Chapter 1

Basics

1.1 Set Theory

Set is a collection of points which satisfies ZFC-axioms. And the points are the elements of $A, x \in A$.

Definitions 1.1. Cardinality |A| is the number of elements of the set A.

Definitions 1.2. A set B is a **subset** of a set A, $B \subset A$ if $x \in B \implies x \in A$.

Definitions 1.3. The **power set** $\mathcal{P}(A)$ of a set A is the family of all subsets of A.

Definitions 1.4. Two sets A, B are **equal**, A = B if $A \subset B$ and $B \subset A$.

Definitions 1.5. The union of two sets A, B is the set $A \cup B = \{x : x \in A \text{ or } x \in B\}$.

Definitions 1.6. The intersection of two sets A, B is the set $A \cap B = \{x : x \in A \text{ and } x \in B\}.$

Definitions 1.7. The **complement** of a set A with respect to a set B is the set $A - B = \{x \in A : x \notin B\}$.

Definitions 1.8. The **symmetric difference** of two sets A, B is the set $A\Delta B = (A - B) \cup (B - A)$.

1.1.1 Relation

Definitions 1.9. The cartesian **product** of A and B, $A \times B = \{(a, b) : a \in A, b \in B\}$.

Definitions 1.10. A relation from A to B is a subset of $A \times B$. And $xRy \implies (x,y) \in R \subset A \times B$. A relation on A is $R \subset A \times A$.

Definitions 1.11. A reflexive relation R on A satisfies xRx, $\forall x \in A$.

Definitions 1.12. A symmetric relation R on A satisfies $xRy \iff yRx$.

Definitions 1.13. An antisymmetric relation R on A satisfies $(x, y) \in R \implies (y, x) \notin R$.

Definitions 1.14. A transitive relation R on A satisfies xRy, $yRz \implies xRz$, $\forall x, y, z \in A$.

Definitions 1.15. An equivalence relation R on A is a reflexive, symmetric, and trasitive relation.

Definitions 1.16. Let $x \in A$. An equivalence class of a set A containing x is the subset $\hat{x} = \{y \in A : xRy\}$.

Definitions 1.17. A partition $\{\hat{x}, \hat{y}, ...\}$ of A is a family of subsets \hat{x} of A which satisfies

- 1. $x \in \hat{x}, \ \forall x \in A$.
- 2. $\hat{x} \cap \hat{y} \iff \hat{x} = \hat{y}$.
- 3. $A = \bigcup \{\hat{x} : x \in A\}.$

Definitions 1.18. A total relation R on A satisfies either xRy or yRx, $\forall x, y \in A$, $(x \neq y)$.

Definitions 1.19. A function from A to B is relation which has a unique element (a, b) for every $a \in A$.

Definitions 1.20. An injection $f: A \to B$ satisfies $f(x) = f(y) \implies x = y$.

Definitions 1.21. A surjection $f: A \to B$ satisfies $y = f(x), \ \forall y \in B$.

Definitions 1.22. A bijection $f: A \to B$ is both injective and surjective.

There exists a bijection from the set of all equivalence relations on A to the set of all partitions of A.

Definitions 1.23. A set A is **finite** if there exists a natural number N and a bijection $f: A \to \{1, 2, ..., N\}$.

A is finite if and only if there does not exists a bijection from A into any proper subset of A.

Definitions 1.24. A set A is **countably infinite** if there exists a bijection $f: A \to \mathbb{N}$.

1. Let $f: X \to Y$, $g: Y \to X$ and $g \circ f = id_X$. Then $f \circ g$ is idempotent.

Part I Mathematics 1

Chapter 2

Analysis

2.1 Sequence

Definitions 2.1. Sequence x_n in a set X is a function $x : \mathbb{N} \to X$ where $x_n = x(n)$.

Definitions 2.2. Subsequence x_{n_k} of a sequence x_n is a function $x \circ n$ where $n : \mathbb{N} \to \mathbb{N}$, $n_k = n(k)$ is a strictly increasing sequence.

2.1.1 Convergence

Definitions 2.3 (norm). A sequence x_n converges to x if there exists $N \in \mathbb{N}$ such that $\forall n > N, ||x_n - x|| < \varepsilon$.

$$\forall \varepsilon > 0, \ \exists N \in \mathbb{N}, \ \forall n > N, \ \|x_n, x\| < \varepsilon$$
 (2.1)

Remark (subsequence). A sequence x_n converges to x if and only if every subsequence has a convergent subsequence.

2.1.2 Limit Point

Definitions 2.4. x is a limit point of sequence x_n if x_n converges to x.

Definitions 2.5. x is a cluster point of sequence x_n , there exists a subsequence x_{n_k} converging to x.

2.1.3 Cauchy Criterion

Definitions 2.6 (norm). A sequence x_n is Cauchy if there exists $N \in \mathbb{N}$ such that $\forall n, m > N$, $||x_n - x_m|| < \varepsilon$.

2.1.4 Complete Space

Definitions 2.7 (complete). A space is complete if every Cauchy sequence in it converges.

2.1. SEQUENCE

5

Properties of Convergent Sequences

1. The limit of a convergent real sequence is unique.

2.

$$x_n \to x, \ y_n \to y \implies x_n \pm y_n \to x \pm y$$

$$x_n \to x, \ y_n \to y \implies x_n y_n \to xy$$

$$x_n \to x, \ y_n \to y, \ y_n \neq 0, \ y \neq 0 \implies x_n/y_n \to x/y$$

3.

$$x_n \to x, \ y_n \to y, \ x_n \le y_n \implies x \le y$$

Squeeze: $x_n \le y_n \le z_n, \ x_n \to l, \ z_n \to l \implies y_n \to l$

4.

$$|x_n| \to |x| \implies x_n \to x$$

 $x_n y_n \to xy, \ x_n \to x \implies y_n \to y$

5. Every convergent sequence is absolute convergent.

$$x_n \to x \implies |x_n| \to |x|$$

6. Sequences converging to 0

$$|x_n| \to 0 \iff x_n \to 0$$

7. Continuity of $\sqrt{\ }$

$$x_n \to x \implies \sqrt{x_n} \to \sqrt{x}, \quad (x_n > 0)$$

Properties of Numbers

1. Greatest integer function

$$\forall x \in \mathbb{R}, \quad x - 1 < |x| < x$$

2. Arithmetic vs Geometric mean

$$\forall a, b \in \mathbb{R}, \quad \frac{a+b}{2} \ge \sqrt{ab}$$

3. Exponential function

$$\lim_{n \to \infty} \left(1 + \frac{x}{n} \right)^n = e^x$$

4. Archimedian Property

$$\forall x \in \mathbb{R}, \ \exists n \in \mathbb{N} : x < n$$

5. Dense Subset

$$\forall x, y \in \mathbb{R}, \ \exists r \in \mathbb{Q} : x < r < y \quad (x < y)$$

6.

$$||a| - |b|| < |a - b|$$

2.1.5 Important Notions

- 1. If space X is T_2 , then limit of convergent sequence in X is unique.
- 2. Derived Set $A' = \{x \in X : \forall N \in \mathcal{N}_x, N \{x\} \cap A \neq \emptyset\}.$

$$\bar{A} = A \cup A'$$

3. Every function on \mathbb{N} is continuous.

2.1.6 Techniques

1. Ratio

$$\lim_{n \to \infty} \frac{x_{n+1}}{x_n} = l$$

If l < 1, $x_n \to 0$ and l > 1, $x_n \to \infty$.

2. Root

$$\lim_{n \to \infty} (x_n)^{\frac{1}{n}} = l$$

If $l < 1, x_n \to 0$ and $l > 1, x_n \to \infty$

3. Stolz Theorem

$$\lim_{n \to \infty} \frac{x_1 + x_2 + \dots + x_n}{y_1 + y_2 + \dots + y_n} = \lim_{n \to \infty} \frac{x_n - x_{n-1}}{y_n - y_{n-1}} \qquad (y_n \uparrow^{\infty})$$

4. Riemann Sum

$$\lim_{n \to \infty} \frac{1}{n} \sum_{k=0}^{\infty} f(k/n) = \int_0^1 f(x) \ dx$$

2.2 Limit Superior/Inferior

Definitions 2.8.

$$\limsup_{n \to \infty} x_n = \inf_{n \ge 0} \sup_{m > n} x_n$$

Definitions 2.9.

$$\liminf_{n \to \infty} x_n = \sup_{n \ge 0} \inf_{m \ge n} x_n$$

Remark. $\liminf x_n = I$, $\limsup x_n = S$ are the bounds for cluster points of x_n . Thus, there are at most finitely many terms outside $(I - \varepsilon, S + \varepsilon)$. However, [I, S] may not contain any term of x_n . For example, $x_n = (-1)^n (1 + \frac{1}{n})$.

2.2.1 Properties of limit superior/inferior

$$\inf x_n \le \liminf x_n \le \limsup x_n \le \sup x_n$$

 $\liminf a_n + \liminf b_n \le \liminf (a_n + b_n) \le \limsup (a_n + b_n) \le \limsup a_n + \limsup b_n$ $\liminf a_n \liminf b_n \le \liminf (a_n b_n) \le \limsup (a_n b_n) \le \limsup a_n \limsup b_n$

Theorem 2.10 (Stolz-Cesaro).

$$\liminf_{n\to\infty}\frac{a_{n+1}-a_n}{b_{n+1}-b_n}\leq \liminf_{n\to\infty}\frac{a_n}{b_n}\leq \limsup_{n\to\infty}\frac{a_n}{b_n}\leq \limsup_{n\to\infty}\frac{a_{n+1}-a_n}{b_{n+1}-b_n}$$

2.3 Limit of a function

Definitions 2.11 (limit). If $f(x_n) \to L$ as $x_n \to a$, then $\lim_{x \to a} f(x) = L$.

Definitions 2.12 (continuity). A function $f: X \to Y$ is continuous at $a \in X$, if $\lim_{x \to a} f(x) = f(\lim_{x \to a} x) = f(a).$

Theorem 2.13. Limit is algebraic.

Suppose $\lim_{x\to a} f(x)$, $\lim_{x\to a} g(x)$ exists, then

$$\lim_{x \to a} cf(x) = c \lim_{x \to a} f(x) \tag{2.2}$$

$$\lim_{x \to a} cf(x) = c \lim_{x \to a} f(x)$$

$$\lim_{x \to a} f(x) \pm g(x) = \lim_{x \to a} f(x) \pm \lim_{x \to a} g(x)$$

$$\lim_{x \to a} f(x)g(x) = \lim_{x \to a} f(x) \lim_{x \to a} g(x)$$

$$(2.2)$$

$$(2.3)$$

$$\lim_{x \to a} f(x)g(x) = \lim_{x \to a} f(x) \lim_{x \to a} g(x) \tag{2.4}$$

$$\lim_{x \to a} \frac{f(x)}{g(x)} = \frac{\lim_{x \to a} f(x)}{\lim_{x \to a} g(x)}$$
(2.5)

$$\lim_{x \to a} f(x)^{g(x)} = \lim_{x \to a} f(x)^{x \to a} g(x)$$
(2.6)

Remark (exceptions).

$$\frac{0}{0}, \frac{\pm \infty}{+\infty}, 0 \pm \infty, \infty - \infty, 0^0, \infty^0, 1^{\pm \infty}$$

Theorem 2.14 (L'Hospital/Bernouli).

$$\lim_{x \to a} \frac{f(x)}{g(x)} = \lim_{x \to a} \frac{f'(x)}{g'(x)}$$

Remark (application).

$$\lim_{x \to 0} (2+x)^{\frac{1}{x}} = \lim_{x \to 0} e^{\frac{1}{x}\log(1+x)} = e^{\lim_{x \to 0} \frac{\log(2+x)}{x}} = \lim_{x \to 0} \frac{1}{2+x} = \sqrt{e}$$

Squeeze theorem Suppose $f(x) \leq g(x) \leq h(x)$ for each x in an open interval containing a (except a). If $\lim_{x\to a} f(x) = \lim_{x\to a} h(x) = L$, then

$$\lim_{x \to a} g(x) = L \tag{2.7}$$

Theorem 2.15 (chain rule). Suppose $\lim_{x\to a} g(x) = b$ and f is continuous at b, then

$$\lim_{x \to a} f(g(x)) = f(\lim_{x \to a} g(x)) = f(b) = c \tag{2.8}$$

Remark. The existence of limit $\lim_{y\to b} f(y) = c$ does not imply f(b) = c. If g assumes value b in some neighbourhood of a, then

$$\lim_{x \to a} g(x) = b, \ \lim_{y \to b} f(x) = c \Longrightarrow \lim_{x \to a} f \circ g(x) = c$$

2.4 Limit Inferior/Superior of Functions

Definitions 2.16 (metric).

$$\limsup_{x\to a} f = \lim_{\varepsilon\to 0} \sup_{x\in B(a,\varepsilon)^*} \{f(x)\} = \inf_{\varepsilon>0} \sup_{x\in B(a,\varepsilon)^*} \{f(x)\}$$

$$\liminf_{x\to a}f=\lim_{\varepsilon\to 0}\inf_{x\in B(a,\varepsilon)^*}\{f(x)\}=\sup_{\varepsilon>0}\inf_{x\in B(a,\varepsilon)^*}\{f(x)\}$$

2.5 Sequence of Functions

2.5.1 Notions of Convergence

Definitions 2.17 (pointwise). Sequence of functions are pointwise convergent if for each $x_0 \in X$, the sequence $f_n(x_0)$ converges to $f(x_0)$.

(metric)
$$\forall x \in X, \ \forall \varepsilon > 0, \ \exists N_{x,\varepsilon} \in \mathbb{N}, \ \forall n > N_{x,\varepsilon}, \ d(f_n(x), f(x)) < \varepsilon$$
 (2.9)

(norm)
$$\forall x \in X, \ \forall \varepsilon > 0, \ \exists N_{x,\varepsilon} \in \mathbb{N}, \ \forall n > N_{x,\varepsilon}, \ \|f_n(x), f(x)\| < \varepsilon$$
 (2.10)

$$(nbd) \quad \forall x \in X, \ \forall U \in \mathcal{N}_{f(x)}, \ \exists N_{x,U} \in \mathbb{N}, \ \forall n > N_{x,U}, \ f_n(x) \in U$$
 (2.11)

Definitions 2.18 (uniform). Sequence of functions are uniformly convergent if for each $x \in X$, all the sequences $f_n(x)$ converges to f(x) uniformly.

(metric)
$$\forall \varepsilon > 0, \ \exists N_{\varepsilon} \in \mathbb{N}, \ \forall x \in X, \ \forall n > N_{\varepsilon}, \ d(f_n(x), f(x)) < \varepsilon$$
 (2.12)

(norm)
$$\forall \varepsilon > 0, \ \exists N_{\varepsilon} \in \mathbb{N}, \ \forall x \in X, \ \forall n > N_{\varepsilon}, \ \|f_n(x), f(x)\| < \varepsilon$$
 (2.13)

$$(nbd) ?? (2.14)$$

2.5.2 Notions of Boundedness

Definitions 2.19 (pointwise). Sequence of functions is pointwise bounded if for each $x_0 \in X$, the sequence $f_n(x_0)$ is bounded.

$$\forall x \in X, \ \exists M_x \in \mathbb{R}, \ |f_n(x)| < M_x \tag{2.15}$$

Definitions 2.20 (uniform). Sequence of functions if uniformly bounded if the pointwise bounds are uniform.

$$\exists M \in \mathbb{R}, \ \forall x \in X, \ |f_n(x)| < M$$
 (2.16)

2.6 Limit of a Set

Definitions 2.21.

$$\liminf X = \inf\{limit \ points\}$$

$$\limsup X = \sup \{ limit \ points \}$$

2.7 Sequence of Sets

Definitions 2.22.

$$\lim \inf X_n = \bigcup_{n=1}^{\infty} \bigcap_{m=n}^{\infty} X_n$$
$$\lim \sup X_n = \bigcap_{n=1}^{\infty} \bigcup_{m=n}^{\infty} X_n$$

Chapter 3

Linear Algebra

3.1 Vector Space

Definitions 3.1 (vector space). A vector space V(F) or $\langle V, F, +, \cdot \rangle$ satisfies

- 1. F is a field
- 2. $\langle V, + \rangle$ is an abelian group.
- 3. $1\alpha = \alpha, \ \forall v \in V$
- 4. $(c_1c_2)\alpha = c_1(c_2\alpha), \ \forall c_1, c_2 \in F, \alpha \in V.$
- 5. Scalar multiplication \cdot is left as well as right distributive over vector addition +.

Definitions 3.2 (subspace). Let V(F) be a vector space with $\langle V, F, +, \cdot \rangle$ and $W \subset V$. Then W(F) is a subspace of V(F) if $\langle W, F, +, \cdot \rangle$ is a vector space. ie, $W \leq V$.

3.1.1 Important Notions

1.
$$c0 = 0$$
, $0\alpha = 0$, $(-1)\alpha = -\alpha$

3.1.2 Basis

Definitions 3.3 (linearly independent). A set of vectors $W \subset V$ is linearly independent if W has a non-trivial linear combination representation of the zero vector.

Note. Linear combinations are of finite length (if not mentioned otherwise).

Definitions 3.4 (basis). A basis of a vector space V(F) is a linear independent, spanning subset of the set of vectors V.

Definitions 3.5 (dimension). Any two basis of a vector space V(F) are of the same cardinality. The cardinality of basis of V(F) is the dimension of V(F).

Note. The linear combinations of a set of vectors $W \subset V$ generates a subspace of V(F). The zero vector always has the trivial linear combination representation for any subset W of V.

Note. Even infinite dimensional vector spaces demands an infinite basis with a finite linear combination representation for each of its vectors.

Definitions 3.6 (change of basis). Let B_1, B_2 be two bases for V(F). The change of basis matrix $P = [B_1, B_2]$ satisfies $[\alpha]_{B_2} = [B_1, B_2] \cdot [\alpha]_{B_1}$ where $[\alpha]_B$ is the co-ordinate of $\alpha \in V$ with respect to a basis B of V(F) and $[B_1, B_2]$ is the change of basis from B_1 to B_2 .

3.2 System of Equations

3.2.1 Row reduced echelon matrix

Definitions 3.7 (equivalent). Two system of equations are equivalent if they have the same solution space. And, two matrices are equivalent if the respective systems of equations are equivalent.

Definitions 3.8 (row operations). A row operation is a function $f: F^{n \times m} \to F^{n \times m}$ that preserves equivalence. There are three elementary row operations,

- 1. multiplication of a row by a scalar
- 2. addition of a row to another
- 3. interchanging two rows

Definitions 3.9 (elementary matrix). Matrix corresponding to an elementary row operation.

Note. Any row operation can be performed by the multiplication of a matrix which is a finite product of elementary matrices.

Note. Every matrix has a unique row reduced echelon form. A matrix A is invertible if and only if its row reduced echelon form is the identity matrix.

Note. Gauss Elimination method with augmented matrix to solve system of equations.

3.3 Matrices

Definitions 3.10 (matrix). A matrix $A_{m \times n}$ over the field F is a function $A : \mathbb{Z}_m \times \mathbb{Z}_n \to F$.

Definitions 3.11 (square). A square matrix of order n is matrix $A_{n\times n}$. And $M_n(F)$ is the set of all square matrices of order n over the field F. ie, $A_{n\times n} \in M_n(F)$.

Note. The entries of $A_{m \times n}$ are represented by a_{ij} where $a_{ij} = A(i,j)$.

Definitions 3.12 (identity). The identity matrix of order n, $I_{n \times n}$ is given by $I(i, j) = \delta_{i, j}$.

Definitions 3.13 (diagonals). The **diagonal** entries are a_{ij} with i = j. The **super-diagonal** entries are a_{ij} with i = j + 1. The **subdiagonal** entries are a_{ij} with i = j - 1.

Definitions 3.14 (diagonal). A diagonal matrix all its entries zero except for the diagonal entries.

Definitions 3.15 (Jordan normal). A Jordan normal matrix has all entries zero except for diagonal and superdiagonal entries. All its non-zero superdiagonal entries are 1.

Definitions 3.16 (submatrix). A(i|j) is the submatrix obtained from the matrix A by deleting ith row and jth column.

Definitions 3.17 (normal). A complex matrix A is normal if it commutes with its conjugate transpose. ie, $AA^* = A^*A$.

3.3.1 Operations

Definitions 3.18 (trace). The trace of a square matrix is the sum of its diagonal entries.

$$tr: M_n(F) \to F, \ tr(A) = \sum_{k=1}^n A(k,k)$$
 (3.1)

Definitions 3.19 (n-linear). A function $f: M_n(F) \to F$ is n-linear iff is linear function of the ith row when other rows are fixed.

Definitions 3.20 (alternating). A function $f: M_n(F) \to F$ is alternating if

- 1. f(A) = 0 if two rows are equal.
- 2. f(A') = -f(A)

Definitions 3.21 (determinant). The determinant of a square matrix $det : M_n(F) \to F$ is an n-linear, alternating function with D(I) = 1.

Note. Matrix A with det(A) = 0 is singular.

Definitions 3.22 (scalar multiplication). Let $k \in F$ and $A_{m \times n}$ over the field F. The scalar product $k \cdot A_{m \times n}$ is kA given by $kA(i,j) = k \cdot A(i,j)$.

Definitions 3.23 (transposition). The **transpose** of a matrix $A_{m \times n}$ is the matrix $A'_{n \times m}$ given by $A' : n \times m \to F$, A'(i, j) = A(j, i).

Definitions 3.24 (complex conjugation). The **complex conjugate** of a matrix $A_{m \times n}$ is the matrix $\bar{A}_{n \times m}$ given by $\bar{A}: n \times m \to F$, $\bar{A}(i,j) = \overline{A(j,i)}$.

Note. Conjugates and Complex Conjugate are different notions.

Definitions 3.25 (addition). Two matrices A, B are compatible for addition if they are of the same size. The sum of two matrices A, B is the matrix C of the same size with entries $c_{ij} = a_{ij} + b_{ij}$.

Definitions 3.26 (mulitplication). Two matrices A, B are compatible for multiplication if the number of columns of the first matrix and the number of rows of the second matrix are the same. The product of two matrices $A_{m \times n}, B_{n \times p}$ is the matrix $C_{m \times p}$ with entries

$$c_{ij} = \sum_{k=1}^{n} a_{ik} b_{kj}$$

Note. Matrix multiplication is associative and non-commutative. Every non-singular matrix has a multiplicative inverse.

3.3. MATRICES

3.3.2 Types

Definitions 3.27 (idempotent). A idempotent matrix A is a square matrix $A_{n\times n}$ which satisfies $A^2 = A$.

Definitions 3.28 (involutary). A involutary matrix A is a square matrix $A_{n\times n}$ which satisfies $A^2 = I$.

Definitions 3.29 (scalar). A scalar matrix A is a square matrix $A_{n\times n}$ which satisfies $a_{ij} = k \cdot \delta_{i,j}$. ie, $A_{n\times n} = k \cdot I_{n\times n}$

Definitions 3.30 (nilpotent). A square matrix is nilpotent of index p if $A^p = 0$ and $A^k \neq 0$, $\forall k < p$.

Definitions 3.31 (periodic). A square matrix is nilpotent of period p if $A^p = I$ and $A^k \neq I$, $\forall k < p$.

Definitions 3.32 (symmetric). A symmetric matrix $A_{n\times n}$ satisfies $a_{ij}=a_{ji}$. ie, A'=A. A skew-symmetric matrix satisfies $a_{ij}=-a_{ji}$. ie, A'=-A.

Definitions 3.33 (hermitian). A hermitian matrix $A_{n\times n}$ satisfies $\overline{a_{ij}} = a_{ji}$. ie, $A^* = A$, $A^* = \overline{A}'$. A skew-hermitian matrix satisfies $\overline{a_{ij}} = -a_{ji}$. ie, $A^* = -A$.

Note. Every matrix A has a decomposition A = P + Q where $P = \frac{A + A'}{2}$ is symmetric and $Q = \frac{A - A'}{2}$ is skew-symmetric. And A has a decomposition A = P + Q where $P = \frac{A + A^*}{2}$ is hermitian and $Q = \frac{A - A^*}{2}$ is skew-hermitian.

Definitions 3.34 (orthogonal). An orthogonal matrix A satisfies $A \in M_n(\mathbb{R})$ and AA' = I.

Definitions 3.35 (unitary). A unitary matrix A satisfies $A \in M_n(\mathbb{C})$ and $AA^* = I$.

3.3.3 Important Notions

Let $A_{m \times n} \in \mathbb{R}^{m \times n}$.

- 1. $tr(AA') = 0 \iff A = 0$.
- 1. Let D be a diagonal matrix. Then $AD = DA \iff A$ is a block diagonal matrix.

3.3.4 Invariants

Definitions 3.36 (conjugation). Two square matrices A, B are **conjugates** if there exists an invertible matrix P such that $A = PBP^{-1}$.

Theorem 3.37. If $A_{m \times n}$, then Rank(A) + Nullity(A) = n

Theorem 3.38 (Cayley-Hamilton). Every matrix $A \in M_n(F)$ satisfies its characteristic equation $det(A - xI) \in F[x]$.

Definitions 3.39 (minimal polynomial). The minimal polynomial of a square matrix A is the unique, monic polynomial p of least degree satisfied by A. ie, p(A) = 0.

Note. For every square matrix A has a conjugate matrix of the Jordan normal form which unique upto block permutations.

Definitions 3.40 (diagonalisable). A diagonalisable matrix has a diagonal matrix as its Jordan normal form.

Note. Jordan normal form determines the minimal polynomial. The set of all polynomials that annihilate A form a principal ideal domain in $\mathbb{C}[x]$ with minimal polynomial as its generator.

Definitions 3.41 (multiplicity). Algebraic multiplicity of an eigenvalue α of $A \in M_n(F)$ is the degree of $(\lambda - \alpha)$ in its characteristic equation. Geometric multiplicity of α is the number of blocks in Jordan normal form with diagonal entry α .

3.3.5 Important Notions

- 1. If $A \in M_n(F)$ with Jordan normal form $J = P^{-1}AP$, then $A^n = PJ^nP^{-1}$.
- 2. Eigenvalues, their algebraic and geometric multiplicities, characteristic polynomial, minimal polynomial, trace, determinant, rank and nullity are invaint under conjugation.
- 3. A matrix is normal if and only if its diagonalisable by a unitary matrix. Thus, real symmetric matrices are diagonalisable over \mathbb{R} . And hermitian, skew-hermitian matrices are diagonalisable over \mathbb{C} .
- 4. real skew-symmetric matrices are not diagonalisable over \mathbb{R} .
- 5. Rotation matrices are non-diagonalisable over \mathbb{R} but diagonalisable over \mathbb{C} .
- 6. Non-zero nilpotent matrices are non-diagonalisable over any field F.
- 7. Sum of diagonalisable matrices need not be diagonalisable.

3.4 Quadratic Forms

Theorem 3.42 (QR decomposition). Every matrix $A \in M_n(\mathbb{C})$ has a QR-decomposition. ie, A = QR where Q is unitary and R is upper triangular.

Note. QR-decomposition unique if R has positive diagonal entries.

Definitions 3.43 (definite). Symmetric matrix $A \in M_n(\mathbb{R})$ is positive definite if all its eigenvalues are positive. A is positive semidefinite if if all its eigenvalues are non-negative.

Definitions 3.44 (definite). Let $A \in M_n(\mathbb{C})$ be a hermitian matrix. The matrix A is **positive definite** matrix if it satisfies x'Ax > 0, $\forall x \in \mathbb{C}^{n \times 1}$. A is **positive semidefinite** matrix if it satisfies $x'Ax \geq 0$, $\forall x \in \mathbb{C}^{n \times 1}$. A is **negative definite** matrix if it satisfies x'Ax < 0, $\forall x \in \mathbb{C}^{n \times 1}$.

Part II Mathematics 2

Chapter 4

Algebra

4.1 Number Theory

Lemma 4.1 (Euclid). Let p be a prime. If p divides ab, then either p divides a or p divides b.

Greatest Common Divisor

- 1. Bézout's Identity : If gcd(n, m) = d, then $\exists s, t \in \mathbb{Z}$ such that d = sn + tm.
- 2. Euclid's Division Algorithm : If b > 0, then $\forall a \in \mathbb{Z}$, $\exists q \in \mathbb{Z}$ and $\exists r \in \mathbb{Z}$ such that a = qb + r where 0 < r < b.
- 3. Euclid's Algorithm : $gcd(a, b) = gcd(b, r) = \cdots = gcd(d, 1)$ where a = bq + r.
- 4. The linear equation ax + by = c has integer solutions if gcd(a, b) divides c. If (x, y) is a solution, then (x b/d, y a/d) is also a solution.
- 5. Chinese Remainder Theorem : Let $x \cong a_j \pmod{n_j}$ be a system of congruences where $\gcd(n_j, n_k) = 1, \ (j \neq k)$. Then there exists a solution. If x_1, x_2 is are two solutions, then $x_1 \cong x_2 \pmod{N}$ where $N = \prod n_j$.

$$x \cong \sum a_j M_j N_j \pmod{N}$$
 where $N_j = \frac{N}{n_j}$ and $M_j \cong N_j^{-1} \pmod{n_j}$

Congruences

Definitions 4.2. The congruence is a relation on \mathbb{Z} defined by

$$a \cong b \pmod{n} \iff n|(a-b)$$

- 1. The relation \cong is an equivalence relation.
- 2. $a \cong b \pmod{n} \implies \forall k, \ a^k \cong b^k \pmod{n}$.
- 3. If gcd(a, n) = 1, then $a^{-1} \pmod{n}$ exists.
- 4. Linear congruence equation $ax \cong b \pmod{n}$ has a solution if $\gcd(a,n)$ divides b.

Euler's phi function The function $\phi : \mathbb{N} \to \mathbb{N}$ is defined as $\phi(n) =$ the cardinality of the set $\{k \in \mathbb{N} : k \leq n, \gcd(n, k) = 1\}$.

- 1. ϕ is multiplicative. That is, $\phi(mn) = \phi(m)\phi(n)$, $\gcd(m,n) = 1$.
- 2. $\phi(p^n) = p^n p^{n-1}$ where p is a prime.
- 3. $\phi(n)$ is even for n > 2.
- 4. The sum of $\phi(d)$ for all divisors of n is n.
- 5. The sum of all natural numbers $k \leq n$ that are relatively prime to n is $n\phi(n)/2$.

Theorem 4.3 (Fermat). $a^p \cong a \pmod{p}$

Definitions 4.4. A number x such that $a^x \cong a \pmod{x}$ is a (fermat) **pseudoprime** for base a where gcd(a, x) = 1.

Number 341 is the smallest pseudoprime for base 2.

Definitions 4.5. A number x is a **Carmichael** number if $a^x \cong a \pmod x$ whenever $\gcd(a,x)=1$.

4.1.1 Arithmetical Functions

Definitions 4.6. A function $f : \mathbb{N} \to \mathbb{C}$ is an **arithmetical** (number theoretic) function.

Definitions 4.7. An arithmetical function f is multiplicative iff f(mn) = f(m)f(n) whenever gcd(m, n) = 1. And completely multiplicative iff f(mn) = f(m)f(n) always.

Definitions 4.8. The Dirichlet convolution

$$f * g = \sum_{d|n} f(d)g\left(\frac{n}{d}\right)$$

Clearly, Dirichlet convolution is commutative and associative.

And Dirichlet convolution of multiplicative functions in multiplicative. However, Dirichlet convolution of completely multiplicative functions is not completely multiplicative.

Definitions 4.9. Every artithmetical function f with $f(1) \neq 0$ has a unique **Dirichlet** inverse f^{-1} .

$$f^{-1}(n) = \begin{cases} \frac{1}{f(1)} & n = 1\\ \frac{-1}{f(1)} \sum_{\substack{d \mid n \\ d < n}} f(n/d) f^{-1}(d) & n > 1 \end{cases}$$

Clearly, $(f * g)^{-1} = g^{-1} * f^{-1}$ provided f^{-1} and g^{-1} exists.

Theorem 4.10. Let f be multiplicative. Then f is completely multiplicative iff $f^{-1} = \mu f$.

Arithmetical Functions and their Dirichlet products

- 1. **Identity function**, $I(n) = \left[\frac{1}{n}\right]$ vanishes everywhere except at n = 1, I(1) = 1. Clearly, I is completely multiplicative.
- 2. **Möbius function**, $\mu(n)$ gives the parity of the number of prime factors of a square free number and vanishes for numbers which are contains a square. For example, $\mu(1) = 1$, $\mu(30) = -1$, $\mu(12) = 0$. Clearly, μ is multiplicative.
- 3. Riemann Zeta function, $\zeta(n) = 1$ is completely multiplicative. Thus $\zeta^{-1} = \mu \zeta = \mu$.
- 4. Power function, $N^{\alpha}(n) = n^{\alpha}$ is completely multiplicative. Thus, $(N^{\alpha})^{-1} = \mu N^{\alpha}$. And $N^{0} = \zeta$.
- 5. Characteristic function, χ_S is the membership indicator function.

$$\chi_S(n) = \begin{cases} 1 & n \in S \\ 0 & n \notin S \end{cases}$$

 χ_S is not multiplicative.

- 6. Euler totient function, $\phi(n)$ gives the number of positive integers less than n which are relatively prime to n. And $\phi = \mu * N$. Thus, $\phi^{-1} = \zeta * \mu N$.
- 7. **Liouville function** $\lambda(n)$ gives the parity of sum of prime powers of n. For example, $\lambda(1) = 0$, $\lambda(30) = -1$, $\lambda(12) = -1$. Clearly, λ is completely multiplicative and $\lambda^{-1} = \mu \lambda$. And $\lambda = \mu * \chi_{Sq}$ where Sq is the set of all squares.
- 8. Divisor function $\sigma_{\alpha}(n)$ is the sum of α th powers of divisors of n. Clearly, $\sigma_{\alpha} = \zeta * N^{\alpha}$. And $\sigma_{\alpha}^{-1} = \mu * \mu N^{\alpha}$.
- 9. $\tau(n)$ gives the number of divisors of n. And d(n) gives the sum of divisors of n. Clearly, $\tau = \sigma_0 = \zeta * \zeta$. And $d = \sigma = \sigma_1 = \zeta * N$. We have, $\sigma * \phi = \zeta * N * \mu * N = N * N = N\tau$ since,

$$N*N(n) = \sum_{d|n} N(d)N(n/d) = \sum_{d|n} n = N(n)\tau(n)$$

and
$$\tau * \phi = \zeta * \zeta * \mu * N = \zeta * N = \sigma$$

- 10. $\omega(n)$ gives the number of distinct prime factors of n. Clearly $\omega = \zeta * \chi_{\mathbb{P}}$ where \mathbb{P} is the set of all primes.
- 11. $\Omega(n)$ gives the number of prime factors of n counted with multiplicity. Clearly, $\Omega = \zeta * \chi_{\mathcal{P}}$ where \mathcal{P} is the set of all prime powers
- 12. p-adic valuation $\nu_p(n)$ is the exponent of highest power of prime p that divides n.

$$\omega(2^n 3^m) = 2, \ \Omega(2^n 3^m) = n + m, \ \nu_2(2^n 3^m) = n$$

$$\nu_p(n!) = \left[\frac{n}{p}\right] + \left[\frac{n}{p^2}\right] + \dots$$

Strange Functions

1. $\sin : \mathbb{N} \to [-1, 1]$ is an injection since $\sin(x) = \sin(y) \implies 2\pi | (x - y)$.

4.2 Group Theory

Definitions 4.11. An **algebra** is $\langle S, \mathcal{F} \rangle$ where S is a collection of sets and \mathcal{F} is a collection of functions/relations defined on them.

Definitions 4.12. A binary relation on a set A is a relation between $A \times A$ and A.

Definitions 4.13. An associative binary relation * on A satisfies

$$(x*y), (y*z) \in A \implies (x*y)*z, x*(y*z) \in A, (x*y)*z = x*(y*z)$$
 (4.1)

Definitions 4.14. A commutative binary relation * on A satisfies

$$x * y \in A \implies y * x \in A, \ x * y = y * x \tag{4.2}$$

A commutative algebra is also called abelian.

Definitions 4.15. A binary operation on A is a function $*: A \times A \rightarrow A$.

Definitions 4.16. An associative binary operation * on A satisfies

$$(x * y) * z = x * (y * z) \tag{4.3}$$

Definitions 4.17. A commutative binary operation * on A satisfies

$$x * y = y * x \tag{4.4}$$

Definitions 4.18. A binary **algebra** $\langle A, * \rangle$ is an algebra with a set A together with a binary operation * on A.

Definitions 4.19. A magma is a binary algebra $\langle A, * \rangle$ where * is a binary operation on A. By the definition of binary operation, * is well-defined(closed) on $A \times A$.

Definitions 4.20. A semigroup is a magma $\langle A, * \rangle$ where * is associative.

Definitions 4.21. A left identity e' of an algebra $\langle A, * \rangle$ satisfies e' * x = x, $\forall x \in A$. And **right identity** e' satisfies x * e' = x, $\forall x \in A$. An **identity** element e of $\langle A, * \rangle$ satisfies both.

A binary algebra has at most one identity element. Homomorphisms map identity elements into identity elements.

Definitions 4.22. A monoid is a semigroup $\langle A, * \rangle$ where * has an identity $e \in A$.

Definitions 4.23. Let $x \in A$. An **inverse** x^{-1} of x in an algebra $\langle A, * \rangle$ satisfies $xx^{-1} = x^{-1}x$. Let e be the identity of a monoid $\langle A, * \rangle$. Then, x^{-1} satisfies $xx^{-1} = x^{-1}x = e$.

Definitions 4.24. A group is a monoid $\langle A, * \rangle$ where every element $x \in A$ has an inverse x^{-1} .

Definitions 4.25. An algebra $\langle R, +, \times \rangle$ is a **ring** if

- 1. $\langle R, + \rangle$ is an abelian group.
- 2. $\langle R, \times \rangle$ is a semigroup.
- $3. \times is distributive over +.$

Definitions 4.26. A commutative ring with unity $\langle D, +, \times \rangle$ is an **integral domain** if

- 1. $\langle D^*, \times \rangle$ has no zero divisors.
- 2. \times is distributive over +.

Definitions 4.27. An integral domain $\langle F, +, \times \rangle$ is a **field** if

- 1. $\langle F^*, \times \rangle$ is an abelian group.
- 2. \times is distributive over +.

Definitions 4.28. An algebra $\langle V, F, +, \times \rangle$ is a linear algebra if

- 1. $\langle F \rangle$ is a field.
- 2. $\langle V, + \rangle$ is an abelian group.
- 3. $\langle V, \times \rangle$ is a semigroup.
- $4. \times is \ distributive \ over +.$

Figure 4.1: Binary Algebraic Structures

Definitions 4.29. The sum of two subsets A and B of a magma¹ $\langle X, + \rangle$ is

$$A + B = \{a + b : a \in A, b \in B\}$$

¹Instead of magma, the name groupoid is used in many texts that don't study groupoid in detail

Definitions 4.30. Let $\langle R, +, \cdot \rangle$, $\langle R', +', \cdot' \rangle$ be two commutative rings with identity. A function $f: R \to R'$ is **linear** if $f(k \cdot x + y) = k \cdot' f(x) +' f(y)$.

Definitions 4.31. A function $f: \mathbb{R}^n \to \mathbb{R}'$ is n-linear if for $1 \le k \le n$,

$$f(a_1, a_2, \dots, ka_i + a_i', \dots, a_n) = kf(a_1, a_2, \dots, a_i, \dots, a_n) + f(a_1, a_2, \dots, a_i', \dots, a_n)$$

Definitions 4.32. Let $\langle G, *_1, *_2, \dots, *_r \rangle$ and $\langle H, \star_1, \star_2, \dots, \star_r \rangle$ be two algebraic structures. A function $f: G \to H$ is a **homomorphism** if $\forall *_k, f(x *_k y) = f(x) \star_k f(y)$.

Definitions 4.33. An **isomorphism** is a bijective, homomorphism.

- 1. Number of relations on $A = 2^{n^2}$.
- 2. Number of reflexive relations on $A = 2^{n^2-n}$.
- 3. Number of symmetric relatons on $A = 2^{\frac{n(n+1)}{2}}$.
- 4. Number of equivalence relations on A = B(n), n^{th} Bell number²
- 5. Number of total relations on $A = 2^n 3^{\frac{n(n-1)}{2}}$.

$$\begin{bmatrix} 0 & 1 & 2 & 3 \\ 4 & 0 & 5 & 6 \\ 7 & 8 & 0 & 9 \\ 10 & 11 & 12 & 0 \end{bmatrix} \qquad \begin{bmatrix} 1 & 2 & 4 & 7 \\ \bar{2} & 3 & 5 & 8 \\ \bar{4} & \bar{5} & 6 & 9 \\ \bar{7} & \bar{8} & \bar{9} & 10 \end{bmatrix} \qquad \begin{bmatrix} 1 & 1 & 2 & 3 \\ \bar{1} & 2 & 4 & 5 \\ \bar{2} & \bar{4} & 3 & 6 \\ \bar{3} & \bar{4} & \bar{6} & 4 \end{bmatrix}$$

Figure 4.2: Enumerating Relations - Reflexive, Symmetric, and Total

- 6. Let |A| = m, |B| = n. Number of functions $f: A \to B = n^m$.
- 7. Number of injections $f: A \to B = {}^{n}P_{m}$ $(n \ge m)$.

8. Number of surjections
$$f: A \to B = \sum_{r=0}^{n-1} (-1)^r \binom{n}{r} (n-r)^m$$
 $(n \le m)$

9. Number of bijections $f: A \to B = n!$ (n = m)

Figure 4.3: Bell Triangle

10. Number of binary operations on $A = n^{n^2}$ where |A| = n.

 $^{^{2}}B(n) = \sum S(n,k)$ where S(n,k) are Stirling numbers of second kind.

4.2.1 Groups and Subgroups

Definitions 4.34. A group is a binary algebraic structure $\langle G, * \rangle$ which satisfies

- 1. * is closed, $\forall x, y \in G, x * y \in G$
- 2. * is associative, $\forall x, y, z \in G$, (x * y) * z = x * (y * z).
- 3. * has an identity element, $\exists e \in G, \ \forall x \in G, \ e * x = x = x * e$.
- 4. * has inverses for every element of G, $\forall x \in G, \exists x^{-1} \in G, x * x^{-1} = e = x^{-1} * x$

Definitions 4.35. The **order** of a group is the number of elements in it. The **order** of an element $g \in G$ is the order of the smallest subgroup of G containing g.

Definitions 4.36. An element $g \in G$ is a **generator** if the smallest subgroup of G containing g is G itself. A group G is **cyclic** if it has a generator.

Definitions 4.37. The **center** of a group, Z(G) is the set of all elements that commutes with every element in G.

Definitions 4.38. The **centralizer** of an element g, C(g) is the set of all elements that commute with g.

Properties of Center

- 1. The center Z(G) of a group G is a normal subgroup of G. The centralizer of g, C(g) is a subgroup of G.
- $2. \ Z(G) \le C(g) \le C(g^k).$
- 3. $C(g) = C(g^k) \iff \gcd(k, n) = 1 \text{ where } o(g) = n.$
- 4. $Z(S_n)$ is trivial for $n \geq 3$.
- 5. $Z(D_n)$ is trivial when n is odd.
- 6. $Z(A_n)$ is trivial for $n \geq 4$.
- 7. $Z(M_n(F)) = \{aI : a \in F\}.$
- 8. $Z(GL(n, F)) = \{aI : a \in F, a \neq 0\}.$
- 9. $Z(SL(n, F)) = \{aI : a \in F, a^n = 1\}.$
- 10. $Z(Q_8) = \{1, -1\} \cong \mathbb{Z}_2$.
- 11. Center of a direct product is the direct product of centers.
- 12. Center of a simple group is either trivial (nonabelian) or the whole group (abelian).
- 13. Grün's Lemma : If G is perfect, then Z(G/Z(G)) is trivial.

Important Notions

Properties of Groups

1. $o(a) = o(a^{-1})$

Proof.
$$a^n = e \iff (a^{-1})^n a^n = (a^{-1})^n \iff e = (a^{-1})^n$$

2. $o(xax^{-1}) = o(a) = o(x^{-1}ax)$

Proof.
$$(xax^{-1})^n = e \iff xa^nx^{-1} = e \iff a^n = x^{-1}x \iff a^n = e$$

3. o(ab) = o(ba)

Proof.
$$(ab)^n = e \iff b(ab)^n b^{-1} = e \iff (ba)^n = e$$

4. $\forall a \in G, \ a^{-1} = a \implies G$ is abelian.

Proof.
$$ab = a^{-1}b^{-1} = (ba)^{-1} = ba$$

5. $\forall a, b \in G$, $(ab)^2 = a^2b^2 \iff G$ is abelian.

Proof.
$$abab = aabb \iff bab = abb \iff ba = ab$$

6. $\forall a, b \in G, (ab)^{-1} = a^{-1}b^{-1} \iff G \text{ is abelian}$

Proof.
$$(ab)^{-1} = a^{-1}b^{-1} \iff (ab)^{-1} = (ba)^{-1} \iff ab = ba$$

7. If $\forall a, b \in G$, $a^3b^3 = (ab)^3$, then every commutator is of order 3.

Proof.
$$a^3b^3 = (ab)^3 \implies a^2b^2 = (ba)^2$$
.

$$(aba^{-1}b^{-1})^2 = (a^{-1}b^{-1})^2(ab)^2 = b^{-2}(a^{-2}b^2)a^2 = b^{-2}(ba^{-1})^2a^2 = b^{-1}a^{-1}ba$$
$$(aba^{-1}b^{-1})^4 = (b^{-1}a^{-1}ba)^2 = aba^{-1}b^{-1} \implies (aba^{-1}b^{-1})^3 = e$$

8. $a^n = 1$, $aba^{-1} = b^2 \implies b^{2^n - 1} = e$.

Proof.
$$(aba^{-1})^2 = ab^2a^{-1} = b^4 \implies a^2ba^{-2} = b^4 \implies a^nba^{-n} = b^{2^n}$$
.

- 9. Let a, b be elements of fintie order, then ab is not necessarily of finite order.
- 10. If x commutes with y, then

$$x$$
 commutes with y^{-1} , since $y^{-1}(xy)y^{-1} = y^{-1}(yx)y^{-1}$
 x^{-1} commutes with y , since $x^{-1}(xy)x^{-1} = x^{-1}(yx)x^{-1}$.
 x^{-1} commutes with y^{-1} , since $(xy)^{-1} = (yx)^{-1}$.

11. Group G has precisely one element g of order two, then g commutes with every element of G.

Proof. Let
$$g \in G$$
 such that $o(g) = 2$.
 $\forall x \in G, \ o(xgx^{-1}) = o(g) = 2 \implies xgx^{-1} = g \implies xg = gx$

Subgroups

- 1. Group G has a element of order n iff G has a cyclic subgroup of order n.
- 2. Let G be an abelian group. The set $\{g \in G : g^p = e\}$ is a subgroup of G. However, it is not true for nonabelian groups. $\{g \in D_4 : g^2 = e\}$ is not a subgroup of D_4 .
- 3. Let G be an abelian group of order n. If d|n, then G has a subgroup of order d. If d is square-free, then G has an element of order d.
- 4. Every cyclic group of order n has $\phi(n)$ elements of order n. Suppose G has n_m elements of order m, then G has $n_m/\phi(m)$ cyclic subgroups of order m.

If a finite abelian group G has 24 elements of order 6, then G has $24/\phi(6) = 12$ subgroups of order 6 as abelian group of order 6 are cyclic.

- 5. The dihedral group D_n has $\phi(d)$ elements of order d for every divisor d of n, except d=2. There are either n or n+1 elements of order 2 depending on the parity of n. The number of subgroup of $D_n = \tau(n) + \sigma(n)$.
- 6. $H, K \leq G \implies H \cap K \leq G$. And $H \cup K \subset HK \leq G$. $|HK| = |H||K|/|H \cap K|.$ $m\mathbb{Z} \cap n\mathbb{Z} = k\mathbb{Z} \text{ where } k = lcm(m, n).$ $m\mathbb{Z} + n\mathbb{Z} = k\mathbb{Z} \text{ where } k = \gcd(m, n).$

Strange Groups

- 1. Smallest non-abelian group is S_3 . Smallest non-cyclic group is the Klein 4-group, $V \cong \mathbb{Z}_2 \times \mathbb{Z}_2$. Smallest non-abelian simple group is A_5 . Thus, A_5 is the smallest perfect group.
- 2. $D_p, D_4, Q_8, A_4, \ldots$ are non-abelian groups with every proper subgroup abelian.
- 3. \mathbb{C}^* is a multiplicative group with identity 1. Unit circle is a subgroup of \mathbb{C}^* . Unit circle has a unique cyclic subgroup for any order. The *n*th roots of unity is the cyclic subgroup of unit circle with order n.
- 4. \mathbb{Q}/\mathbb{Z} is torsion group which has a unique cyclic subgroup of any finite order. And every proper subgroup of \mathbb{Q}/\mathbb{Z} is finite and cyclic.
- 5. $\left\langle \left\{ \begin{bmatrix} a & a \\ a & a \end{bmatrix} : a \neq 0 \right\}, \times \right\rangle$ is a group with identity $\begin{bmatrix} \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} \end{bmatrix}$.
- 6. $\left\langle \left\{ \begin{bmatrix} a & 0 \\ 0 & 0 \end{bmatrix} : a \neq 0 \right\}, \times \right\rangle$ is a group with identity $\begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$.
- 7. $\langle \mathbb{Q}^+, a * b = \frac{ab}{5}, \times \rangle$ is a group with idenity 5.
- 8. $\langle \{5, 15, 20, 25, 30, 35\}, \times_{40} \rangle$ is a group with identity 25.
- 9. The multiplicative group $\mathbb{Z}_n^{\times} = \{m \in \mathbb{Z}_n : \gcd(m,n) = 1\}$ has $\phi(\phi(n))$ generators.
- 10. Convergent sequences under addition is a group.
- 11. Group of rigid motions(rotations) of the cube is a group of order $\binom{8}{1}\binom{3}{1} = 24$ under permutation multiplication. This group is isomorphic to S_4 .

Group Representations

- 1. The function $\phi: G \to S_G$, $\phi(x) = \lambda_x$, $\lambda_x(g) = xg$ is the **left regular representation** of G.
- 2. Let G be a finite group with a generating set S. The **Cayley digraph** of G has elements of G as its vertices and generators from S as its arcs. The Cayley digraph for an abelian graph is symmetric.
- 3. A **permutation matrix** is obtained by reordering rows of an identity matrix. The permutation matrices $P_{n\times n}$ under matrix multiplication forms a group which is isomorphic to S_n . By Cayley's theorem, every group G is isomorphic to a group of permutation matrices where left regular representation corresponds to left multiplication.
- 4. The set theoretic group representation using generators and their relations. The dihedral group with generators $y = R_{2\pi/n}$, rotation by $2\pi/n$ radians and $x = \mu$, reflection (about the line through the center and a fixed vertex) of a regular n-gon.

$$D_n = \{x^i y^j : x^2 = y^n = 1, (xy)^2 = 1\}$$

The symmetric group with generators x = (1, 2) and y = (1, 2, ..., n).

$$S_n = \{x^i y^j : x^2 = y^n = 1, (yx)^{n-1} = 1\}$$

The alternating group with the set of all three cycles of the form $x_j = (1, 2, j)$ as generating set S.

$$A_n = \left\{ \prod_{j=3}^n x_j^{n_j} : x_j^3 = 1, \ (x_i x_j)^2 = 1 \right\}$$

Counter Examples

- 1. $\langle \mathbb{R}^*, * \rangle$ where a * b = a/b is not associative.
- 2. $\langle \mathbb{C}, * \rangle$ where a * b = |ab| has no identity element.
- 3. $\langle C[0,1]-\{0\},\times\rangle$ is a not closed. There exists a pair of functions with product 0.
- 4. Let G be a group and $\mathscr{P}(G)$ be the power set of G. Define $A * B = \{ab : a \in A, b \in B\}$. Then $\langle \mathscr{P}(G), * \rangle$ is a monoid with identity $\{e\}$. The units are the left cosets of the trivial subgroup.
- 5. $\langle GL(n,F), + \rangle$ is not closed as $I_n + (-I_n) \notin GL(n,F)$.

Group Homomorphisms

- 1. $\phi: \mathbb{Z} \to \mathbb{Z}$ where $\phi(n) = 2n$ with $\ker(\phi) = 0$ and $\phi[\mathbb{Z}] = 2\mathbb{Z}$.
- 2. $\phi: \mathbb{Q} \to \mathbb{Q}$ where $\phi(x) = 2x$ with $\ker(\phi) = 0$ and $\phi[\mathbb{Q}] = \mathbb{Q}$.
- 3. $\phi: \mathbb{R} \to \langle \mathbb{R}^+, \times \rangle$ where $\phi(x) = 0.5^x$ with $\ker(\phi) = 0$ and $\phi[\mathbb{R}] = \mathbb{R}^+$.

- 4. $\phi: \mathbb{Z} \to \langle \mathbb{Z}, * \rangle$ where m*n = m+n-1 is a group with $\ker(\phi) = 0$ and $\phi[\mathbb{Z}] = \mathbb{Z}$. (hint: $\phi(n) = n+1$, $\phi(0) = 1$, $x^{-1} = -x-2$)
- 5. $\phi: \mathbb{Q} \to \langle \mathbb{Q}, * \rangle$ where x * y = x + y + 1 is a group with $\ker(\phi) = 0$ and $\phi[\mathbb{Q}] = \mathbb{Q}$. (hint: $\phi(x) = 3x 1$, $\phi(0) = -1$, $x^{-1} = -x 2$)
- 6. $\phi: \mathbb{Q}^* \to \langle \mathbb{Q} \{-1\}, * \rangle$ where $x * y = \frac{(x+1)(y+1)}{3} 1$ is a group with $\ker(\phi) = 1$ and $\phi[\mathbb{Q}^*] = \mathbb{Q} \{-1\}$. (hint : $\phi(x) = 3x 1$, $\phi(1) = 2$, $x^{-1} = \frac{8-x}{x+1}$)

Cyclic Groups

1. Every cyclic group is abelian.

Proof.
$$G = \langle g \rangle \implies \forall a, b \in G, \ ab = g^n g^m = g^m g^n = ba.$$

2. Subgroup of cyclic group is cyclic. Let G be a cyclic group of order n. The order of the subgroup generated by g^m is $n/\gcd(n,m)$. For each divisor d of n, there exists unique cyclic subgroup of order n/d.

The multiplicative group $\mathbb{Z}_{25}^{\times} \cong \mathbb{Z}_{20}$ has generator 3. We have $\gcd(20,5) = \gcd(20,15)$. Clearly, $3^5 \cong 18 \pmod{25}$ and $3^{15} \cong 7 \pmod{25}$. Thus, $\langle 7 \rangle \cong \langle 18 \rangle \cong \mathbb{Z}_4$.

- 3. Every proper subgroup of the Klein 4-group, $V \cong \mathbb{Z}_2 \times \mathbb{Z}$ is cyclic. However, V is not cyclic.
- 4. For any natural number n, there exists a cyclic group of order n. Two cyclic group of same order are isomorphic.

Proof. The finite group $\langle \mathbb{Z}_n, +_n \rangle$ is cyclic with order $n \in \mathbb{N}$ and the infinite group \mathbb{Z} is cyclic. Let G, H be cyclic groups of the same order with generators g, h respectively. Then $\phi: G \to H$, $g \xrightarrow{\phi} h$ is an isomorphism.

- 5. An automorphism of a cyclic group is well defined by the image of a generator. Clearly, \mathbb{Z}_{12} has $\phi(12) = 4$ generators and there are four distinct automorphisms.
- 6. For finite cyclic group \mathbb{Z}_n , a generator is an element with the same order as the group. However, this is not the case for inifinite cyclic group \mathbb{Z} .

$$o(q) = o(G) \Longrightarrow \langle q \rangle \cong G$$

- 7. Every finite cyclic group, \mathbb{Z}_n has $\phi(n)$ generators which are relatively prime to n. Clearly, \mathbb{Z}_{20} has a non-prime generator, say 9.
- 8. The equation $x^m = e$ has m solutions in any finite cyclic group \mathbb{Z}_n where m|n.
- 9. Let G be an abelian group and H, K are cyclic subgroups of G with generators h, k respectively. Then $\langle hk \rangle$ is a cyclic subgroup of order lcm(r, s).
- 10. \mathbb{Q}/\mathbb{Z} is not cyclic. proof : $o(\frac{1}{2} + \mathbb{Z}) = 2$, where the infinite cyclic group \mathbb{Z} has no such element.

- 11. \mathbb{Q}^* is not cyclic. proof : o(-1) = 2, where \mathbb{Z} don't have any element of order two.
- 12. $\mathbb{Q}, \mathbb{R}, \mathbb{C}$ are not cyclic. proof: If \mathbb{Q} is cyclic, then \mathbb{Q}/\mathbb{Z} is a cyclic quotient group. But \mathbb{Q}/\mathbb{Z} is not.
- 13. The subgroup generated by nth primite root of unity is a cyclic subgroup of \mathbb{C}^* isomorphic to \mathbb{Z}_n . Clearly, $\langle (1+i)/\sqrt{2} \rangle \cong \mathbb{Z}_8$.
- 14. The subgroup generated by any complex number which is a non-root of unity is a cyclic subgroup of \mathbb{C}^* isomorphic to \mathbb{Z} . Clearly $\langle 1+i \rangle \cong \mathbb{Z}$.

Number Groups

- 1. $\mathbb{Z}, \mathbb{Q}, \mathbb{R}, \mathbb{C}, n\mathbb{Z}, \mathbb{Z}_n, \mathbb{Q}_c, \mathbb{R}_c, \mathbb{Q}^+, \mathbb{R}^+, \mathbb{Q}^*, \mathbb{R}^*, \mathbb{C}^*, \mathbb{Z}_n^{\times}$ are groups with a suitable arithmetic operators from $\{+, \times, +_c, \times_c, +_n, \times_n\}$.
- 2. Any nontrivial subgroup of \mathbb{Q} is an infinite cyclic group.
- 3. $\mathbb{R} \{-1\}, *\}$ where a * b = a + b + ab is a group with identity 0 and o(-2) = 2.
- 4. The cyclic group, $\mathbb{Z}_n \cong \mathbb{Z}/n\mathbb{Z} = \{g^n : n \in \mathbb{N}\}$. \mathbb{Z}_n has $\phi(d)$ elements of order d for every divisor d of n.

$$a^{-1}b \in Z_n \iff \gcd(a,n)|b$$

5. Group \mathbb{Z}_n^{\times} is the multiplicative group of natural numbers less than n that are relatively prime to n. Thus $|\mathbb{Z}_n^{\times}| = \phi(n)$. Clearly, \mathbb{Z}_n^{\times} are abelian.

Linear Groups

- 1. $M_{m \times n}(F)$ is the additive group of all matrices of order $m \times n$ with entries from the field F. When m = n, we may write $M_n(F)$.
- 2. General Linear Group, GL(n, F) is the multiplicative group of all invertible matrices of order n with entries from field F.
- 3. Special Linear Group, SL(n, F) is the multiplicative group of all matrices of order n and determinant 1 with entries from field F.

4.2.2 Permutations, Cosets & Direct Products

Definitions 4.39. The symmetric group S_n is the set of all permutation on a set $\{1, 2, ..., n\}$ together with the function composition operation.

The cycle $f:(1,2,3) \in S_5$ maps $1 \to 2 \to 3 \to 1$ and fixes 4,5. And cycle $g:(1,2,5) \in S_5$ maps $1 \to 2 \to 5 \to 1$ and fixes 3,4. For example f(g(1)) = f(2) = 3, and f(g(3)) = f(3) = 5.. Thus by function composition $f \circ g:(1,2,3)(1,2,5) = (1,3)(2,5)$.

$$\begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 2 & 3 & 1 & 4 & 5 \end{pmatrix} \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 2 & 5 & 3 & 4 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 3 & 2 & 1 & 4 & 5 \end{pmatrix} \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 1 & 5 & 3 & 4 & 2 \end{pmatrix}$$

Theorem 4.40 (Cayley). Every group is isomorphic to a subgroup of a symmetric group.

Proof. The function $\phi: G \to S_G$ defined by $\phi(x) = \lambda_x$ where $g \xrightarrow{\lambda_x} xg$ is an homomorphism.

Definitions 4.41. Let σ be a bijection/permutation on a set A. The **orbits** of the permutation σ are the equivalent classes of the relation

$$a \sim_{\sigma} b \iff \exists n \in \mathbb{N}, \ a = \sigma^n(b)$$

Definitions 4.42. A permutation σ is a **cycle** if it has at most one orbit containing more than one element. The **length** of a cycle σ is the number of elements in its largest orbit.

The multiplication of disjoint cycles is commutative.

Theorem 4.43. Every permutation of a finite set has a unique cycle decomposition.

Proof. construct cycles corresponding to each orbit under the permutation \Box

$$\begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 3 & 5 & 2 & 4 & 1 & 7 & 6 \end{pmatrix} = \begin{pmatrix} 1 & 2 & 3 & 5 \\ 3 & 5 & 2 & 1 \end{pmatrix} \begin{pmatrix} 4 \\ 4 \end{pmatrix} \begin{pmatrix} 6 & 7 \\ 7 & 6 \end{pmatrix}$$

In short, we may write (1,3,2,5)(6,7) ignoring those which are left fixed by the permutation. And (1,3,2,5)(6,7) = (1,5)(1,2)(1,3)(6,7) is an even permutation.

Definitions 4.44. The alternating group A_n is the subgroup of all even permutations in the symmetric group S_n .

Definitions 4.45. Let H be a subgroup of group G. The **left coset**, gH of H containing $g \in G$ is the set of all element of the form gh where $h \in H$. The **right coset** Hg of H containing $g \in G$ is the set of all element of the form hg where $h \in H$.

Theorem 4.46 (Lagrange). The order of a subgroup H of a finite group G divides the order of G.

Proof. The left cosets of H in G are disjoint and covers G. Thus |H| must divide |G|. \square

Definitions 4.47. Index of H in G, (G : H) is the number of left cosets of H in G.

Theorem 4.48. The number right cosets of H in G is same as the number of left cosets of H in G.

Proof.
$$aH = bH \iff ah_1 = bh_2 \iff (ah_1)^{-1} = (bh_2)^{-1} \iff h_1^{-1}a^{-1} = h_2^{-1}b^{-1} \iff Ha^{-1} = Hb^{-1}$$
. Thus, $aH \stackrel{\phi}{\to} Ha^{-1}$ is bijective.

Theorem 4.49. Let $K \leq H \leq G$. Then (G : K) = (G : H)(H : K).

Definitions 4.50. Let G, H be two groups. The **direct product** $G \times H$ is defined as the group $\langle G \times H, * \rangle$ where $*: (G \times H) \times (G \times H) \rightarrow (G \times H)$ such that $(g_1, h_1) * (g_2, h_2) = (g_1g_2, h_1h_2)$.

Theorem 4.51. $\mathbb{Z}_n \times \mathbb{Z}_m \cong \mathbb{Z}_{n \times m} \iff \gcd(m, n) = 1.$

Proof. $(1,1) \in \mathbb{Z}_n \times \mathbb{Z}_m$ has order mn. Thus, $\mathbb{Z}_n \times \mathbb{Z}_m$ is cyclic.

Suppose gcd(m,n) = 1. The canonical isomorphism $\phi : \mathbb{Z}_{mn} \to \mathbb{Z}_m \times \mathbb{Z}_n$ is given by

$$a \pmod{mn} \xrightarrow{\phi} (a \pmod{m}, a \pmod{n})$$

Theorem 4.52. Let $(a_1, ..., a_n) \in G_1 \times ... G_n$ and $o(a_i) = r_i$. Then $o((a_1, ..., a_n)) = lcm(r_1, ..., r_n)$.

Theorem 4.53. Let G be a finitely generated group. Then $G \cong \mathbb{Z}_{p_1^{r_1}} \times \mathbb{Z}_{p_2^{r_2}} \times \cdots \times \mathbb{Z}_{p_k^{r_k}} \times \mathbb{Z} \times \cdots \times \mathbb{Z}$ where the number of \mathbb{Z} is its Betti number.

Theorem 4.54. Let G be a finite abelian group with order n. If m|n, then G has a subgroup H of order m.

Proof. We have, $n = \prod P_j^{r_j}$ and $m = \prod P_j^{s_j}$ where $0 \le s_j \le r_j$. From the structure of finitely generated abelian group G, we may derive the structure of its subgroup H of order m by diminishing the powers of primes as required.

Important Notions

Definitions 4.55. Let $H, K \leq G$. The equivalent classes of the equivalence relation $aRb \iff a = hbk, \ h \in H, \ k \in K \ are \ the \ double \ cosets \ of \ G$.

Definitions 4.56. A group G is **decomposable** if $G \cong H \times K$ where H, K are proper, nontrivial subgroups of G. Otherwise, G is indecomposable.

Finite indecomposable groups are \mathbb{Z}_p .

Consequences of Lagrange's theorem

- 1. By Lagrange's theorem, every group of prime order is cyclic.
- 2. If |G| = pq, then every proper subgroup of G is cyclic.
- 3. The quotient group $\mathbb{Z}_n/\langle g\rangle\cong\mathbb{Z}_{\frac{n}{m}}$ where o(g)=m.

Finite Abelian Groups

- 1. Finite abelian groups are finitely generated.
- 2. Number of abelian groups of order $n = p_1^{r_1} p_2^{r_2} \dots p_k^{r_k}$ is $\prod_k B(r_k)$.
- 3. Order of an abelian group G is square free, then G is cyclic.
- 4. Order of an element in a cyclic group Let $m \in \mathbb{Z}_n$. Then it has order

$$o(m) = \frac{n}{\gcd(n, m)}$$

5. Order of an element in a product of Cyclic groups Let $(g_1, g_2, \ldots, g_k) \in G_1 \times G_2 \times \cdots \times G_k$. Then

$$o(g_1, g_2, \dots, g_k) = lcm(o(g_1), o(g_2), \dots, o(g_k))$$

6. Enumerating the elements of same order in a finite abelian group.

Enumerate elements of order 4 in $\mathbb{Z}_{12} \times \mathbb{Z}_{10}$?

Let $(g,h) \in \mathbb{Z}_{12} \times \mathbb{Z}_{10}$ has order $o(g,h) = 4 \iff o(g) = 4$, o(h) = 1 or 2. Clearly, an element $k \in \mathbb{Z}_{12}$ is of order 4 iff $\frac{12}{\gcd(12,k)} = 4$. For $\gcd(12,k) = 3$, we have k = 3 or 9. For $\gcd(10,k) = 5$, we have k = 5. For $\gcd(10,k) = 10$, we have k = 0. Thus, the elements are (3,0), (3,5), (9,0) and (9,5). In other words, $\phi(4)\phi(2) + \phi(4)\phi(1) = 4$ elements of order four in $\mathbb{Z}_{12} \times \mathbb{Z}_{10}$.

Enumerate elements of order 9 in $\mathbb{Z}_{12} \times \mathbb{Z}_{18} \times \mathbb{Z}_{27}$?

There are $\phi(1), \phi(3), \phi(9)$ elements of order 1, 3, 9 respectively (if any³). There are 1+2+6 elements of order either 1, 3 or 9 in both \mathbb{Z}_{18} and \mathbb{Z}_{27} . There are $3 \times 9 \times 9$ elements out of which precisely $3 \times 3 \times 3$ of them are of order either 1 or 3. Thus, there are 216 elements of order 9.

- 7. Let $g \in \mathbb{Z}_n$ with o(g) = m where $n = p_1^{r_1} p_2^{r_2} \dots p_k^{r_k}$ and $m = p_1^{s_1} p_2^{s_2} \dots p_k^{s_k}$ such that $0 \le s_j \le r_j$. Then $g = (g_1, g_2, \dots, g_k) \in \mathbb{Z}_{p_1^{r_1}} \times \mathbb{Z}_{p_2^{r_2}} \times \dots \mathbb{Z}_{p_k^{r_k}}$ with $o(g_j) = s_j$. For example, o(15) = 12 in \mathbb{Z}_{36} . The isomorphism $\phi : \mathbb{Z}_{36} \to \mathbb{Z}_4 \times \mathbb{Z}_9$ where $\phi(a) = (a \pmod{4}, a \pmod{9})$. Clearly $15 \to (3, 6)$. And o(3) = 4 and o(6) = 3.
- 8. Let $(g,h) \in \mathbb{Z}_{p^{r_1}} \times \mathbb{Z}_{p^{r_2}}$ with $o(g,h) = p^{r_3}$ where $r_1 \geq r_2$. Then, $(\mathbb{Z}_{p^{r_1}} \times \mathbb{Z}_{p^{r_2}})/\langle (g,h)\rangle \cong \mathbb{Z}_{p^{r_1}} \times \mathbb{Z}_{p^{r_2-r_3}}$ when o(h) = o(g,h). $\mathbb{Z}_{p^{r_1-r_3}} \times \mathbb{Z}_{p^{r_2}}$ when o(h) < o(g,h).

For example, $(\mathbb{Z}_8 \times \mathbb{Z}_4)/\langle (2,1) \rangle \cong \mathbb{Z}_8$ and $(\mathbb{Z}_8 \times \mathbb{Z}_4)/\langle (2,2) \rangle \cong \mathbb{Z}_2 \times \mathbb{Z}_4$.

9. Order of an element in S_n Let $\sigma \in S_n$ be a permutation with structure $1^{n_1}2^{n_2} \dots r^{n_r}$. Then $o(\sigma) = lcm(\{k : n_k \ge 1\})$. Order of an element in A_n can be found using the same rule as above. Parity of permutation is the parity of $\sum (j-1)n_j$. Maximum order of an element in A_{10} is $3 \times 7 = 21$. And maximum order of an element in S_{10} is $2 \times 3 \times 5 = 30$ where $2^1 3^1 5^1$ is an odd permutation, $\therefore (1+2+4)$.

 A_7 has a element of order 6 with structure 2^23^1 , since 2+2=4 is even parity.

- 10. Maximal abelian subgroup of S_n S_{10} has maximal abelian subgroup of order 36 which is isomorphic to $\mathbb{Z}_6 \times \mathbb{Z}_6$ and is generated by $\{(1,2), (3,4,5), (6,7), (8,9,10)\}$. It is abelian as the cycles are disjoint.
- 11. Direct product form of the multiplicative group of units, \mathbb{Z}_n^{\times} $\mathbb{Z}_{10}^{\times} = \{1, 3, 7, 9\}$ and $\phi(10) = \phi(2)\phi(5) = 4$. And $\mathbb{Z}_{10}^{\times} \cong \mathbb{Z}_4$ as $\langle 3 \rangle = \mathbb{Z}_{10}^{\times}$.

$$\mathbb{Z}_{mn}^{\times} \cong \mathbb{Z}_{m}^{\times} \times \mathbb{Z}_{n}^{\times} \iff \gcd(m, n) = 1$$

$$\forall n \in \mathbb{N}, \ \mathbb{Z}_{2^{n+2}}^{\times} \cong \mathbb{Z}_{2} \times \mathbb{Z}_{2^{n}}$$

$$\forall p > 2, \ \forall n \in \mathbb{N}, \ \mathbb{Z}_{p^{n}}^{\times} \cong \mathbb{Z}_{p^{n}-p^{n-1}}$$

Thus, $\mathbb{Z}_4^{\times} = \mathbb{Z}_2$, $\mathbb{Z}_8^{\times} = \mathbb{Z}_2 \times \mathbb{Z}_2$, $\mathbb{Z}_{16}^{\times} \cong \mathbb{Z}_2 \times \mathbb{Z}_4$, ... Clearly, $\phi(40) = \phi(8)\phi(5)$ and $\mathbb{Z}_{40}^{\times} \cong (\mathbb{Z}_2 \times \mathbb{Z}_2) \times \mathbb{Z}_4$. And $\mathbb{Z}_{1000}^{\times} \cong \mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_{100}$.

³We know that, \mathbb{Z}_{12} don't have any element of order 9.

Structure of a Permutation

Definitions 4.57. The **structure** of a permuation $\sigma \in S_n$ is $1^{n_1}2^{n_2} \dots r^{n_r}$ where n_j is the number of cycles of length j.

The number of permutations of the structure $1^{n_1}2^{n_2}\dots r^{n_r}$ in S_n is

$$\frac{n!}{\prod_{k=1}^r n_k! \ k^{n_k}}$$

There are $\frac{10!}{3! \ 2! \ 1! \ 2^2 \ 3}$ elements of the structure $1^3 2^2 3^1$.

Definitions 4.58. The set of all elements of an abelian group G of finite order forms a normal subgroup called **torsion** subgroup of G.

Definitions 4.59. A torsion free group has only one element of finite order in it.

Torsion and Torsion Free Groups

- 1. The torsion subgroup of \mathbb{C}^* is the set of all roots of unity. The cyclic group generated by z where $|z| \neq 1$ is a torsion free subgroup of \mathbb{C}^* . The cyclic group generated by $e^{2\pi ix}$, $x \in \mathbb{R} \mathbb{Q}$ is a torsion free subgroup of the unit circle.
- 2. Any finite group is a torsion group. The subgroups and quotient groups of any torsion group is also a torsion group.
- 3. Every infinite group has a nontrivial torsion free subgroup. The subgroups of a torsion free group is always torsion free.
- 4. Let T be the torsion subgroup of an abelian group G. Then the quotient group G/T is torsion free.

The group \mathbb{Q}^* has only two elements of finite order, say 1 and -1. The torsion subgroup of $\mathbb{Q}^* \cong \mathbb{Z}_2$. Thus $\mathbb{Q}^+ \cong \mathbb{Q}^*/\{1,-1\}$ is torsion free. Similarly, \mathbb{R}^+ is torsion free.

- 5. Suppose normal subgroup H contains the torsion subgroup of a group G. Then G/H is torsion free. Thus $\mathbb{C}^*/U \cong \mathbb{R}^+$ is torsion free.
- 6. There is no bound for the order of elements in this torsion group.

 $\mathbb{Q}/\mathbb{Z} \cong \mathbb{Q}_1$ is a torsion group and $o(p/q + \mathbb{Z}) = q$.

 \mathbb{Q}_{π} is torsion free.

4.2.3 Homomorphisms & Factor Groups

Definitions 4.60. Let $\phi: G \to G'$ be a homomorphism. Then $\phi[G]$ is the range of ϕ .

Compositions of group homomorphisms is again a group homomorphism.

Definitions 4.61. Let $\phi: G \to G'$ be a group homomorphism. Then, the **kernel** of ϕ ,

$$\ker(\phi) = \phi^{-1}[e'] = \{g \in G : \phi(g) = e'\}$$

Properties of Homomorphisms Let $\phi: G \to G'$.

- 1. $\phi(e) = e'$.
- 2. $\phi(a^{-1}) = \phi(a)^{-1}$.
- 3. $H \le G \implies \phi[H] \le \phi[G] \le G'$.
- 4. $K' < \phi[G] \implies \phi^{-1}[K'] < G$.
- 5. Let $N = \ker(\phi)$. Then $\phi^{-1}(\phi(a)) = aN$. And ϕ is injective iff N is trivial.
- 6. Let $\phi: G \to G'$ with $\ker(\phi) = N$. Rule for Kernel: $G/N \cong \phi[G] \implies o(G)/o(N) = o(\phi[G]) \implies o(G)|o(N)o(G')$ Rule for Generators: $(gh)^n = e \implies \phi(gh^n) = e' \implies o(\phi(g)\phi(h))|o(G)$,
- 7. $T: \mathbb{Z}_8 \to \mathbb{Z}_{12}$ where T(x) = 4x is not a homomorphism (by Rule of generators). Number of surjection homomorphisms $\phi: \mathbb{Z}_n \to \mathbb{Z}_m$ is $\phi(m)$ where m|n.
- 8. Given G, G' and normal subgroup N. The homomorphism $\phi : G \to G'$ with $\ker(\phi) = N$ exists only if o(G)/o(N) < o(G'). (Rule of Kernel) proof: $\not\exists \phi : S_4 \to S_3$ with $\ker(\phi) = \mathbb{Z}_2$ as S_4/\mathbb{Z}_2 is too big to be a subgroup of S_3 .
- 9. If $\phi: G \to G'$ is surjective and G is cyclic(abelian), then G' is cyclic(abelian).
- 10. If $\phi:G\to G'$ is injective, then $G\cong\phi[G]\le G'.$

There does not exists an injective homomorphism, $\phi: S_n \to \mathbb{C}^*$ as $\phi: S_n \to \phi[S_n]$ where $\phi[S_n] \leq \mathbb{C}^a st$ is an isomorphism. However, subgroups of \mathbb{C}^* is abelian.

11. $\phi: G \to G$ where $\phi(x) = x^m$ is an automorphism iff $\gcd(m, n) = 1$.

Definitions 4.62. Let $H \leq G$. H is **normal** in G if gH = Hg for every element $g \in G$.

Definitions 4.63. Let $H \leq G$. H is a **characteristic subgroup** if $\phi[H] \subset H$ for every automorphism ϕ on G.

- 1. Intersection of normal subgroups are again normal.
- 2. For every subset S of a group G, there exists a minimal normal subgroup of G containing S.
- 3. Subgroup of index two is normal (if exists).
- 4. Subgroups of the center Z(G) are normal. $H = \{I_3, 2I_3, 4I_3\} \leq GL(3, F_{11})$ as $H \leq Z(GL(3, F_{11})) = \{aI_3 : a \in F_{11}^*\}$
- 5. $\forall k | n, \{ m \in \mathbb{Z}_n^{\times} : m \cong 1 \pmod{k} \} \leq \mathbb{Z}_n^{\times}$ $\{1, 7, 13, 19\} \leq \mathbb{Z}_{30}^{\times}$ where k = 6.
- 6. Characteristic subgroups are normal.
- 7. Let $\phi: G \to G'$ be a homomorphism. Then $\ker(\phi) = N$ is normal subgroup of G.
- 8. Let $\phi: G \to G'$. If $N \subseteq G$, then $\phi[N] \subseteq \phi[G]$. If $N' \subseteq G'$, then $\phi^{-1}(N') \subseteq G$.

- 9. Intermediate subgroup condition: Let $K \leq H \leq G$ and $K \leq G$ then $K \leq H$.
- 10. Let $K \leq H \leq G$. If H, K are normal subgroups of G, then $G/H \leq G/K$.
- 11. $K \subseteq H \subseteq G \implies K \subseteq G$

Proof.
$$D_5 \leq D_{10} \leq D_{20}$$
. But $D_5 \not\leq D_{20}$.

- 12. Let $H \leq G$ and $N \subseteq G$. Then $HN = \{hn : h \in H, n \in N\}$ is the smallest subgroup of G containing both N and H.
- 13. Let H, K be normal subgroups of G, then HK is normal in G.
- 14. Let H, K be normal subgroups of G such that $H \cap K = \{e\}$. Then hk = kh.
- 15. $Z(G) \subseteq G$ and $Z(G/Z(G)) \subseteq G/Z(G)$.
- 16. Let $\gamma: G \to G/Z(G), \ \gamma(g) = gZ(G).$ Then $\gamma^{-1}(Z(G/Z(G))) \leq G.$

Definitions 4.64. Let N be a normal subgroup of G. The **quotient group** G/N is the set of all left cosets of N with binary operation $g_1N * g_2N = (g_1g_2)N$.

Theorem 4.65. Let $N \subseteq G$. $\gamma: G \to G/N$ where $\gamma(g) = gN$ is canonical homomorphism with $\ker(\gamma) = N$.

Theorem 4.66. Let $\phi: G \to G'$ be a homomorphism with $\ker(\phi) = N$. Then there exists a canonical homomorphism $\gamma: G \to G/N$ where $\gamma(g) = gN$ such that $G/N \cong \phi[G]$.

Theorem 4.67. Let G, G' be groups with normal subgroups H, H'. Let $\phi : G \to G'$ be a homomorphism with $\phi[H] \leq H'$. Then there exists an induced canonical homomorphism $\phi_* : G/H \to G'/H'$ where $\phi_*(gH) = \phi(g)H'$.

Definitions 4.68. The map $x \to gxg^{-1}$ is the **inner automorphism** of G by g.

- 1. The set of all inner automorphisms on G is a group, say Inn(G).
- 2. $Inn(G) \cong G/Z(G)$.
- 3. $Inn(G) \subseteq Aut(G)$.
- 4. Let G be a finite cyclic group of order n. Then $Aut(G) \cong \mathbb{Z}_n^{\times}$.

$$Aut(V) \cong S_3.$$

$$Aut(Q_8) \cong S_4.$$

$$Aut(F \times F \times \dots F) \cong GL(n, F).$$

$$Aut(A_n) \cong Aut(S_n) \cong S_n, n \neq 6, n > 2$$

$$Aut(A_6) \cong Aut(S_6) \cong S_6 \rtimes Z_2$$

5. Outer automorphism group is the quotient group, $Out(G) \cong Aut(G)/Inn(G)$.

6. A group G is complete if both center Z(G) and outer automorphism group Out(G) are trivial.

 S_n is complete, $n \geq 3, n \neq 6$.

If G is a nonabelian simple group, then Aut(G) is complete.

7. $G \cong Aut(G) \implies G$ is complete.

Proof.
$$D_4 \cong Aut(D_4)$$
, D_4 is not complete.

Definitions 4.69. The conjugacy class of x, $Cl(x) = \{gxg^{-1} : g \in G\}$.

Definitions 4.70. Let $H, K \leq G$. The subgroups are conjugates if $\exists g \in G, K = i_q[H]$.

- 1. Conjugacy is an equivalence relation on the set of all subgroups of G.
- 2. Normal subgroups are alone in their conjugacy equivalence class.

Definitions 4.71. A group G is simple if it does not have a proper, nontrivial, normal subgroup.

- 1. M is a maximal normal subgroup of G iff G/M is simple.
- 2. Abelian simple groups are cyclic groups of prime order, say \mathbb{Z}_p .
- 3. G/Z(G) is cyclic iff G is abelian.

Proof. Let gZ(G) be a generator of G/Z(G). Let $g_1, g_2 \in G$. Then $g_1 = g^{n_1}z_1$ and $g_2 = g^{n_2}z_2$ where $z_1, z_2 \in Z(G)$. Thus, $g_1g_2 = g_2g_1$. Therefore, G is abelian. If G is abelian, then $Z(G) \cong G$ and G/Z(G) is trivial, thus cyclic.

Definitions 4.72. An element $g \in G$ is a **commutator** if $g = aba^{-1}b^{-1}$ for some $a, b \in G$.

- 1. The set of all commutators in a group G is a subgroup of G, say **commutator** subgroup C.
- 2. Commutator subgroup C is the smallest normal subgroup of G such that G/C is abelian.
- 3. Let $N \subseteq G$. G/N is abelian iff $C \subseteq N$.
- 4. Commutator subgroup of a simple group is either trivial(abelian) or the whole group(nonabelian).
- 5. Commutator subgroup of S_n is A_n .

Definitions 4.73. A group is **perfect** if the commutator subgroup is the whole group.

- 1. Any nonabelian, simple group is perfect.
- 2. Direct product of nonabelian simple groups in perfect but not simple.

4.2. GROUP THEORY

35

3. $SL(2, F_5)$ is a perfect group which is not simple.

Definitions 4.74. An action of group G on a set X is a function $*: G \times X \to X$ where

- 1. $\forall x \in X, \ ex = x$
- 2. $\forall x \in X, \ \forall g_1, g_2 \in G, \ (g_1g_2)x = g_1(g_2x)$

The set X is G-set if G acts on X. Let $S \subset G$ such that $\forall s \in S, Gs \subset S$. Then S is a sub G-set.

Theorem 4.75. Let X be a G-set. Then $\phi: G \to S_X$ where $\phi(g) = \sigma_g$, $\sigma_g(x) = gx$ is the group action induced homomorphism.

- 1. ϕ is the permutation representation of G induced by the group action of G on X.
- 2. Group action is **faithful** if $e \in G$ is the only element that fixes every $x \in X$. For a faithful group action, the kernel of the induced homomorphism is trivial.
- 3. Group action is **transitive** if $\forall x_1, x_2 \in X$, $\exists g \in G$, $gx_1 = x_2$.
- 4. Every group G is a G-set where the action is both faithful and transitive.
- 5. Let $H \leq G$.

Conjugation is an action of G on H, say $(g, h) \to ghg^{-1}$.

Left multiplication is an action of G on H, say $(g, h) \to gh$.

6. Let $H \leq G$ and L_H be the set of left cosets of H.

 L_H is a G-set under conjugation, say $(g, aH) \to g(aH)g^{-1}$.

- 7. Let V(F) be a vector space. Then V is an F^* -set.
- 8. Disjoint union of G-sets is also a G-set.
- 9. G_x is the **isotropy subgroup** of G containing all elements that fix x.
- 10. X_g is the subset of X fixed by $g \in G$.
- 11. The relation $x_1 \sim_g x_2 \iff gx_1 = x_2$ is an equivalence relation on X.
- 12. The equivalence classes of the above relation, Gx is the **orbit** of x in a G-set X,
- 13. Orbit Stabiliser theorem : $|Gx| = (G:G_x)$
- 14. Burnside's Formula, $r|G| = \sum_{g \in G} |X_g|$

Important Notions

Group Homomorphisms

- 1. $\phi: S_n \to \mathbb{Z}_2$ where $\phi(\sigma) = 1$ if the σ is an odd permutation and $\phi(\sigma) = 2$ otherwise. Then $\ker(\phi) = A_n$.
- 2. Evaluation Homomorphism, $\phi_c: F \to \mathbb{R}$ where $\phi_c(f) = f(c)$ where F is the additive group of all functions $f: \mathbb{R} \to \mathbb{R}$.
- 3. $\phi: \mathbb{R}^n \to \mathbb{R}^m$ where $\phi(v) = Av$, $A \in M_{m \times n}(\mathbb{R})$.
- 4. The trace, $tr: M_n(\mathbb{R}) \to \mathbb{R}$.
- 5. The trace, $tr: M(n,F) \to F$. Then $\ker(tr)$ is $n^2 1$ dimensional over F.
- 6. Determinant det : $GL(n, \mathbb{R}) \to \mathbb{R}^*$ where $\det(A) = |A|$ with $\ker(\det) = SL(n, \mathbb{R})$ and $\det[GL(n, \mathbb{R})] \cong \mathbb{R}^*$.
- 7. Determinant det : $GL(n, F_q) \to F_q^*$ where det(A) = |A| with $ker(det) = SL(n, F_q)$ and $det[GL(n, F_q)] \cong F_q^*$.

$$|GL(n, F_q)| = \prod_{r=0}^{n-1} (q^n - q^r)$$

$$|SL(n, F_q)| = \frac{|GL(n, F_q)|}{q - 1}$$
 since $GL(n, F_q)/SL(n, F_q) \cong F_q^*$

- 8. $\phi: \mathbb{Z}_n^{\times} \to \mathbb{Z}_k^{\times}$ with $\ker(\phi) = \{ m \in \mathbb{Z}_n^{\times} : m \cong 1 \pmod{k} \}.$
- 9. $\phi_r: \mathbb{Z} \to \mathbb{Z}$ where $\phi_r(n) = rn$. ϕ_0 is trivial, ϕ_1 is identity, ϕ_{-1} is surjective.
- 10. Projection map $\pi_i: \prod G_j \to G_i$ where $\pi_i(g_1, g_2, \dots, g_n) = g_i$.
- 11. $\sigma: F \to \mathbb{R}$ where $\sigma(f) = \int_0^1 f(x) \ dx$ and F is the additive group of all continuous functions $f: [0,1] \to \mathbb{R}$.
- 12. $\gamma: \mathbb{Z} \to \mathbb{Z}_n$ where $\gamma(m) = r$, m = qn + r, $0 \le r < n$.
- 13. $\phi: \mathbb{C}^* \to \mathbb{R}^*$ where $\phi(z) = |z|$. Left cosets aN are circles of radius a about origin.
- 14. Let D be the set of all differentiable function. Define $\phi: D \to F$ where $\phi(f) = f'$. Left cosets fN are f(x) + C.
- 15. $\phi: \mathbb{Z} \to \mathbb{R}$ where $\phi(n) = n$.
- 16. $\phi: \mathbb{R} \to \mathbb{Z}$ where $\phi(x) = [x]$ with $\ker(\phi) = [0, 1)$.
- 17. $\phi: \mathbb{R}^* \to \mathbb{R}^*$ where $\phi(x) = |x|$ with $\ker(\phi) = \{1, -1\} \cong \mathbb{Z}_2$.
- 18. $\phi: \mathbb{Z}_6 \to \mathbb{Z}_2$ where $\phi(n) \cong n \pmod{2}$ with $\ker(\phi) = \{0, 2, 4\} \cong \mathbb{Z}_3$.
- 19. $\phi: \mathbb{R} \to \mathbb{R}^*$ where $\phi(x) = 2^x$ with $\ker(\phi) = \{0\}$.

- 20. Injection map, $\phi_i: G_i \to \prod G_j$ where $\phi_i(g) = (e_1, e_2, \dots, ge_i, \dots, e_n)$ with $\ker(\phi) = \{e_i\}$.
- 21. $\phi: G \to G$ where $\phi(g) = g^{-1}$ with $\ker(\phi) = \{e\}$.
- 22. $\phi: F \to F$ where $\phi(f) = f''$ where F is the set of all functions f having derivatives of all orders with $\ker(\phi) = \{ax + b : a, b \in \mathbb{R}\}.$
- 23. $\phi: F \to F$ where $\phi(f) = \int_0^4 f(x) \ dx$ where F is the set of all continuous functions $f: \mathbb{R} \to \mathbb{R}$.
- 24. $\phi: F \to F$ where $\phi(f) = 3f$ with $\ker(\phi) = \{0\}$.
- 25. $\phi: F \to \mathbb{R}^*$ where $\phi(f) = \int_0^1 f(x) \ dx$ where F is the multiplicative group of continuous functions $f: \mathbb{R} \to \mathbb{R}$ such that $f(x) \neq 0$.
- 26. $\phi: \mathbb{Z} \to \mathbb{Z}_7$ where $\phi(1) = 4$ with $\ker(\phi) = 7\mathbb{Z}$.
- 27. $\phi: \mathbb{Z} \to \mathbb{Z}_{10}$ where $\phi(1) = 6$ with $\ker(\phi) = 5\mathbb{Z}$.
- 28. $\phi: \mathbb{Z} \to S_8$ where $\phi(1) = (1, 4, 2, 6)(2, 5, 7)$ with $\ker(\phi) = 12\mathbb{Z}$.
- 29. $\phi: \mathbb{Z}_{10} \to \mathbb{Z}_{20}$ where $\phi(1) = 8$ with $\ker(\phi) = \{0, 5\} \cong \mathbb{Z}_2$.
- 30. $\phi: \mathbb{Z}_{24} \to S_8$ where $\phi(1) = (1, 4, 6, 7)(2, 5)$ with $\ker(\phi) = \{0, 4, 8, 12, 16, 20\} \cong \mathbb{Z}_6$.
- 31. $\phi: \mathbb{Z} \times \mathbb{Z} \to \mathbb{Z}$ where $\phi(1,0) = 3$, $\phi(0,1) = -5$ with $\ker(\phi) = \langle (5,3) \rangle \cong \mathbb{Z}$.
- 32. $\phi: \mathbb{Z} \times \mathbb{Z} \to \mathbb{Z} \times \mathbb{Z}$ where $\phi(1,0) = (2,-3)$ and $\phi(0,1) = (-1,5)$ with $\ker(\phi) = \{(0,0)\}.$
- 33. $\phi: \mathbb{Z} \times \mathbb{Z} \to S_{10}$ where $\phi(1,0) = (3,5)(2,4)$ and $\phi(0,1) = (1,7)(6,10,8,9)$ with $\ker(\phi) = \langle (2,4) \rangle \cong \mathbb{Z}$.
- 34. $\phi: \mathbb{Z}_{12} \to \mathbb{Z}_5$ where $\phi(1) = 0$ with ker $\phi = \mathbb{Z}_{12}$.
- 35. $\phi: \mathbb{Z}_{12} \to \mathbb{Z}_4$ where
 - $\phi(1) = 0$ with $\ker(\phi) = \mathbb{Z}_{12}$
 - $\phi(1) = 1 \text{ with } \ker(\phi) = \{0, 4, 8\} \cong \mathbb{Z}_3$
 - $\phi(1) = 2$ with $\ker(\phi) = \{0, 6\} \cong \mathbb{Z}_2$
 - $\phi(1) = 3 \text{ with } \ker(\phi) = \{0, 4, 8\} \cong \mathbb{Z}_3$
- 36. $\phi: \mathbb{Z}_2 \times \mathbb{Z}_4 \to \mathbb{Z}_2 \times \mathbb{Z}_5$ where
 - $\phi(1,0) = (0,0), \ \phi(0,1) = (0,0) \text{ with } \ker(\phi) = \mathbb{Z}_2 \times \mathbb{Z}_4$
 - $\phi(1,0) = (1,0), \ \phi(0,1) = (0,0) \text{ with } \ker(\phi) = \{0\} \times \mathbb{Z}_4$
 - $\phi(1,0) = (0,0), \ \phi(0,1) = (1,0) \text{ with } \ker(\phi) = \mathbb{Z}_2 \times \{0,2\} \cong V$
 - $\phi(1,0) = (1,0), \ \phi(0,1) = (1,0) \text{ with } \ker(\phi) = \{0\} \times \{0,2\}$
- 37. $\phi: \mathbb{Z}_3 \to \mathbb{Z}$ where $\phi(1) = 0$

38.
$$\phi : \mathbb{Z}_3 \to S_3$$
 where $\phi(1) = ()$ with $\ker(\phi) = \mathbb{Z}_3$ $\phi(1) = (1, 2, 3)$ with $\ker(\phi) = \{0\}$ $\phi(1) = (1, 3, 2)$ with $\ker(\phi) = \{0\}$

- 39. $\phi: \mathbb{Z} \to S_3$ where $\phi(1) = ()$ with $\ker(\phi) = \mathbb{Z}$.
- 40. $\phi: \mathbb{Z} \times \mathbb{Z} \to 2\mathbb{Z}$ where $\phi(1,0) = 2s$, $\phi(0,1) = 2t$ with $\ker(\phi) = \{0\}$, $s, t \neq 0$.
- 41. $\phi: 2\mathbb{Z} \to \mathbb{Z} \times \mathbb{Z}$ where $\phi(2) = (s,t)$ with $\ker(\phi) = \{0\}, s, t \neq 0$.
- 42. $\phi: D_4 \to S_3$ where $\phi(R_{90}) = (), \ \phi(\mu) = ()$ with $\ker(\phi) = D_4$. $\phi(R_{90}) = (i, j), \ \phi(\mu) = ()$ with $\ker(\phi) = \{0, R_{180}, \mu, R_{180}\mu\}$. $\phi(R_{90}) = ()$ or $\phi(\mu) = (i, j)$ with $\ker(\phi) = \{0, R_{90}, R_{180}, R_{270}\}$. $\phi(R_{90}) = (i, j)$ or $\phi(\mu) = (i, j)$ with $\ker(\phi) = \{0, R_{90}\mu, R_{180}, R_{270}\mu\}$. $\phi: D_4 \to S_3, \ \ker(\phi) \not\cong \mathbb{Z}_2 \text{ since } S_3 \text{ don't have a subgroup isomorphic to } D_4/\mathbb{Z}_2$
- 43. $\phi: S_3 \to S_4$ where

$$\phi(1,2) = (), \ \phi(1,2,3) = () \text{ with } \ker(\phi) = S_3.$$

$$\phi(1,2) = (i,j), \ \phi(1,2,3) = () \text{ with } \ker(\phi) = \{(), (1,2,3), (1,3,2)\}.$$

$$\phi(1,2) = (), \ \phi(1,2,3) = (i,j,k) \text{ with } \ker(\phi) = k\{(), (1,2)\}.$$

$$\phi(1,2) = (i,j), \ \phi(1,2,3) = (i,j,k) \text{ with } \ker(\phi) = \{()\}.$$

$$\phi(1,2) = (i,j)(k,l), \ \phi(1,2,3) = () \text{ with } \ker(\phi) = \{(), (1,2,3), (1,3,2)\}.$$

44.
$$\phi: S_4 \to S_3$$
 where $\phi(1,2) = (), \ \phi(1,2,3,4) = ()$ with $\ker(\phi) = S_4$. $\phi(1,2) = (i,j), \ \phi(1,2,3,4) = (i,j)$ with $\ker(\phi) = A_4$. $\phi(1,2) = (i,j), \ \phi(1,2,3,4) = (i,k)$ is surjective with $\ker(\phi) = \{(), (1,3)(2,4), (1,2)(3,4), (1,4)(2,3)\} \cong \mathbb{Z}_2 \times \mathbb{Z}_2 \cong V$.

Counter Examples

- 1. $\phi: \mathbb{Z}_9 \to \mathbb{Z}_2$ where $\phi(n) \cong n \pmod{2}$. But, $\phi(2+8) \neq \phi(2) + \phi(8)$.
- 2. $\phi: M_n(\mathbb{R}) \to \mathbb{R}$ where $\phi(A) = \det(A)$. However, $\det(A+B) \neq \det(A) + \det(B)$.
- 3. $\phi: GL(n,\mathbb{R}) \to \mathbb{R}^*$ where $\phi(A) = tr(A)$. However, $tr(AB) \neq tr(A)tr(B)$.
- 4. $\phi: S_3 \to S_4$ where $\phi(1,2) = (1,2)$, $\phi(1,2,3) = (1,3,4)$ is not a homomorphism. Let $\sigma = (1,2)(1,2,3) = (2,3)$, $\phi(\sigma) = \phi(1,2)\phi(1,2,3) = (1,3,4,2)$ and $\phi(\sigma^2) \neq ()$.
- 5. $\phi: S_3 \to S_4$ where $\phi(1,2) = (1,2)(3,4)$, $\phi(1,2,3) = (1,2,3)$ is not as well. Let $\sigma = (1,2)(1,2,3) = (2,3)$, $\phi(\sigma) = \phi(1,2)\phi(1,2,3) = (2,4,3)$ and $\phi(\sigma^2) \neq ()$.
- 6. $\phi(1,2) = (i,j), \ \phi(1,2,3,4) = ().$ Let $\sigma = (2,3,4) = (1,2)(1,2,3,4)$. Then $\phi(\sigma) = (i,j)$ and $\phi(\sigma^3) \neq ().$
- 7. $\phi(1,2) = (), \ \phi(1,2,3,4) = (1,2).$ Let $\sigma = (1,2)(1,2,3,4) = (2,3,4). \ \phi(\sigma) = (1,2) \text{ and } \phi(\sigma^3) \neq ().$

Special Homomorphisms

- 1. There are two homomorphisms of \mathbb{Z} onto \mathbb{Z} . $\phi_1(n) = n$ and $\phi_2(n) = -n$.
- 2. There are countably many homomorphisms of \mathbb{Z} into \mathbb{Z} . $\phi_r(n) = rn, \ r \in \mathbb{Z}$.
- 3. There is a unique homomorphisms of \mathbb{Z} into \mathbb{Z}_2 . $\phi(n) \cong n \pmod{2}$.
- 4. $\phi_g: G \to G$ where $\phi_g(x) = gx$ is a homomorphism only when g = e.
- 5. $\phi_q: G \to G$ where $\phi_q(x) = gxg^{-1}$ is a homomorphism with $\ker(\phi_q) = \{e\}$.
- 6. There exists exactly 24 surjective homomorphisms from S_4 onto S_3 . However, the $\ker(\phi) = \mathbb{Z}_2 \times \mathbb{Z}_2$ as it is the only normal subgroup of S_4 with order 4.
- 7. The field $\left\langle \left\{ \begin{bmatrix} a & -b \\ b & a \end{bmatrix} : a, b \in \mathbb{R} \right\}, +, \times \right\rangle \cong \mathbb{C}$ where $\phi \left(\begin{bmatrix} a & -b \\ b & a \end{bmatrix} \right) = a + ib$.

Quotient Groups

- 1. $\mathbb{R}/n\mathbb{R} \cong \{e\}$ where $n\mathbb{R} = \{nr : r \in \mathbb{R}\}.$
- 2. $S_n/A_n \cong \mathbb{Z}_2, n > 1$.
- 3. $A_4/V = \{[V], (1,2)[V], (1,2,3,4)[V]\} \cong \mathbb{Z}_3.$
- 4. $(\mathbb{Z}_4 \times \mathbb{Z}_6) / \langle (0,1) \rangle \cong \mathbb{Z}_4$.
- 5. $(\mathbb{Z}_4 \times \mathbb{Z}_6)/\langle (0,2)\rangle \cong \mathbb{Z}_4 \times \mathbb{Z}_2$.
- 6. $(\mathbb{Z}_4 \times \mathbb{Z}_6)/\langle (2,3)\rangle \cong \mathbb{Z}_4 \times \mathbb{Z}_3$.
- 7. $D_n/\mathbb{Z}_n \cong \mathbb{Z}_2$, n > 2. And $D_n \cong \mathbb{Z}_n \rtimes \mathbb{Z}_2$.
- 8. $\mathbb{Z}_n^{\times}/N \cong \mathbb{Z}_k^{\times}$ where $N = \{m \in \mathbb{Z}_n^{\times} : m \cong 1 \pmod{k}\}.$
- 9. Factor groups of cyclic groups are cyclic. $\mathbb{Z}_n/\mathbb{Z}_d \cong \mathbb{Z}_{n/d}, d|n$.
- 10. $F/K \leq F$ where F is the additive group of all continuous functions $f : \mathbb{R} \to \mathbb{R}$ and K is the subgroup of all constant functions.
- 11. $F^*/K^* \leq F^*$ where F^* is the multiplicative group of all continuous functions $f: \mathbb{R} \to \mathbb{R}$ such that $f(x) \neq 0$ and K^* is the subgroup of all nonzero constant functions.

Maximal Normal Subgroups

- 1. $S_n: A_n, n > 5$ $S_4: A_4, \mathbb{Z}_2 \times \mathbb{Z}_2$
- 2. $A_4: \mathbb{Z}_2 \times \mathbb{Z}_2$ $A_n \text{ is simple, } n > 4.$
- 3. $D_n: D_{n/2}, \mathbb{Z}_n, D_d$ where d|n, n>2. $D_4 \text{ is the only dihedral group in which } \mathbb{Z}_2 \times \mathbb{Z}_2 \text{ is normal. (index 2)}$

Order of Quotient Groups

- 1. $\mathbb{Z}_6/\langle 3 \rangle$. We have $|H| = o(3) = 6/\gcd(6,3) = 2$ and |G/H| = |G|/|H| = 6/2 = 3
- 2. $(\mathbb{Z}_4 \times \mathbb{Z}_{12})/(\langle 2 \rangle \times \langle 2 \rangle)$. We have, $o(2) = 4/\gcd(4,2) = 2$ and $o(2) = 12/\gcd(12,2) = 6$. And |G|/|H| = 48/12 = 4.
- 3. $(\mathbb{Z}_4 \times \mathbb{Z}_2)/\langle (2,1) \rangle$. We have, o(2,1) = lcm(o(2),o(1)) = lcm(2,2) = 2. And |G/H| = 8/2 = 4.
- 4. $(\mathbb{Z}_3 \times \mathbb{Z}_5)/\{0\} \times \mathbb{Z}_5$. Clearly, |G/H| = 15/5 = 3.
- 5. $(\mathbb{Z}_2 \times \mathbb{Z}_4)/\langle (1,1) \rangle$. We have, o(1,1) = lcm(o(1),o(1)) = lcm(2,4) = 4. And |G/H| = 8/4 = 2.
- 6. $(\mathbb{Z}_{12} \times \mathbb{Z}_{18})/\langle (4,3) \rangle$. We have o(4,3) = lcm(o(4),o(3)) = lcm(3,6) = 6. And $|G/H| = 12 \times 18/6 = 36$.
- 7. $(\mathbb{Z}_2 \times S_3)/\langle (1, \rho_1) \rangle$ where $\rho_1 = (1, 2, 3)$. We have $o(1, \rho_1) = lcm(o(1), o(\rho_1)) = lcm(2, 3) = 6$. And |G/H| = 12/6 = 2.
- 8. $(\mathbb{Z}_{11} \times \mathbb{Z}_{15})/\langle (1,1) \rangle$. Clearly $o(1,1) = 11 \times 15$. And |G/G| = 1.

Order of an element in the quotient group

- 1. $5 + \langle 4 \rangle \in \mathbb{Z}_{12} / \langle 4 \rangle$. $4 \times 5 + \langle 4 \rangle = 0 + \langle 4 \rangle$.
- 2. $26 + \langle 12 \rangle \in \mathbb{Z}_{60} / \langle 12 \rangle$. $6 \times (2 + 24) + \langle 12 \rangle = 0 + \langle 12 \rangle$.
- 3. $(2,1) + \langle (1,1) \rangle \in (\mathbb{Z}_3 \times \mathbb{Z}_6) / \langle (1,1) \rangle$. $3 \times [(1,0) + (1,1) + \langle (1,1) \rangle] = (0,0) + \langle (1,1) \rangle$.
- 4. $(3,1) + \langle (1,1) \rangle \in (\mathbb{Z}_4 \times \mathbb{Z}_4) / \langle (1,1) \rangle$. $2 \times [(2,0) + (1,1) + \langle (1,1) \rangle = (0,0) + \langle (1,1) \rangle$.
- 5. $(3,3) + \langle (1,2) \rangle \in (\mathbb{Z}_4 \times \mathbb{Z}_8) / \langle (1,2) \rangle$. $8 \times [(2,1) + (1,2) + \langle (1,2) \rangle] = (0,0) + \langle (1,2) \rangle$.
- 6. $(2,0) + \langle (4,4) \rangle \in (\mathbb{Z}_6 \times \mathbb{Z}_8) / \langle (4,4) \rangle$. $3 \times [(2,0) + \langle (4,4) \rangle] = (0,0) + \langle (4,4) \rangle$.

Conjugate Subgroups

1. $i_{\rho_1}[H]$ where $H = \{\rho_0, \mu_1\}$ and $\mu_1 = (2, 3)$. We have, $i_{\rho_1}(\mu) = (1, 2, 3)(2, 3)(1, 3, 2) = (1, 3) = \mu_2$. Thus, $i_{\rho_1}[H] = \{\rho_0, \mu_u\}$.

Group G characterised by G/Z(G)

- 1. If G is non-abelian, finite group then $|Z(G)| \leq \frac{1}{4}|G|$. Otherwise G/Z(G) is a group of order 1, 2 or 3. And groups of order 1, 2, 3 are cyclic.
- 2. If G is non-abelian, then Z(G) is not a maximal subgroup of G.

Proof. Suppose Z(G) is a maximal subgroup of G. Then G/Z(G) has no nontrivial subgroups. That is, G/Z(G) is of prime order and thus cyclic which is not possible as G is non-abelian.

3. For A_5, S_3, \ldots , the group G/Z(G) is non-abelian.

41

Group Actions

1.

Definitions 4.76. Let G be a group. The dual group of G, \hat{G} is the abelian group of all homomorphisms $\phi: G \to \mathbb{C}^*$.

$$\widehat{A \times B} \cong \widehat{A} \times \widehat{B}$$

4.2.4 Advanced Group Theory

Isomorphism Theorems

- 1. $\forall \phi: G \to G', \ \exists \gamma_N: G \to G/N, \ \phi = \mu \gamma \text{ where } N = \ker(\phi) \text{ and } \phi[G] \xrightarrow{\mu} G/N.$
- 2. Let $H \leq G$ and $N \subseteq G$. Then $(HN)/N \cong H/(H \cap N)$.

$$|HN| = |H||N|/|H \cap N|.$$

If
$$H \cap N = \{e\}$$
, then $|HN| = |H||N|$.

3. Let $K \leq H \leq G$ and H, K are normal subgroups of G. Then $G/H \cong (G/K)/(H/K)$.

Definitions 4.77. A subnormal series of a group G is a finite sequence $\{H_i\}_{i=0}^n$ such that $H_i \leq H_{i+1}$, $H_0 = \{e\}$ and $H_n = G$.

Definitions 4.78. A normal series of a group G is a finite sequence $\{H_i\}_{i=0}^n$ such that $H_i \leq G$, $H_0 = \{e\}$ and $H_n = G$.

Definitions 4.79. A subnormal(normal) series of a group G is a **composition(principal)** series of group G if every quotient group H_{i+1}/H_i is simple.

Definitions 4.80. A composition series of a group G is **solvable** if every quotient group H_{i+1}/H_i is abelian.

Definitions 4.81. The ascending central series of the group G is $\{e\} \leq Z(G) \leq Z_1(G) \leq Z_2(G) \dots$ where $Z_1(G) = \gamma^{-1}(Z(G/Z(G))), Z_i(G) = \gamma_1^{-1}(Z(G/Z_1(G))) \dots$ and $\gamma: G \to G/Z(G), \gamma(g) = gZ(G)$ and $\gamma_1: G \to G/Z_1(G), \gamma_1(g) = gZ_1(G), \dots$

1. Zassenhaus Lemma (Butterfly Lemma) : Let $H^* \subseteq H$ and $K^* \subseteq K$. Then

$$H^*(H \cap K^*) \le H^*(H \cap K),$$

$$K^*(H^*\cap K) \trianglelefteq K^*(H\cap K),$$

$$(H^* \cap K)(H \cap K^*) \leq (H \cap K)$$
, and

$$H^*(H\cap K)/H^*(H\cap K^*)\cong K^*(H\cap K)/K^*(H^*\cap K)\cong (H\cap K)/(H^*\cap K)(H\cap K^*)$$

- 2. Schreier Theorem : Any two subnormal series of a group G have isomorphic refinements.
- 3. Jordan-Hölder Theorem : Any two composition (principal) series of a group ${\cal G}$ are isomorphic.
- 4. Every normal subgroup N of G belongs to some composition series of the group G.

5. Finite product of solvable groups is solvable.

Definitions 4.82. If every element of G has order a power of prime p, then G is a p-group. Let $H \leq G$ and H is a p-group, then H is a p-subgroup of G.

Definitions 4.83. Let G be a group and $H \leq G$. The **normaliser** N[H] of H is the largest subgroup of G such that $H \leq N[H]$.

Definitions 4.84. Maximal p-subgroup is a **Sylow** p-subgroup of G.

Definitions 4.85. The class equation of G is $|G| = c + n_{c+1} + \cdots + n_r$ where n_j is the length of jth orbit in the partition of G under conjugation and c = |Z(G)| is the number of element that are alone in their conjugacy class.

- 1. The set of all Sylow p-subgroups of G, $Syl_p(G)$ is a G-set with conjugation action.
- 2. Let X be a finite G-set and $|G| = p^n$. Then $|X| \cong |X_G| \pmod{p}$.
- 3. Cauchy's theorem : Let G be a finite group and p divides the order of G, then G has element g of order p.
- 4. Let H be a p-subgroup of a finite group G. Then $(N[H]:H)\cong (G:H)\pmod p$. If p divides the index of H in G, (G:H), then $N[H]\neq H$.

N[H] is isomorphic to the group of all inner automorphisms G that map H onto itself.

5. The class equation of various groups,

G: n = n, if G is abelian.

 $G: p^3 = p + p + \cdots + p$, if G non-abelian.

$$S_3: 6=1+2+3.$$

$$S_4: 24 = 1 + 3 + 8 + 6 + 6.$$

$$S_5: 120 = 1 + 10 + 15 + 20 + 20 + 24 + 30.$$

$$A_4: 12 = 1 + 3 + 4 + 4.$$

$$A_5: 60 = 1 + 20 + 12 + 12 + 15.$$

$$D_4: 8 = 2 + 2 + 2 + 2.$$

$$D_5: 10 = 1 + 2 + 2 + 5.$$

$$D_6: 12 = 2 + 2 + 2 + 3 + 3.$$

$$Q_8: 8 = 2 + 2 + 2 + 2.$$

6. Distinct groups can have the same class equation.

Sylow Theorems

- 1. If $|G| = p^n m$, then $\{H_i\}_{i=0}^n$ is a subnormal series such that $|H_i| = p^i$ and $H_i \leq G$.
- 2. Let P_1, P_2 be Sylow p-subgroups of a finite group G. Then P_1, P_2 are conjugate subgroups of G.
- 3. Let G be a finite group and p divides the order of G. Then the number of Sylow p-subgroups, $n_p \cong 1 \pmod{p}$ and $n_p|o(G)$.

Applications of Sylow theorems

- 1. Wilson's theorem : $(p-1)! \cong -1 \pmod{p}$. S_p has (p-2)! Sylow p-subgroups. Clearly, $(p-2)! \cong 1 \pmod{p}$ and theorem holds.
- 2. Nonabelian group of order pq is isomorphic to $\mathbb{Z}_q \rtimes \mathbb{Z}_p$. It has q Sylow-p subgroups.
- 3. Sylow p-subgroups are conjugates. Suppose |G| = 36 with four Sylow 3-subgroups (of order 9). Then either they are isomorphic to \mathbb{Z}_9 or $\mathbb{Z}_3 \times \mathbb{Z}_3$.

Important Notions

HN subgroups

- 1. $G = \mathbb{Z}_{24}, H = \langle 4 \rangle, N = \langle 6 \rangle. HN = \langle 2 \rangle.$
- 2. $G = \mathbb{Z}_{36}, H = \langle 6 \rangle, N = \langle 9 \rangle. HN = \langle 3 \rangle.$

Third Isomorphism Theorem

1.
$$G = \mathbb{Z}_{24}$$
, $H = \langle 4 \rangle$, $N = \langle 8 \rangle$. $G/K = \{\langle 8 \rangle, 1 + \langle 8 \rangle, \dots, 7 + \langle 8 \rangle\}$. $H/K = \{\langle 8 \rangle, 4 + \langle 8 \rangle\}$. $G/H = \{\langle 4 \rangle, 1 + \langle 4 \rangle, 2 + \langle 4 \rangle, 3 + \langle 4 \rangle\}$.

Non-abelian Groups There are a few classes of non-abelian groups which has every proper subgroup abelian: 1) every nonabelian group of order pq where p|q, and 2) two non-abelian groups of order p^3 .

Important Notions

Semidirect Product

Definitions 4.86. Let $\phi: H \to Aut(N)$ be a group homomorphism where N, H are two group. Then the **semidirect product** $N \rtimes H$ is defined as the group $\langle N \rtimes H, * \rangle$ where $*: (N \times H) \times (N \times H) \to (N \times H)$ such that $(n_1, h_1) * (n_2, h_2) = (n_1\phi_{h_1}(n_2), h_1h_2)$.

Let G be a group with nontrivial normal subgroups $N, H \leq G$ such that $N \cap H = \{1\}$ and $N \vee H = G$. Then $G/N \cong H$ and $G/H \cong N$. Thus $G \cong N \times H$.

We can extend the notion direct product as follows. Let G be a group with nontrivial subgroups N, H such that N is normal and $N \cap H = \{1\}$. Then $G \cong N \rtimes H$ except for $G \cong \mathbb{Z}_4$ and Q_8 .

Definitions 4.87. The **fundamental group** of a topological space is the group of equivalent classes under homotopy of the loops contained in the space.

Semidirect Products

- 1. The dihedral group, $D_n \cong \mathbb{Z}_n \rtimes \mathbb{Z}_2$.
- 2. No simple group G can be expressed as a semidirect/direct product. Simple groups are indecomposable.
- 3. The fundamental group of the Klein bottle is $\mathbb{Z} \times \mathbb{Z}$.

The converse of Lagrange's theorem Finite group G not necessarity have subgroups for each divisor of its order. For example, the alternating group A_5 of order 12 does not have a subgroup of order 6.

Classification of Finite Groups

- 1. By Burnside's theorem, p-Groups have non-trivial center. And Q_8 is the smallest non-abelian p-group.
- 2. By Sylow first theorem, no group of prime power order is simple.
- 3. Every group of prime power order is solvable.
- 4. Every group G of order p is cyclic and $G \cong \mathbb{Z}_p$. The number of generators is $\phi(n)$.
- 5. Every group G of order p^2 is abelian. There are two groups Z_{p^2} and $Z_p \times Z_p$.
- 6. There are exactly five groups of order p^3 .

Proof. Three abelian groups $-Z_{p^3}$, $Z_{p^2} \times Z_p$, and $Z_p \times Z_p \times Z_p$ and two non-abelian groups $-(Z_p \times Z_p) \rtimes Z_p$, and $Z_{p^2} \rtimes Z_p$ except for p=2. For p=2, $Z_4 \rtimes Z_2 \cong (Z_2 \times Z_2) \rtimes Z_2 \cong D_4$. However we have Q_8 , which is another nonabelian group of order 8.

7. Every non-abelian group G of order p^3 has center Z(G) of order p.

Proof. Since G is a p-group, G has nontrivial center. Suppose $|Z(G)| = p^2$, then G/Z(G) is a cyclic group of order p. But G is non-abelian.

- 8. Every non-abelian group G of order p^3 has $p^2 + p 1$ distinct conjugacy classes.
- 9. Abelian group of order pq is cyclic. Non-abelian group of order pq exists and is isomorphic to $\mathbb{Z}_q \rtimes \mathbb{Z}_p$ provided $q \cong 1 \pmod{p}$.
- 10. Every non-abelian group G of order pq has trivial center.

Proof. Suppose nonabelian group G has a nontrivial center of order p (wlog), then G/Z(G) is a cyclic group of order q. But G is non-abelian. Thus Z(G) is trivial. \square

11. Every group of square free order is supersolvable. And thus solvable.

Proof. Suppose $|G| = p_1 p_2 \dots p_k$ where $p_1 > p_2 > \dots p_k$. Then there exists a normal series $G_1 \leq G_2 \leq \dots \leq G_k \leq G$ such that $|G_1| = p_1$, $|G_2| = p_1 p_2$ and $|G_k| = p_1 p_2 \dots p_k$.

4.3 Ring Theory

4.3.1 Rings & Fields

1. Every finite PID is field.

4.3. RING THEORY 45

4.3.2 Ideals & Factor Rings

4.3.3 Factorisation

Lemma 4.88 (Bézout). Let gcd(a,b) = d. Then there exists integers x, y such that ax + by = d. And integers of the form as + bt are exactly the multiples of d.

The integers x, y are the Bézout coefficients for (a, b). Bézout coefficients are not unique. Bézout identity implies Euclid's lemma, and chinese remainder theorem.

Lemma 4.89 (Euclid). Let p be a prime. If p divides ab, then p divides either a or b.

Proof. By Bézout's identity or By induction using Euclidean algorithm. \Box

Theorem 4.90 (chinese remainder theorem).

Definitions 4.91 (Bézout Domain). A Bézout Domain is an integral domain which satisfyies Bézout's identity.

Definitions 4.92 (Gaussian Integers). Gaussian integers, $\mathbb{Z}[i]$ are complex numbers of the form a + ib, $a, b \in \mathbb{Z}$.

Let x, y are Gaussian integers. x divides y if there exists a Gaussian integer z such that y = xz. The Gaussian integers not divisible by any non-unit Gaussian integer is a Gaussian prime.

Properties

- 1. $\mathbb{Z}[i]$ is a subring of \mathbb{C}
- 2. $\mathbb{Z}[i]$ is an integral domain.
- 3. $\mathbb{Z}[i]$ is a principal ideal domain (PID).
- 4. $\mathbb{Z}[i]$ is a Unique factorisation domain (UFD).
- 5. $\mathbb{Z}[i]$ with norm $N(a+ib)=a^2+b^2$ is a Euclidean Domain.
- 6. $\mathbb{Z}[i]$ is a Bézout Domain.
- 7. Every PID is a Bézout Domain.

4.3.4 Important Notions

- 1. Every PID is a UFD.
- 2. If D is a UFD, then D[x] is a UFD.

Definitions 4.93 (Eisenstein Integers). Eisenstein Integers, $\mathbb{Z}[w]$ are complex numbers of the form a + wb, $a, b \in \mathbb{Z}$ and $w = e^{i2\pi/3}$.

The units in $\mathbb{Z}[w]$ are $\pm 1, \pm w, \pm w^2$.

4.4 Fields

4.4.1 Extension Fields

Definitions 4.94. There exists a unique **Galois field** $GF(p^n)$ of order p^n .

Theorem 4.95 (Kronecker). Let F be a field and f(x) be a nonconstant polynomial in F[x]. Then there exists an extension field E of F and an $\alpha \in E$ such that $f(\alpha) = 0$.

Definitions 4.96. A field E is an extension field of field F if F is containined in E.

Definitions 4.97. A field E is a **simple extension** of field F if there exists some $\alpha \in E$ such that E is the minimal extension field of F containing α .

Definitions 4.98. Let field E be an extension of field F. A number $\alpha \in E$ is **algebraic** over F if there exists $f(x) \in F[x]$ such that $f(\alpha) = 0$.

Then α is algebraic over the field F. Otherwise α is transcendental over the field F. If $F = \mathbb{Q}$, then α is an algebraic number.

Definitions 4.99. An extension E of a field F is **algebraic** if $E \cong F(\alpha)$ for some α algebraic over F.

The field $\mathbb{Q}(\pi)$ is a simple, transcendental extension of \mathbb{Q} . And $\mathbb{Q}(i)$ is a simple, algebraic extension of \mathbb{Q} as f(x): $x^2 + 1 \in \mathbb{Q}[x]$ and f(i) = 0.

Definitions 4.100. Let field E be an n-dimensional vector space over field F. Then E is a **finite extension** of F. And [E:F]=n.

Theorem 4.101 (Fundamental Theorem of Algebra). The field \mathbb{C} is algebraically closed.

Proof. Every non-constant polynomial has a linear factorisation. Let f(z) be a non-constant polynomial which has no zero in \mathbb{C} . Then 1/f(z) is entire. Clearly $f(z) \to \infty$ as $z \to \infty$. Thus, $1/f(z) \to 0$ as $z \to \infty$. Therefore, f is bounded. However, by Liouville's theorem, the bounded, entire function 1/f(z) is constant.

Field \mathbb{C} does not have any algebraic extensions. However, the field of all rational functions $\mathbb{C}(x)$ is a transcendental extension of \mathbb{C} .

Important Notions

The binary algebra, $\langle \mathbb{Z}_n, +_n, \times_n \rangle$ is a commutative ring with unity.

Theorem 4.102. $\langle \mathbb{Z}_n, +_n, \times_n \rangle$ is a field iff n is a prime.

Proof. A number $a \in \mathbb{Z}_n$ is not a zero divisor(and has an inverse) iff gcd(a, n) = 1.

4.5. TOPOLOGY

Simple Extensions of \mathbb{Q} Let α be an algebraic number. Then there exists a polynomial $f(x) \in F[x]$ such that $f(\alpha) = 0$. From f(x), we may obtain a monic polynomial $p(x) \in \mathbb{Q}[x]$ such that $p(\alpha) = 0$. By division algorithm, such monic irreducible polynomials are unique. Thus, we may refer $p(x) = irr(\alpha, \mathbb{Q})$. By Kronecker's theorem, field \mathbb{Q} has an algebraic extension $\mathbb{Q}(\alpha)$.

Definitions 4.103 (cyclotomic field). The nth cyclotomic field is $\mathbb{Q}(\alpha)$ where α is a primitive nth root of unity.

Definitions 4.104 (cyclotomic polynomial). The nth cyclotomic polynomial $\Phi_n(x)$ is the monic irreducible polynomial with primitive nth roots of unity as its zeroes.

$$\Phi_n(x) = \prod_{\substack{1 \le k \le n \\ \gcd(k,n)=1}} (x - \zeta_k)$$

Definitions 4.105. A number α is **constructible** if you can draw a line of α length in a finite number of steps using a straightedge and a compass (given a line of unit length).

- 1. The nth cyclotomic polynomial has degree $\phi(n)$.
- 2. The constructible numbers form a field.
- 3. A number α is constructible iff the degree of the monic, irreducible polynomial of α over \mathbb{Q} is a power of the prime 2.
- 4. The constructible numbers field is an infinite extension of \mathbb{Q} .

The classical problems like trisecting an angle, squaring a circle and doubling a cube are thus impossible.

4.4.2 Automorphisms & Galois Theory

4.5 Topology

4.5.1 Metric Space

Definitions 4.106 (distance function). A distance function $d: X \times X \to \mathbb{R}^+$ on a set X is a function which satisfies

1.
$$d(x,y) \ge 0$$
, $\forall x, y \in X$

2.
$$d(x,y) = 0 \iff x = y$$

3.
$$d(x,y) = d(y,x)$$

4.
$$d(x,y) \le d(x,z) + d(z,y), \quad x, y, z \in X$$

4.5.2 Convergence

Definitions 4.107 (metric). A sequence x_n converges to x if there exists $N \in \mathbb{N}$ such that $\forall n > N$, $d(x_n, x) < \varepsilon$.

$$\forall \varepsilon > 0, \ \exists N \in \mathbb{N}, \ \forall n > N, \ d(x_n, x) < \varepsilon$$
 (4.5)

4.5.3 Cauchy Criterion

Definitions 4.108 (metric). A sequence x_n is Cauchy if there exists $N \in \mathbb{N}$ such that $\forall n, m > N, \ d(x_n, x_m) < \varepsilon$.

4.5.4 Topological Space

Definitions 4.109 (topological space). A topological space $\langle X, \mathcal{T} \rangle$ where $\mathcal{T} \subset \mathcal{P}(X)$ satisfies

- 1. $\phi, X \in \mathcal{T}$.
- 2. \mathcal{T} is closed under finite intersections.
- 3. \mathcal{T} is closed under arbitrary unions.

Let $G \in \mathcal{T}$. Then G is an open set in (X, \mathcal{T}) . And X - G is a closed set.

Definitions 4.110 (clopen). A clopen set is both open and closed.

Definitions 4.111 (dense). A dense set A intersects every non-trivial open set in (X, \mathcal{T}) .

Note. A dense set has no proper closure. If A is dense in X, then $\bar{A} = X$. If A is dense in X and $x \in X$, then every neighbourhood of x has an element of A.

Definitions 4.112 (neighbourhood). A neighbourhood N of a point $x \in X$ contains an open set containing x. Then x is an interior point of N.

Definitions 4.113 (neighbourhood system). The neighbourhood system of x, \mathcal{N}_x is the family of all neighbourhoods of x.

Definitions 4.114 (interior). The set of all interior points of N is the **interior** of N, N° .

Definitions 4.115 (exterior). The interior of X - N is the **exterior** of N.

Definitions 4.116 (boundary). The **boundary** of N, ∂N is the set of all points which are neither in its interior or exterior.

Definitions 4.117 (derived set). A **limit point** x of a set A has every deleted neighbourhood $N - \{x\}$ intersecting A. The **derived set** A' is the set of all limit points of A.

Note. A point x is a limit point of A if and oney if there exists a non-eventual sequence in A converging to x.

Definitions 4.118 (closure). The closure of A, $\bar{A} = A \cup A'$.

Note. The closure of A, A is the smallest closed set containing A. If A is closed, then $\bar{A} \subset A$. If C is closed and $A \subset C$, then $\bar{A} \subset C$.

4.5. TOPOLOGY

4.5.5 Convergence

Definitions 4.119 (neighbourhood). A sequence $\{x_n\}$ converges to x if any neighbourhood N of x contains all except finitely many x_n 's. Then x is a **limit** of sequence $\{x_n\}$.

Note. Let $x_n \to x$ in $\langle X, \mathcal{T} \rangle$. Then x_n is eventually in every neighbourhood of x.

$$\forall U \in \mathcal{N}_x, \ \exists N \in \mathbb{N}, \ \forall n > N, \ x_n \in U$$
 (4.6)

Note. Sequences $\{\frac{1}{n}\}$, $\{\frac{1}{2^n}\}$ are eventually in every neighbourhood of 0.

4.5.6 Important Notions

Definitions 4.120 (Euler Characteristic). $\chi = V - E + F$

Remark. Every convex polyhedron has Euler characteristic, $\chi = 2$.