

Author Index of Volume 157

Andrä, H. Integration of singular integrals for the Galerkin-type boundary element method in 3D elasticity	239–249
Borouchaki, H. see Frey, P.J.	115–131
Bratsos, A.G. The solution of the Boussinesq equation using the method of lines	33– 44
Briseghella, L., Majorana, C. and Pavan, P. Exact evaluation of dissipation for elastic-damage model dynamics	11– 18
Cao, W. see Guo, B.	425–440
Carranza, F.L., Fang, B. and Haber, R.B. An adaptive space–time finite element model for oxidation-driven fracture	399–423
Chippada, S., Dawson, C.N., Martínez, M.L. and Wheeler, M.F. A projection method for constructing a mass conservative velocity field	1– 10
Costabel, M., Dauge, M. and Suri, M. Numerical approximation of a singularly perturbed contact problem	349–363
Dauge, M. see Costabel, M.	349–363
Dauge, M. and Gruais, I. Edge layers in thin elastic plates	335–347
Dawson, C.N. see Chippada, S.	1– 10
Erichsen, S. and Sauter, S.A. Efficient automatic quadrature in 3-d Galerkin BEM	215–224
Fang, B. see Carranza, F.L.	399–423
Farhat, C., Lesoinne, M. and LeTallec, P. Load and motion transfer algorithms for fluid/structure interaction problems with non-matching discrete interfaces: Momentum and energy conservation, optimal discretization and application to aeroelasticity	95–114
Frey, P.J., Borouchaki, H. and George, P.-L. 3D Delaunay mesh generation coupled with an advancing-front approach	115–131
Gáspár, C. A multipole expansion technique in solving boundary integral equations	289–297
George, P.-L. see Frey, P.J.	115–131
Gruais, I. see Dauge, M.	335–347
Guo, B. and Cao, W. Domain decomposition method for the h-p version finite element method	425–440
Haber, R.B. see Carranza, F.L.	399–423
Haftka, R.T. see Lombardi, M.	19– 31
Křížek, M. and Liu, L. Finite element approximation of a nonlinear heat conduction problem in anisotropic media	387–397

Kuhn, M. The application of coupled BE/FE formulations in technical magnetic field computations	193–204
Ladevèze, P. and Moës, N. A new a posteriori error estimation for nonlinear time-dependent finite element analysis	45– 68
Lage, C. The application of object-oriented methods to boundary elements	205–213
Lesoinne, M. see Farhat, C.	95–114
LeTallec, P. see Farhat, C.	95–114
Liu, L. see Křížek, M.	387–397
Lombardi, M. and Haftka, R.T. Anti-optimization technique for structural design under load uncertainties	19– 31
Majorana, C. see Briseghella, L.	11– 18
Martinez, M.L. see Chippada, S.	1– 10
Maurits, N.M., van der Ven, H. and Veldman, A.E.P. Explicit multi-time stepping methods for convection-dominated flow problems	133–150
Mittal, S. Finite element computation of unsteady viscous compressible flows	151–175
Moës, N. see Ladevèze, P.	45– 68
Moulinec, H. and Suquet, P. A numerical method for computing the overall response of nonlinear composites with complex microstructure	69– 94
Pavan, P. see Briseghella, L.	11– 18
Rathsfeld, A. A wavelet algorithm for the boundary element solution of a geodetic boundary value problem	267–287
Sauter, S.A. see Erichsen, S.	215–224
Schnack, E., Szikrai, Sz. and Türke, K. Local effects in engineering with macro-elements	299–309
Schulz, H., Schwab, C. and Wendland, W.L. The computation of potentials near and on the boundary by an extraction technique for boundary element methods	225–238
Schwab, C. see Schulz, H.	225–238
Schwab, C., Suri, M. and Xenophontos, C. The hp finite element method for problems in mechanics with boundary layer	311–333
Sladek, J. see Sladek, V.	251–266
Sladek, V. and Sladek, J. Singular integrals and boundary elements	251–266
Steinbach, O. Fast solution techniques for the symmetric boundary element method in linear elasticity	185–191
Suquet, P. see Moulinec, H.	69– 94
Suri, M. see Costabel, M.	349–363
Suri, M. see Schwab, C.	311–333
Szikrai, Sz. see Schnack, E.	299–309
Türke, K. see Schnack, E.	299–309
van der Ven, H. see Maurits, N.M.	133–150
Veldman, A.E.P. see Maurits, N.M.	133–150
Wendland, W.L. see Schulz, H.	225–238
Wheeler, M.F. see Chippada, S.	1– 10
Xenophontos, C. see Schwab, C.	311–333
Yosibash, Z. Thermal generalized stress intensity factors in 2-D domains	365–385

Subject Index of Volume 157

Boundary element methods

- Fast solution techniques for the symmetric boundary element method in linear elasticity, O. Steinbach 185–191
- The application of coupled BE/FE formulations in technical magnetic field computations, M. Kuhn 193–204
- The application of object-oriented methods to boundary elements, C. Lage 205–213
- Efficient automatic quadrature in 3-d Galerkin BEM, S. Erichsen and S.A. Sauter 215–224
- The computation of potentials near and on the boundary by an extraction technique for boundary element methods, H. Schulz, C. Schwab and W.L. Wendland 225–238
- Integration of singular integrals for the Galerkin-type boundary element method in 3D elasticity, H. Andrä 239–249
- Singular integrals and boundary elements, V. Sladek and J. Sladek 251–266
- A wavelet algorithm for the boundary element solution of a geodetic boundary value problem, A. Rathsfeld 267–287
- A multipole expansion technique in solving boundary integral equations, C. Gáspár 289–297
- Local effects in engineering with macro-elements, E. Schnack, S. Szikrai and K. Türke 299–309

Boundary layers

- The *hp* finite element method for problems in mechanics with boundary layer, C. Schwab, M. Suri and C. Xenophontos 311–333
- Edge layers in thin elastic plates, M. Dauge and I. Gruais 335–347

Collocation method

- A wavelet algorithm for the boundary element solution of a geodetic boundary value problem, A. Rathsfeld 267–287

Composite materials

- A numerical method for computing the overall response of nonlinear composites with complex microstructure, H. Moulinec and P. Suquet 69–94

Coupled problems

- Load and motion transfer algorithms for fluid/structure interaction problems with non-matching discrete interfaces: Momentum and energy conservation, optimal discretization and application to aeroelasticity, C. Farhat, M. Lesoinne and P. LeTallec 95–114

Damage and fracture mechanics

- Thermal generalized stress intensity factors in 2-D domains, Z. Yosibash 365–385
- An adaptive space-time finite element model for oxidation-driven fracture, F.L. Carranza, B. Fang, R.B. Haber 399–423

Design of programs

- The application of object-oriented methods to boundary elements, C. Lage 205–213

Dynamics

- Load and motion transfer algorithms for fluid/structure interaction problems with non-matching discrete interfaces: Momentum and energy conservation, optimal discretization and application to aeroelasticity, C. Farhat, M. Lesoinne and P. LeTallec 95–114
 Explicit multi-time stepping methods for convection-dominated flow problems, N.M. Maurits, H. van der Ven and A.E.P. Veldman 133–150

Elasticity

- Fast solution techniques for the symmetric boundary element method in linear elasticity, O. Steinbach 185–191
 Integration of singular integrals for the Galerkin-type boundary element method in 3D elasticity, H. Andrä 239–249
 Local effects in engineering with macro-elements, E. Schnack, S. Szikrai and K. Türke 299–309
 Thermal generalized stress intensity factors in 2-D domains, Z. Yosibash 365–385

Electromagnetic fields

- The application of coupled BE/FE formulations in technical magnetic field computations, M. Kuhn 193–204

Finite difference methods

- The solution of the Boussinesq equation using the method of lines, A.G. Bratsos 33–44
 Explicit multi-time stepping methods for convection-dominated flow problems, N.M. Maurits, H. van der Ven and A.E.P. Veldman 133–150

Finite element and matrix methods

- A projection method for constructing a mass conservative velocity field, S. Chippada, C.N. Dawson, M.L. Martínez and M.F. Wheeler 1–10
 Exact evaluation of dissipation for elastic-damage model dynamics, L. Briseghella, C. Majorana and P. Pavan 11–18
 A new a posteriori error estimation for nonlinear time-dependent finite element analysis, P. Ladevèze and N. Moës 45–68
 A numerical method for computing the overall response of nonlinear composites with complex microstructure, H. Moulinec and P. Suquet 69–94
 Load and motion transfer algorithms for fluid/structure interaction problems with non-matching discrete interfaces: Momentum and energy conservation, optimal discretization and application to aeroelasticity, C. Farhat, M. Lesoinne and P. LeTallec 95–114
 3D Delaunay mesh generation coupled with an advancing-front approach, P.J. Frey, H. Borouchaki and P.-L. George 115–131
 Finite element computation of unsteady viscous compressible flows, S. Mittal 151–175
 The application of coupled BE/FE formulations in technical magnetic field computations, M. Kuhn 193–204
 The *hp* finite element method for problems in mechanics with boundary layer, C. Schwab, M. Suri and C. Xenophontos 311–333
 Finite element approximation of a nonlinear heat conduction problem in anisotropic media, M. Křížek and L. Liu 387–397
 Domain decomposition method for the *h-p* version finite element method, B. Guo and W. Cao 425–440

Fluid mechanics

- Load and motion transfer algorithms for fluid/structure interaction problems with non-matching discrete interfaces: Momentum and energy conservation, optimal discretization and application to aeroelasticity, C. Farhat, M. Lesoinne and P. LeTallec 95–114

Explicit multi-time stepping methods for convection-dominated flow problems, N.M. Maurits, H. van der Ven and A.E.P. Veldman	133-150
Finite element computation of unsteady viscous compressible flows, S. Mittal	151-175
 <i>Fracture mechanics</i>	
Thermal generalized stress intensity factors in 2-D domains, Z. Yosibash	365-385
An adaptive space-time finite element model for oxidation-driven fracture, F.L. Carranza, B. Fang and R.B. Haber	399-423
 <i>General Rayleigh-Ritz and Galerkin techniques</i>	
Efficient automatic quadrature in 3-d Galerkin BEM, S. Erichsen and S.A. Sauter	215-224
 <i>Nonlinear mechanics</i>	
A new a posteriori error estimation for nonlinear time-dependent finite element analysis, P. Ladevèze and N. Moës	45- 68
A numerical method for computing the overall response of nonlinear composites with complex microstructure, H. Moulinec and P. Suquet	69- 94
Finite element approximation of a nonlinear heat conduction problem in anisotropic media, M. Křížek and L. Liu	387-397
An adaptive space-time finite element model for oxidation-driven fracture, F.L. Carranza, B. Fang and R.B. Haber	399-423
 <i>Numerical solution procedures</i>	
A projection method for constructing a mass conservative velocity field, S. Chippada, C.N. Dawson, M.L. Martínez and M.F. Wheeler	1- 10
Exact evaluation of dissipation for elastic-damage model dynamics, L. Briseghella, C. Majorana and P. Pavan	11- 18
3D Delaunay mesh generation coupled with an advancing-front approach, P.J. Frey, H. Borouchaki and P.-L. George	115-131
Explicit multi-time stepping methods for convection-dominated flow problems, N.M. Maurits, H. van der Ven and A.E.P. Veldman	133-150
Fast solution techniques for the symmetric boundary element method in linear elasticity, O. Steinbach	185-191
The application of object-oriented methods to boundary elements, C. Lage	205-213
Efficient automatic quadrature in 3-d Galerkin BEM, S. Erichsen and S.A. Sauter	215-224
The computation of potentials near and on the boundary by an extraction technique for boundary element methods, H. Schulz, C. Schwab and W.L. Wendland	225-238
Integration of singular integrals for the Galerkin-type boundary element method in 3D elasticity, H. Andrä	239-249
Singular integrals and boundary elements, V. Sladek and J. Sladek	251-266
A wavelet algorithm for the boundary element solution of a geodetic boundary value problem, A. Rathsfeld	267-287
A multipole expansion technique in solving boundary integral equations, C. Gáspár	289-297
Local effects in engineering with macro-elements, E. Schnack, S. Szikrai and K. Türke	299-309
The <i>hp</i> finite element method for problems in mechanics with boundary layer, C. Schwab, M. Suri and C. Xenophontos	311-333
Edge layers in thin elastic plates, M. Dauge and I. Gruais	335-347
Numerical approximation of a singularly perturbed contact problem, M. Costabel, M. Dauge and M. Suri	349-363
Thermal generalized stress intensity factors in 2-D domains, Z. Yosibash	365-385
Finite element approximation of a nonlinear heat conduction problem in anisotropic media, M. Křížek and L. Liu	387-397

An adaptive space-time finite element model for oxidation-driven fracture, F.L. Carranza, B. Fang and R.B. Haber	399–423
Domain decomposition method for the $h\text{-}p$ version finite element method, B. Guo and W. Cao	425–440
<i>Optimization</i>	
Anti-optimization technique for structural design under load uncertainties, M. Lombardi and R.T. Haftka	19– 31
<i>Optimization and design of structures</i>	
Anti-optimization technique for structural design under load uncertainties, M. Lombardi and R.T. Haftka	19– 31
<i>Plasticity</i>	
Exact evaluation of dissipation for elastic-damage model dynamics, L. Briseghella, C. Majorana and P. Pavan	11– 18
<i>Shells and plates</i>	
Edge layers in thin elastic plates, M. Dauge and I. Gruais	335–347
<i>Singularity methods</i>	
Numerical approximation of a singularly perturbed contact problem, M. Costabel, M. Dauge and M. Suri	349–363
<i>Solution of integral equations (singularity‘method)</i>	
Fast solution techniques for the symmetric boundary element method in linear elasticity, O. Steinbach	185–191
The computation of potentials near and on the boundary by an extraction technique for boundary element methods, H. Schulz, C. Schwab and W.L. Wendland	225–238
Integration of singular integrals for the Galerkin-type boundary element method in 3D elasticity, H. Andrä	239–249
Singular integrals and boundary elements, V. Sladek and J. Sladek	251–266
<i>Solutions of ordinary and partial differential equations</i>	
The solution of the Boussinesq equation using the method of lines, A.G. Bratsos	33– 44
Fast solution techniques for the symmetric boundary element method in linear elasticity, O. Steinbach	185–191
The computation of potentials near and on the boundary by an extraction technique for boundary element methods, H. Schulz, C. Schwab and W.L. Wendland	225–238
A wavelet algorithm for the boundary element solution of a geodetic boundary value problem, A. Rathsfeld	267–287
A multipole expansion technique in solving boundary integral equations, C. Gáspár	289–297
<i>Structural mechanics</i>	
Load and motion transfer algorithms for fluid/structure interaction problems with non- matching discrete interfaces: Momentum and energy conservation, optimal discretization and application to aeroelasticity, C. Farhat, M. Lesoinne and P. LeTallec	95–114
<i>Systems of linear and nonlinear simultaneous equations</i>	
A new a posteriori error estimation for nonlinear time-dependent finite element analysis, P. Ladevèze and N. Moës	45– 68
Domain decomposition method for the $h\text{-}p$ version finite element method, B. Guo and W. Cao	425–440

Thermal effects and thermodynamics

- Thermal generalized stress intensity factors in 2-D domains, Z. Yosibash 365-385
Finite element approximation of a nonlinear heat conduction problem in anisotropic media,
M. Křížek and L. Liu 387-397

Transport phenomena

- A projection method for constructing a mass conservative velocity field, S. Chippada,
C.N. Dawson, M.L. Martínez and M.F. Wheeler 1- 10

Viscoelastic and viscoplastic media

- A new a posteriori error estimation for nonlinear time-dependent finite element analysis,
P. Ladevèze and N. Moës 45- 68

Viscous flow

- Finite element computation of unsteady viscous compressible flows, S. Mittal 151-175