

Method of sections

- · Determine external support reactions
- "Cut" the structure at a section of interest into two separate pieces and set either part into force and moment equilibrium

Be aware of number of unknowns after

Determine the force in members <u>EI</u> and JI of the truss which serves to support the deck of a bridge. State if these members are in tension or compression.

i-Clicker Time

As shown, a cut is made through members GH, BG and BC to

D) None of the above, too many unknowns.

i-Clicker Time

When determining the force in member HG in the previous question, which one equation of equilibrium is the best one to use?

A)
$$\Sigma M_H = 0$$

B)
$$\Sigma M_G = 0$$

C)
$$\Sigma M_B = 0$$

D)
$$\Sigma M_C = 0$$

i-Clicker Time

Can you determine the force in member ED by making the cut at section a-a?

- B) Yes, using Σ M_D = 0.
- C) Yes, using $\Sigma M_E = 0$.
- D) Yes, using Σ M_B = 0.

i-Clicker Time

If you know F_{ED} , how will you determine F_{EB} ?

- A) By taking section b-b and using $\Sigma M_E = 0$
- B) By taking section b-b, and using $\Sigma F_x = 0$ and $\Sigma F_y = 0$
 - C) By taking section a-a and using $\Sigma M_B = 0$
 - D) By taking section a-a and using $\Sigma M_D = 0$

A)
$$F = P$$

B)
$$F = -P$$

C)
$$F = \frac{2}{\sqrt{3}}P$$

D)
$$F = -\frac{2}{\sqrt{3}}P$$

E)
$$F = 0$$

10

- A) F = 9P
- B) F = -9P
- C) $F = \frac{9}{\sqrt{3}}P$
- D) $F = -\frac{9}{\sqrt{3}}P$
- E) F = 0

11