Проект по случайным графам

Чегодаева Таисия и Купряков Дмитрий, ПАДИИ, 2 курс $25~{\rm mas}~2025~{\rm r}.$

Часть І

Исследование свойств характеристики.

Глава 1

Исследовать, как ведет себя числовая характеристика τ в зависимости от параметров распределений θ и ν , зафиксировав размер выборки и параметр процедуры построения графа.

- 1.1 Характеристика τ^{KNN} .
- 1.1.1 Распределение LogNormal с $\mu = \mathbf{0}$ и параметром $\theta.$

Зафиксируем размер выборки n=50 и количество соседей k=5. Число итераций для метода Монте-Карло равно 1000.

Сначала посмотрим на $\theta \in (0, 1)$.

При небольших θ среднее значение характеристики ≈ 190 и начинает расти при $\theta \longrightarrow 1.$

Теперь посмотрим на $\theta \in [1, 500]$.

При $\theta \in [1,100]$ наблюдается резкий рост среднего значения характеристики, после этого

1.1.2 Распределение Ехр с параметром λ .

Зафиксируем размер выборки n=50 и количество соседей k=5. Число итераций для метода Монте-Карло равно 1000.

Точно также будем перебирать $\nu \in (0,1)$ и $\nu \in [1,500]$.

Усредненная характеристика au^{KNN} принимает значения в окрестности числа 189 независимо от параметра ν .

1.1.3 Распределение SkewNormal с параметром α .

Зафиксируем размер выборки n=100 и количество соседей k=5. Число итераций для метода Монте-Карло равно 1000.

Будем перебирать $\theta = \{0.001, 0.01, 0.1, 0.5, 0.75, 1, 3, 5, 10, 15, 20, 50, 100, 500, 1000\}.$

Результаты

Усредненная характеристика τ^{KNN} при любых значениях параметра τ приближенно равна 9, но при больших значениях это приближение становится более заметным.

1.1.4 Распределение Normal с параметром-дисперсией σ и матожиданием 0.

Зафиксируем размер выборки n=100 и количество соседей k=5. Число итераций для метода Монте-Карло равно 1000.

Будем перебирать $\nu = \{0.001, 0.01, 0.1, 0.5, 0.75, 1, 3, 5, 10, 15, 20, 50, 100, 500, 1000\}.$

Результаты

Усредненная характеристика τ^{KNN} принимает значения в окрестности числа 9 независимо от параметра ν . Но при больших значениях параметра можно заметить здесь, что характеристика τ^{KNN} начинает отклоняться от своего среднего значения.

1.2 Характеристика τ^{dist} .

1.2.1 Распределение LogNormal с $\mu=\mathbf{0}$ и параметром $\theta.$

Зафиксируем размер выборки n=50 и расстояние dist=5. Число итераций для метода Монте-Карло равно 1000.

С увеличением θ среднее значение характеристики τ^{dist} уменьшается, и при $\theta \approx 100$ принимает значение 25. Затем на больших θ среднее значение немного увеличивается и колеблется около 27.

1.2.2 Распределение Ехр с параметром λ .

Зафиксируем размер выборки n=50 и расстояние dist=5. Число итераций для метода Монте-Карло равно 1000.

При больших ν среднее значение au^{dist} стремится к 1.

Замечание: для экспоненциального распределения видно более резкое уменьшение значения характеристики по сравнению с lognormal распределением.

1.2.3 Распределение SkewNormal с параметром α .

Зафиксируем размер выборки n=100 и расстояние dist=1. Число итераций для метода Монте-Карло равно 1000.

Будем перебирать

 $\theta = \{0.001, 0.01, 0.1, 0.5, 0.75, 1, 3, 5, 10, 15, 20, 50, 100, 500, 1000, 10000, 1500000, 300000, 500000, 15000000\}.$

Результаты.

Характеристика τ^{dist} при $\theta \in (0,1)$ принимает в среднем значение 5, а при больших θ принимает значения, близкие к 3. Это хорошо видно на графике.

1.2.4 Распределение Normal с параметром-дисперсией σ и матожиданием 0.

Зафиксируем размер выборки n=100 и расстояние dist=5. Число итераций для метода Монте-Карло равно 1000.

Будем перебирать

 $\nu = \{0.001, 0.01, 0.1, 0.5, 0.75, 1, 3, 5, 10, 15, 20, 50, 100, 500, 1000, 10000, 150000, 300000, 500000, 15000000\}$

Результаты

Характеристика τ^{dist} при $\nu \in (0,0.5)$ принимает значение 1 (т.е. при таких ν граф – полный). С увеличением параметра растет среднее значение характеристики (можно посмотреть здесь).

Глава 2

Исследовать, как ведет себя числовая характеристика τ в зависимости от параметров процедуры построения графа и размера выборки при фиксированных значениях $\theta = \theta_0$ и $\nu = \nu_0$.

[Тасина вставка] Сначала посмотрим на LogNormal и Ехр распределения при данных θ_0 и ν_0 :

Видно, что для построения дистанционного графа брать dist > 5 бессмысленно, т.к. при больших значениях dist число рёбер в графе стремится к $\binom{n}{2}$, где n – число вершин, соответственно, хроматическое число становится равным n для обоих распределений.

Для нас же важно понимать, как различить между собой эти распределения, поэтому гораздо интереснее смотреть на графы с меньшим числом рёбер и смотреть на ${\tt dist} \leq 5$.

2.1 Характеристика τ^{KNN} .

2.1.1 Распределение LogNormal с $\mu = 0$ и $\theta = \theta_0 = 1$ и распределение Exp с параметром $\nu = \nu_0 = \frac{1}{\sqrt{e^2 - e}}$.

Картинку смотрите тут: 11.png.

Замечания:

- τ^{KNN} для Exp распределения растет медленнее, чем для LogNormal распределения.
- Стоит посмотреть на значения характеристики при бОльших размерах выборки (еще не смотрела), т.к. при увеличении выборки разница между значениями растет.

Возможно, еще добавлю что-то сюда.

2.1.2 Распределение SkewNormal с параметром $\alpha_0 = 1$.

Будем перебирать параметры с 1000 итерациями метода Монтэ-Карло:

- 1. $n_samples = \{[1, 5, 10, 25, 50, 100, 300]\}$
- 2. k neighbours = $\{1, 3, 5, 7, 9, 15, 20\}$

Результаты

Можно заметить, что средняя величина характеристики τ^{KNN} увеличивается, по мере роста перебираемых параметров. Но также часто встречаются ситуация, когда среднее значение совпадает с реальным.

2.1.3 Распределение Normal с параметром-дисперсией $\sigma_0 = 1$ и матожиданием **0**.

Будем перебирать параметры с 1000 итерациями метода Монтэ-Карло:

- 1. $n \quad samples = \{[1, 5, 10, 25, 50, 100, 300]\}$
- 2. k neighbours = $\{1, 3, 5, 7, 9, 15, 20\}$

Результаты

Можем наблюдать такую же тенденцию – с ростом параметров растет среднее значение характеристики, даже значения принимаются такие же со сдвигом на небольшой ϵ .

${f 2.2}$ Характеристика au^{dist} .

2.2.1 Распределение LogNormal с $\mu = 0$ и $\theta = \theta_0 = 1 +$ распределение Exp с параметром $\nu = \nu_0 = \frac{1}{\sqrt{e^2 - e}}$.

Картинку смотрите тут: 14.png.

Пара замечаний:

- τ^{dist} для Exp распределения растет быстре
e, чем для Log Normal распределения.
- пока что au^{dist} рассматривать и изучать приятнее/проще, чем $au^{KNN}.$

2.2.2 Распределение SkewNormal с параметром $\alpha_0 = 1$.

Будем перебирать параметры с 1000 итерациями метода Монтэ-Карло:

- 1. $n \ samples = \{[1, 5, 10, 25, 50, 100, 300]\}$
- 2. $dists = \{0.001, 0.01, 0.1, 0.5, 1, 3, 5\}$

Результаты

Можно заметить, что больше всего на значение характеристики τ^{dist} влияет параметр $n_samples$, а с увеличением параметра dist увеличивается количество ребер из-за этого уменьшается количество независимых вершин.

2.2.3 Распределение Normal с параметром-дисперсией $\sigma_0=1$ и матожиданием 0.

Будем перебирать параметры с 1000 итерациями метода Монтэ-Карло:

- 1. $n \quad samples = \{[1, 5, 10, 25, 50, 100, 300]\}$
- 2. k neighbours = $\{1, 3, 5, 7, 9, 15, 20\}$

Результаты

Для каждого значения параметра $n_samples$ можем заметить довольно плотное распределение среднего значения характеристики τ^{dist} , но с ростом этого параметра растет количество выбросов и колебания.

Глава 3

Построить множество A в предположении $\theta = \theta_0$ и $\nu = \nu_0$ при максимальной допустимой вероятности ошибки первого рода $\alpha = 0.05$. Оценить мощность полученного критерия.

3.1 Характеристика τ^{KNN} .

Для визуализаций смотрите картинку 15.png.

Распределения смешаны между собой, и невозможно определить какуюлибо границу между ними. Выходит, что работать с KNN-графом довольно трудно. Посмотрим на дистанционный граф.

Но я все-таки хотела бы посмотреть на KNN-граф на большом числе вершин и уже после этого определиться с ответом.

3.2 Характеристика τ^{dist} .

Для визуализаций смотрите картинку 16.png.

А вот тут четко просматривается граница между двумя распределениями, особенно при б Ольших размерах выборки. Построим множество A (синие пунктирные линии на графике).

Посмотреть картинку можно тут: 17.png.

При увеличении dist и размера выборки граница между двумя распределениями становится более явной. И даже есть примеры, когда мощность максимальна и равна 1. Однако при небольших размерах выборки и маленьких dist распределения довольно трудно различимы. В таких случаях и ошибка первого рода большая.

Bывод: если дана выборка достаточного размера, то при выборе правильного dist (кажется, что значения 2, 3, 5 подходят) можно построить дистанционный граф так, что по хроматическому числу этого графа будет возможно определить исходное распределение.