Nucleosynthesis

October 27, 2018

[1] Simple arguments lead to the conclusion that the large amount of 4 He could not have been produced in stars. The binding energy of 4 He is 28.3 MeV. When one nucleus of 4 He is formed, the energy released per one baryon is about 7.1 MeV $\simeq 1.1 \times 10^{-5}$ erg. Assuming that one quarter of all baryons has been fused into 4 He in stars during the last 10 billion years $(3.2 \times 10^{17} \text{ s})$, we obtain the estimate for the luminosity-to-mass ratio

$$\frac{L}{M_{\rm bar}} \simeq \frac{1}{4} \frac{1.1 \times 10^{-5} \text{ erg}}{(1.7 \times 10^{-24} \text{ gm}) \times (3.2 \times 10^{17} \text{ s})} \simeq 5 \frac{\text{erg}}{\text{gm s}} \simeq 2.5 \frac{L_{\odot}}{M_{\odot}}$$
(1)

where M_{\odot} and L_{\odot} are the solar mass and luminosity respectively. However, the observed $L/M_{\rm bar} \leqslant 0.05 L_{\odot}/M_{\odot}$. If the luminosity of baryonic matter in the past was not much larger than at present, less than 0.5% of ⁴He can be fused in stars.

1 Freeze-out of neutrons

[1]

[2]

References

- $[1] \ \ V. \ Mukhanov. \ Physical \ Foundations \ of \ Cosmology. \ Cambridge \ University \ Press, 2005.$
- [2] S. Weinberg. Cosmology. Oxford University Press, 2008.