Sistemas Operacionais

Arquitetura de Sistemas Operacionais

Prof. José Paulo G. de Oliveira

Arquitetura de SOs

Roteiro

Arquiteturas mais populares

- Sistemas monolíticos
- Sistemas em camadas
- Sistemas micro-núcleo
- Máquinas virtuais

Monolítico

Sistema Monolítico

- Conjunto de rotinas que podem interagir livremente umas com as outras.
- Sistema formado por procedimentos compilados separadamente e depois linkados, formando um grande e único programa executável.
 - Grande desempenho
 - Uma falha pode paralisar o todo o núcleo
 - Manutenção e evolução do núcleo é mais complexa

Sistema Monolítico

Sistema Monolítico

Em Camadas

- SO dividido em sistemas sobrepostos
- Cada módulo oferece um conjunto de funções que pode ser usado por outros módulos
- Semelhante ao modelo ISO/OSI de rede de computadores

Sistema Multics

5	Operador
4	Programas de Usuário
3	Entrada/Saída
2	Comunicação
1	Gerência de Memória
0	Multiprogramação

Vantagens:

- Isolar o sistema operacional
 - Facilitando alteração e depuração
- Criar uma hierarquia de níveis
 - Protegendo as camadas mais internas

Desvantagens

- Atrasos na comunicação entre as camadas
 - prejudicando o desempenho do sistema.
- Não é óbvio dividir as funcionalidades em camadas de abstração
 - funcionalidades são inter-dependentes, embora tratem muitas vezes de recursos distintos.
- → Parcialmente adotada atualmente (HAL)

Micro Núcleo

Sistemas micro-núcleo (µ-kernel)

- Uma necessidade dos SOs é tornar o núcleo menor e mais simples
- Para implementar essa ideia o sistema é dividido em processos
- Sempre que uma aplicação (outro processo) deseja algum serviço, ela solicita ao processo responsável
- A aplicação que solicita um serviço é chamada de cliente e o processo que responde a solicitação é chamado de servidor.

Micro-núcleo - Visão Geral

Micro-núcleo - Visão Geral

O micronúcleo normalmente implementa

- a noção de tarefa;
- os espaços de memória protegidos para cada aplicação;
- a comunicação entre tarefas;
- e as operações de acesso ao HW.

Micro-núcleo - Visão Geral

Visão geral da arquitetura do MINIX 3

Sistema micro-núcleo

A utilização deste modelo permite que os servidores executem em modo usuário

 Apenas o núcleo do sistema, responsável pela comunicação entre clientes e servidores, executa no modo kernel

Sistema micro-núcleo

Robustez e flexibilidade:

Caso um subsistema tenha problemas, os mecanismos de proteção de memória e níveis de privilégio irão confiná-lo.

Personalizar o SO (Escalabilidade): somente os componentes necessários ou adequados são inicializados.

Sistema micro-núcleo

Em ambiente distribuído permite que um cliente solicite um serviço e a resposta seja processada remotamente.

Sistemas híbridos

Usualmente é implantada uma combinação do modelo de camadas com o modelo cliente-servidor (micro-núcleo).

Sistemas híbridos

Ex.: Arquitetura do sistema Windows 2000

Pesquise...

Quais as vantagens e desvantagens de cada arquitetura de SO estudada?