UNCLASSIFIED

AD 270 267

Reproduced by the

ARMED SERVICES TECHNICAL INFORMATION AGENCY
ARLINGTON HALL STATION
ARLINGTON 12, VIRGINIA

UNCLASSIFIED

NOTICE: When government or other drawings, specifications or other data are used for any purpose other than in connection with a definitely related government procurement operation, the U. S. Government thereby incurs no responsibility, nor any obligation whatsoever; and the fact that the Government may have formulated, furnished, or in any way supplied the said drawings, specifications, or other data is not to be regarded by implication or otherwise as in any manner licensing the holder or any other person or corporation, or conveying any rights or permission to manufacture, use or sell any patented invention that may in any way be related thereto.

O TAN 270267

REPORT R-1605

EVALUATION OF M52A3B1 PRIMER WITH

A MODIFIED PRIMING MIXTURE

By F. LOMBARDI

OMS Code 4110.16.0077.1.00.53 (TS1-47)

DA Project 5S0405029

2-2-1 22-XEROX

September 1961

FRANKFORD ARSENAL
RESEARCH AND DEVELOPMENT
GROUP
PHILADELPHIA 37, PA

REPORT R-1605

EVALUATION OF M52A3B1 PRIMER WITH A MODIFIED PRIMING MIXTURE

OMS Code 4110.16,0077.1.00.53 (TS1-47)

DA Project 5S0405029

PREPARED BYT

F. LOMBARDI

Physical Science Technician

REVIEWED BY:

H. P. MANNING

Acting Chief

Ballistic Systems Division

APPROVED BY:

C, C, FAWCETT

Acting Chief

Research and Development Group

FOR:

C. W. EIFLER

Colonel, Ordnance Corps

Commanding

FRANKFORD ARSENAL
Research and Development Group
Philadelphia 37, Pa.

September 1961

TABLE OF CONTENTS

0	Section	Tit	le												Page No.
INTRODUCTION				•	•		•		•	•	è		•	•	1
OBJECT			•	•	•	ě		•	•	•				•	1
METHOD AND PROC	EDURE		•	•	•	.•	•			•	•	•	•		2
RESULTS		w •	•	•		٠	•	•							2
FUNCTION AND CAS	SUALTY.			•	٠	٠	٠	•	•	•					5
CONCLUSIONS		•	. ,	•				•	•	•	•	•	•	•	6
RECOMMENDATION	s	•			٠	•		•		•		•			6
APPENDIX A - Res	ults of Fi	rin	gs • •	at	F	ra	an.	kf •	or •	·d	•	•	•	•	7
APPENDIX B- Grap Fran	hs of Res akford Ars	ult	s o al	f]	Fi:	riı	ng	s •	at •		•		•	•	15
APPENDIX C - Pho Fla	tographs	of ;	Μ υ	ZZ	le •	а •	nd •	1 F	3 r	е.	ec •	h •	•	•	34
DISTRIBUTION									•				٠	•	43

ABSTRACT

Since the FAT27E1 electric primer (developed by Frankford Arsenal) and the Lake City experimental primer (a modified M52A3B1 primer) were developed for use with 20 mm aircraft ammunition, a test program was initiated to determine which would be best suited for general use where an electric primer having improved thermal output properties is required to insure adequate ignition of the propellant with minimum temperature coefficient.

The FAT27E1 primer produced a smaller change in pressure, velocity, and action time over the temperature range -70° to +165° F than either the Lake City experimental or the M52A3B1 primers with IMR 7005 and CR 7695 propellants. When used with the IMR 7005 propellant, the FAT27E1 primer produced excessive pressures at -70° F, probably due to grain breakage.

The Lake City experimental and the M52A3B1 primers performed equally well with all three propellants, but the Lake City experimental primer produced extreme amounts of flash and smoke at both breech and muzzle when fired in the M39A2 machine gun.

There is no significant advantage in performance with either the FAT27El or the Lake City experimental primer over the standard M52A3Bl primer when used with the WC 870 propellant.

EVALUATION OF M52A3B1 PRIMER WITH A MODIFIED PRIMING MIXTURE

INTRODUCTION

Cool burning, single base, extruded propellants were developed to improve barrel erosion characteristics of the single base, extruded type propellant.

During the development of the cool burning propellants, it became evident that an electric primer having improved thermal output properties was required to insure adequate ignition of the propellant with minimum temperature coefficient. Air Force MIPR 42-600-8-1305-6333, Project Order No. 88428333-07-61201 authorized the development of such a primer - "....furnish primer compatible with improved propellants, both low erosion, extruded, single base, and other low temperature coefficient, and supply and test 5000 rounds containing such primers."

The FAT27E1 electric primer was successfully developed for improved ignition of cool burning, single base, extruded propellants. Frankford Arsenal Reports R-1479 and R-1479A cover the technical aspects of the development of this electric primer.

Lake City Arsenal initiated a program to develop an improved M52A3B1 primer with respect to eliminating the hangfire tendency obtained with 20 mm aircraft ammunition using principally double base, ball propellant.

Since the two primer developments were for 20 mm aircraft ammunition, a test program was initiated to determine which primer would be the best suited for general use. The results of this program are reported herein.

OBJECT

To determine, by various ballistic tests, whether the Lake City Arsenal experimental electric primer developed for WC 870 ball propellant or the Frankford Arsenal electric primer developed for cool burning, extruded, single base propellant is the better primer for use in 20 mm aircraft ammunition with propellants IMR 7005, WC 870 and CR 7695.

METHOD AND PROCEDURE

Charges were established for the three propellants IMR 7005, WC 870, and CR 7695 with the three primers, Lake City experimental, Frankford Arsenal experimental and the M52A3B1, using a 3-point slope.

A 10-round series was fired at $+70^{\circ}$ F for uniformity and verification, using the selected propellant charge.

Ballistic tests were conducted at cold, normal, and hot temperatures, with all rounds being conditioned for 4 hours before firing. A separate test barrel was used for each propellant, each barrel having the minimum number of rounds fired for break-in. This was done to eliminate the effect of propellant interaction.

A 20-round series at each temperature (+70°, -70° and +165° F) was fired in a gage (pressure barrel). These rounds were conditioned for 4 hours.

Ten-round groups of each lot were fired at $+70^{\circ}$, -70° , and $+165^{\circ}$ F for pressure-time relationships. As before, a separate test barrel was used for all the lots loaded with the same propellant. These rounds were conditioned for 2 hours.

The 20 mm M103 case, primed with the M52A3B1 primer, was used for control.

A continuous burst of 125 rounds for each test lot was fired in the M39A2 machine gun for function and casualty at $+70^{\circ}$, -70° , and $+165^{\circ}$ F. Flash, weapon function, ammunition function, and cyclic rate (rounds per minute) were recorded.

RESULTS

Charges established for the three propellants were: IMR 7005, 570 grains; WC 870, 600 grains; CR 7695, 550 grains. The same propellant charge was used with all three primers. The propellant charge establishment was conducted with all rounds being hand loaded; in the verification firing and remaining ballistic tests, all rounds were machine loaded.

Table I and the discussions which follow are based on a 20-round series at each temperature, $+70^{\circ}$, -70° , and $+165^{\circ}$ F, as fired in a gage (pressure barrel).

Table I. CHANGE IN AVERAGE VELOCITY (As Recorded at 78 Ft)

Propellant	Primer		ge Velocity (fps) +70° to +165° F
IMR 7005, AL 41313	FAT27E1	+29	+14
	LC experimental	+136	-17
	M52A3B1	+80	+77
CR 7695-2	FAT27El	+26	+10
	LC experimental	+88	+28
	M52A3Bl	+137	+13
WC 870, AL 42712	FAT27E1	+171	+96
	LC experimental	+155	+105
	M52A3B1	+191	+115

With the exception of the cartridges charged with WC 870 propellant and using any of the primers, the ballistic data showed significantly smaller changes in velocity over the temperature range -70° to $+165^{\circ}$ F with cartridges primed with the FAT27E1 primer.

Velocity-temperature coefficients are listed in Appendix A, Table A-6.

Note: All velocities in this report are corrected velocities. Reference round data follows.

Authorization:	DEM 103-56
Case lot:	427
Bullet lot:	438
Propellant:	41367
Charge:	618 grains
Velocity:	3365 f/s

The significant change in average pressure over the temperature range -70° to $+165^{\circ}$ F is that the pressure increases as temperature decreases when using the FAT27E1 primer with propellants IMR 7005 and CR 7695.

The FAT27El primer, when used with the IMR 7005 propellant, produced individual maximum pressures of 74.0 Kpsi when fired at -70° F. Because of this no further temperature firing was conducted with this propellant-primer combination.

Unlike the ballistic data obtained with the IMR 7005 and CR 7695 propellants, the WC 870 propellant produced a drop in pressure at -70° F with both the FAT27E1 and the Lake City experimental primers (see Table II).

Table II. CHANGE IN AVERAGE PRESSURE (Copper)

		Change in Avera	age Pressure (psi)
Propellant	Primer	+70° to -70° F	+70° to +165° F
IMR 7005, AL 41313	FAT27E1	+9100	-2700
	LC experimental	-3600	-4100
	M52A3B1	+400	+2900
CR 7695-2	FAT27E1	+2400	-1000
	LC experimental	-6200	+800
	M52A3B1	-10600	-400
WC 870, AL 42712	FAT27E1	-7500	+10000
	LC experimental	-7900	+9500
	M52A3B1	-9300	+10500

Since the temperature coefficients were not generally constant over the total temperature range considered, they are listed for the temperature intervals as shown in Appendix A, Table A-6.

The FAT27El primer produced less of a change in action time than the Lake City experimental primer over the temperature range -70° to +165° F when used with propellants IMR 7005 and CR 7695. Very little change in action time was noticed between the FAT27El and the Lake City experimental primer when used with the WC 870 propellant. (See Table III.)

Table III. CHANGE IN AVERAGE ACTION TIME

Propellant	Primer	Change in Average Action Time (ms) -70° to +165° F
IMR 7005 AL 41313	FAT27E1 LC experimental M52A3B1	0.09 0.14 0.27

Table III. CHANGE IN AVERAGE ACTION TIME (Cont'd)

Propellant	Primer	Change in Average Action Time (ms) -70° F to +165° F
CR 7695-2	FAT27E1 LC experimental M52A3B1	0.09 0.40 0.55
WC 870, AL 42712	FAT27E1 LC experimental M52A3B1	0.28 0.27 0.38

FUNCTION AND CASUALTY

A 125-round burst was fired in the M39A2 weapon for function and casualty with each propellant-primer combination. No machine gun firings were conducted with the IMR 7005 and FAT27E1 propellant-primer combination at -70° or +165° F.

One stoppage occurred at $+70^{\circ}$ F with the CR 7695/FAT27E1 propellant-primer combination because of a cocked primer, and one stoppage with the CR 7695/M52A3B1 propellant-primer combination because of a broken firing circuit. One small primer leak occurred with the Lake City experimental primer when fired at -70° F. Otherwise there were no serious weapon stoppages or other detrimental effects to the weapon-ammunition system in the tests fired.

The cyclic rate as fired in the M39A2 machine gun is considerably lower with the FAT27El primer at normal temperatures, particularly when used with the CR 7695 propellant.

Photographs of the cumulative flash produced by 125 round bursts at various temperatures indicate that the Lake City experimental primer produces excessive muzzle and breech flame and spark activity over the entire temperature range, -70° to +165° F.

See Appendix C for photographs of cumulative flash which was recorded using a remote-controlled 4×5 Grafflex Camera to show the cumulative flash produced by a 125-round burst.

CONCLUSIONS

- 1. The FAT27E1 primer produced a smaller change in pressure, velocity, and action time over the temperature range -70° to +165° F than either the Lake City experimental or the M52A3B1 primers with IMR 7005 and CR 7695 propellants. The FAT27E1 primer when used with the IMR 7005 propellant produced excessive pressures at -70° F (probably due to grain breakage).
- 2. The Lake City experimental and the M52A3B1 primers performed equally as well with all three propellants, with the exception that the Lake City experimental primer produced extreme amounts of flash and smoke at both breech and muzzle when fired in the M39A2 machine gun.
- 3. There is no significant advantage in performance with either the FAT27El or the Lake City experimental primer over the standard M52A3Bl primer when used with the WC 870 propellant.

RECOMMENDATIONS

It is recommended that

- 1. The FAT27El primer be used with propellant CR 7695 in 20 mm aircraft ammunition.
- 2. The M52A3B1 primer be used with propellants IMR 7005 and WC 870 in 20 mm aircraft ammunition.
- 3. A lower pellet weight be determined for the FAT27El primer to obtain desirable cartridge pressure characteristics with propellant IMR 7005 while retaining the improved temperature coefficient associated with this primer.
- 4. Since the FAT27El primer offers significantly improved temperature coefficients of velocity, pressure, and action time, and the primer was developed for and tested in the M39A2 machine gun, a qualification test be made for the FAT27El primer in the M61 machine gun.

APPENDIX A

RESULTS OF FIRING AT FRANKFORD ARSENAL

Table A-I. Charge Establishment

Table A-II. Charge Verification

Table A-III. Temperature Firings

Table A-IV. Pressure-Time Data

Table A-V. Ignition-Time Data

Table A-VI. Temperature Coefficients

Figure A-1. Graph showing Method of Interpretation of Time Relations

Table A-I. CHARGE ESTABLISHMENT

Ballistic relationships of experimental primers with IMR 7005, WC 870, and CR 7695 propellants at normal (+70° F) temperature

	Propellant			Veloc	ity (fps)	Press	ure (psi)	Action
Primer	Туре	Charge (gr)	No. of Rounds	Corrected	Ext Var	Std Dev	Corrected	Ext Var	Std Dev	Time (ms)
FAT27E1	CR 7695-2	540 54 5 550	5 10 5	3330 3324 3366	41 15 38		57,200 54,800 58,900	7200 3900 6500	1300	2.72 2.67 2.57
		555 560	10 5	3362 3378	27 49	*	57,600 59,100	4900 3500	1400	2.56
LC experimental	CR 7695-2	400 550 550	2 10 5	2795 3351 3366	40 45 48	16 17 15	39,000 57,100 57,000 59,100	5000 5300 5000 5800	1700 2000 2000	2.83 2.42 2.56 2.45
		555 570	10 2	3373 3438	45 7	10	61,200	1100	300	2.60
M52A3B1	CR 7695-2	530 545 550 560	5 5 10 5	3279 3336 3349 3402	25 15 36 24	6 10 9	53,000 55,700 57,100 60,000	4400 4500 1500	1500 1600 600	*
FAT27E1	WC 870, AL 42712	580 595 600 610	5 5 10 5	3312 3366 3373 3417	18 15 29 22	7 6 8 9	51,200 54,300 53,800 55,600	1700 2900 2700 2700	700 1000 900 1000	2.56 2.47 2.45 2.44
LC experimental	WC 870, AL 42712	5 90 5 95 6 00 6 00 6 05	5 5 5 10 10	3361 3367 338 4 3363 3397	12 18 5 38 20	5 7 2 9 7	52,700 51,200 52,000 50,600 53,100	2900 3100 1100 3900 2600	900 1200 500 1100 800	2.47 2.48 2.46 2.47 2.44
M52A3B1	WC 870 AL 42712	580 595 610 610	5 5 5 10	3275 3331 3387 3382	14 24 10 29	5 8 5 10	46,700 50,000 51,200 52,000	2800 3300 3200 2900	1000 1100 1200 900	•
FAT27E1	IMR 7005, AL 41313	565 580 590 595	5 5 10 5	3279 3346 3388 3410	22 18 32 19	8 6 11 8	49,100 52,200 54,700 55,600	1100 3200 4400 3700	400 1100 1300 1500	*
LC experimental	1MR 7005, AL 41313	570 575 580 593	5 5 5 2	3353 338 4 3395 3450	16 7 15 7	7 3 6	50,600 53,700 53,400 56,700	4400 1300 3200 600	1500 500 1000	2.49 2.44 2.47 2.45
M52A3B1	IMR 7005, AL 41313	570 585 595 600	5 5 10 5	3270 3330 3371 3396	27 18 25 19	9 7 9 7	46,600 58,600 50,200 51,000	3600 2800 2600 1300	1300 1100 900 400	•

^{*}Not recorded.

Table A-II. CHARGE VERIFICATION

Rallistic relationships of experimental primers with IMR 7005, WC 870, and CR 7695 propellant at normal (+70° F) temperature

	Propellant			Veloci	Velocity (fps)		Press	Pressure (psi)	_	Action
Ç	e E	Charge	No. of	Corrected	Ext Zar	Std	Corrected	Ext	Std	Time (ms)
Frimer	adk T	181	Composition	201100						
FAT27E1	CR 7695-2	545	10	3330	23	6	57,200	4300	1200	2.54
		555	10	3357	56	7	58,100	3800	900	2.56
		555	10	3366	22	2	60,200	4000	1000	2,45
I C evnemimental	CB 7695_2	540	10	3293	24	7	54.500	3500	1000	2.68
TO Cape Illication		550	10	3339	32	10	56,700	5500	1600	2.64
		555	10	3354	53	6	57,700	4000	1300	2.61
M52A3B1	CR 7695-2	540	10	3303	27	7	55,100	3400	1100	2.76
		550	10	3342	97	œ	57,700	5400	1300	2.73
		555	10	3369	22	9	59,100	3100	006	2.70
FAT27E1	WC 870, AL 42712	2 90	10	3354	16	ĸ	53,000	1800	009	2,52
		009	10	3387	20	Ŋ	54,500	3800	1300	2.48
I.C. experimental	WC 870. Al 42712	590	10	3340	15	4	52,100	1900	200	2.51
		009	10	3376	15	4	54,200	2600	200	2.48
M52A3B1	WC 870, AL 42712	009	10	3363	32	80	52,800	3600	1100	2.53
		605	10	3410	18	9	54,900	2800	006	2,51
		610	10	3399	10	ო	54,000	3100	800	2.49
FAT27E1	IMR 7005, AL 41313	565	10	3377	40	11	57,400	5700	1700	2,45
		570	10	3400	44	11	55,100	0099	1600	2.51
LC experimental	IMR 7005, AL 41313	570	10	3367	25	6	51,300	2000	700	2.57
M52A3B1	IMR 7005, AL 41313	570	10	3362	27	6	51,500	3900	1200	2.68

Table A-III. TEMPERATURE FIRINGS

Ballistic relationships of experimental primers with IMR 7005, WC 870, and CR 7695 propellants at normal (470° F), hot (+165° F), and cold (-70° F) temperatures. Recorded simultaneously as fired in a gage (pressure barrel). 20 rounds.

		I.	Veloc	Velocity (fps)	<u>-</u>		Press	Pressure (psi)		Action	Action Time (ms)	ns)
Primer	Temperature (°F) Storage Firing	fure (°F)	Average	Ext	Std	Average	Ext	Std	Max Individual	Average	Ext	Max
				II	IR 7005	IMR 7005, AL 41313	8					
LC experimental	+70 +165 -70	+70 +165 -70	3388 3371 3252	21 43 123	5 12 22	53,900 49,800 50,300	3,000 4,400 8,400	900 1,100 1,600	55,300 52,000 52,000	2.46 2.64 2.78	0.05 0.16 0.26	2.49 2.74 2.96
M52A3B1	+70 +165 -70	+70 +165 -70	3301 3378 3221	34 50 57	9 12 14	46,700 49,600 47,100	4,500 6,300 5,100	1,200 1,500 1,200	49,600 52,800 49,300	2.71 2.69 2.96	0.11 0.14 0.14	2.77 2.74 3.04
FAT27E 1	+70 +165 -70	+70 +165 -70	3355 3369 3326	35 28 136	9 8 34	52,900 50,200 62,000	7,400 6,100 23,100	1,800 1,800 5,400	54,200 52,200 75,600	2.53 2.63 2.54	0.11 0.12 0.34	2.58 2.67 2.69
					CR.	7695-2						
LC experimental	+165 +165 -70	+70 +165 -70	3370 3398 3282	51 85 72	12 17 20	58,500 59,300 52,300	7,500 10,900 10,400	1,800 2,600 2,700	61,200 65,300 58,000	2.63 2.58 2.98	0.06 0.14 0.34	2.66 2.66 3.11
M52A3B1	+70 +165 -70	+70 +165 -70	3385 3398 3248	34 41 51	9 10 14	59,000 58,600 48,400	5,500 8,600 3,800	1,500 2,100 1,000	60,300 62,800 48,800	2.77	0.13 0.10 0.21	2.84 2.73 3.33
FAT27E1	+70 +165 -70	+70 +165 -70	3374 3384 3348	93 77 59	21 20 15	59,400 58,400 61,800	7,800 8,700 9,300	2,300 1,900 2,400	64,300 63,400 64,600	2.57	0.28 0.15 0.22	2.70 2.66 2.80
					NC 870	WC 870, AL 42712	6)					
LC experimental	+70 +165 -70	+70 +165 -70	3379 3484 3224	32 29 85	8 6 24	53,300 62,800 45,400	5,000 6,400 6,900	1,100 1,700 1,800	54,800 63,200 47,500	2.50 2.41 2.68	0.07 0.07 0.17	2.53 2.46 2.79
M52A3B1	+70 + 16 5 -70	+70 +165 -70	3368 3483 3177	42 32 96	9 26	52,300 62,800 43,000	6,000 6,700 6,400	1,700 1,700 1,700	52,600 63,700 43,900	2.54 2.46 2.84	0.10 0.11 0.21	2.58 2.53 2.91
FAT27E1	+70 +165 -70	+70 +165 -70	3384 3480 3213	41 40 66	9 12 18	53,800 63,800 46,300	6,000 3,300 5,300	1,400 700 1,400	54,100 63,000 46,400	2.47 2.41 2.69	0.14 0.11 0.42	2.55 2.47 3.02

Table A-IV. PRESSURE-TIME DATA

Results of ballistic tests of experimental primers and IMR 7005, WC 870, and CR 7695 propellants at normal (+70° F), hot (+165° F), and cold (-70° F) temperatures, as recorded with a piezoelectric gage.

Action	Std Time Dev (ms)		2900 2,53		2200 2.41			700 2.73					1600 2.58			2800 2.67			900 2.53			2500 2.79			1500 2.66	1000 2.44		1000 2.65	
(psi)	Ext		7,500	10,800	8,100	4.100	7,200	2,600			000	13,000	6,400	5.500	000	9,300	2.900	7.400	2,900		3,100	8,800	504	2,500	6,300	3,300	2.500	2,800	200
Pressure (psi)	Maximum		62,600	55,600	75,100	56,800	56,800	29,000			71 400	62,400	71,000	69.700	57 100	69,300	72,300	72, 100	67,100		56,100	58,000	0	61,400	57,700	71,000	63,600	52,200	71,200
	Average	(570 gr)	59,100	51,100	69,200	55,600	53,500	57,800		gr)	67.700	57,100	67,500	62,500	53,800	65,600	67,700	67, 100	66,100	(600 gr)	54,400	55,200	600	000'09	53,600	69,000	62,500	51,100	000
<u>.</u>	Std	IMR 7005, AL 41313	38	79	10	12	33	10		CR 7695-2 (550	2.1	41	∞	10	8	25	19	14	4		7	5 6	`	10	30	œ	ເດ	11	9
Velocity (fps)	Ext	005, A	86	229	37	42	102	30		R 7695	67	124	30	38	72	8	2	45	43	WC 870, AL 42712	53	101	3	38	115	25	17	34	7
Velo	Average	IMR 7	3358	3234	3473	3302	3225	3370		O	3391	3278	3389	3377	3249	3397	3351	3380	3386	WC 8	3305	3237		3387	3269	3485	3391	3230	3401
	Storage Firing		+70	-70	+165	+70	-70	+165			+70	-70	+165	+70	-70	+165	+70	-70	+165		+70	-70 +165		+ 70	-70	+165	+70	-70	145
É	Storage		+70	-70	+165	+40	-70	+165	*		+70	- 70	+165	+70	- 70	+165	+70	-70	+165		+10	-70 +165	<u>.</u>	+40	- 20	+165	+70	- 70	7165
	Primer		LC experimental			M52A3B1			FAT27E1		LC experimental			M52A3B1			FAT27E1				LC experimental		,	M52A3B1			FAT27E1		

^{*}Because of high pressures encountered in gage, firing on this lot was discontinued.

٥

Table A-V. IGNITION-TIME DATA

Results of ballistic test of experimental primers and IMR 7005, WC 870, and CR 7695 propellants at normal (+70° F), hot (+165° F), and cold (-70° F) temperatures, as recorded with a piezoelectric gage.

		Primer Ig	Primer Ignition Time (ms)	e (ms)	Powder Ignition Time (ms	nition Ti	me (ms)		Action Time (ms)	e (ms)	
Primer	Temp	Average	Ext	Std	Average	Ext	Std	Average	Maximum	Ext	Std
				IMR 7	IMR 7005, AL 41313	[3					
LC experimental	+70 -70 +165	0.31 0.27 0.29	0.05 0.08 0.14	0.02 0.02 0.04	0.18 0.20 0.12	0.11 0.10 0.10	0.04	2.53 2.66 2.41	2.64 2.81 2.43	0.19	0.08
M52A3B1	+70 -70 +165	0.33 0.33 0.33	0.05 0.12 0.06	0.02	0.27 0.43 0.28	0.04 0.15 0.08	0.01 0.05 0.03	2.97	2.74 3.06 2.81	0.15	0.05
FAT27E1*											
				O	CR 7695-2						
LC experimental	470 -70	0.32	0.06	0.02	0.29	0.11	0.03	2,63	2.66	0.07	0.03
	+165	0,33	0.05	0.02	0.23	0.07	0.02	2.58	2.63	0.14	0.0
M52A3B1	470 -70	0.36	0.15	0.04	0.37	0.13	0.04	2.75	2.81	0.12	40.0
	+165	0.35	0.10	0.04	0.31	0.23	0.07	2.67	2.74	 	0.10
FAT27E1	+70 -70 +165	0.32 0.30 0.32	0.07	0.02 0.03 0.01	0.32 0.20 0.20	0.13 0.06 0.09	0.04	2.64 2.49 2.53	2.75 2.59 2.58	0.24 0.18 0.11	0.09
				WC 8	WC 870, AL 42712	8					
LC experimental	+70 -70 +165	0.31 0.35 0.31	0.07	0.02 0.02 0.01	0.17 0.34 0.19	0.16 0.16 0.09	0.05	2.65 2.79 2.65	2.73 2.86 2.68	0.12 0.11 0.06	0.04
M52A3B1	+70 -70 +165	0.33 0.29 0.22	0.12 0.04 0.04	0.04 0.02 0.01	0.08 0.22 0.19	0.08	0.03 0.02 0.02	2.51 2.66 2.44	2.53 2.75 2.47	0.04	0.01
FAT27E1	+70 -70 +165	0.30 0.31 0.30	0.07 0.12 0.09	0.02 0.03 0.02	0.09 0.14 0.12	0.04	0.01 0.02 0.02	2.46 2.65 2.41	2.50 2.76 2.48	0.06 0.17 0.14	0.02

^{*}No pressure-time firing conducted with this lot.

Table A-VI. TEMPERATURE COEFFICIENTS

Ballistic relationships of experimental primers with IMR 7005, WC 870, and CR 7695 propellants at normal (+70°F), hot (+165°F), and cold (-70°F) temperatures. Recorded simultaneously as fired in a gage (pressure barrel).

Primer	Temp	Pressur Average	re (psi) Change	Press-Temp Coefficient (psi/~F)	Velocit Average	Change	Vel-Temp Coefficient (fps/"F)	Action Ti	me (ms)	AT-Temp Coefficient (ms/°F)
				IMR 700	5, AL 4131	3				
FAT27E1	-70 +70 +165	62,000 52,900 50,200	+9,100 -2,700	65,0 28.4	3326 3355 3369	-29 +14	0.21	2.54 2.53 2.63	+0.01 +0.10	0.00007
LC experimental	-70 +70 +165	50,300 53,900 49,800	-3,600 -4,100	25.7 43.1	3252 3388 3371	-136 -17	0.97	2.78 2.46 2.64	+0.32 +0.22	0.0023
M52A3R1	-70 +70 +165	47,100 46,700 49,600	+4 00 +2 , 900	2.9	3221 3301 3378	-80 +77	0.57	2.96 2.71 2.69	+0.25 -0.02	0.0018
				CR	7695-2					
FAT27E1	-70 +70 +165	61,800 59,400 58,400	+2,400 -1,000	17.1 10.5	3348 3374 3384	-26 +10	0.19	2,68 2,57 2,59	+0.11 +0.02	0.0008
LC experimental	-70 +70 +165	52,300 58,500 59,300	-6,200 +800	44.3 8.4	3282 3370 3398	-88 +28	0.63	2.98 2.63 2.58	+0.35 -0.05	0.0025
M52A3R1	-70 +70 +165	48,400 59,000 58,600	-10,600 -400	75.7 4.2	3248 3385 3398	-137 +13	0.98 0.14	3.22 2.77 2.67	+0.45 -0.10	0.0032
				WC 87	0, AL 4271	2				
FAT27E1	-70 +70 +165	46,300 53,800 63,800	-7,500 +10,000	53,6 105,2	3213 3384 3480	-171 +96	1.22	2.69 2.47 2.41	+0.22	0.0016 0.0006
LC experimental	-70 +70 +165	45,400 53,300 62,800	-7, 90 0 +9,500	56.4 100.0	3224 3379 3484	-155 +105	1, 11	2.68 2.50 2.41	+0.18	0.0013
M52A3B1	-70 +70 +165	43,000 52,300 62,800	-9,300 +10,500	66.4 110.5	3177 3368 3483	-191 +115	1.36	2.84 2.54 2.46	+0.30	0.0021

Table A-VII. CYCLIC RATE VS TEMPERATURE

Results of ballistic tests of experimental primers and IMR 7005, WC 870, and CR 7695 propellant at normal (+70° F), hot (+165° F), and cold (-70° F) temperatures, as fired in the M39A3 machine gun.

Primer	Temp (°F)	Rounds/Minute
IMR 7005, AL 41313		
FAT27E1	+70 -70 +165	1469 - -
LC experimental	+70 -70 +165	1565 1525 1545
M52A3B1	+70 -70 +165	1512 1551 1518
CR 7695-2		
FAT27E1	+70 -70 +165	1300 1353 1385
LC experimental	+70 -70 +165	1512 1418 1417
M52A3B1	+70 -70 +165	1493 1395 1401
	WC 870, AL 4271	2
FAT27E1	+70 -70 +165	1406 1621 1551
LC experimental	+70 -70 +165	1578 1607 1643
M52A3B1	+70 -70 +165	1518 1538 1545

APPENDIX B

GRAPHS OF RESULTS OF FIRINGS AT FRANKFORD ARSENAL

Graphs B-1, B-2, B-3 - Velocity vs Charge

Graphs B-4, B-5, B-6 - Pressure vs Charge

Graphs B-7, B-8, B-9
- Pressure vs Temperature
(20-round group, fired in a gage)

Graphs B-10, B-11, B-12 - Velocity vs Temperature (20-round group, fired in a gage)

Graphs B-13, B-14, B-15 - Action Time vs Temperature (20-round group, fired in a gage)

Graphs B-16, B-17, B-18 - Cyclic Rate vs Temperature (125-round burst, fired in the M39A2 machine gun)

CHAMBER PRESSURE IN 1,000 PSI

Time relations in small arms ammunition

Graph B-1. Velocity vs Charge

Graph R-4. Pressure vs Charge

raph B-5. Pressure vs Charge

Graph B-6. Pressure vs Charge

Graph B-7. Pressure vs Temperature (20-round group, fired in a gage)

Graph B-8. Pressure vs Temperature (20-round group, fired in a gage)

Graph B-9. Pressure vs Temperature (20-round group, fired in a gage)

Graph B-10. Velocity vs Temperature (20-round group, fired in a gage)

Graph B-11. Velocity vs Temperature (20-round group, fired in a gage)

Graph B-12. Velocity vs Temperature (20-round group, fired in a gage)

Graph B-13. Action Time vs Temperature (20-round group, fired in a gage)

Graph B-14. Action Time vs Temperature (20-round group, fired in a gage)

Graph B-15. Action Time vs Temperature (20-round group, fired in a gage)

Graph B-16. Cyclic Rate vs Temperature (125-round burst, fired in the M39A2 machine gun)

Graph B-17. Cyclic Rate vs Temperature (125-round burst, fired in the M39A2 machine gun)

Graph R-18. Cyclic Rate vs Temperature (125-round burst, fired in the M39A2 machine gun)

APPENDIX C

PHOTOGRAPHS OF MUZZLE AND BREECH FLASH

Photographs taken during Frankford Arsenal firing tests of FAT27E1, Lake City experimental, and M52A3B1 primers with IMR 7005, CR 7695, and WC 870 propellants at normal (+70° F), hot (+165° F), and cold (-70° F) temperatures.

Neg 36.231.S 1888/ORD.61

GUN SETUP

Muzzle

Breech

Test of FAT27El Primer and IMR 7005 Propellant. Cumulative flash produced by a 125-round burst fired from a 20mm M39A2 machine gun. Test fired at +70° F.

Test of Lake City Experimental Primer and IMR 7005 Propellant. Cumulative flash produced by a 125 round burst fired from a 20 mm M39A2 gun. Top fired at +70° F; Center fired at +165° F; Bottom fired at -65°F.

Test of M52A3B1 Primer and IMR 7005 Propellant. Cumulative flash produced by a 125 round burst fired from a 20 mm M39A2 gun. Top fired at $+70^{\circ}$ F; Center fired at $+165^{\circ}$ F; Bottom fired at -65° F.

Test of FAT 27E1 Primer and CR 7695 Propellant. Cumulative flash produced by a 125 round burst fired from a 20 mm M39A2 gun. Top fired at $+70^{\circ}$ F; Center fired at $+165^{\circ}$ F; Bottom fired at -65° F.

Test of Lake City Experimental Primer and CR 7695 Propellant. Cumulative flash produced by a 125 round burst fired from a 20 mm M39A2 gun. Top fired at +70° F; Center fired at +165° F; Bottom fired at -65° F.

Test of M52A3B1 Primer and CR 7695 Propellant. Cumulative flash produced by a 125 round burset fired from a 20 mm M39A2 gun. Top fired at +70° F; Center fired at +165° F; Bottom fired at -65° F.

Test of FAT27E1 Primer and WC 870 Propellant. Cumulative flash produced by a 125 round burst fired from a 20 mm M39A2 gun. Top fired at +70° F; Center fired at +165° F; Bottom fired at -65° F.

Test of Lake City Experimental Primer and WC 870 Propellant. Cumulative flash produced by a 125 round burst fired from a 20 mm M39A2 gun. Top fired at +70° F; Center fired at +165° F; Bottom fired at -65° F.

Test of M52A3B1 Primer and WC 870 Propellant. Cumulative flash produced by a 125 round burst fired from a 20 mm M39A2 gun. Top fired at +70° F; Center fired at +165° F; Bottom fired at -65° F.

DISTRIBUTION

- 1 Chief of Ordnance
 Department of the Army
 Washington 25, D. C.
 Attn: ORDTS
- 1 Attn: ORDIM
- 1 U.S. Army Ordnance
 Liaison Office
 U.S. Naval Explosive
 Ordnance Disposal
 Technical Center
 U.S. Naval Propellant Plant
 Indian Head, Maryland
- U.S. Army Liaison Office
 U.S. Naval School
 Explosive Ordnance Disposal
 U.S. Naval Propellant Plant
 Indian Head, Maryland
- 1 Commanding General
 U.S. Army Ordnance
 Ammunition Command
 Joliet, Illinois
 Attn: Chemical Group
- Commanding Officer
 Air Proving Ground Center
 Eglin Air Force Base
 Florida
- Commanding Officer
 U.S. Army Ordnance
 Arsenal Picatinny
 Dover, New Jersey
- 5 Commanding Officer
 Air Research & Development
 Command
 Andrews Air Force Base
 Maryland
 Attn: RDT-DAG

- 2 Commanding Officer
 U.S. Army Ordnance Arsenal Lake City
 Independence, Missouri
- 3 Commanding General
 Aberdeen Proving Ground
 Maryland
 Attn: ORDBG-D & PS
- 1 Attn: Ballistic Research Lab.
- 2 Attn: Library, ORDBG-LM
- 3 Commanding General
 White Sands Proving Ground
 New Mexico
 Attn: Technical Librarian
- Commanding Officer
 U.S. Army Research Office Durham
 Box CM, Duke Station
 Durham, North Carolina
- 1 Commanding Officer
 Springfield Armory
 Springfield 1, Mass.
 Attn: Engineering Dept
- 1 Bureau of Ordnance
 Department of the Navy
 Washington 25, D. C.
 Attn: AD3, Tech Library
- 1 Attn: Re S6
- 1 Attn: RD W3a
- 1 Attn: SP-27
- Commanding Officer
 U.S. Naval Powder
 Indian Head, Maryland
 Attn: Technical Library

DISTRIBUTION (Cont'd)

- 1 Commander
 U.S. Naval Proving Ground
 Dahlgren, Virginia
 Attn: Technical Library
- Commanding Officer
 Diamond Ordnance Fuze
 Laboratories
 Washington 25, D. C.
 Attn: Technical Reference
 Branch
- 10 Armed Services Technical Information Agency Arlington Hall Station Arlington 12, Virginia Attn: TIPDR

- 1 Commanding Officer
 Raritan Arsenal
 Metuchen, New Jersey
 Attn: ORDBG-OML
- 4 Solid Propellant Information
 Agency
 Applied Physics Laboratory
 The Johns Hopkins University
 8621 Georgia Ave.
 Silver Spring, Maryland
 Attn: K. G. Britton
- 1 Sandia Corporation
 Sandia Base, New Mexico
 Attn: Division 1463,
 F. Stein

AD- ACCESSION NO.		UNCLASSIFIED
FRANKFORD ARSENAL, Research and Development Group, Philadelphia 37, Pa.	1.	Propellant
EVALUATION OF M52A3B1 PRIMER WITH A MODFIED PRIMING MIXTURE, by F. Lombardi UNCLASSIFIED	'n	Ammunica, 20 mil., aircraft
Report R-1605, Sep 61; 44 pages incl tables and figures. DA Project 550405029; OMS Code 4110.16.0077.1.00.53	ï	I. Lombardi, F.
Since the FAT2TE i electric primer (developed by Frank- ford Arrenal) and the Lake City experimental primer (a modified ABZANE) primer) were developed for use with 20 mm atroats amountion, a test program was initiated to determine which would be best suited for general use.		
The FATZTE; primer produced a smaller change in pres- sure, velocity, and action time over the temperature range -70° to +165° F than either the Lake City experi- mental or the MSA381 primers with IMR 7005 and CR 7695 propellants. When used with the IMR 7005 propel- lant, the FATZTE; produced excessive pressures at -70° F.	DIST	DESTRIBUTION LIMITATIONS: Nobe; obtain copies from ASTLA
The Lake City experimental and the M52A3R1 primers		UNCLASSIFIED

UNCLASSIFIED	1. Primer, Electric 2. Propellant 3. Ammuniton 20 mm.		I. Lombsrdi, F.		DISTRIBUTION LIMITATIONS: None; obtain copies from ASTIA.	UNCLASSIFIED
AD- R-1605	FRANKFORD ARSENAL, Research and Development Group, Philadelphie 37, Pa.	EVALUATION OF MSZABH PRIMER WITH A MODIFIED PRIMING MIXTURE, by F. Lombardi UNCLASSIFIED	Report R.1605, Sep 61; 44 pages incl tables and figures. DA Project 580405029; OMS Code 4110.16, 0077, 1, 00,53	Since the FAT2/El electric primer (developed by Frank- ford Arsenal) and the Lake City experimental primer (a modified MSZANI primer) were developed for use with 20 mm aircraft annountion, a test program was initiated to determine which would be best suited for general use.	The FATZTE i primer produced a smaller change in pressure, velocity, and action time over the temperature range -70° to 4165° F than either the Lake City experimental or the M52A3B1 primers with IMR 7005 and CR 7655 propellants. When used with the IMR 7005 propellant, the FATZTEI produced excessive pressures at -70° F.	The Lake Gity experimental and the MS2A3R1 primers performed equally well with all three (Cont'd)
UNCLASSIFIED	1. Primer, Electric 2. Propellant 3. Annountion 20 mm	aircraft	I. Lombardi, F.		DISTRIBUTION LIMITATIONS: None; obtain copies from ASTIA.	UNCLASSIFIED
AD- ACCESSION NO. R-1605	FRANKFORD ARSENAL, Research and Development Group, Philadelphia 37, Pa.	EVALUATION OF M52a3R1 PRIMER WITH A MODIFIED PRIMING MIXTURE, by F. Lombardi UNCLASSIFIED	Report R-1605, Sep 61; 44 pages incl tables and figures. DA Project 5S0405029; OMS Code 4110.16.0077.1.00.53	Since the FAT2TE i electric primes (developed by Frank- ford Arsenal) and the take City experimental primes (a modified M&2A3M) primes! were developed for use with Comma sirorast ammunition, a test program was instated to determine which would be best suited for general use.	The FATZIE! primer produced a smaller change in pres- sare, velocity, and action time over the temperature range -70° to 4165. F than either the Lake City experi- mental or the M\$2A3B1 primers with IMR 7005 and CR 7695 propellants. When used with the IMR 7005 propel- lant, the FATZIE1 produced excessive pressures at -70° F.	The Lake City experimental and the M52A3R1 primers performed equally well with all three (Cont'd)

Ant, the PAIGINA produced excessive presented at	None; obtain copies from ASTIA	ant, the FALCE, produced extrement presenter of	None; obtain copies from ASTIA.
The Lake Gity experimental and the M52A3H1 primers performed equally well with all three (Cont'd)	UNCLASSIFIED	The Lake Gity experimental and the MS2A3N1 primers performed equally well with all three (Cont'd)	UNCLASSIFIED
AD- ACCESSION NO. R.1605	UNCLASSIFIED	AD- R-1605	UNCLASSIFIED
FRANKFORD AESENAL, Research and Development Group, Philadelphia 37, Pa.	1. Primer, Electric 2. Propellant	FRANKFORD ARSENAL, Research and Development Group, Philadelphia 37, Pa.	1, Primer, Electric
EVALUATION OF MS2A3R1 PRIMER WITH A MODIFIED PRIMING MIXTURE, by F. Lombardi UNGLASSIFIED		EVALUATION OF MSIA3RI PRIMER WITH A MODIFIED PRIMING MIXTURE, by F. Lombardi UNCLASSIFIED	alreraft
Report R1605, Sep 61; 44 pages incl tables and figures, DA Project 550405029; OMS Code 4110; 16,0077, 1:00.53	I. Lombardi, F.	Report R-1609, Sep 61; 44 pages incl tables and figures. DA Project 550405029; OMS Code 4110, 16, 0077, 1, 00, 53	I. Lombardi, F.
Since the FAT2TE I electric primer (developed by Frank- ford Arsenal) and the Lake Gity experimental primer (a modified MS2ASI primer) were developed for use with 20 mm sircraft ammunition, a test program was initiated to determine which would be best suited for general use.		Since the FAT2'El electric primer (developed by Frank- ford Arsenal) and the Lake City experimental primer (a modified MS2A'SI) primer) were developed for use with 20 mm alteraft ammunition, a test program was initiated to determine which would be best suited for general use.	
The FAT2TEI primer produced a smaller change in pressure, velocity, and action time over the temperature range 70° to 4165° F than either the Lake City experimental or the MAZANBI primers with IMR 7005 and CR 7695 propellants. When used with the IMR 7005 and CR 1m, the FAT2TEI produced excessive pressures at -70° F.	DESTRIBUTION LIMITATIONS: None; obtain copies from ASTIA.	The FAT27E1 primer produced a smaller change in present, velocity, and action time over the temperature range 70° to 4165° F than either the Lake City experimental or the MSEA3B1 primers with IMR 7005 and CR 7695 propellants. When used with the IMR 7005 propellant, the FAT2TE1 produced excessive pressures at 70° F.	DISTRIBUTION LIMITATIONS; None; obtain copies from ASTIA.

UNCLASSIFIED

The Lake City experimental and the M52A3B1 primers performed equally well with all three (Cont'd)

UNCLASSIFIED

The Lake City experimental and the MS2A3#1 primers performed equally well with all three (Cont'd)

UNCLASSIFIED		UNCLASSIFIED	UNGLASSIFIED	UNCLASSIFIED
AD- R-1605 (Cont'd) propellants, but the Lake City experimental primer pro- duced extreme amounts of flash and smoke at both breech	and muzzle when fired in the M39A2 machine gun. There is no significant advantage in performance with either the FAT27E1 or the Lake City experimental primer over the standard M52A3B1 primer when used with the WC 870 propellant.		AD- R-1605 (Cont'd) propellants, but the Lake Gity experimental primer produced extreme amounts of flash and smoke at both breech and muzzle when fired in the M39A2 machine gun. There is no significant advantage in performance with either the FAT27E1 or the Lake Gity experimental primer over the standard M52A3B1 primer when used with the WG 870 propellant.	
UNGLASSIFIED		UNCLASSIFIED	UNCLASSIFIED	UNGLASSIFIED
AD- R-1605 (Cont'd) Propellants, but the Lake Gity experimental primer produced extreme amounts of flash and smoke at both breech	and muzzle when fired in the M39A2 machine gun. There is no significant advantage in performance with either the FAT27E1 or the Lake City experimental primer over the standard M52A3B1 primer when used with the WC 870 propellant.		AD- R-1605 (Cont'd) propelants, but the Lake City experimental primer produced extreme amounts of flash and smoke at both breech and muzzle when fired in the M39A2 machine gun. There is no significant advantage in performance with either the FAT27E1 or the Lake City experimental primer over the standard M52A3B1 primer when used with the WC 870 propellant.	

FRANKFORD ARSENAL, Research and Development Group, Fhiladelphia 37, Ps.	2. Propellant 3. Ammuniton 20 mm	FRANKFORD ARSENAL, Research and Development Group, Philadelphia 37, Pa.	1. Primer, Electric 2. Propellant
EVALUATION OF M52A381 PRIMER WITH A MODIFIED PRIMING MIXTURE, by F. Lomberds UNCLASSIFIED	;	EVALUATION OF M52A3H1 PRIMER WITH A MODIFIED PRIMING MIXTURE, by F. Lombard UNCLASSIFIED	s. Annumicu, co min, aircraít
Report R-1605, Sep 61; 44 pages incl tables and figures. DA Project 580405029; OMS Code 4110, 16,0077, 1,00,53	I, Lombardi, F.	Report R-1605, Sep 61; 44 pages incl tables and figures. DA Project 550405029; OMS Code 4110,16.0077.1.00.53	I. Lombardi, F.
Since the FAT2TE i electric primer (developed by Frank- ford Arsenal) and the lake Gity experimental primer (a modified MS2ATE) primer) were developed for use with 20 mm aircraft amountion, a set program was initiated to determine which would be best suited for general use.		Since the FAT2TE! electric primer (developed by Frank- ford Arsenal) and the Lake City experimental primer (a modified MS2ASI) primer) were developed for use with 20 mm alroraft ammunition, a test program was initiated to determine which would be best suited for general use.	
The FAT2TE i primer produced a smaller change in pres- sure, velocity, and action time over the temperature range - 70° to 4165° F than either the Lake Gity experi- mental or the MAZABI primers with IMR 7005 and GR 7695 propellants. When used with the IMR 7005 propel- lant, the FAT2TE1 produced excessive pressures at -70° F.	DISTRIBUTION LIMITATIONS: None; obtain copies from ASTIA.	The FATATE primer produced a smaller change in presure, velocity, and action time over the temperature range -70° to +165° F than either the Lake City experimental or the MS2A3B primers with IMR 7005 and CR 7695 propellants. When used with the IMR 7005 propellant, the FATATE! produced excessive pressures at N-70° F.	DISTRIRUTION LIMITATIONS: None; obtain copies from ASTIA.
The Lake City experimental and the M52A3H1 primers performed equally well with all three (Cont'd)	UNCLASSIFIED	The Lake City experimental and the M52A3R1 primers performed equally well with all three (Cont'd)	UNCLASSIFIED
AD- R-1605	UNCLASSIFIED	AD- R-1605	UNCLASSIFIED
FRANKFORD ARSENAL, Research and Development Group, Philadelphia 37, Pa.	1. Primer, Electric 2. Propellant	FRANKFORD ARSENAL, Research and Development Group, Philadelphia 37, Pa.	1. Primer, Electric 2. Propellant
EVALUATION OF MS2A3N1 PRIMER WITH A MODIFIED PRIMING MIXTURE, by F. Lombardi UNCLASSIFIED	aircraft	EVALUATION OF M52A3R! PRIMER WITH A MODIFIED PRIMING MIXTURE, by F. Lombardi UNGLASSIFIED	3. Ammuniton, 20 mm, aircraft
Report R-1605, Sep 51; 44 pages incl. tables and figures. DA Project 580405029; OMS Code 4110,16,0077,1,00.53	1. Lombardi, F.	Report R-1605, Sep 61; 44 pages incl tables and figures, DA Project \$50405029; OMS Code 4110,16,0077,1,00,53	1. Lombardi, F.
Since the FAT27E1 electric primer (developed by Frank- (ord Arenal) and the Lake City experimental primer (a modified MS2ANI primer) were developed for use with 20 mm aircraft annumition, a set program was influted to determine which would be best suited for general use.		Since the FATZTE I electric primer (developed by Frank- ford Arsenal) and the Lake City experimental primer (a modified MS2ASM) primer) were developed for use with 20 mm alrorad ammunition, a ter program was indiated to determine which would be best suited for general use.	
The FAILTEI primer produced a smaller change in presence, valocity, and action time over the temperature range -70° to +165° F than either the Lake City experimental or the M52A3B1 primers with IMR 7005 and CR 7695 propellants. When used with the IMR 7005 propellant, the FAILTEI produced excessive pressures at 10° F.	DETRIBUTION LIMITATIONS:	The FAT2TE1 primer produced a smaller change in pressure, velocity, and action time over the temperature range -70 to 4462 F than either the Lake City experimental or the M52A3B1 primers with IAR 7005 and CR 7695 propellants. When used with the IMR 7005 propellant, the FAT2TE1 produced excessive pressures at N -70° F.	DEFRIRUTION LIMITATIONS;
		_	

UNCLASSIFIED

The Lake City experimental and the M52A3R1 primers performed equally well with all three (Cont'd)

UNCLASSIFIED

The Lake Gity experimental and the MS2A3R1 primers performed equally well with all three (Cont'd)

UNCLASSIFIED	UNCLASSIFIED	UNCLASSIFIED	UNCLASSIFIED
AD- R-1605 (Cont'd) propellants, but the Lake City experimental primer projuced extreme amounts of flash and smoke at both breach and muzzle when fired in the M39AZ machine gun. There is no significant advantage in performance with either the FAT27E1 or the Lake City experimental primer over the standard M52A3B1 primer when used with the WC 870 propellant.		AD- R-1605 (Cont'd) propellants, but the Lake City experimental primer produced extreme amounts of flash and smoke at both breech and muzzle when fired in the M39A2 machine gun. There is no significant advantage in performance with either the FAT27E1 or the Lake City experimental primer over the standard M52A3B1 primer when used with the WC 870 propellant.	
UNCLASSIFIED	UNCLASSIFIED	UNCLASSIFIED	UNCLASSIFIED
AD- R-1605 (Cont'd) propellants, but the Lake City experimental primer produced extreme amounts of flash and smoke at both breech and muzzle when fired in the M39A2 machine gun. There is no significant advantage in performance with either the FAT2TE1 or the Lake City experimental primer over the standard M52A3B1 primer when used with the WC 870 propellant.		AD- R-1605 (Cont'd) propellants, but the Lake City experimental primer produced extreme amounts of flash and smoke at both breech and muzzle when fired in the M39A2 machine gun. There is no significant advantage in performance with either the FAT27R1 or the Lake City experimental primer over the standard M52A3B1 primer when used with the WC 870 propellant.	