

Meet- en regeltechniek in de waterzuivering, een inleiding

Boudewijn Van De Steene

Aquafin

Overzicht

- > Inleiding
- On-line metingen in de waterzuivering
 - Zuurstofmeting
 - Nutriëntmetingen
 - Turbiditeit en MLSS
- On-line sturing in de waterzuivering
 - Wat sturen?
 - Waarom sturen?
- Case studies
 - IJzerdosering: RWZI Lommel
 - Intermitterende sturing: RWZI Boortmeerbeek
 - Alternerende sturing: RWZI Houthalen
 - Aanpassing sturing Bree
- > Algemene conclusies

Vroeger:

- Waterzuivering werd beschouwd als een statisch proces
- Variabiliteit in procescondities werd opgevangen door veiligheidsfactoren in ontwerp en bedrijfsvoering

Nu:

- Erkenning van de dynamiek van de processen (oa. Grote variabiliteit in kwaliteit/kwantiteit van het afvalwater)
- Opvangen van snelle wisselingen in omstandigheden door meet- en regeltechnologie

On-line meten

Om in te spelen op de dynamiek van de processen, is een continue opvolging van belangrijke procesparameters van essentieel belang

Parameters

• 1970: opkomst van zuurstofmeting

• 1980: opkomst van de nutriëntmetingen (ammonium, nitraat, fosfaat)

• 2000: rijpe technologie

De zuurstofmeting

- Zuurstof is de sleutel voor afbraak van organische verbindingen
- Bepaalt het evenwicht tussen nitrificatie en denitrificatie (stikstofverwijdering)
- ■Een goede opvolging garandeert een efficiënt zuiveringsresultaat, tegen minimale kosten
- Eenvoudige en wijdverbreide meting (standaard op alle RWZI's)

De zuurstofmeting : principe (Clark cel)

Reactiekamer gevuld met electrolyt afgesloten van de te meten vloeistof dmv een zuurstofpermeabel membraan

De zuurstofmeting: principe

Reductie van zuurstof aan het kathodeoppervlak (Pt, Au of Pd)

De zuurstofmeting: principe

Vorming van AgCl aan anode (Ag)

De zuurstofmeting: principe

Zuurstofconcentratie in de te meten vloeistof

Diffusiesnelheid door membraan

Electronenafgifte aan de kathode

Electrische stroom tussen anode en kathode

Zuurstofmeting: praktische aspecten

- Biofouling: aangroei van micro organismen op het membraanoppervlak
- Zelfreinigende sondes

Zuurstofmeting: toepassingen

- Sturen van de beluchting
- Respirometrie: opvolging van de zuurstofopnamesnelheid
- Early warning:
 - Toxiciteit
 - Piekbelasting (bijvoorbeeld first flush)

- Sleutelmetingen voor de sturing van nutriëntverwijdering
- Complexere metingen: vereisen meerdere geautomatiseerde stappen
- Vereisen monstervoorbereiding (continue filtratie)
- Stikstofverwijdering: ammonium en nitraat
- Fosforverwijdering: fosfaat

Afscheiden van particulair materiaal

- Filtratie
 - Keramische filters
 - Membraanfiltratie (plaatvormig of tubulair)
- Bezinking

Tubulair membraan

Bezinking

Plaatvormig membraan

Keramische filters

Nutriëntmetingen: ammonium

- ■Belangrijkste meetprincipes: ionspecifieke electrode (ISE) of colorimetrie
- •ISE: diffusie van NH₃ door selectief permeabel membraan en meten van resulterend pH effect
- Colorimetrie: vorming van een gekleurd product (indofenol blauw)

Nutriëntmetingen: ammonium

Belang

• Opvolgen stikstofverwijdering (sturing beluchting):

Nitrificatie:

$$(NH_4^+)+O_2 \rightarrow NO_3^-$$

Denitrificatie:

$$NO_3$$
 + $C_xH_y \rightarrow N_2$

• Early warning: toxiciteit (nitrificerende gemeenschap is meest gevoelig aan toxische stoffen)

Nutriëntmetingen: nitraat

- Belangrijkste meetprincipe: UV absorptie (ongeveer 200 nm)
- Meetbaar zonder monstervoorbereiding

Belang

• Opvolgen stikstofverwijdering:

Nitrificatie:

$$NH_4^+ + O_2 \rightarrow NO_3^-$$

Denitrificatie:

$$(NO_3^-)+ C_xH_y \rightarrow N_2$$

Sturing beluchting / koolstofbrondosering

Nutriëntmetingen: fosfaat

Belangrijkste meetprincipe: colorimetrie (molybdeen blauw methode)

- Belang
- Opvolgen fosforverwijdering
 - Bio-P: sturing beluchting
 - Chemische P verwijdering : sturing dosering FeCl₃

Turbiditeit en MLSS: turbiditeit

Belangrijkste meetprincipe: absorptie van licht

Turbiditeit en MLSS: turbiditeit

- Belang
 - Zo weinig mogelijk zwevende stoffen naar het effluent
 - Vorm afhankelijk van de range
- Opvolgen turbiditeit
 - Sturen van het retour debiet
 - Aanpassen van de MLSS concentratie om geen uitspoeling te krijgen

- Belang
 - Nitrificatie (te lage MLSS geeft een te lage SRT)
- Opvolgen
 - Slibleeftijd
 - Slibuitspoeling

 Directe koppeling van meting met procesvoering

Bijvoorbeeld

- IJzerdosering in functie van PO4
- Percentage denitrificatie in functie van NH₄ / NO₃

On-line sturing: wat sturen?

Een "typische" installatie met predenitrificatie

Aquafin

Doseringen

- Fosfaatverwijdering: FeCl₃ ifv PO₄³⁻
- Denitrificatie: Koolstofbron ifv NO₃-

Interne recirculatie

Debiet in functie van NO₃-

Aquafin

Beluchting

- Aerobe/anoxische fasen ifv NO₃- en NH₄+
- Beluchters ifv O₂

Recirculatie en spui debiet

Sturen van spui en recirculatie als functie van turbideit en MLSS

- Nauwer afstemmen van aanbod en vraag
- Inzetten van middelen waar nodig
 - = een beter resultaat
- ... en *alleen* waar nodig
 - tegen minder kosten

De menselijke factor (manueel)

Automatisch

Case studies

- 1. IJzerdosering: RWZI Lommel
- 2. Intermitterende beluchting: RWZI Boortmeerbeek
- 3. Alternerende beluchting: RWZI Houthalen
- 4. Aanpassen sturing Bree

Case studies: 1. IJzerdosering RWZI Lommel

- RWZI Lommel: ontwerpcapaciteit 30.000 IE
- Huidige belasting: 60.000 IE-N 90.000 IE-P
- Sterk variabel

- In afwachting van uitbreiding:
- Implementatie on-line meting van NH₄, NO₃, PO₄
- On-line sturing van ijzerdosering

Aquafin

1. IJzerdosering RWZI Lommel

Aanpassing van pompdebiet in functie van fosfaatconcentratie

Aquafin

Case studies: 1. IJzerdosering RWZI Lommel

Door sturing

- Minder variabiliteit in effluentwaarden
- Afwezigheid van piekwaarden

Case studies: 1. IJzerdosering RWZI Lommel

Door sturing

- Minder variabiliteit in effluentwaarden
- Afwezigheid van onverwachte pieken
- Significante reductie in ijzerdosering

Terugbetalingsperiode < 1 jaar Besparingen

- 1/3 te wijten aan minder chemicaliën
- 2/3 te wijten aan minder slibproductie !!!

Case studies: 2. Boortmeerbeek: intermitterende beluchting

2. Boortmeerbeek : intermitterende beluchting

- Ontwerpbelasting: 40.000 IE
- Implementatie van on-line sturing

2. Boortmeerbeek: intermitterende

beluchting

Case studies: 2. Boortmeerbeek : intermitterende beluchting

Case studies: 2. Boortmeerbeek : intermitterende beluchting

Door sturing

• Beter effluentresultaat

Aquafin

Case studies:

- Implementatie van on-line NH₄ en NO₃ meting
- Fasen gestuurd op basis van deze metingen

3. Houthalen: alternerende beluchting

Beter effluentresultaat

- Lager gemiddelde
- Kleinere variantie
- Minder pieken

Aquafin

Case studies:

Case studies: 3. Houthalen: alternerende beluchting

- Voorbeeld automatisch opvangen van pieken
- Zondag 26/08/2002 om 12:00
 - Lozing 22 ton septisch materiaal Pukkelpop
 - Onmiddellijke stijging ammoniumconcentratie
 - Automatisch aanpassen beluchting
- Piekbelasting binnen één dag opgevangen (met manuele sturing: makkelijk enkele dagen verstoring van de procesvoering)

Case studies: 3. Houthalen: alternerende beluchting

Case studies: 3. Houthalen: alternerende beluchting

- Lager energieverbruik
- Vermijden uitbreiding RWZI door "on the edge" bedrijfsvoering

Aquafin

Case studies: 4. Aanpassen sturing Bree

- Ontwerpbelasting: 27.000 IE
- Hoge kosten omwille van nageschakelde zandfilters

Case studies: 4. Aanpassen sturing Bree

- Aanpassen van
 - Manuele sturing naar sturing op ammonium en nitraat
 - Sturen van de nitraat retour pompen op de nitraat
 - Beluchting intermitterend in plaats van constante zuurstof
 - Sturing optimaliseren van de nageschakelde zandfilters
- Alles nagekeken aan de hand van simulaties

Case studies: 4. Aanpassen sturing Bree

Case studies: 4. Aanpassen sturing Bree

Resultaten:

- +/- 1200 simulaties
- Beste resultaten met online sturing
- Sommige beter maar ook sommige slechter
 - Door lage ammonium setpunten belucht je te veel (veel energie)
 veel nitraat in het effluent (hoge kosten + lage N-verwijdering)
 - Door hoge ammonium setpunten belucht je te weinig (lage kosten)
 => hoge NH₄ in het effluent
 => lage verwijdering (lage kosten + lage N-verwijdering) (niet zichtbaar op de figuur)
 - We zoeken naar optimum tussen beluchten en niet beluchten
- Beste sturing geeft
 +/- 5% betere stikstof verwijdering
 +/- 30,000 euro minder kosten

Algemene conclusies

- Meet- en regeltechnologie biedt tastbare voordelen
- On-line meten
 - Dieper begrip van de verschillende processen
 - Beter opvolging door hogere resolutie van de metingen
- On-line sturing
 - Koppeling van bedrijfsvoering aan on-line metingen
 - On-the-edge bedrijfsvoering optimaliseert effectieve capaciteit
 - Lagere veiligheidsfactoren drukken kosten