







Glacial Isostasy





















## Paleoclimatology Temperature changes over the last 2.0 My must be obtained indirectly in what are known as proxy recorders: Oxygen isotope changes in ice cores Trapped atmospheric gases in ice cores Oxygen isotope and other changes in fossils in oceans and lakes

















## Evidence Of Climate Change Obtained From Greenland Ice Cores For The Past 20 Thousand Years • Temperatures were colder during the last glacial maximum and also during the Younger Dryas • Abrupt temperature rise occurred about 14,000 years ago and again about 12,000 years ago at the end of the Younger Dryas The Obtained From Greenland O.56 (1.18) - 100 Temperature Volume Provinger O.56 (0.18) - 100 Temperature Volume Provinger O.56 (0.18)





Why Atmospheric CO<sub>2</sub> Concentration Is Lower During Ice Ages

Falling sea level exposes more land plants that take up CO<sub>2</sub>
Colder ocean water dissolves more CO<sub>2</sub>
Expanding sea ice covers more ocean, limiting amount of CO<sub>2</sub> released from oceans to atmosphere
Falling sea level impacts the growth of coral reefs and other ocean ecosystems that affect the amount of CO<sub>2</sub> stored in the ocean
Frozen ground and ice cover limits biodegradation and microbial activity that would otherwise release CO<sub>2</sub> and CH<sub>4</sub> into the atmosphere







## Support for Global Temperature Changes

- Ice core records of gases and oxygen isotopes from Greenland are similar to those obtained from Antarctica
- Oxygen isotope records from ice cores match those obtained from marine fossils
- Ages obtained from glacial deposits on land match the ice core records
- Migrations of land plants and animals, as determined from fossils on land, are consistent with temperature changes recorded by ice cores and marine fossils