Networks Project: Numerical analysis of the Barabási-Albert Model

Lingyi Hu CID: 00919977

26th March, 2017

Abstract: We investigate the behaviour of the Barabási-Albert Model.

Word count: 2591 words in report (excluding front page, figure captions, table captions, acknowledgement and bibliography).

1 Theory

The master equation that describes the evolution of the BA model is given by

$$n(k, t+1) = n(k, t) + m\Pi(k-1, t)n(k-1, t) - m\Pi(k, t)n(k, t) + \delta_{k,m}$$
(1)

where k is the total degree of a vertex, n(k,t) is the number of nodes at time t with total degree k, and the probability Π for choosing the existing vertex depends on the model. In the pure preferential attachment model, we choose an existing edge with $\Pi_{pa} \propto k$, which after normalizing gives $\Pi_{pa} = k/2E(t)$ where E(t) is the number of edges and 2E(t) is the normalization constant corresponding to the total degree of the network. Assuming E(0) = mN(0), the number of edges at a given time t is given by E(t) = mN(t), so we get $\Pi = k/2mnN(t)$. Since we are concerned with the degree distribution of the model at large t, we consider the long-time ansatz $n(k,t) \to N(t)p_{\infty}(k)$.

Substituting these terms into the master equation, we obtain

$$p_{\infty}(k) = \frac{1}{2}[(k-1)p_{\infty}(k-1) - kp_{infty}(k)] + \delta_{k,m}$$
 (2)

It is clear that $p_{\infty}(k < m) = 0$, since m edges are added at every stage. So there are 2 cases to consider when solving for the above equation: k = m and k > m.

We first consider the case when k > m. In this case, $\delta_{k,m} = 0$ and we can rearrange Equation 2 to get

$$\frac{p_{\infty}(k)}{p_{\infty}(k+1)} = \frac{k-1}{k+2}$$
 (3)

To solve this equation, we can substitute in a trial solution of the form

$$f(z) = A \frac{\Gamma(z+1+a)}{\Gamma(z+1+b)} \tag{4}$$

where $\Gamma(z)$ is the Gamma function, which is an extension of the factorial function, with its argument shifted by one, to all real and complex nnumbers except the non-positive integers. Its central property is that

$$\Gamma(z+1) = z\Gamma(z), \ \Gamma(1) = 1. \tag{5}$$

Substituting the trial solution in Equation 4 gives

$$\frac{A\Gamma(z+1+a)}{\Gamma(z+1+b)} \times \frac{\Gamma(z+b)}{A\Gamma(z+a)} \tag{6}$$

which indeed simplifies to give (z+a)/(z+b), using the property in Equation 5 that $\Gamma(z+a+1)/\Gamma(z+a)=z+a$.

Substituting a = -1 and b = 2, we get the solution for Equation 3 in terms of A and the Gamma function:

$$p_{\infty}(k) = A \frac{\Gamma(k)}{\Gamma(k+3)} \tag{7}$$

which simplifies to

$$p_{\infty}(k) = \frac{A}{k(k+1)(k+2)}.$$
 (8)

For the second case of k = m, Equation 2 becomes

$$p_{\infty}(m) = \frac{1}{2}[(m+1)p_{\infty}(m-1) - mp_{\infty}(m)] + 1.$$
(9)

However, we already know that $p_{\infty}(k < m) = 0$, that is, $p_{\infty}(m-1) = 0$. Using this, and rearranging Equation 9, we get

$$p_{\infty}(m) = \frac{2}{m+2}.\tag{10}$$

Substituting k = m and Equation 10 into Equation 8, we get

$$\frac{A}{m(m+1)(m+2)} = \frac{2}{m+2},\tag{11}$$

giving us the constant A as

$$A = 2m(m+1). (12)$$

For this constant to be physically reasonable, we need to check that the probability satisfies normalization, that is, we need to prove

$$\sum_{k=m}^{\infty} p_{\infty}(k) = 2m(m+1) \sum_{k=m}^{\infty} \frac{1}{k(k+1)(k+2)} = 1.$$
 (13)

The term in the summation of Equation 13 can be expanded as a partial fraction:

$$\sum_{k=m}^{\infty} \frac{1}{k(k+1)(k+2)} = \sum_{k=m}^{\infty} \frac{1}{2k} - \sum_{k=m}^{\infty} \frac{1}{k+1} + \sum_{k=m}^{\infty} \frac{1}{2(k+2)}$$
 (14)

By writing out the first few terms of each summation, we can see that most terms cancel:

$$\frac{1}{2m} - \frac{1}{m+1} + \frac{1}{2(m+2)} + \frac{1}{m+2} + \frac{1}{m+3} + \frac{1}{2(m+4)} + \frac{1}{2(m+2)} - \frac{1}{m+3} + \frac{1}{2(m+4)} + \frac{1}{2(m+5)} + \dots$$
(15)

and from the remaining terms we get the relation in Equation 13

$$\sum_{k=m}^{\infty} p_{\infty}(k) = 2m(m+1) \left(\frac{1}{2m} - \frac{1}{m} + \frac{1}{2(m+1)} \right) = 2m(m+1) \frac{1}{2m(m+1)} = 1 \quad (16)$$

Hence, we can confirm that the complete exact solution for the probability distribution in the long time limit is

$$p_{\infty}(k) = \frac{2m(m+1)}{k(k+1)(k+2)} \tag{17}$$