Statistics

Biostatistics and Bioinformatics

June 17-18, 2021

Modeling Two Populations

- Suppose we are interested in the population mean of the expression level of a gene in two populations: parental cell line vs UV2
- ► We **randomly** select experimental units from each population and conduct RNA-seq experiment
- Denote the population mean expression by μ_1 for parental and μ_2 for UV2
- Modeling the observed gene expression Y
 - ▶ If unit *i* is parental: $Y_i = \mu_1 + \epsilon_i$
 - ▶ If unit *i* is UV2: $Y_i = \mu_2 + \epsilon_i$
 - A unified formula: denote $Z_i = 0$ (or $Z_i = 1$) if unit i is parental (or UV2)

$$Y_i = \mu_1 + (\mu_2 - \mu_1)Z_i + \epsilon_i = \beta_0 + \beta_1 Z_i + \epsilon_i$$

Assumptions

$$Y_i = \mu_1 + (\mu_2 - \mu_1)Z_i + \epsilon_i = \beta_0 + \beta_1 Z_i + \epsilon_i$$

- What we observe is a perturbed value of the population means (what happens if $\epsilon_i = 0$?)
- ▶ Independence: The noise ϵ are independent across units i
- Normality: The noise ϵ follows $N(0, \sigma^2)$, i.e. normal distribution with mean 0 and variance σ^2 for all units i
- ▶ Homoskedasticity: the noise level σ^2 is the same for all units i

Interpretation

The unified formula: denote $Z_i = 0$ (or $Z_i = 1$) if unit i is parental (or UV2)

$$Y_i = \mu_1 + (\mu_2 - \mu_1)Z_i + \epsilon_i = \beta_0 + \beta_1 Z_i + \epsilon_i, \quad \epsilon_i \sim N(0, \sigma^2)$$

- ightharpoonup The binary valued Z_i is also known as dummy variable
- $\beta_0 = \mu_1$ is the population mean of the baseline group (parental in this case)
- ho $\beta_0 + \beta_1$ is the population mean of the other group (UV2 in this case)
- β_1 is the difference in the population means between the two groups (what does it mean when $\beta_1 > 0, = 0 < 0$?)

Signal vs Noise

$$Y_i = \mu_1 + (\mu_2 - \mu_1)Z_i + \epsilon_i = \beta_0 + \beta_1 Z_i + \epsilon_i$$
$$\epsilon_i \sim N(0, \sigma^2)$$

- When the noise level σ^2 is larger, the observed expression contains more uncertainty (i.e. noisier), making it harder to estimate the population means
- ► The magnitude of noise level σ^2 is relative to signals β_0 and β_1 (or equivalently μ_1 and μ_2)

$$1000Y_i = 1000\beta_0 + 1000\beta_1 Z_i + 1000\epsilon_i$$

▶ The value of σ^2 is unknown, but is important for the inference of population means

Modeling Two Binary Factors

- Suppose we have two factors: cell line (parental vs UV2) and treatment (isotype vs anti-PD1)
- ▶ We are interested in the effect of those two factors on the population mean of the expression level of a gene
- How many populations do we have?
- We randomly select experimental units from each population and conduct RNA-seq experiment
- Denote the population mean expression by
 - \blacktriangleright μ_{11} for parental+isotype
 - $\blacktriangleright \mu_{21}$ for parental+anti-PD1
 - \blacktriangleright μ_{12} for UV2+isotype
 - \blacktriangleright μ_{22} for UV2+anti-PD1
- For each experimental unit, we observe $Y_i = \mu_{??} + \epsilon_i$

A Unified Formula for Two Factors

- ▶ Denote $Z_i = 0$ (or $Z_i = 1$) if unit i is parental (or UV2) cell line
- ▶ Denote $X_i = 0$ (or $X_i = 1$) if unit i is treated by isotype (or anti-PD1)
- parental is the baseline for cell line, and isotype is the baseline for treatment

$$Y_i = \beta_0 + \beta_1 X_i + \beta_2 Z_i + \beta_3 X_i Z_i + \epsilon_i$$

	parental	UV2	
isotype	$\mu_{11} = \beta_0$	$\mu_{12} = \beta_0 + \beta_2$	
anti-PD1	$\mu_{21} = \beta_0 + \beta_1$	$\mu_{22} = \beta_0 + \beta_1 + \beta_2 + \beta_3$	

Interpretation

	parental	UV2	difference
isotype anti-PD1	β_0 $\beta_0 + \beta_1$	$\beta_0 + \beta_2$ $\beta_0 + \beta_1 + \beta_2 + \beta_3$	$\frac{\beta_2}{\beta_2 + \beta_3}$
difference	β_1	$\beta_1 + \beta_3$	β_3

- \triangleright β_0 : mean expression level of the baseline population
- eta_1 : the difference between the two treatments in parental (baseline) cell line
- \triangleright β_2 : the difference between the two cell lines when treated by isotype (baseline)
- \triangleright $\beta_1 + \beta_3$: the difference between the treatments in UV2 cell line
- $\beta_2 + \beta_3$: the difference between the cell lines when treated by anti-PD1
- \triangleright β_3 : interaction effect between cell line and treatment
- ▶ What happens when $\beta_3 = 0$?

Interaction Effect

$$Y_i = \beta_0 + \beta_1 X_i + \beta_2 Z_i + \beta_3 X_i Z_i + \epsilon_i$$

- $X_i = 0$ if treatment is isotype, $X_i = 1$ if treatment is anti-PD1.
- $ightharpoonup Z_i = 0$ if cell line is parental, $Z_i = 1$ if cell line is UV2.

▶ Pay attention to the signs of β s!

Example - No Interaction

$$Y_i = \beta_0 + \beta_1 X_i + \beta_2 Z_i + \beta_3 X_i Z_i + \epsilon_i$$

Example - No Interaction

$$Y_i = \beta_0 + \beta_1 X_i + \beta_2 Z_i + \beta_3 X_i Z_i + \epsilon_i$$

Example - With Interaction

$$Y_i = \beta_0 + \beta_1 X_i + \beta_2 Z_i + \beta_3 X_i Z_i + \epsilon_i$$

Example - With Interaction

$$Y_i = \beta_0 + \beta_1 X_i + \beta_2 Z_i + \beta_3 X_i Z_i + \epsilon_i$$

Interaction \neq Correlation

Using treatment (isotype, anti-PD1) and cell line (parental, UV2) as example:

- Correlation:
 - ▶ The treatment assignment is dependent on the cell line.
 - It has nothing to do with Y
- Interaction
 - ▶ The effect of treatment on *Y* is different between cell lines
 - Assignment of treatment may or may not depend on cell line

Point and Interval Estimate

- We are often interested in estimating the unknown parameters in a model
- Example using the two-population model:

$$Y_i = \mu_1 + (\mu_2 - \mu_1)Z_i + \epsilon_i = \beta_0 + \beta_1 Z_i + \epsilon_i, \quad \epsilon_i \sim N(0, \sigma^2)$$

- Mean level for parental cell line: μ_1
- ▶ Mean level for UV2 cell line: μ_2
- Fold-change: $\rho = \mu_1/\mu_0$
- ► Standardized difference: $\Delta = |\mu_1 \mu_2|/\sigma = |\beta_1|/\sigma$
- Two types of estimation
 - Point estimation
 - Interval estimation

Point Estimation

- We can estimate the parameters with anything
 - ▶ Sample mean of each cell line for μ_1 and μ_2
 - ▶ Sample median, less prone to the influence of outliers
 - ▶ You can estimate μ_1 using $\widehat{\mu}_1 = 0$
- ► A popular method is the maximum likelihood estimator (MLE)
 - ▶ Idea: look for the value of parameter such that observing the observed values is most likely

Histogram of x

Х

Limitation of Point Estimate

- It is either equal to the true value of parameter or is not
- With a single number, we don't know how accurate it is
- ▶ The accuracy of the point estimator is generally affected by
 - ► Sample size: larger sample size ⇒ more accurate
 - ▶ Noise level: larger noise level $\sigma \Rightarrow$ less accurate

Confidence Interval (CI)

- ► The accuracy of each point estimate is quantified by its margin of error
- ► The confidence interval is usually obtained as the point estimate plus or minus the margin of error
- ▶ The width of the confidence interval is affected by
 - ► The coverage probability: Larger coverage ⇒ longer CI
 - ► Sample size: larger sample size ⇒ shorter CI
 - Noise level: larger noise level $\sigma \Rightarrow$ longer CI
- $(-\infty, +\infty)$ is also a CI with coverage probability 100%, but is not meaningful
- ► CI can be one-sided or two-sided
 - Drug efficacy example: you want to put a lower limit to the improvement caused by the drug
 - When the coverage probability is the same, one-sided limits are generally tighter than two-sided limits

Interpretation of Confidence Interval

Using the two-population example:

- Suppose we're interested in the differential expression between cell lines $\beta_1 = \mu_2 \mu_1$
- \blacktriangleright Based on the data, a stat software produces a 95% CI [0.3, 0.8] for β_1
- ▶ Wrong statement: β_1 is covered between 0.3 and 0.8 with probability 0.95
 - β_1 , 0.3, 0.8 are all fixed numbers, β_1 is either covered or not covered
- ▶ Correct statement: we are 95% "confident" that β_1 is covered by our CI
 - ► If we redo the entire experiment by sampling from the same population for *N* rounds
 - For each round, we calculate the CI using the same fashion. β_1 is either covered or not covered by the CI in that round
 - If we count the number of rounds with β_1 covered by the CI, it will roughly be N*0.95

A Simulated Example for Two Populations

```
\# mu1=3, mu2=4, beta1=1
y < -c(rnorm(10)+3, rnorm(10)+4)
x \leftarrow c(rep(0,10), rep(1,10))
lm_res <- lm(y~x)
print(confint(lm_res))
                    2.5 % 97.5 %
##
## (Intercept) 2.373671 3.748822
                -0.465177 1.479581
## x
L \leftarrow confint(lm res)[2,1]
U <- confint(lm res)[2,2]
print(L < 1 & 1 < U)
## [1] TRUE
```

A Simulated Example for Two Populations

```
covered <- rep(FALSE, 1000)
for (i in 1:1000){
  y \leftarrow c(rnorm(10)+3, rnorm(10)+4)
  x \leftarrow c(rep(0,10), rep(1,10))
  lm_res < -lm(y~x)
  L <- confint(lm_res)[2,1]
  U \leftarrow confint(lm_res)[2,2]
  covered[i] <- (L < 1 & 1 < U)
table(covered)
```

```
## covered
## FALSE TRUE
## 49 951
```

Choice of Null and Alternative Hypotheses

- ▶ H_0 denotes null hypothesis, H_a or H_1 denotes alternative hypothesis.
- $ightharpoonup H_0$ posits the status quo
- $ightharpoonup H_0$ is the conservative hypothesis
- ▶ In the US legal system, the defendant is assumed to be innocent. H_0 : innocence
- Drug safety study:
 - \blacktriangleright H_0 : Drug is toxic
 - $ightharpoonup H_1$: Drug is safe
- Drug efficacy study:
 - \triangleright H_0 : Drug is not efficacious
 - \vdash H_1 : Drug is efficacious
- ► Setup of hypotheses require expressing your scientific question using parameters in the model

Hypotheses in the Two-Population Example

 $ightharpoonup Z_i = 0$ (or $Z_i = 1$) if unit i is parental (or UV2), we observe

$$Y_i = \mu_1 + (\mu_2 - \mu_1)Z_i + \epsilon_i = \beta_0 + \beta_1 Z_i + \epsilon_i$$

- \blacktriangleright H_0 : The population mean of two cell lines are the same
 - $\mu_1 = \mu_2$, or equivalently $\beta_1 = 0$
- H₁ can have several setups:
 - ► The population mean of two cell lines are different: $\mu_1 \neq \mu_2$, or $\beta_1 \neq 0$
 - ▶ UV2 expresses more than parental cell line: $\mu_1 > \mu_2$, or $\beta_1 > 0$
 - lacktriangle UV2 expresses less than parental cell line: $\mu_1 < \mu_2$, or $\beta_1 < 0$

Hypotheses in the Two-Factor Example

When no interaction is modeled:

$$Y_i = \beta_0 + \beta_1 X_i + \beta_2 Z_i + \epsilon_i$$

- ► Testing the treatment effect
 - $ightharpoonup H_0: \beta_1 = 0$ vs $H_1: \beta_1 \neq 0$, no treatment effect
 - $H_0: \beta_1 = 0$ vs $H_1: \beta_1 > 0$, baseline treatment express less
 - $H_0: \beta_1 = 0$ vs $H_1: \beta_1 < 0$, baseline treatment express more
- ► Testing the cell line effect
 - $ightharpoonup H_0: \beta_2 = 0$ vs $H_1: \beta_2 \neq 0$, no cell line effect
 - $H_0: \beta_2 = 0$ vs $H_1: \beta_2 > 0$, baseline cell line express less
 - $H_0: \beta_2 = 0$ vs $H_1: \beta_2 < 0$, baseline cell line express more

Hypotheses in the Two-Factor Problem

With interaction is modeled:

$$Y_i = \beta_0 + \beta_1 X_i + \beta_2 Z_i + \beta_3 X_i Z_i + \epsilon_i$$

- ▶ H_0 : there is no interaction effect between cell line and treatment on the expression level, $\beta_3 = 0$
- ▶ H_1 : there is an interaction effect, $\beta_3 \neq 0$
- ► Testing for cell line (or treatment) effect is not the same as testing β_1 (or β_2)!
 - $H_0: \beta_1 = 0$ test for the treatment effect in parental cell line
 - $H_0: \beta_2 = 0$ test for the cell line effect under isotype treatment
 - H₁ can be one-sided or two-sided
 - We will not discuss the hypotheses for test of treatment or cell line effect here

Testing Hypotheses

- A test is a decision rule based on the data: if data follow a given pattern, reject H_0 , otherwise, do not reject H_0
- Example of a decision rule: if the difference in sample means between the two cell lines is larger than 2, reject $H_0: \mu_1 = \mu_2$
- Example of other decision rules:
 - \triangleright Always reject H_0
 - Always don't reject H₀
 - ▶ Flip a coin, if head, reject H_0 ; if tail, don't reject H_0

Type I error and Type II error

For any decision rule, due to the randomness in the data, we may make two types of errors.

	H_0 is true	H_0 is false
H_0 is not rejected	correct inference	type II error
	true negative (TN)	false negative (FN)
H_0 is rejected	type I error	correct inference
	false positive (FP)	true positive (TP)

- $ightharpoonup \alpha$: probability of type I error
- \triangleright β : probability of type II error

Type I and Type II Error Trade-off

	H_0 is true	H_0 is false
H_0 is not rejected	correct inference	type II error, β
<i>H</i> ₀ is rejected	type I error, α	correct inference

- ▶ There is a trade-off between α and β
- In statistics, we control α below a certain level (e.g. 0.05), and use decision rule with small β . This is related to setting H_0 as the conservative hypothesis
- ▶ Drug efficacy example: H_0 : not efficacious, H_1 : efficacious
 - ▶ Type I error: conclude that the drug is efficacious when it's not
 - ▶ Type II error: conclude that the drug is not efficacious when it is

Meaning of Rejection and No Rejection

- Since type I error and type II error are not treated symmetrically, rejection and no rejection of H₀ are also not symmetric
- Rejection of H_0 means: I have so much evidence to reject H_0 that the probability of a wrong rejection is $< \alpha$
- No rejection of H_0 means: I don't have enough evidence to reject H_0 while keeping the probability of wrong rejection $< \alpha$. It doesn't mean we have enough evidence that H_0 is true. If I say H_0 is true, in most cases I won't be able to tell you the probability of making a wrong acceptance of H_0 (type II error).

Factors Affecting Power

- $ightharpoonup \alpha$: probability of type I error
- $\triangleright \beta$: probability of type II error
- ▶ 1β : **power** of the decision rule (power of the test)
- ► The power of tests such as t tests and Z tests are often affected by several factors. Using the two-population example:
 - \blacktriangleright $H_0: \mu_1 = \mu_2 \text{ vs } H_1: \mu_1 \neq \mu_2$
 - ▶ Effect size: larger $|\mu_1 \mu_2| \Rightarrow$ larger power
 - ▶ Noise level: large noise level $\sigma^2 \Rightarrow$ smaller power
 - ► Sample size: larger sample size ⇒ larger power
- We won't know the value of β in this case because $\mu_1 \mu_2$ is unknown

P-Value

- ▶ p-value is the probability of observing data "more extreme" that what you currently have if H₀ is true
- "more extreme" is defined corresponding to the direction of H_1 :
 - ▶ Denote \bar{y}_1 and \bar{y}_2 as the sample means of the two cell lines
 - ▶ $H_0: \mu_1 = \mu_2$ vs $H_1: \mu_1 \neq \mu_2$, more extreme means $|\bar{y}_1 \bar{y}_2|$ is larger
 - $H_0: \mu_1 = \mu_2$ vs $H_1: \mu_1 < \mu_2$, more extreme means $\bar{y}_1 \bar{y}_2$ is smaller
 - ▶ $H_0: \mu_1 = \mu_2$ vs $H_1: \mu_1 > \mu_2$, more extreme means $\bar{y}_1 \bar{y}_2$ is larger
- **p**-value is smaller when the observed data is more in the direction of H_1 compared to what is expected when H_0 is true. So reject H_0 and accept H_1 when p-value is very small.

P-Value

- ▶ We often reject H_0 when p-value < 0.05
 - ightharpoonup This is a decision rule with probability of type I error < 0.05
 - ▶ There is nothing special about $\alpha = 0.05$. The choice of α reflects your tolerance on type I error
- Smaller p-value means that the effect is so significant that you can reject H_0 with smaller probability of making type I error

P-Value and Effect Size

Effect size is relative to the noise level

$$Y_i = \beta_0 + \beta_1 Z_i + \epsilon_i$$
, $1000 Y_i = 1000 \beta_0 + 1000 \beta_1 Z_i + 1000 \epsilon_i$

- ▶ Larger effect size $\not\Leftrightarrow$ smaller p-value. Two genes with the same β_1 may have different variance of ϵ_i , i.e. σ^2 . The gene with smaller σ^2 will have smaller p-value.
- Both effect size and p-value are important:
 - ▶ A drug improving survival by 1 day with a p-value of 0.01
 - ► A drug improving survival by 10 years with a p-value of 0.05

Connection Between CI and Hypotheses Testing

Using $\beta_1 = \mu_2 - \mu_1$ in the two-population example to illustrate:

- ▶ A CI for β_1 with coverage probability 1α corresponds to a test for β_1 with type I error probability $< \alpha$
- ▶ Two-sided CI [L, U] can be used to test for $H_0: \beta_1 = 0$ vs $H_1: \beta_1 \neq 0$
- ▶ One-sided CI $[L, \infty]$ can be used to test for $H_0: \beta_1 = 0$ vs $H_1: \beta_1 > 0$
- ▶ One-sided CI $[-\infty, U]$ can be used to test for $H_0: \beta_1 = 0$ vs $H_1: \beta_1 < 0$