Anomaly Detection

A bare minimal description

When you want to detect deviant observations in your training data.

Aplications

- You have a bunch of data points and want to identify sceptional data points.
- You want to remove
 strange data points as a
 preprocessing steps to
 avoid overfitting

When you want to detect deviant observations in your training data.

Aplications

- You have a bunch of data points and want to identify sceptional data points.
- You want to remove strange data points as a preprocessing steps to avoid overfitting

I need to find the special trees!

When you want to detect deviant observations in your training data.

Aplications

- You have a bunch of data points and want to identify sceptional data points.
- You want to remove strange data points as a preprocessing steps to avoid overfitting

I need to find the special trees!

When you want to detect deviant observations in your training data.

Aplications

- You have a bunch of data points and want to identify sceptional data points.
- You want to remove strange data points as a preprocessing steps to avoid overfitting

I need to find the special trees!

Novelty detection

You have a bunch of regular observations and you want to detect new observations if they come.

Aplications

- Health monitoring

Novelty detection

You have a bunch of regular observations and you want to detect new observations if they come.

Aplications

- Health monitoring

Beware of whatever strange is coming

Novelty detection

You have a bunch of regular observations and you want to detect new observations if they come.

Aplications

- Health monitoring

Beware of whatever strange is coming

Do you trust you have a dataset of clean data points?

Novelty detection

Do you want to find exceptional data points in your current dataset?

Outlier detection

Do you want to check if anything is wrong with new data points?

Novelty detection

Outlier detection vs novelty detection

Methods

As many as you want, really.

If you already know how anomalous examples look like, feel free to hard code that.

Rule based (no ML, but may still work)

If you have a distribution you can compute the probability of a point (region really) belonging to the distribution

Distribution Based

Distribution Based

Distribution Based

Distribution Based

Distribution Based

Similar to SVM, but the support vectors are defined so that they **encompass** a region, instead of splitting regions.

Read more if interested:

- Original paper:

https://papers.nips.cc/paper/1999/file/8725fb777f25776ffa9076e44fcfd776-Paper.pdf

- One blog:

http://rvlasveld.github.io/blog/2013/07/12/introduction-to-one-class-support-vector-machines/

- Wikipedia:

https://en.wikipedia.org/wiki/One-class_classification#Introduction

Imagine a decision tree in X_0 which you make the partitions based on a random feature and value X_2 X_1 X_3 X_4 $X_k \quad X_l$

Isolation Forest

Imagine a decision tree in X_0 which you make the partitions based on a random feature and value X_2 X_1 My depth is **shorter** likely because there X_3 X_4 are very few points around $\Lambda_r^ X_k \quad X_l$

Isolation Forest

Isolation Forest

 X_0

 X_4

 X_1

My depth is **shorter** likely because there

are very few points

around Λ_r^{-}

Metrics

You can't really tell...

Maybe because you create them artificially

But...if you know some observations are outliers, you can evaluate as if it was supervised classification

- That is it

You could also define some theoretical bounds, look for *internal evaluation of anomaly detection*

- That is it

Note that you have an anomaly score from the model. You need to tune the threshold to define a sample as an anomaly, higher values give higher precision but lower recall.