1ª Questão (3,0 pontos) - Amplificadores Operacionais

a) (1,0) Sabe-se que $v_I/2 = 10 \text{mV}$ na figura acima. Inicialmente obtenha a expressão literal de v_C/v_I em função R_1 , R_2 , R_3 e R_4 .

differençes e portanto:
$$V_{c} = \frac{R_{4}}{R_{3}} \cdot (V_{b} - V_{A}) \quad \text{onde} \quad V_{1} - V_{B} = 2(R_{2} + R_{2}) \cdot i \quad e \quad i = \frac{V_{i}}{2R_{1}}$$

$$V_{c} = \frac{R_{4}}{R_{3}} \cdot (V_{b} - V_{A}) \quad \text{onde} \quad V_{1} - V_{B} = 2(R_{2} + R_{2}) \cdot i \quad e \quad i = \frac{V_{i}}{2R_{1}}$$

$$V_{c} = \frac{R_{4}}{R_{3}} \cdot (V_{b} - V_{A}) \quad \text{onde} \quad V_{1} - V_{B} = 2(R_{2} + R_{2}) \cdot i \quad e \quad i = \frac{V_{i}}{2R_{1}}$$

$$V_{c} = \frac{R_{4}}{R_{3}} \cdot (V_{b} - V_{A}) \quad \text{onde} \quad V_{1} - V_{2} = \frac{R_{4}}{R_{2}} \cdot (1 + \frac{R_{2}}{R_{1}}) \cdot i \quad \text{onde} \quad \text{on$$

b) (1,0) Considerando o sinal diferencial de entrada $v_I = 20 \text{mV}$ (= $v_I/2$ + $v_I/2$), obtenha os valores das tensões contínuas (com polaridade) nos pontos A, B, e C da figura. Considere o A.O. ideal.

O Amplificadar ADI asta intenido nom sloco com configuração não inversora. Logo $V_A = \left(1 + \frac{\rho_2}{\rho_1}\right) \frac{V_3}{2} = \left(1 + \frac{goo \Omega}{100 \Omega}\right) \cdot 30 \text{mV} = 100 \text{nV}$ De forme and logo: $V_B = \left(1 + \frac{\rho_2}{\rho_1}\right) \left(-\frac{V_3}{2}\right) = -100 \text{ mV}$ Considerando o Amplificadar de Diferenco? $V_C = \frac{\rho_4}{\rho_3} \left(V_B V_A\right) = 200 \text{ mV}$ $V_A = 100 \text{ mV}$ $V_B = -100 \text{ mV}$ $V_C = -200 \text{ mV}$

c) (1,0) Substituindo-se a tensão cc diferencial de entrada $v_I = 20 \,\mathrm{mVcc}$ por um sinal de entrada senoidal $v_I = 20 \,\mathrm{mVpp}$ (valor de pico a pico) com frequência de 1kHz, esboce as formas de onda nos pontos A, B, e C. Considere os A.O.s ideais e que em t=0 a senóide de entrada tem fase zero.

2ª Questão (2,0 pontos) Dado o circuito abaixo:

a) (1,0) Calcule o valor v_0 para $R_1 = 2k\Omega$, $R_2 = 4k\Omega$, $R_3 = 2k\Omega$ e $R_4 =$ $12k\Omega$, considerando os diodos ideais. Calcule ainda os valores de todas as correntes indicadas na figura (I_{R1}, I_{R2}, I_{R3}, I_{R4}, I_{D1}, I_{D2} e I_{D3}).

Tinon do o minimo

Hipótese conneter.

b) (1,0) Considerando $R_1 = 1k\Omega$, $R_2 = 4k\Omega$, $R_3 = 0.975k\Omega$ e $R_4 = 4k\Omega$, calcule o valor v_{O_1} adotando para os diodos o modelo de dois segmentos onde $r_D = 50\Omega$ e $V_{D0} = 0.5V$. Calcule ainda os valores de todas as correntes indicadas na figura (I_{R1} , I_{R2} , I_{R3} , I_{R4} , I_{D1} , I_{D2} e I_{D3}).

Hipótese De contado De o De con duzon

9 10 30,975KN L 0,025KN JOT -0.5V -10V

 $J_{P1} = J_{D1} = 0$ $J_{P2} = 3,25 \text{ mA} = J_{D2}$ $J_{P3} = 6,5 \text{ mA}$ $J_{D3} = J_{P4} = 3,25 \text{ mA}$

 $J_{e2}=J_{D1}=0$ $J_{e3}=6,5mA$ $J_{e2}=J_{e4}=J_{D2}=J_{33}=3,55mA$