DEFINITION: A subgroup N of a group G is **normal** if $gNg^{-1} = N$ for all $g \in G$, where $qNq^{-1} = \{qnq^{-1} \mid n \in N\}$. We write $N \triangleleft G$ to indicate that N is a normal subgroup of G.

LEMMA: Let N be a subgroup of a group G. The following are equivalent:

- (1) N is a normal subgroup of G.
- (2) For all $g \in G$, $gNg^{-1} \subseteq N$.
- (3) For all $q \in G$, the *left coset* qN is equal to the *right coset* Nq.
- (4) For all $g \in G$, $gN \subseteq Ng$.
- (5) For all $g \in G$, $Ng \subseteq gN$.
- (1) Examples of normal subgroups: Use the definition and/or the Lemma to show the following:
 - (a) If G is an abelian group and $H \leq G$, then $H \leq G$.

Let $h \in H$ and $g \in G$. Since G is abelian, we have $ghg^{-1} = gg^{-1}h = h$. Thus, $qHq^{-1} \subseteq H$, so H is normal.

(b) The center Z(G) of a group G is a normal subgroup of G.

Let $z \in Z(G)$ and $g \in G$. Since z is in the center, we have $gzg^{-1} = gg^{-1}z = z$. Thus, $qZ(G)q^{-1} \subseteq Z(G)$, so Z(G) is normal.

(c) The² group $K = \{e, (12)(34), (13)(24), (14)(23)\} < S_4$ is normal.

First, we should check that it is indeed a subgroup. To see it, we can just multiply out elements and check that the result is in K. For each product involving e, there is nothing to check, and each element besides e has order 2, so its product with itself is in K. We then just verify

Note also that K is abelian. Now we check that K is normal in G. For any τ in G, using the exercise from the homework, if $(i j)(k \ell)$ is a product of two disjoint transpositions, then

$$\tau(i\,j)(k\,\ell)\tau^{-1} = \tau(i\,j)\tau^{-1}\tau(k\,\ell)\tau^{-1} = (\tau(i)\,\tau(j))(\tau(k)\,\tau(\ell))$$

is as well, and is thus an element of K. This shows that K is normal.

(d) Let $H = \{e, (12)(34)\} \leq K$, with K as above. Check that $H \leq K$ and $K \leq S_4$, but $H \not \supseteq S_4$. Draw a moral from this example.

Since K is abelian, $H \subseteq K$. However, H is not a normal subgroup of S_4 , since conjugating (12)(34) by (13) yields (14)(23) $\notin H$. Normal subgroup is not a transitive relation.

(e) Is the subgroup of all rotations a normal subgroup of D_n ?

¹Recall that we have already shown that $Z(G) \leq G$.

²Hint: Recall from HW 1 that $\tau(i j)\tau^{-1} = (\tau(i) \tau(j))$.

Yes.

(f) Is the subgroup generated by one reflection a normal subgroup of D_n ?

No.

- (2) Prove the Lemma.
- (3) Let G be a group and $H \leq G$ a subgroup of index 2. Show that H must be normal.

RECALL:

- An equivalence relation \sim on a group is **compatible with multiplication** if $x \sim y$ implies $xz \sim yz$ and $zx \sim zy$ for all $x, y, z \in G$. If \sim is compatible with multiplication, then the equivalence classes of \sim obtain a well-defined group structure via the rule [x][y] = [xy].
- For a subgroup H, we define an equivalence relation on G by $x \sim_H y$ if and only hx = y for some $h \in H$. The equivalence classes are the right cosets Hx.

THEOREM: Let G be a group. An equivalence relation \sim is compatible with multiplication if and only if $\sim = \sim_N$ for some $N \subseteq G$.

COROLLARY: If G is a group and N is a normal subgroup, the collection of left cosets $\{gN \mid g \in G\}$ of N forms a group by the rule $gN \cdot hN = ghN$.

(4) Explain why the Corollary follows from the Theorem.

By the Theorem, if N is normal, the equivalence relation \sim_N is compatible with multiplication, and thus by the recollection above, we get an induced group structure on the equivalence classes. The equivalence classes of \sim_N are the right cosets of N in G; since N is normal, we can equivalently consider these as the left cosets of N in G. The rule for the group action is the same as in the recollection just using the concrete notation gN for the equivalence class [g].

(5) Prove the (\Leftarrow) direction of the Theorem.

Suppose that N is normal, and take \sim_N . Let $x,y,z\in G$. If $x\sim_N y$, then Nx=Ny, so Nxz=Nyz, and hence $xz\sim_N yz$. But we also have xN=yN, so zxN=zyN, so Nzx=Nzy and $zx\sim_N zy$.

(6) Prove³ the (\Rightarrow) direction of the Theorem.

³Hint: The main issue here is to find a candidate N. Think first about how you would reconstruct N from \sim_N .