VE270 Lecture 6 Latches and Flip Flops

Reality of Combinational Circuit: Non-Ideal Gate Behavior: Delay

Bit Storage

An Unsuccessful Attempt

So due to the feedback on combinational circuit, the output (real, not ideal) is decided by

- Present Inputs
- Past Input Sequence
- Past Output Sequence

SR Latch: Second Attempt at Bit Storage

Then we can implement a circuit:

But what will happen if S=1 and R=1 simultaneously.

Representation of SR Latch

When discussing about latches and flip-flops, we use

- present state to represent current value of Q output
- next state to represent new value of Q output responding to current inputs and feedback of current output

S(t)	R(t)	Q(t)	Q(t	+Δ)
0	0	0	0	hold
0	0	1	1	Tiolu
0	1	0	0	reset
0	1	1	0	10301
1	0	0	1	set
1	0	1	1	301
1	1	0	Х	not allowed
1	1	1	X	not anomou

So
$$Q^+ = S + R'Q$$
.

Alternative Implementation of SR Latch

S	R	Q	Q ⁺	
0	0	0	X	not allowed
0	0	1	X	not anowed
0	1	0	1	set
0	1	1	1	361
1	0	0	0	reset
1	0	1	0	10301
1	1	0	0	hold
1	1	1	1	

Gated SR Latch

Characteristic Table

GSR		R	Q ⁺
0	X	Х	Q; Latch locked
1	0	0	Q; Hold state
1	0	1	0; Reset state
1	1	0	1; Set state
1	1	1	not allowed

Solution for SR Latch Restriction: Gated D Latch

A solution to the unstable state problem caused by S=R=1 in SR Latch

Characteristic Table				
G	D	Q+		
1	0	0		
1	1	1		
0	Χ	Q		

 The input value is stored into the latch only when gate control G has high level – Level Sensitive

Gated D Latch - Transparent Latch

properties:

- temporary storage of a bit
- The binary information at the data input of the D latch is **copied to** the Q output when the control input G is high (or enabled)
- The output Q follows changes on the data input D as long as the control input G is enabled, so called a **transparent latch**.

Control Input - Clock Signal

Problem with Level-Sensitive D Latch

So if the time length of Clk is short, the signal will go through fewer latches.

It is hard to control storage elements.

Rising-Edge Triggered D Flip Flop

with the characteristic equation: $Q^+ = D$ at active clock edges

clock	D	Q ⁺
	0	0
	1	1
0	Χ	Q
1	Χ	Q

Properties of Rising-Edge triggered D Flip Flop

- The output changes only at the **rising edges of the clock signal**.
- The output Q gives the value of input D at the time point of rising edge of clock.

D Flip-Flop Symbols

Application of D Flip-Flop

Check back to D Latch problem, then it ignore the Clk = 1 time length, just focus on rising edge.

Flip Flop & Latch

- Flip Flop
 - o edge-sensitive, input only focus on active edges (rising/falling)
 - behaviors are **synchronous** to the clock signal (synchronous is because it has clock signal)
- Latch
 - o level-sensitive, input matters whenever control has active level (high/low)
 - behaviors are **asynchronous** to the clock signal (asynchronous is because it doesn't have clock signal)

A D Flip-Flop Implemented Flight-Attendant Call Button

Call Cancel Q Q*= 0 0 0 0 0 0 1 1 0 1 0 0 0 1 1 0 1 0 0 1 1 0 1 1 1 1 0 1 1 1 1 1				
0 0 1 1 0 1 0 0 0 1 1 0 1 0 0 1 1 0 1 1	Call	Cancel	Q	Q+ = [
0 1 0 0 0 1 1 0 1 0 0 1 1 0 1 1	0	0	0	0
0 1 1 0 1 0 0 1 1 0 1 1	0	0	1	1
1 0 0 1 1 0 1 1	0	1	0	0
1 0 1 1	0	1	1	0
1 0 1	1	0	0	1
1 1 0 1 1 1 1 1	1	0	1	1
1 1 1 1	1	1	0	1
	1	1	1	1

Rising Edge-triggered JK Flip Flop

Rising Edge-triggered T Flip Flop

Basic Register

Multiple Flip-Flops sharing same clock signal.

Then we can set register:

Control Input for Flip Flops

- Asynchronous: control signals do not depend on clock signal
- Synchronous: control signals depend on the clock signal
- Active low: it controls when it is low
- Active high: it controls when it is high

Asynchronous Control Implement

D Flip Flop with active low asynchronous Clear

Synchronous Control Implement

Synchronous clear: control signal depends on the active edge (either rising or falling) of the clock signal.

D Flip Flop with active low synchronous Clear.

