1-ая неделя

4.09.2023

Теорема 1 (Необходимое условие дифференцируемости). Если $f: \mathbb{R}^n \supseteq O \to \mathbb{R}^m$ дифференцируема в точке $a,\ mo\ \forall u\in\mathbb{R}^n\ \exists rac{\partial f}{\partial u}(a)\ (\partial$ алее показано, что это эквивалентно для частных производных только по $x_i).$

Теорема 2 (Дифференциал композиции). Пусть $g: X \to Y$, $f: Y \to Z$. Тогда если g дифференцируема в точке a и f дифференцируема b точке g(a), то $f \circ g$ дифференцируема b точке a и $d_a(f \circ g) = d_{g(a)}f \cdot d_ag$. Или, если рассматривать матрицу Якоби, $(f \circ g)'(a) = f'(g(a)) \cdot g'(a)$

Теорема 3 (Дифференцирование результата арифметических действий). Пусть $O \subseteq \mathbb{R}^n$, $a \in O$; $f, g : O \to \mathbb{R}^n$ \mathbb{R}^m , $\lambda: O \to R$; f, g, λ дифференцируемы в точке $a; A, B \in \mathbb{R}$. Тогда

- 1. Af + Bg дифференцируемо в точке a и $d_a(Af + Bg) = Ad_af + Bd_ag$
- 2. λf дифференцируемо в точке a и $d_a(\lambda f) = f(a) \cdot d_a \lambda + \lambda(a) \cdot d_a f$ Или на языке матриц: $(\lambda f)' = f(a) \cdot \lambda'(a) + \lambda(a) \cdot f'(a)$
- 3. $\langle f,g \rangle$ дифференцируемо в точке a и $d_a \langle f,g \rangle = (g(a))^T d_a f + (f(a))^T d_a g$ $(\langle f, g \rangle)' = (g(a))^T \cdot f'(a) + (f(a))^T \cdot g'(a)$
- 4. Если m=1 и $g(a) \neq 0$, то f/g дифференцируемо в точке a и $d_a(f/g) = \frac{g(a)d_af f(a)d_ag}{g^2(a)}$

если g дифференцируема в точке a и f дифференцируема в точке g(a), то $f \circ g$ дифференцируема в точке a $u \ d_a(f \circ g) = d_{g(a)} f \cdot d_a g.$

Или, если рассматривать матрицу Якоби, $(f \circ g)'(a) = f'(g(a)) \cdot g'(a)$

Теорема 4 (Теорема Лагранжа для отображений). Пусть $f: \mathbb{R}^n \supseteq O(om\kappa pumoe) \to \mathbb{R}^m$, $f \ \partial u \phi \phi e penuupye$ мо в O; $a, b \in O$, $\forall t \in (0,1) \ a + t(b-a) \in O$.

Тогда
$$\exists \theta \in (0,1) : ||f(b) - f(a)|| \le ||f'(a + \theta(b-a))|| \cdot ||b - a||$$

Следствие 1. Если $\forall \theta \in (0,1) ||f'(a+\theta(b-a))|| \leq M \in \mathbb{R}, mo ||f(b)-f(a)|| \leq M||(b-a)||$

Следствие 2. Если m=1 и $\forall u \in O \ \forall i=1..n \ || \frac{\partial f}{\partial x_i}(u)|| \leq M, \ mo \ ||f(b)-f(a)|| \leq M\sqrt{n}||(b-a)||$

Теорема 5 (Достаточное условие дифференцируемости). Пусть $f: \mathbb{R}^n \supseteq O(om\kappa pumoe) \to \mathbb{R}^m, \ a \in O;$ $\frac{\partial f}{\partial x_i} \ \forall i \in 1..n \ 1)$ определен в некоторой окрестности точки а 2) непрерывен в точке а Тогда f дифференцируема в точке a.

Замечание. f дифференцируема в точке $a \Leftrightarrow f(a+h) - f(a) - f'(a) \cdot h = o(h)$ при $h \to 0$

Определение 1. Пусть $f: \mathbb{R}^n \supseteq O(omкpыmoe) \to \mathbb{R}, \ g(u) = \frac{\partial f}{\partial x_i}(u)$ для некоторого i определена в точке a $u \exists \frac{\partial g}{\partial x_i}(a)$ для некоторого j.

Torda
$$f_{x_i x_j} := \frac{\partial^2 f}{\partial x_j \partial x_i}(a) := \frac{\partial g}{\partial x_i}(a)$$

Определение 2. $\frac{\partial^2 f}{\partial x^2} \coloneqq \frac{\partial^2 f}{\partial x_i \partial x_i}$ - чистая частная производная.

Определение 3. $f_{x_ix_j}$, где $i \neq j$, - смешанная производная.

Теорема 6. Пусть $f: \mathbb{R}^n \supseteq O(om\kappa pumoe) \to \mathbb{R}, \ i \neq j; \ \frac{\partial^2 f}{\partial x_i \partial x_i} \ u \ \frac{\partial^2 f}{\partial x_i \partial x_i} \ onpedenenu \ u непрерывны в окрест$ ности точка а. Тогда $\frac{\partial^2 f}{\partial x_j \partial x_i}(a) = \frac{\partial^2 f}{\partial x_i \partial x_j}(a)$

Определение 4. Если $f: \mathbb{R}^n \supseteq O \to \mathbb{R}, \ h \in \mathbb{R}^n, \ mo \ d_a^2 f(h) \coloneqq d(d_a f(h))(h)$

2-ая неделя

11.09.2023

Определение 1. $r \in \mathbb{Z}_+$, O-omкpытое в \mathbb{R}^n Тогда $C^r(O) \coloneqq \{f \colon O \to R : \forall i_1 \dots i_r \ \frac{\partial^r f}{\partial x_{i_r} \dots \partial x_{i_1}} \in C(O)\}$

Определение 2. $C^{\infty}(O) \coloneqq \bigcap_{r \in \mathbb{Z}_{+}} C^{r}(O)$

Теорема 1 (О линейном пространстве $C^r(O)$). $C^r(O)$ - линейное пространство. Замкнуто относительно произведения: $f,g \in C^r: f \cdot g \in C^r$

Определение 3. $C^r(O \to \mathbb{R}^m) \coloneqq \{f: f_1, \dots f_m \in C^r(O)\}$

Теорема 2 (Композиция $C^r(O)$). Пусть $\varphi \in C^r(O \to \tilde{O}), f \in C^r(\tilde{O})$. Тогда $f \circ \varphi \in C^r(O)$

Теорема 3 (О равенстве смешанных производных в классе C^r). Если $f \in C^r(O)$, $O- открытое в <math>\mathbb{R}^n$, $r \in \mathbb{Z}_+$; $(i_1,i_2,\ldots i_l) \in 2^{\{1,\ldots,r\}}$, $l \leq r$, $(j_1,\ldots,j_l) - nepecmanoвка(i_1,\ldots i_l)$ $Torda \frac{\partial^l f}{\partial x_{i_l}\ldots\partial x_{i_1}} = \frac{\partial^l f}{\partial x_{j_l}\ldots\partial x_{j_1}}$

Определение 4. Mультичнdекc - элемент $\mathbb{Z}_+{}^n$

$$|j| = j_1 + j_2 + \dots + j_n
j! = j_1! \cdot j_2! \cdot \dots \cdot j_n!
h \in \mathbb{R}^n, h^j = h_1^{j_1} \cdot \dots \cdot h_n^{j_n}
f(j)(a) = \frac{\partial^{|j|} f}{\partial x_j^{j_n} \dots \partial x_j^{j_1}}(a)$$

Лемма 1. Пусть $f \in C^r(O)$, $O-omкрытое в <math>\mathbb{R}^n$, $[a,a+h] \subset O$, g(t)=f(a+th). Тогда $\forall l=0,\ldots,r: g^{(l)}(t)=\sum_{j\in\mathbb{Z}_+{}^n,|j|=l}\frac{l!}{j!}f^{(j)}(a+th)\cdot h^j$

Теорема 4 (Глобальная формула Тейлора(-Лагранжа) для функции нескольких переменных). *Если* $f \in C^{r+1}(O)$, $O-om\kappa pumoe\ g\ \mathbb{R}^n$, $r \in \mathbb{Z}_+$; $[a,a+h] \subset O$.

 $C^{r+1}(O), \ O-om\kappa pumoe \ e \ \mathbb{R}^n, \ r \in \mathbb{Z}_+; \ [a,a+h] \subset O.$ $Torda \ \exists \theta \in (0,1): f(a+h) = \sum_{j \in \mathbb{Z}_+^n, |j| \le r} \frac{f^{(j)}(a)}{j!} h^j + \sum_{j \in \mathbb{Z}_+^n, |j| = r+1} \frac{f^{(j)}(a+\theta h)}{j!} h^j$

Следствие 1 (Формула Тейлора-Пеано, локальный вариант формулы Тейлора). *Пусть* $f \in C^r(O)$, O- *открытое* $g \mathbb{R}^n$, $a \in O$.

Тогда $f(a+h) = \sum_{j \in \mathbb{Z}_+^n, |j| \le r} \frac{f^{(j)}(a)}{j!} h^j + o(||h||^j) \ npu \ h \to 0$

Следствие 2 (Теорема Лагранжа о среднем для скалярно-значных отображений). *Пусть* $f \in C^1(O)$, $O - om\kappa pumoe\ b \mathbb{R}^n$; $a, h : a + th \in O \forall t \in [0, 1]$.

Tогда $f(a+h)-f(a)=\sum_{i=1}^n \frac{\partial f}{\partial x_i}(a+\theta h)\cdot h_i=\langle \nabla_{a+\theta h}f,h\rangle$ (частный случай Тейлора для r=0).

Следствие 3 (Полиномиальная формула). $(x_1+\cdots+x_n)^r=\sum_{j\in\mathbb{Z}_+{}^n,|j|=r}\frac{r!}{j!}(x_1,\ldots,x_n)^j,\; npu\;r\in\mathbb{Z}_+$

Замечание. $d_a^0 f = f(a)$ $d_a^1 f = d_a f$ $d_a^1 f(h) = d_a f(h)$ $d_a^{l+1} f(h) = d_a (d_a^l f(h))(h)$

Лемма 2. Пусть $f \in C^r(O)$, $O-om\kappa pытое в <math>\mathbb{R}^n$; $a,h:a+th \in O \ \forall t \in [0,1]$. Тогда $\forall l=0,\ldots,r:d_{a+th}^lf(h)=g^{(l)}(t)$, где g(t)=f(a+th)

Теорема 5 (Формула Тейлора в дифференциалах в условиях теоремы Тейлора-Лагранжа). $f(a+h) = \sum_{l=0}^{r} \frac{1}{l!} d_a^l f(h) + \frac{d_a^{l+1}}{(l+1)!} (h)$

Определение 5. $f: E \to \mathbb{R}, E \subseteq \mathbb{R}^n, a \in E$.

а называется точкой максимума для f, если существует окрестность $U(a): f(x) \leq f(a) \ \forall x \in U(a) \cap E$

Теорема 6 (Необходимое условие экстремума). $f: E \to \mathbb{R}, \ a \in IntE, \ a$ - точка экстремума $f, \ f$ дифференцируема в точке $a \Rightarrow d_a f = 0 \Leftrightarrow \nabla_a f = 0 \Leftrightarrow \forall i \in 1, \ldots, n: \frac{\partial f}{\partial x_i}(a) = 0$

Теорема 7. a - точка максимума f, φ непрерывна в точке α , $\varphi(\alpha) = a$.

Tогда lpha - mочка максимума $f\circ arphi$

Замечание. $\sum_{1 \leq i,j \leq n} a_{i,j} h_i h_j$ - $\kappa ea \partial pamuчная форма.$

 $d_a^2f(h)$ - квадратичная форма переменных h_1,\ldots,h_n

 $d_a^lf(h)$ - однородная функция степени $l\colon d_a^lf(Ch)=C^ld_a^lf(h).$

 Φ орма Q(h) бывает положительно определенной, отрицательно определенной, неопределенной (бывает и положительной, и отрицательной).

Теорема 8 (Достаточное условие экстремума). $f: \mathbb{R}^n \supseteq E \to \mathbb{R}, \ a \in IntE$, в точке а выполняется необходимое условие экстремума $u \; \exists d_a^2 f$.

 $Q(h) \coloneqq d_a^2 f(h)$. Тогда, если Q>0, то a - точка минимума, если Q<0, то a - точка максимума, если Q неопределенная, то a - не точка экстремума.