Partiel S2 – Corrigé Architecture des ordinateurs

Durée: 1 h 30

Inscrivez vos réponses <u>exclusivement</u> sur le document réponse. Ne pas détailler les calculs sauf si cela est explicitement demandé. Ne pas écrire à l'encre rouge ni au crayon à papier.

Exercice 1 (4,5 points)

On souhaite réaliser la séquence du tableau présent sur le <u>document réponse</u> à l'aide de bascules D.

- 1. Remplissez le tableau présent sur le <u>document réponse</u>.
- 2. Donnez les expressions les plus simplifiées des entrées *D* pour chaque bascule <u>en justifiant par des tableaux de Karnaugh pour les solutions qui ne sont pas évidentes (les bulles sont obligatoires)</u>. On appelle solution évidente celle qui ne comporte aucune opération logique hormis la complémentation (par exemple : D0 = 1, D1 = Q0). Quand cela est possible, simplifiez avec le OU exclusif.

Exercice 2 (4 points)

Un système à microprocesseur comporte une mémoire morte (ROM), une mémoire vive (RAM) et deux périphériques (**P1** et **P2**). Leurs capacités (en bits) sont respectivement 4 Mib, 64 Kib, 8 Kib et 1 Kib. Le microprocesseur possède un bus d'adresse de 24 bits (les bits d'adresse sont numérotés de *A0* à *A23* et *A0* est le bit poids faible). Tous les composants ont un bus de donnée de 8 bits. La ROM sera située dans les adresses les plus faibles, viendront ensuite la RAM, **P1** et **P2**.

1. Donnez la taille du bus d'adresse de chaque mémoire et de chaque périphérique.

Pour tout le reste de l'exercice, c'est le mode linéaire qui sera utilisé.

- 2. Donnez les bits de sélection qui serviront au décodage.
- 3. Donnez la fonction de décodage en tenant compte du signal AS (Address Strobe).
- 4. Donnez les adresses hautes et basses de chaque composant (vous utiliserez la représentation hexadécimale à 6 chiffres).

Exercice 3 (4 points)

- 1. Câblez la <u>figure 1</u> afin de réaliser un **décompteur asynchrone modulo 13**.
- 2. Câblez la <u>figure 2</u> afin de réaliser un **compteur synchrone modulo 4**.

Partiel S2 – Corrigé

Exercice 4 (4 points)

- 1. Convertissez les nombres présents sur le <u>document réponse</u> dans le format IEEE754 **simple précision**. Vous exprimerez le résultat final sous **forme binaire** en précisant les trois champs.
- 2. Donnez la représentation associée aux mots binaires codés au format IEEE754 **double précision** présents sur le <u>document réponse</u>. Si une représentation est un nombre, vous l'exprimerez en base 10 sous la forme $k \times 2^n$ où k et n sont des entiers relatifs.

Exercice 5 (3,5 points)

Répondre aux questions présentes sur le document réponse.

Partiel S2 – Corrigé 2/5

DOCUMENT RÉPONSE À RENDRE

Exercice 1

1.

Q2	Q1	Q0	D2	D1	D0
1	1	1	1	0	1
1	0	1	1	0	0
1	0	0	0	1	1
0	1	1	0	1	0
0	1	0	0	0	1
0	0	1	0	0	0
0	0	0	1	1	1

2.

		Q1 Q0				
	D 0	00	01	11	10	
03	0	1	0	0	1	
Q2	1	1	0	1	Φ	

$$\mathbf{D0} = \overline{\mathbf{Q0}} + \mathbf{Q2.Q1}$$

Q1 Q0

	D1	00	01	11	10
03	0	1	0	1	0
Q2	1	1	0	0	Ф

$$D1 = \overline{Q1}.\overline{Q0} + \overline{Q2}.Q1.Q0$$

Q1 Q0

	D2	00	01	11	10
02	0	1	0	0	0
Q2	1	0	1	1	Φ

$$D2 = Q2.Q0 + \overline{Q2}.\overline{Q1}.\overline{Q0}$$

Exercice 2

1. ROM: 19 bits	2. Bits de sélection :
RAM: 13 bits	A23, A22, A21, A20
P1:10 bits	
P2:7 bits	

3. $CS_{ROM} = AS.A20$	$CS_{P1} = AS.A22$	
$CS_{RAM} = AS.A21$	$CS_{P2} = AS.A23$	

4.

Composant	Adresse basse	Adresse haute
ROM	100000	17FFFF
RAM	200000	201FFF
P1	400000	4003FF
P2	800000	80007F

Exercice 3

Figure 1

Figure 2

Exercice 4

1.

Nombre	S	E	M
428	0	10000111	10101100000000000000000
51,078125	0	10000100	1001100010100000000000

2.

Représentation IEEE 754	Représentation associée
435400000000000 ₁₆	5 × 2 ⁵²
001010000000000_{16}	257 × 2 ⁻¹⁰³⁰

Partiel S2 – Corrigé 4/5

Exercice 5

Question concernant les mémoires	Réponse
Quel type d'assemblage permet d'augmenter la profondeur ?	Assemblage en série
Une mémoire possède une largeur de 4 bits et une capacité de 64 Kio. Combien de fils d'adresse possède cette mémoire ?	17 fils
Un mémoire possède un bus de donnée de 8 fils et un bus d'adresse de 15 fils. En puissance de deux, quelle est la capacité en bits de cette mémoire ?	2 ¹⁸ bits
Une mémoire M1 possède un bus de donnée de 8 fils et un bus d'adresse de 16 fils. On assemble deux mémoires M1 en série pour former une mémoire M2 . Quelle est la taille du bus d'adresse de la mémoire M2 ?	

Partiel S2 – Corrigé 5/5