Fatigue of Structures - Assignment 2

Problem 1

A shaft with a groove has a diameter D = 80 mm, d = 40 mm and r = 4.0 mm.

- a) Determine K_t values for axial loading, bending and torsion. Compare K_t values and discuss the reasons for possible differences. The axial, bending and torsion loads are 100 kN, 10 kNm 1 kNm, respectively.
- b) Estimate the fatigue notch factor K_f for axial loading (Load ratio R=-1) when the shaft is made of the following steels: 1) HR steel 1020, 2) quenched and tempered 4340 (HB 350), see Table 1. Compare K_f values and discuss the reasons for possible differences.

Figure 1 Stress concentration factor K_t for axial loading (a), bending (b) and torsion (c)

Table 1 Material properties of selected Engineering Alloys

TABLE A.2 Monotonic, Cyclic, and Strain-Life Properties of Selected Engineering Alloys^{a-c}

	Process	S _u MPa		E GPa		S _p /S _p ' MPa	K/K' MPa			σ_f/σ_f' MPa		
Material	Description	(ksi)	HB	(ksi -10 ³)	%RA	(ksi)	(ksi)	n/n'	eple;	(ksi)	ь	c
		, ,				Ste				-		
010	HR sheet	331	_	203	80	200/—	534/867	0.185/0.244	1.63/0.104	-/499	-0.100	-0.40
010	rik sneet	(48)	_	(29.5)	00	(29)/	(78)/(126)	0.165/0.244	1.03/0.104	—/(72)	0.100	0.40
020	HR sheet	441	109	203	62	262/—	738/1962	0.190/0.321	0.96/0.377	-/1384	-0.156	-0.48
		(64)		(29.5)		(38)/	(107)/(284)			/(201)		
1038°	Normalized	582	163	201	54	331/342	1106/1340	0.259/0.220	0.77/0.309	898/1043	-0.107	-0.48
		(84)		(29.5)		(48)/(50)	(160)/(195)			(130)/(151)		
1038°	Q&T	649	195	219	67	410/364	1183/1330	0.221/0.208	1.10/0.255	1197/1009	-0.097	-0.4
		(94)		(31.5)		(60)/(53)	(172)/(193)			(174)/(146)		
Man-Ten	HR sheet	510	-	207	64	393/372	/786	0.20/0.11	1.02/0.86	814/807	-0.071	-0.6
RQC-100		(74)		(30)		(57)/(54)	-/(114)			(118)/(117)		
	HR sheet	931	290	207	64	883/600	1172/1434	0.06/0.14	1.02/0.66	1330/1240	-0.07	-0.6
		(135)	225	(30)		(128)/(87)	(170)/(208)		0 FDM 404	(193)/(180)	0.000	
1045	Annealed	752	225		44	517/-	-/1022 ((148)	−/0.152	0.58/0.486	/916	-0.079	-0.52
045	Q&T	(109) 1827	500	207	51	(75)/— 1689/—	/(148) /3371	0.047/0.145	0.71/0.196	—/(133) —/2661	-0.093	-0.64
040	Corr	(265)	300	(30)	31	(245)/—	-/(489)	0.047/0.143	0.710.190	-/(386)	0.073	- 0.0
1090°	Normalized	1090	259	203	14	735/545	1765/1611	0.158/0.174	0.15/0.250	-/1310	-0.091	-0.49
1090°	Hormanzed	(158)	200	(29.5)		(107)/(79)	(256)/(234)	0.1300.174	0.2570.250	-/(190)	0.071	0.4
	Q&T	1147	309	217	22	650/627	1895/1873	0.165/0.176	0.24/0.700	-/1878	-0.120	-0.60
2000		(166)		(31.5)		(94)/(91)	(275)/(272)	0.14.01.01.47.0	0.200	-J(273)	41,800	4101
1141°	Normalized	789	229	220	47	493/481	1379/1441	0.187/0.177	0.64/0.602	1117/1326	-0.103	-0.5
		(115)		(32)		(72)/(70)	(200)/(209)			(162)/(192)		
11416	Q&T	925	277	227	59	814/591	1205/1277	0.074/0.124	0.88/0.309	1405/1127	-0.066	-0.5
		(134)		(33)		(118)/(86)	(125)/(185)			(204)/(164)		
4142	Q&T	1413	380	207	48	1378/-	-/2266	0.051/0.124	0.65/0.637	-/2143	-0.094	-0.76
		(205)		(30)		(200)/	/(387)			-/(311)		
1142	Q&T	1929	475	207	35	1722/—	/2399	0.048/0.094	0.43/0.331	-2161	-0.081	-0.8
		(280)	-	(30)		(250)/—	/(348)			—/(314)		
1340	HR	827	243	193	43	634/—	-/1337	/0.168	0.57/0.522	-/1198	-0.095	-0.50
		(120)		(28)		(92)/	/(194)			-/(174)		
340	Q&T	1240	350	193	57	1178/—	1580/1887	0.066/0.137	0.84/1.122	/1917	-0.099	-0.72
0.40	C) 0.00	(180)	100	(28)	**	(171)/—	(229)/(274)			—/(278)		
4340	Q&T	1468	409	200	38	1371/—	-/1996	/0.135	0.48/0.640	-/1879	-0.086	-0.63
0000	0	(213)		(29)		(199)/—	-(290)	W 400		—/(273)		
030	Cast	496	137	207	46	303/320	—/738 "******	/0.136	0.62/0.280	750/655	-0.083	-0.55
630	Cast	(72) 1144	305	(30)	20	(44)/(46)	-/(107)	W 122	0.25% 400	(109)/(95)	0.101	0.60
8630	Cast	(166)	303	(30)	29	985/682	-/1502 //218\	/0.122	0.35/0.420	1268/1936	-0.121	-0.69
04	Annealed	572	_	190	-	(143)/(99) 276/—	—/(218) —/2275	/0.334	-/0.174	(184)/(281)	-0.120	- 0.41
	rimeaco	(83)		(27.5)		(40)/—	-/(330)	/0.334	-/0.174	/1267 /(184)	-0.139	-0.41
04	CD	951	327	172	69	744/	-/2270	-/0.176	1.16/0.554	—/2047	-0.112	-0.63
		(138)		(25)		(108)/	-/(329)	70.170	1.10/0.554	-/(297)	-0.112	-0.03
		()		()		()	.(-2-)			(271)		
						Alun	ninum					
024-T3	_	469	-	70	24	379/427	455/655	0.032/0.065	0.28/0.22	558/1100	-0.124	-0.59
2012/2015/00/00		(68)		(10)		(55)/(62)	(66)/(95)			(81)/(160)		
456-H311	_	400	95	69	35	234/—	/817	/0.145	0.42/1.076	/826	-0.115	-0.79
076.70		(58)		(10)		(34)/—	-/(118)			/(120)		
075-T6	_	5/9	_	70	34	469/524	827/—	0.11/0.146	0.41/0.19	745/1315	-0.126	-0.52
356	Cast	(84) 283	93	(10)	5.7	(68)/(76)	(120)/—	0.002/0.042	0.06/0.027	(108)/(191)	0.101	0.55
1330	Cast		93	70	5.7	229/295	388/379	0.083/0.043	0.06/0.027	274/594	-0.124	-0.53
		(41)		(10)		(33)/(43)	(56)/(55)			(40)/(86)		
						Oti	hers					
Z91E-T6	Cast Mg.	318	_	45	13	142/180	639/552	0.137/0.184	0.14/0.089	356/831	-0.148	-0.45
		(46)		(6.5)		(21)/(26)	(92)/(80)		212 11 01000	(52)/(121)	0.1.70	0.43
ncon 718	Aged	1304	_	204	_	1110/—	-/1986	-/0.112	-/3.637	—/2295	-0.100	-0.89
ncon /10												

These values do not represent final fatigue design properties. J1099 states, "Information presented here can be used in preliminary design estimates of fatigue life, the selection of materials and the analysis of service load and/or strain data."

b "Technical Report on Low Cycle Fatigue Properties, Ferrous and Non-Ferrous Materials," SAE J1099, 1998 and 1975. With permission of the Society of Automotive Engineers.

M. L. Roessle and A. Fatemi, "Strain-Controlled Fatigue Properties of Steels and Some Simple Approximations," Int. J. Fatigue, Vol. 22, No. 6, 2000, 2000, 2000.

p. 495.

Problem 2

A plate of W = 500 mm has a circular hole of r = 25 mm (see Figure 2). This plate is made of RQC-100 steel (see Table 2) and is loaded in axial. The required fatigue life N_f is 1 000 000 cycles.

- a) Determine K_{tg} and K_f.
- b) Compute the allowable stress amplitude for mean stress $S_m = 0$ and 200 MPa (use Goodman mean stress correction equation).
- c) Based on the results of b), construct a constant life diagram for N_f = 1 000 000 cycles (Haigh Diagram, see L4 slide 10).

Figure 2 Stress concentration factor K_t or K_{tg} for a notched plate

Table 2 Constraints for stress-life curves: tests at zero mean stress on unnotched axial specimen

Material	Yield Strength	Ultimate Strength	True Fracture Strength	$\sigma_a = \sigma_f'(2N_f)^b = AN_f^B$			
	σ_o	$\sigma_{\!u}$	$ ilde{\sigma}_{fB}$	σ_f'	A	b = B	
(a) Steels							
AISI 1015	227	415	725	976	886	-0.14	
(normalized)	(33)	(60.2)	(105)	(142)	(128)		
Man-Ten	322	557	990	1089	1006	-0.115	
(hot rolled)	(46.7)	(80.8)	(144)	(158)	(146)		
RQC-100	683	758	1186	938	897	-0.0648	
(roller Q & T)	(99.0)	(110)	(172)	(136)	(131)		
AISI 4142	1584	1757	1998	1937	1837	-0.0762	
(Q & T, 450 HB)	(230)	(255)	(290)	(281)	(266)		
AISI 4340 (aircraft quality)	1103 (160)	1172 (170)	1634 (237)	1758 (255)	1643 (238)	-0.0977	

Notes: The tabulated values have units of MPa(ksi) except for dimensionless b = B. See Table 14.1 for sources and additional properties.