RLHF

Deep Reinforcement Learning from Human Preferences (OpenAI, 2017)

Environment giving reward? No.

⇒ human overseer who can express preferences between trajectory segments

How to make the reward model $\hat{r}(o_t, a_t)$ for this?

If we have two trajectory with following preference,

$$((o_0^1, a_0^1), \dots, (o_{k-1}^1, a_{k-1}^1)) \succ ((o_0^2, a_0^2), \dots, (o_{k-1}^2, a_{k-1}^2))$$

It should mean that

$$r(o_0^1, a_0^1) + \ldots + r(o_{k-1}^1, a_{k-1}^1) > r(o_0^2, a_0^2) + \ldots + r(o_{k-1}^2, a_{k-1}^2)$$

Bradley-Terry model

For trajectory σ_1, σ_2 generated by policy π :

$$\hat{P}(\sigma_1, \sigma_2) = \frac{\exp(\sum \hat{r}(o_t^1, a_t^1))}{\exp(\sum \hat{r}(o_t^1, a_t^1)) + \exp(\sum \hat{r}(o_t^2, a_t^2))}$$

$$loss(\hat{r}) = -\sum_{(\sigma_1, \sigma_2) \in D} I(\sigma_1 \succ \sigma_2) \log \hat{P}(\sigma_1, \sigma_2) + I(\sigma_1 \prec \sigma_2) \log \hat{P}(\sigma_2, \sigma_1)$$

 \rightarrow Estimate \hat{r} as adding data to D. Apply RL algorithms to update π . Can be done asynchronously.

ChatGPT

Training language models to follow instructions with human feedback (OpenAl, 2022) Let's Apply RLHF in Language Models.

Alignment

"Follow the user's instructions helpfully and safely"

 \rightarrow fine-tune LM on the reward model representing human preference scores

ChatGPT

Simplify the problem, assume Contextual Bandit

O: prompt x

A: response y

For K responses, 1 vs 1 preference comparison \to get $\binom{K}{2}$ tuples of (x,y_w,y_l)

Reward Modeling

$$loss(\theta) = -\frac{1}{\binom{K}{2}} \mathbb{E}_{(x,y_w,y_l)\sim D} \left[log(\sigma(r_{\theta}(x,y_w) - r_{\theta}(x,y_l))) \right]$$
$$\left(\because \sigma(a-b) = \frac{1}{1+e^{-(a-b)}} = \frac{e^a}{e^a + e^b} \right)$$

RL(policy gradient), by sampling response y from π_{ϕ}^{RL}

$$\text{objective}(\phi) = \mathbb{E}_{(x,y) \sim D_{\pi_{\phi}^{\mathsf{RL}}}} \left[r_{\theta}(x,y) - \beta \log \frac{\pi_{\phi}^{\mathsf{RL}}(y|x)}{\pi^{\mathsf{SFT}}(y|x)} \right]$$

* Response y is **tokenized** as $y_1, ..., y_n$

$$\pi(y|x) = \pi(y_1|x)\pi(y_2|x, y_1)...\pi(y_n|x, y_1, ..., y_{n-1})$$

DPO

Direct Preference Optimization: Your Language Model is Secretly a Reward Model (Stanford, 2023)

RLHF is unstable \rightarrow Do we really need Reward Modeling + RL ?

Generalized form of RLHF using KL constraint:

Train the reward model with loss function:

$$\mathcal{L}_R(r_{\phi}, \mathcal{D}) = -\mathbb{E}_{(x, y_w, y_l) \sim \mathcal{D}} \left[\log(\sigma(r_{\theta}(x, y_w) - r_{\theta}(x, y_l))) \right] \tag{1}$$

And find optimal policy that maximizes:

$$\mathbb{E}_{(x \sim D, y \sim \pi_{\theta}(y|x))} \left[r_{\phi}(x, y) \right] - \beta \mathbb{D}_{\mathsf{KL}} \left[\pi_{\theta}(y|x) \mid \mid \pi_{\mathsf{ref}}(y|x) \right] \tag{2}$$

The optimal solution of (2) is:

$$\pi_r(y|x) = \frac{1}{Z(x)} \pi_{\mathsf{ref}}(y|x) \exp\left(\frac{1}{\beta} r(x,y)\right) \tag{3}$$

with partition function

$$Z(x) = \sum_{y} \pi_{\mathsf{ref}}(y|x) \exp\left(\frac{1}{\beta}r(x,y)\right)$$

DPO

Proof of (3)

$$\begin{split} \operatorname*{argmax} \mathbb{E}_{x \sim \mathcal{D}, y \sim \pi} \left[r(x,y) \right] &- \beta \mathbb{D}_{\mathsf{KL}} \left[\pi(y|x) | | \pi_{\mathsf{ref}}(y|x) \right] \\ &= \operatorname*{argmax} \mathbb{E}_{x \sim \mathcal{D}} \mathbb{E}_{y \sim \pi(y|x)} \left[r(x,y) - \beta \log \frac{\pi(y|x)}{\pi_{\mathsf{ref}}(y|x)} \right] \\ &= \operatorname*{argmin} \mathbb{E}_{x \sim \mathcal{D}} \mathbb{E}_{y \sim \pi(y|x)} \left[\log \frac{\pi(y|x)}{\pi_{\mathsf{ref}}(y|x)} - \frac{1}{\beta} r(x,y) \right] \\ &= \operatorname*{argmin} \mathbb{E}_{x \sim \mathcal{D}} \mathbb{E}_{y \sim \pi(y|x)} \left[\log \frac{\pi(y|x)}{\pi_{\mathsf{ref}}(y|x)} - \frac{1}{\beta} r(x,y) + \log Z(x) - \log Z(x) \right] \\ &= \operatorname*{argmin} \mathbb{E}_{x \sim \mathcal{D}} \mathbb{E}_{y \sim \pi(y|x)} \left[\log \frac{\pi(y|x)}{\frac{1}{Z(x)} \pi_{\mathsf{ref}}(y|x) \exp(\frac{1}{\beta} r(x,y))} - \log Z(x) \right] \\ \mathsf{where} \ Z(x) &= \sum_{y} \pi_{\mathsf{ref}}(y|x) \exp\left(\frac{1}{\beta} r(x,y)\right). \ \mathsf{Let} \\ &\qquad \qquad \pi^*(y|x) &= \frac{1}{Z(x)} \pi_{\mathsf{ref}}(y|x) \exp\left(\frac{1}{\beta} r(x,y)\right) \\ \pi^*(y|x) &\geq 0 \ \mathsf{and} \ \sum_{y} \pi^*(y|x) = 1 \implies \pi^* \ \mathsf{is} \ \mathsf{valid} \ \mathsf{policy}. \end{split}$$

Also, Z(x) is independent to π

DPO

Continue. Substituting π^* ,

Proof.

... =
$$\underset{\pi}{\operatorname{argmin}} \mathbb{E}_{x \sim D} \left[\mathbb{E}_{y \sim \pi(y|x)} \left[\log \frac{\pi(y|x)}{\pi^*(y|x)} \right] - \log Z(x) \right]$$

= $\underset{\pi}{\operatorname{argmin}} \mathbb{E}_{x \sim D} \left[\mathbb{D}_{\mathrm{KL}}(\pi(y|x)||\pi^*(y|x)) - \log Z(x) \right]$
= $\underset{\pi}{\operatorname{argmin}} \mathbb{E}_{x \sim D} \left[\mathbb{D}_{\mathrm{KL}}(\pi(y|x)||\pi^*(y|x)) \right]$
= $\pi^*(y|x)$

From (3), we get:

$$r(x,y) = \beta \log \frac{\pi_r(y|x)}{\pi_{\mathsf{ref}}(y|x)} + \beta \log Z(x)$$
 (4)

Apply (4) to (1), and Z(x) cancels:

$$\therefore \mathcal{L}_{\mathsf{DPO}}(\pi_{\theta}; \pi_{\mathsf{ref}}) = -\mathbb{E}_{(x, y_w, y_l) \sim \mathcal{D}} \left[\log \sigma(\beta \log \frac{\pi_{\theta}(y_w | x)}{\pi_{\mathsf{ref}}(y_w | x)} - \beta \log \frac{\pi_{\theta}(y_l | x)}{\pi_{\mathsf{ref}}(y_l | x)}) \right]$$
(5)

- → No longer a RL problem. No need of reward model. **Direct optimization**
- + Enhanced Stability