Computer Vision

18AI742

Dr. rer. nat. D. Antony Louis Piriyakumar,
Dean (R&D),
Cambridge Institute of Technology.

Computer Vision

Dr. D. Antony Louis Piriyakumar,
Dean (Research & Development)
Registered Indian patent agent (IN/PA 3041)

Computer vision

Contents

- 1) Course info
- 2) Assessment pattern
- 3) Definition of computer vision
- 4) Major subdomains
- 5) Current trends
- 6) Conclusion
- 7) Q&A

$$\nabla \cdot \mathbf{E} = \rho/\epsilon_0$$

$$\nabla \cdot \mathbf{B} = 0$$

$$\nabla \times \mathbf{E} = -\frac{\partial \mathbf{B}}{\partial t}$$

$$\nabla \times \mathbf{B} = \mu_0 \epsilon_0 \frac{\partial \mathbf{E}}{\partial t} + \mu_0 \mathbf{j}_c$$
where
$$\nabla = \hat{\mathbf{i}} \frac{\partial}{\partial x} + \hat{\mathbf{j}} \frac{\partial}{\partial v} + \hat{\mathbf{k}} \frac{\partial}{\partial z}$$

Computer vision

Contents

- 1) Course info
- 2) Assessment pattern
- 3) Definition of computer vision
- 4) Major subdomains
- 5) Current trends
- 6) Conclusion
- 7) Q&A

$$\nabla \cdot \mathbf{E} = \rho/\epsilon_0$$

$$\nabla \cdot \mathbf{B} = 0$$

$$\nabla \times \mathbf{E} = -\frac{\partial \mathbf{B}}{\partial t}$$

$$\nabla \times \mathbf{B} = \mu_0 \epsilon_0 \frac{\partial \mathbf{E}}{\partial t} + \mu_0 \mathbf{j}_c$$
where
$$\nabla = \hat{\mathbf{i}} \frac{\partial}{\partial x} + \hat{\mathbf{j}} \frac{\partial}{\partial v} + \hat{\mathbf{k}} \frac{\partial}{\partial z}$$

Course information

Instructor – Dr. D. Antony Louis Piriyakumar

Level – B.Tech (7th semester)

Course contact hours

Monday 08:55 am to 09:45 am (Theory)

Monday 11:05 am to 12:00 pm (Tutorial)

Tuesday 09:50 am to 10:45 am (Theory)

Tuesday 02:30 pm to 03:25 pm (Tutorial)

Thursday 11:05 am to 12:00 pm - (Theory)

Instructor -Contact detail

Course info – As per VTU

COMPUTER VISION (Effective from the academic year 2018 -2019) SEMESTER – VII				
Subject Code	18AI742	CIE Marks	40	
Number of Contact Hours/Week	3:0:0	SEE Marks	60	
Total Number of Contact Hours	40	Exam Hours	3 Hrs	
CREDITS – 03				

Module – 1	Contact Hours
Introduction and Image Formation: What is computer vision? A brief history, Geometric primitives and transformations, Photometric image formation, The digital camera. Pinhole Perspective, Weak Perspective, Cameras with Lenses, The Human Eye, Intrinsic Parameters and Extrinsic Parameters, Geometric Camera Calibration	08
T1: Chap 1-1.1 & 1.2, Chap 2-2.1 to 2.3. T2:Chap 1-1.1 to 1.3	

Module – 2	L
Early Vision – One Image : Linear Filters and Convolution, Shift Invariant Linear Systems, Spatial Frequency and Fourier Transforms, Sampling and Aliasing, Filters as Templates, Local Image Features, Texture	08
T2:Chap 4-4.1 to 4.5, Chap5-5.1 to 5.5, Chap6-6.1 to 6.3, 6.5	

Module – 3	I .
Early Vision – Multiple Images: Stereopsis and Structure from Motion	08
T2:Chap7-7.1 to 7.7, Chap 8-8.1 to 8.3	

Module – 4		I
Mid-level Vision:	Segmentation by Clustering, Group	ing and Model fitting, 08
Tracking		
T2:Chap9-9.1 to 9.4	, Chap 10-10.1 to 10.7, Chap 11-11.1	to 11.3

Module – 5	•
High-level Vision: Registration, Smooth Surface and their Outlines, Range Data Detecting Objects in Images, Recognition	
T2:Chap12-12.1 to 12.3, Chap 13-13.1 to 13.3, Chap 14-14.1 to 14.4, Chap 17-17.1 to 17.3. T1:Chap 6-6.1 to 6.6	

Course outcomes

Course outcomes: The students should be able to:

- Implement fundamental image processing techniques required for computer vision
- Understand Image formation process
- Perform shape analysis
- Develop applications using computer vision techniques
- Understand video processing and motion computation

Question paper pattern

Question Paper Pattern:

- The question paper will have ten questions.
- Each full Question consisting of 20 marks
- There will be 2 full questions (with a maximum of four sub questions) from each module.
- Each full question will have sub questions covering all the topics under a module.
- The students will have to answer 5 full questions, selecting one full question from each module.

Text and reference books

Textbooks:

- Computer Vision: Algorithms and Applications (CVAA), Richard Szeliski, Springer, 2nd edition, 2020, http://szeliski.org/Book/
- 2. Computer Vision A modern approach, by D. Forsyth and J. Ponce, Prentice Hall, 2nd edition, 2012

Reference Books:

- 1. R. C. Gonzalez, R. E. Woods. Digital Image Processing. Addison Wesley Longman, Inc., 1992.
- 2. D. H. Ballard, C. M. Brown. Computer Vision. Prentice-Hall, Englewood Cliffs, 1982.
- 3. Image Processing, Analysis, and Machine Vision. Sonka, Hlavac, and Boyle. Thomson.
- 4.Simon J. D. Prince, Computer Vision: Models, Learning, and Inference, Cambridge University, Press, 2012
- 5.Introductory Techniques for 3D Computer Vision, by E. Trucco and A. Verri, Publisher: Prentice Hall.
- 6. Building Computer Vision Applications Using Artificial Neural Networks With Step-by-step Examples in OpencvAndTensorflow With Python, Shamshad Ansari, Apress, 2020

Computer vision

Contents

- 1) Course info
- 2) Assessment pattern
- 3) Definition of computer vision
- 4) Major subdomains
- 5) Current trends
- 6) Conclusion
- 7) Q&A

$$\nabla \cdot \mathbf{E} = \rho/\epsilon_0$$

$$\nabla \cdot \mathbf{B} = 0$$

$$\nabla \times \mathbf{E} = -\frac{\partial \mathbf{B}}{\partial t}$$

$$\nabla \times \mathbf{B} = \mu_0 \epsilon_0 \frac{\partial \mathbf{E}}{\partial t} + \mu_0 \mathbf{j}_c$$
where
$$\nabla = \hat{\mathbf{i}} \frac{\partial}{\partial x} + \hat{\mathbf{j}} \frac{\partial}{\partial v} + \hat{\mathbf{k}} \frac{\partial}{\partial z}$$

CIE

2 tests – 30 marks

All tutorial points – 10 marks

Term paper 1 (optional)

Computer vision

Contents

- 1) Course info
- 2) Assessment pattern
- 3) Definition of computer vision
- 4) Major subdomains
- 5) Current trends
- 6) Conclusion
- 7) Q&A

$$\nabla \cdot \mathbf{E} = \rho/\epsilon_0$$

$$\nabla \cdot \mathbf{B} = 0$$

$$\nabla \times \mathbf{E} = -\frac{\partial \mathbf{B}}{\partial t}$$

$$\nabla \times \mathbf{B} = \mu_0 \epsilon_0 \frac{\partial \mathbf{E}}{\partial t} + \mu_0 \mathbf{j}_c$$
where
$$\nabla = \hat{\mathbf{i}} \frac{\partial}{\partial x} + \hat{\mathbf{j}} \frac{\partial}{\partial v} + \hat{\mathbf{k}} \frac{\partial}{\partial z}$$

Definition of computer vision (CV)

$$\nabla \cdot \mathbf{E} = \rho/\epsilon_0$$

$$\nabla \cdot \mathbf{B} = 0$$

$$\nabla \times \mathbf{E} = -\frac{\partial \mathbf{B}}{\partial t}$$

$$\nabla \times \mathbf{B} = \mu_0 \epsilon_0 \frac{\partial \mathbf{E}}{\partial t} + \mu_0 \mathbf{j}_c$$
where
$$\nabla = \hat{\mathbf{i}} \frac{\partial}{\partial x} + \hat{\mathbf{j}} \frac{\partial}{\partial y} + \hat{\mathbf{k}} \frac{\partial}{\partial z}$$

$$\nabla \cdot \mathbf{E} = \rho/\epsilon_0 = 0 \text{ as } \rho = 0 \text{ in vacuum}$$

$$\nabla \cdot \mathbf{B} = 0$$

$$\nabla \times \mathbf{E} = -\frac{\partial \mathbf{B}}{\partial t}$$

$$\nabla \times \mathbf{B} = \mu_0 \epsilon_0 \frac{\partial \mathbf{E}}{\partial t} + \mu_0 \mathbf{j_c} \quad \text{Jc = 0 in vacuum}$$

$$\text{where}$$

$$\nabla = \hat{\mathbf{i}} \frac{\partial}{\partial x} + \hat{\mathbf{j}} \frac{\partial}{\partial y} + \hat{\mathbf{k}} \frac{\partial}{\partial z}$$

$$\nabla \cdot \mathbf{E} = \mathbf{0}$$

$$\nabla \cdot \mathbf{B} = 0$$

$$\mathbf{\nabla} \times \mathbf{E} = -\frac{\partial \mathbf{B}}{\partial \mathbf{t}}$$

$$\nabla \times \mathbf{E} = -\frac{\partial \mathbf{B}}{\partial t}$$
$$\nabla \times \mathbf{B} = \mu_0 \mathbf{\epsilon}_0 \frac{\partial \mathbf{E}}{\partial t}$$

where

$$\nabla = \hat{\mathbf{i}} \frac{\partial}{\partial x} + \hat{\mathbf{j}} \frac{\partial}{\partial y} + \hat{\mathbf{k}} \frac{\partial}{\partial z}$$

$$\nabla \times \mathbf{E} = -\frac{\partial \mathbf{B}}{\partial t}$$

$$\nabla \times \mathbf{B} = \mu_0 \epsilon_0 \frac{\partial \mathbf{E}}{\partial t}$$

$$\nabla \cdot \mathbf{E} = 0$$

$$\nabla . \mathbf{B} = 0$$

To get a wave equation, we want second derivatives in both time and space. I

$$\nabla \times (\nabla \times \mathbf{E}) = -\frac{\partial (\nabla \times \mathbf{B})}{\partial t} = -\mu_0 \varepsilon_0 \frac{\partial^2}{\partial t^2} \mathbf{E}.$$

$$\nabla \times \mathbf{E} = -\frac{\partial \mathbf{B}}{\partial t}$$
 $\nabla \times \mathbf{B} = \mu_0 \varepsilon_0 \frac{\partial \mathbf{E}}{\partial t}$

A theorem in vector calculus is that, for any vector a,

$$\nabla \times (\nabla \times \mathbf{a}) = - \nabla^2 \mathbf{a} + \nabla \cdot (\nabla \cdot \mathbf{a})$$

Substituting a for E and $\nabla \cdot \mathbf{E} = 0$

$$\nabla \times (\nabla \times \mathbf{E}) = -\frac{\partial (\nabla \times \mathbf{B})}{\partial t} = -\mu_0 \varepsilon_0 \frac{\partial^2}{\partial t^2} \mathbf{E}.$$

$$\nabla^2 \mathbf{E} = \mu_0 \varepsilon_0 \, \frac{\partial^2}{\partial t^2} \, \mathbf{E}$$

The wave equation in three dimensions to one dimension,

$$\nabla^2 \mathbf{E} = \mu_0 \varepsilon_0 \frac{\partial^2}{\partial t^2} \mathbf{E}$$

$$\frac{3\times 5}{9\times 5} = 1000 \frac{95}{95}$$

For a solution that is a sinusoidal wave, with speed v and wavelength λ .

$$E = E_0 \sin \left(2\pi \frac{x - vt}{\lambda} \right)$$

Differentiating, we get

$$\frac{\partial^2 E}{\partial^2 x} = -E_0 \left(\frac{2\pi}{\lambda} \right)^2 \sin \left(2\pi \frac{x - vt}{\lambda} \right)$$

For a solution that is a sinusoidal wave, with speed v and wavelength λ .

$$E = E_0 \sin \left(2\pi \frac{x - vt}{\lambda} \right)$$

Differentiating, we get

$$\frac{\partial^2 E}{\partial^2 x} = -E_0 \left(\frac{2\pi}{\lambda} \right)^2 \sin \left(2\pi \frac{x - vt}{\lambda} \right) \qquad \frac{\partial^2 E}{\partial^2 t} = -E_0 \left(\frac{2\pi v}{\lambda} \right)^2 \sin \left(2\pi \frac{x - vt}{\lambda} \right)$$

$$\frac{\partial^2 E}{\partial x^2} = \mu_0 \epsilon_0 \frac{\partial^2 E}{\partial t^2}$$

$$\frac{\partial^2 E}{\partial^2 x} \; = \; - \; E_0 \left(\frac{2\pi}{\lambda} \right)^2 \sin \left(2\pi \, \frac{x - vt}{\lambda} \right) \qquad \frac{\partial^2 E}{\partial^2 t} \; = \; - \; E_0 \left(\frac{2\pi v}{\lambda} \right)^2 \sin \left(2\pi \, \frac{x - vt}{\lambda} \right)$$

$$\nabla^2 = \frac{1}{\mu_0 \epsilon_0}$$

The value of permeability of free space =

$$1.25663706 \times 10^{-6} \text{ m kg s}^{-2} \text{ A}^{-2}$$

The value of permittivity of free space =

$$8.85418782 \times 10^{-12} \text{ m}^{-3} \text{ kg}^{-1} \text{ s}^4 \text{ A}^2$$

The velocity of light = 299,792,458.130996 (calculation)

The velocity of light = 299,792,458 metres per second (theoretical)

Computer vision

Contents

- 1) Course info
- 2) Assessment pattern
- 3) Definition of computer vision
- 4) Major subdomains
- 5) Current trends
- 6) Conclusion
- 7) Q&A

$$\nabla \cdot \mathbf{E} = \rho/\epsilon_0$$

$$\nabla \cdot \mathbf{B} = 0$$

$$\nabla \times \mathbf{E} = -\frac{\partial \mathbf{B}}{\partial t}$$

$$\nabla \times \mathbf{B} = \mu_0 \epsilon_0 \frac{\partial \mathbf{E}}{\partial t} + \mu_0 \mathbf{j}_c$$
where
$$\nabla = \hat{\mathbf{i}} \frac{\partial}{\partial x} + \hat{\mathbf{j}} \frac{\partial}{\partial v} + \hat{\mathbf{k}} \frac{\partial}{\partial z}$$

Major subdomains of CV

Computer vision

Contents

- 1) Course info
- 2) Assessment pattern
- 3) Definition of computer vision
- 4) Major subdomains
- 5) Current trends
- 6) Conclusion
- 7) Q&A

$$\nabla \cdot \mathbf{E} = \rho/\epsilon_0$$

$$\nabla \cdot \mathbf{B} = 0$$

$$\nabla \times \mathbf{E} = -\frac{\partial \mathbf{B}}{\partial t}$$

$$\nabla \times \mathbf{B} = \mu_0 \epsilon_0 \frac{\partial \mathbf{E}}{\partial t} + \mu_0 \mathbf{j}_c$$
where
$$\nabla = \hat{\mathbf{i}} \frac{\partial}{\partial x} + \hat{\mathbf{j}} \frac{\partial}{\partial v} + \hat{\mathbf{k}} \frac{\partial}{\partial z}$$

Current trends in CV

Real-Time Video Analytics Al Model Optimization Hardware Al Accelerator **Edge Computer Vision** Drone computing

Conclusion

Contact

- Prof. D. Antony Louis Piriyakumar
 Dean (Research and development)
 Cambridge Institute of Technology
- K.R. Puram,
 560036 Bengaluru, India
- Mobile: +91 98459 25132
- E-mail: dean rd@Cambridge.edu.in