DFSr - Hierarquia de Profundidade

Por Neilor Tonin, URI Sarasil

Timelimit: 1

A rotina PathR é bem conhecida em grafos. É também chamada de **dfs** ou **dfsr**. Trata-se de uma busca em profundidade dos nodos do grafo, utilizando backtracking. A tarefa aqui é, dado o grafo de entrada, simplesmente gerar o desenho da hierarquia dos nodos pesquisados. Para isso, é apresentada a rotina PathR abaixo, como apoio.

```
0-2 pathR(G,2)
void pathR (Vertex v) {
                                                          2-1 pathR(G,1)
   Vertex w;
   lbl[v] = cnt++;
                                                          2-4 pathR(G,4)
   for (w = 0; w < V; w++)
                                                             4-1
      if (adj[v][w] == 1)
         if (lbl[w] == -1) {
                                                             4-5 pathR(G,5)
            pathR(w);
                                                                5-1
                                                        0-3 pathR(G,3)
                                                          3-4
                                                          3-5
                                                        0 - 4
```

Entrada

A entrada será um arquivo contendo vários casos de teste. A primeira linha do arquivo de entrada contém um inteiro \mathbf{N} que indica a quantidade de casos de teste que vem a seguir. Cada um dos \mathbf{N} casos de teste contém, na primeira linha, duas informações: \mathbf{V} (1 \leq \mathbf{V} \leq 20) e \mathbf{E} (1 \leq \mathbf{E} \leq 20) que são, respectivamente, a quantidade de Vértices e de Arestas (Edges) do grafo. Seguem \mathbf{E} linhas contendo informações sobre cada uma das arestas do grafo.

Saída

Para cada caso de entrada, deve ser apresentada uma saída que representa a busca em profundidade de todos os nodos, respeitando a hierarquia e profundidade de cada um deles. O símbolo b representam um espaço em branco. Veja o exemplo abaixo para ilustrar:

bb0-2 pathR(G,2) **bbbb**2-1 pathR(G,1) **bbbb**2-4 pathR(G,4) **bbbbbb**4-1

E assim sucessivamente...

Obs.: Há uma linha em branco depois de cada segmento impresso do grafo, inclusive após o último segmento.

Exemplo de Entrada	Exemplo de Saída
2	Caso 1:
12 9	0-1 pathR(G,1)
0 1	1-5 pathR(G,5)
1 5	5-6 pathR(G,6)
5 6	1-7 pathR(G,7)
0 4	7-8 pathR(G,8)

4 2 Exemplo de Entrada	0-4 pathR (Exemplo de Saída
2 3	4-2 pathR(G,2)
7 8	2-3 pathR(G,3)
1 7	
10 11	10-11 pathR(G,11)
11 8	
0 1	Caso 2:
1 2	0-1 pathR(G,1)
3 4	1-2 pathR(G,2)
4 3	
5 6	3-4 pathR(G,4)
6 8	4-3
7 9	
9 10	5-6 pathR(G,6)
	6-8 pathR(G,8)
	7-9 pathR(G,9)
	9-10 pathR(G,10)