

<u>Calendar</u> **Discussion Progress** <u>Course</u> <u>Dates</u> <u>Notes</u> ☆ Course / Unit 5: Curves and Surfaces / Recitation 18: Differentials and Chain Rule (1) Next > Previous 3. Extra Dependencies ☐ Bookmark this page Hide Notes **■** Calculator

Recitation due Oct 5, 2021 20:30 IST Completed

Derivative of Composition

2/2 points (graded) Suppose $g\left(oldsymbol{x},oldsymbol{y}
ight)$ has

$$\frac{\partial g}{\partial x} = 2x, \quad \text{and} \quad \frac{\partial g}{\partial y} = e^{-y^2}.$$
 (6.234)

Let

$$f(x, y, z) = x^2 - \ln(y) + 2z,$$
 (6.235)

and let

$$w = f(x, y, g(x, y)). \tag{6.236}$$

Compute the partial derivatives of $oldsymbol{w}$.

$$\frac{\partial w}{\partial x} = \boxed{6*x}$$

$$\frac{\partial w}{\partial y} = \begin{bmatrix} -1/y + 2 e^{(-y^2)} \end{bmatrix}$$

? INPUT HELP

Submit

You have used 2 of 5 attempts

Surface

2/2 points (graded)

Let S be the surface described by the equation $\frac{1}{x} + \arctan(y+2z) = 1$. Compute $\frac{\partial x}{\partial z}$ and $\frac{\partial y}{\partial z}$ along S at the point (x,y,z).

Note: In this context, $\frac{\partial x}{\partial z}$ is the instantaneous rate of change of x with respect to z, holding y constant. In other words, if z were to change slightly and y were held constant, then x would have to change in order to maintain the equation $\frac{1}{x} + \arctan{(y+2z)} = 1$. Then $\frac{\partial x}{\partial z}$ is the associated instantaneous rate of change of x.

? INPUT HELP

Solution:

Approach 1: Differentials

We define $w\left(x,y,z\right)=rac{1}{x}+\arctan\left(y+2z\right)$. Then we compute the total differential of w:

$$dw = \frac{-1}{x^2} dx + \frac{1}{1 + (y + 2z)^2} dy + \frac{2}{1 + (y + 2z)^2} dz$$
(6.243)

On the surface $m{S}$, we have $m{dw}=m{0}$. Solving for $m{dx}$ in the resulting equation, we have:

$$dx = \frac{x^2}{1 + (y + 2z)^2} dy + \frac{2x^2}{1 + (y + 2z)^2} dz$$
(6.244)

Now we can obtain $\dfrac{\partial x}{\partial z}$ by reading off the coefficient on dz. Thus, $\dfrac{\partial x}{\partial z}=\dfrac{2x^2}{(1+(y+2z)^2}.$

In a similar way, we can solve for dy instead:

$$dy = \left(\frac{1 + (y + 2z)^2}{x^2}\right) dx + (-2) dz$$
 (6.245)

It follows that $rac{\partial y}{\partial z} = -2$.

Approach 2: Implicit Differentiation

We may also use regular single-variable implicit-differentiation. We have the equation:

$$1 = \frac{1}{x} + \arctan\left(y + 2z\right) \tag{6.246}$$

Now take $\frac{\partial}{\partial z}$ of both sides (treating y as a constant):

$$\frac{\partial}{\partial z}(1) = \frac{\partial}{\partial z} \left(\frac{1}{x} + \arctan(y + 2z) \right)$$
 (6.247)

$$0 = \frac{-1}{x^2} \frac{\partial x}{\partial z} + \frac{2}{1 + (y + 2z)^2}$$
 (6.248)

Solving for $\frac{\partial x}{\partial z}$ gives

$$\frac{\partial x}{\partial z} = \frac{2x^2}{1 + (y + 2z)^2} \tag{6.249}$$

Using an analogous procedure to find $\frac{\partial y}{\partial z}$, we have:

$$\frac{\partial}{\partial z}(1) = \frac{\partial}{\partial z} \left(\frac{1}{x} + \arctan(y + 2z) \right)$$
 (6.250)

$$0 = 0 + rac{1}{1+\left(y+2z
ight)^2}igg(rac{\partial y}{\partial z} + 2igg)$$

Hide Discussion

Solving for $\dfrac{\partial y}{\partial z}$ again produces $\dfrac{\partial y}{\partial z}=-2.$

Approach 3: Chain Rule

One can also use the chain rule to obtain the same answers. This approach is essentially the same as Approach 1.

Submit

You have used 4 of 9 attempts

• Answers are displayed within the problem

3. Extra Dependencies

Topic: Unit 5: Curves and Surfaces / 3. Extra Dependencies

Previous

Next Up: Problem Set 5A

1 min + 5 activities

edX

About

Affiliates

edX for Business

Open edX

Careers

<u>News</u>

Legal

Terms of Service & Honor Code

Privacy Policy

Accessibility Policy

Trademark Policy

<u>Sitemap</u>

Connect

Blog

Contact Us

Help Center

Media Kit

Donate

© 2021 edX Inc. All rights reserved.

深圳市恒宇博科技有限公司 <u>粤ICP备17044299号-2</u>