平成26年度 大阪大学基礎工学部編入学試験

「 娄女

学]試験問題

受	験	番	号	志	望	学	科	コ	_	ス
	2011/200								学	科
									_	- ス

[数学-1]

門是夏7

曲線 C が媒介変数表示 $x=f(s),\,y=g(s),\,s\geq 0$ で表される。ただし $\cosh s=(e^s+e^{-s})/2,\,\sinh s=(e^s-e^{-s})/2$ を用いて

$$f(s) = s - \frac{\sinh s}{\cosh s}$$
$$g(s) = \frac{1}{\cosh s}$$

と定義する. 以下の設問に答えよ.

- (1) 定数 b>0 に対して曲線 C(b) が $x=f(s), y=g(s), 0 \le s \le b$ で表される. C(b) の長さ $\ell(b)$ を求めよ.
- (2) 点 P は時刻 0 で x=f(0), y=g(0) を出発して s が増える方向へ一定の速さで C 上を移動する。時刻 t>0 までに移動した経路の長さを t とする。時刻 t における P の位置を $x=f(\varphi(t))$, $y=g(\varphi(t))$ と表すための関数 $\varphi(t)$ を求めよ。

(1)
$$\frac{ds}{ds} = \frac{df}{ds}$$

$$= 1 - \frac{\cosh s \cdot \cosh s - \sinh s - \sinh s}{\cosh s} = 1 + \frac{\sinh s}{\cosh s}$$

$$\frac{dg}{ds} = -\frac{\sinh s}{\cosh s}$$

$$(\frac{\partial s}{\partial s})^2 + (\frac{\partial s}{\partial s})^2 = \frac{\sinh s}{\cosh s} + \frac{\sinh s}{\cosh s} = \frac{\sinh s}{\cosh s}$$

$$= \frac{\sinh s}{\cosh s}$$

$$\begin{aligned} & = \mathcal{L}(b) = \int_{0}^{b} \sqrt{\frac{da}{ds}}^{2} + \frac{da}{ds}^{2} & ds = \int_{0}^{b} \frac{\sinh s}{\cosh s} \, ds \\ & = \left[-\ln \left(\cosh s \right) \right]_{0}^{b} \\ & = \ln \left(\frac{e^{b} + e^{-b}}{2} \right) - 2 \ln \left(\frac{1 + 1}{2} \right) \\ & = \ln \left(\frac{e^{b} + e^{-b}}{2} \right) - 2 \ln \left(\frac{1 + 1}{2} \right) \\ & = \ln \left(\frac{e^{b} + e^{-b}}{2} \right) - 2 \ln \left(\frac{1 + 1}{2} \right) \\ & = \ln \left(\frac{e^{b} + e^{-b}}{2} \right) - 2 \ln \left(\frac{1 + 1}{2} \right) \\ & = \ln \left(\frac{e^{b} + e^{-b}}{2} \right) - 2 \ln \left(\frac{1 + 1}{2} \right) \\ & = \ln \left(\frac{e^{b} + e^{-b}}{2} \right) - 2 \ln \left(\frac{1 + 1}{2} \right) \\ & = \ln \left(\frac{e^{b} + e^{-b}}{2} \right) - 2 \ln \left(\frac{1 + 1}{2} \right) \\ & = \ln \left(\frac{e^{b} + e^{-b}}{2} \right) - 2 \ln \left(\frac{1 + 1}{2} \right) \\ & = \ln \left(\frac{e^{b} + e^{-b}}{2} \right) - 2 \ln \left(\frac{1 + 1}{2} \right) \\ & = \ln \left(\frac{e^{b} + e^{-b}}{2} \right) - 2 \ln \left(\frac{1 + 1}{2} \right) \\ & = \ln \left(\frac{e^{b} + e^{-b}}{2} \right) - 2 \ln \left(\frac{1 + 1}{2} \right) \\ & = \ln \left(\frac{e^{b} + e^{-b}}{2} \right) - 2 \ln \left(\frac{1 + 1}{2} \right) \\ & = \ln \left(\frac{e^{b} + e^{-b}}{2} \right) - 2 \ln \left(\frac{1 + 1}{2} \right) \\ & = \ln \left(\frac{e^{b} + e^{-b}}{2} \right) - 2 \ln \left(\frac{1 + 1}{2} \right) \\ & = \ln \left(\frac{e^{b} + e^{-b}}{2} \right) - 2 \ln \left(\frac{1 + 1}{2} \right) \\ & = \ln \left(\frac{e^{b} + e^{-b}}{2} \right) - 2 \ln \left(\frac{1 + 1}{2} \right) \\ & = \ln \left(\frac{e^{b} + e^{-b}}{2} \right) - 2 \ln \left(\frac{1 + 1}{2} \right) \\ & = \ln \left(\frac{e^{b} + e^{-b}}{2} \right) - 2 \ln \left(\frac{1 + 1}{2} \right) \\ & = \ln \left(\frac{e^{b} + e^{-b}}{2} \right) - 2 \ln \left(\frac{1 + 1}{2} \right) \\ & = \ln \left(\frac{e^{b} + e^{-b}}{2} \right) - 2 \ln \left(\frac{1 + 1}{2} \right) \\ & = \ln \left(\frac{e^{b} + e^{-b}}{2} \right) - 2 \ln \left(\frac{1 + 1}{2} \right) \\ & = \ln \left(\frac{e^{b} + e^{-b}}{2} \right) - 2 \ln \left(\frac{1 + 1}{2} \right) \\ & = \ln \left(\frac{e^{b} + e^{-b}}{2} \right) - 2 \ln \left(\frac{1 + 1}{2} \right) \\ & = \ln \left(\frac{e^{b} + e^{-b}}{2} \right) - 2 \ln \left(\frac{1 + 1}{2} \right) \\ & = \ln \left(\frac{1 + 1}{2} \right) - 2 \ln \left(\frac{1 + 1}{2} \right) \\ & = \ln \left(\frac{1 + 1}{2} \right) - 2 \ln \left(\frac{1 + 1}{2} \right) \\ & = \ln \left(\frac{1 + 1}{2} \right) - 2 \ln \left(\frac{1 + 1}{2} \right) - 2 \ln \left(\frac{1 + 1}{2} \right) \\ & = \ln \left(\frac{1 + 1}{2} \right) - 2 \ln \left(\frac{1 + 1}{2} \right) \\ & = \ln \left(\frac{1 + 1}{2} \right) - 2 \ln \left(\frac{1 + 1}{2} \right) - 2 \ln \left(\frac{1 + 1}{2} \right) \\ & = \ln \left(\frac{1 + 1}{2} \right) - 2 \ln \left(\frac{1 + 1}{2} \right) - 2 \ln \left(\frac{1 + 1}{2} \right) - 2 \ln \left(\frac{1 + 1}{2} \right) \\ & = \ln \left(\frac{1 + 1}{2} \right) - 2 \ln \left($$

L7=0",7, lu | coshs | = t+C coshs = Aet

$$t=0$$
 $US=0$ $TO TO TO$
 $A=cosh0=1$
 $coshS=e^{t}-Q$
 $coshS=e^{t}-Q$

Q(t) = la (et + Ne26-1)

平成26年度 大阪大学基礎工学部編入学試験

[数文

学] 試験問題

受	験	番	号	志	望	学	科		3	mon	ス
										学	科
								75			
				- 1] -	・ス

[数学-2]

問題2

次の2次曲線(a)について以下の設問に答えよ.

$$5x^2 + 2xy + 5y^2 + c = 0 \cdot \cdot \cdot \cdot (a)$$

- (1) $\mathbf{x} = (x, y)^T$ として、式(a) $\mathbf{e} \mathbf{x}^T A \mathbf{x} + c = \mathbf{0}$ の形で表すときの対称行列 A を示せ、ただし、T は転置を表す、
- (2) 行列 A の固有値を求めよ.
- (3) $P^{-1}AP$ を対角行列にする正則行列Pとそのときの対角行列 $B=P^{-1}AP$ を求めよ、ただし、正則行列の列ベクトルの大きさは1とする.
- (4) $\mathbf{x}' = (x', y')^T$ として設問(3)の正則行列Pを用いて $\mathbf{x} = P\mathbf{x}'$ で式(a)を座標変換して得られる $\mathbf{x}'^T B\mathbf{x}' + c = 0$ の概形を \mathbf{x}' 軸、 \mathbf{y}' 軸と共に描け、ただし、c = -12とする.

$$(1) A = \begin{pmatrix} 5 \\ 1 \end{pmatrix}$$

(2)
$$|A-RE| = |5-7| = |6-7| = |6-7| = |6-7| = |6-7|$$

国有信は7=4.6

(3)

$$A = 4 = 70$$

 $A - 7E = (11) - (60)$
 $C = C (1) \Leftrightarrow C = (1)$
 $A = 6 = 70$
 $A = 6 = 70$

(4) $P(a) = \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{j$

$$\frac{6x^{2}+43^{2}=12}{\left(\frac{x^{2}}{4}+\frac{3^{2}}{3}=1\right)}\left(\frac{x^{2}}{4}\right)^{2}+\left(\frac{3^{2}}{4}\right)^{2}=1$$

これは情用又方程式であるかり、たが日本十〇二〇の根刊では

平成26年度 大阪大学基礎工学部編入学試験

[娄女

学] 試験問題

受	験	番	号	志	望	学	科	٠	3	*****	7
										学	和
										- =	- 2

[数学-3]

間題 3

1から6の目が等確率で出るさいころに関する以下の設問に答えよ.

- (1) 1つのさいころを5回振るとき、ちょうど3種類の目が出る場合 は何通りあるかを求めよ.
- (2) 区別のできない5つのさいころを同時に振るとき、ちょうど3種類の目が出る場合は何通りあるかを求めよ.
- (3) さいころを振って3以上の目が出たら4点を、2以下の目が出た \times 2 の \times 6 1点を得る。 さいころをn回振った時までに得た点数の合計 が偶数である確率を P_n とする(ただし、nは0以上の整数とし、 $P_0=1$ とする)、このとき、以下の $(a)\sim(c)$ に答えよ。
 - (a) P₁, P₃を求めよ.
 - (b) P_{n+1} を P_n で表せ.
 - (c) Pnを求めよ.

回で区別するとする.

[] x3 f [] x2, [] x3 [(b) (

81-32+2+1

= 50+2

= 52

$$= \frac{6C_3 \cdot (3^5 - 3C_2 \cdot (2^5 - 2) \times 3)}{2 \pi \pi a \beta}$$

$$= \frac{5.5.4}{3.2} \cdot 3(3^9 - 2^5 + 2 \times 1)$$

$$= 60 \cdot 32$$

x 60 3120

3000 (1)

(3)
(a)
$$P_1 = \frac{2}{3}$$

 $P_3 = \frac{14}{27}$
(b) $P_{h+1} = \frac{2}{3}P_h + \frac{1}{3}(1-P_h)$
 $= \frac{1}{3}P_h + \frac{1}{3}$
(c) $P_{h+1} = \frac{1}{2} = \frac{1}{3}(P_h - \frac{1}{2})$

$$P_{n} = \frac{1}{2} + \left(\frac{1}{3}\right)^{n} \left(P_{6} - \frac{1}{2}\right)$$

$$= \frac{1}{2} + \frac{1}{2} \left(\frac{1}{3}\right)^{n}$$

$$P_{\text{ext}} - \alpha = \frac{1}{3} \left(P_{\text{th}} - \alpha \right)$$

$$\therefore P_{\text{ext}} = \frac{1}{3} P_{\text{th}} + \alpha - \frac{1}{3} \alpha$$

$$= \frac{1}{3} P_{\text{th}} + \frac{2}{3} \alpha$$

$$= \alpha = \frac{1}{3} P_{\text{th}} + \frac{2}{3} \alpha$$

$$P3 = \frac{1}{2} + \frac{1}{2} \left(\frac{1}{3} \right)^3$$

$$= \frac{1}{2} + \frac{1}{2} \left(\frac{1}{3} \right)^3$$

$$= \frac{1}{2} + \frac{1}{2} \cdot \frac{1}{2}$$

$$= \frac{1}{2} + \frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{2}$$

$$= \frac{1}{2} + \frac{1}{2} \cdot \frac{1}{2}$$