2. [0.25 valor] Considere a função f(x). Suponha que seleccionava m pontos $(x_i, f(x_i))$ para construir um polinómio de grau 3 com o objectivo de

$$\min \sum_{i=1}^{m} (f(x_i) - p_3(x_i))^2.$$

Em que condições é que este somatório tomava um valor > 0?

- \square quando m=4
- \Box quando f(x)não é um polinómio de grau 3 e m>4
- \square quando f(x) é um polinómio de grau 3 e m>4
- 3. [0.25 valor] Dada uma função f(x), construíram-se dois modelos $M_1(x; c_1, c_2)$ e $M_2(x; c_1, c_2)$ para aproximar f(x) no sentido dos mínimos quadrados. Com base na tabela de valores

x_i	0.5	1.0	1.5
$f(x_i)$	1	2	3
$M_1(x_i; c_1, c_2)$	1	2	6
$M_2(x_i; c_1, c_2)$	2	1	2

o que pode concluir?

 \square M_1 é melhor do que M_2 \square M_2 é melhor do que M_1 \square M_1 é tão bom quanto M_2

7.8 Considere as seguintes observações relativas à função f

Determine a e b sabendo que a aproximação polinomial de grau 1 dos mínimos quadrados é $p_1(x) = -4 + 2x$. Use 6 casas decimais nos cálculos.