```
# This Python 3 environment comes with many helpful analytics libraries installed
# It is defined by the kaggle/python Docker image: https://github.com/kaggle/docker-python
# For example, here's several helpful packages to load
import numpy as np # linear algebra
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
import matplotlib.pyplot as plt
%matplotlib inline
import seaborn as sns
import warnings
warnings.filterwarnings("ignore")
```

In [4]: df=pd.read_csv("https://raw.githubusercontent.com/Mukund94/Datasets/main/CardioGoodFitness-1.csv",sep=','

In [5]: df.head()

Out[5]: Product Age Gender Education MaritalStatus Usage Fitness Income Miles TM195 18 Male 14 Single 3 29562 112 TM195 19 Male Single 31836 75 TM195 19 Female 14 Partnered 30699 66 TM195 19 Male 12 Single 32973 85 TM195 20 Male 13 **Partnered** 35247 47

df.shape In [6]: (180, 9)

Out[6]:

Out[7]:

df.describe(include='all') In [7]:

		Product	Age	Gender	Education	MaritalStatus	Usage	Fitness	Income	Miles
	count	180	180.000000	180	180.000000	180	180.000000	180.000000	180.000000	180.000000
	unique	3	NaN	2	NaN	2	NaN	NaN	NaN	NaN
	top	TM195	NaN	Male	NaN	Partnered	NaN	NaN	NaN	NaN
	freq	80	NaN	104	NaN	107	NaN	NaN	NaN	NaN
	mean	NaN	28.788889	NaN	15.572222	NaN	3.455556	3.311111	53719.577778	103.194444
	std	NaN	6.943498	NaN	1.617055	NaN	1.084797	0.958869	16506.684226	51.863605
	min	NaN	18.000000	NaN	12.000000	NaN	2.000000	1.000000	29562.000000	21.000000
	25%	NaN	24.000000	NaN	14.000000	NaN	3.000000	3.000000	44058.750000	66.000000
	50%	NaN	26.000000	NaN	16.000000	NaN	3.000000	3.000000	50596.500000	94.000000
	75%	NaN	33.000000	NaN	16.000000	NaN	4.000000	4.000000	58668.000000	114.750000
	max	NaN	50.000000	NaN	21.000000	NaN	7.000000	5.000000	104581.000000	360.000000

sns.countplot(x='Product',data=df) plt.show()

sns.countplot(x='Product',data=df,palette="Set1") In [29]: plt.show()


```
Product
In [10]: #Number of unique products?
          df.Product.nunique()
Out[10]: 3
         #Name of unique products?
In [11]:
          df.Product.unique()
         array(['TM195', 'TM498', 'TM798'], dtype=object)
Out[11]:
         #Frequency of products?
In [14]:
          df.Product.value_counts()
          TM195
                  80
Out[14]:
          TM498
                  60
          TM798
                  40
         Name: Product, dtype: int64
In [19]: #How many products are there?
          df.Product.shape[0]
Out[19]:
          sns.countplot(x='Gender',data=df)
In [39]:
          plt.show()
             100
              80
              60
              40
              20
               0
                                 Male
                                                                  Female
                                                 Gender
In [40]: #Number of unique Gender?
          df.Gender.nunique()
Out[40]:
```

```
file:///C:/Users/DELL/Downloads/cardiogoodfitness.html
```

df.Gender.unique()

array(['Male', 'Female'], dtype=object)

In [42]: #Genders?

Out[42]:

```
In [44]: #Genders counts?
df.Gender.value_counts()

Out[44]: Male    104
Female    76
Name: Gender, dtype: int64

In [45]: df.Gender.shape[0]
```

Out[45]: **180**

In [34]: df.hist(figsize=(10,10),color='k')
plt.show()

In [49]: sns.distplot(df["Age"])
plt.show()


```
In [52]: sns.boxplot(x=df["Age"],data=df,palette="Set3")
plt.show()
```



```
In [54]: #Outlier calculation
Q3=33
Q1=24
IQR=Q3-Q1
IQR
```

Out[54]:

In [57]: #Lower Outlier Q1-1.5*IQR

Out[57]: 10.5

In [58]: #Upper Outlier
Q3+1.5*IQR

Out[58]: 46.5

In [62]: sns.countplot(x="Product",hue="Gender",data=df)
plt.show()

In [66]: # Cross Tabs of Product and Gender
pd.crosstab(df['Product'],df['Gender'])

Out[66]: Gender Female Male

Product		
TM195	40	40
TM498	29	31
TM798	7	33

In [69]: sns.countplot(x="Product",hue="MaritalStatus",data=df)
plt.show()

In [68]: # Cross Tabs of Product and Marital Status
pd.crosstab(df['Product'],df['MaritalStatus'])

Out[68]: MaritalStatus Partnered Single

48	32
36	24
23	17
	36

In [67]: df.head()

Out[67]: Product Age Gender Education MaritalStatus Usage Fitness Income Miles 112 0 TM195 14 Single 3 4 29562 18 Male TM195 19 Male 15 Single 3 31836 75 TM195 3 19 Female 14 Partnered 4 30699 66 TM195 19 Male 12 Single 32973 85 2 47 TM195 20 Male 13 Partnered 4 35247

```
In [73]: sns.boxplot(x="Product",y="Age",data=df,palette="Set3")
plt.show()
```


In [77]: sns.boxplot(x="Product",y="Income",data=df)
 plt.show()

In [81]: sns.pairplot(data=df)
 plt.show()

In [82]: correlation=df.corr()
 correlation

Out[82]:		Age	Education	Usage	Fitness	Income	Miles
	Age	1.000000	0.280496	0.015064	0.061105	0.513414	0.036618
	Education	0.280496	1.000000	0.395155	0.410581	0.625827	0.307284
	Usage	0.015064	0.395155	1.000000	0.668606	0.519537	0.759130
	Fitness	0.061105	0.410581	0.668606	1.000000	0.535005	0.785702
	Income	0.513414	0.625827	0.519537	0.535005	1.000000	0.543473
	Miles	0.036618	0.307284	0.759130	0.785702	0.543473	1.000000

In [85]: sns.heatmap(correlation,annot=True,)

Out[85]: <Axes: >

In []: