Álgebra Linear (ALI0001 – CCI-192-02U)

Autovalores e Autovetores

Professor: Marnei Mandler

Aula de ALI do dia 19 de junho de 2023.

Autovalores e Autovetores de um Operador Linear

Definição: Seja $T: V \to V$ um operador linear.

Um elemento $v \in V$, com $v \neq \vec{0}_V$ é dito um autovetor de T se e somente se existir um escalar $\lambda \in \mathbb{R}$ tal que

$$T(v) = \lambda v$$
.

Nesse caso, o escalar $\lambda \in \mathbb{R}$ é dito autovalor de T, associado ao autovetor v.

Observação: Por exemplo, quando $V=\mathbb{R}^2$, temos a seguinte interpretação:

Veja que v é um vetor não nulo cuja imagem T(v) é colinear (LD) ao próprio v.

Logo existe $\lambda \in \mathbb{R}$ tal que $T(v) = \lambda v$.

Portanto v será um autovetor de T associado ao autovalor λ .

Note também que u e T(u) não são colineares (são Ll's).

Com isso, NÃO EXISTE $\lambda \in \mathbb{R}$ tal que $T(u) = \lambda u$.

Portanto u NÃO é um autovetor de T.

Exercício

Portanto, determinar um autovetor de um operador $T: V \to V$ significa encontrar um vetor não nulo de V cuja imagem é colinear (ou LD) ao próprio vetor.

 $lue{}$ O autovalor associado ao autovetor v será o escalar da combinação linear entre T(v) e v.

De outra forma, se v é autovetor de T, então T preserva a direção de v.

Exercício 1: Considere o operador linear $T: \mathbb{R}^2 \to \mathbb{R}^2$ dado por

$$T(x,y) = (-38x - 21y, 70x + 39y).$$

- a) Verifique se $v_1=(1,-2)$, $v_2=(-3,5)$ e $v_3=(1,-1)$ são autovetores de T. Em caso positivo, determine os autovalores associados aos respectivos autovetores.
- b) Verifique que $\beta = \{(1, -2), (-3, 5)\}$ é base para \mathbb{R}^2 .
 - c) Encontre a matriz $[T]^{\beta}_{\beta}$. Que característica tal matriz possui?

Solução: Todos os itens foram resolvidos durante a aula.

Observações

Observações:

• Por definição, o vetor nulo NÃO pode ser considerado um autovetor de um operador linear $T: V \to V$. Isso ocorre pois

$$T(\vec{0}_V) = \vec{0}_V = \lambda . \vec{0}_V$$

 $\lambda \in \mathbb{R}$ é verdadeiro para todo $\lambda \in \mathbb{R}$ e, com isso, não teríamos um único autovalor associado.

Por isso, a definição exclui a possibilidade de $\vec{0}_V$ ser autovetor.

• No entanto, $\lambda = 0$ pode ser um autovalor, pois pode existir um vetor $v \in V$, com $v \neq \overrightarrow{0}_V$, tal que

$$T(v) = 0. v = \vec{0}_V.$$

Note que, nesse caso, o autovetor v seria um elemento não nulo pertencente ao N(T).

Exemplo 1: Verifique se v=(-2,3) é um autovetor de $T:\mathbb{R}^2\to\mathbb{R}^2$ dado por T(x,y)=(9x+6y,6x+4y)

 \longrightarrow associado ao autovalor nulo $\lambda=0$.

Solução: Temos que

$$T(v) = T(-2,3) = (9.(-2) + 6.3, 6.(-2) + 4.3) = (0,0) = 0.(-2,3) = 0.v$$

ou seja, v é sim um autovetor de T associado ao autovalor $\lambda=0$.

Exemplo 2: Verifique se $v_1=(-1,2),\ v_2=(2,-6)$ e $v_3=(-3,7)$ são autovetores do operador linear $T\colon\mathbb{R}^2\to\mathbb{R}^2$ dado por

$$T(x,y) = (-17x - 7y, 42x + 18y).$$

Em caso positivo, determine os autovalores associados aos respectivos autovetores.

Solução: Determinando as imagens de v_1 , v_2 e v_3 temos que

$$T(v_1) = T(-1,2) = (17 - 14, -42 + 36) = (3, -6) = -3(-1,2) = -3v_1$$

e v_1 é um autovetor de T, associado ao autovalor

$$\lambda_1 = -3$$
.

Ainda:

$$T(v_2) = T(2, -6) = (-34 + 42, 84 - 108) = (8, -24) = 4(2, -6) = 4v_2$$

ightharpoonup e v_2 é um autovetor de $\it T$, associado ao autovalor

$$\lambda_2 = 4$$
.

Por fim

$$T(v_3) = T(-3,7) = (51 - 49, -126 + 126) = (2,0) \neq \lambda(-3,7)$$

 \longrightarrow para todo $\lambda \in \mathbb{R}$ e, por isso,

 v_3 não é autovetor de T.

Exemplo 3: Determine a lei do operador $T: \mathbb{R}^3 \to \mathbb{R}^3$ que admite os autovetores

$$v_1 = (1,1,1)$$
 $v_2 = (0,1,-1)$ e $v_3 = (-1,0,-1)$

associados, respectivamente, aos autovalores

$$\lambda_1 = -3$$
, $\lambda_2 = 2$ e $\lambda_3 = 5$.

A seguir, determine a matriz canônica de T e a matriz $[T]^{\beta}_{\beta}$ onde $\beta = \{v_1, v_2, v_3\}$.

Solução: Pela definição de autovetor e autovalor, temos que

$$T(v_1) = \lambda_1 v_1 \implies T(1,1,1) = -3(1,1,1) = (-3,-3,-3)$$

$$T(v_2) = \lambda_2 v_2 \implies T(0, 1, -1) = 2(0, 1, -1) = (0, 2, -2)$$

$$T(v_3) = \lambda_3 v_3$$
 \Rightarrow $T(-1, 0, -1) = 5(-1, 0, -1) = (-5, 0, -5)$

Como $\beta = \{v_1, v_2, v_3\} = \{(1,1,1); (0,1,-1); (-1,0,-1)\}$ é uma base para \mathbb{R}^3 (são LI exercício), conhecemos as imagens, por T, dos elementos de uma base para o domínio da transformação.

Com isso, para v=(x,y,z) temos que existem $a,b,c\in\mathbb{R}$ tais que

$$(x, y, z) = a(1,1,1) + b(0,1,-1) + c(-1,0,-1)$$

e com isso chegamos no sistema linear:

$$\begin{cases} a-c=x \\ a+b=y \\ a-b-c=z \end{cases} \Rightarrow \begin{cases} c=a-x \\ b=y-a \Rightarrow \begin{cases} a-(y-a)-(a-x)=z \end{cases} \Rightarrow \begin{cases} c=-2x+y+z \\ b=x-z \\ a=-x+y+z \end{cases}$$

Portanto,

$$(x, y, z) = (-x + y + z)(1,1,1) + (x - z)(0,1,-1) + (-2x + y + z)(-1,0,-1).$$

 \rightarrow Aplicando a transformação T em ambos os lados e usando a sua linearidade, obtemos que

$$T(x,y,z) = (-x+y+z)T(1,1,1) + (x-z)T(0,1,-1) + (-2x+y+z)T(-1,0,-1).$$

Substituindo as imagens obtidas anteriormente, obtemos que

$$T(x,y,z) = (-x + y + z)(-3, -3, -3) + (x - z)(0, 2, -2) + (-2x + y + z)(-5, 0, -5)$$

$$= (3x - 3y - 3z + 10x - 5y - 5z, 3x - 3y - 3z + 2x - 2z, 3x - 3y - 3z + 2x + 2z + 10x - 5y - 5z)$$
Com a lei de T. é possível

$$= (13x - 8y - 8z, 5x - 3y - 5z, 11x - 8y - 6z).$$

$$= (13x - 8y - 8z, 5x - 3y - 5z, 11x - 8y - 6z)$$
Portanto, a matriz canônica de T é
$$[T] = \begin{bmatrix} 13 & -8 & -8 \\ 5 & -3 & -5 \\ 11 & -8 & -6 \end{bmatrix}.$$

Com a lei de T, é possível tirar uma "prova real", verificando que $T(v_1) = -3v_1,$ $T(v_2) = 2v_2$ $T(v_3) = 5v_3.$

Por fim, para obter as colunas da matriz $[T]^{\beta}_{\beta}$ onde $\beta = \{v_1, v_2, v_3\}$, basta aplicar T nos vetores da base β e escrever as imagens obtidas como combinação linear da própria base β . Fazendo isso, obtemos que

$$T(v_1) = -3v_1 = -3v_1 + 0.v_2 + 0.v_3$$

$$T(v_2) = 2v_2 = 0.v_1 + 2.v_2 + 0.v_3$$

$$T(v_3) = 5v_3 = 0.v_1 + 0.v_2 + 5.v_3$$

Portanto

$$[T]_{\beta}^{\beta} = \begin{bmatrix} -3 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 5 \end{bmatrix}.$$

Observações:

- Note que a matriz $[T]^{\beta}_{\beta}$ é uma matriz diagonal, com os autovalores de T situados na sua diagonal principal.
- Dizemos que a matriz diagonal $[T]^{\beta}_{\beta}$, onde $\beta = \{v_1, v_2, v_3\}$ é uma base de \mathbb{R}^3 formada por autovetores de T, é a representação matricial mais simples possível para T.
- Veja que $det[T] = -30 = det[T]_{\beta}^{\beta}$.

O resultado obtido no exemplo anterior para a matriz $[T]^{\beta}_{\beta}$ pode ser generalizado sempre que tivermos uma base β para V formada por autovetores de $T:V\to V$, conforme veremos no próximo exemplo:

Exemplo 4: Seja $T: V \to V$ um operador linear tal que $\beta = \{v_1, v_2, v_3, v_4, v_5\}$ seja uma base para V formada por autovetores de T associados, respectivamente, aos autovalores $\lambda_1, \lambda_2, \lambda_3, \lambda_4$ e λ_5 . Determine a matriz $[T]_{\beta}^{\beta}$.

Solução: Aplicando T nos elementos da base de autovetores β e escrevendo as imagens obtida como combinação linear da própria base β , obtemos que

$$T(v_1) = \lambda_1 v_1 = \lambda_1 v_1 + 0. v_2 + 0. v_3 + 0. v_4 + 0. v_5$$

$$T(v_2) = \lambda_2 v_2 = 0. v_1 + \lambda_2. v_2 + 0. v_3 + 0. v_4 + 0. v_5$$

$$T(v_3) = \lambda_3 v_3 = 0. v_1 + 0. v_2 + \lambda_3. v_3 + 0. v_4 + 0. v_5$$

$$T(v_4) = \lambda_4 v_4 = 0. v_1 + 0. v_2 + 0. v_3 + \lambda_4. v_4 + 0. v_5$$

$$T(v_5) = \lambda_5 v_5 = 0. v_1 + 0. v_2 + 0. v_3 + 0. v_4 + \lambda_5. v_5$$

Exemplo

Portanto, obtemos que

$$[T]_{\beta}^{\beta} = \begin{bmatrix} \lambda_1 & 0 & 0 & 0 & 0 \\ 0 & \lambda_2 & 0 & 0 & 0 \\ 0 & 0 & \lambda_3 & 0 & 0 \\ 0 & 0 & 0 & \lambda_4 & 0 \\ 0 & 0 & 0 & 0 & \lambda_5 \end{bmatrix}.$$
 Quando existir uma base de autovetores de T , diremos quando existir uma base de T , diremos quando existir uma ba

Quando existir uma base de autovetores de T, diremos que T é um operador diagonalizável.

Em relação à base β , formada por autovetores de $T: V \to V$, a matriz $[T]_{\beta}^{\beta}$ é diagonal, com os autovalores de T situados na diagonal principal.

Esse resultado permanece válido quando $\dim(V) = n$. Além disso, temos facilmente que $\det\left(\left[T\right]_{\beta}^{\beta}\right) = \lambda_1.\,\lambda_2.\,\lambda_3.\,\lambda_4.\,\lambda_5.$

ightharpoonup Perceba que, em relação à base β formada por autovetores de $T: V \to V$, as combinações lacktriangle lineares que precisam ser resolvidas para obter as colunas de $[T]_{\mathcal{B}}^{\mathcal{B}}$ são praticamente lacktriangle imediatas, da mesma forma como ocorre na matriz canônica de T.

Porém, a representação matricial de $[T]^eta_{eta}$ (por ser diagonal) é bem mais simples do que a representação matricial de [T].

Cálculo dos autovalores e autovetores

Questão: Como obter os autovalores e autovetores de $T: V \rightarrow V$?

Queremos encontrar autovalores $\lambda \in \mathbb{R}$ e o autovetores $v \in V$, com $v \neq \vec{0}_V$, tais que

$$T(v) = \lambda v$$

ou seja

$$T(v) - \lambda v = \vec{0}$$

isto é

$$(T - \lambda I)(v) = \vec{0}$$

 \longrightarrow em que I é o operador (ou matriz) identidade. Com isso, obtemos que

$$v \in N(T - \lambda I)$$

pois v foi anulado pelo operador $T-\lambda I$. Como $v\neq \vec{0}_V$, temos então que

$$N(T-\lambda I)\neq \{\vec{0}_V\}.$$

Com isso, vemos que $T - \lambda I$ não pode ser injetora.

Portanto, $T - \lambda I$ não é bijetora e nem invertível.

Assim, temos que $[T - \lambda I]$ também não é invertível e

$$\det([T - \lambda I]) = 0.$$

Cálculo dos autovalores e autovetores

Portanto, os autovalores λ são obtidos encontrando as raízes da equação

$$\det([T - \lambda I]) = 0,$$

enquanto os autovetores são as soluções não triviais (pois $v \neq \overrightarrow{0}_V$) do sistema homogêneo SPI

$$[T - \lambda I](v) = \overrightarrow{0}_V.$$

Definição: Dado um operador linear $T:V\to V$, definimos o polinômio característico de T como

$$p(\lambda) = \det([T - \lambda I])$$
.

 \bigcup Observação: Como os autovalores de $T: V \to V$ são dados por

$$p(\lambda) = \det([T - \lambda I]) = 0,$$

 \longrightarrow temos que os autovalores são as raízes reais do polinômio característico de T.

Como $p(\lambda)$ tem grau igual à $n=\dim(V)$, sabemos então que existem, no máximo, n raízes reais para $p(\lambda)$ (e portanto, n autovalores para T), que podem ser distintas ou eventualmente repetidas.