Nome: N°:

2° Ano do Ensino médio

Exercícios de Química

Professor(a): Fred Klier

Data de aplicação: ____/2021

Data da devolução: ____/___/2021

Exercícios

- 1. Qual a Concentração de íons sulfato formados em uma solução de 1 litro com 0,1 mol de BaSO₄ ($K_s = 1,0 \times 10^{-10}$)? A. $1,0 \times 10^{-2}$ B. $1,0 \times 10^{-3}$ C. $1,0 \times 10^{-4}$ D. $1,0 \times 10^{-5}$ E. $1,0 \times 10^{-6}$
- 2. Qual a Concentração de íons sulfato formados em uma solução de 1 litro com 1 mol de Ca₃(PO₄)₂ ($K_s = 1,0 \times 10^{-25}$)? A. $1,0 \times 10^{-6}$ B. $1,0 \times 10^{-5}$ C. $1,0 \times 10^{-4}$ D. $1,0 \times 10^{-3}$ E. $1,0 \times 10^{-2}$
- 3. Uma reação química atinge o equilíbrio químico quando:
 - a) ocorre simultaneamente nos sentidos direto e inverso.
 - b) as velocidades das reações direta e inversa são iguais.
 - c) os reagentes são totalmente consumidos.
 - d) a temperatura do sistema é igual à do ambiente.
 - e) a razão entre as concentrações de reatantes e produtos é unitária.
- 4. Escreva a expressão da constante de equilíbrio em termos de concentração (K_c) dos seguintes equilíbrios:
 - a) $2NO_{(g)} + O_{2(g)} \Longrightarrow 2NO_{2(g)}$
 - b) $PCl_{5(g)} \longrightarrow PCl_{3(g)} + Cl_{2(g)}$
 - c) $4 \text{HCl}_{(g)} + O_{2(g)} \rightleftharpoons 2 \text{H}_2 O_{(g)} + 2 \text{Cl}_{2(g)}$
 - d) $C_{(s)} + H_2O_{(g)} \rightleftharpoons CO_{(g)} + H_{2(g)}$
 - e) $Mg_{(s)} + 2H_{(aq)}^+ \longrightarrow Mg_{(aq)}^{2+} + H_{2(g)}$

- f) $CrO_4^2_{(aq)} + 2H_{(aq)}^+ \longrightarrow Cr_2O_7^2_{(aq)} + H_2O_{(l)}$
- 5. Em determinadas condições de temperatura e pressão, existe 0,5 mol/L de N_2O_4 em equilíbrio com 2 mol/L de NO_2 , segundo a equação $N_2O_{4(g)} \longrightarrow 2NO_{2(g)}$. Qual o valor da constante (K_c) desse equilíbrio, nas condições da experiência?

6. São colocados 8,0 mol de amônia num recipiente fechado de 5,0 litros de capacidade. Acima de 450 $^{\circ}C$, estabelece-se, após algum tempo, o equilíbrio:

$$2NH_{3(g)} \longrightarrow 3H_{3(g)} + N_{2(g)}$$

Sabendo que a variação do número de mol dos participantes está registrada no gráfico, podemos afirmar que,nestas condições, a constante de equilíbrio, Kc, é igual a:

falta o gráfico

ſ		
ı		
-		
ı		
ı		
-		
١		