Juxtaposition on Classifiers Modeling **Hepatitis** Diagnosis **Data**

ICCVBIC 2018

A Presentation by

Preetham Ganesh

cb.en.u4cse15435@cb.students.amrita.edu

Department of Computer Science and Engineering, Amrita School of Engineering,
Amrita Vishwa Vidyapeetham, Coimbatore, India

Harsha Vardhini Vasu

cb.en.u4cse15417@cb.students.amrita.edu

Department of Computer Science and Engineering, Amrita School of Engineering,
Amrita Vishwa Vidyapeetham, Coimbatore, India

Keerthanna Govindarajan Santhakumar cb.en.u4cse15420@cb.students.amrita.edu

Department of Computer Science and Engineering, Amrita School of Engineering,
Amrita Vishwa Vidyapeetham, Coimbatore, India

Raakheshsubhash Arumuga Rajan

cb.en.u4cse15437@cb.students.amrita.edu

Department of Computer Science and Engineering, Amrita School of Engineering,
Amrita Vishwa Vidyapeetham, Coimbatore, India

Bindu K R

j_bindu@cb.amrita.edu

Department of Computer Science and Engineering, Amrita School of Engineering,
Amrita Vishwa Vidyapeetham, Coimbatore, India

Content

- Introduction
- Motivation
- Related Works
- Methodology
 - Dataset Description
 - Process Flow
 - Classifier Models
 - Performance Measures
- Results and Discussion
- Conclusion

Introduction

- Machine Learning plays a crucial role in predicting unforeseeable parameters in different domains which has always been difficult for human prediction
- Data Mining plays a crucial role in mining the necessary features for prediction as the medical datasets has loads of information
- Hepatitis C, an acute or chronic disease that causes infection in the liver has approximately affected 130 – 170 million people in the world [1]

Motivation

- Hepatitis C is found worldwide
- Globally estimated 71 million people have chronic hepatitis C infection
- A serious number of those who chronically infected develop cirrhosis or liver cancer
- Antiviral medicines can cure more than 95% of people with the infection but access to diagnosis and treatment is low [2]
- Currently there is no vaccine for Hepatitis C

Motivation

- Hepatitis C can transmitted sexually and can be passed from an infected mother to her baby
- Estimated obtained from modeling suggest that worldwide, in 2015 there were 1.75 million new HCV infections [2]
- Globally 23.7 new HCV infections per 100,000 people [2]

Related Works

Paper Name	Models Used	Performance Measures Used	Result
Ramaswamy et al [3]	Decision Stump, Random Forest, etc	Accuracy, Precision, Recall and F1-Measure	Random ForestAccuracy 87.5%
A. H. Roslina et al [4]	SVM (with & without feature selection)	Accuracy	Feature selectedAccuracy 74.55%
S.Ekiz et al [5] (Heart Disease Dataset)	Decision Tree, SVM and Ensemble Learning in Weka and MATLAB	Accuracy	Decision Tree (WEKA)Accuracy 67.7%
K. Santhosh Bhargav et al [12]	SVM, Decision Tree, Logistic Regression, Naïve Bayes	Accuracy, Precision, Recall, and F-Measure	Logistic RegressionAccuracy 87.17%

Methodology – Dataset Description

- Dataset is collected from UCI repository
- 155 tuples, 19 self-dependent attributes and label named "Class"
- Numerical Attributes:
 - Age, Bilirubin, Alk Phosphate, SGOT, Albumin & Protime
- Categorical Attributes:
 - Sex, Steroid, Antivirals, Fatigue, Malaise, Anorexia, Liver Big, Liver Firm,
 Spleen Palpable, Spiders, Ascites, Varices, Histology, <u>Class</u>

Methodology - Process Flow

Methodology - Classifier Models

Support Vector Machine (SVM):

- Classifies instances with high efficiency if they are in the form of vector [4]
- Used to find optimal dividing hyperplane between classes [4]

Naïve Bayes:

- Based on implementation of Bayes Theorem [8]
- Works on the assumption that attributes are independent of each other

Decision Tree

- Structure similar to flowchart [9]
- Consists of Decision Nodes, Chances Nodes and End Nodes [9]

Random Forest

- Ensemble learning method [10]
- Builds swarm of decision trees during training
- Overfit the model to training set [10]

Logistic Regression

- Logistic function used to model binary class variable
- Label should be numerical (0/1) [11]

Methodology - SVM

Methodology - Decision Tree

Methodology – Random Forest

Methodology - Logistic Regression

Methodology – Performance Measures

Confusion Matrix / Contingency Table:

Confusion Matrix	Actual Class			
Predicted Class	Class	Class A	Class B	
	Class A	True Positive (TP)	False Positive (FP)	
	Class B	False Negative (FN)	True Negative (TN)	

Methodology – Performance Measures

Accuracy	(TP + TN) / (TP + TN + FP + FN)
Balanced Accuracy	((TP / P) + (TN + N)) / 2
Recall (R) / Sensitivity (SN)	TP / (FP + TN)
Specificity (SP)	TN / (TN + FP)
Precision (P)	TP / (TP + FP)
Negative Predictive Value (NPV)	TN / (TN + FN) [6]
Fall-out	FP / (FP + TN)

Methodology – Performance Measures

False Discovery Rate	FP / (FP + TP)			
False Negative Rate	FN / (FN + TP)			
F-Measure	2 * P * R / (P + R) [6]			
Mathews Correlation Coefficient	((TP * TN) - (FP * FN)) / sqrt((TP + FP) * (TP + FN) * (TN + FP) * (TN + FN))			
Informedness [7]	SP + SN - 1			
Markedness	P + NPV - 1			

- Missing values in the dataset has been imputed using Predictive Mean Matching
- Numerical attributes normalized using Z-score Normalization
- Holdout method used iteratively to split data into Train and Test where each iteration has different set of instances

Results & Discussion – Good Classifier

Performance Measure	Naïve Bayes	Decision Tree	Logistic Regression	SVM	Random Forest
Accuracy	0.823	0.86	0.867	0.873	0.907
Balanced Accuracy	0.749	0.843	0.836	0.842	<u>0.885</u>
Recall	0.536	0.808	0.702	0.788	<u>0.845</u>
Specificity	0.962	0.878	0.904	0.896	0.926
Precision	<u>0.867</u>	0.45	0.717	0.55	0.683
Negative Predictive Value [6]	0.813	<u>0.963</u>	0.904	0.954	<u>0.963</u>
Fall-out	0.038	0.122	0.096	0.104	0.074
False Discovery Rate [6]	<u>0.133</u>	0.55	0.283	0.45	0.317
False Negative Rate	0.464	0.192	0.298	0.212	<u>0.155</u>
F-Measure [6]	0.66	0.535	0.68	0.622	<u>0.734</u>

Performance Measure	Naïve Bayes	Decision Tree	Logistic Regression	SVM	Random Forest
Matthews Correlation Coefficient	0.116	0.206	0.158	0.189	0.189
Informedness [7]	0.499	0.687	0.606	0.684	<u>0.771</u>
Markedness	0.679	0.413	0.621	0.504	0.646

Accuracy & Balanced Accuracy

Recall, Precision & F1 Measure

Conclusion

- Inspected the performance of different classifiers modeled on the Hepatitis Data from UCI repository
- Random Forest works best with accuracy of 90.7%
- Also this model can be chosen because it worked well on the sparse data

References

- 1. Huda Yasin, Tahseen A Jilani and Madiha Danish. Article: Hepatitis-C Classification using Data Mining Techniques. International Journal of Computer Applications 24(3):1–6, June 2011.
- 2. http://www.who.int/news-room/fact-sheets/detail/hepatitis-c
- 3. M. Ramasamy, S. Selvaraj and M. Mayilvaganan, "An empirical analysis of decision tree algorithms: Modeling hepatitis data," 2015 IEEE International Conference on Engineering and Technology (ICETECH), Coimbatore, 2015, pp. 1-4.
- 4. A. H. Roslina and A. Noraziah, "Prediction of hepatitis prognosis using Support Vector Machines and Wrapper Method," 2010 Seventh International Conference on Fuzzy Systems and Knowledge Discovery, Yantai, 2010, pp. 2209-2211.
- 5. S. Ekız and P. Erdoğmuş, "Comparative study of heart disease classification," 2017 Electric Electronics, Computer Science, Biomedical Engineering' Meeting (EBBT), Istanbul, 2017, pp. 1-4.
- 6. Wikipedia contributors. (2018, May 26). Evaluation of binary classifiers. In Wikipedia, The Free Encyclopedia

References

- 7. Powers, D.M.W. (2007). Evaluation: From Precision, Recall and F-Factor to ROC, Informedness, Markedness and Correlation. Technical Report SIE-07-001. School of Informatics and Engineering, Flinders University Adelaide, South Australia
- 8. Wikipedia contributors. (2018, September 23). Naive Bayes classifier. In Wikipedia, The Free Encyclopedia
- 9. Wikipedia contributors. (2018, September 20). Decision tree. In Wikipedia, The Free Encyclopedia
- 10. Wikipedia contributors. (2018, August 30). Random forest. In Wikipedia, The Free Encyclopedia.
- 11. Wikipedia contributors. (2018, October 3). Logistic regression. In Wikipedia, The Free Encyclopedia
- 12. Bhargav, K. Santosh, et al. "Application of Machine Learning Classification Algorithms on Hepatitis Dataset." *International Journal of Applied Engineering Research* 13.16 (2018): 12732-12737.