Autómatas Finitos NO Deterministas AFN

Fabio Martínez Carrillo

Autómatas Escuela de Ingeniería de Sistemas e Informatica Universidad Industrial de Santander - UIS

12 de septiembre de 2017

Definición

Tiene la capacidad de estar en varios estados a la vez.

- Permite hacer ciertas conjeturas.
- Son compactos y fáciles de diseñar.

Características

- Tiene un conjunto finito de estados.
- Tiene una función de transición δ .
- δ toma un estado y símbolos de entrada **pero** devuelve **cero**, **uno**, o **múltiples estados**.

- Estados = cuadrados.
- Entradas
 - r: se mueve a los cuadrados rojos adyacentes.
 - b: se mueve a los cuadrados negros adyacentes.
- Estado final: estar en el lado opuesto.

1	2	3			r	b
		J	\rightarrow	1	2,4	5
4	5	6		2	4,6	1,3,5
4	5	O		3	2,6	5
_				4	2,8	1,5,7
7	8	9		5	2,4,6,8	
				6	2,8	3,5,9
				7	4,8	5
				8	4,6	5,7,9
			*	9	6,8	5

Definición del AFN

$A = (Q, \Sigma, \delta, q_0, F)$

- Un conjunto finito de estados, Q.
- Un conjunto finito de símbolos de entrada, Σ.
- Una función de transición que toma como argumentos:
 - un estado,
 - un símbolo,
 - devuelve un subconjunto de Q, $\delta : Q \times \Sigma \subseteq Q$.
- Un estado inicial, uno de los estados Q.
- Un conjunto de estados finales o de aceptación F, F ⊂ Q.
- Cada entrada en el AFN es un conjunto.
- Cuando no hay una transición de un estado ante un símbolo, la entrada es ∅.

Tabla de transiciones

	0	1
$\rightarrow q_0$	$\{q_0, q_1\}$	$\{q_0\}$
q_1	Ø	$\{q_2\}$
$*q_2$	0	Ø

Función de transición extendida

Devuelve un conjunto de estados a partir de una entrada q y una palabra w.

- Caso Base: $\hat{\delta}(q, \varepsilon) = q$
- Paso Inductivo: w es una cadena formada por xa y $\hat{\delta}(q,x) = \{p_1, p_2, \dots, p_k\}$. Sea

$$\bigcup_{i=1}^k \delta(p,a) = \{r_1, r_2, \dots, r_m\}$$

Entonces

$$\hat{\delta}(q, w) = \{r_1, r_2, \dots, r_m\}$$

$$\hat{\delta}(q, w) = \{r_1, r_2, \dots, r_m\}$$

$$\bullet \ \hat{\delta}(q_0, \varepsilon) = \{q_0\}$$

$$\hat{\delta}(q, w) = \{r_1, r_2, \dots, r_m\}$$

- $\hat{\delta}(q_0,\varepsilon) = \{q_0\}$
- $\hat{\delta}(q_0,0) = \{q_0,q_1\}$

$$\hat{\delta}(q, w) = \{r_1, r_2, \dots, r_m\}$$

- $\hat{\delta}(q_0, \varepsilon) = \{q_0\}$
- $\hat{\delta}(q_0,0) = \{q_0,q_1\}$
- $\hat{\delta}(q_0, 00) = \delta(q_0, 0) \cup \delta(q_1, 0) = \{q_0, q_1\} \cup \emptyset = \{q_0, q_1\}$

$$\hat{\delta}(q, w) = \{r_1, r_2, \dots, r_m\}$$

- $\hat{\delta}(q_0, \varepsilon) = \{q_0\}$
- $\hat{\delta}(q_0,0) = \{q_0,q_1\}$
- $\hat{\delta}(q_0,00) = \delta(q_0,0) \cup \delta(q_1,0) = \{q_0,q_1\} \cup \emptyset = \{q_0,q_1\}$
- $\hat{\delta}(q_0, 001) = \delta(q_0, 1) \cup \delta(q_1, 1) = \{q_0\} \cup \{q_2\} = \{q_0, q_2\}$

$$\hat{\delta}(q, w) = \{r_1, r_2, \dots, r_m\}$$

- $\bullet \ \hat{\delta}(q_0,\varepsilon) = \{q_0\}$
- $\hat{\delta}(q_0,0) = \{q_0,q_1\}$
- $\bullet \ \hat{\delta}(q_0,00) = \delta(q_0,0) \cup \delta(q_1,0) = \{q_0,q_1\} \cup \emptyset = \{q_0,q_1\}$
- $\hat{\delta}(q_0, 001) = \delta(q_0, 1) \cup \delta(q_1, 1) = \{q_0\} \cup \{q_2\} = \{q_0, q_2\}$
- $\hat{\delta}(q_0, 0010) = \delta(q_0, 0) \cup \delta(q_2, 0) = \{q_0, q_1\} \cup \emptyset = \{q_0, q_1\}$

$\hat{\delta}(q, w) = \{r_1, r_2, \dots, r_m\}$

- $\bullet \ \hat{\delta}(q_0,\varepsilon) = \{q_0\}$
- $\hat{\delta}(q_0,0) = \{q_0,q_1\}$
- $\bullet \ \hat{\delta}(q_0,00) = \delta(q_0,0) \cup \delta(q_1,0) = \{q_0,q_1\} \cup \emptyset = \{q_0,q_1\}$
- $\hat{\delta}(q_0, 001) = \delta(q_0, 1) \cup \delta(q_1, 1) = \{q_0\} \cup \{q_2\} = \{q_0, q_2\}$
- $\hat{\delta}(q_0, 0010) = \delta(q_0, 0) \cup \delta(q_2, 0) = \{q_0, q_1\} \cup \emptyset = \{q_0, q_1\}$
- $\hat{\delta}(q_0, 00101) = \delta(q_0, 1) \cup \delta(q_1, 1) = \{q_0\} \cup \{q_2\} = \{q_0, q_2\}$

El lenguaje de un AFN

El lenguaje de un autómata **no** determinista $A = (Q, \Sigma, \delta, q_0, F)$ se define como:

$$L(A) = \left\{ w \mid \hat{\delta}(q_0, w) \cap F \neq \emptyset \right\}$$

Conjunto de cadenas w que contienen al menos un estado de aceptación.

Equivalencia entre autómatas

En el peor de los casos el AFD tiene 2^n estados con respecto al AFN de n estados.

Si
$$D = (Q_D, \Sigma_D, \delta_D, q_D, F_D)$$
 y $N = (Q_N, \Sigma_N, \delta_N, q_N, F_N)$

Equivalencia entre autómatas

En el peor de los casos el AFD tiene 2^n estados con respecto al AFN de n estados.

Si
$$D=(Q_D,\Sigma_D,\delta_D,q_D,F_D)$$
 y $N=(Q_N,\Sigma_N,\delta_N,q_N,F_N)$

$$L(D) = L(N)$$

Equivalencia entre autómatas

En el peor de los casos el AFD tiene 2^n estados con respecto al AFN de n estados.

Si
$$D = (Q_D, \Sigma_D, \delta_D, q_D, F_D)$$
 y $N = (Q_N, \Sigma_N, \delta_N, q_N, F_N)$

- Q_D conjunto de subconjuntos Q_N
- F_D conjunto de subconjuntos $S \subseteq Q_N$ tal que $S \cap F_n \neq \emptyset$
- Para cada $S \subseteq Q_N$ y $a \subseteq \Sigma_N$:

$$\delta_D(S,a) = \bigcup_{p \in S} \delta_N(p,a)$$

		r	b
-	1	2,4	5
	2	4,6	1,3,5
	3	2,6	5
	4	2,8	1,5,7
	5	2,4,6,8	1,3,7,9
	6	2,8	3,5,9
	7	4,8	5
	8	4,6	5,7,9
*	9	6,8	5

	r	b
→ {1} {2,4} {5}	{2,4}	{5}

		r	b
→	1	2,4	5
	2	4,6	1,3,5
	3	2,6	5
	4	2,8	1,5,7
	5	2,4,6,8	1,3,7,9
	6	2,8	3,5,9
	7	4,8	5
	8	4,6	5,7,9
*	9	6,8	5

	r	b
→ {1}	{2,4}	{5}
{2,4} {5} {2,4,6,8} {1,3,5,7}	{2,4,6,8}	{1,3,5,7]

		r	b
→	1	2,4	5
	2	4,6	1,3,5
	3	2,6	5
	4	2,8	1,5,7
	5	2,4,6,8	1,3,7,9
	6	2,8	3,5,9
	7	4,8	5
	8	4,6	5,7,9
*	9	6,8	5

		r	b
	→ {1}	{2,4}	{5}
	{2,4}	{2,4,6,8}	{1,3,5,7}
	{5}	{2,4,6,8}	{1,3,7,9}
	{2,4,6,8}		
	{1,3,5,7}		
*	{1,3,7,9}		

		r	b
-	1	2,4	5
	2	4,6	1,3,5
	3	2,6	5
	4	2,8	1,5,7
	5	2,4,6,8	1,3,7,9
	6	2,8	3,5,9
	7	4,8	5
	8	4,6	5,7,9
*	9	6,8	5
· l		0,0	

		r	b	
	→ {1}	{2,4}	{5}	
	{2,4}	{2,4,6,8}	{1,3,5,7}	
	{5}	{2,4,6,8}	{1,3,7,9}	
	{2,4,6,8}	{2,4,6,8}	{1,3,5,7,9)}
	{1,3,5,7}			
*	{1,3,7,9}			
*	{1,3,5,7,9}			

		r	b
→	1	2,4	5
	2	4,6	1,3,5
	3	2,6	5
	4	2,8	1,5,7
	5	2,4,6,8	1,3,7,9
	6	2,8	3,5,9
	7	4,8	5
	8	4,6	5,7,9
*	9	6,8	5

		r	b
	→ {1}	{2,4}	{5}
	{2,4}	{2,4,6,8}	{1,3,5,7}
	{5}	{2,4,6,8}	{1,3,7,9}
	{2,4,6,8}	{2,4,6,8}	{1,3,5,7,9}
	{1,3,5,7}	{2,4,6,8}	{1,3,5,7,9}
k	{1,3,7,9}		
k	{1,3,5,7,9}		

		r	b
\rightarrow	1	2,4	5
	2	4,6	1,3,5
	3	2,6	5
	4	2,8	1,5,7
	5	2,4,6,8	1,3,7,9
	6	2,8	3,5,9
	7	4,8	5
	8	4,6	5,7,9
*	9	6,8	5

		r	b
	→ {1}	{2,4}	{5}
	{2,4}	{2,4,6,8}	{1,3,5,7}
	{5}	{2,4,6,8}	{1,3,7,9}
	{2,4,6,8}	{2,4,6,8}	{1,3,5,7,9}
	{1,3,5,7}	{2,4,6,8}	{1,3,5,7,9}
k	{1,3,7,9}	{2,4,6,8}	{5}
k	{1,3,5,7,9}		

		r	b
→	1	2,4	5
	2	4,6	1,3,5
	3	2,6	5
	4	2,8	1,5,7
	5	2,4,6,8	1,3,7,9
	6	2,8	3,5,9
	7	4,8	5
	8	4,6	5,7,9
*	9	6,8	5

		r	b
	→ {1}	{2,4}	{5}
	{2,4}	{2,4,6,8}	{1,3,5,7}
	{5}	{2,4,6,8}	{1,3,7,9}
	{2,4,6,8}	{2,4,6,8}	{1,3,5,7,9}
	{1,3,5,7}	{2,4,6,8}	{1,3,5,7,9}
:	{1,3,7,9}	{2,4,6,8}	{5}
:	{1,3,5,7,9}	{2,4,6,8}	{1,3,5,7,9}

Construcción de subconjuntos

Equivalencia entre autómatas

En el peor de los casos el AFD tiene 2^n estados con respecto al AFN de n estados.

Cuál es la AFD correspondiente?

Ejercicio propuesto

 Convierta el siguiente AFN en un AFD y describa el lenguaje que acepta.

	0	1
$\rightarrow p$	$\{p,q\}$	$\{p\}.$
q	{ r, s}	{ <i>t</i> }
r	$\{p,r\}$	{ <i>t</i> }
*5	Ø	Ø
*t	Ø	Ø

Muchas gracias por su atención

