Министерство науки и высшего образования Российской Федерации Федеральное государственное автономное образовательное учреждение высшего образования

Университет ИТМО

Факультет программной инженерии и компьютерной техники

Отчет по учебно-исследовательской работе 2 по дисциплине "Моделирование" Вариант 61/37

Выполнили: студенты группы Р34131

Бусыгин Дмитрий Алексеевич и Лазеев Сергей Максимович Преподаватель: Тропченко Андрей Александрович

Цель работы

Изучение метода марковских случайных процессов и его применение для исследования простейших моделей — систем массового обслуживания (СМО) с однородным потоком заявок.

Задание

Разработка и расчет марковских моделей одно- и многоканальных СМО с однородным потоком заявок и выбор наилучшего варианта построения СМО в соответствии с заданным критерием эффективности. В процессе исследований для расчета характеристик функционирования СМО используется программа МАКК.

Исходные данные

Таблица 1. Параметры структурной и функциональной организации систем

Вариант	СИСТЕМА_1		Вариант	СИСТЕМА_2		Критери
	П	ЕН		П	ЕН	й эффект.
61	2	3/1	37	2(H _{1,2})	2/0	(б)

- СИСТЕМА_1 имеет 2 обслуживающих прибора. Емкости накопителей перед приборами равны 3 и 1 соответственно
- СИСТЕМА_2 имеет 2 обслуживающих прибора и в одном из них длительность обслуживания распределена по гиперэкспоненциальному закону с к-том вариации 1,2. Емкость накопителей 2 и 0 соответственно
- Критерий эффективности минимальные потери заявок

Таблииа 2. Параметры нагрузки

Вариант	Интенсивность потока	•		ть занятия бора
	λ , c^{-1}	b, c	П1	П2
131	0.3	20	0.4	0.6

Выполнение

- Вероятность занятия приборов в СИСТЕМА_1 и СИСТЕМА_2: $p_{_1}=0.4,\; p_{_2}=0.6$
- Интенсивность обслуживания $\mu = 1/b = 0.05$
- Пусть q = 0.1

-
$$b_1' = [1 + \sqrt{\frac{1-q}{2q}(v^2 - 1)}]b \approx 48.1 => \mu_1 = 1/48.1 \approx 0.02$$

-
$$b_2' = [1 - \sqrt{\frac{q}{2(1-q)}(v^2 - 1)}]b \approx 16.9 => \mu_2 = 1/16.9 \approx 0.06$$

- Проверка условия

$$qb_{1}^{'} + (1-q)b_{2}^{'} = b <=> 0.1 * 48.1 + 0.9 * 16.9 \approx 20$$

Рисунок 1. Графическое представление СИСТЕМА 1

Рисунок 2. Графическое представление СИСТЕМА 2

Построение состояний марковского процесса

Примем следующие обозначения:

- П1 обрабатывает (1) или нет (2) заявку первый прибор
- П2 обрабатывает (1) или нет (2) заявку второй прибор
- Е1 заполненность накопителя 1 прибора
- Е2 заполненность накопителя 2 прибора

Таблица 3. Состояния марковского процесса

No	СИСТЕМА_1	СИСТЕМА_2
	П1 / П2 / Е1 / Е2	П1 / П2 / Е1 / Е2
$E_{0}^{}$	0/0/0/0	0/0/0/0
$E_{1}^{}$	1/0/0/0	1/0/0/0
E_{2}	1/0/1/0	1/0/1/0
E_{3}	1/0/2/0	1/0/2/0
E_{4}	1/0/3/0	0/1(1)/0/0
E_{5}	0/1/0/0	1/1(1)/0/0
E_{6}	1/1/0/0	1/1(1)/1/0
E_{7}	1/1/1/0	1/1(1)/2/0
E_{8}	1/1/2/0	0/1(2)/0/0
E_9	1/1/3/0	1/1(2)/0/0
E ₁₀	0/1/0/1	1/1(2)/1/0
E ₁₁	1/1/0/1	1/1(2)/2/0
E ₁₂	1/1/1/1	
E ₁₃	1/1/2/1	
E_{14}	1/1/3/1	

Рисунок 3. Граф переходов марковского процесса (СИСТЕМА 1)

Рисунок 4. Граф переходов марковского процесса (СИСТЕМА 2)

Таблица 4. Матрица интенсивности переходов (СИСТЕМА_1)

	E_0	E_{1}	E_{2}	E_3	E_{4}	<i>E</i> ₅	E_{6}	E_{7}	E ₈	E_9	E ₁₀	E ₁₁	E ₁₂	E ₁₃	E 14
E_{0}		0.12				0.18									
E_{1}	0.05		0.12				0.18								
E_{2}		0.05		0.12				0.18							
E_3			0.05		0.12				0.18						
$E_{\overline{4}}$				0.05						0.18					
E_{5}	0.05						0.12				0.18				
E_{6}		0.05				0.05		0.12				0.18			
E_{7}			0.05				0.05		0.12				0.18		
E_8				0.05				0.05		0.12				0.18	
E_9					0.05				0.05						0.18
E ₁₀						0.05						0.12			
E ₁₁							0.05				0.05		0.12		
E ₁₂								0.05				0.05		0.12	
E ₁₃									0.05				0.05		0.12
E ₁₄										0.05				0.05	

Таблица 5. Матрица интенсивности переходов (СИСТЕМА_2)

	E_{0}	E_{1}	E_{2}	E_{3}	$E_{_4}$	E_{5}	E_{6}	E_{7}	E_8	E_9	E ₁₀	E ₁₁
E_{0}		0.12			0.18				0.1782			
E_{1}	0.05		0.12			0.18				0.1782		
E_2		0.05		0.12			0.18				0.1782	
E_3			0.05					0.18				0.1782
$E_{\overline{4}}$	0.02					0.12						
E_{5}		0.02			0.05		0.12					
E_{6}			0.02			0.05		0.12				
E_{7}				0.02			0.05		0.12			
E_8	0.06									0.12		
E_9		0.06							0.05		0.12	
E_{10}			0.06							0.05		0.12
E ₁₁				0.06							0.05	

Расчет стационарных вероятностей с помощью утилиты MARK *Таблица 6. Стационарные вероятности состояний*

No	СИСТЕ		СИСТЕ	EMA_2
	П1 / П2 / Е1 / Е2	Вероятность	П1 / П2 / Е1 / Е2	Вероятность
E_{0}	0/0/0/0	0.001	0/0/0/0	0.0089
$E_{1}^{}$	1/0/0/0	0.0024	1/0/0/0	0.0214
E_{2}	1/0/1/0	0.0058	1/0/1/0	0.0515
E_{3}	1/0/2/0	0.014	1/0/2/0	0.1235
$E_{\overline{4}}$	1/0/3/0	0.0336	0/1(1)/0/0	0.008
E_{5}	0/1/0/0	0.0037	1/1(1)/0/0	0.0193
E_{6}	1/1/0/0	0.0088	1/1(1)/1/0	0.0463
E_{7}	1/1/1/0	0.021	1/1(1)/2/0	0.1112
E_8	1/1/2/0	0.0505	0/1(2)/0/0	0.0265
E_9	1/1/3/0	0.1211	1/1(2)/0/0	0.0637
E_{10}	0/1/0/1	0.0131	1/1(2)/1/0	0.1528
E_{11}	1/1/0/1	0.0315	1/1(2)/2/0	0.3668
E_{12}	1/1/1/1	0.0757		
E ₁₃	1/1/2/1	0.1817		
E_{14}	1/1/3/1	0.4360		

Таблица 7. Характеристики систем

Характеристика	7. <i>Характерист</i> Прибор	Расчетная формула	СИСТЕМА_1	СИСТЕМА_2
Нагрузка	П1 (С1)	$y_{11} = \lambda/\mu * P1$	2,4	
	П2 (С1)	$y_{12} = \lambda/\mu * P2$	3,6	
	Сумма (С1)	$y_1 = \lambda/\mu$	6	
	П1 (С2)	$y_{21} = \lambda/\mu * P1$		2,4
	П2 (С2)	$y_{22} = \lambda/\mu * P2$		3.6
	Сумма (С2)	$y_2 = \lambda/\mu$		6
Загрузка	П1 (С1)	$\rho_{11} = 1 - (p_0 + p_5 + p_{10})$	0,9822	
	П2 (С1)	$\rho_{12} = 1 - (p_0 + p_1 + p_2 + p_3 + p_4)$	0,9432	
	Сумма (С1)	$\rho_1 = (\rho_{11} + \rho_{12})/2$	0,9627	
	П1 (С2)	$\rho_{21} = 1 - (p_0 + p_4 + p_8)$		0,9566
	П2 (С2)	$\rho_{22} = 1 - (p_0 + p_1 + p_2 + p_3)$		0,7947
	Сумма (С2)	$\rho_2 = (\rho_{21} + \rho_{22})/2$		0,87565
Длина очереди	П1 (С1)	$\begin{split} L_{11} &= (p_2 + p_7 + p_{12}) + \\ &2(p_3 + p_8 + p_{13}) + \\ &3(p_4 + p_9 + p_{14}) \end{split}$	2,367	
	П2 (С1)	$L_{12} = p_{10} + p_{11} + p_{12} + p_{13} + p_{14}$	0,738	
	Сумма (С1)	$L_{1} = L_{11} + L_{12}$	3,105	
	П1 (С2)	$L_{21} = (p_2 + p_6 + p_{10}) + 2(p_3 + p_7 + p_{11})$		1,4536
	П2 (С2)	$L_{22} = 0$		0
	Сумма (С2)	$L_2 = L_{21} + L_{22}$		1,4536
Число заявок	П1 (С1)	$m_{11} = L_{11} + \rho_{11}$	3,3492	

	П2 (С1)	$m_{12} = L_{12} + \rho_{12}$	1,6812	
	Сумма (С1)	$m_{_1} = m_{_{11}} + m_{_{12}}$	5,0304	
	П1 (С2)	$m_{_{21}}=L_{_{21}}+\rho_{_{21}}$		2,4102
	П2 (С2)	$m_{22} = L_{22} + \rho_{22}$		0,7947
	Сумма (С2)	$m_2^{} = m_{21}^{} + m_{22}^{}$		3,2049
Время ожидания	П1 (С1)	$w_{11} = L_{11}/\lambda_{11}$	48,192	
Ожидания	П2 (С1)	$w_{12} = L_{12}/\lambda_{12}$	15,6489	
	Сумма (С1)	$w_1 = L_1/\lambda_1$	32,251	
	П1 (С2)	$w_{21} = L_{21}/\lambda_{21}$		30,3973
	П2 (С2)	$w_{22} = L_{22}/\lambda_{22}$		0
	Сумма (С2)	$w_2 = L_2/\lambda_2$		17,1468
Время пребывания	П1 (С1)	$u_{11} = m_{11}/\lambda_{11}$	68,1896	
пресывания	П2 (С1)	$u_{12} = m_{12}/\lambda_{12}$	35,6489	
	Сумма (С1)	$u_1 = m_1/\lambda_1$	52,2498	
	П1 (С2)	$u_{21} = m_{21}/\lambda_{21}$		50,4015
	П2 (С2)	$u_{22} = m_{22}/\lambda_{22}$		21,5051
	Сумма (С2)	$u_2 = m_2/\lambda_2$		37,8052
Вероятность потери	П1 (С1)	$\pi_{11} = p_4 + p_9 + p_{14}$	0,5907	
потори	П2 (С1)	$\pi_{12} = p_{10} + p_{11} + p_{12} + p_{13} + p_{14}$	0,738	
	Сумма (С1)	$\pi_{1} = P1 * \pi_{11} + P2 * \pi_{12}$	0,67908	
	П1 (С2)	$\pi_{21} = p_3 + p_7 + p_{11}$		0,6015
	П2 (С2)	$\pi_{22} = 1 - (p_0 + p_1 + p_2 + p_3)$		0,7947

	Сумма (С2)	$\pi_2 = P1 * \pi_{21} + P2 * \pi_{22}$		0,71742
Производительн ость	П1 (С1)	$\lambda_{11} = \lambda * P1 * (1 - \pi_{11})$	0,049116	
0012	П2 (С1)	$\lambda_{12} = \lambda * P2 * (1 - \pi_{12})$	0,04716	
	Сумма (С1)	$\lambda_1 = \lambda * (1 - \pi_1)$	0,096276	
	П1 (С2)	$\lambda_{21} = \lambda * P1 * (1 - \pi_{21})$		0,04782
	П2 (С2)	$\lambda_{22} = \lambda * P2 * (1 - \pi_{22})$		0,036954
	Сумма (С2)	$\lambda_2 = \lambda * (1 - \pi_2)$		0,084774

Сравнение полученных результатов

Таблица 8. Сравнение характеристик системы 1 и системы 2

	Система 1	Система 2
Нагрузка	6	6
Загрузка	0,9627	0,87565
Длина очереди	3,105	1,4536
Число заявок	5,0304	3,2049
Время ожидания	32,251	17,1468
Время пребывания	52,2498	37,8052
Вероятность потери	0,67908	0,71742
Производительность	0,096276	0,084774

Сравнение систем по основным характеристикам можно оценить по таблице 8. Т.к. критерий эффективности при выборе системы задан как "минимальные потери заявок", то предпочтительнее выбрать СИСТЕМУ_1

По остальным параметрам также можно сделать вывод, что СИСТЕМА_1 оказалась эффективнее.

Вывод

В процессе выполнения УИР мы с напарником впервые рассчитали основные характеристики смоделированной системы массового обслуживания (СМО). Нам удалось реализовать графы марковских переходов для обеих систем, а также рассчитать стационарные вероятности наступлений каждого из состояний с помощью утилиты WinMark.