Domain-Indexing Variational Bayes: Interpretable Domain Index for Domain Adaptation

Zihao Xu*, Guang-Yuan Hao*, Hao He, Hao Wang

^{*}These authors contributed equally to this work.

Domain Adaptation

Multiple Source Domains X_s and Y_s

Multiple Target Domains X_t predict Y_t

Domain index

Using domain indices boosts Domain Adaptation performance [1][2].

What is a domain index?

Domain index

- A real-value scalar (vector)
- Uniquely identify a domain
- Represent domain semantics

Example for domain indices

Example: Gender Classification

Use average age as domain indices

Dongin 1

Domain 2

Source Domains: Young

Domain 3 I

Dorgin 4

Target Domains: Old

Example for using domain indices

Continuously indexed domain adaptation

Domain Indices may not be available!

Can we infer the domain indices from data?

Yes!

Advantages of inferring domain indices

- Improve interpretability of domain adaptation
- Improve performance of domain adaptation

How to infer the domain indices?

Our solution:

- 1. Rigorously define domain indices.
- 2. Based on our definition, use Probabilistic Graphical Model (PGM) to infer the domain indices.

How to infer the domain indices?

Our solution:

- 1. Rigorously define domain indices.
- 2. Based on our definition, use Probabilistic Graphical Model (PGM) to infer the domain indices.

Definition

Domain index definition (informal)

- Independence: independent of the data's encoding z
- Information Preservation: retain as much information on the data x as possible.
- Label Sensitivity: maximize adaptation performance.

How to infer the domain indices?

Our solution:

- 1. Rigorously define domain indices.
- 2. Based on our definition, use Probabilistic Graphical Model (PGM) to infer the domain indices.

 α : prior of the domain index, k: domain ID

 β_k : global domain indices (one instance per domain)

 α : prior of the domain index, k: domain ID

 β_k : global domain indices (one instance per domain)

 α : prior of the domain index, k: domain ID

x: observed data (e.g., an image)

 α : prior of the domain index, k: domain ID,

 β_k : global domain indices (one instance per domain),

u: local domain indices (one instance per datum)

Intuition behind global/local domain indices

z: domain-invariant data embeddings, $\mathbf{z} \perp \beta$

 α : prior of the domain index, k: domain ID,

 β_k : global domain indices (one instance per domain),

u: local domain indices (one instance per datum),

x: observed data

y: labels

 α : prior of domain index, k: domain ID,

 β_k : global domain indices (one instance per domain),

u: local domain indices (one instance per datum),

x: observed data, z: domain-invariant data embeddings

Inference model

Generative model

Inference model

 α : prior of domain index, k: domain ID,

 β_k : global domain indices (one instance per domain),

u: local domain indices (one instance per datum),

x: observed data, z: domain-invariant data embeddings, y: labels

Variational domain-indexing (VDI)

Maximize Evidence Lower Bound (ELBO):

$$\mathcal{L}_{ELBO}(\mathbf{x}, y) = \mathbb{E}_{q_{\phi}(\mathbf{u}, \boldsymbol{\beta}, \mathbf{z} | \mathbf{x})}[p_{\theta}(\mathbf{x}, \mathbf{u}, \boldsymbol{\beta}, \mathbf{z}, y | \boldsymbol{\alpha})] - \mathbb{E}_{q_{\phi}(\mathbf{u}, \boldsymbol{\beta}, \mathbf{z} | \mathbf{x})}[q_{\phi}(\mathbf{u}, \boldsymbol{\beta}, \mathbf{z} | \mathbf{x})].$$

Method Definition

Recall: Domain index definition (informal)

- Independence: independent of the data's encoding z
- Information Preservation: retain as much information on the data x as possible.
- Label sensitivity: maximize adaptation performance.

Adversarial loss

$$\mathcal{L}_{D,\phi} = \mathbb{E}_{p(k,\mathbf{x})} \mathbb{E}_{q_{\phi}(\mathbf{z}|\mathbf{x})} [\log D(k|\mathbf{z})]$$

Adversarial loss: enforce $\beta \perp \mathbf{z}$ (Independence)

Final objective function

$$\max_{\theta, \phi} \min_{D} \mathcal{L}_{VDI} = \max_{\theta, \phi} \min_{D} \mathcal{L}_{\theta, \phi} - \lambda_{d} \mathcal{L}_{D, \phi}$$

$$= \max_{\theta, \phi} \min_{D} \mathbb{E}_{p(\mathbf{x}, y)} [\mathcal{L}_{ELBO}(\mathbf{x}, y)] - \lambda_{d} \mathbb{E}_{p(k, \mathbf{x})} \mathbb{E}_{q_{\phi}(\mathbf{z} | \mathbf{x})} [\log D(k | \mathbf{z})]$$
ELBO
Adversarial loss

Theory

$$\max_{\theta, \phi} \min_{D} \mathcal{L}_{VDI} = \max_{\theta, \phi} \min_{D} \mathcal{L}_{\theta, \phi} - \lambda_{d} \mathcal{L}_{D, \phi}$$

$$= \max_{\theta, \phi} \min_{D} \mathbb{E}_{p(\mathbf{x}, y)} [\mathcal{L}_{ELBO}(\mathbf{x}, y)] - \lambda_{d} \mathbb{E}_{p(k, \mathbf{x})} \mathbb{E}_{q_{\phi}(\mathbf{z} | \mathbf{x})} [\log D(k | \mathbf{z})]$$

Theorem (informal)

Using this objective function, we could learn domain indices β according to the previous definition.

- Independence
- Information Preservation
- Label sensitivity

TPT-48

Task: temperature prediction

$$N(24) \rightarrow S(24)$$

Domain index visualization

Domain index visualization

Performance of VDI

TPT-48:

Task	Domain	Source-Only	DANN	ADDA	CDANN	MDD	SENTRY	VDI (Ours)
$N(24) \rightarrow S(24)$	Average of 10 Level-1 Domains Average of 6 Level-2 Domains Average of 8 Level-3 Domains	0.206 0.391 1.160	0.229 0.412 0.843	0.734 0.861 0.886	0.229 0.357 0.961	0.342 0.768 1.326	0.497 0.470 0.459	0.192 0.323 0.703
	Average of All 24 Domains	0.570	0.480	0.816	0.505	0.777	0.477	0.395

Conclusion

Take home message:

- VDI provides a principled way to infer the domain index.
- VDI improves both interpretability and performance of domain adaptation.
- VDI has theoretical guarantee.

Supplement

https://github.com/Wang-ML-Lab/VDI

Paper

https://arxiv.org/abs/2302.02561

Thank you! Q&A