

## Arquitetura de Computadores

Prof. Marcial Fernández

2025.2

# Capítulo 1

Conceitos básicos e evolução do computador

# Arquitetura de Computadores Organização de Computadores

- Atributos de um sistema visíveis ao programador
- Produz um impacto direto na execução de um programa

Arquitetura de Computadores

 Conjunto de instruções, número de bits usados para representars tipos de dados, mecanismos de E/S, técnicas para ndereçar memória

Atributos arquitetônicos

Atributos organizacionais

•Detalhes de hardware transparentes para o programador, sinais de controle, interfaces entre o computador e periféricos, tecnologia de memória usada

Organização de Computadores

> As unidades operacionais e suas interconexões que realizam as especificações arquitetônicas

## Sistema IBM 370 Arquitetura

#### ■Arquitetura IBM System/370

- Foi introduzido em 1970
- Incluiu vários modelos
- Poderia atualizar para um modelo mais caro e rápido sem ter que abandonar o software original
- Novos modelos foram introduzidos com tecnologia aprimorada, mas mantinham a mesma arquitetura para que o investimento em software do cliente seja protegido
- A arquitetura sobreviveu até hoje como a arquitetura da linha de produtos mainframe da IBM

# Estrutura e Função

- Sistema hierárquico
  - Conjunto de subsistemas inter-relacionados
- A natureza hierárquica dos sistemas complexos é essencial tanto para o seu design como para a sua descrição
- O projetista precisa lidar apenas com um nível específico do sistema de cada vez
  - Preocupa apenas com a estrutura e a função em cada nível

- Estrutura
  - A maneira como os componentes se relacionam entre si
- Função
  - A operação de componentes individuais como parte da estrutura



## Função

- Existem quatro funções básicas que um computador pode executar:
  - Processamento de dados
    - Os dados podem assumir uma grande variedade de formas e a ampla gama de requisitos de processamento
  - Armazenamento de dados
    - Curto prazo
    - Longo prazo
  - Movimentação de dados
    - Entrada-saída (E/S) quando os dados são recebidos ou entregues a um dispositivo (periférico) que está diretamente conectado ao computador
    - Comunicações de dados quando os dados são movidos por distâncias maiores, de ou para um dispositivo remoto
  - Controle
    - Uma unidade de controle gerencia os recursos do computador e orquestra o desempenho de suas partes funcionais em resposta às instruções

### Estrutura



Figure 1.1 A Top-Down View of a Computer

+

Existem quatro componentes estruturais principais do computador:



- → CPU controla a operação do computador e executa suas funções de processamento de dados
- ★Memória principal armazena dados
- ★E/S move dados entre o computador e seu ambiente externo
- ★Interconexão do sistema –
  algum mecanismo que fornece
  comunicação entre CPU,
  memória principal e E/S



#### **CPU**

# Principais componentes estruturais:





- Unidade de controle
  - Controla a operação da CPU e, portanto, do computador
- Unidade Aritmética e Lógica (ALU)
  - Executa a função de processamento de dados do computador
- Registros
  - Fornece armazenamento interno para a CPU
- Interconexão de CPU
  - Algum mecanismo que fornece comunicação entre a unidade de controle, ALU e registradores

## Estrutura de Computador Multicore

- Unidade central de processamento (CPU)
  - Parte do computador que busca e executa instruções
  - Consiste em uma ALU, uma unidade de controle e vários registradores
  - Referido como um processador em um sistema com uma única unidade de processamento

#### ■ Núcleo (Core)

- Uma unidade de processamento individual em um chip de processador
- Pode ser equivalente em funcionalidade a uma CPU em um sistema de CPU única
- Unidades de processamento especializadas também são chamadas de núcleos

#### ■ Processador

- Uma peça física de silício contendo um ou mais núcleos
- É o componente do computador que interpreta e executa instruções
- Referido como um processador multicore se contiver vários núcleos

## Memória cache

- São as várias camadas de memória entre o processador e a memória principal
- É menor e mais rápido que a memória principal
- Usado para acelerar o acesso à memória, colocando no cache dados da memória principal que provavelmente serão usados em um futuro próximo pelo processador
- Um maior desempenho pode ser obtido usando vários níveis de cache, com o nível 1 (L1) mais próximo do núcleo e níveis adicionais (L2, L3, etc.) progressivamente mais distantes do núcleo.



Figure 1.2 Simplified View of Major Elements of a Multicore Computer



Placa-mãe com dois processadores Intel Quad-Core Xeon



Unidade de Processador IBM EC12 (PU) zEnterprise Diagrama de Chip



zEnterprise IBM EC12 Layout do núcleo

# Gerações de Computadores

| Generation | Approximate Dates | Technology                         | Typical Speed (operations per second) |
|------------|-------------------|------------------------------------|---------------------------------------|
| 1          | 1946–1957         | Vacuum tube                        | 40,000                                |
| 2          | 1957–1964         | Transistor                         | 200,000                               |
| 3          | 1965–1971         | Small and medium scale integration | 1,000,000                             |
| 4          | 1972–1977         | Large scale integration            | 10,000,000                            |
| 5          | 1978–1991         | Very large scale integration       | 100,000,000                           |
| 6          | 1991-             | Ultra large scale integration      | >1,000,000,000                        |

# História dos Computadores Primeira Geração: Tubos de Vácuo

- Válvulas de vácuo foram usadas para elementos lógicos digitais e memória
- Computador IAS Princeton
  - A abordagem fundamental do projeto foi o conceito de programa armazenado
    - Atribuído ao matemático John von Neumann
    - A primeira publicação da ideia foi em 1945 para o EDVAC
  - O design começou no Instituto de Estudos Avançados de Princeton
  - Concluído em 1952
  - Protótipo de todos os computadores de uso geral subsequentes



Figure 1.6 IAS Structure



**Figure 1.7 IAS Memory Formats** 

# Registros

### Registro de buffer de memória (MBR)

- Contém uma palavra a ser armazenada na memória ou enviada para a unidade de E/S
- •Ou é usado para receber uma palavra da memória ou da unidade de E/S

### Registro de endereço de memória (MAR)

· Especifica o endereço na memória da palavra a ser escrita ou lida no MBR

### Registro de instruções (IR)

·Contém a instrução opcode de 8 bits que está sendo executada

### Registro de buffer de instrução (IBR)

 Empregado para manter temporariamente a parte instrução de uma palavra na memória

#### Contador de programa (PC)

·Contém o endereço da próxima instrução a ser buscada na memória

#### Acumulador (AC) e Quociente Multiplicador (MQ)

 Empregado para guardar temporariamente operandos e resultados de operações de ALU



M(X) = contents of memory location whose addr ess is X (i:j) = bits i through j

Figure 1.8 Partial Flowchart of IAS Operation

| Instruction Type   | Oncode             | Symbolic<br>Representation | Description                                                                                      |
|--------------------|--------------------|----------------------------|--------------------------------------------------------------------------------------------------|
| msu ucuon 1 ype    | Opcode<br>00001010 |                            | <del>-</del>                                                                                     |
|                    |                    | LOAD MQ                    | Transfer contents of register MQ to the accumulator AC                                           |
|                    | 00001001           | LOAD MQ,M(X)               | Transfer contents of memory location X to MQ                                                     |
| Data transfer      | 00100001           | STOR M(X)                  | Transfer contents of accumulator to memory location X                                            |
| Butte transfer     | 00000001           | LOAD M(X)                  | Transfer $M(X)$ to the accumulator                                                               |
|                    | 00000010           | LOAD - M(X)                | Transfer $-M(X)$ to the accumulator                                                              |
|                    | 00000011           | LOAD $ M(X) $              | Transfer absolute value of M(X) to the accumulator                                               |
|                    | 00000100           | LOAD -  M(X)               | Transfer $- M(X) $ to the accumulator                                                            |
| Unconditional      | 00001101           | JUMP M(X,0:19)             | Take next instruction from left half of $M(X)$                                                   |
| branch             | 00001110           | JUMP M(X,20:39)            | Take next instruction from right half of $M(X)$                                                  |
|                    | 00001111           | JUMP+ M(X,0:19)            | If number in the accumulator is nonnegative, take next instruction from left half of M(X)        |
|                    |                    | JU                         | If number in the                                                                                 |
|                    |                    | MP                         | accumulator is nonnegative,                                                                      |
| Conditional branch |                    | +                          | take next instruction from                                                                       |
|                    |                    | M(X), 20:                  | right half of $M(X)$                                                                             |
|                    |                    | 39)                        |                                                                                                  |
|                    |                    |                            |                                                                                                  |
|                    | 00000101           | ADD M(X)                   | Add M(X) to AC; put the result in AC                                                             |
|                    | 00000111           | ADD  M(X)                  | Add $ M(X) $ to AC; put the result in AC                                                         |
|                    | 00000110           | SUB M(X)                   | Subtract M(X) from AC; put the result in AC                                                      |
|                    | 00001000           | SUB  M(X)                  | Subtract $ M(X) $ from AC; put the remainder in AC                                               |
| Arithmetic         | 00001011           | MUL M(X)                   | Multiply M(X) by MQ; put most significant bits of result in AC, put least significant bits in MQ |
|                    | 00001100           | DIV M(X)                   | Divide AC by M(X); put the quotient in MQ and the remainder in AC                                |
|                    | 00010100           | LSH                        | Multiply accumulator by 2; i.e., shift left one bit position                                     |
|                    | 00010101           | RSH                        | Divide accumulator by 2; i.e., shift right one position                                          |
| A 11 1'f           | 00010010           | STOR M(X,8:19)             | Replace left address field at M(X) by 12 rightmost bits of AC                                    |
| Address modify     | 00010011           | STOR M(X,28:39)            | Replace right address field at M(X) by 12 rightmost bits of AC                                   |

# Conjunto de instruções IAS

# História dos Computadores Segunda Geração: Transistores

- Menor
- Mais barato
- Dissipa menos calor do que um tubo de vácuo
- É um dispositivo de estado sólido feito de silício
- Foi inventado nos Laboratórios Bell em 1947
- Foi somente no final da década de 1950 que os computadores totalmente transistorizados ficaram disponíveis comercialmente.

#### +

# Computadores de segunda geração

- **■**Características:
  - Unidades aritméticas e lógicas mais complexas e unidades de controle
  - O uso de linguagens de programação de alto nível
  - Fornecimento de *software de sistema* que proporcionou a capacidade de:
    - Carregar programas
    - Mover dados para periféricos
    - As bibliotecas realizam cálculos comuns





Figure 1.9 An IBM 7094 Configuration

# História dos Computadores Terceira Geração: Circuitos Integrados

- 1958 a invenção do circuito integrado
- Transistor discreto
  - Transistor único e autônomo
  - Fabricados separadamente, embalados em seus próprios invólucros e soldados ou conectados em placas de circuito impresso semelhantes a compensado de madeira
  - O processo de fabricação trabalhoso e caro
- Os dois membros mais importantes da terceira geração foram o IBM System/360 e o DEC PDP-8





Figure 1.10 Fundamental Computer Elements

### Circuitos Integrados

- Armazenamento de dados fornecido por células de memória
- Processamento de dados fornecido por portas lógicas
- Movimento de dados os barramentos entre os componentes são usados para mover dados de memória para processador e vice-versa
- Controle os barramentos entre os componentes podem transportar sinais de controle
- Um computador consiste em portas, células de memória e interconexões entre esses elementos

- As portas e células de memória são construídas com componentes eletrônicos digitais simples
- Explora o fato de que componentes como transistores, resistores e capacitores podem ser fabricados a partir de um semicondutor como o silício
- Muitos transistores podem ser produzidos ao mesmo tempo em uma única pastilha de silício
- Transistores podem ser conectados com uma metalização de processador para formar circuitos



Figure 1.11 Relationship Among Wafer, Chip, and Gate



Figure 1.12 Growth in Transistor Count on Integrated Circuits (DRAM memory)

#### Lei de Moore

1965: Gordon Moore – co-fundador da Intel

O número de transistores que poderiam ser colocados em um único chip estava dobrando a cada ano

O ritmo diminuiu para uma duplicação a cada 18 meses na década de 1970, mas manteve essa taxa até 2000.

#### Consequências da lei de Moore:

O custo da
lógica do
computador e
dos circuitos
de memória
caiu a uma
taxa drástica

O
comprimento
do caminho
elétrico foi
encurtado,
aumentando a
velocidade de
operação

O computador fica menor e mais conveniente para uso em diversos ambientes

Redução nos requisitos de energia e resfriamento

Menos conexões entre chips

## Sistema IBM/360

- Anunciado em 1964
- A linha de produtos era incompatível com máquinas IBM mais antigas
- Foi o sucesso da década e consolidou a IBM como o fornecedor de computadores predominantemente dominante
- A arquitetura permanece até hoje a arquitetura dos mainframes da IBM
- Foi a primeira família de computadores planejada da indústria
  - Os modelos eram compatíveis no sentido de que um programa escrito para um modelo deveria ser capaz de ser executado por outro modelo da série

#### + Características da família

Conjunto de instruções idêntico ou semelhante

Sistema operacional idêntico ou semelhante

Aumento da velocidade

Aumento do número de portas de E/S

Aumento do tamanho da memória

Custo proporcional à capacidade



# Gerações Posteriores

LSI Integração em Grande Escala

VLSI
Integração
em Escala
Muito
Grande



Microprocessadores e memória semicondutoras

ULSI Integração Ultra Grande Escala

#### Memória Semicondutora



O chip tinha aproximadamente o tamanho de um núcleo

Poderia conter 256 bits de memória

Não destrutivo

Muito mais rápido que o núcleo magnético

Em 1974, o preço por bit da memória semicondutora caiu abaixo do preço por bit da memória de núcleo

Houve um declínio contínuo e rápido no custo da memória, acompanhado por um aumento correspondente na densidade da memória física. Os desenvolvimentos nas tecnologias de memória e processador mudaram a natureza dos computadores em menos de uma década

Desde 1970, a memória semicondutora passou por várias gerações

Cada geração proporcionou quatro vezes a densidade de armazenamento da geração anterior, acompanhada de redução do custo por bit e redução do tempo de acesso

## Microprocessadores

- A densidade de componentes nos chips de processador continuou a aumentar
  - Mais e mais componentes foram colocados em cada chip, de modo que cada vez menos chips eram necessários para construir um único processador de computador.
- 1971 A Intel desenvolveu o 4004
  - Primeiro chip com todos os componentes de uma CPU em um único chip
  - Nascimento do microprocessador
- 1972 A Intel desenvolveu o 8008
  - Primeiro microprocessador de 8 bits
- 1974 A Intel desenvolveu o 8080
  - Primeiro microprocessador de uso geral
  - Mais rápido, com um conjunto de instruções mais rico e grande capacidade de endereçamento

|                       | 4004      | 8008    | 8080   | 8086                    | 8088         |
|-----------------------|-----------|---------|--------|-------------------------|--------------|
| Introduced            | 1971      | 1972    | 1974   | 1978                    | 1979         |
| Clock speeds          | 108 kHz   | 108 kHz | 2 MHz  | 5 MHz, 8 MHz, 10<br>MHz | 5 MHz, 8 MHz |
| Bus width             | 4 bits    | 8 bits  | 8 bits | 16 bits                 | 8 bits       |
| Number of transistors | 2,300     | 3,500   | 6,000  | 29,000                  | 29,000       |
| Feature size (µm)     | 10        | 8       | 6      | 3                       | 6            |
| Addressable memory    | 640 Bytes | 16 KB   | 64 KB  | 1 MB                    | 1 MB         |

### (a) Processadores da década de 1970

|                       | 80286               | 386TM DX           | 386TM SX           | 486TM DX<br>CPU    |
|-----------------------|---------------------|--------------------|--------------------|--------------------|
| Introduced            | 1982                | 1985               | 1988               | 1989               |
| Clock speeds          | 6 MHz - 12.5<br>MHz | 16 MHz - 33<br>MHz | 16 MHz - 33<br>MHz | 25 MHz - 50<br>MHz |
| Bus width             | 16 bits             | 32 bits            | 16 bits            | 32 bits            |
| Number of transistors | 134,000             | 275,000            | 275,000            | 1.2 million        |
| Feature size (µm)     | 1.5                 | 1                  | 1                  | 0.8 - 1            |
| Addressable memory    | 16 MB               | 4 GB               | 16 MB              | 4 GB               |
| Virtual<br>memory     | 1 GB                | 64 TB              | 64 TB              | 64 TB              |
| Cache                 |                     |                    |                    | 8 kB               |

(b) Processadores da década de 1980

|                    | 486TM SX        | Pentium       | Pentium Pro              | Pentium II    |
|--------------------|-----------------|---------------|--------------------------|---------------|
| Introduced         | 1991            | 1993          | 1995                     | 1997          |
| Clock speeds       | 16 MHz - 33     | 60 MHz - 166  | 150 MHz - 200            | 200 MHz - 300 |
|                    | MHz             | MHz,          | MHz                      | MHz           |
| Bus width          | 32 bits         | 32 bits       | 64 bits                  | 64 bits       |
| Number of          | 1.185 million   | 3.1 million   | 5.5 million              | 7.5 million   |
| transistors        | 1.105 111111011 | J.1 IIIIIIOII | <i>3.3</i> mmon          |               |
| Feature size (µm)  | 1               | 0.8           | 0.6                      | 0.35          |
| Addressable memory | 4 GB            | 4 GB          | 64 GB                    | 64 GB         |
| Virtual memory     | 64 TB           | 64 TB         | 64 TB                    | 64 TB         |
| Cache              | 8 kB            | 8 kB          | 512 kB L1 and 1<br>MB L2 | 512 kB L2     |

(c) Processadores da década de 1990

|                       | Pentium III   | Pentium 4     | Core 2 Duo     | Core i7 EE<br>4960X   |
|-----------------------|---------------|---------------|----------------|-----------------------|
| Introduced            | 1999          | 2000          | 2006           | 2013                  |
| Clock speeds          | 450 - 660 MHz | 1.3 - 1.8 GHz | 1.06 - 1.2 GHz | 4 GHz                 |
| Bus<br>wid<br>th      | 64 bits       | 64 bits       | 64 bits        | 64 bits               |
| Number of transistors | 9.5 million   | 42 million    | 167 million    | 1.86 billion          |
| Feature size (nm)     | 250           | 180           | 65             | 22                    |
| Addressable memory    | 64 GB         | 64 GB         | 64 GB          | 64 GB                 |
| Virtual memory        | 64 TB         | 64 TB         | 64 TB          | 64 TB                 |
| Cache                 | 512 kB L2     | 256 kB L2     | 2 MB L2        | 1.5 MB L2/15<br>MB L3 |
| Number of cores       | 1             | 1             | 2              | 6                     |

### (d) Processadores recentes

## A evolução da arquitetura Intel x86 e ARM

- Duas principais famílias de processadores são as arquiteturas Intel x86 e ARM
- A arquitetura x86 apresenta o design em computadores com conjunto de instruções complexas (CISCs)
- A abordagem alternativa ao projeto do processador é o computador com conjunto de instruções reduzido (RISC)
- A arquitetura ARM é usada em uma ampla variedade de sistemas embarcados e é um dos sistemas baseados em RISC mais poderosos atualmente em uso

## Destaques da evolução da linha de produtos Intel:

#### 8080

- O primeiro microprocessador de uso geral do mundo
- Máquina de 8 bits, barramento de dados de 8 bits para a memória
- •Foi usado no primeiro computador pessoal (Altair)

#### 8086

- Uma máquina de 16 bits mais poderosa
- Tem um cache de instruções, ou fila, que pré-busca algumas instruções antes de serem executadas
- •A primeira aparição da arquitetura x86
- •O 8088 era uma variante deste processador com barramento externo de 8 bits e foi usado no primeiro computador pessoal da IBM

#### 80286

•Extensão do 8086 permitindo endereçar uma memória de 16 MB em vez de apenas 1 MB

#### 80386

- •A primeira máquina de 32 bits da Intel
- Primeiro
   processador Intel
   com suporte a
   multitarefa

#### 80486

- Introduziu o uso de tecnologia de cache mais sofisticada e poderosa e de pipeline de instruções
- Também incluiu um coprocessador matemático de ponto flutuante integrado

## Destaques da evolução da linha de produtos Intel:

#### **Pentium**

 Introduziu o uso de técnicas superescalares, que permitem que várias instruções sejam executadas em paralelo

#### Pentium Pro

 Continuou a evolução da organização superescalar com uso agressivo de renomeação de registros, previsão de ramificação, análise de fluxo de dados e execução especulativa

#### Pentium II

 Tecnologia Intel MMX incorporada, projetada especificamente para processar dados de vídeo, áudio e gráficos de forma eficiente

#### Pentium III

- •Instruções de ponto flutuante adicionais incorporadas
- •Extensões SIMD de streaming (SSE)

#### Pentium 4

• Inclui ponto flutuante adicional e outros aprimoramentos para multimídia

#### Core

Primeiro multi-core Intel x86

#### Core 2

- Estende a arquitetura Core para 64 bits
- Core 2 Quad fornece quatro núcleos em um único chip
- As versões Core mais recentes têm até 10 núcleos por chip
- Uma adição importante à arquitetura foi o conjunto de instruções Advanced Vector Extensions

## Sistemas Embarcados







- O uso de eletrônicos e software integrado dentro de um produto
- Bilhões de sistemas de computadores são produzidos a cada ano e incorporados em equipamentos maiores
- Atualmente, muitos dispositivos que usam energia elétrica têm um sistema de computação embarcado para controle
- Frequentemente, os sistemas embarcados são fortemente acoplados ao seu ambiente
  - Isto pode dar origem a restrições em tempo real impostas pela necessidade de interagir com o ambiente rapidamente
  - Restrições como velocidades de movimento necessários, precisão de medida e duração de tempo necessárias ditam o tempo das operações do software
  - Se várias atividades devem ser gerenciadas simultaneamente, isso impõe restrições de tempo real mais complexas









Figure 1.14 Possible Organization of an Embedded System

## A Internet das Coisas (IoT)

- Termo que se refere à crescente interconexão de dispositivos inteligentes, desde equipamentos até pequenos sensores
- É impulsionado principalmente por dispositivos profundamente incorporados
- Gerações de implantação culminando na IoT :
  - Tecnologia da informação (TI)
    - PCs, servidores, roteadores, firewalls adquiridos como dispositivos de TI por profissionais de TI corporativos e que usam principalmente para conectividade
  - Tecnologia operacional (TO)
    - Máquinas/dispositivos com TI incorporada, construídos por empresas não relacionadas a TI, como equipamentos médicos, SCADA, controle de processos e quiosques, usados por pessoas de TO corporativas
  - Tecnologia pessoal
    - Smartphones, tablets e leitores de e-books adquiridos como dispositivos de TI por consumidores que usam exclusivamente conectividade sem fio e, muitas vezes, múltiplas formas de conectividade sem fio
  - Tecnologia de sensores/atuadores
    - Dispositivos de uso único adquiridos por consumidores, profissionais de TI e TO que usam exclusivamente conectividade sem fio, geralmente de uma única forma, como parte de sistemas maiores



- Existem duas abordagens gerais para desenvolver um sistema operacional (SO) embarcado:
  - Pegue um sistema operacional existente e adapte-o para o aplicativo incorporado
  - Projetar e implementar um sistema operacional destinado exclusivamente para uso embarcado

## Processadores de aplicativos contra Processadores Dedicados

- Processadores de aplicativos
  - Definido pela capacidade do processador de executar sistemas operacionais complexos
  - De uso geral por natureza
  - Um exemplo é o smartphone o sistema embarcado é projetado para suportar vários aplicativos e executar uma ampla variedade de funções
- Processador dedicado
  - É dedicado a uma ou a um pequeno número de tarefas específicas exigidas pelo dispositivo
  - Como esse sistema embarcado é dedicado a uma ou mais tarefas específicas, o processador e os componentes associados podem ser projetados para reduzir o tamanho e o custo



Figure 1.15 Typical Microcontroller Chip Elements

### **ARM**



### +

## **Produtos ARM**





Figure 1.16 Typical Microcontroller Chip Based on Cortex-M3

## Computação em Nuvem

■ O NIST define computação em nuvem como:

"Um modelo para permitir acesso de rede onipresente, conveniente e sob demanda a um conjunto compartilhado de recursos de computação configuráveis que podem ser rapidamente provisionados e liberados com esforço mínimo de gerenciamento ou interação com o provedor de serviços."

- Você obtém economias de escala, gerenciamento de rede profissional e gerenciamento de segurança profissional
- O indivíduo ou empresa só precisa pagar pela capacidade de armazenamento e pelos serviços de que necessita
- O provedor de nuvem cuida da segurança



Figure 1.17 Alternative Information Technology Architectures

## + Resumo

## Capítulo 1

- Organização e arquitetura
- Estrutura e função
- Breve história dos computadores
  - A Primeira Geração: Tubos de vácuo
  - A Segunda Geração: Transistores
  - A Terceira Geração: Circuitos Integrados
  - Gerações posteriores
- A evolução da arquitetura Intel x86
- Computação em nuvem
  - Conceitos básicos
  - Serviços em nuvem

# Conceitos básicos e evolução do computador

- Sistemas embarcados
  - A Internet das coisas
  - Sistemas operacionais embarcados
  - Processadores de aplicativos versus processadores dedicados
  - Microprocessadores versus microcontroladores
  - Sistemas embarcados versus sistemas profundamente embarcados
- Arquitetura ARM
  - Evolução ARM
  - Arquitetura do conjunto de instruções
  - Produtos ARM