## TensorFlow distribuido

Diego Andrade Canosa Roberto López Castro



## Índice

- Introducción al curso
- Introducción a TensorFlow
- Repaso de conceptos de entrenamiento distribuido

#### Contenidos del curso

- Soporte nativo en TF para entrenamiento distribuido
  - MirroredStrategies
  - ParameterServer
  - DTENSORS
- Uso de Tensorflow con Ray
- Uso de Tensorflow con Horovod



## Metodología

- Tres sesiones de cuatro horas
- Uso frecuente de los recursos de FT3



#### Entorno

#### Módulos en FT3

```
r-keras: r-keras/2.4.0-cuda-system
Interface to 'Keras' <https://keras.io>, a high-level neural networks 'API'. -- cesga/2020 r-keras/2.4.0-cuda-system: Core

tensorflow: tensorflow/2.4.1-cuda-system, tensorflow/2.5.0-cuda-system, tensorflow/2.11.0
An open-source software library for Machine Intelligence -- cesga/2020 tensorflow/2.5.0-cuda-system: Compiler: Requires gcccore/system

transformers: transformers/4.6.1
State-of-the-art Natural Language Processing for PyTorch and TensorFlow 2.0 -- cesga/2020 transformers/4.6.1: Core
```

- Entornos virtuales venv
- Entornos conda



#### TensorFlow

- TensorFlow (TF) es una plataforma de aprendizaje automática
  - Junto a Pytorch, su principal competidor, una de las más populares
- Proporciona:
  - Herramientas avanzadas para el procesamiento y carga de datos
  - Definición de modelos utilizando bloques constructores con distinto nivel de complejidad
  - Implementación de servidores de inferencia de modelos (en producción)
  - Técnicas de regularización
  - Herramientas auxiliares como tensorboard o tf profiler



#### Evolución histórica

- Versión actual: 2.14
- Año 2011: el *Google Brain Team* (Andrew Ng and Jeff Dean) empiezan un proyecto llamadoo DistBelief
  - Sistema de ML escalable y distribuido
- Año 2015: Google libera el código de DistBelief y lo renombra como **TensorFlow**
  - El código abierto como acelerador de la innovación
- Año 2019: Tensorflow 2.0
  - API más simple
  - Mejor rendimiento
  - Mejor integración con Keras



#### Ecosistema de TF

- TensorFlow.js (entornos web)
- TensorFlow Lite (IoT)
- TFX (eXtended TF)
- Keras (Bloques constructores más sofisticados)
- TensorBoard (Visualización)
- Jupyter, Colab
- Otras herramientas:
  - Kubeflow (Contenedores para ML)
  - Frameworks distribuidos: Ray, Horovod, etc...



## TF vs Pytorch

- Static vs Dynamic Computation Graph
  - Static: Menos flexible, mejor rendimiento
  - Dynamic: Más flexible y fácil de usar, peor rendimiento

```
import torch

# Define the neural network
class Net(torch.nn.Module):
    def forward(self, x, y):
        return x * y

# Create an instance of the neural network
net = Net()

# Define the input values
x = torch.tensor([2.0, 3.0])
y = torch.tensor([4.0, 5.0])

# Compute the output
output = net(x, y)
print(output) # Output: tensor([ 8., 15.])
```

```
import tensorflow as tf

# Define the input values
x = tf.constant([2.0, 3.0])
y = tf.constant([4.0, 5.0])

# Define the computation
output = x * y

# Create a session and run the computation
with tf.Session() as sess:
    result = sess.run(output)
    print(result) # Output: [8. 15.]
```



## Dynamic Computation Graphs en TF

- Los DCGs están disponibles en TF a través del modo eager
  - Habilitado por defecto
  - Recomendable deshabilitarlo para modelos en producción (inferencia)



## Tensorflow (TF): Conceptos básicos

- Características básicas:
  - Soporte para tensores (arrays multidimensionales)
  - Procesamiento en GPU y distribuido
  - Diferenciación automática
  - Definición de modelos, entrenamiento y exportación



#### TF: Tensores

```
import tensorflow as tf
x = tf.constant([[1., 2., 3.], [4., 5., 6.]])
print(x)
print(x.shape)
print(x.dtype)
```



### Tensores: operadores

- X+X
- 5\*X
- transpose
- concat
- reduce\_sum
- softmax
- ...
- Variables: Son la versión mutable de los tensores (usados para almacenar, por ejemplo, los parámetros entrenables del modelo)



### Diferenciación automática

- El mecanismo de autodiff es similar al disponible en Pytorch
  - Construye un grafo con los nodos de la computación (durante la pasada *forward*) para calcular los gradientes de los pesos aplicables durante la pasada *backward*
- · Se activa poniendo el código dentro del entorno

```
with tf.GradientTape() as tape: (...)
```



### @tf.function

- Se trata de un decorador que aplicado a una función habilita varias características
  - Optimización del rendimiento
    - Acelera inferencia y entrenamiento
    - Exportación del modelo al final del entrenamiento
    - La primera vez que se ejecuta se genera un grafo de la computación que se utiliza para acelerar ejecuciones posteriores



# Modules, layers, tensor, variables & models

- Como en Pytorch, existen varias abstracciones que actúan como contenedores o bloques constructores de modelos de ML
  - Module: Similar al concepto homónimo de Pytorch
    - Los modules sirven de contenedores para los modelos
  - Layers predefinidas: Evitan tener que definir tipos de capas comunes desde cero mediante tensores



#### Keras

- Es un API de nivel superior de TF
- Proporciona bloques constructores de alto nivel para aplicaciones de ML
  - Interfaz sencilla y consistente
  - Minimizar el código necesario para casos de uso comunes
  - Mejora la legibilidad del código



## Keras: Layers y Models

- Layers: Encapsulan una capa de un modelo de ML: un estado (pesos) y alguna computación (call)
  - · Los pesos pueden ser entrenables o no
  - Las capas se componen recursivamente
  - También se pueden usar para tareas de preprocesado
- Models: Son agrupaciones de capas
  - El modelo Sequential es el más común, se usa para agrupar una secuencia de capas
    - Arquitecturas más comunes se componen usando la Keras functional API
  - Proporciona:
    - Método fit: para entrenar el modelo
    - Método predict: para generar predicciones (inferencia) en base a samples de entrada
    - Método evaluate: para devolver la función de pérdida y otras métricas generadas en el momento de la compilación (*compile*) del modelo



### Otros componentes de Keras

- Optimizers
- Metrics
- Losses
- Utilidades de carga de datos



### Bucles de entrenamiento: Contexto

- Estructura de un script de entrenamiento
  - 1. Importar y procesar un conjunto de datos (dataset). Separar en:
    - 1. Entrenamiento
    - 2. Validación
  - 2. Definir la arquitectura del modelo e instanciarlo
  - 3. Bucle de entrenamiento
    - 1. Inferencia
    - 2. Cálculo de la función de pérdida
    - 3. Cálculo de los gradientes
    - 4. Aplicación de los gradientes a los parámetros del modelo
  - 4. Validación de la precisión del modelo



#### Bucle de entrenamiento en TF

model.save('filename')

```
model=keras.Sequential([layer1, layer2, layer2 ...])
model.compile(optimizer="optname", loss="lossfuncname", metrics=['metric1', metric2, ...])
for epoch in range(num_epochs):
         for i in range(0,len(train data, batch size):
                  with tf.GradientTape as tape:
                           predictions= model(batch_data)
                           loss=tf.keras.loses.somelossfunction(batch labels,predictions
                  gradients = tape.gradient(loss, model.trainable_variables)
                  optimizer.apply_gradients(zip(gradients, model.trainable_variables))
```



# Entrenamiento distribuido

- Paralelismo de datos
- Paralelismo de modelo
- Paralelismo híbrido



#### Model and Data Parallelism











### Centralizado vs descentralizado

- Copias espejo (Mirror)
  - allreduce
- Parameter Server
  - 1 PS n trabajadores
  - n PS n trabajadores





Figure 4: Architecture of a parameter server communicating with several groups of workers.



## Promediado de pesos





### Promediado síncrono vs asíncrono

- Síncrono: Hay que esperar por todos los trabajadores para promediar los pesos
  - La sincronización supone un cuello de botella
- Asíncrono: El promediado se produce sin asegurar la sincronización de los trabajadores
  - Convergencia más lenta del modelo





## Estrategias avanzadas

- Paralelismo de tensores
- Paralelismo multinivel
  - Data + Model + Tensor
- Estrategias ad-hoc para ciertas arquitecturas de modelo
- Estrategias avanzadas como Zero-DeepSpeed



## Actividad: Conf. y prueba del entorno

- Creación y configuración del entorno
  - Conectarse a FT3
  - compute —gpu
  - cd Cesga2023Courses/tf\_dist/scripts
  - source createVENVTF.sh
  - source \$STORE/mytf/bin/activate
- Comprobar la instalación
  - python
    - >> import tensorflow as tf
  - >> print("Num GPUs Available: ",
    len(tf.config.list\_physical\_devices('GPU')))



## Actividad: Conf. y prueba del entorno

• Clona el repositorio en \$STORE cd \$STORE git clone <a href="https://github.com/diegoandradecanosa/Cesga2023Courses.git">https://github.com/diegoandradecanosa/Cesga2023Courses.git</a>

• Si ya lo tenías basta con hacer un pull cd \$STORE/Cesga2023Courses git pull



## Soporte nativo para TF distribuido

- Evaluación del rendimento (tf.profile)
- Coexistencia con SLURM y envío de trabajos
- Carga de datos en entornos distribuido
- Entrenamiento en un nodo (CPU)
- Estrategias de entrenamiento distribuido
  - Mirrored y MultiworkerMirrored
- Estrategias de tipo Parameter-Server
- Uso de DTENSORS



- TensorBoard es un conjunto de herramientas de visualización para ML
  - Soporte para TF y Pytorch
  - · Visualización de la evolución de métricas como: loss y accuracy
  - Visualización del grafo del modelo
  - Visualización de histogramas de pesos, bias y otros tensores mientras evolucionan en el tiempo
  - •
  - · Profiling del rendimiento del proceso de entrenamiento

Fuente: Get started with TensorBoard | TensorFlow



- Probar la conexión "local" de un notebook alojado en Google Colab
- Elegir Conectarse a un entorno de ejecución local
- Seguir las instrucciones para conectarse al Jupyter en ejecución en el FT3





- TensorBoard es un conjunto de herramientas de visualización para ML
  - Visualización de la evolución de métricas como: loss y accuracy

Fuente: TensorBoard Scalars: Logging training metrics in Keras | TensorFlow





- TensorBoard es un conjunto de herramientas de visualización para ML
  - Visualización del grafo del modelo

Fuente: Examining the TensorFlow Graph | TensorBoard





- TensorBoard es un conjunto de herramientas de visualización para ML
  - Profiling del rendimiento del proceso de entrenamiento

#### Fuente:

tensorboard profiling keras .ipynb - Colaboratory (google.com)





### Actividad: Tensorboard

• <a href="https://github.com/diegoandradecanosa/Cesga2023Courses/tree/main/tf\_dist/TF/001#actividad-tensorboard">https://github.com/diegoandradecanosa/Cesga2023Courses/tree/main/tf\_dist/TF/001#actividad-tensorboard</a>



## Información complementaria

- <a href="https://www.tensorflow.org/guide/gpu\_performance\_analysis">https://www.tensorflow.org/guide/gpu\_performance\_analysis</a>
- <a href="https://www.tensorflow.org/guide/profiler">https://www.tensorflow.org/guide/profiler</a>
- <a href="https://www.tensorflow.org/guide/mixed\_precision">https://www.tensorflow.org/guide/mixed\_precision</a>
- <a href="https://www.tensorflow.org/guide/graph\_optimization">https://www.tensorflow.org/guide/graph\_optimization</a>



#### Herramientas de profiling del uso de recursos

- NVBoard: Es una extensión de jupyterlab que nos permite observar en tiempo real la ocupación de los recursos de la máquina durante la ejecución de un código
  - CPU
  - Memoria
  - I/O
    - Memoria
    - Red
  - GPU
    - Utilización
    - Memoria
    - PCIe throughput





• Vista "machine resources"





• Vista "GPU utilization"





• Vista "GPU memory"





• Vista "GPU memory"





• Vista "GPU resources"





• Vista "PCIe resources"





### Actividad: NVDashBoard

• <a href="https://github.com/diegoandradecanosa/Cesga2023Courses/tree/main/tf\_dist/TF/001#actividad-nvboard">https://github.com/diegoandradecanosa/Cesga2023Courses/tree/main/tf\_dist/TF/001#actividad-nvboard</a>



### Optimización para TensorFlow

- A partir de la versión 2.5 de TensorFlow, el uso de las implementaciones Intel MKL (o oneDNN) de los kernels está habilitado por defecto
- Mismos controles que Pytorch para:
  - NUMA
  - Variables de entorno de OpenMP
- Intel también proporciona versiones optimizadas de otros frameworks de IA AI Frameworks (intel.com):
  - Mxnet
  - PaddlePaddle
  - ScikitLearn
  - XGBoost



### Optimización para TensorFlow

Opciones de tiempo de ejecución que afectan al rendimiento:

- --intra\_op\_paralllelism\_threads=nNo de cores físicos por socket
- --inter\_op\_parallelism\_threads=n No de sockets
- --data\_format=[NHWC|NCHW]

Tipo de layout de los datos



## Optimización para Tensorflow

- Formato de datos:
  - N: batch
  - C: canal
  - WxH (ancho x alto)
  - Recomendación para oneDNN: NCHW
  - Valor por defecto de TensorFlow: NHWC



## Explotación de una GPU

- TF puede utilizar una GPU de forma totalmente transparente
  - No necesita cambios en el código
- En FT3 es necesario estar en un *compute node* con una GPU disponible: *compute –gpu*

```
import tensorflow as tf
print("Num GPUs Available:
   ",len(tf.config.list_physical_devices('GPU'))
)
```

### Explotación de una GPU: modo de explotación

- Cuando haya una CPU y una GPU disponibles
  - TF prioriza la GPU si la operación a ejecutar tiene una implementación específica para GPU
  - En caso contrario, se ejecuta en la CPU
- El siguiente código permite saber dónde se ejecuta una función (ej. matmul)

```
tf.debugging.set_log_device_placement(True)

# Create some tensors
a = tf.constant([[1.0, 2.0, 3.0], [4.0, 5.0, 6.0]])
b = tf.constant([[1.0, 2.0], [3.0, 4.0], [5.0, 6.0]])
c = tf.matmul(a, b)

print(c)
```



# Exploración de una GPU: modo de explotación

• Existe una forma de forzar una ubicación para unos cálculos

```
tf.debugging.set_log_device_placement(True)

# Place tensors on the CPU
with tf.device('/CPU:0'):
    a = tf.constant([[1.0, 2.0, 3.0], [4.0, 5.0, 6.0]])
    b = tf.constant([[1.0, 2.0], [3.0, 4.0], [5.0, 6.0]])

# Run on the GPU
c = tf.matmul(a, b)
print(c)
```



## Explotación de una GPU: Límite de memoria

- Por defecto, TF se asigna a toda la memoria de todas la GPUs visibles
  - Podemos usar el método set\_visible\_devices para limitarlo



## Explotación de una GPU: Límite de memoria

- También podemos usar el mecanismo experimental set\_memory\_growth
  - Hace un aumento paulatino de la reserva de memoria bajo demanda

```
for gpu in gpus:
    tf.config.experimental.set_memory_growth(gpu, True)
    logical_gpus = tf.config.list_logical_devices('GPU')
    print(len(gpus), "Physical GPUs,", len(logical_gpus), "Logical GPUs")
(...)
```



## Explotación de una GPU: Límite de memoria

• También se puede establecer un límite fijo a través del mecanismo set\_logical\_device\_configuration

```
# Place tensors on the CPU
with tf.device('/CPU:0'):
     a = tf.constant([[1.0, 2.0, 3.0], [4.0, 5.0, 6.0]])
     b = tf.constant([[1.0, 2.0], [3.0, 4.0], [5.0, 6.0]])
     gpus = tf.config.list physical devices('GPU')
     if qpus:
     # Restrict TensorFlow to only allocate 1GB of memory on the first GPU
     try:
          tf.config.set_logical_device_configuration(
          apus [0].
          [tf.config.LogicalDeviceConfiguration(memory limit=1024)])
          logical_gpus = tf.config.list_logical_devices('GPU')
          print(len(gpus), "Physical GPUs,", len(logical_gpus), "Logical GPUs")
     except RuntimeError as e:
          # Virtual devices must be set before GPUs have been initialized
          print(e)
```



## Explotación de una GPU única en un sistema multi-GPU

```
tf debugging set_log_device_placement(True)

try:
    # Specify an invalid GPU device
    with tf device('/device:GPU:0'):
    ...

except RuntimeError as e:
    print(e)
```



#### Tensorflow ClusterResolver

- Es una librería que permite tener acceso a los recursos computacionales reservados en entornos de supercomputación
- Se asocia con el framework ClusterSpec
- Soporta varios sistemas:
  - GCE
  - Kubernetes
  - Slurm
  - •
- Fuente: Module: tf.distribute.cluster\_resolver | TensorFlow v2.11.0



#### Tensorflow ClusterResolver

- SlurmClusterResolver es el que corresponde con Slurm el sistema de colas de FT3
- Devuelve un objeto ClusterResolver que puede ser usado directamente en TF
- El método cluster\_spec devuelve un objeto ClusterSpec para ser usado en Distributed TF

```
tf.distribute.cluster_resolver.SlurmClusterResolver(
    jobs=None,
    port_base=8888,
    gpus_per_node=None,
    gpus_per_task=None,
    tasks_per_node=None,
    auto_set_gpu=True,
    rpc_layer='grpc'
)
```



### Actividad: ClusterResolver

• <a href="https://github.com/diegoandradecanosa/Cesga2023Courses/bloom/main/tf\_dist/TF/002/README.md">https://github.com/diegoandradecanosa/Cesga2023Courses/bloom/main/tf\_dist/TF/002/README.md</a>



## Distribute.strategy de TF: CrossDeviceOps

- Clase para seleccionar la implementación a usar para los algoritmos de
  - Reducción
  - Broadcasting
- Es uno de los parámetros que podemos pasar a la MirroredStrategy
- Implementaciones:
  - tf.distribute.ReductionToOneDevice
    - Copia todos los valores a un dispositivo donde se hará la reducción de forma centralizada
  - tf.distribute.NcclAllReduce
    - Usa la implementación de Nvidia NCCL para el all reduce
  - tf.distribute.HierarchicalCopyAllReduce
    - Utiliza un algoritmo de reducción jerárquica
    - Pensado para Nvidia-DGX1
      - Asume que las GPUs están interconectadas como en ese tipo de nodo



### Distribute.strategy de TF: DistributedDataSet

- Clase que permite definir un *dataset* distribuido entre varios nodos
  - Apropiado para su uso con el módulo tf.distribute.strategy
- Dos APIs diferentes:
  - tf.distribute.Strategy.experimental\_distribute\_dataset(dataset)
    - Más sencillo de utilizar si tenemos un dataset convencional
  - tf.distribute.Strategy.distribute\_datasets\_from\_function(dataset\_fn)
    - · Más difícil de utilizar pero más flexible

#### Fuente:

https://www.tensorflow.org/api\_docs/python/tf/distribute/DistributedDataset



### Distribute.strategy de TF: DistributedDataSet

- Concepto más amplio: Dataset sharding
  - Distribución del conjunto de datos entre varios nodos



## Distributed training en TF

- El uso de hardware *en paralelo* puede reducir el tiempo de entrenamiento
- La paralelización del entrenamiento requiere esfuerzo por parte del programador
  - El uso de una GPU o una CPU sí que no requiere ese esfuerzo
- La paralelización requiere que TF sepa cómo coordinar el trabajo de varios trabajadores (*workers*)

Fuente: <a href="https://www.youtube.com/watch?v=S1tN9a4Proc">https://www.youtube.com/watch?v=S1tN9a4Proc</a>



## Distribute.Strategy de TF

- Tf.distribute.Strategy es una API de TF para distribuir el entrenamiento entre múltiples GPUs, máquinas o TPUs
- Permite ejecutar los entrenamientos en paralelo ávidamente (eagerly) o siguiendo una estrategia de grafo (usando tf.function)
  - Ávidamente -> depuración
  - Tf.function -> Recomendado
- Fuente: Distributed training with TensorFlow | TensorFlow Core



## Distributed training en TF

- Categorías de algoritmos paralelos de TF
  - Paralelismo de datos (data paralellism)
  - Paralelismo de modelo (model paralellism)



# Distributed training en TF: Data parallelism

• Paralelismo de datos (data paralellism)

model.fit(x,y,batch\_size=32)

Dimensiones del entrenamiento:

- Epoch (procesado de todo el *dataset*). Una pasada completa del *dataset*
- En cada *step* procesamos *batch\_size* elementos del data\_set a la vez
  - Incrementar el batch\_size está limitado por la memoria de una GPU
    - Incrementarlo mejora el rendimiento -> Podemos hacer más cosas en paralelo
  - Usando varios workers
    - Podemos seguir aumentando el *batch\_size* 
      - Se divide efectivamente entre varias GPUs
    - Y acortar el entrenamiento
- Usando varios workers
  - Cada uno procesa un *step* del entrenamiento de forma independiente calculando sus propios gradientes
  - Estos gradientes son *reducidos* (promediados) entre todos los trabajadores y usados en la actualización de los pesos



Distributed training en TF: Data parallelism



Fuente: <u>Understanding Data Parallelism in Machine</u> Learning



# Distributed training en TF: Data parallelism

- Cuello de botella: actualización de los gradientes por todos los workers
  - Basada en la operación all-reduce
    - Los valores de un array se promedian a partir de los valores de la copia privada del array de los trabajadores
    - El array global, con sus valores calculados, se transfiere de vuelta a los trabajadores
    - Hay múltiples implementaciones del algoritmo all-reduce
      - Dependiendo de la topología de los trabajadores
      - El patrón de intercambio de valores
      - TF se encarga de seleccionar el algoritmo que realizará la operación de la forma más eficiente en cada caso



- El algoritmo all-reduce ring se compone de dos fases:
  - Reduce-scatter
  - All-gather



- El algoritmo all-reduce ring se compone de dos fases:
  - Reduce-scatter
  - All-gather





- El algoritmo all-reduce ring se compone de dos fases:
  - Reduce-scatter
  - All-gather





- El algoritmo all-reduce ring se compone de dos fases:
  - Reduce-scatter
  - All-gather





- El algoritmo all-reduce ring se compone de dos fases:
  - Reduce-scatter
  - All-gather





# Distributed training en TF: Model parallelism

- Paralelismo de modelo (model parallelism)
  - Dividimos la arquitectura del modelo entre varios workers
  - Es necesario que las partes se puedan ejecutar de forma independiente
  - Más difícil de implementar conceptualmente, y depende de la arquitectura del modelo



Fuente: Intro Distributed Deep Learning



### Distribute.Strategy de TF

- Tipos de estrategia, se cubren varias posibilidades en un abanico amplio dependiendo de varios factores:
  - Entrenamiento síncrono o asíncrono
    - Son dos estrategias distintas para aplicar paralelismo de datos
      - Condicionadas por el cuello de botella de la actualización de los gradientes
        - Operación all-reduce
    - Síncrono: Se divide el dataset de entrenamiento entre los diferentes trabajadores que realizan el entrenamiento de forma independiente, y los gradientes se agregan al final de cada step
    - Asíncrono: No se divide el dataset, todos los trabajadores lo usan por completo, y actualizan las variables de forma asíncrona
  - Plataformas hardware utilizada
    - Tipo de acelerador utilizado: Multicore CPU, GPU, TPU, etc...
    - Un nodo con múltiples aceleradores o varios nodos



## Distribute.Strategy de TF

- Estrategias disponibles en TF:
  - Síncrono
    - OneDeviceStrategy -> https://www.tensorflow.org/api\_docs/python/tf/distribute/OneDeviceStrategy
    - MirroredStrategy
    - TPUStrategy
    - MultiWorkerMirroredStrategy
  - Asíncrono
    - ParameterServerStrategy
    - CentralStorageStrategy
  - https://www.tensorflow.org/guide/distributed\_training
  - https://www.tensorflow.org/api\_docs/python/tf/distribute/Strategy



## Distribute.StrategyExtended

• API adicional para algoritmos que necesitan ser distributionaware

• <a href="https://www.tensorflow.org/api\_docs/python/tf/distribute/StrategyExtended">https://www.tensorflow.org/api\_docs/python/tf/distribute/StrategyExtended</a>



## Distribute.Strategy de TF

Grado de soporte de estrategias en TF en diversos escenarios

| Training API                   | MirroredStrategy | TPUStrategy      | MultiWorkerMirroredStrategy | CentralStorageStrate<br>gy | ParameterServerStrat<br>egy |
|--------------------------------|------------------|------------------|-----------------------------|----------------------------|-----------------------------|
| Keras <u>Model.fi</u> <u>t</u> | Supported        | Supported        | Supported                   | Experimental support       | Experimental support        |
| Custom<br>training loop        | Supported        | Supported        | Supported                   | Experimental support       | Experimental support        |
| Estimator API                  | Limited Support  | Not<br>supported | Limited Support             | Limited Support            | Limited Support             |



## Distribute.Strategy de TF

Grado de soporte de estrategias en TF en diversos escenarios

| Training API                   | MirroredStrategy | TPUStrategy      | MultiWorkerMirroredStrategy | CentralStorageStrate<br>gy | ParameterServerStrat egy |
|--------------------------------|------------------|------------------|-----------------------------|----------------------------|--------------------------|
| Keras <u>Model.fi</u> <u>t</u> | Supported        | Supported        | Supported                   | Experimental support       | Experimental support     |
| Custom<br>training loop        | Supported        | Supported        | Supported                   | Experimental support       | Experimental support     |
| Estimator API                  | Limited Support  | Not<br>supported | Limited Support             | Limited Support            | Limited Support          |



## Distribute.Strategy de TF: MirroredStrategy

- La MirroredStrategy soporta entrenamiento distribuido síncrono en múltiples GPUs en un nodo
- Se crea una réplica por cada GPU
  - Juntas forman una única variable conceptual llamada MirroredVariable
  - Se mantiene la coherencia aplicando actualizaciones similares en todas
    - Como si fuese un espejo (mirror)
    - Implementaciones eficientes de algoritmos all-reduce

mirrored\_strategy = tf.distribute.MirroredStrategy(devices=["/gpu:0", "/gpu:1"])



## Distribute.Strategy de TF: MirroredStrategy

- Cada GPU realiza la *forward pass* en un subconjunto diferente de los datos de entrada para calcular la *loss function*
- Cada GPU calcula sus propios gradientes basándose en la *loss* function calculada localmente
- Se realiza la agregación global (promedio) de estos gradientes a través de un algoritmo *all-reduce*
- Se actualizan los pesos usando los gradientes resultantes
  - Todos los dispositivos tendrán una copia sincronizada (espejo) del modelo entrenado



#### Actividad: Entrenamiento 1 nodo – 2 GPUs

• <a href="https://github.com/diegoandradecanosa/Cesga2023Courses/tree/main/tf\_dist/TF/003#actividad-un-nodo-dos-gpus">https://github.com/diegoandradecanosa/Cesga2023Courses/tree/main/tf\_dist/TF/003#actividad-un-nodo-dos-gpus</a>



#### Actividad: Entrenamiento 1 nodo – 2 GPUs

- Solución de problemas comunes
  - Si se cuelga el kernel hay que reiniciarlo
    - Kernel -> Restart kernel
    - O la combinación de teclas "o+o"
  - Si falla la ejecución por problemas de uso de memoria, entonces podemos matar los procesos que hayan quedado ejecutándose en la GPU
    - nvidia-smi Al final del comando habrá una lista de procesos
    - Eliminarlos con kill -9 pid



## Distribute.Strategy de TF: TPUStrategy

- Específica para Google TPUs
- Similar a MirroredStrategy
- Usa una implementación específica de las operaciones all-reduce optimizada para TPUs

```
cluster_resolver =
tf.distribute.cluster_resolver.TPUClusterResolver(
    tpu=tpu_address)
    tf.config.experimental_connect_to_cluster(cluster_resolver)
    tf.tpu.experimental.initialize_tpu_system(cluster_resolver)
    tpu_strategy = tf.distribute.TPUStrategy(cluster_resolver)
```



#### Distribute.Strategy de TF: MultiWorkerMirroredStrategy

- MultiWorkerMirroredStrategy es similar a MirroredStrategy pero con soporte para varios nodos
  - Crea copias de todas las variables en todos los trabajadores y en todos los dispositivos

```
communication_options = tf.distribute.experimental.CommunicationOptions(
implementation=tf.distribute.experimental.CommunicationImplementation.NCCL)
strategy =
tf.distribute.MultiWorkerMirroredStrategy(communication_options=communication_options)
```

Hay 2 opciones para las Comunicaciones entre dispositivos:

.RING: Basado en RPC, válido para CPU y GPU

.NCCL: Específico para GPU, mejor rendimiento cuando se puede utilizar

.AUTO: Deja a TF elegir el mejor método disponible



#### Distribute.Strategy de TF: MultiWorkerMirroredStrategy

```
    El uso de múltiples nodos requiere configurar la variable de entorno: TF_CONFIG.

    Tiene estructura de diccionario

     Dos componentes:

    La definición de un cluster

    Diccionario con listas de nodos (host:puerto) de distintos tipos:

    Ps: servidores

    Workers: trabajadores

    La definición de cada tarea (task)

               Type: worker/ps

    Index

os.environ["TF_CONFIG"] = json.dumps({
    "cluster": {
         "worker": ["host1:port", "host2:port", "host3:port"],
         "ps": ["host4:port", "host5:port"]
   "task": {"type": "worker", "index": 1}
```

Fuente: <u>Distributed training with TensorFlow | TensorFlow Core</u>



#### Actividad: Entrenamiento 2 nodos – 2 GPUs

• <a href="https://github.com/diegoandradecanosa/Cesga2023Courses/bloom/main/tf\_dist/TF/004/README.md">https://github.com/diegoandradecanosa/Cesga2023Courses/bloom/main/tf\_dist/TF/004/README.md</a>



#### Distribute.Strategy de TF: ParameterSeverStrategy

- Es un tipo de entrenamiento multimodo asíncrono
  - Reduce el cuello de botella del allreduce en las estrategias síncronas
  - Recomendable para usar un nodo alto de trabajadores
- Los nodos implicados se dividen en:
  - *Workers* (*tf.distribute.Server*)
  - Parameter servers (tf.distribute.Server)
  - Un coordinator (tf.distribute.experimental.coordinat or.ClusterCoordinator)
    - Usa la ParameterServerStrategy para definir el paso de entrenamiento y usar un ClusterCoordinator que envía pasos de entrenamiento a los trabajadores





#### Distribute.Strategy de TF: ParameterSeverStrategy

- Soporta dos modos de entrenamiento
  - Keras Model.fit
  - Bucles de entrenamiento definidos por el usuario
- Abstracciones de Model.fit
  - Cluster, Jobs y Tasks
- Con PS, también tenemos:
  - Un Coordinator job (called chief)
  - Varios Worker jobs (llamados workers)
  - Varios PS Jobs (llamados ps)



#### Distribute.Strategy de TF: ParameterSeverStrategy

- Cada *worker* pide la última copia de los parámetros a cada uno de los *parameter servers* 
  - Los parámetros están distribuidos entre varios servidores
- Cada *worker* calcula los gradientes de acuerdo a un subconjunto del *dataset*
- Los *workers* envían los parámetros de vuelta a los *parameter servers* donde se integran (reducen)





## Preparación del Clúster

- Components: 1 Coordinator (type *chief*), N PS (*ps*), N Workers (*worker*), y puede que una tarea Evaluator
- La tarea de coordinación necesita conocer las direcciones y puertos de todas las tareas Server (PS y Workers), pero no del Evaluator
- Las tareas Server deben saber en qué puerto escuchar
- La tarea Evaluator no tiene por qué conocer la configuración del Clúster
- La estrategia PS usará todas las GPUs disponibles en cada nodo
  - · Todos deben tener el mismo número de GPUs



#### PS con Keras model.fit(): Esqueleto

```
variable_partitioner = (
    tf.distribute.experimental.partitioners.MinSizePartitioner(
        min_shard_bytes=(256 << 10),
        max_shards=NUM_PS))

strategy = tf.distribute.experimental.ParameterServerStrategy(
    tf.distribute.cluster_resolver.TFConfigClusterResolver(),
    variable_partitioner=variable_partitioner)
coordinator = tf.distribute.experimental.coordinator.ClusterCoordinator(
    strategy)

with strategy.scope():
    //model definition
    model.compile(...)

model.fit(...)</pre>
```



## Concepto relacionado: Variable sharding

- Consiste en dividir una variable en variables más pequeñas llamadas shards
- Útil para:
  - Reducir consumo de red
  - Distribuir la carga de computación y almacenamiento de una variable
    - Útil, por ejemplo, para *embeddings* muy grandes que no caben en la memoria de un dispositivo
- Cómo hacerlo: Pasando un *variable\_partitioner* al construir un objeto *ParameterServerStrategy*
- El particionador entonces se llamará cada vez que se cree una variable, y devuelve un nuevo de shards particionando en cada dimensión de la variable
- Varios particionadores disponibles: [Min/Max/Fixed]SizePartitioner



#### PS con bucle de usuario

- Creación de una instancia de un ClusterCoordinator para enviar trabajos (normalmente *steps* de entrenamiento) para su ejecución en otros *workers* 
  - Opcional trabajando con Keras Model.fit
  - Necesario con bucles de entrenamiento de usuario



#### Definición del step de entrenamiento

Wrapper tf.function

```
def step_fn(iterator):
                                                                                               Inferencia para un batch
             def replica_fn(batch_data, labels):
                           with tf.GradientTape() as tape:
                                        pred = model(batch_data, training=True)
                                        per_example_loss = tf.keras.losses.BinaryCrossentropy(
                                                      reduction=tf.keras.losses.Reduction.NONE)(labels, pred)
                                        loss = tf.nn.compute_average_loss(per_example_loss)
                                        if model losses:
                                                      loss += tf.nn.scale_regularization_loss(tf.add_n(model_losses))
                          gradients = tape.gradient(loss, model.trainable_variables)
                          optimizer.apply gradients(zip(gradients, model.trainable variables))
                          actual_pred = tf.cast(tf.greater(pred, 0.5), tf.int64)
                          accuracy.update_state(labels, actual_pred)
                                                                                                      1. Siguiente batch
                                                                                                         Ejecutar step de entrenamiento para cada
                           return loss
                                                                                                     3. Reducción de los resultados en cada
             batch data, labels = next(iterator)
                                                                                                         trabajador
             losses = strategy.run(replica_fn, args=(batch_data, labels))
             return strategy.reduce(tf.distribute.ReduceOp.SUM, losses, axis=None)
```



#### Definición del ClusterCoordinator (I)

```
Instancia del coordinador
coordinato
            = tf.distribute.coordinator.ClusterCoordinator(strategy)
                                                Replica el conjunto de datos entre los trabajadores
@tf.function
         def per
                  vorker dataset fn():
                  return strategy.distribute_datasets_from_function(dataset_fn)
per_worker_dataset = coordinator.create_per_worker_dataset(per_worker_dataset_fn)
per_worker_iterator = iter(per_worker_dataset)
```



#### Definición del ClusterCoordinator (II)

```
num epochs = 4
steps_per_epoch = 5
                                                 Para cada step
for i in range(num_epochs):
                                                                      Envío de steps a los trabajadores
            for _ in range(steps_per_epoch):
                                                           Punto de sincronización
                       coordinator.schedule(step_fn
                                                     args=(per worker iterator,))
           # Wait at epoch boundaries.
           coordinat(r.join()
           print("Finished epoch %d, accuracy is %f." % (i, accuracy.result().numpy()))
0.00
loss = coordinator.schedule(step fn, args=(per worker iterator,))
print("Final loss is %f" % loss.fetch())
```



## Central Storage Strategy

• Es una estrategia de tipo servidor de parámetros que pone todas las variables en el mismo dispositivo

```
strategy = tf.distribute.experimental.CentralStorageStrategy()
# Create a dataset
ds = tf.data.Dataset.range(5).batch(2)
# Distribute that dataset
dist_dataset = strategy.experimental_distribute_dataset(ds)
with strategy.scope():
        @tf.function
        def train step(val):
                return val + 1
# Iterate over the distributed dataset
for x in dist dataset:
        # process dataset elements
        strategy.run(train_step, args=(x,))
```

https://www.tensorflow.org/api\_docs/python/tf/distribute/experimental/CentralStorageStrategy



### Actividad: ParameterServer Ejemplo simple

• <a href="https://github.com/diegoandradecanosa/Cesga2023Courses/tree/main/tf\_dist/TF/005#parameter-server-ejemplo-simple">https://github.com/diegoandradecanosa/Cesga2023Courses/tree/main/tf\_dist/TF/005#parameter-server-ejemplo-simple</a>



#### Entrenamiento distribuido con DTENSORS

- DTensor es una extensión de Tensorflow para computación distribuida síncrona (desde TF 2.9)
- Proporciona un modelo de programación que opera globalmente sobre tensores manejando de forma transparente la distribución en dispositivos
- La distribución se realiza en base a directivas de *sharding* (fragmentación)
- Si un código de TF utiliza DTensors, ese mismo código se puede ejecutar en un número variable de dispositivos

https://www.tensorflow.org/guide/dtensor\_overview https://www.tensorflow.org/tutorials/distribute/dtensor\_ml\_tutorial



#### Entrenamiento Distribuido con DTensors

- El mecanismo de Dtensors es apropiado para distribuir el entrenamiento de modelos entre varios dispositivos
- Adecuado para
  - Paralelismo de datos
  - Paralelismo de modelo
  - Particionado Spatial (equivalente a paralelismo tensorial)

#### Fuente:

https://www.tensorflow.org/tutorials/distribute/dtensor\_ml\_tutorial



#### DTENSORS: Conceptos

- Se basa en dos conceptos básicos:
  - Mesh: define la lista de dispositivos disponibles
    - Podemos tener un grid con varias dimensiones
  - Layout: define cómo distribuir la dimensión Tensor sobre una Mesh





#### Anatomía de un DTENSOR

- Se tratar de un Tensor pero enriquecido con la anotación Layout que define su política de distribución. Consta de:
  - Shape y dtype como cualquier tensor
  - Un Layout que define la Mesh a la que pertenece el Tensor, y como este es distribuido sobre la Mesh
  - Una lista de tensores-componentes con un ítem por dispositivo loca de la Mesh
- Las operaciones unpack y pack de un Dtensor, permiten extraer los vectores componentes, y devolver el tensor a su versión compacta, respectivamente



## Ejemplo de un Dtensor 2D

• Consideremos una mesh 2D formada por 3x2 dispositivos:

```
mesh = dtensor.create_mesh([("x", 3), ("y", 2)], devices=DEVICES)
```

- Creemos un tensor 3x2 con rank-2
  - La primera dimensión se distribuye por la dimensión x
  - La segunda por la dimensión y
  - Con esta distribución cada dispositivo recibe un elemento den tensor



#### DTENSORS: Meshes



mesh\_2d = dtensor.create\_mesh([('x', 3), ('y', 2)], devices=DEVICES)
print(mesh\_2d)



### DTENSORS: Layouts

- Un Layout indica cómo disribuir un tensor sobre una Mesh
- El tamaño de un Layout debe ser el mismo que el del Tensor sobre el que se aplica
- Cada dimensión del Layout/Tensor hay que especificar
  - La dimensión del Mesh a través de la que se distribuye
  - Si la dimensión es unsharded: entonces se replica a través de esa dimensión de la Mesh



## DTENSORS: Layout, Tensor, Mesh





# DTENSORS: Ejemplos de meshes vs layouts



- Mesh: [("x", 6)]
- Layout: Layout(["unsharded", "unsharded"], mesh\_1d)



# DTENSORS: Ejemplos de meshes vs layouts



- Mesh: [("x", 6)]
- Layout: Layout(['unsharded', 'x'])



# DTENSORS: Ejemplos de meshes vs layouts



- Mesh: [("x", 3), ("y", 2)]
- Layout: Layout(["y", "x"], mesh 2d)



# DTENSORS: Ejemplos de meshes vs layouts



- Mesh: [("x", 3), ("y", 2)]
- Layout: Layout(["x", dtensor.UNSHARDED], mesh\_2d)



#### DTENSORS: Cliente

- Dos escenarios posibles:
  - Un cliente ejecutando un único proceso Python
  - Varios clientes ejecutando varios procesos Python actuando de forma colectiva como una aplicación coherente
    - Todos los clientes ven la misma Mesh, pero cada dispositivo es local o global según el cliente
      - dtensor.create\_distributed\_mesh



#### DTENSORS: Creación

- La función dtensor\_from\_array permite crear un Dtensor a partir de algo como un tf.Tensor, en dos pasos:
  - El Tensor se replica en cada dispositivo de la Mesh
  - Distribuye (*shards*) la copia al Layout solicitado a través de sus argumentos



#### DTENSORS: Creación



#### DTENSORS: Creación

```
mesh = dtensor.create_mesh([("x", 6)], devices=DEVICES)
layout = dtensor.Layout([dtensor.UNSHARDED], mesh)

my_first_dtensor = dtensor_from_array([0, 1], layout)

# Examine the DTensor content
print(my_first_dtensor)
print("global shape:", my_first_dtensor.shape)
print("dtype:", my_first_dtensor.dtype)
```



## DTENSOR: Ejemplo básico

```
import tensorflow as tf
from tensorflow.experimental import dtensor
print('TensorFlow version:', tf.__version___)
def configure_virtual_gpus(ngpu):
      phy_devices = tf.config.list_physical_devices('GPU')
      tf.config.set_logical_device_configuration(phy_devices[0], [
             tf.config.LogicalDeviceConfiguration(),
      ] * ngpu)
configure_virtual_gpus(2)
DEVICES = [f'GPU:\{i\}' for i in range(2)]
tf.config.list_logical_devices('GPU')
```



# DTENSOR: Compatibilidad con TF

- Al ser un reemplazo para el tipo Tensor, funciona también con los mecanismos compatibles con estos:
  - tf.function
  - tf.GradientTape
- Para ello, el TF Graph se convierte en un SPMD Graph a través de un proceso llamado expansión SPMD



# Dtensors y el API de TF

- Los Dtensors coexisten con el API de TF como un reemplazo de los tensores convencionales
  - tf.function
  - tf.GradientTape
- Para ello, para cada TF Graph, Dtensor genera y ejecuta un grafo SPMD equivalente
  - SPMD expansión
    - Propagación del Layout de Dtensor a través del TF Graph
    - Reescritura las TF Ops sobre el tensor global usando TF Ops equivalente sobre los tensores componentes
      - Puede implicar a inserción de directivas de comunicación donde sea necesario
    - Algunas TF Ops se puede reemplazar por versiones propias de un determinado backend



## Ejecución sobre DTensors

- La ejecución de Dtensors se desencadena cuando
  - Se usa un Dtensor como un operando de una funcion de Python
    - Ej: tf.matmul(a,b)
  - Solicitar que el resultado de una funcion de Python se proporcione en forma de Dtensor
    - Ej: dtensor.call\_with\_layout(tf.ones,layout,shape=(3,2))

      Solicita que la salida de la función tf.ones se distribuya de acuerdo a un **layout**



#### Dtensor como operando (caso I)

```
mesh = dtensor.create mesh([("x", 6)], devices=DEVICES)
layout = dtensor.Layout([dtensor.UNSHARDED, dtensor.UNSHARDED], mesh)
a = dtensor_from_array([[1, 2, 3], [4, 5, 6]], layout=layout)
b = dtensor_from_array([[6, 5], [4, 3], [2, 1]], layout=layout)
c = tf.matmul(a, b) # runs 6 identical matmuls in parallel on 6 devices
# `c` is a DTensor replicated on all devices (same as `a` and `b`)
print('Sharding spec:', dtensor.fetch layout(c).sharding specs)
print("components:")
for component tensor in dtensor.unpack(c):
        print(component_tensor.device, component_tensor.numpy())
```



### Dtensor como operando

```
Sharding spec: ['unsharded', 'unsharded']
components:
/job:localhost/replica:0/task:0/device:CPU:0 [[20 14]
 [56 41]]
/job:localhost/replica:0/task:0/device:CPU:1 [[20 14]
 [56 41]]
/job:localhost/replica:0/task:0/device:CPU:2 [[20 14]
 [56 41]]
/job:localhost/replica:0/task:0/device:CPU:3 [[20 14]
 [56 41]]
/job:localhost/replica:0/task:0/device:CPU:4 [[20 14]
 [56 41]]
/job:localhost/replica:0/task:0/device:CPU:5 [[20 14]
 [56 41]]
```



### Dtensor como operando (caso II)

```
mesh = dtensor.create_mesh([("x", 3), ("y", 2)], devices=DEVICES)
a_layout = dtensor.Layout([dtensor.UNSHARDED, 'x'], mesh)
a = dtensor_from_array([[1, 2, 3], [4, 5, 6]], layout=a_layout)
b_layout = dtensor.Layout(['x', dtensor.UNSHARDED], mesh)
b = dtensor_from_array([[6, 5], [4, 3], [2, 1]], layout=b_layout)

c = tf.matmul(a, b)

# `c` is a DTensor replicated on all devices (same as `a` and `b`)
print('Sharding spec:', dtensor.fetch_layout(c).sharding_specs)
```

Sharding spec: ['unsharded', 'unsharded']



#### Dtensor como operando (caso III)

```
mesh = dtensor.create_mesh([("x", 3), ("y", 2)], devices=DEVICES)
a_layout = dtensor.Layout(['y', 'x'], mesh)
a = dtensor_from_array([[1, 2, 3], [4, 5, 6]], layout=a_layout)
b_layout = dtensor.Layout(['x', dtensor.UNSHARDED], mesh)
b = dtensor_from_array([[6, 5], [4, 3], [2, 1]], layout=b_layout)
c = tf.matmul(a, b)
# The sharding of `a` on the first axis is carried to `c'
print('Sharding spec:', dtensor.fetch_layout(c).sharding_specs)
print("components:")
for component tensor in dtensor.unpack(c):
                                                              components:
print(component tensor.device, component tensor.numpy())
```

```
Sharding spec: ['y', 'unsharded']
components:
/job:localhost/replica:0/task:0/device:CPU:0 [[20 14]]
/job:localhost/replica:0/task:0/device:CPU:1 [[56 41]]
/job:localhost/replica:0/task:0/device:CPU:2 [[20 14]]
/job:localhost/replica:0/task:0/device:CPU:3 [[56 41]]
/job:localhost/replica:0/task:0/device:CPU:4 [[20 14]]
/job:localhost/replica:0/task:0/device:CPU:5 [[56 41]]
```



#### Dtensor como salida

- Hay funciones que no reciben operandos como tensores pero devuelven un Tensor que puede ser distribuido (ejemplos: tf.ones, tf.zeros, tf.random.stateless\_normal
- Para ellas, existe una función llamada dtensor.call\_with\_layout que ejecuta una función Python generando un Dtensor que sigue un Layout especificado

call\_with\_layout(función, layout)

```
mesh = dtensor.create_mesh([("x", 3), ("y", 2)], devices=DEVICES)
ones = dtensor.call_with_layout(tf.ones, dtensor.Layout(['x', 'y'], mesh), shape=(6, 4))
print(ones)
```



#### Dtensor como salida

- Si la función emite múltiples TF Ops, se debe convertir primero a una única operación usando tf.function
  - Ejemplo tf.random.stateless\_normal

```
ones=tensor.call_with_layout(tf.function(tf.random.stateless_normal),
dtensor.Layout(['x', 'y'], mesh),
shape=(6, 4),
seed=(1, 1))
print(ones)
```



# Ejemplo: DTENSOR

https://github.com/diegoandradecanosa/Cesga2023Courses/tree/main/tf\_dist/TF/006DTENSORS



# Elementos comunes frameworks distribuidos ML

- Normalmente deben partir de una configuración de los dispositivos y/o nodos disponibles
  - En formato JSON, XML o algún tipo de estructura de Python similar (diccionarios/listas)
  - Puede definir roles, tipo ps (parameter server) o worker
  - Normalmente se da la IP de cada trabajador o un identificador válido en la LAN (tipo compute206-1 en FT3)
  - También es necesario conocer el puerto de cada nodo/dispositivo
  - A menudo se puede especificar una tecnología para las comunicaciones entre nodos nccl, mpi, gloo, etc...



# Elementos comunes frameworks distribuidos ML

- La interacción con SLURM en el caso de FT3 es fundamental
  - Los nodos/dispositivos entre los que se distribuirá una computación son reservados a través del sistema de colas de SLURM
  - En cada nodo la información que necesita el framework de ML distribuido va a estar disponible a través de variables de entornos
    - O en slurm con llamadas al comando scontrol
  - A veces vamos a tener wrappers en el propio API del framework que nos van a facilitar el trabajo (tipo ClusterResolver de TF y sus variantes específicas para un gestor de colas, ej. SlurmClusterResolver)

