Solution: From (4.4),

$$\lambda_h u'_{h1}(\tilde{c}_{h1}) = \tilde{\eta}_1$$

for all h. By (3.9),

$$\frac{u'_{h1}(\tilde{c}_{h1})}{u'_{h0}(c_{h0})}$$

is an SDF for each h. Combining these, we have that

$$\frac{\tilde{\eta}_1}{\lambda_h u_{h0}'(c_{h0})}$$

is an SDF for each h. Thus,

$$\mathsf{E}\left[rac{ ilde{\eta}_1}{\lambda_h u_{h0}'(c_{h0})}
ight] = rac{1}{R_f}\,.$$

This implies

$$\lambda_h u'_{h0}(\tilde{c}_{h0}) = \eta_0 \,,$$

where we define $\eta_0 = R_f \mathsf{E}[\tilde{\eta}_1]$. Thus, the first-order conditions for the social planner's problem are satisfied at both date 0 and date 1. By concavity, this implies Pareto optimality.

4.9. Consider a model with date-0 endowments y_{h0} and date-0 consumption c_{h0} . Suppose all investors have log utility, a common discount factor δ , and no date-1 endowments. Do not assume markets are complete. Show that, in a competitive equilibrium, the date-0 value of the market portfolio is $\delta \sum_{h=1}^{H} c_{h0}$.

Solution: The marginal rate of substitution for investor h is $\delta c_{h0}/\tilde{c}_{h1}$. This is an SDF, so the cost of the date 1 consumption of investor h is

$$\mathsf{E}\left[\frac{\delta c_{h0}}{\tilde{c}_{h1}}\tilde{c}_{h1}\right] = \delta c_{h0}\,.$$

Adding over investors, the total cost of date 1 consumption (that is, the cost of the market portfolio) is $\delta \sum_{h=1}^{H} c_{h0}$.

- **4.10.** Suppose the payoff of the market portfolio \tilde{w}_m has k possible values. Denote these possible values by $a_1 < \cdots < a_k$. For convenience, suppose $a_i a_{i-1}$ is the same number Δ for each i. Suppose there is a risk-free asset with payoff equal to 1. Suppose there are k-1 call options on the market portfolio, with the exercise price of the ith option being a_i . The payoff of the ith option is $\max(0, \tilde{w}_m a_i)$.
 - (a) Show for each $i=1,\ldots,k-2$ that a portfolio that is long one unit of option i and short one unit of option i+1 pays Δ if $\tilde{w}_m \geq a_{i+1}$ and 0 otherwise. (This portfolio of options is a bull spread.)

Solution: When $\tilde{w}_m \geq a_{i+1}$, a long position in option i pays $\tilde{w}_m - a_i$, and a short position in option i+1 has cash flow $a_{i+1} - \tilde{w}_m$. The sum of these is $a_{i+1} - a_i = \Delta$.

- (b) Consider the following k portfolios. Show that the payoff of portfolio i is 1 when $\tilde{w}_m = a_i$ and 0 otherwise. (Thus, these are Arrow securities for the events on which \tilde{w}_m is constant.)
 - (i) i = 1: long one unit of the risk-free asset, short $1/\Delta$ units of option 1, and long $1/\Delta$ units of option 2. (This portfolio of options is a short bull spread.)
 - (ii) 1 < i < k: long $1/\Delta$ units of option i-1, short $2/\Delta$ units of option i, and long $1/\Delta$ units of option i+1. (These portfolios are butterfly spreads.)
 - (iii) i = k 1: long $1/\Delta$ units of option k 2 and short $2/\Delta$ units of option k 1.
 - (iv) i = k: long $1/\Delta$ units of option k 1.

Solution:

(i) Being long $1/\Delta$ units of option 2 and short $1/\Delta$ units of option 1 pays -1 when $\tilde{w}_m \geq a_2$ and 0 otherwise. Combining this with a payoff of 1 yields 1 when $\tilde{w}_m = a_1$ and 0 otherwise.

- (ii) Being long $1/\Delta$ units of option i-1 and short $1/\Delta$ units of option i pays 1 when $\tilde{w}_m \geq a_i$ and 0 otherwise. Being short $1/\Delta$ units of option i and long $1/\Delta$ units of option i+1 pays -1 when $\tilde{w}_m \geq a_{i+1}$ and 0 otherwise. The sum of these pays 1 when $\tilde{w}_m = a_i$ and 0 otherwise.
- (iii) Being long $1/\Delta$ units of option k-2 produces a payoff of 1 when $\tilde{w}_m = a_{k-1}$ and 2 when $\tilde{w}_m = a_k$. Being short $2/\Delta$ units of option k-1 produces a payoff of -2 when $\tilde{w}_m = a_k$. The sum of the two pays 1 when $\tilde{w}_m = a_{k-1}$ and 0 otherwise.
- (iv) Being long $1/\Delta$ units of option k-1 produces a payoff of 1 when $\tilde{w}_m=a_k$ and 0 otherwise.
- (c) Given any function f, define $\tilde{z} = f(\tilde{w}_m)$. Show that there is a portfolio of the risk-free asset and the call options with payoff equal to \tilde{z} .

Solution: Let z_i denote the value of \tilde{z} when $\tilde{w}_m = a_i$. The portfolio consisting of z_1 units of the risk-free asset, $(z_2 - z_1)/\Delta$ units of option 1, and $(z_{i+1} - 2z_i + z_{i-1})/\Delta$ units of option i for i = 2, ..., k-1 has payoff equal to \tilde{z} .

Chapter 5

Mean-Variance Analysis

5.1. Suppose there are two risky assets with means $\mu_1 = 1.08$, $\mu_2 = 1.16$, standard deviations $\sigma_1 = 0.25$, $\sigma_2 = 0.35$, and correlation $\rho = 0.30$. Calculate the GMV portfolio and locate it on Figure 5.1.

Solution: The GMV portfolio is

$$\pi = \frac{1}{\iota' \Sigma^{-1} \iota} \Sigma^{-1} \iota.$$

Substituting

$$\Sigma = \begin{pmatrix} 0.0625 & 0.02625 \\ 0.02625 & 0.1225 \end{pmatrix},$$

we obtain

$$\pi = \begin{pmatrix} 0.7264 \\ 0.2736 \end{pmatrix}.$$

Therefore, the mean and standard deviation of the GMV portfolio are $\mu_{gmv} = \mu'\pi = 1.1019$ and $\sigma_{gmv} = \sqrt{\pi'\Sigma\pi} = 0.2293$. This plots as the point that is furthest to the left on the hyperbola in Figure 5.1.

- **5.2.** Assume there is a risk-free asset. Consider an investor with quadratic utility $-(\tilde{w} \xi)^2/2$, and no labor income.
 - (a) Explain why the result of Exercise 2.5 implies that the investor will choose a portfolio on the mean-variance frontier.

Solution: From Exercise 2.5, the optimal portfolio is

$$\phi = \frac{\kappa^2}{1 + \kappa^2} (\zeta - w_0 R_f) \Sigma^{-1} (\mu - R_f \iota).$$

This is proportional to $\Sigma^{-1}(\mu - R_f \iota)$ and hence is on the mean-variance frontier.

(b) Under what circumstances will the investor choose a mean-variance efficient portfolio? Explain the economics of the condition you derive.

Solution: The frontier portfolios are scalar multiples of the vector $\Sigma^{-1}(\mu - R_f \iota)$. See (5.15). The positive scalar multiples are efficient (because they have $\mu_{\text{targ}} > R_f$), and the negative scalar multiples are inefficient. Therefore, when $\zeta > w_0 R_f$, the optimal portfolio for the quadratic utility investor is on the efficient part of the frontier, and when $\zeta < w_0 R_f$, the optimal portfolio is on the inefficient part of the frontier. ζ is the bliss level of wealth for the quadratic utility function. When $\zeta < w_0 R_f$, the investor can exceed the bliss level by simply holding the risk-free asset. Thus, higher returns can lower utility, so the investor holds an inefficient portfolio of risky assets.

(c) Re-derive the answer to Part (b) using the orthogonal projection characterization of the quadratic utility investor's optimal portfolio presented in Section ??.

Solution: Given that there is no labor income, \tilde{y}_p in (3.42) is zero. Also, given that there is a risk-free asset, $\zeta_p = \zeta$ and $\mathsf{E}[\tilde{m}_p \zeta_p] = \zeta \mathsf{E}[\tilde{m}_p] = \zeta/R_f$. Therefore, (3.42) implies

$$\tilde{x} = \zeta - (\zeta/R_f - w_0)\tilde{R}_p.$$

The return \tilde{R}_p is on the inefficient part of the frontier, so the return producing \tilde{x} is on the efficient part of the frontier if and onl if $\zeta/R_f-w_0>0$.

5.3. Suppose that the risk-free return is equal to the expected return of the GMV portfolio ($R_f = B/C$). Show that there is no tangency portfolio.

Hint: Show there is no δ and λ satisfying

$$\delta \Sigma^{-1}(\mu - R_f \iota) = \lambda \pi_{\text{mu}} + (1 - \lambda) \pi_{\text{gmv}}.$$

Recall that we are assuming μ is not a scalar multiple of ι .

Solution: The mean-variance frontier considering only the risky assets is the set $\lambda \pi_{\mu} + (1 - \lambda)\pi_{\iota}$ for some λ , and the mean-variance frontier including the risk-free asset is the set $\delta \Sigma^{-1}(\mu - R_f \iota)$ for some δ . For the frontiers to intersect, we must have

$$\delta \Sigma^{-1}(\mu - R_f \iota) = \lambda \pi_{\iota \iota} + (1 - \lambda) \pi_{\iota}.$$

This is equivalent to

$$\left(\delta - \frac{\lambda}{\iota' \Sigma^{-1} \mu}\right) \Sigma^{-1} \mu = \left(\delta R_f + \frac{1 - \lambda}{\iota' \Sigma^{-1} \iota}\right) \Sigma^{-1} \iota,$$

and premultiplying by Σ gives

$$\left(\delta - \frac{\lambda}{\iota' \Sigma^{-1} \mu}\right) \mu = \left(\delta R_f + \frac{1 - \lambda}{\iota' \Sigma^{-1} \iota}\right) \iota.$$

Because μ is not proportional to ι , this equation can hold only if

$$\delta - \frac{\lambda}{\iota' \Sigma^{-1} \mu} = \delta R_f + \frac{1 - \lambda}{\iota' \Sigma^{-1} \iota} = 0.$$

This implies

$$\frac{\lambda}{\iota'\Sigma^{-1}\mu}R_f + \frac{1-\lambda}{\iota'\Sigma^{-1}\iota} = 0\,,$$

and substituting $R_f = B/C = \iota' \Sigma^{-1} \mu / \iota' \Sigma^{-1} \iota$ yields

$$\frac{1}{\iota'\Sigma^{-1}\iota} = 0\,,$$

which is impossible.

5.4. Show that $\mathsf{E}[\tilde{R}^2] \geq \mathsf{E}[\tilde{R}_p^2]$ for every return \tilde{R} (thus, \tilde{R}_p is the minimum second-moment return). The returns having a given second moment a are the returns satisfying $\mathsf{E}[\tilde{R}^2] = a$, which is equivalent to

$$\operatorname{var}(\tilde{R}) + \mathsf{E}[\tilde{R}]^2 = a;$$

thus, they plot on the circle $x^2 + y^2 = a$ in (standard deviation, mean) space. Use the fact that \tilde{R}_p is the minimum second-moment return to illustrate graphically that \tilde{R}_p must be on the inefficient part of the frontier, with and without a risk-free asset (assuming $\mathsf{E}[\tilde{R}_p] > 0$ in the absence of a risk-free asset).

Solution: Using Facts 1, 2 and 8,

$$\mathsf{E}[\tilde{R}^2] = \mathsf{E}[(\tilde{R_p} + b\tilde{e}_p + \tilde{\varepsilon})^2] = \mathsf{E}[\tilde{R}_p^2] + b^2\mathsf{E}[\tilde{e}_p^2] + \mathsf{E}[\tilde{\varepsilon}^2] \geq \mathsf{E}[\tilde{R}_p^2] \,.$$

With a risk-free asset, the cone intersects the vertical axis at $R_f > 0$, and the point on the cone closest to the origin is on the lower part. In the absence of a risk-free asset, the assumption $\mathsf{E}[\tilde{R}_p] > 0$ implies that global minimum variance portfolio has a positive expected return (use the definition of $b_{\rm m}$ and Facts 16 and 17 — which imply $1 - \mathsf{E}[\tilde{e}_p] > 0$ — to deduce this). Thus, the point on the hyperbola closest to the origin must be on the lower part of the hyperbola.

5.5. Write any return \tilde{R} as $\tilde{R}_p + (\tilde{R} - \tilde{R}_p)$ and use the fact that $1 - \tilde{e}_p$ is orthogonal to excess returns—because \tilde{e}_p represents the expectation operator on the space of excess returns—to show that

$$\tilde{x} \stackrel{\text{def}}{=} \frac{1}{\mathsf{E}[\tilde{R}_p]} (1 - \tilde{e}_p)$$

is an SDF. When there is a risk-free asset, \tilde{x} , being spanned by a constant and an excess return, is in the span of the returns and hence must equal \tilde{m}_p . Use this fact to demonstrate (??).

Solution: We have

$$\begin{split} \mathsf{E}[\tilde{x}\tilde{R}] &= \frac{1}{\mathsf{E}[\tilde{R}_p]} \mathsf{E}[(1-\tilde{e}_p)\tilde{R}_p] + \frac{1}{\mathsf{E}[\tilde{R}_p]} \mathsf{E}[(1-\tilde{e}_p)(\tilde{R}-\tilde{R}_p)] \\ &= \frac{1}{\mathsf{E}[\tilde{R}_p]} \mathsf{E}[(1-\tilde{e}_p)\tilde{R}_p] \\ &= 1 \,, \end{split}$$

using $\mathsf{E}[\tilde{R}-\tilde{R}_p]=\mathsf{E}[\tilde{e}_p(\tilde{R}-\tilde{R}_p]$ for the second equality and Fact 8 for the third. Thus, \tilde{x} is an SDF. This implies

$$\frac{1}{R_f} = \mathsf{E}[\tilde{x}] = \frac{1 - \mathsf{E}[\tilde{e}_p]}{\mathsf{E}[\tilde{R}_p]} \,.$$

Moreover, $\tilde{x} = \tilde{m}_p$ implies

$$\tilde{R}_p = \frac{\tilde{x}}{\mathsf{E}[\tilde{x}^2]} \,,$$

and

$$\mathsf{E}[\tilde{x}^2] = \frac{1}{\mathsf{E}[\tilde{R}_p]^2} (1 - 2\mathsf{E}[\tilde{e}_p] + \mathsf{E}[\tilde{e}_p^2]) = \frac{1 - \mathsf{E}[\tilde{e}_p]}{\mathsf{E}[\tilde{R}_p]^2} = \frac{1}{R_f \mathsf{E}[\tilde{R}_p]} \,,$$

using Fact 16 for the second equality. Thus,

$$\tilde{R}_p = R_f \mathsf{E}[\tilde{R}_p] \left(\frac{1}{\mathsf{E}[\tilde{R}_p]} (1 - \tilde{e}_p) \right) = R_f (1 - \tilde{e}_p) \,.$$

- **5.6.** Establish the properties claimed for the risk-free return proxies:
 - (a) Show that $var(\tilde{R}) \ge var(\tilde{R}_p + b_m \tilde{e}_p)$ for every return \tilde{R} .

Solution: By Fact 15, the minimum variance return is $\tilde{R}_p + b\tilde{e}_p$ for some b. Using Fact 8, we have

$$\mathrm{var}(\tilde{R}_p + b\tilde{e}_p) = \mathrm{var}(\tilde{R}_p) - 2b\mathsf{E}[\tilde{R}_p]\mathsf{E}[\tilde{e}_p] + \mathrm{var}(\tilde{e}_p)\,,$$

and by Fact 17, this equals

$$\operatorname{var}(\tilde{R}_p) + \left(b^2(1 - \mathsf{E}[\tilde{e}_p]) - 2b\mathsf{E}[\tilde{R}_p]\right)\mathsf{E}[\tilde{e}_p].$$

By Fact 16, $\mathsf{E}[\tilde{e}_p] > 0$, so the minimum variance return is found by minimizing $(b^2(1-\mathsf{E}[\tilde{e}_p]) - 2b\mathsf{E}[\tilde{R}_p])$ in b, with solution $b = b_{\mathrm{m}}$.

(b) Show that $cov(\tilde{R}_p, \tilde{R}_p + b_z \tilde{e}_p) = 0.$

Solution: Using Fact 8, we have $cov(\tilde{R}_p, \tilde{R}_p + b_z \tilde{e}_p) = var(\tilde{R}_p) - b_z \mathsf{E}[\tilde{R}_p] \mathsf{E}[\tilde{e}_p] = 0.$

(c) Prove (??), showing that $\tilde{R}_p + b_c \tilde{e}_p$ represents the constant b_c times the expectation operator on the space of returns.

Solution: Using Fact 11 and the definition of b_c , we have

$$b_{\mathrm{c}}\mathsf{E}[\tilde{R}] = b_{\mathrm{c}}\mathsf{E}[\tilde{R}_p + b\tilde{e}_p + \tilde{\varepsilon}] = \mathsf{E}[\tilde{R}_p^2] + bb_{\mathrm{c}}\mathsf{E}[\tilde{e}_p] \,.$$

From Facts 2, 8, 11, and 16,

$$\begin{split} \mathsf{E}[\tilde{R}(\tilde{R}_p + b_\mathrm{c}\tilde{e}_p)] &= \mathsf{E}[(\tilde{R}_p + b\tilde{e}_p + \tilde{\varepsilon})(\tilde{R}_p + b_\mathrm{c}\tilde{e}_p)] \\ &= \mathsf{E}[\tilde{R}_p^2] + bb_\mathrm{c}\mathsf{E}[\tilde{e}_p^2] \\ &= \mathsf{E}[\tilde{R}_p^2] + bb_\mathrm{c}\mathsf{E}[\tilde{e}_p] \,. \end{split}$$

Thus,

$$b_{c} \mathsf{E}[\tilde{R}] = \mathsf{E}[\tilde{R}(\tilde{R}_{p} + b_{c}\tilde{e}_{p})].$$

5.7. If all returns are joint normally distributed, then \tilde{R}_p , \tilde{e}_p and $\tilde{\varepsilon}$ are joint normally distributed in the orthogonal decomposition $\tilde{R} = \tilde{R}_p + b\tilde{e}_p + \tilde{\varepsilon}$ of any return \tilde{R} (because \tilde{R}_p is a return and \tilde{e}_p and $\tilde{\varepsilon}$ are excess returns). Assuming all returns are joint normally distributed, use the orthogonal decomposition to compute the optimal return for a CARA investor.