

Pre-processing Data in Python

Data Pre-processing

Also known as:

Data Cleaning, Data Wrangling

The process of converting or mapping data from the initial "raw" form into another format, in order to prepare the data for further analysis.

Learning Objectives

- Identify and handle missing values
- Data Formatting
- Data Normalization (centering /scaling)
- Data Binning
- Turning Categorical values to numeric variables

Simple Dataframe Operations

f [":	symbo	ling"]	1		df	["]	oody-	styl	e"]								
	-						1										
	symboling	normalized- losses	make	fuel- type	aspiration	num- of- doors	body- style	drive- wheels	engine- location	wheel- base	-	engine- size	fuel- system	bore	stroke	compression- ratio	
a	3	?	alfa- romero	gas	std	two	convertible	rwd	front	88.6	-	130	mpñ	3.47	2.68	9.0	
1	3	7	alfa- romero	gas	std	two	convertible	rwd	front	88.6	-	130	mpfi	3.47	2.68	9.0	
2		7	alfa- romero	gas	std	two	hatchback	rwd	front	94.5	-	152	mpfi	2.68	3.47	9.0	
3	2	164	audi	gas	std	four	sedan	fwd	front	99.8		109	mpfi	3.19	3.40	10.0	ĺ
H	2	164	audi	gas	std	four	sedan	4wd	front	99.4	_	136	mpfi	3.19	3.40	8.0	ĺ
4	2	?	audi	gas	std	two	sedan	fwd	front	99.8		136	mpfi	3.19	3.40	8.5	ĺ
4	1	158	audi	gas	std	four	sedan	fwd	front	105.8	_	136	mpñ	3.19	3.40	8.5	ĺ
7	1	7	audi	gas	std	four	wagon	fwd	front	105.8		136	mpfi	3.19	3.40	8.5	
4	1	158	audi	gas	turbo	four	sedan	fwd	front	105.8		131	mpfi	3.13	3.40	8.3	
9	0	?	audi	gas	turbo	two	hatchback	4wd	front	99.5		131	mpñ	3.13	3.40	7.0	

Simple Dataframe Operations

df["symboling"]=df["symboling"]+1

$\left(\right.$	symboling	rormalized- I sses	make	fuel- type	aspiration	num- of- doors	body- style	drive- wheels	engine- location	wheel- base		engine- size	fuel- system	bore	stroke	compression- ratio	
0	4	7	alfa- romero	gas	std	two	convertible	nwd	front	88.6		130	mpfi	3.47	2.68	9.0	ŀ
1	4	7	alfa- romero	gas	std	two	convertible	nwd	front	88.6		130	mpfi	3.47	2.68	9.0	ŀ
2		7	alfa- romero	gas	std	two	hatchback	nwd	front	94.5		152	mpfi	2.68	3.47	9.0	ŀ
3		164	audi	gas	std	four	sedan	feed	front	99.8		109	mpfi	3.19	3.40	10.0	T
4	3	164	audi	gas	std	four	sedan	4wd	front	99.4		136	mpfi	3.19	3.40	8.0	Ī
5	3	?	audi	gas	std	two	sedan	ferd	front	99.8		136	mpfi	3.19	3.40	8.5	Ī
6		158	audi	gas	std	four	sedan	feed	front	105.8		136	mpfi	3.19	3.40	8.5	Ī
7	2	?	audi	gas	std	four	wagon	fwd	front	105.8	_	136	mpfi	3.19	3.40	8.5	Ī
8	2	158	audi	gas	turbo	four	sedan	fed	front	105.8	_	131	mpfi	3.13	3.40	8.3	Ī
9	1	?	audi	gas	turbo	two	hatchback	4wd	front	99.5	_	131	mpfi	3.13	3.40	7.0	1

Dealing with Missing Values in Python

Missing Values

- · What is missing value?
- Missing values occur when no data value is stored for a variable (feature) in an observation.
- · Could be represented as "?", "N/A", 0 or just a blank cell.

	symboling	normalized- losses	make	fuel- type	aspiration	num- of- doors	body- style	drive- wheels	engine- location
0	3	NaN	alfa- romero	gas	std	two	convertible	rwd	front

How to deal with missing data?

Check with the data collection source

Drop the missing values

- · drop the variable
- · drop the data entry

Replace the missing values

- replace it with an average (of similar datapoints)
- · replace it by frequency
- · replace it based on other functions

Leave it as missing data

Question

how would you deal with missing values for categorical data

replace the missing value with the mode of the particular column

✓ Correct

correct, the mode is the value that appears most often

- replace the missing value with the mean of the particular column
- replace the missing value with the value that appears most often of the particular column

✓ Correct

correct, this is called the mode

Skip

Continue

How to drop missing values in Python

· Use dataframes.dropna():

highway-mpg	price	highway-mpg	price
20	23875	20	23875
22	Nat/	→ 29	16430
29	16430		
***		axis=0 drops the entire r	ow

df.dropna(subset=["price"], axis=0, inplace = True)
df = df.dropna(subset=["price"], axis=0)

Don't Forget

```
df.dropna(subset=["price"], axis=0)
```

df.dropna(subset=["price"], axis=0, inplace = True)

http://pandas.pydata.org/

Question

what does the following line of code do to the dataframe df:

df.dropna(axis=0)

- replaces all values nan with the mean
- o drops all rows that contain a nan
- orops all columns that contain a nan
- **⊘** Correct

correct

Skip

Continue

How to replace missing values in Python

Use dataframe.replace (missing value, new value):

normalized-losses	make		normalized-losses	make
164	audi		164	audi
164	audi		164	audi
NaN	audi	→	162	audi
158	audi		158	audi

```
mean = df["normalized-losses"].mean()
df["normalized-losses"].replace(np.nan, mean)
```


Data Formatting in Python

Data Formatting

- Data are usually collected from different places and stored in different formats.
- Bringing data into a common standard of expression allows users to make meaningful comparison.

Non-formatted:

- confusing
- · hard to aggregate
- hard to compare

Formatted:

- more clear
- easy to aggregate
- easy to compare

Applying calculations to an entire column

Convert "mpg" to "L/100km" in Car dataset.


```
df["city-mpg"] = 235/df["city-mpg"]
df.rename(columns={"city_mpg": "city-L/100km"}, inplace=True)
```

Incorrect data types

Sometimes the wrong data type is assigned to a feature.

```
df["price"].tail(5)
200
       16845
201
       19045
202
       21485
203
       22470
204
       22625
Name: price, dtype: object
```

Data Types in Python and Pandas

- There are many data types in pandas
- Objects: "A", "Hello"...
- Int64: 1,3,5
- Float64: 2.123, 632.31,0.12

Correcting data types

To identify data types:

Use dataframe.dtypes() to identify data type.

To convert data types:

Use dataframe.astype() to convert data type.

```
Example: convert data type to integer in column "price"
```

```
df["price"] = df["price"].astype("int")
```


Data Normalization in Python

Data Normalization in Python

Data Normalization

· Uniform the features value with different range.

length	width	height
168.8	64.1	48.8
168.8	64.1	48.8
171.2	65.5	52.4
176.6	66.2	54.3
176.6	66.4	54.3
177.3	66.3	53.1
192.7	71.4	55.7
192.7	71.4	55.7
192.7	71.4	55.9

scale	[150,250]	[50,100]	[50,100]
impact	large	small	small

Data Normalization

age	income
20	100000
30	20000
40	500000

age	income
0.2	0.2
0.3	0.04
0.4	1

Not-normalized

- "age" and "income" are in different range.
- hard to compare
- "income" will influence the result more

Normalized

- similar value range.
- similar intrinsic influence on analytical model.

Methods of normalizing data

Several approaches for normalization:

(1)

2

(3)

$$x_{new} = \frac{x_{old}}{x_{max}}$$

$$x_{new} = \frac{x_{old} - x_{min}}{x_{max} - x_{min}}$$

$$x_{new} = \frac{x_{old} - \mu}{\sigma}$$

Simple Feature scaling

Min-Max

Z-score

Si

Question

z-score values typically range between 0 to 1

- False
- O True
- Correct correct

Skip

Continue

Simple Feature Scaling in Python

With Pandas:

length	width	height
168.8	64.1	48.8
168.8	64.1	48.8
180.0	65.5	52.4

length	width	height
0.81	64.1	48.8
0.81	64.1	48.8
0.87	65.5	52.4

df["length"] = df["length"]/df["length"].max()

Min-max in Python

With Pandas:

length	width	height
168.8	64.1	48.8
168.8	64.1	48.8
180.0	65.5	52.4

length	width	height
0.41	64.1	48.8
0.41	64.1	48.8
0.58	65.5	52.4

```
df["length"] = (df["length"]-df["length"].min())/
               (df["length"].max()-df["length"].min())
```

Z-score in Python

With Pandas:

length	width	height
168.8	64.1	48.8
168.8	64.1	48.8
180.0	65.5	52.4

length	width	height
-0.034	64.1	48.8
-0.034	64.1	48.8
0.039	65.5	52.4

```
df["length"] = (df["length"]-df["length"].mean())/df["length"].std()
```


Binning in Python

Binning

- Binning: Grouping of values into "bins"
- Converts numeric into categorical variables
- Group a set of numerical values into a set of "bins"
- "price" is a feature range from 5,000 to 45,500 (in order to have a better representation of price)

price: 5000, 10000,12000,12000, 30000, 31000, 39000, 44000,44500

bins:

low

Mid

High

Binning in Python pandas

price	
13495	
16500	
18920	
41315	
5151	
6295	

price	price-binned		
13495	Low		
16500	Low		
18920	Medium		
41315	High		
5151	Low		
6295	Low		

```
bins = np.linspace(min(df["price"]), max(df["price"]), 4)
```

```
group_names = ["Low", "Medium", "High"]
```

df["price-binned"] = pd.cut(df["price"], bins, labels=group_names, include_lowest=True)

Visualizing binned data

E.g., Histograms

Turning categorical variables into quantitative variables in Python

Categorical Variables

Problem:

 Most statistical models cannot take in the objects/strings as input

Car	Fuel	
Α	gas	
В	diesel	
С	gas	
D	gas	

Categorical -> Numeric

Solution:

- Add dummy variables for each unique category
- Assign 0 or 1 in each category

Car	Fuel	 gas	diesel
A	gas	 1	0
В	diesel	 0	1
С	gas	 1	0
D	gas	 1	0

"One-hot encoding"

Dummy variables in Python pandas

- Use pandas.get_dummies() method.
- Convert categorical variables to dummy variables (0 or 1)

fuel		gas	diesel
gas		1	0
diesel	-	0	1
gas		1	0
gas		1	0

pd.get dummies(df['fuel'])

