1 Section 8.6 Exercises

Exercises with solutions from Section 8.6 of [UA].

Exercise 8.6.1. (a) Fix $r \in \mathbb{Q}$. Show that the set $C_r = \{t \in \mathbb{Q} : t < r\}$ is a cut.

The temptation to think of all cuts as being of this form should be avoided. Which of the following subsets of \mathbf{Q} are cuts?

- (b) $S = \{t \in \mathbf{Q} : t \le 2\}$
- (c) $T = \{t \in \mathbf{Q} : t^2 < 2 \text{ or } t < 0\}$
- (d) $U = \{t \in \mathbf{Q} : t^2 \le 2 \text{ or } t < 0\}$

Solution. (a) It is clear that C_r satisfies (c1) and (c2). To see that C_r satisfies (c3), observe that if $t \in C_r$, then $t < \frac{t+r}{2}$ and $\frac{t+r}{2} \in C_r$.

- (b) This is not a cut, since it has 2 as a maximum element.
- (c) This is a cut. T satisfies (c1) since $0 \in T$ and $2 \notin T$.

Suppose $t \in T$ and r is a rational such that r < t. If r < 0 then certainly $r \in T$, so suppose that $r \ge 0$, which implies that t > 0. It follows that $r^2 < t^2 < 2$ and so $r \in T$. Thus T satisfies (c2).

Suppose $t \in T$. If $t \leq 0$ then let r = 1 and if t > 0 then let $r = \frac{2t+2}{t+2}$. In either case, one can verify that t < r and $r \in T$. Thus T satisfies (c3).

(d) By Theorem 1.1.1 we have U = T and hence by part (c) U is a cut.

Exercise 8.6.2. Let A be a cut. Show that if $r \in A$ and $s \notin A$, then r < s.

Solution. Given that $r \in A$, the implication $s \notin A \implies r < s$ is the contrapositive of (c2).

Exercise 8.6.3. Using the usual definitions of addition and multiplication, determine which of these properties are possessed by N, Z, and Q, respectively.

Solution. N satisfies (f1), (f2), and (f5). It fails (f3) since there is no additive identity and it fails (f4) since no element has an additive inverse and only 1 has a multiplicative inverse (1 is its own inverse).

Z satisfies (f1), (f2), (f3), and (f5). It fails (f4) since, while each element has an additive inverse, only 1 and -1 have multiplicative inverses (they are their own inverses).

 ${\bf Q}$ satisfies each property (f1) - (f5).

Exercise 8.6.4. Show that this defines an ordering on **R** by verifying properties (o1), (o2), and (o3) from Definition 8.6.5.

Solution. Properties (o2) and (o3) are clear, so let us verify property (o1). It will suffice to show that if $B \not\subseteq A$, then $A \subseteq B$. Since B is not a subset of A, there exists some $s \in B$ such that $s \not\in A$. Let $r \in A$ be given. By Exercise 8.6.2 we must have r < s and so by (c2) we have $r \in B$. Thus $A \subseteq B$.

Exercise 8.6.5. (a) Show that (c1) and (c3) also hold for A + B. Conclude that A + B is a cut.

- (b) Check that addition in **R** is commutative (f1) and associative (f2).
- (c) Show that property (o4) holds.
- (d) Show that the cut

$$O = \{ p \in \mathbf{Q} : p < 0 \}$$

successfully plays the role of the additive identity (f3). (Showing A + O = A amounts to proving that these two sets are the same. The standard way to prove such a thing is to show two inclusions: $A + O \subseteq A$ and $A \subseteq A + O$.)

Solution. (a) Since A and B are non-empty, A+B must also be non-empty. Since neither A nor B contains every rational number, there exist rationals $r \notin A$ and $s \notin B$. It follows from Exercise 8.6.2 that a+b < r+s for every $a \in A$ and $b \in B$, so that $r+s \notin A+B$. Thus $A+B \neq \mathbf{Q}$ and we have now shown that A+B satisfies (c1).

Let $a + b \in A + B$ be given. By (c3), there exist rationals $r \in A$ and $s \in B$ such that a < r and b < s. It follows that a + b < r + s and $r + s \in A + B$. Thus A + B satisfies (c3).

- (b) Commutativity and associativity of addition in \mathbf{R} follow immediately from commutativity and associativity of addition in \mathbf{Q} .
- (c) Let A, B, and C be cuts such that $B \subseteq C$. If $a + b \in A + B$, then $a + b \in A + C$ also since $B \subseteq C$. Thus $A + B \subseteq A + C$.
- (d) Let $a+p \in A+O$ be given. Then p < 0, so a+p < a and it follows from (c2) that $a+p \in A$; thus $A+O \subseteq A$.

Now let $a \in A$ be given. By (c3) there exists some $b \in A$ such that a < b. Notice that $a = b + (a - b) \in A + O$, since a - b < 0. It follows that $A \subseteq A + O$ and we may conclude that A + O = A.

Exercise 8.6.6. (a) Prove that -A defines a cut.

- (b) What goes wrong if we set $-A = \{r \in \mathbf{Q} : -r \notin A\}$?
- (c) If $a \in A$ and $r \in -A$, show $a + r \in O$. This shows $A + (-A) \subseteq O$. Now, finish the proof of property (f4) for addition in Definition 8.6.4.
- Solution. (a) Since $A \neq \mathbf{Q}$, there exists a $t \notin A$. Then $-t-1 \in -A$, since t < -(-t-1) = t+1. Thus -A is non-empty. Since A is non-empty, there exists some $r \in A$. Then $-r \notin -A$, since if $t \notin A$ then t > -(-r) = r by Exercise 8.6.2. Thus $-A \neq \mathbf{Q}$ and we see that -A satisfies (c1).

Suppose that $r \in -A$, so that there is some $t \notin A$ such that t < -r, and suppose that s < r. Then t < -r < -s, demonstrating that $s \in -A$ also. Thus -A satisfies (c2).

Suppose that $r \in -A$, so that there is some $t \notin A$ such that t < -r. Define $s = r - \frac{r+t}{2}$ and notice that r < s since 0 < -r - t. Furthermore, $s \in -A$ since

$$t \notin A$$
 and $t < \frac{t-r}{2} = -s$.

Thus -A satisfies (c3) and we may conclude that -A is a cut.

- (b) This does not necessarily define a cut. For example, let C_2 be the cut $\{r \in \mathbf{Q} : r < 2\}$. Then using this definition, we find that $-C_2 = \{r \in \mathbf{Q} : r \leq -2\}$, which fails property (c3).
- (c) There exists a $t \notin A$ such that t < -r. By Exercise 8.6.2 it must be the case that a < t < -r and thus a + r < 0, i.e. $a + r \in O$. Thus $A + (-A) \subseteq O$.

For the reverse inclusion, let p < 0 be a given rational number in O. We claim that there must exist some $r \in A$ such that $r - \frac{p}{2} \notin A$, and we will prove this by contradiction. Suppose that $r - \frac{p}{2} \in A$ for all $r \in A$. Since A is a cut, there is some $r_0 \in A$. An induction argument shows that $r_0 - \frac{np}{2} \in A$ for all $n \in \mathbb{N}$. Let $q \in \mathbb{Q}$ be given and use the Archimedean property of \mathbb{Q} to obtain an $n \in \mathbb{N}$ such that $r_0 - \frac{np}{2} > q$; it follows from (c2) that $q \in A$. The conclusion is that $A = \mathbb{Q}$, contradicting (c1).

Thus there is some $r \in A$ such that $r - \frac{p}{2} \notin A$. Since $r - \frac{p}{2} < r - p$, it follows that $p - r \in -A$. Then $p = r + p - r \in A + (-A)$, demonstrating that $O \subseteq A + (-A)$. We may conclude that A + (-A) = O.

Exercise 8.6.7. (a) Show that AB is a cut and that property (o5) holds.

- (b) Propose a good candidate for the multiplicative identity (1) on **R** and show that this works for all cuts $A \geq O$.
- (c) Show the distributive property (f5) holds for non-negative cuts.

Solution. (a) It is clear that AB is non-empty. If either A = O or B = O, then it is straightforward to verify that $AB = O \neq \mathbf{Q}$. Suppose that A > O and B > O. There exist rationals $r \notin A$ and $s \notin B$; clearly, r, s > 0. If $q \in AB$, then either q < 0 or q = ab for $a \in A, b \in B$ and $a, b \geq 0$. By Exercise 8.6.2 we must have a < r and b < s, so that ab < rs. In either case, we have q < rs and thus $rs \notin AB$, demonstrating that $AB \neq \mathbf{Q}$. Thus AB satisfies (c1).

Suppose $r \in AB$ and q < r. If q < 0 then $q \in AB$, so suppose that $q \ge 0$, which implies that r > 0. We must then have r = ab for some $a \in A, b \in B$ with a, b > 0. Notice that $\frac{q}{b} < a$; (c2) then implies that $\frac{q}{b} \in A$ and hence $q = \frac{q}{b} \cdot b \in AB$. Thus AB satisfies (c2).

If A = O or B = O then AB = O, which has no maximum element. Suppose that A > O and B > O and let $r \in AB$ be given. If $r \leq 0$ then let q be any positive rational in AB. If r > 0, then r = ab for some $a \in A, b \in B$ with a, b > 0. By (c3), there exist rationals $s \in A, t \in B$ such that a < s and b < t. Let q = st and notice that $q \in AB$ and r = ab < st = q. In either case, there exists a $q \in AB$ with r < q. Thus AB satisfies (c3) and we may conclude that AB is a cut.

Property (o5) is clear from the definition of AB.

(b) Define $I = \{ p \in \mathbf{Q} : p < 1 \}$ and let $A \geq O$ be given. We claim that AI = A. Suppose that $r \in AI$. If r < 0, then $r \in A$, so suppose that $r \geq 0$. Thus r = ab for some $a \in A$ such that $a \geq 0$ and some $0 \leq b < 1$. It follows that ab < a and so by (c2) we have $r = ab \in A$. Thus $AI \subseteq A$.

Now suppose that $a \in A$. If $a \le 0$, then (c2) implies that $2a \in A$ and thus $a = (2a) \cdot \frac{1}{2} \in AI$. If a > 0, then (c3) implies there is some $r \in A$ with a < r. Thus $\frac{a}{r} \in I$ and we see that $a = r \cdot \frac{a}{r} \in AI$. Hence $A \subseteq AI$ and we may conclude that AI = A.

(c) Let $A, B, C \ge O$ be cuts. If ABC = O then the equality A(B+C) = AB + AC is clear, so suppose that A, B, C > O and suppose that $q \in A(B+C)$. If q < 0 then $q = \frac{q}{2} + \frac{q}{2} \in AB + AC$. Suppose that $q \ge 0$. Then q = a(b+c) = ab + ac, where $a \in A, b \in B, c \in C$ and $a, b+c \ge 0$. There are three cases: $b, c \ge 0, b \ge 0$ and c < 0, or b < 0 and $c \ge 0$. In any of these cases, it is straightforward to verify that $ab+ac \in AB+AC$. Thus $A(B+C) \subseteq AB+AC$.

Now suppose that $p+q \in AB + AC$. If p+q < 0, then $p+q \in A(B+C)$, so suppose that $p+q \ge 0$. If $p,q \ge 0$, then $p=a_1b$ and $q=a_2c$, for some $a_1,a_2 \in A,b \in B$, and $c \in C$ such that $a_1,a_2,b,c \ge 0$. Let $a=\max\{a_1,a_2\}$ and notice that $a(b+c) \in A(B+C)$. Furthermore, $p+q=a_1b+a_2c \le ab+ac=a(b+c)$. It follows from (c2) that $p+q \in A(B+C)$.

Next, suppose that p < 0 and $q \ge 0$, so that q = ac for some $a \in A, c \in C$ with $a, c \ge 0$.

Let $b \in B$ be such that $b \ge 0$; such a b exists since B > O. Now notice that

$$p + q = p + ac < ac \le a(b + c) \in A(B + C).$$

It follows from (c2) that $p + q \in A(B + C)$. The case where $p \ge 0$ and q < 0 is handled similarly. Thus $AB + AC \subseteq A(B + C)$ and we may conclude that A(B + C) = AB + AC.

Exercise 8.6.8. Let $\mathcal{A} \subseteq \mathbf{R}$ be nonempty and bounded above, and let S be the *union* of all $A \in \mathcal{A}$.

- (a) First, prove that $S \in \mathbf{R}$ by showing that it is a cut.
- (b) Now, show that S is the least upper bound for A.
- Solution. (a) Since \mathcal{A} is non-empty, it contains some cut A, so that $A \subseteq S$. It follows that S is non-empty as A is non-empty. Since \mathcal{A} is bounded above, there exists some cut B such that $A \subseteq B$ for all $A \in \mathcal{A}$. It follows that $S \subseteq B$ and hence that $S \neq \mathbf{Q}$ since $B \neq \mathbf{Q}$. Thus S satisfies (c1).

Suppose $r \in S$, so that $r \in A$ for some $A \in \mathcal{A}$, and suppose q < r. Since A is a cut we must have $q \in A$, which gives $q \in S$. Thus S satisfies (c2).

Suppose $r \in S$, so that $r \in A$ for some $A \in \mathcal{A}$. Since A is a cut there exists some $q \in A$ such that r < q; note that $q \in S$ also. Thus S satisfies (c3). We may conclude that S is a cut.

(b) It is clear that S is an upper bound for A. If B is any upper bound for A, then B contains every $A \in A$ and hence must contain the union of all $A \in A$, i.e. $S \subseteq B$. It follows that S is the least upper bound for A.

Exercise 8.6.9. Consider the collection of so-called "rational" cuts of the form

$$C_r = \{ t \in \mathbf{Q} : t < r \}$$

where $r \in \mathbf{Q}$. (See Exercise 8.6.1.)

- (a) Show that $C_r + C_s = C_{r+s}$ for all $r, s \in \mathbf{Q}$. Verify $C_r C_s = C_{rs}$ for the case when $r, s \ge 0$.
- (b) Show that $C_r \leq C_s$ if and only if $r \leq s$ in **Q**.
- Solution. (a) Let $r, s \in \mathbf{Q}$ be given and suppose $a + b \in C_r + C_s$, i.e. a < r and b < s. It follows that a + b < r + s and hence that $a + b \in C_{r+s}$. Thus $C_r + C_s \subseteq C_{r+s}$. Now suppose that $t \in C_{r+s}$, so that t < r + s. Choose a positive integer $n \in \mathbf{N}$ such that $t + \frac{1}{n} < r + s$ and note that:

- $s \frac{1}{n} < s$, so that $s \frac{1}{n} \in C_s$;
- $t + \frac{1}{n} s < r$, so that $t + \frac{1}{n} s \in C_r$;
- $t = (t + \frac{1}{n} s) + (s \frac{1}{n}) \in C_r + C_s$.

Thus $C_{r+s} \subseteq C_r + C_s$ and we may conclude that $C_r + C_s = C_{r+s}$.

It is clear that $C_rC_s = C_{rs}$ if rs = 0, so suppose that r, s > 0 and let $q \in C_rC_s$ be given. If $q \le 0$ then q < rs, i.e. $q \in C_{rs}$. If q > 0 then q = ab for some 0 < a < r and 0 < b < s. It follows that 0 < ab < rs and thus $q = ab \in C_{rs}$. Hence $C_rC_s \subseteq C_{rs}$.

Now let $q \in C_{rs}$ be given. If $q \leq 0$ then certainly $q \in C_rC_s$, so suppose that q > 0 and define $p = \frac{1}{2}(\frac{q}{s} + r)$. Notice that:

- $0 < \frac{q}{s} < p < r$, so that $p \in C_r$;
- $0 < \frac{q}{p} < s$, so that $\frac{q}{p} \in C_s$;
- $q = p \cdot \frac{q}{p} \in C_r C_s$.

Thus $C_{rs} \subseteq C_r C_s$ and we may conclude that $C_r C_s = C_{rs}$.

- (b) If $r \leq s$ then it is clear that $C_r \subseteq C_s$. If s < r, then it is again clear that $C_s \subseteq C_r$. Furthermore, notice that $C_s \neq C_r$ since $\frac{s+r}{2}$ belongs to C_r but not to C_s . Thus $C_s \subseteq C_r$.
- [UA] Abbott, S. (2015) Understanding Analysis. 2nd edition.