

DI MILANO *

DI BOLOGNA

CHALLENGING COMMON ASSUMPTIONS IN CONVEX REINFORCEMENT LEARNING

MIRCO MUTTI, RICCARDO DE SANTI, PIERSILVIO DE BARTOLOMEIS, MARCELLO RESTELLI

mirco.mutti@polimi.it

rdesanti@ethz.ch

pdebartol@ethz.ch

marcello.restelli@polimi.it

Infinite Trials Setting

RL (dual)

$$\mathcal{J}_{\infty}(\pi) := r \cdot d^{\pi}$$

episodic with horizon Treward vector r

state distribution d^{π}

convex/concave objective \mathcal{F}

Convex RL¹

$$\zeta_{\infty}(\pi) := \mathcal{F}(d^{\pi})$$

Finite Trials Setting

RL (dual)

$$\mathcal{J}_n(\pi) := \underset{d_n \sim p_n^{\pi}}{\mathbb{E}} \left[r \cdot d_n \right]$$

state visitation frequency with n episodes d_n

convex/concave objective ${\cal F}$

Convex RL

$$\zeta_n(\pi) := \underset{d_n \sim p_n^{\pi}}{\mathbb{E}} \left[\mathcal{F}(d_n) \right]$$

episodic with horizon T

reward vector r

References

¹Zahavy et al., Reward is enough for convex mdps. NeurIPS, 2021.

²Chatterji et al., On the theory of reinforcement lear-

Challenged Assumptions

Previous works in convex RL consider an infinite trials formulation to approximate a single trials one

Challenged Assumption 1

The convex RL problem can be equivalently addressed with an infinite trials formulation

Finite Trials

Infinite Trials

plem can be equivalently infinite trials formulation
$$\mathbb{E}_{d_n \sim p_n^{\pi}} \left[\mathcal{F}(d_n) \right] \neq \mathcal{F}(d^{\pi})$$

$$\mathcal{J}_n(\pi) = \mathbb{E}_{d_n \sim p_n^{\pi}} \left[r \cdot d_n \right] = r \cdot \mathbb{E}_{d_n \sim p_n^{\pi}} \left[d_n \right] = r \cdot d^{\pi} = \mathcal{J}_{\infty}(\pi)$$

$$\zeta_{\infty}(\pi) = \mathcal{F}(d^{\pi}) = \mathcal{F}(\mathbb{E}_{d_n \sim p_n^{\pi}} [d_n]) \leq \mathbb{E}_{d_n \sim p_n^{\pi}} [\mathcal{F}(d_n)] = \zeta_n(\pi)$$

APPROXIMATION ERROR

$$\left|\zeta_n(\pi^{\dagger}) - \zeta_n(\pi^{\star})\right| \le 4LT\sqrt{\frac{2S\log(4T/\delta)}{n}}$$

 π' optimal finite trials policy π^* optimal infinite trials policy S, T, L are problem dependent

 $\mathbb{E}_{\substack{d_n \sim p_n^{\pi}}} \left[r \cdot d_n \right] = r \cdot d^{\pi}$

Challenged Assumption 2

The convex RL formulation is only slightly harder than the standard RL formulation

Challenged Assumption 3

The set of stationary randomized policies is sufficient for the convex RL formulation

Online Learning Setting

Single Trial Convex RL unknown objective \mathcal{F}

$$\zeta_1(\pi) := \underset{d \sim p^{\pi}}{\mathbb{E}} \left[\mathcal{F}(d) \right]$$

approximate \mathcal{F} from interactions (Bernstein polynomial)

N-episodes online **regret**
$$\mathcal{R}(N) := \sum_{t=1}^{N} V^* - V^{(t)}$$

For any $\delta \in (0,1]$, unknown convex MDP, using OPE-UCBVI algorithm²

$$\mathcal{R}(N) \leq \underbrace{NL_V L_{\mathcal{F}}(S/d_{\mathbf{w}})^{\frac{1}{2}}}_{ ext{approximation term}} + \underbrace{\mathcal{R}_{\delta}(N)}_{ ext{pure learning regret}^2} \underbrace{V \ L_V \text{-Lipschitz}}_{ ext{L}_{\mathcal{F}} \text{-Lipschitz}}$$
 with probability $1-\delta$, where the regret is sub-linear in N

Empirical Validation

Objective ${\mathcal F}$		APPLICATION	Infinite Trials = Finite Trials
$r \cdot d$	$r \in \mathbb{R}^S, d \in \Delta(\mathcal{S})$	RL	✓
$\ d-d_E\ _p^p \ KL(d d_E)$	$d,d_E\in\Delta(\mathcal{S})$	IMITATION LEARNING	×
$-d \cdot \log(d)$	$d\in\Delta(\mathcal{S})$	PURE EXPLORATION	×
$egin{aligned} ext{CVaR}_{lpha}[r\cdot d] \ r\cdot d - \mathbb{V} ext{ar}[r\cdot d] \end{aligned}$	$r \in \mathbb{R}^S, d \in \Delta(\mathcal{S})$	RISK-AVERSE RL	×
$r \cdot d$, S.T. $\lambda \cdot d \leq c$	$r, \lambda \in \mathbb{R}^S, c \in \mathbb{R}, d \in \Delta(\mathcal{S})$	LINEARLY CONSTRAINED RL	✓
$-\operatorname{\mathbb{E}}_{z}d_{KL}\left(d_{z} \operatorname{\mathbb{E}}_{k}d_{k} ight)$	$z \in \mathbb{R}^d, d_z, d_k \in \Delta(\mathcal{S})$	DIVERSE SKILL DISCOVERY	×

Imitation Learning

$$\mathcal{F}(d) = \mathrm{KL}(d||d_E)$$

