Samlefil for alle data til prøveeksamen

Filen 1A/Oppgave1AFigur_A.png

Figure 1: Figur fra filen 1A/Oppgave1AFigur_A.png

$Filen~1A/Oppgave1AFigur_B.png$

Figure 2: Figur fra filen 1A/Oppgave1AFigur_B.png

$Filen~1A/Oppgave1AFigur_C.png$

Figure 3: Figur fra filen 1A/Oppgave1AFigur_C.png

$Filen~1A/Oppgave1AFigur_D.png$

Figure 4: Figur fra filen 1A/Oppgave1AFigur_D.png

Filen 1A/Oppgave1AFigur_E.png

Figure 5: Figur fra filen 1A/Oppgave1AFigur_E.png

Filen 1B.txt Luminositeten øker med en faktor 3.30e+09.

Filen 1C.png

Figure 6: Figur fra filen 1C.png

Filen 1E.png

Figure 7: Figur fra filen 1E.png

Filen 1G.txt

STJERNE A) Stjerna har en overflatetemperatur på 10000K. Radiusen er betydelig mindre enn solas radius

STJERNE B) det finnes noe jern i kjernen

STJERNE C) det finnes hovedsaklig helium men også noe karbon i stjernas kjerne

STJERNE D) stjernas overflatetemperatur er 2500K og energien transporteres fra kjernen kun via konveksjon

STJERNE E) Stjerna har en overflatetemperatur på 10000K. Luminositeten er betydelig mindre enn solas luminositet.

Filen 1H.png

Filen 1J.txt

Kjernen i stjerne A har massetet
thet 5.229e+06 kg/m3̂ og temperatur 15 millioner K.

Kjernen i stjerne B har massetet
thet 9.819e+06 kg/m3 og temperatur 37 millioner K.

Kjernen i stjerne C har massetet
thet 7.270e+06 kg/m3̂ og temperatur 32 millioner K.

Kjernen i stjerne D har massetet
thet 8.959e+06 kg/m3 og temperatur 37 millioner K.

Kjernen i stjerne E har massetet
thet 1.847e+06 kg/m3̂ og temperatur 15 millioner K.

Filen 1K/1K.txt

Påstand 1: den absolutte størrelseklassen (magnitude) med UV filter er betydelig større enn den absolutte størrelseklassen i blått filter

Påstand 2: denne har den minste tilsynelatende bolometriske størrelseklassen (altså den vanlige størrelseklassen tatt over alle bølgelengder, uten filter)

Påstand 3: den absolutte størrelseklassen (magnitude) med UV filter er betydelig mindre enn den absolutte størrelseklassen i blått filter

Påstand 4: denne stjerna er lengst vekk

$Filen~1K/1K_Figur_A_.png$

Figure 9: Figur fra filen $1\mathrm{K}/1\mathrm{K}$ _Figur_A_.png

$Filen \ 1K/1K_Figur_B_.png$

Figure 10: Figur fra filen $1K/1K_Figur_B_pg$

$Filen~1K/1K_Figur_C_.png$

Figure 11: Figur fra filen $1K/1K_Figur_C_png$

$Filen~1K/1K_Figur_D_.png$

Figure 12: Figur fra filen 1K/1K-Figur-D_.png

$Filen \ 1L/1L_Figure_A.png$

Figure 13: Figur fra filen 1L/1L-Figure_A.png

$Filen \ 1L/1L_Figure_B.png$

Figure 14: Figur fra filen 1L/1L-Figure-B.png

$Filen \ 1L/1L_Figure_C.png$

Figure 15: Figur fra filen 1L/1L-Figure_C.png

$Filen \ 1L/1L_Figure_D.png$

Figure 16: Figur fra filen 1L/1L-Figure_D.png

Filen 1L/1L_Figure_E.png

Figure 17: Figur fra filen 1L/1L_Figure_E.png

Filen 1N.txt

Kjernen i stjerne A har massetet
thet 2.300e+05 kg/m3̂ og temperatur 17.14 millioner K.

Kjernen i stjerne B har massetet
thet 2.352e+05 kg/m3̂ og temperatur 27.25 millioner K.

Kjernen i stjerne C har massetet
thet $4.156\mathrm{e}{+05~\mathrm{kg/m}}\hat{3}$ og temperatur 21.65

millioner K.

Kjernen i stjerne D har massetet
thet 3.976e+05 kg/m3̂ og temperatur 25.18 millioner K.

Kjernen i stjerne E har massetet
thet 1.676e+05 kg/m3̂ og temperatur 35.21 millioner K.

Filen~1O/1O.png

Figure 18: Figur fra filen 10/10.png

$Filen~1O/1O_Figur_0_.png$

Figure 19: Figur fra filen $1O/1O_Figur_O_png$

$Filen\ 1O/1O_Figur_1_.png$

Figure 20: Figur fra filen $1O/1O_Figur_1..png$

$Filen~1O/1O_Figur_2_.png$

Figure 21: Figur fra filen 1O/1O_Figur_2_.png

$Filen~1O/1O_Figur_3_.png$

Figure 22: Figur fra filen $1O/1O_F$ igur_3_.png

$Filen~1O/1O_Figur_4_.png$

Figure 23: Figur fra filen $1O/1O_F$ igur_4_.png

Filen 2A.png

Figure 24: Figur fra filen 2A.png

$Filen~2B/2B_Figur_1.png$

Figure 25: Figur fra filen $2B/2B_Figur_1.png$

$Filen~2B/2B_Figur_2.png$

Figure 26: Figur fra filen 2B/2B-Figur-2.png

$Filen~2C/2C_Figur_1.png$

Figure 27: Figur fra filen $2C/2C_Figur_1.png$

Vinkelforflytning 3.61 buesekunder i løpet av et millisekund.

Filen 2C/2C_Figur_2.png

Figure 28: Figur fra filen 2C/2C_Figur_2.png

Filen 3A.txt

Din destinasjon er Tromsø som ligger i en avstand av 1400 km fra Kristiansand. Du og toget som går i motsatt retning kjører begge med farta 95.47040 km/t.

Filen 3E.txt

Tog1 veier 25900.00000 kg og tog2 veier 114100.00000 kg.

Filen 4A.png

Figure 29: Figur fra filen 4A.png

Filen 4C.txt

Hastigheten til Helium-partikkelen i x-retning er 485 km/s.

Filen 4E.txt

Massen til gassklumpene er 6800000.00 kg.

Hastigheten til G1 i x-retning er 18600.00 km/s.

Hastigheten til G2 i x-retning er 23520.00 km/s.

Filen 4G.txt

Massen til stjerna er 16.20 solmasser og radien er 1.30 solradier.