Analysis of a Complex Kind Week 4

Lecture 1: Inverse Functions of Analytic Functions

Petra Bonfert-Taylor

The Logarithm Function

Motivation: Given $z \in \mathbb{C} \setminus \{0\}$, find $w \in \mathbb{C}$ such that $e^w = z$.

How? Write $z = |z|e^{i\theta}$, then $e^w = |z|e^{i\theta}$.

Next, write w = u + iv. Then $e^u e^{iv} = |z|e^{i\theta}$.

Thus $e^u = |z|$ and $e^{iv} = e^{i\theta}$, so $u = \ln |z|$ and $v = \theta + 2k\pi = \arg z$.

Definition

For $z \neq 0$ we define

$$\text{Log } z = \ln |z| + i \operatorname{Arg} z$$
, the principal branch of logarithm,

and

$$\log z = \ln |z| + i \arg z$$
, a multi-valued function
= $\log z + 2k\pi i$, $k \in \mathbb{Z}$.

Examples

$$Log z = ln |z| + i Arg z.$$

- Log 1 = $\ln |1| + i \operatorname{Arg} 1 = 0$.
- Log $i = \ln |i| + i \frac{\pi}{2} = i \frac{\pi}{2}$.
- Log(-1) = ln $|-1| + i\pi = i\pi$.

Continuity of the Logarithm Function

$$\operatorname{Log} z = \ln|z| + i\operatorname{Arg} z.$$

We notice:

- $z \mapsto |z|$ is continuous in \mathbb{C} .
- $z \mapsto \ln |z|$ is continuous in $\mathbb{C} \setminus \{0\}$.
- $z \mapsto \operatorname{Arg} z$ is continous in $\mathbb{C} \setminus (-\infty, 0]$.
- Thus, Log z is continuous in $\mathbb{C} \setminus (-\infty, 0]$.
- However,
 - as $z \to -x \in (-\infty, 0)$ from above, $\text{Log } z \to \ln x + i\pi$, and
 - as $z \to -x$ from below, Log $z \to \ln x i\pi$,

so Log z is not continuous on $(-\infty, 0)$ (and not defined at 0).

Is the Logarithm Function Analytic?

Fact

The principal branch of logarithm, Log z, is analytic in $\mathbb{C} \setminus (-\infty, 0]$.

What is its derivative?

Since
$$e^{\log z} = z$$
, we find $e^{\log z} \cdot \frac{d}{dz} \log z = 1$ so $\frac{d}{dz} \log z = \frac{1}{z}$.

More General Theorem

Theorem

Suppose that $f:U\to\mathbb{C}$ is an analytic function and there exists a continuous function $g:D\to U$ from some domain $D\subset\mathbb{C}$ into U such that f(g(z))=z for all $z\in D$. Then g is analytic in D, and

$$g'(z)=rac{1}{f'(g(z))}$$
 for $z\in D$.

Application 1

Let $f: \mathbb{C} \to \mathbb{C}$, $f(z) = z^2$. Then f'(z) = 2z. Let $g: \mathbb{C} \setminus (-\infty, 0] \to \mathbb{C}$, $g(z) = \sqrt{z}$ be the principal branch of the square root. Then

- f(g(z)) = z for all $z \in D = \mathbb{C} \setminus (-\infty, 0]$
- ullet g is continuous in D, thus $U=\mathbb{C}$
- g is analytic in D, and

$$g'(z) = \frac{1}{f'(g(z))}$$
$$= \frac{1}{2g(z)}$$
$$= \frac{1}{2\sqrt{z}}.$$

Application 2

Again, let
$$f: \mathbb{C} \to \mathbb{C}$$
, $f(z) = z^2$. Then $f'(z) = 2z$.
This time, let $h: \mathbb{C} \setminus [0, \infty) \to \mathbb{C}$, $h(z) = \begin{cases} \sqrt{z}, & \text{Im } z \ge 0, \\ -\sqrt{z}, & \text{Im } z < 0 \end{cases}$.

Then

•
$$f(h(z)) = z$$
 for all $z \in \tilde{D} = \mathbb{C} \setminus [0, \infty)$.

- h is continuous in \tilde{D} , thus
- h is analytic in \tilde{D} , and

$$h'(z) = \frac{1}{f'(h(z))}$$
$$= \frac{1}{2h(z)}.$$

Some Terminology

Let's finish up by recalling some terminology: Let $f: U \rightarrow V$ be a function.

- f is *injective* (also called 1-1) provided that $f(a) \neq f(b)$ whenever $a, b \in U$ with $a \neq b$.
- f is *surjective* (also called onto) provided that for every $y \in V$ there exists an $x \in U$ such that f(x) = y.
- *f* is a *bijection* (also called 1-1 and onto) it *f* is both injective and surjective.

Examples:

- $f: \{z \in \mathbb{C} \mid \operatorname{Re} z > 0\} \to \mathbb{C} \setminus (-\infty, 0], f(z) = z^2 \text{ is a bijection.}$
- $f: \mathbb{C} \to \mathbb{C}$, $f(z) = z^2$ is not injective but is surjective.
- $f: \mathbb{C} \setminus (-\infty, 0] \to \mathbb{C}$, $f(z) = \sqrt{z}$ is injective but not surjective.