Calculus I

Fermat's Theorem and the Mean Value Theorem

Todor Milev

2019

Outline

- Maximum and Minimum Values
 - The Extreme Value Theorem
 - Fermat's Theorem

Outline

- Maximum and Minimum Values
 - The Extreme Value Theorem
 - Fermat's Theorem

Mean Value theorem

License to use and redistribute

These lecture slides and their LATEX source code are licensed to you under the Creative Commons license CC BY 3.0. You are free

- to Share to copy, distribute and transmit the work,
- to Remix to adapt, change, etc., the work,
- to make commercial use of the work.

as long as you reasonably acknowledge the original project.

- Latest version of the .tex sources of the slides: https://github.com/tmilev/freecalc
- Should the link be outdated/moved, search for "freecalc project".
- Creative Commons license CC BY 3.0:
 https://creativecommons.org/licenses/by/3.0/us/and the links therein.

Maximum and Minimum Values

Many real-world problems involve finding minima and maxima (finding minimal costs, maximal profit, shortest time to do a job, etc.). Examples include

- What shape of can minimizes manufacturing costs?
- What is the maximum acceleration of a space shuttle?
- What is the maximum load an elevator can carry?

Often such questions can be reduced to finding maximum or minimum values of a function. In Calculus I, we study how to minimize and maximize functions in one variable.

A function f has an absolute maximum (or global maximum) at c if $f(c) \ge f(x)$ for all x in the domain of f. The number f(c) is called the maximum value of f.

Likewise, f has an absolute minimum at c if $f(c) \le f(x)$ for all x in the domain of f. f(c) is called the minimum value of f.

- Absolute maximum at ? .
- Absolute minimum at ? .

A function f has an absolute maximum (or global maximum) at c if $f(c) \ge f(x)$ for all x in the domain of f. The number f(c) is called the maximum value of f.

Likewise, f has an absolute minimum at c if $f(c) \le f(x)$ for all x in the domain of f. f(c) is called the minimum value of f.

- Absolute maximum at d.
- Absolute minimum at ? .

A function f has an absolute maximum (or global maximum) at c if $f(c) \ge f(x)$ for all x in the domain of f. The number f(c) is called the maximum value of f.

Likewise, f has an absolute minimum at c if $f(c) \le f(x)$ for all x in the domain of f. f(c) is called the minimum value of f.

- Absolute maximum at d.
- Absolute minimum at ? .

A function f has an absolute maximum (or global maximum) at c if $f(c) \ge f(x)$ for all x in the domain of f. The number f(c) is called the maximum value of f.

Likewise, f has an absolute minimum at c if $f(c) \le f(x)$ for all x in the domain of f. f(c) is called the minimum value of f.

- Absolute maximum at d.
- Absolute minimum at c.

A function f has an absolute maximum (or global maximum) at c if $f(c) \ge f(x)$ for all x in the domain of f. The number f(c) is called the maximum value of f.

Likewise, f has an absolute minimum at c if $f(c) \le f(x)$ for all x in the domain of f. f(c) is called the minimum value of f.

- Absolute maximum at d.
- Absolute minimum at c.

- Absolute maximum at d.
- Absolute minimum at c.
- Local maximum at ? ? ?
- Local minimum at ? ? ?

- Absolute maximum at d.
- Absolute minimum at c.
- Local maximum at b, ? ?
- Local minimum at ? ? ?

- Absolute maximum at d.
- Absolute minimum at c.
- Local maximum at b, d ?
- Local minimum at ? ? ?

- Absolute maximum at d.
- Absolute minimum at c.
- Local maximum at b, d and 0.
- Local minimum at ? ? ?

- Absolute maximum at d.
- Absolute minimum at c.
- Local maximum at b, d and 0.
- Local minimum at ? ? ?

- Absolute maximum at d.
- Absolute minimum at c.
- Local maximum at b, d and 0.
- Local minimum at a, ? ?

- Absolute maximum at d.
- Absolute minimum at c.
- Local maximum at b, d and 0.
- Local minimum at a, c and ?

- Absolute maximum at d.
- Absolute minimum at c.
- Local maximum at b, d and 0.
- Local minimum at a, c and e.

Question

Is it possible that a function attains its maximum/minimum value for infinitely many values of x?

Question

Is it possible that a function attains its maximum/minimum value for infinitely many values of x?

Example

The function $\cos x$ attains its maximum value (=1) infinitely many times, since $\cos(2n\pi) = 1$ for any integer n.

Likewise, it attains its minimum value of -1 infinitely many times, because $\cos((2n+1)\pi) = -1$ for all integers n.

- Absolute maximum:
- Absolute minimum:
- Local maximum:
- Local minimum:

- Absolute maximum: ?
- Absolute minimum:
- Local maximum:
- Local minimum:

- Absolute maximum: None
- Absolute minimum:
- Local maximum:
- Local minimum:

- Absolute maximum: None
- Absolute minimum: ?
- Local maximum:
- Local minimum:

- Absolute maximum: None
- Absolute minimum: at 0
- Local maximum:
- Local minimum:

- Absolute maximum: None
- Absolute minimum: at 0
- Local maximum: ?
- Local minimum:

- Absolute maximum: None
- Absolute minimum: at 0
- Local maximum: None
- Local minimum:

- Absolute maximum: None
- Absolute minimum: at 0
- Local maximum: None
- Local minimum: ?

- Absolute maximum: None
- Absolute minimum: at 0
- Local maximum: None
- Local minimum: at 0

- Absolute maximum:
- Absolute minimum:
- Local maximum:
- Local minimum:

- Absolute maximum: ?
- Absolute minimum:
- Local maximum:
- Local minimum:

- Absolute maximum: None
- Absolute minimum:
- Local maximum:
- Local minimum:

- Absolute maximum: None
- Absolute minimum: ?
- Local maximum:
- Local minimum:

- Absolute maximum: None
- Absolute minimum: None
- Local maximum:
- Local minimum:

- Absolute maximum: None
- Absolute minimum: None
- Local maximum: ?
- Local minimum:

Example

Consider the function $y = x^3$.

- Absolute maximum: None
- Absolute minimum: None
- Local maximum: None
- Local minimum:

Example

Consider the function $y = x^3$.

- Absolute maximum: None
- Absolute minimum: None
- Local maximum: None
- Local minimum: ?

Example

Consider the function $y = x^3$.

- Absolute maximum: None
- Absolute minimum: None
- Local maximum: None
- Local minimum: None

The Extreme Value Theorem

Recall that some functions (such as $y = \cos x$) have extreme values, while other functions (such as $y = x^3$) do not. The next theorem, which we will not prove, gives a condition under which f must have extreme values.

If f is continuous on a closed and bounded interval [a, b], then f attains its maximum and minimum value, each at least once. In other words, there exist numbers c and d in [a, b] such that

$$f(c) \ge f(x) \ge f(d)$$
 for all $x \in [a, b]$

If f is continuous on a closed and bounded interval [a,b], then f attains its maximum and minimum value, each at least once. In other words, there exist numbers c and d in [a,b] such that

$$f(c) \ge f(x) \ge f(d)$$
 for all $x \in [a, b]$

Extreme values might happen at endpoints.

If f is continuous on a closed and bounded interval [a, b], then f attains its maximum and minimum value, each at least once. In other words, there exist numbers c and d in [a, b] such that

$$f(c) \ge f(x) \ge f(d)$$
 for all $x \in [a, b]$

- Extreme values might happen at endpoints.
- Extreme values might happen twice.

If f is continuous on a closed interval [a, b], then f attains its maximum and minimum value, each at least once.

Do we need all of the hypotheses of the theorem?

- Do we need all of the hypotheses of the theorem?
- Do we need f to be continuous?
- Do we need the interval to be closed?

- Do we need all of the hypotheses of the theorem?
- Do we need f to be continuous? ?
- Do we need the interval to be closed?

- Do we need all of the hypotheses of the theorem?
- Do we need f to be continuous? Yes.
- Do we need the interval to be closed?

- Do we need all of the hypotheses of the theorem?
- Do we need f to be continuous? Yes.
- Do we need the interval to be closed? ?

- Do we need all of the hypotheses of the theorem?
- Do we need f to be continuous? Yes.
- Do we need the interval to be closed? Yes.

Fermat's Theorem

The next theorem gives a condition that can help to find local maxima and minima.

Let f be a function defined in an open interval around c and such that f'(c) exists. If f has a local maximum or minimum at c, then f'(c) = 0.

Let f be a function defined in an open interval around c and such that f'(c) exists. If f has a local maximum or minimum at c, then f'(c) = 0.

Proof.

• We prove the theorem only when f has a local maximum at c.

Let f be a function defined in an open interval around c and such that f'(c) exists. If f has a local maximum or minimum at c, then f'(c) = 0.

- We prove the theorem only when f has a local maximum at c.
- This means that $f(x) \le f(c)$ for all x close to c.

Let f be a function defined in an open interval around c and such that f'(c) exists. If f has a local maximum or minimum at c, then f'(c) = 0.

- We prove the theorem only when f has a local maximum at c.
- This means that $f(x) \le f(c)$ for all x close to c.
- If |h| is sufficiently small, then $f(c+h) f(c) \le 0$.

Let f be a function defined in an open interval around c and such that f'(c) exists. If f has a local maximum or minimum at c, then f'(c) = 0.

- We prove the theorem only when f has a local maximum at c.
- This means that $f(x) \le f(c)$ for all x close to c.
- If |h| is sufficiently small, then $f(c+h) f(c) \le 0$.
- Suppose *h* is positive, and divide both sides by *h*:

Let f be a function defined in an open interval around c and such that f'(c) exists. If f has a local maximum or minimum at c, then f'(c) = 0.

- We prove the theorem only when f has a local maximum at c.
- This means that $f(x) \le f(c)$ for all x close to c.
- If |h| is sufficiently small, then $f(c+h) f(c) \le 0$.
- Suppose *h* is positive, and divide both sides by *h*:

$$\frac{f(c+h)-f(c)}{h}\leq$$

Let f be a function defined in an open interval around c and such that f'(c) exists. If f has a local maximum or minimum at c, then f'(c) = 0.

- We prove the theorem only when f has a local maximum at c.
- This means that $f(x) \le f(c)$ for all x close to c.
- If |h| is sufficiently small, then $f(c+h) f(c) \le 0$.
- Suppose *h* is positive, and divide both sides by *h*:

$$\lim_{h\to 0^+} \frac{f(c+h) - f(c)}{h} \le \lim_{h\to 0^+} 0$$

Let f be a function defined in an open interval around c and such that f'(c) exists. If f has a local maximum or minimum at c, then f'(c) = 0.

- We prove the theorem only when f has a local maximum at c.
- This means that $f(x) \le f(c)$ for all x close to c.
- If |h| is sufficiently small, then $f(c+h) f(c) \le 0$.
- Suppose *h* is positive, and divide both sides by *h*:

$$\lim_{h\to 0^+} \frac{f(c+h)-f(c)}{h} \leq \lim_{h\to 0^+} 0$$

Let f be a function defined in an open interval around c and such that f'(c) exists. If f has a local maximum or minimum at c, then f'(c) = 0.

- We prove the theorem only when f has a local maximum at c.
- This means that $f(x) \le f(c)$ for all x close to c.
- If |h| is sufficiently small, then $f(c+h) f(c) \le 0$.
- Suppose *h* is positive, and divide both sides by *h*:

$$\lim_{h \to 0^+} \frac{f(c+h) - f(c)}{h} \le \lim_{h \to 0^+} 0 = 0$$

Let f be a function defined in an open interval around c and such that f'(c) exists. If f has a local maximum or minimum at c, then f'(c) = 0.

- We prove the theorem only when f has a local maximum at c.
- This means that $f(x) \le f(c)$ for all x close to c.
- If |h| is sufficiently small, then $f(c+h) f(c) \le 0$.
- Suppose *h* is positive, and divide both sides by *h*:

$$\lim_{h \to 0^+} \frac{f(c+h) - f(c)}{h} \le \lim_{h \to 0^+} 0 = 0$$

Let f be a function defined in an open interval around c and such that f'(c) exists. If f has a local maximum or minimum at c, then f'(c) = 0.

- We prove the theorem only when f has a local maximum at c.
- This means that $f(x) \le f(c)$ for all x close to c.
- If |h| is sufficiently small, then $f(c+h) f(c) \le 0$.
- Suppose *h* is positive, and divide both sides by *h*:

$$f'(c) = \lim_{h \to 0} \frac{f(c+h) - f(c)}{h} = \lim_{h \to 0^+} \frac{f(c+h) - f(c)}{h} \le \lim_{h \to 0^+} 0 = 0$$

Let f be a function defined in an open interval around c and such that f'(c) exists. If f has a local maximum or minimum at c, then f'(c) = 0.

Proof.

- We prove the theorem only when f has a local maximum at c.
- This means that $f(x) \le f(c)$ for all x close to c.
- If |h| is sufficiently small, then $f(c+h) f(c) \le 0$.
- Suppose *h* is positive, and divide both sides by *h*:

$$f'(c) = \lim_{h \to 0} \frac{f(c+h) - f(c)}{h} = \lim_{h \to 0^+} \frac{f(c+h) - f(c)}{h} \le \lim_{h \to 0^+} 0 = 0$$

$$\frac{f(c+h)-f(c)}{h}\geq$$

Let f be a function defined in an open interval around c and such that f'(c) exists. If f has a local maximum or minimum at c, then f'(c) = 0.

Proof.

- We prove the theorem only when f has a local maximum at c.
- This means that $f(x) \le f(c)$ for all x close to c.
- If |h| is sufficiently small, then $f(c+h) f(c) \le 0$.
- Suppose *h* is positive, and divide both sides by *h*:

$$f'(c) = \lim_{h \to 0} \frac{f(c+h) - f(c)}{h} = \lim_{h \to 0^+} \frac{f(c+h) - f(c)}{h} \le \lim_{h \to 0^+} 0 = 0$$

$$\frac{f(c+h)-f(c)}{h} \geq 0$$

Let f be a function defined in an open interval around c and such that f'(c) exists. If f has a local maximum or minimum at c, then f'(c) = 0.

Proof.

- We prove the theorem only when f has a local maximum at c.
- This means that $f(x) \le f(c)$ for all x close to c.
- If |h| is sufficiently small, then $f(c+h) f(c) \le 0$.
- Suppose *h* is positive, and divide both sides by *h*:

$$f'(c) = \lim_{h \to 0} \frac{f(c+h) - f(c)}{h} = \lim_{h \to 0^+} \frac{f(c+h) - f(c)}{h} \le \lim_{h \to 0^+} 0 = 0$$

$$\lim_{h\to 0^-}\frac{f(c+h)-f(c)}{h}\geq \lim_{h\to 0^-}0$$

Let f be a function defined in an open interval around c and such that f'(c) exists. If f has a local maximum or minimum at c, then f'(c) = 0.

Proof.

- We prove the theorem only when f has a local maximum at c.
- This means that $f(x) \le f(c)$ for all x close to c.
- If |h| is sufficiently small, then $f(c+h) f(c) \le 0$.
- Suppose *h* is positive, and divide both sides by *h*:

$$f'(c) = \lim_{h \to 0} \frac{f(c+h) - f(c)}{h} = \lim_{h \to 0^+} \frac{f(c+h) - f(c)}{h} \le \lim_{h \to 0^+} 0 = 0$$

$$\lim_{h\to 0^-}\frac{f(c+h)-f(c)}{h}\geq \lim_{h\to 0^-}0$$

Let f be a function defined in an open interval around c and such that f'(c) exists. If f has a local maximum or minimum at c, then f'(c) = 0.

Proof.

- We prove the theorem only when f has a local maximum at c.
- This means that $f(x) \le f(c)$ for all x close to c.
- If |h| is sufficiently small, then $f(c+h) f(c) \le 0$.
- Suppose *h* is positive, and divide both sides by *h*:

$$f'(c) = \lim_{h \to 0} \frac{f(c+h) - f(c)}{h} = \lim_{h \to 0^+} \frac{f(c+h) - f(c)}{h} \le \lim_{h \to 0^+} 0 = 0$$

$$\lim_{h \to 0^{-}} \frac{f(c+h) - f(c)}{h} \ge \lim_{h \to 0^{-}} 0 = 0$$

Let f be a function defined in an open interval around c and such that f'(c) exists. If f has a local maximum or minimum at c, then f'(c) = 0.

Proof.

- We prove the theorem only when f has a local maximum at c.
- This means that $f(x) \le f(c)$ for all x close to c.
- If |h| is sufficiently small, then $f(c+h) f(c) \le 0$.
- Suppose *h* is positive, and divide both sides by *h*:

$$f'(c) = \lim_{h \to 0} \frac{f(c+h) - f(c)}{h} = \lim_{h \to 0^+} \frac{f(c+h) - f(c)}{h} \le \lim_{h \to 0^+} 0 = 0$$

$$\lim_{h \to 0^{-}} \frac{f(c+h) - f(c)}{h} \ge \lim_{h \to 0^{-}} 0 = 0$$

Let f be a function defined in an open interval around c and such that f'(c) exists. If f has a local maximum or minimum at c, then f'(c) = 0.

Proof.

- We prove the theorem only when f has a local maximum at c.
- This means that $f(x) \le f(c)$ for all x close to c.
- If |h| is sufficiently small, then $f(c+h) f(c) \le 0$.
- Suppose *h* is positive, and divide both sides by *h*:

$$f'(c) = \lim_{h \to 0} \frac{f(c+h) - f(c)}{h} = \lim_{h \to 0^+} \frac{f(c+h) - f(c)}{h} \le \lim_{h \to 0^+} 0 = 0$$

$$f'(c) = \lim_{h \to 0} \frac{f(c+h) - f(c)}{h} = \lim_{h \to 0^{-}} \frac{f(c+h) - f(c)}{h} \ge \lim_{h \to 0^{-}} 0 = 0$$

Let f be a function defined in an open interval around c and such that f'(c) exists. If f has a local maximum or minimum at c, then f'(c) = 0.

Proof.

- We prove the theorem only when f has a local maximum at c.
- This means that $f(x) \le f(c)$ for all x close to c.
- If |h| is sufficiently small, then $f(c+h) f(c) \le 0$.
- Suppose *h* is positive, and divide both sides by *h*:

$$f'(c) = \lim_{h \to 0} \frac{f(c+h) - f(c)}{h} = \lim_{h \to 0^+} \frac{f(c+h) - f(c)}{h} \le \lim_{h \to 0^+} 0 = 0$$

• Suppose *h* is negative, and divide both sides by *h*:

$$f'(c) = \lim_{h \to 0} \frac{f(c+h) - f(c)}{h} = \lim_{h \to 0^{-}} \frac{f(c+h) - f(c)}{h} \ge \lim_{h \to 0^{-}} 0 = 0$$

• Therefore $f'(c) \leq 0$

Let f be a function defined in an open interval around c and such that f'(c) exists. If f has a local maximum or minimum at c, then f'(c) = 0.

Proof.

- We prove the theorem only when f has a local maximum at c.
- This means that $f(x) \le f(c)$ for all x close to c.
- If |h| is sufficiently small, then $f(c+h) f(c) \le 0$.
- Suppose *h* is positive, and divide both sides by *h*:

$$f'(c) = \lim_{h \to 0} \frac{f(c+h) - f(c)}{h} = \lim_{h \to 0^+} \frac{f(c+h) - f(c)}{h} \le \lim_{h \to 0^+} 0 = 0$$

• Suppose *h* is negative, and divide both sides by *h*:

$$f'(c) = \lim_{h \to 0} \frac{f(c+h) - f(c)}{h} = \lim_{h \to 0^-} \frac{f(c+h) - f(c)}{h} \ge \lim_{h \to 0^-} 0 = 0$$

• Therefore $f'(c) \leq 0$ and $f'(c) \geq 0$

Ш

Let f be a function defined in an open interval around c and such that f'(c) exists. If f has a local maximum or minimum at c, then f'(c) = 0.

Proof.

- We prove the theorem only when f has a local maximum at c.
- This means that $f(x) \le f(c)$ for all x close to c.
- If |h| is sufficiently small, then $f(c+h) f(c) \le 0$.
- Suppose *h* is positive, and divide both sides by *h*:

$$f'(c) = \lim_{h \to 0} \frac{f(c+h) - f(c)}{h} = \lim_{h \to 0^+} \frac{f(c+h) - f(c)}{h} \le \lim_{h \to 0^+} 0 = 0$$

• Suppose *h* is negative, and divide both sides by *h*:

$$f'(c) = \lim_{h \to 0} \frac{f(c+h) - f(c)}{h} = \lim_{h \to 0^{-}} \frac{f(c+h) - f(c)}{h} \ge \lim_{h \to 0^{-}} 0 = 0$$

• Therefore $f'(c) \le 0$ and $f'(c) \ge 0$, so f'(c) = 0.

Ш

Let f be a function defined in an open interval around c and such that f'(c) exists. If f has a local maximum or minimum at c, then f'(c) = 0.

Let f be a function defined in an open interval around c and such that f'(c) exists. If f has a local maximum or minimum at c, then f'(c) = 0.

What does Fermat's Theorem not say?

Let f be a function defined in an open interval around c and such that f'(c) exists. If f has a local maximum or minimum at c, then f'(c) = 0.

What does Fermat's Theorem not say?

• Let
$$f(x) = x^3$$
.

Let f be a function defined in an open interval around c and such that f'(c) exists. If f has a local maximum or minimum at c, then f'(c) = 0.

What does Fermat's Theorem not say?

- Let $f(x) = x^3$.
- Then f'(x) =?
- f'(x) = 0 when x = ?

Let f be a function defined in an open interval around c and such that f'(c) exists. If f has a local maximum or minimum at c, then f'(c) = 0.

What does Fermat's Theorem not say?

- Let $f(x) = x^3$.
- Then f'(x) =?
- f'(x) = 0 when x = ?

Let f be a function defined in an open interval around c and such that f'(c) exists. If f has a local maximum or minimum at c, then f'(c) = 0.

What does Fermat's Theorem not say?

- Let $f(x) = x^3$.
- Then $f'(x) = 3x^2$.
- f'(x) = 0 when x = ?

Let f be a function defined in an open interval around c and such that f'(c) exists. If f has a local maximum or minimum at c, then f'(c) = 0.

What does Fermat's Theorem not say?

- Let $f(x) = x^3$.
- Then $f'(x) = 3x^2$.
- f'(x) = 0 when x = ?

Let f be a function defined in an open interval around c and such that f'(c) exists. If f has a local maximum or minimum at c, then f'(c) = 0.

What does Fermat's Theorem not say?

- Let $f(x) = x^3$.
- Then $f'(x) = 3x^2$.
- f'(x) = 0 when x = 0.

Let f be a function defined in an open interval around c and such that f'(c) exists. If f has a local maximum or minimum at c, then f'(c) = 0.

What does Fermat's Theorem not say?

- Let $f(x) = x^3$.
- Then $f'(x) = 3x^2$.
- f'(x) = 0 when x = 0.
- But f has no local maximum or minimum at 0!

Let f be a function defined in an open interval around c and such that f'(c) exists. If f has a local maximum or minimum at c, then f'(c) = 0.

What does Fermat's Theorem not say?

Example

- Let $f(x) = x^3$.
- Then $f'(x) = 3x^2$.
- f'(x) = 0 when x = 0.
- But f has no local maximum or minimum at 0!

Fermat's Theorem does not say "if f'(c) = 0, then f has a local maximum or a local minimum at c."

Let f be a function defined in an open interval around c and such that f'(c) exists. If f has a local maximum or minimum at c, then f'(c) = 0.

What does Fermat's Theorem not say?

Let f be a function defined in an open interval around c and such that f'(c) exists. If f has a local maximum or minimum at c, then f'(c) = 0.

What does Fermat's Theorem not say?

Example

• Let f(x) = |x|.

Let f be a function defined in an open interval around c and such that f'(c) exists. If f has a local maximum or minimum at c, then f'(c) = 0.

What does Fermat's Theorem not say?

- Let f(x) = |x|.
- Then f has a local minimum at ?

Let f be a function defined in an open interval around c and such that f'(c) exists. If f has a local maximum or minimum at c, then f'(c) = 0.

What does Fermat's Theorem not say?

- Let f(x) = |x|.
- Then f has a local minimum at 0.

Let f be a function defined in an open interval around c and such that f'(c) exists. If f has a local maximum or minimum at c, then f'(c) = 0.

What does Fermat's Theorem not say?

- Let f(x) = |x|.
- Then f has a local minimum at 0.
- But f'(0) doesn't exist!

Let f be a function defined in an open interval around c and such that f'(c) exists. If f has a local maximum or minimum at c, then f'(c) = 0.

What does Fermat's Theorem not say?

Example

- Let f(x) = |x|.
- Then f has a local minimum at 0.
- But f'(0) doesn't exist!

Fermat's Theorem does not say "if f has a local maximum or minimum at c, then f'(c) exists."

The Mean Value Theorem

- The first derivative test, the results on concavity and curve sketching, as well as the (soon to be covered) topics of linear approximation and integration depend on an important theorem.
- This is the Mean Value Theorem.
- We will give a complete proof of the Mean Value Theorem.
- We start with a prerequisite result called Rolle's Theorem.

Theorem (Rolle's Theorem)

Let f be a function that satisfies the following three conditions:

- f is continuous on the closed interval [a, b].
- f is differentiable on the open interval (a, b).
- f(a) = f(b).

Then there is a number c in (a, b) such that f'(c) = 0.

Theorem (Rolle's Theorem)

Let f be a function that satisfies the following three conditions:

- f is continuous on the closed interval [a, b].
- f is differentiable on the open interval (a, b).
- f(a) = f(b).

Then there is a number c in (a, b) such that f'(c) = 0.

The proof breaks down into three cases:

- of is a horizontal line.
- 2 f(x) > f(a) for some x in (a, b).
- f(x) < f(a) for some x in (a, b).

Theorem (Rolle's Theorem)

Let f be a function that satisfies the following three conditions:

- f is continuous on the closed interval [a, b].
- f is differentiable on the open interval (a, b).
- f(a) = f(b).

Then there is a number c in (a, b) such that f'(c) = 0.

The proof breaks down into three cases:

- f is a horizontal line.
- 2 f(x) > f(a) for some x in (a, b).
- f(x) < f(a) for some x in (a, b).

Theorem (Rolle's Theorem)

Let f be a function that satisfies the following three conditions:

- f is continuous on the closed interval [a, b].
- f is differentiable on the open interval (a, b).
- f(a) = f(b).

Then there is a number c in (a, b) such that f'(c) = 0.

The proof breaks down into three cases:

- f is a horizontal line.
- 2 f(x) > f(a) for some x in (a, b).
- f(x) < f(a) for some x in (a, b).

С

Theorem (Rolle's Theorem)

Let f be a function that satisfies the following three conditions:

- f is continuous on the closed interval [a, b].
- f is differentiable on the open interval (a, b).
- f(a) = f(b).

Then there is a number c in (a, b) such that f'(c) = 0.

The proof breaks down into three cases:

- 1 f is a horizontal line.
- 2 f(x) > f(a) for some x in (a, b).
- f(x) < f(a) for some x in (a, b).

Theorem (Rolle's Theorem)

Let f be a function that satisfies the following three conditions:

- f is continuous on the closed interval [a, b].
- f is differentiable on the open interval (a, b).
- f(a) = f(b).

Then there is a number c in (a, b) such that f'(c) = 0.

Proof.

f is a horizontal line.

Theorem (Rolle's Theorem)

Let f be a function that satisfies the following three conditions:

- f is continuous on the closed interval [a, b].
- f is differentiable on the open interval (a, b).
- f(a) = f(b).

Then there is a number c in (a, b) such that f'(c) = 0.

- f is a horizontal line.
- Then f'(x) =

Theorem (Rolle's Theorem)

Let f be a function that satisfies the following three conditions:

- f is continuous on the closed interval [a, b].
- f is differentiable on the open interval (a, b).
- f(a) = f(b).

Then there is a number c in (a, b) such that f'(c) = 0.

- f is a horizontal line.
- Then f'(x) = 0.

Theorem (Rolle's Theorem)

Let f be a function that satisfies the following three conditions:

- f is continuous on the closed interval [a, b].
- f is differentiable on the open interval (a, b).
- f(a) = f(b).

Then there is a number c in (a, b) such that f'(c) = 0.

- f is a horizontal line.
 - Then f'(x) = 0.
 - Therefore we can take c to be any number in (a, b).

Theorem (Rolle's Theorem)

Let f be a function that satisfies the following three conditions:

- f is continuous on the closed interval [a, b].
- f is differentiable on the open interval (a, b).
- f(a) = f(b).

Then there is a number c in (a, b) such that f'(c) = 0.

Proof.

2 f(x) > f(a) for some x in (a, b).

Theorem (Rolle's Theorem)

Let f be a function that satisfies the following three conditions:

- f is continuous on the closed interval [a, b].
- f is differentiable on the open interval (a, b).
- f(a) = f(b).

Then there is a number c in (a, b) such that f'(c) = 0.

- 2 f(x) > f(a) for some x in (a, b).
 - By the Extreme Value Theorem, f has a maximum in [a, b].

Theorem (Rolle's Theorem)

Let f be a function that satisfies the following three conditions:

- f is continuous on the closed interval [a, b].
- f is differentiable on the open interval (a, b).
- f(a) = f(b).

Then there is a number c in (a, b) such that f'(c) = 0.

- 2 f(x) > f(a) for some x in (a, b).
 - By the Extreme Value Theorem, f has a maximum in [a, b].
 - Since f(x) > f(a), this value is attained at some c in (a, b).

Theorem (Rolle's Theorem)

Let f be a function that satisfies the following three conditions:

- f is continuous on the closed interval [a, b].
- f is differentiable on the open interval (a, b).
- f(a) = f(b).

Then there is a number c in (a, b) such that f'(c) = 0.

- 2 f(x) > f(a) for some x in (a, b).
 - By the Extreme Value Theorem, f has a maximum in [a, b].
 - Since f(x) > f(a), this value is attained at some c in (a, b).
 - Fermat's Theorem: f'(c) = 0.

Theorem (Rolle's Theorem)

Let f be a function that satisfies the following three conditions:

- f is continuous on the closed interval [a, b].
- f is differentiable on the open interval (a, b).
- f(a) = f(b).

Then there is a number c in (a, b) such that f'(c) = 0.

Proof.

3 f(x) < f(a) for some x in (a, b).

Theorem (Rolle's Theorem)

Let f be a function that satisfies the following three conditions:

- f is continuous on the closed interval [a, b].
- f is differentiable on the open interval (a, b).
- f(a) = f(b).

Then there is a number c in (a, b) such that f'(c) = 0.

- f(x) < f(a) for some x in (a, b).
 - By the Extreme Value Theorem, f has a minimum in [a, b].

Theorem (Rolle's Theorem)

Let f be a function that satisfies the following three conditions:

- f is continuous on the closed interval [a, b].
- f is differentiable on the open interval (a, b).
- f(a) = f(b).

Then there is a number c in (a, b) such that f'(c) = 0.

- f(x) < f(a) for some x in (a, b).
 - By the Extreme Value Theorem, f has a minimum in [a, b].
 - Since f(x) < f(a), this value is attained at some c in (a, b).

Theorem (Rolle's Theorem)

Let f be a function that satisfies the following three conditions:

- f is continuous on the closed interval [a, b].
- f is differentiable on the open interval (a, b).
- f(a) = f(b).

Then there is a number c in (a, b) such that f'(c) = 0.

- 3 f(x) < f(a) for some x in (a, b).
 - By the Extreme Value Theorem, f has a minimum in [a, b].
 - Since f(x) < f(a), this value is attained at some c in (a, b).
 - Fermat's Theorem: f'(c) = 0.

Example

Prove that the function $f(x) = x^3 + 4x - 4$ has exactly one real root.

Example

Prove that the function $f(x) = x^3 + 4x - 4$ has exactly one real root.

- First show that it has a real root:
- f(0) = ? .
- f(1) = ?.

Example

Prove that the function $f(x) = x^3 + 4x - 4$ has exactly one real root.

- First show that it has a real root:
- f(0) = ? .
- f(1) = ?.

Example

- First show that it has a real root:
- f(0) = -4.
- f(1) = ?.

Example

- First show that it has a real root:
- f(0) = -4.
- f(1) = ?.

Example

- First show that it has a real root:
- f(0) = -4.
- f(1) = 1.

Example

- First show that it has a real root:
- f(0) = -4.
- f(1) = 1.
- Therefore by the Intermediate Value Theorem *f* has a root somewhere between 0 and 1.

Example

- First show that it has a real root:
- f(0) = -4.
- f(1) = 1.
- Therefore by the Intermediate Value Theorem f has a root somewhere between 0 and 1.
- Now suppose that it has more than one root and use Rolle's Theorem to get a contradiction.

Example

- First show that it has a real root:
- f(0) = -4.
- f(1) = 1.
- Therefore by the Intermediate Value Theorem f has a root somewhere between 0 and 1.
- Now suppose that it has more than one root and use Rolle's Theorem to get a contradiction.
- Suppose it has two real roots a and b. Then f(a) = 0 = f(b).

Example

- First show that it has a real root:
- f(0) = -4.
- f(1) = 1.
- Therefore by the Intermediate Value Theorem f has a root somewhere between 0 and 1.
- Now suppose that it has more than one root and use Rolle's Theorem to get a contradiction.
- Suppose it has two real roots a and b. Then f(a) = 0 = f(b).
- *f* is a polynomial, so it is continuous and differentiable everywhere.

Example

- First show that it has a real root:
- f(0) = -4.
- f(1) = 1.
- Therefore by the Intermediate Value Theorem f has a root somewhere between 0 and 1.
- Now suppose that it has more than one root and use Rolle's Theorem to get a contradiction.
- Suppose it has two real roots a and b. Then f(a) = 0 = f(b).
- *f* is a polynomial, so it is continuous and differentiable everywhere.
- By Rolle's Theorem, there is a c in (a, b) such that f'(c) = 0.

Example

- First show that it has a real root:
- f(0) = -4.
- f(1) = 1.
- Therefore by the Intermediate Value Theorem f has a root somewhere between 0 and 1.
- Now suppose that it has more than one root and use Rolle's Theorem to get a contradiction.
- Suppose it has two real roots a and b. Then f(a) = 0 = f(b).
- *f* is a polynomial, so it is continuous and differentiable everywhere.
- By Rolle's Theorem, there is a c in (a, b) such that f'(c) = 0.
- f'(x) = ?

Example

- First show that it has a real root:
- f(0) = -4.
- f(1) = 1.
- Therefore by the Intermediate Value Theorem f has a root somewhere between 0 and 1.
- Now suppose that it has more than one root and use Rolle's Theorem to get a contradiction.
- Suppose it has two real roots a and b. Then f(a) = 0 = f(b).
- *f* is a polynomial, so it is continuous and differentiable everywhere.
- By Rolle's Theorem, there is a c in (a, b) such that f'(c) = 0.
- $f'(x) = 3x^2 + 4$.

Example

- First show that it has a real root:
- f(0) = -4.
- f(1) = 1.
- Therefore by the Intermediate Value Theorem f has a root somewhere between 0 and 1.
- Now suppose that it has more than one root and use Rolle's Theorem to get a contradiction.
- Suppose it has two real roots a and b. Then f(a) = 0 = f(b).
- *f* is a polynomial, so it is continuous and differentiable everywhere.
- By Rolle's Theorem, there is a c in (a, b) such that f'(c) = 0.
- $f'(x) = 3x^2 + 4$.
- Therefore f'(x) is always positive.

Example

- First show that it has a real root:
- f(0) = -4.
- f(1) = 1.
- Therefore by the Intermediate Value Theorem *f* has a root somewhere between 0 and 1.
- Now suppose that it has more than one root and use Rolle's Theorem to get a contradiction.
- Suppose it has two real roots a and b. Then f(a) = 0 = f(b).
- *f* is a polynomial, so it is continuous and differentiable everywhere.
- By Rolle's Theorem, there is a c in (a, b) such that f'(c) = 0.
- $f'(x) = 3x^2 + 4$.
- Therefore f'(x) is always positive.
- Contradiction.

Theorem (The Mean Value Theorem)

Theorem (The Mean Value Theorem)

- Consider the secant line from (a, f(a)) to (b, f(b)).
- Slope: *m* =

Theorem (The Mean Value Theorem)

- Consider the secant line from (a, f(a)) to (b, f(b)).
- Slope: *m* = ?

Theorem (The Mean Value Theorem)

- Consider the secant line from (a, f(a)) to (b, f(b)).
- Slope: $m = \frac{f(b)-f(a)}{b-a}$.

Theorem (The Mean Value Theorem)

- Consider the secant line from (a, f(a)) to (b, f(b)).
- Slope: $m = \frac{f(b)-f(a)}{b-a}$.
- The Mean Value Theorem says that there exists a number c in (a, b) such that the slope of the tangent at c equals m.

Theorem (The Mean Value Theorem)

- Consider the secant line from (a, f(a)) to (b, f(b)).
- Slope: $m = \frac{f(b)-f(a)}{b-a}$.
- The Mean Value Theorem says that there exists a number c in (a, b) such that the slope of the tangent at c equals m.
- More than one number is allowed.

Theorem (The Mean Value Theorem)

Let f be a function that is continuous on [a, b] and differentiable on (a, b). Then there is a number c in (a, b) such that $f'(c) = \frac{f(b) - f(a)}{b - a}$.

Theorem (The Mean Value Theorem)

Let f be a function that is continuous on [a, b] and differentiable on (a, b). Then there is a number c in (a, b) such that $f'(c) = \frac{f(b) - f(a)}{b - a}$.

Proof.

• Let L be the secant line from (a, f(a)) to (b, f(b)).

Theorem (The Mean Value Theorem)

Let f be a function that is continuous on [a, b] and differentiable on (a, b). Then there is a number c in (a, b) such that $f'(c) = \frac{f(b) - f(a)}{b - a}$.

- Let L be the secant line from (a, f(a)) to (b, f(b)).
- L(x) = ? + ? (x ?).

Theorem (The Mean Value Theorem)

Let f be a function that is continuous on [a, b] and differentiable on (a, b). Then there is a number c in (a, b) such that $f'(c) = \frac{f(b) - f(a)}{b - a}$.

- Let L be the secant line from (a, f(a)) to (b, f(b)).
- L(x) =? $+ \frac{f(b)-f(a)}{b-a}(x-$?).

Theorem (The Mean Value Theorem)

Let f be a function that is continuous on [a, b] and differentiable on (a, b). Then there is a number c in (a, b) such that $f'(c) = \frac{f(b) - f(a)}{b - a}$.

- Let L be the secant line from (a, f(a)) to (b, f(b)).
- $L(x) = ? + \frac{f(b)-f(a)}{b-a}(x-?).$

Theorem (The Mean Value Theorem)

Let f be a function that is continuous on [a, b] and differentiable on (a, b). Then there is a number c in (a, b) such that $f'(c) = \frac{f(b) - f(a)}{b - a}$.

- Let L be the secant line from (a, f(a)) to (b, f(b)).
- $L(x) = \frac{f(a)}{b-a} + \frac{f(b)-f(a)}{b-a}(x-a)$.

Theorem (The Mean Value Theorem)

Let f be a function that is continuous on [a, b] and differentiable on (a, b). Then there is a number c in (a, b) such that $f'(c) = \frac{f(b) - f(a)}{b - a}$.

- Let L be the secant line from (a, f(a)) to (b, f(b)).
- $L(x) = f(a) + \frac{f(b)-f(a)}{b-a}(x-a)$.
- Consider the function $(f-L)(x) = f(x) f(a) \frac{f(b)-f(a)}{b-a}(x-a)$.

Theorem (The Mean Value Theorem)

Let f be a function that is continuous on [a, b] and differentiable on (a, b). Then there is a number c in (a, b) such that $f'(c) = \frac{f(b) - f(a)}{b - a}$.

- Let L be the secant line from (a, f(a)) to (b, f(b)).
- $L(x) = f(a) + \frac{f(b)-f(a)}{b-a}(x-a)$.
- Consider the function $(f-L)(x) = f(x) f(a) \frac{f(b)-f(a)}{b-a}(x-a)$.
- L is linear, so it's continuous and differentiable everywhere.

Theorem (The Mean Value Theorem)

Let f be a function that is continuous on [a, b] and differentiable on (a, b). Then there is a number c in (a, b) such that $f'(c) = \frac{f(b) - f(a)}{b - a}$.

- Let L be the secant line from (a, f(a)) to (b, f(b)).
- $L(x) = f(a) + \frac{f(b)-f(a)}{b-a}(x-a)$.
- Consider the function $(f-L)(x) = f(x) f(a) \frac{f(b)-f(a)}{b-a}(x-a)$.
- L is linear, so it's continuous and differentiable everywhere.
- f L is continuous on [a, b]

Theorem (The Mean Value Theorem)

Let f be a function that is continuous on [a, b] and differentiable on (a, b). Then there is a number c in (a, b) such that $f'(c) = \frac{f(b) - f(a)}{b - a}$.

- Let L be the secant line from (a, f(a)) to (b, f(b)).
- $L(x) = f(a) + \frac{f(b)-f(a)}{b-a}(x-a)$.
- Consider the function $(f-L)(x) = f(x) f(a) \frac{f(b)-f(a)}{b-a}(x-a)$.
- L is linear, so it's continuous and differentiable everywhere.
- f L is continuous on [a, b] and differentiable on (a, b).

Theorem (The Mean Value Theorem)

Let f be a function that is continuous on [a, b] and differentiable on (a, b). Then there is a number c in (a, b) such that $f'(c) = \frac{f(b) - f(a)}{b - a}$.

- Let L be the secant line from (a, f(a)) to (b, f(b)).
- $L(x) = f(a) + \frac{f(b)-f(a)}{b-a}(x-a)$.
- Consider the function $(f-L)(x) = f(x) f(a) \frac{f(b)-f(a)}{b-a}(x-a)$.
- L is linear, so it's continuous and differentiable everywhere.
- f L is continuous on [a, b] and differentiable on (a, b).
- (f L)(a) = ?
- (f-L)(b) = ?

Theorem (The Mean Value Theorem)

Let f be a function that is continuous on [a, b] and differentiable on (a, b). Then there is a number c in (a, b) such that $f'(c) = \frac{f(b) - f(a)}{b - a}$.

- Let L be the secant line from (a, f(a)) to (b, f(b)).
- $L(x) = f(a) + \frac{f(b)-f(a)}{b-a}(x-a)$.
- Consider the function $(f-L)(x) = f(x) f(a) \frac{f(b)-f(a)}{b-a}(x-a)$.
- L is linear, so it's continuous and differentiable everywhere.
- f L is continuous on [a, b] and differentiable on (a, b).
- (f L)(a) = ?
- (f-L)(b) = ?

Theorem (The Mean Value Theorem)

Let f be a function that is continuous on [a, b] and differentiable on (a, b). Then there is a number c in (a, b) such that $f'(c) = \frac{f(b) - f(a)}{b - a}$.

- Let L be the secant line from (a, f(a)) to (b, f(b)).
- $L(x) = f(a) + \frac{f(b)-f(a)}{b-a}(x-a)$.
- Consider the function $(f-L)(x) = f(x) f(a) \frac{f(b) f(a)}{b-a}(x-a)$.
- L is linear, so it's continuous and differentiable everywhere.
- f L is continuous on [a, b] and differentiable on (a, b).
- $(f-L)(a) = f(a) f(a) \frac{f(b)-f(a)}{b-a}(a-a) = 0.$
- (f-L)(b) = ?

Theorem (The Mean Value Theorem)

Let f be a function that is continuous on [a, b] and differentiable on (a, b). Then there is a number c in (a, b) such that $f'(c) = \frac{f(b) - f(a)}{b - a}$.

- Let L be the secant line from (a, f(a)) to (b, f(b)).
- $L(x) = f(a) + \frac{f(b)-f(a)}{b-a}(x-a)$.
- Consider the function $(f-L)(x) = f(x) f(a) \frac{f(b)-f(a)}{b-a}(x-a)$.
- L is linear, so it's continuous and differentiable everywhere.
- f L is continuous on [a, b] and differentiable on (a, b).
- $(f-L)(a) = f(a) f(a) \frac{f(b)-f(a)}{b-a}(a-a) = 0.$
- (f L)(b) = ?

Theorem (The Mean Value Theorem)

Let f be a function that is continuous on [a, b] and differentiable on (a, b). Then there is a number c in (a, b) such that $f'(c) = \frac{f(b) - f(a)}{b - a}$.

- Let L be the secant line from (a, f(a)) to (b, f(b)).
- $L(x) = f(a) + \frac{f(b)-f(a)}{b-a}(x-a)$.
- Consider the function $(f-L)(x) = f(x) f(a) \frac{f(b) f(a)}{b-a}(x-a)$.
- L is linear, so it's continuous and differentiable everywhere.
- f L is continuous on [a, b] and differentiable on (a, b).
- $(f-L)(a) = f(a) f(a) \frac{f(b)-f(a)}{b-a}(a-a) = 0.$
- $(f-L)(b) = f(b) f(a) \frac{f(b)-f(a)}{b-a}(b-a) = 0.$

Theorem (The Mean Value Theorem)

Let f be a function that is continuous on [a, b] and differentiable on (a, b). Then there is a number c in (a, b) such that $f'(c) = \frac{f(b) - f(a)}{b - a}$.

- Let L be the secant line from (a, f(a)) to (b, f(b)).
- $L(x) = f(a) + \frac{f(b)-f(a)}{b-a}(x-a)$.
- Consider the function $(f L)(x) = f(x) f(a) \frac{f(b) f(a)}{b a}(x a)$.
- *L* is linear, so it's continuous and differentiable everywhere.
- f L is continuous on [a, b] and differentiable on (a, b).
- $(f-L)(a) = f(a) f(a) \frac{f(b)-f(a)}{b-a}(a-a) = 0.$
- $(f-L)(b) = f(b) f(a) \frac{f(b)-f(a)}{b-a}(b-a) = 0.$
- Rolle's Theorem: There exists c in (a, b) such that 0 = (f L)'(c) = f'(c) L'(c)

Theorem (The Mean Value Theorem)

Let f be a function that is continuous on [a, b] and differentiable on (a, b). Then there is a number c in (a, b) such that $f'(c) = \frac{f(b) - f(a)}{b - a}$.

- Let L be the secant line from (a, f(a)) to (b, f(b)).
- $L(x) = f(a) + \frac{f(b)-f(a)}{b-a}(x-a)$.
- Consider the function $(f L)(x) = f(x) f(a) \frac{f(b) f(a)}{b a}(x a)$.
- *L* is linear, so it's continuous and differentiable everywhere.
- f L is continuous on [a, b] and differentiable on (a, b).
- $(f-L)(a) = f(a) f(a) \frac{f(b)-f(a)}{b-a}(a-a) = 0.$
- $(f-L)(b) = f(b) f(a) \frac{f(b)-f(a)}{b-a}(b-a) = 0.$
- Rolle's Theorem: There exists c in (a, b) such that 0 = (f L)'(c) = f'(c) L'(c) = f'(c) ?

Theorem (The Mean Value Theorem)

Let f be a function that is continuous on [a, b] and differentiable on (a, b). Then there is a number c in (a, b) such that $f'(c) = \frac{f(b) - f(a)}{b - a}$.

- Let L be the secant line from (a, f(a)) to (b, f(b)).
- $L(x) = f(a) + \frac{f(b)-f(a)}{b-a}(x-a)$.
- Consider the function $(f-L)(x) = f(x) f(a) \frac{f(b) f(a)}{b-a}(x-a)$.
- L is linear, so it's continuous and differentiable everywhere.
- f L is continuous on [a, b] and differentiable on (a, b).
- $(f-L)(a) = f(a) f(a) \frac{f(b)-f(a)}{b-a}(a-a) = 0.$
- $(f-L)(b) = f(b) f(a) \frac{f(b)-f(a)}{b-a}(b-a) = 0.$
- Rolle's Theorem: There exists c in (a, b) such that $0 = (f L)'(c) = f'(c) \frac{L'(c)}{b-a} = f'(c) \frac{f(b)-f(a)}{b-a}$

Theorem (The Mean Value Theorem)

Let f be a function that is continuous on [a, b] and differentiable on (a, b). Then there is a number c in (a, b) such that $f'(c) = \frac{f(b) - f(a)}{b - a}$.

- Let L be the secant line from (a, f(a)) to (b, f(b)).
- $L(x) = f(a) + \frac{f(b)-f(a)}{b-a}(x-a)$.
- Consider the function $(f L)(x) = f(x) f(a) \frac{f(b) f(a)}{b a}(x a)$.
- L is linear, so it's continuous and differentiable everywhere.
- f L is continuous on [a, b] and differentiable on (a, b).
- $(f-L)(a) = f(a) f(a) \frac{f(b)-f(a)}{b-a}(a-a) = 0.$
- $(f-L)(b) = f(b) f(a) \frac{f(b)-f(a)}{b-a}(b-a) = 0.$
- Rolle's Theorem: There exists c in (a, b) such that $0 = (f L)'(c) = f'(c) L'(c) = f'(c) \frac{f(b) f(a)}{b}$

Theorem

If f'(x) = 0 for all x in an interval (a, b), then f is constant on (a, b).

Theorem

If f'(x) = 0 for all x in an interval (a, b), then f is constant on (a, b).

Proof.

• Let x_1 and x_2 be any numbers in (a, b) with $x_1 < x_2$.

Theorem

If f'(x) = 0 for all x in an interval (a, b), then f is constant on (a, b).

- Let x_1 and x_2 be any numbers in (a, b) with $x_1 < x_2$.
- f is differentiable on (a, b).

Theorem

If f'(x) = 0 for all x in an interval (a, b), then f is constant on (a, b).

- Let x_1 and x_2 be any numbers in (a, b) with $x_1 < x_2$.
- f is differentiable on (a, b).
- Therefore f is differentiable on (x_1, x_2) and continuous on $[x_1, x_2]$.

Theorem

If f'(x) = 0 for all x in an interval (a, b), then f is constant on (a, b).

- Let x_1 and x_2 be any numbers in (a, b) with $x_1 < x_2$.
- f is differentiable on (a, b).
- Therefore f is differentiable on (x_1, x_2) and continuous on $[x_1, x_2]$.
- Mean Value Theorem: There exists c in (x_1, x_2) such that

$$f'(c) = \frac{f(x_2) - f(x_1)}{x_2 - x_1}$$

Theorem

If f'(x) = 0 for all x in an interval (a, b), then f is constant on (a, b).

- Let x_1 and x_2 be any numbers in (a, b) with $x_1 < x_2$.
- f is differentiable on (a, b).
- Therefore f is differentiable on (x_1, x_2) and continuous on $[x_1, x_2]$.
- Mean Value Theorem: There exists c in (x_1, x_2) such that

$$f'(c) = \frac{f(x_2) - f(x_1)}{x_2 - x_1}$$
$$f'(c)(x_2 - x_1) = f(x_2) - f(x_1)$$

Theorem

If f'(x) = 0 for all x in an interval (a, b), then f is constant on (a, b).

- Let x_1 and x_2 be any numbers in (a, b) with $x_1 < x_2$.
- f is differentiable on (a, b).
- Therefore f is differentiable on (x_1, x_2) and continuous on $[x_1, x_2]$.
- Mean Value Theorem: There exists c in (x_1, x_2) such that

$$f'(c) = \frac{f(x_2) - f(x_1)}{x_2 - x_1}$$
$$f'(c)(x_2 - x_1) = f(x_2) - f(x_1)$$
$$0 = f(x_2) - f(x_1)$$

Theorem

If f'(x) = 0 for all x in an interval (a, b), then f is constant on (a, b).

- Let x_1 and x_2 be any numbers in (a, b) with $x_1 < x_2$.
- f is differentiable on (a, b).
- Therefore f is differentiable on (x_1, x_2) and continuous on $[x_1, x_2]$.
- Mean Value Theorem: There exists c in (x_1, x_2) such that

$$f'(c) = \frac{f(x_2) - f(x_1)}{x_2 - x_1}$$

$$f'(c)(x_2 - x_1) = f(x_2) - f(x_1)$$

$$0 = f(x_2) - f(x_1)$$

$$f(x_1) = f(x_2)$$

Theorem

If f'(x) = 0 for all x in an interval (a, b), then f is constant on (a, b).

Proof.

- Let x_1 and x_2 be any numbers in (a, b) with $x_1 < x_2$.
- f is differentiable on (a, b).
- Therefore f is differentiable on (x_1, x_2) and continuous on $[x_1, x_2]$.
- Mean Value Theorem: There exists c in (x_1, x_2) such that

$$f'(c) = \frac{f(x_2) - f(x_1)}{x_2 - x_1}$$

$$f'(c)(x_2 - x_1) = f(x_2) - f(x_1)$$

$$0 = f(x_2) - f(x_1)$$

$$f(x_1) = f(x_2)$$

Therefore f is constant on (a, b).

Corollary

If f'(x) = g'(x) for all x in an interval (a, b), then f - g is constant on (a, b); that is, f(x) = g(x) + c where c is constant.

Corollary

If f'(x) = g'(x) for all x in an interval (a, b), then f - g is constant on (a, b); that is, f(x) = g(x) + c where c is constant.

Proof.

• Let F(x) = f(x) - g(x).

Corollary

If f'(x) = g'(x) for all x in an interval (a, b), then f - g is constant on (a, b); that is, f(x) = g(x) + c where c is constant.

- Let F(x) = f(x) g(x).
- Then F'(x) = f'(x) g'(x) = 0 for all x in (a, b).

Corollary

If f'(x) = g'(x) for all x in an interval (a, b), then f - g is constant on (a, b); that is, f(x) = g(x) + c where c is constant.

- Let F(x) = f(x) g(x).
- Then F'(x) = f'(x) g'(x) = 0 for all x in (a, b).
- By the previous theorem, F is constant, so f g is constant.

