THE UNIVERSITY OF SYDNEY SCHOOL OF MATHEMATICS AND STATISTICS

Calculus Tutorial 7 (Week 8)

MATH1062/MATH1023: Mathematics 1B (Calculus)

Semester 2, 2024

Questions marked with * are harder questions.

Material covered

(1) Curves and surfaces in 3-dimensional space

Summary of essential material

Equation of an ellipse with semi-axes of lengths a (in the x direction) and b (in the y direction):

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1.$$

Parametric equations of an ellipse with semi-axes of lengths a and b:

$$x = a \cos t$$
, $y = b \sin t$ for $t \in \mathbb{R}$.

Questions to complete during the tutorial

1. Sketch the following parametric curves in the *xy*-plane, assuming that *t* takes all values in \mathbb{R} :

(a)
$$x = \cos t$$
, $y = \sin t$

(c)
$$x = 2 + \cos t$$
, $y = -1 + \sin t$

(b)
$$x = \cos t$$
, $y = 4 \sin t$

(d)
$$x = t^2, y = t$$

2. Find the natural domains for the functions of two variables given by the following formulas, and sketch the domains as subsets of \mathbb{R}^2 . Find the ranges of each function, assuming in each case that the domain is the natural domain.

(a)
$$ln(x+2y)$$

(b)
$$\sqrt{x+1-y^2}$$

(c)
$$\cos(x/\sqrt{y})$$

3. Sketch the level curves of the function $f(x, y) = x^2 + 2y^2$ corresponding to the function values c = 0, c = 1 and c = 2. Use these to help sketch the graph of this function, that is, the surface with equation $z = x^2 + 2y^2$. (Note that there are no level curves for c < 0. Why?)

4. In each case, sketch and describe the given surface in \mathbb{R}^3 . In addition, write down two points in \mathbb{R}^3 that are on the surface.

(a)
$$x^2 + y^2 + (z - 1)^2 = 4$$

(c)
$$x^2/4 + y^2/9 + z^2 = 1$$

(b)
$$(x-3)^2 + (y-1)^2 + (z+1)^2 = 1$$

5. Sketch the following parametric curve in the xy-plane: $x = 2\cos t$, $y = 4\sin t$.

On your sketch indicate the direction of increasing t. Find the point (x, y) corresponding to t = 0, and mark it on your sketch. Repeat for $t = \pi$, for $t = 2\pi$ and for $t = -\pi$.

- *6. Describe the curve in three-dimensional space given by $x = 2\cos t$, $y = 4\sin t$, z = t. Sketch it, indicating the direction of increasing t, and mark in the points corresponding to $t = n\pi$ for all $n \in \{-1, 0, 1, 2, 3\}$.
- *7. What does the curve $(x, y, z) = (2 \cos t, 4 \sin t, t^2)$ look like? Sketch it.

Short answers to selected exercises

- 1. (a) Circle: centre at (0,0), radius 1.
 - (b) Ellipse, centre at (0,0).
 - (c) Circle centred at (2, -1), with radius 1.
 - (d) Sideways-opening parabola with vertex at (0,0).
- **4.** (a) Sphere: radius 2 and centre (0, 0, 1).
 - (b) Sphere: raius 1 and centre (3, 1, -1).
 - (c) Ellipsoid: centre (0,0,0).
 - (d) Paraboloid: vertex at (0,0,0).
 - (e) Cone: vertex at (0,0,0).