Trapping and Beamloading in hybrid Plasma Wakefield Accelerator schemes

Alexander Knetsch

15. November 2016

INHALTSVERZEICHNIS

$$\Phi_{f} = R_{i,j}\Phi_{f}
\begin{pmatrix} x_{f} \\ x'_{f} \\ y_{f} \\ z_{f} \\ \delta_{f} \end{pmatrix} = \begin{pmatrix} R_{11} & R_{12} & R_{13} & R_{14} & R_{15} & R_{16} \\ R_{21} & R_{22} & R_{23} & R_{24} & R_{25} & R_{26} \\ R_{31} & R_{32} & R_{33} & R_{34} & R_{35} & R_{36} \\ R_{41} & R_{42} & R_{43} & R_{44} & R_{45} & R_{46} \\ R_{51} & R_{52} & R_{53} & R_{54} & R_{55} & R_{56} \\ R_{61} & R_{62} & R_{63} & R_{64} & R_{65} & R_{66} \end{pmatrix} \begin{pmatrix} x_{i} \\ x'_{i} \\ y_{i} \\ y'_{i} \\ z_{i} \\ \delta_{i} \end{pmatrix}$$

$$(0.1)$$

$$\sqrt{\gamma \epsilon}$$

$$-\alpha \sqrt{\epsilon/\beta}$$

$$\sqrt{\beta \epsilon}$$

$$I = \hat{I}_{x,y} W_{\text{Laser}} / (2\sqrt{\pi} \sigma_t (\Delta x_{\text{res}} \times 10^- 6)^2)$$

In order to derive an expression for the trapping condition of a single electron in PWFA, one has to start with the equation of motion for such a single electron.

$$F = \frac{d\vec{p}}{dt} = q(\vec{E} \times \vec{B}) \tag{0.2}$$

with the electron charge q electric field \vec{E} and magnetic field \vec{B} . This leads to the single particle electron hamiltonian.

$$\frac{dH}{dt} = \frac{d}{dt}(\gamma m_e c^2) + \frac{d}{dt}(q\Phi) \tag{0.3}$$

$$= \vec{v}\frac{d\vec{p}}{dt} + \frac{d}{dt}(q\Phi) \tag{0.4}$$

$$=q\vec{v}(-\nabla\Phi-\frac{\partial\vec{A}}{\partial t})+\frac{\vec{v}\times\vec{B}}{c}+\frac{d}{dt}(q\Phi) \eqno(0.5)$$

$$= q(\frac{d}{dt}\Phi - \vec{v}\vec{\nabla}\Phi - \vec{v}\frac{\partial\vec{A}}{\partial t}) \tag{0.6}$$

$$=q(\frac{\partial\Phi}{\partial t}-\vec{v}\frac{\partial\vec{A}}{\partial t}) \tag{0.7}$$

If one assumes now, that the wake fields are constant during the trapping process, then

$$H - v_{\phi} P_z = \text{const.} \tag{0.8}$$

$$\gamma mc^2 + \Psi - v_\phi p_z - v_\phi q A_z = \text{const.}$$
 (0.9)

$$\gamma + \frac{q\Phi}{mc^2} - v_\phi \frac{p_z}{mc^2} = \text{const.}$$
 (0.10)

$$\gamma - v_{\phi} \frac{p_z}{mc^2} \underbrace{\frac{q}{qc^2} (\Phi - v_{\phi} A_z)}_{\hat{\Psi}} = \text{const.}$$
 (0.11)

which is especially true for the hamiltonian.

$$\begin{split} \frac{d}{dt}H &= q(\frac{\partial \Phi}{\partial t} - \vec{v}\frac{\partial \vec{A}}{\partial t}) \\ &= -qv_{\phi}(\frac{\partial \Phi}{\partial z} - \vec{v}\frac{\partial \vec{A}}{\partial z}) \end{split}$$

The trapping of a single electron in PWFA happens in a short time (i.e. a short propagation distance) compared to the timescales on which the wakefield changes its shape. An example for a distance over which the wakefield is modified is the betatron length FORUMLA !!!. This gives the convenient possibility to treat the problem in a frame moving along with the phase velocity of the wake v_{ϕ} . Mathematically this can be done by finding a constant $C_{\rm H}$ with $\frac{dC_{\rm H}}{dt}=0$, so that $\frac{d}{dt}(H-C_{\rm H})=0$. W. Lu suggested in his thesis [citation needed !!!]

$$\frac{d}{dt}(H - v_{\phi}P_{z}) = -qv_{\phi}(\frac{\partial\Phi}{\partial z} - \vec{v}\frac{\partial\vec{A}}{\partial z}) - qv_{\phi}(v_{z}\frac{\partial A_{z}}{\partial z} - \frac{\partial\Phi}{\partial z})$$

$$\approx qv_{\phi}(v_{z}\frac{\partial A_{z}}{\partial z} - v_{z}\frac{\partial A_{z}}{\partial z}) = 0$$

$$H - v_{\phi}P_{z} = const.$$

$$\gamma mc^{2} + q\Phi - v_{\phi}p_{z} - v_{\phi}qA_{z} = const.$$

$$\gamma + \frac{q\Phi}{mc^{2}} - v_{\phi}\frac{p_{z}}{mc^{2}} - v_{\phi}q\frac{A_{z}}{mc^{2}} = const$$

$$\gamma - v_{\phi}\frac{p_{z}}{mc^{2}} - \underbrace{\frac{q}{mc^{2}}(\Phi - v_{\phi}A_{z})}_{\Psi} = const.$$

$$-const. + \gamma + v_{\phi}\frac{p_{z}}{mc^{2}} = \Psi$$

$$\Psi_f - \Psi_i = \gamma_f - \gamma_i - v_\phi \frac{\gamma_f m v_f}{mc^2}$$

$$Q'(z) = \int_{-\infty}^{\infty} 1 - exp(W_{\text{ADK}}(z, t)) dt$$

