

Électrotechnique

Schémas de liaison à la terre

BTS ÉLECTROTECHNIQUE

Électrotechnique

Schémas de liaison à la terre

Édition 2020.11

Table des matières

1	Les	dangers de l'électricité	1
	1.1	Catégories de tension	1
	1.2	Action du courant électrique sur le corps humain	1
	1.3	Paramètres influençant les risques électriques	3
	1.4	Nature des contacts	5
2	Pri	ncipes de fonctionnement	9
	2.1	Généralités	9
	2.2	Définitions usuelles	9
	2.3	Désignations des différents SLT	9
	2.4	Temps de coupure maximal	10
3	Sch	éma Terre-Terre	11
	3.1	Caractéristiques générales	11
	3.2	Schémas de principe	11
4	Sch	éma Terre-Neutre	15
	4.1	Caractéristiques générales	15
	4.2	Schémas de principe	16
	4.3	Méthode de dimensionnement conventionnelle des protections et des sections de	
	4.4	conducteurs	17 20
5	Sch	éma Impédant-Terre	21
	5.1	Caractéristiques générales	21
	5.2	Isolation de l'installation électrique en schéma IT	22
	5.3	Schémas de principe	24
	5.4	Contrôle permanent de l'installation en schéma IT	31
	5.5	Inconvénients du schéma IT	32
6	Cho	oix d'un schéma de liaison à la terre	33
	6.1	Introduction	33
	6.2	Lois et décrets	33
	6.3	Protection des personnes contre les chocs électriques	34
	6.4	Protection des biens contre les incendies ou explosions d'origine électrique	34
	6.5	Continuité de service	34
	$6.6 \\ 6.7$	Protection contre les surtensions	$\frac{34}{34}$
	6.8	Le coût de revient	35
	6.9	Tableau récapitulatif des différents schémas de liaison à la terre	35
\mathbf{A}_{1}	nnex	es	37

\mathbf{A}	Info	rmations complémentaires sur les dangers de l'électricité	39
	A.1	État des lieux de la prévention des risques électriques $\dots \dots \dots \dots \dots$	39
	A.2	Statistiques	39
	A.3	Différents effets du courant électriques	40
	A.4	Descriptifs des moyens de protections contre les contacts directs	41
	A.5	Descriptifs des moyens de protection contre les contacts indirects $\dots \dots \dots \dots$.	51
В	Info	rmations complémentaires sur le SLT TN	65
	B.1	Méthodes de dimensionnement des protections et des sections des conducteurs	65
Bi	bliog	graphie	69

Liste des tableaux

1.1 1.2	Domaines de tensions	
2.1 2.2	Désignation des différents schémas de liaisons à la terre	
4.1 4.2 4.3	Déclinaisons du SLT TN	18
5.1 5.2 5.3	Valeur de l'impédance de réseau Z_{res} en fonction de la longueur du réseau électrique Correspondance entre la capacité de fuite et le courant de premier défaut d'isolement Temps de coupure maximal des disjoncteurs en schéma IT	28
6.1 6.2	Législation encadrant le choix d'un SLT	
A.2 A.3 A.4 A.5 A.6 A.7 A.8 A.9	Types de Très Basse Tension	43 44 46 51 52 53 58
B.1	L_{max} des circuits en mètre selon les sections des conducteurs en cuivre en schéma TN pour les disjoncteurs industriels ¹⁶	66
B.2	L_{max} des circuits en mètre selon les sections des conducteurs en cuivre en schéma TN pour les disjoncteurs domestiques de type B^{16}	67
B.3	L_{max} des circuits en mètre selon les sections des conducteurs en cuivre en schéma TN pour les disjoncteurs domestiques de type C^{16}	67
B.4	L_{max} des circuits en mètre selon les sections des conducteurs en cuivre en schéma TN pour les disjoncteurs domestiques de type D^{16}	67

Liste des figures

1.1 1.2	Effets du courant alternatif sur le corps humain	2 3
1.3	Courbe de l'intensité de contact I_c en fonction du temps $t = f(I_c)^1$	3
1.4	Courbe de la tension de contact U_c en fonction du temps de coupure maximal $t = f(U_c)$	4
1.5	Courbe de la tension de contact U_c en fonction du temps de coupure maximal $t = f(U_c)$ Courbe de la tension de contact U_c en fonction de la résistance du corps humain $R = f(U_c)$	5
3.1	Installation Terre-Terre	12
3.3	Boucle de défaut du courant I_d sur L1	12
4.1	Installation Terre-Neutre Confondus	16
4.3	Installation Terre-Neutre Séparés	16
4.5	Installation Terre-Neutre Confondus-Séparés	17
4.7	Boucle de défaut du courant I_d sur L1	17
5.1	Résistance de fuite R_{res} d'un réseau électrique de plusieurs km $\ldots \ldots \ldots \ldots$	22
5.2	Capacité de fuite d'un réseau électrique de plusieurs km	23
5.3	Réactance de fuite X_{res} d'un réseau électrique de plusieurs km $\dots \dots \dots \dots$	23
5.4	Impédance de fuite Z_{res} d'un réseau électrique de plusieurs km $\ldots \ldots \ldots \ldots$	24
5.6	Installation Isolé-Individuelle	24
5.8	Boucle de courant de défaut I_{d1} du premier défaut d'isolement sur L1	25
5.9	Installation Isolé-Individuelle	26
	Boucle de courant de défaut I_{d2} du deuxième défaut d'isolement sur L2	27
	Installation Isolé-Interconnectée	29 30
	Installation Isolé-Individuelle avec CPI	32
5.15		
A.1	Matériel de classe d'isolation II	52
A.2	Marquage d'un interrupteur différentiel	53
A.4	Principe de fonctionnement d'un DDR	55
A.5	Sélectivité totale à trois niveaux	56
A.7	Cas d'une sélectivité à deux niveaux entre des DDR de type B	56
A.8	Liaison équipotentielle	58
A.9	Câble en tranchée	60 60
	Piquet de terre	61
	Répartition des volumes dans une salle d'eau sans receveur	62
	Répartition des volumes dans une salle d'eau avec baignoire	62
B.1	Facteur de correction m à appliquer aux abaques des longueurs maximales des câbles L_max	65

Liste des formules

1.1	Loi de Joule	1
1.2	Probabilité d'électrocution	1
3.1	Courant de défaut I_d en schéma TT	12
3.2	Tension de défaut U_d en schéma TT $\dots \dots \dots$	13
3.3	Calibre du DDR $I_{\Delta n}$	13
4.1	Courant de défaut I_d en schéma TN selon la méthode conventionnelle $\ \ldots \ \ldots \ \ldots$	18
4.2	Tension de défaut U_d en schéma TN selon la méthode conventionnelle $\ldots \ldots$	18
4.3	Seuil de réglage du disjoncteur I_m en schéma TN $\ \ldots \ \ldots \ \ldots \ \ldots \ \ldots \ \ldots \ \ldots$	19
4.4	Longueur maximale d'un circuit L_{max}	19
5.1	Résistance de fuite du réseaux R_{res} d'une installation neuve	22
5.2	Réactance de fuite du réseaux X_{res} d'une installation neuve $\dots \dots \dots \dots \dots$	23
5.3	Courant du premier défaut I_d1 en schéma Isolé-Individuel	25
5.4	Tension de défaut U_{d1} en schéma Isolé-Individuel	25
5.5	Courant du deuxième défaut I_{d2} en schéma Isolé-Individuel	27
5.6	Tension de défaut U_{d1} en schéma Isolé-Individuel	27
5.7	Calibre du DDR $I_{\Delta n}$	28
5.8	Courant du deuxième défaut I_{d2} en schéma Isolé-Interconnecté $\ \ldots \ \ldots \ \ldots \ \ldots$	30
5.9	Tension de défaut U_d en schéma Isolé-Individuel $\ldots \ldots \ldots \ldots \ldots \ldots \ldots$	30
A.1	Valeur de la résistance de la prise de terre de l'installation électrique R_A	59
B.1	Courant de défaut I_d en schéma TN selon la méthode des impédances $\ \ldots \ \ldots \ \ldots$	68
B.2	Courant de court-circuit en schéma TN selon la méthode de composition	68

Liste des définitions

1.1	Contact direct
1.2	Contact indirect
1.3	Masse
2.1	Conducteur actif
	Neutre
2.3	Terre 9
	Schéma TT
4.1	Schéma TN
5.1	Schéma IT
	Dispositif Différentiel Résiduel
A.2	Sélectivité des DDR

Liste des exemples

3.1	Calcul du calibre du DDR $I_{\Delta n}$	13
4.1	Calcul du courant de défaut I_d en schéma TN	20
4.2	Calcul de la longueur maximale des conducteurs L_{max} en schéma TN	20
5.1	Tension de défaut U_{d1} en schéma Isolé-Individuel au premier défaut $\ldots \ldots \ldots$	26
5.2	Tension de défaut U_{d1} en schéma Isolé-Individuel au deuxième défaut	28

CHAPITRE

Les dangers de l'électricité

1.1 Catégories de tension

Tab. 1.1: Domaines de tensions

Domaine de	e tension	Courant alternatif ¹	Courant continu
Très Basse Tension	TBT	$U_n \leq 50 V$	$U_n \leq 120 \mathrm{V}$
Basse Tension	BT	$50V < U_n \le 1000V$	$120V < U_n \le 1500V$
Haute Tension ²	HTA	$1000V < U_n \le 50kV$	$1500V < U_n \le 75kV$
	HTB	$U_n > 50 \text{kV}$	$U_n > 75 \text{kV}$

¹ Tension nominale exprimée en valeur efficace U_n ;

1.2 Action du courant électrique sur le corps humain

Les dégâts provoqués au corps humain par un choc électrique sont directement corrélés à l'énergie dissipée par ce choc. Cette énergie dissipée est définie par la loi de Joule.

Formule 1.1 (Loi de Joule)

$$W = R \cdot I^2 \cdot t$$

Avec:

Grandeur dans l'ISQ Unité SI de mesure Description $R: \text{ résistance } \text{ ohm } (\Omega)$ I: courant électrique milliampère (mA) t: durée seconde (s)

La présence d'une tension électrique entraine toujours un risque de choc électrique mais il est peu aisé de déterminer un seuil de tension pour lequel le choc est dangereux car ce sont l'intensit'e du courant I traversant le corps et la $dur\'ee\ t$ du choc électrique qui permettent de déterminer la probabilité de décès.

Formule 1.2 (Probabilité d'électrocution)

$$I = \frac{116}{\sqrt{t}}$$

Avec:

² Les basses tensions ne sont plus divisées en deux catégories depuis 2010, seule la haute tension conserve cette caractéristique.

Grandeur dans l'ISQ	Unité SI de mesure	Description
I : courant électrique	milliampère (mA)	Courant traversant le corps
t : durée	seconde (s)	Durée du choc électrique d'une durée (8ms $<$
116: constante	(/)	$t \le 5s$) Constante empirique déterminée statistiquement 19

En plus de l'intensité du courant et de la durée de passage du courant dans le corps, la surface de contact et la susceptibilité spécifique à chaque personne sont d'autres facteurs de gravité d'un contact électrique. Plus de précisions sur la prévention du danger électrique en section A.1 page 39.

1.2.1 Effet du courant alternatif

Les effets du courant alternatif entre 15Hz et 100Hz sont décrit en figure 1.1.

Fig. 1.1: Effets du courant alternatif sur le corps humain

1.2.1.1 Cas particuliers

Pour le courant alternatifs d'une fréquence supérieures à 100Hz :

- Plus la fréquence du courant augmente, plus les risques de fibrillation ventriculaire diminue ;
- Plus la fréquence du courant augmente, plus les risques de brûlures augmentent;
- Plus la fréquence du courant augmente, plus l'impédance du corps humain diminue ;
- Il est généralement considéré que les conditions de protection contre les contacts indirects sont identiques que ça soit sous une fréquence de 50Hz (réseau électrique domestique en Europe) où 400Hz (réseau électrique des bateaux, avions, batmobile...).

1.2.2 Effet du courant continu

Les effets du courant continus sont décrits en figure 1.2.

Fig. 1.2: Effets du courant continu sur le corps humain

- Il est moins difficile de lâcher les parties tenues à la main sous un courant continu ;
- Le seuil de fibrillation ventriculaire est plus élevé.

1.3 Paramètres influençant les risques électriques

L'intensité de contact I_c , la durée de contact t, la tension de contact U_c et la résistance du corps humain R sont autant de paramètres à prendre en compte lors de l'évaluation des risques électriques.

Fig. 1.3: Courbe de l'intensité de contact I_c en fonction du temps $t = f(I_c)^1$

- Aucune réaction physiologique ;
- Aucun effet physiologique dangereux ;
- Aucun dommage corporel. Possibilité de difficultés respiratoires et de contractions musculaires, de troubles réversibles de la formation et de la conduite des impulsions cardiaques (y compris fibrillation des oreillettes et arrêts cardiaques momentanés sans fibrillation ventriculaire). Phénomènes augmentant proportionnellement avec l'intensité du courant i_c et le temps t d'exposition;
- Même effets que ceux de la zone avec une probabilité de fibrillation ventriculaire augmentant jusqu'à 5%. Possibilité d'effets physiopathologiques, tels qu'un arrêt cardiaque,

- un arrêt respiratoire ou des brûlures, augmentant proportionnellement avec l'intensité du courant i_c et le temps t d'exposition ;
- Même effets que ceux de la zone avec une probabilité de fibrillation ventriculaire augmentant jusqu'à 50%. Possibilité d'effets physiopathologiques, tels qu'un arrêt cardiaque, un arrêt respiratoire ou des brûlures, augmentant proportionnellement avec l'intensité du courant i_c et le temps t d'exposition ;
- Même effets que ceux de la zone avec une probabilité de fibrillation ventriculaire dépassant 50%. Possibilité d'effets physiopathologiques, tels qu'un arrêt cardiaque, un arrêt respiratoire ou des brûlures, augmentant proportionnellement avec l'intensité du courant i_c et le temps t d'exposition.

Si une personne subit un choc électrique sans en succomber, il s'agit d'une électrisation. Si la personne décède suite au choc électrique, il s'agit d'une électrocution.

Fig. 1.4: Courbe de la tension de contact U_c en fonction du temps de coupure maximal $t = f(U_c)$

La peau constitue l'isolant contre la pénétration du courant dans le corps humain, et sa résistance électrique varie selon son état de surface et son épaisseur. Pour une peau sèche et fine, on peut estimer que la barrière isolante cède au-delà d'une tension d'environ 50V, et le courant pourra dès lors pénétrer de manière plus importante dans le corps humain.

En règle générale, on considère la résistance moyenne du corps humain entre 300Ω et 1000Ω mais cela peut varier selon les conditions de contact.

Fig. 1.5: Courbe de la tension de contact U_c en fonction de la résistance du corps humain $R = f(U_c)$

1.4 Nature des contacts

1.4.1 Contact direct

Définition 1.1 (Contact direct) Contact des personnes avec les parties actives du matériel électrique (pièces ou conducteurs sous tension). La personne rentre en contact direct avec un élément sous tension suite à une négligence ou un non-respect des consignes de sécurité. Dans ce cas, l'électrocution ou l'électrisation sont la conséquence de cette maladresse ou négligence.

1.4.1.1 Catégories

Contact entre deux phases ou la phase et le neutre Contact le moins fréquent mais le plus dangereux car la résistance pied/sol n'intervient pas. La personne qui touche les deux est alors soumise à la tension simple U_0 ou composée U du réseau. La résistance globale du corps devient alors très faible et le courant en est d'autant plus élevé.

Dans ce cas, le corps humain se comporte comme un récepteur et aucun appareil de coupure ne peut détecter ce contact comme provoquant un défaut, seule une intervention externe pourra couper le courant.

Si la personne est soumise à une tension de contact U_c de 230V et que l'on estime la résistance résultante R des résistance main/fil + résistance des bras à environ 1,5k Ω , on peut calculer l'intensité du courant traversant le corps comme suit :

$$I = \frac{U_c}{R}$$
$$= \frac{230}{1500}$$
$$= 150 \text{mA}$$

En se référençant au tableau figure 1.3 page 3, on peut constater que le temps de réaction de coupure (venant d'une intervention externe) doit être très court. Effectivement, après une seconde, le risque de fibrillation ventriculaire dépasse déjà les 50%, ce qui augmente sensiblement le risque d'arrêt cardiaque.

Contact entre la phase et la terre Contact relativement plus fréquent et moins dangereux que le précédent car la résistance pied/sol et la détection de courant de fuite interviennent. Ce contact direct est rendu possible lorsque le neutre est relié à la terre ($sch\acute{e}ma\ TT$ et $sch\acute{e}ma\ TN$) et soumet la personne à la tension simple U_0 du réseau.

La résistance pied/sol augmente donc la résistante résultante R comprenant donc la résistance main/fil + résistance des bras + résistance pied/sol. Si l'on estime cette résistance à $16\mathrm{k}\Omega$ et que l'on conserve la tension de contact U_c de $230\mathrm{V}$, on peut calculer l'intensité du courant traversant le corps comme suit :

$$I = \frac{U_c}{R}$$
$$= \frac{230}{16000}$$
$$= 14.4 \text{ m/s}^2$$

En se référençant au tableau figure 1.3 page 3, on peut constater cette fois-ci que la situation présente moins de danger que précédemment si le contact ne dépasse toutefois pas les deux secondes. Cette résistance dépend évidement de la nature des semelles, et dans le cas où la personne serait pied nu, la résistance pied/sol baissera au point de considérer le contact comme un contact phase/neutre.

Dans cette configuration-là, le corps entraine également une fuite du courant électrique vers la terre. Cette spécificité est exploité par un appareil de protection dédié à la détection de fuite de courant, le Dispositif Différentiel Résiduel (DDR), ou différentiel.

1.4.1.2 Protection contre les contacts directs

Tab. 1.2: Moyen de protection contre les contacts directs

Catégorie	Principe	Moyen
Contact phase/neutre	Mise hors de portée des pièce sous tensions	 Capotage, isolement, mise sous enveloppe; Respect de l'indice de protection (IP) minimal¹.
	Utilisation d'une tension non dan- gereuse	Alimentation des circuits en TBT ²
Contact phase/neutre et phase/terre	Isolement par rapport au réseau TT	Transformateur d'isolement 3
- ,	Contrôle du courant de défaut I_d (ne devant pas dépasser quelques dizaines de mA)	DDR de basse sensibilité (10mA ou $30 \mathrm{mA}^4$)

¹ Informations complémentaires sur les IP en sous-section A.4.2 page 43;

⁴ Détails sur le DDR en sous-section A.5.2 page 52.

² Informations complémentaires sur les différentes TBT en sous-section A.4.1 page 41 ;

 $^{^3}$ Informations complémentaires sur le transformateur d'isolement en sous-section A.4.3 page 51 $\,$;

1.4.2 Contact indirect

Définition 1.2 (Contact indirect) Contact des personnes avec les masses métalliques mises accidentellement sous tension, généralement suite à un défaut d'isolement (déconnexion des fils, vieillissement ou rupture des isolants...). Dans ce cas, la responsabilité de la personne n'est pas mise en jeu et l'électrisation (et électrocution) est la conséquence d'un défaut imprévisible.

Définition 1.3 (Masse) Une masse est la partie conductrice d'un appareil électrique susceptible d'être touchée par une personne, qui n'est normalement pas sous tension, mais qui peut le devenir en cas de défaut d'isolement des parties actives de ce matériel.

1.4.2.1 **Principe**

Ce type de contact peut apparaitre lorsque le neutre est relié à la terre ($sch\acute{e}ma\ TT$ et $sch\acute{e}ma\ TN$) et qu'une masse métallique est mise accidentellement sous tension. Si cette masse est reliée à la terre, un courant de défaut I_d va faire son apparition et sera potentiellement détecté par un DDR selon sa sensibilité (schéma TN) ou un disjoncteur (schéma TT), si celui-ci est présent et fonctionnel. À cause de la résistance de la prise de mise à la terre R_A , le courant de défaut I_d et le potentiel des masses métalliques augmenteront progressivement avec le temps.

Le risque devient de plus en plus élevé, d'autant que le contact indirect est accidentel et les masses métalliques généralement manipulées franchement. À cela s'ajoute le fait que les conditions de contact peuvent également être défavorables (zones humides, pieds nus...), ce qui peut augmenter dangereusement l'intensité du courant traversant le corps.

1.4.2.2 Protection contre les contacts indirects

Il existe différents moyens de protections contre les contacts indirects qui varient selon les schémas de liaisons à la terre (SLT), qui seront détaillés dans les chapitres suivants. Le principal moyen pour ce faire en schéma TT (et IT individuelles) est d'installer un DDR, associé obligatoirement à une prise de terre du transformateur de l'installation électrique. En schéma TN par contre, cette protection sera assurée par des disjoncteurs réglés pour ce type de défaut. Dans tous les cas, une mise à la terre (MALT) des matériels et structures conducteurs susceptibles d'être accidentellement mis sous tension devra être effectuée.

Ces deux spécificités de l'installation électrique permettront au courant de s'échapper vers la terre via la mise à la terre et former une boucle jusqu'à la prise de terre. Cela formera une boucle de courant de défaut I_d qui sera détectée par le DDR. Selon le type de protection exigé, il jouera un rôle de protection des personne (signalement de défaut et/ou coupure de l'installation en défaut). En schéma IT, la protection contre les contacts indirects s'effectue de manière similaire mais elle est supervisée par un service technique.

L'usage d'appareils électriques de classe II ou III ou la mise hors de portée des carcasses conductrices sont également des moyens de protection contre les contacts indirects. Plus de détails sur ces différentes solutions en section A.5 page 51.

2 Principes de fonctionnement

2.1 Généralités

La protection contre les contacts indirects dépend principalement des SLT (anciennement régime de neutre) qui sont fonction du branchement du neutre vis-à-vis de la terre et du branchement des masses conductrices vis-à-vis de la terre et du neutre.

Il existe trois SLT:

SLT Terre-Terre (TT): distribution du réseaux public ;

SLT Terre-Neutre (TN): généralement installé dans le secteur de l'industrie ;

- SLT Terre-Neutre Séparé (TN-S);
- SLT Terre-Neutre Commun (TN-C);
- SLT Terre-Neutre Commun et Séparé (TN-C-S).

SLT Isolé/Impédant-Terre (IT): continuité de service en cas de défaut d'isolement.

- SLT IT Terres Individuelles:
- SLT IT Terres Interconnectées?

2.2 Définitions usuelles

Définition 2.1 (Conducteur actif) Conducteur électrique participant au transport de l'énergie électrique.

Définition 2.2 (Neutre) Point central où sont reliés les trois bobines du secondaire du transformateur HT/BT dans le cas d'un couplage étoile ou zig-zag. Il est considéré comme un conducteur actif et il doit pouvoir être sectionné et protégé selon les SLT.

Définition 2.3 (Terre) Masse conductrice de la terre, dont le potentiel électrique en chaque point est considéré comme égal à zéro. Sa résistivité est relativement élevée mais sa « section » théoriquement infinie.

Définition 2.4 (Masse) Partie conductrice d'un appareil électrique susceptible d'être touchée par une personne, qui n'est normalement pas sous tension, mais qui peut le devenir en cas de défaut d'isolement des parties actives de ce matériel (voir Définition 1.3 page 7).

2.3 Désignations des différents SLT

- la première lettre donne la position du neutre de l'installation électrique par rapport à la terre (dans le poste de distribution $\mathrm{HT/BT}$),
- la deuxième lettre donne la position des masses par rapport à la terre où au neutre.

Tab. 2.1: Désignation des différents schémas de liaisons à la terre

Désignation	Branchement du neutre	Branchement des masses
Régime TT	Neutre relié à la Terre	Masses reliées à la Terre
Régime TN	Neutre relié à la Terre	Masses reliées au Neutre
Régime IT	Neutre Isolé/Impédant	Masses reliées à la Terre

2.4 Temps de coupure maximal

Le temps de coupure (ou de détection pour le schéma IT) des DDR et disjoncteurs en cas de défaut doit être le plus court possible et diminue avec l'augmentation de la tension nominale U_0 entre phase et neutre.

Tab. 2.2: Temps de coupure maximal des circuits terminaux

Tension nominale	$50V < U_0$	≤ 120V	$120V < U_0$	o ≤ 230V	$230V < U_0$	o ≤ 400V	$U_0 > 4$	400V
Type de courant	alternatif	continu	alternatif	continu	alternatif	continu	alternatif	continu
Schéma TN/IT	0,8s	5s	0,4s	5s	0,2s	0.4s	0,1s	0,1s
Schéma TT	0.3s	5s	0,2s	0,4s	0.07s	0.2s	0,04s	0,1s

3 Schéma Terre-Terre

3.1 Caractéristiques générales

Définition 3.1 (Schéma TT) Schéma de liaison à la terre dans lequel :

Neutre: relié à la terre;

Masses: reliées à la terre.

Dans le SLT TT, le point neutre du transformateur HT/BT (point commun) est relié à la terre via la prise de terre du neutre ①. Cette liaison présente une certaine résistance, la résistance de la prise de terre du neutre R_B ②. Sa mise en œuvre est à charge du fournisseur d'électricité et sa résistance globale doit être inférieure ou égale à $15\Omega^6$.

Les masses sont quant à elles reliées à la terre via la prise de terre de l'installation électrique 3, qui présente aussi une certaine résistance, la résistance de la prise de terre de l'installation électrique R_A 4. Sa mise en œuvre est à charge du propriétaire de l'installation (voir sous-sous-section A.5.3.3 page 58).

Ce SLT présente les caractéristiques principales suivantes :

- entrainement d'une coupure de l'installation en défaut suite à une seule coupure ;
- simplicité à l'étude et à l'installation ;
- usage dans les installations alimentées directement par le réseau de distribution publique d'électricité;
- protection assurée par des DDR permettant, en plus de la protection des personnes contre les contacts indirects, la prévention des risques d'incendie (lorsque leur sensibilité $I_{\Delta n} \leq 300 \text{mA}$).
- permanence de surveillance en exploitation non nécessaire seulement un contrôle périodique des DDR via leur bouton test (sous-sous-section A.5.2.4 page 54);
- possibilité de sélectivité de protection des circuits (sous-sous-section A.5.2.5 page 56);
- prise en compte d'appareils spécifiques pouvant provoquer des courants de défauts I_d par le choix de DDR adaptés.

3.2 Schémas de principe

En cas de défaut d'isolement sur les masses métalliques, le courant de défaut I_d dispose d'un chemin, via la terre, pour revenir au poste de transformateur HT/BT. Cela forme la boucle de défaut. Dans les calculs, il faut tenir compte de la résistance de défaut R_d qui prend en compte la nature du défaut d'isolement (franc ou non-franc) et la résistance de la carcasse métallique.

Fig. 3.1: Installation Terre-Terre

Fig. 3.3: Boucle de défaut du courant \mathcal{I}_d sur L1

L'intensité de courant I_d vaut alors :

Formule 3.1 (Courant de défaut I_d en schéma TT)

$$I_d = \frac{U_0}{R_B + R_A + R_d}$$

Avec:

Grandeur dans l'ISQ	Unité SI de mesure	Description
U_0 : tension nominale simple	volt (V)	Différence de potentiel entre les masses métalliques et la terre
R_B : résistance	ohm (Ω)	Résistance de la prise de terre du neutre
R_A : résistance	ohm (Ω)	Résistance de la prise de terre de l'instal- lation électrique
R_d : résistance	ohm (Ω)	Résistance de défaut d'isolement

Le courant de défaut I_d fera alors apparaître une tension de défaut U_d entre la masse métallique et la terre. Pour satisfaire aux normes de sécurité de la NF C15-100, il est imposé que la tension de défaut U_d ne dépasse pas la tension de sécurité du local U_L (voir sous-sous-section A.5.3.3 page 58):

Formule 3.2 (Tension de défaut U_d en schéma TT)

$$U_d = R_A \times I_d$$

$$< U_L$$

Avec:

Grandeur dans l'ISQ	Unité SI de mesure	Description
R_A : résistance	ohm (Ω)	Résistance de la prise de terre de l'installation électrique
I_d : intensité	ampère (A)	Courant de défaut d'isolement
U_L : tension	volt (V)	Tension de sécurité du local avec :
		Local sec : $U_L = 50 \text{V}$
		Local humide : $U_L = 25$ V

Il est donc nécessaire de limiter U_d à la valeur suivante (voir Formule A.1 page 59) :

Formule 3.3 (Calibre du DDR $I_{\Delta n}$)

$$I_{\Delta n} < \frac{U_L}{R_A}$$

Avec:

Grandeur dans l'ISQ Unité SI de mesure Description U_L : tension volt (V) Tension de sécurité du local avec : Local sec : $U_L = 50$ V Local humide : $U_L = 25$ V R_A : résistance ohm (Ω) Résistance de la prise de terre de l'installation électrique

Exemple 3.1 (Calcul du calibre du DDR $I_{\Delta n}$) Si on considère que le transformateur est un transformateur $20 \mathrm{kV}/400 \mathrm{V}$, que $R_A = 20 \Omega$, que $R_B = 10 \Omega$ et que R_d est négligée, on peut déduire que le courant de défaut I_d vaut :

$$I_d = \frac{U_0}{R_B + R_A}$$
$$= \frac{400}{20 + 10}$$
$$= 13,33A$$

Si une personne touche une masse des récepteurs en défaut, elle sera soumise à une tension de défaut U_d :

$$U_d = R_A \times I_d$$
$$= 20 \times 13,33$$
$$= 266,6 \text{V}$$

La tension de défaut U_d est dangereuse quelle que soit la tension limite choisie :

— coupure la plus rapide possible ;

— protection des personnes.

Dans le cas d'un local sec :

Dans le cas d'un local humide :

$$I_{\Delta n} < \frac{U_L}{R_A}$$
 $I_{\Delta n} < \frac{U_L}{R_A}$ $< \frac{50}{20}$ $< 2,5A$ $< 1,25A$

D'après le tableau situé en section 2.4 page 10, le DDR doit présenter un temps de coupure de moins de 70ms avec une tension de défaut U_d de 266,6 V:

Tension nominale	$50V < U_0$	≤ 120V	$120 V < U_0$	o ≤ 230V	$230 \text{V} < U_0$	o ≤ 400V	$U_0 > 4$	400V
Type de courant	alternatif	continu	alternatif	continu	alternatif	continu	alternatif	continu
Schéma TN/IT	0,8s	$5\mathrm{s}$	0.4s	5s	0.2s	0,4s	0,1s	0,1s
Schéma TT	0.3s	5s	0.2s	0,4s	0,07s	0,2s	0,04s	0,1s

4 Schéma Terre-Neutre

4.1 Caractéristiques générales

Définition 4.1 (Schéma TN) Schéma de liaison à la terre dans lequel :

Neutre: relié à la terre;

Masses: reliées au neutre du transformateur HT/BT.

Dans le SLT TN, le point neutre du transformateur HT/BT (point commun) est relié à la terre via la prise de terre du neutre. Cette liaison présente une certaine résistance, la résistance de la prise de terre du neutre R_B . Sa mise en œuvre est à charge du fournisseur d'électricité et sa résistance globale doit être inférieure ou égale à $15\Omega^6$.

Les masses sont quant à elles reliées au point neutre du transformateur $\mathrm{HT/BT}$ (point commun), cela peut être réalisé via trois déclinaisons du SLT TN :

Tab. 4.1: Déclinaisons du SLT TN

Nom	Caractéristiques	Avantages	Inconvénients
Confondus (TN-C)	 conducteurs neutre et PE confondus; PE et neutre vert/jaune nommé conducteur Protection Équipotentielle Neutre (PEN). 	– économie d'un câble.	 utilisation de canalisations fixes et rigides. interdiction de pose: locaux à risques d'incendies; alimentation d'équipements de traitement de l'information (présence de courant harmonique dans le neutre).
Séparés (TN-S)	 conducteurs neutre et PE séparés; PE et neutre vert/jaune séparés (PE+N). 	 usage de conducteurs souples autorisés; séparation et protection du neutre possibles dans les locaux pollués. 	 solution plus coû- teuse que le schéma TN-C.

Page suivante

Nom	Caractéristique	Avantages	Inconvénients
Mixte (TN-C-S)	 combinaison des SLT TN-C et TN-S dans une même installation; usage du SLT TN-C formellement interdit en aval du SLT TN-S. 	- combinaison des avantages des deux SLT TN.	

Ce SLT présente les caractéristiques principales suivantes :

- utilisation uniquement dans les installations électriques alimentées par un transformateur HT/BT (ou MT/BT ou BT/BT);
- requiert l'installation de prises de terre uniformément réparties dans l'installation ;
- requiert la vérification des déclenchements sur le premier défaut d'isolement, obtenue lors de l'étude par des calculs de dimensionnement et, lors de la mise en service par des mesures de test ;
- ne requiert pas de DDR dans l'absolu ;
- requiert un installateur qualifié pour toute installation, modification ou encore extension;
- pouvant endommager de manière plus significative les bobinages et appareillages lors d'un défaut d'isolement, par rapport au SLT TT;
- danger plus élevé dans les locaux à risque d'incendie du fait de courants de défaut plus importants.

4.2 Schémas de principe

Fig. 4.1: Installation Terre-Neutre Confondus

Fig. 4.3: Installation Terre-Neutre Séparés

Fig. 4.5: Installation Terre-Neutre Confondus-Séparés

En cas de défaut d'isolement sur les masses métalliques, le courant de défaut I_d dispose maintenant d'un chemin, via le conducteur PEN, pour revenir au poste de transformateur HT/BT. Cela forme la boucle de défaut qui s'apparente à un court-circuit.

Fig. 4.7: Boucle de défaut du courant I_d sur L1

Pour calculer le courant de défaut I_d , il existe trois méthode, mais ne sera détaillé dans ce chapitre que la première (plus de précisions sur les deux autres méthode annexe B page 65) :

- Méthode conventionnelle ;
- Méthode des impédances ;
- Méthode de composition.

4.3 Méthode de dimensionnement conventionnelle des protections et des sections de conducteurs

Contrairement au SLT TT, il ne faut pas tenir compte de la résistance de défaut R_d qui prend en compte la nature du défaut d'isolement (franc ou non-franc) et la résistance de la carcasse métallique car il s'agit d'un court-circuit et elle sera donc très faible.

 I_d s'apparente donc à un courant de court-circuit et son calcul est basé sur l'hypothèse que la tension de défaut reste supérieur à 80% ou plus de la tension nominale simple. Cette valeur est issue d'une estimation de la chute de tension due à l'ensemble des impédances en amont de la protection du circuit en défaut. Elle est utilisée, avec l'impédance de la boucle de circuit, pour calculer ce courant de court-circuit.

Ce facteur est calculé par l'estimation de la chute de tension due à l'ensemble des impédances en amont de cette origine. Dans une majorité des types de pose, les réactances inductive interne et entres les conducteurs sont négligées, ce qui revient à ne considérer que les résistances des conducteurs dans les calculs d'intensité de court-circuit. Cette approximation est considérée comme valable pour les sections de câble jusqu'à 120mm^2 . Au-dessus de cette section, la résistance R des conducteurs est augmentée selon le tableau ci-dessous :

Tab. 4.2: Section des conducteurs (schéma TN / méthode conventionnelle)

Section des conducteurs	Ajustement de la résistance en Ω
$S = 150 \text{mm}^2$ $S = 185 \text{mm}^2$ $S = 240 \text{mm}^2$	R + 15% R + 20% R + 25%

Formule 4.1 (Courant de défaut I_d en schéma TN selon la méthode conventionnelle)

$$I_d = \frac{0.8 \times U_0}{R_{PE} + R_{ph}}$$

$$I_d = \frac{0.8 \times U_0}{Z_c}$$

Avec:

Grandeur dans l'ISQ	Unité SI de mesure	Description
U_0 : tension	volt (V)	Tension nominale simple
0,8 : facteur	(/)	facteur d'approximation de la tension de défaut
		U_d
R_{PE} : résistance	ohm (Ω)	Résistance du conducteur de phase traversé par
		un courant de défaut I_d
R_{ph} : résistance	ohm (Ω)	Résistance du conducteur PE traversé par un
		courant de défaut I_d
Z_c : impédance	ohm (Ω)	Impédance de boucle du circuit en défaut (selon
		la méthode conventionnelle)

Le courant de défaut I_d fera alors apparaı̂tre une tension de défaut U_d entre la masse métallique et la terre :

Formule 4.2 (Tension de défaut U_d en schéma TN selon la méthode conventionnelle)

$$U_d = R_{PE} \times I_d$$

Avec:

Grandeur dans l'ISQ	Unité SI de mesure	Description
R_{PE} : résistance	ohm (Ω)	Résistance du conducteur PE traversé par un
		courant de défaut I_d
I_d : intensité	ampère (A)	Courant de défaut d'isolement

La tension de défaut U_d dans le cas d'un défaut d'isolement en régime TN est élevée et donc dangereuse si elle est supportée trop longtemps. La norme NF C15-100 a défini des temps de coupure maximum à respecter :

TAB. 4.3: Temps de coupure maximal des disjoncteurs en schéma TN

Réseaux usuels	Temps de coupu	re maximal en ms
Tesedux usueis	$U_L = 50 \mathrm{V}$	$U_L = 25 \mathrm{V}$
127V/230V	800	350
230V/400V	400	200
400V/690V	200	50
690V/1000V	100	20

Formule 4.3 (Seuil de réglage du disjoncteur I_m en schéma TN)

$$I_m > I_d$$

Avec:

Grandeur dans l'ISQ	Unité SI de mesure	Description
I_m : intensité	ampère (A)	Intensité de seuil de déclenchement de la protec-
		tion magnétique du disjoncteur

On peut calculer la longueur maximale d'un circuit d'une installation en schéma TN par la formule suivante

Formule 4.4 (Longueur maximale d'un circuit L_{max})

$$L_{max} = \frac{0.8 \times U_0 \times S_{ph}}{\rho \times (1+m) \times I_m}$$
$$m = \frac{S_{ph}}{S_{PE}}$$

Avec:

Grandeur dans l'ISQ	Unité SI de mesure		Description		
I_m : intensité	ampère	(A)	Intensité de seuil de déclenchement de la protection magnétique du disjoncteur		
U_0 : tension	volt	(V)	Tension nominale simple		
S_{ph} : section	$ m millim\`etre^2$	(mm^2)	Section du conducteur de phase traversé par un courant de défaut I_d		
S_{PE} : section	$ m millim\`etre^2$	(mm^2)	Section du conducteur PE traversé par un courant de défaut I_d		
ho : résistivité		($\Omega \mathrm{mm}^2\mathrm{m}^{-1}$)	Résistivité du conducteur (selon la température et le matériau choisi) : aluminium : $37.6 \times 10^{-3} \Omega \mathrm{mm^2m^{-1}}$ cuivre : $22.5 \times 10^{-3} \Omega \mathrm{mm^2m^{-1}}$		
m : facteur		(/)	Facteur de correction à appliquer aux va- leurs données dans les abaques de déter- mination des longueurs selon la section et l'intensité de déclenchement (sous-sous- section B.1.1.1 page 65)		

Pour vérifier rapidement un dimensionnement, les constructeurs de protections ont établis des abaques permettant de déterminer rapidement les longueurs maximale des conducteurs selon l'intensité, la section des conducteurs ou en encore les réglages du seuil de courant de déclenchement du disjoncteur ou encore le type de disjoncteurs. Ces abaques sont issus des norme IEC $60947-2^3$

et IEC 60898², qui concernent respectivement les disjoncteurs industriels et domestiques. Ils sont détaillés dans l'annexe annexe B page 65.

Exemple 4.1 (Calcul du courant de défaut I_d en schéma TN) Si on considère que les conducteurs sont en cuivre, que $U_0 = 230$ V, que $L_{ph} = 50$ m et est équivalent à L_{PE} , que $S_{ph} = 35$ mm² et est équivalent à S_{PE} , on peut déduire que le courant de défaut I_d vaut :

$$\begin{split} Z_c &= 2 \times \rho \times \frac{L}{S} \\ &= 2 \times 22.5 \times 10^{-3} \times \frac{50}{35} \\ &= 64,3 \text{m} \Omega \end{split} \qquad \begin{aligned} I_d &= \frac{U_0 \times 0,8}{Z_c} \\ &= \frac{230 \times 0,8}{64,3 \times 10^{-3}} \\ &= 2816 \text{A} \end{aligned}$$

Exemple 4.2 (Calcul de la longueur maximale des conducteurs L_{max} en schéma TN) Si on considère que les conducteurs sont en cuivre, que $U_0 = 230$ V, que Lph = 50m et est équivalent à LPE, que $S_{ph} = 35$ mm² et est équivalent à S_{PE} , on peut déduire que le courant de défaut I_d vaut :

$$\begin{split} Z_c &= 2 \times \rho \times \frac{L}{S} \\ &= 2 \times 22.5 \times 10^{-3} \times \frac{50}{35} \\ &= 64,3 \text{m} \Omega \end{split}$$

$$I_d = \frac{U_0 \times 0,8}{Z_c} \\ &= \frac{230 \times 0,8}{64,3e \times 10^{-3}} \\ &= 2816 \text{A} \end{split}$$

Il convient de croiser cette valeur de I_d avec les valeurs du seuil de déclenchement du disjoncteur Instantané et Court-retard et leurs temps de coupures respectifs (voir tableau 4.3 page 19) pour valider le dimensionnement et le choix de la protection.

4.4 Protection avec des DDR en schéma TN

La protection des circuits à l'aide de DDR en schéma TN est formellement interdite en schéma TN-C car le conducteur PE ne peut pas être sectionné. En schéma TN-C-S, son utilisation implique forcément que les conducteurs PE et N soient séparés en amont du DDR.

Les DDR en schéma TN-S sont requis lorsque :

- l'impédance de la boucle de défaut Z_c n'est pas précisément calculable ;
- le courant de défaut est trop faible pour que la protection détecte le défaut comme s'apparentant à un court-circuit dans le temps de déconnexion requis.

Un DDR se déclenchant avec un courant de déclenchement de l'ordre que quelques ampères maximum, il convient bien à un circuit terminal d'une installation BT conséquente en schéma TN.

5 Schéma Impédant-Terre

5.1 Caractéristiques générales

Définition 5.1 (Schéma IT) Schéma de liaison à la terre dans lequel le prise de terre du neutre du transformateur et la prise de terre des masses métalliques sont raccordées à la terre selon quatre variantes différentes :

Masses conductrices			
Interconnectées	Individuelles		
Masses interconnectées au moyen d'un conducteur PE et raccordées à la terre au niveau du transformateur HT/BT. Raccordement similaire au schéma TN, à la différence que le neutre du transformateur n'est pas raccordé au conducteur PE et à la terre.	Masses mise à la terre individuellement ou par groupe à des prises de terre propres. Type de raccordement similaire au schéma TT avec installation de DDR en tête de chaque circuit.		
tée co ra au for la la te	lasses interconnectes au moyen d'un onducteur PE et accordées à la terre i niveau du transfrmateur HT/BT. accordement similire au schéma TN, la différence que le cutre du transformatur n'est pas raccordé in conducteur PE et		

Il s'agit d'un SLT un peu plus atypique ayant pour but d'assurer une continuité de service à l'installation électrique malgré un premier défaut d'isolement tout en assurant la protection des personnes contre les contacts indirects. Selon les quatre variantes de raccordement, le premier défaut entrainera un fonctionnement identique des protections mais à l'apparition d'un deuxième défaut entrainera un fonctionnement des protection différent.

Dans la pratique, le schéma IT présente les caractéristiques suivantes :

- continuité de service assurée après un premier défaut d'isolement ;
- contrôle permanent de l'isolement de l'installation par rapport à la terre avec signalisation de toute dépassement du seuil d'isolement défini à l'aide d'un Contrôleur Permanent d'Isolement (CPI);
- protection du neutre assurée ;
- raccordement possible d'un limiteur de tension (éclateur) entre la terre et le point neutre du transformateur HT/BT ;
- présence continue d'une équipe pour assurer rapidement la recherche du premier défaut d'isolement aussitôt signalé, facilitée avec du matériel de localisation automatique ;
- coupure automatique de l'installation dès l'apparition d'un second défaut d'isolement sur un conducteur actif différent de celui ou le premier défaut d'isolement est apparu.

Le courant de défaut du premier défaut d'isolement va dépendre de l'impédance de limitation du neutre et de l'état d'isolement de l'installation électrique. Pour toutefois protéger les personnes, il doit être suffisamment bas pour satisfaire la règle $I_d \times R_A \pm 50$ V, de sorte à ce que la tension de défaut U_d ne présente aucun danger.

5.2 Isolation de l'installation électrique en schéma IT

Dans le cas d'un schéma IT ou le neutre est isolé, l'isolement de l'installation de l'installation électrique n'est pas infini par rapport à la terre car les isolants ne présentent jamais une résistance infinie. Une résistance de fuite du de l'installation électrique apparaitra toujours et dépendra de plusieurs facteurs :

- nature des isolants (PVC, air...);
- âge de l'installation
- degré d'humidité ;
- longueur de l'installation.

Pour une installation neuve, on considère que la résistance de fuite est estimée à $3,3\mathrm{M}\Omega$ pour 1km de réseau électrique.

Formule 5.1 (Résistance de fuite du réseaux R_{res} d'une installation neuve)

$$R_{res} = \frac{3,3}{n}$$

Avec:

Grandeur dans l'ISQ Unité SI de mesure Description R_{res} : résistance méga-ohm (M Ω) Résistance de fuite du réseaux électrique n: Nombre de km de réseaux électrique

Fig. 5.1: Résistance de fuite R_{res} d'un réseau électrique de plusieurs km

Un réseau électrique présente également une capacité de fuite de par sa constitution (conducteur sous tension + isolant + terre). Celle-ci est estimée à 0,9µF pour 1km de réseau électrique.

Fig. 5.2: Capacité de fuite d'un réseau électrique de plusieurs km

Une capacité de $0.9\mu F$ par km de réseau électrique équivaut, à une fréquence de 50 Hz, à une réactance de fuite X_{res} de $3500 k\Omega$ par km de réseau électrique neuf.

Formule 5.2 (Réactance de fuite du réseaux X_{res} d'une installation neuve)

$$X_{res} = \frac{3,5}{n}$$

Avec:

Grandeur dans l'ISQ Unité SI de mesure Description X_{res} : résistance kilo-ohm (k Ω) Réactance de fuite du réseaux électrique n: (/) Nombre de km de réseaux électrique

Fig. 5.3: Réactance de fuite X_{res} d'un réseau électrique de plusieurs km

La valeur de la réactance de fuite X_{res} et bien plus faible que celle de la résistance de fuite Z_{res} de l'installation. C'est donc la réactance qui va être le facteur limitant dans le calcul de l'impédance de réseau Z_{res} .

Fig. 5.4: Impédance de fuite Z_{res} d'un réseau électrique de plusieurs km

L'impédance de réseau Z_{res} (appelée aussi impédance capactivite Z_C) dépend donc de la longueur du réseau électrique et va en s'abaissant au fur et à mesure que celle-ci augmente.

Tab. 5.1: Valeur de l'impédance de réseau Z_{res} en fonction de la longueur du réseau électrique

Longueur L (km)	1	2	3	4	5	6
Impédance Z_{res} (Ω)	3538	1770	1180	884	707	590

5.3 Schémas de principe

5.3.1 Neutre isolé et masses mises à la terre individuellement

Le neutre du transformateur HT/BT est isolé de la prise de terre, mais protégé par un limiteur de surtension ① contre les surtensions à fréquence industrielle, et les masses conductrices sont reliées à la terre par des prises de terre propres à chaque masse. Il subsiste néanmoins une impédance de fuite Z_{res} présente dans toutes les installations électriques (voir section 5.2 page 22).

Fig. 5.6: Installation Isolé-Individuelle

En cas de premier défaut d'isolement de la phase 1 sur les masses métalliques, un premier courant de défaut I_{d1} dispose d'un chemin, via la terre, pour revenir au poste de transformateur HT/BT. Cela forme la boucle de défaut.

Dans les calculs, il faut tenir compte de la résistance de défaut R_d qui prend en compte la nature du défaut d'isolement (franc ou non-franc) et la résistance de la carcasse métallique de l'appareil 1.

Fig. 5.8: Boucle de courant de défaut I_{d1} du premier défaut d'isolement sur L1 $\,$

L'intensité de courant I_d1 vaut alors :

Formule 5.3 (Courant du premier défaut I_d1 en schéma Isolé-Individuel)

$$I_d = \frac{U_0}{Z_{res} + R_{A1} + R_{d1}} \label{eq:Id}$$

Avec:

Grandeur dans l'ISQ	Unité SI de mesure	Description
U_0 : tension nominale simple	volt (V)	Différence de potentiel entre les masses métalliques et la terre
Z_{res} : impédance	ohm (Ω)	Impédance de fuite Z_res du réseau électrique
R_{A1} : résistance	ohm (Ω)	Résistance de la prise de terre de l'appareil 1
R_{d1} : résistance	ohm (Ω)	Résistance de défaut d'isolement de l'appareil 1

Le courant de défaut I_{d1} fera alors apparaître une tension de défaut U_{d1} entre la masse métallique de l'appareil 1 et la terre. Cette tension, limitée par l'impédance de fuite, sera très largement inférieure à U_L et ne sera donc pas dangereuse. La situation sera similaire avec un schéma Impédant-Individuel Z_N , ou l'impédance de limitation limitera également le courant de défaut :

Formule 5.4 (Tension de défaut U_{d1} en schéma Isolé-Individuel)

$$U_{d1} = R_{A1} \times I_{d1}$$

$$\ll U_L$$

Avec:

Grandeur dans l'ISQ	Unité SI de mesure	Description
R_{A1} : résistance	ohm (Ω)	Résistance de la prise de terre de l'appareil 1
I_{d1} : intensité	ampère (A)	Courant de défaut de l'appareil 1
U_L : tension	volt (V)	Tension de sécurité du local avec :
		Local sec : $U_L = 50 \text{V}$

Local humide: $U_L = 25V$

Le fonctionnement d'un schéma IT sera également identique au premier défaut, que les masses soient interconnectées ou individuellement raccordées à la terre.

Exemple 5.1 (Tension de défaut U_{d1} en schéma Isolé-Individuel au premier défaut) Si on considère que le transformateur est un transformateur 20 kV/400 V, que $Z_{res} = 3500 \Omega$, $R_{A1} = 40 \Omega$ et que $R_d = 2 \Omega$, on peut déduire que le courant de défaut I_d vaut :

$$I_{d1} = \frac{U_0}{Z_{res} + R_{A1} + R_{d1}}$$
$$= \frac{400}{3500 + 40 + 2}$$
$$= 64,9 \text{mA}$$

Si une personne touche à la masse du récepteur 1, elle sera soumise à une tension de défaut U_{d1} :

$$U_{d1} = R_{A1} \times I_{d1}$$

= 40 × 0,0649
= 2,6V

Lors de l'apparition d'un deuxième défaut d'isolement sur un autre conducteur actif, un courant de défaut I_{d2} va apparaitre. Celui-ci va s'apparenter à un court-circuit et de ce fait, I_{d1} sera négligé. Dans les calculs, il faut encore tenir compte de la résistance de défaut R_d qui prend en compte la nature du défaut d'isolement (franc ou non-franc) et les résistances des carcasses métalliques des appareils 1 et 2.

Fig. 5.9: Installation Isolé-Individuelle

Fig. 5.11: Boucle de courant de défaut I_{d2} du deuxième défaut d'isolement sur L2

L'intensité de courant I_{d2} vaut alors :

Formule 5.5 (Courant du deuxième défaut I_{d2} en schéma Isolé-Individuel)

$$I_{d2} = \frac{U}{R_{d1} + R_{A1} + R_{A2} + R_{A2}}$$

Avec:

Grandeur dans l'ISQ	Unité SI de mesure	Description
U : tension nominale composée	volt (V)	Différence de potentiel entre deux conducteurs actifs (à préciser s'il s'agit du conducteur neutre)
R_{d1} : résistance	ohm (Ω)	Résistance de défaut d'isolement de l'appareil 1
R_{A1} : résistance	ohm (Ω)	Résistance de la prise de terre de l'appareil 1
R_{A2} : résistance	ohm (Ω)	Résistance de la prise de terre de l'appareil 2
R_{d2} : résistance	ohm (Ω)	Résistance de défaut d'isolement de l'appareil 1

Le courant de défaut I_{d1} fera alors apparaître une tension de défaut U_{d1} entre la masse métallique de l'appareil 1 et la terre. Cette tension, limitée par l'impédance de fuite, sera très largement inférieure à U_L et ne sera donc pas dangereuse. La situation sera similaire avec un schéma Impédant-Individuel Z_N , ou l'impédance de limitation limitera également le courant de défaut :

Formule 5.6 (Tension de défaut U_{d1} en schéma Isolé-Individuel)

$$U_{d1} = R_{A1} \times I_{d2}$$

$$< U_L$$

Avec:

Grandeur dans l'ISQ	Unité SI de mesure	Description
R_{A1} : résistance	ohm (Ω)	Résistance de la prise de terre de l'appareil 1
I_{d2} : intensité	ampère (A)	Courant de défaut de l'appareil 2
U_L : tension	volt (V)	Tension de sécurité du local avec :
		Local sec : $U_L = 50 \text{V}$
		Local humide : $U_I = 25V$

Le cas est similaire à ceux rencontrés en schéma TT, on procèdera de la même manière en protégeant chaque groupe de masses par un DDR au calibre adapté ①. Il est donc nécessaire de limiter U_{d1} à la valeur suivante (voir Formule A.1 page 59) :

Formule 5.7 (Calibre du DDR $I_{\Delta n}$)

$$I_{\Delta n} < \frac{U_L}{R_{A1}} \tag{5.1}$$

Avec:

Grandeur dans l'ISQ	Unité SI de mesure	Description
R_{A1} : résistance	ohm (Ω)	Résistance de la prise de terre de l'appareil 1
U_L : tension	volt (V)	Tension de sécurité du local avec :
		Local sec : $U_L = 50$ V
		Local humide : $U_L = 25V$
R_{A1} : résistance	ohm (Ω)	Résistance de la prise de terre de l'appareil 1

L'usage de DDR implique de tenir du courant du premier défaut d'isolement I_{d1} afin que la protection ne coupe pas le circuit dès le premier défaut :

Tab. 5.2: Correspondance entre la capacité de fuite et le courant de premier défaut d'isolement

Capacité de fuite (µF)	Courant de premier défaut (A)
1	0,07
5	$0,\!36$
30	$2{,}17$

Exemple 5.2 (Tension de défaut U_{d1} en schéma Isolé-Individuel au deuxième défaut) Si on considère que le transformateur est un transformateur 20 kV/400 V, que $R_{A1} = R_{A2} = 40 \Omega$ et que $R_{d1} = R_{d1} = 2 \Omega$, on peut déduire que le courant de défaut I_{d2} vaut :

$$I_{d2} = \frac{U}{R_{d1} + R_{A1} + R_{A2} + R_{A2}}$$
$$= \frac{400}{2 + 40 + 40 + 2}$$
$$= 4,76A$$

Si une personne touche à la masse du récepteur 1, elle sera soumise à une tension de défaut U_{d1} :

$$U_{d1} = R_{A1} \times I_{d2}$$

= $40 \times 4,76$
= $190,4$ V

La tension de défaut U_{d1} est dangereuse quelle que soit la tension limite choisie :

- coupure la plus rapide possible ;
- protection des personnes.

Dans le cas d'un local sec :

Dans le cas d'un local humide :

$$I_{\Delta n} < \frac{U_L}{R_{A1}}$$

$$< \frac{50}{40}$$

$$< 1.25 A$$

$$I_{\Delta n} < \frac{U_L}{R_{A1}}$$
 $< \frac{25}{40}$
 $< 0.625 A$

D'après le tableau situé en section 2.4 page 10, le DDR protégeant la carcasse de l'appareil 1 doit présenter un temps de coupure de moins de 200ms avec une tension de défaut U_d de 190,4V:

Tension nominale	$50V < U_0$	≤ 120V	$120 V < U_0$	o ≤ 230V	$230 V < U_0$	o ≤ 400V	$U_0 > 4$	400V
Type de courant	alternatif	continu	alternatif	continu	alternatif	continu	alternatif	continu
Schéma TN/IT	0,8s	5s	0.4s	5s	0,2s	0.4s	0,1s	0,1s
Schéma TT	0.3s	5s	0,2s	0.4s	0.07s	0.2s	0,04s	0,1s

5.3.2 Neutre isolé et masses interconnectées et mise à la terre

Les situations saines et au premier défaut d'isolement d'une installation en schéma IT avec les masses conductrices interconnectées et reliés en un seul point seront similaires au schéma IT avec les masses mise à la terre individuellement. Au deuxième défaut d'isolement, la situation sera différente, la prise en charge du défaut va s'apparenter à celle qu'on rencontre en schéma TN avec l'apparition d'un court-circuit.

Fig. 5.12: Installation Isolé-Interconnectée

Contrairement au SLT IT avec les masses isolées, il ne faut pas tenir compte des résistances de défaut R_{d1} et R_{d2} qui prend en compte la nature du défaut d'isolement (franc ou non-franc) et la résistance de la carcasse métallique car il s'agit d'un court-circuit et elle sera donc très faible.

Fig. 5.14: Boucle de courant de défaut I_{d2} du deuxième défaut d'isolement sur L2

L'intensité de courant I_{d2} vaut alors :

Formule 5.8 (Courant du deuxième défaut I_{d2} en schéma Isolé-Interconnecté)

$$I_{d2} = \frac{0,5 \times U}{R_{ph1} + R_{ph2}}$$

Avec:

Grandeur dans l'ISQ	Unité SI de mesure	Description
U : tension nominale composée	volt (V)	Différence de potentiel entre deux conducteurs actifs (à préciser s'il s'agit du conducteur neutre)
R_{ph1} : résistance	ohm (Ω)	Résistance de du conducteur actif alimentant l'appareil 1
R_{ph2} : résistance	ohm (Ω)	Résistance de du conducteur actif alimentant l'appareil 2

Le courant de défaut I_{d1} fera alors apparaître une tension de défaut U_d entre la masse métallique de l'appareil 1 et la masse métallique de l'appareil 2.

On néglige également la résistance du conducteur PE devant celle des phases. Dans ce contexte-là, la tension de défaut U_d vaut alors :

Formule 5.9 (Tension de défaut U_d en schéma Isolé-Individuel)

$$U_d = \frac{0, 5 \times U}{2}$$

Avec:

Grandeur dans l'ISQ	Unité S	I de mesure	Description
U : tension nominale composée	volt	(V)	Différence de potentiel entre deux conducteurs actifs (à préciser s'il s'agit du conducteur neutre)
I_{d2} : intensité	ampère	(A)	Courant de défaut de l'appareil 2
U_L : tension	volt	(V)	Tension de sécurité du local avec :
			Local sec : $U_L = 50 \text{V}$
			Local humide : $U_L = 25V$

Cette tension de défaut est dangereuse et il faut obligatoirement couper l'alimentation en protégeant les circuits par des disjoncteurs magnéto-thermique, qui doivent respecter les temps de coupure suivant :

TAB. 5.3: Temps de coupure maximal des disjoncteurs en schéma IT

Réseaux usuels	Temps de coupure maximal (ms)				
research distrib	$U_L = 50 \text{V}$	$U_L = 25 \mathrm{V}$			
Neutre non distribué					
127V/230V	800	400			
230V/400V	400	200			
400V/690V	200	60			
690V/1000V	100	20			
Neutre distribué ¹					
127V/230V	5000	1000			
230V/400V	800	500			
400V/690V	400	200			
690 V / 1000 V	200	80			

¹ les installations monophasées sont considérées comme des installations à neutre distribué.

La longueur maximale des conducteurs en schéma IT avec les masses interconnectées se calculent avec les mêmes méthodes que pour les installations en schéma TN (voir section 4.3 page 17).

5.4 Contrôle permanent de l'installation en schéma IT

Quand l'installation électrique est en schéma IT, il est nécessaire d'avoir une équipe de maintenance à disposition pour intervenir rapidement en cas de premier défaut. Pour les détecter au plus vite, il faut installer un Contrôleur Permanent d'Isolement (CPI). Il s'agit d'un appareil placé en dérivation qui va calculer en permanence deux paramètres de l'installation :

- ① niveau d'isolement général Z_{res} : injection d'une tension (continue ou alternative de basse fréquence) entre le neutre et la terre, générant un courant de fuite I_f dont l'intensité sera proportionnellement inverse au niveau d'isolement général de l'installation électrique. Audessous d'un certain seuil d'isolement réglable (généralement entre 0.7 à $100 \text{k}\Omega$), le CPI déclenche une alarme.
- 2 apparition d'un défaut franc sur un circuit : installation de tores de détection sur les circuits à surveiller, calculant la différence entre le courant entre et sortant (mécanisme similaire à ceux des DDR). Cela permet de localiser précisément les circuits en défaut.

Fig. 5.15: Installation Isolé-Individuelle avec CPI

5.5 Inconvénients du schéma IT

Le schéma IT présente l'inconvénient majeur de nécessiter une installation dont le niveau d'isolement doit être toujours au-dessus du seuil défini par le CPI. Dans la pratique, les réseaux IT présenteront relativement rapidement des défauts d'isolement et la présence d'une équipe de maintenance et d'un matériel de détection seront coûteuses. De plus, certains équipements peuvent polluer le réseau électrique et perturber ainsi le bon fonctionnement des CPI, il conviendra d'alimenter ceux-ci par un transformateur d'isolement et cela peut ajouter un coût non négligeable à l'ensemble de l'installation.

Les installations neuves dont la continuité de service doit être assurée (équipement médical, événementiel, zone militaire...) présentent actuellement une répartition fragmentée du réseau et une multiplication des sources principales et de secours pour que le défaut puisse être isolé.

6 Choix d'un schéma de liaison à la terre

6.1 Introduction

Les différents schémas de liaison à la terre présentent chacun des avantages et des inconvénients, ils sont recommandés selon les critères suivants pour le choix d'un SLT ou de plusieurs SLT imbriqués les uns dans les autres :

- lois et décrets ;
- protection des personnes contre les chocs électriques ;
- protection des biens contre les incendies ou explosions d'origine électrique ;
- continuité de service ;
- protection contre les surtensions ;
- compatibilité électromagnétique ;
- coût de revient de l'installation.

6.2 Lois et décrets

Le choix d'un SLT est parfois fortement recommandé voire imposé par la législation en vigueur :

TAB. 6.1: Législation encadrant le choix d'un SLT

Utilisation	Type de SLT	Textes de lois
Bâtiment alimenté par un réseaux de distribution publique (habitat, petit tertiaire, petit atelier, commerce)	neutre à la terre (TT)	Arrêté interministériel du $13/02/1970$
Établissement Recevant du Public (ERP)	neutre isolé (IT)	Règlement de sécurité contre les risques de panique et d'in- cendie dans les ERP
Circuits d'éclairage de sécurité soumis au décret de protection des travailleurs	neutre isole (TT)	Arrêté interministériel du 10/11/1976 relatifs aux circuits et installations de sécurité (J.O. n° 102 NC du 01/12/1976)
Mines et carrières	neutre isolé (IT) ou neutre à la terre (TT)	Décret nº 76-48 du 09/01/1976, circulaire du 09/01/1976 et rè- glement sur la protection du personnel dans les mines et car- rières, annexée au décret 76-48

6.3 Protection des personnes contre les chocs électriques

Pour ce critère, les trois SLT assurent une protection des personnes considérée comme équivalente si les principes d'installation sont bien respectés. Toutefois, le SLT TN exige des compétences techniques en électricité lors des calculs des impédances de boucles de court-circuit à l'installation mais également lors d'extensions de l'installation. Il conviendra d'être vigilant lors des installations de ces extensions et spécialement pour la re-calibration des protections.

6.4 Protection des biens contre les incendies ou explosions d'origine électrique

De part l'installation de DDR, une exploitation correcte des installations en schéma IT et TT conduit à un risque d'incendie quasi-nul. Le SLT IT est même recommandé dans les installations à fort risque explosif. Pour autant, le SLT TN-C présente un risque d'incendie plus élevé.

6.5 Continuité de service

La continuité de service caractérise l'aptitude d'une installation électrique à assurer un fonctionnement le plus longtemps possible sans coupure. Cette caractéristique est primordiale dans les installations dites *sensibles* ou la sécurité des personnes est en jeu (médical, militaire, éclairage de secours...) ou dans les installations dont les arrêts peuvent engendrer des pertes financières importantes (ligne de production, événementiel...).

Dans ces cas-là, le SLT IT est le choix de prédilection parce qu'il permet cette continuité de service lors d'un premier défaut d'isolement. Toutefois, du fait de la propension naturelle des installations à accumuler les défauts d'isolement avec l'âge et les conditions, et du fait de l'obligation d'avoir une équipe de maintenance qualifiée et disponible pour prospecter au premier défaut, on se tourne vers d'autres solutions techniques permettant d'assurer une continuité de service (multiplication des sources principales et de secours...).

6.6 Protection contre les surtensions

Une surtension peut apparaître sur l'installation basse tension lors d'un claquage sur la partie HT de l'installation, ou plus fréquemment en raison de la foudre. Lorsque celle-ci frappe le sol, le potentiel des prises de terre va s'élever de manière significative à proximité de l'impact et mettre à mal l'équipotentialité des masses conductrices.

Pour palier à cette problématique, et sur tous les SLT dans les zones à haut niveau kéraunique AQ2 (classification de densité d'impact de foudre), il est nécessaire d'installer un parafoudre.

En schéma TT et TN-S, il doivent être installés en mode commun et en mode différentiel (un parafoudre au plus proche de chaque équipement). En schéma IT et TN-C, ils ne doivent installés qu'en mode commun.

6.7 Compatibilité électromagnétique

Les appareils électriques de type courants faibles (informatique, électronique...) sont sensibles aux perturbations électromagnétiques engendrés par le passage du courant fort dans les conducteurs à proximité. Le schéma TN-C provoquant des courants de court-circuit à chaque défaut d'isolement, il est fortement déconseillé d'alimenter des appareils sensibles sous ce schéma.

6.8 Le coût de revient

Ce critère est décisif dans le choix d'un SLT car les trois SLT ne sont pas équivalents d'un point de vue économique. Différents coûts sont à prendre en compte lors de la conception (calculs), de l'installation (prix du matériel spécifique) et d'exploitation (entretien par un personnel qualifié ou non). Le moins onéreux sera le SLT TN, suivi du TT et le SLT IT sera le plus coûteux.

6.9 Tableau récapitulatif des différents schémas de liaison à la terre

Tab. 6.2: Comparaison des différents schémas de liaison à la terre

Critères de comparaison		\mathbf{TT}	TN-S	TN-C	IT individuelles	IT interconnectées
Protection des personnes contre les chocs électriques	contacts directs	+	+	+	+	+
	contacts indirects	+	+	+	+	+
Protection des biens contre les risques d'incendie ou d'explosion d'origine électrique	incendie et explosion	-		interdit	+	
Continuité de service	creux de tension	+	_	_	++	-
	sélectivité	-	+	+	++	+
	déclenchement	-	-	-	+	-
	temps de recherche	-	+	+	-	+
	temps de réparation				-	
Protection contre les surtensions	foudre sur la HT	-	+	+	+	+
	claquage du transformateur	-	+	+	+	+
Compatibilité électromagnétique	rayonnements	+	_		++	-
	chute de tension	+	-	-	++	-
	harmoniques	+	+		+	+
Coût à la conception	étude la sélectivité	_	+	+	++	+
	calcul de L_{max}	+	-	-	++	-
Coût à l'installation	nombre de câbles	+	+	++	+	+
	nombre de pôles	+	+	++	+	+
	pose des câbles	-			++	
	matériel spécifiques	-	+	+	-	+
Coût à l'exploitation	recherche de défauts	-	+	+		+
-	coûts des réparations				-	
	vérifications des connexions	+	-	-	++	-
	facilité d'extension	+	-	-	+	-

Annexes

ANNEXE

A Informations complémentaires sur les dangers de l'électricité

Cette annexe regroupe des données complémentaires mentionnées dans le chapitre 1 page 1. Il n'est pas nécessaire de les retenir par cœur mais ces informations constituent un support appréciable pour toutes précisions concernant ce chapitre.

A.1 État des lieux de la prévention des risques électriques

A.2 Statistiques

A.2.1 Accidents d'origine électrique

Les accidents du travail d'origine électrique diminuent depuis la mise en place du décret du 14 novembre 1962 qui attrait à la protection des travailleurs contre les dangers de l'électricité. Entre 1962 et 2000, le nombre d'incidents a baissé de 74%.

A.2.2 Secteurs les plus atteints

Durant l'année 2008, on dénombrait 771 accidents d'origine électrique. Les secteurs les plus touchés sont :

30%: bâtiment et travaux publics,

17%: métallurgie,

16%: service et travail temporaire,

11%: alimentation.

A.2.3 Facteurs principaux

Les principaux facteurs ayant causé l'accident sont :

31%: mode opératoire inapproprié ou dangereux;

15%: application incomplète;

12%: formation insuffisante;

12%: état du matériel;

11%: état du sol.

A.2.4 Type de contact

75%: contact direct;

20%: contact indirect;

5%: non précisé.

A.2.5 Type de dommages

Ces statistiques sur plusieurs années sont relativement constantes. Elles précisent que :

60%: brûlures;

≈ 33%: localisation multiples (les yeux, les membres supérieurs et les mains sont les plus touchés);

5%: lésions internes.

A.2.6 Conclusion

On peut conclure de ces statistiques que depuis une trentaine d'années, le nombre d'accidents dus à l'électricité :

- diminue régulièrement ;
- demeurent particulièrement graves.

Le risque d'accidents est certe mieux maitrisé qu'auparavant mais il reste toujours présent.

A.3 Différents effets du courant électriques

A.3.1 Effet thermique

Il est admis que les brûlures électriques peuvent apparaître à des intensités relativement faibles ($\approx 10 \text{mA}$), si le contact est maintenu quelques minutes

A.3.2 Effet tétanisant

Lorsque la tension est alternatif, les muscles se situant sur le trajet du courant électrique se contractent. Cet effet, surtout s'il s'agit des muscles de la main, peuvent empêcher tout dégagement volontaire de la victime. Pour l'extraire de cette situation, il convient de stopper le contact crispé en la poussant à l'aide d'un objet non conducteur.

A.3.3 Effets respiratoires et circulatoires

Les muscles respiratoires pouvant également être crispés par le courant, il suffit de 60s pour bloquer la respiration. Cela provoque une asphyxie, appelée également *syncope blanche*.

Une fibrillation ventriculaire se manifeste également pour les mêmes ordres de grandeurs. C'est le résultat de la contraction anarchiques des fibrilles du muscle cardiaque. Ces battements du cœur

rapides et désordonnés ne permettent plus d'assurer une circulation sanguine adéquate et provoque ainsi une syncope cardiaque, appelée aussi *syncope blanche*. Une défibrillation devient indispensable pour stopper cet effet du courant.

Au-delà d'un 1A, le courant entraîne un arrêt cardiaque par asystolie, une absence de battements cardiaques sur laquelle une défibrillation n'est pas recommandée.

Les lésions cardiaques diffèrent selon certain paramètres, ces information peuvent aider les premiers secours à axer leurs interventions en situation d'extrême urgence :

basse tension: effet excito-moteur et fibrillation ventriculaire;

haute tension: effet joule et asystolie;

foudre : sidération myocardique (dysfonction des contractions du cœur difficilement prise en charge).

Lors de la prise en charge d'un patient électrisé, il convient de bien suivre celui-ci sur plusieurs jours car les risques de malaises cardiaques dûs au choc électrique peuvent ressurgir durant une période plus ou moins longue selon les conditions d'électrisation.

A.4 Descriptifs des moyens de protections contre les contacts directs

Les différents moyens de protections sont ici décrits en profondeur à titre informatif.

A.4.1 Très basse tension

Il existe trois types de TBT selon la classification du lieux et la nature du courant.

A.4.1.1 Principe

Très Basse Tension de Sécurité (ou Séparation) Alimentation basse tension ou il n'existe aucun point commun entre le primaire et le secondaire du transformateur, utilisée pour alimenter des appareillages situés dans des locaux humides.

Très Basse Tension de Protection Alimentation basse tension ou il existe un point commun entre le commun du secondaire et le conducteur de protection, utilisée pour alimenter des machines-outils et automatisme. La liaison du commun au conducteur de protection du secondaire permet d'éviter les mises en marche intempestives pouvant survenir après deux défauts de masse consécutifs dans une commande de machine (alimentation possible d'une bobine de contacteur via la carcasse de l'armoire de commande).

Très Basse Tension Fonctionnelle Alimentation basse tension ou il existe plusieurs point commun entre le primaire et le secondaire du transformateur (autotransformateur), utilisée pour alimenter des appareillages ne requérant pas d'exigences de sécurité autre qu'une tension nominale de fonctionnement spécifique.

A.4.1.2 Architecture

TAB. A.1: Types de Très Basse Tension

Domaine de tension	Alimentation	Liaison à la terre	Sectionnement et protection contre les court-circuits	Protection contre les contacts indirects	Protection contre les contacts directs	Récepteur
TBTS (Très Basse Tension de Sécurité)	Transformateur de sécurité conforme à la norme NF C 52 742	Interdite	De tous des conducteurs actifs	Non	Non	
	classe II		×			Z
TBTP (Très Basse Tension de Protec- tion)	Transformateur de sécurité conforme à la norme NF C 52 742		De tous des conducteurs actifs	Non	Non	
	classe I					Z
TBTF (Très Basse Tension de Fonction- nelle)	Transformateur de sé- curité d'origine indéter- minée		De tous des conducteurs actifs	Oui (DDR)	Oui (appareil IP2X)	
			*			• Z •

A.4.2 Indice de protection

L'indice de protection (IP) est composé de deux chiffres (et parfois d'une ou deux lettres) et caractérise le degré de protection procuré par une enveloppe contre la pénétration de corps étrangers (1er chiffre) et d'eau (2e chiffre). Cet indice est souvent accompagné d'un indice contre les chocs mécaniques IK.

Lorsqu'un des deux indice n'est pas déterminé, il est remplacé par la lettre " x ".

TAB. A.2: Descriptif de l'indice contre les chocs mécanique TAB. A.3: Lettre additionnelle sur les ΙK

Lettre f Η Μ S W

informations supplémentaires

Conditions

mentales spécifiées

Signification

Appareil à haute tension

Appareil en déplacement durant le test à l'eau

Appareil immobile durant le test à l'eau

environne-

Résistant aux huiles

IK	Tests	Énergie	$ m AG^1$	Ancien IP
00		0J		0
01	150 g	0,15J		
02	150 g	0,20J	AG1	1
03	250 g	0,35J		
04	250 g 20 cm	0,50 J		3
05	350 g 20 cm	0,70J		
06	250 g	1J		
07	250 g	2J	AG2	5
08	1.25 kg 40 cm	5J	AG3	
08	1.25 kg 40 cm	5J	AG3	
09	2.5 kg 40 cm	10J	AG3	
10	5 kg 40 cm	20J	AG4	

¹ Corresponsdances avec le code AG de la classification des influences externes issu de la norme NF C 15-100.

Tab. A.4: Descriptif des indices de protection

	Protection	contre les corps solides	C		tre additionnelle avec les parties dangereuses		Protection contre les liquides		
0		Aucune protection				0		Aucune protection	
1	Ø 50mm	Protégé contre les corps solides $\emptyset \geq 50 \mathrm{mm}$	A	Sphere 50	Le dos de la main reste éloigné des parties dangereuses.	1		Protégé contre les chutes verti- cales de gouttes d'eau (conden- sation)	
2	Ø 12,5mm	Protégé contre les corps solides $\emptyset \ge 12,5 \mathrm{mm}$	В	4	L'introduction d'un doigt ne permet pas de toucher les par- ties dangereuses.	2	15° H	Protégé contre les chutes de gouttes d'eau jusqu'à 15° de la verticale	
3	Ø 2,5mm	Protégé contre les corps solides $\emptyset \geq 2,5 \mathrm{mm}$	С	4	L'introduction d'un outil ne permet pas de toucher les par- ties dangereuses.	3	es.	Protégé contre l'eau de pluie jusqu'à 60° de la verticale	
4	<u>Ø 1m</u> m	Protégé contre les corps solides $\emptyset \ge 1 \mathrm{mm}$	D		L'introduction d'un outil fin ne permet pas de toucher les parties dangereuses.	4	O	Protégé contre les projections d'eau dans toutes les direc- tions	
5		Protégé contre la poussière (pas de dépot nuisible)				5		Protégé contre les jets d'eau dans toutes les directions à la lance	
6		Totalement protégé contre la poussière				6	1	Protégé contre les projections d'eau assimilables aux paquets de mer	
				·				Page suivante	

Protection contre les corps solides	Lettre additionnelle Contact direct avec les parties dangereuses		Protection contre les liquides		
		7	0,15	Protégé contre les effets d'une immersion temporaire dans	
		8		l'eau Protégé contre les effets d'une immersion prolongée dans l'eau dans des conditions spé-	
		9		cifiées Protégé contre les jets d'eau haute pression et haute tem- pérature mais pas nécessaire- ment submersible	

A.4.2.1 Classification des locaux selon l'IP

Selon les locaux à équiper, leurs emplacements et les conditions particulières d'installation, la norme NF C 15-100 indique une protection minimale spécifiée par les indices IP et IK.

Tab. A.5: Classification des locaux

			Type de		
Type de local	IP	IK	local	IP	IK
Locaux (ou emplacements) domest logues	tiques	s et ana-	Locaux (ou emplacements) don logues	nestiques	et ana-
Auvents	24	07	Sous-sols	21	02/07
, ,	oir	salles	Terrasses couvertes	21	02
	'eau)		Toilettes (cabinets de)	21	02
, ,	20	07	Vérandas	21	02
voitures pour enfants (locaux			Vides sanitaires	23	02-07
pour) Branchement eau, égout,	23	02	Locaux techniques		
chauffage	20	02			
9	23	02	Accumulateurs (salles d')	23	02-07
	20	02-07	Ascenseurs (locaux des ma-	20	07-08
avec chaudière			chines et locaux des poulies)	-0	0. 00
Chambres	20	02	Service électrique	20	07
Collecte des ordures (locaux	25	07	Salles des commandes	20	02
pour)			Ateliers	21 - 23	07 - 08
Couloirs de cave	20	07	Laboratoires	21 - 23	02 - 07
	4-25	02 – 07	Laveurs de conditionnement	24	07
	20	02	d'air		
`	oir	salles	Garages (servant exclusive-	21	07
	'eau)		ment au stationnement des		
,	20	02-07	véhicules) d'une surface n'ex-		
intérieures	2.4	0=	cédant pas 100m^2		
,	24	07	Laveurs de conditionnement	24	07
sives extérieures non couvertes			d'air	0.1	07.00
	21	02	Machines (salles de)	31	07-08
vertes	4 1	02	Surpresseurs d'eau Chaufferies et locaux an-	23	07-08
	20	02	nexes:		
,	4–25	02-07	à charbon	51–61	07-08
0	20	02	autres combustibles	21	07-08
	25	02-07	électriques	21	07-08
-	21	02			
	25	07	Garages et parcs de stationne	_	ouverts
Salles d'eau, locaux conte-			d'une surface supérieure à 100	$\frac{m^2}{}$	
nant une baignoire ou une					
douche:			Aires de stationnement	21	07 - 20
	27	02	Zones de lavage (à l'intérieur	25	07
	24	02	du local)		
	23	02	Zones de sécurité :		
	21	02	à l'intérieur	21	07
3	20	02	à l'extérieur	24	07
	21	02	Zones de graissage	23	08

 $Colonne\ suivante$

 $Page\ suivante$

Type de IP IK		Type de local	IP	IK	
Garages et parcs de stationn d'une surface supérieure à 100		t couverts	Locaux (ou emplacements) da tions agricoles	ans les e	xploita
Locaux de recharge de batte-	23	07	Bergeries fermées	35	07
ries			Buanderies	24	07
Ateliers	21	08	Battages de céréales	50	07
T			Bûchers	30	10
Locaux sanitaires à usage coll	ectii		Caves de distillation	23	07
			Chais (vin)	23	07
Salles de lavabos individuels	21	07	Cours	35	07
Salles de WC à cuvettes (à	21	07	Élevages de volailles	35	07
l'anglaise)			Écuries	35	07
Salles d'urinoirs	21	07	Engrais (dépôts d')	50	07
Salles de lavabos collectifs	23	07	Étables	35	07
Salles de WC à la turques,	23	07	Fumières	24	07
de douches à cabines indivi-			Fenils	50	07
duelles, de douches collectives			Fourrage (entrepôts de)	50	07
Buanderies collectives	24	07	Greniers, granges	50	07
			Paille (entrepôts de)	50	07
Bâtiments à usage collectif (autre que ERP)		ue ERP)	Serres	23	07
			Silos à céréales	50	07
Bureaux	20	02	Traies (salle de)	35	07
Bibliothèques	20	$\frac{02}{02}$	Porcheries	35	07
Salles d'archives	20	$\frac{02}{02}$	Poulaillers	35	07
Salles d'informatiques	20	02			
Salles de dessin	20	$02 \\ 02$	Installations diverses		
Locaux regroupant les ma-	20	02			
chines de reproduction de	20	02	Terrains de camping et cara-	34	07
plans et de documents			vaning	94	01
Salles de tri	20	07	9	34	08
Salles de tri Salles de restaurant et de can-	21	07	Quais de ports de plaisance Chantiers	34 44	08
tine, grandes cuisines	21	01	Quais de chargement	$\frac{44}{35}$	08
Salles de sports	21	07-08	Rues, cours, jardins et autres	34–35	07
Locaux de casernement	$\frac{21}{21}$	07-03	emplacements extérieurs	J4 - JJ	01
Salles de réunion	20	02	Établissement forains	99	00
				33	08
Salles d'attentes, salons, hall Salles de consultation à usage	$\frac{20}{20}$	$02 \\ 02$	Piscines: volume 0	90	00
médical, ne comportant pas	20	UZ		28	02
d'équipements spécifiques			volume 1	25	02
Salles de démonstration et	20	02	volume 2	22–24	02
	20	UZ	Saunas Bagging de fentaines	34	02
d'exposition			Bassins de fontaines	37	02
Locaux (ou emplacements) d tions agricoles	ans le	s exploita-	Traitements des eaux (local de)	24–25	07–08
Alcools (entrepôts de)	23	07	Installations thermodynamique matisées et chambres froides	es, cham	bres cl

 $Colonne\ suivante$

 $Page\ suivante$

1 age precedente		Cotonine precedente				
Type de local	IP	IK	Type de local	IP	II	
Installations thermodynamiques,	chambre	s cli-	Établissements industriels			
matisées et chambres froides						
			Charbon (entrepôts de)	54	0	
Température $< -10^{\circ}$ C	23	07	Charcuteries	24	0	
Hauteur au dessus du sol:			Chaudronneries	30	0	
$0 \ \text{à} \ 1,10 \text{m}$	24	07	Chaux (fours à)	50	0	
1,10 à 2 m	21	07	Chiffons (entrepôts de)	30	0	
au-dessus de 2m	21	07	Chlore (fabrication et dé-	33	0	
sous l'évaporateur ou tube	21	07	pôts)			
écoulement d'eau	21	07	Chromage	33	0	
Plafond et jusqu'à 10cm en-	23	07	Cimenterie	50	0	
dessous			Cokerie	53	0	
Compresseur:			Colle (fabrication de)	33	0	
local	21	08	Chaines d'embouteillage	35	08	
monobloc placé à l'extérieur ou en terrasse	34	08	Combustibles liquides (dépôts de)	31–33	0	
Établicamenta industriale			Corps gras (traitement de)	51	0	
Établissements industriels			Cuir (fabrication et dépôts de)	31	0	
Abattoirs	55	08	Cuivre (traitement des miné-	31	0	
Accumulateurs (fabrication	33	07	raux)			
d')			Décapage	54	0	
Acide (fabrication et dépôts)	33	07	Détersifs (fabrication de pro-	53	0	
Alcool (fabrication et dépôts)	33	07	duits)			
Aluminium (fabrication et dé-	51 – 53	08	Distillerie	33	0	
pôts)			Électrolyse	03	0	
Animaux (élevage et engrais-	45	07	Encre (fabrication d')	31	0	
sement)			Engrais (fabrication et dé-	53	0	
Asphaltes, bitume (dépôts	53	07	pôts de)			
d')			Explosifs (fabrication et dé-	55	0	
Battage et cardage des laines	50	08	pôts de)			
Blanchisseries	23 – 24	07	Fer (fabrication et traitement	51	0	
Bois (travail du)	50	08	de)			
Boucheries	24 - 25	07	Filatures	50	0	
Boucheries	24 - 25	07	Fourrures (battage)	50	0	
Brasseries	24	07	Fromageries	25	0	
Briqueteries	53 – 54	08	Gaz (usines et depôts de)	31	0	
Caoutchouc (fabrication et	54	07	Goudron (traitement de)	33	0	
transformation)			Graineteries	50	0	
Carbure (fabrication et dé-	51	07	Gravures de métaux	33	0	
pôts)			Huile (extraction de)	31	0	
Cartoucherie	53	08	Hydrocarbures (fabrication	33 - 34	0	
Cartons (fabrication de	33	07	de)			
Carrières	55	08	Imprimeries	20	0	
Celluloïd (fabrication d'ob-	30	08	Laiteries	25	0	
jets			Laveries, lavoirs publics	25	0	
Cellulose (fabrication)	34	08	Liqueurs (fabrication de)	21	0'	

 $Colonne\ suivante \\ Page\ suivante$

Colonne précédente

1 age precedente								
Type de local	IP	IK		Type de local	IP	IK		
Établissements industriels		. – – – -	Éta	blissements industriels				
Liquides halogénés (emploi	21	08	Tei	ntureries	35	07		
de)				tiles et tissus (fabrication	51	08		
Liquides inflammables (dé-	21	08	de)					
pôts, ateliers ou l'on emploie			,	nis (fabrication et appli-	33	08		
des)				on de)				
Magnésium (fabrication, tra-	31	07	Ver	reries	33	08		
vail et depôts de)			Zin	c (travail du)	31	08		
Machines (salle des)	20	08		bliggements recovert du public	, (FE	DD/		
Matières plastiques (fabrica-	51	08		blissements recevant du public	; (EF	(P) 		
tion de)								
Menuiseries	50	08	${\rm L}$	Salles d'audition, de confére	nce,	de		
Métaux (traitement de)	31 - 33	08		réunion, de spectacles ou à	usag	ges		
Moteurs thermiques (essai	30	08		multiples:				
de)				salles	20	02-0'		
Munitions (dépôts de)	33	08		cages de scènes	20	08		
Nickel (traitement des miné-	33	08		magasin de décors	20	08		
rais)				locaux des perruquiers et	20	07		
Ordures ménagères (traite-	53 – 54	07		des cordonniers				
ment d')			\mathbf{M}	Magasins de vente, centres	com	mer-		
Papiers (fabriques de)	33 - 34	07		ciaux:				
Papiers (dépôts de)	31	07		locaux de ventes	20	08		
Parfum (fabrication et dépôts	31	07		stockages et manipulations	20	08		
de)				de matériels d'emballages				
Pâte à papiers (préparation	34	07	N	Restaurants et débits de	20	02		
de)				boissons				
Peinture (fabrication et dé-	33	08	О	Hôtels et pensions de fa-	20	02		
pôts de)				milles				
Plâtre (broyage et dépôts de)	50	07	Р	Salles de danse et salles de	20	07		
Poudreries	55	07		jeux				
Produits chimiques (fabrica-	30 – 50	08	\mathbf{R}	Etablissements d'enseignemer	nt, co	lo-		
tion de)				nies de vacances :				
Raffinerie de pétrole	34	07		salles d'enseignement	20	02		
Salaisons	33	07		dortoirs	20	07		
Savons (fabrication de)	31	07	\mathbf{S}	Bibliothèques, centres de do-	20	02		
Scieries	50	08	_	cumentation				
Serrureries	30	08	T	Expositions:				
Silos à céréales ou à sucre	50	07		halls et salles	21	07		
Soies et crins (préparation	50	08		locaux de réceptions de ma-	20	08		
de)			- -	tériels et de marchandises				
Soude (fabrication et dépôts	33	07	U	Établissements sanitaires :				
de)				chambres	20	02		
Soude (traitement de)	51	07		incinérations	21	07-08		
Spiritueux (entrepôts de)	33	07		blocs opératoires	20	07		
Sucreries	55	07						
Tanneries	35	07						

 $Colonne\ suivante \\ Page\ suivante$

	Type de local	IP	IK	Type de local	IP	IK
Étal	plissements recevant du pu	ıblic (EF	<u>RP)</u>	Locaux commerciaux, boutique	s et an	nexes
U	Établissements sanitaire	s:		Boucherie:		
	stérilisations centrali-	24 - 25	02 – 07	Boutique	24	07
	sées			Chambre froide	23	07
	pharmacies et labora- toires avec plus de 10L	21–23	02-07	Boulangerie-pâtisserie (four- nil)	50	07
	de liquides inflamma-			Brûlerie cafés	21	02
	toires			Charbon, bois, mazout	20	08
V	Établissement de cultes	20	02	Charcuterie (fabrication de)	24	07
W	Administrations et	20	02	Confiserie (fabrication de)	20	02
	banques			Cordonnerie	20	02
X	Établissements sportifs of	couverts	:	Crèmerie, fromagerie	24	02
	Salles	21	07 - 08	Droguerie, peinture (réserve	33	07
	Locaux contenant des	21	08	de)		
	installations frigori-			Ébenisterie, menuiserie	50	07
	fiques			Exposition, galerie d'art	20	02-0
Y	Musées	20	02	Fleuriste	24	02
PA	Établissement de plein	25	08-10	Fourrure	20	02
	air			Fruits et légumes	24	07
CT	Chapiteaux et tentes	$44(^{1})$	08	Graineterie	50	07
\overline{SG}	Structures gonflables	44	08	Libraire, papeterie	20	02
PS	Parc de stationnement couvert	21	07–10	Mécanique, accessoires de motos et vélos	20	08
т	/ ₁ 11:			Messageries	20	08
	aux communs aux établisse public	ements r	ecevant 	Meuble (antiquités et bro- cantes de)	20	07
				Miroiterie (atelier de)	20	07
Dép	ôts, réserve	20	08	Papiers peints (réserve de)	21	07
Loca	aux d'emballage	20	08	Parfumerie (réserve de)	31	02
Loca	aux d'archive et de sto-	20	02	Pharmacie (réserve de)	20	02
ckag Film	e ns et supports magné-	20	08	Photographie (laboratoire de)	23	02
tiqu				Plomberie et sanitaire (ré-	20	07
_	geries	21	02	serve de)		
_	nchisseries	24	07	Poissonnerie	20	07
	iers divers	21	07 - 08	Pressing et teinturerie	23	02
	sines $(grandes)^2$			Quincaillerie	20	07
	,	ng -+		Serrurerie	20	07-0
	aux commerciaux, boutiqu	es et an	nexes	Spiritueux, vins et alcools (caves de stockages de)	23	07
Arm	uries (réserves et ateliers	31 – 33	08	Tapissier (cardage de)	50	07
d') Blan	nchisseries (laveries)	24	07	Tailleur, vêtement (réserve de)	20	02
	, ,			Toilette animaux, clinique vé- térinaire	35	07

 $Colonne\ suivante$

 $^{^{1}}$ IP24 - IK08 pour les luminaires ; 2 Se reporter au guide spécialisé UTE C15-201.

A.4.3 Transformateur d'isolement

Le transformateur d'isolement a pour but d'isoler l'utilisateur du réseau électrique. On le retrouve généralement dans les salles de bains d'ERP tels que les hôtels, intégré aux sèches-cheveux et rasoirs muraux.

Le secondaire de ce type de transformateur ne doit pas être relié à la terre et isolé galvaniquement du primaire, c'est-à-dire qu'il n'y a aucune liaison électrique entre les deux bobinages du transformateur. Le tout afin que le corps humain n'offre pas de chemin pour que le courant effectue une boucle et revienne au transformateur d'où il vient, la différence de potentiel entre la terre et les conducteurs de phase et neutre est alors nulle.

Cette situation est analogue à celle d'un oiseau perché sur une ligne électrique, tant qu'il ne touche pas deux conducteurs électriques en même temps, celui-ci ne risque rien.

A.5 Descriptifs des moyens de protection contre les contacts indirects

Pour protéger les biens et les personnes contre les contacts indirects, on associe trois spécificités de l'installation électrique qui sont la MALT des appareils et structures conductrices, la prise de terre du poste de distribution électrique et l'usage d'un DDR. Cette association, selon le type de branchement, formera les schémas de liaisons à la terre (SLT). En outre, le choix des classe d'isolation d'un appareil électrique ou la mise hors de portées des appareils peuvent également constituer un moyen de protection contre les contacts indirects.

A.5.1 Classe d'isolation des appareils électriques

Tab. A.6: Classe d'isolation électrique des appareils

Classe	Définition	Exemple	Symbole	Raccordement
0	Matériel ayant une simple isolation et ne présentant pas de dispositif de mise à la terre (interdit)	Lampe de chevet ancienne en bois	pas de symbole	
I	Matériel ayant une simple isolation mais présentant un dispositif de mise à la terre	Ordinateur, lam- padaire, fer à re- passer, fer à sou- der		
II	Matériel présentant une double iso- lation de la partie active ① (iso- lation fonctionnelle ② et isolation supplémentaire ③) ne nécessitant donc pas de mise à la terre	Chaîne hi-fi, sèche- cheveux, rasoir électrique		

Page suivante

Classe	Définition	Exemple	Symbole	Raccordement
III	Matériel ne fonctionnant qu'en très basse tension (12V ou 24V) et ne présentant pas de dangers pour les personnes (aucune précaution par- ticulière à prendre)	triques, sonnette,		

Fig. A.1: Matériel de classe d'isolation II

A.5.2 Dispositif Différentiel Résiduel

A.5.2.1 Caractéristiques générales

Définition A.1 (Dispositif Différentiel Résiduel) Un Dispositif Différentiel Résiduel (DDR) est un appareil de protection chargé d'assurer la protection des personnes contre les défauts d'isolement provoquant potentiellement des contacts indirects (Définition 1.2 page 7). Son rôle est de surveiller les fuites de courant d'une installation électrique vers la terre.

Il convient de bien différencier deux type de DDR:

Interrupteur différentiel : protection des personnes contre les contacts indirects dont le symbole est :

Disjoncteur différentiel : protection des personnes contre les contacts indirects et protection des circuits contre les surintensités et les court-circuits dont le symbole est :

Tab. A.7: Valeur du seuil de $I_{\Delta n}$ fonction de R_A et U_L

U_L	R_{A}	$_{4}$ (Ω)	$I_{\Delta n}$ (A)	U_L	R_A	(Ω)	$I_{\Delta n}$ (A)	U_L	R_A	(Ω)	$I_{\Delta n}$ (A)
50V	\geq	1660	0,030	25V	\geq	500	0,030	12V	\geq	400	0,030
	\geq	166	0,300		\geq	83	0,300		\geq	40	0,300
	\geq	100	0,500		\geq	50	0,500		\geq	24	0,500
	\geq	16	3		≥	8	3		≥	4	3

A.5.2.2 Marquage normalisé

Comme tout appareil de protection, le DDR respecte des normes de qualité strictes (Conformité Européenne) et doivent présenter plusieurs marquages réglementaires, ainsi qu'un bouton « TEST » pour informer l'installateur et l'utilisateur des caractéristiques du DDR. Cela informe de la conformité de l'appareil de protection.

Fig. A.2: Marquage d'un interrupteur différentiel

- (1) norme du produit
- 2 tension assignée $230/400V \sim$
- (3) code de production
- 4 signe « Courant assigné de court-circuit $10000\mathrm{A}$ » en combinaison avec un fusible en amont
- (5) pouvoir assigné de coupure « 1250A »
- 6 signe de sécurité ESTI (équivalent de la norme NF pour la Suisse)
- \bigcirc signe « Flocon de neige » (utilisation pour une température ambiante jusqu'à -25°)

- 8 couple de serrage N m
- (9) désignation du type
- (10) schéma des connexions
- $\fbox{1}$ courant assigné I_n de 40A et calibre du DDR $I_{\Delta n}$
- $\overbrace{12}$ note concernant le test « à effectuer tous les six mois »
- (13) type de courant différentiel (type F)

A.5.2.3 Composante du courant de défaut

Les DDR peuvent détecter plusieurs composantes du courant de défaut. C'est un paramètre qui peut varier selon le type d'appareil électrique protégé par le DDR.

Tab. A.8: Différents types de DDR selon les composantes du courant de défaut

Type	Symbole	Caractéristiques	Forme d'onde	Type de charge
Type AC	\triangleright	 détection des courants alternatifs différentiels; utilisation courante en domestique couvrant la plupart des besoin. 	<u> </u>	- J linéaire

Page suivante

Type	Symbole	Caractéristiques	Forme d'onde	Type de charge
Type A		 détection des courants différentiels alternatifs et des courants différentiels continus pulsés; utilisation spécifique pour les charges électriques monophasées de type 1. 	<u> </u>	redressée monophasée
Type F		 détection des courants différentiels alternatifs, les courants différentiels continus pulsés et les courants différentiels de fréquences mixtes jusqu'à 1kHz; utilisation spécifique pour circuits comportant des variateurs de vitesse monophasés. 		convertie monophasée
Type B		 détection des courants différentiels alternatifs, les courants différentiels continus pulsés, des courants différentiels de fréquences mixtes jusqu'à 1kHz et des courants différentiels continus lisses; utilisation spécifique pour circuits comportant des variateurs de vitesse triphasés, un système photovoltaïque, une borne de recharge de véhicule électrique ou encore des équipements médicaux. 	→	redressée triphasée

A.5.2.4 Principe de fonctionnement

Les éléments essentiels d'un DDR sont les suivants :

1 bouton test d'essai du DDR

 I_1 : courant « d'arrivée » du récepteur

2 transformateur d'intensité (tore de détection) I_2 : courant « de sortie » du récepteur I_d : courant de défaut

(3) relais de déclenchement

4 mécanisme à déclenchement libre sans retour I_c : courant de contact automatique

 R_B : résistance de terre du neutre

 R_A : résistance de la prise de terre de l'installation

électrique

Pour le fonctionnement d'un DDR, les conditions suivantes doivent être remplie :

- le point neutre du transformateur HT/BT doit être mis à la terre ;
- aucune liaison entre le conducteur de neutre et le conducteur de protection ne doit être réalisée en aval du DDR;

- le conducteur de protection ne doit pas transiter dans le transformateur d'intensité;
- le réseau doit être alternatif.

Fig. A.4: Principe de fonctionnement d'un DDR

Transformateur d'intensité Les conducteurs de phase et le conducteur neutre sont bobinés autour du transformateur d'intensité. Les champs magnétiques des différents conducteurs génèrent un flux magnétique à l'intérieur du transformateur d'intensité. Si la somme des courants entrants est égale à la somme des courants sortants (1^{re} loi de Kirchhoff), le flux magnétique s'annule.

Relais de déclenchement Si, en cas de défaut, un courant s'écoule par la terre, il y a alors un déséquilibre dans le transformateur d'intensité et un courant est induit dans la bobine du relais de déclenchement. Le courant induit est proportionnel au courant de défaut et entraîne la coupure du circuit principal à l'aide du relais déclencheur.

La bobine de détection est dimensionné sur son tore selon le calibre de détection souhaité.

Mécanisme de déclenchement Le mécanisme de déclenchement assure la coupure omnipolaire du circuit principal en cas de défaut. La caractéristique « libre » du mécanisme agit dans le cas où la manette reste bloquée en position enclenchée.

Bouton de test d'essai du DDR En appuyant sur le bouton test, un courant de défaut est généré à travers une résistance. Le circuit de courant du dispositif d'essai se trouve en dehors du transformateur d'intensité afin de pouvoir contrôler le fonctionnement de la bobine et du mécanisme de déclenchement. Le dispositif d'essai fonctionne seulement si la tension réseau est présente. L'essai est à réaliser régulièrement selon les normes en vigueur. Dans des installations mobiles, il est recommandé d'effectuer un essai tous les jours ouvrables.

A.5.2.5 Sélectivité et coordination des DDR

Dans le cas d'une installation électrique composée dont les DDR sont disposés en séries, il peut être nécessaire d'appliquer cette sélectivité sur les différents DDR. Elle fait appel à deux méthode :

- temporisation des DDR entre eux;
- subdivision des circuits.

Définition A.2 (Sélectivité des DDR) Méthode d'installation et de calcul des temps de déclenchement des DDR permettant d'éviter le déclenchement des DDR autres que celui situé immédiatement en amont du défaut d'isolement.

La sélectivité est totale si :

- le rapport entre les courants de fonctionnement résiduels assignés doit être supérieur à 3;
- présence d'un retard de la temporisation du déclenchement du DDR situé en amont.

Elle peut toutefois être prescrite selon les exigences de sécurité ou d'exploitation et est obtenue sur base des différents calibres de sensibilité standardisés (30mA, 100mA, 300mA, 1A...) et de la temporisation des temps de déclenchement comme dans la figure située figure A.5 page 56.

Fig. A.5: Sélectivité totale à trois niveaux

Cas particulier de coordination avec les DDR de type B En présence d'un courant de fuite à la terre possible en courant continu (typiquement le cas pour les chargeurs de voiture), un DDR de type B doit être utilisé pour la protection contre les contacts indirects. Dans ce cas, le DDR en amont ne doit pas être aveuglé par le courant résiduel continu possible et doit assurer sa protection normale lorsqu'un courant de défaut apparait dans une autre partie de l'installation.

DDR type B 300mA type S DDR type B 30mA type B 30mA

FIG. A.7: Cas d'une sélectivité à deux niveaux entre des DDR de type B

Par exemple, dans le schéma en figure A.7 page 56, le DDR $I_{\Delta n} = 30$ mA de type B au niveau 2 peut avoir

DDR $I_{\Delta n}=30 \mathrm{mA}$ de type B au niveau 2 peut avoir un seuil de déclenchement courant continu maximum de $2 \times I_{\Delta n}$, selon la norme produit DDR CEI 62423⁴. Cela signifie que ce DDR de

 $I_{\Delta n}=30\mathrm{mA}$ de type B pourrait laisser passer un courant résiduel de presque $60\mathrm{mA}=\mathrm{sans}$ déclenchement et que le DDR en amont ne devrait perdre aucune de ses performances avec la présence de ce niveau élevé de courant résiduel *mathdirectcurrent*. C'est pourquoi il est souvent proposé d'utiliser un DDR de type B au niveau 1 pour éviter tout effet d'aveuglement par le courant continu.

Toutefois, certains constructeurs implémentent dans leurs DDR de type A la capacité de ne pas être sensibles au courant résiduel == en dessous d'un certain seuil de courant de défaut (60mA pour la marque Schneider⁸. Cela permet d'éviter la pose d'un DDR de type B en amont, plus coûteux qu'un DDR de type A, tout en conservant les capacités de détection des DDR de types A et AC.

A.5.3 Mise à la terre des appareils et structures conductrices

A.5.3.1 Mise à la terre des appareils électriques

Les appareils de classe d'isolation I doivent être raccordées à des prises 2P + T ① au moyen de fiches 2P + T ②. Ces prises équipent maintenant tous les logements dont l'installation respecte la norme NF C15-100. Si ces appareils ne présentent pas de fiches, elles sont raccordées au moyen de boitiers d'encastrements appropriés.

Sont particulièrement concernés par cette connexion vers la terre les appareils combinant électricité et eau (lave-vaisselle, lave-linge, cafetière...③). Les fuites d'eau peuvent effectivement provoquer relativement facilement la mise sous tension de la carcasse métallique de l'appareil.

A.5.3.2 Liaison équipotentielle

Pour protéger les biens et les personnes des contacts indirects, en plus de connecter toutes les carcasses métalliques des appareils de classe d'isolation II vers la terre, il convient de connecter toutes les structures métalliques du bâtiment susceptibles d'être en contact avec un individu et d'être mise sous tension accidentellement. Sont concernés par la mise à la terre 4:

- tuyauterie (même non conductrice car l'eau y transitant l'est);
- baignoire et bac de douche (fonte, métal...);
- charpente métallique ;
- autres structures métalliques (pouvant varier selon les exigences de sécurité).

Cette connexion, effectuée par un conducteur de protection PE (5) (obligatoirement en jaune-vert), de toutes les structures conductrices et appareils de classe I constitue la liaison équipotentielle. Tous ces conducteurs sont connectés sur une barrette de terre (8) dans le Tableau Général Basse Tension (TGBT) et sont séparés de la prise de terre de l'installation électrique (9) par une barrette de mesure Circled10 (dénommé également couteau de terre).

Afin d'assurer la meilleure protection possible, les conducteurs de protection doivent présenter une section de câble et des raccordements dimensionnés à même de garantir une résistance de la liaison équipotentielle d'une valeur inférieure à 2Ω . Cette résistance est contrôlée au moyen d'un testeur de continuité spécifique.

Fig. A.8: Liaison équipotentielle

Tab. A.9: Section des conducteurs de protection

Schéma	Type de conducteur	Section
<u></u>	Conducteur de protection transitant dans la même canalisation que les phase(s) et neutre	identique à celle des phase(s) et neutre
	Conducteur de protection protégé mécaniquement	$2,5 \mathrm{mm}^2$
	Conducteur de protection non protégé mécaniquement	$4 \mathrm{mm}^2$
6	Conducteur principal de protection	$16\mathrm{mm}^2$ en cuivre isolé
7	Conducteur de terre	Selon les caractéristiques : - 16mm² en cuivre isolé ; - 25mm² en cuivre nu ; - 50mm² en aluminium ou en fer.

A.5.3.3 Prise de terre de l'installation électrique

Le courant de défaut I_d transite par les conducteurs de la liaison équipotentielle et s'échappe vers la terre via la prise de terre de l'installation électrique 9 qui est simplement un électrode métallique en contact avec la terre.

Cet électrode doit présenter également la plus faible $r\acute{e}sistance$ de terre R_A pour permettre au

courant de défaut I_d de s'échapper sous une tension de sécurité U_L la plus faible possible. Cette valeur doit être régulièrement contrôlée par un contrôleur de terre. Les paramètres U_L et $I_{\Delta n}$ (calibre du DDR) étant des constantes déterminées par le DDR, le seul paramètre variable est donc la R_A , selon les conditions environnementales (géologie, humidité, corrosion...). Elle ne doit jamais dépasser :

50Ω: locaux humides;

 100Ω : locaux secs.

Formule A.1 (Valeur de la résistance de la prise de terre de l'installation électrique R_A)

$$R_A \le \frac{U_L}{I_{\Delta n}} \tag{A.1}$$

Avec:

Grandeur dans l'ISQ	Unité SI de mesure	Description
R_A : résistance	ohm (Ω)	résistance de la prise de terre
U_L : tension	volt (V)	tension de sécurité du local
$I_{\Delta n}$: intensité	ampère (A)	intensité de sensibilité du DDR (calibre)

Il existe trois méthode de mesure de R_A :

mesure en ligne (des 62%): un ou deux piquets selon les variantes;

mesure en triangle : deux piquets disposés de façon à former un triangle équilatéral avec le piquet de terre.

La terre est un conducteur offrant une résistance bien plus élevée que le cuivre mais sa « section » est théoriquement infinie, on va donc maximiser la surface de contact de la prise de terre de l'installation électrique. Il existe trois technique courant pour la réaliser :

Boucle à fond de fouille Cette technique consiste en un conducteur noyé dans les fondations et raccordée à la boucle. Elle est réalisée lors du terrassement précédant la construction de l'immeuble et constitue la solution privilégiée pour minimiser la résistance de terre R_A . Elle sera donc préférée aux deux solutions suivantes.

Le conducteur utilisé doit cependant présenter une section minimale selon le matériau choisi :

- câble de cuivre nu de 25mm^2 ;
- câble en acier de 95mm^2 ;
- feuillard en acier de 100mm² et de 3mm d'épaisseur.

Fig. A.9: Boucle à fond de fouille

Câble en tranchée Si la mise en œuvre de la boucle à fond de fouille n'est pas possible (bâtiment existant par exemple), on peut réaliser la mise à la terre de l'installation électrique par l'installation d'un câble en tranchée en respectant les règles de pose explicité dans le schéma figure A.10 page 60. Le conducteur utilisé doit aussi présenter une section minimale selon le matériau choisi :

- câble de cuivre nu de 25mm^2 ;
- câble en acier de 95mm².

Fig. A.10: Câble en tranchée

Piquet de terre Si aucune des deux solutions précédentes n'est envisageable, on peut réaliser la prise de terre au moyen d'un piquet enfoncé dans le sol en respectant les règles de pose explicité dans le schéma figure A.11 page 61.

Le piquet utilisé doit aussi présenter une section ou une surface minimale selon le matériau choisi :

- tube en acier de 25mm de diamètre ;
- profilé en acier de 60mm² de diamètre ;
- une barre de cuivre ou d'acier cuivré de 15mm² de diamètre.

Fig. A.11: Piquet de terre

A.5.4 Mise hors de portée des appareils électriques

Un dernier moyen de protection contre les contacts indirects est de mettre hors de portée les appareils électriques ou du moins installer des appareils présentant des indices de protections adaptés à l'environnement. Cette solution est obligatoirement appliquée dans les pièces humides comme les salles de bain ou de douches, et les règles d'installations sont régies par la norme NF-C15 100^7 . L'eau étant conductrice, si l'on se retrouve immergé ou simplement mouillé, le risque d'électrocution lors de la manipulation d'appareils est plus important. Les zones humides font donc l'objet d'une attention particulière :

- règlementation de pose des appareils électrique ;
- calibre du DDR plus faible $(I_{\Delta n} < 30 \text{mA})$;
- liaison équipotentielle *secondaire* (huisseries, tuyauterie, baignoire métallique, plancher chauffant, crépine...).

Fig. A.12: Répartition des volumes dans une salle d'eau sans receveur

Fig. A.13: Répartition des volumes dans une salle d'eau avec baignoire

Tab. A.10: Caractéristiques des équipements électriques selon les volumes des salles d'eau

Appareils	Mesure de protection	Volume 0 IPX7	Volume 1 IPX4 ¹	Volume 2 IPX4 ¹	Hors volume
Lave-linge, sèche-linge	classe I	interdit	interdit	interdit	autorisé
Appareils de chauffage	classe II	interdit interdit	interdit interdit	interdit autorisé	autorisé autorisé
Éclairage	classe I classe II TBTS (12V $=$ ou 30V \sim)	interdit interdit autorisé ²	interdit interdit autorisé ²	interdit autorisé autorisé ²	autorisé autorisé autorisé ³
Chauffe-eau instantané	classe I	interdit	autorisé 4	autorisé 4	autorisé
Chauffe-eau à accumulation	classe I	interdit	autorisé ⁵	autorisé ⁴	autorisé
Interrupteur	TBTS (12V = ou 30V ~)	interdit interdit	interdit autorisé 2	interdit autorisé 2	autorisé autorisé ³
Prise de courant avec terre		interdit	interdit	interdit	autorisé
Prise rasoir (10 à 50W)	transformateur de séparation	interdit	interdit	autorisé	autorisé
Transformateur de séparation		interdit	interdit	interdit	autorisé
Canalisation		interdit	autorisé 6	autorisé 6	autorisé
Boitier de connexion		interdit	$interdit^7$	interdit	autorisé

 $^{^1}$ IP X5 si le volume est soumis à des jets d'eau pour des raisons de nettoyage (piscines, bains publics. . .) ;

² Le transformateur de séparation doit être installé en dehors des volumes 1, 2 et 3 ;

³ La tension peut être portée à 230V ;

⁴ Si l'appareil est alimenté directement sans boite de connexion ;

⁵ Chauffe-eau horizontal installé le plus haut possible ;

⁶ Limité à l'alimentation des appareils autorisés dans ces volumes ;

⁷ Pour l'alimentation en direct d'un appareil et avec le respect de l'IP exigée par le volume ou elle se situe.

B Informations complémentaires sur le SLT TN

Cette annexe regroupe des données complémentaires mentionnées dans le chapitre 4 page 15. Il n'est pas nécessaire de les retenir par cœur mais ces informations constituent un support appréciable pour toutes précisions concernant ce chapitre.

B.1 Méthodes de dimensionnement des protections et des sections des conducteurs

B.1.1 Méthode conventionelle

La série de tableaux suivants, applicables au SLT TN, ont été calculés selon la méthode conventionnelle (section 4.3 page 17). Si les longueurs détaillées ci-dessus sont dépassées pour un seuil de déclenchement donné, la résistance du conducteur limitera l'appel d'intensité à un niveau inférieur à celui nécessaire pour déclencher le disjoncteur protégeant le circuit dans les conditions de rapidité requises pour assurer la protection des personnes.

Ces tableaux prennent compte de différents critères :

- type de protection (disjoncteur ou fusible);
- réglages des seuils de courants de déclenchements ;
- section des conducteurs de phase et des conducteurs de protection ;
- type de SLT;
- courbe de déclenchement des disjoncteurs (B, C ou D).

B.1.1.1 Facteur de correction m

Le facteur de correction m est à appliquer sur les données des tableaux suivants et correspond au rapport entre la section du conducteur de phase S_{ph} et la section du conducteur de protection S_{PE} (voir Formule 4.4 page 19).

Circuit	Matériau conducteur	Matériau conducteur $\frac{m = S_{ph}/S_{PE(N)}}{m = 1 m = 2 m = 3}$						
		m = 1	m = 2	m = 3	m = 4			
3P + N ou P + N	cuivre aluminium	0,62	0,67 0,42	$0,50 \\ 0,31$	0,40 0,25			

Fig. B.1: Facteur de correction m à appliquer aux abaques des longueurs maximales des câbles L_max

B.1.1.2 L_{max} des conducteurs protégés par des disjoncteurs industriels

Pour les disjoncteurs industriels, on peut appliquer une tolérance de $\pm 20\%$ pour le calcul du seuil de déclenchement réel I_a par rapport au seuil de déclenchement magnétique I_m du disjoncteur.

Dans les abaques, cette tolérance est incluse dans les calculs prenant en compte le cas le plus défavorable, à savoir $I_a = I_m \times 1, 2$.

TAB. B.1: L_{max} des circuits en mètre selon les sections des conducteurs en cuivre en schéma TN pour les disjoncteurs industriels¹⁶

Section des	Réglage du seuil de déclenchement magnétique I_m des disjoncteurs (A)															
$ m conducteurs \ (mm^2)$	\$ 	જુ	So.	400	3,	760	do de	250	Sy.	\$	ô	560	659	Ýg.	g	- 5×8
1,5	100	79	63	50	40	31	25	20	16	13	10	9	8	7	6	6
2,5	167	133	104	83	67	52	42	33	26	21	17	15	13	12	10	10
4	267	212	167	133	107	83	67	53	42	33	27	24	21	19	17	15
6	400	317	250	200	160	125	100	80	63	50	40	36	32	29	25	23
10			417	333	267	208	167	133	104	83	67	60	53	48	42	38
16					427	333	267	213	167	133	107	95	85	76	67	61
25							417	333	260	208	167	149	132	119	104	95
35								467	365	292	233	208	185	167	146	133
50									495	396	317	283	251	226	198	181
70												417	370	333	292	267
95														452	396	362
120																457
	7000	129	192	002	₁ 600	300	2500	S. S	,	90%	SON SON	659	8000	> <		4350
1,5	5	4	4	4												
$2,\!5$	8	7	,	7	5	4										
4	13	12	1	1	8	7	5	4	Į							
6	20	18	1	.6	13	10	8	6	j	5	4					
10	33	30	2	27	21	17	13	10	0	8	7	5	4			
16	53	48	4	:3	33	27	21	1'	7	13	11	8	7		5	4
25	83	74	6	7	52	42	33	20	6	21	17	13	1()	8	7
35	117	104	4 9	3	73	58	47	30	6	29	23	19	15	5]	12	9
50	158	143	1 1:	27	99	79	63	49	9	40	32	25	20)]	16	13
70	233	208	8 18	87	146	117	93	73	3	58	47	37	29) 2	23	19
95	317	283	3 20	63	198	158	127	99	9	79	63	50	40) :	32	25
120	400	35'	7 33	20	250	200	160	12	25	100	80	63	50) 4	10	32
150	435	388	3	48	272	217	174	13	36	109	87	69	54	1 4	43	35
185		459		11	321	257	206	16	61	128	103	82	64	1 5	51	41
240					400	320	256	20	00	160	128	102	80) (64	51

B.1.1.3 L_{max} des conducteurs protégés par des disjoncteurs domestiques

Pour les disjoncteurs domestiques, on n'applique pas cette tolérance de $\pm 20\%$ pour le calcul du seuil de déclenchement réel I_a par rapport au seuil de déclenchement magnétique I_m du disjoncteur. La valeur du courant de court-circuit est donc égale à I_m sans aucune tolérance.

TAB. B.2: L_{max} des circuits en mètre selon les sections des conducteurs en cuivre en schéma TN pour les disjoncteurs domestiques de type B^{16}

Section des	Courant assigné (A)															
$ m conducteurs \ (mm^2)$	~	٩	იე	>	9	40	97	29	25	3	\$	30	જુ	80	409	55
1,5	1200	600	400	300	200	120	75	60	48	37	30	24	19	15	12	10
2,5		1000	666	500	333	200	125	100	80	62	50	40	32	25	20	16
4			1066	800	533	320	200	160	128	100	80	64	51	40	32	26
6				1200	800	480	300	240	192	150	120	96	76	60	48	38
10						800	500	400	320	250	200	160	127	100	80	64
16							800	640	512	400	320	256	203	160	128	102
25									800	625	500	400	317	250	200	160
35										875	700	560	444	350	280	224
50												760	603	475	380	304

TAB. B.3: L_{max} des circuits en mètre selon les sections des conducteurs en cuivre en schéma TN pour les disjoncteurs domestiques de type C^{16}

Section des					Cour	ant a	ssign	é (A))							
$ m conducteurs \ (mm^2)$	~	^	იე	>	9	40	97	Ş	Ş,	જુ	\$	ô	જુ	So.	400	435
1,5	600	300	200	150	100	60	37	30	24	18	15	12	9	7	6	5
2,5		500	333	250	167	100	62	50	40	31	25	20	16	12	10	8
4			533	400	267	160	100	80	64	50	40	32	25	20	16	13
6				600	400	240	150	120	96	75	60	48	38	30	24	19
10					677	400	250	200	160	125	100	80	63	50	40	32
16						640	400	320	256	200	160	128	101	80	64	51
25							625	500	400	312	250	200	159	125	100	80
35							875	700	560	437	350	280	222	175	140	112
50									760	594	475	380	301	237	190	152

TAB. B.4: L_{max} des circuits en mètre selon les sections des conducteurs en cuivre en schéma TN pour les disjoncteurs domestiques de type D^{16}

Section des					Cour	ant a	ssign	é (A))							
$ m conducteurs \ (mm^2)$	~	^	ಌ	>	0	40	97	29	₹,	3	\$	50	જુ	Q _o	907	\$\$
1,5	429	214	143	107	71	43	27	21	17	13	11	9	7	5	4	3
2,5	714	357	238	179	119	71	45	36	29	22	18	14	11	9	7	6
4		571	381	286	190	114	71	57	46	36	29	23	18	14	11	9
6		857	571	429	286	171	107	86	69	54	43	34	27	21	17	14
10			952	714	476	286	179	143	114	89	71	57	45	36	29	23
16					762	457	286	229	183	143	114	91	73	57	46	37
25						714	446	357	286	223	179	143	113	89	71	57
35							625	500	400	313	250	200	159	125	100	80
50								679	543	424	339	271	215	170	136	109

B.1.2 Méthode des impédances

Cette méthode consiste en la détermination de toutes les résistances et réactances présentes dans la boucle de défaut, pour pouvoir calculer le courant de court-circuit selon la formule suivante :

Formule B.1 (Courant de défaut I_d en schéma TN selon la méthode des impédances)

$$I_d = \frac{U_0}{\sqrt{(\sum R)^2 + (\sum X)^2}}$$
$$I_d = Z_S$$

Avec:

Grandeur dans l'ISQ	Unité SI de mesure	Description
U_0 : tension	volt (V)	Tension nominale simple
R: résistance	ohm (Ω)	Résistance présente dans le circuit en défaut
X : réactance	ohm (Ω)	Réactance présente dans le circuit en défaut
Z_S : impédance	ohm (Ω)	Impédance totale de la boucle de défaut

L'application de cette méthode n'est pas forcément évidente car il faut implique de connaître toutes les caractéristiques électriques de chaque élément de la boucle de défaut. Dans la pratique, cela est réalisé par des logiciels qui vont certifier le dimensionnement.

B.1.3 Méthode de composition

Cette méthode permet la détermination du courant de court-circuit en fin de circuit I en connaissant le courant de court-circuit I_{cc} à l'origine du même circuit selon la formule suivante :

Formule B.2 (Courant de court-circuit en schéma TN selon la méthode de composition)

$$I = \frac{U_0 \times I_{cc}}{U_0 + ZS \times I_{cc}}$$

Avec:

Grandeur dans l'ISQ	Unité SI de mesure	Description
I: intensité	ampère (A)	Intensité de court-circuit à l'extrémité du circuit en défaut
U_0 : tension:	volt (V)	Tension nominale simple
I_{cc} : intensité	ampère (A)	Intensité de court-circuit à l'origine du circuit en défaut
Z_S : impédance	ohm (Ω)	Impédance totale de la boucle de défaut

Cette méthode consiste à ajouter les impédances, ce qui abaisse la valeur du courant de défaut I_d par rapport à la méthode des impédances. Ainsi, si les paramètres de surintensité sont basés sur cette valeur calculée, le fonctionnement du disjoncteur est assuré car plus I_d calculé est plus faible qu'en réalité.

Bibliographie

- [1] Effets du courant sur les êtres humains et les animaux domestiques. Bureau Central de la Commission Electrotechnique Internationale. 1998-2016.
- [2] Disjoncteurs pour la protection contre les surintensités pour installations domestiques et analogues. Bureau Central de la Commission Electrotechnique Internationale. 2003-2015.
- [3] Appareillage à basse tension Partie 2 : Disjoncteurs. Bureau Central de la Commission Electrotechnique Internationale. 2016.
- [4] Interrupteurs automatiques à courant différentiel résiduel de type B et de type F avec et sans protection contre les surintensités incorporée pour usages domestiques et analogues. Bureau Central de la Commission Electrotechnique Internationale. 2009.
- [5] René Bourgeois et Denis Cogniel. « Électrotechnique ». In : Mémotech Plus. Casteilla, 2005.
- [6] Postes de livraison alimentés par un réseau public de distribution HTA (jusqu'à 33 kV). Association française de normalisation. 2015. Chap. 7.
- [7] Installations électriques à basse tension. Association française de normalisation. 2002-2015.
- [8] Coordination des protections différentielles (DDR). Schneider. URL: https://fr.electrical-installation.org/frwiki/Dispositifs_Diff%C3%A9rentiels_%C3%A0_courant_R%C3%A9siduel_(DDR).
- [9] Arnaud Delahaye. « Électrisation ». In: Congrès Aquitain de Médecine d'Urgence. 2015.
- [10] Dispositifs Différentiels Résiduels (DDR). Schneider. URL: https://fr.electrical-installation.org/frwiki/Dispositifs_Diff%C3%A9rentiels_%C3%A0_courant_R%C3%A9siduel_(DDR).
- [11] Philippe Juguet. Guide des métiers de l'électrotechnique. Ingerea, 2017. URL: http://www.ingerea.com/GdME.html.
- [12] Les points clés de la norme NF C15-100. URL: http://docdif.fr.grpleg.com/general/ouidoo/pdf/infographie-norme-nfc15100-grand-public.pdf.
- [13] Les schémas de liaisons à la terre. Schneider. URL: https://fr.electrical-installation.org/frwiki/Les_sch%C3%A9mas_des_liaisons_%C3%A0_la_terre.
- [14] Manuel technique principes de protection. URL: www.hager.ch/files/Handbuch_Schutz_ 2018_FR_web.
- [15] Mickael Piekarz. Prévention des risques électriques. BAC Pro ELEEC. Lycée Jean-Caillaud, 2013. URL: http://ww2.ac-poitiers.fr/electrotechnique/sites/electrotechnique/IMG/pdf/prevention_des_risques_electriques.pdf.
- [16] Schéma TN Calcul du courant de défaut à la terre. Schneider. URL: https://fr.electrical-installation.org/frwiki/Sch%C3%A9ma_TN_-_Calcul_du_courant_de_d% C3%A9faut_%C3%A0_la_terre.
- [17] Jean-Louis TIMIN. Schéma de liaison à la terre. CNED, 2003. URL: http://jltimin.free.fr/TGE/cours/SLT.pdf.
- [18] Très Basses Tensions. AFPA. 2000.
- [19] Théodore Wildi et Gilbert Sybille. « Électrotechnique ». In : Physique. De Boeck, 2014.

