Some problems on metric spaces.

I am assuming you know the definition of a *metric space*, *open and closed sets*, the *closure* and *interior* of a set, what it means for a function to be *continuous* or *uniformly continuous*, and the definitions of *compactness*, *connectedness*, and *completeness*.

Problem 1. This is a good exercise in working with some of the definitions. Let (X,d) and (Y,ρ) be metric spaces and $A\subseteq X$. Let $f\colon A\to Y$ be a continuous function.

- (a) Show that if f is uniformly continuous on A and Y is complete, then it has a continuous extension $\widehat{f} \colon \overline{A} \to Y$.
- (b) Show that this is false if either the uniform continuity condition on f or the completeness condition on Y is dropped.

Problem 2. Let $f: \mathbb{R} \to \mathbb{R}$ be uniformly continuous. Show there exists constants A and B such that $|f(x)| \leq A + B|X|$. Use this to explain why no polynomial of degree ≥ 2 is uniformly continuous on \mathbb{R} .

Problem 3. Let $A \subseteq \mathbb{R}$ be a subgroup of the additive group of \mathbb{R} such that A is a closed subset of \mathbb{R} . Show that either $A = \mathbb{R}$ or A is cyclic (that is for some $a \in \mathbb{R}$ we have $A = \{na : n \in \mathbb{Z}\}$.

And here are some problems from the old analysis exams that are worth looking at:

- January 2019, Problem 1.
- August 2018, Problem 1.
- August 2017, Problem 4.
- January 2017, Problem 1.
- August 2016, Problem 1.
- August 2012, Problem 1. (In the problems notation K_{ε}^{c} is the compliment of K_{ε} in X.)