National University of Singapore Department of Electrical & Computer Engineering

EE2023 Mathematics Assignment

Due Date: 27 January 2022, 23:59 hrs	Total Marks:
Name:	Student #:
Instructions	
1. Answer all 8 questions in this assignment.	
2. This assignment contributes 10% to your this assignment is 40 .	final EE2023 grade. The maximum mark for
3. Anyone caught copying or allowing copyin	g shall be given a zero for this assignment.
4. No graphing calculators should be used in	this assignment.
-	d into the respective group sub-folders under Your file should be named using the following
6. Please take note of the digits a, b, c and digits will be used in the questions in this	d in your student number A0xx <mark>abcd</mark> X. These assignment.
Please write your abcd number from your a b b	c d

1. Find the polar coordinates of $z = -c + jd$.	(2 marks)
2. Find the Cartesian coordinates of $z = (a + 10)$	$)e^{-j0.1(b+1)\pi}$. (2 marks)
2. Find the Cartesian coordinates of $z = (a + 10)$	$)e^{-j0.1(b+1)\pi}$. (2 marks)
2. Find the Cartesian coordinates of $z = (a + 10)$	$)e^{-j0.1(b+1)\pi}$. (2 marks)
2. Find the Cartesian coordinates of $z = (a + 10)$	$)e^{-j0.1(b+1)\pi}$. (2 marks)
2. Find the Cartesian coordinates of $z = (a + 10)$	$)e^{-j0.1(b+1)\pi}$. (2 marks)
2. Find the Cartesian coordinates of $z = (a + 10)$	$)e^{-j0.1(b+1)\pi}$. (2 marks)
2. Find the Cartesian coordinates of $z = (a + 10)$	$)e^{-j0.1(b+1)\pi}$. (2 marks)
2. Find the Cartesian coordinates of $z = (a + 10)$	$)e^{-j0.1(b+1)\pi}$. (2 marks)
2. Find the Cartesian coordinates of $z = (a + 10)$	$)e^{-j0.1(b+1)\pi}$. (2 marks)
2. Find the Cartesian coordinates of $z = (a + 10)$	$)e^{-j0.1(b+1)\pi}$. (2 marks)
2. Find the Cartesian coordinates of $z = (a + 10)$	$)e^{-j0.1(b+1)\pi}$. (2 marks)

. I	Find the polar coordinates of $z =$			es of $z =$	$=\frac{a+jb}{c+jd}$. What is the magnitude and phase				nd phase	$e ext{ of } z$?	
_										(4 marks)	

n the complex plane.	(4 mar

5. Consider the function $y(t) = \text{rect}\left(\frac{t}{d+5}\right)$.

(8 marks)

(a) Sketch y(t).

(c) Sketch y(t - (a + 1)).

- (b) Sketch (d+1)y(t).

(d) Sketch y(2t - (a+1)).

$\rightarrow \infty$?		of $\angle z(t)$ tend to (8 mar
		· · · · · · · · · · · · · · · · · · ·

Page 7

Sketch the signal $s(t) = 10 \operatorname{rect}\left(\frac{t-b}{20}\right) - (a+5)\operatorname{tri}\left(\frac{b}{20}\right)$	$\left(\frac{t-b}{5}\right)$. (4 marks)

Assignment

8. Consider the RLC circuit in Figure 1.

(8 marks)

Fig. 1: RLC Circuit

Answer the following questions using the values of $v_{in}(t)$, C and L as follows :

$$v_{in}(t) = 10(d+1) \text{ V}, \quad C = (c+5) \mu\text{F}, \quad L = (b+2) \text{ H}$$

(a) Calculate the equivalent impedance of the circuit as seen from the battery source.