1st Order Op Amp Circuits

Subsystems

- Multipliers
 - Inverting and non-inverting amplifiers
 - Typically fixed number, which means fixed resistor values in amplifiers
- Adders and Subtractors
 - Summing and difference amplifiers
- Differentiators
- Integrators

1st order op amp circuits

Capacitors

$$i_C(t) = C \frac{dv_C}{dt}$$

$$v_C(t) = \frac{1}{C} \int_{t_o}^{t_1} i_C(t) dt + v_C(t_o)$$

Differentiator

Ideal Op Amp Model

Op Amp Model

Analysis

 Since current is not allowed to enter the input terminals of an ideal op amp.

$$i_C(t) = i_R(t)$$
$$v_C(t) = v_S(t)$$

$$i_{C}(t) = C \frac{dv_{C}}{dt} = C \frac{dv_{S}}{dt}$$

$$i_{R}(t) = -\frac{v_{o}}{R}$$

$$-\frac{v_{o}}{R} = C \frac{dv_{S}}{dt}$$

$$v_{o}(t) = -RC \frac{dv_{S}(t)}{dt}$$

Example #1

- Suppose $v_S(t) = 3V u(t-5s)$
 - The voltage source changes from oV to 3V at t = 5s.
 - Initial condition of $V_C = oV$ when t <5s.
 - Final condition of $V_C = 3V$ when t > 5RC.

Example #1 (con't)

$$v_C(t) = 0V \quad \text{when } t < t_o$$

$$v_C(t) = V_{C_{initial}} + \left(V_{C_{final}} - V_{C_{initial}}\right) e^{-(t - t_o)/\tau} \quad \text{when } t > t_o$$

$$v_C(t) = 0V + \left(3V - 0V\right) e^{-(t - 5s)/0.8s} \quad \text{when } t > t_o$$

$$v_C(t) = 3V e^{-(t-5s)/0.8s}$$
 when $t > 5s$

Example #1 (con't)

$$v_o(t) = -RC \frac{dv_C(t)}{dt}$$

$$v_o(t) = 0V \quad \text{when } t < 5s$$

$$v_o(t) = 0V \quad \text{when } t > t_o + 5\tau, \text{ where } \tau = RC$$

$$v_o(t) = 0V \quad \text{when } t > 5s + 5(20k\Omega)(40\mu\text{F}) = 9s$$

$$v_o(t) = \frac{-1}{0.8s} (-20x10^3 \Omega)(40x10^{-6} F)(3V) e^{-(t-5s)/0.8s}$$
$$v_o(t) = 3V e^{-(t-5s)/0.8s}$$

Example #2

• Let $R = 2 k\Omega$, $C = 0.1\mu F$, and $v_S(t) = 2V \sin(500t)$ at t = 0sSince $v_C(t) = v_S(t)$

$$v_o(t) = -RC \frac{dv_S}{dt}$$

$$v_o(t) = -(2000 \ \Omega)(10^{-7} F) \frac{d[2V \sin(500 \ t)]}{dt}$$

$$v_o(t) = (-0.2 ms)(2V)(500)\cos(500 t)$$

$$v_o(t) = -0.2V \cos(500 t)$$
 when t > 0s

$$v_o(t) = 0V$$
 when t < 0 s

Cosine to Sine Conversion

$$v_o(t) = -0.2V \cos(500t)$$

$$v_o(t) = -0.2V \sin(500t + 90^\circ)$$

$$v_o(t) = 0.2V \sin(500t + 90^\circ - 180^\circ)$$

$$v_o(t) = 0.2V \sin(500t - 90^\circ)$$

As $v_S(t) = 2V \sin(500t)$, the output voltage lags the input voltage by 90 degrees.

Integrator

Op Amp Model

Integrator

$$i_{R} = \frac{v_{S}(t) - v_{1}}{R} = \frac{v_{S}(t)}{R}$$

$$i_{C} = C \frac{dv_{C}}{dt}$$

$$v_{C}(t) = v_{1} - v_{o}(t) = -v_{o}(t)$$

$$i_{R} - i_{C} = 0mA$$

$$\frac{v_{S}(t)}{R} - C \frac{d[-v_{o}(t)]}{dt} = 0$$

$$\frac{dv_{o}(t)}{dt} + \frac{v_{S}(t)}{RC} = 0$$

$$v_{o}(t_{2}) = \frac{-1}{RC} \int_{t_{1}}^{t_{2}} v_{S}(t) dt + v_{o}(t_{1})$$

Example #3

• Let R = 25 k
$$\Omega$$
, C = 5nF, $v_S(t) = 3V \sin\left(6.24k \frac{rad}{s}t\right)$ at t=0s $V_o(t_2) = \frac{-1}{RC} \int_{t_1}^{t_2} V_{in}(t) dt + V_o(t_1)$

$$V_o(t_2) = \frac{-1}{25 k\Omega(5nF)} \int_{t_1}^{t_2} 3V \sin\left(6.24 k \frac{rad}{s} t\right) dt$$

$$V_o(t_2) = 3.85 V \cos\left(6.24 k \frac{rad}{s} t\right) \Big|_{t_1}^{t_2} + V_o(t_1)$$

$$V_o(t_2) = 3.85 V \sin \left(6.24 k \frac{rad}{s} t_2 + 90^o \right) - 3.85 V \text{ when } t_1 = 0 s$$

since $v_o(t) = -v_c(t)$ and the voltage across a capacitor can't be discontinuous.

Example #4

Initial Charge on Capacitor

Example #4 (con't)

If there is an initial charge that produces a voltage on the capacitor at some time, t_o:

The voltage on the negative input of the op amp is:

$$v_1 = V_C + V_{R_1}$$
$$v_1 = v_2 = oV$$

Example #4 (con't)

The current flowing through R_1 is the same current flowing through C.

$$i_{C}(t) = C \frac{dv_{C}(t)}{dt}$$

$$i_{R1}(t) = \frac{V_{R1}}{R_{1}} = \frac{[v_{1} - v_{C}(t)]}{R_{1}} = \frac{[0V - v_{C}(t)]}{R_{1}} = -\frac{v_{C}(t)}{R_{1}}$$
at $t = t_{o}$, $i_{R}(t_{o}) = -\frac{v_{C}(t_{o})}{R_{1}}$
as $t \to \infty$, $v_{C}(t) \to 0V$, $i_{C}(t) \to 0mA$

$$i_{C}(t) - i_{R1}(t) = 0$$

$$C \frac{dv_{C}(t)}{dt} + \frac{v_{C}(t)}{R_{1}} = 0$$

$$\frac{dv_{C}(t)}{dt} + \frac{v_{C}(t)}{R_{1}C} = 0$$

$$v_C(t) = v_C(t_o)e^{-\frac{t-t_o}{R_1C}}$$

$$i_{C} = C \frac{dv_{C}(t)}{dt} = -\frac{1}{R_{1}} v_{C}(t_{o}) e^{-\frac{t-t_{o}}{R_{1}C}}$$

 R_1C is the time constant, τ .

$$i_{R2} = -i_{C}$$

$$i_{R2} = \frac{0V - v_{o}(t)}{R_{2}} = -\frac{v_{o}(t)}{R_{2}}$$

$$v_o(t) = \frac{R_2}{R_1} v_C(t_o) e^{-\frac{t - t_o}{R_1 C}}$$

Summary

- Differentiator and integrator circuits are 1st order op amp circuits.
 - When the C is connected to the input of the op amp, the circuit is a differentiator.
 - If the input voltage is a sinusoid, the output voltage lags the input voltage by 90 degrees.
 - The output voltage may be discontinuous.
 - When the C is connected between the input and output of the op amp, the circuit is an integrator.
 - If the input voltage is a sinusoid, the output voltage leads the input voltage by 90 degrees.
 - The output voltage must be continuous.