GLM Practical Session 1

alexaoh

9/28/2021

Linear Regression for Cholesterol

```
data <- read.csv2("COL.csv", header = T)</pre>
summary(data)
#>
                          Η
                                                           С
#> Min. : 9.00
                         :103.0
                                    Min.
                                           :37.30
                                                           : 67.5
#> 1st Qu.:12.00
                    1st Qu.:130.5
                                    1st Qu.:53.23
                                                    1st Qu.:166.5
#> Median :15.00
                    Median :151.5
                                    Median :66.60
                                                    Median :217.8
#> Mean
          :14.71
                    Mean
                          :147.4
                                    Mean
                                          :64.57
                                                    Mean
                                                           :218.2
#> 3rd Qu.:18.00
                    3rd Qu.:167.2
                                    3rd Qu.:74.95
                                                    3rd Qu.:262.4
                                           :89.70
#> Max.
           :20.00
                           :187.0
                                                            :438.5
                    Max.
                                    Max.
                                                    Max.
p <- 2
n <- dim(data)[1]</pre>
# Fit linear model.
lm.fit <- lm(C~W, data = data)</pre>
summary(lm.fit)
#>
#> Call:
#> lm(formula = C ~ W, data = data)
#> Residuals:
       Min
                10 Median
                                ЗQ
                                       Max
#> -169.24 -39.81
                     -4.49
                             47.19
                                    200.37
#>
#> Coefficients:
#>
               Estimate Std. Error t value Pr(>|t|)
                           33.1983
                                     10.43 < 2e-16 ***
#> (Intercept) 346.2251
                -1.9835
                            0.5046
                                     -3.93 0.000158 ***
#> Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
#> Residual standard error: 63.55 on 98 degrees of freedom
#> Multiple R-squared: 0.1362, Adjusted R-squared: 0.1274
#> F-statistic: 15.45 on 1 and 98 DF, p-value: 0.0001581
```

Scatterplot of Points and Regression Line.

```
# Can be done manually and with a function.
scatterplot(C~W, smooth = F, data = data)
```


Regression Line for Cholesterol vs. Weight

Could do the plot from above with the scatterplot function above (comes from 'car' package).

Plot Regression Line with Conf. and Pred. Intervals

Plot confidence and prediction intervals with regression line (From package 'HH'). ci.plot(lm.fit)

95% confidence and prediction intervals for Im.fit

Plot Predicted Values vs. Residuals

```
# Plot the predicted values vs. residuals.
plot(predict(lm.fit), resid(lm.fit), main = "Predicted Values vs. Residuals")
abline(h=0, lty = 2)
```

Predicted Values vs. Residuals

${\bf Plot~Standardized/Studentized~Residuals}$

```
plot(rstandard(lm.fit), main = "Rstandard")
abline(h=c(-2, 0, 2), lty = 2)
```

Rstandard


```
plot(rstudent(lm.fit), main = "Rstudent")
abline(h=c(-2, 0, 2), lty = 2)
```

Rstudent

