Introduction to Computer Vision Course schedule and introduction

Dr. Sergio Escalera
University of Barcelona

INDEX

Schedule and evaluation

Introduction to computer vision

Schedule

Introduction to computer vision: subject summary

In this course we will give an introduction to the field of Computer Vision. We will review different computer vision sub-fields, starting from an overview on Image Processing, following by handcrafted descriptors and learning schemes, to more recent deep learning strategies, showing its applicability to real applications domains, such as detecting and segmenting objects to human behavior recognition and analysis, just to mention a few. We will review different state-of-the-art works and will provide some practical examples as additional material.

Each week:

Each week it will be two sessions of 1.5h mixed theoretical-practical topic exposition class.

The rest of the course are devoted to autonomous lectures, programming, and studying.

Schedule

Tuesday	Friday
13-feb Course introduction	Image processing
20-feb Handcrafted methods	CNN basics
27-feb Practical session introduction	Detection and segmentation
Recurrent and generative	
06-mar models	Human pose estimation
13-mar Video understanding	Practical session progress discussion
20-mar Presentations	Presentations
27-mar Exam	-

Practical sessions

Bias mitigation in apparent age recognition

Google Colab

Codalab

Schedule - evaluation

Evaluation

- During the course each student will deliver 2 Google Colab notebooks with practical exercises implementation. (PR).
- The final creativity vs score tradeoff for the final challenge leaderboard (3rd notebook) will add a score plus. (*PLUS*)
- The student will do a critical analysis paper presentation (P)
- At the end of the course an online test exam will be performed (*TS*). The final score (*FS*) will be computed as follows:
- FS = 0.5 * PR + 0.3 * P + 0.2 * TS + PLUS(0...2)
- A minimum score of 3.5 over 10 points is required for each part PR, P, and TS in order to compute the final score FS.

INDEX

Schedule and evaluation Introduction to computer vision

The Pattern Recognition pipeline

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 22, NO. 1, JANUARY 2000

Statistical Pattern Recognition: A Review

Anil K. Jain, Fellow, IEEE, Robert P.W. Duin, and Jianchang Mao, Senior Member, IEEE

Image processing principles

1		0	-1
2		0	-2
1		0	-1

Sobel

Handcrafted models

The Pattern Recognition pipeline

Identification
Detection
Segmentation
Classification

Binary classifiers
Multi-class classifiers
Multi-task learning
One-class classifiers
On-line learning
Large scale learning
etc.

Wall-E

Challenges in visual analysis

Intra-class variabilities

Interclass variabilities

Changes in illumination

Occlusions

Convolutional Neural Networks

Person
Car
Motorcycle
Helmet

Convolutional Neural Networks

Image segmentation and object detection

Multiple **detected** classes -> multi-class **classification**Multiple pixel labels -> Multi-label **segmentation**

Pose and behaviour analysis

Schedule

Tuesday	Friday
13-feb Course introduction	Image processing
20-feb Handcrafted methods	CNN basics
27-feb Practical session introduction	Detection and segmentation
Recurrent and generative	
06-mar models	Human pose estimation
13-mar Video understanding	Practical session progress discussion
20-mar Presentations	Presentations
27-mar Exam	-

- Papers for seminars:
 - Send an email:
 - sergio.escalera.guerrero@gmail.com before the deadline with a list of at least three priority ranked papers for presentation. Consider relevant conference and journal papers, such as CVPR, ICCV, ECCV, BMCV, NIPS, IJCV, TPAMI.
 - Deadline 7/3/2023
- You can (should) send the draft of your presentation for revision few days before your presentation, and the final version (mandatory) by the week of the presentation.

- You can contact me if you are interested in a research oriented computer vision & Deep learning master Project
 - sergio.escalera.guerrero@gmail.com