

CS211 Digital Logic (H)

Assignment 4 Due on 23:55, Aug. 3, 2022

Write down your answer to the questions in the given box with **detailed** procedures. For design questions, only drawing the circuit will lead to zero point.

lar	ne:				Studen	t ID: _			
		Question:	1	2	3	4	Total		
		Points:	20	30	25	25	100		
		Score:							
1.	(20 points) Design	a sequence q	enerato	or to ge	nerate	the sec	quence 1	11011.	

	state for each unused state and show that, if the circuit finds itself in an invalid state, does not return to a valid state.
(b)	Modify the circuit so that the circuit reaches a valid state from any one of the unuse states.

.5 points) The code ta	abulated b	elow is the	XS3	code repre	sentation for the decimal di
	r adding to	ogether two	deci	mal digits e	xpressed in XS3 form, and he
		XS3 code		XS3 code	
	0	0011 0100	5	1000 1001	
	2	0100	6 7	1011	
	3 4	0110 0111	8 9	1011 1100	
	<u></u>				