Context and Motivation Neutrino Reconstruction Generator Level Studies Isolation $\Lambda_b \to p \mu \nu \ \mbox{Form Factors}$ Conclusion

Update on search for $\Lambda_b o p \mu \nu$

William Sutcliffe, Ulrik Egede

Imperial College London

July 17, 2013

Table of contents

- Context and Motivation
- 2 Neutrino Reconstruction
- Generator Level Studies
- 4 Isolation
- **5** $\Lambda_b \to p \mu \nu$ Form Factors
- 6 Conclusion

Current Status of $|V_{ub}|$

Semi-Leptonic B Decays:

Exclusive $(\bar{B}_0 \to \pi^+ I \bar{\nu}_I)$

$$|V_{ub}| = (4.41 \pm 0.15^{+0.15}_{-0.17}) \times 10^{-3}$$
 $|V_{ub}| = (3.23 \pm 0.31) \times 10^{-3}$

▶ Leptonic B decays $(B^+ \to \tau^+ \nu_{\tau})$:

$|V_{ub}|$ Constraints on the Unitarity Triangle

Neutrino Reconstruction

Generator Level Studies

- ▶ Generator Level (GL) Sample of 3 million inclusive $b\overline{b}$ events.
- Generator Level Cuts:
 - Within LHCb acceptance
 - \Box At least one lepton with $p_{\mathrm{T}} > 1.5~\mathrm{GeV/c}$
- ▶ Expect this number of events in \sim 0.01pb⁻¹ at $\sqrt{s} = 7$ TeV.
- ► Search events for protons and muons produced from the decay of the same *B* hadron. Ignore protons and muons produced by long-lived intermediaries.

Opposite Sign q^2 Distribution

- ▶ Plot opposite sign and same sign $p\mu$ combinations.
- ▶ Always choose p, \overline{p} , μ^+ , μ^- with highest momentum.
- ▶ Include normalised sample $\Lambda_b \to p\mu\nu$ phase space GL MC.

Opposite Sign $p\mu$ Combinatons

Opposite Sign and Same Sign Statistics

► Find 3391 opposite sign and 716 same sign combinations.

For Opposite Sign:

Category	Fraction	Weighted Fraction
B^0	0.055	0.018
B^+	0.031	0.010
$B^0_s \ \Lambda^0_b \! o \Lambda^+_c \mu^- \overline{ u}_\mu$	0.017	0.006
	0.494	0.532
$\Lambda_b^0 \rightarrow \Lambda_c^+ \pi^+ \pi^- \mu^- \overline{\nu}_\mu$	0.244	0.262
$\Lambda_b^0 \to \Lambda_c^+(2595) \mu^- \overline{\nu}_\mu, \Lambda_b^0 \to \Lambda_c^+(2625) \mu^- \overline{\nu}_\mu$	0.115	0.124
Λ_b^0 other	0.042	0.045
Bother	0.002	0.002

For Same Sign:

Category	Fraction	Weighted Fraction
B^0	0.124	0.045
B^+	0.080	0.029
B_s^0	0.018	0.007
$B_s^0 = \Lambda_b^0$	0.751	0.887
B other	0.027	0.031

Opposite Sign $\pi\mu$ Combinations

▶ Can also look for $\pi\mu$ or $K\mu$.

Main backgrounds

- ▶ From generator level studies it is clear that $\Lambda_b^0 \to \Lambda_c^+ \mu^- \overline{\nu}_{\mu}$ is a major background.
- ▶ This makes sense as branching fraction for Λ_c^+ to a proton together with anything else is $50 \pm 16\%$ and $|V_{cb}|^2/|V_{ub}|^2 \sim 100$.

Isolation

- Train a boosted decision tree to discriminate between charged tracks.
- ▶ Use following variables: Track p_T , Opening angle, min χ^2_{IP} , Ghost Probability, χ^2_{IP} , Track χ^2 and χ^2_{FD} .

BDT Signal Tracks

$$\Lambda_b^0 \to p \mu^- \overline{\nu}_\mu$$

BDT Background Tracks

$$\Lambda_b^0 \to \Lambda_c^+ (\to p K^- \pi^+) \mu^- \overline{\nu}_\mu$$

Training Stage

▶ Train BDT offline on samples.

Running Stage

Run BDT online on all tracks in event. Store maximum BDT output. for each event

$\Lambda_b \to p \mu \nu$ Form Factors

The tree-level matrix element for this decay may be written as:

$$\mathcal{M} = -irac{G_F}{\sqrt{2}}V_{ub}H_
u\overline{u}_\mu\gamma^
u(1-\gamma_5)v_{
u_\mu}$$

where
$$H_{
u}=<{\it N}^+(p',s')|\overline{u}\gamma_{
u}(1-\gamma_5)b|\Lambda_b^0(p,s)>$$

- ► In general: $H_{\nu} = \overline{u}_{N}(p')[F_{1}^{V}\gamma_{\nu} + F_{2}^{V}v_{\nu} + F_{3}^{V}v_{\nu}' + (F_{1}^{A}\gamma_{\nu} + F_{2}^{A}v_{\nu} + F_{3}^{A}v_{\nu}')\gamma_{5}]u_{\Lambda_{b}}(p)$
- ▶ Light Cone Sum Rules (LCSR) and Lattice QCD can be used to theoretically predict the 6 form factors.

LCSR, arXiv:1108.2971 A. Khodjamirian et al.

LQCD, arXiv:1306.0446 W. Detmold et al.

- ▶ Theoretical predictions give a very different prediction for the q^2 dependence of the differential rate, $\frac{d\Gamma}{dq^2}$ to the prediction purely based on phase space.
- Create a class in EvtGen to compute the form factors for a given value of q².
- ▶ Use LCSR predictions provided by arXiv:1108.2971:
- ► Strong rise at high q^2 compared to $B \to \pi \mu \nu$ as for $\Lambda_b \to p \mu \nu$ width contains only a S-wave phase-space factor (arXiv:1108.2971).

$$\begin{split} f_i(q^2) &= \frac{f_i(0)}{1-q^2/m_{B^*(1^-)}^2} \left\{ 1 + b_i \left(z(q^2,t_0) - z(0,t_0) \right) \right\}, \\ g_i(q^2) &= \frac{g_i(0)}{1-q^2/m_{B^*(1^+)}^2} \left\{ 1 + \bar{b}_i \left(z(q^2,t_0) - z(0,t_0) \right) \right\}. \end{split}$$

LCSR and Phase-space generator level MC

Conclusion

- ▶ Generator level studies indicate that the decay $\Lambda_b^0 \to \Lambda_c^+ \mu^- \overline{\nu}_\mu$ and related decay modes will form a major background to this decay.
- Isolation can help reduce backgrounds involving additional charged tracks. Still need to optimise this.
- New MC required which makes use of form factor predictions for $\Lambda_b \to p\mu\nu$.
- Methods for estimating or rejecting the combinatorial background required.

