Intégration : exercices.

Exercise 1 : La fonction f est continue sur [-3;5].

 $\int f(x) dx$ et déterminer sa valeur en utilisant le graphique dans chacun

des cas suivants. a. a=1,b=3

b.
$$a = -3, b = -1$$

c. a = 3, b = 5

d.
$$a = -3, b = 3$$

- Le repère est orthonormé et l'unité graphique est 0,8 cm. Quelle est l'aire, en cm², de la portion du plan comprise entre la courbe représentative de f, l'axe des abscisses et les droites d'équation x=-3 et x=5.
- Exercice 2 : A l'aide du graphique ci-dessous, donner un encadrement de l'intégrale

$$I = \int_{0}^{\frac{\pi}{2}} \sin x \, \mathrm{d} x$$

Exercice 3:

La fonction f est continue, positive, paire et périodique de période 4. On donne

$$\int_{0}^{2} f(x) dx = 3.$$

Déterminer :

a.
$$\int_{-2}^{0} f(x) dx$$

a.
$$\int_{-2}^{0} f(x) dx$$
 b. $\int_{-2}^{2} f(x) dx$ c. $\int_{1}^{3} f(x) dx$

Exercice 4: Soit la fonction f définie sur [-1;1] par $f(x) = \sqrt{1-x^2}$.

On note C la courbe représentative de la fonction f.

- 1. Vérifier que la courbe C est un demi-cercle de centre 0 et de rayon 1.
- 2. En déduire la valeur de $\int_{0}^{1} \sqrt{1-x^2} dx$.

Exercice 5: Une fonction f admet ce tableau de variations.

x	0	1		2	3	5
f(x)	-1	0	1	2	1	2

Donner des encadrements des intégrales suivantes :

a.
$$\int_{1}^{2} f(x) dx$$

b.
$$\int_{1}^{5} f(x) dx$$

a.
$$\int_{1}^{2} f(x) dx$$
 b. $\int_{2}^{5} f(x) dx$ c. $\int_{1}^{3} f(x) dx$

Exercice 6:Soit ϕ la fonction définie sur [0;10] par $\phi(x) = \int_{0}^{x} t + 2 dt$

- 1. Calculer $\phi(0)$ et $\phi(10)$.
- 2. Donner le tableau de variation de φ.
- 3. Dans un repère orthogonal du plan, tracer la courbe représentative de φ.

Exercice 7: Soit f la fonction définie sur [0;4] par $f(x) = \int_{0}^{x} |t-2| dt$.

- a. Calculer f(0), f(2) et f(4).
- b. Donner le tableau de variations de f.
- c. Dans un repère orthonormé du plan, tracer la courbe représentative de f.

Exercice 8: Soit f la fonction définie sur \mathbb{R} par f(t) = t+1.

- 1. Interpréter graphiquement $F(x) = \int_{1}^{x} f(t) dt$ pour $x \ge 0$.
- 2. Exprimer F(x) en fonction de x, $x \ge 0$.
- 3. Déterminer F'(x) pour tout $x \ge 0$. Que peut-on dire de F par rapport à $f \sup [0; +\infty[$?

Exercice 9: Soit F la fonction définie par $F(x) = \int_{0}^{x} \frac{1}{1+t^2} dt$

Déterminer le sens de variation de F.

Exercice 10: Calculer les intégrales suivantes :

1.
$$\int_{0}^{1} x^{2} + 3 \, \mathrm{d} x$$

2.
$$\int_{1}^{2} 2t + 4 dt$$

3.
$$\int_{1}^{4} \frac{1}{\sqrt{x}} dx$$

1.
$$\int_{0}^{1} x^{2} + 3 dx$$
2.
$$\int_{1}^{2} 2t + 4 dt$$
3.
$$\int_{1}^{4} \frac{1}{\sqrt{x}} dx$$
4.
$$\int_{1}^{2} 2e^{x} - 5x dx$$
5.
$$\int_{0}^{\pi/2} \sin(2t) dt$$
6.
$$\int_{0}^{1} \frac{x}{(x^{2} - 4)^{2}} dx$$

$$5. \int_{0}^{\pi/2} \sin(2t) dt$$

6.
$$\int_{0}^{1} \frac{x}{(x^2-4)^2} \, \mathrm{d}x$$

7.
$$\int_{0}^{1} x^{2}(x^{3}-1)^{5} dx$$
 8. $\int_{0}^{\frac{\pi}{2}} \frac{3x}{\sqrt{1-x^{2}}} dx$

8.
$$\int_{0}^{\frac{1}{2}} \frac{3x}{\sqrt{1-x^{2}}} dx$$

Exercice 11:On pose $I = \int_{0}^{1} \frac{1}{e^{x} + 1} dx$ et $J = \int_{0}^{1} \frac{e^{x}}{e^{x} + 1} dx$.

- 1. Calculer I+J
- Calculer J.
- En déduire I.

Exercice 12: On considère la fonction f définie sur]0; $+\infty$ [par $f(x) = \frac{1}{x^2}e^{\frac{1}{x}}$ et, pour un entier $n \ge 1$.

l'intégrale $I_n = \int_{-\infty}^{\infty} f(x) dx$.

- 1. Dresser le tableau de variation de f et tracer l'allure de sa courbe représentative. Représenter I_n sur ce graphique.
- 2. Calculer I_n pour tout entier, puis déterminer $\lim_{n \to +\infty} I_n$.

Exercice 13: Calculer la valeur moyenne des fonctions suivantes sur l'intervalle I donné :

a.
$$f(x)=x^2$$
, I=[-1,1]

b.
$$f(x) = x(3x^2 - 1)^2$$
, I=[-1,2]

c.
$$f(x) = \frac{3}{2x+1}$$
, I=[0,4]

d.
$$f(x) = \frac{x^2}{(8-x^3)^2}$$
, I=[0, 1]

Exercice 14:

- 1. Montrer que, pour tout nombre réel x, on a : $1-x^2 \le \frac{1}{1+x^2} \le 1-x^2+x^4$.
- 2. Démontrer que $\frac{2}{3} \le \int_{1}^{1} \frac{1}{1+x^2} dx \le \frac{13}{15}$

Exercice 15: Dans un repère orthonormé, on considère le domaine D compris entre les courbes d'équations $y = \sqrt{x}$ et $y = x^2$

Déterminer l'aire du domaine D.

Exercice 16: Calculer l'aire du domaine compris entre les courbes des fonctions f et g définies par $f(x)=x^2-4$ et $g(x)=-\frac{1}{2}x^2+2$

Exercice 17: Liban 2014

Soit f la fonction définie sur l'intervalle $[0; +\infty[$ par $f(x) = xe^{-x}$.

On note $\,C\,$ la courbe représentative de $\,f\,$ dans un repère orthogonal.

Partie A

- 1. On note f' la fonction dérivée de la fonction f sur l'intervalle $[0; +\infty[$. Pour tout réel x de l'intervalle $[0; +\infty[$, calculer f'(x). En déduire les variations de la fonction f sur l'intervalle $[0; +\infty[$.
- 2. Déterminer la limite de la fonction f en $+\infty$. Quelle interprétation graphique peut-on faire de ce résultat?

Partie B

Soit A la fonction définie sur l'intervalle $[0; +\infty[$ de la façon suivante: pour tout réel t de l'intervalle $[0; +\infty[$, A(t) est l'aire, en unités d'aire, du domaine délimité par l'axe des abscisses, la courbe C et les droites d'équations x=0 et x=t.

- 1. Déterminer le sens de variation de la fonction A.
- 2. On admet que l'aire du domaine délimité par la courbe C et l'axe des abscisses est égale à 1 unité d'aire. Que peut-on en déduire pour la fonction A?
- 3. On cherche à prouver l'existence d'un nombre réel α tel que la droite d'équation $x=\alpha$ partage le domaine compris entre l'axe des abscisses et la courbe C, en deux parties de même aire, et à trouver une valeur approchée de ce réel.
 - a. Démontrer que l'équation $A(t) = \frac{1}{2}$ admet une unique solution sur l'intervalle [0; $+\infty$ [.
 - b. Sur le graphique fourni en annexe sont tracées la courbe $\,C\,$, ainsi que la courbe $\,\Gamma\,$ représentant la fonction $\,A\,$.

Sur le graphique, identifier les courbes C et Γ , puis tracer la droite d'équation $y=\frac{1}{2}$. En déduire une valeur approchée du réel α .

Hachurer le domaine correspondant à $A(\alpha)$.

- 4. On définit la fonction g sur l'intervalle $[0; +\infty[$ par $g(x)=(x+1)e^{-x}$.
 - a. On note g' la fonction dérivée de la fonction g sur l'intervalle $[0; +\infty[$.

Pour tout réel x de l'intervalle $[0; +\infty[$, calculer g'(x).

- b. En déduire, pour tout réel t de l'intervalle $[0; +\infty[$, une expression de A(t).
- c. Calculer une valeur approchée à 10^{-2} près de A(6).

Exercice 18: Polynésie Juin 2015

Le directeur d'un zoo souhaite faire construire un toboggan pour les pandas. Il réalise le schéma suivant de ce toboggan en perspective cavalière.

Voici ce schéma:

Partie A: Modélisation.

Le profil de ce toboggan est modélisé par la courbe C représentant la fonction f définie sur l'intervalle [1;8] par $f(x)=(ax+b)e^{-x}$ où a et b sont deux entiers naturels. La courbe C est tracée ci-dessous dans un repère orthonormé dont l'unité est le mètre.

- 1. On souhaite que la tangente à la courbe $\,C\,$ en son point d'abscisse 1 soit horizontale. Déterminer la valeur de l'entier b.
- 2. On souhaite que le haut du toboggan soit situé entre 3,5 et 4 mètres de haut. Déterminer la valeur de l'entier a.

Partie B: Un aménagement pour les visiteurs.

On admet dans la suite que la fonction f introduite dans la partie A est définie pour tout $x \in [1;8]$ par

$$f(x)=10 x e^{-x}.$$

Le mur de soutènement du toboggan sera peint par un artiste sur une seule face, hachurée sur le schéma en début d'exercice. Sur le devis qu'il propose , celui-ci demande un forfait de 300 euros augmenté de 50 euros par mètre carré peint.

- 1. soit g la fonction définie sur [1;8] par $g(x)=10(-x-1)e^{-x}$. Déterminer la fonction dérivée de la fonction g.
- 2. Quel est le montant du devis de l'artiste.

Partie C: Une contrainte à vérifier.

Des raisons de sécurité imposent de limiter la pente maximale du toboggan.

On considère un point M de la courbe $\,C\,$, d'abscisse différente de 1. On appelle α l'angle aigu formé par la tangente en M à $\,C\,$ et l'axe des abscisses.

La figure suivante illustre la situation.

Les contraintes imposent que l'angle α soit inférieur à 55 degrés.

- 1. On note f' la fonction dérivée de la fonction f sur l'intervalle [1;8]. On admet que, pour tout x de l'intervalle [1;8], $f'(x) = 10(1-x)e^{-x}$. Étudier les variations de la fonction f' sur l'intervalle [1;8].
- 2. Soit x un réel de l'intervalle]1;8] et soit M le point d'abscisse x de la courbe C. Justifier que $\tan \alpha = |f'(x)|$.
- 3. Le toboggan est-il conforme aux contraintes imposées ?

Exercice 19: Centres étrangers juin 2012

On considère la suite (I_n) définie pour n entier naturel non nul par : $I_n = \int_0^1 x^n e^{x^2} dx$.

1. a . Soit g la fonction définie sur \mathbb{R} par $g(x) = xe^{x^2}$.

Démontrer que la fonction G définie sur \mathbb{R} par $G(x) = \frac{1}{2}e^{x^2}$ est une primitive sur \mathbb{R} de la fonction g.

b. En déduire la valeur de $\,I_{1}\,.\,$

c. Pour tout entier naturel $\,n\,$, on définit sur $\mathbb{R} \mathrm{la}$ fonction $\,H_{\,n}\,$ par :

$$H_n(x)=x^{n+1}G(x).$$

Montrer que H_n est dérivable sur $\mathbb R$ calculer pour tout réel x, $H'_n(x)$ et en déduire que, pour tout entier naturel $n:I_{n+2}=\frac{1}{2}\operatorname{e}-\frac{n+1}{2}I_n$

- d. Calculer I_3 et I_5 .
- 2. On considère le programme suivant :

Quel terme de la suite (I_n) obtient-on en sortie de cet algorithme

- 3. a. Montrer que, pour tout entier naturel non nul n, $I_n \ge 0$.
 - b. Montrer que la suite (I_n) est décroissante.
 - c. En déduire que la suite (I_n) est convergente.

On note l sa limite.

4. Dans cette question, toute trace de recherche, même incomplète, ou d'initiative, même non fructueuse, sera prise en compte dans l'évaluation.

Déterminer la valeur de l.

Exercice 20: I et J sont les intégrales définies par $I = \int_{0}^{\frac{\pi}{2}} e^{x} \sin(x) dx$ et $J = \int_{0}^{\frac{\pi}{2}} e^{x} \cos(x) dx$

- 1. En appliquant de deux façons différentes à l'intégrale I la méthode d'intégration par parties, trouver deux relations entre I et J.
- 2. Calculer alors les intégrales I et J.

Exercice 21: Pour tout entier nature n, on pose $I_n = \int_0^{\pi} x^2(\cos nx) dx$.

A l'aide d'une double intégration par parties, calculer I_n en fonction de n.

Exercice 22: Soit (I_n) la suite définie pour tout entier $n \ge 0$ par $I_n = \int_0^1 t^n e^{-t} dt$.

- 1. Calcul des premiers termes de la suite.
 - a. Calculer I_0 et I_1 .
 - b. Exprimer I_2 en fonction de I_1 , puis en déduire I_2 .
 - c. Exprimer I_3 en fonction de I_2 , puis calculer I_3 .
- 2. Étude de la suite.
 - a. Démontrer que, pour tout entier n, $I_n \ge 0$.
 - b. Étudier le sens de variation de la suite I.
 - c. Démontrer que la suite (I_n) est convergente.
- 3. Calcul de la limite de la suite.
 - a. A l'aide d'une intégration par parties, exprimer I_{n+1} en fonction de I_n .
 - b. Démontrer que, pour tout entier $n \ge 1$, $I_n \le \frac{1}{n e}$
 - c. En déduire la limite de la suite (I,)

Exercice 23: mai 2012

On considère les suites (I_n) et (J_n) définies pour tout entier naturel n par : $I_n = \int_0^1 \frac{e^{-nx}}{1+x} dx$

et
$$J_n = \int_0^1 \frac{e^{-nx}}{(1+x)^2} dx$$

1. Sont représentées ci-dessous les fonctions f_n définies sur l'intervalle [0;1] par

$$f_n(x) = \frac{e^{-nx}}{1+x}$$
 pour différentes valeurs de n .

- a. Formuler une conjecture sur le sens de variation de la suite (I_n) en expliquant la démarche.
- b. Démontrer cette conjecture.
- 2. a. Montrer que pour tout entier $n \ge 0$ et pour tout nombre réel x de l'intervalle [0;1], on a :

$$0 \le \frac{e^{-nx}}{(1+x)^2} \le \frac{e^{-nx}}{1+x} \le e^{-nx}$$
.

- b. Montrer que les suites (I_n) et (J_n) sont convergentes et déterminer leur limite.
- 3. a. Montrer, en effectuant une intégration par parties, que pour tout entier $n \ge 1$:

$$I_n = \frac{1}{n} \left(1 - \frac{e^{-n}}{2} - J_n \right)$$

b. En déduire $\lim_{n \to +\infty} n I_n$

Exercice 24: mai 2012

Partie A:

On considère la fonction g définie sur l'intervalle]0; $+\infty[$ par $g(x)=2x^3-1+2\ln x$.

- 1. Etudier les variations de la fonction g sur l'intervalle]0; $+\infty$ [.
- 2. Justifier qu'il existe un unique réel α tel que $g(\alpha)=0$. Donner une valeur approchée de α , arrondie au centième.
- 3. En déduire le signe de la fonction g sur l'intervalle]0; $+\infty[$.

Partie B

On considère la fonction f définie sur l'intervalle]0; $+\infty$ [par $f(x)=2x-\frac{\ln x}{x^2}$.

On note C la courbe représentative de la fonction f dans le plan, muni d'un repère orthogonal $(0, \vec{i}, \vec{j})$.

- 1. Déterminer les limites de la fonction f en 0 et en $+\infty$.
- 2. Démontrer que la courbe C admet pour asymptote oblique le droite Δ d'équation $y=2\ x$.

Étudier la position relative de la courbe C et de la droite Δ .

- 3. Justifier que f'(x) a le même signe que g(x).
- 4. En déduire le tableau de variations de la fonction f.
- 5. Tracer la courbe C dans le repère (O, \vec{i} , \vec{j}). On prendra comme unités : 2 cm sur l'axe des abscisses, 1 cm sur l'axe des ordonnées.

Partie C : Soit n un entier naturel non nul. On considère l'aire du domaine D du plan compris entre la courbe C, la droite d'équation Δ et les droites d'équations respectives x=1 et x=n

1. Justifier que cette aire, exprimée en cm², est donnée par :

$$I_n = 2 \int_1^n \frac{\ln x}{x^2} dx$$

- 2. a. Calculer l'intégrale $2\int_{1}^{n} \frac{\ln x}{x^2} dx$ à l'aide d'une intégration par parties.
 - b. En déduire l'expression de I_n en fonction de n.
- 3. Calculer la limite de l'aire I_n du domaine D quand n tend vers $+\infty$.