

# NEURAL NETWORK PROCESSING UNIT CHIP DESIGNS

2020. 2



**MSIS Lab** 

**Chungbuk National University, South Korea** 

# **Neural Network Processing SoC Designs**

- Current Research
  - CNN (Convolutional Neural Network) Accerelator Chip
  - SNN (Spiking Neural Network) Mixed-Signal Chip
- On-Going & Future Research
  - Reconfigurable CNN Chip
  - Self-Learning CNN chip
  - Federated Learning & Aggregation Al System

## Introduction to Convolutional Neural Network (CNN)

#### CNN Model for Classification of MNIST data set

- Extract and learn features of an image with multiple filters
- Pooling layer to collect and enhance features of the extracted image
- Classify images using neural network



### **CNN Model Compression with High Accuracy**

#### Comparison of Conventional CNN and Compressed CNN

- Reducing the number of Conv. Layers
- Minimizing the number of required Conv. Filters (Kernels)
- Minmizing the Weight & Data resolution from 32 bits to 8 bits with little sacrifice of accuracy
- Target Classification data set : MNIST Data Set

#### **Original CNN model**

| Layers                 | Size            |
|------------------------|-----------------|
| Convolution            | 32 filters      |
| Pooling                | 2*2 max pooling |
| Convolution2           | 32 filters      |
| Pooling2               | 2*2 max pooling |
| Fully connected layer1 | 10              |
| Fully connected layer2 | 14              |

#### **Compressed CNN**

| model<br>Layers        | Size            |
|------------------------|-----------------|
| Convolution            | 4 filters       |
| Pooling                | 4*4 max pooling |
| Fully connected layer1 | 10              |
| Fully connected layer2 | 14              |



## **CNN Accelerator Chip Design**

#### Classification Engine for MNIST data set

- Minimize the power and size overhead by 100 times
- Maintain the accuracy above 94%



## **CNN Accelerator Chip Design**

- Classification Engine for MNIST data set
  - Conv Layer, Maxpooling Layer, FC Layer Architectures



## **CNN Accelerator Chip Design**

#### Classification Engine for MNIST data set

|            | Convo-<br>lution | Pool-<br>ing | Fully connected1 | Fully connected2 | Total |
|------------|------------------|--------------|------------------|------------------|-------|
| Adder      | 32               | 0            | 6                | 9                | 47    |
| Multiplier | 36               | 0            | 7                | 10               | 53    |
| Register   | 16               | 0            | 5                | 11               | 32    |



(a)

| Hidden Layer Result |        |  |  |
|---------------------|--------|--|--|
| Verilog             | Python |  |  |
| 74                  | 74     |  |  |
| 101                 | 101    |  |  |
| 0                   | 0      |  |  |
| 67                  | 67     |  |  |
| 27                  | 27     |  |  |
| 40                  | 40     |  |  |
| 77                  | 77     |  |  |
| 45                  | 45     |  |  |
| 0                   | 0      |  |  |
|                     |        |  |  |

| Output Layer Result |               |     |  |  |
|---------------------|---------------|-----|--|--|
| Class               | Class Verilog |     |  |  |
| 0                   | -30           | -30 |  |  |
| 1                   | -74           | -74 |  |  |
| 2                   | -7            | -7  |  |  |
| 3                   | 3 -31 -       |     |  |  |
| 4                   | -25           | -25 |  |  |
| 5                   | -27           | -27 |  |  |
| 6                   | -46           | -46 |  |  |
| 7                   | -17           | -17 |  |  |
| 8                   | -17 -17       |     |  |  |
| 9                   | 15            | 15  |  |  |



## **Chip Size Reduction Result**

## Size Comparison Between Original CNN vs Compressed CNN Architectures

#### **Uncompressed Original CNN model**

|                              | Adder | Multiplier | Memory                                  | Input<br>bit |
|------------------------------|-------|------------|-----------------------------------------|--------------|
| Convolution                  | 32*8  | 32*9       | 32*4                                    | 32           |
| Pooling                      | 0     | 0          | 32*3                                    | 32           |
| Fully<br>connected<br>layer1 | 223   | 224        | 112                                     | 32           |
| Fully<br>connected<br>layer2 | 9     | 10         | 11                                      | 32           |
| Total                        | 488   | 522        | 347 Words x<br>32 bits<br>= 11,104 bits |              |

#### **Compressed Optimized CNN model**

|                              | Adder | Multiplier | Memory                             | Input<br>bit |
|------------------------------|-------|------------|------------------------------------|--------------|
| Convolution                  | 4*8   | 4*9        | 4*4                                | 8            |
| Pooling                      | 0     | 0          | 4*15                               | 8            |
| Fully<br>connected<br>layer1 | 6     | 7          | 5                                  | 8            |
| Fully<br>connected<br>layer2 | 9     | 10         | 11                                 | 8            |
| Total                        | 47    | 53         | 92 Words x<br>8 bits<br>= 732 bits |              |
| Reduction                    | 90%   | 89.8%      | 93.4%                              |              |

## **Simulation Results of CNN Chip Design** (Full Chip Verilog Simulation With MNIST Images)

#### Operation of Convolution Layer



Change 8bit

Relu

#### Pipelined Operation of Fully-Connected Layer1



## **Result of Speed Enhancement**

#### Cycle time comparison with various architecture

|                        | CPU with Original<br>CNN model | CPU with<br>Compressed CNN<br>model | Accelerator chip<br>with Compressed<br>CNN model<br>(Proposed Chip) | Pipelined Layer<br>CNN Accelerator<br>(Ongoing Design) |
|------------------------|--------------------------------|-------------------------------------|---------------------------------------------------------------------|--------------------------------------------------------|
| Convolution            | 426496                         | 53312                               | 784+3                                                               | 196                                                    |
| Pooling                | 18816                          | 2940                                | 49                                                                  | 49                                                     |
| Fully connected layer1 | 125430                         | 3910                                | 280+4                                                               | 140                                                    |
| Fully connected layer2 | 266                            | 266                                 | 14+5                                                                | 14+5                                                   |
| Comparator             | 14                             | 14                                  | 14                                                                  | 14                                                     |
| Total cycles per frame | 571022 clock                   | 60442 clock                         | 1153 clock                                                          | 196 clock                                              |

### **Background of SNN (Spiking Neural Network)**

- Animal brain has a massively parallel structure of Neurons interconnected through Synapses
- Synapses
  - Can be implemented with a Storage or Memory with Communication Interface
- Neurons
  - Can be implemented with accumulation and comparison processing circuits



### **SNN (Spiking Neural Network) Building Block**

- Circuit Architecture of SNN's blocks
  - Implementing Synapse and Neuron by Mixed-Signal circuits
- Artificial Synapse Circuit
  - Modulating the input spike rates by a weight value (trained parameter)
- Artificial Neuron Circuit
  - One or more Inputs: Each input can carry a different no. of spikes coming from presynaptic neurons
  - One or more Outputs: Activation function with a threshold



- Circuit Design for SNN's building blocks
  - Mixed-Signal Synapse and Neuron circuit
  - Minimal number of TRs and components





- **❖** Spiking Neural Network (SNN) Chip for MNIST dataset
  - Compact Low Power Synapse and Neuron circuit
  - Minimal number of Synapse and Neuron cells



SNN Simulation results to determine the image size for low complexity SNN chip



#### Weight Conversion: Float to Integer for compact implementation



Output layer weights before quantization

(Max=0.333, Min=-0.488 Mean=-0.037,  $\sigma$  =0.162, mean+ $\sigma$ =0.125, mean- $\sigma$  =0.198)



Output layer weights after quantization (quantization range can be easily controlled to achieve minimum error)

## **SNN Spike Propagation Results**

#### Layer1 Output



#### Layer2 Output



#### Layer3 Output



#### Layer4 Output



#### Classification Results







