Bank Marketing Analysis Project

Zhihao Guo, Sherry Nie, Jiahui Ji, Yanmeng Song

Data Description

- From UCI Machine Learning Repository
- A Portuguese banking institution's client data from a campaign
- Number of observations: 41188
- Number of variables: 20
- Response: if the client will subscribe a bank term deposit (YES/NO)

# bank client data				
1 - age		numeric		
2 - job		categorical		
3 - marital		categorical		
4 - education		categorical		
5 - default	Credit in default (YES/NO)	categorical		
6 - housing	Housing loan (YES/NO)	categorical		
7 - Ioan				
# related with the last	7 - Ioan Personal Ioan (YES/NO) categorical # related with the last contact of the current campaign			
8 - contact	Communication type	categorical		
9 - month	Last contact month of the year	categorical		
10 - day_of_week	Last contact day of the week	categorical		
11 - duration	Last contact duration	numeric		
# other attributes				
12 - campaign	Number of contacts performed during this campaign	numeric		
13 - pdays	Number of days passed since a previous campaign	categorical		
14 - previous	Number of contacts performed before this campaign	numeric		
15 - poutcome	Outcome of the previous campaign	categorical		
# social and econom	ic context attributes			
16 - emp.var.rate	Employment variation rate (quarterly)	numeric		
17 - cons.price.idx	Consumer price index (monthly)	numeric		
18 - cons.conf.idx	Consumer confidence index (monthly)	numeric		
19 - euribor3m	Euribor 3 month rate (daily)	numeric		
20 - nr.employed	Number of employees (quarterly)	numeric		

Goals

- Investigate which variables are significant in predicting whether a client will subscribe a term deposit or not
- Predict the subscription result applying multiple classification methods
- Compare prediction results before and after adding 5 social and economic attributes

Data Pre-Processing

Deal with unbalanced data

no	36548	
yes	4640	

no	4000
yes	4000

Training data

no	640
yes	640

Test data

Visualization-- Categorical variables

Visualization--Numeric variables

Variable Selection

- Random Forest
- Lasso
- Forward Selection
- Backward Selection

Choose variables that are selected by AT LEAST 3 of them!

Variable Selection - RandomForest

- "MeanDecreaseAccuracy" criterion: I pick ten variables from "months" to "poutcome".
- "MeanDecreaseGini" criterion: I pick eight variables from "euribor3m" to "emp.var.rate".

Variable Selection - Lasso

Variables:
Job, Education, Contact,
Default, Day_of_week,
Month, poutcome,
Emp.var.rate, Nr.employed.

Variable Selection - Forward Method

- Forward method and Backward method gives the same result
- Variables: Job, Education, Default, Month, Campaign, Day_of_week, Previous, Poutcome, Emp.var.rate, Cons.price.idx, Nr.employed, Housing, loan, Euribor3m.

Classification

- Final variables: job, education, contact, month, day_of_week, poutcome, duration, campaign, emp.var.rate, cons.price.idx, cons.conf.idx, euribor3m, nr.employed
- Methods: Tree, RandomForest, Logistics Regression, SVM, KNN

Classification - Tree

Single Tree

duration < 199.5 month: aug,jul,jun,may,nov duration < 525.5 poutcome: failure,nonexistent poutcome: failure,nonexistent yes month: aug,jul,jun,may,nov yes yes no contact: cellular yes month: aug jul, may nov yes no yes

Random Forest

Classification - KNN (Highlight!)

★ Self-defined Distance Matrix Calculation (many categorical!!!)

Distance between two observations:

- For numeric variables: square of Euclidean distance
- For categorical variables: If the two values are the same, set distance = 0;

If not, set distance = 1

Take square root of sum (as in Euclidean distance)

Compute pairwise distance matrix (symmetric, with diagonal 0)

Classification - KNN

- Sampled 800 training data and 400 test data
- Write our own KNN function based on the distance matrix (majority vote of the closest k observations)
- Choose k = (3, 5, 7, 15, 20, 50)
- Run KNN twice: with and without the 5 social/economic variables

KNN Errors

Clustering

Variables: 5 social and economic attributes

Cluster: PCA and K-means (two cluster & three clusters)

Accuracy: compare the actual cluster with the K-means cluster

Number of clusters	accuracy
2	0.711125
3	0.336

Clustering

Cluster = 2

Cluster = 3

Results

Train and Test Error without five social & economic variables			Train and Test Error with five social & economic variables	
Method	Training error	Test error	Training error	Test error
Single Tree	0.1833	0.1578	0.1314	0.1164
Random Forest	0.1564	0.1422	0.1156	0.0992
Logistic Regression	0.1645	0.1508	0.1341	0.1211
SVM (kernel = linear, cost = 10)	0.3048	0.2930	0.1908	0.1953
KNN	0.1975(K=20)	0.3938(K=20)	0.1688(K=15)	0.1400(K=15)

Limitations

Data limitation: almost 50% categorical variables

Interaction: not include in logistic regression model

Data contains a high portion of "unknown" levels, which may create difficulties for interpretation

Implication

- Social and economic attributes have significant impact on clients' decision of deposit subscription and bring improvement to our model performance. For all five predictors, the smaller value will result in clients being more likely to deposit.
- Suggestions for bank on future campaign:

Make more contacts to clients, especially those with <u>higher degrees</u>

Prefer <u>cellular</u> call communication type

Prefer to choose March, April and October to make contact calls

