Project 2 Analyzing the Floyd - Warshall algorithm

CSE 5211: Analysis of Algorithms

Dr. William Shoaff

Zubin Kadva

Table of Contents

1. Problem Description	1
2. Known algorithms	1
3. The shortest path problem	1
4. A historical perspective	2
5. Algorithm description	2
5.1. A recursive solution	3
5.2. Matrix representation	5
6. Implementation	6
7. Generating random data	7
8. Analysis	9
9. Graphs	10
9.1. Execution Time	10
9.2. Memory consumption	12
9.3. Average performance	13
10. References and tools	14

1. Problem Description

The main purpose of this project is to analyse the Floyd-Warshall algorithm used to find the shortest path in a weighted graph with positive or negative edges, but no negative cycles. A shortest path problem is the problem of finding the path between two nodes in a graph such that the sum of the weights of its edges is minimized.

2. Known algorithms

The most important algorithms for solving this problem are:

- Dijkstra's algorithm
- Bellman Ford algorithm
- A* search algorithm
- Floyd Warshall algorithm
- Johnson's algorithm
- Viterbi algorithm

3. The shortest path problem

Two vertices are adjacent when they are both incident to a common edge. A path in an undirected graph is a sequence of vertices

$$P = (v_1, v_2, \dots, v_n) \in V \times V \times \dots \times V$$

such that v_i is adjacent to v_{i+1} for $1 \le i < n$. Such a path P is called a path of length n-1 from v_1 to v_n .

Let $e_{i,j}$ be the edge incident to both v_i and v_j . Given a real-valued weight function : $E \to \mathbb{R}$, and an undirected (simple) graph G, the shortest path from v to v' is the path $P = (v_1, v_2, ..., v_n)$ (where $v_1 = v$ and $v_n = v'$ that over all possible n minimizes the sum

$$\sum_{i=1}^{n-1} f(e_{i,i+1}).$$

When each edge in the graph has unit weight or $f: E \to \{1\}$, this is equivalent to finding the path with fewest edges. [1]

Figure: Example of shortest path in a graph

In the above figure, the shortest path is given by P = (A, C, E, F) with a total cost of 4 + 8 + 5 = 17

4. A historical perspective

The Floyd-Warshall algorithm is an example of a dynamic programming problem. It was first published by **Robert Floyd** in 1962. However, the working of this algorithm is similar to the algorithms previously published by Bernard Roy in 1959 and **Stephen Warshall** in 1962 for finding the transitive closure of a graph. The current formulation of the algorithm as three nested for loops was first described by Peter Ingerman in 1962. Hence, the algorithm is also known as the **Floyds algorithm**, the **Roy-Warshall algorithm** or the **Roy-Floyd algorithm**.

5. Algorithm description

The Floyd-Warshall algorithm considers the intermediate vertices of a shortest path, where an *intermediate vertex* of a simple path $P = (v_1, v_2, ..., v_n)$ is any vertex of P other than v_1 or v_n that is, any vertex in the set $P = (v_2, v_3, ..., v_{n-1})$

The algorithm relies on the observation that the vertices of G are V = (1, 2, ..., n), consider a subset V = (1, 2, ..., k) of vertices for some k. For any pair of vertices $i, j \in V$, consider all paths from i to j whose intermediate vertices are all drawn from V = (1, 2, ..., k), and let p be a minimum-weight path from among them.

The algorithm exploits a relationship between path p and shortest paths from i to j with all intermediate vertices in the set V = (1, 2, ..., k - 1). The relationship depends on whether or not k is an intermediate vertex of path p.

This gives rise to the following cases:

- 1. If k is not an intermediate vertex of path p, then all intermediate vertices of path p are in the set V = (1, 2, ..., k 1). Thus, a shortest path from vertex i to vertex j with all intermediate vertices in the set V = (1, 2, ..., k 1) is also a shortest path from i to j with all intermediate vertices in the set V = (1, 2, ..., k 1).
- 2. If k is an intermediate vertex of path p, then we decompose p into i, k and j. p_1 is a shortest path from i to k with all intermediate vertices in the set V = (1, 2, ..., k 1). Similarly, p_2 is a shortest path from vertex k to vertex j with all intermediate vertices in the set V = (1, 2, ..., k 1).

all intermediate vertices in $\{1, 2, \dots, k-1\}$ all intermediate vertices in $\{1, 2, \dots, k-1\}$

Figure: Path p is a shortest path from vertex i to vertex j, and k is the highest-numbered intermediate vertex of p [2]

5.1. A recursive solution

Let $d_{ij}^{(k)}$ be the weight of a shortest path from vertex i to vertex j for which all *intermediate* vertices are in the set V = (1, 2, ..., k). When k = 0, a path from vertex i to vertex j with no intermediate vertex numbered higher than 0 has no intermediate vertices at all. Such a path has at most one edge, and hence $d_{ij}^{(0)} = w_{ij}$. [2]

This can be represented as:

$$d_{ij}^{(k)} = \begin{cases} w_{ij}, & if \ k = 0 \\ \min(d_{ij}^{(k-1)}, d_{ik}^{(k-1)}, d_{kj}^{(k-1)}), & if k \geq 1 \end{cases}$$

```
FLOYD – WARSHALL(W)

n = W.rows

D^{(0)} = W

for k = 1 to n

let D^{(k)} = \left(d_{ij}^{(k)}\right) be a new n \times n matrix

for i = 1 to n

for j = 1 to n

d_{ij}^{(k)} = \min\left(d_{ij}^{(k-1)}, d_{ik}^{(k-1)}, d_{kj}^{(k-1)}\right)

return D^{(n)}
```

Figure: The Floyd-Warshall algorithmic steps

Figure: The Floyd-Warshall algorithm pseudocode

5.2. Matrix representation

Given the following graph:

Figure: Example directed graph

Suppose the above graph is denoted by G. Then, the corresponding matrix is given as:

Programmatically, this can be represented as:

```
g[][] = { {0 , 7 , 10 , INF, INF}, {INF, 0 , INF, INF, INF}, {INF, INF, 0 , INF, 3 }, {INF, 5 , INF, 0 , INF}, {INF, INF, INF, 9 , 0 } }
```

6. Implementation

```
/* Author: Zubin Kadva
 * Class: Analysis of Algorithms, Spring 2017
 * Project: Floyd-Warshall algorithm
 */
public class FloydWarshall {
    final static int INF = 999;
    static void shortestPath(int graph[][]) {
        int v = graph.length;
        int dist[][] = new int[v][v];
        // Matrix initialization is done here
        for (int i = 0; i < v; i++) {
            System.arraycopy(graph[i], 0, dist[i], 0, v);
        }
        for (int k = 0; k < v; k++) {
            // Start from a vertex as source
            for (int i = 0; i < v; i++) {
     // End at a vertex at the destination staring from the source
                for (int j = 0; j < v; j++) {
    // If vertex k is on the shortest path from i to j, then update
the value of dist[i][j]
                    if (dist[i][k] + dist[k][j] < dist[i][j]) {</pre>
                        dist[i][j] = dist[i][k] + dist[k][j];
                    }
                }
            }
        }
        // Print the shortest distance matrix
        print(dist);
    }
```

7. Generating random data

```
/* Author: Zubin Kadva

* Class: Analysis of Algorithms, Spring 2017

* Project: Floyd-Warshall algorithm

*/

static int[][] generate() {
    final int DIAGONAL = 9999;
    int V = 225;
    int[][] graph = new int[V][V];

// Initalize diagonals first
    for (int i = 0; i < V; i++) {
        graph[i][i] = DIAGONAL;
    }
</pre>
```

```
// Pick a random distance from 1 to 10
        for (int i = 0; i < V; i++) {
            for (int j = 0; j < V; j++) {
                if (i == j) {
                    continue;
                }
                graph[i][j] = new Random().nextInt(10);
            }
        }
        // Make sure there are INF distances also
        for (int i = 0; i < V; i++) {
            int a = new Random().nextInt(V);
            int b = new Random().nextInt(V);
            if (graph[a][b] != DIAGONAL) {
                graph[a][b] = INF;
            }
        }
        // Reset diagonals to 0
        for (int i = 0; i < V; i++) {
            for (int j = 0; j < V; j++) {
                if (graph[i][j] == DIAGONAL) {
                    graph[i][j] = 0;
                }
            }
        }
        return graph;
shortestPath(generate());
```

}

8. Analysis

Time Complexity

The print subroutine is expressed as:

$$T(n) = \sum_{i=0}^{v-1} \sum_{j=0}^{v-1} (1)$$

$$\therefore T(n) = \sum_{i=0}^{v-1} v$$

$$\therefore T(n) = v * v$$

$$\therefore T(n) = v^{2}$$

$$\therefore T(n) = O(v^{2})$$

Thus, complexity is $\mathbf{0}$ (\mathbf{v}^2).

The shortestPath routine is expressed as:

$$T(n) = \sum_{i=0}^{v-1} (1) + \sum_{k=0}^{v-1} \sum_{i=0}^{v-1} \sum_{j=0}^{v-1} (1)$$

$$\therefore T(n) = v + \sum_{k=0}^{v-1} \sum_{i=0}^{v-1} v$$

$$\therefore T(n) = v + \sum_{k=0}^{v-1} v * v$$

$$\therefore T(n) = v + v * v * v$$

$$\therefore T(n) = v + v^{3}$$

$$\therefore T(n) = O(v^{3})$$

Thus, the worst case complexity is $O(v^3)$.

The best, average case complexity of the algorithm is also v^3 and follows a similar proof. Hence, it follows that the **best case complexity** is $\Omega(v^3)$ and the **average case complexity** is $\theta(v^3)$.

Space complexity

We store the distances in a 2-D array with v rows and v columns. Therefore, the space complexity is given by

$$v * v = v^2$$

Thus, the complexity is $\mathbf{0}$ (\mathbf{v}^2).

In summary,

Performance	Best	$\Omega\left(v^{3} ight)$
	Average	$\theta (v^3)$
	Worst	$0(v^3)$
Spa	ace	$0(v^2)$

9. Graphs

9.1. Execution Time

V	Time (in ms)
5	1.13
10	5.48
15	7.86
20	10.8
25	18.5
30	21.3
35	27.5
40	30.7
45	36.8
50	43.1
55	48
60	49.7
65	54.1

70	60.6
75	73.6
80	87.6
85	101.5
90	115
95	129
100	147

Table: Floyd-Warshall execution time from v = 5 *to* 100

Graph: Scatter plot of the above data with a cubic trend line

9.2. Memory consumption

V	Memory (in MB)
5	7.24
25	7.58
45	7.92
65	8.25
85	8.92
105	9.93
125	10.93
145	12.28
165	13.62
185	15.3

Table: Floyd-Warshall execution time from v = 5 to 185

Graph: Scatter plot of the above data with a quadratic trend line

9.3. Average performance

V	Average
10	6.36
20	9.02
30	14.44
40	19.14
50	25.51
60	28.81
70	34.425
80	47.925
90	61.96
100	77.96

Table: Average performance for Floyd-Warshall

Graph: Scatter plot of the above data

10. References and tools

- [1] Shortest path from https://en.wikipedia.org/wiki/Shortest path problem
- [2] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, Clifford Stein, "Introduction to Algorithms", MIT Press, 2009
- [3] Algorithm pseudocode from https://en.wikipedia.org/wiki/Floyd%E2%80% 93Warshall algorithm

The NetBeans profiler for profiling the performance of the algorithm.

Microsoft Excel for plotting graphs of the gathered data.

Google Drawings for diagrammatic representation of data.