

CS240 Algorithm Design and Analysis

Lecture 26

Approximation Algorithms

Quan Li

Fall 2023 2024.01.09

The Knapsack Problem

The Knapsack Problem

- We have a set of items, each having a weight and a value.
- We have a knapsack that can carry up to W amount of weight.
- We want to put items in the knapsack to maximize the total value, but not exceed the weight limit.
- Ex Items 3 and 4 are the highest value items with weight ≤ 11 .
- Assume all items have weight \leq W, i.e., any single item fits in knapsack.

W	=	11
V V	_	T T

Item	Value	Weight
1	1	1
2	6	2
3	18	5
4	22	6
5	28	7

A Dynamic Programming for Knapsack

- Let OPT(i,v) = minimum weight of a subset of items 1,...,i that has value \geq v.
- If optimal solution uses item i.
 - □ Then we pay w_i weight for item i and need to achieve value $\geq v-v_i$ using items 1,...,i-1 using min weight.
 - □ So OPT(i,v)= w_i +OPT(i-1,v- v_i).
- If optimal solution doesn't use item i.
 - □ Then we need to achieve value \geq v using items 1,...,i-1.
 - \square So OPT(i,v)=OPT(i-1,v).
- Choose the case that gives smaller weight.

 $min(OPT(i-1,v), w_i+OPT(i-1,v-v_i))$ otherwise

Running Time of Dynamic Programming

- Say there are n items, and the largest value of any item is v*.
- The max value we can pack into the knapsack is nv*, where v* is the largest v value.
- Solve all subproblems of the form OPT(i,v), where $i \le n$ and $v \le nv^*$.
 - \square This is a total of $O(n^2v^*)$ subproblems.
- The solution to Knapsack is the max value V that can be packed with weight \leq W.
- Having solved all the subproblems, we can find V by finding the subproblem with the largest value that has optimum weight $\leq W$.
 - $\square V = max_{v \leq nv^*} OPT(n, v) \leq W.$
- So solving Knapsack takes total time $O(n^2v^*)$.

Running Time of Dynamic Programming

- The DP gives an optimal solution to Knapsack and takes O(n²v*) time. Have we found a polytime algorithm for an NP-complete problem?
- No. The problem size is $O(n \log(v^*))$, because it takes $\log(v^*)$ bits to express each item's value. But $O(n^2v^*)$ is not polynomial in $n \log(v^*)$.
- To make this DP fast, we have to make the largest value small.

PTAS (Polynomial Time Approximation Scheme)

- Let $\varepsilon>0$ be any number. We'll give a (1+ ε)-approximation for knapsack.
- lacktriangle By setting arepsilon sufficiently small, we can get as good an approximation as we want!
 - ☐ This type of algorithm is called a polynomial time approximation scheme, or PTAS.
- Contrast this with earlier algorithms we studied, which had worse approximation ratios, e.g.,
 2 or log n.
- But the running time will be $O(n^3/\varepsilon)$. Hence, we can't set ε =0 get the optimal solution.
- We're trading accuracy for time. The more accurate (smaller ε), the more time the algorithm takes.

Main Idea: Rounding

- Since we only need an approximate solution, we can change the values of the items a little (round the values) and not affect the solution much.
- We scale and round the original values to make them small.
- The previous DP took $O(n^2v^*)$ time. So if the rounded values are small, this DP is fast.

W = 11

W = 11

Item	Value	Weight
1	134,221	1
2	656,342	2
3	1,810,013	5
4	22,217,800	6
5	28,343,199	7

Item	Value	Weight
1	2	1
2	7	2
3	19	5
4	23	6
5	29	7

Rounding

- Let ε >0 be the precision we want.
- Set $\theta = \varepsilon v^*/2n$ to be a scaling factor.
 - \square v* is the largest value of any item.
- Scale all values down by q then round up.
 - $\square v' = [v/\theta].$
- Make a problem where each value v_i is replaced by v'_i.
 - □ Call this the scaled rounded problem.
- Let v be max value in the scaled rounded problem. Then v = $\left[v*/\theta\right] = \left[v*/\left(\frac{\varepsilon V^*}{2n}\right)\right] = \left[2n/\varepsilon\right]$.
- Running time of DP on scaled rounded problem is $O(n^2v^2) = O(n^3/\epsilon)$.

Solving the Original Problem

- Make another new problem in which each value v_i is replaced by $u_i = [v_i/\theta] * \theta$.
 - □ Call this the rounded problem.
 - \square We have $u_i \ge v_i$, and $u_i \le v_i + \theta$.
- Note u values are equal to v' values multiplied by θ .
 - □ Thus, the optimal solution for the rounded problem and the scaled rounded problem are the same.
- We now have 3 problems, the original problem, the scaled rounded problem, and the rounded problem.
- Let S be the optimal solution to the scaled rounded problem, which we can find in time $O(n^3/\varepsilon)$. S is also optimal for the rounded problem.
- We'll show S is a $1+\varepsilon$ approximation for the original problem.

Correctness

Thm Let S* be the optimal solution to the original problem. Then

$$(1+\varepsilon)\sum_{i\in S} v_i \geq \sum_{i\in S^*} v_i$$

Hence S is a $(1+\varepsilon)$ -approximate solution.

Proof

$$\sum_{i \in S^*} v_i \le \sum_{i \in S^*} u_i$$

$$u_i \geq v_i$$

$$\leq \sum_{i \in S} u_i$$

S is optimal solution for rounded problem

$$\leq \sum_{i \in S} (v_i + \theta)$$

$$\leq \sum_{i \in S} v_i + n\theta$$

$$u_i \leq v_i + \theta$$

$$\leq \sum_{i \in S} v_i + n\theta$$

$$|S| \leq n$$

Correctness

- Suppose item j has the largest value, so $v^*=v_j$. Then $n\theta = \frac{\mathcal{E}}{2}v_j \le \frac{\mathcal{E}}{2}u_j \le \frac{\mathcal{E}}{2}\sum_{i \in S}u_i$
 - □ Last inequality because item j itself is feasible solution, so opt solution S is no smaller.
- So $\sum_{i \in S} v_i \ge \sum_{i \in S} u_i n\theta \ge \left(\frac{2}{\varepsilon} 1\right)n\theta$, where first inequality comes from last page.
- Assuming $\varepsilon \leq 1$, then $n\theta \leq \varepsilon \sum_{i \in S} v_i$
- Finally, we have

$$\sum_{i \in S^*} v_i \le \sum_{i \in S} v_i + n\theta \le \sum_{i \in S} v_i + \varepsilon \sum_{i \in S} v_i = (1 + \varepsilon) \sum_{i \in S} v_i$$

Summary

- We gave a DP for Knapsack.
- We scale and round to reduce number of different item values.
- Running the DP on the scaled rounded problem and using the solution for the original problem leads to an arbitrarily good approximation for Knapsack, a PTAS.
- There are PTAS's for a number of other problems.
 - ☐ Multiprocessor scheduling.
 - □ Bin packing.
 - □ Euclidean TSP.
- However, there are also many problems for which PTAS's do not exist, unless P=NP.

Vertex Cover

Vertex Cover

- Input A graph with vertices V and edges E.
- Output A subset V' of the vertices, so that every edge in E touches some vertex in V'.
- Goal Make |V'| as small as possible.

- Finding the minimum vertex cover is NP-complete.
- We'll see a simple 2 approximation for this problem.

A Vertex Cover Algorithm

- Initially, let D be all the edges in the graph, and C be the empty set.
 - □ C is our eventual vertex cover.
- Repeat as long as there are edge left in D.
 - \square Take any edge (u,v) in D.
 - □ Add {u,v} to C.
 - □ Remove all the edges adjacent to u or v from D.
- Output C as the vertex cover.

Algorithm's vertex cover

Optimal vertex cover

Proof of Correctness

- The output is certainly a vertex cover.
 - □ In each iteration, we only take out edges that get covered.
 - □ We keep adding vertices till all edges are covered.
- Now, we show it's a 2 approximation.
- Let C* be an optimal vertex cover.
- Let A be the set of edges the algorithm picked.

Proof of Correctness

- None of the edges in A touch each other.
 - □ Each time we pick an edge, we remove all adjacent edges.
- So each vertex in C* covers at most one edge in A.
 - □ The edges covered by a vertex all touch each other.
- Every edge in A is covered by a vertex in C*.
 - □ Because C* is a vertex cover.
- So $|C^*| \ge |A|$.
- The number of vertices the algorithm uses is 2|A|.
 - \square If algorithm picks edge (u,v), it uses {u,v} in the cover.
- So (# vertices algorithm uses) / (# vertices in opt cover) = $2|A| / |C^*| \le 2|A| / |A| = 2$.

The Pricing Method: Vertex Cover

Weighted Vertex Cover

Weighted vertex cover. Given a graph G with vertex weights, find a vertex cover of minimum weight.

It's a special case of the set cover problem, so the $H(d^*)$ approximation ratio can be achieved by the greedy algorithm, where $d^* = \max degree$

weight =
$$2 + 2 + 4 = 8$$

weight =
$$2 + 9 = 11$$

Weighted Vertex Cover

Pricing method. Each edge must be covered by some vertex i. Edge e pays price $p_e \ge 0$ to use vertex i.

Fairness. Edges incident to vertex i should pay $\leq w_i$ in total.

for each vertex i:
$$\sum_{e=(i,j)} p_e \le w_i$$

Claim. For any vertex cover S and any fair prices p_e : $\sum_e p_e \le w(S)$.

$$\sum_{e \in E} p_e \le \sum_{i \in S} \sum_{e = (i,j)} p_e \le \sum_{i \in S} w_i = w(S)$$

each edge e covered by at least one node in S

sum fairness inequalities for each node in S

Pricing Method

Pricing method. Set prices and find vertex cover simultaneously.

Pricing Method: Example

Pricing Method: Analysis

Theorem. Pricing method is a 2-approximation. Pf.

- Algorithm terminates since at least one new node becomes tight after each iteration of while loop.
- Let S = set of all tight nodes upon termination of algorithm.
- S is a vertex cover: if some edge i-j is uncovered, then neither i nor j is tight. But then while loop would not terminate.
- Let S* be optimal vertex cover. We show $w(S) \le 2w(S^*)$.

$$w(S) = \sum_{i \in S} w_i = \sum_{i \in S} \sum_{e=(i,j)} p_e \leq \sum_{i \in V} \sum_{e=(i,j)} p_e = 2 \sum_{e \in E} p_e \leq 2w(S^*). \quad \blacksquare$$

all nodes in S are tight $S \subseteq V,$ each edge counted twice $\mbox{ fairness lemma }$ prices ≥ 0

LP Rounding: Vertex Cover

Weighted Vertex Cover

Weighted vertex cover. Given an undirected graph G = (V, E) with vertex weights $w_i \ge 0$, find a minimum weight subset of nodes S such that every edge is incident to at least one vertex in S.

Weighted Vertex Cover: Integer Linear Programming Formulation

Weighted vertex cover. Given an undirected graph G = (V, E) with vertex weights $w_i \ge 0$, find a minimum weight subset of nodes S such that every edge is incident to at least one vertex in S.

Integer programming formulation.

■ Model inclusion of each vertex i using a 0/1 variable x_i .

$$x_i = \begin{cases} 0 & \text{if vertex } i \text{ is not in vertex cover} \\ 1 & \text{if vertex } i \text{ is in vertex cover} \end{cases}$$

- Objective function: minimize Σ_i w_i x_i.
- Must take either i or j: $x_i + x_j \ge 1$.

(ILP) min
$$\sum_{i \in V} w_i x_i$$
s. t. $x_i + x_j \ge 1$ $(i,j) \in E$

$$x_i \in \{0,1\} \quad i \in V$$

Integer Programming

INTEGER-PROGRAMMING. Given integers a_{ij} and b_i , find integers x_i that satisfy:

min
$$c^t x$$

s. t. $Ax \ge b$
 $x \ge 0$
 $x \text{ integral}$

$$\sum_{j=1}^{n} a_{ij} x_{j} \geq b_{i} \qquad 1 \leq i \leq m$$

$$x_{j} \geq 0 \qquad 1 \leq j \leq n$$

$$x_{j} \qquad \text{integral} \qquad 1 \leq j \leq n$$

Observation. Vertex cover formulation proves that integer programming is NP-hard search problem.

even if all coefficients are 0/1 and at most two variables per inequality

Integer Programming

Linear programming. Max/min linear objective function subject to linear inequalities.

- Input: integers c_j, b_i, a_{ij}.
- Output: real numbers x_i.

(LP) min
$$c^t x$$

s. t. $Ax \ge b$
 $x \ge 0$

(LP) min
$$\sum_{j=1}^{n} c_{j} x_{j}$$
s. t.
$$\sum_{j=1}^{n} a_{ij} x_{j} \ge b_{i} \quad 1 \le i \le m$$

$$x_{j} \ge 0 \quad 1 \le j \le n$$

Linear. No x^2 , xy, arccos(x), x(1-x), etc.

Simplex algorithm. [Dantzig 1947] Can solve LP in practice. Ellipsoid algorithm. [Khachian 1979] Can solve LP in poly-time.

LP Feasible Region

LP geometry in 2D.

Weighted Vertex Cover: LP Relaxation

Weighted vertex cover. Linear programming formulation.

(LP) min
$$\sum_{i \in V} w_i x_i$$
s. t. $x_i + x_j \ge 1$ $(i, j) \in E$

$$x_i \ge 0 \quad i \in V$$

Observation. Optimal value of (LP) is \leq optimal value of (ILP). Pf. LP has fewer constraints.

Note. LP is not equivalent to vertex cover.

- Q. How can solving LP help us find a small vertex cover?
- A. Solve LP and round fractional values.

Weighted Vertex Cover

Theorem. If x^* is optimal solution to (LP), then $S = \{i \in V : x^*_i \ge \frac{1}{2}\}$ is a vertex cover whose weight is at most twice the min possible weight.

Pf. [S is a vertex cover]

- Consider an edge $(i, j) \in E$.
- Since $x^*_i + x^*_j \ge 1$, either $x^*_i \ge \frac{1}{2}$ or $x^*_j \ge \frac{1}{2}$ \Rightarrow (i, j) covered.

Pf. [S has desired cost]

■ Let S* be optimal vertex cover. Then

$$\sum_{i \in S^*} w_i \geq \sum_{i \in S} w_i x_i^* \geq \frac{1}{2} \sum_{i \in S} w_i$$

$$| \qquad |$$

$$\text{LP is a relaxation} \qquad x_i^* \geq \frac{1}{2}$$

Next Time: Approximation Algorithms (Cont.)

