MATH20410 (W25): Analysis in Rn II (accelerated)

Lecturer: Joe Jackson Notes by: Aden Chen

Wednesday 29th January, 2025

Contents

1	Single-Variable Differential Calculus	3
2	Multivariable Differential Calculus	Ģ

1 Single-Variable Differential Calculus

In this chapter, we consider mainly functions of the form $f: I \to \mathbb{R}$, where I is an interval, e.g., (a,b), [a,b], (a,b), (a,∞) , \mathbb{R} . This is the function we have in mind unless otherwise stated.

Definition 1.1 (Differentiability). We say f is **differentiable at** $x \in I$ if the limit

$$f'(x) := \lim_{t \to x} \frac{f(t) - f(x)}{t - x} = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

exists. In this case, we call f'(x) the derivative of f at x. Moreover:

- We say that f is **differentiable** if f'(x) exists for each $x \in I$.
- We say f is **continuously differentiable** $(f \in C^1)$ if $f' : I \to \mathbb{R}$ is continuous.

Example 1.2.

- f(x) = |x|. Differentiable on $\mathbb{R} \setminus \{0\}$.
- $f(x) = \begin{cases} x \sin \frac{1}{x}, & x \neq 0 \\ 0, & x = 0 \end{cases}$. Continuous but not differentiable at 0.
- $f(x) = \begin{cases} x^2 \sin \frac{1}{x}, & x \neq 0 \\ 0, & x = 0 \end{cases}$. Differentiable everywhere (in particular at 0), but $f \notin C^1$.

Proposition 1.3 (Rules for computing derivatives).

- (i) Linearity. (af + bg)' = af' + bg' (if f' and g' exist, such requirements are hereafter omitted).
- (ii) Product rule. (fg)' = f'g + fg'.
- (iii) Quotient rule. $(f/g)' = (f'g fg')/g^2$.
- (iv) Chain rule. $(f \circ g)' = (f' \circ g) \cdot g'$.

¹Low dhigh minus high dlow. Not Haidilao...

Proof. We prove the quotient rule; the remaining are left as exercises. Starting from the definition

$$\left(\frac{f}{g}\right)'(x) = \lim_{t \to x} \frac{\frac{f}{g}(t) - \frac{f}{g}(x)}{t - x}$$

$$= \lim_{t \to x} \frac{\frac{f(t)}{f(t)} + \frac{f(x)}{g(t)} - \frac{f(x)}{g(t)} + \frac{f(x)}{g(x)}}{t - x}.$$

Note that

$$\frac{\frac{f(x)}{g(t)} + \frac{f(x)}{g(x)}}{t - x} = \frac{f(x)}{g(x)g(t)} \frac{g(x) - g(t)}{t - x}$$

and we have

$$\left(\frac{f}{g}\right)'(x) = \frac{f'(x)}{g(x)} - \frac{f(x)g'(x)}{g^2(x)}$$

Theorem 1.4. If f is differentiable at x then f is continuous at x.

Proof. Note that

$$\lim_{t \to x} f(t) - f(x) = \lim_{t \to x} \frac{f(t) - f(x)}{t - x} (t - x) = f'(x) \cdot 0 = 0.$$

1.1 The Mean Value Theorem

Lemma 1.5. Suppose $f:[a,b] \to \mathbb{R}$ has a local maximum or minimum at $x \in (a,b)$. If f'(x) exists, then f'(x) = 0.

Proof. From the definition of the derivative, consider the limits from the left and right; one is non-positive and the other is non-negative.

Theorem 1.6 (Rolle's Theorem). Suppose $f : [a,b] \to \mathbb{R}$ is continuous on [a,b], differentiable on (a,b), and such that f(a) = f(b). Then there exists $x \in (a,b)$ such that f'(x) = 0.

Proof. Consider the global maximum or minimum (exist since f is a continuous function defined on a compact set) and apply the previous lemma. (If both the maximum and minimum is at a or b, f is constant.)

Theorem 1.7 (Mean Value Theorem). Let $f : [a,b] \to \mathbb{R}$ be such that f is continuous on [a,b] and differentiable on (a,b). Then there exists $x \in (a,b)$ such that f(b) - f(a) = f'(x)(b-a).

Proof. Apply Rolle's to
$$\tilde{f} = f - [f(b) - f(a)] \cdot \frac{x-a}{b-a}$$
.

Theorem 1.8. Let $f:(a,b) \to \mathbb{R}$ be differentiable.

- (a) if f' = 0, then f is constant.
- (b) if $f' \ge 0$, then f is increasing.
- (c) if $f' \leq 0$, then f is decreasing.

Proof. Apply the mean value theorem.

Theorem 1.9 (The Intermediate Value Property of Derivatives). Let $f : [a, b] \to \mathbb{R}$ be differentiable² and suppose $f'(a) < \lambda < f'(b)$ Then there exists $x \in (a, b)$ $f'(a) = \lambda$.

Proof (à la Pugh). Slide a small secant of length so small that the slope around a and b is separated also by λ . By continuity of the slope, there exists a secant between a and b with slope λ . Apply the mean value theorem to this slope. \Box **Proof** (à la Joe/Rudin). We start with $\lambda = 0$. Then f'(a), $f'(b) \neq 0$ and the global

min/max of f cannot be at the endpoints. At the global extrema we have the desired result. When $\lambda \neq 0$, consider $\tilde{f} := f - \lambda x$.

Example 1.10. Consider

$$f(x) = \begin{cases} x^2 \sin(1/x), & x \neq 0 \\ 0, & x = 0 \end{cases}.$$

We have

$$f(x) = \begin{cases} 2x \sin(1/x) = \cos(1/x), & x \neq 0 \\ 0, & x = 0 \end{cases}$$

which has the intermediate value property.

Theorem 1.11 (Generalized Mean Value Theorem). Let $f, g : [a, b] \to \mathbb{R}$ be continuous on [a, b] and differentiable on (a, b). Then there exists $x \in (a, b)$ such that

$$(f(a) - f(b))g'(x) = (g(a) - g(b))f'(x).$$

Remark 1.12. When the above is not zero,

$$\frac{f(a) - f(b)}{g(a) - g(b)} = \frac{f'(x)}{g'(x)}.$$

Proof. Define

$$h(t) \coloneqq \big(f(b) - f(a)\big)g(t) - \big(g(b) - g(a)\big)f(t).$$

Note that

$$h(a) = f(b)g(a) - f(a)g(b) = h(b)$$

and apply Rolle's.

1.2 L'Hôpital's Rule

Theorem 1.13 (L'Hôpital's Rule, a particular case). Let $f, g : [a, b] \to \mathbb{R}$ be continuous on [a, b] and differentiable on (a, b). If $g(x) \neq 0$ in a neighborhood of a and f(x) = g(x) = 0, then

$$\lim_{x \to a} \frac{f(x)}{g(x)} = \lim_{x \to a} \frac{f'(x)}{g'(x)},$$

if the last limit exists.

Proof. Consider some small $\delta > 0$. The generalized MVT gives some $x \in (a, a+\delta)$ such that

$$\frac{f(a+\delta)}{g(a+\delta)} = \frac{f'(x)}{g'(x)} \approx \lim_{t \to a} \frac{f'(t)}{g'(t)},$$

where the last approximation follows from the existence of the limit. Note that as $\delta \to 0$, $x \to a$, and the approximation error shrinks to 0.

Refer to Rudin or something for the general case.

1.3 Higher Derivatives

If $f: I \to \mathbb{R}$ is differentiable, then we can define the second derivative f'' := (f')' if f' is differentiable. Higher derivatives can be defined similarly. We usually write $f^{(n)}$ for the n-th derivative of f.

Example 1.14. $L(x) = f(x_0) + f'(x_0)(x - x_0)$ is a (first order) linear approximation of f at x_0 . How good is this approximation? A first answer is

$$f(x) = L(x) + o(|x - x_0|),$$

since we have as $x \to x_0$ that

$$\frac{f(x) - L(x)}{x - x_0} = \frac{f(x) - f(x_0)}{x - x_0} - f'(x_0) \longrightarrow 0.$$

But can we say even more about the quality of the approximation? – Yes, if f is twice differentiable.

Proposition 1.15 (First-order Taylor's Theorem). *Suppose* f' *exists and is continuous on* [a,b] *and* f'' *exists on* (a,b). *Let* $x_0, x \in [a,b]$ *with* $x_0 \neq x$. *Then*

$$f(x) = f(x_0) + f'(x_0)(x - x_0) + \frac{1}{2}f''(y)(x - x_0)^2,$$

where y is between x_0 and x. In particular, we have

$$|f(x) - f(x_0) - f'(x_0)(x - x_0)| \le \frac{1}{2} \sup_{y \in (a,b)} |f''(y)| \cdot |x - x_0|^2.$$

Proof. Find M such that we have

$$f(x) = f(x_0) + f'(x_0)(x - x_0) + \frac{M}{2}(x - x_0)^2.$$

We need only find y such that M = f''(y). Define

$$g(t) := f(t) - f(x_0) - f'(x_0)(t - x_0) - \frac{M}{2}(t - x_0)^2.$$

Note that g''(t) = f''(t) - M, so we need only find a point at which g'' vanishes. Since $g(x_0) = g(x) = 0$, by the MVT there exists y' between x_0 and x such that g(y') = 0. Observe that $g'(x_0) = 0$, and so by the MVT again, there exists y between x_0 and y' (and by extension between x_0 and x) such that g''(y) = 0.

The more general story: given $f : [a, b] \to \mathbb{R}$ and $x_0 \in [a, b]$, we may define

$$P_0(x) := f(x_0),$$

$$P_1(x) := f(x_0) + f'(x_0)(x - x_0),$$

$$P_2(x) := f(x_0) + f'(x_0)(x - x_0) + \frac{1}{2}f''(x_0)(x - x_0)^2,$$

$$\vdots$$

$$P_n(x) := \sum_{k=0}^{n} \frac{f^{(k)}(x_0)}{k!} (x - x_0)^k,$$

when the corresponding derivatives exist. Note that $P_n(x)$ is the unique degree n polynomial such that $P_n^{(k)}(x_0) = f^{(k)}(x_0)$ for k = 1, ..., n.

Theorem 1.16 (Taylor's Theorem). *Let* $f : [a, b] \to \mathbb{R}$ *be such that*

- $f^{(k)}$ exists on [a,b] for $k=1,\ldots,n$; and
- $f^{(n+1)}$ exists on (a,b).

Then, for any $x_0, x \in [a, b]$ with $x_0 \neq x$, there exists y between x_0 and x such that

$$f(x) = P_n(x) + \frac{f^{(n+1)}(y)}{(n+1)!} (x - x_0)^{n+1}.$$

for some y between x_0 and x.

We proof the case n = 2, the same idea can be used to prove the general case.

Proof. Define

$$g(t) = f(t) - P_2(t) - \frac{M}{6}(t - x_0)^3.$$

Since g''' = f''' - M, we need only find y such that g'''(y) = 0. Note that $g(x_0) = g(x) = 0$, and so by the MVT there exists y' between x_0 and x such that g'(y') = 0. Next, note that $g'(x_0) = 0$, and so by the MVT there exists y'' between x_0 and y' such that g''(y'') = 0. Finally, note that $g''(x_0) = 0$, and so by the MVT there exists y between x_0 and y'' such that g'''(y) = 0.

2 Multivariable Differential Calculus

Some remainders about \mathbb{R}^n :

- $\mathbb{R}^n = \{x = (x_1, \dots, x_n) : x_i \in \mathbb{R}\}.$
- \mathbb{R}^n is a vector space, with canonical basis $\{e_i, \dots, e_n\}$.
- \mathbb{R}^n comes with an inner product $\langle x, y \rangle = x \cdot y = \sum x_i y_i$, a norm $|x| = \sqrt{x \cdot x} = (\sum x_i y_i)^{1/2}$, and a metric d(x, y) = |x y|.

2.1 Higher Dimensional Codomains

Consider a function $f : \mathbb{R} \supset I \to \mathbb{R}^n$.

Definition 2.1. f is differentiable at x if the limit

$$f'(x) := \lim_{t \to x} \frac{f(t) - f(x)}{t - x}$$

exists.

Remark 2.2. We may write $f(t) = (f_1(t), \dots, f_n(t))$, and $f'(x) = (f'_1(x), \dots, f'_n(x))$, since a sequence $x \in \mathbb{R}^n$ converges if and only if each of its components converges.

Theorem 2.3. We have the following analog of the MVT:

$$|f(b) - f(a)| \le |f'(t)| \cdot |b - a|.$$

for some t between a and b.

Proof. Assume a < b. Define

$$h(t) := \langle f(b) - f(a), f(t) \rangle$$
.

The MVT gives

$$h(b) - h(a) = h'(t)(b - a) = \langle f(b) - f(a), f'(t) \rangle (b - a)$$

$$\leq (b - a)|f(b) - f(a)||f'(t)|,$$

where the last inequality follows from the Cauchy-Schwarz inequality. Noting that

$$h(b) - h(a) = |f(b) - f(a)|^2$$
,

we have the desired result.

2.2 Higher Dimensional Domain

We next consider functions $f: U \to \mathbb{R}$, where $U \subset \mathbb{R}^n$ is open.

Definition 2.4 (Partial Derivatives).

$$\frac{\partial f}{\partial x_i}(x) = D_i f(x) := \lim_{h \to 0} \frac{f(x + he_i) - f(x)}{h}.$$

Definition 2.5 (Directional Derivatives). Fix $u \in \mathbb{R}^n$.

$$= D_i u f(x) := \lim_{h \to 0} \frac{f(x + hu) - f(x)}{h}.$$

2.2.1 The Derivative

Intuition: A function is differentiable if a first-order Taylor expansion holds. That is, if f is "well-approximated" by a linear function.

Definition 2.6. We denote the set of all linear maps from \mathbb{R}^n to \mathbb{R} as $L(\mathbb{R}^n, \mathbb{R})$.

Definition 2.7 (The Derivative). A function f is differentiable at x if there exists a linear map $T \in L(\mathbb{R}^n, \mathbb{R})$ such that

$$\lim_{h \to 0} \frac{f(x+h) - f(x) - T(h)}{|h|} = 0.$$

In this case we write Df(x) = T. In other words, f(x + h) = f(x) + Df(x)(h) + o(|h|).

Remark 2.8.

• If f is differentiable, then

$$Df: U \longrightarrow L(\mathbb{R}^n, \mathbb{R}).$$

• If is easy to check that Df is well defined, that is, there is at most one T such that the limit holds.

We may think of the linear map $T: \mathbb{R}^n \to \mathbb{R}$ as

$$T(u) = \langle u, v \rangle, \tag{1}$$

where $v := (Te_1, \dots Te_n)$.

Definition 2.9 (The Gradient). If f is differentiable at x, we define $\nabla f(x) = v$, where v satisfies (1). In other words,

$$\lim_{h \to 0} \frac{f(x+h) - f(x) - \langle \nabla f(x), h \rangle}{|h|} = 0.$$

Theorem 2.10. If f is differentiable at x, then $D_u f(x)$ exists for all $u \in \mathbb{R}^n$ and $D_u f(x) = D f(x) u = \langle \nabla f(x), u \rangle$.

Proof. Note that as $t \to 0$, we have

$$\left| \frac{f(x+tu) - f(x)}{t} - Df(x)u \right| = \left| \frac{f(x+tu) - f(x) - Df(x)(tu)}{t} \right|$$
$$= \left| \frac{f(x+tu) - f(x) - Df(x)(tu)}{|tu|} \right| \cdot |u| \longrightarrow 0.$$

Remark 2.11. In particular we have $D_i f(x) = D_{e_i} f(x) = D f(x) e_i = \langle \nabla f(x), e_i \rangle$. In other words, if f is differentiable, then $\nabla f(x) = (D_1 f, \dots, D_n f)$.

Remark 2.12.

- Differentiability holds if and only if the gradient exists.
- Differentiability implies the existence of directional derivatives, which then implies the existence of partial derivatives. The converse implications are not true.

Example 2.13. Consider

$$f(x_1, x_2) := \begin{cases} \frac{x_1 x_2}{x_1^2 + x_2^2}, & x \neq 0 \\ 0, & x = 0 \end{cases}.$$

It is easy to see that $D_1 f(0) = D_2 f(0) = 0$ but $D_{(1,1)} f(0)$ does not exist. Indeed, f is not even continuous on the line t(1,1).

Example 2.14. Consider

$$f(x_1, x_2) := \begin{cases} \frac{x_1^3}{x_1^2 + x_2^2}, & x \neq 0 \\ 0, & x = 0 \end{cases}.$$

Note that

$$D_u f(0) = \lim_{t \to 0} \frac{t^3 u_1^3}{t^2 (u_1^2 + u_2^2)} \cdot \frac{1}{t} = \frac{u_1^3}{u_1^2 + u_2^2}.$$

However, Df(0) cannot exist, since the above mapping is not linear.

Theorem 2.15. If the partial derivatives $D_1 f, ..., D_n f$ exist and are continuous (in a neighborhood of x), then f is differentiable at x.

Proof. Fix arbitrary $x \in E$ and define $Ah = \sum D_i f(x) h_i$. We write $\omega_k := \sum_{i=1}^k h_i e_i$ for k = 1, ..., n and $\omega_0 := x$. Note that $\omega_n = h$. By the MVT we can find δ_k between 0 and h_k such that

$$f(x+h) - f(x) - Ah = \sum_{k=1}^{n} f(x+\omega_k) - f(x+\omega_{k-1}) - D_k f(x) h_k$$
$$= \sum_{k=1}^{n} h_k [D_k(x+\omega_k + \delta_i e_i) - D_k f(x)],$$

which by continuity of D_i is sublinear.

2.3 Extension to Functions with Higher Dimensional Codomains

Immediate.

We have

$$\mathrm{D}f(x) \in L(\mathbb{R}^n, \mathbb{R}^m), \quad \mathbb{R}^n \ni h \longmapsto \mathrm{D}f(x) \in L(\mathbb{R}^n, \mathbb{R}^m),$$

and

$$\mathrm{D}f:\mathcal{U}\longmapsto L(\mathbb{R}^n,\mathbb{R}^m).$$

Note that we may identify $T \in L(\mathbb{R}^n, \mathbb{R}^m)$ with a unique matrix $A = [Te_1, \dots, Te_n]$ such that we have Th = Ah for each h.

Definition 2.16. If f is differentiable at x, we can define $[Df(x)] \in \mathbb{R}^{n \times m}$ to be the unique matrix such that

$$\mathrm{D}f(x)h = [\mathrm{D}f(x)]h.$$

More generally, for $T \in L(\mathbb{R}^n, \mathbb{R}^m)$, we use [T] to denote the corresponding matrix.

Theorem 2.17. If Df(x) exists, so do $D_i f_i$, and we have

$$[Df(x)] = [D_i f_j] = [\nabla f_1(x) \dots \nabla f_m(x)]^{\mathsf{T}}.$$

It suffices to prove the following stronger proposition:

Proposition 2.18. The function f is differentiable at x if and only if each f_i is differentiable at x. In this case,

$$Df(x)h = (Df_1h, \dots, Df_m(x)h) = (\langle \nabla f_1(x), h \rangle, \dots, \langle \nabla f_m(x), h \rangle) = [Df(x)]h.$$

Proof. Suppose f_i is differentiable. Define $T \in L(\mathbb{R}^n, \mathbb{R}^m)$ by the formula

$$Th = (Df_1h, \ldots, Df_m(x)h).$$

Note that

$$\frac{|f(x+h)-f(x)-Th|}{|h|} = \left(\sum \frac{|f_i(x+h)-f_i(x)-\mathrm{D}f_i(x)h|^2}{|h|}\right)^{1/2} \longrightarrow 0.$$

The other direction is left as an exercise.

Corollary 2.19. If $D_j f_i$ all exist and are continuous in a neighborhood of x, then f is differentiable at x.

2.4 The Chain Rule

Consider

$$\mathbb{R}^n \supset \mathcal{U} \xrightarrow{g} \mathbb{R}^m \xrightarrow{f} \mathbb{R}^k.$$

Theorem 2.20 (Chain Rule). If g is differentiable at x and f is differentiable at g(x), then $f \circ g$ is differentiable at x and

$$D(f \circ g)(x) = Df(g(x)) \circ Dg(x).$$

A formal calculation:³ We have

$$f \circ g(x+h) = f \circ g(x) + \mathrm{D}f(g(x)) \big(g(x+h) - g(x) \big) + o\big(g(x+h) - g(x) \big)$$
$$= f \circ g(x) + \mathrm{D}f(g(x)) \big(\mathrm{D}g(x)h + o(|h|) \big) + o(|h|)$$
$$= f \circ g(x) + \mathrm{D}f(g(x)) \big(\mathrm{D}g(x)h \big) + o(|h|).$$

³In math, "formal calculation" often means calculation that is "systematic but without rigorous justification."

Proof. For small $h \in \mathbb{R}^p$, we write

$$g(x+h) = g(x) + Bh + R_g,$$

where B = Dg(x) and $\lim_{h\to 0} R_g/h = 0$. Similarly, we write

$$f\circ g(x+h)=f(g(x)+Bh+R_g)=f\circ g(x)+ABh+AR_g+R_f,$$

where $A = \mathrm{D} f(g(x))$ and $\lim_{h\to 0} R_f/(Bh+R_g) \to 0$. It remains to note that the last two terms are sublinear.

2.5 Continuity of the Derivative

Let $f: \mathbb{R}^n \supset \mathcal{U} \to \mathbb{R}^M$, where \mathcal{U} is open. Recall that if f is differentiable, we have defined

- $\mathcal{U} \ni x \to \mathrm{D}f(x) \in L(\mathbb{R}^n, \mathbb{R}^m).$
- $\mathcal{U} \ni x \to [\mathrm{D}f(x)] \in \mathbb{R}^{m \times n}$.
- $\mathcal{U} \ni x \to D_i f_i(x) \in \mathbb{R}, i = 1, \dots, m, j = 1, \dots, n.$

Definition 2.21. For $T \in (\mathbb{R}^n, \mathbb{R}^m)$, we define the operator norm

$$||T|| = \sup_{|v|=1} |Tv| = \sup_{|v| \in \mathbb{R}^n \setminus \{0\}} \frac{|Tv|}{|v|}.$$

This gives rise to the standard norm induced metric: for $T, S \in L(\mathbb{R}^n, \mathbb{R}^m)$, we have

$$d(T,S) = ||T - S||.$$

Definition 2.22. For $A \in \mathbb{R}^{m \times n}$, we define the operator norm $||A||_{\text{op}} = \sup_{|v|} |Av|$. Thus $||T|| = ||[A]||_{\text{op}}$.

Definition 2.23. For $A \in \mathbb{R}^{m \times n}$, we define the Frobenius norm $||A||_F = \left(\sum_{i,j} A_{ij}^2\right)^{1/2}$.

Proposition 2.24. The following statements are equivalent:

- $x \mapsto Df(x)$ is continuous (wrt d).
- $x \mapsto [Df(x)]$ is continuous (wrt d_{op}).
- $x \mapsto [Df(x)]$ is continuous (wrt d_F).
- Each $x \mapsto D_j f_i(x)$ is continuous.

Definition 2.25. The function f is C^1 if the above equivalent conditions hold.

2.6 The Inverse Function Theorem

Theorem 2.26 (The Inverse Function Theorem). Let $f : \mathbb{R}^n \supset E \to \mathbb{R}^n$ be C^1 , where E is open. Suppose $x_0 \in E$ and $Df(x_0)$ is invertible. Then there exists a neighborhood U of x_0 such that f is a bijection from U to V := f(U), and $f^{-1} : V \to U$ is C^1 with derivative $D(f^{-1}(y)) = [Df(f^{-1}(y))]^{-1}$.

Remark 2.27.

- Thus if the first order Taylor expansion is invertible, then f is invertible locally.
- Consider the identities

$$x = f^{-1}(f(x)), y = f(f^{-1}(y)).$$

Differentiating

$$I = Df^{-1}(f(x)) \circ Df(x), \quad I = Df(f^{-1}(y)) \circ Df^{-1}(y).$$

This shows that $D(f^{-1}(y))$ and $Df(f^{-1}(x))$ are inverses of each other, provided that the functions are differentiable.

• Remember the one-dimensional case! We have that $(f^{-1})' = 1/f'$:

Proof (Inverse Function Theorem, n = 1). Let $Df(x_0) \in L(\mathbb{R}, \mathbb{R})$ be invertible. Then $f'(x_0) \neq 0$, say $f'(x_0) > 0$ without loss of generality. By continuity of f', there exists an open interval U containing x_0 such that f' > 0 on U. Thus f is strictly increasing and thus one-to-one on U. It is easy to verify that V := f(U) = (f(a), f(b)), so V is open.

Next, we show that f^{-1} is continuous. For that, consider sequence $y_k \to y$. We seek to show that $f^{-1}(y_k) \to f^{-1}(y)$. Equivalently, given $f(x_k) \to f(x)$, we show $x_k \to x$. To that end, suppose not. Then, without loss of generality, there exists infinitely many x_k such that $x_k > x + \epsilon$ for some ϵ . Thus $f(x_k) > f(x + \epsilon) > f(x)$, a contradiction.

Finally, we show that f^{-1} is differentiable. Write $x := f^{-1}(y)$ and $f^{-1}(y+h) = x+k$, that is, define $k := f^{-1}(y+h) - f^{-1}(y)$. We have then that h = f(x+k) - f(x). Then as $h \to 0$, we have $\lim_{h\to 0} k = 0$, by the continuity of f^{-1} , and so

$$\frac{f^{-1}(y+h)-f^{-1}(y)}{h}=\frac{k}{f(x+h)-f(x)}\longrightarrow \frac{1}{f'(x)}.$$

Before the general proof, we need the following result:

Theorem 2.28 (Contraction Mapping). Let (X, d) be a complete metric space. Let $\phi: X \to X$ be a **contraction**, that is, there exists c < 1 such that

$$d(\phi(x), \phi(y)) \le cd(x, y).$$

Then, there is a unique fixed point of ϕ *.*

Proof. Pick any $x_0 \in X$. Define $x_n := \phi(x_{n-1})$ for $n \ge 1$. Note that

$$\phi(x_n, x_{n-1}) \le c^n \phi(x_1, x_0).$$

Thus, for n > m, we have

$$d(x_n, x_m) \le \sum_{k=m+1}^n d(x_k, x_{k-1}) \le d(x_1, x_0) \sum_{k=m+1}^n c^{k-1}.$$

Since $\sum c^j$ is a converging series, the last term tends to 0 and so (x_n) is Cauchy. Then, setting $x = \lim x_n$, we have

$$\phi(x) = \lim \phi(x_n) = \lim x_{n+1} = x.$$

Uniqueness follows from the contraction property.

We may now proceed with the general proof of the Inverse Function Theorem. We recall first the result:

Theorem 2.29 (The Inverse Function Theorem). Let $f : \mathbb{R}^n \supset E \to \mathbb{R}^n$ be C^1 , where E is open. Suppose $x_0 \in E$ and $Df(x_0)$ is invertible. Then there exists a neighborhood U of x_0 such that f is a bijection from U to V := f(U), and $f^{-1} : V \to U$ is C^1 with derivative $D(f^{-1}(y)) = [Df(f^{-1}(y))]^{-1}$.

Proof (Inverse Function Theorem, the General Case).

Step 1: Local Invertibility. Choose δ small enough that

- $\|\mathbf{D}f(x)^{-1}\|$ is bounded in $B_{\delta}(x_0)$.
- $\|Df(x) Df(x')\|$ is "really small" if $x, x' \in B_{\delta}(x_0)$.

⁴Here, we used the fact that inversion is a continuous operation.

We check that f is injective on $U := B_{\delta}(x)$. Note that f(x) = y if and only if $Df(x_0)^{-1}(y - f(x)) = 0$, which is equivalent to x being a fixed point of the function

$$\phi_{y}(x) := x + Df(x_0)^{-1} (y - f(x)).$$

Thus, to prove injectivity, we need only show that ϕ_v is a contraction. Observe that

$$D\phi_y(x) = I - Df(x_0)^{-1}Df(x) = Df(x_0)^{-1}[Df(x_0) - Df(x)].$$

Then,

$$\|D\phi_y(x)\| \le \|Df(x_0)^{-1}\| \|Df(x_0) - Df(x)\|$$

can be made arbitrarily small, and in particular smaller than 1/2, by choosing δ small enough. The function ϕ_y is then a contraction. While the image of ϕ_y may not be a subset of its domain U (and so Banach contraction does not apply), the same argument in the proof of the Banach contraction theorem shows that ϕ_y has at most one fixed point, if any, in U. Injectivity of f in U thus follows.

Set V := f(U). Note that f^{-1} is well defined on V.

Step 2: *V* is open. Fix $f(x_0) \in V$. Pick r > 0 such that $B_r(x_0) \subset U$. Note that

$$|x - x_0| \le ||Df(x_0)^{-1}|||f(x) - f(x_0)|.$$

Thus for y = f(x) within $r/2 \|Df(x_0)^{-1}\|$ of $f(x_0)$, we have $x \in U$ and so $y \in V$.

Step 3: f^{-1} **is continuous** (**Lipschitz**). Recall that $\phi_y(x)$ is a contraction in x with Lipschitz constant 1/2, and note that it is also Lipschitz in y, with Lipschitz constant say C. From

$$x - x' = \phi_y(x) - \phi_{y'}(x') = \phi_y(x) - \phi_y(x') + \phi_y(x') - \phi_{y'}(x')$$

we thus know

$$|x - x'| \le \frac{1}{2}|x - x'| + C|y - y'|.$$

Then,

$$\left|f^{-1}(y) - f^{-1}(y')\right| = |x - x'| \le 2C|y - y'|$$

and f^{-1} is Lipschitz.

Step 4: The formula for Df^{-1} . Write y = f(x). Set $h = f^{-1}(y+k) - f^{-1}(y)$. Note that $f^{-1}(y+k) = x + h$ and so k = f(x+h) - f(x). We have then that

$$\begin{split} & \frac{\left| f^{-1}(y+k) - f^{-1}(y) - \mathrm{D}f(x)^{-1}k \right|}{|k|} \\ &= \frac{\left| h - \mathrm{D}f(x)^{-1} \left(f(x+h) - f(x) \right) \right|}{|f(x+h) - f(x)|} \\ &\leq \frac{\left\| \mathrm{D}f(x)^{-1} \right\| \left\| \mathrm{D}f(x)h - f(x+h) + f(x) \right\|}{|h|} \cdot \frac{|h|}{|f(x+h) - f(x)|}. \end{split}$$

Note that the first term tends to 0 and the second is bounded. We have established then that that $Df^{-1}(y) = Df(x)^{-1}$ is continuous. It remains to note that as a composition of continuous functions, Df^{-1} is continuous.