Miscellaneous Notes on Regression Based on SJS and KNN

⊚ Tingfeng Xia

Fall 2019, modified on November 8, 2019

Preface

Notes for STA302H1F fall offering, 2019 with Prof. Shivon Sue-Chee. These notes are based on the KNN and SJS text, in an aim for better understanding of the course material.

This work is licensed under a Creative Commons "Attribution-NonCommercial-ShareAlike 4.0 International" license.

Contents

1	Weighted Least Square Regression		
	1.1	Motivation and Set-Up	2
	1.2	Deriving ML Estimators	2

1 Weighted Least Square Regression

1.1 Motivation and Set-Up

Consider the straight line (simple) linear regression model

$$Y_i = \beta_0 + \beta_1 x_i + e_i$$
 where $e_i \sim N(0, \frac{\sigma^2}{w_i})$

For the weight w_i , we should note the following

- $w_i \to \infty \implies Var(e_i) \to 0$. In this case, the estimates of the regression parameters β_0, β_1 should be such that the fitted line at x_i should be very close to y_i . (Small variance means more strict in terms of deviation from the regressin line, corresponding to a larger emphasis on the *i*-th data point.)
- If w_i is some small value, then the variance of the *i*-th data point would be quite large. In this case, we have a loose restriction of the deviation of the *i*-th data point from the regression line meaning that little emphasis is taken for this data point.
- $w_i \to 0 \implies Var(e_i) \to \infty$. In this case, we have the variance tending to infinity. Meaning that there is absolutely no restriction/emphasis on the *i*-th data point and it could be simply removed from the set.

We define the cost function, WRSS as

WRSS =
$$\sum_{i=1}^{n} w_i (y_i - \hat{y}_{W_i})^2 = \sum_{i=1}^{n} w_i (y_i - b_0 - b_1 x_i)^2$$

and the estimators $\mathbf{b} = [b_0, b_1]^T$ are derived using MLE.

Intuition behind WRSS This cost function may seem wierd at first glance, but it intuitively makes sense. Notice that when w_i is large, the *i*-th lost term $w_i (y_i - \hat{y}_{W_i})^2$ is payed more emphasis on. On the contrary, when $w_0 \to 0$, the term $\to 0$. (Indeed, when Variance of the term $\to \infty$ we just neglect it.)

1.2 Deriving ML Estimators

Derivatives

$$\frac{\partial WRSS}{\partial b_0} = -2\sum_{i=1}^{n} w_i (y_i - b_0 - b_1 x_i) = 0$$
 (1)

$$\frac{\partial WRSS}{\partial b_1} = -2 \sum_{i=1}^{n} w_i x_i (y_i - b_0 - b_1 x_i) = 0$$
 (2)

Normal Equations Obtained from rearranging the above equations,

$$\sum_{i=1}^{n} w_i y_i = b_0 \sum_{i=1}^{n} w_i + b_1 \sum_{i=1}^{n} w_i x_i$$
 (3)

$$\sum_{i=1}^{n} w_i x_i y_i = b_0 \sum_{i=1}^{n} w_i x_i + b_1 \sum_{i=1}^{n} w_i x_i^2$$
(4)

Rearranging Use (3) $\sum_{i=1}^{n} w_i x_i$ and (4) $\sum_{i=1}^{n} w_i$

$$\sum_{i=1}^{n} w_i x_i \sum_{i=1}^{n} w_i y_i = b_0 \sum_{i=1}^{n} w_i \sum_{i=1}^{n} w_i x_i + b_1 \left(\sum_{i=1}^{n} w_i x_i \right)^2$$
 (5)

$$\sum_{i=1}^{n} w_i \sum_{i=1}^{n} w_i x_i y_i = b_0 \sum_{i=1}^{n} w_i \sum_{i=1}^{n} w_i x_i + b_1 \sum_{i=1}^{n} w_i \sum_{i=1}^{n} w_i x_i^2$$
 (6)

WLS Slope Estimator

$$\hat{\beta}_{1W} = \frac{\sum_{i=1}^{n} w_i \sum_{i=1}^{n} w_i x_i y_i - \sum_{i=1}^{n} w_i x_i \sum_{i=1}^{n} w_i y_i}{\sum_{i=1}^{n} \sum_{i=1}^{n} w_i x_i^2 - \left(\sum_{i=1}^{n} w_i x_i\right)^2}$$
(7)

$$= \frac{\sum_{i=11}^{n} x_i (x_i - \bar{x}_W) (y_i - \bar{y}_W)}{\sum_{i=1}^{n} w_i (x_i - \bar{x}_W)^2}$$
(8)

WLS Intercept Estimator

$$\hat{\beta}_{0W} = \frac{\sum_{i=1}^{n} w_i y_i}{\sum_{i=1}^{n} w_i} - \hat{\beta}_{1W} \frac{\sum_{i=1}^{n} w_i x_i}{\sum_{i=1}^{n} w_i} = \bar{y}_w - \hat{\beta}_{1W} \bar{x}_W$$
(9)

¹Note that $\bar{x}_W = \sum_{i=1}^n w_i x_i / \sum_{i=1}^n w_i$ and $\bar{y}_W = \sum_{i=1}^n w_i y_i / \sum_{i=1}^n w_i$