DELFT UNIVERSITY OF TECHNOLOGY

FACULTY OF AEROSPACE ENGINEERING ROTOR / WAKE AERODYNAMICS - AE4135

Rotor / wake Aerodynamics Assignment 1: Blade Element Theory

Instructor: Prof. Dr.ir. C.J. Simao Ferreira Julian Gonzalez, 6281486 Stijn Hersbach, 4857054 Pim Haanen, 5092795 March 1, 2024

Contents

1	Nomenlacture	3
2	Introduction	4
3	Flow diagram of the code 3.1 Assumptions	5
4	Results 4.1 Reference Data (for cl(alpha) and cd(alpha))	6
5	Conclusion	8
6	Python Script	9

Nomenlacture

```
angle of attack at blade element (-)
                   blade twist angle at blade element (-)
                   tip speed ratio (-)
                   fluid density (kg \cdot m<sup>-3</sup>)
                   circulation at blade element (m^2 \cdot s^{-1})
                   perceived-wind inflow-angle at blade element (-)
                   rotor rotational velocity (rad \cdot s<sup>-1</sup>)
                   axial induction factor (-)
                   azimuthal induction factor (-)
                   blade element chord (m)
                   drag coefficient (-)
             C_d
             C_l
                  lift coefficient (-)
                   thrust coefficient (-)
            C_T
                   drag force per unit span (N \cdot m^{-1})
          Drag
                  lift force per unit span (N \cdot m^{-1})
           Lift
                   azimuthal/tangential force per unit span (N \cdot m^{-1})
          F_{\rm azim}
                   axial force per unit span (N \cdot m^{-1})
          F_{\text{axial}}
                   number of blades (-)
        N_{\rm blades}
                    axial velocity perceived by blade element, axial velocity at rotor (m \cdot s^{-1})
V_{\text{axial}} = U_{\text{rotor}}
                   velocity perceived by blade element (m \cdot s^{-1})
                   azimuthal/tangential velocity perceived by blade element (m \cdot s^{-1})
           V_{\rm tan}
```

Table 2.1: Wind turbine geometrical specifications

Variable	Value
Radius (R)	50 [m]
Number of Blades	3
Blade starts at	$0.2~\mathrm{r/R}$
Twist	14*(1-r/R) [degrees]
Blade Pitch	-2 [degrees]
Chord Distribution	3*(1-r/R)+1 [m]
Airfoil	DU 95-W-180
Rotor yaw angle	0, 15 and 30 [degrees]

Table 2.2: Wind turbine operational specifications

Variable	Value
Wind speed (U0)	10 [m/s]
Tip speed ratio (λ)	6, 8, 10
Rotor yaw angle	0, 15, 30 [degrees]

Figure 2.1: Caption

Flow diagram of the code

Figure 3.1: Flow diagram of the code

3.1 Assumptions

- Steady Flow: the flow characteristics are assumed to be independent of time.
- Inviscid Flow: the flow is assumed to be inviscid. This means no viscous effects are taken into account.
- Incompressible Flow: the flow is assumed to be incompressible. This means the density throughout the streamtube is constant. This enables the use of Bernoulli's equation in locations of a continuous pressure distribution. This also results in the product of area and flow velocity being constant over the flow.
- 2D Flow: it is assumed that the flow characteristics can accurately be modeled using 2 dimensional flow characteristics.
- Constant Internal Energy: t is assumed that the internal energy within the streamtube is constant so there no radiation, convection or conduction occurring.
- Independent annulus: the annuli are considered independently of one another. In reality, flow characteristics on one annulus will influence the characteristics on another (cross flow), this effect is ignored.
- Circular Discs: the actuator disc in the model is assumed to be of circular shape. In reality slight changes in the shape could occur, these are neglected.

4.1 Reference Data (for cl(alpha) and cd(alpha))

Figure 4.1: Caption

Figure 4.2: Caption

Figure 4.3: Caption

Conclusion 5

Python Script 6