MEEN 621 Notes

Shivanand P

November 16, 2022

Contents

1	Pote	ential Flow
	1.1	$Stream \ Function \Leftrightarrow Potential \ Function \Leftrightarrow Velocities \ \dots $
	1.2	$Cartesian \Leftrightarrow Polar \ Velocities \dots $
	1.3	Complex Potentials
		1.3.1 Legend
	1.4	Infinite Series Expansions
	1.5	Bernoulli's Equation (Irrotational)

1. Potential Flow

$$i = \sqrt{-1}$$

$$z = x + iy = re^{i\theta} = r(\cos\theta + i\sin\theta)$$

$$\bar{z} = x - iy = re^{-i\theta} = r(\cos\theta - i\sin\theta)$$

$$x = r\cos\theta$$

$$y = r\sin\theta$$

$$r = \sqrt{x^2 + y^2} = |z| = |z\bar{z}|^{\frac{1}{2}}$$

$$\theta = \arctan\frac{y}{x}$$

2D Incompressible Potential Flow $\nabla^2\phi=0=\nabla^2\psi$

Complex Potential
$$F(z) = \phi(z) + i\psi(z)$$

Complex Velocity
$$w(z) = u - iv = (v_r - iv_\theta)e^{-i\theta} = \frac{dF(z)}{dz}$$

$$\bar{w}(z) = u + iv = (v_r + iv_\theta)e^{i\theta}$$

1.1. Stream Function ⇔ Potential Function ⇔ Velocities

Also called Cauchy Reimann Equations

$$u = \frac{\partial \phi}{\partial x} = \frac{\partial \psi}{\partial y}$$
$$v = \frac{\partial \phi}{\partial y} = -\frac{\partial \psi}{\partial x}$$

$$v_r = \frac{\partial \phi}{\partial r} = \frac{1}{r} \frac{\partial \psi}{\partial \theta}$$
$$v_\theta = \frac{1}{r} \frac{\partial \phi}{\partial \theta} = -\frac{\partial \psi}{\partial r}$$

1.2. Cartesian ⇒ Polar Velocities

$$u = v_r \cos \theta - v_\theta \sin \theta$$

$$v = v_r \sin \theta + v_\theta \cos \theta$$

$$v_r = u \cos \theta + v \sin \theta$$

$$v_\theta = -u \sin \theta + v \cos \theta$$

1.3. Complex Potentials

	F(z)	ϕ	ψ	w(z)	u and v_r	v and $v_{ heta}$
Uniform	Ue ^{−iα} z	$U(x\cos\alpha+y\sin\alpha)$	$U(y\cos\alpha-x\sin\alpha)$	Ue ^{–iα}	$U\cos\alpha$	$U\sin\alpha$
Ormonn		$Ur\cos(\theta-lpha)$	$Ur\sin(\theta-lpha)$		$U\cos(\theta-lpha)$	$-U\sin(\theta-\alpha)$
Corner	Cz ⁿ			nCz^{n-1}		
Conten		$Cr^n\cos n\theta$	$Cr^n \sin n\theta$		$nCr^{n-1}\cos[(n-1)\theta]$	$-nCr^{n-1}\sin[(n-1)\theta]$
Source/Sink	$\frac{m}{2\pi}\ln(z-z_0)$	$\frac{m}{4\pi} \ln[(x-x_0)^2 + (y-y_0)^2]$	$\frac{m}{2\pi}$ arctan $\frac{y-y_0}{x-x_0}$	$\frac{m}{2\pi(z-z_0)}$	$\frac{m}{2\pi} \frac{x-x_0}{(x-x_0)^2+(y-y_0)^2}$	$\frac{m}{2\pi} \frac{y - y_0}{(x - x_0)^2 + (y - y_0)^2}$
oodicc/oli ik		$\frac{m}{2\pi} \ln r$	$rac{m}{2\pi} heta$		$\frac{m}{2\pi r}$	0
Free Vortex	$-\frac{i\Gamma}{2\pi}\ln(z-z_0)$	$\frac{\Gamma}{2\pi}$ arctan $\frac{y-y_0}{x-x_0}$	$-\frac{\Gamma}{2\pi} \ln \sqrt{(x-x_0)^2 + (y-y_0)^2}$	$-\frac{i\Gamma}{2\pi(z-z_0)}$	$-\frac{\Gamma}{2\pi} \frac{y-y_0}{(x-x_0)^2+(y-y_0)^2}$	$\frac{\Gamma}{2\pi} \frac{x - x_0}{(x - x_0)^2 + (y - y_0)^2}$
Tiee vollex		$\frac{\Gamma}{2\pi}\theta$	$-\frac{\Gamma}{2\pi} \ln r$		0	$\frac{\Gamma}{2\pi r}$
Dipole	$\frac{\mu}{\pi z}$	$\frac{\mu}{\pi} \frac{x}{x^2 + y^2}$	$-\frac{\mu}{\pi}\frac{y}{x^2+y^2}$	$-\frac{\mu}{\pi z^2}$	$\frac{\mu}{\pi} \frac{y^2 - x^2}{(x^2 + y^2)^2}$	$-\frac{\mu}{\pi} \frac{2xy}{(x^2+y^2)^2}$
Dipole		$\frac{\mu}{\pi r}\cos\theta$	$-\frac{\mu}{\pi r}\sin\theta$		$-\frac{\mu}{\pi r^2}\cos\theta$	$-\frac{\mu}{\pi r^2}\sin\theta$

Legend

- Uniform
 - U: Uniform velocity magnitude
 - $-\alpha$: Angle of attack the angle at which the direction of the uniform velocity is oriented with respect to the horizontal

- Corner
 - C: Indicates the direction. C > 0 always
 - n: $\frac{\pi}{\text{angle of the corner}}$
- Source/Sink
 - m: Volume flow rate per unit dimension normal to the page. For source, m > 0, whereas for sink, m < 0
- Dipole/Doublet
 - a: Half distance between the source and sink
 - Q: Volume flow rate per unit dimension normal to the page
 - μ: Qa

1.4. Infinite Series Expansions

•
$$\ln(1+\epsilon) = \epsilon - \frac{\epsilon^2}{2} + \frac{\epsilon^3}{3} - \dots$$
 when $|\epsilon| \leq 1$

•
$$(1+\epsilon)^{-1} = 1 - \epsilon + \epsilon^2 - \epsilon^3 + \dots$$
 when $|\epsilon| < 1$

•
$$(1+\epsilon)^{\frac{1}{2}} = 1 + \frac{1}{2}\epsilon - \frac{1}{8}\epsilon^2 + \frac{1}{16}\epsilon^3 - \frac{5}{128}\epsilon^4 + \frac{7}{256}\epsilon^5 - \dots$$
 when $|\epsilon| \le 1$

•
$$(1+\epsilon)^{-\frac{1}{2}} = 1 - \frac{1}{2}\epsilon + \frac{3}{8}\epsilon^2 - \frac{5}{16}\epsilon^3 + \frac{35}{128}\epsilon^4 - \frac{63}{256}\epsilon^5 + \dots$$
 when $|\epsilon| \le 1$

•
$$e^{\epsilon} = 1 - \frac{\epsilon^2}{2!} + \frac{\epsilon^4}{4!} - \dots$$

•
$$\sin(\epsilon) = \epsilon - \frac{\epsilon^3}{3!} + \frac{\epsilon^5}{5!} - \frac{\epsilon^7}{7!} + \dots$$

1.5. Bernoulli's Equation (Irrotational)

$$P_{\infty} + \frac{\rho v_{\infty}^2}{2} = P + \frac{\rho |v^2|}{2}$$