The real-time pandemic influenza model and its implementation(s)

Paul Birrell

September 4, 2017

Introduction

- Two software packages, obtaining epidemic inference via:
 - MCMC using basic random-walk Metropolis updates.
 - SMC using particle learning (In development).
- In each package, model is implemented with bespoke, standalone C++ code for Bayesian inference from the real-time model.

Additionally...

- R version of the SMC code (Alice to discuss)
 - Parallelised using Rmpi.
 - Runs on BSU cluster.
 - Code slow, many speed-ups possible.
 - Reduced functionality.

Compilation and Running

• Within each package, code can be compiled using the command

Creates two executable files, one 'fast', one debuggable.

• Command line execution (personal preference), e.g.

```
nice -19 ./rtm_gnu > outputfile.txt &
```

What does the code do?

- SEIR model governing transmission.
- Disease model describing disease severity and healthcare seeking behaviours.
- Reporting model.
 Multiple sources of epidemic data, generated over
 - R parallel regions
 - A strata (usually age-groups)
 - T time points (days/weeks).

Input files

Unless specified otherwise, the executable will look for two input files mod_inputs.txt and mod_pars.txt.

mod_inputs.txt

Specification of:

- data structure
- likelihood
- regions (population, data files)
- contact model
- MCMC/SMC control

Input files

Unless specified otherwise, the executable will look for two input files mod_inputs.txt and mod_pars.txt.

mod_pars.txt

Specification of, for each parameter

- initial values (redundant for SMC)
- prior distributions
- dimension
- parameterisation
- proposal parameters

Input files

Unless specified otherwise, the executable will look for two input files mod_inputs.txt and mod_pars.txt.

Changing the source of inputs

To change the names of either of these input files:

In a file names smc_rtm_inputs.txt, set the values of the following variables.

model_parameters: mod_pars_alt.txt
model_inputs: mod_inputs_alt.txt

Would it be preferred if there was the capability to specify these as command line inputs, rather than specified in a .txt file?

Data Structure & Likelihood


```
GP_consultation_flag 1
Hospitalisation_flag 0
Deaths_flag 0
Sero_data_flag 1
Viro_data_flag 1
gp_count_likelihood 1 ## 0 POISSON, 1 FOR NEGATIVE BINOMIAL DATA.
transmission kernel 0 ## 0 FOR THE REED-FROST 1 FOR MASS ACTION.
transmission_time_steps_per_day 2
reporting_time_steps_per_day 2
duration_of_runs_in_days 245
duration_of_previous_runs_in_days 164
num_regions 1
num_age_groups 7
                            Green text indicates new options in SMC code
Sero_likelihood_start_day 75
Sero_likelihood_end_day 245 ## SPECIFY A SUBSET OF THE DATA TO BE
INCLUDED IN LIKELIHOOD.. USEFUL TO AVOID ZEROS.
```

Regions


```
study_region = { regions_used = London, WestMidlands, North, South; regions_population = 119967, 410926, 840309, 989473, 2747554, 1566445, 882256, 68285, 259069, 651598, 730409, 1443924, 1343723, 884837, 227677, 864277, 2217602, 2676783, 5101913, 4823469, 3093895, 224805, 863397, 2251281, 2415331, 5166801, 4927669, 3298357; An R × A array.
```

Regions (cont'd)

MCMC options - notation

- The MCMC algorithm aims to sample from a posterior distribution $\pi_t(\theta|\mathbf{x}_t)$.
- Suppose the parameter vector, θ can be partitioned into $(\theta_1, \dots, \theta_k)$.
- Each parameter component θ_j has a prior distribution $\pi_0(\theta_j)$.
- Start with an initial vector $\theta^{(0)} = (\theta_1^{(0)}, \dots, \theta_k^{(0)})$
- At iteration, i, we have $\theta^{(i)}$.
- For j = 1, ..., k, make a proposal

$$\theta_j^{(*)} \sim N\left(\theta_j^{(i)}, \sigma_i^2 \mathbf{I}\right).$$
 (1)

- Then accept this proposal as $\theta_j^{(i+1)}$ with the appropriate acceptance probability. Otherwise set $\theta_j^{(i+1)} = \theta_j^{(i)}$.
- Run until i = N.

MCMC options (cont'd)

num_iterations 700000

N number of iterations.

output_type 0

0 or 1, for output as MCMC chains, or output as particles

thin_output_every 100

Stored chains are thinned to every 100th iteration (post burn-in only).

 $thin_stats_every$ 5000

Summary statistics are output every 5000th iteration (post burn-in only).

adaptive_phase 100000

No. of iterations within the burn-in over which the proposal variances are adaptated.

adapt_every 100

Proposal variance adaptation occurs every 100th iteration (within the adaptive phase only).

burn_in 200000

Length of burn-in. All of the first 200000 iterations are discarded.

MCMC options (cont'd)

num_progress_reports 10

Number of updates produced during both the adaptive and posterior phases.

mixing_threshold_ub 0.3

During the adaptive phase, acceptance rates above 0.3 lead to a scale-up of proposal variances

mixing_threshold_lb 0.2

During the adaptive phase, acceptance rates below 0.2 lead to a reduction in proposal variances

prop_var_inflation 1.1

Proposal variance scale-up factor

prop_var_shrinkage 0.9

Proposal variance scale-down factor

maximum_block_size 9

Maximum number of components of the $\theta^{(j)}$ that are proposed in any one go.

random_seed 80
max_threads 8

The number of parallel threads used in evaluating the model likelihood.

SMC options - Reweighting

- We wish to evaluate a posterior density $\pi_{t_1}(\theta|\mathbf{x}_{t_0})$, starting from an initial posterior $\pi_{t_0}(\theta|\mathbf{x}_{t_0})$.
- Code will load in (or generate if $t_0 = 0$) a particle set, $\{\theta^{t_0,1},\ldots,\theta^{t_0,n}\}$ and weights $\omega_{t_0}^{(1)},\ldots,\omega_{t_0}^{(n)}$, representing a weighted sample from π_{t_0} .
- At general time t+1, assimilate new data in continuous time. This means we consider densities of the form $\pi_{t,\delta}(\theta) = \pi_t(\theta) \{ p(\mathbf{x}_{t+1}|\theta) \}^{\delta}$, for $\delta \in [0,1]$. At 'time' $t + \delta$, particle j carries weight

$$\tilde{\omega}_{t+\delta}^{(j)} = \omega_t^{(j)} \left\{ p \left(\mathbf{x}_{t+1} | \theta^{t,j} \right) \right\}^{\delta}$$

SMC options - Detecting **Impoverishment**

Define the effective sample size

$$ESS\left(\left\{\omega^{(\cdot)}\right\}\right) = \frac{\left(\sum_{l=1}^{n} \omega^{(l)}\right)^{2}}{\sum_{j=1}^{n} \omega^{(j)}}.$$

- If, for some threshold $\epsilon \in [0,1]$:
 - $ESS(\{\tilde{\omega}_{t+1}^{(j)}\}) > \epsilon n$. No particle set rejuvenation required. Set $\theta^{t+1,j} = \theta^{t,j}$ and $\omega_{t+1}^{(j)} = \omega_t^{(j)}, \forall i = 1, \ldots, n$.
 - $ESS(\{\tilde{\omega}_{t+1}^{(j)}\}) \leq \epsilon n$. The particle set is impoverished and requires rejuvenation. Pick δ_0 , such that $ESS(\{\tilde{\omega}_{t+\delta_0}^{(j)}\}) = \epsilon n$. The particle set is then rejuvenated (see next slide) and weights are reset $\omega_{t+\delta_c}^{(j)}=1$.
 - Define weights $\tilde{\omega}_{t,\delta_0,\delta}^{(j)} = p(\mathbf{x}_{t+1}|\theta^{t+\delta_0,j})^{\delta-\delta_0}$. Further rejuvenations will be required if this leads to an ESS calculation that once again drops below ϵn while $\delta < 1$.

SMC options - Rejuvenation

Resampling, followed by population MCMC, using proposal distributions weakly dependent upon the starting states (i.e. the particle set requiring rejuvenation).

- Using the weighted sample, make estimates of $\hat{\mu}$ and $\hat{\Sigma}$, the sample mean and covariance.
- Resample the particles according to the particle weights.
- Move the n particles. Effectively running n parallel MCMC chains... except
 - No requirement to attain convergence no burn-in phase.
 - No requirement to run long chains to harvest a sample. The parallel chains provide a sample.

SMC options - Rejuvenation (2)

- Move(continued) Two types of move:
 - Correlated random-walk: Propose

$$heta^* | heta_k^{(j)} \sim \mathsf{N}\left(heta_k^{(j)}, \gamma ar{oldsymbol{\Sigma}}_k
ight).$$

Approximate Gibbs': Propose

$$heta^* | heta_k^{(j)} \sim \mathsf{N}\left(ar{ heta}_k, ar{oldsymbol{\Sigma}}_k
ight)$$

- Moves can be based on the above distributions or their conditionals if not using a full block update.
- Any number of the above types of proposal can be made per iteration, and they can be of a subset of parameter components and they can be full-block or componentwise.
- Parameter γ can be adapted between successive batches.
- gamma can also be vector-valued.

SMC options - Rejuvenation (3)

- **Move**(continued) Repeat the process until the sample inter-class correlation coefficient, r_{Δ}^* reaches some lower threshold.
 - After resampling, $r_{\Delta}^* = 1$.
 - Provides a measure of how well the chains have collectively forgotten their starting points.
 - Stop making proposals when $r_A^* \leq r_{A,0}$.

SMC options (cont'd)

location_particles /saved/

Where the 'current' cles are stored. Ignored if duration_of_previous_runs_in_days = 0. Defaults to the current directory.

num_particles 10000

Number of particles to use. If saved number is different, this will be the number resampled.

updaters 110

3 update steps: 0 for a correlated r-w proposal, 1 for an approx. Gibbs proposal.

block_updates 110

One for each of the above. 0 for cpt-wise updates, 1 for a block update

SMC options (cont'd)

ess_threshold 0.5

 ϵ , the ESS threshold that triggers sample rejuvenation.

icc_threshold 0.1

 $r_{A,0}$, the threshold for stopping the move-step of the rejuvenation.

mixing_threshold_ub 0.3

For correlated r-w updates, acceptance rates above 0.3 lead to a scale-up of γ .

mixing_threshold_lb 0.2

As above, acceptance rates below 0.2 lead to a reduction in γ .

prop_var_inflation 1.1

 γ scale-up factor

prop_var_shrinkage 0.9

γ scale-down factor

Specifying model parameters - Initial Values


```
prop_symptomatic = { param_value = 0.1, 0.15, 0.2, 0.25; }
```

- Sets initial values for MCMC chain.
- In SMC, redundant, other than to determine the length of the parameter vector *i.e.* how many parameters govern the proportion symptomatic in the population (over time and ages).

Specifying model parameters - Prior Choice(1)

- Value required for each parameter component.
- If first value indicates a multivariate proposal, it over-rides the rest.
- Values and distributions...
 - Fixed value.
 - Gamma distribution.
 - Beta distribution.
 - Normal distribution.
 - Multivariate normal distribution.
 - Malf-normal distribution.
 - Uniform distribution.

Specifying model parameters - Prior Choice(1)

- Code knows how many parameters each distribution requires.
- Parameters are assigned as a queue the four parameters components above have prior distributions:

```
• \beta(0.5, 2)
• \beta(1, 1)
• \beta(20, 10)
• \beta(1, 1)
```

- A constant parameter component takes no prior parameter values.
- Gamma distribution is in shape/rate parameterisation.
- Multivariate normal (μ, Σ) parameters are specified as a vector $(\mu_1, \Sigma_{11}, \Sigma_{12}, \dots, \sigma_{1p}, \mu_2, \sigma_{21}, \dots, \sigma_{pp})$, a p(p+1) length vector.

Specifying model parameters -

Parameterisation

Model parameters are parameters that specify the, for example, proportion symptomatic. We need not be specifying the actual parameter value. Instead the relation is via a generalised linear model set-up.

$$g\left(\underbrace{\theta}_{(r_0t_0a_0)\times 1}\right) = \underbrace{\mathbf{X}}_{(r_0t_0a_0)\times p}\underbrace{\beta}_{p\times 1}$$

- β The parameter vector of length p that we specify in the mod_pars.txt file.
- **X** A $(r_0t_0a_0 \times p)$ design matrix.
- $g(\cdot)$ A link function
- θ A vector of the calculated parameter values, $(\theta_{111}, \theta_{112}, ..., \theta_{r_0t_0a_0})$, with, for example, θ_{rta} giving the proportion symptomatic in region r, time t and age a.

Specifying model parameters - Parameterisation(2)

- Breakpoints: Specify breakpoints to avoid having to specify an $RTA \times p$ design matrix where not necessary (also avoids large matrix multiplication).
- Example: As in regional papers, R = 4, T = 245, A = 7. Don't need to always have a matrix with 6860 rows.
- regional_breakpoints: true/false. So $r_0 \in \{1, R\}$.
- age_breakpoints: true/false or a integer-value vector, taking ascending values in 1,..., A. If age_breakpoints = 3, say, then the first three age-classes can have a different value of the parameter at all times to the older age classes, and a₀ = 2. Again, true/false set a₀ = A or 1 respectively.
- time_breakpoints: same as age_breakpoints, although has no impact for parameters that specify an initial condition, e.g. exponential growth rate.

Specifying model parameters - Parameterisation(3)


```
prop_symptomatic = { param_value = 0.1, 0.15, 0.2, 0.25;
    prior_distribution = 3, 3, 3, 3;
    prior_parameters = 0.5, 2, 1, 1, 20, 10, 1, 1;
    time_breakpoints = 83, 245; Upper bounds for the breakpoints
    age_breakpoints = 3, 7; are optional and are ignored
    regression_link = 2;
    regression_design = file.design.txt;
}
```

- regression_link: the choice of the function $g(\cdot)$.

 - 2 $g(x) = \log(x/(1-x))$
- regression_design: the location of a file specifying the design matrix. Elements are read in separated by spaces, in the order X_{11} , X_{12} , Alternatively, can be specified as a numerical vector here.

Specifying model parameters - SMC/MCMC

- proposal_variance In MCMC, the random-walk proposal variances for each parameter component. In SMC, only the first value is used, it is the value of γ for any component-wise updates.
- update_indicators In MCMC, a dummy variable. In SMC, this indicates whether this parameter component should be updated as part of each proposal mechanism, 1 for yes, 0 for no.

Model Parameters - What are they?

The β 's, that specify the θ 's

$$g\left(\underbrace{\theta}_{(r_0t_0a_0)\times 1}\right) = \underbrace{\mathbf{X}}_{(r_0t_0a_0)\times p}\underbrace{\beta}_{p\times 1}$$

where θ could represent:

Parameter name	Short Description	Variation
negbin_overdispersion	Over-dispersion parameter for Negative	$r \times t \times a$
	Binomially distributed primary care count	
	data.	
$latent_period$	The mean duration of the latent period	$r \times t \times a$
${\tt infectious_period}$	The mean duration of the infectious pe-	$r \times t \times a$
	riod	
relative_infectiousness The relative infectiousnesss of state l_2 to		$r \times t \times a$
	state / ₁	

Model Parameters - What are they? (2)

Parameter name	Short Description	Variation
prop_symptomatic	Proportion of infections that lead to	$r \times t \times a$
	symptoms (typically ILI).	
${\tt contact_parameters}$	Parameters used to scale specified entries	$r \times t \times a^*$
	of the contact matrices.	
RO_amplitude_kA	Amplitude of seasonal variation in the	r only.
	value of R_0 (as a fraction of the peak	
	value).	
RO_seasonal_peakday	Timing in the year of the peak value of	r only.
	R_0	
exponential_growth_rate	e Initial rate of growth of the epidemic,	r only.
	proxy of R_0 at epidemic time-0	
$log_p_lambda_0$	Log-initial rate of arrivals in consultation,	r only.
	a proxy for <i>I</i> * the initial number of infec-	
	tives.	

^{*}Time and age variation in the contact structure is specified in mod_inputs.txt. Any time and age variation specified in mod_pars.txt will be quietly ignored.

Model Parameters - What are they? (3)

Parameter name	Short Description	Variation
prop_susceptible	Proportion of individuals susceptible to infection.	$r \times a$.
prop_HI_32_to_HI_8	Proportion of immunity that would test positive with a HI of 32 (where immunity is defined by HI 8.	$r \times a$.
<pre>prop_case_to_GP_ consultation</pre>	Proportion of symptomatic cases that consult with a GP (or other primary care provider).	$r \times t \times a$
prop_case_to_hosp	Proportion of symptomatic cases that will require hospitalisation.	$r \times t \times a$
prop_case_to_death	Proportion of symptomatic cases that lead to death.*	$r \times t \times a$

^{*}This data stream currently treated independently of hospitalisations. This may not be reasonable, but it may be possible to use for other count data, such as early case confirmation.

Model Parameters - What are they? (4)

Parameter name	Short Description	Variation
importation_rates	Rate of inflow of new infections.	$r \times t \times a$.
${\tt background_GP}$	Rates of background GP consultation	$r \times t \times a$.
	(measured in consultations per 100,000	
	people, per year).	
${ t test_sensitivity}$	The test sensitivity of the virological	$t \times a$
	swabbing process, taking values in $[0,1]$.	
${ t test_specificity}$	The test specificity of the virological	$t \times a$
	swabbing process, taking values in $[0,1]$.	
day_of_week_effects	Scaling factors for the expected number	$r \times t \times a$
	of primary care consultations per day.	