Questões e Exercícios – Ficha TP 7

(do Capítulo 27 – 8^{va} Edição do livro de Halliday&Resnick

Q5

5 Os resistores R_1 e R_2 , com $R_1 > R_2$, são ligados a uma fonte, primeiro separadamente, depois em série e finalmente em paralelo. Coloque esses arranjos na ordem da corrente na fonte, começando pela maior.

Sol: $I_{(R1//R2)} > I_{R2} > I_{R1} > I_{(R1 \text{ série com R2})}$

P30

••30 As resistências das Figs. 27-41a e 27-41b são todas de 6,0 Ω , e as fontes ideais são baterias de 12 V. (a) Quando a chave S da Fig. 27-41a é fechada, qual é a variação da diferença de potencial V_1 entre os terminais do resistor 1? (b) Quando a chave S da Fig. 27-41b é fechada, qual é a variação da diferença de potencial V_1 entre os terminais do resistor 1?

FIG. 27-41 Problema 30.

Sol: (a) V_{R1} = Cte= 12V; (b) ΔV_{R1} = - 2V

•27 Na Fig. 27-40, $R_1 = 100 \Omega$, $R_2 = 50 \Omega$ e as fontes ideais têm forças eletromotrizes $\mathcal{E}_1 = 6.0 \text{ V}$, $\mathcal{E}_2 = 5.0 \text{ V}$ e $\mathcal{E}_3 = 4.0 \text{ V}$. Determine (a) a corrente no resistor 1; (b) a corrente no resistor 2; (c) a diferença de potencial entre os pontos a e b.

FIG. 27-40 Problema 27.

Sol: (a) I_{R1} ("da esquerda para a direita")= 0.05 A; (b) I_{R2}("de cima baixo")= 0.06 A (c) V_{ab}= -9V

••37 Na Fig. 27-48 as resistências são $R_1 = 1,0 \Omega$ e $R_2 = 2,0 \Omega$ e as forças eletromotrizes das fontes ideais são $\mathcal{E}_1 = 2,0 \text{ V}$, $\mathcal{E}_2 = 4,0 \text{ V}$ e $\mathcal{E}_3 = 4,0 \text{ V}$. Determine (a) o valor absoluto e (b) o sentido (para cima ou para baixo) da corrente na fonte 1; (c) o valor absoluto e (d) o sentido da corrente na fonte 2; (e) o valor absoluto e (f) o sentido da corrente na fonte 3; (g) a diferença de potencial $V_a - V_b$.

FIG. 27-48 Problema 37.

Sol: (a) I_{fonte 1} = 0.67 A; (b) "de cima para baixo"; (c) I_{fonte 12} = 0.33 A; (d) "de baixo para cima"; (e) I_{fonte 3} = 0.33 A; (f) "de baixo para cima"; Va-Vb = 3.34 V

P5

Uma bateria de automóvel com uma força eletromotriz de 12 V e uma resistência interna de $0,040 \Omega$ está sendo carregada com uma corrente de 50 A. Determine (a) a diferença de potencial V entre os terminais da bateria; (b) a potência P_r , dissipada no interior da bateria; (c) a potência P_{fem} fornecida pela bateria. Se a bateria depois de carregada é usada para fornecer 50 A ao motor de arranque, determine (d) V; (e) P_r .

Sol: (a) $V_{bateria} = 14 \text{ V}$; (b) $P_{dissip} = 100 \text{ W}$; (c) $P_{fornec} = 600 \text{ W}$; (d) $V_{bateria} = 10V$; (e) $P_{dissip} = 100 \text{ W}$

••42 Duas fontes iguais de força eletromotriz % = 12,0 V e resistência interna $r = 0,200 \Omega$ podem ser ligadas a uma resistência R em paralelo (Fig. 27-52) ou em série (Fig. 27-53). Se R = 2,00r, qual é a corrente na resistência R (a) no caso da ligação em paralelo? (b) no caso da ligação em série? (c) Em que tipo de ligação a corrente na resistência R é maior? Se R = r/2,00, qual é a corrente na resistência R (d) no caso da ligação em paralelo; (e) no caso da ligação em série? (f) Em que tipo de ligação a corrente na resistência R é maior?

Sol: (a) $I_{\mathcal{R}}$ = 24 A; (b) $I_{\mathcal{R}}$ = 30 A; (c) Em série (pois R>r); (d) $I_{\mathcal{R}}$ = 60 A; (b) $I_{\mathcal{R}}$ = 48 A; (c) Em paralelo (pois R<r)

••53 Na Fig. 27-59 um voltímetro de resistência $R_{\rm V} = 300~\Omega$ e um amperímetro de resistência $R_{\rm A} = 3{,}00~\Omega$ estão sendo usados para medir uma resistência R em um circuito que também con-

tém uma resistência $R_0 = 100 \Omega$ e uma fonte ideal de força eletromotriz $\mathscr{E} = 12,0 \text{ V}$. A resistência R é dada por R = V/i, onde V é a diferença de potencial entre os terminais de R e i é a leitura do amperímetro. A leitura do voltímetro é V', que é a soma de V com a diferença de potencial entre os terminais do amperímetro. Assim, a razão entre as leituras dos dois medidores não é R, e sim a resistência aparente R' = V'/i. Se $R = 85,0 \Omega$, determine (a) a leitura do amperímetro; (b) a leitura do voltímetro; (c) o valor de R'. (d) Se R_A diminui, a diferença entre R' e R aumenta, diminui ou permanece a mesma?

FIG. 27-59 Problema 53.

Sol: (a) $I_A = 0.0552 \text{ A}$; (b) $V_V = 4.86 \text{ V}$; (c) $R' = 88.0 \Omega$; (d) diminui

••65 No circuito da Fig. 27-64, $\mathscr{E} = 1,2$ kV, C = 6,5 μF e $R_1 = R_2 = R_3 = 0,73$ MΩ. Com o capacitor C totalmente descarregado, a chave S é fechada bruscamente no instante t = 0. Determine, para o instante t = 0, (a) a corrente i_1 no resistor 1; (b) a corrente i_2 no resistor 2; (c) a corrente i_3 no resistor 3. Determine, para $t \to \infty$ (ou seja, após várias constantes de tempo), (d) i_1 , (e) i_2 , (f) i_3 . Determine a diferença de potencial V_2 no resistor 2 (g) em t = 0 e (h) para $t \to \infty$. (i) Faça um esboço do gráfico de V_2 em função de t no intervalo entre esses dois instantes extremos.

FIG. 27-64 Problema 65.

Sol: (a) $I_{R1} = 1.1 \text{ mA}$; (b) $I_{R2} = 0.55 \text{ mA}$; (c) $I_{R3} = 0.55 \text{ mA}$; (d) $I_{R1} = 0.82 \text{ mA}$; (e) $I_{R2} = 0.82 \text{ mA}$; (e) $I_{R2} = 0.82 \text{ mA}$; (e) $I_{R2} = 0.82 \text{ mA}$; (f) $I_{R3} = 0 \text{ mA}$; (g) $V_{R2} = 400 \text{ V}$; (g) $V_{R2} = 600 \text{ V}$

••67 Na Fig. 27-66 $R_1 = 10.0$ kΩ, $R_2 = 15.0$ kΩ, C = 0.400 μF e a bateria ideal tem uma força eletromotriz $\mathscr{E} = 20.0$ V. Primeiro, a chave é mantida por um longo tempo na posição fechada, até que seja atingido o regime estacionário. Em seguida a chave é aberta no instante t = 0. Qual é a corrente no resistor 2 no instante t = 4.00 ms?

FIG. 27-66 Problemas 67 e 97.

Sol: $I_{R2} = 0.41 \text{ mA}$