### prediction using unsupervised ML

```
In [7]: import pandas as pd
          import numpy as np
          from sklearn.cluster import KMeans
          from sklearn.preprocessing import MinMaxScaler
           import matplotlib.pyplot as plt
           #matplotlib inline
 In [9]: iris df = pd.read csv('Iris.csv')
In [11]:
          iris df.head()
Out[11]:
              Id SepalLengthCm SepalWidthCm PetalLengthCm PetalWidthCm
                                                                         Species
           0 1
                           5.1
                                         3.5
                                                       1.4
                                                                    0.2 Iris-setosa
              2
                           4.9
                                         3.0
                                                       1.4
                                                                    0.2 Iris-setosa
           2 3
                                                                    0.2 Iris-setosa
                           4.7
                                         3.2
                                                       1.3
                           4.6
                                         3.1
                                                       1.5
                                                                    0.2 Iris-setosa
           4 5
                           5.0
                                         3.6
                                                       1.4
                                                                    0.2 Iris-setosa
In [13]:
          iris df
Out[13]:
                 Id SepalLengthCm SepalWidthCm PetalLengthCm PetalWidthCm
                                                                              Species
             0
                               5.1
                                            3.5
                                                          1.4
                                                                       0.2
                                                                            Iris-setosa
                  2
                               4.9
                                            3.0
                                                          1.4
                                                                       0.2
                                                                            Iris-setosa
```

3.2

1.3

0.2

Iris-setosa

2

3

4.7

|     | ld  | SepalLengthCm | SepalWidthCm | PetalLengthCm | PetalWidthCm | Species        |
|-----|-----|---------------|--------------|---------------|--------------|----------------|
| 3   | 4   | 4.6           | 3.1          | 1.5           | 0.2          | Iris-setosa    |
| 4   | 5   | 5.0           | 3.6          | 1.4           | 0.2          | Iris-setosa    |
|     |     |               |              |               |              |                |
| 145 | 146 | 6.7           | 3.0          | 5.2           | 2.3          | Iris-virginica |
| 146 | 147 | 6.3           | 2.5          | 5.0           | 1.9          | Iris-virginica |
| 147 | 148 | 6.5           | 3.0          | 5.2           | 2.0          | Iris-virginica |
| 148 | 149 | 6.2           | 3.4          | 5.4           | 2.3          | Iris-virginica |
| 149 | 150 | 5.9           | 3.0          | 5.1           | 1.8          | Iris-virginica |

150 rows × 6 columns

### **Dropping the unecessery columns**

```
In [15]: iris_df.drop(['Id', 'Species'], axis='columns',inplace=True)
```

In [16]: iris\_df

Out[16]:

|     | SepalLengthCm | SepalWidthCm | PetalLengthCm | PetalWidthCm |
|-----|---------------|--------------|---------------|--------------|
| 0   | 5.1           | 3.5          | 1.4           | 0.2          |
| 1   | 4.9           | 3.0          | 1.4           | 0.2          |
| 2   | 4.7           | 3.2          | 1.3           | 0.2          |
| 3   | 4.6           | 3.1          | 1.5           | 0.2          |
| 4   | 5.0           | 3.6          | 1.4           | 0.2          |
|     |               |              |               |              |
| 145 | 6.7           | 3.0          | 5.2           | 2.3          |
| 146 | 6.3           | 2.5          | 5.0           | 1.9          |

|     | SepalLengthCm | SepalWidthCm | PetalLengthCm | PetalWidthCm |
|-----|---------------|--------------|---------------|--------------|
| 147 | 6.5           | 3.0          | 5.2           | 2.0          |
| 148 | 6.2           | 3.4          | 5.4           | 2.3          |
| 149 | 5.9           | 3.0          | 5.1           | 1.8          |

150 rows × 4 columns

#### **KMeans**

```
In [19]: x=iris_df.iloc[:,[0,1,2,3]].values
    sse = []
    k_rng = range(1,10)
    for k in k_rng:
        km = KMeans(n_clusters=k)
        km.fit(x)
        sse.append(km.inertia_)
```

## plotting an Elbow Graph to find the correct number of cluster

```
In [20]: plt.xlabel('K MEANS')
    plt.ylabel('SUM OF SQUARED ERROR')
    plt.title('THE ELBOW ANALYSIS')
    plt.plot(k_rng,sse,color='purple')

Out[20]: [<matplotlib.lines.Line2D at 0x7f061cdee9b0>]
```



## this show that 3 iis optimum number of cluster to form in iris dataset

```
1, 2, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 2], dtype=int 32)
```

# Adding a cluster to show which cluster does the particular feature belong to

```
In [24]: iris_df['cluster']=y_predict
    iris_df
```

Out[24]:

|     | SepalLengthCm | SepalWidthCm | PetalLengthCm | PetalWidthCm | cluster |
|-----|---------------|--------------|---------------|--------------|---------|
| 0   | 5.1           | 3.5          | 1.4           | 0.2          | 0       |
| 1   | 4.9           | 3.0          | 1.4           | 0.2          | 0       |
| 2   | 4.7           | 3.2          | 1.3           | 0.2          | 0       |
| 3   | 4.6           | 3.1          | 1.5           | 0.2          | 0       |
| 4   | 5.0           | 3.6          | 1.4           | 0.2          | 0       |
|     |               |              |               |              |         |
| 145 | 6.7           | 3.0          | 5.2           | 2.3          | 1       |
| 146 | 6.3           | 2.5          | 5.0           | 1.9          | 2       |
| 147 | 6.5           | 3.0          | 5.2           | 2.0          | 1       |
| 148 | 6.2           | 3.4          | 5.4           | 2.3          | 1       |
| 149 | 5.9           | 3.0          | 5.1           | 1.8          | 2       |
|     |               |              |               |              |         |

150 rows × 5 columns

```
In [25]: iris_df.cluster.unique()
```

Out[25]: array([0, 2, 1], dtype=int32)

In [26]: iris\_df1 = iris\_df[iris\_df.cluster==0]

```
iris_df2 = iris_df[iris_df.cluster==1]
iris_df3 = iris_df[iris_df.cluster==2]
```

### Plotting a Scatter plot showing the cluster

```
In [28]: plt.title('K Means Clustering')
   plt.scatter(x[y_predict==0,0],x[y_predict==0,1],c='red',label='Iris-set
   osa')
   plt.scatter(x[y_predict==1,0],x[y_predict==1,1],c='green',label='Iris-v
   irginica')
   plt.scatter(x[y_predict==2,0],x[y_predict==2,1],c='yellow',label='Iris-versicolor')
   plt.legend(loc='best')
```

Out[28]: <matplotlib.legend.Legend at 0x7f061ca0d908>



#### **Finish**