International Rectifier

- Generation V Technology
- Ultra Low On-Resistance
- Dual N-Channel Mosfet
- Surface Mount
- Available in Tape & Reel
- Dynamic dv/dt Rating
- Fast Switching

Description

Fifth Generation HEXFETs from International Rectifier utilize advanced processing techniques to achieve extremely low on-resistance per silicon area. This benefit, combined with the fast switching speed and ruggedized device design that HEXFET Power MOSFETs are well known for, provides the designer with an extremely efficient and reliable device for use in a wide variety of applications.

The SO-8 has been modified through a customized leadframe for enhanced thermal characteristics and multiple-die capability making it ideal in a variety of power applications. With these improvements, multiple devices can be used in an application with dramatically reduced board space. The package is designed for vapor phase, infra red, or wave soldering techniques. Power dissipation of greater than 0.8W is possible in a typical PCB mount application.

IRF7341

HEXFET® Power MOSFET

Absolute Maximum Ratings

Parameter		Max.	Units
V_{DS}	Drain- Source Voltage	55	V
$I_D @ T_C = 25^{\circ}C$	Continuous Drain Current, V _{GS} @ 10V	4.7	
I _D @ T _C = 70°C	Continuous Drain Current, V _{GS} @ 10V	3.8	V A A W/°C V V/ns
I _{DM}	Pulsed Drain Current ①	38	
P _D @T _C = 25°C	Power Dissipation	2.0	۱۸/
P _D @T _C = 70°C	Power Dissipation	1.3] VV
	Linear Derating Factor	0.016	W/°C
V_{GS}	Gate-to-Source Voltage	± 20	V
V_{GSM}	Gate-to-Source Voltage Single Pulse tp<10µs	30	V
E _{AS}	Single Pulse Avalanche Energy®	72	
dv/dt	Peak Diode Recovery dv/dt ③	5.0	V/ns
T _J , T _{STG}	Junction and Storage Temperature Range	-55 to + 150	°C

Thermal Resistance

	Parameter	Тур.	Max.	Units
$R_{\theta JA}$	Maximum Junction-to-Ambient®		62.5	°C/W

IRF7341

Electrical Characteristics @ T_J = 25°C (unless otherwise specified)

Parameter Min Tun May Unite Conditions						
		тур.	wax.		Conditions	
Drain-to-Source Breakdown Voltage	55			V	$V_{GS} = 0V, I_D = 250\mu A$	
Breakdown Voltage Temp. Coefficient		0.059		V/°C	Reference to 25°C, $I_D = 1mA$	
Static Drain-to-Source On-Resistance		0.043	0.050	0	$V_{GS} = 10V, I_D = 4.7A$ ④	
		0.056	0.065		$V_{GS} = 4.5V, I_D = 3.8A \oplus$	
Gate Threshold Voltage	1.0			V	$V_{DS} = V_{GS}$, $I_D = 250\mu A$	
Forward Transconductance	7.9			S	$V_{DS} = 10V, I_D = 4.5A$	
Drain-to-Source Leakage Current			2.0	μА	$V_{DS} = 55V$, $V_{GS} = 0V$	
			25		$V_{DS} = 55V, V_{GS} = 0V, T_{J} = 55^{\circ}C$	
Gate-to-Source Forward Leakage			-100	nΛ	$V_{GS} = -20V$	
Gate-to-Source Reverse Leakage	_		100	IIA	$V_{GS} = 20V$	
Total Gate Charge		24	36		$I_D = 4.5A$	
Gate-to-Source Charge		2.3	3.4	nC	$V_{DS} = 44V$	
Gate-to-Drain ("Miller") Charge		7.0	10		V _{GS} = 10V, See Fig. 10 ④	
Turn-On Delay Time		8.3	12		$V_{DD} = 28V$	
Rise Time		3.2	4.8	no l	$I_{D} = 1.0A$	
Turn-Off Delay Time		32	48	115	$R_G = 6.0\Omega$	
Fall Time		13	20		$R_D = 28\Omega$, \oplus	
Input Capacitance		740			$V_{GS} = 0V$	
Output Capacitance		190		pF	$V_{DS} = 25V$	
Reverse Transfer Capacitance		71			f = 1.0MHz, See Fig. 9	
	Breakdown Voltage Temp. Coefficient Static Drain-to-Source On-Resistance Gate Threshold Voltage Forward Transconductance Drain-to-Source Leakage Current Gate-to-Source Forward Leakage Gate-to-Source Reverse Leakage Total Gate Charge Gate-to-Drain ("Miller") Charge Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Input Capacitance Output Capacitance	Drain-to-Source Breakdown Voltage Breakdown Voltage Temp. Coefficient Static Drain-to-Source On-Resistance Gate Threshold Voltage Forward Transconductance Train-to-Source Leakage Current Gate-to-Source Forward Leakage Gate-to-Source Reverse Leakage Total Gate Charge Gate-to-Drain ("Miller") Charge Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Input Capacitance ———————————————————————————————————	Drain-to-Source Breakdown Voltage 55 Breakdown Voltage Temp. Coefficient — 0.059 Static Drain-to-Source On-Resistance — 0.043 Gate Threshold Voltage 1.0 Forward Transconductance 7.9 Drain-to-Source Leakage Current — — Gate-to-Source Forward Leakage — — Gate-to-Source Reverse Leakage — — Total Gate Charge — 24 Gate-to-Source Charge — 2.3 Gate-to-Drain ("Miller") Charge — 7.0 Turn-On Delay Time — 8.3 Rise Time — 3.2 Turn-Off Delay Time — 32 Fall Time — 13 Input Capacitance — 740 Output Capacitance — 190	Drain-to-Source Breakdown Voltage 55 — Breakdown Voltage Temp. Coefficient — 0.059 — Static Drain-to-Source On-Resistance — 0.043 0.050 — 0.056 0.065 Gate Threshold Voltage 1.0 — Forward Transconductance 7.9 — Drain-to-Source Leakage Current — 2.0 Gate-to-Source Forward Leakage — -100 Gate-to-Source Reverse Leakage — -100 Total Gate Charge — 24 36 Gate-to-Source Charge — 2.3 3.4 Gate-to-Drain ("Miller") Charge — 7.0 10 Turn-On Delay Time — 8.3 12 Rise Time — 3.2 4.8 Turn-Off Delay Time — 3.2 48 Fall Time — 740 — Output Capacitance — 190 —	Drain-to-Source Breakdown Voltage 55	

Source-Drain Ratings and Characteristics

	Parameter	Min.	Тур.	Max.	Units	Conditions		
Is	Continuous Source Current			0.0		MOSFET symbol		
	(Body Diode)				2.0	_	showing the	
I _{SM}	Pulsed Source Current			20	A	integral reverse ^G		
	(Body Diode) ①			38	36	- 38		p-n junction diode.
V _{SD}	Diode Forward Voltage			1.2	V	$T_J = 25^{\circ}C$, $I_S = 2.0A$, $V_{GS} = 0V$ ③		
t _{rr}	Reverse Recovery Time		60	90	ns	$T_J = 25^{\circ}C, I_F = 2.0A$		
Q _{rr}	Reverse RecoveryCharge		120	170	nC	di/dt = -100A/µs ③		

Notes:

- ① Repetitive rating; pulse width limited by max. junction temperature. (See fig. 11)
- ② Starting T_J = 25°C, L = 6.5mH R_G = 25 Ω , I_{AS} = 4.7A. (See Figure 8)
- $\label{eq:loss} \begin{array}{l} \text{ (3)} \ \ I_{SD} \leq 4.7A, \ di/dt \leq 220A/\mu s, \ V_{DD} \leq V_{(BR)DSS}, \\ \ \ \ T_{J} \leq 150 ^{\circ}C \end{array}$
- 4 Pulse width $\leq 300 \mu s$; duty cycle $\leq 2\%$.
- ⑤ When mounted on 1 inch square copper board, t<10 sec

Fig 1. Typical Output Characteristics

Fig 2. Typical Output Characteristics

Fig 3. Typical Transfer Characteristics

Fig 4. Typical Source-Drain Diode Forward Voltage

IRF7341 International International IOR Rectifier

Fig 5. Normalized On-Resistance Vs. Temperature

Fig 6. Typical On-Resistance Vs. Drain Current

Fig 7. Typical On-Resistance Vs. Gate Voltage

Fig 8. Maximum Avalanche Energy Vs. Drain Current

International

TOR Rectifier

IRF7341

Fig 9. Typical Capacitance Vs. Drain-to-Source Voltage

Fig 10. Typical Gate Charge Vs. Gate-to-Source Voltage

Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Ambient

IRF7341 International International IOR Rectifier

SO-8 Package Outline

Dimensions are shown in millimeters (inches)

DIM	INC	HES	MILLIMETERS		
DIIVI	MIN	MAX	MIN	MAX	
Α	.0532	.0688	1.35	1.75	
A1	.0040	.0098	0.10	0.25	
b	.013	.020	0.33	0.51	
С	.0075	.0098	0.19	0.25	
D	.189	.1968	4.80	5.00	
Е	.1497	.1574	3.80	4.00	
е	.050 BASIC		1.27 BASIC		
e1	.025 BASIC		0.635 BASIC		
Н	.2284	.2440	5.80	6.20	
K	.0099	.0196	0.25	0.50	
L	.016	.050	0.40	1.27	
у	0°	8°	0°	8°	

NOTES

- 1. DIMENSIONING & TOLERANCING PER ASME Y14.5M-1994.
- 2. CONTROLLING DIMENSION: MILLIMETER
- 3. DIMENSIONS ARE SHOWN IN MILLIMETERS [INCHES].
- 4. OUTLINE CONFORMS TO JEDEC OUTLINE MS-012AA.
- (5) DIMENSION DOES NOT INCLUDE MOLD PROTRUSIONS. MOLD PROTRUSIONS NOT TO EXCEED 0.15 [.006].
- (6) DIMENSION DOES NOT INCLUDE MOLD PROTRUSIONS. MOLD PROTRUSIONS NOT TO EXCEED 0.25 [.010].
- [7] DIMENSION IS THE LENGTH OF LEAD FOR SOLDERING TO A SUBSTRATE.

SO-8 Part Marking

EXAMPLE: THIS IS AN IRF7101 (MOSFET)

International

TOR Rectifier

IRF7341

SO-8 Tape and Reel

Dimensions are shown in millimeters (inches)

NOTES:

- 1. CONTROLLING DIMENSION: MILLIMETER.
- 2. ALL DIMENSIONS ARE SHOWN IN MILLIMETERS(INCHES).
- 3. OUTLINE CONFORMS TO EIA-481 & EIA-541.

NOTES:

- 1. CONTROLLING DIMENSION : MILLIMETER.
- 2. OUTLINE CONFORMS TO EIA-481 & EIA-541.

Data and specifications subject to change without notice.

IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105

TAC Fax: (310) 252-7903

Visit us at www.irf.com for sales contact information. 04/05