

Table of Contents

01

Web Scraping

Selenium, BeautifulSoup, and stress 03

Regression Modeling

Train/val/test split ->
Transform -> Standardize ->
Regularize -> Predict

02

Exploratory Data Analysis

Data cleaning and visualization

04

Future Work

Improve data quality/quantity and cross validation.

Question:

search...

1917 2019

METASCORE ?

Generally favorable reviews based on 57 Critic Reviews
See All

78

USER SCORE

Universal acclaim based on 723 Ratings See All

VOTE NOW

0 1 2 3 4 5 6 7 8 9 10

Scraping

Number of Audience Ratings

The number of audience ratings was by far the most influential feature on box office sales.

Metascores

The feature I had originally thought would be most important actually looks to negatively correlate with box office sales.

Interaction terms?

Based on the similarity between number of critic ratings and number of audience ratings, I combined them into an interaction term.

Before / After Log Transform

Heteroskedasticity

index counts = num audience ratings * num critic ratings

And the Oscar goes to...

LASSO Regression!

R² = .734 Mean Absolute Error = 16,051,348.38 Mean Squared Error = 1,607,491,498,383,146.8

Future Work

Improve Data Collection

Metacritic didn't make it easy for me to scrape data. In next steps for this project, I would try to find the same type of metrics, but from a more accessible location. I'd also try to increase my sample size.

Enhanced Validation

Other steps to take would be improved validation through K-Fold cross validation. I'm think the extra validation is needed because although my R² seemed good - .734 - the plot of actual vs. predicted values was heteroskedastic and the condition number was high.