

School of CSEE



## **Shortest path**



- Input: directed graph G = (V, E) with weight function  $w: E \rightarrow R$
- Determine the path p with minimum weight from source to destination.
- Weight w(p) of path p: sum of edge weights on path p
- shortest-path weight u to v :

```
\delta(u,v) = \int \min \{ w(p) : \text{path } p \text{ from } u \text{ to } v \}
                          if there exists a path from u to v.
               \infty, otherwise.
```



#### **Variants**



- Single-source shortest path: find shortest paths from a given source vertex  $s \in V$  to every vertex  $v \in V$
- Single-destinations: find shortest paths to a given destination vertex. By reversing the direction of the each edge in the graph, the problem is reduced to single-source problem.
- Single-pair: find shortest path from u to v. No easier than single-source problem.
- All-pairs shortest-paths: find shortest path from u to v for all u,  $v \in V$



#### **Variants**



- Single-source shortest path
  - Bellman-Ford algorithm
  - In DAG
  - Dijkstra's algorithm

- All-pairs shortest-paths
  - Floyd-Warshall algorithm



#### **Shortest Path Properties: Lemma 24.1**

 Again, we have optimal substructure: the shortest path consists of shortest subpaths:



- Proof: suppose some subpath is not a shortest path.
  - There must then exist a shorter subpath.
  - We could substitute the shorter subpath for a shortest path.
  - But then overall path is not shortest path. Contradiction!!



## **Shortest Path Properties**



Define  $\delta(u,v)$  to be the weight of the shortest path from u to v. Shortest paths satisfy the triangle inequality:  $\delta(u,v) \leq \delta(u,x) + \delta(x,v)$ 



This path is no longer than any other path



## **Negative-weight edges**

- OK, as long as no negative-weight cycle are reachable from the source.
- If we reach a negative-weight cycle, we can just keep going around it and get  $w(s, v) = -\infty$  for all v in the cycle.

Some algorithms work only if there are no negative-weight

edges.



Algorithm Analysis Chapter 24, 25



## **Cycles**



- Shortest paths can't contain cycles.
  - We assumed that there is no negative-weight cycles.
  - Positive-weight cycle: Just omit it to get a shorter path.
  - Zero-weight cycle: There is no reason to use them. Assume that our solutions won't use them.



## Cycles



- If there is a cycle reachable from s, shortest-path weights are not well defined.
- $\delta(s, v) = -\infty \ (v \in V)$







# **Single Source Shortest Path**

Algorithm Analysis Chapter 24, 25



# SS shortest-path algorithm



- Find shortest paths from a given source vertex s ∈ V to every vertex v ∈ V.
- Output for each vertex v ∈ V:
  - $o[v] = \delta(s, v)$ 
    - Initially,  $d[v] = \infty$
    - Reduces d[v] as algorithm progress. But always maintain  $d[v] \ge \delta(s, v)$
    - *d*[*v*] : shortest-path estimate
  - $-\pi[v]$  = predecessor of v on a shorteat path from s.
    - If no predecessor,  $\pi[v] = NIL$
    - $\pi$  induces a tree shortest-path tree

Algorithm Analysis Chapter 24, 25



#### Initialization



## INIT-SINGLE-SOURCE(V, s)

for each 
$$v \in V$$

do 
$$d[v] = \infty$$

$$\pi[v] = NIL$$

$$d[s] = 0$$



#### Relaxation



- A key technique in shortest path algorithms is *relaxation*.
  - Idea: for all v, maintain upper bound d[v] on  $\delta(s,v)$



Algorithm Analysis Chapter 24, 25 13



# [1] Bellman-Ford algorithm



- Solves the single-source shortest-paths problem in general case in which edge weights may be negative.
- Allow negative-weight edges and produce a correct answer as long as no negative-weight cycles are reachable from the source.
- Returns a boolean value
  - negative-weight cycle FALSE
  - No such cycle TRUE



#### **Pseudocode**



15

#### BELLMAN-FORD(V, E, w, s)

- 1. INIT-SINGLE-SOURCE(V, s)
- 2. for i = 1 to |V| 1
- 3. do for each edge  $(u,v) \in E$
- 4. do RELAX(u, v, w)
- 5. for each edge  $(u,v) \in E$
- 6. do if d[v] > d[u] + w(u, v)
- 7. then return FALSE
- return TRUE

The first for loop relaxes all edges |V| - 1 times.

Time :  $\Theta(VE)$ 

Initialize d[], which will converge to shortest-path value  $\delta$ 

Relaxation:

Make |V|-1 passes, relaxing each edge

Test for solution Under what condition do we get a solution?

Algorithm Analysis Chapter 24, 25



- Order: (t,x), (t,y), (t,z), (x,t), (y,x), (y,z), (z,x), (z,s), (s,t), (s,y)
- After INIT-SINGLE-SOURCE(V, s)







- Order: (t,x), (t,y), (t,z), (x,t), (y,x), (y,z), (z,x), (z,s), (s,t), (s,y)
- At first pass





- Order: (t,x), (t,y), (t,z), (x,t), (y,x), (y,z), (z,x), (z,s), (s,t), (s,y)
- At second pass





- Order: (t,x), (t,y), (t,z), (x,t), (y,x), (y,z), (z,x), (z,s), (s,t), (s,y)
- At second pass





- Order: (t,x), (t,y), (t,z), (x,t), (y,x), (y,z), (z,x), (z,s), (s,t), (s,y)
- At third pass







- Order: (t,x), (t,y), (t,z), (x,t), (y,x), (y,z), (z,x), (z,s), (s,t), (s,y)
- At fourth pass



Algorithm Analysis Chapter 24, 25 21



# 디희교 Neg. Weight Cycle Example

- Order: (t,x), (t,y), (t,z), (x,t), (y,x), (y,z), (z,x), (z,s), (s,t), (s,y)
- After INIT-SINGLE-SOURCE(V, s)





#### Correctness



- Values you get on each pass and how quickly it converges depends on order of relaxation.
- But guaranteed to converge after | M-1 passes, assuming no negative-weight cycles.

 Proof: use path-relaxation property. Theorem 24.4



#### [2] SSP in DAG



- Problem: finding shortest paths in DAG
  - Bellman-Ford takes O(VE) time.
  - How can we do better?
  - Idea: use topological sort
    - Since it is a DAG, there are no cycles.
    - Every path in a DAG is subsequence of topologically sorted, so processes vertices on each shortest path from left to right, then it would be done in one pass.
    - What will be the running time?







Algorithm Analysis Chapter 24, 25



#### SSP in DAG



DAG-SHORTEST-PATHS(V, E, w, s)

topologically sort the vertices

INIT-SINGLE-SOURCE(V, s)

for each vertex u, take in topologically sorted order

do for each vertex  $v \in AdJ[u]$ 

do RELAX(u, v, w)

Time :  $\Theta(V+E)$ 



# [3] Dijkstra's Algorithm



- If there are no negative edge weights, we can beat Bellman-Ford.
- Similar to breadth-first search: weighted version of breadth-first search.
  - Grow a tree gradually, advancing from vertices taken from a queue.
  - Instead of a FIFO queue, uses a priority queue.
  - Keys are shortest-path weights (a[v]).



#### Basic Idea



- Have two sets of vertices :
  - -S = vertices whose final shortest-path weights are determined.
  - -Q = priority queue = V S.
- For the graph G=(V,E), maintains a set S of vertices for which the shortest paths are known.
- Repeatedly selects the vertex u ( $u \in V-S$ ), with the minimum shortest-path estimated, adds u to S, and relaxes all edges leaving u.



#### Pseudo-code



```
DIJKSTRA(G, W, S)
1 INITIALIZE-SINGLE-SOURCE(G, s)
2S \leftarrow \emptyset
3Q \leftarrow VG
4 while Q \neq \emptyset
     do u \leftarrow \text{EXTRACT-MIN}(Q)
5
         S \leftarrow S \cup \{u\}
        for each vertex v \in Ad/u
           do RELAX(u, v, w)
```

Algorithm Analysis Chapter 24, 25





# Find shortest path from s to t.



Algorithm Analysis Chapter 24, 25



INITIALIZE-SINGLE-SOURCE(G, s)  $S \leftarrow \emptyset$ ,  $Q \leftarrow V[G]$ 



 $\infty$ 





While Q ≠ Ø do  $u \leftarrow EXTRACT-MIN(Q)$ 



Algorithm Analysis Chapter 24, 25 32





**5** ← 5 U {u} **for** each vertex  $v \in Adj[u]$ do RELAX(u, v, w)



Algorithm Analysis Chapter 24, 25 33





do  $u \leftarrow EXTRACT-MIN(Q)$ 







$$\mathbf{S} \leftarrow 5 \cup \{u\}$$







 $\label{eq:formula} \begin{array}{ll} \textbf{for} \ \text{each} \ \text{vertex} \ v \in Adj[u] \\ \textbf{do} \ \text{RELAX}(u,v,w) \quad \text{decrease key} \end{array}$ 









do  $u \leftarrow EXTRACT-MIN(Q)$ 







**S** ← S U {u} for each vertex  $v \in Adj[u]$ do RELAX(u, v, w)

32







do  $u \leftarrow EXTRACT-MIN(Q)$ 







**S** ← S U {u} for each vertex  $v \in Adj[u]$ do RELAX(u, v, w)

32 **¾** 3**¾** 







$$S = \{ s, 2, 6, 7 \}$$
  
Q =  $\{ 3, 5, 4, † \}$ 

do  $u \leftarrow EXTRACT-MIN(Q)$ 







$$S = \{ s, 2, 3, 6, 7 \}$$
  
 $Q = \{ 5, 4, + \}$ 

**S** ← S U {u} **for** each vertex  $v \in Adj[u]$ do RELAX(u, v, w)









$$S = \{ s, 2, 3, 6, 7 \}$$
  
Q =  $\{ 5, 4, † \}$ 

do  $u \leftarrow EXTRACT-MIN(Q)$ 







$$S = \{s, 2, 3, 5, 6, 7\}$$
  
 $Q = \{4, +\}$ 

**S** ← S U {u} **for** each vertex  $v \in Adj[u]$ do RELAX(u, v, w)







$$S = \{ s, 2, 3, 5, 6, 7 \}$$
  
 $Q = \{ 4, + \}$ 

do  $u \leftarrow EXTRACT-MIN(Q)$ 









**S** ← S U {u} **for** each vertex  $v \in Adj[u]$ do RELAX(u, v, w)







$$S = \{s, 2, 3, 4, 5, 6, 7\}$$
  
 $Q = \{t\}$ 

do  $u \leftarrow EXTRACT-MIN(Q)$ 







 $S = \{ s, 2, 3, 4, 5, 6, 7, + \}$ Q = { }

**S** ← S U {u} **for** each vertex  $v \in Adj[u]$ do RELAX(u, v, w)

32





#### Correctness



Theorem 24.6

loop invariant: At the start of each iteration of the while loop of lines 4-8,  $d[v] = \delta(s,v)$ for each vertex  $v \in S$ .

Proof at page 660 ~ 661



## Time Analysis



- Like Prim's algorithm, performance depends on implementation of priority queue.
  - Binary heap :
    - Each operation takes O(lg V) time
      - $\rightarrow$  O(E lg V)
  - Fibonacci heap :
    - O( $V \log V + E$ ) time.





#### **All Pairs Shortest Path**



# Floyd-Warshall Algorithm



- The easiest way!
  - Iterate Dijkstra's and Bellman-Ford | V | times!
- Dijkstra:

- O(
$$V$$
g $V + E$ ) -> O( $V$ g $V + VE$ )  
• Bellman-Ford:  
- O( $V$ E) -> O( $V$ E) On dense graph O( $V$ 3)

- Faster-All-Pairs-Shortest-Paths (Ch 25.1):
  - $O(V^3 \lg V)$  -> better than Dijkstra and Bellman-Ford?
- Any other faster algorithms?
  - Floyd-Warshall Algorithm



# Floyd-Warshall Algorithm



- Negative edges are allowed
- Assume that no negative-weight cycle
- Dynamic Programming Solution
  - Optimal substructure



## The structure of a shortest path

- Intermediate vertex
  - In simple path  $p = \langle v_1, ..., v_l \rangle$ , any vertex of p other than  $v_1$  and  $v_1$ , i.e., any vertex in the set  $\{v_2, \dots, v_{l-1}\}$ .
- Key Observation
  - For any pair of vertices i, j in V.
  - Let p be a minimum-weight path of all paths from i to j whose intermediate vertices are all from  $\{1,2,\ldots,k\}$ .
  - Assume that we have all shortest paths from i to j whose intermediate vertices are from  $\{1,2,...,k-1\}$ .
  - Observe relationship between path p and above shortest paths.



## **Key Observation**



 A shortest path does not contain the same vertex twice.

 Proof: A path containing the same vertex twice contains a cycle. Removing cycle give a shorter path.



#### **Key Observation**



- *p* is determined by the shortest paths whose intermediate vertices from {1,..., *k*-1}.
- Case1: If k is not an intermediate vertex of p.
  - Path p is the shortest path from i to j with intermediates from {1,...k-1}.
- Case2: If k is an intermediate vertex of path p.
  - Path p can be broken down into  $i p1 \rightarrow k p2 \rightarrow j$ .
  - p1 is the shortest path from i to k with all intermediate
     vertices in the set {1,2,...,k} or {1,2,...,k-1}.
  - p2 is the shortest path from k to j with  $\{1,2,...,k\}$  or  $\{1,2,...,k-1\}$ .



# **Key Observation**

p1:All intermediate vertices in  $\{1,2,...,k-1\}$  p2:All intermediate vertices in  $\{1,2,...,k-1\}$ 



p: All intermediate vertices in  $\{1,2,...,k\}$ 



#### A recursive solution



- Let d<sub>ii</sub><sup>(k)</sup> be the length of the shortest path from i to j such that all intermediate vertices on the path are in set  $\{1,2,...,k\}$ .
- Let  $D^{(k)}$  be the  $n \times n$  matrix  $[d_{ii}^{(k)}]$ .
- $d_{ii}^{(0)}$  is set to be  $w_{ii}$  (no intermediate vertex).
- $d_{ii}^{(k)} = \min(d_{ii}^{(k-1)}, d_{ik}^{(k-1)} + d_{ki}^{(k-1)}) \quad (k \ge 1)$
- $D^{(n)} = (d_{ii}^{(n)})$  gives the final answer, for all intermediate vertices are in the set  $\{1,2,\ldots,n\}$ .



#### A recursive solution



• 
$$d_{ij}^{(k)} = \begin{cases} w_{ij} & \text{(if } k=0) \\ \min(d_{ij}^{(k-1)}, d_{ik}^{(k-1)} + d_{kj}^{(k-1)}) & \text{(if } k \ge 1) \end{cases}$$

• The Matrix  $D^{(n)} = (d_{ij}^{(n)})$  gives the final answer:  $d_{ij}^{(n)} = \delta(i,j)$  for all  $i,j \in V$ .



#### **Extracting the Shortest Paths**



The predecessor pointers pred[i,i] can be used.

Initially all pred[i,j] = nil

 Whenever the shortest path from i to j passing through an intermediate vertex k is discovered, we set pred[i,j] = k



#### **Extracting the Shortest Paths**



#### Observation:

- If pred[i,i] = nil, shortest path does not exist.
- If there exists shortest path and the shortest path does not pass through any intermediate vertex, then pred[i,j] = i.
- If pred[i,i] = k, vertex k is an intermediate vertex on shortest path form i to i



#### **Extracting the Shortest Paths**



- How to find?
  - If pred[i,j] = i, the shortest path is edge (i,j)
  - Otherwise, recursively compute

```
(i , pred[i,j]) and (pred[i,j] , j)
```



## Computing the weights bottom up

The Floyd-Warshall Algorithm: Version 1

```
Floyd-Warshall(w,n)
                                                            See figure 25.4.
                                         initialize
    for i = 1 to n do
         for j=1 to n do
                                                           Can you find a shortest path
         \{ D^0[i,j] = w[i,j] ; \}
                                                            from vertex 1 to vertex 2 from
 \pi_{ij}^{(0)} = \begin{cases} \text{NIL} & \text{if } i = j \text{ or } w_{ij} = \infty, \\ i & \text{if } i \neq j \text{ and } w_{ij} < \infty. \end{cases} \text{ the $\pi$ matrix?}
     for k = 1 to n do
                                         dynamic programming
          for i = 1 to n do
              for j = 1 to n do
                  if(d^{(k-1)}[i,k] + d^{(k-1)}[k,i] < d^{(k-1)}[i,i])
                     \{d^{(k)}[i,j] = d^{(k-1)}[i,k] + d^{(k-1)}[k,j];
                                                                                              case2
                       pred[i,j] = k;
                       else d^{(k)}[i,j] = d^{(k-1)}[i,j];
                                                                                              case1
     return d(n)[1..n, 1..n];
```



## **Analysis**



- Running time is clearly Θ(?)
- $\Theta(n^3) -> \Theta(|V|^3)$
- Faster than previous algorithms.  $O(|V|^4), O(|V|^3|g|V|)$
- Problem: Space Complexity Θ(| V|<sup>3</sup>).
- It is possible to reduce this down to Θ(| M<sup>2</sup>)by keeping only one matrix instead of *n*.



#### **Transitive Closure**



- Given directed graph G = (V, E)
- Compute  $G^* = (V, E^*)$
- $E^* = \{(i,j) : \text{there is path from } i \text{ to } j \text{ in } G\}$
- Could assign weight of 1 to each edge, then run FLOYD-WARSHALL
- If  $d_{ij} < n$ , then there is a path from i to j.
- Otherwise,  $d_{ij} = \infty$  and there is no path.



#### Transitive Closure – Warshall

- Using logical operations ∨ (OR), ∧ (AND)
- Assign weight of 1 to each edge, then run FLOYD-WARSHALL with this weights.
- Instead of  $D^{(k)}$ , we have  $T^{(k)} = (t_{ij}^{(k)})$

$$- t_{ij}^{(0)} = \begin{cases} 0 & \text{(if } i \neq j \text{ and } (i, j) \notin E \\ 1 & \text{(if } i = j \text{ or } (i, j) \in E \end{cases}$$

$$-t_{ij}^{(k)} = \begin{cases} 1 \text{ (if there is a path from } i \text{ to } j \text{ with all intermediate} \\ \text{vertices in } \{1, 2, ..., k\}) \end{cases}$$

$$(t_{ij}^{(k-1)} \text{ is } 1) \text{ or } (t_{ik}^{(k-1)} \text{ is } 1 \text{ and } t_{kj}^{(k-1)} \text{ is } 1)$$

$$0 \text{ (otherwise)}$$



#### **Transitive Closure**



```
TRANSITIVE-CLOSURE(E, n)
for i = 1 to n
    do for j = 1 to n
       do if i=j or (i, j) \in E
                then t_{ii}^{(0)} = 1
                else t_{ii}^{(0)} = 0
for k = 1 to n
   do for i = 1 to n
         do for j = 1 to n
                do t_{ii}^{(k)} = t_{ii}^{(k-1)} \vee (t_{ik}^{(k-1)} \wedge t_{ki}^{(k-1)})
return T^{(n)}
```