Macroéconomie Demande Agrégée

Pablo Winant

Plan

- la semaine dernière
 - ▶ PIB potentiel : fluctuations et cycles
 - Consommation:
 - optimisation des consommateurs (fondamental)
 - agents keynesiens (qui ne peut pas s'endetter)
 - agents ricardiens (qui peuvent lisser leur consommation)
 - Relation fondamentale:

$$Y = C + I + G + NX$$

- cette semaine
 - ► Intro au modèle AS/AD
 - Les autres composantes de la demande agrégée

Regardons les cycles depuis 20 ans (1)

Le modèle classique (1)

Le modèle classique (2)

- une baisse de la production peut résulter
 - d'une baisse de la demande (avec une baisse des prix)
 - d'une baisse de la production (avec une hausse des prix)
- une hausse des prix peut résulter
 - d'une réduction de la production
 - d'une hausse de la demande
- suggestion simple du modèle classique: regardons les prix (ou l'inflation)

Regardons les cycles depuis 20 ans (2)

Comment identifier chocs d'offre et de demande?

- Le modèle classique ne marche pas si bien
 - Comment identifier les choc?
 - Example: la crise du covid est-elle un choc d'offre ou de demande?
- Dans les données de comptabilité nationales, on a tojours "Revenu=Production"
 - les courbes d'offre et de demande ne sont pas directement observables dans les données
- On peut cependant définir des "concepts" correspondant à offre et demande. On les appelle: Offre Agrégée (OA ou en anglais AS) et Demande Agrégée (OD ou AD)

Le Modèle AS/AD

Ce n'est pas le même modèle !

Probleme 1:

- Pourquoi la courbe de demande est-elle décroissante?
- ► Les Keynésiens: lorsque les agents deviennent plus riches (ou les prix réels plus bas), ils consomment plus, ce qui augmente la production
 - remarquez bien la différence avec une courbe de demande normale
- Les Néo-keynésiens
 - essayer de formaliser (=microfonder) le comportement des agents pour calculer la demande agrégée (-> session 2)
 - obtenir un modèle sans irrationnalité, donc robuste à la critique de Lucas
- L'existence de la courbe AD n'est pas controversée dans la profession
 - Mais il y a un gros débat sur sa pente

Probleme 2: l'offre agrégée

- ➤ A l'inverse, il n'est pas évident que la courbe d'offre soit croissante avec une pente finie
- ➤ A long terme, quand tous les marchés sont à l'équilibre, elle devrait être verticale. Changer la demande n'aurait alors aucun effet
 - Le point de vue des monétaristes (Friedman)
- ► Et à court terme? La courbe pourrait être horizontale, croissante, verticale...

Probleme 2: l'offre agrégée

- ► La pente de la courbe (OA) est cruciale pour l'efficacité des politiques de demande.
 - ► sur le graphe, la politique de demande est plus importante pour AS1 que pour AS2 ou LRAS
- ► Classique: les prix sont flexible, la courbe d'offre est verticale
- Keynésiens (ISLM): les prix sont absolument rigides, la courbe d'offre est horizontale
- Néo-keynésiens: la courbe d'offre est croissante à cause d'une friction ou d'une inefficacité (voir amphi 3)

Aperću: notre modèle de base

- Demande agrégée (version IS-MP)
 - $\blacktriangleright \text{ IS: } y_t = \theta_t \sigma(r_t r)$
 - $ightharpoonup MP: r_t = \overline{r} + \gamma(\pi_t \overline{\pi})$

$$AD: y_t = \theta_t - \sigma \gamma (\pi_t - \pi)$$

Offre agrégé:

$$AS: \pi_t = \pi_{t-1} + \kappa(y_t - y_t^n)$$

- Votre but: comprendre d'où viennent ces équations, et comment les utiliser
- Les variables:
 - minuscules, log-deviations par rapport à l'état stationnaire
 - lettres grecques: paramètres positifs
 - $ightharpoonup r_t$: taux d'intérêt réel $(r_t = i_t \pi_{t+1})$
 - deux type de chocs:
 - $\triangleright \theta_n$ demande
 - $\triangleright y_t^n$ offre (choc sur PIB potentiel)

Aperću: notre modèle de base

$$AS: \pi_t = \pi_{t-1} + \kappa (y_t - y_t^n)$$
$$AD: y_t = \theta_t - \sigma \gamma (\pi_t - \overline{\pi})$$

- Remarques sur notre modèle:
 - ▶ il est intertemporel: variables en t-1 et en t.
- ► Il unifie le court terme et le moyen terme. On peut simuler le retour à l'équilibre
- ► A la date t, l'inflation passée est prédeterminée
- ▶ On peut donc représenter OA/AD dans le plan (y_t, π_t) .

Remarque: etant donné π_{t-1} les plans (y_t, p_t) et (π_t, y_t) sont equivalents.

La demande agrégée - la courbe IS

Les composants de la demande agregee

Rappel:

$$Y = C + I + G + NX$$

- Ce n'est pas un modèle, c'est une relation comptable.
- Donc C + I + G + NX est la demande agregee?
 NON!
- On va montrer que les composants de la demande agrégée,
 C, I, G, NX dépendent du
 - revenu Y(+)
 - ▶ taux d'intéret réel r (-)

La courbe IS

► En macroéconomie la demande est caractérisée par l'équation

$$Y = C(Y, r) + I(r) + G + NX(r)$$

qui lie implicitement production et taux d'intérêt réel.

- Cette relation s'appelle la courbe IS (pour Investment-Saving) parce qu'elle provient d'un arbitrage intertemporal (au travers du taux d'intérêt réel)
- Elle correspond à l'équilibre sur le marché des biens et services, qui serait déterminé uniquement par les dépenses prévues, avec une production parfaitement élastique.
- Cas spéciaux:
 - ► G est décidé de manière autonome par le gouvernement
 - Dans ce cours on prend NX comme *exogène*.

La consommation

Consommateurs (1)

- Étant données ses préférences, un consommateur prend ses décisions de consommation en fonction de:
 - ightharpoonup son revenu aujourd'hui Y_t)
 - son revenu futur (plus précisément le revenu qu'il anticipe)
- Etant donné le revenu, la décision de consommer est un arbitrage entre la consommation aujourd'hui et la consommation future.
- Cet arbitrage dépend du taux d'intérêt réel r (le prix de la consommation aujourd'hui).
- ▶ On peut modéliser cet arbitrage en supposant que les agents sont rationnels mais ont une préférence pour le présent (C_t consommation, N_t travail):

$$\max_{C_0,C_1,C_2...} E_0\left[\beta^t U(C_t)\right] \text{ou} \max_{C_0,C_1,C_2...} E_0\left[\beta^t U(C_t,N_t)\right]$$

Les deux grands types de consommateurs (rappel)

- Agents keynésiens
 - leur consommation est limité par une contrainte d'endettement
 - ▶ par ex $C^K(Y_t^K) = c_0^K + c_1^K Y_t^K$
 - \triangleright propension marginale à consommer c_1 proche de 1.
- ► Agents ricardiens
 - il peuvent lisser leur consommation dans le temps
 - consomment une (petite) partie de leur revenu permanent $(0 < \xi \approx 0)$:

$$C^{R}(Y_{t}^{R}) = \zeta \left(Y_{t} + \frac{1}{(1+r)} Y_{t+1}(...) \right)$$
$$C^{R}(Y_{t}^{R}) \approx c_{0}^{R} - c_{1}^{R} r_{t}$$

- répondent peu aux choc temporaires de revenu
- réagissent au taux d'interêt

Agrégation

- Supposons qu'on ait
 - ightharpoonup une part λ d'agents keynésiens

$$C^K(Y_t^K) = c_0^K + c_1^K Y_t^K$$

• une part $(1 - \lambda)$ d'agents ricardiens:

$$C^R(Y_t^R) = c_0^R - c_1^R r_t$$

▶ Peut-on facilement agréger les consommations pour obtenir

$$C(Y) = c_0 + c_1 Y + c_2 r_t$$
?

- ightharpoonup oui mais il faut connaître comment se distribue le revenu Y_t entre les deux types d'agents
- par exemple si $\frac{Y_L^K}{\lambda} = \frac{Y_L^R}{1-\lambda}$ (pas d'inégalité) alors $c_1 = \lambda c_1^K + (1-\lambda)c_1^R$
- Intuitivement: plus la part λ de ménages keynésiens, plus la mpc agrégée est élevée (*)
- ► Au fait, quelle est la proportion d'agents keynésiens?

Propension marginale à consommer et distribution des revenus

Japelli and Pistaferri, politique fiscale et hétérogénéité des propensions marginales à consommer (2017)

Discussion

- D'après le premier graphe, il y a trois grandes catégories de MPC, pas deux
 - Elevée
 - ► Faible
 - Intermédiaire: qui est dans cette catégorie?
- Le deuxième graphe suggère que le revenu disponible est un bon prédicteur de la MPC
- Revenu disponible: revenu restant après paiement des dépenses contrainte

Pourquoi les agents sont-ils contraints?

D'après Piketty (2018)

Discussion (2)

- Les agents au milieu de la distribution on une part plus importante de richesse illiquide
- ► En conséquence:
 - Leur revenu disponible (utilisable pour acheter immédiatement) est plus faible car une part importante de leur revenu est alloué au remboursement de leur prêt
 - ► Ils on un PMC plus élevé
 - Et réagissent aux changement dans le taux d'intérêt (surtout s'il est flottant)
- Dans un papier très influent, Monetary Policy According to HANK, 2018, Kaplan, Moll et Violante, souligne le role des "wealthy hand to mouth" et leur influence sur les politiques monétaires.

L'investissement

Les firmes

Pour comprendre la réaction des firmes aux taux d'intérêt, il suffit de comprendre le comportement d'une firme:

$$I(r) = \int_i I_i(r)$$

- ▶ Pourquoi l'investissement d'une firme dépend-t-il négativement de r ?
- ► Intuition ?

La production des firmes (1)

Une firme i produit avec du capital physique et du travail:

$$Y_i = f(K_i, N_i)$$

- ► Elle loue le travail au prix W
- ► Elle achète du capital au prix R^K
 - elle est donc du côté de la demande sur le marchés des bien et des services
 - il s'agit de biens d'investissements (machines, ordinateurs, batiments, infrastructures...)
 - **p** pour simplifier on peut supposer que 100% du capital se déprécie à chaque période de sorte que $I_i = K_i$
- On supppose que la fonction de production d'une firme est monotone et concave
 - $ightharpoonup f_K' > 0$, $f_L' > 0$, $f_{KK}'' < 0$, $f_{LL}'' < 0$
- On dit qu'elle a des rendements décroissants en chaque facteur:

Le programme des firmes

- Combien de capital une firme veut-elle acheter ?
- Notons P_i le prix d'une unité de production de la firme i.
- Son profit est:

$$\Pi_i = P_i f(K_i, N_i) - WN_i - R^K K_i$$

- Supposons pour simplifier qu'elle est en compétition parfaite:
 preneuse de prix pour P_i
- \triangleright Sur le marché des facteurs elle est acheteuse aux prix W et R^K
- Son problème est alors:

$$\max_{K_i, N_i} \Pi_i = P_i f(K_i, N_i) - W N_i - R^K K_i$$

Le programme des firmes (solution optimale)

La solution du problème:

$$\max_{K_i, N_i} \Pi_i = P_i f(K_i, N_i) - WN_i - R^K K_i$$

donne:

$$W = P_i f'_N(K_i, N_i)$$

$$R^K = P_i f'_K(K_i, N_i)$$

La firme ajuste sa demande de facteurs de façon à ce qu'ils soient remunérés à leur productivité marginale.

Rendement du capital et rémunéraiton de l'épargne

Une firme typique doit emprunter les fonds pour acheter du capital.

Si elle emprunte la totalité: $B_r = K_i$ et doit rembourser au taux d'intérêt du marché (1 + r).

La solution du problème:

$$\max_{K_i,L_i|K_i=B_i} \Pi_i = P_i f(K_i,L_i) - WL_i - (1+r)B_i$$

donne:

$$W = P_i f'_L(K_i, L_i)$$
$$(1+r) = P_i f'_K(K_i, L_i) = (R^K)$$

Même formule: le rendement financier est égal au rendement du capital. Cas particulier du principe d'arbitrage.

Demande de capital des firmes

On a donc:

$$(1+r)=P_if_K'(K_i,L_i)$$

- Comme $F(., L_i)$ est croissante et convexe, on peut obtenir la demande d'investissement $I(r; L_i)$
- On peut différencier l'équation pour obtenir:

$$\Delta r = P_i f_K''(K_i; L_i) \Delta K$$

Ou

$$\Delta K_i = 1/(P_i f_K''(K_i; L_i)) \Delta r$$

- Une augmentation du taux d'intérêt baisse la demande d'investissement
- ► Intuition?
 - si le taux d'intérêt du marché est plus élevé, les investissement productifs sont comparativement moins rentables
- ► Remarque: le raisonnement est valide que la firme investisse ses propre fonds ou bien emprunte

Est-ce que les firmes réagissent au taux d'intérêt?

Est-ce que les firmes réagissent au taux d'intérêt?

- Dans les dernières années le canal de l'investissement ne semble pas avoir soutenu la demande
 - Lors des deux dernières crises, les taux d'interêt étaient très bas.
 Et l'investissement aussi.
- Il y a d'autre facteurs.
 - L'incertitude sur la conjoncture économique
 - Les firmes sont averses au risque. Quand la valeur future de leur production est inconnue elle produisent moins.
- Même si les taux directeurs sont très bas, les conditions de financements peuvent être mauvaises
 - Les banques aussi sont averses au risque

Les producteurs

- ► En réalité le problème des firmes est plus compliqué qu'une simple maximisation de profit
- Les firmes possèdent du capital et n'ont pas nécessairement besoin d'emprunter.
 - ► Elle peuvent emprunter à plus long terme sans devoir repayer leur prêt immédiatement après la production
- Certaines firmes ont des contraintes de crédit
 - Dans ce cas leur capacité à emprunter dépend de leur capital existant qu'elle peuvent utiliser comme garantie ("collateral")

Courbe IS

Courbe IS:

 On a donné une justification pour les différentes composantes du PIB

$$C(Y,r) + I(r) + G + NX$$

► A l'équilibre on doit avoir

$$\overline{Y} = \overline{C} + \overline{I} + \overline{G} + \overline{NX}$$

Après diférenciation:

$$\Delta Y = C_Y \Delta Y + C_r \Delta r + I_r \Delta r + \Delta S$$

avec $\Delta S = \Delta G + \Delta NX$ qui représente un choc sur la demande.

Courbe IS: Log-linearisation

$$\Delta Y = C_Y \Delta Y + C_r \Delta r + I_r \Delta r + \Delta S$$

- On peut aussi log-linéariser pour obtenir:

$$\frac{\Delta Y}{Y} = C_Y \frac{\Delta Y}{Y} + \frac{C_r}{Y} \Delta r + \frac{I_r}{Y} \Delta r + \frac{1}{Y} \Delta S$$

- En notant $y = \frac{\Delta Y}{Y}$ on obtient:

$$y = -\sigma(r - r^*) + \theta$$

avec $\sigma = \frac{-\left(\frac{C_r}{V} + \frac{I_r}{V}\right)}{1 - C_y} > 0$ et où $\theta = \frac{\Delta G + \Delta NX}{Y}$ contient toutes les sources variations qui ne proviennent pas du revenu ou du taux d'intérêt.

Courbe IS: résumé

Avec ce travail, on obtient une courbe IS (log-)linéaire (on a omis jusqu'à présent les indices t mais l'équation vaut à toutes les dates.)

$$y_t = -\sigma(r_t - r^*) + \theta_t$$

Où $\sigma = \frac{-\left(\frac{C_r}{Y} + \frac{I_r}{Y}\right)}{1 - C_y} > 0$ est la demi-élasticité de la demande au taux d'intérêt et où θ_t est un choc de demande.

- Une propension marginale à consommer C_y plus grande implique une élasticité plus grande de la demande aux chocs de revenus.
 - pour les ménages keynésiens
- Une élasticité plus grande de la demande prévue aux taux d'intérêt implique une réponse plus forte de la demande aux chocs de politique monétaire
 - pour les ménages ricardiens et les firmes

Politique Monétaire et Demande Agrégée

Le mandat de la banque centrale

- L'objectif principal de la banque centrale consiste à stabiliser l'inflation autour de son objectif π^*
- ► Elle atteint cet objectif en influençant la demande en réponse au fluctuations du cycle économique
- La demande est affectée par le taux d'intérêt réel
- La banque centrale peut fixer le taux d'intérêt nominal i_t , mais est vraiment intéressée par le taux d'intérêt réel r_t
 - les deux sont liés par la relation de Fisher: $r_t = i_t \pi_{t+1}$
 - lacktriangle pour simplifier on suppose ici qu'elle fixe directement le taux r_t
 - voir amphi 4
- En suivant Romer 2002, on suppose simplement: $r_t = r' + \kappa(\pi_t \pi^*)$
- Typiquement, la banque centrale augmente le taux d'intérêt pour réduire l'inflation donc: $\kappa > 0$

La courbe de demande agrégée

► Maintenant que l'on a la courbe IS:

$$y_t = -\sigma(r_t - r') = \theta_t$$

► Et la réponse de la banque centrale (MP)

$$r_t = r' + \kappa (\pi_t - \pi^*)$$

On peut substituer le taux d'intérêt réel pour obtenir l'equation de demande agrégée (aussi appelée IS-MP):

$$y_t = -\sigma\kappa(\pi_t - \pi^*) + \theta_t$$

- Cette courbe repressente l'équilibre sur le marche des biens et services, en prenant en compte la réponse de la banque centrale.
- On a bien la demande agrégée comme une fonction décroissante de l'inflation (donc aussi des prix)