

Announcement

• Midterm One: Thursday, 3/6/2014

Section Summary

- Definition of a Function.
 - Domain, Cdomain
 - Image, Preimage
- Injection, Surjection, Bijection
- Inverse Function
- Function Composition
- Graphing Functions
- Floor, Ceiling, Factorial
- Partial Functions (optional)

Functions

- A function *f*: *A* → *B* can also be defined as a subset of *A*×*B* (a relation). This subset is restricted to be a relation where no two elements of the relation have the same first element.
- Specifically, a function f from A to B contains one, and only one ordered pair (a, b) for every element $a \in A$.

$$\forall x[x\in A\to \exists y[y\in B\land (x,y)\in f]]$$

and

$$\forall x, y_1, y_2[[(x, y_1) \in f \land (x, y_2)] \to y_1 = y_2]$$

Some Important Functions

• The *floor* function, denoted f(x) = |x|

is the largest integer less than or equal to x.

• The *ceiling* function, denoted

$$f(x) = \lceil x \rceil$$

is the smallest integer greater than or equal to *x*

Example:

$$\lceil 3.5 \rceil = 4 \qquad \lfloor 3.5 \rfloor = 3$$

$$\lfloor 3.5 \rfloor = 3$$

$$\lceil -1.5 \rceil = -1 \quad \lfloor -1.5 \rfloor = -2$$

Floor and Ceiling Functions

Graph of (a) Floor and (b) Ceiling Functions

Floor and Ceiling Functions

TABLE 1 Useful Properties of the Floor and Ceiling Functions.

(n is an integer, x is a real number)

- (1a) |x| = n if and only if $n \le x < n + 1$
- (1b) $\lceil x \rceil = n$ if and only if $n 1 < x \le n$
- (1c) $\lfloor x \rfloor = n$ if and only if $x 1 < n \le x$
- (1d) $\lceil x \rceil = n$ if and only if $x \le n < x + 1$
- (2) $x 1 < \lfloor x \rfloor \le x \le \lceil x \rceil < x + 1$
- (3a) $\lfloor -x \rfloor = -\lceil x \rceil$
- (3b) $\lceil -x \rceil = -\lfloor x \rfloor$
- (4a) $\lfloor x + n \rfloor = \lfloor x \rfloor + n$
- (4b) $\lceil x + n \rceil = \lceil x \rceil + n$

Proving Properties of Functions

Example: Prove that x is a real number, then

$$[2x] = [x] + [x + 1/2]$$

Solution: Let $x = n + \varepsilon$, where n is an integer and $0 \le \varepsilon < 1$.

Case 1: $\varepsilon < \frac{1}{2}$

- $2x = 2n + 2\varepsilon$ and |2x| = 2n, since $0 \le 2\varepsilon < 1$.
- |x+1/2| = n, since $x + \frac{1}{2} = n + (\frac{1}{2} + \varepsilon)$ and $0 \le \frac{1}{2} + \varepsilon < 1$.
- Hence, |2x| = 2n and |x| + |x + 1/2| = n + n = 2n.

Case 2: $\varepsilon \geq \frac{1}{2}$

- $2x = 2n + 2\varepsilon = (2n + 1) + (2\varepsilon 1)$ and [2x] = 2n + 1, since $0 \le 2\varepsilon 1 < 1$.
- $\lfloor x+1/2 \rfloor = \lfloor n+(1/2+\varepsilon) \rfloor = \lfloor n+1+(\varepsilon-1/2) \rfloor = n+1$ since $0 \le \varepsilon 1/2 < 1$.
- Hence, [2x] = 2n + 1 and [x] + [x + 1/2] = n + (n + 1) = 2n + 1.

Factorial Function

Definition: $f: \mathbb{N} \to \mathbb{Z}^+$, denoted by f(n) = n! is the product of the first n positive integers when n is a nonnegative integer.

$$f(n) = 1 \cdot 2 \cdots (n-1) \cdot n,$$
 $f(0) = 0! = 1$

f(20) = 2,432,902,008,176,640,000.

Examples:

Stirling's Formula:

$$f(1) = 1! = 1$$

$$f(2) = 2! = 1 \cdot 2 = 2$$

$$f(6) = 6! = 1 \cdot 2 \cdot 3 \cdot 4 \cdot 5 \cdot 6 = 720$$

$$n! \sim \sqrt{2\pi n} (n/e)^n$$

$$f(n) \sim g(n) \doteq \lim_{n \to \infty} f(n)/g(n) = 1$$

Partial Functions (optional)

Definition: A *partial function f* from a set *A* to a set *B* is an assignment to each element *a* in a subset of *A*, called the *domain of definition* of *f*, of a unique element *b* in *B*.

- The sets *A* and *B* are called the *domain* and *codomain* of *f*, respectively.
- We say that *f* is *undefined* for elements in *A* that are not in the domain of definition of *f*.
- When the domain of definition of *f* equals *A*, we say that *f* is a *total function*.

Example: $f: \mathbb{N} \to \mathbb{R}$ where $f(n) = \sqrt{n}$ is a partial function from \mathbb{Z} to \mathbb{R} where the domain of definition is the set of nonnegative integers. Note that f is undefined for negative integers.