TDO BOGUS PROCEDURES

BACKGROUND:

There are, basically, two parts to a TC vortex; Symmetric and Asymmetric.

- •Symmetric Central Pressure (max intensity) Radius and SLP of OMCI Radius of Wind Max 4 (NE,SE,SW,NW) 35 kt wind radii
- Asymmetric (Induced by planetary advection by the symmetric flow within the vortex)
 Current motion
 Environmental Flow

Note: The structure of the asymmetry is dependent on the symmetric structure of the vortex. In other words, vortex asymmetry is dependent on your bogus input (ie, quadrant radii).

GOALS:

- •Improve the position of the TC center
- •Accurately reflect the intensity and structure of the vortex without degrading the model environmental structure

Storm number: 27 Storm name: LINGLING
Note: 1) Times are GMT 2) Black barbs indicate possible rain contamination
3) Data buffer is Nov 9 13:12 GMT 2001-22 hrs 4) Data pass times at bottom of image

TC Size Calculator Formula

Based on a Rankine Vortex

Rankine Vortex (Combined Vortex) - 2 separate wind fields

- •Interior tangential wind speed increases linearly with distance from the center of the TC.
- •Exterior measured from the radius of Max Wind. Decreases inversely with radius.

Necessary parameters for determining TC SIZE* based on a Rankine vortex:

Radius of Max wind RWMAX(m) Value of Max wind WMAX (ms $^{-1}$) Radius of 18 m/s $^{-1}$ wind R_{18}

Def: TC SIZE - The distance from the observed vortex position up to a distance from which the influence of the TC itself is assumed to be minimal.

TC Size Calculator Formula

In order to determine TC Size, we must first determine the radius of maximum winds (RWMAX)

To solve for RWMAX:

RMAX =
$$R_{18} \left(\frac{\text{WMAX}}{18} \right)^{-1/0.5}$$

Where, R_{18} is the $18m/s^{-1}$ (35kt) wind radii.

Then, solving for SIZE:

$$SIZE = 200 \ 000_{(m)} + 2(RWMAX)$$

Where, 200 000 (200km) is a suitable constant needed to consider small values of $R_{\rm 18}$ in the current horizontal distribution of bogus data.

TC Size Calculator

AVERAGE SIZE SYSTEM

Input Storm Intensity=

Input 35kt wind radii=

75 Kts converts to 38.58 m/s

163 Nm converts to 301876.00 meters

Radius of Maximum Winds=

Size of System=

24.64

nm or 45633.22 meters

157.27

nm or 291266.44 meters

submit

reset