UNIVERSITY OF CALIFORNIA, SANTA BARBARA

Department of Electrical and Computer Engineering

ECE 139

Probability and Statistics

Spring 2019

Homework Assignment #6

(Due on Wednesday 5/22/2019 by 5 pm in the Homework Box)

Problem # 1. The following random variables X, Y, Z, W are known to be Gaussian.

- a) X has standard deviation $\sigma_X = 10$ and $P[X \le 10] = 0.933$. Find its mean μ_X .
- b) Y has standard deviation $\sigma_Y = 10$ and $P[Y \le 0] = 0.067$. Find its mean μ_Y .
- c) It is known that $P[Z \le 10] = 0.977$. Express its mean μ_Z in terms of its standard deviation σ_Z .
- d) It is known that P[W > 12] = 1/2, but its standard deviation is unknown. Can you find μ_W ?

Problem # 2. The peak temperature in summer in Antarctica is (or used to be until recently...) a Gaussian random variable T with mean $\mu = -75$ degrees Fahrenheit. It has been further established that P[T < -80] = 0.1587. Find the variance of T.

Problem # 3. Let X be a random variable with CDF:

$$F_X(x) = \begin{cases} 0 & x < 1\\ x/4 + 1/2 & -1 \le x < 1\\ 1 & 1 \le x \end{cases}$$

Sketch the CDF and then find the following:

- a) P[X < 1] and $P[X \le 1]$.
- b) The PDF $f_X(x)$.
- c) The mean E[X].
- d) The variance σ_X^2 .

Problem # 4. An attempt to establish a video call via some social media app may fail with probability 0.1. If connection is established and if no connection failure occurs thereafter, then the duration of a typical video call in minutes is an exponential random variable X with E[X] = 3. However, due to an unfortunate bug in the app all calls are disconnected after 6 minutes. Let random variable Y denote the overall call duration (i.e., Y = 0 in case of failure to connect, Y = 6 when a call gets disconnected due to the bug, and Y = X otherwise.) Find:

- a) $F_Y(y)$
- b) $f_Y(y)$
- c) E[Y]
- d) σ_Y^2

Problem # 5. Random variable X is uniform in (-10, 10). Find:

- a) P[X < 3]
- b) E[X]
- c) $E[X^5]$
- d) $E[e^X]$

Problem # 6. Uniform random variable Y was shown to have mean E[Y] = 100, and further that P[Y > 125] = 1/4. What is P[Y < 80]?

Problem # 7. X is uniform in the interval (-c, c). Find $P[|X| \le \sigma_X^2]$.

Problem # 8. Let $Y = X^2$ where X is the random variable of Problem 7. Find the mean E[Y] and variance σ_Y^2 .

Problem # 9. Let X be a random variable with PDF:

$$f_X(x) = \begin{cases} x/2 & 0 \le x < 2\\ 0 & \text{otherwise} \end{cases}$$

Find E[X], σ_X^2 , and $E[X^3]$.

Problem # 10. Let X be a random variable with CDF:

$$F_X(x) = \begin{cases} 0 & x < -5\\ (x+5)^2/144 & -5 \le x < 7\\ 1 & 7 \le x \end{cases}$$

Find E[X], σ_X^2 , and $E[X^3]$.