

 $Head \, to \, \underline{www.savemyexams.com} \, for \, more \, awe some \, resources \,$

AQA GCSE Maths: Higher

Graphs of Functions

Contents

- * Types of Graphs
- * Quadratic Graphs
- * Drawing Graphs from Tables
- * Solving Equations Using Graphs
- * Trigonometric Graphs
- Solving Trig Equations

Types of Graphs

Your notes

Types of Graphs

What types of graphs do I need to know?

- You need to be able to **recognise**, **sketch**, **and interpret** the following types of graph:
 - Linear $(y = \pm X)$
 - y = mx + c or ax + by = c
 - Quadratic $(y = \pm x^2)$
 - $y = ax^2 + bx + c$
 - Cubic $(y = \pm x^3)$
 - $y = ax^3 + b$ or $y = ax^3 + bx^2 + cx$
 - Reciprocal $(y = \pm \frac{1}{x})$
 - $y = \frac{a}{x} + b$
 - Exponential $(y = k^{\pm X})$
 - $v = ak^x + b$

• You must also be able to recognise the three basic **trigonometric graphs**, covered in the Trigonometry section

Where are the asymptotes on reciprocal graphs?

- An asymptote is a line on a graph that a curve becomes closer to but never touches
 - These may be horizontal or vertical
- The **reciprocal** graph, $y = \frac{a}{x}$ (where a is a constant)
 - does not have a y-intercept
 - and does not have any roots
- This graph has **two asymptotes**
 - A horizontal asymptote at the x-axis: y = 0
 - This is the **limiting value** when the value of x gets very large (or very negative)

- A **vertical** asymptote at the *y*-axis: x = 0
 - This is the value that causes the **denominator to be zero**

- The reciprocal graph, $y = \frac{a}{x} + b$ (where a and b are both constants)
 - is the same shape as $y = \frac{a}{x}$
 - but is **shifted upwards** by b units

$$y = \frac{a}{x} - 3 \text{ would be } y = \frac{a}{x} \text{ shifted down by 3 units}$$

- ullet This means the **horizontal asymptote** also **shifts up** by b units
 - The vertical asymptote remains on the y-axis

How do I draw exponential growth and decay?

- The equation $y = k^{\scriptscriptstyle X}$ represents **exponential growth** when $k \ge 1$
 - $y = k^x$ represents **exponential decay** when $0 \le k \le 1$
 - k is positive but less than 1

- Both of these graphs:
 - have a horizontal asymptote at y = 0
 - do not have a vertical asymptote
 - have a y-intercept of (0, 1)
- The graph of $y = ak^x + b$ is a similar shape to $y = k^x$, but there are some differences
 - It is first stretched vertically by a
 - It is then **shifted** b units upwards
 - Therefore it has a **horizontal asymptote** at y = b
 - and a *y*-intercept of (0, a+b)
- For example, a population may be modelled as $y = 400 \times \left(\frac{1}{2}\right)^x + 100$, where y is the population and X represents time
 - ullet This is an exponential decay as $0 \le k \le 1$
 - The initial population (when X = 0) will be 400 + 100 = 500
 - The *Y*-intercept is (0, 500)
 - Over a long period of time (large X-value) the population will settle to 100
 - The asymptote is at y = 100
- Exponential decay can also be identified by a negative power using index laws

• This has the form $y = k^{-x}$ where k > 1

Worked Example

Match the graphs to the equations.

(1)
$$y = 0.6x + 2$$
, (2) $y = 3^x$, (3) $y = -0.7x^3$, (4) $y = \frac{4}{x}$, (5) $y = -x^2 + 3x + 2$

Starting with the equations,

$Head \, to \, \underline{www.savemyexams.com} \, for \, more \, awe some \, resources$

- (1) is a linear equation (y = mx + c) so matches the only straight line, graph **D**
- (2) is an exponential equation with a positive coefficient so matches graph A
- (3) is a cubic equation with a negative coefficient so matches graph E
- (4) is a reciprocal equation with a positive coefficient so matches graph B
- (5) is a quadratic equation with a negative coefficient so matches graph C

Graph A \rightarrow Equation 2

Graph B \rightarrow Equation 4

Graph $C \rightarrow Equation 5$

Graph D \rightarrow Equation 1

Graph $E \rightarrow Equation 3$

Quadratic Graphs

Your notes

Quadratic Graphs

What is a quadratic graph?

- A quadratic graph has the form $y = ax^2 + bx + c$
 - where a is not zero

What does a quadratic graph look like?

- A quadratic graph is a smooth curve with a vertical line of symmetry
 - A **positive** number in front of X^2 gives a **u-shaped curve**
 - A negative number in front of X^2 gives an n-shaped curve
- The shape made by a quadratic graph is known as a **parabola**
- A quadratic graph will **always** cross the *Y***-axis**
- A quadratic graph crosses the *X*-axis twice, once, or not at all
 - The points where the graph crosses the *X*-axis are called the **roots**
- If the graph is a **u-shape**, it has a **minimum point**
- If the graph is an **n-shape**, it has a **maximum point**
- Minimum and maximum points are both examples of turning points
 - A turning point can also be called a vertex

Save my exams

How do I sketch a quadratic graph?

- It is important to know how to **sketch** a quadratic curve
 - A simple drawing showing the **key features** is often sufficient
 - (For a more accurate graph, create a table of values and plot the points)
- To sketch a quadratic graph:
 - First sketch the X and Y-axes
 - Identify the V-intercept and mark it on the V-axis
 - The *y*-intercept of $y = ax^2 + bx + c$ will be (0, c)
 - It can also be found by substituting in X = 0
 - Find all root(s) (0, 1 or 2) of the equation and mark them on the X-axis
 - The roots will be the solutions to y = 0; $ax^2 + bx + c = 0$
 - You can find the solutions by factorising, completing the square or using the quadratic formula

• Identify if the number a in $ax^2 + bx + c$ is positive or negative

- A negative value will result in an n-shape
- Sketch a smooth curve through the X and Y-intercepts
 - Mark on any axes intercepts
 - Mark on the coordinates of the maximum/minimum point if you know it

How do I find the coordinates of the turning point by completing the square?

- The coordinates of the turning point (vertex) of a quadratic graph can be found by completing the square
- For a quadratic graph written in the form $y = a(x p)^2 + q$
 - the minimum or maximum point has coordinates (p, q)
- Beware: there is a **sign change** for the *X* -coordinate
 - A curve with equation $y = (x-3)^2 + 2$, has a minimum point at (3, 2)
 - A curve with equation $y = (x + 3)^2 + 2$, has a minimum point at (-3, 2)
- The value of *a* does **not affect the coordinates** of the turning point but it **will change the shape** of the graph
 - If it is positive, the graph will be a u-shape
 - The curve $y = 5(x-3)^2 + 2$ has a minimum point at (3, 2)
 - Of it is negative, the graph will be an n-shape
 - The curve $y = -8(x-3)^2 + 2$ has a maximum point at (3, 2)

Worked Example

(a) Sketch the graph of $y = x^2 - 5x + 6$ showing the x and y intercepts clearly.

The +c at the end is the y-intercept

Your notes

y-intercept: (0, 6)

$$y = (x-2)(x-3)$$

Solve y = 0

$$(x-2)(x-3) = 0$$
, so $x = 2$ or $x = 3$

So the x-intercepts are given by the coordinates

$$(2,0)$$
 and $(3,0)$

It is a positive quadratic graph, so will be a u-shape

Page 11 of 44

Your notes

(b) Sketch the graph of $y = x^2 - 6x + 13$ showing the y-intercept and the coordinates of the turning point.

It is a positive quadratic, so will be a u-shape The turning point will therefore be a minimum

The +c at the end is the y-intercept

Find the minimum point by completing the square

For example, complete the square by writing the equation in the form $a(x-p)^2+q$ (you may need to look this method up)

$$x^{2}-6x+13=(x-3)^{2}-9+13$$
$$=(x-3)^{2}+4$$

The turning point of $y = a(x-p)^2 + q$ has coordinates (p, q)The minimum point is therefore

As the **minimum** point is above the X-axis, and the curve is a u-shape, this means the graph will not cross the X-axis (it has no roots)

(c) Sketch the graph of $y = -x^2 - 4x - 4$ showing the root(s), y-intercept, and the coordinates of the turning point.

It is a negative quadratic, so will be an n-shape The turning point will therefore be a maximum

The +c at the end is the y-intercept

y-intercept: (0, -4)

Find the minimum point by completing the square

$$y = -(x^{2} + 4x) - 4$$

$$y = -[(x+2)^{2} - 2^{2}] - 4$$

$$y = -[(x+2)^{2} - 4] - 4$$

$$y = -(x+2)^{2} + 4 - 4$$

$$y = -(x+2)^{2}$$

Minimum = (-2, 0)

As the maximum is on the X-axis, there is **only one root**

How do I find the equation of a quadratic from its graph?

- If the vertex and one other point are known
 - Use the form $y = a(x p)^2 + q$ to fill in p and q
 - The vertex is at (p, q)
 - Then substitute in the other known point (x, y) to find a
- If the roots (X-intercepts) and one other point are known

- Use the form $y = a(x x_1)(x x_2)$ to fill in x_1 and x_2
 - ${\color{red}\bullet}$ The roots are at $\left({{{X}_{1}}}$, $0 \right)$ and $\left({{{X}_{2}}}$, $0 \right)$
- Then substitute in the other known point (x, y) to find a
- If a = 1 then you only need either the **vertex** or the **roots**

Worked Example

(a) Find the equation of the graph below.

Page 16 of 44

The graph shows the roots and a point on the curve (in this case the $\it Y$ -intercept)

Use the form $y = a(x - x_1)(x - x_2)$ to fill in x_1 and x_2 by inspection

The roots are at $\left(x_{1},0\right)$ and $\left(x_{2},0\right)$

$$y = a(x-2)(x-3)$$

Substitute in the other known point (0, 24) to find a

$$24 = a(0-2)(0-3)$$
$$24 = a(-2)(-3)$$
$$24 = 6a$$

4 = a

$$y = 4(x-2)(x-3)$$

You could also write this in expanded form: $y = 4x^2 - 20x + 24$

(b) Find the equation of the graph below.

Write the full equation

The graph shows the vertex and a point on the curve

(2,82)

Use the form $y = a(x - p)^2 + q$ to fill in p and q by inspection

(9, -16)

The vertex is at $(p,\,q)$

$$y = a(x-9)^2 - 16$$

Substitute in the other known point (2, 82) to find a

 χ

$$82 = a(2-9)^2 - 16$$

$$82 = a(-7)^2 - 16$$

$$82 = 49a - 16$$

$$98 = 49a$$

$$2 = a$$

Write the full equation

$$y=2(x-9)^2-16$$

You could also write this in expanded form: $y = 2x^2 - 36x + 146$

Drawing Graphs from Tables

Your notes

Drawing Graphs Using a Table

How do I draw a graph using a table of values?

- To create a table of values
 - **substitute** different **x-values** into the **equation**
 - This gives the **y-values**
- To plot the points
 - use the x and y-values to mark **crosses** on the grid at the **coordinates** (x, y)
 - Each point is expected to be plotted to an accuracy within half of the smallest square on the grid
- Draw a single smooth freehand curve
 - Go through all the plotted points
 - Make it the **shape** you would **expect**
 - For example, quadratic curves have a vertical line of symmetry
 - Do **not** use a ruler for curves!

Which numbers should I be careful with?

- For quadratic graphs, be careful substituting in negative numbers
 - Always put brackets around negative values and use BIDMAS
 - For example, substitute x = -3 into $y = -x^2 + 8x$
 - This becomes $y = -(-3)^2 + 8(-3)$
 - which simplifies to -9 24
 - soy = -33
- For **reciprocal** graphs like $y = \frac{1}{x}$, or $y = \frac{1}{x^2}$, do **not include** x = 0
 - You cannot divide by zero
 - You get an error on your calculator

- There is **no value** at x = 0
 - The L-shaped branches can't cross the y-axis
 - There will be a **vertical asymptote** at **x** = **0**

X	-3	-2	-1	0	1	2	3
У	$-\frac{1}{3}$	$-\frac{1}{2}$	-1	No value	1	$\frac{1}{2}$	$\frac{1}{3}$

- You should also be careful when there is a **combination of different types of function**
 - E.g. $y = x^2 \frac{1}{x} + 4$ has a quadratic term and a reciprocal term
 - This makes it harder to know the shape of the graph
 - But you can still use a table of values to plot them
 - Just be aware of points like x = 0 as described above, where there will be no value

How do I use the table function on my calculator?

- Calculators can create tables of values for you
- Find the **table** function
 - Type in the **graph** equation (called the **function**, f(x))
 - Use the alpha button then X or x
 - Press = when finished
 - If you are asked for another function, g(x), press = to ignore it
- Enter the **start** value
 - The first x-value in the table
 - Press =
- Enter the **end** value
 - The last x-value in the table

- Enter the step size
 - How big the steps (gaps) are from one x-value to the next
 - Press =
- Then scroll up and down to see all the **y-values**

Examiner Tips and Tricks

- If you find a point that doesn't seem to fit the shape of the curve, check your working!
- If any y-values are given in the question, check that your calculations agrees with them

Worked Example

(a) Complete the table of values for the graph of $y = 10 - 8x^2$.

X	-1.5	-1	-0.5	0	0.5	1	1.5
У		2					-8

Use the table function on your calculator for $f(x) = 10 - 8x^2$ Start at -1.5, end at 1.5 and use steps of 0.5

Alternatively, substitute the x-values into the equation, for example x = -1.5

$$y = 10 - 8(-1.5)^{2}$$
$$= 10 - 8 \times 2.25$$
$$= 10 - 18$$
$$= -8$$

X	-1.5	-1	-0.5	0	0.5	1	1.5
У	-8	2	8	10	8	2	-8

(b) Plot the graph of $y = 10 - 8x^2$ on the axes below, for values of X from -1.5 to 1.5.

Carefully plot the points from your table on to the grid Note the different scales on the axes

 $Head \, to \, \underline{www.savemyexams.com} \, for \, more \, awe some \, resources \,$

Join the points with a smooth curve (do not use a ruler)

(c) Write down the equation of the line of symmetry of the curve.

There is a vertical line of symmetry about the y-axis

The equation of the y-axis is x = 0

 $Head \, to \, \underline{www.savemyexams.com} \, for \, more \, awe some \, resources \,$

x = 0

Solving Equations Using Graphs

Solving Equations Using Graphs

How do I find the coordinates of points of intersection?

- Plot two graphs on the same set of axes
 - The **points of intersection** are where the two lines **meet**
- For example, plot $y = x^2 + 3x + 1$ and y = 2x + 1 on the same axes
 - They meet twice, as shown
 - The **coordinates** of **intersection** are (-1, -1) and (0, 1)

Page 25 of 44

How do I solve simultaneous equations graphically?

- The x and y solutions to simultaneous equations are the x and y coordinates of the point of intersection
- For example, to solve 2x y = 3 and 3x + y = 7 simultaneously
 - Rearrange them into the form y = mx + c
 - y = 2x 3 and y = -3x + 7
 - Use a **table of values** to plot each line
 - Find the **point of intersection**, (2, 1)
 - The **solutions** are therefore x = 2 and y = 1

- · LINES INTERSECT AT (2,1)
- SOLVING 2x-y=3 AND 3x+y=7SIMULTANEOUSLY IS x=2, y=1

Copyright © Save My Exams. All Rights Reserved

How do I use graphs to solve equations?

- This is easiest explained through an example
- You can use the **graph** of $y = x^2 4x 2$ to **solve** the following **equations**
 - $x^2 4x 2 = 0$
 - The solutions are the two x-intercepts
 - This is where the curve cuts the x-axis (also called **roots**)
 - $x^2 4x 2 = 5$
 - The solutions are the two x-coordinates where the curve intersects the horizontal line y = 5
 - $x^2 4x 2 = x + 1$
 - The solutions are the two x-coordinates where the curve intersects the straight line y = x + 1
 - The straight line must be **plotted** on the same axes first
- To solve a **different** equation like $x^2 4x + 3 = 1$, if you are **already given** the graph of an equation, e.g. $y = x^2 4x 2$
 - add / subtract terms to both sides to get "given graph = ..."
 - For example, subtract 5 from both sides

$$X^2 - 4x - 2 = -4$$

• You can now draw on the horizontal line y = -4 and find the x-coordinates of the points of intersection

Examiner Tips and Tricks

- When solving equations in x, only give x-coordinates as final answers
 - Include the y-coordinates if solving simultaneous equations

Worked Example

Use the graph of $y = 10 - 8x^2$ shown to estimate the solutions of each equation given below.

 $Head to \underline{www.savemyexams.com} for more awe some resources$

Page 29 of 44

Head to www.savemyexams.com for more awesome resources

(a)
$$10 - 8x^2 = 0$$

This equals zero, so the x-intercepts are the solutions
Read off the values where the curve cuts the x-axis
Use a suitable level of accuracy (no more than 2 decimal places from the scale of this graph)

-1.12 and 1.12

These are the two solutions to the equation

$$x = -1.12$$
 and $x = 1.12$

A range of solutions are accepted, such as "between 1.1 and 1.2" Solutions must be \pm of each other (due to the symmetry of quadratics)

(b)
$$10 - 8x^2 = 8$$

This equals 8, so draw the horizontal line y = 8Find the x-coordinates where this cuts the graph

-0.5 and 0.5

These are the two solutions to the original equation

$$x = -0.5$$
 and $x = 0.5$

The solutions here are exact

Worked Example

The graph of $y = x^3 + x^2 - 3x - 1$ is shown below.

Use the graph to estimate the solutions of the equation $x^3 + x^2 - 4x = 0$.

Give your answers to 1 decimal place.

Save my exams

We are given a different equation to the one plotted so we must rearrange it to graph = mx + c, in this case $x^3 + x^2 - 3x - 1 = mx + c$

$$x^{3} + x^{2} - 4x = 0$$

$$+x - 1 + x - 1$$

$$x^{3} + x^{2} - 3x + 1 = x - 1$$

Now plot y = x - 1 on the same axes

 $Head to \underline{www.savemyexams.com} for more awe some resources$

Your notes

The solutions are the X-coordinates of where the curve and the straight line intersect

$$x = -2.6$$
, $x = 0$, $x = 1.6$

Trigonometric Graphs

Your notes

Drawing Trig Graphs

What are trig graphs?

- Trigonometric (trig) graphs are the graphs of
 - $y = \sin x$
 - $y = \cos x$
 - $y = \tan x$
- The variable X is like an angle
 - but the angle can now go **beyond acute** to become **obtuse** and **reflex**
 - $0^{\circ} < x < 360^{\circ}$
- Trig graphs have **repeating** (periodic) shapes and **symmetries** that you need to know

How do I draw the graph of $y = \sin x$?

- The graph of $y = \sin X$ is a wave that oscillates between heights of 1 and -1 and repeats every 360° (its **period** is 360°)
 - It goes through the **origin**, (0, 0)
 - Then every 90° it cycles through the heights 1, 0, -1, 0, ...

Head to www.savemyexams.com for more awesome resources

Your notes

How do I draw the graph of $y = \cos x$?

- The graph of $y = \cos x$ is a wave that oscillates between heights of 1 and -1 and repeats every 360° (its period is 360°)
 - It has a **y-intercept of 1**, coordinates (0, 1)
 - Then every 90° it cycles through the heights 0, -1, 0, 1, ...
- $y = \cos x$ is the same as translating $y = \sin x$ by 90 to the left

How do I draw the graph of $y = \tan x$?

- The graph of $y = \tan x$ is **not a wave** but consists of **branches** that **repeat every 180°** (its **period** is 180°)
 - This is half the period of Sin X and COS X
- There are **dotted vertical lines** that separate the branches called **asymptotes**
 - These are every 180° at $X = 90^{\circ}$, $X = 270^{\circ}$, ...
 - The curve cannot touch these, but get closer and closer to them
 - A branch starts down at a height of $-\infty$ and goes up to a height of $+\infty$
- $y = \tan x$ goes through the **origin**, (0, 0)

 $Head to \underline{www.savemyexams.com} for more awe some resources$

Worked Example

On the axes provided, sketch the graph of $y = \sin x^{\circ}$ for $0 \le x \le 360$.

 ${\sf Mark\,l\,and\,-l\,on\,the\,\it y-axis}$

Mark 0, 90, 180, 270 and 360 on the x-axis (try to space them evenly apart)

 $Head to \underline{www.savemyexams.com} for more awe some resources$

 $y = \sin X$ starts at (0, 0) then every 90° it cycles though heights of 1, 0, -1, 0, ... Mark these points on the axes Join the points with a smooth line Label the curve with its equation

 $Head \, to \, \underline{www.savemyexams.com} \, for more \, awe some \, resources \,$

Solving Trig Equations

Your notes

Solving Trig Equations

What are trig equations?

- Trig equations are equations involving $\sin X$, $\cos X$ and $\tan X$
- They often have multiple solutions
 - A calculator gives the first solution
 - You need to use **trig graphs** to find the others
 - The solutions must lie in the interval (range) of X given in the question, e.g. $0^{\circ} \le x \le 360^{\circ}$

How do I solve $\sin x = ...?$

- Find the **first solution** of the equation by taking the **inverse sin function** on your **calculator** (or using an exact trig value)
 - E.g. For the first solution of the equation $\sin x = 0.5$ for $0^{\circ} \le x \le 360^{\circ}$
 - This gives $x = \sin^{-1}(0.5) = 30^{\circ}$
- Then sketch the sine graph for the given interval
 - Identify the first solution on the graph
 - Use the symmetry of the graph to find additional solutions
 - E.g. For the equation $\sin x = 0.5$ for $0^{\circ} \le x \le 360^{\circ}$
 - Sketch the graph $y = \sin x$ for $0^{\circ} \le x \le 360^{\circ}$
 - Draw on $\sin(30) = 0.5$
 - \bullet By the symmetry, the new value of $\it X$ is $180\,^{\rm o}-30\,^{\rm o}=150\,^{\rm o}$
 - \blacksquare The solutions are 30° or 150°

Copyright © Save My Exams. All Rights Reserved

- Check the solutions
 - E.g. For the equation $\sin x = 0.5$ for $0^{\circ} \le x \le 360^{\circ}$
 - Substitute $x = 30^{\circ}$ and $x = 150^{\circ}$ in to the calculator
 - $\sin(30)$ and $\sin(150)$ both give a value of 0.5, so are correct
- In general, if X is an acute solution to $\sin X = \dots$
 - Then 180 X is an **obtuse** solution to the same equation

How do I solve $\cos x = \dots$?

- Find the **first solution** of the equation by taking the **inverse cos function** (or using an exact trig value)
 - E.g. For the first solution of the equation $\cos x = 0.5$ for $0^{\circ} \le x \le 360^{\circ}$
 - This gives $x = \cos^{-1}(0.5) = 60^{\circ}$
- Then sketch the cosine graph for the given interval
 - Identify the first solution on the graph
 - Use the symmetry of the graph to find additional solutions
 - E.g. For the equation $\cos x = 0.5$ for $0^{\circ} \le x \le 360^{\circ}$
 - Sketch the graph $y = \cos x$ for $0^{\circ} \le x \le 360^{\circ}$

opyright © Save My Exams. All Rights Reserved

• Check the solutions

- E.g. For the equation $\cos x = 0.5$ for $0^{\circ} \le x \le 360^{\circ}$
 - Substitute $x = 60^{\circ}$ and $x = 300^{\circ}$ in to the calculator
 - ${\color{red}\bullet} \cos(60)$ and $\cos(300)$ both give a value of 0.5 so are correct
- In general, if X is a **solution** to $\cos X = \dots$
 - Then 360 x is **another solution** to the same equation

How do I solve $\tan x = \dots$?

- Find the **first solution** of the equation by taking the **inverse tan function** (or using an exact trig value)
 - E.g. For the first solution of the equation $\tan x = 1$ for $0^{\circ} \le x \le 360^{\circ}$
 - This gives $x = \tan^{-1}(1) = 45^{\circ}$
- Then sketch the tangent graph for the given interval
 - Identify the first solution on the graph
 - Use the **periodic nature** of the graph to find **additional solutions**

- E.g. For the equation $\tan x = 1$ for $0^{\circ} \le x \le 360^{\circ}$
 - Sketch the graph $y = \tan x$ for $0^{\circ} \le x \le 360^{\circ}$
 - By the periodic nature, the new value of X is $45^{\circ} + 180^{\circ} = 225^{\circ}$

Check the solutions

- E.g. For the equation $\tan x = 0.5$ for $0^{\circ} \le x \le 360^{\circ}$
 - Substitute $x = 45^{\circ}$ and $x = 225^{\circ}$ in to the calculator
 - tan(45) and tan(225) both give a value of 1 so are correct
- In general, if X is a solution to $\tan X = \dots$
 - Then x + 180 is **another solution** to the same equation

How do I rearrange trig equations?

- Trig equations may be given in a different form
 - Equations may require **rearranging** first
 - E.g. $2 \sin x 1 = 0$ can be rearranged to $\sin x = \frac{1}{2}$
 - They can then be solved as usual

What do I do if the first solution from my calculator is negative?

- Sometimes the first solution given by the calculator for X will be **negative**
 - Continue sketching the graph to the **left** of the *X*-axis to help
 - Then find **solutions** that lie in the **interval** given in the question

Examiner Tips and Tricks

- Know how to use the **inverse functions** on your calculator
 - It may involve **exact trig values** which do not need a calculator
- Check your solutions by substituting them back into the original equation

Worked Example

Use the graph of $y = \sin x$ to solve the equation $\sin x = 0.25$ for $0^{\circ} \le x \le 360^{\circ}$.

Give your answers correct to 1 decimal place.

Use a calculator to find the first solution Take the inverse sin of both sides

$$x = \sin^{-1}(0.25) = 14.47751...$$

Sketch the graph of $y = \sin x$

Mark on (roughly) where x = 14.48 and y = 0.25 would be

Draw a vertical line up to the curve

Draw another line horizontally across to the next point on the curve

Bring a line vertically back down to the x-axis

 $Head \, to \, \underline{www.savemyexams.com} \, for \, more \, awe some \, resources \,$

Copyright © Save My Exams. All Rights Reserved

Find this value using the symmetry of the curve Subtract 14.48 from 180

$$180 - 14.48 = 165.52$$

Give both answers correct to 1 decimal place

$$x = 14.5^{\circ} \text{ or } x = 165.5^{\circ}$$