

Review

Central Limit Theorem: The collection of sample means from ANY distribution will form their own normal distribution. \bar{X} is the sampling distribution of the mean.

$$\bar{X} \sim N\left(\mu_X, \frac{\sigma_X}{\sqrt{n}}\right).$$

The for large sample sizes, the "mean of the means" is the same as the population mean $(\mu_X = \mu_{\bar{X}})$

 $\frac{\sigma_X}{\sqrt{n}}$ is the standard error. It states how far away, on average, the sample mean will be from the population mean.

$$z = \frac{\bar{x} - \mu_X}{\left(\frac{\sigma_X}{\sqrt{n}}\right)}$$
 (z-score for a mean)

Math Review

Distribution: a(b + c) = ab + ac

$$\frac{x^a}{x^b} = x^{a-b}$$

Equations: 1 + 2x = 4x - 3

Must be balanced: 1 + 2x - 5 = 4x - 3 - 5

Whatever is added to one side must be added to the other.

Multiplying only one side by one doesn't change the equation: 3x = 4y (1) $\cdot 3x = 4y$ is still the same as the original.

$$z = \frac{\text{distance between a value and the mean}}{\text{average distance from mean}} = \frac{\text{value - mean}}{\text{standard deviation}} = \frac{x - \mu}{\sigma}$$

Normal Distribution: $X \sim N(\mu, \sigma)$

Building New Mathematics from the Central Limit Theorem's Z-Scores

$$z = \frac{\bar{x} - \mu_X}{\left(\frac{\sigma_X}{\sqrt{n}}\right)} = \frac{\frac{1}{n}\sum x - \mu_X}{\left(\frac{\sigma_X}{\sqrt{n}}\right)} = (1) \cdot \frac{\frac{1}{n}\sum x - \mu_X}{\left(\frac{\sigma_X}{\sqrt{n}}\right)} = \left(\frac{n}{n}\right) \cdot \frac{\frac{1}{n}\sum x - \mu_X}{\left(\frac{\sigma_X}{\sqrt{n}}\right)} = \frac{n\left(\frac{1}{n}\sum x - \mu_X\right)}{n\cdot\left(\frac{\sigma_X}{\sqrt{n}}\right)} = \frac{\sum x - (n)(\mu_X)}{(\sqrt{n})(\sigma_X)}$$

What does this new z-score mean?

$$z = \frac{\sum x - (n)(\mu_X)}{(\sqrt{n})(\sigma_X)}$$

New mean: $(n)(\mu_X)$

New standard deviation: $(\sqrt{n})(\sigma_X)$

The Central Limit Theorem (for Sums)

If you keep drawing larger and larger samples and taking their sums, the sums form their own normal distribution which approaches a normal distribution as the sample size increases.

$$\sum X \sim N\left((n)(\mu_X), (\sqrt{n})(\sigma_X)\right)$$

Revisiting the previous dice example: Suppose we collect samples of dice rolls?

This time, we will focus on sums, not means.

What if we collect 1 sample of 30 rolls? (n=30)

Sample	Values	
S1	343623316221556251642235235556	108
	(30 total values)	

What if we collect 3 samples of 30 rolls? (n=30)

Sample	Values	Sample Mean
S1	122666165435132515312633545342	108
S2	121143461653635555335146312152	102
S3	162223331241636456653455546313	110
	(0.0.10.10.10.0)	sums = 106.67 e to 105)

What if we collect 10 samples of 30 rolls? (n=30)

What if we collect to samples of 30 folis: (II=30)			
Sample	Values	Sample Sums $(\sum x)$	
S1	241543551251222554523134262626	100	
S2	444213612633256666364366661435	123	
S3	524113634433641321366655523463	110	
S4	413224623411234436534363623526	103	
S5	524442524515224363564333453465	114	
S6	162651346565513446116143626322	110	
S7	515413524311614346151612632654	101	
S8	635515453134231661462536443324	110	
S9	121224553426545213225516152521	94	
S10	641615154526245651142651433242	106	

Mean of the sums = 107.1 (close to 105)

What if we collect 1000 samples of 30 rolls? (n=30)

In total how many rolls were there?

$$1000 \cdot 30 = 30000$$

What is the mean of the sums?

Mean of
$$\sum X = (n)(\mu_X) = 30 \cdot 3.5 = 105$$

What is the standard error of the sums?

Standard Deviation of
$$\Sigma X = (\sqrt{n})(\sigma_X) = \sqrt{30} \cdot 1.708 = 9.36$$

(4) Sampling Distribution of the Means
With Normal Distribution

Given the previous scenario, what is the z-score of $\sum x = 107$? (This is one sum value in our entire collection of 1000 sums)

$$z = \frac{\sum x - (n)(\mu_X)}{(\sqrt{n})(\sigma_X)} = \frac{107 - (30) \cdot (3.5)}{\sqrt{30} \cdot 1.708} = \frac{107 - 105}{9.36} = 0.214$$

Example

The distribution of final exam grades in a statistics course has a mean of 75 and a standard deviation of 10. Samples of 25 grades are taken from the gradebook.

X = a final grade in the class

 \bar{X} = the mean of a sample of size 25

Find the <u>standard error</u> of the mean.

$$\frac{\sigma_X}{\sqrt{n}} = \frac{10}{\sqrt{25}} = 2$$

The distribution of final exam grades in a statistics course has a mean of 75 and a standard deviation of 10. Samples of 25 grades are taken from the gradebook.

X = a final grade in the class

 \bar{X} = the mean of a sample of size 25

Find the probability that the sample mean is greater than 78. $P(\bar{x} > 78) = ?$

$$X \sim N(\mu_X, \sigma_X) = N(75,10)$$

$$\bar{X} \sim N\left(\mu_X, \frac{\sigma_X}{\sqrt{n}}\right) = N\left(75, \frac{10}{\sqrt{25}}\right) = N(75, 2)$$

The distribution of final exam grades in a statistics course has a mean of 75 and a standard deviation of 10. Samples of 25 grades are taken from the gradebook.

X = a final grade in the class

 \bar{X} = the mean of a sample of size 25

Find the value two standard deviations (standard error) above the mean.

$$z_{+2} = \mu_X + z \left(\frac{\sigma_X}{\sqrt{n}}\right) = 75 + (2) \left(\frac{10}{\sqrt{25}}\right) = 75 + 2(2) = 79$$

The distribution of final exam grades in a statistics course has a mean of 75 and a standard deviation of 10. Samples of 25 grades are taken from the gradebook.

X = a final grade in the class

 ΣX = the sum of a sample of size 25

Find the probability that the sum of the sample mean is less than 2250.

mean of
$$\sum X = (n)(\mu_X) = (25)(75) = 1875$$

standard deviation of
$$\Sigma X = (\sqrt{n})(\sigma_X) = (\sqrt{25})(10) = 500$$

$$\sum X \sim N\left((n)(\mu_X), (\sqrt{n})(\sigma_X)\right) = N\left((25)(75), (\sqrt{25})(10)\right) = N(1875, 500)$$

Review

Central Limit Theorem for Sums: The collection of sample sums from ANY distribution will form their own normal distribution. \bar{X} is the sampling distribution of the mean.

$$\sum X \sim N\left((n)(\mu_X), (\sqrt{n})(\sigma_X)\right)$$

Mean =
$$(n)(\mu_X)$$

Standard Deviation = $(\sqrt{n})(\sigma_X)$

$$z = \frac{\sum x - (n)(\mu_X)}{(\sqrt{n})(\sigma_X)}$$
 (z-score for the random variable $\sum X$)