Chapitre 3

Étude d'une fonction (chap. 3 à 6)

1 Limites

1.1 Somme

Si f a pour limite	l	l	l	+∞	-∞	+∞
Si g a pour limite	k	+∞	-8	8	-8	-8
Alors $f+g$ a pour limite	l + k	+∞	-∞	+∞	-∞	F. Ind

1.2 Produit

$\operatorname{Si} f$ a pour limite	l	<i>l≠0</i>	0	∞
Si g a pour limite	k	∞	∞	∞
Alors $f \times g$ a pour limite	$l \times k$	∞	F. Ind	∞

1.3 Quotient

Si f a pour limite	l	<i>l</i> ≠0	0	1	8	∞
Si g a pour limite	<i>k</i> ≠0	0 ±	0	8	k	∞
Alors $\frac{f}{g}$ a pour limite	$\frac{l}{k}$	8	F. Ind	0	8	F. Ind

1.4 Composition

Composition de deux fonctions.

Soient deux fonctions f, g. Soient a, b et c des réels :

Si
$$\lim_{x \to a} f(x) = b$$
 et $\lim_{x \to b} f(x) = c$ alors $\lim_{x \to a} g(f(x)) = c$

1.5 Fonction et suite

Soit une suite (u_n) définie par : $u_n = f(n)$. f est alors la fonction réelle **associée** à la suite (u_n) . Soit a un réel,

Si $\lim f(x) = a \ alors \ \lim u_n = a$

1.6 Comparaison

f, g, et h sont trois fonctions définies sur l'intervalle $I =]b; +\infty[$ et ℓ un réel.

1) Théorème des « Gendarmes »

Si pour tout
$$x \in I$$
, on $a : g(x) \le f(x) \le h(x)$ et si : $\lim_{x \to +\infty} g(x) = \lim_{x \to +\infty} h(x) = l$ alors $\lim_{x \to +\infty} f(x) = l$

2) Théorème de comparaison

Si pour tout
$$x \in I$$
 on $a : f(x) > g(x)$ et si :
$$\lim_{x \to +\infty} g(x) = +\infty \text{ alors } \lim_{x \to +\infty} f(x) = +\infty$$

2 Continuité

<u>Définition</u> 4 : Soit une fonction f définie sur un intervalle ouvert I. Soit a un élément de I.

On dit que la fonction f est **continue** en a si et seulement si :

$$\lim_{x \to a} f(x) = f(a)$$

Fonctions continues:

Toutes fonctions construites par **somme, produit, quotient ou par composition** à partir de fonctions élémentaires sont continues sur leur ensemble de définition.

C'est par exemple le cas pour les fonctions polynômes et rationnelles.

Si f est dérivable en a alors la fonction f est **continue en** a.

▲ La réciproque est fausse.

Théorème des valeurs intermédiaires

Soit une fonction f définie et **continue** sur un intervalle I = [a, b]. Pour tout réel k comprisentre f(a) et f(b), il existe un réel $c \in I$ tel que f(c) = k. (c n'est pas nécessairement unique).

Soit une fonction f continue et strictement monotone sur I = [a, b]. Alors, pour tout k compris entre f(a) et f(b), l'équation f(x) = k

a une solution **unique** dans I = [a, b]

Si l'intervalle I =]a, b[est ouvert, k doit alors être compris entre

$$\lim_{x \to a} f(x) \ et \ \lim_{x \to b} f(x)$$

3 Dérivabilité

 $\frac{\text{Définition}}{\text{Definition}} \ 5 : \text{Soit une fonction } f \text{ définie sur un intervalle I et } a$ un point de I. On dit que

la fonction f est dérivable en a si et seulement si le taux d'accroissement de la fonction f en

$$\lim_{h\to 0}\frac{f(x+h)-f(a)}{h}=l\quad et \quad f'(a)=l$$

- · Variation : Soit une fonction f dérivable sur un f est constante sur I. Si $\forall x \in I, f'(x) > 0$, alors la fonction intervalle I.
- · Si $\forall x \in I$, f'(x) = 0, alors la fonction
- $\cdot f$ est **croissante** sur I.
- · Si $\forall x \in I$, f'(x) < 0, alors la fonction f est **décroissante** sur I.

3.1 Dérivées des fonctions usuelles

FONCTIONS	DERIVEES	$\mathrm{D}_{\!f}$
f(x)=k	f'(x)=0	•
f(x)=x	f'(x)=k	R
$f(x) = x^n \ n \in N^*$	$f'(x)=nx^{n-1}$	R
$f(x) = \frac{1}{x}$	$f'(x) = -\frac{1}{x^2}$	R^*

FONCTIONS	DERIVEES	$\mathbf{D}_{\!f}$
$f(x) = \frac{1}{x^n} n \in N^*$	$f'(x) = -\frac{n}{x^{n+1}}$	R^*
$f(x) = \sqrt{x}$	$f'(x) = \frac{1}{2\sqrt{x}}$	R_+^*
$f(x) = \sin x$	$f'(x) = \cos x$	R
$f(x) = \cos x$	$f'(x) = -\sin x$	R
$f(x) = \tan x$	$f'(x) = 1 + tan^2(x)$	$R - \left\{ \frac{n\pi}{2} + k\pi \right\}$
f(x)=ln(x)	$f'(x) = \frac{1}{x}$	R^*
$f(x) = e^x$	$f(x) = e^x$	R

3.2 Règles de dérivation

DERIVEE	FORMULE
de la somme	(u+v)'=u'+v'
du ku	$(ku)' = k \times u'$
du produit	(uv)' = u'v + uv'
de l'inverse	$\left(\frac{1}{u}\right)' = -\frac{u'}{u^2}$
du quotient	$\left(\frac{u}{v}\right)' = \frac{u'v - uv'}{v^2}$
de la puissance	$(u^n)' = nu' \times u^{n-1}$
de la racine	$\left(\sqrt{u}\right)' = \frac{u'}{2\sqrt{u}}$
du logarithme	$(\ln u)' = \frac{u'}{u}$
de l'exponentielle	$(e^u)' = u' \times e^u$

Tangente: Lorsque f est dérivable en a, la courbe représentative Cf de la fonction f admet au point A(a, f(a)) une tangente de coefficient directeur f'(a) dont l'équation est :

$$y = f'(a)(x - a) + f(a)$$

Pour déterminer les points de Cf où la tangente est parallèle à une droite d'équation y = mx + p, on résout l'équation f'(x) = m

Extremum : Soit une fonction f dérivable sur un intervalle ouvert I. Soit a un point de I.

- · Si f, admet un extremum local en a alors f'(a) = 0.
- Si f(a) = 0 et si f' change de signe en a alors la fonction f admet un extremum local en a.

4 Fonctions exponentielle et logarithme

4.1 Existence

Définition 6:

- La fonction exponentielle « exp » est l'unique fonction f définie sur R telle que : f'=f et f(0)=1. On note $exp(x)=e^x$
- La fonction logarithme népérien notée ln est la fonction réciproque de la fonction exponentielle. Elle est définie sur R^*

Notons que l'ensemble d'arrivée (image de exponentielle n'est pas exactement l'ensemble de définition de sa réciproque, ln.

Exemple:

La fonction e^{x^2-1} existe sur **R** tandis que la fonction $\ln(x^2-1)$ sur $]-\infty; -1[u]1; +\infty[$ car il faut que $x^2-1>0$

Relation entre les deux fonctions

Pour tout y réel positif et x un réel, on a :

$$y = e^x \iff \ln y = x \ car \ \ln(e^x) = x \ et \ aussi \ e^{\ln y} = y$$

4.2 Variations des deux fonctions

La fonction **exponentielle** et la fonction **logarithme** sont strictement croissantes sur leur ensemble de définition.

On a les tableaux suivants :

Fonction logarithme

Fonction exponentielle

4.3 Représentation des deux fonctions

Les deux courbes sont symétriques par rapport à la première bissectrice.

4.4 Propriétés algébriques

Fonction logarithme	Fonction exponentielle
ln 1 = 0 et ln e = 1	On a: $e = 2,718282$
$\ln(ab) = \ln a + \ln b, \ln \frac{1}{b} = -\ln b$ $\ln \frac{a}{b} = \ln a - \ln b, \ln a^n = n \ln a$ $\ln \sqrt{x} = \frac{1}{2} \ln x$	$e^{0} = 1 et e^{1} = e$ $e^{a+b} = e^{a} \times e^{b}, \qquad e^{-a} = \frac{1}{e^{a}}$ $e^{a-b} = \frac{e^{a}}{e^{b}}, (e^{a})^{n} = e^{na}$

- Pour tout x > 0, on a: $\ln \frac{1}{x^2} = -\ln x^2 = -2\ln x$ Pour tout x, on a: $(e^{-x})^2 \times e^{3x} = e^{-2x} \times e^{3x} = e^x$

4.5 Signe des deux fonctions

Fonction logarithme	Fonction exponentielle
$Si \ 0 < x < 1 \ alors \ \ln x < 0$	Pour tout x , $e^x > 0$
$Si \ x > 1 \ alors \ \ln x > 0$	

4.6 Équations et inéquations

Fonction logarithme	Fonction exponentielle
Pour <i>a</i> , <i>b</i> et <i>x</i> positif	Pour <i>a</i> , <i>b</i> et <i>x</i> positif
$ \ln a = \ln b \leftrightarrow a = b $	$e^a = e^b \leftrightarrow a = b$
$ \ln a < \ln b \leftrightarrow a < b $	$e^a < e^b \leftrightarrow a < b$
$ \ln x = y \leftrightarrow x = e^y $	$e^y = x \leftrightarrow y = \ln x$
$ \ln x < y \leftrightarrow 0 < x < e^y $	$e^y < x \leftrightarrow y < \ln x$

Pour les équations et les inéquations avec les logarithmes, ne **Notons:** pas oublier de commencer par définir les conditions d'existence (les expressions contenues dans un logarithme doivent être positives)

4.7 Limites et croissance comparée

Fonction logarithme	Fonction exponentielle			
$\lim_{x \to 0^+} \ln x = -\infty, \lim_{x \to +\infty} \ln x = +\infty$ $\lim_{x \to +\infty} \frac{\ln x}{x} = 0, \qquad \lim_{x \to 0} x \ln x = 0$ $\lim_{x \to 1} \frac{\ln x}{x - 1} = 1, \qquad \lim_{x \to 0} \frac{\ln(1 + x)}{x} = 1$	$\lim_{x \to -\infty} e^x = 0, \qquad \lim_{x \to +\infty} e^x = +\infty$ $\lim_{x \to +\infty} \frac{e^x}{x} = +\infty, \qquad \lim_{x \to -\infty} x e^x = 0$ $\lim_{x \to 0} \frac{e^x - 1}{x} = 1$			

4.8 Exemples

Equations et inéquations

• Résoudre : $\ln x + \ln 2 = 5$ $D_f = R_+^*$

On a alors $\ln 2x = 5 \Leftrightarrow 2x = e^5 \Leftrightarrow x = \frac{e^5}{2}$

• Résoudre : $\ln(x+2) \le 1$ $D_f =]-2; +\infty[$

On a $x + 2 \le e^1 \Leftrightarrow x \le e - 2, S =]-2; +\infty]$

• Résoudre : $e^{2x} - 2e^x - 3 = 0$ on pose: $X = e^x$

On a $X^2 - 2X - 3 = 0 \Leftrightarrow X_1 = -1$ (non solution); $X_2 = 3 \Leftrightarrow e^x = 3$

Donc $x = \ln 3$

• Résoudre $e^x < 5e^{-x} \Leftrightarrow e^x < \frac{5}{e^x} \Leftrightarrow e^{2x} < 5 \Leftrightarrow 2x < \ln 5$

$$x < \frac{\ln 5}{2} \qquad S = \left| -\infty; \frac{\ln 5}{2} \right|$$

Limites

- $\lim_{x \to +\infty} \ln(x) x = \lim_{x \to +\infty} x \left(\frac{\ln x}{x} 1 \right) =$ $-\infty \operatorname{car} \lim_{x \to +\infty} \frac{\ln x}{x} = 0$
- $\lim_{x \to +\infty} 3e^x x^2 = \lim_{x \to +\infty} e^x \left(3 \frac{x^2}{e^x} \right) =$ $+\infty \operatorname{car} \lim_{x \to +\infty} \frac{x^2}{e^x} = 0$
- $\bullet \lim_{x \to +\infty} \frac{e^x + \ln x}{x + 1} = \lim_{x \to +\infty} \frac{e^x}{x} \times \frac{1 + \frac{\ln x}{e^x}}{1 + \frac{1}{x}} = +\infty \ car \lim_{x \to +\infty} \frac{e^x}{x} = +\infty \ et \lim_{x \to \infty} \frac{\ln x}{e^x}$
- $\lim_{x \to 0^+} \left(\frac{1}{x} + \ln x \right) = \lim_{x \to 0^+} \left[\frac{1}{x} (1 + x \ln x) \right] = +\infty \ car \lim_{x \to 0^+} \frac{1}{x} = +\infty \ et \lim_{x \to 0^+} x \ln x = 0$
- $\lim_{x \to -\infty} e^{x}(x+1) = \lim_{x \to -\infty} xe^{x} + e^{x} = 0$ $0 \ car \ \lim_{x \to -\infty} xe^{x} = 0 \ et \ \lim_{x \to -\infty} e^{x} = 0$

Chapitre 7

Les fonctions sinus et cosinus

1 Équation trigonométrique

Équations trigonométriques

· L'équation $\cos x = \cos a$ admet les solutions suivantes sur R :

$$x = a + k 2\pi$$
 ou $x = -a + k 2\pi$ avec $k \in \mathbb{Z}$

· L'équation $\sin x = \sin a$ admet les solutions suivantes sur R :

$$x = a + k 2\pi$$
 ou $x = \pi - a + k 2\pi$ avec $k \in \mathbb{Z}$

2 Signe des fonctions sinus et cosinus

Sur l'intervalle] $-\pi$; π], les fonctions sinus et cosinus ont les signes suivants :

х	-π		$-\frac{\pi}{2}$		0		<u>π</u> 2		π
sin x	0	=	-1	=	ø	+	1	+	0
COS X	-1	=	ф	+	1	+	h	-	-1

3 Propriétés des fonctions sinus et cosinus

Parité:

- La fonction sinus est **impaire**: $\forall x \in R$, $\sin(-x) = -\sin x$
- La fonction cosinus est paire : $\forall x \in R$, $\cos(-x) = \cos x$

Périodicité:

Les fonctions sinus et cosinus sont 2π périodiques noté $T=2\pi$ on $a \ \forall x \in R$, $\sin(x+2\pi)=\sin x$ et $\cos(x+2\pi)=\cos x$

De sinus à cosinus

$$\sin\left(\frac{\pi}{2} - x\right) = \cos x \quad et \quad \cos\left(\frac{\pi}{2} - x\right) = \sin x$$

4 Dérivées et limites

Dérivées

Les fonctions sinus et cosinus sont dérivables sur R+:

$$\sin' x = \cos x \ et \ \cos' x = -\sin x$$

Limites

$$\lim_{x \to 0} \frac{\sin x}{x} = 1 \ et \ \lim_{x \to 0} \frac{\cos x - 1}{x} = 0$$

5 Variations et représentations

• Les variations des fonctions sinus et cosinus sont les suivantes :

Les courbes représentatives des fonctions sinus et cosinus sont des sinusoïdes.

6 Fonctions $\sin (ax + b)$ et $\cos (ax + b)$

Dérivée

Les fonctions sin(ax+b) et cos(ax+b) sont dérivables sur \mathbf{R} et sin'(ax+b) = a cos(ax+b) et cos'(ax+b) = -a sin(ax+b)

Périodicité

Les fonctions sin(ax+b) et cos(ax+b) sont $\frac{2\pi}{a}$ périodiques.

7 Application aux ondes progressives

Un son pur est une onde sinusoïdale caractérisée par :

- · Sa fréquence F (en Hertz, nombre de pulsations par seconde) qui détermine la hauteur du son.
- · Son amplitude (pression acoustique) P (en Pascal).

La fréquence F est reliée à la période T de la sinusoïde par la relation :

$$F = \frac{1}{T}$$

La fonction f associée est donc de la forme : $f(t) = P \sin(2\pi F t)$

La note de référence (donnée par un diapason) sur laquelle s'accordent les instruments de l'orchestre est le la_3 qui vibre à 440 Hz. Pour une amplitude de 1 Pa, cette note peut être associé à la fonction f définie par :

$$f(t) = \sin(880\pi t).$$

L'écran d'un oscilloscope donne alors :

