

F-Numbers

- Computing the nth Fibonacci number recursively:
 - F(n) = F(n-1) + F(n-2)
 - F(0) = 0
 - F(1) = 1
 - A top-down approach

```
def fib(n):
    if n == 0:
        return 0
    elif n == 1:
        return 1
    else:
        return fib(n-1) + fib(n-2)
```


F-Numbers

- This top-down approach is not so inefficient
 - Re-compute many sub-problems

F-Numbers

- Alternative approach: memoization
 - Cache the internal results to avoid repetition

```
def memoize(f):
  memo = \{\}
  def helper(x):
     if x not in memo:
        memo[x] = f(x)
     return memo[x]
  return helper
def fib(n):
  if n == 0:
     return 0
  elif n == 1:
     return 1
  else:
     return fib(n-1) + fib(n-2)
fib = memoize(fib)
```

```
memoize
           memo = \{\}
             def helper(x):
                if x not in memo:
                  memo[x] = f(x)
                return memo[x]
             return helper
                                         Executing:
                                             fib = memoize(fib)
                                                    helper is returned
                                fib
if n == 0:
    return 0
                                           <u>if</u> x not in mem<del>o:</del>
  elif n == 1:
                                               memo[x] = (f(x))
    return 1
                                             return memo[x]
  else:
    return fib(n-1) + fib(n-2
```

F-Numbers

- Alternative bottom-up approach dynamic programming (O(n)!)
 - F(0) = 0
 - F(1) = 1
 - F(2) = 1+0 = 1
 - •
 - F(n-2) =
 - F(n-1) =
 - F(n) = F(n-1) + F(n-2)

```
def fib(n):
    fibValues = [0,1]
    for i in range(2,n+1):
        fibValues.append(fibValues[i-1] + fibValues[i-2])
    return fibValues[n]
```

0 1 1 ... F(n-2) F(n-1) F(n)

Binomial Coefficient

B-Coefficient

- Binomial coefficient
 - C(n, k) = C(n-1, k-1) + C(n-1, k)
 - C(n, 0) = C(n, n) = 1

```
\label{eq:def-def-def-def} \begin{split} &\text{def binomialCoeff}(n \;,\; k): \\ &\text{if } k{=}{=}0 \; \text{or } k \; {=}{=}n \; : \\ &\text{return 1} \\ &\text{return binomialCoeff}(n{-}1 \;,\; k{-}1) \; + \; binomialCoeff}(n{-}1 \;,\; k) \end{split}
```

Not efficient: many repetition!

Binomial Coefficient

B-Coefficient

n

- Binomial coefficient dynamic programming
 - C(n, k) = C(n-1, k-1) + C(n-1, k)
 - C(n, 0) = C(n, n) = 1

C(n,k)

```
def binomialCoef(n, k):
    C = [[0 for x in range(k+1)] for x in range(n+1)]
    for i in range(n+1):
        for j in range(min(i, k)+1):
            if j == 0 or j == i:
                C[i][j] = 1
            else:
                C[i][j] = C[i-1][j-1] + C[i-1][j]
    return C[n][k]
```


In This Lecture

Outline

- 1. Dynamic Programming
- 2. Minimum Cost Path Problem
- 3. Matrix Chain-Products

- Dynamic Programming (DP)
 - An algorithm design technique for optimization problems
 - often minimizing or maximizing
- Like "divide and conquer", DP solves problems by combining solutions to sub-problems
- Unlike divide and conquer, sub-problems are not independent
 - Sub-problems may share sub-sub-problems

- The term Dynamic Programming comes from Control Theory, not computer science
 - Programming refers to the use of tables (arrays) to construct a solution
- In dynamic programming, we usually reduce time by increasing the amount of space
- We solve the problem by solving sub-problems of increasing size and saving each optimal solution in a table (usually)
- The table is then used for finding the optimal solution to larger problems
- Time is saved since each sub-problem is solved only once

- When do we consider to apply DP?
 - Optimal substructure
 - Optimal solution of a bigger problem includes the optimal solution of a smaller problem
 - Overlapping recursive calls
 - Recursive solution results in many repetitions
- Memoization vs. DP
 - Both often considered as a DP
 - Memoization: top-down approach, solve mandatory subproblems
 - DP: bottom-up approach, no overhead with recursion

Examples

- Minimum cost path problem
- Matrix chaining optimization
- Longest common subsequence
- Knapsack problem
- Traveling salesman problem
- Warshall's algorithm for Transitive Closure
- Floyd's algorithm for all-pairs shortest paths
- Computing a binomial coefficient
- Constructing an optimal binary search tree

Problem

- Given an n x n matrix (with positive elements), move from the left top to the right bottom
- Constrains
 - Only move to right or down
 - Not allow to move left, up, or diagonal directions
- Goal
 - Find the minimum cost path

6	7	12	5
5	3	11	_18
7	_17	3	3
8	10	14	9

6	7	_12	5
5	3	11	18
7	17	3	3
8	10	_14	9

VS.

6—	7	_12	5
5	3	11	18
7	17	3	3
8	10	14	9

6	7	12	5
5	3	11	18
7	17	3	3
8	10	14	9

Idea

- To reach (i, j),
 - we go through the (i, j-1) or (i-1, j)
- Also, to (i, j-1) or (i-1, j),
 - We move with the optimal way

Recursive Approach

- minCost(m, n)
 - minCost(m, n) = min (minCost(m-1, n), minCost(m, n-1)) + cost[m][n]

Many subproblems repetition!

- minCost(m, n)
 - minCost(m, n) = min (minCost(m-1, n), minCost(m, n-1)) + cost[m][n]

```
def minCost(cost, m, n):
  tc = [[0 \text{ for } x \text{ in } range(C)] \text{ for } x \text{ in } range(R)]
  tc[0][0] = cost[0][0]
  # Initialize first column of total cost(tc) array
  for i in range(1, m+1):
      tc[i][0] = tc[i-1][0] + cost[i][0]
  # Initialize first row of tc array
  for j in range(1, n+1):
      tc[0][i] = tc[0][i-1] + cost[0][i]
  # Construct rest of the tc array
  for i in range(1, m+1):
     for j in range(1, n+1):
         tc[i][i] = min(tc[i-1][i], tc[i][i-1]) + cost[i][i]
   return tc[m][n]
```

1				
	6	7	12	5
	5	3	11	18
	7	17	3	3
	8	10	14	9

L	1	2	3	4
1	6	13	25	30
2	11	14	25	43
3	18	31	→ 28	31
4	26	36	42	40

-	←	←	←
1	+	←	+
1	1	Ť	+
†	+	†	†

Matrix Multiplication

- Review: Matrix Multiplication
 - C = A*B
 - A is $d \times e$ and B is $e \times f$
 - $O(d \cdot e \cdot f)$ time

$$C[i, j] = \sum_{k=0}^{e-1} A[i, k] * B[k, j]$$

e

Matrix Chain-Product

- Matrix Chain-Product
 - Compute A=A₀*A₁*...*A_{n-1}
 - A_i is $d_i \times d_{i+1}$
 - Problem: How to parenthesize?
- Example
 - B is 3 × 100
 - C is 100 × 5
 - D is 5 × 5
 - (B*C)*D takes 1500 + 75 = 1575 ops
 - B*(C*D) takes 1500 + 2500 = 4000 ops

Matrix Chain-Product

- Matrix Chain-Product algorithm
 - Try all possible ways to parenthesize A=A₀*A₁*...*A_{n-1}
 - Calculate number of ops for each one
 - Pick the one that is best
- Running time
 - The number of parenthesizations is equal to the number of binary trees with n nodes
 - This is exponential!
 - It is called the Catalan number, and it is almost 4ⁿ
 - This is a terrible algorithm!

Greedy Approach

- Idea #1: repeatedly select the product that uses the fewest operations
- Counter-example
 - A is 101 × 11
 - B is 11 × 9
 - C is 9 × 100
 - D is 100 × 99
 - Greedy idea #1 gives A*((B*C)*D)), which takes
 109989+9900+108900=228789 ops
 - (A*B)*(C*D) takes 9999+89991+89100=189090 ops
- The greedy approach is not giving us the optimal value

Optimal Solution

- The optimal solution can be defined in terms of optimal sub-problems
 - There has to be a final multiplication (root of the expression tree) for the optimal solution
 - Say, the final multiplication is at index k:
 (A₀*...*A_k)*(A_{k+1}*...*A_{n-1})
- Let us consider all possible places for that final multiplication
 - There are n-1 possible splits. Assume we know the minimum cost of computing the matrix product of each combination A₀...A_i and A_{i+1}...A_n.
 Let's call these N_{0,i} and N_{i+1,n}
- Recall that A_i is a $d_i \times d_{i+1}$ dimensional matrix, and the final product will be a $d_0 \times d_n$

Optimal Solution

Definition

$$N_{0,n-1} = \min_{0 \le k < n-1} \{ N_{0,k} + N_{k+1,n-1} + d_0 d_{k+1} d_n \}$$

Then the optimal solution $N_{0,n-1}$ is the sum of two optimal sub-problems, $N_{0,k}$ and $N_{k+1,n-1}$ plus the time for the last multiplication

Optimal Solution

- Define sub-problems
 - Find the best parenthesization of an arbitrary set of consecutive products:
 A_i*A_{i+1}*...*A_i
 - Let N_{i,j} denote the **minimum** number of operations done by this subproblem
 - Define $N_{k,k} = 0$ for all k
 - The optimal solution for the whole problem is then N_{0.n-1}

Optimal Solution

The characterizing equation for N_{i,i} is:

$$N_{i,j} = \min_{i \le k < j} \{ N_{i,k} + N_{k+1,j} + d_i d_{k+1} d_{j+1} \}$$

- For example, $N_{2,6}$ and $N_{3,7}$, both need solutions to $N_{3,6}$, $N_{4,6}$, $N_{5,6}$, and $N_{6,6}$.
 - This is an example of high sub-problem overlap, and clearly precomputing these will significantly speed up the algorithm

Recursive Approach

 We could implement the calculation of these N_{i,j}'s using a straight-forward recursive implementation of the equation (aka not pre-compute them)

```
Algorithm Recursive Matrix Chain(S, i, j):

Input: sequence S of n matrices to be multiplied

Output: number of operations in an optimal parenthesization of S

if i=j

then return 0

for k \leftarrow i to j do

N_{i,j} \leftarrow \min\{N_{i,j}, Recursive Matrix Chain(S, i, k) + Recursive Matrix Chain(S, k+1,j) + d_i d_{k+1} d_{j+1}\}

return N_{i,j}
```

Subproblem Overlap

Overlap

- High sub-problem overlap, with independent sub-problems indicate that a dynamic programming approach may work
- Construct optimal sub-problems "bottom-up" and remember them
- N_{i,i}'s are easy, so start with them
- Then do problems of *length* 2,3,... sub-problems, and so on
- Running time: O(n³)

```
Algorithm matrixChain(S):

Input: sequence S of n matrices to be multiplied

Output: number of operations in an optimal parenthesization of S

for i \leftarrow 1 to n-1 do

N_{i,i} \leftarrow 0

for b \leftarrow 1 to n-1 do

\{b=j-i \text{ is the length of the problem }\}

for i \leftarrow 0 to n-b-1 do

j \leftarrow i+b

N_{i,j} \leftarrow +\infty

for k \leftarrow i to j-1 do

N_{i,j} \leftarrow \min\{N_{i,j}, N_{i,k} + N_{k+1,j} + d_i d_{k+1} d_{j+1}\}

return N_{0,n-1}
```

DP

return $N_{0.n-1}$

Algorithm *matrixChain(S)*: **Input:** sequence S of n matrices to be multiplied Output: number of operations in an optimal parenthesization of S for $i \leftarrow 1$ to n-1 do (1) Initialize C[1,1], C[2,2], ..., C[n-1,n-1] as 0 $N_{i,i} \leftarrow 0$ - No computation is needed for same matrix for $b \leftarrow 1$ to n - 1 do $\{b = j - i \text{ is the length of the problem }\}$ for $i \leftarrow 0$ to n - b - 1 do $j \leftarrow i + b$ $N_{i,i} \leftarrow +\infty$ for $k \leftarrow i$ to j - 1 do $N_{i,i} \leftarrow \min\{N_{i,i}, N_{i,k} + N_{k+1,i} + d_i d_{k+1} d_{i+1}\}$

DP

Algorithm *matrixChain(S)*: **Input:** sequence S of n matrices to be multiplied Output: number of operations in an optimal parenthesization of S for $i \leftarrow 1$ to n-1 do $N_{i,i} \leftarrow \mathbf{0}$ for $b \leftarrow 1$ to n-1 do $\{b = j - i \text{ is the length of the problem }\}$ for $i \leftarrow 0$ to n - b - 1 do $j \leftarrow i + b$ $N_{i,i} \leftarrow +\infty$ for $k \leftarrow i$ to j - 1 do $N_{i,i} \leftarrow \min\{N_{i,i}, N_{i,k} + N_{k+1,i} + d_i d_{k+1} d_{i+1}\}$ return $N_{0.n-1}$

(2) b: length of a sub-problem


```
Algorithm matrixChain(S):
    Input: sequence S of n matrices to be multiplied
    Output: number of operations in an optimal parenthesization of S
    for i \leftarrow 1 to n-1 do
        N_{i,i} \leftarrow \mathbf{0}
    for b \leftarrow 1 to n - 1 do
        \{b = j - i \text{ is the length of the problem }\}
        for i \leftarrow 0 to n - b - 1 do
                                                   (3) b=1 \rightarrow subproblems with size 2
                                                    b=2 -> subproblems with size 3
            j \leftarrow i + b
                                                   (e.g., A_1 x A_2 x A_3, A_2 x A_3 x A_4, ...)
            N_{i,i} \leftarrow +\infty
             for k \leftarrow i to j - 1 do
                 N_{i,i} \leftarrow \min\{N_{i,i}, N_{i,k} + N_{k+1,i} + d_i d_{k+1} d_{i+1}\}
    return N_{0.n-1}
```

```
Algorithm matrixChain(S):
    Input: sequence S of n matrices to be multiplied
    Output: number of operations in an optimal parenthesization of S
    for i \leftarrow 1 to n-1 do
       N_{i,i} \leftarrow \mathbf{0}
    for b \leftarrow 1 to n - 1 do
        { b = j - i is the length of the problem }
        for i \leftarrow 0 to n - b - 1 do
           j \leftarrow i + b
            N_{i,i} \leftarrow +\infty
            for k \leftarrow i to j - 1 do
                                         (4) To find the minimum # operations
                N_{i,i} \leftarrow \min\{N_{i,i}, N_{i,k} + N_{k+1,i} + d_i d_{k+1} d_{i+1}\}
    return N_{0,n-1}
```

Visualization

- The bottom-up construction fills in the N array by diagonals
- N_{i,j} gets values from previous entries in i-th row and j-th column
- Filling in each entry in the N table takes
 O(n) time
- Total run time: O(n³)
- Getting actual parenthesization can be done by remembering "k" for each N entry

$$N_{i,j} = \min_{i \le k < j} \{ N_{i,k} + N_{k+1,j} + d_i d_{k+1} d_{j+1} \}$$

Visualization

A₀: 30 X 35; A₁: 35 X15; A₂: 15X5; A₃: 5X10; A₄: 10X20; A₅: 20 X 25

$$N_{i,j} = \min_{i \le k < j} \{ N_{i,k} + N_{k+1,j} + d_i d_{k+1} d_{j+1} \}$$

$$\begin{split} N_{1,4} &= \min \{ \\ N_{1,1} + N_{2,4} + d_1 d_2 d_5 = 0 + 2500 + 35*15*20 = 13000, \\ N_{1,2} + N_{3,4} + d_1 d_3 d_5 &= 2625 + 1000 + 35*5*20 = 7125, \\ N_{1,3} + N_{4,4} + d_1 d_4 d_5 &= 4375 + 0 + 35*10*20 = 11375 \\ \} &= 7125 \end{split}$$

Summary

- We reduced replaced a **O**(2ⁿ) algorithm with a **O**(n³) algorithm
- While the generic top-down recursive algorithm would have solved O(2ⁿ) sub-problems, there are O(n²) sub-problems
 - Implies a high overlap of sub-problems
- The sub-problems are independent:
 - Solution to A₀A₁...A_k is independent of the solution to A_{k+1}...A_n
- Determine the cost of each pair-wise multiplication, then the minimum cost of multiplying three consecutive matrices, using the pre-computed costs for two matrices
- Repeat until we compute the minimum cost of all n matrices using the costs
 of the minimum n-1 matrix product costs

What You Need to Know

Summary

- Dynamic programming
 - Fibonacci, binomial coefficient examples
 - Memoization vs. DP, DC vs. DP
- Minimum cost path problem
- Matrix Chain-Products

