On Beilinson-Bloch-Kato conjecture for products of elliptic curves
Wei Zhang

(at Mcm)

- High dim'l B-SD

- Personal motivation.

Solving Diophartine equations / Q

us Consider algebraic curves, classified by genus g:

· g=0: quadratic equation

· g=1: elliptic curves

e-g. y2=fix, deg f=3 or Q, nQ2, Q; Ep3 quadratics

' g > 2: (Mortell, Fultings) finitely many sol'ns/Q e.g. y2=fex), leg f > 5.

 $x^n + y^n = 3^n (n > 4)$ Fermat type.

More interesting example:

Q₁ \cap Q₂ \cap Q₃, Q_i \subseteq P^t

Humbert cure $\sum_{i=1}^{5} q_i \chi_i^2 = 0 \leftarrow \text{genus} = 5$ (j=1,2,3)

But Aut 2 y 2/Δ(yr2)

to get a genus 1 ell cure.

Its Jacobian ~ TT Ei, Ei ~ C/gra (i-th Gordinate).

9=1 E elliptic cure (us E(Q) ab grp).

Mordell (-Weil) conj: E(Q) is fin gen'd.

2 weak Mw: E(Q)/2E(Q) < Sel_2(E/Q) finite grp.

(Hermite - Minkowski).

Aside Roughly, Sel_2(E/Q) \leftarrow \ Tac(C) \size E \ locally trivial.

Uniformity (D-H-G, K, Yuan)

Let X curve with $g_{x}=g=2$. K/Q finite.

$X(K) \leq C(g)^{rank} Jac_{x}(K)+1$ $Ccg_{3}=absolute const$.

Abel-Jacobi case. Assume X > Jacx.

(Chabauty-Kim find all sol'no if applicable.

(conditionally).

B-SD conjecture rank E(Q) = ord L(E,S)(known if ord $L \leq 1$).

(Re(3) > 3. absolutely convergent.

Tariyana - Slimura Conj: $L(E,S) \ge L(f,S)$ (pf by Wibes) f mod form of wt 2.

B-SD conj (19605, original version)

TT #E(Tp) ~ (log N) rank
Riemann hypothesis prn p

"Thm" (As a consequence of DGH+K/Y, Kato, Rohrlich) X/Q S.t. $J_X = \prod_i E_i$. $Q(y_ip^n) = \bigcup_{N>1} Q(e^{2\pi i/p^n})$ Then $\# X(Q(y_ip^n)) < \infty$.

Ruk This thin needs L-fets to prove boundedness (whereas Mordey-Weil doesn't).

Robrbich's work: L-fet order < 00 Karto rk Tx(Q(gros)) < 00

 $\Rightarrow \# X(\mathcal{O}(\mathcal{F}_{\mathcal{P}})) < \infty$

Higher dim't B-SD: BBK conj

Chow grp: X/Q no $Ch^{i}(x) = \frac{codim i alg ayeles}{vat'i equiv}$ $Ch^{i}(x)_{o}$ homologically trivial cycles class map $H^{2i}(x)$

Then MW grp
$$\longrightarrow$$
 Weak MW grp \longrightarrow L-fet $\int fix$ a prime p. $\int Ch^{2}(x)_{0} \longrightarrow Bloch-Kato Selmer grp \longrightarrow L(S, H_{eff}^{2i-1}). $H_{f}^{i}(Q, H_{eff}^{2i-1}(\bar{X})(1))$ $wt = -1$$

Tate's obs rk Chi(x)/hom = - ord L(s, Hot (x))

Bloch (recurring fantasy) not known to be finite rk $Ch'(x)_{o} = Ord L(s, H_{ef}^{2H}(\bar{x}))$ If $H_{f}'(Q, H_{ef}^{2H}(\bar{x})(i))$ B-K conj.

Thm (LTXZZ, ~2019)

E1, E2 ell curves /Q, non-CM.

Let $X = E_1^n \times E_2^{n+1}$

V = Sym H'(E1) & Sym H'(E2) @p-repr of Gala.

Let K/a imag qual. Then

ord
$$L(s, V) = 0 \implies H_f^{\prime}(s, V(nH)) = 0$$
.
 $(B-SD)$ for rank 0 .

entire mero conti by Newton-Thorne.

Thm (LTXEZ + Disegni - Thang)

For p-adic L-fet case, AFL & p-adic GZ formula.

ord Lp(s, V) = 1 \Rightarrow rank tl's = 1. (p>>0).

DZ W

GGP cycle +0

LTXZZ, Euler system