Les questions de cours portent sur les éléments entre accolades et en gras. On attend une maîtrise de l'ensemble des notions du programme de colle.

Chapitre 13 : Arithmétique dans \mathbb{Z} .

Anneau euclidien \mathbb{Z} .

Relation de divisibilité. Elle induit une relation d'ordre sur \mathbb{N} . Eléments associés. Ensemble des diviseurs d'un entier relatif. L'ensemble des multiples de a, $a\mathbb{Z}$ est un sous-groupe de \mathbb{Z} . a divise b ssi $b\mathbb{Z} \subset a\mathbb{Z}$. [Théorème de la division euclidienne : $\forall (a,b) \in \mathbb{Z} \times \mathbb{Z}^*, \exists ! (q,r) \in \mathbb{Z} \times [[0,|b|-1]], a = bq+r$]. Expressions du quotient et du reste à l'aide de la partie entière. [Caractérisation des sous-groupes de \mathbb{Z} : $G \subset \mathbb{Z}$ est un sous-groupe de $(\mathbb{Z},+)$ si et seulement s'il existe $n \in \mathbb{N}$ tel que $G = n\mathbb{Z}$.] Exemple des sous-groupes $a\mathbb{Z} + b\mathbb{Z}$ et $a\mathbb{Z} \cap b\mathbb{Z}$.

Pgcd, ppcm de deux entiers relatifs.

Définition du pgcd : $a \land b$ est l'unique générateur positif du sous-groupe $a\mathbb{Z} + b\mathbb{Z}$. [Dans le cas $(a,b) \neq (0,0)$, $a \land b$ est le plus grand diviseur positif commun à a et b]. Réduction : $\forall (a,b) \in \mathbb{Z}^2, \exists (a',b') \in \mathbb{Z}^2, a = (a \land b)a', b = (a \land b)b', a' \land b' = 1$. Propriétés : $a \land b = b \land a = |a| \land |b| = a \land (b+na)$. Si b non nul et r le reste dans la division de a par b, $a \land b = b \land r$. L'ensemble des diviseurs communs à a et b est l'ensemble des diviseurs de $a \land b$. Algorithme d'Euclide. Homogénéité positive du pgcd. Relation de Bezout, théorème de Bezout, algorithme d'Euclide étendu pour déterminer une relation de Bezout. Définiton du ppcm : $a \lor b$ est l'unique générateur positif du sous-groupe $a\mathbb{Z} \cap b\mathbb{Z}$. Dans le cas $a \ne 0, b \ne 0$, c'est le plus petit multiple positif commun à a et b. Homogénétié positive du ppcm. Extensions à une famille finie d'entiers relatifs.

Entiers relatifs premiers entre eux.

Notions d'entiers premiers entre eux. Lemme de Gauss : Soit $(a,b,c) \in \mathbb{Z}^3$ tel que a divise bc et a premier avec b, alors a divise c. [Relation entre pgcd et ppcm : $\forall (a,b) \in \mathbb{Z}^2, (a \land b)(a \lor b) = |ab|$.] Résolution d'équations diophantiennes. Ecriture sous forme irréductible d'un rationnel. Soit $(a,b,n) \in \mathbb{Z}^3$ tel que $a \land b = 1$, a divise a deux, premiers entre eux dans leur ensemble. La coprimalité deux à deux entraîne la coprimalité dans l'ensemble.

Anneau factoriel

Notion d'entier premier. Notation $\mathcal P$ des entiers naturels premiers. [Soit $n \in \mathbb Z$ tel que $|n| \ge 2$, alors n admet un diviseur premier]. L'ensemble $\mathcal P$ est infini. Soit $n \in \mathbb Z$ tel que $|n| \ge 2$, alors n est premier ssi $\forall k \in [[1,|n|-1]], k \land n = 1$. Deux entiers naturels premiers distincts sont premiers entre eux. Lemme d'Euclide: soit $(a,b) \in \mathbb Z^2$ et $p \in \mathcal P$ tel que p divise ab, alors p divise a ou p divise b. Tout entier non premier possède un diviseur premier inférieur ou égal à $\sqrt{|n|}$. Notion de famille à support fini. [Théorème fondamental de l'arithmétique: $\forall n \in \mathbb Z^*, \exists ! (u, (\alpha_p)_{p \in \mathcal P}) \in \{-1,1\} \times \mathbb N^{(\mathcal P)}, n = u \bigcap_{p \in \mathcal P} p^{\alpha_p}$]. Valuation p-adique d'un entier non nul. Valuation p-adique du produit, du pgcd, du

ppcm de deux entiers relatifs non nuls. Indicatrice d'Euler d'un entier premier, d'une puissance d'un entier premier.

Arithmétique modulaire

n désigne un entier naturel non nul. Relation de congruence modulo n. Compatibilité avec l'addition et le produit. Inversibilité modulo n. Pour tout a dans \mathbb{Z} , a est inversible modulo n si et seulement si a est premier avec n. Résolution d'équation modulaires. [Petit théorème de Fermat : soit $a \in \mathbb{Z}$, $p \in \mathcal{P}$ tel que $a \land p = 1$. Alors $a^{p-1} \equiv 1[p]$.]

* * * * *