DIABETES PREDICTION MACHINE LEARNING PROJECT

Harnessing Machine Learning to Diagnose Diabetes in Women

Shreyas Sonwane

7th June 2024

Project Overview

- Objective: Predict whether a person is diabetic based on health metrics.
- Dataset: Pima Indian Diabetes dataset.
- Features: Pregnancies, Glucose levels, Blood Pressure, Skin Thickness, Insulin, BMI, Diabetes Pedigree Function, Age, Outcome.

BLOOD GLUCOSE LEVEL HYPOGLYCEMIA NORMAL LEVEL HYPERGLYCEMIA (low sugar) (normal sugar) (high sugar)

TABLE OF CONTENTS

DATASET

DATA PREPROCESSING

MODEL TRAINING

EVALUATION

PREDICTION

USAGE

INSTALLATION

- · Requirements: Python, Numpy, Pandas, Scikit-Learn
- · Installation Command: pip install numpy pandas scikit-learn
- · Alternative: Use Google Colab to run the cells directly

Dataset

Name: Pima Indian Diabetes Dataset

Columns

· Pregnancies

· Insulin

· Glucose

· BMI

· BloodPressure

· Age

· SkinThickness

· Outcome

· DiabetesPedigreeFunction

Data Preprocessing

Steps:

1. Loading the dataset

```
diabetes_dataset = pd.read_csv("/content/diabetes.csv")
```

2. Inspecting the dataset

```
diabetes_dataset.head()
diabetes_dataset.shape
diabetes_dataset.describe()
diabetes_dataset["Outcome"].value_counts()
```


Data Preprocessing (Cont.)

3. Separating features and labels

```
X = diabetes_dataset.drop(columns="Outcome", axis=1)
Y = diabetes_dataset["Outcome"]
```

4. Standardizing the data

```
scaler = StandardScaler()
scaler.fit(X)
standardized_data = scaler.transform(X)
X = standardized_data
```

Model Training

Steps:

1. Splitting the data

```
X_train, X_test, Y_train, Y_test = train_test_split(X, Y, test_size=0.2, stratify=Y, random_state=2)
```

2. Training the SVM(Support Vector Machine) Model

```
classifier = svm.SVC(kernel='linear')
classifier.fit(X_train, Y_train)
```

Evaluation

Training Data Accuracy

```
X_train_prediction = classifier.predict(X_train)
training_data_accuracy = accuracy_score(X_train_prediction, Y_train)
print('Accuracy score of the training data:', training_data_accuracy)
```

Test Data Accuracy

```
X_test_prediction = classifier.predict(X_test)
test_data_accuracy = accuracy_score(X_test_prediction, Y_test)
print('Accuracy score of the test data:', test_data_accuracy)
```

Prediction

Steps:

1. Input Data

```
input_data = (1, 163, 72, 0, 0, 39, 1.222, 33)
input_data_nmp = np.asarray(input_data)
input_data_reshape = input_data_nmp.reshape(1, -1)
```

2. Standardize and Predict

```
std_data = scaler.transform(input_data_reshape)
prediction = classifier.predict(std_data)
```

3. Output

```
if prediction[0] == 0:
          print("The Person is not diabetic")
else:
          print("The Person is diabetic")
```

USAGE

Steps to run the project:

- · Clone the repository or download the script.
- Install the required libraries.
- Run the script in a Jupyter notebook or any Python environment.

Link to Github

Click here