EE 210

HW#: 06

Last Name: Aldacher

First Name: Muhammad

ID: 011510317

Date: 10/10/2020

Assigned question #s: 5

$$\int_{S} f_{s} = 11.025 \text{ kHz} \longrightarrow T_{s} = \frac{1}{f_{s}} = 90.7 \text{ ms}$$

$$T_{sampler} = 10 \text{ ms}$$
acquisition

: Time available for quantization & digitization = Ts - Tsampler = 80.7 us acquisition

(2) a)
$$x(t) = Gos(20t + 12^{\circ})$$

= $Gos(2\pi f_m t + 12^{\circ})$ $\Rightarrow 2\pi f_m = 20$
: $f_m = \frac{20}{2\pi} = 3.18 \text{ Hz}$

i Nyquist rate = $f_N = 2 \times f_m = 6.366 \,\text{Hz}$

b)
$$\chi(t) = 2 \sin(5000 \, \text{Te}/3)$$

= $2 \sin(2 \, \text{Te} (\frac{2500}{3}) t)$ $\longrightarrow \text{if } f_m = \frac{2500}{3} = 833.33 \, \text{Hz}$
 $\text{if } Myquist rate} = f_N = 2 \times 833.33 = 1666.67 \, \text{Hz}$

C)
$$x(t) = Sin\left(\frac{3000}{7}\pi t + \frac{\pi}{10}\right)$$

= $Sin\left(2\pi\left(\frac{1500}{7}\right)t + \frac{\pi}{10}\right) \longrightarrow if_m = \frac{1500}{7} = 214.2857 \text{ Hz}$
 ii Nyquist rate = $f_W = 2 \times 214.2857 = 428.57 \text{ Hz}$

(3)

 $\chi(f)$

sampling with &=600Hz

after sampling

(f)	^
1 100	1400
1000	(100

-1400	-1100	0	1100	1400	
-3400	-3100	-2000	-900	-600	_ > -2fs
-2400	-2100	-1000	100	400)	→ -1 f
-1400	-1100	0	1100	1400	⇒ of
-400	-100	1000	2100	2400	⇒18
600	900)	2000	3100	3400	$\Rightarrow 2f_{j}$
1600	1900	3000	4100	4400	\Rightarrow 3 f_s

* Spectrum after Sampling (between -500 Hz 60 1500 Hz)

Spectrum after Sampling (between -500 Hz to \$500 Hz)

(A)
$$f_s - f_m = 150$$
 or $f_s - f_m = -150$
 $600 - f_m = 150$ $600 - f_m = -150$
 $f_m = 450$ OR $f_m = 750$

Sif we consider 2 fs, fm will be greater than 1k.

(B)

$$f_s - f_m = 200$$
 or $f_r - f_m = -200$
 $550 - f_m = 200$ $550 - f_m = -200$
 $f_m = 350$ or $f_m = 750$

from (A) & (B), The frequency of the signal x(t) is 750 Hz.

$$f_m = 750 \text{ Hz}$$

 $\chi(t) = \sin(2\pi(750)t)$