# <u>Signali i sustavi – 6. domaća zadaća – primjeri zadataka</u> <u>ak. god. 2006./07.</u>

| Marks: 1 Neka su zadani polovi sustava: $p_1 = 1 + j$ , $p_2 = 1 - j$ . Kojom je        |
|-----------------------------------------------------------------------------------------|
| diferencijalnom jednadžbom opisan sustav?                                               |
|                                                                                         |
| Točno                                                                                   |
| Marks for this submission: 1/1.                                                         |
| 2 Marks: 1                                                                              |
| Za prijenosnu funkciju sustava $H(z)=rac{B(z)}{A(z)}$ vrijedi:                         |
| $oldsymbol{\square}$ a. rješenja jednadžbe $oldsymbol{A(z)=0}$ su nule sustava          |
| $oldsymbol{\mathbb{E}}$ b. rješenja jednadžbe $oldsymbol{B(z)=0}$ su polovi sustava     |
| c. daje odnos kompleksnih amplituda prisilnog odziva i Bravo, točan odgovor! pobude     |
| d. predstavlja odziv sustava na jediničnu stepenicu                                     |
| e. predstavlja odziv sustava na rampu                                                   |
| Točno Marks for this submission: 1/1.                                                   |
| 3 Marks: 1 Dio frekvencijske karakteristike stabilnog kontinuiranog LTI sustava opisan  |
| $ H(j\Omega)  = \sqrt{\text{Re}^{2}[H(j\Omega)] + \text{Im}^{2}[H(j\Omega)]}$ nazivamo: |
| a. fazna frekvencijska karakteristika                                                   |
| b. realni dio frekvencijske karakteristike                                              |
| c. amplitudna frekvencijska karakteristika Bravo! 😉                                     |
| d. imaginarni dio frekvencijske karakteristike                                          |
| e. dio frekvencijske karakteristike izazvan funkcijom (**) Točno                        |
| Marks for this submission: 1/1.                                                         |

Marks: 1

Izrazom 
$$A(\omega) = |H(e^{j\omega})| = \sqrt{\text{Re}[H(e^{j\omega}]^2 + \text{Im}[H(e^{j\omega}]^2]}, \text{ gdje je}$$
 $H(e^{j\omega}) = A(\omega)e^{j\varphi(\omega)} \text{ definirana je:}$ 

- a. amplitudna karakteristika Bravo, točan odgovor!
- L b. prijelazna karakteristika
- C c. statička karakteristika
- d. frekvencijska karakteristika
- e. fazna karakteristika

Točno

Marks for this submission: 1/1.

5

Ako je zadana diferencijalna jednadžba kojom je opisan sustav

 $\psi(t) + 5y(t) = u(t)$  i funkcija pobude  $u(t) = 5\sin(10t)$ , tada su amplitudna i fazna karakteristika sustava jednake:

$$\square$$
 a.  $\angle H(j\Omega) = \arctan(\frac{1}{5}), |H(j\Omega)| = \sqrt{\frac{1}{25+\Omega^2}}$ 

$$\square_{\text{b.}} \angle H(j\Omega) = \arctan(\frac{-i\Omega\Omega}{5}), |H(j\Omega)| = \sqrt{\frac{1}{25+\Omega^2}}$$

$$\square_{\text{c.}} \ \angle H(j\Omega) = \arctan(\frac{-\Omega}{5}), |H(j\Omega)| = \sqrt{\frac{1}{\Omega^2}}$$

$$\square$$
 d.  $\angle H(j\Omega) = \arctan(\frac{-\Omega}{5}), |H(j\Omega)| = \sqrt{\frac{25}{\Omega^2}}$ 

$$\mathbf{E}$$
 e.  $\angle H(j\Omega) = \arctan(\frac{-\Omega}{5}), |H(j\Omega)| = \sqrt{\frac{1}{28 \cdot 10^2}}$  Bravo, bravo!  $\mathbf{\Theta}$ 

Točno

Marks for this submission: 1/1.

6

Na ulaz sustava čija je prijenosna funkcija dana izrazom  $H(s) = \frac{5s}{2s+s^2}$  dovedena je harmonijska pobuda jedinične amplitude i kutne frekvencije

 $\Omega = 1 \mathrm{rad/s}$ . Koliko iznosi amplituda prisilnog odziva?

- a. -5
- D b. 1
- $\square$  c.  $\frac{1}{\sqrt{5}}$
- C d. 5

$$oldsymbol{\mathbb{E}}_{ ext{e.}} \sqrt{5} \, ext{Bravo, bravo!} \, oldsymbol{\mathbb{G}}$$

Točno

Marks: 1

 $H(z)=\frac{1}{z-\frac{\sqrt{2}}{2}}.$  Prijenosna funkcija sustava je signalom  $\cos(\frac{\pi}{4}n)$  prisilni odziv sustava je:

$$\square$$
 a.  $\cos(-\frac{\sqrt{2}}{4}\pi n)$ 

U b. 
$$\sqrt{2}\cos(\frac{\pi}{4}n)$$
 Vrijednost frekvencijske krakteristike u  $\frac{\pi}{2}$  je  $-j\sqrt{2}$  što nam daje pojačanje od  $\sqrt{2}$ i fazni pomak od  $-\pi/2$ !

nam daje pojačan 
$$\operatorname{C}_{\operatorname{C.}}\sqrt{2}\sin(\frac{\pi}{4}n)$$
 TOČAN JE C.

$$\stackrel{\text{d.}}{=} \frac{\frac{1}{\sqrt{2}} \sin(\frac{\pi}{4}n + \frac{\pi}{2})$$

$$\Box_{e}^{2} \sin(\frac{\pi}{4}n)$$

Netočno

Marks for this submission: -0.25/1. This submission attracted a penalty of 0.1.

1

Marks: 1

Imamo li zadanu prijenosnu funkciju stabilnog kontinuiranog LTI sustava H(s), frekvencijsku karakteristiku sustava  $H(\Omega)$  možemo odrediti ako kompleksnu varijablu s zamijenimo s:

$$\square$$
 a  $\alpha + j\beta$ 

$$\square$$
 c.  $\sigma + j\Omega$ 

$$\mathbf{E}$$
 d.  $j\Omega$  Bravo!  $\mathbf{\Theta}$ 

Točno

Marks: 1

Zvonko Vam zadaje jednadžbu diferencija  $y(n+1) = \frac{1}{10}(y(n) + u(n))_{i \text{ traži da}}$  napišete frekvencijsku karakteristiku. Spremno odgovarate:

$$\mathbf{E}_{a} H(e^{i\omega}) = \frac{1}{1000 - 1}$$
 Bravo, točan odgovor!

$$\mathbb{E}_{\mathbf{b}} H(z) = \frac{1}{10z-1}$$

$$\square_{c} H(e^{j\omega}) = \frac{1}{e^{j\omega}-1}$$

$$\square \quad _{\mathbf{d}} \ H(z) = \frac{\frac{1}{10}}{z-1}$$

$$\square_{e.} H(e^{jw}) = \frac{1}{e^{jw} - 10}$$

Točno

Marks for this submission: 1/1.

3

Marks: 1

Sustav čija je prijenosna funkcija  $H(s) = \frac{1}{s-1}$ pobuđen je funkcijom oblika  $u(t) = 2\sin(t) + \cos(t)$ . Koji od izraz predstavlja prisilni odziv sustava?

$$\square_{b} y(t) = \frac{1}{2} \left( 3e^{t} - \sin(t) \right)$$

$$y(t) = \frac{1}{2}(3e^t - 3\cos(t))$$

$$\Box_{d} y(t) = \frac{1}{2}(3e^{t} - 3\cos(t) - \sin(t))$$

$$\mathbf{p}_{e} = y(t) - \frac{1}{10} \left( 3e^{t} - 3\cos(t) - \sin(t) \right)$$

Točno

Marks for this submission: 1/1.

Marks: 1

Neka je sustav opisan prijenosnom funkcijom polove ( $p_j$ ) sustava!  $H(s) = \binom{s-1}{s-3}\binom{s-2}{s-4}$ . Odredi nule ( $p_j$ ) i polove ( $p_j$ ) sustava!

$$c_1 s_1 = -1, s_2 = -2, p_1 = 3, p_2 = 4$$

$$\mathbf{E}_{b_1} s_1 = 1, s_2 = 2, p_1 = 3, p_2 = 4$$
 Bravo!  $\mathbf{\Theta}$ 

$$c$$
  $s_1 = -1, s_2 = -2, p_1 = -3, p_2 = -4$ 

$$S_1 = -3, S_2 = -4, p_1 = 1, p_2 = 2$$

$$c_1 c_2 s_1 = 3, s_2 = 4, p_1 = 1, p_2 = 2$$

Točno

Sustav s amplitudno-frekvencijskom karakteristikom  $H(e^{j\omega})-2e^{-j\omega}$  uz pobudu  $u(n)=5\cos(4n)$  daje prisilni odziv:

$$\Box$$
 a  $4\cos(5n)$ 

$$b = 5\cos(-4n + 5)$$

$$\mathbf{E}_{c}$$
 10  $\mathbf{eos}(4n-4)$  Bravo, točan odgovor!

$$\Box_{d} 10 \sin(4n + 5)$$

$$\square$$
 e  $10\cos(-j\omega 4n)$ 

Točno

Marks for this submission: 1/1.

6

Ako je zadana funkcija pobude  $u(t)=e^{11t}$ i diferencijalna jednadžba g(t)+by(t)=u(t), tada je fazna frekvencijska karakteristika sustava:

$$\mathbb{E}_{a.} \angle H(j\Omega) = \arctan(\frac{\partial\Omega}{\partial x})$$
 Bravo, bravo!!  $\Theta$ 

$$\square_{-b} \angle H(j\Omega) = \arctan(\Omega^2)$$

$$\square$$
  $_{c}$   $\angle H(j\Omega) = \arctan(5\Omega)$ 

$$\square$$
 d  $\angle H(j\Omega) = \arctan(\Omega)$ 

$$\square_{\mathrm{e.}} \angle H(j\Omega) = \operatorname{arctan}(\Omega^3)$$

Točno

Marks for this submission: 1/1.

7

Jednadžba diferencija  $(3+4E^{-1}+2E^{-2})y(n)=(1+5E^{-1})u(n)$  ima sljedeću prijenosnu funkciju:

$$\square \quad _{\rm a.} H(z) = \frac{3z^2 - 4z + 2}{z^2 + 5z}$$

$$\qquad \qquad \mathbf{E} \quad _{\mathrm{b.}} H(z) = \frac{\mathbf{3}z^2 + z}{z^2 + 2z + 1}$$

$$\Box$$
 c.  $H(z) = \frac{z^2 + 3z}{z + 2}$ 

$$\square \quad _{\rm d.} H(z) = \frac{z^2 + 3z}{2z^2 + 4z + 2}$$

$$E \quad H(z) = \frac{z^2 + 5z}{3z^2 - 4z + 2}$$
 Bravo, točan odgovor!

Točno

Marks: 1 Izrazom

$$\varphi(\omega) = \arg(H(e^{j\omega})) = \begin{cases} \arctan\frac{\operatorname{Im}[H(e^{j\omega})]}{\operatorname{Re}[H(e^{j\omega})]}, & \operatorname{Re}[H(e^{j\omega})] > 0 \\ \frac{\pi}{2}\operatorname{sign}(\operatorname{Im}[H(e^{j\omega})]), & \operatorname{Re}[H(e^{j\omega})] = 0 \\ -\operatorname{arctg}\frac{\operatorname{Im}[H(e^{j\omega})]}{\operatorname{Re}[H(e^{j\omega})]} + \frac{\pi}{2}\operatorname{sign}(\operatorname{Im}[H(e^{j\omega})]), & \operatorname{Re}[H(e^{j\omega})] < 0 \end{cases}$$
where  $\alpha$  is in  $\alpha$  and  $\alpha$  is  $\alpha$  and  $\alpha$  in  $\alpha$  and  $\alpha$  in  $\alpha$  in  $\alpha$  and  $\alpha$  in  $\alpha$ 

, gdje je  $H(e^{j\omega}) = A(\omega)e^{j\varphi(\omega)}$  definirana je:

- a. fazna karakteristika Bravo, ispravan odgovor!
- b. prijelazna karakteristika
- c. statička karakteristika
- d. frekvencijska karakteristika
- e. amplitudna karakteristika

Točno

Marks for this submission: 1/1.

2

Marks: 1

Jednadžba diferencija 2y(n) + 5y(n-1) = u(n) ima sljedeću prijenosnu funkciju:

$$\square \quad _{\mathrm{a.}}H(z)=\frac{z^2+3z}{5z+2}$$

$$\mathbb{E}_{b.} H(z) = \frac{z^2 + 3z}{2z^2 + 4z + 2}$$

$$\square \quad _{\text{c.}} H(z) = \frac{3z^2 + z}{z^2 + 2z + 1}$$

$$\square \quad _{\mathbf{d}} \ H(z) = \frac{2z+5}{z}$$

$$E \quad _{\rm e.} H(z) = \frac{z}{2z+5} \qquad \qquad {\rm Bravo, \ to\check{c}an \ odgovor!} \ \Theta$$

Točno

Zadana je prijenosna funkcija sustava 
$$H(s) = \frac{1}{s-5}$$
. Odredi vrijednost faze na kutnoj frekvenciji  $\Omega = 5$ !

- $\square$  a.  $\frac{5\pi}{6}$
- $\square$  b  $\frac{3\pi}{2}$
- $\square$  c.  $\frac{\pi}{3}$
- $\square$  e.  $\frac{\pi}{8}$

Točno

Marks for this submission: 1/1.

4

Signal  $\cos(\omega n)+2\sin(2\omega n)$  pobuduje sustav s amplitudno-frekvencijskom karakteristikom  $H(e^{j\omega})=2e^{-j\omega\frac{\pi}{2}}$ . Prisilni odziv je:

- $\square = \frac{n}{2}\cos(\omega n) + \pi \sin(2\omega n)$
- $\square$  b  $2\cos(\omega n + \frac{\pi}{2}) + 2\sin(2\omega n + \pi)$
- $\mathbb{E} \left[ 2\cos(\omega n \omega \frac{\pi}{2}) + 4\sin(2\omega n \omega \pi) \right]_{\text{Izvrsno!}} \oplus$
- $\Box$  d  $\cos(\frac{\pi}{2}\omega n) + 2\sin(\pi \omega n)$
- $\square_{e.} 2\cos(\omega n) + 4\sin(2\omega n)$

Točno

Marks for this submission: 1/1.

5

Funkcija 
$$H(s)=rac{Y(s)}{U(s)}=rac{b_{N-M}s^M+b_{N-M+1}s^{M-1}+...+b_N}{s^N+s_1s^{N-1}+...+a_N}$$
 naziva se:

- a. Step funkcija sustava
- 🖸 b. Težinska funkcija sustava
- c. Prijenosna funkcija sustava Točan odgovor!
- d. Slobodni odziv sustava
- e. Prijelazna funkcija sustava

Točno

Marks: 1

Ako je zadana funkcija pobude  $u(t)=e^{14t}$ i diferencijalna jednadžba by(t)+y(t)-u(t), tada je fazna frekvencijska karakteristika sustava:

$$\square$$
 <sub>a</sub>  $\angle H(j\Omega) = \arctan(\frac{-4\Omega}{\Omega^2})$ 

$$\square_{\mathbf{b}} \angle H(j\Omega) = \arctan(\frac{\pi}{2})$$

$$\square \ _{c} \ \angle H(j\Omega) = \arctan(\Omega)$$

$$\square_{d} \angle H(j\Omega) = \arctan(=)$$

$$\mathbf{E}_{e.} \angle H(j\Omega) = \operatorname{arctan}(-5\Omega)$$
 Bravo, bravo!  $\mathbf{\Theta}$ 

Točno

Marks for this submission: 1/1.

7

Marks: 1

Frekvencijsku karakteristiku stabilnog kontinuiranog LTI sustava osim rastava na realni i imaginarni dio  $H(I\Omega) = \text{Re}[H(I\Omega)] + I Im[H(I\Omega)]$  moguće je napisati i u polarnom obliku:

$$\square$$
 a.  $H(j\Omega) = \sqrt{H(j\Omega)^2 + \left(e^{j \log H(j\Omega)}\right)^2}$ 

$$\square \quad b \quad H(j\Omega) = |H(j\Omega)|$$

$$\square$$
 d.  $H(j\Omega) = H(j\Omega)e^{j\arg H(j\Omega)}$ 

$$\square = H(j\Omega) = |H(j\Omega)| e^{-j \cos H(j\Omega)}$$

Točno

Marks for this submission: 1/1.

1.

Odziv sustava na pobudu  $u(t) = Ce^{i\alpha t}$ , gdje su C i  $\alpha$  konstante, nazivamo:

- a. Odziv na harmonijsku ili sinusnu pobudu
- b. Impulsni odziv sustava
- C. Odziv na step
- d. Odziv nepobuđenog sustava
- e. Odziv na rampu

Netočno

Marks for this submission: -0.25/1. This submission attracted a penalty of 0.1.

Marks: 1

Ako je zadana funkcija pobude  $u(t)=e^{ik}$ i diferencijalna jednadžba g(t)+5y(t)=u(t), tada je frekvencijska karakteristika sustava:

$$\mathbb{E}_{a} H(j\Omega) = \frac{1}{6j\Omega - iS}$$
 Bravo! Točan odgovor!

$$\square_{b} H(j\Omega) = \frac{1}{\Omega^2}$$

$$\square$$
  $_{\rm C}$   $H(j\Omega)=-\Omega^2$ 

$$\square$$
 d  $H(j\Omega) = \frac{8j\Omega}{\Omega^2}$ 

$$\square \quad _{\mathbf{e}} \quad H(j\Omega) = 5j\Omega = \Omega^{2}$$

Točno

Marks for this submission: 1/1.

3

Marks: 1

Zadana je prijenosna funkcija sustava  $H(s) = \frac{1}{s-1}$ . Ako je sustav pobuđen funkcijom  $u(t) = 2\cos(t)$ , uz nulte početne uvjete, tada je prisilni odziv sustava dan izrazom:

$$\square \quad \text{a} \quad y(t) = \cos(t) + 2\sin(t)$$

$$\square_{\text{b.}} y(t) = e^{2t} - 2\cos(t) + \sin(t)$$

$$\mathbf{E}_{\mathbf{C}} y(t) = -\cos(t) + \sin(t)$$
 Bravo, bravo!

$$\square_{-d} \ y(t) = e^{2t} - \cos(t) + \sin(t)$$

Točno

Marks for this submission: 1/1.

4

Samo jedna od navedenih prijenosnih funkcija odgovara sustavu koji ima zadane polove:  $p_1=-2$ ,  $p_2=-3$ ,  $p_3=-10$ . Ako sustav nema nula, odredi tu prijenosnu funkciju!

$$H(s) = (s+2)(s+3)(s+10)$$

$$\Pi(s) = \frac{1}{(s-2)(s-2)(s-10)}$$

$$E = \frac{1}{c} H(s) = (s-2)(s-3)(s-10)$$

$$\square \quad \text{d.} \quad H(s) = \frac{(s+2)}{(s+3)(s+20)}$$

$$E = H(s) = \frac{1}{(s+2)(s+2)(s+10)}$$
 Bravo!

Točno

Marks: 1

Amplitudno-frekvencijska karakteristika diskretnog LTI sustava danog

prijenosnom funkcijom  $H(z)=rac{1}{3z^2+2}$ na frekvenciji  $\omega=rac{\pi}{2}$ iznosi:

- a. Frekvencijska karakteristika tog sustava ne postoji!
- □ b. ½
- C c. 3
- d. 1
- © e. ₹

Ne! Uvrstite  $z=e^{j\frac{\pi}{2}}$ i izračunajte apsolutnu vrijednost. Pažljivo! ©

Netočno

Marks for this submission: -0.25/1. This submission attracted a penalty of 0.1.

6

Marks: 1

Odredi prijenosnu funkciju H(z) sustava opisanog diferencijskom jednadžbom y(n)+2y(n-1)=u(n)

$$H(z) = \frac{1}{1+2z^{-1}} - 2y(-1)$$

$$\Box \quad _{\text{b.}} H(z) = \frac{1 - 2y(-1)}{1 + 2z^{-1}}$$

$$E_{\text{c.}} H(z) = \frac{1}{1 + 2z^{-1}}$$
 Tako jest!

$$\Box_{\text{d.}} H(z) = \frac{1 - 2y(-1)}{2 + z^{-1}}$$

$$\mathbb{C}_{\text{e.}} H(z) = \frac{1}{1 + 2z^{-1}} - 2y(-1)$$

Točno

 $H(z) = \frac{5}{(4z-1)(3z-2)}$  Sustav s prijenosnom funkcijom  $\{\dots,1,-1,1,-1,1,-1,1,-1,\dots\}$  . Prisilni odziv sustava je:

$$\Box$$
 a.  $\frac{1}{8}\cos(\pi n)$ 

$$\Box_{b} = \frac{5}{12} \sin(\pi n)$$

$$\square$$
  $\{\ldots,1,0,1,0,\underline{1},0,1,0,1,\ldots\}$ 

$$\mathbb{E}_{d.} \left\{ \dots, \frac{1}{5}, -\frac{1}{5}, \frac{1}{5}, -\frac{1}{5}, \frac{1}{5}, -\frac{1}{5}, \frac{1}{5}, -\frac{1}{5}, \frac{1}{5}, -\frac{1}{5}, \frac{1}{5}, \dots \right\}$$
 Bravo!!

$$\square$$
 e.  $5\cos(-\pi n)$ 

Točno

Marks for this submission: 1/1.

1. Neka je sustav opisan prijenosnom funkcijom  $H(s) = \frac{1}{s^2 + 2s + 3}$ . Odredi diferencijalnu jednadžbu kojom je opisan sustav!

$$\mathbf{E}_{\mathbf{a}} \ddot{y}(t) + 2\dot{y}(t) - 3y(t) = u(t)$$
 Bravo!

$$\Box_{b} \ \dot{y}(t) + 2\dot{y}(t) + 2y(t) = u(t)$$

$$\Box$$
  $\ddot{y}(t) + 2\dot{y}(t) = u(t)$ 

$$\Box \quad d \quad \ddot{y}(t) + 3y(t) = u(t)$$

$$\square \quad e \quad \ddot{y}(t) + 3\dot{y}(t) = u(t)$$

Točno

Marks for this submission: 1/1.

2 Ako je zadana frekvencijska karakteristika kontinuiranog LTI sustava

2 Ako je zadana frekvencijska karakteristika kontinuiranog LTI sustava 
$$H(j\Omega) = \frac{5j\Omega - 3}{4 + 4j\Omega - \Omega^2}$$
, prijenosna funkcija sustava  $H(s)$  je:

$$\Box \quad _{a.} H(s) = \frac{5s - 3}{4s^2 - 2s - 4}$$

$$\Box_{b} H(s) = s^2 + 4s + 4$$

$$E_{c.} H(s) = \frac{5s-3}{s^2+4s+4} \quad \text{Bravo!} \supseteq$$

$$\Box$$
 d.  $H(s) = 5s$ 

$$E = H(s) = \frac{5s}{4s^2 + 4s + 1}$$

Točno

Marks: 1

Zadana je prijenosna funkcija sustava  $H(s)=\frac{1}{s-1}$ . Ako je sustav pobuđen funkcijom  $u(t)=2\cos(t)$ , uz nulte početne uvjete, tada je ukupni odziv sustava dan izrazom:

$$\square_{\mathbf{b}, \mathbf{c}} y(t) = e^{2t} - \cos(t) + \sin(t)$$

$$x = \int_{0}^{\infty} y(t) = e^{3t} - 2\cos(t) + \sin(t)$$

$$\mathbf{E}_{d} y(t) = e^{t} - \cos(t) + \sin(t)$$
 Bravo, bravo!

$$\mathbf{c}_{\mathbf{e}} \ y(t) = \cos(t) + 2\sin(t)$$

Točno

Marks for this submission: 1/1.

### 4

Marks: 1

Sustav s amplitudno-frekvencijskom karakteristikom  $H(e^{j\omega})=2e^{-j\omega}$  uz pobudu  $u(n)=5\cos(4n)$  daje prisilni odziv:

$$\square$$
 a  $4\cos(5n)$ 

$$\Box_{b}$$
 5cos(-4n+5)

$$\mathbf{E}_{c} = \mathbf{10}\cos(4n - \mathbf{4})$$
 Bravo, točan odgovor!

$$\Box_{d} = 10 \sin(4n + 5)$$

$$\square$$
 e.  $10\cos(-j\omega 4n)$ 

Točno

Marks: 1

Jednadžba diferencija  $y(n) + 5y(n-1) = u(n)_{\text{ima sljedeću prijenosnu funkciju:}}$ 

$$\Box \quad _{\text{a.}} H(z) = \frac{3z^2 + z}{z^2 + 2z + 1}$$

Bravo, točan odgovor!

$$\Box \quad _{\text{c.}} H(z) = \frac{z+5}{z}$$

$$\square_{\rm d.} H(z) = \frac{z^2 + 3z}{2z^2 + 4z + 2}$$

$$\square_{\rm e.} H(z) = \frac{z^2 + 3z}{z + 2}$$

Točno

Marks for this submission: 1/1.

6

Marks: 1

Amplitudna frekvencijska karakteristika diskretnog LTI sustava danog prijenosnom

funkcijom 
$$H(z) = \frac{1}{z^2 + 3}$$
 na frekvenciji  $\omega = \frac{3}{2}$  poprima vrijednost:

- a. Frekvencijska karakteristika tog sustava ne postoji jer sustav nije stabilan!
- **E** b.  $\frac{1}{2}$

Sustav je nestabilan! Frekvencijska karakteristika stoga ne postoji!

- C c. 3
- C d. 1
- $\square \quad e. \ \frac{1}{4}$

Netočno

Marks for this submission: -0.25/1. This submission attracted a penalty of 0.1.

7

Marks: 1

Neka je zadana eksponencijalna funkcija  $f(t) = Ue^{it}$ . Deriviranjem ove funkcije dobivamo konstantnu vrijednost.

Odgovor:

Točno E Netočno

Marks: 1

Zadana je prijenosna funkcija sustava  $H(s) = \frac{1}{s-1}$ . Ako je sustav pobuđen funkcijom  $u(t) = 2\cos(t)$ , uz nulte početne uvjete, tada je ukupni odziv sustava dan izrazom:

$$\square_{a,} y(t) = e^{3t} - 2\cos(t) + \sin(t)$$

$$\mathbf{E}_{\mathbf{b}} y(t) = -\cos(t) + \sin(t)$$

$$\Box \quad d \quad y(t) = e^{2t} - \cos(t) + \sin(t)$$

$$\ \, \mathop{\square}_{\rm e.} \, y(t) = \cos(t) + 2\sin(t)$$

Netočno

Marks for this submission: -0.25/1. This submission attracted a penalty of 0.1.

2

Marks: 1

Postoji frekvencijska karakteristika diskretnog LTI sustava danog prijenosnom

$$H(z) = \frac{1}{z + 15!}$$

funkcijom

Odgovor:

E Točno Netočno

Karakteristika ne postoji jer sustav nije stabilan!

Netočno

Marks for this submission: 0/1. This submission attracted a penalty of 1.

3

Marks: 1

Sustav s prijenosnom funkcijom 
$$H(z)=\frac{3}{(2z-1)(5z-1)}_{\text{pobuđen je}}$$
 signalom  $\frac{1}{8}e^{-\frac{\pi}{n}}\sin(\pi n)\cos(\frac{2}{3}n+\pi)+6\cos(\pi n)$ . Odziv sustava na ovu pobudu u stacionarnom stanju je:

$$\Box_{a. \frac{3}{80}}\cos(\frac{2}{3}n+\pi)$$

$$c. \frac{1}{8}e^{-n}\sin(3\pi n)\cos(2n+3\pi) + \sin(3\pi n)$$

 $\square$  d.  $\sin(2\pi n)$ 

$$\square$$
 e.  $48\cos(\pi n)$ 

Točno

Marks: 1

Prijenosnoj funkciji 
$$H(z) = \frac{z^2 + 3}{z^2 + 2z + 1}$$
 odgovara sljedeća jednadžba diferencija:

$$y(n) + 2y(n-1) + y(n-2) = 2u(n) + 3u(n-2)$$

$$\mathbb{D}_{-\mathbf{b}} \ y^2(n) + 2y(n-1) + y(n-2) = u(n) + 3u(n-1)$$

$$y(n) + 2y(n-1) + y(n-2) = u(n) + 3u(n-2)$$

$$y(n) + 3y(n-2) = u(n) + 2u(n-1) + u(n-2)$$

$$\mathbf{E}_{\mathbf{e}_{n}} y(n+1) + 2y(n) + y(n-1) = u(n) + 3u(n-1)$$

Netočno

Marks for this submission: -0.25/1. This submission attracted a penalty of 0.1.

5

Marks: 1

Neka su zadani polovi sustava:  $p_1 = 1 + j_1 p_2 = 1 - j$ . Kojom je diferencijalnom jednadžbom opisan sustav?

$$\Box_{a} \ \ddot{y}(t) - 2 = u(t)$$

$$\mathbf{E}_{\mathrm{C}} \ \ddot{y}(t) - 2\dot{y}(t) + 2y(t) = u(t)$$
 Bravo, bravo!

$$y(t) - 2\dot{y}(t) + 2 = u(t)$$

$$\square$$
 e.  $\ddot{y}(t) - 2\dot{y}(t) = u(t)$ 

Točno

Marks for this submission: 1/1.

6

Marks: 1

Ako je zadana funkcija pobude  $u(t)=e^{it}$  i frekvencijska karakteristika  $H(j\Omega)=\frac{1}{sj\Omega-t\Omega^2}$ , tada je diferencijalna jednadžba sustava:

$$\square \quad \text{a. } 5\ddot{y}(t) + 10\dot{y}(t) = u(t)$$

$$\mathbf{D}_{\mathbf{b}} \mathbf{6} \dot{y}(t) = u(t)$$

$$\Box = 4\ddot{y}(t) + 6\dot{y}(t) + 3y(t) = u(t)$$

$$\blacksquare$$
 d.  $4\ddot{y}(t) + 6\dot{y}(t) = u(t)$  Bravo!

$$\square$$
 e.  $4\ddot{y}(t) = u(t)$ 

Točno

Marks: 1

Amplitudna karakteristika H(I) kontinuiranog stabilnog LTI sustava određena je izrazom:

$$\Box_{a.} \sqrt{\operatorname{Re}^{2}[H(j\Omega)] - \operatorname{Im}^{2}[H(j\Omega)]}$$

$$\Box_{b.} \operatorname{Re}[H(j\Omega)] + \operatorname{Im}[H(j\Omega)]$$

$$\Box_{c.} \sqrt{\operatorname{Re}[H(j\Omega)] + \operatorname{Im}[H(j\Omega)]}$$

$$\Box_{d.} \operatorname{Im}[H(j\Omega)]$$

$$\Box_{d.} \sqrt{\operatorname{Re}^{2}[H(j\Omega)] + \operatorname{Im}^{2}[H(j\Omega)]} \text{ Bravo! } \odot$$
Točno

1

Marks: 1

Fazna karakteristika definirana je na sljedeći način:

$$\begin{split} & \boxtimes_{\mathbf{a}} \varphi(\omega) = \arg \big( H(e^{j\omega}) \big) \\ & \boxtimes_{\mathbf{b}} \varphi(\omega) = \operatorname{aretg} \frac{\operatorname{Im}[R(e^{j\omega})]}{\operatorname{Re}[R(e^{j\omega})]} \\ & \boxtimes_{\mathbf{c}} \varphi(\omega) = \operatorname{aretg} \frac{\operatorname{Re}[R(e^{j\omega})]}{\operatorname{Im}[R(e^{j\omega})]^2} \\ & \boxtimes_{\mathbf{d}} \varphi(\omega) = \sqrt{\operatorname{Re}[H(e^{j\omega})]^2 + \operatorname{Im}[H(e^{j\omega})]^2} \\ & \boxtimes_{\mathbf{e}} \varphi(\omega) = \operatorname{tg} \frac{\operatorname{Im}[R(e^{j\omega})]}{\operatorname{Re}[R(e^{j\omega})]} \end{split}$$

2

Ako je zadana diferencijalna jednadžba  $\ddot{y}(t)+2\dot{y}(t)+3y(t)=u(t)$ kojom je opisan sustav, frekvencijska karakteristika sustava  $H(j\Omega)$ je:

Točno

Sustav s prijenosnom funkcijom  $H(z)=\frac{3}{(2z-1)(5z-1)}_{\text{pobuđen je signalom}} \sin(\pi n)\cos(\frac{2}{3}n+\pi)+6\cos(\pi n). \text{ Odziv sustava na ovu pobudu u stacionarnom stanju je:}$ 

#### Točno

Marks for this submission: 1/1.

## 4 Marks: 1

Samo jedna od navedenih prijenosnih funkcija odgovara sustavu koji ima zadane polove:  $p_1=-2$ ,  $p_2=-3$ ,  $p_3=-10$ . Ako sustav nema nula, odredi tu prijenosnu funkciju!

E a. 
$$H(s) = \frac{1}{(s+2)(s+3)(s+10)}$$
 Bravo! 3

E b.  $H(s) = \frac{1}{(s-2)(s-3)(s-10)}$ 

E c.  $H(s) = (s-2)(s-3)(s-10)$ 

E d.  $H(s) = \frac{(s+2)}{(s+3)(s+10)}$ 

E e.  $H(s) = (s+2)(s+3)(s+10)$ 

#### Točno

Marks: 1

Prijenosnoj funkciji 
$$H(z) = \frac{z^2 + 3z}{z^2 + 2z + 1}$$
 odgovara sljedeća jednadžba diferencija:

$$\begin{array}{ll} & \text{a.} & \\ & y^2(n) + 2y(n-1) + y(n-2) = u(n) + 3u(n-1) \\ \\ & \text{E} & \begin{array}{ll} \text{b.} & \\ & y(n) + 2y(n-1) + y(n-2) = u(n) + 3u(n-1) \\ \\ & \text{odgovor!} & \\ & \text{odgovor!} & \\ & \\ & \text{C.} & \\ & y(n) + 3y(n-1) = u(n) + 2u(n-1) + u(n-2) \\ \\ & \text{C.} & \\ & y(n) + 2y(n-1) + y(n-2) = 2u(n) + 3u(n-2) \\ \end{array}$$

Točno

Marks for this submission: 1/1.

6

Marks: 1

Dio frekvencijske karakteristike stabilnog kontinuiranog LTI sustava opisan

y(n+1) + 2y(n) + y(n-1) = u(n) + 3u(n-1)

$$|H(j\Omega)| = \sqrt{\operatorname{Re}^2[H(j\Omega)] + \operatorname{Im}^2[H(j\Omega)]}$$
 nazivamo:

- a. realni dio frekvencijske karakteristike
- b. dio frekvencijske karakteristike izazvan funkcijom
- d. fazna frekvencijska karakteristika
- e. imaginarni dio frekvencijske karakteristike

Točno

Marks: 1

Zadana je prijenosna funkcija  $H(s)=rac{1}{s-5}$ . Odredi vrijednost amplitude na kutnoj frekvenciji  $\Omega=\sqrt{200}$ !

$$\square$$
 a.  $\frac{4}{15}$ 

$$\mathbf{E}_{\text{b.}} \frac{\mathbf{1}}{\mathbf{15}} \text{Točan odgovor!} \mathbf{\Theta}$$

$$\square \quad \frac{25}{15}$$

$$\square$$
 d.  $\frac{2}{15}$ 

Točno

Marks for this submission: 1/1.

1

Marks: 1

Ako je zadana funkcija pobude  $u(t)=e^{\mathbf{i}t}$  i diferencijalna jednadžba  $\mathbf{y}(t)+\mathbf{5}\mathbf{y}(t)=u(t)$ , tada je frekvencijska karakteristika sustava:

$$\mathbb{E}$$
 a.  $H(j\Omega) = \frac{1}{M\Omega - \Omega^2}$  Bravo! Točan odgovor!

$$\Box_{b} H(j\Omega) = -\Omega^2$$

$$\square$$
  $_{\mathrm{C}}$   $H(j\Omega)=\frac{1}{\Omega^2}$ 

$$\square_{-\mathbf{d}} \ H(j\Omega) = \emptyset j\Omega = \Omega^2$$

$$\square$$
 e.  $H(j\Omega) = \frac{5j\Omega}{\Omega^2}$ 

Točno

Marks: 1

 $H(z)=\frac{1}{2z-1}$ . Sustav pobuđujemo stalnim signalom (konstantom) amplitude 2. Prisilni odziv je:

- $\square$  a.  $2e^{-jrac{n}{2}}$
- $\square$  b.  $\cos(2n-\frac{1}{2})$
- C c. 2
- $\square$  d. 1
- $\mathbb{E}_{e,\frac{1}{2}}$

3

Marks: 1

Amplitudno-frekvencijska karakteristika diskretnog LTI sustava danog

prijenosnom funkcijom  $H(z)=rac{1}{3z-1}$ na frekvenciji  $\omega=\pi$  iznosi:

- a. Frekvencijska karakteristika tog sustava ne postoji!
- $\mathbb{D}_{b.\frac{1}{2}}$
- $\square$  C.  $\frac{1}{3}$
- $\square$  d. 1
- e. 1/4

4

Marks: 1

Funkciju pobude  $\,u(t)=Ue^{st}=Ue^{j\Omega\,t}\,$ , gdje je  $s=j\Omega$  konstanta, možemo zapisati:

$$\ \, \bigsqcup_{a.} \ \, u(t) = U \cos(\Omega t) - jU \sin(\Omega t)$$

$$u(t) = U \cos(\Omega t) + jU \sin(\Omega t)$$
 Bravo!

$$\square$$
 d.  $u(t) = U \cos(\Omega t)$ 

$$\Box$$
 e  $u(t) = jU\sin(\Omega t)$ 

Točno

Marks: 1

Neka su zadani polovi sustava:  $p_1 - 1 + j_1 p_2 = 1 - j$ . Kojom je diferencijalnom jednadžbom opisan sustav?

$$\Box_{a} \ \dot{y}(t) - 2 = u(t)$$

$$\square_{-\mathrm{b.}} \ \ddot{y}(t) - 2\dot{y}(t) = u(t)$$

$$\square_{\text{C.}} \ \ddot{y}(t) - 2y(t) = u(t)$$

$$\Box d \dot{y}(t) - 2\dot{y}(t) + 2 = u(t)$$

$$\mathbf{E}_{\mathbf{e}_{\mathbf{e}}} \dot{y}(t) - 2\dot{y}(t) + 2\dot{y}(t) = u(t)$$
 Bravo, bravo!

Točno

Marks for this submission: 1/1.

6

Marks: 1

Prijenosnu funkciju diskretnog LTI sustava dobijemo tako da u operatorskom zapisu zamijenimo operator pomaka unazad \*\*\* sa kompleksnom varijablom:

$$\mathbf{E}_{\mathbf{a}} z^{-1}$$
 Bravo, točan odgovor!

$$\Box$$
 b.  $z^{-2}$ 

$$\square$$
 c.  $z^2$ 

$$\square$$
 d.  $2z$ 

Točno

Marks for this submission: 1/1.

7

Marks: 1

Zadana je prijenosna funkcija sustava  $H(s)=\frac{1}{s-5}$ . Odredi vrijednost faze na kutnoj frekvenciji  $\Omega=5$ !

$$\square$$
 a.  $\frac{3\pi}{2}$ 

$$\square \quad \frac{3\pi}{6}$$

$$\square$$
 c.  $\frac{\pi}{3}$ 

$$\Box$$
  $\frac{\pi}{2}$ 

Točno

Točno Netočno

```
1
Marks: --/1
Amplitudno-frekvencijska karakteristika A^{(\omega)}dana je sljedećim izrazom:
   A(\omega) = \sqrt{\text{Re}[H(e^{j\omega})]^2 + \text{Im}[H(e^{j\omega})]^2}
\square_{b} A(\omega) = \sqrt{\text{Re}[H(e^{j\omega})] + \text{Im}[H(e^{j\omega})]}
\square_{c.} A(\omega) = \text{Re}[H(e^{j\omega})]^2
\square d A(\omega) = \operatorname{Re}[H(e^{\frac{1}{2}\omega})]
\square e. A(\omega) = \operatorname{Im}[H(e^{j\omega})]^2
2
Marks: --/1
Na ulaz sustava čija je frekvencijska karakteristika dana izrazom
H(j\Omega) = rac{1}{\sqrt{7j}\Omega - \Omega^2}dovedena je harmonijska pobuda jedinične amplitude i kutne
frekvencije \Omega = 3rad/s . Kolika je amplituda prisilnog odziva?
\square a. \frac{1}{12}
b. 0
\square C. \frac{\sqrt{2}}{2}
C d. 1

□ e. ∞

3
Marks: --/1
Kako izgleda diferencijalna jednadžba stabilnog, kauzalnog sustava čija je
frekvencijska karakterstika dana izrazom: H(j\Omega) = \frac{1}{5j\Omega - \Omega^2}?
\Box = \dot{y}(t) + 5\dot{y}(t) = u(t)
\square b. 5\ddot{y}(t) + \dot{y}(t) = u(t)
\Box c. 5\dot{y}(t) = u(t)
 \square_{\rm d.} \ \ddot{y}(t) = u(t)
\square e. 10\dot{y}(t) + 5\dot{y}(t) = u(t)
Marks: --/1
Postoji frekvencijska karakteristika stabilnog kauzalnog kontinuiranog LTI
sustava!
Odgovor:
```

Marks: --/1

Perica je dobio za domaću zadaću izračunati odziv u stacionarnom stanju

$$H(z) = rac{-\sqrt{2}}{z - rac{1}{\sqrt{2}}}$$
. Bio je vrlo

sustava amplitudno-frekvencijske karakteristike nesretan zbog zadane pobude

$$u(n) = e^{-\sqrt{2}n} \cos(\frac{\pi}{\sqrt{2}}n - \sqrt{2}) + \frac{1}{\sqrt{2}} \sin(-\frac{\pi}{4}n)$$

 $u(n)=e^{-\sqrt{2}n}\cos(\frac{\pi}{\sqrt{2}}n-\sqrt{2})+\frac{1}{\sqrt{2}}\sin(-\frac{\pi}{4}n)$  , no onda se sjetio da se traži stacionarno stanje! Odziv koji će Perici donijeti puni broj bodova je:

$$\square_{a} \cos(-\frac{\sqrt{2}}{4}\pi n)$$

$$\Box \quad \frac{1}{5} = -\sqrt{2}\cos(-\frac{\pi}{4}n)$$

$$\Box_{c} -\sqrt{2}\cos(\frac{\pi}{4}n)$$

$$\Box_{d} = \frac{1}{\sqrt{2}} \sin(-\frac{\pi}{4}n - \sqrt{2})$$

$$\square_{\rm e.} 2e^{-\sqrt{2}n}\sin(\sqrt{2}n)$$

6

Marks: --/1

Odredi prijenosnu funkciju H(z) sustava opisanog diferencijskom jednadžbom y(n) + 2y(n-1) = u(n)

$$H(z) = \frac{1}{1+2z^{-1}} - 2y(-1)$$

$$H(z) = \frac{1}{1 + 2z^{-1}} - 2y(-1)$$

$$E_{c} H(z) = \frac{1 - 2y(-1)}{2 + z^{-1}}$$

$$\mathbb{D}_{d} H(z) = \frac{1 - 2y(-1)}{1 + 2z^{-1}}$$

Marks: --/1

Neka je sustav opisan diferencijalnom jednadžbom y(t) + 2y(t) + y(t) = u(t). Odredi polove prijenosne funkcije!

$$p_1 = -1, p_2 = -1$$

$$p_1 = 1, p_2 = 1$$

$$\square_{-0}, p_1 = 0, p_2 = 0$$

$$p_1 = 0, p_2 = -1$$

$$p_1 = 1, p_2 = -1$$

1

Marks: 1

Odziv sustava na pobudu  $u(t) = Ce^{jat}$ , gdje su C i a konstante, nazivamo:

- a. Impulsni odziv sustava
- b. Odziv na harmonijsku ili sinusnu pobudu Točan odgovor!
- C. Odziv na step
- d. Odziv na rampu
- e. Odziv nepobuđenog sustava

Točno

Marks for this submission: 1/1.

2

Marks: 1

Sustav čija je prijenosna funkcija  $H(s) = \frac{1}{s-1}$ pobuđen je funkcijom oblika  $u(t) = 2\sin(t) + \cos(t)$ . Koji od izraz predstavlja ukupan odziv sustava?

$$y(t) = \frac{1}{2}(3e^t - \sin(t))$$

$$y(t) = \frac{1}{2}(3e^{t} - 3\cos(t) - \sin(t))$$

$$y(t) = \frac{1}{2}(3e^t - 3\cos(t))$$

$$\square_{\rm e.} \ y(t) = \tfrac{1}{2} \left( 3\cos(t) - \sin(t) \right)$$

Jednadžba diferencija y(n) + 5y(n-1) = u(n)ima sljedeću prijenosnu funkciju:

$$\square \quad \text{a.} \quad H(z) = \frac{z+5}{z}$$

$$\mathbb{D}_{b.} H(z) = \frac{z^2 + 3z}{z + 2}$$

$$\Box \quad _{\text{c.}} \ H(z) = \frac{3z^2 + z}{z^2 + 2z + 1}$$

$$\Box \ \ H(z) = \frac{z^2 + 3z}{2z^2 + 4z + 2}$$

$$\mathbf{E} \quad \mathbf{e} \quad H(z) = \frac{z}{z + 5}$$

Bravo, točan odgovor! 🥮

Točno

Marks for this submission: 1/1.

#### 4

Marks: 1

Postoji frekvencijska karakteristika diskretnog LTI sustava danog prijenosnom

$$H(z) = \frac{1}{2z - 1}$$

funkcijom

Odgovor:

Točno Netočno

Izvrsno! 🥹

Točno

Marks for this submission: 1/1.

5

Marks: 1

Samo jedna od navedenih prijenosnih funkcija odgovara sustavu koji ima zadane polove:  $p_1 = -2$ ,  $p_2 = -3$ ,  $p_3 = -10$ . Ako sustav nema nula, odredi tu prijenosnu funkciju!

$$H(s) = (s+2)(s+3)(s+10)$$

$$H(s) = \frac{1}{(s-2)(s-2)(s-10)}$$

$$B = H(s) = (s-2)(s-3)(s-10)$$

$$H(s) = \frac{1}{(s+2)(s+2)(s+10)}$$
 Bravo!

$$\mathbb{E}_{e.} H(s) = \frac{(s+2)}{(s+3)(s+10)}$$

Točno

Marks: 1

Perica je dobio za domaću zadaću izračunati odziv u stacionarnom stanju

$$H(z) = rac{-\sqrt{2}}{z - rac{1}{\sqrt{2}}}$$
. Bio je vrlo

sustava amplitudno-frekvencijske karakteristike nesretan zbog zadane pobude

$$u(n) = e^{-\sqrt{2}n} \cos(\frac{\pi}{\sqrt{2}}n - \sqrt{2}) + \frac{1}{\sqrt{2}} \sin(-\frac{\pi}{4}n)$$

 $u(n)=e^{-\sqrt{2}n}\cos(\frac{\pi}{\sqrt{2}}n-\sqrt{2})+\frac{1}{\sqrt{2}}\sin(-\frac{\pi}{4}n)$ , no onda se sjetio da se traži stacionarno stanje! Odziv koji će Perici donijeti puni broj bodova je:

$$\square$$
 a.  $\cos(-\frac{\sqrt{2}}{4}\pi n)$ 

$$\Box_{b} -\sqrt{2}\cos(-\frac{\pi}{4}n)$$

$$\square_{\text{b.}} - \sqrt{2}\cos(-\frac{\pi}{4}n)$$

$$\square_{\text{c.}} - \sqrt{2}\cos(\frac{\pi}{4}n)$$
Bravo, to je to!

$$\square \quad \frac{1}{\sqrt{2}} \operatorname{sin}(-\frac{\pi}{4}n - \sqrt{2})$$

$$\square_{\text{e.}} 2e^{-\sqrt{2}n}\sin(\sqrt{2}n)$$

Točno

Marks for this submission: 1/1.

Marks: 1

Ako je zadana frekvencijska karakteristika kontinuiranog LTI sustava

Ako je zadana frekvencijska karakteristika kontinuiranog LTI susta
$$H(j\Omega)=rac{5j\Omega-3}{4+4j\Omega-\Omega^2}$$
, prijenosna funkcija sustava  $H(s)$  je:

$$H(s) = \frac{5s-3}{4s^2-2s-4}$$

$$B. H(s) = \frac{5s}{4s^2 + 4s + 1}$$

$$\mathbb{E} \quad \mathbf{E} \quad$$

$$\square$$
 d  $H(s) = 5s$ 

$$\Box$$
 e.  $H(s) - s^2 + 4s + 4$ 

Točno

Marks: --/1

Prijenosnoj funkciji 
$$F(z) = \frac{z^2 + 3z}{z^2 + 2z + 1}$$
 odgovara sljedeća jednadžba diferencija:

$$\square$$
 a.  $y(n+1) + 2y(n) + y(n-1) = u(n) + 3u(n-1)$ 

$$\mathbb{C}_{c}$$
  $y(n) + 2y(n-1) + y(n-2) = 2u(n) + 3u(n-2)$ 

$$y(n) - 3y(n-1) = u(n) + 2v(n-1) + u(n-2)$$

$$\square$$
 e.  $y^2(n) + 2y(n-1) + y(n-2) = u(n) + 3u(n-1)$ 

2

Marks: --/1

Perica je dobio za domaću zadaću izračunati odziv u stacionarnom stanju

$$H(z) = rac{-\sqrt{2}}{z - rac{1}{\sqrt{2}}}$$
. Bio je vrlo

sustava amplitudno-frekvencijske karakteristike nesretan zbog zadane pobude

$$u(n) = e^{-\sqrt{2}n} \cos(\frac{\pi}{\sqrt{2}}n - \sqrt{2}) + \frac{1}{\sqrt{2}} \sin(-\frac{\pi}{4}n)$$

 $u(n)=e^{-\sqrt{2}n}\cos(\frac{\pi}{\sqrt{2}}n-\sqrt{2})+\frac{1}{\sqrt{2}}\sin(-\frac{\pi}{4}n)$  , no onda se sjetio da se traži stacionarno stanje! Odziv koji će Perici donijeti puni broj bodova je:

$$\square$$
 a.  $\cos(-\frac{\sqrt{2}}{4}\pi n)$ 

$$\Box \quad b. \quad -\sqrt{2}\cos(-\frac{\pi}{4}n)$$

$$\square_{\text{C.}} -\sqrt{2}\cos(\frac{\pi}{4}n)$$

$$\square$$
 d  $\frac{1}{\sqrt{2}}$  stn $\left(-\frac{\pi}{4}n - \sqrt{2}\right)$ 

$$\square$$
 e.  $2e^{-\sqrt{2}n}\sin(\sqrt{2}n)$ 

3 Marks: --/1

Ako je zadana diferencijalna jednadžba kojom je opisan sustav y(t) + 5y(t) = u(t) i funkcija pobude  $u(t) = 5\sin(10t)$ , tada su amplitudna i fazna karakteristika sustava jednake:

$$\begin{array}{ll} \square & _{\text{a.}} \angle H(j\Omega) = \arctan(\frac{-\Omega}{5}), |H(j\Omega)| = \sqrt{\frac{25}{\Omega^2}} \\ \square & _{\text{b.}} \angle H(j\Omega) = \arctan(\frac{-\Omega}{5}), |H(j\Omega)| = \sqrt{\frac{1}{\Omega^2}} \\ \square & _{\text{c.}} \angle H(j\Omega) = \arctan(\frac{-10\Omega}{5}), |H(j\Omega)| = \sqrt{\frac{1}{25+\Omega^2}} \\ \square & _{\text{d.}} \angle H(j\Omega) = \arctan(\frac{1}{5}), |H(j\Omega)| = \sqrt{\frac{1}{25+\Omega^2}} \end{array}$$

$$\mathbb{Z}$$
  $\angle H(j\Omega) = \arctan(\frac{-\Omega}{5}), |H(j\Omega)| = \sqrt{\frac{1}{25+\Omega^2}}$ 

4

Marks: --/1

Neka je sustav opisan prijenosnom funkcijom  $H(s) = \frac{s-1}{(s-2)(s-3)(s-5)}$ . Odredi nule  $\binom{s_j}{s}$  i polove  $\binom{p_j}{s}$  sustava!

$$s_1 = 2, s_2 = 3, s_3 = 5, p_1 = 1$$

$$c. s_1 = 1, p_1 - 1$$

$$c_1 s_1 = 1, s_2 = 2, p_1 = 1$$

$$s_1 = 1, p_1 = 2, p_2 = 3, p_3 = 5$$

5

Marks: --/1

Zadana je prijenosna funkcija sustava  $H(s) = \frac{1}{s-1}$ . Ako je sustav pobuđen funkcijom  $u(t) = 2\cos(t)$ , uz nulte početne uvjete, tada je prisilni odziv sustava dan izrazom:

$$\square_{\mathrm{b.}} y(t) = e^{3t} - 2\cos(t) + \sin(t)$$

$$y(t) = -\cos(t) + \sin(t)$$

$$\Box \quad d \quad y(t) = e^{2t} - \cos(t) + \sin(t)$$

Marks: --/1

Postoji frekvencijska karakteristika diskretnog LTI sustava danog prijenosnom

$$H(z) = \frac{1}{2z - 1}$$

funkcijom Odgovor:

Točno E Netočno

7

Marks: --/1

土臺)

Dio frekvencijske karakteristike stabilnog kontinuiranog LTI sustava opisan

$$\angle H(j\Omega)$$
 =  $\arctan \frac{\operatorname{Re} H(j\Omega)}{\operatorname{Im} H(j\Omega)}$  nazivamo (za slučaj kada kut ne prelazi  $\pm \frac{1}{2}$  ).

a. realni dio frekvencijske karakteristike

b. fazna frekvencijska karakteristika

C. imaginarni dio frekvencijske karakteristike

d. ništa od navedenoga

e. amplitudna frekvencijska karakteristika

Marks: --/1

 $H(z) = rac{5}{(4z-1)(3z-2)}$  pobuđuje se Sustav s prijenosnom funkcijom (4z-1)(3z-2) pobuđuje se periodičnim signalom  $\{\ldots,1,-1,1,-1,1,-1,1,\ldots\}$ . Prisilni odziv sustava je:

$$\Box_{a,\frac{1}{8}}\cos(\pi n)$$

$$\Box_{b} \frac{5}{12} \sin(\pi n)$$

$$\square$$
 c.  $\{\ldots, 1, 0, 1, 0, \underline{1}, 0, 1, 0, 1, \ldots\}$ 

$$\mathbf{E}_{e}$$
 5  $\cos(-\pi n)$ 

Marks: --/1

Prijenosnoj funkciji 
$$R(z) = \frac{z^2+3}{z^2+2z+1}$$
odgovara sljedeća jednadžba diferencija:

$$u_n = u(n) - 3y(n-2) = u(n) + 2v(n-1) + u(n-2)$$

$$y(n) + 2y(n-1) + y(n-2) = 2u(n) + 3u(n-2)$$

$$\Box_{d} y^{2}(n) + 2y(n-1) + y(n-2) = u(n) + 3u(n-1)$$

3

Marks: --/1

Neka je sustav opisan prijenosnom funkcijom  $H(s)=\frac{s-1}{(s-2)(s-3)(s-5)}$ . Odredi nule  $\binom{s_j}{s}$  i polove  $\binom{p_j}{s}$  sustava!

$$a_1 s_1 = 1, s_2 = 2, p_1 = 1$$

$$s_1 = 1, p_1 = 2, p_2 = 3, p_3 = 5$$

$$c. s_1 = 0, s_2 = 2, p_1 = 2, p_2 = 3, p_3 = 5$$

$$c_{d}$$
  $s_1 = 1, p_1 = 1$ 

$$s_1 = 2, s_2 = 3, s_3 = 5, p_1 = 1$$

4

Marks: --/1

Na ulaz sustava čija je frekvencijska karakteristika dana izrazom  $H(j\Omega)=\frac{1}{j\Omega-5}$  dovedena je harmonijska pobuda jedinične amplitude i kružne frekvencije

 $\Omega = \sqrt{200}$ . Kolika je amplituda prisilnog odziva sustava?

$$\frac{1}{15}$$

$$\mathbb{C}_{d,-\frac{1}{15}}$$

Marks: --/1

Amplitudno-frekvencijska karakteristika diskretnog LTI sustava danog

prijenosnom funkcijom  $H(z)=rac{1}{3z^2+2}$ na frekvenciji  $\omega=rac{\pi}{2}$ iznosi:

- a. Frekvencijska karakteristika tog sustava ne postoji!
- $\square$  b.  $\frac{1}{2}$
- $\square$  C.  $\frac{1}{3}$
- d. 1
- □ e. 5

6

Marks: --/1

Ako je zadana prijenosna funkcija sustava kontinuiranog LTI sustava

$$H(s) = \frac{2s}{3s^2 + s + 5}$$
, frekvencijska karakteristika sustava je:

$$\square$$
 a  $H(j\Omega) = 2j\Omega$ 

$$\square \quad _{\rm b.} \ H(j\Omega) = \frac{2}{5 + j\Omega - 3\Omega^2}$$

$$H(j\Omega) = \frac{2j\Omega}{5 + j\Omega - 3\Omega^2}$$

$$\Box \frac{H(j\Omega) - \frac{2j\Omega}{5 + j\Omega - 3\Omega^2}$$

$$\square$$
 e.  $H(j\Omega) = 5 + j\Omega + 3\Omega^2$ 

7

Marks: --/1

Neka je zadana eksponencijalna funkcija  $f(t) = Ue^{-t}$ . Deriviranjem ove funkcije dobivamo konstantnu vrijednost. Odgovor:

Točno Netočno

Funkcija 
$$H(s) = \frac{Y(s)}{U(s)} = \frac{b_{N-M}s^M + b_{N-M+1}s^{M-1} + \dots + b_N}{s^N + a_1s^{N-1} + \dots + a_N}$$
 naziva se:

- a. Prijelazna funkcija sustava
- b. Težinska funkcija sustava
- C. Slobodni odziv sustava
- d. Step funkcija sustava
- e. Prijenosna funkcija sustava

2

Marks: --/1

Jednadžba diferencija y(n) + 2y(n-1) + y(n-2) = u(n) + 3u(n-1) ima sljedeću prijenosnu funkciju:

$$\Box \quad _{a.} H(z) = \frac{3z^2 + z}{z^2 + 2z + 1}$$

$$\Box \quad _{\text{b.}} H(z) = \frac{z^2 + 2z + 1}{z^2 + 3z}$$

$$\square_{\text{ c. }} H(z) = \frac{z^2 + 3z}{2z^2 + 4z + 2}$$

$$\square \quad H(z) = \frac{z^2 + 3z}{z + 2}$$

$$H(z) = \frac{z^2 + 3z}{z^2 + 2z + 1}$$

3

Marks: --/1

Ako je zadana funkcija pobude  $u(t)=e^{it}$  i diferencijalna jednadžba g(t)+by(t)=u(t), tada je fazna frekvencijska karakteristika sustava:

$$\square_{a} \angle H(j\Omega) = \arctan(\Omega^2)$$

$$\square_{-b}$$
  $\angle H(j\Omega) = \arctan(5\Omega)$ 

$$\square$$
  $_{\Omega}$   $\angle H(j\Omega) = \operatorname{arctan}(\Omega)$ 

$$\square_{\rm d} \angle H(j\Omega) = \arctan(\Omega^3)$$

$$\square$$
  $\angle H(j\Omega) = \arctan(\frac{\omega}{2})$ 

Marks: --/1

Postoji frekvencijska karakteristika diskretnog LTI sustava danog prijenosnom

$$H(z) = \frac{1}{z + 15!}$$

funkcijom Odgovor:

Točno Netočno

5

Marks: --/1

Dio frekvencijske karakteristike stabilnog kontinuiranog LTI sustava opisan

$$|H(j\Omega)| = \sqrt{\text{Re}^2[H(j\Omega)] + \text{Im}^2[H(j\Omega)]}$$
 nazivamo:

- a. fazna frekvencijska karakteristika
- lacksquare b. dio frekvencijske karakteristike izazvan funkcijom lacksquare
- C c. imaginarni dio frekvencijske karakteristike
- d. realni dio frekvencijske karakteristike
- e. amplitudna frekvencijska karakteristika

6

Marks: --/1

Sustav s prijenosnom funkcijom  $H(z)=\frac{5}{(2z-1)(5z-1)}$  pobuđen je signalom  $\frac{1}{8}z^{-\frac{n}{2}}\sin(\pi n)\cos(\frac{2}{3}n+\pi)+6\cos(\pi n)$ . Odziv sustava na ovu pobudu u stacionarnom stanju je:

- $\square_{a. \frac{3}{80}}\cos(\frac{2}{5}n \mid \pi)$
- $\Box = \cos(\pi n)$
- $\Box_{c.} \frac{1}{8}e^{-n}\sin(3\pi n)\cos(2n+3\pi) + \sin(3\pi n)$
- $\square$  d.  $\sin(2\pi n)$
- $\square$  e.  $48\cos(\pi n)$

Marks: --/1

Zadana je prijenosna funkcija sustava  $H(s) = \frac{1}{s-5}$ . Odredi vrijednost faze na kutnoj frekvenciji  $\Omega = 5!$ 

- $\square$  a.  $\frac{3\pi}{2}$
- $\square$  b.  $\frac{\pi}{8}$
- $\square$  c.  $\frac{5\pi}{4}$
- $\square$  d.  $\frac{\pi}{3}$
- $\mathbf{E} = \frac{5\pi}{6}$

1

Marks: --/1

Amplitudna frekvencijska karakteristika diskretnog LTI sustava danog

prijenosnom funkcijom  $H(z)=rac{1}{z^2+3}$  na frekvenciji  $\omega=rac{3}{2}$  poprima vrijednost:

- a. Frekvencijska karakteristika tog sustava ne postoji jer sustav nije stabilan!
- $\square$  b.  $\frac{1}{2}$
- $\square$  C.  $\frac{1}{3}$
- □ d. 1
- □ e. 1/4

2

Marks: --/1

Ako je zadana funkcija pobude  $u(t)=e^{\mathbf{1}\mathbf{k}}$  i diferencijalna jednadžba  $g(t)+\mathbf{5}g(t)=u(t)$ , tada je fazna frekvencijska karakteristika sustava:

- $\square_{a.} \angle H(j\Omega) = \arctan(\Omega^3)$
- $\square_{\mathsf{b}}$ ,  $\angle H(j\Omega) = \arctan(\Omega)$
- $\square$   $\angle H(j\Omega) = \arctan(\frac{6\Omega}{\Omega^2})$
- $\square$  d.  $\angle H(j\Omega) = \arctan(5\Omega)$
- $\ \, \sqsubseteq_{\ \, \mathrm{e.}} \ \angle H(j\Omega) = \arctan(\Omega^2)$

Marks: --/1

Dio frekvencijske karakteristike stabilnog kontinuiranog LTI sustava opisan

vencijske karakteristike stabilnog kontinuiranog LTI sustava opisan 
$$\angle H(j\Omega) = \arctan \frac{\operatorname{Im} H(j\Omega)}{\operatorname{Re} H(j\Omega)}$$
 nazivamo (za slučaj kada kut ne prelazi

izrazom **土**臺)

- $\square$  a. dio frekvencijske karakteristike izazvan funkcijom  $\overset{\mu(t)}{}$
- b. fazna frekvencijska karakteristika
- c. amplitudna frekvencijska karakteristika
- d. realni dio frekvencijske karakteristike
- e. imaginarni dio frekvencijske karakteristike

Marks: --/1

 $H(z) = \frac{3}{(2z-1)(5z-1)}$  pobuđen je Sustav s prijenosnom funkcijom signalom  $\frac{1}{8}e^{-\frac{n}{8}}\sin(\pi n)\cos(\frac{2}{3}n+\pi)+6\cos(\pi n)$ . Odziv sustava na ovu pobudu u stacionarnom stanju je:

$$\square_{a. \frac{3}{80}} \cos(\frac{2}{3}n + \pi)$$

$$\Box$$
 b.  $\cos(\pi n)$ 

$$\Box \ \ \frac{1}{8}e^{-n}\sin(3\pi n)\cos(2n+3\pi)+\sin(3\pi n)$$

$$\square$$
 d.  $\sin(2\pi n)$ 

$$\square$$
 e.  $48\cos(\pi n)$ 

5

Marks: --/1

Neka su zadani polovi sustava:  $p_1 = 1 + j, p_2 = 1 - j$  . Kojom je diferencijalnom jednadžbom opisan sustav?

$$\square$$
 a  $\ddot{y}(t) - 2\dot{y}(t) = u(t)$ 

$$\ddot{y}(t) - 2\dot{y}(t) + 2y(t) = u(t)$$

$$\Box \ \ \overline{\ddot{y}(t)-2}=u(t)$$

$$\square_{-\mathrm{d.}} \ \ddot{y}(t) - 2\dot{y}(t) + 2 = u(t)$$

$$\square$$
 e.  $\ddot{y}(t) - 2y(t) = u(t)$ 

Marks: --/1

Prijenosnoj funkciji 
$$H(z) = \frac{1+3z^{-1}}{1+2z^{-1}+z^{-2}}$$
odgovara sljedeća jednadžba diferencija:

$$y(n) - 3y(n-1) = u(n) + 2v(n-1) + u(n-2)$$

$$y(n+1) + 2y(n) + y(n-1) = u(n) + 3u(n-1)$$

$$y(n) + 2y(n-1) + y(n-2) = 2u(n) + 3u(n-2)$$

$$\square_{e} y^{2}(n) + 2y(n-1) + y(n-2) = u(n) + 3u(n-1)$$

7

Marks: --/1

 $H(s) = rac{1}{s-5}$ . Odredi vrijednost amplitude na Zadana je prijenosna funkcija kutnoj frekvenciji  $\Omega = \sqrt{200}$ !

$$a. \frac{4}{15}$$

$$\Box$$
 b.  $\frac{1}{15}$ 

$$\square$$
 c.  $\frac{25}{15}$ 

$$\square$$
 d.  $\frac{2}{15}$ 

1

Marks: 1

Dio frekvencijske karakteristike stabilnog kontinuiranog LTI sustava opisan izrazom

Dio frekvencijske karakteristike stabilnog kontinuiranog LTI sustava opisan izrazom 
$$\angle H(J\Omega) = \arctan \frac{\operatorname{Re} H(J\Omega)}{\operatorname{Im} H(J\Omega)}$$
 nazivamo (za slučaj kada kut ne prelazi  $\pm \frac{\pi}{2}$ ):

a. amplitudna frekvencijska karakteristika

- a. amplitudna frekvencijska karakteristika
- b. fazna frekvencijska karakteristika
- c. realni dio frekvencijske karakteristike
- d. imaginarni dio frekvencijske karakteristike
- e. ništa od navedenoga

Marks: 1

Signal  $\cos(\omega n) + 2\sin(2\omega n)$  pobuduje sustav s amplitudno-frekvencijskom karakteristikom  $H(e^{j\omega}) = 2e^{-j\omega n}$ . Prisilni odziv je:

$$\Box = \frac{\pi}{2}\cos(\omega n) + \pi \sin(2\omega n)$$

$$\square$$
 b  $2\cos(\omega n + \frac{\pi}{2}) + 2\sin(2\omega n + \pi)$ 

$$\mathbb{E}_{c} = 2\cos(\omega n - \omega \frac{\pi}{2}) + 4\sin(2\omega n - \omega \pi)$$

$$\Box_{d} \cos(\frac{\pi}{2}\omega n) + 2\sin(\pi \omega n)$$

$$\square$$
 e  $2\cos(\omega n) + 4\sin(2\omega n)$ 

3

Marks: 1

Kako izgleda diferencijalna jednadžba stabilnog, kauzalnog sustava čija je frekvencijska karakterstika dana izrazom:  $H(j\Omega)=\frac{1}{5j\Omega-\Omega^2}$ ?

$$\mathbf{u}_{a} \ddot{y}(t) = u(t)$$

$$\Box \quad b \quad 10\ddot{y}(t) + 5\dot{y}(t) = u(t)$$

$$\mathbf{E}_{c} \ddot{y}(t) + 5\dot{y}(t) = u(t)$$

$$\Box \quad _{\mathrm{d.}} 5\ddot{y}(t) + \dot{y}(t) = u(t)$$

$$\mathbf{E}_{\mathbf{e}} \mathbf{5} \dot{y}(t) = u(t)$$

4

Marks: 1

Neka je sustav opisan prijenosnom funkcijom  $H(s) = \frac{(s-1)(s-2)}{(s-3)(s-4)}$ . Odredi nule  $(s_j)$  i polove  $(s_j)$  sustava!

$$s_1 = -3, s_2 = -4, p_1 = 1, p_2 = 2$$

$$b_1$$
  $s_1 = -1, s_2 = -2, p_1 = -3, p_2 = -4$ 

$$c_1 s_1 = 1, s_2 = 2, p_1 = 3, p_2 = 4$$
 Bravo!

$$c_{d} s_1 = -1, s_2 = -2, p_1 = 3, p_2 = 4$$

$$\square$$
 e.  $s_1 = 3$ ,  $s_2 = 4$ ,  $p_1 = 1$ ,  $p_2 = 2$ 

Marks: 1

 $H(s) = rac{1}{s-5}$ . Odredi vrijednost amplitude na kutnoj Zadana je prijenosna funkcija frekvenciji  $\Omega = \sqrt{200}$ !

- $\mathbf{E} = \frac{1}{15}$  Točan odgovor!
- $\square \quad \frac{2}{b.} \frac{2}{15}$

- E e. 15

6

Postoji frekvencijska karakteristika diskretnog LTI sustava danog prijenosnom funkcijom

$$H(z) = \frac{1}{z + \frac{\pi}{5}} \text{ i dobro je definirana!}$$

Odgovor:

Točno Netočno

Marks: 1

 $H(z) = \frac{z^2 + 3z}{z^2 + 2z + 1}$  Prijenosnoj funkciji  $z^2 + 2z + 1$  odgovara sljedeća jednadžba diferencija:

$$\mathbb{E}_{a.} y(n) + 2y(n-1) + y(n-2) = u(n) + 3u(n-1)$$
 Bravo, točan odgovor!

$$\begin{array}{ll} & \text{b.} \\ & y^2(n) + 2y(n-1) + y(n-2) = u(n) + 3u(n-1) \\ & \text{c.} & y(n) + 3y(n-1) = u(n) + 2u(n-1) + u(n-2) \end{array}$$

$$\square_{d} y(n+1) + 2y(n) + y(n-1) = u(n) + 3u(n-1)$$

$$\overset{\text{e.}}{=} y(n) + 2y(n-1) + y(n-2) = 2u(n) + 3u(n-2)$$

Marks: 1

Amplitudno-frekvencijska karakteristika sustava je  $H(e^{j\omega})=5e^{-4j\omega}$ . Sustav uz pobudu  $u(n)=2\cos(n)$  daje prisilni odziv:

$$\Box$$
  $_{a}$  4 cos $(-j\omega 5n)$ 

$$\Box_{b} 5\cos(-4n+4)$$

$$\mathbf{E}_{c.} \mathbf{10}\cos(n-4)$$
 Bravo, samo hrabo naprijed!

$$\Box_{\rm e.} 10\cos(n)$$

Točno

Marks for this submission: 1/1.

2

Marks: 1

Jednadžba diferencija  $(3+4E^{-1}+2E^{-2})y(n)=(1+5E^{-1})u(n)$  ima sljedeću prijenosnu funkciju:

$$\Box \quad _{\text{a.}} H(z) = \frac{3z^2 + z}{z^2 + 2z + 1}$$

$$E \quad H(z) = \frac{z^2 + 5z}{3z^2 + 4z + 2}$$
 Bravo, točan odgovor!

$$\mathbb{C}_{c.} H(z) = \frac{z^2 + 3z}{z + 2}$$

$$\square \quad _{\rm d.} H(z) = \frac{3z^2 + 4z + 2}{z^2 + 5z}$$

$$\square \quad _{\text{e.}} H(z) = \frac{z^{2} + 3z}{2z^{2} + 4z - 2}$$

Točno

Marks for this submission: 1/1.

3

Marke

Postoji frekvencijska karakteristika diskretnog LTI sustava danog prijenosnom funkcijom

$$H(z) = \frac{1}{z + 15},$$

Odgovor:

Bravo!

Točno

Marks for this submission: 1/1.

Marks: 1

Ako je zadana funkcija pobude  $u(t)=e^{12t}$ i diferencijalna jednadžba  $15\phi(t)+5\phi(t)-u(t)$ , tada je frekvencijska karakteristika sustava:

$$\square \quad _{a} H(j\Omega) = 5 + 15j\Omega$$

$$\mathbb{E}_{\mathbf{b}} H(j\Omega) = \frac{1}{5+15j\Omega}$$
 Bravo, bravo!  $\mathbb{Q}$ 

$$\square _{c} H(j\Omega) = \frac{15j\Omega}{80\%}$$

$$\square$$
 d.  $H(j\Omega) = \frac{5}{10j\Omega}$ 

$$\square$$
 e.  $H(j\Omega) = \frac{16j\Omega}{8\Omega}$ 

Točno

Marks for this submission: 1/1.

5

Marks: 1

Neka su zadani polovi sustava  $p_1 - 2, p_2 = -1$ . Kojom je diferencijalnom jednadžbom opisan sustav?

$$\Box b y(t) + 3y(t) = u(t)$$

$$\ddot{y}(t) + 4\dot{y}(t) + 3\dot{y}(t) = u(t)$$
 Bravo, bravo!

$$u d y(t) + 4y(t) + 3 = u(t)$$

$$\mathbf{D} = \ddot{y}(t) + y(t) = u(t)$$

Točno

Marks for this submission: 1/1.

6

Marks: 1

Zadana je prijenosna funkcija sustava  $H(s)=\frac{1}{s-1}$ . Ako je sustav pobuđen funkcijom  $u(t)=2\cos(t)$ , uz nulte početne uvjete, tada je prisilni odziv sustava dan izrazom:

$$\square \quad y(t) = e^t \quad \cos(t) + \sin(t)$$

$$\Box_{\mathbf{b}} \ y(t) = \cos(t) + 2\sin(t)$$

$$\mathbf{E}_{\mathbf{c}} y(t) = -\cos(t) + \sin(t)$$

$$\Box \quad _{\mathbf{d}} \quad y(t) = e^{2t} - \cos(t) + \sin(t)$$

$$y(t) = e^{2t} - 2\cos(t) + \sin(t)$$

Točno

Marks: 1

Fazna frekvencijska karakteristika  $\frac{\angle H(j\omega)}{\exists i}$  stabilnog kontinuiranog LTI sustava određena je izrazom (za slučaj da je kut između  $\frac{\exists i}{\exists i}$ ):

$$\Box = \frac{\operatorname{Re} H(j\omega)}{\operatorname{Im} H(j\omega)}$$

$$\square$$
 arcton  $\frac{\operatorname{Re} H(j\omega)}{\operatorname{Im} H(j\omega)}$ 

$$\mathbb{E} = \underset{\mathbf{c}_{\perp}}{\operatorname{arctan}} \frac{\operatorname{Im} H(j\omega)}{\operatorname{Re} H(j\omega)}$$

$$\square$$
 arcsin  $\frac{\operatorname{Re} H(j\omega)}{\operatorname{Im} H(j\omega)}$ 

$$\square$$
 arccos  $\frac{\text{Im } H(j\omega)}{\text{Re } H(j\omega)}$ 

Točno

1. Ako je zadana diferencijalna jednadžba  $\ddot{y}(t)+2\dot{y}(t)+3\dot{y}(t)=u(t)$  kojom je opisan sustav, frekvencijska karakteristika sustava  $H(j\Omega)$  je:

$$E \quad _{\text{a.}} H(j\Omega) = \frac{1}{3 + 2j\Omega - \Omega^2} \text{ Bravo!}$$

$$\mathop{\hbox{$\square$}}_{\rm b.} H(j\Omega) = \Omega$$

$$H(s) = \frac{1}{s^2 + 2s + 3}$$

$$E = \frac{1}{4}H(s) = s^2 + 2s + 3$$

$$\square$$
 e.  $H(j\Omega) = 3 + 2j\Omega - \Omega^2$ 

2. Prijenosnu funkciju diskretnog LTI sustava dobijemo tako da u operatorskom zapisu zamijenimo operator pomaka unazad sa kompleksnom varijablom:

$$\mathbf{E}$$
 a.  $z^{-1}$ . Bravo, točan odgovor!

$$\Box$$
 b.  $z^{-2}$ 

$$\square$$
 c.  $z^2$ 

3. Neka su zadani polovi sustava  $p_1 = -3$ ,  $p_2 = -1$ . Kojom je diferencijalnom jednadžbom opisan sustav?

$$\Box \quad , \quad \ddot{y}(t) + 3y(t) = u(t)$$

$$\Box \quad _{\mathbf{b}} \quad \ddot{y}(t) + \dot{y}(t) + y(t) = u(t)$$

$$\ddot{y}(t) + 4\dot{y}(t) + 3 = u(t)$$

$$\mathbf{E}_{d}$$
  $\dot{y}(t) + 4\dot{y}(t) - 3\dot{y}(t) = u(t)$  Bravo, bravo!

$$\mathbf{E}_{e.} \ddot{y}(t) + y(t) = u(t)$$

4. Izrazom 
$$A(\omega) = |H(e^{j\omega})| - \sqrt{\text{Re}[H(e^{j\omega}]^2 + \text{Im}[H(e^{j\omega}]^2]_{, \text{ gdje je}}}$$
  
 $H(e^{j\omega}) = A(\omega)e^{j\omega(\omega)}_{\text{definirana je:}}$ 

- a. amplitudna karakteristika Bravo, točan odgovor!
- **b**. prijelazna karakteristika
- C. statička karakteristika
- d. frekvencijska karakteristika
- e. fazna karakteristika

$$H(z) = \frac{1}{(6z-1)(3z-1)}$$
 pobuđen je signalom

5. Sustav s prijenosnom funkcijom  $e^{-\pi n}\cos(2n) + 2$ . Odziv sustava u stacionarnom stanju je:

$$\Box = e^{-\frac{\pi}{6}n}\cos(2n+3)$$

$$\Box$$
 b.  $2\cos(2n)$ 

$$\mathbf{E}$$
 c.  $\frac{1}{5}$  Bravo, točno!

$$\Box \frac{1}{2}e^{-6\pi n}$$

$$\square$$
 e.  $\frac{1}{10}$ 

6. Zadana je prijenosna funkcija sustava  $H(s) = \frac{1}{s-1}$ . Ako je sustav pobuđen funkcijom  $u(t) = 2\cos(t)$ , uz nulte početne uvjete, tada je ukupni odziv sustava dan izrazom:

$$\Box \ \ _{a} \ y(t) = e^{3t} - 2\cos(t) + \sin(t)$$

$$\Box_{\mathbf{b}} \ y(t) = e^{2t} - \cos(t) + \sin(t)$$

$$\mathbf{E}_{c} y(t) = e^{t} - \cos(t) + \sin(t)$$
 Bravo, bravo!

7. Frekvencijsku karakteristiku stabilnog kontinuiranog LTI sustava osim rastava na realni i imaginarni dio  $H(J\Omega) = \text{Re}[H(J\Omega)] + J \text{Im}[H(J\Omega)]$  moguće je napisati i u polarnom obliku:

$$\begin{split} &\square_{\text{a.}} \ H(j\Omega) = H(j\Omega) e^{j \arg H(j\Omega)} \\ &\square_{\text{b.}} \ H(j\Omega) = \sqrt{H(j\Omega)^2 + (e^{j \arg H(j\Omega)})^2} \\ &\square_{\text{c.}} \ H(j\Omega) = \left|H(j\Omega)\right| \\ &\square_{\text{d.}} \ H(j\Omega) = \left|H(j\Omega)\right| e^{-j \arg H(j\Omega)} \\ &\square_{\text{e.}} \ H(j\Omega) = \left|H(j\Omega)\right| e^{j \arg H(j\Omega)} \end{split}$$

1 Marks: 1

Sustav čija je prijenosna funkcija  $H(s) = \frac{1}{s-1}$ pobuđen je funkcijom oblika  $u(t) = 2\sin(t) + \cos(t)$ . Koji od izraz predstavlja ukupan odziv sustava?

$$\square$$
 a.  $y(t) = \frac{1}{2} \left( 3e^t - \sin(t) \right)$ 

$$\Box _{d} y(t) = \frac{1}{2}(3e^{t} - 3\cos(t))$$

$$\mathbf{E}_{e,y}(t) = \frac{1}{10} (3e^t - 3\cos(t) - \sin(t))$$

2

Marks: 1

Ako je zadana funkcija pobude  $u(t)=e^{14t}$ i diferencijalna jednadžba ty(t)+y(t)=u(t), tada je fazna frekvencijska karakteristika sustava:

$$\bullet$$
 <sub>a.</sub>  $\angle H(j\Omega) = \operatorname{suctan}(-5\Omega)$  Bravo, bravo!  $\bullet$ 

$$\square$$
 b  $\angle H(j\Omega) = \arctan(\frac{-i\Omega}{2})$ 

$$\square_{c} \angle H(j\Omega) = \arctan(\Omega)$$

$$\square_{d} \angle H(j\Omega) = \arctan(\frac{-6\Omega^2}{\Omega^2})$$

$$\square_{\mathrm{e}} \ \angle H(j\Omega) = \arctan(\frac{-5}{2^{\circ}})$$

Točno

Marks for this submission: 1/1.

Marks: 1

Postoji frekvencijska karakteristika stabilnog kauzalnog kontinuiranog LTI sustava!

Odgovor:

E Točno L Netočno

Bravno, točan odgovor!

Točno

Marks for this submission: 1/1.

4

Marks: 1

Sustav s amplitudno-frekvencijskom karakteristikom  $H(e^{i\omega}) = 2e^{-i\frac{\pi}{4}\omega}$  uz pobudu  $u(n) = 5\cos(4n)$  daje prisilni odziv:

 $\Box$  a.  $4\pi \cos(5n)$ 

 $\Box$  b.  $5\cos(-4n+5)$ 

10cms(4n)

Bravo! 單

 $\Box_{d} = 10 \sin(4n + \frac{\pi}{2})$ 

 $\square$  e.  $5\pi \cos(-j\omega 4n)$ 

Točno

Marks for this submission: 1/1.

5

Marks: 1

Samo jedna od navedenih prijenosnih funkcija odgovara sustavu koji ima zadane polove:  $P_1 = 2$ ,  $P_2 = 3$ ,  $P_3 = 10$ . Ako sustav nema nula, odredi tu prijenosnu funkciju!

$$H(s) = (s-2)(s-3)(s-10)$$

$$\Box_{b} R(s) = (s+2)(s+3)(s+10)$$

$$\bullet H(s) = \frac{H(s) - \frac{1}{(s+2)(s+2)(s+10)}}{1}$$

Bravo! 🚇

$$\Box d H(s) = \frac{(s+2)}{(s+3)(s+10)}$$

$$E_{e} = H(s) = \frac{1}{(s-2)(s-3)(s-10)}$$

Točno

Marks for this submission: 1/1.

Marks: 1

Prijenosnoj funkciji 
$$H(z) = \frac{z^2 + 3z}{z^2 + 2z + 1}$$
 odgovara sljedeća jednadžba diferencija:

**6** 
$$a. y(n) + 2y(n-1) + y(n-2) = u(n) + 3u(n-1)$$
 Bravo, točan odgovor!

$$y(n+1) + 2y(n) + y(n-1) = u(n) + 3u(n-1)$$

Točno

Marks for this submission: 1/1.

Marks: 1

Amplitudna frekvencijska karakteristika diskretnog LTI sustava danog prijenosnom

funkcijom 
$$H(z) = \frac{1}{z^2 + 3}$$
 na frekvenciji  $\omega = \frac{3}{2}$  poprima vrijednost:

## a. Frekvencijska karakteristika tog sustava ne postoji jer sustav nije stabilan!

 $\mathbf{E}_{b.}^{\frac{1}{2}}$ 

Sustav je nestabilan! Frekvencijska karakteristika stoga ne postoji!

- $\square$  c.  $\frac{1}{3}$
- C d. 1
- $\mathbf{E}_{e.\frac{1}{4}}$

Netočno

Marks for this submission: -0.25/1. This submission attracted a penalty of 0.1.

1

Marks: --/1

Postoji frekvencijska karakteristika nestabilnog kauzalnog kontinuiranog LTI sustava!

Odgovor:

Točno Netočno

Prijenosna funkcija sustava je 
$$H(z) = \frac{1}{2z-1}$$
. Sustav pobuđujemo stalnim signalom (konstantom) amplitude 2. Prisilni odziv je:

□ a. 2€<sup>-j</sup>

 $\Box$  b.  $\cos(2n-\frac{1}{2})$ 

C. 2

 $\square$  d. 1

 $\mathbb{E}_{e,\frac{1}{2}}$ 

3

Ako je zadana frekvencijska karakteristika kontinuiranog LTI sustava

$$H(j\Omega) = \frac{3j\Omega - \delta}{4 + 4j\Omega - \Omega^2}, \text{ prijenosna funkcija sustava } H(s)_{je}$$

$$\Box \quad b. \ H(s) = 5s$$

$$\square$$
 c.  $H(s) = \frac{5s-3}{4s^2-2s-4}$ 

$$\Box \ \ H(s) = \frac{5s}{4s^2 + 4s + 1}$$

$$E = H(s) = s^2 + 4s + 4$$

4

Marks: --/1

Odredi prijenosnu funkciju  $H^{(z)}$  sustava opisanog diferencijskom jednadžbom y(n) + 2y(n-1) = u(n)

$$E = H(z) = \frac{1}{1 + 2z^{-1}} - 2y(-1)$$

$$E_{b.}H(z) = \frac{1-2y(-1)}{2+z^{-1}}$$

$$\Box \quad \frac{1}{\mathrm{d.}} \ H(z) = \frac{1}{1 + 2z^{-1}} - 2y(-1)$$

$$E = H(z) = \frac{1 - 2y(-1)}{1 - 2z^{-1}}$$

Marks: --/1

Postoji frekvencijska karakteristika diskretnog LTI sustava danog prijenosnom

$$H(z) = \frac{1}{z + 15}$$

funkcijom Odgovor:

Točno Netočno

6

Marks: --/1

Zadana je prijenosna funkcija kutnoj frekvenciji  $\Omega = \sqrt{200}!$ 

$$\square$$
 a.  $\frac{2}{15}$ 

$$\square$$
 c.  $\frac{4}{15}$ 

$$\mathbf{E} = \frac{20}{10}$$

7

Marks: --/1

Neka je sustav opisan diferencijalnom jednadžbom y(t) + 2y(t) + y(t) = u(t). Odredi polove prijenosne funkcije!

$$\mathbf{C}_{a}, y_1 = -1, y_2 = -1$$

$$p_1 = 0, p_2 = 0$$

$$\square$$
 c.  $p_1 = 1, p_2 = -1$ 

$$\square$$
 d.  $p_1 = 1, p_2 = 1$ 

$$p_1 = 0, p_2 = -1$$

Marks: --/1

Ako je zadana funkcija pobude  $u(t) = e^{12t}$ i diferencijalna jednadžba  $15\dot{y}(t) + 5\dot{y}(t) = u(t)$ , tada je frekvencijska karakteristika sustava:

$$\Box_{a} H(j\Omega) = \frac{16j\Omega}{MF}$$

$$\Box_{b} H(j\Omega) = 5 + 16j\Omega$$

$$\Box_{c} H(j\Omega) = \frac{16j\Omega}{N\Omega}$$

$$\Box_{d} H(j\Omega) = \frac{16j\Omega}{N\Omega}$$

$$\Box_{d} H(j\Omega) = \frac{16j\Omega}{N\Omega}$$

2

Marks: --/1

Prijenosnoj funkciji 
$$H(z) = \frac{1+3z^{-1}}{1+2z^{-1}+z^{-2}}$$
odgovara sljedeća jednadžba diferencija:

3

Marks: --/1

Neka je sustav opisan prijenosnom funkcijom  $H(s) = \frac{s-1}{(s-2)(s-3)(s-5)}$ . Odredi nule  $\binom{s}{j}$  i polove  $\binom{p}{j}$  sustava!

Marks: --/1

Amplitudno-frekvencijska karakteristika sustava je  $H(e^{in}) = 5e^{-in}$ . Sustav uz pobudu  $u(n) = 2\cos(n)$  daje prisilni odziv:

$$_{\rm c.} 10\cos(n-4)$$

$$\square \quad \frac{10\sin(4n+5)}{}$$

$$\square$$
 e.  $10\cos(n)$ 

5

Marks: --/1

Zadana je prijenosna funkcija sustava  $H(s) = \frac{1}{s-5}$ . Odredi vrijednost faze na kutnoj frekvenciji  $\Omega = 5!$ 

a. 
$$\frac{3\pi}{4}$$

E b. 
$$\frac{\pi}{8}$$

$$\square$$
 c.  $\frac{3\pi}{2}$ 

$$\square$$
  $\frac{\pi}{3}$ 

$$\Box = \frac{5\pi}{6}$$

6

Marks: --/1

Fazna karakteristika definirana je na sljedeći način:

$$\Box_{\mathbf{a}, \ \varphi(\omega) = \operatorname{arctg} \frac{\operatorname{Im} [R(e^{j\omega})]}{\operatorname{Re} [R(e^{j\omega})]}$$

$$\Box_{\mathbf{b}, \ \varphi(\omega) = \operatorname{arctg} \frac{\operatorname{Re} [R(e^{j\omega})]}{\operatorname{Im} [R(e^{j\omega})]}$$

$$\Box_{\mathbf{c}, \ \varphi(\omega) = \operatorname{arctg} \frac{\operatorname{Re} [R(e^{j\omega})]}{\operatorname{Im} [R(e^{j\omega})]^2 + \operatorname{Im} [R(e^{j\omega})]^2}$$

$$\Box_{\mathbf{d}, \ \varphi(\omega) = \sqrt{\operatorname{Re} [R(e^{j\omega})]^2 + \operatorname{Im} [R(e^{j\omega})]^2}$$

$$\square = \varphi(\omega) = \operatorname{tg} \frac{\ln[R(e^{i\omega})]}{\operatorname{Re}[R(e^{i\omega})]}$$

Marks: 1/1

Neka je zadana eksponencijalna funkcija  $f(t) = Ue^{st}$ . Deriviranjem ove funkcije dobivamo konstantnu vrijednost.

Odgovor:

Točno Netočno

Točno

Marks for this submission: 1/1.

1

Marks: --/1

Na ulaz sustava čija je frekvencijska karakteristika dana izrazom

 $H(j\Omega)=rac{1}{\sqrt{i\Omega-\Omega^2}}$ dovedena je harmonijska pobuda jedinične amplitude i

kutne frekvencije  $\Omega = 3rad/s$  . Kolika je amplituda prisilnog odziva?

D a. 12

D b. 0

 $\square_{\text{c.}} \frac{\sqrt{2}}{2}$ 

c <sub>d.</sub> 1

□ <sub>e.</sub> 00

2

Marks: --/1

Postoji frekvencijska karakteristika diskretnog LTI sustava danog prijenosnom

$$H(z) = \frac{1}{z + \frac{7}{5}i \text{ dobro je definirana!}}$$

funkcijom Odgovor:

Točno Netočno

3

Neka su zadani polovi sustava  $p_1=-3$ ,  $p_2=-1$ . Kojom je diferencijalnom jednadžbom opisan sustav?

$$\Box_{\text{b.}} \ddot{y}(t) + 3y(t) = u(t)$$

$$\mathbf{c}_{\mathrm{c}} \ \ddot{y}(t) + y(t) = u(t)$$

$$\mathbf{E}_{\mathrm{d}} \ \ddot{y}(t) + \dot{y}(t) + y(t) = u(t)$$

$$\mathbf{E}_{e} \ddot{y}(t) + 4\dot{y}(t) + 3 = u(t)$$

Marks: --/1

Ako je zadana funkcija pobude  $u(t) = e^{\mathbf{1} \cdot \mathbf{t}}$  i diferencijalna jednadžba  $\mathbf{5} u(t) + u(t) = u(t)$ , tada je fazna frekvencijska karakteristika sustava:

$$\mathbb{C}_{a} \angle H(j\Omega) = \arctan(\frac{-\alpha\Omega^2}{\Omega^2})$$

$$\square$$
 b  $\angle H(j\Omega) = \arctan(\Omega)$ 

$$\square$$
  $_{\rm C}$   $\angle H(j\Omega) = \arctan(\frac{-5}{\Omega^2})$ 

$$\square_{d} \angle H(j\Omega) = \arctan(\frac{-5\Omega}{\Omega^2})$$

$$\triangle$$
  $\angle H(j\Omega) = \arctan(-3\Omega)$ 

5

Marks: --/1

Amplitudno-frekvencijska karakteristika sustava je  $H(e^{nx})=5e^{-4nx}$ . Sustav uz pobudu  $u(n)=2\cos(n)$  daje prisilni odziv:

$$\Box$$
 a  $4\cos(-j\omega 5n)$ 

$$\Box_b$$
 5 cos $(-4n+4)$ 

$$\Box$$
 d.  $10\sin(4n+5)$ 

$$\Box$$
 e  $10\cos(n)$ 

6

Marks: --/1

Jednadžba diferencija  $y(n)+3y(n-1)=2u(n)_{\rm ima\ sljedeću\ prijenosnu\ funkciju:}$ 

$$\Box_{a} H(z) = \frac{z+3}{2z}$$

$$H(z) = \frac{3z^2 + z}{z^2 + 2z + 1}$$

$$\square \quad \text{c.} \quad H(z) = \frac{z^2 + 3z}{2z^2 + 4z + 2}$$

$$E = \frac{x^2 + 3z}{z + 2}$$

Marks: --/1

Fazna frekvencijska karakteristika  $\frac{\angle H(j\omega)}{\sec \omega}$  stabilnog kontinuiranog LTI sustava određena je izrazom (za slučaj da je kut između  $\frac{-1}{2}$  i  $\frac{2}{2}$  ):

$$\begin{array}{c} \mathbb{C} & \operatorname{arcsin} \frac{\operatorname{Re} H(j\omega)}{\operatorname{Im} H(j\omega)} \\ \\ \mathbb{D} & \operatorname{arctan} \frac{\operatorname{Im} H(j\omega)}{\operatorname{Re} H(j\omega)} \\ \\ \mathbb{C} & \operatorname{arctan} \frac{\operatorname{Re} H(j\omega)}{\operatorname{Im} H(j\omega)} \\ \\ \mathbb{C} & \operatorname{arccos} \frac{\operatorname{Im} H(j\omega)}{\operatorname{Re} H(j\omega)} \\ \\ \mathbb{C} & \operatorname{e.} & \frac{\operatorname{Re} H(j\omega)}{\operatorname{Im} H(j\omega)} \end{array}$$

Marks: --/1

Jednadžba diferencija y(n)+2y(n-1)+y(n-2)=u(n)+3u(n-1)ima sljedeću prijenosnu funkciju:

$$\begin{array}{c}
\Box \\
\text{a.} \\
H(z) = \frac{3z^2 + z}{z^2 + 2z + 1} \\
\Box \\
\text{b.} \\
H(z) = \frac{z^2 + 3z}{z^2 + 2z + 1} \\
\Box \\
\text{c.} \\
H(z) = \frac{z^2 + 3z}{2z^2 + 4z + 2} \\
\Box \\
\text{d.} \\
H(z) = \frac{z^2 + 2z + 1}{z^2 + 3z} \\
\Box \\
\text{e.} \\
H(z) = \frac{z^2 + 3z}{z - 2}$$

Marks: --/1

Na ulaz sustava čija je frekvencijska karakteristika dana izrazom

 $H(j\Omega) = \frac{1}{\sqrt{m^2 n^2}}$  dovedena je harmonijska pobuda jedinične amplitude i kutne frekvencije  $\Omega = 3rad/s$ . Kolika je amplituda prisilnog odziva?



b. 0

 $\square$  C.  $\frac{\sqrt{2}}{2}$ 

C d. 1

□ e. ∞

3

Marks: --/1

Ako je zadana funkcija pobude  $u(t) = e^{\mathbf{1}t}$  i diferencijalna jednadžba  $\mathbf{1}y(t) + y(t) = u(t)$ , tada je fazna frekvencijska karakteristika sustava:

$$\square$$
 a  $\angle H(j\Omega) = \arctan(\frac{-1}{2^n})$ 

$$\square_{b} ZH(j\Omega) = \arctan(\frac{-\Omega^2}{\Omega^2})$$

$$\square$$
  $_{C}$   $\angle H(j\Omega) = \arctan(-5\Omega)$ 

$$\square$$
 d  $\angle H(j\Omega)$  = arctan( $\frac{-i\Omega}{i\beta}$ )

$$\square$$
 e.  $\angle H(j\Omega)$  =  $\arctan(\Omega)$ 

4

Marks: --/1

Amplitudno-frekvencijska karakteristika sustava je  $H(e^{in}) = 5e^{-4in}$ . Sustav uz pobudu  $u(n) = 2\cos(n)$  daje prisilni odziv:

$$\square$$
 a  $4\cos(-j\omega \delta n)$ 

$$\Box$$
 b  $\cos(-4n+4)$ 

$$_{\rm C}$$
  $10\cos(\kappa-4)$ 

$$\Box$$
 d  $10\sin(4n+5)$ 

$$\square$$
 e  $10\cos(n)$ 

Marks: --/1

Neka su zadani polovi sustava:  $p_1 = 1 + j_1 p_2 = 1 - j$ . Kojom je diferencijalnom jednadžbom opisan sustav?

$$\ \, \Box \ \, _{\mathrm{a.}} \ \, \ddot{y}(t) - 2\dot{y}(t) = u(t) \label{eq:alpha}$$

$$\square \quad \overline{g(t) - 2 = u(t)}$$

$$\square \quad \text{d. } \dot{y}(t) - 2y(t) = u(t)$$

6

Marks: --/1

NE postoji frekvencijska karakteristika nestabilnog kauzalnog kontinuiranog LTI sustava!

Odgovor:

Točno Netočno

7

Marks: --/1

Postoji frekvencijska karakteristika diskretnog LTI sustava danog prijenosnom

$$H(z) = \frac{1}{z - \frac{3}{6}}$$

funkcijom Odgovor:

Točno Netočno

FER-Moodle » FER sis2 » Testovi » Šesta domaća zadaća » Review

## Šesta domaća zadaća Review of Attempt 1

| Started on: | Tuesday, 29.05.2007, 10:13 |
|-------------|----------------------------|
| Završen :   | Tuesday, 29.05.2007, 10:24 |
| Time taken: | 11 min 23 sek              |
| Raw score:  | 7/7 (100 %)                |
| Ocjena:     | od maksimalno              |

Nastavi

**1** Postoji frekvencijska karakteristika stabilnog kauzalnog kontinuiranog LTI sustava!

Odgovor: 

Točno

Netočno

Bravno, točan odgovor!

Točno

Marks for this submission: 1/1.

Neka su zadani polovi sustava:  $p_1=1+j, p_2=1-j$  . Kojom je diferencijalnom jednadžbom opisan sustav?

Choose one answer.

Choose one  $\ \bigcirc$  a.  $\ddot{y}(t)-2\dot{y}(t)+2=u(t)$ 

 $\bullet \ \text{b.} \ \ddot{y}(t) - 2\dot{y}(t) + 2y(t) = u(t)$ 

Bravo, bravo! 😀

 $\bigcirc$  c.  $\ddot{y}(t) - 2\dot{y}(t) = u(t)$ 

 $\bigcirc \ \text{d. } \ddot{y}(t)-2=u(t)$ 

 $\bigcirc$  e.  $\ddot{y}(t) - 2y(t) = u(t)$ 

Točno

Marks for this submission: 1/1.

3

Marks: 1 Prijenosna funkcija sustava je  $H(z)=\frac{1}{2z-1}$ . Sustav pobuđujemo stalnim signalom (konstantom) amplitude 2. Prisilni odziv je:

answer.

- Choose one  $\bigcirc$  a.  $2e^{-j\frac{n}{2}}$ 
  - $\bigcirc$  b.  $\cos(2n-\frac{1}{2})$
  - C. 2
  - O d. 1
  - $\circ$  e.  $\frac{1}{2}$

Bravo! Samo tako nastavite!

## Jednadžba diferencija y(n) + 2y(n-1) + y(n-2) = u(n) + 3u(n-1)4 ima sljedeću prijenosnu funkciju: Marks: 1

Choose one answer.

- a.  $H(z) = \frac{z^2 + 3z}{2z^2 + 4z + 2}$
- $\text{b. } H(z) = \frac{z^2 + 3z}{z^2 + 2z + 1}$
- $H(z) = \frac{z^2 + 3z}{z + 2}$
- $0. H(z) = \frac{3z^2 + z}{z^2 + 2z + 1}$
- $e. \ H(z) = \frac{z^2 + 2z + 1}{z^2 + 3z}$

Bravo, točan odgovor! 😉

Točno

Marks for this submission: 1/1.

Na ulaz sustava čija je prijenosna funkcija dana izrazom  $H(s)=rac{5s}{2s+s^2}$ 5 dovedena je harmonijska pobuda jedinične amplitude i kutne frekvencije Marks: 1  $\Omega = 1 \text{rad/s}$ . Koliko iznosi amplituda prisilnog odziva?

> Choose one answer.

- a. 5
- b.  $\sqrt{5}$

Bravo, bravo! 🙂

- O c. 1
- O d.  $\frac{1}{\sqrt{5}}$
- e. -5

Točno

Marks for this submission: 1/1.

6

|                       | TT/ \  | 1            |                | π                              |
|-----------------------|--------|--------------|----------------|--------------------------------|
| prijenosnom funkcijom | H(z) = |              | na frekvenciji | $\omega = \frac{1}{2}$ iznosi: |
| prijenosnom funkcijom | ( )    | $3z^{2} + 2$ | •              | 2                              |

Choose one answer.

- a. Frekvencijska karakteristika tog sustava ne postoji!
- O b.  $\frac{1}{2}$
- $\circ$  c.  $\frac{1}{3}$
- d. 1

 $\circ$  e.  $\frac{1}{5}$ 

Bravo! Točan odgovor. <sup>99</sup>

7 Ako je zadana funkcija pobude  $u(t)=e^{15t}$  i diferencijalna jednadžba Marks: 1  $\ddot{y}(t)+5\dot{y}(t)=u(t)$ , tada je frekvencijska karakteristika sustava:

Choose one answer.

ullet a.  $H(j\Omega)=rac{1}{5j\Omega-\Omega^2}$ 

Bravo! Točan odgovor! 😐

- $\bigcirc$  b.  $H(j\Omega)=-\Omega^2$
- $\bigcirc$  c.  $H(j\Omega) = 5j\Omega \Omega^2$
- $^{\bigcirc}$  d.  $H(j\Omega)=\frac{5j\Omega}{\Omega^2}$
- $\bigcirc$  e.  $H(j\Omega)=rac{1}{\Omega^2}$

Točno

Marks for this submission: 1/1.

Nastavi

Prijavljeni ste sustavu kao

(

)

FER sis2