21-R-KIN-MS-48

This E will be installed on an engineering building. Find its centroid. $d_1=0.6m, d_2=0.4m, d_3=0.1m, d_4=0.25m$

Solution:

Divide the shape into composite rectangles:

$$d_5 = \frac{d_1 - 3d_3}{2}$$

Rectangle i	A	В	С	D	Е
Area A_i	d_2d_3	d_3d_5	d_3d_4	d_3d_5	d_2d_3
\tilde{x}_i	$\frac{d_2}{2}$	$\frac{d_3}{2}$	$\frac{d_4}{2}$	$\frac{d_3}{2}$	$\frac{d_2}{2}$
$ ilde{y}_i$	$d_1 - \frac{d_3}{2}$	$d_1 - d_3 - \frac{d_5}{2}$	$\frac{d_1}{2}$	$\frac{d_5}{2} + d_3$	$\frac{d_3}{2}$

$$\begin{split} \bar{x} &= \frac{\sum \tilde{x}_i A_i}{\sum A_i} = \frac{\tilde{x}_A A_A + \tilde{x}_B A_B + \tilde{x}_C A_C + \tilde{x}_D A_D + \tilde{x}_E A_E}{A_A + A_B + A_C + A_D + A_E} = 0.153m \\ \bar{y} &= \frac{\sum \tilde{y}_i A_i}{\sum A_i} = \frac{\tilde{y}_A A_A + \tilde{y}_B A_B + \tilde{y}_C A_C + \tilde{y}_D A_D + \tilde{y}_E A_E}{A_A + A_B + A_C + A_D + A_E} = 0.3m \end{split}$$
 You could also see this with symmetry - the E is symmetric around $y = \frac{d_1}{2} = 0.3m$