# 1.2\_FactorAnalysis

MKappen

2023-03-15

# R Markdown

This is an R Markdown document displaying the code and output for the cfa and glmm's ran for valence and arousal for two image sets.

This results in the following (clickable) structure

- 1.0. Pisces Dataset
  - 1.1. Valence
    - 1.1.1. Cronbach's Alpha
    - 1.1.2. CFA
    - 1.1.3. CFA Visualization
    - 1.1.4. Distributions
  - 1.2. Arousal
    - 1.2.1. Cronbach's Alpha
    - 1.2.2. CFA
    - 1.2.3. CFA Visualization
    - 1.2.4. Distributions
- · 2.0. Radboud faces
  - o 2.1. Valence
    - 2.1.1. Cronbach's Alpha
    - 2.1.2. CFA
    - 2.1.3. CFA Visualization
    - 2.1.4. Distributions
  - o 2.2. Arousal
    - 2.2.1. Cronbach's Alpha
    - 2.2.2. CFA
    - 2.2.3. CFA Visualization
    - 2.2.4. Distributions

### General code

Used to load and prepare dataframes

```
##### Set environment #####
rm(list = ls()) # Clear environment
cat("\014") # Clear console
dev.off() # Clear plot window
options(contrasts=c("contr.sum", "contr.poly")) # Set contrast settings to effect coding
# Libraries
library(arrow)
library(lavaan)
library(lavaanPlot)
library(psych)
library(ltm)
library(car)
library(ggplot2)
library(ggstatsplot)
library(Polychrome)
#GLM specific
library(lme4)
library(lmerTest)
library(emmeans)
library(effects)
```

```
##### Loading data #####
imageData <-as.data.frame(read_parquet("../loc_data/df_session_tot_cleaned.parquet"))

piscesData <- imageData[imageData$DB == 'PiSCES',]
radboudData <- imageData[imageData$DB == 'Radboud',]
marloesData <- imageData[imageData$DB == 'marloes',]</pre>
```

# 1.0. Pisces Dataset

## 1.1. Valence

```
##### Valence #####
piscesDataClean = piscesData[c("ID", "pic_name","valence")]
piscesDataClean$pic_name = as.factor(piscesDataClean$pic_name)
piscesDataClean = reshape(piscesDataClean, idvar = "ID", timevar = "pic_name", direction = "w
ide")
piscesDataCronbachs = piscesDataClean[ ,2:16]
```

# 1.1.1. Cronbach's Alpha

```
# Calculate Cronbach's alpha using alpha()
alphavar = psych::alpha(piscesDataCronbachs, check.keys = TRUE)
summary(alphavar)
```

```
##
## Reliability analysis
## raw_alpha std.alpha G6(smc) average_r S/N ase mean sd median_r
## 0.84 0.84 0.88 0.26 5.4 0.025 57 8 0.27
```

### 1.1.2. CFA

```
## lavaan 0.6-9 ended normally after 56 iterations
##
##
     Estimator
                                                         ML
##
     Optimization method
                                                     NLMINB
##
     Number of model parameters
                                                         30
##
##
                                                                   Total
                                                       Used
     Number of observations
                                                                      89
##
                                                         84
##
## Model Test User Model:
##
##
     Test statistic
                                                    188.181
##
     Degrees of freedom
                                                         90
     P-value (Chi-square)
                                                      0.000
##
##
## Model Test Baseline Model:
##
##
     Test statistic
                                                    466.939
##
     Degrees of freedom
                                                        105
                                                      0.000
##
     P-value
##
## User Model versus Baseline Model:
##
##
     Comparative Fit Index (CFI)
                                                      0.729
##
     Tucker-Lewis Index (TLI)
                                                      0.684
##
## Loglikelihood and Information Criteria:
##
##
     Loglikelihood user model (H0)
                                                  -4979.918
##
     Loglikelihood unrestricted model (H1)
                                                  -4885.827
##
##
     Akaike (AIC)
                                                  10019.835
##
     Bayesian (BIC)
                                                  10092.760
     Sample-size adjusted Bayesian (BIC)
                                                   9998.124
##
##
## Root Mean Square Error of Approximation:
##
##
     RMSEA
                                                      0.114
##
     90 Percent confidence interval - lower
                                                      0.091
##
     90 Percent confidence interval - upper
                                                      0.137
                                                      0.000
     P-value RMSEA <= 0.05
##
##
## Standardized Root Mean Square Residual:
##
     SRMR
##
                                                      0.099
##
## Parameter Estimates:
##
##
     Standard errors
                                                   Standard
     Information
##
                                                   Expected
##
     Information saturated (h1) model
                                                 Structured
##
## Latent Variables:
##
                       Estimate Std.Err z-value P(>|z|)
                                                               Std.lv Std.all
##
     pisces =~
##
       Picture 105
                          5.297
                                   1.451
                                             3.651
                                                      0.000
                                                                5.297
                                                                         0.407
##
                          4.740
                                   1.734
                                             2.733
                                                      0.006
                                                                4.740
                                                                         0.311
       Picture_82
       Picture_118
                          8.769
                                   1.328
                                             6.603
                                                      0.000
                                                                8.769
                                                                         0.673
```

| 28/23, 4:49 PM |    |              |          | 1.2_FactorAnalysis |         |         |         |         |
|----------------|----|--------------|----------|--------------------|---------|---------|---------|---------|
|                | ## | Picture_65   | 8.353    | 1.519              | 5.498   | 0.000   | 8.353   | 0.582   |
|                | ## | Picture_88   | 4.194    | 1.977              | 2.122   | 0.034   | 4.194   | 0.244   |
|                | ## | Picture_87   | 11.781   | 2.013              | 5.853   | 0.000   | 11.781  | 0.612   |
|                | ## | Picture_59   | 5.198    | 1.336              | 3.891   | 0.000   | 5.198   | 0.431   |
|                | ## | Picture_93   | 7.133    | 1.309              | 5.451   | 0.000   | 7.133   | 0.578   |
|                | ## | Picture_56   | 8.063    | 1.239              | 6.509   | 0.000   | 8.063   | 0.665   |
|                | ## | Picture_81   | 9.692    | 1.413              | 6.861   | 0.000   | 9.692   | 0.692   |
|                | ## | Picture_110  | 6.620    | 1.515              | 4.369   | 0.000   | 6.620   | 0.478   |
|                | ## | Picture_96   | 5.934    | 1.575              | 3.766   | 0.000   | 5.934   | 0.419   |
|                | ## | Picture_132  | 6.329    | 1.508              | 4.196   | 0.000   | 6.329   | 0.462   |
|                | ## | Picture_80   | 9.759    | 1.681              | 5.807   | 0.000   | 9.759   | 0.608   |
|                | ## | Picture_98   | 8.113    | 1.287              | 6.302   | 0.000   | 8.113   | 0.649   |
|                | ## |              |          |                    |         |         |         |         |
|                | ## | Variances:   |          |                    |         |         |         |         |
|                | ## |              | Estimate | Std.Err            | z-value | P(> z ) | Std.lv  | Std.all |
|                | ## | <del>-</del> | 141.212  | 22.442             | 6.292   | 0.000   | 141.212 | 0.834   |
|                | ## | .Picture_82  | 209.994  | 32.918             | 6.379   | 0.000   | 209.994 | 0.903   |
|                | ## | .Picture_118 | 93.033   | 16.340             | 5.693   | 0.000   | 93.033  | 0.548   |
|                | ## | .Picture_65  | 136.514  | 22.772             | 5.995   | 0.000   | 136.514 | 0.662   |
|                | ## | <del>-</del> | 278.204  | 43.328             | 6.421   | 0.000   | 278.204 | 0.941   |
|                | ## | <del>-</del> | 231.777  | 39.210             | 5.911   | 0.000   | 231.777 | 0.625   |
|                | ## | _            | 118.188  | 18.868             | 6.264   | 0.000   | 118.188 | 0.814   |
|                | ## | .Picture_93  | 101.667  | 16.930             | 6.005   | 0.000   | 101.667 | 0.666   |
|                | ## | .Picture_56  | 81.859   | 14.300             | 5.724   | 0.000   | 81.859  | 0.557   |
|                | ## | .Picture_81  | 101.959  | 18.198             | 5.603   | 0.000   | 101.959 | 0.520   |
|                | ## | .Picture_110 | 147.831  | 23.846             | 6.199   | 0.000   | 147.831 | 0.771   |
|                | ## | .Picture_96  | 165.490  | 26.356             | 6.279   | 0.000   | 165.490 | 0.825   |
|                | ## | .Picture_132 | 148.002  | 23.780             | 6.224   | 0.000   | 148.002 | 0.787   |
|                | ## | .Picture_80  | 162.325  | 27.408             | 5.923   | 0.000   | 162.325 | 0.630   |
|                | ## | .Picture_98  | 90.502   | 15.635             | 5.788   | 0.000   | 90.502  | 0.579   |
|                | ## | pisces       | 1.000    |                    |         |         | 1.000   | 1.000   |
|                |    |              |          |                    |         |         |         |         |
|                |    |              |          |                    |         |         |         |         |

# 1.1.3. CFA Visualization

Pisces dataset - Valence



### 1.1.4. Distributions

```
# Re-prep data
piscesDataClean = piscesData[c("ID","pic_name","valence")]
piscesDataClean$pic_name = as.factor(piscesDataClean$pic_name)
piscesDataClean$ID = as.factor(piscesDataClean$ID)
```

## Visualizations

Pisces - Valence

$$F_{\text{Welch}}(14, 496.24) = 8.99, p = 1.18e-17, \widehat{\omega_{\text{p}}^2} = 0.18, \text{Cl}_{95\%}[0.11, 1.00], n_{\text{obs}} = 1,318$$



 $log_e(BF_{01}) = -34.94$ ,  $\widehat{R}^2$  posterior posterior

# 1.2. Arousal

```
##### Arousal #####
piscesDataClean = piscesData[c("ID", "pic_name","arousal")]
piscesDataClean$pic_name = as.factor(piscesDataClean$pic_name)
piscesDataClean = reshape(piscesDataClean, idvar = "ID", timevar = "pic_name", direction = "wide")
piscesDataCronbachs = piscesDataClean[ ,2:16]
```

## 1.2.1. Cronbach's Alpha

```
# Calculate Cronbach's alpha using alpha()
alphavar = psych::alpha(piscesDataCronbachs, check.keys = TRUE)
summary(alphavar)
```

```
##
## Reliability analysis
## raw_alpha std.alpha G6(smc) average_r S/N ase mean sd median_r
## 0.94 0.94 0.95 0.49 14 0.01 48 14 0.51
```

#### 1.2.2. CFA

```
## lavaan 0.6-9 ended normally after 19 iterations
##
##
     Estimator
                                                         ML
##
     Optimization method
                                                     NLMINB
##
     Number of model parameters
                                                         30
##
##
                                                                   Total
                                                       Used
     Number of observations
                                                                      89
##
                                                         84
##
## Model Test User Model:
##
##
     Test statistic
                                                    193.015
##
     Degrees of freedom
                                                         90
     P-value (Chi-square)
                                                      0.000
##
##
## Model Test Baseline Model:
##
##
     Test statistic
                                                    858.041
                                                        105
##
     Degrees of freedom
                                                      0.000
##
     P-value
##
## User Model versus Baseline Model:
##
##
     Comparative Fit Index (CFI)
                                                      0.863
##
     Tucker-Lewis Index (TLI)
                                                      0.840
##
## Loglikelihood and Information Criteria:
##
##
     Loglikelihood user model (H0)
                                                  -5201.631
##
     Loglikelihood unrestricted model (H1)
                                                  -5105.123
##
                                                  10463.261
##
     Akaike (AIC)
##
     Bayesian (BIC)
                                                  10536.186
     Sample-size adjusted Bayesian (BIC)
##
                                                  10441.550
##
## Root Mean Square Error of Approximation:
##
##
     RMSEA
                                                      0.117
##
     90 Percent confidence interval - lower
                                                      0.094
##
     90 Percent confidence interval - upper
                                                      0.139
     P-value RMSEA <= 0.05
##
                                                      0.000
##
## Standardized Root Mean Square Residual:
##
     SRMR
##
                                                      0.070
##
## Parameter Estimates:
##
##
     Standard errors
                                                   Standard
     Information
##
                                                   Expected
##
     Information saturated (h1) model
                                                 Structured
##
## Latent Variables:
##
                       Estimate Std.Err z-value P(>|z|)
                                                              Std.lv Std.all
##
     pisces =~
##
       Picture 105
                         11.707
                                   2.013
                                             5.816
                                                      0.000
                                                               11.707
                                                                         0.591
##
                         16.310
                                   1.828
                                             8.923
                                                      0.000
                                                               16.310
                                                                         0.812
       Picture_82
       Picture_118
                         15.903
                                   2.012
                                             7.904
                                                      0.000
                                                               15.903
                                                                         0.747
```

| 28/23, 4:49 PM |    |              |          | 1.2_FactorAnalysis |         |         |         |         |  |
|----------------|----|--------------|----------|--------------------|---------|---------|---------|---------|--|
|                | ## | Picture_65   | 13.560   | 1.953              | 6.944   | 0.000   | 13.560  | 0.680   |  |
|                | ## | Picture_88   | 14.346   | 1.846              | 7.771   | 0.000   | 14.346  | 0.738   |  |
|                | ## | Picture_87   | 13.571   | 1.747              | 7.770   | 0.000   | 13.571  | 0.738   |  |
|                | ## | Picture_59   | 16.185   | 1.898              | 8.528   | 0.000   | 16.185  | 0.788   |  |
|                | ## | Picture_93   | 14.186   | 1.891              | 7.502   | 0.000   | 14.186  | 0.720   |  |
|                | ## | Picture_56   | 15.444   | 1.835              | 8.415   | 0.000   | 15.444  | 0.781   |  |
|                | ## | Picture_81   | 12.237   | 1.831              | 6.682   | 0.000   | 12.237  | 0.660   |  |
|                | ## | Picture_110  | 7.739    | 1.935              | 4.000   | 0.000   | 7.739   | 0.427   |  |
|                | ## | Picture_96   | 13.904   | 1.818              | 7.648   | 0.000   | 13.904  | 0.730   |  |
|                | ## | Picture_132  | 13.627   | 1.914              | 7.121   | 0.000   | 13.627  | 0.693   |  |
|                | ## | Picture_80   | 13.176   | 1.872              | 7.039   | 0.000   | 13.176  | 0.687   |  |
|                | ## | Picture_98   | 14.812   | 1.906              | 7.772   | 0.000   | 14.812  | 0.738   |  |
|                | ## |              |          |                    |         |         |         |         |  |
|                | ## | Variances:   |          |                    |         |         |         |         |  |
|                | ## |              | Estimate | Std.Err            | z-value | P(> z ) | Std.lv  | Std.all |  |
|                | ## | .Picture_105 | 255.417  | 40.745             | 6.269   | 0.000   | 255.417 | 0.651   |  |
|                | ## | .Picture_82  | 137.429  | 24.055             | 5.713   | 0.000   | 137.429 | 0.341   |  |
|                | ## | .Picture_118 | 199.787  | 33.412             | 5.979   | 0.000   | 199.787 | 0.441   |  |
|                | ## | .Picture_65  | 214.218  | 34.882             | 6.141   | 0.000   | 214.218 | 0.538   |  |
|                | ## | .Picture_88  | 171.575  | 28.568             | 6.006   | 0.000   | 171.575 | 0.455   |  |
|                | ## | .Picture_87  | 153.637  | 25.580             | 6.006   | 0.000   | 153.637 | 0.455   |  |
|                | ## | .Picture_59  | 160.072  | 27.447             | 5.832   | 0.000   | 160.072 | 0.379   |  |
|                | ## | .Picture_93  | 187.074  | 30.896             | 6.055   | 0.000   | 187.074 | 0.482   |  |
|                | ## | .Picture_56  | 152.821  | 26.069             | 5.862   | 0.000   | 152.821 | 0.391   |  |
|                | ## | .Picture_81  | 194.121  | 31.433             | 6.176   | 0.000   | 194.121 | 0.565   |  |
|                | ## | .Picture_110 | 267.851  | 41.901             | 6.392   | 0.000   | 267.851 | 0.817   |  |
|                | ## | .Picture_96  | 169.447  | 28.105             | 6.029   | 0.000   | 169.447 | 0.467   |  |
|                | ## | .Picture_132 | 201.360  | 32.925             | 6.116   | 0.000   | 201.360 | 0.520   |  |
|                | ## | .Picture_80  | 194.607  | 31.758             | 6.128   | 0.000   | 194.607 | 0.529   |  |
|                | ## | .Picture_98  | 182.901  | 30.454             | 6.006   | 0.000   | 182.901 | 0.455   |  |
|                | ## | pisces       | 1.000    |                    |         |         | 1.000   | 1.000   |  |
|                |    |              |          |                    |         |         |         |         |  |
|                |    |              |          |                    |         |         |         |         |  |

# 1.2.3. CFA Visualization

Pisces dataset - Arousal



### 1.2.4. Distributions

```
# Re-prep data
piscesDataClean = piscesData[c("ID","pic_name","valence")]
piscesDataClean$pic_name = as.factor(piscesDataClean$pic_name)
piscesDataClean$ID = as.factor(piscesDataClean$ID)
```

### **Visualizations**

Pisces - Arousal

$$F_{\text{Welch}}(14, 496.24) = 8.99, p = 1.18e-17, \widehat{\omega_{\text{p}}^2} = 0.18, \text{Cl}_{95\%}[0.11, 1.00], n_{\text{obs}} = 1,318$$



### $log_{e}(BF_{01}) = -34.94, \widehat{R^{2}}_{Bayesian}^{posterior} = 0.08, Cl_{95\%}^{HDI} [0.06, 0.11], r_{Cauchy}^{JZS} = 0.71$

# 2.0. Radboud faces

# 2.1. Valence

```
##### Valence #####
radboudDataClean = radboudData[c("ID", "pic_name","valence")]
radboudDataClean$pic_name = as.factor(radboudDataClean$pic_name)
radboudDataClean = reshape(radboudDataClean, idvar = "ID", timevar = "pic_name", direction =
"wide")
radboudDataCronbachs = radboudDataClean[ ,2:16]
```

## 2.1.1. Cronbach's Alpha

```
# Calculate Cronbach's alpha using alpha()
alphavar = psych::alpha(radboudDataCronbachs, check.keys = TRUE)
summary(alphavar)
```

```
##
## Reliability analysis
## raw_alpha std.alpha G6(smc) average_r S/N ase mean sd median_r
## 0.89 0.89 0.91 0.36 8.3 0.017 51 8.6 0.35
```

### 2.1.2. CFA

```
names(radboudDataClean)[2:16] = c('Face_01', 'Face_36', 'Face_32', 'Face_61', 'Face_04', 'Face_24', 'Face_02', 'Face_49', 'Face_58', 'Face_46', 'Face_05', 'Face_33', 'Face_57', 'Face_47', 'Face_27')
HS.model <- 'radboud =~ Face_01 + Face_36 + Face_32 + Face_61 + Face_04 + Face_24 + Face_02 + Face_49 + Face_58 + Face_46 + Face_05 + Face_33 + Face_57 + Face_47 + Face_27'
```

```
## lavaan 0.6-9 ended normally after 20 iterations
##
##
     Estimator
                                                         ML
##
     Optimization method
                                                     NLMINB
##
     Number of model parameters
                                                         30
##
##
                                                                   Total
                                                       Used
     Number of observations
                                                                      89
##
                                                         85
##
## Model Test User Model:
##
##
     Test statistic
                                                    174.182
##
     Degrees of freedom
                                                         90
     P-value (Chi-square)
                                                      0.000
##
##
## Model Test Baseline Model:
##
##
     Test statistic
                                                    571.377
##
     Degrees of freedom
                                                        105
                                                      0.000
##
     P-value
##
## User Model versus Baseline Model:
##
##
     Comparative Fit Index (CFI)
                                                      0.819
##
     Tucker-Lewis Index (TLI)
                                                      0.789
##
## Loglikelihood and Information Criteria:
##
##
     Loglikelihood user model (H0)
                                                  -4927.772
##
     Loglikelihood unrestricted model (H1)
                                                  -4840.681
##
##
     Akaike (AIC)
                                                   9915.544
##
     Bayesian (BIC)
                                                   9988.824
     Sample-size adjusted Bayesian (BIC)
                                                   9894.180
##
##
## Root Mean Square Error of Approximation:
##
##
     RMSEA
                                                      0.105
##
     90 Percent confidence interval - lower
                                                      0.081
##
     90 Percent confidence interval - upper
                                                      0.128
##
     P-value RMSEA <= 0.05
                                                      0.000
##
## Standardized Root Mean Square Residual:
##
     SRMR
##
                                                      0.078
##
## Parameter Estimates:
##
##
     Standard errors
                                                   Standard
##
     Information
                                                   Expected
##
     Information saturated (h1) model
                                                 Structured
##
## Latent Variables:
##
                       Estimate Std.Err z-value P(>|z|)
                                                               Std.lv Std.all
##
     radboud =~
##
       Face 01
                          7.066
                                   1.485
                                             4.757
                                                      0.000
                                                               7.066
                                                                         0.505
       Face_36
##
                          7.284
                                   1.263
                                             5.767
                                                      0.000
                                                               7.284
                                                                         0.594
##
       Face_32
                          8.577
                                   1.308
                                             6.556
                                                      0.000
                                                                8.577
                                                                         0.658
```

| 2 | 8/23, | 4:49 PM      |          |         |         | 1.2_FactorAn | alysis  |         |
|---|-------|--------------|----------|---------|---------|--------------|---------|---------|
|   | ##    | Face_61      | 7.407    | 1.319   | 5.617   | 0.000        | 7.407   | 0.581   |
|   | ##    | Face_04      | 8.736    | 1.527   | 5.723   | 0.000        | 8.736   | 0.590   |
|   | ##    | Face_24      | 7.528    | 1.344   | 5.600   | 0.000        | 7.528   | 0.580   |
|   | ##    | Face_02      | 10.139   | 1.364   | 7.433   | 0.000        | 10.139  | 0.723   |
|   | ##    | Face_49      | 9.735    | 1.498   | 6.499   | 0.000        | 9.735   | 0.653   |
|   | ##    | Face_58      | 8.523    | 1.404   | 6.070   | 0.000        | 8.523   | 0.619   |
|   | ##    | Face_46      | 7.598    | 1.506   | 5.045   | 0.000        | 7.598   | 0.531   |
|   | ##    | Face_05      | 7.625    | 1.377   | 5.537   | 0.000        | 7.625   | 0.575   |
|   | ##    | Face_33      | 9.031    | 1.364   | 6.620   | 0.000        | 9.031   | 0.663   |
|   | ##    | Face_57      | 6.207    | 1.432   | 4.334   | 0.000        | 6.207   | 0.466   |
|   | ##    | Face_47      | 9.368    | 1.350   | 6.941   | 0.000        | 9.368   | 0.687   |
|   | ##    | Face_27      | 7.324    | 1.228   | 5.962   | 0.000        | 7.324   | 0.610   |
|   | ##    |              |          |         |         |              |         |         |
|   | ##    | Variances:   |          |         |         |              |         |         |
|   | ##    |              | Estimate | Std.Err | z-value | P(> z )      | Std.lv  | Std.all |
|   | ##    | .Face_01     | 145.570  | 23.206  | 6.273   | 0.000        | 145.570 | 0.745   |
|   | ##    | .Face_36     | 97.307   | 15.881  | 6.127   | 0.000        | 97.307  | 0.647   |
|   | ##    | .Face_32     | 96.528   | 16.166  | 5.971   | 0.000        | 96.528  | 0.568   |
|   | ##    | .Face_61     | 107.425  | 17.461  | 6.152   | 0.000        | 107.425 | 0.662   |
|   | ##    | .Face_04     | 142.697  | 23.260  | 6.135   | 0.000        | 142.697 | 0.652   |
|   | ##    | .Face_24     | 111.813  | 18.166  | 6.155   | 0.000        | 111.813 | 0.664   |
|   | ##    | .Face_02     | 94.130   | 16.420  | 5.733   | 0.000        | 94.130  | 0.478   |
|   | ##    | .Face_49     | 127.330  | 21.279  | 5.984   | 0.000        | 127.330 | 0.573   |
|   | ##    | .Face_58     | 116.898  | 19.251  | 6.072   | 0.000        | 116.898 | 0.617   |
|   | ##    | .Face_46     | 146.669  | 23.518  | 6.237   | 0.000        | 146.669 | 0.718   |
|   | ##    | .Face_05     | 117.988  | 19.138  | 6.165   | 0.000        | 117.988 | 0.670   |
|   | ##    | .Face_33     | 104.206  | 17.496  | 5.956   | 0.000        | 104.206 | 0.561   |
|   | ##    | .Face_57     | 139.054  | 22.001  | 6.320   | 0.000        | 139.054 | 0.783   |
|   | ##    | .Face_47     | 98.264   | 16.722  | 5.876   | 0.000        | 98.264  | 0.528   |
|   | ##    | <del>-</del> | 90.419   | 14.840  | 6.093   | 0.000        | 90.419  | 0.628   |
|   | ##    | radboud      | 1.000    |         |         |              | 1.000   | 1.000   |
|   |       |              |          |         |         |              |         |         |
|   |       |              |          |         |         |              |         |         |

# 2.1.3. CFA Visualization

Radboud dataset - Valence



### 2.1.4. Distributions

```
# Re-prep data
piscesDataClean = piscesData[c("ID","pic_name","valence")]
piscesDataClean$pic_name = as.factor(piscesDataClean$pic_name)
piscesDataClean$ID = as.factor(piscesDataClean$ID)
```

## **Visualizations**

Pisces - Valence

$$F_{\text{Welch}}(14, 496.24) = 8.99, p = 1.18e-17, \widehat{\omega_{\text{p}}^2} = 0.18, \text{Cl}_{95\%}[0.11, 1.00], n_{\text{obs}} = 1,318$$



 $log_{e}(BF_{01}) = -34.94, \widehat{R^2}_{Bayesian}^{posterior} = 0.08, Cl_{95\%}^{HDI}$  [0.06, 0.11],  $r_{Cauchy}^{JZS} = 0.71$ 

# 2.2. Arousal

```
##### Valence #####
radboudDataClean = radboudData[c("ID", "pic_name","arousal")]
radboudDataClean$pic_name = as.factor(radboudDataClean$pic_name)
radboudDataClean = reshape(radboudDataClean, idvar = "ID", timevar = "pic_name", direction =
"wide")
radboudDataCronbachs = radboudDataClean[ ,2:16]
```

### 2.2.1. Cronbach's Alpha

```
# Calculate Cronbach's alpha using alpha()
alphavar = psych::alpha(radboudDataCronbachs, check.keys = TRUE)
summary(alphavar)
```

```
##
## Reliability analysis
## raw_alpha std.alpha G6(smc) average_r S/N ase mean sd median_r
## 0.95 0.95 0.96 0.57 20 0.0075 36 14 0.56
```

#### 2.2.2. CFA

```
names(radboudDataClean)[2:16] = c('Face_01', 'Face_36', 'Face_32', 'Face_61', 'Face_04', 'Face_24', 'Face_02', 'Face_49', 'Face_58', 'Face_46', 'Face_05', 'Face_33', 'Face_57', 'Face_47', 'Face_27')
HS.model <- 'radboud =~ Face_01 + Face_36 + Face_32 + Face_61 + Face_04 + Face_24 + Face_02 + Face_49 + Face_58 + Face_46 + Face_05 + Face_33 + Face_57 + Face_47 + Face_27'
```

```
## lavaan 0.6-9 ended normally after 17 iterations
##
##
     Estimator
                                                         ML
##
     Optimization method
                                                     NLMINB
##
     Number of model parameters
                                                         30
##
##
                                                                   Total
                                                       Used
     Number of observations
                                                                      89
##
                                                         85
##
## Model Test User Model:
##
##
     Test statistic
                                                    222.273
##
     Degrees of freedom
                                                         90
     P-value (Chi-square)
                                                      0.000
##
##
## Model Test Baseline Model:
##
##
     Test statistic
                                                   1087.748
##
     Degrees of freedom
                                                        105
                                                      0.000
##
     P-value
##
## User Model versus Baseline Model:
##
##
     Comparative Fit Index (CFI)
                                                      0.865
##
     Tucker-Lewis Index (TLI)
                                                      0.843
##
## Loglikelihood and Information Criteria:
##
##
     Loglikelihood user model (H0)
                                                  -5070.572
##
     Loglikelihood unrestricted model (H1)
                                                  -4959.436
##
##
     Akaike (AIC)
                                                  10201.145
##
     Bayesian (BIC)
                                                  10274.424
     Sample-size adjusted Bayesian (BIC)
                                                  10179.780
##
##
## Root Mean Square Error of Approximation:
##
##
     RMSEA
                                                      0.131
##
     90 Percent confidence interval - lower
                                                      0.110
##
     90 Percent confidence interval - upper
                                                      0.153
##
     P-value RMSEA <= 0.05
                                                      0.000
##
## Standardized Root Mean Square Residual:
##
     SRMR
##
                                                      0.062
##
## Parameter Estimates:
##
##
     Standard errors
                                                   Standard
##
     Information
                                                   Expected
##
     Information saturated (h1) model
                                                 Structured
##
## Latent Variables:
##
                       Estimate Std.Err z-value P(>|z|)
                                                              Std.lv Std.all
##
     radboud =~
##
       Face 01
                         13.568
                                   1.776
                                             7.640
                                                      0.000
                                                               13.568
                                                                         0.723
       Face_36
##
                         13.139
                                   1.701
                                             7.724
                                                      0.000
                                                               13.139
                                                                         0.729
##
       Face_32
                         14.518
                                   1.659
                                             8.753
                                                      0.000
                                                               14.518
                                                                         0.796
```

| 28/23, 4:49 PM |    |              |          |         |         | 1.2_FactorAn | ıalysis |         |
|----------------|----|--------------|----------|---------|---------|--------------|---------|---------|
| #              | ## | Face_61      | 14.030   | 1.776   | 7.901   | 0.000        | 14.030  | 0.741   |
| #              | ## | Face_04      | 13.858   | 1.790   | 7.743   | 0.000        | 13.858  | 0.730   |
| #              | ## | Face_24      | 13.351   | 1.706   | 7.827   | 0.000        | 13.351  | 0.736   |
| #              | ## | Face_02      | 13.987   | 1.668   | 8.387   | 0.000        | 13.987  | 0.773   |
| #              | ## | Face_49      | 12.272   | 1.577   | 7.780   | 0.000        | 12.272  | 0.733   |
| #              | ## | Face_58      | 13.383   | 1.589   | 8.420   | 0.000        | 13.383  | 0.775   |
| #              | ## | Face_46      | 13.872   | 1.852   | 7.490   | 0.000        | 13.872  | 0.713   |
| #              | ## | Face_05      | 13.171   | 1.561   | 8.435   | 0.000        | 13.171  | 0.776   |
| #              | ## | Face_33      | 15.258   | 1.575   | 9.687   | 0.000        | 15.258  | 0.850   |
| #              | ## | Face_57      | 13.971   | 1.773   | 7.882   | 0.000        | 13.971  | 0.740   |
| #              | ## | Face_47      | 14.586   | 1.535   | 9.504   | 0.000        | 14.586  | 0.840   |
| #              | ## | Face_27      | 14.357   | 1.677   | 8.559   | 0.000        | 14.357  | 0.784   |
| #              | ## |              |          |         |         |              |         |         |
| #              | ## | Variances:   |          |         |         |              |         |         |
| #              | ## |              | Estimate | Std.Err | z-value | P(> z )      | Std.lv  | Std.all |
| #              | ## | .Face_01     | 167.812  | 27.096  | 6.193   | 0.000        | 167.812 | 0.477   |
| #              | ## | .Face_36     | 152.107  | 24.605  | 6.182   | 0.000        | 152.107 | 0.468   |
| #              | ## | .Face_32     | 122.170  | 20.341  | 6.006   | 0.000        | 122.170 | 0.367   |
| #              | ## | .Face_61     | 161.597  | 26.245  | 6.157   | 0.000        | 161.597 | 0.451   |
| #              | ## | .Face_04     | 167.974  | 27.182  | 6.179   | 0.000        | 167.974 | 0.467   |
| #              | ## | .Face_24     | 150.716  | 24.436  | 6.168   | 0.000        | 150.716 | 0.458   |
|                | ## | <del>-</del> | 131.867  | 21.695  | 6.078   | 0.000        | 131.867 | 0.403   |
|                | ## | <del>-</del> | 129.747  | 21.014  | 6.174   | 0.000        | 129.747 | 0.463   |
|                | ## | <del>-</del> | 119.136  | 19.620  | 6.072   | 0.000        | 119.136 | 0.399   |
|                | ## | <del>-</del> | 186.223  | 29.977  | 6.212   | 0.000        | 186.223 | 0.492   |
| #              | ## | .Face_05     | 114.656  | 18.891  | 6.069   | 0.000        | 114.656 | 0.398   |
|                | ## | <del>-</del> | 89.525   | 15.584  | 5.745   | 0.000        | 89.525  | 0.278   |
| #              | ## | .Face_57     | 161.447  | 26.209  | 6.160   | 0.000        | 161.447 | 0.453   |
|                | ## | <del>-</del> | 88.986   | 15.323  | 5.807   | 0.000        | 88.986  | 0.295   |
|                | ## | <del>-</del> | 129.495  | 21.419  | 6.046   | 0.000        | 129.495 | 0.386   |
| #              | ## | radboud      | 1.000    |         |         |              | 1.000   | 1.000   |
|                |    |              |          |         |         |              |         |         |
|                |    |              |          |         |         |              |         |         |

# 2.2.3. CFA Visualization

Radboud dataset - Arousal



### 2.2.4. Distributions

```
# Re-prep data
piscesDataClean = piscesData[c("ID","pic_name","valence")]
piscesDataClean$pic_name = as.factor(piscesDataClean$pic_name)
piscesDataClean$ID = as.factor(piscesDataClean$ID)
```

### **Visualizations**

Pisces - Valence

$$F_{\text{Welch}}(14, 496.24) = 8.99, p = 1.18e-17, \widehat{\omega_{\text{p}}^2} = 0.18, \text{Cl}_{95\%}[0.11, 1.00], n_{\text{obs}} = 1,318$$

