The single most comprehensive and unified source of information about mathematical functions.

Degree

View the online version at

Download the

functions.wolfram.com

PDF File

Notations

Traditional name

The number of radians in one degree

Traditional notation

0

Mathematica StandardForm notation

Degree

Primary definition

02.04.02.0001.01

$$^{\circ} = \frac{\pi}{180}$$

Degree (°) is the number $(\pi/180)$ of radians in one degree.

Different representations of $^{\circ}$ can be derived from corresponding representations of π ; see the page for π .

Specific values

02.04.03.0001.01

 $^{\circ} = 0.0174532925199432957692369076848861271344287188854172545609719144017100911460344944368224156\dots$

Above approximate numerical value of ° shows 90 decimal digits.

General characteristics

The number of radians in one degree ° is a constant. It is irrational and transcendental over Q positive real number.

Complex characteristics

Real part

02.04.19.0001.01

Imaginary part

$$02.04.19.0002.01$$

$$Im(^{\circ}) = 0$$

Absolute value

Argument

$$02.04.19.0004.01$$

$$arg(^{\circ}) = 0$$

Conjugate value

Signum value

$$02.04.19.0006.01$$

$$sgn(^{\circ}) = 1$$

Differentiation

Low-order differentiation

$$\frac{\partial^{\circ}}{\partial z} = 0$$

Fractional integro-differentiation

$$\frac{\partial^{\alpha} \circ}{\partial z^{\alpha}} = \frac{z^{-\alpha} \circ}{\Gamma(1-\alpha)}$$

Integration

Indefinite integration

02.04.21.0001.01
$$\int {}^{\circ} dz = {}^{\circ} z$$
02.04.21.0002.01
$$\int z^{\alpha - 1} {}^{\circ} dz = \frac{{}^{\circ} z^{\alpha}}{\alpha}$$

Integral transforms

Fourier exp transforms

02.04.22.0001.01
$$\mathcal{F}_{t}[^{\circ}](z) = {}^{\circ}\sqrt{2\pi} \delta(z)$$

Inverse Fourier exp transforms

02.04.22.0002.01
$$\mathcal{F}_{t}^{-1}[^{\circ}](z) = {}^{\circ}\sqrt{2\pi} \ \delta(z)$$

Fourier cos transforms

02.04.22.0003.01
$$\mathcal{F}c_{l}[^{\circ}](z) = {}^{\circ}\sqrt{\frac{\pi}{2}} \delta(z)$$

Fourier sin transforms

$$\mathcal{F}s_{t}[^{\circ}](z) = -\frac{\sigma}{z} \sqrt{\frac{\pi}{2}}$$

Laplace transforms

$$\mathcal{L}_{t}[^{\circ}](z) = \frac{-}{z}$$

Inverse Laplace transforms

$$02.04.22.0006.01$$

$$\mathcal{L}_{t}^{-1}[^{\circ}](z) = {}^{\circ}\delta(z)$$

Representations through more general functions

Through Meijer G

$${}^{\circ} = {}^{\circ}G_{0,1}^{1,0}(z \mid 0) + {}^{\circ}G_{1,2}^{1,1}(z \mid 1, 0)$$

Through other functions

$$^{\circ} = \frac{1}{45} \left(4 \tan^{-1} \left(\frac{1}{5} \right) - \tan^{-1} \left(\frac{1}{239} \right) \right)$$

$$\circ = \frac{1}{45} \left(\tan^{-1} \left(\frac{1}{2} \right) + \tan^{-1} \left(\frac{1}{3} \right) \right)$$

$$\circ = \frac{1}{45} \left(\tan^{-1} \left(\frac{1}{2} \right) + \tan^{-1} \left(\frac{1}{7} \right) \right)$$

$$\circ = \frac{1}{45} \left(2 \tan^{-1} \left(\frac{1}{3} \right) + \tan^{-1} \left(\frac{1}{7} \right) \right)$$

$$\circ = \frac{1}{45} \left(\tan^{-1} \left(\frac{1}{2} \right) + \tan^{-1} \left(\frac{1}{5} \right) + \tan^{-1} \left(\frac{1}{8} \right) \right)$$

$$\circ = \frac{1}{45} \left(\tan^{-1} \left(\frac{1}{2} \right) + \tan^{-1} \left(\frac{1}{5} \right) + \tan^{-1} \left(\frac{1}{239} \right) \right)$$

$$\circ = \frac{1}{45} \left(6 \tan^{-1} \left(\frac{1}{8} \right) + 2 \tan^{-1} \left(\frac{1}{57} \right) + \tan^{-1} \left(\frac{1}{239} \right) \right)$$

$$\circ = \frac{1}{45} \left(22 \tan^{-1} \left(\frac{1}{28} \right) + 2 \tan^{-1} \left(\frac{1}{443} \right) - 5 \tan^{-1} \left(\frac{1}{1393} \right) - 10 \tan^{-1} \left(\frac{1}{11018} \right) \right)$$

$$\circ = \frac{1}{45} \left(12 \tan^{-1} \left(\frac{1}{18} \right) + 3 \tan^{-1} \left(\frac{1}{70} \right) + 5 \tan^{-1} \left(\frac{1}{99} \right) + 8 \tan^{-1} \left(\frac{1}{307} \right) \right)$$

$$\circ = \frac{1}{45} \left(160 \tan^{-1} \left(\frac{1}{200} \right) - \tan^{-1} \left(\frac{1}{239} \right) - 4 \tan^{-1} \left(\frac{1}{515} \right) - 8 \tan^{-1} \left(\frac{1}{4030} \right) - 16 \tan^{-1} \left(\frac{1}{50105} \right) - 16 \tan^{-1} \left(\frac{1}{62575} \right) - 32 \tan^{-1} \left(\frac{1}{500150} \right) - 80 \tan^{-1} \left(\frac{1}{4000300} \right) \right)$$

$$\circ = \frac{1}{45} \left(\tan^{-1} \left(\frac{p}{q} \right) + \tan^{-1} \left(\frac{q - p}{p + q} \right) \right) /; \ p \in \mathbb{N}^+ \land q \in \mathbb{N}^+$$

$$\circ = \frac{K(0)}{90}$$

$$\circ = \frac{C0.04.26.0013.01}{180}$$

$$\circ = \frac{1}{180} \sqrt{6 \operatorname{Li}_2(1)}$$

$$\circ = \frac{1}{180} \operatorname{Vol}_2(1.001.01)$$

$$\circ = \frac{1}{180} \operatorname{Vol}_2(1.001.01)$$

$$\circ = \frac{1}{180} \operatorname{Vol}_2(1.001.01)$$

$$\circ = \frac{1}{180} \operatorname{Vol}_2(1.001.01)$$

Representations through equivalent functions

With related functions

02.04.27.0001.01
$$\pi$$

$$\circ = \frac{\pi}{180}$$

02.04.27.0002.01

$$^{\circ} = -\frac{i}{180}\log(-1)$$

02.04.27.0003.01

$$^{\circ} = \frac{1}{90} i \log \left(\frac{1-i}{1+i} \right)$$

02.04.27.0004.01

$$e^{180^{\circ}i} = -1$$

identity due to L. Euler

02.04.27.0005.01

$$e^{360^{\circ}i} = 1$$

02.04.27.0006.01

$$e^{180\,^{\circ}\,i\,k} == (-1)^k\,/;\, k \in \mathbb{Z}$$

02.04.27.0007.01

$$e^{90\,^{\circ}i\,k}=i^k\,/;\,k\in\mathbb{Z}$$

Inequalities

02.04.29.0001.01

$$\frac{1}{60}$$
 < ° < $\frac{1}{57}$

History

-Babylonians divided the circle into 360 degrees, probably because this was approximately the number of days in the year

Copyright

This document was downloaded from functions.wolfram.com, a comprehensive online compendium of formulas involving the special functions of mathematics. For a key to the notations used here, see http://functions.wolfram.com/Notations/.

Please cite this document by referring to the functions.wolfram.com page from which it was downloaded, for example:

http://functions.wolfram.com/Constants/E/

To refer to a particular formula, cite functions.wolfram.com followed by the citation number.

e.g.: http://functions.wolfram.com/01.03.03.0001.01

This document is currently in a preliminary form. If you have comments or suggestions, please email comments@functions.wolfram.com.

© 2001-2008, Wolfram Research, Inc.