Aprententatge Automàtic per a Xarxes (ML4Net)

Seminar 5 - Federated Learning

Francesc Wilhelmi & Boris Bellalta

School of Engineering Universitat Pompeu Fabra

Universitat Pompeu Fabra Barcelona

Federated Learning

Key Idea (Iterative Process):

- 1. Central server sends a global model $\omega(t)$ to selected clients.
- 2. Clients train $\omega(t)$ on their local data D_k , obtaining local update $\omega_k(t)$.
- 3. Clients send $\omega_k(t)$ back to central server.
- 4. Central server aggregates local updates to create a new global model $\omega(t+1)$.

Objective:
$$\min_{\omega} (F(\omega) = \sum_{k=1}^{K} \frac{|\mathcal{D}_k|}{|\mathcal{D}|} F_k(\omega))$$

- K: total number of clients.
- $|\mathcal{D}_k|$: number of data samples on client k.
- $|\mathcal{D}| = \sum_{k=1}^{K} |\mathcal{D}_k|$: total number of data samples across all clients
- $F_k(\omega)$: local loss function on client k's data \mathcal{D}_k .

Dataset (I)

How were the data generated?^a

- Real Wi-Fi measurements were taken when people were doing specific poses.
 - Walk, sit down, run, stand up, bend...
- The features are the Wi-Fi measurements (the CSI, in this case).
- The labels (poses) were taken using cameras (Alphapose).

^aZhou, Y., Xu, C., Zhao, L., Zhu, A., Hu, F., & Li, Y. (2022). CSI-former: Pay more attention to pose estimation with WiFi. Entropy, 25(1), 20.

Dataset (II)

- Train features (client_k_features.csv, inside client_datasets folder): CSI measurements in the training dataset.
 - A random number of samples with a flattened CSI matrix of $30 \times 3 \times 3$.
- Train labels (client_k_labels.csv, inside client_datasets folder): actual pose in the training dataset.
 - A random number of samples with an integer between 1 and 12 (corresponding to poses {'wave', 'push', 'crouch', 'sitdown', 'bend', etc.})
- Test features (test_features.csv): CSI measurements in the test dataset.
 - 500 samples \times 270 (a flattened CSI matrix of $30 \times 3 \times 3$)
- Test labels (test_labels.csv): actual pose in the test dataset.
 - 500 samples of an integer between 1 and 12 (corresponding to poses {'wave', 'push', 'crouch', 'sitdown', 'bend', etc.})

In this seminar, we will use a simplified version of a dataset that can be found at: https://github.com/NjtechCVLab/Wi-PoseDataset?tab=readme-ov-file

Dataset (III)

- Data is distributed among N = 10 clients (e.g., client_1_features.csv, client_1_labels.csv)
- Each client has data from [2, 8] classes.
- Between 10 and 100 samples are selected per class.
- The test dataset is apart and contains 500 samples (randomly selected among all the classes).

client datasets client 1 features.csv client 1 labels.csv client 2 features.csv client 2 labels.csv client 3 features.csv client 3 labels.csv client 4 features.csv client 4 labels.csv client 5 features.csv client 5 labels.csv client 6 features.csv client 6 labels.csv client 7 features.csv client 7 labels.csv client 8 features.csv a client 8 labels.csv client 9 features.csv client 9 labels.csv client 10 features.csv a client 10 labels.csv