Internal Combustion Engines

Internal Combustion Engines

Working of a 4 Stroke SI Engine

1/28/2024

Working of a 2 Stroke SI Engine

Internal Combustion Engines

The internal combustion engine is an engine in which the combustion of fuel-oxidizer mixture occurs in a confined space

applied in:
automotive
rail transportation
power generation
ships
aviation
garden appliances

Internal Combustion Engines

Automobile Engine

Internal Combustion Engines Engine Components

Name of the engine parts, materials and manufacturing method

Name of the part	Material word	Method of manufacture
Cytinder head Cytinder head Piston Piston nings Wrist or piston (gudgeon) pins Velves	Cast from altery steet Cast from altery Cast from alternation altery Silicon cast from Steet Specially alley steets	Casting Casting, forming Casting, forging Casting Forging Forging
7. Connecting Rod 8. Crankshaft 9. Crankcase 1. Cylinder Inter 1. Bearing	Alloy steel, SG iron Aluminium alloy, seed, cast man Cast from nickel alloy steel White metal, leaded bronze	Forging Forging Casting Custing

Nomenclature

Gasoline Piston Engines

• Stroke – the movement of the piston from the top of the cylinder to the bottom.

 Cycle – A complete set of piston movements that are needed to produce a power stroke.

Gasoline Piston Engines

- There are two types of gasoline piston engines:
 - 1. Four Stroke Cycle
 - 2. Two Stroke Cycle

Gasoline Piston Engines

• Both operate with a piston moving up and down in a cylinder.

• The difference is in the number of strokes each piston makes per engine cycle.

TWO STROKE ENGINE

Internal Combustion Engines – two stroke -

1. Power / Exhaust

- a. ignition
- b. piston moves downward compressing fuel-air mixture in the crankcase
- c. exhaust port opens

2. Intake / Compression

- a. inlet port opens
- b. compressed fuel-air mixture rushes into the cylinder
- c. piston upward movement provides further compression

Internal Combustion Engines – two stroke -

Advantages:

- · lack of valves, which simplifies construction and lowers weight
- •fire once every revolution, which gives a significant power boost
- ·can work in any orientation
- good power to weight ratio

Drawbacks:

- · lack of a dedicated lubrication system makes the engine to wear faster.
- necessity of oil addition into the fuel
- · low efficiency
- produce a lot of pollution

Four Stroke Engine Brief History

- The principle of four stroke cycle engine was developed in 1862 by Beau de Rochas of France.
- The first four stroke cycle engine was built in 1876 by a German mechanical engineer called Nicholas Otto (Otto cycle).

History

• In 1893 two American brothers named Duryea built and operated the first gasoline automobile.

Internal Combustion Engines – four stroke -

starting position

1. intake

2. compression

a. piston moves upb. both valves closedc. air-fuel mixturegets compressed

Internal Combustion Engines – four stroke -

ignition

3. power

a. air-fuel mixture explodes driving the piston down

4. exhaust

a. piston moves upb. exhaust valve opensc. exhaust leaves the cylinder

Name of Stroke	Pressure	Temp.
I. Suction or Intake stroke	P < 1 bar	25°C
II.Compression strol III. Expansion or Po		
Storke IV. Exhaust Stroke	P = 4 - 5 bar	2000°C 400° - 500°C

Internal Combustion Engines – four stroke -

Advantages:

- dedicated lubrication system makes to engine more wear resistant
- ·better efficiency that 2-stroke engine
- ·no oil in the fuel less pollution

Drawbacks:

- complicated construction
- should work in horizontal position due to lubrication

Diesel Engines

- This engine was invented in 1892 by a German mechanical engineer named Rudolph Diesel.
- At first this engine was known as the compression engine but later was named Diesel after its inventor.

Diesel Engines

- Diesels come in two stroke and four stroke versions and operate much like the gasoline driven engines.
- Diesels have a greater compression ratio than gasoline engines.
 - Diesel 16:1-23:1
 - Gasoline 6:1 12:1

Internal Combustion Engines – Diesel -

Name of stroke Pressure Temp.

I. Suction stroke P < 1 bar; T = 25°C

II. Compression stroke P = 35-40 bar; T = 600° - 700°C

III. Expansion stroke P= 35-40 bar; T = 1800-2000 °C

Injection pressure = 120 - 200 bar

IV. Exhaust stroke P = 4 - 5 bar; T = 400°-500°C

Internal Combustion Engines – Diesel -

Advantages:

- ·self ignition (without electrical spark plug)
- ·better efficiency
- reliability
- · higher durability
- ·supplied with worse fuels

Drawbacks:

- ·more NO_x production
- ·more expensive production
- ·more weight
- ·louder
- ·lower revolutions

Internal Combustion Engines — Diesel -

fuel injector

Diesel VS Gasoline Engines

- Different type fuel (Diesel fuel).
- Diesel engines operate at a much higher compression ratio.
- Diesel engines do not use spark plugs.

Internal Combustion Engines – multi-cylinder -

Internal Combustion Engines – multi-cylinder -

Cylinder layouts

Internal Combustion Engines – multi-cylinder -

Four cylinder engine(Inline)

Four cylinder engine(V type)

Five cylinder engine(Inline)

8 cylinder engine(V type)

8 cylinder.mp4

Internal Combustion Engines – multi-cylinder -

Cylinder layouts radial

https://www.youtube.com/watch?v=Nk9Dl6RZxmQ

Valve operation

Engine cooling

Turbocharged engine

https://www.youtube.com/watch?v=DqWKNuTppmU

Rotary (Wankel) Engine

- Designed in 1958 by a German scientist named Felix Wankel.
- Wankel engines do not use pistons.

Wankel Engine

• The wankel engine uses a triangular shaped rotor housed in an oval shaped cylinder.

• As the rotor is rotated it moves around the cylinder producing the four basic functions to produce a power stroke.

https://www.youtube.com/watch?v=TnpptL37evs

Intake Stroke

- The production of power begins with the rotor at point A.
- The intake port is uncovered allowing a new air/fuel mixture to enter the combustion chamber.

- Compression Stroke
 - As the rotor rotates the combustion chamber is reduced in size compressing the mixture.

- Power Stroke
 - At the highest point of compression the air/fuel is ignited.
 - The hot expanding gases push on the rotor causing it to rotate.

- Exhaust Stroke
 - The continued rotation
 of the rotor uncovers
 the exhaust port
 allowing the exhaust
 gas to escape.
 - The cycle then repeats
 when a new air/fuel
 mixture is permitted to
 enter the combustion
 chamber.

Advantages:

- higher power output
- no reciprocating mass
- simpler and lighter constructionLess vibration than piston driven engines.
- A two rotary engine is as powerful as a six cylinder piston engine..
- Power output can be increased by adding additional rotors to the engine

Drawbacks:

- increased wear of rubbing parts
- higher fuel consumption
- ·requirement for better materials
- Sealing the rotor in the odd shaped cylinder is very difficult requiring costly maintenance.
- Construction cost are high for this engine.

Assumptions for analysis of IC engines

- Working medium perfect gas follows pV=mRT.
- No change in mass.
- Reversible processes.
- Heat supplied from constant high temp. source not from chemical reactions during cycle.
- Some heat rejected to low temp. sink.
- No heat loss to surroundings.
- Working medium has constant specific heats.

Carnot cycle

Otto Cycle

IDEAL OTTO CYCLE

Diesel cycle

Dual cycle

Engine performance parameters

- i. Indicated thermal efficiency
- ii. Brake thermal efficiency
- iii. Mechanical efficiency
- iv. Volumetric efficiency
- v. Mean effective pressure
- vi. Mean piston speed
- vii. Specific power output
- viii. Specific fuel consumption
- ix. Fuel-Air ratio or Air-fuel ratio
- x. Calorific value of fuel

11. Specific output

• Specific output = <u>B.P.</u> A

B.P.=Brake Power

A=Area of cross section of the cylinder,m2

10. Volumetric efficiency:-

Pyol = <u>Actual volume of charge/air sucked at atm. Condition</u>
 Swept volume

Indicated power shatf (break) power

Mean Piston Speed

$$\overline{S}_p = 2LN$$

Performance Parameters

Mechanical efficiency

$$\eta_{\rm m} = \frac{bp (kJ/s)}{ip(kJ/s)}$$

$$f_{p} = ip - bp$$

Indicated Thermal efficiency

$$\eta_{ith} = \frac{ip (kJ/s)}{energy in fuel per second(kJ/s)}$$

Break Thermal efficiency

$$\eta_{bth} = \frac{bp (kJ/s)}{energy in fuel per second(kI/s)}$$

pressure (MIP)
It is the pressure which on acting upon the paton, perform the work as the actual pressure in the operating cycle. It is the most work done during the working stroke to the swept where has determined graphically from a diagram or calculated from regime parameters.

Few Practice Questions

- 1. What are the main components of IC Engines?
- 2. What is difference between SI and CI engine?
- 3. What is difference between 4S and 2S engine?
- 4. Draw the schematic diagram of 4S Petrol engine.
- 5. Explain with neat figure swept volume and compression ratio?
- 6. Describe the working of 4S and 2S engine.
- 7. What are the advantages and disadvantages of rotary engine
- 8. State and explain IP, BP and FP?
- 9. State and explain with formula brake thermal, mechanical and volumetric efficiency
- 10. Write a short note on IC Engine from Energy and environment point of view.