Dvanáctá přednáška

NAIL062 Výroková a predikátová logika

Jakub Bulín (KTIML MFF UK) Zimní semestr 2023

Dvanáctá přednáška

Program

- izomorfismus a konečné modely
- definovatelnost a automorfismy
- ω-kategoricita a úplnost
- axiomatizovatelnost
- rekurzivní axiomatizace a rozhodnutelnost

Materiály

Zápisky z přednášky, Sekce 9.2-9.4 z Kapitoly 9, Sekce 10.1 z Kapitoly 10

9.2 Izomorfismus struktur

Definice izomorfismu

Izomorfismus \mathcal{A} a \mathcal{B} (v $L = \langle \mathcal{R}, \mathcal{F} \rangle$) je bijekce $h: A \to B$ splňující:

■ pro každý (*n*-ární) $f \in \mathcal{F}$ a pro všechna $a_i \in A$:

$$h(f^{\mathcal{A}}(a_1,\ldots,a_n))=f^{\mathcal{B}}(h(a_1),\ldots,h(a_n))$$

- speciálně, je-li $c \in \mathcal{F}$ konstantní: $h(c^{\mathcal{A}}) = c^{\mathcal{B}}$
- pro každý (*n*-ární) $R \in \mathcal{R}$ a pro všechna $a_i \in A$:

$$R^{\mathcal{A}}(a_1,\ldots,a_n)$$
 právě když $R^{\mathcal{B}}(h(a_1),\ldots,h(a_n))$

Existuje-li, jsou izomorfní ('via h'), $A \simeq B$ (nebo $A \simeq_h B$).

Automorfismus A je izomorfismus A a A.

- tj. liší se jen 'pojmenováním prvků'
- relace 'být izomorfní' je ekvivalence
- např. potenční algebra $\underline{\mathcal{P}(X)} = \langle \mathcal{P}(X), -, \cap, \cup, \emptyset, X \rangle$, |X| = n, je izomorfní s $\underline{2^n} = \langle \{0,1\}^n, -_n, \wedge_n, \vee_n, (0,\dots,0), (1,\dots,1) \rangle$ (operace po složkách) via $h(A) = \chi_A$ (charakt. vektor $A \subseteq X$)

Izomorfismus zachovává sémantiku & vztah \simeq a \equiv

Tvrzení: Bijekce $h: A \rightarrow B$ je izomorfismus A a B, právě když:

- (i) pro každý term t a e: Var $\to A$: $h(t^{\mathcal{A}}[e]) = t^{\mathcal{B}}[e \circ h]$
- (ii) pro každou φ a e: Var \to A: $\mathcal{A} \models \varphi[e] \Leftrightarrow \mathcal{B} \models \varphi[e \circ h]$

Důkaz: ⇒ snadno indukcí podle struktury termu resp. formule

$$\leftarrow$$
 je-li h bijekce splňující (i)&(ii), dosazení $t = f(x_1, ..., x_n)$ resp. $\varphi = R(x_1, ..., x_n)$ dává vlastnosti z definice izomorfismu

Důsledek: $A \simeq B \Rightarrow A \equiv B$.

Důkaz: pro každou sentenci
$$\varphi$$
 máme z (ii) $\mathcal{A} \models \varphi \Leftrightarrow \mathcal{B} \models \varphi$

Naopak obecně ne, $\langle \mathbb{Q}, \leq \rangle \equiv \langle \mathbb{R}, \leq \rangle$, $\langle \mathbb{Q}, \leq \rangle \not\simeq \langle \mathbb{R}, \leq \rangle$ Platí ale:

Tvrzení: Jsou-li \mathcal{A},\mathcal{B} konečné v jazyce s rovností, potom

$$A \simeq B \Leftrightarrow A \equiv B$$

Důsledek Pokud má kompletní teorie v jazyce s rovností konečný model, potom jsou všechny její modely izomorfní.

Důkaz $\equiv \Rightarrow \simeq$ pro konečné struktury s rovností

Díky = vyjádříme "existuje právě n prvků", z toho plyne |A| = |B|. Buď \mathcal{A}' expanze \mathcal{A} o jména prvků, v jazyce $L' = L \cup \{c_a \mid a \in A\}$. Ukážeme, že \mathcal{B} lze expandovat na L'-strukturu \mathcal{B} tak, že $\mathcal{A}' \equiv \mathcal{B}'$. Potom je $h(a) = c_a^{\mathcal{B}'}$ izomorfismus \mathcal{A}' a \mathcal{B}' , i pro L-redukty $\mathcal{A} \simeq \mathcal{B}$.

Stačí ukázat, že pro $c_a^{A'}=a\in A$ existuje $b\in B$ tak, že expanze o interpretaci konstantního symbolu c_a splňují $\langle \mathcal{A},a\rangle\equiv\langle \mathcal{B},b\rangle$.

Buď Ω množina 'vlastností prvku a', tj. formulí $\varphi(x)$ splňujících $\langle \mathcal{A}, a \rangle \models \varphi(x/c_a)$, neboli $\mathcal{A} \models \varphi[e(x/a)]$. Protože je A konečná, existuje konečně mnoho $\varphi_1(x), \ldots, \varphi_m(x)$ tak, že pro každou $\varphi \in \Omega$ existuje i takové, že $\mathcal{A} \models \varphi \leftrightarrow \varphi_i$. Potom i $\mathcal{B} \models \varphi \leftrightarrow \varphi_i$.

Protože v \mathcal{A} platí sentence $(\exists x) \bigwedge_{i=1}^m \varphi_i$ (je splněna díky $a \in A$) a $\mathcal{B} \equiv \mathcal{A}$, máme i $\mathcal{B} \models (\exists x) \bigwedge_{i=1}^m \varphi_i$. Neboli existuje $b \in \mathcal{B}$ takové, že $\mathcal{B} \models \bigwedge_{i=1}^m \varphi_i[e(x/b)]$. Tedy pro každou $\varphi \in \Omega$ platí $\mathcal{B} \models \varphi[e(x/b)]$, tj. $\langle \mathcal{B}, b \rangle \models \varphi(x/c_a)$, z toho $\langle \mathcal{A}, a \rangle \equiv \langle \mathcal{B}, b \rangle$.

Definovatelnost a automorfismy

definovatelné množiny jsou invariantní na automorfismy (např. automorfismus grafu musí zobrazit trojúhelník na trojúhelník):

Tvrzení: Je-li $D \subseteq A^n$ definovatelná v \mathcal{A} , potom pro každý automorfismus $h \in \operatorname{Aut}(\mathcal{A})$ platí h[D] = D (kde h[D] značí $\{(h(\overline{a}) \mid \overline{a} \in D\})$. Je-li definovatelná s parametry \overline{b} , platí to pro automorfismy identické na \overline{b} (tj. $h(\overline{b}) = \overline{b}$ neboli $h(b_i) = b_i$ pro všechna i).

Důkaz: Ukážeme jen verzi s parametry. Nechť $D=\varphi^{\mathcal{A},\bar{b}}(\overline{x},\overline{y})$. Potom pro každé $\overline{a}\in\mathcal{A}^n$ platí následující ekvivalence:

$$\begin{split} \overline{a} \in D &\Leftrightarrow \mathcal{A} \models \varphi[e(\overline{x}/\overline{a}, \overline{y}/\overline{b})] \\ &\Leftrightarrow \mathcal{A} \models \varphi[(e \circ h)(\overline{x}/\overline{a}, \overline{y}/\overline{b})] \\ &\Leftrightarrow \mathcal{A} \models \varphi[e(\overline{x}/h(\overline{a}), \overline{y}/h(\overline{b}))] \\ &\Leftrightarrow \mathcal{A} \models \varphi[e(\overline{x}/h(\overline{a}), \overline{y}/\overline{b})] \\ &\Leftrightarrow h(\overline{a}) \in D. \end{split}$$

ŝ

Příklad

Množiny definovatelné s parametrem 0, $\mathrm{Df}^1(\mathcal{G},\{0\})$? Jediný netriviální automorfismus zachovávající 0: $h(i) = (5-i) \bmod 5$, orbity $\{0\}$, $\{1,4\}$, a $\{2,3\}$. Tyto množiny jsou definovatelné:

- $\{0\}$ formulí x = y, tj. $(x = y)^{\mathcal{G}, \{0\}} = \{0\}$
- $\{1,4\}$ lze definovat pomocí E(x,y)
- $\{2,3\}$ formulí $\neg E(x,y) \land \neg x = y$

 $\mathrm{Df^1}(\mathcal{G},\{0\})$ je podalgebra $\underline{\mathcal{P}(V(\mathcal{G}))}$, tedy uzavřená na doplněk, sjednocení, průnik, obsahuje \emptyset a $V(\mathcal{G})$. Podalgebra generovaná $\{\{0\},\{1,4\},\{2,3\}\}$ už ale obsahuje všechny podmnožiny zachovávající automorfismus h. Dostáváme:

$$\begin{split} \mathrm{Df}^1(\mathcal{G},\{0\}) &= \{\emptyset,\{0\},\{1,4\},\{2,3\},\{0,1,4\},\{0,2,3\},\\ &\{1,4,2,3\},\{0,1,2,3,4\}\} \end{split}$$

9.3 ω -kategorické teorie

ω -kategorické teorie

Izomorfní spektrum T je počet modelů T kardinality κ až na \simeq . T je κ -kategorická pokud $I(\kappa,T)=1$, ω -kategorická má-li jediný spočetně nekonečný model až na izomorfismus.

Tvrzení: Teorie DeLO je ω -kategorická.

Důkaz: Buďte \mathcal{A}, \mathcal{B} spočetně nekonečné modely, $A = \{a_i \mid i \in \mathbb{N}\}$, $B = \{b_i \mid i \in \mathbb{N}\}$. Z hustoty najdeme indukcí $h_0 \subseteq h_1 \subseteq h_2 \subseteq \ldots$ prosté parciální fce z A do B zach. usp., $\{a_0, \ldots, a_{n-1}\} \subseteq \operatorname{dom} h_n$, $\{b_0, \ldots, b_{n-1}\} \subseteq \operatorname{rng} h_n$. Potom $\mathcal{A} \simeq \mathcal{B}$ via $h = \bigcup_{n \in \mathbb{N}} h_n$.

Důsledek: Izomorfní spektrum teorie DeLO*:

- $I(\kappa, DeLO^*) = 0$ pro $\kappa \in \mathbb{N}$
- $I(\omega, DeLO^*) = 4$

Spočetné modely až na izomorfismus jsou například:

$$\mathbb{Q} = \langle \mathbb{Q}, \leq \rangle \simeq \mathbb{Q} \upharpoonright (0,1), \ \mathbb{Q} \upharpoonright (0,1], \ \mathbb{Q} \upharpoonright [0,1), \ \mathbb{Q} \upharpoonright [0,1]$$

Důkaz: Husté uspořádání nemůže být konečné. Izomorfismus zobrazí minimum na minimum a maximum na maximum.

ω -kategorické kritérium kompletnosti

Věta: Buď T ω -kategorická ve spočetném jazyce L. Je-li

- (i) L bez rovnosti, nebo
- (ii) L s rovností a T nemá konečné modely,

potom je T kompletní.

Důkaz: (i) Důsledek L.-S. věty bez rovnosti říká, že každý model je elementárně ekvivalentní nějakému spočetně nekonečnému, ten je ale až na izomorfismus jediný.

(ii) Důsledek L.-S. věty s rovností podobně říká, že všechny nekonečné modely jsou elementárně ekvivalentní. Mohla by mít elementárně neekvivalentní konečné modely, to jsme ale zakázali.

Důsledek: DeLO, DeLO⁺, DeLO⁻, a DeLO[±] jsou kompletní, jsou to všechny (navzájem neekvivalentní) kompletní jedn. extenze $DeLO^*$. Analogické kritérium platí i pro kardinality κ větší než ω .

9.4 Axiomatizovatelnost

Axiomatizovatelnost

Třída struktur $K \subseteq M_L$ je:

- axiomatizovatelná, existuje-li teorie T taková, že $M_L(T) = K$
- konečně/otevřeně axiomatiz., je-li ax. konečnou/otevřenou T
- teorie T' je konečně/otevřeně axiomatizovatelná, platí-li to o třídě jejích modelů $K = M_L(T')$

Pozorování: Je-li K axiomatizovatelná, musí být uzavřená na \equiv .

Například, jak ukážeme:

- grafy a částečná uspořádání jsou konečně i otevřeně ax.
- tělesa jsou konečně, ale ne otevřeně axiomatizovatelná
- nekonečné grupy jsou axiomatizovatelné, ale ne konečně
- konečné grafy nejsou axiomatizovatelné

Neaxiomatizovatelnost konečných modelů

Věta: Má-li T libovolně velké konečné modely, má i nekonečný model. Potom není třída jejích konečných modelů axiomatizovatelná.

Důkaz: Je-li jazyk bez rovnosti, vezmeme kanonický model pro bezespornou větev v tablu z T pro $F \perp (T$ je bezesporná).

Je-li jazyk s rovností, přidáme spočetně mnoho nových konst. symbolů c_i a vezmeme extenzi: $T' = T \cup \{ \neg c_i = c_j \mid i \neq j \in \mathbb{N} \}$

Každá konečná část T' má model: buď k největší, že c_k je v této konečné části: lib. $\geq (k+1)$ -prvkový model,21 interpretuj c_0,\ldots,c_k jako různé prvky.

Věta o kompaktnosti dává model T', ten je nekonečný, redukt na původní jazyk (zapomenutí c_i^A) je nekonečný model T.

- např. konečné grafy nejsou axiomatizovatelné
- nekonečné modely teorie jsou vždy axiomatizovatelné, máme-li rovnost: stačí přidat 'existuje alespoň n prvků' pro vš. $n \in \mathbb{N}$

Konečná axiomatizovatelnost

Věta (O konečné axiomatizovatelnosti): $K \subseteq M_L$ je konečně axiomatizovatelná, právě když K i $\overline{K} = M_L \setminus K$ jsou axiomatizovatelné.

Důkaz: \Longrightarrow Je-li K axiomatizovatelná sentencemi $\varphi_1, \ldots, \varphi_n$ (vezmi gen. uzávěry), potom $\neg(\varphi_1 \land \varphi_2 \land \cdots \land \varphi_n)$ axiomatizuje \overline{K} .

 \leftarrow Buď K = M(T) a $\overline{K} = M(S)$. Potom $T \cup S$ je sporná, neboť:

$$M(T \cup S) = M(T) \cap M(S) = K \cap \overline{K} = \emptyset$$

Věta o kompaktnosti dává konečné $T' \subseteq T$ a $S' \subseteq S$ takové, že:

$$\emptyset = \mathsf{M}(T' \cup S') = \mathsf{M}(T') \cap \mathsf{M}(S')$$

Nyní si všimněme, že platí:

$$M(T) \subseteq M(T') \subseteq \overline{M(S')} \subseteq \overline{M(S)} = M(T)$$

Tím jsme dokázali, že M(T) = M(T'), neboli T' je konečná axiomatizace K.

Tělesa charakteristiky 0 nejsou konečně axiomatizovatelná

Buď T teorie těles. Těleso $\mathcal{A} = \langle A, +, -, 0, \cdot, 1 \rangle$ je

- charakteristiky p, je-li p nejmenší prvočíslo takové, že $\mathcal{A} \models p1 = 0$, kde p1 je term $1 + 1 + \cdots + 1$ (s p jedničkami),
- charakteristiky 0, pokud není charakteristiky p pro žádné p.
- Tělesa charakteristiky *p* jsou konečně axiomatizovatelná:

$$T_p = T \cup \{p1 = 0\}$$

Tělesa char. 0 jsou axiomatizovatelná, ale ne konečně:

$$T_0 = T \cup \{\neg p1 = 0 \mid p \text{ prvočíslo}\}$$

Tvrzení: Třída K těles char. 0 není konečně axiomatizovatelná.

Důkaz: Stačí ukázat, že \overline{K} (tělesa nenulové char. a netělesa) není axiomatizovatelná. Sporem: $\overline{K} = M(S)$. Potom $S' = S \cup T_0$ má model, neboť každá konečná část má model: těleso charakteristiky větší než jakékoliv p z axiomu T_0 tvaru $\neg p1 = 0$. Je-li \mathcal{A} je model S', potom $\mathcal{A} \in M(S) = \overline{K}$. Zároveň ale $\mathcal{A} \in M(T_0) = K$, spor. \square

Otevřená axiomatizovatelnost

Tvrzení: Je-li T otevřeně axiomatizovatelná, potom je každá podstruktura modelu T také modelem T.

Důkaz: Buď T' otevřená axiomatizace T, \mathcal{A} model T', $\mathcal{B} \subseteq \mathcal{A}$. Pro každou $\varphi \in T'$ platí $\mathcal{B} \models \varphi$ (φ je otevřená), tedy i $\mathcal{B} \models T'$. \square

Poznámka: Platí i obráceně, je-li každá podstruktura modelu také model, potom je otevřeně axiomatizovatelná. (Důkaz neuvedeme.)

- DeLO není otevřeně axiomatizovatelná, např. žádná konečná podstruktura modelu DeLO není hustá
- teorie těles není otevřeně axiomatizovatelná, podstruktura $\mathbb{Z}\subseteq\mathbb{Q}$ není těleso, nemá inverzní prvek k 2 vůči násobení

Kapitola 10:

Nerozhodnutelnost a neúplnost

Nerozhodnutelnost a neúplnost

Jak lze s teoriemi pracovat algoritmicky?

+ zlatý hřeb přednášky: Gödelovy věty o neúplnosti (1931)

- ukazují limity formálního přístupu
- zastavily program formalizace matematiky
- pojem algoritmu budeme chápat jen intuitivně
- technické podrobnosti důkazů vynecháme

Typicky potřebujeme spočetný jazyk.

10.1 Rekurzivní axiomatizace a

rozhodnutelnost

Rekurzivní axiomatizace

- v dokazování povolujeme nekonečné teorie, jak jsou zadané?
- pro ověření že daný důkaz (např. tablo, rezoluční zamítnutí) je korektní potřebujeme algoritmický přístup ke všem axiomům
- mohli bychom požadovat enumerátor pro T, tj. algoritmus, který vypisuje axiomy z T, a každý axiom někdy vypíše
- ale kdyby byl v důkazu chybný axiom, nikdy bychom se to nedozvěděli: stále bychom čekali, zda ho enumerátor vypíše
- proto požadujeme silnější vlastnost:

T je rekurzivně axiomatizovaná, pokud existuje algoritmus, který pro každou vstupní formuli φ doběhne a odpoví, zda $\varphi \in \mathcal{T}$. (ekvivalentní enumerátoru vypisujícímu axiomy v lexikograf. pořadí)

Rozhodnutelnost

Můžeme v dané teorii 'algoritmicky rozhodovat pravdu'?

- T je rozhodnutelná, pokud existuje algoritmus, který pro každou vstupní formuli φ doběhne a odpoví, zda $T \models \varphi$,
- *T* je <u>částečně rozhodnutelná</u>, existuje-li algoritmus, který:
 - pokud $T \models \varphi$, doběhne a odpoví "ano"
 - pokud $T \not\models \varphi$, buď nedoběhne, nebo doběhne a odpoví "ne"

Tvrzení: Je-li T je rekurzivně axiomatizovaná, potom:

- (i) T je část. rozhod. (ii) je-li navíc kompletní, je rozhodnutelná
- **Důkaz:** (i) Algoritmus konstruuje systematické tablo z T pro $F\varphi$; stačí enumerátor pro T, nebo postupně generovat vš. sentence a testovat, jsou-li v T. Je-li $T \models \varphi$, konstrukce skončí, ověříme, že je tablo sporné. (Jinak skončit nemusí.)
- (ii) Víme, že buď $T \vdash \varphi$ nebo $T \vdash \neg \varphi$. Paralelně konstruujeme tablo pro $F\varphi$ a pro $T\varphi$ (důkaz a zamítnutí φ z T). Jedna z konstrukcí po konečně mnoha krocích skončí.

Rekurzivně spočetná kompletace

T má rekurzivně spočetnou kompletaci, je-li (nějaká) množina až na \sim všech jednoduchých kompletních extenzí T rekurzivně spočetná, tj. existuje algoritmus, který pro vstup (i,j) vypíše i-tý axiom j-té extenze (v nějakém uspořádání), nebo odpoví, že už neexistuje.

Tvrzení: Je-li T rekurzivně axiomatizovaná a má rekurzivně spočetnou kompletaci, potom je rozhodnutelná.

Důkaz: Buď $T \models \varphi$, nebo existuje protipříklad $\mathcal{A} \not\models \varphi$, tj. kompl. jedn. extenze T_i , že $T_i \not\models \varphi$. Kompletnost T_i dává $T_i \models \neg \varphi$.

Algoritmus paralelně konstruuje tablo důkaz φ z T a (postupně) tablo důkazy $\neg \varphi$ ze všech kompletních jedn. extenzí T_1, T_2, \ldots (Je-li jich nekonečně mnoho, uděláme dovetailing: 1. krok 1. tabla, potom 2. krok 1., 1. krok 2., 3. krok 1., 2. krok 2., 1. krok 3., atd.)

Alespoň jedno z tabel je sporné, můžeme předpokládat konečné, algoritmus ho po konečně mnoha krocích zkonstruuje.

Příklady

Následující teorie jsou rekurzivně axiomatizované a mají rekurzivně spočetnou kompletaci, tedy jsou rozhodnutelné:

- (a) Teorie čisté rovnosti
- (b) Teorie unárního predikátu ($T = \emptyset$, $L = \langle U \rangle$ s rovností)
- (c) Teorie hustých lineárních uspořádání DeLO*
- (d) Teorie Booleových algeber (Alfred Tarski 1940),
- (e) Teorie algebraicky uzavřených těles (Tarski 1949),
- (f) Teorie komutativních grup (Wanda Szmielew 1955).

Rekurzivní axiomatizovatelnost

Kdy lze třídu struktur 'efektivně (algoritmicky) popsat'?

 $K \subseteq M_L$ je rek. axiomatizovatelná, pokud existuje rek. axiomatizovaná T, že $K = M_L(T)$. T' je rek. axiomatizovatelná, platí-li to pro třídu jejích modelů (tj. je-li ekvivalentní rek. axiomatizované teorii).

(podobně lze definovat rek. spočetnou axiomatizovatelnost)

Tvrzení: Je-li $\mathcal A$ konečná struktura v konečném jazyce s rovností, potom je teorie $\mathsf{Th}(\mathcal A)$ rekurzivně axiomatizovatelná.

(z toho plyne i rozhodnutelnost Th(\mathcal{A}), ale $\mathcal{A} \models \varphi$ lze ověřit přímo)

Důkaz: Buď $A = \{a_1, \ldots, a_n\}$. Th(A) axiomatizujeme sentencí "existuje právě n prvků a_1, \ldots, a_n splňujících právě ty základní vztahy o funkčních hodnotách a relacích, které platí v A".

Např. je-li $f^{\mathcal{A}}(a_4, a_2) = a_{17}$, přidej atom. formuli $f(x_{a_4}, x_{a_2}) = x_{a_{17}}$, je-li $(a_3, a_3, a_1) \notin R^{\mathcal{A}}$ přidej $\neg R(x_{a_3}, x_{a_3}, x_{a_1})$.

Příklady

Pro následující struktury je $\mathsf{Th}(\mathcal{A})$ rekurzivně axiomatizovatelná:

- $\langle \mathbb{Z}, \leq \rangle$, jde o tzv. teorii diskrétních lineárních uspořádání
- $\langle \mathbb{Q}, \leq \rangle$, jde o teorii DeLO
- $\langle \mathbb{N}, S, 0 \rangle$, teorie následníka s nulou
- $\langle \mathbb{N}, S, +, 0 \rangle$, Presburgerova aritmetika
- $\langle \mathbb{R}, +, -, \cdot, 0, 1 \rangle$, teorie reálně uzavřených těles, znamená že lze algoritmicky rozhodovat Euklid. geometrii (Tarski, 1949)
- $\langle \mathbb{C}, +, -, \cdot, 0, 1 \rangle$, teorie algebraicky uzavřených těles char. 0

Důsledek: Pro struktury výše platí, že $\mathsf{Th}(\mathcal{A})$ je rozhodnutelná. **Důkaz:** $\mathsf{Th}(\mathcal{A})$ je vždy kompletní.

Teorie standardního modelu aritmetiky $\underline{\mathbb{N}} = \langle \mathbb{N}, S, +, \cdot, 0, \leq \rangle$ ale není rekurzivně axiomatizovatelná (viz První Gödelova věta o neúplnosti).