cdl1 concept

Sensor Based Activity Recognition Challenge Concept

Authors:

- Nils Fahrni
- Noah Leuenberger
- Dominik Filliger

Goal

The objective is to classify activities based on movement data from a mobile device, aiming to recognize 5 movement profiles:

- Standing
- Sitting
- Walking
- Running
- Climbing stairs

Accuracy

The target is an accuracy (F1-Score Macro) of 95%, chosen due to similar results in related studies. The F1-Score Macro is preferred for its equal weighting across all classes.

Sources:

- Performance Analysis of Smartphone Sensor Behavior for Human Activity Recognition
- Related ScienceDirect Article

Project Scope

Objectives

- Develop at least one Machine-Learning model and one Deep-Learning model.
- Implement MLOps using wandb.
- Utilize DVC and S3 Storage for data management.
- Collect data using sensors: Accelerometer, Gravity, Gyroscope, Orientation sensor.

Milestones

Task	Deadline
Concept planning, data collection, and initial processing	2024-03-15
Pipeline and data engineering	2024-03-25
Prototype ML and DL models	2024-04-10
Model evaluation and tuning	2024-05-15
Model comparison report	2024-05-25
Codebase finalization and submission preparation	2024-06-13
Project submission	2024-06-14
Presentation	TBD

Data Management

Backup and Labeling

- Data collection via **Sensor Logger**.
 - Metadata
 - OS Platform (Android and iOS)
 - Device (specific phone model)
 - Sample Rate
 - Label (title)
- Data exported as zipped CSVs into structured cloud storage.

Processing and Modeling

Approach to Tracking

- Using the Sensor Logger, there are clear instructions on how we will record the data:
 - Device has always to be in a pants/jeans pocket.
 - For this teams recordings, we will exclusively use the front side pockets.
 - To prevent too much bias, multiple different orientations are recorded.

Preprocessing

- Crop recordings to eliminate noise from setup activities.
- Resample data for consistency across devices if necessary.
- Segment data into uniform sequences/windows.
- Interpolate missing data.

Feature Engineering

- Utilize Frequency Domain-Transformation (FFT, STFT etc.) for frequency extraction.
- Apply simple aggregations and smoothing for feature generation.

Modeling

- Train and evaluate various ML and DL models (at least one each).
- Perform hyperparameter tuning.
- Compare model performances.

Deliverables

- A Git repository.
- · The collected dataset.
- A presentation detailing findings, methodologies, and learnings.