Chaudhary ML, PS # 4

Ashwin Acharya

May 4, 2016

Problem 3

Consider a k-class logistic regression model in which we fit vectors θ_j (j=1,2,...,k-1)under the assumption that $ln\frac{\pi_j(x)}{\pi_k(x)} = \theta_j^T x$.

1.1 3a

From the above, we know that $\pi_j(x) = \pi_k(x) * e^{\theta_j^T x}$ We know that the class probabilities for x sum to 1, so that $\pi_k(x) = 1 - \sum_{j=1}^{k-1} \pi_j(x) = 1 - \sum_{j=1}^{k-1} \pi_k(x) * e^{\theta_j^T x} = 1 - \pi_k(x) \sum_{j=1}^{k-1} e^{\theta_j^T x} = 1 - \pi_k(x) S.$ Therefore, $\pi_k(x)(1+S) = 1$, so $\pi_k(\mathbf{x}) = \frac{1}{1+\mathbf{S}} = \frac{1}{1+\sum_{j=1}^{k-1} e^{\theta_j^T x}}.$

Then,
$$\pi_{\mathbf{j}}(\mathbf{x}) = \pi_{\mathbf{k}}(\mathbf{x}) * \mathbf{e}^{\theta_{\mathbf{j}}^{\mathbf{T}}\mathbf{x}} = \frac{\mathbf{e}^{\theta_{\mathbf{j}}^{\mathbf{T}}\mathbf{x}}}{1 + \Sigma_{\mathbf{j}=1}^{\mathbf{k}-1} \mathbf{e}^{\theta_{\mathbf{j}}^{\mathbf{T}}\mathbf{x}}}.$$

1.2 3b

For a logistic regression model as detailed above, label the zero-vector $\vec{0}$ as θ_k , so that $e^{theta_k^Tx}$ always equals 1. Then, for all classes $j \in \{1,..,k\}$, $P(j|\text{model},\mathbf{x}) = \frac{e^{\theta_j^Tx}}{\sum_{j=1}^k e^{\theta_j^Tx}}$. Thus, the likelihood of a given input-output pair (x,y), $P((x,y)|<\theta_1,\theta_2,...\theta_k>)$, equals P(y|model,x), which equals $\frac{e^{\theta_j^Tx}}{\sum_{j=1}^k e^{\theta_j^Tx}}$.

The likelihood of the dataset is the product of the likelihoods of each of the results. This equals $\Pi_i \frac{e^{\theta_{y_i}^T x_i}}{\sum_{j=1}^k e^{\theta_j^T x_i}} = \Pi_i \frac{e^{\theta_{y_i}^T \mathbf{x_i}}}{\mathbf{1} + \mathbf{\Sigma_{j=1}^{k-1}} e^{\theta_j^T \mathbf{x_i}}}$. (Where, again, θ_k is defined as the zero-vector $\vec{0} = <0, 0, ..., 0>.$