Bayesian Network Practice - Solutions

Week 13

Question 1, Part 1, a

$$\begin{split} P(t) &= \sum_{r,l,q,s} P(R_r, L_l, t, S_s, Q_q) \\ &= \sum_{r,l,q,s} P(R_r) P(L_l|R_r) P(Q_q|L_l) P(t|Q_q, R_r) P(S_s|Q_q, t) \\ &= \sum_{r} P(R_r) \sum_{l} P(L_l|R_r) \sum_{q} P(Q_q|L_l) P(t|Q_q, R_r) \sum_{s} P(S_s|Q_q, t) \\ &= \sum_{r} P(R_r) \sum_{l} P(L_l|R_r) \sum_{q} P(Q_q|L_l) P(t|Q_q, R_r) \sum_{s} P(S_s|Q_q, t) \\ &= \sum_{r} P(R_r) \sum_{l} P(L_l|R_r) \sum_{q} P(Q_q|L_l) P(t|Q_q, R_r) \times 1 \qquad \text{(See notes section)} \\ &= \sum_{r} P(R_r) \sum_{l} P(L_l|R_r) \sum_{q} P(Q_q|L_l) P(t|Q_q, R_r) \\ &= \sum_{r} P(R_r) \sum_{l} P(L_l|R_r) \left(P(q|L_l) P(t|q, R_r) + P(\neg q|L_l) P(t|\neg q, R_r) \right) \\ &= \sum_{r} P(R_r) \left(P(t|R_r) \left(\underbrace{P(q|l)}_{0.9} P(t|q, R_r) + \underbrace{P(\neg q|l)}_{0.1} P(t|\neg q, R_r) \right) \\ &= \sum_{r} P(R_r) \left(\underbrace{P(t|r)}_{0.8} \left(0.9 \times \underbrace{P(t|q,r)}_{0.7} + 0.1 \times \underbrace{P(t|\neg q,r)}_{0.2} \right) + \underbrace{P(\neg t|r)}_{0.2} \left(0.7 \times \underbrace{P(t|q,r)}_{0.7} + 0.3 \times \underbrace{P(t|\neg q,r)}_{0.9} \right) \right) + \\ &= \underbrace{P(\neg r)}_{0.8} \left(\underbrace{P(t|r)}_{0.3} \left(0.9 \times \underbrace{P(t|q,r)}_{0.9} + 0.1 \times \underbrace{P(t|\neg q,r)}_{0.9} \right) + \underbrace{P(\neg t|r)}_{0.7} \left(0.7 \times \underbrace{P(t|q,r)}_{0.7} + 0.3 \times \underbrace{P(t|\neg q,r)}_{0.9} \right) \right) \right) \\ &= \underbrace{0.2} \left(0.8 \left(0.9 \times 0.7 + 0.1 \times 0.2 \right) + 0.2 \left(0.7 \times 0.7 + 0.3 \times 0.2 \right) \right) + \\ &= \underbrace{0.2} \left(0.8 \left(0.65 \right) + 0.2 \left(0.55 \right) \right) + 0.8 \left(0.3 \left(0.84 \right) + 0.7 \left(0.72 \right) \right) \\ &= \underbrace{0.2} \times 0.63 + 0.8 \times 0.756 \\ &= 0.7308 \\ \therefore P(t) = 0.7308 \end{split}$$

Notes

Note: $\sum_{x} P(X_x) = 1$ and also $\sum_{x} P(X_x | something) = 1$ because you are summing over all possible values of X. It's like calculating the probability that quokkas are happy plus the probability that they aren't, which is always just 1!

Question 1, Part 1, b

Step 1: get equation

$$P(t) = \sum_{r,l,q,s} P(R_r, L_l, t, S_s, Q_q)$$

$$= \sum_{r,l,q,s} P(R_r) P(L_l|R_r) P(Q_q|L_l) P(t|Q_q, R_r) P(S_s|Q_q, t)$$

$$= \sum_{r} P(R_r) \sum_{l} P(L_l|R_r) \sum_{q} P(Q_q|L_l) P(t|Q_q, R_r) \sum_{s} P(S_s|Q_q, t)$$

$$(Try to push the summations as far right as you can)$$

$$= \sum_{r} P(R_r) \sum_{l} P(L_l|R_r) \sum_{q} P(Q_q|L_l) P(t|Q_q, R_r) \sum_{s} P(S_s|Q_q, t)$$

$$(Label the different parts)$$

Step 2: work out factors

	$L \mid R \mid f_2(L,R)$	$Q \mid L \mid f_3(Q,L)$	$Q \mid R \mid f_4(Q,R)$	$S \mid Q \mid f_5(S,Q)$
$R \mid f_1(R)$	T T 0.8	T T 0.9	T T 0.7	T T 0.9
T 0.2	T F 0.3	T F 0.7	T F 0.9	T F 0.4
F 0.8	F T 0.2	F T 0.1	F T 0.2	F T 0.1
	F F 0.7	F F 0.3	F F 0.3	F F 0.6

Step 3: sum over S

$$P(t) = \sum_{r} f_1(R) \sum_{l} f_2(L, R) \sum_{q} f_3(Q, L) f_4(Q, R) \underbrace{\sum_{s} f_5(S, Q)}_{f_6(Q)}$$
 (We'll name the new factor f_6)

(We'll name the new factor f_7)

S	Q	$f_5(S,Q)$							Notice that we got 1 in both
$\overline{\mathrm{T}}$	Т	0.9		Q	$f_6(Q)$		Q	$f_6(Q)$	cases. Here, just like in the enu-
T	F	0.4		$\overline{\mathrm{T}}$	0.9 + 0.1		$\overline{\mathrm{T}}$	1	meration section, we could have
F	Т	0.1	\rightarrow	\mathbf{F}	0.4 + 0.6	\rightarrow	\mathbf{F}	1	just immediately set $\sum_{s} f_5(S, Q)$
\overline{F}	F	0.6			•				to 1

Step 4: multiply factors

$$P(t) = \sum_{r} f_{1}(R) \sum_{l} f_{2}(L,R) \sum_{q} \underbrace{f_{3}(Q,L) f_{4}(Q,R) f_{6}(Q)}_{f_{7}(Q,R,L)} \qquad \qquad \text{(We'll name the new factor)}$$

$$\frac{Q \mid L \mid f_{3}(Q,L)}{T \mid T \mid 0.9}$$

$$\frac{T \mid F \mid 0.7}{F \mid T \mid 0.1}$$

$$F \mid F \mid 0.3$$

$$\frac{Q \mid R \mid L \mid f_{3} \times f_{4} \times f_{6}}{T \mid T \mid T \mid 0.9 \times 0.7 \times 1}$$

$$\frac{Q \mid R \mid L \mid f_{7}(Q,R,L)}{T \mid T \mid T \mid 0.9 \times 0.7 \times 1}$$

$$\frac{Q \mid R \mid L \mid f_{7}(Q,R,L)}{T \mid T \mid T \mid 0.63}$$

$$\frac{T \mid T \mid T \mid T \mid 0.63}{T \mid F \mid T \mid 0.9 \times 0.9 \times 1}$$

$$\frac{T \mid F \mid T \mid 0.9 \times 0.9 \times 1}{F \mid T \mid 0.1 \times 0.2 \times 1}$$

$$\frac{T \mid F \mid T \mid 0.02}{F \mid T \mid 0.3 \times 0.2 \times 1}$$

$$\frac{F \mid T \mid T \mid 0.03}{F \mid F \mid T \mid 0.03}$$

$$\frac{Q \mid f_{6}(Q)}{T \mid 1}$$

$$\frac{T \mid T \mid T \mid 0.03}{F \mid F \mid T \mid 0.3 \times 0.3 \times 1}$$

$$\frac{F \mid F \mid T \mid 0.09}{F \mid T \mid 0.09}$$

Step 5: sum over Q

$$P(t) = \sum_{r} f_1(R) \sum_{l} f_2(L, R) \underbrace{\sum_{q} f_7(Q, R, L)}_{f_8(R, L)}$$
 (We'll name the new factor f_8)

Q	R	$\mid L$	$f_7(Q,R,L)$								
Т	Т	Т	0.63								
T	Т	F	0.49		R	L	$f_8(R,L)$		R	L	$f_8(R,L)$
Т	F	Т	0.81		\overline{T}	Т	0.63 + 0.02		Т	Т	0.65
T	F	F	0.63	\rightarrow	Т	F	0.49 + 0.06	\rightarrow	Т	F	0.55
F	Т	Т	0.02		\overline{F}	Т	0.81 + 0.03	•	F	Т	0.84
F	Т	F	0.06		\overline{F}	F	0.63 + 0.09	•	F	F	0.72
F	F	Т	0.03				•				
\overline{F}	F	F	0.09								

Step 6: multiply factors

$$P(t) = \sum_{r} f_1(R) \sum_{l} \underbrace{f_2(L,R) f_8(R,L)}_{f_9(R,L)}$$
 (We'll name the new factor f_9)

Step 7: almost there! Sum over L

Step 8: multiply one more time!

$$P(t) = \sum_{r} \underbrace{f_{1}(R) f_{10}(R)}_{f_{11}(R)}$$
 (We'll name the new factor f_{11})
$$\frac{R \mid f_{1}(R)}{T \mid 0.2}_{F \mid 0.8}$$

$$\frac{R \mid f_{1} \times f_{10}}{T \mid 0.2 \times 0.63}_{F \mid 0.8 \times 0.756}$$
 \rightarrow
$$\frac{R \mid f_{1} \times f_{10}}{T \mid 0.126}_{F \mid 0.6048}$$

Step 9: finally, sum over R

$$P(t) = \sum_{r} f_{11}(R)$$

$$= 0.126 + 0.6048$$

$$= 0.7308$$
(Yay! :D)

Question 1, Part 2

Step 1: Use Bayes rule

$$P(q \mid s, \neg r) = \frac{P(q, s, \neg r)}{P(s, \neg r)}$$

Before going on

From here, if we wanted to, we could work out the numerator and denominator individually by following the same process as in the last question. That's a lot of work, though! It would be better if we did something a bit sneaky instead!

What is that, you ask? Well, let's think about this for a second. We also know:

$$P(\neg q \mid s, \neg r) = \frac{P(\neg q, s, \neg r)}{P(s, \neg r)}$$

Now, if we knew $P(q, s, \neg r)$ AND $P(\neg q, s, \neg r)$, we could work out the denominator by adding them together. Then, we could divide $P(q, s, \neg r)$ by the denominator to get our answer. In other words we could get $\mathbf{P}(Q, s, \neg r)$ and normalise this to get our answer. And that's what we're going to do!

Step 2: get equation

$$\begin{aligned} \mathbf{P}(Q,s,\neg r) &= \sum_{t,l} P(Q,T_t,L_l,\neg r,s,) \\ &= \sum_{t,l} P(\neg r) P(L_l|\neg r) P(Q|L_l) P(T_t|Q,\neg r) P(s|Q,T_t) \\ &= P(\neg r) \sum_t P(T_t|Q,\neg r) P(s|Q,T_t) \sum_l P(L_l|\neg r) P(Q|L_l) \\ &\qquad \qquad \text{(Note: there is more than one way to do this! Eg. t and l swapped)} \end{aligned}$$

Step 3: factors

$$\mathbf{P}(Q, s, \neg r) = \underbrace{P(\neg r)}_{0.8} \sum_{t} \underbrace{P(T_t | Q, \neg r)}_{f_1(T, Q)} \underbrace{P(s | Q, T_t)}_{f_2(Q, T)} \underbrace{\sum_{l} \underbrace{P(L_l | \neg r)}_{f_3(L)} \underbrace{P(Q | L_l)}_{f_4(Q, L)}}_{f_4(Q, L)}$$

T	Q	$f_1(Q,T)$	Q	$\mid T \mid$	$f_2(Q,T)$			Q	$\mid L$	$f_4(Q,L)$
Т	Т	0.9	 Τ	Т	0.9	L	$f_3(L)$	\overline{T}	T	0.9
Т	F	0.3	 Τ	F	0.6	Т	0.3	$\overline{\mathrm{T}}$	F	0.7
F	Т	0.1	 F	Т	0.4	F	0.7	\overline{F}	Т	0.1
$\overline{\mathrm{F}}$	F	0.7	F	F	0.1			\overline{F}	F	0.3

Step 4: multiply

$$\mathbf{P}(Q, s, \neg r) = 0.8 \sum_{t} f_1(T, Q) f_2(Q, T) \sum_{l} \underbrace{f_3(L) f_4(Q, L)}_{f_5(Q, L)}$$

Q	$\mid L \mid$	$f_5(Q,L)$
\overline{T}	Т	$0.9 \times 0.3 = 0.27$
$\overline{\mathrm{T}}$	F	$0.7 \times 0.7 = 0.49$
F	Т	$0.1 \times 0.3 = 0.03$
F	F	$0.3 \times 0.7 = 0.21$

Step 5: sum over L

$$\mathbf{P}(Q, s, \neg r) = 0.8 \sum_{t} f_1(T, Q) f_2(Q, T) \underbrace{\sum_{l} f_5(Q, L)}_{f_6(Q)}$$

Step 6: multiply

$$\mathbf{P}(Q, s, \neg r) = 0.8 \sum_{t} \underbrace{f_1(T, Q) f_2(Q, T) f_6(Q)}_{f_7(Q, T)}$$

Q	T	$f_7(Q,T)$
\overline{T}	Т	$0.9 \times 0.9 \times 0.76 = 0.6156$
Т	F	$0.1 \times 0.6 \times 0.76 = 0.0456$
F	Т	$0.3 \times 0.4 \times 0.24 = 0.0288$
F	F	$0.7 \times 0.1 \times 0.24 = 0.0168$

Step 7: sum over T

$$\mathbf{P}(Q, s, \neg r) = 0.8 \underbrace{\sum_{t} f_7(Q, T)}_{f_8(Q)}$$

$$\begin{array}{|c|c|c|} \hline Q & f_8(Q) \\ \hline T & 0.6156 + 0.0456 = 0.6612 \\ \hline F & 0.0288 + 0.0168 = 0.0456 \\ \hline \end{array}$$

Step 8: normalise

All right, we've got:

$$\begin{aligned} \mathbf{P}(Q, s, \neg r) &= 0.8 \times < 0.6612, 0.0456 > \\ &= < 0.8 \times 0.6612, 0.8 \times 0.0456 > \\ &= < 0.52896, 0.03648 > \end{aligned}$$

(Note: this 0.8 doesn't really matter, because we're going to normalise later anyway)

Now, we're going to normalise by dividing each term by their sum (ie. 0.52896 + 0.03648), and then we can get our answer!

$$\begin{split} \mathbf{P}(Q \mid s, \neg r) &= \frac{< 0.52896, 0.03648 >}{0.52896 + 0.03648} \\ &= \frac{< 0.52896, 0.03648 >}{0.56544} \\ &= \frac{< 0.52896, 0.03648 >}{0.56544} \\ &\approx < 0.935, 0.065 > \end{split}$$
 (\$\approx\$ means "approximately")

$$\therefore P(q \mid s, \neg r) \approx 0.935$$
 (\$\therefore\$ means "therefore")

So, the probability of quokkas being happy given that people are taking lots of quokka selfies and it is not raining is about 0.935!

Question 1, Part 3

Well, in the previous question we got a probability of 0.935 that the quokkas are happy given the evidence. So, since this is more than 0.5, we will predict that they are happy. Yay! :D (I guess you could say we BAYESically had the answer already... :D)

Question 1, Parts 4 and 5

$$P(r \mid \neg l, s) = 0.0619$$

 $P(l \mid q, t, s) = 0.44218$

Question 2

$$\begin{split} P(U,O) &= \sum_{q,w,a} P(Q_q, U, O, K_k, A_a) \\ &= \sum_{q,k,a} P(U) P(O) P(Q_q | U, O) P(K_k | Q) P(A_a | Q) \\ &= P(U) P(O) \sum_{q} P(Q_q | U, O) \sum_{k} P(K_k | Q) \sum_{a} P(A_a | Q) \\ &= P(U) P(O) \sum_{q} P(Q_q, U, O) \sum_{k} P(K_k | Q) \times 1 \\ &= P(U) P(O) \sum_{q} P(Q_q | U, O) \sum_{k} P(K_k | Q) \\ &= P(U) P(O) \sum_{q} P(Q_q | U, O) \times 1 \\ &= P(U) P(O) \sum_{q} P(Q_q | U, O) \\ &= P(U) P(O) \times 1 \\ &= P(U) P(O) \end{split}$$

Perfect! This is just what we wanted :). We've just shown U and O are independent!!!