Simulation studies: TLP, BLP, and extensions of BLP

Nutcha Wattanachit

8/25/2020

Simulation studies

The data generating process for the observation Y in the regression model is

$$Y = X_0 + a_1 X_1 + a_2 X_2 + a_3 X_3 + \epsilon, \epsilon \sim (0, 1)$$

where a_1, a_2 , and a_3 are real constants that vary across different simulation studies, and X_0, X_1, X_2, X_3 , and ϵ are independent, standard normal random variables. The individual predictive densities have partial access of the above set of covariates. f_1 has access to only X_0 and X_1 , f_2 has access to only X_0 and X_2 , and f_3 has access to only X_0 and X_3 . We want to combine f_1, f_2 , and f_3 to predict Y. In this setup, X_0 represent shared information, while other covariates represent information unique to each individual model.

We estimate the pooling/combination formulas on a random sample $(f_{1i}, f_{2i}, f_{3i}, Y_i) : i = 1, ..., n$ of size n = 50,000 and evaluate on an independent test sample of the same size.

Scenario 1: Unbiased and calibrated components

In this scenario, $a_1=a_2=1$ and $a_3=1.1$, so that f_3 is a more concentrated, sharper density forecast than f_1 and f_2 (Gneiting and Ranjan (2013)) and they are defined as follows:

$$\begin{split} f_1 &= \mathrm{N}(X_0 + a_1 X_1, 1 + a_2^2 + a_3^2) \\ f_2 &= \mathrm{N}(X_0 + a_2 X_2, 1 + a_1^2 + a_3^2) \\ f_3 &= \mathrm{N}(X_0 + a_3 X_3, 1 + a_1^2 + a_2^2) \end{split}$$

Table 1: Model Parameters and Log Score

	w1	w2	w3	alpha	beta	ncp		Training	Test
TLP	0.267	0.259	0.474	NA	NA	NA	f1	-2.001	-2.004
BLP	0.298	0.292	0.410	1.464	1.459	NA	f2	-2.001	-2.008
nBLP	0.298	0.292	0.410	1.462	1.461	0.009	f3	-1.965	-1.966
cBLP	0.298	0.293	0.409	1.457	1.457	NA	TLP	-1.908	-1.910
							BLP	-1.865	-1.870
							nBLP	-1.865	-1.870
							$_{\mathrm{cBLP}}$	-1.865	-1.870

	Training	Test
f1	0.083	0.083
f2	0.083	0.084
f3	0.083	0.083
TLP	0.064	0.064
BLP	0.083	0.083
nBLP	0.083	0.083
cBLP	0.083	0.083

Scenario 2: Underdispersed components

We subtract constants from the variances of component density forecasts as follows:

$$\begin{split} f_1 &= \mathrm{N}(X_0 + a_1 X_1, (1 + a_2^2 + a_3^2) - 1) \\ f_2 &= \mathrm{N}(X_0 + a_2 X_2, (1 + a_1^2 + a_3^2) - 1) \\ f_3 &= \mathrm{N}(X_0 + a_3 X_3, (1 + a_1^2 + a_2^2) - 1.5) \end{split}$$

Table 2: Model Parameters and Log Score

	w1	w2	w3	alpha	beta	ncp		Training	Test
TLP	0.311	0.307	0.382	NA	NA	NA	f1	-2.040	-2.044
BLP	0.315	0.312	0.373	1.039	1.035	NA	f2	-2.040	-2.051
nBLP	0.315	0.312	0.373	1.037	1.036	0.01	f3	-2.115	-2.116
cBLP	0.278	0.272	0.450	1.455	1.455	NA	TLP	-1.876	-1.881
							BLP	-1.876	-1.880
							nBLP	-1.876	-1.880
							cBLP	-1.865	-1.869

	Training	Test
f1	0.101	0.101
f2	0.101	0.101
f3	0.116	0.116
TLP	0.080	0.080
BLP	0.082	0.082
nBLP	0.082	0.082
cBLP	0.083	0.083

PIT

Scenario 3: Overdispersed components

We add constants from the variances of component density forecasts as follows:

$$\begin{split} f_1 &= \mathcal{N}(X_0 + a_1 X_1, (1 + a_2^2 + a_3^2) + 2) \\ f_2 &= \mathcal{N}(X_0 + a_2 X_2, (1 + a_1^2 + a_3^2) + 2) \\ f_3 &= \mathcal{N}(X_0 + a_3 X_3, (1 + a_1^2 + a_2^2) + 2) \end{split}$$

Table 3: Model Parameters and Log Score

	w1	w2	w3	alpha	beta	ncp		Training	Test
TLP	0.220	0.209	0.571	NA	NA	NA	f1	-2.052	-2.053
BLP	0.297	0.291	0.412	2.145	2.138	NA	f2	-2.051	-2.056
nBLP	0.297	0.291	0.412	2.143	2.140	0.01	f3	-2.022	-2.022
cBLP	0.301	0.295	0.404	1.455	1.455	NA	TLP	-2.006	-2.008
							BLP	-1.861	-1.865
							nBLP	-1.861	-1.865
							cBLP	-1.866	-1.870

	Training	Test
f1	0.062	0.062
f2	0.062	0.063
f3	0.061	0.061
TLP	0.049	0.049
BLP	0.083	0.084
nBLP	0.083	0.084
cBLP	0.083	0.083

Scenario 4: Over- and underdispersed components

The models are defined as follows:

$$\begin{split} f_1 &= \mathrm{N}(X_0 + a_1 X_1, (1 + a_2^2 + a_3^2) - 0.8) \\ f_2 &= \mathrm{N}(X_0 + a_2 X_2, (1 + a_1^2 + a_3^2) + 0.6) \\ f_3 &= \mathrm{N}(X_0 + a_3 X_3, (1 + a_1^2 + a_2^2) - 1) \end{split}$$

Table 4: Model Parameters and Log Score

	w1	w2	w3	alpha	beta	ncp		Training	Test
TLP	0.335	0.191	0.474	NA	NA	NA	f1	-2.032	-2.024
BLP	0.288	0.333	0.379	1.287	1.280	NA	f2	-2.012	-2.011
nBLP	0.288	0.333	0.379	1.285	1.283	0.015	f3	-2.017	-2.007
cBLP	0.345	0.198	0.456	1.436	1.436	NA	TLP	-1.893	-1.887
							BLP	-1.877	-1.871
							nBLP	-1.877	-1.871
							cBLP	-1.874	-1.867

	Training	Test
f1	0.097	0.097
f2	0.076	0.076
f3	0.102	0.102
TLP	0.074	0.073
BLP	0.083	0.082
nBLP	0.083	0.082
cBLP	0.082	0.082

0.0 0.2 0.4 0.6 0.8 1.0 PIT

Comments

- BLP, nBLP, and cBLP outperforms TLP based on log score and probabilistic calibration in most scenarios.
- cBLP does better when all or most components are underdispersed. The last scenario where the sharpest component is underdispersed cBLP also does well probably because it's able to fix the dispersion of the sharp component and then assign the most weight to that component.