```
In [1]:
        import numpy as np
        import pandas as pd
        import seaborn as sns
        import matplotlib.pyplot as plt
        from sklearn import preprocessing,svm
        from sklearn.model_selection import train_test_split
        from sklearn.linear_model import LinearRegression
In [2]: .read_csv(r"C:\Users\dinesh reddy\AppData\Local\Microsoft\Windows\INetCache\IE
        (dt)
                 ΙD
                      model
                              engine_power
                                             age_in_days
                                                                   previous_owners
        0
                  1
                     lounge
                                        51
                                                     882
                                                            25000
                                                                                  1
        1
                  2
                                        51
                                                    1186
                                                            32500
                        pop
                                                                                  1
        2
                  3
                                        74
                                                    4658
                                                          142228
                                                                                  1
                      sport
        3
                  4
                                        51
                                                    2739
                                                                                  1
                     lounge
                                                          160000
        4
                  5
                                        73
                                                    3074
                                                          106880
                                                                                  1
                        pop
         . . .
                . . .
                         . . .
                                        . . .
                                                     . . .
                                                              . . .
                                                                                . . .
        1533
               1534
                      sport
                                        51
                                                    3712
                                                          115280
                                                                                  1
                                        74
        1534
               1535
                                                    3835
                                                                                  1
                     lounge
                                                          112000
        1535
               1536
                                        51
                                                    2223
                                                            60457
                                                                                  1
                         pop
        1536
               1537
                     lounge
                                        51
                                                    2557
                                                            80750
                                                                                  1
                                                                                  1
        1537
               1538
                                        51
                                                    1766
                                                            54276
                        pop
                     lat
                                 lon
                                      price
        0
               44.907242
                            8.611560
                                       8900
        1
               45.666359
                          12.241890
                                       8800
        2
               45.503300
                          11.417840
                                       4200
        3
               40.633171
                          17.634609
                                       6000
        4
               41.903221
                          12.495650
                                       5700
                                        . . .
        1533 45.069679
                            7.704920
                                       5200
        1534
               45.845692
                            8.666870
                                       4600
        1535
               45.481541
                            9.413480
                                       7500
        1536
               45.000702
                            7.682270
                                       5990
        1537
               40.323410 17.568270
                                       7900
        [1538 rows x 9 columns]
In [3]: | dt=dt[['engine_power', 'price']]
        dt.columns=['Engine','Pric']
```

In [4]: dt.head(10)

Out[4]:

Engine		Pric
0	51	8900
1	51	8800
2	74	4200
3	51	6000
4	73	5700
5	74	7900
6	51	10750
7	51	9190
8	73	5600
9	51	6000

Out[5]: <seaborn.axisgrid.FacetGrid at 0x261c6695510>

In [7]: dt.describe()

Out[7]:

	Engine	Pric
count	1538.000000	1538.000000
mean	51.904421	8576.003901
std	3.988023	1939.958641
min	51.000000	2500.000000
25%	51.000000	7122.500000
50%	51.000000	9000.000000
75%	51.000000	10000.000000
max	77.000000	11100.000000

In [8]: dt.fillna(method='ffill')

Out[8]:

	Engine	Pric
0	51	8900
1	51	8800
2	74	4200
3	51	6000
4	73	5700
	•••	
1533	51	5200
1534	74	4600
1535	51	7500
1536	51	5990
1537	51	7900

1538 rows × 2 columns

```
In [9]: x=np.array(dt['Engine']).reshape(-1,1)
         y=np.array(dt['Pric']).reshape(-1,1)
In [10]: dt.dropna(inplace=True)
In [11]: x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.25)
         regr=LinearRegression()
         regr.fit(x_train,y_train)
         print(regr.score(x_test,y_test))
         0.06059426685694369
In [12]: y_pred=regr.predict(x_test)
         plt.scatter(x_test,y_test,color='b')
         plt.plot(x_test,y_pred,color='k')
         plt.show()
          11000
          10000
            9000
            8000
            7000
            6000
            5000
            4000
                                        60
                                                               70
                 50
                            55
                                                   65
                                                                          75
```

In []: