A Book of Abstract Algebra (2nd Edition)

book of Abstract Aigebra (2nd Edition)		
Chapter 28, Problem 4ED	Bookmark	Show all steps: ON
Problem		
Let V be a finite-dimensional vector space. Let of the following:	dim <i>V</i> designate the dir	mension of <i>V</i> . Prove each
The set {a}, containing only one nonzero vecto	a , is linearly independ	ent.
Step-by-s	tep solution	
Step	1 of 3	
A set of vectors which is said to be linearly indevectors which can give 0 vector apart from a co		
Comment		
Step	2 of 3	
If $u_1, u_2,, u_n$ are n vectors of a vector space $a_1u_1 + a_2u_2 + + a_nu_n = 0$	and these are linearly ir	ndependent. Then for.
All a_i have to be zero.		
Comment		
Step	3 of 3	

Now consider any set which includes just one vector. Let this set be (a). Now there is only one

 $k \cdot \mathbf{a}$ Here k can have any value not necessarily equal to 0. As \mathbf{a} is non-zero vector, this combination will never be equal to $\mathbf{0}$, unless k is equal to 0, which is condition for being linearly independent.

Hence any set withjust one non-zero vector \vec{a} is linearly independent

Thus this combination satisfy condition for being linearly independent.

combination involving this single vector, which is

Comment