Resumen de teoremas para el final de Matemática Discreta II

Agustin Curto, agucurto95@gmail.com

2016

Índice general

1.	Part	te A	2
	1.1.	La complejidad de EDMONS-KARP	2
	1.2.	Las distancias de Edmonds-Karp no disminuyen en pasos sucesivos	3
	1.3.	La complejidad de DINIC	5
	1.4.	La complejidad de WAVE	7
	1.5.	La distancia entre NA sucesivos aumenta	8
2.	Par	te B	10
	2.1.	2-COLOR es polinomial	
	2.2.	Teorema Max-Flow Min-Cut	
	2.3.	Complejidad del Hungaro es $\mathcal{O}(n^4)$	11
	2.4.	Teorema de Hall	12
	2.5.	Teorema del matrimonio	13
	2.6.	Si G es bipartito $\Rightarrow \chi'(G) = \Delta \dots \dots \dots \dots \dots \dots$	13
	2.7.	Teorema cota de Hamming	13
	2.8.	Sea H una matriz de chequeo de un código C, pruebe que:	13
		2.8.1. $\delta(C)=$ mínimo número de columnas linealmente dependientes de H	13
		2.8.2. Si H no tiene la columna cero ni columnas respetidas \Rightarrow C corrige al	
		menos un error	13
	2.9.	Sea C un código cíclico de dimensión k y longitud n y sea $g(x)$ su polinomio	
		generador, probar que:	13
		2.9.1. C está formado por los múltiplos de $g(x)$ de grado menor a n	13
		2.9.2. El grado de $g(x)$ es $n-k$	13
		2.9.3. $g(x)$ divide a $1 + x^n$	13
3.	Parte C		
		4 -COLOR \leq_p SAT	
	3.2.	3-SAT es NP-Completo	14
	3.3	3-COLOR es NP-Completo	14

Capítulo 1

Parte A

1.1. La complejidad de EDMONS-KARP

<u>Teorema:</u> La complejidad de $\langle E - K \rangle$ con n = |V| y m = |E| es $\mathcal{O}(nm^2)$.

Prueba: Sean: f_0, f_1, f_2, \ldots la sucesión de flujos creados por $\langle E - K \rangle$. Es decir, el paso k crea f_k .

Para cada k definimos funciones:

- $d_k(x)$ = "distancia" entre s y x en el paso k en caso de existir, si no ∞ .
- $b_k(x) =$ "distancia" entre x y t en el paso k en caso de existir, si no ∞ .

"Distancia": longitud del menor camino aumentante entre dos vértices.

Observaciónes:

- 1. \bullet $d_k(s) = 0$
 - $b_k(t) = 0$
- 2. Sabemos que las distancias de $\langle E K \rangle$ no disminuyen en pasos sucesivos, como esto será útil para esta demostración llamaremos \circledast a la demostración de:

$$d_k(x) \le d_{k+1}(x)$$

$$b_k(x) \le b_{k+1}(x)$$

Llamemos <u>crítico</u> a un lado disponible en el paso k pero no disponible en el paso k+1. Es decir, si xy es un lado $\Rightarrow xy$ se satura ó yx se vacía en el paso k.

Supongamos que al construir f_k el lado xy se vuelve crítico, el camino: s cdots x, y cdots t se usa para construir f_k .

$$d_k(t) = d_k(x) + b_k(x)$$

$$= d_k(x) + b_k(y) + 1$$
(1)

Para que xy pueda ser crítico nuevamente debe ser usado en la otra dirección $(i.e \ yx)$. Sea j el paso posterior a k en el cual se usa el lado en la otra dirección, el camino $s \cdots y, x \cdots t$ se usa para construir f_j .

$$d_{j}(t) = d_{j}(x) + b_{j}(x)$$

$$= d_{j}(y) + 1 + b_{j}(x)$$
(2)

Entonces:

De (1) y (2)
$$\Rightarrow$$
 $\begin{cases} d_j(x) = d_j(y) + 1 \star \\ d_k(y) = d_k(x) + 1 \dagger \end{cases}$

Luego:

$$d_{j}(t) = d_{j}(x) + b_{j}(x)$$

$$= d_{j}(y) + 1 + b_{j}(x) \qquad \text{Por } \dagger$$

$$\geq d_{k}(y) + 1 + b_{k}(x) \qquad \text{Por } \circledast$$

$$= d_{k}(x) + 1 + 1 + b_{k}(x) \qquad \text{Por } \star$$

$$= d_{k}(t) + 2$$

$$\Rightarrow d_{j}(t) \geq d_{k}(t) + 2$$

Por lo tanto cuando un lado se vuelve crítico recien puede volver a saturarse cuando la distancia de s a t haya aumentado en por lo menos 2. Puede existir $\mathcal{O}(n/t)$ tales aumentos, es decir:

Veces que un lado puede volverse crítico = $\mathcal{O}(n)$.

$$\begin{array}{lll} \therefore Complejidad(\langle E-K\rangle) &=& (\#pasos)*Compl(1\ paso) \\ &=& (\#veces\ que\ un\ lado\ se\ vuelve\ crítico)*(\#lados)*Compl(BFS) \\ &=& \mathcal{O}(n)*\mathcal{O}(m)*\mathcal{O}(m) \\ &=& \mathcal{O}(nm^2) \end{array}$$

1.2. Las distancias de Edmonds-Karp no disminuyen en pasos sucesivos

<u>Teorema:</u> Sean: f_0, f_1, f_2, \ldots la sucesión de flujos creados por $\langle E - K \rangle$. Es decir, el paso k crea f_k .

Para cada k definimos funciones:

- $\bullet \ d_k(x) =$ "distancia" entre s y x en el paso k en caso de existir, si no $\infty.$
- $b_k(x)$ = "distancia" entre x y t en el paso k en caso de existir, si no ∞ .

"Distancia": longitud del menor camino aumentante entre dos vértices.

Queremos probar que:

1.
$$d_k(x) \leq d_{k+1}(x)$$

2.
$$b_k(x) \leq b_{k+1}(x)$$

<u>Prueba:</u> Lo probaremos por inducción y solo para d_k ya que para b_k la prueba es análoga.

HI:
$$H(i) = \{ \forall_z : d_{k+1}(z) \le i, vale \ d_k(z) \le d_{k+1}(z) \}$$

1. Caso Base: [i = 0] $H(0) = \{ \forall_z : d_{k+1}(z) \le 0, d_k(z) \le d_{k+1}(z) \}$ Pero $d_{k+1}(z) \le 0 \Rightarrow z = s$

$$d_k(z) = d_k(s)$$

$$= 0$$

$$\leq d_{k+1}(s)$$

$$\leq d_{k+1}(z)$$

$$\Rightarrow d_k(z) \leq d_{k+1}(z)$$

2. Caso Inductivo: Supongamos ahora que vale $\mathrm{H}(i)$, veamos que vale $\mathrm{H}()i+1$.

Sea $z \operatorname{con} d_{k+1}(z) \leq i+1$, si $d_{k+1}(z) \leq i$ vale H(i) para z.

$$\therefore d_{k+1}(z) \le d_{k+1}(z)$$

Supongamos que $d_{k+1}(z) = i+1$

Entonces existe un camino aumentante, relativo a f_k , de la forma: $s=z_0,\ z_1,\ \ldots\ z_i,\ z_{i+1}=z$.

Sea $x = z_i$

■ Caso 1: Existe algun camino aumentante, relativo a f_{k-1} de la forma $s, \ldots x, z$. $\Rightarrow d_k(x) \leq d_k(x) + 1$

Pues al haber un camino $\underbrace{s, \ldots x}_{d_k(x)}$, llamemosle A, de longitud $d_k(x) + 1$ entre s y

z, sabemos que el minimo de todos los caminos de s a z seran \leq A.

- Caso 2: No existe un camino aumentante, relativo a f_{k-1} , pero si existe un camino aumentante relativo a f_k . Por lo tanto el lado xz no esta "disponible" en el paso k, ya que xz está saturado zx está vacío relativo a f_{k-1} . Para construir f_k usamos un camino de la forma $s, \ldots z, x$. Es decir:
 - 1) $f_{k-1}(xz) = C(xz)$ pero $f_k(xz) < C(xz)$, f_k devuelve flujo por xz ó
 - 2) $f_{k-1}(zx) = 0$ pero $f_k(zx) > 0$, f_k manda flujo por zx.

Como $\langle E - K \rangle$ funciona con BFS, ese camino usado pra construir f_k debe ser de longitud mínima. Es decir: $d_k(x) = d_k(z) + 1$

$$d_k(z) = d_k(x) - 1$$

$$\leq d_k(x) + 1$$

Conclusión: En cualquiera de los dos casos tenemos:

$$d_k(x) \le d_k(x) + 1$$

4

Ahora bien:
$$d_{k+1}(x) = d_{k+1}(z_i) = i \implies \text{vale } H(i) \text{ para } x.$$

 $\therefore d_k(z) \leq d_{k+1}(x)$

$$d_{k+1}(x) = d_{k+1}(z_i)$$

$$= i$$

$$\Rightarrow H(i) \text{ vale para } x.$$

$$\therefore d_k(z) \leq d_{k+1}(x)$$

Por lo tanto:

$$d_k(z) \leq d_k(x) + 1$$

$$\leq d_{k+1}(x) + 1$$

$$= i + 1$$

$$= d_{k+1}(z)$$

$$\Rightarrow H(i+1) \text{ vale.}$$

1.3. La complejidad de DINIC

<u>Teorema:</u> La complejidad del algoritmo de Dinic es $\mathcal{O}(n^2m)$.

<u>Prueba:</u> Como Dinic es un algoritmo que trabaja con networks auxiliares y vimos que la distancia entre s y t en networks auxiliares consecutivos aumenta y puede ir a lo sumo entre 1 y n-1 entonces hay a lo sumo $\mathcal{O}(n)$ networks auxiliares.

Complejidad(Dinic)= $\mathcal{O}(n)$ * Compl(Hallar un flujo bloqueante en un NA con Dinic)

Para probar que la complejidad de Dinic es $\mathcal{O}(n^2m)$ debemos probar que complejidad del paso bloqueante es $\mathcal{O}(nm)$.

Sea:

- \bullet A = Avanzar()
- \blacksquare R = Retroceder()
- I = Incrementar_Flujo + Inicialización $(\mathcal{O}(1))$

Una corrida de Dinic luce como:

Dividamos la corrida en subpalabras del tipo:

*
$$\underbrace{AA \dots A}_{TodasA's}I$$

* $\underbrace{AA \dots A}_{TodasA's}R$

Nota: el número de A's puede ser 0.

Debemos determinar:

1. Cual es la complejidad de cada subpalabra.

2. Cuantas palabras hay de cada tipo.

Complejidad de cada subpalabra

Recordemos que:

A:
$$\begin{bmatrix} P[i+1] = \text{algún elemento de } \Gamma^+(P[i]) \\ i = i+1 \end{bmatrix}$$

$$\Rightarrow A \text{ es } \mathcal{O}(1)$$

$$\text{R: } \begin{bmatrix} P[i+1] = \text{borrar } P[i-1]P[i] \text{ del NA} \\ i = i-1 \end{bmatrix}$$

$$\Rightarrow \text{R es } \mathcal{O}(1)$$

I:
$$P[i+1] = \text{recorre 2 veces}$$
, un camino de longitud $d = d(t)$
 \Rightarrow I es $\mathcal{O}(d)$

Por lo tanto:

$$Compl(\underbrace{A \dots A}_{j \text{ veces}} R) = \underbrace{\mathcal{O}(1) + \dots \mathcal{O}(1)}_{j \text{ veces}} + \mathcal{O}(1)$$
$$= \mathcal{O}(j) + \mathcal{O}(1)$$
$$= \mathcal{O}(j)$$

Pero como cada A hace i=i+1 y tenemos $0 \le i \le d \implies j \le d$.

$$\therefore Compl(A \dots AR) = \mathcal{O}(d)$$

Similarmente:

$$Compl(A \dots AI) = \underbrace{\mathcal{O}(1) + \dots \mathcal{O}(1)}_{\leq d \text{ veces}} + \mathcal{O}(1)$$

$$= \mathcal{O}(d) + \mathcal{O}(1)$$

$$= \mathcal{O}(d)$$

Cantidad de subpalabras

 \blacksquare R tiene la instrucción "borrar lado". Como los lados borrados quedan borrados hay a lo sumo m R's, es decir:

$$\therefore \#(A \ldots AR's) \leq m$$

• I tiene también línes de la forma:

Lo que está dentro del if se cumple al menos una vez, es decir:

$$\therefore \#(A \ldots AI's) < m$$

Este análisis muestra que:

$$\therefore \#(A \ldots AR's) + \#(A \ldots AI's) \le m$$

Por lo tanto hay $\leq m$ palabras, cada una de complejidad $\mathcal{O}(d)$.

$$\therefore Compl(Paso Bloqueante) = \mathcal{O}(m) + \mathcal{O}(md)$$
$$= \mathcal{O}(mn)$$

ya que $d \leq n$.

1.4. La complejidad de WAVE

<u>Teorema:</u> La complejidad del algoritmo de Wave es $\mathcal{O}(n^3)$.

<u>Prueba:</u> Como Wave es un algoritmo que trabaja con networks auxiliares y vimos que la distancia entre s y t en networks auxiliares consecutivos aumenta y puede ir a lo sumo entre 1 y n-1 entonces hay a lo sumo $\mathcal{O}(n)$ networks auxiliares.

Complejidad(Wave) = $\mathcal{O}(n)$ * Compl(Hallar un flujo bloqueante en un NA con Wave)

Para probar que la complejidad de Wave es $\mathcal{O}(n^3)$ debemos probar que complejidad del paso bloqueante es $\mathcal{O}(n^2)$. El paso bloqueante de Wave consiste en una serie de:

- Olas hacia adelante: Sucesión de forwrdbalance (FB)
- Olas hacia atrás: Sucesión de backwardbalance (BB)

Cada FB y BB es una sucesión de "buscar vecinos" y "procesar" el lado resultante. Estos "procesamientos" son complicados pero $\mathcal{O}(1)$.

$$\therefore$$
 Compl(Paso Bloqueante) = #"procesamientos" de lados

Los "procesamientos" de lados los podemos dividir en dos categorías:

- 1. Aquellos procesamientos que saturan o vacian el lado. Denotaremos "T" al número de estos procesamientos.
- 2. Aquellos procesamientos que no saturan ni vacian el lado. Denotaremos "Q" al número de estos procesamientos.

Por lo tantos queremos acotar T+Q.

Complejidad de T:

• ¿Puede un lado xy saturado volver a saturarse?

Para poder volver a <u>saturarse</u> primero tiene que vaciarse auque sea un poco, es decir, antes de poder volver a saturarlo "y" debe devolver flujo a "x", pero para que en Wave "y" le devuelva flujo a "x" debe ocurrir que "y" este bloqueado (porque BB(y) solo se ejecuta si "y" está bloqueado), pero si "y" está bloqueado "x" no puede mandarle flujo nunca más.

 \therefore xy no puede resaturarse

Conclusión 1: Los lados se saturan solo una vez.

• ¿Puede un lado xy vaciado completamente volver a vaciarse?

Para poder volver a <u>vaciarse</u> como está vacío completamente, primero hay que mandar flujo, pero si lo vacié "y" está bloqueado por lo que "x" no puede mandar flujo.

 \therefore xy no puede volver a vaciarse

Conclusión 2: Los lados se vacían completamente a lo sumo una vez.

Las conclusiones (1) y (2) implican que $T \le 2 m$

Complejidad de Q:

En cada FB a lo sumo un lado no se satura y en cada BB a lo sumo un lado no se vacía completamente.

- ∴ $Q \le \#$ Total de FB's y BB's
- # FB's en cada ola hacia adelante es $\leq n$ (un FB por vértice)
- # BB's en cada ola hacia atrás es < n
 - \therefore Total de FB's y BB's < 2 n #Total de ciclos de "ola adelante ola hacia atrás"

Ahora bien, en cada ola hacia adelante, pueden o no, bloquearse algunos vértices. Si no se bloquea ningún vértice entonces todos los vértices ($\neq s$, t) quedan balaceados por lo que estamos en la última ola. Luego en toda ola que no sea la última se bloquea al menos un vértice ($\neq s$, t).

... #Total de ciclos es
$$\leq (n-2)+1=n-1$$

 $\Rightarrow Q \leq 2n(n-1)=\mathcal{O}(n^2)$

$$T + Q \leq 2m + \mathcal{O}(n^2)$$

$$= \mathcal{O}(m) + \mathcal{O}(n^2)$$

$$= \mathcal{O}(n^2)$$

1.5. La distancia entre NA sucesivos aumenta

<u>Teorema:</u> Sea A un NA (network auxiliar) y sea A^* el siguiente NA. Sean d(x) y $d^*(x)$ las distancias de s a t en A y A^* respectivamente, entonces: $d(t) < d^*(t)$.

<u>Prueba:</u> Como A y A^* se construyen con BFS sabemos que $d(t) \leq d^*(t)$ pero queremos ver el <.

Sea:

$$s = x_0, x_1, \dots t = x_r$$

un camino dirigido en A^* .

Ese camino No existe en A ya que para pasar de A a A^* debemos bloquear todos los caminos dirigidos de A. Por lo tanto si ese camino estuviese en A, Dinic lo habría bloqueado y no estaría en A^* .

¿Cuáles son las razones posibles para que no esté en A?

1. Puede faltar un vértice, es decir $\exists i : x_i \not\equiv V(A)$ entonces:

$$d(t) \leq d(x_i)$$

$$\leq d^*(x_i)$$

$$= i < r$$

$$= d^*(t)$$

$$\therefore d(t) < d^*(t)$$

- 2. Están todos los vértices pero falta una arista, es decir $\exists i : x_i x_{i+1} \not\equiv E(A)$.
 - a) $x_i x_{i+1}$ no está porque corresponde a un lado vacío o saturado en NA, es decir $x_i x_{i+1}$ no está en el recidual que dá origen a A pero si está en el residual que dá origen a A^* . Para que esto pase se tiene que haber usado el lado $x_{i+1} x_i$ en A. Luego podemos cocluir, por la prueba de $\langle E K \rangle$ que:

$$d^*(t) \ge d(t) + 2 > d(t)$$

$$\therefore d(t) < d^*(t)$$

b) $x_i x_{i+1}$ si está en el residual pero: $d(x_{i+1}) \neq d(x_i) + 1$ (1)

Pero como $x_i x_{i+1}$ está en el residual entonces: $d(x_{i+1}) \le d(x_i) + 1$ (2)

De (1) y (2) tenemos que: $d(x_{i+1}) < d(x_i) + 1 \gg$ Entonces:

$$d(t) = d(x_{i+1}) + b(x_{i+1}) \qquad \text{Por } \langle E - K \rangle$$

$$\leq d(x_{i+1}) + b^*(x_{i+1}) \qquad \text{Por } \langle E - K \rangle$$

$$< d(x_i) + 1 + b^*(x_{i+1}) \qquad \text{Por } \langle E - K \rangle$$

$$\leq d^*(x_i) + 1 + b^*(x_{i+1}) \qquad \text{Por } \langle E - K \rangle$$

$$= d^*(x_{i+1}) + b^*(x_{i+1}) \qquad \text{Por } (\dagger)$$

$$= d^*(t)$$

$$\therefore d(t) < d^*(t)$$

(†): Ya que $s, x_1, \ldots x_r$

Capítulo 2

Parte B

2.1. 2-COLOR es polinomial

2.2. Teorema Max-Flow Min-Cut

Teorema:

- a) Si f es flujo y S es corte $\Rightarrow V(f) \leq Cap(S)$.
- b) Si $V(f) = Cap(S) \Rightarrow f$ es maximal y S es minimal.
- c) Si f es maximal $\Rightarrow \exists S \text{ con } V(f) = \text{Cap}(S)$.

<u>Prueba:</u> Demostraremos primero que $V(f) = f(S, \overline{S}) - f(\overline{S}, S)$ donde f es un flujo y S un corte. Esto nos ayudará en la demostración del ítem a).

Observemos que:

- $f(A \cup B, C) = f(A, C) + f(B, C)$: A y B disjuntos.
- $f(A, B \cup C) = f(A, B) + f(A, C)$: By C disjuntos.
- $\bullet f(A,B) = \sum_{\substack{x \in A \\ y \in B}} f(x,y).$

Sea $x \in S \Rightarrow x \neq t$.

$$f(x, V) - f(V, x) = \begin{cases} V(f) & Si \ x = s \\ 0 & Si \ x \neq s \ pues \ t \notin S \end{cases}$$

Luego:

$$\sum_{x \in S} (f(x, V) - f(V, x)) = 0 + 0 \cdots + V(f)$$
$$= V(f)$$

$$V(f) = \sum_{x \in S} f(x, V) - \sum_{x \in S} f(V, x)$$

$$= f(S, V) - f(V, S)$$
 Por observación
$$= f(S, S \cup \overline{S}) - f(S \cup \overline{S}, S)$$
 Ya que $V = S \cup \overline{S}$

$$= f(S, S) + f(S, \overline{S}) - f(S, S) - f(\overline{S}, S)$$
 Por observación
$$= \overline{f(S, \overline{S} - f(\overline{S}, S))} \star$$

a) f es flujo y S es corte $\Rightarrow V(f) \leq Cap(S)$.

$$V(f) =_{\star} f(S, \overline{S}) - \underbrace{f(\overline{S}, S)}_{\geq 0}$$

$$\Rightarrow V(f) \le f(S, \overline{S}) \le C(S, \overline{S}) = \operatorname{Cap}(S)$$

b) $V(f) = Cap(S) \Rightarrow f$ es maximal y S es minimal.

Supongamos que V(f) = Cap(S).

Sea g un flujo cualquiera y T un corte cualquiera.

- $V(g) \leq_{a} Cap(S) = V(f) \Rightarrow f \text{ es maximal}$
- $Cap(T) \leq_{a} V(f) = Cap(S) \Rightarrow S$ es minimal
- c) f es maximal $\Rightarrow \exists S \text{ con } V(f) = Cap(S)$.

2.3. Complejidad del Hungaro es $\mathcal{O}(n^4)$

<u>Teorema:</u> La complejidad del algoritmo Húngaro es $\mathcal{O}(n^4)$. <u>Prueba:</u>

1. La complejidad del matching inicial es $\mathcal{O}(n^2)$, ya que:

Restar mínimo de cada fila:

$$(\mathcal{O}(n^2) + \mathcal{O}(n^2)) * n = \mathcal{O}(n^2)$$
 Idem para las columnas.

2. Llamemos **extender** el matching, a incrementar su número de filas en 1, i.e agregar una fila más al matching.

$$\#$$
 extensiones de matching = $\mathcal{O}(n)$

Resta ver la complejidad de cada extender.

3. En cada extensión vamos a ir revisando filas y columnas, donde escanear una fila es $\mathcal{O}(n)$ y se realizan n escaneos, por lo que sería $\mathcal{O}(n^2)$ sin considerar que se debe realizar un cambio de matriz.

Hacer un cambio de matriz es $\mathcal{O}(n^2)$.

- \bullet Buscar $m = \min S \ x \ \overline{\Gamma(S)} \to \mathcal{O}(n^2)$
- Restar m de $S \to \mathcal{O}(n^2)$
- Sumar m a $\Gamma(S) \to \mathcal{O}(n^2)$

Luego la implementación NAIVE lanzaría nuevamente el algoritmo desde cero. La forma correcta es continuar con el matching que teniamos, ya que el mismo no se pierde.

$$\begin{bmatrix} A & A \\ B & C \end{bmatrix}$$

TO DO

Debemos ver cuantos Cambios de matriz hay antes de extender nuevamente un matching **Lema Interno:** Luego de un cambio de matriz, se extiende el matching (i.e se termina el **extender**), o bien se aumenta S.

Prueba:

$$\begin{bmatrix} A & A \\ B & C \end{bmatrix}$$

Al restar $m = \min S \Gamma(S)$ de las filas de S, habrá un nuevo cero en alguna fila $i \in S$ y columna $j \in \Gamma(S)$ entonces la columna se etiquetará con i y se revisará. Tenemos dos resultados posible:

- a) j está libre (i.e no forma parte del matching) \Rightarrow extendemos el matching.
- b) j forma parte de matching $\Rightarrow \exists$ fila k matcheada con j. En este caso, la fila k se etiquetará con j, por lo que el "nuevo" $S \geq S \cup \{k\}$.

Entonces se termina con una extensión o se produce un nuevo S de cardinalidad, al menos |S| + 1.

Fin lema interno

Luego como |S| solo puede crecer $\mathcal{O}(n)$ veces, tenemos que hay a lo sumo n cambios de matriz antes de extender el matching. Entonces:

$$\text{Complejidad(1 Extensión)} = \underbrace{\mathcal{O}(n)}_{\#CM} * \underbrace{\mathcal{O}(n^2)}_{Compl(CM)} + \underbrace{\mathcal{O}(n^2)}_{Busqueda\ n\ filas\ x\ n\ columnas}$$

$$\therefore \text{ Complejidad(H\'ungaro)} = \underbrace{\mathcal{O}(n^2)}_{\textit{Matchinginicial}} + \underbrace{\mathcal{O}(n)}_{\textit{\#extensiones}} * \underbrace{\mathcal{O}(n^3)}_{\textit{Compl(extension)}}$$

2.4. Teorema de Hall

<u>Teorema:</u> Sea $G = (x \cup y, E)$ grafo bipartito $\Rightarrow \exists$ matching complete de X a $Y \Leftrightarrow |S| = |\Gamma(S)| \forall S \subseteq X$.

Prueba:

 \Rightarrow) Si M es matching comple de X a Y entonces oberservemos que M induce una función inyectiva de X a Y.

$$f(x) = \text{único y} : xy \in M.$$

12

1. Si
$$S \subseteq X \Rightarrow |S| = |\Gamma(S)|$$
.

Además por definición de f, $f(x) \in \Gamma(x)$.

2. Si
$$x \in S \Rightarrow f(x) \in \Gamma(S) \Rightarrow f(S) \subseteq \Gamma(S)$$
.

De ① y ②
$$\Rightarrow |S| \leq |\Gamma(S)|$$
.

 \Leftarrow) Supongamos que no es cierto, entonces G es bipartito con $|S| \leq |\Gamma| \, \forall \, S \subseteq X$ pero no tiene matching completo de X a Y. Es equivalente a ver que: Si \nexists un matching completo $\Rightarrow \exists \, S \subseteq X : |S| > |\Gamma(S)|$.

Corramos el algoritmo para hallar matching. Al finalizar habrá filas sin matcher (las de s). Sean:

-

- 2.5. Teorema del matrimonio
- **2.6.** Si G es bipartito $\Rightarrow \chi'(G) = \Delta$
- 2.7. Teorema cota de Hamming
- 2.8. Sea H una matriz de chequeo de un código C, pruebe que:
- 2.8.1. $\delta(C)=$ mínimo número de columnas linealmente dependientes de H
- 2.8.2. Si H no tiene la columna cero ni columnas respetidas \Rightarrow C corrige al menos un error
- 2.9. Sea C un código cíclico de dimensión k y longitud n y sea g(x) su polinomio generador, probar que:
- 2.9.1. C está formado por los múltiplos de g(x) de grado menor a n
- **2.9.2.** El grado de g(x) es n k
- **2.9.3.** g(x) divide a $1 + x^n$

Capítulo 3

Parte C

- 3.1. 4-COLOR $\leq_p SAT$
- 3.2. 3-SAT es NP-Completo
- 3.3. 3-COLOR es NP-Completo

Bibliografía

- $[1]\ {\rm Curto}\ {\rm Agust\'in}$, «Matemática Discreta II, apuntes de clase», ${\it FaMAF},\ {\it UNC}.$
- [2] MAXIMILIANO ILLBELE, «Resumen de Discreta II, 16 de agosto de 2012», FaMAF, UNC.