CBЯТОЙ КПК #BlessRNG

Или как не сдохнуть на 3 семе из-за матана

Разработал

Никита Варламов @snitron

Почётный автор

Тимофей Белоусов @іморге

v0.0 ALPHA ОКТЯБРЬ-UNDEFINED 2022-2023

Заметки авторов

В данном конспекте названия всех задач имеют ссылку на своего автора в виде верхнего индекса:

- 1. @imodre
- 2. @snitron

По любым вопросам и предложениям/улучшениям обращаться в телеграмм к соответвующему автору.

Known Issues

Вы в любой момент можете добавить любую недостающую теорему, затехав её и отправив код (фотографии письменного текста запрещены) в телегу любому из указанных авторов. Ваше авторство также будет указано, с вашего разрешения.

Содержание

1	Пер	ериод Палеозойский					
	1.1	Важні	ые определения				
		1.1.1	Норма линейного оператора	4			
		1.1.2	Простое k-мерное гладкое многообразие в \mathbb{R}^m	4			
		1.1.3	Формулировка достаточного условия относительного экстремума	4			
	1.2	Определения					
		1.2.1	Положительно-, отрицательно-, незнако- определенная квадратичная форма	6			
		1.2.2	Локальный максимум, минимум, экстремум				
		1.2.3	Диффеоморфизм	6			
		1.2.4	Теорема о локальной обратимости	6			
		1.2.5	Формулировка теоремы о гладкости обратного отображения в терминах си-				
			стем уравнений	7			
		1.2.6	Формулировка теоремы о неявном отображении в терминах систем уравнений	7			
		1.2.7	Касательное пространство к k -мерному многообразию в \mathbb{R}^m	7			
	1.3	Важн	ые теоремы				
		1.3.1	Достаточное условие экстремума	8			
		1.3.2	Теорема о неявном отображении	9			
		1.3.3	Необходимое условие относительного локального экстремума	11			
	1.4	Teoper	мы	13			
		1.4.1	Лемма об условиях, эквивалентных непрерывности линейного оператора				
		1.4.2	Теорема Лагранжа для отображений				
		1.4.3	Теорема об обратимости линейного отображения, близкого к обратимому				
		1.4.4	Теорема о непрерывно дифференцируемых отображениях	16			
		1.4.5	Теорема Ферма. Необходимое условие экстремума. Теорема Ролля	17			
		1.4.6	Лемма об оценке квадратичной формы и об эквивалентных нормах	17			
		1.4.7	Лемма о "почти локальной инъективности"	18			
		1.4.8	Теорема о сохранении области	19			
		1.4.9	Следствие о сохранении области для отображений в пространство меньшей				
			размерности	21			
			Теорема о гладкости обратного отображения				
			Теорема о задании гладкого многообразия системой уравнений				
			Следствие о двух параметризациях				
			Лемма о корректности определения касательного пространства				
		1.4.14	Касательное пространство в терминах векторов скорости гладких путей	27			
		1.4.15	Касательное пространство к графику функции и к поверхности уровня	29			
			Вычисление нормы линейного оператора с помощью собственных чисел				
		1.4.17	Теорема о функциональной зависимости	31			
2	Пер	Период Мезозойский 3					
	2.1	Важні	ые определения	34			
		2.1.1	Равномерная сходимость последовательности функций на множестве	34			
	2.2	Опред	еления	35			
		2.2.1	Поточечная сходимость последовательности функций на множестве	35			
		2.2.2	Формулировка критерия Больцано-Коши для равномерной сходимости	35			
		2.2.3	Равномерная сходимость функционального ряда	35			

	2.2.4	Формулировка критерия Больцано-Коши для равномерной сходимости рядов	35
	2.2.5	Признак Абеля равномерной сходимости функционального ряда	36
2.3	Важн	ые теоремы	37
	2.3.1	Теорема Стокса-Зайдля о непрерывности предельной функций. Следствие	
		для рядов	37
	2.3.2	Признак Вейерштрасса равномерной сходимости функционального ряда	
	2.3.3	Признак Дирихле равномерной сходимости функционального ряда	38
2.4	Teoper	мы	40
	2.4.1	Метрика в пространстве непрерывных функций на компакте, его полнота	40
	2.4.2	Теорема о предельном переходе под знаком интеграла. Следствие для рядов	40
	2.4.3	Правило Лейбница дифференцирования интеграла по параметру	41
	2.4.4	Теорема о предельном переходе под знаком производной. Дифференцирова-	
		ние функционального ряда	42
	2.4.5	Теорема о предельном переходе в суммах	43
	2.4.6	Теорема о перестановке двух предельных переходов	44

1 Период Палеозойский

1.1 Важные определения

1.1.1 Норма линейного оператора

Пусть X,Y — нормированные линейные пространства, $A \in \mathbb{L}(X,Y)$ (это множество линейных отображений над $X \to Y$). Тогда нормой линейного оператора называется $||A||_{X,Y} = \sup_{x \in X_{|x|=1}} |Ax|_Y$ Замечания (для $X = \mathbb{R}^m, Y = \mathbb{R}^n$):

- 1. По лемме об ограниченности нормы линейного оператора $(L=(l_{i,j}), |Lx| \leq C_L |x| = C_L \cdot 1 = \sqrt{\sum l_{i,j}^2})$ всегда ограничена!
- 2. $x \to |Lx|$ непрерывная функция, заданная на компакте ($|x| = 1 \Leftrightarrow x \in S(0,1)$ сфера), причём по Вейерштрассу, максимум достигается. (напоминаю, мы в \mathbb{R}^m !)
- 3. Верно неравенство $\forall x \in \mathbb{R}^m : |Lx| \leq ||L|| \cdot |x|$ (тут у нас важно различать евклидову и неевклидову норму). КПК считает, что это очевидно:
 - (a) x = 0 равенство
 - (b) $x \neq 0$ делим на норму $x: |L\frac{x}{|x|}| \leq ||L||$, это очевидно, т.к. наша новая норма задаётся как супремум значений |x| = 1, ну и мы вот сравниваем супрермум с меньшими значениями.
- 4. $\forall x \in \mathbb{R}^m$, если нашлось $C > 0: |Lx| \leq C \cdot |x| \Rightarrow ||L|| \leq C$ тупо по пункту 3, очевидно.

1.1.2 Простое k-мерное гладкое многообразие в \mathbb{R}^m

Обобщение вот всей этой темы с диффеоморфизмами в одно толковое определение $M \subset \mathbb{R}^m$ — простое k-мерное C^r -гладкое многообразие в \mathbb{R}^m , если:

- $\exists O \subset \mathbb{R}^k$ открытое (область?)
- $\exists \Phi: O \to \mathbb{R}^m, \Phi(O) = M$ гомеоморфизм (непрерывная биекция)
- $\Phi \in C^r(O)$
- $\forall x \in O : \operatorname{rank} \Phi'(x) = k$

 Φ — гладкая параметризация.

1.1.3 Формулировка достаточного условия относительного экстремума

- $f: E \subset \mathbb{R}^{m+n} \to \mathbb{R}, \Phi: E \to \mathbb{R}^n, f, \Phi \in C^1$
- $M_{\Phi} \subset E : \{x \mid \Phi(x) = 0\}$
- $a \in E$ точка относительного локального экстремума ($\forall x \in U(a) \cap M_{\Phi}, f(x_0) \leq f(x)$ это нестрогий максимум, остальное аналогично)
- $\Phi(a) = 0$ уравнение связи

• rank $\Phi'(a) = n$

это условия из необходимого условия

- $G(x) = f(x) \lambda_1 \Phi_1(x) \lambda_2 \Phi_2'(x) \dots \lambda_n \Phi_n(x) = f \langle \lambda, \Phi \rangle$
- ullet λ из необходимого условия
- $h \in \mathbb{R}^{m+n}, h = (h_x, h_y)$
- $\Phi'(a) \cdot h \neq 0 \Rightarrow$ можно выразить $h_y = \Psi(h_x)$
- $Q(h_x) = d^2 G(a, (h_x, \Psi(h_x)))$ это квадратичная форма

Тогда:

- 1. $Q(h_x)$ положительно-определённая, тогда a точка относительного локального минимума
- 2. $Q(h_x)$ отрицательно-определённая, тогда a точка относительного локального максимума
- 3. $Q(h_x)$ незнако-определённая, тогда a не точка относительного локального экстремума
- 4. $Q(h_x)$ полу-определённая, тогда информации недостаточно (может быть и так, и так)

1.2 Определения

1.2.1 Положительно-, отрицательно-, незнако- определенная квадратичная форма

Квадратичная форма: $Q: \mathbb{R}^m \to \mathbb{R}$

$$Q(h) = \sum_{1 \le i, j \le m} a_{ij} h_i h_j$$

- Положительно-: $\forall h \in \mathbb{R}^m \neq 0 : Q(h) > 0$
- Отрицательно-: $\forall h \in \mathbb{R}^m \neq 0 : Q(h) < 0$
- Незнако-: $\exists h \in \mathbb{R}^m \neq 0 : Q(h) < 0, \exists \widetilde{h} \neq 0 : Q(\widetilde{h}) > 0$
- Полуопределённая (положительно определённая вырожденая): $Q(h) \geq 0, \exists h \in \mathbb{R}^m \neq 0: Q(h) = 0$

1.2.2 Локальный максимум, минимум, экстремум

Рассмотрим только максимум, остальное аналогично (+ строгий)

 $f: D \subset \mathbb{R}^m \to \mathbb{R}, a \in D$

Если $\exists U(a): \forall x \in U(a) \quad f(x) \leq f(a), \text{ то } a$ — точка локального максимума.

1.2.3 Диффеоморфизм

 $F: O \subset \mathbb{R}^m \to \mathbb{R}^m, O$ — открыто и связно (область)

- F обратимо
- \bullet F дифференцируемо
- \bullet F^{-1} дифференцируемо

Тогда F — диффеоморфизм

1.2.4 Теорема о локальной обратимости

- $F: O \subset \mathbb{R}^m \to \mathbb{R}^m$
- $F \in C^1(O)$
- $x_0 \in O : \det F'(x_0) \neq 0$

Тогда $\exists U(x_0): F|_{U(x_0)}$ — диффеоморфизм

1.2.5 Формулировка теоремы о гладкости обратного отображения в терминах систем уравнений

•
$$F = (f_1, f_2, \dots, f_m)$$

•
$$\begin{cases} f_1(x_1, x_2, \dots, x_m) = y_1 \\ f_2(x_1, x_2, \dots, x_m) = y_2 \\ \vdots \\ f_m(x_1, x_2, \dots, x_m) = y_m \end{cases}$$

•
$$(x_0, y_0)$$
: $F(x_0) = y_0$, $\det \frac{\partial f_i}{\partial x_i} \neq 0$

•
$$\exists U(x_0), W(y_0): \exists F: U \to W$$
 — диффеоморфизм : \exists гладкое решение
$$\begin{cases} x_1(y_1, y_2, \dots, y_m) \\ x_2(y_1, y_2, \dots, y_m) \\ \vdots \\ x_m(y_1, y_2, \dots, y_m) \end{cases}$$

1.2.6 Формулировка теоремы о неявном отображении в терминах систем уравнений

•
$$F = (x_1, x_2, \dots, x_m, y_1, y_2, \dots, y_n)$$

$$\bullet \begin{cases} f_1(x_1, x_2, \dots, x_m, y_1, y_2, \dots, y_n) = 0 \\ f_2(x_1, x_2, \dots, x_m, y_1, y_2, \dots, y_n) = 0 \\ \vdots \\ f_n(x_1, x_2, \dots, x_m, y_1, y_2, \dots, y_n) = 0 \end{cases}$$

•
$$(x^0, y^0) : F(x^0, y^0) = 0, \det \frac{\partial f_i}{\partial y_i} \neq 0$$

•
$$\exists U(x^0) \in \mathbb{R}^m, \ \varphi(x) : F(x, \varphi(x)) = 0, x \in U(x_0)$$
 — гладкие решения

1.2.7 Касательное пространство к k-мерному многообразию в \mathbb{R}^m

- $M \subset \mathbb{R}^m$ простое k-мерное C^r -гладкое многообразие в \mathbb{R}^m
- $p \in M$
- $\Phi: O \subset \mathbb{R}^k \to \mathbb{R}^m$ параметризация $M \cap U(p)$
- $t^0 \in O : \Phi(t^0) = p$
- $\Phi'(t^0): \mathbb{R}^k \to \mathbb{R}^m$ линейный оператор

Тогда образ $\Phi'(t^0)$ — линейное подпространство в \mathbb{R}^m , не зависящее от Φ . Ну вот оно и называется касательным пространством (T_pM) .

Причём важно, что это пространство не обязано проходить через точку p. Это просто пространство касательных векторов, откладываемых от начала координат (???).

1.3 Важные теоремы

1.3.1 Достаточное условие экстремума

Формулировка:

- $f: D \subset \mathbb{R}^m \to \mathbb{R}$
- $a \in Int(D)$
- $\nabla f(a) = 0$
- $f \in C^2(D)$
- $Q(h) := d^2 f(a, h)$

Тогда:

- 1. Q(h) положительно-определённая, тогда a точка локального минимума
- 2. Q(h) отрицательно-определённая, тогда a точка локального максимума
- 3. Q(h) незнако-определённая, тогда a не точка локального экстремума
- 4. Q(h) полу-определённая, тогда информации недостаточно (может быть и так, и так)

Доказательство:

(1)

Давайте поближе присмотримся к $\forall h \in \mathbb{R}^m \ \forall t \in [0,1]: \quad f(a+h) = f(a) + df(a,h) + \frac{1}{2!}d^2f(a+th,h)$ — это типа формула Тейлора с остатком в форме Лагранжа.

Теперь рассмотрим разность f(a+h)-f(a), и заметим, что df(a,h)=0 по условию.

$$f(a+h) = f(a) + \frac{1}{2!} (f''_{x_1,x_1}(a+th)h_1^2 + f''_{x_1,x_2}(a+th)h_1h_2 + \dots)$$

$$= f(a) + \frac{1}{2!} d^2 f(a+th,h)$$

$$= f(a) + \frac{1}{2!} Q(h) + \frac{1}{2!} (d^2 f(a+th,h) - Q(h))$$

$$= f(a) + \frac{1}{2!} Q(h) + \frac{1}{2!} (d^2 f(a+th,h) - d^2 f(a,h))$$

$$= f(a) + \frac{1}{2!} Q(h) + \frac{1}{2!} (f''_{x_1,x_1}(a+th)h_1^2 - f''_{x_1,x_1}(a)h_1^2 + f''_{x_1,x_2}(a+th)h_1h_2 - \dots)$$

Теперь заметим, что если повыносить коэффициенты при двойных производных, получится чтото в стиле $(f_1'' - f_2'')(\sum_{i,j} h_i h_j)$, где левая скобка — б.м. при $h \to 0$, а правая оценивается $|h|^2$. Таким образом, все эти штуки есть ничто иное, как $\alpha(h)|h|^2$, где $\alpha(h)$ — б.м. при $h \to 0$.

В итоге получаем:

$$f(a+h)-f(a) \geq \frac{1}{2}Q(h) + \alpha(h)|h|^2 \geq \frac{\gamma_Q}{\text{по лемме об оценке кв. формы}} \frac{\gamma_Q}{2}|h|^2 + \alpha(h)|h|^2$$

$$\underset{\text{при }h\to 0}{\geq} \frac{\gamma_Q}{4} |h|^2 \underset{h\neq 0}{>} 0$$

Получается, что в окрестности нашей точки a все значения больше, чем в ней самой. Получается, это по определению это точка локального минимимума.

(2)

Всё то же самое, только пусть мы рассматриваем функцию g := -f. С учётом отрицательно определённой квадратичной формы всё получится, и тут у нас точка локального максимума.

(3)

Шизофазия начинается тут. Т.к. у нас незнакоопределённая форма, значит $\exists h>0: Q(h)>0, \quad \exists \widetilde{h}>0: Q(\widetilde{h})<0$

Раньше мы с вами считали, что h может быть любым. Теперь же давайте рассмотрим относительно вот этих существующих h, \tilde{h} . Но чтобы устремлять всё это дело к 0, нам необходим некоторый параметр. Пусть он будет s. Тогда рассматриваем по тому же принципу: f(a+sh)-f(a), рассуждения такие же, только там везде дополнительно вылезает s^2 , и, таким образом, функции станут зависеть от него:

$$f(a+sh) - f(a) \ge \frac{1}{2}Q(sh) - |\alpha(s)|s^2 = \frac{s^2}{2}Q(h) - |\alpha(s)|s^2 \ge \frac{1}{4}Q(h)s^2$$

Вот, тут у нас получилось, что это минимум. А если отработаем с \widetilde{h} , то получится наоборот.

(4)

Ну а тут, слава Богу, достаточно привести пример.

Пусть
$$f(x) := x_1^2 - x_2^4$$
, $a = (0,0)$

$$df(a,h) = 0, \quad d^2f(a,h) = 2h_1^2$$

Видно, что в этом случае мы можем бегать и по x_1 , и по x_2 , и в итоге получим разные значения, потому что форма вообще зависит только от одной компоненты.

А для почти идентичной $g(x) := x_1^2 + x_2^4$ уже всё наоборот, и существует строгий локальный минимум.

ч. т. д.

1.3.2 Теорема о неявном отображении

 Φ ормулировка:

- $F: O \subset \mathbb{R}^{m+n} \to \mathbb{R}^n$
- $(a,b) \in O$, $a \in \mathbb{R}^m, b \in \mathbb{R}^n$
- $F(a,b) = 0 \in \mathbb{R}^{m+n}$
- $F \in C^r, r \in \mathbb{N} \cup \{\infty\}$
- $\det F_u'(a,b) \neq 0$

Тогда $\exists P(a) \subset \mathbb{R}^m, Q(b) \subset \mathbb{R}^n$ — окрестности, и $\exists ! \varphi : P \to Q \in C^r$ гладкое:

$$\forall x \in P : F(x, \varphi(x)) = 0$$

Бонус:

$$\varphi'(x) = -(F_y'(x,\varphi(x)))^{-1} \cdot F_x'(x,\varphi(x)) \Leftrightarrow F_x'(x,\varphi(x)) + F_y' \cdot \varphi'(x) = 0 \ (\text{продифференцировали условие})$$

Доказательство:

Het, это не шутка. Всё доказательство строится вокруг одной картинки и яростного махания руками со знанием дела.

Заведём $\Phi(x,y):O\subset\mathbb{R}^{m+n}\to\mathbb{R}^{m+n},\quad \Phi(x,y)=(x,F(x,y)).$ Логично, что по условию $\Phi(a,b)=(a,0).$ Если посмотреть на производный оператор (а она дифференцируема, так как F — дифференцируема (?)), то прекрасно видно, что матрица квадратная, да ещё и блочная \Rightarrow det $\Phi'(a,b)=$ det $E_m\cdot$ det $F'_y(a,b).$ По условию ничего из этого не 0, следовательно определитель невырожден. А поэтому, по теореме о локальной обратимости: Φ — локальный диффеоморфизм класса C^r .

Заведём окрестность (как декартово произведение, почему бы и нет) $\widetilde{U}=P_1\times Q.$ P_1 немного большевата для P, поэтому потом мы её немного подрежем. $\widetilde{V}=\Phi(\widetilde{U}).$ Заметим, что все эти окрестности открыты по предыдущим теоремам.

Т.к. у нас $\Phi|_{\widetilde{U}}$ — диффеоморфизм, на прообразе и образе имеет место быть обратное отображение $\Psi:\widetilde{V}\to\widetilde{U}=\Phi^{-1}.$

Заметим, что отображение Φ не меняет "x"-овые координаты (по построению функции ,см. рисунок), "y"-овые же как-то колбасит, как показано зелёной областью. Значит и Ψ их тоже не меняет, т.к. диффеоморфизм. Именно поэтому справа у нас координаты (x,v). Можно представить $\Psi(x,v)=(x,H(x,v)), \quad H:\widetilde{V}\to\mathbb{R}^n\in C^r$. Поэтому давайте выберем окрестность

 $P \subset \mathbb{R}^m := \widetilde{V} \cap (\mathbb{R}^n \times \{0\})$. Она открыта по теореме (1 сем) о свойствах открытых множеств (конечное пересечение открытых открыто). $U = P \times Q$

Вооот. А теперь давайте предложим в качестве $\varphi(x): P \to Q := H(x,0)$. Она прнадлежит классу C^r , т.к. все функции до этого в нём лежали. А почему выполняется условие $F(x,\varphi(x)) = 0, x \in P$? Ну давайте проследим путь. Что такое вообще H(x,0) — мы берём все точки вида (x,0) (см. картинку), и взаимно-однозначно отправляем их обратно в левую часть, тем самым вычисляя им значение $b_0 \in Q(b)$ (этим и занимается H(x,v) по своей сути). Ну вот. А потом мы отправляем точку (x,b_0) в правую часть, и куда же она должна приехать, если уезжала из 0? Правильно, в 0. Ура, условие выполняется.

Осталось доказать едиственность, опять давайте помашем руками:

$$x \in P, y \in Q : F(x, y) = 0, \quad \Phi(x, y) = (x, 0)$$

$$(x,y) = \Psi \Phi(x,y) = \Psi(x,0) = (x, H(x,0)) = (x, \varphi(x))$$

ч. т. д.

1.3.3 Необходимое условие относительного локального экстремума

 Φ ормулировка:

- $f: E \subset \mathbb{R}^{m+n} \to \mathbb{R}, \Phi: E \to \mathbb{R}^n, \quad f, \Phi \in C^1$
- $M_{\Phi} \subset E : \{x \mid \Phi(x) = 0\}$
- $a \in E$ точка относительного локального экстремума ($\forall x \in U(a) \cap M_{\Phi}, f(x_0) \leq f(x)$ это нестрогий максимум, остальное аналогично)
- $\Phi(a) = 0$ уравнение связи
- rank $\Phi'(a) = n$

Тогда
$$\lambda \in \mathbb{R}^n(\lambda_1,\lambda_2,\dots,\lambda_n): egin{cases} f'(a)+\lambda \Phi'(a)=0 \\ \Phi(a)=0 \end{cases}$$

Второе условие бесплатное, оно из условия.

Доказательство:

Так как у нас ранг n на матрице производного оператора Φ' , давайте считать, что он достигается на $m+1\ldots m+n$ (n штук) столбцах матрицы (это матрица n строк \times (m+n) столбцов). Тогда в стиле всех предыдущих теорем а-ля "неявное отображение" разделим переменные: $(x_1, x_2, \ldots, x_m), (x_{m+1}, x_{m+1}, \ldots, x_{m+n}) \mapsto (x, y)$. Точку a тоже: (a_x, a_y) .

Запускаем теорему о неявном отображении: $\Phi(a)=0, \frac{\partial \Phi}{\partial y}$ — невырожденный оператор. Тогда существует $!\varphi:U(a_x)\to P(a_y), \Phi(x,\varphi(x))=0.$ Замечаем, что $x\mapsto (x,\varphi(x))$ — параметризация простого гладкого m-мерного многобразия в $M_\Phi\cap \{U(a_x)\times P(a_y)\}.$

Тогда для $g(x) = f(x, \varphi(x))$ точка a_x — просто точка локального экстремума. Почему? Управляя теперь точкой x, мы с помощью g попадаем в M_{Φ} , внутри которого $\Phi(x) = 0$ всегда! Поэтому

внутри хорошего (в рамках этой задачи) множества мы и ищем экстремум. Это можно легко понять, если представить поиск экстремума на какой-то области графика (ради этого всё и делается же).

Хорошо, давайте его искать. По необходимому условию экстремума, ЧП g должны быть равны нулю (φ' бывает только по x):

$$f'_x(a) + f'_y(a) \cdot \varphi'(a_x) = 0 \qquad (\in \mathbb{R}^m)$$

Начииная с этого места опускаем подстановку точек, но они там есть! Вспоминаем, что у нас есть $\Phi(x, \varphi(x)) = 0$. Также дифференцируем:

$$\Phi_x' + \Phi_y' \varphi' = 0 \qquad (\in Mat(n, m))$$

$$\forall \lambda \in \mathbb{R}^m : \qquad \lambda \Phi'_x + \lambda \Phi'_y \varphi' = 0 \qquad (\in \mathbb{R}^m)$$

Тогда можно вычесть из уравнения с f уравнение с Φ — размерности сошлись:

$$f_x' - \lambda \Phi_x' + (f_y' - \lambda \Phi_y')\varphi' = 0$$

Пусть $f_y' - \lambda \Phi_y' = 0$. Тогда:

$$\lambda = f_y' \cdot \left(\Phi_y'\right)^{-1}$$

Если мы берём это λ (а нас и просят её предъявить), то наше предположение верно. Раз разность 0, то и иксовая разность равна нулю:

$$\begin{cases} f_y' - \lambda \Phi_y' = 0 \\ f_x' - \lambda \Phi_x' = 0 \end{cases}$$

Это векторная запись точек, которые мы когда-то разъединили. Давайте соединим обратно:

$$f' - \lambda \Phi' = 0$$
 $\lambda = f'_y \cdot (\Phi'_y)^{-1}$

ч. т. д.

1.4 Теоремы

1.4.1 Лемма об условиях, эквивалентных непрерывности линейного оператора

Формулировка:

Пусть X, Y — нормированные линейные пространства, $A \in \mathbb{L}(X, Y)$.

Тогда следующие утверждения эквиваленты:

- 1. A ограниченный оператор, в том смысле, что ||A|| конечно
- 2. A непрерывно в нуле
- $3. \ A$ непрерывно на всём X
- $4. \ A$ равномерно непрерывно

Доказательство: Для $||A|| \equiv 0$ — тривиально (супремум = 0, следовательно 0), поэтому далее считаем норму оператора ненулевой. Ну, во-первых, $4 \Rightarrow 3 \Rightarrow 2$ — очевидно, просто одно следует из другого.

Во-вторых, $2 \Rightarrow 1$:

По определению непрерывности в нуле: $\forall \varepsilon > 0, \ \exists \delta \forall x \in B(0, \delta) : |Ax| < \varepsilon$ (это нам дано, значит можем пользоваться, как хотим)

Давайте рассмотрим $\varepsilon = 1: |Ax| < 1$, потом делим на δ :

$$|A\frac{x}{\delta}| < \frac{1}{\delta}$$

Переназначим x и заметим, что $x \in \overline{B(0,1)}: |Ax| \leq \frac{1}{\delta}$ (обратите внимание, мы взяли замыкание шара и получили нестрогое неравенство)

Тогда для $x \in S(0,1): |Ax| \leq \frac{1}{\delta} = \frac{1}{\delta} \cdot |x|$ — по замечанию 4 из определения, $||L|| \leq \frac{1}{\delta}.$

B-третих, $1 \Rightarrow 4$:

Давайте опять запишем определение равномерной непрерывности:

$$\forall \varepsilon > 0 \exists \delta : \forall x_1, x_2 : |x_1 - x_2| < \delta |f(x_1) - f(x_2)| < \varepsilon$$

Назначим $\delta := \frac{\varepsilon}{||A||}$

$$|Ax_1 - Ax_2| < \varepsilon$$

По линейности:

$$|A(x_1 - x_2)| < ||A|| \cdot |x_1 - x_2| = ||A||\delta = ||A|| \frac{\varepsilon}{||A||} = \varepsilon$$

ч.т.д.

1.4.2 Теорема Лагранжа для отображений

 Φ ормулировка: $F:D\subset\mathbb{R}^m\to\mathbb{R}^l, D$ — открытое

F — дифференцируемо на $D, [a, b] \subset D$

Тогда $\exists c \in [a,b]: |F(a) - F(b)| \leq ||F'(c)|| \cdot |b-a|$ Доказательство: Заведём функцию $f(t) = F(a+t(b-a)), t \in [0,1] \subset \mathbb{R}$. То есть как-бы двигаем точку по [a,b].

$$f'(t) = F'(a + t(b-a))(b-a)$$

Заметим, что это оператор $\mathbb{R} \to \mathbb{R}^l$, т.к. F'(a+t(b-a))-l, а b-a-m (???)

Вспомним также теорему Лагранжа для векторнозначных функций:

 $F:[a,b] \to \mathbb{R}^n, F$ — дифференцируема на $[a,b], \exists c \in [a,b]$

$$|F(a) - F(b)| = |F'(c)| \cdot |b - a|$$

Рассмотрим нашу функцию f(t) по этой теореме в точках 0 и 1:

$$|f(1) - f(0)| = |f'(c)| \cdot |1 - 0|$$

Подставим:

$$|F(b)-F(a)| = |F'(a+c(b-a))\cdot (b-a)| \leq \sup_{\text{по замечанию } 3} ||F'(a+c(b-a))|| \cdot |b-a|$$

Ну а дальше, пусть c := a + c(b - a) и всё супер.

ч.т.д.

1.4.3 Теорема об обратимости линейного отображения, близкого к обратимому

Формулировка (безымянная лемма):

Возможно, она нахер не нужна, но пусть всё же будет

Пусть $B \in \mathbb{L}(\mathbb{R}^m, \mathbb{R}^m)$.

Если c > 0: $\forall x \in \mathbb{R}^m : |Bx| \ge c|x|$, тогда $B \in \Omega_m$ и $||B^{-1}|| \le \frac{1}{c}$

Доказательство:

B — очевидно инъективен, т.к. любой ненулевой вектор у нас отправляется в разные точки \Rightarrow биекция \Rightarrow обратимый $\Rightarrow \exists B^{-1}$

Теперь пусть $y = B^{-1}x \Rightarrow |Bx| = |y| \ge c|x| = c|B^{-1}y| \Rightarrow |B^{-1}y| \le \frac{1}{c} \cdot |y| \underset{\text{по замечанию 3}}{\Rightarrow} ||B^{-1}|| \le \frac{1}{c}$ ч.т.д.

Замечание:

Если $A \in \Omega_m$, то можно провенуть такую штуку: $|x| = |A^{-1}Ax| \le ||A^{-1}|| \cdot |Ax|$ (по 3 замечанию). Тогда:

$$|Ax| \ge \frac{1}{||A^{-1}||}|x|$$

Формулировка:

Пусть $L\in\Omega_m$ — обратимый оператор, $M\in\mathbb{L}(\mathbb{R}^m,\mathbb{R}^m),\,||L-M||<\frac{1}{||L^{-1}||}$

Тогда:

1. $M \in \Omega_m$ — обратимый

2.
$$||M^{-1}|| \le \frac{1}{\frac{1}{|L^{-1}|} - ||L - M||}$$

3.
$$||L^{-1} - M^{-1}|| \le \frac{||L^{-1}||}{\frac{1}{|L^{-1}|} - ||L - M||} \cdot ||L - M||$$

Доказательство:

(1) u (2)

Рассмотрим |Mx| с рандомным возможным x. По неравенству треугольника (это всё же норма) и оценкам по замечаниям сверху:

$$|Mx| \ge |Lx| - |(M-L)x| \ge \frac{1}{||L^{-1}||}|x| - ||M-L|| \cdot |x| = \left(\frac{1}{||L^{-1}||} - ||M-L||\right)|x|$$

По безымянной лемме всё доказано (заметим, что выражение в скобочках — положительная константа).

(3)

Неповторимый оригинал:

$$\frac{1}{l} - \frac{1}{m} = \frac{m - l}{ml}$$

Жалкая копия (доказывается тривиально, раскрытием скобок):

$$L^{-1} - M^{-1} = M^{-1}(M - L)L^{-1}$$

Отнормируем:

$$||L^{-1}-M^{-1}|| \leq ||M^{-1}|| \cdot ||L-M|| \cdot ||L^{-1}||$$

Ну и просто подставим (2).

ч.т.д.

Следствие:

Отображение $\Omega_m \to \Omega_m : L \to L^{-1}$ непрерывно.

Доказательство:

Давайте по Гейне: если $B_k \to L$, то сходится ли $B_k^{-1} \to L^{-1}$????

Во-первых, начиная с некоторого места:

$$|B_k - L| \le \frac{1}{||L^{-1}||}$$

$$|B_k^{-1} - L^{-1}| \le \frac{||L^{-1}||}{\underbrace{\frac{1}{|L^{-1}|} - \underbrace{||L - B_k||}_{\to 0}}} \cdot ||L - B_k|| \to 0$$

ч.т.д.

1.4.4 Теорема о непрерывно дифференцируемых отображениях

Формулировка: $F:D\subset\mathbb{R}^m\to\mathbb{R}^l, F$ дифференцируема на $D,F':D\to\mathbb{L}(\mathbb{R}^m,\mathbb{R}^l)$

Тогда следующие утверждения эквивалентны:

- 1. $F \in C^1(D) \Leftrightarrow \forall i, j : \frac{\partial f_i}{\partial x_j}$ непрерывны
- 2. F' непрерывно на $D: \forall x: \mathbb{R}^m \ \forall \varepsilon > 0 \ \exists \delta > 0: \ \forall \widetilde{x} \ |x-\widetilde{x}| < \delta \ ||F'(x)-F'(\widetilde{x})|| < \varepsilon$

Доказательство:

$$(1) \Rightarrow (2)$$

Давайте зафиксируем какие-то i, j и относительно них рассмотрим наше условие непрерывности частных производных по отдельности. Также, применим китайскую грамоту и возьмём немного другой эпсилон:

$$\forall x : \mathbb{R}^m \ \forall \varepsilon > 0 \ \exists \delta > 0 : \ \forall \widetilde{x} \ |x - \widetilde{x}| < \delta \ \left| \frac{\partial f_i}{\partial x_j}(x) - \frac{\partial f_i}{\partial x_j}(\widetilde{x}) \right| < \frac{\varepsilon}{\sqrt{ml}}$$

Тогда, так как нам это уже известно, проверим условие (2):

$$||F'(x) - F'(\widetilde{x})|| \leq \sum_{i,j} \left(\frac{\partial f_i}{\partial x_j}(x) - \frac{\partial f_i}{\partial x_j}(\widetilde{x})\right)^2$$

Ну а теперь просто оцениваем всё это дело эпсилоном!

$$\leq \sqrt{\sum_{i,j} \frac{\varepsilon^2}{ml}} = \sqrt{ml \cdot \frac{\varepsilon^2}{ml}} = \varepsilon$$

$$(2) \Rightarrow (1)$$

Ну а вот тут душный пиздец. Идея в том, что мы хотим проверить для каждой частной производной с индексами (v,u) наше предположение.

Давайте выберем $h \in \mathbb{R}^m = (0,0,0,\dots,0,\underbrace{1}_{u\text{-oe число}},0,\dots,0,0)^T.$ Теперь нам известно, что:

$$|(F'(x) - F'(\widetilde{x}))h| \le ||F'(x) - F'(\widetilde{x})|| \cdot |h| \le \varepsilon$$

Ну а с другой стороны, $(F'(x) - F'(\widetilde{x}))h$ есть ничто иное, как вектор $\left(\frac{\partial f_i}{\partial x_u}(x) - \frac{\partial f_i}{\partial x_u}(\widetilde{x})\right)_{i=1...l}$. Поэтому давайте рассмотрим его норму по вышеиспользованной лемме:

$$\sqrt{\sum_{i=1}^{l} \left(\frac{\partial f_i}{\partial x_u}(x) - \frac{\partial f_i}{\partial x_u}(\widetilde{x})\right)^2} \le \varepsilon$$

Ну, раз уж у нас корень суммы квадратов меньше, то и каждое слагаемое по отдельности тоже меньше. Давайте зафиксируем i=v и получим долгожданное:

$$\left| \frac{\partial f_v}{\partial x_u}(x) - \frac{\partial f_v}{\partial x_u}(\widetilde{x}) \right| \le \varepsilon$$

Так как данные эпсилон-дельта преамбуды везде были одинаковыми, то и тут всё супер. Доказано, не умаляя общности!!!!

ч. т. д.

1.4.5 Теорема Ферма. Необходимое условие экстремума. Теорема Ролля

Формулировка (Ферма):

 $f:D\subset\mathbb{R}^m\to\mathbb{R}, a\in Int(D), f$ — дифференцируема в точке a (точка локального экстремума)

Тогда $\forall l \in \mathbb{R}^m : |l| = 1$ (направление) $\frac{\partial f}{\partial l}(a) = 0$

Доказательство:

Тривиалити, для $f|_{\text{прямая через } a \text{ по направлению } la}$ — тоже точка локального экстремума, поэтому по одномерной теореме Ферма всё работает!

ч. т. д.

Следствие (Необходимое условие экстремума)

a — точка локального экстремума $\Rightarrow \forall k \in [1,m]: \frac{\partial f}{\partial x_k} = 0$

Следствие (Ролль)

- $f: D \subset \mathbb{R}^m \to \mathbb{R}$
- $K \subset D$ компакт
- \bullet f дифференцируема в Int(K), непрерывна на K
- $f|_{\text{граница }K} = \text{const}$

Тогда $\exists a \in Int(K) : \nabla f \equiv 0$

Доказательство

По теореме Вейерштрасса (привет, 1 сем), на компакте функция достигает своего минимимума и максимума. Тогда либо у нас на $Kf \equiv const$, тогда такая точка — любая, либо же по теореме Ферма она существует где-то внутри компакта.

ч. т. д.

1.4.6 Лемма об оценке квадратичной формы и об эквивалентных нормах

 Φ ормулировка (Лемма об оценке квадратичной формы): Q — положительно определённая квадратичная форма.

Тогда $\exists \gamma_Q : \forall h \quad Q(h) \geq \gamma_Q \cdot |h|^2$

Доказательство:

А давайте так:

$$\gamma_Q := \min_{|x|=1} Q(x)$$

. Он достигается, так как мы гоняем по компакту (сфере), следовательно по Вейерштрассу всё хорошо.

Для
$$x=0$$
 всё тривиально, поэтому при $x\neq 0$: $Q(x)=|x|^2Q(\frac{x}{|x|})$ $\underset{\frac{x}{|x|}\text{ от }0\text{ до }1!}{\geq}\gamma_Q|x|^2$

Формулировка (Лемма об эквивалентных нормах):

 $p: \mathbb{R}^m \to \mathbb{R}$ — норма

Тогда
$$\exists C_1, C_2 > 0 : \forall x \quad C_1|x| \leq p(x) \leq C_2|x|$$

Доказательство:

То же самое:

$$C_1 := \min_{|x|=1} p(x), \quad C_2 := \max_{|x|=1} p(x)$$

Для минимума: $\forall x: p(x) = |x| \cdot p(\frac{x}{|x|}) \geq C_1 |x|$, для максимума аналогично.

ч. т. д.

1.4.7 Лемма о "почти локальной инъективности"

Формулировка:

- $F: O \subset \mathbb{R}^m \to \mathbb{R}^m$
- $x_0 \in O$
- F дифференцируема в x_0
- $\det F'(x_0) \neq 0$

Тогда $\exists C>0, \delta>0 \quad \forall h\in B(0,\delta) \ |F(x_0+h)-F(x_0)|\geq C|h|$

Доказательство:

1. Если F — линейное отображение, то рассмотрим: $|h| = |F^{-1}Fh| \le ||F^{-1}|| \cdot |Fh|$. По линейности:

$$|F(x_0 + h) - F(x_0)| = |Fh| \ge \underbrace{\frac{1}{||F^{-1}||}}_{G} |h| \quad \forall \delta$$

2. В противном случае, запишем определение дифферецируемости: $|F(x_0+h)-F(x_0)|=|F'(x_0)h+|h|\cdot\underbrace{\alpha(h)}_{>0}|\geq\underbrace{C}_{\text{6. м.}}$ нер-во треугольника $\underbrace{C}_{\text{из пункта }1}|h|+\alpha(h)\cdot|h|$. Давайте выберем δ так, чтобы $\alpha(h)<\frac{C}{2}$

$$\ldots \ge \frac{C}{2}|h|$$

ч.т.д.

Замечание

При $\forall x \det F'(x) \neq 0$ не следует инъективность!

1.4.8 Теорема о сохранении области

Формулировка:

- $F: O \subset \mathbb{R}^m \to \mathbb{R}^m, O$ открытое
- F дифференцируемо
- $\forall x \in O : \det F'(x) \neq 0$

Тогда F(O) — открытое множество.

Замечания

1. Если O- связное и F- непрерывное, то F(O)- связное

Доказательство:

Ну, типа очев. Если у нас есть $W_1,W_2\subset F(O)$, причём они не связны, то логично что получиться они могли только вследствие $F^{-1}(W_1)\cap F^{-1}(W_2)=\emptyset$

2. F — непрерывное $\Leftrightarrow \forall W \subset F(O)$ — открытого, $F^{-1}(W)$ — открыто Доказательство: По топологическому определению непрерывности (привет, 1 сем!).

Доказательство:

В общем, основная идея доказательства состоит в том, чтобы доказать, что любая точка из образа является внутренней, тогда по определению открытого множества мы докажем и вывод. $\forall x_0 \in O: y_0 = F(x_0).$

По лемме выше, $\exists C>0, \exists \delta>0: \forall h\in \overline{B(0,\delta)}: |F(x_0+h)-F(x_0)|\geq C|h|$. Не стоит смущаться при виде замкнутого шара, это мы просто провели двойную бухгалтерию. Причём, как видно на картинке, граница нашей области отображается куда-то далеко (аж на константу) больше, чем просто на δ .

Заведём расстояние $dist(x,A) = \inf_{y \in A} \rho(x,y)$ между точкой и множеством. Пусть $r = \frac{1}{2} \cdot dist(y_0, \underbrace{F(S(x_0,\delta))}_{\text{компакт}})$.

Так как у нас там всё компакты то минимум достигается, и, что важнее всего, всё это больше нуля.

Теперь самое интересное: докажем, что $B(y_0,r) \subset F(O) : \forall y \in B(y_0,r) \exists x \in B(x_0,\delta) : F(x) = y$. Это докажет нам всё остальное.

 $\forall y \in B(y_0,r): \rho(y,F(S(x,\delta))) > r$. Это очевидно, на рисунке всё видно. Рассмотрим $g(x):=|F(x)-y|^2, x \in B(x_0,\delta)$. Как было сказано выше, мы доказываем, что у нас $\exists x \Leftrightarrow g(x)=0$ возможно. Ну, очевидно, что, видимо, в если там и есть ноль, то это экстремум функции (модуль же, лол).

$$g(x_0) = |F(x_0) - y|^2 = |y_0 - y|^2$$
 очевидно по рисунку r^2

Также, по рисунку очевидно, что для всех x с границы, наша функция отправляет их сильно дальше.

$$\forall x \in S(x, \delta) \quad g(x) \ge r^2$$

Получается, наш минимум лежит где-то внутри сферы. Поищем его. По определению евклидовой нормы:

$$g(x) = (F_1(x) - y_1)^2 + (F_2(x) - y_2)^2 + \dots + (F_m(x) - y_m)^2$$

По необходимому условию экстремума, $\nabla F(x)=0 \Rightarrow \forall i \in [1,m]: \frac{\partial f}{\partial x_i}=0$

$$g'(x) = 2(F_1(x) - y_1)\frac{\partial f}{\partial x_1} + 2(F_2(x) - y_2)\frac{\partial f}{\partial x_2} + \dots + 2(F_m(x) - y_m)\frac{\partial f}{\partial x_m} = 0$$

Или в векторной форме:

$$2 \cdot (F(x) - y) \cdot F'(x) = 0$$

Однако, по условию у нас производный оператор невырожденный! Следовательно, остаётся только F(x) = y. А это то, что мы и искали!!!!

ч. т. д.

1.4.9 Следствие о сохранении области для отображений в пространство меньшей размерности

 Φ ормулировка:

- $f: O \subset \mathbb{R}^m \to \mathbb{R}^l$
- O открыто
- *l* < *m*
- $F \in C^1(O)$
- $\forall x \in O : \operatorname{rank}(F') = l$

Тогда F(O) — открыто

Доказательство:

Зафиксируем $x_0 \in O$. Так как у нас матрица производного оператора теперь имеет вид не квадратный, а прямоугольный $(l \times m)$, просто так применить предыдущую теорему не получится. Поэтому, не умаляя общности, давайте считать, что вот этот ЛНЗ набор векторов в матрице реализуется на позициях $1 \dots l$. Тогда мы можем посчитать определитель этой матрицы:

$$\det\left(\frac{\partial F_i}{\partial x_j}\right)_{1 \le i, j \le l} (x_0) \ne 0$$

При этом, так как мы потребовали непрерывность, немножко пошевелив x_0 всё также будет работать:

$$\exists U(x_0) : \forall x \in U(x_0) \quad \det \left(\frac{\partial F_i}{\partial x_j}\right)_{1 \le i,j \le l} (x) \ne 0$$

Мы уже доказали, что $F(x_0)$ — внутренняя в $F(U(x_0))$ (по предыдущей теореме). Осталось немного пошаманить, чтобы доказать, что действительно из пространства большей в меньшую всё корректно отобразится.

Давайте заведём такую окрестность $U_l = (t_1, t_2, \dots, t_l) : (t_1, t_2, \dots, t_l, (x_0)_{l+1}, \dots, (x_0)_m)$. Как видно на рисунке, это такая проекция в пространстве большей размерности на пространство меньшей. Теперь заведём $\widetilde{F}: U_l \to \mathbb{R}^l$ и посмотрим на её матрицу производных:

$$\frac{\partial \widetilde{F}_i}{\partial t_j} = \left(\frac{\partial F_i}{\partial x_j}(t_1, t_2, \dots, t_l, (x_0)_{l+1}, \dots, (x_0)_m)\right)$$

И вот теперь, по непрерывности \widetilde{F} и прошлой теореме, всё по идее работает. ч. т. д.

1.4.10 Теорема о гладкости обратного отображения

Формулировка:

- $F: O \subset \mathbb{R}^m \to \mathbb{R}^m$
- F обратимо
- $F \in C^r(O), r \in 1, 2, ...$
- $\forall x \in C : \det F'(x) \neq 0$

Тогда
$$F^{-1} \in C^r$$
, $((F^{-1}(y))' = (F'(x))^{-1})$ при $F(x) = y$

Доказательство:

Докажем по индукции по r. Замое запарное — база.

База:

Пусть $x_0 \in O$, $F(x_0) = y_0$. $S := F^{-1}$. Заметим, что S — непрерывно по теореме о сохранении области и теореме о топологическом определении непрерывности (типа для любого открытого из прообраза образ тоже открыт)

По лемме о "почти" локальной инъективности:

$$\exists C, \delta > 0 : \forall x \in B(x_0, \delta) \quad |F(x) - F(x_0)| \ge C|x - x_0| \Rightarrow |x - x_0| \le \frac{1}{C}|F(x) - F(x_0)|$$

Запишем определение дифференцируемости для F и сразу распишем всё в терминах y:

$$A = F'(x_0), \quad \underbrace{F(x) - F(x_0)}_{y - y_0} = A(\underbrace{x - x_0}_{S(y) - S(y_0)}) + \alpha(\underbrace{x}_{S(y)})|x - x_0|$$

Выражаем $(S(y) - S(y_0))$:

$$S(y) - S(y_0) = A^{-1}(y - y_0) - \underbrace{A^{-1}\alpha(S(y))|S(y) - S(y_0)|}_{\beta(y) = o(|y - y_0|)}$$

Получилось вполне себе нормальное определение для дифференцируемости S. Надо лишь доказать "о"-шку при $y \to y_0$. Оценим её с помощью вывода из леммы выше и стандартной оценки операторной нормы (не забываем, что мы как-бы управляем y???):

$$\begin{split} |x-x_0| &= |S(y)-S(y_0)| < \delta \underset{\text{при } y \text{ близких к } y_0}{\Rightarrow} |\beta(y)| = |A^{-1}\alpha(S(y))| \cdot |S(y)-S(y_0)| \\ &\leq \underbrace{\frac{||A^{-1}||}{C}}_{\text{const}} \cdot \underbrace{|y-y_0|}_{|F(x)-F(x_0)|} \cdot |\alpha(S(y))| \\ &= o(|y-y_0|) \end{split}$$

Фактически "о"-шка доказана по определению. Тем самым доказана дифференцируемость. А что с непрерывностью производной то? Этого мы ещё не доказывали. Построим цепочку непрерывных отображений:

$$y \mapsto S(y) = x \mapsto A(x) \mapsto A^{-1}(x) = S'(y)$$

Непрерывность дифференцирования обратного производного оператора доказывается маханием руками на тему отдельных производных в матрице. Тем самым база доказана.

Переход

Достаточно тривиальный. Посмотрим при $m=1:(f^{-1}(y))'=\frac{1}{f(x(y))}$. То есть, пусть $f\in C^{r+1}$, тогда надо доказать, что $f'\in C^r$. Ну там вот это и написано, обратная функция вообще $C^\infty, f'(x)\in C^r$ — очев. Для многомерного случая всё тоже самое, только формула выглядит пафоснее . . . = $(F'(x(y)))^{-1}$

ч. т. д.

1.4.11 Теорема о задании гладкого многообразия системой уравнений

Формулировка:

$$M \subset \mathbb{R}^m, 1 \le k \le m, 1 \le r \le \infty$$

Тогда следующие утверждения эквивалентны:

- 1. $\exists U(p) \in \mathbb{R}^m : M \cap U(p)$ гладкое k-мерное C^r -гладкое многообразие
- 2. $\exists \widetilde{U}(p) \in \mathbb{R}^m : \exists (F_1, F_2, \dots, F_{m-k}) : \widetilde{U} \to \mathbb{R}, F_i \in C^r$
 - (a) $\forall x \in \widetilde{U} \cap M \Leftrightarrow F_1(x) = F_2(x) = \dots = F_{m-k} = 0$
 - (b) $\nabla F_1, \nabla F_2, \dots, \nabla F_{m-k} \Pi H 3$

Доказательство (оставь надежду всяк сюда идущий):

$$(1) \Rightarrow (2)$$

Нам дано многобразие. А что это значит? $\Phi:O\subset\mathbb{R}^k\to\mathbb{R}^m\in C^r$ — гомеоморфизм. Давайте посмотрим на неё в смысле координатных функций: $\exists \Phi=(\varphi_1,\varphi_2,\ldots,\varphi_l), p=\Phi(t^0), \mathrm{rank}\,\Phi'(t^0)=k$. Всё по определнию.

У нас тут ЛНЗ набор (ранг k), поэтому давайте опять считать, что он реализуется на первых k векторов, поэтому:

$$\left(\det \frac{\partial \Phi_i}{\partial t_j}\right)_{i=1...k} = 0$$

Теперь давайте, во-первых, примем за $\mathbb{R}^m = \mathbb{R}^{m-k} \times \mathbb{R}^k$ (на рисунке справа, всё логично). И заведём $L: \mathbb{R}^m \to \mathbb{R}^k: (x_1, x_2, \dots, x_m) \mapsto (x_1, x_2, \dots, x_k)$ — просто проекция первых k координат. Тогда заметим, что $(L \circ \Phi)'(t^0)$ — невырожденный оператор: всё просто, он мапит первые k координат, а оператор по ним невырожден по определению многообразия, вон, наверху написано. Значит, это локальный диффеоморфизм (по соответствующей теореме). А если $W(t^0)$ — окрестность, то $L \circ \Phi: W \to V \subset \mathbb{R}^k \in C^r$ — диффеорморфизм (класс гладкости сохраняется).

Тогда давайте введём ещё парочку отображений: $\Psi: V \to W := (L \circ \Phi)$ — обратное отображение, также диффеоморфизм, т. к. оно там всё диффеоморфизм, следовательно биекция сохраняется. Также, получается, раз у нас биекция, над V множество в R^{m-k} это график какого-то отображения. Оно точно существует, ведь L — биективно. Назовём его $H: V \to \mathbb{R}^{m-k}$

При
$$x' \in V: (\underbrace{x'}_{1...k}, \underbrace{H(x')}_{k+1...m-k}) = \Phi \Psi(x')$$
 — это правда, просто проехались по путям и вернулись. В

L у нас только первые k координат, а H нам дорисовывает остальные m-k штук. Ну и вот, в правой стороне равенства у нас диффеоморфизмы, слева проекция (там вообще всё гуд) и $H \Rightarrow$ это тоже диффеоморфизм класса C^r .

Почти всё. Осталось чётко определить, на какой окрестности будут определены наши функции. Смотрите, вообще наш график H может в принципе быть и шире, чем $W(t^0)$, и тогда $L(\mathit{график}\ H)$ может быть больше, чем V, и мы не хотим со всем этим разбираться — зачем? Поэтому давайте аккуратненько всё подрежем. $V \times \mathbb{R}^{m-k}$ — открытое, такой типа цилиндр вверх. Φ — гомеоморфизм, поэтому $\Phi(W)$ — открытое. Но в M — это важно! Оно может и не быть открыто во всём \mathbb{R}^m , а конкретно на M с индуцированной метрикой точно открыто. Тогда вспоминаем теорему из 1-го семестра об открытом множестве в пространстве и подпространстве: $M \subset \mathbb{R}^m$, $\Phi(W) \subset M$ — открытое, тогда $\exists G \subset \mathbb{R}^m : G \cap M = \Phi(W), G$ — открытое. И тогда пусть область определения $\widetilde{U}(p) = G \cap \{V \times \mathbb{R}^{m-k}\}$ — открытое в \mathbb{R}^m , отрезали всё лишнее.

Ну всё, совсем немного осталось. Надо задать такие функции, что они будут нулевыми при $x\in \widetilde{U}\cap M$. Пусть $F_j(x)=H_j(L(x))-x_{j+k}$. Что тут написано: мы берём x, отпрявляем его в L, оставляя только первые k координат. Потом H отправляем его обратно наверх, причём конкретно H_j вернёт нам x_{k+j} -ю координату, ведь, как мы писали выше, точки из графика H выглядят как $\underbrace{x'}_{1...k},\underbrace{H(x')}_{k+1...m-k}$). Ну всё, (A) выполнено автоматически. А что там с градиентами? Давайте просто

их построим и увидим, что в конце будет просто -E, что и даст нам m-k независимых векторов (ну, ранг такой).

$$(2) \Rightarrow (1)$$

Тут нам сильно помогут наработки предков. Давайте подгоним наше условие под условие теоремы о неявном отображении (в смысле системы уравнений). У нас там была система из уравнений F(x,y)=0, где x — "переменные", а y — "функции" и решение (x^0,y^0) , такое что при $\forall x\in P(x^0),y\in Q(y^0): F(x,y)=0\Leftrightarrow \exists \varphi: P\to Q: \phi(x)=y$. Давайте назначим первые k координат переменными, а следующие m-k — функциями. Опять же, у нас ЛНЗ лабор этих градиентов этих функций, а именно:

$$\left(\det \frac{\partial F_i}{\partial x_{j+k}}\right)_{1 \le i,k \le m-k} (x^0, y^0) \ne 0$$

Значит, условие теоремы выполнено, и параметризация есть ничто иное, как $\Phi: U(p_1,p_2,\ldots,p_k) \to \mathbb{R}^m$ $x'\mapsto (x',\varphi(x'))$ на $x\in M\cap \widetilde U\cap \{P\times Q\}$ (по сути график φ). В том числе это и гомеоморфизм, так как в одну сторону всё непрерывно, так как функции непрервыны $(x',\varphi(x'))$, а обратно — это по сути проекция, так что всё тоже непрерывно. Классы гладкости тоже переезжают из прошлой теоремы.

ч. т. д.

1.4.12 Следствие о двух параметризациях

Формулировка:

 $M \subset \mathbb{R}^m - k$ -мерное C^r -гладкое многообразие в \mathbb{R}^m

1. $\exists \Phi_1 : O_1 \subset \mathbb{R}^k \to \mathbb{R}^m$

2. $\exists \Phi_2 : O_2 \subset \mathbb{R}^k \to \mathbb{R}^m$

— гладкие параметризации.

Тогда $\exists \Theta: O_1 \to O_2: \Phi_1 = \Phi_2 \circ \Theta$ — диффеоморфизм класса C^r

Доказательство:

Продолжаем повествование из прошлой теоремы. Гомеоморфизм $O_1 \to O_2$, вообще говоря, существует тривиально: $\Phi_2^{-1} \circ \Phi_1$. Однако, так говорить не совсем правильно, потому что для корректного взятия обратной функции, необходимо сузить образ Φ_2 на его реальную область значений. Поэтому давайте поступим умнее: нарисуем возможные пути точки (крестика) на рисунке (кстати, важно заметить, что разные параметризации могут отправлять точки в разные пространства \mathbb{R}^k , ведь ранг может реализоваываться на произвольных строчках матрицы произвожного опреатора; поэтому у нас народилось 2 пространства и соответствующие отображения между ними (см. картинку)).

$$\Phi_1 = \Phi_2 \circ (\Psi_2 \circ L_2 \circ \Phi_1) = \Psi_2 \circ \Theta$$

Супер, гомеоморфизм есть. А обратим ли он? Да пожалуйста:

$$\Theta^{-1} = \Psi_1 \circ L_1 \circ \Psi_2$$

 ${\bf A}$ всякие гладкости и классы приходят просто из предыдущих отображений, всё там супер. ч. т. д.

1.4.13 Лемма о корректности определения касательного пространства

Формулировка:

• $M \subset \mathbb{R}^m$ — простое k-мерное C^r -гладкое многообразие в \mathbb{R}^m

• $p \in M$

• $\Phi:O\subset\mathbb{R}^k \to \mathbb{R}^m$ — параметризация $M\cap U(p)$

• $t^0 \in O : \Phi(t^0) = p$

ullet $\Phi'(t^0): \mathbb{R}^k o \mathbb{R}^m$ — линейный оператор

Тогда образ $\Phi'(t^0)$ — линейное подпространство в \mathbb{R}^m , не зависящее от Φ .

Доказательство:

Так как Φ — параметризация, rank $\Phi = k$. Ну и тогда всё очевидно по знаниям из линейной алгебры, размерность пространства определяется количеством ЛНЗ столбцов.

По поводу независимости, по следствию о двух параметризациях:

$$\Phi_2 = \Phi \circ \Theta \Rightarrow \Phi_2' = \Phi' \Theta'$$

 Θ — диффеоморфизм, следовательно $\Theta'(t^0)$ — невырожденный. Поэтому образ $\Phi_2' = \Phi'$ (см. картинку)

ч. т. д.

1.4.14 Касательное пространство в терминах векторов скорости гладких путей

Формулировка (Лемма):

 $v \in T_pM$

Тогда \exists гладкий $\gamma:[-\varepsilon,\varepsilon]\to M:\gamma(0)=p,\gamma'(0)=v$

Доказательство:

Раз у нас есть v в образе, значит оно откуда-то пришло. Давайте найдём: $u=(\Phi'(t_0))^{-1}v$.

Тогда предъявим путь в $O: \widetilde{\gamma}(s) = t^0 + su, s \in [-\varepsilon, \varepsilon]$. Типа мы выбрали направление, и гоняем по нему в O.

А настоящий путь будет таким: $\gamma(s) = \Phi \circ \widetilde{\gamma}(s)$. Тогда $\gamma'(s) = \Phi' \circ \widetilde{\gamma}(s)$.

Проверим: $\gamma(0) = \Phi(t^0 + 0) = p$, $\gamma'(0) = \Phi' u = v$

ч. т. д.

Формулировка:

 \exists гладкий путь $\gamma:[-1,1]\to M, \gamma(0)=p$

Тогда $\gamma'(0) \in T_p M$

Доказательство:

Давайте опять прогуляемся по картинке из теоремы о задачи параметризации:

$$\gamma(s) = \Phi \circ \Psi \circ L \circ \gamma(s)$$

Это очевидно, просто прошли по кругу.

$$\gamma'(0) = \Phi'(t^0)\Psi'L'\gamma'$$

Всё лежит в образе $\Phi'(t^0)$, так что по определению касательного пространства всё супер. ч. т. д.

1.4.15 Касательное пространство к графику функции и к поверхности уровня

Формулировка (к графику функции):

- $f: \mathbb{R}^n \to \mathbb{R}$
- $f \in C^1$
- y = f(x) задаёт простое гладкое n-мерное многообразие в \mathbb{R}^{n+1} (???)
- есть точка $f(x^0) = y^0$

Тогда $y-y^0=\sum_{i=1}^n f'_{x_i}(x^0)(x_i-x_i^0)$ задаёт аффинное касательное пространство Доказательство:

Пусть $\Phi: x \mapsto (x, f(x))$. Посмотрим на производный оператор этого отображения:

$$\Phi' = \begin{pmatrix} 1 & 0 & 0 & \dots & 0 \\ 0 & 1 & 0 & \dots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ f'_{x_1} & f'_{x_2} & f'_{x_3} & \dots & f'_{x_n} \end{pmatrix}$$

Заметим, что в нашей формуле неизвестные — y и x_i . Давайте рассмотрим вектор, образующийся перед x_i :

$$\begin{pmatrix} f'_{x_1} \\ f'_{x_2} \\ f'_{x_3} \\ \vdots \\ f'_{x_n} \\ -1 \end{pmatrix}$$

Заметим, что этот вектор ортогонален матрице производного оператора (при перемножении даёт нуль-вектор, следовательно косинус 0, по скалярному произведению). Ну это то, что нам нужно. Вектор (фактически нормаль) к касательному пространству. Ещё и через точку начальную проходит (x^0, y^0) .

ч. т. д.

Формулировка (к уровню):

- $f: \mathbb{R}^m \to \mathbb{R}$ гладкая
- $f(x_1, x_2, \dots, x_m) = 0$ функция
- \bullet x^0 точка, в которой ищем касательное пространство

Тогда касательное пространство задаётся уравнением $f'_{x_1}(x^0)(x_1-x_1^0)+\ldots+f'_{x_m}(x_m-x_m^0))=0$ Доказательство:

Во-первых, давайте опять прогоним трюк с теоремой о неявном отображении: будем считать первые m-1 координату "неизвестными", а x_m — "функцией".

Тогда пусть $f'_{x_m}(x^0) \neq 0$. Значит, существует $x_m = \varphi(x_1, x_2, \dots, x_{m-1})$. Ещё один трюк: $(x_1, x_2, \dots, x_{m-1}) \mapsto (x_1, x_2, \dots, x_{m-1}, \varphi(x_1, x_2, \dots, x_{m-1}))$ — параметризация многообразия f(x) = 0 в окрестности точки x^0 .

Тогда по предыдущему, что мы доказали, касательная плоскость задаётся $\sum_{i=1}^{m-1} \varphi_i'(x^0)(x_i-x_i^0)=x_m-x_m^0$, или:

$$\sum_{i=1}^{m-1} \varphi'_{x_i}(x^0)(x_i - x_i^0) - (x_m - x_m^0) = 0$$

 Θ то всё замечательно, но условие требует вывод в терминах f. А как они связаны? По условию:

$$f(x_1, x_2, \dots, x_{m-1}, \varphi(x_1, x_2, \dots, x_{m-1})) = 0$$

Давайте вычислим рецепт замены φ_{x_i} :

$$\frac{\partial f}{\partial x_i}: \quad f'_{x_i} + f'_{x_m} \cdot \varphi'_{x_i} = 0 \Rightarrow \varphi_{x_i} = -\frac{f'_{x_i}}{f'_{x_m}} \qquad \left(f'_{x_m}(x^0) \neq 0 \text{ по усл.}\right)$$

Итого:

$$-\sum_{i=1}^{m-1} \frac{f'_{x_i}}{f'_{x_m}} (x^0)(x_i - x_i^0) - (x_m - x_m^0) = 0 \qquad |\cdot -f'_{x_m}|$$

ч. т. д.

1.4.16 Вычисление нормы линейного оператора с помощью собственных чисел

Формулировка:

$$A: \mathbb{R}^m \to \mathbb{R}^n$$

Тогда $||A|| = \max \sqrt{\lambda}, \lambda \in \sigma(A^T A)$ — множество собственных чисел.

Доказательство:

Рассмотрим $x \in S^{m-1} : \{ y \in \mathbb{R}^m : |y| = 1 \}.$

$$||A||^2 = \sup_{x \in S^{m-1}} |Ax|^2 = \sup_{x \in S^{m-1}} \langle Ax, Ax \rangle = \sup_{x \in S^{m-1}} \langle \underbrace{\mathcal{A}^T A}_{\text{симметричная}} x, x \rangle = \sup_{x \in S^{m-1}, \lambda \in \sigma(A^T A)} \lambda |x|^2 = \max_{\lambda \in \sigma(A^T A)} \lambda |$$

Немного контекста: собственное число, это такое число, что A отображает x в λx . Матрица A^TA — симметричная $(m \times n) \times (n \times m) = m \times m$. Так как у нас эта матрица вещественная, то и собственные числа у неё вещественные. Ну и значит, что максимальный вектор, который может получится, это вектор, домноженный на максимальное собственное число.

ч. т. д

1.4.17 Теорема о функциональной зависимости

Формулировка:

- $f_1, f_2, \dots, f_n : O\mathbb{R}^m \to \mathbb{R} \in C^1$
- $F = (f_1, f_2, \dots, f_n) : O \to \mathbb{R}^n$
- $\forall x \in O : \operatorname{rank} F'(x) \le k$
- $x^0 \in O : \operatorname{rank} F'(x^0) = k$
- $y^0 = F(x^0)$

Тогда: $\exists U(x^0), \exists g_{k+1}, g_{k+2}, \dots, g_n : V(y_1^0, y_2^0, \dots, y_k^0) \subset \mathbb{R}^l \to \mathbb{R}$

Что:
$$f_i = g(f_1(x), f_2(x), \dots, f_k(x)), i = k + 1 \dots n, x \in U(x^0)$$

Доказательство:

Пусть в точке x^0 ранг реализуется на первом k-миноре (строчки $1 \dots k$, столбцы $1 \dots k$).

Введём дополнительную функцию $\Phi:O\subset\mathbb{R}^m\to\mathbb{R}^m, \Phi(x)=(f_1(x),f_2(x),\ldots,f_k(x),x_{k+1},x_{k+1},\ldots,x_k).$

Тогда, если посмотреть на матрицу производного оператора $\Phi'(x^0)$ (см. рисунок), то окажется, что она невырождена: $\det \Phi'(x^0) \neq 0$. Поэтому Φ действует как локальный диффеоморфизм класса C^1 (по определению там внутри функции минимум C^1). Опять начинаем рисовать:

 $\Phi(U(x^0)) = W, \Phi(x^0) = w_0$. Рассмотрим функцию $\widetilde{F}: W \to \mathbb{R}^n: F \circ \Phi^{-1}$. Посмотрим поподробнее на точку $w_0 = (u,v)$. Координата u вычислялась как $f_1(x_0), f_2(x_0), \ldots, f_k(x_0)$, теперь мы снова отправляем её обратно, получая $x_1^0, x_2^0, \ldots, x_k^0$, и шлём в F, снова применяя к точке функции f_i . Получается, что координата u отображается в саму себя. v же под действием какого-то отображения отображается во что-то другое: $\widetilde{F}(u,v) = (u,\Theta(u,v))$.

Рассмотрим производный оператор $\widetilde{F}'=F'\underbrace{\left(\Phi^{-1}\right)'}_{\text{невырожден}}$. Невырожденный оператор (кстати, не

только в точке w, но и во всей окрестности, на которой работает локальный диффеоморфизм (W)) не меняет ранг матрицы, поэтому rank $\widetilde{F}=k$. С другой стороны, если посмотреть на матрицу производного опреатора (см. рисунок), Θ'_v обязана быть тождественно равна 0, в противном случае мы могли бы сочинить минор большего ранга, чем k. Таким образом, $\Theta'_v=0\Rightarrow\Theta=\Theta(u)$ (зависит только от u).

Тогда давайте перенесём (домножим на обратную), выразим F и аккуратно распишем:

$$\begin{split} F(x) &= \widetilde{F} \circ \Phi(x) \\ &= \widetilde{F}(f_1(x), f_2(x), \dots, f_k(x), x_{k+1}, x_{k+2}, \dots, x_m) \\ &= (f_1(x), \dots, f_k(x), \Theta\left(f_1(x), f_2(x), \dots, f_k(x)\right)_{k+1}, \dots, \Theta\left(f_1(x), f_2(x), \dots, f_k(x)\right)_n) \end{split}$$

ч. т. д.

2 Период Мезозойский

2.1 Важные определения

2.1.1 Равномерная сходимость последовательности функций на множестве

- $(f_n): \mathbb{N} \to \mathbb{F}$
- $f_n: E \subset \underbrace{X}_{\text{MH-BO}} \to \mathbb{R}$

Если $\exists f(x)$:

$$\forall \varepsilon > 0 \ \exists N : \forall \ n > N \ \forall x \in E \quad |f(x) - f_n(x)| < \varepsilon$$

— тогда f_n равномерно сходится к f на E $(f_n \underset{E}{\Rightarrow} f)$.

Это же условие равносильно $M_n:=\sup_{x\in E}|f_n(x)-f(x)|\underset{n\to\infty}{\longrightarrow}0$

2.2 Определения

2.2.1 Поточечная сходимость последовательности функций на множестве

- $(f_n): \mathbb{N} \to \mathbb{F}$
- $f_n: E \subset \underbrace{X}_{\text{MH-BO}} \to \mathbb{R}$

Если $\exists f(x) : \forall x \in E$:

$$\forall \varepsilon > 0 \ \exists N : \forall \ n > N \quad |f(x) - f_n(x)| < \varepsilon$$

— тогда f_n поточечно сходится к f на E.

2.2.2 Формулировка критерия Больцано-Коши для равномерной сходимости

$$f_n \underset{X}{\Longrightarrow} f \Leftrightarrow \forall \varepsilon > 0 \ \exists n \ \forall p \ \forall x \in X \ |f_{n+p}(x) - f_n(x)| < \varepsilon$$

2.2.3 Равномерная сходимость функционального ряда

 $f_n: E\subset X o \mathbb{R}, \sum_{k=1}^\infty f_k(x)$ — функциональный ряд

 $S_N(x) = \sum_{k=1}^N f_k(x)$ — частичная сумма

$$\sum_{k=1}^{\infty} f_k(x) \underset{E}{\Rightarrow} S(x) \Leftrightarrow S_N(x) \underset{E}{\Rightarrow} S(x)$$

$$\forall \varepsilon > 0 \ \exists N \ \forall n > N \ \forall x \in X \ |S_N(x) - S(x)| < \varepsilon$$

Замечания:

- 1. равномерная сходимость ⇒ поточечная
- 2. $R_N(x) = \sum_{k=N+1}^{\infty} f_k(x)$ остаток ряда. $S_N(x) + R_N(x) = S(x)$. $\Rightarrow \sum_k f_n \underset{E}{\Rightarrow} \Leftrightarrow R_N(x) \underset{E}{\Rightarrow} 0$
- 3. $\sum f_n \underset{E}{\Longrightarrow} f_n \underset{E}{\Longrightarrow}, f_n = R_N R_{N-1}$

2.2.4 Формулировка критерия Больцано-Коши для равномерной сходимости рядов

$$\sum_{k=1}^{\infty} f_k \underset{E}{\Longrightarrow} \Leftrightarrow \forall \varepsilon > 0 \ \exists n \ \forall p \ \forall x \in E \ \left| \sum_{k=n}^{n+p} f_k(x) \right| < \varepsilon$$

2.2.5 Признак Абеля равномерной сходимости функционального ряда

- $a_n, b_n: X \to \mathbb{R}$
- $\sum a_n(x)$ равномерно ограничена ($\exists C_a>0 \ \forall x\in X \ \forall n\in \mathbb{N} \ |a_n(x)|\leq C_a$) и монотонна по n при любом x
- $\sum b_n \underset{X}{\Longrightarrow}$

Тогда $\sum a_n(x)b_n(x) \underset{X}{\Longrightarrow}$

2.3 Важные теоремы

2.3.1 Теорема Стокса–Зайдля о непрерывности предельной функций. Следствие для рядов

Формулировка (последовательности):

•
$$f_n, f: \underbrace{X}_{\text{метрическое пространство}} \to \mathbb{R}$$

- $c \in X : f_n$ непрерывно в c
- $f_n \underset{X}{\Longrightarrow} f$

Тогда: f — непрерывно в c

Следствие:

 $f_n \in C(X), f_n \underset{X}{\Longrightarrow} f \Rightarrow f \in C(X)$ — доказательства не требует, просто по всем точкам пробегаемся

Доказательство:

Зафиксируем ε из определения равномерной сходимости и распишем гига-неравенство треугольника:

$$|f(x) - f(c)| \le \underbrace{|f(x) - f_n(x)|}_{(1)} + \underbrace{|f_n(x) - f_n(c)|}_{(2)} + \underbrace{|f_n(c) - f(c)|}_{(3)}$$

Оно верно при всех n. Но нам дали равномерную сходимость, из чего мы достаём $\sup_{x \in X} |f_n(x) - f(x)| < \varepsilon$. Это обстоятельство с ходу говорит нам, что существует большое n, при котором (1) и (3) (то, что они $< \varepsilon$). С другой стороны, раз так, мы можем считать, что в (2) стоит вполне конкретная функция, непрерывная в $c \Leftrightarrow \forall x \in U(c) : (2) < \varepsilon$. Ну и всё, получается, что наше неравенство целиком меньше 3ε :

$$|f(x) - f(c)| \le |f(x) - f_n(x)| + |f_n(x) - f_n(c)| + |f_n(c) - f(c)| < 3\varepsilon$$

Ну и вот, по китайской методике в определении непрерывности всё работает.

ч. т. д.

Бонус:

0

Доказательство работает и в топологических пространствах без единой правки, потому что мы разговариваем на языке окрестностей и метрику не трогаем!

Формулировка (ряды):

•
$$u_n: \underbrace{X}_{\text{метрическое пространство}} \to \underbrace{Y}_{\text{нормированное пространство}}$$

• $c \in X : u_n$ — непрерывно в c

•
$$S_n(x) := \sum^n u_n(x)$$

•
$$S(x) := \sum_{\mathbf{x}} u_n(\mathbf{x}) \stackrel{\Longrightarrow}{\underset{\mathbf{x}}{\Longrightarrow}}$$

Тогда S(x) — непрерывно в c

Доказательство:

По предыдущей теореме $S_n(x) \underset{X}{\rightrightarrows} S(x), S_n(c)$ — непрерывно в $c \Rightarrow S(x)$ — непрерывно в c ч. т. д.

2.3.2 Признак Вейерштрасса равномерной сходимости функционального ряда

Формулировка:

- $\sum u_n(x)$ функциональный ряд
- $u_n: \underbrace{X}_{\text{MH-BO}} \to \mathbb{R}$
- $\exists (c_n)$ вещественная последовательность, причём $\sum c_n$ сходится
- $\forall n \in \mathbb{N} \ x \in X : |u_n(x)| \le c_n$

Тогда
$$\sum u_n \rightrightarrows_X$$

Доказательство:

Доказательство более-менее тривиально. Распишем определение равномерной сходимости:

$$n \to \infty$$
: $\sup_{x \in X} \left| \sum_{k=n+1}^{\infty} u_n(x) \right| \le \sup_{x \in X} \sum_{k=n+1}^{\infty} |u_n(x)| \le \sum_{k=n+1}^{\infty} c_n \longrightarrow 0$

ч. т. д.

2.3.3 Признак Дирихле равномерной сходимости функционального ряда

Формулировка:

- $\sum a_n(x)b_n(x)$, $a_n, b_n: X \to \mathbb{R}$
- $\sum a_n$ равномерно ограничена ($\exists C_a \ \forall n \in \mathbb{N} \ \forall x \in X \ |\sum_{k=1}^n (x)| \leq C_a$)
- $\sum b_n(x) \underset{X}{\Longrightarrow}$
- b_n монотонны по $n \ \forall x \in X$

Тогда
$$\sum a_n(x)b_n(x) \underset{X}{\Longrightarrow}$$

Доказательство:

Пусть $A_n = \sum_{k=1}^n a_k$. Рассмотрим такую сумму (опустим (x), но они там есть):

$$\sum_{N \le K \le M} a_K b_K = A_M b_M - A_{N-1} b_{N-1} + \sum_{N \le K \le M-1} (b_K - b_{K-1}) A_K$$

Если взять всё под модуль и применить неравенство треугольника, то получится выдержка из критерия Коши:

$$\left| \sum_{N \le K \le M} a_K b_K \right| \le |A_M b_M| - |A_{N-1} b_{N-1}| + \sum_{N \le K \le M-1} |b_K - b_{K-1}| \cdot |A_K| \tag{*}$$

Вспоминаем, что b_n монотонна, поэтому можно раскрыть модуль внутри суммы и домножить всю сумму на "знак монотонности" (1, если возрастающая и -1, если убывающая). И потом просто оценить эту сумму сверху наибольшим членом и взять его с плюсом (оцениваем жеж). Ну и ещё оценим все A_i -шки константой из условия (у нас есть равномерная ограниченность):

$$(*) \le C_a (|b_M| + |b_{N-1}| + |b_K| + |b_{K-1}|) \tag{**}$$

И ещё вспоминаем, что у нас ряд из b_n равномерно сходится, что значит (с небольшой китайской бухгалтерией):

$$\forall \varepsilon > 0 \ \exists k \ \forall n > k \ \sup_{x \in X} |b_n(x)| < \frac{\varepsilon}{4 \cdot C_a}$$

Тогда при достаточно больших N, M:

$$(**) C_a \cdot \left(\frac{\varepsilon}{4 \cdot C_a} + \frac{\varepsilon}{4 \cdot C_a} + \frac{\varepsilon}{4 \cdot C_a} + \frac{\varepsilon}{4 \cdot C_a} \right) < \varepsilon$$

Критерий выполнен, всё хорошо.

ч. т. д.

2.4 Теоремы

2.4.1 Метрика в пространстве непрерывных функций на компакте, его полнота

Формулировка:

- $\rho(f,g) = \sup_{x \in X} |f(x) g(x)|$ метрика (это доказывалось на лекции, хз, надо ли тут, но там вроде всё тривиально: аксиомы тождества, симметрии и правило треугольника)
- X компактное метрическое пространство

Тогда $(C(X), \rho)$ — полное метрическое пространство

Доказательство:

Полное метрическое пространство — это такое, в котором у любой фундаментальной последовательности есть предел:

$$\forall \varepsilon > 0 \ \exists N \ \forall n, m > N \ \rho(f_n, f_m) = \sup_{x \in X} |f_n(x) - f_m(x)| < \varepsilon$$

Давайте возьмём какой-нибудь $x_0 \in X$ и заметим, что $|f_n(x_0) - f_m(x_0)| < \varepsilon$ (очев, раз супремум меньше, то и отдельный x_0 меньше). Значит $n \mapsto f_n(x_0)$ — фундаментальная **вещественная** последовательность (просто подставить в определение выше)! Ну а \mathbb{R} — полное, поэтому у такой последовательности сущесвтует предел: $\lim_{n\to\infty} f_n(x_0) = f(x_0)$ (к какой-то f). Получается, что пототочечно всё норм сходится. Но нам то надо равномерную (в силу того, какую метрику мы выбрали). Давайте немного перепишем определение фундаментальной последовательности:

$$\forall \varepsilon > 0 \ \exists N \ \forall n, m > N \ \forall x \in X | f_n(x) - f_m(x) | < \varepsilon$$

Сделаем предельный переход по $m \to \infty$ и подставим найдённую предельную функцию:

$$\forall \varepsilon > 0 \ \exists N \ \forall n > N \ \forall x \in X | f_n(x) - f(x) | < \varepsilon$$

А это — определение $f_n \rightrightarrows f$. Ну всё, супер, значит фундаментальная последовательность сходится.

А непрерывность приходит из теоремы Стокса-Зайдля. Значит наша фундаментальная последовательность имеет предел, и этот предел лежит в C(X).

ч. т. д.

2.4.2 Теорема о предельном переходе под знаком интеграла. Следствие для рядов

Формулировка (последовательности):

- $f_n \in C[a,b]$
- $f_n \underset{[a,b]}{\Longrightarrow} f$

Тогда:

$$\int_{a}^{b} f_{n}(x)dx \xrightarrow[n \to \infty]{} \int_{a}^{b} f(x)dx$$

Доказательство:

Тривиалити (скажем, что их разность стремится к 0, т. к. есть равномерная сходимость):

$$\left| \int_a^b f_n(x) dx - \int_a^b f(x) dx \right| = \left| \int_a^b f_n(x) - f(x) dx \right|$$

$$\leq \int_a^b |f_n(x) - f(x) dx|$$

$$\leq \sup_{\text{по метрике } x \in X} |f_n(x) - f(x)| (b - a) \to 0$$

ч. т. д.

Формулировка (ряды):

- $u_n: C[a,b] \to \mathbb{R}$
- $\sum u_n(x) \underset{[a,b]}{\Longrightarrow} S(x)$

Тогда $\int_a^b S(x) dx = \sum \int_a^b u_n(x) dx$, причём интегрировать можно, т. к. S(x) — непрерывна по Стоксу-Зайдлю

Доказательство:

По теореме для последовательностей:

$$\int_{a}^{b} S_{n}(x)dx \xrightarrow[n \to \infty]{} \int_{a}^{b} S(x)dx$$

С другой стороны:

$$\int_a^b S_n(x)dx = \int_a^b \sum_{i=1}^n u_n(x)dx \underset{\text{линейность интеграла}}{=} \sum_{i=1}^n \int_a^b u_n(x)dx \xrightarrow[n \to \infty]{} = \sum_{i=1}^\infty \int_a^b u_n(x)dx$$

Ну и вот, у нас интеграл частичных сумм в пределе стремится одновременно к интергалу предельной суммы и ряду интегралов. Всё хорошо.

2.4.3 Правило Лейбница дифференцирования интеграла по параметру

Формулировка:

- $f: [a,b] \times [c,d] \to \mathbb{R}, f(x,y)$
- f, f_y' непрерывны на $[a,b] \times [c,d]$

•
$$\Phi(y) = \int_a^b f(x,y) dx$$

Тогда $\Phi(y)$ — дифференцируема и $\Phi(y) = \int_a^b f_y'(x,y) dx$

Доказательство:

Ну, давайте попробуем подифференцировать. Возьмём какую-то $t_n \to 0$ и напишем а-ля определение дифференцируемости и применим теорему Лагранжа (привет, HTP!):

$$\frac{\Phi(y+t_n) - \Phi(y)}{t_n} = \Phi'(y + \Theta_x t_n) = \int_a^b f'_y(x, y + \Theta_x t_n) dx \xrightarrow{?} \int_a^b f'_y(x, y) dx$$

Ну и вот, мы теперь хотим понять, а действительно ли оно стремится? Применим "тяжёлую артиллерию": теорема Кантора о равномерной непрерывности:

$$f$$
 — непр. $\in C(K)$ (компакт) $\Rightarrow f$ — равномерно непрерывна

$$\forall \varepsilon > 0 \ \exists \delta > 0 : \rho(x_1, x_2) < \delta \ |f(x_1) - f(x_1)| < \varepsilon$$

У нас непрерывная функция на компакте, поэтому давайте подгоним под Кантора наше условие:

$$\exists N \ \forall n > N \ |t_n| < \delta, \ \rho((x, y + \Theta_x t_n), (x, y)) < \delta, \ |f'_y(x, y + \Theta_x t_n) - f'_y(x, y)| < \varepsilon$$

Тогда:

$$\left| \int_{a}^{b} f_{y}'(x, y + \Theta_{x} t_{n}) dx - \int_{a}^{b} f_{y}'(x, y) dx \right| \leq \varepsilon (b - a)$$

Следовательно, разность между ними меньше ε , тогда всё действительно стремится.

ч. т. д.

2.4.4 Теорема о предельном переходе под знаком производной. Дифференцирование функционального ряда

Формулировка (последовательности):

- $f_n \in C^1\langle a, b \rangle$
- $f_n \to f_0$ поточечно
- $f'_n \underset{\langle a,b \rangle}{\Longrightarrow} \varphi$

Тогда $f_0 \in C^1\langle a,b\rangle$ и $f_0' = \varphi$ на $\langle a,b\rangle$

Доказательство:

Давайте (не умаляя общности) возьмём какой-то подотрезок $[x_0, x_1] \subset \langle a, b \rangle$. Тогда по предыдущей теореме (у нас непрерыно равномерно сходится по условию):

$$\int_{x_0}^{x_1} f_n' \longrightarrow \int_{x_0}^{x_1} \varphi$$

Интегрируем:

$$\int_{x_0}^{x_1} f'_n = f_n(x_1) - f_n(x_0) \underset{n \to \infty}{=} f_0(x_1) - f_0(x_0) \underset{n \to \infty}{=} \int_{x_0}^{x_1} \varphi$$

Получается, что f_0 — первообразная φ . Причём, по Стоксу-Зайдлю, φ — непрерывна, значит и её первообразная тоже непрерывна $(f_0'=\varphi)$.

ч. т. д.

Формулировка (ряды):

- $u_n \in C^1\langle a, b \rangle$
- $\sum u_n(x) = S(x)$ поточечно
- $\sum u'_n(x) \underset{\langle a,b \rangle}{\Longrightarrow} = \varphi(x)$

Тогда $S(x) \in C^1\langle a,b\rangle$ и $S'(x) = \varphi(x)$ на $\langle a,b\rangle$. То есть $(\sum u_n(x))' = \sum u_n'(x)$

Доказательство:

Запускаем теорему для последовательностей с вводными: $f_n = S_n, f_0 = S, f_n' = \sum_{k=1}^n u_k'$ ч. т. д.

2.4.5 Теорема о предельном переходе в суммах.

Формулировка:

- $u_n: E \subset \underbrace{X}_{\text{метрическое пространство}} \to \mathbb{R}$
- $x_0 \in X$ предельная точка E
- $\forall n \; \exists \;$ конечный $\lim_{x \to x_0} u_n(x) = a_n$
- $\sum u_n(x) \stackrel{\Longrightarrow}{\Longrightarrow}$

Тогда:

- 1. $\sum a_n$ сходится
- 2. $\sum a_n = \lim_{x \to x_0} (\sum_{n=1}^{\infty} u_n(x))$

$$\lim_{x \to x_0} \sum_{n=1}^{\infty} u_n(x) = \sum_{n=1}^{\infty} \lim_{x \to x_0} u_n(x)$$

Доказательство:

Нам, честно говоря, не за что зацепиться, поэтому давайте попробуем проверить, что a_n — фундаментальная последовательность, тогда у неё точно будет предел.

Пусть
$$S_n(x) = \sum_{k=1}^n u_n(x), S_n^a = \sum_{k=1}^n a_n$$

Опять распишем гига-неравенство трегугольника:

$$|S_{n+p}^{a} - S_{n}^{a}| \le \underbrace{|S_{n+p}^{a} - S_{n+p}(x)|}_{(1)} + \underbrace{|S_{n+p}(x) - S_{n}(x)|}_{(2)} + \underbrace{|S_{n}(x) - S_{n}^{a}|}_{(3)}$$

По критерию Больцано-Коши равномерной сходимости ряда:

$$\forall \varepsilon > 0 \ \exists N \ \forall n > N \ \forall p : \sup_{x \in E} |S_{n+p}(x) - S_n(x)| < \varepsilon$$

Сейчас мы получили, что при достаточно большом n $(2) < \frac{\varepsilon}{3}$ при любых $x \in E$. Теперь заметим, что мы доказываем фундаментальность числовой последовательности, следовательно никаких ограничений на x изначально не наложено. (???) Поэтому давайте возьмём такой x, близкий к x_0 , чтобы (1) и (3) были $\frac{\varepsilon}{3}$. Итого:

$$|S_{n+p}^a - S_n^a| < \frac{\varepsilon}{3} + \frac{\varepsilon}{3} + \frac{\varepsilon}{3} = \varepsilon$$

Мы взяли частичные суммы a_n , и проверили, что разности рядом лежащих сумм сколь угодно малы.

Ура, у a_n есть предел! А чему же он равен? Давайте заведём дополнительную функцию:

$$\widetilde{u}_n(x) := \begin{cases} u_n(x), & x \neq x_0 \\ a_n, & x = x_0 \end{cases}$$

Такая сложность необходима для обеспечения непрерывности в x_0 (если x_0 лежит в E, то мы просто подменили значение, а если не лежала, то дополнили). Теперь эта функция непрерывна на x_0 , ряд $\sum \widetilde{u}_n \underset{E \cup \{x_0\}}{\Longrightarrow} (*) \Rightarrow$ по Стоксу-Зайдлю $S_{\widetilde{u}_n}(x)$ непрерывна в x_0 . А поэтому:

$$\lim_{x \to x_0} \left(\sum_{n=1}^{\infty} u_n(x) \right) = \lim_{x \to x_0} \left(\sum_{n=1}^{\infty} \widetilde{u}_n(x) \right) = \sum_{n=1}^{\infty} \widetilde{u}_n(x) = \sum a_n$$

А равномерная сходимость ряда $\sum \widetilde{u}_n$ доказывается так:

$$(*): \sup_{x \in E \cup \{x\}} \left| \sum_{k=n+1}^{\infty} \widetilde{u}_k \right| = \max\{ \sup_{x \in E} \left| \sum_{k=n+1}^{\infty} \widetilde{u}_k \right|, \sum_{k=n+1}^{\infty} a_n \} \leq \underbrace{\sup_{k=n+1} \left| \sum_{k=n+1}^{\infty} \widetilde{u}_k \right|}_{\to 0} + \underbrace{\sum_{k=n+1}^{\infty} a_n}_{\to 0} \longrightarrow 0$$

ч. т. д.

2.4.6 Теорема о перестановке двух предельных переходов

Формулировка:

• $f_n: E \subset X \to \mathbb{R}$

• $x_0 \in X$ — предельная точка E

• $\forall n \in \mathbb{N} : \exists$ конечный $\lim_{x \to x_0} f_n(x) = A_n$

• $f_n(x) \underset{E}{\rightrightarrows} S(x)$ при $n \to \infty$

Тогда:

1. $\exists \lim_{n\to\infty} A_n \in \mathbb{R}$

2. $S(x) \xrightarrow[x \to x_0]{} A$

$$\lim_{x \to x_0} \underbrace{\lim_{n \to \infty} f_n(x)}_{\text{равномерный, } S(x)} = \lim_{n \to \infty} \underbrace{\lim_{x \to x_0} f_n(x)}_{A_n}$$

Доказательство:

Это такая попытка сделать двойной предел и для функций. Подгоняем под предыдущую теорему: $u_1=f_1, u_n=f_n-f_{n-1}, \quad a_1=A_1, a_n=A_n-A_{n-1}.$ $\sum_{k=1}^n u_k=f_n \underset{E}{\Rightarrow} S(x),$ то есть $\sum u_n \underset{E}{\Rightarrow}.$ Супер, предыдущая теорема запущена. Пожинаем плоды ($\sum a_n$ сходится):

$$\sum_{k=1}^{n} A_n$$
 — имеет конечный предел

$$\lim_{x \to x_0} \sum_{k=1}^{\infty} u_k(x) = \lim_{x \to x_0} S(x) = A$$

ч. т. д.