательная составляющая градиента функции g(M) [9].

С учетом (10) и (19), скорости перемещения точек поверхности σ_0 (12) примут вид

$$\vec{v}(M) = \vec{v}_0(M) + \sqrt{K(M)} \iint_{\sigma_0} \sqrt{K(N)} g(N, t) \nabla_M \left(\nabla_N U(r_{NM}), \vec{n}_N \right) d\sigma_N -$$

$$-\nabla_M \sqrt{K(M)} \iint_{\sigma_0} \sqrt{K(N)} g(N, t) \left(\nabla_N U(r_{NM}), \vec{n}_N \right) d\sigma_N +$$

$$+ \frac{\sqrt{K(M)}}{2} \iint_{\sigma_0} g(N, t) \left(\nabla_N \sqrt{K(N)}, \vec{n}_N \right) \nabla_M U(r_{NM}) d\sigma_N +$$

$$+ \nabla_M \sqrt{K(M)} \iint_{\sigma_0} g(N, t) \left(\nabla_N \sqrt{K(N)}, \vec{n}_N \right) U(r_{NM}) d\sigma_N +$$

$$+ K(M) \iint_{\sigma_0} K(N) g(N, t) \nabla_M \left(\nabla_N \frac{G(M, N)}{\sqrt{K(M)K(N)}}, \vec{n}_N \right) d\sigma_N, \quad M \in \sigma_0.$$

4 Переход к контурному интегралу

Пусть имеется некоторая поверхность Σ , опирающаяся на контур L. Имеет место теорема.

Теорема 1 Для функции $U(r_{NM})$ из фундаментального решения (7) уравнения (5) имеет место тождество:

$$\iint_{\Sigma} \nabla_{M} \left(\nabla_{M} U(r_{NM}), \vec{n}_{N} \right) d\sigma_{N} = - \oint_{L} \left[\nabla_{M} U(r_{NM}), d\vec{r}_{N} \right] -$$

$$- \iint_{\Sigma} \beta^{2} U(r_{NM}) \vec{n}_{N} d\sigma_{N}.$$
(21)

Доказательство. Применим известную теорему Стокса к скалярной функции:

$$\iint\limits_{\Sigma} \left[d\vec{\sigma}_N, \nabla_M U(M, N) \right] = \oint\limits_{L} d\vec{r}_N U(M, N).$$

Подействуем оператором ∇_M на левую и правую части последнего выражения, имеем

$$\iint_{\Sigma} \left[\nabla_{M}, \left[d\vec{\sigma}_{N}, \nabla_{M} U(M, N) \right] \right] = \oint_{L} \left[\nabla_{M}, d\vec{r}_{N} U(M, N) \right]. \tag{22}$$

Несложно доказать следующие соотношения

$$\nabla_M \left(\nabla_N U(M, N), d\vec{\sigma}_N \right) = - \left[\nabla_M, \left[d\vec{\sigma}_N, \nabla_N U(M, N) \right] \right] + \tag{23}$$

$$+d\vec{\sigma}_N\left(\nabla_M, \nabla_N U(M, N)\right) + \left[d\vec{\sigma}_N, \left[\nabla_M, \nabla_N U(M, N)\right]\right],$$
$$\left[\nabla_M, U(M, N) d\vec{r_N}\right] = \left[\nabla_M U(M, N), d\vec{r_N}\right]$$
(24)

Учтем, что $\nabla_M U(r_{NM}) = -\nabla_N U(r_{NM})$ и (8) имеем (23)

$$\nabla_M \left(\nabla_N U(r_{NM}), d\vec{\sigma}_N \right) = \tag{25}$$

$$-\left[\nabla_{M},\left[d\vec{\sigma}_{N},\nabla_{N}U(r_{NM})\right]\right]-\beta^{2}U(r_{NM})d\vec{\sigma}_{N}.$$

Тогда, с учетом (24) и (25), преобразованная теорема Стокса (22) примет вид (21). Отметим, что при $\beta=0$ (21) представляет собой известную теорему Ампера.

5 Численное решение

Пусть выбрана правая система координат. Построим численную схему для уравнений (17), (20), воспользовавшись методом дискретных особенностей

для решения (17) и разовьем метод замкнутых вихревых рамок, для вычисления гиперсингулярного интеграла в (20). Для этого поверхность σ_0 представим элементарными площадками $\Delta \sigma_{mk}$, $m=0,1,\ldots,n_1-2,\ k=0,1,\ldots,n_2-2$ одинаковой площади.

Рис. 1. Элементарные площадки.

Края этих площадок задают точки P_{ij} , $i=0,1,\ldots,n_1-1,\,j=0,1,\ldots,n_2-1,$ (см. рисунок 1). Приблизительно в центре каждой площадки $\Delta\sigma_{mk}$ расположим расчетные точки M_{mk} $i=0,1,\ldots,n_1-2,\,j=0,1,\ldots,n_2-2,$ вычислив их координаты по следующей формуле:

$$M_{mk} = \frac{1}{4} \left(P_{mk} + P_{m+1,k} + P_{m+1,k+1} + P_{m,k+1} \right).$$

В интегральном уравнении (17) заменим интеграл на суммы

$$g_{mk} - 2\lambda \sum_{i=0}^{n_1-2} \sum_{\substack{j=0\\ mk \neq ij}}^{n_2-2} g_{ij} \Omega_{mkij} \Delta \sigma_{ij} = 2\lambda \varphi_{0mk} + \alpha \left(\vec{e}_g, \vec{r}_{mk}\right), \tag{26}$$

$$m = 0, 1, \dots, n_1 - 2, \quad k = 0, 1, \dots, n_2 - 2.$$

(26) представляет собой систему линейных алгебраических уравнений.

Отметим, что в ходе численных расчетов для системы (26) было установлено диагональное преобладание, что позволило решать эту систему методом простой итерации. В этом методе каждое новое приближение находится по формуле:

$$g_{mk}^{p} = 2\lambda \sum_{i=0}^{n_{1}-2} \sum_{j=0}^{n_{2}-2} g_{ij}^{p-1} \Omega_{mkij} \Delta \sigma_{ij} + 2\lambda \varphi_{0mk} + \alpha \left(\vec{e}_{g}, \vec{r}_{mk}\right), \qquad (27)$$

$$mk \neq ij$$

$$m = 0, 1, \dots, n_1 - 2, \quad k = 0, 1, \dots, n_2 - 2. \quad p = 1, 2, \dots, J.$$

или в матричном виде

$$g^p = B^{p-1} + C, \quad s = 0, 1, \dots,$$
 (28)

$$p = 1, 2, \dots, J$$
, при $||B^{p-1}|| < 1$.

Здесь J — число итераций, которое определяется из условия [10]

$$\frac{\|g^J - g^{J-1}\|_1}{\|g^J\|_1} < \frac{1 - \|B\|_1}{\|B\|_1} \varepsilon, \tag{29}$$

(30)

где ε — заданная точность.

Выбор метода простой итерации в данной работе объясняется простотой его распараллеливания.

Считаем, что плотность потенциала двойного слоя g_{mk} и коэффициент K(M) не меняются в пределах каждой площадки $\Delta \sigma_{mk}, m = 0, 1, \ldots, n_1 - 2, k = 0, 1, \ldots, n_2 - 2, s = 0, 1, \ldots$ Тогда разностная схема для (20), с учетом (21), примет вид

$$\vec{v}_{mk} = \vec{v}_{0 mk} - \sqrt{K_{mk}} \sum_{i=0}^{n_1-2} \sum_{j=0}^{n_2-2} \sqrt{K_{ij}} g_{ij} \oint_{L_{ij}} \nabla_M U(r_{NM}) d\vec{r}_N +$$

$$+ \sqrt{K_{mk}} \sum_{i=0}^{n_1-2} \sum_{j=0}^{n_2-2} \sqrt{K_{ij}} g_{ij} \iint_{\Delta \sigma_{ij}} \left(\left(\nabla_N \ln \sqrt{K(N)}, \vec{n}_N \right) \nabla_N U(r_{NM}) -$$

$$- \nabla_M \ln \sqrt{K(M)} \left(\nabla_N U(r_{NM}), \vec{n}_N \right) \right) d\sigma_N +$$

$$+ \sqrt{K_{mk}} \sum_{i=0}^{n_1-2} \sum_{j=0}^{n_2-2} \sqrt{K_{ij}} g_{ij} \iint_{\Delta \sigma_{ij}} \left(\left(\nabla_N \ln \sqrt{K(N)}, \vec{n}_N \right) \nabla_M \ln \sqrt{K(M)} -$$

$$- \beta^2 \vec{n}_N \right) U(r_{NM}) d\sigma_N +$$

$$+ K_{mk} \sum_{i=0}^{n_1-2} \sum_{j=0}^{n_2-2} K_{ij} g_{ij} \iint_{\Delta \sigma_{ij}} \nabla_M \left(\nabla_N \frac{G(M, N)}{\sqrt{K(M)K(N)}}, \vec{n}_N \right) d\sigma_N,$$

$$m = 0, 1, \dots, n_1 - 2, \quad k = 0, 1, \dots, n_2 - 2.$$

Уточним формулы (27) и (30) для конкретной зависимости коэффициента проводимости K(M)

$$K(M) = e^{2\beta z_M}. (31)$$

(Нетрудно убедится, что \sqrt{K} является метагармонической функцией.)

С учетом (31), имеем (27) и (30)

$$g_{mk}^{p} = 2\lambda \sum_{i=0}^{n_{1}-2} \sum_{j=0}^{n_{2}-2} g_{ij}^{p-1} \Omega_{mkij} \Delta \sigma_{ij} + 2\lambda \varphi_{0mk} + \alpha \left(\vec{e}_{g}, \vec{r}_{mk}\right), \tag{32}$$

$$\Omega_{mkij} = \frac{1}{4\pi} \sqrt{\frac{K_{ij}}{K_{mk}}} \left(\frac{\left(1 + \beta r_{mkij}\right) e^{-\beta r_{mkij}} \left(\vec{r}_{mkij}, \vec{n}_{ij}\right)}{(r_{mkij})^3} - \frac{\beta \left(\vec{k}, \vec{n}_{ij}\right) e^{-\beta r_{mkij}}}{r_{mkij}} \right),$$

$$m = 0, 1, \dots, n_1 - 2, \quad k = 0, 1, \dots, n_2 - 2, \quad p = 1, 2, \dots, J,$$

$$\vec{v}_{mk} = \vec{v}_{0 mk} + \vec{v}_{* mk}, \tag{33}$$

$$\vec{v}_{* mk} = -\sqrt{K_{mk}} \sum_{i=0}^{n_{1}-2} \sum_{j=0}^{n_{2}-2} \sqrt{K_{ij}} g_{ij} \sum_{\gamma=1}^{4} \vec{V}_{1 mkij}^{\gamma} + \frac{1}{\sqrt{K_{mk}}} \sum_{i=0}^{n_{1}-2} \sum_{j=0}^{n_{2}-2} \sqrt{K_{ij}} g_{ij} \left(\beta \vec{V}_{2 mkij} + \beta^{2} \vec{V}_{3 mkij} \right) \Delta \sigma_{ij},$$

$$\vec{V}_{1 mkij}^{\gamma} = \frac{\vec{e}_{1 mkij}}{4\pi r_{0 mkij}^{\gamma}} \int_{\theta_{1}^{\gamma}}^{\theta_{2}^{\gamma}} \left(\sin \theta + \beta r_{0 mkij}^{\gamma} \right) e^{-\frac{\beta r_{0 mkij}^{\gamma}}{\sin \theta}} d\theta,$$

$$r_{0 mkij}^{\gamma} = \frac{\left| \left[\vec{r}_{12 ij}^{\gamma}, \vec{r}_{1 mkij}^{\gamma} \right] \right|}{r_{12 ij}^{\gamma}}, \quad \vec{e}_{1 mkij} = \frac{\left[\vec{r}_{1 mkij}^{\gamma}, \vec{r}_{12 ij}^{\gamma} \right]}{\left| \left[\vec{r}_{1 mkij}^{\gamma}, \vec{r}_{12 ij}^{\gamma} \right] \right|},$$

$$\theta_{\zeta} = \arcsin \frac{\left| \left[\vec{r}_{12 ij}^{\gamma}, \vec{r}_{\zeta mkij}^{\gamma} \right] \right|}{r_{12 ij}^{\gamma} \vec{r}_{\zeta mkij}^{\gamma}}, \quad \zeta = 1, 2,$$

$$\vec{V}_{2 mkij} = \frac{\left(1 + \beta r_{mkij} \right) U_{mkij}}{\left(r_{mkij} \right)^{2}} \left[\vec{n}_{ij}, \left[\vec{r}_{mkij}, \vec{k} \right] \right],$$

$$\vec{V}_{3 mkij} = U_{mkij} \left[\vec{k}, \left[\vec{k}, \vec{n}_{ij} \right] \right], \quad U_{mkij} = \frac{e^{-\beta r_{mkij}}}{4\pi r_{mkij}},$$

$$m = 0, 1, \dots, n_{1} - 2, \quad k = 0, 1, \dots, n_{2} - 2.$$

Интеграл в (33) не выражается через элементарные функции, и потому вычисляется численно по формуле Симпсона. Вектора $\vec{r}_{1\ mkij}^{\gamma}$, $\vec{r}_{2\ mkij}^{\gamma}$, $\vec{r}_{12\ ij}^{\gamma}$ изображены на рисунке 2.

Рис. 2. Вихревая рамка.

Итак, для численного решения задачи вычисления скоростей перемещения точек поверхности раздела жидкостей в неоднородном грунте, проводимость которого характеризуется функцией (31) имеем: систему линейных алгебраических уравнений (32) и (33). Для нахождения скоростей перемещения расчетных точек M_{mk} , $m=0,1,\ldots,n_1-2,\,k=0,1,\ldots,n_2-2$ нужно найти плотность g_{mk} в этих точках путем решения системы (32). Затем вычислить их по формулам (33).

Отметим, что при $\beta=0$ полученная дискретная система совпадает с результатом из [4].

6 Сопоставление с аналитическим решением

Рассмотрим случай, когда поверхность раздела жидкостей σ_0 моделируется плоскостью x=0, а влияние силы тяжести мало $\alpha=0$ (напорная фильтрация).

Скважину моделируем единичным стоком, потенциал которого имеем вид

$$\varphi_0(M) = \frac{q}{4\pi} \sqrt{\frac{K(M_1)}{K(M)}} \frac{e^{-\beta r_{M_1 M}}}{r_{M_1 M}}, \quad q = \frac{\Pi}{K_{M_1}}, \tag{34}$$

где q — приведенный дебит (расход на единицу проводимости грунта).

При этих условиях несложно выписать аналитическое выражение, определяющее скорость перемещения поверхности σ_0 . Действительно, потенциалы φ_1 и φ_2

$$\varphi_{1}(M) = \varphi_{0}(M) - \lambda \tilde{\varphi}_{0}(M), \quad \varphi_{2}(M) = (1 + \lambda)\varphi_{0}(M)$$

$$\tilde{\varphi}_{0}(M) = \frac{q}{4\pi} \sqrt{\frac{K(M_{1})}{K(M)}} \frac{e^{-\beta r_{\tilde{M}_{1}M}}}{r_{\tilde{M}_{1}M}}, \quad q = \frac{\Pi}{K_{M_{1}}}, \quad \tilde{M}_{1} = (-1, 0, 0).$$
(35)

удовлетворяют уравнению (5), граничным условиям (9) и описывают течения жидкостей вязкостей μ_1 и μ_2 , соответственно.

Из (3), с учетом (35), скорость перемещения точек поверхности σ_0 примет вид

$$\vec{v}_a(M,0) = \vec{v}_0(M,0) + K(M) \frac{\nabla_M \varphi_1(M) + \nabla_M \varphi_2(M)}{2}, \quad M \in \sigma_0.$$
 (36)

Для оценки ошибки вычислений введем величину

$$\eta(M) = \left| \frac{v(M)}{v_a(M)} - 1 \right| 100\%.$$

В ходе численных расчетов было замечено, что ошибка η принимает наибольшее значение в центре плоскости σ_0 (напротив скважины). Исключение представляют только крайние точки плоскости (образуют рамку) при $\beta>0$ и крайняя полоса плоскости (область между двумя рамками) при $\beta=0$ [4]. Погрешность в них связана с обрывом σ_0 , поэтому здесь и далее устраняем ее путем наложения ограничений на скорость возмущения

$$\vec{v}_*(x_M, y_M, z_M, t) = \vec{v}_{\min}$$
 (37)
для $|y_M| \in [|y_{\min}|, |y_{\max}|], |z_M| \in [|z_{\min}|, |z_{\max}|].$

Здесь y_{\min} , z_{\min} — координаты точки, в которой модуль скорости возмущения $v_*(M)$ уменьшается в 1000 раз при движении от центра плоскости σ_0 к ее краям вдоль одной из координатной оси Oy и Oz, соответственно.

Для выполнения численных расчетов, с учетом (37) плоскость заменим квадратом $x=0,y\in[-3,3]$ и $z\in[-3,3]^1$. Точность ε из (29) выберем равной $\varepsilon=10^{-10}$.

Введем обозначение $\eta = \eta(0,0,0)$. В таблице 1 представлена зависимость ошибки η от $n=n_1-1=n_2-1$ для различных значений λ . Для определенности выберем $\beta=1$.

¹Из-за малости z-й компоненты скорости по сравнению с модулем скорости, несимметрия практически не заметна.

Conociabacine e anaminimon np					
n	10	20	40	80	
$\eta_{\lambda=1},\%$	12.4	5.4	2.4	1.2	
$\eta_{\lambda=0.5},\%$	7.9	3.4	1.6	0.7	
$\eta_{\lambda=-0.5},\%$	14.1	5.9	2.6	1.2	

Табл.1. Сопоставление с аналитикой при $\beta = 1$.

Анализируя таблицу 1 замечаем, что с ростом n ошибка η уменьшается, а значит численное решение приближается к аналитическому.

7 Уточнение численной схемы

При построении дискретной схемы, из предпоследнего слагаемого в (30) в точке M_{mk} из сумм выбрасывается слагаемое, которое является конечным. Даже грубый учет этого слагаемого позволяет в несколько раз уменьшить погрешность вычислений. Покажем это.

Вычислим слагаемое, отброшенное из сумм предпоследнего слагаемого в (30):

$$\vec{v}_{*3mk} = K_{mk}g_{mk} \iint_{\Delta\sigma_{mk}} \beta^2 \left[\vec{k}, \left[\vec{k}, \vec{n}_N \right] \right] U(r_{NM}) \Delta\sigma_N$$

$$m = 0, 1, \dots, n_1 - 1, \quad k = 0, 1, \dots, n_2 - 1.$$

Заменим площадку $\Delta \sigma_{mk}$ на круг радиусом

$$R = \frac{r_{P_{mk}P_{m+1,k}} + r_{P_{m+1,k}P_{m+1,k+1}} + r_{P_{m+1,k+1}P_{mk+1}} + r_{P_{mk+1}P_{mk}}}{8}$$

Тогда в полярной системе координат ρ, θ с центром в M_{mk}^2 интеграл \vec{v}_{*3mk} может быть вычислен точно

$$\vec{v}_{*3mk} = K_{mk}g_{mk} \frac{\beta^2 \left[\vec{k}, \left[\vec{k}, \vec{n}_{mk}\right]\right]}{4\pi} \int_0^R \int_0^{2\pi} \frac{e^{-\beta\rho}}{\rho} \rho d\theta d\rho =$$

$$= K_{mk}g_{mk}\beta \left[\vec{k}, \left[\vec{k}, \vec{n}_{mk}\right]\right] \frac{1 - e^{-\beta R}}{2}.$$
(38)

Проведем численный эксперимент, описанный в п.6, с учетом (38). Его результаты отображены в таблице 2.

Табл.2. Сопоставление с аналитикой при $\beta = 1$ в случае уточненной численной схемы.

n	10	20	40	80
$\eta_{\lambda=1},\%$	5.8	1.9	0.7	0.3
$\eta_{\lambda=0.5},\%$	3.7	1.2	0.4	0.2
$\eta_{\lambda=-0.5},\%$	6.4	2.1	0.7	0.3

Из таблицы 2 видно, что уточнение численной схемы привело к уменьшению погрешности вычислений.

Список литературы

- [1] Danilov V.L. Method of integro-differential equation (IDE) in hydrodynamic thory of filtration// Intern. conference dedicated to P.Ya.Polubarinova-Kochina «Modern approaches to flow in porous media», 1999, P.9-10.
- [2] Lifanov I.K., Nikolsky D.N., Piven' V.F. Mathematical modelling of the work of the system of wells in a layer with the exponential law of permeability variation and the mobile liquid interface// Russ. J. Numer. Anal. Math. Moddeling, 2002, Vol.17, No.4, 381-391.
- [3] *Никольский Д.Н.* Решение двумерной задачи о нахождении критического дебита водозабора, работающего вблизи загрязненного бассейна// Экологический вестник научных центров ЧЭС, 2004, № 3. С.57-63.
- [4] Никольский Д.Н. Математическое моделирование трехмерной задачи эволюции границы раздела жидкостей различной вязкости и плотности в однородном и безграничном грунте// Вычислительные методы и программирование, 2006, Т.7, Раздел 1, С.236-242. (http://num-meth.srcc.msu.su/zhurnal/tom_2006/v7r129.html)
- [5] *Пивень В.Ф.*, *Буравлев И.В.* Исследование трехмерной задачи эволюции границы раздела жидкостей к несовершенной скважине// Тр. XII Межд. симп. «МДОЗМФ–2005», Харьков-Херсон, 2005. С.275-278.
- [6] Голубева О.В. Курс механики сплошных сред. М.: Высшая школа, 1972.
- [7] $\Pi u u e u u B. \Phi$. Фундаментальные решения уравнений физических процессов, протекающих в неоднородных средах// Тр. Межд. шк.-сем. «МДОЗ-МФ». Вып.3. Орел, 2004. С.43-53.

- [8] $\Pi u sens$ $B.\Phi$. Единственность решения граничных задач сопряжения физических процессов в неоднородной среде// Тр. X Межд. симп. «МДОЗМ Φ –2001». Херсон, 2001. С.265-269.
- [9] Лифанов И.К. Метод сингулярных интегральных уравнений и численный эксперимент. М.: ТОО Янус, 1995.
- [10] $\mathit{Рябенький}\ B.C.$ Введение в вычислительную математику. М.: Физматлит, 2000.