Prof : Othmane Laksoumi

Lycée Qualifiant Zitoun

Année scolaire: 2024-2025

Niveau: Tronc commun scientifique

Durée totale : 7h

🖾 Contenus du programme :

• Les nombres pairs et les nombres impairs

- Multiples d'un nombre, le plus petit multiple commun de deux nombres
- Diviseurs d'un nombre, le plus grand diviseur commun de deux nombres
- Nombres premiers, décomposition d'un nombre en produit de facteurs premiers

Les capacités attendues :

• Utiliser la parité et la décomposition en produit de facteurs premiers pour résoudre des problèmes simples portant les entiers naturels.

🙇 Recommandations pédagogiques :

- On introduira les symboles : \in , \notin , \subset , $\not\subset$, \bigcup , \cap
- l'objectif de la présentation de "notions en arithmétique" est d'initier les élèves à des modes de démonstration à travers l'utilisation des nombres pairs et des nombres impairs sans excès.

Activité 1

1. Parmi les nombres suivants, déterminer les entiers naturels :

10
$$\frac{3}{2}$$
 -5 $\frac{10}{2}$ $\sqrt{2}$ $\sqrt{25}$ -1

2. Parmi les entiers naturels suivantes, déterminer les multiples du nombre 2 :

4 19
$$15+25$$
 2^3-1 44 3^3+1

Définition 1

- Tout entier naturel multiple de 2 est appelé nombre pair.
- Tout entier naturel qui n'est pas pair est dit impair.
- Les nombres pairs sont les nombres qui s'écrivent sous la forme 2k où k est un nombre entier naturel.
- Les nombres impairs sont les nombres qui s'écrivent sous la forme 2k+1 où k est un nombre entier naturel, ou sous la forme 2k-1 où k est un nombre entier naturel non nul.

Exemple 1

- 1. 2004 est un nombre pair.
- 2. 2005 est un nombre impair.
- 3. Soit x un entier naturel non nul et différent de 1. A=2x-3 et B=4x+2

Application 1

Soit n un entier naturel. Etudier la parité de A et B tels que : $A=2n^2+6$ et B=8n+3

Remarque:

Pour qu'un entier naturel soit pair, il suffit que son chiffre d'unités soit 0, 2, 4, 6 ou 8.

2. Opérations sur les nombres pairs et impairs :

Proposition 1

Soient a et b deux entiers naturels tels que $a \ge b$.

- Si a et b sont pairs, alors a + b et a b sont pairs.
- Si a et b sont impairs, alors a + b et a b sont pairs.
- Si l'un des deux nombres a et b pair et l'autre impair, alors a + b et a b sont impairs.
- Si l'un des deux nombres a et b pair, alors ab est pair (quelle que soit la parité de l'autre).
- Si a et b sont impairs, alors ab est impair.

Application 2

Soit \boldsymbol{n} un entier naturel. Etudier la parité des entiers naturels suivants :

 $A = 4n^2 + 19$, $B = 10n^3 + 5n^2 + 1$ et C = n(n+1)

3. Multiples d'un nombre entier naturel :

Activité 2

Cocher les réponses justes :

	6	21	14	111	15	18
Multiple de 3						
Multiple de ${\bf 5}$						
Multiple de 7						

Définition 2

Soient m et n deux entiers naturels. On dit que m est un multiple de n si $m=n\times k$ où k un entier naturel.

Exemple 2

• 42 est un multiple de 21 car $42 = 2 \times 21$

• 55 est un multiple de 11 car $55 = 5 \times 11$

Remarque:

• Tout entier naturel a est un multiple de lui-même et de a.

• 0 est un multiple de tous les entiers naturels.

• Les multiples d'un entier naturel a sont : $0, a, 2a, 3a, \ldots, 100a, \ldots$

Application 3

1. Montrer que 15×18 est un multiple de 30.

2. Déterminez les multiples de 7 inférieurs à 60.

4. Diviseurs d'un entier naturel :

Définition 3

Soient a et b deux entiers naturels. On dit que a est un diviseur de b si b est un multiple de a c'est-à-dire b=ak où k un entier naturel.

Si a est un diviseur de b, on dit aussi :

• a divise b.

• b est divisible par a.

• b est un multiple de a.

Exemple 3

• 6 est un diviseur de 24 car $24 = 6 \times 4$

• 7 est un diviseur de 77 car $77 = 7 \times 11$

Remarque:

- 1 est un diviseur de tout entier.
- Si un entier a divise un entier b, alors $a \leq b$.

Application 4

Déterminer tous les diviseurs de 30.

Proposition 2

Soient a, b et c des entiers naturels.

- Si a divise b et c, et $b \ge c$ alors a divise b + c et b c.
- Si a divise b, alors a divise bc.

5. Nombres premier:

Activité 3

1. Déterminez les diviseurs des entiers naturels suivants :

2 3 5 7 11 13 41

2. Que remarquez-vous?

Définition 4

Un entier naturel p est dit premier s'il admet exactement deux diviseurs différents.

Exemple 4

1. 31 est un nombre premier.

Remarque:

- 1 n'est pas un nombre premier parce qu'il n'admet qu'un seul diviseur.
- ullet 2 est le seul nombre premier pair.
- Tout nombre premier différent de 2 est impair.

6. Décomposition d'un nombre non premier en produit de facteurs premiers :

Proposition 3

Tout entier naturel non premier et supérieur à 1 peut être décomposé en produit de facteurs premiers.

Exemple 5

1. L'écriture $2^2 \times 3 \times 5$ est la décomposition du nombre 60 en produit de facteurs premiers.

Application 5

Décomposer les nombres suivants en produits de facteurs premiers : 100, 63, 32.

7. Diviseurs communs de deux entiers naturels :

Définition 5

On dit qu'un entier naturel d est un diviseur commun des deux entiers naturels a et b si d est un diviseur de a et b.

Exemple 6

Les diviseurs de 12 sont 1, 2, 3, 4, 6, 12.

Les diviseurs de 18 sont 1, 2, 3, 6, 9, 18.

Les nombres 1, 2, 3, 6 sont les diviseurs communs de 12 et 18.

Application 6

Déterminer les diviseurs communs de 18 et 150.

8. Plus grand diviseur commun de deux entiers naturels:

Définition 6

Le plus grand diviseur commun de deux entiers naturels a et b est le plus grand entier parmi les diviseurs communs de a et b. On le note par $a \wedge b$ ou $a \Delta b$.

Remarque:

Pour dire que $a \wedge b$ est le plus grand commun diviseur de a et b, on dit que $a \wedge b$ est le pgcd de a et b.

Exemple 7

Les diviseurs de 30 sont 1, 2, 3, 5, 6, 10, 15, 30.

Les diviseurs de 18 sont 1, 2, 3, 4, 6, 12.

Alors $a \wedge b = 6$.

Application 7

Déterminer $15 \land 75$, $13 \land 14$, $27 \land 36$.

9. Multiples communs de deux entiers naturels :

Définition 7

On dit qu'un entier naturel m est un multiple commun des deux entiers naturels a et b si m est un multiple de a et b.

Exemple 8

36 est un multiple commun de 6 et 4 (car $36 = 9 \times 4$ et $36 = 6 \times 6$).

10. Plus petit multiple commun de deux entiers naturels :

Définition 8

Le plus petit multiple commun de deux entiers naturels a et b est le plus petit multiple commun non nul de a et b. On le note par : $a \lor b$ ou M(a,b).

Remarque : Pour dire que $a \lor b$ est le plus petit multiple commun de a et b, on dit que $a \lor b$ est le ppcm de a et b.

Exemple 9

Les multiples non nuls de 4 sont 4, 8, 12, 16, 20, ...

Les multiples non nuls de 6 sont 6, 12, 18, 24, 30, ...

Alors $4 \lor 6 = 12$.

Application 8

Déterminer $15 \lor 25$, $24 \lor 18$, $5 \lor 7$.

Activité 4

- 1. Déterminer les diviseurs de 100 et 120 puis déduire 100 \wedge 120.
- 2. Décomposer 100 et 120 en produits de facteurs premiers.
- 3. Calculez le produit des facteurs premiers communs de **100** et **120** avec la plus petite puissance.
- 4. Que remarquez-vous?

Théorème 1

- 1. Le pgcd de deux entiers naturels est le produit des facteurs premiers communs de leurs décompositions affectés de leur plus petit exposant.
- 2. Le ppcm de deux entiers naturels est le produit des facteurs premiers communs et non communs de leurs décompositions affectés de leur plus grand exposant.

Exemple 10

 $a = 2^4 \times 3 \times 5 \times 11$ et $b = 2^2 \times 5^2 \times 7$. $a \wedge b = 2^2 \times 5$ et $a \vee b = 2^4 \times 3 \times 5^2 \times 7 \times 11$.

Application 9

Déterminez $a \wedge b$ et $a \vee b$ dans les cas suivants :

- 1. a = 14 et b = 26.
- 2. a = 252 et b = 313.
- 3. a = 14 et b = 26.