Week 4 Flask Development:

Name: Shanka Attanayake

Dataset is of a House price dataset where it will be used be create a linear regression model to predict house prices.

Dataset:

	Α	В	С	D	E	F	G	Н	1	J	K
1	No	X1 transac	X2 house	X3 distanc	X4 numbe	X5 latitud	X6 longitu	Y house pr	ice of uni	t area	
2	1	2012.917	32	84.87882	10	24.98298	121.5402	37.9			
3	2	2012.917	19.5	306.5947	9	24.98034	121.5395	42.2			
4	3	2013.583	13.3	561.9845	5	24.98746	121.5439	47.3			
5	4	2013.5	13.3	561.9845	5	24.98746	121.5439	54.8			
6	5	2012.833	5	390.5684	5	24.97937	121.5425	43.1			
7	6	2012.667	7.1	2175.03	3	24.96305	121.5125	32.1			
8	7	2012.667	34.5	623.4731	7	24.97933	121.5364	40.3			
9	8	2013.417	20.3	287.6025	6	24.98042	121.5423	46.7			
10	9	2013.5	31.7	5512.038	1	24.95095	121.4846	18.8			
11	10	2013.417	17.9	1783.18	3	24.96731	121.5149	22.1			
12	11	2013.083	34.8	405.2134	1	24.97349	121.5337	41.4			
13	12	2013.333	6.3	90.45606	9	24.97433	121.5431	58.1			
14	13	2012.917	13	492.2313	5	24.96515	121.5374	39.3			
15	14	2012.667	20.4	2469.645	4	24.96108	121.5105	23.8			
16	15	2013.5	13.2	1164.838	4	24.99156	121.5341	34.3			
	← →	Real es	state	①							: (

Building Model:

Split the dataset into train and test data

```
In [11]: 1 | from sklearn.model_selection import train_test_split
2 | X_train, X_test, y_train, y_test = train_test_split(X,y, test_size = 0.05,random_state = 0)
```

Choose the model (Linear Regression)

```
In [12]: 1 | from sklearn.linear_model import LinearRegression
```

Create an Estimator object

```
In [13]: 1 reg = LinearRegression()
```

Train the model

```
In [14]: 1 reg.fit(X_train, y_train)
Out[14]: LinearRegression()
```

Apply the model

Display the coefficients

```
In [16]: 1 reg.coef_
Out[16]: array([ 8.18615738e-16, 6.93889398e-17, -1.71360864e-15, -1.07851013e-13, -9.92878468e-15, 1.00000000e+00])
```

Find how well the trained model did with testing data

```
In [17]: 1 from sklearn.metrics import r2_score
2 print('r2_Score : ', r2_score(y_test, y_pred))
r2_Score : 1.0
```

Saving model

Save Model

```
App File:
 1 # -*- coding: utf-8 -*-
 3 Created on Mon Jun 20 13:11:08 2022
 5 @author: lakki
 6
 8  from flask import Flask, render_template, request,jsonify
9 import joblib
10 import numpy as np
11
app = Flask(__name__, template_folder='templates')
loaded_model = joblib.load('finalized_model.sav')
14
15 @app.route('/')
16 =def student():
17 | return render_template("home.html")
18
19
21
        data = request.get_json(force=True)
22
        prediction = loaded_model.predict([np.array(list(data.values()))])
23
24
        output = prediction[0]
25
        return jsonify(output)
26
27
28 @app.route('/', methods=['POST', 'GET'])
29 ⊡def result():
        int_features = [int(x) for x in request.form.values()]
30
31
         final_features = [np.array(int_features)]
32
33
        prediction = loaded_model.predict(final_features)
34
        output = round(prediction[0], 2)
35
        return render template('home.html', prediction text='Price should be $ {}'.format(output))
36
37
39 app.run(debug=True)
```

HTML template File

```
<!DOCTYPE html>
⊟<html lang="en">
h <head>
     <meta charset="UTF-8" />
     <meta http-equiv="X-UA-Compatible" content="IE=edge" />
     <meta name="viewport" content="width=device-width, initial-scale=1.0" />
     <title>House Price Predictor</title>
     <style>
       padding: 0;
margin: 0;
        box-sizing: border-box;
        background-color: antiquewhite;
       .div2 {
        position: absolute;
         top: 50%;
        left: 50%;
         padding: 30px;
         transform: translate(-50%, -50%);
        border: 1px solid black;
     </style>
   </head>
   <body>
       <div class="div2">
           <form action="{{ url_for('result')}}" method="post">
                <input type="text" name="rate" placeholder="house age" required="required" />
                <input type="text" name="sales in first month" placeholder="MRT station" required="required"</pre>
                <input type="text" name="sales in second month" placeholder="convenience stores" required="1</pre>
                <input type="text" name="sales in second month" placeholder="latitude" required="required" /</pre>
                <input type="text" name="sales in second month" placeholder="longitude" required="required"</pre>
                <button type="submit" class="btn btn-primary btn-block btn-large">Predict House Price</button</pre>
            </form>
            <hr>>
            <br>
        </div>
   </body>
 </html>
```

Web Page:

Web Page Result after filling in features:

