OTE Domácí úkol 8 - Synchronní detekce

Vojtěch Michal

25. května 2022

Simulační schéma synchronního detektoru je na obrázku 1. Paralelní zapojení R2 a C1 simuluje měřenou impedanci, která je buzená ze zdroje V1 a intvertujícím zesilovačem A1 převáděna na napětí. V pravé části obvodu kolem A2 je zesilovač s přepínatelným zesílením ± 1 s uzemněným spínačem S1. Manuální přepínač S2 umožňuje výběr řídicího signálu pro spínač S1 mezi žádným fázovým posunem z V1 (pro měření reálné složky impedance) a fázovým posunem 90° z V2 (pro imaginární složku impedance). Budicí napětí generované zdrojem V1 je v textu označneo jako U_1 , výstupní napětí na uzlu 5 je U_2 .

Obrázek 1: Simulační schéma

1 Ověření funkce obvodu

Odpojením kapacity C1, nastavením R2 = 1 M Ω a použitím fázově neposunutého buzení se celé zapojení zjednodušuje na dvoucestný usměrňovač, jehož převodní charakteristika je vykeslena na obrázku 2. Na levé svislé ose je velikost výstupního napětí U_2 obvodu, na pravé svislé ose je odchylka skutečné převodní charakteristiky od ideální $U_2 = \text{abs}(U_1)$. Je patrná chyba menší než 1 mV napříč celým rozsahem měření.

Obrázek 2: Převodní charakteristika dvojcestného usměrňovače

Posunutím buzení o 90° byla měřena imaginární složka impedance. S odpojenou kapacitou C1 by měl být výstup obvodu nulový. Změřené hodnoty jsou sepsány v tabulce 1. Výstupní napětí je skutečně skoro nulové a jen málo závislé na velikosti reálné složky měřené impedance.

Odpor R2 $[M\Omega]$	U_2 [mV]
1	-8.3
2	-3.1
3	-2.8
4	-1.4
5	-1.1

Tabulka 1: Imaginární složka napětí při odpojené kapacitě C1 v závislosti na nastaveném odporu R2

2 Měření kapacity

Podle zadání bylo nastaveno R1 = $5\,\mathrm{M}\Omega$, R3 = $1\,\mathrm{M}\Omega$ a byl použit budicí signál o efektivní hodnotě $5\,\mathrm{V}$ a frekvenci $1\,\mathrm{kHz}$. Pro měření imaginární složky impedance je spínač S1 je řízen signálem fázově posunutým o 90° vůči buzení. Závislost výstupního napětí na nastavené kapacitě je zachycena v tabulce 2. Kapacity uvedené ve třetím sloupci byly vypočteny podle vzorce

$$C = \frac{1.11 \text{Im}(U_2)}{2\pi f R_3 U_1} = \frac{1.11 \text{Im}(U_2)}{2\pi \cdot 10^3 \cdot 10^6 \cdot 5}.$$
 (1)

Data jsou vykreslena na obrázku 3. Imaginární složka impedance je vypočtená s přesností lepší než $0.5\,\mathrm{pF}$ v celém rozsahu.

nastavená kapacita C1 [pF]	střední hodnota výstupního napětí [V]	spočtená kapacita [pF]
10	0.2800	9.8931
20	0.5770	20.3868
30	0.8500	30.0325
40	1.1360	40.1376
50	1.4260	50.3840
60	1.7050	60.2417
70	1.9880	70.2408
80	2.2730	80.3105
90	2.5540	90.2389
100	2.8380	100.2733

Tabulka 2: Měření kapacity synchronním detektorem

Obrázek 3: Chyba měření kapacity synchronním detektorem

3 Měření odporu

Podle zadání bylo nastaveno R3 = 1 M Ω , C1 = 50 pF a byl použit budicí signál o efektivní hodnotě 5 V a frekvenci 1 kHz. Spínač S1 je řízen ve fázi s budicím signálem pro měření reálné složky impedance. Závislost výstupního napětí na ztrátovém odporu je zachycena v tabulce 3. Odpory uvedené ve třetím sloupci byly vypočteny podle vzorce

$$R = \frac{U_1 R_3}{1.11 \text{Re}(U_2)} = \frac{5 \cdot 10^6}{1.11 \text{Re}(U_2)}.$$
 (2)

Data jsou vykreslena na obrázku 4. Reálná složka impedance je vypočtená s přesností lepší než $0.3\,\mathrm{M}\Omega$ v celém rozsahu.

nastavený odpor R2 $[\mathrm{M}\Omega]$	střední hodnota výstupního napětí [V]	spočtený odpor $[M\Omega]$
1	4.5820	0.9831
2	2.2540	1.9984
3	1.5060	2.9910
4	1.1590	3.8865
5	0.8860	5.0841
6	0.7460	6.0382
7	0.6400	7.0383
8	0.5660	7.9585
9	0.4850	9.2876
10	0.4370	10.3078

Tabulka 3: Měření odporu synchronním detektorem

Obrázek 4: Chyba měření odporu synchronním detektorem