TP: SUPPORT VECTOR MACHINE

1. Prétraitement des Données

- a) Charger le jeu de données choisi (choisir une base de données) via scikit-learn.
- b) Si le jeu de données contient plus de 2 caractéristiques:
 - Soit réaliser une sélection des 2 caractéristiques les plus discriminantes (par exemple à l'aide d'analyses exploratoires),
 - o Soit utiliser une méthode de réduction de dimensionnalité comme le PCA uniquement pour la visualisation (le modèle SVM doit être entraîné sur les données d'origine).

2. Séparation du Jeu de Données

- a) Diviser le jeu de données en ensemble d'entraînement (70 %) et ensemble de test (30 %).
- b) Assurer la reproductibilité en utilisant un random_state fixé.

3. Modélisation avec SVM

- a) Entraîner un SVM non linéaire (noyau RBF) pour la classification multi-classes.
- b) Expliquer la différence avec un SVM linéaire (par exemple en modifiant le paramètre kernel).

4. Optimisation des Hyperparamètres

- a) Mettre en place une recherche d'hyperparamètres avec GridSearchCV afin d'optimiser les paramètres C et gamma.
- b) Comparer la performance du modèle avec et sans optimisation des hyperparamètres.
- c) Interpréter les résultats (quels paramètres ont été retenus et pourquoi).

5. Analyse des Vecteurs Supports

- a) Afficher le nombre et la répartition des vecteurs supports par classe.
- b) Expliquer pourquoi certains points sont considérés comme vecteurs supports et leur impact sur la frontière de décision.

6. Visualisation des Frontières de Décision

- a) Utiliser une bibliothèque de visualisation pour tracer les frontières de décision sur l'ensemble d'entraînement.
- b) Ajouter un tracé spécifique des vecteurs supports sur le graphique.
- c) Si le modèle est entraîné sur plus de 2 dimensions, utiliser une projection (par exemple PCA uniquement pour la visualisation) pour représenter la frontière.

7. Évaluation du Modèle

- a) Calculer les métriques d'évaluation (accuracy, précision, rappel, F1-score) sur l'ensemble de test.
- b) Comparer les performances obtenues avec différentes configurations (par exemple SVM linéaire vs non linéaire, avec ou sans optimisation).