CpE 213 Digital Systems Design

Lecture 5 Tuesday 9/9/2003

Before the next lecture

- Review WIMP handout
- Download assignment 2 (due this Friday)
- Read sections 1.11 and 2.1 to 2.4.3 of your textbook.
- Fill in and return index cards.

Wimp51 timing

- Registers get loaded by rising edge at end of cycle
- Each instruction lasts three clock cycles
- Each instruction cycle consists of a Fetch, Decode, and Execute clock cycle
- Classic 8051 is similar but more options so more complex (12 or more clock cycles per instruction)

Wimp51 timing diagram

- •Two complete instruction cycles are shown
- •First is a SETB C (D3h) at location 0000
- •PC increments at end of Fetch cycle, C set at end of Exec cycle
- •What is second instruction? Value of the data bus during fetch #2?

Wimp51 timing diagram 2

- Two more instructions. What are they?
- Note ACC goes from 1 to 0 at end of #2
- C is set at end of instruction #2

Wimp51 timing diagram 3

- Two more instructions. What are they?
- First instruction increments PC once more
- Instruction #2 increments PC then changes it to 3h

Wimp51 timing diagram 4

- Examine the control signals for SETB C
- WE signals let registers be updated on rising clock edge
- Dashed line represents "don't care" signals

Wimp51 timing

- Timing diagrams generated by a simulator
- Simulator 'executes' a model of Wimp51
- Model is written in VHDL
- VHDL can be used to synthesize Wimp51 hardware
- Simulation models let us 'try out' a design before committing to hardware
- We can simulate hardware, software, or both
- Used for rapid prototyping and to get it right the first time

An example: Calculate 2+1

Code	Addr	Instr
74 01	0000h	MOV A, #01h
F8	0002h	MOV R0, A
74 02	0003h	MOV A, #02h
C3	0005h	CLR C
38	0006h	ADDC A, R0
F9	0007h	MOV R1, A
80 FE	0008h Stop:	SJMP Stop

An example: Calculate 2+1

PC	R0	R1	Acc	C		Instruction
0	??	??	??	?		MOV A, #1
2	??	??	1	?		MOV R0, A
3	1	??	1	?		MOV A, #2
5	1	??	2	?		CLR C
6	1	??	2	0		ADDC A, R0
7	1	??	3	0		MOV R1, A
8	1	3	3	0	Stop:	SJMP Stop