Mensuration

Percentile Classes

No Substitute to Hardwork

www.percentileclasses.in
Live.percentileclasses.in
Download Mobile APP from
PlayStore "PercentileClasses"
Mob: 9713413541

	<u>Mensuration</u>						
S. N	Name	Figure	Nomenclature	Area	Perimeter		
1.	Rectangle	ь	$\begin{array}{c} l \rightarrow length \\ b \rightarrow breadth \end{array}$	$l \times b = lb$	2l + 2b $= 2(l+b)$		
2.	Square	a d a	$a \rightarrow side$ $d \rightarrow diagonal$ $d = a\sqrt{2}$	$(i) \ a \times a = a^2$ $(ii) \ \frac{d^2}{2}$	a + a + a + a $= 4a$		
3.	Triangle (Scalene)	a h c	a, b and c three sides of triangle and s the semi perimeter, where $s = \left(\frac{a+b+c}{2}\right)b \text{ is the base and } h \text{ is the altitude of triangle}$	$(i)\frac{1}{2} \times b \times h$ $(ii) \sqrt{s(s-a)(s-b)(s-c)}$ (Hero's formula)	a+b+c=2s		
4.	Equilateral triangle	a h	$a \rightarrow side$ h $\rightarrow height or altidue$ $h = \frac{\sqrt{3}}{2}a$	$(i)\frac{1}{2} \times a \times h$ $(ii)\frac{\sqrt{3}}{4} a^2$	За		
5.	Isosceles triangle	a h b	$a \rightarrow equal \ sides$ $b \rightarrow base$ h $\rightarrow height \ or \ altitude$ $h = \frac{\sqrt{4a^2 - b^2}}{2}$	(i) $\frac{1}{2} \times b \times h$ (ii) $\frac{1}{4} \times b \times \sqrt{4a^2 - b^2}$	2a + b		
6.	Right angled triangle	h d	$b \rightarrow base$ h $\rightarrow altitude/height$ $d \rightarrow diagonal$ $d = \sqrt{b^2 + h^2}$	$\frac{1}{2} \times b \times h$	b+h+d		
7.	Isosceles right angled triangle	a d	$a \rightarrow equal \ sides$ $d \rightarrow diagonal$ $d = a\sqrt{2}$	$\frac{1}{2}a^2$	2a + d		
8.	Quadrilateral	A h_1 h_2 B	AC is the diagonal and h_1, h_2 are the altitudes on AC from the vertices D and B respectively	$\frac{1}{2} \times AC \times (h_1 + h_2)$	AB + BC + CD + AD		
9.	Parallelogra m	b h b	a and b are sides adjacent to each other. h → distance between the	$a \times h$	2(a + b)		

			parallel sides		
10.	Rhombus	A A A A A A A A A A	$a \rightarrow \text{each equal side}$ of rhombus $d_1 \text{ and } d_2 \text{ are the}$ diagonals $d_1 \rightarrow BD$ $d_2 \rightarrow AC$	$\frac{1}{2} \times d_1 \times d_2$	4a
11.	Trapezium	A B	a and b are parallel sides to each other and h is the perpendicular distance between parallel sides	$\left(\frac{a+b}{2}\right) \times h$	AB + BC + CD + AD
12.	Regular hexagon	a a a	a → each of the equal side	$\frac{3\sqrt{3}}{2}a^2$	6a
13.	Regular octagon	a a a	a → each of equal side	$2a^2(1+\sqrt{2})$	8a
14.	Circle		$r \rightarrow \text{radius of the}$ circle $\pi = \frac{22}{7}$ $= 3.1416 (approx)$	πr^2	$2\pi r$ (called as circumference
15.	Semicircle		$r ightarrow { m radius}$ of the circle	$\frac{1}{2}\pi r^2$	$\pi r + 2r$
16.	Quadrant	r	r o radius	$rac{1}{4}\pi r^2$	$\frac{1}{2}\pi r + 2r$
17.	Ring or circular path (shaded region)	R	R o outer radius $r o$ inner radius	$\pi(R^2-r^2)$	(outer) → 2πR (inner) → 2πr
18.	Sector of a circle	Q O B	$O ightharpoonup \text{centre of the} \ circle \ r ightharpoonup \text{radius} \ l ightharpoonup \text{length of the arc} \ \theta ightharpoonup \text{angle of the} \ \text{sector} \ l = 2\pi r \left(\frac{\theta}{360^{\circ}} \right)$	$(i) \pi r^2 \left(\frac{\theta}{360^{\circ}}\right)$ $(ii) \frac{1}{2} r \times l$	l + 2r

19.	Segment of a circle	ο r θ B	heta ightarrow angle of the sector $r ightarrow$ radius $AB ightarrow$ chord $ACB ightarrow$ arc of the circle	Area of segment ACB (minor segment) $= r^2 \left(\frac{\pi \theta}{360^{\circ}} - \frac{\sin \theta}{2} \right)$	$2r\left[\frac{\pi\theta}{360^{\circ}} + \sin\left(\frac{\theta}{2}\right)\right]$
20.	Pathways running across the middle of a rectangle		$l \rightarrow length$ $b \rightarrow breadth$ $w \rightarrow width of the$ $path (road)$	(l+b-w)w	2(l+b) - 4w $= 2[l+b$ $- 2w]$
21.	Outer pathways		l → length b → breadth w →widthness of the path	(l+b+2w)2w	(inner) → 2(l + b) (outer) → 2(l + b) + 4w)
22.	Inner path	W b	l → length b → breadth w →widthness of the path	(l+b-2w)2w	(inner) → 2(l + b) (outer) → 2(l + b) - 4w)

Solid	Solids						
S. No	Name	Figure	Nomenclatur e	Volume	Curved/Lateral Surface area	Total surface Area	
1.	Cuboid	1	$l \rightarrow length$ $b \rightarrow$ $breadth$ $h \rightarrow height$	lbh	2(l+b)h	2(lb+bh+hl)	
2.	Cube	a	$a \rightarrow$ edge/side	a³	4a²	6a²	
3.	Right circular cylinder	h	r → radius of base h → height of the cylinder	$\pi r^2 h$	2πrh	$2\pi r(h+r)$	
4.	Right circular cone	l h	$r ightarrow radius$ $h ightarrow height$ $l ightarrow slant$ height l $= \sqrt{r^2 + h^2}$	$\frac{1}{3}\pi r^2 h$	πrl	$\pi r(l+r)$	
5.	Right triangular prism	Base	_	area of base × height	perimeter of base × height	lateral surface area + 2 (area of base)	
6.	Right pyramid	Stant height	_	½× area of the base × height	½ × perimeter of the base × slant height	Lateral surface area + area of the base	

						7
7.	Sphere		r o radius	$\frac{4}{3}\pi r^3$	-	$4\pi r^2$
8.	Hemisphere	<u></u>	$r ightarrow { m radius}$	$\frac{2}{3}\pi r^3$	$2\pi r^2$	$3\pi r^2$
9.	Spherical Shell	A	r → inner radius R →outer radius	$\frac{4}{3}\pi[R^3-r^3]$	-	$4\pi[R^2+r^2]$
10.	Frustum of a cone	h	-	$\frac{\pi}{3}h(r^2 + Rr + R^2)$	$\pi(r+R)l$	Lateral surface area $+\pi[R^2+r^2]$

Mensuration

Exercise - 01

- A rectangular field has its length and breadth in the ratio of 16:9. If its perimeter is 750 cm. What is its area? 1. (a) 7500cm² (d) 14000cm²
- (b) 32400cm²
- (c) 14400cm²
- 2. A rectangular field costs Rs. 110 for levelling at 50 paise per square metre. If the ratio of length: breadth is 11: 5. Find the length of the field:
 - (a) 16 m
- (b) 21 m
- (c) 22 m
- (d) none of these
- 3. Find the cost of paving a courtyard 316.8 m x 65 m with stones measuring 1.3 m x 1.1 m at Rs. 0.5 per stone:
 - (a) Rs. 1440
- (b) Rs. 7200
- (c) Rs. 72,000
- (d) none of these
- 4. If the length of a rectangular field is doubled and its breadth is halved (i.e., reduced by 50%). What is percentage change in its area?
 - (a) 0%
- (b) 10%
- (c) 25%
- (d) 33.33%
- 5. The expenses of carpeting a half of the floor were Rs. 759, but if the length had been 6 m less than it was, the expenses would have been Rs. 561. What is the length?
 - (a) 21 m
- (b) 23 m
- (c) 45 m
- (d) 27 m
- If a roll of paper 1 km long has area 1/25 hectare, how wide is the paper? 6.
- (b) 40 cm
- (c) 40 cm
- (d) 25 cm
- 7. If requires 90 g paint for painting a door 12 cm x 9 cm, how much paint is required for painting a similar door 4 cm x 3 cm?

	(a) 30 g	(b) 27 g	(c) 10 g	(d) 45 g
8.	The number of square (a) 4	shaped tin sheets of sid (b) 40	de 25 cm that can be cut (c) 16	off from a square tin sheet of side 1 m, is: (d) 400
9.	_	ngle is 2 cm more than	its breadth. The perime	eter is 48 cm. The area of the rectangle (in
	cm ²) is: (a) 96	(b) 128	(c) 143	(d) 144
10.	If the length of diagor (a) 9.6cm ²	nal 60 of a square <i>ABCL</i> (b) 11.52cm ²	o is 4.8 cm, the area of the (c) 12.52cm ²	ne square <i>ABCD</i> is : (d) 5.76cm ²
11.	The ratio of the area of (a) 1:1	f a square to that of the (b) 1:2	square drawn on its dia (c) 1:3	agonal is: (d) 1:4
12.	What is the area of the (a) 1620 sq. m	e triangle whose sides a (b) 2016 sq. m	re 84 m, 80 m and 52 m (c) 1818 sq. m	? (d) none of these
13.	The sides of a triangle opposite to the side 56		m respectively. Find the	he perpendicular distance from the vertex
	(a) 15 m	(b) 16.5 m	(c) 18.6 m	(d) 21 m
14.	ground is at a distance	e of 11 m from .the wall	. The length of the ladd	
	(a) 61 m	(b) 71 m	(c) 87 m	(d) none of these
15.	If every side of a trian (a) 200%	gle is doubled, then -cre (b) 300%	ease r area of the triang (c) 400%	le is : (d) none of these
16.	-	uilateral triangle is $2\sqrt{3}$ (b) $12\sqrt{3}cm^2$	_	(d) None of these
17.	-	es of a parallelogram are area of the parallelogra	_	ectively. The altitude drawn on the longer
	(a) 450cm ²	(b) 720cm ²	(c) 500 cm ²	(d) none of these
18.	-	nombus is 4p and lengtl	_	
	(a) $\frac{a}{b}$	(b) $\frac{ab}{2}$	(c) ab/p	(d) $p(a^2 + b^2)$
19.	The ratio of the length square of the shorter of	_	hombus is 2 : 5. Then,	the ratio of the area of the rhombus to the
	(a) 5:4	(b) 5:2	(c) 2:5	(d) none of these
20.	ABCD is a trapezium areas of triangles AO		AB = 2CD. If its diagor	nals intersect each other at 0, then ratio of
	(a) 1:4	(b) 1:2	(c) 4:1	(d) 2:1
21.	12 m wide at the top a	and 8 m wide at the bott	om the depth of the car	
	(a) 36 m	(b) 180 m	(c) 45 m	(d) none of these
22.	The area of a hexagon (a) $6\sqrt{3}$ m ²	whose one side is 4 m, (b) $24\sqrt{3}$ m ²	is (c) $42\sqrt{3} \text{ m}^2$	(d) 24 m ²

24. The inner circumference of a circular path around a circular lawn is 440 m. What is the radius of the outer circumference of the path, if the path is 14 m wide? (a) 96 m (b) 84 m (c) 70 m (d) 88 m 25. The sum of the radius and the circumference of a circle is 51 cm. The area of the circle is: (a) 151 cm (b) 152 cm (d) data insufficient (c) 154cm 26. The radius of a circle is increased by 2 cm from 5 cm to 7 cm. What is the percentage change in area of the circle? (a) 96% (b) 35% (c) 70% (d) 74% 27. The area of a circular field is 124.74 hectares. The cost of fencing it at the rate of 80 paise per metre is : (a) Rs. 3168 (b) Rs. 1584 (c) Rs. 1729 (d) none of these Exercise - 02 The length of a rope by which a buffalo must be tethered so that she may be able to graze a grassy area of 1. 2464sq. m is: (a) 35 m (b) 27 m (c) 24 m (d) 28 m If a piece of wire 25 cm long is bent into an arc of a circle subtending an angle of 75° at the centre, then the radius of the circle (in cm) is: (a) $\frac{\pi}{120}$ (c) 60π (d) none of these The area of a minor sector subtending the central angle at the centre 40° is 8.25 cm². What is the area of the 3. remaining part (i.e., major sector) of the circle? (a) 82.5 cm² (b) 74.25 cm² (c) 66 cm² (d) none of these A rope by which a calf is tied is decreased from 23 m to 12 m. What is the decrease in area to be grazed by it? 4. (a) 1110m² (b) 1210 m² (c) 1120 m² (d) 1221 m² A wire is in the form of a circle of radius 42 m is cut and again bent in the form of a square. What is the diagonal of the square? (c) $66\sqrt{2}$ m (b) $66\sqrt{3}$ m (a) 66 m (d) none of these If the driving wheel of a bicycle makes 560 revolutions in travelling 1.1 km. Find the diameter of the wheel: 6. (a) 31.5cm (b) 30.5 cm (c) 62.5cm (d) none of these A cube of metal, each edge of which measures 4 cm, weighs 400 kgs. What is the length of each edge of a cube 7. of the same metal which weighs 3200 kg? (a) 64 cm (c) 2 cm (b) 8 cm (d) none of these The three co-terminus edges of a rectangular solid are 36 cm, 75 cm and 80 cm respectively. Find the edge of a 8. cube which will be of the same capacity: (c) 46 cm (a) 60 cm (b) 52 cm (d) none of these

9. A tank 10 m long' and 4 m wide is filled with water. How many litres of water must be drawn off to make the surface sink by 1 m. (1000 L = 1 cubic metre) (c) 50 kilolitre

(a) 20 kilolitre

(b) 40 kilolitre

(d) none of these

10.	_	box of sides 39.5 cm b n of the tape. What is th	2	l around with tape such that there is an ed?				
	(a) 111.54cm	(b) 101.45 cm	(c) 110.45cm	(d) none of these				
11.	The edge of a cube is (a) 100%	increased by 100%, the (b) 200%	surface of the cube is in (c) 300%	creased by : (d) 400%				
12.	to cover it up fully, if	one square metre of car	was costs Rs. 25.00?	ectively. What would be the cost of canvas				
	(a) Rs. 260	(b) Rs. 290	(c) Rs. 285	(d) none of these				
13.	_	A room is 36 m long, 12 m wide and 10 m high. It has 6 windows, each 3 m \times 2.5 m; one door 9.5 m \times 6 m and one fire chimney 4 m \times 4.5 m. Find the expenditure of papering its walls at the rate of 70 paise per metre, if the width of the paper is 1.2 m :						
	(a) Rs. 490	(b) Rs. 690	(c) Rs. 1000	(d) none of these				
14.	If each side of it is dec	creased by 2 cm, by how	much will the volume					
	(a) 12 cm, 729 cm ³	(b) 8 cm, 512 cm ³	(c) 9 cm, 729 cm ³	(d) 12 cm, 728 cm ³				
15.	to that of the sum of t	he total surface areas of	the three cubes:	e total surface area of the resulting cuboid				
	(a) 5:7	(b) 7:9	(c) 9:7	(d) none of these				
16.	length of the tube is 8	cm. There are 192cm ³ o	f iron in the tube. Find					
	(a) 2 cm	(b) 0.5 cm	(c) 1 cm	(d) can't be determined				
17.	0	pole that can be placed oom is 15 m. The height		is 12 m and the length of longest pole that				
	(a) 3m	(b) 6 m	(c) 9 m	(d) none of these				
18.	The sum of length, br (a) 152cm ²	eadth and depth of a cu (b) 94cm²	boid is 12 cm and its di (c) 108cm²	agonal is $5\sqrt{2}$ cm. Its surface area is: (d) $60\sqrt{2}$ cm ²				
19.	The volume of a wall the wall is:	, 3 times as high as it is	broad and 8 times as lo	ng as it is high, is 36.864 m³. The height of				
	(a) 1.8m	(b) 2.4m	(c) 4.2 m	(d) none of these				
20.	Find the height of the (a) 7 m	cylinder whose volume (b) 10.5 m	e is 511 m³ and the area (c) 14 m	of the base is 36.5 m ² : (d) none of these				
21.	The lateral surface are	ea of a cylinder is 1056 c (b) 4455 cm³	m² and its height is 16 c (c) 5544 cm³	em. What is its volume? (d) none of these				
22.	The amount of concre	_	cylindrical pillar whose	base has a perimeter of 8.8 m and whose				
	(a) 12.32m ³	(b) 12.23m ³	(c) 9.235 m ³	(d) 8.88 m ³				
23.	A right circular cylin	drical tunnel of diamete	er 4 m and lenoth 10 m	is to be constructed from a sheet of iron.				
	The area of the iron sl			. I I I I I I I I I I I I I I I I I I I				
	(a) $\frac{280}{\pi}$	(b) 40π	(c) 80 π	(d) none of these				

(d) 7 cm

(c) 6 cm

balls are 3 cm and 4"cm. What is the radius of the third sphere?

(b) 5 cm

(a) 4.5 cm

12. A hemispherical bowl of internal radius 6 cm contain alcohol. This alcohol is to be filled into cylindrical shaped small bottles of diameter 6 cm and height 1 cm. How many bottles will be needed to empty the bowl?

- (a) 36
- (b) 27
- (c) 16
- (d) 4

13. If a hemispherical dome has an inner radius 21 cm then its volume (in m³) is :

- (a) 4910 m³
- (b) 18354 m³
- (c) 19404 m³
- (d) none of these

14. A sphere of radius 9 cm is dropped into a cylindrical vessel partly filled with water. The radius of the vessel is 12 cm. If the sphere is submerged completely, then the surface of the water rises by:

- (a) 27.5 cm
- (b) 27 cm
- (c) 12 cm
- (d) 6.75 cm

15. If the height of a cone is half the radius of a sphere then the radius of the base of the cone, which has the same volume as a sphere of radius 7 cm is :

- (a) 14 m
- (b) $\frac{14}{\sqrt{2}}$ cm
- (c) $14\sqrt{2}$ cm
- (d) none of these

16. The volume of a pyramid of base area 25 cm² and height 12 cm is:

- (a) 200cm³
- (b) 100cm³
- (c) 400 cm³
- (d) 800 cm³

Mensuration

Answers Key & Solutions

Solutions

Exercise - 01

- 1. Ans: b Solution 2(16x + 9x) = 750; l = 16x and b = 9x
- 2. Ans: c
 Solution
 Area = $\frac{110}{0.5}$ = 220 sq. m
 - And $11x \times 5x = 220$ 3. Ans: b
 - Solution
 Number of stones = $\frac{Area\ of\ courtyard}{Area\ of\ one\ stone} = 14400$ $Cost = Rate\ \times number\ of\ stones$ $= (0.5 \times 14400)$
- 4. Ans: a Solution Original area = $l \times b$ New area = $2l \times \frac{b}{2} = l \times b$ Hence, no change
- 5. Ans: b
 Solution
 Rate = $\frac{759-561}{6}$ = Rs. 33 per metre

- 6. Ans: b
 Solution $l \times b = \frac{1}{25} \times 10000 = 100 \times b$ $\Rightarrow b = 0.4 m$
- 7. Ans: c
 Solution $\frac{1}{3} \times \frac{1}{3} = \frac{1}{9}$ $\therefore 90 \times \frac{1}{9} = 10 g \qquad (It depends upon area)$
- 8. Ans: c Solution $\frac{100 \times 100}{25 \times 25} = 16$ (1 m = 100 cm)
- 9. Ans: c Solution $2[(x + 2) + x] = 48 \Rightarrow x = 11 \text{ cm}$ $\therefore (x + 2) = 13 \text{ cm}$
- 10. Ans: b
 Solution
 Area = $\frac{d^2}{2}$; $d \rightarrow diagonal$
- 11. Ans: b

Solution

$$a^2: (a\sqrt{2})^2 = 1:2$$

12. Ans: a

Solution

Use Hero's formula:

Area of scalene triangle =
$$\sqrt{s(s-a)(s-b)(s-c)}$$

13. Ans: a

Solution

Find the area, using Hero's formula, then

Area =
$$\frac{1}{2} \times b \times h$$

= $\frac{1}{2} \times 56 \times AD$

14. Ans: a

Solution

Use pythagorus theorem

$$x^2 = (60)^2 + (11)^2$$

Pythagorus theorem:

$$(Hypotenuse)^2 = (base)^2 + (height)^2$$

15. Ans: b

Solution

Area of triangle =
$$\frac{1}{2} \times b \times h$$

Let initially area of triangle = $1 \times 1 = 1$ unit

Now, the area of triangle = $2 \times 2 = 4$ unit

Increase in area = $\frac{4-1}{1} \times 100 = 300\%$

(For your convenience assume any value of b and h.)

16. Ans: a

Solution

Height of an equilateral triangle = $\frac{\sqrt{3}}{2} \times side$

$$\therefore \quad 2\sqrt{3} = \frac{\sqrt{3}}{2} \times side$$

$$\Rightarrow$$
 Side = $\frac{7}{4}$ cm

$$\frac{\sqrt{3}}{4} \times (side)^2$$

$$\frac{\sqrt{3}}{4} \times 4 \times 4 = 4\sqrt{3}cm^2$$

17. Ans: b

Solution

Area =
$$40 \times 10 = 720cm^2$$

18. Ans: b

Solution

Area of rhombus = $\frac{1}{2} \times product \ of \ diagonals$ $\frac{1}{2} \times a \times b = \frac{ab}{2}$

19. Ans: a

Solution

Area of rhombus = $\frac{1}{2} \times 2x \times 5x = \frac{10x^2}{2} = 5x^2$ and square of the shorter diagonal = $(2x)^2 = 4x^2$

$$\therefore \quad \frac{5x^2}{4x^2} = \frac{5}{4}$$

20. Ans: c

Solution

$$\begin{bmatrix} :: & AB = 2CD \\ and & OQ = 2PO \end{bmatrix}$$

This is due to the similarity of triangles AOB and COD.

21. Ans: a

Solution

$$\frac{1}{2} \times (12 + 8) \times h = 360$$

$$\Rightarrow h = 36 m$$

22. Ans: b

Solution

$$6 \times \frac{\sqrt{3}}{4} \times (Side)^2 = \frac{3\sqrt{3}}{2} (Side)^2$$
$$= \frac{3\sqrt{3}}{2} \times 4 \times 4 = 24\sqrt{3}m^2$$

23. Ans: d

Solution

$$2\pi r = 704 \Rightarrow r = 112$$

$$\pi r^2 = \frac{22}{7} \times 112 \times 112 = 39424cm^2$$

24. Ans: b

Solution

$$2\pi r = 440 \Rightarrow r = 70 m$$

$$R = 70 + 14 = 84 m$$

25. Ans: c

Solution

$$r + 2\pi r = 51 \Rightarrow r\left(1 + \frac{44}{7}\right) = 51 \Rightarrow r = 7,$$

Find area.

26. Ans: a

Solution

$$\frac{New \ area}{Original \ area} = \frac{\pi \times 7 \times 7}{\pi \times 5 \times 5} = \frac{49}{25}$$
Change in area = $\frac{24}{25} \times 100 = 96\%$

27. Ans: a

Solution

$$\pi r^2 = 124.74 \ hectare$$

 $\pi r^2 = 1247400 \ m^2$

$$\Rightarrow r = 630 m$$

$$\therefore 2\pi r = 3960$$

$$\therefore$$
 Cost = 3960 \times 0.8 = 3168

Exercise – 02

Ans: d

Solution
$$\pi r^2 = 2464 \Rightarrow r = 28 m$$

2. Ans: b

Solution

$$2\pi \times R \times \frac{75}{360} = 25 \Rightarrow R = 60/\pi$$

3. Ans: c

Solution

$$\frac{40}{360} = \frac{1}{9} : \frac{(360-40)}{360} = \frac{8}{9}$$

 \therefore Area of major sector = $8 \times 8.25 = 66cm^2$

4. Ans: b

Solution

$$\pi[23^2 - 12^2] = \frac{22}{7} \times [529 - 144] = 1210$$

5. Ans: c

Solution

$$r = 42 :: 2\pi r = 264 = 4a \Rightarrow a = 66$$

$$d = a\sqrt{2} = 66\sqrt{2}$$

6. Ans: c

Solution

Circumference =
$$\frac{1100}{560} = \frac{110}{56} = 2\pi r$$

 $\therefore 2r = \frac{110}{56} \times \frac{7}{22} = \frac{5}{8}m = 62.5 cm$

$$\therefore 2r = \frac{110}{56} \times \frac{7}{22} = \frac{5}{8}m = 62.5 \text{ cm}$$

7. Ans: b

Solution

Volume of original cube = $(4)^3$ = 64 cm^3

and its weight = 400 kg

Since weight of the larger cube is 8 times the weight of smaller cube. Hence, the volume of new cube will be 8 times the volume of smaller

Hence volume of required cube = $8 \times 64 = (8)^3$ Edge of this cube = 8 cm

8. Ans: a

Solution

Volume of cube = Volume of cuboid

$$a^3 = lbh$$

$$\Rightarrow a^3 = 36 \times 75 \times 80 = 216000$$

$$\Rightarrow a = 60 cm$$

9. Ans: b

Solution

Base area \times height = Volume

$$10 \times 4 \times 1 = 40m^3$$

But
$$1 m^3 = 1000 \ litre = 1 \ kilolitre$$

$$40m^3 = 40,000 \text{ litre} = 40 \text{ kilolitre}$$

10. Ans: b

Solution

Total length of tape
$$= 2(l + b) + 3.75$$

= $2(39.5 + 9.35) + 3.75$
= $101.45 cm$

11. Ans: c

Solution

Let each edge of smaller cube = 1 m

 \therefore Each edge of larger cube = 1 m

And Surface area of smaller cube $6 \times (1)^2 =$

Surface area of larger cube = $6 \times (2)^2$ =

 \therefore % increase in surface area = $\frac{24-6}{6} \times 100 =$

Note: It can be determined by using variable e.g., x (edge of cube) instead of solving by assuming some numerals.

Alternatively: $\frac{S_2}{S_1} = \left(\frac{e_2}{e_1}\right)^2 \Rightarrow \frac{S_2}{S_1} = \frac{4}{1}$ \therefore Percentage increase in surface area = $\frac{4-1}{1} \times 100 = 300\%$

Where S = surface area, $e = edge \ of \ cube$

12. Ans: b

Solution

Surface area of the cuboid = 2(lb + bh + hl) =

- \therefore Cost of canvas = 11.6 \times 25 = Rs. 290
- 13. Ans: a

Solution

Area of 4 walls = $2(36 + 12) \times 10 = 960m^2$ Total area of (windows + door + chimney) =

- ∴ Net area for papering = $960 120 = 840m^2$
- $\therefore \text{ Length of required paper} = \frac{840}{1.2} = 700 \, m$

Hence, cost of papering = $700 \times 0.7 = Rs.490$

14. Ans: d

Solution

$$(x+2)^3 - x^3 = 1016$$

 $\Rightarrow x = 12 cm$

And

 $x^3 - (x-2)^3 = (12)^2 =$

728

15. Ans: b

Solution

You can see the figure shown in the question number 15. Now let us consider that surface area of each face of the cube $1cm^3$.

- ∴ Total surface area of the cuboid = 14cm² And Total surface area of the 3 cubes = $18 cm^2$ Hence, required ratio = 14:18=7:9
- 16. Ans: c Solution

Iron used in the tube = Difference in external and internal volumes of the tube

- $192 = 8x^2 8(5)^2$
- $\Rightarrow x = 7 cm$

Hence, the thickness of the tube = $\frac{7-5}{2}$ = 1 cm

17. Ans: c

Solution

$$\sqrt{l^2 + b^2} = 12 \Rightarrow l^2 + b^2 = 144$$

And $\sqrt{l^2 + b^2 + h^2} = 15$

$$\Rightarrow l^2 + b^2 + h^2 = 225$$

$$\Rightarrow h^2 = 81 \Rightarrow h = 9 m$$

- 18. (a) 152cm²
- (b) 94cm²
- (c)
- 108cm²
- (d)
- $60\sqrt{2}$ cm²

Ans: b

Solution

$$l + b + h = 12 \text{ cm}, \sqrt{l^2 + b^2 + h^2} = 5\sqrt{2}$$

 $\Rightarrow l^2 + b^2 + h^2 = 50$

Now, $(l+b+h)^2 = l^2 + b^2 + h^2 + 2(lb+bh+b)$ hl)

- \Rightarrow 144 = 50 + 2(lb + bh + hl)
- \Rightarrow 2(lb + bh + hl) = 94 cm²
- 19. Ans: b

Solution

$$h: b = 3:1$$
 and $l: h = 8:1$

$$\Rightarrow$$
 $l:h:b=24:3:1$

$$\therefore 24x \times 3x \times x = 36.864$$

$$\Rightarrow x^3 = 0.512 \Rightarrow x = 0.8$$

- h = 3x = 2.4 m
- Ans: c

Solution

$$h = \frac{511}{36.5} = 14 \, m$$

21. Ans: c

Solution

$$2\pi rh = 1056 cm^2$$

$$\Rightarrow r = \frac{33}{\pi} cm$$

$$\pi r^2 h = \pi \times \left(\frac{33}{\pi}\right)^2 \times 16$$

- \Rightarrow Volume = 5544 cm³
- 22. Ans: a

Solution

$$h = \frac{2\pi rh}{2\pi r} = \frac{17.6}{8.8} = 2 m$$

and $2\pi r = 8.8 \Rightarrow r = 1.4 m$

and
$$2\pi r = 8.8 \Rightarrow r = 1.4 m$$

$$\pi r^2 h = \frac{22}{7} \times (1.4)^2 \times 2 = 12.32m^3$$

23. Ans: b

Solution

$$2\pi rh = 2 \times \pi \times 2 \times 10 = 40\pi m^2$$

24. Ans: a

$$\frac{2\pi rh}{2\pi r(h+r)} = \frac{2}{3} \Rightarrow \frac{h}{h+r} = \frac{2}{3} \Rightarrow \frac{h}{r} = \frac{2}{1}$$

$$\therefore 2\pi r(h+r) = 924$$

$$\therefore 2\pi r(h+r) = 924$$

$$\therefore 2\pi rh = 924 \times \frac{2}{3} = 616cm^2$$

$$\Rightarrow 2 \times \pi \times x \times 2x = 616$$

$$\Rightarrow x = 7 \qquad \qquad \therefore r = 7 cm \qquad \text{and} \quad h = 1.1$$

$$\pi r^2 h = \frac{22}{7} \times (7)^2 \times 14 = 2156 \text{ cm}^3$$

25. Ans: a

Solution

$$2\pi rh = 1320 \Rightarrow h = 10 cm$$

$$2\pi r(h+r) = 2 \times \frac{22}{7} \times 21 \times 31 = 4092cm^2$$

26. Ans: a

Solution

$$\frac{r}{h} = \frac{3x}{4x}, \pi r^2 h = 4851 \Rightarrow x = 3.5$$

 $\therefore r = 10.5 \text{ m and } h = 14 \text{ m}$

$$\therefore$$
 $r = 10.5 m$ and $h = 14 m$

$$\therefore 2\pi rh = 2 \times \frac{22}{7} \times 10.5 \times 14 = 924 \, m^3$$

27. Ans: d

Solution

$$\frac{r_1}{r_2} = \frac{4x}{x}$$
, but $V_1 = V_2$

$$\stackrel{72}{\therefore} \quad \pi(4x)^2 \times h_1 = \pi(x)^2 h_2$$

$$\Rightarrow h_2 = 16h_1$$

Exercise - 03

Ans: c

Solution

$$2\pi r(h+r) = 2640$$

$$\Rightarrow 2\pi r(30) = 2640$$

$$\Rightarrow r = 14 \, m$$

$$\Rightarrow h = 16 m$$

$$(: r + h = 30 m)$$

:
$$h: r = 8:7$$

Ans: a

Solution

$$\frac{2\pi r_1 h_1}{2\pi r_2 h_2} = \frac{3}{2} \times \frac{6}{7} = \frac{9}{7}$$

3. Ans: c

Solution

Since radius and height of the cylinder are same as that of cone. Therefore cylinder can contain $15 \times 3 = 45$ litre of milk.

4. Ans: c

Solution

$$\frac{1}{3} \times \pi \times (5x)^2 \times (12x) = 314\frac{2}{7} = \frac{2200}{7}$$

$$\Rightarrow x = 1$$

$$\therefore$$
 $r = 5$ and $h = 12$

$$l = 13 m$$

Ans: d

Solution

$$2\pi r = 220 \Rightarrow r = 35 cm$$

$$l = \sqrt{r^2 + h^2} = 91 cm$$

$$\pi rl = \frac{22}{7} \times 35 \times 91 = 10010 \ cm^2$$

Ans: b

Solution

$$\frac{1}{\pi r_2 l_2} = \frac{1}{2}$$

$$(\because r_1 = r_2)$$

$$\pi r_2 l_2 \stackrel{2}{\cdot} \frac{A_1}{A_2} = \frac{3}{2} \Rightarrow \frac{A_1}{300} = \frac{3}{2}$$

$$\therefore \quad A_1 = 450 \ cm^2$$

7. Ans: b

Solution

By Pythagorus theorem

$$AD = 3 cm$$

$$= \frac{1}{2} \times 8 \times 3$$
$$= 12cm^2$$

8. Ans: a

Solution

$$\frac{v_2}{v_1} = \frac{(r_2)^2 h_2}{(r_1)^2 h_1} = \frac{(2r)^2}{(r)^2}$$

$$(\because h_1 = h_2)$$

$$\Rightarrow \frac{v_2}{v_1} = \frac{4}{1}$$

9. Ans: b

Solution

$$\frac{BD}{AB} = \cos 60^{\circ}$$

10. Ans: a

Solution

Volume of cone = $\frac{1}{3}\pi \times 144 \times 35$

Volume of water flowing per second = $\pi \times (0.8)^2 \times \frac{500}{60}$

$$\therefore \quad \text{Required time} = \frac{\left(\frac{\pi}{3}\right) \times 144 \times 35}{\pi \times 0.64 \times \left(\frac{500}{60}\right)}$$
$$= 315 \ seconds$$

11. Ans: b

Solution

$$\frac{4}{5}\pi(r_1^3 + r_2^3 + r_3^3) = \frac{4}{3}\pi(6)^3$$

$$\Rightarrow 27 + 64 + r_3^3 = 216$$

$$\Rightarrow r_3^3 = 125$$

$$\Rightarrow r_3 = 5 cm$$

12. Ans: c

Solution

Number of bottles × Volume of each bottle = Volume of hemisphere

$$n \times \pi \times (3)^2 \times 1 = \frac{2}{3}\pi \times (6)^3$$

$$\Rightarrow n = 16$$

Solution

Volume of hemisphere
$$=\frac{2}{3}\pi r^3$$

 $\frac{2}{3} \times \frac{22}{7} \times (21)^3 = 19404m^3$

14. Ans: d

Solution

Change in height (or level) or water = Volume of sphere

Base area of cylinder

$$= \frac{\frac{4}{3}\pi \times (9)^3}{\pi \times (12)^2} = \frac{27}{4} cm$$

15. Ans: c

Solution

Volume of cone = Volume of sphere

$$\frac{1}{3}\pi r^2 \times \frac{7}{2} = \frac{4}{3}\pi (7)^3$$

$$\Rightarrow r = 14\sqrt{2}cm$$

16. Ans: b

Solution

Volume of pyramid = $\frac{1}{3} \times base \ area \times height$ = $\frac{1}{3} \times 25 \times 12 = 100 \ cm^3$