AD Master Class: Advanced Adjoint Techniques

Computing Hessians

Viktor Mosenkis viktor.mosenkis@nag.co.uk

Experts in numerical algorithms and HPC services

25 November 2020

AD Masterclass Schedule and Remarks

☐ 25 November 2020 | Computing Hessians

AD Masterclass Schedule

□ 1 October 2020 | Checkpointing and external functions 1
 □ 15 October 2020 | Checkpointing and external functions 2
 □ 29 October 2020 | Guest lecture by Prof Uwe Naumann on Advanced AD topics in Machine Learning
 □ 12 November 2020 | Monte Carlo
 □ 19 November 2020 | Guest lecture by Prof Uwe Naumann on Adjoint Code Design Patterns applied to Monte Carlo

Remarks

- ☐ Please submit your questions via the questions panel at any time during this session, these will be addressed at the end.
- ☐ A recording of this session, along with the slides will be shared with you in a day or two.

Dialogue

We want this webinar series to be interactive (even though it's hard to do)

- We want your feedback, we want to adapt material to your feedback
- Please feel free to contact us via email to ask questions at any time
- We'd love to reach out offline, discuss what's working, what to spend more time on
- For some orgs, may make sense for us to do a few bespoke sessions

- This is an advanced course
- We assume that you are familiar with the material from the first Masterclass series
- You will get access to the materials from the first Masterclass series via email in a day or two
- Also it is not a pre-requisite we recommend to review the material from the previous series
- We will try to give references to the previous Masterclass series whenever possible

Outcomes

- Discuss four different second-order models
 - ☐ their advantages and disadvantages
 - □ usage of the models to compute the full Hessian
- How to reuse external function implemented for the first order adjoint code in the second order model

Second-Order Models

To compute second-order derivatives we can simply apply tangent or adjoint model to tangent/adjoint model, yielding the following four second-order models

- tangent over tangent (forward over forward)
- tangent over adjoint (forward over reverse)
- adjoint over tangent (reverse over forward)
- adjoint over adjoint (reverse over reverse)

Tangent over Tangent Model (Second-Order Tangent)

$$F: \mathbb{R}^n \to \mathbb{R}^m, \quad \boldsymbol{y} = F(\boldsymbol{x})$$

A second-order tangent code

$$\begin{split} \tilde{F}: \mathbb{R}^n \times \mathbb{R}^n \times \mathbb{R}^n \times \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}^m \times \mathbb{R}^m \times \mathbb{R}^m \times \mathbb{R}^m, \\ (\boldsymbol{y}, \tilde{\boldsymbol{y}}, \dot{\boldsymbol{y}}, \dot{\tilde{\boldsymbol{y}}})^T &= \tilde{F}(\boldsymbol{x}, \tilde{\boldsymbol{x}}, \dot{\boldsymbol{x}}, \dot{\tilde{\boldsymbol{x}}}) \end{split}$$

computes a mixture of first and second derivative information alongside with the function value as follows:

$$y = F(x)$$

$$\tilde{y} = F'(x) \cdot \tilde{x}$$

$$\dot{y} = F'(x) \cdot \dot{x}$$

$$\tilde{y} = \dot{x}^T \cdot F''(x) \cdot \tilde{x} + F'(x) \cdot \tilde{x}$$

Tangent over Tangent: Accumulation of Hessian m=1

$$F: \mathbb{R}^n \to \mathbb{R}, \quad \boldsymbol{y} = F(\boldsymbol{x})$$

As m = 1 F''(x) is an n by n matrix.

In the tangent over tangent model the Hessian can be extracted from the computation of

$$\tilde{\boldsymbol{y}} = \underline{\dot{\boldsymbol{x}}}^T \cdot F''(\boldsymbol{x}) \cdot \underline{\tilde{\boldsymbol{x}}}_{\in \mathbb{R}^n} + F'(\boldsymbol{x}) \cdot \tilde{\dot{\boldsymbol{x}}}$$

Setting $\dot{x}=e_i$ and $\tilde{x}=e_j$, while keeping $\tilde{\dot{x}}=0$ yields $\tilde{\dot{y}}=F''(x)_{i,j}$ (the i,j-th entry of the Hessian).

Hence computation of Hessian with tangent over tangent is $O(n^2)$ as we need to range over the Cartesian basis vectors of \mathbb{R}^n in both \dot{x} and \tilde{x} .

Hessian matrix is symmetric so we need to compute only upper or lower triangular part of the Hessian

Tangent over Tangent: Implementation

In dco/c++ tangent over tangent is implemented via

```
using DCO_BASE_M = dco::gt1s<double>;
  using DCO_BASE_T = DCO_BASE_M::type;
  using DCO M = dco::gt1s<DCO BASE T>;
x \to dco::value(dco::value(x))
ullet \dot{x} 
ightarrow 	ext{dco::value(dco::derivative(x)))}
	ilde{x} 
ightarrow 	ext{dco::derivative(dco::value(x)))}
\hat{m{x}} 	o 	ext{dco::derivative(dco::derivative(x)))}
```


Tangent over Tangent: Driver

```
for (size_t i = 0; i < n; i++) {</pre>
     for (size_t j = 0; j < n; j++) {</pre>
2
       dco::value(dco::derivative(x[i])) = 1.0; //dot{x}
3
       dco::derivative(dco::value(x[j])) = 1.0; //tilde{x}
5
       foo(n, x, y);
6
       //H[i][j] = \tilde{y}
7
       Hess[i][j] = dco::derivative(dco::derivative(y));
8
9
       dco::value(dco::derivative(x[i])) = 0.0; //dot{x}
10
       dco::derivative(dco::value(x[j])) = 0.0; //tilde{x}
11
12
13
```


Tangent over Adjoint Model (Second-Order Adjoint)

$$F: \mathbb{R}^n \to \mathbb{R}^m, \quad \boldsymbol{y} = F(\boldsymbol{x})$$

A second-order adjoint code

$$\dot{\bar{F}}: \mathbb{R}^n \times \mathbb{R}^n \times \mathbb{R}^m \times \mathbb{R}^m \to \mathbb{R}^m \times \mathbb{R}^m \times \mathbb{R}^n \times \mathbb{R}^n,
(\boldsymbol{y}, \dot{\boldsymbol{y}}, \bar{\boldsymbol{x}}, \dot{\bar{\boldsymbol{x}}})^T = \dot{\bar{F}}(\boldsymbol{x}, \dot{\boldsymbol{x}}, \bar{\boldsymbol{y}}, \dot{\bar{\boldsymbol{y}}})$$

computes a mixture of first and second derivative information alongside with the function value as follows:

$$\begin{aligned} \mathbf{y} &= F(\mathbf{x}) \\ \dot{\mathbf{y}} &= F'(\mathbf{x}) \cdot \dot{\mathbf{x}} \\ \bar{\mathbf{x}} &= F'(\mathbf{x})^T \cdot \bar{\mathbf{y}} \\ \dot{\bar{\mathbf{x}}} &= \bar{\mathbf{y}}^T \cdot F''(\mathbf{x}) \cdot \dot{\mathbf{x}} + F'(\mathbf{x})^T \cdot \dot{\bar{\mathbf{y}}} \end{aligned}$$

Tangent over Adjoint: Accumulation of Hessian m=1

$$F: \mathbb{R}^n \to \mathbb{R}, \quad \boldsymbol{y} = F(\boldsymbol{x})$$

As m = 1 F''(x) is an n by n matrix.

In the tangent over adjoint model the Hessian can be extracted from the computation of

$$\dot{\bar{\boldsymbol{x}}} = \underbrace{\bar{\boldsymbol{y}}^T}_{\in \mathbf{R}} \cdot F''(\boldsymbol{x}) \cdot \underbrace{\dot{\boldsymbol{x}}}_{\in \mathbf{R}^n} + F'(\boldsymbol{x})^T \cdot \dot{\bar{\boldsymbol{y}}}$$

Setting $\bar{y}=1$ and $\dot{x}=e_i$, while keeping $\dot{\bar{y}}=0$ yields $\dot{\bar{x}}=F''(x)_i$ (the i-th row (or column) of the Hessian due to symmetry).

Hence computation of Hessian with tangent over adjoint is O(n) as we need to range over the Cartesian basis vectors of \mathbb{R}^n in \dot{x} .

Tangent over Adjoint: Implementation

In dco/c++ tangent over adjoint is implemented via

```
using DCO_BASE_M = dco::gt1s<double>;
  using DCO_BASE_T = DCO_BASE_M::type;
  using DCO M = dco::ga1s<DCO BASE T>;
x \to dco::value(dco::value(x))
ar{x} 
ightarrow 	ext{dco::value(dco::derivative(x)))}
\dot{x} \rightarrow \text{dco::derivative(dco::value(x)))}
ar{ar{x}} 
ightarrow 	ext{dco::derivative(dco::derivative(x)))}
```


Tangent over Adjoint: Driver

```
for (size_t k = 0; k < n; k++) {</pre>
     DCO_M::global_tape = DCO_TAPE_T::create(o);
2
3
     DCO_M::global_tape->register_variable(x);
4
     dco::derivative(dco::value(x[k])) = 1.0; // dot{x}_i = 1
5
6
     foo(n, x, y); // Record the tape
7
8
9
     dco::value(dco::derivative(y)) = 1.0;//bar{\Y}
10
     DCO_M::global_tape->interpret_adjoint();
11
     for (int i = 0; i < n; i++)</pre>
12
       Hess[k][i] = dco::derivative(dco::derivative(x[i]));
13
14
     dco::derivative(dco::value(x[k])) = 0.0;//dot{x}_i = 0
15
     DCO_TAPE_T::remove(DCO_M::global_tape);
16
  }
17
```


Adjoint over Tangent Model

$$F: \mathbb{R}^n \to \mathbb{R}^m, \quad \boldsymbol{y} = F(\boldsymbol{x})$$

A second-order adjoint over tangent model

$$\bar{F}: \mathbb{R}^n \times \mathbb{R}^n \times \mathbb{R}^m \times \mathbb{R}^m \to \mathbb{R}^m \times \mathbb{R}^m \times \mathbb{R}^m \times \mathbb{R}^n \times \mathbb{R}^n,
(\boldsymbol{y}, \dot{\boldsymbol{y}}, \bar{\boldsymbol{x}}, \bar{\dot{\boldsymbol{x}}})^T = \dot{\bar{F}}(\boldsymbol{x}, \dot{\boldsymbol{x}}, \bar{\boldsymbol{y}}, \bar{\boldsymbol{y}})$$

computes a mixture of first and second derivative information alongside with the function value as follows:

$$y = F(x)$$

$$\dot{y} = F'(x) \cdot \dot{x}$$

$$\bar{x} = F'(x)^T \cdot \bar{y} + \bar{y}^T \cdot F''(x) \cdot \dot{x}$$

$$\bar{x} = F'(x)^T \cdot \bar{y}$$

Adjoint over Tangent: Accumulation of Hessian m=1

$$F: \mathbb{R}^n \to \mathbb{R}, \quad \boldsymbol{y} = F(\boldsymbol{x})$$

As m = 1 F''(x) is an n by n matrix.

In the adjoint over tangent model the Hessian can be extracted from the computation of

$$\bar{\boldsymbol{x}} = F'(\boldsymbol{x})^T \cdot \bar{\boldsymbol{y}} + \underbrace{\bar{\boldsymbol{y}}^T}_{\in \mathbf{R}} \cdot F''(\boldsymbol{x}) \cdot \underbrace{\dot{\boldsymbol{x}}}_{\in \mathbf{R}^n}$$

Setting $\bar{y} = 1$ and $\dot{x} = e_i$, while keeping $\bar{y} = 0$ yields $\bar{x} = F''(x)_i$ (the *i*-th row (or column) of the Hessian due to symmetry).

Hence computation of Hessian with tangent over adjoint is O(n) as we need to range over the Cartesian basis vectors of \mathbb{R}^n in \dot{x} .

Adjoint over Tangent: Implementation

In dco/c++ adjoint over tangent is implemented via

```
using DCO_BASE_M = dco::ga1s<double>;
  using DCO_BASE_T = DCO_BASE_M::type;
  using DCO M = dco::gt1s<DCO BASE T>;
x \to dco::value(dco::value(x))
\mathbf{x} \rightarrow \mathtt{dco}:: \mathtt{value}(\mathtt{dco}:: \mathtt{derivative}(\mathtt{x}))
ar{x} 
ightarrow 	ext{dco::derivative(dco::value(x)))}
lack ar x 	o 	ext{dco::derivative(dco::derivative(x)))}
```


Adjoint over Tangent: Driver

```
using B_M = dco::ga1s<double>;
   for (size_t k = 0; k < n; k++) {</pre>
    B_M::global_tape = DCO_TAPE_T::create(o);
3
    //\bar{x}
4
    B_M::global_tape->register_variable(dco::value(x));
5
     dco::value(dco::derivative(x[k])) = 1.0; //dot{x}_i
6
7
8
     foo(n, x, y);
9
     dco::derivative(dco::derivative(y)) = 1.0;//bar{\dot{y}}
10
     B_M::global_tape->interpret_adjoint();
11
12
     for (int i = 0; i < n; i++) //\bar{x}
13
       Hess[k][i] = dco::derivative(dco::value(x[i]));
14
     dco::value(dco::derivative(x[k])) = 0.0;//dot{x}_i = 0
15
     DCO_TAPE_T::remove(B_M::global_tape);
16
17 }
```


Adjoint over Adjoint Model

$$F: \mathbb{R}^n \to \mathbb{R}^m, \quad \boldsymbol{y} = F(\boldsymbol{x})$$

A second-order adjoint over adjoint model

$$ar{ ilde{F}}: \mathbb{R}^n imes \mathbb{R}^m imes \mathbb{R}^m imes \mathbb{R}^m imes \mathbb{R}^m imes \mathbb{R}^m imes \mathbb{R}^m imes \mathbb{R}^m, \ (oldsymbol{y}, ar{oldsymbol{x}}, ar{oldsymbol{y}}, ar{oldsymbol{z}})^T = ar{ ilde{F}}(oldsymbol{x}, ar{oldsymbol{y}}, ar{oldsymbol{x}})$$

computes a mixture of first and second derivative information alongside with the function value as follows:

$$\begin{aligned} & \boldsymbol{y} = F(\boldsymbol{x}) \\ & \bar{\boldsymbol{x}} = F'(\boldsymbol{x})^T \cdot \bar{\boldsymbol{y}} \\ & \tilde{\bar{\boldsymbol{y}}} = F'(\boldsymbol{x}) \cdot \tilde{\bar{\boldsymbol{x}}} \\ & \tilde{\boldsymbol{x}} = F'(\boldsymbol{x})^T \cdot \tilde{\boldsymbol{y}} + \bar{\boldsymbol{y}}^T \cdot F''(\boldsymbol{x}) \cdot \tilde{\bar{\boldsymbol{x}}} \end{aligned}$$

Adjoint over Adjoint: Accumulation of Hessian m=1

$$F: \mathbb{R}^n \to \mathbb{R}, \quad \boldsymbol{y} = F(\boldsymbol{x})$$

As m = 1 F''(x) is an n by n matrix.

In the adjoint over adjoint model the Hessian can be extracted from the computation of

$$\tilde{\boldsymbol{x}} = F'(\boldsymbol{x})^T \cdot \tilde{\boldsymbol{y}} + \underbrace{\tilde{\boldsymbol{y}}^T}_{\in \mathbf{R}} \cdot F''(\boldsymbol{x}) \cdot \underbrace{\tilde{\tilde{\boldsymbol{x}}}}_{\in \mathbf{R}^n}$$

Setting $\bar{y}=1$ and $\tilde{x}=e_i$, while keeping $\tilde{y}=0$ yields $\tilde{x}=F''(x)_i$ (the i-th row (or column) of the Hessian due to symmetry). Hence computation of Hessian with tangent over adjoint is O(n) as we need to range over the Cartesian basis vectors of \mathbb{R}^n in \tilde{x} .

No advantage using the adjoint model for the second time

Why there is no advantage in using adjoint model twice?

The original function is

$$F: \mathbb{R}^n \to \mathbb{R}, \quad \boldsymbol{y} = F(\boldsymbol{x}) = F(x_1, \dots, x_n)$$

The corresponding derivative function (that can be computed by one evaluation of the first order adjoint model) is

$$G: \mathbb{R}^n \to \mathbb{R}^n, \quad (y_1, \dots, y_n)^T = \left(\frac{\partial F(\boldsymbol{x})}{\partial x_1}, \dots, \frac{\partial F(\boldsymbol{x})}{\partial x_n}\right)$$

The second application of the adjoint model we differentiate G. The input and output dimension of G are equal, therefore it doesn't matter what models is used for the second time.

Adjoint over Adjoint: Implementation

In dco/c++ adjoint over tangent is implemented via

```
using DCO_BASE_M = dco::ga1s<double>;
  using DCO_BASE_T = DCO_BASE_M::type;
  using DCO M = dco::ga1s<DCO BASE T>;
x \to dco::value(dco::value(x))
\bar{x} \rightarrow \text{dco::value(dco::derivative(x)))}
	ilde{x} 
ightarrow 	ext{dco::derivative(dco::value(x)))}
ar{ar{x}} 
ightarrow 	ext{dco::derivative(dco::derivative(x)))}
```


Adjoint over Adjoint: Driver

```
using B_M = dco::ga1s<double>;
2
   B_M::global_tape = DCO_BASE_TAPE_T::create(o);
   DCO_M::global_tape = DCO_TAPE_T::create(o);
5
   for (size_t i = 0; i < n; ++i) {</pre>
    //need \tilde{x}
7
     B_M::global_tape->register_variable(dco::value(x[i]));
8
     //need to differentiate \bar{x} to compute the adjoints
9
     DCO_M::global_tape->register_variable(x[i]);
10
  }
11
12
13
   //record both tapes
   foo(n, x, y);
14
```


Adjoint over Adjoint: Driver

```
for (size_t k = 0; k < n; k++) {</pre>
     dco::value(dco::derivative(y)) = 1.0; // bar{y} = 1.0
2
     DCO_M::global_tape->interpret_adjoint();
3
4
     // \text{tilde} \{ \text{bar} \{x\} \} = e_k
5
     dco::derivative(dco::derivative(x[k])) = 1.0;
6
7
8
     B_M::global_tape->interpret_adjoint();
9
     //Extract the derivatives
10
     for (int i = 0; i < n; i++)//tilde{x}
11
       Hess[k][i] = dco::derivative(dco::value(x[i]));
12
13
     DCO_M::global_tape->zero_adjoints();
14
     B_M::global_tape->zero_adjoints();
15
   }
16
```


Summary Second-Order Models (m = 1)

- Second-Order tangent model has
 - ☐ smallest memory requirements
 - \square $O(n^2)$ complexity for accumulating the Hessian
- All three adjoint models
 - \square are mathematically equivalent (O(n)) for the Hessian
 - ☐ implementation differ
- No advantage using the adjoint model for the second time

Summary Second-Order Adjoint Models (m = 1)

tangent over adjoint the preferred second-order adjoint model smallest tape size from all adjoint models external functions implementation from the first order model can be reused adjoint over tangent ☐ higher tape size compared to tangent over adjoint adjoint over adjoint highest memory requirements for the tape complicated drivers due to two tapes no re-recording of the tapes needed for computing Hessian projections (can be faster compared second order models involving tangent computation in some cases)

Second-Order Models (m > 1)

For m > 1 the Hessian F''(x) is a $m \times n \times n$ tensor.

- tangent over tangent $\tilde{\boldsymbol{y}} = \underline{\dot{\boldsymbol{x}}^T} \cdot F''(\boldsymbol{x}) \cdot \underline{\tilde{\boldsymbol{x}}} + F'(\boldsymbol{x}) \cdot \underline{\tilde{\boldsymbol{x}}}$. For each $\dot{\boldsymbol{x}} = e_i$, $\tilde{\boldsymbol{x}} = e_j$ we compute i, j-th entry in all $n \times n$ sub-matrices of F'' tensor. Hence $O(n^2)$ complexity.
- tangent over adjoint $\dot{\bar{x}} = \underbrace{\bar{y}^T}_{\in \mathbb{R}^m} \cdot F''(x) \cdot \underbrace{\dot{x}}_{\in \mathbb{R}^n} + F'(x)^T \cdot \dot{\bar{y}}$ For each $\dot{x} = e_j$, $\bar{y} = e_i$ we compute i, j-th entry in all $m \times n$ sub-matrices of F'' tensor. Hence $O(m \cdot n)$ complexity.

Second-Order Models (m > 1)

For m > 1 the Hessian $F''(\boldsymbol{x})$ is a $m \times n \times n$ tensor.

- adjoint over tangent $\bar{\boldsymbol{x}} = F'(\boldsymbol{x})^T \cdot \bar{\boldsymbol{y}} + \underbrace{\bar{\boldsymbol{y}}^T}_{\in \mathbf{R}^m} \cdot F''(\boldsymbol{x}) \cdot \underbrace{\dot{\boldsymbol{x}}}_{\in \mathbf{R}^n}$ For each $\dot{\boldsymbol{x}} = e_j$, $\bar{\boldsymbol{y}} = e_i$ we compute i,j-th entry in all $m \times n$ sub-matrices of F'' tensor. Hence $O(m \cdot n)$ complexity.
- adjoint over adjoint $\tilde{\boldsymbol{x}} = F'(\boldsymbol{x})^T \cdot \tilde{\boldsymbol{y}} + \underbrace{\tilde{\boldsymbol{y}}^T}_{\in \mathbf{R}^m} \cdot F''(\boldsymbol{x}) \cdot \underbrace{\tilde{\boldsymbol{x}}}_{\in \mathbf{R}^n}$ For each $\tilde{\tilde{\boldsymbol{x}}} = e_j$, $\bar{\boldsymbol{y}} = e_i$ we compute i,j-th entry in all $m \times n$ sub-matrices of F'' tensor. Hence $O(m \cdot n)$ complexity.

Reusing first order adjoint code for external functions

Summary

In this Masterclass we

- learned the four different second-order models
- learned how to use the second-order models to compute the Hessian
- discussed the complexity of computing the Hessian with different models
- learned how to reuse external function implementation from the first-order adjoint model in the second-order adjoint model

You will see a survey on your screen after exiting from this session.

We would appreciate your feedback.

We are now moving on the Q&A Session

