Real Analysis Theorems

Zhiwei Zhang

May 6, 2019

1 Introduction

Theorem 1.1 (Complete Axiom). Every nonempty subset S of \mathbb{R} that is bounded above has a least upper bound. In other words, supS exists and is a real number.

2 Monotone Sequence and Cauchy Sequences

Theorem 2.1. All bounded monotone sequences converge.

Definition 2.2. A sequence (s_n) of real numbers is called a Cauchy sequence if for each $\epsilon > 0$ there exists a number N such that m, n > N implies $|s_n - s_m| < \epsilon$

Lemma 2.3. Convergent sequences are Cauchy sequences.

Theorem 2.4. A sequence is a convergent sequence if and only if it is a Cauchy sequence. sketch proof.

$$|s_n - s_m| = |s_n - s + s - s_m| \le |s_n - s| + |s - s_m|$$

3 Subsequences

Theorem 3.1. Let (s_n) be a sequence. If t is in \mathbb{R} , then there is a subsequence of (s_n) converging to t if and only if the set $\{n \in \mathbb{N} : |s_n - t| < \epsilon\}$ is infinite for all $\epsilon > 0$

Theorem 3.2. If the sequence (s_n) converges, then every subsequence converges to the same limit.

Theorem 3.3. Every sequence (sn) has a monotonic subsequence.

Theorem 3.4 (Bolzano-Weierstrass Theorem). Every bounded sequence has a convergent subsequence.

Theorem 3.5. Let (s_n) be any sequence. There exists a monotonic subsequence whose limit is limsup s_n , and there exists a monotonic subsequence whose limit is liminf s_n .

Theorem 3.6. Let (s_n) be any sequence in \mathbb{R} , and let S denote the set of subsequential limits of (s_n) .

- S is nonempty
- $\sup S = \limsup s_n \text{ and inf } S = \liminf s_n$
- $\lim s_n$ exists if and only if S has exactly one element, namely $\lim s_n$.

Theorem 3.7. Let S denote the set of subsequential limits of a sequence (s_n) . Suppose (t_n) is a sequence in $S \cap$ and that $t = \lim t_n$. Then t belongs to S (which means S is **closed**).

4 Limsup and Liminf

Theorem 4.1. If (s_n) converges to a positive real number s and (t_n) is any sequence, then

$$\lim \sup s_n t_n = s \cdot \lim \sup t_n$$

Here we allow the conventions $s \cdot (+\infty) = +\infty$ and $s \cdot (-\infty) = -\infty$ for s > 0.

Theorem 4.2. Let (s_n) be any sequence of nonzero real numbers. Then we have

$$\liminf \left| \frac{s_{n+1}}{s_n} \right| \le \liminf |s_n|^{1/n} \le \limsup |s_n|^{1/n} \le \limsup \left| \frac{s_{n+1}}{s_n} \right|$$

Corollary 4.2.1. If $\lim_{n \to \infty} \left| \frac{s_{n+1}}{s_n} \right|$ exists [and equals L], then $\lim_{n \to \infty} \left| s_n \right|^{1/n}$ exists [and equals L].

5 Series

Theorem 5.1 (Ratio Test). A series $\sum a_n$ of nonzero terms

- 1. Converges absolutely if $\limsup |a_{n+1}/a_n| < 1$
- 2. Diverges if $\liminf |a_{n+1}/a_n| > 1$
- 3. Otherwise $\liminf |a_{n+1}/a_n| \le 1 \le \limsup |a_{n+1}/a_n|$ and the test gives no information.

Theorem 5.2 (Root Test). Let $\sum a_n$ be a series and let $\alpha = \limsup |a_n|^{1/n}$. The series $\sum a_n$

- 1. converges absolutely if $\alpha < 1$
- 2. diverges if $\alpha > 1$
- 3. ambiguous if $\alpha = 1$

Theorem 5.3. If the terms a_n are nonzero and if $\lim |a_{n+1}/a_n| = 1$, then $\alpha = \lim \sup_{|a_n|^{1/n}} = 1$ by Corollary 4.2.1, so neither the Ratio Test nor the Root Test gives information concerning the convergence of $\sum a_n$

6 Alternating Series and Integral Test

Basic Idea is that to compare a series with an integral to test for divergence or convergence.

Theorem 6.1 (Alternating Series Theorem). If $a_1 \ge a_2 \ge \cdots \ge a_n \ge \cdots \ge 0$ and $\lim a_n = 0$, then the al-ternating $series \sum (-1)^{n+1} a_n$ converges. Moreover, the partial sums $s_n = \sum_{k=1}^{n} (-1)^{k+1} a_k$ satisfy $|s - s_n| \le a_n$ for all n.

7 Continuous Functions

Definition 7.1. Let f be a real-valued function whose domain is a subset of \mathbb{R} . The function f is continuous at x_0 in dom(f) if, for every sequence (x_n) in dom(f) converging to x_0 , we have $\lim_n f(x_n) = f(x_0)$. If f is continuous at each point of a set $S \subseteq dom(f)$, then f is said to be continuous on S. The function f is said to be continuous if it is continuous on dom(f).

Theorem 7.2. Let f be a real-valued function whose domain is a subset of R. Then f is continuous at x_0 in dom(f) if and only if for each $\epsilon > 0$, $\exists \sigma > 0$ such that, $x \in dom(f) \& |x - x_0| < \sigma$ imply $|f(x) - f(x_0)| < \epsilon$.

Theorem 7.3. Let f be a real-valued function with $dom(f) \subseteq \mathbb{R}$. If f is continuous at x_0 in dom(f), then |f| and $kf, k \in \mathbb{R}$, are continuous at x_0 .

8 Property of Continuous Functions

Theorem 8.1. Let f be a continuous real-valued function on a closed interval [a,b]. Then f is a bounded function. Moreover, f assumes its maximum and minimum values on [a,b]; that is, there exist x_0, y_0 in [a,b] such that $f(x_0) \leq f(x) \leq f(y_0)$ for all $x \in [a,b]$.

Theorem 8.2. If f is a continuous real-valued function on an interval I, then f has the intermediate value property on I: Whenever $a, b \in I$, a < b and y lies between f(a) and f(b) i.e., f(a) < y < f(b) or f(b) < y < f(a) there exists at least one x in (a,b) such that f(x) = y.

Theorem 8.3. If f is a continuous real-valued function on an interval I, then the set $f(I) = \{f(x) : x \in I\}$ is also an interval or a single point.

Theorem 8.4. Let g be a strictly increasing function on an interval J such that g(J) is an interval I. Then g is continuous on J.

Theorem 8.5. Let f be a one-to-one continuous function on an interval I. Then f is strictly increasing $[x_1 < x_2 \text{ implies } f(x_1) < f(x_2)]$ or strictly decreasing $[x_1 < x_2 \text{ implies } f(x_1) > f(x_2)]$

9 Uniform Continuity

Definition 9.1. Let f be a real-valued function defined on a set $S \subseteq \mathbb{R}$. Then f is uniformly continuous on S if for each $\epsilon > 0$, $\exists \sigma > 0$ such that, $x, y \in \text{dom}(f) \& |x - y| < \sigma$ imply $|f(x) - f(y)| < \epsilon$.

Theorem 9.2. If f is continuous on a closed interval [a, b], then f is uniformly continuous on [a, b].

Theorem 9.3. If f is uniformly continuous on a set S and (s_n) is a Cauchy sequence in S, then $(f(s_n))$ is a Cauchy sequence.

Definition 9.4 (Extension of a function). We say a function \tilde{f} is an extension of a function f if

$$dom(f) \subseteq dom(\tilde{f})$$
 and $f(x) = \tilde{f}(x)$ for all $x \in dom(f)$

Theorem 9.5. A real-valued function f on (a,b) is uniformly continuous on (a,b) if and only if it can be extended to a continuous function \tilde{f} on [a,b]

Theorem 9.6. Let f be a continuous function on an interval I [I] may be bounded or unbounded]. Let I° be the interval obtained by removing from I any endpoints that happen to be in I. If f is differentiable on I° and if f' is bounded on I° , then f is uniformly continuous on I.

10 Power Series

Given power series $\sum_{n=0}^{\infty} a_n x^n$

Theorem 10.1. Given any (a_n) , one of the following holds true:

- 1. The power series converges for all $x \in \mathbb{R}$
- 2. The power series converges only for x = 0
- 3. The power series converges for all x in some bounded interval centered at 0; the interval x be open, half-open or closed.

Theorem 10.2. Let

$$\beta = \limsup |a_n|^{1/n}$$
 and $R = \frac{1}{\beta}$

Then

- 1. The power series converges for |x| < R
- 2. The power series diverges for |x| > R

Also notice that $\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = \beta$, therefore most of the time we will use $\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right|$ as it's easier to compute that β .

11 Uniform Convergence

Definition 11.1 (Pointwise Convergence). Let (f_n) be a sequence of real-valued functions defined on a set $S \subseteq \mathbb{R}$. The sequence (f_n) converges pointwise [i.e., at each point] to a function f defined on S if

$$\lim_{n \to \infty} f_n(x) = f(x) \text{ for all } x \in S$$

Definition 11.2 (Uniform Convergence). Let (f_n) be a sequence of real-valued functions defined on a set $S \subseteq \mathbb{R}$. The sequence (f_n) converges uniformly on S to a function f defined on S if for each $\epsilon > 0$ there exists a number N such that $|f_n(x) - f(x)| < \epsilon$ for all $x \in S$ and all n > N

Theorem 11.3. The uniform limit of continuous functions is continuous. More pre-cisely, let (f_n) be a sequence of functions on a set $S \subseteq \mathbb{R}$, suppose $f_n \to f$ uniformly on S, and suppose S = dom(f). If each f_n is continuous at x_0 in S, then f is continuous at x_0 . [So if each f_n is continuous on S, then f is continuous on S.]

proof sketch. $\epsilon/3$ argument.

$$|f(x) - f(x_0)| \le |f(x) - f_n(x)| + |f_n(x) - f_n(x_0)| + |f_n(x_0) - f(x_0)|$$

12 More on Uniform Convergence

Theorem 12.1. Let (f_n) be a sequence of continuous functions on [a,b], and suppose $f_n \to f$ uniformly on [a,b]. Then

$$\lim_{n \to \infty} \int_a^b f_n(x) dx = \int_a^b f(x) dx$$

Definition 12.2. A sequence (f_n) of functions defined on a set $S \subseteq \mathbb{R}$ is uniformly Cauchy on S if

for each
$$\epsilon > 0$$
 there exists a number N such that $|f_n(x) - f_m(x)| < \epsilon$ for all $x \in S$ and all $m, n > N$

Theorem 12.3. Let (f_n) be a sequence of functions defined and uniformly Cauchy on a set $S \subseteq \mathbb{R}$. Then there exists a function f on S such that $f_n \to f$ uniformly on S.

Theorem 12.4. Consider a series $\sum_{k=0}^{\infty} g_k$ of functions on a set $S \subseteq \mathbb{R}$. Suppose each g_k is continuous on S and the series converges uniformly on S. Then the series $\sum_{k=0}^{\infty} g_k$ represents a continuous function on S.

Theorem 12.5. If a series $\sum_{k=0}^{\infty} g_k$ of functions satisfies the Cauchy criterion uniformly on a set S, then the series converges uniformly on S.

Theorem 12.6. Let (M_k) be a sequence of nonnegative real numbers where $\sum M_k < \infty$. If $|g_k(x)| \leq M_k$ for all x in a set S, then $\sum g_k$ converges uniformly on S.

Theorem 12.7. Show that if the series $\sum g_n$ converges uniformly on a set S, then $\lim_{n\to\infty} \sup \{|g_n(x)| : x \in 0\}$

13 Differentiation and Integration of Power Series

Theorem 13.1. Let $\sum_{n=0}^{\infty} a_n x^n$ be a power series with radius of convergence R > 0 [possibly $R = +\infty$]. If $0 < R_1 < R$, then the power series converges uniformly on $[-R_1, R_1]$ to a continuous function.

Lemma 13.2. If the power series $\sum_{n=0}^{\infty} a_n x^n$ has radius of convergence R, then the power series

$$\sum_{n=1}^{\infty} n a_n x^{n-1}$$

and

$$\sum_{n=0}^{\infty} \frac{a_n}{n+1} x^{n+1}$$

also have radius of convergence R.

Theorem 13.3 (Abel's Theorem). Let $f(x) = \sum_{n=0}^{\infty} a_n x^n$ be a power series with finite positive radius of convergence R. If the series converges at x = R, then f is continuous at x = R. If the series converges at x = -R, then f is continuous at x = -R.

14 Basic Properties of the Derivative

Theorem 14.1. Differentiability implies continuity.

15 Mean Value Theorem

Theorem 15.1. Let f be a continuous function on [a,b] that is differentiable on (a,b). Then there exists $[at least one] \ x \ in (a,b) \ such that$

$$f'(x) = \frac{f(b) - f(a)}{b - a}$$

Theorem 15.2 (Intermediate Value Theorem for Derivatives). Let f be a differentiable function on (a,b). If $a < x_1 < x_2 < b$, and if c lies between $f'(x_1)$ and $f'(x_2)$, there exists $[at \ least \ one] \ x \ in (x_1, x_2) \ such \ that \ f'(x) = c$

Theorem 15.3. Let f be a one-to-one continuous function on an open intervalI, and let J = f(I). If f is differentiable at $x_0 \in I$ and if $f'(x_0) \neq 0$, then f^{-1} is differentiable at $y_0 = f(x_0)$ and

$$(f^{-1})'(y_0) = \frac{1}{f'(x_0)}$$

Corollary 15.3.1. Let f be a differentiable function on (a,b) such that f'(x) = 0 for all $x \in (a,b)$. Then f is a constant function on (a,b).

Corollary 15.3.2. Let f and g be differentiable functions on (a,b) such that f'=g' on (a,b). Then there exists a constant c such that f(x)=g(x)+c for all $x \in (a,b)$.

Theorem 15.4 (IVT for derivatives). Let f be a differentiable function on (a,b). If $a < x_1 < x_2 < b$, and if c lies between $f'(x_1)$ and $f'(x_2)$, there exists [at least one] x in (x_1, x_2) such that f'(x) = c

Theorem 15.5 (Rolle's Theorem). Let f be a continuous function on [a,b] that is differentiable on (a,b) and satisfies f(a) = f(b). There exists [at least one] x in (a,b) such that f'(x) = 0

16 Taylor's Theorem

Definition 16.1. Taylor's Theorem:

$$\sum_{k=0}^{\infty} \frac{f^{(k)}(c)}{k!} (x-c)^k$$

Remainder:

$$R_n(x) = f(x) - \sum_{k=0}^{n-1} \frac{f^{(k)}(c)}{k!} (x - c)^k$$

Theorem 16.2 (Taylor's Theorem). Let f be defined on (a,b) where a < c < b; here we allow $a = -\infty$ or $b = \infty$. Suppose the nth derivative $f^{(n)}$ exists on (a,b). Then for each $x \neq c$ in (a,b) there is some y between c and x such that

$$R_n(x) = \frac{f^{(n)}(y)}{n!}(x-c)^n$$

Corollary 16.2.1. Let f be defined on (a,b) where a < c < b. If all the derivatives $f^{(n)}$ exist on (a,b) and are bounded by a single constant C, then

$$\lim_{n \to \infty} R_n(x) = 0 \quad \text{for all} \quad x \in (a, b)$$

Theorem 16.3 (Taylor's Theorem (another one)). Let f be defined on (a, b) where a < c < b, and suppose the nth derivative $f^{(n)}$ exists and is continuous on (a, b). Then for $x \in (a, b)$ we have

$$R_n(x) = \int_c^x \frac{(x-t)^{n-1}}{(n-1)!} f^{(n)}(t) dt$$

Corollary 16.3.1. If f is as in Theorem 31.5, then for each x in (a,b) different from c there is some y between c and x such that

$$R_n(x) = (x - c) \cdot \frac{(x - y)^{n-1}}{(n-1)!} f^{(n)}(y)$$

This form of R_n is known as Cauchy's form of the remainder.

Theorem 16.4 (Binomial Series Theorem). If $\alpha \in \mathbb{R}$ and |x| < 1, then

$$(1+x)^{\alpha} = 1 + \sum_{k=1}^{\infty} \frac{\alpha(\alpha-1)\cdots(\alpha-k+1)}{k!} x^k$$

Theorem 16.5 (Newton's Method). Newton's method for finding an approximate solution to f(x) = 0 is to begin with a reasonable initial guess x_0 and then compute

$$x_n = x_{n-1} - \frac{f(x_{n-1})}{f'(x_{n-1})}$$
 for $n \ge 1$

Theorem 16.6 (Secant Method). A similar approach to approximating solutions of f(x) = 0 is to start with two reasonable guesses x_0 and x_1 and then compute

$$x_n = x_{n-1} - \frac{f(x_{n-1})(x_{n-2} - x_{n-1})}{f(x_{n-2}) - f(x_{n-1})}$$
 for $n \ge 2$

17 The Riemann Integral

Definition 17.1.

$$M(f,S) = \sup\{f(x) : x \in S\}$$
 and $m(f,S) = \inf\{f(x) : x \in S\}$

A partition of [a,b] is any finite ordered subset P having the form

$$P = \{ a = t_0 < t_1 < \dots < t_n = b \}$$

The upper Darboux sum U(f, P) of f with respect to P is the sum

$$U(f, P) = \sum_{k=1}^{n} M(f, [t_{k-1}, t_k]) \cdot (t_k - t_{k-1})$$

and the lower Darboux sum L(f, P) is

$$L(f, P) = \sum_{k=1}^{n} m(f, [t_{k-1}, t_k]) \cdot (t_k - t_{k-1})$$

Lemma 17.2. Let f be a bounded function on [a,b]. If P and Q are partitions of [a,b] and $P \subseteq Q$, then

$$L(f,P) \leq L(f,Q) \leq U(f,Q) \leq U(f,P)$$

.

Lemma 17.3. If f is a bounded function on [a,b], and if P and Q are partitions of [a,b], then $L(f,P) \leq U(f,Q)$

Theorem 17.4. A bounded function f on [a,b] is integrable if and only if for each $\epsilon > 0$ there exists a partition P of [a,b] such that

$$U(f,P) - L(f,P) < \epsilon$$

Definition 17.5. The mesh of a partition P is the maximum length of the subintervals comprising P. Thus if

$$P = \{ a = t_0 < t_1 < \dots < t_n = b \}$$

then

$$\operatorname{mesh}(P) = \max \{t_k - t_{k-1} : k = 1, 2, \dots, n\}$$

Theorem 17.6. A bounded function f on [a,b] is integrable if and only if for each $\epsilon > 0$ there exists $a\delta > 0$ such that

$$\operatorname{mesh}(P) < \delta \quad implies \quad U(f, P) - L(f, P) < \epsilon$$

for all partitions P of [a, b].

Definition 17.7. The function f is Riemann integrable on [a,b] if there exists a number r with the following property. For each $\epsilon > 0$ there exists $\delta > 0$ such that

$$|S - r| < \epsilon$$

for every Riemann sum S of f associated with a partition P having $\operatorname{mesh}(P) < \delta$.

Theorem 17.8. A bounded function f on [a,b] is Riemann integrable if and only if it is [Darboux] integrable, in which case the values of the integrals agree.

Corollary 17.8.1. Let f be a bounded Riemann integrable function on [a,b]. Suppose (S_n) is a sequence of Riemann sums, with corresponding partitions P_n , satisfying $\lim_n \operatorname{mesh}(P_n) = 0$. Then the sequence (S_n) converges to $\int_a^b f$.

Theorem 17.9. Every monotonic function f on [a, b] is integrable.

Theorem 17.10. Every continuous function f on [a,b] is integrable.

Theorem 17.11. If f is integrable on [a,b], then |f| is integrable on [a,b] and

$$\left| \int_{a}^{b} f \right| \le \int_{a}^{b} |f|$$

.

Theorem 17.12. If f is a piecewise continuous function or a bounded piecewise monotonic function on [a,b], then f is integrable on [a,b].

Theorem 17.13 (IVT for integrals). If f is a continuous function on [a, b], then for at least one x in (a, b) we have

$$f(x) = \frac{1}{b-a} \int_{a}^{b} f$$

Theorem 17.14 (Dominated Convergence Theorem). Suppose (f_n) is a sequence of integrable functions on [a,b] and $f_n \to f$ pointwise where f is an integrable function on [a,b]. If there exists an M > 0 such that $|f_n(x)| \leq M$ for all n and all x in [a,b], then

$$\lim_{n \to \infty} \int_a^b f_n(x) dx = \int_a^b \lim_{n \to \infty} f_n(x) dx$$

Corollary 17.14.1 (Monotone Convergence Theorem). Suppose (f_n) is a sequence of integrable functions on [a,b] such that $f_1(x) \leq f_2(x) \leq \cdots$ for all x in [a,b]. Suppose also that $f_n \to f$ pointwise where f is an integrable function on [a,b]. Then

$$\lim_{n \to \infty} \int_a^b f_n(x) dx = \int_a^b \lim_{n \to \infty} f_n(x) dx$$

18 Fundamental Theorem of Calculus

Theorem 18.1. If g is a continuous function on [a,b] that is differentiable on (a,b) and if g' is integrable on [a,b], then

$$\int_{a}^{b} g' = g(b) - g(a).$$

Theorem 18.2. Let f be an integrable function on [a,b]. For x in [a,b], let

$$F(x) = \int_{a}^{x} f(t)dt$$

Then F is continuous on [a,b]. If f is continuous at x_0 in (a,b), then F is differentiable at x_0 and $F'(x_0) = f(x_0)$.