Class 17: Vaccination Mini-Project

Garrett Cole

Getting Started

```
#import vaccination data
vax <- read.csv("covid19vaccinesbyzipcode_test.csv")
head(vax)</pre>
```

11000 (1011)					
as_of_date zip_code_tabu	lation_area local_hea	lth_jurisdiction	county		
1 2021-01-05	92240	Riverside	Riverside		
2 2021-01-05	91302	Los Angeles	Los Angeles		
3 2021-01-05	93420	San Luis Obispo	San Luis Obispo		
4 2021-01-05	91901	San Diego	San Diego		
5 2021-01-05	94110	San Francisco	San Francisco		
6 2021-01-05	91902	San Diego	San Diego		
vaccine_equity_metric_qu	artile	vem_source			
1	1 Healthy Places	Index Score			
2	4 Healthy Places	Index Score			
3	3 Healthy Places				
4	3 Healthy Places	Index Score			
5	4 Healthy Places	Index Score			
6	4 Healthy Places				
age12_plus_population ag	e5_plus_population to	$t_{population}$			
1 29270.5	33093	35278			
2 23163.9	23163.9 25899				
3 26694.9	29253	30740			
4 15549.8	16905	18162			
5 64350.7	68320	72380			
6 16620.7	18026	18896			
persons_fully_vaccinated	persons_partially_va	ccinated			
1 NA		NA			
2 15		614			
3 NA		NA			

```
4
                         NA
                                                       NA
5
                         17
                                                     1268
                         15
                                                      397
6
  percent_of_population_fully_vaccinated
                                        NA
1
2
                                 0.000562
3
                                        NA
4
                                        NA
5
                                 0.000235
6
                                 0.000794
  percent_of_population_partially_vaccinated
                                            NA
1
2
                                      0.022986
3
                                            NA
4
                                            NA
5
                                      0.017519
                                      0.021010
  percent_of_population_with_1_plus_dose booster_recip_count
1
                                        NA
                                                             NA
2
                                 0.023548
                                                             NA
3
                                        NA
                                                             NA
4
                                        NA
                                                             NA
5
                                 0.017754
                                                             NA
                                 0.021804
                                                             NA
  bivalent_dose_recip_count eligible_recipient_count
                          NA
                                                     2
1
2
                                                    15
                          NA
3
                                                     4
                          NA
                                                     8
4
                          NA
5
                          NA
                                                    17
6
                          NA
                                                    15
                                                                  redacted
1 Information redacted in accordance with CA state privacy requirements
2 Information redacted in accordance with CA state privacy requirements
3 Information redacted in accordance with CA state privacy requirements
4 Information redacted in accordance with CA state privacy requirements
5 Information redacted in accordance with CA state privacy requirements
6 Information redacted in accordance with CA state privacy requirements
```

Q1: What column details the total number of people fully vaccinated?

10

```
#Commented out for pdf space
#vax["persons_fully_vaccinated"]
#vax[10]
```

Question 2: What column details the Zip code tabulation area?

2

```
#Commented out for pdf space
#vax["zip_code_tabulation_area"]
#vax[2]

# dimensions of dataset
dim(vax)
```

[1] 174636 18

Question 3: What is the earliest date in this dataset?

2021-01-05

```
vax$as_of_date[1]
[1] "2021-01-05"
```

Question 4: What is the latest date in this dataset?

2022-11-22

```
vax$as_of_date[174636]
```

[1] "2022-11-22"

Overview of vax library(skimr) skimr::skim(vax)

Table 1: Data summary

Name	vax
Number of rows	174636
Number of columns	18
Column type frequency:	
character	5
numeric	13
Group variables	None

Variable type: character

skim_variable	n_missing complete	e_rate	min	max	empty	n_unique	whitespace
as_of_date	0	1	10	10	0	99	0
local_health_jurisdiction	0	1	0	15	495	62	0
county	0	1	0	15	495	59	0
vem_source	0	1	15	26	0	3	0
redacted	0	1	2	69	0	2	0

Variable type: numeric

skim_variable	n_missim	g mplete	maten	sd	p0	p25	p50	p75	p100	hist
zip_code_tabulation_	area 0	1.00	93665	.111817.3	399000	192257	.7933658	.5905380	.5907635	.0
vaccine_equity_metric	_ &64 8tile	0.95	2.44	1.11	1	1.00	2.00	3.00	4.0	
age12_plus_population	n 0	1.00	18895	.0148993	.880	1346.9	513685	. 13 01 756	.1828556	.7
age5_plus_population	0	1.00	20875	.2241105	.980	1460.5	5015364	.0304877	.0100190	2.0
$tot_population$	8514	0.95	23372	.7 2 72628	.512	2126.0	018714	.038168	.001116	5.0
persons_fully_vaccina	te d 4921	0.91	13466	.3144722	.461	883.00	8024.0	002529	.0807186	.0
persons_partially_vac	cin a921	0.91	1707.5	501998.8	8011	167.00	1194.0	02547.0	039204	.0
percent_of_population	n _1f8d6l6 5_vac	c On&9 ec	0.55	0.25	0	0.39	0.59	0.73	1.0	
percent_of_population	n _1p36665 ally_	_0a&@in	a 0e01 8	0.09	0	0.05	0.06	0.08	1.0	

skim_variable	n_missia	ngmplete <u>n</u>	naben	sd	p0	p25	p50	p75	p100	hist
percent_of_population	1 9562_1_	_p 0u8 9_do s	e61	0.25	0	0.46	0.65	0.79	1.0	
booster_recip_count	70421	0.60 - 5	655.17	6867.4	911	280.00	2575.	009421.	0058304	.0
bivalent_dose_recip_co	0456958	0.10 1	646.02	2161.8	3411	109.00	719.0	0 2443.	0018109	.0
eligible_recipient_coun	t 0	1.00 1	2309.1	1 94555.	.83 0	466.00	5810.	0021140	0.0806696	.0

Question 5: How many numeric columns are in this dataset?

There are 9 numeric columns # Question 6: Note that there are "missing values" in the dataset. How many NA values there in the persons_fully_vaccinated column? 14921

```
sum(is.na(vax$persons_fully_vaccinated))
```

[1] 14921

8.54%

Question 7: What percent of persons_fully_vaccinated values are missing (to 2 significant figures)

```
#convert NA values to 0
vax[is.na(vax)] = 0
```

#double check number of missing values is 14921
colSums(vax==0)

```
as_of_date

0
zip_code_tabulation_area
0
local_health_jurisdiction
0
county
0
vaccine_equity_metric_quartile
8613
vem_source
```

```
age12_plus_population
                                       2574
                      age5_plus_population
                                       2574
                            tot_population
                  persons_fully_vaccinated
                                      14921
              persons_partially_vaccinated
                                      14921
    percent_of_population_fully_vaccinated
                                      18665
percent_of_population_partially_vaccinated
    percent_of_population_with_1_plus_dose
                                      19562
                       booster_recip_count
                                      70421
                 bivalent_dose_recip_count
                  eligible_recipient_count
                                       1499
                                  redacted
                                          0
  # divide num. of missing values by total num. of values to find percent missing
  (14921/174636) * 100
```

[1] 8.544057

Question 8 (Optional): Why might this data be missing?

This data might be missing because there wasn't a confirmed number of persons fully vaccinated for that entry at the time ## Working with Dates

```
library(lubridate)
```

Loading required package: timechange

```
Attaching package: 'lubridate'

The following objects are masked from 'package:base':
    date, intersect, setdiff, union

today()

[1] "2022-11-28"

# Specify that we are using the year-month-day format vax$as_of_date <- ymd(vax$as_of_date)

# time since first date to today today() - vax$as_of_date[1]

Time difference of 692 days

# time since first date to last date vax$as_of_date[nrow(vax)] - vax$as_of_date[1]
```

Time difference of 686 days

Question 9: How many days have passed since the last update of the dataset?

6 days since last update

```
# time since last update to today's date
today() - vax$as_of_date[nrow(vax)]
```

Time difference of 6 days

Question 10: How many unique dates are in the dataset (i.e. how many different dates are detailed)?

```
99 unique dates
length(unique(vax$as_of_date))
[1] 99
```

Working with Zip Codes

```
library(zipcodeR)
  #centroid of La Jolla zip code 92037
  geocode_zip('92037')
# A tibble: 1 x 3
 zipcode
           lat
                 lng
        <dbl> <dbl>
 <chr>
1 92037
          32.8 -117.
  #distance between two centroids
  zip_distance('92037','92109')
 zipcode_a zipcode_b distance
     92037
               92109
                         2.33
1
  #census data about zip code areas
  reverse_zipcode(c('92037', "92109") )
# A tibble: 2 x 24
 zipcode zipcode_~1 major~2 post_~3 common_c~4 county state
                                                              lat
                                                                    lng timez~5
 <chr>
        <chr>
                    <chr> <chr>
                                        <blob> <chr> <dbl> <dbl> <dbl> <chr>
1 92037
         Standard La Jol~ La Jol~ <raw 20 B> San D~ CA
                                                             32.8 -117. Pacific
2 92109
         Standard San Di~ San Di~ <raw 21 B> San D~ CA
                                                             32.8 -117. Pacific
# ... with 14 more variables: radius_in_miles <dbl>, area_code_list <blob>,
```

```
# population <int>, population_density <dbl>, land_area_in_sqmi <dbl>,
# water_area_in_sqmi <dbl>, housing_units <int>,
# occupied_housing_units <int>, median_home_value <int>,
# median_household_income <int>, bounds_west <dbl>, bounds_east <dbl>,
# bounds_north <dbl>, bounds_south <dbl>, and abbreviated variable names
# 1: zipcode_type, 2: major_city, 3: post_office_city, ...
```

Focus on San Diego Area

```
# Subset to San Diego county only areas
  sd <- vax[ vax$county == "San Diego" , ]</pre>
  #using dplyr
  library(dplyr)
Attaching package: 'dplyr'
The following objects are masked from 'package:stats':
    filter, lag
The following objects are masked from 'package:base':
    intersect, setdiff, setequal, union
  sd <- filter(vax, county == "San Diego")</pre>
  nrow(sd)
[1] 10593
  # all San Diego county areas with a population of over 10,000
  sd.10 <- filter(vax, county == "San Diego" &
                   age5_plus_population > 10000)
```

Question 11: How many distinct zip codes are listed for San Diego County?

```
107 distinct zip codes
length(unique(sd$zip_code_tabulation_area))
[1] 107
```

Question 12: What San Diego County Zip code area has the largest 12 + Population in this dataset?

Question 13: What is the overall average "Percent of Population Fully Vaccinated" value for all San Diego "County" as of "2022-11-15"?

```
0.6818
mean(tempSD$percent_of_population_fully_vaccinated)
[1] 0.6818138
```

Question 14: Using either ggplot or base R graphics make a summary figure that shows the distribution of Percent of Population Fully Vaccinated values as of "2022-11-15"?

```
library(ggplot2)

ggplot(tempSD, aes(percent_of_population_fully_vaccinated)) + geom_histogram()
```

`stat_bin()` using `bins = 30`. Pick better value with `binwidth`.

Focus on UCSD/La Jolla

```
ucsd <- filter(sd, zip_code_tabulation_area=="92037")
ucsd[1,]$age5_plus_population</pre>
```

[1] 36144

Question 15: Using ggplot make a graph of the vaccination rate time course for the 92037 ZIP code area

```
ggplot(ucsd) +
  aes(as_of_date,
      percent_of_population_fully_vaccinated) +
  geom_point() +
  geom_line(group=1) +
  ylim(c(0,1)) +
  labs(x = "Date", y="Percent Vaccinated")
```


Comparing to similar sized areas

Question 16: Calculate the mean "Percent of Population Fully Vaccinated" for ZIP code areas with a population as large as 92037 (La Jolla) as_of_date "2022-11-15". Add this as a straight horizontal line to your plot from above with the geom_hline() function?

```
mean(vax.36$percent_of_population_fully_vaccinated)
```

[1] 0.7172851

Question 17: What is the 6 number summary (Min, 1st Qu., Median, Mean, 3rd Qu., and Max) of the "Percent of Population Fully Vaccinated" values for ZIP code areas with a population as large as 92037 (La Jolla) as_of_date "2022-11-15"?

```
Min: 0.3785010 1st Qu.: 0.6396185 Median: 0.7155240 Mean: 0.7172851 3rd Qu.: 0.7879820
Max: 1.000000

#min, 1st quarter, median, 3rd quarter, max
fivenum(vax.36$percent_of_population_fully_vaccinated)

[1] 0.3785010 0.6396185 0.7155240 0.7879820 1.0000000

#mean
mean(vax.36$percent_of_population_fully_vaccinated)

[1] 0.7172851
```

Question 18: Using ggplot generate a histogram of this data.

```
ggplot(vax.36, aes(percent_of_population_fully_vaccinated)) + geom_histogram() +
    labs(x = "Percent Vaccinated", y = "Count")

`stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
```


Question 19: Is the 92109 and 92040 ZIP code areas above or below the average value you calculated for all these above?

```
Below, 92040 is 0.5467 and 92109 is 0.6933

#92040
vax %>% filter(as_of_date == "2022-11-15") %>%
    filter(zip_code_tabulation_area=="92040") %>%
    select(percent_of_population_fully_vaccinated)

percent_of_population_fully_vaccinated

0.546646

#92109
vax %>% filter(as_of_date == "2022-11-15") %>%
    filter(zip_code_tabulation_area=="92109") %>%
    select(percent_of_population_fully_vaccinated)

percent_of_population_fully_vaccinated

0.693299
```

Question 20: Finally make a time course plot of vaccination progress for all areas in the full dataset with a age5_plus_population > 36144.

```
vax.36.all <- filter(vax, age5_plus_population > 36144)

ggplot(vax.36.all) +
   aes(as_of_date,
        percent_of_population_fully_vaccinated,
        group=zip_code_tabulation_area) +
   geom_line(alpha=0.2, color = "blue") +
   ylim(c(0,1)) +
   labs(x="Date", y="Percent Vaccinated",
        title="Vaccination rate across California",
        subtitle="Only areas with a population above 36k are shown") +
   geom_hline(yintercept = 0.7172851, linetype = "dashed")
```

Vaccination rate across California

Only areas with a population above 36k are shown

Question 21: How do you feel about traveling for Thanksgiving Break and meeting for in-person class afterwards?

I am excited to travel for Thanksgiving Break and looking forward to meeting for in-person class afterwards.