Formale Beschreibungsverfahren (WiSe 2019/20)

Probeklausur / Lösungen

Norman Markgraf

9.12.2019

Lösung zur Aufgabe 1

Es ist Ihnen feigestellt hier eine totale oder partielle Übergangsfunktion zu wählen.

- a) Der Automat lässt sich beschreiben als $A = (Q, \Sigma, \delta, s, F)$ mit
 - Zustandsmenge $Q = \{q_0, q_1, q_2, q_3, q_4\}$
 - Alphabet $\Sigma = \{0, 1\}$
 - partielle Übergangsfunktion $\delta: Q \times \Sigma \to Q$ wie unten.
 - Startzustand $s = q_0 \in Q$
 - Endzuständen $F = \{q_4\} \subseteq Q$
- b) Der Graph zur Übergangsfunktion lautet:

c) Die Übergangsfunktion als Tabelle:

	0	1
$\rightarrow q_0$	q_1	\perp
q_1	q_2	\perp
q_2	q_2	q_3
$* \begin{array}{c} q_3 \\ q_4 \end{array}$	q_2	q_4
* q4	q_2	q_4

Alternativ können Sie auch mit einer totalen statt einer partiellen Übergangsfunktion arbeiten:

- a) Der Automat lässt sich beschreiben als $A=(Q,\Sigma,\delta,s,F)$ mit
 - Zustandsmenge $Q = \{q_0, q_1, q_2, q_3, q_4, q_5\}$
 - Alphabet $\Sigma = \{0, 1\}$
 - totaleÜbergangsfunktion $\delta:Q\times\Sigma\to Q$ wie unten.
 - Startzustand $s = q_0 \in Q$
 - Endzuständen $F = \{q_4\} \subseteq Q$
- b') Der Graph zur (totalen) Übergangsfunktion lautet:

c') Die Übergangsfunktion als Tabelle:

	0	1
$\longrightarrow q_0$	q_1	q_5
q_1	q_2	q_5
q_2	q_2	q_3
q_3	q_2	q_4
$*\stackrel{\scriptstyle 7}{q_4}$	q_2	q_4
q_5	q_5	q_5

Lösung zur Aufgabe 2

- a) $L_A = \{ w \in \{a, b\}^* \mid \exists n, m \in \mathbb{N}_0. w = lvr. l = a^n \land v = (ab)^m \land (r = b \lor r = \epsilon) \}$
- b) Ein möglicher Graph für einen DEA lautet:

Lösung zur Aufgabe 3

- a) Der Automat lässt sich beschreiben als $A = (Q, \Sigma, \delta, s, F)$ mit
 - Zustandsmenge $Q = \{q_0, q_1, q_2, q_3, q_4, q_5, q_6\}$
 - Alphabet $\Sigma = \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 0, :\}$
 - partielle Übergangsfunktion $\delta: Q \times \Sigma^* \to Q$ wie unten.
 - Startzustand $s = q_0 \in Q$
 - Endzuständen $F = \{q_6\} \subseteq Q$
- b) Der Graph zur Übergangsfunktion lautet:

c) Die Übergangsfunktion als Tabelle:

	0	1	2	3	4	5	6	7	8	9	:
$\longrightarrow q_0$	q_1	q_2					上				
q_1	q_3	q_3	q_3	q_3	q_3	q_3	q_3	q_3	q_3	q_3	\perp
q_2	q_3	q_3	丄	\perp							
q_3	\perp	\perp	丄	\perp	q_4						
q_4	q_5	q_5	q_5	q_5	q_5	q_5	\perp	\perp	\perp	\perp	\perp
q_5	q_6	q_6	q_6	q_6	q_6	q_6	q_6	q_6	q_6	q_6	q_6
* q ₆	q_2	q_4	Τ	\perp	\perp	\perp	\perp	\perp	\perp	Τ,	

Lösung zur Aufgabe 4

- a) Der Automat lässt sich beschreiben als $A = (Q, \Sigma, \delta, s, F)$ mit
 - Zustandsmenge $Q = \{q_0, q_1, q_2, q_3, q_4\}$
 - Alphabet $\Sigma = \{a, b\}$
 - partielle Übergangsfunktion $\delta: Q \times (\Sigma \cup \{\epsilon\}) \to P(Q)$ wie unten.
 - Startzustand $s = q_0 \in Q$
 - Endzuständen $F = \{q_6\} \subseteq Q$
- b) Der Graph zur Übergangsfunktion lautet:

c) Die Übergangsfunktion als Tabelle lautet dann:

	a	b
$\longrightarrow q_0$	$\{q_0,q_1\}$	$\{q_0\}$
q_1	Ø	$\{q_2\}$
q_2	$\{q_2.q_3\}$	$\{q_2\}$
q_3	Ø	$\{q_4\}$
$* q_4$	$\{q_4\}$	$\{q_4\}$

Lösung zur Aufgabe 5

a) Das 5-Tupel für den DEA lautet:

$$A = (\{\{q_0\}, \{q_0, q_1\}, \{q_0, q_2\}, \{q_0, q_1, q_2, q_3\}, \{q_0, q_2, q_4\}, \{q_0, q_1, q_2, q_3, q_4\}\}, \{a, b\}, \delta, \{q_0\}, \{\{q_0, q_2, q_4\}, \{q_0, q_1, q_2, q_3, q_4\}\})$$

b) Die Tabelle der Übergangsfunktion lautet:

	a	b
$\longrightarrow \{q_0\}$	$\{q_0,q_1\}$	$\{q_0\}$
$\{q_0,q_1\}$	$\{q_0,q_1\}$	$\{q_0, q_2\}$
$\{q_0,q_2\}$	$\{q_0, q_1, q_2, q_3\}$	$\{q_0,q_2\}$
$\{q_0, q_1, q_2, q_3\}$	$\{q_0, q_1, q_2, q_3\}$	$\{q_0, q_2, q_4\}$
$*\{q_0, q_2, q_4\}$	$\{q_0, q_1, q_2, q_3, q_4\}$	$\{q_0, q_2, q_4\}$
$*\{q_0, q_1, q_2, q_3, q_4\}$	$\{q_0, q_1, q_2, q_3, q_4\}$	$\{q_0, q_2, q_4\}$

Wir ersetzen nun, damit es übersichtlicher wird, die Zustandsmengen in neue Zustände wie folgt:

- $z_0 = \{q_0\}$
- $z_1 = \{q_0, q_1\}$ $z_2 = \{q_0, q_2\}$
- $z_3 = \{q_0, q_1, q_2, q_3\}$
- $z_4 = \{q_0, q_2, q_4\}$
- $z_5 = \{q_0, q_1, q_2, q_3, q_4\}$

Damit erhalten wir den DEA:

$$A = (\{z_0, z_1, z_2, z_3, z_4, z_5\}, \{a, b\}, \delta, \{z_0\}, \{z_4, z_5\})$$

mit der Übergangsfunktionstabelle:

	a	b
$\longrightarrow z_0$	z_1	z_0
z_1	z_1	z_2
z_2	z_3	z_2
z_3	z_3	z_4
$*z_4$	z_5	z_4
$*z_4 \\ *z_5$	z_5	z_4

b) Der Graph der Übergangsfunktion lautet

Lösung zur Aufgabe 6

a) abab wird akzeptiert! Lösung mit Konfigurationsübergängen:

$$(z_0, abab) \vdash (z_1, bab) \vdash (z_2, ab) \vdash (z_3, b) \vdash (z_4, \epsilon)$$

Und z_4 ist ein Endzustand!

b) abaa wird nicht akzeptiert! Lösung mit Konfigurationsübergängen:

$$(z_0, abaa) \vdash (z_1, baa) \vdash (z_2, aa) \vdash (z_3, a) \vdash (z_3, \epsilon)$$

Aber z_3 ist **kein** Endzustand!

c) **abbaabb** wird akzeptiert: Lösung mit Konfigurationsübergängen:

$$(z_0, abbaabb) \vdash (z_1, bbaabb) \vdash (z_2, baabb) \vdash (z_2, aabb) \vdash (z_3, abb) \vdash (z_3, bb) \vdash (z_4, b) \vdash (z_4, \epsilon)$$

Und z_4 ist ein Endzustand!

Lösung zur Aufgabe 7

a) Übergangsgraph zu $(a+b)^*a(b+\epsilon)$:

b) Übergangsgraph zu $(a+b+c)^+$:

c) Übergangsgraph zu $(a + \epsilon)b(a + b + c)$:

Lösung zur Aufgabe 8

$$a^*((ab)^* + (ba)^*(b+\epsilon)) = a^*(ba)^*(b+\epsilon)$$

Lösung zur Aufgabe 9

a) Das 5-Tupel für den DEA lautet:

$$A = (\{q_0, q_1, q_2, q_3\}, \{a, b, c\}, \delta, q_0, \{q_3\})$$

- b) Akzeptiert werden u.a. die Wörter "abc" und "baabbca", nicht akzeptiert u.a. die Wörter "aaa" und "bbb".
- c) Die akzeptierte Sprache lautet:

$$L_A = \{w \in \{a, b, c\}^* \mid \exists x \in \{b, c\}^*, y \in \{a, c\}^*, z \in \{a, b\}^*, t \in \{a, b, c\}^*.w = xaybzct\}$$