Write your name here Surname	Other n.	ames
Pearson Edexcel International Advanced Level	Centre Number	Candidate Number
Chemistry Advanced Subsidiar Unit 3: Chemistry Lal	ry	
Tuesday 7 January 2014 – F Time: 1 hour 15 minutes	Afternoon	Paper Reference WCH03/01
Candidates may use a calcula	tor.	Total Marks

Instructions

- Use **black** ink or ball-point pen.
- **Fill in the boxes** at the top of this page with your name, centre number and candidate number.
- Answer all questions.
- Answer the questions in the spaces provided
 - there may be more space than you need.

Information

- The total mark for this paper is 50.
- The marks for each question are shown in brackets
 use this as a guide as to how much time to spend on each question.
- You will be assessed on your ability to organise and present information, ideas, descriptions and arguments clearly and logically, including your use of grammar, punctuation and spelling.
- A Periodic Table is printed on the back cover of this paper.

Advice

- Read each question carefully before you start to answer it.
- Keep an eye on the time.
- Try to answer every question.
- Check your answers if you have time at the end.

P 4 2 9 7 4 R A 0 1 1 6

Turn over ▶

Answer ALL the c	uestions.	Write v	vour	answers	in	the s	paces	provid	ed.
,	10.000.00		,				P	P	

- 1 A series of tests was carried out on **X**, a white solid, which is known to contain one cation and one anion.
 - (a) **X** gave a pale green colour in a flame test. Give the name or formula of the cation in **X**.

(1)

(b) When dilute nitric acid was added to a sample of solid **X**, no reaction occurred. Suggest the name or formula of an anion that could **not** be present in **X**.

(1)

(c) Dilute nitric acid was added to an aqueous solution of **X**, and then aqueous silver nitrate was added to the mixture. A white precipitate formed, which dissolved in dilute aqueous ammonia.

Give the name or formula of the anion in X.

(1)

- (d) A sample of the white precipitate in (c) was left to stand in sunlight.
 - (i) What colour change would be seen?

(1)

(ii) Name the substance responsible for the new colour that appeared in (d)(i).

(e)	Dil	ute sulfuric acid was added to an aqueous solution of X .	
	(i)	What change would be observed?	(1)
	(ii)	Write an equation for the reaction in (e)(i). Include state symbols.	(2)
(f)	(i)	A few drops of concentrated sulfuric acid were added to a small portion of solid X in a test tube. Misty fumes, but no other vapours, were seen.	
		Identify these fumes by name or formula.	(1)
	(ii)	Describe a further chemical test to confirm the identity of the gas responsible for the misty fumes.	
Test		Give the expected result of the test.	(2)
Result			
		(Total for Question 1 = 11 mar	rks)

2 The skeletal formulae of two compounds with molecular formula C₆H₁₂O are shown below.

(a) Each of the compounds reacts when warmed with a mixture of potassium dichromate(VI) and sulfuric acid.

From _____ to ____

(i)	What colour change is seen during this reaction?		
		(1	ı

(ii) One of the compounds forms a carboxylic acid when it is heated under reflux with a mixture of potassium dichromate(VI) and sulfuric acid.

Give the ${\bf structural}$ formula of this carboxylic acid.

(b)	Under suitable conditions, each of the compounds reacts slowly with a smal
	piece of sodium to form a sodium salt and one other product. Give two
	observations you would make when this reaction occurs.

(2)

Observation 1	

Observation 2

- (c) Hex-5-en-1-ol can be distinguished from cyclohexanol by its reaction with aqueous bromine.
 - (i) What colour change would be seen in this reaction when hex-5-en-1-ol is used?

(1)

From to

(ii) Complete the skeletal formula below to show the product of this reaction.

- (d) Hex-5-en-1-ol reacts with acidified potassium manganate(VII) at room temperature.
 - (i) What colour change would be seen in this reaction?

(1)

From _____ to ____

(ii) Complete the skeletal formula below to show the product of this reaction.

(1)

(e) The infrared spectrum below is for either cyclohexanol or hex-5-en-1-ol.

Transmittance /% 60 50 - 40 30 2000 1500

Wavenumber / cm^{-1}

For which of the two compounds is this the infrared spectrum? Use **two** pieces of data from the table below to justify your answer.

Bond	Wavenumber / cm ⁻¹
C—H stretch, alkane	2962–2853
C—H stretch, alkene	3100–3010
C=C stretch, alkene	1669–1600
O—H stretch, alcohols	3750–3200

(2)

	(i etai i et e e e e e e e e e e e e e e e e e
	(Total for Question 2 = 10 marks)
Justification:	
Spectrum is for	

BLANK PAGE

3	The ma	ass of magnesium hydroxide, $\mathrm{Mg(OH)}_2$, in an indigestion tablet was determined ows:	
	Step 1	The tablet was crushed and dissolved in exactly 40.00 cm ³ of dilute hydrochloric acid (an excess).	
	Step 2	The amount of hydrochloric acid remaining was measured by titration with $0.250~\text{mol}~\text{dm}^{-3}$ sodium hydroxide solution.	
	22.80 0	rm ³ of this sodium hydroxide solution was required.	
		$HCl(aq) + NaOH(aq) \rightarrow NaCl(aq) + H_2O(l)$	
	(a) (i)	A student suggested using Universal Indicator for the titration. Why would this indicator be unsuitable?	
			(1)
	(ii)	Suggest a suitable indicator and give its colours in acidic and alkaline solutions.	(2)
Inc	licator		
Со	lour in a	ıcid	
Со	lour in a	ılkali	
	(b) (i)	Calculate the number of moles of sodium hydroxide used in the titration.	(1)

(ii) Hence state the number of moles of hydrochloric acid that react with the sodium hydroxide in (b)(i).

	(iii) The amount of acid added to the tablet in Step1 was 2.00×10^{-2} mol. Uthis information and your answer to (b)(ii) to calculate the number of mydrochloric acid that reacted with the tablet.	
		(1)
	(iv) The equation for the reaction of the magnesium hydroxide in the tablet hydrochloric acid is shown below.	: with
	$Mg(OH)_2(s) + 2HCI(aq) \rightarrow MgCI_2(aq) + 2H_2O(I)$	
	Calculate the mass of magnesium hydroxide in the tablet. Give your an to three significant figures.	swer
	The molar mass of magnesium hydroxide is 58.3 g mol ⁻¹ .	
		(2)
(c)	The volume of hydrochloric acid added to the tablet was 40.00 cm ³ .	
	(i) Suggest a change in the procedure which would make the result of the experiment more reliable for each tablet which is analysed.	
	experiment more reliable for each tablet which is analysed.	(1)

		(ii)	The hydrochloric acid was measured using a burette. Each time the burette was read, the error was \pm 0.05 cm ³ . Calculate the total percentage error in measuring 40.00 cm ³ of hydrochloric acid.	
			measuring 40.00 cm² of flydrochlone acid.	(2)
	(d)	۱۸/۱	on an indignation tablet reacts with hydrochloric acid in the stemach it is	
	(u)		en an indigestion tablet reacts with hydrochloric acid in the stomach, it is cortant that the reaction is not too exothermic.	
		hyd	e enthalpy change of this reaction can be determined by reacting magnesium droxide with an excess of hydrochloric acid in an insulated container and asuring the maximum temperature change.	
		me	te two ways, other than improvements in insulation or use of more accurate assuring instruments, which would ensure that the measured temperature	
		cha	ange was the maximum possible for the amounts of reactants used.	(2)
1				
2				
			(Total for Question 3 = 13 ma	rks)

4	4 Cyclohexene, C_6H_{10} , can be prepared from procedure below.	cyclohexanol, C ₆ H ₁₁ OH, using the	
	Step 1 Place 0.100 mol of cyclohexanol in concentrated phosphoric(V) acid, or	a flask and add about 4 cm³ of drop by drop, while shaking the flask.	
	Step 2 Assemble the flask for distillation, a between 70 °C and 90 °C.	and collect the liquid which distils over	
	Step 3 Add the distillate to an equal volur chloride. Shake the mixture, allow aqueous (sodium chloride) layer.	ne of a saturated solution of sodium the layers to separate, and discard the	
	. , , , , , , , , , , , , , , , , , , ,	hexene into a small flask. Add a few pieces e cyclohexene, stopper the flask and shake	
	Step 5 Decant the crude liquid alkene and obtain pure cyclohexene.	I carry out a final purification in order to	
	(a) (i) Use the formulae of the reactant as phosphoric(V) acid in this reaction	•	(1)
			(1)
	(ii) Suggest the main hazard when usi preparation.	ng concentrated phosphoric(V) acid in this	
	Give one precaution which should of safety goggles and a laboratory	be taken when using it, other than the use coat.	(2)

(b) A student suggested using the apparatus shown in the diagram below to carry out **Step 2**.

Describe **two** ways in which this apparatus must be modified for safe and efficient use in **Step 2**. Assume the apparatus is suitably clamped.

(2)

1	
2	

(c) (i)	Cyclohexene can be separated from other products in Step 3 because it is
	insoluble in aqueous solutions.

Explain this lack of solubility.

(2)

(ii) Draw a diagram of the apparatus which should be used in **Step 3**.

Label the cyclohexene layer.

Data

Substance	Density / g cm ⁻³
Cyclohexene	0.81
Saturated sodium chloride solution	1.20

(2)

(d) (i) S	Suggest a suitable solid drying agent to use in Step 4 .	(1)
	What change would you see in the appearance of the organic liquid when it is dried in Step 4 ?	(1)
(e) Sug	gest a method for the final purification of the crude cyclohexene in Step 5 .	(1)
	Calculate the volume of 0.100 mol of cyclohexanol, C ₆ H ₁₁ OH. The density of cyclohexanol is 0.962 g cm ⁻³ .	(2)
(After final purification, the yield of cyclohexene was 5.50 g. Calculate the percentage yield in this reaction. Each mole of cyclohexanol can give a maximum yield of one mole of cyclohexene.	(2)
	(Total for Question 4 = 16 mai	rks)

TOTAL FOR PAPER = 50 MARKS

4	3
U	=
ž	É
٥	5
ц	1
f	5
٥	ږ
مالاد_ مالاد_	3
۳	2
٢.	ر
riodi	3
Ŀ	_
ВР	,
h	ر
È	

(11) (12) (14) (15) (16) (17) Photon (11) (12) Photon (11) (13) (14) (15) (15) Photon (11) (14) (15) (15) Photon (11) (15) (15) Photon (11) (15) (15) Photon (11) (15) (15) Photon (11) (16) (16) (16) (16) (16) (16) (16)	Cf
(12) (12) (12) (12) (13) (13) (14) (15) (15) (15) (15) (15) (15) (15) (15	Cf
(12) (12) (12) (13) (14) (15) (15) (15) (15) (15) (15) (15) (15	(23)
(12) (12) (13) (14) (15) (15) (15) (15) (15) (15) (15) (15	Cf Es Californium einsteinium 98
(12) (12) (13) (14) (15) (15) (15) (15) (15) (15) (15) (15	Cf ES Californium einsteinium 98
(12) (12) (12) (13) (14) (15) (15) (15) (15) (15) (15) (15) (15	Cf Cf m californium 98
7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7	_ E
CO COP COP COP COP COP COP COP COP COP C	BK berkelium 97
(10) 58.7 Ni nickel 28 106.4 Pd palladium 46 195.1 Pt platinum 78 [271] Ds damstadtium 110 157 Gd gadolinium 64	Cm curium 96
(9) 58.9 Co cobalt 27 102.9 Rh rhodium 45 192.2 Ir iridium 77 152 Eu europium 63	Am americium 95
1.0 H hydrogen 1 (8) 55.8 Fe iron 26 101.1 Ru ruthenium 44 190.2 Os osmium 76 [277] Hs hassium 108 150 Sm samarium 662	Np
bol (6) (7) (52.0 54.9 Cr Mn chromium manganese 24 25 95.9 [98] Mo Tc molybdenum technetium 42 43 186.2 W Re tungsten rhenium 74 75 [266] [264] Sg Bh seaborgium bohrium 106 107 144 [147] Nd Pm neodymium promethium 60 61 2331	Np neptunium 93
Key we atomic mass mic symbol name (5) (6) (7) 50.9 52.0 54.9 V V Cr Mn vanadium chromium manganese 25 92.9 95.9 [98] Nb Mo Tc Nb Mo Tc riobium molybdenum technetium 41 42 43 180.9 183.8 186.2 Ta W Re tantalum rungsten rhenium 73 74 75 Bb Sg Bh dubnium seaborgium bohrium 105 106 107 Pr Nd Pm Pr Nd Pm Pr Nd Pm Sg Bh Pr 60 61 R 60 61	U uranium 92
Key relative atomic mass atomic symbol	Pa protactinium 91
relatination atomic ato	Th thorium 90
(3) 45.0 Sc scandium 21 88.9 Y Y Y Yttrium 39 138.9 [227] Ac* actinium 89	
1 2 6.9 9.0 6.9 9.0 Li Be thium berytlium 3 4 73.0 24.3 Na Mg odium magnesium 11 12 89.1 40.1 12 20 89.5 87.6 87.8 Ba nordium strontium 37 38 32.9 137.3 Cs Ba cesium barium la essium barium la 87 88 87 88 88 **Actinide series	
(1) 6.9 Li lithium 3 23.0 Na sodium 11 39.1 K potassium 19 85.5 Rb rubidium 37 132.9 Cs caesium 55 [223] Fr francium 87	

