

By 面条

Winter 2024 STA 347

February 11, 2024

Contents

1	Preliminary	2
	1.1 Probability Models	
	1.2 Conditional Probability	. :
	1.3 Law of Total Probability	
	1.4 Bayes' Formula	
	1.5 Limiting Events	
2	Random Variables (RV)	7
	2.1 Univariate rv	
	Random Variables (RV) 2.1 Univariate rv	
3	Expectation	10
	3.1 Expectation and Variance	. 10
	3.2 Joint Expectation and Covariance	
4	Review of Basic Distributions	13
5	Exercises (Past Exam)	16

1 Preliminary

1.1 Probability Models

Probability measure (三条公理)

- i) $\forall A \subset \Omega, \ 0 \le P(A) \le 1;$
- ii) $P(\emptyset) = 0, P(\Omega) = 1;$
- iii) $\forall A_1, A_2, \ldots \subset \Omega$ such that $A_i \cap A_j = \emptyset \ \forall i \neq j$

$$P\left(\bigcup_{i=1}^{\infty} A_i\right) = \sum_{i=1}^{\infty} P(A_i)$$

注意: 这里一定得保证是 disjoint union

1.2 Conditional Probability

For any two events A and B,

$$P(A|B) = \frac{P(A \cap B)}{P(B)} \Rightarrow P(A \cap B) = P(A|B) P(B)$$

注意如果我们是 condition on event B 发生,那么分母上对应的也是 event B 的概率。

Definition 1.1 Two events A and B are said to be *independent* if

$$P(A \cap B) = P(A)P(B)$$

1.3 Law of Total Probability

Law of Total Probability

Suppose B_1, B_2, \ldots are disjoint events such that $\bigcup_{\forall i} B_i = \Omega(\text{sample space})$, we can consider B_i as a **partition** of our sample space, then

$$P(A) = \sum_{\forall i} P(A \cap B_i) = \sum_{\forall i} P(A|B_i) P(B_i)$$

通常来说,当我们没法直接求出事件 A 的概率,但是我们知道事件 A given 某一个事件 B_i 的概率,我们会考虑用 Law of total probability 进行计算。

1.4 Bayes' Formula

Bayes' Formula 应该算是求解 conditional probability 最常用的一个方法了。回到我们前面那张图,如果我现在知道了事件 A 发生,我想知道它发生在哪一个 B_i 的区域里? 也就是说 $P(B_i|A)$?

Bayes's Formula

Suppose $B_1, B_2, ...$ forms a **partition** of sample space Ω , and A is any event with $P(A) \neq 0$, we have

$$P(B_i|A) = \frac{P(B_i \cap A)}{P(A)} = \frac{P(A|B_i) P(B_i)}{\sum_{\forall i} P(A|B_i) P(B_i)}$$

1.5 Limiting Events

当我们把一个实验重复进行多次,我们一般就会得到 a sequence of events。

Example 1.1 Suppose a fair coin is flipped consecutively, we are interested in the following event

$$A = \{$$
"Head" never seen $\},$

which is just the intersection, $A = \bigcap_{n>1} A_n$ of the events

 $A_n = \{\text{"Heads" not seen in the first n tosses}\}.$

上面这个例子里面,我们可以把 A 想象成 A_n 的 limit。不过想要严格定义 limit of events 比较复杂,所以我们先考虑 **monotone** sequence of events.

- Consider a sequence of events $A_1, A_2, \ldots \subset \Omega$, if $A_n \subset A_{n+1}$ for all $n \geq 1$, this sequence is **increasing**, denoted as $\{A_n\} \nearrow A = \bigcup_{n \geq 1} A_n$.
- Consider a sequence of events $A_1, A_2, \ldots \subset \Omega$, if $A_n \supseteq A_{n+1}$ for all $n \ge 1$, this sequence is **decreasing**, denoted as $\{A_n\} \searrow A = \bigcap_{n \ge 1} A_n$.

刚才上面举的那个例子可以发现, $\{A_n\}$ is decreasing.

Increasing sequence $A_n \nearrow A$

Decreasing sequence $A_n \searrow A$

Continuity in Probability

If
$$\{A_n\} \nearrow A$$
 or $\{A_n\} \searrow A$, then

$$\lim_{n \to \infty} P(A_n) = P(A).$$

2 Random Variables (RV)

2.1 Univariate rv

RV $\left\{ \begin{array}{l} \text{Discrete: Possible value in the form } \{x_1, x_2, \ldots\} \\ \text{Continuous: Possible value contains an interval, e.g. } [2,5]. \end{array} \right.$

Cumulative distribution function (cdf)

$$F(x) = P(X \le x)$$

i) For all $x \leq y$, $F(x) \leq F(y)$ (increasing function)

ii)
$$\lim_{x \to -\infty} F(x) = 0, \lim_{x \to \infty} F(x) = 1$$

Probability mass function (pmf) \leftarrow Discrete case

$$p(x) = P(X = x),$$
 where $\sum_{x} p(x) = 1$

$$F(x) = \sum_{k \le x} p(k)$$

Probability density function $(pdf) \leftarrow Continuous case$

$$f(x) = \frac{dF(x)}{dx}$$
, where $\int_{-\infty}^{\infty} f(x)dx = 1$

$$F(x) = \int_{-\infty}^{x} f(t)dt$$

2.2 Joint r.v.s

We only consider two r.v.s X and Y.

 $\textbf{Joint pmf:} \leftarrow \textbf{Discrete case}$

$$p(x,y) = P(X = x, Y = y),$$

$$\sum_{\forall x} \sum_{\forall y} P(X = x, Y = y) = 1$$

 $\textbf{Joint pdf:} \leftarrow \textbf{Continuous case}$

$$f(x,y) = \frac{\partial^2 F(x,y)}{\partial x \partial y}$$

$$\int_{\forall x} \int_{\forall y} f(x, y) \, dy dx = 1.$$

Joint cdf:

$$F(x,y) = P(X \le x, Y \le y)$$

$$\lim_{y \to \infty} F(x, y) = F_X(x)$$

$$\lim_{x \to \infty} F(x, y) = F_Y(y)$$

(1) X and Y are both discrete: joint discrete r.v.

Joint pmf \rightarrow Marginal pmf:

$$\sum_{\forall y} p(x, y) = \sum_{\forall y} P(X = x, Y = y) = P(X = x) = p_X(x)$$

$$\sum_{\forall x} p(x, y) = \sum_{\forall x} P(X = x, Y = y) = P(Y = y) = p_Y(y)$$

注意: 要求 X 的 marginal pmf, 就对所有的 y 求 summation, 消除 Y 的 information

Independence:

X and Y are **independent**, i.e., $X \perp\!\!\!\perp Y$, if

$$p(x,y) = p_X(x)p_Y(y), \quad \forall x, y$$

(2) X and Y are both continuous: joint continuous r.v.

Joint $pdf \rightarrow Marginal pdf$:

$$f_X(x) = \int_{\forall y} f(x, y) dy$$
$$f_Y(y) = \int_{\forall x} f(x, y) dx$$

$$f_Y(y) = \int_{\forall x} f(x, y) dx$$

注意: 要求 X 的 marginal pdf, 就对所有的 y 求 integral, 消除 Y 的信息

Independence:

X and Y are **independent**, i.e., $X \perp \!\!\!\perp Y$, if

$$f(x,y) = f_X(x) f_Y(y), \quad \forall x, y$$

3 Expectation

3.1 Expectation and Variance

(1) Discrete r.v. X: all possible values: $\{x_1, x_2, \ldots\}$

$$E(X) = \sum_{\forall x_i} x_i P(X = x_i) = \sum_{\forall x_i} x_i p(x_i),$$

$$E(g(X)) = \sum_{\forall x_i} g(x_i) P(X = x_i) = \sum_{\forall x_i} g(x_i) p(x_i).$$

When $g(X) = X^2$,

$$E(X^{2}) = \sum_{\forall x_{i}} x_{i}^{2} P(X = x_{i}) = \sum_{\forall x_{i}} x_{i}^{2} p(x_{i}),$$

therefore $\operatorname{Var}\left(X\right)=E\left(X^{2}\right)-\left(E\left(X\right)\right)^{2}.$

(2) Continuous r.v. X: with pdf f(x)

Idea:

$$Discrete \to Continuous \left\{ \begin{array}{l} pmf \to pdf \\ \sum_{\forall x} \Box \to \int_{\forall x} \Box dx. \end{array} \right.$$

$$E(X) = \int_{\forall x} x f(x) dx,$$

$$E(g(X)) = \int_{\forall x} g(x) f(x) dx$$

Similarly, if $g(X) = X^2$, we can obtain

$$E\left(X^{2}\right) = \int_{\forall x} x^{2} f\left(x\right) dx.$$

Therefore, variance:

$$Var(X) = E(X^2) - E(X)^2$$

- (3) Properties.
 - $E\left(\sum_{i=1}^{n} a_i X_i\right) = \sum_{i=1}^{n} a_i E\left(X_i\right)$
 - $\operatorname{Var}\left(\sum_{i=1}^{n} a_i X_i\right) = \sum_{i=1}^{n} a_i^2 \operatorname{Var}\left(X_i\right) + \begin{cases} \sum_{i \neq j} a_i a_j \operatorname{Cov}\left(X_i, X_j\right) \\ 2 \sum_{i < j} a_i a_j \operatorname{Cov}\left(X_i, X_j\right) \end{cases}$.

3.2 Joint Expectation and Covariance

(1) Discrete r.v. X,Y:

$$E\left(h\left(X,Y\right)\right) = \sum_{\forall x} \sum_{\forall y} h\left(x,y\right) P\left(X=x,Y=y\right) = \sum_{\forall x} \sum_{\forall y} h\left(x,y\right) p(x,y).$$

(2) Continuous r.v. X,Y:

$$E\left(h\left(X,Y\right)\right) = \int_{\forall x} \int_{\forall y} h\left(x,y\right) f\left(x,y\right) dy dx.$$

- (3) Properties:
 - If X and Y are independent,

$$E\left(g_{1}\left(X\right)g_{2}\left(Y\right)\right)=E\left(g_{1}\left(X\right)\right)E\left(g_{2}\left(Y\right)\right),$$

Therefore we can see, if X and Y are independent,

$$Cov(X, Y) = E(XY) - E(X)E(Y) = 0.$$

•
$$\operatorname{Cov}\left(\sum_{i=1}^{n} a_i X_i, \sum_{j=1}^{m} b_j Y_j\right) = \sum_{i=1}^{n} \sum_{j=1}^{m} a_i b_j \operatorname{Cov}(X_i, Y_j)$$

4 Review of Basic Distributions

• Discrete Uniform: $W_n \sim unif\{1, 2, ..., n\}$ or in finite scheme $W_n \sim \begin{pmatrix} 1 & ... & n \\ 1/n & ... & 1/n \end{pmatrix}$

$$-E(W_n) = \frac{n+1}{2}$$

$$- var(W_n) = \frac{n^2 - 1}{12}$$

• Continuous Uniform: $U \sim unif[0,1]$

$$-1-U\stackrel{d}{=}U$$

- CDF:
$$P(U \le u) = u$$

$$- E(U^k) = \frac{1}{k+1}$$

$$-E(U) = \frac{1}{2}$$

$$- var(U) = \frac{1}{12}$$

• Bernoulli: $Z \sim bern(p)$ or in finite scheme $Z \sim \begin{pmatrix} 0 & 1 \\ q & p \end{pmatrix}$, where q = 1 - p

$$-E(Z)=p$$

$$-var(Z) = p - p^2 = pq$$

The **gamma function** is defined as follows:

$$\Gamma(p) = \int_0^\infty z^{p-1} e^{-z} dz, \quad \forall z \in \mathbb{R}$$

Here are some important results about $\Gamma(p)$

- For any p > 0,

$$\frac{\Gamma(p+1)}{\Gamma(p)} = p$$

- $-\Gamma(1/2) = \sqrt{\pi}$
- If p is an integer, then

$$\Gamma(p) = (p-1)!$$

• standard gamma: $Z_p \sim G(p)$

- PDF:
$$g_p(z) = \frac{z^{p-1}e^{-z}}{\Gamma(p)}, \quad z > 0$$

- Scaled gamma: $X \sim G(p, \theta)$ iff $X \stackrel{d}{=} \theta Z_p$
 - * $X \sim G(p_1, \theta), Y \sim G(p_2, \theta)$ and X is independent of Y, then

$$X + Y \sim G(p_1 + p_2, \theta)$$

- Standard exponential: If $p=1, Z_1 \sim exp(1) \equiv G(1)$
- scaled exponential: $X \sim exp(\theta) \equiv G(1, \theta)$ iff $X \stackrel{d}{=} \theta Z_1$
 - * CDF: If $X \sim exp(\theta)$, then

$$P(X \le x) = 1 - e^{-x/\theta}$$

$$- E(Z_p^s) = \frac{\Gamma(p+s)}{\Gamma(p)} \Rightarrow E(Z_p) = var(Z_p) = p$$

$$- E(X^s) = \frac{\Gamma(p+s)}{\Gamma(p)} \theta^s$$

• standard normal: $Z \sim N(0,1)$

$$- Z \stackrel{d}{=} Z$$

- PDF: $\phi(z) = \frac{1}{\sqrt{2\pi}} e^{-z^2/2}$

$$-E(Z^n) = \begin{cases} 0, & n = 2k+1 \ (odd) \\ (2k-1)(2k-3)\cdots 1, & n = 2k \ (even) \end{cases}$$

- $-Z^2/2 \sim G(1/2)$
- location-scale normal: $X \sim N(\mu, \sigma^2)$ iff $X \stackrel{d}{=} \mu + \sigma Z$

* If
$$X_i \stackrel{ind}{\sim} N(\mu_i, \sigma_i^2)$$
, then $\sum_{i=1}^n a_i X_i \sim N\left(\sum_{i=1}^n a_i \mu_i, \sum_{i=1}^n a_i^2 \sigma_i^2\right)$

• chi-squared: $Y \sim chisq(m) \equiv \chi^2_{(m)}$

- $-Y \stackrel{d}{=} 2Z$, where $Z \sim G(m/2)$
- If $Z_i \stackrel{iid}{\sim} N(0,1)$, then $\sum_{i=1}^n Z_i^2 \sim \chi^2_{(n)}$

• fisher's F: $W \sim F(m_1, m_2)$

$$-W \stackrel{d}{=} \frac{Y_1/m_1}{Y_2/m_2}$$
, where $Y_i \stackrel{ind}{\sim} \chi^2_{(m_i)}$

• student's t: $T \sim t_{(m)}$

$$-T \stackrel{d}{=} \frac{\sqrt{m}Z}{\sqrt{Y}}$$
, where $Z \sim N(0,1), Y \sim \chi^2_{(m)}$ and Y, Z are independent

5 Exercises (Past Exam)

Problem 1 (Q1A) For the random variable X and Y, we are given that

$$EX=4=var(X), Y\stackrel{d}{=}X^2, \rho(X,Y)=1/2 \text{ and } var(X-Y)=3.$$

- a) $E(X^2 + Y^2)$
- b) $E(X + Y)^2$

Problem 2 (Q1B) Suppose that U_1, U_2 IID $U \sim \text{unif}[0, 1]$ and in each case below, determine the value of k.

- a) $P(U_1 + U_2 \le 5/4) = k/32$
- b) $P(U_1 + 2U_2 \le 5/4) = k/32$
- c) $P(U_1^2 + U_2^2 \le 5/4) = 1/2 + k\pi$.

Problem 3 (Q2A) Suppose $W \sim G(2,4)$ and evaluate the following

- a) EW and $\sigma(W)$
- b) P(W > 8)
- c) P(W < 16|W > 8)

Problem 4 (Q2B) Suppose $X_i \stackrel{indep}{\sim} G(i,i), i = 1, ..., 6$, and let $V = X_6 - X_4 + X_2, W = X_5 - X_3 + X_1$.

- a) Determine the mean and standard deviation for each of V and W.
- b) What is the correlation coefficient $\rho(V-W,\bar{X})$?

Problem 5 (Q3A) Gamma/Gauss-Maxwell: Let $W \sim G(1/2)$ and $Z \sim N(0,1)$. Starting only from the definitions based on probability density function (pdf's)

$$defn: Z \sim G(p), p > 0 \text{ iff } \mathrm{pdf}_Z = g(z) = \frac{z^{p-1}e^{-z}}{\Gamma(p)}, z > 0$$

$$defn: Z \sim N(0,1) \text{ iff } \mathrm{pdf}_Z = \phi(z) = \frac{1}{\sqrt{2\pi}} e^{-z^2/2}, -\infty < z < \infty$$

- a) Prove $Z \sim N(0,1) \Leftrightarrow -Z \stackrel{d}{=} Z \ \& \ Z^2/2 \stackrel{d}{=} W$
- b) Using a), or otherwise, for $Z \sim N(0,1)$, obtain $E|Z|^n, n \in \mathbb{N}$.