B12

鸭大学子1

(1中山大学物理学院,广东广州 510275)

温度传感器是利用一些金属、半导体等材料与温度相关的特性制成的。温度传感器的类型很多,包括金属电阻温度传感器、热敏电阻温度传感器、热电偶温度传感器、PN 结温度传感器、电压型集成电路温度传感器和电流型集成电路温度传感器等等。本实验通过搭建基于电压型集成电路温度传感器的温度测控电路,学习了温度传感器测量和控制温度的基本原理,并测试了搭建的测控电路的有效性。

: 温度传感器; LM35

1

2

在大一的实验 A4(温度传感器温度特性的测量) [1] 中已经了解了多种温度传感器的特性和工作原理, 本实验将在此基础上,利用温度传感器,设计并组装数 字式温度计和温度控制仪。由于这一实验的巨大成就, 密立根获得了 1923 年的诺贝尔物理学奖。

80 多年来,显示出该实验在工业应用和科学研究中的广泛应用前景。

笔者利用大学实验室常用的密立根油滴实验仪重 做了密立根油滴实验,并尝试由实验结果验证电荷分 布的不连续性,将在本文中详述。 温度的测控,包含温度的测量和控制,其中温度的测量往往转化为电信号输出,而温度的控制通常使用电磁继电器实现。本实验设计的温度测控仪器主要包括两个部分,一个是温度传感器,另一个是温度测控电路。

2.1

基于以上三种温度测控仪,我们相应得也有三种 温度测控仪电路。

2.1.1 AD590

这里本来并不需要文字。

A. 如果就需要这样的效果,那很好。

B. 但段落后面如果需要换行,就是个棘手的问题。

小段落后面的正文也是一样,

紧跟着段落标题。

2.2

本实验涉及三种温度测控仪的组装,分别采用三 种不同的温度传感器,包括 1

如 PT100 或 Cu50, PT100 即铂金属电阻, 在 0°C 时的电阻值为 $R_0=100\Omega$; Cu50 即铜金属电阻, 在 0°C 时的电阻值为 $R_0=50\Omega$ 。

2.3

本实验中笔者选择了"基于 LM35 电压型温度传感器的数显温度测控仪"电路进行搭建和测试。

- (1) 根据图 5 搭建电路。
- (2) 测量数字电压读数与温度之间的对应关系,作电压与温度关系曲线。
- (3) 利用组装的温度测控仪电路,将加热阱的温度控制 在 $75^{\circ}C_{\circ}$

3

3.1

Α.

直流稳压电源用于提供测控仪电路的 ±12V 电源,数字万用表的直流电压测量功能可用于替代数字电压表,用于指示温度测控仪的当前温度。各仪器使用方法请查阅教材。

图 1: 直流稳压电源

В.

图3a为致冷/加热温度控制仪,从左到右分成三个部分,分别为(1)数字电压表(有20V和2V两个量程);(2)加热和致冷功率控制器;(3)温度设置和测量装置风扇用于加快空气流动。图3b的控温阱分为致冷阱和加热阱两种。制冷阱用于0°C至室温范围的实验,加热阱用于室温-100°C范围。

4

4.1

将测控电路接入加热阱,记录温度传感器温度为 $30^{\circ}C$ $80^{\circ}C$ 对应的数字电压表示数。分别记录温度上升时和温度下降时的电压值,取平均以降低误差,如表1所示。

t/°C	上升/mV	下降/mV	平均 V ₀ /mV
30	271	280	275.5
32.9	299	313	306
37.8	336	363	349.5
40.9	364	396	380
42.7	387	414	400.5
45	414	438	426
50	460	489	474.5
53	475	518	496.5
55	494	538	516
58	522	568	545
60	540	588	564
63	569	617	593
65	589	636	612.5
70	639	684	661.5
73	669	711	690
75	690	729	709.5
78	721	753	737
80	748	768	758

表 1: 数据记录

5

美国物理学家密立根 (Robert a. Millikan) 在 1909 ~ 1917 年期间所做的测量微小油滴上所带电荷的工作,即油滴实验,是物理学发展史上一个具有重要意义的实验。这一实验的设计思想简明巧妙、原理清楚、设备简单、结果准确。本实验通过重做密立根的油滴实验,通过"倒过来验证"的方法从实验上验证了电荷分布的不连续性。采用的仪器是专用的密立根油滴实验仪,操作更加方便和清晰。

1 需要标号、单个公式

$$\eta' = \eta/[1 + b/(pa)] \tag{1}$$

图 2: 基于 PT100 (或 Cu50) 温度传感器的数显温度测控仪

图 3: 温度控制设备

	油滴序号	Q/C	Q/e	n	e/C
静态法	1	1.713E-19	1.069	1	1.713E-19
	2	5.681E-19	3.546	4	1.420E-19
	3	5.710E-19	3.564	4	1.428E-19
	4	1.292E-18	8.062	8	1.615E-19
	5	9.490E-19	5.923	6	1.582E-19
		平均值:	1.551E-19	相对误差:	3.169%
动态法	6	1.253E-18	7.821	8	1.566E-19
	7	3.174E-19	1.981	2	1.587E-19
	8	1.234E-18	7.701	8	1.542E-19
	9	9.402E-19	5.868	6	1.567E-19
	10	6.309E-19	3.938	4	1.577E-19
		平均值:	1.568E-19	相对误差:	2.133%
整体情况		平均值:	1.560E-19	相对误差:	2.651%

表 2: 数据处理

2 需要标号、多个公式、不需要对齐

$$f_{r} = 6\pi a \eta v_{g}$$

$$m = 4\pi a^{3} \rho / 3$$

$$(2)$$

$$C_{1} \cdot \frac{dU_{C_{1}}}{dt} = \frac{1}{R_{1}} \cdot (u_{C_{2}} - u_{C_{1}}) - f(u_{R_{N}})$$

$$C_{2} \cdot \frac{dU_{C_{2}}}{dt} = i_{L} - \frac{1}{R_{1}} \cdot (u_{C_{2}} - u_{C_{1}})$$

$$L \cdot \frac{di_{L}}{dt} = -U_{C_{2}}$$

3 需要标号、多个公式、需要对齐

$$a = b + c + d \tag{4}$$

$$x = y + z$$

(5) [1] 沈韩. 基础物理实验[M]. 北京: 科学出版社, 2015: 213-216 (引用页: 1).

8 带有左边大括号的公式

4 不需要标号,单个公式

$$e = (1.60217733 \pm 0.00000049) \times 10^{-19}$$
C

另一种方法:

$$e = (1.60217733 \pm 0.00000049) \times 10^{-19} \text{C}$$

5 不需要标号,多个公式,不需要对齐/需要对齐

$$f_r = 6\pi a \eta v_g$$
$$m = 4\pi a^3 \rho/3$$

另一种方法:

$$a = b + c + d$$
$$x = y + z$$

6长公式,换行,不对齐

$$x = a + b + c +$$

$$d + e + f + g \quad (6)$$

7长公式,换行,对齐

$$x = a + b + c +$$

$$d + e + f + g$$

Experiment B12: The Design and Assembling of Temperature Sensor

Fohong Wang¹

1 School of Physics, Sun Yat-sen University, Guangzhou 510275, China

Abstract The temperature sensor is made of some metal, semiconductor and other materials with temperature-related characteristics. There are many types of temperature sensors, including metal resistance temperature sentors, thermistor temperature sensors, voltage-type integrated circuit temperature sensors and current-type integrated circuit temperature sensors. In this experiment, by building a temperature measurement and control circuit based on a voltage-type integrated circuit temperature sensor, the basic principles of temperature sensor measurement and control were learned, and the effectiveness of the measurement and control circuit was tested.

Key words: Temperature sensor, LM35