Measurement of $H \to b\bar{b}$ in Associated Production with the CMS Detector

by

Daniel Robert Abercrombie

B.S., Pennsylvania State University (2014)

Submitted to the Department of Physics in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

June 2020

(c)	Massachusetts	Institute of	Technology	2020.	All rights	reserved.

Author	
	Department of Physics
	November 16, 2019
Certified by	
	Christoph M. E. Paus
	Professor of Physics
	Thesis Supervisor
Accepted by	
	Nergis Mavalvala
	Associate Department Head, Physics

Measurement of $H \to b \bar b$ in Associated Production with the CMS Detector

by

Daniel Robert Abercrombie

Submitted to the Department of Physics on November 16, 2019, in partial fulfillment of the requirements for the degree of Doctor of Philosophy

Abstract

We measured $VH \to b\bar{b}$ with the CMS Detector.

Thesis Supervisor: Christoph M. E. Paus

Title: Professor of Physics

Acknowledgments

Thanks.

Contents

1	Introduction			
	1.1	Measurement of the Higg Cross Section		
	1.2	Motivation for the Measurement	15	
	1.3	Historic Context	15	
	1.4	Using the CMS Detector	15	
2	$Th\epsilon$	ory	17	
	2.1	Higgs Boson	17	
	2.2	Associated Production	17	
		2.2.1 Production Mechanisms	17	
		2.2.2 Decay Channels of Vector Bosons	17	
	2.3	Characteristics of the Higgs	17	
		2.3.1 Energy Spectrum	17	
		2.3.2 Decay to $b\bar{b}$	17	
	2.4	Other Relevant Standard Model Processes	17	
3	The	CMS Detector	19	
	3.1	Associated Production at the LHC	19	
		Observables of Associated Production	19	
		Detector Requirements	19	
		3.3.1 Particle Types and Energies	20	
		3.3.2 Pileup Conditions at the LHC	20	
	3.4	Detector Design	20	

		3.4.1	Silicon Pixel Detector	20
		3.4.2	ECAL	20
		3.4.3	HCAL	20
		3.4.4	Muon Chambers	20
	3.5	Detect	for Performance	20
		3.5.1	Test Beam Performance	20
		3.5.2	Trigger	20
		3.5.3	Online Calibration	20
	3.6	Data I	Format	20
		3.6.1	Event Reconstruction	20
		3.6.2	Offline Calibration	20
4	Sim	ulatior	ı	21
	4.1	Backg	rounds to the Analysis	21
	4.2	Event	Generation	21
		4.2.1	Tree Level Simulation	22
		4.2.2	Parton Showers	22
	4.3	Detect	for Simulation	22
	4.4	4.4 Corrections to Simulation		
		4.4.1	Smearing	22
		4.4.2	Selection Efficiencies	22
		4.4.3	Control Regions	22
5	Eve	${ m nt} { m Sel} \epsilon$	ection	23
	5.1	.1 Object Definitions		
		5.1.1	Muons	23
		5.1.2	Electrons	23
		5.1.3	Jets	23
		5.1.4	MET	24
		5.1.5	Undesirable Particles	24
	5.2	Remov	val of OCD	24

	5.3	Categories of Vector Boson Decay				
		5.3.1	0 Leptons	24		
		5.3.2	1 Lepton	24		
		5.3.3	2 Leptons	24		
	5.4	Topolo	ogy of Higgs Decay	24		
		5.4.1	Resolved Jets	24		
		5.4.2	Boosted Jet	25		
6	Ana	ılysis F	Results	27		
	6.1	System	natic Uncertainties	27		
	6.2	Combi	ination Fit Method	27		
	6.3	Result	s	27		
7	Con	clusio	elusions			
A	Phy	rsics Ca	alculations	31		
В	B Data Format					
C Generator Parameters				35		
D	Dat	a Card	1	37		

List of Figures

List of Tables

Introduction

- 1.1 Measurement of the Higg Cross Section
- 1.2 Motivation for the Measurement
- 1.3 Historic Context

[1]

1.4 Using the CMS Detector

Theory

- 2.1 Higgs Boson
- 2.2 Associated Production
- 2.2.1 Production Mechanisms
- 2.2.2 Decay Channels of Vector Bosons
- 2.3 Characteristics of the Higgs
- 2.3.1 Energy Spectrum
- 2.3.2 Decay to $b\bar{b}$
- 2.4 Other Relevant Standard Model Processes

The CMS Detector

3.1 Associated Production at the LHC

The LHC is a hadron collider.

Quark interactions can lead to Vector boson production, since the protons are at high energy.

Virtual vector bosons can radiate a Higgs.

This happens along with additional event stuff, caused by breaking apart the protons and pileup.

3.2 Observables of Associated Production

We can count charged leptons or infer neutrinos to tag vector bosons.

We are interested in Higgs to $b\bar{b}$.

3.3 Detector Requirements

We need to identify interesting particles, be able to reconstruct missing transverse momentum, and remove pileup.

- 3.3.1 Particle Types and Energies
- 3.3.2 Pileup Conditions at the LHC
- 3.4 Detector Design
- 3.4.1 Silicon Pixel Detector
- 3.4.2 ECAL
- 3.4.3 HCAL
- 3.4.4 Muon Chambers
- 3.5 Detector Performance
- 3.5.1 Test Beam Performance
- 3.5.2 Trigger
- 3.5.3 Online Calibration
- 3.6 Data Format
- 3.6.1 Event Reconstruction
- 3.6.2 Offline Calibration

Simulation

4.1 Backgrounds to the Analysis

In order to effectively measure Higgs production, we need to be able to accurately estimate other events that end up in our selection.

4.2 Event Generation

We use different generators.

Details in Appendix C.

- 4.2.1 Tree Level Simulation
- 4.2.2 Parton Showers
- 4.3 Detector Simulation
- 4.4 Corrections to Simulation
- 4.4.1 Smearing

Muons

Electrons

Jets

- 4.4.2 Selection Efficiencies
- 4.4.3 Control Regions

Light Flavor Jets

Heavy Flavor Jets

 $t\bar{t}$

Event Selection

5.1 Object Definitions

Section 3.6.1 describes how detector responses are linked to possible physical particles. We want to remove false positives, so here are some tighter requirements for counting for event selection.

Once we have our objects defined, we can count them.

5.1.1 Muons

Muons can show up in weakly decaying jets, so we're only interested in isolated ones here.

5.1.2 Electrons

Electrons do the same thing as muons, but messier because the ECAL isn't as clean as the muon chambers.

5.1.3 Jets

Jets are messier still.

Pileup removal is a big deal here.

5.1.4 MET

MET is corrected.

5.1.5 Undesirable Particles

There are certain particles that we do not want present. We make very loose selections for those and veto on them.

Photons

Tau Leptons

5.2 Removal of QCD

We have some cuts across the board on our objects in order to remove events that are just QCD.

5.3 Categories of Vector Boson Decay

Now that we are ready to count, we can count leptons in order to characterise potential vector bosons.

5.3.1 0 Leptons

5.3.2 1 Lepton

5.3.3 2 Leptons

5.4 Topology of Higgs Decay

5.4.1 Resolved Jets

We reconstruct two b jets.

5.4.2 Boosted Jet

When the Higgs has very high p_T , the jet clustering algorithms can find both daughter particles as being part of a single jet.

Analysis Results

- 6.1 Systematic Uncertainties
- 6.2 Combination Fit Method
- 6.3 Results

Conclusions

Appendix A

Physics Calculations

Appendix B

Data Format

Appendix C

Generator Parameters

Appendix D

Data Card

Bibliography

[1] The CMS Collaboration. Observation of higgs boson decay to bottom quarks. Physical Review Letters, 121(12), Sep 2018.