

Rappels sur les régressions

Régressions linéaires simple et multiple, régression polynomiale

01

Equations

Équations matricielles des du modèle, fonction de coût, gradient et descente de gradient

02

03

Représentation Graphique

Présentation des résultats sous

04

Evaluation des modèles

Performance du modèle et pertinence des résultats

05

Résultats avec Scikit-Learn

Utilisation du module sklearn de python

06

Conclusion

Évolution, difficultés rencontrées

SOMMAIRE

O1Rappels

La régression est l'opération consistant à expérimenter pour faire passer une droite ou une courbe mathématique le plus près possible des points d'un graphique.

- Choix d'un modèle
- Ajustement du modèle
- Evaluation du modèle

- 1 -En regression lineaire simple, on a une variable explicative et une cible à déterminer (target). Le modèle sera donc représenté par une droite.
- 2 -La régression multiple étend la régression linéaire simple pour décrire les variations d'une variable targer associée aux variations de plusieurs variables exogènes (features).
- 3 -La régression polynomiale est un cas particulier de régression linéaire multiple, où les observations sont construites à partir des puissances d'une ou plusieurs variables.

Modèles :

régression linéaire simple : $y = a_1.x + a_0$

régression linéaire multiple : $y = a_0 + a_1.x_1 + a_2.x_2 + ... + a_n.x_n$

régression polynomiale : $y = a_0 + a_1.x + a_2.x^2 + ... + a_n.x^2$

02Equations

Équations matricielles des du modèle, fonction de coût, gradient et descente de gradient

Modèle

Le Gradient

Descente de gradient

 $y = X.\theta$

$$J(\theta) = \frac{1}{2.m} \sum (X.\theta - y)^2$$

$$\frac{\partial J(\theta)}{\partial \theta} = \frac{1}{m} X^T (X. \theta - y)$$

$$\theta = \theta - \frac{\partial J(\theta)}{\partial \theta}$$

Modèles:

régression linéaire simple : $y = a_1.x + a_0$

régression linéaire multiple : $y = a_0 + a_1.x_1 + a_2.x_2 + ... + a_n.x_n$ régression polynomiale : $y = a_0 + a_1.x + a_2.x^2 + ... + a_n.x^2$

En python:

```
def modelmult(X, theta):
   return X.dot(theta)
def fonction_cout(X, y, theta):
   return 1/(2*m) * np.sum((modelmult(X, theta) - y)**2)
def gradient(X,y,theta):
   return 1/m * X.T.dot(modelmult(X, theta) - y)
def descente gradient(X,y,theta,alpha,n_iterations):
    for i in range(n_iterations):
        theta = theta - alpha*gradient(X, y, theta)
    return theta
```


Code python

Présentation des résultats

1-Utilisez les bibliothèques de Python pour récupérer le contenu du jeu de données.

import pandas as pd # pour la lecture de fichier

import numpy as np # maths

import matplotlib.pyplot as plt # affichage des graphiques

2-Utilisez les bibliothèques de Python pour récupérer le contenu du jeu de données.

Visualisation des données

nobs = len(reg_simple)

print("colonnes:", reg_simple.columns, " - nombre d'observations:", nobs)

plt.scatter(reg_simple["heure_rev"], reg_simple["note"])

plt.xlabel('nombre d'heures de révision')

plt.ylabel('note')

#plt.show()

Nuage de points

Axe des ordonnées, notre "y" notes . En abscisses le "x "nombres d'heures de révisions.

Création du modèle (model(X,theta))

$$x = a[:,0]$$

$$x = x[:, np.newaxis]$$

sert a coller 2 vecteurs

X = np.hstack((x, np.ones(x.shape)))

Gradient et descente de gradient.

```
# Descente du gradient (descente_gradient(X,y,theta,alpha,n_iterations))
#1°) Initialiser avec x0(au hasard) -- ok
# 2°) Répéter theta(t+1) = theta(t) - alpha × \nabla f(theta(t)
#3°)Jusqu'à convergence
def descente_gradient(X,y,theta,alpha,n_iterations):
        for i in range(n_iterations): #2°
                theta = theta - alpha*gradient(X, y, theta)
        return theta
```

```
[[3.31390942]
[0.95131246]]
[[3.3111333]
[1.00517102]]
[[-2.52998398e+57]
[-1.30403637e+56]]
[[3.33070488]
[0.62546093]]
```

03 Graphiques

Présentation des résultats

Révisions

Régression linéaire simple

Salaire

Régression linéaire polynomiale

04Evaluation

Evaluation des modèles

Révisions

Régression linéaire simple

Utilisation du R²

```
def r2(X, y, y_pred):
    return 1 - (np.sum((y - y_pred)**2) / np.sum((y - np.mean(y))**2))

y_pred = model(X, theta4)

print(r2(X, y, y_pred)) # 0.9732961007203775
```

Immobilier Boston

Régression linéaire multiple

Erreur quadratique moyenne

```
theta1 = descente_gradient(X, y, theta, 0.001, 5000)
theta2 = descente_gradient(X, y, theta, 0.0005, 3300)
theta3 = descente_gradient(X, y, theta, 0.002, 1500)

print(theta1, fonction_cout(X, y, theta1)) # 13.196
print(theta2, fonction_cout(X, y, theta2)) # 14.115
print(theta3, fonction_cout(X, y, theta3)) # 1050815795310118.4

print(mean_squared_error(y, modelmult(X, theta1))) # 26.460
print(mean_squared_error(y, modelmult(X, theta2))) # 28.035
print(mean_squared_error(y, modelmult(X, theta3))) # 7594507303458618.0
```

ScikitLearn


```
Régression avec scikit learn:
                                                                        Simple Linear Regression using scikit-learn and python 3
Simple:
from sklearn import linear model
import matplotlib.pyplot as plt
import numpy as np
import random
#entrainement des donnees
X = [i \text{ for } i \text{ in range}(10)]
Y = [random.gauss(x, 0.75) for x in X]
X = np.asarray(X)
Y = np.asarray(Y)
                                                                                                           10
X = X[:,np.newaxis]
Y = Y[:,np.newaxis]
plt.scatter(X,Y)
```

Régression linéaire multiple avec le module scikit learn: import pandas as pd from sklearn import linear_model import statsmodels.api as sm

