Real-Time End-to-End Scheduling

Embedded System Software Design

Prof. Ya-Shu Chen National Taiwan University of Science and Technology

End-to-End Scheduling

仟務模型

- Task model
- -每個任務需要按一定順序在一組處理器上執行
- -每個任務可能需要不同的順序
- Each task needs to execute on a set of processors in a certain order
- Each task may require a different order
- Problems in End-to-End scheduling 端到端調度中的問題
 - Priority assignment
- •為任務分配固定的優先級,以便系統可調度
- Assign fixed priorities to tasks so that the system is schedulable
- Synchronization of tasks ^{-任務同步}

 -住務同步
 -控制子任務實例(非第一個子任務)的釋放

 - Control the releases of subtask instances (non-first subtasks)
- Schedulability analysis
 - For a given priority assignment and a given synchronization protocol, whether every instance of each task meets its deadline
- -可調度性分析
 - •對於給定的優先級分配和給定的同步協議,每個任務的每個實例是否都滿足其截止日期

所有工作都要在 Vadine 2前就

- Platform: A set of processors 平台: 一組處理器
- Task graph, $G = \{T_1, T_2, ..., T_n\}$ 任務圖, $G = \{T_1, T_2, ..., T_n\}$

Sink node

Deadline: di

- Precedence edge: $e^{i_{j,k}}$

-下沉節點

-截止日期:di

-優先權邊緣:eij,k

-前任和後任

-週期或最短分離時間: di

- Predecessors and Sucessors
- Period or Minimum separation time: p_i
- Characteristics of $T_{i,i}$:
 - Execution time (on processor m): $c^{m_{i,j}}$

 T_2 , p_2 , d_2

Priority Assignment @先分配

- •如果事先知道所有執行的任務,則可以離線找到可行的優先級分配
- To find feasible priority assignments off-line if all tasks executed are known in prior
- NP-hard problem ・NP難題
- Algorithms
 - Branch and bound
 - Search algorithm
 - Simulated annealing
 - Generic algorithm
 - Heuristic
 - Deadline assignment

- •算法
- -分支定界
- -搜索算法
- •模擬退火
- •通用算法
- 啟發式
- •截止日期分配

Deadline Assignment 動作用期分配

- Ultimate deadline 最終期限
 - $UD_{i,k} = D_i$
- Effective deadline 有效期限

$$-ED_{i,k} = D_i - \sum_{l=k+1}^{n(i)} e_{i,l}$$

- Proportional deadline 比例截止
 - $-PD_{i,k} = D_i e_{i,k} / e_i$
- Normalized Proportional deadline 歸一化比例截止期限

$$- NPD_{i,k} = D_i \frac{e_{i,k}U(V_{i,k})}{\sum_{l=1}^{n(i)} e_{i,l}U(V_{i,l})}$$

— $U(V_{i,l})$ is the total utilization of the all the subtasks that execute on the processor $V_{i,l}$ U是在處理器V上執行的所有子任務的總利用

Example

$T_{i,k}$	$V_{i,k}$	p_i	$e_{i,k}$	$UD_{i,k}$	$ED_{i,k}$	$PD_{i,k}$	$NPD_{i,k}$
$T_{1,1}$	P_1	15	1	15	11	3	2.0
$T_{1,3}$	P_1	15	2	15	15	6	4.1
$T_{2,1}$	P_1	20	4	20	20	20	20
$T_{3,1}$	P_2	2	1	2	2	2	2
$T_{1,2}$	P_2	15	2	15	13	6	8.9
$T_{4,1}$	P_2	20	5 n(x)	20	20	20	20

41 = 20

 $31 = 2 \times \frac{1 \times 0.98}{1 \times 0.98}$ $41 = 20 \times \frac{5 \times 0.98}{5 \times 0.98}$

同步問題

The Synchronization Problem

- Given that 造版 一使用某些固定優先級分配算法將優先級分配給任務鏈中的子任務
 - Priorities are assigned to subtasks in a task chain using some fixed priority assignment algorithm
- How do we coordinate the release of subtasks in a task chain so that 我們如何協調任務鏈中子任務的釋放,以便
 - Precedence constraints among subtasks are satisfied -滿足子任務之間的優先約束
 - Subtask deadlines are met -滿足子任務的截止日期
 - End-to-end deadlines are met -達到了端到端的截止日期

同步協議

Synchronization Protocols

- •直接同步(DS)協議 -簡單明了
- Direct Synchronization (DS) Protocol
 - Simple and straightforward
- Phase Modification (PM) Protocol
 - Used by flow-shop tasks
- ●相位修改(PM)協議
 - -用於流水車間任務
 - -稱為修改相位修改(MPM)協議的擴展
- Extension called Modified Phase Modification (MPM) Protocol
- Release Guard Protocol
- •Release Guard協議
- Reclaim the idle time
- -回收空閒時間

Example

 $T_{i,j} - j^{th}$ subtask of task T_i

Task T3 releases at 6

(period, execution time)

Period = relative deadline of parent task 期間=上級任務的相對期限

Direct Synchronization Protocol

- On completion of subtask 完成子任務
 - A synchronization signal sent to the next processor 同步信號發送到下一個處理器
 - Successor subtask competes with other tasks/subtasks on the next processor

後繼子任務與下一處理器上的其他任務/子任務競爭

Greedy Example

Non-greedy Example

Phase Modification Protocol

- Release subtasks periodically 定期釋放子任務 -根據其上級任務的期限
 - According to the periods of their parent tasks
- Each subtask given its own phase 每個子任務都有自己的階段
- Phase determined by subtask precedence constraints 由子任務優先級約束確定的階段

Phase Modification Protocol (1/2)

Phase Modification Protocol (2/2)

Phase Modification Protocol - Analysis 相變協議-分析

定期計時器中斷以釋放子任務

- Periodic timer interrupt to release subtasks
- Centralized clock or strict clock synchronization 集中式時鐘或嚴格的時鐘同步
- Task overruns could cause precedence constraint violations 任務超限可能會導致違反優先約束

Modified PM Protocol (1/2)

Actual response time

Estimated worst case response time

Modified PM Protocol (2/2)

Release Guard Protocol

- A guard variable *release guard* associated with each subtask 保護變量—釋放與每個子任務相關的保護
- Release guard used to control release of each subtask
 釋放防護用於控制每個子任務的釋放
 一包含子任務的下一個發佈時間
 - Contains next release time of subtask
- Synchronization signals as MPM 同步信號作為MPM
- Release guard updated
 - On getting synchronization signal et in et in

-空閒時間

During idle time

Release Guard Protocol

Release Guard Protocol

Release Guard Protocol - Analysis

- Shares the same advantages as MPM 與MPM具有相同的優勢
- EER的上限仍與MPM相同 Upper bound on EER still the same as MPM
 - —由於發佈時間的上限由發布保護者強制執行 Since upper bound on release time enforced by release guard
- Lower bound on EER less than that of MPM
 - - If there are idle times -降低平均EER(端到端響應時
 - Results in lower average EER (end-to-end response time)

Schedulability Analysis

An upper bound W_i to the end-to-end response time of any periodic task T_i in a fixed-priority system synchronized according to the MPM protocol or the RG protocol is given by 固定優先級系統中根據MPM協議或RG協議同步的任何週期性任務Ti的端到端響應時間的上限Wi

$$W_i = \sum_{k=1}^{n(i)} W_{i,k}$$
 and
$$W_{i,k} = \frac{e_{i,k} + b_{i,k} + \sum_{\phi_{j,l} \leq \phi_{i,k} \text{ and } \tau_{j,l} \in V_{i,k}} e_{j,l}}{1 - \sum_{\phi_{j,l} < \phi_{i,k} \text{ and } \tau_{j,l} \in V_{i,k}} u_{j,l}} + \text{High pro } \text{Total } \text{U} \text{ which is the solution of the lates of the l$$

where n(i) is the number of subtasks in T_i , $\phi_{i,k}$ is the priority of $\tau_{i,k}$, and the upper bound $W_{i,k}$ to the response time of every subtask $T_{i,k}$ is obtained by considering only subtasks on the same processor $V_{i,k}$, and by treating every such subtask $T_{j,l}$ as periodic task whose period is equal to the period p_j of the parent task T_j .

其中n(i)是Ti中子任務的數量,Oik是ti.k的優先級,通過僅考慮同一處理器Vih上的子任務並通過處理來獲得每個子任務Tik響應時間的上限Wik 每個這樣的子任務Tji,作為周期任務,其周期等於父任務Tj的周期pj。

General Scheduling Test (GST)

響應時間分析

- Response time analysis
 - The response time of the job of Ti at critical instant can be calculated by the following recursive function → 通過以下遞歸函數可以計算出關鍵時刻的下作業的響應時間

$$r_0 = \sum_{\forall i} c_i$$
 $r_n = \sum_{\forall i} c_i \left[\frac{r_{n-1}}{p_i} \right]$

— Observation: the sequence of r_x , x>=0 may or may not converge $\frac{\partial R}{\partial x} : r^{x} \cap R^{y}$, x>=0 可能會收斂 $\frac{\partial R}{\partial x} : r^{x} \cap R^{y}$

General Scheduling Test (GST)

- Example: T1=(2,5), T2=(2,7), T3=(3,8)
 - T1:
 - $R_0 = 2 \le 5$ ok
 - T2:
 - $R_0 = 2 + 2 = 4 \le 7$
 - $R_1 = 2 *_{\Gamma} 4/5_{\Gamma} + 2 *_{\Gamma} 4/7_{\Gamma} = 4 \le 7 \text{ ok}$
 - T3:
 - $R_0 = 2 + 2 + 3 = 7 \le 8$
 - $R_1 = 2 * {7/5} + 2 * {7/7} + 3 * {7/8} = 9 > 8$ failed
 - Note: each task succeeds → the task set succeeds

P1:
$$T_{11}$$
: $W_{11} = \frac{1+0+2}{1-0} = 3$

$$W_{13} = \frac{2+1+1}{1-0} = 4$$

$$W_{13} = \frac{2+0+(1+2)}{1-(\frac{1}{15}+\frac{2}{15})} = 8.75$$

$$W_{2} = \frac{2+0+(1+2)}{1-(\frac{1}{15}+\frac{2}{15})} = 8.75$$

$$W_{31} = \frac{C_{31} + b_{31} + 0}{(-0)} = \frac{1+0}{1-\frac{1}{2}}$$

$$Examp$$

$$W_{41} = \frac{C_{41} + b_{41} + (C_{31} + C_{12})}{C_{41} + b_{41} + (C_{31} + C_{12})}$$

$$\begin{array}{c}
(12) \otimes 12 = \frac{e_{12} + b_{12} + e_{31}}{2} = \frac{2 + 1 + 1}{1 - \frac{1}{2}} = 8 \\
& \text{Example} \\
(44) \otimes 12 = \frac{e_{12} + b_{12} + e_{31}}{1 - \frac{1}{2}} = \frac{1 - \frac{1}{2}}{1 - \frac{1}{2}} = 8 \\
(-1) \otimes 12 = \frac{1 - \frac{1}{2}}{1 - \frac{1}{2}} = \frac{1 - \frac{1}{2}}{$$

$T_{i,k}$	$V_{i,k}$	p_i	$e_{i,k}$	$UD_{i,k}$	$b_{i,k}$	$W_{i,k}$	$W_{i,k}(GST)$
$T_{1,1}$	P_1	15	1	15	0	3	3
$T_{1,3}$	P_1	15	2	15	1	4	3(4)
$T_{2,1}$	P_1	20	4	20	0	8.75	7
$T_{3,1}$	P_2	2	1	2	0	1	1
$T_{1,2}$	P_2	15	2	15	1	8	4(6)
$T_{4,1}$	P_2	20	5	20	0	21.8	14

Comparison of Protocols

	DS	PM	MPM	RG
Implementation complexity	Synch interrupts	Timer interrupts clock synchronization	Synch & timer interrupts	Synch & timer interrupts
Run-time overhead				
Average EER				
Estimated worst case EER				
Inherently missed deadlines	Yes		No	

Reference

- Real-time Systems, Jane Liu
- Bettati,R.,``End-to-end scheduling to meet deadlines in distributed systems," Ph.D. thesis, University of Illinois at Urbana-Champaign
- Sun, J., `` Fixed-Priority Scheduling of Periodic Tasks With End-to-End Deadlines," Ph.D. thesis, University of Illinois at Urbana-Champaign

4/21