Kryptografie und -analyse, Zusammenfassung Vorlesung 4

HENRY HAUSTEIN

Wie funktioniert die Vernam-Chiffre (one-time pad)?

Zeichenweise Addition von Klartext + Schlüssel modulo Alphabetgröße

Welche Bedingungen sind zu erfüllen, damit die perfekte Sicherheit erreicht wird?

folgende Bedingungen sind dafür notwendig:

- Schlüssel müssen echt zufällig sein
- Schlüssellänge = Nachrichtenlänge
- Einmalige Verwendung des Schlüssels

Welche allgemeinen Angriffe auf Blockchiffren gibt es und wie ist das jeweilige Vorgehen?

Angriffe:

- vollständige Schlüsselsuche: einfach alle möglichen Schlüssel ausprobieren
- Zugriff auf eine vorab berechnete Tabelle: Angreifer berechnet für eine Nachricht m alle verschlüsselten Texte c für jeden Schlüssel k. Dann lässt er sich vom Angegriffenen sein m verschlüsseln und schaut in seiner Tabelle nach und findet so den Schlüssel, den der Angegriffene benutzt hat
- Time-memory-tradeoff: Angreifer wählt zufällig und unabhängig voneinander n verschiedene Startschlüssel k_i und Klartextblock m, Verschlüsselt m mit allen Startschlüsseln, Schlüsseltexte $c_{i,1} = enc(k_{i,1}, m)$ dienen (nach geringfügiger Anpassung durch Transformation T) als neue Schlüssel $k_{i,2}$ für weitere Verschlüsselung, Pro Startschlüssel t Iterationen, Gespeichert wird pro Kette der Startschlüssel $k_{i,1}$ und der letzte Schlüsseltextblock $c_{i,t}$
- Kodebuchanalyse: Klartext-Schlüsseltext-Paare werden in einer Tabelle (Kodebuch) abgespeichert, Versuch, Teile des beobachteten Schlüsseltextes mit Hilfe des Kodebuches zu rekonstruieren

Wovon hängt der Aufwand dieser Angriffe jeweils ab?

von der Größe des Schlüsselraums

Was sind die charakteristischen Merkmale der Feistel-Chiffre? Was ist unter Selbstinversität zu verstehen? Wie funktionieren Verschlüsselung und Entschlüsselung?

charakteristische Merkmale:

- Zerlegung des Nachrichtenblocks in linke und rechte Hälfte
- Rundenfunktion f ist identisch bei Ver- und Entschlüsselung
- ullet Pro Runde wird jeweils nur ein Teilblock modifiziert ightarrow ermöglicht effiziente Implementierung

Selbstinversität: Ver- und Entschlüsselung geschieht mit den gleichen Funktionen, nur Reihenfolge der Rundenschlüssel wird umgekehrt

Was versteht man unter Vollständigkeit, dem Avalanche-Effekt und Nichtlinearität?

Vollständigkeit: Eine Funktion $f: \{0,1\}^n \to \{0,1\}^m$ heißt vollständig, wenn jedes Bit des Outputs von jedem Bit des Inputs abhängt.

Avalanche-Effekt: Eine Funktion $f:\{0,1\}^n \to \{0,1\}^m$ besitzt dann den Avalanche-Effekt, wenn die Änderung eines Input-Bits im Mittel die Hälfte aller Output-Bits ändert. Wird durch Änderung eines Input-Bits jedes Output-Bit mit einer Wahrscheinlichkeit von 50% verändert, erfüllt f das strikte Avalanche-Kriterium.

Linearität: Eine Funktion $f: \{0,1\}^n \to \{0,1\}^m$ ist dann linear, wenn jedes Output-Bit y_i linear von den Input-Bits x_i abhängt:

$$y_i = a_{i1}x_1 + a_{i2}x_2 + \dots + a_{in}x_n + b$$

Wie können diese Kriterien beurteilt werden?

mit Hilfe der Abhängigkeitsmatrix: Die Abhängigkeitsmatrix einer Funktion $f: \{0,1\}^n \to \{0,1\}^m$ ist eine $(n \times m)$ -Matrix, deren Einträge $a_{i,j}$ die Wahrscheinlichkeit angeben, dass bei einer Änderung des *i*-ten Eingabebits das *j*-te Ausgabebit komplementiert wird.

Überprüfung der Eigenschaften:

- Vollständigkeit: $\forall a_{ij} > 0$
- Avalanche-Effekt: $\frac{1}{nm} \sum_{i} \sum_{j} a_{ij} \approx 0.5$
- strikes Avalanche-Kriterium: $\forall a_{ij} > 0.5$
- Linearität: $\forall a_{ij} \in \{0,1\}$