5월 5주차

업무 내용

- 1. 실데이터 전처리
 - a. 원데이터를 LSTM에 사용하기 위한 전처리 진행
- 2. 실데이터 LSTM 사용
 - a. 기존에 사용하던 샘플 데이터가 아닌 실제 데이터 이용
- 3. 시간 측정
 - a. time library를 이용한 작동시간 확인
- 4. CPU 및 MEM 사용량 확인
 - a. os, psutil library를 이용한 cpu 및 memory 사용량 확인
- 5. 데이터셋 분리 확인
 - a. train / test 분리가 잘 되었는지
- 6. 그래프 분석
 - a. tiff 파일 해석
 - b. terminal에 정보 출력

5/27

실데이터 전처리

설명

실데이터인 "정읍수도_순시유량.csv"를 전처리한 코드이다.

장명 배수지를 통해서 유입유량이 장명01, 02와 같은 블록으로 이동하므로 앞단에 존재하는 "장명배수지" 만 데이터 전처리를 수행하였다.

실데이터 LSTM 사용

실행 방법(기본값 실행)

1. 1_Preprocessing_tool.py

```
python 1_Preprocessing_tool.py -f ./Input/jangmyeong.csv -p
```

2. 2_Learning_LSTM.py

```
python 2_Learning_LSTM.py -1
```

3. 3_Prediction.py

python 3_Prediction.py -f ./Input/jangmyeong.csv -a

설명

"정읍수도_순시유량.csv"를 전처리한 후 최종 행의 갯수는 5,271,041행이다. 해당 데이터를 LSTM 실행한 결과 이상치가 존재하지 않았다.

```
16470/16470 [============] - 13s 780us/step 12/12 [=========] - 0s 1ms/step 이상치가 없습니다.
시간: 2021-01-02 00:00:00 - 예측 값: 389.445068359375, 레이블: Normal
```

5/30

시간 측정

설명

LSTM 모델을 작동하기 위해 실행되는 파일은 다음과 같다.

- 1_Preprocessing_tool.py
- 2_Learning_LSTM.py
- 3_Prediction.py

각각의 코드가 실행되는 시간을 파악하기 위해 time 라이브러리를 사용한다.

```
import time

# 시간 측정 시작
start = time.time()

# 코드 생략
pass
```

```
# 종료와 함께 수행시간 출력
print(f"{time.time()-start: .4f} sec")
```

각 파일 별 실행시간은 다음과 같다. (두 번째 실행 스크린샷)

1_Preprocessing_tool.py

```
(lstm_env) kyeong6@baggyeongjun-ui-noteubug ~/Desktop/github_submit/whatever/model/LSTM_pipeline ? main python 1_Preprocessing_tool.py -f ./Input/jangmyeong.csv -p //Users/kyeong6/Desktop/github_submit/whatever/model/LSTM_pipeline/Data_preprocessing.py:72: FutureWarning: A value is trying to be set on a copy of a DataFrame or Series The behavior will change in pandas 3.0. This inplace method will never work because the intermediate object on which we are setting values always behaves as a copy.

For example, when doing 'df[col].method(value, inplace=True)', try using 'df.method({col: value}, inplace=True)' or df[col] = df[col].method(value) instead, to perform the df.iloc[i - count-1:i, n].fillna(method=method_fill, inplace=True)

//Users/kyeong6/Desktop/github_submit/whatever/model/LSTM_pipeline/Data_preprocessing.py:72: FutureWarning: Series.fillna with 'method' is deprecated and will raise in a f df.iloc[i - count-1:i, n].fillna(method=method_fill, inplace=True)

31.1337 sec
```

- → 31.1337 sec
- 2_Learning_LSTM.py

- → 17.6853 sec
- 3_Prediction.py

→ 18.2704 sec

총 시간은 67.0894 sec로 1분 7초 정도의 시간이 소요된다.

위의 결과는 두 번째로 얻은 수행 시간으로 안정적인 수치를 얻기 위해 3번의 수행을 진행하였다.

• 첫 번째 실행

1_Preprocessing_tool.py: 32.3325 sec

2_Learning_LSTM.py: 27.52 sec

• 3_Prediction.py: 18.2021 sec

○ 총 시간: 78.0546 sec, 1분 18초

• 세 번째 실행

1_Preprocessing_tool.py: 31.0973 sec

2_Learning_LSTM.py: 17.0720 sec

3_Prediction.py: 18.2689 sec

○ 총 시간: 66.4382 sec, 1분 6초

세 번의 실행한 결과 2_Learning_LSTM.py에서 시간 차이를 보였다.

시사하는 바는 2_Learning_LSTM.py에서 tiff(그래프 이미지)파일 등 Output을 얻으므로 첫 번째 실행 시간이 대략 10초 정도 시간이 더 소요되는 것을 알 수 있다.

해당 프로젝트에서 두 번째, 세 번째 실행은 의미가 없으므로 첫 번째 실행이 기준이 되어야 한다.

결론

5,271,041행, 약 5,000,000행의 LSTM 모델 소요시간은 대략 1분 18초이다.

사용량 확인

설명

각 파일들의 CPU 및 MEM 사용량 확인은 다음과 같이 코드를 작성하여 확인할 수 있다.

```
import os
import psutil
# 현재 프로세스의 ID 가져오기
pid = os.getpid()
```

```
py = psutil.Process(pid)

# 코드 생략
pass

# CPU 및 MEM 사용량 출력

cpu_usage = os.popen("ps aux | grep " + str(pid) + " | grep - memory_usage = round(py.memory_info()[0] / 2.**30, 2)

print("cpu usage\t\t:", cpu_usage, "%")
print("memory usage\t\t:", memory_usage, "GB")
```

각 파일들의 CPU 및 MEM 사용량은 다음과 같다.

• 1_Preprocessing_tool.py

cpu usage : 97.0 % memory usage : 0.15 GB

• 2_Learning_LSTM.py

cpu usage : 86.3 % memory usage : 0.47 GB

• 3_Prediction.py

cpu usage : 101.0 % memory usage : 0.71 GB

시간 측정 부분에서 언급했듯이 첫 번째 실행이 아닌 재실행이므로 2_Learning_LSTM.py 의 사용량이 86.3%로 나왔지만 새로운 데이터를 첫 번째로 실행할 경우 90%가 넘을 것이라고 예상된다.

세 개의 파일은 많은 계산이 존재하여 CPU의 사용량이 90%가 넘는 것으로 확인된다.

6/2

데이터셋 분리 확인

설명

학습 데이터와 테스트 데이터가 코드에 작성된 비율로 잘 분할되는 지 확인이 필요하여 추가적인 코드 작성을 하였다.

Training.py

```
def train_test_split(df):
    train_size = int(0.7 * len(df))
    train = df.iloc[:trainz_size]
    test = df.iloc[train_size:]

# 추가 작성 : 데이터 분리 결과 출력
    print(f"Train data Size: {len(train)} rows")
    print(f"Test data Size: {len(test)} rows")

return train, test
```

2_Learning_LSTM.py

```
# 학습 데이터 / 테스트 데이터 분할
train, test = training.train_test_split(df)

# 추가 작성 : 학습 / 테스트 데이터 추가 확인
print("Train and Test data split done.")
print("Train data example:")
print(train.head())
print("Test data example:")
print(test.head())
```

위의 코드를 작성하여 얻은 출력은 다음과 같다.

데이터셋 행의 총 개수인 367에 0.7을 곱하면 256이 나오므로 데이터셋이 잘 분리되고 있음을 알 수 있다.

그래프 분석

설명

tiff 파일로 그래프가 저장이 되는데, 이를 잘 파악하기 위해 그래프 설명과 추가적인 출력문 장을 설정하였다.

```
def lstm_performance(lstm_model, sc, x_test, test, epochs, batch_size):
   preds = lstm_model.predict(x_test)
   preds = sc.inverse_transform(preds)
   predictions_plot = pd.DataFrame(columns=['actual', 'prediction'])
   predictions_plot['actual'] = test.iloc[0:len(preds), 0]
   predictions_plot['prediction'] = preds[:, 0]
   mse = MeanSquaredError()
   mse.update_state(np.array(predictions_plot['actual']), np.array(predictions_plot['prediction']))
   RMSE = np.sqrt(mse.result().numpy())
   plt.figure(figsize=(15,5))
   plt.plot(predictions_plot['actual'], label='Actual')
   plt.plot(predictions_plot['prediction'], label='Prediction')
   plt.title(f'LSTM Performance\nEpochs={epochs}, Batch Size={batch_size}, RMSE={round(RMSE, 4)}')
   plt.xlabel('Time')
   plt.ylabel('Values')
   plt.legend()
   output_path = './Output/Learning_lstm'
   os.makedirs(output_path, exist_ok=True)
   plt.savefig(f'{output_path}/lstm_performance_graph.tiff', format='tiff')
   print("Graph Analysis:")
   print(f"X-axis: Time with {len(predictions_plot)} points")
   print(f"Y-axis: Values ranging from {predictions_plot['actual'].min()} to {predictions_plot['actual'].max()}")
```

```
print("\nPrediction Statistics:")
print(f"Mean Actual Value: {predictions_plot['actual'].mean()}")
print(f"Mean Predicted Value: {predictions plot['prediction'].mean()}")
print(f"Variance of Actual Values: {predictions_plot['actual'].var()}")
print(f"Variance of Predicted Values: {predictions_plot['prediction'].var()}")
print(f"RMSE: {round(RMSE, 4)}")
residuals = predictions_plot['actual'] - predictions_plot['prediction']
print("\nResiduals Analysis:")
print(f"Mean Residual: {residuals.mean()}")
print(f"Variance of Residuals: {residuals.var()}")
print(f"Min Residual: {residuals.min()}")
print(f"Max Residual: {residuals.max()}")
outliers = residuals[np.abs(residuals) > 2 * residuals.std()]
print(f"\nNumber of Outliers: {len(outliers)}")
print(f"Outliers:\n{outliers}")
return predictions_plot
```

Training.py에서 위의 코드를 새롭게 작성한 부분은 다음과 같다.

- 그래프 생성 및 세부사항 출력
- 그래프에 대한 세부정보 출력
- 예측 결과 통계 출력
- 잔차 분석
- 이상치 확인

그래프 생성 및 세부사항 출력

범례를 통해 특정 그래프가 실제값과 예측값을 파악 가능하고, x,y축이 무엇을 의미하는 지표시

그래프에 대한 세부정보 출력

데이터 포인터(원본데이터에서 리샘플링 된 데이터 개수) 파악하고, y축에 해당하는 측정된 값의 범위 파악 가능

예측 결과 통계 출력

1. Mean Actual Value와 Mean Predicted Value

목적 : 실제 값과 예측 값의 평균을 비교하여 모델이 실제 데이터를 얼마나 잘 추정하는 지 평가

분석 방법:

- 두 개의 값이 비슷하면 모델이 데이터의 중심 경향을 잘 추정하고 있다는 의미
- 두 값이 크게 차이난다면 모델이 데이터의 평균 수준을 잘 예측하지 못한다는 의미

2. Variance of Actual Values ♀ Variance of Predicted Values

목적 : 실제 값과 예측 값의 분산(변동성)을 비교하여 모델이 데이터의 변동성을 얼마나 잘 반영하는지 평가

분석 방법:

- 두 분산이 비슷하면 모델이 데이터의 변동성을 잘 반영하고 있다는 의미
- 예측 값의 분산이 실제 값의 분산보다 훨씬 작으면 모델이 데이터의 변동성을 충분히 반 영하지 못한다는 의미
- 예측 값의 실제 값의 분산보다 크면 모델이 과적합되어 있음을 시사

3. RMSE(Root Mean Square Error)

목적 : 모델의 예측 값과 실제 값 간의 평균적인 차이를 나타내는 지표로, 모델의 전반적인 예측 정확도를 평가

분석 방법:

- RMSE 값이 작을 수록 모델의 예측이 실제 값에 가까워짐을 의미
- RMSE 값이 크면 모델의 예측이 실제 값과 다르다는 의미
- 예를 들어, RMSE 값이 10이라면 모델의 예측이 실제 값과 평균적으로 10정도의 차이를 보인다는 것을 의미

잔차 분석

잔차는 실제 값과 예측 값의 차이를 나타낸다. 잔차가 작을수록 모델의 예측이 실제 값에 더가깝다는 것을 의미한다.

1. 편향(Bias) 확인

목적 : 잔차의 평균을 통해 모델의 예측 정확성 평가

분석 방법:

- 잔차의 평균이 0에 가까울수록 모델의 예측이 편향되지 않았음을 의미
- 잔차의 평균이 0에서 크게 벗어난다면, 모델이 일관되게 실제 값보다 높거나 낮게 예측 하고 있을 가능성 존재

2. 분산(Variance) 확인

목적: 잔차의 분산을 통해 예측 값이 실제 값에서 얼마나 벗어나는지 파악

분석 방법:

- 낮은 분산은 모델이 안정적인 예측을 제공함을 의미
- 높은 분산은 모델이 데이터의 일부 패턴을 잘못 학습하거나 데이터 자체가 매우 변동적 임을 시사

3. 이상치 식별

목적: 잔차의 최대 / 최소값을 통해 모델의 예측 정확성 평가

분석 방법:

• 잔차의 최대 / 최소값이 모델에서 크게 벗어난 예측을 한 경우(이상치) 값을 파악

이상치 확인

목적 : 이상치 확인을 실제로 확인

분석 방법 :

- 잔차의 절대값이 잔차 표준 편차의 2배를 초과하는 경우를 이상치로 간주, 이는 통계적으로 약 95%의 데이터가 평균 ±2표준편차 범위 내에 들어온다는 가정에 기초(정규 분포 특성에 기반)
- 위의 식을 통해 이상치의 개수를 출력하여 파악
- 이상치에 해당하는 데이터를 실제로 출력하여 파악

위의 코드를 수정한 후 실행한 결과는 다음과 같다.

• lstm_performance_graph.tiff

• 2_Learning_LSTM.py

위 결과값을 간단하게 해석하자면, 전반적으로 데이터의 변동성을 반영하지 못한다는 문제점이 존재한다.