Optimization and Computational Linear Algebra for Data Science Midterm solutions

October 29, 2020

Problem 1

- (a) $A0 = 0 \neq 3e_1$, hence the zero vector does not belong to E_1 : E_1 is not a subspace.
- (b) $E_2 = \text{Ker}(v^{\mathsf{T}})$, where we see v^{T} as a $1 \times n$ matrix. E_2 is therefore a subspace.

Problem 2

(a) False. Consider the following matrices:

$$A = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \quad \text{and} \quad B = \begin{pmatrix} 0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}.$$

We have rank(A) = 1 = rank(B), however $Im(A) = Span(e_1)$ is not a subset of $Im(B) = Span(e_2)$.

- (b) True. We have Au = y and Av = y, hence 0 = Au Av = A(u v) which gives that $u v \in \text{Ker}(A)$.
- (c) True. We have $\operatorname{rank}(\operatorname{Id}_4) = 4$ but $\operatorname{rank}(ABC) \leq \operatorname{rank}(C) \leq 3$ since C is 3×4 .
- (d) True. Consider

$$v = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}.$$

The assumption on A gives that Av = 2v, hence 2 is an eigenvalue of A.

Problem 3 Compute

$$Ax = Av_1 + \dots + Av_n = \lambda_1 v_1 + \dots + \lambda_n v_n.$$

The vectors x and Ax have coordinates (1, ..., 1) and $(\lambda_1, ..., \lambda_n)$ respectively in the orthonormal basis $(v_1, ..., v_n)$, hence:

$$||x||^2 = n$$
 and $||Ax||^2 = \lambda_1^2 + \dots + \lambda_n^2$.

Problem 4

- (a) We have $\langle u-v,x\rangle=0$ for all $x\in\mathbb{R}^n$. Applying this for x=u-v gives $\|u-v\|^2=0$, hence u=v.
- (b) We have $\langle u-v,x\rangle=0$ for all $x\in S$. Applying this for $x=P_S(u-v)$ gives

$$0 = \langle u - v, P_S(u - v) \rangle = \langle u - v - P_S(u - v), P_S(u - v) \rangle + ||P_S(u - v)||^2 = ||P_S(u - v)||^2,$$

where the last equality comes from the fact that for all vector $w \in \mathbb{R}^n$, $w - P_S(w) \perp S$. We conclude that $P_S(u-v) = 0$, hence $P_S(u) = P_S(v)$.

Other possible solution:

- (a) Applying $\langle u, x \rangle = \langle v, x \rangle$ for $x = e_1, \dots, e_n$ gives that $u_i = v_i$ for all i hence u = v.
- (b) Let $k = \dim(S)$ and (w_1, \ldots, w_k) an orthonormal basis of S. We have then

$$P_S(u) = \langle w_1, u \rangle w_1 + \dots + \langle w_k, u \rangle w_k$$

$$P_S(v) = \langle w_1, v \rangle w_1 + \dots + \langle w_k, v \rangle w_k.$$

Applying $\langle u, x \rangle = \langle v, x \rangle$ for $x = w_1, \dots, w_k$ gives that $\langle u, w_i \rangle = \langle v, w_i \rangle$ for all $i \in \{1, \dots, k\}$, hence $P_S(u) = P_S(v)$.

1

Problem 5 Let show that Im(A) = Im(AB). First, the inclusion $\text{Im}(AB) \subset \text{Im}(A)$ is obvious. It remains to prove the reverse inclusion.

Notice that Im(B) is a subspace of \mathbb{R}^r of dimension rank(B) = r: we have $\text{Im}(B) = \mathbb{R}^r$. Let $x \in \text{Im}(A)$. By definition, there exists $u \in \mathbb{R}^r$ such that Av = x. Since $u \in \mathbb{R}^r = \text{Im}(B)$, there exists a vector $v \in \mathbb{R}^n$ such that Bv = u. We get that $x = Au = ABv \in \text{Im}(AB)$.

We conclude that Im(AB) = Im(A) and therefore rank(AB) = rank(A) = r.

Problem 6

(a) The assumption on M gives that rank(M) = m, hence the rank-nullity theorem gives that dim(Ker(M)) = m - m = 0. Let $x \in Ker(M^TM)$. We have $M^TMx = 0$, therefore

$$0 = x^{\mathsf{T}} M^{\mathsf{T}} M x = \|Mx\|^2,$$

which gives Mx = 0. Since we know that $Ker(M) = \{0\}$, we get that $Ker(M^{\mathsf{T}}M) = \{0\}$: $M^{\mathsf{T}}M$ is invertible.

- (b) Let $x \in \mathbb{R}^m$. By definition $Mx \in \text{Im}(M)$ and the properties of orthogonal projections give that $u w \perp \text{Im}(M)$, so we conclude that $(Mx) \perp (u w)$.
- (c) This gives that for all $x \in \mathbb{R}^m$,

$$0 = x^{\mathsf{T}} M^{\mathsf{T}} (u - w) = \langle x, M^{\mathsf{T}} (u - w) \rangle.$$

Taking $x = M^{\mathsf{T}}(u - w)$ gives that $||M^{\mathsf{T}}(u - w)||^2 = 0$: $M^{\mathsf{T}}u = M^{\mathsf{T}}v$.

(d) Since $u \in \text{Im}(M)$, there exists $v \in \mathbb{R}^m$ such that u = Mv. We get:

$$M^{\mathsf{T}} M v = M^{\mathsf{T}} w.$$

From (a), we know that that $M^{\mathsf{T}}M$ is invertible, hence $v = (M^{\mathsf{T}}M)^{-1}M^{\mathsf{T}}w$. We conclude that $u = M(M^{\mathsf{T}}M)^{-1}M^{\mathsf{T}}w$.

Problem 7 M is symmetric so the spectral theorem gives that there exists $\lambda_1, \ldots, \lambda_n \in \mathbb{R}$ and an orthogonal matrix $P \in \mathbb{R}^{n \times n}$ such that

$$M = P \operatorname{Diag}(\lambda_1, \dots, \lambda_n) P^{\mathsf{T}}.$$

Compute now

$$M^{2020} = P \operatorname{Diag}(\lambda_1, \dots, \lambda_n) P^{\mathsf{T}} P \operatorname{Diag}(\lambda_1, \dots, \lambda_n) P^{\mathsf{T}} \cdots P \operatorname{Diag}(\lambda_1, \dots, \lambda_n) P^{\mathsf{T}} = P \operatorname{Diag}(\lambda_1^{2020}, \dots, \lambda_n^{2020}) P^{\mathsf{T}},$$

since $P^{\mathsf{T}}P = \mathrm{Id}_n$. We get that

$$P \operatorname{Diag}(\lambda_1^{2020}, \dots, \lambda_n^{2020}) P^{\mathsf{T}} = \operatorname{Id}_n$$

which gives (using $PP^{\mathsf{T}} = \mathrm{Id}_n$) that $\mathrm{Diag}(\lambda_1^{2020}, \dots, \lambda_n^{2020}) = \mathrm{Id}_n$. We get that for all $i \in \{1, \dots, n\}$, λ_i is either 1 or -1. Consequently:

$$M^2 = P \operatorname{Diag}(\lambda_1^2, \dots, \lambda_n^2) P^{\mathsf{T}} = P \operatorname{Diag}(1, \dots, 1) P^{\mathsf{T}} = P P^{\mathsf{T}} = \operatorname{Id}_n.$$

Problem 8 The equality $A^2 = 0$ implies $\text{Im}(A) \subset \text{Ker}(A)$. Indeed, for $y \in \text{Im}(A)$ there exists $x \in \mathbb{R}^{10}$ such that Ax = y hence

$$Ay = AAx = A^2x = 0.$$

Consequently $\operatorname{rank}(A) \leq \dim(\operatorname{Ker}(A))$. The rank-nullity theorem gives that $\dim(\operatorname{Ker}(A)) + \operatorname{rank}(A) = 10$ which, combined to the previous inequality, implies $\operatorname{rank}(A) \leq 5$.

