111 學年度第一學期五專(資工一乙)數學第一次小考

一、單一選擇題(共60分,每題12分)

1. (C)
$$\sin 210^{\circ} + \cos(-60^{\circ}) + \tan 135^{\circ} = ?$$
 (A)0 (B)1 (C)-1 (D)2

解析:
$$\sin 210^\circ = \sin(180^\circ + 30^\circ) = -\sin 30^\circ = -\frac{1}{2}$$

$$\cos(-60^\circ) = \cos 60^\circ = \frac{1}{2}$$

$$\tan 135^{\circ} = \tan(90^{\circ} + 45^{\circ}) = -\tan 45^{\circ} = -1$$

2. (A)
$$a = \sec 85^\circ, b = \csc 85^\circ, c = \cot 85^\circ$$
 ,其大小關係為何? (A) $a > b > c$ (B) $c > a > b$ (C) $c > b > a$ (D) $b > a > c$

$$\Rightarrow \frac{1}{\tan 85^{\circ}} < \frac{1}{\sin 85^{\circ}} < \frac{1}{\cos 85^{\circ}}$$
$$\Rightarrow \sec 85^{\circ} > \csc 85^{\circ} > \cot 85^{\circ}$$

3. (B)
$$\triangle ABC$$
 中, $\angle A=45^\circ$, $\angle C=75^\circ$, $\overline{BC}=10$,則 \overline{AC} 長度為 (A) $5\sqrt{2}$ (B) $5\sqrt{6}$ (C) $10\sqrt{2}$ (D) 15

解析:
$$\angle B = 180^{\circ} - 45^{\circ} - 75^{\circ} = 60^{\circ}$$

利用正弦定理得知

$$\frac{10}{\sin 45^{\circ}} = \frac{\overline{AC}}{\sin 60^{\circ}} \Rightarrow \frac{10}{\frac{\sqrt{2}}{2}} = \frac{\overline{AC}}{\frac{\sqrt{3}}{2}} \Rightarrow \frac{\sqrt{2}}{2} \overline{AC} = 5\sqrt{3}$$

$$\therefore \overline{AC} = 5\sqrt{6}$$

4. (D) 化簡
$$\frac{\sin(\pi + \theta)}{\sin(2\pi - \theta)} + \frac{\cos(-\theta)}{\sin(\frac{3\pi}{2} + \theta)}$$
 得 (A)-2 (B)-1 (C)1 (D)0

解析:
原式=
$$\frac{-\sin\theta}{-\sin\theta}$$
+ $\frac{\cos\theta}{-\cos\theta}$ =1-1=0

5. (D)已知三角形的三邊長為 5, 6, 7,
$$\theta$$
 為三內角中最小者,則 $\cos \theta$ = ? (A) $\frac{2}{7}$ (B) $\frac{3}{7}$

$$(C)\frac{4}{7}$$
 $(D)\frac{5}{7}$

解析:利用餘弦定理得知

$$\cos\theta = \frac{6^2 + 7^2 - 5^2}{2 \cdot 6 \cdot 7} = \frac{60}{8} = \frac{5}{7}$$

二、計算與證明題(共 40 分,每題 20 分)

1. 已知 $\triangle ABC$ 的三邊長分別為 $6 \cdot 7 \cdot 11$,試求 $\triangle ABC$ 面積。

答案: 因為
$$s = \frac{a+b+c}{2} = \frac{6+7+11}{2} = 12$$

由海龍公式可得

 $\triangle ABC$ 面積

$$= \sqrt{12 \times (12 - 6) \times (12 - 7) \times (12 - 11)}$$

$$=\sqrt{12\times6\times5\times1}=6\sqrt{10}$$

 ∇x 為任意實數 $\Rightarrow -1 \le \sin x \le 1$