Math 222 Problem Set 3

Lev Kruglyak

Due: February 19, 2025

Collaborators: AJ LaMotta

Problem 2. Let G be a connected Lie group and suppose $\pi : \widetilde{G} \to G$ is a covering map. Fix $\widetilde{e} \in \pi^{-1}(e)$. Construct a Lie group structure on \widetilde{G} such that \widetilde{e} is the identity element and π is a homomorphism of Lie groups. Is this Lie group structure unique?

The Lie group structure is unique of \widetilde{G} is connected. Otherwise, you could have a situation like in the case of the coverings $U_1 \times S_3 \to U_1$ and $U_1 \times \mathbb{Z}/6 \to U_1$. Topologically, these covering maps are identical, but of course the total spaces do not have the same group structure.

Let's now suppose that \widetilde{G} is connected and $\widetilde{e} \in \pi^{-1}(e)$ is fixed. We can find some diffeomorphism $\pi^{-1}|_{\widetilde{U}}: \widetilde{U} \to U$ where \widetilde{U} is a neighborhood of \widetilde{e} . We can define a group structure on \widetilde{U} by setting $g \cdot h = \pi^{-1}(\pi(g) \cdot \pi(h))$. We can cover \widetilde{G} by open sets on which π is a diffeomorphism, and can make this a good cover so that the intersections only contain a finite number of points. Then, starting at the original \widetilde{U} we can continue to extend the multiplication in this way, eventually covering the whole connected manifold. This construction necessarily requires connectedness, and a good cover to apply the glueing lemma.

Problem 4. Let $T \subset U_3$ be the subgroup of diagonal matrices. Identify its normalizer $N(T) \subset U_3$. Identify the quotient group N(T)/T. Points of U_3/T parametrize a certain geometric structure on \mathbb{C}^3 ; what is that geometric structure? Do the same for $U_3/N(T)$. Generalize to U_n for all $n \in \mathbb{Z}^{>0}$. Specialize to SU_2 , where again $T \subset SU_2$ is the subgroup of diagonal matrices. Do you recognize the group N(T)? What is its identity component?

Let's begin by determining the normalizer $N(T) \subset U_3$. Recall that a matrix $u \in U_3$ is in the normalizer of T if and only if $uTu^{-1} = T$. The only matrices which preserve diagonal matrices are those which permute diagonal entries and those which multiply each basis vector by a phase. It follows that every matrix in the normalizer can be written as $P_{\sigma}D$ with P_{σ} the permutation matrix for a permutation $\sigma \in S_3$ and $D \in T$ is a diagonal matrix which shifts the phase of each vector. The quotient N(T)/T is then isomorphic to the symmetry group S_3 . These results generalize for all U_n , we would then have $N(T)/T \cong S_n$.

Next, let's identify the geometric structure induced on \mathbb{C}^n by points of U_n/T . Let's suppose we have some matrix $u \in U_n/T$. Let u_1, \ldots, u_n be the column vectors of this matrix, unique up to multiplication by a phase. Each of these defines a unique line and they must be orthogonal by the unitary condition. Thus, U_n/T parametrizes the space of ordered sequences of orthogonal complex lines in \mathbb{C}^n . By similar logic, $U_n/N(T)$ parametrizes unordered sequences of orthogonal complex lines in \mathbb{C}^n since we only get a permutation class of column vectors.

Finally, for SU₂, the diagonal matrices must be be of the form

$$T = \left\{ \begin{pmatrix} e^{i\theta} & 0 \\ 0 & e^{-i\theta} \end{pmatrix} : \theta \in [0, 2\pi) \right\}.$$

The normalizer is generated by T with a matrix that sends $\theta \mapsto -\theta$. This is the transposition generating S_2 . It follows that N(T) is isomorphic to O_2 . These results fit with the exceptional isomorphism $SU_2 \cong Spin_3$ which double covers SO_2 , the normalizer N(T) which consists of two circles maps onto the single circle SO_2 .

Problem 5. Continuing with the previous problem, prove that every conjugacy class in U_3 has nonempty intersection with T. What is that intersection? Are those intersections the orbits of a group action on T? What is the analog for SU_3 ? Can you draw pictures for SU_3 ? Topologize the space of conjugacy classes. What can you say about this space?

Problem 6.

(a). Let G be a Lie group and let $Ad: G \to Aut(\mathfrak{g})$ be its adjoint representation. The center $Z(G) \subset G$ is contained in the kernel of Ad. Find a Lie group G for which the kernel of Ad is strictly larger than Z(G).

A simple set of examples occurs for non-abelian discrete Lie groups. If a group G is discrete, then \mathfrak{g} is 0-dimensional and so $\ker \operatorname{Ad} = G$. Picking any non-abelian discrete group thus has $Z(G) \subset \ker \operatorname{Ad}$ as a proper subgroup.

(b). Find an example of the following: Lie groups G', G with G' connected, and a homomorphism $\phi: \mathfrak{g}' \to \mathfrak{g}$ between their Lie algebras such that there does *not* exist a homomorphism $\psi: G' \to G$ with $\dot{\psi} = \phi$.

Let $G' = SO_n$ and $G = GL_m$. Letting $\phi : \mathfrak{so}_n \to \mathfrak{gl}_m$ be a spinor representation (arising from a map $Spin_n \to GL_m$) which does not arise from a representation of SO_n , it follows by assumption ϕ does not come from a map $\psi : SO_n \to GL_m$. This requires a little bit of knowledge about the representation theory of $Spin_n$ and SO_n .