Play with TikZ

Just Us

August 23, 2020

1 Chap 4 Trigonometric Functions

1.1 4.2 Graphs of trig functions

fig-4-2-rcircle

exam 4-2-1

exer 4-2-1

fig-4-2-bearings

exam-4-2-2

fig-4-2-ferris

 ${\it fig-4-2-ferris2}$

fig-4-2-ferris3

exam 4-2-3b

 $\exp 4-2-3$ grid

 $\operatorname{exer} 4$ -2-3ans

IGNORE THIS ONE

exam 4-2-4a circle

exam
4-2-4b transformed cosine graph $\,$

 $\exp 4-2-4$ grid

exer4-2-4ans graph

exam
4-2-5 semi-circle graph $\,$

fig-4-2-caut1 angle

fig-4-2-caut2b angle on unit circle

fig-4-2-caut2cos cosine graph

fig-4-2-caut2sin sine graph

exer4-2-5ansa sine graph

exer4-2-5ansb cosine graph

SKIP THIS: fig-4-2-tan slopes It is the figure used in hmwk 2.2.53 hp2-2-53.svg

exam4-2-6a tangent graph

exam
4-2-6b supplementary angles $\,$

exam4-2-6c tangent graph

exam
4-2-6d angles differing by $180~{\rm degrees}$

exam4-2-6d2 angles differing by 180 degrees

Section 4.2 Angle of inclination

Section 4.2 Angle of inclination

y=3/4 x - 3

exam
4-2-7 y= -6/5 x +2

ar4-2-1 y = -6 + 2/3 x

ar4-2-2 y= 4-3/2 x

ar4-2-3 $y = t^2 - 4$

 $ar 4-2-4 \ y = 9 - t^2$

ar4-2-6 $y = \sqrt{4-z}$

 $\operatorname{sq}4\text{-}2\text{-}2$ circle

2 Homework 4.2

hp4-2-1 circle

 $hp 4\text{-}2\text{-}2\ circle$

hp4-2-3 circle

hp4-2-4 circle

hp4-2-5 circle

hp4-2-6 circle

hp4-2-7 circle

hp4-2-8 circle

hp4-2-9 circle

hp4-2-10 circle

hp4-2-11 circle

hp4-2-12 circle

fig-4-2-unitcircle

fig-4-2-circleandgraph

hp4-2-13ans vector

hp4-2-15ans vector

hp4-2-17ans vector

hp4-2-21ans sine graph

hp4-2-23ans sine graph

hp4-2-25ans cosine graph

hp4-2-27 sine graph

hp4-2-28 sine graph

hp4-2-29 cosine graph

hp4-2-30 cosine graph

hp4-2-31ansb cosine graph

fig-4-2-41 ferris wheel and graph

fig-4-2-41ans ferris wheel graph

fig-4-2-42 ferris wheel and graph

fig-4-2-43 circle and cosine graph $\,$

fig-4-2-43ans cosine graph

fig-4-2-44 circle and graph

 $\rightarrow \theta$

 \overline{S}

hp4-2-45 circle on grid

Use this grid for #45 and #46

hp4-2-47 circle on grid

Use this grid for #47 and #48

hp4-2-47ans circle on grid

fig-4-2-sinegraph sine graph

fig-4-2-cosinegraph cosine graph

 $y = \cos(\theta)$

hp4-2-58 grid

hp4-2-59ans tangent graph

3 Stuff for later

On a unit circle

sine graph

 \cos ine graph

tangent graph

part A: law of sines a circumscribing circle

part B: law of sines a circumscribing circle

Exercise not used?