一、选择题(请把选项直接写在题后括号内)	(H: E	脯	伝斯	2	Δ	++	15	441
、处纬燃气相16处纵且1安与16燃冲16分约/	くだり	心人,	平咫	J	7,1	大	10	717

1. 设
$$f(x, y) = \sqrt{x^2 + y^2}$$
, 则全微分 $df = ($

A.
$$\frac{xdx + ydy}{\sqrt{x^2 + y^2}}$$

B.
$$\frac{ydx + xdy}{\sqrt{x^2 + y^2}}$$

$$C. \frac{xdx + ydy}{2\sqrt{x^2 + y^2}}$$

A.
$$\frac{xdx + ydy}{\sqrt{x^2 + y^2}}$$
 B. $\frac{ydx + xdy}{\sqrt{x^2 + y^2}}$ C. $\frac{xdx + ydy}{2\sqrt{x^2 + y^2}}$ D. $\frac{\sqrt{x}dx + \sqrt{y}dy}{\sqrt{x^2 + y^2}}$

2. 设
$$f(x,y)$$
为连续函数,交换 $\int_0^1 dx \int_{x^2}^x f(x,y) dy$ 的积分次序,正确的是()

A.
$$\int_{-1}^{0} dy \int_{y^2}^{y} f(x, y) dx$$

B.
$$\int_{0}^{1} dy \int_{y^{2}}^{y} f(x, y) dx$$

C.
$$\int_0^1 dy \int_y^{\sqrt{y}} f(x, y) dx$$

D.
$$\int_0^1 dy \int_{y^2}^{\sqrt{y}} f(x, y) dx$$

3. 设
$$L$$
 是从 $A(1,0)$ 到 $B(-1,2)$ 的线段,则曲线积分 $\int_L (x+y)ds = ($

A.
$$2\sqrt{2}$$

B.
$$\sqrt{2}$$

4. 已知
$$\frac{(x+ay)dx+ydy}{(x+y)^2}$$
 为某函数的全微分,则 $a=($

$$C. -1$$

$$A. \sum_{n=1}^{\infty} (-1)^n \frac{1}{\sqrt{n}}$$

B.
$$\sum_{n=1}^{\infty} (-1)^n \frac{n}{3^n}$$

C.
$$\sum_{n=1}^{\infty} (-1)^n \ln(1+\frac{1}{n})$$

D.
$$\sum_{n=1}^{\infty} (-1)^n \frac{n}{2}$$

二、简答题(共 5 题, 每题 6 分, 共 30 分)

1. 设
$$z = e^{x^2 y^3}$$
,求 $\frac{\partial^2 z}{\partial x \partial y}$ 。

2. 函数
$$u = z^4 - 3xz + x^2 + y^2$$
 在点 $M(1,1,1)$ 处沿方向 $r = i + 2j + 2k$ 的方向导数 $\frac{\partial u}{\partial r}$ 是 多少?

3. 已知直线
$$y = x + 1$$
, $y = 2x$, $y = -x$ 所围平面区域为 D ,试求 $I = \iint_D dx dy$ 。

4. 已知
$$f(x)$$
 是以 2π 为周期的函数,它在 $[-\pi,\pi]$ 上表达式为 $f(x) = \begin{cases} -1, -\pi \le x < 0 \\ 1, 0 \le x \le \pi \end{cases}$

将 f(x) 展成如下傅里叶级数时: f(x): $\frac{a_0}{2} + \sum_{n=1}^{\infty} (a_n \cos nx + b_n \sin nx)$, 其系数 b_3 是多少?

5. 已知微分方程 $x^2 \frac{dy}{dx} + 3xy = 1, (x > 0)$, 求其通解。

三、计算题(共 5 题, 每题 8 分, 共 40 分)

- 1. 设函数 z = z(x, y) 由方程 $xz = \ln(yz)$ 所确定,求 $\frac{\partial z}{\partial x}$ 与 $\frac{\partial z}{\partial y}$ 。
- 2. 计算 $I = \iint_{\Omega} z dx dy dz$,其中: Ω 是由圆柱面 $x^2 + y^2 2x = 0$,平面 z = 0, z = 2, y = 0 在第一卦限所围闭区域。
- 3. 计算 $I = \iint_{\Sigma} z^2 dx dy$, 其中 Σ 是球面 $z = -\sqrt{1-x^2-y^2}$ 的下侧。
- 4. 将函数 $f(x) = \frac{1}{3+x}$ 展开成 x 的幂级数。
- 5. 求微分方程 $y''+4y'+3y=-e^{2x}$ 的通解。

四、应用与证明题(共2题,第一题10分,第二题5分,共15分)

- 1. 要建造一个敞口长方体水池,要求水池的**表面积**为 108 平方米,问不考虑水池壁的厚度时,水池的长、宽、高尺寸如何设计,才能使其容积最大?
- 2. 设数项级数 $\sum_{n=1}^{\infty}a_n$ 收敛于 s ,且 $\lim_{n\to\infty}na_n=0$ 。证明:数项级数 $\sum_{n=1}^{\infty}n(a_n-a_{n+1})$ 也收敛于 s 。