SEQUENCE LISTING

<110>	University of Rochester Maquat, Lynne E.	
<120>	NONSENSE-MEDIATED MRNA DECAY	
<130>	21108.0023P1	
	60/405,602 2002-08-22	
<160>	38	
<170>	FastSEQ for Windows Version 4.0	
<210> <211> <212> <213>	20	
<220> <223>	Description of Artificial Sequence:/note = synthetic construct	
<400> gccta	1 ttggt ctattttccc	20
<210> <211> <212> <213>	18	
<220> <223>	Description of Artificial Sequence:/note = synthetic construct	
<400> cctga	2 agttc tcaggatc	18
<210> <211>		
<212> <213>	DNA Artificial Sequence	
<220> <223>	Description of Artificial Sequence:/note = synthetic construct	
<400> atctg	gcace acacetteta caatgagetg eg	32
<210><211><211><212><213>	32	

<220> <223>	Description of Artificial Sequence:/note = synthetic construct	
<400> cgtcat	4 :actc ctgcttgctg atccacatct gc	32
<210> <211> <212> <213>	19	
<220>	ı	
<223>	Description of Artificial Sequence:/note = synthetic construct	
<400> tgcaag	5 ggagt ttcatcctg	19
<210> <211> <212> <213>	21	
<220> <223>	Description of Artificial Sequence:/note = synthetic construct	
<400> agaato	6 cagta gtttaacaca c	21
<210> <211> <212> <213>	22	
<220> <223>	Description of Artificial Sequence:/note = synthetic construct	
<400> tgagca	7 atagt tattaatagc ag	22
<210> <211> <212> <213>	77	
<220> <223>	Description of Artificial Sequence:/note = synthetic construct	
	8 ctcga gaccggtgcc accatggact acaaagacga tgacgacaag gcggaagggc cgtgt gcggatc	60 77
<210><211><212><212><213>	43	

<220> <223>	Description of Artificial Sequence:/note = synthetic construct	
<400> tttaaa	9 acccg gcctgcgggg ccagagtagc caggatcccg cgc	43
<210> <211> <212> <213>	18	
<220> <223>	Description of Artificial Sequence:/note = synthetic construct	
<400> tgacct	10 ttcag cgcctcgg	18
<210><211><212><212><213>	17	
<220> <223>	Description of Artificial Sequence:/note = synthetic construct	
<400> ctccg	11 agtcc ctctgcc	17
<210><211><212><212><213>	19	
<220> <223>	Description of Artificial Sequence:/note = synthetic construct	
<400> ggcaa	12 agget etgagaage	19
<210><211><211><212><213>	17	
<220> <223>	Description of Artificial Sequence:/note = synthetic construct	
<400> ccgag	13 gtccc aaaggcg	17
<210><211><211><212><213>	39	

	Description of Artificial Sequence:/note = synthetic construct	
<400> atcgaa		39
<210> <211> <212> <213>	59	
<220> <223>	Description of Artificial Sequence:/note = synthetic construct	
<400> tacaca	15 aaagc aatgtccatt acatgccacg gtgtttcgtc ctttccacaa gatatataa	59 .
<210> <211> <212> <213>	48	
<220> <223>	Description of Artificial Sequence:/note = synthetic construct	
<400> cgaaat	16 tctag aaaaaagtgg catgtaatgg acattgccta cacaaagc	48
<210>	17	
<211> <212> <213>		
<220> <223>	Description of Artificial Sequence:/note = synthetic construct	
<400> gcugc	17 agcag aacaggccat t	21
<210> <211> <212> <213>	21	
<220> <223>	Description of Artificial Sequence:/note = synthetic construct	
<400> guaca	18 accca ggauaugugt t	21
<210> <211> <212> <213>	59	

<220> <223>	Description of Artificial Sequence:/note = synthetic construct	
<400> tacaca	19 aaaca gggctgttct tcgagatgcg gtgtttcgtc ctttccacaa gatatataa	59
<210> <211> <212> <213>	48	
<220> <223>	Description of Artificial Sequence:/note = synthetic construct	
<400> cgaaat	20 totag aaaaaagcat otogaagaac agoootgota cacaaaca	48
<210> <211> <212> <213>	59	
<220> <223>	Description of Artificial Sequence:/note = synthetic construct	
<400> tacaca	21 aaagc aatgteegtt geatgeeaeg gtgtttegte ettteeaeaa gatatataa	59
<210> <211> <212> <213>	48	
<220> <223>	Description of Artificial Sequence:/note = synthetic construct	
<400> cgaaat	22 tctag aaaaaagtgg catgcaacgg acattgccta cacaaagc	48
<210> <211> <212> <213>	59	
<220> <223>	Description of Artificial Sequence:/note = synthetic construct	
<400> tacaca	23 aaagt tcagaggetg tgtcataacg gtgtttcgtc ctttccacaa gatatataa	59
<210><211><211><212><213>	48	
<220>		

WO 2004/037976	PCT/US2003/026166
<pre><223> Description of Artificial Sequence:/note = synthetic construct</pre>	
<400> 24 cgaaatctag aaaaagtta tgacacagcc tctgaaccta cacaaagt	48
<210> 25 <211> 59 <212> DNA <213> Artificial Sequence	
<220> <223> Description of Artificial Sequence:/note = synthetic construct	
<400> 25 tacacaaacc aaggcacttg ttggcagtcg gtgtttcgtc ctttccacaa ga	tatataa 59
<210> 26 <211> 48 <212> DNA <213> Artificial Sequence	
<220> <223> Description of Artificial Sequence:/note = synthetic construct	
<400> 26 cgaaatctag aaaaaagact gccaacaagt gccttggcta cacaaacc	48
<210> 27 <211> 20 <212> DNA <213> Artificial Sequence	
<220> <223> Description of Artificial Sequence:/note = synthetic construct	
<400> 27 gcagcgagca actgagaagc	20
<210> 28 <211> 22 <212> DNA <213> Artificial Sequence	
<220> <223> Description of Artificial Sequence:/note = synthetic construct	
<400> 28 gggtttagtg gtacttgtga gc	22
<210> 29 <211> 19 <212> DNA <213> Artificial Sequence	

<223> Description of Artificial Sequence:/note =

<220>

WO 2004/037976	PCT/US2003/026166					
synthetic construct						
<400> 29 gactgagccg atcccgcgc	19					
<210> 30 <211> 20 <212> DNA <213> Artificial Sequence						
<220> <223> Description of Artificial Sequence:/note = synthetic construct						
<400> 30 gcagtaacgg cagacttctc	20					
<210> 31 <211> 19 <212> DNA <213> Artificial Sequence						
<220> <223> Description of Artificial Sequence:/note = 'synthetic construct						
<400> 31 cctttcctgc tcttgcctg	19					
<210> 32 <211> 23 <212> DNA <213> Artificial Sequence						
<220> <223> Description of Artificial Sequence:/note = synthetic construct						
<400> 32 gcttttatt tgtcagaaga cag	23					
<210> 33 <211> 30 <212> DNA <213> Artificial Sequence						
<220> <223> Description of Artificial Sequence:/note = synthetic construct						
<400> 33 atctggcacc acaccttcta caatgagctg	30					
<210> 34 <211> 30 <212> DNA <213> Artificial Sequence						
<220> <223> Description of Artificial Sequence:/note = synthetic construct	•					

	<400> 34 cgtcatactc ctgcttgctg atccacatct											30					
<210> 35 <211> 18 <212> DNA <213> Artificial Sequence																	
<220> <223> Description of Artificial Sequence:/note = synthetic construct																	
<400> 35 atgacttcga aagtttat													18				
<210> 36 <211> 19 <212> DNA <213> Artificial Sequence																	
<220> <223> Description of Artificial Sequence:/note = synthetic construct																	
)> 36 agatt		atcaa	acgca	ì												19
<210> 37 <211> 1419 <212> PRT <213> Artificial Sequence																	
<220 <223	3> De		_	on of			cial	Sequ	ience	∋:/no	ote =	=					
<400)> 3	7															
Met 1	Ala	Glu	_	Leu 5		_			10					15			
-			20	Thr				25					30				
Lys	Glu	Leu 35	Lys	Glu	Ala	Arg	Pro 40	Arg	Lys	Asp	Asn	Arg 45	Arg	Pro	Asp		
Leu	Glu 50	Ile	Tyr	Lys	Pro	Gly 55	Leu	Ser	Arg	Leu	Arg 60	Asn	Lys	Pro	Lys		
Ile 65	Lys	Glu	Pro	Pro	Gly 70	Ser	Glu	Glu	Phe	Lys 75	Asp	Glu	Ile	Val	Asn 80		
	Arg	Asp	Cys	Ser 85	Ala	Val	Glu	Asn	Gly 90	Thr	Gln	Pro	Val	Lys 95	Asp		
Val	Суз	Lys	Glu 100	Leu	Asn	Asn	Gln	Glu 105	Gln	Asn	Gly	Pro	Ile 110	Asp	Pro		
Glu	Asn	Asn 115	Arg	Gly	Gln	Glu	Ser 120	Phe	Pro	Arg	Thr	Ala 125	Gly	Gln	Glu		
Asp	Arg 130		Leu	Lys	Ile	Ile 135		Arg	Thr	Lys	Lys 140		Asp	Leu	Gln		
Ile 145		Gln	Pro	Gly	Arg 150		Leu	Gln	Thr	Val 155		Lys	Glu	Ser	Ala 160		
	Arg	Val	Glu	Glu 165		Glu	Val		Asn	Gln	Val	Glu	Gln	Leu 175	Arg		

Val Glu Glu Asp Glu Cys Arg Gly Asn Val Ala Lys Glu Glu Val Ala Asn Lys Pro Asp Arg Ala Glu Ile Glu Lys Ser Pro Gly Gly Gly Arg Val Gly Ala Ala Lys Gly Glu Lys Gly Lys Arg Met Gly Lys Gly Glu Gly Val Arg Glu Thr His Asp Asp Pro Ala Arg Gly Arg Pro Gly Ser Ala Lys Arg Tyr Ser Arg Ser Asp Lys Arg Arg Asn Arg Tyr Arg Thr Arg Ser Thr Ser Ser Ala Gly Ser Asn Asn Ser Ala Glu Gly Ala Gly Leu Thr Asp Asn Gly Cys Arg Arg Arg Arg Gln Asp Arg Thr Lys Glu Arg Pro Pro Leu Lys Lys Gln Val Ser Val Ser Ser Thr Asp Ser Leu Asp Glu Asp Arg Ile Asp Glu Pro Asp Gly Leu Gly Pro Arg Arg Ser Ser Glu Arg Lys Arg His Leu Glu Arg Asn Trp Ser Gly Arg Gly Glu Gly Glu Gln Lys Thr Ser Ala Lys Glu Tyr Arg Gly Thr Leu Arg Val Thr Phe Asp Ala Glu Ala Met Asn Lys Glu Ser Pro Met Val Arg Ser Ala Arg Asp Asp Met Asp Arg Gly Lys Pro Asp Lys Gly Leu Ser Ser Gly Gly Lys Gly Ser Glu Lys Gln Glu Ser Lys Asn Pro Lys Gln Glu Leu Arg Gly Arg Gly Ile Leu Ile Leu Pro Ala His Thr Thr Leu Ser Val Asn Ser Ala Gly Ser Pro Glu Ser Ala Pro Leu Gly Pro Arg Leu Leu Phe Gly Ser Gly Ser Lys Gly Ser Arg Ser Trp Gly Arg Gly Gly Thr Thr Arg Arg Leu Trp Asp Pro Asn Asn Pro Asp Gln Lys Pro Ala Leu Lys Thr Gln Thr Pro Gln Leu His Phe Leu Asp Thr Asp Asp Glu Val Ser Pro Thr Ser Trp Gly Asp Ser Arg Gln Ala Gln Ala Ser Tyr Tyr Lys Phe Gln Asn Ser Asp Asn Pro Tyr Tyr Tyr Pro Arg Thr Pro Gly Pro Ala Ser Gln Tyr Pro Tyr Thr Gly Tyr Asn Pro Leu Gln Tyr Pro Val Gly Pro Thr Asn Gly Val Tyr Pro Gly Pro Tyr Tyr Pro Gly Tyr Pro Thr Pro Ser Gly Gln Tyr Val Cys Ser Pro Leu Pro Thr Ser Thr Met Ser Pro Glu Glu Val Glu Gln His Met Arg Asn Leu Gln Gln Glu Leu His Arg Leu Leu Arg Val Ala Asp Asn Gln Glu Leu Gln Leu Ser Asn Leu Leu Ser Arg Asp Arg Ile Ser Pro Glu Gly Leu Glu Lys Met Ala Gln Leu Arg Ala Glu Leu Leu Gln Leu Tyr Glu Arg Cys Ile Leu Leu Asp Ile Glu Phe Ser Asp Asn Gln Asn Val Asp Gln Ile Leu Trp Lys Asn Ala Phe Tyr Gln Val Ile Glu Lys Phe Arg

Gln	Leu	Val	Lys 660	Asp	Pro	Asn	Val	Glu 665	Asn	Pro	Glu	Gln	Ile 670	Arg	Asn
Arg	Leu	Leu 675	Glu	Leu	Leu	Asp	Glu 680	Gly	Ser	Asp	Phe	Phe 685	Asp	Ser	Leu
Leu	Gln 690	Lys	Leu	Gln	Val	Thr 695	Tyr	Lys	Phe	Lys	Leu 700	Glu	Asp	Tyr	Met
Asp 705	Gly	Leu	Ala	Ile	Arg 710	Ser	Lys	Pro	Leu	Arg 715	ГÀЗ	Thr	Val	Lys	Tyr 720
Ala	Leu	Ile	Ser	Ala 725	Gln	Arg	Cys	Met	Ile 730	Cys	Gln	Gly	Asp	Ile 735	Ala
Arg	Tyr	Arg	Glu 740	Gln	Ala	Ser	Asp	Thr 745	Ala	Asn	Tyr	Gly	Lys 750	Ala	Arg
Ser	Trp	Tyr 755	Leu	Lys	Ala	Gln	His 760	Ile	Ala	Pro	Lys	Asn 765	Gly	Arg	Pro
Tyr	Asn 770	Gln	Leu	Ala	Leu	Leu 775	Ala	Val	Tyr	Thr	Arg 780	Arg	Lys	Leu	Asp
Ala 785	Val	Tyr	Tyr	Tyr	Met 790	Arg	Ser	Leu	Ala	Ala 795	Ser	Asn	Pro	Ile	Leu 800
		_	Glu	805					810				_	815	
Ala	Glu	Gln	Met 820	Glu	Lys	Lys	Gln	His 825	Glu	Glu	Phe	Asp	Leu 830	Ser	Pro
_		835	Arg	_	_	_	840				_	845			
_	850		Arg			855					860				
865		_	Thr		870		_	_		875					880
_	,		Ser	885		_			890					895	
			His 900					905					910		
		915	Ala		_		920	-				925			
	930		Ser			935			_		940				
945			Phe		950					955	_	_	_		960
		-	Arg	965					970					975	
			Ser 980				_	985	_		_		990	_	
		995	Ala				1000)				100	5		
_	1010)	Val			1015	5		_		1020	0			
1025	5		Val		1030)				103	5				1040
			Pro	104	5				1050	C				105	5
			Thr 1060)				106	5				107	0	
		107				_	1080)		_		108	5		
	1090)	Glu		_	109	5			_	110	0			
1105	5		Gln		1110	כ כ				111!	5		_	_	1120
Ile	Ala	ALa	Asp	Cys 112	_	Arg	val	Thr	Val 113		Lys	Tyr	Phe	Leu 113	

Ala Leu Cys Gly Gln Glu Glu Pro Leu Leu Ala Phe Lys Gly Gly Lys 1140 1145 1150 Tyr Val Ser Val Ala Pro Val Pro Asp Thr Met Gly Lys Glu Met Gly 1155 1160 1165 Ser Gln Glu Gly Thr Arg Leu Glu Asp Glu Glu Asp Val Val Ile 1175 1180 Glu Asp Phe Glu Glu Asp Ser Glu Ala Glu Gly Ser Gly Glu Asp 1190 1195 Asp Ile Arg Glu Leu Arg Ala Lys Lys Leu Ala Leu Ala Arg Lys Ile 1205 1210 1215 Ala Glu Gln Gln Arg Gln Glu Lys Ile Gln Ala Val Leu Glu Asp 1220 1225 His Ser Gln Met Arg Gln Met Glu Leu Glu Ile Arg Pro Leu Phe Leu 1235 1240 1245 Val Pro Asp Thr Asn Gly Phe Ile Asp His Leu Ala Ser Leu Ala Arg 1255 1260 Leu Leu Glu Ser Arg Lys Tyr Ile Leu Val Val Pro Leu Ile Val Ile 1270 1275 Asn Glu Leu Asp Gly Leu Ala Lys Gly Gln Glu Thr Asp His Arg Ala 1285 1290 Gly Gly Tyr Ala Arg Val Val Gln Glu Lys Ala Arg Lys Ser Ile Glu 1305 Phe Leu Glu Gln Arg Phe Glu Ser Arg Asp Ser Cys Leu Arg Ala Leu 1320 1325 Thr Ser Arg Gly Asn Glu Leu Glu Ser Ile Ala Phe Arg Ser Glu Asp 1335 1340 Ile Thr Gly Gln Leu Gly Asn Asn Asp Leu Ile Leu Ser Cys Cys 1350 1355 1360 Leu His Tyr Cys Lys Asp Lys Ala Lys Asp Phe Met Pro Ala Ser Lys 1365 1370 Glu Glu Pro Ile Arg Leu Leu Arg Glu Val Val Leu Leu Thr Asp Asp 1385 1380 1390 Arg Asn Leu Arg Val Lys Ala Leu Thr Arg Asn Val Pro Val Arg Asp 1400 1405 Ile Pro Ala Phe Leu Thr Trp Ala Gln Val Gly 1410 1415 <210> 38 <211> 5965 <212> DNA <213> Artificial Sequence <223> Description of Artificial Sequence:/note = synthetic construct cctggctgcg cgcggcggtg gcggagccgc tacggctgta gcagcagccg cgaagatggc 60 ggaagggetg gagegtgtge ggateteege gteggagetg egegggatee tggetaetet 120 ggccccgcag gccgggagca gagaaaacat gaaggaatta aaggaggcca ggccgcgcaa 180 agataacagg cgtccagatc tggaaatcta taagcctggc ctttctcggc taaggaacaa 240 gcccaaaatc aaggaacccc ctgggagtga ggaattcaaa gatgaaattg ttaatgaccg 300 agattgctct gctgttgaaa atggtacaca gcccgttaaa gatgtctgca aggaactgaa 360 caaccaaqag cagaatggtc ctatagaccc agaaaataat cggggacaag aatcctttcc 420 taggactgct ggacaagagg atcgtagtct aaaaaattatc aaaagaacaa agaaacccga 480 cctgcagatc tatcagcctg gacgacgttt gcagactgtt agcaaagaat ccgccagtcg 540 ggtggaggag gaagaagtcc tcaaccaggt agaacaactg agagtagagg aagatgagtg 600 taggggaaat gttgcgaagg aggaagttgc gaataaacca gacagggccg agatagaaaa 660 gagcccaggt ggtgggagag taggggctgc aaaaggagaa aaaggaaaga ggatgggaaa 720 aggggagggg gtgagggaaa cccacgacga cccggcccgc gggaggccgg gctccgcaaa 780 gegetactee egeteagaca aacgaaggaa tegetacege aegegeagea eeageteage 840

tggcagcaac aacagcgctg agggagctgg cctgacggat aatggatgtc gccgccgcg 900 acaggatagg accaaggaga ggccaccact gaagaagcaa gtgtctgtgt cctcaaccga 960 ttccttagac gaggacagaa ttgatgagcc tgatggatta ggacccagga gaagttcaga 1020 aaggaagaga catttagaaa gaaactggtc tggccgtggg gagggtgagc agaaaaccag 1080 tgctaaagaa tatcgaggca ctcttcgtgt cactttcgat gcagaagcca tgaacaaaga 1140 gtctcccatg gtgaggtcag ccagggatga tatggataga ggaaagcctg acaaaggctt 1200 gagcagtggg ggcaaaggct ctgagaagca ggagtccaaa aacccgaaac aagaacttcg 1260 gggtcgtggt cgtggcattc tgattttgcc tgcccatacc accctatctg tcaattcagc 1320 aggttctcca gagtccgcgc ctttgggacc tcggcttttg tttggatctg gtagtaaggg 1380 atctcggagt tggggccgtg gaggcaccac acgccgattg tgggacccaa acaatcctga 1440 tcagaaacct gctctaaaga ctcagacgcc ccagctacat ttcttggaca ctgatgatga 1500 agtcagccct acatcttggg gtgactcacg ccaggctcag gcatcttact ataagtttca 1560 aaactctgac aacccctatt attacccccg gacaccaggc cctgcctccc agtatcccta 1620 tacgggctat aaccetetac agtacceagt gggccctacg aatggtgtgt acceagggcc 1680 ttactaccca ggctacccga ctccgtcagg acagtatgtq tgtagccctc tacctaccag 1740 caccatgagt cccgaggagg tagagcagca catgaggaac ctgcagcaac aggagctgca 1800 caggettete egggtggetg acaaccagga actgeagete ageaacctge tetecaggga 1860 ccgcatcagt ccggagggcc tggagaagat ggcgcaactc agagctgaac tgctgcagct 1920 atatgagege tgtattetat tagatattga gttetetgat aateagaatg tggateagat 1980 cctgtggaag aatgctttct atcaggtgat tgagaagttc aggcaacttg tcaaggatcc 2040 gaatgttgag aacccagaac agattcggaa cagacttttg gagctcttgg atgagggtag 2100 tgacttcttt gatagtttgc ttcagaagct gcaggttact tacaagttca aactggaaga 2160 ctacatggat ggtcttgcca ttcgcagcaa gccattacgc aagacagtaa aatatgcctt 2220 gatcagtgcc cagcgatgca tgatatgcca aggagatatt gctaggtacc gggagcaagc 2280 cagtgataca gcgaattatg ggaaagcacg cagttggtac ctgaaggccc agcacattgc 2340 toccaagaat gggcgcccct ataaccagtt ggctttgctg gcagtgtata cgaggaggaa 2400 gettgaeget gtetattaet atatgegeag tttagetgee ageaacceta teetgaetge 2460 caaggagagt ctcatgagct tgtttgaaga gaccaagcgg aaggcagaac agatggaaaa 2520 gaagcaacat gaggaatttg acctgagccc tgaccagtgg cggaaaggaa agaagtctac 2580 2640 acggtettee cagggeactg agtetgggaa ggattetgag caagagaatg ggetgggeag 2700 cctgagtccc agtgatctga acaaaaggtt catcctcagt tttctccatg cccatgggaa 2760 gctgtttacc cggattggga tggagacatt ccctgcagtg gctgagaagg tcctcaagga 2820 gttccaggtg ttactgcagc acagcccctc tcccattgga agtacccgca tgctgcagct 2880 tatgaccatc aatatgtttg cagtacacaa ctcccagctg aaagactgct tctcggagga 2940 gtgccgctct gtgatccagg aacaagccgc agctctgggc ttggccatgt tttctctact 3000 ggtccgccgc tgcacctgct tacttaagga gtccgccaaa gctcagctgt cctctcctga 3060 ggaccaggat gaccaagacg acatcaaggt gtcttccttt gtcccggacc tgaaggagct 3120 gctccccagt gtcaaagtct ggtcagattg gatgctcggc tacccggaca cctggaatcc 3180 tecteceaca tecetggate tgecetegea tgttgetgtg gatgtatggt egacgetgge 3240 tgatttctgt aacatactga ctgcagtgaa tcagtctgag gtgccactgt acaaggaccc 3300 ggatgatgac ctcaccettc ttatcctgga agaggatcgg cttctctcgg gctttgtccc 3360 cttgctggct gcccctcagg acccctgcta cgtggagaaa acctcggata aggttattgc 3420 agctgactgc aaaagggtca cagtgctgaa gtattttctg gaagcccttt gtggacaaga 3480 agageetetg etggeattea agggtggaaa gtatqtqtea qtqqcacecq teccaqaeae 3540 catgggaaag gaaatgggaa gccaagaggg aacacgactg gaagatgagg aggaggatgt 3600 ggtgattgaa gactttgagg aagattcaga ggctgaagqc agcqgagqcg agqatgacat 3660 cagggagett egggeeaaga agetggetet ggeeaggaag atagetgage ageagegteg 3720 ccaggaaaag atccaggctg tcctggagga ccacagtcag atgaggcaga tggagctcga 3780 aatcagacct ttgttcctcg taccagacac caacggcttc attgaccacc tggccagtct 3840 qqcqcqqctq ctqqaqaqca qqaaqtacat cctqqtqqtq cccctcatcq tqatcaatqa 3900 gctggacggc ctggccaagg ggcaggagac agaccaccgg gctgggggct acgcccgtgt 3960 ggtacaagag aaggcccgca agtccatcga gttcctcgag cagcgattcg agagtcggga 4020 ctcttgcctg cgagccctga ccagccgtgg caatgaactc gaatccatcg ccttccgcag 4080 tgaggacatc actggccagc tgggtaacaa cgatgatctc atcctgtcct gctgcctcca 4140 ctactgcaaa gacaaggcta aggacttcat gcccgccagc aaagaggagc caatccggct 4200 actgcgggag gtggtgctgt tgacggatga ccggaacctg cgtgtgaagg cgctcacaag 4260 quatretect gtacgggaca teccageett ceteacgtgg geecaggtgg getgagggag 4320 ccacactggg gcccccccc cccgtggaac cgttcctgaa aggccaccag gcgcccagtg 4380 tagcacggaa gatgcccacg tgcctgagcc accaatccac ccagacaata aaccatcctc 4440 ttccaaccca cgccacggcc atgctgtggg ggacctgctc ctcacagagc ccctcccaag 4500

gatcgggcgg	aagctgctgg	gaccctcctg	ggctgccagg	atttagcagg	gaggtggctg	4560
gctacagcaa	cagcagctgg	gcaagccaga	taggccgccc	atgctctcag	cctttctccc	4620
tcccccgtct	cattccaagg	ctgagggagg	gccttctcgc	ctggggacgc	agccactttc	4680
tccagtggag	acagggcagg	ggttcagagt	ttccgtcaga	tgcagtgaaa	tcacagttcc	4740
ctttcatctt	cagaacctct	gtcgtgaatg	tgttcaagag	gctttggtta	agtcaggaag	4800
aagtgcccag	ggtgtgtgtc	cccagtctcc	ctgaggcctg	gactcgccca	tgaacccaag	4860
tcggcttcta	gacagcatgt	ccctaacagc	agccctgggc	ccccacctct	tctaccatcc	4920
accccagact	taccacacac	ccttcctgct	gctcctcttc	ctgcccttat	caacctgggt	4980
ccctcacact	tcgccagttg	cgtccccgtg	gacagtcatg	agtctagagg	aaaggggcat	5040
ctggtctcag	gcccgtgctc	tcgggtggcc	tccacctgct	ccctttctcc	tcactggcct	5100
ttctttccgt	ctagcctcct	cttcaggaaa	tgtcctgact	ctcctcagct	ccccttcac	5160
ccctccttgc	ccgcctaccc	tccctccaga	atagcccctc	accettette	cccttctagt	5220
tgatcctttt	cacctccctg	atccccttca	tttcttcacc	gcggttcctc	gtcatagggg	5280
ttctcactct	gaactttccc	tctctactac	ccatggcagg	aacctagtac	aggtctccca	5340
		gctcctgtgc				5400
gcctgaggca	ttccagtgct	ggggcaccgt	cgcctaacct	ggtttctagc	tttgccctca	5460
ctccccggaa	aaactgacac	tgacacaggg	gccctttcct	tgccccttta	gctggtacct	5520
		caagaatgag				5580
aacttagggg	aagacggggt	tttcggtgga	gccaggggca	aatcttaatg	ggaccagtgg	5640
		gcctgactgc				5700
		gactatgcca				5760
aggccagtag	tttgggggta	ggagtcccct	agagtctcag	aagactgggc	tctttggagt	5820
		tttaagattc				5880
		tctcctttct	gtcccgtttg	cagcactggt	tttgtttcct	5940
taataaattt	ttagttatga	aacat				5965