

Calibrate-Extrapolate: Rethinking Prevalence Estimation with Black Box Classifiers

Siqi Wu, Paul Resnick

ICWSM 2024 Buffalo, NY, USA

Tutorial: https://avalanchesiqi.github.io/prevalence-estimation-tutorial/

Given an unlabeled dataset, count the frequency of each class in it

A core task in computational social science, to estimate the fraction of

- happy tweets in a day (Dodds et al. 2011)
- automated accounts on Twitter (Yang et al. 2020)
- cross-partisan discussion on YouTube (Wu and Resnick 2021)
- political discussion in non-political subreddits (Rajadesingan et al. 2021)
- anti-social posts on Reddit (Part et al. 2022)
- many many more...

Each item has a set of features X, and an unobserved ground truth label GT

Why is prevalence estimation difficult in CSS?

- Social media data is often on a large scale
- Ground truth labels are difficult or expensive to obtain
- Obtained GT labels have noise

(Pre-trained black box) machine learning classifiers can help

classifier: $X \Rightarrow C(X) \sim GT$, where C(X) in [0, 1]

VADER (sentiment), Perspective API (toxicity), ChatGPT (almost everything)...

Why is prevalence estimation still difficult in CSS?

- What if we have a less accurate classifier?
- C(X) is a confidence score, but not a probability score
- How to make reliable estimates with fewer GT labels?

Three commonly seen missteps

- you want to estimate the prevalence of toxic comments on social media
- > you have a very large dataset
- you hear good things about the Perspective API

	text	C(X)
item 1	Lorem ipsum	0.87
item 2	dolor sit amet	0.72
item 3	consequat vitae	0.45
item 10000		0.18

"Perspective API suggests 0.7-0.9 as a threshold"

- "Perspective API suggests 0.7-0.9 as a threshold"
- X Dataset shift: Training and test datasets differ in important ways (Moreno-Torres et al. 2011)

"Perspective API returns a probability score"

- "Perspective API returns a probability score"
- X Generally, one should not interpret classifier output as calibrated probability

- "Perspective API returns a probability score"
- X Generally, one should not interpret classifier output as calibrated probability

you subsample the data, collect GT labels for the sample, find that Perspective API works well (e.g., F1=0.9) and the optimal threshold is 0.8

- you subsample the data, collect GT labels for the sample, find that Perspective API works well (e.g., F1=0.9) and the optimal threshold is 0.8
- X Classifier errors are not accounted for

Contributions: Conceptual framework + real world application

oxic Historical Chart

How many **H|O|T** (hateful, offensive, toxic) comments are posted on social media every day?

YouTube: 15.6%

Calibrate-Extrapolate framework

Contributions: The interplay between **X**, C(**X**), and GT

Outline

- 1. Introduction
- 2. How to do prevalence estimation? Calibrate & Extrapolate
- 3. Application: Estimating the fraction of H|O|T comments on news articles
- 4. Practical advice for prevalence estimation

The classifier score density for unlabeled datasets

classifier score density

	C(X)	
item 1	0.87	2 1500
item 2	0.72	1000 de
item 3	0.45	€ 500 -
item 10000		0.0 0.5 1.0 <i>C(X)</i>

The (classifier output, ground truth) joint distribution

joint distribution

Rethinking prevalence estimation as modeling joint distribution of C(X) and GT

Notes and observations for the calibration phase

- Base dataset ⇔ Calibration sample, always assume stable calibration curve
- Use purposive sampling to increase the number of potential minority class
- What if we have a weak classifier? Unbiased estimate if repeated many times, but the CI will be wider

Extrapolation phase: Multiple estimates are needed for *related* datasets

Extrapolation phase: Borrowing from base dataset joint distribution

Extrapolation phase: Multiple estimates are needed for related datasets

Data generation, stability assumptions, and prevalence estimation techniques

Stability assumption	Stable attribute	Data generation	Causal chain	Prevalence estimation technique
Stable calibration curve	P(GT C(X))	Extrinsic	$GT \leftarrow X \rightarrow C(X)$	Probabilistic Classify and Count
Stable class-conditional densities	P(C(X) GT)	Intrinsic	$GT \rightarrow X \rightarrow C(X)$	Mixture model, Median sweep

Dallas Card, and Noah A. Smith. "The importance of calibration for estimating proportions from annotations." In NAACL. 2018. Zhijing Jin, et al. "Causal Direction of Data Collection Matters: Implications of Causal and Anticausal Learning for NLP." In EMNLP. 2021.

Notes and observations for the extrapolation phase

- Base dataset ⇒ Target dataset, choose stable calibration curve or stable class-conditional densities based on the data generation process
- What if we have a weak classifier? If we pick the correct stability
 assumption, the estimate will be fine. But a stronger classifier makes it
 more robust to wrong stability assumption.

Outline

- 1. Introduction
- 2. How to do prevalence estimation? Calibrate & Extrapolate
- 3. Application: Estimating the fraction of H|O|T comments on news articles
- 4. Practical advice for prevalence estimation

H|O|T speech: Fraction of hateful, offensive, or toxic comments on news articles

Project webpage: https://csmr.umich.edu/projects/hot-speech/

Practical advice for prevalence estimation

- Never safe to make a prevalence estimate based on a classifier trained on different datasets, without gathering human labels for calibration
- If a prevalence estimate is needed for a single dataset,
 - Balanced dataset → Random sample to annotate
 - Imbalanced dataset → Purposive sample to produce a calibration sample with more balanced labels
- If prevalence estimates are needed for multiple related datasets,
 - First estimate the joint distribution of a base dataset
 - Then borrow properties from base dataset joint distribution by making stability assumption based on the data generation process