

K. J. Somaiya College of Engineering, Mumbai-77

(A Constituent College of Somaiya Vidyavihar University)

Department of Sciences and Humanities

Course Name:	Elements of Electrical and Electronics Engineering Laboratory	Semester:	I	
Date of Performance:	8/11/2024	Batch No:	C5-2	
Student Name:	Nidhesh Gomai	Roll No:	16014224025	
Faculty Sign & Date:		Grade/Marks:	/ 20	

Experiment No: 7

Title: Measurement of Power using Two Wattmeter Method

Aim and Objective of the Experiment:

• To measure the power of three phase power using Two Wattmeter Method

COs to be achieved:

CO2: Demonstrate and analyze steady state response of single phase and three phase circuits

EEEEL Semester: I/II Academic Year: 2024-25

K. J. Somaiya College of Engineering, Mumbai-77

(A Constituent College of Somaiya Vidyavihar University)

Department of Sciences and Humanities

Stepwise-Procedure:

- 1. Connect the circuit as shown in circuit diagram
- 2. Increase the load and note down the reading VL,IL,W1 and W2
- 3. Practically you will obtain total power W=W1+W2
- 4. Theoretically power is measured by using formula $P=\sqrt{3}V_LI_L\cos\phi$, using $\cos\phi=1(\text{unity})$ for resistive load.

Observ	ation Ta	ble:									
Sr.no	V _L I _L (Volts) (Amp)			W ₁ (KW)		W ₂ (KW)		W= (W ₁ +W ₂) (KW)		$P = \ \sqrt{3}V_LI_LCOS\phi$ (KW) $(Practical\ values)$	Lamp load given from lamp bank (KW)
		ТН	PR	ТН	PR	TH	PR	ТН	PR	PR	
1	400	0.8	0.9	0.27	0.3	0.27	0.3	0.54	0.6	0.54	0.6
2	400	1.6	1.8	0.55	0.6	0.55	0.6	1.1	1.2	1.08	1.2
3	400	2.4	2.6	0.83	0.9	0.83	0.9	1.66	1.8	1.56	1.8
4	400	3.6	3.5	1.24	1 24	1.24	1 24	2.48	2.48	2.1	2.3

Theoretical Calculations:

Power= $\sqrt{3} \times V_L \times I_L \times \cos \phi$

 $\cos \phi = 1$

Power =Wattage rating of lamp load x No of lamps (One lamp is of 100W rating)

W1= $V_L \times I_L \times \cos(30+\varphi)$

 $\Phi = 0$

W2= $V_L \times I_L \times \cos(30-\varphi)$

Total Power=P=W1+W2

EEEEL Semester: I/II Academic Year: 2024-25

K. J. Somaiya College of Engineering, Mumbai-77

(A Constituent College of Somaiya Vidyavihar University) **Department of Sciences and Humanities**

	\sim			 				
•	٠,	n	m	ш	SI		n	•

From this experiment we learnt to measure the power of a three-phase using two wattmeter method. We also analyzed the three phase circuits. The two-wattmeter method provides an efficient way to measure the total power.

Signature of faculty in-charge with Date:

EEEEL Semester: I/II Academic Year: 2024-25