

*B1
cont.*

wave is set in a range of 0.01 to 0.05, and a duty ratio (w/p) of the electrode finger decided based on a width w and an arraying cycle p of the electrode finger is set to the value ranging from 0.6 to just below 1.0.

5. (Amended) An acoustic wave apparatus comprising:
a piezoelectric substrate mainly containing lithium tantalate;
an interdigital transducer including a conductor formed on said substrate; and
a reflector including a conductor formed on said substrate,
wherein a surface rotated in a range of 35° to 42° from a crystal Y axis around a crystal X axis of the lithium tantalate is set as a surface of said substrate, a standardized electrode thickness (h/λ) obtained by standardizing a thickness h of an electrode finger constituting at least a part of said reflector by a wavelength λ of a surface acoustic wave is set in a range of 0.05 to 0.075, and a duty ratio (w/p) of the electrode finger decided based on a width w and an arraying cycle p of the electrode finger is set to the value ranging from 0.6 to just below 1.0.

6. (Amended) An acoustic wave apparatus comprising:
a piezoelectric substrate mainly containing lithium tantalate;
an interdigital transducer including a conductor formed on said substrate; and
a reflector including a conductor formed on said substrate,
wherein a surface rotated in a range of 36° to 43° from a crystal Y axis around a crystal X axis of the lithium tantalate is set as a surface of said substrate, a standardized electrode thickness (h/λ) obtained by standardizing a thickness h of an electrode finger constituting at least a part of said reflector by a wavelength λ of a

*B1
C1c1d*
surface acoustic wave is set in a range of 0.075 to 0.1, and a duty ratio (w/p) of the electrode finger decided based on a width w and an arraying cycle p of the electrode finger is set to the value ranging from 0.6 to just below 1.0.

B2
10. (Amended) An acoustic wave apparatus comprising:
a piezoelectric substrate mainly containing lithium tantalate;
an interdigital transducer including a conductor formed on said substrate; and
a reflector including a conductor formed on said substrate,
wherein a surface rotated in a range of 34° to 41° from a crystal Y axis around a crystal X axis of the lithium tantalate is set as a surface of said substrate, a standardized electrode thickness (h/λ) obtained by standardizing a thickness h of a part of an electrode finger constituting a part of said reflector by a wavelength λ of a surface acoustic wave is set in a range of 0.01 to 0.05, and a duty ratio (w/p) of a part of the electrode finger decided based on a width w and an arraying cycle p of a part of the electrode finger is set to the value ranging from 0.6 to just below 1.0.

11. (Amended) An acoustic wave apparatus comprising:
a piezoelectric substrate mainly containing lithium tantalate;
an interdigital transducer including a conductor formed on said substrate; and
a reflector including a conductor formed on said substrate,
wherein a surface rotated in a range of 35° to 42° from a crystal Y axis around a crystal X axis of the lithium tantalate is set as a surface of said substrate, a standardized electrode thickness (h/λ) obtained by standardizing a thickness h of a part of an electrode finger constituting a part of said reflector by a wavelength λ of a surface

*B2
CMcl'd*
acoustic wave is set in a range of 0.05 to 0.075, and a duty ratio (w/p) of a part of the electrode finger decided based on a width w and an arranging cycle of a part of the electrode finger is set to the value ranging from 0.6 to just below 1.0.

12. (Amended) An acoustic wave apparatus comprising:
a piezoelectric substrate mainly containing lithium tantalate;
an interdigital transducer including a conductor formed on said substrate; and
a reflector including a conductor formed on said substrate,
wherein a surface rotated in a range of 36° to 43° from a crystal Y axis around a crystal X axis of the lithium tantalate is set as a surface of said substrate, a standardized electrode thickness (h/λ) obtained by standardizing a thickness h of a part of an electrode finger constituting a part of said reflector by a wavelength λ of a surface acoustic wave is set in a range of 0.075 to 0.1, and a duty ratio (w/p) of a part of the electrode finger decided based on a width w and an arraying cycle p of a part of the electrode finger is set to the value ranging from 0.6 to just below 1.0.