#### **Team Members:**

- 1. Ayelet Bendor
- 2. Varun Gunda
- 3. Chandu Chinta

The document elaborate on the benchmark design, benchmark results in separate tables and graphs to highlight the findings.

We worked in collaboration, each member of the group worked on the different tasks of this assignment.

## **Benchmark Design:**

The benchmark is designed considering the following factors: Usability, reliability. It takes in the parameters of record size, file size, list of files, number of threads and test type (sequential read/write, random read/write), performs the test and gives the throughput in MBPS and IOPS.

We used C++ for this assignment. The assignment can be done using C but considering the extra features that C++ gives over C, we decided to use C++. Since we need to deal with multiple threads, we used thread library in C++.

The code is c style (structural oriented). There is a function for reading and another for writing. The main function parses the arguments, creates threads (and also creates file for write tests), and waits for the threads to return. In the functions used by threads for reading and writing tests, the time taken is measured and is printed to the stdout. Since this code involves multithreading, in order to eliminate any type of dependency between threads, we created another file **MyDiskBenchWrapper.py** which takes the output from the c++ executable, parses it and presents it in human readable format. The user only interacts with **MyDiskBenchWrapper.py** and it calls c++ executable, parses the output and presents it to the user. Although there are multiple ways to access files, we sticked to linux system calls of open, read and write. Since we are dealing with hard disk directly, the linux system calls will be faster that other libraries since all other libraries add overhead on the top of these system calls.

#### Possible Improvements:

The current implementation of MyDiskBench does not have as many features as IOZone does. Some improvements include: Having only one file do everything so that the wrapper is not required, give the output for every thread like IOZone instead of the average, creating histogram plots. Since these are not under the purview of the assignment, these make good useful extensions of this program.

Tables are appended to the end of this sheet.

# Average Throughput and STD

Per each access pattern



This graph highlights the average between writing sequentially to randomly and reading sequentially to randomly, and more importantly we calculated the STD per each access pattern so we can indicate the range of Throughput values.

For example, by looking at WS and WR we notice that their average is close, while STD indicates that the range of values between min to max value is larger. It can be seen that while both averages are fairly close, WS is more "spread out" on the graph and WR is closer together. This type of information helps to analyze the graphs below.

Reading from disk is faster than writing, the throughput overall values are higher than writing and the range between the max and min value is smaller.

There could be a number of reasons for the variation between the two operations, the main reason is when concurrently writing to a file.

POSIX file system avoids race conditions between threads when more than one thread wishes to write to a shared file by implementing a lock mechanism, which causes overhead for threads in the queue. On the other hand, when a thread tries to access a shared file to read only, it can be done in parallel with other threads.



Concurrency and Data Record

The graph above represents the throughput of sequential writing to the disk of iozone and in a column next to it, MyDiskBench throughput.

While the disk manufacturer estimates the theoretical throughput as 115 MB/sec, we can see that the throughput's values vary, as a result of writing sequentially to disk in different record sets and different number of threads. The closest value to the theoretical throughput (and also the highest throughput) we receive for 1 thread with a record size of 1MB.

We can also notice a trend on the graph, the throughput of 16MB and 1MB decreases as we add more threads, it peaks at 16MB with 12 threads.

Another noticeable trend on the graph is when writing in blocks of 64 KB the throughput is very low. When writing a big data set in significantly small records, there's OS overhead (trapping and returning from a larger system calls) and hardware overhead (moving more frequently the head to write).

## Sequential Reading



Concurrency and Data Record

The graph above represents the throughput of sequential writing to the disk of iozone and in a column next to it, MyDiskBench throughput.

Reading operation throughput is also affected by the reading record size, however, the deviation between the three record sizes is not far off from one another, 64KB throughput value is by little smaller than the other two record sizes. We also notice the same tread as the above graph, the throughput decreases up until running with 12 treads. One of the possible explanations is that threads share the same ALU, when it gets full threads will take turns. On the opposite side, the smaller the data is, it can fit into the cache.

Random i/o access pattern throughput generally is lower than sequential i/o access. With each writing/reading to the disk, the disk performs a seek operation to reach the requested data block. The smaller the data record is, the more seek operation the disk will perform and will add additional time to it's latency.

The following two graphs below showcase the throughput of random writing and reading to the disk of iozone and in a column next to it, MyDiskBench throughput.



Writing randomly to the disk has the highest throughput when writing in blocks of 16MB with one thread, then as we add more threads we see a trend fluctuation of the throughput, and the lowest throughput is around 8 and 12 threads.



Similarly to sequential read, random read average throughput is higher than writing randomly. In random access we notice that the

We also notice that writing/reading in blocks of 64KB throughput is slowly increasing as we add more threads. Previously when we wrote sequentionaly, 64KB's throughput variant was small regardless of the number of threads.

For smaller data records the throughput is higher when using multithreading. Random access to disk is using a seek function to find the stored data on the disk. While sequential access looks for the data ones, random access.

The two graphs below showcase the IOPS for random access to disk and record size of 4KB. The average IOPS by the manufacturer is 82.23 IOPS/sec. We can see that we get a close output when the concurrency is one, as we add more threads, we increase the throughput. We've seen a similar pattern for random access with small data records (64KB).

Average IOPS = 1/(average latency in ms + average seek time in ms) = <math>1/(0.00416 + (0.0075 + 0.0085)/2) = 82.23

Where average latency = 4.16 ms

Average seek time = (average read time + average write time)/2 = (7.5+8.5)/2 ms



# Random Read (Data record - 4KB)



### **TABLES:**

### Table 1a:

| Workload | Concurrency | Record | MyDiskBench | lozone     | Theoretical | MyDiskBench   | IOZone        |
|----------|-------------|--------|-------------|------------|-------------|---------------|---------------|
|          |             | size   | Measured    | Measured   | Throughput  | Efficiency(%) | Efficiency(%) |
|          |             |        | Throughput  | throughput | (MS/sec)    | , ,           | , ,           |
|          |             |        | (MB/sec)    | MB/Sec     | , , ,       |               |               |
| WS       | 1           | 64KB   | 78.1071227  | 6.88884    | 115         | 67.91923713   | 5.990295652   |
| WS       | 1           | 1MB    | 104.9675052 | 101.54698  | 115         | 91.27609146   | 88.30172174   |
| WS       | 1           | 16MB   | 80.59057783 | 91.22655   | 115         | 70.07876333   | 79.32743478   |
| WS       | 2           | 64KB   | 7.084745036 | 7.43352    | 115         | 6.160647857   | 6.463930435   |
| WS       | 2           | 1MB    | 52.19483353 | 53.08798   | 115         | 45.38681176   | 46.16346087   |
| WS       | 2           | 16MB   | 80.99599766 | 83.65636   | 115         | 70.43130231   | 72.74466087   |
| WS       | 4           | 64KB   | 6.845327028 | 7.05844    | 115         | 5.952458285   | 6.137773913   |
| WS       | 4           | 1MB    | 47.91898696 | 50.02704   | 115         | 41.66868432   | 43.50177391   |
| WS       | 4           | 16MB   | 59.62848658 | 55.14828   | 115         | 51.85085789   | 47.95502609   |
| WS       | 8           | 64KB   | 7.151637054 | 7.11496    | 115         | 6.21881483    | 6.186921739   |
| WS       | 8           | 1MB    | 44.81930031 | 47.58264   | 115         | 38.97330462   | 41.3762087    |
| WS       | 8           | 16MB   | 51.38086063 | 46.81464   | 115         | 44.67900924   | 40.70838261   |
| WS       | 12          | 64KB   | 7.536787842 | 6.831      | 115         | 6.553728558   | 5.94          |
| WS       | 12          | 1MB    | 31.49519114 | 38.91072   | 115         | 27.38712273   | 33.8354087    |
| WS       | 12          | 16MB   | 87.17193472 | 72.75312   | 115         | 75.80168237   | 63.26358261   |
| WS       | 24          | 64KB   | 8.830532255 | 7.42296    | 115         | 7.6787237     | 6.454747826   |
| WS       | 24          | 64KB   | 48.87781501 | 44.66592   | 115         | 42.50244783   | 38.83993043   |
| WS       | 24          | 1MB    | 58.98753427 | 59.2008    | 115         | 51.29350807   | 51.47895652   |
| WS       | 48          | 16MB   | 10.47216796 | 7.46688    | 115         | 9.106233012   | 6.49293913    |
| WS       | 48          | 64KB   | 69.35742781 | 57.144     | 115         | 60.3108068    | 49.69043478   |
| WS       | 48          | 1MB    | 59.75863115 | 53.82864   | 115         | 51.96402709   | 46.80751304   |

Table 1b:

| Workload | Concurrency | Record | MyDiskBench | lozone     | Theoretical | MyDiskBench   | IOZone        |
|----------|-------------|--------|-------------|------------|-------------|---------------|---------------|
|          | ,           | size   | Measured    | Measured   | Throughput  | Efficiency(%) | Efficiency(%) |
|          |             |        | Throughput  | throughput | (MS/sec)    |               |               |
|          |             |        | (MB/sec)    | MB/Sec     |             |               |               |
| RS       | 1           | 64KB   | 82.18496432 | 96.86175   | 115         | 71.46518637   | 84.2276087    |
| RS       | 1           | 1MB    | 87.57600896 | 102.00809  | 115         | 76.15305127   | 88.70268696   |
| RS       | 1           | 16MB   | 84.82157649 | 97.63425   | 115         | 73.7578926    | 84.89934783   |
| RS       | 2           | 64KB   | 71.47443951 | 80.48238   | 115         | 62.15168653   | 69.98467826   |
| RS       | 2           | 1MB    | 80.28790742 | 83.528     | 115         | 69.81557167   | 72.63304348   |
| RS       | 2           | 16MB   | 81.0857894  | 91.20068   | 115         | 70.50938209   | 79.30493913   |
| RS       | 4           | 64KB   | 66.76446618 | 79.15296   | 115         | 58.05605755   | 68.82866087   |
| RS       | 4           | 1MB    | 73.91100365 | 79.93828   | 115         | 64.27043795   | 69.51154783   |
| RS       | 4           | 16MB   | 75.76149925 | 76.59848   | 115         | 65.87956456   | 66.60737391   |
| RS       | 8           | 64KB   | 5.564370639 | 61.19264   | 115         | 4.838583165   | 5.32109913    |
| RS       | 8           | 1MB    | 62.4622573  | 69.14248   | 115         | 54.31500635   | 60.12389565   |
| RS       | 8           | 16MB   | 60.9977662  | 71.26824   | 115         | 53.04153582   | 61.97238261   |
| RS       | 12          | 64KB   | 53.47677364 | 44.36496   | 115         | 46.50154229   | 38.57822609   |
| RS       | 12          | 1MB    | 47.15916679 | 50.69784   | 115         | 41.00797112   | 44.08507826   |
| RS       | 12          | 16MB   | 100.0948164 | 77.01012   | 115         | 87.03897076   | 66.96532174   |
| RS       | 24          | 64KB   | 46.1367251  | 50.0904    | 115         | 40.11889139   | 43.55686957   |
| RS       | 24          | 1MB    | 77.50353837 | 59.154     | 115         | 67.39438119   | 51.43826087   |
| RS       | 24          | 16MB   | 92.81415416 | 68.08392   | 115         | 80.70796014   | 59.2034087    |
| RS       | 48          | 64KB   | 42.06047014 | 53.44224   | 115         | 36.57432186   | 46.47151304   |
| RS       | 48          | 1MB    | 67.45584738 | 57.144     | 115         | 60.3108068    | 49.69043478   |
| RS       | 48          | 16MB   | 83.34893413 | 53.82864   | 115         | 51.96402709   | 46.80751304   |

Table 1c:

| Workload | Concurrency | Record | MyDiskBench | lozone     | Theoretical | MyDiskBench   | IOZone        |
|----------|-------------|--------|-------------|------------|-------------|---------------|---------------|
|          |             | size   | Measured    | Measured   | Throughput  | Efficiency(%) | Efficiency(%) |
|          |             |        | Throughput  | throughput | (MS/sec)    |               |               |
|          |             |        | (MB/sec)    | MB/Sec     |             |               |               |
| WR       | 1           | 64KB   | 7.316302924 | 7.65302    | 115         | 6.362002542   | 6.6548        |
| WR       | 1           | 1MB    | 52.74326802 | 55.71789   | 115         | 45.86371132   | 48.45033913   |
| WR       | 1           | 16MB   | 77.4215011  | 90.54823   | 115         | 67.32304443   | 78.7375913    |
| WR       | 2           | 64KB   | 8.180024444 | 8.21322    | 115         | 7.113064734   | 7.141930435   |
| WR       | 2           | 1MB    | 49.9409877  | 50.78588   | 115         | 43.42694583   | 44.16163478   |
| WR       | 2           | 16MB   | 69.26828608 | 63.3854    | 115         | 60.23329225   | 55.11773913   |
| WR       | 4           | 64KB   | 9.08566612  | 10.40672   | 115         | 7.900579234   | 9.049321739   |
| WR       | 4           | 1MB    | 52.9741027  | 55.98288   | 115         | 46.06443713   | 48.68076522   |
| WR       | 4           | 16MB   | 57.65311293 | 50.37276   | 115         | 50.13314168   | 43.8024       |
| WR       | 8           | 64KB   | 14.50815375 | 11.32816   | 115         | 12.61578587   | 9.850573913   |
| WR       | 8           | 1MB    | 50.96885624 | 56.01928   | 115         | 44.32074455   | 48.71241739   |
| WR       | 8           | 16MB   | 38.59825026 | 41.39192   | 115         | 33.56369588   | 35.99297391   |
| WR       | 12          | 64KB   | 15.41043063 | 10.953     | 115         | 13.40037446   | 9.524347826   |
| WR       | 12          | 1MB    | 34.09174141 | 42.204     | 115         | 29.64499253   | 36.69913043   |
| WR       | 12          | 16MB   | 52.67760687 | 44.18004   | 115         | 45.80661467   | 38.41742609   |
| WR       | 24          | 64KB   | 18.45031748 | 13.51632   | 115         | 16.04375433   | 11.75332174   |
| WR       | 24          | 1MB    | 61.33279028 | 50.28672   | 115         | 53.33286112   | 43.72758261   |
| WR       | 24          | 16MB   | 71.41761169 | 41.58168   | 115         | 62.10227104   | 36.15798261   |
| WR       | 48          | 64KB   | 23.47390935 | 14.6184    | 115         | 20.41209508   | 12.71165217   |
| WR       | 48          | 1MB    | 64.03201601 | 51.384     | 115         | 55.68001392   | 44.68173913   |
| WR       | 48          | 16MB   | 56.98861897 | 41.27472   | 115         | 49.55532085   | 35.89106087   |

Table 1d:

| Workload | Concurrency | Record | MyDiskBench | lozone     | Theoretical | MyDiskBench   | IOZone        |
|----------|-------------|--------|-------------|------------|-------------|---------------|---------------|
|          | ,           | size   | Measured    | Measured   | Throughput  | Efficiency(%) | Efficiency(%) |
|          |             |        | Throughput  | throughput | (MS/sec)    |               |               |
|          |             |        | (MB/sec)    | MB/Sec     |             |               |               |
| RR       | 1           | 64KB   | 8.178391157 | 8.49395    | 115         | 7.111644484   | 7.386043478   |
| RR       | 1           | 1MB    | 53.21941053 | 58.91894   | 115         | 46.27774829   | 51.23386087   |
| RR       | 1           | 16MB   | 81.48584343 | 92.49944   | 115         | 70.85725515   | 80.43429565   |
| RR       | 2           | 64KB   | 9.109785368 | 9.71184    | 115         | 7.921552494   | 8.445078261   |
| RR       | 2           | 1MB    | 52.88081676 | 54.68926   | 115         | 45.98331892   | 47.55587826   |
| RR       | 2           | 16MB   | 78.1071227  | 87.39658   | 115         | 67.91923713   | 75.99702609   |
| RR       | 4           | 64KB   | 11.40481987 | 10.61212   | 115         | 9.917234672   | 9.227930435   |
| RR       | 4           | 1MB    | 55.18371218 | 55.45      | 115         | 47.98583668   | 48.2173913    |
| RR       | 4           | 16MB   | 70.63676561 | 76.48644   | 115         | 61.42327444   | 66.50994783   |
| RR       | 8           | 64KB   | 15.03746149 | 15.1468    | 115         | 13.07605347   | 13.17113043   |
| RR       | 8           | 1MB    | 51.6717632  | 52.84056   | 115         | 44.931968     | 45.94831304   |
| RR       | 8           | 16MB   | 57.18913183 | 69.54912   | 115         | 49.72967985   | 60.47749565   |
| RR       | 12          | 64KB   | 16.61566221 | 12.34764   | 115         | 14.44840192   | 10.73707826   |
| RR       | 12          | 1MB    | 43.85345068 | 45.84384   | 115         | 38.13343537   | 39.8642087    |
| RR       | 12          | 16MB   | 88.73483536 | 73.91256   | 115         | 77.1607264    | 64.2717913    |
| RR       | 24          | 64KB   | 20.16911329 | 15.56232   | 115         | 17.53835938   | 13.53245217   |
| RR       | 24          | 1MB    | 67.70740351 | 54.46368   | 115         | 58.87600306   | 47.35972174   |
| RR       | 24          | 16MB   | 84.28261013 | 66.462     | 115         | 73.2892262    | 57.79304348   |
| RR       | 48          | 64KB   | 21.79145324 | 17.48304   | 115         | 18.94908977   | 15.20264348   |
| RR       | 48          | 1MB    | 62.79588883 | 56.79792   | 115         | 54.60512072   | 49.38949565   |
| RR       | 48          | 16MB   | 81.30468614 | 70.43808   | 115         | 70.69972707   | 61.25050435   |

### Table 2a:

| Workl | Concurr | Record | MyDiskBench       | IOZone     | Theoretical | MyDiskBench   | IOZone        |
|-------|---------|--------|-------------------|------------|-------------|---------------|---------------|
| oad   | ency    | Size   | Measured          | Measured   | Throughput  | Efficiency(%) | Efficiency(%) |
|       |         |        | Throughput (IOPS) | Throughput | (ops/sec)   |               |               |
|       |         |        |                   | (IOPS)     |             |               |               |
| WR    | 1       | 4KB    | 491.7946038       | 148.69     | 82.23       | 598.0719978   | 180.8220844   |
| WR    | 2       | 4KB    | 522.6451699       | 174.58     | 82.23       | 635.5894077   | 212.3069439   |
| WR    | 4       | 4KB    | 491.1379076       | 219.48     | 82.23       | 597.2733888   | 266.9098869   |
| WR    | 8       | 4KB    | 487.0114058       | 284.48     | 82.23       | 592.2551451   | 345.9564636   |
| WR    | 12      | 4KB    | 482.300535        | 541.2      | 82.23       | 586.5262495   | 658.1539584   |
| WR    | 24      | 4KB    | 451.0176763       | 549.6      | 82.23       | 548.4831282   | 668.3692083   |
| WR    | 48      | 4KB    | 614.2823094       | 448.8      | 82.23       | 747.0294411   | 545.7862094   |

### Table 2b:

| Workl | Concurr | Reco | MyDiskBench       | IOZone               | Theoretical | MyDiskBench   | IOZone        |
|-------|---------|------|-------------------|----------------------|-------------|---------------|---------------|
| oad   | ency    | rd   | Measured          | Measured             | Throughput  | Efficiency(%) | Efficiency(%) |
|       |         | Size | Throughput (IOPS) | Throughput<br>(IOPS) | (ops/sec)   |               |               |
| RR    | 1       | 4KB  | 226.4909218       | 164.1                | 82.23       | 275.4359      | 199.5622      |
| RR    | 2       | 4KB  | 326.143819        | 221.8                | 82.23       | 396.6239      | 269.7312      |
| RR    | 4       | 4KB  | 415.1761842       | 307.08               | 82.23       | 504.8962      | 373.4404      |
| RR    | 8       | 4KB  | 466.6921792       | 338                  | 82.23       | 567.5449      | 411.0422      |
| RR    | 12      | 4KB  | 484.7497722       | 506.52               | 82.23       | 589.5048      | 615.9796      |
| RR    | 24      | 4KB  | 4907.349246       | 441.84               | 82.23       | 5967.833      | 537.3221      |
| RR    | 48      | 4KB  | 580.1810165       | 468.96               | 82.23       | 705.5588      | 570.3028      |