PROJEKTOWANIE EFEKTYWNYCH ALGORYTMÓW

PROJEKT

07/10/2021

252736 Hutnik Szymon

Brute Force (1)

Strona Spis treści
Treść zadania
Opis metody
Opis algorytmu
Dane testowe
Procedura badawcza
Wyniki
Analiza

1. Treść zadania

Opracować, napisać, zbadać rozwiązanie problemu komiwojażera w wersji optymalizacyjnej algorytmem przeglądu zupełnego.

Problem komiwojażera (Travelling Salesman problem) polega na znalezieniu minimalnego cyklu Hamiltona (przejście przez wszystkie wierzchołki tylko raz, startując i kończąc w tym samym punkcie) w pełnym grafie ważonym.

2. Opis metody

Metoda przeglądu zupełnego, tzw. przeszukiwanie wyczerpujące (eng. exhaustive search) bądź metoda siłowa (eng. brute force), polega na znalezieniu i sprawdzeniu wszystkich rozwiązań dopuszczalnych problemu, wyliczeniu dla nich wartości funkcji celu i wyborze rozwiązania o ekstremalnej wartości funkcji celu – najniższej (problem minimalizacyjny) bądź najwyższej (problem maksymalizacyjny). Metoda jest stosunkowo łatwa do zaimplementowania oraz zawsze znajduje najlepsze rozwiązanie jednak jest najbardziej czasochłonna. W tym problemie sprowadza się ona do znalezienia wszystkich możliwych ścieżek, oraz wybraniu najtańszej z nich.

3. Opis algorytmu

Rozwiązanie zaimplementowano w postaci programu opisanego przez poniższy diagram:

Najpierw inicjalizowane są zmienne, najlepsza ścieżka jest ustawiona na maksymalną wartość (INT_MAX). Po wczytaniu danych z konsoli następuje uruchomienie właściwej części algorytmu, następnie wypisywany jest wynik oraz czas wykonania właściwego algorytmu.

Właściwą część algorytmu opisuje diagram:

4. Dane testowe

Dane, na których była badana efektywność algorytmu pochodzą ze zbioru udostępnionego przez dr Rudego. Do badania użyto wartości z następujących plików:

- m9.astp
- m10.astp
- m11.astp
- m12.astp
- m13.astp
- m14.astp
- m15.astp

5. Procedura badawcza

Należało zbadać zależność czasu rozwiązania problemu od wielkości instancji. W przypadku algorytmu realizującego przegląd zupełny przestrzeni rozwiązań dopuszczalnych nie występowały parametry programu, które mogły mieć wpływ na czas i jakość uzyskanego wyniku. W związku z tym procedura badawcza polegała na uruchomieniu programu i wklejeniu do niego danych z plików wybranych do badania.

Każda z instancji została wykonana do 10 razy, aby uśrednić czasy, ilość powtórzeń została skrócona do 3 w przypadku n=15 ze względu na czas wykonywania. Wyniki były zapisywane w Excelu, następnie na ich podstawie została przeprowadzona analiza.

6. Wyniki

Graf zrealizowano w programie Excel:

7. Analiza

Krzywa wzrostu czasu względem wielkości instancji ma charakter wykładniczy (rysunek 1). Nałożenie krzywej expected time, liczonej na podstawie poprzedniego wyniku (y = time[n-1] * n) potwierdza, że badany algorytm wyznacza rozwiązania problemu komiwojażera dla badanych instancji w czasie n! zależnym od wielkości instancji (obie krzywe są zgodne co do kształtu). Złożoność czasowa opracowanego algorytmu wynosi O(n!).