Додаток 1

Міністерство освіти і науки України Національний технічний університет України «Київський політехнічний інститут імені Ігоря Сікорського" Факультет інформатики та обчислювальної техніки

Кафедра інформатики та програмної інженерії

Звіт

з лабораторної роботи № 3 з дисципліни
«Алгоритми та структури даних-1. Основи
алгоритмізації»

«Дослідження лінійних алгоритмів»

Варіант_18____

—______

—_______

(шифр, прізвище, ім'я, по батькові)

Виконав студент

Перевірив

(прізвище, ім'я, по батькові)

_

Лабораторна робота 3

Дослідження ітераційних циклічних алгоритмів

Мета – дослідити подання операторів повторення дій та набути практичних навичок їх використання під час складання циклічних програмних специфікацій.

Індивідуальне завдання

Варіант 18

18. Задане дійсне число х. Послідовність a1, a2, ..., an утворена за законом an = x**n / (2n)!, $n = 1, 2, \ldots$. Отримати суму a1 + a2 + ... + ak , де k - найменше ціле число, що задовольняє двом умовам: k > 10, |ak| < 10-5.

1 Постановка задачі

Крок 1. Визначимо основні дії.

Крок 2. Деталізуємо дію обчислення ак члена прогресії.

Крок 3. Деталізуємо дію знаходження sk членів прогресії.

2 Побудова математичної моделі

Складемо таблицю імен змінних

Змінна	Тип	Ім'я	Призначення
змінна	Дійсні числа	X	Початкові дані
номер члена прогресії	Цілі числа	k	Початкові дані
Факторіал числа	Цілі числа	n	Проміжні дані
Підвищення до степеня	Дійсні числа	p	Проміжні дані
член прогресії	Дійсні числа	ak	Проміжні дані
сума k членів прогресії	Дійсні числа	sk	вихідні дані

Для знаходження степеня будемо користуватися функцією **pow**Для знаходження факторіалу числа будемо користуватися функцією **fact**Для знаходження модуля числа будемо користуватися функцією **abs**

3 Розв'язання

Псевдокод

Крок 1

початок

введення х

Присвоєння початкових значень

обчислити ak член прогресії починаючи з першого

обчислення sk суми членів

Виведення sk

кінець

Крок 2

початок

введення х

k = 0

sk = 0

n = pow(x, k)

p = fact(2 k)

обчислити ак член прогресії починаючи з першого

обчислення sk суми членів

Виведення sk

кінець

Крок 3

початок

введення х

$$\mathbf{k} = \mathbf{0}$$

$$sk = 0$$

$$n = pow(x, k)$$

$$p = fact(2 * k)$$

$$k = k + 1$$

$$ak = n / p$$

обчислення sk суми членів

Виведення sk

кінець

Крок 4

початок

введення х

$$\mathbf{k} = \mathbf{0}$$

$$sk = 0$$

$$n = pow(x, k)$$

$$p = fact(2 * k)$$

повторити

$$k = k + 1$$

$$ak = n / p$$

$$sk = sk + ak$$

Виведення sk

кінець

Блок-схема

4 Тестування

Блок	Дія		
	Початок		
1	Введення х = 10		
2	ak1 = 5, sk1 = 5		
3	ak2 = 4.2, sk2 = 9.2		
4	ak3 = 1.4, sk3 = 10.6		
5	ak4 = 0.2, $sk4 = 10.8$		
6	ak5 = 0.027, $sk5 = 10.827$		
7	ak6 = 0.002, sk6 = 10.829		
8	ak7 = 0.0001, $sk7 = 10.8291$		
9	ak8 = 0.00001, $sk8 = 10.82911$		
10	ak9 = 0.000001, $sk9 = 10.829111$		
11	ak10 = 0.0000001, $sk10 = 10.8291101$		
12	ak11 =0.00000001, sk11 = 10.82911011		
14	Вивід: 10.82911011		
	Кінець		

5 Висновки

Я дослідив подання операторів повторення дій та набув практичних навичок їх використання під час складання циклічних програмних специфікацій. Побудував мат. Модель, псевдокод, блок схему. Протестував алгоритм.