Copyright - not legal for resale.

45 Seismic Waves and Earthquakes Isaac Covid lessons archive: isaacphysics.org/pages/covid19_gcse

When a geological plate moves suddenly during an earthquake, it sets off waves which travel through the rocks. Some waves travel along the Earth's surface (e.g. Love waves). Others, P and S waves, travel through the Earth.

Primary (P) Waves	Secondary (S) Waves			
Longitudinal wave - oscillations par-	Transverse wave - oscillations			
allel to direction of energy transfer.	perpendicular to direction of energy transfer.			
Faster (typical speed near surface of	Slower (typical speed near surface			
8 km/s). These are the first waves	of 5 km/s). These waves reach the			
to reach seismometers - this gives	seismometers later - this gives them			
them their name 'primary'.	their name 'secondary'.			
Can travel through liquids (such as	Cannot travel through liquids (such			
the Earth's outer core).	as the Earth's outer core) - this is be-			
	cause they are transverse.			
Can be reflected at any boundary between two different regions.				
Can be refracted (or bent) by any change in rock compressibility or density.				
Generally as waves get deeper (and the pressure rises), their speed rises and				
they bend away from the 'normal' (the vertical). When P waves pass from the				
(solid) mantle to the (liquid) outer core, they slow down, and bend towards				
the vertical. When they reach the (solid) inner core, they speed up, and bend				
away from the vertical.				

- 45.1 The average speed of S waves in the mantle is 6.0 km/s and the average speed of P waves in the mantle is 11 km/s. Ignore the crust, and treat the mantle as being 2900 km deep.
 - (a) How much time would an S wave take to travel from a seismic event and return to the focus after having reflected once from the mantle-outer core boundary?
 - (b) How much earlier would the reflected P waves be detected than the S waves?

Typical speeds of seismic waves and rock densities are shown in the table.

Region	Depth (km)	Density (kg/m³)	Speed (km/s)	
Region	Deptii (kiii)	Delisity (kg/iii)	Р	S
Crust	$0 \sim 10$	3.0×10^{3}	8.0	5.0
Mantle	$\sim 10 - 2900$	$(3.0-5.0)\times10^3$	8.0 - 13	5.0 - 8.0
Outer Core	2900 - 5200	10^{4}	8.0 - 10	-
Inner Core	5200 - 6400	1.2×10^{4}	11	3.0 - 4.0

(eqseis.geosc.psu.edu/~cammon/HTML/Classes/IntroQuakes/Notes/waves_and_interior.html)

Example 1 – What is the delay between receiving P and S waves travelling through the crust to a seismometer 200 km from the earthquake's focus?

Time for P wave = Distance / Speed $=200 \, \text{km/} 8.0 \, \text{km/s} = 25 \, \text{s}$.

Time for S wave = Distance / Speed = 200 km/5.0 km/s = 40 s.

Delay = 40 s - 25 s = 15 s.

Example 2 – If the delay between receiving P and S waves is 5 s, how far away is the earthquake's focus?

We call the distance d, taken in km where time will be in seconds.

For the P wave, the time take to arrive is $t_v = d/8$.

For the S wave, the time taken to arrive is $t_s = d/5$.

We are told the delay is 5 s. Thus $t_s - t_p = 5$.

Therefore d/5 - d/8 = 5. So, 0.2d - 0.125d = 5, and accordingly 0.075d = 5.

We finally get d = 5/0.075 = 67 km (70 km to 1sf).

45.2 For speeds of 5.0 km/s for S and 8.0 km/s for P waves, complete the table.

Distance	P wave Time	S wave Time	Delay
30 km	(a)	(b)	(c)
60 km	(d)	(e)	(f)
150 km	(g)	(h)	(i)
200 km	(j)	(k)	(1)
(m)	(n)	(o)	8.0 s

- 45.3 Explain how the location of an earthquake's focus can be worked out from distance measurements made from three seismometers.
- 45.4 For each of the following questions, give your answer as 'S wave', 'P wave', 'neither' or 'both'. Which seismic waves:
 - (a) are longitudinal?
 - (b) can travel through a part of the Earth which is liquid?
 - (c) can travel through the mantle?
 - (d) are generated by an Earthquake?
 - (e) will cause the rock next to the focus (at the same depth) to move up and down?
 - (f) will cause the ground above the focus to move up and down?
 - (g) will be detected by a seismometer in the 'shadow zone' of an earthquake?
 - (h) travel faster at a given depth in the mantle?
 - (i) arrive at a seismometer last from a particular earthquake?
 - (j) can change direction at a boundary between two parts of the mantle?
 - (k) can be detected on the opposite side of the Earth from the focus?