# Question-1:

### 1. Importing Required Package

import pandas as pd import seaborn as sns import numpy as np from matplotlib import pyplot as plt %matplotlib inline

# Question-2:

### 2.Loading the Dataset

df = pd.read\_csv("abalone.csv")df

#### Result:

|      | Sex | Length | Diameter | Height  | Whole weight | Shucked weight | Viscera weight | Shell weight | Rings |
|------|-----|--------|----------|---------|--------------|----------------|----------------|--------------|-------|
| 0    | M   | 0.455  | 0.365    | 0.095   | 0.5140       | 0.2245         | 0.1010         | 0.1500       | 15    |
| 1    | M   | 0.350  | 0.265    | 0.090   | 0.2255       | 0.0995         | 0.0485         | 0.0700       | - 87  |
| 2    | F   | 0.530  | 0.420    | 0.135   | 0.6770       | 0.2565         | 0.1415         | 0.2100       | 9     |
| 3    | M   | 0.440  | 0.365    | 0.125   | 0.5160       | 0.2155         | 0.1140         | 0.1550       | 10    |
| 4    | - 1 | 0.330  | 0.255    | 0.080   | 0.2050       | 0.0895         | 0.0395         | 0.0550       | 7     |
|      | 555 |        | 1000     | (46.00) | 1222         |                |                |              |       |
| 4172 | F   | 0.565  | 0.450    | 0.165   | 0.8870       | 0.3700         | 0.2390         | 0.2490       | 11    |
| 4173 | M   | 0.590  | 0.440    | 0.135   | 0.9660       | 0.4390         | 0.2145         | 0.2605       | 10    |
| 4174 | M   | 0.600  | 0.475    | 0.205   | 1.1760       | 0.5255         | 0.2875         | 0.3080       | 9     |
| 4175 | F   | 0.625  | 0.485    | 0.150   | 1.0945       | 0.5310         | 0.2610         | 0.2960       | 10    |
| 4176 | M   | 0.710  | 0.555    | 0.195   | 1.9485       | 0.9455         | 0.3765         | 0.4950       | 12    |

#### 3. Visualizations

# Question-3:

### 3.1Univariate Analysis

sns.displot(df.Sex)

#### Result:



### 3.2 Bi-Variate Analysis

### df.plot.line()

#### Result:

<matplotlib.axes.\_subplots.AxesSubplot at 0x7f6c81d866d0>



### 3.3 Multi - Variate Analysis

sns.lmplot("Diameter", "Length", df, hue="Length", fit reg=False);

#### Result:



## Question-4:

4. Perform descriptive statistics on the dataset.

|   |       | Length      | Diameter    | Height      | Whole weight | Shucked weight | Viscera weight | Shell weight | Rings       |
|---|-------|-------------|-------------|-------------|--------------|----------------|----------------|--------------|-------------|
|   | count | 4177.000000 | 4177.000000 | 4177.000000 | 4177.000000  | 4177.000000    | 4177.000000    | 4177.000000  | 4177.000000 |
|   | mean  | 0.523992    | 0.407881    | 0.139516    | 0.828742     | 0.359367       | 0.180594       | 0.238831     | 9.933684    |
|   | std   | 0.120093    | 0.099240    | 0.041827    | 0.490389     | 0.221963       | 0.109614       | 0.139203     | 3.224169    |
|   | min   | 0.075000    | 0.055000    | 0.000000    | 0.002000     | 0.001000       | 0.000500       | 0.001500     | 1.000000    |
|   | 25%   | 0.450000    | 0.350000    | 0.115000    | 0.441500     | 0.186000       | 0.093500       | 0.130000     | 8.000000    |
|   | 50%   | 0.545000    | 0.425000    | 0.140000    | 0.799500     | 0.336000       | 0.171000       | 0.234000     | 9.000000    |
|   | 75%   | 0.615000    | 0.480000    | 0.165000    | 1.153000     | 0.502000       | 0.253000       | 0.329000     | 11.000000   |
| : | max   | 0.815000    | 0.650000    | 1.130000    | 2.825500     | 1.488000       | 0.760000       | 1.005000     | 29.000000   |

# Question-5:

5. Handle the Missing values.

```
data = pd.read_csv("abalone.csv")
  pd.isnull(data["Sex"])
Result:
   0
           False
           False
   2
           False
           False
           False
          ...
False
   4172
   4173
           False
   4174
           False
   4175
           False
   4176 False
   Name: Sex, Length: 4177, dtype: bool
```

# Question-6:

6. Find the outliers and replace the outliers.

```
\label{eq:dfconstraint} \begin{split} df["Rings"] &= np.where(df["Rings"] > &10, \; np.median, df["Rings"]) \\ df["Rings"] \end{split}
```

### Question-7:

7. Check for Categorical columns and perform encoding.

```
pd.get dummies(df, columns=["Sex", "Length"], prefix=["Length", "Sex"]).head()
```

#### Result:

| D      | iameter   | Height | wnoie<br>weight | Snucked<br>weight | viscera<br>weight | weight | Rings                                                              | Length_F | Length_I | Length_M |     | Sex_0.745 | Sex_0.75 | Sex_0.755 | Sex_0.76 | Sex_0.765 | Sex_0.77 | Sex_0.775 | Sex_0.78 | Sex_0.8 |
|--------|-----------|--------|-----------------|-------------------|-------------------|--------|--------------------------------------------------------------------|----------|----------|----------|-----|-----------|----------|-----------|----------|-----------|----------|-----------|----------|---------|
| 0      | 0.365     | 0.095  | 0.5140          | 0.2245            | 0.1010            | 0.150  | <pre><function 0x7f6c9fd64cb0="" at="" median=""></function></pre> | 0        | 0        | 1        |     | 0         | 0        | 0         | 0        | 0         | 0        | 0         | 0        | 0       |
| 1      | 0.265     | 0.090  | 0.2255          | 0.0995            | 0.0485            | 0.070  | 7                                                                  | 0        | 0        | - 11     | 1   | 0         | 0        | 0         | 0        | 0         | 0        | 0         | 0        | 0       |
| 2      | 0.420     | 0.135  | 0.6770          | 0.2565            | 0.1415            | 0.210  | 9                                                                  |          | 0        | 0        |     | 0         | 0        | 0         | 0        | 0         | 0        | 0         | 0        | 0       |
| 3      | 0.365     | 0.125  | 0.5160          | 0.2155            | 0.1140            | 0.155  | 10                                                                 | 0        | 0        | - 1      | 11. | 0         | 0        | 0         | 0        | 0         | 0        | 0         | 0        | 0       |
| 4      | 0.255     | 0.080  | 0.2050          | 0.0895            | 0.0395            | 0.055  | 7                                                                  | 0        |          | 0        |     | 0         | 0        | 0         | 0        | 0         | 0        | 0         | 0        | 0       |
| 5 rows | × 144 col | lumns  |                 |                   |                   |        |                                                                    |          |          |          |     |           |          |           |          |           |          |           |          |         |

### Question-8:

- 8. Split the data into dependent and independent variables
- 8.1 Split the data into Independent variables.

```
X = df.iloc[:, :-2].values
print(X)
```

#### Result:

```
[['M' 0.455 0.365 ... 0.514 0.2245 0.101]
['M' 0.35 0.265 ... 0.2255 0.0995 0.0485]
['F' 0.53 0.42 ... 0.677 0.2565 0.1415]
...
['M' 0.6 0.475 ... 1.176 0.5255 0.2875]
['F' 0.625 0.485 ... 1.0945 0.531 0.261]
['M' 0.71 0.555 ... 1.9485 0.9455 0.3765]]
```

### 8.2 Split the data into Dependent variables.

```
Y = df.iloc[:, -1].values
print(Y)
```

#### Result:

# Question-9:

### 9. Scale the independent variables.

```
import pandas as pd
from sklearn.preprocessing import MinMaxScaler
scaler = MinMaxScaler()
df[["Length"]] = scaler.fit_transform(df[["Length"]]) print(df)
```

#### Result:

|      | Sex | Length     | Diameter | Height | Whole we                                                                                     | eight : | Shucked | weight   | N    |
|------|-----|------------|----------|--------|----------------------------------------------------------------------------------------------|---------|---------|----------|------|
| 8    | M   | 0.513514   | 0.365    | 0.095  | 0.                                                                                           | 5140    |         | 0.2245   |      |
| 1    | M   | 0.371622   | 0.265    | 0.090  | 0.                                                                                           | 2255    |         | 0.0995   |      |
| 2    | F   | 0.614865   | 0.420    | 0.135  | 0.                                                                                           | 6770    |         | 0.2565   |      |
| 3    | M   | 0.493243   | 0.365    | 0.125  | 0.                                                                                           | 5160    |         | 0.2155   |      |
| 4    | I   | 0.344595   | 0.255    | 0.080  | 0.                                                                                           | 2050    |         | 0.0895   |      |
|      |     |            |          |        |                                                                                              |         |         |          |      |
| 4172 | F   | 0.662162   | 0.450    | 0.165  | 0.                                                                                           | 8870    |         | 0.3700   |      |
| 4173 | M   | 0.695946   | 0.440    | 0.135  | 0.                                                                                           | 9660    |         | 0.4390   |      |
| 4174 | M   | 0.709459   | 0.475    | 0.205  | 1.                                                                                           | 1760    |         | 0.5255   |      |
| 4175 | F   | 0.743243   | 0.485    | 0.150  | 1.                                                                                           | 0945    |         | 0.5310   |      |
| 4176 | M   | 0.858108   | 0.555    | 0.195  | 1.                                                                                           | 9485    |         | 0.9455   |      |
|      | Vis | cera weigh | t Shell  | weight |                                                                                              |         |         | R        | ings |
| 0    |     | 0.101      | 9        | 0.1500 | <function< td=""><td>median</td><td>at 0x7</td><td>f6c9fd64</td><td>cb0&gt;</td></function<> | median  | at 0x7  | f6c9fd64 | cb0> |
| 1    |     | 0.048      | 5        | 0.0700 |                                                                                              |         |         |          | 7    |
| 2    |     | 0.141      | 5        | 0.2100 |                                                                                              |         |         |          | 9    |
| 3    |     | 0.114      | 9        | 0.1550 |                                                                                              |         |         |          | 10   |
| 4    |     | 0.039      | 5        | 0.0550 |                                                                                              |         |         |          | 7    |
|      |     |            |          |        |                                                                                              |         |         |          |      |
| 4172 |     | 0.239      | 9        | 0.2490 | <function< td=""><td>median</td><td>at 0x7</td><td>f6c9fd64</td><td>cb0&gt;</td></function<> | median  | at 0x7  | f6c9fd64 | cb0> |
| 4173 |     | 0.214      | 5        | 0.2605 |                                                                                              |         |         |          | 10   |
| 4174 |     | 0.287      | 5        | 0.3080 |                                                                                              |         |         |          | 9    |
| 4175 |     | 0.261      | 9        | 0.2960 |                                                                                              |         |         |          | 10   |
| 4176 |     | 0.376      | 5        | 0.4950 | <function< td=""><td>median</td><td>at 0x7</td><td>f6c9fd64</td><td>cb0&gt;</td></function<> | median  | at 0x7  | f6c9fd64 | cb0> |

[4177 rows x 9 columns]

### Question-10:

### 10. Split the data into training and testing

```
from sklearn.model selection import train test split
  train size=0.8
  X = \overline{df}.drop(columns = ['Sex']).copy()y
  = df['Sex']
  X train, \bar{X} rem, y train, y rem = train test split(X,y, train size=0.8)
  test size = 0.5
  X valid, X test, y valid, y test = train test split(X rem,y rem, test size=0.5)print(X train.shape),
  print(y train.shape)
  print(X_valid.shape), print(y_valid.shape)
  print(X test.shape), print(y test.shape)
Result:
  (3341, 8)
  (3341,)
  (418, 8)
  (418,)
  (418, 8)
  (418,)
  (None, None)
  Question-11:
  11.Build the Model
  test size = 0.33
  seed = 7
```

X train, X test, y train, y test = train test split(X, y, test size=test size, random state=seed)

### Question-12:

12. Train the model

X train

#### Result:

| Ring                                                                                                                                                                                  | Shell weight | Viscera weight | Shucked weight | Whole weight | Height | Diameter | Length   |      |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|----------------|----------------|--------------|--------|----------|----------|------|
| <function 0x7f6c9fd64cb0<="" at="" median="" td=""><td>0.2575</td><td>0.1605</td><td>0.3790</td><td>0.8300</td><td>0.145</td><td>0.425</td><td>0.682432</td><td>4131</td></function>  | 0.2575       | 0.1605         | 0.3790         | 0.8300       | 0.145  | 0.425    | 0.682432 | 4131 |
| <function 0x7f6c9fd64cb0<="" at="" median="" td=""><td>0.4900</td><td>0.3205</td><td>0.4560</td><td>1.3955</td><td>0.185</td><td>0.530</td><td>0.797297</td><td>3204</td></function>  | 0.4900       | 0.3205         | 0.4560         | 1.3955       | 0.185  | 0.530    | 0.797297 | 3204 |
| <pre><function 0x7f6c9fd64cb03<="" at="" median="" pre=""></function></pre>                                                                                                           | 0.5165       | 0.3935         | 0.7295         | 1.7975       | 0.205  | 0.575    | 0.844595 | 2622 |
|                                                                                                                                                                                       | 0.0035       | 0.0065         | 0.0050         | 0.0105       | 0.035  | 0.095    | 0.074324 | 2114 |
| <function 0x7f6c9fd64cb03<="" at="" median="" td=""><td>0.5365</td><td>0.5640</td><td>0.9515</td><td>2.1730</td><td>0.215</td><td>0.575</td><td>0.871622</td><td>1422</td></function> | 0.5365       | 0.5640         | 0.9515         | 2.1730       | 0.215  | 0.575    | 0.871622 | 1422 |
|                                                                                                                                                                                       | 100          | 522            | 9700           | 535.0        | 555    | 5575     | 9770     |      |
| <function 0x7f6c9fd64cb0<="" at="" median="" td=""><td>0.3035</td><td>0.1955</td><td>0.4905</td><td>1.0230</td><td>0.165</td><td>0.475</td><td>0.729730</td><td>1372</td></function>  | 0.3035       | 0.1955         | 0.4905         | 1.0230       | 0.165  | 0.475    | 0.729730 | 1372 |
|                                                                                                                                                                                       | 0.0910       | 0.0610         | 0.1635         | 0.3335       | 0.090  | 0.310    | 0.452703 | 919  |
| 4                                                                                                                                                                                     | 0.0300       | 0.0240         | 0.0660         | 0.1315       | 0.080  | 0.220    | 0.277027 | 2550 |
| S S                                                                                                                                                                                   | 0.0400       | 0.0255         | 0.0430         | 0.1165       | 0.075  | 0.230    | 0.290541 | 537  |
|                                                                                                                                                                                       | 0.0520       | 0.0395         | 0.1020         | 0.2085       | 0.095  | 0.250    | 0.344595 | 1220 |

0.

2798 rows × 8 columns

### y\_train

### Result:

```
4131 I
3204 F
2622 F
2114 I
1422 M
...
1372 F
919 I
2550 I
537 M
1220 I
Name: Sex, Length: 2798, dtype: object
```

# Question-13:

13.Test the model:

 $X_{test}$ 

#### Result:

|      | Length   | Diameter | Height | Whole weight | Shucked weight | Viscera weight | Shell weight | Rings                                                   |
|------|----------|----------|--------|--------------|----------------|----------------|--------------|---------------------------------------------------------|
| 1157 | 0.716216 | 0.470    | 0.165  | 1.1775       | 0.6110         | 0.2275         | 0.2920       | 9                                                       |
| 1125 | 0.641892 | 0.425    | 0.150  | 0.8315       | 0.4110         | 0.1765         | 0.2165       | *10                                                     |
| 2053 | 0.520270 | 0.345    | 0.110  | 0.4595       | 0.2350         | 0.0885         | 0.1160       | 7                                                       |
| 3591 | 0.777027 | 0.475    | 0.165  | 1.3875       | 0.5800         | 0.3485         | 0.3095       | 9                                                       |
| 455  | 0.675676 | 0.470    | 0.140  | 0.8375       | 0.3485         | 0.1735         | 0.2400       | <function 0x7f6c9fd64cb0="" at="" median=""></function> |
|      | ***      | 1445     | 200    | 222          | ***            |                | 3.0          | 222                                                     |
| 3150 | 0.783784 | 0.505    | 0.165  | 1.3670       | 0.5835         | 0.3515         | 0.3960       | 10                                                      |
| 3037 | 0.655405 | 0.450    | 0.145  | 0.8940       | 0.3885         | 0.2095         | 0.2640       | 9                                                       |
| 2050 | 0.506757 | 0.350    | 0.130  | 0.4655       | 0.2075         | 0.1045         | 0.1350       | 8                                                       |
| 1690 | 0.743243 | 0.500    | 0.170  | 1.0985       | 0.4645         | 0.2200         | 0.3540       | 9                                                       |
| 253  | 0.675676 | 0.460    | 0.185  | 1.0940       | 0.4485         | 0.2170         | 0.3450       | <function 0x7f6c9fd64cb0="" at="" median=""></function> |

1379 rows × 8 columns

y\_test

#### Result:

```
1157 F
1125 M
2053 M
3591 F
455 M
...
3150 F
3037 M
2050 M
1690 M
253 F
Name: Sex, Length: 1379, dtype: object
```

# Question-14:

14. Measure the performance using Metrics