Innopolis University

Essentials of Analytical Geometry and Linear Algebra I Final Exam

December 18, 2020.

VARIANT 1

Full name:												Group:	
	Task:	1	2	3	4	5	6	7	8	9	10	Total	
	Score:											of 40 pts.	

1. (2 points) Determine whether the vectors are linearly independent. Justify your answer.

$$\begin{bmatrix} 2 \\ 0 \\ -4 \end{bmatrix}, \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}, \begin{bmatrix} 4 \\ -4 \\ -18 \end{bmatrix}$$

- 2. (4 points) Decompose the vector $p = [2, -3, 2]^{\top}$ into components parallel and perpendicular to the vector $q = [12, 3, 4]^{\top}$. Find the lengths of both projections.
- 3. (5 points) Find the inverse of the matrices A and B. $A = \begin{bmatrix} 2 & -4 \\ 1 & -3 \end{bmatrix}$; $B = \begin{bmatrix} 2 & 0 & -4 \\ 1 & 2 & 3 \\ 4 & -4 & -18 \end{bmatrix}$
- 4. (3 points) Given two bases for \mathbb{R}^2 (all coordinates are given in standard basis):

$$a_1 = \begin{bmatrix} 2 \\ 4 \end{bmatrix}$$
, $a_2 = \begin{bmatrix} -1 \\ 8 \end{bmatrix}$ and $b_1 = \begin{bmatrix} 6 \\ 12 \end{bmatrix}$, $b_2 = \begin{bmatrix} 0 \\ 16 \end{bmatrix}$

Find the change of coordinates matrix from basis $\mathcal{A} = \{a_1, a_2\}$ to $\mathcal{B} = \{b_1, b_2\}$.

- 5. (3 points) Find the equation of the line passing through the intersection of 2x + y = 8 and 3x + 7 = 2y and parallel to 4x + y = 11.
- 6. (3 points) Find the equation of the line passing through the point $[3, 2, -6]^{\top}$ and perpendicular to the plane 3x y 2z + 2 = 0.
- 7. (3 points) Find the eccentricity, foci and the length of the latus rectum of the ellipse: $3x^2 + 4y^2 12x 8y + 4 = 0$.
- 8. (5 points) Find the equation of the tangent to the ellipse $x^2 + 2y^2 = 6$ at (2, -1).
- 9. (6 points) Find the equation to the cone whose vertex is the origin and the base circle x = a, $y^2 + z^2 = b^2$ and show that the section of the cone by a plane parallel to the xy-plane is hyperbola.
- 10. (6 points) Find the equation of the sphere which touches the coordinate axes, whose centre lies in the positive octant and has radius 4.

1

Full name:	Group:

Task:	1	2	3	4	5	6	7	8	Total
Score:									

1. (2 points) Determine whether the vectors are linearly independent. Justify your answer.

$$\begin{bmatrix} 2 \\ 6 \\ -6 \end{bmatrix}, \begin{bmatrix} 2 \\ -3 \\ -1 \end{bmatrix}, \begin{bmatrix} 3 \\ 0 \\ -4 \end{bmatrix}$$

- 2. (4 points) Decompose the vector $p = [0, -2, 1]^{\top}$ into components parallel and perpendicular to the vector $q = [2, -1, 0]^{\top}$. Find the lengths of both projections.
- 3. (5 points) Find the inverse of the matrices A and B. $A = \begin{bmatrix} 5 & -2 \\ 9 & 1 \end{bmatrix}$; $B = \begin{bmatrix} 2 & 6 & -6 \\ 2 & -3 & -1 \\ 3 & 0 & -4 \end{bmatrix}$
- 4. (3 points) Given two bases for \mathbb{R}^2 (all coordinates are given in standard basis):

$$a_1 = \begin{bmatrix} 3 \\ 1 \end{bmatrix}$$
, $a_2 = \begin{bmatrix} 2 \\ -6 \end{bmatrix}$ and $b_1 = \begin{bmatrix} -2 \\ -3 \end{bmatrix}$, $b_2 = \begin{bmatrix} -5 \\ 4 \end{bmatrix}$

Find the change of coordinates matrix from basis $\mathcal{A} = \{a_1, a_2\}$ to $\mathcal{B} = \{b_1, b_2\}$.

- 5. (3 points) Find the equation of the line passing through the intersection of 2x 5 = 4y and x + 3y = 12 and parallel to x 3y = 13.
- 6. (3 points) Find the equation of the line passing through the point $[-2, 3, -6]^{\top}$ and perpendicular to the plane 2x 3y + z 5 = 0.
- 7. (3 points) Find the eccentricity, foci and the center of the hyperbola:

$$9x^2 - 4y^2 + 18x + 16y - 43 = 0$$

- 8. (5 points) Find the equation of the tangent line to the hyperbola $3x^2 2y^2 + 20 = 0$ at (2, 4).
- 9. (6 points) Find the equation to the cone whose vertex is the origin and the base circle x = a, $y^2 + 3z^2 = b^2 + 4$ and show that the section of the cone by a plane parallel to the xy-plane is hyperbola.
- 10. (6 points) Find the equation of the sphere which touches the coordinate axes, whose centre lies in the positive octant and has radius 5.

Innopolis University

Essentials of Analytical Geometry and Linear Algebra I Final Exam December 18, 2020.

VARIANT 3

Full name:												Group:
Task:	1	2	3	4	5	6	7	8	9	10	Total]

of 40 pts.

1. (2 points) Determine whether the vectors are linearly independent. Justify your answer.

$$\begin{bmatrix} 1 \\ 4 \\ 8 \end{bmatrix}, \begin{bmatrix} 2 \\ 2 \\ 3 \end{bmatrix}, \begin{bmatrix} 6 \\ 0 \\ -4 \end{bmatrix}$$

Score:

2. (4 points) Decompose the vector $p = [1, -5, 2]^{\top}$ into components parallel and perpendicular to the vector $q = [1, 1, 1]^{\top}$. Find the lengths of both projections.

3. (5 points) Find the inverse of the matrices A and B. $A = \begin{bmatrix} -2 & -1 \\ 3 & 4 \end{bmatrix}$; $B = \begin{bmatrix} 1 & 4 & 8 \\ 2 & 2 & 3 \\ 4 & -2 & -7 \end{bmatrix}$

4. (3 points) Given two bases for \mathbb{R}^2 (all coordinates are given in standard basis):

$$a_1 = \begin{bmatrix} 6 \\ 2 \end{bmatrix}$$
, $a_2 = \begin{bmatrix} 4 \\ -12 \end{bmatrix}$ and $b_1 = \begin{bmatrix} -2 \\ -3 \end{bmatrix}$, $b_2 = \begin{bmatrix} -5 \\ 4 \end{bmatrix}$

Find the change of coordinates matrix from basis $\mathcal{A} = \{a_1, a_2\}$ to $\mathcal{B} = \{b_1, b_2\}$.

5. (3 points) Find the equation of the line passing through the intersection of 2x + 2y = 8 and 3x + 7 = 2y and parallel to 2x - y = 5.

6. (3 points) Find the equation of the line passing through the point $[5, 5, 4]^{\top}$ and perpendicular to the plane -x - 2y - 5z = 9.

7. (3 points) Find the eccentricity, foci and the length of the latus rectum of the ellipse: $16x^2+25y^2-32x+50y-359=0,$

8. (5 points) Find the equation of the tangent to the ellipse $\frac{(x-3)^2}{4} + \frac{y^2}{9} = 1$ at the point (1.4, 1.8).

9. (6 points) Find the equation to the cone whose vertex is the origin and the base circle x = a, $2y^2 + z^2 = b^2 - 5$ and show that the section of the cone by a plane parallel to the xy-plane is hyperbola.

10. (6 points) Find the equation of the sphere which touches the coordinate axes, whose centre lies in the positive octant and has a radius $4\sqrt{2}$.