Εργασία στο Μάθημα Ανάλυση Δεδομένων

Κίμων Ζαγκούρης Α.Ε.Μ. 4353

Email: kzagko@gmail.com

12 Φεβρουαρίου 2019

¹Image created by Timashov Sergiy.

Περιεχόμενα

1	Ζητι	ηματα
	1.1	Ζήτημα 1
	1.2	Ζήτημα 2
	1.3	Ζήτημα 3
	1.4	Zήτημα 4
	1.5	Zήτημα 5
	1.6	Zήτημα 6
	1.7	Ζήτημα 7
	1.8	Ζήτημα 8
	1.9	Zήτημα 9
	1.10	Ζήτημα 10
2	•	γράμματα 57
	2.1	Exercise1
	2.2	DataLoader
	2.3	Chartme
	2.4	Exercise2
	2.5	Exercise3
	2.6	CIs
	2.7	MeanP10
	2.8	Exercise4
	2.9	stdCIs
	2.10	StdP10
	2.11	Exercise5
	2.12	AllCountries
		corrme
		Exercise6
		AllActivities
		Exercise7
		AdjRCountries
		polyme
	2.19	
	2.20	mystepwise
	2.21	1
	2.22	
	2.23	mystepwiseAct 82
	2.24	
	2.25	Exercise10
	2.26	mytisan

1 Ζητήματα

Παρακάτω είναι τα 10 ζητήματα της εργασίας αυτής ανά κεφάλαιο. Στο Κεφάλαιο 2 υπάρχουν τα αντίστοιχα προγράμματα Matlab που χρησιμοποιήθηκαν για την επίλυση των ζητημάτων. Στα προγράμματα υπάρχουν σχόλια για την καλύτερη παρακολούθηση του κώδικα σε κάποια σημεία.

1.1 Ζήτημα 1

Στο ζήτημα αυτό τρέχουμε τον παρακάτω Κώδικα για 6 περιπτώσεις και παραθέτουμε τα γραφήματα.

Σχήμα 1.1: PM10 Emissions for Denmark Luxembourg IndustryProcesses.

Σχήμα 1.2: PM10 Emissions for Finland Greece EnergyIndustries.

Σχήμα 1.3: PM10 Emissions for France EnergyIndustries Agriculture.

Σχήμα 1.4: PM10 Emissions for Germany Portugal Waste.

Σχήμα 1.5: PM10 Emissions for Italy OtherTransport RoadTransport.

Σχήμα 1.6: PM10 Emissions for United Kingdom RoadTransport Waste.

Τα παραπάνω αποτελούν ένα τυχαίο δείγμα από όλα τα δυνατά αποτελέσματα και συνδυασμούς των χωρών και των δραστηριοτήτων αλλά μπορούμε να σχολιάσουμε μερικά από αυτά. Στο σχήμα 1.3 βλέπουμε ότι οι κατανομές των PM10 πριν την κανονικοποίηση δεν είναι εύκολο να συγκριθούν και να ελεγχθούν αλλά μετά την κανονικοποίηση μπορούμε να πούμε ότι φαίνεται να μην έχουν κοινή κατανομή λόγω του σχήματός τους. Ενώ αντίθετα στο σχήμα 1.5 Για την κατανομή των PM10 στην Ιταλία βλέπουμε ότι όταν κανονικοποιούμε τις κατανομές φαίνεται αυτές να μοιάζουν. Γενικά όμως τα δεδομένα είναι λίγα, στην καλύτερη περίπτωση 18 σημεία, τα οποία όταν κατανέμονται σε ιστόγραμμα δίνουν πολύ μικρό αριθμό στοιχείων, περίπου 4, ανά περιοχή κατανομής (bin). Με αποτέλεσμα να είναι δύσκολο να έχουμε καλή περιγραφή της κάθε κατανομής.

1.2 Ζήτημα 2

Για την επίλυση αυτού του ζητήματος κάνουμε χρήση του κώδικα 4. Λόγου του μικρού αριθμού δεδομένων η συνάρτηση chi2gof του Matlab δεν επιστρέφει αξιόπιστα αποτελέσματα για τον υπολογισμό του χ^2 . Για τον λόγο αυτό στο παραπάνω πρόγραμμα επιλέξαμε να κάνουμε αναλυτική μέτρηση του χ^2 . Μετά την εκτέλεση το πρόγραμμα μας επιστρέφει τα παρακάτω σχήματα 1.7 και 1.8.

Σχήμα 1.7: Αποτελέσματα χ^2 για κάθε δραστηριότητα και χώρα καθώς και το μέγιστο όριο με διακεκομμένη γραμμή.

Από το σχήμα 1.7 παρατηρούμε ότι αρκετά χ^2 βρίσκονται επάνω από το μέγιστο $\chi^2_{1-\alpha,n-3}$. Για τους βαθμούς ελευθερίας χρησιμοποιούμε n-3 γιατί συγκρίνουμε με την συνεχή κανονική κατανομή που έχει δύο ακόμα δεσμευτικές παραμέτρους, την μέση τιμή και την απόκλιση. Το πρόγραμμα επίσης μας επιστρέφει αν βρήκε μια κατανομή να είναι κανονική ή όχι με βάση κάποιο όριο πιθανότητας. Παρακάτω είναι τα αποτελέσματα αυτού του ελέγχου.

At the significance level of 5.00% the percentage of the datasets that could be from a Normal distribution are 37.33%

At the confindence level of 5.00%

```
Does Agriculture Follow a normal distribution : YES
Does EnergyIndustries Follow a normal distribution : YES
Does EnergyIndustriesPowerProduction1A1a Follow a normal distribution : NO
Does FugitiveEmissions Follow a normal distribution : NO
Does IndustryEnergy Follow a normal distribution : NO
Does IndustryProcesses Follow a normal distribution : YES
Does OtherEnergy Follow a normal distribution : YES
Does OtherTransport Follow a normal distribution : NO
Does RoadTransport Follow a normal distribution : NO
Does Waste Follow a normal distribution : NO
```

Παρατηρούμε ότι στο επίπεδο σημαντικότητας 5% περίπου το 37% από όλα τα σετ θα μπορούσε να θεωρηθεί ότι προέρχεται από κανονική κατανομή. Επίσης στο ίδιο ποσοστό σημαντικότη-

τας βλέπουμε ότι μόνο 4 στις 10 δραστηριότητες θα μπορούσαν να προέρχονται από κανονική κατανομή.

Σχήμα 1.8: Κανονικοποιημένες συνολικές κατανομές για όλες τις δραστηριότητες καθώς και ενδεικτική κανονική κατανομή για σύγκριση. Οι δραστηριότητες με ποιο έντονη γραμμή έχουν περάσει το τεστ κανονικότητας.

Στο σχήμα 1.8 παρατηρούμε ότι γενικά οι κανονικοποιημένες κατανομές των δραστηριοτήτων διαφέρουν από κανονικές. Πέρα απο τα αποτελέσματα που μας επιστρέφει το πρόγραμμα θα μπορούσε κάποιος οπτικά και μόνο να πει ότι από όλες τις κατανομές αυτές που φαίνεται να ακολουθούν κανονική κατανομή είναι: IndustryProcesses και OtherEnergy.

1.3 Ζήτημα 3

Για την επίλυση αυτού του ζητήματος κάνουμε χρήση του κώδικα 5. Ενδεικτικά εκτελέσαμε τον κώδικα για 4 δραστηριότητες και τα αποτελέσματα φαίνονται στα σχήμα 1.9,σχήμα 1.11 και σχήμα 1.12.

Σχήμα 1.9: Μέσες τιμές και παραμετρικά και μη παραμετρικά διαστήματα για την δραστηριότητα Agriculture σε κάθε χώρα.

Σχήμα 1.10: Μέσες τιμές και παραμετρικά και μη παραμετρικά διαστήματα για την δραστηριότητα IndustryEnergy σε κάθε χώρα.

Σχήμα 1.11: Μέσες τιμές και παραμετρικά και μη παραμετρικά διαστήματα για την δραστηριότητα OtherEnergy σε κάθε χώρα.

Σχήμα 1.12: Μέσες τιμές και παραμετρικά και μη παραμετρικά διαστήματα για την δραστηριότητα Waste σε κάθε χώρα.

Από τα παραπάνω σχήματα δεν φαίνεται να υπάρχει μεγάλη διαφορά μεταξύ των μέσων τιμών και των διαστημάτων εμπιστοσύνης που προέρχονται από παραμετρική και με παραμετρική εκτίμηση.

1.4 Ζήτημα 4

Η ίδια ανάλυση όπως και στο Κεφάλαιο 1.3 αλλά τώρα για την τυπική απόκλιση. Η ανάλυση γίνεται με τον κώδικα 8. Καλέσαμε τον παραπάνω κώδιακ ενδεικτικά για μερικές δραστηριότητες και πήραμε τα παρακάτω σχήμα 1.13,σχήμα 1.14,σχήμα 1.15 και σχήμα 1.16.

Σχήμα 1.13: Μέσες τιμές και παραμετρικά και μη παραμετρικά διαστήματα της τυπικής απόκλισης για την δραστηριότητα EnergyIndustries σε κάθε χώρα.

Σχήμα 1.14: Μέσες τιμές και παραμετρικά και μη παραμετρικά διαστήματα της τυπικής απόκλισης για την δραστηριότητα Fugitive Emissions σε κάθε χώρα.

Σχήμα 1.15: Μέσες τιμές και παραμετρικά και μη παραμετρικά διαστήματα της τυπικής απόκλισης για την δραστηριότητα Othertransport σε κάθε χώρα.

Σχήμα 1.16: Μέσες τιμές και παραμετρικά και μη παραμετρικά διαστήματα της τυπικής απόκλισης για την δραστηριότητα RoadTransport σε κάθε χώρα.

Από τα παραπάνω σχήματα παρατηρούμε ότι η μέσες τιμές της τυπικής απόκλισης διαφέρουν ανάμεσα στον παραμετρικό και μη τρόπο υπολογισμού τους. Καθώς και ότι σε γενικές γραμμές τα μη παραμετρικά διαστήματα εμπιστοσύνης είναι μικρότερα από τα αντίστοιχα παραμετρικά. Αυτό μπορεί να οφείλεται στον μεγάλο αριθμό (1000) τυχαίων δειγμάτων που δημιουργήσαμε στην μη παραμετρική ανάλυσή μας.

1.5 Ζήτημα 5

Για την επίλυση αυτού του ζητήματος κάνουμε χρήση του κώδικα 11. Κατά την διάρκεια εκτέλεσης του κώδικα το Matlab επιστρέφει ένα γράφημα και τα αποτελέσματα του τεστ στην οθόνη. Ενδεικτικά καλέσαμε τον παραπάνω κώδικα για 4 δραστηριότητες και τα αποτελέσματα είναι παρακάτω. Στα αποτελέσματα που εκτυπώνονται αναφέρεται η απόλυτη τιμή του συντελεστή συσχέτισης.

Σχήμα 1.17: Ιστόγραμμα των συντελεστών συσχέτισης της δραστηριότητας Agriculture.

The 10 sets of countries with the highest correlation for Agriculture are

Correlation	Country1	Country2
0.98	Denmark	Italy
0.97	Netherlands	United Kingdom
0.95	Denmark	Netherlands
0.95	Italy	United Kingdom
0.94	Italy	Netherlands
0.94	Austria	Belgium
0.94	Denmark	United Kingdom
0.91	Belgium	United Kingdom
0.91	Austria	Luxembourg
0.91	Austria	United Kingdom

29.52% of the sets of countries pass the Parametric test with a significance level of 5.00%

24.76% of the sets of countries pass the NON-Parametric test with a significance level of 5.00%

Σχήμα 1.18: Ιστόγραμμα των συντελεστών συσχέτισης της δραστηριότητας Waste.

The 10 sets of countries with the highest correlation for Waste are

COLLCTOLL	101	waste are	
Correlation		Country1	Country2
0.88		Germany	Luxembourg
0.87		Austria	Germany
0.87		Sweden	United Kingdom
0.86		Portugal	Sweden
0.86		Austria	Luxembourg
0.86		Portugal	United Kingdom
0.85		Luxembourg	United Kingdom
0.83		Netherlands	Portugal
0.82		Germany	Spain
0.82		Luxembourg	Portugal

44.76% of the sets of countries pass the Parametric test with a significance level of 5.00%

58.10% of the sets of countries pass the NON-Parametric test with a significance level of 5.00%

Σχήμα 1.19: Ιστόγραμμα των συντελεστών συσχέτισης της δραστηριότητας Industry Energy.

The 10 sets of countries with the highest correlation for IndustryEnergy are

	. • .		
Correlation		Country1	Country2
0.99		France	Italy
0.98		Luxembourg	United Kingdom
0.97		Italy	Luxembourg
0.97		France	United Kingdom
0.97		Belgium	United Kingdom
0.97		Italy	United Kingdom
0.97		France	Luxembourg
0.97		Sweden	United Kingdom
0.96		Belgium	Italy
0.96		France	Sweden

35.24% of the sets of countries pass the Parametric test with a significance level of 5.00%

35.24% of the sets of countries pass the NON-Parametric test with a significance level of 5.00%

Σχήμα 1.20: Ιστόγραμμα των συντελεστών συσχέτισης της δραστηριότητας RoadTransport.

The 10 sets of countries with the highest correlation for RoadTransport are

COLLCTOLL	ioi Rodalianspore are	
Correlation	Country1	Country2
1.00	Denmark	United Kingdom
0.99	Denmark	France
0.99	Belgium	France
0.99	Denmark	Sweden
0.99	Germany	United Kingdom
0.99	France	United Kingdom
0.99	France	Italy
0.99	Sweden	United Kingdom
0.99	France	Sweden
0.99	Denmark	Italy

25.71% of the sets of countries pass the Parametric test with a significance level of 5.00%

26.67% of the sets of countries pass the NON-Parametric test with a significance level of 5.00%

1.6 Ζήτημα 6

Για την επίλυση αυτού του ζητήματος κάνουμε χρήση του κώδικα 14.

Σχήμα 1.21: Ιστόγραμμα των συντελεστών συσχέτισης για την Austria.

The 10 sets	s of Activities with the highest correla	ation for Austria are
Correlation	n Activity1 Ac	tivity2
1.00	EnergyIndustries	EnergyIndustriesPowerProduction1A
0.91	Agriculture	RoadTransport
0.82	FugitiveEmissions	OtherEnergy
0.82	Agriculture	Waste
0.79	OtherEnergy	Waste
0.76	RoadTransport	Waste
0.75	EnergyIndustriesPowerProduction1A1a	IndustryEner
0.74	EnergyIndustriesPowerProduction1A1a	IndustryProcess
0.74	EnergyIndustries	IndustryProcesses
0.72	EnergyIndustries	IndustryEnergy

53.33% of the sets of Activities pass the Parametric test with a significance level of 5.00%

51.11% of the sets of Activities pass the NON-Parametric test with a significance level of 5.00%

Σχήμα 1.22: Ιστόγραμμα των συντελεστών συσχέτισης για την Spain.

of Activities with the hi	ghest correlation for Spain are
Activity1	Activity2
EnergyIndustries	EnergyIndustriesPowerProduction1A
OtherTransport	Waste
RoadTransport	Waste
FugitiveEmissions	OtherTransport
OtherTransport	RoadTransport
FugitiveEmissions	Waste
Agriculture	EnergyIndustries
Agriculture	FugitiveEmissions
FugitiveEmissions	RoadTransport
Agriculture	EnergyIndustriesPowerProduction1A
	Activity1 EnergyIndustries OtherTransport RoadTransport FugitiveEmissions OtherTransport FugitiveEmissions Agriculture Agriculture FugitiveEmissions

64.44% of the sets of Activities pass the Parametric test with a significance level of 5.00%

66.67% of the sets of Activities pass the NON-Parametric test with a significance level of 5.00%

Σχήμα 1.23: Ιστόγραμμα των συντελεστών συσχέτισης για την Italy.

The 10 sets	of Activities with the highest correla	tion for Italy are
Correlation	Activity1 Act	ivity2
1.00	EnergyIndustries	EnergyIndustriesPowerProduction1A
0.97	EnergyIndustries	RoadTransport
0.96	<pre>EnergyIndustriesPowerProduction1A1a</pre>	RoadTranspo
0.96	EnergyIndustries	IndustryEnergy
0.96	<pre>EnergyIndustriesPowerProduction1A1a</pre>	IndustryEner
0.95	Agriculture	EnergyIndustries
0.95	Agriculture	EnergyIndustriesPowerProduction1A
0.93	Agriculture	RoadTransport
0.92	Agriculture	IndustryEnergy
0.91	IndustryEnergy	RoadTransport

40.00% of the sets of Activities pass the Parametric test with a significance level of 5.00%

37.78% of the sets of Activities pass the NON-Parametric test with a significance level of 5.00%

Σχήμα 1.24: Ιστόγραμμα των συντελεστών συσχέτισης για την Greece.

The 10 sets	of Activities with the highest correla	tion for Greece are
Correlation	Activity1 Act	ivity2
1.00	EnergyIndustries	EnergyIndustriesPowerProduction1A
0.92	EnergyIndustriesPowerProduction1A1a	IndustryEner
0.92	EnergyIndustries	IndustryEnergy
0.66	EnergyIndustries	RoadTransport
0.65	IndustryEnergy	IndustryProcesses
0.62	<pre>EnergyIndustriesPowerProduction1Ala</pre>	RoadTranspo
0.59	Agriculture	IndustryEnergy
0.54	Agriculture	IndustryProcesses
0.49	IndustryEnergy	RoadTransport
0.47	Agriculture	EnergyIndustriesPowerProduction1A

77.78% of the sets of Activities pass the Parametric test with a significance level of 5.00%

77.78% of the sets of Activities pass the NON-Parametric test with a significance level of 5.00%

1.7 Ζήτημα 7

Για την επίλυση αυτού του ζητήματος κάνουμε χρήση του κώδικα 16.

Σχήμα 1.25: Ιστόγραμμα των πολυωνυμικών όρων με το μεγαλύτερο $AdjR^2$.

	AdjR2	0rder	Country
Agriculture	0.96671	5	'Netherlands'
EnergyIndustries	0.99606	5	'Italy'
EnergyIndustriesPowerProduction1A1a	0.99382	5	'Italy'
FugitiveEmissions	0.98047	4	'France'
IndustryEnergy	0.99629	4	'Luxembourg'
IndustryProcesses	0.9754	4	'Sweden'
OtherEnergy	0.97918	4	'Germany'
OtherTransport	0.98636	5	'Germany'
RoadTransport	0.99763	3	'United Kingdom'
Waste	0.93096	2	'Luxembourg'

1.8 Ζήτημα 8

Για την επίλυση αυτού του ζητήματος κάνουμε χρήση του κώδικα 19. Παρακάτω δίνονται τα σχήματα και τα αποτελέσματα των βηματικών προσαρμόσεων για κάθε χώρα ξεχωριστά. Στα σχήματα υπάρχει οπτική ανάλυση του πόσο καλά προσαρμόζονται οι εκτιμήσεις στα πραγματικά δεδομένα. Ενώ στο επιστρεφόμενο κείμενο από των κώδικα υπάρχει η πληροφορία για το $AdjR^2$ καθώς και τους συντελεστές της κάθε προσαρμογής. Οι κατηγορίες Stepwizefit, MyStepwise και Full αντιστοιχούν στις προσαρμογές που έγιναν με την stepwisefit function του Matlab, την δική μασ συνάρτηση και το πλήρες μοντέλο αντίστοιχα.

Σε γενικές γραμμές οι προσαρμογές αναπαριστούν τα αρχικά δεδομένα με καλή ακρίβεια. Υπάρχουν μερικά προβλήματα όπως στην περίπτωση της Greece και Ireland όπου υπάρχουν κενά στα δεδομένα με αποτέλεσμα να επηρεάζουν την διαδικασία προσαρμογής.

Σχήμα 1.26: Πραγματικές και εκτιμούμενες τιμές για την Austria.

Multivariable fitting for Activities in Country Austria

	Stepwisefit	MyStepwise	Full
AdjR2	1	0.98418	1
Intercept	0.57636	125.45	0.57587
Agriculture	0.99855	0	0.99856
EnergyIndustries	1.0001	0	1.0001
EnergyIndustriesPowerProduction1A1a	0	1.8351	-2.3227e-05
FugitiveEmissions	0.99155	Θ	0.99156
IndustryEnergy	0.99937	Θ	0.99937
IndustryProcesses	0.99973	0	0.99973
OtherEnergy	1	1.025	1
OtherTransport	0.99631	Θ	0.99632
RoadTransport	0.99999	0.85459	0.99999
Waste	1.0331	Θ	1.0331

Σχήμα 1.27: Πραγματικές και εκτιμούμενες τιμές για την Belgium.

Multivariable fitting for Activities in Country Belgium

	Stepwisefit	MyStepwise	Full
			
AdjR2	0.9973	0.99169	1
Intercept	23.9	72.856	0.043911
Agriculture	0	0	0.99905
EnergyIndustries	1.2977	1.3598	0.99873
EnergyIndustriesPowerProduction1A1a	0	0	0.0006567
FugitiveEmissions	0	0	1.0159
IndustryEnergy	0	0	1.0068
IndustryProcesses	1.9938	0	0.99274
OtherEnergy	0	0	1.0051
OtherTransport	0	0	0.98095
RoadTransport	1.7411	2.0741	1.0033
Waste	0	0	0.97523
\end{[fontsize=\small]erbatim}			

\begin{figure}[H]

\centering

\includegraphics[width=1\columnwidth]{Ex8/Denmark_MultivarFits.eps} \caption{ $\Pi p \alpha \gamma \mu \alpha \tau \kappa \epsilon \varsigma \kappa \alpha \iota \epsilon \kappa \tau \iota \mu o \delta \mu \epsilon \varsigma \tau \iota \mu \epsilon \varsigma \gamma \iota \alpha \tau \eta v Denmark.} \label{fig:z83} \end{figure}$

	Stepwisefit	MyStepwise	Full
			
AdjR2	0.99992	0.99872	0.99999
Intercept	99.167	77.733	25.889
Agriculture	0.97628	0	0.97618
EnergyIndustries	0	0	0.60969
EnergyIndustriesPowerProduction1A1a	1.015	1.0301	0.39125
FugitiveEmissions	0	0	0.15607
IndustryEnergy	0	0	0.74619
IndustryProcesses	-6.6942	0	0.12353
OtherEnergy	0	0	0.90714
OtherTransport	0	0	0.72493
RoadTransport	1.5213	2.1126	1.1612
Waste	-1943.7	0	-579.13

Σχήμα 1.28: Πραγματικές και εκτιμούμενες τιμές για την Finland.

Multivariable fitting for Activities in Country Finland

	Stepwisefit	MyStepwise	Full
			
AdjR2	0.95853	1	0.99306
Intercept	-94.508	1.146e-12	61.973
Agriculture	12.453	1	12.9
EnergyIndustries	0	-7.0018e-14	-36.27
EnergyIndustriesPowerProduction1A1a	1.0375	3.7329e-14	37.026
FugitiveEmissions	-8.9045	-3.6758e-14	-12.193
IndustryEnergy	0	1.4721e-14	-2.7344
IndustryProcesses	0	-5.0031e-15	1.8925
OtherEnergy	3.1798	-6.584e-15	1.8574
OtherTransport	0	0	-1.8328
RoadTransport	0	5.6423e-15	3.6639
Waste	0	7.2905e-13	-139.65

Σχήμα 1.29: Πραγματικές και εκτιμούμενες τιμές για την France.

Multivariable fitting for Activities in Country France

Stepwisefit	MyStepwise	Full

AdjR2	1	0.98652	1
Intercept	1.6751	910.65	1.2303
Agriculture	1.0024	0	1.0034
EnergyIndustries	1.0005	0	0.99795
EnergyIndustriesPowerProduction1A1a	0	0	0.0025802
FugitiveEmissions	0.99873	0	0.99905
IndustryEnergy	0.9998	3.2067	1.0002
IndustryProcesses	1.0048	0	1.0015
OtherEnergy	0.99996	3.0522	0.99977
OtherTransport	0.99356	0	0.9952
RoadTransport	1.0003	0	1.0004
Waste	0.98949	0	0.98796

Σχήμα 1.30: Πραγματικές και εκτιμούμενες τιμές για την Germany.

Multivariable fitting for Activities in Country Germany

	Stepwisefit	MyStepwise	Full
			
AdjR2	0.99805	0.99425	1
Intercept	307.72	795.46	11.214
Agriculture	0	0	1.0008
EnergyIndustries	0	0	1.0005
EnergyIndustriesPowerProduction1A1a	0	0	-0.0010719
FugitiveEmissions	-31.288	0	1.0111

IndustryEnergy	3.8509	3.2964	0.99969
IndustryProcesses	2.5244	0	0.99878
OtherEnergy	Θ	0	1
OtherTransport	13.477	11.207	1.0002
RoadTransport	Θ	0	1.0001
Waste	0	0	2.9314

Σχήμα 1.31: Πραγματικές και εκτιμούμενες τιμές για την Greece.

Multivariable fitting for Activities in Country Greece

	Stepwisefit	MyStepwise	Full
AdjR2	0.97082	0.89938	0.97
Intercept	48.079	192.78	-67.767
Agriculture	0	0	1.6209
EnergyIndustries	0	0	0.81668
EnergyIndustriesPowerProduction1A1a	1.1346	1.0904	0.28362
FugitiveEmissions	0	0	1.733
IndustryEnergy	0.89349	0	0.92504
IndustryProcesses	4.5881	1.1541	3.9211
OtherEnergy	0.94408	0	0.78521
OtherTransport	0.90138	0.98916	0.8848
RoadTransport	0.68783	0	0.97042
Waste	0	0	Θ

Σχήμα 1.32: Πραγματικές και εκτιμούμενες τιμές για την Ireland.

Multivariable fitting for Activities in Country Ireland

	Stepwisefit	MyStepwise	Full
AdjR2	NaN	NaN	NaN
Intercept	0	0	0
Agriculture	NaN	0	0
EnergyIndustries	NaN	0	0
EnergyIndustriesPowerProduction1A1a	NaN	0	0
FugitiveEmissions	NaN	0	0
IndustryEnergy	NaN	0	0
IndustryProcesses	NaN	0	0
OtherEnergy	NaN	0	0
OtherTransport	NaN	0	0
RoadTransport	NaN	0	0
Waste	NaN	0	0

Σχήμα 1.33: Πραγματικές και εκτιμούμενες τιμές για την Italy.

Multivariable fitting for Activities in Country Italy

	Stepwisefit	MyStepwise	Full
AdjR2	0.99955	0.99535	1
Intercept	236.84	795.77	-8.4128
Agriculture	0	0	1.0478
EnergyIndustries	1.1083	1.601	1.015
EnergyIndustriesPowerProduction1A1a	0	0	-0.020811
FugitiveEmissions	0	0	0.96018
IndustryEnergy	0.73009	0	0.99561
IndustryProcesses	0	0	0.99623
OtherEnergy	2.4875	0	1.0249
OtherTransport	0	0	1.0093
RoadTransport	1.3897	0.95283	0.99966
Waste	0	0	0.94412

Σχήμα 1.34: Πραγματικές και εκτιμούμενες τιμές για την Luxembourg.

Multivariable fitting for Activities in Country Luxembourg

 $T = 12 \times 3 \text{ table}$

	Stepwisefit	MyStepwise	Full
			
AdjR2	1	0.99902	1
Intercept	0.44334	8.2746	0.43625
Agriculture	1.0431	0	1.0431
EnergyIndustries	0.98625	0	0.98621
EnergyIndustriesPowerProduction1A1a	0	0	Θ
FugitiveEmissions	-9.0633	0	-9.0182
IndustryEnergy	1.0004	1.1554	1.0004
IndustryProcesses	1.001	0	1.0011
OtherEnergy	0.99722	0	0.99727
OtherTransport	0.9718	0	0.97168
RoadTransport	1.0058	0.72766	1.0058
Waste	0	0	0.57505

Σχήμα 1.35: Πραγματικές και εκτιμούμενες τιμές για την Netherlands.

Multivariable fitting for Activities in Country Netherlands

	Stepwisefit	MyStepwise	Full
AdjR2	0.99979	0.99557	0.99979
Intercept	-27.708	2.0338	-24.21
Agriculture	0.72279	0	0.82979
EnergyIndustries	0.96859	0	0.97796
EnergyIndustriesPowerProduction1A1a	0	0	-0.05186
FugitiveEmissions	1.4303	0	1.3791
IndustryEnergy	1.0973	1.2597	1.0776
IndustryProcesses	0.87159	0	0.95956
OtherEnergy	0	0	0.63861
OtherTransport	1.3765	0	1.153
RoadTransport	1.2703	2.944	1.1673
Waste	0	0	1.3544

Σχήμα 1.36: Πραγματικές και εκτιμούμενες τιμές για την Portugal.

Multivariable fitting for Activities in Country Portugal

	Stepwisefit	MyStepwise	Full
AdjR2	0.99999	0.86944	1
Intercept	3.4454	117.28	2.8042
Agriculture	0.89938	9.5993	0.93988
EnergyIndustries	0.99466	0.94915	0.98177
EnergyIndustriesPowerProduction1Ala	0	0	0.01454
FugitiveEmissions	0.91417	0	0.97735
IndustryEnergy	1.0218	0	1.0156
IndustryProcesses	0.99696	0	0.99753
OtherEnergy	1.027	0	1.0136
OtherTransport	0.9982	0	0.98878
RoadTransport	1.0002	-3.9099	1.0026
Waste	0.95391	0	0.97481

Σχήμα 1.37: Πραγματικές και εκτιμούμενες τιμές για την Spain.

Multivariable fitting for Activities in Country Spain

	Stepwisefit	MyStepwise	Full
AdjR2	0.96882	0.96882	1
Intercept	1275.1	1275.1	1.7906e-05
Agriculture	0	0	1
EnergyIndustries	0.91608	0.91608	1
EnergyIndustriesPowerProduction1A1a	0	0	4.7977e-08
FugitiveEmissions	0	0	1
IndustryEnergy	0	0	1
IndustryProcesses	0	0	1
OtherEnergy	5.5264	5.5264	1
OtherTransport	0	0	1
RoadTransport	0	0	1
Waste	0	0	1

Σχήμα 1.38: Πραγματικές και εκτιμούμενες τιμές για την Sweden.

Multivariable fitting for Activities in Country Sweden

	Stepwisefit	MyStepwise	Full
AdjR2	0.9992	0.9976	1
Intercept	56.276	59.476	1.1726
Agriculture	0	0	1.0118
EnergyIndustries	0	0	1.0408
EnergyIndustriesPowerProduction1A1a	0.81219	0	-0.036913
FugitiveEmissions	0	0	0.96369
IndustryEnergy	0	0	0.99073
IndustryProcesses	1.8515	2.2998	0.98606
OtherEnergy	0	0	1.0346
OtherTransport	0	0	0.99516
RoadTransport	1.4246	1.4017	0.99781
Waste	0	0	0.59146

Σχήμα 1.39: Πραγματικές και εκτιμούμενες τιμές για την United Kingdom.

Multivariable fitting for Activities in Country United Kingdom

	Stepwisefit	MyStepwise	Full
			
AdjR2	1	0.99806	1
Intercept	4.7657	530.96	11.531
Agriculture	1.0324	0	1.0613
EnergyIndustries	1.0006	1.1866	0.92625
EnergyIndustriesPowerProduction1A1a	0	0	0.074051
FugitiveEmissions	0.97923	0	1.0038
IndustryEnergy	1.0092	0	1.008
IndustryProcesses	1.0837	0	1.1626
OtherEnergy	0.99949	0	1.0115
OtherTransport	0.98561	0	0.96598
RoadTransport	0.98992	1.5858	0.98476
Waste	0.94384	0	0.87251

1.9 Ζήτημα 9

Για την επίλυση αυτού του ζητήματος κάνουμε χρήση του κώδικα 22. Εκτελώντας τον παραπάνω κώδικα για κάθε δραστηριότητα για την Greece, παίρνουμε τα παρακάτω αποτελέσματα.

Σχήμα 1.40: Πραγματικές και εκτιμούμενες τιμές για την Agriculture.

Multivariable fitting in Greece for activity Agriculture

	Stepwisefit	MyStepwise	Full
			
AdjR2	0.86178	0.88512	0.82286
Intercept	45.596	45.702	47.088
Austria	0	0	0.096335
Belgium	-0.015028	-0.015874	-0.017953
Denmark	0	0.00443	-0.015499
Finland	0	0	0.027114
France	0	0	-0.0072636
Germany	-0.0039902	-0.0041459	-4.3904e-05
Ireland	0	0	0.031979
Italy	0	0	0.0064466
Luxembourg	0.81344	0.85913	-0.79274
Netherlands	0	0	0.0072244
Portugal	0	0	0.07024
Spain	0	0	-0.0046717
Sweden	0	0	-0.048242
United Kingdom	0.01214	0.010109	-0.00068957

Σχήμα 1.41: Πραγματικές και εκτιμούμενες τιμές για την EnergyIndustries.

Multivariable fitting in Greece for activity EnergyIndustries

	Stepwisefit	MyStepwise	Full
AdjR2	0.90198	0.92286	0.83018
Intercept	474.51	467.32	296.64
Austria	0	0	1.949
Belgium	0	0	1.9156
Denmark	0	0	0.052545
Finland	0	-0.61138	0.69142
France	0	0	0.25209
Germany	0	Θ	0.11984
Ireland	-2.0901	-0.9729	-3.9346
Italy	0	0	-0.20664
Luxembourg	0	47.594	-49.602
Netherlands	0	0	0.83065
Portugal	0	Θ	1.3159
Spain	0	-0.077521	0.02111
Sweden	0	0	0.88024
United Kingdom	0	0	-0.245

Σχήμα 1.42: Πραγματικές και εκτιμούμενες τιμές για την EnergyIndustriesPowerProduction1A1a.

Multivariable fitting in Greece for activity EnergyIndustriesPowerProduction1Ala

	Stepwisefit	MyStepwise	Full
		-	-
AdjR2	0.87445	0.89708	0.71327
Intercept	434.55	387.12	259.41
Austria	0	0	-1.088
Belgium	0	0.73171	3.2609
Denmark	0	0	0.6597
Finland	0	-0.39525	1.8287
France	0	0	0.16972
Germany	0	0	0.20092
Ireland	-1.8594	-1.3344	-4.7954
Italy	0	-0.14575	-0.37673
Luxembourg	0	0	-91.87
Netherlands	0	0	0.79198
Portugal	0	0	2.0357
Spain	0	0	0.13377
Sweden	0	1.8285	-1.9564
United Kingdom	0	0	-0.28303

Σχήμα 1.43: Πραγματικές και εκτιμούμενες τιμές για την Fugitive Emissions.

Multivariable fitting in Greece for activity FugitiveEmissions

	Stepwisefit	MyStepwise	Full
AdjR2	0	0.77567	0.53648
Intercept	6.6644	9.592	10.814
Austria	0	0.99219	1.6424
Belgium	0	0	-0.092541
Denmark	0	0	0.76422
Finland	0	0.076773	0.085452
France	0	0	0.022749
Germany	0	0	0.016665
Ireland	0	0	-32.693
Italy	0	0	0.032679
Luxembourg	0	0	-6.5289
Netherlands	0	0	-0.01197
Portugal	0	-0.58438	-0.62403
Spain	0	0.041141	0.0066155
Sweden	0	0	-0.36538
United Kingdom	0	-0.18922	-0.3308

Σχήμα 1.44: Πραγματικές και εκτιμούμενες τιμές για την IndustryEnergy.

Multivariable fitting in Greece for activity IndustryEnergy

	Stepwisefit	MyStepwise	Full
			
AdjR2	0.90343	0.97125	0.95425
Intercept	-119.16	-35.916	119.11
Austria	0	0	2.1411
Belgium	0	2.0229	1.8359
Denmark	0	0	-5.0327
Finland	0.37344	-0.015284	-0.1505
France	0.35764	0.017361	0.12145
Germany	0	0.03927	0.12252
Ireland	0	-0.19345	-1.042
Italy	0	0	-0.093878
Luxembourg	0	2.9127	-3.5578
Netherlands	0	0	-1.2819
Portugal	0.63502	0.73275	0.54247
Spain	0	-0.16366	-0.52836
Sweden	0	1.4636	1.8461
United Kingdom	0	-0.39097	0.10122

Σχήμα 1.45: Πραγματικές και εκτιμούμενες τιμές για την IndustryProcesses.

Multivariable fitting in Greece for activity IndustryProcesses

	Stepwisefit	MyStepwise	Full
			
AdjR2	0.8488	0.94484	0.9072
Intercept	3.5538	5.9051	4.7513
Austria	0.33126	0.29805	0.45469
Belgium	0	0.13114	0.14683
Denmark	0	0	0.40205
Finland	0.14777	-0.046504	-0.0028813
France	0	-0.14279	-0.15543
Germany	0	0.022111	0.021385
Ireland	0	0	-0.65945
Italy	0	-0.026603	-0.031864
Luxembourg	0	3.6695	3.6702
Netherlands	0	-0.053754	-0.03875
Portugal	0	0.019561	0.024573
Spain	0	0.34451	0.30929
Sweden	0	0	-0.0072315
United Kingdom	0	-0.092307	-0.096864

Σχήμα 1.46: Πραγματικές και εκτιμούμενες τιμές για την OtherEnergy.

Multivariable fitting in Greece for activity OtherEnergy

	Stepwisefit	MyStepwise	Full
AdjR2	0	0.43077	0.74738
Intercept	29.431	63.618	56.321
Austria	0	-0.73635	-1.4445
Belgium	0	0.95897	1.903
Denmark	0	-0.58404	-1.8441
Finland	0	0	0.48462
France	0	0	-0.19306
Germany	0	0.0010798	-0.076534
Ireland	0	0	3.0946
Italy	0	0	0.4919
Luxembourg	0	-32.7	-39.493
Netherlands	0	0	0.53744
Portugal	0	0	-0.69296
Spain	0	0	0.047386
Sweden	0	0	-0.64824
United Kingdom	0	0	0.050059

Σχήμα 1.47: Πραγματικές και εκτιμούμενες τιμές για την OtherTransport.

Multivariable fitting in Greece for activity OtherTransport

	Stepwisefit	MyStepwise	Full
			
AdjR2	0.244	0.70262	0.40267
Intercept	85.82	72.405	591.2
Austria	0	0	-6.0897
Belgium	0	1.2661	2.106
Denmark	0	0	-4.3533
Finland	0	0.91441	1.3149
France	0	0.83505	0.91368
Germany	0	0	0.071008
Ireland	0	0	6.0115
Italy	0	0	-0.4334
Luxembourg	82.645	37.353	14.79
Netherlands	0	0	-1.1693
Portugal	0	-2.6332	-1.0819
Spain	0	0	-0.92951
Sweden	0	-4.6855	-6.1015
United Kingdom	0	-0.10652	-0.081946

Σχήμα 1.48: Πραγματικές και εκτιμούμενες τιμές για την RoadTransport.

$\begin{array}{c} \text{Multivariable fitting in Greece for activity} \\ \text{RoadTransport} \end{array}$

	Stepwisefit	MyStepwise	Full
		- 	
AdjR2	0.83639	0.85769	0.77331
Intercept	10.724	38.682	42.24
Austria	Θ	0	0.33988
Belgium	Θ	0	0.63679
Denmark	Θ	0	-1.3146
Finland	0	0	0.13043
France	0	0	0.089271
Germany	0	0	0.0024107
Ireland	0	0	-0.025922
Italy	0	0	-0.14636
Luxembourg	0	0	-0.43498
Netherlands	0	-0.20742	-0.48155
Portugal	-0.29601	-0.163	-1.0821
Spain	0.24652	0.1776	0.28207
Sweden	0	0	-0.46734
United Kingdom	0	0.042191	0.21825

Σχήμα 1.49: Πραγματικές και εκτιμούμενες τιμές για την Waste.

Multivariable fitting in Greece for activity Waste

	Stepwisefit	MyStepwise	Full
AdjR2	NaN	NaN	NaN
Intercept	0	0	0
Austria	NaN	0	0
Belgium	NaN	0	0
Denmark	NaN	0	0
Finland	NaN	0	0
France	NaN	0	0
Germany	NaN	0	0
Ireland	NaN	0	0
Italy	NaN	0	0
Luxembourg	NaN	0	0
Netherlands	NaN	0	0
Portugal	NaN	0	0
Spain	NaN	0	0
Sweden	NaN	0	0
United Kingdom	NaN	0	0

1.10 Ζήτημα 10

Για την επίλυση αυτού του ζητήματος κάνουμε χρήση του κώδικα 25. Εκτελώντας τον παραπάνω κώδικα για 10 τυχαία ζεύγη δραστηριοτήτων και χωρών και επιλέγοντας σε κάθε ένα πολυώνυμο βαθμού 1 παίρνουμε τα παρακάτω αποτελέσματα.

Σχήμα 1.50: Διάγραμμα ιστορίας για την χώρα Belgium και δραστηριότητα EnergyIndustries.

Σχήμα 1.51: Διάγραμμα ιστορίας για την χώρα Belgium και δραστηριότητα Waste.

Σχήμα 1.52: Διάγραμμα ιστορίας για την χώρα France και δραστηριότητα IndustryEnergy.

Σχήμα 1.53: Διάγραμμα ιστορίας για την χώρα Italy και δραστηριότητα Waste.

Σχήμα 1.54: Διάγραμμα ιστορίας για την χώρα Luxembourg και δραστηριότητα RoadTransport.

Σχήμα 1.55: Διάγραμμα ιστορίας για την χώρα Spain και δραστηριότητα EnergyIndustries.

Σχήμα 1.56: Διάγραμμα ιστορίας για την χώρα Sweden και δραστηριότητα IndustryEnergy.

Σχήμα 1.57: Διάγραμμα ιστορίας για την χώρα Sweden και δραστηριότητα Waste.

Σχήμα 1.58: Διάγραμμα ιστορίας για την χώρα United Kingdom και δραστηριότητα OtherTransport.

Σχήμα 1.59: Διάγραμμα ιστορίας για την χώρα United Kingdom και δραστηριότητα Waste.

Παρακάτω δίνονται σε μορφή πίνακα τα αποτελέσματα των παραπάνω ζευγών. Στην τρίτη στήλη (Trend) με 1 συμβολίζεται αν τα αρχικά δεδομένα είχαν τάση και με 0 αν δεν είχαν. Στην τέταρτη στήλη (AutoCorr) με 1 συμβολίζεται αν τα υπόλοιπα μετά την αφαίρεση του βαθμού του πολυωνύμου έχουν σημαντική αυτοσυσχέτιση ή 0 αν δεν έχουν.

Countries	Activities	Trend	AutoCorr
'Spain'	'EnergyIndustries'	1	Θ
'Sweden'	'Waste'	1	0
'Belgium'	'Waste'	1	0
'Sweden'	'IndustryEnergy'	1	0
'Luxembourg'	'RoadTransport'	1	1
'Belgium'	'EnergyIndustries'	1	1
'France'	'IndustryEnergy'	1	1
'Italy'	'Waste'	0	0
'United Kingdom'	'OtherTransport'	1	1
'United Kingdom'	'Waste'	1	0

2 Προγράμματα

Στο κεφάλαιο αυτό παραθέτονται οι κώδικες σε γλώσσα Matlab που χρησιμοποιήθηκαν για την επίλυση των παραπάνω ζητημάτων. Σε περίπτωση που κώδικας καλεί επί μέρους συναρτήσεις

αυτές αναφέρονται και παραθέτονται.

2.1 Exercise1

Πρόγραμμα Matlab για την επίλυση του Ζητούμενου 1.1. Το οποίο με την σειρά του καλεί τα προγράμματα DataLoader και Chartme.

Listing 1: Project2019Ex1.m

```
1 clc;
2 clear all;
3
 4 %% Preload
 5 % find all data and activities
 6 filelist = dir('EmissionP10*EU15.xls'); % Get the filenames of the
       data files
7 \mid \text{names} = \{ \text{filelist} (:) . \text{name} \};
8 Activities = extractBetween(names(:), "EmissionP10", "EU15");
9 ActLength = length (Activities);
10 %Load a file to get the names of countries and years
11 [data, txt, raw] = xlsread('EmissionP10EnergyIndustriesEU15.xls');
12 | dataname = txt(2,1);
13 years = str2double(txt(2:end,2));
14 Countries = [];
15 for i=1:length(data(1,:)) % get the name of the countries and
      store them
       Countries = [Countries, extractBetween(txt(1, i+2),") - ",
16
            ")];
17 end
18 Countries = Countries ';
19 CountLength = length (Countries);
20
21 %%MAIN program
22 | %Prompt user to choose from countries and activities
23 prompt = ['Choose type of plot\n One(1) for plotting DIFFERENT
      quantities ' ...
        for the same country\n Two(2) for plotting the SAME
24
          quantity for ' ...
         different countries \n Please insert 1 or 2\n'];
25
26
27
  while 1
       chk1 = int8(input(prompt));
28
       if chk1 == 1 | chk1 == 2
29
           break;
30
       end
31
32 end
33 fprintf('\n The available countries are\n');
34 for i = 1: CountLength
       fprintf('%d \t %s\n',i,Countries{i});
36 end
37
38 \mid if \quad chk1 ==1
```

```
39
       prompt2 = ['Choose one country by the number on the left: '
          ];
       while 1
40
           Count1 = int8(input(prompt2));
41
           if isinteger (Count1) & 1 <= Count1 & Count1 <=
42
              CountLength
               break;
43
           end
44
45
       end
46
47
       fprintf('\n The available activities are \n');
48
       for i = 1: ActLength
49
       fprintf('%d \t %s\n',i, Activities(i));
50
       end
51
52
53
       prompt3 = ['Choose the first activity by the number on the
54
          left: '];
       while 1
55
           Count2 = int8(input(prompt3));
56
           if isinteger (Count2) & 1 <= Count2 & Count2 <= ActLength
57
                break:
58
59
           end
       end
60
61
62
       prompt4 = ['Choose the second activity by the number on the
63
          left: '];
64
       while 1
65
           Count3 = int8(input(prompt4));
           if isinteger (Count3) & 1 <= Count3 & Count3 <= ActLength
66
                break:
67
           end
68
69
       end
       %load the data for the country
70
      D1 = DataLoader(filelist, Count2, Count1);
71
      D2 = DataLoader(filelist, Count3, Count1);
72
73
       Chartme (Countries (Count1), Activities (Count2), Activities (
74
          Count3), D1, D2, ...
           years, chk1)
75
76
77
  else
78
       prompt2 = ['Choose the first country by the number on the
          left: '];
       while 1
79
           Count1 = int8(input(prompt2));
80
           if isinteger (Count1) & 1 <= Count1 & Count1 <=
81
              CountLength
```

```
82
                break;
            end
83
       end
84
       prompt3 = ['Choose the second country by the number on the
85
           left: '];
86
       while 1
            Count2 = int8(input(prompt3));
87
            if isinteger (Count2) & 1 <= Count2 & Count2 <=
88
               CountLength
                break;
89
90
            end
       end
91
92
93
        fprintf('\n The available activities are \n');
94
95
       for i = 1: ActLength
       fprintf('%d \t %s\n',i, Activities(i));
96
97
       end
98
       prompt4 = ['Choose one activity by the number on the left: '
99
       while 1
100
            Count3 = int8(input(prompt4));
101
102
            if isinteger (Count3) & 1 <= Count3 & Count3 <= ActLength
                break:
103
            end
104
105
       end
       %load the data for the activity
106
       D1 = DataLoader(filelist, Count3, Count1);
107
       D2 = DataLoader(filelist, Count3, Count2);
108
109
110
       Chartme (Countries (Count1), Countries (Count2), Activities (
           Count3), D1, D2, ...
            years, chk1)
111
112 end
```

2.2 DataLoader

Πρόγραμμα για την επιλογή και εισαγωγή δεδομένων προς ανάλυση στο Matlab

Listing 2: Dataloader.m

```
function Dar = DataLoader (filenames, ActCount, Count, chk)
1
     %Function that searches throught the filenames and returns
2
         the data for
     % a specific country and activity
3
      datafile = filenames (ActCount).name;
4
5
6
      [data,txt,raw] = xlsread(datafile);
7
      if nargin < 4 | chk == 0
8
          Dar = data(:, Count);
```

2.3 Chartme

Πρόγραμμα για την δημιουργία Ιστογραμμάτων για το Ζητούμενου 1.1.

Listing 3: Chartme.m

```
function Chartme (StrA, StrB, StrC, D1, D2, years, OpChk, nbins1)
 2
 3
       %Default bin number follows Sturge's Law
 4
 5
       if nargin < 8
           nbins1 = round(1+3.322*log10(length(D1)));
 6
 7
       end
 8
       %Plot initial data
       subplot (1,2,1);
 9
       histogram (D1, nbins1, 'DisplayStyle', 'stairs')
10
11
       hold on;
12
       histogram (D2, nbins1, 'DisplayStyle', 'stairs')
       if OpChk == 2 %Two countries same activity
13
           leg1 = strcat(StrA, "-", StrC);
14
           leg2 = strcat(StrB,"-",StrC);
15
           legend(leg1,leg2, 'Location', 'Best')
16
17
       else % Same country different activities
           leg1 = strcat(StrA,"-",StrB);
18
           leg2 = strcat(StrA, "-", StrC);
19
           legend(leg1,leg2, 'Location', 'Best')
20
21
       end
22
       title ('EmissionP10 - Initial Data');
23
       % find and remove mean value and normalize sigma
24
       D1 = D1-mean(D1);
25
       D2 = D2-mean(D2);
26
       D1 = D1./std(D1);
27
       D2 = D2./std(D2);
28
       subplot(1,2,2);
29
30
       histogram (D1, nbins1, 'DisplayStyle', 'stairs')
31
       histogram (D2, nbins1, 'DisplayStyle', 'stairs')
32
       legend(leg1,leg2, 'Location', 'Best')
33
       title ('EmissionP10 - Mean=0 and Sigma=1');
34
       set(findall(gcf, '-property', 'FontSize'), 'FontSize',14);
35
36
37 end
```

2.4 Exercise2

Πρόγραμμα Matlab για την επίλυση του Ζητούμενου 1.2. Το οποίο με την σειρά του καλεί το προγράμμα DataLoader.

Listing 4: Project2019Ex2.m

```
1 clc:
2 clear all;
4 %% Preload
5 % find all data and activities
6 filelist = dir ('Emission P10 * EU15. xls'); % Get the filenames of the
       data files
7 filelist (7) = []; % remove the Nationatotals filename
8 names = { filelist (:) .name };
9 Activities = extractBetween(names(:), "EmissionP10", "EU15");
10 ActLength = length (Activities);
11 %Load a file to get the names of countries and years
12 [data,txt,raw] = xlsread('EmissionP10EnergyIndustriesEU15.xls');
13 dataname = txt(2,1);
14 years = str2double(txt(2:end,2));
15 Countries = [];
16 for i=1:length (data (1,:)) % get the name of the countries and
      store them
       Countries = [Countries, extractBetween(txt(1,i+2),") - "," -
17
           ")];
18 end
19 Countries = Countries ';
20 CountLength = length (Countries);
22 alpha = 0.05; % Set the significance level Default 5%
23 \mid \text{numbin} = 4;
24 | SumH0 = 0;
25 degfree = numbin - 3; % because continuous distributions with mean
     and sigma and sum npoints
26 chi2limit = chi2inv(1-alpha, degfree); %the upperlimit in chi2
      above which H0 is rejected
  for i = 1: ActLength
27
28
       expval = 0;
29
       for j = 1: CountLength
30
           dataV = DataLoader(filelist,i,j);
31
           npoints = length(dataV);
32
           % dataV = dataV - mean(dataV);
33
           % dataV = dataV./std(dataV);
34
           %Calculate basic statistics
35
           meanV = mean(dataV);
36
37
           stdV = std(dataV);
38
           [ncounts, Edges] = histcounts(dataV, numbin);
39
           for k=1:numbin
40
```

```
41
                expval(k) = npoints * (normcdf(Edges(k+1), meanV, stdV) -
                   normcdf(Edges(k), meanV, stdV));
                \% expval(k) = npoints * (normcdf(Edges(k+1)) - normcdf(
42
                   Edges(k));
           end
43
           xi2 = sum((ncounts-expval).^2./expval);
44
           %pval = chi2cdf(xi2, degfree, 'upper');
45
           if xi2 < chi2limit
46
               h = 0;
47
           else
48
               h = 1;
49
50
           end
51
           p1 = scatter(i*j,xi2);
           hold on;
52
              chi2 = sum((dataV - meanV)^2./dataV);
53 %
           % if i ~= 10 & j ~= 7% remove problematic dataset
54
                \%pd = fitdist(dataV, 'Normal');
55
                %[h,p,stats] = chi2gof(dataV,'Alpha',alpha,'NBins
56
                    ',7,'CDF',pd);
           % els e
57
                 h = 0;
58
59
           %end
60
           SumH0 = SumH0 + h:
61
           % fprintf('% d % d % d \land n', i, j, SumH0);
62
       end
63
64
65
66 end
67
68 p2 = line([1 ActLength * CountLength], [chi2limit chi2limit], 'Color
      ', 'red', 'LineStyle', '---');
69 title ('Testing if datasets are from Normal distribution');
70 ylabel ('Chi2 value');
71 xlabel ('Dataset');
72 legend ([p1, p2], { 'Chi2', 'Chi2 maximum'});
73 set (findall (gcf, '-property', 'FontSize'), 'FontSize',14)
74 hold off;
75 fprintf(['\nAt the significance level of %5.2f%% the percentage
      of the datasets \n' ...
           'that could be from a Normal distribution are %5.2 f%% \n
76
               '],100* alpha , ...
           100*(1-SumH0/(ActLength*CountLength)));
77
78
79 fprintf('\nAt the confindence level of %5.2f%%\n',100*alpha);
80 %% Part two
81 figure ();
82 DataM = zeros (length (years), ActLength);
84 for i = 1: ActLength
```

```
85
        for j = 1: CountLength
86
87
           dataV = DataLoader(filelist,i,j);
           DataM(:, i) = DataM(:, i) + dataV;
88
89
       end
90
        npoints = length(years);
            % dataV = dataV - mean(dataV);
91
            % dataV = dataV./std(dataV);
92
93
            %Calculate basic statistics
       meanV = mean(DataM(:, i));
94
95
       stdV = std(DataM(:, i));
        [ncounts, Edges] = histcounts(DataM(:,i),numbin);
96
97
98
            for k = 1: numbin
                 expval(k) = npoints * (normcdf(Edges(k+1), meanV, stdV)-
99
                    normcdf(Edges(k), ...
                     meanV, stdV));
100
                \%expval(k) = npoints * (normcdf(Edges(k+1)) - normcdf(
101
                    Edges(k));
            end
102
            xi2 = sum((ncounts-expval).^2./expval);
103
            %pval = chi2cdf(xi2, degfree, 'upper');
104
            fprintf('\nDoes %s Follow a normal distribution : ', ...
105
106
                 Activities { i });
            if xi2 < chi2limit
107
                h = 0;
108
109
                 fprintf('YES');
                lwid = 1.5;
110
            else
111
                h = 1;
112
                 fprintf('NO');
113
                lwid = 0.5;
114
115
            end
       NormAct = DataM(:, i)-meanV;
116
       NormAct = NormAct./std(NormAct);
117
       h1 = histogram (NormAct, numbin, 'DisplayStyle', 'stairs', '
118
           LineWidth ', lwid);
       hold on;
119
120
121 end
122 fprintf('\n');
123 \times 1 = linspace(-3,3);
124 plot (x1,18* normpdf(x1), 'LineWidth',2);
125 | legend ({ Activities {:} , 'Normal Distribution '}, 'Location ', 'Best');
126 title ('Normalized Activity Distribution');
127 ylabel ('Occurances');
128 xlabel ('Sigma distance from mean');
129 set (findall (gcf, '-property', 'FontSize'), 'FontSize', 14)
```

2.5 Exercise3

Πρόγραμμα Matlab για την επίλυση του Ζητούμενου 1.3. Το οποίο με την σειρά του καλεί το προγράμμα DataLoader, CIs και MeanP10.

Listing 5: Project2019Ex3.m

```
1 clc:
 2 clear all;
 4 %% Preload
 5 % find all data and activities
 6 filelist = dir ('Emission P10 * EU15. xls'); % Get the filenames of the
       data files
7 % set tha filename for National Totals
8 TotFilename = 'EmissionP10NationalTotalsEU15.xls';
9 filelist (7) = []; % remove the Nationatotals filename
|10| names = { filelist (:) . name };
11 Activities = extractBetween (names (:), "EmissionP10", "EU15");
12 ActLength = length (Activities);
13 %Load a file to get the names of countries and years
14 [data, txt, raw] = xlsread('EmissionP10EnergyIndustriesEU15.xls');
15 dataname = txt(2,1);
16 years = str2double(txt(2:end,2));
17 Countries = [];
18 | for i = 1 : length(data(1,:)) % get the name of the countries and
      store them
       Countries = [Countries, extractBetween(txt(1,i+2),") - "," -
19
           ")];
20 end
21 Countries = Countries ';
22 CountLength = length (Countries);
23 alpha = 0.05; % Set the significance level
24
25 % Main program
26 fprintf('\n The available activities are \n');
27
28 for i = 1: ActLength
       fprintf('%d \t %s\n',i, Activities{i});
29
30 end
31
32 prompt3 = ['Choose an activity by the number on the left: '];
33 while 1
       Count2 = int8(input(prompt3));
34
       if isinteger (Count2) & 1 <= Count2 & Count2 <= ActLength
35
           break;
36
       end
37
38 end
39
40 A = DataLoader (filelist, Count2, 1, 1); % get the values for a
      specific activity
41 Ball = xlsread (TotFilename); % get the totals for all countries
```

```
42 | MeanP10 (A, Ball, alpha);
```

2.6 CIs

Πρόγραμμα για τον υπολογισμό διαστημάτων εμπιστοσύνης για το Ζητούμενο 1.3.

Listing 6: CIs.m

```
1 function [pCIs, npCIs] = CIs(A, B, alpha)
 2 | % Calculate the Confidence Intervals (CIs) for the relative mean
      value of
 3 % A compared to B for a significance level of alpha. Returns
      bothe
 4 % the parametric and non parametric CIS.
 6 D3 = A./B; %relative value
7 meanD3 = mean(D3); %mean of relative
8 \mid stdD3 = std(D3); \%std of relative
9 \mid nsize = length(D3);
10 % parametric analysis
11 \mid ta = tinv(1-alpha/2, nsize-1);
12 pCIs = [meanD3-ta*stdD3/sqrt(nsize),meanD3+ta*stdD3/sqrt(nsize)
      ]; % parametric intervals
13
14 % non parametric analysis
15 m = 1000; %number of randomly selecting sets of pairs
16 % create random pairs fo A and B by randomly selecting the
      indices of array
17 %B
18 | D4 = zeros(m, 1);
19
20 | for i = 1:m
       indx = unidrnd(nsize, nsize, 1);
21
       D4(i) = mean(A(indx)./B(indx));
22
23 end
24
25 | D4 = sort(D4);
26 \mid minCI = round(m*alpha/2);
  maxCI = round(m*(1-alpha/2));
28
29 \mid npCIs = [D4(minCI), D4(maxCI)];
30
31
32 end
```

2.7 MeanP10

Πρόγραμμα για τον υπολογισμό των μέσων τιμών για το Ζητούμενο 1.3.

Listing 7: MeanP10.m

```
function MeanP10 (AM, BM, alpha)
2
       nCount = length (AM(1,:)); % get the number of countries
3
       pCIs = zeros(nCount, 2);
       npCIs = zeros (nCount, 2);
4
       mpCIs = zeros (nCount, 1);
5
6
       mnpCIs = zeros (nCount, 1);
7
8
       for i = 1: nCount
9
          [pCIs(i,:), npCIs(i,:)] = CIs(AM(:,i),BM(:,i),alpha);
10
       end
11
12
       mpCIs = mean(pCIs, 2);
       mnpCIs = mean(npCIs, 2);
13
14
       figure();
       errorbar(1:nCount, mpCIs, pCIs(:,1), pCIs(:,2), 'o');
15
16
       errorbar (1: nCount, mnpCIs, npCIs(:,1), npCIs(:,2), '*');
17
       title('Mean and CIs of avtivity');
18
       vlabel('Relative mean PM10 value');
19
       xlabel('Country code');
20
       legend('Parametric','Non Parametric');
21
       set(findall(gcf, '-property', 'FontSize'), 'FontSize',14);
22
23 end
```

2.8 Exercise4

Πρόγραμμα Matlab για την επίλυση του Ζητούμενου 1.4. Το οποίο με την σειρά του καλεί το προγράμμα DataLoader, stdCIs και StdP10.

Listing 8: Project2019Ex4.m

```
1 clc:
2 clear all;
4 %% Preload
5 % find all data and activities
6 filelist = dir ('Emission P10 * EU15. xls'); % Get the filenames of the
       data files
7 % set tha filename for National Totals
8 TotFilename = 'EmissionP10NationalTotalsEU15.xls';
9 filelist (7) = []; %remove the Nationatotals filename
10 names = { filelist (:) . name };
11 Activities = extractBetween (names (:), "EmissionP10", "EU15");
12 ActLength = length (Activities);
13 %Load a file to get the names of countries and years
14 [data, txt, raw] = xlsread('EmissionP10EnergyIndustriesEU15.xls');
15 dataname = txt(2,1);
16 years = str2double(txt(2:end,2));
17 Countries = [];
18 for i=1:length(data(1,:)) % get the name of the countries and
      store them
```

```
19
       Countries = [Countries, extractBetween(txt(1,i+2),") - ","
           ")];
20 end
21 Countries = Countries ';
22 | CountLength = length (Countries);
23 alpha = 0.05; % Set the significance level
25 %% Main program
26 fprintf('\n The available activities are \n');
27
28 for i = 1: ActLength
       fprintf('%d \t %s\n',i, Activities {i});
29
30 end
31
32 prompt3 = ['Choose an activity by the number on the left: '];
33 while 1
       Count2 = int8(input(prompt3));
34
35
       if isinteger (Count2) & 1 <= Count2 & Count2 <= ActLength
36
           break;
37
       end
38 end
39
40 A = DataLoader (filelist, Count2, 1, 1); % get the values for a
      specific activity
41 Ball = xlsread (TotFilename); % get the totals for all countries
43 StdP10 (A, Ball, alpha);
```

2.9 stdCIs

Πρόγραμμα για τον υπολογισμό διαστημάτων εμπιστοσύνης για το Ζητούμενο 1.4.

Listing 9: stdCIs.m

```
1 | function [pCIs, npCIs] = stdCIs(A,B, alpha)
2 | % Calculate the Confidence Intervals (CIs) for the relative std
      value of
3 % A compared to B for a significance level of alpha. Returns
      bothe
4 % the parametric and non parametric CIS.
6 \mid D3 = A./B; \% relative value
7 meanD3 = mean(D3); %mean of relative
8 \mid stdD3 = std(D3); \%std of relative
9 \mid \text{nsize} = \text{length}(D3);
10 % parametric analysis
11 ta = chi2inv(1-alpha/2, nsize -1);
12 | tb = chi2inv(alpha/2, nsize -1);
13 pCIs = [sqrt ((nsize -1) * stdD3 ^2/ta), sqrt ((nsize -1) * stdD3 ^2/tb)]; %
      parametric intervals
14
```

```
15 % non parametric analysis
16 m = 1000; %number of randomly selecting sets of pairs
17 % create random pairs fo A and B by randomly selecting the
      indices of array
18 %B
19 D4 = zeros(m, 1);
20
21 for i = 1:m
       indx = unidrnd(nsize, nsize, 1);
22
       D4(i) = std(A(indx)./B(indx));
23
24 end
25
26 | D4 = sort(D4);
27 \mid minCI = round(m*alpha/2);
28 \mid \max CI = \mathbf{round} \left( m_* (1 - alpha / 2) \right);
29
30 \mid npCIs = [D4(minCI), D4(maxCI)];
31
32
33 end
```

2.10 StdP10

Πρόγραμμα για τον υπολογισμό των μέσων τιμών για το Ζητούμενο 1.4.

Listing 10: StdP10.m

```
function StdP10 (AM, BM, alpha)
1
       nCount = length (AM(1,:)); % get the number of countries
2
       pCIs = zeros (nCount, 2);
3
       npCIs = zeros (nCount, 2);
4
       mpCIs = zeros (nCount, 1);
5
       mnpCIs = zeros (nCount, 1);
6
7
       for i = 1: nCount
8
9
          [pCIs(i,:), npCIs(i,:)] = stdCIs(AM(:,i),BM(:,i),alpha);
10
       end
11
       mpCIs = mean(pCIs, 2);
12
       mnpCIs = mean(npCIs, 2);
13
       figure();
14
       errorbar(1:nCount, mpCIs, pCIs(:,1), pCIs(:,2), 'o');
15
16
       hold on;
       errorbar(1: nCount, mnpCIs, npCIs(:,1), npCIs(:,2), '*');
17
       title ('Std and CIs of avtivity');
18
       ylabel('Relative Std PM10 value');
19
       xlabel('Country code');
20
       legend('Parametric','Non Parametric');
21
       set(findall(gcf, '-property', 'FontSize'), 'FontSize',14);
22
23 end
```

2.11 Exercise5

Πρόγραμμα Matlab για την επίλυση του Ζητούμενου 1.5. Το οποίο με την σειρά του καλεί το προγράμμα DataLoader, AllCountries και corrme.

Listing 11: Project2019Ex5.m

```
1 clc:
 2 clear all;
 4 %% Preload
 5 % find all data and activities
 6 filelist = dir ('Emission P10 * EU15. xls'); % Get the filenames of the
       data files
7 % set tha filename for National Totals
8 TotFilename = 'EmissionP10NationalTotalsEU15.xls';
9 filelist (7) = []; % remove the Nationatotals filename
|10| names = { filelist (:) . name };
11 Activities = extractBetween (names (:), "EmissionP10", "EU15");
12 ActLength = length (Activities);
13 %Load a file to get the names of countries and years
14 [data, txt, raw] = xlsread('EmissionP10EnergyIndustriesEU15.xls');
15 dataname = txt(2,1);
16 years = str2double(txt(2:end,2));
17 Countries = [];
18 | for i = 1 : length(data(1,:)) % get the name of the countries and
      store them
       Countries = [Countries, extractBetween(txt(1,i+2),") - "," -
19
           ")];
20 end
21 Countries = Countries ';
22 CountLength = length (Countries);
23 alpha = 0.05; % Set the significance level
24
25 % Main program
26 fprintf('\n The available activities are \n');
27
28 for i = 1: ActLength
       fprintf('%d \t %s\n',i, Activities{i});
29
30 end
31
32 prompt3 = ['Choose an activity by the number on the left: '];
33 while 1
       Count2 = int8(input(prompt3));
34
       if isinteger (Count2) & 1 <= Count2 & Count2 <= ActLength
35
           break;
36
       end
37
38 end
39
40 \mid \%A = DataLoader(filelist, Count2, 1); \% get the values for a
      specific activity
41 B = DataLoader (filelist, Count2, 2, 1);
```

```
42 [Rmax CountriesMax Per1 Per2] = AllCountries(B, alpha);
43
44 fprintf('\nThe 10 sets of countries with the highest \
     ncorrelation for %s are \n', Activities {Count2});
45 fprintf('Correlation\t Country1\t Country2\n');
46 for i = 1:10
      fprintf('%5.2f\t\t\%10s\t\%10s\n',Rmax(i),Countries{
47
          CountriesMax(i,1)}, Countries {CountriesMax(i,2)});
48 end
49
50 fprintf('\n %5.2f%% of the sets of countries pass \nthe
     Parametric test with a significance level of \%5.2\,f\%\n', 100*
     Per1,100*alpha);
51 fprintf('\n %5.2f%% of the sets of countries pass \nthe NON-
     Parametric test with a significance level of %5.2 f%%\n',100*
     Per2,100*alpha);
```

2.12 AllCountries

Πρόγραμμα για τον υπολογισμό διαστημάτων εμπιστοσύνης για το Ζητούμενο 1.5.

Listing 12: AllCountries.m

```
function [Rmax combmax count1 count2] = AllCountries (AM, alpha)
      nCount = length(AM(1,:));
2
      comb = combnk(1:nCount,2); % get all possible combinations of
3
          countries
      ncomb = length(comb(:,1));
4
      RPP = zeros(ncomb, 3);
5
6
7
      for i = 1 : ncomb
           [RPP(i,1),RPP(i,2),RPP(i,3)] = corrme(AM(:,comb(i,1)),AM
8
              (:,comb(i,2)),alpha);
9
      end
10
11
       figure();
12
      h = histogram(RPP(:,1), -1:0.25:1);
13
       title ('Correlations among all sets of countries');
14
       ylabel('Counts');
15
       xlabel('Corellation factor');
16
       set(findall(gcf, '-property', 'FontSize'), 'FontSize',14);
17
      % sort the R values and pick the 10 highest
18
      RPP(:,1) = abs(RPP(:,1));
19
      RPP(isnan(RPP(:,1)),1)=-inf;
20
      [Rsorted I] = sort(RPP(:,1), 'descend');
21
      RPP(isinf(RPP(:,1)),1)=NaN;
22
      Rmax = Rsorted(1:10);
23
24
      Imax = I(1:10);
      combmax = comb(Imax,:);
25
      count1 = sum(RPP(:,2) >= alpha) / ncomb;
26
```

2.13 corrme

Πρόγραμμα για τον υπολογισμό των μέσων τιμών για το Ζητούμενο 1.5.

Listing 13: corrme.m

```
function [r1,p1,p2] = corrme(A,B,alpha)
1
       nsize = length(A);
2
3
4
       %parametric correlation
5
6
       [r1,p1] = corrcoef(A,B, 'alpha', alpha);
7
       r1 = r1(1,2);
8
       p1 = p1(1,2);
9
       ta0 = abs(r1 * sqrt((nsize -2)/(1-r1^2)));
10
       %non parametric correlation
11
12
      m = 1000;
13
       ta = zeros(m, 1);
14
       ra = zeros(m, 1);
       for i = 1:m
15
           indx = randperm(nsize);
16
           r0 = corrcoef(A,B(indx), 'alpha', alpha);
17
           ra(i) = r0(1,2);
18
19
           ta(i) = abs(ra(i) * sqrt((nsize -2)/(1-ra(i)^2)));
20
       end
       ta = sort(ta);
21
       % fprintf(['t10 should be between indices ', num2str(round(m*
22
          alpha/2)), \dots
             'and', num2str(round((1-alpha/2)*m)), 'and is',
23
          num2str(round(sum(ta < ta0))), ' n']);
       maxind = round(sum(ta < ta0));
24
       p2 = (1 - maxind / (1.0 * m));
25
26
27
28 end
```

2.14 Exercise6

Πρόγραμμα Matlab για την επίλυση του Ζητούμενου 1.6. Το οποίο με την σειρά του καλεί το προγράμμα DataLoader, AllActivities και corrme.

Listing 14: Project2019Ex6.m

```
clc;
clear all;

%%Preload
%find all data and activities
```

```
6 filelist = dir('EmissionP10*EU15.xls'); Get the filenames of the
       data files
7 % set tha filename for National Totals
8 TotFilename = 'EmissionP10NationalTotalsEU15.xls';
9 filelist (7) = []; % remove the Nationatotals filename
10 names = { filelist (:) . name };
11 Activities = extractBetween (names (:), "EmissionP10", "EU15");
12 ActLength = length (Activities);
13 | %Load a file to get the names of countries and years
14 [data,txt,raw] = xlsread('EmissionP10EnergyIndustriesEU15.xls');
15 dataname = txt(2,1);
16 years = str2double(txt(2:end,2));
17 Countries = [];
18 for i = 1: length (data (1, :)) % get the name of the countries and
      store them
19
       Countries = [Countries, extractBetween(txt(1,i+2),") - "," -
           ")];
20 end
21 Countries = Countries ';
22 CountLength = length (Countries);
23 alpha = 0.05; % Set the significance level
24
25 % Main program
26 fprintf('\n The available Countries are \n');
27
28 for i = 1: CountLength
29
       fprintf('%d \t %s\n',i,Countries{i});
30 end
31
32 prompt3 = ['Choose a Country by the number on the left: '];
33 while 1
       Count2 = int8(input(prompt3));
34
       if isinteger(Count2) & 1 <= Count2 & Count2 <= CountLength</pre>
35
           break:
36
37
      end
38 end
39 CM = zeros (length (years), ActLength);
40 % load all the activities for a specific country
41 for i = 1: ActLength
      CM(:,i) = DataLoader(filelist,i,Count2);
42
43 end
44
45 [Rmax Activities Max Per1 Per2] = All Activities (CM, alpha);
46
47 fprintf('\nThe 10 sets of Activities with the highest
      correlation for %s are \n', Countries {Count2});
48 fprintf('Correlation\t Activity1\t \t Activity2\n');
49 for i = 1:10
       fprintf('%5.2f\t %20s\t \t %20s\n',Rmax(i),Activities{
50
          Activities Max (i,1) }, Activities { Activities Max (i,2) });
```

```
51 end
52
53 fprintf('\n %5.2f%% of the sets of Activities pass \nthe
    Parametric test with a significance level of %5.2f%%\n',100*
    Per1,100* alpha);
54 fprintf('\n %5.2f%% of the sets of Activities pass \nthe NON-
    Parametric test with a significance level of %5.2f%%\n',100*
    Per2,100* alpha);
```

2.15 AllActivities

Πρόγραμμα για τον υπολογισμό διαστημάτων εμπιστοσύνης για το Ζητούμενο 1.6.

Listing 15: AllActivities.m

```
function [Rmax combmax count1 count2] = AllActivities (AM, alpha)
      nCount = length(AM(1,:));
2
3
      comb = combnk(1:nCount,2); % get all possible combinations of
          Activities
      ncomb = length(comb(:,1));
4
      RPP = zeros(ncomb, 3);
5
6
7
      for i = 1 : ncomb
           [RPP(i,1),RPP(i,2),RPP(i,3)] = corrme(AM(:,comb(i,1)),AM
8
              (:,comb(i,2)),alpha);
9
      end
10
11
       figure();
12
      h = histogram(RPP(:,1), -1:0.25:1);
13
       title ('Correlations among all sets of Activities');
14
       ylabel('Counts');
15
       xlabel('Corellation factor');
16
       set(findall(gcf, '-property', 'FontSize'), 'FontSize',14);
17
      %sort the R values and pick the 10 highest
18
      RPP(:,1) = abs(RPP(:,1));
19
20
      RPP(isnan(RPP(:,1)),1)=-inf;
      [Rsorted I] = sort(RPP(:,1), 'descend');
21
      RPP(isinf(RPP(:,1)),1)=NaN;
22
      Rmax = Rsorted(1:10);
23
      Imax = I(1:10);
24
      combmax = comb(Imax,:);
25
26
       count1 = sum(RPP(:,2) >= alpha) / ncomb;
       count2 = sum(RPP(:,3) >= alpha) / ncomb;
27
28 end
```

2.16 Exercise7

Πρόγραμμα Matlab για την επίλυση του Ζητούμενου 1.7. Το οποίο με την σειρά του καλεί το προγράμμα DataLoader, AdjRCountries και polyme.

```
clc:
 2 clear all;
 4 %% Preload
5 % find all data and activities
 6 filelist = dir('EmissionP10*EU15.xls'); Get the filenames of the
       data files
7 % set tha filename for National Totals
8 TotFilename = 'EmissionP10NationalTotalsEU15.xls';
9 filelist (7) = []; % remove the Nationatotals filename
10 names = { filelist (:) . name };
11 Activities = extractBetween (names (:), "EmissionP10", "EU15");
12 ActLength = length (Activities);
13 | %Load a file to get the names of countries and years
14 [data, txt, raw] = xlsread('EmissionP10EnergyIndustriesEU15.xls');
15 dataname = txt(2,1);
16 years = str2double(txt(2:end,2));
17 Countries = [];
18 for i=1:length (data (1,:)) % get the name of the countries and
      store them
       Countries = [Countries, extractBetween(txt(1,i+2),") - "," -
19
           ")];
20 end
21 Countries = Countries';
22 CountLength = length (Countries);
23 alpha = 0.05; % Set the significance level
24 norder = 5; %maximum polynomial order to fit for
25
26 % Main program
27 AM = xlsread (TotFilename);
28 R2M = zeros (CountLength, ActLength);
29 O1M = zeros (CountLength, ActLength);
30
31 for i = 1: ActLength
      BM = DataLoader(filelist, i, 1, 2);
32
33
       [R2M(:,i) O1M(:,i)] = AdjRCountries(AM,BM,norder);
34 end
35 | R2M = abs(R2M);
36 | R2M(isnan(R2M)) = -inf;
37 [R2Ms Ind] = sort (R2M, 'descend');
38 | R2M(isinf(R2M)) = NaN;
39 | R2Max = R2Ms(1,:);
40 \mid idx = sub2ind(size(O1M), Ind(1,:), [1:ActLength]);
41 | OrdMax = O1M(idx);
42 Countries Max = {Countries {Ind (1,:)}};
43 \mid \% Activities Max = [Activities \{:\}];
44 T = table (R2Max', OrdMax', CountriesMax', 'RowNames', Activities, '
      VariableNames', {'AdjR2', 'Order', 'Country'})
45
```

```
46 figure();
47 histogram(O1M);
48 title('Polynomial index distribution');
49 ylabel('Counts');
50 xlabel('Polynomial Order');
```

2.17 AdjRCountries

Πρόγραμμα για τον υπολογισμό του συντελεστή συσχέτισης για το Ζητούμενο 1.7.

Listing 17: AdjRCountries.m

```
function [R2 O1] = AdjRCountries (AM, BM, n)
1
2
       nCount = length(AM(1,:));
3
4
       R2 = zeros(nCount, 1);
       O1 = zeros(nCount, 1);
5
6
       for i = 1: nCount
7
8
           [R2(i) O1(i)] = polyme(AM(:, i),BM(:, i),n);
9
10
       end
11
12
13 end
```

2.18 polyme

Πρόγραμμα για τον υπολογισμό πολυωνύμου για το Ζητούμενο 1.7.

Listing 18: polyme.m

```
1 function [AdjR nm] = polyme(A,B,n)
   2 % A and B are arrays of the same activity and n is the maximum
                          polynomial
  3 % order to fit for. This function find the best polynomial order
                          f i t
   4 | % depending on the AdjR. A are the totals and B the independent
                           values.
                               npoints = length(A);
   5
                               adjr2 = zeros(n+1,1);
   6
   7
                               if sum(isnan(B)) == npoints
   8
                                                 AdjR = NaN;
                                                 nm = 0;
   9
10
                                                  fprintf('Nan Array found');
                               else
11
12
                                                  for i = 1:(n+1)
13
                                                                      [p S mu] = polyfit(B,A,i-1);
14
                                                                      r2 = 1 - sum((A-polyval(p,B,S,mu)).^2)/sum((A-mean(A-mean(A-mean(A-mean(A-mean(A-mean(A-mean(A-mean(A-mean(A-mean(A-mean(A-mean(A-mean(A-mean(A-mean(A-mean(A-mean(A-mean(A-mean(A-mean(A-mean(A-mean(A-mean(A-mean(A-mean(A-mean(A-mean(A-mean(A-mean(A-mean(A-mean(A-mean(A-mean(A-mean(A-mean(A-mean(A-mean(A-mean(A-mean(A-mean(A-mean(A-mean(A-mean(A-mean(A-mean(A-mean(A-mean(A-mean(A-mean(A-mean(A-mean(A-mean(A-mean(A-mean(A-mean(A-mean(A-mean(A-mean(A-mean(A-mean(A-mean(A-mean(A-mean(A-mean(A-mean(A-mean(A-mean(A-mean(A-mean(A-mean(A-mean(A-mean(A-mean(A-mean(A-mean(A-mean(A-mean(A-mean(A-mean(A-mean(A-mean(A-mean(A-mean(A-mean(A-mean(A-mean(A-mean(A-mean(A-mean(A-mean(A-mean(A-mean(A-mean(A-mean(A-mean(A-mean(A-mean(A-mean(A-mean(A-mean(A-mean(A-mean(A-mean(A-mean(A-mean(A-mean(A-mean(A-mean(A-mean(A-mean(A-mean(A-mean(A-mean(A-mean(A-mean(A-mean(A-mean(A-mean(A-mean(A-mean(A-mean(A-mean(A-mean(A-mean(A-mean(A-mean(A-mean(A-mean(A-mean(A-mean(A-mean(A-mean(A-mean(A-mean(A-mean(A-mean(A-mean(A-mean(A-mean(A-mean(A-mean(A-mean(A-mean(A-mean(A-mean(A-mean(A-mean(A-mean(A-mean(A-mean(A-mean(A-mean(A-mean(A-mean(A-mean(A-mean(A-mean(A-mean(A-mean(A-mean(A-mean(A-mean(A-mean(A-mean(A-mean(A-mean(A-mean(A-mean(A-mean(A-mean(A-mean(A-mean(A-mean(A-mean(A-mean(A-mean(A-mean(A-mean(A-mean(A-mean(A-mean(A-mean(A-mean(A-mean(A-mean(A-mean(A-mean(A-mean(A-mean(A-mean(A-mean(A-mean(A-mean(A-mean(A-mean(A-mean(A-mean(A-mean(A-mean(A-mean(A-mean(A-mean(A-mean(A-mean(A-mean(A-mean(A-mean(A-mean(A-mean(A-mean(A-mean(A-mean(A-mean(A-mean(A-mean(A-mean(A-mean(A-mean(A-mean(A-mean(A-mean(A-mean(A-mean(A-mean(A-mean(A-mean(A-mean(A-mean(A-mean(A-mean(A-mean(A-mean(A-mean(A-mean(A-mean(A-mean(A-mean(A-mean(A-mean(A-mean(A-mean(A-mean(A-mean(A-mean(A-mean(A-mean(A-mean(A-mean(A-mean(A-mean(A-mean(A-mean(A-mean(A-mean(A-mean(A-mean(A-mean(A-mean(A-mean(A-mean(A-mean(A-mean(A-mean(A-mean(A-mean(A-mean(A-mean(A-mean(A-mean(A-mean(A-mean(A-mean(A-mean(A-mean(A-mean(A-mean(A-mean(A-mean(A-mean(A-mean(A-mean(A-mean(A-mean(A-mean(A-mean(A-mea
15
                                                                      adjr2(i) = 1 - ((npoints - 1) / (npoints - i)) * (1 - r2);
16
```

```
17
           end
           adjr2 = abs(adjr2);
18
           adjr2(isnan(adjr2)) = -Inf;
19
           [AdjR nm] = sort(adjr2, 'descend');
20
           adjr2(isinf(adjr2)) = NaN;
21
22
           AdjR = AdjR(1);
           nm = nm(1) - 1; %to get the actual order of the polynomial
23
24
       end
25
       if AdjR >1
26
           AdjR=NaN;
27
28
       end
29
30 end
```

2.19 Exercise8

Πρόγραμμα Matlab για την επίλυση του Ζητούμενου 1.8. Το οποίο με την σειρά του καλεί το προγράμμα DataLoader, mystepwise και StepfitCountries.

Listing 19: Project2019Ex8.m

```
clc:
2 clear all;
3
4 %% Preload
5 % find all data and activities
6 filelist = dir('EmissionP10*EU15.xls'); Get the filenames of the
       data files
7 % set tha filename for National Totals
8 TotFilename = 'EmissionP10NationalTotalsEU15.xls';
9 filelist (7) = []; % remove the Nationatotals filename
10 names = { filelist (:) . name };
11 Activities = extractBetween (names (:), "EmissionP10", "EU15");
12 ActLength = length (Activities);
13 | %Load a file to get the names of countries and years
14 [data, txt, raw] = xlsread('EmissionP10EnergyIndustriesEU15.xls');
15 dataname = txt(2,1);
16 years = str2double(txt(2:end,2));
17 Nyears = length (years);
18 Countries = [];
19 for i=1:length (data (1,:)) % get the name of the countries and
      store them
      Countries = [Countries, extractBetween(txt(1,i+2),") - "," -
20
           ")];
21 end
22 Countries = Countries ';
23 CountLength = length (Countries);
24 alpha = 0.05; % Set the significance level
25 norder = 5; %maximum polynomial order to fit for
```

```
26
27 % Main program
28 AM = xlsread (TotFilename); % load the totals
29 BM = zeros (Nyears, ActLength);
30
31
32 for j = 1: CountLength
       for i = 1: ActLength
33
           BM(:,i) = DataLoader(filelist,i,j);
34
35
       end
       CM = [AM(:, j) BM];
36
       StepfitCountries (CM, Countries { j } , Activities );
37
38 end
```

2.20 mystepwise

Πρόγραμμα για τον υπολογισμό βηματικού μοντέλου για το Ζητούμενο 1.8.

Listing 20: mystepwise.m

```
1 function [AdjR20 bfinal] = mystepwise (CM)
2 | % function to calculate the best stepwise model based on adjR. CM
       is a
3 | 8 matrix with first column the totals which in this case are the
      dependent
4 | % variable and the rest columns are the Activities which are the
      independent
5 % variables
  y = CM(:,1); \% get the total data
  %%There are many ways to do a stepwise fit here we will attemtp
     one of the
10 \mid \%\% simplest. We first fit y with each variable one at a time and
      sort the
11 8% variables by their AdjR. Then we try to fit following that
      order and
12 | %% check if the AdjR gets better or not. This stops when the AdjR
       falls in
13 %% value.
14
15 \mid n = length(y);
16 VarSize = length(CM(1, 2: end)); \% the amount of variables
17 | R1 = zeros(VarSize, 1);
18 for i =1: VarSize
      X = [ones(size(y)) CM(:, i+1)]; %load variable one at a time
19
20
      [b, bint, r, rint, stats] = regress(y, X);
      R1(i) = stats(1);
21
22 %
         [b, Sigm, E, CovB, logL] = mvregress(X, y);
23 %
24 | %
         R1(i) = 1 - sum(E.^2) / sum((y-mean(y)).^2);
```

```
25
26 end
27
28 [R1s Ind] = sort(R1, 'descend');
29
30 | k = 1;
31 |AdjR20| = 1 - ((n-1)/(n-(k+1)))*(1-R1s(1)); \% get the AdjR2 of the
      best single variable fit
32|X = [ones(size(y)) CM(:, Ind(1)+1)]; %load the best fitting
      variable
33 InitVar = 1: VarSize; % array with all the variable indices
34 SelVar = Ind(1); %Array with the selected variable indices
35 Init Var (Ind (1)) = []; % remove the variable that was accepted in
      the fit
36 remcount = length (InitVar); % remaining variables to test
37 while 1
38
39
       AdjR2a = zeros (remcount, 1);
40
       b1 = zeros(1+k+1, remcount);
       for j = 1: remcount
41
           Xa = [X CM(:, InitVar(j)+1)]; %append the next best
42
               variable
           [b1(:,j),bint,r,rint,stats] = regress(y,Xa);
43
           R2i = stats(1);
44
           AdjR2a(j) = 1 - ((n-1)/(n-(k+1+1)))*(1-R2i);
45
       end
46
47
       [AdjR2aS IndS] = sort(AdjR2a, 'descend');
48
       if AdjR2aS(1) < AdjR20
49
           break:
50
51
52
       else
53
           AdjR20 = AdjR2aS(1);
           b = b1(:, IndS(1));
54
           SelVar = [SelVar InitVar(IndS(1))];
55
           InitVar(IndS(1)) = [];
56
           k = length(SelVar);
57
           X = [X CM(:, SelVar(end))];
58
59
           remcount = length (InitVar); % remaining variables to test
60
       end
       if remcount == 0
61
           break;
62
63
       end
64 end
65
66 bfinal = zeros (VarSize +1,1);
67 | b final(1) = b(1);
68 | bfinal(SelVar+1) = b(2:end);
69
70
```

2.21 StepfitCountries

Πρόγραμμα για τον υπολογισμό βηματικού πολυωνύμου για το Ζητούμενο 1.8.

Listing 21: StepfitCountries.m

```
function StepfitCountries (CM, Country, Actlist)
2
3
      y = CM(:,1);
      Nsize = length(y);
4
      %% Calculate the stepwise fit
5
       [b, se, pval, inmodel, stats, nextstep, history] = stepwisefit (CM
6
          (:, 2:end), y);
7
       bstep = b.*inmodel';
       intercept = stats.intercept;
8
9
       bstep = [intercept bstep']';
10
      R2step = 1-stats.SSresid/stats.SStotal;
      k= sum(inmodel);
11
       AdjR2step = 1 - ((Nsize - 1) / (Nsize - k - 1)) * stats . SSresid / stats .
12
          SStotal;
13
      %% Calculate my stepwise method
14
      [AdjR2me bme] = mystepwise(CM);
15
16
17
      %% Calculate the full model
18
      NM = [ones(size(y)) CM(:, 2:end)];
      [btot, bint, r, rint, stats] = regress(y,NM);
19
      R1 = stats(1);
20
      k = length(CM(1, 2: end));
21
       AdjR2tot = 1 - ((Nsize - 1) / (Nsize - (k+1))) * (1 - R1);
22
23
24
      %% return results
25
26
       fprintf('\nMultivariable fitting for Activities in Country\n
27
           % fprintf('Activities\t Coefficients');
28
       Varlist = ['AdjR2' 'Intercept' {Actlist {:}}];
29
      V1 = [AdjR2step bstep']';
30
      V2 = [AdjR2me bme']';
31
32
      V3 = [AdjR2tot btot']';
      T=table(V1, V2, V3, 'RowNames', Varlist', 'VariableNames', {'
33
          Stepwisefit','MyStepwise','Full'})
34
35
       figure();
       plot(y,y,'o','MarkerSize',10);
36
37
      hold on;
       plot(y, bstep(1)+CM(:,2:end)*bstep(2:end),'x');
38
       plot(y, bme(1)+CM(:,2:end)*bme(2:end),'*');
39
```

```
40
       plot (y, btot (1) +CM(:, 2:end) * btot (2:end), 'd');
       titl1 = strcat({ 'Multivar fits for '}, Country);
41
       title (titl1);
42
       xlabel('Total PM10');
43
       ylabel('Expected Total PM10');
44
45
       legend ('Actual Data', 'Stepwisefit', 'My Stepwise fit', '
          Full fit', 'Location', 'best');
      figname = strcat(Country, '_MultivarFits');
46
       set(findall(gcf, '-property', 'FontSize'), 'FontSize',14);
47
       saveas (gcf, figname, 'epsc');
48
49
50 end
```

2.22 Exercise9

Πρόγραμμα Matlab για την επίλυση του Ζητούμενου 1.9. Το οποίο με την σειρά του καλεί το προγράμμα DataLoader, mystepwiseAct και StepfitActivoties.

Listing 22: Project2019Ex9.m

```
1 clc;
2 clear all;
3
4 %% Preload
5 % find all data and activities
6 filelist = dir('EmissionP10*EU15.xls'); Get the filenames of the
       data files
7 % set tha filename for National Totals
8 TotFilename = 'EmissionP10NationalTotalsEU15.xls';
9 filelist (7) = []; % remove the Nationatotals filename
10 names = { filelist (:) . name };
11 Activities = extractBetween (names (:), "EmissionP10", "EU15");
12 ActLength = length (Activities);
13 | %Load a file to get the names of countries and years
14 [data, txt, raw] = xlsread('EmissionP10EnergyIndustriesEU15.xls');
15 dataname = txt(2,1);
16 years = str2double(txt(2:end,2));
17 Nyears = length (years);
18 Countries = [];
19 for i=1:length (data (1,:)) % get the name of the countries and
      Countries = [Countries, extractBetween(txt(1,i+2),") - "," -
20
           ")];
21 end
22 Countries = Countries ';
23 CountLength = length (Countries);
24 alpha = 0.05; % Set the significance level
25 norder = 5; %maximum polynomial order to fit for
26
27 %% Main program
28 %AM = xlsread (TotFilename);% load the totals
```

```
29 %Set the mark to 7 in order to check for Greece
30 mark = 7;
31 for j = 1: ActLength
32    BM = DataLoader(filelist, j, 1, 2);
33
34    StepfitActivities(BM, Activities{j}, Countries, mark);
end
```

2.23 mystepwiseAct

Πρόγραμμα για τον υπολογισμό βηματικού μοντέλου για το Ζητούμενο 1.9.

Listing 23: mystepwiseAct.m

```
1 function [AdjR20 bfinal] = mystepwiseAct(CM, y)
2 | % function to calculate the best stepwise model based on adjR. CM
3 % matrix with the independent variables
4
5
6 | %% There are many ways to do a stepwise fit here we will attemtp
     one of the
7 | %% simplest. We first fit y with each variable one at a time and
      sort the
8 % variables by their AdjR. Then we try to fit following that
      order and
9 % % check if the AdjR gets better or not. This stops when the AdjR
      falls in
10 %% value.
11
12 \mid n = length(y);
13 | VarSize = length(CM(1,:)); % the amount of variables
14 | R1 = zeros(VarSize, 1);
15 for i =1: VarSize
      X = [ones(size(y)) CM(:,i)]; %load variable one at a time
16
      [b, bint, r, rint, stats] = regress(y,X);
17
      R1(i) = stats(1);
18
19
20 end
22 [R1s Ind] = sort(R1, 'descend');
23
24 | k = 1;
25 \mid AdjR20 = 1 - ((n-1)/(n-(k+1))) * (1-R1s(1)); % get the AdjR2 of the
      best single variable fit
26|X = [ones(size(y)) CM(:, Ind(1))]; %load the best fitting variable
27 InitVar = 1: VarSize; %array with all the variable indices
28 SelVar = Ind(1); %Array with the selected variable indices
29 InitVar(Ind(1)) = []; %remove the variable that was accepted in
     the fit
30 remcount = length (InitVar); % remaining variables to test
```

```
31
  while 1
32
       AdjR2a = zeros (remcount, 1);
33
       b1 = zeros(1+k+1, remcount);
34
35
       for j = 1: remcount
           Xa = [X CM(:, InitVar(j))]; %append the next best
36
               variable
           [b1(:,j),bint,r,rint,stats] = regress(y,Xa);
37
           R2i = stats(1);
38
           AdjR2a(j) = 1 - ((n-1)/(n-(k+1+1)))*(1-R2i);% there is an
39
               extra +1 here
           %beacause k is not refreshed yet to the new value
40
41
       end
       [AdjR2aS IndS] = sort (AdjR2a, 'descend');
42
43
44
       if AdjR2aS(1) < AdjR20
           break:
45
46
47
       else
           AdjR20 = AdjR2aS(1);
48
49
           b = b1(:, IndS(1));
           SelVar = [SelVar InitVar(IndS(1))];
50
           InitVar(IndS(1)) = [];
51
52
           k = length(SelVar);
           X = [X CM(:, SelVar(end))];
53
           remcount = length (InitVar); % remaining variables to test
54
55
       end
       if remcount == 0
56
57
           break:
58
       end
59 end
60
61 bfinal = zeros (VarSize +1,1);
62 | b f i n a l (1) = b (1);
63 bfinal (SelVar + 1) = b(2: end);
64
65
66 end
```

2.24 StepfitActivities

Πρόγραμμα για τον υπολογισμό βηματικού πολυωνύμου για το Ζητούμενο 1.9.

Listing 24: StepfitActivities.m

```
function StepfitActivities (CM, Activity, Countlist, mark)

y = CM(:, mark);
%remove specific country for datasets
Countlist(mark) = [];
CM(:, mark) = [];
```

```
Nsize = length(y);
 8
       %% Calculate the stepwise fit
 9
       [b, se, pval, inmodel, stats, nextstep, history] = stepwisefit (CM, y
          );
       bstep = b.*inmodel';
10
11
       intercept = stats.intercept;
       bstep = [intercept bstep']';
12
       R2step = 1-stats. SSresid/stats. SStotal;
13
       k= sum(inmodel);
14
       AdjR2step = 1 - ((Nsize - 1) / (Nsize - k - 1)) * stats . SSresid / stats .
15
          SStotal;
16
       %% Calculate my stepwise method
17
       [AdjR2me bme] = mystepwiseAct(CM, y);
18
19
20
       %% Calculate the full model
      NM = [ones(size(y)) CM];
21
       [btot, bint, r, rint, stats] = regress(y,NM);
22
23
       R1 = stats(1);
       k = length(CM(1,:));
24
       AdjR2tot = 1 - ((Nsize - 1) / (Nsize - (k+1))) * (1 - R1);
25
26
27
28
       %% return results
29
       fprintf('\nMultivariable fitting in Greece for activity\n \t
30
           \t %s\n', Activity);
       % fprintf('Activities\t Coefficients');
31
32
       Varlist = ['AdjR2' 'Intercept' {Countlist {:}}];
       V1 = [AdjR2step bstep']';
33
       V2 = [AdjR2me bme']';
34
       V3 = [AdjR2tot btot']';
35
       T=table(V1, V2, V3, 'RowNames', Varlist', 'VariableNames',{'
36
          Stepwisefit','MyStepwise','Full'})
37
       figure();
38
39
       plot(y,y,'o','MarkerSize',10);
       hold on;
40
       plot (y, bstep (1) +CM* bstep (2: end), 'x');
41
       plot (y, bme(1)+CM*bme(2:end), '*');
42
       plot (y, btot (1) +CM* btot (2: end), 'd');
43
       titl1 = strcat({ 'Multivar fits in Greece for '}, Activity);
44
       title (titl1);
45
       xlabel('Greece''s PM10');
46
       ylabel('Greece''s xpected Total PM10');
47
       legend ('Actual Data', 'Stepwisefit', 'My Stepwise fit', '
48
          Full fit','Location', 'best');
       figname = strcat(Activity, '_Greece_MultivarFits');
49
       set(findall(gcf, '-property', 'FontSize'), 'FontSize',14);
50
51
       saveas (gcf, figname, 'epsc');
```

```
52 |
53 | end
```

2.25 Exercise10

Πρόγραμμα Matlab για την επίλυση του Ζητούμενου 1.10. Το οποίο με την σειρά του καλεί το προγράμμα DataLoader, mytisan.

Listing 25: Project2019Ex10.m

```
clc:
  clear all;
3
 4 % Preload
5 % find all data and activities
 6 filelist = dir('EmissionP10*EU15.xls'); Get the filenames of the
       data files
7 % set tha filename for National Totals
8 TotFilename = 'EmissionP10NationalTotalsEU15.xls';
9 filelist (7) = []; % remove the Nationatotals filename
10 names = { filelist (:) . name };
11 Activities = extractBetween (names (:), "EmissionP10", "EU15");
12 ActLength = length (Activities);
13 | %Load a file to get the names of countries and years
14 [data, txt, raw] = xlsread('EmissionP10EnergyIndustriesEU15.xls');
15 \mid dataname = txt(2,1);
16 years = str2double(txt(2:end,2));
17 Nyears = length (years);
18 Countries = [];
19 for i=1:length (data (1,:)) % get the name of the countries and
      store them
       Countries = [Countries, extractBetween(txt(1,i+2),") - "," -
20
           ")];
21 end
22 Countries = Countries ';
23 | CountLength = length (Countries);
24 alpha = 0.05; % Set the significance level
25
26
27 %% Main program
28 %% pick nSet random countries and activities
29 | nSet = 10;
30 rng(0, 'twister'); % initialise seed for repetability
31 | CountRnd = randi (CountLength, nSet, 1);
32 ActRnd = randi (ActLength, nSet, 1);
33 Trend = zeros(nSet, 1);
34 | Corr = zeros(nSet, 1);
35 for i = 1 : nSet
       Country = Countries {CountRnd(i)};
36
37
       Activity = Activities {ActRnd(i)};
      BM = DataLoader(filelist, ActRnd(i), CountRnd(i));
38
```

```
Trend(i) Corr(i)] = mytisan(BM, years, Country, Activity);
end

T=table({Countries{CountRnd}}',{Activities{ActRnd}}',Trend,Corr
,...
'VariableNames',{'Countries','Activities','Trend', 'AutoCorr
'})
```

2.26 mytisan

Πρόγραμμα για τον υπολογισμό τάσης για το Ζητούμενο 1.10.

Listing 26: mytisan.m

```
function [Trend1 Corr1] = mytisan (A, years, Country, Activity)
  % plot the history diagram of the requested quantity
       figure();
 4
 5
       plot (years, A);
       titl1 = strcat('History diagram for ',{' '}, Activity, ' in '
 6
           ,{ ' '}, Country);
 7
       title (titl1);
       ylabel('PM10');
 8
 9
       xlabel('Year');
10
       set(findall(gcf, '-property', 'FontSize'), 'FontSize',14);
11
       %Ask the user to define the order of the polynomial trend to
12
           remove
       nsize = length(A);
13
       prompt1 = ['\nChoose the order of the polynomial trend to
14
          remove from \n the data (0 removes nothing!): '];
  while 1
15
       Count1 = int8(input(prompt1));
16
       if isinteger(Count1) & 0 <= Count1 & Count1 <= nsize</pre>
17
           break:
18
19
       else
           fprintf('Enter an integer between %d and %d',0,nsize);
20
       end
21
22 end
23 \times = (1: length(years))';
24 | if Count1 > 0
       [p1, S1, mu1] = polyfit(x, A, Count1);
25
       yres = A-polyval(p1,x,S1,mu1);
26
27
  else
28
       yres = A;
29
  end
30
31 [ACF, lags, bounds] = autocorr(yres, 5);
32 [ACF0, lags0, bounds0] = autocorr(A, 5);
33
```

```
34
35 % check if there was original trend in the data by the autocorr
36 if sum(abs(ACF0(2:end))>bounds0(1)) > 0
       Trend1 = 1;
37
38 else
      Trend1 = 0;
39
40 end
42 if sum(abs(ACF(2:end))>bounds(1)) > 0
      Corr1 = 1;
43
44 else
      Corr1 = 0;
45
46 end
47
48 figname = strcat (Country, '_', Activity, '_Trend_and_Corr');
49 saveas (gcf, figname, 'epsc');
50
51
52
53 end
```
