Yang Huan A0224968N Question 1

(a)

We should pay attention in angrist90 dataset that which factors also influenced, we may consider adding something related to both mother and father's own sides: father's and mother's race; father's and mother's education; mother's age

(b)

. reg p kid3	if yearschm!=.	//model1					
Source	ss	df	MS		er of ob	•	614,389
Model Residual	1831.06681 128483.283	1 614,387	1831.0668 .20912435	1 Prob 1 R-sq	614387) > F uared	= = =	8755.88 0.0000 0.0141
Total	130314.349	614,388	.21210432	_	R-square MSE	d = =	0.0140
р	Coef.	Std. Err.	t	P> t	[95%	Conf.	Interval]
kid3 _cons	115594 .7334874	.0012353 .0007159	-93.57 1024.60	0.000 0.000	1180 .7320		1131728 .7348905

Source	SS	df	MS	Number of		614,389
				- F(2, 6143	86) =	12845.74
Model	5230.56842	2	2615.28421	L Prob > F	=	0.0000
Residual	125083.781	614,386	.203591522	R-squared	=	0.0401
				- Adj R-squ	ared =	0.0401
Total	130314.349	614,388	.212104321	L Root MSE	=	.45121
р	Coef.	Std. Err.	t	P> t [9	5% Conf.	<pre>Interval</pre>
kid3	0965608	.0012278	-78.65	0.0000	989671	0941544
yearschm	.0303201	.0002346	129.22	0.000 .0	298602	. 03078
•	.3984259	.0026874	148.25	0.000 .3	931586	.4036932

	(1)	(2)
	model1	model2
VARIABLES	p	p
kid3	-0.116***	-0.0966***
	(0.00124)	(0.00123)
yearschm		0.0303***
		(0.000235)
Constant	0.733***	0.398***
	(0.000716)	(0.00269)
Observations	614,389	614,389
R-squared	0.014	0.040

Standard errors in parentheses

We can see that the effect of kid3 is decreasing(down) when add/control the mother's education. Maybe it is mainly because there is a positive relationship ($\gamma_1 > 0$) between mother labor supply and mother's education.

Due to $\beta_1 = \beta_2 + \gamma_1 \frac{cov(kid3,edum)}{var(kid3)} < 0$ and since β_2 also < 0; $\gamma_1 > 0$ and absolute

magnitude $\beta_1 > \beta_2$, we can predict that cov(kid3, edum) < 0. So, the sign of the correlation between mother's education and the kid3 is negative.

(c)

. reg yearschm	n kid3						
Source	SS	df	MS		er of obs	=	614,389
Model Residual	54000.4999 3697887.94	1 614.387	54000.4999 6.01882513) Prob	614387) > F uared	=	8971.93 0.0000 0.0144
Total	3751888.44	614,388	6.10670853	- Adj	R-squared : MSE	=	0.0144 2.4533
yearschm	Coef.	Std. Err.	t	P> t	[95% Cor	ıf.	Interval]
kid3 _cons	6277433 11.0508	.0066273 .0038405	-94.72 2877.42	0.000 0.000	6407327 11.04327		614754 11.05833

It shows that our prediction from (b) is correct.

. reg kid3 samesex, robust //see if it's OK to proceed as IV $\,$

Linear regression	Number of obs	=	614,389
	F(1, 614387)	=	2509.06
	Prob > F	=	0.0000
	R-squared	=	0.0041
	Root MSE	=	.47131

kid3	Coef.	Robust Std. Err.	t	P> t	[95% Conf.	Interval]
samesex	.0602308	.0012024	50.09	0.000	.0578741	.0625876
_cons	.3056107	.0008324	367.14	0.000	.3039792	.3072422

. ivregress 2sls p (kid3=samesex), robust //IV method

We can see that t=50, so it's okay to let samesex be IV

. ivregress 2sls p (kid3=samesex), robust //IV method

Instrumental variables (2SLS) regression Number of obs = 614,389 Wald chi2(1) = 16.67

Prob > chi2 = 0.0000 R-squared = 0.0127 Root MSE = .45762

р	Coef.	Robust Std. Err.	z	P> z	[95% Conf.	Interval]
kid3	0791607	.0193863	-4.08	0.000	1171571	0411643
_cons	.7212525	.0065336	110.39	0.000	.7084468	.7340582

Instrumented: kid3
Instruments: samesex

	(1)	(2)
	model1	model1_2
VARIABLES	p	p
kid3	-0.116***	-0.0792***
	(0.00124)	(0.0194)
Constant	0.733***	0.721***
	(0.000716)	(0.00653)

Observations	614,389	614,389
R-squared	0.014	0.013

Standard errors in parentheses

With IV equation model 1_2, it is meaning that mother have children that first two are same gender can reduce 0.0792 working hours.

(e)

$$\begin{aligned} plim(\hat{\beta}_{1,OLS}) &= \beta_1 + \frac{\sigma_u}{\sigma_x} \cdot Corr(x,u) \\ plim(\hat{\beta}_{1,IV}) &= \beta_1 + \frac{\sigma_u}{\sigma_x} \cdot \frac{Corr(z,u)}{Corr(z,x)} \end{aligned}$$

. corr kid3 yearschm (obs=614,389) kid3 yearschm kid3 1.0000 yearschm -0.1200 1.0000 . corr samesex kid3 (obs=614,389) samesex kid3 samesex 1.0000 kid3 0.0638 1.0000

. corr samesex yearschm
(obs=614,389)

	samesex	yearschm
samesex yearschm	1.0000 -0.0005	1.0000

. di -0.0005/0.0638 -.00783699

So, the bias from IV (-0.078) is smaller than the bias from OLS(-0.12). But we also should pay attention corr(z,x), the bias of IV could be blown up by it.

We use Hausman method to test whether is endogenous. We test model 1 and model 2.

. hausman IV modell, constant sigmamore

Note: the rank of the differenced variance matrix (1) does not equal the number of coefficients being tested (2); be sure this is what you expect, or there may be problems computing the test. Examine the output of your estimators for anything unexpected and possibly consider scaling your variables so that the coefficients are on a similar scale.

	Coeffi	cients ——		
	(b)	(B)	(b-B)	sqrt(diag(V_b-V_B))
	IV	model1	Difference	S.E.
kid3 _cons	0791607 .7212525	115594 .7334874	.0364333 0122349	.0193334

b = consistent under Ho and Ha; obtained from ivregress B = inconsistent under Ha, efficient under Ho; obtained from regress

Test: Ho: difference in coefficients not systematic

Model 1 p=0.0595>0.05, cannot reject H0 at 5%, so seems like no endogenous problem. But it is on the edge of level. And we know we need at least one outside exogenous variable, so it may be not trusted. We need to use more precise model, model2 to test.

. hausman IV2 model2, constant sigmamore //hausman 检验是否内生性,原假设无内生>,拒绝则有内生

Note: the rank of the differenced variance matrix (1) does not equal the number of coefficients being tested (3); be sure this is what you expect, or there may be problems computing the test. Examine the output of your estimators for anything unexpected and possibly consider scaling your variables so that the coefficients are on a similar scale.

	——— Coeffi	cients ——		
	(b)	(B)	(b-B)	sqrt(diag(V_b-V_B))
	IV2	model2	Difference	S.E.
kid3 yearschm _cons	0778864 .0307483 .3875135	0965608 .0303201 .3984259	.0186744 .0004282 0109125	.0190936 .0004378 .0111575

 $\mbox{\bf b = consistent under Ho and Ha; obtained from ivregress} \\ \mbox{\bf B = inconsistent under Ha, efficient under Ho; obtained from regress} \\$

Test: Ho: difference in coefficients not systematic

But model2 with added edum variable, hausman test p>0.05, that prove that we cannot reject kid3 is exogenous(无法拒绝外生原假设). We use model 2 and believe model2 better because this model is more fitted with higher R-squared. [Kid3 is exogenous]

	(1)
	Hausman_model2
VARIABLES	p
kid3	-0.0779***
	(0.0191)
yearschm	0.0307***
	(0.000497)
Constant	0.388***
	(0.0115)
Observations	614,389
R-squared	0.040
Standard err	ors in parentheses

*** p<0.01, ** p<0.05, * p<0.1

	(1)	(2)
	model1	model2
VARIABLES	p	p
kid3	-0.116***	-0.0966***
	(0.00124)	(0.00123)
yearschm		0.0303***
		(0.000235)
Constant	0.733***	0.398***
	(0.000716)	(0.00269)

Observations	614,389	614,389
R-squared	0.014	0.040

Standard errors in parentheses

*** p<0.01, ** p<0.05, * p<0.1

		p<0.01,	p<0.03,	p<0.1			
Assignment3/Out	id	est_model2.doc	'', word e	excel repl	lace	Huan <i>I</i>	A0224968N
Linear regress	sion			Number	of obs	=	614,389
				F(3, 61	4385)	=	8445.31
				Prob >	F	=	0.0000
				R-squar	ed	=	0.0401
				Root MS	E	=	. 45121
p	Coef.	Robust Std. Err.	t	P> t	[95%	Conf.	Interval]
kid3 yearschm v _cons	0778864 .0307483 0187515 .3875135	.0191328 .0004982 .019173 .0114994	-4.07 61.72 -0.98 33.70	0.000 0.000 0.328 0.000	1153 .0297 05	7718 5633	0403867 .0317248 .0188269 .4100519

using method learnt from class to test model2, the result is same, i.e. cannot reject kid3 is exogenous. [kid3 is exogenous]

 Q_2

(a)

Pr (accurate = 1 | high-temp=1, duration = 180.9)

 $= \frac{e^{-0.396 - 0.386 - 0.001 \times 180.9}}{1 + e^{-0.396 - 0.386 - 0.001 \times 180.9}} = 0.2762979424 \times 0.277$ (excel)

Pr (accurate = 1 / hightemp = 0, duration = 180.9)

 $= \frac{e^{-0.396 - 0.001 \times 180.9}}{1 + e^{-0.396 - 0.001 \times 180.9}} = 0.359646 \approx 0.360$

: 0.277 - 0.360 = - 0-083

Henre, ne can see when temperatue is higher, probability of.

the accuracy of umpire reduces by 0.083

from part (a) the Parent Effect is -0-083,
in this linear mover, the effect of high temp is -0.0843,
the difference is very small, not surprisingly.

(c)
$$|Pr(Accurate=||high-temp=|, duration=|80.9, year=|23|7)$$

$$= \frac{e^{-1.003-0.415-0.003\times180.9+1.81}}{1+e^{-1.003-0.415-0.003\times180.9+1.181}} = 0.312233 \approx 0.312$$

Pr(acurate=1/high-temp=1, duration=180.9, year= 2008)

$$= \frac{e^{-1.003 - 0.415 - 0.003 \times 180^{-9}}}{1 + e^{-1.003 - 0.415 - 0.003 \times 180^{-9}}} = 0.111313 \approx 0.122.$$

hifference => -- 0.312-0.122 = 0.190

So the probability of the accuracy for the unpiece

is 0.190 higher in 2017 than in 2008