멀티미디어

(4차산업혁명과 ICT 환경의 발전)

2024.

무단배포 금지: 저작권: 한빛아카데미(주)

목차

- 1. 4차산업혁명과 패러다임의 전환
- 2. 4차산업혁명과 ICBMSA 플랫폼

■ 4차 산업혁명 개요

- 1차 산업혁명
 - 농경 중심 사회를 제조업 중심의 사회로 변화시키면서 사회·경제 등에 큰 변화를 가져옴 (영국의 산업혁명)
 - 1769년 증기기관과 철도가 발명됨에 따라 열에너지를 이용하여 생산 과정을 기계화한 것이 가장 큰 특징
 - 기계화라는 기술 의 혁신과 새로운 제조 공정으로 전환되는 섬유 산업의 기계혁명 시대
 - 가내 수공업은 공장 생산 체제로 변화되면서 생산력이 향상, 대량생산과 고용 증가로 많은 일자리가 창출

• 2차 산업혁명

- 전기 기반의 제조업 혁명으로 전기 에너지와 생산 라인이 결합되어 대량생산 체계가 구축
- 석유 동력의 내연기관과 제조업의 노동 분업을 통한 생산력·기술력 향상으로 인류의 삶은 풍요로워짐
- 소비가 미덕이라는 전대미문의 구호도 등장
- 전 사회를 대량생산과 대량소비를 기본으로 하는 중화학 공업의 산업사회로 전환

3차 산업혁명

- 반도체·컴퓨터·인터넷 기반의 지식정보 혁명이며, 스마트 혁명
- 스마트폰과 SNS를 통한 사회적 소통 방식은 개방·혁신·효율로 상징되며 인류의 삶을 통째로 변화
- 현실 공간과 가상공간이 인터넷에 의해 통합되어 인류의 모든 사회 활동이 데이터로 저장되는 정보 사회를 실현
- 현실과 가상공간에서 발생하는 방대한 데이터는 3차산업혁명의 핵심 결과물이며, 빅데이터를 탄생

■ 4차 산업혁명 개요

- 4차 산업혁명 시기
 - 과거 1·2·3차 산업혁명의 연장선상에서 벗어나 현재까지 축적된 기술을 기반으로 하여 이전과 다른 새로운 기술 융합이 등장하는 시기
 - 물리적 공간과 사이버 공간이 융합되어 디지털 공간으로 진화하는 과정
 - 사물 인터넷, 사이버 물리 시스템, CPS, 인공지능 기반의 만물·초지능 혁명
 - 1·2·3차 산업혁명은 기계가 인간의 노동력을 줄이기 위해 손과 발의 역할을 수행
 - 4차산업혁명에서는 기계가 인간의 두뇌를 대체

표 12-1 산업혁명의 시대적 분류와 특징

	시기	기반 기술	파급 효과	특징
1차산업혁명	1769년	증기기관	기계화, 대량생산, 직조직기	기계혁명
2차산업혁명	19세기말	전기에너지, 내연기관	효율적인 대량생산, 조립 라인	에너지 혁명
3차산업혁명	1960년대	자동화, 전자공학, 인터넷	컴퓨터 기반의 정보 혁명	디지털 혁명
4차산업혁명	2020년대	가상 물리 시스템, 5G, AI, IOT,	기술 발전과 첨단화의 융합	기술혁명

■ 4차 산업혁명을 위한 기반 기술

- 컴퓨터와 인터넷
 - 컴퓨터 기술
 - 전문가에서 일반 사용자, 대형 컴퓨터에서 개인용 컴퓨터, 기업·개인의 소유에서 클라우 드 방식의 공유로 발전
 - 아날로그 컴퓨터 → 디지털 컴퓨터 → 손안의 컴퓨터(스마트폰) 순으로 발전
 - 그래픽 처리장치, 텐서 처리장치와 같은 기술이 개발 되어 저전력, 고속처리가 가능해짐
 - 데이터 생산이 기하급수적으로 폭증하는 4차산업혁명을 대비하기 위한 초고속 컴퓨팅
 의 필요성이 커짐

인터넷

- 인터넷은 4차산업혁명에서 정보를 전달하는 신경조직에 해당
- 모바일 통신 가입자는 꾸준히 증가
- 모든 정보를 끊김 없이 실시간으로 전달하여 4차산업혁명에 생명을 불어넣고 끊임없이 진화하는 범용기술
- 5G. 클라우드, 인공지능, 빅데이터, 사물인터넷, 로봇 등 다른 범용 기술들과 융합하여 혁신적인 변화를 일으킴

스마트폰 보급율 (2023)

■ 일반 휴대전화 선진 18개 국가

휴대전화 없음

선진국 소셜미디어 사용자

■ 4차 산업혁명을 위한 기반 기술

- 스마트 센서와 첨단 소재
 - 스마트 센서 (나무위키)
 - 스마트센서는 센싱 기능 외에 통신, 데이터 처리, 의사결정 기능을 추가로 갖춘 센서를 의미. 스마트공장, 자율주행자동차, 모바일기기, 의료기기 등 다양한 영역에 활용이 가능하며 빠른 시장 확대가 예상
 - 특징 : 기존의 센서가 특정 상태를 감지하여 중앙처리장치가 판단을 내릴 수 있는 데이터를 제공하는 수준에서 머물렀던 반면, 스마트센서는 One Chip 상에 센서 기능과 더불어 통신, 데이터 처리 및 인공지능 능력까지 갖춘 지능화된 센서로 초소형, 초경량 등의 특징을 가지고 있어 USN (Ubiquitous Sensor Network) 환경의 핵심 기반이 됨
 - 전통적인 센서 활용 분야를 뛰어넘어 스마트 홈 시스템, 원격진료 시스템, 대규모 환경감시 시스템, IoT 등의 분야에 적용될 수 있음
 - 핵심기술 : 미세전자기계시스템(MEMS: Micro Electro-mechanical System), 반도체 (SoC: System on Chip), 임베디드 소프트웨어, 인공지능 기술
 - 방향: 극한환경, 고성능화, 소형화, 다기능화, 저전력화 등을 목표로 기술 개발 중
 - 첨단 소재
 - 기존 소재에 비해 성능 특성을 크게 향상시킨 물질
 - 소재 기술은 4차 산업혁명 키워드인 초고속, 초지능, 초감각, 초연결을 실현하는 기반
 - 첨단 소재나 부품은 국가 간 통상 영역에서 압박 수단으로 사용될 소지가 많음
 - 첨단 소재는 상용화까지 오랜 시간이 걸림

■ 4차 산업혁명을 위한 기반 기술

- 모바일 디바이스
 - 모바일 디바이스의 의의
 - 인류는 스마트폰·태블릿 등 인터넷 기반의 모바일 디바이스로 인해 시·공간의 제약에서 벗어나게 됨
 - 모바일 디바이스가 ICT 관련 산업과 비즈니스 세계를 뒤흔들고 있음 (모바일 혁명)
 - 모바일 디바이스는 장소·공간의 제약을 초월하기 때문에 인터넷에 접속하는 가장 효과적인 도구
 - 스마트폰·태블릿 외에도 입는 컴퓨터, 자율주행 자동차, 개인용 이동 수단에 내장된 형태로 끊임없이 진화할 전망
 - 모바일 디바이스의 역할
 - 전 세계에 분포된 디바이스의 작동 상태를 실시간으로 확인하고 제어
 - 산업 전반의 생산성을 향상시키는 첨단 도구로서 통합 관리자 역할을 수행
 - 5G 이동통신 기술의 보급으로 모바일 디바이스는 계속 진화
 - 정보의 사각지대가 해소됨으로써 초연결이 실현될 것

- 사물인터넷: loT (Internet of Things)
- 클라우드 컴퓨팅 : Cloud Computing
- 빅데이터 : Big Data
- 모바일 : Mobile
- 보안 : Security
- 인공지능 : Artificial Intelligent

■ 사물인터넷: loT (Internet of Things)

https://youtu.be/mpexvMBJl7Y?si=rREJIF7E_Ef01BhC

- 사물인터넷의 개념
 - 각종 사물에 <u>센서</u>와 통신 기능을 내장하여 <u>인터넷</u>에 연결하는 기술 사물인터넷의 핵심은 통신, 센서 기술 (위키백과)
 - 자율주행차, 스마트 홈 가전제품
 - 5G의 시대의 사물인터넷은 지구 전체를 연결하는 범위로 확대할 수 있다는 것이 특징
- 사물인터넷의 활용
 - 위치 기반 서비스, 차량 관제, 원격 검침, 시설물 감시, 웨어러블 기기 등에 활용
 - 스마트 오피스
 - 5G, AI, IoT, 보안, 증강현실(AR), 가상현실(VR) 등 첨단 ICT 환경의 집약체
 - 5G를 통해 사람과 공간, 디바이스, 센서 등이 서로 밀접하게 연결되어 데이터를 송수신하며 시·공간의 제약 없이 업무를 수행
 - 근무자의 업무 효율성 향상, 기업체의 비용 절감, 생산성 향상 효과를 기대
 - 스마트 공장
 - 5G와 첨단 ICT 환경을 접목
 - 다기능 협업 로봇, 유연 생산 설비, '자율주행 로봇, AR 글래스, AI 비전 머신 등이 사람과 협업해 생산성을 향상
 - 유연 생산 설비: 생산, 검수, 포장 등을 담당하는 로봇 팔 등이 탑재된 모듈들이 모여 하나의 제품 생산 라인 완성

■ 클라우드 컴퓨팅

https://youtu.be/exewHoMNjsQ?si=UzZMUFfaBJXreH-Z

- 클라우드 컴퓨팅 환경의 진화
 - 클라우드 컴퓨팅
 - 분산된 컴퓨터 자원을 가상화 기술로 통합하여 제공하는 기술
 - 개인·기업의 컴퓨터에 저장된 프로그램이나 문서를 중앙 컴퓨터(데이터센터)에 저장
 - 기업 내부에 서버와 저장장치를 소유하지 않고 데이터를 외부 기관에 위탁해 처리하는 아웃소싱 대여 서비스
 - 설치형 / 폐쇄형 클라우드
 - 클라우드 환경에 대비되는 개념
 - 자체적으로 소유한 서버를 직접 설치·운영하는 전통적인 방식
 - 운영의 복잡성은 낮음, 시스템 구축에 많은 시간이 필요, 설계·변경이 어려움, 설비 투자에 수많은 비용이 들어감
 - 개방형 클라우드 서비스가 등장하며 사라질것으로 예상되었으나 보안 사고를 예방하기 위해 아직 사용

그림 12-9 클라우드 컴퓨팅의 개념: 다양한 기능의 서비스 제공

■ 클라우드 컴퓨팅

https://youtu.be/aeNtenP11dM?si=dEnZl2wzpYw_adq

- HCI (Hyper-Converged Infrastructure) (IBM 자료)
 - 하이퍼컨버지드 인프라(HCI)는 <u>가상화</u>를 사용하여 컴퓨팅, 네트워킹 및 스토리지 구성 요소를 하이퍼바이저 소프트웨어 계층에서 관리하는 단일 시스템으로 결합하는 데이터 센터 인프라에 대한 소프트웨어 정의 접근 방식
 - 기존 데이터 센터는 기능마다 서로 다른 하드웨어를 사용하는 반면, 하이퍼컨버지드 시스템은 가상 머신을 사용하여 필요한 각 구성 요소의 추상화를 생성하며, 이 모든 것이 상용 하드웨어에 포함되어 있습니다. 이러한 방식으로 하이퍼컨버전스를 사용하는 <u>IT 인프라</u> 솔루션은 기존 데이터 센터 및/또는 <u>퍼블릭 클라우드 컴퓨팅</u>에 대한 비용 효율적인 고성능 온프레미스 대안을 위한 운영을 간소화할 수 있습니다.
 - On-premise (온-프레미스): 기업이 자체적으로 IT 인프라를 소유, 관리 및 운영
 - Off-premise (오프-프레미스): 서드파티 공급업체가 인프라, 시설 및 관련 서비스를 제공하고 유지, 관리

참고: https://elice.io/ko/newsroom/saas_paas_iaas?gad_source=1#saassoftware-as-a-service

■ 클라우드 컴퓨팅

■ 클라우드 컴퓨팅 서비스

https://youtu.be/aYAuWwTHuvY?si=oOrvxq0N-ezVZncB

- SaaS(Software as a Service)
 - 사용하기 쉬운 소프트웨어 **응용 프로그램에 대한 액세스**를 제공
 - 서비스 제공업체가 애플리케이션, 데이터, 미들웨어, 런타임, 운영 체제, 서버, 스토리지, 시각화, 네트워킹을 비롯한 모든 것을 관리하기 때문에 사용자는 따로 관리할 것이 없음
- PaaS (Platform as a Service)
 - 응용 프로그램 개발 플랫폼을 제공
 - 서비스 제공업체는 개발을 위한 모든 것, 즉 운영 체제, 런타임, 미들웨어, 서버, 가상화, 스토리지, 네트워킹 등을 맡아 제공하며 사용자는 애플리케이션과 데이터만 관리
- laaS(Infrastructure as a Service)
 - 서버, 스토리지 및 네트워킹을 포함한 가상화된 컴퓨팅 인프라를 제공하는 클라우드
 - 사용자 입장에서 가장 유연한 서비스로 네트워킹, 컴퓨팅 및 스토리지에 대한 인프라를 제공
 - 사용자는 인프라를 완전히 제어할 수 있는 환경을 제공받을 수 있다.

On-site	laaS	PaaS	SaaS	
Applications	Applications	Applications	Applications	
Data	Data	Data	Data	
Runtime	Runtime	Runtime	Runtime	
Middleware	Middleware	Middleware	Middleware	
O/S	O/S	O/S	O/S	
Virtualization	Virtualization	Virtualization	Virtualization	
Servers	Servers	Servers	Servers	
Storage	Storage	Storage	Storage	
Networking	Networking	Networking	Networking	
You manage Service provider manages				

클라우드 서비스 종류	가상화 서비스 종류	장점	
SaaS : 소프트웨어 서비스 (Software as a Service)	고객에게 제공되는 소프트웨어	 소프트웨어에 들이는 비용을 절약할 수 있음 소프트웨어 설치 없이 바로 이용 가능 인터넷 연결만으로 언제 어디서나 접근 가능함 	
PaaS : 플랫폼 서비스 (Platform as a Service)	소프트웨어 개발에 필요한 플랫폼	 개발 및 배포 과정을 신속히 수행할 수 있음 플랫폼에 들이는 비용을 절약할 수 있음 비즈니스 요구에 따라 유연하게 리소스를 확장 또는 축소할 수 있음 여러 사용자가 동일한 개발 응용 프로그램에 액세스할 수 있음 	
IaaS : 인프라 서비스 (Infrastructure as a Service)	스토리지, GPU 등 물리적 자원 (컴퓨팅 자원)	 물리적 자원 유지, 보수에 드는 비용을 절감할 수 있음 필요한 물리적 자원을 바로 이용할 수 있음 물리적 자원의 운영을 안정적인 벤더에 맡길 수 있음 	

클라우드 서비스 종류	추천 비즈니스	예시
SaaS : 소프트웨어 서비스 (Software as a Service)	비즈니스에 집중하고자 하는 기업 보안상 민감하지 않은 사항을 다루는 단기 프로젝트	Notion, Dropbox, Figma, MS office
PaaS : 플랫폼 서비스 (Platform as a Service)	신속한 개발과 배포 과정이 필요한 기업	Heroku, AWS elastic beanstalk, Google App Engine
laaS : 인프라 서비스 (Infrastructure as a Service)	빠른 성장과 변화가 필요한 스타트업 및 중소기업	AWS, MS Azure, GCE

■ 클라우드 컴퓨팅

https://youtu.be/gmTGQ3HLRoE?si=csOKsGCAPcPvKXL5

- 에지 컴퓨팅
 - 에지 컴퓨팅의 개념
 - 다양한 단말기에서 발생하는 데이터를 클라우드와 같은 중앙 집중식 데이터센터로 전송하지 않고 데이터가 발생한 현장 또는 근거리에서 실시간으로 처리하는 기술
 - 데이터 송수신 과정에서 잠복 시간을 줄이고 실시간으로 분석 결과를 도출하는 것이 목표
 - 데이터 용량이 폭증하는 사물인터넷에 적합한 데이터 전송 기술
 - 에지 컴퓨팅의 효과
 - 에지 컴퓨팅은 수집되는 현장 또는 주변에서 곧바로 데이터를 분산 처리하고 연산 결과를 적용이 가능
 - 데이터센터로 데이터를 전송하여 처리 결과를 기다리는 대기 시간이 감소하고 운영 비용이 절감되는 효과
 - 향후 에지 컴퓨팅의 전망
 - 자율주행차, 원격 의료, 스마트 공장, 게임 산업 등 방대한 용량의 데이터 전송이 발생하는 다양한 분야에서 사용
 - 대량의 IoT 기술이 적용되는 스마트 시티 시대에 에지의 중요성은 더욱 강조
 - 모바일 에지 컴퓨팅(MEC): 기지국에 컴퓨팅 시스템을 구축하는 기술
 - 기지국·교환국에 대용량 컴퓨팅 서버를 배치하고 네트워크 환경에서 초저지연·대용량, 초고속 데이터 서비스 제공

그림 12-12 에지 컴퓨팅: 개방형 클라우드 서비스의 한계를 보완하는 플랫폼

■ 빅데이터

https://youtu.be/l2RBzee3Aq4?si=40 ODd-h4krP7rlU

- 빅데이터의 개념과 특징
 - 빅데이터의 속성
 - 용량, 속도, 다양성, 신뢰성, 가치, 정확성, 휘발성, 가변성, 시각화
 - 용량: 일반적으로 데이터 크기를 말하며 테라·페타·엑사·제타 바이트 이상의 데이터 속성을 의미
 - 속도: 대용량의 데이터를 얼마나 빠르게 처리·분석하는가와 관련된 속성
 - 다양성: 다양한 형태의 데이터를 수용하는 속성으로, 정형화 정도에 따라 정형, 반정형, 비정형 데이터로 분류
 - 신뢰성: 데이터에 부여할 수 있는 신뢰 수준에 대한 속성이고,
 - 가치: 빅데이터를 저장하기 위 해 시스템을 구현하는 비즈니스적 유용성에 대한 속성
 - 정확성: 어떤 결정을 내리는데 타당한 데이터 여부를 판단하는 속성
 - 휘발성: 데이터의 저장 기간과 사용 기간에 대한 속성

■ 빅데이터의 활용

- 빅데이터는 정형, 반정형, 비정형의 대규모 데이터에 대해 생성, 수집, 분석, 표현 등과 관련한 특징을 가짐
- 개인화된 사회 구성원별로 맞춤형 정보를 제공, 관리, 분석하여 과거에 불가능한 기술을 실현
- 다양하고 방대한 규모의 데이터는 미래의 경쟁력을 좌우하는 중요한 자원으로 활용되기 때문에 주목받음
- 국내의 빅데이터 활용은 아직은 미흡 하다는 평가가 지배적

■ 모바일

- 모바일 온리 시대의 개념과 특징
 - 최근에는 모바일 퍼스트 시대를 넘어 모바일 온리 시대로 가고있음
 - 모든 일상의 비즈니스 처리가 모바일 기반으로 처리되고 모든 서비스가 모바일 환경에서 제공
 - 기성세대와 사고·생활 방식이 다른 신인류, 스마트폰이 낳은 신 인류인 포노사피엔스 용어도 등장
 - 연결을 기반으로 시·공간의 제약 없이 일하는 유목민을 뜻하는 노마드족도 증가

O2O (Online to Offline)

https://youtu.be/MHfi5qAtgUI?si=1jYJuAlYPhaouCv2

- ICT 환경을 기반으로 온라인 소비자를 오프라인 매장으로 유도하는 온·오프라인 융합 서비스
- 서비스 공급자와 수요자를 연결하는 플랫폼 기업이 O2O 서비스를 제공
- O2O 기업들은 매출의 대부분을 수수료, 광고료, 이용료, 정기사업료, 가입비 등을 통해 창출
- 쇼루밍: 백화점·쇼핑몰 등 오프라인 매장에서 상품을 살펴보고 온라인에서 저렴하게 구매
- 역쇼루밍: 온라인에서 물건을 결제하고 인근 매장에서 물건을 찾아가는 방식
- 웹루밍: 스마트폰이 등장한 이후엔 온라인으로 제품을 확인하고 오프라인에서 구매하는 현상

■ 모바일

- O2O 비즈니스 환경
 - 옴니채널
 - 라틴어로 '모든'을 의미하는 옴니와 제품의 유통 경로를 나타내는 채널의 합성어
 - 기존의 온·오프라인 유통 채널에 ICT·모바일 기술을 이용하여 소비자 중심으로 모든 쇼핑 채널을 하나로 융합
 - 고객 정보를 자동으로 인식해 상품을 추천 하거나 할인 또는 특별 서비스를 제공하기도 함
 - 옴니채널의 마케팅 전략은 고객의 이탈을 방지하고 충성도를 높이는 데 있음 (페이, 포인트, 픽)
 - 옴니채널의 급성장에는 쇼루밍족, 역쇼루밍족, 웹루밍족, 모루밍족 등의 크로스쇼퍼의 증가와 관련이 있음

그림 12-15 다양한 경로로 서비스를 제공하는 옴니채널

■ 모바일

- O2O 비즈니스 환경
 - O4O (Online for Offline)

https://youtu.be/SbJSm teOVY?si=w7ssnbTOBnt5QQ O

- O4O: 오프라인을 위한 온라인 서비스로 온라인 노하우를 통해 오프라인의 매출을 증대시키는 것을 의미
- 기존의 O2O 서비스는 온·오프라인 공간을 단순하게 연결하는 중개적인 역할
- 온라인 기업이 보유한 기술·자산, 고객 정보 등을 기반으로 하여 오프라인으로 사업 영역을 확대하면서 새로운 수익을 창출하는 형태
- 기존 생태계를 그대로 유지하되 오프라인 공간에서 새로운 기술·경험·편의성 등을 제공
- 오프라인 무인 점포 아마존 고, 다방의 다방 케어 센터, 야놀자의 코텔 등

그림 12-16 O4O 서비스: 오른쪽 사진은 증강현실 제품 체험의 예

■ 보안

- 콘텐츠의 저작권 보호
 - 워터마크
 - 멀티미디어 데이터인 텍스트, 이미지, 비디오, 오디오 등 원본 데이터에 제작자가 독특하게 추가한 마크
 - 제작자만 인식할 수 있는 표식으로 시각적으로 구별하게 하거나, 사람의 시청각으로는 구별이 불가능한 특수한 데이터를 삽입하는 기술
 - 자신의 콘텐츠가 불법적으로 사용되었을때 저작권자는 워터마크를 추출하여 콘텐츠의 소유권을 밝힐 수 있음
 - 의도적으로 일부가 보이도록 하는 방법과 육안으로는 전혀 보이지 않게 하는 방법이 있음
 - 워터마크를 파일에 추가할 때는 압축 프로그램, 통신에 의해 데이터가 변형되거나 파괴되지 않아야 함

그림 12-17 워터마크

(b) 특수 문양 삽입

■ 보안

- 콘텐츠의 저작권 보호
 - 디지털 권리 관리(Digital rights management, DRM)
 - 디지털 콘텐츠의 저작권을 보호하는 강력하고 체계적인 기술
 - 아날로그와 달리 디지털 콘텐츠의 복제는 상대적으로 간단하고 품질도 정품과 동일하며 대량 복제가 가능
 - 디지털 콘텐츠는 강력하고 체계적인 불법 복제 방지 기술이 요구됨
 - 스크램블링(혼합화)
 - IPTV나 위성방송 등에서 주로 사용하는 기술
 - 방송 송출 시 원본 데이터를 변형하고 셋톱박스 등을 통하여 정상적인 영상이나 음성으로 변환
 - 셋톱박스는 하드웨어 형태와 특정 앱을 통한 소프트웨어 형태로 서비스를 제공
 - 아날로그 방송의 경우 주파수 대역에서 분할된 신호의 위치를 변경
 - 디지털 방송의 경우 제어 키를 이용하여 데이터 암호화 기술로 암호화한 방송 신호를 송출

(a) 원본

(b) 송출 이미지

■ 보안

- 기타 데이터 보호 기술
 - 암호화
 - 정상적으로 판독할 때 내용을 알 수 없는 형식(암호문)으로 정보를 변환하는 것
 - 복호화: 원본을 재생하기 위하여 복호키(서로 약속된 비트들)를 사용하여 원래의 정보를 복원하는 것
 - 크게 관용키 암호 방식과 공개키 암호 방식으로 분류
 - 관용키 암호 방식: 암호화와 복호화에 동일한 키를 사용하는 방식, 대표적으로 데이터 암호화 표준(DES)
 - 공개키 암호 방식: 암호화와 복호화에 서로 다른 키를 사용하되 암호키는 공개하고 복호키는 비밀로 하는 방식
 대표적으로 RSA, 공인인증서가 공개키 방식을 사용

방화벽

- 원래 의미: 화재가 났을 때 화재가 더 이상 확산되지 않도록 장벽을 쌓아 막는 것
- 컴퓨터 보안: 장벽을 만들어 외부의 침입을 방지한다는 개념적 용어로 사용
- 컴퓨터 시스템: 해커의 불법 침입 및 악성 코드 감염 등으로 부터 내부의 시스템을 보호하기 위한 하드웨어 혹은 소프트웨어 형태의 네트워크 보안 시스템
- 하드웨어 형태와 소프트웨어 형태가 있음
 - 하드웨어 방화벽: 일반 컴퓨터에 대한 침입을 방지하는 기술을 하드웨어에 장착한 네트워크 시스템 장비
 - 소프트웨어 방화벽: PC나 인터넷 공유기의 운영체제에 탑재하거나, 일반적인 응용프로그램처럼 별도로 설치할 수 있음

■ 보안

- 콘텐츠의 저작권 보호
 - 양자 암호 기술
 - 양자의 중첩, 양자 얽힘, 상태의 복사 불가능성과 같은 양자역학의 특성을 이용해 암호를 생성하고 해독하는 작업을 수행하는 방법
 - 양자의 전류 방향(기울기)에 따라 데이터의 선별이 이루어짐
 - 원칙적으로 복제가 불가능하다는 특징
 - 전기와 전파로 이루어진 현재의 통신만으로는 불가능한 다양한 암호화 작업을 효율적으로 수행할 수 있음

■ 보안

- 정보 보안 침입 기술
 - APT (Advanced Persistent Threat)

https://youtu.be/TV_gmMGeoM?si=zx3r20dflptGhcpX

- 특정한 표적을 대상으로 내부에 악성 코드를 침투시켜 은밀하게 지속적으로 정보를 수집하고, 수집된 정보를 바탕으로 침투하여 피해를 끼치는 지능적인 해킹 수법
- 기존의 불특정 다수에 대한 투망식 해킹 수법과 달리 정치적·사회적·경제적·기술적·군사적으로 중요한 특정 대상이나 특정 피해자를 정하여 공격
- 장기적으로 정보를 수집하고 지속적으로 치밀한 공격을 감행
- DDoS (Distributed Denial of Service) 분산 서비스 거부 공격 https://youtu.be/tRUcxyLl1DY?si=dX5rB-Dd3DygaBHy
 - 외부에서 분산된 컴퓨터를 이용해 과도한 트래픽을 발생시켜, 정상적인 사용자에 대한 서비스를 거부하게 만드는 공격법
 - 일반적으로 악성 코드, 바이러스 등의 악의적인 프로그램들을 이용하여 일반 사용자의 컴퓨터를 감염시켜 좀비 PC로 만든 다음 이들을 제어하고 공격 명령을 내리는 C&C서버를 이용하여 공격을 수행

■ 보안

- 정보 보안 침입 기술
 - 전자 금융 사기 전자
 - 해킹된 웹사이트를 통하여 상대 컴퓨터의 비밀 정보를 탈취하는 행위
 - 상대 컴퓨터에 악성 코드를 설치하고 컴퓨터의 정보를 불법적으로 탈취
 - 모바일 악성 코드
 - 모바일 단말기를 대상으로 정보 유출, 불법 과금 등의 악의적인 행위를 하는 데 사용되는 악성 프로그램
 - 초기 모바일 악성 코드의 목적은 단순한 전파, 기능 마비였으나 개인 정보 유출, 금전적 이득을 위한 목적으로 변화
 - 랜섬웨어 (Ransomware)

https://youtu.be/PjDue0GSYcY?si= owUHaxhTPV1nONS

- 몸값을 의미하는 'Ransom'과 제품을 의미하는 'Ware'의 합성어
- 악성 코드 형태의 랜섬웨어에 감염되면 컴퓨터 시스템에 대한 접근이 제한되거나 저장된 문서, 사진, 동영상 등의 파일이 암호화됨
- 이를 해제해주는 대가로 돈을 요구하는 악성 코드의 일종

■ 인공지능

- 인공지능 기술의 개요
 - 인공지능 기술의 시작과 침체기
 - 1950년 영국 수학자 앨런 튜링이 이라는 논문을 발표하면서 시작
 - 80년대에 잠깐 반짝하고 연산 능력의 한계로 큰 진전을 보지 못했고 침체기는 1990년대 초까지 이어짐
 - 인공지능 기술의 발전
 - 2007년 미국 국방부 산하의 연구 기구(DARPA)가 인공지능과 관련된 여러 주제에 대한 연구를 요청하면서 인공 지능 시대가 열림
 - 2000년대 초반부터 인공지능 기술이 대형 시스템에 탑재되면서 다양한 용도로 사용
 - 2016년 '알파고'가 바둑 최강자를 상대로 승리하며 일반 대중이 인공지능의 역량을 실감하게 됨
 - 신경세포 뉴런의 기능을 모방한 인공지능 전용 소자가 개발되면서 인공지능의 기능은 급격하게 향상
 - 기반 기술의 발전으로 전력 소비가 급격히 줄어 인공지능의 활용 영역이 빠르게 확장