1

1.a

 $F^3 = \{(0,0,0), (0,0,1), (0,1,0), (0,1,1), (1,0,0), (1,0,1), (1,1,0), (1,1,1)\}$ In general, F^n has 2^n elements.

1.b

If (x, y, z) is a general vector in Span(S), then we have a(1, 1, 0) + b(1, 0, 1) + c(0, 1, 1) = (x, y, z) for some $a, b, c \in F$, not all zero. So we have x = a + b, y = a + c, and z = b + c:

$$z = b + c$$

$$b = x - a$$

$$c = y - a$$

$$\Rightarrow z = (x - a) + (y - a)$$

$$\Rightarrow 2a = x + y - z$$

$$\Rightarrow 0 = x + y - z$$
Since $F = \mathbb{Z}_2$

So S does not span F^3 , and x + y - z = 0 is a non-trivial condition for a vector $(x, y, z) \in F^3$ to be in S.

1.c

 $Span(S) = \{(0,0,0), (1,1,0), (1,0,1), (0,1,1)\}\$

2

Consider the vector $1 \in P_3(\mathbb{R})$. We show that there do not exist $a, b, c \in \mathbb{R}$ such that $a(x^3 - 2x^2 + 1) + b(4x^2 - x + 3) + c(3x - 2) = 1$. We have:

$$a = 0 \tag{1}$$

$$-2a + 4b = 0 \tag{2}$$

$$-b + 3c = 0 \tag{3}$$

$$a + 3b - 2c = 1 \tag{4}$$

If we take $(2) + 2 \cdot (1)$, we have 4b = 0, so b = 0. Now we can plug in b = 0 to -b + 3c = 0, obtaining 3c = 0, or c = 0. So a = b = c = 0, but a + 3b - 2c = 1, so 0 = 1, thus there exist no such a, b, c, and 1 is not in the span of the three given vectors, and therefore they do not span $P_3(\mathbb{R})$.

3

We prove of S that it satisfies the three conditions sufficient to show that it is a subspace: (1): $0 \in S$, (2): $v, w \in S \implies (v + w) \in S$, and (3): $a \in F, v \in S \implies av \in S$. (For clarity, we denote F's identity by 0, and V's by $\vec{0}$ for the remainder of this proof.)

- (1): $\lambda f(v) = f(\lambda v) \implies 0 f(v) = f(0v) = f(\vec{0}) = 0$, so $\vec{0} \in S$.
- (2): let $v, w \in S$. f(v+w) = f(v) + f(w) = 0 + 0 = 0, so $v + w \in S$.
- (3): let $v \in S$, $a \in F$. f(av) = af(v) = a0 = 0, so $av \in S$.

Thus S is a subspace of V.

4

 (\Longrightarrow) : Suppose for a contradiction that $\{u+v,u+w,v+w\}$ is linearly dependent. Then u+v=a(u+w)+b(v+w) for some $a,b\in F$ not both zero. Then we have (1-a)u+(1-b)v=(a+b)w.

Case 1 (a + b = 0): a + b = 0, so a = -b. F is not of characteristic 2, so if a = 1, then $b \neq 1$. Thus $(1 - a)u + (1 - b)v \neq 0$. If $(1 - a) \neq 0 \neq (1 - b)$, then we have $v = \frac{1-a}{1-b}u$, a contradiction since $\{u, v, w\}$ is linearly independent. If one of a or b is 1, say WLOG a=1, then we have (1 - b)u = 0, but $1 - b \neq 0$, so u = 0, a contradiction since $\{u, v, w\}$ is linearly independent.

Case $2(a+b\neq 0)$: $a+b\neq 0$, so $w=\frac{1-a}{a+b}u+\frac{1-b}{a+b}$. Again, not both of 1-a and 1-b can be 0, so we have a nontrivial linear combination, a contradiction since $\{u,v,w\}$ is linearly independent.

(\Leftarrow): Suppose for a contradiction that $\{u,v,w\}$ is linearly dependent. Then u=av+bw for some $a,b\in F$ not both 0. So $\{u+v,u+w,v+w\}=\{av+bw+v,av+bw+w,v+w\}=\{(a+1)v+bw,av+(b+1)w,v+w\}$. Each vector in the set is a linear combination of v and w, so it is clearly linearly dependent, a contradiction since $\{u+v,u+w,v+w\}$ is linearly dependent.

Thus we've shown both the forward and backward direction, and so $\{u, v, w\}$ is linearly independent if and only if $\{u + v, u + w, v + w\}$ is, as desired.