# Работа 5.1.1

# Экспериментальная проверка уравнений Эйнштейна для фотоэффекта и определение постоянной Планка

Богданов Александр Б05-003

27 октября 2022 г.

**Цель работы:** исследовать зависимость фототока от величины задерживающего потенциала и частоты падающего излучения, вычислить величину постоянной Планка.

**В работе используются:** лампа накаливания, конденсор, монохроматор, фотоэлемент.

### Теоретические положения:

Фотоэффект — явление испускания электронов фотокатодом, облучаемым светом. Взаимодействие монохроматического света с веществом можно описывать как взаимодействие фотонов с веществом. При столкновении фотона с электроном фотокатода энергия фотона полностью передается электрону, и фотон прекращает свое существование. Энергетический баланс этого взаимодействия для вылетающих электронов описывается уравнением:

$$\hbar\omega = E_{max} + W,$$

где  $E_{max}$  — максимальная кинетическая энергия электрона после выхода из фотокатода, W — работа выхода электрона из катода.

Для измерения энергии вылетевших фотоэлектронов вблизи фотокатода обычно располагается второй электрод(анод), на который подается задерживающий (V<0) или ускоряющий (V>0) потенциал. При достаточно больших ускоряющих напряжениях фототок достигает насыщения: все испущенные электроны попадают на анод.



При задерживающих потенциалах на анод попадают лишь электроны, обладающие достаточно большой кинетической энергией, в то время как медленно движущиеся электроны заворачиваются полем и возвращаются на катод. При некотором значении  $V=-V_0$  (потенциал запирания) даже наиболее быстрые фотоэлектроны не могут достичь анода.

Максимальная кинетическая энергия  $E_{max}$  электронов связана с запирающим потенциалом  $V_0$  соотношением  $E_{max} = eV_0$ . Получается уравнение Эйнштейна:

$$eV_0 = \hbar\omega - W$$

Чтобы определить величину запирающего напряжения, нам надо правильно экстраполировать получаемую токовую зависимость к нулю, т. е. определить каковая функциональная зависимость I(V). Расчет для простейшей геометрии — плоский катод, освещаемый светом, и параллельный ему анод — приводит к зависимости:

$$\sqrt{I} \propto V_0 - V$$

т. е. корень квадратный из фототока линейно зависит от запирающего напряжения.

В работе изучается зависимость фототока из фотоэлемента от величины задерживающего потенциала V для различных частот света  $\omega$ , лежащих в видимой области спектра. С целью экспериментальной проверки уравнения Эйнштейна определяются потенциалы запирания  $V_0$  при разных частотах света и строится зависимость  $V_0(\omega)$ , которая должна иметь вид:

$$V_0(\omega) = \frac{\hbar\omega - W}{e}$$

Потенциал запирания  $V_0$  для любого катода линейно зависит от частоты света  $\omega$ . По наклону прямой на графике  $V_0(\omega)$  можно определить постоянную Планка:

$$\frac{dV_0}{d\omega} = \frac{\hbar}{e}$$



Угол наклона прямой  $V_0(\omega)$  не зависит от рода вещества, из которого изготовлен фотокатод. От рода вещества зависит величина фототока, работа выхода W и форма кривой I(V). Все это определяет выбор пригодных для опыта катодов.

### Экспериментальная установка:



Свет от источника S с помощью конденсатора фокусируется на входную щель призменного монохроматора УМ-2, выделяющего узкий спектральный интервал, и попадает на катод фотоэлемента  $\Phi \Theta$ .

## Ход работы:

- 1. Настроим установку.
- 2. Проведем градуировку барабана по спектру неоновой лампы, то есть снимем зависимость  $\lambda$  от  $\theta$ :

| Z  | λ, Å | θ, ° |
|----|------|------|
| 1  | 7032 | 2596 |
| 2  | 6929 | 2569 |
| 3  | 6717 | 2505 |
| 4  | 6678 | 2489 |
| 5  | 6599 | 2465 |
| 6  | 6533 | 2438 |
| 7  | 6507 | 2435 |
| 8  | 6402 | 2386 |
| 9  | 6383 | 2379 |
| 10 | 6334 | 2360 |
| 11 | 6305 | 2349 |
| 12 | 6267 | 2344 |
| 13 | 6217 | 2316 |
| 14 | 6164 | 2285 |
| 15 | 6143 | 2279 |
| 16 | 6096 | 2255 |
| 17 | 6074 | 2250 |
| 18 | 6030 | 2234 |
| 19 | 5976 | 2209 |
| 20 | 5945 | 2194 |
| 21 | 5882 | 2160 |
| 22 | 5852 | 2146 |
| 23 | 5401 | 1880 |

# Построим график:



3. Снимем зависимости фототока от напряжения для 6 значений длин волн в интервале 540-700 нм (выставляя соответствующие значения, полученные при градуировке).

| θ = 1880°<br>λ = 5401Å |       | θ = 2596°<br>λ = 7032Å |       | θ = 2385°<br>λ = 6164Å |       | θ = 2344°<br>λ = 6267Å |       | θ = 2255°<br>λ = 6096Å |       | θ = 2194°<br>λ = 5945Å |       |
|------------------------|-------|------------------------|-------|------------------------|-------|------------------------|-------|------------------------|-------|------------------------|-------|
| V, B                   | ı     | V, B                   | ı     | V, B                   | ı     | V, B                   | I     | V, B                   | ı     | V, B                   | ı     |
| -0,528                 | 0,130 | -0,039                 | 0,069 | -0,346                 | 0,006 | -0,369                 | 0,012 | -0,437                 | 0,012 | -0,585                 | 0,018 |
| -0,449                 | 0,156 | -0,004                 | 0,102 | -0,203                 | 0,134 | -0,242                 | 0,137 | -0,331                 | 0,103 | -0,375                 | 0,217 |
| -0,142                 | 0,331 | 0,145                  | 0,253 | -0,030                 | 0,284 | -0,130                 | 0,294 | -0,185                 | 0,301 | -0,228                 | 0,367 |
| 0,000                  | 0,420 | 0,318                  | 0,350 | 0,000                  | 0,305 | 0,000                  | 0,411 | 0,000                  | 0,430 | 0,000                  | 0,454 |
| 0,175                  | 0,496 | 0,527                  | 0,485 | 0,194                  | 0,462 | 0,091                  | 0,446 | 0,235                  | 0,487 | 0,226                  | 0,493 |
| 0,325                  | 0,515 | 0,628                  | 0,504 | 0,355                  | 0,495 | 0,304                  | 0,494 | 0,422                  | 0,515 | 0,430                  | 0,518 |
| 0,547                  | 0,538 | 0,793                  | 0,528 | 0,477                  | 0,515 | 0,464                  | 0,517 | 0,728                  | 0,549 | 0,672                  | 0,542 |

Построим серию графиков  $\sqrt{I}=f(v)$ . Для каждой длины волны определим величину запирающего потенциала, экстраполируя полученные прямые к оси абсцисс.













| ·       |      |      |      |      |      | 5945 |
|---------|------|------|------|------|------|------|
| V_0, B  | 1,62 | 0,63 | 0,90 | 0,80 | 1,10 | 1,43 |
| σV_0, B | 0,12 | 0,04 | 0,05 | 0,06 | 0,09 | 0,11 |
|         |      |      |      |      |      |      |

# 4. Построим график зависимости $V_0(\omega)$ :



Из графика получили значение коэффициента наклона:

$$k = (0, 8 \pm 0, 1) \cdot 10^{-15} \text{ B} \cdot \text{c}$$

Тогда постоянная Планка:

$$\hbar = (1, 28 \pm 0, 16) \cdot 10^{-34}$$
 Дж · с

Определим значение красной границы фотоэффекта:

$$\omega_{\kappa} = (2, 6 \pm 0, 4) \cdot 10^{15} \text{ c}^{-1}$$

Длина волны тогда:

$$\lambda_{\rm K} = (7246 \pm 1115) \stackrel{\circ}{A}$$

Работа выхода:

$$W = (3, 3 \pm 0, 5) \text{ BB}$$

### Вывод:

В результате выполнения лабораторной работы нами была исследована зависимость фототока от величины задерживающего напряжения: экспериментально проверено, что квадратный корень из фототока линейно зависит от задерживающего напряжения.

Определена величина постоянной Планка:

$$\hbar_{\text{эксп}} = (1, 28 \pm 0, 16) \cdot 10^{-34} \text{ Дж} \cdot \text{с}$$

$$\hbar_{\text{теор}} = 1,054 \cdot 10^{-34} \text{ Дж} \cdot \text{c}$$

Вычислена красная граница фотоэффекта:

$$\lambda_{\rm k} = (7246 \pm 1115) \stackrel{\circ}{A}$$

И вычислена работа выхода материала катода:

$$W = (3, 3 \pm 0, 5) \text{ BB}$$