Credit Card Fraud Detection

By Charmiece, Princy, Afreen, Prachi

Introduction

- Fraudulent transactions can occur at anytime whether it is online or offline.
- Online fraud has widespread business impacts and requires an effective end-to-end strategy to prevent account takeover (ATO), deter new account fraud, and stop suspicious payment transactions.
- Through machine learning we are trying to increase the accuracy of detecting fraudulent transactions.

Description of the source of data

- fraudTrain.csv
- https://www.kaggle.com/code/chethanbr86/credit-card-fraud-capstone/data
- This is a simulated credit card transaction dataset containing legitimate and fraud transactions from the duration 1st Jan 2019 - 31st Dec 2020.
- It covers credit cards of 1000 customers doing transactions with a pool of 800 merchants.
- This was generated using Sparkov Data Generation | Github tool created by Brandon Harris.

Tools we used

QUICK # DBD

Description of the data exploration

4	# function to convert dob to years def ag_years(born): return 2022 - int(born[0:4]) # replacing the dob column with age column in our data set for test and train data_train[regor] = data_train['dob'].apply(lambda x: age_years(x)) data_train.head()															
у	amt	first	last	gender	street		long	city_pop	job	dob	trans_num	unix_time	merch_lat	merch_long	is_fraud	age
it	4.97	Jennifer	Banks	F	561 Perry Cove		-81.1781	3495	Psychologist, counselling		0b242abb623afc578575680df30655b9	1325376018	36.011293	-82.048315	0	34
is	107.23	Stephanie	Gill	F	43039 Riley Greens Suite 393		-118.2105	149	Special educational needs teacher	1978- 06-21	1f76529f8574734946361c461b024d99	1325376044	49.159047	-118.186462	0	44
١ŧ	220.11	Edward	Sanchez	М	594 White Dale Suite 530		-112.2620	4154	Nature conservation officer	1962- 01-19	a1a22d70485983eac12b5b88dad1cf95	1325376051	43.150704	-112.154481	0	60
rt	45.00	Jeremy	White	М	9443 Cynthia Court Apt. 038		-112.1138	1939	Patent attorney	1967- 01-12	6b849c168bdad6f867558c3793159a81	1325376076	47.034331	-112.561071	0	55
ıs	41.96	Tyler	Garcia	М	408 Bradley Rest	-	-79.4629	99	Dance movement psychotherapist	1986- 03-28	a41d7549acf90789359a9aa5346dcb46	1325376186	38.674999	-78.632459	0	36

clean_train = data_train[['Unnamed: 0','merchant', 'category', 'amt', 'gender', 'unix_time', 'merch_lat', 'merch_long', 'is_fraud', 'age']]
clean_train.head()

	Unnamed: 0	merchant	category	amt	gender	unix_time	merch_lat	merch_long	is_fraud	age
0	0	fraud_Rippin, Kub and Mann	misc_net	4.97	F	1325376018	36.011293	-82.048315	0	34
1	1	fraud_Heller, Gutmann and Zieme	grocery_pos	107.23	F	1325376044	49.159047	-118.186462	0	44
2	2	fraud_Lind-Buckridge	entertainment	220.11	M	1325376051	43.150704	-112.154481	0	60
3	3	fraud_Kutch, Hermiston and Farrell	gas_transport	45.00	М	1325376076	47.034331	-112.561071	0	55
4	4	fraud_Keeling-Crist	misc_pos	41.96	M	1325376186	38.674999	-78.632459	0	36

5. Export the Dataframe as a new CSV file without the index. clean_train.to_csv("Resources/clean_data_train.csv", index=False)

Questions we hope to answer with the data

- 1. When should the credit card companies shut off a card when it detects fraud?
- 2. What we are trying to accomplish through this data?
- 3. Which age group are targeted by credit card fraud?
- 4. Are women targeted more than men?
- 5. What locations do frauds occur?
- 6. What areas do the company need to pay attention to in order to catch the detection?
- 7. What machine learning works the best?

ERD Diagram

Age Fraud Location Or int index index Ow int age int fraud int int fraud merchant obj merch lat int merch long int

index int fraud int category obj

Gender Fraud

index int
gender obj
fraud int

Connect to the AWS RDS instance and write each DataFrame to its table.

mode = "append" jdbc url="jdbc:postgresql://finalproject.cylfu7wfg2zs.us-east-1.rds.amazonaws.com:5432/final DB"

"password": "fraudcc1", "driver": "org.postgresal.Driver"}

Write age fraud to table in RDS age fraud.write.jdbc(url=jdbc url, table='age fraud', mode=mode, properties=config)

Write gender fraud to table in RDS

Write location info to table in RDS

Write fraud df to table in RDS

In []:

In []:

In []:

config = {"user":"postgres",

In []: # Configure settings for RDS

gender fraud.write.jdbc(url=jdbc url, table='gender fraud', mode=mode, properties=config)

location info.write.jdbc(url=jdbc url, table='location info', mode=mode, properties=config)

fraud df.write.jdbc(url=jdbc url, table='fraud df', mode=mode, properties=config)

Balanced Random Forest Classifier

```
# Import dependencies
from imblearn.ensemble import BalancedRandomForestClassifier
from sklearn.metrics import balanced accuracy score
from imblearn.ensemble import EasyEnsembleClassifier
# Resample the training data with the BalancedRandomForestClassifier
rf model = BalancedRandomForestClassifier(n estimators=100, random state=1)
rf_model = rf_model.fit(X,y)
print(rf_model)
BalancedRandomForestClassifier(random_state=1)
# Calculated the balanced accuracy score
v pred = rf model.predict(X)
balanced accuracy score(v, v pred)
1.0
```

Confusion r	natrix			pre	rec	spe	f1	geo	iba	sup
	Predicted high_risk	Predicted low_risk	0	1.00	1.00	1.00	1.00	1.00	1.00	128963 705
Actual high_risk	128963	0	1							
Actual low_risk	0	705	avg / total	1.00	1.00	1.00	1.00	1.00	1.00	129668

Logistic Regression Preprocessing: Random Oversampling

```
from sklearn.model_selection import train_test_split
X train, X test, y train, y test = train test split(X,y, random state=1, stratify=y)
X_train.shape
(97251, 715)
# Resample the training data with the RandomOversampler
from imblearn.over sampling import RandomOverSampler
ros = RandomOverSampler(random_state=1)
X_resampled, y_resampled = ros.fit_resample(X, y)
Counter(y resampled)
Counter({0: 128963, 1: 128963})
# Train the model using the data
from sklearn.linear model import LogisticRegression
model = LogisticRegression(solver='lbfgs', random state=1)
model.fit(X_resampled, y_resampled)
LogisticRegression(random state=1)
```

Confusion Mat	rix		pre	rec	spe	f1	geo	iba	sup
array([[30779,	1000	0 1	1.00	0.95 0.78	0.78 0.95	0.98 0.16	0.87 0.87	0.76 0.74	32241 176
[38,	138]])	avg / total	0.99	0.95	0.79	0.97	0.87	0.76	32417

Logistic Regression Pre-Processing : SMOTE Oversampling

```
# Resample the training data with SMOTE
from imblearn.over_sampling import SMOTE
X_resampled, y_resampled = SMOTE(random_state=1,
 sampling strategy='auto').fit resample(
   X_train, y_train)
 Counter(y resampled)
Counter({0: 96722, 1: 96722})
# Train the Logistic Regression model using the resampled data
model = LogisticRegression(solver='lbfgs', random state=1)
model.fit(X_resampled, y_resampled)
y pred = model.predict(X test)
 # Calculated the balanced accuracy score
from sklearn.metrics import balanced accuracy score
balanced accuracy score(y test, y pred)
0.868922722620266
```

Confusion Matr	ix		pre	rec	spe	f1	geo	iba	sup
array([[30750,	0/3/3/411/07%	0 1	1.00	0.95 0.78	0.78 0.95	0.98 0.15	0.86 0.86	0.76 0.74	32241 176
[38,	138]])	avg / total	0.99	0.95	0.79	0.97	0.86	0.76	32417

Logistic Regression Preprocessing: Undersampling

```
# Resample the data using the ClusterCentroids resampler
# Warning: This is a large dataset, and this step may take some time to complete
from imblearn.under_sampling import ClusterCentroids
cc = ClusterCentroids(random_state=1)
X_resampled, y_resampled = cc.fit_resample(X_train, y_train)

# Train the Logistic Regression model using the resampled data
from sklearn.linear_model import LogisticRegression
model = LogisticRegression(solver='lbfgs', random_state=1)
model.fit(X_resampled, y_resampled)

LogisticRegression(random_state=1)

# Calculated the balanced accuracy score
from sklearn.metrics import balanced_accuracy_score
balanced_accuracy_score(y_test, y_pred)

0.868922722620266
```

Confusion Matrix	
array([[32241,	0],
[176,	0]])

72	pre	rec	spe	f1	geo	iba	sup
0	0.99	1.00	0.00	1.00	0.00	0.00	32241
1	0.00	0.00	1.00	0.00	0.00	0.00	176
avg / total	0.99	0.99	0.01	0.99	0.00	0.00	32417

Logistic Regression Preprocessing: Combination (Over and Under) Sampling

```
# Resample the training data with SMOTEENN
# Warning: This is a large dataset, and this step may take some time to complete
from imblearn.combine import SMOTEENN
smote enn = SMOTEENN(random state=0)
X_resampled, y_resampled = smote_enn.fit_resample(X, y)
# Train the Logistic Regression model using the resampled data
from sklearn.linear model import LogisticRegression
model = LogisticRegression(solver='lbfgs', random state=1)
model.fit(X_resampled, y_resampled)
LogisticRegression(random state=1)
# Calculated the balanced accuracy score
from sklearn.metrics import balanced accuracy score
balanced accuracy score(y test, y pred)
0.5
```

Confusion Matrix

	pre	rec	spe	f1	geo	iba	sup
0 1	0.00 0.01	0.00 1.00	1.00	0.00	0.00	0.00	32241 176
avg / total	0.00	0.01	0.99	0.00	0.00	0.00	32417

Dashboard

SMOTE Overampling
The symbol moving overampling inclinings (SMOTE) is another overampling approach to deal with unbalanced datasets. In SMOTE, like random oversampling
size of the minority in Consequence
is a fine of crasting data with SMOTE

Exemple 1.or Consequence

Consequence

**Con

Logistic Regression with SMOTE preprocessing was our most accurate model. However, even with a smaller sample we took to run the model is fraud prediction was way higher at 8% compared to actual is fraud in the actual dataset at 0.58%. Logistic Regression would not be a good model for credit card fraud detection.

avg / total 0.99 0.95 0.79 0.97 0.86 0.76 32417

Summary

- Our goal was to find a machine learning model that helped detect when credit card companies should shut off credit cards due to fraudulent activity. We use Balance Random Forest Classifier which gave us a 50% accuracy. This was not a good model due to the data showing less than 1% of the transactions being fraud. The second model we used was Logistic Regression. We preformed SMOTE, Combination (SMOTEEN), Undersampling and Random Oversampler. Logistic Regression with SMOTE preprocessing was our most accurate model. However, even with a smaller sample we took to run the model is fraud prediction was way higher at 8% compared to actual is fraud in the actual dataset at 0.58%. Logistic Regression would not be a good model for credit card fraud detection.
- From the analysis, ages 40 to 70 were the most targeted for fraud. Based on the number of transactions, men were targeted more than women for fraud. According to our dataset, more fraud transactions occurred on the east coast versus the west coast. The areas that credit card companies should focus on are grocery stores and online shopping.