

Universidad Nacional Autónoma de México

Facultad de Ciencias

Lenguajes de Programación SEMANAL 7

Comas Castañeda Mauricio Santiago | 320215988 Robledo Ramírez Isaac | 320140655 Sánchez Pérez Ricardo | 315153327

1. • Dada la siguiente expresión en MiniLisp.

```
(let (sum (lambda (n) (if0 n 0 (+ n (sum (- n 1)))))) sum 5))
```

- Ejecutarla y explicar el resultado. Al ejecutar esta expresión nos arroja como resultado un error de variable libre, siendo la variable que queda libre sum.
- Modificarla usando el combinador de punto fijo Y, volver a ejecutarla y explicar el resultado. La version modificada con el combinador y basandonos en las notas quedaria como sigue:

```
let ( Y ( lambda ( f ) (( lambda ( x ) ( f ( x x ) ) ) ( lambda ( x ) ( f ( x x ) ) ) ) )
( let ( sum ( Y ( lambda ( sum ) ( lambda ( n ) ( if0 n 0 (+ n ( sum (- n 1) ) ) ) ) ) ) ( sum 5) )
```

Donde n es 5 y al hacer la ejecución tomamos la definición de nuestro combinador Y, la aplicamos a nuestra funcion de suma, con lo que esto quedaria:

```
(lambda(Y)(lambda(sum))5)
```


donde evaluamos Y y sustituimos en f por nuestro parametro lambda(sum) y se hacen las betareducciones en nuestra evaluacion de la siguiente manera:

Ahora tenemos en nuestra beta reduccion la definicion de nuestro combinador Y por lo que esto se puede ver como:

```
(lambda (sum) (lambda (Y)(lambda (sum))) 5)
beta redux: (lambda (n) (if0 n 0 (+ n ((Y)(sum)) (-5 1)) 5)).
eval: (+ 5 (((Y)(sum)) (- 5 1))).
eval: (+ 5 (((Y)(sum)) (4)))
```

Tenemos ahora nuestra Y sum con 4, entonces repitiendo los pasos anteriores con Y sum n-1, y simulando una recursion solamente con lets dentro de nuestro minilisp, nuestro resultado final sera 15. que sera la suma de la evaluación final que tenemos al llegar a 0 que seria 0+1+2+3+4+5=15.

2. Evaluar la siguiente expresión en Racket, explicar su resultado y dar la continuación asociada a evaluar utilizando la notación $\lambda \uparrow$.

```
(define c #f)
(+ 1 (+ 2 (+ 3 (+ let/cc k (set! c k) 4) 5))))
(c 10)
```

La expresión imprime 15 y 21

- 1. Se inicializa una variable c con el valor #f.
- 2. Se evalúa la suma (+1)(+2)(+3) evaluando el primer operando y el segundo.
- 3. Al llegar al operando (+let/cc(set!ck), let/cc guarda la continuación k de la evaluación en la variable previamente definida como c.

- 4. Se termina de evaluar la suma con los operandos 4 (puesto que no se llamó la continuación) y 5, siendo 1+2+3+4+5=15 y se imprime el resultado.
- 5. Se llama la continuación c con 10, lo que sustituye a 4, con lo que ahora la suma se evalúa como 1+2+3+10+5=21 y se imprime el resultado.

La continuación asociada con $\lambda \uparrow$ sería:

$$(\lambda \uparrow (u)(+1(+2(+3(+u5)))))$$

3. • Definir la función recursiva ocurrenciasElementos que toma como argumentos dos listas y devuelve una lista de parejas, en donde cada pareja contiene en su parte izquierda un elemento de la segunda lista y en su parte derecha el número de veces que aparece dicho elemento en la primera lista.

(Le llamaremos ocurrencias Elementos Rc).

```
1 {- ocurrenciasElementosRC: Funcion RECURSIVA que toma como argumentos dos
2     listas y devuelve una lista de parejas, en donde cada pareja contiene en su
3     parte izquierda un elemento de la segunda lista y en su parte derecha el
4     numero de veces que aparece dicho elemento en la primera lista. -}
5 ocurrenciasElementosRc :: forall a. (Eq a, Show a) => [a] -> [a] -> [(a,Int)]
6 ocurrenciasElementosRc xs [] = []
7 ocurrenciasElementosRc xs (y:ys) = (y, length (filter (== y) xs)) : ocurrenciasElementosRc xs ys
```

■ Mostrar los registros de activación generados por la función definida en el ejercicio anterior con la llamada ocurrencias Elementos [1,2,3] [1,2].

Función	Cuerpo	Args	Resultado
ocurrenciasElementos xs []		[1,2,3] []	
(==) x y	False	2 3	False
(==) x y	x == x	2 2	True
(==) x y	False	2 1	False
filter p xs	$[x \mid x \leftarrow xs, p \ x]$	(==2) [1,2,3]	[2]
length l	m length~[]		1
length l	length (x:xs)	[1]	1
length l	length (x:xs)	$(\mathrm{filter}(==\mathrm{y})\mathrm{xs})$	1
(:) a [a] / cons a [a]	a:[a]	length(filter(==y)xs):ocurrenciasElementosRc xs ys	[(2,1)]
ocurrenciasElementos xs (y:ys)	(y, length(filter(==y)xs)):ocurrenciasElementosRc xs ys	[1,2,3] [2]	[(2,1)]
(==) x y	False	1 3	False
(==) x y	False	1 2	False
(==) x y	x == x	11	True
filter p xs	$[x \mid x \leftarrow xs, p \ x]$	(==1) [1,2,3]	[1]
length l	length []		1
length l	length (x:xs)	[2]	1
length l	length (x:xs)	$(\mathrm{filter}(==\mathrm{y})\mathrm{xs})$	1
(:) a [a] / cons a [a]	a:[a]	length(filter(==y)xs):ocurrenciasElementosRc xs ys	[(1,1),(2,1)]
ocurrenciasElementos xs (y:ys)	(y, length(filter(==y)xs)):ocurrenciasElementosRc xs ys	[1,2,3] $[1,2]$	[(1,1),(2,1)]

• Optimizar la función definida usando recursión de cola. Deben transformar todas las funciones auxiliares que utilicen.

```
1 {- ocurrenciasElementos: Funcion que toma como argumentos dos listas y
2     devuelve una lista de parejas, en donde cada pareja contiene en su parte
3     izquierda un elemento de la segunda lista y en su parte derecha el numero
4     de veces que aparece dicho elemento en la primera lista. -}
5 ocurrenciasElementos :: forall a. (Eq a, Show a) => [a] -> [a] -> [(a,Int)]
6 ocurrenciasElementos xs ys = ocurrenciasElementosTR xs (reverseTR ys []) []
7 -- Uso de reverse para que la salida sea identica.
8 where
```



```
ocurrenciasElementosTR :: forall a. (Eq a, Show a) => [a] -> [a] -> [(a,Int)] -> [(a,Int)]
         ocurrenciasElementosTR _ [] acc = acc
         ocurrenciasElementosTR xs (y:ys) acc = ocurrenciasElementosTR xs ys ((y, occurencesTR y xs 0):acc)
24 occurencesTR :: Eq a => a -> [a] -> Int -> Int
occurencesTR _ [] acc = acc
occurencesTR x (y:ys) acc
     | x == y = occurencesTR x ys (acc + 1)
     | otherwise = occurencesTR x ys acc
33 reverseTR :: [a] -> [a] -> [a]
34 reverseTR [] acc = acc
reverseTR (x:xs) acc = reverseTR xs (x:acc)
```

Usamos ocurrenciasElementos para pasar de una entrada de dos argumentos, a una con 3. De igual manera, para procurar una lista idéntica al ejemplo, usamos reversaTR, igual adaptada al uso de recursión de cola; para que la obtención de elementos pueda obtenerse de atrás para adelante y las duplas aparezcan en el orden correcto c:.

• Mostrar los registros de activación generados por la versión de cola con la misma llamada.

Función	Cuerpo	Args	Resultado
reverseTR ys acc	reverseTR xs (x:acc)	[1,2] []	
ocurrenciaselementos xs ys	ocurrenciasElementosTR xs (reverseTR ys []) []	[1,2,3]	
	↓		
Función	Cuerpo	Args	Resultado
reverseTR ys acc	reverseTR xs (x:acc)	[2] [1]	
ocurrenciasElementos xs ys	ocurrenciasElementosTR xs (reverseTR ys)		
ocurrenciase iementos xs ys	ocurrenciase iementos i r. xs (reverse i r. ys)	[1,2,3]	
	↓		
Función	Cuerpo	Args	Resultado
reverseTR ys acc	reverseTR xs (x:acc)	[][2,1]	[2,1]
ocurrenciasElementos xs ys	ocurrencias Elementos TR xs (reverse TR ys []) []	[1,2,3]	
	↓		
Función	Cuerpo	Args	Resultado
ocurrenciasElementos xs ys	ocurrenciasElementosTR xs (reverseTR ys []) []	[1,2,3] [2,1]	

Función	Cuerpo	Args	Resultado
occurencesTR y xs acc	x == y = occurencesTR x ys (acc + 1) otherwise = occurencesTR x ys acc	2[1,2,3]0	_
(:) a l	a:l	$(2, occurences TR \ 2 \ [1,2,3] \ 0) \ []$	_
ocurrenciasElementosTR xs (y:ys) acc	ocurrenciasElementosTR xs ys ((y, occurencesTR y xs 0):acc)	[1,2,3] $[2,1]$ $[]$	_
ocurrenciasElementos xs ys	ocurrenciasElementosTR xs (reverseTR ys []) []	[1,2,3] $[2,1]$	_

Función	Cuerpo	Args	Resultado
occurencesTR y xs acc	x == y = occurencesTR x ys (acc + 1) $ $ otherwise = occurencesTR x ys acc	2 [2,3] 0	_
(:) a l	a:l	(2, occurencesTR 2 [1,2,3] 0) []	
ocurrenciasElementosTR xs (y:ys) acc	ocurrenciasElementosTR xs ys ((y, occurencesTR y xs 0):acc)	[1,2,3] [2,1] []	_
ocurrenciasElementos xs ys	ocurrenciasElementosTR xs (reverseTR ys []) []	[1,2,3] $[2,1]$	_

Función	Cuerpo	m Args	Resultado
occurencesTR y xs acc	x == y = occurencesTR x ys (acc + 1) otherwise = occurencesTR x ys acc	2 [3] 1	
(:) a l	a:l	(2, occurencesTR 2 [1,2,3] 0) []	_
ocurrenciasElementosTR xs (y:ys) acc	ocurrenciasElementosTR xs ys ((y, occurencesTR y xs 0):acc)	[1,2,3] [2,1] []	_
ocurrenciasElementos xs ys	ocurrenciasElementosTR xs (reverseTR ys []) []	[1,2,3] [2,1]	_

Función	Cuerpo	Args	Resultado
occurencesTR y xs acc	$\mid x == y = occurencesTR \ x \ ys \ (acc + 1) \mid otherwise = occurencesTR \ x \ ys \ acc$	2 [] 1	1
(:) a l	a:l	$(2, occurences TR \ 2 \ [1,2,3] \ 0) \ []$	_
ocurrenciasElementosTR xs (y:ys) acc	ocurrenciasElementosTR xs ys ((y, occurencesTR y xs 0):acc)	[1,2,3] [2,1] []	_
ocurrenciasElementos xs ys	ocurrenciasElementosTR xs (reverseTR ys []) []	[1,2,3] $[2,1]$	_

Función	Cuerpo	Args	Resultado
(:) a l	a:l	(2, 1) []	(2,1):[] = [(2,1)]
ocurrenciasElementosTR xs (y:ys) acc	ocurrenciasElementosTR xs ys ((y, occurencesTR y xs 0):acc)	[1,2,3] [2,1] []	_
ocurrenciasElementos xs ys	ocurrenciasElementosTR xs (reverseTR ys []) []	[1,2,3] $[2,1]$	_

Función	Cuerpo	Args	Resultado
ocurrenciasElementosTR xs (y:ys) acc	ocurrencias ElementosTR xs ys ((y, occurencesTR y xs 0):acc)	[1,2,3] $[1]$ $[(2,1)]$	
ocurrenciasElementos xs ys	ocurrenciasElementosTR xs (reverseTR ys []) []	[1,2,3] [2,1]	

Función	Cuerpo	m Args	Resultado
occurencesTR y xs acc	x == y = occurencesTR x ys (acc + 1) $ $ otherwise = occurencesTR x ys acc	1 [1,2,3] 0	
(:) a l	a:l	(1, occurencesTR 1 [1,2,3] 0) [(2,1)]	
ocurrenciasElementosTR xs (y:ys) acc	ocurrenciasElementosTR xs ys ((y, occurencesTR y xs 0):acc)	[1,2,3] $[1]$ $[(2,1)]$	
ocurrenciasElementos xs ys	ocurrenciasElementosTR xs (reverseTR ys []) []	[1,2,3] [2,1]	_

Función	Cuerpo	Args	Resultado
occurencesTR y xs acc	$\mid x == y = occurencesTR x ys (acc + 1) \mid otherwise = occurencesTR x ys acc$	1 [2,3] 1	
(:) a l	a:l	$(1, occurences TR \ 1 \ [1,2,3] \ 0) \ [(2,1)]$	
ocurrenciasElementosTR xs (y:ys) acc	ocurrenciasElementosTR xs ys ((y, occurencesTR y xs 0):acc)	[1,2,3] $[1]$ $[(2,1)]$	
ocurrenciasElementos xs ys	ocurrenciasElementosTR xs (reverseTR ys []) []	[1,2,3] [2,1]	

Función	Cuerpo	Args	Resultado
occurencesTR y xs acc	$\mid x == y = occurencesTR \ x \ ys \ (acc + 1) \mid otherwise = occurencesTR \ x \ ys \ acc$	1 [3] 1	_
(:) a l	a:l	$(1, occurences TR \ 1 \ [1,2,3] \ 0) \ [(2,1)]$	_
ocurrenciasElementosTR xs (y:ys) acc	ocurrenciasElementosTR xs ys ((y, occurencesTR y xs 0):acc)	[1,2,3] $[1]$ $[(2,1)]$	_
ocurrenciasElementos xs ys	ocurrenciasElementosTR xs (reverseTR ys []) []	[1,2,3] [2,1]	_

Función	Cuerpo	Args	Resultado
occurencesTR y xs acc	x == y = occurencesTR x ys (acc + 1) otherwise = occurencesTR x ys acc	1 1	
(:) a l	a:l	$(1, occurences TR \ 1 \ [1,2,3] \ 0) \ [(2,1)]$	_
ocurrenciasElementosTR xs (y:ys) acc	ocurrenciasElementosTR xs ys ((y, occurencesTR y xs 0):acc)	[1,2,3] $[1]$ $[(2,1)]$	_
ocurrenciasElementos xs ys	ocurrenciasElementosTR xs (reverseTR ys []) []	[1,2,3] $[2,1]$	_

Función	Cuerpo	Args	Resultado
occurencesTR y xs acc	x == y = occurencesTR x ys (acc + 1) $ $ otherwise = occurencesTR x ys acc	1 1	1
(:) a l	a:l	$(1, occurences TR \ 1 \ [1,2,3] \ 0) \ [(2,1)]$	_
ocurrenciasElementosTR xs (y:ys) acc	ocurrenciasElementosTR xs ys ((y, occurencesTR y xs 0):acc)	[1,2,3] $[1]$ $[(2,1)]$	_
ocurrenciasElementos xs ys	ocurrenciasElementosTR xs (reverseTR ys []) []	[1,2,3] $[2,1]$	

Función	Cuerpo	m Args	Resultado
(:) a l	a:l	(1,1) $[(2,1)]$	[0,1):[(2,1)]=[(1,1),(2,1)]
ocurrenciasElementosTR xs (y:ys) acc	ocurrencias Elementos TR xs ys ((y, occurences TR y xs 0):acc)	[1,2,3] [1] $[(2,1)]$	_
ocurrenciasElementos xs ys	ocurrenciasElementosTR xs (reverseTR ys []) []	[1,2,3] [2,1]	_

*Espero se entienda porque de verdad me costó hacer esto :P. Momento LATEX.