Deadline: 2023/03/22, 17:00.

1. Let $\mathbf{f}(t) = \langle f_1(t), f_2(t), \dots, f_n(t) \rangle$ be a vector valued function and $\mathbf{L} = \langle L_1, L_2, \dots, L_n \rangle$ be a vector. Prove that

$$\lim_{t \to t_0} \mathbf{f}(t) = \mathbf{L} \quad \text{if and only if} \quad \lim_{t \to t_0} f_i(t) = L_i \quad \text{for } i = 1, \dots, n.$$

2. Let $\mathbf{r}(t)$ and $\mathbf{s}(t)$ be 3 dimensional vector valued functions defined on I. Suppose that

$$\lim_{t \to a} \mathbf{r}(t) = \mathbf{L} \quad \text{ and } \quad \lim_{t \to a} \mathbf{s}(t) = \mathbf{M}.$$

Use the definition of limit of vector valued functions to prove

- (a) $\lim_{t \to a} \mathbf{r}(t) \cdot \mathbf{s}(t) = \mathbf{L} \cdot \mathbf{M}$.
- (b) $\lim_{t\to a} \mathbf{r}(t) \times \mathbf{s}(t) = \mathbf{L} \times \mathbf{M}$.

(Do not express $\mathbf{r}(t)$ and $\mathbf{s}(t)$ as the forms of component functions and compute these exercises directly)

3. Let $\mathbf{r} \in \mathbb{R}^n$ be a vector and $\mathbf{f}(t)$ be a n dimensional vector valued function. Show that

$$|\mathbf{r} \cdot \mathbf{f}(t)| \le ||\mathbf{r}|| ||\mathbf{f}(t)||.$$

4. Determine whether the following statement is true or false.

"If $\mathbf{f}(t):[a,b]\to\mathbb{R}^n$ is differentiable, then there exists $c\in(a,b)$ such that

$$\mathbf{f}'(c) = \frac{1}{b-a} [\mathbf{f}(b) - \mathbf{f}(a)].$$

- 5. Prove that if $\mathbf{f}(t)$ is parallel to $\mathbf{f}''(t)$ for all t in some interval, then $\mathbf{f}(t) \times \mathbf{f}'(t)$ is constant on that interval
- 6. (a) If $\mathbf{r}(t) : \mathbb{R}^1 \to \mathbb{R}^n$ is a continuous vector valued function, prove that $\|\mathbf{r}(t)\|$ is also a continuous function.
 - (b) If $\mathbf{r}(t) : \mathbb{R}^1 \to \mathbb{R}^n$ is a differentiable vector valued function with $\mathbf{r}(t) \neq 0$, prove that $\|\mathbf{r}(t)\|$ is also a differentiable function.
 - (c) Is the converse of (a) still true?

- 7. Let $\mathbf{r}(t) = \langle e^t \cos t, e^t \sin t \rangle$. Show that the angle between $\mathbf{r}(t)$ and $\mathbf{r}'(t)$ remains constant. What is the angle?
- 8. Let $\mathbf{x}(t) = \langle \cos t, \cos t \sin t, \sin^2 t \rangle$.
 - (a) Show that for any $t \in \mathbb{R}$, $\mathbf{x}(t)$ is a unit vector.
 - (b) Show that $\mathbf{x}(t)$ is always perpendicular to $\mathbf{x}'(t)$ for any $t \in \mathbb{R}$.
- 9. Find the arc length of the curve

$$\mathbf{r}(t) = \langle \frac{2}{3}(1+t)^{\frac{3}{2}}, \frac{2}{3}(1-t)^{\frac{3}{2}}, \sqrt{2}t \rangle$$

from
$$t = -\frac{1}{2}$$
 to $t = \frac{1}{2}$.