

Algoritmos e Estruturas de Dados

Exame de Época Normal (08/02/2021)

Realizado à distância nos termos do DR20/2021

08 de Fevereiro de 2021

- Leia atentamente o enunciado antes de começar o exame.
- O exame está cotado para 20 valores.
- Preencha o seu nome e número em todas as folhas que entregar. Numere todas as folhas que entregar. Indique o total de folhas usadas na 1.ª folha.
- A entrega é feita tirando uma foto a cada uma das folhas, e enviando as fotos para jovem.engenheiro@gmail.com colocando como assunto "AED EN" e o número de aluno antes de sair da sessão Zoom. Não se consideram submissões que tenham sido feitas depois de sair de sessão.
- As submissões só serão consideradas válidas se o aluno estiver ligado na sessão ZOOM disponibilizada para o efeito.

1. (0.5)	Indique a	aproximação	tilde	mais	correcta	para	a segu	inte	expre	ssão:
						lσ	(2n)			

 $\frac{\lg (2n)}{\lg (n)}$

<u> </u>	1
aj	$\overline{\lg(n)}$
	_

- b) 2
- c) lg(n)
- d) 1

Nome:	Número: 1

2. (0.5) Considere o seguinte algoritmo recursivo:

```
public void xpto(int[] a, int n)
{
    if(n < 1) return;
    for(int i = 0; i < n-1; i++)
        func(a[i]);
    }
    xpto(a,n-1);
}</pre>
```

Admita que a função func(x) está definida e tem complexidade O(1). Indique a complexidade da função xpto():

- a) O(n lg n)
- b) O(n²)
- c) $O(n^3)$
- d) O(n)

3. (0.5) Qual dos arrays seguintes não pode ser um max-heap?

- a) [null, 9, 3, 8, 1, 2, 8, 7]
- b) [null, 9, 8, 3, 7, 6, 1, 2]
- c) [null, 20, 15, 13, 12, 11, 10, 9]
- d) [null, 20, 14, 15, 13, 12, 16, 11]

4. (0.5) Considere o algoritmo de ordenação Shellsort usando a sequência de Knuth aplicado ao seguinte array [4, 2, 5, 0, 1, 7, 3, 8, 9, 6].

Indique qual das seguintes sequências corresponde a uma sequência válida e pela ordem correcta do estado do array após operações de h-sorting. Assuma que h inicial = 4.

a. [0, 1, 5, 3, 2, 7, 4, 8, 9, 6] [0, 1, 2, 3, 4, 5, 6, 7, 8, 9] b. [1, 2, 3, 0, 4, 6, 5, 8, 9, 7] [1, 0, 3, 2, 4, 6, 5, 7, 9, 8] [0, 1, 2, 3, 4, 5, 6, 7, 8, 9] c. [0, 1, 5, 3, 2, 7, 4, 8, 9, 6] [0, 1, 2, 3, 4, 6, 5, 7, 9, 8] [0, 1, 2, 3, 4, 5, 6, 7, 8, 9] d. [1, 2, 3, 0, 4, 6, 5, 8, 9, 7] [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

5. (2.0) Escreva um método estático chamado xpto2 em linguagem Java, que dados dois argumentos, um array de inteiros, e um inteiro n, retorna a soma dos elementos do array que sejam divisores de n (ou seja, o resto da divisão inteira por n seja 0).

Exemplos:

$$xpto2([2, 4, 6, 3, 5, 9], 3) = 6 + 3 + 9 = 18$$

6. (2.0) Considere uma pilha (stack) e uma fila (queue) inicialmente vazias, sobre as quais é executada a seguinte sequência de instruções:

```
StackList<Integer> s = new StackList<Integer>();
QueueList<Integer> q = new QueueList<Integer>();

for(int i = 1; i< 7; i++)
{
    s.push(i);
    q.enqueue(i);
}

while(!q.isEmpty()) s.push(q.dequeue());

while(!s.isEmpty())
{
    System.out.print(s.pop() + ",");
}</pre>
```

Indique a sequência impressa no ecrã quando o código é executado.

7. (2.0) Suponha que está a fazer uma aplicação onde existe um numero enorme de operações de inserção, mas apenas um número muito limitado de operações de remoção do máximo. Indique, justificando, que implementação de uma fila prioritária será mais apropriada para esta situação: heap, array não ordenado, ou array ordenado?

Nome:______Número:_____4

8. (3.0) Resolva os seguintes exercícios sobre montes (heaps).

a) Desenhe a representação em árvore do max-heap obtido quando se insere os seguintes elementos (da esquerda para a direita) num heap inicialmente vazio: [3, 0, 1, 4, 9, 5, 8, 2]

b) Considere o seguinte max-heap. Desenhe a representação em árvore do max-heap obtido depois de se executar as seguintes operações sobre o heap: removeMax(), removeMax() (ou seja, remover duas vezes o maior elemento).

Nome:	Número: 6
[1, 10, 3, 9, 8, 2, 5]	
10. (3.0) Considere uma árvore rubro-negra (red-black) inicialmente v representadas como linhas a tracejado e ligações negras como linhas con árvore, depois de inseridos os elementos no array indicado abaixo, da escriptiva de contra	tínuas. Desenhe a representação da
Indique qual o conteúdo do array após a execução do método partition, como sendo o elemento da posição low. Indique também qual a posição	
a=[5, 7, 2, 10, 8, 4, 9, 3], low = 0, high=7	
argumentos:	

9. (3.0) Considere o método partition usado no algoritmo de ordenação quicksort, com a assinatura int partition(Comparable[] a, int low, int high). Suponha que o método partition é invocado com os seguintes

11. (3.0) Considere uma tabela de dispersão de dimensão M = 9, com resolução de colisões por dupla dispersão, e funções de dispersão $h1(k) = k \mod M$ e $h2(k) = 7 - k \mod 7$.

a) Transcreva a seguinte tabela para a sua folha de exame. Sabendo que que inicialmente a tabela se encontra vazia, indique quais os elementos presentes em cada posição do array de chaves e de valores, apos a inserção da sequência de pares <chave, valor> abaixo. Indique uma posição vazia com —.

i	0	1	2	3	4	5	6	7	8
chaves									
valores									

b) (1.0) Considere agora que o conteúdo da tabela de dispersão é a seguinte:

i	0	1	2	3	4	5	6	7	8
chaves	_	28	29	2	3	14	-	-	_
valores	_	"a"	"b"	"c"	"d"	-	-	-	_

Indique o que muda nos *arrays* de chaves e valores, após a remoção das chaves 2, 3 e 14. Apenas precisa de assinalar o que é diferente. Indique uma posição vazia ou nula com —.

i	0	1	2	3	4	5	6	7	8
chaves									
valores									

Nome:	Número:	7