AGENTES E AMBIENTES

BREVE INTRODUÇÃO A AGENTES
Prof. Tacla UTFPR/Curitiba

AGENTE SITUADO

Ênfase na visão de IA como agente '**situado**' e '**racional**' em um ambiente que consegue perceber por meio de sensores e no qual consegue executar ações por meio de atuadores.

AGENTES

- São agentes:
 - robôs
 - softbots
 - dispositivos móveis
 - humanos

AGENTES

Função agente (agent function)

Um agente possui uma *função* de mapeamento: de percepções para ações

$$f: \mathcal{P}^* o \mathcal{A}$$
 ações histórico de percepções (percepts)

Programa agente (agent program)

Um programa executa a *função* do agente em uma arquitetura física (software + hardware)

EXEMPLO: aspirador de pó

Percepções: locais e conteúdos; ex. [A, sujo]

Ações: left, right, suck, NoOp

Exemplo: percepts

Percept sequence		Action
	[A, Clean]	Right
S	[A, Dirty]	Suck
Çõe	[B, Clean]	Left
combinações	[B, Dirty]	Suck
gma	[A, Clean], [A, Clean]	Right
0	[A, Clean], [A, Dirty]	Suck
	tempo	:

Exemplo: percepts

Função do agente aspirador

Racionalidade

Ser racional é fazer a coisa certa, mas, como o agente sabe o que é certo?

percepções → agente executa ação → muda estado do ambiente

sequência de ações causa sequência de mudanças de estados no ambiente

O agente agiu bem? Fez a coisa certa?

Se os estados do ambiente forem desejáveis, então sim.

O que é desejável?

Desejável é uma noção capturada por uma medida de desempenho.

Racionalidade

Exemplo

- 1. medida de desempenho: +1 ponto por quadrado limpo
- 2. a geografia do ambiente é conhecida (fig. abaixo)
- 3. a localização inicial do agente e das sujeiras não são conhecidas
- 4. ações: *suck, left, right* (movem para esq. e dir. qdo na parede não se move)
- 5. o agente percebe corretamente sua localização e se a localização contém sujeira

[suck, right, suck] \rightarrow desempenho = 2

Percept sequence	Action
[A, Clean]	Right
[A, Dirty]	Suck
[B, Clean]	Left
[B, Dirty]	Suck
[A, Clean], [A, Clean]	Right
[A, Clean], [A, Dirty]	Suck
Ē	:

۸ - ۱: - --

Racionalidade

Racional ≠ Omniciência

percepções podem não retratar fielmente o ambiente

Racional ≠ Claraevidência

resultados das ações podem divergir do esperado

Logo, ser racional não significa ter sucesso!

Racionalidade envolve exploração, autonomia e aprendizado

Ambientes

- Para especificar agentes racionais, devemos conhecer, entre outros, o ambiente onde estarão situados:
 - medida de desempenho
 - sensores
 - atuadores
 - ambiente

Tipos de Ambientes

Completamente observável

Um só agente

Competitivo

Determinístico

Episódico

Estático

Discreto

Parcialmente observável

Multiagente

Cooperativo

Estocástico

Sequencial

Dinâmico

Contínuo

Observável

Os sensores do agente transcrevem de forma completa o **estado do ambiente** a cada instante de tempo?

Sim, então o ambiente é completamente observável.

Ambiente completamente observável → agente não precisa manter estado interno, i.e. uma representação interna do que observa.

Monoagente x Multiagente

Um agente capaz de solucionar um quebracabeças é claramente um **agente único**.

Mas, em situações onde há oponentes ou simplesmente outras entidades (ex. carros)?

A outra entidade pode ser vista como algo que se comporta com as leis da física/leis naturais? Neste caso, é parte do ambiente – e estamos na situação de um único agente,

caso contrário, se a outra entidade possui uma função de desempenho ou há comunicação entre as entidades estamos no caso de um sistema **multiagente**

Competitivo x Cooperativo

Competitivo: quando um agente maximiza sua medida de desempenho a medida do outro minimiza.

Cooperativo: quando os agentes têm ganhos adicionais ao trabalharem juntos

Determinístico x Estocástico

Determinístico: o próximo **estado do ambiente** é completamente definido pela **ação** executada pelo agente?

Estocástico: caso contrário.

Obs.:

Na definição do R&N, eles ignoram incerteza originada pelas ações dos outros agentes num ambiente multiagente. Então um ambiente pode ser determinístico mesmo se um agente é incapaz de prever as ações dos outros agentes.

Episódico x Sequencial

Episódico: o agente recebe uma percepção e executa uma ação (isto é um episódio atômico). O próximo episódio não depende das ações dos episódios anteriores.

Sequencial: a decisão atual afeta as decisões futuras – ex. táxi automatizado ou jogador de xadrez.

Agentes episódicos são muito mais fáceis de serem projetados – não precisam de planos!

Estático x Dinâmico

Estático: se o ambiente não muda enquanto o agente delibera, então estamos no caso estático.

Dinâmico: o ambiente muda enquanto o agente delibera e o agente deve constantemente avaliar estas mudanças.

Semidinâmico: quando o ambiente não muda com o tempo, mas a medida de desempenho sim (ex. jogo de xadrez se o tempo expira, o jogador perde a vez)

Contínuo x Discreto

Discreto: se o ambiente tiver um número finito de estados, se as ações e percepções do agente são conjuntos discretos então é discreto (ex. xadrez sem relógio).

Contínuo: quando o agente deve lidar com grandezas contínuas sejam elas ligadas aos estados do ambiente, às percepções ou às ações (ex. táxi automatizado controle do volante).

Estrutura dos agentes

entrada: sequência de percepções

Uma diferença entre a função e o programa é que a função considera uma sequência de percepções. O programa só considera a última percepção já que o ambiente por si só não armazena percepções. Cabe ao agente armazená-las se precisar trabalhar com a sequência de percepções.

Estrutura dos agentes

função f representada como uma tabela de P* para ação

Percept sequence	Action
[A, Clean]	Right
[A, Dirty]	Suck
[B, Clean]	Left
[B, Dirty]	Suck
[A, Clean], [A, Clean]	Right
[A, Clean], [A, Dirty]	Suck
:	:

programa considera somente a última percepção

function Reflex-Vacuum-Agent ([location, status]) returns an action

if status = Dirty then return Suck

else if location = A then return Right

else if location = B then return Left

Estrutura dos agentes

- Agente reativo (+simples)
 - reage a última percepção
 - funciona bem em ambientes completamente observáveis

- Agente deliberativo (+complexo)
 - normalmente, utiliza um modelo de racionalidade baseado em crenças (beliefs), desejos (desires) e intenções (intentions) = BDI

Referências

 Estes slides foram baseados no capítulo 2 de Russel e Norvig (2ed). Alguns slides são traduções dos slides destes autores.