# How Bitcoin Achieves Decentralization



Slides by Arvind Narayanan et al.

#### **BLOCKCHAIN WORKING PRINCIPLE**



# Bitcoin blocks



#### Bitcoin blocks

Why bundle transactions together?

- Single unit of work for miners
- Limit length of hash-chain of blocks
  - Faster to verify history

#### Bitcoin block structure

Hash chain of blocks



#### Bitcoin block structure





Hash tree (Merkle tree)

#### The real deal: a Bitcoin block

```
"hash": "0000000000000001aad2...",
                                 "ver":2,
                                 "prev_block":"0000000000000003043...",
block header
                                 "time":1391279636,
                                 "bits":419558700,
                                 "nonce":459459841,
                                 "mrkl_root":"89776...",
                                 "n_tx":354,
                                 "size":181520,
                                 "tx":[
transaction
data
                                 "mrkl_tree":[
                                  "6bd5eb25...",
                                  "89776cdb..."
```



#### The real deal: a Bitcoin block header

```
"hash": "0000000000000001 aad 2...",
                    "ver":2,
mining puzzle
                    "prev_block":"0000000000000003043...",
information
                    "time":1391279636,
                    "bits":419558700,
                    "nonce":459459841,
                    "mrkl_root":"89776...",
```

#### **BLOCKCHAIN WORKING PRINCIPLE**



**Bitcoin Consensus** 

## Consensus algorithm (simplified)

- 1. New transactions are broadcast to all nodes
- 2. Follow Flooding/Gossip Protocol to broadcast
- 3. Some nodes collect new transactions into a block
- 4. In each round a <u>random</u> node gets to broadcast its block
- 5. Other nodes accept the block only if all transactions in it are valid (unspent, valid signatures) 

  consens
- 6. Nodes express their acceptance of the block by including its hash in the next block they create

Mining Process

**Agreement** 

#### Hashcash: Proof of work

- Based on the idea of HashCash, a Proof of Work concept invented by Adam Back in 1997 (<a href="http://www.hashcash.org/papers/hashcash.pdf">http://www.hashcash.org/papers/hashcash.pdf</a>)
- Originally proposed as an anti-spam throttling mechanism
- The core idea is that before accepting a transaction, the sender must first demonstrate a "cost" via a computationally "hard" problem that can simultaneously be easily verified.
- This generally referred to as a "Proof of Work"

#### Hashcash: Proof of work

- HashCash Cost Function: Interactive Vs. Non-interactive
- s: service name

$$\left\{ \begin{array}{ll} \mathcal{T} \leftarrow \mathsf{MINT}(s,w) & \text{mint token} \\ \mathcal{V} \leftarrow \mathsf{VALUE}(\mathcal{T}) & \text{token evaluation function} \end{array} \right.$$

$$\begin{cases} \mathsf{PUBLIC:} & \mathsf{hash} \ \mathsf{function} \ \mathcal{H}(\cdot) \ \mathsf{with} \ \mathsf{output} \ \mathsf{size} \ k \ \mathsf{bits} \\ \mathcal{T} \leftarrow \mathsf{MINT}(s,w) & \mathbf{find} \ x \in_R \{0,1\}^* \ \mathsf{st} \ \mathcal{H}(s||x) \stackrel{\mathsf{left}}{=}_w \ 0^k \\ & \mathbf{return} \ (s,x) \\ \mathcal{V} \leftarrow \mathsf{VALUE}(\mathcal{T}) & \mathcal{H}(s||x) \stackrel{\mathsf{left}}{=}_v \ 0^k \\ & \mathbf{return} \ v \end{cases}$$

#### Hashcash: Proof of work

Hashcash Cost Function: Interactive Vs. Non-interactive

```
 \begin{cases} \mathcal{C} \leftarrow \mathsf{CHAL}(s,w) & \text{server challenge function} \\ \mathcal{T} \leftarrow \mathsf{MINT}(\mathcal{C}) & \text{mint token based on challenge} \\ \mathcal{V} \leftarrow \mathsf{VALUE}(\mathcal{T}) & \text{token evaluation function} \end{cases} 
 \begin{cases} \mathcal{C} \leftarrow \mathsf{CHAL}(s,w) & \mathbf{choose} \ c \in_R \{0,1\}^k \\ & \mathbf{return} \ (s,w,c) \end{cases} \\ \mathcal{T} \leftarrow \mathsf{MINT}(C) & \mathbf{find} \ x \in_R \{0,1\}^\star \ \mathbf{st} \ \mathcal{H}(s||c||x) \stackrel{\text{left}}{=}_w \ 0^k \\ & \mathbf{return} \ (s,x) \end{cases} \\ \mathcal{V} \leftarrow \mathsf{VALUE}(T) & \mathcal{H}(s||c||x) \stackrel{\text{left}}{=}_v \ 0^k \\ & \mathbf{return} \ v \end{cases}
```

Prevents **DOS motivated attack or** pre-computation attacks

#### The real deal: a Bitcoin block

```
"hash": "0000000000000001aad2...",
                                 "ver":2,
                                 "prev_block":"0000000000000003043...",
block header
                                 "time":1391279636,
                                 "bits":419558700,
                                "nonce":459459841,
                                 "mrkl_root":"89776...",
                                "n_tx":354,
                                "size":181520,
                                 "tx":[
transaction
data
                                 "mrkl_tree":[
                                  "6bd5eb25...",
                                  "89776cdb..."
```

#### **Proof of Work**



1001101|| x The «only way» to compute this Find value x so that the output value so that the output starts begins with 3 zeros. with n zeros is to try at random around  $2^n$  times. Proof of Work [Back2002]

#### Finding a valid block: Proof-of-Work



#### Coinbase

```
"in":[
                                               Null hash pointer
                        "prev_out":{
                         "hash":"000000.....0000000",
redeeming
nothing
                          "n":4294967295
arbitrary
                     "coinbase":"..."
                              block reward
                      "out":[
                                   transaction fees
                     "value": "25.03371419",
                     "scriptPubKey": "OPDUP OPHASH160 ... "
```

#### Block propagation nearly identical

Relay a new block when you hear it if:

- Block meets the hash target
- Block has all valid transactions
  - Run all scripts, even if you wouldn't relay
- Block builds on current longest chain
  - Avoid forks

Sanity check
Also may be ignored...



Source: Yonatan Sompolinsky and Aviv Zohar: "Accelerating Bitcoin's Transaction Processing" 2014

#### The real deal: a Bitcoin block

```
"hash": "0000000000000001aad2...",
                                "ver":2,
                                "prev_block":"0000000000000003043...",
block header
                                "time":1391279636,
                                "bits":419558700,
                                                                                   mining puzzle information
                                "nonce":459459841,
                                "mrkl_root":"89776...",
                                "n_tx":354,
                                "size":181520,
                                "tx":[
transaction
data
                                "mrkl_tree":[
                                 "6bd5eb25...",
                                 "89776cdb..."
```

#### **Proof of Work**



1001101|| x The «only way» to compute this Find value x so that the output value so that the output starts begins with 3 zeros. with n zeros is to try at random around  $2^n$  times. Proof of Work [Back2002]

# Mining Difficulty (Max Target)

**Bits:** 486604799 = 1D00FFFF

target = coefficient \* 2^(8 \* (exponent—3))

```
target = 00FFFF * 2^(8 * (1D - 3))

target = 00FFFF * 2 ^ (8*1A)

target = 00FFFF * 2 ^ D0
```

#### Block #0

| Summary                      |                     |
|------------------------------|---------------------|
| Number Of Transactions       | 1                   |
| Output Total                 | 50 BTC              |
| Estimated Transaction Volume | 0 BTC               |
| Transaction Fees             | 0 BTC               |
| Height                       | 0 (Main Chain)      |
| Timestamp                    | 2009-01-03 18:15:05 |
| Difficulty                   | 1                   |
| Bits                         | 486604799           |
| Size                         | 0.285 kB            |
| Weight                       | 0.896 kWU           |
| Version                      | 1                   |
| Nonce                        | 2083236893          |
| Block Reward                 | 50 BTC              |

#### Mining Pseudocode

More Info: https://en.bitcoin.it/wiki/Difficulty

```
TARGET = (65535 << 208) / DIFFICULTY;
coinbase nonce = 0;
                                        Max Target: An application-defined constant, which sets the target hash
                                               corresponding to the lowest possible difficulty, 1
while (1) {
      header = makeBlockHeader(transactions, coinbase_nonce);
      for (header_nonce = 0; header_nonce < (1 << 32); header_nonce++){</pre>
             if (SHA256(SHA256(makeBlock(header, header_nonce))) <</pre>
       TARGET)
                    break; //block found!
      coinbase nonce++;
```

#### **CPU** mining

```
while (1) {
    HDR[kNoncePos]++;
    IF (SHA256(SHA256(HDR)) < (65535 << 208) / DIFFICULTY)
    return;
}</pre>
```

- Hashes are 256-bit integers. So, TOTAL output size: 2^256.
- The current TARGET is "max\_target/difficulty", where max\_target is (65535 \* 2^208).
- Therefore, fraction of output space is is TARGET/TOTAL. Therefore, TOTAL/TARGET=(2^256\*difficulty/max\_target) no. of hashes are needed on average to find a block.
- This is done over 600 sec, considering previous 2016 blocks.
- Global Hashrate:

```
(2^256 * difficulty/max_target)/600
= (2^256 * difficulty/65535 * 2^208)/600
= (2^48 * difficulty/65535 )/600
= difficulty * 7158388.055
```



#### Bitcoin Hash Rate (2 Months)



#### Setting the mining difficulty

Nodes automatically re-calculate the target every two weeks

Goal: average time between blocks = 10 minutes

Prob (Alice wins next block) = fraction of global hash power she controls

Alice with 0.1% of total hash power will find roughly one in every 1000 blocks.

## Setting the mining difficulty

#### Every two weeks, compute:

```
next difficulty= currennt difficulty * (2 weeks)/(time to mine last 2016 blocks)
```



Expected number of blocks in 2 weeks at 10 minutes/block

#### Mining difficulty over time

Bitcoin Hash Rate vs Difficulty (2 Months)



Note that the y-axis begins at 80,000 TeraHashes/s. The hash rate is averaged over 2016/1008/504 blocks bitcoinwisdom.com

#### Time to find a block



Mining hardware

#### **Evolution of mining**



## **CPU** mining

```
while (1) {
    HDR[kNoncePos]++;
    IF (SHA256(SHA256(HDR)) < (65535 << 208) / DIFFICULTY)
    return;
}

two hashes</pre>
```

Throughput on a high-end PC = 10-20 MHz ≈ 2<sup>24</sup> Hashes/Sec

139,461 years to find a block today!

# Mining difficulty "target"

(as of March 2015)



Less than 1 in about 2<sup>64</sup> nonecs that you try will work

## Mining Bitcoins in 6 easy steps

- 1. Join the network, listen for transactions
- a. Validate all proposed transactions

  2. Listen for new blocks, maintain block chain a. When a new block is proposed; validate it
  - 3. Assemble a new valid block
- 4. Find the nonce to make your block valid
- 5. Hope everybody accepts your new block
- 6. Profit!

Useful to Bitcoin

network

# Incentives in proof of work

#### What can a malicious node do?



Honest nodes will extend the longest valid branch

## From Bob the merchant's point of view



# Key security assumption

Attacks infeasible if majority of miners weighted by hash power follow the protocol

# Security



Protection against invalid transactions is cryptographic, but enforced by consensus

Denial of Service

Protection against double-spending is purely by consensus

You're never 100% sure a transaction is in consensus branch. Guarantee is probabilistic

# Assumption of honesty is problematic

Can we give nodes <u>incentives</u> for behaving honestly?



Everything so far is just a distributed consensus protocol But now we utilize the fact that the currency has value

#### Incentive in Coinbase Transaction



#### Incentive 1: block reward

Creator of block gets to

- include special coin-creation transaction in the block
- choose recipient address of this transaction

Value is fixed: currently 12.5 BTC, halves every 4 years

Block creator gets to "collect" the reward only if the block ends up on long-term consensus branch!

# There's a finite supply of bitcoins



Total supply: 21 million

Block reward is how new bitcoins are created

Runs out in 2040. No new bitcoins unless rules change

## Incentive 2: transaction fees

Creator of transaction can choose to make output value less than input value

Remainder is a transaction fee and goes to block creator

Purely voluntary, like a tip

#### Transaction View information about a bitcoin transaction

1J29P1ceAfJHpG2jPQN1QxdHgCGEnLHd3u

**Input Address** 

Transaction ID (TX ID)

34auLDAG8skCooDAPpWFm69JuDz3rYnaDG 16XAfbSNEkkkwshkcusFJS4JxyHs74nudp 1AW2YoNvhAwatTjUcnzYWPETb3WSonZUD8

1L5a3gfb8FNJQn2MexVEjSzvXkXCp7mEBU

**Output Addresses** 

0.1 BTC 0.77 BTC 0.58 BTC 2.87094476 BTC

1 Confirmations

4.32094476 BTC

#### **Block Information:**

| Summary            |                                             |
|--------------------|---------------------------------------------|
| Size               | 292 (bytes)                                 |
| Weight             | 1168                                        |
| Received Time      | 2018-02-02 07:45:17                         |
| Included In Blocks | 507234 ( 2018-02-02 08:12:38 + 27 minutes ) |
| Confirmations      | 1 Confirmations                             |
| Visualize          | View Tree Chart                             |

#### Transaction information:

| Inputs and Outputs       |                         |
|--------------------------|-------------------------|
| Total Input              | 4.32123876 BTC          |
| Total Output             | 4.32094476 BTC          |
| Fees                     | 0.000294 BTC            |
| Fee per byte             | 100.685 sat/B           |
| Fee per weight unit      | 25.171 sat/WU           |
| Estimated BTC Transacted | 0.1 BTC                 |
| Scripts                  | Show scripts & coinbase |

#### Recall:

transaction fee = value of inputs - value of outputs fee goes to miner who records the transaction

#### Costs resources for

peers to relay your transaction miner to record your transaction

Transaction fee compensates for (some of) these costs

How are transaction fees set today? No fee if

tx less than 1000 bytes in size, all outputs are 0.01 BTC or larger, and priority is large enough

Priority = (sum of inputAge\*inputValue) / (trans size)

Otherwise fee is 0.0001 BTC per 1000 bytes

Approx transaction size: 148 N<sub>inputs</sub>+ 34 N<sub>outputs</sub> + 10

#### A second look at transaction fees

Default policy:

```
priority = sum(input_value * input_age)/size_in_bytes
```

Accept without fees if:

priority > 0.576



Generally, higher fee means transaction will be forwarded and recorded faster.

If you don't pay the consensus fee, your transaction will take longer to be recorded.

Miners prioritize transactions based on fees and the priority formula.

#### Transaction fees will matter more

Currently, block rewards are > 99% of miner revenue. But:



Eventually, transaction fees will dominate

Courtesy: Brian Warner

## The real deal: coinbase transaction

```
"in":[
  "prev_out":{
    "hash": "000000.....0000000",
    "n":4294967295
"coinbase":"..."
    block reward
            transaction fees
"value": "25.03371419",
"scriptPubKey": "OPDUP OPHASH160 ... "
```

## Mining economics

```
If mining reward (block reward + Tx fees) > hardware + electricity cost → Profit
```

#### **Complications:**

- fixed vs. variable costs
- reward depends on global hash rate

Putting it all together

# Bitcoin is bootstrapped



## What can a "51% attacker" do?

Steal coins from existing address? X

Suppress some transactions?

- From the block chain
- From the P2P network

Change the block reward?

Destroy confidence in Bitcoin? <

# How big is the network?

- Impossible to measure exactly
- Estimates-up to 1M IP addresses/month
- Only about 5-10k "full nodes"
  - Permanently connected
  - Fully-validate
- This number may be dropping!

# Fully-validating nodes

- Permanently connected
- Store entire block chain
- Hear and forward every node/transaction

# Storage costs (Size of Blckchain)





# Tracking the UTXO set

- Unspent Transaction Output
  - Everything else can be stored on disk
- Currently ~12 M UTXOs
  - Out of 44 M transactions
- Can easily fit into RAM

# Thin/SPV clients (not fully-validating)

Idea: don't store everything

- Store block headers only
- Request transactions as needed
  - To verify incoming payment
- Trust fully-validating nodes

1000x cost savings! (20 GB -> 23MB)

Limitations & improvements

#### Hard-coded limits in Bitcoin

- 10 min. average creation time per block
- 1 M bytes in a block
- 20,000 signature operations per block
- 100 M satoshis per bitcoin
- 21M total bitcoins maximum
- 50,25,12.5... bitcoin mining reward

These affect economic balance of power too much to change now

# Throughput limits in Bitcoin

- 1 M bytes/block (10 min)
- >250 bytes/transaction
- 7 transactions/sec 🙁

#### Compare to:

- VISA: 2,000-10,000 transactions/sec
- PayPal: 50-100 transaction/sec