

Information Management and Knowledge Management (IMKM)

Lecture 12 Basics and Tools of Knowledge Management

TUM

Chair for Information Systems

© Prof. Dr. H. Krcmar

Lecture Schedule

Information Management IT Controlling and IT Governance IT Sourcing and IT Offshoring IT Security, Privacy and Risk Management Guest Lecture: Natural Language Processing for IM

Guest Lecture: Digital Leadership and the CIO Role

IMKM Lecture 12: Basics and Tools of Knowledge Management

Outline

- 1. Core Processes of Knowledge Management
 - 1. Knowledge Sharing/ Distribution
 - 1. Organizational Metaknowledge
 - 2. Knowledge Usage
 - 3. Knowledge Conservation
 - 4. Knowledge Assessment

Learning Objectives

- You know the core process of knowledge management and can give examples for each step.
- You understand the concept of organizational metaknowledge and how it supports knowledge management.

Core Processes of Knowledge Management

Adapted from Probst et al. (2010)

Knowledge Sharing and Distribution

"How do I get knowledge to the right places?"

Task: Make knowledge accessible for the people who need it

• Challenge: Transfer knowledge from individuals to groups

Problems: Existing knowledge is not codified and accessible by

others

Barriers of Effective Knowledge Transfer

Percentage of respondents who are hampered by this knowledge transfer barriers:

Short in time	62
Low information about knowledge demand of others	38
Missing awareness of the importance of knowledge transfer	36
Attitude: "Knowledge is power" and "Shared knowledge weakens own position"	36
Missing transparency about knowledge bearers and knowledge sources	35
High specialization of employees	33
Little organized possibilities for knowledge transfer	32
Corporate culture	31
Missing or inadequate incentive systems	27
Hierarchical structures	25
Inadequate information infrastructure	20
Financial structure	9

Missing time is seen as number one enemy of effective knowledge transfer

Knowledge Sharing and Distribution

Approaches to Knowledge Sharing and Distribution

Room for Exchange

WIKIs and Enterprise Social Networks

(Reverse-) Mentoring

Example: Wikis

- Enable anyone to contribute
- Edit any page
- Low contribution threshold
- Uses a simplified mark-up language
- Can be used collaboratively

Example: Enterprise Social Networks

Common obstacles for knowledge sharing:

- Digital objects are difficult to find.
- When found, objects are difficult to assess.
- Systems are not strong at identifying people who can help find or assess objects.

"Social software" may help overcoming some difficulties.

Example: Enterprise Social Networks

Müller (2007)

Conversations in channels

- **Public**
- Private
- Direct messages

Conversations as searchable knowledge base

- Share channels with other firms
- Voice and video calls with screen sharing
- Integrated file sharing

Integration in other tools

- Salesforce
- **7**endesk
- Jira

Lehrstuhl für Wirtschaftsinformatik

Supporting Concept: Organizational Metaknowledge

"Organizational metaknowledge refers to knowledge about who knows what and who knows whom within the organization."

- Enterprise social networks can make invisible communication visible.
- Visible communication improves metaknowledge with two mechanisms
 - message transparency: Seeing coworkers' messages helps to infer about others' knowledge.
 - network translucence: Seeing the structure of coworkers' communication networks helps to infer about who coworkers talk with somewhat regularly.

Knowledge Usage

"How do I make sure knowledge is actually used?"

- Task: Ensure the productive use of organizational knowledge
- Challenge: Knowledge identification and distribution is not enough
- **Problems:** Various *barriers* inhibit the use of external knowledge

Example: Knowledge Communities

- Informal group of people with a shared interest in and affinity to a specific subject.
- Communities support, for example, platform functionalities in an app store
 - administration of membership and related work-flows
 - provision of tools for communication and cooperation among the members (e.g. bulletin boards, chats, repositories, etc.)
 - analysis of member data and profiles of members in order to give recommendations for contacts or likes to knowledge units

Example: Lessons Learned

Systematic **documentation** and processing of **experiences** in an organization to systematically learn from those previous experiences.

Example

Xerox: Shared database with tips of and for technicians to fix printers

Pro

- Preserves knowledge for the organization
- Avoids extra or duplicate work
- Reduces training time of new employees

Contra

- Additional effort for documentation
- Requires willingness of employees to share and use knowledge
- Management must plan in time and promote an open failure culture

Example: Best Practice Sharing

Document the **best possible solution** (in terms of efficiency or effectiveness when compared to others) to a given **problem** with the aim of replacing existing processes by best practices.

Example

Texas Instruments: **Best Practice Sharing Facilitators** to find, document and communicate best practices and promote sharing tools.

Pro

- Increase efficiency and/or effectiveness
- Solutions are proven in practice

Contra

- Often lack generalizability (too contextual or specific to an organization)
- Too strong focus may be limiting, ignoring other types of knowledge (e.g.
 customers)

 Lehner (2009), p. 190; Davenport & Prusak (1998), p. 169

Example: Story Telling/ Learning History

Method to create and distribute stories (learning histories) about an organization.

Common stories

"How will the organization deal with obstacles", "How will the boss react to mistakes?", "Is the big boss human?", "The rule-breaking story"...¹

Pro

- Sets knowledge into a context and is thus well-suited for complex issues.
- Human beings learn particularly well from stories
- More flexible than Lessons Learned or Best Practices

Contra

- Highly time-consuming / high personnel effort to create stories
- No short-term benefits

Knowledge Conservation

"How do I guard myself against knowledge losses?"

Task: Select important knowledge, ensure adequate storage

and perform regular *updates*

Challenge: Ensure existing knowledge is useable in the future

Problems: Knowledge can be lost through re-organization,

movement of labor

Knowledge repositories

are depositories for **explicit** knowledge in which knowledge units (KU) are registered, administrated and are made accessible for potential users.

Core functionalities are:

- storage of KU's
- supplementation of KU's through meta data
- classification and indexing of KU's in order to offer a search possibility within a KU
- documentation of connections between KU's, people and other units (e.g. key words)
- documentation of change histories of KU's
- support of editorial processes for KU's
- search functionality supporting the identification of KU's

Metadata

Taxonomy: poly-hierarchical classification

Example for Knowledge Conservation: Ontology

Concepts (Vehicle, Water, Air) are set into relation (hierarchic, synonym, spatial) to each other

Negative Reinforcement Cycle of Knowledge Losses

Adapted from Probst et al. (2010)

Knowledge Assessment

"Do the investments in knowledge management pay off?"

- Measure efforts in knowledge management
- Reveal success and failure of knowledge management
- Without measures like this, knowledge management is not efficient and the management cycle remains incomplete.
- For measuring knowledge, it is crucial to select suitable **indicators**.
- Example: Balanced Scorecard

Knowledge Assessment: Selection of indicators with Balanced Scorecard

Kaplan & Norton (1992)

Example for Knowledge Assessment: Benchmarking

Systematic comparison of products, services or processes to identify strengths and weaknesses.

Forms

- Internal (departments, business units)
- Competitive (other companies)
- Functional (non-identical processes)
- Generic (statistical comparison with other companies)

Examples

- KM Performance Framework (de Gooijer, 2000): BSC + behavioural sci.
- Process-oriented Performance Measurement (PPM)

Core Processes of Knowledge Management

Lehrstuhl für Wirtschaftsinformatik

Quiz Time!

Literature

Core Literature

- Krcmar, H. (2015): Informationsmanagement (Vol. 6), Springer Verlag, Berlin 2015. pp. 660-695.
- **Probst/Raub/Romhardt (2010):** Wissen managen: Wie Unternehmen ihr wertvollste Ressource optimal nutzen (6. Aufl.). Gabler, Wiesbaden.

Additional Reading

• M. Bellmann, H. Krcmar, T. Sommerlatte (2002): Praxishandbuch Wissensmanagement. Strategien - Methoden – Fallbeispiele. Symposion, Düsseldorf

References

- Ackoff, R. L. (1989). From Data to Wisdom. Journal of applied systems analysis, 16(1), 3-9.
- Becker, J., Knackstedt, R., Matzner, M., & Poeppelbuss, J. (2008). The Research Map of Hybrid Value Creation: A Repository for Research Results. Paper presented at the RESER, Stuttgart.
- Bellmann, M., Krcmar, H., Sommerlatte, T. (2002). Praxishandbuch Wissensmanagement. Strategien Methoden Fallbeispiele. Düsseldorf: Symposion Publishing.
- Bhatt, D. (2000). EFQM Excellence Model and Knowledge Management Implications. In.
- Broadbent, M. (1997). The Emerging Phenomenon of Knowledge Management. The Australian library journal, 46(1), 6-24.
- Brooking, A. (1999). Corporate Memory: Strategies for Knowledge Management. London: Thompson Business Press.
- Davenport, E., & Cronin, B. (2000). Knowledge Management: Semantic Drift or Conceptual Shift? Journal of Education for library and information Science, 41(4), 294-306.
- Davenport, T., Prusak, L. (1998). Working Knowledge: How Organization Manage What They Know. Boston: Harvard Business School Press.
- Grudin, J. (2006). Enterprise Knowledge Management and Emerging Technologies. Paper presented at the 39th Annual Hawaii International Conference on System Sciences, Hawaii.
- Heisig, P., Will, M. (2003). Wachstum mit Wissen Geschäftsprozessorientiertes Wissensmanagement zur Unterstützung wissensintensiver Dienstleistungen Ein Projektbericht. Seneka Newsletter, 13, 8-12.
- Heisig, P. (2005). Integration von Wissensmanagement in Geschäftsprozesse. Berlin: Technische Universität Berlin.

References

- Kaplan, R. S., Norton D. P. (1992). The Balanced Scorecard: Measures that Drive Performance. Harvard Business Review Jan Feb, 71–80.
- Krcmar, H. (2015). Informationsmanagement. Berlin Heidelberg: Springer Gabler.
- Krcmar, H. (2015). Leadership in Digital Transformation. Retrieved from openSAP website: https://open.sap.com/courses/ldt1-tl, last accessed 09/01/2019.
- Lank, E. (1997). Leveraging Invisible Assets: The Human Factor. Long range planning, 30(3), 406-412.
- Müller, C. (2007). Graphentheoretische Analyse der Evolution von Wiki-basierten Netzwerken für selbstorganisiertes Wissensmanagement. (PhD), Universität Potsdam,
- Nonaka, I. (1994). A Dynamic Theory of Organizational Knowledge Creation. Organization Science, 5(1), 14-37.
- Probst, G., Raub, S., & Romhardt, K. (2010). Wissen managen: Wie Unternehmen ihre wertvollste Ressource optimal nutzen (6 ed.). Wiesbaden: Springer Gabler.
- Rehäuser, J., Krcmar, H. (1996). Wissensmanagement im Unternehmen. In G. Schreyögg, Conrad, P. (Ed.), Wissensmanagement (6 ed., pp. 1-40). Berlin, New York: de Gruyter.
- Zack, M. H. (1999). Developing a Knowledge Strategy. California Management Review, 41(3), 125–145.

