Computer Organization and Design

Chapter 2

The Language of the Computer

Sections 2.1 – 2.3, 2.5 – 2.8, 2.10 – 2.12

Computer Languages

- HLL (High Level Languages)
 - Ex. Java, C, C++, FORTRAN, COBOL, BASIC, Python
 - Designed to allow programmers to relate problem solving to human ways of thinking
 - Statements are constructed that define one or more operations
 - Words and symbols are used to define logic or mathematical processes
 - Most HLLs require a specific syntax in order for the compiler/interpreter to create the executable form of the program

Computer Languages

- Approach to HLL programming is based on a paradigm:
 - Structured (procedural) programming
 - aimed at improving the clarity, quality, and development time of a computer program by making extensive use of procedures, functions, block structures, for and while loops
 - Object-oriented programming
 - based on the concept of "objects", which may contain data, in the form of fields, often known as attributes; and code, in the form of procedures, often known as methods
 - Functional programming
 - treats computation as the evaluation of mathematical functions and avoids changing-state and mutable data
 - programming is done with expressions or declarations instead of statements (sometimes highly symbolic)

Hardware Language

- Computer hardware can only respond to native binary machine language
- Machine language is specific to the architecture of the system
 - Direct correlation between a machine instruction and the underlying hardware that implements it
- All HLL code must be translated to machine language for the hardware to run it

Instruction Set

- Instruction: specific operation to be performed in the hardware
- Instruction set: set of all instructions (all possible operations that can be performed)
- Instruction sets of different computers are
 - Similar because
 - All computers are built using hardware technologies based on similar underlying principles
 - There are few basic operations that all machines must provide
 - Different because
 - Internal structure of different computers can vary
 - Microarchitecture is different
 - Microarchitecture defines the implementation of the ISA
 - Level of functions provided also vary
- Instruction set is inherent to hardware design

RISC-V

- RISC-V is an open standard instruction set architecture (ISA) based on established reduced instruction set computer (RISC) principles
- Development began at UC Berkeley in 2010
- RISC-V is a newer architecture developed to solve many issues of prior architectures
 - open-source: managed by non-profit RISC-V Foundation
 - no royalties for use
 - flexible: suitable for embedded systems through high-performance systems
 - accommodate all implementation technologies (FPGA, ASIC)
 - supports specialization for customized applications
 - designed for non-obsolescence
- RISC-V Foundation members include Google, NVIDIA, Samsung, Qualcomm, IBM and many others

RISC-V Programming Model

(Load/Store Architecture)

RSIC-V Architecture

- RISC-V defines 32- and 64-bit base architectures with extensions
 - RV32I (32-bit integer base)
 - RV64I (64-bit integer base)
- Standard extensions
 - M Integer Multiplication and Division
 - A Atomic Instructions
 - F Single-Precision Floating-Point
 - D Double-Precision Floating-Point
 - Q Quad-Precision Floating-Point
- This course will use RV64I with M, F and D extensions

RV64I

- Memory address values are 64 bits
 - RARS program only supports 32 bit addresses
 - Data memory limited to 127 KiB
- Largest integer size is 64 bits
- Instruction size is 32 bits
- Internal CPU storage registers are 64 bits

RISC-V prototype processor (2013)

RISC-V processor (SiFive single core)