MATHEMATICS FOR SCIENCE STUDENTS

An open-source book

Written, illustrated and typeset (mostly) by

PELEG BAR SAPIR

with contributions from others

$$a^{b} = e^{b \log(a)}$$

$$\binom{n}{k} = \frac{n!}{k!(n-k)!}$$

$$T(\alpha \vec{u} + \beta \vec{v}) = \alpha T(\vec{u}) + \beta T(\vec{v})$$

$$A = Q\Lambda Q^{-1}$$

$$Cos(\theta) = \cos(\theta) \cos(\theta)$$

$$\sin(\theta) \cos(\theta)$$

$$e^{\pi i} + 1 = 0$$

$$T(\alpha \vec{u} + \beta \vec{v}) = \alpha T(\vec{u}) + \beta T(\vec{v})$$

$$df = \lim_{\Delta x \to 0} \frac{f(x + \Delta x) - f(x)}{\Delta x}$$

$$\vec{v} = \sum_{i=1}^{n} \alpha_{i} \hat{e}_{i}$$

$$cos(x) = \sum_{n=0}^{\infty} \frac{(-1)^{n}}{(2n)!} x^{2n}$$

PUBLISHED IN THE WILD

! To be written/to do: Rights, lefts, etc. will be written here in the future !

HERE BE TABLE

INTRODUCTION

In this chapter we introduce key concepts that will be used in later chapters. For this reason, unlike other chapters it contains many statements, sometimes given without thorough explanations or reasoning. While all of these statements are grounded in deep ideas and can be formulated in a rigorous manner, it is advised to first get an intuitive understanding of the ideas before diving into their more formal construction.

Note 0.1 In case you are already familiar with the topics

It is recommended for readers who are familiar with the topics to at least gloss over this chapter and make sure they know and understand all the concepts presented here.

0.1 DERIVATIVES

One of the most important tool in analyzing a function $f : \mathbb{R} \to \mathbb{R}$ is the ability to quantitatively describe the way it behaves as we change its argument x. At any given point a function can either increase in its value, decrease in its value, or stay constant. We would like to develop a method that is able to tell us exactly how such function changes at any given point.

Example 0.1 Quantitative measure of change

Compare the following three functions on the domain $x \in [a, b]$:

While all three functions are increasing on [a, b], it is clear that the rate of increase between the functions is different, and even within each function: as x increases, so does the rate of increase in all functions.

