```
import os, pandas as pd, numpy as np
df=pd.read_csv("/content/NSSO68.csv",encoding="Latin-1", low_memory=False)
df.head()
 \overline{\pm}
                     slno
                                               grp Round Centre FSU number Round Schedule Number Sample Sector
                            1 4.10E+31
                                                                                                        41000
                                                                                                                                68
                                                                                                                                                                          10
                                                                                                                                                                                                                 2
               1
                            2 4.10E+31
                                                                                     1
                                                                                                        41000
                                                                                                                                68
                                                                                                                                                                          10
                                                                                                                                                                                                                 2
                            3 4.10E+31
                                                                                                        41000
                                                                                                                                                                                                                 2
               2
                                                                                     1
                                                                                                                                68
                                                                                                                                                                         10
                                                                                                                                                                                               1
               3
                            4 4.10E+31
                                                                                     1
                                                                                                        41000
                                                                                                                                68
                                                                                                                                                                         10
                                                                                                                                                                                              1
                                                                                                                                                                                                                 2
                            5 4.10E+31
                                                                                                        41000
                                                                                                                                                                                                                 2
              4
                                                                                     1
                                                                                                                                68
                                                                                                                                                                         10
                                                                                                                                                                                              1
            5 rows × 384 columns
MP = df[df['state_1']=="MP"]
MP.isnull().sum().sort_values(ascending = False)

→ soyabean_q

                                                                   4717
            soyabean v
                                                                   4562
            Land Leased out
            Otherwise_possessed
                                                                   4552
            Meals_Employer
                                                                   4472
            cauli_q
            parwal_q
                                                                           0
            bhindi_q
                                                                           0
            chillig_q
            fv tot
            Length: 384, dtype: int64
df.columns
'pickle_v', 'sauce_jam_v', 'Othrprocessed_v', 'Beveragestotal_v',
                             'foodtotal_v', 'foodtotal_q', 'state_1', 'Region', 'fruits_df_tt_v',
                             'fv_tot'],
                          dtype='object', length=384)
MP new = MP[['state 1', 'District', 'Sector', 'Region', 'State Region', 'ricetotal q', 'wheattotal q', 'moong q', 'Milktotal q', 'chicken q', '
MP_new.isnull().sum().sort_values(ascending = False)
 → Meals_At_Home
                                                           26
            state_1
                                                              0
            District
                                                               0
            Sector
                                                               0
            Region
            State Region
            ricetotal q
                                                              0
            wheattotal q
            moong_q
                                                              0
            Milktotal_q
                                                              0
            chicken_q
                                                              0
            bread_q
                                                              0
            foodtotal_q
                                                              0
            Beveragestotal_v
                                                              0
            dtype: int64
MP_clean = MP_new.copy()
\label{eq:mp_clean_loc} $$ MP\_clean.loc[:, 'Meals\_At\_Home'] = MP\_clean['Meals\_At\_Home'].fillna(MP\_new['Meals\_At\_Home'].mean()) $$ MP\_clean.loc[:, 'Meals\_At\_Home'] = MP\_clean['Meals\_At\_Home'].fillna(MP\_new['Meals\_At\_Home'].mean()) $$ MP\_clean.loc[:, 'Meals\_At\_Home'] = MP\_clean['Meals\_At\_Home'].fillna(MP\_new['Meals\_At\_Home'].mean()) $$ MP\_clean['Meals\_At\_Home'] = MP\_clean['Meals\_At\_Home'].fillna(MP\_new['Meals\_At\_Home'].mean()) $$ MP\_clean['Meals\_At\_Home'].fillna(MP\_new['Meals\_At\_Home'].mean()) $$ MP\_clean['Meals\_At\_Home'].fillna(MP\_new['Meals\_At\_Home'].mean()) $$ MP\_clean['Meals\_At\_Home'].fillna(MP\_new['Meals\_At\_Home'].mean()) $$ MP\_clean['Meals\_At\_Home'].fillna(MP\_new['Meals\_At\_Home'].mean()) $$ MP\_clean['Meals\_At\_Home'].mean() $$ MP\_clean
MP_clean.isnull().any()
                                                            False
 ⇒ state_1
            District
                                                            False
            Sector
                                                            False
            Region
                                                            False
            State_Region
                                                            False
```

```
ricetotal_q
                    False
wheattotal_q
                    False
moong_q
                    False
Milktotal_q
                    False
chicken_q
                    False
bread_q
                    False
foodtotal q
                    False
Beveragestotal_v
                    False
Meals_At_Home
                    False
dtype: bool
```

Outlier Checking

```
import matplotlib.pyplot as plt
# Assuming AP_clean is your DataFrame
plt.figure(figsize=(8, 6))
plt.boxplot(MP_clean['ricetotal_q'])
plt.xlabel('ricetotal_q')
plt.ylabel('Values')
plt.title('Boxplot of ricetotal_q')
plt.show()
```



```
rice1 = MP_clean['ricetotal_q'].quantile(0.25)
rice2 = MP_clean['ricetotal_q'].quantile(0.75)
iqr_rice = rice2-rice1
up_limit = rice2 + 1.5*iqr_rice
low_limit = rice1 - 1.5*iqr_rice

MP_clean=MP_new[(MP_new['ricetotal_q']<=up_limit)&(MP_new['ricetotal_q']>=low_limit)]
plt.boxplot(MP_clean['ricetotal_q'])
```

→ {'whiskers': [<matplotlib.lines.Line2D at 0x7807e0a4a950>,

```
<matplotlib.lines.Line2D at 0x7807e16cd7e0>],
      'caps': [<matplotlib.lines.Line2D at 0x7807e16ced40>,
       <matplotlib.lines.Line2D at 0x7807e16cc370>],
      'boxes': [<matplotlib.lines.Line2D at 0x7807d49d90c0>],
      'medians': [<matplotlib.lines.Line2D at 0x7807e0837790],
'fliers': [<matplotlib.lines.Line2D at 0x7807e0eec2e0>],
      'means': []}
      8
      7
      6
      5
      4
      3
      2
      1
      0
MP_clean['District'].unique()
array([49, 40, 41, 47, 39, 44, 42, 10, 38, 17, 13, 16, 12, 15, 14, 11, 50,
            8, 4, 7, 3, 6, 5, 2, 9, 1, 23, 24, 22, 46, 30, 21, 18, 19,
           20, 26, 32, 48, 43, 34, 35, 33, 37, 36, 45, 31, 29, 28, 27, 25])
# Replace values in the 'Sector' column
MP_clean.loc[:,'Sector'] = MP_clean['Sector'].replace([1, 2], ['URBAN', 'RURAL'])
#total consumption
MP clean.columns
'bread_q', 'foodtotal_q', 'Beveragestotal_v', 'Meals_At_Home'],
          dtype='object')
MP_clean.loc[:, 'total_consumption'] = MP_clean[['ricetotal_q', 'wheattotal_q', 'moong_q', 'Milktotal_q', 'chicken_q', 'bread_q', 'food
<ipython-input-66-80d49cf8525b>:1: SettingWithCopyWarning:
     A value is trying to be set on a copy of a slice from a DataFrame.
     Try using .loc[row_indexer,col_indexer] = value instead
     See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus
    4
MP clean.head()
\overline{\Rightarrow}
           state_1 District Sector Region State_Region ricetotal_q wheattotal_q
                                                                                    mo
      2091
                         49 RURAL
                                                     231
                                                              1.000000
                                                                           8.000000 0.1
      2092
               MP
                             RURAL
                                                              1.000000
                                                                          10.000000 0.0
                         49
                                                     231
      2093
               MP
                         49 RURAI
                                                     231
                                                              0.500000
                                                                           8 125000 0 0
      2094
               MP
                          49 RURAL
                                                     231
                                                              1.428571
                                                                           9.285714 0.1
      2095
               MP
                         49 RIIRAI
                                                     231
                                                              0.500000
                                                                          10 000000 0 0
     Next steps:
             Generate code with MP_clean
                                          View recommended plots
MP_clean.groupby('Region').agg({'total_consumption':['std','mean','max','min']})
```


MP_clean.groupby('District').agg({'total_consumption':['std','mean','max','min']})

	total_consumption			
	std	mean	max	min
District				
1	16.775819	39.746085	102.950500	17.940200
2	19.073353	44.085860	122.815275	18.262662
3	16.968680	42.753640	119.150300	21.950169
4	37.374055	50.190857	235.688827	17.257750
5	22.757348	47.536850	138.277767	20.528800
6	45.287017	65.215649	361.951650	0.000000
7	38.497496	58.312801	299.831165	23.387795
8	21.852111	54.327756	143.701710	18.300000
9	53.524958	64.259850	532.920880	18.728716
10	23.481478	49.247331	138.950163	14.283386
11	36.857306	54.414838	340.839137	12.608433
12	36.850612	57.929265	296.460550	18.935871
13	19.197056	43.727410	153.575265	21.718437
14	39.902524	49.481078	423.875520	0.000000
15	16.523679	41.945661	98.400473	26.370070
16	12.689767	38.899458	79.925275	21.420040
17	16.718969	37.721699	103.307825	17.875053
18	37.465217	52.226480	210.733977	20.360160
19	28.003673	51.176768	159.725825	18.783460
20	21.951832	42.260451	139.851975	14.666850
21	39.690816	64.011533	236.045783	6.200000
22	36.275602	48.298919	368.150555	0.000000
23	33.855594	53.693723	238.000275	13.900585
24	18.701657	39.959696	126.017220	18.310280
25	40.250016	64.869301	214.600400	0.000000
26	47.764086	69.874306	282.860450	16.014621
27	10.166227	40.517103	69.760136	16.107271
28	14.084628	38.593005	131.900800	18.200549
29	10.940196	37.999688	71.139261	0.000000
30	31.594859	55.898809	193.375348	6.880000
31	58.686453	58.446243	551.007358	15.791918
32	36.957188	54.191858	335.480256	0.000000
33	27.034604	43.908925	170.626250	0.000000
34	30.520705	55.282438	175.801020	18.700380
35	9.738820	34.849389	79.060165	0.000000
36	14.390718	38.462336	71.467048	0.000000
37	20.166315	41.184527	140.886029	10.000000
38	26.203667	46.447708	139.176310	7.448220
39	24.994098	45.469218	175.433373	8.620000
40	25.979579	53.048309	199.640492	15.700110
41	12.958814	33.770509	79.500533	12.228715
42	31.237234	39.575799	228.551375	15.000000
43	20.502409	40.108454	212.100000	19.812693
44	20.626990	42.666259	101.275600	0.000000
45	13.173145	39.160220	91.050400	23.505155
46	27.769475	60.623462	207.025908	31.225184
47	14.939470	36.971601	127.575130	24.450108

```
15.200552 42.819423 108.350470 25.417386
         48
               17.099732 37.697130 89.450175 10.000000
         49
         50
               13.531332 40.836403 84.908130 19.666743
total_consumption_by_districtcode=MP_clean.groupby('District')['total_consumption'].sum()
total_consumption_by_districtcode.sort_values(ascending=False).head(3)
→ District
          11179.888996
     26
     11
           8651.959181
           8562.313518
     Name: total_consumption, dtype: float64
total_consumption_by_districtcode.sort_values(ascending=False).tail(3)
→ District
          2041.820134
     50
     45
          1958.010997
     47
          1700.693654
     Name: total_consumption, dtype: float64
MP_clean.loc[:,"District"] = MP_clean.loc[:,"District"].replace({11: "Sagar", 26: "Indore", 32: "Bhopal"})
MP_clean.loc[:,"District"] = MP_clean.loc[:,"District"].replace({15: "Umaria", 45: "Balaghat", 50: "Singrauli"})
total_consumption_by_districtname=MP_clean.groupby('District')['total_consumption'].sum()
total_consumption_by_districtname.sort_values(ascending=False).head(3)
→ District
              11179.888996
     Indore
               8651,959181
     Sagar
     Bhopal
               8562.313518
     Name: total_consumption, dtype: float64
total_consumption_by_districtname.sort_values(ascending=False).tail(3)
→ District
                 2041.820134
     Singrauli
                 1958.010997
     Balaghat
                 1700.693654
     Anunnur
```