Случайная величина -

Генеральная совокупность Х (сл. вел. Х) – множество возможных значений случайной величины Х

Закон распределения ген. сов. Х – закон распределения сл. вел. Х

Случайная выборка из ген. сов. X — совокупность независимых сл. вел. X_1, \ldots, X_n , каждая из которых имеет то же распределение, что и сл. вел. X. Записывается $\overline{X_n} = (X_1, \ldots, X_n)$

Выборка из ген. сов. X (реализация сл. выборки $\overline{X_n}$) – это любое возможное значение $\overline{x_n} = (x_1, \dots, x_n)$ сл. выборки $\overline{X_n}$. Интерпретируется как результаты n независимых наблюдений над сл. величиной X.

Выборочный метод — свойства сл. вел. X устанавливаются путем изучения тех же свойств на случайной выборке.

Выборочное пространство - \chi _n χ_n - множество значений сл. выборки $\overline{X_n}$.

Как выражается функция распределения сл. выборки $F_{\overline{X_n}}(t_1, \dots, t_n)$ через функцию распределения генеральной совокупности (т.е. через ф-цию распр. X).

$$F_{\vec{X}}(t_1, ..., t_n) = \mathbf{P} \{ X_1 < t_1, ..., X_n < t_n \} =$$

$$= \prod_{i=1}^n \mathbf{P} \{ X_i < t_i \} = \prod_{i=1}^n F(t_i), \quad (1.1)$$

где F(t) — функция распределения случайной величины X (генеральной совокупности X).

стр 21. *Статистическая модель* — выборочное пространство, на котором задан класс распределений сл. выборки (если мы знаем тип функции распределения, но не знаем ее параметры).

Параметрическая модель

Статистика (выборочная характеристика) – любая функция случайной выборки $g(X_1, ..., X_n) = g(\overline{X_n})$ – она является случайной величиной с распределением, называемым **выборочным распределением**

Выборочное распределение выборочной характеристики

Выборочное значение выборочной характеристики – значение $g(\overline{x_n})$ выборочной характеристики $g(\overline{X_n})$, определенное по реализации $\overline{x_n}$ случайной выборки $\overline{X_n}$.

стр. 24 **Сходимость по вероятности**

Сходимость по распределению (слабая)

Задачи мат. статистики: оценка неизв. параметров, проверка стат. гипотез, установление формы и степени связи между сл. вел.

Два подхода к оценке неизвестный параметров функции распределения генеральной совокупности – точечная оценка и интервальная оценка.

Точечная оценка (или просто **оценка**) неизвестного параметра θ ф-ции распр. генеральной совокупности – это статистка (функция) $\hat{\theta}(\overline{X_n})$, выборочное значение $\hat{\theta} = \hat{\theta}(\overline{x_n})$ которой для любой реализации $\overline{x_n}$ принимают за приближенное значение неизвестного параметра θ .

Значение точечной оценки - $\widehat{ heta}$.

Интервальная оценка с коэффициентом доверия γ неизвестного параметра θ ф-ции распр. генеральной совокупности – это пара статистик (функций) $\underline{\theta}(\overline{X_n})$ и $\overline{\theta}(\overline{X_n})$ таких, что с вероятностью γ выполняется неравенство $\underline{\theta}(\overline{X_n}) \leq \theta \leq \overline{\theta}(\overline{X_n})$ (то есть таких, что $P\big\{\underline{\theta}(\overline{X_n}) \leq \theta \leq \overline{\theta}(\overline{X_n})\big\} = \gamma$).

Доверительный интервал для heta с коэффициентом доверия γ - $\left(\underline{\theta}(\overline{X_n}),\overline{\theta}(\overline{X_n})\right)$.

Статистическая гипотеза — любое предположение о распределении вероятностей (о вероятностных свойствах) наблюдаемой сл.вел. (гипотеза о величине м.о., об однородности (т.е. равенстве) дисперсий, о виде распределения и т.д.).

Корреляционный и дисперсионный анализ — наличие связи между величинами и ее существенность. Регрессионный анализ — построение регрессионной модели (т.е. зависимости ср. знач. сл. величины от знач. других сл. величин).

Вариационный ряд выборки $(x_1, ..., x_n)$ – упорядоченная последовательность элементов выборки $(x_{(1)}, ..., x_{(n)})$.

Вариационный ряд случайной выборки $(X_1, ..., X_n)$ — последовательность случайных величин $(X_{(1)}, ..., X_{(n)})$, где $X_{(i)}$ — сл. величина, которая при каждой реализации $\overline{x_n}$ случайной выборки $\overline{X_n}$ принимает значение, равное i-му члену вариационного ряда выборки $\overline{x_n}$.

Функции распр. крайних членов вариационного ряда ($X_{(1)}$ и $X_{(n)}$). Вывод

показать (см. пример 2.20), что для крайних членов вариационного ряда случайной выборки $X_{(1)}$ и $X_{(n)}$ их функции распределения имеют вид

$$\mathbf{P}\{X_{(1)} < x\} = 1 - (1 - F(x))^n$$

И

$$\mathbf{P}\left\{X_{(n)} < x\right\} = F^n(x).$$

Статистический ряд – таблица, которая в первой строчке содержит уникальные отсортированные значения элементов выборки, а во второй – количество их повторений.

Частота – количество раз, которое встречается элемент в выборке.

Относительная частота (частость) — отношение частоты значения элемента выборке к общему количеству элементов в выборке.

Интервальный статистический ряд — отрезок, содержащий все значения выборки, делят на равные части и составляют статистический ряд, в котором количество элементов подсчитывается на интервале.

Оптимальное число интервалов для гистограммы – по правилу Стёрджеса – $m = 1 + \lfloor \log_2 n \rfloor$.

Стр 32 Выборочная функция распределения

Эмпирическая функция распределения

Теоретическая функция распределения

Эмпирич. плотность распр.

Гистограмма, Полигон частот

Выборочные числовые моменты

Теоретические (генеральные) числовые характеристики

Выборочный начальный момент к-го порядка,

Выборочный центральный момент к-го порядка

Выборочное среднее, Выборочная дисперсия,

Выборочное ср/квадр. отклонение

Выборочный корреляционный момент,

Выборочный коэффициент корреляции

Кор. момент выборки,

Коэф. кор. выборки

из лабы 1 **Коэффициент вариации**

Стандартное отклонение

Стандартизованная асимметрия

Стандартизованный эксцесс

! Актуальные критерии нормальности распределения (асимметрия и эксцесс и что-то еще?)

из лабы 2 **Состоятельность оценки**

Правила для определения достаточного объема выборки

Законы больших чисел

Теорема Бернулли – закон больших чисел https://studopedia.ru/12 163342 reshenie.html

При неограниченном увеличении числа однородных независимых опытов частота события будет сколь угодно мало отличаться от вероятности события в отдельном опыте.

Иначе, вероятность того, что отклонение относительной частоты m/n наступления события A от постоянной вероятности р события A очень мало при $n \rightarrow +\infty$, стремится к 1 при любом eps > 0

$$P\left\{\left|\frac{m}{n}-p\right|<\varepsilon\right\}\underset{n\to\infty}{\longrightarrow}1$$

Геометрическое распределение - распределение вероятностей случайной величины X равной количеству «неудач» до первого «успеха» в серии испытаний Бернулли и принимающей значения n=0,1,2,... либо распределение вероятностей случайной величины Y=X+1 равной номеру первого «успеха» и принимающей значения n=1,2,3,...

$$egin{array}{c} egin{array}{c} \egin{array}{c} \egin{array}{c} \egin{array}{c} \egin{array}{c} \egin{array}{c} \egin{array$$

Экспоненциальное распределение - абсолютно непрерывное распределение, моделирующее время между двумя последовательными свершениями одного и того же события.

Обозначение	$\operatorname{Exp}(\lambda)$
Параметры	$\lambda>0$ - интенсивность или обратный коэффициент масштаба
Носитель	$x \in [0;\infty)$
Плотность вероятности	$\lambda e^{-\lambda x}$
Функция распределения	$1-e^{-\lambda x}$
Математическое ожидание	λ^{-1}

Распределение Бернулли — дискретное распределение вероятностей, моделирующее случайный эксперимент произвольной природы, при заранее известной вероятности успеха (p) или неудачи (p-1).

Функция вероятности	q	k = 0
	p	k=1
Функция распределения	0	k < 0
	q	$0 \le k < 1$
	1	$k \ge 1$

Биномиальное распределение - распределение количества «успехов» в последовательности из n независимых случайных экспериментов, таких, что вероятность «успеха» в каждом из них постоянна и равна p.

Пусть $X_1, ..., X_n$ - конечная последовательность независимых случайных величин, имеющих одинаковое распределение Бернулли с параметром p. Тогда сл. вел. $Y = X_1 + \cdots + X_n$ имеет биномиальное распределение с параметрами p и p. $Y \sim Bin(n,p)$.

Носитель
$$k\in\{0,\ldots,n\}$$
 Функция $\binom{n}{k}\,p^kq^{n-k}$ $F_Y(y)\equiv \mathbb{P}(Y\leqslant y)=\sum_{k=0}^{\lfloor y\rfloor}\binom{n}{k}\,p^kq^{n-k},\;y\in\mathbb{R},$ вероятности

Распределение Пуассона – вероятностное распределение <u>дискретного</u> типа, моделирует случайную величину, представляющую собой число событий, произошедших за фиксированное время, при условии, что данные события происходят с некоторой фиксированной средней интенсивностью и независимо друг от друга. $Y \sim P(\lambda)$, где $\lambda > 0$ – м.о.

$$p(k)\equiv \mathbb{P}(Y=k)=rac{\lambda^k}{k!}\,e^{-\lambda}$$
 , Функция распределения $rac{\Gamma(k+1,\lambda)}{k!}$.

Распределение χ^2 (Chi-Squared) с k степенями свободы — это распределение суммы квадратов k независимых стандартных нормальных случайных величин.

Пусть Z_1,\dots,Z_k — совместно независимые стандартные нормальные случайные величины, то есть $Z_i\sim N(0,1)$. Тогда случайная величина $X=Z_1^2+\dots+Z_k^2$ имеет распределение хи-квадрат с k степенями свободы, т.е. $X{\sim}f_{\chi^2(k)}(X)$.

Chi-Square Distribution

Распределение Стьюдента (Student's t) – это однопараметрическое семейство абсолютно

непрерывных распределений. Пусть Y_0, \dots, Y_n – конечная последовательность независимых стандартных нормальных случайных величин, т.е. $Y_i \sim N(0,1)$. Тогда распределение сл. вел.

$$t = \frac{Y_0}{\sqrt{\frac{1}{2}\sum_{i=1}^{n}Y_i^2}}$$

имеет распределение Стьюдента с n степенями свободы. $t \sim t(n)$.

Student's t Distribution

Распределение Фишера F (Variance Ratio) – это двухпараметрическое семейство абсолютно непрерывных распределений. Пусть Y_1,Y_2 — две независимые случайные величины, имеющие распределение хи-квадрат: $Y_i \sim \chi^2(d_i)$, где $d_i \in \mathbb{N}$, i=1,2. Тогда распределение случайной величины

$$F = \frac{\frac{Y_1}{d_1}}{\frac{Y_2}{d_2}},$$

называется распределением Фишера со степенями свободы d_1 и d_2 . Пишут $F \sim F(d_1, d_2)$.

Асимптотическая нормальность распределений Стьюдента и χ^2 – $t(30)\cong N(0,1)$, а $\chi^2(v)\cong N(v,\sqrt{2*v})$ при $v\geq 50$.

Bin(0.5, 100), Bin(0.01, 100), Bin(0.99, 100)

- А) Для какой из выборок гистограмма «похожа» на нормальную кривую? Почему это можно было ожидать (вспомните предельные теоремы из теории вероятностей (какую???).
- Б) На какое распределение должна быть «похожа» гистограмма для второго распределения? Наложите это распределение на гистограмму.
- В) Почему нормальная аппроксимация дает плохой результат для третьей выборки?

! Тест Колмогорова-Смирнова для проверки нормальности

+Критерий χ^2

Локальная теорема Муавра — Лапласа

Если в схеме Бернулли n стремится к бесконечности, величина $p\in(0,1)$ постоянна, а величина $x_m=rac{m-np}{\sqrt{npq}}$ ограничена равномерно по m и n (то есть $\exists a,b:-\infty< a\leqslant x_m\leqslant b<+\infty$), то

$$P_n(m) = rac{1}{\sqrt{2\pi npq}} \expigg(-rac{x_m^2}{2}igg)(1+lpha_n(m))$$

где
$$|lpha_n(m)| < rac{c}{\sqrt{n}}, c = \mathrm{const} > 0.$$

Приближённую формулу

$$P_n(m)pprox rac{1}{\sqrt{2\pi npq}}\expigg(-rac{x_m^2}{2}igg)$$

рекомендуется применять при n>100 и при m>20.

 γ -доверительная интервальная оценка $-\left(\underline{\theta}(\overline{X_n}),\overline{\theta}(\overline{X_n})\right)$.

Нижняя и верхняя границы интервальной оценки - пара статистик (функций) $\theta(\overline{X_n})$ и $\overline{\theta}(\overline{X_n})$.

Коэффициент доверия (доверительная вероятность, уровень доверия).

Односторонняя нижняя (и соответственно верхняя) – доверительная граница – $\underline{\theta}(\overline{X_n})$, когда $P\{\underline{\theta}(\overline{X_n}) \leq \theta\} = \gamma$.

Пример 3.1. Пусть θ — среднее значение предела прочности X некоторого материала, которое оценивают независимо друг от друга в каждой из N различных лабораторий по результатам n независимых натурных испытаний. Иначе говоря, среднее значение предела прочности в каждой лаборатории оценивают по "своим" экспериментальным данным, представленным выборкой объема n, и в каждой лаборатории получают "свои" эначения верхней и нижней границ γ -доверительного интервала (рис. 3.1).

Возможны случаи, когда γ -доверительный интервал для параметра θ не накрывает его истинного значения. Если M — число таких случаев, то при больших значениях N должно выполняться приближенное равенство $\gamma \approx (N-M)/N$. Таким образом, если опыт — получение выборки объема n в лаборатории, то уровень доверия γ — доля тех опытов (при их многократном независимом повторении), в каждом из которых γ -доверительный интервал накрывает истинное значение оцениваемого параметра.

§ 2. ИНТЕРВАЛЫ В НОРМАЛЬНОЙ МОДЕЛИ

Пример 2. Допустим, что элементы выборки X_i распределены по закону $\mathcal{N}(\theta, \sigma^2)$, причем параметр масштаба σ известен, а параметр сдвига θ — нет. Эту модель часто применяют к данным, полученным при независимых измерениях некоторой величины θ с помощью прибора (или метода), имеющего известную среднюю погрешность (стандартную ошибку) σ (рис. 3).

(стандартную ошибку) σ (рис. 3). Пусть $\Phi(x)=(2\pi)^{-1/2}\int\limits_{-\infty}^{x}e^{-u^2/2}du$ — функция распределения закона $\mathcal{N}(0,1)$. Для $0<\alpha<1$ обозначим через x_α так называемую α -квантиль этого закона, τ . е. решение уравнения $\Phi(x_\alpha)=\alpha$ (см. § 3 гл. 7). Приведем некоторые значения $x_{1-\alpha/2}$ (см. также таблицу T2):

			10^{-3}	
$x_{1-\alpha/2}$	1,96	2,58	3,29	4,26

Согласно примеру 4 гл. 9, эффективной оценкой для θ служит \overline{X} . Известно, что $\overline{X}\sim\mathcal{N}(\theta,\sigma^2/n)$. Тогда $\sqrt{n}\,(\overline{X}-\theta)/\sigma\sim\mathcal{N}(0,1)$. Поэтому в качестве границ интервала с коэффициентом доверия $1-\alpha$ можно взять $\widehat{\theta}_1=\overline{X}-\sigma x_{1-\alpha/2}/\sqrt{n}$ и $\widehat{\theta}_2=\overline{X}-\sigma x_{\alpha/2}/\sqrt{n}$:

$$\mathbf{P}(\widehat{\theta}_1 < \theta < \widehat{\theta}_2) = \mathbf{P}(x_{\alpha/2} < \sqrt{n} (\overline{X} - \theta) / \sigma < x_{1-\alpha/2}) = 1 - \alpha.$$

В силу четности плотности закона $\mathcal{N}(0,1)$ верно равенство $x_{\alpha/2}=-x_{1-\alpha/2}.$ Таким образом, из приведенной выше таблицы видим, что с вероятностью 0,95 истинное значение параметра сдвига θ находится в интервале $\overline{X}\pm 1,96\,\sigma/\sqrt{n}\approx \overline{X}\pm 2\sigma/\sqrt{n}$ (правило двух сигм).

Определение. Пусть $\alpha\in(0,1)$. Две статистики $\widehat{\theta}_1$ и $\widehat{\theta}_2$ определяют границы доверительного интервала для параметра θ с ко-эффициентом доверия $1-\alpha$, если при всех $\theta\in\Theta$ для выборки $\boldsymbol{X}=(X_1,\ldots,X_n)$ из закона распределения $F_{\theta}(x)$ справедливо неравенство

$$\mathbf{P}\left(\widehat{\theta}_1(\mathbf{X}) < \theta < \widehat{\theta}_2(\mathbf{X})\right) \geqslant 1 - \alpha. \tag{1}$$

Часто на практике полагают $\alpha=0,05$. Если вероятность в левой части неравенства (1) стремится к $1-\alpha$ при $n\to\infty$, то интервал называется <u>асимптотическим.</u> Как правило, длина доверительного интервала возрастает при увеличении коэффициента доверия $1-\alpha$ и стремится к нулю с ростом размера выборки n.

Статистический критерий — правило, позволяющее принять или отвергнуть гипотезу H на основе реализации выборки $x_1, ..., x_n$.

Статистика критерия – $T(x_1, ..., x_n)$ – статистика (функция), для которой типично принимать умеренные значения в случае, когда гипотеза Н верна, и большие (малые), когда Н не выполняется.

Уровень значимости — α — вероятность, с которой мы можем позволить себе отвергнуть верную гипотезу (вероятность ошибочного отклонения правильной гипотезы).

Схема

Берем $T(x_1,\dots,x_n)$ — статистика (какая-то функция), (x_1,\dots,x_n) — реализация выборки (данные эксперимента). Делаем гипотезу H, выбираем приемлемый уровень значимости α .

Если значение T попало в область, имеющую при выполнении гипотезы H высокую вероятность, то можно заключить, что данные согласуются с гипотезой H. Отсюда происходит термин «критерии согласия».

Если Н – верна, то у нас есть определенные ожидания от значения Т.

Мы находим $x_{1-\alpha}$, такое, что $P(T(X_1, ..., X_n) \geq x_{1-\alpha}) \leq \alpha$, то есть $x_{1-\alpha}$ – это максимальное значение для функции T такое, что её вероятность быть больше этого значения «равна» α (точнее не больше α , то есть маленькая). Потом вычисляем реальное $T(x_1, ..., x_n) = t_0$ и смотрим, $t_0 < x_{1-\alpha}$? (что более ожидаемо при выполнении H) или нет?

Критическое значение — $x_{1-\alpha}$ — значение статистики критерия $T(x_1, ..., x_n)$, при превышении которого мы должны отвергнуть гипотезу (так как по факту произошло маловероятное событие и наше предположение, наша гипотеза, скорее всего, не верна).

Фактический уровень значимости – $\alpha_0 = P(T(X_1, ..., X_n) \ge t_0 = T(x_1, ..., x_n)) \le \alpha$ – вероятность, с которой значение статистики может превысить ее фактическое значение на данной реализации случайной выборки $(x_1, ..., x_n)$.

Статистическая гипотеза, Простая гипотеза, Сложная гипотеза

введем формально понятие статистической гипотезы.

Напомним, что под статистической моделью в § 1 гл. 6 понималось семейство функций распределения $\{F(x,\theta), \theta \in \Theta\}$, где Θ — множество возможных значений параметра. При этом данные x_1, \ldots, x_n рассматривались как реализация выборки X_1, \ldots, X_n , элементы которой имеют функцию распределения $F(x,\theta_0)$ с неизвестным значением $\theta_0 \in \Theta$.

Пусть выделено некоторое подмножество $\Theta_0 \subset \Theta$. Под *статистической гипотезой H* понимается предположение о том, что $\theta_0 \in \Theta_0$. Если множество Θ_0 состоит всего из одной точки, то гипотеза H называется *простой*, иначе — *сложеной*. В последнем случае задача заключается в проверке принадлежности закона распределения величин X_i целому классу функций распределения $\{F(x,\theta), \theta \in \Theta_0\}$.

Нулевая гипотеза

Альтернативная гипотеза

Двусторонняя гипотеза

Односторонняя

Критерии согласия — критерии проверки гипотез о типе распределения генеральной совокупности (о соответствии эмпирического распределения теоретическому закону распределения).

Общие критерии согласия — применимы к самой общей формулировке гипотезы, а именно к гипотезе о согласии наблюдаемых результатов с любым априорно предполагаемым распределением вероятностей.

Специальные критерии согласия — предполагают специальные нулевые гипотезы, формулирующие согласие с определенной формой распределения вероятностей.

Критерий согласия Пирсона χ^2 —

! Тест Колмогорова-Смирнова для проверки нормальности

Параметрическая гипотеза

Ошибка первого рода

Ошибка второго рода

Критическая область

Наилучшая критическая область (область принятия решений)

Параметрическая/Непараметрическая гипотеза

Статистическая значимость какого-либо значения

Непараметрический критерий

Парные/непарные наблюдения/критерии

Независимые (непарные) наблюдения

Критерий знаков

Критерий знаковых ранговых сумм

Однородность выборки

Равномерность выборки

Сравнение нескольких выборок

Таблица сопряженности – таблица частот (?)

	Оценка				
Методика	онично	хорошо	удовлетвори-	неудовлетвори-	
			тельно	тельно	
1	7	12	15	7	
2	10	18	26	9	
3	40	50	87	10	