

STB34NM60ND, STF34NM60ND, STP34NM60ND, STW34NM60ND

N-channel 600 V, 0.097 Ω typ., 29 A FDmeshTM II Power MOSFET (with fast diode) in D²PAK, TO-220FP, TO-220 and TO-247

Datasheet — production data

Figure 1. Internal schematic diagram

Features

Order codes	V _{DS} @T _J max.	R _{DS(on)} max.	I _D
STB34NM60ND			
STF34NM60ND		0.110.0	29 A
STP34NM60ND	650 V	0.110 Ω	29 A
STW34NM60ND			

- The world's best R_{DS(on)} in TO-220 amongst the fast recovery diode devices
- 100% avalanche tested
- Low input capacitance and gate charge
- Low gate input resistance
- Extremely high dv/dt and avalanche capabilities

Applications

Switching applications

Description

These devices are N-channel FDmesh™ V Power MOSFETs produced using ST's MDmesh™ V technology, which is based on an innovative proprietary vertical structure. The resulting product boasts an extremely low on-resistance that is unrivaled among silicon-based Power MOSFETs, and superior switching performance with intrinsic fast-recovery body diode.

Table 1. Device summary

Order codes	Marking	Packages	Packaging
STB34NM60ND		D ² PAK	Tape and reel
STF34NM60ND	OANIMOONID	TO-220FP	
STP34NM60ND	34NM60ND	TO-220	Tube
STW34NM60ND		TO-247	

Contents

1	Electrical ratings	3
2	Electrical characteristics	
3	Test circuits	9
4	Package mechanical data	10
5	Packaging mechanical data	19
6	Revision history	21

1 Electrical ratings

Table 2. Absolute maximum ratings

Symbol	Davamatav	Value		Unit
Symbol	Parameter	D ² PAK, TO-220, TO-247	TO-220FP	
V _{DS}	Drain-source voltage	600		٧
V _{GS}	Gate- source voltage	± 25		٧
I _D	Drain current (continuous) at T _C = 25 °C	29	29 ⁽¹⁾	Α
I _D	Drain current (continuous) at T _C = 100 °C	18	18 ⁽¹⁾	А
I _{DM} ⁽²⁾	Drain current (pulsed)	116	116 ⁽¹⁾	Α
P _{TOT}	Total dissipation at T _C = 25 °C	190	40	W
V _{ISO}	Insulation withstand voltage (RMS) from all three leads to external heat sink (t=1 s;T _C =25 °C)		2500	V
dv/dt ⁽³⁾	Peak diode recovery voltage slope	40		V/ns
T _{stg}	Storage temperature	- 55 to 150		°C
T _J	Max. operating junction temperature	150		

- 1. Current limited by package
- 2. Pulse width limited by safe operating area
- 3. $I_{SD} \leq$ 29 A, di/dt \leq 600 A/ μ s, V_{DD} = 80% $V_{(BR)DSS}$, V_{DSPeak} < $V_{(BR)DSS}$

Table 3. Thermal data

Symbol	Parameter	TO-220	TO-247	D ² PAK	TO-220FP	Unit
R _{thj-case}	Thermal resistance junction-case max		0.66		3.1	°C/W
R _{thj-amb}	Thermal resistance junction-ambient max	62.5	50		62.5	°C/W
R _{thj-pcb} ⁽¹⁾	Thermal resistance junction-pcb max			30		°C/W

1. When mounted on FR-4 board of 1 inch², 2 oz Cu.

Table 4. Avalanche characteristics

Symbol	Parameter	Max value	Unit
I _{AR}	Avalanche current, repetitive or not- repetitive (pulse width limited by T _J max)	7	А
E _{AS}	Single pulse avalanche energy (starting $T_J = 25$ °C, $I_D = I_{AR}$, $V_{DD} = 50$ V)	110	mJ

2 Electrical characteristics

 $(T_{CASE} = 25 \, ^{\circ}C \text{ unless otherwise specified})$

Table 5. On/off states

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
V _{(BR)DSS}	Drain-source breakdown voltage (V _{GS} = 0)	I _D = 1 mA	600			V
l	Zero gate voltage	V _{DS} = 600 V			1	μΑ
I _{DSS}	drain current (V _{GS} = 0)	$V_{DS} = 600 \text{ V}, T_{C} = 125 ^{\circ}\text{C}$			100	μΑ
I _{GSS}	Gate-body leakage current (V _{DS} = 0)	$V_{GS} = \pm 25 \text{ V}$			±100	nA
V _{GS(th)}	Gate threshold voltage	$V_{DS} = V_{GS}, I_{D} = 250 \mu A$	3	4	5	V
R _{DS(on)}	Static drain-source on resistance	$V_{GS} = 10 \text{ V}, I_D = 14.5 \text{ A}$		0.097	0.110	Ω

Table 6. Dynamic

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
C _{iss}	Input capacitance		-	2785	-	pF
C _{oss}	Output capacitance	$V_{DS} = 50 \text{ V, f} = 1 \text{ MHz,}$	-	168	-	pF
C _{rss}	Reverse transfer capacitance	$V_{GS} = 0$	-	5	-	pF
C _{oss eq.} (1)	Equivalent output capacitance	$V_{GS} = 0$, $V_{DS} = 0$ to 480 V	-	438	-	pF
t _{d(on)}	Turn-on delay time		-	30	-	ns
t _r	Rise time	$V_{DD} = 300 \text{ V}, I_D = 14.5 \text{ A}$	-	53.4	-	ns
t _{d(off)}	Turn-off delay time	$R_G = 4.7 \Omega, V_{GS} = 10 V$ (see <i>Figure 18</i> and <i>23</i>)	-	111	-	ns
t _f	Fall time		-	61.8	-	ns
Qg	Total gate charge	V _{DD} = 480 V, I _D = 29 A,	-	80.4	-	nC
Q _{gs}	Gate-source charge	V _{GS} = 10 V, (see Figure 19)	-	16	-	nC
Q _{gd}	Gate-drain charge		-	41.4	-	nC
R_g	Gate input resistance	f=1 MHz, open drain	-	2.87	-	Ω

^{1.} $C_{oss\ eq}$ is defined as a constant equivalent capacitance giving the same charging time as C_{oss} when V_{DS} increases from 0 to 80% V_{DSS}

5/

Table 7. Source drain diode

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
I _{SD}	Source-drain current		-		29	Α
I _{SDM} ⁽¹⁾	Source-drain current (pulsed)		-		116	Α
V _{SD} ⁽²⁾	Forward on voltage	I _{SD} = 29 A, V _{GS} = 0	-		1.6	٧
t _{rr}	Reverse recovery time	I _{SD} = 29 A, V _{DD} = 60 V	-	175		ns
Q _{rr}	Reverse recovery charge	di/dt=100 A/µs	-	1.4		μC
I _{RRM}	Reverse recovery current	(see Figure 20)	-	16		Α
t _{rr}	Reverse recovery time	$I_{SD} = 29 \text{ A}, V_{DD} = 60 \text{ V}$	-	255		ns
Q _{rr}	Reverse recovery charge	di/dt=100 A/μs, T _{.I} = 150 °C	-	2.6		μC
I _{RRM}	Reverse recovery current	(see Figure 20)	-	20		Α

^{1.} Pulse width limited by safe operating area

^{2.} Pulsed: Pulse duration = 300 μ s, duty cycle 1.5%.

Electrical characteristics (curves) 2.1

Figure 2. Safe operating area for TO-220FP

Figure 3. Thermal impedance for TO-220FP

Figure 4. Safe operating area for TO-220 and D²PAK

Figure 5. Thermal impedance for TO-220 and D²PAK

Figure 6. Safe operating area for TO-247

AM09019v1 Tj=150°C $\delta = 0.5$ (A) Tc=25°C Single pulse 100 10µs 100µs $Z_{th} = k R_{thJ-c}$ $\delta = t_p / \tau$ 1ms SINGLE PULSE 10-2 10ms 10^{-3} 10⁻² 10-4 10^{-3} $10^{-1} t_p(s)$ 10 Vps(V)

Figure 7. Thermal impedance for TO-247

6/22

Figure 8. Output characteristics

Figure 9. Transfer characteristics

Figure 10. Gate charge vs gate-source voltage

Figure 11. Static drain-source on-resistance

Figure 12. Capacitance variations

Figure 13. Output capacitance stored energy

Figure 14. Normalized gate threshold voltage vs temperature

VGS(th) (norm) ID=250μA 1.10
1.00
0.90
0.80
0.70
-50 -25 0 25 50 75 100 TJ(°C)

Figure 15. Normalized on-resistance vs temperature

Figure 16. Normalized V_{DS} vs temperature

Figure 17. Source-drain diode forward vs temperature

8/22 DocID18099 Rev 6

3 Test circuits

Figure 18. Switching times test circuit for resistive load

Figure 19. Gate charge test circuit

Figure 20. Test circuit for inductive load switching and diode recovery times

Figure 21. Unclamped inductive load test circuit

Figure 22. Unclamped inductive waveform

Figure 23. Switching time waveform

4 Package mechanical data

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK[®] packages, depending on their level of environmental compliance. ECOPACK[®] specifications, grade definitions and product status are available at: *www.st.com*. ECOPACK[®] is an ST trademark.

Table 8. D²PAK (TO-263) mechanical data

Dim		mm	
Dim.	Min.	Тур.	Max.
А	4.40		4.60
A1	0.03		0.23
b	0.70		0.93
b2	1.14		1.70
С	0.45		0.60
c2	1.23		1.36
D	8.95		9.35
D1	7.50		
Е	10		10.40
E1	8.50		
е		2.54	
e1	4.88		5.28
Н	15		15.85
J1	2.49		2.69
L	2.29		2.79
L1	1.27		1.40
L2	1.30		1.75
R		0.4	
V2	0°		8°

THERMAL PAD SEATING PLANE COPLANARITY 0.25 GAUGE PLANE 0079457_T

Figure 24. D²PAK (TO-263) drawing

a. All dimension are in millimeters

Table 9. TO-220FP mechanical data

		mm	
Dim.	Min.	Тур.	Max.
А	4.4		4.6
В	2.5		2.7
D	2.5		2.75
E	0.45		0.7
F	0.75		1
F1	1.15		1.70
F2	1.15		1.70
G	4.95		5.2
G1	2.4		2.7
Н	10		10.4
L2		16	
L3	28.6		30.6
L4	9.8		10.6
L5	2.9		3.6
L6	15.9		16.4
L7	9		9.3
Dia	3		3.2

Dia L6 *L2 L7* L3 F1 L4 F2 Ε -G1-7012510_Rev_K_B

Figure 26. TO-220FP drawing

Table 10. TO-220 type A mechanical data

Dim		mm	
Dim.	Min.	Тур.	Max.
А	4.40		4.60
b	0.61		0.88
b1	1.14		1.70
С	0.48		0.70
D	15.25		15.75
D1		1.27	
E	10		10.40
е	2.40		2.70
e1	4.95		5.15
F	1.23		1.32
H1	6.20		6.60
J1	2.40		2.72
L	13		14
L1	3.50		3.93
L20		16.40	
L30		28.90	
ØP	3.75		3.85
Q	2.65		2.95

øΡ H1 D <u>D1</u> L20 L30 b1(X3) -- b (X3) 0015988_typeA_Rev_T

Figure 27. TO-220 type A drawing

Table 11. TO-247 mechanical data

Dim.	mm.				
	Min.	Тур.	Max.		
А	4.85		5.15		
A1	2.20		2.60		
b	1.0		1.40		
b1	2.0		2.40		
b2	3.0		3.40		
С	0.40		0.80		
D	19.85		20.15		
E	15.45		15.75		
е	5.30	5.45	5.60		
L	14.20		14.80		
L1	3.70		4.30		
L2		18.50			
ØP	3.55		3.65		
ØR	4.50		5.50		
S	5.30	5.50	5.70		

HEAT-SINK PLANE øΡ S Ĺ2 *b1* b2 BACK VIEW A1-0075325_G

Figure 28. TO-247 drawing

5 Packaging mechanical data

Table 12. D²PAK (TO-263) tape and reel mechanical data

Таре				Reel		
Dim.	m	m	Dim	mm		
	Min.	Max.	Dim.	Min.	Max.	
A0	10.5	10.7	Α		330	
В0	15.7	15.9	В	1.5		
D	1.5	1.6	С	12.8	13.2	
D1	1.59	1.61	D	20.2		
Е	1.65	1.85	G	24.4	26.4	
F	11.4	11.6	N	100		
K0	4.8	5.0	Т		30.4	
P0	3.9	4.1			•	
P1	11.9	12.1		Base qty 1000		
P2	1.9	2.1		Bulk qty 1000		
R	50				•	
Т	0.25	0.35				
W	23.7	24.3				

Figure 29. Tape 10 pitches cumulative tolerance on tape +/- 0.2 mm Top cover E, В1 ВО A0 D1 User direction of feed

For machine ref. only including draft and radii concentric around B0 Bending radius User direction of feed AM08852v1

6 Revision history

Table 13. Document revision history

Date	Revision	Changes	
04-Nov-2010	1	Initial release.	
18-Apr-2011	2	Corrected E _{AS} value in <i>Table 4: Avalanche characteristics</i>	
14-Sep-2011	3	Added order code in D ² PAK and TO-220FP Updated <i>Table 1: Device summary, Table 2: Absolute maximum ratings</i> and <i>Table 3: Thermal data.</i> Updated <i>Section 4: Package mechanical data.</i> Added <i>Section 5: Packaging mechanical data.</i> Minor text changes.	
29-Dec-2011	4	Updated description in cover page.	
01-Oct-2012	5	Updated title on the cover page. Updated figures 10, 11, 16 and 17. Updated Section 4: Package mechanical data. Minor text changes.	
02-Oct-2013	6	 Modified: E_{AS} in <i>Table 4</i>, C_{oss eq.} typical value in <i>Table 6</i>, <i>Figure 13</i> Modified: <i>Figure 18</i>, <i>19</i>, <i>20</i> and <i>21</i> Minor text changes 	

Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice.

All ST products are sold pursuant to ST's terms and conditions of sale.

Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST'S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

ST PRODUCTS ARE NOT DESIGNED OR AUTHORIZED FOR USE IN: (A) SAFETY CRITICAL APPLICATIONS SUCH AS LIFE SUPPORTING, ACTIVE IMPLANTED DEVICES OR SYSTEMS WITH PRODUCT FUNCTIONAL SAFETY REQUIREMENTS; (B) AERONAUTIC APPLICATIONS; (C) AUTOMOTIVE APPLICATIONS OR ENVIRONMENTS, AND/OR (D) AEROSPACE APPLICATIONS OR ENVIRONMENTS. WHERE ST PRODUCTS ARE NOT DESIGNED FOR SUCH USE, THE PURCHASER SHALL USE PRODUCTS AT PURCHASER'S SOLE RISK, EVEN IF ST HAS BEEN INFORMED IN WRITING OF SUCH USAGE, UNLESS A PRODUCT IS EXPRESSLY DESIGNATED BY ST AS BEING INTENDED FOR "AUTOMOTIVE, AUTOMOTIVE SAFETY OR MEDICAL" INDUSTRY DOMAINS ACCORDING TO ST PRODUCT DESIGN SPECIFICATIONS, PRODUCTS FORMALLY ESCC, QML OR JAN QUALIFIED ARE DEEMED SUITABLE FOR USE IN AEROSPACE BY THE CORRESPONDING GOVERNMENTAL AGENCY.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST.

ST and the ST logo are trademarks or registered trademarks of ST in various countries.

Information in this document supersedes and replaces all information previously supplied.

The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.

© 2013 STMicroelectronics - All rights reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com

22/22 DocID18099 Rev 6

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

STMicroelectronics:

STB34NM60ND STF34NM60ND STW34NM60ND