Text mining ChatGPT

Abishan, Josua, Lars, Luca

2023-03-27

```
##Introduction Beschriebung einfügen über Projekt. ## Load packages and data
library (syuzhet)
## Warning: Paket 'syuzhet' wurde unter R Version 4.2.3 erstellt
library (stringr)
library (tidyverse)
## -- Attaching packages -----
                                         ----- tidyverse 1.3.2 --
## v ggplot2 3.4.0
                   v purrr
                                1.0.0
## v tibble 3.1.8
                      v dplyr
                               1.0.10
          1.2.1
                      v forcats 0.5.2
## v tidyr
           2.1.3
## v readr
## -- Conflicts ----- tidyverse_conflicts() --
## x dplyr::filter() masks stats::filter()
## x dplyr::lag()
                    masks stats::lag()
library (ggplot2)
library(scales)
##
## Attache Paket: 'scales'
## Das folgende Objekt ist maskiert 'package:purrr':
##
      discard
##
##
## Das folgende Objekt ist maskiert 'package:readr':
##
##
      col_factor
##
## Das folgende Objekt ist maskiert 'package:syuzhet':
##
##
      rescale
library(stringi)
library(lubridate)
## Lade nötiges Paket: timechange
##
## Attache Paket: 'lubridate'
## Die folgenden Objekte sind maskiert von 'package:base':
```

```
## date, intersect, setdiff, union
library(dplyr)
options(scipen=999)
load("ChatGPT.rda")
```

1. Question: What can you tell us about the users that tweet about ChatGPT?

```
# Creating a copy of tweets
tweets_orig <- tweets</pre>
# take unique users
Users <- tweets[4:10]</pre>
Users = Users[!duplicated(Users$User),]
# Calculating average lenght of tweet
char_counts <- nchar(tweets$Tweet)</pre>
av_char_count <- mean(char_counts)</pre>
rounded_avg_char_count <- round(av_char_count, 2)</pre>
# tabelle einfügen mit rounded_avg_char_count!!!!!
#create median
retweets median = median(Users$Retweets)
retweets_mean = mean(Users$Retweets)
likes_median = median(Users$Likes)
likes_mean = mean(Users$Likes)
Friends_median = median(Users$UserFriends)
Friends_mean = mean(Users$UserFriends)
Followers_median = median(Users$UserFollowers)
Followers_mean = mean(Users$UserFollowers)
verified_median = median(Users$UserVerified)
verified_mean = mean(Users$UserVerified)
# Create a tibble with the values
my_table <- tibble(</pre>
 Statistik = c("Retweets", "Likes", "Friends", "Followers", "Verified"),
 Median = c(retweets_median, likes_median, Friends_median, Followers_median, verified_median),
 Average = c(retweets_mean, likes_mean, Friends_mean, Followers_mean, verified_mean)
print(my_table)
## # A tibble: 5 x 3
##
    Statistik Median
                        Average
            <dbl>
##
     <chr>
                          <dbl>
## 1 Retweets
                 0
                         0.833
## 2 Likes
                   1
                         4.61
## 3 Friends
               402 1142.
## 4 Followers 285 5134.
```

5 Verified 0 0.0226

Hier Erklärung Tabelle einfügen. (Joshi)

Number of tweets over time (per hour)

Hier Erklärung Grafik einfügen. (Joshi)

```
#Number of tweets tweeted of an user
#range breaks
range_breaks <- c(0, 100, 500, 1500, 5000, 15000000)

#Appling cut() on follower-data
Users$range <- cut(Users$UserFollowers, breaks = range_breaks)</pre>
```

```
Users <- na.omit(Users)
# Creating Barplot
ggplot(Users, aes(x = range, fill = range)) + geom_bar() + labs(title = "Number of Twitter-Follower", x</pre>
```

Number of Twitter-Follower

Beschriftung x Achse auf numerisch wechseln !!!!!!

Hier Erklärung Grafik einfügen. (Joshi)

Hier Erklärung Grafik einfügen. (Joshi)

```
# Convert UserCreated to datetime format
Users$UserCreated <- ymd_hms(Users$UserCreated)

# Create the plot
ggplot(Users, aes(x = UserCreated)) +
  geom_histogram(bins = 50, fill = "#69b3a2", color = "#e9ecef") +
  labs(x = "Account Creation Date", y = "Number of Accounts") +
  ggtitle("Twitter Account Creation Dates")</pre>
```

Twitter Account Creation Dates

Hier Erklärung Grafik einfügen. (Joshi)

2. What are the tweets about, what do users associated the new technology with (e.g. industries, specific applications, and also emotions)?

Pre processing

```
words_to_remove <- c("the", "and", "in", "to", "a", "of")</pre>
 words_to_remove_pattern <- paste0("\\b(", paste(words_to_remove, collapse = "|"), ")\\b")
 text <- gsub(words_to_remove_pattern, "", text, ignore.case = TRUE)</pre>
 # Return the preprocessed text
 return(text)
}
# Apply the preprocessing function to the Tweet column
tweets$preprocessed_text <- sapply(tweets$Tweet, preprocess_text)</pre>
Erklärung zu pr Prozessing, bzw. was wir entfernt haben. (Absichtlich nicht buchstaben sonder Füllwörter
entfernt)
### STEP 3: PERFORM AUTOMATED CONTENT ANALYSIS
#Select text column and create your custom dictionary
# dic1 = industries
#tweets$dic1 <- "NA"</pre>
tweets$dic1 <-str_count(tweets$preprocessed_text, "artificial intelligence|machine learning|automation|
#tweets$dic1_occurence<- "NA"</pre>
tweets$dic1 occurence<-ifelse(tweets$dic1>=2,1,0)
# dic2 = specific applications
tweets$dic2 <-str count(tweets$preprocessed text, "chatbot|language modeling|ai|artificial intelligence
tweets$dic2_occurence<-ifelse(tweets$dic2>=2,1,0)
# dic3 = emotions
tweets$dic3 <-str_count(tweets$preprocessed_text, "excited|happy|frustated|angry|sad|amused")
tweets$dic3 occurence<-ifelse(tweets$dic3>=2,1,0)
# dic4 = hype
tweets$dic4 <-str_count(tweets$preprocessed_text, "excited|hyped|thrilled|stoked|pumped")
tweets$dic4_occurence<-ifelse(tweets$dic4>=2,1,0)
sum (tweets$dic1_occurence)
## [1] 1911
sum(tweets$dic2_occurence)
## [1] 42945
sum(tweets$dic3_occurence)
## [1] 129
sum(tweets$dic4_occurence)
## [1] 21
## VISUALIZE RESULTS dictionary 1 (industries)
#sum of reviews that cover topic per day
plot_content_data1 <- tweets %>%
 group_by (tweet_date) %>%
 summarise(n_content=sum(dic1_occurence))
```

Number of reviews covering the topic industries (per month)

Erklärung einfügen Dictionary industries!!!

```
## VISUALIZE RESULTS dictionary 2 (specific applications)
#sum of reviews that cover topic per day
plot_content_data2 <- tweets %>%
    group_by (tweet_date) %>%
    summarise(n_content=sum(dic2_occurence))

ggplot (plot_content_data2, aes (x=tweet_date, y=n_content)) + geom_bar(stat = "identity")+ theme_minim
```


Erklärung einfügen Dictionary specific applications!!!

```
## VISUALIZE RESULTS dictionary 3 (emotions)
#sum of reviews that cover topic per day
plot_content_data3 <- tweets %>%
    group_by (tweet_date) %>%
    summarise(n_content=sum(dic3_occurence))

ggplot (plot_content_data3, aes (x=tweet_date, y=n_content)) + geom_bar(stat = "identity")+ theme_minim
```


Erklärung einfügen Dictionary emotions!!!

```
## VISUALIZE RESULTS dictionary 4 (hype)
#sum of reviews that cover topic per day
plot_content_data4 <- tweets %>%
    group_by (tweet_date) %>%
    summarise(n_content=sum(dic4_occurence))

ggplot (plot_content_data4, aes (x=tweet_date, y=n_content)) + geom_bar(stat = "identity")+ theme_minim
```


Erklärung einfügen Dictionary hype!!!

```
# Perform sentiment analysis
#Select text column and calculate sentiment scores. You can change the method (e.g. "syuzhet", "bing", "
tweets$sentiment <- "NA"
tweets$sentiment <- get_sentiment(tweets$preprocessed_text, method="syuzhet", lang="english")

## VISUALIZE RESULTS
# mean over time
plot_sentiment_data <- tweets %>%
    group_by (tweet_date) %>%
    summarise(n_sentiment=mean(sentiment))

ggplot (plot_sentiment_data, aes (x=tweet_date, y=n_sentiment)) + geom_line()+ theme_minimal () + ggtit
```



```
## [1] -0.0002338922
cor(tweets$dic4, tweets$sentiment, method = "pearson")
## [1] 0.07891795
```