IV - Polynômes et corps finis

[P] $\overline{\text{Im}}$ 40 (critère d'EISENSTEIN): Soit $P = \sum_{n=0}^{\infty} a_n X^n \in \mathbb{Z}[X]$. Soit p un nombre premier. Si ptan, si $\forall k \in \mathbb{I}[0,n-1]$, plan et p²\ao, alors P est irréductible dans $\mathbb{Q}[X]$.

Ex 41: Pour tout p premier, $\phi_p = X^{p-1} + \dots + X + 1$ est irréductible sur Q.

[P] Thun 42: Soit $P = \sum_{k=0}^{\infty} a_k X^k \in \mathbb{Z}[X]$, $n \geqslant 1$, $a_n \neq 0$. Soit $p \in \mathbb{Z}$ premier. Si ptan et si l'image \overline{P} de P dans $F_p[X]$ est irréductible, alors P est irréductible sur \mathbb{Z} .

Rq 43: La réciproque est fausse: considérer X4+1

RÉFÉRENCES

[P] Pernin

[Rb] Rombald

[C] NH, G, I