Контрольное задание № 1

Вариант № 2

Формулировка задания

2. На size-1 процессах компоненты массива $y_1, y_2, ..., y_m$ вычисляются по формуле: $y_k = \cos^k(x), k = 1, 2, ..., m, m = 5$, значение x на процессе с номером rank = 0, 1, ... size - 1 определяется с помощью датчика случайных чисел: $x = \cos((rank + 1) * rand() / RANDOM_MAX)$. Вычислить максимальный элемент массива R_0 , R_1 , ..., R_{size-1} , $R_i = \prod_{k=1}^m y_k$, i = 0, 1, ... size - 1. Выдать результат на нулевом процессе.

Ход работы

На каждом процессе по формулам генерируется массив $\mathbf{y}[\mathbf{k}]$ из пяти doubleэлементов, передаваясь с помощью функции MPI_Gather (через создаваемый объединённый массив \mathbf{result}) на нулевой процесс, где классическим алгоритмом обнаруживается наибольшее среди произведений, вычисляемых из последовательных пятёрок элементов, и происходит вывод результата.

Используемая библиотека — *Open MPI* (из репозитория **Debian 12**).

Компиляция программы:

mpicc -O "путь_к_исходному_коду" -о "путь_к_исполняемому_файлу" -lm

Пример запусков с возможным числом потоков до 24 (12-ядерный процессор):

Заключение

В работе изучена функция *MPI_Gather* и написана программа для генерации массивов из псевдослучайных элементов, сливающихся в один, чтобы найти определённое в условии значение, выведя его.