Data Manipulation with dplyr in R

Bourbon0212

2019/9/18

- Transforming Data
- Aggregating Data
- · Advanced Skills of Transforming Data
- Case Study: Babynames

Transforming Data

Before start, it's essential to learn about your data with str() or dplyr::glimpse()

- str(): Give the rough look of the structure of the data.
- glimpse(): An enhanced version of str() of dplyr package.

Review some data manipulation verbs from dplyr (link)

- select(): Variables (Col), select columns from a dataset, or remove one with .
 - o eg. counties %>% select(state, county, population, unemployment)
- mutate(): Variables (Col), use present data to build new columns of values.
 - eg. mutate(unemployed_population = population * unemployment / 100)
- filter(): **Observation (Row)**, single out rows from a dataset that meets the condition.
 - o eg. counties %>% filter(state == "New York")
- arrange(): Observation (Row), reorders rows in a dataset.
 - eg. counties %>% arrange(population)

```
library(dplyr)

counties = readRDS("counties.rds")

counties_transform <- counties %>%
    # Select the five columns
```

```
select(state, county, population, men, women) %>%
# Add the proportion_men variable
mutate(proportion_men = men / population) %>%
# Filter for population of at least 10,000
filter(population > 10000) %>%
# Arrange proportion of men in descending order
arrange(desc(proportion_men))
```

state	county	population	men	women	proportion_men
Virginia	Sussex	11864	8130	3734	0.6852664
California	Lassen	32645	21818	10827	0.6683412
Georgia	Chattahoochee	11914	7940	3974	0.6664428
Louisiana	West Feliciana	15415	10228	5187	0.6635096
Florida	Union	15191	9830	5361	0.6470937
Texas	Jones	19978	12652	7326	0.6332966

Aggregating Data

- count (): Count the rows of dataset, count the variable or count the wt (weight) of the variable.
- summarize(): Calculating values derived from original data, and generate a new dataset.
 - summarize() = summarise()
 - Common summarize functions: sum(), mean(), median(), min(), max(), n()
- group_by(): Use before summarize() or mutate() to summarize/mutate by group.
 - group by () function itself **DONOT** make any changes to the dataset.
 - ungroup(): To ungroup if no need grouping anymore.
- top n(n, var): Filter out the top n for that variable.

```
# Count the rows of dataset, similar to n()
counties %>%
  count()
## # A tibble: 1 x 1
        n
    <int>
## 1 3138
# Count the variable, eq. total numbers of counties of each state
counties %>%
count(state, sort = TRUE)
## # A tibble: 50 x 2
## state
   <chr>
            <int>
                 253
## 1 Texas
              159
133
## 2 Georgia
## 3 Virginia
## 4 Kentucky
               120
## 5 Missouri
                     115
## 6 Kansas
                    105
## 7 Illinois
                     102
## 8 North Carolina 100
## 9 Iowa
                      99
## 10 Tennessee
## # ... with 40 more rows
# Count the weight of the variable, eg. total population of each state
counties %>%
 count(state, wt = population, sort = TRUE)
```

```
## # A tibble: 50 x 2
     state
                        n
           <dbl>
   <chr>
## 1 California
                  38421464
            26538497
19673174
19645772
## 2 Texas
## 3 New York
## 4 Florida
## 5 Illinois 12873761
## 6 Pennsylvania 12779559
             11575977
## 7 Ohio
## 8 Georgia 10006693
## 9 Michigan
              9900571
## 10 North Carolina 9845333
## # ... with 40 more rows
```

Here's a question,

In how many states do more people live in metro areas than non-metro areas? "Metro" (for high-density city areas) or "Nonmetro" (for suburban and country areas).

```
# Select 3 columns
counties_selected <- counties %>%
    select(state, metro, population)

# Step by step to answer the question
counties_selected %>%
    group_by(state, metro) %>%
    summarize(total_pop = sum(population)) %>%
    top_n(1, total_pop) %>%
    ungroup() %>%
    count(metro)
```

```
## # A tibble: 2 x 2
## metro n
```

Advanced Skills of Transforming Data

- Using select() to select columns with select helpers
 - The colon (:) is useful for getting many columns at a time.
 - starts with("X"): every name that starts with X.
 - ends_with("X"): every name that ends with X.
 - contains("X"): every name that contains X.
 - matches ("X"): every name that matches X, where X can be a regular expression.
 - num range("x", 1:5): the variables named x01, x02, x03, x04 and x05.
 - one_of(x): every name that appears in x, which should be a character vector.
- Comparison of select(), transmute(), rename(), mutate()

. Keep only specified variables Can't change values select() rename() Can change values transmute() mutate()

```
# Change the name of the unemployment column, new_name = old_name
counties %>%
    rename(unemployment_rate = unemployment)

# Keep the state and county columns, and the columns containing poverty
counties %>%
    select(state, county, contains("poverty"))

# Calculate the fraction_women column without dropping the other columns
counties %>%
    mutate(fraction_women = women / population)

# Keep only the state, county, and employment_rate columns
```

```
counties %>%
  transmute(state, county, employment_rate = employed / population)
```

Case Study: Babynames

Q1: Finding the year each name is most common.

```
babynames = readRDS("babynames.RDS")

babynames_fraction = babynames %>%
    group_by(year) %>%
    mutate(year_total = sum(number)) %>%
    ungroup() %>%
    mutate(fraction = number / year_total)

babynames_fraction %>%
    group_by(name) %>%
    top_n(1, fraction)
```

```
## # A tibble: 48,040 x 5
## # Groups: name [48,040]
      year name number year total fraction
     <dbl> <chr> <int> <int>
                                         <dbl>
## 1 1880 Abbott 5 201478 0.0000248
## 2 1880 Abe 50 201478 0.000248
## 3 1880 Abner 27 201478 0.000134
## 4 1880 Adelbert 28 201478 0.000139
## 5 1880 Adella 26 201478 0.000129
## 6 1880 Adolf 6 201478 0.0000298
## 7 1880 Adolph
                        93 201478 0.000462
## 8 1880 Agustus
                    5 201478 0.0000248
## 9 1880 Albert
                      1493
                              201478 0.00741
```

```
## 10 1880 Albertina 7 201478 0.0000347
## # ... with 48,030 more rows
```

From the result, we can see that the first few entries are names that were most popular in the 1880's that start with the letter A.

Q2: Using ratios to describe the frequency of a name.

• Window Function: lag(), use to compare consecutive steps.

```
v < -c(1, 3, 6, 14)
lag(v)
## [1] NA 1 3 6
v - lag(v)
## [1] NA 2 3 8
babynames ratios = babynames fraction %>%
  # Arrange the data in order of name, then year
  arrange(name, year) %>%
 # Group the data by name
  group by(name) %>%
  # Add a ratio column that contains the ratio between each year
  mutate(ratio = fraction/lag(fraction))
babynames ratios biggest = babynames ratios %>%
 # Extract the largest ratio from each name
 top n(1, ratio) %>%
 # Sort the ratio column in descending order
  arrange(desc(ratio)) %>%
  # Filter for fractions greater than or equal to 0.001
  filter(fraction >= 0.001)
```

year	name	number	year_total	fraction	ratio
1960	Tammy	14365	4152075	0.0034597	70.11500
2005	Nevaeh	4610	3828460	0.0012041	45.82168
1940	Brenda	5460	2301630	0.0023722	37.53315
1885	Grover	774	240822	0.0032140	35.97493
1945	Cheryl	8170	2652029	0.0030807	24.87909
1955	Lori	4980	4012691	0.0012411	23.24564
2010	Khloe	5411	3672066	0.0014736	23.21587
1950	Debra	6189	3502592	0.0017670	22.63804
2010	Bentley	4001	3672066	0.0010896	22.42690
1935	Marlene	4840	2088487	0.0023175	16.82703

We found biggest jumps in a name. Some of these can be interpreted: for example, Grover Cleveland was a president elected in 1884!