Programme de khôlle de maths nº 6

Semaine du 7 Novembre

Cours

Chapitre 5 : Suites numériques

- Suites arithmétiques, suites géométriques, suites arithmético-géométrique
- Suite récurrente linéaire d'ordre 2 (cas $\Delta > 0$ et $\Delta = 0$, le cas $\Delta < 0$ sera travaillé au moment où on fera les nombres complexes).
- Limite finie et infinie d'une suite, définitions avec les quantificateurs à connaitre
- Limites de référence n^{α} , $\frac{1}{n^{\alpha}}$, \sqrt{n} , e^{n} , $e^{-n} \ln(n)$, q^{n}
- Unicité de la limite, passage à la limite dans une égalité ou une inégalité
- Opérations sur les limites
- Suites extraites (u_{n+1}) , (u_{2n}) et (u_{2n+1}) : si (u_n) converge alors ces trois suites convergent (admis).
- Si f est continue en ℓ et que $\lim_{n \to +\infty} u_n = \ell$ alors $\lim_{n \to +\infty} f(u_n) = \ell$. (la définition de la continuité n'est pas à connaitre mais il faut connaitre les fonctions continues de référence et les opérations qui préservent la continuité).
- Suites récurrentes de la forme $u_{n+1} = f(u_n)$: aucune théorie à connaître mais il faut savoir retrouver les résultats suivants:
 - \triangleright Si f est définie sur I et que I est stable par f (c'est à dire $f(I) \subset I$) et que $u_0 \in I$, alors (u_n) est bien définie.
 - \triangleright Si de plus f est croissante sur I, alors $u_0 \le u_1 \Rightarrow (u_n)$ croissante et $u_0 \ge u_1 \Rightarrow (u_n)$ décroissante
 - \triangleright Si (u_n) converge vers un réel ℓ et que f est continue en ℓ alors $\ell = f(\ell)$.
- Théorèmes de comparaison
- · Suites adjacentes
- Comparaison asymptotiques : notation de Landau pour la négligeabilité, équivalence, croissances comparées de référence.
- Soit P un polynôme. P(n) est équivalent à son terme de plus haut degré lorsque $n \to +\infty$.
- Équivalents usuels à connaître

Si (u_n) est une suite **qui converge vers 0**, alors

- $\sin(u_n) \underset{n\to\infty}{\sim} u_n$
- $\cos(u_n) \underset{n \to \infty}{\sim} 1$
- $\ln(1+u_n) \sim u_n$
- $e^{u_n} 1 \sim u_n$

De façon équivalente, on a

- $\sin(u_n) = u_n + o(u_n)$
- $\cos(u_n) = 1 + o(u_n)$
- $\ln(1+u_n) = u_n + o(u_n)$
- $e^{u_n} = 1 + u_n + o(u_n)$

Questions de cours et exercice

- Questions de cours
 - Pas de questions de cours cette semaine
- Exercices vus en classe
 - Montrer uniquement à l'aide de la définition de la limite que $u_n = \sqrt{n+3}$ tend vers $+\infty$

- Limite de $\frac{n^2+n}{3n+5}$
- On considère la suite (u_n) définie par $u_0 = 1$ et $\forall n \in \mathbb{N}, u_{n+1} = \frac{2u_n + 1}{u_n + 1}$.
 - a) Montrer que $f: x \longmapsto \frac{2x+1}{x+1}$ est définie et dérivable sur $[1; +\infty[$ et étudier ses variations.
 - b) Montrer que $\forall n \in \mathbb{N}, \ 1 \leq u_n \leq u_{n+1} \leq 2$
 - c) En déduire que (u_n) converge et déterminer sa limite.
- Étude des suites $\left\{ \begin{array}{c} u_0=9 \\ \forall n\in\mathbb{N},\ u_{n+1}=\frac{u_n-3}{2} \end{array} \right. \text{ et } \left\{ \begin{array}{c} u_0=2 \\ \forall n\in\mathbb{N}\ u_{n+1}=-2u_n+5 \end{array} \right.$
- (u_n) définie par $u_1 = a \in]0; +\infty[$ et pour tout $n \in \mathbb{N}^*$ $u_{n+1} = \sum_{k=1}^n \frac{3^k u_k}{k}.$
 - 1. Montrer par récurrence que pour tout $n \in \mathbb{N}^*$, $3^n \ge n+2$
 - 2. Montrer par récurrence forte que pour tout $n \in \mathbb{N}^*, \ u_n \geq an$
 - 3. En déduire la limite de (u_n) .
- On considère les suites (u_n) et (v_n) définies par

$$\begin{cases} u_0 = 1 \\ u_{n+1} = \frac{5u_n + 2v_n}{7} \end{cases} \text{ et } \begin{cases} v_0 = 3 \\ v_{n+1} = \frac{2u_n + 5v_n}{7} \end{cases}$$

- 1. Montrer que pour tout $n \in \mathbb{N}$, $u_n \leq v_n$
- 2. En déduire que (u_n) est croissante et que (v_n) est décroissante.
- 3. Montrer que (u_n) et (v_n) sont adjacentes et déterminer leur limite commune.