Exercise 1.2

Nolan Hauck

Complete the proof of Proposition 1.2, which states that $\mathcal{B}_{\mathbb{R}}$ is generated by each of the following:

- **a.** the open intervals $\mathcal{E}_1 = \{(a, b) : a < b\}$;
- **b.** the closed intervals $\mathcal{E}_2 = \{[a, b] : a < b\};$
- **c.** the half-open intervals: $\mathcal{E}_3 = \{(a, b] : a < b\}$ or $\mathcal{E}_4 = \{[a, b) : a < b\}$;
- d. The open rays in either direction; and
- e. The closed rays in either direction.

Solution. First, note that $\mathcal{B}_{\mathbb{R}} = \sigma(\tau)$, where τ is the open sets on \mathbb{R} in the usual topology, which has as countable basis the open intervals with rational endpoints. Thus, any open set in \mathbb{R} is a countable union of open intervals.

a. Clearly, $\mathcal{E}_1 \subset \tau$ since open intervals are, well, open. So $\sigma(\mathcal{E}_1) \subset \sigma(\tau) = \mathcal{B}_{\mathbb{R}}$. Conversely, consider an open set $E \in \tau$. Then as in the introduction, $E = \bigcup_{1}^{\infty} (a_j, b_j)$, a countable union of open intervals (an infinite number of these could be empty, like if E were itself an open interval). But this means $E \in \sigma(\mathcal{E}_1)$ since σ -algebras are closed under countable unions. So $\tau \subset \sigma(\mathcal{E}_1) \implies \sigma(\tau) \subset \sigma(\mathcal{E}_1)$.

b. We will show $\sigma(\mathcal{E}_1) = \sigma(\mathcal{E}_2)$ and apply **a.** For an open interval $(a, b) \in \mathcal{E}_1$,

$$(a,b) = \bigcup_{n=1}^{\infty} \left[\frac{a+b}{2} - \left(1 - \frac{1}{n+1}\right) \frac{b-a}{2}, \frac{a+b}{2} + \left(1 - \frac{1}{n+1}\right) \frac{b-a}{2} \right],$$

since $\frac{a+b}{2}$ is the exact midpoint between a and b and $1-\frac{1}{n+1}\to 1$ as $n\to\infty$, but is never equal to one, and $\frac{b-a}{2}$ is the distance of the endpoints of an interval (a,b) to their midpoint. We choose n+1 for the denominator of our proportion because the union starts from 1 and if the denominator were just n, the first "interval" would not be an element of \mathcal{E}_2 . Anyway, this shows any element of \mathcal{E}_1 is a countable union of \mathcal{E}_2 and thus $\mathcal{E}_2 \subset \sigma(\mathcal{E}_2)$. Conversely, for any closed interval $[a,b] \in \mathcal{E}_2$,

$$[a,b] = \bigcap_{n=1}^{\infty} \left(a - \frac{1}{n}, b + \frac{1}{n} \right),$$

and σ -algebras are closed under countable intersections, so $\mathcal{E}_2 \subset \sigma(\mathcal{E}_1)$ and we have shown both inclusions.

c. Here we show that $\sigma(\mathcal{E}_1) = \sigma(\mathcal{E}_3)$ and $\sigma(\mathcal{E}_1) = \sigma(\mathcal{E}_4)$. For any open interval (a, b), there exists $N \in \mathbb{N}$ so that for all $n \geq N$, we have $b - \frac{1}{n} > a$. Then

$$(a,b) = \bigcup_{n=N}^{\infty} (a,b - \frac{1}{n}]$$

so that $\mathcal{E}_1 \subset \sigma(\mathcal{E}_3)$. Conversely, for any half-open interval (a, b],

$$(a,b] = \bigcap_{n=1}^{\infty} \left(a, b + \frac{1}{n} \right)$$

so that $\mathcal{E}_3 \subset \sigma(\mathcal{E}_1)$. Thus $\sigma(\mathcal{E}_1) = \sigma(\mathcal{E}_3)$. An exactly analogous argument can be used to show the second equality.

d. The left-open rays are $\mathcal{E}_5 = \{(-\infty, a) : a \in \mathbb{R}\}$. As before, it suffices to show $\sigma(\mathcal{E}_4) = \sigma(\mathcal{E}_5)$, for which it suffices to show that $\mathcal{E}_4 \subset \sigma(\mathcal{E}_5)$ and $\mathcal{E}_5 \subset \sigma(\mathcal{E}_4)$. For a left-open ray $(-\infty, a) \in \mathcal{E}_5$, we have

$$(-\infty, a) = \bigcup_{n=1}^{\infty} [a - n, a)$$

so $\mathcal{E}_5 \subset \sigma(\mathcal{E}_4)$. For any half-closed interval $[a,b) \in \mathcal{E}_4$, $(-\infty,b) \setminus (-\infty,a) = [a,b) \in \sigma(\mathcal{E}_5)$ since σ -algebras are closed under set differences. The same argument can be used to show that $\sigma(\mathcal{E}_6) = \sigma(\{(a,\infty) : a \in \mathbb{R}\}) = \sigma(\mathcal{E}_3)$.

e. The left-closed rays are $\mathcal{E}_7 = \{(-\infty, a] : a \in \mathbb{R}\}$. Here, it suffices to show that $\sigma(\mathcal{E}_7) = \sigma(\mathcal{E}_3)$. For a closed interval $(a, b] \in \mathcal{E}_3$, we have $(a, b] = (-\infty, b] \setminus (-\infty, a]$. So $\mathcal{E}_3 \subset \sigma(\mathcal{E}_7)$. Conversely, for any left-closed ray $(-\infty, a] \in \mathcal{E}_7$,

$$(-\infty, a] = \bigcup_{n=1}^{\infty} (a - n, b]$$

so that $\mathcal{E}_7 \subset \sigma(\mathcal{E}_3)$. So the desired equality is shown. The same argument can be used to show that $\sigma(\mathcal{E}_8) = \sigma(\{[a, \infty) : a \in \mathbb{R}\}) = \sigma(\mathcal{E}_4)$.

Note. This result is rather useful, since we have basically shown the following:

$$\mathcal{B}_{\mathbb{R}} = \sigma(\mathcal{E}_i) = \sigma(\mathcal{E}_i)$$

for any $i, j \in \{1, 2, 3, ..., 8\}$. Whether we have explicitly written the expression or not, any set in one family can be expressed using only sets from any other family.