HAlg Note

1 Basic Knowledge

Def of Matrix: A mapping from $\{1, ..., n\} \times \{1, ..., m\}$ to a field F is called a $n \times m$ matrix over F.

• The set of all $n \times m$ matrices over F is denoted by $Mat(n \times m; F) := Maps(\{1, ..., n\} \times \{1, ..., m\}, F)$. Square Matrix: Mat(n; F)

Solution Sets of Inhomogeneous Systems of Linear Equations: Solution = 特解 (Particular Solution) + 通解 (Homogeneous solution)

Def of Group (G,*): A set G with a operator * is a group if: **Closure**: $\forall g,h \in G,g*h \in G$; **Associativity**: $\forall g,h,k \in G,(g*h)*k=g*(h*k)$; **Identity**: $\exists e \in G, \forall g \in G, e*g=g*e=g$; **Inverse**: $\forall g \in G, \exists g^{-1} \in G, g*g^{-1}=g^{-1}*g=e$.

• **Properties of Group**: If G, H are groups, then $G \times H$ also.

Field (F): A set F is a field with two operators: (addition)+ : $F \times F \to F$; (λ, μ) $\to \lambda + \mu$ (multiplication)· : $F \times F \to F$; (λ, μ) $\to \lambda \mu$ if: (F, +) and ($F \setminus \{0_F\}, \cdot$) are abelian groups with identity $0_F, 1_F$. and $\lambda(\mu + \nu) = \lambda \mu + \lambda \nu$ e.g. Fields: $\mathbb{R}, \mathbb{C}, \mathbb{Q}, \mathbb{Z}/p\mathbb{Z}$

Notation of 1-1,onto,bij: For function $f: V \to W$. **1-1**: $V \hookrightarrow W$ **onto**: $V \twoheadrightarrow W$ **bijection**: $V \stackrel{\sim}{\to} W$ (ps: bij \varprojlim : 1.def,2. $ff^{-1} = I, f^{-1}f = I$)

Projections (pr_i): $pr_i: X_1 \times X_2 \times \cdots \times X_n \to X_i: (x_1, ..., x_n) \mapsto x_i$ Canonical Injections: $in_i: X_i \to X_1 \times X_2 \times \cdots \times X_n: x \mapsto (0, ..., x, 0, ..., 0)$

2 Vector Spaces

2.1 Vector Spaces | Product of Sets | Vector Subspaces | Power, Union, Intersection of Sets

F-Vector Space (V): A set *V* over a field *F* is a vector space if: *V* is an abelian group $V = (V, \dot{+})$ and $\forall \vec{v}, \vec{w} \in V$ $\lambda, \mu \in F$

a map $F \times V \rightarrow V : (\lambda, \vec{v}) \rightarrow \lambda \vec{v}$ satisfies: $\mathbf{I}: \lambda(\vec{v} \dotplus \vec{w}) = (\lambda \vec{v}) \dotplus (\lambda \vec{w})$ $\mathbf{II}: (\lambda + \mu)\vec{v} = (\lambda \vec{v}) \dotplus (\mu \vec{v})$

III: $\lambda(\mu\vec{v}) = (\lambda\mu)\vec{v}$ IV: $1_F\vec{v} = \vec{v}$ ps:If $\lambda\vec{v} = \vec{0}$, then $\lambda = 0$ or $\vec{v} = \vec{0}$ or both. Trivial Vector Space: $V = \vec{0}$

· If V, W are F-vector spaces, then $V \oplus W$ is also. ps: $V \oplus W := V \times W$

Vector Subspace (U): $U \subseteq V$ is a subspace of V if: $\vec{I} \cdot \vec{0} \in U$ $\vec{I} \cdot \vec{I} \cdot \vec{0} \in U$ $\vec{I} \cdot \vec{I} \cdot \vec{0} \in U$ $\vec{I} \cdot \vec{I} \cdot \vec{0} \in U$ and $\vec{I} \cdot \vec{0} \in U$ (or: $\vec{I} \cdot \vec{0} \in U$)

- 1. If U_1 , U_2 are subspaces of V. Then $U_1 \cap U_2$ and $U_1 + U_2$ are also. ps: $U_1 + U_2 := \langle U_1 \cup U_2 \rangle$
- 2. **Vector Subspace Generated by T (** $\langle T \rangle$ **)**: If T is a subset of a F-vector space V. $\Rightarrow \langle T \rangle$ is the smallest subspace of V containing T. Also, we can get: $\langle T \rangle = span(T) := \{ \sum_i c_i \vec{v}_i : \vec{v}_i \in T, c_i \in F \}$ $\forall \vec{v} \in \langle T \rangle, \langle T \cup \{\vec{v}\} \rangle = \langle T \rangle$
- 3. **Generating/Spanning Set**: If $\langle T \rangle = V$. $\Rightarrow T$ is a generating set of V. **Finitely Generated**: $\exists T$ finite set, s.t. $V = \langle T \rangle$

Free Vector Space on the Set X: Set X, 将 X 中每一个元素都视为基, then $\{\sum_{x \in X} a_x x : a_x \in F, F \text{ is } field\}$ is FVS on X.

Functional Vector Space: If X be a set and F be field. Then Maps(X, F) is a F-Vector Space.

ps: 'almost all': all but finitely many (£ ##, £

 $F(X) := \{f : X \to F \mid f(x) = 0 \text{ for almost all } x \in X\}$ ps: F(X) is a subspace of Maps(X,F) ? 没写完!

Power of Set $\mathcal{P}(X)$: If X is a set, then $\mathcal{P}(X) := \{U : U \subseteq X\}$ (set of all subsets) ps: $\mathcal{U} \subseteq \mathcal{P}(X) \Rightarrow U$ is called a **system of subsets of** X.

- 1. **Empty System of subsets of X**: Empty System of subsets of $X := \emptyset \in \mathcal{P}(X)$ (NOT $\{\emptyset\}$) $\star \cap \emptyset = X$ and $\bigcup \emptyset = \emptyset \star \emptyset$
- 2. **Union**: For $\mathcal{U} \subseteq \mathcal{P}(X)$, $\bigcup_{U \in \mathcal{U}} U := \{x \in X : \exists U \in \mathcal{U} \ s.t. \ x \in U\}$ **Intersection**: For $\mathcal{U} \subseteq \mathcal{P}(X)$, $\bigcap_{U \in \mathcal{U}} U := \{x \in X : \forall U \in \mathcal{U}, x \in U\}$

2.2 Linear Independence | Basis | Dimension

Linearly Independent: $L = \{\vec{v_1}, \vec{v_2}, ..., \vec{v_r}\}$ is linearly independent if: $\forall c_1, ..., c_r \in F, c_1\vec{v_1} + ... + c_r\vec{v_r} = \vec{0} \Rightarrow c_1 = ... = c_r = 0.$

Linearly Dependent: L is linearly dependent if: $\exists \alpha_1, ..., \alpha_r$ not all zero s.t. $\alpha_1 \vec{v_1} + ... + \alpha_r \vec{v_r} = 0$

Basis: A basis of a vector space V is a linearly *independent generating set* of V. (Finitely generated $\Leftrightarrow \exists$ finite basis.)

- 1. subset *E* is a basis \Leftrightarrow *E* is minimal generating sets \Leftrightarrow *E* is maximal linearly independent sets.
- 2. **Fundamental Estimate of Linear Algebra**: Linearly independent sets \subseteq basis \subseteq generating sets.
- 3. $(\vec{v}_i)_{i \in I}$ is a basis of $V \iff \forall \vec{v} \in V$, $\exists ! c_i \in F$ (almost all of c_i are zero) s.t. $\vec{v} = \sum_{i \in I} c_i \vec{v}_i$

Family of Elements of A Indexed by $I: (a_i)_{i \in I} := func \ f: I \to A \ \text{with} \ i \mapsto a_i.$ eg f(0) = 1, f(1) = 2, f(2) = 3 可以用 $(a_i)_{i \in \{0,1,2\}}, a_0 = 1, a_1 = 2, a_2 = 3$ 代替

· If $\{\vec{v}_i: i \in I\}$ is generating set of V, then $(\vec{v}_i)_{i \in I}$ is called a generating set. (同理对: $(\vec{v}_i)_{i \in I}$ is basis indexed by $i \in I$)

Linear Combinations of Basis: Let *F* be a field, family $(\vec{v}_i)_{1 \le i \le r}$, *V* is vector space. $\Phi : F^r \to V$ with $(c_1, ..., c_r) \mapsto c_1 \vec{v}_1 + ... + c_r \vec{v}_r$:

- 1. $\mathbf{I}.(\vec{v}_i)_{1 \le i \le r}$ is generating set $\Leftrightarrow \Phi$ is onto. $(F^r \twoheadrightarrow V)$ $\qquad \qquad \mathbf{II}.(\vec{v}_i)_{1 \le i \le r}$ is linearly independent $\Leftrightarrow \Phi$ is 1-1. $(F^r \hookrightarrow V)$
- 2. $(\vec{v}_i)_{1 \le i \le r}$ is basis $\Leftrightarrow \Phi$ is bijection. $(F^r \to V)$

Steinitz Exchange Theorem: Let V be vector space. L is linearly independent set, E is generating set. $\Rightarrow \exists 1-1 \phi : L \hookrightarrow E$ s.t.

 $(E \setminus \phi(L)) \cup L$ is generating set. i.e. E 中的一部分元素可以完全由 L 中的元素线性表示出来。(即 L 中的元素可以替换 E 中的部分元素)

Dimension: Dimension of *F*-vector space is $\dim_F V := \#$ basis (i.e. cardinality of basis). e.g. $\dim_F F^n = m$

- · Let V: Vector Space. L LI set, E generating set. I. dim $L \le \dim V \le \dim E$ II. If $|L| = \dim V$ ($|E| = \dim V$), then L (E) is basis.
- · **Dimension Theorem**: Let *V*: Vector Space. *U*, *W*: Subspaces. I. $\dim(U+W) = \dim U + \dim W \dim(U\cap W)$ II. $\dim U \leq \dim V$

2.3 Linear Maps | Rank-Nullity Theorem

Linear Maps: $f: V \to W$ (V,W vector spaces) is F-linear or homomorphism if: $f(\vec{v} + \vec{w}) = f(\vec{v}) + f(\vec{w})$ $f(\lambda \vec{v}) = \lambda f(\vec{v})$ $\forall \vec{v}, \vec{w} \in V; \forall \lambda \in F$

Isomorphism: Linear map $f: V \to W$ is bij. **Endomorphism (End)**: Linear map $f: V \to V$. **Automorphism (Aut)**: Isomorphism. $f: V \to V$.

General Linear Group / Automorphism Group: $GL(V) = Aut(V) := \{f : V \to V \mid f \text{ is isomorphism}\}$ (subspace)

Fixed Point: For $f: X \to X$, if f(x) = x, then x is fixed point of f. Set of Fixed Points: $X^f := \{x \in X : f(x) = x\}$

Notation \oplus : Let U, W be subspaces of V. $V_1, ..., V_n$ be subspaces of V. $V_1 + \cdots + V_n := \langle V_1 \cup \cdots \cup V_n \rangle$:

- 1. **Basic Case**: If $f: U \times W \to V$ by $(\vec{u}, \vec{v}) \mapsto \vec{u} + \vec{v}$ then we write: $V = U \oplus W$ and called U, W **Complementary**.
- 2. **Special Case**: If $f: V_1 + \cdots + V_n \rightarrow V$ by $x \mapsto x$? 不对把? P18 没写完

Classification of Vector Spaces: For Vector Space V, $\dim V = \dim F^n = n \Leftrightarrow \exists \phi : F^n \xrightarrow{\sim} V$ is isomorphism.

Copyright By Jingren Zhou | Page 1