

OSQP with GPUs & FPGAs

Accelerating quadratic programming on heterogeneous systems

Ian McInerney – Imperial College London Maolin Wang – ACCESS, Hong Kong University of Science and Technology Bartolomeo Stellato – Princeton University, ORFE Vineet Bansal – Princeton University, CSML Amit Solomon – Princeton University

SIAM Conference on Computational Science and Engineering 06/03/2025

Contributors

Ian McInerney

Paul Goulart

Vineet Bansal

Goran Banjac

Bartolomeo Stellato

Michel Schubiger

Maolin Wang

Hayden Kwok-Hay So

06/03/2025

Agenda

- The OSQP Solver
- Linear Algebra Abstractions
- OSQP on FPGAs RSQP
- Numerical Results
- The future

The problem

minimize
$$(1/2)x^TPx + q^Tx$$

subject to $Ax \in \mathcal{C}$

Quadratic program: C = [l, u]

The OSQP Solver

ADMM – Alternating Direction Method of Multipliers

Splitting

minimize
$$f(x) + g(x)$$

minimize
$$f(\tilde{x}) + g(x)$$

subject to $\tilde{x} = x$

Iterations

$$\begin{split} &\tilde{x}^{k+1} \leftarrow \operatorname*{argmin}\left(f(\tilde{x}) + \rho/2 \left\|\tilde{x} - (x^k - y^k/\rho)\right\|^2\right) \\ &x^{k+1} \leftarrow \operatorname*{argmin}_{x}\left(g(x) + \rho/2 \left\|x - (\tilde{x}^{k+1} + y^k/\rho)\right\|^2\right) \\ &y^{k+1} \leftarrow y^k + \rho \left(\tilde{x}^{k+1} - x^{k+1}\right) \end{split}$$

How do we split the QP?

$$\begin{array}{ll} \text{minimize} & (1/2)x^TPx + q^Tx \\ \text{subject to} & Ax = z \\ \hline & z \in \mathcal{C} \end{array} \qquad f$$

Splitting formulation

Complete Algorithm

Problem

Algorithm

Linear system solve

$$(x^{k+1}, \nu^{k+1}) \leftarrow \text{solve} \begin{bmatrix} P + \sigma I & A^T \\ A & -\frac{1}{\rho}I \end{bmatrix} \begin{bmatrix} x^{k+1} \\ \nu^{k+1} \end{bmatrix} = \begin{bmatrix} \sigma x^k - q \\ z^k - \frac{1}{\rho}y^k \end{bmatrix}$$

$$\tilde{z}^{k+1} \leftarrow z^k + (\nu^{k+1} - y^k)/\rho$$

$$z^{k+1} \leftarrow \Pi \left(\tilde{z}^{k+1} + y^k/\rho \right)$$

$$y^{k+1} \leftarrow y^k + \rho \left(\tilde{z}^{k+1} - z^{k+1} \right)$$

Solving the linear system

Direct method (small to medium scale)

Solve using I DI factorization

Indirect method (large scale)

Positive-definite matrix

$$(P + \sigma I + \rho A^T A) x = \sigma x^k - q + A^T (\rho z^k - y^k)$$

Solve using conjugate gradient

Linear Algebra Abstractions

Modular Linear Algebra

Goal: easily switch between compute runtimes/systems

^[1] M. Schubiger, G. Banjac, and J. Lygeros, "GPU acceleration of ADMM for large-scale quadratic programming," *Journal of Parallel and Distributed Computing*, vol. 144, pp. 55–67, 2020.
[2] M. Wang, I. McInerney, B. Stellato, S. Boyd, & H. Kwok-Hay So, "RSQP: Problem-specific Architectural Customization for Accelerated Convex Quadratic Optimization," *International Symposium on Computer Architecture (ISCA)*

^{2023,} Orlando, FL, USA, Jun. 2023.

Modular Linear Algebra

Modular Linear Algebra – Key Points

Builtin

- Hand coded
- CSC-based sparse matrices
- Library free
- Linear system solvers
 - QDLDL

MKL

- CSC-based sparse matrices
- BLAS vector operations
- Linear system solvers
 - Pardiso
 - RCI Preconditioned conjugate gradient

CUDA

- cuSparse & cuBLAS libraries
- CSC & CSR matrices
- All data fully GPU resident
 - osqp_setup Data copied to OSQP GPU workspace
 - osqp_solve CPUmanaged control flow, only transfer status values
- Linear system solvers
 - Preconditioned conjugate gradient

Same OSQP API for all backends

Modular linear algebra from Python

One-line import change

```
# Import OSQP from a specific algebra backend module
from osqp.mkl import OSQP as OSQP_mkl
from osqp.cuda import OSQP as OSQP_cuda

prob_mkl = OSQP_mkl()
prob_cuda = OSQP_cuda()

# Setup workspace and change alpha parameter
prob_mkl.setup(P, q, A, l, u, alpha=1.0)

# Solve problem
res = prob_mkl.solve()
```


Setting in object constructor

```
. . .
if osqp.algebra_available('cuda'):
    prob = osqp.OSQP(algebra='cuda')
else:
    prob = osqp.OSQP()
prob.setup(P, q, A, l, u, alpha=1.0)
res = prob.solve()
import cvxpy as cp
problm = cp.Problem(...)
problem.solve(solver=OSQP, algebra="cuda")
```

Modular Linear Algebra from Julia

One-line import change

```
• • •
using JuMP
using OSQP
using OSQPMKL
model = Model( () -> OSQP.Optimizer(OSQPMKLAlgebra())
@variable(model, x \ge 0)
@variable(model, 0 <= y <= 3)
@objective(model, Min, 12x + 20y)
@constraint(model, c1, 6x + 8y >= 100)
@constraint(model, c2, 7x + 12y >= 120)
print(model)
optimize!(model)
```


Modular Linear Algebra from Julia - Implementation

Macro to define the C function API

```
@cprototype osqp_solve(solver::Ptr{OSQP.OSQPSolver{Tfloat,Tint}})::Tint
@cprototype osqp_cleanup(solver::Ptr{OSQP.OSQPSolver{Tfloat,Tint}})::Tint
@cprototype osqp_warm_start(solver::Ptr{OSQP.OSQPSolver{Tfloat,Tint}}, x::Ptr{Tfloat}, y::Ptr{Tfloat})::Tint
@cprototype osqp_cold_start(solver::Ptr{OSQP.OSQPSolver{Tfloat,Tint}})::Nothing
@cprototype osqp_update_rho(solver::Ptr{OSQP.OSQPSolver{Tfloat,Tint}}, rho_new::Tfloat)::Tint
```

Macro to define mapping to specific type

```
Tdoubledict = Dict(
    :Tfloat => :Float64,
    :Tint => :Cc_int
)

@cdefinition OSQPBuiltinAlgebra{Float64} osqp_builtin_double osqp_solve
@cdefinition OSQPBuiltinAlgebra{Float64} osqp_builtin_double osqp_cleanup
@cdefinition OSQPBuiltinAlgebra{Float64} osqp_builtin_double osqp_warm_start
@cdefinition OSQPBuiltinAlgebra{Float64} osqp_builtin_double osqp_warm_start
@cdefinition OSQPBuiltinAlgebra{Float64} osqp_builtin_double osqp_cold_start
@cdefinition OSQPBuiltinAlgebra{Float64} osqp_builtin_double osqp_update_rho

Tdoubledict
Tdoubledict
```

```
Tdoubledict = Dict(
   :Tfloat => :Float64,
   :Tint => :Cint
)
@cdefinition OSQPCUDAAlgebra{Float64} osqp_cuda_double osqp_solve
@cdefinition OSQPCUDAAlgebra{Float64} osqp_cuda_double osqp_cleanup
@cdefinition OSQPCUDAAlgebra{Float64} osqp_cuda_double osqp_warm_start
@cdefinition OSQPCUDAAlgebra{Float64} osqp_cuda_double osqp_warm_start
@cdefinition OSQPCUDAAlgebra{Float64} osqp_cuda_double osqp_cold_start
@cdefinition OSQPCUDAAlgebra{Float64} osqp_cuda_double osqp_update_rho
Tdoubledict
Tdoubledict
```

Modular Linear Algebra from Julia - Implementation

OSQP on FPGAs The RSQP solver

OSQP computational characteristics

RSQP – Hardware Design

- FPGA-based design
 - Pros:
 - Custom logic
 - Reprogrammable
 - Power efficient
 - Cons:
 - Complicated to use
 - Not general purpose
- Implements OSQP indirect
 - Uses Preconditioned CG to solve the reduced KKT system
- Focus on accelerating the SpMV operation
- Implemented as an engine for OSQPMatrix and OSQPVector operations

Imperial College London OSQP with GPUs & FPGAs 21 06/03/2025

Numerical Results

RSQP – Performance

RSQP – Power

Numerical Example – Runtimes

Solved to low accuracy: 1e-3

Cuda: NVidia T1000 4GB CPU: Intel Xeon W-2255 @ 3.7GHz

Numerical Example – Runtimes

06/03/2025

Solved to low accuracy: 1e-3

Cuda: NVidia T1000 4GB CPU: Intel Xeon W-2255 @ 3.7GHz

Numerical Example – Speedup

Solved to low accuracy: 1e-3

Cuda: NVidia T1000 4GB CPU: Intel Xeon W-2255 @ 3.7GHz

The future

Future Work

- Implementation details
 - Performance portable GPU implementations
 - HIP, OpenMP, Gingko, etc.
 - CUDA-specific
 - CUDA Streams and Graph solver definition
 - cuDSS direct solver
 - Batched mode
- Algorithmic improvements
 - Low/mixed precision implementations
 - Conjugate Residual solver
 - Sensitivity computations on the GPU

OSQP Papers

- B. Stellato, G. Banjac, P. Goulart, A. Bemporad, and S. Boyd, 'OSQP: an operator splitting solver for quadratic programs', *Mathematical Programming Computation*, vol. 12, pp. 637–672, 2020.
- G. Banjac, P. Goulart, B. Stellato, and S. Boyd, 'Infeasibility Detection in Alternating Direction Method of Multipliers for Convex Quadratic Programs', *Journal of Optimization Theory and Applications*, vol. 183, pp. 490–519, 2019.
- G. Banjac, B. Stellato, N. Moehle, P. Goulart, A. Bemporad, and S. Boyd, 'Embedded Code Generation Using the OSQP Solver', in *56th IEEE Conference on Decision and Control (CDC)*, Melbourne, Australia: IEEE, 2017, pp. 1906–1911.
- M. Schubiger, G. Banjac, and J. Lygeros, "GPU acceleration of ADMM for large-scale quadratic programming," *Journal of Parallel and Distributed Computing*, vol. 144, pp. 55–67, 2020.
- M. Wang, I. McInerney, B. Stellato, S. Boyd, & H. Kwok-Hay So, "RSQP: Problem-specific Architectural Customization for Accelerated Convex Quadratic Optimization," *International Symposium on Computer Architecture (ISCA) 2023*, Orlando, FL, USA, Jun. 2023.
- M. Wang, I. McInerney, B. Stellato, F. Tu, S. Boyd, H. Kwok-Hay So, K.T. Cheng, "Multi-Issue Butterfly Architecture for Sparse Convex Quadratic Programming," *57th IEEE/ACM International Symposium on Microarchitecture*, Austin, TX, USA, Nov. 2024.
- I. McInerney, A. Solomon, V. Bansal, P. Goulart, G. Banjac, & B. Stellato, "OSQP 1.0: A quadratic programming solver with code generation and selectable linear algebra backends," (*In preparation*).

Imperial College London Edit this text via Insert > Header and Footer 30 06/03/2025

Backup slides

Modular Linear Algebra

- Abstraction layer provides three categories of functions
 - OSQPVector operations
 - *OSQPMatrix* operations
 - Linear system solver
- OSQPVector and OSQPMatrix are opaque to the ADMM implementation
- Compile-time selection of linear algebra libraries for the C-library
- Run-time selection for Python/Julia interfaces

RSQP – Exploit the sparsity pattern

- Analyze sparsity pattern of all the matrices
- Compute problem-specific hardware design
 - Optimal compression of matrix data into memory
 - Optimal multiply-accumulate tree for sparsity pattern
 - Optimal data processing timeline

Imperial College London OSQP with GPUs & FPGAs 33 06/03/2025

cuOSQP - Technology stack

- Implemented using
 - Custom CUDA kernels
 - cuSparse (for SpMV)
 - cuBLAS (for vector operations)
- Data storage
 - OSQPVector Single device array
 - OSQPMatrix Two internal matrices, one CSC and one CSR
- Packaged/distributed using
 - Python wheels
 - Julia Yggdrasil

Imperial College London OSQP with GPUs & FPGAs 34 06/03/2025