ADAMAS UNIVERSITY PURSUE EXCELLENCE	ADAMAS UNIVERSITY END SEMESTER EXAMINATION (Academic Session: 2020 – 21)		
Name of the Program:	B.Tech	Semester:	II
Paper Title:	Engineering mathematics II	Paper Code:	MTH11502
Maximum Marks:	50	Time Duration:	3 Hrs
Total No. of Questions:	17	Total No of	

1. At top sheet, clearly mention Name, Univ. Roll No., Enrolment No., Paper Name & Code, Date of Exam.

Pages:

- 2. All parts of a Question should be answered consecutively. Each Answer should start from a fresh page.
- 3. Assumptions made if any, should be stated clearly at the beginning of your answer.

	Group A		
	Answer All the Questions $(5 \times 1 = 5)$		
1	What is Cayley-Hamilton theorem.	R	CO1
2	Define basis of a vector space.	R	CO2
3	Define analytic function.	R	CO3
4	Define periodic function with an example.	R	CO4
5	Find the Z-transform of $f(n) = n a^n$.	R	CO5
	Group B		
	Answer Allthe Questions $(5 \times 2 = 10)$		
6 a)	What is the value of a for which the following system of	R	CO1
	equations has unique solution?		
	x + y + z = 1		
	x + 2y - z = 2		
	5x + 7y + az = 4		
	(OR)		
6 b)	Find whether the following two matrices are similar or not:	R	CO1
	$A = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \qquad B = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$		
7 a)	Show that the following vectors are linearly independent:	U	CO2
,	(1,2,0),(2,3,4) and $(1,5,-2)$		
	(OR)		•
7 b)	Let the vector addition in $\mathbb{R}^2 = \{(x, y) x, y \in \mathbb{R}\}$ be defined	U	CO2
,	$by(x_1, y_1) + (x_2, y_2) = (x_1 + x_2, y_1 + y_2)$. Show that the first		
	five conditions of the vector space related to vector addition are		
	satisfied.		
8 a)	Find the singularity of the complex valued function $f(z) =$	R	CO3
	$\frac{e^z}{(z-2)^2} \text{ at } z = 2.$		
	()		
	(OR)		T
8 b)	Find the value of the integral $\oint_C \frac{z^2-z+1}{z-1} dz$ where C is the circle	R	CO3
	$ z = \frac{1}{2}$.		

9 a)	Explain convergence of Fourier Series.	U	CO4
	(OR)		
9 b)	Construct half-range Cosine series of a function $f(x)$ defined in an interval $(0, T)$	AP	CO4
10 a)	Find the Fourier sine transforms of $f(x) = 5e^{-3x} - 7e^{-4x}$.	R	CO5
	(OR)		
10 b)	Find the function whose Fourier sine transform is $f_S(s) = \frac{e^{-as}}{s}$	R	CO5
	Group C		
	Answer Allthe Questions (7 x 5 = 35)		
11 a)	Find the eigen values and eigen vectors of the following matrix: $A = \begin{pmatrix} 1 & 1 & 1 \\ -1 & -1 & -1 \\ 0 & 0 & 1 \end{pmatrix}$	R	CO1
	(OR)		
11 b)	Use Cayley-Hamilton theorem to find inverse of the following matrix (if exist): $A = \begin{pmatrix} 1 & 0 & 0 \\ 1 & 2 & 1 \\ 2 & 3 & 2 \end{pmatrix}$	R	CO1
12 a)	Express $(4,3,10)$ as linear combination of the vectors $(1,2,0)$, $(2,3,4)$ and $(1,5,-2)$.	R	CO2
	(OR)		
12 b)	Show that the following set of vectors constitute a basis for the vector space \mathbb{R}^3 with usual vector addition and scaler multiplication: $S = \{(1, 1, 0), (1, 0, 1), (0, 1, 1)\}$	U	CO2
13 a)	Show that the complex valued function $f(z) = z ^2$ is analytic only at $z = 0$.	R	CO3
	(OR)		
13 b)	Show that the complex valued function $f(z) = \sqrt{ xy }$ is not differentiable at $z = 0$ but the Cauchy-Riemann equation is satisfied there.	R	CO3
14 a)	Find Fourier Series for $ x $ in the interval $[-\pi, \pi]$.	R	CO4
	(OR)		
14 b)	Find half range sine series of $\pi x - x^2$ in $(0, \pi)$ upto first three terms.	R	CO4
15 a)	Use Laplace transform to find the solution of following ordinary differential equation: $2\frac{d^2y}{dt^2} + 5\frac{dy}{dt} + 2y = e^{-2t}; \ y(0) = 1, y'(0) = 1$	R	CO5
15 h)	Find the 7-transform and ragion of convergence of the sequence	R	CO5
15 b)	Find the Z-transform and region of convergence of the sequence $f[n] = a^n u[n]$, where $u[n]$ is the unit step sequence. (3+2)	K	COS
16 a)	Find the value of $\oint_C \frac{\sin \pi z^2 + \cos \pi z^2}{(z-1)(z-2)} dz$ where <i>C</i> is the circle $ z = 3$ by Cauchy's integral formula.	R	CO3
	(OR)		<u> </u>
	(OAL)		

16 b)	Find the value of $\oint_C \frac{3z^2+z}{z^2-1} dz$ where <i>C</i> is the circle $ z-1 =1$ by Cauchy's integral formula.	R	CO3	
17 a)	Show that Fourier series expansion of $f(x) = \left(\frac{\pi - x}{2}\right)^2$ is $\frac{\pi^2}{12} + \sum_{n=1}^{\infty} \frac{\cos nx}{n^2}$.		CO4	
(OR)				
17 b)	Obtain Fourier series of the function $f(x) = \begin{cases} 0, -\pi < x < 0 \\ \sin x, 0 < x < \pi \end{cases}$	U	CO4	
	Hence show that $\frac{1}{1.3} - \frac{1}{3.5} + \frac{1}{5.7} - \dots = \frac{1}{4}(\pi - 2)$. (3+2)			