概率论与数理统计

ZZX-JLU

2022年11月6日

目录

1	随机	几事件及其概率										1
	1.1	1 随机试验								1		
	1.2	2 随机事件							2			
		1.2.1 随机事	件的概念									2
		1.2.2 随机事	件的关系									2
		1.2.3 随机事	件的运算									3
	1.3	随机事件的概	率									5
		1.3.1 频率 .										5
		1.3.2 概率 .										6
		1.3.3 古典概	型									9
		1.3.4 几何概	型									9
1.4 条件概率					10							
		1.4.1 条件概	率与乘法	公式 .								10
		1.4.2 全概率	公式									11
		1.4.3 贝叶斯	公式									12
	1.5	事件的独立性										12
	1.6	伯努利概型 .										14

1.1 随机试验

在一定条件下必然出现的现象叫做**必然现象**. 在相同的条件下,可能出现不同的结果,而 在试验或观测之前不能预知确切结果的现象叫做**随机现象**.

随机现象具有随机性和统计规律性.

- 随机性:对随机现象进行观测时,不能预先确定其结果.
- 统计规律性:对随机现象进行大量重复观测后,其结果往往会表现出某种规律性.

为了研究和揭示随机现象的统计规律性,需要对随机现象进行大量重复的观察、测量或试验,统称为试验.

如果试验具有以下特点:

- 1. 可重复性: 试验可以在相同条件下重复进行多次, 甚至进行无限次;
- 2. 可观测性:每次试验的所有可能结果都是明确的、可以观测的,并且试验的可能结果有两个或两个以上;
- 3. 随机性:每次试验出现的结果是不确定的,在试验之前无法预先确定究竟会出现哪一个结果,

则称之为随机试验,简称为试验.

通常用字母 E 表示一个随机试验. 随机试验 E 的基本结果称为**样本点**,用 ω 表示. 随机试验 E 的所有基本结果的集合称为**样本空间**,用 $\Omega = \{\omega\}$ 表示.

1.2 随机事件

1.2.1 随机事件的概念

随机试验 E 的样本空间 $\Omega = \{\omega\}$ 的子集称为随机试验 E 的**随机事件**,简称为**事件**,用 大写字母 A,B,C 等表示.

设 $A \subseteq \Omega$, 如果试验结果 $\omega \in A$, 则称在这次试验中事件 A 发生; 如果 $\omega \notin A$, 则称事件 A 不发生.

由一个样本点 ω 组成的事件称为**基本事件**.

样本空间 Ω 本身也是 Ω 的子集,它包含 Ω 的所有样本点,在每次试验中 Ω 必然发生,称为**必然事件**.

空集 Ø 也是 Ω 的子集,它不包含任何样本点,在每次试验中都不可能发生,称为**不可能 事件**.

在一个样本空间中,如果只有有限个样本点,则称它为**有限样本空间**;如果有无限个样本点,则称它为**无限样本空间**.

1.2.2 随机事件的关系

事件的包含

如果当事件 A 发生时事件 B 一定发生,则称事件 B 包含事件 A,记作 $A\subseteq B$.

对于任意事件 A,有 $\emptyset \subseteq A \subseteq \Omega$.

如果 $A \subseteq B, B \subseteq C$,则 $A \subseteq C$.

事件的相等

如果事件 A 和事件 B 相互包含,即 $A \subseteq B$ 且 $B \subseteq A$,则称事件 A 与事件 B **相等**,记作 A = B.

事件的互不相容

如果事件 A 和事件 B 在同一次试验中不能同时发生,则称事件 A 与事件 B 是**互不相容** 的,或称事件 A 与事件 B 是**互斥**的.

任意两个基本事件一定互斥.

事件的互逆

如果在每一次试验中事件 A 和事件 B 必有一个且仅有一个发生,则称事件 A 与事件 B 是**互逆**的或**对立**的,称其中的一个事件是另一个事件的**逆事件**,记作 $\overline{A} = B$,或 $\overline{B} = A$.

显然,
$$\overline{\overline{A}} = A$$
.

1.2.3 随机事件的运算

事件的并

如果事件 A 和事件 B 至少有一个发生,则这样的一个事件称为事件 A 与事件 B 的**并事** 件或和事件,记作 $A \cup B$.

$$A \cup B = \{\omega \mid \omega \in A \not \equiv \omega \in B\}$$

事件 A 和事件 B 作为样本空间 Ω 的子集,并事件 $A \cup B$ 就是子集 A 与 B 的并集. 对于任何事件 A 与 B,有

$$A \cup A = A$$

$$A \cup \emptyset = A$$

$$A \cup B = B \cup A$$

$$A \cup \overline{A} = \Omega$$

$$A \subseteq A \cup B$$

$$B \subseteq A \cup B$$

如果 $A \subset B$,则有 $A \cup B = B$.

事件的并可以推广到多个事件的情形:

$$\bigcup_{i=1}^{n} A_i = \{ 事件A_1, A_2, \cdots, A_n$$
中至少有一个发生
$$\bigcup_{i=1}^{\infty} A_i = \{ 事件A_1, A_2, \cdots, A_n, \cdots$$
中至少有一个发生 $\}$

事件的交

如果事件 A 和事件 B 同时发生,则这样的一个事件称为事件 A 与事件 B 的**交事件**或积**事件**,记作 $A \cap B$ 或 AB.

$$A\cap B=\{\omega\mid\omega\in A\mathrel{\dot\coprod}\omega\in B\}$$

事件 A 和事件 B 作为样本空间 Ω 的子集,交事件 $A \cap B$ 就是子集 A 与 B 的交集. 对于任何事件 A 与 B,有

$$A \cap A = A$$

$$A \cap \emptyset = \emptyset$$

$$A \cap B = B \cap A$$

$$A \cap \overline{A} = \emptyset$$

$$A \cap B \subseteq A$$

$$A \cap B \subseteq B$$

如果 $A \subseteq B$,则有 $A \cap B = A$. 如果 $A \subseteq B$ 互不相容,则有 $A \cap B = \emptyset$. 事件的交可以推广到多个事件的情形:

$$\bigcap_{i=1}^{n} A_i = \{ 事件A_1, A_2, \cdots, A_n 同时发生 \}$$

$$\bigcap_{i=1}^{\infty} A_i = \{ 事件A_1, A_2, \cdots, A_n, \cdots 同时发生 \}$$

事件的差

如果事件 A 发生而事件 B 不发生,则这样的一个事件称为事件 A 与事件 B 的**差事件**,记作 A-B.

$$A-B=\{\omega\mid\omega\in A\mathrel{\dot\coprod}\omega\notin B\}$$

对于任何事件 A 与 B, 有

$$A - A = \emptyset$$

$$A - \emptyset = A$$

$$A - B = A - AB = A\overline{B}$$

$$\Omega - A = \overline{A}$$

$$A - \Omega = \emptyset$$

$$(A - B) \cup B = (B - A) \cup A = A \cup B$$

$$A \cup B = A \cup (B - AB) = B \cup (A - AB)$$

A-B,AB,B-A 两两互斥,且 $A\cup B=(A-B)\cup AB\cup (B-A)$, $A=(A-B)\cup AB$, $B=(B-A)\cup AB$.

随机事件的运算规律

- 1. 交換律: $A \cup B = B \cup A$, AB = BA.
- 2. 结合律: $(A \cup B) \cup C = A \cup (B \cup C)$, (AB)C = A(BC).
- 3. 分配律: $A(B \cup C) = (AB) \cup (AC)$, $A \cup (BC) = (A \cup B)(A \cup C)$.
- 4. 对偶律: $\overline{A \cup B} = \overline{A}\overline{B}$, $\overline{AB} = \overline{A} \cup \overline{B}$.

对于多个随机事件,以上的运算规律也成立.

1.3 随机事件的概率

1.3.1 频率

定义 1.1 设在相同的条件下进行的 n 次试验中,事件 A 发生了 n_A 次,则称 n_A 为事件 A 发生的**频数**,称比值 $\frac{n_A}{n}$ 为事件 A 发生的**频率**,记作 $f_n(A)$,即

$$f_n(A) = \frac{n_A}{n}$$

事件 A 发生的频率反映了事件 A 在 n 次试验中发生的频繁程度. 频率越大, 表明事件 A 的发生越频繁, 从而可知事件 A 在一次试验中发生的可能性越大.

频率的基本性质:

性质 **1**(非负性) 对于任意事件 A, 有 $f_n(A) \ge 0$.

性质 **2**(规范性) 对于必然事件 Ω , 有 $f_n(\Omega) = 1$.

性质 3(有限可加性) 对于两两互不相容的事件 A_1, A_2, \dots, A_m (即当 $i \neq j$ 时,有 $A_i A_j = \emptyset$, $i, j = 1, 2, \dots, m$),有

$$f_n(\bigcup_{i=1}^m A_i) = \sum_{i=1}^m f_n(A_i)$$

在相同的条件下重复进行 n 次试验,当 n 增大时,事件 A 发生的频率 $f_n(A)$ 呈现出稳定性,逐渐稳定于某一常数 p. 用这一常数表示事件 A 发生的可能性大小,称为事件 A 的概率,记为 P(A),即 P(A)=p.

当 n 很大时,可以用频率 $f_n(A)$ 作为概率 P(A) 的近似值.

1.3.2 概率

定义 1.2 设随机试验 E 的样本空间为 Ω ,如果对于 E 的每一个事件 A,有唯一的实数 P(A) 和它对应,并且这个事件的函数 P(A) 满足以下条件:

- 1. 非负性: 对于任意事件 A, 有 $P(A) \ge 0$;
- 2. 规范性:对于必然事件 Ω ,有 $P(\Omega)=1$;
- 3. 可列可加性: 对于两两互不相容的事件 A_1, A_2, \cdots , 有

$$P(\bigcup_{i=1}^{\infty} A_i) = \sum_{i=1}^{\infty} P(A_i)$$

则称 P(A) 为事件 A 的概率.

性质 1 对于不可能事件 Ø, 有 $P(\emptyset) = 0$.

证明:因为 $\emptyset = \emptyset \cup \emptyset \cup \cdots$,根据概率的可列可加性,有

$$P(\emptyset) = P(\emptyset) + P(\emptyset) + \cdots$$

由概率的非负性知 $P(\emptyset) \ge 0$,因此 $P(\emptyset) = 0$.

性质 2(有限可加性) 对于两两互不相容的事件 A_1, A_2, \dots, A_n , 有

$$P(\bigcup_{i=1}^{n} A_i) = \sum_{i=1}^{n} P(A_i)$$

证明: 令 $A_i = \emptyset$ $(i = n + 1, n + 2, \cdots)$,根据概率的可列可加性及性质1,有

$$P(\bigcup_{i=1}^{n} A_i) = P(\bigcup_{i=1}^{\infty} A_i) = \sum_{i=1}^{\infty} P(A_i) = \sum_{i=1}^{n} P(A_i)$$

性质 3 对于任一事件 A,有 $P(\overline{A}) = 1 - P(A)$.

证明: 因为 $A \cup \overline{A} = \Omega$, 且 $A\overline{A} = \emptyset$, 由性质 2 及概率的规范性, 得

$$P(\Omega) = P(A \cup \overline{A}) = P(A) + P(\overline{A}) = 1$$

即

$$P(\overline{A}) = 1 - P(A)$$

性质 4 如果 $A \subseteq B$,则有 P(B - A) = P(B) - P(A), $P(A) \leqslant P(B)$.

证明: 因为 $A \subseteq B$,从而有 $B = A \cup (B - A)$,且 $A(B - A) = \emptyset$,由性质 2 可得

$$P(B) = P(A \cup (B - A)) = P(A) + P(B - A)$$

所以

$$P(B - A) = P(B) - P(A)$$

由于 $P(B-A) \geqslant 0$,因此 $P(A) \leqslant P(B)$.

性质 5 对于任一事件 A, 有 $P(A) \leq 1$.

证明:因为 $A \subseteq \Omega$,由性质 4 及概率的规范性,可得

$$P(A) \leqslant P(\Omega) = 1$$

性质 6(概率的减法公式) 对于任意两个事件 A 与 B, 有 P(B-A) = P(B) - P(AB).

证明:由于 B-A=B-AB,而 $AB\subseteq B$,根据性质 4 可得

$$P(B - A) = P(B - AB) = P(B) - P(AB)$$

性质 7 对于任意两个事件 A 与 B,有

$$P(A \cup B) = P(A) + P(B) - P(AB)$$

$$P(A \cup B) \leqslant P(A) + P(B)$$

$$(1-1)$$

证明: 因为 $A \cup B = A \cup (B - AB)$, 且 $A(B - AB) = \emptyset$, $AB \subseteq B$, 由性质 2 及性质 4 可得

$$P(A \cup B) = P(A \cup (B - AB))$$
$$= P(A) + P(B - AB)$$
$$= P(A) + P(B) - P(AB)$$

由于 $P(AB) \geqslant 0$, 因此

$$P(A \cup B) \leqslant P(A) + P(B)$$

式 (1-1) 称为概率的加法公式.

加法公式可以推广到任意有限个事件的情形: 设 A_1, A_2, \cdots, A_n 是 n 个随机事件,则有

$$P(\bigcup_{i=1}^{n} A_i) = \sum_{i=1}^{n} P(A_i) - \sum_{1 \le i < j \le n} P(A_i A_j) + \sum_{1 \le i < j < k \le n} P(A_i A_j A_k) + \cdots + (-1)^{n-1} P(A_1 A_2 \cdots A_n)$$
(1-2)

式 (1-2) 称为概率的一般加法公式.

1.3.3 古典概型

如果随机试验具有以下两个特点:

- 1. 试验的样本空间只包含有限个样本点:
- 2. 在试验中每个基本事件发生的可能性相同,

则称这种试验为等可能概型或古典概型.

设试验 E 是古典概型,样本空间为 $\Omega = \{\omega_1, \omega_2, \cdots, \omega_n\}$,则基本事件 $\{\omega_1\}, \{\omega_2\}, \cdots, \{\omega_n\}$ 两两互不相容,且

$$\Omega = \{\omega_1\} \cup \{\omega_2\} \cup \cdots \cup \{\omega_n\}$$

由于 $P(\Omega) = 1$ 及 $P(\{\omega_1\}) = P(\{\omega_2\}) = \cdots = P(\{\omega_n\})$,因此

$$P(\{\omega_1\}) = P(\{\omega_2\}) = \dots = P(\{\omega_n\}) = \frac{1}{n}$$

如果事件 A 包含 k 个基本事件, $A = \{\omega_{i_1}\} \cup \{\omega_{i_2}\} \cup \cdots \cup \{\omega_{i_k}\}$,其中 i_1, i_2, \cdots, i_k 是 $1, 2, \cdots, n$ 中某 k 个不同的数,则有

$$P(A) = P(\{\omega_{i_1}\}) + P(\{\omega_{i_2}\}) + \dots + P(\{\omega_{i_k}\}) = \frac{k}{n}$$

即

$$P(A) = \frac{A \, \text{包含的基本事件个数}}{\Omega \, \text{包含的基本事件总数}}$$

1.3.4 几何概型

如果随机试验是将一个点随机地投到某一区域 Ω 内,而这个随机点落在 Ω 中任意两个度量相等的子区域内的可能性是一样的,则称这样的试验属于**几何概型**.

注: Ω 可以是直线上的某一区间,也可以是平面或空间内的某一区域. 区域的度量是指直线上区间的长度,或者平面内区域的面积,或者空间内区域的体积.

对于任何有度量的子区域 $A \subseteq \Omega$,定义事件 A = "随机点落在区域 A 内" 的概率为

$$P(A) = \frac{A \text{ 的度量}}{\Omega \text{ 的度量}}$$

1.4 条件概率

1.4.1 条件概率与乘法公式

定义 1.3 设 A 和 B 是试验 E 的两个事件,且 P(A) > 0,称 $\frac{P(AB)}{P(A)}$ 为在事件 A 已经 发生的条件下,事件 B 发生的条件概率,记为 $P(B \mid A)$,即

$$P(B \mid A) = \frac{P(AB)}{P(A)}$$

对于任意两个事件 A 和 B,如果 P(A) > 0,则有

$$P(AB) = P(A) P(B \mid A) \tag{1-3}$$

式 (1-3) 称为概率的乘法公式.

同样可以在 P(B) > 0 时,定义在事件 B 已经发生的条件下,事件 A 发生的条件概率为

$$P(A \mid B) = \frac{P(AB)}{P(B)}$$

在 P(A) > 0, P(B) > 0 的条件下,有

$$P(AB) = P(A) P(B \mid A) = P(B) P(A \mid B)$$

条件概率具有如下性质:

性质 $\mathbf{1}$ (非负性) 对任意事件 B, 有 $P(B \mid A) \ge 0$.

性质 2(规范性) 对于必然事件 Ω , 有 $P(\Omega \mid A) = 1$.

性质 3(可列可加性) 对于两两互不相容的事件 B_1, B_2, \cdots , 有

$$P(\left(\bigcup_{i=1}^{\infty} B_i\right) \mid A) = \sum_{i=1}^{\infty} P(B_i \mid A)$$

可由条件概率的三个基本性质推导出其他性质, 例如

$$P(\emptyset \mid A) = 0$$

$$P(\overline{B} \mid A) = 1 - P(B \mid A)$$

$$P((B_1 \cup B_2) \mid A) = P(B_1 \mid A) + P(B_2 \mid A) - P(B_1 B_2 \mid A)$$

可以把乘法公式推广到有限个事件的交的情况:设 A_1,A_2,\cdots,A_n 是同一试验的事件,且 $P(A_1A_2\cdots A_{n-1})>0$,则有

$$P(A_1 A_2 \cdots A_n) = P(A_1) P(A_2 \mid A_1) P(A_3 \mid A_1 A_2) \cdots P(A_n \mid A_1 A_2 \cdots A_{n-1})$$
 (1-4)

1.4.2 全概率公式

设试验 E 的样本空间为 Ω ,事件 A_1,A_2,\cdots,A_n 两两互不相容,且 $\bigcup_{i=1}^n A_i=\Omega$,则称 A_1,A_2,\cdots,A_n 为样本空间 Ω 的一个分割或完全事件组.

如果 $P(A_i) > 0$ $(i = 1, 2, \dots, n)$, 则对任意事件 B, 有

$$B = B\Omega = B\left(\bigcup_{i=1}^{n} A_i\right) = \bigcup_{i=1}^{n} (A_i B)$$

这里 $(A_iB) \cap (A_jB) = \emptyset$ $(i \neq j, i, j = 1, 2, \dots, n)$, 由概率的有限可加性得

$$P(B) = P(\bigcup_{i=1}^{n} (A_i B)) = \sum_{i=1}^{n} P(A_i B)$$

由乘法公式得

$$P(B) = \sum_{i=1}^{n} P(A_i) P(B \mid A_i)$$
 (1-5)

式 (1-5) 称为全概率公式 (Total Probability Theorem).

1.4.3 贝叶斯公式

设试验 E 的样本空间为 Ω ,事件 A_1, A_2, \dots, A_n 是 Ω 的一个分割,且 $P(A_i) > 0$ ($i = 1, 2, \dots, n$). 对于任一事件 B,如果 P(B) > 0,由乘法公式可得

$$P(A_iB) = P(B) P(A_i \mid B) = P(A_i) P(B \mid A_i)$$

由此得

$$P(A_i \mid B) = \frac{P(A_i) P(B \mid A_i)}{P(B)}$$

利用全概率公式,得

$$P(A_i \mid B) = \frac{P(A_i) P(B \mid A_i)}{\sum_{j=1}^{n} P(A_j) P(B \mid A_j)}$$
(1-6)

式 (1-6) 称为**贝叶斯公式** (Bayes Rule).

1.5 事件的独立性

定义 1.4 设 A 与 B 是同一试验 E 的两个事件,如果 P(AB) = P(A)P(B),则称事件 A 与事件 B 是相互独立的.

对于同一试验 E 的两个事件 A 与 B,如果 P(A) > 0,则 A 与 B 相互独立的充分必要条件是 $P(B \mid A) = P(B)$;如果 P(B) > 0,则 A 与 B 相互独立的充分必要条件是 $P(A \mid B) = P(A)$.

结论: 如果事件 A 与事件 B 相互独立,则事件 A 与事件 \overline{B} 相互独立.

证明: $A = A(B \cup \overline{B}) = (AB) \cup (A\overline{B})$,而 $(AB)(A\overline{B}) = \emptyset$,所以

$$P(A) = P((AB) \cup (A\overline{B})) = P(AB) + P(A\overline{B})$$

如果 A 与 B 相互独立,则 P(AB) = P(A)P(B),代入上式可得

$$P(A) = P(A) P(B) + P(A\overline{B})$$

由此得

$$P(A\overline{B}) = P(A) - P(A) P(B)$$
$$= P(A)[1 - P(B)]$$
$$= P(A) P(\overline{B})$$

因此事件 A 与事件 \overline{B} 是相互独立的.

同理,如果事件 A 与事件 B 相互独立,则事件 \overline{A} 与事件 B 相互独立,事件 \overline{A} 与事件 \overline{B} 相互独立.

定义 1.5 对于同一试验 E 的三个事件 A, B, C,如果满足

$$P(AB) = P(A) P(B)$$

$$P(BC) = P(B) P(C)$$

$$P(AC) = P(A) P(C)$$

则称三个事件 A, B, C 是**两两相互独立**的.

定义 1.6 如果三个事件 A, B, C 是两两相互独立的,并且有 P(ABC) = P(A) P(B) P(C),则称三个事件 A, B, C 是相互独立的.

定义 1.7 设 A_1, A_2, \dots, A_n 是同一试验 E 的 n 个事件,如果对于任意正整数 k 及这 n 个事件中的任意 k ($2 \le k \le n$) 个事件 $A_{i_1}, A_{i_2}, \dots, A_{i_k}$,都有等式

$$P(A_{i_1}A_{i_2}\cdots A_{i_k}) = P(A_{i_1}) P(A_{i_2})\cdots P(A_{i_k})$$

则称这 n 个事件 A_1, A_2, \cdots, A_n 是相互独立的.

1.6 伯努利概型

如果将试验 E 重复执行 n 次,在每一次试验中,事件 A 或者发生,或者不发生. 假设每次试验的结果互不影响,即在每次试验中事件 A 发生的概率保持不变,不受其他各次试验结果的影响,则称这 n 次试验相互独立.

如果试验 E 只有两个可能的对立结果 A 和 \overline{A} ,并且 P(A) = p, $P(\overline{A}) = 1 - p$,其中 0 . 将试验 <math>E 独立地重复进行 n 次所构成的一个试验叫做 n **重伯努利试验**,简称为**伯努利试验**或伯努利概型.

n 重伯努利试验的基本事件可记为 $\omega = \omega_1 \omega_2 \cdots \omega_n$,其中 $\omega_i (1 \le i \le n)$ 为 A 或者为 \overline{A} ,即 ω 是从 A 及 \overline{A} 中每次取 1 个,独立地重复取 n 次的一种排列,共有 2^n 个基本事件.

如果 ω 中有 k 个 A,则必有 n-k 个 \overline{A} ,由独立性可得这一基本事件的概率为 $p^k(1-p)^{n-k}$. 由于在 2^n 个基本事件中共有 C_n^k 个含 k 个 A 及 n-k 个 \overline{A} ,因此在 n 次独立重复试验中,事件 A 恰好发生 k 次的概率 $P_n(k)$ 为

$$P_n(k) = C_n^k p^k (1-p)^{n-k} \quad k = 0, 1, 2, \dots, n$$
(1-7)

由二项式定理可得

$$\sum_{k=0}^{n} P_n(k) = \sum_{k=0}^{n} C_n^k p^k (1-p)^{n-k} = [p+(1-p)]^n = 1$$

由此可见, $C_n^k p^k (1-p)^{n-k}$ 是二项展开式中的一项,因此式 (1-7) 又称为**二项概率公式**.