

Overview

- 1. Objectives
- 2. Specification of Model
- 3. Justification
- 4. Possible Impacts
- 5. Estimation Technique
- 6. Source
- 8. Results
- 9. Conclusion

Bank

Objectives

Objectives

Specification

Justification

Possible Impact

Measurement

Estimation

Source

Results

Conclusion

The specification of our time series econometric model is:

$$Y_{t} = \alpha_{0} + \alpha_{1} Y_{t-1} + \alpha_{2} Y_{t-2} + \alpha_{3} Y_{t-3} + \alpha_{4} Y_{t-4} + ...$$

Where: Y_{t} = Price of Bank NIFTY

The specification of our ARDL econometric model is:

$$Y_{t} = \alpha_{0} + \alpha_{1} Y_{t-1} + \alpha_{2} X_{1t} + \alpha_{3} X_{1t-1} + \alpha_{4} X_{2t} + \dots$$

Where: $X1_t = GDP$ at current price $X2_t = Foreign$ Investment Inflows

Justification

Justification

GDP at current price and Foreign investment are taken independent variable

> GDP at current Price will be positively correlated to Nifty Bank

Lags of Nifty Bank will also affect the current level.

Return and Price are used in different model of Nifty Bank

Foreign Investment is directly related to Nifty Bank

Objectives

Specification

Justification

Possible Impact

Measurement

Estimation

Source

Results

Conclusion

. reg niftybankclosing gdpatcurrentlakhcrores foreigninvestmentinflows

	Source	SS	df	MS	Number of obs	=	21
					F(2, 18)	= 21	1.32
	Model	1.9069e+09	2	953436985	Prob > F	= 0.	0000
	Residual	81212350.5	18	4511797.25	R-squared	= 0.	9592
-					Adj R-squared	= 0.	9546
	Total	1.9881e+09	20	99404316	Root MSE	= 21	24.1

niftybankclosing	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
gdpatcurrentlakhcrores	140.8195	10.64079	13.23	0.000	118.464	163.175
foreigninvestmentinflows	.0600014	.0305024	1.97	0.065	0040817	.1240845
_cons	-2695.677	894.0868	-3.02	0.007	-4574.084	-817.2702

After regressing as usual, we find that both the dependent variables are significant at 10% significance level.

Objectives

Specification

Justification

Possible Impact

Measurement

Estimation

Source

Result

Conclusion

. estat hettest

Breusch-Pagan / Cook-Weisberg test for heteroskedasticity
Ho: Constant variance
Variables: fitted values of niftybankclosing

chi2(1) = 2.05Prob > chi2 = 0.1523

. vif

Variable	VIF	1/VIF
foreigninv~s	1.96	0.509793
gdpatcurre~s	1.96	0.509793
Mean VIF	1.96	

We have tested for heteroskedasticity and Multicollinearity. Both are not present in the model

Objectives

Specification

Justification

Possible Impact

Measuremen

Estimation

Source

Results

Conclusion

21 . tsset time, yearly

time variable: time, 1 to 21

delta: 1 year

22 . varsoc niftybankclosing

Selection-order criteria

Sample: 5 - 21

f obs	=	17
	f obs	f obs =

lag	LL	LR	df	p	FPE	AIC	HQIC	SBIC
0	-179.112	0000-0000-0000-	20007: - (0)	on-mon-mo	9.3e+07	21.1896	21.1945	21.2386
1	-162.454	33.316	1	0.000	1.5e+07	19.3475	19.3572	19.4455
2	-158.856	7.1949*	1	0.007	1.1e+07	19.0419	19.0565	19.1889
3	-157.181	3.3509	1	0.067	1.0e+07*	18.9624*	18.9819*	19.1585*
4	-156.343	1.6762	1	0.195	1.0e+07	18.9815	19.0059	19.2266

Endogenous: niftybankclosing

Exogenous: _cons

We have checked the lag length of every variable by varsoc and got the lag of nifty_bank as 3, GDP at current price as 2 and foreign investment inflows as 3

Objectives

Specification

Justification

Possible Impact

Measurement

Estimation

Source

Results

Conclusion

. pperron niftybankclosing , regress lags(3)

Phillips-Perron test for unit root

Number of obs = 20 Newey-West lags = 3

		Interpolated Dickey-Fuller					
	Test Statistic	1% Critical Value	5% Critical Value	10% Critical Value			
Z(rho)	1.040	-17.200	-12.500	-10.200			
Z(t)	1.018	-3.750	-3.000	-2.630			

MacKinnon approximate p-value for Z(t) = 0.9945

niftybankclosing	Coef.	Std. Err.	t	P> t	[95% Conf.	<pre>Interval]</pre>
niftybankclosing L1.	1.014152	.0837877	12.10	0.000	.8381208	1.190184
_cons	1355.357	1205.419	1.12	0.276	-1177.134	3887.848

We have performed Phillips-perron for all the variables and all of them comes out to be non-stationary

Objectives

Specification

Justification

Possible Impact

Measurement

Estimation

Source

Results

Conclusion

- . predict ul, res
- . estat dwatson

Durbin-Watson d-statistic(3, 21) = 1.172235

. varsoc u

Selection-order criteria Sample: 5 - 21

Number of obs = 17

lag	LL	LR	df	p	FPE	AIC	HQIC	SBIC
0	-154.812		79 - 20074		5.4e+06	18.3308	18.3357	18.3798
1	-153.267	3.0898	1	0.079	5.0e+06*	18.2667*	18.2764*	18.3647*
2	-152.882	.77039	1	0.380	5.4e+06	18.339	18.3536	18.4861
3	-152.823	.11779	1	0.731	6.1e+06	18.4497	18.4692	18.6458
4	-152.293	1.0604	1	0.303	6.5e+06	18.505	18.5294	18.7501

Endogenous: ul Exogenous: _cons

We have regressed the model and calculated residual and calculated lag length by varsoc of residual

Objectives

Specification

Justification

Possible Impact

Measurement

Estimation

Source

Results

Conclusion

. pperron u, regress lags(1)

Phillips-Perron test for unit root

Number of obs = 20 Newey-West lags = 1

		Inte	erpolated Dickey-F	uller
	Test	1% Critical	5% Critical	10% Critical
	Statistic	Value	Value	Value
Z(rho)	-11.099	-17.200	-12.500	-10.200
Z(t)	-2.645	-3.750	-3.000	-2.630

MacKinnon approximate p-value for Z(t) = 0.0840

u1	Coef.	Std. Err.	t	P> t	[95% Conf.	<pre>Interval]</pre>
u1 L1.	. 4117737	.2177818	1.89	0.075	0457688	.8693163
_cons	15.2781	433.9047	0.04	0.972	-896.3218	926.878

We have performed Phillips-perron for the residual and it comes out to be stationary, hence the model is cointegrated

Objectives

Specification

Justification

Possible Impact

Measurement

Estimation

Source

Results

Conclusion

. var niftybankclosing gdpatcurrentlakhcrores foreigninvestmentinflows, lags(1/2)

Vector autoregression

 Sample: 3 - 21
 No. of obs
 =
 19

 Log likelihood = -393.6735
 AIC
 =
 43.64984

 FPE
 =
 2.03e+15
 HQIC
 =
 43.8265

 Det(Sigma_ml)
 =
 1.99e+14
 SBIC
 =
 44.69369

Equation	Parms	RMSE	R-sq	chi2	P>chi2
niftybankclosing	7	1579.66	0.9825	1063.811	0.0000
gdpatcurrentla~s	7	3.68362	0.9976	7864.689	0.0000
foreigninvestm~s	7	15733.3	0.6275	32.00087	0.0000

We performed vector autoregression to get the dependence on each other

Objectives

Specification

Justification

Possible Impact

Measurement

Estimation

Source

Result:

	Coef.	Std. Err.	z	P> z	[95% Conf.	Interval]
niftybankclosing						
niftybankclosing						
L1.	211306	.1762613	-1.20	0.231	5567718	.1341597
L2.	.4793918	.2138971	2.24	0.025	.0601612	.8986225
gdpatcurrentlakhcrores						
L1.	1117.755	226.0131	4.95	0.000	674.7775	1560.733
L2.	-1019.33	246.7606	-4.13	0.000	-1502.972	-535.6882
foreigninvestmentinflows						
L1.	0900976	.0302241	-2.98	0.003	1493357	0308595
L2.	1659399	.0336041	-4.94	0.000	2318028	1000771
_cons	152.9655	710.7975	0.22	0.830	-1240.172	1546.103
gdpatcurrentlakhcrores						
niftybankclosing						
L1.	0006707	.000411	-1.63	0.103	0014763	.0001348
L2.	0006864	.0004988	-1.38	0.169	001664	.0002912
gdpatcurrentlakhcrores						
L1.	2.598264	.5270393	4.93	0.000	1.565286	3.631243
L2.	-1.523573	.5754204	-2.65	0.008	-2.651376	39577
foreigninvestmentinflows						
L1.	.0000337	.0000705	0.48	0.632	0001044	.0001718
L2.	.0000933	.0000784	1.19	0.234	0000603	.0002469
_cons	-1.087677	1.657507	-0.66	0.512	-4.336331	2.160977
foreigninvestmentinflows	g the tolke hales out to					
niftybankclosing						
L1.	-3.425311	1.75554	-1.95	0.051	-6.866107	.0154845
L2.	5.16642	2.130388	2.43	0.015	.9909359	9.341905
gdpatcurrentlakhcrores						
L1.	2903.515	2251.062	1.29	0.197	-1508.485	7315.516
L2.	-3008.663	2457.704	-1.22	0.221	-7825.675	1808.349
foreigninvestmentinflows						
L1.	.1387432	.3010279	0.46	0.645	4512607	.7287472
L2.	4626481	.3346929	-1.38	0.167	-1.118634	.193338
_cons	13355.95	7079.454	1.89	0.059	-519.5275	27231.42

Specification

Justification

Possible Impact

Measurement

Estimation

Source

Results

Conclusion

. vargranger

Granger causality Wald tests

1	Excluded	chi2	df	Prob > chi2
g gd	patcurrentlak~s	58.728	2	0.000
f fo	reigninvestme~s	33.497	2	0.000
ı	ALL	64.376	4	0.000
s n	iftybankclosing	7.8654	2	0.020
fo	reigninvestme~s	1.6557	2	0.437
3	ALL	9.0802	4	0.059
s n	iftybankclosing	6.9233	2	0.031
	patcurrentlak~s	1.8342	2	0.400
5	ALL	15.356	4	0.004

In this Granger Causality test, we find that Bank Nifty depends on both GDP and Foreign investment. It also has feedback effect.

Objectives

Specification

Justification

Possible Impact

Measurement

Estimation

Source

Results

Conclusion

. vecrank niftybankclosing gdpatcurrentlakhcrores foreigninvestmentinflows , trend(constant)

Johansen tests for cointegration

Trend: constant Number of obs = 19 Sample: 3-21

					5%
maximum				trace	critical
rank	parms	LL	eigenvalue	statistic	value
0	12	-428.37859		69.4102	29.68
1	17	-402.11451	0.93700	16.8821	15.41
2	20	-394.37364	0.55728	1.4003*	3.76
3	21	-393.67348	0.07105		

We have performed Johansen tests for cointegration and found the maximum rank to be 2.

•

Model-1

Objectives

Specification

Justification

Possible Impact

Measurement

Estimation

Source

Results

Conclusion

. vec niftybankclosing gdpatcurrentlakhcrores for eigninvestment inflows , trend (constant) rank (2 $\,$

Vector error-correction model

 Sample: 3 - 21
 No. of obs
 =
 19

 AIC
 =
 43.61828

 Log likelihood = -394.3736
 HQIC
 =
 43.78653

 Det(Sigma_ml) = 2.15e+14
 SBIC
 =
 44.61242

Equation	Parms	RMSE	R-sq	chi2	P>chi2
D niftybankclo~g	6	1526.69	0.8784	93.92942	0.0000
D gdpatcurrent~s	6	3.55766	0.9277	166.8777	0.0000
D_foreigninves~s	6	15641.6	0.6996	30.27766	0.0000

	Coef.	Std. Err.	z	P> z	[95% Conf	. Interval]
D_niftybankclosing						
_ce1	8050802	.1771478	-4.54	0.000	-1.15228 <mark>3</mark>	4578769
_ce2	114.496	19.62174	5.84	0.000	76.03805	152.9539
niftybankclosing LD.	4343116	.2331546	-1.86	0.062	8912863	.0226631
gdpatcurrentlakhcrores LD.	919.1877	156.2335	5.88	0.000	612.9757	1225.4
for eigninvest mentinflows $$\operatorname{\mathtt{LD}}.$$.1576374	.0349119	4.52	0.000	.0892113	. 2260635
_cons	0060636	781.0709	-0.00	1.000	-1530.877	1530.865

Estimation

. veclmar

Lagrange-multiplier test

lag	chi2	df	Prob > chi2
1	6.8127	9	0.65661
2	4.7239	9	0.85768

HO: no autocorrelation at lag order

. vecnorm, jbera

Jarque-Bera test

Equation	chi2	df	Prob	> chi
D_niftybankclosing	0.947	2	0.	62281
D_gdpatcurrentlakhcrores	1.6	91	2 0	.42927
D foreigninvestmentinflows	0	.176	2	0.915
ALL	2.814	6	0.	83179

We find that there is no autocorrelation and the residual of variables are also normally distributed.

Step1: Setting up the data

We have set time variables as weekly and estimated weekly returns of BankNIFTY.

Step2: Performing Dicky-Fuller Test without trend

The model in here comes to be stationary. Results of regression are

. Interval]	[95% Conf.	P> t	t	Std. Err.	Coef.	D.ret
						ret
7848778	-1.071942	0.000	-12.76	.0727607	92841	L1.
.0277408	.0009398	0.036	2.11	.0067931	.0143403	_cons

Both Drift and lags here come to be significant.

cation

Measuremen

Estimatio

Source

Results

nclusic

Step3: Performing Varsoc to check for lags

We have got a lag as 0, hence no need of argumented Dicky-Fuller Test.

Step4: Performing Phillips Perron Test without trend

The model here again comes to be stationary.

Step5: Performing DF-GLS test

Using Schwert criterion criteria, max lag length comes to be 14. All the lags too in here are

stationary.

Note: After performing all the tests, we can conclude as the return rate of nifty is stationary at 5% level of Significance.

Objectives

Specification

Justification

Possible Impact

Measurement

Estimation

Source

Results

Conclusion

Step6: Estimating for AC and PAC to determine p and q of ARIMA model Using Correlogram estimation, we have estimated for AC and PAC values at different lags.

Now to predict for q, autocorrelation coefficient comes to be 3 using the given above graph

Objectives

Specification

Justification

Possible Impact

Measurement

Estimation

Source

Results

Conclusion

Now, further using Partial Correlation, p values come to be 2 using the given above graph.

Hence the final Model for ARIMA time series regression comes as ARIMA (2,0,3).

Specification

Justification

Possible Impact

Measurement

Estimation

Source

Results

Conclusion

Step7: ARIMA (2,0,3) results

Finally, using ARIMA model, regression results comes as:

ARIMA regression

Sample: 1960w2 - 1973w6 Number of obs = 681

Wald chi2(5) = 143.32

Log likelihood = 1177.395 Prob > chi2 = 0.0000

return	Coef.	OPG Std. Err.	z	P> z	[95% Conf.	Interval]
return	.0033527	.0017006	1.97	0.049	.0000196	.0066857
	10000027	10017000	1,5,	0.015	.0000130	.0000007
ARMA						
ar						
Ll.	-1.086086	.29294	-3.71	0.000	-1.660238	5119345
L2.	5747967	.187767	-3.06	0.002	9428133	2067801
ma						
L1.	1.065181	.2924443	3.64	0.000	.4920008	1.638361
L2.	. 6367779	.1829438	3.48	0.001	.2782147	.9953411
L3.	.0033553	.0488095	0.07	0.945	0923095	.0990201
/sigma	.0429433	.0007612	56.41	0.000	.0414513	.0444354

Specification

Justification

Possible Impact

Measurement

Estimation

Source

Results

Conclusion

Step8: Prediction Results

Now, moving toward predictions. We have regressed over past data. The model is limited to catching drift and can not predict the fluctuations arising.

Objectives

fication

fication

Possible Impact

Measurement

Estimatio

Source

Results

Conclusio

Step1: Setting up the data

We have set time variables as yearly and estimated monthly prices of BankNIFTY.

Step2: Performing Stationary Test with trend for Price

While performing the Dicky-Fuller Test, the model is non-stationary. Using varsoc we got lag to be 2. Further performing Arguemented Dicky-Fuller Test and Philips Perron Test, the model again comes non-stationary.

Note: After performing all the tests, we can conclude that Price of Bank Nifty is non-stationary at 5% level of Significance

ation

ole Impac

Measoremen

Estimation

Sourc

Dogulá

. . .

Step3: Generating Log of Price

We have generated a log of Price data using Price. Further we will perform a stationary test.

Step4: Performing Dicky Fuller Test with trend

The model here comes to be stationary at 5% level of Significance.

Step5: Performing Varsoc to calculate required lag length

The required lag length comes to be at 1.

Specification

Justification

Possible Impact

Measurement

Estimation

Source

Result

Conclusion

Step6: Performing Argumented Dicky Fuller test at lag 1 with trend The model here again comes to be stationary around the trend. Also, regression results have been added.

Augmented D	ickey-Fuller te	st for unit	root	Numb	er of obs	= 189
	Test Statistic	1% Crit Val	ical	5% Cri	Dickey-Fu tical lue	ller 10% Critical Value
Z(t)	-3.916	-4	.010	-	3.438	-3.138
MacKinnon a	pproximate p-va	lue for Z(t)	= 0.011	5		
D.lnprice	Coef.	Std. Err.	t	P> t	[95% C	onf. Interval]
Inprice L1 LD _trene_con:	1428737 . 1364618 d .0015059	.0364802 .072831 .0004035 .3097515	-3.92 1.87 3.73 3.95	0.000 0.063 0.000 0.000	21484 00722 .00070 .61194	44 .280148 98 .002302

We can see all the coefficients being significant other than LD of In Price at 5% level of significance.

Step7: Performing Phillips Perron Test with trend

.8745326

.0013268

1.076205

The model here again comes to be stationary. Regression results are:

Phillips-Perro	ips-Perron test for unit root			Number of obs = Newey-West lags =			
				ated Dickey			
	Test Statistic	1% Critic Value		Value	10	% Critical Value	
Z(rho) Z(t)	-26.497 -3.721	-28.0 -4.0	70.7	-21.060 -3.438		-17.800 -3.138	
MacKinnon app	roximate p-va	lue for Z(t) =	0.0210				
Inprice	Coef.	Std. Err.	t P>	t [95	% Conf.	Interval]	
Inprice							

.0354554

.0003934

.3012113

Step8: Performing DF-GLS test

trend

cons

Using Schwert criterion criteria, max lag length comes to be 14. Most of the lags are significant here, hence indicating stationarity.

24.67

3.37

3.57

0.000

0.001

0.000

.8045887

.0005507

.4819958

. 9444766

1.670414

.002103

Note: After performing all the tests, we can conclude that the InPrice of Bank Nifty is stationary at 5% level of Significance

Specification

Justification

Possible Impact

Measurement

Estimation

Source

Results

Conclusion

Step9: Estimating for AC and PAC to determine p and q of ARIMA model Using Correlogram estimation, we have estimated for AC and PAC values at different lags.

Now to predict for p(AR), partial autocorrelation coefficient (PAC) comes to be 1 using the given below graph.

Objectives

Specification

Justification

Possible Impact

Measurement

Estimation

Source

Results

Conclusion

Now, further using Autocorrelation, q values come to be 1 using the given below graph. Major reason for taking it as 1 is because of the gradual decay indicative of an AR model.

Hence, the final model comes to ARIMA (1,0,1)

Specification

Justification

Possible Impact

Measurement

Estimation

Source

Results

Conclusion

Step10: ARIMA (1,0,1) results

Finally, using the ARIMA model, regression results are significant.

ARIMA regression

Sample: 1 - 0191 Number of obs = 191

Wald chi2(3) = 694.40

 $\label{eq:log_log_log_log} \mbox{Log likelihood} = 193.1642 \qquad \qquad \mbox{Prob > chi2} \qquad = \quad 0.0000$

		OPG				
lnprice	Coef.	Std. Err.	z	P> z	[95% Conf.	Interval]
lnprice						
time	.0106747	.0008161	13.08	0.000	.0090751	.0122742
_cons	8.478929	.0819696	103.44	0.000	8.318272	8.639587
ARMA						
ar						
L1.	.8350043	.0377305	22.13	0.000	.7610538	.9089548
ma						
L1.	.1541392	.0660856	2.33	0.020	.0246137	.2836646
/sigma	.0876765	.0033982	25.80	0.000	.0810162	.0943368

We can observe the model is overall significant. Also, all the coefficients are significant at 5% level of significance.

Specification

Justification

Possible Impact

Measurement

Estimation

Source

Results

Conclusion

Step11: Prediction Results

Now, moving toward predictions. We have first regressed over past data. Finally, forecasting, we have tried to see the trend of price movement for the coming year.

The predicted model fits perfectly with the data and hence possibly predicts good results for the trend. We can observe a slow growth in Bank Nifty price overcoming the time period.

Specification

Justification

Possible Impact

Measurement

Estimation

Source

Results

Conclusion

All the data is taken from the website of National Stock Exchange and from the Reserve Bank of India. We have taken data from 2001 - 2021 of Price of Index Nifty Bank, GDP of India at current price and Foreign Investment.

Results

Model-1: ARDL Results

Price of Nifty Bank depends on GDP and Foreign Investment

And the coefficients are positive indicating positive correlation

GDP and Foreign investment Granger Causes Nifty Bank price

There is no long run impact, but short run change in GDP and FI impacts change in price of Bank Nifty.

Specification

Justification

Possible Impact

Measurement

Estimation

Source

Results

Model-2: Weekly Returns ARIMA Result

Weekly returns stationary without any trend

ARIMA model AR(2) with MA(3) process

Capturing the possible drift for returns

Direction of the moment of Price

Specification

Justification

Possible Impact

Measurement

Estimation

Source

Results

Model-3: Monthly Price ARIMA Result

Price is non-stationary even around a trend

Log of Price comes to be stationary around a trend

ARIMA regression both AR & MA comes to be 1

Model's predicted values coincides neatly with the actual value

Trend line behaviour can be predicted

Returns for the next 12 months are slow

Conclusion

Objectives

Specification

Justification

Possible Impact

Measurement

Estimation

Source

Results

Two types of models, one is a pure time series forecasting while the other is an Auto Distributed Lagged model

1

We can try to include more variables in the model like mutual funds or increase in demat accounts etc.

Covered many aspects of Regression and time series analysis

3

2

Thank You!