2.5. Відомості про технічну базу і програмне забезпечення автоматизації проектування **O**C

При визначенні вимог до технічних засобів для автоматизації проектування, насамперед, приймається в увагу необхідність при більшості оптичних розрахунків виконання операцій із числами з плаваючої комою порядку 13...14 десяткових розрядів.

Основними *критеріями вибору* технічних засобів для автоматизації проектування ОС ϵ :

- достатня продуктивність зручність взаємодії з користувачем;
- прийнятна вартість і надійність;
- можливість розширення й обслуговування;
- наявність програмних продуктів для автоматизації задач проектування.

Показником продуктивності ЕОМ з погляду автоматизації проектування ОС може служити кількість променів, що розраховуються через одну поверхню оптичної системи за одну секунду. В табл. 2.1 приведені результати тестування деяких вітчизняних і закордонних ЕОМ для оптичних розрахунків.

Таблиця 2.1

Тип ЕОМ або тип процесора	Рік	Продуктивність променів / с
БЭСМ-6	1971	2 000
Эльбрус-1	1988	5 000
Intel 286 (10 MHz)	1986	530
Intel 386 (20 MHz)	1990	3000
Intel 486 (66 MHz)	1993	43 000
Intel Pentium (66 MHz)	1993	73 000
DEC Micro VAX	1985	2 500
DEC VAX 8650	1985	9 500
SUN 4/75 SPARC 2	1991	105 000
SUN SPARC 10-41	1992	250 000
Intel Pentium 200 MMX	1997	350 000
Intel i7 (6 ядер, 12 потоків)	2019	150 000 000
Intel i9 (8 ядер, 16 потоків)	2019	250 000 000

Етапи розвитку програмного забезпечення з розрахунку оптики:

1) 70-е - початок 80-х р. Пакети програм автоматизації проектування, доступні в пакетному або діалоговому режимі, 2-мірна графіка.

2) Середина 80-х - 90-і р. Інтегровані програмні системи, робота в режимі діалогу, 3-х мірна графіка.

3) Кінець 90-х і Інтегровані програмні системи, із використанням теперішній час баз знань і елементів штучного інтелекту.

З підвищенням продуктивності ЕОМ, створенням кольорових графічних дисплеїв і технічних засобів організації діалогу істотно розширилися можливості застосування графіки для відображення як самих ОС у виді 2- і 3-мірних проекцій, так і результатів розрахунків, включаючи хід променів, 2- і 3-мірних графіків аберацій, діафрагм розподілу променів, енергії в зображенні точки і тест-об'єктів, оптичних передатних функцій і т.п. Це дозволило не тільки інтенсифікувати діалог, але і знизити стомлюваність розроблювача, зменшити кількість проміжних роздруківок.

Співвідношення між основними видами задач і необхідної для їхнього ефективного рішення (у режимі діалогу) продуктивністю ЕОМ, в умовних одиницях (табл. 2.2).

Таблиця 2.2

Аналіз геометричних та хвильових аберацій, апроксимація аберацій	12
Оптимізація осесиметричних систем локальними методами	1020
Розрахунок ФРТ і ОПФ, моделювання зображень	1020
Оптимізація неосесиметричних систем	10 50
Мультиконфігураційна оптимізація	20 50
Оптимізація з застосуванням нелокальних методів	50 100

Системна частина

містить у собі диспетчер, який проводить обмін інформацією між користувачами і системою, а також між окремими проблемними програмами.

Проблемна частина

містить програми, які виконують окремі операції проектування (трансляція з вхідної мови, синтезу, аналіз, оптимізація, відображення результатів тощо).

У свою чергу, функціональні блоки складаються з окремих підпрограм, що вирішують елементарні задачі як загальноматематичного характеру, тобто проблемно-незалежні (наприклад, задача лінійної алгебри, чисельного інтегрування, оптимізації й інші), так і оптичного характеру об'єктно-орієнтовані (наприклад, розрахунок променя через одна поверхня, перебування граничного променя і т.д.).

Рисунок 2.5 – Частини програмного забезпечення

При автоматизованому проектуванні ОС зручним є застосування математичного апарата *матричної* і *лінійної алгебри*. Застосування символіки і понять цих поділів математики дозволяє значно спростити запис формул і перетворення, а також зіставити багатьом поняттям наочну геометричну аналогію, що полегшує розуміння їхньої сутності.