Mining Constrained Regions of Interest: An optimization approach

Alexandre Dubray Guillaume Derval Siegfried Nijssen Pierre Schaus

Table of contents

1. Introduction

2. PopularRegion

3. Our method

4. Experiments

Introduction

Motivations

- The amount of spatiotemporal data is exploding (smartphone applications, sport devices, fleet management, etc)
- There is a need to process more efficiently these data
- Rewrite the raw trajectories (GPS points) as sequence of Regions of Interest (ROI)
- Multiple applications:
 - Trajectory pattern mining
 - Next location prediction
 - Urban management
 - ...

Preparation of the data

- 1. Divide the map with a $N \times M$ grid of square cells.
- 2. Assign a density value to each cell. A cell is dense if its density is above a threshold
- 3. Express the ROI as an aggregation of dense cells

Multiple possibility for the density

- Number of trajectories that cross the cell (with and without interpolation)
- Number of trajectories that stayed at least 10 minutes in a cell
- etc.

Example of ROIs

(a) Initial set of dense cells

(b) Solution found by our method

PopularRegion

Result of the algorithm

(a) Initial set of dense cells

(b) Solution with 5% min average density

Advantages and disadvantages

- Scalable
- Intuitive and good results for most configurations

But...

- No formalization of the output
- Only rectangular regions
- Does not easily accept background knowledge

Our method

Outline

- 1. Generate a set of candidate ROI
 - Can have any shape
 - Impose intra-ROI constraints
- 2. Select from the candidates K final ROIs
 - Found by an optimization problem
 - Impose inter-ROI constraints

ROIs as an encoder

- The ROIs encode the dense status of the cells
- Example of encoding with two rectangles
 - 1 dense cells is not covered
 - 4 non-dense cells are covered
 - The encoding makes 5 errors
- We prefer encoding with less errors

Formalization of the problem (1)

Some notations:

- Let $\mathcal G$ be the grid, $\mathcal G^*$ the set of dense cells, $\mathcal S$ a set of candidates and θ the minimum density threshold
- d_i (resp. u_i) is the number of dense (resp. non-dense) cells covered by the candidate $R_i \in \mathcal{S}$
- K is the number of ROIs we want to find

A first optimization model

minimize
$$|\mathcal{G}^*| + \sum_{R_i \in \mathcal{S}} x_i \cdot (u_i - d_i)$$

subject to
$$\sum_{R_i \in \mathcal{S}} x_i \leq K$$

$$\sum_{R_i \in \mathcal{S} | c \in R_i} x_i \leq 1 \quad \forall c \in \mathcal{G}$$

$$x_i \in \{0, 1\} \quad \forall R_i \in \mathcal{S}$$

Formalization of the problem (2)

In practice how to set the K? Use the Minimum Description Length Principle!

- Let $Sol \subseteq \mathcal{S}$ be a valid solution
- Length of the errors:

$$L(\mathcal{G} \mid Sol) = 2|\mathcal{G}^*| + \sum_{R_i \in Sol} 2(u_i - d_i)$$

• Length of the model:

$$L(Sol) = \sum_{R_i \in Sol} size(R_i)$$

Minimum Description Length principle tells that the best solution is:

$$\operatorname*{arg\;min}_{Sol \in \mathcal{S}} L(\mathcal{G} \mid Sol) + L(Sol)$$

The final optimization model

$$\begin{aligned} & \text{minimize } & \sum_{R_i \in \mathcal{S}} x_i \cdot \left(2(u_i - d_i) + \textit{size}(R_i) \right) \\ & \text{subject to} \\ & \sum_{R_i \in \mathcal{S} | c \in R_i} x_i \leq 1 & \forall c \in \mathcal{G} \\ & x_i \in \{0,1\} & \forall R_i \in \mathcal{S} \end{aligned}$$

Example

•
$$L(S) = 4 + 4 = 8$$

•
$$L(G \mid S) = 2 \cdot (1+4) = 10$$

• Total length of this model is 8 + 10 = 18

•
$$L(S) = 4 + 4 = 8$$

•
$$L(G \mid S) = 2 \cdot (2+2) = 8$$

• Total length of this model is 8 + 8 = 16

Example with circles

•
$$L(S) = 4 + 4 = 8$$

•
$$L(G \mid S) = 2 \cdot (1+4) = 10$$

• Total length of this model is 8 + 10 = 18

•
$$L(S) = 4 + 3 = 7$$

•
$$L(G \mid S) = 2 \cdot (2+3) = 10$$

• Total length of this model is 7 + 10 = 17

The full method

- 1. Generate the set of candidates \mathcal{S} (e.g. enumerate all distinct rectangle on the grid)
 - Candidate can have any shape
 - Compute their contribution to the description length
 - Apply intra-ROI constraints to filter the candidate set
- 2. Solve the optimization model
 - Apply inter-ROI constraints
 - Model these constraint with linear constraints
- 3. The result of the optimization (choice of candidates) is the set of ROIs we return

Experiments

Setup

- Two versions of our method
 - With only rectangular regions
 - With rectangular and circular regions
- Showing results on Kaggle taxis dataset (pprox1.6 million trajectories)
- Comparing with PopularRegion and OPTICS (when clustering the dense cells)

Execution time

Minimum density threshold	2%			5%		
Grid side size	100	150	200	100	150	200
Number of dense cells (\mathcal{G}^*)	571	597	537	230	178	137
Number of ILP candidates ILP optimization time (s)	23 814 4.328	7 779 0.464	3 399 0.109	2 880 0.113	1 232 0.044	434 0.029
PopularRegion run time (s)	0.003	0.005	0.006	0.002	0.003	0.004
OPTICS run time (s)	0.209	0.222	0.200	0.084	0.065	0.051

Description Length

- For high density threshold, number of errors becomes similar
- ILP-based methods produce smaller models
- Overall the Description Length is inferior for ILP-based methods

Figure 3: Encoding of the errors

Figure 4: Encoding fo the models

Robustness to noise

- \bullet Start from a 100×100 grid
- Move every element of the trajectories to a neighboring cell with a probability p
- Choose the new cell randomly in a square of size 10 around the initial cell
- Recompute solution and compare to initial solution (with min density threshold 5%)

Figure 5: Recall and precision

Figure 6: F1-measure

Conclusion

- We propose an optimization model to find K ROIs from trajectory data
- Using the MDL principle we can automatically set the K
- Our method is more flexible than specific method since it accepts a wide range of constraints
- the solutions find by our method are more robust and better generalize the dense cells distribution
- The runtime of the ILP becomes reasonnable as long as there is not too much candidates