

**Chiara Gori** 





- Guida autonoma applicata al vehicle platooning
- Focus su implementazione di legge di controllo
- Simulazione numerica e visualizzazione dei risultati con BlenSor
- «BlenSor»: Blender + Sensor
  Libreria open-source di Blender con utilizzo di sensori LiDAR





# Problema del vehicle platooning

- Serie di veicoli in formazione ravvicinata
- Coordinamento velocità e distanze
- Vantaggi:
  - Sicurezza stradale
  - Efficienza del traffico
  - Risparmio carburante
  - V2V o V2I





# **Cooperative Adaptive Cruise Control**

- Ottimizza velocità e distanze attraverso
  - Comunicazione wireless interveicolare
  - Informazioni raccolte da sensori radar / LiDAR





## Legge di controllo

- Veicoli omogenei

Modello del veicolo: 
$$\begin{pmatrix} \dot{d}_i \\ \dot{v}_i \\ \dot{a}_i \end{pmatrix} = \begin{pmatrix} v_{i-1} - v_i \\ a_i \\ -\frac{1}{\tau}a_i + \frac{1}{\tau}u_i \end{pmatrix}$$

Controllo proporzionale derivativo



 $dr_i$  distanza di sicurezza desiderata



- Conversione in formato tempo-discreto
- Introduzione di limiti fisici
- Diverse tipologie di veicoli (automobili / autobus)
- Aggiornamento dello stato ad ogni time step, calcolo dell'errore e propagazione dell'input al veicolo successivo





### Risultati simulazione numerica

#### • 2 file CSV

#### – Traiettorie dei veicoli:

| Time | x        | y | vx     | vy | Heading | Label  | vehicle_type |
|------|----------|---|--------|----|---------|--------|--------------|
| 0    | -1.854   | 0 | 21.474 | 0  | 0       | traj_0 | car          |
| 1    | 0.294    | 0 | 21.673 | 0  | 0       | traj_0 | car          |
|      |          |   |        |    |         |        |              |
| 0    | -105.621 | 0 | 23.787 | 0  | 0       | traj_1 | car          |
| 1    | -103.262 | 0 | 23.787 | 0  | 0       | traj_1 | car          |
|      |          |   |        |    |         |        |              |

#### – Posizione sensori:

| х        | y   | $\mathbf{z}$ | x_rotation | y_rotation | z_rotation | rel_traj |
|----------|-----|--------------|------------|------------|------------|----------|
| -35.0649 | 10  | 2.5          | 90         | 0          | 0          | None     |
| 57.4025  | -10 | 2.5          | 90         | 0          | 0          | None     |
| 149.8700 | 10  | 2.5          | 90         | 0          | 0          | None     |
| 242.3375 | -10 | 2.5          | 90         | 0          | 0          | None     |
|          |     |              |            |            |            |          |



## Esempio di simulazione

- Numero veicoli: 5 (altrimenti arbitrario)
- Distanza interveicolare iniziale d0 = 50 m (altrimenti arbitraria)
- Velocità iniziale casuale (altrimenti nulla o uguale per ogni veicolo)
- Profilo accelerazione del primo veicolo:





# Esempio di simulazione

### Posizioni nel tempo:





(notiamo che l'ultimo veicolo è un bus)



## Esempio di simulazione

- Distanze interveicolari nel tempo:
  - Sempre > 0 : no incidenti
  - Sempre nulla per il primo veicolo



 Esempio di simulazione estesa: (1000 passi)





#### Introduzione a Blender

- Applicazione open-source
- Modellazione, animazione, rendering e montaggio video
- API Python
  - > Script per personalizzare e automatizzare operazioni





- Libreria open-source
- Estendere le funzionalità di Blender
  - > Automatizzare l'acquisizione di dati e il rilevamento di oggetti
  - Simulazioni realistiche di sensori e ambienti
- Sensore LiDAR Velodyne HDL-64E
  - ➤ Campo fino a 120m
  - ➤ Precisione < 2 cm
  - > Numero di punti rilevabili al secondo fino a 1.3 milioni





#### Creazione della scena

CSV in ingresso



- Scansione ciclica della scena
- Dati raccolti: NumPy → CSV



# Rendering delle nuvole di punti

CSV → Stanford Triangle Format (.PLY)





- Analisi e simulazione del comportamento di platoon di veicoli:
  - Simulazione numerica e modellazione 3D
- Blender e BlenSor:
  - Creazione di modelli e posizionamento relativo
  - Personalizzazione degli scenari
- Possibili estensioni future:
  - Integrazione delle informazioni dei sensori ambientali nella legge di controllo
  - Introduzione di veicoli non autonomi nel convoglio
  - Dotazione di intelligenza ai veicoli