<u>COMPLÉMENT:</u> Quantification des signaux par un CAN à quantification uniforme: pleine échelle (Full Scale) - erreur de codage

■ PLEINE ÉCHELLE ET QUANTIFICATION

Hypothèse:

- le signal échantillonné $f_{ech}(pT_e)$ est compris entre $f_{ech_{min}}$ et $f_{ech_{max}}$; l'intervalle $V_{PE} = f_{ech_{max}} f_{ech_{min}}$ est appelé **Pleine Echelle** ou bien **Full Scale** en anglais.
- le CAN est à N bits ce qui lui permet de représenter 2^N nombres différents comprise entre 0 à $2^N 1$ codant chacun pour une valeur analogique comprise dans l'intervalle de pleine échelle $[f_{ech_{min}}, f_{ech_{max}}]$.

Dans le cas d'un CAN à quantification <u>uniforme</u>, la **Pleine Echelle** V_{PE} est divisée en autant de plages d'égale dimension qu'il y a d'états possibles de la sortie numérique. Chaque plage est associée à un valeur binaire représentant la tension analogique d'entrée. La relation entre le signal d'entrée et la valeur du signal numérique de sortie est appelée **caractéristique du CAN**:

Figure 1: Caractéristique de transfert idéale d'un CAN à quantification uniforme

A RETENIR:

<u>Définition 0-1</u>: Pas de quantification ou quantum ou lsb (pour least significant bit) –

On appelle pas de quantification q l'incertitude sur chaque valeur numérisée du signal échantillonné f_{ech} avec:

 $q = \frac{f_{ech_{max}} - f_{ech_{min}}}{2^N}$

Conséquence immédiate: la quantification engendre une perte d'information d'autant plus grande que le pas q est important \Rightarrow il faut q petit, donc on code les signaux avec une profondeur de bits N élevée dans la mesure du possible.

Exemple: dans le cas du codage CD on prends N=16 bits, soit $N=2^{16}-1=65536$ valeurs possibles. Si par exemple le CAN exploité pour l'encodage du CD admet un intervalle de pleine échelle de $10\ V$, alors le pas de quantification vaudra:

$$q = \frac{10}{2^{16}} = 152,6 \; \mu V$$

■ ERREUR DE QUANTIFICATION OU DE CODAGE

- <u>Définition 0-2</u>: Erreur de quantification (CAN à conversion linéaire uniforme) -

Il s'agit de la différence entre la valeur du signal analogique d'entrée $(x(t) = f(t) - f_{ech_{min}})$ et la valeur numérique de sortie correspondant $x_{ech}(t)$, l'erreur de codage est exprimée en **lsb**, et est forcément comprise entre 0 et 1 lsb:

Figure 2: Erreur de codage pour la quantification linéaire uniforme

L'erreur de quantification est donc in dissociable des CAN et celle-ci diminue lorsque la profondeur de co dage N augmente.