DISCRETE MATHEMATICS – CH2 Homework2

Textbook assignment (30 pts)

2-2

- **6.** Negate each of the following and simplify the resulting statement.
 - a) $p \land (q \lor r) \land (\neg p \lor \neg q \lor r)$
 - b) $(p \land q) \rightarrow r$
 - c) $p \rightarrow (\neg q \land r)$
 - d) $p \vee q \vee (\neg p \wedge \neg q \wedge r)$
 - a) $\neg (p \land (q \lor r) \land (\neg p \lor \neg q \lor r))$

$$\leftrightarrow \neg \ p \ \lor \ (\neg q \ \land \neg r) \ \lor \ (\ p \ \land \ q \ \land \neg r)$$

$$\leftrightarrow (\neg q \land \neg r) \lor (T_0 \land (\neg p \lor (q \land \neg r)))$$

$$\leftrightarrow \neg p \lor (\neg q \land \neg r) \lor (q \land \neg r)$$

$$\leftrightarrow \neg p \ V \ \neg r$$

b)
$$\neg((p \land q) \rightarrow r)$$

$$\leftrightarrow \neg(\neg (p \land q) \lor r)$$

$$\leftrightarrow$$
 (p \land q) $\land \neg r$

c)
$$\neg (p \rightarrow (\neg q \land r))$$

$$\leftrightarrow \neg (\neg p \lor (\neg q \land r))$$

$$\leftrightarrow p \land (q \lor \neg r)$$

d)
$$\neg (p \lor q \lor (\neg p \land \neg q \land r))$$

$$\leftrightarrow \neg (p \lor q) \land \neg ((\neg p \land \neg q) \land r))$$

$$\leftrightarrow \neg (p \lor q) \land ((p \lor q) \lor \neg r))$$

$$\leftrightarrow$$
 F₀ V (¬(p V q) \land ¬ r))

$$\leftrightarrow \neg p \land \neg q \land \neg r$$

2-3

10. Establish the validity of the following arguments.

c)
$$p \rightarrow q$$

$$\neg q$$

$$\neg r$$

$$\mathbf{d)} \quad p \to q$$

$$r \rightarrow \neg q$$

$$\neg p$$

e)
$$p \to (q \to r)$$

 $\neg q \to \neg p$
 p

$$\begin{array}{ccc}
\mathbf{h}) & p \lor q \\
 & \neg p \lor r \\
\hline
 & \neg r \\
\hline
 & a
\end{array}$$

*(c)(e) for students with odd ID, (d)(h) for even ID.

(c)

- (1) $p \rightarrow q$, $\neg q$ Premises
- (2) $\neg p$ Step(1) and Modus Tollens
- $(3) \neg r$ Premise
- (4) \neg p \land \neg r Step(2), (3)and the Rule of Conjunction
- (5) $\therefore \neg$ (p V r) Step(4) and DeMorgan's Laws

(d)

- (1) r, $r \rightarrow \neg q$ Premises
- $(2) \neg q$ Step(1) and the Rule of Detachment
- (3) $p \rightarrow q$ Premise
- (4) ∴¬ p Steps(2), (3) and Modus Tollens

(e)

- (1) p Premise
- $(2) \neg q \rightarrow \neg p$ Premise
- (3) $p \rightarrow q$ Step(2) and $(p \rightarrow q) \Leftrightarrow (\neg q \rightarrow \neg p)$
- (4) q Steps(1), (3) and the Rule of Detachment
- (5) $p \wedge q$ Steps(1), (4) and the Rule of Conjunction
- (6) $p \rightarrow (q \rightarrow r)$ Premise
- (7) $(p \land q) \rightarrow r$ Step(6), and $[p \rightarrow (q \rightarrow r)] \Leftrightarrow [(p \land q) \rightarrow r]$
- (8) : r Steps(5), (7) and the Rule of Detachment

(h)

- $(1) \neg p \lor r$ Premise
- (2) $p \rightarrow r$ Step(1) and $(p \rightarrow r) \Leftrightarrow (\neg p \lor r)$
- $(3) \neg r$ Premise
- (4) $\neg p$ Steps(2), (3) and Modus Tollens
- (5) p V q Premise
- (6) $\neg p \rightarrow q$ Steps(5) and $(p \lor q) \Leftrightarrow (\neg \neg p \lor q) \Leftrightarrow (\neg p \rightarrow q)$
- (7) ∴q Step(4),(6) and Modus Ponens

10. For the following program segment, m and n are integer variables. The variable A is a two-dimensional array A[1, 1], A[1, 2],...,A [1, 20],...,A [10, 1],...,A [10, 20], with 10 rows (indexed from 1 to 10) and 20 columns (indexed from 1 to 20).

for
$$m := 1$$
 to 10 do
for $n := 1$ to 20 do
$$A[m,n] := m + 3*n$$

Write the following statement in symbolic form. (The universe for the variable m contains only the integers from 1 to 10 inclusive; for n the universe consists of the integers from 1 to 20 inclusive.)

- d) The entries in each row of A are sorted into (strictly) ascending order.
- e) The entries in each column of A are sorted into (strictly) ascending order.
- f) The entries in the first three rows of A are distinct.
- (d) $\forall m \ [(1 \le n < 19) \to (A[m, n] < A[m, n+1])]$
- (e) $\forall n \ [(1 \le m < 9) \to (A[m, n] < A[m+1, n])]$
- (f) $\forall 1 \leq m, i \leq 3 \ \forall 1 \leq n, j \leq 20 \ [((m, n) \neq (i, j)) \rightarrow (A[m, n] \neq A[i, j])]$

Advanced assignment (20+5 pts)(5 for your novelty)

- Write an argument (include statement description) and prove it is valid. (More complicated argument gets a higher score)
 - A 3pts-example:
 - p: It rains. q: absent from discrete mathematics
 - $lack Argument ((p \rightarrow q) \land \neg p) \rightarrow \neg p$
 - If it rains, I will be absent from discrete mathematics.
 - I join the discrete mathematics today
 - Conclusion: Today is not rainy