(12)00

DAVID W. TAYLOR NAVAL SHIP RESEARCH AND DEVELOPMENT CENTER

A U S U 7 Z U

Bethesda, Md. 20084

A LIFTING LINE COMPUTER PROGRAM

FOR PRELIMINARY DESIGN OF PROPELLERS

by

E.B. Caster

J.A. Diskin

T.A. LaFone

Approved for Public Release;
Distribution Unlimited

SHIP PERFORMANCE DEPARTMENTAL REPORT

NOVEMBER 1975

REPORT NO. SPD-595-01

DISCLAIMER NOTICE

THIS DOCUMENT IS BEST QUALITY AVAILABLE. THE COPY FURNISHED TO DTIC CONTAINED A SIGNIFICANT NUMBER OF PAGES WHICH DO NOT REPRODUCE LEGIBLY.

MAJOR DTNSRDC ORGANIZATIONAL COMPONENTS

de destination of the second

12.

بربج

SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)

REPORT DOCUMENTATION PAGE		READ INSTRUCTIONS BEFORE COMPLETING FORM
1 REPORT NUMBER	2. GOVT ACCESSION NO.	
/+/SPD-595-01		\boldsymbol{a}
4:	<u> </u>	S TYPE OF REPORT & PERIOD COVERED
A Lifting Line Computer Programmer Programmer Programmer Design of Propello	am for	Departmental/Final (]
		S. PERFORMING ONG. REPORT NUMBER
		SPD-595-01
7 AUTHOMOS		8. CONTRACT OR GRANT NUMBER(+)
E.B. Caster J.A. Diskin		
T.A./LaFone /		10 BROGRAM EL EMENT PROJECT TASK
9 PERFORMING ORGANIZATION NAME AND ADDRESS		10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS
David W. Taylor Naval Ship Re	search and	Task 15942
Development Center		Work Unit No. 1524-462
Bethesda, Maryland 20084		1500-001
Naval Sea Systems Command (SO	34)	November 1975
Washington, D.C. 20362	J-1	13. NUMBER OF PAGES
wasiiington, b.c. 20002		143 121/562.1
14 MONITORING AGENCY NAME & ADDRESS(If dillered	nt from Controlling Office)	15. SECURITY CLASS, (of this separt)
		Unclassified
		15a. DECLASSIFICATION/DOWNGRADING
16 DISTRIBUTION STATEMENT (of this Report)		
Approved for Public Release;	Distribution Unl	imited
17 DISTRIBUTION STATEMENT (of the abelract entered	I in Block 20, If different fro	om Report)
18 SUPPLEMENTARY NOTES		
		į
19. KEY WORDS (Continue on reverse elde if necessary a	and identify by block number)
Propeller		1
Lifting Line		
Stress		
Design		1
\		
20. ABSTRACT (Continue on reverse side if necessary a	nd identify by block number	
Phis report presents a comp	uter program tha	t can be used for the.
preliminary design and to pre	dict the perform	ance of single screw
propellers when designed for	a prescribed hyd	rodynamic pitch dis-
tribution. This design progra	um is based on li	fting line theory as
developed by Lerbs for modera	itely-loaded fini	te-bladed propellers.
Stress calculations using bea	ım theorv are als	o made for each design,
which take into account the	effect of blade s	kew and rake. Design, 2090
<u>L</u>		
DD FORM 1472 SOLTION OF L NOV 45 IS OBSE		UNCLASSIFIED 1.

DD 1 JAN 73 1473 EDITION OF 1 NOV 65 IS OBS S/N 0102-014-66011 1

SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)

أنحي

HITY CLASSIFICATION OF THIS PAGE (When Date Entered)

calculations can be made for given design speeds where delivered shaft power is computed (Thrust Option), or for the case when the delivered shaft power is specified and the corresponding speed is computed (Power Option). A FORTRAN listing of the program, developed to run on the computers at the David W. Taylor Naval Ship Research and Development Center (DTNSRDC), is presented as well as input and output obtained for two sample designs, one using the Thrust Option, and the other the Power Option.

TABLE OF CONTENTS

	Page
ABSTRACT	. 1
ADMINISTRATIVE INFORMATION	. 2
INTRODUCTION	. 2
PROPELLER LIFTING LINE THEORY	. 5
DESCRIPTION OF INPUT DATA	. 6
EFFECTIVE POWER, SPEED, AND SHAFT POWER	. 7
NONDIMENSIONAL RADIAL DISTANCE	. 8
PROPELLER WAKE	. 8
ADVANCE ANGLE DISTRIBUTION INPUT OPTION	. 9
HYDRODYNAMIC FLOW ANGLE	• 10
STATIC HEAD	· 11
BLADE OUTLINE AND EXPANDED AREA RATIO	• 11
BLADE THICKNESS TO CHORD RATIO	• 12
RAKE AND SKEW	• 13
SECTION DRAG COEFFICIENT	• 14
FINAL PITCH INPUT OPTION	• 14
DESIGN AND PROPULSIVE PERFORMANCE PARAMETERS CALCULATED	. 15
PROPELLER STRESS CALCULATIONS USING BEAM THEORY	. 19
PARAMETERS FOR MAKING BLADE SURFACE CAVITATION	
CHECKS	. 20
CHORD LENGTHS FOR PITCH AND CAMBER CALCULATIONS	. 23
SPACING BETWEEN BLADES AND FILLETS	. 21

	Page
PROPELLER DESIGN THRUST AND POWER OPTIONS	. 24
COMPUTER PROGRAM AND SAMPLE DESIGN CALCULATIONS	. 26
APPENDIX A - PROPELLER WEIGHT, MASS POLAR MOMENTS OF	
INERTIA, AND CENTER OF GRAVITY	. 33
APPENDIX B - AMERICAN BUREAU OF SHIPPING (ABS)	
COEFFICIENTS AND THICKNESS REQUIREMENTS	. 37
APPENDIX C - DESCRIPTION OF INPUT AND OUTPUT	. 40
APPENDIX D - SAMPLE DESIGN USING THE THRUST OPTION	. 50
APPENDIX E - SAMPLE DESIGN USING THE POWER OPTION	. 73
APPENDIX F - FORTRAN LISTING OF COMPUTER PROGRAM	. 108
REFERENCES	. 141

LIST OF FIGURES

Page

Typical Velocity Diagram for a Propeller Blade Section at Radius r
Diagrams Showing Recommended Reference Lines and Terminology 28
View of Unrolled Cylindrical Sections at Blade Root and at Any Radius of a Right-Handed Propeller (Looking Down) Showing Recommended Location of Propeller Plane
Diagram Showing Recommended Reference Lines (Looking to Port)
Diagram Showing Recommended Reference Lines (Looking Forward)
Input for Detailed Hub Option
LIST OF TABLES
Page
Conversion Factors Between English and SI Units for Input and Output Parameters 32

NOTATION

A _E	Expanded blade area, $Z_{r_h}^R$ c dr
A _E /A _O	Propeller expanded area ratio, $(2Z/\pi)f_{x_h}^{1}(c/D) dx$
$(A_E/A_0)_k$	Keller's minimum expanded area ratio for eliminating back bubble cavitation, $(2.6+0.6Z)K_T/\{\sigma_{0.7}[J^2+(0.7\pi)^2]\}+K$
A ₀	Disc area, $\pi D^2/4$
Ap	Estimated propeller projected area, [1.067-0.229 (P/D);]A _E
a(x)	Area of section, $2c(x)t(x)s_0^1t(x,x_g)dx$
B(x)	Distance of CG from hub face, $y \cos \phi + x \sin(\phi - \theta_S) \times R \tan(\phi - \theta_R) \times D_H/2$
(c/R) _{LE} ,(c/R) _{TE}	Chord lengths measured from leading edge and trailing edge of blade to propeller reference line
c_{D}	Section drag coefficient
c _{F0}	Frictional resistance of section
CG	Center of gravity
cL	Blade section lift coefficient
c _p	Power loading coefficient, $P_0/(\rho/2)\pi R^2 V_A^3$
C _{PS}	Power loading coefficient based on ship speed, $P_D/[(\rho/2)\pi R^2 V^3]; \text{calculated } \int_{x_h}^{1} (1 + \epsilon/\tan\beta_I) (dC_{PSi}/dx) \ dx$
c _{Th}	Thrust loading coefficient, $T/[(\rho/2)\pi R^2 V_A^2]$
c _{TS}	Thrust loading coefficient based on ship speed, $T/[(\rho/2)\pi R^2 V^2]; \text{calculated} \int_{X}^{1} (1-\epsilon \tan \beta_I) \\ (dC_{TSi}/dx) \ dx$
C _{ThP}	Power loading coefficient, $\int_{x_h}^{1} (1 - w_x) (1 - \varepsilon \tan \beta_1)$ $(dC_{TSi}/dx) dx$
С	Propeller blade chord length, c(x)

C _{PS1}	Inviscid power loading coefficient, $(4Z/\lambda_s)xG[(1-w_x)+U_T/2V]$
C _{TS1}	Inviscid thrust loading coefficient, $4ZG[(x/\lambda_S)-U_A/2V]$
C	Propeller diameter
ů _k ,	Hub diameter
F(x)	Parameter for calculating the fluctuating angles of attack, $1/[1+2\pi \tan(\beta_1-\beta)/C_L]$
f _M	Camber
g	Acceleration due to gravity
G(r)	Nondimensional circulation about a blade section $\Gamma/(2\pi RV)$
G _F	Spacing between fillets
G_{Z}	Spacing between blades at the hub
Н	Static head at propeller shaft centerline
I _{xo} ,I _{yo}	Moment of inertia of blade section about x and y axes
J	Advance coefficient, $V(1-w_T)/(nD)=V_A/(nD)$
JV	Ship speed advance coefficient, V/(nD)
K	Kellers' constant for predicting minimum blade area of propeller (see p. 22)
KQ	Torque coefficient, Q/(pn D D 5)
KT	Turust coefficient, $T/(\rho n^2 D^4)$
LI	Propeller lift distribution per unit span for finite element stress calculations
Mp	Moment of blades, see page 34

^М ть, ^М 0ь	Moment due to thrust and torque
M _{xo} ,M _{yo}	Moment parallel and perpendicular to the nose - tail line
n	Propeller revolution per unit time
(P/D) _i	Estimated propeller pitch ratio at 0.7 radius, $0.7\pi tan\beta_{\tilde{I}}$ in program
^{P}D	Delivered power at propeller, $2\pi Qn$
PE	Effective power
P _S	Shaft power
Q	Propeller torque
R	Propeller tip radius
rpm	Propeller revolutions per minute
r	Propeller local radius
r _h	Propeller hub radius
r _l	Local position along the section chord
Т	Propeller thrust
t	Propeller blade maximum thickness $t(x)$, thrust deduction fraction
t(x,x _ℓ)	Chordwise distribution of section thickness (NACA 66 modified thickness form is used)
UA/2V	Axial induced velocity at lifting line
U _T /2V	Tangential induced velocity at lifting line
V	Ship speed
V_{A}	Speed of advance of the propeller, $V(1-w_T)$

v_{χ}	Local velocity along the x axis at any field point
V _r	Inflow velocity at each propeller section, $V\sqrt{[(1-w_X)+U_A/2V]^2+[X/\lambda_S-U_T/2V]^2}$
₩ _a /V	Axial velocity from sources other than the propeller wake $(1-w_{\chi})$
WB	Weight of blades
W _H	Weight of hub
Wp	Propeller weight
w _c	Circumferential mean wake fraction at each radius calculated from wake survey
w _t /V	Tangential velocity from sources other than the propeller wake $(1-w_{\chi})$
w _T	Propeller effective wake fraction as determined from thrust identity from self propulsion experiment
w _v	Volume mean wake fraction
w _x	Propeller wake fraction, $1-[(1-w_T)/(1-w_V)](1-w_C)$
x	Nondimensional radial distance, r/R
× _h	Nondimensional hub radius, rh/R
× _k	Nondimensional distance along section chord, r_{χ}/c
Z	Number of blades
z_R	Propeller rake
z_{T}	Total rake, rake plus skew induced rake

αį	Section ideal angle of attack, 1.54C _L for NACA a=0.8 meanline in two dimensional flow
^α max	Maximum fluctuating angle of attack, $\alpha_i^-(-\Delta B)^F(x)$
^α min	Minimum fluctuating angle of attack, α_i -(+ ΔB)F(x)
В	Advance angle of a propeller blade section
⁶ I	Hydrodynamic flow angle of a propeller blade section
Γ	Circulation about a propeller blade section,
ε	Section drag-lift ratio, $C_{ extsf{D}}/C_{ extsf{L}}$
ⁿ D	Propulsive efficiency, $P_E/P_D=(1-t)C_{TS}/C_{PS}$
ⁿ Pe	Estimated propeller efficiency, C_{THP}/C_{PS}
^θ R	Blade rake angle in degrees
^e s	Blade skew angle in degrees
λS	Advance ratio of propeller based on ship speed, $V/(\pi nD)$
t	Water density
Pp	Density of propeller material
ф	Pitch angle
σ	Section cavitation number, $2gH/V_r^2$
σ _{0.7}	Burrill cavitation number, $2gH/[\{V(1-w_{x=0.7})\}^2+\{0.7\pi nD\}^2]$
^τ c	Burrill thrust loading coefficient, T/[{V(1- $w_{x=0.7}$)} 2 +{0.7 π nD} 2]

ABSTRACT

This report presents a computer program that can be used for the preliminary design and to predict the performance of single screw propellers when designed for a prescribed hydrodynamic pitch distribution. This design program is based on lifting line theory as developed by Lerbs for moderately-loaded finite-bladed propellers. Stress calculations using beam theory, propeller weight, moments of inertia, and center of gravity for specified hubs are also made for each design, which take into account the effect of blade skew and rake. Design calculations can be made for given design speeds where the corresponding shaft power is computed (thrust option), or for the case when the shaft power is specified and the corresponding speed is computed (power option). A FORTRAN listing of the program, developed to run on the computers at the David W. Taylor Naval Ship Research and Development Center (DTNSRDC) is presented as well as the input and cutput obtained for two sample designs, one using the thrust option, and the other the power option.

ADMINISTRATIVE INFORMATION

This work was sponsored by the Naval Ship Systems Command, SHIPS 034, and carried out under the David W. Taylor Naval Ship Research and Development Center (DTNSRDC) Work Unit No. 1524-462, Task 15942.

INTRODUCTION

The David W. Taylor Naval Ship Research and Development Center (DTNSRDC), Carderock Laboratory, was requested by the Naval Ship Systems Command (NAVSHIPS) to develop a computer program that can be used as an aid in determining optimum values of propeller design parameters such as diameter, rpm, and blade number for naval vessels. This report has the objective of presenting a computer program that can be easily used for the preliminary design and for prediction of the performance of propellers applicable to specific ships.

The main portion of the computer program makes preliminary propeller design calculations and performance predictions using Lerbs' lifting line moderately-loaded finite-bladed propeller theory of References 1 and 2. Once the lifting

The second second

Lerbs, H.W., "Moderately Loaded Propellers with a Finite Number of Blades and an Arbitrary Distribution of Circulation," Transactions of the Society of Naval Architects and Marine Engineers, Vol. 60, p 73-117, 1952

^{2.} Morgan, W.B. and Wrench, J.W., Jr., "Some Computational Aspects of Propeller Design," Methods in Computational Physics, Vol. 4, Academic Press Inc., New York, p 301-331, 1965

line calculations for the propeller have been obtained, a computer program based on lifting surface theory must be used to determine the final pitch and camber of the propeller³. Numerous experimental checks⁴ on the design procedure used have verified this procedure.

A computer program for the preliminary design of propellers having a prescribed pitch or circulation distribution was previously published in Reference 5. One of the most important new features of the new computer program is the power option which computes the speed automatically when the design power is specified. Other features included in the present computer program follows:

 Only one set of basic input data is required for the preliminary design of a series of propellers with rpm, blade number and expanded area ratio varied. Any number of basic sets of data can be specified in the computer program.

^{3.} Morgan W.B., Silovic, Vladimir and Denny, Stephen B., "Propeller Lifting-Surface Corrections," Transactions of the Society of Naval Architects and Marine Engineers, Vol. 76, p 309-347, 1968

^{4.} Boswell, R.J., "Design, Cavitation Performance and Open-Water Performance of a Series of Research Skewed Propellers," Naval Ship Research and Development Center Report 3339, March 1971

^{5.} Haskins, E.W., "Calculations of Design Data for Moderately Loaded Marine Propellers by Means of Induction Factors," Naval Ship Research and Development Center Report 2380, September 1967

- 2. The propeller stress, based on beam theory⁶, modified to account for the effect of rake and skew, is computed for each design. An input option is used to make stress calculations for a linear or nonlinear distribution of blade skew.
- Checks using the Burrill cavitation charts of Reference 7 and Brockett's incipient cavitation diagrams of Reference 8 are calculated on the computer. In addition, Keller's method of predicting the minimum expanded area ratio based on back bubble type cavitation, is calculated. The estimated propeller weight including the hub, and input parameters required for the lifting surface computer program used to calculate the final pitch and camber of propeller designs are some of the other parameters calculated.

6. Eckhart, M.K. and Morgan, W.B., "A Propeller Design Method," Transactions of the Society of Naval Architects and Marine Engineers, Vol. 63, p 305-370, 1955

^{7.} Burrill, L.C. and Emerson, A., "Propeller Cavitation: Further Tests on 16 Inch Propeller Models in the Kings College Cavitation Tunnel," Transactions of the North East Coast Institution of Engineers and Ship Builders, Vol. 78, p 295-320, 1963-64

^{8.} Brockett, Terry, "Minimum Pressure Envelopes for Modified NACA-66 Sections with NACA a=0.8 Camber and BUSHIPS Type I and Type II, Sections," David Taylor Model Basin Report 1780, 1966

Keller, J. Auf'm, "Enige aspectem bij het ontwerpen van Scheepsschroeven," Schip en Werk, No. 24, p 658-662, 1966

PROPELLER LIFTING LINE THEORY

The availability of high speed digital computers has made it now possible to make use of more adequate mathematical models to represent the hydrodynamic action of marine propellers.

The computer has also released the designer from performing laborious computations involved in present design methods.

The lifting line theory used in the computer program presented here is the theory developed by Lerbs (Reference 1) for moderately-loaded finite-bladed propellers. This lifting line design method discussed by Cox and Morgan in Reference 10 also permits the designer to accurately account for propeller parameters such as number of blades, hub size, radial bladeloading, and wake distribution. Since this theory is discussed in detail in References 1 and 2, only some of the assumptions made in developing the theory are mentioned here. The theory developed by Lerbs' considers the influence of the induced velocities on the shape of the helical vortex sheet at the lifting line, but neglects the effect of centrifugal forces and the contraction of the slip-stream. In addition, the change in shape of the vortex lines is neglected in the axial direction, indicating that each vortex line is assumed to be of constant pitch. However, the vortex sheets are not necessarily helical surfaces since the pitch may vary along the radius.

^{10.} Cox, G.G. and Morgan, W.B., "The Use of Theory in Propeller Design," Marine Technology, Vol. 9, No. 4, p 419-429, October 1972

The computer program can be used for the preliminary design of a propeller having a prescribed pitch distribution. The viscous effects of the propeller are taken into account by giving as input the blade-section drag coefficient and chord lengths.

Blade stresses are computed using simple beam theory by giving as additional input the blade thickness, rake, and skew.

DESCRIPTION OF INPUT DATA

Dimensioned parameters may be input in the appropriate S.I. or English units, as specified by the user illustrated in Table 1. Effective power, shaft power, speed (V), number of blades (Z), diameter (D), rpm, propeller wake (1- w_x), and estimate of the hydrodynamic flow angle distribution (β_{T}) are required input parameters in order to make nonviscous propeller design calculation 1,2. The radial distribution of blade chord lengths nondimensionalized on diameter (c/D) and section drag coefficients (C_{D}) must also be specified as input if design calculations are to account for the propeller viscous effects. Since the computer program presented calculates the propeller principal stresses based on beam theory, the radial distribution of maximum thickness nondimensionalized on chord length (t/c), rake nondimensionalized on diameter $(Z_{\rm R}/{\rm D})$, and skew angle $(\theta_{\rm S})$ must also be input parameters. The blade section cavitation number (σ) is a required parameter in order to make blade surface cavitation checks using the Burrill cavitation diagrams of Reference 7 and Brockett's incipient cavitation diagrams of Reference 8. By specifying the static head (H) as input data, the cavitation number (σ) is calculated on the computer. Hub dimensions can be input or assumed to be a circular cylinder of equal length and diameter as described in Appendix A. A brief description of how these input parameters can be determined will be discussed in this section.

Effective Power, Speed, and Shaft Power

Effective power and speed are normally obtained from model self-propulsion experiments. Input effective power (P_E) and shaft power (P_S) are defined as follows:

 $P_E = VT(1-t)$

 $P_S = 2\pi nQ$

1

where n = propeller revolutions

 P_{ς} = shaft power,

 P_E = effective power,

Q = propeller torque,

T = propeller thrust,

V = ship speed

Nondimensional Radial Distance (X)

This is a reference set of eleven nondimensional radial distances x_i at which all other distributions, either input or calculated by the computer, are defined as existing. In general $x_i = r_i/R$, with the restrictions

$$x_1 = r_h/R$$

$$x_{13} = R/R = 1$$
,

where r_i = the distance along the propeller reference line from the shaft axis to the ith section,

 r_h = propeller hub radius, and

R = propeller tip radius.

Propeller Wake

The radial distribution of the axial wake $(1-w_\chi)$ which varies with propeller diameter is also required input data. The circumferential mean of the axial velocity distribution $(1-w_C)$ is obtained from a wake survey without the propeller operating. However, the $(1-w_C)$ wake distribution must be corrected for the propeller action. No completely satisfactory method is presently available to obtain this correction, but an approximation of the radial distribution of the wake $(1-w_\chi)$ with the propeller operating is obtained as follows:

Wake distribution

1

$$(1-w_x) = [(1-w_T)(1-w_c)]/(1-w_v)$$

where $(1-w_c)$ = radial distribution of the circumferential mean wake from wake survey data,

 $(1-w_T)$ = effective wake from self propulsion data

 $(1-w_v) = \text{volume mean wake, } [2/(1-x_h^2)] \int_{x_h}^{1} (1-w_c) x dx,$

R = propeller radius,

r = propeller local radius

r_h = propeller hub radius,

x = nondimensional radial distance (r/R), and

 x_h = nondimensional hub radius (r_h/R) .

The propeller wake distribution may also vary with propeller diameter depending on the hull characteristics of the vessel.

Advance Angle Distribution Input Option

The advance angle distribution (tanß) is normally calculated from the equation $V(1-w_\chi)/(\pi nDx)$ using the propeller wake $(1-w_\chi)$ from Equation [1]. For most single screw propeller designs this approach gives good performance predictions. In a few instances, it may be desired to utilize the computer program presented to design and predict the performance of propellers operating inside a duct or in the vicinity of another propeller as in the case of tandem or contrarotating propellers where the axial (w_a/V) and

tangential (w_t/V) velocities induced by these additional sources near the propeller plane can be predicted. In this case, an option in the computer program allows the input of the estimated tank distribution which accounts for the axial (w_a/V) and tangential (w_t/V) velocities induced by other sources in the following manner: Equation for Estimating tank If Input Option Is Used

$$tan\theta_{estimated} = [(1-w_x) + w_a/V)]/[(x/\lambda_s)-(w_t/V)]$$
 [2]

where $w_a/V = axial$ velocity from other sources,

 w_{+}/V = tangential velocity from other sources,

 λ_s = advance ratio based on ship speed, V/(πnD),

V = ship speed, and

D = propeller diameter.

It can be seen from Equation [2] that for the case where (w_a/V) and (w_t/V) values are specified as zero, the advance angle tank is calculated in the usual manner when designing single screw propellers. If the tank input option is used, the tank values are calculated using Equation [3]. For the normal single screw propeller design case, tank is calculated on the computer.

Hydrodynamic Flow Angle Distribution

The hydrodynamic flow angle distribution $(\tan \beta_I)$ can be specified as input. An option is included so Lerb's optimum

 $tan\beta_{I}$ distribution⁶ can be calculated by the computer as follows: $tan\beta_{I} = (tan\beta/n_{1})[(1-w_{T})/(1-w_{X})]^{1/2}$ [3]

where n_{\cdot} = propeller ideal efficiency

 η_i = 0.85 is used in the program, and

tans = advance angle distribution

Lerbs' optimum $\tan \beta_I$ distribution usually results in optimum propeller efficiency. If other factors such as cavitation, strength and vibration are considered, the input of an alternate $\tan \beta_I$ distribution may be desired.

Static Head

The static head (H) at the shaft centerline is required input. This parameter (H) is defined as $H_s + H_a - H_v$, where H_s is the shaft submergence, H_a is the atmospheric pressure, and H_v is the vapor pressure of fluid which is normally small compared with H_a and may be neglected. The static head (H) is used to calculate the section cavitation number (σ) in Equation [25] and the Burrill cavitation number $\sigma_{0.7}$ of Equation [30].

Blade Outline and Expanded Area Ratio

The blade outline (c/D) and expanded area ratio (A_E/A_0) must be input for the design. An expanded area ratio (A_E/A_0) is calculated on the computer according to:

 $A_E/A_0 = (2Z/\pi) \int_{x_h}^1 c/D dx$ where c/D = nondimensional chord length, and

Z = number of blades

If the (A_E/A_0) input value differs from the one indicated in equation [4], adjusted (c/D) values used for the design are calculated as follows:

$$(c/D)_{adj} = (c/D)_{input} (A_E/A_0)_{calc} / (A_E/A_0)_{design}$$

The final blade outline and expanded area ratio should be chosen to give satisfactory propeller strength and cavitation characteristics.

Blade Thickness to Chord Ratio

The input of maximum thickness to chord ratio (t/c) values allow an estimate of the propeller principal stresses (see The Propeller Stress Calculations Using Beam Theory section discussed later) based on beam theory 6 to be calculated during the preliminary design stage of the propellers. From a rough estimate of the blade outline (c/D) for the final design and an estimate of the radial distribution of thickness (t/D) based on fatigue strength 6 , the following equation can be used to obtain initial (t/c) input values:

Blade Thickness Ratio:

$$t/c = (t/D)/(c/D)$$

where t/D = radial distribution of thickness (can be estimated from Reference 6).

Rake and Skew

Nondimensional rake (Z_R/D) and the skew angles (θ_S) for a design are specified to permit adequate predictions of principal propeller stresses using the beam theory method described in Reference 6 and discussed later in the propeller stress section of this report.

The rake (Z_R) is defined consistent with Reference 11 (see Figures 1 through 2d) as the distance from the propeller plane to the generator line in the direction of the shaft axis. Aft displacement is considered positive rake (see Figures 2a).

Since the skew angles (θ_S) significantly affect propeller unsteady forces, a computer program based on the unsteady propeller lifting surface theory of References 12, 13, 14, and 15 can be used to select the skew angles (θ_S) for the propeller design. The input skew angles (θ_S) in degrees are defined as the angular displacement of points on the blade reference line from the propeller reference line in the projected view.

^{11.} Cumming, R.A., <u>Dictionary of Ship Hydrodynamics - Propeller Section</u>, 14th International Towing Tank Conference 1975, Report of Presentation Committee, Appendix VII

^{12.} Tsakonas, S., Breslin, J., and Miller, M., "Correlation and Application of an Unsteady Flow Theory for Propeller Forces," Transactions of the Society of Naval Architects and Marine Engineers, Vol. 75, p 158-193, 1967

Engineers, Vol. 75, p 158-193, 1967
13. Breslin, J.P., "Exciting-Force Operators for Ship Propellers,"
Journal of Hydronautics, Vol. 5, No. 3, p 85-90, July 1971

^{14.} Jacobs, W.K., Mercier, J., and Tsakonas, S., "Theory and Measurements of the Propeller-Induced Vibratory Field,"
Davidson Laboratory Report SIT-DL-1485, December 1970

^{15.} Tsakonas, S., Jacobs, W.R., and Ali, M.R., "An Exact Linear Lifting Surface Theory for Marine Propeller in a Nonuniform Flow Field," Journal of Ship Research, Vol. 17, No. 4, December 1974

Section Drag Coefficient

In order to account for viscous effects when predicting the performance of a propeller, the section drag coefficient (${\rm C_D}$) must be specified as input. A section drag coefficient (${\rm C_D}$) value of 0.0085 usually gives reasonable estimates of model propeller drag for propeller shapes normally used at DTNSRDC in the past. For propellers having very thick blades, the following equation, available as an input option on the computer, and derived as a function of maximum thickness (t/c) values using experimental data from NACA 66 type sections, 16,17 will give a better estimate of the section drag coefficient (${\rm C_D}$): Section Drag Coefficient:

 $C_D = C_{FO} [1+1.25(t/c)+125(t/c)^4]$

where C_{F0} is the friction resistance of the section, e.g., $C_{F0} \approx 0.008$ for Reynolds number of approximately 10^6 and $C_{F0} \approx 0.004$ for Reynolds numbers of approximately 10^8 .

Options for using alternate nonlinear \mathbf{C}_{D} distributions, or a constant \mathbf{C}_{D} distributions are also available.

Final Pitch Ratio (P/D) Input Option

The final pitch-diameter ratio (P/D) distribution defined as $\pi x \tan \phi$ where ϕ is the pitch angle is normally not known during the preliminary design stage of the propeller. Because of this hydrodynamic flow angle (β_1) from lifting line

^{16.} Abbot, Ira H. and Von Doenhoff, Albert E., "Theory of Wing Sections Including a Summary of Airfoil Data," Dover Publications Inc., New York, Library of Congress Catalog No. 60-1601, 1949.

^{17.} Hoerner, S.F., "Fluid-Dynamic Drag," Published by the author, Midland Park, New Jersey, 1965.

calculations is substituted for the pitch angle (ϕ) in the bending moment calculations when making stress calculations using beam theory and when predicting clearance between blades and fillets at the propeller hub. If the final P/D values are known, they can be used.

DESIGN AND PROPULSIVE PERFORMANCE PARAMETERS CALCULATED

In order to simplify propeller design calculation procedures, the design thrust and power of propellers are usually considered in nondimensional form. The nondimensional design thrust loading coefficients (C_{TS} and C_{Th}) and design power loading coefficients (C_{PS} and C_p) are calculated on the computer in the following manner:

Thrust Loading Coefficients:

$$C_{TS} = T/[(\alpha/2)]\pi R^2 V^2 \text{ or } C_{Th} = T/[(\alpha/2)\pi R^2 V_A^2]$$
 [7]

Power Loading Coefficients:

$$C_{PS} = P_D/[(\rho/2)\pi R^2 V^3] \text{ or } C_P = P_D/[(\rho/2)\pi P^2 V_A^3]$$
 [8] where V = ship speed,

 V_A = speed of advance of propeller, $V(1-w_T)$, and ρ = density of fluid

Lerbs lifting line theory is used to determine the propeller lift coefficient (C_L), circulation (G), hydrodynamic flow angle ($\beta_{\rm I}$), axial induced velocity (U_A/2V), and

tangential induced velocity ($U_T/2V$). These lifting line calculations take into account propeller viscous effects by specifying as input in the computer program the propeller section nondimensional chord length (c/D) and section drag coefficient (C_D). A method for obtaining values for c/D and C_D is discussed in the Description of Input Data section of the report. Design parameters such as thrust loading coefficient (C_{TS}), thrust power coefficient (C_{Th}), power loading coefficient (C_{PS}), propeller efficiency (n_P), and propulsive efficiency (n_D) are calculated for each propeller in the following manner:

Thrust Loading Coefficient:

$$C_{TS} = \int_{x_h}^{1} (1 - \varepsilon \tan \beta_I) (dC_{TSi}/dx) dx = T/[(\alpha/2)\pi R^2 V^2]$$
 [9]

Thrust Power Coefficient:

$$C_{ThP} = \int_{x_h}^{1} (1-w_x)(1-\varepsilon tan\beta_I)(dC_{TSi}/dx)dx = (1-w_T)\{T/[(\varepsilon/2)\pi R^2 V^2]\} [10]$$
 Power Loading Coefficient:

$$C_{PSe} = \int_{x_h}^{1} (1 + \epsilon / \tan \beta) dC_{PSi} / dx) dx \approx P_{S} / [(\rho / 2) \pi R^2 V^3]$$
[11]

Estimated Propeller Efficiency:

$$n_{Pe} = C_{ThP}/C_{PS} \simeq TV_{A}/(2\pi Qn)$$
 [12]

Estimated Propulsive Efficiency:

$$n_D = (1-t)C_{TS}/C_{PS} = P_E/P_D$$
 [13]

where C_1 = section lift coefficient from lifting line theory

 C_{TSi} = nondimensional inviscid local thrust loading coefficient, $4ZG(x/\lambda_S)-U_T/2V$

^CPSi = nondimensional inviscid local power loading coefficient, $(4Z/\lambda_S)xG[(1-w_x)+U_T/2V]$

G = nondimensional circulation from lifting line theory

 $U_A/2V$ = axial induced velocity from lifting line theory

 $U_{T}/2V$ = tangential induced velocity from lifting line theory The calculated propeller thrust (T) is obtained by substituting the C_{TS} calculated in Equation [9] into Equation [7] and the delivered power P_{D} is obtained by substituting C_{PS} computed using Equation [11] into Equation [8].

Other parameters useful in designing and evaluating the performance of propeliers include the advance coefficient (J), ship speed advance coefficient (J_V), thrust coefficient (K_T), torque coefficient (K_Q), moment due to thrust (M_{Tb}), moment due to torque (M_{Qb}), moment parallel to section nose-tail line (M_{XO}), moment perpendicular to the nose-tail line (M_{YO}) and the blade loading distribution (LJ). These parameters are calculated as follows:

Advance Coefficient:

1

$$J=V(1-w_T)/(nD)=V_A/(nD)$$
 [14]

Ship Speed Advance Coefficient:

$$J_{V}=V/(nD)$$
 [15]

Thrust Coefficient:

$$K_T = T/(r^2D^4) = (\pi C_{TS}/8)J_V^2$$
 [16]

Torque Coefficient:

$$K_0 = Q/(r^{2}D^5) = (C_{PS}/16)J_V^3$$
 [17]

Moment Due to Thrust:

$$M_{Tb}(x_0) = [c_{\pi}R^3V^2/(2Z)]f_{x_b}^1(x-x_0)(1-\epsilon tane_{1})[dC_{TS1}/dx]dx [18]$$

Moment Due to Torque:

$$M_{Qb}(x_0) = [\rho \pi R^3 V^2/(2Z)] f_{x_h}^1(x-x_0) (\tan \beta_I + \epsilon) [dC_{TSi}/dx] dx$$
 [19]

Moments Parallel to Section Nose-Tail Line:

$$M_{xo}(x_o) = M_{Tb} \cos\phi + M_{Qb} \sin\phi$$
 [20]

Moment Perpendicular to Section Nose-Tail Line:

$$M_{vo}(x_o) = M_{Tb} \sin\phi - M_{Ob} \cos\phi$$
 [21]

Blade Loading Distribution:

$$LI(x)-(1/2)\rho cV_r^2C_1$$
 [22]

where x, x_0 = propeller nondimensional radial stations,

$$r/R$$
 and r_0/R

 ϕ = propeller pitch angle (input or β_{γ})

 V_r = section inflow velocity, $V_r = V_r + V_$

calculations made include stress calculations based on beam theory, parameters for making blade surface cavitation checks, chord lengths for making final pitch and camber calculations, and the prediction of spacing between blades and fillets at the propeller hub.

PROPELLER STRESS CALCULATIONS USING BEAM THEORY

A propeller blade must contain enough material to keep the stresses within a blade below a certain predetermined level. This level depends on the material properties with regard to both steady-state and fatigue strength and to both mean and unsteady blade loading. The material selection controls the allowable stress level and the blade chord, thickness, rake and skew are the main parameters which control the blade stress for a given blade loading. The principal stresses in the propeller blade are computed for each propeller. Both hydrodynamic and centrifugal loadings are considered. In this stress calculation procedure, the propeller blade is represented as a straight cantilever beam of variable cross-section without camber. Experimental results show that the neutral axis of an airfoil section lies approximately along the mean line so camber is not considered in the stress calculations presented. Only the maximum principal stresses calculated at the mid-chord of each section are printed as output in the computer program. Stresses

for the final design should be calculated by finite element techniques if rake and skew for the propeller differ from usual propeller shapes.

PARAMETERS FOR MAKING BLADE SURFACE CAVITATION CHECKS

Brockett's theoretically derived incipient cavitation charts of Reference 8 can be used to predict the blade surface cavitation characteristics of each propeller once the lifting line calculations have been completed. The two-dimensional camber to chord ratio ($f_{\rm M}/c$), ideal angle of attack in degrees ($\alpha_{\rm i}$), section cavitation number (σ), nondimensionalized with the section inflow velocity ($V_{\rm r}$), and the maximum and minimum fluctuating angle of attack ($\alpha_{\rm max}$, $\alpha_{\rm min}$) in degrees are parameters that must be determined before Brockett's incipient cavitation charts can be used. These parameters are calculated as follows:

Section Maximum Camber to Chord Ratio for NACA a=0.8 Meanline:

$$f_{M}/c=0.0679 C_{I}$$
 [23]

Section Ideal Angle of Attack in Degrees for NACA a=0.8 Meanline:

$$\alpha_i = 1.54 \text{ C}_{\downarrow}$$
 [24]

Section Cavitation Number:

$$\alpha=2g(H-xR)/V_r^2$$
 [25]

where g = acceleration due to gravity

H = static head at shaft centerline (see section
 on Static Head).

The maximum and minimum fluctuating angles of attack

 $(\alpha_{max}, \alpha_{min})$ in degrees are calculated using the method derived by Lerbs and Rader in Reference 18. These calculations can be made using the following equations:

Maximum Fluctuating Angles of Attack:

$$\alpha_{\text{max}} = \alpha_{i} - (-\Delta \beta) F(x)$$
 [26]

Minimum Fluctuating Angles of Attack:

$$\alpha_{\min} = \alpha_i - (+\Delta \beta) F(x)$$
 [27]

where $-\Delta\beta$ = Maximum effective angle of attack in degrees (from wake survey data), and

+Δβ = Minimum effective angle of attack in degrees (from wake survey data).

The parameter F(x) in Equations [26] and [27] is dependent on the hydrodynamic flow angle (β_I) , the advance angle (β) and the lift coefficient (C_L) , and is calculated on the computer using the following equation:

$$F(x)=1/[1+2\pi \tan(\beta_{I}-\beta)/C_{L}]$$
 [28]

The Burrill Cavitation Charts⁷, can also be used to give an approximate check on the cavitation performance of propellers. Burrill's thrust loading coefficient (τ_c) and cavitation number $(\sigma_{0.7})$ at 0.7 radius defined as follows are parameters that must be known to use these cavitation charts.

^{18.} Lerbs, H.W. and Rader, H.P., "Uber de Auftriebsgradienten von Profilen im Propeller Verband," Schiffstechnik, Vol. 9, No. 48, p 178-180, 1962

$$\tau_c = T/\{(\rho/2)A_p[\{V(1-w_{x=0.7})\}^2 + \{0.7\pi nD\}^2]$$
 [29]

Burrill Cavitation Number at 0.7 Radius:

$$\sigma_{0.7}=2gH/[\{V(1-w_{x=0}, \gamma)\}^2+\{0.7\pi nD\}^2]$$
 [30]

where A_{ϵ} = propeller expanded area, $\int_{r_{\epsilon}}^{R_{\epsilon}} dr$,

 $A_0 = \text{propeller disc area, } \pi D^2/4,$

 A_p = propeller projected area, [1.067-0.229(P/D_i] A_E , and (P/D)_i = propeller pitch ratio at 0.7 radius input or estimated as 0.7 π tan β_T .

Keller's method⁹ of predicting the minimum expanded area ratio of the propeller is also calculated on the computer. The minimum expanded area ratio, based on eliminating back bubble type cavitation, is computed as follows:

$$(A_E/A_0)_K = K_T(2.6+0.6Z)K_T/\{\sigma_{0.7}[J^2+(0.7\pi)^2\}$$
 [3]

The constant K=0.15 was used in this program. Many possible alternate values of K may be desired, for example: K=0.2 is used for single screw ships with bronze propellers having rake of approximately 10 degrees, K=0.10 is used for twin screw ships with copper-aluminum propellers, K=0.15 is used for twin screw ships with bronze propellers and for single screw ships with copper-nickel-aluminum propellers, and K=0 to 0.05 is used for propellers for fast ships such as destroyers and frigates. If a different value of K is desired, the expanded area ratio calculated in equation [31] should be adjusted to account for changes in the value of K.

CHORD LENGTHS FOR PITCH AND CAMBER CALCULATIONS

The final pitch and camber for each propeller can be calculated using computer programs presented in References 3, 19, 20, 21, 22, and 23. The programs require as input the section chord length, $(c/R)_{LE}$ and $(c/R)_{TE}$ nondimensionalized on propeller radius, in terms of the skew angle (θ_S) , hydrodynamic flow angle (β_I) and blade outline (c/D). The parameters $(c/R)_{LE}$ and $(c/R)_{TE}$ measured from the leading edge and trailing edge to its reference line, respectively, are calculated in the following manner on the computer:

^{19.} Kerwin, J.E., "The Solution of Propeller Lifting-Surface Problems by Vortex Lattice Methods," Department of the Naval Architecture and Marine Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, 1961

^{20.} Kerwin, J.E., and Leopold, R., "Propeller Incidence Corection Due to Blade Thickness," Journal of Ship Research, Vol.7, No. 2, 1963

Vol.7, No. 2, 1963
21. Cheng, H.M., "Hydordynamic Aspects of Propeller Design Based on Lifting-Surface Theory: Part I - Uniform Chordwise Load Distribution." David Taylor Model Basin Report 1802, 1964

Distribution, David Taylor Model Basin Report 1802, 1964
22. Cheng, H.M., "Hydrodynamic Aspects of Propeller Design Based on Lifting Surface Theory: Part II - Arbitrary Chordwise Load Distribution, David Taylor Model Basin Report 1803, 1965

^{23.} Kerwin, J.E., "Computer Techniques for Propeller Blade Section Design," Transactions of the Second Lips Propeller Symposium, Drunen, Holland, p 1-31, May 1973

Chord Lengths Measured From Blade Leading Edge:

$$(c/R)_{1F} = x\theta_{S}/(57.296 \cos\phi) - c/D$$
 [32]

Chord Lengths Measured From Blade Trailing Edge:

$$(c/R)_{TF} = x\theta_S/(57.296 \cos \phi) + c/D$$
 [33]

($\phi = \beta_{\parallel}$ is used when pitch is not input)

SPACING BETWEEN BLADES AND FILLETS

Propeller designs should have enough clearance between blades at the hub so fillets are properly applied. Hill, Reference 24, derived the following equation, which is used in the program to estimate spacing between blades at the hub without fillets:

$$G_7 = (2\pi r_h)/Z - (t_h/\sin\phi)$$
 [34]

where ϕ = input pitch or β_T

Based on a number of full-scale propellers built with standard fillets, Hill's blade clearance equation was modified in the following manner to estimate spacing between fillets at the hub during the preliminary stage of the design:

$$G_F = (2\pi r_h/Z) - (1.9t_h/\sin\phi)$$
 [35]

A layout of blade sections is recommended as a final fillet clearance check.

PROPELLER DESIGN THRUST AND POWER OPTIONS

The thrust option can be used to make lifting line calculations for propellers required to produce a given thrust at

^{24.} Hill, J.G., "The Design of Propellers," Transactions of the Society of Naval Architects and Marine Engineers, Vol. 57, p 143-170, 1949.

specified values of speed and rpm (this is accomplished by adjusting the input tan $\beta_{\rm I}$ distribution), or the power option can be used if the propeller is required to absorb a specified power at a given rpm (in which case the speed is determined).

From each calculated power, a new value of speed (assumed to vary as the cube root of the ratio of the design and calculated power) is obtained and its corresponding effective power is obtained from the effective power input curve. Design calculations again produce a new calculated power, and the process continues until the closeness criteria of design calculated power is satisfied (two iterations are normally sufficient). Smaller increments of input speeds in general cause faster convergence.

Once the basic shape of the distribution is defined (see the Hydrodynamic Flow Angle Distribution section) the final $\tan \beta_I$ distribution K_4 $\tan \beta_I$ is determined using the thrust or power options, making lifting line calculations of three nondimensional thrust loading coefficients $(C_{Ts})_1$, $(C_{Ts})_2$, and $(C_{Ts})_3$ that correspond to three hydrodynamic pitch distributions, K_1 $\tan \beta_I$, K_2 $\tan \beta_I$, and K_3 $\tan \beta_I$ where K_1 = 0.975, K_2 = 1.0, and K_3 = 1.025. Once these calculations are obtained, the following system of equations are set up:

$$(C_{Ts})_1 = A+BK_1+CK_1^2$$

 $(C_{Ts})_2 = A+BK_2+CK_2^2$
 $(C_{Ts})_3 = A+BK_3+CK_3^2$

from which values of A, B, and C are obtained. Then, values of A, B, and C are substituted in the following equation to obtain the value of K_4 .

 $C_{Ts} = A+BK_4+CK_4^2$

where C_{Ts} = design thrust loading coefficient (Equation (7)).

COMPUTER PROGRAM AND SAMPLE DESIGN CALCULATIONS

Lifting line theory of References 1 and 2 has been used to derive a computer program for the preliminary design of propellers using high speed CDC computers at DTNSRDC. A core size of approximately 60,000 octal is required for the program. The average running time for a design based on thrust is 25 seconds and 100 seconds are required using the power option. As mentioned earlier, Appendix A presents procedures used to calculate propeller weight, center of gravity, mass polar moment of inertia, and radius of gyration.

Appendix B shows how the American Bureau of Shipping (ABS) coefficients and thickness requirements are calculated. A detailed description of the input and output formulas for the computer program is present in Appendix C exercising most of the available options. Design calculations are presented in Appendix D for a sample design using the thrust option and results using the power option are shown in Appendix E.

A Fortran listing of the computer program is presented in Appendix F.

Figure 1 – Typical Velocity Diagram for a Propeller Blade Section at Radius r

(The diagram is drawn with all quantities positive and the velocity vectors represent the velocity of
the propeller blade section relative to the fluid)

Figure 2 - Diagrams Showing Recommended Reference Lines and Terminology

.<-

Figure 2a — View of Unrolled Cylindrical Sections at Blade Root and at Any Radius r of a Right-Handed Propeller (Looking Down) Showing Recommended Location of Propeller Plane

4

RA.

Figure 2b - Diagram Showing Recommended Reference Lines (Looking to Port)

NOTE: THE SKEW ANGLE, θ_{S} , SHOWN AT RADIUS , IS LESS THAN ZERO.

Figure 2c Diagram Showing Recommended Reference Lines (Looking Forward)

FIGURE 2d - INPUT FOR DETAILED HUB OPTION

...

TABLE 1

List of dimensioned input and output parameters used by computer program based on English and SI units

Parameter	English Units	SI Units	KSI (1)
Shaft power (P _S)	hp	KW	0.7457
Effective power (Pg)	hp	KW	0.7457
р р	lbm/ft ³	kg/m³	16.01846
v	knots (2)	m/s	0.514444
v	ft/sec	knots (2)	0.5924
D	ft	m	0.3048
н	ft	m	0.3048
ρ	lbf sec ² /ft ⁴	kg/m^3	515.3788
n	rev/min	rev/min (3)	1.0
T, weight	1bf	N	4.44822
v _c	ft/sec	m/s	0.3048
LI	lbf/ft	N/m	14.5939
M _{Tb}	in 1bf	Nn	0.112985
^M Qb	in 1bf	Nn	0.112985
M _{xo}	in lbf	Nn	0.112985
M yo	in 1bf	Nn	0.112985
Max Stress	lbf/in ²		6894.757
SKEW	đeg	deg ⁽³⁾	1.0
RAKE	deg	đeg ⁽³⁾	1.0
Mass polar moment of INERTIA	1bm in ²	kgm ²	0.00029264

⁽¹⁾ Multiply English Units by KSI to get SI Units.

⁽²⁾ Computer program uses knots in both English Units option and SI Units option.

⁽³⁾ These are not SI Units but are permitted to be used in the SI system according to International Standards Organization (150) Standard No. 1990.

APPENDIX A

PROPELLER WEIGHT, MASS POLAR MOMENTS OF INERTIA, AND CENTER OF GRAVITY

The approximate propeller weight (W_p) and location of center of gravity (CG) from the propeller center line is also calculated for each design. In order to make these calculations, the density of the material (ρ_p) must be specified as input.

Hub dimensions can be input, or a solid circular cylinder of equal length and diameter, with propeller center line at the mid length of the hub can be assumed. If the cylindrical hub is assumed:

$$W_D = W_B + W_H$$

Server.

6.4

where W_B = weight of blades, $\rho_p Z f_{x_h}^1 a(x) dx$

 $W_{H} = \text{weight of hub, } (\pi \rho_{p} D_{H}^{3}/4),$

 D_{μ} = hub diameter

a(x) = area of section at radius x, $2c(x)t(x) \int_{0}^{1} t(x,x_{\ell})dx$,

c(x) = chord length of section at radius x,

t(x) = maximum thickness of section

 $t(x,x_{g})$ = Chordwise distribution of section thickness (NACA 66 modified thickness form is used in program)

 x_{ℓ} = nondimensional coordinate along the section chord, (r_{ℓ}/c) , and

P = density of material considered

if calculations are desired for a noncylindrical hub, the following dimensions are input:

 D_{FH} = forward hub diameter,

 D_{Δ} = aft hub diameter,

 $L_{\rm H}$ = length of the hub,

 D_{FR} = forward bore diameter,

 L_{RL} = distance from aft end of hub to propeller reference line

The hub is then treated as consisting of two frustrums of cones, joined at the propeller reference line. Again

$$W_p = W_B + W_H$$

but now

$$W_{H} = W_{AF} + W_{FF} - W_{b}$$

where W_{AF} = weight of solid aft frustum, $(\pi \rho_p/3) (D_{AH}D_H + D_H + D_H^2)/4$

W_{FF} = weight of solid forward frustum,

$$(\pi_{F}/3)$$
 $(D_{H}^{2}+D_{H}D_{FH}+D_{FH}^{2})/4$

$$W_b$$
 = weight of bore, $(\pi c_P/3)$ $(D_{AB}^2 + D_{AB}D_{FB} + D_{FB}^2)/4$

The propeller center of gravity (CG) with respect to the blade center line, where plus values represent the distance ahead of the center line and negative values aft of the center line, is calculated in the following manner (see Figures 2b and 2c):

Center of Gravity:

$$CG = M_p/W_p$$

where $M_p = moment of the propeller, <math>\rho_p Z f_{x_h}^1 a(x) B(x) dx$

- where M_p = moment of the propeller, $\rho_p Z f_{x_h}^1 a(x) B(x) dx$
 - B(x) = distance of center of gravity from propeller reference line, $\overline{x} + \overline{y} + \overline{H}$
 - x = the distance of the center of gravity of the section along
 the chord line from the position of maximum thickness,
 - y = the distance between the center of gravity of the section and the chord line of the section, measured perpendicular to the chord line,
 - r_i = the radial distance from the shaft axis to the section,
 - R= rake angle in radians of the section,

٢,

- $\epsilon_{\rm S}$ = skew angle in radians of the section, and
- ϕ = pitch angle in radians of the section ($\phi = \beta_I$ is used when pitch is not input).
- Then \overline{x} = the component of the center of gravity adjusted for pitch, $x\sin \zeta + y\cos \zeta$;
 - \overline{y} = the component of the center of gravity adjusted for skew (=- $\frac{1}{2}$ r_itan₄) and rake (=- $\frac{1}{2}$ R); and
 - \overline{H} = the component of the center of gravity along the shaft axis of the specified hub, aft of the propeller reference line taken as positive.

If the standard hub is selected,

 h_{PM} = mass polar moment of hub = $W_H D_H^2/8$ otherwise,

$$H_{PM} = \pi (p(A_{PM} + F_{PM} - B_{PM}) / 10$$

where A_{pM} = aft mass polar moment =

$$L_{RL} (D_{H}^{4} + D_{H}^{3} D_{AH}^{2} + D_{H}^{2} D_{AH}^{2} + D_{H}^{3} + E_{AH}^{4})/16$$

 F_{pM} = forward mass polar moment =

$$(H_L - L_{RL})(D_H^4 + D_H^3 D_{FH} + D_H^2 D_{FH}^2 + D_H^2 D_{FH}^3 + D_{FH}^4)/16$$

 B_{pM} = mass polar moment of bore =

$$H_L(D_{AB}^{4}+D_{AB}^{3}D_{FB}+D_{AB}^{2}D_{FB}^{2}+D_{AB}^{2}D_{FB}^{3}+D_{FB}^{4})/16$$

 Z_{PM} = mass polar moment of blades =

$$Z \in {}_{p}R^{3} \int_{x_{h}}^{1} X^{2} \in {}_{r}(x) dx$$

Then P_{pM} = propeller mass polar moment=

(K.)

and K_Z = radius of gyration of blades =

$$\sqrt{Z_{211}/W_B}$$

 K_{H} = Radius of gyration of hub =

 K_p = radius of gyration of propeller =

APPENDIX B

AMERICAN BUREAU OF SHIPPING (ABS) COEFFICIENT AND THICKNESS REQUIREMENTS

The minimum blade thickness at the one-quarter radius is defined in Reference 25 by:

$$t_1 = K_1 \sqrt{AP_S/(C_NCZn)} + C_SBZ_R/(4C_NC)$$
and
$$T_2 = K_1 \sqrt{AP_S/(C_NCZn)} + C_SBZ_T/(4C_NC)$$

where P_{ς} = shaft power at the maximum continuous rating,

n = propeller revolutions per minute rpm at the maximum continuous rating,

Z = number of blades,

 Z_p = rake, positive aft, at the blade tip.

 ${\rm Z_R}$, ${\rm Z_T}^{=}$ rake and rake plus skew induced rake, at the blade tip, positive aft taken as positive,

and

A SALES

 $C_S = a_s/(W_s t_{0.25})$ = section area coefficient at the onequarter radius

 $C_N = I_0/(U_fW_S^2t^2_{0.25})$ = section modulus coefficient at the one-quarter radius

A =1+ $(K_2/\tan \phi_{0.7})+K_3\tan \phi_{0.25}$

B = $(K_4(A_E/A_0)/(Z) (n/100)^2 (D/20)^3$

 $C = (1+K_5 \tan \phi_{0.25})W_Sf-B)$

where \mathbf{K}_1 through \mathbf{K}_5 are constants which depend on the system of units employed

^{25.} American Bureau of Shipping, "Rules for Building and Classing Steel Vessels," p 621, 1972.

- a_s = area of expanded cylindrical section at 0.25R = $2c_{0.25}t_{0.25} \int_0^1 t(0.25,x) dx$,
- W_S = expanded width of cylindrical section at the one-quarter radius,
- $t_{0.25}$ = maximum thickness at the one-quarter radius,
- I₀ = moment of inertia of the expanded cylindrical section at one-quarter radius about a straight line through the center of gravity parallel to the chord line,
- U_F = maximum normal distance from the moment of inertia axis to points on the face of the section,
- $c_{0.25}$ = section chord length at 0.25R,
- 4 0.25, 4 0.7 = the pitch angles at the one-quarter and seventenths radius (or β_1 if ϕ not input),
- t(0.25,x) = chordwise distribution of section thicknesses at the 0.25 radius
- A_F/A_0 = expanded blade area divided by the disc area,
- D = propeller diameter,
- f = material constants in length/weight as a function of w

w = a nondimensional parameter associated with the material type as illustrated in the table below.

Type	Materials	Units
2	Manganese bronze	0.30
3	Nickel-manganese bronze	0.29
4	Nickel-aluminum bronze	0.27
5	Mn-Ni-Al bronze	0.27
6	Cast iron	0.26

If $C_N \neq 0.1$, the thicknesses t_1 and t_2 are recomputed with $C_N = 0.1$.

APPENDIX C

DESCRIPTION OF INPUT AND OUTPUT

Data are input to the program in unformatted groups. Within each group the data must be in the order specified, and each value must be separated from all others by a blank or comma. Variable names beginning with I,J,K,L,M, or N require an integer input, but other variables which happen to have integer values do not require a decimal point. Zeroes must actually be keypunched. Beyond this there are no restrictions on how many or few data cards are needed for a group, except that each group must start with a new card. The input required is as follows:

Group	Parameters	Description of Input
1	IDD	Number of data sets(each of the groups
		2 through end form a data set)
2	UI,UO,Title	Use SI in columns 2,3 to pecify input
		in SI units. Use SI in columns 4, 5
		for output in SI units. The remaining
		66 columns are available for identifi-
		cation of input data.
3	SHP[FL/T]	Design shaft power or 0 if the thrust *
		option is desired
	TANEI	Use 1 unless use of an exact (not ad-
		justed by program) $tan \mathfrak{g}_{I}$ distribution
		is required, then use 0 (see hydrodynamic
		flow angle distribution
	TAND	Use 1 to input tank distribution, or 0
		for machine calculations according to (2)
	XPS	Use -1 to input a skew distribution, or
		input the skew at the tip for a linear
		skew distribution (both in degrees)
	RAKE	Use <rake< *<="" 0.01="" a="" d="" input="" rake="" td="" to=""></rake<>
		distribution or input the rake/D at
		the tip for a linear distribution
	PD0	Use PDO 0 to input a P/D distribution,
		otherwise π xtan $\beta_{\tilde{I}}$ is used as an approxima-
		tion

^{*} As used within the Fortran Program

Group	Parameter	Description of Input
	CD	Use CD>10 to input the radial distribution of
		drag coefficients (CD); 0 <cd<10 a="" con<="" input="" td="" to=""></cd<10>
		stant drag CD=CD at all radial stations; CD=O
		causes the computer program to calculate the
		radial distribution of drag coefficients using
		the equation $C_{D}=0.008[1+1.25(t/c)+125(t/c)^{4}];$
		-10 <cd<0 a<="" causes="" computer="" program="" td="" the="" to="" use=""></cd<0>
		constant frictional resistance C_{F0} =ABS(C_{F0}) in
		Equation 6 $C_D = C_{F0}[1+1.25(t/c)+125(t/c)^4];$
		CD<-10 to input the radial distribution of
		frictional resistance (CFO) values to be used
		in Equation 6.
3	TYPE	For ABS minimum blade thickness calculations
		coefficients use the number corresponding to
		the material type in the blade thickness
		section. Use TYPE=O to suppress these calcu-
		lations
	HUB	Use HUB#0 to input actual dimensions of HUE,

relevant calculations

4 DIAM[L] Propeller diameter

EWAKE Effective wake (1-w_T)

ETHRUS Thrust deduction (1-t)

or HUB=O to use solid cylindrical hub in

Group	Parameters	Description of Input
	HEAD[L]	See section on Static Head, at the shaft
		centerline
	DEN[M/L3]	Density of propeller materials
	RHO[M/L3]	Density to be used for water
5	IVV	Number of velocities input
	VEI[L/T]	IVV velocities
	EHP[FL/T]	IVV design effective power values, corres-
		ponding to the input velocities
5	IZZ	Number of different blade numbers input
	JBL	IZZ values of blade numbers
	IEA	Number of expanded area ratios input
	EXX	IEA values of A_E/A_o . A value of 0 input as
		the first A_E/A_O will result in calculations
		being done exactly at the design A_E/A_o . If
		this default is used, calculations will not
		be done at other values of A_E/A_O in the
		list that happen to be within 0.005 of the
		design A _E /A _o .
	IRPM	Number of different rpms input
	XMM	IRPM values of revolutions per minute

(The remaining five radial distributions have eleven values each)

X3 Values of r/R at which other radial

distributions are defined

X4 Propeller wake (1-w_x)

X5 Hydrodynamic flow angles (tang_I). If zeroes

are input, Lerbs optimum is calculated as a

default distribution

X6 Section chord lengths (c/D)

AZZ(25) Thickness to chord ratios

(Groups six through ten which are specified in group three are defined at the eleven radial stations)

6 AZZ(24) Blade skew angles, degrees (if XPS<0)

7 Section drag coefficients (if CF>10)

or frictional resistance of section

 C_{FO} (if $CD \leq -10$

8 B(8) Tangents of advance angles (if TANB>0)

9 RAK Rake/D, aft positive (if 0<RAKE<0.01)

P Pitch, P/D (if PD>0)

11 FWDDIAM[L] Dimensions, as indicated in Figure 2d

(if HUB≠0)

AFTDIAM[L]

HUBLEN[L]

FDBORE[L]

ADBORE[L]

DISREFL[L]

A Description of the Output Generated by the Program Follows:

Program Output	Description
G	Nondimensional circulation
UT/2V	Tangential velocity induced at lifting line
UA/2V	Axial velocity induced at lifting line
DCTSI	Local nonviscous thrust coefficient (Defined in
	Equation (9))
DCPSI	Local nonviscous power coefficient (Defined in
	Equation (11))
VR [L/T]	Section inflow velocity, equation (22)
CAVV	Section cavitation number, Equation (25)
CPTI	Nonviscous thrust power coefficient (Equation (10)
	when $\epsilon=0$).
CPSI	Nonviscous power coefficient (Equation (11)
	when $\epsilon = 0$)
ETAI	Estimated nonviscous propeller efficiency
	(Equation (12) when $\epsilon = 0$)
CTSI	Nonviscous thrust coefficient (Equation (9) when
	ε =0)
CPT	Thrust power loading coefficient (Equation (10))
CPS	Power loading coefficient (Equation (11)).
TETS	Projected skew angle in degrees
RAKG	Rake/Diameter
PE	Effective power

Program Output	Description
PS	Shaft power
ETA	Estimated propeller efficiency (Equation (12)
CTS	Thrust loading coefficient (Equation (9))
CL	Section lift coefficient
ALI	Section two-dimensional ideal angle of attack
	in degrees for NACA a=0.8 meanline, Equation
	(24)
FM/C	Section two-dimensional maximum camber ratio
	for NACA a=0.8 meanline, Equation (23)
CD/CL	Section drag-lift ratio ($\epsilon = c_D/c_L$)
F(X)	Parameter for calculations section fluctuating
	angles of attack, Equation (28)
LI[F/L]	Propeller blade loading distribution Equation (22)
(C/R)DLE	Chord lengths for lifting surface pitch and
	camber calculations, Equation (32)
(C/R)DTE	Chord lengths for lifting surface pitch and
	camber calculations, Equation (33)
T/RD	Ratio of section thickness to radius
PC	Estimated propulsive efficiency, Equation (13)
PS[FL/T]	Calculated shaft power delivered at the propeller,
	Equation (13)
DESIGN [F]	Design thrust
CALCULATED [F]	Calculated thrust, Equation (7) and (9)

Program Output	Description
AEPA [L ²]	Area of section
XBAR [L]	Longitudinal position about x axis parallel
	to nose-tail line from centroid
YBAR [L]	Vertical distance about y axis perpendicular
	to nose-tail line from centroid
IXO [L ⁴]	Moment of inertia about y axis perpendicular
	to nose-tail line
MXO [FL]	Bending moment about the x axis, Equation [20]
MYO [FL]	Bending moment about the y axis, Equation [21]
MTB [FL]	Bending moment due to thrust, Equation [18]
MQB [FL]	Bending moment due to torque, Equation [19]
MAX STRESS (F/L ²]	Maximum stress
WEIGHT OF BLADES [F]	Equation [32], W _H =0
WEIGHT OF PROP (BLADES	
+DESIGNATED HUB) [F]	
(CENTER OF GRAVITY OF	Appendix A
PROP/D)	
(CENTER OF GRAVITY OF	Appendix A
BLADES/D)	
KELLERS MINIMUM EAR	Equation [31]
SPEED COEFF(JS)	Equation [15]

Program Output	Description
Advance Coeff (JA)	Equation [14]
THRUST COEFF (KT)	Equation [16]
TORQUE EOEFF (KQ)	Equation [17]
PROPULSIVE EFFICIENCY (PC)	Equation [13]
BURRILL THRUST COEFF (TC)	Equation [29]
BURRILL CAVITATION COEFF	Equation [30]
CLEARANCE AT HUB BETWEEN BLADES/D	Equation [34]
CLEARANCE AT HUB BETWEEN FILLETS/D	Equation [35]
MASS POLAR MOMENT OF INERTIA OF CLADES [FL ²]	Appendix A
TOTAL MASS POLAR MOMENT OF INERTIA [FL ²]	и
RADIUS OF GYRATION OF BLADES/D	и
RADIUS OF GYRATION OF HUD/D	II
TOTAL RADIUS OF GYRATION	۷/D "
ABS MINIMUM THICKNESS CONVENTIONAL RAKE	Appendix B
CONVENTIONAL + SKEW INDUCED RAKE/D	ıı
VALUES USED IN DETERMINING THICKNESS	ti .

*

Program Output

Description

SECTION AREA COEFFICIENT Appendix B

SECTION MODULUS COEFFICIENT

AREA OF EXPANDED CYLINDRICAL SECTION [L²]

APPENDIX D

SAMPLE DESIGN USING THE THRUST OPTION

OPTIONS EXERCISED IN APPENDIX D

T
N/A
Input
Input
Const
No
No
No
No
L
L
Input
011
Input
12
12

AML GENERAL PURPOSE 80 COLUMN SHEET

- Managalula (리) 1 1421 등학자 하다 학생 학생 (학생 학생 학
▐ ┋ ╒ ╶┥╺┼╴┼┈┼╌┤╶┤╶┼╶┞┈┥╼┤╼┼┈┼╸╷╶┼╌┼╌╅╌┇╴┌┈╏╌┼ <u>╺╅╶</u> ╅╌╏╏
60 - 60
0 1 1
L WWWW O
0. 10 m
100 mon
98 6 8 6 5 6 6 8 6 5 6 6 6 6 6 6 6 6 6 6
לי מיהי שוד
0 10 0 MM
N- ON POWO
1
1 N N N
4-1-30-50
10.75
200000000000000000000000000000000000000
86 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6
2.861 15 2.861 15 3.6.609 3.6.609 1.7.6 1.07 1.7.6 1.07 1.7.7 1.07 1.7.
3717 1025 12.86 15 13.86 15 13.6 5817 13.6 6609 17.6 1 67 17.6 1 67
23.77 102.5 1.2.86 15 2.3.76
50.3717 1025 50.3717 1025 50.3717 1025 5.2376 . 286 6.2376 . 286 6.2376 . 286 6.2376 . 286 7.88645 . 426 8.1.76 1. c7
750.3717.02.5 750.3717.02.5 750.8.77.884.7 7.508.77.884.7 7.65.6609 7.65.6609 7.65.6609
2750.3717.025 2750.3717.025 35.6336.5415 2916.2376.580 277.48649.426 248.1.756.609
5.4 [1.2. 3717 02.5 6.7750.3717 02.5 1.2. 707 12.86 15.5 1.3.9
25.7.50.3717 102.5 12.707 12.86 15.77 12.86 15.77 12.86 15.75 12.86 15.75 15.86 15.75 15.86 15.75 15.86 15.75 15.86 15.75 15.
2025 4 [
604 2-750.3717 025 8496.7750.3717 025 664 2-7550.3717 025 664 2-7550.3717 025 664 2-7550.3717 025 655.7550.750.75 2861 655.7550.750.75 2860 655.757 248 176 176 655.757 248 176 176 655.757 257 6858
5.8496 7750.3717 1025 6.4 12.707 12.86 15.65.435.65.435.65.435.65.4335.65.435.66.09 2.5.7.7.5915.6869.426.257.7.5915.6858.6858.
15. 664 21. 707 2. 86 15. 664 2. 707 2. 86 15. 664 2. 707 2. 86 15. 665 15.
8. 1. 0025 4 1 1. 1025 7. 15. 8496 7750.3717 1025 7. 5. 64 12. 707 12. 861 15. 55. 65. 55. 55. 55. 55. 55. 55. 55. 5
48. 1. 0025 4 1. 1. 10. 12. 86 1. 15. 10. 15. 15. 15. 16. 17. 17. 17. 18. 18. 17. 17. 17. 18. 18. 17. 17. 18. 18. 17. 17. 18. 18. 17. 17. 18. 18. 18. 18. 18. 18. 18. 18. 18. 18
34.8.
23.7. 12. 664 21. 707 12. 86 15. 3. 17. 10. 2. 3. 17. 10. 2. 3. 17. 10. 2. 3. 17. 10. 2. 3. 17. 10. 2. 3. 17. 10. 2. 3. 17. 17. 18. 18. 17. 17. 18. 18. 18. 18. 18. 18. 18. 18. 18. 18
25. 23. 25. 25. 25. 25. 25. 25. 25. 25. 25. 25
25. 23. 25. 25. 25. 25. 25. 25. 25. 25. 25. 25
13.6 1.2 2.2 2.3 4.7 1.2 2.3 4.7 1.2 2.3 4.7 1.2 2.3 4.7 1.2 2.3 4.7 1.2 2.3 4.7 1.2 2.3 4.7 1.2 2.3 1.3 2.3 2.3 1.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2
13.6 1.2 2.2 2.3 4.7 1.2 2.3 4.7 1.2 2.3 4.7 1.2 2.3 4.7 1.2 2.3 4.7 1.2 2.3 4.7 1.2 2.3 4.7 1.2 2.3 1.3 2.3 2.3 1.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2
10.0000 10.00000 10.0000 10.0000 10.0000 10.0000 10.0000 10.0000 10.00000 10.0000 10.0000 10.0000 10.0000 10.0000 10.0000 10.00000 10.0000 10.0000 10.0000 10.0000 10.0000 10.0000 10.00000 10.0000 10.0000 10.0000 10.0000 10.0000 10.0000 10.00000 10.0000 10.0000 10.0000 10.0000 10.0000 10.0000 10.00000 10.0000 10.0000 10.0000 10.0000 10.0000 10.0000 10.00000 10.0000 10.0000 10.0000 10.0000 10.0000 10.0000 10.00000 10.0000 10.0000 10.0000 10.0000 10.0000 10.0000 10.00000 10.0000 10.0000 10.0000 10.0000 10.0000 10.0000 10.00000 10.0000 10.0000 10.0000 10.0000 10.0000 10.0000 10.00000 10.0000 10.0000 10.0000 10.0000 10.0000 10.0000 10.00000 10.0000 10.0000 10.0000 10.0000 10.0000 10.0000 10.00000 10.0000 10.0000 10.0000 10.0000 10.0000 10.0000 10.00000 10.0000 10.0000 10.0000 10.0000 10.0000 10.0000 10.0000 10.0000 10.0000 10.0000 10.0000 10.0000 10.0000 10.0000
11. 11. 11. 11. 11. 11. 11. 11. 11. 11.

SISI CASE 9
THRUST OPTION, DEWSITY OF PPOP(KG/H3)* 7750,3717

VIH/SEC) 1.23A5C+C1 1.23&7E+O1 1.26O&E+O1 1.27¢7E+O1 1.2*61E+O1 PE(KH) 1.4414E*C4 1.5478E+C4 2.6589E+C4 1.719)E+O4 1.8103E+C4

Z 6 6 4675-51 7.68C05-51 NPEVYIN) 1.06006+02

CO INPUT		*1.42455+06 *1.4245F+06
TUPNI		OESIGN TH(N) ULATED TH(N)
RAKG/O Linear	00000000000000000000000000000000000000	ו כערכ
TETS (DEG) LINEAR		V(M/SEC) #2.3499F+C V(M/SEC) #1.20#9F+D
TANAT		H H
IANDI	## W	01 1-KI187. X5105-0 AE/AC87. 646JE-C
1/C INPUT	######################################	1-140=8.370GE-01
C/O INPUT		5 C + + + +
1.0600E+62 1-WX 1NPUT	### ##################################	N(PEV/MIN)=1.95766
X X INOUT		EIAD#7.4391E-01 Z= 6

MAXSTRESS (PA) 4.490E-07 2.304E-07 2.450E-07 2.450E-07 2.469E-17 2.469E-17 MOBINI 2 . 179E+05 1 . 556E+05 1 . 155E+05 1 . 482E+05 2 . 479E+04 3 . 729E+04 4.118 (N. 118) 1.118 (N. 118) 1.0228E+156 11.0228E+156 11.0229E+06 5.482E+05 5.489E+05 6.439E+05 3x0fN-H)
2-941E+65
2-170E+05
11-1792E+05
6-576E+06
3-330E+06
1-724E+06 2.833E-02 5.202E-02 6.315E-02 5.357E-02 3.726E-02 1.315E-33 1.055E-03 6.011E-04 3.532E-34 1.435F-34 3.082E-03 2.221E-03 1.578E-03 8.273E-04 5.623m 6.762m 7.642m 8.041m 101 8.287m 101 8.70m 101 8.70m 101 8.470m 101 8.440m 101 8.440m 4.43EE-01 5.029E-01 YBAR (H) X8AQ(4) 6.333E-01 7.886E-01 8.720E-01 9.337E-01 9.536E-01 9.377E-01 8.515E-01 9.337E-01 9.927E-01 1.0166+03 I AL TA .5635-21 1.760E-31 2.500E-31 4.000E-31 5.003E-01 5.003E-01 7.000E-31 APEACL21 3.1976-51 3.1876-51 3.1856-01 2.8666-01 2.7068-01 PAKS/0

Married World

٠,

CENTER OF GRAVITY OF BLADES PEFERENCED FROM MIDCHORD OF ROOT SECTION (* FMD. * AFT)/78 CEVIER OF GRAVITY OF PROP REFERENCES FRCH MIDCHORD OF BOOT SFCTION (* FND. + AFT)/DB .6978 FND FLAME .1512
AFT DIAME .1630
HIDCHORO D EQCITON TO AFT END OF HUBBE HUN DIAM AT HIDCHORD CF ROOT SECTIONS .17 FND DIAM OF 9095 .1307
AFT DIAM OF 9085 .0844 361222.8754 MEIGHT OF PROP (BLADES + DESIGNATED HUR) (N) .1957 LENGTHE HUB DIMENSIONS/D

273758.4944

WEIGHT OF BLADES(N) *

SIGHACO. YOU AUTOUNDED CLEARANCE AT HUB BITHEEN FILLETS/D= 7.3561E-93 CLEARANCE AT HUB BFTWEEN BLANES/0= 4.7523E-02 JA= .7662E+00 PROPULSIVE EFFICIENCY ETAD# .7439E+00 TC= .1351E'00 JS# .9761E+38 KT= .1842E+00 KELLERS HINIMUM EARS .7177E+60 V(1-NTT)/(ND) TOPOUE COEFF KO: .3220E-01 PUPPILL CAVITATION COEFF DESIGN THPUST COEFF BURRILL THRUST COEFF (S) / ADVANCE COEFF SPEED COEFF

MASS FOLAR MOMENT OF INEPTIA OF BLADES (KG-M2)* .771R77E+05
TOTAL MASS POLAR MOMENT OF INERTIA (KG-M2)* .791262E+05
RADIUS OF GYPATION OF BLADE/O* .2372
PADIUS OF GYPATION-OF HU9/O* .0699

×.

A9S COEFFICIENTS (CALCULATED AT THE .25 RADIUS)

A3S MINIMUM TWICKNESS IN INCHES (USING P/D INPUT) - KE, T/Om .2656E-01 USING ABS GAKE * CONVENTIONAL + SKFW-INDUCED RAKE, T/Om .3183E-01 USING A9S RAKE * CONVENTIONAL + SKFW-INDUCED RAKE, AS* .2942E+00 A .123050E+C2 B .252302E+03 3 .145355E+05 AREA OF EXPANDED CYLINDRICAL SECTION IN SO.METERS CN= .85585-01 CS* .69425+C3 VALUES USED IN DETERHINING THICKNESS-SECTION HODULUS COEFFICIENT SECTION AREA COEFFICIENT

FOR CNF.1 A9S MINIMUM THICKNESS IN INCHES (USING P/O INPUT) -USING ABS RAKE * CONVENTIONAL + SKEW-INDUCEO RAKE, 1/D* .2931E-01 USING ABS RAKE * CONVENTIONAL + SKEW-INDUCEO RAKE,

PADIAL PROPELLER DATE FOR IMPUT INTO CESIGN PROGRAMS(8 PADIAL STRIPS ASSUMED)

T.

(* °

a.	TAN SETA I	ى	XSL (METERS)	XST (METERS)	1-4×	UA/2VS	THICKNE SS (HETERS)	
22755	1,19757	.10235-01	62551	.85114	.47103	.11116+00	.27947	
27930	356.40	14255-61	58611	1.01598	. 52733	.1342F+C0	.26952	
D - C - M -	73897	16705-31	40629	1.47172	.64531	15425+00	.24327	
2000	56470	175431	11613	1.86495	. 74391	.1569E+CB	.20701	
	9:::5::	17835-C1	. 27532	2.29050	.78556	.16375+n0	.16546	
50100	17.74.9	176731	7.8244	2.75878	. 81214	.16405+30	. 12335	
70400	E 0007	16575-01	1,44,332	3,251.57	.83678	.16355+00	.08669	
89700	83228	13455-01	2.31.576	3.74934	.86194	.16.12+00	.05632	
000000	.35867	. 10395-01	2.86353	3.95717	. 87029	15925+00	.04688	
001.6			3.81351	3,61951				

V (M/SEC) PE (KW)	1.20895+	01 1.2347 24 1.5478	1 10+3	. 2664E	+01 1.	27 C7 E + 01 7193 E + 04	1.24615	1E+01 3E+04							
0(4) = 7.	3104 +1-WIT	1.7850 .1	-1 HO3.53	378 .H	ST . (K)	. 1476 . RHO	10 (KG/43	•	1025.861	1.5					
2 AE/AU N(PEV/HIN)	6 7.54835 1.0600E	-01 7-68031	10-3												
X INPUT	INO	WX PUT	C/O IvPuT		T/C INPUT	TANB	==	TANB	0	TET ? (DE	0 a	RAKG/D LINEAR	u ř	P/O RPUT	O Ž
. 76.9.9F -	4 6. 15.	0 1 1 1	4		0.00	2	-	2	•		•		,	5	·
-90005	4.00.4	2.5	J (1)) C	U 6.	4 -	. TAR 25	_		? ?	9 9	
100000	1 5.5250	1-31 2.3			0-306	9 0	9	• •		0.00	• •) (? 9	•
-30000	1 6.6423	-31 2.6		1.2	2-321	27.	٠	37E	101	. 6311E		. T		9	
-30000-	1 7.5039	91 2.5	ĕ	1.0	0-306	.31	٠	36	-01 2	35658	4	ن س	~	9	
-90000	1 7.9033	2.8		~	6-300	24.	Ç	37.5	-31 3	.06746	_	9+9	.17	9	.5000
1 11 11 11 11 11 11 11 11 11 11 11 11 1	1 5.1423	6.2	שו ה	9	יים ניים	٠ ۲		336	-61 3	. 61555	_	<u>د</u> و	٠٥٠	ö	v.
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	2.5	<u> </u>	2,	() (() () () ()		ပု (6	31.	. 54375	.	٠ س	3	ċ	. 5000
3-37-003-6	1 5.553	1.1.1	10000	30.4	26-36-51		P 4		so u	.27195	.	9	ن	9	ç
-30000	3 6.7753		;	;	,	١.5	110		9 10-		01 -0.36.0	20-30-4	9.010	335-01	6.5310
×	TANBI	7 4 7		ٯ	÷.	72.7	08/		UCTSI	c	1543	? (M/S	8	-	
.7603E-0	1.37005+	0 8.0272	-010		ä	3-176	7.178	_		ċ		7590	_	33365+0	_
2.50035-21	1-02695+	23 6.4031	F-01 1.	. 2538E	1 20-	7.5	1.2101	1.27015-01 1	. A3 82E-	7	3-36	6635	, -4	41796+0	
1-30100+ 1-30100+	9.04935	5.9665	10-	1667	20-	0 366	1.497	•	-34254	2.3	6F - 3	. 275 TE	-	7021E+0	
	7.44.56-	1 5,3797		73995	-35	2555-0	1.551	_	- 5241E-	;	SF -:	. 6967		6563E-0	_
	-34021-0	1 4.866.9		77235	20.	0-141	1.540	_	-12785-	5.0	25.	: 2 9 4 2 5	-4	23105-0	
111111111111111111111111111111111111111	7.61371	7:52:7	•1 •	32662.	200	3625-0	1.673		. 5963F-	7.6	2-39	.4769		39788-0	
) () () () () () () () () () () () () ()		7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	4 •	10///	7 6	0 - 1 - 1 - 1		_ `	. 97.5CE-	5		. 8392	-	25146-0	_
111111111111111111111111111111111111111	3.75665-	4 3. 15.49	1 + 1 + 1 + 1 +	16765	, c	7.7.4.4	20.1		- 55475-	•	5.0	. 21:7:		47645-0	-4
.50005-	3.54705-	1 2.9687	10-	. 322 BE	2 2	355-0	1.6156	• • •	7.65615-01	7.1	330c -01	7736	 .	9361E-0	. .
. 6635E+C	3.4215£-	1 2.6432	-01		!	1965-0	1 . 597	_			•	9565		54576-0	4 -4
CPTI=3.9	99965-11	.0	465-31	£ 1 Å	A1=7.877 1E	•	151=5	0-34543	CT	SI/CPSI	1.0024	0		•	
PT=3.	938-3	PS=5.58	35-9	w		-31	STSE	5215-0		CTS/CPS	# 3 . R 8 2 7 E	10-			
×	บ	4LI (0FG)	7	ບ	10/00	FIX	_	.1 (N/H)	161	S (0EG)	7 (18/3)	2/2)	â	1/8/	_
.760E-3			•			•		:			- 1016.	1.913	-01	.2516-0	
	1555-0	- 377.70	.829	9	- 3170			202+0	4 5.3	80	.735c-	2.657	-01	. 8536-0	
プレジャンコ・	ひととなるの	- 3526.	553	P	2175-		= :	175+0	. 6	8	- 2465 -	3.17	-01	.560E-0	•
10 - 10 - 10 - 10 - 10 - 10 - 10 - 10 -	2,3235-01	77867	7.007	70.	3678.5	3619:2 20		4.3935+9	9.	315+31 -1	- 037'-	01 4.253E	10-	0-3622-9	~
0-3000	0-3296	- 52.63.		, 5	1000		.				. 8t 5t -	5 + 6 65	10-	.739E-0	A
.000-	2366-6	.655F-	175	, ö	9136-		•		, e	, ,		0.037		.5796-0	N. 4
. 0000	.5655-1	- 4:15-	. 263	ĭ	- 30c m			1000	5		- 34° -	9.369	7 -		
0-3000-	3-328-0	.2135-	. 753	۲,	- 3716	•••		0+34	5 5.2	10.	96 4 .	1.07.	000	. 599F-0	
.5002.	.3776-0	-1216-	.352	9	171E-		-	19:40	5 5.6		1 - 2 -	1.13		.3206-0	
	•	•	٠ •		ؿ		_	<u>.</u>		3E+01	.0690.	1.033) O •		
434	8E-01 PS	•) + I.	1-1	3C 3 L C 8 = 6H.	10-	1107	6	>	_	2.10.1	-	200	:	•
y H	NIBIN	٠, د	105+22				7 x 0 7 / 3	4936-0		; 5	1.23475	101			701.
								!							

57

SISI CASE B

2.292E+05 1.259E+05 1.216E+05 5.039E+06 2.609E+06 1.024E+06 MTB (N-M) %.328 E-05 3.25 EE-05 2.45 EE-05 1.75 E-05 1.07 E-05 5.74 CF-05 2.32 6E-05 MYOKNLM) 1.963E+06 1.335E+06 1.033E+06 5.17E+05 6.17E+05 2.50CE+05 MXOAN-MU 3.128E+05 2.388E+05 1.521E+05 1.5251E+05 1.5255E+05 1.555E+05 1.555E+05 1.555E+05 1.373E-03 1.315E-03 1.055E-33 6.811E-34 3.532E-34 1.435E-64 3.1016-03 2.2416-03 1.5926-03 6.458-04 Y 34 (H) 9.3375-01 9.5365-01 9.3075-01 8.5015-01 3.192E-01 2.363E-01 2.363E-01 1.70E-01 1.09E-01 RAKG/0 1.7665-01 3.0005-01 4.6005-01 5.0005-01 7.0005-01

ويجرو

CENTER OF GRAVITY OF PROP REFERENCED FROM MIDSHORD OF ROOT SECTION (* FND. + AFT)/Dm .821123 CENTER OF GRAVITY OF BLADES REFERENCED FROM MIDGHORD OF ROOT SECTION (- FMD. + AFT)/74 ROOT SECTION TO AFT END OF HUBE HICCHOPP CF ROOT SECTIONS +13 BORES +1367 BORES +2646 361222.8754 DESIGNATED MUSICAL LENGTHS .1 FWD DIAME AFT DIAME MIDCHORD OF R HUS DIAM OF B AFT DIAM OF B 273758.4944 WEIGHT OF PROP (BLADES + WEIGHT OF BLADES(N) HUS DIMENSIONS/0

SIGMA(3.7)# .3691F+00 7.35618-91 CLEARANCE AT HUB BETWEEN BLADES/Dx 4.7523E+JZ V(1-WTT)/(ND) JA= .7826E+83 PROPULSIVE EFFICIENCY ETAD# .7435E+00 TC= .1414E+00 JS× .9969€ +JG CLEEPANCE AT 4UB BTT4EE4 FILLETS/0* KT# .1937E+88 KELLEPS MINIMUM EAR# .7476E+60 34595-01 AUPPILL CAVITATION COEFF EURRILL THRUST COEFF V (NC) ç DESIGN THRUST COEFF ADVANCE COEFF TOPOUE COEFF SPEED COEFF

58

: }

٠,٢٢

ABS COEFFICIENTS (CALCULATED AT THE .25 RADIUS)

A9S MINIMUM THICKNESS IN INCHES (USING P/D INPUTI-USING ABS RAKE # CONVENTIONAL RAKE, T/D# .2766E-81 USING ABS RAKE # CONVENTIONAL * SKEM-INDUCEO RAKE, T/D# .3292E-81 AS= .2942E+88 A .123,53E+02 B .252932E+03 C .16355E+05 AREA OF EXPANDED CYLINDRICAL SECTION IN SO.METERS CN* . 8558E-01 CS* .5942E+00 VALUES USED IN DETERMINE THICKNESS-SECTION MODULUS COEFFICIENT SECTION AREA COEFFICIENT

. 3031E-01 FOR CN=.1 AJS MINIMUM TWICKNESS IN INCHES (USING P/O INPUT). USING ABS RAKE = CONVENTIONAL RAKE, T/O= .2561E-01 USING ABS RAKE = CONVENTIONAL + SKEW-INDUCEO RAKE, T/D=

RADIAL PROPELLER DATA FOR IMPUT INTO DESIGN PROGRAMS(8 PADIAL STRIPS ASSUMED)

وبجري

	T STATE NATION	ა	XSL (METERS)	XST (METERS)	1-WX	UA/2VS	THICKNESS (HET ERS)	
				10.00	16744.	.1113E+CB	.27947	
55	1.10435	.12285-01	62561		E 27 T.	13455+00	.26952	
000	.94978	.14265-01	58011	966,041	20.27	40454	.24327	
2 6	.76777	. 16895 -01	62907*-	1.401/2	700		.20761	
	548112	17675-01	11610	CE 944 1	15057		416546	
9 6	552635	17972-01	.27532	35362*2	BC08/*		12336	
) (:) (:	42634	.17322-01	.75254	8.63.2	. 215.	0147614	60380	
) (47.78	16725-01	1.44032	3.25197	. 8367		. 65,637	
) E	37.832	13575-01	2.31576	3.74936	*6199	614 19 19 19 19 19 19 19 19 19 19 19 19 19	10070	
. 60	.35923	10-33421.	2.36456	3.95737	• 57.72			
			2+ 61 351	10010				

5	176W 20 • WOT	2	*(50/07)	• 25 .	3717								
V (M/SEC) PE (KH)	1.20995+	01 1.2347 04 1.5478	E+31 1.	2654E+01	1.27	075+61 1.0 935+64 1.0	2561E+01 6107E+04						
0 (4) = 7.	.0164 ,1-KTF	*.7850 .1	-THO#.93	170 . H(H)	* 15.9	3496 , RHO (1	(KG/H3)	1025.8615					
Z AE/AC K(REV/HIH)	7 - 6 4 3 3 C - 1 - 0 6 C 3 C + 1	C1 7.68:GE	E-C1										
X TUGNI	Idan	NX TO	C/D IMPUT	TA	T/C NPUT	TANBI	TANE	~ -	TETS (DEG) LINEAR	PAK LIN	RAKG/D Linear	P/O IMPUT	
2.75005+C 2.50005+C 3.00005+0	1 4.3583 1 4.0413 1 5.5253	21 21 21 21 21 21 21 21 21 21 21 21 21 2	000	2 + 16 COF + 1 + 7 8 9 OF + 1 + 5 8 9 OF + 1	#### #################################	1.37355+6(1.02595+0(0 8.40322E	101	9.5	.A.3950		3403E+0	6 6
-30006-	1 6.6423	-31 2.6	() () () () ()		00	32945-0	, m &	201	0 0	-2.5412	E-32 1.	7.735.0	•
.00015-	1 7.9033	-51 2.8	0-319	٠.٦	9.5	41055-0	2.5	20.0	25	-4. !101	E-02 1.	17608+0	•
400000	4.3633 1 A.6253	-31 2.5	9-95		9	0 - 2 - 2 - C - C - C - C - C - C - C - C	, m		20	1620-2-	20-	64 30E-0	
+30000 ·	8 9.7051 0 8.7750		30.	• • •	9	.5870E-0 .4215E-C		31 5.6	3596 +01 3596 +01 2036 +01	-0.3490E	20.00	25 306-01 10006-01 01036-01	
X .76335-0 .50965-0	1.37216+	74N 9 3 8.02226 0 6.00315	101	6 25 25 2	***	•	•••	OCTSI	DCPS:	:	25	CAVV	9
0003847	9.05296-	5.9666	::. :::	5070E-0			44.	.7581E-6	2.3230	-	20	.3211E+ .6338E+	000
8 - 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	6.33399	6.6		784AE-02	4 +4 (4.5479E-01 6.1474E-01	5. C139	. .5	99	.2685E- .9804E-	# # 6 6
	4.7151E-	3.76935	101	79225-C	or en	44		.94545-0	7.6791	ដូដូ	22	.22376-	100
	3.77455-	1 3.1549E		2-3565E 3295E-3	N 40			.64489-6	9.2920	55	20	.3765E-	55
.5035E-3	3.5924E- 3.4266£-	1 2.9697E 1 2.8432E	-01 1.	032 CE-0	in in	44	61925-01	1181E-0	7.4982E-	15	3.8498:+01		175
CPII=4.0 CPI=3.9	197E-31 294E-31	CPSI=5.11C CPS=5.631	25-01 65-01	ETAT=7.	.8561E-	31 CTS	I=5.1143E~	61 CTSIV	I/CPSI#1.0	0008E+00			
-760E-31	ថ .	LI (6.	, F. F. C.	ິ່	ם/כר	F(X)	LI(W/4)	TETS (D)	50 CE	789) LE	6	96	2:
. 5035-71 . 0005-91	•1345-0 •5535-0	3727.	tet tet	-02 2.3	315-32	0-351 19E-0	3.9916.			35t - 01	0 0	95.0	. ~ :
.030E-31	2.9715-01 2.344E-01	4.575E-01 3.609E-01	41 44	-02 2.8 -02 3.6	61E-02	0-346	1 1.1885		77	7 - 01 55 - 02		6.7798-0	
.500E-01	.9785-6 .7455-0	.C.7E .687E	taj taj	-62 4.2	96E-32	65-6 77-0	1.3325+	N K	200	20 32	0	5	. ~ :
. 8685-21	. 5795-3	432E	41 1.	-02 5.3	A 3 E - 22	1 E - C	1.5545	i Seri		7 - 0 1			~ ~
115	3935-6	u	9.435	-63 55.1	168-32		1.1315.	. 5 5.635E+01 5 5.635E+01 6.037E+01	0 fr 0			320	2 2
ETA0=7.4336 7= 6	E-G1 PS NIPFV	(KW) =2.232	5E+34	1-THD#8	.370cE-	-C1 1-HTT AE/AC	e7.4530E-	01 V (KNOT)	~ .	10+3h092	כערכה	N THEN	

SISI CASE 8

HAXSTRESS (PA) 3.694E+07 2.697E+07 2.691E+07 2.726E+07 2.726E+07 1.75000 1.75000 1.75500 1.2700 1.2700 1.2700 1.2700 1.2700 1.2700 1.0770 2.556 2.556 3.566 3.566 1.99999 1.99999 1.007676 5.934676 5.934676 6.105676 8.527676 3.64996 1.69996 1.69996 1.0036 1.0036 1.0036 1.0036 1.0036 1.004 1 2.0344-02 5.0166-62 6.2021-02 6.3156-62 5.3576-02 1.9936-02 2.257E-03 1.606E-03 8.4235-04 Y 83 R (H) 9.3376-01 9.3376-01 9.3376-01 9.3376-01 1.760E-01 0. 395E-03 3.00E-01 1-2.54075-03 3.00E-01 1-2.54075-02 5.00E-01 1-2.5405-02 5.00E-01 1-3.245-02 9.00E-01 1-3.245-02 9.00E-01 1-3.245-02 1.00E-01 1-3.245-02 1.00E-01 1-3.245-02 1.00E-01 1-3.245-02 1.00E-01 1-3.245 844G/D 4.0000 5.0000 5.0000 5.0000 7.000 7.000 7.000 7.000 7.000 7.000 7.000

*

15.

,

CENTER OF GRAVITY OF PROP REFERENCED FROW MIDGHORD OF ROOT SECTION (* FWD. * AFT1/D* BLADES REFERENCED FROM MIDCHORD OF ROOT SECTION (- FND. + AFTI/)* FND DIAME .1917
AFT DIAME .1912
AFT DIAME .1530
HIGCHORD OF GOOT SECTION TO AFT END OF HUSE HUR DIAM AT MICHORD OF ROOT SECTIONE .17 FND DIAM OF SOREE .1307
AFT DIAM OF SOREE .0844 CENTER OF GRAVITY OF HUB DIMENSIONS/D

DESIGNATED HUBS (N)

OF PROP (BLADES +

WE IGHT

WEIGHT OF BLADES(4) *

273758.4944

SICHA(0.7) = .36735+30 V (1-HTT) / IND) JA# .7999E+08 PROPULSIVE EFFICIENCY ETAN . 7431E+00 TC= .1475E+93 JS# .101#E+31 KT# . 2033E+00 CLSARANCE AT HUB BETWEEN BLADES/D= .7770E+00 KOR .3710E-01 BURRILL CAVITATION COEFF KELLERS HINIMUM EAP BUPRILL THPUST COEFF **(CH) //** DESIGN THRUST COEFF ADVANCE COEFF TOPQUE COEFF SPEED COEFF

7.35616-33

CLEADANCE AT HUB BETWEEN FILLETS/D=

HASS POLAR HOMENT OF INERTIA OF PLATES (KG-M2)* .771877E+05
TOTAL MESS POLAR MOHENT OF INERTIA (KG-M2)* .793252E+05
PADIUS OF GYRATION OF 9LADE/O* .2172
QADIUS OF GYRATION-OF HUB/O* .2599
TOTAL RADIUS OF SY*ATION/O* .2397

1

ASS COEFFICIENTS (CALCULATED AT THE .25 PADIUS)

ABS MINIMUM THICKNESS IN INCHES (USING P/O INPUT)

USING ABS RAKE = CONVENTIONAL RAKE, T/Dm .2876E-81
USING ABS RAKE = CONVENTIONAL + SKEM-INDUCED RAKE, T/Dm .3582E-81
VALUES USED IN DETERMING THICKNESS - A = .1210592F+03
G = .145359E+03
SECTION AREA COEFFICIENT GS .5942E+00
SECTION MODULUS COEFFICIENT GN .8558E-81
AGEA OF EXPANDED CYLINDRICAL STOTION IN SO.METERS AS .2942E+88

FOR CN=.1 ABS MINIMUM THICKNESS IN INCHES (USING P/D INWINI)-USING ABS RAKE = CONVENTIONAL + SKEM-INDUCED RAKE. 1/D= .3133E-01

Angelon.

RADIAL PROPELLER DATA FOR IMPUT INTO DESIGN PROGRANS(8 PADIAL STRIPS ASSUMED)

A. A.

Tanks.

_{وک}ٽ آ

THICKNESS (METERS)	.27947 .26952 .287327 .287327 .16546 .12335 .08639 .06638
UAZZVS	. 1556 E + 000 . 1556 E + 000 . 1556 E + 000 . 1566 E + 000
1-KX	. \$2733 . \$2733 . \$6531 . 76591 . 79656 . 81678 . 86196 . 86196
XST (HETERS)	
XSL (HETERS)	62661 59201 1650 1650 27502 27502 1.44332 2.31576 2.6653
ٯ	. 1632-01 . 1632-01 . 1632-01 . 1779-01 . 18112-01 . 1635-01 . 1359-01
TAN SETA I	1.10596 .95121 .76892 .64899 .55175 .47705 .37859
×	. 22755 . 279500 . 499500 . 594500 . 79450 . 99450

	T OF PPOP(KG/H3)*
	DENSITY
60	×
CASE	OPTIC
SISI	THRUST OPTION.

7750.3717

V(M/SEC) PE(KH)	1.20892+01	1.2347	1001	2654E+01 1 5589E+04 1	1.27075+01 1.24 1.7195E+64 1.81	1.2961E+01 1.8103E+04				
0 (8) = 7.	-0104 .1-WTT	=.7850 ,1	-THD=.53	370 .H(H) # 1	15.8496 ,RHO (KG/43)		1025.8615			
Z AE/AO N(REV/HIN)	6 7-6483E-01 1-06005+02	7.680	0E-01							
X INPUT	1-WX INPUT	X E	C/D INPUT	TVC	TANBI INPUT	TANB	TETS(DEG) LINEAR) RAKG/D LINEAR	E/O TUPUT	RAP
4	611 4.35 611 5.94 611 5.94 611 7.95 611 7.95 611 8.14 611 8.14 611 8.76 611 8.76	10000000000000000000000000000000000000	10011111111111111111111111111111111111	7.000000000000000000000000000000000000	1.3721E+00 9.0629E-01 7.4527E-01 6.3389E-01 6.13857E-01 4.7151E-01 4.7151E-01 3.7745E-01 3.5745E-01	6.02222 5.06664 5.06664 6.36596 6.3659	0.000000000000000000000000000000000000	0.349505 -12.54126-02 -12.54126-02 -13.67176-02 -14.67176-02 -17.67316-02 -17.67316-02 -17.67316-02 -17.67316-02	1.3400E+00 1.3740E+00 1.2740E+00 1.2740E+00 1.2760E+00 1.0730E+00 1.0730E+00 9.5603E-03 9.1600E-03	
	11 14 14 14 14 14 14 14 14 14 14 14 14 1	184 9 190 8.5222-01 101 6.40315-01 101 6.90515-01 101 6.37956-01 101 6.80495-01 101 3.76935-01 101 3.76935-01 101 3.76935-01 101 3.76935-01 101 3.76935-01 101 3.76935-01		6 6 11. 1.2572E-02 1. 1.7374E-02 1. 1.9535E-02 1. 1.9535E-02 9. 1.95376E-02 9. 1.5970E-02 7. 1.3775E-02 7.	UTZV 1.76159-01 7.17 1.61745-01 1.67 1.60740-01 1.67	00/2V 2755F-01 1.82 2755F-01 1.82 5746F-01 2.73 6705F-01 6.20 6705F-01 7.73 6456F-01 9.05 6456F-01 8.97 6456F-01 8.97	1.8224E-01 1.4496E- 2.741E-01 2.3417E- 5.7565E-01 5.0858E- 6.2569E-01 7.78.56E- 7.759E-01 7.78.56E- 9.7651E-01 1.0117E- 9.7651E-01 1.0117E- 8.9765E-01 7.6138E- 0.07651E-01 1.0117E- 0.07651E-01 1.0117E- 0.07651E-01 1.0117E-	VR. VR. VR. VR. V. 974	CAVV 000 4-00558E+0 001 2-00568E+0 001 2-00568E+0 001 3-00578E+0 001 3-00578E+0 001 1-00578E+0 001 1-00	7 5 5 ન ન ન ન ન ન ન ન
CP111213131313131313131313131313131313131	20	SH 20		MA CUUUNATUUGO	2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2	0.1 0.2 0.2 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3	CTS/CPSIR CTS/CPSIR CTS/CPSIR 0.029E+00 1.631E+01 1.631E+01 1.631E+01 1.635E	.9843E-01 .8696E-01 6696E-01 C/R01E 0.01 7916E-01 2.691 7916E-01 3.17 7965E-01 4.25 7965E-01 4.25 7965E-01 4.25 7965E-01 4.25 7965E-01 4.25 7965E-01 4.25 7966E-01 4.25 7966E	E E E E E E E E E E E E E E E E E E E	7 8 8 8 8 8 8 8 8 8 8 8 8 8 8
ETAD=7.424; 2= 6	41E-31 PS(N(REV)	PS(KW) #2,315 (REV/HII) #1,063	54E+04	1-THO=8.3700E-0	0E-01 1-HTT#7. AE/AG#7.	*7.85305-01 *7.6443E-01	V(KKOTS) #2	.47805+01 .2707E+01 Cd	DESIGN TH(N)	#1.616 #1.616

MAXSIQESS(PA) 5.117E-07 3.012E-07 1.196E-07 2.797E-07 2.765E-07 2.765E-07 ATB (N-M) 4.677E+05 3.519E+05 2.545E+05 1.455E+05 6.210E+04 2.510E+04 74XO(N-H) 3-5330E+05 1-732E+05 1-732E+05 1-752E+05 1-752E+05 1-752E+05 1-752E+05 1.370cM4 1.370E=03 1.0555E=03 1.0555E=03 1.0555E=03 1.0555E=04 1.055E=05 1.055E=05 1.055E=05 3.149E-03 2.283E-03 1.527E-03 5.535E-03 Y 93 R (M) (BYD(M) PI YTANBI PAKS/D 4.0000-01 4.0000-01 5.0000-01 5.0000-01 7.0000-01

N. T.

CENTER OF GRAVITY OF BLADES REFERENCED FROM MINCHORD OF ROOT SECTION (* FWD. * AFT)/J# CENTEP OF GARITY OF PROP PEFERENCES FROM MIDGHOPS OF POOT SECTION (- FMD. + AFT)/OF OT SECTION TO AFF END OF HUBS OCHORD OF ROOT SECTIONS .1. 361222.8754 HEIGHT OF PROP (BLADES + DESIGNATED HU9) (M) LENGTH# -195
FNO DIAM2 -1
AFT DIAME -1
HIGGHORD OF ROG
HWO DIAM AT MIO
FNO DIAM OF ROG
AFT DIAM OF SOR 273758.4944 11 WEIGHT OF PLADESINS HUS SIMENSIONS/D

SIGHA12.77# .3665E+80 CLEADANCE AT HUB RETWEEN FILLETS/3" 7.3561E-73 CLEARANCE AT HUB SETNEEN BLADES/N= 4.7523E-02 VILLHTTY/IND) JAN . BESTEFBB PAGPULSIVE EFFICIENCY ETAG# .74245+66 TC# .1517E+00 JS= .1025E+01 KT= .2090E+60 KELLERS HIMIMUH EAR# .7946E+C3 KO# .3847E-01 AUPPILL CEVITATION COEFF DESIGN THRUST COEFF BURPILL THPUST COEFF **(K)/** ADVANCE COEFF TOROUE COEFF SPEED COEFF

MASS POLAR MOMENT OF INERTIA OF BLADES IKG-M2)** .771677E+05
TOTAL HASS POLAR MOMENT OF INERTIA (KG-M2)** .797262E+05
RADIUS OF GYPATION OF BLADE/O** .2372
RADIUS OF GYPATION-OF HUB/D** .0699

ek.

ABS COEFFICIENTS (CALCULATED AT THE .25 RADIUS)

.3461E-01 ABS MINIMUM THICKNESS IN INCHES (USING P/D INPUT) - USING ABS RAKE = CONVENTINMAL RAKE, T/Dm .293/E-01. USING ABS RAKE = CONVENTINMAL + SKEW-INDUCED RAKE, 1/0m AS# .2942E+88 A= .1230505+02 B= .2529025+33 C= .1463555+05 AREA OF EXPANDED CYLINDRICAL SECTION IN SO.METERS CM# . \$5585-01 CS# .6942E+00 VALUES USED IN DETERMINING THICKNESS-SECTION HODULUS COEFFICIENT SECTION AREA COEFFICIENT

FOR CN=.1 ABS MINIMUM THICKNESS IN INCHES TUSING PLD IN-OUT!-USING ABS RAKE = CONVENTIONAL + SKEW-INDUCED RAKE, I/O= .3188E-81

\$

PADIAL PROPELLER DATA FOR INPUT INTO DESIGN PROGRAMS(8 RADIAL STRIPS ASSUMED)

ξ.

THICKNE SS (HETERS)	.27947	25692*	24.139		.20701	. 16546		.152210	00446		258632		.04666			
3A2/VA	.11165+30	13535+00		D-1340CT •	.1599E+C0	45125	00.000	. 169JE+13	A F 7 B F A F A	77. 30 /67 *	14 36 4 5 F		. 1639E+C0			
1-WX	. 47163	. 52733		.649.1	.74091	70666		.81214		6 / 4 6 6 6 6	BC+01	1000	87029			
XST (METERS)	.85114	***********		2.125.1	1.84495		110,303	2.75978		3.2-19/	11016	まったましゅう	1.05717		3.81961	
KSL (METEPS)	62661		44700	40629	11010	****	206120	7876		1.644332		2.313/6	0.86 BIL		3.81801	
ı	10 1 11 1 1	400 1000	TO 1 110 # # T .	17135-01	+1-3604	40 1000	. 1832: - 81	+ P + O : O + P +	4. 10 101 .	1708=-01		171 1/0510	1011200	701007		
TAN BETA I		11 11 11 11	C5565.	.77065	40000	600	•6253•		310/**	. 42235		737344	4 6 6 6 7	002000		
a ×		96/27	026/2*	ANCAX		3000	58830		Eft.a.	70100	30,00	83758		2001		

80	
Ψ	
Š	
\ddot{c}	
H	
20	

THRUST OPTION.	ON. DENSITY	P.	PROP(KG/H3)#	7750.3717	•					
V (H/SEC) PE (KH)	1.2389E+ 1.4414E+	+01 1.2347	47E+01 1.260 78E+34 1.650	04E+01 1.27 89E+34 1.71	27075+01 1.28 71935+04 1.81	2861E+01 8103E+04				
D(H) = 7.	01C4 .1-WTT=	.7850	.1-TH0=.5370	.H(H) = 15.	8496 .RHO1KG/H3)	•	1625.8615			
Z AE/AQ N(PEV/%IN)	6 7.6453E 1.0600E	-01 7.6800E	E-91							
X INPUT	-4 GKI	1-uk HPUT	C/0 1NPUT	1/C INPUT	TANBI	TANB	TETS (DEG	1) RAKG/O LINEAR	P/D INPUT	COINPUT
13.75 13			7905 7905 7905 7905 7905 7905 6705 6705 6705 6705 8805 8905 8905 8905 8905 8905 8905 89	1.36906 1.56906 1.56906 1.56906 1.56906 1.56906 1.56906 1.5690 1.	11.04 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	6.000000000000000000000000000000000000	0.300 US 0.000 US 0.0	0.3950E-03 -1.4067E-02 -2.5412E-02 -3.6757E-02 -4.917E-02 -5.9446E-02 -7.0791E-02 -5.2136E-02 -9.3440E-02	1.32 % 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
**************************************	11. 34.00 11. 34	100 00 00 00 00 00 00 00 00 00 00 00 00	NWN 600 N. 3 C.	35	10111111111111111111111111111111111111	10011100110011001100110011001100110011	0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	SI WR(M/SE 2:	CAVV 001 2-232EC+0 101 2-232EC+0 101 5-704EC+0 101 5-704EC+0 101 2-998EC-0 101 2-998EC-0 101 1-5912EC-0 101 1-5912EC-0 101 1-5912EC-0 101 1-5912EC-0	0 00
CPTI+4.1	296E-31 383E-01	CPS1=5.27	632-01 E 702-01	ETA1=7.82565 ETA=6.9662E	-31 CTSI# -01 CTSI#	5.2504E-01 5.1353E-01	CTSI/CPSI#9 CTS/CPS#8	1.9509E=C1 1.8584E=C1	`	
1.00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	CL 3.9256-01 3.9256-01 2.6366-01 2.6346-01 1.6296-01 1.6296-01	ALIOFG) 0.5566 6.0566-01 3.726-01 3.726-01 3.726-01 2.566-01 2.305-01	FN C C 2.683	CO/CL 2 1.98E-02 2 2.166E-02 2 2.799E-02 2 3.536E-02 2 4.176E-02 2 5.236E-03 5.679E-03 3 5.924E-03	7.5.29 E = 0.1 7.5.29 E = 0.1 7.5.29 E = 0.1 7.5.29 E = 0.1 7.5.29 E = 0.1 7.5.40 E = 0.1 7.7.40 E = 0.1	1.57255 1.55	7575 (DEG) 9.0286 + 00 -1: 9.0286 + 00 -1: 1.6316 + 01 -1: 3.0876 + 01 -1: 3.0876 + 01 -1: 5.576 + 01 -1: 5.576 + 01 6: 5.676 + 01 6: 6.005 + 01 6:	1.910E-01 1.910E -1.510E-01 2.910E -1.584E-01 3.174E -1.037E-01 3.174E -1.037E-02 5.645 9.377E-02 5.645 6.684:-01 7.991 6.684:-01 1.076 6.684:-01 1.076 6.684:-01 1.076 6.684:-01 1.076	E	
ETAD=7.41456 Z= 6	E-01 PS(KW) R(REV/HIN)	=2.44 =1.66	16E+04 1-	-THD=8.3703E	-21 1-WTT=7.	7.85305-51 7.64832-01	V(KNOTS) =2 V(H/SEC) =1	.50fcE+61	DESIGN TH(N)	#1.6817E+86 #1.6817E+86

```
MTGCM-M9
3.687E-05
2.782E-05
1.928E-05
1.914E-05
6.181E-04
 3.1XOON-11
3.5040-10
3.1440-10
4.516-10
3.1426-10
3.7326-10
                   3,1895-03
2,3215-03
1,6965-03
6,6975-04
    Y 94 R (H)
                                                                                                                                7.542E-01
      KBAR (H)
                                             9.576E-31
9.3C7E-C1
8.501E-01
                              3.180E-01
2.853E-01
2.333E-01
1.700E-01
1.090E-01
                                                                                        RAKG/D
               1.760E-01
3.000E-01
5.000E-01
5.000E-01
7.000E-01
```

*

CENTER OF GRAVITY OF BLADES REFERENCED FROM MTCCMMRD OF ROOT SECTION (- FNO. + AFT)/J# .820574 CENTER OF GRAVITY OF PROP REFERENCED FROM MIQ'SHORD OF ROOT SECTION (- FND. + AFT) FD. DOT SECTION TO AFT END OF HUBE 105H009 OF ROOT SECTIONS .17 WEIGHT OF PROP (BLADES + DESIGNATED HUS) (N) = FNO DIAME .1812
AFT DIAME .1536
HIDCHORD OF RODI S
HUDCHORD OF RODIS
FNO DIAM OF BOREE
AFT DIAM OF BOREE HUB JIMENSIONS/0

SIGHA(0.7) # .3654E+00 CLEARANCE AT HUB SETWEEN FILLETS/D# 7.3561E-13 CLEARANCE AT HUB BETWEEN BLADES/D# 4.7523E-02 JA= .8152E+00 PROPULSIVE EFFICIENCY ETAD# . Thi5E+30 TC# .1575E+00 JS# .1039E+01 KT# .2175E+88 V (1-WTT)/(ND) KELLERS MINIMUM EAR# .8208E+CO KO# .4057E-01 BUPRILL CAVITATION SOEFF DESIGN THRUST COEFF BURRILL THRUST COEFF V/ (ND) ADVANCE COEFF TO-OUE COEFF SPEED COEFF

70

*

WEIGHT OF BLADES(N)

MASS POLAR HOWENT OF INERTIA OF BLAUSS (KG-H2)** ,771877E+05
TOTAL HASS POLAR HOMENT OF INERTIA (KG-H2)* .793262E+05
RADIUS OF GYPATION OF BLADE/O* .2372
RADIUS OF GYRATION OF HUB/O* .8698
TOTAL RADIUS OF GYRATION/O* .2093

(K.)

ARS COEFFICIENTS (CALCULATED AT THE .25 RADIUS)

ABS MINIMUM THICKNESS IN INCHES (USING P/D INPUT).

USING ABS RAKE = CONVENTIONAL 4AKE, T/O= .3022E-01

USING ABS RAKE = CONVENTIONAL + SKEM-IMDUCED RAKE, T/D= .3548E-01

VALUES USED IN DETERMINING THICKNESS- A= .123053E+02

D= .252902E+03

SECTION AREA COEFFICIENT CS= .6942E+00
SECTION MODULUS COEFFICIENT CN= .8558E-01
AREA OF EXFANDED CYLINDRICAL SECTION IN SO.METERS AS= .2942E+88

FOR CN#.1 ABS MINIMUM THICKNESS IN INCHES (USING P/D IMPUT)-USING ABS RAKE = CONVENTIONAL RAKE, T/O# .2818E-61 USING ABS RAKE = CONVENTIONAL + SKEW-INDUCED RAKE, T/O# .3269E-61

RADIAL PROPELLER DATA FOR IMPUT INTO DESIGN PROGRAMSIS PADIAL STRIPS ASSUMED)

œ	TAN BETA I	o	XSL (METERS)	XST(HETERS)	1-NX	UA/2VS	THICKIE SS (HETERS)
<u>:</u>		;		10000	.47103	. 1119E+CC	.27947
.22750	1.11197	10-22-01	•	74446	52733	13596+00	25692*
27900	.95638	14575-01	•		777	15775+10	.24327
44200	.77.310	.1734E-01		7/1/4°I	70000	B.+ 96 + 9 * ·	.20701
1857	.45252	. 18235-01		CE 494 . I	40000		16546
	52455	.18515-01		2.29030	0 < 34 / 0	E. 4 L. 1 L. A.	12335
50.464	47965	10-325-01		2.75876	1719	CC4 1110 K	60500
724.7	. +2371	.17395-01		3,24197	0 7 9 2 6 4	0:43641	. 05632
A3730	33:55	.14135-01		4054C - 10			04688
35836	.36172	. 16437 - 61	2.86.953	35 - 15 0 E			

APPENDIX E SAMPLE DESIGN USING POWER OPTION

OPTIONS EXERCISED IN APPENDIX E

Power or thrust	Power
Calculations with input $tan\beta_{\mathbf{I}}$	N/A
Tans _I (Lerbs or Input)	Lerbs
Tanß (calculated from (1-w _X) or input)	Calc
C _D (constant, variable, or calculated)	Calc
Multiple RPM	Yes
Multiple Z	Yes
Multiple AE/AO	Yes
Check AE/AO of input C/D and modify	Yes
SKEW (Linear/nonlinear)	NL
RAKE (Linear/non?inear)	NL
P/D (input or approximated by $\pi x tan \beta_I$)	Approx Calc
ABS Coefficients	Yes
Hub Geometry	Approx Calc
Input Units	English
Output Units	English

AML GENERAL PURPOSE 80 COLUMN SHEET

ÇK.

×	<u> </u> -	-إ	4=	ļ.•	4:	. :	 - -	-	-	-:-	=	=	=	=	=	=-	=	:	=-	ř.	. <u>5</u> .	ä.	ا	-4-	-5.		
-		-i - -i -	<u> </u>	1	 -	1	1=	<u> </u>	!-	-		=	_		F	<u> </u>	-					_	_				
1	<u> </u>	1	<u> </u>	±	_	上	<u>†</u>	辷					_	二		二	_										
F		+-	+	- -	+	上	1	 _	<u> -</u>			上			二		<u>; </u>					_				=	
-	Y	Ŧ	Π-	Π-	- -	- -	+	 	╀	-			39	 -	-	ļ 1 —	ļ			-						21.21	
	Ŀ	‡	#	1	-	: -	1-	-	1=			F.	12	-		 		-		<u> </u>			<u> -</u>				İ
10.00			1	<u> </u>	: -	<u> </u>	上	上	‡:		-		?	-	-		-	-		F	 -	-	<u> </u>	-	-		
			+	- -	- -	\pm			上	<u> </u>	<u>t</u>		Ξ,		<u>:</u>	1	<u> </u>	1_	<u> </u>	 	匚	<u> </u>		_	匚	3	
1	\mathbf{I}_{-}	7		-		- -	Ţ	+	-	-	-	1-	=	İ	<u> </u>		上	上			<u> </u>	<u> </u>	<u> </u>				ĺ
13	ட	1	1	#	7	7-	-	13	Ţ	-	_	-	7	ــــــــــــــــــــــــــــــــــــــ	-	-	┼-	-	\vdash	-	上	 	L	Ė		30 00	ĺ
	Ι.	+	1	\pm	1.		1	77	¥-	1=		-	-	-	\vdash	+-	Ţ	\vdash	-	H		-		i	-	6:03	
	+	╬	-			1-	1	₫ä	<u>\$</u> _	O		ţo	Ŀ	-	‡=	- -	İ	1_	二	ļ _	1	ļ	_	1	1-	70 00	
		7	7	-	-				4-	100	21		1	ī	上		+-		上	Ŀ	上	İ	上	<u> </u> _	‡	Tei	j
43	78	#	_	7	7	7	7	1	<u>3</u>	$\mathbb{T}_{\mathcal{C}_i}$		4	1.5	4-	+	+-	! -	+	+	<u> </u>	1	上	上	 	<u> </u>	崮	į
		士	맓	#	+	#	- -	10		1=	.i <	t: r	4_	٠	+	-	Ţ-	F	F	F	-	1-	-	1-	1-	11.67	
		+	\pm	士	\pm	<u></u>	+	7	1	1		<u>``</u>	1;		#	#	- <u></u>	#	丰	‡-	1	-	-	#	F	Ę	
		4		1		=		t		10:	, ,	<u> </u>	E	=	士	<u> </u>	+	上	丰	1	İ	1	#	I	丰	20 40 16	H !!
-		7	7	7		4	==	2	9		7 ' 5 '	~``\ ^``\	\$ <u>-</u>		-		-	+	+	Ė	1	士	上	上	1	12	li
ı,	<u>: 1</u>	_	寸	<u></u>	_¦;	Ν.	#	Ţġ	ά_	‡	1	ا ب	} 1	 -	+	7	7	F	+	1-	+	+-	-	+	╁	**	i
į.	5	-	\dashv		:	<u></u>	+	士	<u>:</u>	<u> </u>			Ċ	' 二	1			-	1	丰	#	1	1-	1	-	:	
- 1		4	\dashv	\dashv	_;'	S	+	-46	Ϋ́	ì	١,	9 Y	בן? בור	ij	上	-	<u>-</u>	+	上	İ	+	士	1	+	1];]
	:1	_		耳	—:;	<u></u>			``` ````	-	٠,	0,0		!		+	+-		╀	╁	+-	+	士	- 	土	:	1
		_		コ		_T	_	1	~, ;-	- - - -	1	٥ :	~~	χ. α	7	_ -			T	Ŧ	-		+	-	+		1
) 1	1	-			<u>-:</u>	3		-1- -1-	7		3 5, 0	> بر	۱, ۱	O.	-	1.	- -	Ϊ.	-	1-	1	- -	#	 -	Ŧ	1:	1
	1	_	_	\dashv		27	-	-:-	4:-	-!?	v.a	<u></u>	٠.٠	Ţ:-	- <u> </u> -			士	土	1-		ΞİΞ	-i	Ţ	1	∃ ≅	
			_	_	=	N		₹,	ġ.	-	4	٥.>	ه زو ا	Ø	+		- -	\pm	士	1-	 	1	1	士	土	15	
		_		<u></u>		ف	1	50	Ť			<u>, , , , , , , , , , , , , , , , , , , </u>	<u>`</u>	ī	-	<u>.</u>	7		\mp	+		-	+	+	+	1	1
	1					75		<u>~</u>	7.		à		إبر		#	#	4	7	7	7	4.	-		+	Ŧ	j:	: }}
	1:1		\vdash	_	:	20		<u>-</u> †	7	<u></u>	: !	\sim	-:	8		_ -	_ :	#	‡	#	#	1	1-	-	-	1	1
	10011	_				3			8		S ⁱ		S	9.	-	_[:	<u>:</u> †:		\pm	1	- <u> </u> ·		上	#	#		
	\$2 92,62				!	329	Ö		3	1	Λ'	<u>~</u>	٠	<u>ئ</u>		-		-	+	+	- -		-+-	1	1		
	:		_			<u>=</u>	$\stackrel{\sim}{\exists}$	<u>~</u>		; ;	ĩ.	٥.	=	31	4	_	4		+		_	7	-			-1:	
		_	-	Q			<u>ت</u>	7	7	<u>-†</u>	1	=		٧ż.	#	\rightrightarrows	#	= -	#	7	7	1	7			- :	
	9	_	-	4		3	0	-	7 7 9 9	9	648	œj.	$\widetilde{\omega}_i$	J.	_	_	_	1	#	#	1	#	#	- <u> </u> -	1	_	
				C	_		<u>.</u>	<u> </u>	٦٩	0	97	128	m.	0	+	_	_	<u> </u>	<u></u>	<u>'</u>	_t	+	#	<u> </u>	_ <u> </u> -		140 (17) 2 14 15 15 16 16 16 17 17 17 17 17
			W			4		<u></u>		7	-		0	=	+	1	-	-		+	_	_	1	_	士	-	
	6		NA S		V	2	٠-	2/	7		79	36	7	T	_	\exists	4	7	7	\dashv		7	-	-		-	퉭
	13:0	-	U	Τ.	52	ريا	Ω	يڄ	75		73	7	7	9	\rightrightarrows	二		#	井	7	#	7	4	7	4	7	
	1	-	2 0	-	~	4	3.6			9	7		\exists	787	士			士			\exists	_	=	#	_		킈
	1		Ę	口	33	N	_ =	3	<u>=</u>	<u>Ö</u>	3	8	Ö	2,0	-[_}	\exists	+		_	-		_	士	
	1		F	+c	203	4	O	-	1 9	Ö,	<u> </u>	388	4	=	_		_	7	4	\dashv	7	-	-	\dashv	+	_	-
£	:	-	15	-	l	1	-,	25	三		2	ᆿ		J.			二	二	#	#	#	#	_	7	7	4	
2	E	-	٦ ا	-	1285	7.0	١	\exists	i	9	-	-	. 2	9	\exists			士	\exists	士	士			\exists	二	긔	
. 5236	5	-	1000	2000		. 40		2	4,358	0	13	9	3	Ö	_		-	_	_	_		-+	士	_			Ĭ
Ü	1		#4		1	1.0	9		4		È	2		Ö			日	\exists	\exists	-	\neg		\dashv	\dashv	\dashv	-	= :
MDW. NSRDC - 5230/7 (979)	हा कर त्वारत्वावावावा का का का का का का का का का का का का का	=	\top		.	1	12		-	\exists		1	0					-		-		=		=	3	-	10101011X
ž	Ņ	1 -	-	1 -	1 -	-	•	-	•	•	•	:	=	=	2	2	2	:	- 1	÷	n 1	~ I	= 1	1	- 1	- 1	N Ats
														7	E												
												•	•	7	IJ				,								

PS(HP) = 3.	Orage+C4, n	ENSITY O	1) 40% a 30	(L9H/FT3)	× 483.9	9430					
V (KNOTS) OE (HD)	7.3500E+0	1 2.40c08	0F+01 2	4500E	+01 2.47	09E+01 2. 52F+04 7.	.50 10E+01				
0(FT)= 23.	CG96 .1-WT	*.7850	.1-THD=.8	378	(FT)= 52	יית ישאם נכר	. PHO (5LUG/F73) =	1.9905			
Z AE/Ag N(REV/HIN)	6 5 7.6483E-0 1.3600E+0	7.68008	6 20+3 +02 9	0-30000•	# 6 ·						
x TNPUT	INOUT	۲E	C/D INPUT		T/C Input	LEPSS	TAMB	TETS (DEG)		RAKA/D NONLINEAR	P/D PIXTANBI
7.76600 7.76600 7.766000 7.76600000 7.7660000000 7.7660000000000000000000000000000000000	6.642000 6.642000 6.642000 7.96420 7.96420		1.9100E-01 2.1950E-01 2.5446E-01 2.5140E-01 2.576E-01 2.5576E-01 2.5540E-01		2.1500E-01 1.7580E-01 1.599E-01 1.0190E-01 7.96.0E-03 6.09.0E-02 4.660E-02	1.25655 9.4938 9.4938 9.4908 1.2658 5.6158 1.265	6. 42.49 6. 42.	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		0. 0. 11. 12. 12. 13. 14. 15. 16. 16. 16. 16. 16. 16. 16. 16. 16. 16	
5000E-0	e0 ec		5283E-01		200E-02	00	• • •			1400E+00 1217E+60	• • •
4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		မြော်လုပ်လော်များခဲ့သောကျသည်		6 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5		######################################	<u> </u>	2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2	200 200 200 200 200 200 200 200 200 200	1	######################################
	3015-01	"	:9.6449E-01	ETA=6.	1=6.5c22E-01		15=4.93965-21	CTS/CPS#8	2×8.85699		
2.500 C C C C C C C C C C C C C C C C C C	CL 4.1 4.2 4.3 4.3 4.3 4.3 4.3 4.3 4.3 4.3 4.3 4.3	ALI (DEG) 0.466-01 5.9376-01 3.6136-51 2.6699-01 2.64336-01 2.4336-01 2.4336-01	00000000000000000000000000000000000000	00000000000000000000000000000000000000	CO/CL CO/CL C.501E-02 C.651E-02 3.892E-02 4.939E-02 5.165E-02 5.165E-02 6.065E-02	2000 2000 2000 2000 2000 2000 2000 200	1.95.64.03 7.95.64.03 7.95.64.03 7.95.64.03 1.91.66.03 1.91.0	TETS (DE 6) -4. 0116.00 0. 0.0316.01 1.0316.01 3.776.01 5.4596.01 5.4596.01	10111111111111111111111111111111111111	11111111111111111111111111111111111111	171 101 101 102 103 103 103 103 103 103 103 103

CALCULATED

(K.)

DOCUMENTATION CASE A

1.23 2.03

6.15978 6.15978 6.15978 6.15978 6.19978 6.1

*2.4500E+61 *4.13°1E+01 V (KNOTS) V (FT/SEC) 1-WTT=7.A5C35-C1 AE/A0=7.64315-01 1-TH0=F.3703E-01 PS(4P) =3.COC85+04 N(REV/4[N)=1.C600E+02 ET AU=7,4133E-01 Z= 6

TH(LOF)=3.5350E+05 TH(LBF)=3.5350E+05

OEST GN CALCULATED

7.853E-02 6.779E-02 6.779E-02 4.579E-02 3.419E-02 2.400E-02 1.5596-02

AAXSTAGSS (LGF/11/10) 3. LGSIII + 00 U 3. LGSIII + 00 U 5. U6CE + 00 U 7. 00 U 4.02-5E+06 3.02-5E+06 3.02-5E+06 2.27-3E+06 1.05-9E+06 1.05-9E+06 5.36-7E+05 5.36-7E+05 170 (1146) 6-807E+04 1-2099+05 1-5179+05 1-2179+05 33.229.32 2.52.46.32 2.53.46.37 1.64.36.37 3.44.36.37 3.44.36.37 3.44.36.37 3.44.36.37 3.44.36.37 3.44.36.37 3.44.36.37 3.44.37 3.44.36.37 8.892E-02 6.327E-32 3.319E-02 7.541E-03 YPAR (IN) 2.4578+61 3.6788+61 3.7548+61 3.7548+61 3.456461 .366E-C1 .957E-01 IUNTLX Id 1.7622-01 0.25000-01 0.25000-01 0.25000-01 0.25000-01 0.25000-01 0.25000-01 0.25000-01 0.25000-01 0.25000-01 0.25000-01 0.25000-01 0.25000-00 0.25000-01 0.25000-00 0.25000-01 0.25000-00 0.25000-01 0.25000-00 0 3.516E+02 2.615E+02 1.69CE+02 84KG/0

A. ration

...

61543.3524 WEIGHT OF BLADESILBEIT 96749.8881 HEIGHT OF PROP ISLADES + CYLINDRICAL HUS) (LBF) =

CENTER OF GRAVITY OF BLADES REFERENCEO FPON MIDGHORD OF ROOT SECTION (* FWO. + AFT)/3 * - 291973 CENTER OF GRAVITY OF PROP REFERENCED FROM MISSINGPS OF ROOT SECTION (- FWD. + AFT)/DM --207136

.176 HUS DIMENSIONS/D

Ē HUR LENGTH # .1767 HUR LENGTH # .1763 MIOCHORD OF ROOT STCTION TO AFT END OF

.084

.

KELLERS MINIMUM EAR# .7770E+08

JS* .13195+01 (JN) /A SPEED COEFF

ADVANCE COEFF VIL-WITI/INDI JA# .7959E+00

KT# . 20332+00 DESTAN THPUST COEFF

TOPOUE COEFF KO. 3718E-01

PROPULSIVE EFFICIENCY ETANE .7413F+00

TCH .1479E+85 AUPPILL THPUST COEFF

SIGHA(0,7) = .3673E+00 CLEAPANCE AT HUB BETWEEN BLADES/Dx 4.1102F-C? BURRILL CAVITATION COEFF

CLFARANCF AT HUB RETWEEN FILLETS/Dm -4.8437F-03

HASS POLAR HOWENT OF INEPTIA OF BLADES (LRM-INZ)* .263763E+09
TOTAL HASS POLAR MOMENT OF INEPTIA (LBM-INZ)* .261753E+09
PADIUS OF GYPATION OF FLADC/O* .2372
PADIUS OF GYPATION OF HUR/D* 0.0003

15%

ANS COEFFICIENTS (CALCULATER AT THE .25 RADIUS)

ABS MINIMUM THICKNESS IN INCHES (USIMG P/OPPIXTAN3I)-USING ABS PAKE = CONVENTIONAL PAKE, T/OF -1906E-01 USING ARS PAKE = CONVENTIONAL + SKEK-INDICEO RAKE, T/OF --1906E-01 AS= .4559E+03 A= .102404E+02 9= .752302E+03 C= .109347E+05 AREA OF EXPANDED CYLINDRICAL SECTION IN SO.INCHES CN# .855&E-01 CS= .69425+00 VALUES USED IN DETERHINING THICKNESS-SECTION MODULUS COEFFICIENT SECTION APEA COEFFICIENT

FOO CN=.1 AOS MINIMUM THICKNESS IN INCHES (USING P/O=PIYTAN91)-USING ABS RAKE = CONVENTIONAL PAKE. T/D= -.1395E-01 USING ABS RAKE = CONVENTIONAL + SKEW-INDUCED RAKE. T/D= -.1395E-01

PADIAL PROPELLER DATA FOR IMPUT INTO DESIGN PROGRANS(8 PADIAL STRIPS ASSUMED)

A STATE

18.

THICKNESS (INCHES)	11.000 10.61000 9.17000 9.17000 5.17000 1.01900 1.01900 1.01900 1.01900	
UA/2VS	**************************************	
1-HX	. 601174 . 501104 . 501104 . 501104 . 501104 . 501104 . 501104	
KST (INCHES)	27.17974 36.23748 36.62748 57.57918 77.57918 157.77918 153.77918 151.4577 152.75750	
XSL (INCHES)	-30.99426 -35.4137 -37.43137 -26.82439 -6.82473 19.4500 55.25736 97.2653 110.58734	
v	. 16926 - 17706 - N SETA I	1.10595 . 95122 . 7694 . 55176 . 55176 . 7706 . 37467 . 37467
æ		

1 NEUT IN PUT IN	7 - 5 - 5 - 5 - 5 - 5 - 5 - 5 - 5 - 5 -	x 100 x 10 10 10 10 10 10 10 10 10 10 10 10 10	11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1000E - 01 1000E		11.11.47.00 (%) 14.11.11.11.11.11.11.11.11.11.11.11.11.1	. รู้	113) # 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	6 11	TETS (DEG NOWL INEA 5.2005 - 0 1.031 F + 0 1.65 F + 0 1.65 F + 0	Z 000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	RAKG/O 10NLINEA 10NLI	DA 2000 4444 4444 4444 4444 4444 4444 4444	P/O IXTANBI	CALCOC L. CALCOC 1. COULATE 1. CO	CO LCULATED 2337E-02 810E-02 6464E-03 2266E-03
			00100000000000000000000000000000000000	0000 000000000000000000000000000000000		23 24 24 24 24 24 24 24 24 24 24 24 24 24				က စစ်ကို အဆိုများမှ	12 200 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	5555 NAVA 45 N	######################################		12.00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9
000 000 000 000 000 000 000 000 000 00	535-01 535-01 545-01 557-01 557-01 557-01 557-01 557-01 557-01 557-01	CPS	2000 100 200 200 200 200 200 200 200 200	25.24.25.45.45.45.45.45.45.45.45.45.45.45.45.45	TA ONWRRAPTE	တုံ့ ကို	11	# # # # # # # # # # # # # # # # # # #	16505-01 (138/FT) 16505-01 16503 165	01 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Y 75 77	00 00 00 00 00 00 00 00 00 00 00 00 00	84 400000000000000000000000000000000000	0000 0000 0000 0000 0000 0000 0000 0000 0000	6 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 -	, 20000000 22222222000	

DOCUMENTATION CASE A

4.502E+03 6.707E+03 3.496E+04 4.107E+04 4.773E+03 1.911E+84 1.860E+06 1.364E+06 2.927E+05 6.124E+05 6.124E+05 6.124E+05 6.124E+05 (IN-LPF)
3.880106
2.0075-06
2.1756-06
1.616-05
9.1669-05
2.0746-05 111-L9F1
7.339C+05
7.339C+05
7.339C+05
7.359C+05
7.359C+05
7.359C+05
7.359C+05
7.359C+05 E 6 8 9 7 7 6 8 3.299F+03 3.1600+03 2.5860+03 1.6467+03 3.4867+03 3.4467+03 1.0890+02 9.9175-02 6.745E-02 6.716E-02 2.505E-02 TA AR 3.4576+61 3.6766+61 3.7546+61 3.6647+01 3.3476+61 PI KTANRI 4.3281+02 4.93261+02 4.93261+02 4.43261+02 3.61326102 2.6326102 1.63261102 9.000=11 -1.090=+0 9.000=-11 -1.1529+0 9.5010-11 -1.1409+10 RAKG/0

- interior

CENTER OF GRAVITY OF BLADES REFERENCED FAON HINCHOPD OF ROOT SECTION (- FWD. + AFT1/)= -.295963 CENTED OF GRAVITY OF PPOP REFERENCEN FROM MICHURD OR POOT SECTION (- FWD. + AFT)/Dm -.289960 .0880 HUR DIAM = .176" HUB LEWGTH = .1"49 HIDTHCOP OF ROOT SECTION TO AFT END OF HUB = SIGHA(C.7)= .29515+0C CLEAPANCE AT HUB BETWEEN BLADES/D= 3.4104E-C? PPOPULSIVE EFFICIENCY ETAN= .7149F+3C JS= .8916E+00 TC= .1116F+03 KT= .15505+00 KELLEPS HINIMUM EAP= .76155+00 VII-WTT1/CHD1 KO- .2561E-0: RURRILL CAVITATION COEFF V/(RO) BURRILL THPUST COEFF DESIGN THRUST COEFF MUR DIRENSIONS/D ADVANCE COEFF TOPOUE COEFF SPEED COEFF

CLFAPANCE AT HUB 95TWEFN FILLETS/D= -1.35415-72

86749, 8881

MEIGHT OF POOP (BLADES + CYLINDRICAL MUB) (LBF)=

91543.3524

WEIGHT OF BLADES(LPF)=

HASS POLAR HOMENT OF INEPTIA OF DLADES (LRM-IN?) = .263763E+09
TOTAL HASS POLAR WOMENT OF INEPTIA (LRM-IN2) = .261763E+09
RADIUS OF GYR. TION OF BLADE/D = .2372
RADIUS OF GYPATION OF HU9/D = 9.000C;
TOTAL RADIUS OF GYPATION/D = .1998

رجر

ABS COEFFICIENTS (CALCULATED AT THE .25 &ADIUS)

ABS MINIMUM THICKNESS IN INCHES (USING D/D=PIXTANGI)USING ABS RAKE = CONVENTIONAL BAKE, 1/D= -.4049E-01
USING ABS RAKE = CONVENTIONAL + SKEW-INDUCEO RAKE, 1/D= -.4649E-01 A= .107106F+02 B= .124114E+03 C= .985485E+04 CN* .85585-01 CS= .6942E+00 VALUES USED IN DETERMINING THICKNESS-SECTION HODULUS COEFFICIENT SECTION AREA COEFFICIENT

AS# .4559E+03

AREA OF EXPANDED CYLINDRICAL SECTION IN SO.INTHES

FOR CH#.1 ARS MINIMUM THICKNESS IN INCHES (USING P/O*PIYTANJI)-USING ARS RAKE # CONVENTIONAL PAKE, T/O# +.3228E-C1 USING ARS RAKE # CONVENTIONAL + SKFM-INDUCEO RAKE, T/O# -.3228E-01

PADIAL PPOPELLER DATA FOR IMPUT INTO DESIGN PPOGRAMS (8 PATIAL STRIPS ASSUMED)

No.

15.

		•						
•	TAN 9FTA I	ی	XST (INCHES)	XST(INCHES)	1-HY	UA/2VS	THICKNESS (INCHES)	
			1			439454	11 - 80257	
100	72650	10.245-01	-36.85698	11.225.12	001/4.	A- 106 34 0		
3			LTE. IREAK	24.675	. 52733	.15015+00	10.61100	
בי מינים	21418.	10-1901*	227				0.57751	
	31637	+ 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	53. C. C. C. C. C. C. C. C. C. C. C. C. C.	41.44.30	15456.	* 10 3/6 4 .	******	
2	CT 3C0 •	**			1000	ひじゅ ふとし ダト・	80054 F	
6	55.887	10-18481-01	-27.04 M17	シャストル・シシ	71091.	AC		
			2.7 8151.5	71.61145	. 7.85.55	16:00:4:0	5.51410	
930	.47513	13-19951.	0 0 0 1 0 0 0 0				77756	
		16.65.	303M2 4 F	95.44.751	. 51714	00.4.20.01.	0.0000	
.,	19014.	1-12121.			24.5	0.45755 ·	3.38921	
0	16290	14195-31	16233.75	1720/13	0 1 1 5			
9			- C 30	151 FRC04	, A6194	. 1522F+50	24.712.2	
200	. 32602	• 1151E-01	42° C12' C				1 11550	
	14000	. AGK 15 + 0.2	116.49761	159.34635	. 87529	• 15 36E • 55	36640 • 1	
200	TOC 70 .			*****				
000			155.67 156	36, , , , , , , 1				

		CALCULATED	1. 2337E-102 1. 03310E-102 1. 0727E-102 9. 546E-103 9. 5456E-103 8. 4356E-103 8. 1356E-103 8. 1356E-103 8. 1066E-103	<u> २८०च स्त्र्त्य</u>	~~: ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
		P/C PIXTANBI		CAVV 7. 1774E 1. 03.79E 9. 26.87E 9. 26.87E 7. 17.86 1. 65.74E 1. 65.74E 1. 65.74E 1. 65.74E	1 9 9 7 1 9 8 7 1 9 9 7 1 9 9 7 1 9 9 7 1 9 9 9 7 1 1 9 9 9 7 1 1 1 1
		RAKG/D NONLINEAR	11.15.00 11.15.	7. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5.	2.02.02.02.02.02.02.02.02.02.02.02.02.02
		2.		14.00 17 18 18 18 18 18 18 18 18 18 18 18 18 18	12.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.
	1.9905	TETS (DEG ED NONLINEAG	100-1000 1000 100-1000 10	0 00 000000000000000000000000000000000	-3.200E+30 -3.200E+30 0.31E+03 2.1E5E+03 3.257E+3 5.4559 5.45590 6.3309+11
.5007E+^1	15/5731#	TANS GALGULATE	6.0226-01 6.0226-01 5.05586-01 6.0587-01 6.0587-01 3.04467-01 3.04467-01 3.04467-01 3.04467-01		0.000000000000000000000000000000000000
-01 -01 -01 -01 -01 -01 -01 -01 -01 -01	30 ,RMO(SLUS/FT3	TANBI	1.26459 5.69366 5.69366 5.63466 5.6766 5.6766 5.6766 5.6766 5.7766 5.		2
01 2.4700 04 2.3052	(FT)= f2.č0 -01	T/C INPUT		UT/2 1.7346 02 1.6023 02 1.3240 02 1.0747 02 1.0747 02 1.0747 02 1.0747 02 5.1259 02 5.1259 02 5.1259 02 5.1259 02 5.1259 02 5.1259	3.00 3.00 3.00 3.00 3.00 4.632 4.632 6.3419
2.224	THD=.4370 -01 9.000 +02	C/D DJUSTED	52475E-01 137994E-01 13775E-01 13775E-01 13775E-01 13775E-01 13775E-01 13775E-01 44575E-01 44575E-01 45575E-01	001 1.5537 001 1.7712 001 1.7712 001 1.7712 001 1.7712 001 1.7712 001 1.7712 001 1.7712 001 1.7712	6.00 1.00996-02 1.00996-02 1.00996-02 1.00996-02 1.00996-02 1.00996-02 1.00996-03
C1 2.46CCE+01	755c .1 1 7.6900 2 1.2003	4. 1.4	**************************************	7.9753 6.93157 6.93157 1 5.93157 1 5.3402 1 3.74613 1 3.74613 1 3.751	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
2.350CE+ 1.9329E+	3663 + 1-8 6 5 7-6483E 1-3603E	INI	6 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	11.03596 11.03596 9.032867 7.40318 5.32676 6.53676 7.415656 3.56476 3.56476 3.56476 3.56476 3.56476 3.56476	13.55333.5333.553333.553333.553333.553333.553333.553333.5533333.5533333.55333333
V (KNOTS) PE (45)	0(FT) = 23. Z AE/A0 N(PEV/PIN)	X Iupul	7.76000 7.76000 7.76000 7.70000 7.70000 7.70000 7.70000 7.70000 7.70000 7.70000 7.70000 7.70000 7.70000 7.70000 7.70000 7.700000 7.70000	40000000000000000000000000000000000000	70.000 H H H H H H H H H H H H H H H H H

.55

DOCUMENTATION CASE A

1.2175-01 8.7455-02 6.2625-02 3.2765-02 x T ANP 10 E - 0 I T REL 5.23 - 5.25 - 6. PAKG/D

5

CENTER OF GRAVITY OF BLADES PEFFPENSTO FROM MITCHORY OF POOT SECTION 1- FWD. . AFTI/OF -.292766 CENTER OF GRAVITY OF PROP REFERENCES "ROW MINTHOPY OF ROOT STCTION (- FWD, + AFT1/OM --225937 HUS LENGTH . . 1769 HUS LENGTH . . 1768 HIJCHORD OF FOOT SECTION TO AFT END OF MIS .. 115424.9998 WEIGHT OF PROP (ALADES + CYLINORICAL MUS)(LBF)* 85214.4643 WEIGHT OF BLADESILBFIF HUN DIPENSTONS/O

SIGHA19.77# .3678*+CB CLEAQANCÉ AT HUR AFTWEFN FILLETS/A# -2.2551F-72 CLEAZANCE AT HUS RETHEEN SLARES/OF 1.1940E-07 JA= .7943E+B0 PROPULSIVE EFFICIENCY ETANN .7253E+88 TC# .1234E+00 16+32161: #Sf KT= .2000E+08 ATVANCE COFFF VIL-WITT/INDI KELLERS HINIMUM EAR# . 7666E+88 40- 3716E-01 BUSPILL CAVITATION COEFF BURPILL THPUST COEFF 1001/1 DESIGN THPUST COEFF TORQUE COEFF SPETO COEFF

MASS POLAP MOMENT OF INERTIA OF PLANES (184-147) . 365237E+89 TOTAL MASS POLAR MOHENT OF INERTIA (LPM-ENZ)# .155230E+00 0.000 PADIUS OF GYPATION OF PLANEINS PANTUS OF GVPATION OF HUB/DE TOTAL PANIUS OF GYANTION/OR

ر جي

APS COEFFICIENTS ICALCULATED AT THE .25 4191US)

ABS HINIMUM THICKNESS IN INCHES (USIMG P/OPPIXTANNI).—
USING ABS GAKE = CONVENTIONAL DAKE, 1/OB -.2184E-01
USING ABS PAKE = CONVENTIONAL + SKEW-INDUCEO RAKE, 1/OB -.2184E-01

4 .102.5%*62 9 .297597E+63 C* .127529E+65 VALUES USED IN DETERMINING THICKNESS-

CS# .6942E+80

CN: .4548E-01 SECTION HOCULUS COEFFICIENT

SECTION AREA COEFFICIENT

AS= .6313E+83 AREA OF EXPANDED CYLINDPICAL SECTION IN SO.INCHTS FOR CM#.1 ARS MINIMUM THICKNESS IN INCHES (USING P/D*PITTINS!) -USING ARS RAKE * CONVENTIONAL * SKEW-INDUCED RAKE, I/O* -.1651E-01

PADIAL PROPELLER DATA FOR INPUT INTO DESIGN PROGRANSER RATIAL STRIPS ASSUMFOR

- يخ

THICKNESS (INCHES)	\$\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
UA/EVS	
1-54	######################################
IST (THOMIS)	100, 100, 100, 100, 100, 100, 100, 100,
XSL (INCHES)	-36.13333 -51.03333 -51.03333 -131.635 -13.635
• •	.16715-01 .16725-01 .16925-01 .17695-01 .17695-01 .17695-01
TAN 9FTA I	1.09457 .04407 .76461 .4663 .47363 .47363 .35737
æ×	

V (KNOTS) P£ (HP)	2,35095+	01 2.40 34 2.67	555+01	20050-5	+01 2-47	525+84 2	. 5101E+11						
0(FT)= 21.	TW-1. 6000	1×.745¢	.1-THD#.	370	.H(FT)= 52.	1044. DC00.	H0 (SLUS/FT3) #	1.990	506				
Z AE/AO Nipev/pin)	6 5 7.6483E 1.3603F	-31 7.686	1638-61 1688-82	9-10co-i	-01								
INPUT	IND	- KX PUT	C/D ADJUSTE	۵	TVC	T##8I LEº8S	TANB Calculate	ATEO	TETS (DEG) NOM INEAR		PAKG/O None inéar	PIXTAHSI	CALCULATE
4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	\$\$\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\		25.72.73.73.73.73.73.73.73.73.73.73.73.73.73.		1.78A0E-01 1.78A0E-01 1.58A0E-01 1.02A0EE-01 7.95C0E-01 7.95C0E-01 4.66C0E-02 4.46C0E-02 4.46C0E-02	6.36666 6.36666 7.06966 7.06966 7.06966 1.069666 1.06966 1.06966 1.06966 1.06966 1.06966 1.06966 1.06966 1.069	7.03525-01 5.55935-01 1.5.75935-01 1.7.7555-01 2.7555-01 3.7575-01 3.7575-01 3.7575-01 3.7575-01 3.7575-01	• •	11.00 10.00	10000000000000000000000000000000000000			
	2000 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2							0 0 11 4 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 -	00000000000000000000000000000000000000	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	000444444 000000000 0001111111
CPIT=4.C	CG 30E-01 8788E-31	CPSTES	.0115E-01 .9644E-01	ы	TATE 7.9671E-0 ETA=6.5032E-0	213	* c . i i 7 9 5 - 0 5 * c . o 5 9 1 5 - 0		CTSI/CPSI* I. 0211E+3 CTS/CPS*8. 3143F+0	1. C211E+	9 4		
	0. 25 44 44 44 44 44 44 44 44 44 44 44 44 44	24 C C C C C C C C C C C C C C C C C C C			CO/CL 0. 3.742E-32 2. 3.742E-32 2. 4.751E-32 2. 5.951E-32 3. 7.911E-02 3.	# D	nnnennenn .	n ee euenern i	None 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	NWW4286444	*********		
2= 6	*	/4IM) = 1.	2900E+02	-		INOUL	AE/AC=0.13.05-2		_	0.6.0000.00		CALCULATED TH	THILBF 1 4 3 - 37 45 E + 4

TION CASE A

```
6.5275-02
4.51CE-32
7.462E-02
73 A Q
                                       6.4185.01
6.3125.01
3.935.01
                                                3.5455.02
                                                                           · AKG/0
                                        6.0005-01
7.000E-01
```

養らたこ

ł

CENTER OF GRAVITY OF BLADES PEFEPENCED FROM MINCHOFN OF ROOT SECTION (* FW). * AFTI/2 * .. 296791 CENTER OF GRAVITY OF PROP REFERENCED FROM MIDCHORD OF ROOT SECTION (- FWD. + AF71/D= -. 229063 .1131 HIR DIAN W .176" HIR L'HSTH & .1743 HIDGHORD OF #00T FECTION TO AFT END OF WUB * ADVANCE COEFF VIL-HTT1/(HD) JAM . 5927E+80 PROPULSIVE EFFICIENCY ETAN# . 6959E+ 88 10= .97736-31 JS# . 8A24E+88 KELLEPS HINIMUM EAPS .7481E+68 10-31955. *CX MURPILL THRUST COEFF *****(%)/***** DESIGN THRUST COEFF MUR SIMENSTONS/D TOPOUE COEFF SPEEJ COEFF

CLFAZANCĖ AT HIJO METWFFW FILLETS/DW -2.4234E-32 CLEARANCE AT HUS SETHFEN ALANES/ON 7.42635-52

BURRILL CAVITATION COFFF

110 626. 9990

MEIGHT OF PROP (9110ES & CYLINDPICAL MUR) (185) =

45214.4643

WEIGHT OF PLADESILAFIE

MASS POLAP MOMENT OF INERTIA OF MLANES (LMM-142). . 185219ff.09
TOTAL MASS POLAR MOMENT OF INFOTTA (LBM-1M2). . 187236f.60
PADIUS OF GYPATION OF RLANE/NW . 23772
RADIUS OF GYPATION OF HUB/OF 6.0000

ŧ

ARS COEFFICIENTS (CALGULATED AT THE .25 4401US)

. 2384

TOTAL PADIUS OF GYRATION/OF

A3S WINIMUM TWICKNESS IN INCHES TUSING PADRIPTIANGID.

USING ABS RAKE = CONVENTIONAL - STED-INCUCED RAKE, TADR - LASASE-01

USING ABS PAKE = CONVENTIONAL - STED-INCUCED RAKE, TADR - LASASE-01

VALUES USEC IN DETERMINING TWICKNESS- A = 197414E+02

SECTION APEA COEFFICIENT CS = 6942E+00

SECTION MODULUS COEFFICIENT CM - 6958E-01

AREA OF EXPANDED CYLINDRICAL SECTION IN SG.117445 AS - 6313E+03

FOP CH#.1 ASS MINIMUM THICKNESS IN INCHES (USING P/O*PITIONAL QAKE, T/N* -.3698E-81 USING ABS RAKE * CONVENTIONAL * SKEW-INDUCEO QAKE, T/N* -.3498E-81

RADIAL PROPELLER DATA FOR INPUT INTO OFSIGN FROGRAMSIG MATIAL STRIPS ASSUMED)

٠,٠٠٠

THICKNESS (INCHES)	12. 467 LS 12. 460 U 13. 496 U 19. 59 C U 19. 50 C U 19
UA/2VS	
1 - u K	W ************************************
(USHUNI) ISX	32.67716 36.67729 60.97650 56.98147 74.4248 131.94947 155.51557 155.51657 150.5665
XSL (IMCHES)	-45.98884 -60.79336 -63.89938 -11.99938 -11.9728 -12.8939 -12.88059
•	. 13585-01 . 13585-01 . 15337-01 . 15347-01 . 15337-01 . 15025-01 . 1525-01
TAN 9ETA I	
œ	

The state of the s

PSCHP)= 3.06	CASE A	DENSITY OF PA	ROP(L94/FT3)		483.9430								
V (KNOTS) PE (HP)	2.35 605+61	2.40C0E+ 2.0756±+	01 2.45C0E+01	10 10	** 47035 + 01 ** 33525 + 04	2.59935.53	## ## ## ## ## ## ## ## ## ## ## ## ##						
0(FT)= 23.	3733 .1-WIT	T-1, 0287.=	HD=.8370 •	.H(FT)#	52.0000 .0	. PHO (SLUG/673	-1822/	1.9975					
Z AE/AO H(REV/PIN)	6 5 7.6483E-01 1.56005+02	7. E800E- 1. 2003E+	01 9.0000 <u>5</u> -01	10-30									
X TU ^O NI	1-WX INPUT	_ Q	C/O JUSTE?	T/C IMPUT	TANBI	181 29	TAMB CALCULATE	TETSIDEGI D 404 INEA		RAKG/O HONLINEAR	- IXI	PIXTANBI	CAL CUL AT
623E-0 000E-0		2.292 31 2.635	2E-01 2.	.1500E-C .7480E-0	1 + 2555E+00 1 9 + 6938E-01		6.4725-01		000	• • •			1.2337E-0 1.0010E-0
0-36006 0-0-26-0	7.5	3.17		31966-6			5.374901			-1.67936-01			4.54046-0
0-36000		31 3.451	, r. U	96505-0			1. 26515-01			76396-61	•		8.62285-6
0-3000	e e	3.376		6 - COE - 0			1, 3544 - 01			25.005.00			1.17285-6
5301E-C	9 8 7 7	11 1-85		32005-0			2.7692 F-01 2.4428 F-01	5.7754F+01 6.0003E+01		-1.14767-00			4. 6355C-4
.75005-C	1.3798E+0 1.0343F+0	7AN 8 6.0053E+		20	.7519E-01				61735-			CAVV 6-17-2E-00 2-127-E-00	
0-30000	7.4953C-5 6.3751E-6	5.36A7E-		200	W. W. W. C. C. C. C. C. C. C. C. C. C. C. C. C.	1.64775-31			25636-0			28446-01	
0-36000.	5.4495F-0	4.2570E-		200	.42615-02				3272.		37	. 12276-01	
8.000000000000000000000000000000000000	4.21626-0 3.74616-0 3.61296-0 3.44626-0	3.09euc- 1 3.09e4c- 1 2.0626c- 2.5374c-	01 1.99*15- 01 1.5870E- 01 1.:594E- 01 C.	222	7.38955-U2 6.4873E-U2 6.13355-U2 5.41675-C2	1.40576-51 1.60576-51 1.60976-51		4.62416-01 4 5.4.63f-01 7	3.996471 9.11966161 7.2679151	1.2625.02 1.2625.03 1.2625.03	~~~	1.05676.21 1.05676.21 1.05646.21	
CPT124. C.	1415-01	CPSI=5.14423 CPS*5.6754E	E-31 ET	TAT#7.8C32E- ETA#6.9C72E-	32E-91 72E+01	CTST#5.10 CTS#4.69	#5.10-3#-01 #4.697E-01	C141/C84	**************************************	1E-01			
13.000000000000000000000000000000000000	CC 4,00996-01 7,8177-01 2,9967-01 2,016-01 1,7567-01 1,506-01 1,506-01	ALI (0FG) 5.297E-G1 4.614F-G1 3.997E-G1 3.997E-G1 2.707E-G1 2.707E-G1 2.169F-G1 2.169F-G1	2.5776E-02 2.5776E-02 2.5776E-02 1.6776-02 1.19676-02 1.19676-02 1.19676-02 0.576E-03	CO/CL 2.6446-02 2.6746-03 3.1476-03 3.1476-03 4.3946-13 4.3946-03 5.4446-03 5.4446-03				TETS OF GO -1.2.200 C 00 1.0.11 C 00 1.0.12 C 01 2.126 C 01 5.444 C 01 5.444 C 01 5.444 C 01 6.444 C 01	NAME OF THE PROPERTY OF THE PR				
ETAD=7.1598E 7= 4	10-	PS(4P) #2.99996 N(REV/4IN)#1.66:3E	E+04 1-1	-TMD=4.7760E	7.	1-WTTe7.P5.A6-1 AE/Ane7.e6.1f-	10-30-51	V (************************************	.2.46437.61		C3 L6 V L L L L L L L L L L L L L L L L L		THE CONTROL START

```
114-141
       6.8395.23
             1.7537.91
          3.2017.31
     1.1676-01
7.52.65-01
7.52.65-01
           .0275.00
                                   .5466-61
                                             .0435.63
                                     3-7619.
           6.4915.62
5.2035.62
3.2955.62
2.6335.62
                                     -1.0735-81
                           DYXVA
```

CENTER OF GRAVITY OF BLADES PEFEFERGED FROM MINGHOOR OF ROOT SECTION 1- FUE. + AFTI/O- -. 293897 CENTER OF CRAVITY OF PROP PEFFECTA FROM MIDPHORY OF ROOT SECTION 1- FED. . AFTI/O: -. FIRMAR HUS DISM . . 17A.
HUS LIMETM . . 17A.
HIGHOOD OF 4001 KATTEN TO AFT END OF HUS . 4-11-11-12-6 MEICHT OF PROP (BLADES + CYLIMOPICAL PUB) (LOF) + 73652.6224 WEIGHT OF "LEDESIL"?!. HUN DIM WS1045/0

SICHAIC. 710 . 35745.30 CLEARANCE AT HUR BITHEEN PLADFS700 1.9443F-27 31. . 79736.88 PROPULSIVE EFFICIENCY FILD. . 73595.36 1C. .16776 -83 JS- .10165.61 47. .73225.32 V (1 - MTT) / (NO) KELLERS HINEMIN EAST . 71316-08 KO- .3717E-61 SUPPLIE CAVITATION COFFF AUTO ILL THOUST COD'S DESIGN THPUST COEFF (3:) ADVANCE COEFF TOROUE CCEFF STEED COEFF

CLFANNOF AT MUR PETMEN FILLETS ON -5.4145E-13

MASS POLAR MOMENT OF INERTIA OF OLANES (LOM-142)# .314516E+C9
TOTAL MESS POLAR MOMENT OF INCRTIA (LEM-IN2)# .314916E+39
RADIUS OF GYDATION OF BLADE/O# .2372
RADIUS OF GYDATION OF HUP/O# C.0010
TOTAL RADIUS OF GYDATION/O# .2064

. 1

٠٠٠)

ABS COEFFICIENTS ICALCULATED AT THE .25 MADIUS!

ASS MINIMUM THICKNESS IN INCHES (USING P/OPPIXTANGI)—
USING ARS BAKE # CONVENTIONAL + SKEW.:IMDUCED PAKE, T/OB -.1897E-01
USING ABS GAKE # CONVENTIONAL + SKEW.:IMDUCED PAKE, T/OB -.1897E-01
VALUES USED IN DETERMINING THICKNESS— A# .102461E+02
BF .1074A1E+03
C# .133422E+06
SECTION MODULUS COEFFICIENT CS# .6942E+00
SECTION MODULUS COEFFICIENT CM# .8956E-01
APPA OF EXPANDED CYLINDRICAL SECTION IN SO.IN-HES AS# .6565E+03

FOR CH#.1 AJS MINIMUM THICKNESS IN INCHES (USING PACE) T/O# **1389E-61 USING AMS RAKE = CONVENTIONAL PAKE, T/O# **1389E-61 USING ABS RAKE = CONVENTIONAL + SKEW-INDUCEO RAKE, T/O# **1389E-61

PADIAL PPOPELLER DATA FOR INPUT INTO DESIGN PROGRAMS (R PADIAL STRIPS ASSUMED)

4.

•	TAN SETA I	v	XSL (THCHES)	NSTITNOMES!	1-4×	UA/2VS	THICKNESS (INCHES)	
750	1.11224	. 12555 - 01	-36. 82 329	37.99150	.47163	22.376.22	20 00 C	
930	. 15 564	.16950-11	-61.78567	34,04912	. 52733	00+14751	67 F F C C C T	
230	.77332	. 20535 - 31	-44.58338	41.6.190	66531	0101011		
605	.65270	.2173E-01	-34.27998	36.34046	75047			
A30	.55649	. 271 35 - 61	-16.70596	86.51421	78656			
193	.47979	. 21795-11	11.7 1056	16161.201	41214			
603	. 42 382	. 20135-01	10505.05	136.74036	# 4 4 Y			
739	64698	16:35-01	01.71134	159.41050	46194		9 C C C C C C C C C C C C C C C C C C C	
436	. 361.82	.12105-21	114.39172	165.01618	A7.29			

	V (41515)	2.35 cgf + 21	2.45595	*	10-1306	2. 67 th 0 0		1						
	23.6	. 1-w77e		: :	. HIF !		_	31.00.70.031.0	1.4135					
	7 AC/AD M(PCV/4[4]	2019.												
	¥	AP-1		70	170	-	10447		ŗ	U .		4C/0	F1#1 = 181	CALFULATE
	1													
	10-10-10-1	- 120051 - 1	-	5	2.1600F		111116		_		;	_		1.73376-6
	7-50037-61	4.94104		5	1.7885		JOYNE -			4636 .03	;	_	_	1.30186-1
	73-11-61	- 23 × × ×		-	1.6190		34036-0			1196 - 10	•		•	1.12271-6
	4.00005-01	6.6625	7. 7.	7	10062.1						-1.074		<u>:</u>	1.54966-1
	19-47-00-6	- 20 m 3 c - 1		-	10.1		3-2-97			31 36 +0 1	-1.60.		•	9.12618-0
				7	1.9535		0-11-19			10.3659	-4.76		•	4.13616-0
		3 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 -		5						1156.00	- · · · · ·		•	1.52236-1
1.000 1.00	10-10000	1611	<u></u>		J		12-151-17			4775 .01				1.47746-6
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,	10-111111	A. f. 25.75 -		5	7.44.66		2-3662		•	•	-1.15			4. 3466.fed
The control of the	1.50000-01	0.70535-	1 1.53	10-39	4.32236		6-16-20		*	•	11.16			1-1446-1
TAND	2.00325.00	9.77638-	 				7941E-C		•	•	-1.12		: -:	9-20000
	>		2								:	•		
				•	•	5			20.2					
		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,				190/1						. 8259.		=
					20-3/51	1.666			ï			. 52217 . 3		90
	20 to 0 to 0 to 0 to 0 to 0 to 0 to 0 to				20-30-				0-111-01			0.)1-11-		00
	000	11-16-99-9			20-301	1.21.7			42021-01			. 24 326 +0		==
		2.4.101-13			97 AC - 0.	0.52 16.			11155-01			. 79097 .		-
### ##################################		15-20060.			20-321	6.3613			4495-51			0 - 21 3 12 .		-
**************************************					1295-67	6.7347			10-11.66			. 66 1 67 + 3,		-
### 1975 - 1 3.2642E - 1 2.7150E - 0 1 1.3464F - 7 5.1817 - 0 2 1.5746 - 1 4.4149F - 0 3 1.7259E - 1 5.7259E	3.67046-01		-	1. 66-35	5.4554			11795-91			. 20357 + 0.			
### 1	La (3.26425-61			1666-62	5.1417			4149F-03			.34595 .0.		-
CPTF199961E-01	3636	3.10175-31			16-36-91	4. 47 31			13-36502			. 4167 . 2		-
CPT#1.9961E-01		16-14645-21				6.5913	_	0		;		. 60 785 03.		=
CPT=1.0509E-31	01113.9	.01	PSIE 6. (232	- C	FTATET	9 7 6 6 5 6 6	ī	146.1716.19						
Tere-of C. Alford FM/C CO/CL F(X) LICLAP/FT) TETSIOFG) (G/40)TE C/40)TE C/40)TE C. Alford C. CO/CL F(X) LICLAP/FT) TETSIOFG) (G/40)TE C. Z472°-01 C. Z	CPT = 3.8	-5 -5 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6	CP5=5.4814	Ü	£14.6.	57e3r-0	,	20-212-51	:	\$/C0 \$0 P.	.53.56-1	> ~		
7666-01 0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-	>	•			ć									
\$50E-01 3.524E-01 5.476F-01 2.397E-02 3.006E-02 7.154E-01 3.270E+03 -1.200F+00 -2.022F-01 2.449E-01 2.426F-01 2.476F	7605-64	, «		` ·	3				•	1930	17 (uh/2			2
				1						~	10-62-2		11 4.7016-0	~
0005-31 1.0546-31 2.9566-31 1.2546-07 3.95496-07 4.776-31 4.7776-31 4.6666-31 1.776-31 3.1776-31					٠.			3.2.35.63	- 1. 2005	7-2- 004	10-122		11 9.4236-1	~
1.178F-01 1.178F-01 2.056F-01 1.254F-02 7.77F-01 3.374F-03 0. 1.178F-01 1.257F-01 2.056F-01 1.254F-02 7.77F-01 3.37F-03 0. 1.000F-01 1.557F-01 2.056F-01 1.237F-02 7.27F-01 1.77F-03 1.057F-01 -0.46F-02 5.95F-03 1.057F-01 1.05							0-2461	1		.27 -3.	16-1221		31 9.0736-0	~
1005-31 15775-31 2.3567-31 1.2345-37 2.3745-31 3.7756.43 1.9315-31 -2.3535-31 2.9567-31 4.4666-41 -2.3535-31 4.4666-41 -2.3535-31 4.4666-41 -2.3535-31 1.3377-32 2.3567-31 1.3377-34 2.1666-40 1.3277-31 2.3576-31 2.357					٠,		0-1414			-	10-14.1		11 3.1352-0	~
13.52.71 1.52.77.71 2.3.72.71 1.33.77.72 5.3.78.7.37 2.30.72.71 1.3.74.734 2.16.67.01 -0.40.47.72 5.996.01 0.00.72.31 1.3.77.77 1.3.77	17-1990	_			~		. 2 3 7 5 - 5			.21 -4.	35.35-31		11 6.6676-0	*
0055-71 1.3165-71 7.035-61 4.95/5-63 6.5418-02 7.3338-61 1.145/44 3.2728-01 9.6414-72 7.6458-01 0058-71 1.178-04 1.2728-01 9.6416-72 7.6458-01 0058-71 1.178-04 1.478-01 1.4738-	10-3600		5	_			. 3000			100 - 100	20-1195		2. 5.6946-0	~
063F-31 1.1716-01 1.4676-61 7.9516-33 7.275F-32 7.476F-01 1.135F-04 4.498E-01 1.6758-01 9.755E-01 9.755E-01 000E-01 1.6758-01 1.6758-01 0.578-01 1.145E-00 000E-01 1.6758-01 0.578-01 1.145E-00 000E-01 1.6758-01 0.578-01 0.578-01 1.145E-00 000E-01 1.6758-01 0.578-01 0.578-01 0.578-01 0.078-01	10-2200		ដូ	443	n		. 3336-6			101 9.1	24-114-		11 4.1036-0	
000E-01 1.0577-01 1.678-01 7.1778-03 7.9448-32 2.5018-01 1.3474-4 5.4584-1 6.578-7 1.1458-00 0005-01 1.0788-01 1.5478-01 6.7718-01 7.3458-07 7.57-81-01 4.4454-03 4.7747-01 8.1741-01 1.1458-00 0007-01 0. 6.7741-01 0.1741-01 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	0036-31		Ş		m		30-39-70			1.1	10-1261		11 2.4805-0	. ~
5606-51 1.60:56-61 1.5476-61 6.2016-63 3.1659-52 7.50-6-61 4.4659-63 4.7747-61 9.10461 1.1869-60 0007-53 0.	16-3000		ė	.177 €	~		. 3-3166.			111 6.5	1787-61		10.000	
0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0	5006-51		٠	3624.	n		.520F-0	Ī			9.70			•
	0001.00				;		•	•			1921 - 20			•

-3.529E+06 1.425F+06 6.339E+05 1.1975-01 4.2315-02 5.6275-02 2.9775-02 5.917E-0 .505E+01 .397F+51 SAKG/D 4.000E-31 5.000E-31 5.001E-31 6.000E-31 7.000E-01

Market .

...

CENTER OF GRAVITY OF ALADES PEFEPENCED FROM MINCHOPO OF BOOT STCTION (* FKD. + AFT)/3= *.295965 CENTER OF GRAVITY OF PROP REFERENCED FROM MID" WORD OF ROOT SECTION (- FWD. + AFT)/OR -. 221399 HUS DIAM # .1769 HUS LENGTH # .1751 HIDCHORD OF ROOT STCTION TO AFT END OF HUS # 99858.5586 WEIGHT OF PROP (SLADES + CYLINDRICAL MUR) (LBF) = JA . 6997E+00 PROPULSIVE EFFICIENCY ETAD" .7147"+06 JS= .8990"+82 TC= .1113E+03 KT= .15445+88 KELLERS WINIMIN ERRN . 7050E+13 VIL-MTT)/IND) KOr .2561E-01 **(CN) /** BURRILL THRUST COEFF DESIGN THRUSY COEFF HUM DIMENSIONS/D TOPQUE COEFF ADVANCE COFFF SPEED COEFF

SIG4A10.73 . 2952F+80

PUPRILL CAVITATION COEFF

CLEARANCE AT HUB BETWEEN BLADES/D» 4,5939E-67 CLEARANCE AT HUB BETWEEN FILLETS/D» -1,2432E-07

WEIGHT OF PLADESILMFIR

ABS COEFFICIENTS ICALCULATER AT THE .25 RADIUS)

ASS MINIMUM THICKME', IN INCHES (USING P/DEPITTANSI).

USING ASS PAKE = CONVENTIONAL PAKE, T/Om -.4040E-01
USING ABS PAKE = CONVENTIONAL + SKEM-INDUCED RAKE, T/Om -.4C40E-01
USING ABS PAKE = CONVENTIONAL + SKEM-INDUCED RAKE, T/Om -.4C40E-01

VALUES USED IN CETEMINING THICKNESS - Am .1194,25E-03

SECTION AGOULUS COEFFICIENT GS= .6042E+00

SECTION MGOULUS COEFFICIENT GN= .8550E-01

AREA OF EXPANDED CYLINDRICAL SECTION IN SO.INFHES ASM .6556E+03

AGO CWE.1 ASS MINIMUM THICKNESS IN INCHES (USING ARS PAKE & CONVENTIONAL PAKE, T/DW -,3228E-81 USING ABS RAKE # CONVENTIONAL + SKEW-INDUCEO RAKE, T/DW -,3228E-81

PADIAL PROPELLER DATA FOR INPUT THTO DESIGN PROGRAMS(8 PADIAL STRIPS ASSUMED)

Service.

, K.

		•					
×	TAN BETA I	v	XSL (THCHES)	(STICINCHES)	I-NY	CAZZAD	THICKNESS (THCHES)
.27750	. 95 541	11645-01	-34.6788	37, 17620	86144		
.27960	. 7261	. 16535 - 01	-41.55359	36.70716	2777	40 40 40 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	379 DV 071
.39200	16463.	18575-91	-44.50714	61.75466	. 666.71	25.056.77	
.48500	. 46125	18795-01	-34.75714	57. 69128			
.58AG0	.47715	18905-01	-1 C. 7253R	84107.04	74456		P84+6
.69100	. 41256	10-11-01	16.28930	103.65.64	41216	16515	24464 Y
.79450	.35444	. 16995-01	47. 14.153	132.94549	93678	15255	
.83709	. 17 741	1357:-01	99.62237	157.38751	A6101	14776	
.94.50	.31113	. 10315-01	112,26229	163.70477	8787	***	
0000			152, 72516	153,77516			7/4/7

V (KNOTS) PE (HP)	2.3500E+ 1.9329E+	+01 2.46030	104	4500E+	01 2 47	10-305	2.57076.01						
0(FT) = 23.	.0000 .1-4TT=	. 7450 .	1-TMD=	.8370 .HEFT	1= 52.	3696	. 9HO (SLUG/F+3)		. 9965				
Z AE/Aŭ N(REV/HI1)	6 5 7.64835-01 1.0660E+02	.61 7.68(5	101	9.000E-0	<u> </u>								
X TUGNI	INI	1-WK NOUT	C/O ADJUSTED		T/C ENPUT	TANBI	υ	TANS ELCULATED	TETS (DEG) HOM INEAR	_	RAKG/D IONL I NEAR	PIXTANBI	CALCUL
00000000000000000000000000000000000000	11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	พัททักที สักที พัพธ์ สุดสุดสุดสุดสุดสุดสุดสุดสุดสุดสุดสุดสุดส	69715-01 159415-01 159415-01 77625-01 946115-01 66115-01 1785-01		2.187066101 1.788066101 1.589066101 1.081906101 7.081906101 7.08000101 7.08000101 7.08000101 7.08000101 7.08000101	46 6 6 8 8 4 8 8 8 8 8 8 8 8 8 8 8 8 8 8		10000000000000000000000000000000000000	0		-4-4-4-4-5-5-5-5		
	**************************************			00000000000000000000000000000000000000				6545464464 N 6444 C		######################################	40000000000000000000000000000000000000		3
CP11=4.01	1285-91 G16E-01	CPS1=5.13 CPS=5.77	3	ETATE ETAE	TAI=7.81995 ETA=6.75695	131	SIEK.1392E FSEL.9572F	77	CTSI/CPSI#9. CTS/CPS#9.	10-36146-01 119-6022E-01	110		
2		ALI (056) 6.3176-01 3.03176-01 3.0318-61 3.0316-01 2.5016-01 2.5716-01 1.019-01 1.7226-01 1.7226-01	0	F	7777777		## ### ###############################	E mmmy gyrn	1.00.11 1.00.12 1.00.1		NWNNNAE AAAA		Dadawww.w.w
. z.Z	2	/4[H)=1.	20+3039		:	Ξ	10.00.01		_	# \. # \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		DESIGN THILB	TH(LOF) = 3, 457

DOCUMENTATION CASE A

5.191F+C1 5.391F+C1 5.1745+C1 4.726E+01 9-82-66-02 7-2106-62 5-25-62 3-3696-62 PAKG/0

χ,

CENTER OF GRAVITY OF BLADES REFERENCED FROM MIMCHORD OF ROOT SECTION (- FWD. + AFT) / Dm - 293967 CENTER OF GRAVITY OF PPOP REFERENCED FROW MICHORY OF GOOT SECTION (- FNO. + AFT1/Om -.235116 HUS LENGTH # .1749 HUS LENGTH # .1748 MIDCHORD OF POOT SECTION TO AFT FND OF HUS # 127468.6926 MEIGHT OF FROM (BLADES + CYLINGRICAL HUM) (LBF) = 102252-1554 WEIGHT OF BLADFS(LPF)= HUB DIMENSIONS/D

SPEED COEFF V/(NO) JS= .1019E+01
ADVANCE COFFF V(1-NTT)/(ND) JA= .7927E+00
DESIGN THRUST COEFF KT= .1989E+00
TORDUE COEFF KO= .3716E-01

KELLERS MINIMUM EARM . 7039E+09

RUPRILL CAVITATION COEFF SIGHA(3.7) . 36805+90

PROPULSIVE EFFICIENCY ETADS . 7200E+00

CLEARANCE AT HUR BETWEEN PLADES/OR 3.8466E-0? CLEARANCE AT HUB OFTWEEN FILLFTS/OR -2.5440F-1?

HASS POLAR HOMENT OF INEPTIA OF BLANES (LPM-IN") 4534277E+C9
TOTAL HASS PCLAR POMENT OF INEPTIA (LMP-IN2) 4414277E+39
PADIUS OF GYPATION OF FLANCING 6,7000;
TOTAL PADIUS OF GYPATION OF HUB/OR 6,7000;

1

ABS COEFFICIENTS (CALCULATED AT THE .25 4201US)

ABS MINIMUM THICKNESS IN INCHES (USING #/O#PITTAN9]).

USING ARE OAKE = CONVENTIONAL OAKE, 1/D# -.2179E-01

USING ARE RECONVENTIONAL + SKEW-IMDUCIO PAKE, 1/0# -.2175E-01 4# .1625255+02 8# .1571175+03 C# .1524956+05 CS= .5942E+0C VALUES USED IN CETERMINING THICKNESS-SECTION AREA COFFFICIENT

SECTION MODULUS COEFFICIENT CM* .8558E-01 AREA OF EXPANDED CYLINDRICAL SECTION IN SO.INTHES AS* .9591E+03 FOR CHE.1 ABS MINIMUM THICKNESS IN INCHES (USING P/D#PIVT1N11). USING ABS RAKE = CONVENTIONAL PAYE, T/OH -.1646E-51 USING ABS RAKE = CONVENTIONAL + SKEM-INDUCEO RAKE, T/OH -.1644E-81

)

PADIAL PPOPELLER DATA FOR INPUT INTO DESIGN RODGRAMS (F MAJIAL STRIPS ASSUMED)

N. T.

الار

THICKNESS (INCHES)	16.6766	17 - 23 - 24 - 24 - 45 - 45 - 45 - 45 - 45 - 45			200000		99/09.0	20 (0 / 1)		
242/40	411466	11871	14045	16 16 6						
1-84	. 47163	. 52733	645.31		7865	41210	7 7 7	10.10	87078	
(Sinchi) LSX	39.24.24	41.31.12	69, 31,735	65.51171	STOLE SE	113.2777	142.2444	165.11691	176.24077	157.74754
XSL (INCHES)	-42.98533	-49.57111	-52.30250	-62.44033	-23, 15773	3.40571	1, 1, F 4, Se 2	85.61917	100.73566	152.74154
u	. 12035-91	16925-01	.26445-01	. 21655-01	. 21975 - 01	.21625-61	19995-91	15485-01	. 12915-01	
TAN BETA I	1.10464	. 95 209	.76963	.64424	.55116	.47652	. 12032	. 37415	. 15935	
×	.22756	-27923	.34259	.4.588	00560.	.69123	.79400	.89733	Dient.	1.67636

				CAL CULATED	NANN M M M M M M M M M M M M M M M M M M		([87]=8.0673E-89 ([87]=8.0673E-69
				JONATXI9		$\begin{array}{cccccccccccccccccccccccccccccccccccc$	25 27 27
				PAKG/O HONLINEAR P		7. 91.715 E.0. 92.72 E.0. 93.81	.0-16-61 0ESI \$C96-61 CALCULAT
		1.990\$		TETS (BEG) NOW INCAR	1111111 0000000 0000000 00000000 0000000	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	V(KNOTS) #2.48 V(f)/f(C) #4.05
	.5373E+^1	(\$LU5/673) • 1.		TANS CALCULATED	10000000000000000000000000000000000000	0.000000000000000000000000000000000000	# # 0 0
. 8430	375-01 2 59E-94 2	044. 000C.		TANRI	5.0740000 5.07400000 5.07400000 5.074000000 5.07400000000000000000000000000000000000	######################################	16-51 1-WITH'-85305-1 INDUT AE/ACHO.33105-
H/F131+ 453	45C0E+01 2.	70 .H(FT)= 52	00006-01	TVC IMPUT	1	11.000	1-THD=8.3730E
TOC PROPILB	2.4663697.5		7.6900£-81 9. 1.2000£•02	C/0 ADJUSTED	4.01 4.03 4.03 4.03 4.03 4.03 4.03 6.03	### ##################################	=3.0005E+04 1=1.23CCE+02
CCGGE+C++ DEMSIT	2.35CCE+01 1.9329F+C4 2	0000 .1-HTT#.79	7.64835-01 7 1.56005+62 1	TUGNI	6.446666666666666666666666666666666666	11.14	-81 PS(HP) NIPEV/HINI
PS(4P) # 3.6(V (MNOTS) PE(HP)	O(FT) = 23.00	ZE/30 MIREV/HIN)	X IMPUT			ETAD=6,9194E 7# 5

DOCUMENTATION CASE A

```
1.131E-01
0.0945-32
5.531E-02
2.832E-02
                                                               6.5125-01
           $.849E+02
7.212F+02
5.255F+02
3.369E+C2
                                         RAKG/0
      6.0000-01
7.0000-01
7.0000-01
```

CENTER OF GRAVITY OF BLADES PEFEPENCED FROM MTTCHURD OF ROOT SECTION (" FMD. + AFTI/D" -. 297888 CENTER OF GRAVITY OF PROP REFERENCES FROM HIDSHORD OF POOT SECTION (* FND. + AFTI/Om -.238975 HUB DIAM # .1760 HUR LENGTH # .1749 HIDCHCRO OF POOT SECTION TO AFT END OF HUS 1268.839721 BUPRILL CAVITATION COEFF SIGMA(0.7) = .2458E+50 MEIGHT OF PROF (SLADES + CYLINOPICAL HUS) (LBF) = CLEARANCE AT HUB GITHERH FILLETS/Dz -3.4434E-02 CLEARANCE AT HUB RETWEEN BLADES/OF 3.4348E-02 JAT . E913E+00 MACHULSIVE EFFICIENCY ETADR . 6918E+30 JS* . 8464£+86 1C= .92525-01 KT= .1511E+00 ADVANCE SOEFF VIL-HTT3/CHOS KELLEDS MINIMUM EARM .. 68P4E+6A KO: .2563E-63 NURRILL THRUST COEFF DESTON THRUST COEFF SPEEN COEFF V/ (NO) HUB DIMENSTONS/0 TOPOUE COEFF

182262-1564

WEIGHT OF BLADES (LBF) =

MASS POLAR MOMENT OF INERTIA OF 9LADES (LEM-142)# .43A277E+59
TOTAL MASS POLAR MOMENT OF INE9TIA (LRM-IN2)# .434277E+69
PADIUS OF GYPATION OF MLADE/O# .217?
PADIUS OF GYPATION OF HUR/O# C.0000

ABS COEFFICIENTS (CALCULATED AT THE .25 RADIUS)

ARS MINIMUM THICKNESS IN INCHES (USING P/D=PINTANSI)-USING ASS GAKE = CONVENTIONAL PAKE, T/O= -.4332E-61 USING ASS RAKE = CONVENTIONAL + SKEM-INDUGEO WAKE, T/O= -.4332E-61 Am .107354E+02 Am .457579E+03 Cm .139427E+25 VALUES USED IN DETERMINING THICKNESS-

SECTION AREA COEFFICIENT CS= .6942E+80 SECTION MODULUS COEFFICIENT CN= .8558E-01 AREA OF EXPANDED CYLINDRICAL SECTION IN 50.INCMES AS= .9091E+83 FOR CH#.1 ASS MINIMUM THICKNESS IN INCHES CUSING P/D#PINTAN311-USING AGS BAYE # CONVENTIONAL + SKEW-INDUCEO RAKE, T/D# -.3489E-61

PADIAL PROPELLEP DATA FOR IMPUT INTO DISIGN PROGRAMSIB MADIAL STRIPS ASSUMEN!

۲۲,

_	TAN BETA I	U	XSL (INCHES)	XST (TNGHEE)	1 - N K	04/245	THICKNESS (INCHES)	
ç	1 8 4 4 6	11645-91	-62, 93938	39,31647	.47193	.13 115 + 00	13.53698	
) E		16.331 - 61	D1502.04-	61.65.43	. 52733	15415+00	15. 99 U.S.	
) C	64774	14.0101	-52.23388	49.37156	.64531	.15935+03	13.52415	
;;			-42.97 190	6F . 0 C . 1 L	.7691	. 16586 + 08	11.50352	
) e	17107	18775-21	-24,23320	10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	. 7 4 4 5 6	.16505+00	9.1416	
	808C7	14265-01	1.06413	111.91046	. A 121 6	.16545+08	6.95768	
	61891	16456-21	19.64345	140. 306 th	. 0 34.78	16275.00	6.785R2	
	32.48.5	13485-31	93,50345	163.27631	. 16106	.14776+98	3.13139	
. č	30775	1025-01	107.58505	148.11499	. 47:29	15625+00	01909.2	
			150 50173	16F. CO172				

144

APPENDIX F FORTRAN LISTING OF COMPUTER PROGRAM

```
PROGRAM GMAIN (INPUT=256, OUTPUT=512, TAPF5=INPUT, TAPF6=OUTPUT)
 DIMENSION CHORD(11).THICKNS(11).CAMBER(11).PITCH(11).SKEWR(11)
1 .X(11).BT(11)
 DIMENSION B(38,38), DENS(6), B2(181), B3(181)
1 ,811(181),814(181)
     ,B15 (181), AZ (11,11), BH(11,11), C(12,12), CC(12,12)
  DIHENSION X3(11), X4(11), X5(11), X5(11), VFL(9), EHP(9), BLA(9), EXX(9)
 DIMENSION AZZ(11,38),ASHP(9),XMM(9),CAV(9),GAE(9),FX(11),BBJ(11)
 OIHENSION VEL1(9), EHP1(9), AX(11), RAK(11), PXT91(11), PXT9(11), SX(7)
  DIMENSION VSUBRSQ(11), VSU3P(11)
 DIMENSION AREA (7), XBAP (7), YBAP (7), AYEXO(7), AYEYO(7), EMXO(7), EMYO(7
1).FHTB(7).EMQB(7).STRMAX(7)
 DIHENSION H(13), FHHX(13), YTX(13), TX(11), CX(11), FMX(11), JRL(11),
           ARPHI(11), PMDX(11) , P(13), S(13), P(13)
  DIMENSION TABS(6)
  DIHENSION DAN(9).OHE(9).DHX(9)
  COMMON /UNITS/ SI,UI,UO
 COMMON/CWEIGHT/X.CHORD.THICKNS.CAMRER.PTTCH.SKEWP.DIAM.ZZ.DEN.PAKE
1,PI,PP7,PP8,PP9,PP11,EWAKE,VS,RPS,SIGHA,FAR,9T,P,P90
   .FHDDIAM.AFTDIAM.HUBLEN.FDBORE.AOBORE.DISRFFL
                                                       .R14, 915, A7, 9H,
             92.83.
 COMMON 9.
             ID. JB. JC. JD. JDD. JEE. CL1(11)
10,00.
 COMMON CCONE(11), CCTHO(11), CCTHR(11), CCFOR(11)
 COMMON PP1, PP2, PP3, PP4, PP5, PP6, PP10
  COMMON SN(73),CO(73)
 DIMENSION XR(20), TANBETI(20), G(20), XSL(20), XST(20), WAKF(20)
1,UVFL4(23),THICKP(20)
  DIMENSION TLES(10.2)
  PEAL N.NI, INPUT, LERBS, LINR, NLINR
  DATA (APU, EARF / 8H DESIGN , 8H INPUT
  DATA W /1.44.3.8.44.5.44.5.44.8.74.48.7
  DATA FMMX /.0,.2712,.4482,.6993,.9635..9515,1...9746..8892..7027.
1 .3586,.1713,.0/
            /.:,.2066,.2907,.4,.4637,.4952,.4962..4653,.4035..311,
  DATA YTX
2 .1877,.1143,.3333/
  DATA DENS / 1.,521.856,1.,493.84,1.,1. /
  UATA TABS /1CHABS MINIMU 2134M THICKNES .1345 IN 1NCHE
2 11HS (USING P .10H
                               .1CH
  DATATES, UBS, VBS, XBS / 1CH/0=PIXTANB ,19HI)-
2 10H/D INPUT) - ,10H
  DATA SHPP.SHPT1.SHPT2.DEN1.DEN2.DEN3.ZS.TARG.QPMS.COMMA.ADDJ
1 /5H SHP=,7H THRUST,7H OPTION.10H, DENSITY ,10HOF POOP(LP,
  8HM/FT3)= ,3H Z=,5H EAR=,5H PPH=,2H, ,13H 45JUCTED
                                                 ,13H
                                      1 - WY
                                                         C/0
  DATA TLES / 10H
                      X
                                     FFAT HOL.
                         TANBI
2 1 CH
        T/C
                   .1CH
                                         PID
3 10H TETS (DES)
                   .10H RAKG/D
                                 ,10H
                   . 1G*1H
4 1CH
        CO
                           DATA INPUT, LERBS, LINR, NLINR, PXTN31, CONST, CALC /104 INPUT
                                     .1 GHNONLINGAP
                   ,10H LINEAP
2 1CH LERBS
3 1CHPIXTANBI
                   ,10HCONSTANT
                                     ,10HCALSULATED
  DATA SI /2HSI/
  DATA UVE / 7HFT/SEC) /
                           ,9H(PEV/HIN)
  DATA EXA, URPM / SHAE/AO
  DATA UEI, UEF, USL /4H(IN) ,4H(FT) , 4H(4)
  DATA VL, PE / 2HV( , 3HPE ( /
  DATA ULE, ULS / BH(LBF/FT) , BH(N/M)
  DATA USV.UEV / 6HM/SEC) .6HKNOTS) /
```

```
DATA USP, UEP / 3HKW) , 3HHP) /
    DATA UED, USD / 10H(SLUG/FT3) ,10H(KG/M3)
    DATA ULE4.ULS4.ULE2.ULS2.UNM.UIL.UPA.UPIM2 /5H(IN4).5H(M) .
                                ,aH(IN-LBF),9H(PA)
                                                           ,9H(LBF/IN2) /
    5H(IN2),5H(H2),8H(N-H)
    DATA UFE, UFS / SH(LBF) , 5H(N)
    DATA U02, U03 /13HOF PROP(KG,8H/H3) =
    DATA PHI, U07 /10H(LBH-IN2)= ,10H(KG-M2)=
    DATA GRI, GRZ / 9HRADIUS OF , 9H GYRATION /
    DATA EFT. U04 / 4HFT. = , 4HH. = /
    DATA EIN. JOS /SHINCH) .5HM)
    DATA EINS, UD6 / THINCHES= , THMETERS= /
    DATA EAV, SIV /6H RPM= ,6HRAD/S= /
    DATA PINS, JOB / PHINCHES) , THMETERS) /
    DATA PINS, UD9 / CHINCHES , CHMETERS /
    DATA EFP, U10 /4HFT) = ,4HH) = /
    ELI=1./.0254
    ELZ=1./ELI/ELI
    F_F=1./.3048
    751=1./16.31846
    RHOSI=1./515.3748
    VSI=1./.5144444
    PHP=1300./745.6939
    5IH=1./.1129848
   UHT=1./4.44822
   JC = 11
    DKTS=1.6578
   PI=3.14159265
    PI?=2.*PI
    DC 31 I=1,73
    AC=5.*(I-1)*2.*PI/360.
    54(I) = 3IN(AC)
31 CO(I) = COS(AC)
   REAU(5,*) 100
   10 11.72 NDIA=1,100
    SPH=6 ./P12
    READ(5,10208) UI,UO
    READIS. *) SKP, TANBI, TANB, XPS, RAKE, POO, CD, TYPE, HUB
    PLAD (5,*) DIAM, EWAKE, ETHRUS, HEAD, DEN, RHO
    PLAG(5,*) IVV, (VEL(I), I=1, IVV), (EHP(I), I=1, IVV), IZZ,
  1 (J\existsL(I),I=1,IZZ),IEA, (EXX(I),I=1,IEA),IRPH, (XHM(I),I=1,IRPH)
    R_{\pm}\Delta D(5,+) (X3(1), I=1,JC), (X4(1), I=1,JC), (X5(1), I=1,JC), (X6(1),
 1 I=1,JCV, (AZZ(I,25), I=1,JC)
    IF(XPS.LT.D.) READ(5,*) (AZZ(I,24),I=1,JC)
    IF (ABS(CD).GE.10.) READ(5.*)
                                      (3(I,7),I=1,JC)
    1"(TANB.GT.O.) READ(5,*) (3(I,8), I=1, JC)
    IF (PAKE.GT.O..AND.RAKE.LE..O1) READ(5,*) (RAK(I), I=1, JC)
    IF (POJ.GT.J.) READ(5,*) (P(I), I=1, JC)
    IF(HUB.NE.O.) READ(5,*) FHODIAM, AFTDIAM, HUBLEN, FOBORE, ADBORE,
  1 DISPEFL
    NO DATA READ ANYWHERE BEYOND THIS STATEMENT
    RF=DIAM
    IF (UI.NE.SI) PF=DIAM+12.
    IF (RAKE.GT.O..AND.RAKE.LE..O1) GO TO 140
    RAKE = RAKE + RF
    GO TO 142
```

C.

```
140 00 141 I=1.JC
     RAK(I)=RAK(I)*RF
141
     UDEN=UED
142
     IDEN=DEN
     IF(IDEN.LT.2) IDEN=4
      IF (IDEN.LT.7) DEN=DENS (IDEN)
     UL=UEF
      VU=UEV
      PU=UEP
      IF(UI.NE.SI) GO TO 2413
      IF(IDEN.LT.7) DEN=DEN/DSI
      UDEN=USD
      UL=USL
      VU=USV
      PU=USP
2413 WRITE (6,13046) IDD
      IF(SHP. EQ. Q.) HRITE(6,10020) SHPT1, SHPT2, DEN1, DEN2, DEN3, DEN
      IF (SHP.NE.O.) WRITE (6.10021) PU. SHP.DEN1.DEN2.DEN3.DEN
      HRITE (6,10027) VL, VU, (VEL(I), I=1, IVV)
      WRITE(6,10045) PE,PU, (EHP(I), I=1, IVV)
      WRITE (6,19028) UL, DIAM, EHAKE, FTHRUS, UL, HEAD, UNEN, RHO
      IF (TYPE.LT.2.) TYPE=4
      VU=UEV
      PU=UEP
      UDEN=UED
      UL=JEF
      ESI=EIN
      FSI=EFP
      ANV=EAV
      SNIP=FINS
      SNIR=PINS
      IF (UO.NE.SI) GO TO 143
      VU=USV
      PU=USP
      UDEN=USD
      UL=JSL
       SNIP=U09
       SNIP=UJR
       ANV=SIV
       DEN2=U32
       DEN3=U33
       FSI=U13
       ESI=UC5
 143 IF(UI.NE.SI) GO TO 149
       OPTION FOR SYSTEM INTERNATIONAL INPUT UNITS
       SHP=SHP*PWR
       DIAM=DIAM*ELF
       HEAD=HEAD*ELF
       RHO=RHO*RHOSI
       00 145 I=1.IVV
       VEL(I) = VEL(I) *VSI
  145 EHP(I)=EHP(I) +PWR
       IF(HUB.EQ.0.) GO TO 146
       FWODIAM=FWODIAM*ELF
       AFTDIAM=AFTDIAM*ELF
       HUBLEN=HUBLEN*ELF
       FDBORE=FDBORE*ELF
```

tr "

```
ADBORT = ADBORE * ELF
      DISPEFL = DISREFL = ELF
       IF(RAKE.GT.O..AND.RAKE.LF..01) GO TO 147
 146
      RAKE = PAKE * ELI
      GO TO 149
      00 148 I=1.JC
 147
      RAK(I)=RAK(I) *ELI
 148
      CONTINUE
       IF(XPS.GT.0.) XPS=XPS+JBL(1)/36].
       DIA=DIAM
       IV9=IVV
       00 1015C I=1.10
      TLES(1,2)=INPUT
11150
       TLES (7,2)=TLES (8,2)=LINR
                          TLES (5,2) = LEPSC
       IF( x5(1).E0.0.)
       IF(TANB.EQ.O.) TLES(6,2)=CALC
       IF(XPS.LT.O.) TLES(7,2)=NLINR
       IF(RAKE.GT.0..AND.RAKE.LE..O1) TLTS(8,7)=NLTNR
       IF(POO.LE.O.) TLES(9.2)=PXTNRI
       IF(CO.EQ.O.) FLES(10,2) = CALC
       WPITE(6:10046) IDD
                             BASIC DESIGN(S) ASKED FOR* )
18345 FORMAT(1H ,4X,14,#
       TOEN=DEN
       IF(IOEN.LT.2) IDEN=4
       IF(IDEN.LT.7) DEN=DENS(IDEN)
       IF(IDEN.GE.7.AND.UI.ED.SI) DEN=DEN*DSI
       IF(FHO. EQ. 0.) RHO=1.9905
       IF(=HG.EQ.1.) RHO=1.9384
       PSC=144*.3605*DIAM*DIAM*2
               P(1)/(PI*X3(1))
       PTAN=
       AID=DIA
       DUN=DEN
       PAEH=HEAD
       OHR=RHO
        IF(UO.NE.SI) GO TO 150
        AID=AID/ELF
        DUN=DUN/DSI
        DAEH=DAEH/ELF
        OHR=0HP/RH05I
  130 CONTINUE
       DO 1 I=1,9
       CAV(I) = VEL(I)
       CAE (I) = EHP(I)
       IF(SHP) 103,102,103
   133 PVEL=VEL (3)
       PEHP=EHP(3)
   102 CONTINUE
       R(2,1)=CD
       PLAS=JPL(1)
        IF(XPS.GE.0., GO TO 7
       no 26 I=1.JC
    26 AZ7(I,38)=AZ7(I,24)
       EXXS=2.*BLAS /PI*SIMPUN(Y3,X6,JC)
 10.08 FORMAT(2H .2A2.66H
         JEA=0
        IF(EXX(1).NE.C.) GO TO 10004
```

The state of the s

```
EXX(1)=EXXS
       JEA=1
10204
      IF(CD.GE.10.) GO TO 90
       TH=B(2.1)
       CFO=.008
       IF(CD.GT.O.) CFO=1.
       IF (CD.GT.-10. .AND.CD.LT.O.) CFO=-CD
       DO 10007 I=1,JC
       IF(CO.LE.O.) TH=1.+1.25*AZZ(I,25)+125.*AZZ(I,25)**4
       IF(CD.LE.-10.) CFP=B(I,7)
10007
       B(I.7)=CFO*TH
   93 DO 15 I=1,JC
   15 AZZ(I,23) = X3(I)
       DO 16 I=3,JC
   16 AZZ(I-1,19) = X3(I)
      AZZ(1,19) = X3(1)
      DO 4 I=1,11
       PXTBI(I)=P(I)
      AZZ(I,36) = AZZ(I,25)
      AZZ(I,37) = AZZ(I,23)
      DO 13071 IE=1, IZZ
      3(9,2) = JBL(IE)
      XSX = XPS * (360.0/B(9.2))
      AS1=XSX/(1.0-X3(1))
      AS2=XSX-AS1
      DO 10073 KE=1, IEA
       TLES(3,2) = TLES(4,2) = INPUT
       EAPU=EARF
       ERA=ABS ( EXXS-EXX(KE) )
       IF (ERA.LT..005.AND.KE.GT.1.AND.JEA.EQ.1) GO TO 10070
       IF (ERA.LE..005) EARU=EARD
      00 10069 IRP=1.IRPM
      KI=0
      RPH=XMM(IRP)
      EAR=EXX(KE)
      DO 100 I=1,JC
      3(I,3)=X3(I)
      3(I,4) = X4(I)
       B(I,5)=x5(I)
      DO 19051 LE=1,JC
13051 B(LE,6)=(BLAS*EAR*X6(LE))/(B(9,2)*EXXS)
       9DEL=A9S( B(3,6)-X6(3) )
       IF (BDEL.GT..0001) TLES (3,2) = ADDJ
      DO 10052 LE=1,JC
13352 AZZ(LE,25) = AZZ(LE,36) *B(LE,6)
      00 30 I=1,9
      VEL(I) = CAV(I)
30
      EHP(I) = CAE(I)
      9(5.2) =XMM(IRP)/60.0
       IF (SHP.NE. 0.)
                         GO TO 51
      QO 53 IG=1.IVV
      VEL1(IG) = VEL(IG)
   53 EHP1(IG) = EHP(IG)
       GO TO 21
   51 VEL1(1)=PVEL
      EHP1(1)=PEHP
```

```
21 00 5 I=1.11
      AZZ(1,24) = AS1 * X3(1) + AS2
       SKZ=ABS (AZZ(1,24))
       IF(SKZ.LT..0001) AZZ(1.24)=0.
       IF(XPS.LT. 0.1 AZZ(1,26)=AZZ(1,38)
      AZZ(1,38)=AZ7(1,24)
      AZZ(1,25) = AZZ(1,36)
      A7Z(I.23)=AZZ(I.37)
5
       IF(SHP.EQ.Q..OR.IV.EQ.1) GO TO 15
      00 114 J=1.IVV
      911(J) = VEL(J)
      83 (J) = EHP (J)
114
      S1=VEL1(IV)
      CALLDISCOT(S1,S1,B11,R3,B3,-120,JC.0,S2)
      FHP1(IV)=S2
   19 9(6,2) = (325.86 *EHP1(IV))/(VEL1(IV) *ETHPI)()
      P(7,2)=1.6878 * VEL1(IV)
      NN=C
      RJ=1.0
       J8=8J
       DDJ=1. i
       JEE=TANBI
       100=001
       JD=.666667*F_OAT (JC)
       R(1,1)=3.0
       B(2.1) = CD
       71(3,1) =TANB
       B(4,1)=C.85
       R(6.1) =9.0
       P(7,1)=0.0
       B(8,1)=0.0
       P(9.1)=C.G
       P(1,2)=1.C
       B(2,2)=1.0
       9(8,2)=PHO
       P(5,1)=EWAKE
       P(3,2)=DIA
       P(4,2)=4(AD
       PSL=3(7,2)/(3.14159265*B(5,2)*R(3,2))
        IF(TAN9.GT.0.) GO TO 101
       no 11935 I=1, JC
 10035 @(I,8)=RSL/B(I,3)*B(1,4)
   101 AJJ=1.C
        IF( 9(1,5).GT.2.) GO TO 10019
         IF( 8(5,1).LE.G.) B(5.1)=8(J7.4)
          00 10018 I=1.JC
 10318 B(I,5) = RSL*SQRT(B(5 .1)*B(I,4))/(B(I,3)*3(4,1))
 10:19 NN=NN+1
         PAKOP=1
         IF(PAKE-LE .. 0 1. AND. RAKE. GT. 0.) GO TO 170 AF
        00 34 I=1.11
    34 RAK(I)=RAKE*(X3(I)-X3(1))/(X3(11)-X3(1))
 10085 VK=B(7,2)/1.6878
        IF (KI.GT.0) GO TO 85
        AJ.J=1.C
        WRITE (6, 10025)
         PHS=SHP
```

7.

```
00 152 I=1.IV9
       IF(U0.E0.SI) GO TO 151
       DHV(I)=VEL(I)
       DME(I)=EHP(I)
       GO TO 152
       DHV(I)=VEL(I)/VSI
       DHE(I)=EHP(1)/PWR
  152
      CONTINUE
       WRITE(6,13008) UI,UO
       IF(SHP.NE.O.) WRITE(6,10021) PU.
                                          PHS .DEN1.DEN2.DEN3.DUN
       IF(SHP.EO.O.) WRITE(6,10020) SHPT1.SHPT2.DEN1.DFN2.DEN3.DUN
       HRITE(6.10027) VL.VU. (DMV(I), I=1, IV9)
       WRITE(6,10045) PE,PU, (DME(I),I=1,IV9)
       WRITE (6,10028) UL, AID, EWAKE, ETHRUS, UL, DAEH, UDFN, OHR
10025 FORMAT (/2X, +D+, A4, +=+, F8, 4,+ ,1-WTT=+, F5, 4,+ ,1-THD=+, F5, 4,+ ,H+,
     2 A4,*=*,F8.4,* ,RHO*,A10,***,1X,F9.4,/)
       WRITE(6,1903C) (JBL(I), I=1, IZ7)
       WRITE(6,10031) EXA, (EXX(I), I=1, IFA)
       WRITE(6,10032) URPM,(XMM(I),I=1,IRPM)
10025 FORMAT (141)
10523 FORMAT(/,2A7,2A10,A8,F10.4,/)
10021 FORMAT (/,* PS (*, A3,, *=*, 1PE12.4, 2A10, A3, 3PF10.4,/)
10033 FORMAT(2X, *Z*, 9X, 913)
10031 FORMAT(2X,A5,5X,1P9E12.4)
10032 FORMAT(2X, *N*, A9, 1P9E12.4)
10027 FORMAT(2X, 42, 46, 2X, 1P9E12.4)
10:45 FORMAT(2X,2A3,4X,1P9E12.4)
       WRITE (6,10100) (TLES(I,1),I=1,10)
       WRITE(6,10101) (TLES(I,2),I=1,10)
       FORMAT(/,1X, 10(3X,A10))
10103
       FOPMAT(1X, 10 (3X, A1G),/)
10101
       DO 10111 I=1,JC
       IF(F00.LE.O.) P(I)=0
       SRK=RAK(I)/JIA/12.
10111 WRITE(6,10102) X3(I), X4(I), B(I,6), AZZ(I,25), B(I,5), B(I,4),
     2 AZZ(I,24),SRK,P(I),B(I,7)
13102 FORMAT (1P10E13.4)
   85 90 10090 I=1,JC
      AZZ(I,25) = AZZ(I,25) +B(I,6)
10095 P(I.33)=B(I.5) *AJJ
       IF(JEE.LE.D) GO TO 47
      DO 209 IDC=1.3
      00 211 I=1.JC
      R(I,30)=B(I,30)*AJJ
201
      814(41)=.975
      P14(42)=1.000
      R14(43)=1.025
      no 215 IJ=41.43
      IJT=IJ+4
      IJP=IJ+6
      00 216 I=1.JC
215
      9(I,5)=9(I,30)*814(IJ)
      CALL SUB
      R14(IJT)=PP7
      314(IJP)=PP8
  215 CONTINUE
       JK=44
```

```
TTT=8(6,2)/((8(8,2)*8(3,2)**2*3.1415927*8(7,2)**2)/8.)
       IF( B(1,2).5T.0. ) GO TO 10
       JK=48
       TTT=TTT *550./8(7.2)
      00 11 I=1.3
10
       CC(I,1)=B14(JK+I)
      00 11 J=1.3
      K = 3 + \{J - 1\} + I
       B15(4C+K)=B14(4C+J) ** (I-1)
      C(J.I)=815(K+40)
11
      CALL SIMEQ(3,C,CC)
  208 AJJ=(-CC(2,1)+SQPT(CC(2,1)**2-4.*CC(3,1)*(CC(1,1)-TTT)))/(2.*CS(3,
     11))
      (1) 49 I=1,JC
   49 9(1,5)=B(1,30) #AJJ
   47 JEJ=0
      CALL SUP
      PP11=915 (181) *ETHRUS
      PF12=2HP1(IV)/PP11
      THP=P (6,2)
      ATHR=3(8,2)/9.0+3.14159+(8(3,2)++2)+(8(7,2)++2)+DP7
      ASHP(IV)=PP12
       IF(SHP) 55,10350,55
   55 CONTINUE
      KI=KI+1
      IF (KI.GE.6) GO TO 10050
      IF (ABS ((SHP-ASHP(IV))/ASHP(IV))-. 3005) 10353.13050.20
      NI=.33
       IF(IV.EQ.1) GO TO 823
       NI=ALOG( VEL1(IV-1)/VEL1(IV) )/ALOG( ACHP(IV-1)/ASHP(IV) )
       VEL1(IV+1)=VEL1(IV)+( (SHP/ASHP(IV))++NI )
       AVL=VFL1(IV+1)
       IF(AVL.GT.CAV(5).OR.AVL.LT.CAV(1): WRITE(6,927) AVL
  922 FORMAT (////1) X. *ESTIMATED VELOCITY VALUE IN ITERATION FOR DESIPED
     19HP IS NOT WITHIN RANGE OF INPUT VELOCITY VALUES ... */15X .* ... PROGR
     ZAM CANNOT EXTRAPOLATE FOR CORPESPONDING FHP.
                                                        ESTIMATED VFLOCITY
     3VALU: = *1PF10.4)
      IV=IV+1
      GO TO 21
13353 00 16649 IX=1.IV
       FHP(IX)=EHP1(IX)
10049 VEL(IX)=VEL1(IX)
       no 40050 I=1.JC
       AZZ(I,26)=B(I,14)
       AZZ(I,27)=9(I,5)
        BI = \Delta ZZ(I,27)
        IF(PDO.GT.O.) BI= P(I)/PI/X3(I)
         CII=AZZ(I,24) *B(I,3)*SQPT(1.+3I*BI)*PT/190.
       AZZ(I,28)=CII-B(I,6)
       AZZ(I,29)=CII+B(I,6)
       AZZ(I,3C) = B(I,6)
       AZZ(1,31)=B(1,4)
       AZ7(I,32)=B(I,12)
       AZZ(I,33)=B(I,13)
       AZZ(I,34) = AZZ(I,25) * 2. C
40050 AX(I)=AZZ(I,34)
       IF (AZZ (11,25) . NE . 0.) GO TO 5555
```

* **

```
SLP= (AZZ(9,34) -AZZ(6,34))/(AZZ(9,23)-AZ7(6,23))
     YINT=AZZ(9,34)-(AZZ(9,23)+SLP)
     AZZ(10,34)=(SLP*AZZ(10,23))+YINT
      AZZ(11,34) = (SLP#AZZ(11,23))+YINT
5555 DO 40052 K=26.34
      00 40051 J=1,11
      811(J) =8(J,3)
40051 83(J) = AZZ (J.K)
      00 43052 I=1.11
      S1=AZZ([,23)
      CALL DISCOT($1,$1,811,83,83,-120,JC,0,52)
40052 AZZ(I.K)=52
      00 5050 I=1.JC
      AZZ(1,2)=8(1,2)
      P(I,20)=8(I,15)
      9(I,21)=B(I,5)
       BI=B(I,21)
       IF(PDO.GT.G.) BI= P(I)/PI/X3(I)
      8(1,22)=8(1,38)
      B(1,23)=B(1,5)
      B(I,24)=AZZ(I,24)
      9(1.25)=AZZ(I,25)
      TX(I)=B(I,25) *DIA*12.0
      B(I,24)=B(I,24)*B(I,3)*SORT(1.+BI*BI)*PI/199.
 5053
       97 (11) =8 (11,5)
        OPTAIN DATA AT PROPER RADIAL STATIONS FOR STRESS PROGRAM
C
        00 50080 I=1,10
        D=AZZ (I,19)
        DO 50130 K=20.24
50030 CALL DISCOTIO.D.B(1.3),B(1.K),B(1.K),-120, JC, 0.4ZZ(I,K))
        CALL DISCOT(D.D.B(1.3).P.P.-120.JC.0.CX(T))
        CALL DISCOT(0.0.8(1.3).8(1.18).8(1.18).-120.JC.0.AZZ(1.18))
        CONTINUE
 50080
        DO 50090 I=1,10
 50093 P(I)=CX(I)
       CALL STRESS (AZZ. AREA .XBAP. YBAR. AYEXO, AYEYO, EMXO, EMYO, EMT9. EMOP. STP
      1 MAX, RAK, PAKOP)
          THE FOLLOWING STATEMENTS HAVE BEEN APPED IN ORDER TO SEND THE R
          VALUES TO SUBROUTINE WEIGHT. CHORD. THICKNESS. AND CAMBER ARE I
 C
 C
          PITCH AND SKEWR APE IN RADIANS.
 C
       VS=VK*1.6878
       no 999 I=1.JC
        IF(PDO.GT.O.) P(I)=PXTBI(I)
       X(1)=B(1,3)
        IF( X(I).GT. .65 .AND. X(I).LT. .75) SIGMA=B(I,19)
        CHOPD(I)=B(I,6)*DIAM
        THICKNS(I)=AZZ(I,34)*DIAM/2.
        PITCH(I) = ATAN(B(I,5))
        BBJ(I) = AT AN (3 (I, 6))
        FX (I) = C. O
        IF(CL1(I).EQ. 0.) GO TO 29
        FX(I)=1.0/(1.0+(6.2832*TAN(PITCH(I)-BRJ(I))/CL1(I)))
    29 CONTINUE
         8I=P(I)/PI/X3(I)
         IF(POO.GT.O.) PITCH(I)=ATAN(9I)
        SKEHR: 11 = A7Z(I + 38) /57 - 2958
```

```
\Delta ZZ(I,34) = AX(I)
           = (9(I.4)+B(I.12)) **2
           = (9(1,4)/B(1,8)-B(1,13))**2
      VSUBFSO(I)=VS**2*(AV
                             +AV
      VSUBR(I) = SQRT (VSUBRSQ(I))
 999 CAMBER(I)=.0679*R(I.18)*DIAM
      PPS=RPM/60.
      00 996 I=1,JC
      PXTBI(1)=PI#8(I,3)#8(I,5)
      PXT8(I)=PI+8(I,3)+8(I,8)
 936 CONTINUE
      EA1=(EAR+3.14159+DIA++2)/4.0
      AL=3.14159*0.7*B(7,5)
      AP=EA1*(1.367-P.229*AL)
      VA=VS+P(7,4)
      VR=SORT(VA**2+(0.7*3.14159*RPS*DI4)**2)
      TC=2.0+8(6.2)/(RHO+AP+VR++2)
      SIGHA7=(64.4*HEAD)/VR**2
      WRITE (6, 10342)
10;42 FOPMAT(1H )
       UVP=VU
       IF (UO.NE.SI) UVR=UVE
       WPITE(6,78) UVP
      90 79 I=1.11
       VPSI=VSUPR(I)
       IF(JO.EO.SI) VRSI=VRSI=.304A
                     9(1,3),8(1,5),9(1,8),8(1,14),3(1,13),8(1,12),9(1,11)
   79 WPITE (6.8C)
     1 .B(I.17).VRSI.B(I.19)
      HRIT: (6.10042)
                     PP1, PP3, PP4, PP2, PP5
      WRITE (6,77)
      WP ITE (6,81)
                     PP6 .PP8 .PP9 . PP7 .PP1]
      WPITE (6.10042)
       ULO=ULE
       IF(UO.EO.SI) ULO=ULS
       WRITE (6.76) ULO
      00 75 I=1:11
       SLI=.5*RHO*VSUBRSQ(I)*CL1(I)* B(I,6)*NIA
       IF(UO.EQ.SI) SLI=SLI+14.5939
   75 WFITE (6,20046) R(I,3), CCONE(I), CCTWO(I), CCTWR(I), CCTGR(I), FX(I),
     2 SLI, AZZ(I, 38), AZZ(I, 28), AZZ(I, 29), AZZ(I, 34)
      WRITF(6.10042)
       ANV= FAV
       P12=PP12
       RTH=THR
       UB=UFI
       UTO=UFE
       BTHF = ATHR
       UST=UPIN2
       VLS=8 (7,2)
       V2=UVF
       U02=ULE2
       1104=ULE4
       UMO=UIL
       USTR=ULPIN2
       IF(UO.NE.SI) GO TO 1GC
       UUS=ULSS
       U04=ULS4
```

```
UNO=UNH
       USTR=UPA
       UST=UPA
       UB=USL
       UTO=UFS
       V2=USV
       VLS=VLS*.3048
       P12=P12/PWR
       RTH=RTH/UNT
       BTHR=QTHR/UHT
  160
      HRITE(6,10044) PP11,PU,P12,ETHRUS,EWAKF,VL,UEV,VK,UTO,RTH,J9L([E)
        .RPM.EARU.EXA.EAR.VL.V2.VLS.UTD.BTHR
       IF(UO.EQ.SI) WRITE(6,10019) UU2.U8.U8.U04.U04.UM0.UM0.UM0.UM0.UST
       IF (UO.NE.SI) WPITE (6.20009)
       IF(U0.NE.SI) #RITE(6,20010) U02,U8,U8,U04,U04,UM0,UM0,UM0,UM0,UST
   77 FORMAT(4X, *CPTI=+, 1PE10.4,4%, *CPSI=+, 1PE10.4,4X, *ETAI==, 1PE10.4,
     2 4X,*CTSI=*,1PF10,4,4X,*CTSI/CPSI=*,1PE10,4)
   78 FORMATIOX, * X*.8X. * TANBI*, 7X. * TAN B*, 9X. *G*, 9X. *UT/2V*, 7X.
       TUA/2V*.7X.FDCTSI*.7X.FDCPSI*.5X.FVR(F.A7.5X.FCAVVF)
   80 FORMAT (1P10E12.4)
   81 FORMAT(5X, *CPT=*, 1PE10.4, 5X, *CPS=*, 1PE10.4, 5X, *ETA=*, 1PE10.4, 5X,
     2 *CTS=*,1PE10.4,6X,*CTS/CPS=*,1PE10.4)
   75 FORMAT(5X, * X*, 5X, *CL*, 6X, *ALI(DEG) *5X, *FM/C*, 7X, *CD/CL*, 7X,
     2 #F(X) #:4X; #LI#; A8,2X; #TETS(DEG) #2X; # (C/PD) LF#, 4X; # (C/PD) TE#,6X;
     3 *T/FD* )
23346 FORHAT (1PE10.3,1P10E31.3)
10544 FORMAT(1X, *ETAD=*, 1PE10.4, 4X, *PS(*, A4, *=*, 1PE13.4, 3X, *1-THD=*,
        .1PE10.4 .
        3x, #1-HTT=#, 1PE10.4, 3x, A2, A8, ###, 1PE10.4, 7x, *DCSIGN TH#, A5. #=#,
                 1PE10.4./.4X.*Z=*.I2. 9X.*N(RFV/MIN)=*.1PF10.4.16%.
        A8,A5,*=*,1PE10,4,3X,A2,A7, * =* ,1PE18,4,3X,*CALCULATED TH*,
        45,*=*,1PE10.4)
      00 74 I=1,7
       SX(I) = AZZ(I, 19)
       APR=AREA(I)
       XPP=XBAR(I)
       YPR=YBAR(I)
       XOI=AYEXO(I)
       YOI=AYEYO(I)
       XOM=EMXO(I)
       YOM=EMYO(I)
       TBM=EMTB(I)
       OBM=EMGB(I)
       STRM=STRMAX(I)
       IF(UO.NE.SI) GO TO 74
       APR=APR*EL2
       YPR=XPR/ELI
       YPP=YPR/ELI
       XOI=XOI#EL2#EL2
       YOI=YOI*EL2*EL2
       XOM=XOM/SIM
       YOM=YOM/SIM
       TEM=TRM/SIM
       OBM=QBM/SIM
       STRM=STRM*6894.757
       MRITE(6,20047) SX(I), APR, XPR, YPR, XOI, YOI, XOM, YOM, TRM, QBM, STRM
20047 FORMAT (1PE10.3, 1P5E11.3, 1P5E12.3)
```

```
20009 FORMAT(1H1,4X,+X4,9X,*AREA+,7X,+XBAR+,7X,+YBAR+,7X,+IXO+,6X,+IYO+
     2 ,9x, *HXO*,9x, *HYO*,9x, *HT9*,9X, *MOB*,6X, *M4*STRFSS* )
20010
       FORMAT(15x,45,6x,44,7x,44,6x,45,6x,45,6x,43,4x,48,4x,48,4x,48,4x,48,3x,
     2A91
10010 FORMAT(1H1,4X,*X*,7X,*AREA*,45,4X,*XAAP*,44,2X,*YBAP*,44,2X,*IXD*
        .A5.3X. #IYO#.A5.4X. #MXO#.A8.1X. #MYO#.A8.1X. #MTR#.A8.1X. #MOB#.A8.
           *MAXSTRESS*.A9)
      WRITE (6.10042)
      WRITE (6.10042)
      WPIT: (6.10011)
      DO 73 I=1.11
       SRK=RAK(I) 'DIA/12.
       WRITE(6,10012) B(I,3),SRK,PXTBI(I),PXTP(I)
   73 IF(P00.GT.O.) PXTBI(I)=P(I)
19011 FORMAT(5x, *x*, 8x, *RAKG/D*,1x, 23H PI YTAN3I
                                                         PI YTANE
10312 FORMAT (1PE10.3,1P3E11.3)
      CALL WEIGHT (JC, SIGMA7, HUB, PHHC, WEIGHTB, WFIGHTH, PAK)
       SBI=SIN( PITCH(1) )
 3214 HUBSPAC=2.03PI*X(1)*DIA*6.0/R(9.2)
       TRI=AX(1)*DIAM*6./SBI
       BLASPAC=HUBSPAC-TBI
       FILSPAC=PLASPAC-.9+TRI
      WRITE (6.998) TC.SIGMAT
       BLS=BLASPAC/DIA/12.
       FILS=FILSPAC/DIA/12.
       UF=: FT
       UMI=PMI
       IF(UO.NE.SI) GO TO 158
       UF=UD 4
       UMI=UC7
  153 CONTINUE
       WRITE (6.994)
                        BLS.
                               FILS
  998 FORMAT (/20X,*BURRILL THRUST COFFF
                                             TC=*.F19.4//20X.49UPPILL CAVI
     1TATION COEFF
                      SIGMA(0.7) = +, E1C.4)
  994 FORMAT(/20X, *CLEARANCE AT HUB BETWEEN PLADES/7=*,1PE12.4.//.
     2 20x, *CLEARANCE AT HUB BETHEEN FILLETS/9=*,1PE12.4)
      00 122 I=1.11
       ARPMI(I)=B(I,6) * AZZ(I,25) *PSC
  122 PMDX(I) = ARPHI(I) *X(I) **2
      PMOFIR=8(9,2) *DEN/1728.*(DIAM*5.0)**3*STMPUN(X,PMDX,JC)
      TPMIN=PMOFIR+ PMHC
      PADOGB=SORT (PMOFIB/WEIGHTB)/12.
      PADOGH=SORT (PMHC/WEIGHTH)/12.
      FADOGT=SQRT (TPMIN/(WEIGHTB+WEIGHTH))/12.
       PMS=PMOFIB
       TPS=TFMIN
       GRR=RADOG9/7IA
       GPH=RADOGH/DIA
       CRT=RADOGT/DIA
       IF(UO.NE.SI) GO TO 171
       PMS=PMS + . 000 29264
       TPS=TPS + . 000 29264
  171 WPITE(6,995) UMI, PMS, UMI, TPS, GP1, GR2,
                                                 GP3.GR1.GR2.
     2 GR1, GR2,
                  GRT
  995 FORMAT(1H1,19X,*MASS POLAR MOMENT OF INEPTIA OF BLADES *,41),
     2 F13.6.//.20x. *TOTAL MASS POLAP MOMENT OF INERTIA *.A1C.E13.6,//,
     3 2CX.2A9.* OF BLADE/D=*
                                    .F9.4.//20X.249.* OF HU9/D=*
```

T.

```
4 //,20x,*TOTAL *,2A9,
                             */D=*.F9.4)
  THIS SECTION CALCULATES THE ABS COEFFICIENTS
    IF(TYPE.EQ.G.) GO TO 570
    PAD=0.25
    IF (B(1,3).GE.0.25) RAD=B(1,3)+.05
    IF(8(2.3).EQ.0.25) GO TO 590
    00 510 J=1,11
    B11(J) = R(J,3)
51J 83(J)=PXTBI(J)
    S1=.25
    IF(8(1,3).GE.0.25) S1=RAD
    CALL DISCOT(S1,S1,B11,B3,B3,-120,JC,0,S2)
    PTWOFIV=S2
    00 513 J=1.11
    811(J) = B(J, 3)
513 B3(J)=B(J,6)*DIAM*12.0
    S1=.25
    IF (B(1,3).GE.0.25) S1=RAO
    CALL DISCOT (S1, S1, B11, B3, B3, -120, JC, 0, S2)
    SZ=UJRUC
    NO 516 J=1,11
    B11(J) ≈ R(J.3)
516 B3(J) = ARPMI(J)
    S1=.25
    IF (8(1,3).GE.0.25) S1=RAD
    CALL DISCOT (S1,S1,B11,B3,B3,-120,JC,0,S?)
    ATWOFIV=S2
    00 569 J=1,11
    R11(J) =9(J,3)
569 73(J)=THICKNS(J)*12.0
    S1=.25
    IF (8(1,3).GE.0.25) S1=RAD
    CALL DISCOT(S1,S1,B11,B3,B3,-120,JC,0,S2)
    SZ=XAMT
    UF=G.5+TMAX
    GO TO 592
593 PTWOFIV=PXT8I(2)
    OUBLU=9(2,6)+DIAM+12.0
    ATWOFIV= ARPMI (2)
    THAX=THICKNS(2)*12.0
    UF=C.5+TMAX
592 CONTINUE
    IF(8(7,3).EQ.0.7) GO TO 596
    00 595 J=1,11
    911(J) = 9(J,3)
595 R3(J)=PYTBI(J)
    S1=.7
    CALL DISCOT ($1.$1.81.83.83.-120.JC.G.$2)
    PSEVEN=S2
    GO TO 597
596 PSEVEN=PXTBI(7)
597 CONTINUE
    RAKE2=PAK(11)+DIAM*AZZ(11.38)*P(11)/3C.
    DO 519 J=1,7
    811(J)=SX(J)
519 R3(J) = AYEXO(J)
    S1=.25
```

N. P. A. S.

```
IF(SX(1).GE.0.25) S1=SX(1)+0.05
    CALL DISCOT(S1.S1.B11.B3.93.-120.7.0.S2)
    AY 0= S2
     F=INT (TYPE/2) +68.+INT (TYPE/3) +5.-INT (TYPE/4) +56.~INT (TYPE/6) + 127.
     WL=INT(TYPE/2)*.3-INT(TYPE/3)*.01-INT(TYPE/4)*.32-INT(TYPE/6)*.30
    CS=ATWOFIV/(DUBLU*TMAX)
     CN=AYO/(UF+)UBLU+TMAX++2)
    AA=1.0+6.0/PSEVEN+4.3*PTWOFIV
    BA=4300. *WL #EAR
                         /B(9.2)*(RPM/100.)**?*()IA4/20.)**3
    CA=(1.G+1.5*PTWOFTV)*(DUBLU*F-3A)
     ANEH=13. *SQRT (AA*PP12/(CA*RPM*R(9.2)) )
     BNEW=CS+BA/4./CA
     BTHICK1 = ANEH/SQRT(CN)+BNEH/CN*RAK(11)
     BTHICK2=ANEW/SQRT(CN)+BNEW/CN*RAKE2
    WRITE (6.530) RAD
533 FORMAT (////29X, *ABS COFFFICIENTS (CALCULATED AT THE*, F4.2, * RADIUS
   1)*)
     TABS(E)=TBS
     TABS (E) =UBS
     IF (PDO.GT.O.) TABS (5) = VBS
     IF(PDO.GT.O.) TABS(6) = XBS
     BS1=BTHICK1/DIA/12.
     BS2=BTHICK2/DIA/12.
     ATF=ATWOFIV
     IF(UO.NE.SI) GO TO 172
     ATF=ATF*.00064516
172 WRITE (6,541) TAPS, BS1, BS2, AA, BA, CA, CS, CN, SNIR, ATF
541 FORMAT (//20X.6A10.
         /LOX+USING LBS RAKE = CONVENTIONAL PAKE. T/D= #E10.4/40X+USI
   BNG ABS RAKE = CONVENTIONAL + SKEN-INDUCTO PAKE. T/0= #E10.4
                            //20X*VALUES USED IN DETERMINING THICKNESS-
         A= #E12.6/62X#8= #E12.6/62X#C= #E12.6//2CX#SECTION AREA COEFF
               CS = *E10.4//20X*SECTION MODULUS COFFFICIENT
   4 ICTENT
   5C.4//2CX*AREA OF EXPANDED CYLINDRICAL SECTION IN SQ.*.46,5X.*AS=*,
   6 E10.4)
     C N= . 1
     BTHICK1 = ANEW/SORT(CN) + BNFW/CN*RAK(11)
     BTHICK2=ANEW/SOPT(CN)+BNEW/CN*R/KE2
     BS2=BTHICK2/DIA/12.
     BS1=BTHICK1/DIA/12.
     WPITE (6,543) TABS.BS1.AS2
543 FORMAT(/////,20x,*FOR CN=.1*,/,20x,6A10,
         /49X*USING ABS RAKE = CONVENTIONAL RAKE, T/D= *E1G.4/40X*USI
   BNG ARS RAKE = CONVENTIONAL + SKEW-INDUCED RAKE. T/P= #E1C.4)
570 CONTINUE
    BLADEL=8(11,3)-B(1,3)
    DELTA=PLADEL/S.
    DELTA1=DELTA/2.
    00 132 T=1,11
    XR(I) = B(I,3)
    TANBETI(I)=B(I,5)
    G(I) = B(I.14)
    XSL(I)=AZZ(I,28)
    XST(I) = AZZ(I, 29)
    WAKE (I) = B (I,4)
    UVFLA(I) = B(I, 12)
    THICKR(I)=AZZ(I,34)
```

```
132 CONTINUE
      XR(12) = XR(1) + DEL TA1
      XR (13) = XR (1) + DELTA
      DO 130 I=14.19
      XR(I) = XR(I-1) + DELTA
  130 CONTINUE
      XP(2G) = XR(19) + DELTA1
      00 131 I=12,20
      CALL DISCOT(XR(I),XR(I),XR,TANBETI,XR,-044,11,0,TANRETI(I))
      CALL DISCOT(XR(I), XR(I), XR, G, XR, -044, 11, 0, G(I))
      CALL DISCOT(xR(I), xR(I), xR, xSL, xR, -044, 11, 0, xSL(I))
      CALL DISCOT(XR(I),XR(I),XR,XST,XP,-044,11,0,XST(i))
      CALL DISCOT(XR(I), XR(I), XR, WAKE, XR, -044, 11, 3, WAKE(I))
      CALL DISCOT(XR(I), XR(I), XR, UVELA, XR, -044, 11, 0, UVFLA(I))
      CALL DISCOT(XR(I), XR(I), XR, THICKR, XR, -044, 11.0, THICKR(I))
      XSL(I) = XSL(I) + DIA +6.
      XST(I) = XST(I) + DIA+6.
      THICKR(I)=THICKR(I)+DIA+6.
  131 CONTINUE
      WPITE (6,133)
  133 FOPMAT (1H1.///,10X.*RADIAL PROPELLER DATA FOR INPUT INTO DESIGN P
     1ROGRAMS(8 RADIAL STRIPS ASSUMED) *.///)
       WRITE (6,134) SNIP, SNIP, SNIP
       FORMAT(1CX, *XR*, 5X, *TAN BETA I*, 8X, *G*, 7X, *YSL(*, A7, 5X, *XST(*, A7,
     2 5x, +1-Hx+, 8x, +UA/2VS+, 5x, +THICKNESS(+, A7,/)
       00 174 I=12.20
       SSL=X3L(I)
       (I) T2X=T22
       STHR=THICKR(I)
       IF(UO.NE.SI) GO TO 174
       SSL=SSL/ELI
       SST=SST/ELI
       STHF=STHR/ELI
  174 WPITE (6,135) XR(I), TANBFTI(I), G(I), SSL, SST, WAKE (I), UV FLA(I), STHP
  135 FORMAT(4X,F10.5,3X,F10.5,3X,E12.4,3X,F10.5,4X,F10.5,1X,F10.5,4X,E1
     12.4,5X,F10.5)
      XSL(11)=XSL(11)+DIA+6.
      XST(11)=XST(11)*DIA*6.
       SSL=XSL(11)
       SST=XST(11)
       IF(UO.NE.SI) GO TO 175
       SSL=SSL/ELI
       SST=SST/ELI
  175 WPITE (6,136) XR(11), SSL, SST
  136 FOPMAT (4X,F10.5,31X,F10.5,4X,F10.5)
       IF(SHP.NE.O.) GO TO 10069
      IV=IV+1
       IF(IV.LE.IVV) GO TO 21
10J69 CONTINUE
10070 CONTINUE
10971 CONTINUE
10672 CONTINUE
      STOP
      END
```

```
SUBROUTINE SUB
      DIMENSION CHORD(11).THICKNS(11).CAMBER(11).PITCH(11).SKEWR(11)
     1 .XI(11)
       DIMENSION P(13).BT(11)
      COMMON/CWEIGHT/XI, CHORD, THICKNS, CAMBEP, PITCH, SKEWR, DIAM, 77, DEN
     1,PAKE.PI.PP7.PP8.PP9.PP11.EWAKF.VS.RPS.SIGM4.FAP.BT.P.PD0
        .FHDDIAM, AFTDIAM, HUBLEN, FORORE, ADBORE, DISCF!
      DIMENSION B (38,3A).
                                  B2(181),B3(191)
     1 .811(151).914(181)
          .B15 (181), AZ (11,11), BH(11,11), C(12,1,), CC(12,12)
                                                            ,814,P15,A7,BH,
      COMMON B.
                                                 R11
                  82.B3.
                  IO, JB, JC, JO, JOD, JEE, CL1(11)
     1C.CC.
      COHMON CCONE(11), CCTWO(11), CCTHP(11), CCFOR(11)
      COMMON PP1,P22,PP3,PP4,PP5,PP6,PP1C
       COMMON SN(73) . CS(73)
10252 00 10025 N=1.JC
      no 20021 I=1.JC
      AAG=1./9(I.5)
      AAH=B(N.3)/B(I.3) #AAG
       AAQ=8 (1,5)
      IF (AAH-AAG) 10019, 10018, 10019
13318 82(1)=1./SQRT(1.+AAQ*AAQ)
       B3(I) =A40*B2(I)
      GO TO 23021
1JC13 S=1.+AAH**2
      1=50=1(5)
      V=1.+AAG**2
      W= SORT (V)
      AE=T-W
      U=EXP(AF)
      R= (((T-1.)/AAH*(AAG/(W-1.)))*U) **3(9,2)
      2C=1.5
      40=.25
      x = (1./(2.*8(9.2)*AAG))*((V/S)**AD)
      Y= ((9. +AAG++2)+2.)/(Y++AC)+((3.+AAH ++2-2.)/(S++AC))
      7=1./(24.*B(9.2))*Y
      IF (AAH-AAG) 19921,10021,10023
10020 AF=1.+1./(P-1.)
      AA=X* (1./(R-1.)-Z*ALOG(AF))
      P2(I) =2.*8(9,2)**2*AAG*AAH*(1.-AAG/AAH)*44
      A3(I) =9(9,2)*(1.-AAG/AAH)*(1.+2.*9(9,2)*4AG *AA)
      50 TO 20021
10321 AG=1.+1./(1./R-1.)
      Δ8=-X*(1./(1./Q-1.)+Z*ALOG(AG))
      92(I) =9(9,2) #AAG*(1.-AAH/AAG)*(1.-2.*8(9.2)*AAG*AQ)
      33(I) = 2.*B(9.2)**2*AAG*(1.-AAG/AAH)*AR
20021 CONTINUE
2002 + FOPMAT (9F12.4)
      no 2 I=1,JC
    2 711(I)=8(I,3)
      00 \ 3 \ I=1.37
             =.5+(1.+9(1,3))-.5+(1.-3(1,3))+CS(I)
      CALL DISCOT(S1,S1,B11,B3 ,R3 ,-120,JC,0,S3)
      P15(I)=$3
      005I=1.37
             =.5*(1.+8(1,3))-.5*(1.-9(1,3))+CS(T)
       S1
      CALL DISCOT(S1.S1.R11.82 .32 .-127.JC.C.S?)
```

34

```
B14(I)=S2
      DO 4 I=1,37
      B2(I)=B14(I)
      R3(I) = R15(I)
      DO 10022 L=1,35
      N1=37+L
      N2=37-L
      B2 (N1) = B2 (N2)
10022 B3(N1)=B3(N2)
      C2=2./72.
      NP=72
      NH=36
      XNP=NP
      S= C . C
      SL = 0.0
      DO 20 I=1.NP
      S=S+82(I)
   23 SL=SL+B3(I)
       B(1,9)=S/XNP
       R(1,10) = SL/XNP
      DO 40 I=1.NH
      S=0.0
      SL = G . 0
      DO 30 J=1,NP
       K=(J-1)*I
       K=MCD (K,72)+1
       S=S+B2(J) *C3(K)
      SL=SL+83(J)*C$(K)
   33
       L=I+1
       B(L,9)=S*C2
       B(L,10) = SL *C2
      CPHI = ((1.+B(1.3)) - 2.+B(N.3))/(1.-B(1.3))
       IF(CPHI.LT.-1.) CPHI=-1.
       IF(CPHI.GT.1.) CPHI=1.
       3(N,11) = ACOS(CPHI)
       R(1,11)=.0
       B(JC,11)=3.1415927
      CON3=3.1415927
      00 10025 I=1, JC
      SMP=SIN(FLOAT(I)*B(N.11))
      CMP=COS(FLOAT(I) +B(N,11))
       IF (N-1)10027, 10026, 10027
13027 IF (N-JC) 10028, 10029, 10028
10026 AZN=. C
       PZN=.0
      N2=I+1
      00 20026 K=1.N2
       IF (K-JC) 10070, 10070, 20026
10070 AZN=AZN+CON3*FLOAT(I)*B(K,9)
       BZN=BZN+CON3*FLOAT(I)*B(K,10)
29026 CONTINUE
      AZL=. 0
      BZL=.0
       IF (N2-JC) 10060, 10030, 10030
10060 N1=N2+1
      DO 20036 M=N1.JC
      L=M-1
```

```
AZL=A7L+FLOAT(L) +B(H,9)+CON3
20036 RZL=BZL+FLOAT (L) *B(M,10) *CON3
      GO TO 10030
10029 AZN=.0
      BZN=.0
      N2=I+1
      DO 20029 K=1, N2
      CKP=COS(FLGAT(K-1)+B(N,11))
      IF(K-JC) 10071, 10071, 20029
10071 AZN=AZN-CON3*CMP*FLOAT(I)*B(K,9)*CKP
      BZN=BZN-CON3*CMP*FLOAT(I)*8(K,1G)*CKP
20029 CONTINUE
      AZL=.0
      8ZL=.0
      IF (N2-JC) 10061, 10030, 10030
10061 N1=N2+1
      DO 20039 M=N1.JC
      L=M-1
      CKP=COS(FLOAT(L) *B(N,11))
      AZL=AZL-CON3*CMP*FLOAT(L)*B(M,9)*CKP
20039 P7L=BZL-CON3*CMP*FLOAT(L)*B(M,1G)*CKP
      GO TO 10030
13028 AZN=.3
      PZN=. C
      CON1=3.1415927/SIN(B(N.11))
      N2=I+1
      DO 20328 K=1.N2
      CKP=COS(FLOAT(K-1)*B(N,11))
      IF (K-JC) 10072, 10072, 20C28
19372 AZN=AZN+CON1*SMP*B(K,9)*CKP
      BZN=BZN+CON1*SMP*B(K,10)*CKP
20028 CONTINUE
      AZL=. ]
      BZL=.0
      IF (N2-JC) 10062,10030,1003C
13062 N1=N2+1
      70 26338 M=N1,JC
      L=M-1
      SKP=SIN(FLOAT(L) *B(N.11))
      AZL=AZL+CON1*CMP*B(M,9)*SKP
20638 PZL=EZL+CON1*CMP*B(M,1C)*SKP
10030 AZ(I,N)=AZN+AZL
      9H(I,N) = BZN+3ZL
10C25 CONTINUE
      00 10031 I=1.JC
      DO 10031 J=1, JC
      CC(I,1) = (1.-3(1.3)) + (B(I.5)/B(I.8)-1.) + P(I.4)
10031 C(I,J)=FLOAT(J)*(AZ(J,I)+B(I,5)*BH(J,I))
      CALL SIMEO(JC,C,CC)
      00 10335 I=1.JC
      8(I,12)=.G
      9(1,13)=.6
      B(I.14)=.0
      00 10035J=1,JC
      B(I,12)=B(I,12)+FLOAT(J)+CC(J,1)+AZ(J,I)/3(I,4)+(1,/(1,-B(1,3)))
      B(I,13)=B(I,13)+FLOAT(J)*CC(J,1)*BH(J,I)/B(I,4)*(1./(1.-B(1.3)))
10335 B(I,14)=CC(J,1)*SIN(FLOAT(J)*B(I,11))/B(I,4)+B(I,14)
```

and the second

```
B(JC,14)=.0
20001 00 10038 I=1,JC
      B(I,15)=(B(I,14)+B(I,4)+(B(I,4)/B(I,6)-R(I,13)+B(I,4)))+4,+B(9,
      B(I,16)=B(I,15)*B(I.4)
      B(I,17)=(B(I,4)/B(I,8)*B(I,14)*B(I,4)*(B(I,4)+B(I,12)*B(I,4)))*4.
     1*8(9,2)
      BTT=ATAN(B(I,8))
      BT I = AT AN (B(1,5))
      P(I,18)=2.+3,1415927+B(I,14)+COS(BTI)/(1./B(I,5)-B(I,13))
      B(I,19)=64.31*(B(4.2)-B(I,3)*9(3.2) /2.)*(SIN(RTT)/(B(I,4)*9(7.2)
     1*COS(BTI-BTT)))**2
      IF(I-1)9.9.6
      IF(I-JC)10.9.9
6
      B(I,20)=.0
9
      R(I,21)=.0
      GO TO 11
      CONTINUE
10
      B(I,2C) = (1.-B(I,7)+B(I,6)/B(I,18)+B(I,5))+P(I,15)
      R(I,21)=(1.+B(I,7)*B(I,6)/B(I,18)/B(I,5))*B(I,17)
      CONTINUE
11
      R(I,22)=B(I,20)*B(I,4)
13:38 CONTINUE
       PP1=SIMPUN(8(1.3).8(1.16).JC)
       PP2=SIMPUN(B(1,3),B(1,15),JC)
       PP3=SIMPUN(B(1,3),B(1,17),JC)
      PP4=PP1/PP3
      PP5=PP2/PP3
       PP6=SIMPUN(B(1,3),B(1,22),JC)
       PP7=SIMPUN(B(1,3),8(1,20),JC)
       PP8=SIMPUN(B(1,3),B(1,21),JC)
      PP9=PP6/PP8
      PP1C=PP7/PP8
      70 16039 I=1.JC
      JCI=JC+1-I
      DO 10040 L=1.JC
      XO = B(L,3) - B(I,3)
      IF(XO) 860,850,871
860
      XO=C.0
      GO TO 861
871
      CONTINUE
      XO = B(L \cdot 3) - B(I \cdot 3)
      CONTINUE
861
      B2(L) = X0 + B(L, 20)
10040 B3(L)=X0/B(L,3)*B(L,21)
      IF (JCI-2) 10041,10041,10059
10041 B(I,25)=.6
      R(I.26)=.0
      B(I,27)=.0
      P(I,28)=.0
      GO TO 10039
13359 3(1,25)=SIMPUN(B(1,3),B(1,15),JC)+B(8,2)+3(3,2)++3+3,1415927+R(7,2
     1)**2 /(16.*B(9.2))
      B(I,26)=SIMPUN(B(1,3),B(1,16),JC)*B(8,2)*B(3,2)**2*B(7,2)**3/(16.*
     1 8(5.2)*8(9.2))
      BTI=ATAN(B(I,5))
      SBI=SIN(BTI)
```

κ.

```
CBI=COS(BTI)
      B(1,27)=B(1,25)*CBI+B(1,26)*SBI
      B(I,28)=B(I,25)+SBI-B(I,26)+CBI
10039 CONTINUE
      00 206 I=1,JC
      B(I,12)=B(I,4, 3B(I,12)
      B(I,13)=B(I,4)+B(I,13)
236
      B(I,14)=B(I,4)+B(I,14)
       IF(JEE.GT.0) GO TO 10081
      H15(181) = PP1G
      DO 16649 I=1.JC
      IF(B(I,6)) 702,702,703
792
      CC1=6.0
      GO TO 704
733
      CC1=B(I,18)/3(I,6)
734
      CONTINUE
      CL1(I)=CC1
      CC2=1.54*CC1
     CC3=.0679*CC1
      IF(CC1) 701,700,701
700
      CC4=[.[
      H(I,38)=CC4
      GO TO 52
      CC4=8(I,7)/CC1
      B(I,38) = CC4
   52 CCONF(I)=CC1
      CCTWO(I)=CC2
      CCTHR(I) = CC3
                             SURROUTINE SIMEO(JC,C,CC)
10049 CCFOR(I) = CC4
10081 CONTINUE
                         ---- NEW VERSION BY JACK DISKIN -- X71450
20041 RETURN
      END
                              DIMENSION BA (12) . C(12,12) . CC(12,12)
                              MPD=JC
                              JCI=JC+1
                              CC(JCI,1)=0.
                              DO 80 I=1.JC
                              C(I,JCI) = -CC(I,1)
                              00 78 J=2,JCI
                          78 CC(I.J)=G.
                              CC(I,1) = -C(1,I+1)/C(1,1)
                          83
                              CC(I,I+1)=1.
                              DO 89 K=2,JC
                              DO 86 I=1,MPD
                              BA(I)=0.
                              DO 86 J=1,JCI
                              BA(I) = BA(I) + C(K,J) + CC(I,J)
                              MPD=MPD-1
                              DO 89 J=1,JCI
                              Z=CC(1,J)/B4(1)
                              DO 89 I=1, MPD
                              CC(I,J) = -BA(I+1) + Z + CC(I+1,J)
                              DO 99 J=1.JCI
                          99 CC(J,1)=CC(1,J)
                              RETURN
                              END
```

-

TO WASHINGTON TO THE

SUPROUTINE DISCOT (XA,ZA,TABX,TABY,TABZ,NC,NY,NZ,ANS)
DIMENSION TABX(1),TABY(1),TABZ(1),NPX(37),NPY(37),YY(37)

C HERGE OF DISCOT, DISSER, AND LAGRAN USING BUILT IN CONSTRAINTS

```
NL=2
    IF(NC.EQ.-44) NL=3
   ID=2*NL-2
    NUPP=NY-NL
    DO 15 II=NL, NUPP
   NL OC = II
    IF( TARX(II).GE.XA) GO TO 20
15 CONTINUE
    NUPP=NUPP-NL+2
    GO TO 99
23 NUPP=NLOC-NL+1
    NU=NUPP+ID
    DO 25 JJ=NUPP.NU
   LL=SION
    IF( TABX(JJ) .EQ. TABX(JJ+1) ) GO TO 30
25 CONTINUE
    GO TO 99
3J NUPP=NDIS-ID
    IF (TABX (NDIS) . LT. XA) NUPP=NDIS+1
99 SUM=C.C
    NN=NUPP
    N=NN+ID
    DO 3 I=NN.N
    PROC=TARY(I)
    00 2 J=NN, N
    A=TABX(I)-TABX(J)
    IF(A.EQ.O.) GO TO 2
    B = (XA - TABX(J))/A
   PROD=PROD*B
 2 CONTINUE
 3 SUM=SUM+PROD
   ANS=SUM
   RETURN
   END
```

```
SUBROUTINE STRESS (AZZ, AREA, XBAR, YBAR, AYFX), 4 YEYO, EHXO, EHYO, EHTB, FM
     108.STRMAX.RAK.RAKOP)
      DIMENSION CHORD(11), THICKNS(11), CAMBER(11), PITCH(11), SKEWP(11)
     1,XI(11),BT(11)
      COMMON/CHEIGHT/XI.CHORD.THICKNS.CAMBER.PITCH.SKEHR.DIAM.ZZ.DEN
     1, RAKE, PI, PP7, PP8, PP9, PP11, EWAKE, VS, RPS, SIGMA, EAR, BT, P, PD0
         ,FWDDIAH,AFTDIAH,HUBLEN,FDBOPE,ADBORE,DTSRFFL
       COMMON /UNITS/ SI,UI,UO
       DIMENSION RAK(11)
       DIMENSION AZZ(11,38)
      DIMENSION XE(20)
      DIMENSION HA(20), HA1(20), PHI(20), PHI2(20), VU1(20), T1(20), O1(20), CP
     1HI (2C), SPHI (20), X4 (20), AE (20), PE (20), PE (20)
      DIMENSION A(13),8(13),C(13),D(13),E(13),F(13),G(13),H(13),O(13).
     xP(13),0(13),R(13),S(13),T(13),U(13),V(13),W(13),X(13),Y(13),Z(13)
      DIMENSION R1(7,16), S1(7,16)
      DIMENSION CENTST (7), CENTMO (7)
      DIMENSION FMX(7), TX(7), FMMX(13), YTX(13), SYFW(13), XU(10)
      DIMENSION VOL (7), CENT4 (7), A1 (7), A2 (7), X2RAP (7), CFNTS2 (7), B2 (13),
                 F5(13), P2(13), O2(13), AA(10), B9(10), CENT42(7), CENTMS(7),
     X
                 TSKEW1 (7), TSKEW2 (7), ASKEW1 (7), ASKEW2 (7)
     X
      DIMENSION V2(13), D2(13), F2(13)
      DIMENSION ALPHIA (7)
      DIMENSION XMT(10), XL(10), XM(10), XT(10), STM(10), STLT(10)
      DIMENSION AREA(7).XBAR(7).YBAR(7).AYEXO(7).4YEYO(7).FMXO(7).EMYO(7
     1), EMTB(7), EMGB(7), STRMAX(7)
       DATA AF, AT, ATX, ATF, ATFF, AFXX, ATTT, GRAV/1.40395, .72099, .341, .58632
     2 ,.5:321,.41733,.12714,32.14 /
C
С
    * * * * SIMPLE BEAM APPROXIMATION INCLUDING
    * * * * RENDING, CENTRIFUGAL AND TORSIONAL FORCES.
       PI=3.1415926536
       ATXX=.202084
      NN=1
   18 FCPMAT (8F9.6)
      ZZ=AZZ(9,2)
      VS=AZZ (7,2)
      DIAM=AZZ(3.2)
      DIA=CIAM
      VEL=60.0*AZZ(5,2)
      ISEC=0
      \Delta ZZ(1C,20)=0.0
      AZZ(10,21) = BT(11)
      AZZ(13.22) = 0.0
      90 1606 I=1,10
      D(I) = AZZ(I,2G)
      T(I) = AZZ(I, 21)
      E(I) = AZZ(I,22)
      C(I) = A77(I,23) *DIA*12.0
       SKEW(I)=C(I)/2.0-AZZ(I,24)*DIA*12.C/2.C
      XU(I) = AZZ(I,19)
1000
      00 3i J=2,7
   30 AZZ(J,25) = AZZ(J+1,25)
      DO 1001 I=1.7
       K=14-I
        J=K/13
       U(I) = .1 + (I - 2) + .85 + J + (3 - I)
```

```
U(K)=1-U(I)
     TX(I)=AZZ(I,25)*DIA*12.0
      FHX(I)=.0679*DIA*AZZ(I.18)
      YBAR(I) = . 0679 + DIA + AZZ(I, 18)
     FMX(I)=0.0
      A(I)=C(I)+TX(I)+AT
      X(I)=C(I)+ATX/AT
      Y(I)=FMX(I)*ATF/AT/2.
      G(I)=C(I)+Tx(I)+(FMX(I)++2+ATFF+TX(I)++2+ATTT/3.)-A(I)+Y(I)+Y(I)
      H(I) = C(I) + +3 + T \times (I) + AT \times X - A(I) + \times (I) + X(I)
1001 CONTINUE
 CALCULATE THE VALUE OF F1 FROM INFUT VALUES.
  26 F1=1.9905*(DIAH/2.0)**3*VS**2*PI*6.Q/ZZ
     FF1=F1
      IF(PDO.GT.O.) GO TO 52
     no 215 I=1.10
 215 P(I) = T(I)*PI*XU(I)
 52 NN=NN+1
      CALCULATIONS FOR CONSTANTS USED IN DETERMINATION OF TOPQUE AND THRUST
  CALCULATIONS OF BENDING MOMENTS FROM THRUST AND TORQUE.
     90 360 I5=1.2
     F1=FF1
     PAD1=DIAM*0.5*12.0
     IF (IS-2) 55,56,56
  55 00 210 I=1.10
     PE (I) = P(I)
      AE(I)=D(I)*(1-E(I)*T(I))
     B(I) = D(I) + (E(I) + T(I))
     9E(I)=B(I)
      T(I)=P(I)/(PI*XU(I))
     PHI(I)=ATAN(T(I))
     CPHI(I)=COS(PHI(I))
     SPHI(I)=SIN(PHI(I))
     HA(I)=(SKEW(I))+(CPHI(I)/(RAD1+XU(I)))
     YU1(I) = XU(I) COS(HA(I))
     HA1(I)=C(I)/2.
 213 IF (SKEW(I).EQ. HA1(I)) XU1(I) = XU(I)
     GO TO 55
  56 00 57 I=1.10
     P(I) = Pi(I)
  57 B(I)=BE(I)
  58 F1=F1/6C.0
     DO 69 I=1,7
     I1=I
     IF (15-2) 62,63,63
  62 X0=XU1(I)
     GO TO 64
  63 X0=XU(I)
  64 I3=0
     00 68 I2=I1,10
     13=13+1
     IF (15-2) 65.66.66
  65 \times 4(I3) = (XU1(I2) - X0)
     XE(I3) = XU(I2)
     GO TO 67
  66 \times 4(13) = (\times U(12) - \times O)
```

```
XF(13) = XU(12)
   67 T1 (I3) = X4(I3) * AE(I2)
   68 Q1([3)=X4([3) #9([2)
      T(I) = SIMPUN(XE, T1, I3)
      0(I)=SIMPUN(XE,Q1,I3)
      T(I)=T(I)*FF1
   69 Q(I)=Q(I)*FF1
   LOOP WHICH APPROXIMATES STRESS OUF TO TOPSION RESULTING
     FROM SKEW
                             XHT(I) = MOHENT DIF TO LIFT
      XT(I) = LIFT FORCE .
С
C.
      PO 111 I=1.7
      IF (15-2) 820.83C.83C
  923 XMT(I)=0.60
      YK=1.9905*(DIAH/2.0)**2.*VS**2.*PI/(2.0**77)
      XA=C(I)/2.0
      XH=TX(1)/2.0
      DO 222 J=I,9
      XL (J) = ABS (SKEH (J) -. 45*C(J))
      XL(J)=XL(J)-ABS(SKEH(I)-.5*C(I))
       XT(J) =AE(J)*.1*XK/(COS(PHI(J)+E(J)))
      (U) JX = (U) TX = (U) HX
      (L)MX + (I)TMX = (I)TMX
  252 CONTINUE
      STM(I) = XMT(I) #2.[/(PI#XA#X9##2.)
      SYLT(I)=XHT(I)+2.0/(PI+X9+XA++2.0)
      GO TO 840
  A30 STM(I)=0.00
      STLT(I)=C.CC
840
      CONTINUE
  111 CONTINUE
  553 FOPMAT (1HG, 29X, 1HX, 10X, 4HTAUM, 12X, 5HTAULF, 13Y, 7HM SUB T)
  503 FOPMAT (14,20x,4F14.6)
  600 FORMAT (1H1,50X,32HSHEAPING STRESSES DUE TO TORSION)
r,
C
   LOOP WHICH CALCULATES VOL. OF SECTIONS.
      VOLTOT=0.0
      JO 241 I=1.6
       VOL(I)=A(I)*(XU(I+1)-XU(I))*3IAM/285.
  241 VOLTOT=VOLTOT+VOL(I)
       VOL (7) = A (7) * (1-XU(7)) *0 IAM/576.
  243 VOLTGT=VOLTGT+VOL (7)
  LOOP WHICH CALCULATES CENTRIFUGAL FORCE AND STRISS.
       IF (15-2) 244,246,246
  244 00 245 I=1,6
  245 A1(I)=XU1(I)+((XU1(I+1)-XU1(I))/2.6)
       A1(7)=XU1(7)+((XU1(10)-XU1(7))/2.9)
       GO TO 248
  246 CO 247 I=1.6
  247 A1(I)=XU(I)+((XU(I+1)-XU(I))/2.C)
       A1(7)=XU(7)+((XU(10)-XU(7))/2.0)
C LOUP TO TRANSFER CONSTANTS FOR DETERMINING X2PAR.
  248 DO 236 I=1.7
       X2BAR(I) = 0.0
  236 \text{ A2(I)} = \text{A1(I)} + \text{VOL(I)}
```

```
LOOP TO CALCULATE RADIAL CENTROID ( X2BAR ).
      DO 251 I=1.7
      X2RAR(I) = ( (A2(1)+A2(2)+A2(3)+A2(4)+A2(5)+A2(6)+A2(7)) / VOLTOT )
                 * (DIAH/2.0)
      A2(I) = 0.0
C UNCORRECTED FORCE AND STRESS FOR OUTPUT OF ANSWERS WITHOUT THE EFFECT
C RAKE AND SKEW TAKEN INTO CONSIDERATION.
  264 CENT4(I) = DEN#4.0*PI*#2*VEL**2*VOLTOT*X2BAR(I)/(3600.0*GRAV)
      CENTST(I) = CENT4(I) / A(I)
  251 VOLTOT = VOLTOT - VOL(I)
C LOOKING AT THE EFFECTS OF RAKE AND SKEW IN THE PROPELLER.
      DO 263 I=1.10
       AA(I)=PI*XU(I)
  263 88(I) = SQRT(AA(I) ++2+P(I) ++2)
      DO 267 I=1.7
      TSKEH1(I) = (C(I)/2.0 - SKEH(I)) + AA(I)/9B(I)
      KK = 1
  146 IF (X2BAR(I)-XU(KK) *DIAM/2.0) 149,149,151
  151 KK= KK+1
      IF (KK-10)146,149,149
  149 TSKEH2(T) = (C(KK)/2.0 - SKEH(KK)) + AA(KK)/BB(KK)
      ALPHIA(I) = ATAN(TSKEW2(I)/(X2BAR(I) # 12.0) )
      CENT42(I) = CENT4(I)*COS(ALPHIA(I))
      CENTHS(I) = CENT42(I)*(TSKEW2(I) - TSKEW1(I))
      CENTS2(I) = CENT42(I) / A(I)
      \Delta SKEH1(I) = (TSKEH1(I) + P(I) / AA(I)) + RAK(I)
      ASKEW2(I)=(TSKEW2(I)*P(I)/AA(I)) + RAK(KK)
   77 CONTINUE
  267 CENTHO(I) = CENT42(I) * ( ASKEW2(I) - ASKEW1(I) )
      DO 281 I=1,7
      D(I) = \{(I) + CENTHO(I)\} + AA(I) + (Q(I) - CENTMS(I)\} + P(I)\} + BB(I)
      E(I) = ((I(I) + CENTMO(I)) + P(I) - (Q(I) - CENTMO(I)) + AQ(I)) / SB(I)
      D2(I) = (T(I) + AA(I) + Q(I) + P(I)) / BB(I)
  281 E2(I) = (T(I) *P(I) - Q(I) *AA(I)) / BB(I)
  PROGRAM CONTINUES.
       00 350 I=1.7
       K=1
       S(1)=0
       Z(K) = U(7)
       F2=FMX(I)+.4962*TX(I)-Y(I)
      DO 300 L=1,K
       B(L)=((C(I)*7(L)-X(I))*E(I))/H(I)+F2*D(I)/G(I)+CENTS2(I)
       92(L)=((C(I)*Z(L)-X(I))*E2(I))/H(I)*F2*92(I)/G(I)*CENTST(I)
       V2(L) = ABS(B2(L))
  300 V(L) = ABS (B(L))
      F3=V(1)
      F4 = V2(1)
      F(I) = B(1)
      F5(I) = B2(1)
      DO 326 L=1.K
      F(I)=V(L)
  320 F5(1)=V2(L)
      F5(I) = 0.0
  349 P(I) = -x(I) + E(I) / H(I) - (C(I) + S(1) - Y(I)) + D(I) / G(I) + CENTS2 (I)
      P2([]=-X([)+E2([)/H([)-(C([)+S(1)-Y([))+D2([)/G([)+CENTST([)
       02(I)=(C(I)-X(I))+E2(I)/H(I)-(-Y(I))+D2(I)/G(I)+CENTST(I)
  350 O(I)=(C(I)-X(I))*E(I)/H(I)-(-Y(I))*D(I)/G(I)+GENTS2 (I)
```

۲۲,

```
00 160 I=1.7
    AREA(I)=A(I)
    XBAR(I)=X(I)
    AYEXO(I) =G(I)
    (I) 0=(I) 0x M3
    AYEYC(I)=H(I)
    FMYO(I)=E(I)
    STRHAX(I)=AZZ(I,11)
    EMTR(I)=T(I)
 103 EMOB(I)=Q(I)
     IF(I5-2) 351,352,352
     CONTINUE
351
     CALL PRNSTR (F.P.O.STM.STLT.AZ7)
     C
     GO TO 360
  352 NUMMY=DUMMY
     NN = NN+1
 360 NN=NY+1
     RETURN
      END
```

```
SUBROUTINE PRISTR (XX, YY, ZZ, S1, S2, AZZ)
       DIMENSION AZZ(11,38)
      DIMENSION XX(1 C), YY(10), ZZ(10), S1(10), S?(10)
C
C
      CALCULATION OF PRINCIPLE STRESSES
      DUE TO TORSION AND BENDING.
C
C
      DIMENSION XIZ(10),XI3(10)
      DO 333 K=1.7
      XI2(K) = -S1(K) * S1(K)
      XI3(K) = -S2(K) + S2(K)
  333 CONTINUE
      XXX=C.1
      00 444 L=1,7
      XXX=XXX+0.1
      00 555 M=1.3
      IF (M-2)72,22,33
   72 XI1=XX(L)
      DO=(ABS(XI1)) **2.0
      XD=00-4. *XI2(L)
      CC=(ABS(XD))**.5
      GO TO 44
   22 XI1=YY(L)
      GO TO 66
   33 XI1=ZZ(L)
   66 DD=(ABS(XI1)) **2.0
      X0=00-4.*XI3(L)
      CC=(A9S(XD))**.5
   44 SIGMA1=(XI1+CC)/2.0
      SIGMA2=(XI1-00)/2.0
      AZZ(L, M) = XXX
      AZZ(L, M+1C) =SIGMA1
555
      AZZ(L, M+20)=SIGMA2
  444 CONTINUE
  70J FORMAT (1H, 20X, F12.2, 6X, 2E20.6)
  95) FORMAT (1HC, 33x, 1Hx, 12x, 6HSIGMA1, 10x, 6HSIGMA?)
  860 FORMAT (140.2X.99HSTRESSES AT EACH X STATION APE GIVEN IN THE FOLLO
     XWING OPDER* MIDCHORD, LEADING FOGE, TRAILING EDGE. )
      PETURN
      END
```

```
FUNCTION SIMPUN(X.Y.N)
C
      FORTRAN IV FUNCTION FOR SIMPSONS RULE INTEGRATION
       ARBITRARY NO. AND LENGTH INTERVALS K. MEALS NSRDC CODE 842 10-5-67
      DIMENSION X(2).Y(2)
      IF(N-2) 7, 5,4
      S = (Y(1) + Y(2)) + (X(2) - X(1))/2.
      GO TO 6
    4 M=N-1
    8 IF(H-2) 9.10.11
   11 M=M-2
      GO TO 8
    9 S=(X(2)-X(1))/6.*(Y(1)*(3.-(X(2)-X(1))/(X(3)-X(1)))+Y(2)*(3.+(X(2)
     1-X(1))/(X(3)-X(2)))-Y(3)+(((X(2)-X(1))++2)/((X(3)-X(1))+(X(3)-X(2)
     21111
      L=3
      GO TO 12
   19 S=9.
      F=5
   12 M=N-1
      DO 1 K=L.M.2
      IF (ABS(X(K-1)-X(1)).GE.ABS(X(K)-X(1))) GO TO 3
      IF (APS (X(K+1)-X(1)).GT.ABS(X(K)-X(1))) GO TO 1
    3 WRITE (6,2) K, X(K-1), Y(K-1), X(K), Y(K), N
    2 FORMAT(* NON MONOTONE X(SIMPUN)*.14.2X.1P2512.4.5X.2612.4.5X.14)
  7
      S=0.
      GO TO 6
    1 S=S+(X(K+1)-X(K-1))/6.*(Y(K-1)*(3.-(X(K+1)-X(K-1))/(X(K)-X(K-1)))+
     1 (Y (K) * (1 .+ (X (K+1) -X (K-1) ) / (X (K) -X (K-1) ) + (X (K) -X (K-1) ) / (X (K+1) -X (K)
     1))+(Y(K+1)*(2.-(X(K)-X(K-1))/(X(K+1)-X(K)))))
    6 SIMPUN=S
      RETURN
      END
```

Same

```
WS1=PI*DEN*VOL(AFTRAD, HUBRAD, DISREFL)
       WB1=PI*DEN*VOL(ARBORE.HRBORE.DISREFL)
       WFR1=WS1-W81
       IF (HRBORE.EQ. ARBORE) HRBORE=ARBORE+.00000001
       AFM×HS1+CGR(AFTRAD, HUBRAD, DISREFL)-HB1+CGR(ARBOPE, HRBCRE, DISPEFL)
       DS=HUBLEN-DISREFL
       WS2=PI*DEN*VOL(HU9RAD.FWDRAD.DS)
       W82=PI*DEN*VOL(HRBORE,FRBORE,DS)
       WFR2=WS2-WB2
       FWH=DISREFL+WFR2+WSZ+CGR(HUBRAD,FWDRAD,DS)
       IF (FRBORE.E3. HRBORE) FRBORE * HRBORE +. 00000101
       FWH=FWH-WB2*CGR(HRBORE, FRBORE, DS)
       WEIGHTH=WFR1+WFR2
       CENGRVH= (AFM+FWH)/WEIGHTH
      S0S CT 09
  203 WEIGHTH=PI*HUBOIAM**2*HUBLEN*DFN/4.
  202 CONTINUE
         WEIGHT OF THE PROPELLER
      WEIGHTP=WEIGHTB+WEIGHTH
C
         ****CENTER OF GRAVITY CALCULATION****
      00 21 I=1.JC
   20 DISTHF(I)=CNSTNT2*CAMBER(I)*COS(PITCH(I))+CNSTNT3*CHORD(I)
     1 *SIN(PITCH(I)) +DISREFL
         THE EFFECT OF RAKE AND SKEW ARE ADDED TO THE DISTANCE OF THE CE
C
C
         GRAVITY FROM THE HUB FACE FOR EACH SECTION.
      DO 30 I=1.JC
      DISTHF(I)=DISTHF(I)-SKEWR(I)+X(I)/2.#DIAM+TAN(PITCH(I))-PAK(I)/12.
   35 A(I)=CHORD(I) * THICKNS(I) * DISTHF(I)
      PSA2=SIMPUN(X,A,JC)
      CENGPV3=BSA2/BSA1
      CENGRY8=DISREFL-CENGRY3
C
         CENTER OF GRAVITY CONSIDERING RAKE AND SKEW
      CFNGPV1=(WEIGHTB*CENGRV3+WEIGHTH*CENGRVH)/WEIGHTP
      CENGPVF=DISREFL-CENGRV1
      IF (HUB.EQ.9.) GO TO 250
       CP=PI *DEN*14.4
       PMA=DISREFL*PMFR (HUBRAD, AFTPAD)
       PHF=DS*PHFR(FWDRAD, HUBRAD)
       PMB=HUBLEN*PMFR (FRBORE, ARBORE)
       PHHC= CP*(PMA+PHF-PMB)
      GO TO 251
  250 PMHC=WEIGHTH*HUBRAD**2*72
  251 CONTINUE
C
         ****RESULTS OUTPUT***
       SLF=.3048
       UB=WEIGHTB
       UP=WEIGHTP
       CFL=CENGRVF/DIAM
       CBL=CFNGRVB/DIAM
       BA=HURLEN/DIAH
       BB=FWDDIAM/DIAM
       BC=AFTDIAM/DIAM
       BD=DISREFL/DIAM
       BE=HUBDIAM/DIAM
```

```
BF=FDBORE/DIAM
       BG=ADRORE/DIAM
       SW=UFE
       IF(UO.NE.SI) GO TO 531
       SH=HFS
       U%=U3*4.448222
       !IF=UP*4-448222
  531 PRINT 164, SHOUB, ATH, BTH, SHOUP, CFL,
                                                SBL
       IF(HUP.EQ.O.) GO TO 55
       PRINT 106.
                    8A.88.8C.8D.RE.3F.8G
       GO TO 53
   55 CONTINUE
       PRINT 11C.
                    BE, BA, BD
   53 CONTINUE
         MINIMUM EXPANDED AREA PATIO CALCULATIONS
С
      AJS=V3/(RPS*DIAM)
      AJA=WAKE *AJS
      AKT=PI*CTS*AJS**2/8.
      AKQ=CPS*4JS**3/16.
      EARMIN=(2.6+G.6+ZZ)+AKT/(SIGMA7+(AJA++2+(.7+PI)++2))+.15
      PRINT 105.EARMIN.AJS.AJA.AKT.AKQ.
  134 FORMAT( //23X, *WEIGHT OF BLADES* , A5, *= *, F15, 4//20X, *WEIGHT OF P
                                    ,45,*=*
                                              .F15.4//20X.*CFNTER OF GRA
     1ROP (BLADES + #2A6 + HUB) #
     2VITY OF PROP REFERENCED FROM MIDCHORD OF ROOT SECTION (- FWD, + AF
                 .F9.6//20X. *CENTER OF GRAVITY OF RLADES REFERENCED FROM
     31)/0=*
     4 MIDCHORD OF ROOT SECTION (- FHD, + AFT)/7=*
                                                       ,F9.51
  105 FORMAT(/20X.*KELLERS MINIMUM EAR=*.E1C.4
                                      JS=*,E1C.4//21X,*ADVANCE COFFF
                                                                        V (
     1//20x + *SPEED COEFF
                           V/(ND)
                    JA=*.E1G.4//20X.*DESIGN THOUST COFFF
     21-WTT)/(NO)
     31G.4//20X,*TORQUE COEFF
                                 KQ=*,E10.4//
     4 2CX.*PROPULSIVE EFFICIENCY FTAD=*,E11.4)
  113 FORMAT(/2CX,*HUB DIMENSIONS/D*, 8X ,* HUB DIAM =*F9.4/47X,*HUB L
     16NGTH =* .F9.4/47X, *MIDCHORD OF POOT SECTION TO AFT FND OF HU3 =* .F
     29.41
  103 FOPMAT (6F8.4)
  107 FORMAT( //20X,*WEIGHT OF BLADES* ,A5,*=*, F15.4//20X,*WFIGHT OF P
     1ROP (BLANES + TAPERED HUB) + ,A5, +=+,F15.4
                                                   //20x, *CENTER OF GRA
     2VITY OF PROP REFERENCED FROM MIDCHORD OF ROOT SECTION (- FWD. + AF
                 .F9.4//20x. *CENTER OF GRAVITY OF PLADES PEFERENCED FROM
     4 MIDCHORD OF POCT SECTION (- FWD, + AFT)/)=+
                                                       ,F9.4)
  198 FORMAT (/20X.*HUB DIMENSIONS/D*
                                        .11x, *LENGTH=*, F9.4/47x, *FWD DIA
```

1M=+,F9.4/47X, #AFT DIAM=+,F9.4/47X, #MIDCHORD OF POOT SECTION TO AFT 2 END OF HUB=*,F9.4/47X, #HU9 DIAM AT MIDCHORD OF POOT SECTION=+,F9.

34/47X, *FWD DIAM OF BORE=*, F9.4/47X, *AFT DIAM OF 30RC=*, F9.4)

RETURN END

REFERENCES

- Lerbs, H.W., "Moderately Loaded Propellers with a Finite Number of Blades and an Arbitrary Distribution of Circulation," Transactions of the Society of Naval Architects and Marine Engineers, Vol. 60, p 73-117, 1952
- 2. Morgan, W. B. and Wrench, J.W., Jr., "Some Computational Aspects of Propeller Design," Methods in Computational Physics, Vol. 4, Academic Press Inc., New York, p 301-331, 1965
- 3. Morgan, W. B., Silovic, V., and Denny S. B.,
 "Propeller Lifting-Surface Corrections," Transactions of the
 Society of Naval Architects and Marine Engineers, Vol. 76,
 p 309-347, 1968
- Boswell, R.J., "Design, Cavitation Performance and Open-Water Performance of a Series of Research Skewed Propellers," Naval Ship Research and Development Center Report 3339, March 1971
- 5. Haskins, E.W., "Calculations of Design Data for Moderately Loaded Marine Propellers by Means of Induction Factors," Naval Ship Research and Development Center Report 2380, September 1967
- 6. Eckhart, M. K. and Morgan, W.B., "A Propeller Design Method," Transactions of the Society of Naval Architects and Marine Engineers, Vol. 63, p 305-370, 1955
- 7. Burrill, L.C., and Emerson, A., "Propeller Cavitation: Further Tests on 16-Inch Program Models in the Kings College Cavitation Tunnel," Transaction of the North Eact Coast Institution of Engineers and Ship Burguers, Vol. 78, p 295-320, 1963-64
- 8. Brockett, T., "Minimum Pressure Envelopes for Modified NACA-66 Sections with NACA a=0.8 Camber and BUSHIPS Type I and Type II, Sections," David Taylor Model Basin Report 1780, 1966
- 9. Keller, J. Auf'm, "Enige aspectem bij het ontwerpen van Scheepsschroeven," Schip en Werk, No. 24, p 658-662, 1966
- 10. Cox, G.G. and Morgan, W.B., "The Use of Theory in Propeller Design," Marine Technology, Vol. 9, No. 4, p 419-429, October 1972

- 11. Cumming, R.A., <u>Dictionary of Ship Hydrodynamics Propeller Section</u>, 14th International Towing Tank Conference 1975, Report of Presentation Committee, Appendix VII
- 12. Tsakonas, S., Breslin, J., and Miller, M., "Correlation and Application of an Unsteady Flow Theory for Propeller Forces," Transactions of the Society of Naval Architects and Marine Engineers, Vol. 75, p 158-193, 1967
- 13. Breslin, J.P., "Exciting-Force Operators for Ship Propellers," Journal of Hydronautics, Vol. 5, No. 3, p 85-90, July 1971
- 14. Jacobs, W.K., Mercier, J., and Tsakonas, S., "Theory and Measurements of the Propeller-Induced Vibratory Field,"
 Davidson Laboratory Report SIT-DL-1485, December 1970
- 15. Tasakonas, S., Jacobs, W.P., and Ali, M.P., "An Exact Linear Lifting Surface Theory for Marine Propeller in a Nonuniform Flow Field," Journal of Ship Research, Vol. 17, No. 4, December 1974
- 16. Abbot, Ira H. and Von Doenhoff, Albert E., "Theory of Wing Sections Including a Summary of Airfoil Data," Dover Publication Inc., New York, Library of Congress Catalog No.: 60-1601, 1949
- 17. Hoerner, S.F., "Fluid-Dynamic Drag," Published by the author, Midland Park, New Jersey, 1965
- 18. Lerbs, H.W. and Rader, H.P., "Uber der Auftriebsgradienten von Profilen im Propeller Verband," Schiffstechnik, Vol. 9, No. 48, p 178-180, 1962
- 19. Kerwin, J.E., "The Solution of Propeller Lifting-Surface Problems by Vortex Lattice Methods," Department of the Naval Architecture and Marine Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, 1961
- 20. Kerwin, J.E. and Leopold, R., "Propeller Incidence Correction Due to Blade Thickness," Journal of Ship Research, Vol. 7, No. 2, 1963
- 21. Cheng, H.M., "Hydrodynamic Aspects of Propeller Design Based on Lifting-Surface Theory: Part I Uniform Chordwise Load Distribution," David Taylor Model Basin Report 1802, 1964

- 22. Cheng, H.M., "Hydrodynamic Aspects of Propeller Design Based on Lifting Surface Theory: Part II Arbitrary Chordwise Load Distribution," David Taylor Model Basin Report 1803, 1965
- 23. Kerwin, J.E., "Computer Techniques for Propeller Blade Section Design," Transactions of the Second Lips Propeller Symposium, Drunen, Holland, p 1-31, May 1973
- 24. Hill, J.G., "The Design of Propellers," Transactions of the Society of Naval Architects and Marine Engineers, Vol. 57, p 143-170, 1949
- 25. American Bureau of Shipping, "Rules for Building and Classing Steel Vessels," p 621, 1972.

DTNSRDC ISSUES THREE TYPES OF REPORTS

- (1) DTNSRDC REPORTS, A FORMAL SERIES PUBLISHING INFORMATION OF PERMANENT TECHNICAL VALUE, DESIGNATED BY A SERIAL REPORT NUMBER.
- (2) DEPARTMENTAL REPORTS, A SEMIFORMAL SERIES, RECORDING INFORMATION OF A PRELIMINARY OR TEMPORARY NATURE, OR OF LIMITED INTEREST OR SIGNIFICANCE, CARRYING A DEPARTMENTAL ALPHANUMERIC IDENTIFICATION.
- (3) TECHNICAL MEMORANDA, AN INFORMAL SERIES, USUALLY INTERNAL WORKING PAPERS OR DIRECT REPORTS TO SPONSORS, NUMBERED AS TM SERIES REPORTS; NOT FOR GENERAL DISTRIBUTION.