Course Code	CSE560		
Course Name	GPU Computing		
Credits	4		
Course Offered to	UG/PG		
Course Description	This course will introduce parallel computing paradigms with for architecture in solving computationally demanding tasks. The North introduced and used with most of the labs. This is a project base problems.	NVIDIA CUDA and industry standa	rd OpenCL frameworks will be
	Pre-requisites		
Pre-requisite (Mandatory)	Pre-requisite (Desirable)	Pre-requiste (Other)]
CSE101 Intro to Programming	CSE102 Data Structures & Algorithms	C/C++ Programming (students must know how to write reasonable length C programs before this course).	
*Please insert more rows if required		•	-
	Post Conditions*(For suggestions on verbs please re	efer the second sheet)	
CO1	CO2	CO3	CO4
Students are able to understand	Students are able to understand parallel computing	Students are able to analyse an	Students are able to implement
concepts behind parallel computing	paradigms, GPU architecture and GPGPU development	algorithms to provide parallel	such solutions on GPU using
	frameworks (CUDA, OpenCL, and GLSL)	solutions to computationally challenging problems	CUDA, and show effectiveness of the GPU based solutions using standard benchmarks and tools
	Weekly Lecture Plan	•	•
Week Number	Lecture Topic	COs Met	Assignment/Labs/Tutorial
	Introduction and overview: advances in architecture and		Weekly programming assignments

class. Homeworks contain both

theoretical and programming

problems.

C01, C02

C02

Basics on architecture and programming: CPU/GPU

architecture, multicore architecture, Flynn's taxonomy, SIMT

execution model

Introduction to CUDA C: kernel based data parallel execution model, memory model and locality, CUDA threads, atomics,

GPU utilisation

2,3

4,5

6.7	Parallel programming paradigms: parallel algorithm design, analytical modelling of parallel programs, limits on achievable performance, Amdahl's law, Gustafson's law, scalability, work optimality, message passing, shared address space machines,	604 603
6,7	basic communication operations, concurrency	C01, C03
	Parallel computing using CUDA: data transfer and CUDA	
	streams, performance considerations, floating-point accuracy,	
	synchronisation, communication, reduction trees, parallel	
8-10	prefix sum, optimisations	C01, C02
	OpenMP, OpenACC, Multi-GPU systems, GPGPU-computing	
11-12	using OpenCL and OpenGL	C04
13	Case studies	C03

*Please insert more rows if required

Weekly Lab Plan				
Week Number	Laboratory Exercise	COs Met	Platform (Hardware/Software)	
General Plan	Getting familiar with the programming environment	C04		
Week 1	Writing basic CUDA C progam - vector addition	C01, C04	CUDA C	
Week 2-3	Matrix multiplication in CUDA	C01, C04	CUDA C	
	Matrix multiplication in CUDA using shared memory and			
Week 4	memory coalescing	C01, C04	CUDA C	
Week 5	Assignment evaluation		CUDA C	
Week 6	Project discussions			
Week 7 Assignment evaluation				
Week 8	GPU performance tools, CUDA debugger		CUDA C	
Week 9	ek 9 Assignment evaluation			
Week 10	Project evaluations	C03	CUDA C	
Week 11	Project evaluations	C03	CUDA C	
Week 12	Project evaluations	C03	CUDA C	
Week 13	Project evaluations	C03	CUDA C	

*Please insert more rows if required

Assessment Plan		
Type of Evaluation	% Contribution in Grade	
Mid-sem	15	Mid sem= theory
End-sem	30	End sem= theory
Project	30	
Assignment	20	
Quiz	5	

*Please insert more row for other type of Evaluation

Resource Material		
Type Title		
Textbook	David B. Kirk, and Wen-mei W. Hwu, Programming massively parallel processors: a hands-on approach, Elsevier.	
Textbook	A. Grama, A. Gupta, G. Karypis, and V. Kumar, Introduction to parallel computing, 2nd edition.	