Capstone 3 – Emotion Project Summary Report

This project was conducted to answer the problem question:

Can you create a model to do 'emotion labeling' accurately and consistently given relevant text?

Context

'Emotion labeling' is a powerful tool in crisis intervention, psychotherapy. By labeling the specific emotion that an individual is expressing, the individual can often regulate their feelings and gain a deeper understanding of their emotional situation.

Data Wrangling

Google Research Team had created a dataset (GoEmotions) of 58,000 carefully curated comments extracted from Reddit, with human annotations to 27 emotion categories or Neutral. There was an additional version that was compiled using rater-agreement to create the dataset used in this project. This was already broken into a training and testing split which was maintained to avoid any data leakage.

GoEmotions Database: https://github.com/google-research/google-r

This dataset had three columns: original text, list of emotion labels assigned to this text by raters, and id of the poster. The original list of emotions (numbers) was mapped back to see the corresponding emotions.

Natural language processing techniques were used to break down the original text into more uniform text. The text was then lemmatized for further standardization. Upon further exploration, it was seen that any identifying nouns in the original text were replaced with '[NAME]'. So, 'name' was also added to the list of stop words because this artificially caused 'name' to become very prominent in the original text.

Exploratory Data Analysis

The NLP-cleaned text was then used to create word clouds for each emotion. This provided a visual sense of the most common words in each emotional label. Below are two example word clouds for the emotions joy and grief.

Word cloud for Joy

Word cloud for Grief

The following visual shows the breakdown of the dataset by number of examples of each emotion. Neutral emotions were removed because they were by far the most represented example. The chart shows moderate spread in examples with some emotions (grief, pride) having much fewer examples. This imbalance will likely affect how a model trains and predicts on text.

An additional grouping was made assigning each emotion as either 'positive', 'negative', or 'ambiguous'. The following graph shows there are more positive emotions and more examples of them also compared to negative and ambiguous emotions.

The length of each text was also analyzed for possible patterns. There appears to be a slight trend of negative emotion texts being longer in length.

The following box plot provides a closer look at the distribution of text length by category of emotion. Negative emotion texts do in fact appear to be longer than positive emotion texts.

Modeling

The main goal of this project was to build a model that can accurately identify emotions given new text if applicable. Prior to the modeling step, some pre-processing was done. One-hot encoding was done to create new binary columns for each emotion.

Undersampling/Oversampling considerations

One of the major considerations was whether to use oversampling/undersampling because of the imbalanced number of examples per emotion in the dataset. However, the dataset was large (58,000 texts) and samples from online at random. Also, in the context of human conversation and even more specifically in mental health settings, all emotions are not equally represented. It is realistic that certain emotions will appear much more than others and so it is fitting that this model should also have a similar representation. As a result, over and undersampling emotions were not used to train the models.

Scoring Metric

The other key decision was to decide the scoring metric to compare different emotions. The purpose of this model is to be used in a chatbot that can read new text and label relevant emotions if appropriate. In this context, it is important that when the model labels an emotion, it is the correct emotion. For example, a therapist listening to a sad statement from a client and responding as if it was a joyous statement would be highly inappropriate. On the flip side, it is less imperative that the model recognizes every single instance of an emotion because in this context, it is likely that successive texts will often be of the same emotion. For example, even if a therapist does not recognize a client's statement as sadness, often the client's consequent statements will also be of sadness.

As a result, micro precision was the key metric to be prioritized with micro recall not prioritized as much. Ideally, the model will also recognize most if not all models present in this dataset.

To prepare the dataset for modeling, the NLP-cleaned text was then broken down using Count Vectorizer. Tfidf-Vectorizer was also briefly explored but it gave worse results during the modeling stage.

Multiple model types were trained and tested and evaluated. The following graphics show classification reports for naïve Bayes model, random forest model, logistic regression model and K-nearest neighbors model.

Naïve Bayes Model

Random Forest

This is the c	lassification precision		r {'classi f1-score		RestClassifier(estimator=MultinomialNB())}	This is the clas _samples=20000,	ssification	report fo	r {'classi	fier': OneVs	sRestClassifier(estimator=RandomForestCl	lassifier(max
											timators=50))}	
admiration		0.08	0.15	504			precision	recall	f1-score	support		
amusemen*	t 1.00	0.03	0.07	264								
ange	r 0.00	0.00	nan	198		admiration	0.66	0.53	0.59	504		
annoyance	e 1.00	0.00	0.01	320		amusement	0.81	0.64	0.72	264		
approva	l 0.00	0.00	nan	351		anger	0.50	0.25	0.33	198		
carino		0.00	nan	135		annoyance	0.71	0.09	0.16	320		
confusion		0.00	nan	153		approval	0.56	0.08	0.14	351		
curiosity		0.00	nan	284		caring	0.65	0.10	0.17	135		
desire		0.00	nan	83		confusion	0.59	0.07	0.12	153		
disappointment		0.00	nan	151		curiosity	0.67	0.04	0.07	284		
disapprova		0.00	nan	267		desire	0.83	0.18	0.30	83		
disgus		0.02	0.03	123		disappointment	0.50	0.01	0.03	151		
embarrassmen		0.00	nan	37		disapproval	0.29	0.01	0.03	267 123		
excitemen		0.02	0.04	103		disgust	0.93	0.20	0.33	37		
fea		0.00	nan	78		embarrassment excitement	nan 0.43	0.03	nan 0.05	103		
		0.39	0.56	352		fear	0.73	0.14	0.24	78		
gratitude				6		gratitude	0.95	0.87	0.91	352		
grie		0.00	nan			gracitude	nan	0.00	nan	6		
jo	y 0.25	0.01	0.01	161		joy	0.67	0.22	0.33	161		
love		0.06	0.12	238		love	0.76	0.73	0.74	238		
nervousnes		0.00	nan	23		nervousness	nan	0.00	nan	23		
optimis		0.01	0.01	186		optimism	0.73	0.40	0.52	186		
pride		0.00	nan	16		pride	0.50	0.06	0.11	16		
realization		0.00	nan	145		realization	0.33	0.01	0.01	145		
relie		0.00	nan	11		relief	nan	0.00	nan	11		
remorse		0.00	nan	56		remorse	0.65	0.20	0.30	56		
sadness		0.01	0.01	156		sadness	0.69	0.29	0.41	156		
surprise		0.01	0.01	141		surprise	0.58	0.10	0.17	141		
neutra	l 0.61	0.11	0.19	1787		neutral	0.59	0.55	0.57	1787		
micro avo	g 0.74	0.06	0.12	6329		micro avg	0.67	0.36	0.47	6329		
macro avo	g 0.68	0.03	0.10	6329		macro avg	0.64	0.21	0.31	6329		
weighted av	g 0.66	0.06	0.15	6329		weighted avg	0.63	0.36	0.41	6329		
samples av	g 0.74	0.07	0.95	6329		samples avg	0.67	0.38	0.94	6329		
	30											

Logistic Regression

K- Nearest Neighbors

Logistic regression					ix incarest incignoofs							
	precision	recall	f1-score	support	This is the cla ghbors=7, p=1,	essification	report fo	r {'classi		RestClassifier(estim	ator=KNeighborsCla	ssifier(n_nei
admiration	0.71	0.45	0.55	504						s='distance'))}		
amusement	0.80	0.71	0.75	264		precision	recall	f1-score	support			
	0.48	0.13	0.20	198								
anger					admiration	0.62	0.34	0.44	504			
annoyance	0.55	0.07	0.12	320	amusement	0.82	0.36	0.50	264			
approval	0.49	0.11	0.18	351	anger	0.47	0.18	0.26	198			
caring	0.42	0.08	0.14	135	annoyance	0.29	0.02	0.03	320			
confusion	0.40	0.05	0.09	153	approval	0.35	0.05	0.09	351			
curiosity	0.62	0.04	0.07	284	caring	0.50	0.07	0.13	135			
desire	0.65	0.20	0.31	83	confusion	0.06	0.01	0.01	153			
disappointment	0.80	0.05	0.10	151	curiosity	0.00	0.00	nan	284			
disapproval	0.50	0.02	0.04	267	desire	0.67	0.12	0.20	83			
disgust	0.72	0.24	0.36	123	disappointment	0.00	0.00	nan	151			
embarrassment	0.57	0.11	0.18	37	disapproval	0.00	0.00	nan	267			
excitement	0.71	0.19	0.31	103	disgust	0.94	0.13	0.23	123			
fear	0.79	0.42	0.55	78	embarrassment	0.00	0.00	nan	37			
gratitude	0.95	0.88	0.91	352	excitement	0.29	0.02	0.04	103			
grief	1.00	0.17	0.29	6	fear	0.88	0.09	0.16	78			
	0.60	0.48	0.54	161	gratitude	0.95	0.80	0.87	352			
joy love	0.76	0.69	0.72	238	grief	nan	0.00	nan	6			
	0.00	0.09		23	joy	0.60	0.22	0.32	161			
nervousness			0.00		love	0.54	0.71	0.61	238			
optimism	0.74	0.46	0.57	186	nervousness	nan	0.00	nan	23			
pride	1.00	0.06	0.12	16	optimism	0.65	0.15	0.24	186			
realization	0.62	0.07	0.12	145	pride	0.50	0.06	0.11	16			
relief	0.00	0.00	0.00	11	oll output; double cl	ick to hide	0.00	nan	145			
remorse	0.53	0.55	0.54	56	TOTAL	man	0.00	nan	11			
sadness	0.66	0.29	0.40	156	remorse	0.65	0.39	0.49	56			
surprise	0.47	0.29	0.36	141	sadness	0.72	0.15	0.24	156			
neutral	0.46	0.92	0.61	1787	surprise	0.42	0.06	0.10	141			
					neutral	0.49	0.64	0.55	1787			
micro avq	0.55	0.48	0.51	6329								
macro avo	0.61	0.28	0.33	6329	micro avg	0.55	0.33	0.41	6329			
weighted avg	0.59	0.48	0.44	6329	macro avg	0.46	0.16	0.28	6329			
samples avg	0.55	0.51	0.52	6329	weighted avg	0.47	0.33	0.40	6329			
Jampies avg	0.55	3.31	0.52	0323	samples avg	0.55	0.35	0.94	6329			

Summary statistics for models

	micro_precision	micro_recall
Naive Bayes	0.74	0.06
Random Forest	0.67	0.36
Logistic Regression	0.55	0.48
KNN	0.55	0.33

Looking at the different models here, Random Forest provides the best precision while still identifying most of the emotions. While Naive Bayes has a higher precision in theory, it does so by simply ignoring most of the emotions (shown by the very low recall number). The advantage of random forest is that it can also continue to be adapted for more emotions with appropriately scaling complexity.

Future Work/Additional Info/Considerations

The next step in this project is to design a chatbot that can incorporate this model as part of larger framework in a crisis text/mental health setting. Specific to emotion labeling, more datasets representing other emotions, other sources of texts and ideally texts from a crisis setting could all help improve this model.

One of the notable limitations of this project is that the texts are sourced from Reddit which is not necessarily representative of the larger population. Also, most of this text is likely dissimilar from text that would be present in a crisis response/mental health setting. Also, there are significantly more emotions that could be labeled and used to provide more robust support.