

Stochastic Processes

Random Process: Definition, Finite Dimensional Distributions (FDDs), Mean, Autocorrelation, and Autocovariance, Stationary and Wide-Sense Stationary Processes, IID Processes

Karthik P. N.

Assistant Professor, Department of AI

Email: pnkarthik@ai.iith.ac.in

18 February 2025

Fix a probability space $(\Omega, \mathscr{F}, \mathbb{P})$.

Definition (Random Process)

Fix an index set \mathcal{T} .

Fix a probability space $(\Omega, \mathscr{F}, \mathbb{P})$.

Definition (Random Process)

Fix an index set \mathcal{T} .

A collection of random variables $\{X_t : t \in \mathcal{T}\}$ indexed by the elements of \mathcal{T} and defined w.r.t. \mathscr{F} is called random process.

• When $\mathcal T$ is finite, say $\mathcal T = \{1, \dots, d\}$, we have a random vector $\mathbf X = [X_1, \dots, X_d]^{\top}$

Fix a probability space $(\Omega, \mathscr{F}, \mathbb{P})$.

Definition (Random Process)

Fix an index set \mathcal{T} .

- When $\mathcal T$ is finite, say $\mathcal T = \{1,\dots,d\}$, we have a random vector $\mathbf X = [X_1,\dots,X_d]^{ op}$
- If \mathcal{T} is a countably infinite set, we say $\{X_t : t \in \mathcal{T}\}$ is a discrete parameter process

Fix a probability space $(\Omega, \mathscr{F}, \mathbb{P})$.

Definition (Random Process)

Fix an index set \mathcal{T} .

- When $\mathcal T$ is finite, say $\mathcal T = \{1,\ldots,d\}$, we have a random vector $\mathbf X = [X_1,\ldots,X_d]^{\top}$
- If \mathcal{T} is a countably infinite set, we say $\{X_t : t \in \mathcal{T}\}$ is a discrete parameter process
- If \mathcal{T} is uncountably infinite, we say $\{X_t : t \in \mathcal{T}\}$ is a continuous parameter process

Fix a probability space $(\Omega, \mathscr{F}, \mathbb{P})$.

Definition (Random Process)

Fix an index set \mathcal{T} .

- When $\mathcal T$ is finite, say $\mathcal T = \{1,\dots,d\}$, we have a random vector $\mathbf X = [X_1,\dots,X_d]^{ op}$
- If \mathcal{T} is a countably infinite set, we say $\{X_t : t \in \mathcal{T}\}$ is a discrete parameter process
- If \mathcal{T} is uncountably infinite, we say $\{X_t : t \in \mathcal{T}\}$ is a continuous parameter process
- ullet Sometimes, ${\mathcal T}$ has the interpretation of time

Fix a probability space $(\Omega, \mathscr{F}, \mathbb{P})$.

Definition (Random Process)

Fix an index set \mathcal{T} .

- When $\mathcal T$ is finite, say $\mathcal T = \{1,\dots,d\}$, we have a random vector $\mathbf X = [X_1,\dots,X_d]^{ op}$
- If \mathcal{T} is a countably infinite set, we say $\{X_t : t \in \mathcal{T}\}$ is a discrete parameter process
- If \mathcal{T} is uncountably infinite, we say $\{X_t : t \in \mathcal{T}\}$ is a continuous parameter process
- ullet Sometimes, ${\mathcal T}$ has the interpretation of time
- Random processes are also referred to as stochastic processes (after the Greek word $\sigma \tau \circ \chi \alpha \sigma \tau \iota \kappa \circ \zeta$ which means 'to proceed by guesswork')

Ways to Think of a Random Process

- $X_t: \Omega \to \mathbb{R}$ is a random variable w.r.t. \mathscr{F} for each $t \in \mathcal{T}$
- $X_{\cdot}(\omega): \mathcal{T} \to \mathbb{R}$ is a sample path of the process for each $\omega \in \Omega$
- $X: \mathcal{T} \times \Omega \to \mathbb{R}$
 - $-X_t(\omega)$ is a real number for each $\omega \in \Omega$ and $t \in \mathcal{T}$

Ways to Think of a Random Process

- $X_t: \Omega \to \mathbb{R}$ is a random variable w.r.t. \mathscr{F} for each $t \in \mathcal{T}$
- $X_{\cdot}(\omega): \mathcal{T} \to \mathbb{R}$ is a sample path of the process for each $\omega \in \Omega$
- $X: \mathcal{T} \times \Omega \to \mathbb{R}$
 - $-X_t(\omega)$ is a real number for each $\omega \in \Omega$ and $t \in \mathcal{T}$

Note

In this course, we will typically consider \mathcal{T} to be one of \mathbb{R}_+ , \mathbb{R} , \mathbb{Z} , or \mathbb{N} .

Finite Dimensional Distributions

Fix a probability space $(\Omega, \mathcal{F}, \mathbb{P})$.

Definition (Finite Dimensional Distributions)

Let $\{X_t : t \in \mathcal{T}\}$ be a random process defined w.r.t. \mathscr{F} .

• Given $n \in \mathbb{N}$ and $\mathbf{t} = (t_1, \dots, t_n) \in \mathcal{T}^n$, the joint CDF of X_{t_1}, \dots, X_{t_n} is given by

$$F_{\mathbf{t}}(\mathbf{x}) = \mathbb{P}(X_{t_1} \leq x_1, \dots, X_{t_n} \leq x_n), \qquad \mathbf{x} = (x_1, \dots, x_n) \in \mathbb{R}^n.$$

Finite Dimensional Distributions

Fix a probability space $(\Omega, \mathcal{F}, \mathbb{P})$.

Definition (Finite Dimensional Distributions)

Let $\{X_t : t \in \mathcal{T}\}$ be a random process defined w.r.t. \mathscr{F} .

• Given $n \in \mathbb{N}$ and $\mathbf{t} = (t_1, \dots, t_n) \in \mathcal{T}^n$, the joint CDF of X_{t_1}, \dots, X_{t_n} is given by

$$F_{\mathbf{t}}(\mathbf{x}) = \mathbb{P}(X_{t_1} \leq x_1, \dots, X_{t_n} \leq x_n), \qquad \mathbf{x} = (x_1, \dots, x_n) \in \mathbb{R}^n.$$

The collection

$$\left\{F_{\mathbf{t}}:\ n\in\mathbb{N},\ \mathbf{t}\in\mathcal{T}^{n}\right\}$$

is referred to as the collection of finite dimensional distributions (FDDs) of the process $\{X_t : t \in \mathcal{T}\}$.

• FDDs are NOT simply an arbitrary collection of joint CDFs

- FDDs are NOT simply an arbitrary collection of joint CDFs
- Suppose that $\mathcal{T} = \{1, 2, 3\}$

- FDDs are NOT simply an arbitrary collection of joint CDFs
- Suppose that $\mathcal{T} = \{1, 2, 3\}$
 - In this case,

FDDs =

- FDDs are NOT simply an arbitrary collection of joint CDFs
- Suppose that $\mathcal{T} = \{1, 2, 3\}$
 - In this case,

FDDs =

- FDDs are NOT simply an arbitrary collection of joint CDFs
- Suppose that $\mathcal{T} = \{1, 2, 3\}$
 - In this case,

$$\mathsf{FDDs} = \left\{F_1, F_2, F_3, F_{1,2}, F_{2,3}, F_{1,3}, F_{1,2,3}\right\}$$

We observe that

$$F_2(x) = F_{1,2}(x,\infty), \quad F_{2,3}(x,y) = F_{1,2,3}(\infty,x,y), \quad \dots$$

- FDDs are NOT simply an arbitrary collection of joint CDFs
- Suppose that $T = \{1, 2, 3\}$
 - In this case,

$$\mathsf{FDDs} = \left\{ F_1, F_2, F_3, F_{1,2}, F_{2,3}, F_{1,3}, F_{1,2,3} \right\}$$

We observe that

$$F_2(x) = F_{1,2}(x,\infty), \quad F_{2,3}(x,y) = F_{1,2,3}(\infty,x,y), \quad \dots$$

In some sense, the FDDs have to be consistent

Consistency of FDDs

Fix a probability space $(\Omega, \mathscr{F}, \mathbb{P})$.

Let $\{X_t : t \in \mathcal{T}\}$ be a random process defined w.r.t. \mathscr{F} .

Definition (Consistency of FDDs)

The FDDs of the process $\{X_t: t \in \mathcal{T}\}$ are said to be consistent if for any $m, n \in \mathbb{N}$ with m < n, and subsets $\mathcal{T}_m \subset \mathcal{T}_n \subset \mathcal{T}$ with $|\mathcal{T}_m| = m$ and $|\mathcal{T}_n| = n$, we have

$$F_{\mathbf{t}}(x_1,\ldots,x_m)=F_{\mathbf{s}}(\underbrace{\infty,\cdots,\infty,x_1,\infty,\cdots,\infty,x_2,\infty,\cdots,\infty,x_m,\infty,\cdots,\infty}_{n}),$$

where

Consistency of FDDs

Fix a probability space $(\Omega, \mathscr{F}, \mathbb{P})$.

Let $\{X_t : t \in \mathcal{T}\}$ be a random process defined w.r.t. \mathscr{F} .

Definition (Consistency of FDDs)

The FDDs of the process $\{X_t: t \in \mathcal{T}\}$ are said to be consistent if for any $m, n \in \mathbb{N}$ with m < n, and subsets $\mathcal{T}_m \subset \mathcal{T}_n \subset \mathcal{T}$ with $|\mathcal{T}_m| = m$ and $|\mathcal{T}_n| = n$, we have

$$F_{\mathbf{t}}(x_1,\ldots,x_m)=F_{\mathbf{s}}(\underbrace{\infty,\cdots,\infty,x_1,\infty,\cdots,\infty,x_2,\infty,\cdots,\infty,x_m,\infty,\cdots,\infty}_n),$$

where

- $\mathbf{t} \in \mathcal{T}_m$, $\mathbf{s} \in \mathcal{T}_n$ and contains the coordinates in \mathbf{t} .
- The coordinates in ${\bf s}$ corresponding to those not in ${\bf t}$ are shown as ∞ on the RHS.

Random Processes with Consistent FDDs

Note

Our interest is in the study of random processes whose FDDs are consistent.

Random Processes with Consistent FDDs

Note

Our interest is in the study of random processes whose FDDs are consistent.

Examples of processes with consistent FDDs include:

- IID processes.
- Bernoulli processes.
- Gaussian processes.
- Markov processes (or Markov chains).
- Poisson process.
- Lévy process.
- Brownian motion and diffusions.

Properties of Random Processes

Mean, Autocorrelation, and Autocovariance

Fix a probability space $(\Omega, \mathscr{F}, \mathbb{P})$.

Let $\{X_t : t \in \mathcal{T}\}$ be a random process defined w.r.t. \mathscr{F} .

Definition (Mean, Autocorrelation, Autocovariance)

• The mean of the process $\{X_t: t \in \mathcal{T}\}$ is a function $M_X: \mathcal{T} \to [-\infty, +\infty]$ defined as

$$\mathit{M}_{X}(t) = \mathbb{E}[X_{t}], \qquad t \in \mathcal{T}.$$

• The autocorrelation and autocovariance of the process $\{X_t : t \in \mathcal{T}\}$ are functions $R_X, C_X : \mathcal{T} \times \mathcal{T} \to [-\infty, +\infty]$, defined as

$$R_X(t,s) = \mathbb{E}[X_tX_s], \qquad C_X(t,s) = \operatorname{Cov}(X_t,X_s), \qquad t,s \in \mathcal{T}.$$

Stationary Process

Fix a probability space $(\Omega, \mathscr{F}, \mathbb{P})$.

Let $\{X_t : t \in \mathbb{R}_+\}$ be a random process defined w.r.t. \mathscr{F} .

Definition (Stationary Process)

 $\{X_t: t \geq 0\}$ is said to be (strictly) stationary if all FDDs are translation invariant, i.e., for any $n \in \mathbb{N}$, $\mathbf{t} \in \mathbb{R}^n_+$, and $h \in \mathbb{R}_+$,

$$F_{\mathbf{t}} = F_{\mathbf{t}+h}$$
.

Here, $\mathbf{t} + h$ is a vector with each coordinate incremented by h with respect to the corresponding coordinate in \mathbf{t} .

Weakly Stationary Process

Fix a probability space $(\Omega, \mathscr{F}, \mathbb{P})$.

Let $\{X_t : t \in \mathbb{R}_+\}$ be a random process defined w.r.t. \mathscr{F} .

Definition (Stationary Process)

 $\{X_t: t\in \mathbb{R}_+\}$ is said to be weakly stationary (or wide-sense stationary) if for all $t_1,t_2\in \mathbb{R}_+$ and $h\in \mathbb{R}_+$:

- 1. $M_X(t_1) = M_X(t_2)$.
- 2. $C_X(t_1,t_2) = C_X(t_1+h,t_2+h)$.

Weakly Stationary Process

Fix a probability space $(\Omega, \mathscr{F}, \mathbb{P})$.

Let $\{X_t : t \in \mathbb{R}_+\}$ be a random process defined w.r.t. \mathscr{F} .

Definition (Stationary Process)

 $\{X_t: t \in \mathbb{R}_+\}$ is said to be weakly stationary (or wide-sense stationary) if for all $t_1, t_2 \in \mathbb{R}_+$ and $h \in \mathbb{R}_+$:

- 1. $M_X(t_1) = M_X(t_2)$.
- 2. $C_X(t_1,t_2)=C_X(t_1+h,t_2+h)$.

Remarks:

• A process is weakly stationary iff it has constant mean, and $C_X(t, t+h) = C_X(0, h)$ for all $t, h \in \mathbb{R}_+$ (proof: exercise!)

Weakly Stationary Process

Fix a probability space $(\Omega, \mathscr{F}, \mathbb{P})$.

Let $\{X_t : t \in \mathbb{R}_+\}$ be a random process defined w.r.t. \mathscr{F} .

Definition (Stationary Process)

 $\{X_t: t \in \mathbb{R}_+\}$ is said to be weakly stationary (or wide-sense stationary) if for all $t_1, t_2 \in \mathbb{R}_+$ and $h \in \mathbb{R}_+$:

- 1. $M_X(t_1) = M_X(t_2)$.
- 2. $C_X(t_1,t_2)=C_X(t_1+h,t_2+h)$.

Remarks:

- A process is weakly stationary iff it has constant mean, and $C_X(t, t+h) = C_X(0, h)$ for all $t, h \in \mathbb{R}_+$ (proof: exercise!)
- Every stationary process with finite variance is wide-sense stationary (proof: exercise!)

IID Processes

IID Process

Fix a probability space $(\Omega, \mathscr{F}, \mathbb{P})$.

Let $\{X_t : t \in \mathbb{R}_+\}$ be a random process defined w.r.t. \mathscr{F} .

Definition (IID Process)

 $\{X_t: t \in \mathbb{R}_+\}$ is said to be an IID process with the common CDF F if for any $n \in \mathbb{N}$ and $\mathbf{t} \in \mathbb{R}^n_+$,

$$F_{\mathbf{t}}(\mathbf{x}) = \prod_{i=1}^{n} F(x_i), \qquad \mathbf{x} = (x_1, \dots, x_n) \in \mathbb{R}^n.$$

Some Results on IID Processes

Lemma

Suppose that $\{X_t : t \in \mathbb{R}_+\}$ is an IID process.

- 1. The FDDs of $\{X_t : t \in \mathbb{R}_+\}$ are consistent.
- 2. $\{X_t : t \in \mathbb{R}_+\}$ is strictly stationary. That is, every IID process is stationary.

Example

• Let X_1, X_2, \ldots be an \mathbb{N} -valued IID process. Let $S_0 \coloneqq 0$, and for each $n \in \mathbb{N}$, let

$$S_n = \sum_{i=1}^n X_i.$$

— Determine M_S and C_S for the process $\{S_n\}_{n=0}^{\infty}$.

Example

• Let X_1, X_2, \ldots be an \mathbb{N} -valued IID process. Let $S_0 \coloneqq 0$, and for each $n \in \mathbb{N}$, let

$$S_n = \sum_{i=1}^n X_i.$$

- Determine M_S and C_S for the process $\{S_n\}_{n=0}^{\infty}$.
- Is $\{S_n\}_{n=0}^{\infty}$ wide-sense stationary?