deep learning							
학번	2018023390	이름	이서연	제출일	2021.05.01		

1. Accuracy & execution time

LR = 1e-3	Results in Task 1	Results in Task 2	Results in Task 3
Accuracy(with train set)	97.51 %	99.25 %	98.33 %
Accuracy(with test set)	98.00 %	99.00 %	98.00 %
Train time [sec]	7.72	16.75	20.09
Inference(test) time [sec]	0.00026	0.00043	0.00047

2. Discussion

- 이번 과제를 통해서 3 가지 task에 대해 사실 극명하게 차이를 보였던 부분은 Training time 이었다. 당연하게도, 연산량이 많은 Task2, Task3 는 더 오래 걸렸다. 덧붙여 sigmoid overflow 문제가 계속 발생해서, sigmoid 함수에서 array 의 데이터타입을 np.float128 로 변경했는데, 이전 과제(practice 1)보다 전체적으로 더 오랜시간이 걸린 것 같다.
- 사실 기대를 많이 했었던 accuracy 와 관련한 부분은 문제가 어렵지 않아서인지 극명하게 차이가 나지는 않았다. 덧붙이자면 Task1, logistic regression 의 경우, 사실 learning rate 를 1e-2 로 주었을 때는 성능이 Training 99%, testing 100%로 상당히 높게 나왔는데, 성능평가를 위해 하이퍼파라미터를 동일하게 맞추어야 할 것 같아 전부 1e-3 으로 맞췄더니, Logistic regression 에서의 성능이 떨어짐을 확인할 수 있었다.
- 같은 데이터로 learning rate 를 1e-2 으로 해봤을 때는 다음과 같다. Task 3 에서 정확도가 좀 떨어지고, Task 1 에서 정확도가 대폭 상승했다.

LR = 1e-2	Results in Task 1	Results in Task 2	Results in Task 3
Accuracy(with train set)	99.62 %	99.41 %	97.59 %
Accuracy(with test set)	100.0 %	99.00 %	97.40 %
Train time [sec]	7.99	16.02	26.278
Inference(test) time [sec]	0.00026	0.00038	0.00051

- 층 수는 똑같으나 unit 이 더 많았던 Task 2 와 Task 3 의 경우, 오히려 Task 2 에서 더 좋은 성능을 보임을 확인했다. Task 3 에서 더 좋은 성능을 보일 것으로 기대했으나, 아무래도 문제가 어렵지 않아서인지 오히려 hidden unit 이 없을 때 더 높은 성능을 보였다. 오히려 복잡하고 어렵지 않은 문제의 해결에 있어서는, Logistic regression 같이 더 단순한 구조가 유리할 수 있겠다는 생각이 들었다.
- 여담이지만, 훈련을 조금 더 시켜보니 (K = 10000) 그런다고 accuracy 가 오르지는 않았다.