TLE '17 Contest 5 P3 - Willson and Factorization

Willson the Canada Goose is like any other Canada Goose - he suspects that many humans don't like him.

As a result, he challenges you to do the following problem:

Consider the set $\mathbb{Z}_n = \{0,1,2,\ldots,n-1\}$.

We say that an element u in \mathbb{Z}_n is a **unit** if there is some element v in \mathbb{Z}_n with $uv \equiv 1 \pmod{n}$.

We say that a non-zero, non-unit element i in \mathbb{Z}_n is **irreducible** if there are no elements a, b in \mathbb{Z}_n where a, b are not units and $ab \equiv i \pmod{n}$.

We say that a non-zero, non-unit element p in \mathbb{Z}_n is **prime** if for all elements a,b in \mathbb{Z}_n , if $px\equiv ab\pmod n$ for some element x in \mathbb{Z}_n , then $py\equiv a\pmod n$ for some element y in \mathbb{Z}_n or $pz\equiv b\pmod n$ for some element z in \mathbb{Z}_n .

Willson is sad because nobody likes him.

Given n, please output all of the units, irreducibles, and primes of \mathbb{Z}_n .

Input Specification

The only line of input will contain a single integer, $n \ (2 \le n \le 200)$.

For 20% of the points, n is prime.

For an additional 20% of the points, $n \leq 15$.

For an additional 20% of the points, $n \leq 50$.

Output Specification

Output, in numerical order, first the units, then the irreducibles, then the primes of \mathbb{Z}_n . See the Sample Output for more specific formatting.

Sample Input 1

10

Sample Output 1

```
Units:
1
3
7
9
Irreducibles:
Primes:
2
4
5
6
8
```

Sample Input 2

```
12
```

Sample Output 2

```
Units:
1
5
7
11
Irreducibles:
2
10
Primes:
2
3
9
10
```