Отчёт по лабораторной работе №7

Дисциплина: архитектура компьютера

Учаева Алёна Сергеевна

Содержание

1	Цель работы	4
2	Задание	5
3	Теоретическое введение	6
4	Выполнение лабораторной работы	7
	4.1 Реализация переходов в NASM	7
	4.2 Изучение структуры файлы листинга	12
	4.3 Задания для самостоятельной работы	14
5	Выводы	21
Сг	Список литературы	

Список иллюстраций

4.1	Создание каталога	7
4.2	Редактирование файла	8
4.3	Запуск исполняемого файла	8
4.4	Редактирование файла	9
4.5	Запуск исполняемого файла	9
4.6	Редактирование файла	10
4.7	Запуск исполняемого файла	10
4.8	Редактирование файла	11
4.9	Запуск исполняемого файла	12
4.10	Создание файла	13
4.11	Редактирование файла	14
4.12	Трансляция файла	14
4.13	Редактирование файла	15
4.14	Запуск исполняемого файла	15
4.15	Создание программы	18
4.16	Запуск исполняемого файла	18

1 Цель работы

Изучить команды условного и безусловного переходов. Приобретение навыков написания программ с использованием переходов. Ознакомиться с назначением и структурой файла листинга.

2 Задание

- 1. Реализация переходов в NASM
- 2. Изучение структуры файлы листинга
- 3. Задания для самостоятельной работы

3 Теоретическое введение

Для реализации ветвлений в ассемблере используются так называемые команды передачи управления или команды перехода. Можно выделить 2 типа переходов: • условный переход – выполнение или не выполнение перехода в определенную точку программы в зависимости от проверки условия. • безусловный переход – выполнение передачи управления в определенную точку программы без каких-либо условий.

4 Выполнение лабораторной работы

4.1 Реализация переходов в NASM

Создаю каталог для программ лабораторной работы №7 (рис. 4.1).

```
alena@fedora:-$ mkdir ~/work/study/2024-2025/"Архитектура компьютера"/arch-pc/lab07
alena@fedora:-$ cd ~/work/study/2024-2025/"Архитектура компьютера"/arch-pc/lab07
alena@fedora:-/work/study/2024-2025/Архитектура компьютера/arch-pc/lab07$ touch
lab7-1.asm
alena@fedora:-/work/study/2024-2025/Архитектура компьютера/arch-pc/lab07$
```

Рис. 4.1: Создание каталога

Ввожу в файл lab7-1.asm текст программы из листинга 7.1 (рис. 4.2).

```
lab7-1.asm
  Открыть
                                                                     Сохранить
                                                                                   \equiv 1
                   \oplus
                        ~/work/study/2024-2025/Архитектура компьюте
 1 %include 'in_out.asm' ; подключение внешнего файла
2 SECTION .data
3 msgl: DB 'Сообщение № 1',0
4 msg2: DB 'Сообщение № 2',0
5 msg3: DB 'Сообщение № 3',0
 6 SECTION .text
7 GLOBAL _start
8 start:
8_start:
9 jmp _label2
10 _label1:
11 mov eax, msg1 ; Вывод на экран строки
12 call sprintLF ; 'Сообщение № 1'
.
13 _label2:
15 call sprintLF ; 'Сообщение № 2'
16 _label3:
17 mov eax, msg3 ; Вывод на экран строки
18 call sprintLF ; 'Сообщение № 3
19 _end:
20 call quit ; вызов подпрограммы завершения
```

Рис. 4.2: Редактирование файла

Создаю исполняемый файл и запускаю его (рис. 4.3).

```
alena@fedora:~/work/study/2024-2025/Архитектура компьютера/arch-pc/lab07$ nasm - f elf lab7-1.asm
alena@fedora:~/work/study/2024-2025/Архитектура компьютера/arch-pc/lab07$ ld -m
elf_i386 -o lab7-1 lab7-1.o
alena@fedora:~/work/study/2024-2025/Архитектура компьютера/arch-pc/lab07$ ./lab7
-1
Сообщение № 2
Сообщение № 3
alena@fedora:~/work/study/2024-2025/Архитектура компьютера/arch-pc/lab07$
```

Рис. 4.3: Запуск исполняемого файла

Редактирую программу, чтобы поменялся порядок выполнения функций (рис. 4.4).

```
lab7-1.asm
  Открыть
                    ±
                                                                       Сохранить
                                                                                     =
                         ~/work/study/2024-2025/Архитектура компьюте
 1 %include 'in_out.asm' ; подключение внешнего файла
 2 SECTION .data
 3 msgl: DB 'Сообщение № 1',0
4 msg2: DB 'Сообщение № 2',0
5 msg3: DB 'Сообщение № 3',0
 6 SECTION .text
 7 GLOBAL _start
 8 _start:
9 jmp _label2
10 _label1:
11 mov eax, msg1 ; Вывод на экран строки
12 call sprintLF ; 'Сообщение № 1'
13 jmp _end
14 _label2:
15 mov eax, msg2 ; Вывод на экран строки
16 call sprintLF ; 'Сообщение № 2'
17 jmp _label1
18 _label3:
19 mov eax, msg3 ; Вывод на экран строки
20 call sprintLF ; 'Сообщение № 3'
21 _end:
22 call quit ; вызов подпрограммы завершения
```

Рис. 4.4: Редактирование файла

Создаю исполняемый файл и запускаю его (рис. 4.5).

```
alena@fedora:-/work/study/2024-2025/Архитектура компьютера/arch-pc/lab07$ nasm - f elf lab7-1.asm alena@fedora:-/work/study/2024-2025/Архитектура компьютера/arch-pc/lab07$ ld -m elf_i386 -o lab7-1 lab7-1.o alena@fedora:-/work/study/2024-2025/Архитектура компьютера/arch-pc/lab07$ ./lab7 -1 Сообщение № 2 Сообщение № 1 alena@fedora:-/work/study/2024-2025/Архитектура компьютера/arch-pc/lab07$
```

Рис. 4.5: Запуск исполняемого файла

Редактирую текст программы, чтобы сообщения вывелись в обратном порядке (рис. 4.6).

```
lab7-1.asm
   Открыть
                     ±
                                                                             Сохранить
                                                                                             \equiv 1
                           ~/work/study/2024-2025/Архитектура компьюте
 1 %include 'in_out.asm' ; подключение внешнего файла
 2 SECTION .data
 3 msgl: DB 'Сообщение № 1',0
 4 msg2: DB 'Сообщение № 2',0
5 msg3: DB 'Сообщение № 3',0
 6 SECTION .text
 7 GLOBAL _start
 8 _start:
 9 jmp _label3
10 _label1:
11 mov eax, msg1 ; Вывод на экран строки
12 call sprintLF ; 'Сообщение № 1'
13 jmp _end
14 _label2:
15 mov eax, msg2 ; Вывод на экран строки
16 call sprintLF ; 'Сообщение № 2'
17 jmp _label1
18 _label3:
19 mov eax, msg3 ; Вывод на экран строки
20 call sprintLF ; 'Сообщение № 3'
21 jmp _label2
22 _end:
23 call quit ; вызов подпрограммы завершения
```

Рис. 4.6: Редактирование файла

Создаю исполняемый файл и запускаю его (рис. 4.7).

```
alena@fedora:~/work/study/2024-2025/Архитектура компьютера/arch-pc/lab07$ nasm - f elf lab7-1.asm
alena@fedora:~/work/study/2024-2025/Архитектура компьютера/arch-pc/lab07$ ld -m
elf_1386 -o lab7-1 lab7-1.o
alena@fedora:~/work/study/2024-2025/Архитектура компьютера/arch-pc/lab07$ ./lab7
-1
Сообщение № 3
Сообщение № 2
Сообщение № 1
alena@fedora:~/work/study/2024-2025/Архитектура компьютера/arch-pc/lab07$ □
```

Рис. 4.7: Запуск исполняемого файла

Создаю файл lab7-2.asm в каталоге ~/work/arch-pc/lab07 и ввожу в него текст программы из листинга 7.3 (рис. 4.8).

Рис. 4.8: Редактирование файла

Создаю исполняемый файл и запускаю его. Программа выводит значение переменной с максимальным значением, проверяю работу программы с разными входными данными (рис. 4.9).

```
/work/study/2024-2025/Архитектура компьютера/arch-pc/lab07$ touch
nlena@fedora:~/work/study/2024-2025/Архитектура компьютера/arch-pc/lab07$ nasm -
f elf lab7-2.asm
elf_i386 -o lab7-2 lab7-2.o
_
nlena@fedora:~/work/study/2024-2025/Архитектура компьютера/arch-pc/lab07$ ./lab7
Введите В: 30
Наибольшее число: 50
alena@fedora:~/work/study/2024-2025/Архитектура компьютера/arch-pc/lab07$ ./lab7
Наибольшее число: 50
 lena@fedora:~/work/study/2024-2025/Архитектура компьютера/arch-pc/lab07$ ./lab7
Введите В: 45
Наибольшее число: 50
nlena@fedora:~/work/study/2024-2025/Архитектура компьютера/arch-pc/lab07$ ./lab7
Введите В: 70
Наибольшее число: 70
 lena@fedora:~/work/study/2024-2025/Архитектура компьютера/arch-pc/lab07$∏
```

Рис. 4.9: Запуск исполняемого файла

4.2 Изучение структуры файлы листинга

Создаю файл листинга с помощью флага -l команды nasm и открываю его с помощью текстового редактора (рис. 4.10).

Рис. 4.10: Создание файла

Строка 5: 5 00000001 89СЗ Данная команда перемещает данные из одного регистра в другой, сохраняет начальный адрес строки в регистре ebx. Строка 8: 00000003 803800 Данная команда проверяет, является ли текущий символ нулевым (конец строки). Строка 27: 00000013 E8E8FFFFF Данная команда вызывает функцию slen, которая вычисляет длину строки.

Далее удаляю один операнд из случайной инструкции (рис. 4.11).

```
14 call sprint
15 mov ecx,B
16 mov edx,10
17 call sread
18 mov eax,B
19 call atoi; Вызов подпрограммы перевода символа в число
20 mov eax; запись преобразованного числа в 'В'
21 mov ecx,[A]; 'ecx = A'
22 mov [max],ecx; 'max = A'
```

Рис. 4.11: Редактирование файла

Выполняю трансляцию с получением файла листинга, показывает ошибку. Ни-какие выходные при этом не создаются (рис. 4.12).

```
)alena@fedora:~/work/study/2024-2025/Архитектура компьютера/arch-pc/lab07$ nasm -
)f elf -l lab7-2.lst lab7-2.asm
)lab7-2.asm:20: error: invalid combination of opcode and operands
)alena@fedora:~/work/study/2024-2025/Архитектура компьютера/arch-pc/lab07$ [
```

Рис. 4.12: Трансляция файла

4.3 Задания для самостоятельной работы

Вариант №9(мой вариант из лабораторной работы №6):

Редактирую программу для нахождения наименьшей из 3 целочисленных переменных (рис. 4.13).

Рис. 4.13: Редактирование файла

Создаю исполняемый файл и запускаю его, программа работает корректно (рис. 4.14).

```
alena@fedora:-/work/study/2024-2025/Архитектура компьютера/arch-pc/lab07$ nasm - f elf lab7-3.asm alena@fedora:-/work/study/2024-2025/Архитектура компьютера/arch-pc/lab07$ ld -m elf_i386 -o lab7-3 lab7-3.o alena@fedora:-/work/study/2024-2025/Архитектура компьютера/arch-pc/lab07$ ./lab7 -3
Введите В: 98
Наименьшее число: 15
alena@fedora:-/work/study/2024-2025/Архитектура компьютера/arch-pc/lab07$
```

Рис. 4.14: Запуск исполняемого файла

%include 'in_out.asm'

SECTION .data

```
msg1 db 'Введите В: ', Oh
msg2 db 'Наименьшее число: ', Oh
A dd '24'
C dd '15'
SECTION .bss
min resb 10
B resb 10
SECTION .text
GLOBAL _start
_start:
mov eax, msg1
call sprint
mov ecx, B
mov edx, 10
call sread
mov eax, B
call atoi
mov [B], eax
mov ecx, [A]
mov [min], ecx
cmp ecx, [C]
jg check_B
mov ecx, [C]
mov [min], ecx
check_B:
mov eax, min
call atoi
mov [min], eax
mov ecx, [min]
```

```
cmp ecx, [B]
jb fin
mov ecx, [B]
mov [min], ecx
fin:
mov eax, msg2
call sprint
mov eax, [min]
call iprintLF
call quit
```

2. Пишу программу, которая вычисляет значение заданной функции и выводит результат вычислений.(рис. 4.15).

Рис. 4.15: Создание программы

Создаю исполняемый файл и запускаю его, программа работает корректно (рис. 4.16).

```
alena@fedora:~/work/study/2024-2025/Архитектура компьютера/arch-pc/lab07$ nasm - f elf lab7-4.asm alena@fedora:~/work/study/2024-2025/Архитектура компьютера/arch-pc/lab07$ ld -m elf_i386 -o lab7-4 lab7-4.o alena@fedora:~/work/study/2024-2025/Архитектура компьютера/arch-pc/lab07$ ./lab7 -4
Введите значение переменной х: 5
Введите значение переменной а: 7
Результат: 12
alena@fedora:~/work/study/2024-2025/Архитектура компьютера/arch-pc/lab07$ ./lab7 -4
Введите значение переменной х: 6
Введите значение переменной х: 6
Введите значение переменной а: 4
Результат: 4
alena@fedora:~/work/study/2024-2025/Архитектура компьютера/arch-pc/lab07$
```

Рис. 4.16: Запуск исполняемого файла

```
%include 'in_out.asm'
SECTION .data
msg_x: DB 'Введите значение переменной х: ', 0
msg_a: DB 'Введите значение переменной a: ', 0
res: DB 'Результат: ', 0
SECTION .bss
x: RESB 80
a: RESB 80
SECTION .text
GLOBAL _start
_start:
mov eax, msg_x
call sprint
mov ecx, x
mov edx, 80
call sread
mov eax, x
call atoi
mov edi, eax
mov eax, msg_a
call sprint
mov ecx, a
mov edx, 80
call sread
mov eax, a
call atoi
mov esi, eax
cmp edi, esi
jle add_values
```

```
mov eax, esi
jmp print_result
add_values:
mov eax, edi
add eax, esi
print_result:
mov edi, eax
mov eax, res
call sprint
mov eax, edi
call iprintLF
call quit
```

5 Выводы

При выполнении данной лабораторной работы я изучила команды условного и безусловного переходов. Приобрела навыки написания программ с использованием переходов. Ознакомилась с назначением и структурой файла листинга.

Список литературы

1. Архитектура ЭВМ