(12) NACH DEM VERTRAG ÜBER DIE INTERNATIONALE ZUSAMMENARBEIT AUF DEM GEBIET DES PATENTWESENS (PCT) VERÖFFENTLICHTE INTERNATIONALE ANMELDUNG

(19) Weltorganisation für geistiges Eigentum Internationales Büro

(43) Internationales Veröffentlichungsdatum 17. Februar 2005 (17.02.2005)

PCT

(10) Internationale Veröffentlichungsnummer WO 2005/014867 A2

(51) Internationale Patentklassifikation7:

C21C

- (21) Internationales Aktenzeichen: PCT/EP2004/008837
- (22) Internationales Anmeldedatum:

6. August 2004 (06.08.2004)

(25) Einreichnugssprache:

Deutsch

(26) Veröffentlichungssprache:

Deutsch

(30) Angaben zur Priorität:

103 36 650.4

9. August 2003 (09.08.2003) DE

- (71) Anmelder (für alle Bestimmungsstaaten mit Ausnahme von US): SACHTLEBEN CHEMIE GMBH [DE/DE]; Dr.-Rudolf-Sachtleben-Strasse 4, 47198 Duisburg (DE).
- (72) Erfinder; und
- (75) Erfinder/Anmelder (nur für US): AMIRZADEH-ASL, Djamschid [IR/DE]; Tervoortstrasse 8, 47445 Moers (DE).
- (74) Anwalt: UPPENA, Franz; Dynamit Nobel Aktiengesellschaft, Patente, Marken & Lizenzen, 53839 Troisdorf (DB).

- (81) Bestimmungsstaaten (soweit nicht anders angegeben, für jede verfügbare nationale Schutzrechtsart): AB, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI, GB, GD, GB, GH, GM, HR, HU, ID, IL, IN, IS, IP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NA, NI, NO, NZ, OM, PG, PE, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW.
- (84) Bestimmungsstaaten (soweit nicht anders angegeben, für jede verfügbare regionale Schutzrechtsart): ARIPO (BW. GH, GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM, ZW). eurasisches (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), europäisches (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IT, LU, MC, NL, FL, PT, RO, SE, SI, SK, TR), OAPI (BP, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Veröffentlichts

 ohne internationalen Recherchenbericht und erneut zu veröffentlichen nach Erhalt des Berichts

Zur Erklärung der Zweibuchstaben-Codes und der anderen Abkürzungen wird auf die Erklärungen ("Guidance Notes on Codes and Abbreviations") am Anfang jeder regulären Ausgabe der PCT-Gazette verwiesen.

(54) Title: USE OF TIO2 RESIDUES FROM A SULFATE METHOD

- (54) Bezeichnung: VERWENDUNG VON TIO2-RÜCKSTÄNDEN AUS DEM SULFATVERFAHREN
- (57) Abstract: The invention relates to the use of TiO₂ residues from a sulfate method used in metallurgical processes or as a component of fireproof materials. According to the invention, the TiO₂ residues are dried and added without further mixing with other substances.
- (57) Zusammenfassung: Beschrieben wird Verwendung von TiO₂-Rückständen aus dem Sulfatverfahren in metallurgischen Prozessen oder als Bestandtell von Feuerfestmaterialien, wobei die TiO₂-Rückstände ohne weitere Mischung mit anderen Stoffen getrocknet und eingesetzt werden.

2005/014867

FRE/27/JAN/2006 07:39

10

15

25

T

FAX Nr.: 069-7165-2331

P. 004

IAP9 Rec'd PCT/PTO 31 JAN 2006

WO 2005/014867

PCT/EP2004/008837

Verwendung von TiO2-Rückständen aus dem Sulfatverfahren.

-1 —

Die Erfindung betrifft die Verwendung von TiO₂-Rückständen aus dem Sulfatverfahren.

Die Verwendung von Rückständen aus der TiO₂-Produktion (TiO₂-Rückstände) in der metallurgischen Industrie ist prinzipiell bekannt. So wird in der DE 4419816 C1 ein titanhaltiger Zuschlagstoff, bestehend aus TiO₂-Rückständen und weiteren Stoffen, beschrieben. Die DE 19705996 C2 beschreibt ein Verfahren zur Herstellung eines TiO₂ enthaltenden Zuschlagstoffes. Dabei wird eine Mischung aus TiO₂-Rückständen und Eisen, bzw. Eisenverbindungen bei 200 bis 1300 °C thermisch behandelt. Von Nachteil ist die umständliche Dosierung und Mischung der TiO₂-Rückstände mit den jeweiligen weiteren Bestandteilen des Zuschlagstoffes.

Die DE 19830102 C1 beschreibt die Verwendung eines bei der TiO₂-Herstellung nach dem Chloridverfahren anfallenden feinkörnigen TiO₂-haltigen Reststoffes. Von Nachtell dieser Lehre ist, dass bei der TiO₂-Herstellung nach dem Sulfatverfahren solche feinkörnigen TiO₂-haltigen Reststoffe nicht anfallen und die Lehre deshalb auf TiO₂-Rückstände aus dem Sulfatverfahren nicht anwendbar ist.

Aufgabe der Erfindung ist es, die Nachteile des Standes der Technik zu überwinden und insbesondere eine einfache Verwendung von TiO₂-Rückständen aus der TiO₂-Produktion nach dem Sulfatverfahren aufzuzeigen.

Gelöst wird die Aufgabe durch die Verwendung von TiO₂-Rückständen aus dem Sulfatverfahren in metallurgischen Prozessen oder als Bestandteil von Feuerfestmaterialien, wobei die TiO₂-Rückstände ohne weltere Mischung mit anderen Stoffen thermisch behandelt und eingesetzt werden.

BESTÄTIGUNGSKOPIE

20

FAX Nr.: 069-7165-2331

P. 005

WO 2005/014867

PCT/EP2004/008837

-2 -

Überraschend wurde gefunden, dass die TiO₂-Rückstände aus dem Sulfatverfahren für sich genommen in metallurgischen Prozessen oder als Bestandtell von Feuerfestmateriallen die gleiche gewünschte Wirkung entfalten wie die bisher vorgesehenen Mischungen aus TiO₂-Rückständen und anderen Stoffen. Die TiO₂-Rückstände können in der thermischen Behandlung ungewaschen oder gewaschen und neutralisiert eingesetzt werden.

Die thermische Behandlung der TiO₂-Rückstände wird bevorzugt bei 100 bls 1300 °C vorgenommen. Die TiO₂-Rückstände können pulverförmig oder als Formkörper (gewonnen z.B. durch Sintern, Pelletieren, Brikettieren oder Pressen) vorliegen.

Bevörzugt enthalten die thermisch behandelten (getrockneten) TiO₂-Rückstände als Hauptbestandteil folgende Stoffe (Zahlenangaben in Gew.-%):

	TiO₂	35 bis 70
	SiO ₂	5 bis 40
15	Eisenverbindungen	2 bis 15
	MgO	1 bis 15
	CaO	0,5 bis 15

Alternativ können die thermisch behandelten (getrockneten) TiO₂-Rückstände folgende Hauptbestandteile, gerechnet als Oxide, aufweisen (Zahlenangaben in Gew.-%):

	TiQ ₂	20 bis 80
	SiO ₂	2 bis 30
	Al ₂ O ₃	0 bis 15
	Fe ₂ O ₃	0 bls 15
25	MgO	1 bis 15
	CaO	0 bis 15

Bei einer bevorzugten Verwendung werden die thermisch behandelten TiO2-Rückstände in einen metallurgischen Ofen, z.B. einen Hochofen oder

15

WO 2005/014867

PCT/EP2004/008837

-3 -

Elektroschmelzofen oder Kupolofen, eingeblasen. Dies führt zu einer Erhöhung der Haltbarkeit der feuerfesten Ofenausmauerung. Weitere Anwendungen finden die TiO₂-Rückstände in Stichlochmassen und sonstigen Feuerfestmaterialien.

Der Gegenstand der Erfindung wird anhand des folgenden Beispiels näher serläutert:

Beispiel 1: Aufbereitung eines TiO₂-Rückstandes aus dem Sulfatverfahren für den Einsatz in einem metallurgischen Ofen

100 t Pressfilterabwurf (Aufschlussrückstand), der bei einem Aufschluss bei der TiO₂-Produktion nach Sulfatverfahren anfiel und einen Feststoffgehallt von 75 Gew.-% mit einem TiO₂-Anteit von 53 Gew.-% (bezogen auf den Feststoffgehalt) aufwies, wurde in einem Drehrohrofen bei einer Eintrittstemperatur von 650° C behandelt. Das erhaltene felnteilige Produkt hatte eine Restfeuchte von 0,5 Gew.-%. Das Produkt wies eine sehr gute Rieselfähigkeit auf und IIeß sich sehr gut mittels pneumatischer Förderung in einen metallurgischen Ofen (hier ein Hochofen) einblasen.

Das Produkt hatte folgende Zusammensetzung (in Gew.-%):

	1102	53
	Fe ₂ O ₃	5,9
	SiO ₂	27,8
20	Al ₂ O ₃	6,1
	MgO	2,4
	CaO	4,2

20

FAX'Nr.:069-7165-2331

069-7165-2331 P. 007

WO 2005/014867

PCT/EP2004/008837

Patentansprüche

-4 --

- Verwendung von TiO₂-Rückständen aus dem Sulfatverfahren in metallurgischen Prozessen oder als Bestandteil von Feuerfestmaterialien, dadurch gekennzeichnet, dass die TiO₂-Rückstände ohne weitere Mischung mit anderen Stoffen thermisch behandelt und eingesetzt werden.
- 2. Verwendung nach Anspruch 1, dadurch gekennzeichnet, dass die TiO₂-Rückstände bei 100 bis 1300 °C thermisch behandelt werden.
- 3. Verwendung nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass die TiO₂-Rückstände pulverförmig oder als Formkörper vorliegen.
- 4. Verwendung nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass die TiO₂-Rückstände als Hauptbestandteil folgende Stoffe enthalten (Zahlenangaben in Gew.-%):

	TiO ₂	35 bis 70
	SiO₂	5 bis 40
15	Eisenverbindungen	2 bis 15
	MgO	1 bis 15
	CaO	0,5 bis 15

5. Verwendung nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass die TiO₂-Rückstände folgende Hauptbestandteile, gerechnet als Oxide, aufweisen (Zahlenangaben in Gew.-%):

	TiO ₂	20 bis 80
	SiO ₂	2 bis 30
	Al ₂ O ₃	0 bis 15
	Fe₂O₃	0 bis 15
25	MgO	1 bis 15
	CaO	0 bis 15

P. 008

WO 2005/014867

PCT/EP2004/008837

-5 -

- 6. Verwendung nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass die getrockneten TiO₂-Rückstände in einen metallurgischen Ofen eingeblasen werden.
- 7. Verwendung nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass die getrockneten TiO₂-Rückstände in einer Stichlochmasse eingesetzt werden.