Санкт-Петербургский Политехнический Университет имени Петра Великого Институт Прикладной Математики и Механики

Кафедра "Прикладная Математика"

Отчет по лабораторной работе №2 по дисциплине "Математическая Статистика"

Выполнил студент: Тырыкин Я. А. группа 3630102/80401 Проверил: к.ф.-м.н., доцент Баженов А. Н.

Содержание

1	Постановка задачи	4
2	Теория	4
	2.1 Распределения	
	2.2 Выборочные числовые характеристики	5
	2.2.1 Характеристики положения	5
	2.2.2 Характеристики рассеяния	
3	Модульная структура программы	6
4	Результаты	6
	4.1 Характеристики положения и рассеяния	6
5	Обсуждение	8
	5.1 Характеристики положения и рассеяния	8
6	Ресурсы	9

Список таблиц

1	Характеристики нормального распределения (3)	6
2	Характеристики распределения Коши (4)	7
3	Характеристики распределения Лапласа (5)	7
4	Характеристики распределения Пуассона (6)	8
5	Характеристики равномерного распределения (7)	8

1 Постановка задачи

Для 5 распределений:

- 1. Нормальное распределение N(x, 0, 1)
- 2. Распределение Коши C(x, 0, 1)
- 3. Распределение Лапласа $L(x, 0, \frac{1}{\sqrt{2}})$
- 4. Распределение Пуассона P(k, 10)
- 5. Равномерное распределение $U(x, -\sqrt{3}, \sqrt{3})$

Сгенерировать выборки размером 10, 100 и 1000 элементов. Для каждой выборки вычислить следующие статистические характеристики положения данных: \overline{x} , med x, z_R , z_Q , z_{tr} . Повторить такие вычисления 1000 раз для каждой выборки и найти среднее характеристик положения и их квадратов:

$$E(z) = \overline{z} \tag{1}$$

Вычислить оценку дисперсии по формуле:

$$D(z) = \overline{z^2} - \overline{z}^2 \tag{2}$$

Представить полученные данные в виде таблиц.

2 Теория

2.1 Распределения

• Нормальное распределение:

$$N(x,0,1) = \frac{1}{\sqrt{2\pi}} e^{\frac{-x^2}{2}} \tag{3}$$

• Распределение Коши:

$$C(x,0,1) = \frac{1}{\pi} \frac{1}{x^2 + 1} \tag{4}$$

• Распределение Лапласа:

$$L(x,0,\frac{1}{\sqrt{2}}) = \frac{1}{\sqrt{2}}e^{-\sqrt{2}|x|}$$
 (5)

• Распределение Пуассона:

$$P(k,10) = \frac{10^k}{k!}e^{-10} \tag{6}$$

• Равномерное распределение:

$$U(x, -\sqrt{3}, \sqrt{3}) = \begin{cases} \frac{1}{2\sqrt{3}} & \text{при } |x| \le \sqrt{3} \\ 0 & \text{при } |x| > \sqrt{3} \end{cases}$$
 (7)

2.2 Выборочные числовые характеристики

2.2.1 Характеристики положения

• Выборочное среднее:

$$\overline{x} = \frac{1}{n} \sum_{i=1}^{n} x_i \tag{8}$$

• Выборочная медиана:

$$med \ x = \begin{cases} x_{(l+1)} & \text{при } n = 2l+1 \\ \frac{x_{(l)} + x_{(l+1)}}{2} & \text{при } n = 2l \end{cases}$$
 (9)

• Полусумма экстремальных выборочных элементов:

$$z_R = \frac{x_{(1)} + x_{(n)}}{2} \tag{10}$$

$$z_p = \begin{cases} x_{([np]+1)} & \text{при } np \text{ дробном,} \\ x_{([np])} & \text{при } np \text{ целом.} \end{cases}$$
 (11)

Полусумма квартилей

$$z_Q = \frac{x_{1/4} + x_{3/4}}{2} \tag{12}$$

• Усечённое среднее:

$$z_{tr} = \frac{1}{n - 2r} \sum_{i=r+1}^{n-r} x_{(i)}, r \approx \frac{n}{4}$$
 (13)

2.2.2 Характеристики рассеяния

Выборочная дисперсия

$$D(x) = \frac{1}{n} \sum_{i=1}^{n} (x_i - \overline{x})^2$$
 (14)

3 Модульная структура программы

Лабораторная работа выполнена с применением средств языка Python версии 3.7 в среде разработки PyCharm IDE (в частности, с применением встроенных методов библиотеки SciPy и Numpy). Исходной код лабораторной работы находится по ссылке в приложении к отчёту.

4 Результаты

4.1 Характеристики положения и рассеяния

Как было проведено округление:

В оценке $x = E \pm D$ вариации подлежит первая цифра после точки.

В данном случае $x = 0.0 \pm 0.1k$,

k зависит от доверительной вероятности и вида распределения (рассматри вается в дальнейшем цикле лабораторных работ)

Округление сделано для k = 1

normal n = 10					
	$\overline{x}(8)$	$med \ x \ (9)$	$z_R(10)$	$z_Q(12)$	$z_{tr}(13)$
E(z) (1)	0.0004	0.2475	-0.0034	0.3104	0.422
D(z) (2)	0.1005	0.1319	0.1828	0.1266	0.1929
normal n = 100					
	\overline{x}	med x	z_R	z_Q	z_{tr}
E(z) (1)	0.0011	0.0224	0.0181	0.0145	0.6287
D(z) (2)	0.0093	0.0147	0.093	0.0119	0.023
normal n = 1000					
	\overline{x}	med x	z_R	z_Q	z_{tr}
E(z) (1)	0.0007	0.0031	0.0063	0.0022	0.6367
D(z) (2)	0.0011	0.0016	0.0657	0.0014	0.0026

Таблица 1: Характеристики нормального распределения (3)

cauchy n = 10					
	$\overline{x}(8)$	$med \ x \ (9)$	$z_{R}(10)$	$z_Q(12)$	$z_{tr}(13)$
E(z) (1)	3.2342	0.4268	16.1933	1.127	9.0583
D(z) (2)	3296.7681	0.4775	82205.7055	3.5466	9000.5072
cauchy n = 100					
	\overline{x}	med x	z_R	z_Q	z_{tr}
E(z) (1)	-2.4426	0.0369	-120.455	0.0331, 6.0248	
D(z) (2)	5229.3575	0.0246	13034764.0549	0.053	437.5538
cauchy n = 1000					
	\overline{x}	med x	z_R	z_Q	z_{tr}
E(z) (1)	-3.7405	0.0035	-1886.7218	0.0028	32.8812
D(z) (2)	351915.338	0.0026	87839440642.4975	0.0056	276417.646

Таблица 2: Характеристики распределения Коши (4)

laplace n = 10					
	$\overline{x}(8)$	$med \ x \ (9)$	$z_{R}(10)$	$z_Q(12)$	$z_{tr}(13)$
E(z) (1)	0.0197	0.1889	0.05	0.3222	0.4359
D(z) (2)	0.0975	0.0783	0.4115	0.1317	0.1767
laplace n = 100					
	\overline{x}	med x	z_R	z_Q	z_{tr}
E(z) (1)	-0.0067	0.0113	0.0098	0.0047	0.5806
D(z) (2)	0.0095	0.0054	0.4287	0.0096	0.0203
laplace $n = 1000$					
	\overline{x}	med x	z_R	z_Q	z_{tr}
E(z) (1)	-0.0013	0.0008	-0.0042	0.001	0.5965
D(z) (2)	0.001	0.0006	0.394	0.0011	0.0022

Таблица 3: Характеристики распределения Лапласа (5)

pois n = 10					
	$\overline{x}(8)$	$med \ x \ (9)$	$z_{R}(10)$	$z_Q(12)$	$z_{tr}(13)$
E(z) (1)	9.9856	10.6225	10.2885	10.9575	14.585
D(z) (2)	1.0347	1.5097	1.8355	1.4554	2.0978
pois $n = 100$					
	\overline{x}	med x	z_R	z_Q	z_{tr}
E(z) (1)	9.9906	9.9025	10.913	9.946	16.8963
D(z) (2)	0.1008	0.1932	1.0099	0.1621	0.2889
pois $n = 1000$					
	\overline{x}	med x	z_R	z_Q	z_{tr}
E(z) (1)	10.0044	10.0	11.642	9.9965	16.9263
D(z) (2)	0.0097	0.0	0.6868	0.0017	0.0257

Таблица 4: Характеристики распределения Пуассона (6)

$ uniform \ n = 10 $					
	$\overline{x}(8)$	$med \ x \ (9)$	$z_R(10)$	$z_Q(12)$	$z_{tr}(13)$
E(z) (1)	-0.0044	0.3122	0.0004	0.3151	0.4151
D(z) (2)	0.097	0.2125	0.0421	0.1293	0.2143
uniform $n = 100$					
	\overline{x}	med x	z_R	z_Q	z_{tr}
E(z) (1)	0.0039	0.0386	0.0005	0.0213	0.6512
D(z) (2)	0.0109	0.0309	0.0006	0.0162	0.0317
uniform $n = 1000$					
	\overline{x}	med x	z_R	z_Q	z_{tr}
E(z) (1)	-0.0007	0.0024	0.0001	0.0015	0.6475
D(z) (2)	0.0011	0.0031	0.0	0.0015	0.0033

Таблица 5: Характеристики равномерного распределения (7)

5 Обсуждение

5.1 Характеристики положения и рассеяния

Исходя из данных, приведенных в таблицах, можно судить о том, что дисперсия характеристик рассеяния для распределения Коши является некой аномалией: значения слишком большие даже при увеличении размера выборки - понятно, что это результат выбросов, которые мы могли наблюдать в результатах предыдущего задания.

6 Ресурсы

Код программы, реализующей отрисовку обозначенных распределений:

https://github.com/YaroslavAggressive/Mathematical-statistics-lab-works