EE2703: Applied Programming Lab Assignment 4: Fourier Approximations

Soham Roy EE20B130

March 4, 2022

1 Introduction

Two functions, exp(x) and cos(cos(x)) over the interval $[0, 2\pi)$ will be modeled using the fourier series:

$$a_0 + \sum_{n=1}^{\infty} \{a_n \cos(nx) + b_n \sin(nx)\}\$$

Where,

$$a_0 = \frac{1}{2\pi} \int_0^{2\pi} f(x)dx$$

$$a_n = \frac{1}{\pi} \int_0^{2\pi} f(x)cos(nx)dx$$

$$a_n = \frac{1}{\pi} \int_0^{2\pi} f(x)sin(nx)dx$$

2 Subquestions

2.1 Define & Plot Python Functions

Two Python functions are defined:

```
\begin{array}{lll} \textbf{def} \ \exp{(\mathbf{x})} \colon \ \# \ exponential \ function \,, \ supports \ value \ or \ vector \\ \textbf{return} \ np.\exp{(\mathbf{x})} \end{array}
```

The functions have been plotted with their periodic extensions (2π period):

2.2 Evaluate Integrals

The integrands have been defined as functions of x, k, and f, where f is the Python function to be approximated, i.e. exp or coscos:

```
def u(x, k, f): # f is either exp or coscos
    return f(x) * np.cos(k * x)

def v(x, k, f): # f is either exp or coscos
    return f(x) * np.sin(k * x)
```

The integrals to calculate the values of a_n and b_n have been evaluated using the following loop:

```
F = [exp, coscos]
a_0 = np.zeros((2))
a_n = np.zeros((2, 25))
b_n = np.zeros((2, 25))

for i in range(2):  # iterate over exp and coscos
    a_0[i] = quad(F[i], 0, 2 * np.pi)[0] / (2 * np.pi)

for j in range(25):  # integration
    a_n[i, j] = quad(u, 0, 2 * np.pi, args=(j + 1, F[i]))[0] / np.pi
    b_n[i, j] = quad(v, 0, 2 * np.pi, args=(j + 1, F[i]))[0] / np.pi
```

2.3 Plot the Fourier Coefficients

The answer vector c has been generated by:

To plot in semilog scale, for example, we use:

```
\begin{array}{l} plt.semilogy(0\,,\ np.\,\textbf{abs}(\,a\_0\,[\,f\_i\,]\,)\,,\ 'ro\,',\ label="by\_integration"\,)\\ plt.semilogy(\textbf{range}(1\,,\ 26)\,,\ np.\,\textbf{abs}(\,a\_n\,[\,f\_i\,]\,)\,,\ 'ro\,')\\ plt.semilogy(\textbf{range}(1\,,\ 26)\,,\ np.\,\textbf{abs}(\,b\_n\,[\,f\_i\,]\,)\,,\ 'ro\,') \end{array}
```

The coefficients $|a_n|$ and $|b_n|$ have been plotted:

- (a) The b_n coefficients for cos(cos(x)) are of the order of magnitude -16, i.e. nearly zero.

 This is because cos(cos(x)) is an even function, and thus does not
 - This is because cos(cos(x)) is an even function, and thus does not have any odd component.
- (b) cos(cos(x)) is a periodic function, comprising not many frequencies. e^x , on the other hand, is a non-periodic function, and thus its periodic extension has multiple discontinuities. Hence, high frequency components are required to represent this function as a sum of trigonometric functions.
- (c) The loglog plot is linear for e^x because the log of its coefficients vary linearly with log(n), i.e. the coefficients depend on $\frac{1}{n^a}$ for some a. On the other hand, the semilog plot is linear for cos(cos(x)) because the log of its coefficients vary linearly with n, i.e. the coefficients decay exponentially.

2.4 Least Squares

The equation to be solved by scipy. linalg. lstsq is:

$$Ac = B$$

The matrix A has been generated by:

The solution matrices are c[0] for e^x and c[1] for coscos(x):

```
for i in range(2):
    b = F[i](x)
    c[i] = lstsq(A, b)[0]
```

2.5 Plot the Best Fit Coefficients

To plot in semilog scale, for example, we use:

```
\begin{array}{l} plt.semilogy(0, np.abs(c[f\_i][0]), 'go', label="by\_least\_squares") \\ plt.semilogy(range(1, 26), np.abs(c[f\_i][1::2]), 'go') \\ plt.semilogy(range(1, 26), np.abs(c[f\_i][2::2]), 'go') \end{array}
```

The coefficients $|a_n|$ and $|b_n|$ by least squares method have been contrasted with those by integration:

2.6 Compare Least Squares and Direct Integration

The maximum errors between the least squares and direct integration methods has been calculated:

```
\begin{array}{lll} \operatorname{np.max}(\operatorname{np.abs}(\operatorname{c}[0] - \operatorname{c.n}[0])) & \# \ for \ e^x \\ \operatorname{np.max}(\operatorname{np.abs}(\operatorname{c}[1] - \operatorname{c.n}[1])) & \# \ for \ coscos(x) \end{array}
```

The largest deviation of coefficients for e^x is: 1.3327 The largest deviation of coefficients for cos(cos(x)) is: 2.6684e-15

The error is significant for e^x but negligible for cos(cos(x)).

This is because there are multiple discontinuities in the periodic extension of e^x , and thus would require a much higher number of coefficients to be somewhat accurately represented.

This lack in accuracy is more apparent close to those discontinuities.

2.7 Plot the Fourier Approximations

The functions as represented by the Fourier coefficients calculated through the least squares method have been plotted:

 $plt.plot(x[200:600], np.dot(A, c[1]), 'go', label="by_least_squares")$

The cos(cos(x)) plot agrees nearly perfectly, but the e^x plot has a large deviation. This is because unlike cos(cos(x)), which has periodic components, the e^x function is not inherently comprised of periodic trigonometric functions. The periodic extension of e^x has multiple discontinuities, which causes the Fourier representation to overshoot around them due to the Gibbs phenomenon.