Práctica para II Parcial

CDI - 1152023

1)
$$2y=3t-4$$
 la pendiente de la tangente a $y=t+2\sqrt{t}$
 $y=3\frac{t}{2}-\frac{4}{2}$ la halto con la derivada
 $m=\frac{3}{2}$ $y'=1+\frac{1}{\sqrt{t}}$ luego igualo a $m=\frac{3}{2}$

14 the serion of derivation
$$y' = 1 + \frac{1}{\sqrt{t}}$$
 luego igualo a $m = \frac{3}{\sqrt{t}}$

$$1 + \frac{1}{\sqrt{t}} = \frac{3}{2} \Rightarrow \frac{1}{\sqrt{t}} = \frac{3}{2} - 1 \Rightarrow \frac{1}{\sqrt{t}} = \frac{1}{2} \Rightarrow \frac{1}{2} \Rightarrow \frac{1}{\sqrt{t}} = \frac{1}{2} \Rightarrow \frac{1}{\sqrt{t}} =$$

2)
$$r^{2}$$
-qr + tan (rq) = 5q +1
 $-2r^{3}r^{1}$ - r - qr' + sec²(rq) [r'q + r] = 5
 $-2r^{3}r^{2}$ - r - qr' + r^{2} sec²(rq) · q + r sec²(rq) = 5
 $r^{2}(-2r^{3} - q + qsec^{2}(rq)) = 5 + r - rsec^{2}(rq)$
 $r^{2} = 5 + r - rsec^{2}(rq)$

$$-2r^{3}-9+q \sec^{2}(rq)$$

$$r'(0,-1) = 5+(-1)-(-1)\sec^{2}(0) = 5$$

$$-2(-1)^{-3}-0+0$$

$$m = \frac{5}{2}$$

con A = tan3 (2 m) csc] -arctanm y B= sen[(x+1)m]

b)
$$\ln y = \ln \left[x(\cos x)^{x^2} \right]$$

 $\ln y = \ln x + x^2 \ln \cos x$
 $\frac{1}{x} = \frac{1}{x} + 2x \ln \cos x + x^2 \frac{-\sin x}{\cos x}$
 $y' = y \left[\frac{1}{x} + 2x \ln \cos x - x^2 \tan x \right]$

$$2yy' = 3y + 3xy'$$

 $2yy' - 3xy' = 3y$

$$y'(2y-3x) = 3y$$

$$y' = \frac{3y}{2y - 3x}$$

$$2x + 3y + 1 = 0$$

 $3y = -2x - 1$
 $y = -2x - \frac{1}{3}$
 $M = -\frac{2}{3}$

$$\frac{3y}{2y-3x}$$
 = $-\frac{2}{3}$ = -1 => $2y = 2y-3x$ => $x = 0$

$$y^2 = 3.0.y + 5 \Rightarrow y^2 = 5 \Rightarrow y = \pm \sqrt{5}$$

así que los puntos son (0, $\sqrt{5}$) y (0, $-\sqrt{5}$)

$$\Theta' = \frac{1}{40} \text{ rad/seg} \qquad x = di$$

$$\theta' = \frac{1}{40} \text{ rad/seg}$$
 $x = \text{distancia horizontal}$
 $x' = 2$
 $x' = 2$
 $x = \frac{350}{\text{tan II}}$
 $x = \frac{350}{\text{v}}$
 $x = \frac{350}{\text{v}}$

$$y' = \frac{5ec^2(\sqrt[4]{3}) \cdot \frac{1}{40}}{-350 \cdot (\frac{\sqrt{3}}{350})^2} = \frac{4 \cdot \frac{1}{40}}{-\frac{3}{350}} = -\frac{350}{30} = -\frac{35}{35} = -11,66$$

R/ El avión se acerca d punto del observador a 11,66 m/s.

6)
$$A = 50 \times 2$$

rea d punto del observador

$$50 = (4+2)(x-2)$$
 $P = 2(4+2) + 2(x-2)$
 $P = 2(4+2) + 2 \cdot \frac{5}{4+2}$
 $P = 2(4+2) + 2 \cdot \frac{5}{4+2}$
 $P = 2(4+2) + 10 \cdot - (4+2)$

10 (4+25)

R/ El perimetro aumenta a razón de 3,59 cm por segundo

7)
$$x_0 = 2$$
 $x_1 = x_{n-1} - \frac{x_{n-1}^3 - 4}{3x_{n-1}^2}$
 $x_1 = x_2 - \frac{x_{n-1}^3 - 4}{3x_{n-1}^2}$
 $x_2 = 1,591111$
 $x_3 = 1,5874097$

8) $e^{-x} - \cos x = 0$
 $x_0 = 1$
 $x_1 = x_{n-1} - e^{-x_{n-1}} - \cos x_{n-1}$
 $x_2 = 1,29442292$

9) $e^{-x_1} + \sec x_{n-1}$
 $x_2 = 1,29442292$

9) $e^{-x_1} + \sec x_{n-1}$
 $x_2 = 1,29442292$

1) $e^{-x_1} + \sec x_{n-1}$
 $e^{-x_{n-1}} + \sec x_{n-1}$
 $e^$

I'm
$$\frac{\ln a - a + 1}{(a - 1) \ln a} = \frac{n \cdot 0}{0}$$
 paplico l'Hapital

 $\Rightarrow 1 \frac{\ln a - a + 1}{a} = \frac{n \cdot 0}{0}$ paplico l'Hapital

 $\Rightarrow 1 \frac{\ln a + a - 1}{a} = \frac{1}{0}$ paplico l'Hapital

 $\Rightarrow 1 \frac{1 - a}{a + 1 + 1} = \frac{1}{2}$ paplico l'Hapital

 $\Rightarrow 1 \frac{1 - a}{a + 1 + 1} = \frac{1}{2}$ paplico l'Hapital

 $\Rightarrow 1 \frac{1}{\ln a + 1 + 1} = \frac{1}{2}$ paplico l'Hapital

 $\Rightarrow 1 \frac{1}{\ln a + 1 + 1} = \frac{1}{2}$ paplico l'Hapital

 $\Rightarrow 1 \frac{1}{\ln a + 1 + 1} = \frac{1}{2}$ paplico l'Hapital

 $\Rightarrow 1 \frac{1}{\ln a + 1 + 1} = \frac{1}{2}$ paplico l'Hapital

 $\Rightarrow 1 \frac{1}{\ln a + 1 + 1} = \frac{1}{2}$ paplico l'Hapital

 $\Rightarrow 1 \frac{1}{\ln a + 1 + 1} = \frac{1}{2}$ paplico l'Hapital

 $\Rightarrow 1 \frac{1}{\ln a + 1 + 1} = \frac{1}{2}$ paplico l'Hapital

 $\Rightarrow 1 \frac{1}{\ln a + 1 + 1} = \frac{1}{2}$ paplico l'Hapital

 $\Rightarrow 1 \frac{1}{\ln a + 1 + 1} = \frac{1}{2}$ paplico l'Hapital

 $\Rightarrow 1 \frac{1}{\ln a + 1 + 1} = \frac{1}{2}$ paplico l'Hapital

 $\Rightarrow 1 \frac{1}{\ln a + 1 + 1} = \frac{1}{2}$ paplico l'Hapital

 $\Rightarrow 1 \frac{1}{\ln a + 1 + 1} = \frac{1}{2}$ paplico l'Hapital

 $\Rightarrow 1 \frac{1}{\ln a + 1 + 1} = \frac{1}{2}$ paplico l'Hapital

 $\Rightarrow 1 \frac{1}{\ln a + 1 + 1} = \frac{1}{2}$ paplico l'Hapital

 $\Rightarrow 1 \frac{1}{\ln a + 1 + 1} = \frac{1}{2}$ paplico l'Hapital

 $\Rightarrow 1 \frac{1}{\ln a + 1 + 1} = \frac{1}{2}$ paplico l'Hapital

 $\Rightarrow 1 \frac{1}{\ln a + 1 + 1} = \frac{1}{2}$ paplico l'Hapital

 $\Rightarrow 1 \frac{1}{\ln a + 1 + 1} = \frac{1}{2}$ paplico l'Hapital

 $\Rightarrow 1 \frac{1}{\ln a + 1 + 1} = \frac{1}{2}$ paplico l'Hapital

 $\Rightarrow 1 \frac{1}{\ln a + 1 + 1} = \frac{1}{2}$ paplico l'Hapital

 $\Rightarrow 1 \frac{1}{\ln a + 1 + 1} = \frac{1}{2}$ paplico l'Hapital

 $\Rightarrow 1 \frac{1}{\ln a + 1 + 1} = \frac{1}{2}$ paplico l'Hapital

 $\Rightarrow 1 \frac{1}{\ln a + 1 + 1} = \frac{1}{2}$ paplico l'Hapital

 $\Rightarrow 1 \frac{1}{\ln a + 1 + 1} = \frac{1}{2}$ paplico l'Hapital

 $\Rightarrow 1 \frac{1}{\ln a + 1 + 1} = \frac{1}{2}$ paplico l'Hapital

 $\Rightarrow 1 \frac{1}{\ln a + 1 + 1} = \frac{1}{2}$ paplico l'Hapital

 $\Rightarrow 1 \frac{1}{\ln a + 1 + 1} = \frac{1}{2}$ paplico l'Hapital

 $\Rightarrow 1 \frac{1}{\ln a + 1 + 1} = \frac{1}{2}$ paplico l'Hapital

 $\Rightarrow 1 \frac{1}{\ln a + 1 + 1} = \frac{1}{2}$ paplico l'Hapital

 $\Rightarrow 1 \frac{1}{\ln a + 1 + 1} = \frac{1}{2}$ paplico l'Hapital

 $\Rightarrow 1 \frac{1}{\ln a + 1 + 1} = \frac{1}{2}$ paplico l'Hapital

 $\Rightarrow 1 \frac{1}{\ln a + 1 + 1} = \frac{1}{2}$ paplico l'Hapital

 $\Rightarrow 1 \frac{1}{\ln a + 1 + 1} = \frac{1}{2}$ paplico l'Hapital

 $\Rightarrow 1 \frac{1}$

$$b \mid x = 2$$

b)
$$x=2$$

c) $\frac{1}{f} + \frac{1}{1} - \frac{1}{1} + \frac{1}{1}$ f crece en $J=0,2[V]_{6,00}[$ Pto mínimo f decrece en $J_{2,6}[$ $(6,\frac{6}{3116})$

d)
$$f''' + 1 + 1 - 10$$

Fronto de inflexión

(12, $\frac{12}{3(100)}$)

Pto máximo (-1,26, -1,89)

13)
$$f(x) = 5 x^{2/3} - x^{5/3}$$

 $f'(x) = \frac{10}{3} x^{-1/3} - \frac{5}{3} x^{2/3} = \frac{5}{3} x^{-1/3} (2 - x)$

X = -1

f(-1)= 5-(-1) = 6

$$X = 0$$

f(0)=0

$$x = 2$$

$$x = 2$$

 $f(2) = 5.4^{1/3} - 32^{1/3} \approx 4.762$

Pto máximo (1,6), Pto mínimo (90)

$$V = \frac{4\pi}{3} r^3 + \pi r^2 h$$

$$A = 2\pi r$$
, $12 - 4\pi r^3$
 πr^2 + $4\pi r^2$

$$\frac{12-4T_3r^3}{\pi r^2}=h$$

$$A = \frac{2}{Y} \left(12 - \frac{4\pi}{3} Y^3 \right) + 4\pi I^2$$

$$= \frac{24}{Y} - 8\pi Y^2 + \frac{4\pi}{3} Y^2 = 24r^1 + \frac{4}{3} \pi Y^2$$

$$A' = -24r^{2} + 8\pi r$$

$$-24r^{2} + 8\pi r = 0 \implies -24 + 8\pi r^{3} = 0 \implies$$

16)
$$cooto = 15.2.\pi r^2 + 2\pi r.h.10$$

 $C = 30\pi r^2 + 20\pi rh$

$$C = 30\pi r^2 + 20\pi r \cdot \frac{225}{\pi r^2}$$

$$C' = 60 \pi r - 4500 \bar{r}^2$$

 $60 \pi r - 4500 \bar{r}^2 = 0$
 $60 \pi r = 4500 \bar{r}^2$

$$r = 3\sqrt{\frac{450}{6\pi}}$$

Y3 = 4500

$$V = \pi r^2 h \qquad \frac{125}{\pi r^2} = h$$

$$h \approx 8,64$$
 $r = 2,879$
 $c = 2344,23$