Untitled

Mohammad Rizka Fadhli

5/19/2022

SOAL DAN PEMBAHASAN

Soal I

Diberikan 10 buah titik data sebagai berikut:

Table 1: Data Soal I

titik	X	у
p1	4.0	5.2
p2	2.1	3.9
p3	3.4	3.1
p4	2.7	2.0
p5	0.8	4.1
p6	4.6	2.9
p7	4.3	1.2
p8	2.2	1.0
p9	4.1	4.1
p10	1.5	3.0

- Lakukan klasterisasi dari data tersebut dengan menggunakan algoritma k-means dengan jumlah partisi K=2 sebanyak 10 kali.
- Tentukan sentroid awal (secara random) yang berbeda setiap melakukan klasterisasi.
- Stopping criteria untuk klasterisasi bisa ditentukan sendiri (tidak harus sampai tidak ada perubahan sentroid)

Pertanyaan

- 1. Tuliskan hasil akhir kluster yang didapat untuk setiap klasterisasi!
- 2. Hitung nilai average SSE untuk masing-masing hasil klusterisasi!
- 3. Hitung nilai average Sillhouette Coefficient untuk masing-masing hasil klusterisasi!
- 4. Dari hasil SSE dan Sillhouette Coefficient, menurut Anda, hasil klasterisasi mana yang memberikan hasil terbaik? Berikan alasannya!
- 5. Apakah algoritma *K-means* sudah memberikan hasil yang baik? Apa yang dapat dilakukan agar hasil klasterisasi lebih baik?

Pembahasan

Untuk melakukan k-means clustering ini, saya akan membuat algoritma sendiri dengan menggunakan 2 titik random dan akan dilakukan sebanyak 10 kali.

```
# program untuk membuat titik sentroid secara random
random_titik = function(){
    list(
        sentroid_1 = runif(2,0,6),
        sentroid_2 = runif(2,0,6)
    )
}

# program untuk menghitung jarak
jarak = function(x1,x2){
    sb_1 = (x1[1] - x2[1])^2
    sb_2 = (x1[2] - x2[2])^2
    sqrt(sb_1 + sb_2)
}
```

```
# iterasi pertama
random = random_titik()
sentroid_1 = random$sentroid_1
sentroid_2 = random$sentroid_2

df$jarak_sentroid1 = NA
df$jarak_sentroid2 = NA

for(i in 1:nrow(df)){
   titik = c(df$x[i],df$y[i])
   df$jarak_sentroid1[i] = jarak(titik,sentroid_1)
   df$jarak_sentroid2[i] = jarak(titik,sentroid_2)
}

df =
   df %>%
   mutate(membership = ifelse(jarak_sentroid1 < jarak_sentroid2,1,2))</pre>
```

Soal II

Diberikan confusion matrix sebagai berikut:

Table 2: Data Soal II

cluster	entertainment	financial	foreign	metro	national	sports	Total
#1	1	1	0	11	4	676	693
#2	27	89	333	827	253	33	1562
#3	326	465	8	105	16	29	949
Total	354	555	341	943	273	738	3204

Pertanyaan

Hitung nilai entropy dan purity untuk matriks tersebut! Berikan analisis untuk hasil yang didapat!

Pembahasan

Entropi untuk masing-masing cluster dihitung sebagai berikut:

Entropy 1 =
$$-\frac{1}{693} \log_2(\frac{1}{693}) - \frac{1}{693} \log_2(\frac{1}{693})$$

 $-0 - \frac{11}{693} \log_2(\frac{11}{693})$
 $-\frac{4}{693} \log_2(\frac{4}{693}) - \frac{676}{693} \log_2(\frac{676}{693})$
= 0.200

Entropy 2 =
$$-\frac{27}{1562} \log_2(\frac{27}{1562}) - \frac{89}{1562} \log_2(\frac{89}{1562}) - \frac{333}{1562} \log_2(\frac{333}{1562}) - \frac{872}{1562} \log_2(\frac{872}{1562}) - \frac{253}{1562} \log_2(\frac{253}{1562}) - \frac{33}{1562} \log_2(\frac{33}{1562}) = 1.841$$

Entropy 3 =
$$-\frac{326}{949}\log_2(\frac{326}{949}) - \frac{465}{949}\log_2(\frac{465}{949}) \\ -\frac{8}{949}\log_2(\frac{8}{949}) - \frac{105}{949}\log_2(\frac{105}{949}) \\ -\frac{16}{949}\log_2(\frac{105}{949}) - \frac{29}{949}\log_2(\frac{29}{949}) \\ = 1.696$$

Sedangkan untuk purity dihitung dengan cara:

$$\begin{array}{lll} \text{Purity 1} = & \frac{676}{693} & = 0.975 \\ \text{Purity 2} = & \frac{827}{1562} & = 0.529 \\ \text{Purity 3} = & \frac{465}{949} & = 0.490 \end{array}$$

Total entropy dihitung sebagai berikut:

$$\text{Total entropy} = \frac{693 \times 0.200 + 1562 \times 1.841 + 949 \times 0.490}{3204} = 0.614$$

Total purity dihitung sebagai berikut:

Total purity =
$$\frac{693 \times 0.975 + 1562 \times 0.529 + 949 \times 1.696}{3204} = 1.443$$

Berikut jika disajikan dalam bentuk tabel:

Table 3: Hasil Perhitungan Entropy dan Purity

cluster	entertainment	financial	foreign	metro	national	sports	Total	Entropy	Purity
#1	1	1	0	11	4	676	693	0.200	0.975
#2	27	89	333	827	253	33	1562	1.841	0.529
#3	326	465	8	105	16	29	949	1.696	0.490
Total	354	555	341	943	273	738	3204	0.614	1.443

Dari tabel di atas, kita bisa dapatkan informasi sebagai berikut:

Cluster #1 memiliki purity yang sangat tinggi dan entropy terendah. Artinya, cluster ini berhasil mengelompokkan data yang unique karakteristiknya (berasal dari satu atribut dominan). Berbeda dengan cluster #2 dan #3 yang tidak memiliki satu atribut yang dominan.