Machine Learning IV

Moving from regression to classification

Linear Regression

$$\hat{f}(\mathbf{x}) = \sum_{i=0}^{p} w_i x_i$$

Linear Classification

(perceptron)

$$\hat{f}(\mathbf{x}) = sign\left(\sum_{i=0}^{p} w_i x_i\right)$$

Source: Abu-Mostafa, Learning from Data, Caltech

Sigmoid function

Definition

$$\sigma(x) = \frac{1}{1 + e^{-x}}$$

Useful properties

$$\sigma(-x) = 1 - \sigma(x)$$

$$\frac{\partial \sigma(x)}{\partial x} = \sigma(x)(1 - \sigma(x))$$

Moving from regression to classification

Linear Regression

Linear Classification

Perceptron

Logistic Regression

$$\hat{f}(\mathbf{x}) = \sum_{i=0}^{p} w_i x_i$$

$$\hat{f}(\mathbf{x}) = \sum_{i=0}^{p} w_i x_i \qquad \qquad \hat{f}(\mathbf{x}) = sign\left(\sum_{i=0}^{p} w_i x_i\right) \qquad \qquad \hat{f}(\mathbf{x}) = \sigma\left(\sum_{i=0}^{p} w_i x_i\right)$$

$$\hat{f}(\mathbf{x}) = \sigma\left(\sum_{i=0}^{p} w_i x_i\right)$$

$$sign(x) = \begin{cases} 1 & x > 0 \\ -1 & else \end{cases}$$

$$\sigma(x) = \frac{1}{1 + e^{-x}}$$

Source: Abu-Mostafa, Learning from Data, Caltech

We fit our model to training data

- 1. Choose a **hypothesis set of models** to train
- 2. Identify a **cost function** to measure the model fit to the training data
- 3. Optimize model parameters to minimize cost

For linear regression the steps were (i.e. OLS):

- a. Calculate the gradient of the cost function
- b. Set the gradient to zero
- c. Solve for the model parameters

When this approach doesn't work, we typically use **gradient descent**

For classification we COULD try the same cost function as regression

Assume the cost function is mean square error

$$C(\mathbf{w}) \triangleq E_{in}(\mathbf{w}) = \frac{1}{N} \sum_{n=1}^{N} (\hat{f}(\mathbf{x}_n, \mathbf{w}) - y_n)^2$$

Plug in our model

$$C(\mathbf{w}) = \frac{1}{N} \sum_{n=1}^{N} (\boldsymbol{\sigma}(\mathbf{w}^{T} \mathbf{x}_{n}) - y_{n})^{2}$$

 $\hat{f}(x_n, w) = \sigma(w^T x_n)$

Calculate the gradient

$$\nabla_{w}C(w) = \frac{2}{N} \sum_{n=1}^{N} [\sigma(w^{T}x_{n}) - y_{n}] \sigma(w^{T}x_{n}) [1 - \sigma(w^{T}x_{n})] x_{n}$$

Set the gradient to zero and solve for w

$$\nabla_{w}C(w) = 0$$

But does MSE make sense in this situation?

But we don't for logistic regression...

Is there a better cost function could we use for classification problems...?

Mean Square Error

VS

Cross Entropy

$$\frac{1}{N} \sum_{i=1}^{N} (\hat{y}_i - y_i)^2$$

$$-\frac{1}{N}\sum_{i=1}^{N}y_{i}\log(\hat{y}_{i}) + (1-y_{i})\log(1-\hat{y}_{i})$$

Logistic regression does not have a closed-form solution like linear regression did

We need a new approach...

Gradient descent

Minimize $y = x^2$

We start at an initial point and want to "roll" down to the minimum

$$\mathbf{x}^{(i+1)} = \mathbf{x}^{(i)} + \eta \mathbf{v}$$
Learning Direction rate to move in

Gradient descent

Minimize $f(x) = x^2$

The gradient points in the direction of steepest **positive** change

$$\frac{df(x)}{dx} = 2x$$

We want to move in the **opposite** direction of the gradient

$$\mathbf{x}^{(i+1)} = \mathbf{x}^{(i)} - \eta \nabla f(\mathbf{x}^{(i)})$$

Gradient descent

Derivative: $\frac{df(x)}{dx} = 2x$

Gradient descent update equation:

$$\boldsymbol{x}^{(i+1)} = \boldsymbol{x}^{(i)} - \eta \nabla f \left(\boldsymbol{x}^{(i)}\right)$$

Minimize
$$f(x) = x^2$$

Assume $x^{(0)} = 2$ and $\eta = 0.25$

$$\mathbf{x}^{(i+1)} = \mathbf{x}^{(i)} - (0.25)(2\mathbf{x}^{(i)})$$

$$\mathbf{x}^{(i+1)} = \mathbf{x}^{(i)} - (0.5)\mathbf{x}^{(i)}$$

 $i \quad x^{(i)} \quad y^{(i)}$

0 2 4

1 1 1

2 0.5 0.25

3 0.25 0.0625

4 0.125 0.0156

Takeaways

Transformations of features (**feature extraction**) may help to overcome nonlinearities

Logistic regression is much better suited for classification than linear regression

Logistic regression parameters must be estimated iteratively, and a method for that optimization is **gradient descent**

Gradient descent can be used for **cost function optimization** and there are a number of variants

Evaluating Model Performance

Supervised Learning Performance Evaluation

Regression

Classification

Binary

Multiclass

Receiver Operating Characteristic (ROC) curves Confusion matrices

- Mean squared error (MSE)
- Mean absolute error (MAE)
- R², coefficient of determination
- Adjusted R²
- Explained variance

Common Metrics

- Classification accuracy
- True positive rate
- False positive rate
- Precision
- F₁ Score
- Area under the ROC curve (AUC)

- Classification accuracy
- Micro-averaged F₁ Score
- Macro-averaged F₁ Score

Types of error

False Positive

False Negative (Type II error)

Binary Classification

Class, y

Binary Classification Pre

Predicted Class, ŷ

True positive rate Probability of detection, p_D Sensitivity Recall

How many targets (Class 1) were correctly classified as targets?

Binary Classification

Predicted Class, \hat{y}

False positive rate Probability of false alarm, p_{FA}

How many non-targets (Class 0) were incorrectly classified as targets?

Binary Classification

Classification Predicted Class, \hat{y}

Precision

How many of the predicted targets are targets?

Estimate (ŷ)	True Class Label (y)	Classifier Confidence	4
0	1	1.40	
0	1	0.95	
0	0	0.80	
0	1	0.60	
0	0	-0.10	

Classifier decision rule:

 $\hat{y} = \begin{cases} 1, & \text{confidence score} > \text{thresh} \\ 0, & \text{confidence score} \le \text{thresh} \end{cases}$

Total Positives = 3

Total Negatives = 2

ROC Curves

false

positive

false

positive

true

negative

Threshold	# True Positives	True Positive Rate	# False Positives	False Positive Rate
-----------	---------------------	--------------------------	----------------------	---------------------------

ROC Curves: how do they compare?

ROC Curves: where do we operate?

Estimate (ŷ)	True Class Label (y)	Classifier Confidence
0	1	1.40
0	1	0.95
0	0	0.80
0	1	0.60
0	0	-0.10

Classifier decision rule:

PR Curves

$$\hat{y} = \begin{cases} 1, \text{ confidence score} > \text{ thresh} \\ 0, \text{ confidence score} \le \text{ thresh} \end{cases}$$

Total Positives = 3

Total Negatives = 2

Threshold	# True	Recall	# Predicted	Precision
11116211010	Positives	necali	Positive	FIECISION

i	y_i	\hat{y}_i
1	1	1
2	1	1
3	1	1
4	1	1
5	1	1
6	1	1
7	1	0
8	0	1
9	0	0
10	0	0
11	0	0
12	0	0
13	0	0
14	0	0
15	0	0

Case study 1

true negative

Overall classification accuracy = 13/15 = 0.87

A False positive rate =

- 1/8 = **0.13**
- **B** True positive rate (Recall) = 6/7 = 0.86

PR Curves measure the tradeoff between...

- B True positive rate (Recall) =
 - 6/7 = 0.86

Precision=

$$6/7 = 0.86$$

y_i	\hat{y}_i
1	1
1	1
1	0
1	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
	1 1 0 0 0 0 0 0 0

Case study II

Overall classification accuracy = 13/15 = 0.87

ROC Curves measure the tradeoff between...

A False positive rate =

- 0/11 = 0
- B True positive rate (Recall) = 2/4 = 0.5

B

PR Curves measure the tradeoff between...

- B True positive rate (Recall) = 2/4 = 0.5
- \mathbf{C} Precision= $2/2 = \mathbf{1}$

i	y_i	\hat{y}_i
1	1	1
2	1	1
3	1	1
4	1	1
5	1	1
6	1	1
7	1	1
8	1	1
9	1	1
10	1	1
11	1	1
12	1	1
13	1	1
14	0	1
15	0	1

Case study III

Overall classification accuracy = 13/15 = 0.87

- **ROC Curves** measure the tradeoff between...
 - A False positive rate =

$$2/2 = 1$$

B True positive rate (Recall) = 13/13 = 1

- PR Curves measure the tradeoff between...
 - B True positive rate (Recall) = 13/13 = 1

C Precision=

13/15 = **0.87**

Multiclass Classification: Confusion Matrix

confusion matrix with number of samples

F₁-score

$$F_1 = 2 \frac{1}{\frac{1}{\text{recall}} + \frac{1}{\text{precision}}}$$

Harmonic mean of precision and recall

$$= 2 \frac{\text{precision} \cdot \text{recall}}{\text{precision} + \text{recall}}$$

Generally:

$$F_{\beta} = (1 + \beta^2) \frac{\text{precision} \cdot \text{recall}}{\beta^2 \cdot \text{precision} + \text{recall}}$$

 β controls the relative weight of precision/recall

Training, Test Split

Learning model parameters

Training

Learn model parameters

Test

Evaluate generalization performance

For small datasets, this reduction in dataset size may be detrimental

Training, Validation, Test Split

Learning parameters AND hyperparameters

Hyperparameters: parameters of your learning algorithm or parameters of you model that are set before training begins

Simple cross-validation

K-fold cross validation K = 3

1 Performance evaluation: Train your model K times, once for each fold

After performance has been validated, train on all the data you have before you apply the model in practice

1 Performance evaluation: Train your model K times, once for each fold

Model application: Once you've evaluated model performance and are ready apply the model then retrain the model on ALL of your data to prepare it for unseen data

(this is not a model evaluation step, but only when you're ready to apply in practice)

Cross-validation with hyperparameters

1 Repeatedly fit your model to your K folds. Each iteration try different hyperparameters

2 Using the best-performing hyperparameters from (a), train on all training data and evaluate performance on the test data

Nested cross-validation with hyperparameters

1 For each outer fold, train your model with the best-performing hyperparameters from the inner folds

Training Data

Validation Data

Test Data

Repeat steps
(2) and (3) for
the remaining
outer folds

