Cryptography

Diffie-Hellman Key Exchange and ElGamal Cryptosystem
Introduction to Cryptography and Network Security – Behrouz A. Frouzan
Cryptography and Network Security Principals and Practices – Willam Stallings
Serious Cryptography – Jean Phillip Aumasson

Content

Content

Exponentiation and Logarithms

Diffie-Hellman Key Exchange

Diffie-Hellman Protocols

ElGamal Cryptosystem

Exponentiation and logarithms are the inverse functions of each other

Exponentiation:
$$y = a^x \rightarrow \text{Logarithms: } x = \log_a y$$

- \circ a is called the base of the logarithm
- In cryptography, we use **modular exponentiation**:

$$y = a^x \mod n$$

- This is used for encryption/decryption
 - o E.g., ElGamal

- Exponentiation for encryption → logarithms for breaking a cipher
- HOW HARD IS IT?

- Exponentiation for encryption → logarithms for breaking a cipher
- HOW HARD IS IT?
- Two ways to reverse the exponentiation $\rightarrow x = \log_a y \pmod{n}$:

- Exhaustive search = brute force
- Try all possible values of x that satisfy $y = a^x \mod n$ • Very inefficient!

```
Modular_Logarithm (a, y, n)

{
	for (x = 1 \text{ to } n - 1)

	{
		if (y \equiv a^x \mod n) return x

	}
	return failure

}
```

- The second way is using discrete logarithm.
- To understand the discrete logarithms, we need to learn some concepts:

Discrete Logarithm

Finite multiplicative group

Order of the group

Order of an element

Euler's Theorem

Primitive roots

Cyclic group

Finite Multiplicative Group

Discrete Logarithm

Finite multiplicative group

Order of the group

Order of an element

Euler's Theorem

Primitive roots

Cyclic group

 $G = \langle Z_n, \overline{\cdot} \rangle$

Discrete Logarithm

Finite multiplicative group

Order of the group

Order of an element

Euler's Theorem

Primitive roots

Cyclic group

Finite Multiplicative Group

- A group is a set of elements with a binary operation "⊡"
 - \circ The elements are modulo n
- It has four properties:

Axiom	Relation	Meaning
Closure	$a, b \in G \rightarrow c = a \odot b \in G$	The result of applying the operation on two elements in the set is another element in the set
Associativity	$a,b,c \in G \rightarrow (a \boxdot b) \boxdot c = a \boxdot (b \boxdot c)$	The order of operations doesn't matter
Existence of identity	$\forall a \in G, \exists e \mid e \boxdot a = a$	Every element has an identity element
Existence of inverse	$\forall a \in G, \exists a` \mid a \boxdot a` = 1$	Every element has an inverse element

Discrete Logarithm

Finite multiplicative group

Order of the group

Order of an element

Euler's Theorem

Primitive roots

Cyclic group

Finite Multiplicative Group

- $G = \langle Z_n^*, \times \rangle$
- A group is a set of elements with a binary operation "x"
 - \circ The elements are modulo n
 - \circ The integers in the set are <u>relatively prime</u> to n
- It has four properties:

Axiom	Relation	Meaning
Closure	$a, b \in G \rightarrow c = a \times b \in G$	The result of applying the operation on two elements in the set is another element in the set
Associativity	$a, b, c \in G \rightarrow (a \times b) \times c = a \times (b \times c)$	The order of operations doesn't matter
Existence of identity	$\forall a \in G, \exists e \mid e \times a = a$	e = 1
Existence of inverse	$\forall a \in G, \exists a` \mid a \times a` = 1$	a = EGCD(a, n)

Discrete Logarithm

Finite multiplicative group

Order of the group

Order of an element

Euler's Theorem

Primitive roots

Cyclic group

- Example: let n = 7:
- So $G = \langle Z_7^*, \times \rangle = \{1, 2, 3, 4, 5, 6\}$

Axiom	Relation
Closure	$(4\times5) mod 7 = 6$
Associativity	$[(2+3)+4] \mod 7 = [2+(3+4)] \mod 7 = 2$
Existence of identity	$(5\times1) mod 7 = 5$
Existence of inverse	$(4 \times 2) mod 7 = 1 \mid egcd(4,7) = 1$

Discrete Logarithm

Finite multiplicative group

Order of the group

Order of an element

Euler's Theorem

Primitive roots

Cyclic group

Order of the group

- |G| = number of elements in the group
- Example: $G = < Z_7^*, \times > = 6$

How to find the order of the group with modulus n?

- Note that the order of the group doesn't have to be n-1.
 - \circ We need to count the number of elements that are relatively prime with n.

Discrete Logarithm

Finite multiplicative group

Order of the group

Order of an element

Euler's Theorem

Primitive roots

Cyclic group

Order of the group

- |G| = number of elements in the group
- Example: $G = < Z_7^*, \times > = 6$

- If the group modulus n can be factored into prime factors, we can use Euler's totient function
- Example: $G = \langle Z_{21}^*, \times \rangle = \phi(21) = \phi(3) \times \phi(7) = (3-1) \times (7-1) = 12$
- The elements are {1,2,4,5,8,10,11,13,16,17,19,20}
 - These are <u>relatively prime</u> with 21

Discrete Logarithm

Finite multiplicative group

Order of the group

Order of an element

Euler's Theorem

Primitive roots

Cyclic group

Order of an element

- ord(a) is the smallest integer $i \mid a^i \equiv 1 \pmod{n}$
- **Example**: find the order of all elements in $G = < Z_{10}^*, \times >$

$$G = \{1, 3, 7, 9\}$$
 (use Lagrange theorem for faster computations)

a)
$$1^1 \equiv 1 \pmod{10} \to ord(1) = 1$$

b)
$$3^1 \equiv 3 \pmod{10}$$
; $3^2 \equiv 9 \pmod{10}$; $3^4 \equiv 1 \pmod{10} \rightarrow ord(3) = 4$

c)
$$7^1 \equiv 7 \pmod{10}$$
; $7^2 \equiv 9 \pmod{10}$; $7^4 \equiv 1 \pmod{10} \rightarrow ord(7) = 4$

d)
$$9^1 \equiv 9 \pmod{10}$$
; $9^2 \equiv 1 \pmod{10} \rightarrow ord(9) = 2$

Discrete Logarithm

Finite multiplicative group

Order of the group

Order of an element

Euler's Theorem

Primitive roots

Cyclic group

Euler's Theorem

- If $a \in G = \langle Z_n^*, \times \rangle$, then $a^{\phi(n)} \equiv 1 \mod n$
- **Example**: for $G = < Z_8^*$, $\times > = \{1, 3, 5, 7\}$, we have $\phi(8) = 4$
 - \circ For $i = \phi(n) = 4 \rightarrow x = 1$ for every a
 - \circ The values of x = 1 for many values of i

	i = 1	i = 2	i = 3	i = 4	i = 5	i = 6	i = 7
a=1	x: 1	<i>x</i> : 1	x: 1	x: 1	x: 1	x: 1	x: 1
a=3	<i>x</i> : 3	x: 1	<i>x</i> : 3	x: 1	<i>x</i> : 3	x: 1	x: 3
a=5	<i>x</i> : 5	x: 1	x: 5	x: 1	<i>x</i> : 5	x: 1	x: 5
<i>a</i> = 7	x: 7	x: 1	x: 7	<i>x</i> : 1	x: 7	x: 1	<i>x</i> : 7

Euler's Theorem

- If $a \in G = <$
- Example: fo
 - \circ For $i = \phi$ (
 - The values

Useful for

- Computing large modular exponentiations
- Computing modular inverses

$$a^{\phi(n)-1} \equiv a^{-1} \pmod{n}$$

Discrete Logarithm			
	Diecr	ata I c	voarithm
	יוטכוי	CLC LL	gai i tiiii

Finite multiplicative group

Order of the group

Order of an element

Euler's Theorem

Primitive roots

Cyclic group

a=1	x: 1	<i>x</i> : 1	x: 1	x: 1	<i>x</i> : 1	<i>x</i> : 1	x: 1
a=3	<i>x</i> : 3	x: 1	<i>x</i> : 3	x: 1	<i>x</i> : 3	<i>x</i> : 1	<i>x</i> : 3
a=5	x: 5	x: 1	x: 5	x: 1	x: 5	x: 1	x: 5
a=7	x: 7	x: 1	<i>x</i> : 7	x: 1	<i>x</i> : 7	x: 1	x: 7

Discrete Logarithm Finite multiplicative group Order of the group Order of an element Euler's Theorem Primitive roots

Cyclic group

Primitive root

- In $G = \langle Z_n^*, \times \rangle$, if $ord(a) = \phi(n) \rightarrow a$ is called the <u>primitive root</u> of G.
- Example: $G = \langle Z_8^*, \times \rangle = \{1, 3, 5, 7\}, \ \phi(8) = 4 \text{ has no primitive roots.}$
 - \circ Recall that the order should be the smallest $i \mid a^i \equiv 1 \ mod \ n^i$
 - The order of all elements are all smaller than 4

	i = 1	i = 2	i = 3	i = 4	i = 5	i = 6	i = 7
a=1	x: 1	x: 1	x: 1	x: 1	x: 1	x: 1	x: 1
a=3	x: 3	<i>x</i> : 1	x: 3	x: 1	x: 3	x: 1	x: 3
a=5	x: 5	x: 1	x: 5	x: 1	x: 5	x: 1	x: 5
a = 7	x: 7	x: 1	x: 7	x: 1	x: 7	x: 1	<i>x</i> : 7

Discrete Logarithm

Finite multiplicative group

Order of the group

Order of an element

Euler's Theorem

Primitive roots

Cyclic group

Primitive root

• For $G = \langle Z_7^*, \times \rangle$, $\phi(7) = 6$ has two primitive roots at a = 3,5 because ord(3) = 6 and ord(5) = 6

		i = 1	i = 2	i = 3	i = 4	i = 5	i = 6
	a=1	<i>x</i> : 1	x: 1	x: 1	x: 1	x: 1	<i>x</i> : 1
	a=2	x: 2	x: 4	<i>x</i> : 1	x: 2	<i>x</i> : 4	<i>x</i> : 1
Primitive root \rightarrow	a=3	<i>x</i> : 3	x: 2	x: 6	x: 4	<i>x</i> : 5	<i>x</i> : 1
	a=4	x: 4	x: 2	<i>x</i> : 1	x: 4	x: 2	<i>x</i> : 1
Primitive root \rightarrow	a=5	x: 5	x: 4	x: 6	x: 2	<i>x</i> : 3	<i>x</i> : 1
	<i>a</i> = 6	<i>x</i> : 6	<i>x</i> : 1	<i>x</i> : 6	<i>x</i> : 1	<i>x</i> : 6	<i>x</i> : 1

Discrete Logarithm Finite multiplicative group Order of the group Order of an element Euler's Theorem Primitive roots Cyclic group

Primitive root

• Rule: The group $G = < Z_n^*$, $\times >$ has primitive roots only if $n = 2, 4, p^t$ or $2p^t \mid p$ is an odd prime. number (not 2) and t is an integer

- Example: For which value of n, does the $G = <\overline{Z_n}$, $\times >$ have primitive roots: 17, 20, 38, and 50?
- a) $G = \langle Z_{17}^*, \times \rangle$ has primitive roots; 17 is prime and t = 1
- b) $G = \langle Z_{20}^*, \times \rangle$ has no primitive roots
- c) $G = \langle Z_{38}^*, \times \rangle$ has primitive roots; $38 = 2 \times 19$ and 19 is a prime
- d) $G = \langle Z_{50}^*, \times \rangle$ has primitive roots; $50 = 2 \times 5^2$ and 5 is a prime

Discrete Logarithm

Finite multiplicative group

Order of the group

Order of an element

Euler's Theorem

Primitive roots

Cyclic group

Primitive root

• Rule:

If the group $G=<Z_n^*$, $\times>$ has primitive roots, the number of primitive roots = $\phi(\phi(n))$

• Example: the number of primitive root in $G = \langle Z_{17}^*, \times \rangle$ is $\phi(\phi(17)) = \phi(16) = 8$.

Discrete Logarithm

Finite multiplicative group

Order of the group

Order of an element

Euler's Theorem

Primitive roots

Cyclic group

Primitive root

Three questions arise:

Given an element a and the group $G = < Z_n^*$, $\times >$, how to check whether a is a primitive root of G? This is not an easy task.

- a. We need to find $\phi(n)$, which is as difficult as factorization of n.
- b. We need to check whether $ord(a) = \phi(n)$.

Given a group $G = \langle Z_n^*, \times \rangle$, how to **find all primitive roots** of G?

[-] This is **more difficult**; repeat part b for all elements of the group.

Given a group $G = < Z_n^*$, $\times >$, how can we **select** a primitive root of G given that the value of n is chosen by the user and **only the user knows** $\phi(n)$.

[-] The user tries several elements until he or she finds the first one.

Discrete Logarithm

Finite multiplicative group

Order of the group

Order of an element

Euler's Theorem

Primitive roots

Cyclic group

Cyclic group

- If $G = \langle Z_n^*, \times \rangle$ has primitive roots \rightarrow it's cyclic group
- Each root works as a generator to generate all the elements in the set.

$$\circ Z_n^* = \{g^1, g^2, \dots, g^{\phi(n)}\}$$
, where g is primitive root

- Example: $G = \langle Z_{10}^*, \times \rangle$ has $\phi(\phi(10)) = 2$ primitive roots, which are 3, 7
 - o Both 3 and 7 can be used to generate whole set:

$$g = 3 \rightarrow g^1 \mod 10 = 3$$
 $g^2 \mod 10 = 9$ $g^3 \mod 10 = 7$ $g^4 \mod 10 = 1$
 $g = 7 \rightarrow g^1 \mod 10 = 7$ $g^2 \mod 10 = 9$ $g^3 \mod 10 = 3$ $g^4 \mod 10 = 1$

The idea of discrete logarithm is to solve

$$y = g^x \pmod{n}$$

We know n, g, y and interested to compute $x \rightarrow x = \log_a y$

• **Example**: Find x in each of the following cases:

a.
$$4 \equiv 3^x \pmod{7} \rightarrow x = \log_3 4 \pmod{7} = 4$$

b.
$$6 \equiv 5^x \pmod{7} \rightarrow x = \log_5 6 \pmod{7} = 3$$

• Check this calculator: https://www.alpertron.com.ar/DILOG.HTM

• It is HARD to compute the discrete logarithms when n is very LARGE

The discrete logarithm problem has the same complexity as the factorization problem.

Content

Content

Diffie-Hellman Key Exchange

Diffie-Hellman Protocols

ElGamal Cryptosystem

- DH allows two users to securely exchange secret values.
 - E.g., the secret keys of symmetric encryption algorithms.
- DH depends on the problem of discrete logarithms as a hard problem.
- For any integer b and a primitive root a of prime number p, we can find a unique exponent i such that

$$b \equiv a^i \ (mod \ p)$$

The exponent i is called the **discrete logarithm** $\rightarrow dlog_{a,p}(b)$

Alice Bob

Alice and Bob share a prime number q and an integer α , such that $\alpha < q$ and α is a primitive root of q

 α and q are public values

Alice and Bob share a prime number q and an integer α , such that $\alpha < q$ and α is a primitive root of q

Alice

Alice and Bob share a prime number q and an integer α , such that $\alpha < q$ and α is a primitive root of q

Alice generates a private key X_A such that $X_A < q$

Bob

Alice and Bob share a prime number q and an integer α , such that $\alpha < q$ and α is a primitive root of q

Bob generates a private key X_B such that $X_B < q$

Alice

Alice and Bob share a prime number q and an integer α , such that $\alpha < q$ and α is a primitive root of q

Alice generates a private key X_A such that $X_A < q$

Alice calculates a public key $Y_A = \alpha^{X_A} \mod q$

Bob

Alice and Bob share a prime number q and an integer α , such that $\alpha < q$ and α is a primitive root of q

Bob generates a private key X_B such that $X_B < q$

Bob calculates a public key $Y_B = \alpha^{X_B} \mod q$

Alice

Alice and Bob share a prime number q and an integer α , such that $\alpha < q$ and α is a primitive root of q

Alice generates a private key X_A such that $X_A < q$

Alice calculates a public key $Y_A = \alpha^{X_A} \mod q$

Alice receives Bob's public key *YB* in plaintext

Bob

Alice and Bob share a prime number q and an integer α , such that $\alpha < q$ and α is a primitive root of q

Bob generates a private key X_B such that $X_B < q$

Bob calculates a public key $Y_B = \alpha^{X_B} \mod q$

Bob receives Alice's public key Y_A in plaintext

Alice

Alice and Bob share a prime number q and an integer α , such that $\alpha < q$ and α is a primitive root of q

Alice generates a private key X_A such that $X_A < q$

Alice calculates a public key $Y_A = \alpha^{X_A} \mod q$

Alice receives Bob's public key *Y_B* in plaintext

Alice calculates shared secret key $K = (Y_B)^{X_A} \mod q$

Alice and Bob share a prime number q and an integer α , such that $\alpha < q$ and α is a primitive root of q

Bob generates a private key X_B such that $X_B < q$

Bob calculates a public key $Y_B = \alpha^{X_B} \mod q$

Bob receives Alice's public key Y_A in plaintext

Bob calculates shared secret key $K = (Y_A)^{X_B} \mod q$

• For the previous algorithm

Public	Private
Prime number q	Alice's PR X_A
The primitive root $lpha$	Bob's PR X_B
Alice's PU $Y_A = \alpha^{X_A} \mod q$	The shared secret key $K = (Y_B)^{X_A} \mod q = (Y_A)^{X_B} \mod q$
Bob's PU $Y_B = \alpha^{X_B} \mod q$	-

• The calculated shared secret key is the same at both sides because:

$$K = (Y_B)^{X_A} \mod q$$

$$= (\alpha^{X_B} \mod q)^{X_A} \mod q$$

$$= (\alpha^{X_B})^{X_A} \mod q$$

$$= \alpha^{X_B X_A} \mod q$$

$$= (\alpha^{X_A})^{X_B} \mod q$$

$$= (\alpha^{X_A} \mod q)^{X_B} \mod q$$

$$= (Y_A)^{X_B} \mod q$$

• The calculated shared secret key is the same at both sides because:

How Secure?!

$$K = (Y_B)^{X_A} \mod q$$

$$= (\alpha^{X_B} \mod q)^{X_A} \mod q$$

$$= (\alpha^{X_B})^{X_A} \mod q$$

$$= \alpha^{X_B X_A} \mod q$$

$$= (\alpha^{X_A})^{X_B} \mod q$$

$$= (\alpha^{X_A} \mod q)^{X_B} \mod q$$

$$= (Y_A)^{X_B} \mod q$$

How Secure?!

An adversary only sees α , q, Y_A , and Y_B

How Secure?!

An adversary only sees α , q, Y_A , and Y_B

Calculating K requires knowing X_A or X_B

$$\rightarrow K = (Y_A)^{X_B} \mod q$$

How Secure?!

An adversary only sees α , q, Y_A , and Y_B

Calculating K requires knowing X_A or X_B

$$\rightarrow K = (Y_A)^{X_B} \mod q$$

But X_A and X_B are private!

How Secure?!

An adversary only sees α , q, Y_A , and Y_B

Calculating K requires knowing X_A or X_B

$$\rightarrow K = (Y_A)^{X_B} \mod q$$

But X_A and X_B are private!

To compute X_A or X_B from the public values, it requires computing the discrete logarithm: $X_B = dlog_{\alpha,a}(Y_B)$

How Secure?!

An adv

Security of DH: (assuming large primes)

- 1. Easy to calculate exponentials modulo a prime.
- 2. Very difficult to calculate discrete logarithms.

To compute X_A or X_B from the public values, it requires computing the discrete logarithm: $X_B = dlog_{\alpha,q}(Y_B)$

• Example:

Select q and α

Alice and Bob select their PRs: X_A , X_B

Alice computes her PU: $Y_A = \alpha^{X_A} \mod q$

Bob computes his PU: $Y_B = \alpha^{X_B} \mod q$

Alice and Bob compute

• Example:

Select q and α

Alice and Bob select their PRs: X_A , X_B

Alice computes her PU: $Y_A = \alpha^{X_A} \mod q$

Bob computes his PU: $Y_B = \alpha^{X_B} \mod q$

Alice and Bob compute

$$q = 353$$

 $\alpha = 3$

• Example:

Select q and α

Alice and Bob select their PRs: X_A , X_B

Alice computes her PU: $Y_A = \alpha^{X_A} \mod q$

Bob computes his PU: $Y_B = \alpha^{X_B} \mod q$

Alice and Bob compute

$$X_A = 97$$

$$q = 353$$
 $\alpha = 3$

$$X_B = 233$$

Example:

Select q and α

Alice and Bob select their PRs: X_A , X_B

Alice computes her PU: $Y_A = \alpha^{X_A} \mod q$

Bob computes his PU: $Y_B = \alpha^{X_B} \mod q$

Alice and Bob compute $V = (V_1)^{X_1} \mod g$, $V = (V_2)^{X_3}$

$$X_A = 97$$

$$Y_A = 3^{97} mod \ 353 = 40$$

$$X_B = 233$$

$$Y_B = 3^{233} \mod 353 = 248$$

• Example:

Select q and α

Alice and Bob select their PRs: X_A , X_B

Alice computes her PU: $Y_A = \alpha^{X_A} \mod q$

Bob computes his PU: $Y_B = \alpha^{X_B} \mod q$

Alice and Bob compute

$$X_A = 97$$

$$q = 353$$
 $\alpha = 3$

$$X_A = 97$$

$$Y_A = 3^{97} mod \ 353 = 40$$

$$K = 248^{97} mod \ 353 = 160$$

$$X_B = 233$$

$$Y_B = 3^{233} mod \ 353 = 248$$

$$K = 40^{233} mod \ 353 = 160$$

• Example:

Select q and α

Alice and Bob select their PRs: X_A , X_B

Alice computes her PU: $Y_A = \alpha^{X_A} \mod q$

Bob computes his PU: $Y_B = \alpha^{X_B} \mod q$

Alice and Bob compute

$$X_A = 97$$

$$X_A = 97$$

$$Y_A = 3^{97} mod \ 353 = 40$$

$$K = 248^{97} mod \ 353 = 160$$

$$X_B = 233$$

$$Y_B = 3^{233} mod \ 353 = 248$$

$$K = 40^{233} mod \ 353 = 160$$

$$q = 353$$
, $\alpha = 3$, $Y_A = 40$, $Y_B = 248$

- The DH protocol is vulnerable to Man-in-the-Middle-Attack.
 - 1. Darth intercepts the key-exchange process between Alice and Bob
 - 2. Darth share key values with Alice, and different key values with Bob
 - 3. Darth receives messages from Alice, he re-encrypts them with Bob's key and re-send them to Bob
- The attack works because <u>no</u> authentication on participants

Content

Content

Exponentiation and Logarithms

Diffie-Hellman Key Exchange

Diffie-Hellman Protocols

ElGamal Cryptosystem

Authenticated Diffie-Hellman

• Developed to address MitM attacks that can affect anonymous DH.

 Use a signature scheme; allowing Alice and Bob to sign their messages to stop Darth from sending messages on their behalf.

• The signatures are computed using another scheme, e.g., RSA-PSS

Authenticated Diffie-Hellman

 $priv_A$, $priv_B$, pub_A , pub_B are private and public key values for signatures

Menezes-Qu-Vanstone (MQV)

• More secure and better performance than authenticated DH.

• Allows users to send only two messages, independently of each other, in arbitrary order.

No need to use a signature scheme

Menezes-Qu-Vanstone (MQV)

• x is Alice's PrK, y is Bob's PrK, $Y=g^y$ is Bob's PuK, and $X=g^x$ is Alice's PuK

Content

Content

Exponentiation and Logarithms

Diffie-Hellman Key Exchange

Diffie-Hellman Protocols

ElGamal Cryptosystem

- ElGamal is a public key cryptosystem that is used in:
 - Digital Signature Standard (DSS)
 - S/MIME email standard
- It relies on the discrete logarithm as Diffie-Hellman protocol
 - DH protocol is a key-exchange protocol
 - ElGamal is a cryptosystem

ElGamal public elements

Global Public Elements

 \boldsymbol{q}

 α

prime number

 $\alpha < q$ and α a primitive root of q

Key generation

Key Generation by Alice

Select private X_A

 $X_A < q - 1$

Calculate Y_A

 $Y_A = \alpha^{X_A} \mod q$

Public key

 $\{q, \alpha, Y_A\}$

Private key

 X_A

Encryption

Encryption by Bob with Alice's Public Key

Plaintext: M < q

Select random integer k < q

Calculate $K = (Y_A)^k \mod q$

Calculate $C_1 = \alpha^k \mod q$

Calculate C_2 $C_2 = KM \mod q$

Ciphertext: (C_1, C_2)

Decryption

Decryption by Alice with Alice's Private Key

Ciphertext: (C_1, C_2)

Calculate $K = (C_1)^{X_A} \mod q$

Plaintext: $M = (C_2 K^{-1}) \mod q$

- K serves as a one-time key used to encrypt and decrypt the message
- How K is recovered during the decryption process.

```
K = (Y_A)^k \mod q (K is defined during the encryption process) K = (\alpha^{X_A} \mod q)^k \mod q K = (\alpha^{kX_A}) \mod q K = C_1^{X_A} \mod q (substituting C_1 = \alpha^k \mod q)
```

• Using K, we recover the plaintext as

$$C_2 = KM \mod q$$

$$M = C_2K^{-1} \mod q$$

$$M = KMK^{-1} \mod q = M \mod q$$

• Example: Alice generates keys

Select a	nrime n	IIMhar	a and	a nrim	iitiva	root
Juliut a	printe n	ullibel	y and	a piiiii	IILIVC	loot

Select a private $X_A \mid X_A < q - 1$

Calculate $Y_A = \alpha^{X_A} \mod q$

Publish public key $\{q, \alpha, Y_A\}$

Keep the private key X_A

$$| q = 19$$

The primitive roots of 19 are {2, 3, 10, 13, 14, 15}

Select $\alpha = 10$

Example: Alice generates keys

Select a prime number q and a primitive root

Select a private $X_A \mid X_A < q - 1$

Calculate $Y_A = \alpha^{X_A} \mod q$

Publish public key $\{q, \alpha, Y_A\}$ Keep the private key X_A

$$q=19$$
, $\alpha=10$

$$X_A = 5$$

• Example: Alice generates keys

Select a prime number q and a primitive root

Select a private $X_A \mid X_A < q - 1$

Calculate $Y_A = \alpha^{X_A} \mod q$

Publish public key $\{q, \alpha, Y_A\}$

Keep the private key $\overline{X_A}$

$$q = 19, \ \alpha = 10$$

$$X_A = 5$$

$$Y_A = 10^5 \ mod \ 19 = 3$$

Example: Alice generates keys

Select a prime number q and a primitive root

Select a private $X_A \mid X_A < q - 1$

Calculate $Y_A = \alpha^{X_A} \mod q$

Publish public key $\{q, \alpha, Y_A\}$ Keep the private key X_A

$$q = 19, \ \alpha = 10$$

$$X_A = 5$$

$$Y_A = 10^5 \ mod \ 19 = 3$$

Publish {19, 10, 3} Keep 5

• Encrypt the message M = 17:

Public key: {19, 10, 3}

```
Select random k \mid k < q

Calculate K = (Y_A)^k \mod q

Calculate C_1 = \alpha^k \mod q

Calculate C_2 = KM \mod q

Send the ciphertext (C_1, C_2)
```

• Encrypt the message M = 17:

Public key: {19, 10, 3}

Select random $k \mid k < q$
Calculate $K = (Y_A)^k \mod q$
Calculate $C_1 = \alpha^k \mod q$
Calcuate $C_2 = KM \mod q$
Send the ciphertext (C_1, C_2)

Select k = 6

• Encrypt the message M = 17:

Public key: {19, 10, 3}

Select random $k \mid k < q$
Calculate $K = (Y_A)^k \mod q$
Calculate $C_1 = \alpha^k \mod q$
Calcuate $C_2 = KM \mod q$
Send the ciphertext (C_1, C_2)

Select
$$k = 6$$

$$K = 3^6 mod \ 19 = 7$$

• Encrypt the message M = 17:

Public key: {19, 10, 3}

Select random $k \mid k < q$ Calculate $K = (Y_A)^k \mod q$ Calculate $C_1 = \alpha^k \mod q$ Calculate $C_2 = KM \mod q$ Send the ciphertext (C_1, C_2)

Select
$$k = 6$$

$$K = 3^6 mod \ 19 = 7$$

$$C_1 = 10^6 mod \ 19 = 11$$

• Encrypt the message M = 17:

Public key: {19, 10, 3}

Select random $k \mid k < q$ Calculate $K = (Y_A)^k \mod q$ Calculate $C_1 = \alpha^k \mod q$ Calculate $C_2 = KM \mod q$ Send the ciphertext (C_1, C_2)

Select
$$k = 6$$

$$K = 3^6 mod \ 19 = 7$$

$$C_1 = 10^6 mod \ 19 = 11$$

$$C_2 = 7 \times 17 \mod 19 = 5$$

• Encrypt the message M = 17:

Public key: {19, 10, 3}

Select random $k \mid k < q$ Calculate $K = (Y_A)^k \mod q$ Calculate $C_1 = \alpha^k \mod q$ Calculate $C_2 = KM \mod q$ Send the ciphertext (C_1, C_2)

Select
$$k = 6$$

$$K = 3^6 mod \ 19 = 7$$

$$C_1 = 10^6 mod \ 19 = 11$$

$$C_2 = 7 \times 17 \mod 19 = 5$$

(11, 5)

• Decrypt (11, 5):

Calculate $K = C_1^{X_A} \mod q$
Compute $K^{-1} = egcd(K, q)$
Calculate $M - C K^{-1}$

• Decrypt (11, 5):

Calculate
$$K = C_1^{X_A} \mod q$$

Compute $K^{-1} = egcd(K, q)$
Calculate $M = C_2K^{-1} \mod q$

$$K = 11^5 \mod 19 = 7$$

• Decrypt (11, 5):

Calculate
$$K = C_1^{X_A} \mod q$$

$$Compute K^{-1} = egcd(K, q)$$

Calculate $M = C_2 K^{-1} \mod q$

$$K = 11^5 \mod 19 = 7$$

$$K^{-1} = 11$$

• Decrypt (11, 5):

Calculate
$$K = C_1^{X_A} \mod q$$

Compute $K^{-1} = egcd(K, q)$

Calculate $M = C_2 K^{-1} \mod q$

$$K = 11^5 \mod 19 = 7$$

$$K^{-1}=11$$

$$M = 11 \times 5 \mod q = 17$$

- If a message is broken up into blocks, use a unique k for each block.
- If k is used for more than one block and a block, M_1 , is known, other blocks are decrypted as follows:
 - Let

$$C_{1,1} = \alpha^k \mod q$$
; $C_{2,1} = KM_1 \mod q$
 $C_{1,2} = \alpha^k \mod q$; $C_{2,2} = KM_2 \mod q$

o Then,

$$\frac{C_{2,1}}{C_{2,2}} = \frac{KM_1 \bmod q}{KM_2 \bmod q} = \frac{M_1 \bmod q}{M_2 \bmod q}$$

 \circ Since M_1 is known, then $M_2 = (C_{2,1})^{-1}(C_{2,2})M_1 \ mod \ q^{-1}$

Implement the ElGamal cryptosystem in Python

Task

- Implement the DH protocol using a client-server architecture
- What are the common attacks on the ElGamal cryptosystem?