Math 344 Midterm 2 Solutions

1. Find the vector in the span of $\begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$, $\begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}$, and $\begin{bmatrix} 2 \\ -4 \\ 2 \end{bmatrix}$ closest to $\begin{bmatrix} 5 \\ 1 \\ 0 \end{bmatrix}$.

Solution: Gram-Schmidt gives $\mathbf{u}_1 = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$, $\mathbf{u}_2 = \begin{bmatrix} 1 \\ -2 \\ 1 \end{bmatrix}$. There is no \mathbf{u}_3 because this turns out to be the

zero vector when applying Gram-Schmidt. The projection vector is $\frac{\mathbf{u}_1 \cdot \begin{bmatrix} 5 \\ 1 \\ 0 \end{bmatrix}}{\mathbf{u}_1 \cdot \mathbf{u}_1} \mathbf{u}_1 + \frac{\mathbf{u}_2 \cdot \begin{bmatrix} 5 \\ 1 \\ 0 \end{bmatrix}}{\mathbf{u}_2 \cdot \mathbf{u}_2} \mathbf{u}_2 = \begin{bmatrix} 5/2 \\ 1 \\ 5/2 \end{bmatrix}.$

2. Which function of the form $f(x) = ax + bx^2$ best fits the data $\{(-1,0),(0,1),(1,2)\}$?

 $\textbf{Solution: If } V = \begin{bmatrix} -1 & 1 \\ 0 & 0 \\ 1 & 1 \end{bmatrix} \text{, then } \begin{bmatrix} a \\ b \end{bmatrix} = (V^\top V)^{-1} V^\top \begin{bmatrix} 0 \\ 1 \\ 2 \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}.$

3. Find a pairwise orthogonal basis for span $\{e^{-x}, e^x\}$ in $PS[0, \ln 2]$.

Solution: Applying Gram-Schmidt, $u_1(x) = e^{-x}$ and $u_2(x) = e^x - \frac{\langle e^{-x}, e^x \rangle}{\langle e^{-x}, e^{-x} \rangle} e^{-x} = e^x - \frac{\ln 2}{3/8} e^{-x}$.

4. Find the first two nonzero terms in one of the series solutions to $x^2y'' + x(x+3)y' + (1+3x)y = 0$.

Solution: See example 11.4.6 on page 756 of the textbook.

5. Let P be the projection matrix onto the span of $\mathbf{v}_1, \dots, \mathbf{v}_k$ in \mathbb{R}^n and let \mathbf{x} be any vector in \mathbb{R}^n . Show that $\mathbf{x} - P\mathbf{x}$ and $P\mathbf{x}$ are orthogonal.

Solution: We have

$$(\mathbf{x} - P\mathbf{x})^{\top} P\mathbf{x} = \mathbf{x}^{\top} P\mathbf{x} - \mathbf{x}^{\top} P^{\top} P\mathbf{x} = \mathbf{x}^{\top} P\mathbf{x} - \mathbf{x}^{\top} P^{2} \mathbf{x} = 0$$

because $P^{\top} = P$ and $P^2 = P$.