Algèbre 2

Espaces affines

Question 1/6

Direction d'un sous-espace affine F de E

Réponse 1/6

L'unique sous-ensemble V de T tel que F = A + V

Question 2/6

Espace affine

Réponse 2/6

$$\forall (x,t,u) \in \mathbb{E} \times T^2, \ x + \left(\vec{t} + \vec{u}\right) = \left(x + \vec{t}\right) + \vec{u}$$

$$\forall x \in E, \ x + \vec{0} = x$$

$$\forall (x,y) \in E^2, \ \exists \vec{t} \in T, \ x = y + \vec{t}$$

$$\left(\forall x \in E, \ x + \vec{t} = x\right) \Rightarrow \vec{t} = \vec{0}$$
Le dernier point peut être remplacé par

 $\forall x \in E, \ (x + \vec{t} = x \Rightarrow \vec{t} = \vec{0})$

Question 3/6

Orbite d'un point $x \in E$ sous l'action d'un sous-ensemble S de T

Réponse 3/6

$$\{x + \vec{s}, \ s \in S\}$$

Question 4/6

Propriétés d'une fibre d'une application linéaire $u \in \mathcal{L}(E, F)$

Réponse 4/6

$$u^{-1}(\{a\})$$
 est soit vide, soit dirigé par $\ker(u)$

Question 5/6

Sous-espace affine d'un espace affine E

Réponse 5/6

 $F \subset E$ est un sous-espace affine de E s'il existe $A \in E$ et $V \subset T$ tel que F est l'orbite de A sous l'action de V

Question 6/6

$$au_{ec{t}}(X)$$

Réponse 6/6

$$\{x + \vec{t}, x \in X\}$$