Package 'RHMS'

October 12, 2022

Type Package

Title Hydrologic Modelling System for R Users

Version 1.7
Depends R (>= 3.0.0), graphics, stats, pso, Hmisc, network, GGally
Date 2021-09-22
Author Rezgar Arabzadeh; Shahab Araghinejad
Maintainer Rezgar Arabzadeh < rezgararabzadeh@ut.ac.ir>
Description Hydrologic modelling system is an object oriented tool for simulation and analysis of hydrologic events. The package proposes functions and methods for construction, simulation, visualization, and calibration of a hydrologic model.
License GPL-2
Imports ggplot2
NeedsCompilation no
Repository CRAN
Date/Publication 2021-09-27 15:50:02 UTC
R topics documented:
RHMS-package
abstraction
abstraction.base
addObjectToBasin
baseFlowSeparation
baseFlowSeparation.base
baseFlowSeparation.default
createBasin
createBasin.base
createBasin.default
createDiversion 13

 createDiversion.base
 14

 createDiversion.default
 15

2 RHMS-package

RHMS-package

Hydrologic Modelling System for R Users

Description

The RHMS package provides tools to R users for simulation of hydrologic events. The packages includes functions and methods for building, simulation, visualization, and calibration of a hydrologic model.

RHMS-package 3

Details

Package: RHMS
Type: Package
Version: 1.7
Date: 2021-09-27
License: GPL-3

the package include three major types of functions as follows:

1- functions for construction and manipulatation of hydrologic features.

- createBasin, constructor for basin
- createJunction. constructor for junction
- createReach, constructor for reach, rivers, and channels
- createReservoir. constructor for reservoirs
- createSubbasin. constructor for sub-bains
- createDiversion. constructor for diversions
- set.as. objects connector
- addObjectToBasin. adds objects form above constructors to a basin inherited from class of createBasin
- 2- functions for analysis and simulation of hydrologic events.
 - reachRouting. routes a flood in a channel or river
 - reservoirRouting. routes a flood in a reservoir
 - transform. trnasforms a rainfall event to runoff
 - loss. computes excess rainfall and loss depths
 - baseFlowSeparation. separates baseflow from a given discharge series
 - abstraction. computes simple surface and canopy methods
 - sim. simulates an objects inherited from class of createBasin
- 3- functions for tunning, summerizing, and visualization.
 - plot.sim. plots the objects inherited from class of sim
 - plot.createBasin. plots the objects inherited from class of createBasin
 - summary.sim. summerzies the simulation results in the tabular form for every objects existing in the basin
 - tune. calibrates an objects inherited from class of createBasin

Author(s)

Rezgar Arabzadeh; Shahab Araghinejad

Maintainer: Rezgar Arabzadeh <rezgararabzadeh@ut.ac.ir>

4 abstraction

References

```
Chow, V. T., Maidment, D. R., & Mays, L. W. (1988). Applied hydrology.
```

See Also

sim

abstraction

computes surface and canopy abstractions

Description

computes surface and canopy abstractions for a given rainfall event.

Usage

```
abstraction(rainfall,abstractionParams)
```

Arguments

```
rainfall a vector: a time series of precipitation hyetograph (mm) abstractionParams
```

a list: including parameters of simple surface and simple canopy methods.

- canopyAbstraction depth of canopy abstraction in (mm). default to zero
- surfaceAbstraction depth of surface abstraction in (mm). default to zero

Value

a list: an object from class of abstraction

Author(s)

Rezgar Arabzadeh

See Also

createSubbasin

Examples

abstraction.base 5

abstraction.base

base function for class of abstraction

Description

instantiates an object from class of abstraction

Usage

```
## S3 method for class 'base'
abstraction(rainfall,abstractionParams)
```

Arguments

```
rainfall a vector: a time series of precipitation hyetograph (mm) abstractionParams
```

a list: including parameters of simple surface and simple canopy methods.

- canopyAbstraction depth of canopy abstraction in (mm). default to zero
- surfaceAbstraction depth of surface abstraction in (mm). default to zero

Value

a list: an object from class of abstraction

Author(s)

Rezgar Arabzadeh

See Also

createSubbasin

abstraction.default

default function for class of abstraction

Description

instantiates an object from class of abstraction

Usage

6 addObjectToBasin

Arguments

```
rainfall a vector: a time series of precipitation hyetograph (mm) abstractionParams
```

a list: including parameters of simple surface and simple canopy methods.

- canopyAbstraction depth of canopy abstraction in (mm). default to zero
- surfaceAbstraction depth of surface abstraction in (mm). default to zero

Value

a list: an object from class of abstraction

Author(s)

Rezgar Arabzadeh

See Also

createSubbasin

addObjectToBasin

adds an object to basin

Description

adds an object inherited from either of RHMS package constructors to an object instantiated by class of createBasin.

Usage

```
addObjectToBasin(object, basin)
```

Arguments

object an object inherited from one of the following classes: createReservoir, createReach,

createSubbasin, createJunction

basin an object inherited from class of createBasin

Value

an object from class of createBasin

Author(s)

Rezgar Arabzadeh

See Also

sim

addObjectToBasin 7

Examples

```
storageElevationCurve<-data.frame(s=0:100*10,h=100:200)
dischargeElevationCurve<-data.frame(q=seq(0,5000,length.out=10),
                                     h=seq(180,200,length.out=10))
geometry<-list(storageElevationCurve=storageElevationCurve,</pre>
               dischargeElevationCurve=dischargeElevationCurve,
               capacity=800)
Res1<-createReservoir(name = "Reservoir1",
                      geometry=geometry,initialStorage=550)
R1<-createReach(name="Reach1",routingParams=list(k=5,x=0.3))
R2<-createReach(name="Reach2",routingParams=list(k=5,x=0.3))
R3<-createReach(name="Reach3",routingParams=list(k=5,x=0.3))
R4<-createReach(name="Reach4",routingMethod="muskingumcunge",
                               routingParams=list(bedWith=100,
                                                   sideSlope=2,
                                                   channelSlope=0.01,
                                                   manningRoughness=0.05,
                                                   riverLength=120))
D1<-createDiversion(name="Diversion1",capacity=80)
Junc1<-createJunction(name = "Junc1")</pre>
S1<-createSubbasin(name="Sub1",Area=500,
                   precipitation=round(sin(seq(0,pi,length.out=24))*20),
                    transformMethod="SCS",lossMethod="SCS",BFSMethod='recession',
              transformParams=list(Tlag=4),lossParams=list(CN=70),BFSParams=list(k=1.1))
S2<-createSubbasin(name="Sub2", Area=500,
                   precipitation=round(sin(seq(0,pi,length.out=24))*20),
                    transformMethod="SCS",lossMethod="SCS",BFSMethod='recession',
              transformParams=list(Tlag=4), lossParams=list(CN=70), BFSParams=list(k=1.1))
S3<-createSubbasin(name="Sub3", Area=650,
                   precipitation=round(sin(seq(0,pi,length.out=24))*20),
                    transformMethod="snyder",lossMethod="horton",
                    transformParams=list(Cp=0.17,Ct=1.5,L=140,Lc=30),
                   lossParams=list(f0=5,f1=1,k=1))
S1<-set.as(R2,S1,'downstream')</pre>
R2<-set.as(Junc1,R2,'downstream')
Junc1<-set.as(R1, Junc1, 'downstream')</pre>
R1<-set.as(Res1,R1,'downstream')
S3<-set.as(R3,S3,'downstream')
R3<-set.as(Junc1,R3,'downstream')
S2<-set.as(R4,S2,'downstream')
R4<-set.as(D1,R4,'downstream')
D1<-set.as(Junc1,D1,'downstream')
D1<-set.as(S1,D1,'divertTo')
basin1<-createBasin(name = "Unknown", simulation=list(start='2000-01-01',end='2000-01-10',by=7200))
basin1<-addObjectToBasin(Junc1, basin1)</pre>
basin1<-addObjectToBasin(R1, basin1)</pre>
basin1<-addObjectToBasin(R2, basin1)</pre>
basin1<-addObjectToBasin(R3, basin1)</pre>
basin1<-addObjectToBasin(R4, basin1)</pre>
```

8 baseFlowSeparation

```
basin1<-addObjectToBasin(S1, basin1)
basin1<-addObjectToBasin(S2, basin1)
basin1<-addObjectToBasin(S3, basin1)
basin1<-addObjectToBasin(Res1, basin1)
basin1<-addObjectToBasin(D1, basin1)

## Not run: plot(basin1)

object<-sim(basin1)

plot(object)
summary(object)</pre>
```

baseFlowSeparation

Parametric methods for separating baseflow

Description

This function calculates baseflow for a given time series, discharge, using a number of method stated in BFSMethod.

Usage

baseFlowSeparation(discharge, BFSMethod, BFSParams, plot)

Arguments

discharge	a vector of flow time series (cms) or an object inherited from class of 'transform'
BFSMethod	a string: The method of base flow separation. Available methods: 'nathan', 'chapman', 'eckhardt', 'recession'
BFSParams	a list including parameters associated with the method coerced in 'BFSMethod'.
	 alpha is in [0, 1] interval required for 'nathan', 'chapman', and 'eckhardt' methods
	 BFI is in [0, 1] interval required for 'eckhardt' method
	 k is in [0, 1] interval and timeInterval is in day required for 'recession' method
plot	(optional) logical statement to plot the result or not. default to FALSE

Value

a list: an object from class of baseFlowSeparation consisting matrix of results available at objectpetSeparation.

Author(s)

Rezgar Arabzadeh

References

Chapman, Tom. "A comparison of algorithms for stream flow recession and baseflow separation." Hydrological Processes 13.5 (1999): 701-714.

See Also

baseFlowSeparation

Examples

```
discharge<-(dnorm(seq(-3,4,length.out=200),-.3,1)+dnorm(seq(-1,7,length.out=200),4.5,1)*2)*1200
BFSMethod<-c('nathan','chapman','eckhardt','recession')
BFSParams<-list(alpha=0.6,BFI=0.3,k=1.1,timeInterval=15*60)
simulation<-list(start='2000-01-01',end='2000-01-02',by=400)
baseFlowSeparation(discharge,BFSMethod[1],BFSParams,plot=TRUE)
baseFlowSeparation(discharge,BFSMethod[2],BFSParams,plot=TRUE)
baseFlowSeparation(discharge,BFSMethod[3],BFSParams,plot=TRUE)
baseFlowSeparation(discharge,BFSMethod[4],BFSParams,plot=TRUE)</pre>
```

baseFlowSeparation.base

base function for class of baseFlowSeparation

Description

Methods of separating baseflow for a given flow discharge.

Usage

```
## S3 method for class 'base'
baseFlowSeparation(discharge,BFSMethod,BFSParams,plot)
```

Arguments

discharge	a vector of flow time series (cms) or an object inherited from class of 'transform'
BFSMethod	a string: The method of base flow separation. Available methods: 'nathan', 'chapman', 'eckhardt', 'recession'
BFSParams	a list including parameters associated with the method coerced in 'BFSMethod'.
	 alpha is in [0, 1] interval required for 'nathan', 'chapman', and 'eckhardt' methods
	 BFI is in [0, 1] interval required for 'eckhardt' method
	 k is in [0, 1] interval and timeInterval is in day required for 'recession' method
plot	(optional) logical statement to plot the result or not. default to FALSE

Value

a matrix: A matrix of results including computed separated flow for Q series

Author(s)

Rezgar Arabzadeh

See Also

baseFlowSeparation

```
baseFlowSeparation.default
```

default function for class of baseFlowSeparation

Description

Methods for separating baseflow for a given flow discharge

Usage

Arguments

a vector of flow time series (cms) or an object inherited from class of 'transform'

BFSMethod a string: The method of base flow separation. Available methods: 'nathan', 'chapman', 'eckhardt', 'recession'

BFSParams a list including parameters associated with the method coerced in 'BFSMethod'.

• alpha is in [0, 1] interval required for 'nathan', 'chapman', and 'eckhardt' methods

• BFI is in [0, 1] interval required for 'eckhardt' method

• k is in [0, 1] interval and timeInterval is in day required for 'recession' method

plot (optional) logical statement to plot the result or not. default to FALSE

Value

a list: an object from class of baseFlowSeparation consisting matrix of results available at object\$operation.

createBasin 11

Author(s)

Rezgar Arabzadeh

See Also

createSubbasin

createBasin

creates a basin

Description

instantiates an object from class of createBasin

Usage

```
createBasin(name, simulation)
```

Arguments

name a string: a name for the basin

simulation a list of simulation time and dates as below:

- start: the date which simulation starts, must be in 'YYYY-MM-DD' format
 start: the date which simulation ends, must be in 'YYYY-MM-DD' format
- by: the interval of each steps in seconds

Value

a list: an object from class of creatBasin

Author(s)

Rezgar Arabzadeh

See Also

12 createBasin.default

createBasin.base

base function for class of createBasin

Description

instantiates an object from class of createBasin

Usage

```
## S3 method for class 'base'
createBasin(name, simulation)
```

Arguments

name a string: a name for the basin

simulation a list of simulation time and dates as below:

- start: the date which simulation starts, must be in 'YYYY-MM-DD' format
 start: the date which simulation ends, must be in 'YYYY-MM-DD' format
- by: the interval of each steps in seconds

Value

a list: an object from class of creatBasin

Author(s)

Rezgar Arabzadeh

See Also

addObjectToBasin

createBasin.default

 ${\it default \, function \, for \, class \, of \, \, createBasin}$

Description

instantiates an object from class of createBasin

Usage

```
## Default S3 method:
createBasin(name = "Untittled", simulation=list(start=NULL,end=NULL,by=NULL))
```

createDiversion 13

Arguments

name a string: a name for the basin

simulation a list of simulation time and dates as below:

start: the date which simulation starts, must be in 'YYYY-MM-DD' format
 start: the date which simulation ends, must be in 'YYYY-MM-DD' format

• by: the interval of each steps in seconds

Value

a list: an object from class of creatBasin

Author(s)

Rezgar Arabzadeh

See Also

addObjectToBasin

createDiversion creates a diversion object

Description

instantiates an object from class of createDiversion

Usage

createDiversion(name,downstream,divertTo,capacity)

Arguments

name (optional) a string: the name of diversion to be instantiated

downstream (optional) an object from either of classes: createDiversion, createReservoir,

createSubbasin, createJunction, createReach.

divertTo an object from either of classes: createDiversion, createReservoir, createSubbasin,

createJunction, createReach.

capacity diversion capacity (cms)

Value

a list: an object from class of createDiversion

Author(s)

Rezgar Arabzadeh

14 createDiversion.base

See Also

addObjectToBasin

createDiversion.base base function for class of createDiversion

Description

instantiates an object from class of createDiversion

Usage

```
## S3 method for class 'base'
createDiversion(name,downstream,divertTo,capacity)
```

Arguments

name (optional) a string: the name of diversion to be instantiated

downstream (optional) an object from either of classes: createDiversion, createReservoir,

createSubbasin, createJunction, createReach.

divertTo an object from either of classes: createDiversion, createReservoir, createSubbasin,

createJunction, createReach.

capacity diversion capacity (cms)

Value

a list: an object from class of createDiversion

Author(s)

Rezgar Arabzadeh

See Also

createDiversion.default 15

createDiversion.default

default function for class of createDiversion

Description

instantiates an object from class of createDiversion

Usage

```
## Default S3 method:
createDiversion(name="Unttitled",downstream=NA,divertTo,capacity)
```

Arguments

name (optional) a string: the name of diversion to be instantiated

downstream (optional) an object from either of classes: createDiversion, createReservoir,

createSubbasin, createJunction, createReach.

divertTo an object from either of classes: createDiversion, createReservoir, createSubbasin,

createJunction, createReach.

capacity diversion capacity (cms)

Value

a list: an object from class of createDiversion

Author(s)

Rezgar Arabzadeh

See Also

addObjectToBasin

createJunction creates a junction object

Description

instantiates an object from class of createJunction

Usage

16 createJunction.base

Arguments

name (optional) a string: the name of junction to be instantiated

downstream (optional) an object from either of classes: createDiversion, createReservoir,

createSubbasin, createJunction, createReach.

inflow (optional): a vector of direct inflow/lateral flow (cms)

delayInflow (optional): an integer presenting the time steps to delay direct/lateral inflow time

series

Value

a list: an object from class createJunction

Author(s)

Rezgar Arabzadeh

See Also

addObjectToBasin

createJunction.base base function for class of createJunction

Description

instantiates an object from class of createJunction

Usage

Arguments

name (optional) a string: the name of junction to be instantiated

downstream (optional) an object from either of classes: createDiversion, createReservoir,

createSubbasin, createJunction, createReach.

inflow (optional): a vector of direct/lateral (cms)

delayInflow (optional): an integer presenting the time steps to delay direct/lateral inflow time

series

Value

a list: an object from class of createJunction

createJunction.default 17

Author(s)

Rezgar Arabzadeh

See Also

```
addObjectToBasin
```

createJunction.default

default function for class of createJunction

Description

instantiates an object from class of createJunction

Usage

Arguments

name (optional) a string: the name of junction to be instantiated

downstream (optional) an object from either of classes: createDiversion, createReservoir,

createSubbasin, createJunction, createReach.

inflow (optional): a vector of direct/lateral inflow (cms)

delayInflow (optional): an integer presenting the time steps to delay direct/lateral inflow time

series

Value

a list: an object from class of createJunction

Author(s)

Rezgar Arabzadeh

See Also

18 createReach

createReach	creates a reach object	
-------------	------------------------	--

Description

instantiates an object from class of createReach

Usage

```
createReach(name, routingMethod, inflow,
            routingParams, delayInflow, downstream)
```

Arguments

(optional) a string: the name of reach to be instantiated name routingMethoda string: the method of channel routing. available types: "muskingum", and "muskingumcunge". default to "muskingum" inflow (optional): a vector of direct/lateral inflow (cms) routingParams a list: parameters associated to the routingMethod: • k and x for "muskingum", • bedWith (m), sideSlope (m/m), channelSlope (m/m), manningRoughness, riverLength(Km) for "muskingumcunge" delayInflow (optional): an integer presenting the time steps to delay direct/lateral inflow time

series

downstream

(optional) an object from either of classes: createDiversion, createReservoir, createSubbasin, createJunction, createReach.

Value

a list: an object from class of createReach

Author(s)

Rezgar Arabzadeh

See Also

createReach.base 19

createReach.base	base function for class of createReach	
------------------	--	--

Description

instantiates an object from class of createReach

Usage

Arguments

(optional) a string: the name of reach to be instantiated name routingMethoda string: the method of channel routing. available types: "muskingum", and "muskingumcunge". default to "muskingum" inflow (optional): a vector of lateral inflow (cms) routingParams a list: parameters associated to the routingMethod: • k and x for "muskingum", $\bullet \ \ \text{bedWith} \ (m), \ \text{sideSlope} \ (m/m), \ \text{channelSlope} \ (m/m), \ \text{manningRoughness},$ riverLength (Km) for "muskingumcunge" delayInflow (optional): an integer presenting the time steps to delay direct/lateral inflow (optional) an object from either of classes: createDiversion, createReservoir, downstream

createSubbasin, createJunction, createReach.

Value

a list: an object from class of createReach

Author(s)

Rezgar Arabzadeh

See Also

20 createReach.default

createReach.default default function for class of createReach

Description

instantiates an object from class of createReach

Usage

Arguments

name (optional) a string: the name of reach to be instantiated

routingMethod a string: the method of channel routing. available types: "muskingum", and

"muskingumcunge". default to "muskingum".

inflow (optional): a vector of direct/lateral (cms)

routingParams a list: parameters associated to the routingMethod:

• k and x for "muskingum",

 $\bullet \ \, \text{bedWith}\,(m), \, \text{sideSlope}\,(m\!/\!m), \, \text{channelSlope}\,(m\!/\!m), \, \text{manningRoughness},$

riverLength(Km) for "muskingumcunge"

delayInflow (optional): an integer presenting the time steps to delay direct/lateral inflow time

series

downstream (optional) an object from either of classes: createDiversion, createReservoir,

createSubbasin, createJunction, createReach.

Value

a list: an object from class of createReach

Author(s)

Rezgar Arabzadeh

See Also

createReservoir 21

createReservoir creates a reservoir object
--

Description

instantiates an object from class of createReservoir

Usage

Arguments

name (optional): a string: the name of reservoir to be instantiated

inflow (optional): a vector of direct/lateral inflow (cms) geometry a list of geometric specifications of the reservoir:

- storageElevationCurve: a data frame: a data frame at which its first collumn includes height (masl) and second collums presents equivalent volume to the height at first collumn (MCM)
- dischargeElevationCurve: a data frame: a data frame at which its first collumn includes height (masl) and second collums presents equivalant discharge rate to the height at first collumn (cms)
- storage: the maximum volume of reservoir capacity (MCM)

initialStorage (optional) the initial storage of reservoir at the first time step of simulation

(MCM)

delayInflow (optional): an integer presenting the time steps to delay direct/lateral inflow time

series

downstream (optional): an object from either of classes: createDiversion, createReservoir,

createSubbasin, createJunction, createReach.

Value

a list: an object from class of createReservoir

Author(s)

Rezgar Arabzadeh

See Also

22 createReservoir.base

createReservoir.base base function for class of createReservoir

Description

instantiates an object from class of createReservoir

Usage

Arguments

name (optional): a string: the name of reservoir to be instantiated

inflow (optional): a vector of direct/lateral inflow (cms) geometry a list of geometric specifications of the reservoir:

- storageElevationCurve: a data frame: a data frame at which its first collumn includes height (masl) and second collums presents equivalent volume to the height at first collumn (MCM)
- dischargeElevationCurve: a data frame: a data frame at which its first collumn includes height (masl) and second collums presents equivalant discharge rate to the height at first collumn (cms)
- storage: the maximum volume of reservoir capacity (MCM)

initialStorage (optional): the initial storage of reservoir at the first time step of simulation

(MCM)

delayInflow (optional): an integer presenting the time steps to delay direct/lateral inflow time

series

downstream (optional): an object from either of classes: createDiversion, createReservoir,

createSubbasin, createJunction, createReach.

Value

a list: an object from class of createReservoir

Author(s)

Rezgar Arabzadeh

See Also

createReservoir.default 23

createReservoir.default

default function for class of createReservoir

Description

instantiates an object from class of createReservoir

Usage

Arguments

name (optional): a string: the name of reservoir to be instantiated

inflow (optional): a vector of direct/lateral inflow (cms) geometry a list of geometric specifications of the reservoir:

- storageElevationCurve: a data frame: a data frame at which its first collumn includes height (masl) and second collums presents equivalent volume to the height at first collumn (MCM)
- dischargeElevationCurve: a data frame: a data frame at which its first collumn includes height (masl) and second collums presents equivalant discharge rate to the height at first collumn (cms)
- storage: the maximum volume of reservoir capacity (MCM)

initialStorage (optional): the initial storage of reservoir at the first time step of simulation

(MCM)

delayInflow (optional): an integer presenting the time steps to delay direct/lateral inflow time

series

downstream (optional): an object from either of classes: createDiversion, createReservoir,

createSubbasin, createJunction, createReach.

Value

a list: an object from class of createReservoir

Author(s)

Rezgar Arabzadeh

24 createSubbasin

See Also

addObjectToBasin

createSubbasin creates a sub-basin object

Description

instantiates an object from class of createSubbasin

Usage

```
createSubbasin(name,precipitation,
    inflow,Area,delayInflow,downstream,
    transformMethod,lossMethod,BFSMethod,UH,
    abstractionParams,transformParams,lossParams,BFSParams)
```

Arguments

name (optional): a string: the name of sub-basin to be instantiated precipitation a vector: a time series of precipitation hytograph (mm)

inflow (optional): a vector of direct inflow rather than flows comming from upstream

(cms)

Area the area of basin (Km²)

delayInflow (optional): an integer presenting the time steps to delay direct/lateral inflow time

series

downstream (optional): an object from either of classes: createDiversion, createReservoir,

createSubbasin, createJunction, createReach.

transformMethod

a string: the type of transformation method. Available types: "SCS", "snyder",

and "user" for user defined unit hydrograph. default to "SCS"

lossMethod a string: the type of loss method. Available types: "SCS" and "horton"

BFSMethod a string: The method of base flow separation. Available methods: 'nathan',

'chapman', 'eckhardt', 'recession'

UH a data.frame: including the ordinates of user UH. the HU first collumn indicates

time (Hr) and second collumn include flow rates (cms)

abstractionParams

a list: including parameters of simple surface and simple canopy methods.

• canopyAbstaction depth of canopy abstraction in (mm)

• surfaceAbstaction depth of surface abstraction in (mm)

BFSParams a list including parameters associated with the method coerced in 'BFSMethod'.

 alpha is in [0, 1] interval required for 'nathan', 'chapman', and 'eckhardt' methods createSubbasin.base 25

- BFI is in [0, 1] interval required for 'eckhardt' method
- k is in [0, 1] interval and timeInterval is in day required for 'recession' method

transformParams

a list of parameters associated to the selcted type of transformMethod:

- Tlag for "SCS" method in (Hours)
- Ct, Cp, L, and Lc for "snyder" method

lossParams

a list of parameters associated to the selcted type of lossMethod:

- CN for "SCS" method
- f0, f1, k other for "horton" method

Value

a list: an object from class of createSubbasin

Author(s)

Rezgar Arabzadeh

See Also

addObjectToBasin

createSubbasin.base

base function for class of createSubbasin

Description

instantiates an object from class of createSubbasin

Usage

```
## S3 method for class 'base'
createSubbasin(name,precipitation,
    inflow,Area,delayInflow,downstream,
    transformMethod,lossMethod,BFSMethod,UH,
    abstractionParams,transformParams,lossParams,BFSParams)
```

Arguments

name (optional): a string: the name of sub-basin to be instantiated precipitation a vector : a time series of precipitation hytograph (mm) inflow (optional): a vector of direct inflow/lateral (cms)

Area the area of basin (Km^2)

26 createSubbasin.base

delayInflow (optional): an integer presenting the time steps to delay direct/lateral inflow time

series

downstream (optional): an object from either of classes: createDiversion, createReservoir,

createSubbasin, createJunction, createReach.

transformMethod

a string: the type of transformation method. Available types: "SCS", "snyder",

and "user" for user defined unit hydrograph. default to "SCS"

lossMethod a string: the type of loss method. Available types: "SCS" and "horton"

BFSMethod a string: The method of base flow separation. Available methods: 'nathan',

'chapman', 'eckhardt', 'recession'

UH a data.frame: including the ordinates of user UH. the HU first collumn indicates

time (Hr) and second collumn include flow rates (cms)

abstractionParams

a list: including parameters of simple surface and simple canopy methods.

• canopyAbstaction depth of canopy abstraction in (mm)

• surfaceAbstaction depth of surface abstraction in (mm)

BFSParams a list including parameters associated with the method coerced in 'BFSMethod'.

 alpha is in [0, 1] interval required for 'nathan', 'chapman', and 'eckhardt' methods

• BFI is in [0, 1] interval required for 'eckhardt' method

k is in [0, 1] interval and timeInterval is in day required for 'recession' method

transformParams

a list of parameters associated to the selcted type of transformMethod:

• Tlag for "SCS" method in (Hours)

• Ct, Cp, L, and Lc for "snyder" method

lossParams a list of parameters associated to the selcted type of lossMethod:

71

• CN for "SCS" method

• f0, f1, k other for "horton" method

Value

a list: a list features for the constructed sub-basin

Author(s)

Rezgar Arabzadeh

See Also

createSubbasin.default 27

createSubbasin.default

default function for class of createSubbasin

Description

instantiates an object from class of createSubbasin

Usage

Arguments

name (optional): a string: the name of sub-basin to be instantiated precipitation a vector: a time series of precipitation hytograph (mm)

inflow (optional): a vector of direct/lateral inflow (cms)

Area the area of basin (Km²)

delayInflow (optional): an integer presenting the time steps to delay direct/lateral inflow time

series

downstream (optional): an object from either of classes: createDiversion, createReservoir,

 ${\tt createSubbasin, createJunction, createReach.}$

transformMethod

a string: the type of transformation method. Available types: "SCS", "snyder",

and "user" for user defined unit hydrograph. default to "SCS"

lossMethod a string: the type of loss method. Available types: "SCS" and "horton"

BFSMethod a string: The method of base flow separation. Available methods: 'nathan',

'chapman', 'eckhardt', 'recession'

UH a data.frame: including the ordinates of user UH. the HU first collumn indicates

time (Hr) and second collumn include flow rates (cms)

abstractionParams

a list: including parameters of simple surface and simple canopy methods.

• canopyAbstaction depth of canopy abstraction in (mm)

28 loss

• surfaceAbstaction depth of surface abstraction in (mm)

BFSParams

a list including parameters associated with the method coerced in 'BFSMethod'.

- alpha is in [0, 1] interval required for 'nathan', 'chapman', and 'eckhardt'
 methods
- BFI is in [0, 1] interval required for 'eckhardt' method
- k is in [0, 1] interval and timeInterval is in day required for 'recession' method

transformParams

a list of parameters associated to the selcted type of transformMethod:

- Tlag for "SCS" method in (Hours)
- Ct, Cp, L, and Lc for "snyder" method

lossParams

a list of parameters associated to the selcted type of lossMethod:

- · CN for "SCS" method
- f0, f1, k other for "horton" method

Value

a list: an object from class of createSubbasin

Author(s)

Rezgar Arabzadeh

See Also

addObjectToBasin

loss

Excess rainfall computation

Description

this function provides methods (e.g. "horton" and "SCS") to compute loss and direct runoff depths

Usage

loss(precipitation, lossMethod, lossParams)

Arguments

precipitation a vector of precipitation time series(mm)

lossMethod a string including the type of lossMethod: "SCS" and "horton". default to

"SCS" method

lossParams a list of parameters associated to the selcted type of lossMethod:

• the curve number, CN, and imperviousness in precentage for "SCS" method

- f0, f1, k for "horton" method
- timeInterval: the interval of each steps in seconds needed for "horton" method

loss.base 29

Value

a dataframe: including precipitation, loss, and exess rainfall depth

Author(s)

Rezgar Arabzadeh

See Also

transform

Examples

```
precipitation<-sin(seq(0.1,pi-0.1,length.out=20))*30
lossParams<-list(f0=20,f1=5,k=2,timeInterval=3600,CN=65)
lossMethod<-c("horton","SCS")
(Horton_loss<-loss(precipitation,lossMethod[1],lossParams))
(SCS_loss<-loss(precipitation,lossMethod[2],lossParams))</pre>
```

loss.base

base function for class of reachRouting

Description

this function provides methods (e.g. "horton" and "SCS") to compute loss and direct runoff depths

Usage

```
## S3 method for class 'base'
loss(precipitation,lossMethod,lossParams)
```

Arguments

precipitation a vector of precipitation time series(mm)

lossMethod a string including the type of lossMethod: "SCS" and "horton". default to

"SCS" method

lossParams a list of parameters associated to the selcted type of lossMethod:

- the curve number, CN, and imperviousness in precentage for "SCS" method
- f0, f1, k for "horton" method
- timeInterval: the interval of each steps in seconds needed for "horton" method

Value

a dataframe: including precipitation, loss, and exess rainfall depth

30 loss.default

Author(s)

Rezgar Arabzadeh

See Also

loss

loss.default

default function for class of loss

Description

this function provides methods (e.g. "horton" and "SCS") to compute loss and direct runoff depths

Usage

Arguments

precipitation a vector of precipitation time series(mm)

lossMethod a string including the type of lossMethod: "SCS" and "horton". default to

"SCS" method

lossParams a list of parameters associated to the selcted type of lossMethod:

- the curve number, CN, and imperviousness in precentage for "SCS" method
- f0, f1, k for "horton" method
- timeInterval: the interval of each steps in seconds needed for "horton" method

Value

a dataframe: including precipitation, loss, and exess rainfall depth

Author(s)

Rezgar Arabzadeh

See Also

loss

plot.createBasin 31

plot.createBasin

plots basin layout

Description

plot method for objects inherited from class of createBasin

Usage

```
## S3 method for class 'createBasin' plot(x,...)
```

Arguments

x an object from class of createBasin

... other objects that can be passed to plot function

Author(s)

Rezgar Arabzadeh

See Also

sim

plot.sim

plot method for an RHMS object

Description

plot method for objects inherited from class of sim

Usage

```
## S3 method for class 'sim' plot(x,...)
```

Arguments

x an object from class of sim

... other objects that can be passed to plot function

Author(s)

Rezgar Arabzadeh

32 reachRouting

See Also

sim

reachRouting channel routing computation

Description

function for flood routing using parameteric Muskingum and muskingum-cunge techniques.

Usage

Arguments

inflow a vector of runoff (cms) presenting a runoff event generated by excess rainfall

computed by loss methods or an object inherited from any of the following

classes:transform; reachRouting; reservoirRouting.

routingMethod a string: the type of channel routing method: "muskingum" or "muskingumcunge".

default to "muskingum"

routingParams a list: parameters associated to the routingMethod:

• k and x for "muskingum",

 $\bullet \ \ \text{bedWith} \ (m), \ \text{sideSlope} \ (m/m), \ \text{channelSlope} \ (m/m), \ \text{manningRoughness},$

riverLength (Km) for "muskingumcunge"

simulation a list of simulation time and dates as below:

• start: the date which simulation starts, must be in 'YYYY-MM-DD' format

• start: the date which simulation ends, must be in 'YYYY-MM-DD' format

• by: the interval of each steps in seconds

Value

a data.frame: including inflow time series routing resaults and simulation details

Author(s)

Rezgar Arabzadeh

References

Chow, V. T., Maidment, D. R., & Mays, L. W. (1988). Applied hydrology.

See Also

reservoirRouting

reachRouting.base 33

Examples

reachRouting.base

base function for class of reachRouting

Description

function for flood routing using Muskingum and muskingum-cunge techniques.

Usage

Arguments

inflow a vector of runoff (cms) or an object inherited from any of the following classes

:transform; reachRouting; reservoirRouting.

routingMethod a string: the type of channel routing method: "muskingum" or "muskingumcunge".

default to "muskingum"

routingParams a list: parameters associated to the routingMethod:

• k and x for "muskingum",

 $\bullet \ \ \text{bedWith} \ (m), \ \text{sideSlope} \ (m/m), \ \text{channelSlope} \ (m/m), \ \text{manningRoughness},$

 $\label{eq:continuous_continuous_continuous} \textbf{riverLength}\; (Km) \; \textbf{for "muskingumcunge"}$

simulation a list of simulation time and dates as below:

• start: the date which simulation starts, must be in 'YYYY-MM-DD' format

• start: the date which simulation ends, must be in 'YYYY-MM-DD' format

• by: the interval of each steps in seconds

Value

a data.frame: including inflow time series routing resaults and simulation details

Author(s)

Rezgar Arabzadeh

34 reachRouting.default

References

```
Chow, V. T., Maidment, D. R., & Mays, L. W. (1988). Applied hydrology.
```

See Also

```
reachRouting
```

```
reachRouting.default default function for class of reachRouting
```

Description

function for flood routing in channels using Muskingum and muskingum-cunge techniques.

Usage

Arguments

inflow a vector of runoff (cms) or an object inherited from any of the following classes

:transform; reachRouting; reservoirRouting.

routingMethod a string: the type of channel routing method: "muskingum" or "muskingumcunge".

default to "muskingum"

routingParams a list: parameters associated to the routingMethod:

• k and x for "muskingum",

 $\bullet \ \ \mathsf{bedWith} \ (m), \ \mathsf{sideSlope} \ (m\!/m), \ \mathsf{channelSlope} \ (m\!/m), \ \mathsf{manningRoughness},$

riverLength (Km) for "muskingumcunge"

simulation a list of simulation time and dates as below:

• start: the date which simulation starts, must be in 'YYYY-MM-DD' format

• start: the date which simulation ends, must be in 'YYYY-MM-DD' format

• by: the interval of each steps in seconds

Value

a list: including inflow time series routing resaults and simulation details

35 reservoirRouting

Author(s)

Rezgar Arabzadeh

References

Chow, V. T., Maidment, D. R., & Mays, L. W. (1988). Applied hydrology.

See Also

reachRouting

reservoirRouting

reservoir routing

Description

function for routing flood through a reservoir using classical Muskingum technique

Usage

reservoirRouting(inflow,geometry,initialStorage,simulation)

Arguments

inflow

a vector of in (cms) presenting a runoff event generated by excess rainfall computed by loss methods or an object inherited from any of the following classes :transform; reachRouting; reservoirRouting.

geometry

a list of geometric specifications of the reservoir:

- storageElevationCurve: a data frame: a data frame at which its first collumn includes height (masl) and second collums presents equivalant volume to the height at first collumn (MCM)
- dischargeElevationCurve: a data frame: a data frame at which its first collumn includes height (masl) and second collums presents equivalant discharge rate to the height at first collumn (cms)
- storage: the maximum volume of reservoir capacity (MCM)

initialStorage (optional) the initial storage of reservoir at the first time step of simulation (MCM). default to the capacity.

simulation

a list of simulation time and dates as below:

- start: the date which simulation starts, must be in 'YYYY-MM-DD' format
- start: the date which simulation ends, must be in 'YYYY-MM-DD' format
- by: the interval of each steps in seconds

Value

a data.frame: including inflow time series and routing resaults

Author(s)

Rezgar Arabzadeh

References

```
Chow, V. T., Maidment, D. R., & Mays, L. W. (1988). Applied hydrology.
```

See Also

reachRouting

Examples

reservoirRouting.base base function for class of reservoirRouting

Description

function for routing flood through a reservoir using classical Muskingum technique

Usage

```
## S3 method for class 'base'
reservoirRouting(inflow, geometry,initialStorage,simulation)
```

Arguments

inflow a vector of in (cms) presenting a runoff event generated by excess rainfall com-

puted by loss methods or an object inherited from any of the following classes

:transform; reachRouting; reservoirRouting.

geometry a list of geometric specifications of the reservoir:

- storageElevationCurve: a data frame: a data frame at which its first collumn includes height (masl) and second collums presents equivalant volume to the height at first collumn (MCM)
- dischargeElevationCurve: a data frame: a data frame at which its first collumn includes height (masl) and second collums presents equivalant discharge rate to the height at first collumn (cms)
- storage: the maximum volume of reservoir capacity (MCM)

initialStorage (optional) the initial storage of reservoir at the first time step of simulation (MCM). default to the capacity.

simulation

a list of simulation time and dates as below:

- start: the date which simulation starts, must be in 'YYYY-MM-DD' format
- start: the date which simulation ends, must be in 'YYYY-MM-DD' format
- by: the interval of each steps in seconds

Value

a data.frame: including inflow time series and routing resaults

Author(s)

Rezgar Arabzadeh

References

```
Chow, V. T., Maidment, D. R., & Mays, L. W. (1988). Applied hydrology.
```

See Also

reservoirRouting

```
reservoirRouting.default
```

default function for class of reservoirRouting

Description

function for routing flood through a reservoir using classical Muskingum technique

Usage

```
## Default S3 method:
reservoirRouting(inflow,
               geometry=list(storageElevationCurve=NULL,
                             dischargeElevationCurve=NULL,
                             capacity=NULL),
               initialStorage=NA,
               simulation=list(start=NULL,end=NULL,by=NULL))
```

38 set.as

Arguments

inflow

a vector of in (cms) presenting a runoff event generated by excess rainfall computed by loss methods or an object inherited from any of the following classes :transform; reachRouting; reservoirRouting.

geometry

a list of geometric specifications of the reservoir:

- storageElevationCurve: a data frame: a data frame at which its first collumn includes height (masl) and second collums presents equivalant volume to the height at first collumn (MCM)
- dischargeElevationCurve: a data frame: a data frame at which its first collumn includes height (masl) and second collums presents equivalant discharge rate to the height at first collumn (cms)
- storage: the maximum volume of reservoir capacity (MCM)

initialStorage (optional) the initial storage of reservoir at the first time step of simulation (MCM). default to the capacity.

simulation

a list of simulation time and dates as below:

- start: the date which simulation starts, must be in 'YYYY-MM-DD' format
- start: the date which simulation ends, must be in 'YYYY-MM-DD' format
- by: the interval of each steps in seconds

Value

a data.frame: including inflow time series and routing resaults

Author(s)

Rezgar Arabzadeh

References

Chow, V. T., Maidment, D. R., & Mays, L. W. (1988). Applied hydrology.

See Also

reservoirRouting

set.as

RHMS objects connector

Description

this function connects a base object as a either of: 'downstream' or 'divertTo' to a target object, which are both instantiated by RHMS constructors.

Usage

```
set.as(base,target,type='downstream')
```

sim 39

Arguments

An object; from either of classes of createReservoir, createJunction, createDiversion,

createSubbasin, or createReach

target An object; from either of classes of createReservoir, createJunction, createDiversion,

createSubbasin, or createReach

type the type of base object to be set as to the target object: 'downstream', or

'divertTo'

Value

an object from class of target object.

Author(s)

Rezgar Arabzadeh

See Also

addObjectToBasin

sim

RHMS simulation function

Description

simulates an object inherited form class of createBasin

Usage

sim(object)

Arguments

object

an object from class of createBasin

Value

a list: the same as objects inherited from class of createBasin

Author(s)

Rezgar Arabzadeh

References

NRCS, U. (1986). Urban hydrology for small watersheds-Technical Release 55 (TR55). Water Resources Learning Center. Washington DC.

Chow, V. T., Maidment, D. R., & Mays, L. W. (1988). Applied hydrology.

40 sim

Examples

```
data(Zaab)
geometry<-list(storageElevationCurve=Zaab[[1]]$Kanisib$storageElevationCurve,</pre>
               dischargeElevationCurve=Zaab[[1]]$Kanisib$dischargeElevationCurve,
               capacity=Zaab[[1]]$Kanisib$capacity)
KanisibDam<-createReservoir(name="Kanisib", geometry=geometry,
                             initialStorage=geometry$capacity)
R1<-createReach(name="Reach 1",downstream=KanisibDam)
J1<-createJunction(name="Junction 1",downstream=R1)</pre>
R2<-createReach(name="Reach 2",downstream=J1)</pre>
R3<-createReach(name="Reach 3",downstream=J1)
J2<-createJunction(name="Junction 1",downstream=R2)
R4<-createReach(name="Reach 4",downstream=J2)
R5<-createReach(name="Reach 5",downstream=J2)
geometry<-list(storageElevationCurve=Zaab[[1]]$Gordebin$storageElevationCurve,</pre>
               dischargeElevationCurve=Zaab[[1]]$Gordebin$dischargeElevationCurve,
               capacity=Zaab[[1]]$Gordebin$capacity)
GordebinDam<-createReservoir(name="Gordebin", geometry=geometry,</pre>
                              initialStorage=geometry$capacity,downstream=R4)
R6<-createReach(name="Reach 6",downstream=GordebinDam)
Zangabad<-createSubbasin(name="Zangabad",</pre>
                          precipitation=Zaab[[2]]$zangabad,
                          Area=338.2,
                          downstream=R6,
                          lossMethod="SCS",
                          transformParams=list(Tlag=4),
                          lossParams=list(CN=70))
geometry<-list(storageElevationCurve=Zaab[[1]]$Silveh$storageElevationCurve,</pre>
               dischargeElevationCurve=Zaab[[1]]$Silveh$dischargeElevationCurve,
               capacity=Zaab[[1]]$Silveh$capacity)
SilvehDam<-createReservoir(name="Silveh", geometry=geometry,
                            initialStorage=geometry$capacity,downstream=R5)
R7<-createReach(name="Reach 7",downstream=SilvehDam)
Darbekaykhaneh<-createSubbasin(name="Darbekaykhaneh",
                          precipitation=Zaab[[2]]$darbekaykhaneh,
                          Area=338.8,
                          downstream=R7,
                          lossMethod="SCS",
                          transformParams=list(Tlag=3),
                          lossParams=list(CN=65))
D1<-createDiversion(name="Diversion 1",downstream=R3,
                     divertTo=SilvehDam,capacity=100)
R8<-createReach(name="Reach 8",downstream=D1)
Pardanan<-createSubbasin(name="Pardanan",
                          precipitation=Zaab[[2]]$pardanan,
                          Area=200.1,
                          downstream=R8,
                          lossMethod="SCS",
                          transformParams=list(Tlag=2),
                          lossParams=list(CN=75))
ZaabRB<-createBasin(name="Zaab",
```

sim.base 41

```
simulation=list(start='2000-01-01',
                                        end ='2000-01-15',
                                             =3600))
ZaabRB<-addObjectToBasin(R1,ZaabRB)</pre>
ZaabRB<-addObjectToBasin(R2,ZaabRB)</pre>
ZaabRB<-addObjectToBasin(R3,ZaabRB)</pre>
ZaabRB<-addObjectToBasin(R4,ZaabRB)</pre>
ZaabRB<-addObjectToBasin(R5,ZaabRB)</pre>
ZaabRB<-addObjectToBasin(R6,ZaabRB)</pre>
ZaabRB<-addObjectToBasin(R7,ZaabRB)</pre>
ZaabRB<-addObjectToBasin(R8,ZaabRB)</pre>
ZaabRB<-addObjectToBasin(J1,ZaabRB)</pre>
ZaabRB<-addObjectToBasin(J2,ZaabRB)</pre>
ZaabRB<-addObjectToBasin(D1,ZaabRB)</pre>
ZaabRB<-addObjectToBasin(SilvehDam, ZaabRB)
ZaabRB<-addObjectToBasin(GordebinDam,ZaabRB)</pre>
ZaabRB<-addObjectToBasin(KanisibDam,ZaabRB)</pre>
ZaabRB<-addObjectToBasin(Pardanan,ZaabRB)</pre>
ZaabRB<-addObjectToBasin(Zangabad,ZaabRB)</pre>
ZaabRB<-addObjectToBasin(Darbekaykhaneh, ZaabRB)
## Not run:
plot(ZaabRB)
plot(sim(ZaabRB))
## End(Not run)
```

Description

sim.base

simulates an object inherited form class of createBasin

Usage

```
## S3 method for class 'base'
sim(object)
```

Arguments

object

an object from class of createBasin

base function for class of sim

Author(s)

Rezgar Arabzadeh

See Also

sim

42 summary.sim

sim.default

default function for class of sim

Description

simulates an object inherited form class of createBasin

Usage

```
## Default S3 method:
sim(object)
```

Arguments

object

an object from class of createBasin

Author(s)

Rezgar Arabzadeh

See Also

sim

summary.sim

summary method for RHMS objects

Description

summary method for objects inherited from class of sim

Usage

```
## S3 method for class 'sim'
summary(object,...)
```

Arguments

object an object from class of sim

... other objects that can be passed to summary function

Value

a matrix: including inflow and outflow volumes and peaks rates respectively

transform 43

Author(s)

Rezgar Arabzadeh

See Also

sim

transform

Transforms a rainfall event to runoff

Description

This function transforms an excess rainfall event to a direct runoff hydorgraph.

Usage

transform(rainfall,transformMethod,transformParams,Area,UH,simulation)

Arguments

rainfall

an object inherited from loss function

transformMethod

a string: the type of transformation method. available types: "SCS", "snyder", and "user". default to "SCS"

transformParams

a list of parameters associated to the selcted type of transformMethod:

- Tlag for "SCS" method
- Ct, Cp, L, and Lc for "snyder" method

Area

the area of drainage basin (Km²)

UH

a data.frame: must be provided when transformMethod is set to "user". UH is the ordinates of a user defined UH by the which its first collumn is time (Hr) and

the second collumn includes flow rates (cms)

simulation

a list of simulation time and dates as below:

- start: the date which simulation starts, must be in 'YYYY-MM-DD' format
- start: the date which simulation ends, must be in 'YYYY-MM-DD' format
- by: the interval of each steps in seconds

Value

Hydrogaph of direct runoff

Author(s)

Rezgar Arabzadeh

44 transform.base

See Also

sim

Examples

```
Area=200
lossMethod<-"SCS"
lossParams<-list(CN=65)</pre>
transformMethod<-c("snyder", "SCS", "user")</pre>
simulation<-list(start='2000-01-01',end='2000-01-7',by=7200)
precipitation<-sin(seq(0.1,pi-0.1,length.out=10))*20</pre>
transformParams=list(Tlag=4,Cp=0.15,Ct=2,L=100,Lc=15)
UH<-data.frame(t=1:20,q=sin(seq(0,pi,length.out=20))*1)
SCS_loss<-loss(precipitation,lossMethod,lossParams)</pre>
snyder_transformation<-transform(rainfall=SCS_loss,</pre>
                                   transformMethod=transformMethod[1],
                                   transformParams, Area, UH=NA, simulation)
SCS_transformation <-transform(rainfall=SCS_loss,
                                   transformMethod=transformMethod[2],
                                   transformParams, Area, UH=NA, simulation)
user_transformation <-transform(rainfall=SCS_loss,</pre>
                                   transformMethod=transformMethod[3],
                                   transformParams, Area, UH, simulation)
```

transform.base

base function for class of transform

Description

This function transforms an excess rainfall event to a direct runoff hydorgraph.

Usage

```
## S3 method for class 'base'
transform(rainfall,transformMethod,transformParams,Area,UH,simulation)
```

Arguments

a list of parameters associated to the selcted type of transformMethod:

- Tlag for "SCS" method
- Ct, Cp, L, and Lc for "snyder" method

transform.default 45

Area the area of drainage basin (Km²)

UH a data.frame: must be provided when transformMethod is set to "user". UH is

the ordinates of a user defined UH by the which its first collumn is time (Hr) and

the second collumn includes flow rates (cms)

simulation a list of simulation time and dates as below:

• start: the date which simulation starts, must be in 'YYYY-MM-DD' format

• start: the date which simulation ends, must be in 'YYYY-MM-DD' format

• by: the interval of each steps in seconds

Value

Hydrogaph of direct runoff

Author(s)

Rezgar Arabzadeh

See Also

transform

transform.default

default function for class of transform

Description

This function transforms an excess rainfall event to a direct runoff hydorgraph.

Usage

46 tune

Arguments

rainfall an object inherited from loss function

transformMethod

a string: the type of transformation method. available types: "SCS", "snyder", and "user". default to "SCS"

transformParams

a list of parameters associated to the selcted type of transformMethod:

• Tlag for "SCS" method

• Ct, Cp, L, and Lc for "snyder" method

Area the area of drainage basin (Km²)

UH a data.frame: must be provided when transformMethod is set to "user". UH is

the ordinates of a user defined UH by the which its first collumn is time (Hr) and

the second collumn includes flow rates (cms)

simulation a list of simulation time and dates as below:

• start: the date which simulation starts, must be in 'YYYY-MM-DD' format

• start: the date which simulation ends, must be in 'YYYY-MM-DD' format

• by: the interval of each steps in seconds

Value

Hydrogaph of direct runoff

Author(s)

Rezgar Arabzadeh

See Also

transform

tune tunning an RHMS model

Description

a function for tunning an RHMS model based on a set of observed time series, using *particle swarm* optimization

tune 47

Usage

```
tune(object,targetObject,decisionObjects, observationTS,delay=0, transformBandWith=list(ct=c(1 , 2.5), cp=c(0.1, 0.3), cn=c(25 , 85 ), k = c(0.1, 2 )), routingBandWith=list(manning = c(0.0001, 0.1), x = c(0.2 , 0.6), k = c(1 , 5 )), maxiter=NA,update=FALSE,plot=FALSE)
```

Arguments

object an object from class of createBasin

targetObject an object from either of classes: createDiversion, createReservoir, createSubbasin,

createJunction, createReach associated to the observationTS

decisionObjects

A list of objects, also, already existing in the object which their parameters needed to be optimized. They objects must be from either of classes: createSubbasin, createReach

observationTS a vector: an observed flow time series (cms)

delay (optional) an integer presenting the number of time steps to delay observationTS

time series

transformBandWith

an list: a list of vector(s), including upper and lower limit of parameters of tansformation methods. Each parameter search domain is set as a two-value vector, whose first element indicates lower limit and second elemnt is upper limit.

- Ct=[1, 2.5] and Cp=[0.1, 0.3] are parameters for "Snyder" Unit Hydrograph (SUH)
- cn=[25, 85] curve number for "SCS" loss method
- k for "horton" loss method

routingBandWith

update

an list: a list of vector(s), including upper and lower limit of parameters of routing methods. Each parameter search domain is set as a two-value vector, whose first element indicates lower limit and second elemnt is upper limit.

- manning=[0.0001, 0.1] is a parameter used "muskingumcunge" method
- x = [0.2, 0.6] and k=[1, 5] belong to "muskingum" channel routing method

maxiter (optional) an integer: maximum number of iterations. default to the square of

dimension of decision variables

plot (optional) logical: plots the optimization results

(optional) logical: If FALSE, the optimized parameter(s) are returned, If TRUE, the calibrated object from class of createBasin is returned

48 tune

Value

a vector of tunned parameters or an object from class of createBasin

Author(s)

Rezgar Arabzadeh

References

Kennedy, J. (1997). "The particle swarm: social adaptation of knowledge". Proceedings of IEEE International Conference on Evolutionary Computation. pp. 303-308

Examples

```
J1<-createJunction (name="J1")
R1<-createReach(name="R1",routingMethod="muskingum",
                 routingParams=list(k=3,x=0.2),
                 downstream=J1)
R2<-createReach(name="R2",routingMethod="muskingumcunge",
                 routingParams=list(bedWith=50,
                                     sideSlope=2,
                                     channelSlope=0.0005,
                                     manningRoughness=0.025,
                                     riverLength=100),
                 downstream=J1)
S1<-createSubbasin(name = "S1",
                    precipitation=sin(seq(0,pi,length.out=20))*40,
                    Area=100, downstream=R1,
                    transformMethod="SCS", lossMethod="SCS",
                    transformParams=list(Tlag=4),lossParams=list(CN=60))
S2<-createSubbasin(name = "S2",
                    precipitation=sin(seq(0,pi,length.out=20))*30,
                    Area=300, downstream=R2,
                    transformMethod="snyder",lossMethod="horton",
                    transformParams=list(Cp=0.17,Ct=2,L=30,Lc=15),
                    lossParams=list(f0=10,f1=4,k=1))
basin1<-createBasin(name = "Ghezil_Ozan",</pre>
                     simulation=list(start='2000-01-01',
                                      end = '2000-01-05',
                                           =3600))
basin1<-addObjectToBasin(S1, basin1)</pre>
basin1<-addObjectToBasin(S2, basin1)</pre>
basin1<-addObjectToBasin(R1, basin1)</pre>
basin1<-addObjectToBasin(R2, basin1)</pre>
basin1<-addObjectToBasin(J1, basin1)</pre>
## Not run: plot(basin1)
simulated<-sim(basin1)</pre>
plot(simulated)
```

Zaab 49

```
observationTS1<-simulated$operation$junctions[[1]]$outflo[,1]
set.seed(1)
observationTS1<-observationTS1+rnorm(length(observationTS1),0,25)
y<-observationTS1; x<-1:length(observationTS1)</pre>
observationTS1<-predict(loess(y~x),x)
observationTS1[which(observationTS1<0)]<-0
observationTS<-observationTS1
plot(simulated$operation$junctions[[1]]$outflow[,1],typ='o',ylab='flow rate (cms)',xlab='time step')
lines(observationTS,col=2)
transformBandWith=list(ct=c(1 ,2.5),
                       cp=c(0.1,0.3),
                       cn=c(25,85),
                       k = c(0.1,2)
routingBandWith=list(maning = c(0.0001,0.1),
                            = c(0.2)
                                      ,0.6),
                     Х
                     k
                            = c(1)
                                       ,5))
targetObject<-J1
decisionObjects<-list(R1,R2,S1,S2)</pre>
## Not run:
tune(object=basin1,
     targetObject=targetObject,
     decisionObjects=decisionObjects,
     observationTS=observationTS,
     routingBandWith=routingBandWith,
     transformBandWith=transformBandWith,
     plot=TRUE)
## End(Not run)
```

Zaab

datasets for Zaab subbasin, a subbasin in Kurdistan, Iran.

Description

an object inherited from class of createBasin. including features, of a sub-basin in Kurditan known as Zaab, such as: reservoirs, reachs, subbasins, and junctions.

Usage

```
data(Zaab)
```

Source

Iran Water Resources Management Company (2015)

Examples

```
data(Zaab)
```

Index

	marshDaviting defevilt 24
* array	reachRouting.default,34 reservoirRouting,35
baseFlowSeparation, 8	<u> </u>
baseFlowSeparation.base, 9	reservoirRouting.base, 36
summary.sim, 42	reservoirRouting.default,37
transform, 43	set.as, 38
transform.base,44	sim, 39
transform.default,45	sim.base,41
* datasets	sim.default,42
Zaab, 49	* matrix
* graphs	loss, 28
plot.createBasin,31	loss.base, 29
plot.sim, 31	loss.default, 30
* iteration	* optimize
addObjectToBasin, 6	tune, 46
* list	* package
abstraction, 4	RHMS-package, 2
abstraction.base,5	
abstraction.default,5	abstraction, 3, 4
baseFlowSeparation.default, 10	abstraction.base, 5
createBasin, 11	abstraction.default,5
createBasin.base, 12	addObjectToBasin, 3, 6, 11-22, 24-26, 28, 39
createBasin.default, 12	baseFlowSeparation, 3, 8, 9, 10
createDiversion, 13	baseFlowSeparation.base, 9
createDiversion.base, 14	baseFlowSeparation.default, 10
createDiversion.default, 15	baseriowseparation.derault, 10
createJunction, 15	createBasin, 3, 11
createJunction.base, 16	createBasin.base, 12
createJunction.default, 17	createBasin.default, 12
createReach, 18	createDiversion, 3, 13, 39
createReach.base, 19	createDiversion.base, 14
createReach.default, 20	createDiversion.default, 15
createReservoir, 21	createJunction, 3, 6, 15, 39
createReservoir.base, 22	createJunction.base, 16
createReservoir.default, 23	createJunction.default, 17
createSubbasin, 24	createReach, 3, 6, 18, 39
createSubbasin.base.25	createReach.base, 19
createSubbasin.default, 27	createReach.default, 20
reachRouting, 32	createReservoir, 3, 6, 21, 39
<u>-</u> .	
reachRouting.base,33	createReservoir.base, 22

INDEX 51

```
createReservoir.default, 23
createSubbasin, 3-6, 11, 24, 39
createSubbasin.base, 25
createSubbasin.default, 27
loss, 3, 28, 30
loss.base, 29
loss.default, 30
plot.createBasin, 3, 31
plot.sim, 3, 31
reachRouting, 3, 32, 34-36
reachRouting.base, 33
{\tt reachRouting.default,34}
reservoirRouting, 3, 32, 35, 37, 38
reservoirRouting.base, 36
reservoirRouting.default, 37
RHMS (RHMS-package), 2
RHMS-package, 2
set.as, 3, 38
sim, 3, 4, 6, 31, 32, 39, 41-44
sim.base, 41
sim.default, 42
summary.sim, 3, 42
transform, 3, 29, 43, 45, 46
transform.base, 44
transform.default, 45
tune, 3, 46
Zaab, 49
```