

- Akash V

Table of Content

Ethereum Transaction

Problem Statement

To find the patterns of transactions performed and help algorithms to learn those patterns in identifying the fradulent transactions and flag them.

Need of the study

I present my interest in the detection Fraud Transaction of Ethereum, specifically on the Ethereum network, and a structured approach to address the numerous anomalous transactions.

Purpose of this Project

Exploratory analysis of data to extract the pattern of fraudlent activites

Build a machine learning model to classify fraud and non-fraud transactions.

Reduce the error by tuning the model.

Tool

Google Colab

Library's & Dataset

The dataset as I already download from Kaggle. The dataset is huge and would take a long time to process. Let's see the overview of data **Dataset**

s **İİİİİİİİ**İ

9841 Rows

(9841,51)

Rows

Columns

51 Columns

Basic Library

Pre-Processing
Library

ML Library

Metrics Library

EDA Process

Descriptive Statistics

Start by looking at descriptive statistic parameters for the dataset. We will use describe() for this

Missing value imputation

I will check for missing values in our dataset. In case there are any missing entries, we will impute them with appropriate values

Graphical Representation

This processing steps is usefull to see the data in graphical view.

Graphical Representation

Pre-Processing the Data

Feature Selection

Treat Outliers

Normalization

Balancing the Dataset

Supervised Learning Models

Deep Learning Models

Artificial Neural Network

Comparing the Models

THE END

Thank you for listening