

Eletrônica para Informática

Soma_subtração Portas Lógicas

Adição binária

0 1 H

Regras:

$$0 + 0 = 0$$

$$0+1=1$$

$$1+0=1$$

$$1 + 1 = 0$$
 (e "vai 1" para o dígito de ordem superior)

$$1+1+1=1$$
 (e "vai 1" para o dígito de ordem superior)

Sistema Binário

Ex: 101 + 011

0 1 H

Subtração binária

Regras:

- 0 0 = 0
- 0 1 = 1 (e "pede emprestado 1" para o dígito de ordem superior)
- 1 0 = 1
- 1 1 = 0

Sistema Binário

Ex: 101 - 011

0 1 H

Sistema Hexadecimal

$$(F347)_{16} + (E916)_{16} =$$

Sistema Hexadecimal

$$(FACA)_{16} - (BABA)_{16} =$$

FACA - BABA

Porta Lógica OU (OR)

	Α	В	S=A+B
	0	0	0
L	0	1	1
	1	0	1
	1	1	1

Porta Lógica E (AND)

Α	В	S=A.B
0	0	0
0	1	0
1	0	0
1	1	1

Porta Lógica NÃO (NOT)

Α	S=Ā
0	1
1	0

Α	S=Ā
0	1
1	0

Porta NÃO E (NAND)

- □ A porta NÃO E (NE) é o bloco lógico que executa a função NÃO E, ou seja, sua tabela verdade
- Representação

■ Tabela verdade

Α	В	S=A.B
0	0	1
0	1	1
1	0	1
1	1	0

Porta NÃO OU (NOR)

- □ A porta NÃO OU (NOU) é o bloco lógico que executa a função NÃO OU, ou seja, sua tabela verdade
- Representação

■ Tabela verdade

Α	В	S=A+B
0	0	1
0	1	0
1	0	0
1	1	0

Função **OU Exclusivo** (**XOR**)

- □ A função OU
 - Exclusivo fornece
 - 1 na saída quando as entradas forem diferentes entre si e
 - 0 caso contrário
- \square S = A \oplus B = \bar{A} .B + A. \bar{B}

□ Tabela verdade

A	В	S=A⊕B
0		0
	0	0
0	1	1
_1	0	1
1	1	0

Simbologia adotada

Porta XNOR

$$Y = \overline{A \oplus B}$$

$$Y = A \odot B$$

Inp	uts	Output	
Α	В	Y	
0	0	1	
0	1	0	
1	0	0	
1	1	1	

função coincidência

Determinar a expressão booleana característica do circuito

Desenhe o circuito lógico que executa a seguinte expressão booleana

•
$$S = (A+B).C.(B+D)$$

Desenhe o circuito lógico que executa a seguinte expressão booleana

■ S = (A.B.C) + (A+B).C

Preencha a Tabela Verdade (TV)

A	В	С	S
0	0	0	
0	0	1	
0	1	0	
0	1	1	
1	0	0	
1	0	1	
1	1	0	
1	1	1	

TAREFA: Resolva de forma manuscrita e envie a resolução ao professor preferencialmente na forma de arquivo .pdf. !

b) Preencha a TV:

c) Desenhe o circuito lógico correspondente a expressão abaixo e preencha a TV:

$$y = AC + B\bar{C} + \bar{A}BC$$

TAREFA

d) Realize as seguintes operações:

- $(DBAB)_{16} + (1F2)_{16} =$
- $(F0F1)_{16} (2FF)_{16} =$
- (10001111)₂+(10110011)₂=
- $(10101110)_2$ - $(1111)_2$ =