DEVRELER ve SİSTEMLER

BIMU2058 - CSBM2092

Yrd. Doç. Dr. Fatih KELEŞ

İÇERİK

RL ve RC Devreleri

- Dinamik Devrelerde Yanıt
- Doğal Çözüm & Zorlanmış Çözüm
- Birim Basamak Fonksiyonu
- Zorlanmış Çözüm ve Tam Çözüm
 - RL Devreleri
 - RC Devreleri

Devreye Birim Basamak Zorlama Fonksiyonunun Uygulanması

- Önceki kısımda kaynaksız RL ve RC devrelerini incelenmiş ve özetle "devrenin doğasından kaynaklanan cevap" yani doğal çözüm ile ilgilenilmişti.
 - Devrede ilk koşullar vardı (basitçe kaynaklar ve anahtarlama mantığı vardı) ve ilk koşulların verilebilmesi için kaynaklar aniden devre dışı bırakılıyordu.
- Kaynakların devreye aniden uygulanması ile cevabın nasıl değiştiği incelenmesi gerekir. Bu kısımda ise, de kaynakların aniden devreye uygulanmasıyla devrenin buna verdiği cevap yani zorlanmış çözüm ele alınacaktır.
 - Tüm elektronik aygıtlar başlatılır, bir kısmı defalarca açılır kapatılır..
 - Dc motorun akımı, mikroişlemcilerde komutların yürütülmesi için gerekli olan kare dalgalar, bilgisayarların çalışma mantığı, senkonizasyon sistemleri, haberleşme ve radar sistemleri gibi ornekler.

Birim Basamak Fonksiyonu: u(t)

- Bir kaynağın "sıfır zamanda" aniden uygulanması;
- Birim basamak fonksiyonu, ani değişime uygun bir karşılıktır.
- Bir anahtarın çalışma mantığı;
- Gerçek bir anahtarlama işleminin matematiksel modelidir.

Örnek

RL Devreleri

- Basit RL devresi haline getirilebilir (Thévenin eşdeğer direnci):
- 1. t>0 devresinden, e(t)=0 R_{es} , $L_{es} \Rightarrow \tau$ bulunur.
- 2. $DC \rightarrow L$: SC $L_{es} = 0$, $i_L(0^-)$ bulunur. 3. $t \rightarrow \infty$ L: SC $L_{es} = 0$, i_f bulunur.
- 4. $i = i_n + i_f$, A = ?
- 5. $i_L(0^-)=i_L(0^+)$ olduğundan $t=0^+$ için A bulunur.
- 6. Tam çözüm elde edilir: $i = i_n + i_f$

RC Devreleri $v_C(0) = \frac{50}{50 + 10}(120) = 100 \text{ V}$ $v_C = 20 + Ae^{-t/1.2}$ 100 = 20 + A $v_C = 20 + 80e^{-t/1.2}$ $v_C = 100 \text{ V}$

RC Devreleri

- Basit RC devresi haline getirilebilir (Thévenin eşdeğer direnci):
- 1. t>0 devresinden, e(t)=0 $R_{e\S}$, $C_{e\S}$ \Rightarrow τ bulunur.
- 2. $DC \rightarrow C$: $OC \ C_{es} \rightarrow \infty$, $v_C(0^-)$ bulunur. 3. $t \rightarrow \infty$ C: $OC \ C_{es} \rightarrow \infty$, v_f bulunur.
- 4. $v = v_n + v_f$, A = ?
- 5. $v_C(0^-)=v_C(0^+)$ olduğundan $t=0^+$ için A bulunur.
- 6. Tam çözüm elde edilir: $v = v_n + v_f$