Ogólne zalecenia stosowania rur drenarskich Drewplast w otulinie Typar SF 44 DuPont

Pory o średnicy 100 μm charakterystyczne dla włókniny Typar SF44 pozwalają na jej zastosowanie w warunkach hydraulicznych prostych z niedużym przepływem statycznym wody oraz w gruntach drobnoziarnistych wytwarzających naturalny filtr na styku z geosyntetykiem, a także w gruntach niestabilnych hydrologicznie skłonnych do sufozji (czyli wypłukiwania ziaren i ich przemieszczania).

Typowe zastosowanie dotyczy gruntów:

- grunty spoiste
- gruby pył
- piasek pylasty
- piasek drobny
- piasek średni

Przy frakcjach o większej średnicy (np. piaski grube) aby zapewnić prawidłowe działanie systemu drenarskiego należałoby wymienić w bezpośrednim sąsiedztwie grunt rodzimy na frakcję o mniejszych średnicach, np. piasków drobnych czy piasków średnich, lub lepiej, zastosować rurę w otulinie Typar SF27.

Produkt jest przeznaczony do wykonywania odwodnień bezpośrednio w gruncie rodzimym, nie wolno go układać w dodatkowym filtrze żwirowym – ryzyko zamulenia

Z uwagi na przepuszczalność wynoszącą 40*10⁻³ m*s⁻¹, bez względu na otaczający grunt, Typar SF 44 spełnia dobrze wymagania typowego systemu odwadniającego.

Spadki rurociągu, a prędkość minimalna i dopuszczalna.

Drenaże rolnicze:

Spadki minimalne

	Grunty zwięzłe I średnio zwięzłe	Grunty pylaste i żelaziste	Grunty kurzawkowe silnie zażelazione
Dn 50 Dn65 Dn 80 Dn 100 Dn 125 Dn 160	$i_{min} = 3\%$ $i_{min} = 1,5\%$ $i_{min} = 1\%$ $i_{min} = 1\%$ $i_{min} = 1\%$ $i_{min} = 1\%$	$i_{\min} = 6\%$ $i_{\min} = 5\%$ $i_{\min} = 3\%$ $i_{\min} = 2\%$ $i_{\min} = 1,5\%$ $i_{\min} = 1\%$	$\begin{array}{l} i_{min} = \! 14\% \\ i_{min} = \! 10\% \\ i_{min} = \! 7\% \\ i_{min} = \! 4\% \\ i_{min} = \! 3\% \\ i_{min} = \! 2\% \end{array}$

Spadki maksymalne

Grunty lekkie	Grunty zwięzłe
i _{max} =10%	$i_{max} = 12,5\%$
$i_{max} = 7.5\%$	$i_{max} = 10\%$
$i_{max} = 4.5\%$	$i_{max} = 6.5\%$
$i_{max} = 3.5\%$	$i_{max} = 5\%$
$i_{max} = 2.5\%$	$i_{max} = 3.5\%$
	i _{max} =10% i _{max} =7,5% i _{max} =4,5% i _{max} =3,5%

Dn 160 $i_{max} = 1,6\%$ $i_{max} = 2,2\%$

Drenaże liniowe, odwodnienia dróg i budowli

Dn 50 – Dn 160 i_{min} =2% grunty zwięzłe – gliniaste i ilaste Dn 50 – Dn 160 i_{min} =3% grunty piaszczyste i pylaste

W drenażach budowlanych przyjmowana najmniejsza średnica rurociągów powinna wynosić Dn 100.

Poniższa tabela pokazuje teoretyczne, maksymalne wartości objętości wody Q [dm³ s⁻¹] dopływającej do wnętrza rurociągu w zależności od przeznaczenia i zwięzłości gruntu w przeliczeniu na 1 mb rury w oplocie Typar SF 44 dla średnic 50, 65, 80, 100, 125.

	Utwory					
Zastosowanie	Grunty luźne piaski średnioziarniste piaski drobnoziarniste	Grunty zwięzłe piaski gliniaste glina piaszczysta				
	K=0,29 - 0,023 * 10 ⁻³ m *s ⁻¹	glina K=8,1 - 0,0058 * 10 ⁻⁶ m *s ⁻¹				
Odwodnienia budowlane Dn 100	24,8 – 313,2 litry/godzinę	0,006-8,75 litry/godzinę				
Odwodnienia rolnicze Dn 50, Dn 65	30,63 – 386,3 litry/godzinę	0,006-8,75 litry/godzinę				
Dn 80, Dn 100, Dn 125	24,8 – 313,2 litry/godzinę	0,006-8,75 litry/godzinę				

Literatura towarzysząca:

PN-EN 13252:2002 Geotekstylia i wyroby pokrewne – Właściwości wymagane w odniesieniu do wyrobów stosowanych w systemach drenażowych

Müller-Rochholz J. (2005): Geokunststoffe im Erd- und Strassenbau. Werner Verlag, 403 s.

Geowłókniny Typar[®] SF

Właściwości	Metoda badawcza	Jednostka	SF20	SF27	SF32	SF37	SF40	SF44	SF49	SF56	SF65	SF70	SF77	SF85	SF94	SF111
I. Opis produktu																
Masa powierzchniowa	EN ISO 9864	g/m ²	68	90	110	125	136	150	165	190	220	240	260	290	320	375
Grubość przy nacisku 2 kN/m²	EN ISO 9863-1	mm	0,35	0,39	0,43	0,45	0,47	0,48	0,49	0,57	0,59	0,65	0,65	0,73	0,74	0,83
Grubość przy nacisku 200 kN/m²	EN ISO 9863-1	mm	0,28	0,31	0,35	0,37	0,39	0,40	0,40	0,48	0,53	0,59	0,59	0,69	0,69	0,79
II. Właściwości mechaniczne																
Pochłanianie energii	EN ISO 10319	kJ/m ²	1,0	1,8	3,0	3,6	3,7	4,5	5,8	5,8	7,4	8,2	8,6	9,8	11,4	13,0
Wytrzymałość na rozciąganie	EN ISO 10319	kN/m	3,4	5,0	7,0	8,5	9,0	10,3	12,6	13,1	16,5	16,7	20,0	21,3	25,0	30,0
Wydłuśenie przy zastosowaniu max siły rozciągającej	EN ISO 10319	%	35	40	45	52	52	52	52	52	55	55	55	55	55	55
Wytrzymałość na rozciąganie przy 5% wydłuśeniu	EN ISO 10319	kN/m	1,8	2,6	3,3	3,8	4,0	4,5	5,2	5,7	6,8	7,2	8,2	8,8	10,0	11,5
Siła przebicia stemplem	EN ISO 12236	N	500	750	1000	1200	1250	1575	1800	1850	2350	2400	2900	3150	3500	4250
Pr—bærzebicia stośkiem	EN 918	mm	50	45	35	33	29	27	30	22	25	23	22	16	17	14
Wytrzymałość na wyrywanie przy kopaniu	ASTM D4632	N	300	450	625	725	750	900	1050	1100	1400	1450	1680	1750	2050	2350
Wytrzymałość na rozciąganie	ASTM D4533	N	160	220	290	320	370	385	335	460	440	570	450	610	570	600
III. Właściwości hydrauliczne Szerokość właściwa otwor—w perforowanych	EN ISO 12956	μm	225	175	140	130	120	100	90	80	80	75	75	70	70	65
Wielkość przepływu przy słupie wody wynoszącym 10 cm	BS 6906-3	I/(m ² ·s)	240	175	110	80	75	70	50	60	35	40	23	30	15	15
Wskaźnik (indeks) szybkości przepływu VI	EN ISO 11058	10 ⁻³ m/s	180	100	70	50	50	40	25	35	18	20	12	15	5	5
Przepuszczalność wody kv a/ przy nacisku 20 kN/m²	DIN 60500-4	10 ⁻⁴ m/s	5,2	4,7	4,6	3,2	2,8	2,6	1,7	1,9	1,6	1,8	1,4	1,6	1,1	1,0
b/przy nacisku 200 kN/m²		10 ⁻⁴ m/s	3,2	3,1	2,9	1,8	2,0	1,8	1,2	1,4	1,2	1,3	1,0	1,2	0,8	0,7

Trwałość

Promieniowanie UV	Kilkumiesięczna odporność na działanie promieni słonecznych, dłuśsze oddziaływanie mośe zmniejszyć wytrzymałość. Pozostaje bez zmian po 60 godzinach XENONTEST-u (SN 195808/ISO 105/B 04) Zaleca się przykrycie produktu po 2 tygodniach od ułożenia			
Kwasy i alkalia występujące w przyrodzie	Bez zmian			
Odporność na utlenianie	prEN ISO 13438 10	00% zachowanej siły		
Odporność chemiczna	EN 14030 10	00% zachowanej siły		
Odporność mikrobiologiczna	EN 12225 10	00% zachowanej siły		

Typar *- zastrześony znak towarowy Du Pont

Opis produktu

Polimer	100% polipropylen stabilizowany UV
Średnia gęstość	0,91
Punkt topliwość	165°C
Rodzaj wł—kna	ciągły
Średnica wł—kna	40-55 μm
Spos—tłączenia	zakład, zgrzewanie termiczne

Przewidywana żywotność w naturalnych gruntach - minimum 100 lat

Podane wartości odpowiadają średnim wynikom otrzymanym w wewnętrznych laboratoriach i zewnętrzych instytutach i służą jako odnośnik do CE. Zastrzega się prawo zmiany bez uprzedzenia.