Hw * 1 Solutions

(2)
$$C_{1} = (a_{11} + \delta_{11}) b_{1} + (a_{12} + \delta_{12}) b_{2} + (a_{13} + \delta_{13}) b_{3}$$

$$= (a_{11} + 1) b_{1} + (a_{12}) b_{2} + (a_{13}) b_{3}$$

$$C_{1} = a_{11} b_{1} + a_{12} b_{2} + a_{13} b_{3} + b_{1}$$

Similarly,

$$C_2 = b_2 + a_{21}b_1 + a_{22}b_2 + a_{23}b_3$$

(3)
$$S_{ij} S_{ik} S_{jk} = S_{kj} S_{jk} = S_{kk} = S_{ij} + E_{22} + \cdots + E_{nn} = n$$

(4)
$$e_{ijk}e_{kji} = e_{ijk}e_{jik} = (s_{ii}s_{jj} - s_{ij}s_{ji}) = s_{ii}s_{jj} - s_{ii}$$
$$(kji = ikj = jik) = 5.$$

Mulliply

My Qxx to exploit the properties of the Spar)

onthergonal matrix = QnpQnq=Spar)

onthergonal matrix

Qik Qij xj = Qik Qi

$$2k = aika; \Rightarrow \{z\} = [Q]^{T}\{a\}$$

$$\Rightarrow [Q]^{T} = [Q]^{T}$$

$$9.(9 \times C) + 9.(9 \times C) + b.(9 \times C) + b.(9 \times C) = 0$$

$$g.(b\times c) = b.(c\times g)$$

9

$$\begin{split} R_{ik}R_{jk} = & \Big(\cos\theta\delta_{ik} + n_in_k(1-\cos\theta) - \sin\theta \in_{ikp} n_p\Big) \Big(\cos\theta\delta_{jk} + n_jn_k(1-\cos\theta) - \sin\theta \in_{jkq} n_q\Big) \\ = & \cos^2\theta\delta_{ik}\delta_{kj} + n_in_kn_jn_k(1-\cos\theta)^2 + \sin^2\theta \in_{ikp} n_p \in_{jkq} n_q \\ & + \cos\theta(1-\cos\theta)(\delta_{ik}n_jn_k + n_in_k\delta_{jk}) - \cos\theta\sin\theta(\delta_{ik} \in_{jkq} n_q + \delta_{jk} \in_{ikp} n_p) \\ & - (1-\cos\theta)\sin\theta(n_in_k \in_{jkq} n_q + n_jn_k \in_{ikp} n_p) \end{split}$$

Now simplify by noting $n_k n_k = 1$ and $\delta_{ij} n_j = n_i$

$$R_{ik}R_{jk} = \cos^2\theta \delta_{ij} + n_i n_j (1 - \cos\theta)^2 + \sin^2\theta \in_{ikp} n_p \in_{jkq} n_q$$

$$+ \cos\theta (1 - \cos\theta)(n_j n_i + n_i n_j) - \cos\theta \sin\theta (\in_{jiq} n_q + \in_{ijp} n_p)$$

$$- (1 - \cos\theta)\sin\theta (n_i n_k \in_{jkq} n_q + n_j n_k \in_{ikp} n_p)$$

Note that $n_k \in_{jkq} n_q = 0$ (expand out in full, or note that this represents **n** crossed with itself) and $(\in_{jiq} n_q + \in_{jip} n_p) = (\in_{jiq} n_q - \in_{jip} n_p) = 0$, and recall $\in_{ijk} \in_{imn} = \delta_{jm} \delta_{kn} - \delta_{jn} \delta_{mk}$, so that

$$R_{ik}R_{jk} = \cos^2\theta \delta_{ij} + n_i n_j (1 - \cos\theta)^2 + \sin^2\theta (\delta_{ij}\delta_{pq} - \delta_{ip}\delta_{jq})n_p n_q + 2\cos\theta (1 - \cos\theta)n_j n_i$$

$$= \delta_{ij} (\sin^2\theta + \cos^2\theta) + n_i n_j (1 - 2\cos\theta + \cos^2\theta - \sin^2\theta + 2\cos\theta - 2\cos^2\theta) = \delta_{ij}$$

This verifies that R_{ij} is indeed orthogonal.

Homework -I A.B = Aij Bre (ei @ej). (ex@ee) = Aij Bre Six (Ei & Ee) = Aik Bke Ei & Ee = Aij Bjk Ei & Ek

A'ij \(\) Bix \(\) \(= Mip Mit Mig Min Mks Mku Apg Brs (Ex & En) San Sus Apr Brs St & Su = (Spt Apq) Sqr (Sus Brs) Ex& En = Aty San Bru et & Eu = AtrBnu et & eu

equivalent to Aij Bjkei & Ex