APPM/MATH 4/5520

Final Exam Review Problems

- The final exam is on Thursday, December 15th in our normal classroom from 1:30am to 4:00pm. It is not cumulative.
- The exam will have 6 problems and you must choose and complete 5 out of 6 problems. There is no grad take-home part to this exam but grad students will have to do (get to do!) all 6 problems.
- There will be an optional review session on Wednesday, December 14th from 6:30 to 8pm in a room yet to be determined.
- Hang in there—you are almost done!
- 1. Let $X_1, X_2, ..., X_n$ be a random sample from the Beta(a,b) distribution. Find a set of complete and sufficient statistics for estimating a and b.
- 2. Let $X_1, X_2, ..., X_n$ be a random sample from the $\Gamma(3, \beta)$ distribution. Find the UMVUE (uniformly minimum variance unbiased estimator) of β . Give the variance of your estimator.
- 3. Let $X_1, X_2, ... X_n$ be a random sample from the Poisson distribution with parameter λ . Find the UMVUE (uniformly minimum variance unbiased estimator) of $\tau(\lambda) = \lambda^2$.
- 4. Let X_1, X_2, \dots, X_n be a random sample from a uniform distribution on $(0, \theta)$. We have already seen in class that the sample maximum $X_{(n)}$ is complete and sufficient for θ . Do not show this again.

Find the UMVUE for $\tau(\theta) = \theta^p$ where p > 0.

5. Consider the distribution with pdf

$$f(x;\theta) = 1 - \theta^2(x - \frac{1}{2}), \qquad 0 < x < 1, \qquad -1 < \theta < 1.$$

(a) Find the best test of size α for

$$H_0: \theta = 0$$
 versus $H_1: \theta = \theta_1$,

for some fixed $\theta_1 \neq 0$, based on a sample of size 1.

(b) Find (if it exists) a UMP (uniformly most powerful) test of size α of

$$H_0: \theta = 0$$
 versus $H_1: \theta \neq 0$

based on a sample of size 1.

- 6. Let X_1, X_2, \ldots, X_n be a random sample of size n from the $N(0, \sigma^2)$ distribution. Derive the UMP test of size α for $H_0: \sigma^2 = \sigma_0^2$ versus $H_1: \sigma^2 > \sigma_0^2$.
- 7. Express the power function of your test from the previous problem in terms of the chi-squared distribution.

- 8. Let X_1, X_2, \ldots, X_n be a random sample from the exponential distribution with rate θ . Consider the hypotheses $H_0: \theta = \theta_0$ and $H_1: \theta < \theta_0$.
 - (a) Find a test of size α based on the minimium of the sample.
 - (b) Find the UMP test of size α .
 - (c) Find and compare the power functions of your two tests.
- 9. Let $X_1, X_2, ..., X_n$ be a random sample from the Poisson distribution with parameter λ . Use the Rao-Blackwell Theorem to find the UMVUE for $\tau(\lambda) = e^{-\lambda}$.
- 10. Consider a random sample of size n from the $unif(0,\theta)$ distribution. Find the UMP test of size α for $H_0: \theta \geq \theta_0$ versus $H_1: \theta < \theta_0$
- 11. Let X_1, X_2, \ldots, X_n be a random sample from the distribution with pdf

$$f(x;\theta) = e^{\theta - x} I_{(\theta,\infty)}(x).$$

- (a) Find a complete and sufficient statistic for estimating θ .
- (b) Find the UMVUE for θ .
- 12. Consider a random sample X_1, X_2, \ldots, X_n from a distribution with pdf $f(x; \theta) = \theta(1-x)^{\theta-1}$, $0 < x < 1, \theta > 0$.

Give the form of the GLRT (generalized likelihood ratio test) for testing $H_0: \theta = 1$ against $H_1: \theta \neq 1$?

- 13. Let X_1, X_2, \ldots, X_n be a random sample from the $N(\mu, \sigma^2)$ distribution where σ^2 is known. Derive the GLRT of size α for testing $H_0: \mu = \mu_0$ versus $H_1: \mu \neq \mu_0$.
- 14. Suppose that $X \sim bin(n_1, p_1)$ and $Y \sim bin(n_2, p_2)$ and that we wish to test whether the proportions are equal:

$$H_0: p_1 = p_2 = p$$
 versus $H_1: p_1 \neq p_2$

where p is unknown.

- (a) Give the GLR statistic.
- (b) Since your GLR does not simplify very well, give an approximate GLRT of size α based on large sample sizes.
- 15. Let $X_1, X_2, ..., X_n$ be a random sample from the uniform distribution on $(0, \theta]$. Find the exact (not asymptotic) distribution of $-2 \ln \lambda(\vec{X})$ where $\lambda(\vec{X})$ is the GLR for $H_0: \theta = \theta_0$ versus $H_1: \theta \neq \theta_0$. Based on this, find a GLRT of size α .
- 16. Suppose that X_1, X_2, \ldots, X_n is a random sample from the Poisson distribution with parameter λ . Find the posterior Bayes estimator of λ using the $\Gamma(\alpha, \beta)$ prior with α and β known.
- 17. Suppose that $X_1, X_2, ..., X_n$ is a random sample from the $N(\mu, \sigma^2)$ distribution with σ^2 known. Find the posterior Bayes estimator of μ using a N(0, 1) prior.