Show complete work—that is, all the steps needed to completely justify your answer. Simplify your answers as much as possible. You may refer to theorems that we proved in class.

- 1. (5 points) Name your favorite prime number.
- 2. Let $m, n \in \mathbb{Z}$.
 - a. (10 points) Carefully define gcd(m, n).
 - b. (15 points) Find $x, y \in \mathbb{Z}$ such that 29x + 34y = 1.

Solution:

(b) The Euclidean algorithm gives

$$34 = 29 + 5$$

 $29 = 5 \cdot 5 + 4$
 $5 = 4 \cdot 1 + 1$

and so

$$1 = 5 - 4 = 6 \cdot 5 - 29 = 6(34 - 29) - 29 = (-7) \cdot 29 + 6 \cdot 34$$

that is, x = -7 and y = 6 will do.

- 3. Let $m \in \mathbb{Z}_{>0}$.
 - a. (10 points) Carefully define an mth root of unity and a primitive mth root of unity.
 - b. (15 points) Find $z \in \mathbb{C}$ such that $z^{34} = i$.

Solution:

- (b) $z = e^{\pi i/68}$ will do, since $(e^{\pi i/68})^{34} = e^{\pi i/2} = i$.
- 4. Let $a, b, m \in \mathbb{Z}$ with m > 0.
 - a. (10 points) Carefully define $a \equiv b \pmod{m}$.
 - b. (15 points) Find $x \in \mathbb{Z}$ such that $29 x \equiv 1 \pmod{34}$.

Solution:

- (b) In 1(b) we saw that $(-7) \cdot 29 + 6 \cdot 34 = 1$, which implies $(-7) \cdot 29 \equiv 1 \pmod{34}$, and so $x \equiv -7 \equiv 27 \pmod{34}$ will do.
- 5. Let R be a ring.
 - a. (10 points) Carefully define what it means for $a \in R$ to be a unit.
 - b. (10 points) Show that [29] is a unit in \mathbb{Z}_{34} .

Solution:

(b) In 3(b) we saw that $27 \cdot 29 \equiv 1 \pmod{34}$, which means [27] and [29] are inverses in \mathbb{Z}_{34} ; in particular, [29] is a unit in \mathbb{Z}_{34} .