CSD1241 Tutorial 5 Solutions

Problem 1. Given
$$A = \begin{bmatrix} 1 & -2 \\ 3 & 4 \\ -5 & 6 \end{bmatrix}$$
, $B = \begin{bmatrix} 7 & -8 \\ 9 & 0 \end{bmatrix}$ and $C = \begin{bmatrix} 1 & 2 & 3 \\ 3 & 0 & -1 \\ 6 & 9 & 10 \\ -2 & 10 & 5 \end{bmatrix}$. Compute

- (a) $A^{T}AB$ (b) A B (c) $3B A^{T}A$
- (d) C^TCA

Solution. (a) We have

$$A^{T}A = \begin{bmatrix} 1 & 3 & -5 \\ -2 & 4 & 6 \end{bmatrix} \begin{bmatrix} 1 & -2 \\ 3 & 4 \\ -5 & 6 \end{bmatrix} = \begin{bmatrix} 35 & -20 \\ -20 & 56 \end{bmatrix}$$
$$A^{T}AB = \begin{bmatrix} 35 & -20 \\ -20 & 56 \end{bmatrix} \begin{bmatrix} 7 & -8 \\ 9 & 0 \end{bmatrix} = \begin{bmatrix} 65 & -280 \\ 364 & 160 \end{bmatrix}$$

- (b) Since A have size 3×2 and B has size 2×2 , A B is undefined.
- (c) Using the result of A^TA in part a, we have

$$3B - A^{T}A = \begin{bmatrix} 21 & -24 \\ 27 & 0 \end{bmatrix} - \begin{bmatrix} 35 & -20 \\ -20 & 56 \end{bmatrix} = \begin{bmatrix} -14 & -4 \\ 47 & -56 \end{bmatrix}$$

(d) We have

$$C^{T}C = \begin{bmatrix} 1 & 3 & 6 & -2 \\ 2 & 0 & 9 & 10 \\ 3 & -1 & 10 & 5 \end{bmatrix} \begin{bmatrix} 1 & 2 & 3 \\ 3 & 0 & -1 \\ 6 & 9 & 10 \\ -2 & 10 & 5 \end{bmatrix} = \begin{bmatrix} 50 & 36 & 50 \\ 36 & 185 & 146 \\ 50 & 146 & 135 \end{bmatrix}$$

$$C^{T}CA = \begin{bmatrix} 50 & 36 & 50 \\ 36 & 185 & 146 \\ 50 & 146 & 135 \end{bmatrix} \begin{bmatrix} 1 & -2 \\ 3 & 4 \\ -5 & 6 \end{bmatrix} = \begin{bmatrix} -92 & 344 \\ -139 & 1544 \\ -187 & 1294 \end{bmatrix}$$

Problem 2. In this problem, we will learn that in the matrix multiplication AB,

- 1. the jth column of AB is AB_j , where B_j is the jth column of B
- 2. the *i*th row of AB is A_iB , where A_i is the *i*th row of A

Consider two matrices

$$A = \begin{bmatrix} 1 & 2 & 0 & 6 \\ -2 & -1 & 5 & 0 \\ 7 & 8 & 1 & 1 \end{bmatrix}, B = \begin{bmatrix} 1 & 2 & 3 \\ 2 & 5 & 0 \\ 0 & 7 & 1 \\ -1 & -2 & 5 \end{bmatrix}$$

Let A_1, A_2, A_3 be the rows of A and let B_1, B_2, B_3 be the columns of B.

- (a) Compute AB.
- (b) Verify that

1st, 2nd, 3rd rows of AB are A_1B , A_2B , A_3B , and 1st, 2nd, 3rd columns of AB are AB_1 , AB_2 , AB_3 .

Solution. (a)
$$AB = \begin{bmatrix} -1 & 0 & 33 \\ -4 & 26 & -1 \\ 22 & 59 & 27 \end{bmatrix}$$
.

(b) Direct computation verifies that A_1B , A_2B , A_3B are the 1st, 2nd, 3rd rows of AB.

$$A_{1}B = \begin{bmatrix} 1 & 2 & 0 & 6 \end{bmatrix} \begin{bmatrix} 1 & 2 & 3 \\ 2 & 5 & 0 \\ 0 & 7 & 1 \\ -1 & -2 & 5 \end{bmatrix} = \begin{bmatrix} -1 & 0 & 33 \end{bmatrix}$$

$$A_{2}B = \begin{bmatrix} -2 & -1 & 5 & 0 \end{bmatrix} \begin{bmatrix} 1 & 2 & 3 \\ 2 & 5 & 0 \\ 0 & 7 & 1 \\ -1 & -2 & 5 \end{bmatrix} = \begin{bmatrix} -4 & 26 & -1 \end{bmatrix}$$

$$A_{3}B = \begin{bmatrix} 7 & 8 & 1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 2 & 3 \\ 2 & 5 & 0 \\ 0 & 7 & 1 \\ -1 & -2 & 5 \end{bmatrix} = \begin{bmatrix} 22 & 59 & 27 \end{bmatrix}$$

Similarly, AB_1 , AB_2 , AB_3 are the 1st, 2nd, 3rd columns of AB.

$$AB_1 = \begin{bmatrix} 1 & 2 & 0 & 6 \\ -2 & -1 & 5 & 0 \\ 7 & 8 & 1 & 1 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \\ 0 \\ -1 \end{bmatrix} = \begin{bmatrix} -1 \\ -4 \\ 22 \end{bmatrix}$$

$$AB_2 = \begin{bmatrix} 1 & 2 & 0 & 6 \\ -2 & -1 & 5 & 0 \\ 7 & 8 & 1 & 1 \end{bmatrix} \begin{bmatrix} 2 \\ 5 \\ 7 \\ -2 \end{bmatrix} = \begin{bmatrix} 0 \\ 26 \\ 59 \end{bmatrix}$$

$$AB_3 = \begin{bmatrix} 1 & 2 & 0 & 6 \\ -2 & -1 & 5 & 0 \\ 7 & 8 & 1 & 1 \end{bmatrix} \begin{bmatrix} 3 \\ 0 \\ 1 \\ 5 \end{bmatrix} = \begin{bmatrix} 33 \\ -1 \\ 27 \end{bmatrix}$$

Problem 3. Determine which of the following statements are true. Justify your answer (for false statements, you need to give counterexamples).

- (a) The (i, j)-entry of AB can be computed by multiplying the ith row of A by the jth column of B.
- (b) For every matrix A, it is true that $(A^T)^T = A$.
- (c) If A and B are square matrices of the same order, then

$$AB = BA$$
.

- (d) If A is a 6×4 matrix and B is an $m \times n$ matrix such that $B^T A^T$ is a 2×6 matrix, then m = 4 and n = 2.
- (e) If B has a column of zeros, then so does AB if this product is defined.
- (f) If A has a row of zeros, then so does AB if this product is defined.

Solution. (a) True.

- (b) True.
- (c) False. Here is a counter example (check yourself that $AB \neq BA$)

$$A = \begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix}, \ B = \begin{bmatrix} 1 & 0 \\ 1 & 0 \end{bmatrix}$$

(d) **True**. Since B^T has size $n \times m$ and A^T has size 4×6 , the product $B^T A^T$ is defined only if m = 4. Now for m = 4, $B^T A^T$ has size $n \times 6$. So n = 2.

(e) **True**. Same reasoning as part e. Assume A has size $m \times n$ and B has size $n \times p$ with the first column of B consisting of all zeros. The entries in the first column of AB are all zeros.

$$(AB)_{11} = (1st \text{ row of A}) \cdot (1st \text{ column of B}) = 0$$

$$(AB)_{21} = (2nd \text{ row of A}) \cdot (1st \text{ column of B}) = 0$$

$$\cdots$$

$$(AB)_{m1} = (m\text{-th row of A}) \cdot (1st \text{ column of B}) = 0$$

(f) **True**. Assume $A = (a_{ij})_{m \times n}$ and $B = (b_{ij})_{n \times p}$ with the first row of A consisting of all zeros, i.e. $a_{11} = a_{12} = \cdots = a_{1n} = 0$. The entries in the first row of AB are all zeros.

$$(AB)_{11} = (1\text{st row of A}) \cdot (1\text{st column of B}) = a_{11}b_{11} + a_{12}b_{21} + \dots + a_{1n}b_{n1} = 0$$
 $(AB)_{12} = (1\text{st row of A}) \cdot (2\text{nd column of B}) = a_{11}b_{12} + a_{12}b_{22} + \dots + a_{1n}b_{n2} = 0$
 \dots
 $(AB)_{1p} = (1\text{st row of A}) \cdot (\text{p-th column of B}) = a_{11}b_{1p} + a_{12}b_{2p} + \dots + a_{1n}b_{np} = 0$

Problem 4. Find λ so that det(A) = 0.

(a)
$$A = \begin{bmatrix} \lambda - 2 & 1 \\ -5 & \lambda + 4 \end{bmatrix}$$
 (b) $A = \begin{bmatrix} \lambda - 4 & 0 & 0 \\ 0 & \lambda & 2 \\ 0 & 3 & \lambda - 1 \end{bmatrix}$ (c) $A = \begin{bmatrix} 1 & 1 & 2 \\ \lambda & -1 & -2 \\ 2 & 3 & 7 \end{bmatrix}$

Solution. (a) We have

$$\det(A) = (\lambda - 2)(\lambda - 4) + 5 = \lambda^2 + 2\lambda - 3 = (\lambda + 3)(\lambda - 1).$$

So $\lambda = -3$ or $\lambda = 1$.

(b) Note the following formula for 3×3 matrices

$$\det\begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix} = \text{main diagonals - anti diagonals}$$

$$= (a_{11}a_{22}a_{33} + a_{12}a_{23}a_{31} + a_{13}a_{21}a_{32}) - (a_{13}a_{22}a_{31} + a_{12}a_{21}a_{33} + a_{11}a_{23}a_{32})$$

We have

$$\det(A) = (\lambda - 4)\lambda(\lambda - 1) - (\lambda - 4) \cdot 2 \cdot 3 = (\lambda - 4)(\lambda - 3)(\lambda + 2)$$

So $\lambda = 4$ or $\lambda = 3$ or $\lambda = -2$.

(c) We have

$$\det(A) = (1 \cdot (-1) \cdot 7 + 1 \cdot (2-) \cdot 2 + 2 \cdot \lambda \cdot 3) - (2 \cdot (-1) \cdot 2 + 1 \cdot \lambda \cdot 7 + 1 \cdot (-2) \cdot 3)$$
$$= -\lambda - 1$$

So
$$\lambda = -1$$
.

Problem 5. Consider 3 vectors $\vec{u} = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}, \vec{v} = \begin{bmatrix} 0 \\ \lambda - 1 \\ 3 \end{bmatrix}, \vec{w} = \begin{bmatrix} 0 \\ -1 \\ \lambda + 1 \end{bmatrix}$. Let V be the

volume of the parallelepiped formed by $\vec{u}, \vec{v}, \vec{w}$.

- (a) What is V for $\lambda = 2$?
- (b) What is the value of λ so that V has the smallest possible value?

Solution. Note that

$$V = \det \begin{bmatrix} \vec{u} & \vec{v} & \vec{w} \end{bmatrix} = \det \begin{bmatrix} 1 & 0 & 0 \\ 0 & \lambda - 1 & -1 \\ 0 & 3 & \lambda + 1 \end{bmatrix} = \lambda^2 + 2$$

(a) For $\lambda = 2$, we have

$$V = \lambda^2 + 2 = 2^2 + 2 = 6$$
.

(b) Since $V = \lambda^2 + 2 \ge 2$, the smallest possible value of V is V = 2. The value V = 2 can be achieved at $\lambda = 0$.