Sistemas Operacionais I

Deadlocks

Prof. Leandro Marzulo

Exemplo

Condições

- Um deadlock ocorre quando as seguintes condições ocorrem simultaneamente em um sistema:
 - Exclusão mútua Pelo menos um recurso deve estar alocado em modo nãocompartilhável (um processo por vez usa o recurso.
 - Posse e espera Um processo deve estar de posse de pelo menos um recurso e esperando para adquirir recursos adicionais que, no momento, estejam sendo mantido por outros processos.
 - Inexistência de preempção de recursos Recursos não podem ser interceptados, isto é, um recurso só pode ser liberado voluntariamente pelo processo que o detém.
 - Espera circular Deve existir um conjunto {P0, P1, ..., Pn} de processos em espera de tal modo que P0 esteja esperando por um recurso alocado a P1, P1 esteja esperando por um recurso alocado a P2, ..., Pn-1 esteja esperando por um recurso alocado a Pn e Pn esteja esperando por um recurso alocado a P0.

Código com deadlock

• EXEMPLO da pg 149 do livro.

Grafo de alocação de Recursos

Deadlock

Sem Deadlock

Deadlock no problema dos Filósofos

Métodos para manipulação de Deadlocks

- Garantir que deadlocks não ocorram
 - Prevenir garantir que 1 das 4 condições jamais ocorram
 - Impedir SO recebe antecipadamente informações adicionais relacionadas a que recursos um processo solicitará e usará durante seu tempo de vida. Com esse conhecimento, ele pode decidir, para cada solicitação, se o processo deve ou não esperar, considerando os recursos disponíveis no momento, os recursos alocados concorrentemente e as futuras solicitações e liberações de cada processo.
- Detectar e recuperar
- Ignorar (mais comum)
 - Windows
 - Linux
 - Unix
 - Responsabilidade do programador

Prevenção

- Exclusão mútua
 - Alguns recursos podem ser compartilháveis (arquivos de leitura)
 - Em geral não podemos prevenir esta condição
- Posse e espera
 - Protocolo Cada processo solicita e recebe todos os recursos antes de usálos – precedência na execução das chamadas de sistema de alocação de recursos.
 - Alternativa Não pode solicitar outros recursos enquanto usa outros (deve liberar antes) – solicitar em blocos.
 - Utilização baixa dos recursos e inanição.

Prevenção

- Inexistência de Preempção
 - Se um processo tem recursos e vai esperar por algum outro ele libera todos (e passa a esperar por todos).
 - Se um processo solicita recursos, verificamos se estão disponíveis
 - Se estiverem, serão alocados
 - Senão, verificamos se foram alocados a outro processo que esteja esperando por recursos adicionais e liberamos os recursos necessários
 - Se estão indisponíveis mas não estão alocados a nenhum processo, o processo espera e, enquanto isto, seus recursos podem ser interceptados. O processo só volta a executar quando obtiver todos os recursos.
 - Aplicado a recursos cujo estado pode ser salvo (contexto) como Banco de registradores e Memória (não impressora)

Prevenção

- Espera Circular
 - Numerar os recursos
 - Obter locks na ordem
 - Programador
 - Bibliotecas com verificação