CLAIMS

1. Compounds of formula (I)

$$\begin{array}{c|c}
CF_3 & O & W \\
N & P^2 & OR^1 \\
O \\
O \\
M
\end{array}$$
(I)

in which

m represents 0 or 1,

W represents O or S,

R² represents hydrogen, alkyl, alkenyl, aralkyl, cyanomethyl, alkoxycarbonylalkyl, aralkyloxycarbonyl, acyl, alkoxyalkyl or phenyl, and

R¹ represents

$$\begin{array}{c}
\begin{pmatrix}
R^3 \\
C \\
R^4
\end{pmatrix}_{p} \begin{pmatrix}
CH \\
R^5
\end{pmatrix}_{q} Q$$

10

20

wherein

- R³ represents hydrogen or alkyl,
- R⁴ represents hydrogen, alkyl, haloalkyl, phenyl or alkoxycarbonyl,
- R⁵ represents hydrogen or alkyl,
- p represents 0 or 1,
 - q represents 0 or 1, and
 - Q represents aryl that may be optionally substituted; 5- or 6-membered heterocyclic group that contains at least one hetero atom selected from the group consisting of N, O and S and may be optionally substituted; phenyl-substituted cycloalkyl; condensed bicyclic hydrocarbon group; trimethylsilyl; alkenyl or alkynyl.
 - 2. Compounds of formula (I) as defined in Claim 1 wherein

- W represents O or S,
- R³ represents hydrogen or C₁₋₄alkyl,
- R⁴ represents hydrogen, C₁₋₄alkyl, halo-C₁₋₄alkyl, phenyl or C₂₋₄alkoxycarbonyl,
- R⁵ represents hydrogen or C₁₋₄alkyl,
- 5 p represents 0 or 1,

· }; 10

30

- q represents 0 or 1,
- queresents aryl which is optionally substituted with one or more groups selected from the group consisting of C₁₋₄alkoxy, C₁₋₄alkylthio, halogen, cyano, C₁₋₄alkyl, C₂₋₄ alkenyl, nitro, halo-C₁₋₄alkyl; phenoxy; phenyl that may be optionally substituted; 5~6-membered heterocyclic group containing N, O or S, 5- or 6-membered heterocyclic group that contains at least one hetero atom selected from the group consisting of N, O and S and may be optionally substituted with halo-C₁₋₂alkyl, C₁₋₄alkoxy-carbonyl or oxo; 4-phenylcyclohexyl; condensed bicyclic C₉₋₁₀ hydrocarbon group; trimethylsilyl; C₂₋₆ alkenyl; C₂₋₆ alkynyl,
- represents hydrogen, C₁₋₆alkyl, C₂₋₆alkenyl, benzyl, cyanomethyl, C₁₋₄alkoxy-carbonyl-C₁₋₁ 15 4alkyl, benzyloxycarbonyl, C₁₋₄alkylcarbonyl, C₁₋₄alkoxy-C₁₋₂alkyl or phenyl.,
 - m represents 0 or 1.
 - 3. Compounds as defined in Claims 1 or 2 wherein
 - W represents O or S,
- 20 R³ represents hydrogen or methyl,
 - R⁴ represents hydrogen, methyl, trichloromethyl, trifluoromethyl, phenyl or methoxycarbonyl,
 - R⁵ represents hydrogen or methyl,
 - p represents 0 or 1,
 - q represents 0 or 1,
- 25 Q represents phenyl which is optionally substituted with one or more groups selected from the group consisting of methoxy, methylthio, fluoro, chloro, bromo, iodo, cyano, methyl, vinyl, nitro, trifluoromethyl, phenoxy, phenyl, chloro-substituted phenyl, tolyl or
 - thienyl, furyl, thienyl, trifluoromethylpyrazolyl, pyridyl, trifluoromethylpyridyl, tetrahydropyranyl, tetrahydrothiopyranyl, piperidinyl, 1-(tert-butoxycarbonyl)-4-piperidinyl, pyrrolidinyltetrahydrofuryl, 1,1-dioxo-tetrahydrothiopyranyl, 4-phenylcyclohexyl, indanyl, tetrahydronaphthyl, trimethylsilyl, C₂₋₄ alkenyl C₂₋₄ alkynyl,

10

20

- R² represents hydrogen, C₁₋₄alkyl, C₂₋₄alkenyl, benzyl, cyanomethyl, C₁₋₂alkoxy-carbonyl-methyl, benzyloxycarbonyl, acetyl, C₁₋₂alkoxymethyl or phenyl,
- m particularly preferably represents 0.
- Process for the preparation of the compounds of the formula (I) set forth in claim 1, characterized in that
 - a) in case R² represents hydrogen and m represents 0:

Compounds of the formula

wherein W has the same definition as aforementioned, are reacted with compounds of the formula

$$R^1 - OH$$
 (III)

wherein R¹ has the same definition as aforementioned, in the presence of one or more inert-solvents,

or, b) in case W represents oxygen 0 and R^2 represents hydrogen and m = 0 (zero)

4-trifluoromethylnicotinamide is reacted with compounds of the formula

wherein R¹ has the same definition as aforementioned, in the presence of inert solvents, and if appropriate, in the presence of a base,

or, c) in case W represents oxygen 0 and \mathbb{R}^2 represents hydrogen and $\mathbf{m} = 0$ (zero)

4-trifluoromethylnicotinoyl chloride is reacted with compounds of the formula

$$H_2N - C - OR^1$$
 (V)

wherein R1 has the same definition as aforementioned, in the presence of inert solvents, and if appropriate, in the presence of a base,

or, d) in case R² represents defined above except hydrogen and m represents 0 (zero)

Compounds of the formula

wherein W and R¹ have the same definition as aforementioned, are reacted with compounds of the formula

 R^{2} - Hal (VI)

wherein R^{2'} represents a group defined to the aforementioned R2 other than hydrogen and Hal represents halogen, in the presence of inert solvents, and if appropriate, in the presence of a base,

or, e) in case m represents 1

Compounds of the formula

10

$$CF_3$$
 O W OR^1 (le)

wherein W, R¹ and R² have the same definition as aforementioned, are oxidized in the presence of inert solvents.

- 15 5. Insecticidal compositions characterized in that they contain at least one compound of the formula (1) according to any of claims 1, 2 or 3.
- A method of controlling pests characterized in that compounds of
 formula (I) according to any of claims 1. 2 or 3 are allowed to act on pests and / or their
 habitat.
 - 7. Use of compounds of formula (I) according to any of claims 1.2 or for controlling pests.
- 8. A process for the preparation of pesticidal compositions characterized in that compounds of the formula (I) are mixed with extenders and / or surface active agents.