Karnaugh map

Lecture 5

Prepared by : Eng.Amani Safwat

Introduction

• A Karnaugh Map (K-map) is a graphical method used to simplify Boolean functions by organizing all possible combinations of variables in a visual grid.

It helps to **minimize logic expressions** without using complex algebraic steps, making digital circuit design more efficient. Each cell in the map represents a **minterm** (for SOP) or **maxterm** (for POS),.

• In short:

K-maps make it easier to find simplified logic equations by grouping 1s or 0s in patterns of

Why Simplification

- - To reduce the number of logic gates.
- - To simplify circuit design.
- To save cost and power

K-map Layouts

• - 2-variable: 4 cells

• - 3-variable: 8 cells

• - 4-variable: 16 cells

Karnaugh map

Simplification Steps

- 1. Draw K-map
- 2. Fill cells with 1's or 0
- 3. Group adjacent 1's (1,2,4,8,...)
- 4. Write the simplified equation

Two Variables

Λ	
$\boldsymbol{\neg}$	

•	Α	В	F
	0	0	1
	0	1	0
	1	0	1
	1	1	0

1.
$$F = A'B' + AB'$$

 $\Rightarrow F(A,B) = \sum (0,2)$

Two Variables

В.	Α	В	F
	0	0	1
	0	1	1
	1	0	0
	1	1	0

1. F= A'B' + A'B

$$\rightarrow$$
 $F(A,B) = \sum (0,1)$

Three Variables

Α	В	С	F
0	0	0	1
0	0	1	1
0	1	0	1
0	1	1	1
1	0	0	1
1	0	1	0
1	1	0	1
1	1	1	0

$$\begin{array}{ccc}
 & 1.F = A'B'C' + A'B'C + A'BC' + A'BC + AB'C' + ABC' \\
 & 2. F(A,B,C) = \sum (0,1,2,3,4,6)
\end{array}$$

four Variables

Apply the Karnaugh map to the following table: >

Α	В	С	D	F
0	0	0	0	1
0	0	0	1	0
0	0	1	0	1
0	0	1	1	0
0	1	0	0	0
0	1	0	1	1
0	1	1	0	0
0	1	1	1	0
1	0	0	0	1
1	0	0	1	1
1	0	1	0	1
1	0	1	1	0
1	1	0	0	0
1	1	0	1	1
1	1	1	0	0
1	1	1	1	0

+AB'CD' + ABC'D

2.
$$F(A,B,C,D) = \sum m(0,2,5,8,9,10,13)$$

AB'C'

OO 1 0 0 1

3. O1 0 1 1 1 BC'D

11 0 0 0 0

B'D' 10 1 0 0 1 F= BC'D+B'D' +AB'C'

1.F=A'B'C'D'+A'B'CD'+A'BC'D+AB'C'D' +AB'C'D

Exercise

Α	В	F
0	0	1
0	1	0
1	0	1
1	1	1

Answer

Α	В	F
0	0	1
0	1	0
1	0	1
1	1	1

1.
$$F = A'B' + AB' + AB$$

 $F(A, B) = \sum (0,2,3)$

