Neurális hálózatok

András Mamenyák¹ and Roland Bamli¹

 1 Mérnök informatikus (BSc) szakos hallgató, Debreceni Egyetem

2013. december 5.

1. Bevezetés

1.1. A neurális hálózatok kialakulása

A neurális hálózatok a mesterséges inteligencia egy típusa, amelyet az állatok központi idegrendszere, különösen az agy ihletett, amely képes a tanulásra, a mintafelismerésre is. Megalkotásához biológiai ismeretekre és az idegsejt működésének pontosabb megismerésére volt szükség. Ez csak a 20. században valósult meg. Az első neuron modelt 1947-ben alkotta meg McCullock és Pitts, az első mesterséges neuront pedig Rosenblatt 1958-ban. A neurális hálózatok egy ígéretes, új tudományterület, mely Webos 1974-es "back propagation" algoritmusa és annak 1986-os újra felfedezése után indult igazán fejlődésnek.

1.2. A mesterséges neuron felépítése, működése

Egy mesterséges neuron, mint a biológiai, több bemenettel és egy kimenettel rendelkezik (1. ábra). Egy általános neuron működése szerint meghatározza a bemenetek súlyozott összegét és ezen végrehajt valamilyen nem lineáris leképezést. Ez utóbbit nevezik aktivációs, transzfer vagy aktiváló függvénynek. A végeredmény pedig a neuron kimeneti jele. Egy másik változat a lineráris összegzést megvalósító neuron, amikor nem történik lineáris leképezés.

1. ábra. A biológiai neuron (a) és a mesterséges neuron (b) összehasonlítása

A 1. ábrán a neuron bemeneteit \mathbf{x}_i jelöli, a kimeneti jel pedig y. Először a bemenetek súlyozott összegei kerülnek meghatározásra:

$$s = \sum_{i=0}^{n} W_i \cdot x_i = W^T \cdot x$$

Abban az esetben, ha a neuron lineáris összegzést valósít meg, ezzel már meg is kaptuk a kimeneti jelet:

$$y = s = W^T \cdot x$$

Nem lineáris esetben szükség van még a nem lineáris leképezésre. Ebben az esetben a neuron kimeneti jele a következő:

$$y = f(s) = f(W^T \cdot x)$$

ahol f(s) az aktivizációs függvény. Erre a célra a négy leggyakrabban használt függvény a lépcső- vagy szignumfüggvény, a "telítéses lineáris" függvény, a tangens hiperbolikusz függvény és a szigmoid függvény.

Használnak egy másik elterjedt neuron típust is a RBF (Radial Bass Function) hálózatokban. Ennél a típusnál nincs lineáris összegzés, az összes bemenet az aktivizációs függvénybe kerül, mely több bemenet esetén több változós függvény lesz.

1.3. A neuron hálózatok felépítése

A neuronokból álló hálózatokat nevezzük neurális hálózatoknak. Ezekben minden neuron ugyanolyan, vagy hasonló műveleteket végez, a többi neurontól függetlenül, lokálisan. Tehát ezek a hálózatok olyan információfeldolgozó eszközök, amelyek párhuzamos, elosztott működésre, tanulásra képesek. Általában irányított gráffal reprezentáljuk őket. A neuronok a gráf csomópontjai, míg a gráf élei a kimenetek és bemenetek közötti kapcsolatot reprezentálják. Megvalósíthatók szoftveresen, hardveresen, vagy a kettő kombinációjaként is.

A neuronok három fajtáját különböztetjük meg:

- 1. **bemeneti neuronok:** Egy bemenetű, egy kimenetű, buffer jellegű neuronok, jelfeldolgozó feladatuk nincs. Bemenetük a hálózat bemenete, kimenetük más neuronok meghajtására szolgál.
- rejtett neuronok: Ezek a neuronok végzik a jelfeldolgozást. Kimenetük és bemenetük is más neuronokhoz csatlakozik.
- 3. kimeneti neuronok: A környezet felé továbbítják kimenetüket.

A neuronokat álltalában típusa alapján rétegekbe szervezzük. Ennek megfelelően beszélhetünk bemeneti rétegről, retjett réteg(ek)ről és kimeneti rétegről.

A neuronhálózatokat az egyes neuronok közötti összeköttetési rendszer alapján két fő csoportba sorolhatjuk. Beszélhetünk előrecsatol hálózatokról (2. ábra) és visszacsatolt hálózatokról. Akkor nevezünk egy neurálos hálózatot visszacsatoltnak, ha a topológiáját reprezentáló irányított gráf tartalmaz hurkot. Ez esetben beszélhetünk globális és lokális visszacsatolásról.

2. ábra. Előrecsatolt neuron hálózatok felépítése.

3. ábra. A back-propagation algoritmus működése.

1.4. Back-propagation algoritmus

A back-propagation, teljes nevén "backward propagation of errors", magyarul hiba-visszaterjesztési eljárás, egy tanulási algoritmus, melyet gyakran használnak a neurális hálózatokban. Ez egy felügyelt tanulási módszer, melynek szüksége van egy nagy adatbázisra a bemenetekkel és a kívánt kimenetekkel. Alkalmazása az előrecsatolt hálózatoknál a leghasznosabb. Használatához meg kell követelnünk, hogy a neuron hálózat réteges felépítésű, a neuron átviteli függvénye pedig deriválható legyen. Az algoritmusban a tanulás lényegében a hátrafelé terjedés folyamata, mely során minimalizálni kell az elvárt és a tényleges output vektor közötti négyzetes eltérést, Euklideszi távolságot.

Működése alapján két fázisra lehet osztani, terjedésre (propagation) és a súlyok frissítésére. A terjedés során a jel mind előre, mind hátra a szinapszisok és a neuronok szintjén lokális információk alapján terjed. A súlyok frissítése a neuron kimenetére visszaérkezett jel alapján történik (3. ábra).

2. Az algoritmus implementálása

Egy neurális háló beprogramozása sok időt vehet igénybe és fölösleges. Ezért egy, már készen levő neurális hálót fogunk alkalmazni a Barker kód teszteléséhez.

A szerző az alábbi megjegyzéssel tette közzé a C++ forráskódot:

//Written by: Paras Chopra

```
//Email: paras1987@gmail.com
//Web: www.paraschopra.com
//Comment: Use this code as you like, but please give me credit wherever i dese
A kód önmagában nem működött, először fordítási hibát kaptunk, majd
azt kijavítva "segmentation fault" hibával szállt el. A hiba forrása a "Network"
osztály destruktora:
\\ segmentation fault
~Network()
{
    delete Layers;
}
\\ helyesen
~Network()
{
    delete[] Layers;
}
```

Az eredeti program több más sebből is vérzett, de kisebb-nagyobb módosításokkal, átszervezéssel sikerült alap esetben a futási időt 25%-val lecsökkenteni. Természetesen másfajta, nem programozási módosításokra is szükség volt, hogy a célnak megfelelő neurális hálót kapjunk. A Barker kód 11 bitet feleltet meg 1 bitnek, ezért a neurális hálónknak 11 bemeneti neuronja, 11 rejtett neuronja és 1 kimenei neuronja van.

A végső forrás kód:

```
* neural.cpp

*
* Written by: Paras Chopra

* Email: paras1987@gmail.com

* Web: www.paraschopra.com

* Comment: Use this code as you like, but please give me credit whenever I de:

* Improved version by Andras Mamenyak, Roland Bamli

*
* This program is free software: you can redistribute it and/or modify

* it under the terms of the GNU General Public License as published by

* the Free Software Foundation, either version 3 of the License, or

* (at your option) any later version.

*
* This program is distributed in the hope that it will be useful,

* but WITHOUT ANY WARRANTY; without even the implied warranty of

* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the

* GNU General Public License for more details.

* You should have received a copy of the GNU General Public License
```

```
along \ with \ this \ program . If not , see < http://www.gnu.org/licenses/> .
        * Changelog
        *{\phantom{-}}-{\phantom{-}}{\phantom{-}}{\phantom{-}}{\phantom{-}}{\phantom{-}}{\phantom{-}}{\phantom{-}}{\phantom{-}}{\phantom{-}}{\phantom{-}}{\phantom{-}}{\phantom{-}}{\phantom{-}}{\phantom{-}}{\phantom{-}}{\phantom{-}}{\phantom{-}}{\phantom{-}}{\phantom{-}}{\phantom{-}}{\phantom{-}}{\phantom{-}}{\phantom{-}}{\phantom{-}}{\phantom{-}}{\phantom{-}}{\phantom{-}}{\phantom{-}}{\phantom{-}}{\phantom{-}}{\phantom{-}}{\phantom{-}}{\phantom{-}}{\phantom{-}}{\phantom{-}}{\phantom{-}}{\phantom{-}}{\phantom{-}}{\phantom{-}}{\phantom{-}}{\phantom{-}}{\phantom{-}}{\phantom{-}}{\phantom{-}}{\phantom{-}}{\phantom{-}}{\phantom{-}}{\phantom{-}}{\phantom{-}}{\phantom{-}}{\phantom{-}}{\phantom{-}}{\phantom{-}}{\phantom{-}}{\phantom{-}}{\phantom{-}}{\phantom{-}}{\phantom{-}}{\phantom{-}}{\phantom{-}}{\phantom{-}}{\phantom{-}}{\phantom{-}}{\phantom{-}}{\phantom{-}}{\phantom{-}}{\phantom{-}}{\phantom{-}}{\phantom{-}}{\phantom{-}}{\phantom{-}}{\phantom{-}}{\phantom{-}}{\phantom{-}}{\phantom{-}}{\phantom{-}}{\phantom{-}}{\phantom{-}}{\phantom{-}}{\phantom{-}}{\phantom{-}}{\phantom{-}}{\phantom{-}}{\phantom{-}}{\phantom{-}}{\phantom{-}}{\phantom{-}}{\phantom{-}}{\phantom{-}}{\phantom{-}}{\phantom{-}}{\phantom{-}}{\phantom{-}}{\phantom{-}}{\phantom{-}}{\phantom{-}}{\phantom{-}}{\phantom{-}}{\phantom{-}}{\phantom{-}}{\phantom{-}}{\phantom{-}}{\phantom{-}}{\phantom{-}}{\phantom{-}}{\phantom{-}}{\phantom{-}}{\phantom{-}}{\phantom{-}}{\phantom{-}}{\phantom{-}}{\phantom{-}}{\phantom{-}}{\phantom{-}}{\phantom{-}}{\phantom{-}}{\phantom{-}}{\phantom{-}}{\phantom{-}}{\phantom{-}}{\phantom{-}}{\phantom{-}}{\phantom{-}}{\phantom{-}}{\phantom{-}}{\phantom{-}}{\phantom{-}}{\phantom{-}}{\phantom{-}}{\phantom{-}}{\phantom{-}}{\phantom{-}}{\phantom{-}}{\phantom{-}}{\phantom{-}}{\phantom{-}}{\phantom{-}}{\phantom{-}}{\phantom{-}}{\phantom{-}}{\phantom{-}}{\phantom{-}}{\phantom{-}}{\phantom{-}}{\phantom{-}}{\phantom{-}}{\phantom{-}}{\phantom{-}}{\phantom{-}}{\phantom{-}}{\phantom{-}}{\phantom{-}}{\phantom{-}}{\phantom{-}}{\phantom{-}}{\phantom{-}}{\phantom{-}}{\phantom{-}}{\phantom{-}}{\phantom{-}}{\phantom{-}}{\phantom{-}}{\phantom{-}}{\phantom{-}}{\phantom{-}}{\phantom{-}}{\phantom{-}}{\phantom{-}}{\phantom{-}}{\phantom{-}}{\phantom{-}}{\phantom{-}}{\phantom{-}}{\phantom{-}}{\phantom{-}}{\phantom{-}}{\phantom{-}}{\phantom{-}}{\phantom{-}}{\phantom{-}}{\phantom{-}}{\phantom{-}}{\phantom{-}}{\phantom{-}}{\phantom{-}}{\phantom{-}}{\phantom{-}}{\phantom{-}}{\phantom{-}}{\phantom{-}}{\phantom{-}}{\phantom{-}}{\phantom{-}}{\phantom{-}}{\phantom{-}}{\phantom{-}}{\phantom{-}}{\phantom{-}}{\phantom{-}}{\phantom{-}}{\phantom{-}}{\phantom{-}}{\phantom{-}}{\phantom{-}}{\phantom{-}}{\phantom{-}}{\phantom{-}}{\phantom{-}}{\phantom{-}}{\phantom{-}}{\phantom{-}}{\phantom{-}}{\phantom{-}}{\phantom{-}}{\phantom{-}}{\phantom{-}}{\phantom{-}}{\phantom{-}}{\phantom{-}}{\phantom{-}}{\phantom{-}}{\phantom{-}}{\phantom{-}}{\phantom{-}}{\phantom{-}}{\phantom{-}}{\phantom{-}}{\phantom{-}}{\phantom{-}}{\phantom{-}}{\phantom{-}}{\phantom{-}}{\phantom{-}}{\phantom{-}}{\phantom{-}}{\phantom{-}}{\phantom{-}}{\phantom{-}}{\phantom{-}}{\phantom{-}}{\phantom{-}}{\phantom{-}}{\phantom{-}}{\phantom{-}}{\phantom{-}}{\phantom{-}}{\phantom{-}}{\phantom{-}}{\phantom{-}}{\phantom{-}}{\phantom{-}}{\phantom{-}}{\phantom{-}}{\phantom{-}}{\phantom{-}}{\phantom{-}}{\phantom{-}}{\phantom{-}}{\phantom{-}}{\phantom{-}}{\phantom{-}}{\phantom{-}}{\phantom{-}}{\phantom{-}}{\phantom{-}}{\phantom{-}}{\phantom{-}}{\phantom{-}}{\phantom{-}}{\phantom{-}}{\phantom{-}}{\phantom{-}}{\phantom{-}}{\phantom{-}}{\phantom{-}}{\phantom{-}}{\phantom{-}}{\phantom{-}}{\phantom{-}}{\phantom{-}}{\phantom{-}}{\phantom{-}}{\phantom{-}}{\phantom{-}}{\phantom{-}}{\phantom{-}}{\phantom{-}}{\phantom{-}}{\phantom{-}}{\phantom{-}}{\phantom{-}}{\phantom{-}}{\phantom{-}}{\phantom{-}}{\phantom{-}}{\phantom{-}}{\phantom{-}}{\phantom{-}}{\phantom{-}}{\phantom{-}}{\phantom{-}}{\phantom{-}}{\phantom{-}}{\phantom{-}}{\phantom{-}}{\phantom{-}}{\phantom{-}}{\phantom{-}}{\phantom{-}}{\phantom{-}}{\phantom{-}}{\phantom{-}}{\phantom{-}}{\phantom{-}}{\phantom{-}}{\phantom{-}}{\phantom{-}}{\phantom{-}}{\phantom{-}}{\phantom{-}}{\phantom{-}}{\phantom{-}}{\phantom{-}}{\phantom{-}}{\phantom{-}}{\phantom{-}}{\phantom{-}}{\phantom{-}}{\phantom{-}}{\phantom{-}}{\phantom{-}}{\phantom{-}}{\phantom{-}}{\phantom{-}}{\phantom{-}}{\phantom{-}}{\phantom{-}}{\phantom{-}}{\phantom{-}}{\phantom
         * - fixed segfault errors
         * - cleaner code
         * - improved runtime: 25% faster
         * - test the Barker 11 code
#include <iostream>
\#include < cstdlib >
#include <ctime>
#include <cmath>
  class Dendrite
  public:
              {\bf double} \ \ {\rm weight} \ ; \quad // \ \ {\it Weight} \ \ {\it of} \ \ {\it the} \ \ {\it neuron}
              int points_to; // The index of the neuron of the next layer to which it points
               Dendrite (double weight = 0.0, int points to = 0): weight (weight), points to
  };
  class Neuron
  public:
              Neuron(const int id = 0, const double value = 0.0, const double bias = 0.0) :
                             delta = 0.0;
               ~Neuron()
                             delete[] dendrite;
                    * Set the dendrite from the neuron to given dendrite
               void set_dendrite(const int n)
                             dendrite = new Dendrite[n];
                             \textbf{for} \hspace{0.2cm} (\textbf{int} \hspace{0.2cm} i \hspace{0.2cm} = \hspace{0.2cm} 0; \hspace{0.2cm} i \hspace{0.2cm} < \hspace{0.2cm} n; \hspace{0.2cm} i \hspace{0.2cm} + \hspace{0.2cm} ) \hspace{0.2cm} / / \hspace{0.2cm} \textit{Initialize} \hspace{0.2cm} \textit{the} \hspace{0.2cm} \textit{dendrite} \hspace{0.2cm} \textit{to} \hspace{0.2cm} \textit{attach} \hspace{0.2cm} \textit{to} \hspace{0.2cm} \textit{next} \hspace{0.2cm} \textit{l} \hspace{0.2cm} \\
                                          dendrite[i].points_to = i;
               }
              int id;
```

```
double value, bias, delta;
  Dendrite *dendrite;
};
class Layer
public:
  Layer()
  {}
  ~Layer()
    delete[] neuron;
  void initialize(const int size)
    neuron = new Neuron[size];
  Neuron get_neuron(const int index) const
    return neuron[index];
  void set_neuron(Neuron neuron, const int index)
    this->neuron[index] = neuron;
 Neuron *neuron;
};
class Network
public:
 Network()
    srand(time(NULL));
  ~Network()
  {}
  * Set various parameters of the net
  void set_data(const double learning_rate, const int layer[])
    this->learning_rate = learning_rate;
```

```
for (int i = 0; i < 3; i++)
    neuron_per_layer[i] = layer[i];
    this->layer[i].initialize(layer[i]); // Initialize each layer with the
  randomize();
 * The real test
void test(const double input[], double output[])
  for (int i = 0; i < neuron per layer[0]; <math>i++)
    layer [0]. neuron [i]. value = input [i];
  update output();
  for (int i = 0; i < neuron_per_layer[2]; i++)
    output[i] = layer[2].neuron[i].value;
}
   The standard backprop learning algorithm
 * For output layer:
 * Delta = (Target - Actual) * Actual * (1 - Actual)
 * For hidden layer:
 * Delta = Actual * (1 - Actual) * Sum(Weight from current to next AND Delta)
 * Weight += LearningRate * Delta * Input
void train(const double input[], const double output[])
  double Actual, Delta;
  for (int i = 0; i < neuron_per_layer[0]; i++)
    layer [0]. neuron [i]. value = input [i];
  update_output();
  for (int i = 2; i > 0; i--) // Go from last layer to first layer
    for (int j = 0; j < neuron_per_layer[i]; j++)
      Actual = layer[i].neuron[j].value; // Actual value
      if(i == 2) // Output layer
```

```
Delta = (output[j] - Actual) * Actual * (1.0 - Actual);
// Function to compute error
         layer [i]. neuron [j]. delta = Delta;
        else // Hidden layer
         Delta = Actual * (1.0 - Actual) * sum weight delta(i);
       if (i > 0) // Input layer does not have a bias
         layer[i].neuron[j].bias += Delta*learning_rate;
       for (int k = 0; k < neuron_per_layer[i-1]; k++) // Calculate the new of
         layer [i-1]. neuron [k]. dendrite [j]. weight += Delta*learning rate*layer [
     }
 }
private:
  * Randomize weights and biases
 void randomize()
   for (int i = 0; i < 3; i++)
     for (int j = 0; j < neuron per layer[i]; <math>j++)
       if (i < 2) // Last layer does not require weights
         layer[i].neuron[j].set dendrite(neuron per layer[i+1]); // Initialize
         for (int k = 0; k < neuron per layer[i+1]; k++)
           layer[i].neuron[j].dendrite[k].weight = get rand(); // Let weight b
       if (i > 0) // First layer does not need biases
         layer[i].neuron[j].bias = get_rand();
     }
 }
  * Gives the output of the net
 void update_output()
   for (int i = 1; i < 3; i++)
     for (int j = 0; j < neuron_per_layer[i]; j++)
       layer[i]. neuron[j]. value += layer[i-1]. neuron[k]. value*layer[i-1]. neuron[k]
```

```
layer [i]. neuron [j]. value += layer [i]. neuron [j]. bias;
// Add bias
        layer[i].neuron[j].value = limiter(layer[i].neuron[j].value);
// Squash that value
  }
   * \ Sigmoid \ activation \ function
  double limiter (const double x) const
    return 1.0/(1.0 + \exp(-x));
  double get rand() const
    return -1.0 + ((double) \text{ rand}()/RAND MAX)*2.0;
  * Calculate sum of weights * delta. Used in back prop.
  double sum_weight_delta(const int Nlayer) const
    double result = 0.0;
    for (int i = 0; i < neuron per layer[Nlayer+1]; <math>i++)
// Go through all the neuron in the next layer
      result += layer [Nlayer]. neuron [Nlayer]. dendrite [i]. weight * layer [Nlayer + 1]
    return result;
  double learning_rate;
  Layer layer [3];
  int neuron_per_layer[3];
};
int main()
  const int Niter = 10000;
  const int Nneuron = 11;
  const int Ntrain = 256;
  const int Ntest = pow(2, Nneuron);
  const int layer [3] = {Nneuron, Nneuron, 1}; // input, hidden, output
  Network network;
  network.set data(0.1, layer);
```

```
std::cout << "Start_training.\n\n";
double train_input[Ntrain][layer[0]];
double train_output[Ntrain][layer[2]];
// 11100010010 - 1811
train\_input[0][0] = train\_input[0][1] = train\_input[0][2] = train\_input[0][6]
train input [0][3] = train input [0][4] = train input [0][5] = train input [0][7]
\mathbf{for} \ (\mathbf{int} \ \mathbf{i} = 1; \ \mathbf{i} < \mathrm{Ntrain}; \ \mathbf{i} + +)
  for (int j = 0; j < layer[0]; j++)
    train input [i][j] = (double) (rand()\%2);
for (int i = 0; i < Ntrain; i++)
  if (train_input[i][0] + train_input[i][1] + train_input[i][2] + train_input
      train_input[i][3] + train_input[i][4] + train_input[i][5] + train_input
    train output [i][0] = 1;
  else
    train output [i][0] = 0;
}
std::cout << "Number_of_training_iterations:_" << Niter;
for (int i = 0; i < Niter; i++)
  for (int j = 0; j < Ntrain; j++)
    network.train(train input[j], train output[j]);
std::cout << "\nEnd_training.\n";
std::cout << "\nStart_testing.\n";
double test_input[Ntest][layer[0]];
double test_output[layer[2]];
int db = 0;
\quad \textbf{for} \ (\textbf{int} \ i = 0; \ i < Ntest; \ i++)
  int tmp = i;
  int j = Nneuron - 1;
  while (tmp > 0)
    test_input[i][j] = tmp\%2;
    tmp /= 2;
    j --;
```

```
while (j > 0)
    test_input[i][j] = 0;
    j --;
}
for (int i = 0; i < Ntest; i++)
  network.test(test input[i], test output);
  if (test output [0] > 0.5)
    db++;
    std::cout << "\nCase_number:_" << db << "\n";
    std::cout << "Input:";
    for (int j = 0; j < layer[0]; j++)
       std::cout << test_input[i][j];
    std::cout << " \_ (" << i+1 << ") \ n";
    std::cout << "Output:";
    \mbox{for } (\mbox{int} \ j \ = \ 0 \, ; \ j \ < \ \mbox{layer} \, [ \, 2 \, ] \, ; \ j \ + +)
      std::cout << test_output[j];
    std::cout << "\n";
}
std::cout << \ " \ \ nEnd\_testing. \ \ \ n";
std::cout << "\nNumber_of_positive_output:_" << db << "\n";
return 0;
```

3. A program futtatása és a kimenet értelmzése

Case number: 1

Input: 01100010010 (787)

Output: 0.870079

Case number: 2

Input: 01100010011 (788)

Output: 0.578244

Case number: 3

Input: 10100010010 (1299)

Output: 0.807933

Case number: 4

Input: 11000010010 (1555)

Output: 0.946152

Case number: 5

Input: 11000010011 (1556)

Output: 0.759956

Case number: 6

Input: 11001010010 (1619)

Output: 0.516823

Case number: 7

Input: 11100000010 (1795)

Output: 0.766867

Case number: 8

Input: 11100010000 (1809)

Output: 0.725297

Case number: 9

Input: 11100010010 (1811)

Output: 0.987942

Case number: 10

Input: 11100010011 (1812)

Output: 0.954111

Case number: 11

Input: 11100010100 (1813)

Output: 0.762585

Case number: 12

Input: 11100010110 (1815)

Output: 0.798953

Case number: 13

Input: 11100110010 (1843)

Output: 0.725913

Case number: 14

Input: 11101010010 (1875)

Output: 0.823665

Case number: 15

Input: 11110010010 (1939)

Output: 0.704915

End testing.

Number of positive output: 15

A neurális hálót

```
const int Niter = 10000;
```

iteráción keresztül "tanítattjuk", mindegyik esetben ugyanazt a

```
const int Ntrain = 256;
```

random bemeneti adatot és a hozzájuk tartozó kimeneti értéket tápláljuk a neurális hálóba. Ez alapján állítódnak be az egyes neuronokhoz tartozó súlyok, amik kezdetben random értékek voltak. Ezután az éles tesztben ráengedjük mind a 2^{11} esetet és amint a fenti kimenetben látható, csupán 15 esetben lépte át a kimenet értéke a 0.5-öt. A várt 11100010010 (1811)-as értékre kaptuk a legjobb eredményt, 0.987942-t. Ebből jól látható, hogy a neurális hálónk megfelelően működik, megtanulta melyik a Barker kód, és csak nagyjából 1 bitben különböző bemenetekre ad magasabb kimeneti értéket.

4. Az algoritmus finomhangolása

Sok állítható paraméterrel rendelkezik az algoritmusunk, ezért számos beállítással kipróbáltuk. A cél az volt, hogy a legnagyob pontosságot érjük el viszonylag rövid futási időn belül. Ha az iterációk számát növeltük, lineárisan növekedett a futási idő is, viszont az eredmény nem lett sokkal pontosabb. Ugyanez érvényes a bemeneti adatok számára is. A legnagyobb különbséget a rejtett neuronok számának növelése jelentette, így értük el optimális futási idő alatt

 $\begin{array}{ll} r\,e\,a\,l & 0m7.\,4\,8\,4\,s \\ u\,s\,e\,r & 0m7.\,4\,6\,3\,s \\ s\,y\,s & 0m0.\,0\,1\,4\,s \end{array}$

a megfelelő pontosságot.

5. Konklúzió

A projekt során a ma népszerű kutatási területnek számító neurális hálózattal foglalkoztunk. Megismerkedtünk az alapvető felépítésével és működésével ezekenek a gépi tanulást végző rendszereknek, valamint sikerült a Barker 11 kódot helyesen tesztelő programot készítetnünk.