3. SKLOPOVSKA IZVEDBA UPRAVLJAČKE JEDINICE RAČUNALA S AKUMULATORSKOM ARHITEKTUROM

- Skup instrukcija
- Organizacija računala
- Struktura upravljačke jedinice
- Komponente upravljačke jedinice:
 - dekoder
 - PLA
 - generator taktnog signala
 - generator slijedova

Von Neumannov model računala (drugo predavanje)

Pojednostavljeni model računala (treće predavanje) S. Ribarić, AIOR

Detaljni model organizacije računala akumulatorske arhitekture (sada razmatramo) Instrukcijska arhitektura (ISA)

Mnemonik	Opis		
lda X	$A \leftarrow M(X)$		
sta X	$\mathbf{M}(\mathbf{X}) \leftarrow \mathbf{A}$		
adda X	$A \leftarrow A + M(X)$		
anda X	$A \leftarrow A \wedge M(X)$		
coma	A ← ⊢A (prvi komplement)		
jmp X	PC X		
jmpz X	if AC==0: PC ← X		
shra	$A[30:0] \leftarrow A[31:1]$		

Fiksni instrukcijski format (za operacijski kod dovoljna tri bita)

Instrukcijski skup oblikovan za što veću jednostavnost:

- sve instrukcije zauzimaju jednu riječ memorije (32 bit)
 - operacijski kod: 3 bita
 - memorijski operand (izravno adresiranje): 24 bita
- adresna sabirnica procesora ima 24 bita
- podatkovna sabirnica procesora ima 32 bita
- =32-bitno proširenje tipičnog osmobitnog procesora
 - jednostavna akumulatorski orijentirana arhitektura
 - faza pribavi je sada ista za sve instrukcije

Koraci provedbe faze pribavi:

- 1. MAR \leftarrow PC
- 2. $MDR \leftarrow M[MAR]$
- 3. PC \leftarrow PC+1, IR \leftarrow MDR[31:24]
- 4. dekodiranje operacijskog kôda

Koraci provedbe faze **izvrši** za instrukciju **adda**:

- 1. korak: MAR \leftarrow MDR[23:0]
- 2. korak: MDR \leftarrow M[MAR]
- 3. korak: $A \leftarrow A + MDR$

Detalji izvedbe koraka faza pribavi i izvrši

- svaki korak faza pribavi i izvrši izvodimo potrebnim brojem mikrooperacija
- mikrooperacija: nedjeljiva, primitivna, izravno sklopovski podržana operacija
- tipične mikrooperacije:
 - 1. prijenos podatka između dva registra
 - 2. pristup glavnoj memoriji
 - 3. elementarne aritmetičke operacije
- pretpostavljeni vremenski odnosi mikrooperacija:
 - 1. memorijske mikrooperacije zahtijevaju dvije vremenske jedinice ΔT
 - 2. prijenos podataka preko interne sabirnice također zahtijeva $2\Delta T$
 - 3. sve ostale mikrooperacije izvode se tijekom $1\Delta T$

Potrebna sklopovska podrška

- prijenos podataka među registrima na zajedničkoj sabirnici
- mehanizam za slijeđenje mikrooperacija
- dekodiranje instrukcijskog registra
- aritmetičko-logička jedinica
 - to znamo iz Digitalne logike!
- izvedba glavne memorije
 - s detaljima ćemo se upoznati pri kraju semestra!
- izvedba vanjskog sabirničkog sustava i UI jedinica
 - to ćemo ostaviti za Projektiranje digitalnih sustava!

Prijenos podataka među registrima na sabirnici

- signal C₁ propušta R_m na sabirnicu
- signal C₂ upisuje podatak sa sabirnice u R_n
- sinkroniziranom primjenom C_1 i C_2 postižemo $R_n \leftarrow R_m$

Pogonski sklopovi s tri stanja (ponavljanje)

Mehanizam za slijeđenje mikrooperacija

- osnovni sklop: generator slijedova po modulu n
- **pretp:** $R_n \leftarrow R_m$ je prva mikrooperacija instrukcije I_x
- tada: C₁ i C₂ izvodimo s:

$$- C_1 = (\Phi_1 + \Phi_2) \cdot I_x$$

$$- C_2 = \Phi_2 \cdot I_x$$

kako dobiti signal I_x?
 (vidi sljedeću stranicu)

clock = signal vremenskog vođenja

Dekodiranje instrukcija, generiranje upravljačkih signala

Novi pogled na put podataka

- signali C₁₄, C₁₅ itd. upravljaju upisivanjem podataka u registre (sinkronizacijski ulazi registara spojeni su na signal takta)
- signali C_5 , C_6 , C_7 itd. definiraju izlazak registara na sabirnicu $(2\Delta T)$
- signali C_3 , C_4 reguliraju pristup glavnoj memoriji $(2\Delta T)$
- signali C₀, C₁, C₂ definiraju funkciju ALU

Signal	Simbol	Vrsta	Operacija
C0	add	ALU	P + Q; zbroji
C1	and	ALU	$P \cdot Q$
C2	com	ALU	- Р
C3	Read	memorija	čitanje (Read)
C4	Write	memorija	pisanje (Write)
C5	EMDR	sabirnica	$MDR \rightarrow IntBUS$
C6	EALU	sabirnica	$IntRegALU \rightarrow IntBUS$
C7	EA	sabirnica	$A \rightarrow IntBUS$
C8	EPC	sabirnica	PC→ IntBUS
C9	EIR	sabirnica	$IR \rightarrow IntBUS$
C10	LA	registar	$IntBUS \rightarrow A$
C11	LPC	registar	$IntBUS \rightarrow PC$
C12	LIR	registar	$IntBUS \rightarrow IR$
C13	LMAR	registar	IntBUS \rightarrow MAR
C14	LMDR	registar	IntBUS → MDR ili (DB0-DB31) → MDR
C15	LALU	registar	$ALU \rightarrow IntRegALU$
C16	Inc	registar	$PC + 1 \rightarrow PC$
C17	Shr	registar	posmak akumulatora

Detaljna izvedba faze pribavi

- 1. MAR \leftarrow PC
 - EPC: $C_8 = \Phi_1 + \Phi_2$
 - LMAR: $C_{13} = \Phi_2$
- 2. $MDR \leftarrow M[MAR]$
 - READ: $C_3 = \Phi_3 + \Phi_4$
 - LMDR: $C_{14} = \Phi_4$
- 3. PC \leftarrow PC+1, IR \leftarrow MDR[31:24]
 - INC: $C_{16} = \Phi_5$
 - EMDR: $C_5 = \Phi_5 + \Phi_6$
 - LIR: $C_{12} = \Phi_6$
- 4. dekodiranje operacijskog kôda
 - $-(\Phi_7)$

Detaljna izvedba faze izvrši za instrukciju **adda** (I₂)

- 1. $MAR \leftarrow MDR[23:0]$
 - EMDR: $C_5 = I_2 \cdot (\Phi_8 + \Phi_9)$
 - − LMAR: C_{13} = $I_2 \cdot Φ_9$
- 2. $MDR \leftarrow M[MAR]$
 - READ: $C_3 = I_2 \cdot (\Phi_{10} + \Phi_{11})$
 - LMDR: $C_{14} = I_2 \cdot \Phi_{11}$
- 3. $A \leftarrow A + MDR$
 - EMDR: $C_5 = I_2 \cdot (\Phi_{12} + \Phi_{13})$
 - ADD: $C_0 = I_2 \cdot (\Phi_{12} + \Phi_{13})$
 - LALU: $C_{15} = I_2 \cdot \Phi_{13}$
 - EALU: $C_6 = I_2 \cdot (\Phi_{14} + \Phi_{15})$
 - LA: $C_{10} = I_2 \cdot \Phi_{15}$

izvedbe instrukcija

lda i anda

vrlo su slične pa ih ostavljamo za vježbu! Detaljna izvedba faze izvrši za instrukciju sta (I₁)

- 1. $MAR \leftarrow MDR[23:0]$
 - EMDR: $C_5 = I_1 \cdot (\Phi_8 + \Phi_9)$
 - − LMAR: C_{13} = $I_1 \cdot Φ_9$
- 2. MDR \leftarrow A
 - EA: $C_7 = I_1 \cdot (\Phi_{10} + \Phi_{11})$
 - LMDR: $C_{14} = I_1 \cdot \Phi_{11}$
- 3. $M[MAR] \leftarrow MDR$
 - WRITE: $C_4 = I_1 \cdot (\Phi_{12} + \Phi_{13})$

Detaljna izvedba faze izvrši za instrukciju **shra** (I_7)

- 1. $A \leftarrow shr(A)$
 - SHR: $C_{17} = I_7 \cdot \Phi_8$

Detaljna izvedba faze izvrši za instrukciju jmpz (I_6)

- 1. PC \leftarrow MDR[23:0], ali samo ako A=0
 - EMDR: $C_5 = I_6 \cdot (\Phi_8 + \Phi_9)$
 - LPC: $C_{11} = I_6 \cdot \Phi_9 \cdot (A=0)$

izvedba instrukcije **jmp** vrlo je slična, pa je ostavljamo za vježbu!

Detaljna izvedba faze izvrši za instrukciju $coma(I_5)$

- 1. A ← ¬A
 - COM: $C_2 = I_5 \cdot Φ_8$
 - − LALU: $C_{15} = I_5 \cdot Φ_8$
 - EALU: $C_6 = I_5 \cdot (\Phi_9 + \Phi_{10})$
 - LA: $C_{10} = I_5 \cdot \Phi_{10}$

Instrukcijski ciklus (sažetak)

- periodima instrukcijskog ciklusa dodijeljeni su zasebni signali Φ_1 Φ_{15} (generira ih **generator slijedova**)
- instrukcijski ciklus sastoji se od ukupno 8-15 perioda takta ΔT (nakon kratkih instrukcija generator slijedova postavljamo na Φ_1)
- mikrooperacije traju po jedan period takta, osim pristupa memoriji (C_3, C_4) te izlaska na sabirnicu $(C_5, C_6, ...)$ koji traju dvostruko više
- instrukciju definira razdioba mikrooperacija po periodima instrukcijskog ciklusa (više mikrooperacija se mogu izvoditi usporedno)
- instrukcije s koje pribavljaju operand iz memorije tipično traju duže od ostalih instrukcija

Potpuna implementacija upravljačkog signala C₃

Implementacija upravljačkih signala za fazu pribavi

Upravljački signal C_i (i = 0, 1, 2, ..., 12) može se opisati logičkom jednadžbom:

$$C_i = \sum_{j} \left(\Phi_j \cdot \sum_{m} I_m \right)$$

$$j = 1, 2, ..., 15$$

 $m = 1, 2, ..., 8$
 I_m – izlaz iz dekodera instrukcija

Programirljivi sklop PLA

S. Ribarić, AIOR

Izvedba brojila sekvenci (ideja 1):

- posmačni registar spojen u prstenasto brojilo (engl. Ring-counter)
- pri pokretanju paralelno upisujemo podatak 10...0

S. Ribarić, AIOR

Izvedba brojila sekvenci (ideja 2):

- binarno brojilo spojeno na dekoder
- pri pokretanju brojilo resetiramo

S. Ribarić, AIOR

Brojilo sekvenci s mogućnošću zaustavljanja:

