Compression de Huffman

Benguezzou Mohamed Fiszer Andrea

Licence 2 semestre 4

Table des matières

- Protocole expérimental
 - Analyse des facteurs influants
 - Génération des fichiers de test
 - Lois de génération
 - Expérimentation
- 2 Analyse et interprétation
- Conclusion
- 4 Demonstration

Analyse des facteurs influants

Quel facteur influence la structure de l'arbre de Huffman ?

- La fréquence d'apparition des caractères
- Le nombre de feuilles, i.e la taille de l'alphabet

Génération des fichiers de test

Comment générer des fichiers de test ?

- --num_chars : la taille de l'alphabet.
- --size : la taille du fichier généré.
- --output_dir : le répertoire de sortie.

Cela nous permet de générer des fichiers en controlant la **taille de l'alphabet** et la **taille du fichier**.

Lois de génération

Comment contrôler la fréquence d'apparition des caractères ?

- Loi uniforme
- Loi normale
- Loi de puissance $(P(x) = \frac{1}{x^{\alpha}}; \text{ avec } \alpha = 1.5)$
- Loi aléatoire
- Loi linéaire

L'utilisation de ces lois nous permet de contrôler la fréquence d'apparition des caractères dans les fichiers générés.

Figure: Loi linéaire

- Faible différence des profondeurs des feuilles.
- Gain de compression pas très élevé.

Figure: Loi aléatoire

- Suit approximativement une loi linéaire.
- Gain de compression similaire à la loi linéaire.

Figure: Loi normale

- Meilleure compression que la loi linéaire.
- Profondeur des feuilles plus inégale.

Figure: Loi uniforme

- Fréquence d'apparition des caractères égale.
- Faible gain de compression par rapport aux autres lois.

Figure: Loi de puissance

- Meilleure résultat de compression attendu.
- Fréquence d'apparition des caractères très inégale.
- Gain de compression élevé.

Analyse des résultats

Quelques chiffres

- 80 fichiers générés
- 5 lois de génération
- 10 tailles de fichier (de 1000 octets à 50 000 000 octets)
- 7 tailles d'alphabet (de 2 à 94 puissance de 2)

Définitions

Quelques définitions

Taille originale: taille du fichier avant compression.

Taille compressée : taille du fichier après compression.

Taille de l'alphabet : nombre de caractères différents.

Taux de compression : $\frac{taille_originale}{taille_compressee}$

Pourcentage de compression :

 $=rac{ aille_originale-taille_compressee}{ aille_originale} imes 100$

Taille des fichiers compressés selon la taille d'origine

Pourcentage de compression selon la loi de génération

Evolution du taux de compression selon la taille de l'alphabet

Analyse et interprétation

Conclusion

- Une grande disparité des fréquences d'apparition des caractères favorise la compression
- La taille de l'alphabet influence le taux de compression
- Les taux de compression semblent converger vers une valeur limite pour des tailles de fichiers très grandes

Protocole expérimental Analyse et interprétation Conclusion Demonstration

Demonstration

Demonstration