Homework Week 4

Part 1 - Preprocessing Data

1) Consider the following table of Grades you would like to convert these values to features using one-hot encoding

Student/Sample	Value
0	Α
1	В
2	Α
3	С
4	D

Select the correct output after one-hot encoding:

a)

Sample	Value
0	0
1	1
2	0
3	1
4	0

b

Sample	Α	В	C	D
0	1	0	0	0
1	0	1	0	0
2	1	0	0	0
3	0	0	1	0
4	0	0	0	1

c)

Sample	Value
0	5
1	4
2	5
3	1
4	0

2) The following exam is out of 100 what is the result if you apply feature binarization such that if the student passes convert the feature to 1 else 0

Student/Sample	EXAM
0	51
1	66
2	10
3	90
6	44

a)

Student/Sample	EXAM
0	1
1	1
2	0
3	1
6	0

b)

Student/Sample	EXAM
0	0
1	0
2	1
3	0
6	1

b)

Student/Sample	EXAM
0	1
1	0
2	1
3	0
6	1

d)

Student/Sample	EXAM
0	50
1	70
2	0
3	100
6	60

3) Consider the two tables i and ii, you would like to use them combating them to use them as a feature to train a model is Sk-learn

i)

Student/Sample	EXAM
0	1
1	1
2	0
3	1
6	0

ii)

Sample	Α	В	C	D
0	1	0	0	0
1	0	1	0	0
2	1	0	0	0
3	0	0	1	0
4	0	0	0	1

What is the correct set of features be a)X=

1	0	0	0
0	1	0	0
1	0	0	0
0	0	1	0
0	0	0	1

b) X=

1	0	0	0	1
0	1	0	0	1
1	0	0	0	0
0	0	1	0	1
0	0	0	1	0

c) X=

1	0	0	0	1
0	1	0	0	1
1	0	0	0	0
0	0	1	0	1
0	0	0	1	0
1	1	0	0	1

Part 2 Logistic Regression

- 4) What is the range of the logistic function?
 - A. Can take on all values

- B. Between -1 and 1
- C. Between 0 and 1
- D. Can only take on positive values

Consider the following diagram of a linear classifier. A linear function is applied x=3 with the output is z=2 then the threshold function is applied to z, to get the class \hat{y} .

- 5) What is the value of \hat{y} ?
 - A. $\hat{y} = 0$
 - B. $\hat{y} = 1$
 - C. $\hat{y} = 2$
- 6) What would the classifier classify the red samples as
 - A. $\hat{y} = 0$
 - B. $\hat{y} = 1$
 - C. $\hat{y} = 2$
- 7) In the module sklearn.linear model.LogisticRegression what dose the parameter C do
 - A. Nothing
 - B. Tolerance for stopping criteria.
 - C. class_weightdict or 'balanced',
 - D. inverse of regularization strength; must be a positive float. Like in support vector machines, smaller values specify stronger regularization.

You will need the image for the next few questions

- 8) Is the above dataset linearly separable
 - A. Yes
 - B. No
- 9) What method would you use to classify the data
 - A. Support vector machines (SVM)
 - B. Logistic Regression
 - C. Linear Regression
 - D. Ridge Regression

Part 3 Support vector machines (SVM)

- 10) What is the **exact** mechanism that SVM use to use a linear classifier to classifier data that is not linearly separable
 - A. Polynomial transform
 - B. Multiple dimensions
 - C. multiple input
 - D. Kernel
- 11) How many Parameters did we discuss for SVM using the RBF kernel
- 12) Support vector machines find the best line to classify the data using
 - A. The kernel
 - B. The margin
 - C. Soft max
 - D.

Solutions

- 1. B
- 2. A
- 3. B

- 4. C
- 5. B
- 6. A 7. D
- 8. C
- 9. A
- 10. A
- 11. 2
- 12. B