Probability Model For A Multi-Predictor Linear Robust Regression Model

Nan Wu nanw@udel.edu

1 Linear Regression Model

The linear regression model is given as

$$y = \alpha + X\beta + \epsilon \tag{1}$$

where $y \in \mathbb{R}^N$, $X \in \mathbb{R}^{N \times P}$, $\alpha \in \mathbb{R}$, $\beta \in \mathbb{R}^P$, $\epsilon \in \mathbb{R}^N$, and $\epsilon \sim \operatorname{t}(\nu, 0, \sigma)$.

In this model, X is the predictor matrix, y is the outcome, α is the intercept, β is the coefficient vector associated with predictors, ϵ is the residual following a students' t distribution.

2 Probability Model

Stan allows us to use improper priors if we don't have any prior knowledge about the parameters. We can therefore start with a simple model by assuming the following priors for α , β , ν and σ :

$$\alpha \sim \text{Uniform}(-\infty, \infty)$$

 $\beta_p \sim \text{Uniform}(-\infty, \infty), p = 1, \dots, P$
 $\nu \sim \text{Cauchy}_+(7, 5)$
 $\sigma \sim \text{Uniform}(0, \infty)$

Putting it all together, the probability model for the multi-predictor linear robust regression model is:

$$y_n \sim t(\nu, \mu_n, \sigma)$$

 $\nu \sim \text{Cauchy}_+(7, 5)$
 $\mu_n = \alpha + \sum_{p=1}^P X_{n,p} \beta_p$
 $\alpha \sim \text{Uniform}(-\infty, \infty)$
 $\beta_p \sim \text{Uniform}(-\infty, \infty), p = 1, \dots, P$
 $\sigma \sim \text{Uniform}(0, \infty)$