

第五章 网络层

——IP数据报

本节内容

- □ 概述
- □ 网络层的服务模型
- □ 交换技术
- □ 因特网网络层的服务模型
- □ IP数据报的格式
- □ IP数据报的服务类型
- □ IP数据报的生存期
- □ IP数据报的分段和重组
- □ IP数据报的选项

概述

- □ 网络层负责把所有物理网络"连接"起来。
- □ 网络层的主要功能为路由选择(routing)。

网络层的服务模型

		[
X	网络结构	服务模型	带宽	不丢包	有序	及时	拥塞反馈
	ATM	恒定位速率	固定速率	是	是	是	无拥塞
	ATM	可变位速率	确保速率	是	是	是	无拥塞
	ATM	可用位速率	最小保证	否	是	否	是
	ATM	未指定位速率	无	否	是	否	否
	因特网	尽力服务	无	否	否	否	否

Connectionless Service: IP

Connection-oriented Service: X.25, ATM(Asynchronous Transfer Mode)

交换技术

因特网网络层的服务模型

- □ IP (Internet Protocol)协议是因特网的网络层协议
- □ IP协议是可路由的(routable) -- 全局编址,按层分配
- □ IP协议提供尽力服务(best effort),即无连接无确认的数据报服务。
- □ IP协议可以运行在任何网络上。

http://www.faqs.org/rfcs/rfc791.html

IP数据报格式

31 16 0 24 版本(4b) 服务类型(8b) 总长度(16b) 头部长度(4b) D F M 标识(16b) 片段偏移量(13b) 生存期(8b) 协议(8b) 头部校验(16b) 源**IP**地址(32b) 目的IP地址 (32b) 选项(变长) 填充位(变长) 数据

头部

IP数据报的字段说明

字段	位数	说明							
版本 4		共两个版本:4 for IPv4, 6 for IPv6							
头部长度	4	头部的长度,以字(32-bit)为单位。							
服务类型 (Type of Service,TOS)	8	本IP数据报希望得到的服务							
总长度	8	整个数据报的长度,以字节为单位							
标识、标志(DF,MF)、偏移量 16		用于划分片段							
生存期8协议(Protocol)8头部校验16源IP地址32		记载经过的路由器数(跳数)。 定义数据部分的协议,例如: TCP为6, UDP为17, ICMP为1, IGMP为2, 等等。 头部校验和。路由器会丢弃出错的数据报。 发出本数据报的地址							
					目的IP地址	32	接收本数据报的地址		
					选项和填充位 可变		最多40个字节,填充位用于32位对齐。		

IP数据报的服务类型

服务类型(Type of Quality, ToS)起初用于提出数据报的四种独立的服务要求(低延迟、高吞吐量、高可靠性和花钱最少)和优先权(111为最高优先权),实际上只用了优先权。为了更好地使用它,现在又把它重新定义,从整体上说明数据报所需的服务,即差分服务(Differeniated Services)。 差分服务见http://tools.ietf.org/html/rfc2474。

3b	1b	1b	1b	1b	1b
IP Precedence	low latency	high throughput	high reliability	Minimise monetary cost	reserved (0)

Original definition of TOS

Binary Value	IP Precedence	Decimal Value
000	Routine	Precedence O
001	Priority	Precedence 1
010	Immediate	Precedence 2
011	Flash	Precedence 3
100	Flash Override	Precedence 4
101	Critic/Critical	Precedence 5
110	Internetwork Control	Precedence 6
111	Network Control	Precedence 7

IP数据报的生存期

- □ IP数据报的生存期(Time-To-Live, TTL)用于限制其在因特网上的停留时间(RFC 791),实际限制为经过的路由器数,即跳数(hop)。
- □ TTL的初值被设置为因特网直径的两倍,例如,Windows 8和 Linux为64,UNIX 为255。
- □ 当路由器收到IP数据报时,它将把它的TTL减1。如果减到零,路由器将丢弃该数据报并发送一个ICMP包告知源主机。

IP数据报的分段和重组

- □ 一个物理网络的**最大传输单元(maximum transmission unit, MTU)**是 该网络可以运载的最大有效载荷,即数据帧的数据部分的最大长度。例如:以太网(DIXv2)的 MTU为 1500, FDDI和令牌环的MTU分别为 4353和 4482。
- □ 如果一个数据报的大小大于要承载它的网络的MTU,路由器需要先对该数据报进行**分段(fragment)**。
- □ 源主机每次发送IP数据报时都会把标志(Identification)字段加1。分段时标志的值保持不变,并且用偏移量字段(offset)指出该片段的数据部分相对原来数据报的偏移量(以8字节为单位)。

哪些字段改变了? 头部检验,总长度,偏移量, MF

- □ 当目的主机收到该数据报的所有片段时,它会**重组(reassemble)** 为原来的数据报。
- □ 第一个片段到达目的主机时目的主机会启动一个重组定时器**(**默认 超时值为**15**秒**)**。如果该定时器到期时没有收集到所有片段,目的 主机会放弃本次重组并丢弃该数据报的所有片段。
- □ DF(Don't Fragment)为1表示不允许分段),MF(More Fragment)为1表示后面还有片段。

IP数据报的选项

一般格式:

 1B
 nB

 代码
 总长度
 数据

代码	名称	描述
0	选项列表结束	一个字节: 0x00 。用于最后选项4字节对齐。
1	无操作	一个字节: 0x01。用于中间选项4字节对齐。
131	松散源路由	指明一系列必须经过的路由器。
7	记录路由	记录下每个转发路由器的IP地址。
137	严格源路由	指明一系列必须且只能经过的路由器。
20	IP警报器	告知路由器需要特殊处理的选项。
50	记录时间戳	每个转发的路由器都记录下自己的IP地址和当时的时间。

记录路由选项:

1B	1B	1B	4B	4B		4B
代码	长度	指针	IP地址1	IP地址2	•••••	IP地址9
=7	=39	-	•	•		

- 指针字段指向下一个IP地址的位置: 4(空), 8, ... , 40(满)。
- 该数据报经过的每个路由器记录转出接口的IP地址,直到记满9个地址。

```
C:\Documents and Settings\Administrator\ping -r 8 www.sysu.edu.cn

Pinging pisces-1.sysu.edu.cn [202.116.64.9] with 32 bytes of data:

Reply from 202.116.64.9: bytes=32 time=219ms TTL=58

Route: 172.18.240.82 ->

10.44.16.202 ->

10.10.1.17 ->

10.10.2.49 ->

202.116.64.254 ->

202.116.64.9 ->

10.10.2.50 ->

10.10.1.18

Reply from 202.116.64.9: bytes=32 time=17ms TTL=58

Route: 172.18.240.82 ->
```

 6B
 6B
 2B

 DA
 SA
 TYPE
 IP数据报
 FCS

0x0800 - IP Packet

以太网的帧

总结

- □ 概述
- □ 网络层的服务模型
- □ 交换技术
- □因特网网络层的服务模型
- □ IP数据报的格式
- □ IP数据报的服务类型
- □ IP数据报的生存期
- □ IP数据报的分段和重组
- □ IP数据报的选项