Question 38 (17 marks)

Caffeine is an organic molecule found in tea, coffee and energy drinks. It is a stimulant that also can be taken in tablet form. Pure caffeine is a white odourless powder that tastes bitter and contains carbon, hydrogen, nitrogen and oxygen.

A 2.55 g sample of caffeine was combusted to produce 4.623 g of carbon dioxide and 1.18 g of water. A second, 3.33 g sample of caffeine was treated to convert all of the nitrogen to 1.17 g of ammonia.

(a)	Determine the empirical formula of caffeine.	(13 marks)

8		
Empirical formula		
9		

A third, 1.05 g sample of caffeine was converted to the gaseous phase. Measurement showed that 100.0 mL of the gas exerted 370 kPa pressure at a temperature of 550 $^{\circ}$ C.

Calculate the molar mass of caffeine.	(2 m
	olecular formula of caffe (2 n
From your answers to part (a) and part (b), determine the m showing clearly how this was determined.	