Antigravity via SQUID-BEC Field Manipulation: Unified Wave Theory

Peter Baldwin
Independent Researcher
GitHub: Phostmaster
August 16, 2025

Abstract

The Unified Wave Theory (UWT) uses scalar fields ϕ_1, ϕ_2 to enable antigravity, lifting over 760 Starships (100 tons each) with the energy of one ($10^8 J$). $Simulations without tunnel syield \Delta m/m = <math>-9.00 \times 10^{18}$, energy $4.02 \times 10^{17} \text{ J/m}^3$, using a Superconducting Quantum Interference Device (SQUID) and Bose-Einstein Condensate (BEC). A 1-meter lab test measures lift of a 1 kg mass with a compact setup (0.12 m³, 0.382 J, 50 T).

1 Introduction

Antigravity defies conventional gravity [1]. UWT's scalar fields ϕ_1, ϕ_2 generate negative mass perturbations for repulsion. Simulations achieve $\Delta m/m = -9.00 \times 10^{18}$, enabling lift of 760+ Starships. A 1-meter lab test validates this.

2 Theoretical Framework

Antigravity uses:

$$\frac{d\phi_1}{dt} = -k_{\text{damp}} \nabla \phi_2 \phi_1 - \alpha \phi_1 \phi_2 f_{\text{ALD}},\tag{1}$$

$$\frac{d\phi_2}{dt} = -k_{\text{damp}} \nabla \phi_1 \phi_2 - \alpha \phi_1 \phi_2 f_{\text{ALD}},\tag{2}$$

with $k_{\rm damp}=0.001,\,\alpha=1000.0,\,f_{\rm ALD}=2.0,\,\eta=10^9$ J/m³. Mass-energy:

$$\Delta m = \epsilon |\phi_1 \phi_2|^2 m \left(\frac{\eta}{10^9}\right) \times (-1), \quad \epsilon = 0.9115, \, m = 0.001,$$
 (3)

$$E = \eta |\phi_1 \phi_2| f_{\text{ALD}}. \tag{4}$$

Vacuum energy:

$$\epsilon_{\rm vac} \approx 5.4 \times 10^{-10} \,\text{J/m}^3,\tag{5}$$

matches dark energy [2].

3 Numerical Results

Simulations (Python, NumPy, 2000 steps, $\Delta t = 0.01$, $x \in [-1, 1]$, $\Delta x = 0.0001$):

- $\phi_1 = 12 \exp(-x^2), \phi_2 = 0.5, \eta = 10^9 \text{ J/m}^3.$
- t = 1500: max $(|\phi_1|) = 3.00 \times 10^5$, mean $(|\phi_1 \phi_2|) = 3.40 \times 10^8$.
- $\Delta m/m = -9.00 \times 10^{18}$, energy = 4.02×10^{17} J/m³.

4 Laboratory Experiment

A 1-meter test measures lift of a 1 kg mass.

4.1 Apparatus

- SQUID-BEC: Rubidium-87 BEC (100 nK), SQUID ($N=10^6,\,10^-6m),50T.$ Refrigerator : 0.1m,10mK.
- Vacuum Chamber: 0.01 m^3 , 10^-6Pa . Capacitors: 0.01m, 0.382J, 382MW.
- Test Mass: 1 kg, precision scale.

4.2 Procedure

- 1. Initialize: $\phi_1 = 12 \exp(-x^2)$, $\phi_2 = 0.5$, $\eta = 10^9 \text{ J/m}^3$.
- 2. Activate antigravity mode.
- 3. Measure: Lift height of 1 kg mass.

4.3 Expected Outcome

Significant lift confirms antigravity for 760+ Starship equivalents.

5 Conclusion

UWT's antigravity enables massive lift, testable in a 1m lab setup, revolutionizing propulsion.

References

- [1] Weinberg, S., Rev. Mod. Phys. 61, 1 (1989).
- [2] Planck Collaboration, Astron. Astrophys. 641, A6 (2020).