Devoir surveillé n°4 : corrigé

Problème 1 – D'après Petites Mines 2002

Partie I -

- 1. f est continue sur \mathbb{R}^* comme quotient de fonctions continues dont le dénominateur ne s'annule pas sur \mathbb{R}^* . De plus, $\arctan t \sim_{t\to 0} t$ donc $\lim_{t\to 0} \frac{\arctan t}{t} = 1 = f(0)$ donc f est continue en 0. Ainsi f est continue sur \mathbb{R} . Enfin, \arctan étant impaire, f est paire.
- 2. On sait que $\frac{1}{1+t^2} = 1 + o(t)$. Par intégration, $\arctan t = \arctan 0 + t + o(t^2)$. On en déduit que f(t) = 1 + o(t). Ainsi f est dérivable en 0 et f'(0) = 0.
- 3. f est dérivable sur ℝ* comment quotient de fonctions dérivables sur ℝ* dont le dénominateur ne s'annule pas. De plus, f est dérivable en 0 d'après la question précédente. Ainsi f est dérivable sur ℝ.
 De plus, pour tout t ∈ ℝ*,

$$f'(t) = \frac{1}{t(1+t^2)} - \frac{\arctan t}{t^2}$$

4. $u\mapsto u$ et $u\mapsto -\frac{1}{2(1+u^2)}$ sont de classe \mathcal{C}^1 sur \mathbb{R} de dérivées respectives $u\mapsto 1$ et $u\mapsto \frac{u}{(1+u^2)^2}$. Soit $t\in\mathbb{R}^*$. Par intégration par parties

$$\int_0^t \frac{u^2}{(1+u^2)^2} du = \left[-\frac{u}{2(1+u^2)} \right]_0^t + \int_0^t \frac{du}{2(1+u^2)} = -\frac{t}{2(1+t^2)} + \frac{\arctan t}{2} = -\frac{1}{2}t^2f'(t)$$

Si t>0, $\int_0^t \frac{u^2}{(1+u^2)^2} \, du>0$ comme intégrale d'une fonction continue positive non constamment nulle et donc f'(t)<0. Ainsi f est strictement décroissante sur \mathbb{R}_+ . Comme f est paire, f est strictement croissante sur \mathbb{R}_- .

5. Puisque $\lim_{+\infty} \arctan = \frac{\pi}{2}$, $\lim_{+\infty} f = 0$. Par parité, $\lim_{-\infty} f = 0$. Ainsi la courbe représentative de f admet l'axe des abscisses pour asymptote.

Partie II -

1. Posons $F: x \mapsto \int_0^x f(t) \, dt$. Ainsi $\varphi(x) = \frac{F(x)}{x}$ pour tout $x \in \mathbb{R}^*$. F est continue sur \mathbb{R} en tant que primitive de f. Ainsi φ est continue sur \mathbb{R}^* en tant que quotient de fonctions continues dont le dénominateur ne s'annule pas.

De plus, F est dérivable en 0 donc $\lim_{x\to 0} \frac{F(x)-F(0)}{x-0} = F'(0)$ i.e. $\lim_{x\to 0} \frac{F(x)}{x} = f(0)$. Ainsi φ est continue en 0. Finalement, φ est continue sur \mathbb{R} .

Posons u(x) = F(x) + F(-x) pour tout $x \in \mathbb{R}$. u est dérivable sur \mathbb{R} et pour tout $x \in \mathbb{R}$, u'(x) = F'(x) - F'(-x) = f(x) - f(-x) = 0. Ainsi u est constante sur \mathbb{R} égale à u(0) = 2F(0) = 0. On en déduit que F est impaire. Il s'ensuite que Φ est paire.

2. Soit $x \in \mathbb{R}_+^*$. Comme f est décroissante sur [0,x] d'après la question **I.4**, pour tout $t \in [0,x]$, $f(x) \leqslant f(t) \leqslant f(0)$. Par croissance de l'intégrale,

$$\int_0^x f(x) dt \leqslant \int_0^x f(t) dt \leqslant \int_0^x dt$$

et par suite

$$xf(x) \leqslant x\phi(x) \leqslant x$$

Puisque x > 0,

$$f(x) \leqslant \phi(x) \leqslant 1$$

L'inégalité est encore valable si $x \in \mathbb{R}_{-}^{*}$ puisque f et φ sont paires. Enfin, l'égalité est valable si x = 0 puisque $f(0) = \varphi(0) = 1$.

Finalement, $f(x) \leq \phi(x) \leq 1$ pour tout $x \in \mathbb{R}$.

3. F est dérivable sur \mathbb{R} en tant que primitive de f. ϕ est alors dérivable sur \mathbb{R}^* comment quotient de fonctions dérivables sur \mathbb{R}^* dont le dénominateur ne s'annule pas. De plus, pour tout $x \in \mathbb{R}^*$,

$$\varphi'(x) = \frac{F'(x)}{x} - \frac{F(x)}{x^2} = \frac{1}{x} \left(f(x) - \varphi(x) \right)$$

On sait d'après la question **I.2** que f(x) = 1 + o(x). Comme F est une primitive de f, $F(x) = F(0) + x + o(x^2)$. Or F(0) = 0 donc $F(x) = x + o(x^2)$. Par suite, $\phi(x) = 1 + o(x)$. Ainsi ϕ est dérivable en 0 et $\phi'(0) = 0$.

Puisque pour tout $x \in \mathbb{R}_+^*$, $f(x) \leqslant \varphi(x)$ et que $\varphi'(x) = \frac{1}{x}$ $(f(x) - \varphi(x))$, φ' est négative sur \mathbb{R}_+^* et φ est donc décroissante sur \mathbb{R}_+ . Puisque φ est paire, φ est croissante sur \mathbb{R}_- .

4. Soit $x \in [1, +\infty[$. Pour tout $t \in [1, x[$, $0 \le \arctan t \le \frac{\pi}{2} \ donc \ 0 \le f(t) \le \frac{\pi}{2t}$. Par croissance de l'intégrale

$$\int_1^x 0 dt \leqslant \int_1^x f(t) dt \leqslant \int_1^x \frac{\pi}{2t} dt$$

ou encore

$$0 \leqslant \int_{1}^{x} f(t) dt \leqslant \frac{\pi}{2} \ln x$$

puis

$$0 \leqslant \frac{1}{x} \int_{1}^{x} f(t) dt \leqslant \frac{\pi}{2} \frac{\ln x}{x}$$

Par croissances comparées, $\lim_{x\to+\infty}\frac{\ln x}{x}=0$ et donc $\lim_{x\to+\infty}\frac{1}{x}\int_1^x f(t)\,dt=0$ via le théorème des gendarmes. Enfin, pour tout $x\in\mathbb{R}^*$

$$\phi(x) = \frac{1}{x} \int_{0}^{1} f(t) dt + \frac{1}{x} \int_{1}^{x} f(t) dt$$

et $\lim_{x\to+\infty}\frac{1}{x}=0$ donc $\lim_{x\to+\infty}\varphi(x)=0$.

5. Par parité de ϕ , on a également $\lim_{x\to-\infty} \phi(x)=0$. Ainsi la courbe représentative de ϕ admet pour asymptote l'axe des abscisses.

Partie III -

- **1.** Soit $t \in \mathbb{R}_+$. Puisque $t \geqslant 0$ et $1+t^2>0$, $\frac{t}{1+t^2}\geqslant 0$. Alors $(1-t)^2\geqslant 0$ i.e. $1+t^2\geqslant 2t$. Puisque $1+t^2>0$, $\frac{t}{1+t^2}\leqslant \frac{1}{2}$. Finalement, $0\leqslant \frac{t}{1+t^2}\leqslant \frac{1}{2}$.
- 2. Soit $x \in \mathbb{R}_+^*$. D'après la question II.3, $\varphi'(x) = \frac{1}{x} (f(x) \varphi(x))$. Mais d'après la question II.2, $f(x) \leqslant \varphi(x) \leqslant 1$. On en déduit que

$$|\varphi'(x)| = \frac{1}{x} \left(\varphi(x) - f(x) \right) \leqslant \frac{1}{x} \left(1 - f(x) \right)$$

De plus,

$$\int_{0}^{x} \frac{t^{2}}{1+t^{2}} dt = \int_{0}^{x} \left(1 - \frac{1}{1+t^{2}}\right) dt = x - \arctan x$$

Ainsi

$$\frac{1}{x}(1 - f(x)) = \frac{1}{x^2}(x - \arctan x) = \int_0^x \frac{t^2}{1 + t^2} dt$$

D'après la question III.1

$$\int_0^x \frac{t^2}{1+t^2} \leqslant \int_0^x \frac{t}{2} \, dt = \frac{x^2}{4}$$

Par conséquent, $|\phi'(x)| \leqslant \frac{1}{4}$.

Comme ϕ est paire, ϕ' est impaire et l'inégalité précédente est encore valable si $x \in \mathbb{R}_{-}^*$. Enfin, cette égalité est encore valable lorsque x = 0 puisque $\phi'(0) = 0$.

- **3.** Posons $v(x) = \phi(x) x$ pour tout $x \in \mathbb{R}$. v est dérivable sur \mathbb{R} et pour tout $x \in \mathbb{R}$, $v'(x) = 1 \phi'(x)$. Or pour tout $x \in \mathbb{R}$, $|\phi'(x)| \le \frac{1}{4}$ donc, a fortiori, $\phi'(x) < 1$ et v'(x) < 0. Ainsi v est strictement décroissante sur \mathbb{R} .
 - Puisque $\lim_{+\infty} \phi = \lim_{-\infty} \phi = 0$, $\lim_{+\infty} \nu = -\infty$ et $\lim_{-\infty} \nu = +\infty$. Enfin, ν est continue sur $\mathbb R$ donc d'après le corollaire du théorème des valeurs intermédiaires, ν s'annule une unique fois sur $\mathbb R$ i.e. l'équation $\phi(x) = x$ admet une unique solution sur $\mathbb R$.

Enfin, $v(0) = \varphi(0) = 1 > 0$ et $\varphi(1) = \varphi(1) - 1 < 0$ car φ est strictement décroissante sur \mathbb{R}_+ donc $\varphi(1) < \varphi(0) = 1$. On peut donc assurer que $\alpha \in]0,1]$.

4. Puisque $|\varphi'(x)| \leqslant \frac{1}{4}$ pour tout $x \in \mathbb{R}$, φ est $\frac{1}{4}$ -lipschitzienne. Donc pour tout $n \in \mathbb{N}$, $|\varphi(u_n) - \varphi(\alpha)| \leqslant |u_n - \alpha|$ i.e. $|u_{n+1} - \alpha| \leqslant \frac{1}{4} |u_n - \alpha|$.

REMARQUE. On peut aussi remarquer que

$$|u_{n+1} - \alpha| = |\phi(u_n) - \phi(\alpha)| = \left| \int_{\alpha}^{u_n} \phi'(x) \ dx \right| \leqslant \left| \int_{\alpha}^{u_n} |\phi'(x)| \ dx \right| \leqslant \left| \int_{\alpha}^{u_n} \frac{1}{4} \ dx \right| = \frac{1}{4} |u_n - \alpha|$$

On montre alors par récurrence que $|u_n-\alpha|\leqslant \frac{1}{4^n}|u_0-\alpha|$. Puisque $0\leqslant \frac{1}{4}<1$, $\lim_{n\to+\infty}|u_n-\alpha|=0$ i.e. $\lim_{n\to+\infty}u_n=\alpha$.

Partie IV -

- **1.** L'équation différentielle équivaut à xy' + xy = f(x) sur \mathbb{R}_+^* et sur \mathbb{R}_-^* ou encore à (xy)' = f(x). On en déduit que les solutions sur \mathbb{R}_+^* et sur \mathbb{R}_-^* sont les fonctions $x \mapsto \phi(x) + \frac{\lambda}{x}$ où λ décrit \mathbb{R} .
- 2. Soit y une éventuelle solution de $x^2y' + xy = \arctan x$ sur \mathbb{R} . La question IV.1 montre qu'il existe $(\lambda_1, \lambda_2) \in \mathbb{R}^2$ tel que $y(x) = \begin{cases} \varphi(x) + \frac{\lambda_1}{x} & \text{si } x < 0 \\ \varphi(x) + \frac{\lambda_2}{x} & \text{si } x > 0 \end{cases}$. La continuité de y en 0 impose $\lambda_1 = \lambda_2 = 0$. Ainsi φ et y coïncident sur \mathbb{R}^* . Puisque ces

Réciproquement, ϕ vérifie bien l'équation différentielle sur \mathbb{R} . C'est donc l'unique solution sur \mathbb{R} de l'équation différentielle $x^2y' + xy = \arctan x$.

SOLUTION 1.

1. On a

$$I_0 = \int_0^1 e^{-2x} dx = \left[-\frac{1}{2} e^{-2x} \right]_0^1 = \frac{1 - e^{-2}}{2}$$

Par intégration par parties :

$$I_{1} = \int_{0}^{1} (1 - x)e^{-2x} dx = \left[-\frac{1}{2} (1 - x)e^{-2x} \right]_{0}^{1} + \frac{1}{2} \int_{0}^{1} e^{-2x} dx$$
$$= \frac{e^{-2}}{2} + \frac{1}{2} \cdot \frac{1 - e^{-2}}{2} = \frac{1 + e^{-2}}{4}$$

- 2. a. Soit $n \in \mathbb{N}$. Pour $x \in [0, 1]$, $1 x \in [0, 1]$ et donc $(1 x)^{n+1} \le (1 x)^n$. Par croissance de l'intégrale, on en déduit que $I_{n+1} \le I_n$. Ceci signifie que (I_n) est décroissante.
 - **b.** Soit $n \in \mathbb{N}$. Comme $\varphi_n \geqslant 0$ sur [0, 1], $I_n \geqslant 0$.
 - **c.** La suite (I_n) est décroissante et minorée par 0, elle est donc convergente.

deux fonctions sont continues, elles coïncident également en 0 et sont donc égales.

3. a. Par décroissance de g, on a $g(x) \le 1$ pour tout $x \in [0, 1]$. Par conséquent, $\varphi_n(x) \le (1-x)^n$ pour tout $x \in [0, 1]$. Ainsi

$$I_n \leqslant \int_0^1 (1-x)^n dx = \frac{1}{n+1}$$

- **b.** On a $0 \le I_n \le \frac{1}{n+1}$ pour tout $n \in \mathbb{N}$. D'après le théorème des gendarmes, (I_n) converge vers 0.
- 4. Soit $n \in \mathbb{N}$. Par intégration par parties :

$$2I_{n+1} = \int_0^1 2(1-x)^{n+1} e^{-2x} dx = \left[-(1-x)^{n+1} e^{-2x} \right]_0^1 + (n+1) \int_0^1 (1-x)^n e^{-2x} dx = 1 - (n+1)I_n$$

- 5. On a donc $nI_n = 1 I_n 2I_{n+1}$. Puisque (I_n) converge vers 0, (I_{n+1}) converge également vers 0 (suite extraite) et (nI_n) converge vers 1.
- **6.** On a $nI_n 1 = -I_n 2I_{n+1}$ donc

$$n(nI_n - 1) = -nI_n - 2nI_{n+1} = -nI_n - 2(n+1)I_{n+1} + 2I_{n+1}$$

Comme (nI_n) converge vers 1, $((n+1)I_{n+1})$ converge également vers 1 (suite extraite) et puisque que (I_{n+1}) converge vers 0, la suite $(n(nI_n-1))$ converge vers -3.

7. Puisque $(n(nI_n-1))$ converge vers -3, on en déduit que nI_n-1 $\underset{n\to+\infty}{\sim} -\frac{3}{n}$ i.e. nI_n-1 $\underset{n\to+\infty}{=} -\frac{3}{n}+o\left(\frac{1}{n}\right)$. Puis il vient $I_n \underset{n\to+\infty}{=} \frac{1}{n}-\frac{3}{n^2}+o\left(\frac{1}{n^2}\right)$. Ainsi a=0, b=1 et c=-3.