§ 7.2 空间点、线、平面间的位置关系

7.2.1 相关概念

学习目标

- 1.掌握空间中点、 直线、平面之间的位置关系的相关定义;
- 2.掌握可以作为推理依据的基本事实(公理)和定理;
- 3.能够熟练运用基本事实和相关定理处理一些简单的立体几何问题.

1.四个基本事实(公理)

基本事实 1: 如果一条直线上的两点在一个平面内,那么这条直线在此平面内.

基本事实 2: 过不在同一条直线上的三点,有且只有一个平面.

基本事实 3: 如果两个不重合的平面有一个公共点,那么它们有且只有一条过公共点的公共直线.

基本事实 4: 平行于同一条直线的两条直线互相平行.

推论1:经过一条直线和这条直线外一点,有且只有一个平面.

推论 2: 经过两条相交直线,有且只有一个平面.

推论 3: 经过两条平行直线,有且只有一个平面.

点通常用大写字母 A,B,P 等表示;直线通常用小写字母 l 等表示;平面通常用 α,β 等表示;如果直线 l 经过点 A,B 两点, l 也可用 AB 表示;如果平面 α 经过不在同一直线上的三个点 A,B,C,则平面 α 也可表示成平面 ABC。

【注意】点与线之间的关系是**属于**或**不属于**关系,比如点P在直线l上,可写成 $P \in l$,否则表示成 $P \notin l$;

直线与平面之间的关系是**包含或不包含**关系,比如直线l在平面 α 内,可表示成l \subset α 。否则表示成l \neq α

2. 直线与直线的位置关系

异面直线:

不同在任何一个平面内的两条直线, 称为异面直线。

根据两条直线是否在同一个平面内,可将它们的位置关系分成共面和异面两种,对于共面的两条直线,又可细分为平行和相交。因此,两条直线的位置关系有如下三种。

、异面直线: 不同在任何一个平面内

异面直线所成的角

①定义:设a,b是两条异面直线,经过空间任一点O作直线a'//a,b'//b,把a'与b'所成的**税用或直角**叫做异面直线a,b所成的角(或夹角).

②范围:
$$\left(0,\frac{\pi}{2}\right]$$
。

3. 直线与平面的位置关系

按照直线与平面有无公共点,以及公共点的多少,可将直线与平面的位置关系做如下分类:

- (1) 直线与平面相交,它们有一个公共点;
- (2) 直线在平面内,它们有无穷多个公共点;
- (3) 直线与平面平行,它们没有公共点

直线与平面相交或平行,统称为直线在平面外。

4、平面与平面的位置关系

按照两个平面有无公共点,可将两个平面的位置关系分为如下两种

- (1) 两平面平行:它们没有公共点
- (2) 两平面相交:它们有且仅有一条公共直线
- 5. 直线与直线平行

基本事实 4: 平行于同一直线的两条直线互相平行

等角定理:如果空间中两个角的两边分别对应平行,那么这两个角相等或互补

6. 直线与直线垂直

定义:两条直线所成的角为直角,则称这两条直线互相垂直。

7、直线与平面垂直

定义: 一条直线l与一个平面 α 内的任意一条直线都垂直,则称这条直线和这个平面垂直,记作 $l \perp \alpha$,直线l 叫作平面 α 的垂线,l与 α 的交点称为垂足。

点到平面的距离:

过平面外一点作已知平面的垂线,该点与垂足之间的线段长,叫作这个点到该平面的距离。

8.直线与平面所成的角

如图,一条直线l与平面 α 相交但不垂直,我们将l 叫作平面 α 的一条 的一条 的交点 A 叫 叫 是。过l 上斜足以外的任意一点 P 作平面 α 的垂线 PO,过垂足O 和斜足A 的直线 AO

叫l在平面 α 上的射影。

定义:平面的一条斜线和它在平面上的射影所成的**角**,叫作**这条直线与这个平面所成的角。** 一条直线垂直于一个平面,我们说它们所成的角为直角。一条直线平行于一个平面或在平面内, 我们说它们所成的角是**0**°。因此,线面角的范围为**[0°,90°]**

9.直线到平面的距离

如果一条直线和一个平面平行,则这条直线上的任意一点到该平面的距离,称为这条**直线到 这个平面的距离。**

10.两平行平面间的距离

两平面平行,则其中一个平面内的任意一点到另一平面的距离,都称为这**两个平行平面间的 距离。**

11.平面与平面垂直

二面角:从一条直线出发的两个半平面组成的图形叫**二面角**。这条直线叫**二面角的棱**,这两个半平面叫**二面角的面**。如二面角的棱为直线 AB ,两个面分别为 α , β ,则该二面角记为 $\alpha - AB - \beta$ 。为方便,我们经常在二面角的两个面上分别取一点(不在 AB 上)P ,从二面角记为P - AB - Q 。

如图,在二面角 $\alpha-l-\beta$ 的楼l上任取一点O,以O为垂足,分别在两个半平面内作与l垂直的射线OA,OB,则 $\angle AOB$ 称为二面角 $\alpha-l-\beta$ 的平面角。如果一个二面角的平面角为直角,则称此二面角为**直二面角**。显然,二面角的平面角的范围为 $[0^{\circ},180^{\circ}]$ 。如果两个平面所成的二面角为直二面角,则称这两个平面互相垂直。

7.2.2 典型例题

- **例 1.**判断正误(在括号内打" $\sqrt{"}$ 或" $\times"$)
- (1)两个平面 α , β 有一个公共点A, 则 α , β 相交于A点的任意一条直线.()
- (2)两两相交的三条直线最多可以确定三个平面.()
- (3)如果两个平面有三个公共点,则这两个平面重合.()
- (4)若直线a不平行于平面 α ,且a \subset α ,则 α 内的所有直线与 α 异面.()

【解析】(1)只有过公共点的唯一一条交线,故错误;

- (2) 当三条直线在空间中交于一点时,可确定三个平面,正确;
- (3)两个相交平面的交线上有无限个公共点, 故错误;
- (4)显然 a 为平面 α 的斜线, α 内过斜足的直线与直线 a 相交, 故错误.

【解析】: 在图①中, 直线 *GH* //*MN*;

图②中,G,H,N三点共面,MN为GHN平面的一条斜线,N为斜足,因 $N \not\in GH$,故直线GH与MN异面;

在图③中,连接GM,GM//HN,因此GH与MN共面;

在图④中, G,M,N 共面, 但 $H \notin \text{平面} GMN,G \notin MN$, 因此 $GH \ni MN$ 异面.

所以在图②④中GH与MN异面.

重要结论: 平面的一条斜线与该平面内不过斜足的任意一条直线互为异面直线

例 3.如图所示,在正方体 $ABCD-A_lB_lC_lD_l$ 中,E,F 分别是 AB ,AD 的中点,则异面直线 B_lC 与 EF 所成角的大小为()

 $A.30^{\circ}$ $B.45^{\circ}$ $C.60^{\circ}$ $D.90^{\circ}$

【解析】连接 B_1D_1 , D_1C , 则 B_1D_1 //EF, 故 $\angle D_1B_1C$ 为所求的角

又 $B_1D_1 = B_1C = D_1C$, $\therefore \angle D_1B_1C = 60^\circ$ 。选 C。

例 4.已知空间四边形的两条对角线相互垂直,顺次连接四边中点的四边形一定是()

A.梯形

B.矩形

C.菱形

D.正方形

【解析】如图所示, 易证四边形 *EFGH* 为平行四边形, 因为 E, F 分别为 AB, BC 的中点, 所 以EF//AC,又FG//BD,所以 $\angle EFG$ 或其补角为AC与BD所成的角,而AC与BD所成的 角为 90° ,所以 $\angle EFG = 90^{\circ}$,故四边形EFGH为矩形.选B。

例 5. 若直线 l_1 和 l_2 是异面直线, l_1 在平面 α 内, l_2 在平面 β 内,l是平面 α 与平面 β 的交 线,则下列命题正确的是(

A. l与 l_1 , l_2 都不相交

B. l与 l_1 , l_2 都相交

C. l至多与 l_1 , l_2 中的一条相交 D. l至少与 l_1 , l_2 中的一条相交

【解析】以长方体为模型,很容易找到 A、B、C 的反例,只能选 D。

【注意】: 两线两面的命题型问题,常以长方体为模型,以及定理、公理和推论为依据。

例 6.以下四个命题中,正确命题的个数是(

- ② 不共面的四点中, 其中任意三点不共线;
- ②若点A,B,C,D共面,点A,B,C,E共面,则点A,B,C,D,E共面;
- ③若直线a,b共面,直线a,c共面,则直线b,c共面;
- ④依次首尾相接的四条线段必共面.

A.0 B.1 C.2 D.3

【解析】 ①假设其中有三点共线,则该直线和直线外的另一点确定一个平面,这与四点不 共面矛盾,故其中任意三点不共线,所以①正确.

- ②从条件看出两平面有三个公共点A,B,C,但是若A,B,C共线,则结论不正确;
- ③不正确;以正方体为模型,很容易找到反例。
- ④不正确,因为此时所得的四边形的四条边可以不在一个平面上,如空间四边形.

例 7.在正方体 $ABCD - A_iB_iC_iD_i$ 中,E, F 分别为棱 AA_i, CC_i 的中点,则在空间中与三条直 线 A_iD_i , EF, CD 都相交的直线有_____条.

【解析】如图,在EF 上任意取一点M,直线 A_iD_i 与M确定一个平面,不妨令其为 α ,则 平面 α 与底面ABCD必定相交(否则,就与底面ABCD平行,那 α 就与上底面 $A_iB_iC_iD_i$ 重合了, 此与M 在平面 α 上矛盾), 且交线与A,D,平行, 进而与AD 平行, 因此交线必定与CD相交, 不 妨令交点为N,则MN必与 A_iD_i 相交(否则,MN与 A_iD_i 平行,则MN变成图中的直线NK, 此与M 在其上矛盾),

综上,直线 MN 满足与题中三线相交,显然,这样的直线 MN 有无数条.

例 8.正方体 $ABCD - A_iB_iC_iD_i$ 中,P,Q,R 分别是 AB,AD,B_iC_i 的中点,那么,正方体的过 P,Q,R 的截面图形是().

- A. 三角形

- B. 四边形 C. 五边形 D. 六边形

【解析】如图所示,作RG//PQ交 C_1D_1 于G,连接QP并延长与CB交于M,连接MR 交 BB_1 于 E , 连接 PE , RE , 得截面的部分外形.

同理连PQ并延长交CD于N,连接NG交DD1于F,连接QF5FG,得截面的部分外形

综上,截面为六边形 PQFGRE。.

例 9. 设四面体的六条棱的长分别为 $1,1,1,1,\sqrt{2}$ 和a ,且长为a 的棱与长为 $\sqrt{2}$ 的棱异面,则 a 的取值范围是(

- (A) $(0,\sqrt{2})$ (B) $(0,\sqrt{3})$ (C) $(1,\sqrt{2})$ (D) $(1,\sqrt{3})$

【解析】 $\Leftrightarrow E \to DC$ 的中点, $F \to AB$ 的中点,

易知
$$AE = BE = \sqrt{1 - (\frac{\sqrt{2}}{2})^2} = \sqrt{1 - \frac{1}{2}} = \frac{\sqrt{2}}{2}$$
,

由 $AB < AE + BE = \sqrt{2}$ 知, 选 A。

【巧解】由斯坦纳定理知
$$\cos(AC,BD) = \frac{|(AB^2 + CD^2) - (AD^2 + BC^2)|}{2AC \times BD} = \frac{a^2}{2}$$

故,
$$0 < \frac{a^2}{2} < 1 \Rightarrow 0 < a < \sqrt{2}$$

例 10(1). 如果两条异面直线称为"一对",那么在正方体的十二条棱中共有异面直线(

- B. 24 对 C. 36 对 D. 48 对
- (2) 从平行六面体的6个面中任取3个面,其中有两个面不相邻的选法有()种.

C.16

【解析】(1) 如图所示,与AB 异面的直线有 B_1C_1 ; CC_1 , A_1D_1 , DD_1 四条,因为各棱具有相 同的位置且正方体共有 12 条棱,排除两棱的重复计算,共有异面直线 $\frac{12\times 4}{2}$ = 24(对).

(2) 我们考察平行六面体的上、下两个面,他两显然不相邻,再从剩下的4个面中任取1个 与刚才的两个面构成三面组,显然这个三面组中存在两个平面不相邻,且这种三面组有 4 个。考 虑到平行六面体的前、后面; 左、右面都有同样的情况, 因此, 总共有 12 种取法。选 B。

例 11 (全国 II) 在长方体 $ABCD-A_1B_1C_1D_1$ 中, $AB=BC=1, AA_1=\sqrt{3}$,则异面直线 AD_1 与DBI所成角的余弦值为

A.
$$\frac{1}{5}$$

B.
$$\frac{\sqrt{5}}{6}$$

C.
$$\frac{\sqrt{5}}{5}$$

B.
$$\frac{\sqrt{5}}{6}$$
 C. $\frac{\sqrt{5}}{5}$ D. $\frac{\sqrt{2}}{2}$

【解析】如图,将长方体延展出去,易知 DE/AD_1 ,故 $\angle EDB_1$ 即为 AD_1 与 DB_1 所成的角。 易知 DE = 2, $DB_1 = \sqrt{5}$, $B_1E = \sqrt{5}$,

故,
$$\cos \angle EDB_1 = \frac{\frac{1}{2}DE}{DB_1} = \frac{1}{\sqrt{5}} = \frac{\sqrt{5}}{5}$$
, 选 C。

【法二】考察四面体 $A-B_1D_1D$,易知 AD=1 , $AD_1=AB_1=2$, $DB_1=\sqrt{5}$, $D_1B_1=\sqrt{2}$, $DD_1 = \sqrt{3}$, 由斯坦纳定理得

$$\cos(AD_{1},DB_{1}) = \frac{|(AB_{1}^{2} + DD_{1}^{2}) - (AD^{2} + B_{1}D_{1}^{2})|}{2AD_{1} \cdot DB_{1}} = \frac{|(4+3) - (1+2)|}{2 \times 2 \times \sqrt{5}} = \frac{4}{4\sqrt{5}} = \frac{\sqrt{5}}{5}, \quad \text{if } C_{\circ}$$

例 12. $ABCD - A_lB_lC_lD_l$ 是正方体,E,F 分别是 C_lD_l 和 BB_l 的中点,画出图一中平面 AEF与平面 ABCD 的交线,以及图二中平面 A_iC_iB 与平面 ABCD 的交线,并给出证明

【图一】令M 为DC 的中点,连接EM 由 BB_1 //ME 知E, B_1 ,B,M 四点共面故,在平面BE 内,连接EF 并延长,它与MB 的延长线必交于某点G,连接AG,则AG为平面AEF 与平面ABCD的交线,

证明:由作图知, $G \in EF$,而 $EF \subset \text{平面 } AEF$,故 $G \in \text{平面 } AEF$,从而 $AG \subset \text{平面 } AEF$ 同理, $G \in MB$,而 $MB \subset \text{平面 } ABCD$,故 $G \in \text{平面 } ABCD$,从而 $AG \subset \text{平面 } ABCD$ 故,AG为平面AEF与平面ABCD的交线

【图二】延长DC 至G,使DC = CG,连接BG,则BG 为平面 $A_{!}C_{!}B$ 与平面ABCD 的交线。

证明:连接AC,易知BG//AC, $A_1C_1//AC$

故, $A_1C_1//BG$,即 A_1,C_1,G,B 四点共面,因此BG \subset 平面 A_1C_1B 又BG \subset 平面ABCD,从而BG为平面 A_1C_1B 与平面ABCD的交线。

例 13.正方体 $ABCD - A_1B_1C_1D_1$ 的棱长为 8, M, N, P 分别是 AD, A_1B_1, BB_1 的中点,

- (1) 画出过M, N, P 三点的平面与平面AC的交线以及与平面BC的交线;
- (2) 令过M, N, P 三点的平面与BC交于R, 求PR的长

【解析】(1) 连接 NP,在平面 AB_1 中,延长 NP,设其与 AB 之延长线交于点T,连接 MT,则 MT 为过 M,N,P 三点的平面与平面 AC 的交线;令 MT 与 BC 交于 R ,连接 PR ,则 PR 为 M ,N ,P 三点的平面与平面 BC_1 的交线。

(2) 过N作AB的垂线, 垂足为E, 易知BP为 $\triangle NET$ 的中位线, 故BT=4

由 $\triangle AMT$ 与 $\triangle BRT$ 相似知 $BR = \frac{4}{3}$

从而,
$$PR = \sqrt{PB^2 + BR^2} = \sqrt{16 + \frac{16}{9}} = \frac{4}{3}\sqrt{10}$$

例 14.如图所示,在正三棱柱 $ABC - A_1B_1C_1$ 中, D 是 AC 的中点, $AA_1:AB = \sqrt{2}:1$,则异面直线 AB_1 与 BD 所成的角为______.

【解析】取 A_1C_1 的中点E,连接 B_1E ,ED,AE,在 $Rt \triangle AB_1E$ 中, $\angle AB_1E$ 为异面直线 AB_1 与BD所成的角.

设
$$AB = 1$$
 ,则 $A_1A = \sqrt{2}$, $AB_1 = \sqrt{3}$,故 $\angle AB_1E = 60^\circ$.

例 15.如图,在底面为正方形,侧棱垂直于底面的四棱柱 $ABCD-A_lB_lC_lD_l$ 中, $AA_1 = 2AB = 2$,则异面直线 A_1B 与 AD_1 所成角的余弦值为(

- A. $\frac{1}{5}$
- B. $\frac{2}{5}$ C. $\frac{3}{5}$
- D. $\frac{4}{5}$

【解析】连接 BC_1 , 易知 BC_1 // AD_1 , 则 $\angle A_1BC_1$ 即为异面直线 A_1B 与 AD_1 所成的角。连接 A_1C_1 , $\oplus AB = 1$, $AA_1 = 2$, $\oplus A_1C_1 = \sqrt{2}$, $A_1B = BC_1 = \sqrt{5}$,

在 $\triangle A_1BC_1$ 中,由余弦定理得 $\cos \angle A_1BC_1 = \frac{5+5-2}{2\times\sqrt{5}\times\sqrt{5}} = \frac{4}{5}$ 。

例 16.已知正方体 $ABCD-A_{{}_{\!1}}B_{{}_{\!1}}C_{{}_{\!1}}D_{{}_{\!1}}$ 的棱长为 $2\sqrt{5}$, M 为 $CC_{{}_{\!1}}$ 的中点 , 点 N 在侧面 $ADD_{{}_{\!1}}A_{{}_{\!1}}$ 内,若 $BM \perp A_1N$,则 $\triangle ABN$ 面积的最小值为(

- A. $\sqrt{5}$
- B. $2\sqrt{5}$
- C. 5
- D. 25

【解析】如图,取 BC 的中点 E ,连接 B_1E ,由 $B_1B=BC$,BE=CM , $\angle B_1BE=\angle BCM$, 可得 $\triangle B_1BE \cong \triangle BCM$,则 $\angle B_1BE = \angle BCM$ 。

∴ $\angle B_1EB + \angle MBE = 90^\circ$, $\bigcup B_1E \perp BM$,

取 AD 的中点 F ,连接 EF ,可得四边形 A_1B_1EF 为平行四边形, $\therefore A_1F//B_1E$,

又点N在侧面 ADD_1A_1 内,且 $BM \perp A_1N$,

$$\therefore N \in A_1 F \perp$$
, 且 N 到 AB 的最小距离为 $\frac{2\sqrt{5} \times \sqrt{5}}{5} = 2$,

$$\therefore \triangle ABN$$
 面积的最小值为 $\frac{1}{2} \times 2 \times 2\sqrt{5} = 2\sqrt{5}$,

故,选B

例 17.如图,在正方体 $ABCD - A_iB_iC_iD_i$ 中,E,F 分别是 AB 和 AA_i 的中点.求证:

- (1) E, C, D_1, F 四点共面;
- (2) CE, D₁F, DA 三线共点.

证明 (1)如图,连接 CD₁, EF, A₁B,

因为E,F分别是AB和 AA_1 的中点,所以 $EF//A_1B$,且 $EF=\frac{1}{2}A_1B$ 又因为 $A_1D_1//BC,A_1D_1=BC$,所以四边形 A_1BCD_1 是平行四边形. 所以 $A_1B//CD_1$,所以 $EF//CD_1$,所以EF与 CD_1 确定一个平面 α . 所以 $E,F,C,D_1\in\alpha$,即 E,C,D_1,F 四点共面.

(2) 由(1)知 $EF//CD_1$,且 $EF = \frac{1}{2}CD_1$,所以四边形 CD_1FE 是梯形,

所以CE与 D_1F 必相交。设交点为P,

则 $P \in CE \subset$ 平面 ABCD, 且 $P \in D_1F \subset$ 平面 A_1ADD_1 ,

所以 $P \in$ 平面ABCD且 $P \in$ 平面 A_1ADD_1

又因为平面 ABCD \cap 平面 $A_1ADD_1 = AD$,

所以 $P \in AD$, 所以CE, D_1F ,DA 三线共点.

例 18.如图,在空间四边形 ABCD中, E,F 分别是 AB,AD 的中点, G,H 分别在 BC,CD 上,且 BG:GC=DH:HC=1:2.

(1)求证: E, F, G, H 四点共面;

(2)设EG与FH交于点P, 求证: P,A,C三点共线.

【证明】(1) : E, F 分别为 AB, AD 的中点, : EF //BD.

因为,在
$$\triangle BCD$$
中, $\frac{BG}{GC} = \frac{DH}{HC} = \frac{1}{2}$

 $\therefore GH //BD$, $\therefore EF //GH$, $\therefore E, F, G, H$ 四点共面.

(2) : $EG \cap FH = P, P \in EG, EG \subset \text{\text{π}} in ABC$, : $P \in \text{\text{$\pi$}} in ABC$ of (2) : $P \in \text{$\pi$} in ABC$ in (3) : $P \in \text{$\pi$} in ABC$ in (4) : $P \in \text{$\pi$} in ABC$ in

同理 $P \in$ 平面ADC

 $\therefore P$ 为平面 ABC 与平面 ADC 的公共点.

又平面 $ABC \cap$ 平面 ADC = AC,

 $\therefore P \in AC$, $\therefore P, A, C$ 三点共线.