Scheikunde Havo 4

Creams Productions 2023

Borh:

elektronen die bewegen in verschillende schillen rond de atoomkern

K-schil:

2 elektronen max

L-schil:

8 elektronen max

M-schil:

18 elektronen max

Valentie elektronen:

de elektronen in de buitenste schil van de atoom

Atoom massa = Protonen + neutronen

Atoomnummer = aantal protonen

Neutronen = atoommassa - protonen

Elektronen = aantal protonen

Bijv:

```
metaal Mg(mangaan)
atoomnummer = 25
protonen = 12 (kijk in binas voor het atoom nummer)
neutronen = 13
elektronen = 12
```

Note:

een materiaal kan een verschillende hoeveelheid neutronen hebben maar het aantal protonen blijft gelijk

De atoommassa moet je afronden naar een heel getal voor de hoeveelheid neutronen en protonen

isotopen:

atomen met een andere aantal elektronen dan protonen

Mol:

chemische hoeveelheden van een stof

Significante cijfers:

de cijfers die de nauwkeurigheid bepalen

Note

Bij significante cijfers tellen de eerste nullen niet mee alleen de nullen na het eerste cijfer

Vermenigvuldigen / delen:

antwoord in evenveel cijfers als het getal met de minste cijfers

Op / af tellen:

antwoord met evenveel decimalen als het cijfer met de minste decimalen

Massa percentage	volume per	ppm(parts per million)	ppb(parts per billion)	
massa per 100	volume per 100	parts per million	parts per billion	
deel/geheel X 100	deel/geheel X 100	deel/geheel X10^6	deel/geheel X10^9	

Molariteit:

aantal Mol per liter

Concentratie:

hoeveelheid stof per liter

Volume(V)

Vaste stof(cm^3)

Vloeistof(ml)

Massa(m)

Molariteit(M) in Mol/L

gas(L)

Mol(n)

Deeltjes(N)

Mol schema

formule →	Volume(V)	Massa(m)	Mol(n)	Deeltjes(N)
Volume(V)	=x=	X dichtheid	=x=	=x=
Massa(m)	/ dichtheid	=x=	/ Mol massa	=x=
Mol(n)	=x=	X Mol massa	=x=	Mol X 6.02 X10 ²³
Deeltjes(N)	=x=	=x=	N / 6.02 X10 ²³	=x=

	soort deeltjes	binding	rooster	stroom
Metalen groep (geel in binas)	metaalatomen	metaalbinding	metaalrooster	Ja
Moleculaire groep (rood)	Niet metaalatomen	atoombinding	Molecuulroost er	Nooit
zouten (rood/geel)	Niet metaal en metaal ionen	ion binding	ionrooster	niet vast. wel opgelost

Groep	covalentie
17	1
16	2
15	3
14	4

covalente binding(atoombinding):

gemeenschappelijk elektronenpaar

Handig:

binas blz 66 -> triviale namen

Moleculaire stoffen geleiden geen stroom!

van der waals verbindingen(Krachten):

Moleculen in vloeibaar en vaste fase hebben altijd een zwakke aantrekkingskracht

hoe sterker de van der waals kracht hoe meer energie het kost om de stof naar gasfase te krijgen/ hoe hoger het kookpunt is . hoe groter de Molecuulmassa hoe sterker de van der waals krachten

Waterstofbruggen:

Moleculen met NH en/of OH groepen kunnen waterstofbruggen vormen(met waterMoleculen)

waterstof bruggen ontstaan doordat de atomen niet allemaal even sterk aan het gemeenschappelijk elektronenpaar trekken

de lading wordt dan een beetje ongelijk verdeeld dat noemen wij een polaire binding

water is een polaire stof

vetten zijn apolaire stof(hydrofobische stof)

polaire stoffen mengen goed met andere polaire stoffen

apolaire stoffen mengen goed met andere apolaire stoffen

maar polair en apolaire stoffen mengen niet goed met elkaar

Stofgroepen

er zijn 3 soorten stof groepen

stofgroepen:

Zouten

Metalen

Moleculaire

Metalen eigenschappen:

geleiden van stroom

glanzend

geleiden van warmte

Sterk

vervormbaar

Edele metalen:

reageren amper met andere stoffen

Bijv: ze worden niet aangetast door water (goud)

Non-edel metalen:

reageren sneller

oxideren

reageer baar met water

Manieren om metalen te beschermen:

verven

olie/vet

laagje glas

verzinken

legeringen

een zout is wanneer je een metalen stof en Moleculaire stof in een materiaal hebt

Ionen:

zouten zijn opgebouwd uit ionen

een positieven ion heeft een elektroon afgestaan een negatieve ion heeft een elektron opgenomen

zouten geleiden alleen stroom als ze opgelost zijn in vloeibare vorm

lonrooster:

positive en negative ionen gerangschikt

fossiele brandstoffen:

olie/ coal

Gefractioneerde destillatie van aardolie

	Aardolie	
C 40	petrol	
C 100	naphta	
C 140	kerosine	
C 250	Diesel	
C 330	Olie	
> C 330	residu(asphalt)	

Check figuur 1 boek blz 141

Aardolie bestaat uit koolwaterstoffen op tabel 1. Hoe meer koolstof atomen des te hoger het kookpunt Aardolie heeft een kooktraject.

hoe langer de koolstof keten hoe meer van der waals kracht hoe hoger het kookpunt

verbranding vereist:

Brandstof zuurstof ontbrandingstemperatuur

Bijv:

2C2H6 + 7O2 →4CO2 + 6H2O

Verbranding

in de brandstof	Komt uit de verbranding
С	CO2
Н	H2O
S	SO2
N	NOx

Stoffen met een O = -Oxide

Bij producten:

Fijnstoffen:

kleine vaste deeltjes die vrij komen bij verbranding

Smog:

<u>Sm</u>oke ,F<u>og</u> = smog rook deeltjes die blijven hangen als mist

als in de brandstof zwavel zit krijg je SO2

SO2 →zwavel zuur →zure regen

brandstof dus eerst ontzwavelen

80% van de lucht is stikstof N2 bij verbranding NOx

Katalysator:

een katalysator breekt NOx af naar N2 + O2 een katalysator bevindt zich in de uitlaat

NOx in milieu →salpeterzuur →zure regen

onvoldoende verbranding(te weinig zuurstof):

er ontstaat koolstof en koolstofmonoxide daardoor krijg je gas en roet

structuurformule → tekening die zichtbaar maakt hoe atomen gebonden zijn volgens covalentie

koolwaterstoffen → c en h gebonden in structuurformule

Alkaan → geen dubbele binding tussen de koolstofatomen

Alkeen → een dubbele binding tussen de koolstofatomen

bijv:

but<u>aan</u> \rightarrow c4h10 buteen \rightarrow c4h8

H = hoeveelheid koolstof atomen

Н	Alkanen	Alkenen
1	C1H4	X
2	C2H6	C2H5
3 C3H8		C3H6
4	C4H10	C4H8

Systematische naam	Triviale naam
C1H4	Methaan
C2H6	Ethaan
C2H4	Etheen
C3H8	Propaan
C3H6	Propeen

But-1-een:

But-2-een:

$$C = C - C - C$$

$$C - C = C - C$$

voor benaaming check binas 66D

Isomeren:

dezelfde Molecuulformule maar met een andere structuurformule met een andere naam

4 karakteristieke (zij) groepen:

1. alkaanzuren / carbonzuur bevat een:

Bijv:

2. alkanol/ alcohol bevat een:

-OH

bijv:

C-C-OH

3. alkaanamine bevat een:

H |

-N

Н

4. halogeenalkanen kan zijn:

groep 17: A, F, I, Br = x

C2H2+x

als je een C als zijtak hebt noem je dat een methyl

systematische naamgeving:

voorvoegsels - stamnaam - achtervoegsels

Stap 1 Stamnaam:

Zoek de langste koolstofketen en zoek die op in de Binas 66D tabel. heeft de stof geen dubbele binding dan eindigt de naam op -<u>aan.</u> heeft de stof wel een dubbele binding dan eindigt de naam op -<u>een</u>

Stap 2 zoek de zijtak en of karakteristieke groepen:

als een groep of zij tak overeen komt zoek dan de voor of achtervoegsels op in de binas tabel 66D heeft de formule die niet ben je nu klaar

Stap 3 bepaal de positie van de groepen:

zoek op welke koolstofketen de zijtak/groep zich bevindt en noteer het cijfer in de naam voor de desbetreffende groep heeft het meer dan een van de zelfde groep noteer dan de hoeveel heid in het latijn, Die-Tri-Enz voor de desbetreffende groep

Kraken:

Kraken is een process waar mee je een stof scheid in meerdere stoffen

Condensatie reactie:

een manier van stoffen samenvoegen waarbij H2O vrij komt

Hydrolyse:

een manier van Moleculen los te koppelen door er H2O tussen te voegen (het omgekeerde van een condensatie reactie)

Esters maken:

een ester is meestal een smaak of kleurstof

ester groep:

O || C - O

dat is een alcohol groep tegenover een zuurgroep

Bijv:

ethanol + propaan $\underline{zuur} \rightarrow ester$

Amide:

alkaan + zuur groep

Dingen die je moet kennen voor proefwerk H3

- model van bohr
- reactie vergelijkingen
- alle bindingen
- Mol berekeningen
- kraak reacties
- adite
- subsitutie
- naam gevingen
- oplos baarheid in water
- condensatie

Zouten h4

zouten → positief(metaalion) + negatief(niet metaalion) → zout

lon:

geladen atoom

<u>. </u>	Na-atoom -	→ Na ⁺ -atoom
Protonen	11	11
Neutronen	12	12
Elektronen	11	12

Naamgeving zouten:

bij naamgeving van zouten gebruiken we geen mono,di,tri enz. behalve als een deeltje twee verschillende vormen kan hebben maar dan gebruiken we romeinse cijfers

Bijv:

ljzer(III) en ljzer(II)

samengestelde ionen:

samengestelde ionen zijn een groep atomen met een gezamenlijke lading

Bijvoorbeeld bij:

NO3⁻ die heeft dan als gezamenlijke atoom een lading van -1 kan een neutrale atoom vormen met een metaal

Handige tabellen voor h4:

tabel 1 blz 16 boek Binas 66D Binas 45A

zouten hebben een sterke binding door de plus en min ionen

Verhoudingsformule van zouten: voorbeeld van Na⁺ en S²⁻

1: Welke ionen zijn er aanwezig? Na⁺ en S²⁻

2:bepaal de verhouding

Na⁺ en S²⁻ 2:1

3: schrijf de verhoudingsformule met index $Na_{2}^{+}S^{2-}$

4:laat de ionladingen(de index) weg Na₂S

Dan krijg je de verhoudingsformule $\rightarrow Na_2S$

Voorbeeld ijzer(III)-oxide:

1: Fe^{3+} en O^{2-} 2: 3:23: $Fe^{3+}{}_{3}O^{2-}{}_{3}$ 4: $Fe_{2}O_{3}$ Ion rooster

Goed oplosbare zout → ionen laten van elkaar los

oplosvergelijking goed:

NaCl → Na⁺ + Cl⁻ → heldere vloeistof

Slecht oplosbare zout → ionen blijven bij elkaar

oplosvergelijking slecht:

 $MgF_2 \rightarrow MgF_2 \rightarrow troebele vloeistof$

$\underline{\mathbf{M}}$ atig oplosbare zout \rightarrow een mix van goede en slecht oplosbaarheid

oplosvergelijking matig:

$$2 \text{ FeF}_2 \rightarrow \text{Fe}^{2+} + \text{F}_2 + \text{FeF}_2$$

Regeert de stof met water?

alleen dan schrijf je H₂O in je vergelijking

Stroomgeleiding: als geladen deeltjes kunnen bewegen dan geleidt de stof stroom Hoe meer geladen deeltjes kunnen bewegen des te makkelijker de stof stroom geleid

Goed → lossen ionen → goede stroomgeleiding

Slecht → geen of nauwelijks stroom geleiding

Molariteit \rightarrow aantal Mol per liter Bijv [CH₃OH] \rightarrow 0.30 Mol/L (Mol * L⁻¹)(M)

Bijvoorbeeld:

er wordt 0.6 Mol ijzer(III) opgelost in 300 ml water → 2 Mol/L aan ijzer(III)

^{*}opgeloste ionen worden gehydrateerd

Wet van energie behoud:

reactie →Heeft altijd energie omzettingen

Exotherme reactie → Bij deze reactie komt warmte vrij

Endotherme reactie →Voor de reactie is warmte nodig

Tabel: van namen van verschillende vormen

links naar rechts	Vloeibaar	Vast	Gas
Vloeibaar	x	Smelten	verdampen
Vast	stolen	x	sublimeren
Gas	condenseren	rijpen	x

Tabel van endo en exotherme reacties

Namen	Smelten	Stollen	Condens	verdamp	sublimeren	Rijpen
Exo		х	х			х
Endo	х			х	х	

Belangrijke binas tabel:

57 A + B

H5

De vormingswarmte is altijd in X10⁵ j/Mol

Bijv:

$$AgBr = -1.00 \times 10^{5} \text{ j/Mol}$$

$$A + B \rightarrow C + D$$

ontleed → gevormd

E ontleding = - E vorming

Een niet ontleedbare stof heeft altijd een vormingswarmte van 0

Bereken energie Delta E:

1. kloppende vergelijking

$$Al_2O_3$$
 (s) + 3 CO (g) \rightarrow 2 Al + 3CO₂

2. Noteer de vormingswarmte onder de stof (binas 57A + B)

$$Al_2O_3$$
 (s) + 3 CO (g) \rightarrow 2 Al + 3CO₂(g)
-16.76, -1.105 0, -3.94

3. vermenigvuldig de waarden met hoeveel Mol de stof is

$$3 \times -1,105 = -3,315$$

$$2X 0 = 0$$

$$3 X - 3.94 = 11.8$$

4. Bereken delta E

Delta E = (vormingswarmte eind stoffen)-(vormingswarmte begin stoffen)
$$(0-11.8) - (-16.76-3.315) = 8.275$$

Rendement = nuttige energie / totale energie X 100%

$$[a] = Mol/L$$

Factoren die een reactie snelheid kunnen beïnvloeden:

- 1. soort stof
- 2. concentratie van de stof
- 3. temperatuur
- 4. verdelingsgraad
- 5. katalysator → vermindert de benodigde reactie energie

De eerste 4 kan je verklaren met het botsende deeltjes model

Botsende deeltjes

Deeltjes bewegen altijd!!!

Deeltjes botsen constant met elkaar. alleen als de botsing krachtig genoeg is (effectieve botsing) dan vind een reactie plaats een reactie kun je versnellen door meer effectieve botsingen

soort stof:

een eigenschap die meer of minder effectieve botsingen kan maken **concentratie:**

toename van stof \rightarrow meer botsingen \rightarrow meer effectieve botsingen *temperatuur:*

hogere temperatuur \rightarrow meer botsingen \rightarrow meer effectieve botsingen **verdelingsgraad:**

hoe groter de verdelingsgraad(meer oppervlak) \rightarrow meer effectieve botsingen *Katalysator:*

Een katalysator verlaagt de benodigde activeringsenergie(EA).

Een katalysator staat ook nooit in een reactie vergelijking,

omdat hij verlaagt E_A waardoor hij wel gebruikt wordt maar niet verbruikt!

Elke katalysator heeft ook altijd een temperatuur waar hij het beste werkt Voorbeeld 1 blz 98

Belangrijke binas tabellen:

57 A + B, 66D

Note:

als er naar de ontledingswarmte wordt gevraagd onthoud dat het letterlijk het tegenovergestelde van vormingswarmte is dus als je een vormingswarmte van - 30 hebt is de ontledingswarmte 30

Hoofdstuk 6

Aflopende reactie:

Als er een of meerdere beginstoffen op zijn. Meestal is deze reactie on keerbaar Bijv bij verbranding van fossiele brandstoffen.

Omkeerbare reactie:

De reactie kan omgekeerd worden.

Bijv

 $N_2O_4 \Leftrightarrow 2NO_2$

kleurloos Bruin

Vloeistof koud \rightarrow meer $N_2O_4 \rightarrow$ meer N_2O_4 in de vloeistof dus is doorzichtig Vloeistof watm \rightarrow meer $2NO_2 \rightarrow$ meer $2NO_2$ in de vloeistof dus is bruin

Chemisch evenwicht:

is het evenwicht in de vloeistof bij een omkeerbare reactie. (De docent zei heen en teruggaande reactie hebben dezelfde reactie tijd)

Macroniveau → je ziet niks gebeuren

Microniveau → De deeltjes reageren heen en weer met dezelfde snelheid.

Met dezelfde snelheid. het evenwicht verandert en het concentratie veranderen niet!

Insteltijd: Tijd die nodig is tot het evenwicht is bereikt

Evenwicht grafiek

Homogeen mengsel:

Alle stoffen zitten in dezelfde fase en zijn allemaal gelijk verdeeld.

Heterogeen mengsel:

Stoffen zitten in verschillende fases en zijn niet gelijk verdeeld.

Boe tabel:

	Betekenis	
В	Begin	
0	Omzetting	
Е	Eind	

Bijvoorbeeld

$$N_2+3H_2 \Leftrightarrow 2NH_3$$

Ik heb een vat van 1L daar doe ik 3 Mol N₂ en 6 Mol H₂ er ontstaat 1 Mol 2NH₃ vervolgens moet je een tabel invullen en een grafiek maken

BOE tabel

	N_2	H ₂	NH₃
Begin	3 Mol/L	6 Mol/L	0
Omzetting	-0,5 Mol/L	-1,5 Mol/L	+1
Eind	2,5 Mol/L	4,5 Mol/L	1 Mol/L

Grafiek bij tabel voorbeeld zonder waardes

Evenwicht verschuiving:

- Concentratie veranderen

'kant A' $A + B \Leftrightarrow C + B$ (kant B)

bij verhoging van een van de stoffen verandert het evenwicht naar die stof/'kant'

- Volumeverandering

Vergroten volume → Evenwicht verschuift naar kant met grootste deeltjes A + B + C ⇔ D + E

Verkleinen volume → Evenwicht verschuift naar kant met de kleinste aantal deeltje.

- Temperatuurverandering

Verhoging → Voordeel voor endotherme reacties Verlaging → Voordeel voor exotherme reacties

Katalysator → Veranderd evenwicht **NIET** maar verkort de insteltijd

PH waarden:

 $PH = 0 \Leftrightarrow 14$

PH = = 7 = Neutraal

PH < 7 = Zuur

PH > 7 = Basisch

Zure schoonmaakmiddel → Kalk Basisch schoonmaakmiddel → Vet

Zuur	Basisch
Staat H⁺ af	Neemt H⁺ op
PH<7	PH > 7
Heeft vrije ionen (geleid stroom)	Heeft vrije ionen (geleid stroom)
Verwijderd kalk	Verwijderd vet

Binas blz 49 → zuur en basisch constante

Sterkste zuren staan links boven in de binas

Sterkste basisch staan rechts onder in de binas

Voorbeeld basische reactie

$$O^{2-} + H_2O \rightarrow OH^- + OH^-$$

 $\leftarrow H^- \rightarrow 2OH^-$

Voorbeeld Zure reactie

$$HCI \rightarrow H^+ + CI$$

 $H^+ \rightarrow$

Zie voor zuur-base boek B blz 153 boven aan

Tabel: veelgebruikte zure stoffen

Naam	Formule
Ethaanzuur	CH₃COOH
Fosforzuur	H₃PO₄
Koolzuur	H ₂ O+CO ₂ / H ₂ CO ₃
Salpeterzuur	HNO ₃
Waterstofchloride	HCI
Zwavelzuur	H ₂ SO ₄

Tabel: veelgebruikte basisch stoffen

Naam	Formule
Ammoniak	NH ₃
Carbonaat	CO ₃ ²⁻
Hydroxide	OH ⁻
Oxide	O ²⁻
Waterstofcarbonaat	HCO ₃ -

TIP

Een deel van deze formules zijn ook te vinden in de binas 66B. Deze deze tabbelen staan ook in het boek. zuren blz 149 boek B tabel 1. Basisch blz 150 boek B tabel 2.

sterke zuren geven allen H⁺ moleculen af en heeft dus een aflopende reactie .

Zwake zuren geven een klein deel van hun H⁺ moleculen af en heeft dus een evenwichts reactie.

PH waarden deel 2:

PH waardes is altijd maximaal 14 tenzij in de opdracht anders vermeld staat

POH:

Bijvoorbeeld

je hebt een PH van 4 dat betekend dat je POH gelijk is aan 10

PH 4
$$\rightarrow$$
 PH3 \rightarrow PH 2
10X \rightarrow 10X \rightarrow 10x
PH 4 \rightarrow PH 2
100 X

PH/POH waarden berekenen

PH = -Log[H
$$^{+}$$
]
[H $^{+}$] = 10 $^{-PH}$
 H^{+} = Concentratie H $^{+}$ in Mol/L

$$POH = -Log[OH^{-}]$$
$$[OH^{-}] = 10^{-POH}$$

Binas 38A en 52A

Wat moet je weten voor H6 / Het laatste proefwerk waar je het hele boek moet kennen ?

- Reactie vergelijkingen
- Broeikast effect
- Mol berekeningen
- Evenwichten uitleggen
- Structuur formule
- Oplosbaarheid
- PH berekeningen
- Delta E berkening
- Energie diagram
- Deeltjes model
- Katalysator
- Zouten

Tabel 1 blz 16 ook Binas 66D

- Verhoudings formule maken
- Goed oplosbare oplossing → Vrije ionen
- Zouten opgelost geleiden stroom
- $Kw = 1 \times 10^{-14}$
- PH + POH = 14

_

- Zouten om water muleculen

