Displaying analytic results

Abhijit Dasgupta

BIOF 339

Comparing groups

BIOF 339: Practical R

The ggpubr package

The **ggpubr** package, which extends **ggplot2** functionality, has several functions that allow the computation and visualization of different statistical analyses

Under the hood, it's just fancy application of R for statistical tests and then translating the results to ggplot geometries.

```
plt <- ggboxplot(penguins,</pre>
          x = 'species',
          y = 'body_mass_g',
          color = 'species',
          add='jitter',
          add.params = list(color='grey', size=0.5))
summary.stats <- penguins %>%
  select(body_mass_g, species) %>%
  group_by(species) %>%
 get_summary_stats(type='common')
plt2 <- ggsummarytable(</pre>
 summary.stats, x = 'species', y = c('n', 'median', 'i
    theme_minimal()+
    theme(panel.grid=element_blank(),
          axis.text.x = element_blank())+
    labs(x='', y='')
ggarrange(plt, plt2, ncol=1, heights=c(3,1))
```



```
ggarrange(plt, plt2, ncol=1, heights = c(4,1))
```



```
(summ_plt <- ggsummarystats(
  penguins,
  x = 'species',
  y = 'body_mass_g',
  ggfunc = ggboxplot, add='jitter',
  color='species',
  add.params=list(color='grey', size=0.5)
))</pre>
```


Scatter plots

Add tables to a graphic

Add tables to a graphic

```
library(ggsci)
dens_plt <- ggplot(penguins,</pre>
                    aes(x = bodv_mass_g))+
  geom_densitv(aes(fill=species))+
  scale_fill_jco(alpha=0.3)+
  theme_classic() +
  theme(axis.text.y = element_blank(),
        legend.position='top') +
  stat_central_tendency(
    aes(color=species),
    type='mean',
    geom='line', linetype=2
  scale_color_jco()
stable <- desc_statby(penguins,</pre>
                    grps='species')
stable <- stable[,c('species','length','mean','sd')]</pre>
stable_plt <- ggtexttable(stable, rows=NULL)</pre>
ggarrange(dens_plt, stable_plt,
```

Modeling results

Let's start with a somewhat naive multiple linear regression model

m1 <- lm(body_mass_g ~ ., data=penguins)</pre>

Modeling results

Characteristic	Beta	95% CI ¹	p-value
species			<0.001
Adelie	_	-	
Chinstrap	-283	-457, -108	
Gentoo	891	607, 1,175	
island			0.6
Biscoe	_	-	
Dream	-21	-136, 94	
Torgersen	-59	-178, 61	
Bill length (mm)	19	5.0, 33	0.008
Bill depth (mm)	61	21, 100	0.003
flipper_length_mm	19	12, 25	<0.001
sex			<0.001
female	_	_	
male	379	284, 474	

¹ CI = Confidence Interval

Characteristic	OR ¹	95% CI ¹	p- value		
Chemotherapy Treatment					
Drug A	_	_			
Drug B	1.21	0.66, 2.24	0.5		
Grade					
1	_	_			
II	0.94	0.44, 1.98	0.9		
¹ OR = Odds Ratio, CI = Confidence Interval					

Characteristic	HR ¹	95% CI ¹	p- value		
Chemotherapy Treatment					
Drug A	_	_			
Drug B	1.25	0.86, 1.81	0.2		
Grade					
	_	_			
II	1.28	0.80, 2.06	0.3		
¹ HR = Hazard Ratio, CI = Confidence Interval					

```
(gt_t1 <- trial[c("trt", "grade")] %>%
  tbl_summary(missing = "no") %>%
  add_n() %>%
  modify_header(stat_0 ~ "**n (%)**") %>%
  modify_footnote(stat_0 ~ NA_character_))
```

Characteristic	N	n (%)
Chemotherapy Treatment	200	
Drug A		98 (49%)
Drug B		102 (51%)
Grade	200	
1		68 (34%)
II		68 (34%)
III		64 (32%)

```
tbl_merge(
  list(gt_t1, gt_r1, gt_r2),
  tab_spanner = c(NA_character_, "**Tumor Response**", "**Time to Death**")
)
```

Ohamastanistia	N (0/)		Tumor Response			Time to Death		
Characteristic	N	n (%)	OR^1	95% CI ¹	p-value	HR^1	95% CI ¹	p-value
Chemotherapy Treatment	200							
Drug A		98 (49%)	_	_		_	_	
Drug B		102 (51%)	1.21	0.66, 2.24	0.5	1.25	0.86, 1.81	0.2
Grade	200							
I		68 (34%)	_	_		_	_	

```
<sup>1</sup> OR = Odds Ratio, CI = Confidence Interval, HR = Hazard Ratio
```

The finalfit package

```
explanatory <- setdiff(names(penguins), 'body_mass_g')
dependent <- 'body_mass_g'
t2 <- penguins %>%
   finalfit::finalfit(dependent, explanatory, metrics=TRUE)
knitr::kable(t2[[1]], row.names = F)
```

Dependent: body_mass_g		unit	value	Coefficient (univariable)	Coefficient (multivariable)
species	Adelie	Mean (sd)	3700.7 (458.6)	-	-
	Chinstrap	Mean (sd)	3733.1 (384.3)	32.43 (-100.37 to 165.22, p=0.631)	-282.54 (-457.22 to -107.86, p=0.002)
	Gentoo	Mean (sd)	5076.0 (504.1)	1375.35 (1264.91 to 1485.80, p<0.001)	890.96 (606.55 to 1175.36, p<0.001)
island	Biscoe	Mean (sd)	4716.0 (782.9)	-	-

Other packages

- stargazer
- sjPlot

Utility packages

- gt
- flextable
- huxtable

Plotting results

term	estimate	lcb	ucb
speciesChinstrap	-282.54	-460.12	-104.96
speciesGentoo	890.96	601.83	1180.08
islandDream	-21.18	-137.96	95.60
islandTorgersen	-58.78	-180.48	62.93
bill_length_mm	18.96	4.74	33.19
bill_depth_mm	60.80	20.79	100.80
flipper_length_mm	18.50	12.25	24.76
sexmale	378.98	282.83	475.13
year	-42.78	-84.68	-0.89

Plotting results

Plotting results

```
out <- out %>%
  mutate(across(-term, round, 2)) %>%
  mutate(ci = glue::glue('{estimate} ({lcb},{ucb})'))
plt2 <- ggplot(out, aes(x = term, y = 0))+
  geom_text(aes(label=ci), size=3, hjust=0)+
  coord_flip()+theme_void() + scale_y_continuous(limi
ggpubr::ggarrange(plt1, plt2, nrow=1, widths=c(2,1),</pre>
```


Survival analysis

```
library(survival)
library(survminer)
pbc <- pbc %>% mutate(trt = as.factor(trt), stage = a
m <- survfit(Surv(time, status==2)~trt, data=pbc)
ggsurvplot(m, pval=TRUE, risk.table=T)</pre>
```

Survival analysis

```
library(survival)
library(survminer)
pbc <- pbc %>% mutate(trt = as.factor(trt), stage = a
m <- survfit(Surv(time, status==2)~trt, data=pbc)
ggsurvplot(m, pval=TRUE, risk.table=T)</pre>
```

```
m2 <- coxph(Surv(time, status==2) ~ trt, data = pbc)
gtsummary::tbl_regression(m2, exponentiate=T)</pre>
```

Characteristic	HR ¹	95% CI ¹	p-value			
trt						
1	_	_				
2	0.94	0.66, 1.34	0.7			
¹ HR = Hazard Ratio, CI = Confidence Interval						

Survival analysis