

Campus Estado de México

Inteligencia artificial avanzada para la ciencia de datos II (Gpo 101)

Actividad 3. Proceso Poisson

Juan Pablo Castañeda Serrano

A01752030

1. Drive Through

from scipy.stats import poisson, expon

mean_wait = 1 / lambda_per_second

std dev 3 = variance wait 3 ** 0.5

mean wait 3 = 3 * mean wait

variance wait = 1 / (lambda per second ** 2)

variance wait 3 = 3 * variance wait # Suma de varianzas de variables independientes

prob wait above std dev = 1 - expon.cdf(mean wait 3 + std dev 3, scale=1/lambda per second)

```
# Parametros
lambda_per_hour = 12
lambda_per_minute = lambda_per_hour / 60
lambda_per_second = lambda_per_minute / 60

# 1. Probabilidad de que el tiempo de espera de tres personas sea a lo más de 20 minutos
lambda_20_min = lambda_per_minute * 20
prob_3_or_less_in_20 = poisson.cdf(3, lambda_20_min)

# 2. Probabilidad de que el tiempo de espera de una persona esté entre 5 y 10 segundos
prob_wait_5_to_10 = expon.cdf(10, scale=1/lambda_per_second) - expon.cdf(5, scale=1/lambda_per_second)

# 3. Probabilidad de que en 15 minutos lleguen a lo más tres personas
lambda_15_min = lambda_per_minute * 15
prob_at_most_3_in_15 = poisson.cdf(3, lambda_15_min)

# 4. Probabilidad de que el tiempo de espera de tres personas esté entre 5 y 10 segundos
# Esta es simplemente el cubo de la anterior (para tres personas consecutivas)
prob_3_wait_5_to_10 = prob_wait_5_to_10 ** 3

# 5. Determine la media y varianza del tiempo de espera de tres personas.
```

PS C:\Users\sickp\Documents\estadistica> python B2_T3.py 0.43347012036670896 0.016255353339611575 0.6472318887822313 4.295257870966405e-06 900.0 269999.9999999999 0.00880838819466745

6. ¿Cuál será la probabilidad de que el tiempo de espera de tres personas exceda una desviación estándar arriba de la media?

2. Entre partículas

```
#ENTRE PARTICULAS
lambda_per_minute = 15
lambda_per_second = lambda_per_minute / 60

# 1. Probabilidad de que en 3 minutos se emitan 30 partículas
lambda_3_min = lambda_per_minute * 3
prob_30_in_3 = poisson.pmf(30, lambda_3_min)

# 2. Probabilidad de que transcurran cinco segundos a lo más antes de la siguiente emisión
prob_wait_at_most_5 = expon.cdf(5, scale=1/lambda_per_second)

# 3. Mediana del tiempo de espera
median_wait = np.log(2) / lambda_per_second

# 4. Probabilidad de que transcurran a lo más cinco segundos antes de la segunda emisión
cumulative_5_seconds = expon.cdf(5, scale=1/lambda_per_second)
prob_two_emissions_in_5 = cumulative_5_seconds ** 2

# 5. Rango del 50% del tiempo central
lower_quantile = gamma.ppf(0.25, 2, scale=1/lambda_per_second)
upper_quantile = gamma.ppf(0.75, 2, scale=1/lambda_per_second)
```

0.0042605302452933145 0.7134952031398099 2.772588722239781 0.5090754049035185 (3.8451150524591085, 10.770538115558782)