Politechnika Gdańska

Wydział Fizyki Technicznej i Matematyki Stosowanej

Studia podyplomowe

Kierunek – Inżynieria Danych – Data Science

Metody statystyczne i analityczne Big Data

Sławomir Lisowski

Określenie wystąpienia świadczenia ubezpieczeniowego z danej polisy ubezpieczenia komunikacyjnego – wybór modelu predykcyjnego

1. Wstęp i cele

Praca ma na celu wybór najbardziej odpowiedniego modelu, który przewidzi, czy z danej polisy ubezpieczenia komuni kacyjnego wystąpi roszczenie czy też nie. Na podstawie danych trzeba znaleźć te, od których w największym stopni zależy prawd opodobieństwo roszczenia z danej polisy i będą wykorzystywane w fazie wyboru modelu.

2. Opis danych i zrozumienie danych

Zbiór danych, który będzie służył do badań zawiera 10296 obserwacji. Pojedynczy rekord zawiera informacje na tema t klienta, który zawarł umowę ubezpieczeniową odpowiedzialności cywilnej z firmą ubezpieczeniową. Każdy rekord w tym wypad ku polisa jest opisany poprzez zestaw 33 zmiennych:

- 1. ID numer ID (integer)
- 2. KIDSDRIV liczba dzieci użytkujących pojazd (integer)
- 3. PLCYDATE data zawarcia aktualnej polisy (Date)
- 4. TRAVTIME dystans pokonywany w drodze do pracy (integer)
- 5. CAR USE sposób użytkowania samochodu: "Private", "Commercial" (factor)
- 6. POLICYNO numer polisy (character)
- 7. BLUEBOOK wartość samochodu (integer)
- 8. INITDATE data pierwszej polisy (Date)
- 9. RETAINED ilość lat jako klient (integer)
- 10. NPOLICY liczba polis (integer)
- 11. CAR_TYPE typ samochodu: "Panel Truck", "Pickup", "Sedan", "Sports Car", "SUV", "Van" (factor)
- 12. RED_CAR informacja czy kolor samochodu to czerwony: "Yes", "No"(factor)
- 13. OLDCLAIM suma roszczeń z polis w poprzednich latach (integer)
- 14. CLM FREQ liczba roszczeń z polis w ostatnich pięciu latach (integer)
- 15. REVOKED prawo jazdy było uzyskane w ostatnich 7 latach: "Yes", "No"(factor)
- 16. MVR PTS liczba wykroczeń drogowych (integer)
- 17. CLM_AMT suma roszczeń z obecnej polisy (integer)
- 18. CLM DATE data roszczenia z obecnej polisy (integer)
- 19. CLM_FLAG czy roszczenie wystąpiło: "Yes", "No"(factor)
- 20. AGE wiek kierowcy (integer)
- 21. AGE*GENDER wiek kierowcy łącznie z informacją o płci (integer)
- 22. HOMEKIDS liczba dzieci w gospodarstwie domowym (integer)
- 23. YOJ liczba lat zatrudnienia w obecnej pracy (integer)
- 24. INCOME roczny przychód (integer) GENDER płeć kierowcy: "F", "M" (factor)
- 25. MARRIED czy kierowca jest w związku małżeńskim: "Yes", "No" (factor)
- 26. PARENT1 czy kierowca samotnie wychowuje dziecko: "Yes", "No"(factor)
- 27. JOBCLASS wykonywany zawód: : "Unknown", "Blue Collar", "Clerical", "Doctor", "Home Maker", "Lawyer", "Manager ", "Professional", "Student" (factor)
- 28. MAX_EDUC poziom edukacji (factor)
- 29. HOME VAL wartość ubezpieczonego domu (integer)
- 30. SAMEHOME lata zamieszkania pod obecnym adresem (integer)
- 31. DENSITY miejsce zamieszkania: "Highly Rural", "Highly Urban", "Rural", "Urban" (factor)
- 32. YEARQTR factor

Zmienna celu jest oznaczona kolumną CLM_FLAG i ma wartości "Yes" lub "No", które określają czy świadczenie z danej polisy wy stąpiło czy też nie.

2.1 Charakterystyka zmiennych.

Zmienne w tym zbiorze danych mają róży charakter. Występują tu zmienne o charakterze:

- binarnym,
- zmienne ciągłe,
- zmienne dyskretne,
- zmienne jakościowe

Tabela przedstawia ilość unikalnych wartości poszczególnych zmiennych oraz ich rozkład

key	uniques	Rodzaj zminnej
CAR_USE	2	binarna
CLM_FLAG	2	binarna
GENDER	2	binarna
MARRIED	2	binarna
PARENT1	2	binarna
RED_CAR	2	binarna
REVOKED	2	binarna
AGE	4	jakościowa
DENSITY	4	jakościowa
KIDSDRIV	5	dyskretna
MAX_EDUC	5	jakościowa
CAR_TYPE	6	jakościowa
CLM_FREQ	6	dyskretna
HOMEKIDS	6	dyskretna
AGE.GENDER	8	jakościowa
NPOLICY	8	dyskretna
JOBCLASS	9	jakościowa
MVR_PTS	14	dyskretna
YOJ	21	ciągła
RETAINED	23	ciągła
SAMEHOME	30	ciągła
AGE_YEARS	62	ciągła
TRAVTIME	100	ciągła
CLM_AMT	2341	ciągła
BLUEBOOK	2983	ciągła
OLDCLAIM	3542	ciągła
HOME_VAL	6335	ciągła
INCOME	8150	ciągła

Wartości NA, które występowały w kolumnach YOJ, INCOME, HOME_VAL, SAME_HOME zostały zastąpione wartościami średnimi z tych kolumn. Do zbioru danych została również kolumna mówiąca o dokładnym wieku AGE_YEARS. Powstała z różnicy między kolumnami PLCYDATE, BIRTH. Daty były napisane w języku francuskim. Po konwersji zostały zamienione na typ Date.

2.2 Rozkłady zmiennych losowych.

Z tego względu, że mamy do czynienia z różnego rodzaju zmiennymi losowymi ich rozkłady również będą kształtować się w inny sposób. Zmienna w kolumnie DENSITY została zamieniona na wartość binarną , 1 – w przypadku wartości "Highly Urban" i "Urban", 0 – w przypadku wartości "Highly Rural", "Rural".

Rozkład zmiennych binarnych

Z rozkładu możemy wywnioskować, że znacząca część właścicieli polis zamieszkiwała tereny zurbanizowane lub wysoko zurbanizowane. W przypadku wszystkich polis z ok 25% polis wystąpiły roszczenia. W ok 10% osoby posiadające polisy samotnie wychowywały dziecko, również ok 10% właścicieli polis

Rozkład zmiennych dyskretnych i faktorów

Biorąc pod uwagę rozkład zmiennych dyskretnych CLM_FREQ, HOMEKIDS oraz KIDSDRIV, możemy je zamienić na zmienne binarne. Po tej zmianie nowe nazwy zmiennych to: Past_claim (1 jeżeli w przeszłości wystąpiło roszczenie), Driving_kids (1 jeżeli samochód prowadzili nastolatkowie), Kids (1 jeżeli właściciel polisy posiadał dzieci)

Przedstawione rozkłady faktorów, pokazują jak kształtowały się zmienne jakościowe w badanym zbiorze danych. Dane są pokazane w wartościach procentowych. Rozkład zmiennej CAR_TYPE opisuje jaki procent ogólnej liczby ubezpieczonych pojazdów stanowiły poszczególne typy samochodów. Możemy zauważyć znaczną przewagę samochodów typu Sedan oraz SUV, które w sumie mają 50% udział w rozkładzie tej zmiennej. W zmiennej JOBCLASS, mówiącej o statusie zawodowym właścicieli ubezpieczonych samochodów, ponad 20% stanowią pracownicy fizyczni oraz administracyjni niższego szczebla.

Zmienna jakościowa MAX_EDUC opisuje stopień edukacji jaki został zdobyty prze właścicieli polis. Tutaj ok 30% to osoby z ukończoną szkołą średnią

18 19 20

Rozkład zmiennych dyskretnych

Rozkład zmiennej MVR_PTS, która mówi o liczbie punktów za wykroczenia drogowe. W ponad 40% obserwacji właściciele polis nie mieli punktów za takie wykroczenia. MVR_PTS ograniczamy do max 10 punktów ponieważ udział osób, które miały więcej punktów jest bliski 0. Rozklad zmiennej RETAINED pokazuje, że większość klientów to osoby, które były stałymi klientami maksymalnie 6 lat. W przypadku zmiennej YOJ obserwujemy, że jest spory odsetek osób zaczynającyhch pracę jednak przeważają osoby z min. 10 letnim stażem

Rozkład zmiennych ciągłych

3. Korelacja zmiennych losowych ze zmienną celu CLM_FLAG.

3.1 Korelacja zmiennych binarnych ze zmienną celu.

Zmienne RED_CAR oraz SEX_MALE mają podobny % udział w powodowanych roszczeniach dlatego zmienne te odrzucamy . Z wykresu wynika że osoby które jeżdżą samochodami firmowymi częściej powodują wypadki. Roszczenia występowały również częściej jeżeli:

- samochód prowadzili nastolatkowie,
- osoby miały roszczenia z polisy w poprzednich latach,
- osoby uzyskały prawo jazdy w ostatnich 7 latach,
- osoby używające pojazdów w terenach zurbanizowanych

3.2 Korelacja zmiennych jakościowych ze zmienną celu.

Na wykresach widzimy jakie grupy w podziale na typ ubezpieczonego samochodu, wykonywany zawód oraz poziom wykształcenia najczęściej uzyskiwały roszczenia z polisy. Możemy z nich wyciągnąć następujące wnioski

- osoby, które uzyskały przynajmniej licencjat, rzadziej uzyskiwały roszczenia,
- użytkownicy samochodów typu sedan rzadziej powodują roszczenia
- osoby uczące się oraz pracownicy fizyczni i administracyjni niższego szczebla częściej powodują roszczenia

Biorąc pod uwagę te wnioski, z tych zmiennych tworzymy zmienne typu binarnego biorąc pod uwagę:

- czy osoba miała co najmniej licencjat(1) czy też nie(0), nowa zmienna College_MAX_EDUC
- czy osoba kierowała samochodem typu sedan(1) czy też nie(0) nowa zmienna Sedan
- czy osoba nie należała do grupy uczących się lub pracowników fizycznych lub administracyjnych niższego szczebla(1), czy należała do taj grupy(0), nowa zmienna Blue_collar

3.3 Korelacja zmiennych numerycznych ze zmienną celu.

Z wykresu wynika, że im dłużej klient korzystał z usług ubezpieczeń komunikacyjnych tym mniejsza jest jego skłonność do powodowania roszczeń. Zależność ta jednak nie jest bardzo silna. W większości przypadków niezależnie ile lat klient miał polisy i tak roszczenia były powodowane w przedziale od 20 do 30%. W związku z tym rezygnujemy z ujmowania tej zmiennej w modelu.

W przypadku zmiennych, MVR_PTS widzimy silną korelację. Jeżeli chodzi o zmienną MVR_PTS to jest ona silnie dodatnio skorelowana ze zmienną celu. Sprawdzamy również korelację zmiennej AGE_YEARS do CLM_FLAG i wynika z niej:

- "Procent roszczeń dla grupy Młodzi (<25): 56.04"
- "Procent roszczeń dla grupy Pomiędzy (25-64): 26"
 "Procent roszczeń dla grupy Seniorzy (65+): 29.41"

Z tych proporcji wynika, że najczęściej roszczenia powodują osoby młode, dlatego też zmienną AGE_YEARS zamieniamy na binarną 1 – dla osób poniżej 25 lat, 0 – dla osób powyżej tego wieku i tworzymy nową zmienną Young_age.

Z wykresów typu boxplot wynika, że osoby podróżujące częściej, powodują roszczenia natomiast osoby z większymi zarobkami i droższymi samochodami robią to rzadziej.

4. Korelacje między zmiennymi.

4.1 Korelacja między zmiennymi binarnymi.

W większości przypadków korelacje między zmiennymi binarnymi są słabe, ale kilka się wyróżnia:

- korelacja pomiędzy statusem zatrudnienia Blue_collar a użytkowaniem samochodu Commercial_Vehicle
- korelacja pomiędzy zmiennymi HOMEOWNER a MARRIED
- korelacja pomiędzy NEW_IN_JOB oraz STUDENT
- pomiędzy Driving_kids oraz kids
- pomiędzy SINGLE_PARENT a MARRIED

W związku z tym nie będziemy brać pod uwagę zmiennych Blue Collar, oraz Student w dalszych rozważaniach Natomiast ze zmiennych HOMEOWNER, MARRIED, Driving_kids oraz kids utworzymy jedną zmienną abstrakcyjną - "marriage_home_and_kids_score":

- 1. 8 punktów właściciel domu w związku małżeńskim
- 2. 7 punktów właścicielem domu, nie w związku małżeńskim bez dzieci
- 3. 6 punktów w związku małżeńskim nie właściciel domu
- 4. 5 punktów nie w związku, bez dzieci, nie jest właścicielem domu
- 5. 4 punktów właściciel domu, samotnie wychowujący dziecko
- 6. 0 punktów samotnie wychowujący dziecko, bez własności domu

Korelacja między zmiennymi numerycznymi

Korelacja INCOME i BLUEBOOK: 0.42

Korelacja INCOME i TRAVTIME: -0.05

Korelacja TRAVTIME i BLUEBOOK: -0.02

Widzimy korelację między zarobkami a wartością samochodu dlatego nie będziemy brać pod uwagę jednej z tych wartości. Rezygnujemy z wartości

samochodu

Korelacja między zarobkami (INCOME) a zmiennymi binarnymi

Korelacja między czasem podróżowania (TRAVTIME) a zmiennymi binarnymi

	\/a m-i a la li a	Commolation	Variable Correlation
0		Correlation	14 URBAN_NOT_RURAL -0.17
8	NEW_IN_JOB	-0.36	2 College_MAX_EDUC -0.04
13	Student	-0.34	8 NEW IN JOB -0.02
6	Kids	-0.15	5 Homeowner -0.01
15	Young_age	-0.09	11 Sedan -0.01
9	Past_claim	-0.06	12 SINGLE_PARENT -0.01
12	SINGLE_PARENT	-0.06	6 Kids 0.00
4	Driving_kids	-0.04	9 Past_claim 0.00
7	MÄRRIED	-0.04	
1	Blue_collar	-0.03	4-
10	REVOKED	-0.02	15 Young_age 0.00
$\overline{11}$	Sedan	0.04	3 COMMERCIAL_VEHICLE 0.01
3	COMMERCIAL VEHICLE	0.09	4 Driving_kids 0.01
5	Homeowner	0.03	7 MARRIED 0.01
14			13 Student 0.02
14 2	URBAN_NOT_RURAL	0.19	1 Blue_collar 0.03
2	College_MAX_EDUC	0.49	

Korelacja zmiennych binarnych z sumą roszczenia (CLM_AMT)

	Variable	Correlation
5	Homeowner	-0.08
7	MARRIED	-0.08
11	Sedan	-0.07
2	College_MAX_EDUC	-0.06
8	NEW_IN_JOB	0.03
13	Student	0.03
15	Young_age	0.05
1	Blue_collar	0.06
4 6	Driving_kids	0.07
6	Kids	0.07
10 3	REVOKED	0.07
3	COMMERCIAL VEHICLE	0.10
12	SINGLE_PARENT	0.10
14	URBAN NOT RURAL	0.12
9	Past_claim	0.14
-		*

Ostatecznie po wszystkich transformacjach do użycia w modelach wybraliśmy zmienne:

- 1. Driving_kids
- 2. TRAVTIME
- 3. Past_claim
- 4. REVOKED
- 5. MVR_PTS
- 6. NEW_IN_JOB
- 7. Young_age
- 8. College_MAX_EDUC
- 9. marriage_kids_and_home_score nowo utworzona zmienna abstrakcyjna z połączenia MARRIED, SINGLE_PARENT, HOMEOWNER, KIDS
- 10. Sedan
- 11. URBAN_NOT_RURAL

5. Wybrane modele.

Do dalszych obliczeń wybraliśmy model "Regresji Poissona", "Regresji dwumianowej" oraz "Regresji ujemnej dwumianowy" będziemy oceniać na podstawie kryterium AIC. Zbiór podzieliliśmy na zbiór treningowy, który zawiera 6999 rekordów. Zbiór walidacyjny zawiera pozostałe 3296 rekordów.

5.1 Regresja Poissona

```
call:
glm(formula = CLM_FLAG ~ Driving_kids + TRAVTIME + Past_claim +
    REVOKED + MVR_PTS + NEW_IN_JOB + Young_age + College_MAX_EDUC + marriage_home_and_kids_score + Sedan + URBAN_NOT_RURAL, family = "poisson",
    data = model_data_train)
Deviance Residuals:
                        Median
                                  3Q
0.09423
     Min
                                                  Max
           -0.68098
                                              2.41199
-2.13262
                      -0.49078
Coefficients:
                                 Estimate Std. Error z value Pr(>|z|)
                                                          19.472 < 2e-16
5.756 8.59e-09
                                                        -19.472
                                 -2.592467
                                              0.133135
                                                                           ***
(Intercept)
                                              0.062830
                                 0.361676
                                                                           ***
Driving_kids
                                 0.010282
                                              0.001462
                                                          7.034 2.00e-12
                                                                           ***
TRAVTIME
                                                                           ***
                                              0.052867
                                                          6.333 2.40e-10
Past_claim
                                 0.334813
                                                          6.962 3.35e-12 ***
REVOKED
                                 0.399631
                                              0.057400
MVR_PTS
NEW_IN_JOB
                                 0.052017
                                              0.010302
                                                          5.049 4.44e-07 ***
                                              0.073351
                                                          3.655 0.000257 ***
                                 0.268116
                                              0.116394
                                                          3.293 0.000993 ***
                                 0.383232
Young_age
                                                                 < 2e-16 ***
                                -0.547526
                                              0.047637
                                                        -11.494
College_MAX_EDUC
                                                                  < 2e-16 ***
marriage_home_and_kids_score -0.079911
                                              0.008457
                                                         -9.449
                                 -0.468970
                                              0.062168
                                                         -7.544 4.57e-14 ***
Sedan
URBAN_NOT_RURAL
                                              0.107448
                                                        14.264 < 2e-16 ***
                                 1.532659
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
(Dispersion parameter for poisson family taken to be 1)
                              on 6998
                                        degrees of freedom
    Null deviance: 4934.9
Residual deviance: 3877.3
                              on 6987
                                        degrees of freedom
AIC: 7637.3
```

Driving_kids TRAVTIME Past_claim REVOKED MVR_PTS NEW_IN_JOB Young_age College_MAX_EDUC marriage_home_and_kids_score Sedan URBAN_NOT_RURAL	Overall 5.756405 7.034431 6.333054 6.962208 5.049016 3.655244 3.292556 11.493814 9.449330 7.543592 14.264174
---	---

Z modelu wynika, że wszystkie przyjęte predyktory są znaczące. Potwierdza również korelacje, które zostały zauważone wcześniej. Za pomocą funkcji varlmp() z pakietu caret sprawdzamy również jak znaczące są wybrane predyktory.

5.2 Model dwumianowy

```
call:
glm(formula = CLM_FLAG ~ Driving_kids + TRAVTIME + Past_claim +
    REVOKED + MVR_PTS + NEW_IN_JOB + Young_age + College_MAX_EDUC + marriage_home_and_kids_score + Sedan + URBAN_NOT_RURAL, family = binomial, data = model_data_train)
Deviance Residuals:
                    Median
               1Q
                                   3Q
                                            мах
-2.4627
         -0.741\hat{6}
                   -0.4590
                              0.6691
                                        3.1240
Coefficients:
                                 < 2e-16 ***
(Intercept)
                                -2.544512
Driving_kids
                                 0.691841
                                             0.091047
                                                         7.599 2.99e-14 ***
                                                                 < 2e-16 ***
                                 0.018031
                                             0.001972
                                                         9.146
TRAVTIME
                                                         7.140 9.34e-13 ***
                                 0.487743
                                             0.068312
Past_claim
                                                         9.295 < 2e-16 ***
7.504 6.17e-14 ***
REVOKED
                                 0.781000
                                             0.084025
MVR_PTS
                                 0.112487
                                             0.014989
NEW_IN_JOB
                                 0.550913
                                             0.109431
                                                         5.034 4.80e-07 ***
                                                         4.261 2.03e-05 ***
                                 0.831417
                                             0.195120
Young_age
                                                                < 2e-16 ***
College_MAX_EDUC
                                -0.922041
                                             0.062987 -14.639
                                                                < 2e-16 ***
marriage_home_and_kids_score -0.162349
                                             0.012810 -12.674
                                -0.737778
                                                                < 2e-16 ***
                                             0.077158
                                                        -9.562
Sedan
URBAN NOT RURAL
                                 2.185165
                                             0.122327
                                                       17.863
                                                                < 2e-16 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
(Dispersion parameter for binomial family taken to be 1)
    Null deviance: 8120.9
                             on 6998
                                       degrees of freedom
Residual deviance: 6521.4 on 6987
                                       degrees of freedom
AIC: 6545.4
Number of Fisher Scoring iterations: 5
```

	0verall
Driving_kids	7.598739
TRAVTIME	9.145643
Past_claim	7.139887
REVOKED	9.294808
MVR_PTS	7.504479
NEW_IN_JOB	5.034326
Young_age	4.261044
College_MAX_EDUC	14.638569
marriage_home_and_kids_score	12.673925
Sedan	9.561867
URBAN_NOT_RURAL	17.863249

Biorąc pod uwagę kryterium AIC model ten wydaje się lepszy. Ponownie za pomocą funkcji varlmp() z pakietu caret sprawdzamy, które zmienne są najbardziej zanczące. Potwierdza się, że najbardziej znaczącymi zmiennymi dla naszego modelu są zmienne URBAN_NOT_RURAL, College_MAX_EDUC oraz zmienna stworzona z kombinacji MARRIED, SINGLE_PARENT, KIDS i HOMEOWNER czyli marriage home and kids score

5.3 Model ujemny dwumianowy.

```
call:
glm.nb(formula = CLM_FLAG ~ Driving_kids + TRAVTIME + Past_claim +
    REVOKED + MVR_PTS + NEW_IN_JOB + Young_age + College_MAX_EDUC + marriage_home_and_kids_score + Sedan + URBAN_NOT_RURAL, data = model_data_train,
    init.theta = 4615.872777, link = log)
Deviance Residuals:
                        Median
                                 3Q
0.09419
                                                 Мах
          -0.68097
                      -0.49077
                                            2.41196
-2.13241
Coefficients:
                                Estimate Std. Error z value Pr(>|z|)
                                                                < 2e-16 ***
                                -2.592472
                                            0.133139 -19.472
(Intercept)
                                                        5.756 8.60e-09 ***
                                0.361686
                                            0.062834
Drivina kids
                                0.010282
                                            0.001462
                                                        7.034 2.00e-12
                                                                         ***
TRAVTIME
                                                        6.333 2.41e-10 ***
                                            0.052870
Past_claim
                                0.334822
                                                        6.962 3.36e-12 ***
                                0.399640
REVOKED
                                            0.057404
                                0.052019
                                            0.010303
                                                        5.049 4.44e-07 ***
MVR_PTS
NEW_IN_JOB
                                            0.073356
                                0.268134
                                                        3.655 0.000257 ***
                                            0.116403
                                                        3.292 0.000994 ***
                                0.383239
Young_age
                                                                < 2e-16 ***
                                            0.047639 -11.494
College_MAX_EDUC
                                -0.547535
                                                                < 2e-16 ***
marriage_home_and_kids_score -0.079914
                                            0.008457
                                                       -9.449
                                -0.468975
                                            0.062170
                                                        -7.543 4.58e-14 ***
Sedan
                                            0.107450
                                                               < 2e-16 ***
URBAN_NOT_RURAL
                                1.532665
                                                       14.264
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' '1
(Dispersion parameter for Negative Binomial(4615.873) family taken to be 1)
    Null deviance: 4934.6
                             on 6998
                                       degrees of freedom
Residual deviance: 3877.0
                                       degrees of freedom
                             on 6987
AIC: 7639.5
Number of Fisher Scoring iterations: 1
```

marriage_home_and_kids_score	overall 5.756200 7.034247 6.332945 6.961908 5.048878 3.655220 3.292343 11.493503 9.449029
Sedan	7.543411 14.264010

Regresja ujemna dwumianowa wydaje się być najgorszym z tych trzech modeli biorąc pod uwagę kryterium AIC. Regresja ta ma bardzo podobną charakterystykę rozkładu parametrów znaczących do Regresji Poissona

5.4 Porównanie modeli.

```
AIC BIC loglik
model_1 7637.286 7719.528 -3806.643
model_2 6545.436 6627.679 -3260.718
model_3 7639.451 7728.547 -3806.726
```

Biorąc pod uwagę kryterium AIC najlepszym modelem jest model dwumianowy. We wszystkich wypadkach wybrane predyktory były znaczące. Korzystając z biblioteki caret w pakiecie RStudio sprawdziliśmy, że najbardziej znaczącymi parametrami były URBAN_NOT_RURAL, College_MAX_EDUC oraz zmienna marriage_home_and_kids_score. Wybór ten potwierdza również kryterium BIC oraz logarytm wiarygodności.

6. Ewaluacja modeli.

Modele będą ewaluowane za pomocą funkcji confusionMatrix() z pakietu caret na zbiorze testowym 3297 obserwacji. Poza tym wygenerujemy krzywą ROC oraz obliczymy AUC (Area Under Curve). Pole powierzchni pod krzywą ROC. Im większa jest ta wartość tym lepiej

6.1 Regresja Poissona.

```
Confusion Matrix and Statistics
           Reference
Prediction
               0
          0 2304
                   628
          1
             121
                   244
    Accuracy: 0.7728
95% CI: (0.7581, 0.787)
No Information Rate: 0.7355
    P-Value [Acc > NIR] : 4.5e-07
                     Kappa: 0.2825
Mcnemar's Test P-Value : < 2e-16
              Sensitivity: 0.27982
              Specificity
                              0.95010
          Pos Pred Value
                              0.66849
          Neg Pred Value: 0.78581
               Prevalence
                              0.26448
          Detection Rate: 0.07401
   Detection Prevalence : 0.11071
Balanced Accuracy : 0.61496
        'Positive' Class : 1
```


Po ewaluacji modelu możemy spojrzeć na macierz pomyłek oraz podstawowe statystyki dla tego modelu. Wygenerowaliśmy również krzywą ROC oraz za pomocą funkcji AUC z biblioteki cvAUC w pakiecie R obliczyliśmy pole pod powierzchnią krzywej. Skuteczność modelu(Accuracy) wynosi 0,77. Jest to jedna z najważniejszych miar skuteczności modelu mówi o liczbie prawidłowych predykcji w stosunku do całego zbioru danych

6.2 Regresja dwumianowa

```
Reference
Prediction
               0
         0 2265
                  568
         1
            160
                  304
                Accuracy: 0.7792
95% CI: (0.7646, 0.7933)
    No Information Rate : 0.7355
    P-Value [Acc > NIR] : 3.91e-09
                   Kappa: 0.3325
Mcnemar's Test P-Value : < 2.2e-16
             Sensitivity: 0.34862
                            0.93402
             Specificity
         Pos Pred Value
                            0.65517
         Neg Pred Value
                            0.79951
              Prevalence
                            0.26448
         Detection Rate
                           0.09221
                         : 0.14073
: 0.64132
   Detection Prevalence
      Balanced Accuracy
       'Positive' Class: 1
```


Ewaluacja modelu Regresji dwumianowej, potwierdza nasze wcześniejsze stwierdzenia dotyczące najlepszej jakości tego modelu. Wartość Accuracy oraz AUC to potwierdzają.

6.3 Regresja ujemna dwumianowa

```
Confusion Matrix and Statistics
                 Reference
Prediction
                       0
                            628
               0 2304
               1
                   121 244
      Accuracy : 0.7728
95% CI : (0.7581, 0.787)
No Information Rate : 0.7355
P-Value [Acc > NIR] : 4.5e-07
                              карра: 0.2825
 Mcnemar's Test P-Value : < 2e-16
               Sensitivity: 0.27982
Specificity: 0.95010
Pos Pred Value: 0.66849
Neg Pred Value: 0.78581
                      Prevalence:
                                            0.26448
    Detection Rate: 0.07401
Detection Prevalence: 0.11071
Balanced Accuracy: 0.61496
            'Positive' Class: 1
```


Ostatni model wypada najgorzej ze wszystkich trzech co również zostało potwierdzone w wyliczeniach z użyciem funkcji confusionMatrix(), oraz roc() i AUC().