Big City Similarity Clustering

Sirui Wang 31 August 2019

1. Introduction

1.1Background

A New York Luxury Brand has built its business in several cities in the United States, including Los Angeles, New York, and Chicago. Due to its success and growing popularity in these cities, the CEO and his team wants to expand their business to other cities in the United States and also explore their market in big cities in other countries, such as China and UK. Before setting up the business in these cities, the company needs to do extensive research to be more familiar with these cities and consider different business modes to operate in different places.

1.2 Problem

Now the CEO has hired a data scientist and assigned her a task to find out the similarity between different big cities in the world and group the cities into various clusters, so that the Board of Directors can make a better decision of which business mode to operate in new cities. (For Example: If London has the been grouped into the same cluster with New York, the business mode operated in New York market will be considered for London). The similarity test should be based on various factors, including but not limiting to geolocations, economic development, cultures, population components and so on. In order to carry out the task, the data scientist should make a full use of FourSquare API and collect a dataset for at least 15 cities, including those in the United States and those in other countries.

2. Data Acquisition and Cleaning

2.1. Data Source

We chose 27 most popular cities in the world and clustered them based on three factors, venues distribution, GDP indicator, and climate types. The location information of these cities, including latitudes and longitudes, are obtained by using geolocator package on python. The venues information is retrieved from FourSquare API and at most 500 venues

were selected for each city, while the GDP information and climate type information are scraped from online Wikipedia pages. The GDP data is released by Brookings Institution

Figure 1. World map with location points

2.2. Data Cleaning

Data scraped from online sources contain extensive information that we might not need for analysis. Thus, we dropped out irrelevant data and only select those we need – venues category, annual GDP, and average annual temperature. Since venue categories are of the type string and need to be quantified for modeling, we apply one-hot coding to the venue category. The resulting data frame is as follows:

	City	Accessories Store	Adult Boutique	African Restaurant	American Restaurant	Amphitheater	Aquarium	Arcade	Ar Restauı
0	New York	0	0	0	0	0	0	0	
1	New York	0	0	0	0	0	0	0	
2	New York	0	0	0	0	0	0	0	
3	New York	0	0	0	0	0	0	0	
4	New York	0	0	0	0	0	0	0	

Table 1. City Venue Category (one-hot coding)

Temperature and GDP data frame are as follows. The entry values are converted from strings to float numbers, and they are also normalized for modeling

	City	Normalized GDP	GDP
0	Tokyo	0.509116	1617.0
1	New York	0.441738	1403.0
2	Los Angeles	0.270930	860.5
3	Seoul	0.266333	845.9
4	London	0.263122	835.7

Table 2. City with GDP table

	City	Normalized Temperature	Temperature
0	Mumbai	0.307823	27.1
1	Singapore	0.306687	27.0
2	Jakarta	0.303279	26.7
3	Hong Kong	0.264659	23.3
4	Taipei	0.261252	23.0

Table 3. City with Temperature table

3. Clustering Modeling

3.1 Feature Summary

We visualized the data to have a look at all the features. Here is the table with the top 10 venue categories for all cities.

10th Most Common Venue	9th Most Common Venue	8th Most Common Venue	7th Most Common Venue	6th Most Common Venue	5th Most Common Venue	4th Most Common Venue	3th Most Common Venue	2th Most Common Venue	1th Most Common Venue	City	
Peking Duck Restaurant	Temple	Hostel	Coffee Shop	Café	Yunnan Restaurant	Chinese Restaurant	Park	Hotel	Historic Site	Beijing	0
Wine Bar	Hotel	Bakery	Garden	Sandwich Place	Concert Hall	Ice Cream Shop	Park	Bookstore	Coffee Shop	Berlin	1
Gastropub	Pizza Place	Gym	Historic Site	Mexican Restaurant	Theater	Seafood Restaurant	Hotel	Bakery	Park	Boston	2
Burger Joint	Restaurant	Mediterranean Restaurant	Boat or Ferry	New American Restaurant	Coffee Shop	Italian Restaurant	Theater	Park	Hotel	Chicago	3
Indie Movie Theater	Italian Restaurant	Hotel	Burger Joint	Cocktail Bar	Park	Restaurant	Pub	Café	Coffee Shop	Dublin	4
Whisky Bar	Pub	Museum	Cocktail Bar	Park	French Restaurant	Hotel	Bar	Coffee Shop	Café	Edinburgh	5
Cocktail Bar	Electronics Store	Cantonese Restaurant	Restaurant	Turkish Restaurant	Chinese Restaurant	Shopping Mall	Park	Coffee Shop	Hotel	Guangzhou	6
Steakhouse	Café	Lounge	Cocktail Bar	Scenic Lookout	Gym / Fitness Center	Italian Restaurant	Japanese Restaurant	Bar	Hotel	Hong Kong	7
Buffe	Asian Restaurant	Food Truck	Sushi Restaurant	Dessert Shop	Indonesian Restaurant	Shopping Mall	Restaurant	Coffee Shop	Hotel	Jakarta	8
Clothing Store	Hotel Bar	Coffee Shop	Department Store	Bookstore	Park	Art Museum	Theater	Cocktail Bar	Hotel	London	9
Art Gallery	Sushi Restaurant	Bookstore	American Restaurant	Hotel	Ice Cream Shop	Taco Place	Theater	Brewery	Coffee Shop	Los Angeles	10
Music Venue	Theater	Asian Restaurant	Italian Restaurant	Ice Cream Shop	Wine Bar	Park	Cocktail Bar	Café	Coffee Shop	Melbourne	11
Bakery	Spa	Seafood Restaurant	Public Art	Coffee Shop	Park	Hotel	Art Museum	Mexican Restaurant	Ice Cream Shop	Mexico City	12
Art Gallery	Coffee Shop	Jewelry Store	Road	Garden	Pizza Place	Park	Theater	Hotel	Yoga Studio	Moscow	13
Bakery	Italian Restaurant	Coffee Shop	Fast Food Restaurant	Pizza Place	Dessert Shop	Ice Cream Shop	Hotel	Café	Indian Restaurant	Mumbai	14
Yoga Studio	Wine Shop	Theater	Gym	Italian Restaurant	Scenic Lookout	Bookstore	Ice Cream	Cycle Studio	Park	New York	15
Art Museum	Ice Cream Shop	Bistro	Wine Bar	Bookstore	Seafood Restaurant	Italian Restaurant	Hotel	Cocktail Bar	Plaza	Paris	16
Bakery	Wine Bar	Dance Studio	Gym	Marijuana Dispensary	Ice Cream Shop	Grocery Store	Yoga Studio	Coffee Shop	Park	San Francisco	17
Cafe	Soccer Stadium	Golf Course	Bakery	BBQ Joint	Market	Multiplex	Park	Korean Restaurant	Coffee Shop	Seoul	18
Shopping Mal	Scenic Lookout	Chinese Restaurant	Café	Italian Restaurant	French Restaurant	Dumpling Restaurant	Lounge	Hotel Bar	Hotel	Shanghai	19
Electronics	Bookstore	Japanese Restaurant	Hotpot Restaurant	Park	Chinese Restaurant	Café	Shopping Mall	Coffee Shop	Hotel	Shenzhen	20
Buffe	Trail	Steakhouse	Performing Arts Venue	Event Space	Supermarket	Bakery	Ice Cream Shop	Park	Hotel	Singapore	21
Italiar Restauran	Thai Restaurant	Cocktail Bar	Bakery	Hotel	Scenic Lookout	Coffee Shop	Theater	Park	Café	Sydney	22
Mountair	Park	Bookstore	Noodle House	Dumpling Restaurant	Bakery	Japanese Restaurant	Dessert Shop	Café	Hotel	Taipei	23
Garden	Japanese Curry Restaurant	Coffee Shop	Wagashi Place	Chinese Restaurant	BBQ Joint	Kaiseki Restaurant	Tonkatsu Restaurant	Sake Bar	Hotel	Tokyo	24
Italian Restaurant	Sandwich Place	Yoga Studio	Pizza Place	Japanese Restaurant	Park	Hotel	Restaurant	Café	Coffee Shop	Toronto	25
Mediterranean Restaurant	Science Museum	American Restaurant	Salon / Barbershop	Theater	History Museum	Coffee Shop	Art Museum	Hotel	Monument / Landmark	Washington	26

Table 4. Cities with the top 10 popular venues

Temperature and GDP data are sorted and plotted out as bar charts. We can view the ranking from low to top

Figure 2. City rankings in GDP

Figure 3. City rankings in Average Annual Temperature

3.2 K-means Clustering

We chose k-means clustering model as our data are all continuous and numeric (after cleaning). Besides, we randomly and manually chose the city sample from across the world, and k-means could be an appropriate model to categorize the cities into clusters with similar traits.

We calculate the percentage of different venue categories for each city, and normalized the temperature and GDP values. The final dataset for modeling is as follows:

	City	Accessories Store	Adult Boutique	African Restaurant	American Restaurant	Amphitheater	Aquarium	Arcade	Arep Restaurar	a Argent nt Resta		Women's Store	Xinjiang Restaurant	Yakitori Restaurant	Yoga Studio
0	Beijing	0.00	0.00	0.00	0.01	0.00	0.00	0.00	0.0	0	0.00	0.00	0.01	0.00	0.00
1	Berlin	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.0	,0	0.01	0.00	0.00	0.00	0.01
2	Boston	0.00	0.00	0.00	0.01	0.00	0.01	0.00	0.0	.0	0.00	0.00	0.00	0.00	0.02
3	Chicago	0.00	0.00	0.00	0.01	0.01	0.00	0.00	0.0	.0	0.00	0.00	0.00	0.00	0.02
4	Dublin	0.00	0.00	0.00	0.00	0.00	0.00	0.01	0.0	.0	0.00	0.00	0.00	0.00	0.00
5	Edinburgh	0.00	0.00	0.01	0.00	0.00	0.00	0.00	0.0	.0	0.00	0.00	0.00	0.00	0.00
6	Guangzhou	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.0	.0	0.00	0.00	0.00	0.00	0.00
7	Hong Kong	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.0	.0	0.00	0.00	0.00	0.00	0.03
8	Jakarta	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.0	.0	0.00	0.00	0.00	0.00	0.00
9	London	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.0	.0	0.00	0.00	0.00	0.00	0.00
10	Los Angeles	0.00	0.00	0.00	0.03	0.00	0.00	0.00	0.0	.0	0.00	0.00	0.00	0.00	0.00
n ıt '	Amphitheater	Aquarium A	Arcade Re	Arepa Arg staurant Re	gentinian staurant '''		Xinjiang staurant Re	Yakitori estaurant		Yoshoku estaurant	Yunna Restaura	an Zhejia ant Restaur			Normalized emperature
1	0.00	0.00	0.00	0.00	0.00	0.00	0.01	0.00	0.00	0.00	0.0	.04 0	0.01 0.00	0.239020	0.219792
0	0.00	0.00	0.00	0.00	0.01	0.00	0.00	0.00	0.01	0.00	0.0	.00 0	0.00 0.00	0.074478	0.175493
1	0.00	0.01	0.00	0.00	0.00	0.00	0.00	0.00	0.02	0.00			.00 0.00	0.170067	0.185716
1	0.01	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.02	0.00			0.00 0.00	0.265987	0.184012 0.166974
0	0.00	0.00	0.01	0.00	0.00	0.00	0.00	0.00	0.00	0.00			0.00 0.00	0.042552	0.158455
0	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00			.00 0.00	0.179607	0.378247
0	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.03	0.00	0.0	.00 0	.00 0.01	0.196468	0.396989
0	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.0	.00 0	0.00 0.00	0.151743	0.454919
0	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.0	.00 0	0.00 0.00	0.394683	0.175493
3	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.0	.00 0	.00 0.00	0.406395	0.296464
0	0.00	0.00	0.00	0.00	0.01	0.00	0.00	0.00	0.00	0.00	0.0	.00 0	.00 0.00	0.084254	0.257276

Table 5. Clustering data for modeling

After modeling, 6 groups of cities are clustered out and the result is presented in the next section

4. Results and Discussion

4.1Clustering Results

We clustered out 6 labels and marked out the points on the world map as follows:

Figure 4. World Map with marked location points

4.2 Discussion of Results

The cities in the Cluster 0 are shown below:

	City	Country	Cluster Labels	1th Most Common Venue	2th Most Common Venue	3th Most Common Venue	4th Most Common Venue
5	Singapore	Singapore	0	Hotel	Park	Ice Cream Shop	Bakery
7	Hong Kong	China	0	Hotel	Bar	Japanese Restaurant	Italian Restaurant
16	Guangzhou	China	0	Hotel	Coffee Shop	Park	Shopping Mall
17	Shenzhen	China	0	Hotel	Coffee Shop	Shopping Mall	Café
18	Mumbai	India	0	Indian Restaurant	Café	Hotel	Ice Cream Shop
23	Taipei	China	0	Hotel	Café	Dessert Shop	Japanese Restaurant
25	Jakarta	Indonesia	0	Hotel	Coffee	Restaurant	Shoppin

Table 6. Cluster 0 table

These 7 cities are all located in the southern Asian areas with similar climates and temperatures. Their GDP are close too and are lower than those of the cluster 1 cities. 6 of them have hotel as the most common venue and coffee shops/cafe are very popular too. This shows that tourism might be an essential source of income for these cities. The Board of

Director can consider a new business mode customized for cities in this cluster which might cater to the needs of tourists and the spending power of the residents.

The cities in the Cluster 1 are shown below:

	City	Country	Cluster Labels	1th Most Common Venue	2th Most Common Venue	3th Most Common Venue	4th Most Common Venue
1	London	UK	1	Hotel	Cocktail Bar	Theater	Art Museum
8	Los Angeles	US	1	Coffee Shop	Brewery	Theater	Taco Place
9	Chicago	US	1	Hotel	Park	Theater	Italian Restaurant
15	Shanghai	China	1	Hotel	Hotel Bar	Lounge	Dumpling Restaurant
21	Moscow	Russia	1	Yoga Studio	Hotel	Theater	Park
22	Paris	France	1	Plaza	Cocktail Bar	Hotel	Italian Restaurant

Table 7. Cluster 1 table

These 6 cities are from all across the world. One common feature among them is that theaters are pretty popular in these cities. London, LA, Chicago, and Moscow are four out of five cities among all with theaters in the top 3 most common venues, and they all have developed arts and entertainment industries. Besides, Hotels are popular in these cities and all 6 cities all have close GDP, which is nearly 2 times higher than that of cluster 0 cities. However, their climates are pretty different. Since Los Angeles and Chicago are categorized into this cluster, the Business mode for these two cities could be applied to other cities in this group.

The cities in the Cluster 2 are shown below:

	City	Country	Cluster Labels	1th Most Common Venue	2th Most Common Venue	3th Most Common Venue	4th Most Common Venue	1
10	Boston	US	2	Park	Bakery	Hotel	Seafood Restaurant	
11	San Francisco	US	2	Park	Coffee Shop	Yoga Studio	Grocery Store	
13	Washington	US	2	Monument / Landmark	Hotel	Art Museum	Coffee Shop	
26	Mexico City	Mexico	2	Ice Cream Shop	Mexican Restaurant	Art Museum	Hotel	

Table 8. Cluster 2 table

In this cluster, 3 cities are from the United States and all 4 cities are located in the American continents. Their popular venues include parks and museums, which shows people in these cities are enjoying a rather slowly-paced life. These cities have a similar GDP too, which is slightly higher than that of cluster 0 but much lower than that of cluster 1. The Board of Directors can consider creating a rather relaxing and joyful environment for the customers when they are operating business in these cities, such as building a common space near the shopping stores

The cities in the Cluster 3 are shown below:

	City	Country	Cluster Labels	1th Most Common Venue	2th Most Common Venue	3th Most Common Venue	4th Most Common Venue	5th Mo Commo Venu
0	New York	US	3	Park	Cycle Studio	Ice Cream Shop	Bookstore	Scen Looko
19	Tokyo	Japan	3	Hotel	Sake Bar	Tonkatsu Restaurant	Kaiseki Restaurant	BB Joi

Table 9. Cluster 3 table

This cluster only has 2 cities, one in East Asia and the other in North America. These 2 cities have the highest GDP among all cities, and have similar climates too. However, their venue distribution are quite similar. Restaurants take up a large portion of venues in Tokyo, while venues in New York are pretty diverse. Since New York is in this cluster, the Business mode for NY can be considered for Tokyo as well.

The cities in the Cluster 4 are shown below:

	City	Country	Cluster Labels	1th Most Common Venue	2th Most Common Venue	3th Most Common Venue	4th Most Common Venue
2	Edinburgh	UK	4	Café	Coffee Shop	Bar	Hotel
3	Toronto	Canada	4	Coffee Shop	Café	Restaurant	Hotel
4	Sydney	Australia	4	Café	Park	Theater	Coffee Shop
6	Melbourne	Australia	4	Coffee Shop	Café	Cocktail Bar	Park
12	Dublin	Ireland	4	Coffee Shop	Café	Pub	Restaurant
24	Berlin	Germany	4	Coffee Shop	Bookstore	Park	Ice Cream Shop

Table 10. Cluster 4 table

This cluster has the lowest GDP among all clusters. Most cities are located in Europe and Australia. The similarity among these cities is that they are western countries and people in these cities generally enjoy a western lifestyle. They are unlike cities such as London or LA, which are more international and their popular venues are coffee shops, parks, and bars. The Board of Directors can consider a new Business mode that caters more to people with western lifestyles and relatively lower spending power.

The cities in the Cluster 5 are shown below:

Table 11. Cluster 5 table

Beijing is the only city in this cluster. Its GDP value and Average Annual Temperature value are in the middle. However, its venue distribution is rather unique compared to other cities. It is the only city with historic site as the most common venue, and also the only city with Yunnan and Pecking duck restaurants in the top 10 venues. This shows Beijing is a rather cultured and unique city differentiated with other cities. Thus, the Board of Directors might need to think more about how to customize and localize their business in Beijing.

5. Conclusion

In this assignment we have built up a clustering model to segment the major big cities into different groups. The result could be a valuable reference to the Board of Directors when they are making decisions on their business expansions into these cities. This results is straight-forward and takes different factors into account. However, there is also room for improvement, as there are a lot of features that influence the similarity between two cities and more variables could be included for higher accuracy of the clustering results.