

有关训练和测试效果的数据说明

一、优化前后测试数据图

Model sur	mmary (fused): 1	l68 layers,	3006818 para	meters, 0	gradients, 8.1	. GFLOPs	
	Class	Images	Instances	Box(P	R	mAP50	mAP50-95):
	all	146	442	0.582	0.636	0.645	0.406
	casing_damage	146	4	0.901	0.75	0.755	0.548
	crack	146	16	0.458	0.5	0.407	0.215
	wind_damage	146	20	0.616	0.7	0.673	0.453
1	paint_fall_off	146	398	0.68	0.672	0.694	0.354
number.	_wear_and_tear	146	2	0.275	0.5	0.512	0.41
	repair_trace	146	2	0.565	0.694	0.828	0.46
Speed: 0	.2ms preprocess,	0.9ms info	erence, 0.0ms	loss, 1.1	ms postprocess	per ima	ige

		262 lay	ers, 3024694	46 parameter	rs, 0 grad:	ients, 89.9 GFLOPs
all	316	965	0.822	0.846	0.874	0.532
casing_damage	316	3	1	0.996	0.995	0.401
crack	316	21	0.599	0.499	0.603	0.338
wind_damage	316	56	0.956	0.911	0.913	0.74
paint_fall_off	316	876	0.786	0.673	0.741	0.405
number_wear_and_tear	316	3	0.69	1	0.995	0.521
repair_trace	316	6	0.904	1	0.995	0.784
Speed: 0.2ms preprocess,	4.1ms inferen	ce, 0.0ms	loss, 1.1ms	s postproces	s per imag	ge

mAP@0.5 (mean Average Precision at IoU=0.5) 是目标检测中常用的评估指标,用来衡量模型在检测任务上的整体性能。下面我给你分点解释一下:

★ 1. 什么是 AP (Average Precision)

- Precision (精确率): 预测为正的样本中, 有多少是真的正样本。
- Recall (召回率): 所有真实正样本中, 有多少被模型正确预测出来。
- 将检测结果按置信度从高到低排序,画出 Precision-Recall 曲线。
- AP 就是这条 PR 曲线下的面积,衡量的是该类的检测质量。

★ 2. 什么是 IoU (Intersection over Union)

- 用来衡量预测框和真实框之间的重叠程度。
- 计算公式:

$$IoU = rac{$$
预测框 \cap 真实框 $\frac{}{}$ 预测框 \cup 真实框

• IoU 的值介于 0 和 1 之间,值越大表示预测越准。

★ 3. mAP@0.5 是什么意思?

- mAP 是 mean Average Precision,即对所有类别的 AP 求平均。
- @0.5 表示计算 AP 时, IoU 阈值设置为 0.5, 也就是说:
 - 如果 IoU ≥ 0.5 就认为检测正确 (True Positive)
 - 。 否则就是错误检测 (False Positive)

如果一个目标检测模型有 3 类 (人、狗、猫) , 分别在 IoU=0.5 时的 AP 是:

人: 0.85狗: 0.78猫: 0.80

那 mAP@0.5 就是:

$$mAP@0.5 = \frac{0.85 + 0.78 + 0.80}{3} = 0.81$$

◆ 延伸: mAP@0.5:0.95 是什么?

• COCO 比赛更严格,使用多个 IoU 阈值 (从 0.5 到 0.95,每隔 0.05)来平均:

$$mAP@[0.5:0.95] = \frac{AP_{0.5} + AP_{0.55} + ... + AP_{0.95}}{10}$$

• 这个评价更全面, 更难拿高分。

mAP@0.5:0.95 (或写作 mAP_0.5:0.95) 是 **目标检测任务中最严格、最权威的评估指标之一**,特别是在 COCO 数据集上。它衡量的是模型在不同 loU 阈值下的平均检测性能。

✅ 一句话解释:

mAP@0.5:0.95 是在 IoU 从 0.5 到 0.95 (步长为 0.05) 的 10 个阈值下计算 AP, 然后取平均值。

★ 更具体地说,它怎么来的?

• 在以下 10 个 loU 阈值下分别计算 AP:

- 对每个 loU 阈值:
 - 。 计算每一类的 AP (Average Precision)
 - 。 然后对所有类求平均 (得到 mAP)
- 最后对这 10 个 IoU 下的 mAP 再求平均。

所以它的完整计算公式可以写为:

$${\rm mAP_{0.5:0.95}} = \frac{1}{10} \sum_{t=0.5}^{0.95} {\rm mAP@IoU}{=}t$$

Q 和 mAP@0.5 的区别是什么?

指标名	描述	难度
mAP@0.5	只考虑 IoU ≥ 0.5 时是否检测正确	*
mAP@0.5:0.95	同时考虑多个 IoU(从 0.5 到 0.95)	* * * * *

分为什么 mAP@0.5:0.95 更有价值?

- 不只是判断框有没有 "碰到" 真值 (IoU ≥ 0.5)
- 它还衡量预测框和真实框之间对齐得有多精确
- 更全面反映检测质量
- COCO 官方排行榜和大部分论文都用这个指标

III 一个实际例子:

假设你模型的 AP 表现如下 (3 类):

类别	AP@0.5	AP@0.75	AP@0.95	平均 (mAP@0.5:0.95)
人	0.85	0.60	0.20	0.55
狗	0.80	0.50	0.10	0.47
猫	0.78	0.55	0.15	0.49

最终 mAP@0.5:0.95 ≈ 0.50 , 远低于 mAP@0.5 = 0.81 , 说明模型预测框位置还不够精准。

△ 小结:

- mAP@0.5: 宽松, 仅检测出目标即可。
- mAP@0.5:0.95: 严格, 要检测准, 还要框得好。

• 如果你在跑检测模型(如 YOLOv5、YOLOv8、Detectron2), mAP@0.5:0.95 是**最关键的** 性能指标之一。