

PhishKiller

Uma Ferramenta para Detecção e Mitigação de Ataques de Phishing Através de Técnicas de Deep Learning

Cristian Souza (IFRN)

Marcilio Lemos (UFRN) Felipe Dantas (IFRN) Robinson Alves (IFRN)

Agenda

- Phishing: Conceitos básicos;
- 2. Proposta: Apresentação do PhishKiller e trabalhos relacionados;
- Avaliação e resultados: Descrição dos testes para validação da proposta;
- 4. Conclusão: Considerações finais e trabalhos futuros.

1. Phishing

 Tentativa de obter credenciais através da suplantação de identidade por parte dos criminosos.

Etapas de um ataque de phishing

Estatísticas

- 1. 23% dos internautas brasileiros sofreram ao menos uma tentativa de phishing em 2018;
- 2. 60% dos ataques simulam instituições financeiras;
- 3. 58% dos sites maliciosos já utilizam HTTPS;
- 4. 76% das organizações já presenciaram uma tentativa de phishing;
- 5. Tentativas de phishing aumentaram 40.9% em 2018.

Fontes: Kaspersky Lab e Wombat Security

Características de um URL

Características de um URL malicioso

- Na tentativa de enganar os usuários mais desatentos, o atacante adiciona elementos do URL original ao endereço malicioso.
- Há um padrão na maioria dos endereços maliciosos:
 - o Grande quantidade de dígitos;
 - Muitos caracteres repetidos sequencialmente ou muito aleatórios;
 - Muitos subdomínios.
- Exemplos (fonte: PhishTank):
 - o http://appleid-appleupdatesec.com-appidkey4834668.com/manage/
 - o http://mhammadrizwan1600.000webhostapp.com/paypal.php
 - o https://paypal.co.uk.os3z.icu/n/

2. PhishKiller

 O presente trabalho tem como objetivo prover uma solução para detecção e mitigação de ataques de phishing.

Para isso, o mecanismo deve:

- Detectar os ataques no lado do cliente (client-side);
 - Alcançar um alto grau de generalização;
- Impedir o acesso ao site malicioso por parte do usuário;
- Não exigir esforço por parte do usuário para que o mesmo seja protegido.

Trabalhos relacionados

Proposta	#1	#2	#3
[Sahingoz et al. 2019]	~		97.98%
[Jain and Gupta 2018]	✓		99.09%
[Tyagi et al. 2018]			98.40%
[Niakanlahiji et al. 2018]	✓		95.40%
[Desai et al. 2017]		~	96.11%
[Marchal et al. 2014]			94.91%
[Belabed et al. 2012]			98.40%
PhishKiller	✓	~	98.30%

Legenda:

#1: a solução não faz consultas a servidores WHOIS ou indexadores de sites;

#2: propõe alguma ferramenta para efetivamente mitigar o ataque;

#3: porcentagem de acertos do mecanismo avaliado.

Trabalhos relacionados: Classificação

- Sahingoz et al. (2019): Processamento de linguagem natural / random forest;
- 2. Jain and Gupta (2018): Random Forest;
- Tyagi et al. (2018): Random Forest e Principal Component Analysis;
- 4. Niakanlahiji et al. (2018): Random Forest;
- 5. Desai et al. (2017): Random Forest;
- Marchal et al. (2014): Regressão linear;
- 7. Belabed et al. (2012): Support Vector Machine;
- 8. PhishKiller (2019): Long short-term memory (LSTM).

Arquitetura do PhishKiller

Proxy

- Configurado no navegador do cliente.
- É responsável por interceptar as requisições para envio do URL ao classificador.
- Suporte ao HTTPS (com auxílio do framework Tornado).

Training Module

- Responsável por realizar o treinamento da rede neural.
- Utiliza o TensorFlow e Keras como back-end.
- Pré-processamento com Word2Vec (CBOW).
- Técnicas empregadas: Modelo de convolução 1D e LSTM.
- O dataset utilizado tem 452.835 endereços, dos quais 108.013 são de phishing e 344.829 são autênticos.
- 80% do dataset foi utilizado para treinamento e 20% para testes.

Classification Module

- É requisitado sempre que um URL é detectado pelo proxy.
- Consulta se o URL já existe no banco de dados.
- Em caso negativo, faz a predição do endereço (maligno ou benigno).
- Ao encontrar um endereço malicioso, salva o mesmo no banco de dados para evitar futuras classificações desnecessárias.

Warning Module

Responsável por exibir uma página com informações ao usuário.

- → Ambiente para testes:
 - ◆ Dell Inspiron I14-5457-A30
 - ◆ 2.40 GHz Intel Corei7-6500U
 - ♦ 8GB RAM
 - Ubuntu 18.04.02 LTS
 - ♦ 30Mbps Internet link
 - ◆ curl v7.64.0

- → Ambiente de treinamento:
 - VM com Intel Xeon E5-2620 2.40 GHz (8 núcleos)
 - ♦ 16 GB RAM
 - Ubuntu 18.04.02 LTS

Épocas	Tempo $batch size = 16$	Tempo $batch size = 32$
5	38.96	23.58
10	69.13	46.70
15	103.53	69.51
20	139.96	95.12
25	175.83	116.86
30	205.54	142.44
100	884.32	440.57

- Acurácia nos 20% do dataset: 97.59%.
 - o 30 épocas e batch size de 16.
- Acurácia em testes automatizados com o curl: 98.3%.
 - o URLs: 1000 malignas e 1000 benignas.
- Tempo médio para classificar um endereço: **81.68ms**.

Demonstração

4. Conclusão

- Neste trabalho foi proposto o PhishKiller, uma ferramenta para detecção e mitigação de ataques de phishing.
- O mecanismo faz uso de um proxy, que captura os sites acessados e envia seus endereços para classificação baseada em deep learning.
- A solução apresenta uma boa generalização, com acurácia de 98.3% e delay de 81.68ms.

4. Conclusão

- Alguns problemas:
 - As técnicas empregadas exigem uma grande base de dados;
 - A acurácia pode cair significativamente no caso de um dataset pouco criterioso;
 - o Tempo de treinamento elevado.

- Trabalhos futuros:
 - o Adaptação do sistema para o contexto de Software-defined networking (SDN).

Informação e de Sistemas Computacionais

Agradecimentos

 Os autores agradecem ao CNPq e ao IFRN pelo fomento ao desenvolvimento do presente trabalho.

 Agradecemos também à Comissão Especial em Segurança da Informação e de Sistemas Computacionais (CESeg) pelo subsídio da incrição para participação no SBSeg 2019.