

Scuola di scienze matematiche fisiche e naturali CdL Magistrale in Informatica

Curriculum resilient and secure cyber-physical systems

Approximation Methods 2017-18: implemented models and algorithms

Alex Foglia 6336805 alex.foglia@stud.unifi.it

August 6, 2018

This relation describes the implemented algorithms, in MATLAB language, which solve some of the problems shown during lectures.

All the implemented routines are available at the following remote repository: $https://github.com/alexfoglia1/approximations_methods.git$

Contents

1	Stirling Numbers	5
2	Fibonacci Numbers: the fatal bit problem	7
3	Mortgage repayment plan model	9
4	Coweb Model	14
5	Model of a national economy	18
6	Linear Multistep Methods: An implementation 6.1 A pratical application of a LMF method	22 29
7	Linear Multistep Methods: The Boundary Locus	32
8	Leslie Model	38
9	Arms Race model	40
10	Diabetes mellitus model	42

Listings

1	Stirling Numbers MATLAB function)
2	First n rows of Stirling Numbers	
3	Fibonacci / Fatal Bit function in 64 bit precision	
4	Plot of Fatal Bit	
5	Fibonacci / Fatal Bit function in 32 bit precision	;
6	Mortgage repayment function)
7	Loan repayment plot script with different installment amount	
8	Mortgage repayment plan table)
9	Matlab Coweb Model	,
10	Stable Coweb Model	,
11	Unstable Coweb Model)
12	Divergent Coweb Model)
13	Samuelson Model)
14	GDP first case plot)
15	GDP second case plot)
16	GDP third case plot	-
17	Explicit euler MATLAB implementation	ļ
18	Implicit euler MATLAB implementation	ļ
19	Implicit and explicit euler plot	j
20	Implict and explicit euler plot in another case	7
21	Approximation of capacitor's voltage)
22	LMF solver	;
23	Boundary Locus calculation	ļ
24	Plot Boundary Locus Script	ļ
25	Leslie model function	;
26	Leslie simulation function for a fixed number of steps)
27	Leslie script)
28	Arms race model)
29	Arms race model plot script	
30	Diabetes Mellitus Function	;
31	Diabetes Mellitus Script	;

List of Figures

1	First 7 rows of second specie Stirling Numbers
2	Effects of rounding in 64 bit precision
3	Effects of rounding in 32 bit precision
4	Residual debt with different installments amounts
5	Loan table obtained executing listing 7
6	Plot of Stable Coweb successions
7	Plot of Unstable Coweb successions
8	Plot of Divergent Coweb successions
9	Supply and Demand functions plot
10	GDP values in case 1
11	GDP values in case 2
12	GDP values in case 3
13	Approximation with mesh integration step $h = \frac{3}{10}$
14	Approximation with mesh integration step $h = \frac{3}{20}$
15	Implicit and explicit euler's methods correct behaviour
16	Explicit euler's divergence as a reaches 0^+
17	Plot of approximated capacitor's head voltage
18	BDF Boundary Locus
19	Adams Moulton Boundary Locus
20	Adams Bashforth Boundary Locus
21	With these parameters, population dies out
22	Arms race model with a=0.9,b=2,c=1,d=2 for which is not verified $ad > bc$ 41
23	Diabetes mellitus plot for an healty and a non healty patient

1 Stirling Numbers

Consider the following:

$$x^n = \prod_{i=1}^n x$$

As the standard definition of numbers power in the continuous domain $(x \in \mathbb{R})$.

In the discrete domain, it is possible to define a discrete counterpart of number powers: pseudo powers.

Let $x, n \in \mathbb{N}$, we define x pseudo-power n as:

$$x^{(n)} = x(x-1)(x-2)\dots(x-n+1) = \frac{x!}{(x-n)!}$$

We can define number powers in terms of pseudo powers, in the way it follows:

$$x^n = \sum_{i=1}^n S_i^n x^{(n)}$$

Where the S_i^n are called *Stirling Numbers* (of second specie).

 S_i^n are defined as:

$$S_n^n = S_1^n = 0$$

$$S_i^{n+1} = S_{i-1}^n + iS_i^n \quad i = 2, \dots, n$$

This recursive definition of Stirling Numbers makes it easy to implement a MATLAB function which receives n, k as input parameters and returns S_k^n .

Listing 1: Stirling Numbers MATLAB function

Consider now the following function:

```
function [S] = stirling(n)
S=zeros(n);
for i=1:n
for j=1:i
    S(i,j) = getStirling(i,j);
end
end
end
end
```

Listing 2: First n rows of Stirling Numbers

Given n, the function stirling(n) returns a matrix of size $n \times n$ containing the first n rows of Stirling Numbers.

When executing it, we obtain:

>> A	>> A = stirling(7)						
A =							
	1	0	0	0	0	0	0
	1	1	0	0	0	0	0
	1	3	1	0	0	0	0
	1	7	6	1	0	0	0
	1	15	25	10	1	0	0
	1	31	90	65	15	1	0
	1	63	301	350	140	21	1

Figure 1: First 7 rows of second specie Stirling Numbers

2 Fibonacci Numbers: the fatal bit problem

Consider the following finite difference equation:

$$y_{n+2} = y_{n+1} + y_n \quad n \ge 0 \ (*)$$

Choosing $y_0 = y_1 = 1$ as the initial conditions, the expression evaluates to:

$$1, 1, 2, 3, 5, 8, 13, 21, 34, \dots$$

Which is known as the Fibonacci succession of numbers.

In order to get a closed form which explictly define the n-th element of the succession, we must solve the following difference equation:

$$\sum_{i=0}^{2} p_i y_{n+i} = 0 \quad (**)$$

Where $p_0 = 1$, $p_1 = -1$ and $p_2 = -1$. Due to the fact that the (**) is an homogeneous difference equation with constant coefficients, it is possible to explicit calculate an enclosed form for the n-th term of the succession.

In a numerical analysis environment, such as MATLAB, it is possible to avoid solve (**), but we may face to the *fatal bit problem*.

Consider the following MATLAB functions which calculates the terms of the succession defined by (*), given y_1 and y_2 as the initial conditions.

```
function [yn] = fatalbit (len)
yn = zeros(1,len);
yn(1)=1;
yn(2)=(1-sqrt(5))/2;
for i=3:len
yn(i)=yn(i-1)+yn(i-2);
end
end
```

Listing 3: Fibonacci / Fatal Bit function in 64 bit precision

Consider to set the following initial conditions:

$$y_1 = 1$$
$$y_2 = \frac{1 - \sqrt{5}}{2}$$

Executing the following instructions:

```
1 yn = fatalbit(70);
2 semilogy(abs(yn), '. ');
```

Listing 4: Plot of Fatal Bit

It is possibile to see how succession values starts to diverge for n = 38. This is due to the 64 bit double precision, in fact, in 32 bit precision the divergence starts for n = 17.

Figure 2: Effects of rounding in 64 bit precision

We can verify the divergence in 32 bit precision, modyfing the fatalbit function in such manner:

```
function [yn] = fatalbit (len)
yn = zeros(1,len);
yn(1)=1;
yn(2)=single((1-sqrt(5))/2);
for i=3:len
yn(i)=yn(i-1)+yn(i-2);
end
end
```

Listing 5: Fibonacci / Fatal Bit function in 32 bit precision

Re-executing the previous seen script, we obtain:

Figure 3: Effects of rounding in 32 bit precision

3 Mortgage repayment plan model

Suppose we want to contract a mortgage for a capital C, to repay in N installments at a rate i, which we assume it is constant.

We want to estimate the amount of a single installment r:

Let y_n be the residual debt after the n-th payment. We have:

$$y_n = (1+i)y_{n-1} - r$$
, $y_0 = C$, $y_N = 0$ (1)

In other words, the residual debt at time n is the residual debt at time n-1 plus accrued interests minus the installment amount.

homogeneous equation associated to (1) is:

$$y_n - (1+i)y_{n-1} = 0$$

Which characteristic polynome is:

$$z^2 - (i+1)z$$

And it has roots:

$$z_1 = 0, z_2 = (1+i)$$

Hence the general solution of the homogenous equation is:

$$y_n = \alpha (1+i)^n$$

Now we must look for a particular solution for the non-homogeneous problem. In this case, we can find a constant solution for the (1):

$$\overline{y} = \frac{r}{i}$$

Hence the general solution for the (1) is:

$$y_n = \alpha(i+1)^n + \frac{r}{i}$$

Where α is obtained by imposing initial condition that $y_0 = C$. The final solution for the (1) is the following:

$$y_n = (C - \frac{r}{i})(i+1)^n + \frac{r}{i}$$
 (2)

We can write a MATLAB function which calculates the residual debt at time N as follows:

```
function [yn] = loan(C, r, i, N)
yn=zeros(1, N);
yn(1)=C;
for j=2:N
yn(j)=(1+i)*yn(j-1) - r;
end
end
```

Listing 6: Mortgage repayment function

Hence we can execute the following script:

```
1 C = 10000;
2 interest = 0.05;
3 N=100;
4 hold all;
5 for i=1:5
6 ratei=loan(C,460+(i-1)*20,interest,N);
7 plot(ratei, 'DisplayName',['installment amount = 'num2str(460+(i-1)*20)]);
8 end
9 legend(gca, 'show', 'Location', 'northwest');
```

Listing 7: Loan repayment plot script with different installment amount

Obtaining the plot in figure 4.

We note that if interest is the 5% and installment amount is too low, the debt growth exponentially.

Figure 4: Residual debt with different installments amounts

The debt remains constant if the installment covers only interests (in this case, 500), and it reaches zero if and only if the installment amount is greater to 500.

This behaviour is compliant to the (2), in fact, if $\frac{r}{i} < C$ the succession diverges.

Suppose we want to contract a morgage for a capital of 10000, with an interest of 5%, single installment import 1406.9, repayable in 10 installments. It is possible to use the following script in order to obtain a table where:

- \bullet First column is the residual debt at installments i
- ullet Second column is the interest quote at installments i
- \bullet Third column is the capital quote at installments i

```
{\tiny 1\  \  function\  \  [resDebt\ , intQuote\ , capQuote\ ]\  =\  loantable\  (C, interest\ , single import\ , n)}
    resDebt = loan(C, singleimport, interest, n);
    intQuote = zeros(1,n+1);
    intQuote(1) = 0;
     intQuote(2) = C*interest;
5
     intQuote(i)=resDebt(i-1)*interest;
    end
    capQuote = zeros(1,n+1);
9
    capQuote(1) = 0;
10
    for i = 2:n+1
11
      capQuote(i) = singleimport-intQuote(i);
12
13
14 end
15
16 [resDebt, intQuote, capQuote] = loantable (10000, 0.05, 1406.9, 10);
17 N = 11;
table = zeros(N,3);
19 table (1,1)=10000;
_{20} for j = 2:N
table (j,1)=resDebt (j-1);
22 end
_{23} for i=1:N
    table(i,2)=intQuote(i);
24
    table(i,3)=capQuote(i);
25
```

Listing 8: Mortgage repayment plan table

Executing this script, we obtain:

```
table =
  1.0e+04 *
   1.0000
    1.0000
             0.0500
                        0.0907
    0.9093
             0.0455
                        0.0952
   0.8141
             0.0407
                        0.1000
   0.7141
             0.0357
                        0.1050
             0.0305
                        0.1102
    0.6091
    0.4989
             0.0249
                        0.1157
    0.3831
              0.0192
                        0.1215
    0.2616
             0.0131
                        0.1276
    0.1340
              0.0067
                        0.1340
    0.0000
             0.0000
                        0.1407
```

Figure 5: Loan table obtained executing listing 7

Which represents the following dataset:

Installment	Residual Debt	Interest Quote	Capital Quote
0	10000	-	-
1	10000	500	907
2	9093	455	952
3	8141	407	1000
4	7141	357	1050
5	6091	305	1102
6	4989	249	1157
7	3831	192	1215
8	2616	131	1276
9	1340	67	1340
10	0	0	1407

4 Coweb Model

The coweb model describes the evolution of the market price related to an asset. Let:

- p_n be the unitary price of an asset at time n;
- p_0 be the initial price;
- S_n be the asset units supplied at time n;
- D_n be the asset units demanded at time n.

We state that demand and supply are functions of the price. In fact:

$$S_n = g(p_{n-1}) \ (1)$$

For sake of simplicity we assume g as follows:

$$g = b(p_{n-1}) + s_0$$
 (2)

Were $b, s_0 > 0$ represent respectively the response in productivity in base to the latest price, and the supply with a null price.

This function describes the tendence to increase productivity when price grows up, and decrease otherwise. We can substitute the (2) in the (1) obtaining:

$$S_n = b(p_{n-1}) + s_0$$

As concerns demand, we assume the following model:

$$D_n = -a(p_n) + d_0$$

Reasonably, it will be:

$$d_0 >> s_0 > 0$$

We obtain price dinamicity by imposing:

$$S_n = D_n \forall n$$

$$\downarrow b(p_{n-1}) + s_0 = -a(p_n) + d_0$$

$$\downarrow a(p_n) + b(p_{n-1}) = d_0 - s_0 \quad (3)$$

Homogeneous equation associated to the (3) has the following characteristic polynome:

$$az^2 + bz$$
 (4)

(4) has the following roots:

$$az^{2} + bz = 0 \Rightarrow z(az + b) = 0 \Rightarrow z_{1} = 0, \ z_{2} = -\frac{b}{a}$$

We note that exists a price \overline{p} , greater to 0 for hypotesis.

$$\overline{p} = \frac{d_0 - s_0}{a + b} > 0$$

 \bar{p} is a particular solution for (3) so we can write the general solution:

$$p_n = \overline{p} + \left(-\frac{b}{a}\right)^n (p_0 - \overline{p})$$

We can implement the following MATLAB function that explicitly calculates terms of the p_n S_n D_n successions, given a, b, p_0, s_0, d_0 as parameters:

```
\begin{array}{ll} \textbf{function} & [\, pn\,, sn\,, dn\,, sfun\,, dfun\,] \, = \, coweb\,(\,d0\,, a\,, s0\,, b\,, p0\,, nmax) \end{array}
      pn = zeros(1, nmax);
      sn = zeros(1,nmax);
      dn = zeros(1,nmax);
      sfun = @(x) b*x+s0
      dfun = @(x) -a*x+d0;
      diff = (d0-s0);
      pn(1) = p0;
      sn(1) = s0;
      dn(1) = -a * p0 + d0;
10
      for i = 2:nmax
11
         pn(i) = diff -b*pn(i-1)/a;
         \operatorname{sn}(i) = \operatorname{sfun}(\operatorname{pn}(i-1));
13
         dn(i) = dfun(pn(i));
14
15
16 end
```

Listing 9: Matlab Coweb Model

Note that nmax is the maximum time steps we want to calculate.

We can now execute these three scripts and observe how the model behaviour is sensible to parameter variations:

```
[pnStable,snStable,dnStable,sfun,dfun] = coweb(100,0.15,10,0.10,400,10);
plot(pnStable);
hold on;
title('Stable Coweb');
plot(snStable);
plot(dnStable);
```

Listing 10: Stable Coweb Model

```
[pnUnstable,snUnstable,dnUnstable,sfun,dfun] = coweb(100,0.05,10,0.05, 950,10);
plot(pnUnstable);
hold on;
title('Unstable Coweb');
plot(snStable);
plot(dnStable);
```

Listing 11: Unstable Coweb Model

```
[pnDivergent,snDivergent,dnDivergent,sfun,dfun] = coweb(100,0.09,50,0.1, 300,10);
plot(pnDivergent);
hold on;
title('Divergent Coweb');
plot(snDivergent);
plot(dnDivergent);
```

Listing 12: Divergent Coweb Model

In the following figures, blue lines represent the p_n succession, yellow line represent the d_n succession, and brown lines represent the s_n succession.

Figure 6: Plot of Stable Coweb successions

Figure 7: Plot of Unstable Coweb successions

Figure 8: Plot of Divergent Coweb successions

Figure 9: Supply and Demand functions plot

5 Model of a national economy

This model describes dinamicity of the Gross Domestic Product of a nation. Let:

- Y_n be the GDP
- I_n be the private investments
- G_n be the governative expense
- \bullet C_n be the final consume

According to J.M.-Keynes theory, we have:

$$Y_n = I_n + G_n + C_n \quad (1)$$

Suppose it is:

$$C_n = \alpha Y_{n-1} \ (2)$$

With $0 < \alpha < 1$. Suppose also that investments are proportional to consume increasings:

$$I_n = \rho(C_n - C_{n-1}), \ \rho > 0 \ (3)$$

By substituting (3) and (2) in the (1) we obtain:

$$G_n = Y_n - \alpha(\rho + 1)Y_{n-1} + \alpha \rho Y_{n-2}$$
 (4)

The constant solution is:

$$\overline{Y} = \frac{G}{1 - \alpha}$$

And the characteristic polynome associated to the (4) is:

$$p(z) = z^2 - \alpha(\rho + 1)z + \alpha\rho$$

If we want that solution is asymptotically stable, p(z) must be a Schur's polynome. For this purpose, it is enough that $\rho < \alpha^{-1}$.

- 1. If α, ρ are both close to 0 there is no economic growth, but the system is stable.
- 2. If $\alpha > 1$ the system is unstable.
- 3. If $\alpha \approx 1, \rho < \alpha^{-1}$ the system is stable and the economy stabilizes quickly to an high equilibrium point. This seems to be an optimal condition.
- 4. If $\alpha \approx 1$, $\rho \alpha \approx 1$ the system is in a stability limit and we have wide oscillations.
- 5. if $\alpha \rho > 1$ the system loses its stability.

We can implement a MATLAB functions which iteratively calculates the terms of Y_n, I_n, C_n because their definitions comes explicitly from the model.

```
function [Y,C,I] = samuelson(alpha,rho,g,y0,y1,nmax)
    Y=zeros(1,nmax);
    Y(1)=y0;
    Y(2)=y1;
    C=zeros(1,nmax);
    C(1)=alpha*y0;
    C(2)=C(1);
     I = zeros(1,nmax);
     I(1) = 0:
10
     I(2) = rho *(C(2) - C(1));
     for i=3:nmax
11
       C(i)=alpha*Y(i-1);
I(i)=rho*(C(i)-C(i-1));
13
       Y(i)=C(i)+I(i)+g;
14
15
    _{\mathrm{end}}
16 end
```

Listing 13: Samuelson Model

Observe now how Y (GDP) varies when varying α, ρ in the first 3 cases

1. α, ρ close to 0:

```
[Y,C,I] = samuelson(0.6,0.6,30,100,100,50);
plot(Y);
```

Listing 14: GDP first case plot

Figure 10: GDP values in case 1

2. $\alpha > 1$:

```
[Y,C,I] = samuelson(1.5,0.6,30,100,100,50);
plot(Y);
```

Listing 15: GDP second case plot

Figure 11: GDP values in case 2

```
3. \alpha \approx 1, \rho < \alpha^{-1}:

[Y,C,I]=samuelson(0.999,0.001,30,100,100,50);

plot(Y);
```

Listing 16: GDP third case plot

Figure 12: GDP values in case 3

6 Linear Multistep Methods: An implementation

Consider the following problem:

$$\begin{cases} \dot{y} = f(t, y) \\ y(t_0) = y_0 \end{cases}$$
 (*)

This problem is known as the *cauchy problem* and it may be solved both in analytic way and numerical.

Since we are interested in numerical methods, our aim is to approximate function y(t) knowing only its derivative $\dot{y} = f(t, y)$ and an initial condition $y(t_0) = y_0$.

Linear Multistep Methods are numerical methods which, fixed an interval $[a,b] \in D(y(t))$ and a number N of times we intend to divide such interval, it solves the continuos problem shown in (*) by defining a discrete domain t_i and approximating y values in that discrete domain. t_i is defined as follows:

$$t_i = a + ih$$

Where:

$$i = 0, \dots, N - 1$$
$$h = \frac{b - a}{N}$$

For example:

$$a = 1, b = 2, N = 5$$

$$h = \frac{2-1}{5} = \frac{1}{5} = 0.25$$

$$t_0 = a + 0h = a = 1.00$$

$$t_1 = a + 1h = 1 + 0.25 = 1.25$$

$$t_2 = a + 2h = 1 + 2 * 0.25 = 1.50$$

$$t_3 = a + 3h = 1 + 3 * 0.25 = 1.75$$

$$t_4 = a + 4h = 1 + 4 * 0.25 = 2.00 = b$$

Hence:

$$\{t_i\} = \{1.00, 1.25, 1.50, 1.75, 2.00\}$$

We call such t_i a uniform mesh with integration step h = 0.25.

Let y_i be the approximation of the unknown y(i) and remembering that $\dot{y} = f(t, y)$, we define:

$$f_i \equiv f(t_i, y_i)$$

Linear Multistep Methods, more formally, solve discrete problems in the form:

$$\sum_{i=0}^{k} \alpha_i y_{n+1} = h \sum_{i=0}^{k} \beta_i f_{n+1} \quad n = 0, \dots, N - k \quad (*)$$

Where $\{\alpha_i\},\{\beta_i\}$ and k define the particular k-step linear multistep formula (LMF).

It is important to distinguish between k and N, in fact, the first is an intrinsic characteristic of a particular LMF method, and the latter, indeed, is a characteristic of the problem we need to solve. N is the number of sub-intervals we intend to divide the interval [a,b], and it defines its relative integration step $h = \frac{b-a}{N}$. The greater is N, the smaller is h and the more accurated is the approximation with respect to the real function y(t). Integration step and inherent method's step are two completely different concepts.

In conclusion, we define that a particular LMF method is completely identified by its ρ , σ polynomes, where:

$$\rho(z) = \sum_{i=0}^{k} \alpha_i z^i$$
$$\sigma(z) = \sum_{i=0}^{k} \beta_i z^i$$

With these definitions, we can write the (*) problem in a more compact notation:

$$\rho(E)y_n - h\sigma(E)f_n = 0$$
 $n = 0, \dots, N - k$

Consider the following k = 1-step methods:

$$y_{i+1} - y_i = hf_i \ (*)$$

 $y_{i+1} - y_i = hf_{i+1} \ (**)$

(*) is called the *explicit euler method* or *forward euler* and it approximates the unknown function y in the following way:

$$y_{i+1} = y_i + hf_i = y_i + hf(t_i, y_i)$$

This method is easy to implement:

```
function [approx_values] = euler_expl(abscisse,x0,step_size,n_steps,fun)
approx_values = zeros(1,n_steps);
approx_values(1) = x0;
for i = 0:n_steps-2
    h = step_size;
    ti = abscisse(i+1);
    yi = approx_values(i+1);
    fi = fun(ti,yi);
    approx_values(i+2) = yi + h * fi;
end
end
```

Listing 17: Explicit euler MATLAB implementation

More complex is to handle method (**).

This method is called *implicit euler method* or *backward euler*. It is more stable than the *explicit* or *forward* one, but it requires a little more attention.

In fact, the method states:

$$y_{i+1} - y_i = h f_{i+1}$$

Hence:

$$y_{i+1} = y_i + h f(t_{i+1}, y_{i+1})$$

Term y_{i+1} appears both in left and right members of the equation.

A possible solution could be use a fixed point iteration to approximate y_{i+1} , or perform a forward step using forward euler method in order to get an initial estimation of y_{i+1} .

```
function [approx_values] = euler_impl(abscisse, x0, step_size, n_steps, fun)
    approx_values = zeros(1, n_steps);
    approx_values(1) = x0;
    for i = 0: n\_steps - 2
      h = step_size;
       ti = abscisse(i+2);
       yi = approx_values(i+1);
       init_e = one_step_fwd(ti, yi, step_size, fun);
       fi = fun(ti,init_e);
9
       approx\_values\,(\,i\,{+}2)\,=\,y\,i\,\,+\,\,h\,\,*\,\,f\,i\,\,;
10
11
12 end
function [y1] = one\_step\_fwd(t, y0, h, f)
y1 = y0 + h*f(t,y0);
```

Listing 18: Implicit euler MATLAB implementation

Let us assume we have the following problem:

$$\begin{cases} \dot{y} = f(t, y) = \cos(t) + y \\ y(0) = 1 \end{cases}$$

By solving it analitycally, we get:

$$\begin{cases} y(t) = c_1 e^t + \frac{\sin(t)}{2} - \frac{\cos(t)}{2} \\ y(0) = 1 \end{cases}$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad$$

We can execute the following script in order to see how much accurated are the implemented methods shown above.

```
_{1} FUN = (t) (3/2)*(exp(t))+sin(t)/2-cos(t)/2;
fun = @(t,y) (cos(t)+y);
a = input('Insert left extreme of the interval\n');
b = input('Insert right extreme of the interval\n');
5 n = input('Insert step numbers\n');
6 if a>b
      temp = a;
      a = b;
      b \, = \, temp \, ;
9
10 end
x0 = FUN(a);
real_abs = linspace(a,b,10000);
abscisse = linspace(a,b,n);
_{14} h = (b-a)/n;
expl = euler_expl(abscisse, x0, h, n, fun);
impl = euler_impl(abscisse, x0, h, n, fun);
exact = FUN(real_abs);
plot(abscisse, expl, 'DisplayName', 'Explicit Euler');
19 hold all;
strm = \frac{\text{num} 2\text{str}(n)}{\text{title}(['n \text{ steps} = ' \text{ strm}])};
plot (abscisse, impl, 'DisplayName', 'Implicit Euler');
plot (real_abs, exact, 'DisplayName', 'Exact Function');
legend(gca, 'show', 'Location', 'northwest');
```

Listing 19: Implicit and explicit euler plot

Figure 13: Approximation with mesh integration step $h = \frac{3}{10}$

Figure 14: Approximation with mesh integration step $h = \frac{3}{20}$

For a more clear example of the explicit's unstability, let us assume we are in case:

$$\begin{cases} \dot{y} = f(t,y) = \cos(t) - \frac{1}{2\sqrt{t}} \\ y(0.001) \approx 0.9694 \end{cases}$$

$$y(t) = \sin(t) + (1 - \sqrt{t})$$

Hence we modify the first 2 lines of the previous seen script, in the way it follows:

```
fun = @(t,y) \cos(t) - 1/(2*sqrt(t)) + 0*y; 

2 FUN = @(t) \sin(t) + (1-sqrt(t));
```

Listing 20: Implict and explicit euler plot in another case

Executing the script with following values:

$$a = 1$$

$$b = 25$$

$$n = 50 steps$$

We obtain the plot shown in Figure 15.

Figure 15: Implicit and explicit euler's methods correct behaviour

It is immediate to notice that f(t, y) has a vertical asymptote in t = 0. If we execute the script and set a left extreme value near to 0^+ , for example a = 0.001, we obtain the plot shown in Figure 16.

Figure 16: Explicit euler's divergence as a reaches 0^+

6.1 A pratical application of a LMF method

Consider a capacitor in an electric circuit.

Without any more assumption, we only know:

- Capacitor's capacity (C)
- $\bullet\,$ Electric current i flowing in the capacitor:

$$i(t) = f(t, v(t)) = \ln|\sin(t)| \cos(v)$$

Suppose also that we have made a direct measurement at time $t_0 = 10 \ s$, and therefore we know that the voltage $v(t_0)$ is:

$$v(t_0) = v(10 \ s) = 2 \ V$$

Electric current and voltage are characterized by the following relationship:

$$i(t) = C\frac{d(v(t))}{dt} = C\dot{v}$$

Summarizing, we have:

$$\begin{cases} \dot{v} = \frac{i(t)}{C} = \frac{\ln|\sin(t)|\cos(v)}{C} \\ v(10) = 2 \ V \end{cases}$$

For sake of simplicity, we fix C = 1F. Obtaining:

$$\begin{cases} \dot{v} = \ln \lvert \sin(t) \rvert \; \cos(v) \\ v(10) = 2 \; V \end{cases}$$

If we want to know an approximation of the voltage value in the interval [10, 50]s with an integration step h = 0.1 we can use the implicit euler method implemented before:

```
dotv = @(t,v) log(abs(sin(t)))*cos(v); % Electric current function

ti = linspace(10,50,400); % Interval of interest

x0 = 2; % v(10) = 2 V

yi = euler_impl(ti,x0,0.1,400,dotv);

plot(ti,yi);
```

Listing 21: Approximation of capacitor's voltage

Obtaining the result shown in Figure 17.

Figure 17: Plot of approximated capacitor's head voltage

Without solving any (complex) differential equation, we see that for $t \approx 20~s$ the system stabilizes on a capacitor's head voltage $v_c \approx 4.7~V$.

This is a very interesting result because it indicates that the capacitor behaves like an "open switch" when it is fully operational. In fact, if the voltage at the heads of a capacitor is constant, then the current is null.

This behavior, although we explicitly know the current's equation, was however difficult to forecast. Even if have such a complex expression for the current might seem to be an implausible scenario, in reality, in a design phase of a certain electrical circuit, there could be an ideal current generator on whose behavior we place some constraints, and we want to size other components accordingly. In this way the circuit, once realized, behaves as if it were equipped with such an ideal current generator at a certain level of abstraction on the system.

7 Linear Multistep Methods: The Boundary Locus

A particular Linear Multistep Method is identified by its ρ, σ polynomes.

Considering a (ρ, σ) method, we define $D = \{q \in \mathbb{C} : \pi(z, q) \in S\}$ where S is the set of Schur's polynomes, and

$$\pi(z,q) = \rho(z) - q\sigma(z)$$

is the stability polynome associated to the test equation, as the absolute stability region of the considered (ρ, σ) method.

In general, determining the stability region for a LMF method using Schur's criteria could result difficult, so we can study the border of this region: the boundary locus.

The boundary locus is defined as follows:

$$\Gamma = \left\{ q(\theta) = \frac{\rho(e^{i\theta})}{\sigma(e^{i\theta})} : 0 \le \theta \le 2\pi \right\}$$

Given the following MATLAB functions, which calulcates (ρ, σ) polynomes of LMF methods:

- BDF
- Adams-Moulton
- Adams-Bashfort

```
function [ro, sigma] = lmf( tipo, k )
2 %
3 %
       [ro, sigma] = lmf(tipo, k)
                                                Calcola i polinomi ro e sigma del metodo
4 %
                                                lmf a k passi specificato dal tipo:
5 %
6 %
7 %
                                                0 : BDF
                                                1 : Adams-Moulton
8 %
                                                2 : Adams-Bashforth
9 %
      if tipo==0
                      % BDF
10
       \begin{array}{l} \text{sigma} = [1 \ \ \text{zeros} (1, k)]; \\ \text{b} = [0:k].*[k.^[0:k]]/k; \\ \text{ro} = \text{vsolve} (k:-1:0,b); \end{array}
11
12
13
      elseif tipo==1 % Adams-Moulton
14
              = [1 -1 zeros(1,k-1)];
15
       _{\rm ro}
               = [1:k+1];
        j
16
              = (k.^j - (k-1).^j)./j;
17
        b
      sigma = vsolve(k:-1:0, b);
elseif tipo==2 % Adams-Bashforth
18
19
      ro = [1 -1 zeros(1,k-1)];
20
               = [1:k];
21
        j
             = (k.\hat{j} - (k-1).\hat{j})./j;
22
23
        sigma = [0 \ vsolve(k-1:-1:0, b)];
24
      disp(' tipo invalido!'), disp(''),
25
     help lmf, ro = []; sigma = [];
26
     end
27
28 return
29
30 function f = vsolve(x, b)
31 %
                                         Risolve il sistema lineare W(x) f=b, dove W(x) e' la Vandermonde definita
32 %
           f = vsolve(x, b)
33 %
34 %
                                         dagli elementi del vettore x.
35 %
     f = b;
36
37
     n = length(x) -1;
     for k = 1:n
38
       for i = n+1:-1:k+1
39
         f(i) = f(i) - x(k)*f(i-1);
40
41
        end
     end
42
     for k = n:-1:1
43
        for i = k+1:n+1
44
         f(i) = f(i)/(x(i) - x(i-k));
45
       end
46
47
      for i = k:n
      f(i) = f(i) - f(i+1);
48
49
     end
     \quad \text{end} \quad
50
51 return
```

Listing 22: LMF solver

We can write the following MATLAB function which explicitly calculates boundary locus values for a given LMF method:

Listing 23: Boundary Locus calculation

Consider now to execute the following script:

```
method=input('insert method to use\n');
_2 if method<0 || method > 2
    disp ('unvalid method');
    return;
4
5 end
6 steps=input('insert max number of steps\n');
7 theta0=input('insert theta initial value\n');
8 hold all;
9 for j=1:steps
q=boundaryLocus(theta0, j, method);
11
    plot(q, 'DisplayName',['number of steps = ' num2str(j)]);
    if method==0
12
      strm="BDF";
13
    elseif method==1
14
     strm="Adams Moulton";
15
      axis([-6 \ 1 \ -5 \ 5]);
16
17
      strm="Adams Bashforth";
18
19
   title (['Boundary Locus for LMF method 'strm]);
20
21 end
legend(gca, 'show', 'Location', 'southeast');
```

Listing 24: Plot Boundary Locus Script

By setting 5 maximum steps and 6 as theta initial value, we obtain the results shown in figures 18,19 and 20.

Figure 18: BDF Boundary Locus

Figure 19: Adams Moulton Boundary Locus

Figure 20: Adams Bashforth Boundary Locus

8 Leslie Model

This model describes the demographic structure of an homogeneous population, structured in age classes.

Let L be the maximum reacheable age in a population. We divide this temporal arc in intervals of size:

$$\tau = \frac{L}{m}$$

We denote by

$$x_i(k), i = 1, ..., m$$

The number of people aged between

$$[(i-1)\tau, i\tau], i = 1, \dots, m-1$$

Where

$$0 < \beta_i \le, \quad i = 1, \dots, m - 1$$

Is the survival coefficient of class i at time τ .

We have:

$$\begin{cases} x_{i+1}(k+1) = \beta_i x_i(k) & i = 1, \dots, m-1 \\ x_1(k+1) = \sum_{i=1}^m \alpha_i x_i(k) & \text{are the new born} \end{cases}$$

Where $\alpha_i > 0$ are birth rate of respectives age classes.

We obtain the following discrete dynamic system:

$$\mathbf{x}(k+1) \equiv \begin{bmatrix} x_1(k+1) \\ x_2(k+1) \\ \vdots \\ x_m(k+2) \end{bmatrix} = \begin{bmatrix} \alpha_1 & \dots & \alpha_{m-1} & \alpha_m \\ \beta_1 & & & \\ & \ddots & & \\ & & \beta_{m-1} & \end{bmatrix} \begin{bmatrix} x_1(k) \\ x_2(k) \\ \vdots \\ x_m(k) \end{bmatrix}$$

Consider the following MATLAB function:

```
function [nextgen] = leslie(alphai, betai, actgen)
    m = length(alphai);
    if m = length (betai)+1
      error ('beta i must be length as alpha i -1');
    M = zeros(m,m);
6
    for i=1:m
      M(1,i)=alphai(i);
9
    for i=2:m
10
      for j=1:m
11
         if(i-1 == j)
12
         M(i,j) = betai(j);
13
14
      end
15
16
    end
    nextgen = linsolve (M, actgen);
17
```

Listing 25: Leslie model function

It is clear that it calculates next generation for each age class. We can call it iteratively for a fixed number of steps N to obtain a simulation model which describes the evolution of a population. For this purpose, we consider to use the following MATLAB function:

```
function [gens] = population(alphai, betai, startgen, steps)
gens=zeros(length(startgen), steps);
gens(:,1)=startgen;
for i=2:steps
gens(:,i)=leslie(alphai, betai, gens(:,i-1));
end
end
```

Listing 26: Leslie simulation function for a fixed number of steps

Consider now to execute this script:

```
gens = population([0.1,2,3],[1,2],[5,5,5],3);
plot(gens(:,1));
hold on;
plot(gens(:,2));
plot(gens(:,3));
axis([1 3 0 7]);
```

Listing 27: Leslie script

Figure 21: With these parameters, population dies out

9 Arms Race model

We formulate a continuous time model which describes the level of two nation's arms. Let x(t), y(t) be the nation's arms levels, we have:

$$x'(t) = -ax(t) + by(t) + \xi_0$$

$$y'(t) = cx(t) - dy(t) + \eta_0$$

Where all coefficients are positive:

- \bullet a, d are called fatigue coefficients
- \bullet b, c are called competition coefficients
- ξ_0, η_0 are called "base" levels, and they depend solely on the cultural connotations of the two nations in competition

In vectorial terms, we obtain the following positive dynamic system:

$$\begin{bmatrix} x \\ y \end{bmatrix}' = \begin{bmatrix} -a & b \\ c & -d \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} + \begin{bmatrix} \xi_0 \\ \eta_0 \end{bmatrix}$$

By applying Cramer rule, the equilibrium point is given by:

$$\overline{x} = \frac{d\xi_0 + b\eta_0}{ad - bc}$$

$$\overline{y} = \frac{c\xi_0 + a\eta_0}{ad - bc}$$

Thise point is asimptotically stable if and only if it has positive components, so if and only if

In other words, if the product of fatigue coefficients are greater than competition ones. We can write the following MATLAB function:

```
function [res] = arms(a,b,c,d,xi,eta,x0,y0,h,T)
A = [-a,b;
c,-d];
res = [x0,y0];
f = [xi,eta];
iter = round(T/h);
for i = 1:iter
res = res+h*(A*transpose(res)+f);
end
end
```

Listing 28: Arms race model

And the following script:

```
1 a=0.9;

b=2;

3 c=1;

4 d=2;

5 xi=1.6;

eta=1.4;

x0=5;

8 y0=0.5;

9 T=7;

10 h=0.01;

11 V=arms(a,b,c,d,xi,eta,x0,y0,h,T);

12 plot(V);
```

Listing 29: Arms race model plot script

We obtain:

Figure 22: Arms race model with a=0.9,b=2,c=1,d=2 for which is not verified ad > bc

10 Diabetes mellitus model

Diabates mellitus is a pathology that manifests through a high concentration of glucose in the blood and urine.

When the regulatory mechanisms in a healthy person works properly, the insulin produced by the pancreas counteracts the level of glucose in the blood, but in a non-healthy person who has diabetes, these mechanisms does not work properly and the glucose remains too high; and this is a threat for the individual health.

Let G(t), H(t) be respectively the concentrations of glucose and insuline, and call $\overline{G}, \overline{H}$ the optimal concentrations.

In general we can hypotize a relation between the variation of these two concentrations and their actual concentration, in fact:

$$G'(t) = F_g(G(t), H(t))$$

$$H'(t) = F_h(G(t), H(t))$$

When concentrations are at their optimal level, the regulation mechanism has no need to intervene, so the system is in equilibrium. We have:

$$F_g(\overline{G}, \overline{H}) = 0$$

$$F_h(\overline{G}, \overline{H}) = 0$$

For sake of simplicity, we translate G(t), H(t) in order to have the optimal levels equals to 0. So we'll consider:

$$g(t) = G(t) - \overline{G}$$

$$h(t) = H(t) - \overline{H}$$

Adding a constant does not change derivatives. Supposing that F_h and F_g are Taylor-developable at second order, we obtain the following system:

$$q'(t) = -m_1 q - m_2 h + \gamma_a(q, h)$$
 (*)

$$h'(t) = m_3 g - m_4 h + \gamma_h(g, h)$$

Where γ_g, γ_h are functions which represents higher order terms of the development.

We assume all $m_i > 0$.

We define:

$$M = \begin{bmatrix} -m_1 & -m_2 \\ m_3 & m_4 \end{bmatrix}$$

The eigenvalues of matrix M have negative real parts, so due to the Perron theorem, all the system admits origin as a solution asimptotically stable.

We can solve (*) to obtain an explicit form of G(t) function, which describes the blood's glucose concentration with respect to the time.

$$g(t) = Ae^{-\alpha t}\cos(\omega t + \varphi)$$

$$G(t) = \overline{G} + Ae^{-\alpha t}\cos(\omega t + \varphi)$$

For diagnostic purposes, the quantity ω is the most useful parameter. In fact, if

$$T = \frac{2\pi}{\omega} > 3.5h$$

the patient is in a pathological state.

If the first measure of the glycemic level is performed after an enough long period of fasting, we can assume that this has reached the optimal equilibrium state.

Then if we give to the patient a quantity of glucose proportional to the body weight and making m measures at prefixed instants t_i , i = 1, ..., m, we can obtain the remaining parameters with the least squares method.

In other words, we look for the minimum of the following function:

$$F(\alpha, \omega, A, \varphi) = \sum_{i=1}^{m} (G_i - \overline{G} - Ae^{-\alpha t}\cos(\omega t + \varphi))^2 \quad (**)$$

If we have approximated parameters, we can use the following MATLAB function:

```
function [G] = diab(opt,A,m1,m2,m3,m4,phi,maxt,measures)
abscissa = linspace(0,maxt,measures);
N=length(abscissa);
beta = sqrt(m1*m4+m2*m3);
alpha = (m1+m4)/2;
omega = sqrt(beta^2-alpha^2);
G=zeros(1,N);
for i=1:N
G(i)=opt+A*exp(-alpha*abscissa(i))*cos(omega*abscissa(i)+phi);
end
end
```

Listing 30: Diabetes Mellitus Function

Where opt is the optimal glycemic blood value, A,m1,m2,m3,m4 and phi are the model parameters, which must be approximated by solving (**), maxt is the maximum time measured, and measures is the number of measurements done in the interval [0, maxt].

Executing the following script, we obtain:

```
optimalg = diab(80,30,0.1,1.2,3.3,1.1,-20,10,1000);
badg = diab(140,30,0.1,2,0.125,0.1,-40,10,1000);
hold all;
plot(optimalg, 'DisplayName', 'Normal glycemic level');
plot(badg, 'DisplayName', 'Pathologic glycemic level');
legend(gca, 'show', 'Location', 'northeast');
```

Listing 31: Diabetes Mellitus Script

Figure 23: Diabetes mellitus plot for an healty and a non healty patient