

AMENDMENTS TO THE CLAIMS:

This listing of claims will replace all prior versions,
and listings, of claims in the application:

Listing of Claims:

1-25. (canceled)

26. (withdrawn/currently amended) A flame retardant epoxy resin composition comprising an epoxy resin (A), a phenolic resin (B), an inorganic filler (C) and a curing accelerator (D):

wherein

said composition is composed of the inorganic filler (C) and resin components other than the inorganic filler (C) that are comprising the epoxy resin (A), the phenolic resin (B) and the curing accelerator (D), but said composition comprises no flame retardant material nor flame retardant auxiliary;

said composition contains the inorganic filler (C) in the equal amount to a content of W (wt%) for the inorganic filler (C). in a cured article being obtainable by curing the composition, wherein the W (wt%) is selected in range of $60 < W \leq 95$;

the phenolic resin (B) is one or a mixture of two or more phenolic resins containing biphenyl derivative having no hydroxyl group in the molecule represented by formula (10):

wherein $n = 0$ to 10 ,

the epoxy resin (A) is one or a mixture of two or more epoxy resins of a tetraphenylolethane type to which 3 to 4 epoxy groups are bonded epoxy resin consisting substantially of an epoxy resin represented by formula (3):

the inorganic filler (C) is one or a mixture of two or more fillers selected from fillers made of fused silica, crystalline silica, or silicon nitride, and

a ratio (OH/Ep) of a phenolic hydroxyl group number (OH) of the total phenolic resin to an epoxy group number (Ep) of the total epoxy resin is $1.0 \leq (OH/Ep) \leq 2.5$;

the moiety of the biphenyl derivative having no hydroxyl group is included in a crosslinked structure of the cured article; and

a flexural modulus E (kgf/mm²) at 240 ± 20°C of the cured article is a value satisfying $0.30W - 13 \leq E \leq 3.7W - 184$ in the case of $60 < W \leq 95$, and the cured article forms a foamed layer during thermal decomposition or at ignition to exert flame retardancy.

27. (withdrawn) The epoxy resin composition according to Claim 26, wherein the flexural modulus E (kgf/mm²) at 240 ± 20 °C of the cured article is a value satisfying $0.30W - 10 \leq E \leq 3.7W - 199$ value in the case of $60 < W \leq 95$.

28. (withdrawn/currently amended) The epoxy resin composition according to Claim [[27]] 26, wherein the ratio (OH/Ep) is 1.0.

29. (withdrawn/currently amended) The epoxy resin composition according to Claim [[28]] 26, wherein the epoxy resin (A) is a tetraphenylolethane type epoxy resin represented by formula (3):

the phenolic resin (B) is a phenolbiphenylaralkyl resin represented by formula (10):

wherein n = 0 to 10.

30. (withdrawn/currently amended) A flame retardant epoxy resin composition comprising an epoxy resin (A), a phenolic resin (B), an inorganic filler (C) and a curing accelerator (D):

wherein

said composition is composed of the inorganic filler (C) and resin components other than the inorganic filler (C) that are comprising the epoxy resin (A), the phenolic resin (B) and the curing accelerator (D), but said composition comprises no flame retardant material nor flame retardant auxiliary;

said composition contains the inorganic filler (C) in the equal amount to a content of W (wt%) for the inorganic filler (C) in a cured article being obtainable by curing the composition, wherein the W (wt%) is selected in range of $60 < W \leq 95$;

the phenolic resin (B) is one or a mixture of two or more phenolic resins containing biphenyl derivative having no hydroxyl group in the molecule,

the epoxy resin (A) is a mixture of two or more epoxy resins containing a biphenyl derivative;

the inorganic filler (C) is one or a mixture of two or more fillers selected from fillers made of fused silica, crystalline silica, or silicon nitride, and

a ratio (OH/Ep) of a phenolic hydroxyl group number (OH) of the total phenolic resin to an epoxy group number (Ep) of the total epoxy resin is 1.0;

the moiety of the biphenyl derivative having no hydroxyl group is included in a crosslinked structure of the cured article; and

a flexural modulus E (kgf/mm^2) at $240 \pm 20^\circ\text{C}$ of the cured article is a value satisfying $0.30W - 13 \leq E \leq 3.7W - 184$ in the case of $60 < W \leq 95$, and the cured article forms a foamed layer during thermal decomposition or at ignition to exert flame retardancy.

31. (withdrawn/currently amended) The epoxy resin composition according to Claim 30,

wherein

wherein the flexural modulus E (kgf/mm^2) at $240 \pm 20^\circ\text{C}$ of the cured article is a value satisfying $0.30W - 10 \leq E \leq 3.7W - 199$ value in the case of $60 < W \leq 95$.

32. (withdrawn/currently amended) The epoxy resin composition according to Claim [[31]] 30, wherein the ratio (OH/Ep) is 1.0, and the W (wt%) is selected in range of $60 < W < 87$.

33. (withdrawn/currently amended) The epoxy resin composition according to Claim [[32]] 30, wherein the epoxy resin (A) is a combinational mixture of biphenyl-4,4'-diglycidyl ether epoxy resin and 3,3',5,5'-tetramethylbiphenyl-4,4'-diglycidyl ether epoxy resin represented by formula (4) :

, and

the phenolic resin (B) is a phenolbiphenylaralkyl resin represented by formula (10) :

wherein $n = 0$ to 10.

34. (currently amended) A flame retardant epoxy resin composition comprising an epoxy resin (A), a phenolic resin (B), an inorganic filler (C) and a curing accelerator (D) :

wherein

said composition is composed of the inorganic filler (C) and resin components other than the inorganic filler (C) that are comprising the epoxy resin (A), the phenolic resin (B) and the curing accelerator (D), but said composition comprises no flame retardant material nor flame retardant auxiliary;

said composition contains the inorganic filler (C) in the equal amount to a content of W (wt%) for the inorganic filler (C) in a cured article being obtainable by curing the composition, wherein the W (wt%) is selected in range of $60 < W \leq 95$;

the phenolic resin (B) is one or a mixture of two or more phenolic resins containing a biphenyl derivative having no hydroxyl group in the molecule represented by formula (10):

wherein n = 0 to 10,

the epoxy resin (A) is a mixture of [[an]] a phenolbiphenylaralkyl epoxy resin containing a biphenyl derivative having no epoxy group and an epoxy resin of tetraphenylethane type to which 3 to 4 epoxy groups are bonded in the molecule represented by formula (2):

wherein n = 0 to 10, and

a tetraphenylolethane epoxy resin consisting
substantially of an epoxy resin represented by formula (3):

the inorganic filler (C) is one or a mixture of two or
more fillers selected from fillers made of fused silica,
crystalline silica, or silicon nitride, and

a ratio (OH/Ep) of a phenolic hydroxyl group number (OH) of the total phenolic resin to an epoxy group number (Ep) of the total epoxy resin is $1.0 \leq (\text{OH}/\text{Ep}) \leq 2.5$;

the moiety of the biphenyl derivative having no hydroxyl group is included in a crosslinked structure of the cured article; and

a flexural modulus E (kgf/mm²) at $240 \pm 20^\circ\text{C}$ of the cured article is a value satisfying $0.30W - 13 \leq E \leq 3.7W - 184$

in the case of $60 < W \leq 95$, and the cured article forms a foamed layer during thermal decomposition or at ignition to exert flame retardancy.

35. (currently amended) The epoxy resin composition according to Claim 34, wherein wherein the flexural modulus E (kgf/mm²) at $240 \pm 20^\circ\text{C}$ of the cured article is a value satisfying $0.30W - 10 \leq E \leq 3.7W - 199$ value in the case of $60 < W \leq 95$.

36. (previously presented) The epoxy resin composition according to Claim 35, wherein the ratio (OH/Ep) is 1.0.

37. (previously presented) The epoxy resin composition according to Claim 36, wherein the epoxy resin (A) is a combinational mixture of a phenolbiphenylaralkyl epoxy resin represented by formula (2) :

wherein n = 0 to 10, with a tetraphenylolethane type epoxy resin represented by formula (3) :

, and

the phenolic resin (B) is a phenolbiphenylaralkyl resin represented by formula (10):

wherein $n = 0$ to 10.

38. (withdrawn) A semiconductor device in which the epoxy resin composition described in Claim 26 is used as an encapsulating resin.

39-43. (canceled)

44. (withdrawn) A semiconductor device in which the epoxy resin composition described in Claim 30 is used as an encapsulating resin.

45. (withdrawn) A semiconductor device in which the epoxy resin composition described in Claim 34 is used as an encapsulating resin.

46. (new) The epoxy resin composition according to Claim 34, wherein the W (wt%) is selected in range of $60 < W < 87$.

47. (new) The epoxy resin composition according to Claim 26, wherein the W (wt%) is selected in range of $60 < W < 87$.