Calculus IB: Lecture 15

Luo Luo

Department of Mathematics, HKUST

http://luoluo.people.ust.hk/

Outline

Geometric View of Convex Function

② Global/Local Minimum of Convex Function

3 Linear Approximation

Luo Luo (HKUST) MATH 1013 2/22

Outline

Geometric View of Convex Function

2 Global/Local Minimum of Convex Function

3 Linear Approximation

Luo Luo (HKUST) MATH 1013 3/22

Definition (convex function)

Let f is a real valued function defined on interval I. We call f is convex if for any x_1 , x_2 in I and t in [0,1], it holds that

$$f(tx_1 + (1-t)x_2) \le tf(x_1) + (1-t)f(x_2).$$

Theorem (1st/2nd order condition)

Suppose function f is twice differentiable over an open interval I. Then, the following statements are equivalent:

- (a) f is convex.
- (b) $f(x) \ge f(x_0) + f'(x_0)(x x_0)$, for all x and x_0 in 1.
- (c) $f''(x) \ge 0$, for all x in I.

Luo Luo (HKUST) MATH 1013 3/22

Let f(x) be a convex function and define the linear function $(x_1 \neq x_2)$

$$g(x) = \frac{f(x_2) - f(x_1)}{x_2 - x_1}(x - x_1) + f(x_1).$$

Then we have $g(x_1) = f(x_1)$, $g(x_2) = f(x_2)$ and $g(x) \ge f(x)$ for any $x_1 \le x \le x_2$.

We can prove $g(x) \ge f(x)$ for any $x_1 < x < x_2$ by the convexity of f.

Proof.

Since $x_1 < x < x_2$, there exists 0 < t < 1 such that $x = tx_1 + (1 - t)x_2$. Using the definition of convexity, we have

$$g(x) = \frac{f(x_2) - f(x_1)}{x_2 - x_1} (x - x_1) + f(x_1)$$

$$= \frac{f(x_2) - f(x_1)}{x_2 - x_1} (tx_1 + (1 - t)x_2 - x_1) + f(x_1)$$

$$= \frac{f(x_2) - f(x_1)}{x_2 - x_1} (1 - t)(x_2 - x_1) + f(x_1)$$

$$= (1 - t)(f(x_2) - f(x_1)) + f(x_1)$$

$$= (1 - t)f(x_2) + tf(x_1)$$

$$\geq f(tx_1 + (1 - t)x_2) = f(x)$$

Luo Luo (HKUST) MATH 1013 5/22

Theorem (1st order condition)

Suppose f is differentiable over an open interval I. Then f is convex is equivalent to $f(x) \ge f(x_0) + f'(x_0)(x - x_0)$ holds for all x and x_0 in I.

Luo Luo (HKUST) MATH 1013 6/22

Outline

Geometric View of Convex Function

2 Global/Local Minimum of Convex Function

3 Linear Approximation

Luo Luo (HKUST) MATH 1013 7/2

Global/Local Minimum of Convex Function

Any local minimum of convex function is also a global minimum.

Theorem (also holds for non-differentiable function)

Suppose function f is convex on interval I. If x^* is a local minimum over I, then x^* is also a global minimum of f over I.

Proof.

Since $f(x^*)$ is a local minimum, for any y in I, we can choose a sufficient small t < 1, such that $ty + (1 - t)x^*$ in I and $f(x^*) \le f(x^* + t(y - x^*)$. The convexity of f implies

$$f(x^*) \le f(x^* + t(y - x^*)) = f(ty + (1 - t)x^*) \le tf(y) + (1 - t)f(x^*)$$

$$\implies f(x^*) < tf(y) + (1 - t)f(x^*) \implies f(x^*) < f(y)$$

Theorem

If function f is convex and differentiable over an interval I. Then any point x^* that satisfies $f'(x^*) = 0$ holds that $f(x^*)$ is a global minimum.

Proof.

The 1-st order condition of convex and differentiable function means

$$f(y) \ge f(x^*) + f'(x^*)(y - x^*) = f(x^*)$$

for all y in I.

Consider that the convex and differentiable function $f(x) = e^x$ with domain $[1, \infty)$. The minimum is f(1) = e but $f'(1) = e \neq 0$.

We desire to establish an equivalent condition for global minimum of convex and differentiable function.

A good strategy is relaxing the condition of $f'(x^*) = 0$ to

$$f'(x^*)(y-x^*) \ge 0$$

9/22

holds for all y in I.

Theorem (sufficient condition)

If function f is convex and differentiable over an interval I. Then any point x^* that satisfies

$$f'(x^*)(y-x^*)\geq 0$$

for all y in I holds that $f(x^*)$ is a global minimum.

Theorem (necessary condition)

If function f is convex and differentiable over an interval I. Then for any point x^* such that $f(x^*)$ is a global minimum, we have

$$f'(x^*)(y-x^*)\geq 0$$

for all y in I.

Proof (necessary condition).

Let x^* in I and $f(x^*)$ is a global minimum. Suppose y in I such that

$$f'(x^*)(y-x^*)<0.$$

There must hold that $y \neq x^*$. Let t > 0, $h = t(y - x^*)$. Taking $t \to 0^+$, then

$$\lim_{t \to 0^{+}} \frac{f(x^{*} + t(y - x^{*})) - f(x^{*})}{t}$$

$$= (y - x^{*}) \cdot \lim_{t \to 0^{+}} \frac{f(x^{*} + t(y - x^{*})) - f(x^{*})}{t(y - x^{*})}$$

$$= (y - x^{*}) \cdot \lim_{h \to 0} \frac{f(x^{*} + h) - f(x^{*})}{h} = f'(x^{*})(y - x^{*}) < 0.$$

For sufficient small t, we have $f(x^* + t(y - x^*) - f(x^*) < 0$ for $x^* + t(y - x^*)$ in I, which contradicts to x^* is global minimum. Hence, we must have

$$f'(x^*)(y-x^*) \ge 0$$

and the convexity means $f(y) \ge f(x^*) + f'(x^*)(y - x^*) \ge f(x^*)$.

Luo Luo (HKUST) MATH 1013 11 / 22

Note that the optimal condition

$$f'(x^*)(y-x^*) \ge 0,$$

only depends on the function value and the derivative of f.

Hence, it works even if f' is not differentiable (f'' does not exist).

Exercise

Provide examples of f(x) for the following cases respectively

- f(x) is convex, but not differentiable
- f(x) is convex and differentiable, but f'(x) is non-differentiable
- f(x) is convex and differentiable, and $f^{(n)}(x)$ is differentiable for all positive integer n.

Outline

Geometric View of Convex Function

② Global/Local Minimum of Convex Function

3 Linear Approximation

Luo Luo (HKUST) MATH 1013 14 / 22

Recall that the slope of the tangent line to the graph of y = f(x) at x = a is the derivative

$$f'(a) = \lim_{h \to 0} \frac{f(a+h) - f(a)}{h}$$

Therefore the equation of the tangent line to the graph of y = f(x) at the point (a, f(a)) is determined by the slope condition

$$y = f(a) + f'(a)(x - a).$$

Letting x = a + h, we have

$$f'(a) \approx \frac{f(a+h) - f(a)}{h} = \frac{f(x) - f(a)}{x-a}$$
 when $h = x - a \approx 0$

i.e., $f(x) \approx f(a) + f'(a)(x - a)$, when $x \approx a$. In other words,

tangent line $\stackrel{approximates}{\longrightarrow}$ graph of y = f(x) near the point (a, f(a))

Luo Luo (HKUST) MATH 1013 14 / 22

The tangent line approximation at x = a, or linear approximation at x = a, or linearization at x = a, of a function y = f(x) (differentiable at x = a) is that we are using the tangent line equation (or the corresponding linear function) to approximate the given function.

$$y = f(x) \stackrel{\approx}{\longleftarrow}$$
 Tangent Line Equation : $y = f(a) + f'(a)(x - a)$
 $\implies f(x) \approx f(a) + f'(a)(x - a)$ for $x - a \approx 0$

Luo Luo (HKUST) MATH 1013 15 / 22

Example ($f(x) = \sqrt{x+1}$)

Find the linear approximation of $f(x) = \sqrt{x+1}$ at x = 0.

We have

$$f'(x) = \frac{1}{2}(x+1)^{-1/2}$$
, i.e. $f'(0) = \frac{1}{2}$

and the equation of the tangent line at (0,1) is

$$y = 1 + \frac{1}{2}(x - 0) = 1 + \frac{1}{2}x$$

which is also called the linear approximation of $f(x) = \sqrt{x+1}$ at x = 0.

Luo Luo (HKUST) MATH 1013 16 / 22

Example ($f(x) = \sqrt{x+1}$)

Let absolute error be $\sqrt{x+1} - 1 + \frac{x}{2}$.

X	$y = \sqrt{x+1}$	$y=1+\tfrac{x}{2}$	absolute error
0.200	1.095445	1.1000	$< 10^{-2}$
0.050	1.024695	1.0250	$< 10^{-3}$
0.005	1.002497	1.0025	$< 10^{-5}$

Luo Luo (HKUST) MATH 1013 17 / 22

Example $(\sqrt[3]{8.5})$

Find an approximate value of $\sqrt[3]{8.5}$ by the linear approximation of a suitable function.

Let
$$f(x) = \sqrt[3]{x} = x^{1/3}$$
, with $f'(x) = \frac{1}{3}x^{-2/3}$.

The linear approximation at x = 8 is:

$$f(x) \approx f(8) + f'(8)(x - 8) = 2 + \frac{1}{12}(x - 8) = \frac{x}{12} + \frac{4}{3}$$

Thus

$$f(8.5) \approx \frac{8.5}{12} + \frac{4}{3} = \frac{245}{120} = 2.04167.$$

Note that $\sqrt[3]{8.5} = 2.04093$ from a calculator.

Differential of the Function

The tangent line approximation at x is

$$f(x + \Delta x) \approx f(x) + f'(x)\Delta x$$

where Δx denotes some increment in x (which could be negative).

Then we use Δy or Δf to denote the change in the function values

$$\Delta y = \Delta f = f(x + \Delta x) - f(x).$$

and the linear approximation be expressed as

$$\Delta f \approx f'(x)\Delta x$$
.

Note that $f'(x)\Delta x$ is the change of y-value along the tangent line!

Differential of the Function

The notation of differentials df = f'(x)dx is obtained by expressing Δx as dx, and dy = df = f'(x)dx can be used as an approximation of

$$\Delta y = f(x + \Delta x) - f(x).$$

Luo Luo (HKUST) MATH 1013 20 / 22

Example (area of a circle)

Approximate the increase in the area of a circle when the radius is increased from 10m to 10.1m.

The area of the circle is $A(r) = \pi r^2$, then $dA = A'(r)dr = 2\pi r dr$.

For r=10m and dr=0.1m, we have $dA=2\pi(10)0.1=2\pi\text{m}^2$, which approximates the change in area ΔA .

The approximate area at r = 10.1 m is:

$$A \approx A(10) + dA = 100\pi + 2\pi = 102\pi \text{m}^2.$$

The exact area at r=10.1 m is $A=\pi(10.1)^2=\pi(10)^2+\Delta A$. The absolute error of the estimate is

$$|\pi(10.1)^2 - 102\pi| = 102.01\pi - 102\pi = 0.01 = |\Delta A - dy|m^2$$

Luo Luo (HKUST) MATH 1013 21 / 22

Linear Approximation of Convex Function

Given a differentiable function y = f(x) defined on an open interval I, its linear approximation is

$$f(x) \approx f(a) + f'(a)(x-a).$$

We additionally suppose f is convex, then the first-order condition means

$$f(x) \ge f(a) + f'(a)(x - a).$$

Hence, the linear approximation provides a lower bound of convex function.

