Differential entropy and Shannon's entropy: information theory lecture 8

COMSM0075 Information Processing and Brain

comsm0075.github.io

October 2020

Differential entropy

$$h(X) = -\int dx p_X(x) \log_2 p_X(x)$$

A continuous distribution

A continuous distribution

Discrete from continuous

Discrete from continuous

A discrete random variable

Let
$$\delta = x_{i+1} - x_i$$
.

Consider the discrete random variable X^{δ} whose outcomes are the $\{x_1,x_2,\ldots\}$ and whose probabilities are given by

$$p_{X\delta}(x_i) = q_i$$

Shannon's entropy

$$p_{X^\delta}(x_i)=q_i$$

so

$$H(X^{\delta}) = -\sum_i q_i \log_2 q_i$$

Get rid of the integrals

$$q_i = \int_{x_i}^{x_{i+1}} dx \, p_x(x)$$

The plot obviously is to get rid of the integral here, morally:

$$q_i = \int_{x_i}^{x_{i+1}} dx \, p_X(x) \approx p_X(\bar{x}_i) \delta$$

where \bar{x}_i is any point in $[x_i, x_{i+1})$ and the approximation gets better as δ gets smaller.

$$q_i = \int_{x_i}^{x_{i+1}} dx \, p_X(x) \approx p_X(\bar{x}_i) \delta$$

Rather than worry about how good the approximation is, we use an elegant alternative approach based on the mean value theorem.

The **Mean Value Theorem** tells us that assuming $p_X(x)$ is continuous we know we can always pick a value of $\bar{x}_i \in [x_i, x_{i+1}]$ such that

$$p(\bar{x}_i)\delta = q_i = \int_{x_i}^{x_{i+1}} p_x(x) dx$$

exactly.

Integrals are gone

$$H(X^{\delta}) = -\sum_{i} q_{i} \log_{2} q_{i} = -\sum_{i} p_{X}(\bar{x}_{i}) \delta \log_{2} p_{X}(\bar{x}_{i}) \delta$$

or, expanding out the log and using

$$\sum_{i} p_{X}(\bar{x}_{i})\delta = \int dx \, p_{X}(x) = 1$$

we get

$$H(X^{\delta}) = -\sum_{i} p_{X}(\bar{x}_{i})\delta \log_{2} p_{X}(\bar{x}_{i}) - \log_{2} \delta$$

Use the Riemann approximation

$$\sum_{i} f(\bar{x}_i)\delta \to \int f(x)dx$$

as $\delta
ightarrow 0$.

Finally

$$H(X^{\delta}) + \log_2 \delta = -\sum_i p_X(\bar{x}_i)\delta \log_2 p_X(\bar{x}_i) \rightarrow h(X)$$

as $\delta \to 0$.

Shannon's entropy and differential entropy

$$H(X^{\delta}) + \log_2 \delta \approx h(X)$$

for small enough δ .

Shannon's entropy and differential entropy

$$H(X^{\delta}) + \log_2 \delta \approx h(X)$$

for small enough δ .