AI Assignment Report

Tabish Khalid Halim , 200020049 An and Hegde , 200020007

Department of Computer Science, IIT Dharwad

December 25, 2021

Contents

1	Approach	1
2	Variables used in Python Program	2
3	Functions created in Python Program	3
4	Pseudo Code	4
5	Graphical Analysis	5
6	Results	6
7	References	7

1 Approach

The basic approach we used for the A.I assignment is to use the concept of graphs & vertices and applied BFS{Breadth First Search}, DFS {Depth First Search} and DFID {Depth First Iterative Deepening Search}.

Along with applying the above algorithms for the PacMan , we have also set the preference order for adding the neighbor nodes which are:

$$DOWN > UP > RIGHT > LEFT$$

If the input number $\in \{0,1,2\}$, then the program executes the algorithms BFS , DFS and DFID respectively .

After visiting the neighbors in the maze graph, We can easily find out the length of the path and the number of states for the maze.

2 Variables used in Python Program

- **dfs_stop** : tells when dfs to stop.
- goaldfs: target state to achieve for DFS.
- goaldfid: target state to achieve for DFID.
- statesdfs: No. of states explored during DFS traversal.
- ullet statesdfid: No. of states explored during DFID traversal.
- **DFIDstop**: to break out of recursion.
- visited : Variable created to store the set of visited vertices .
- \bullet \mathbf{parent} : Tuple to store the parent of each node . It is used for finding path .
- graph_input : This stores the input given in as a list of lists .
- \bullet m: No. of rows in the Maze.
- ullet n : No. of columns in the Maze .
- states : Variable to store no. of states explored .
- pathlength: Variable to store length of the path.

3 Functions created in Python Program

- $goal_state(i,j,graph_input)$: This function determines whether the coordinate (i,j) is the end goal for the PacMan or not .
- move_gen(i,j,graph_input): This function's task is returning all possible moves available to the pacman, if the adjecent block has a space('') or astrik('**'), funtion returns its coordinates.
- DFSUtil(v, visited,parent,graph_input,open_list) : This is the recursive DFS Utility function .
- $DFS(graph_input,v=(0,0))$: The function to do DFS traversal. It uses recursive DFSUtil()- dfs utility function .
- **DFID**(**graph_input**, **depth,v**=(0,0)): The function to do DFID traversal. It uses recursive DFSUtil()- DFS Utility Function.
- **DFIDUtil(v, visited,parent,graph_input, depth)**: This is recursive DFID- utility function .
- dfid(graph_input,v=(0,0)): This is the Main DFID function- which calls DFID- which is dfs version for DFID. The extra thing is the depth here.
- $bfs(graph_input,s=(0,0))$: This function is used to perform BFS.
- searchmethod(bdd,graph_input): Simple function to deal with the case wise operation to perform BFS, DFS or DFID as per the requirement

4 Pseudo Code

The main logic for the code is to find the value of k while determining the type of distribution for W_i .

Logic:

Now , we have gone through each case of probable probability distribution functions for W_i ,

Next , we must first round of the value of k obtained and check whether the rounded off integer value is $\in \{2,3,4\}$.

If the value of $k \in \{2, 3, 4\}$ then , the test case is labelled successful but if not the it is labelled unsuccessful.

If multiple test cases are found successful , then the test case which has the least deviation of the value of k from the nearest integer is taken as the true test case and is considered for the final answer .

5 Graphical Analysis

I have made the P.D.F (Probability Distribution Function) of Y from the final P.D.F type obtained for ${\cal W}_i$.

Based on my dataset , I have gotten my P.D.F type for W_i and Y as half-normal distribution function .

6 Results

The following conclusions have been made after evaluation of my program :

- 1. The P.D.F of W_i is half-normal distribution function .
- 2. The value of k is 2.
- 3. The value of σ is 2

Conclusion

Thus , the distribution function is of Half-Normal type and the value of $k=2, \sigma=2$.

7 References

- http://geeksforgeeks.com
- https://wikipedia.org
- https://stackoverflow.com