	Lógica CC		
	– 1° Teste A 6 de novembro de 2019 — duração: 2 horas —		
nome: _	número		
	Grupo I		
(V) ou :	apo é constituído por 6 questões. Em cada questão, deve dizer se a afirmação indicada é falsa (F), assinalando o respetivo quadrado. Em cada questão, a cotação atribuída se alores ou θ valores, consoante a resposta esteja certa, errada, ou não seja assinaladamente. A cotação total neste grupo é no mínimo θ valores.	erá 1	valor
		V	F
1.	As sequências de formação de comprimento mínimo da fórmula $((p_1 \lor p_2) \to \neg p_1)[\neg p_1/p_1]$ têm 6 elementos.		
2.	Para qualquer fórmula φ e para qualquer $n \in \mathbb{N}$, se φ tem n subfórmulas e $p_0 \in var(\varphi), (p_0 \vee p_1)[\varphi/p_1]$ tem n subfórmulas.		
3.	Existe uma infinidade de valorações que satisfazem a fórmula $(p_0 \lor p_1) \land \neg p_1$.		
4.	Para qualquer fórmula φ e para qualquer conjunto de fórmulas Γ , se $\Gamma \models \varphi \lor \psi$, então $\Gamma \cup \{\varphi, \psi\}$ é semanticamente consistente.		
5.	No sistema formal DNP, existem derivações da fórmula $p_0 \vee p_1$ a partir do conjunto de fórmulas $\{\neg p_0, p_0 \to p_1\}$.		
6.	Para qualquer conjunto de fórmulas Γ , se Γ é maximalmente consistente e $\{p_1 \leftrightarrow p_2, p_1 \lor p_2\} \subset \Gamma$, então $\{p_1, p_2\} \subset \Gamma$.		

Grupo II

Nas questões 1(a), 1(b), 2, 3 e 4(a), responda no espaço disponibilizado a seguir à questão.

- 1. Seja \mathcal{F} o conjunto das fórmulas proposicionais definido indutivamente pelas seguintes regras:
 - (i) $p_i \in \mathcal{F}$, para todo i impar;
 - (ii) $(\neg p_i) \in \mathcal{F}$, para todo i par;
 - (iii) se $\varphi \in \mathcal{F}$, então $(\neg \varphi) \in \mathcal{F}$, para todo $\varphi, \psi \in \mathcal{F}^{CP}$;
 - (iv) se $\varphi \in \mathcal{F}$ e $\psi \in \mathcal{F}$, então $(\varphi \wedge \psi) \in \mathcal{F}$, para todo $\varphi, \psi \in \mathcal{F}^{CP}$;
 - (v) se $\varphi \in \mathcal{F}$ e $\psi \in \mathcal{F}$, então $(\varphi \to \psi) \in \mathcal{F}$, para todo $\varphi, \psi \in \mathcal{F}^{CP}$.
 - (a) A fórmula $(((\neg p_1) \land p_3) \to (\neg p_2))$ pertence a \mathcal{F} ? Justifique. Resposta:

- (b) Indique $\varphi \in \mathcal{F}$ tal que $\varphi \Leftrightarrow ((p_1 \to \bot) \lor p_3) \land p_2$. Justifique. Resposta: (c) Mostre por indução estrutural que, para todo $\varphi \in \mathcal{F}^{CP}$, existe $\psi \in \mathcal{F}$ tal que $\varphi \Leftrightarrow \psi$. 2. Sejam φ e ψ fórmulas tais que $\varphi \lor \psi$ é tautologia e $\varphi \models \psi$. Mostre que ψ é tautologia. Resposta: 3. Apresente uma forma normal disjuntiva logicamente equivalente à fórmula $\neg((p_1 \leftrightarrow p_2) \lor p_3)$. Justifique. Resposta:
- 4. Sobre três sacos, sabe-se que cada um deles pode estar vazio ou conter uma bola.
 - (a) Exprima as duas afirmações que se seguem através de fórmulas do Cálculo Proposicional, indicando a frase atómica associada a cada uma das variáveis proposicionais utilizadas.
 - (i) O saco 1 está vazio somente se um dos outros sacos não está vazio.
 - (ii) Os sacos 2 e 3 estão ambos vazios ou ambos contêm uma bola.

Resposta:

- (b) Assumindo que as afirmações (i) e (ii) da alínea (a) são verdadeiras, é possível que a soma do número de bolas nos três sacos seja 1? Justifique.
- 5. Construa uma demonstração em DNP da fórmula $(\neg p_1 \lor p_2) \to ((p_2 \leftrightarrow p_3) \to (p_1 \to p_3))$.
- 6. Sejam $\varphi \in \mathcal{F}^{CP}$ e $\Gamma \subseteq \mathcal{F}^{CP}$ tais que $\Gamma \cup \{\varphi\}$ é inconsistente. Mostre que, se $\Gamma, \neg \varphi \vdash \psi$, para todo $\psi \in \mathcal{F}^{CP}$, então existe um subconjunto de Γ que é finito e inconsistente.

Cotações	I.	II.1.	II.2.	II.3.	II.4.	II.5.	II.6
Cotações	6	$1,\!25\!+\!1,\!5\!+\!1,\!75$	1,5	1,75	$1,5\!+\!1,\!5$	1,75	1,5