AUTOMAÇÃO RESIDENCIAL REMOTA COM SINAL DTMF

Felipe de Carvalho Alencar Gabriel de Oliveira Gomes Henrique Ramos de Moura

Prof. Esp. Antônio Hernandes Gonçalves

RESUMO. O projeto tem como público alvo proprietários de casas de veraneio ou mesmo pessoas que passam muito tempo distantes de suas residências e precisam controlá-las à distância de uma maneira simples, eficaz e segura. O usuário encontra a facilidade no uso por meio dos recursos utilizados neste projeto, como smartphones conectados à rede de internet ou por ligação telefônica, ambos são de uso cotidiano da grande maioria da população. A estrutura deste trabalho consiste em um aplicativo de celular responsável pela integração entre homem e máquina onde, de maneira intuitiva, é possível acionar os periféricos do sistema como portões, janelas, iluminação, irrigação e quaisquer outros periféricos que o usuário desejar, reduzindo custos com funcionários que muitas vezes são contratados para cuidar das casas, proporcionando maior praticidade e economia a quem detém esta tecnologia. O princípio básico utilizado é de emissão de tons padrões de DTMF onde há um emissor e um receptor, após isso a decodificação é feita e transmitida para o circuito de acionamento dos dispositivos.

Palavras-chave: DTMF. Celular. Residencial. Remoto. Distância

ABSTRACT. The project targets homeowners or even people who spend a lot of time away from their homes and need to control them from a distance in a simple, effective and safe way. The user finds the ease of use through the resources used in this project, such as smartphones connected to the internet network or by telephone call, both are in daily use of the vast majority of the population. The structure of this work consists of a cell phone application responsible for the integration between man and machine where, in an intuitive way, it is possible to activate the peripherals of the system like gates, windows, lighting, irrigation and any other peripherals that the user wishes, reducing costs with employees who are often hired to care for homes, providing greater convenience and economy to those who own this technology. The basic principle used is the emission of standard DTMF tones where there is an emitter and a receiver, after, the decoding is done and transmitted to the devices controller circuit.

Keywords: DTMF. Cellphone. Residential. Remote. Distance

INTRODUÇÃO

O homem em toda sua existência buscou melhorias para otimizar e facilitar seu serviço, muitas vezes para possibilitar movimentar objetos muito pesados, mover algo rapidamente ou melhorar o processo de trabalho.

Os avanços tecnológicos geram infinitas possibilidades no quesito de otimizar sistemas e métodos de produção e de vida. Hoje podemos produzir mais, com menos pessoas e mais rápido do que se podia produzir anos atrás. Isso se deve à capacidade do homem de estudar e descobrir.

Hoje temos sistemas completamente automatizados e que funcionam praticamente sem a presença de seres humanos, e com o passar do tempo essa tecnologia vem adentrando nossas casas, com equipamentos inteligentes e cada vez mais interativos.

Tornou-se possível ter uma casa que se organize e se higienize praticamente sozinha, através de mini robôs, sistemas de lavagem, iluminação, irrigação dejardim, ar condicionado, entre outros equipamentos que possibilitam uma interação com outros elementos de comunicação.

Automatizar uma residência não é apenas solução para algumas questões, mas sim um conceito. Através disso podemos focar em atendimento das necessidades, dificuldades e prioridades do usuário final. A fim de satisfazer o desejo do usuário, devemos visar uma infraestrutura adequada para a instalação dos sistemas e aplicação dos métodos de automação, bem como cabeamento, equipamentos e centrais de controle. Tudo isso deve ser elaborado mediante as necessidades e vontades do usuário.

O objetivo do trabalho é administrar e comandar residências à distância, através de uma ligação telefônica ou internet. Justifica-se por ampliar um sistema já utilizado que tenha curto alcance, possibilitando que o dono da residência possa acionar os eletroeletrônicos que tenha necessidade de comando a distância.

Com ele é possível comandar itens domésticos, tais como ar condicionado, aquecedor da piscina, janelas e persianas, portas, portão automático e iluminação. Tal método também é aplicável à indústria, onde existem sistemas de segurança, abertura e fechamento de portas e portões.

Aplicações desse tipo possibilitam que os donos dos imóveis possam preparar sua estadia sem precisar ir ao local e até mesmo comandar os itens de dentro de sua própria casa ou trabalho. Visa-se em nosso projeto adequar a infraestrutura tecnológica para se ganhar tempo, praticidade, conforto e segurança em nossas residências.

FUNDAMENTAÇÃO TEORICA

Breve histórico sobre a automação

Bortoluzzi (2013) relata que a automação residencial está cada vez mais presente em nosso cotidiano, já não mais como luxo, mas sim como uma necessidade. Isso chega com força ao mercado brasileiro no século XXI, sendo aplicada inicialmente a residências de alto padrão. Desde então vem ocorrendo uma evolução conceitual sobre o tema.

Como dito anteriormente, automatizar uma residência é muito mais do que uma solução para problemas cotidianos, é um conceito. Esse conceito deve-se iniciar na própria construção do edifício e a isso dá-se o nome de pré-automação.

Em outras palavras, pré-automação é o preparo da residência para receber uma estrutura de automação completa, já atendendo alguns itens e proporcionando certo conforto e apresentando pequenos resultados, como a instalação de *dimmers*, o que resulta em economia de energia e conforto ao usuário, atendendo assim o conceito de automação que é conforto e economia.

De acordo com Comat Releco World Of Relays, (2013), nossos antepassados já utilizavam meios de automatizar processos para poupar esforços. Alguns destaques eram os moinhos de vento, carroças movidas por animais, rodas d'água e até mesmo a própria invenção da roda foi um marco na história para melhoria de processos.

A automação na indústria iniciou-se a partir dos eventos da Revolução Industrial com a criação da máquina a vapor, que permitia mover sistemas cinéticos com a transformação de energia térmica em energia mecânica, isso em meados do século XVIII.

No século XIX surgiram alguns meios um pouco mais modernos em questões de automação na indústria, pois foram descobertas novas fontes de energia e novas matérias primas. Um exemplo foi a troca do uso do ferro pelo aço, isto alavancou o desenvolvimento fabril na Europa e Estados Unidos da América.

Posteriormente surgiu um novo conceito em automação dentro das fabricas que consistia no uso de relés – que eram dispositivos eletromecânicos – para acionamentos de máquinas.

A partir da ideia de sistema de produção de Henry Ford (1863 – 1947), no inicio do século XX, a General Motors já produzia automóveis em grande escala devido ao uso do sistema de relés. Porém, esta prática continha alguns defeitos e problemas, como por exemplo a programação complexa, cabine com diversos dispositivos mecânicos, estrutura de cabeamentos e a própria vida útil dos relés.

Nesta época de inovação houve um processo na indústria que era baseado na utilização de cartões perfurados para controlar máquinas a partir de informação coletadas durante o processo. John T. Parsons (1913 – 2007) foi criador e apresentou esta ideia para que fosse usada posteriormente pelas forças aéreas dos Estados Unidos.

O Kawasaki Unimate criado por George Devol (1912 – 2011) em 1954 foi um marco na história dos processos de fabricação pois foi o primeiro robô industrial, e visava reduzir os acidentes de transporte de materiais perigosos.

De acordo com Bortoluzzi (2013), a automação residencial surge a partir da evolução da automação industrial, que se deve ao surgimento do CLP (Controladores Lógicos Programáveis), que aparecem na história na década de 60, uma grande revolução que se tornou possível graças aos avanços da microeletrônica. Isso fez com que grandes empresas tirassem o foco da automação industrial e o direcionassem à automação residencial, onde a precisão, segurança e desenvolvimento dos itens automatizados não necessitavam de tantos cuidados e precauções quanto na indústria. Em contrapartida encontrou-se a necessidade de um acabamento melhor nos produtos, com interfaces e aparência mais amigável e intuitiva.

A década de 70 fica marcada como o grande início da automação residencial devido ao surgimento de módulos inteligentes chamados X-10. O protocolo X-10 baseava-se em utilizar a rede elétrica da residência para fazer a comunicação entre diversos dispositivos de automação, tratando-se de uma

tecnologia de PLC (*Power Line Carrier* – Transporte por Linha de Energia), com isso podemos controlar dispositivos sem alterar a estrutura elétrica da residência.

Durante a década de 80 surgem os Computadores Pessoais (PCs), tornando- se uma grande possibilidade como central de automação, o que permitiu a substituição dos *mainframes* até então utilizados que por sua vez é uma tecnologia que demanda grande consumo de energia, tornando assim inviável o controle por esse meio.

Paralelamente aos computadores pessoais, várias outras foram implementadas nos sistemas automatizados, como controles remotos por radiofrequência ou infravermelho e o surgimento da internet de banda larga que possibilitou ao usuário monitoramento e controle da residência de qualquer lugar que possua acesso ao serviço.

Automação residencial

Segundo Bolzani (2004) em residências ou edifícios é possível encontrar diversas redes que são usadas para uma determinada ação. Assim é identificada a existência de redes específicas designadas aos controles e acionamentos conhecidos, assim como controle de acesso, que permite trazer segurança ao usuário ou de iluminação, que além de segurança garante também conforto e uso consciente dos recursos energéticos. Todas essas aplicações se dão graças a planejamentos e análise da finalidade e demanda.

A GDS Automação Residencial (2017) aponta que o comando de equipamentos em residências assim como o controle de iluminação, climatização, jardim, odorização e acesso, valorizam o ambiente, trazem praticidade e objetividade além de conforto, segurança e bem-estar.

Bolzani (2004) visa em sua obra determinar o que pode se automatizar e o que se tornaria supérfluo, dentre suas considerações tornou-se possível atender às necessidades e dificuldades apontadas.

Automatizar sistemas de uso cotidiano implica em possuir uma infraestrutura capaz de suportar o sistema e garantir qualidade e segurança. Alguns dos equipamentos utilizados em controle de acesso, iluminação e segurança consomem muita energia, para atender essa demanda deve-se dimensionar corretamente toda a parte de cabeamento a ser utilizado.

A automatização da irrigação de jardim é usual em diversos locais, não só em residências, mas também em edifícios comerciais, parques e até mesmo pequenos jardins públicos. Esse sistema necessita ser temporizado e, portanto, acionará sempre no mesmo horário e dias programados. Isso gera um problema nos dias chuvosos, pois além da chuva as plantas recebem ainda mais água. Uma solução simples para isso é disponibilizar um operador, que no caso de uma residência geram custos. O sistema de acionamentos à distância visa eliminar tais problemas.

Bolzani (2004) aponta os mesmos problemas para a bomba da piscina, onde é necessário um operador para ligar e desligar em horas determinadas e fazer sua limpeza. Assim, com o comando à distância também pode-se solucionar este quesito.

No caso das janelas e odorizadores temos o incômodo de mau cheiro em casas fechadas por muito tempo e além disso problemas respiratórios como rinite alérgica e bronquite podem ser agravados devido a um ambiente com baixa circulação de ar e presença de umidade, local ideal para presença de fungos, vírus e bactérias. Abrir a janela em um dia de sol faz muito bem à saúde dos usuários e também à manutenção do edifício. Focando nisso podemos controlar esses elementos para deixar o ambiente na residência adequado para a visita dos usuários.

Funcionamento e receptor de multi frequência de dois tons

Gandara (2006) explica que o DTMF (Dual Tone Multi-Frequnecy – Multi frequência de dois tons) é um sistema de discagem de tons de duas frequências utilizado nos sistemas telefônicos. Consiste em um sistema de 2 tons com frequências diferentes que geram um tom específico a partir da combinação desses dois primeiros, definindo então um caractere.

Antigamente nos sistemas de telefonia, eram utilizados uma interface de relés eletromecânicos em dispositivos que tinham a possibilidade de se discar 10 dígitos e manter este circuito energizado até que fosse interrompido por um gancho de desligamento, esse sistema tinha o nome de central telefônica decádica, os antigos telefones de disco. Nestes telefones, quando um número era discado interrompia-se a conexão com a central e eram selecionados relés de passo para habilitar o número desejado.

Com o passar do tempo, este sistema foi evoluindo passando a usar dispositivos com maior estabilidade, mas aproveitando o sistema de transmissão via pares de fios. Descobriu-se que em todas as conexões telefônicas havia um elemento em comum: a voz. Aproveitou-se este recurso para gerar tons de frequência e transmiti-los na faixa de áudio para fazer as discagens. Cada tom representaria um dígito, ou seja, um tom de frequência diferente para cada uma das 10 teclas do telefone, porém acabaram detectando um erro que poderia interferir no sistema de transmissão, pois a frequência de voz utilizada em conversão poderia se confundir com a frequência dos tons de discagens e gerar ruídos ou quebras do sinal, ou seja, não era uma conexão segura.

Após estudos sobre o impasse, engenheiros perceberam que ao invés de utilizarem apenas um tom para cada digito, poderiam realizar a combinação de dois tons distintos para criar um digito que não tenha relação harmônica com a voz inibindo assim a interferência do sinal, e assim surgiu o nome DTMF (Duplo Tom – Múltiplas frequências).

Algumas combinações de frequência de tons foram criadas para fazer a distinção de cada dígito. Além dos números foram criados caracteres extras a fim de melhorar as opções para comunicação e controle. O conceito é bem simples, cada tom possui uma frequência e forma de onda, combinando dois destes tons temos um digito. Como por exemplo, se combinarmos a forma de onda do tom de 941 Hz com o de 1209 Hz teremos o digito "1".

Pereira (2010) destaca que o circuito receptor de sinal DTMF identifica um sinal de frequência gerado por tons no teclado numérico de um celular ou telefone e decodifica este sinal e mostra seu valor digital em valor binário em sua saída.

O circuito integrado HT9170 é um receptor de sinais DTMF pequeno, com baixo consumo de energia e alto desempenho. Sua arquitetura consiste de uma seção de filtro bandsplit (divisão de banda) que separa a alta e a baixa frequência dos tons definidos nas combinações de frequências referentes aos dígitos. Fixa-se a frequência e a duração dos tons recebidos antes de passar o código para a saída.

Sistema operacional android

Lacheta (2015) diz que Android é um sistema operacional utilizado em smartphones e tablets e disponibiliza diversos recursos de comunicação e gerenciamento.

Uma grande vantagem que o *android* apresenta é ser um sistema aberto que qualquer desenvolvedor pode acrescentar melhorias e modificar sua configuração geral nos dispositivos em que se utilizam. Com o avanço tecnológico e o surgimento de novos modelos de aparelhos, o *android* possibilita ser atualizado com novas versões, tornando o sistema mais versátil.

Por possibilitar alterações em seu sistema e também possuir diversos aplicativos, torna-se viável a utilização do *android* em projetos e sistemas de automação devido a sua conectividade e fácil manuseio.

Cordeiro (2016) relata que o *App Inventor* é um site desenvolvido pela Google com o objetivo de fornecer aos usuários de *smartphones* com sistema Android a possibilidade de criar aplicativos próprios de acordo com suas necessidades, sem depender de *softwares* limitados pelas empresas desenvolvedoras de aplicativos.

O App Inventor é de fácil acesso para programar de forma simples. Contém alguns elementos baseados em Java e é compatível com os principais sistemas operacionais disponíveis no Mercado. Tem como vantagem permitir ao usuário trabalhar da maneira mais viável possível. O conjunto de edição para criação de um aplicativo é composto por duas seções: o App Inventor Designer e o App Inventor Blocks Editor.

No Designer é possível adicionar ferramentas ao seu projeto, organizálas na posição desejada, alterar os seus nomes com palavras específicas, adicionar elementos de mídia aos botões e ferramentas e também alterar toda a estética do projeto.

No *Blocks,* após configurar o computador, é possível realizar programações. Acessando o "*Blocks Editor*" pode-se associar ações para cada item de seu programa, utilizando uma interface simples e intuitiva. A construção do aplicativo se assemelha a montar um quebra-cabeça.

Microcontrolador e linguagem de programação

Souza (2010) enfatiza que um microcontrolador é um pequeno dispositivo eletrônico com uma memória programável usado para controle de sistemas. Nestes casos outros dispositivos são comandados, como: LCD (display de cristal líquido), botões, cargas indutivas, LEDs (Ligth Emitting Diode – diodo emissor de luz).

O manejo desses periféricos se inicia a partir de uma lógica de programação incluída na memória do microcontrolador e quando ligado começa a

executar o programa. O processamento do programa deve-se à capacidade da ULA (Unidade Lógica Aritmética) onde são efetuadas todas as operações.

O PIC é conhecido por ser muito poderoso em seu processamento, apesar das dimensões reduzidas, pois é construído a partir de uma pastilha de silício que contém todos elementos necessários ao controle do processo, tais como: temporizadores, contadores, conversores analógicos-digitais, PWMs (*Pulse With Modulation* – modulação por largura de pulso), portas de entrada e/ou saídas paralelas, comunicação serial, memória de dados e programação.

A arquitetura interna do PIC é do tipo Harvard, diferentemente de outros microcontroladores que utilizam arquitetura Von-Neumann e não possuem tantos periféricos integrados. A diferença das arquiteturas se dá na forma de como os dados são processados. Nos microprocessadores com arquitetura Von-Neumann existe um único barramento de 8 bits para endereçamento de instruções e dados. Nos microcontroladores do tipo Harvard existe um barramento para instruções (12, 14 ou 16 bits) e um outro barramento para dados (8 bits).

Devido a essa estrutura, o PIC pode agilizar o processamento do programa, uma vez que, enquanto executa uma instrução, decodifica uma próxima e ainda busca uma terceira na memória de programa. Ele é um microcontrolador de tecnologia RISC (*Reduced Instruction Set Computer -* computador com conjunto reduzido de instruções), possuindo apenas 35 instruções, número que pode variar conforme o modelo do microcontrolador.

Ter poucas instruções ajuda no aprendizado, mas torna a programação mais trabalhosa se comparado aos microcontroladores de tecnologia CISC (Complex Instruction Set Computer - computador com conjunto complexo de instruções).

Gonçalves (2010) mostra em seu material didático de desenvolvimento a construção de microcontroladores da marca Microchip e como é possível utilizar softwares como o MPLAB, desenvolvido pela própria Microchip, para programar o PIC em linguagem Assembly.

METODOLOGIA

Encontra-se o roteiro com base em métodos, técnicas e procedimentos para fundamentar o projeto intitulada <u>Automação Residencial Remota com Sinal DTMF</u>. Trata-se de uma pesquisa aplicada que é desenvolvida nas dependências da FATEC SBC e nas residências dos integrantes do grupo.

Dentre os vários autores que tecem teorias sobre metodologia científica, Severino (2013) destaca que ela é o caminho percorrido para o desenvolvimento de uma pesquisa. Destaca que métodos são procedimentos amplos do raciocínio, enquanto as técnicas são procedimentos mais restritos que operacionalizam os métodos. Enfatiza que um trabalho científico supõe uma sequência de etapas ou momentos que compreende: determinação do tema-problema e justificativa, levantamento bibliográfico, leitura e releitura dessa bibliografia após sua seleção, construção lógica do trabalho e redação do texto.

O trabalho é construido de acordo com o Manual de Normalização de Projeto de Trabalho de Graduação da Fatec SBCampo (2017) que se encontra ancorado nas normas da ABNT. Ele é escrito com uma linguagem simples e com

características próprias e específicas com terminologia adequada.

Tema-problema e justificativa com diagrama de funcionamento

O propósito do trabalho que se intitula <u>Automação</u> <u>Residencial Remota com Sinal DTMF</u> é desenvolver um sistema que possibilita ao usuário acionar e desacionar remotamente dispositivos residenciais, visando segurança e conforto, podendo interagir com controle de acesso, iluminação e equipamentos que necessitam de manutenção à distância. Justifica-se por possibilitar aos usuários de uma propriedade de veraneio realizar remotamente o comando de equipamentos, como simulação de presença, irrigação do jardim, acionamento da ventilação, controle de acesso e iluminação.

O projeto é composto por um circuito de recepção de sinal DTMF, um dispositivo para enviar o sinal, interface de saídas a relés eletromecânicos, uma placa com microcontrolador PIC16F628A para processamento dos dados e acionamento das saídas. Essas saídas são acionadas a partir do reconhecimento de cada comando utilizado no aplicativo do dispositivo emissor para o receptor. A Figura 1 ilustra o diagrama de funcionamento do projeto.

Emissor Receptor Decodificador

Controle e programação

Acionamento

Figura 1 – Diagrama de funcionamento do projeto

Fonte: Autoria própria, 2018

O funcionamento consiste em um sistema operando ininterruptamente, onde o circuito aguarda uma ligação telefônica ou via Skype (aplicativo desenvolvido por Microsoft) de um usuário cadastrado. O reconhecimento é feito automaticamente a partir da lista de contatos salvos no aplicativo ou no dispositivo. Ao receber a chamada, o receptor realiza o atendimento em resposta.

No caso do Skype, em suas próprias configurações é possível selecionar a opção de atendimento automático e no caso de chamada telefônica utiliza-se o aplicativo auxiliar Auto answer & callback (hands free), disponível na loja de aplicativos para Android.

Sendo reconhecido o usuário cadastrado, pode-se enviar os comandos para acionamento e desacionamento do sistema, como: iluminação, controle de acesso e equipamentos. Esses comandos baseiam-se no sistema de decodificação de tons de multifrequência (DTMF), ou seja, cada algarismo do teclado e suas combinações são um comando pré-definido.

Ao receber o comando o microcontrolador envia às interfaces de saída um sinal para acionar ou desacionar o respectivo periférico automatizado. Após executar as ações desejadas, o usuário finaliza a ligação e o sistema retorna o processamento do programa inicial, mantendo em seguida o sistema em modo de espera para uma próxima ligação.

O comando residencial à distância

De acordo com a proposta de se fazer automação residencial à distância, o trabalho dispõe de controle de acesso para suprir algumas necessidades como, por exemplo, permitir o acesso de algum funcionário, caseiro ou empregado para realizar uma determinada tarefa interna, além de agilizar e garantir conforto aos usuários que ao chegam à propriedade não precisam sair de seus veículos.

O acionamento a distância se baseia em comandar dispositivos, tais como: o controle de acesso, iluminação e equipamentos.

- controle de acesso: é um meio de se promover segurança em propriedades, edifícios ou salas, seja por meios físicos, mecânicos, eletrônicos ou biométricos;
- iluminação: é de fundamental importância quando se trata de segurança. A partir de uma entrevista (Apêndices A e B) realizada com potenciais usuários, foi constatado que a aplicação do acionamento de iluminação é um meio de se promover segurança ao usuário, pois a partir daí pode-se efetuar simulações de presença com o objetivo de evitar invasores e malfeitores que queiram se aproveitar da situação de ter uma casa sem nenhuma supervisão. Inclusive é possível que no momento em que se habilita o controle de acesso a terceiros, dependendo da situação também é necessário o controle de iluminação de luzes externas.
- equipamentos: são bombas de irrigação de jardim, motores para abertura de janelas para circulação de ar e controle de odorização onde encontrase problemas que os usuários enfrentam no cotidiano, o que impossibilita realizar as tarefas de imediato.

Ferramentas utilizadas para o desenvolvimento

Algumas ferramentas para a criação deste projeto. Para a criação e testes virtuais do circuito é utilizado o programa ISIS (Proteus 7.0), onde é desenvolvido todo o esquema eletrônico com todos componentes utilizados em todo o projeto que proporciona melhor visualização e possibilita fazer testes antes da montagem física do circuito.

Na criação do programa a ser gravado no microprocessador é utilizado o programa MPLab, com ele é possível desenvolver toda a lógica do funcionamento do projeto em linguagem de programação Assembly com base nas entradas e saídas.

Após o desenvolvimento do programa é necessário compilá-lo e gravá-lo no microprocessador para que o programa fique utilizável no projeto físico. É utilizado a placa PIC SmartLab.

Além do programa que faz o acionamento dos periféricos, também é feito um aplicativo para a interação do usuário. O aplicativo App Inventor é empregado para criar o aplicativo. Nele contém botões característicos para cada ação que pode ser feita na casa.

Encontram-se passo a passo para o desenvolvimento e a construção do projeto entitulado <u>Automação Residencial Remota com Sinal DTMF</u>, relacionando as metodologias, teorias e ilustrações por meio de imagens.

O projeto funciona com um receptor e um emissor, ambos sendo smartphones, celulares ou telefones fixos, desde que sejam cadastrados no sistema do circuito de acionamento. O receptor é responsável por captar o sinal emitido via internet ou telefonia pelo emissor e transmitir essa informação ao circuito decodificador. O circuito decodificador reconhece essa informação como um sinal analógico e o converte em um sinal digital. Após a decodificação o sinal é enviado ao circuito acionador, que é responsável por acionar os elementos de saída de acordo com o código da ação desejada pelo usuário.

O desenvolvimento e construção do projeto encontram-se ancorado nas seguintes etapas:

- montagem e testes do circuito decodificador;
- montagem e testes do circuito de acionamento;
- desenvolvimento do aplicativo;
- montagem das interfaces de saídas;
- integração das partes e testes de funcionamento;
- dificuldades e soluções.

Montagem e testes do circuito decodificador

Para a montagem do circuito de teste do decodificador, conforme esquema do datasheet do HT9170 são utilizados resistores, capacitores, led's, circuito integrado, fonte de alimentação 12 V, cabo P2, protoboard e fios para ligações, segundo o esquema elétrico confeccionado com o software ISIS (Proteus 7.0), a partir do circuito protótipo, conforme ilustra a Figura 2.

Figura 2 – Circuito teste decodificador em protoboard

Fonte: Autoria própria, 2018

O teste é feito com o circuito teste montado e um celular smartphone com sua saída de áudio conectada ao cabo P2 e na tela de ligações para a utilização do teclado numérico. Com todo pronto e ligado, é pressionada a tecla de número 1 e assim é visto que três, dos 4 leds permaneceram apagados e apenas um acende, o último led, representando o número 1 de forma binária.

Após apresentar resultados positivos, conforme as especificações do datasheet do circuito integrado em uso desenvolvem-se o layout da placa de circuito impresso. Para a confecção utiliza-se uma placa de fenolite nas medidas definidas em projeto no Proteus e nela o circuito é transferido por uma impressão extraída do Ares em uma folha de fotolito ou papel vegetal. Após a impressão, neste processo químico obtém-se a placa bruta.

A partir deste circuito impresso na placa de fenolite, utiliza-se percloreto de ferro diluído em água para corrosão do esmalte queimado e deixar visível apenas as trilhas do circuito. Os furos correspondentes a cada componente são feitos em suas respectivas medidas, em seguida a placa é limpa e é utilizado verniz feito com base em resina de colofónia dissolvida em solvente para tintas para que os componentes sejam mais bem soldados e isolados além de melhorar o aspecto da placa, por fim, ela está pronta para a soldagem dos componentes, conforme ilustra a Figura 3.

Figura 3 – Esquema elétrico e placa montada do circuito decodificador

Fonte: Autoria própria, 2018

Montagem e testes do circuito de acionamento

Dando seguimento, realiza-se a montagem do circuito de acionamento. Para sua montagem utilizam-se resistores, capacitores, led's, circuito integrado, fonte de alimentação 12 V, cabo P2 e *protoboard*.

O software Proteus conta com a presença da ferramenta ISIS utilizada para montar esquemas eletrônicos e também testá-los antes de sua aplicação prática. No projeto é utilizado o esquema de aplicação de acionamento de um conversor analógico-digital, combinado com o controlador PIC e ligado ao esquema de acionamento de uma interface de saída utilizando relés.

O Proteus ainda conta com a ferramenta Ares onde é possível realizar a extração do circuito eletrônico feito no ISIS e desenvolver o *layout* para a montagem da placa física. Nele é possível escolher e simular parâmetros como as medidas da placa, tamanho das trilhas para soldagem, tamanho dos furos dos componentes, definição do espaço utilizado por cada componente e recursos de aperfeiçoamento do projeto. Nesta placa é feita a montagem dos componentes e ligação com os elementos de acionamento. O circuito em uso para instruções

baseia-se em um esquema utilizando dois microcontroladores PIC16F628A sendo um para lógica de programação para equipamentos e o outro com lógica utilizada para rotina de simulação de presença.

Desenvolvimento do aplicativo

Após a montagem do circuito decodificador e de acionamento dá-se início ao desenvoldimento do aplicativo para envio dos sinais DTMF para a central. É desenvolvido através do criador livre do site App Inventor, Google INC. e em sua estrutura utiliza-se uma interface com comandos necessários para os acionamentos dos periféricos de saídas do circuito principal, como portão, janela, irrigação do jardim e iluminação interna e externa.

Para visualização e utilização do aplicativo desenvolve-se uma interface intuitiva para possibilitar o fácil acesso do usuário. A Figura 4 mostra as telas do aplicativo obtidas no celular.

Figura 4 – Telas do aplicativo obtidas no celular

Fonte: Autoria própria, 2018

Montagem das interfaces de saída

Dando sequência se realiza a montagem das interfaces de saída para acionamento dos periféricos. Utiliza-se um sistema de interface de saídas a relés optoacopladores para o acionamento dos dispositivos simuladores, estes dispositivos são: gravadores de DVD, para portão e janela, motor para irrigação do jardim e leds (*Ligth Emitting Diode* – Diodo Emissor de Luz) para os sistemas de iluminação. A Figura 5 ilustra os sistemas de saídas conectados ao sistema de comando e ao sistema decodificador.

0 R12 LED5 U5 B 6 INMOOT IP122 TBLCCK-12

Figura 5 – Interface de saída

Fonte: Autoria própria, 2017

Programação do PIC em Assembly

A programação dos PIC's 16F628A consiste em um deles receber o sinal emitido pelo decodificador DTMF HT9170, sendo recebido em quatro bits e a partir do código é realizada uma determinada ação onde é possível comandar os periféricos selecionados. E no outro gerar uma rotina de temporização para a simulação de utilização controlada da iluminação no projeto.

A lógica inserida no primeiro PIC prevê organizar os resultados recebidos pelas saídas do receptor de sinal DTMF de acordo com o seu valor e emitir um comando de acionamento para alguma porta do microcontrolador, isso prédefinindo os valores de acordo com a ordem dos botões utilizados no aplicativo.

Para melhor funcionamento do programa utilizamos uma tabela *case,* recurso que nos possibilita através de um código relacionar a uma determinada ação com mais facilidade.

No segundo PIC é usada uma lógica que consiste em aproveitar o sinal recebido e fazer uma espécie de pisca-pisca.

Integração das partes e testes de funcionamento

O circuito do decodificador DTMF é passivo de um sinal externo de áudio emitido por um dispositivo conectado a ele, como um celular ou smartphone. As saídas do circuito são conectadas ao circuito do microcontrolador onde são ligados os dispositivos de saída.

Através do celular do usuário é possível realizar uma ligação telefônica para outro celular (receptor) fixo na residência, este por usa vez tem a função de atender automaticamente esta chamada e a partir disto é possível enviar os comandos através do próprio teclado numérico seguindo a ordem de comandos, ou por chamada via Skype, que permite abrir o aplicativo desenvolvido simultaneamente e com seus respectivos botões de acionamento, se ter uma melhor experiência.

O decodificador DTMF recebe o tom enviado pelo teclado convencional ou pelo aplicativo e o transmite ao microcontrolador que executa o programa realizando a ação desejada pelo usuário. A Figura 6 ilustra o projeto finalizado.

Figura 6 – Projeto finalizado

Fonte: Autoria própria, 2018

Dificuldades e soluções

Durante o desenvolvimento encontramos algumas dificuldades para as quais descobrimos soluções para finalizar a montagem do projeto afim de atingir nosso objetivo.

Como dificuldade, encontramos complicações para a comunicação entre o celular emissor de chamadas com o celular receptor, pois é preciso que o aparelho fixo na residência atenda automaticamente à chamada quando houver uma ligação, somente assim é possível que haja a comunicação e o envio dos comandos. Para solucionar esta questão é utilizado um aplicativo para smartphone chamado Auto Answer & Callback (hands free) desenvolvido pela empresa Magdelphi, sua função é atender automaticamente ligações de números préprogramados. No caso do uso pelo aplicativo Skype, é necessário definir que apenas contatos salvos em sua lista selecionada possam ser atendidos automaticamente, possibilitando assim também o acionamento dos dispositivos.

Na parte de emissão do tom DTMF, temos problemas com a compatibilidade de celulares, é possível testar por completo apenas com celulares das fabricantes Motorola, LG e Samsung, já com os celulares da Lenovo e Sony temos problemas para a emissão e recepção do sinal quando em chamada via operadora de celular, demais fabricantes não foram utilizadas em testes.

É observado que não é possível utilizar os capacitores de realimentação do cristal oscilador conforme o *datasheet* do HT9170 receptor DTMF, pois inibe parte da ressonância que deveria ser gerada no circuito integrado e causa um atraso muito alto no sinal de entrada, ou seja, perde a utilidade. A solução encontrada é a remoção dos capacitores de realimentação do cristal.

Para o envio do sinal de instrução utiliza-se um cabo conector P2+P2 auxiliar, porém não é possível a emissão utilizando um conector *jack* P2 fêmea do tipo mono auxiliar. A solução é a utilização de um conector fêmea estéreo.

CONSIDERAÇÕES FINAIS

O projeto desenvolvido atende aos requisitos propostos desde o surgimento da ideia inicial. A partir do protótipo, conseguimos executar o comando de dispositivos, criar uma interface intuitiva e de fácil comando ao usuário,

comandar a residência à distância com o uso da tecnologia DTMF e desta forma atender satisfatoriamente à necessidade dos usuários.

De acordo com o levantamento bibliográfico foi possível aplicar as teorias e conhecimentos adquiridos ao longo do curso e realizar a comunicação necessária para realizar o comando do sistema proposto, como por exemplo o acionamento de motores, chaves eletrônicas e lâmpadas.

Com o dispositivo foi possível atender às necessidades dos usuários que relataram em entrevista seus problemas com relação à saúde, conforto e segurança, como por exemplo o sistema de simulação de presença com o acionamento da iluminação interna e externa e ligação do sistema de ventilação através da abertura de portas e janelas.

As tecnologias existentes no mercado têm como o princípio básico de acionamento que o usuário esteja na proximidade da sua residência proporcionando um controle apenas a distâncias pequenas, já o dispositivo desenvolvido permite que o comando dos periféricos seja feito a grandes distâncias, basta ter apenas sinal de internet ou sinal telefônico.

As sugestões para melhorias futuras são a integração de um sistema de vigilância por câmeras em tempo real integrado ao aplicativo, implementação de chamadas telefônicas diretamente no aplicativo para maior praticidade e implementação de recurso de segurança de usuário protegido por senha, gerando mais segurança e acesso para outros usuários que tenham o código.

REFERÊNCIAS

BORTOLUZZI, MATIAS. **Pré-Automação: o caminho mais curto para a Automação.** Disponível em: http://sraengenharia.blogspot.com.br/2013/03/pre-automacao-o-caminho-mais-curto-para.html. Acesso em: 04 abr. 2017.

BORTOLUZZI, MATIAS. **Histórico da automação residencial**. Disponível em: http://sraengenharia.blogspot.com.br/2013/01/historico-da-automacao-residencial_10.html?q=protocolo+x10. Acesso em: 03 abr. 2017.

BOLZANI, CAIO A.M., Residências inteligentes. 1.ed. São Paulo: Livraria da física, 2004.

CORDEIRO, Fillipe **App Inventor: Guia de Criação de Apps,** 2016. Disponível em: https://www.androidpro.com.br/blog/desenvolvimento-android/app-inventor/. Acesso em: 10 abr. 2017.

COMAT RELECO WORLD OF RELAYRS, **Automação industrial – definição e história,** 2013. Disponível em: https://www.comatreleco.com.br/automacao-industrial-historia/>. Acesso em: 05 abr. 2017.

GANDARA, João Roberto S. Ferreira. **Artigo Técnico: Como funcionam os tons DTMF**. Disponível em: https://www.cram.org.br/wordpress/?p=1325> Acesso em: 7 abr. 2017

GDS AUTOMAÇÃO RESIDENCIAL, **O que é automação residencial,** 2017. Disponível em: http://www.gdsautomacao.com.br>. Acesso em: 20 abr. 2017.

GONÇALVES, Antônio Hernandes, ZAMBONI, Marcos, SMARTLAB: kit didático para desenvolvimento de microcontroladores da linha MICROCHIP, 2010.

GONÇALVES, Antônio Hernandes, ZAMBONI, Marcos, **SMARTLAB: Trabalhando com MPLAB**, São Paulo: Particular, 2010.

INTEGRALIS TECNOLOGIA EM SEGURANÇA E AUTOMAÇÃO, **Controle de Acesso**, 2013. Disponível em: http://www.integralis.com.br/seg-eletronica/controle-de-acesso/>. Acesso em: 10 mai. 2017.

LACHETA, Ricardo R., **Google android.** 5. ed. São Paulo: Novatec, 2015.

MANUAL DE NORMALIZAÇÃO DE PROJETO DE TRABALHO DE GRADUAÇÃO – FATEC SBCAMPO. **Material didático para utilização nos projetos de trabalho de graduação dos cursos de tecnologia em automação industrial e informática**. São Bernardo do Campo: FATEC, 2017.

PEREIRA, Fábio, **PIC: Programação em C**. 2. ed. São Paulo: Érica, 2010.

SEVERINO, A.J. Metodologia do trabalho científico. 23. ed. rev. São Paulo: Cortez, 2013.

SOUZA, D. J. de, **Desbravando o PIC:** Ampliado e atualizado para PIC16F628A. São Paulo: Érica, 2010.