

42578 Advanced Business Analytics

Recommender Systems

Recommendations

Recommendations

Examples

From Scarcity to Abundance

- Shelf space is a scarce commodity for traditional retailers
 - Also: TV networks, movie theatres,...
- Web enables near-zero-cost dissemination of information about products
 - From scarcity to abundance
- More choice necessitates better filters
 - Recommendation engines
 - How "Into Thin Air" made "Touching the Void" a bestseller: http://www.wired.com/wired/archive/12.10/tail.html

The Long Tail

Types of Recommendations

- Editorial and hand-curated
 - Editors' picks
 - Lists of "essential" items
- Simple aggregates
 - Top 10, Most Popular, Recent Uploads
- Tailored to individual users
 - Amazon, Netflix, ...

Formal Model

- X = set of Customers
- I = set of Items
- Utility function u: $X \times I \rightarrow R$
 - R = set of ratings
 - R is a totally ordered set
 - e.g., **0-5** stars, real number in **[0,1]** (purchase probability), ...

Rating (Utility) Matrix

	Avatar	LOTR	Matrix	Pirates
Alice	1	?	0.2	?
Bob	?	0.5	?	0.3
Carol	0.2	?	1	?
David	?	?	?	0.4

Key Problems

- (1) Gathering "known" ratings for the matrix
 - How to collect the data in the rating matrix
- (2) Extrapolate unknown ratings from the known ones
 - Mainly interested in high unknown ratings
 - We are not interested in knowing what you don't like but what you like
- (3) Evaluating extrapolation methods
 - How to measure success/performance of recommendation methods

(1) Gathering Ratings

• Explicit

- Ask people to rate items
- Doesn't work well in practice people can't be bothered

Implicit

- Learn ratings from user actions
 - ▶ E.g., purchase implies high rating
- What about low ratings?

(2) Extrapolating Ratings

- Key problem: Rating matrix R is sparse
 - Most people have not rated most items
 - Cold start:
 - New items have no ratings
 - New users have no history
- Two approaches to recommender systems:
 - (1) Content-based recommendations
 - (2) Collaborative filtering
 - Memory-based approach: Item-Item, User-User
 - Model-based approach: Matrix factorisation, Latent factors, PCA, Neural nets, ...
 - Hybrid
 - Hybrid

Content-based Recommender Systems

19 March 2019 DTU Management 1

Content-based Recommendations

 Main idea: Recommend items to the customer x similar to previous items rated highly by x

• Example:

- Movie recommendations
 - ▶ Recommend movies with same actor(s), director, genre, ...
- Websites, blogs, news
 - Recommend other sites with "similar" content

Main Idea

Item Profiles

- For each item, create an item profile, q_i
- Item profile is a set (vector) of item features
 - Movies: author, title, actor, director,...
 - **Text:** Set of "important" words in document
 - ▶ TF-IDF, topics, ...
 - Images, music:
 - Hand-crafted features
 - ▶ Unsupervised learning ("embeddings"), e.g., Clustering, Generative modelling

User Profile

- General case: Utility function u_x(q)
- Simplest case: Linear model
 - User profile is a vector of weights \mathbf{p}_x for features in \mathbf{q}
 - linear regression
 - logistic regression (probability of "like")
- Nonlinear "black-box" models
 - Lack of interpretability

Pros: Content-based Approach

- + Does not heavily depend on data on other users
- + Able to recommend to users with unique tastes
- + Able to recommend new & unpopular items

Cons: Content-based Approach

- Finding the appropriate features is hard
 - E.g., images, movies, music
- Recommendations for new users
 - Irrelevant recommendations in the beginning
- Overspecialisation
 - Never recommends items outside user's content profile
 - People might have multiple interests
 - Unable to exploit quality judgments of other users

Evaluation of Recommender Systems

19 March 2019 DTU Management 1

Evaluation of Recommender Systems

- Train / Test split
- Cross-validation

Performance Measure

Root-mean-square error (RMSE)

$$\sqrt{\frac{1}{N}\sum_{xi}\left(\hat{r}_{xi}-r_{xi}\right)^2}$$
 where \hat{r}_{xi} is predicted and r_{xi} is true rating of x on i

- cons: In practice, we care only to predict high ratings, and RMSE might penalise a method that does well for high ratings and badly for others
- Precision at top k
 - % of those in top k predictions (in practice, often k=10)
- Rank (Spearman's) correlation

Baselines

- Global mean rating, μ
 - average of all ratings
- User mean rating, μx
 - average of all ratings from the user x
- Item mean rating, μ_i
 - average of all ratings for the item i
- Combination

$$-r_{xi} = \mu + b_x + b_i = \mu + (\mu_x - \mu) + (\mu_i - \mu)$$

User's bias

(deviation of the user's mean from the global mean) Item's bias

(deviation of the item's mean from the global mean)

Exercises

• "Recommender Systems.ipynb": Sections 1 - 3.1 (Content-based filtering)

Memory-based Collaborative Filtering

19 March 2019 DTU Management 2

Person A

- likes private jets
- likes beer

Person A

- likes private jets
- likes beer

Person B

- wants to buy beer
- recommend to buy a private jet?

User-User Collaborative Filtering

- Consider user x
- Find similarity of x to all other users
- Estimate x's ratings using ratings of the other users weighted by their similarity to x
- K-Nearest-Neighbor approach: all other users → K most similar users

Finding "Similar" Users

- Let \mathbf{r}_x be the vector of user \mathbf{x} 's ratings: $\mathbf{r}_x = (1, ?, ?, 4, 5)$ and \mathbf{r}_y be the vector of user \mathbf{y} 's ratings: $\mathbf{r}_y = (?, 1, ?, 3, 4)$
- Pearson correlation coefficient
 - $-\mathbf{S}_{xy}$ = items rated by both users \mathbf{x} and \mathbf{y} : (4, 5) and (3, 4)

$$sim(x,y) = \frac{\sum_{s \in S_{xy}} (r_{xs} - \overline{r_x}) (r_{ys} - \overline{r_y})}{\sqrt{\sum_{s \in S_{xy}} (r_{xs} - \overline{r_x})^2} \sqrt{\sum_{s \in S_{xy}} (r_{ys} - \overline{r_y})^2}}$$

Rating Predictions

- Predict r_{xi} rating of the item i by the user x
- Let K be the set of K users most similar to x who have rated item i
- Prediction:

$$r_{xi} = \frac{1}{K} \sum_{y \in \mathbf{K}} r_{yi}$$

$$r_{xi} = \frac{\sum_{y \in \mathbf{K}} sim(x, y) r_{yi}}{\sum_{y \in \mathbf{K}} sim(x, y)}$$

Item-Item Collaborative Filtering

- So far: User-user collaborative filtering
- Another view: Item-item
 - For item i, find other similar items
 - Estimate rating for item i based on ratings for similar items
 - Can use same similarity metrics and prediction functions as in the useruser model

$$r_{xi} = \frac{\sum_{j \in \mathbf{K}} sim(i, j) r_{xj}}{\sum_{j \in \mathbf{K}} sim(i, j)}$$

K is a set of K most similar items to i rated by x

	users												
		1	2	3	4	5	6	7	8	9	10	11	12
	1	1		3			5			5		4	
	2			5	4			4			2	1	3
movies	3	2	4		1	2		3		4	3	5	
Ε	4		2	4		5			4			2	
	5			4	3	4	2					2	5
	6	1		3		3			2			4	
		- ur	nkno	wn r	ating	9	- rating between 1 to 5						

	users												
		1	2	3	4	5	6	7	8	9	10	11	12
	1	1		3		?	5			5		4	
	2			5	4			4			2	1	3
movies	3	2	4		1	2		3		4	3	5	
Ε	4		2	4		5			4			2	
	5			4	3	4	2					2	5
	6	1		3		3			2			4	

- estimate rating of movie 1 by user 5

	users													
		1	2	3	4	5	6	7	8	9	10	11	12	sim(1,m)
movies	1	1		3		?	5			5		4		1.00
	2			5	4			4			2	1	3	-0.18
	<u>3</u>	2	4		1	2		3		4	3	5		<u>0.41</u>
	4		2	4		5			4			2		-0.10
	5			4	3	4	2					2	5	-0.31
	<u>6</u>	1		3		3			2			4		<u>0.59</u>

Neighbor selection:

Identify movies similar to movie 1, rated by user 5

Here we use Pearson correlation as similarity:

- 1) Subtract mean rating m_i from each movie i $m_1 = (1+3+5+5+4)/5 = 3.6$ row 1: [-2.6, 0, -0.6, 0, 0, 1.4, 0, 0, 1.4, 0, 0.4, 0]
- 2) Compute cosine similarities between rows

users														
		1	2	3	4	5	6	7	8	9	10	11	12	sim(1,m)
	1	1		3		2.6	5			5		4		1.00
movies	2			5	4			4			2	1	3	-0.18
	<u>3</u>	2	4		1	2		3		4	3	5		<u>0.41</u>
	4		2	4		5			4			2		-0.10
	5			4	3	4	2					2	5	-0.31
	<u>6</u>	1		3		3			2			4		<u>0.59</u>

Similarity weights:

$$s_{1.3}$$
=0.41, $s_{1.6}$ =0.59

Predict by taking weighted average:

$$r_{1.5} = (0.41*2 + 0.59*3) / (0.41+0.59) = 2.6$$

Collaborative Filtering: Common Practice

$$r_{xi} = \frac{\sum_{y \in \mathbf{K}} sim(x, y) r_{yi}}{\sum_{y \in \mathbf{K}} sim(x, y)}$$

$$r_{xi} = b_{xi} + \frac{\sum_{y \in \mathbf{K}} sim(x, y) \left(r_{yi} - b_{yi} \right)}{\sum_{y \in \mathbf{K}} sim(x, y)}$$

Baseline estimate for r_{xi}

Deviation from the baseline

$$b_{xi} = \mu + b_x + b_i$$

Item-Item vs. User-User

- In theory, should perform approximately the same
- In practice, it has been observed that <u>item-item often works better</u> than user-user
- Why? Items are simpler, users have multiple tastes

Pros/Cons of Collaborative Filtering

- + Works for any kind of item
 - No feature selection needed
- Cold Start:
 - Need enough users in the system to find a match
- Sparsity:
 - The user/ratings matrix is sparse
 - Hard to find users that have rated the same items
- First rater:
 - Cannot recommend an item that has not been previously rated
 - New items, Esoteric items
- Popularity bias:
 - Cannot recommend items to someone with unique taste
 - Tends to recommend popular items
- Expensive step is finding K most similar customers/items (linear complexity)
 - Solution: caching, indexing, nearest-neighbour search, etc.

Hybrid Methods

- Implement two or more different recommenders and combine predictions
 - Perhaps using a linear model
- Add content-based methods to collaborative filtering
 - Item profiles for new item problem
 - Demographics to deal with new user problem

Exercises

• Part 2 - Memory-based recommendations

Model-based Collaborative Filtering

19 March 2019 DTU Management 4

"SVD" on the utility matrix: R ≈ Q · P*

SVD: D=UΣT*

- For now let's assume we can approximate the rating matrix R as a product of "thin" Q · P*
 - R has missing entries but let's ignore that for now!
 - Basically, we will want the reconstruction error to be small on known ratings and we don't care about the values on the missing ones

factors

2.4

-.1

Ratings as Products of Factors

• How to estimate the missing rating of user x for item i?

$$\hat{r}_{xi} = \mathbf{q}_i \mathbf{p}_x^* = \sum_j q_{ij} p_{xj} = -0.5 * -2 + 0.6 * 0.3 + 0.5 * 2.4 = 2.4$$

Recap: SVD

 It is a Singular Value Decomposition (generalisation of eigenvalue decomposition) of the document-term matrix D=UΣT*

- D is a document-term matrix
- **U** is a document-topic map ("topic distribution")
- Σ is an ordered diagonal matrix of singular values ("topic importance")
- **T** is a term-topic map ("term distribution")

Low-Rank Matrix Factorisation

- **R** is a utility matrix
- **Q** is a item-factor map
- P* is a user-factor map

SVD vs Low-Rank Matrix Factorisation

• SVD gives minimum reconstruction error (Sum of Squared Errors):

$$\min_{U,\Sigma,T} \sum_{i,j} \left(d_{ij} - \left[U \Sigma T^* \right]_{ij} \right)^2$$

which is monotonically related to RMSE

- Complication: The sum in SVD error term is over all entries (no-rating in interpreted as zero-rating). But our R has missing entries!
- Use optimisation methods to find elements of P and Q (e.g., Gradient Descent)

$$\min_{P,Q} \sum_{i,j \in R} \left(r_{ij} - \left[PQ^* \right]_{ij} \right)^2$$

- Note:
 - We don't require cols of P, Q to be orthogonal/unit length
 - Non-convex:(

Finding P and Q

Number of latent factors

Loss function

$$J(P,Q) = \sum_{\text{training data } i,j \in R} \left(r_{ij} - \sum_{k=1}^{K} q_{ik} p_{kj} \right)^{2}$$

Gradients for q_{ij} (the same for p_{ij})

$$\frac{\partial J}{\partial q_{ij}} = \sum_{\text{training data } i,j \in R} \sum_{k=1}^{K} -2\left(r_{ij} - \sum_{k=1}^{K} q_{ik} p_{kj}\right) q_{ij}$$

Updates (the same for p_{ij}) — until convergence

$$q_{ij} \leftarrow q_{ij} - \underline{\eta} \frac{\partial J}{\partial q_{ij}}$$
 Learning rate

Finding P and Q

Number of latent factors

Loss function

$$J(P,Q) = \sum_{\text{training data } i,j \in R} \left(r_{ij} - \sum_{k=1}^{K} q_{ik} p_{kj} \right)^{2}$$

Gradients for q_{ij} (the same for p_{ij})

$$\frac{\partial J}{\partial q_{ij}} = \sum_{\text{training-data}} \sum_{i,j \in R} -2\left(r_{ij} - \sum_{k=1}^{K} q_{ik} p_{kj}\right) q_{ij}$$

A few training data points ("batch") — Stochastic Gradient Descent — Faster & Better in high dimensions

Updates (the same for p_{ij}) — until convergence

$$q_{ij} \leftarrow q_{ij} - \underline{\eta} \frac{\partial J}{\partial q_{ij}}$$
Learning rate

Sidenote: GD vs. SGD

Finding P and Q

Number of latent factors

Hyperparameter responsible for the model's complexity (overfitting!)

Loss function

$$J(P,Q) = \sum_{\text{training data } i,j \in R} \left(r_{ij} - \sum_{k=1}^{K} q_{ik} p_{kj} \right)^{2}$$

Gradients for q_{ij} (the same for p_{ij})

$$\frac{\partial J}{\partial q_{ij}} = \sum_{\text{training data } i, j \in R} \sum_{k=1}^{K} -2\left(r_{ij} - \sum_{k=1}^{K} q_{ik} p_{kj}\right) q_{ij}$$

Updates (the same for p_{ij}) — until convergence

$$q_{ij} \leftarrow q_{ij} - \eta \frac{\partial J}{\partial q_{ij}}$$

Finding P and Q

Number of latent factors

Hyperparameter responsible for the model's complexity (overfitting!)

Loss function

$$J(P,Q) = \sum_{\text{training data } i,j \in R} \left(r_{ij} - \sum_{k=1}^{K} q_{ik} p_{kj} \right)^{2}$$

Gradients for q_{ij} (the same for p_{ij})

$$\frac{\partial J}{\partial q_{ij}} = \sum_{\text{training data } i,j \in R} \sum_{k=1}^{K} -2\left(r_{ij} - \sum_{k=1}^{K} q_{ik} p_{kj}\right) q_{ij}$$

Updates (the same for p_{ij}) — until convergence

$$q_{ij} \leftarrow q_{ij} - \eta \frac{\partial J}{\partial q_{ij}}$$

- regularisation $+\lambda_1\sum_{ij}q_{ij}^2+\lambda_2\sum_{ij}p_{ij}^2$ (two more HPs to tune)

 direct tuning on a separate validation set / crossvalidation on train data

One Last Thing...

Modelling Biases and Interactions

Baseline predictor

- Separates users and movies
- Benefits from insights into user's behavior
- Among the main practical contributions of the competition
 - μ = overall mean rating
 b_x = bias of user x
 b_i = bias of movie i

User-Movie interaction

- Characterizes the matching between users and movies
- Attracts most research in the field
- Benefits from algorithmic and mathematical innovations

Putting It All Together

$$J(P,Q) = \sum_{\text{training data } i,x \in R} \left(r_{ix} - \left(\mu + b_x + b_i \right) - \sum_{k=1}^K q_{ik} p_{kj} \right)^2$$

The Netflix Prize (2009)

- Training data
 - 100 million ratings, 480,000 users, 17,770 movies
 - 6 years of data: 2000-2005
- Test data
 - Last few ratings of each user (2.8 million)
 - Evaluation criterion: Root Mean Square Error (RMSE)
 - Netflix's system RMSE: 0.9514
- Competition
 - -2,700+ teams
 - \$1 million prize for 10% improvement on Netflix

Performance of Various Methods

Winner: A "kitchen sink" approach

Exercises

• "Recommender Systems.ipynb": Sections 3.2 - 5

Recommender reading

 Chapter 9, "Mining of Massive Datasets" by Jure Leskovec, Anand Rajaraman, and Jeff Ullman http://infolab.stanford.edu/~ullman/mmds/ch9.pdf