III.11. Let M be a finitely generated torsion-free module over \mathfrak{o} . Prove that M is projective.

Proof. Given a prime ideal \mathfrak{p} , the localized module $M_{\mathfrak{p}}$ is generated over $\mathfrak{o}_{\mathfrak{p}}$ by any generating set of M over \mathfrak{o} , hence is finitely generated. If $\frac{a}{s}m=0$ for some $m\in M_{\mathfrak{p}}$, then multiplication by s gives that am=0. Thus, since M is torsion free, a=0 or m=0, so $M_{\mathfrak{p}}$ is also torsion free. $\mathfrak{o}_{\mathfrak{p}}$ is a principal ideal domain by the combination of exercises 15 and 16: there is a unique prime ideal \mathfrak{q} of $\mathfrak{o}_{\mathfrak{p}}$, so every ideal factors as \mathfrak{q}^k for some k; but there is some $t \in \mathfrak{q} \setminus \mathfrak{q}^2$, hence $\mathfrak{q} = (t)$ is principal, and so every ideal is principal of the form (t^k) . By Theorem 7.3, $M_{\mathfrak{p}}$ is free and therefore projective.

Let F be finite free over \mathfrak{o} and $f: F \to M$ surjective. f extends naturally to a homomorphism $f_{\mathfrak{p}}: F_{\mathfrak{p}} \to M_{\mathfrak{p}}$ by $f_{\mathfrak{p}}(\frac{a}{s}x) = \frac{a}{s}f(x)$ for $s \notin \mathfrak{p}$, which is surjective because every element of $M_{\mathfrak{p}}$ is of the form $\frac{a}{s}m$ for some $m \in M$. So the sequence

$$0 \longrightarrow \operatorname{Ker} f_{\mathfrak{p}} \longrightarrow F_{\mathfrak{p}} \xrightarrow{g_{\mathfrak{p}}} M_{\mathfrak{p}} \longrightarrow 0$$

is exact, hence it yields a splitting homomorphism $g_{\mathfrak{p}}$.

As a homomorphism of $\mathfrak{o}_{\mathfrak{p}}$ -modules, $g_{\mathfrak{p}}$ is naturally a homomorphism of \mathfrak{o} -modules as well. Since it is a right inverse for $f_{\mathfrak{p}}$, it is injective, hence gives an embedding $g_{\mathfrak{p}}(M)$ of M into $F_{\mathfrak{p}}$ (as an \mathfrak{o} -module). This embedding has a finite generating set $\{m_1,\ldots,m_n\}$, and for each i there is some $c_i \notin \mathfrak{p}$ for which $c_i m_i \in F$. Let $c_{\mathfrak{p}}$ be the product of all the c_i . We know $c_{\mathfrak{p}} \notin \mathfrak{p}$ since \mathfrak{p}^c is multiplicative, and that $c_{\mathfrak{p}} m_i \in F$ for all i. Thus $c_{\mathfrak{p}} g_p(M) \subseteq F$.

Consider the ideal \mathfrak{a} generated by $\{c_{\mathfrak{p}}: \mathfrak{p} \subseteq \mathfrak{o} \text{ is prime}\}$. If $\mathfrak{a} \neq \mathfrak{o}$, then \mathfrak{a} is contained in some maximal (hence prime) ideal \mathfrak{q} . But $c_{\mathfrak{q}} \notin \mathfrak{a}$ contradicts that $c_{\mathfrak{q}} \in \mathfrak{a} \subseteq \mathfrak{q}$. So we must have $\mathfrak{a} = \mathfrak{o}$. So there are some finite collections $\{c_{\mathfrak{p}_i}\}$ and $\{x_i\} \subseteq \mathfrak{o}$ for which $\sum x_i c_{\mathfrak{p}_i} = 1$. Letting $g = \sum x_i c_{\mathfrak{p}_i} g_{\mathfrak{p}_i}$, we have $g: M \to F$ and

$$f\circ g(m)=\sum x_if(c_{\mathfrak{p}_i}g_{\mathfrak{p}_i}(m))=\sum x_if_{\mathfrak{p}_i}(c_{\mathfrak{p}_i}g_{\mathfrak{p}_i}(m))=\sum x_ic_{\mathfrak{p}_i}f_{\mathfrak{p}_i}\circ g_{\mathfrak{p}_i}(m)=m\sum x_ic_{\mathfrak{p}_i}=m$$

for any $m \in M$. Thus $f \circ g = \mathrm{id}_M$. This means that the sequence

$$0 \longrightarrow \operatorname{Ker} f \longrightarrow F \longrightarrow M \longrightarrow 0$$

splits, thus $F = \operatorname{Ker} f \oplus M$. So M is a direct summand of a free module, hence projective.

III.12. (a) Let \mathfrak{a} , \mathfrak{b} be ideals. Show that there is an isomorphism of \mathfrak{o} -modules

$$\mathfrak{a} \oplus \mathfrak{b} \cong \mathfrak{o} \oplus \mathfrak{ab}.$$

Proof. We may choose a $c \in K$ such that $\mathfrak{a} + c\mathfrak{b} = \mathfrak{o}$. Consider the surjective \mathfrak{o} -linear map $\mathfrak{a} \oplus \mathfrak{b} \to \mathfrak{a} + c\mathfrak{b}$ given by $a + b \mapsto a + cb$. Its kernel is the set of pairs (-cb, b) for which $cb \in \mathfrak{a}$, which is isomorphic simply to $c\mathfrak{b} \cap \mathfrak{a}$. Since these are relatively prime, we know this equals $c\mathfrak{a}\mathfrak{b}$, which as an \mathfrak{o} -module is isomorphic to $\mathfrak{a}\mathfrak{b}$. Thus we have an exact sequence

$$0 \longrightarrow \mathfrak{ab} \longrightarrow \mathfrak{a} \oplus \mathfrak{b} \longrightarrow \mathfrak{o} \longrightarrow 0.$$

Clearly, \mathfrak{o} is finitely generated and torsion-free over itself (it is an integral domain, generated over itself by 1). By the previous exercise, \mathfrak{o} is projective. Hence, the above sequence splits, giving us $\mathfrak{a} \oplus \mathfrak{b} \cong \mathfrak{o} \oplus \mathfrak{ab}$.

(b) Let $\mathfrak{a}, \mathfrak{b}$ be fractional ideals, and let $f: \mathfrak{a} \to \mathfrak{b}$ be an isomorphism (of \mathfrak{o} -modules). Then f has an extension to a K-linear map $f_K: K \to K$. Let $c = f_K(1)$. Show that $\mathfrak{b} = c\mathfrak{a}$ and that f is given by the mapping $m_c: x \to cx$.

Proof. If f = 0, we must have $\mathfrak{a} = \mathfrak{b} = 0$. In this case, $f_K(1)$ is not defined, but we can take c = 0 and still have $\mathfrak{b} = c\mathfrak{a}$ with $f = m_c$. So assume $f \neq 0$, and let $a \in \mathfrak{a}$ such that $f(a) \neq 0$. Then $c = f_K(1) = a^{-1}f(a)$, and for any $x \in \mathfrak{a}$ we have $f(x) = xf_K(1) = cx$, thus $f = m_c$. Since \mathfrak{b} is the image of f, $\mathfrak{b} = c\mathfrak{a}$.

(c) Let \mathfrak{a} be a fractional ideal. For each $b \in \mathfrak{a}^{-1}$ the map $m_b : \mathfrak{a} \to \mathfrak{o}$ is an element of the dual \mathfrak{a}^{\vee} . Show that $\mathfrak{a}^{-1} = \mathfrak{a}^{\vee} = \operatorname{Hom}_{\mathfrak{o}}(\mathfrak{a}, \mathfrak{o})$ under this map, and so $\mathfrak{a}^{\vee\vee} = \mathfrak{a}$.

Proof. Consider $\mathfrak{a}^{-1} \to a^{\vee}$ given by $b \mapsto m_b$, which is clearly injective. If $f \in \mathfrak{a}^{\vee}$, then by the argument in (b) we know $f = m_c$ where $c = a^{-1}f(a)$. Since \mathfrak{a}^{-1} is an \mathfrak{o} -module, and $f(a) \in \mathfrak{o}$, we have $c \in \mathfrak{a}^{-1}$. So we have an isomorphism $\mathfrak{a}^{-1} \cong a^{\vee}$. Therefore, $\mathfrak{a} = (\mathfrak{a}^{-1})^{-1} \cong \mathfrak{a}^{\vee\vee}$.

III.13. (a) Let M be a projective finite module over the Dedekind ring \mathfrak{o} . Show that there exist free modules F and F' such that $F \supseteq M \supseteq F'$, and F, F' have the same rank, which is called the rank of M.

Proof. Let S be a generating set for M that is as small as possible, and let |S| = n. The free \mathfrak{o} -module F on S surjects onto M; since M is projective, then, M is a direct summand of F. Thus $M \subseteq F$.

Let \mathfrak{a} be an ideal of \mathfrak{o} . We showed in the previous homework that \mathfrak{a} is finitely generated. Since \mathfrak{o} is an integral domain, \mathfrak{a} is torsion free. Thus, by exercise 11, \mathfrak{a} is projective. Also, if $\mathfrak{a} \neq 0$ and a is one of the generators of \mathfrak{a} , then \mathfrak{a} contains the free \mathfrak{o} -module on a. Thus, \mathfrak{a} contains a free module of rank 1. Clearly, if $\mathfrak{a} = 0$ then it contains the free module on 0 generators.

We will now induct on n (the least possible size of a generating set for M) to show that if $M \subseteq \mathfrak{o}^n$ then $M = \mathfrak{a}_1 \oplus \cdots \oplus \mathfrak{a}_n$ for some nonzero ideals \mathfrak{a}_i of \mathfrak{o} . This is clear if n = 0, since then $M \cong (0)$ is the empty sum. If n = 1, then M is, by definition, a nonzero ideal of \mathfrak{o} . Supposing this holds for n - 1, if $M \subseteq \mathfrak{o}^n$ we can take the projection map π of \mathfrak{o}^n onto its first coordinate, and consider its restriction to M. The image of M is a submodule of the image of \mathfrak{o}^n , which is \mathfrak{o} . Therefore, the image of M is an ideal \mathfrak{a}_n , which is also projective. The kernel lies within the last n - 1 summands of \mathfrak{o}^n , hence by induction equals $\mathfrak{a}_1 \oplus \cdots \oplus \mathfrak{a}_{n-1}$. Since \mathfrak{a}_n is projective, the exact sequence

$$0 \longrightarrow \operatorname{Ker} \pi \mid_{M} \longrightarrow M \longrightarrow \operatorname{Im} M \longrightarrow 0$$

which is the same as

$$0 \longrightarrow \mathfrak{a}_1 \oplus \cdots \oplus \mathfrak{a}_{n-1} \longrightarrow M \longrightarrow \mathfrak{a}_n \longrightarrow 0$$

splits, giving us $M = \mathfrak{a}_1 \oplus \cdots \oplus \mathfrak{a}_n$. We have already argued that each \mathfrak{a}_i contains a rank 1 submodule M_i . Therefore, $F' = M_1 \oplus \cdots \oplus M_n$ is a free module of rank n contained in M.

(b) Prove that there exists a basis $\{e_1, \ldots, e_n\}$ of F and ideals $\mathfrak{a}_1, \ldots, \mathfrak{a}_n$ such that $M = \mathfrak{a}_1 e_1 + \cdots + \mathfrak{a}_n e_n$, or in other words, $M \cong \oplus \mathfrak{a}_i$.

Proof. We have just shown this in part (a). We know $M \cong \oplus \mathfrak{a}_i$, so M has a generating set e_1, \ldots, e_n such that $M = \oplus \mathfrak{a}_i e_i$. Thus, $\mathfrak{o}(\{e_1, \ldots, e_n\})$ is a free module F of rank n that contains M (since M is projective).

(c) Prove that $M \cong \mathfrak{o}^{n-1} \oplus \mathfrak{a}$ for some ideal \mathfrak{a} , and that the association $M \mapsto \mathfrak{a}$ induces an isomorphism of $K_0(\mathfrak{o})$ with the group of ideal classes $\operatorname{Pic}(\mathfrak{o})$.

Proof. Using associativity of the direct sum, part (a) of exercise 12 extends to $\mathfrak{a}_1 \oplus \cdots \oplus \mathfrak{a}_n \cong \mathfrak{o}^{n-1} \oplus (\mathfrak{a}_1 \cdots \mathfrak{a}_n)$ for any n. By the previous result, we have $M \cong \mathfrak{a}_1 \oplus \cdots \oplus \mathfrak{a}_n \cong \mathfrak{o}^{n-1} \oplus (\mathfrak{a}_1 \cdots \mathfrak{a}_n)$, hence $\mathfrak{a} = \mathfrak{a}_1 \cdots \mathfrak{a}_n$. Note that if $M \neq 0$ can be written as $\mathfrak{o}^{n-1} \oplus 0$, then $n \geq 2$ and so it can also be written as $\mathfrak{o}^{n-2} \oplus \mathfrak{o}$. For the remainder of this proof, we will always take the latter form if this ambiguous case arises, so that the righthand summand is never 0 unless M = 0.

Since any finite projective module M over \mathfrak{o} can be written as $M \cong \mathfrak{o}^{n-1} \oplus \mathfrak{a}$ for some nonzero ideal \mathfrak{a} , we would like to define a map $K_0(\mathfrak{o}) \to \operatorname{Pic}(\mathfrak{o})$ by $[\mathfrak{o}^{n-1} \oplus \mathfrak{a}] \mapsto [\mathfrak{a}]$; however, it is not immediately evident that this is well-defined. Specifically, we need to verify that if $[\mathfrak{o}^{n-1} \oplus \mathfrak{a}] = [\mathfrak{o}^{m-1} \oplus \mathfrak{b}]$ in $K_0(\mathfrak{o})$ (for some \mathfrak{a} and \mathfrak{b} nonzero), then $[\mathfrak{a}] = [\mathfrak{b}]$ in $\operatorname{Pic}(\mathfrak{o})$.

To verify this, suppose that $[\mathfrak{o}^{n-1} \oplus \mathfrak{a}] = \mathfrak{o}^{m-1} \oplus \mathfrak{b}]$. Because the equivalence relation defining the classes of $K_0(\mathfrak{o})$ equates two ideals that are isomorphic up to adding a free module, we can simply assume that $\mathfrak{o}^{n-1} \oplus \mathfrak{a} \cong \mathfrak{o}^{m-1} \oplus \mathfrak{b}$ (since adding free modules does nothing but increase the values of n and m, which are already arbitrary). Tensoring over \mathfrak{o} with its field of fractions K gives us

$$(\mathfrak{o}^{m-1} \oplus \mathfrak{b}) \otimes K = (\mathfrak{o} \otimes K)^{m-1} \oplus (\mathfrak{b} \otimes K)$$

We have "extended the base" of $\mathfrak o$ and of $\mathfrak b$ to produce vector spaces over K. Lang's Proposition 4.1 in the chapter on the tensor product states that $\mathfrak o\otimes K$ is a 1-dimensional vector space over K

For the righthand term, we know $\mathfrak{b} \otimes K \subseteq \mathfrak{o} \otimes K$, thus $\mathfrak{b} \otimes K$ has dimension at most 1. If it had dimension 0, this would mean that the only \mathfrak{o} -bilinear map from $\mathfrak{b} \times K$ to a given \mathfrak{o} -module is 0. However, $(b,k) \mapsto bk$ is bilinear, and is nonzero unless $\mathfrak{b} = 0$, which we know is not the case. Therefore, $\mathfrak{b} \otimes K$ has dimension 1 as well, proving that m = n.

We will now show by induction on n that if $\mathfrak{o}^{n-1} \oplus \mathfrak{a} \cong \mathfrak{o}^{n-1} \oplus \mathfrak{b}$, then $\mathfrak{a} \cong \mathfrak{b}$. This is clear for n = 1, but consider n = 2, i.e. $f : \mathfrak{o} \oplus \mathfrak{a} \to \mathfrak{o} \oplus \mathfrak{b}$ is an isomorphism. Suppose first that $f^{-1}((1,0)) = (0,\alpha) \in 0 \oplus \mathfrak{a}$. Then $f^{-1}(\mathfrak{o} \oplus 0) \subseteq 0 \oplus \langle \alpha \rangle$. If $\mathfrak{a} \neq \langle \alpha \rangle$, then there is some $\beta \in \mathfrak{a} \setminus \langle \alpha \rangle$. Since f is injective, we must have $f((0,\beta)) \in 0 \oplus \mathfrak{b}$, hence $f(0 \oplus \langle \beta \rangle) \subseteq 0 \oplus \mathfrak{b}$. However, $\alpha\beta \in \langle \alpha \rangle \cap \langle \beta \rangle$, thus $f((0,\alpha\beta)) \in (\mathfrak{o} \oplus 0) \cap (0 \oplus \mathfrak{a}) = 0$. This means $\alpha\beta = 0$, a contradiction $(\alpha \neq 0)$ because $f((0,\alpha)) \neq 0$, $\beta \neq 0$ because $\beta \notin \langle \alpha \rangle$, and \mathfrak{o} is an integral domain so $\alpha\beta \neq 0$).

We now know that either \mathfrak{a} is principal and $f(0 \oplus \mathfrak{a}) = \mathfrak{o} \oplus 0$, or $f^{-1}((1,0)) \in \mathfrak{o} \oplus 0$. The first case implies that $f(\mathfrak{o} \oplus 0) = 0 \oplus \mathfrak{b}$, meaning that $\mathfrak{b} \cong \mathfrak{o} \cong \mathfrak{a}$, as desired. So assume the second case, meaning $f^{-1}((1,0)) = (x,0)$ for some nonzero x. If f((1,0)) = (a,b), then (1,0) = f((x,0)) = xf((1,0)) = (xa,xb), so a is a unit and b = 0. Thus f((1,0)) generates $\mathfrak{o} \oplus 0$, so $f(\mathfrak{o} \oplus 0) = \mathfrak{o} \oplus 0$. Thus the restriction of f to $0 \oplus \mathfrak{a}$ gives an isomorphism $\mathfrak{a} \cong \mathfrak{b}$, as desired.

Finally, consider the general case $\mathfrak{o}^{n-1} \oplus \mathfrak{a} \cong \mathfrak{o}^{n-1} \oplus \mathfrak{b}$. We have $\mathfrak{o}^{n-2} \oplus (\mathfrak{o} \oplus \mathfrak{a}) \cong \mathfrak{o}^{n-2} \oplus (\mathfrak{o} \oplus \mathfrak{b})$, thus $\mathfrak{o} \oplus \mathfrak{a} \cong \mathfrak{o} \oplus \mathfrak{b}$ by induction. Having reduced the problem to the n=2 case, we know $\mathfrak{a} \cong \mathfrak{b}$. By part (b) of the previous exercise, $\mathfrak{a} = c\mathfrak{b}$ for some $c \in K$, therefore $\mathfrak{a}\mathfrak{b}^{-1} = (c)$ is principal; thus $[\mathfrak{a}] = [\mathfrak{b}]$ in $\operatorname{Pic}(\mathfrak{o})$. This proves that the map $K_0(\mathfrak{o}) \to \operatorname{Pic}(\mathfrak{o})$ given by $[\mathfrak{o}^{n-1} \oplus \mathfrak{a}] \mapsto [\mathfrak{a}]$ is well-defined.

Now, suppose $[\mathfrak{o}^{n-1} \oplus \mathfrak{a}]$ is in the kernel. Then \mathfrak{a} is principal, meaning that $\mathfrak{a} \cong \mathfrak{o}$. But then $\mathfrak{o}^{n-1} \oplus \mathfrak{a} \cong \mathfrak{o}^n \sim 0$, so $[\mathfrak{o}^{n-1} \oplus \mathfrak{a}] = [0]$. So the map is injective. Next, consider any ideal \mathfrak{a} of \mathfrak{o} . Since \mathfrak{a} is projective, so is $\mathfrak{o}^{n-1} \oplus \mathfrak{a}$. Thus $[\mathfrak{o}^{n-1} \oplus \mathfrak{a}] \mapsto [\mathfrak{a}]$, so this map is surjective as well. Every class contains some ideal as a representative, so to see that the map is a homomorphism we can just check the property on ideals:

$$[\mathfrak{a}][\mathfrak{b}] = [\mathfrak{a} \oplus \mathfrak{b}] = [\mathfrak{o} \oplus \mathfrak{ab}] \mapsto [\mathfrak{ab}] = [\mathfrak{a}][\mathfrak{b}].$$

The explanation for this is that the operation in $K_0(\mathfrak{o})$ is the direct sum, but we can rewrite $\mathfrak{a} \oplus \mathfrak{b}$ as $\mathfrak{o} \oplus \mathfrak{a}\mathfrak{b}$ by the previous exercise. On the right side of the arrow, the classes are elements of $\mathrm{Pic}(\mathfrak{o})$. But $\mathrm{Pic}(\mathfrak{o})$ is a quotient of the group of nonzero fractional ideals of \mathfrak{o} under ideal multiplication, therefore the $[\mathfrak{a}\mathfrak{b}] = [\mathfrak{a}][\mathfrak{b}]$. So this map is an isomorphism $K_0(\mathfrak{o}) \cong \mathrm{Pic}(\mathfrak{o})$.

Exercise. Show that the functor that takes each set to its power set is not representable.

Proof. Suppose the functor is representable by some set S. Then $\operatorname{Maps}(X,\emptyset) \cong \mathcal{P}(\emptyset) = \{\emptyset\}$. If X is nonempty, then $\operatorname{Maps}(X,\emptyset) = \emptyset$, a contradiction because this has cardinality less than $\{\emptyset\}$. Thus X is the empty set (so $\operatorname{Maps}(X,\emptyset) = \{\emptyset\}$ is satisfied). But then $\operatorname{Maps}(X,\{\emptyset\}) = \emptyset \not\cong \{\emptyset,\{\emptyset\}\} = \mathcal{P}(\{\emptyset\})$. \square

III.15. **The five lemma.** Consider a commutative diagram of *R*-modules and homomorphisms such that each row is exact:

$$M_{1} \longrightarrow M_{2} \longrightarrow M_{3} \longrightarrow M_{4} \longrightarrow M_{5}$$

$$\downarrow f_{1} \qquad \downarrow f_{2} \qquad \downarrow f_{3} \qquad \downarrow f_{4} \qquad \downarrow f_{5} \qquad \downarrow$$

$$N_{1} \longrightarrow N_{2} \longrightarrow N_{3} \longrightarrow N_{4} \longrightarrow N_{5}$$

Prove

(a) If f_1 is surjective and f_2, f_4 are monomorphisms, then f_3 is a monomorphism.

Proof. Let $m_3 \in \text{Ker } f_3$. The image of m_3 in N_3 , and hence also in N_4 , is 0. Since f_4 is injective, this means the image of m_3 in M_4 is 0. Since the top row is exact, m_3 has a preimage m_2 in M_2 . m_2 maps to 0 in N_3 (since it shares the image of m_3), hence $f(m_2)$ has a preimage n_1 in N_1 by the exactness of the bottom row. Since f_1 is surjective, n_1 has a preimage m_1 in M_1 . The image of m_1 in N_2 is the same as that of m_2 , hence m_1 maps to m_2 by the injectivity of f_2 . Thus, by the exactness of the top row, the image of m_2 in M_3 is 0. But this image is m_3 by assumption, thus f_3 is injective.

(b) If f_5 is a monomorphism and f_2 , f_4 are surjective, then f_3 is surjective.

Proof. Let $n_3 \in N_3$. Some m_4 in M_4 shares an image in N_4 with n_3 . By the exactness of the bottom row, n_3 maps to 0 in N_5 , hence so does m_4 . By the injectivity of f_5 , m_4 goes to 0 in M_5 . So, by the exactness of the top row, m_4 has a preimage m_3 in M_3 . Now, $f_3(m_3)$ and n_3 share an image in N_4 , so $n_3 - f(m_3)$ has a preimage n_2 in N_2 (by exactness of the bottom row). Let x be the image of m_2 in M_3 . Since m_2 goes to $n_3 - f_3(m_3)$, we know $f_3(x) = n_3 - f_3(m_3)$. Thus, $f_3(x + m_3) = n_3$, so f_3 is surjective.

XVI.6. Let M, N be flat. Show that $M \otimes N$ is flat.

Proof. Suppose $0 \longrightarrow X \longrightarrow Y$ is exact. Since N is flat, $0 \longrightarrow N \otimes X \longrightarrow N \otimes Y$ is exact. Since M, is exact, $0 \longrightarrow (M \otimes N) \otimes X \longrightarrow (M \otimes N) \otimes Y$ where we have also applied the associativity of the tensor product. Therefore, $M \otimes N$ is flat.

XVI.7. Let F be a flat R-module, and let $a \in R$ be an element which is not a zero-divisor. Show that if ax = 0 for some $x \in F$ then x = 0.

Proof. Since a is not a zero divisor, we have an exact sequence $0 \longrightarrow R \xrightarrow{\varphi_a} (a) \longrightarrow 0$ where φ_a is multiplication by a. By Proposition 3.7, $(a) \otimes F \cong (a)F$ by the natural map, so tensoring with F yields the exact sequence $0 \longrightarrow F \xrightarrow{\overline{\varphi}_a} (a)F \longrightarrow 0$, where the induced map $\overline{\varphi}_a$ is scaling by a. Therefore, the kernel of this homomorphism is 0, which is the desired result.

XVI.9. Prove Proposition 3.2:

(i) Let S be a multiplicative subset of R. Then $S^{-1}R$ is flat over R.

Proof. Suppose $f: M \to N$ is an injection, and that the induced map $\overline{f}: S^{-1}R \otimes M \to S^{-1}R \otimes N$ takes $\frac{r}{s} \otimes m$ to 0, meaning $\frac{r}{s} \otimes f(m) = 0$. Multiplying by s gives $r \otimes f(m) = 0$. We know that the base ring R is flat, however, so the restriction of \overline{f} to $R \otimes M$ must be injective. Thus, $r \otimes m = 0$. Multiplying by $\frac{1}{s}$ yields $\frac{r}{s} \otimes m = 0$, hence \overline{f} is injective.

(ii) A module M is flat over R if and only if the localization $M_{\mathfrak{p}}$ is flat over $R_{\mathfrak{p}}$ for each prime ideal \mathfrak{p} of R.

Proof. Localization distributes over exact sequences: Let S be a multiplicative subset of R, and denote $S^{-1}M$ by M_S . Given a sequence $Y \xrightarrow{f} X \xrightarrow{g} Z$ there is a unique induced sequence $Y_S \xrightarrow{f_S} X_S \xrightarrow{g_S} Z_S$. This is because an R-linear map on M has a unique extension to an R_S -linear map on M_S , since $sf(\frac{r}{s}m) = f(rm)$, so $f(\frac{r}{s}m) = \frac{r}{s}f(m)$. We will show the induced sequence is exact. Let $x \in \operatorname{Ker} g_S$. Then $\frac{1}{s}g_S(rx) = 0$ so $rx \in \operatorname{Ker} g = \operatorname{Im} f \subseteq \operatorname{Im} f_S$. This is an ideal, thus scaling gives $\frac{r}{s}x \in \operatorname{Im} f_S$. Now if $\frac{r}{s}x \in \operatorname{Im} f_S$ then it is the image of some $\frac{u}{v}y \in Y$. Thus f(suy) = vrx, so $vrx \in \operatorname{Im} f = \operatorname{Ker} g \subseteq \operatorname{Ker} g_S$. Scaling by $\frac{v}{s}$ shows that $\frac{r}{s}x \in \operatorname{Ker} g_S$. Therefore, if $M \to N$ is injective, then $0 \longrightarrow M_{\mathfrak{p}} \xrightarrow{f} N_{\mathfrak{p}}$ is exact, hence $f_{\mathfrak{p}}$ is injective.

Localization also distributes over the tensor product. $(M \otimes_R N)_S = M_S \otimes_{R_S} N_S$ since the map $(\frac{r}{s}m, \frac{u}{v}n) \mapsto \frac{ru}{sv}m \otimes n$ is obviously bilinear and induces a bijection. Also, if M is already an R_S -module, then $M_S = M$ due to the fact of S being multiplicative.

Finally, $0 \longrightarrow M \longrightarrow N$ is exact if and only if $0 \longrightarrow M_{\mathfrak{p}} \longrightarrow N_{\mathfrak{p}}$ is exact for all prime ideals $\mathfrak{p} \subseteq R$. The forward direction is trivial, since the kernel of $M \to N$ is a subset of the kernel of $M_{\mathfrak{p}} \to N_{\mathfrak{p}}$. For the converse, suppose the kernel K contains some nonzero K. Then 1 is not in the annihilator of K, hence this ideal is proper and can be embedded in some maximal (hence prime) ideal K. But then we cannot have K is ince it would mean K is K incompact of K is exact for all prime K is e

For the main proof, suppose M is flat over R. If $0 \longrightarrow X \longrightarrow Y$ is exact (over $R_{\mathfrak{p}}$), then $0 \longrightarrow M \otimes_R X \longrightarrow M \otimes_R Y$ is exact, hence $0 \longrightarrow (M \otimes_R X)_{\mathfrak{p}} \longrightarrow (M \otimes_R Y)_{\mathfrak{p}}$ is exact for all \mathfrak{p} . But this sequence equals $0 \longrightarrow M_{\mathfrak{p}} \otimes_{R_{\mathfrak{p}}} X_{\mathfrak{p}} \longrightarrow M_{\mathfrak{p}} \otimes_{R_{\mathfrak{p}}} Y_{\mathfrak{p}}$, which equals $0 \longrightarrow M_{\mathfrak{p}} \otimes_{R_{\mathfrak{p}}} X \longrightarrow M_{\mathfrak{p}} \otimes_{R_{\mathfrak{p}}} Y$ because $X_{\mathfrak{p}} = X$. Therefore, $M_{\mathfrak{p}}$ is flat over $R_{\mathfrak{p}}$ for all \mathfrak{p} .

Next, suppose $M_{\mathfrak{p}}$ is flat over $R_{\mathfrak{p}}$ for all \mathfrak{p} , and that $0 \longrightarrow X \longrightarrow Y$ is exact (over R). Then $0 \longrightarrow M_{\mathfrak{p}} \otimes_{R_{\mathfrak{p}}} X_{\mathfrak{p}} \longrightarrow M_{\mathfrak{p}} \otimes_{R_{\mathfrak{p}}} Y_{\mathfrak{p}}$ and hence $0 \longrightarrow (M \otimes_R X)_{\mathfrak{p}} \longrightarrow (M \otimes_R Y)_{\mathfrak{p}}$ are exact for all \mathfrak{p} . By the previous paragraph, $0 \longrightarrow M \otimes_R X \longrightarrow M \otimes_R Y$ must be exact, so M is flat.

(iii) Let R be a principal ring. A module F is flat if and only if F is torsion free.

Proof. The forward direction is the result of the previous exercise. By Proposition 3.7, F is flat if the natural map $(a) \otimes F \to (a)F$ is an isomorphism. Clearly, it is surjective. If $a \otimes x \mapsto ax = 0$, then we must have a = 0 or x = 0 because F is torsion free. Thus the map is injective, so F is flat.