Name:

Homework 8 Due 21 Apr 2020

- 1. A wide, center-cracked specimen with Paris law parameters $C=10^{-9}$ and n=4 has an initial crack length of 2a=2 in. The specimen is subjected to an R=0 cyclic stress such that $\sigma=3.4a^{-1}$, where a is the current crack length. How many cycles will it take for the crack to reach 2a=8 in?
- 2. An edge-cracked specimen with Paris law parameters $C=10^{-9}$ and n=4 has an initial crack length of a=0.5 in. The specimen is subjected to an R=0 cyclic stress such that $\sigma=3.0$ ksi. What will the crack length be after 50,000 cycles?
- 3. While flicking the clip on his pen, Dr. Smith (with his eagle vision) notices a 0.01" edge-crack. Assume that Dr. Smith's flicks are generally about 3 in-lbs, with one strong, 5 in-lb flick for every 10 regular flicks. If the pen clip is 0.25" wide, 0.05" thick and made from 7075-T6 (with $K_c = 70 \text{ ksi}\sqrt{\text{in}}$), use the Boeing-Walker growth rate equation with p = 3.5, q = 0.6, $\mu = 0.1$, and $m_T = 24$ to estimate the number of cycles remaining for Dr. Smith's pen.
- 4. Consider a wide, center-cracked panel with an initial crack length of 2a = 0.5 in. Use the Boeing-Walker growth rate equation with p = 3.5, q = 0.6, $\mu = 0.1$, and $m_T = 24$. Compare the expected crack growth rate for the expected load ($\sigma_{min} = 5$ ksi and $\sigma_{max} = 20$ ksi) with a situation where an unexpected overload ($\sigma_{min} = 5$ ksi and $\sigma_{max} = 40$ ksi) occurs after 5,000 cycles
 - (a) Using the Wheeler retardation model with m=1.5 and a plane stress plastic zone for $\sigma_{us}=68$ ksi
 - (b) Using the Willenborg retardation model with $S_{OL} = 2.0$ and $K^{th} = 3 \text{ ksi}\sqrt{\text{in}}$.
 - (c) Using the closure retardation model with $C_{f0} = 0.3$