Examples of (non-split) reductive gps

- 1. forms
- 2 torus case
- 3. other cases
- 4. conclusions on various forms

Setting. We work over conn red gp over F. (G/F conn red)

 $H^1(W,A) = Z^1(W,A)/A.$

Borel = maximal (Zar-closed) conn sol alg subgp = minimal parabolic subgp Parabolic = $H \leq G$ closed subgp s.t G/H is projective = closed subgp containing a Borel.

Ref:

 $\left[\text{ECHI} \right]$ Silverman, The Arithmetic of Elliptic Curves

 $[Buzzard] \ Kevin \ Buzzard, Forms \ of \ reductive \ algebraic \ groups. \\ https://www.ma.imperial.ac.uk/~buzzard/maths/research/notes/forms_of_reductive_algebraic_groups.pdf$

[KP] Tasho Kaletha and Gopal Prasad, Bruhat{Tits theory: a new approach. version from May 27, 2022.

[DRo9] Stephen DeBacker and Mark Reeder, Depth-zero supercuspidal L-packets and their stability https://annals.math.princeton.edu/wp-content/uploads/annals-v169-n3-p03.pdf

[SP98] T. A. Springer, Linear Algebraic Groups https://link.springer.com/book/10.1007/978-0-8176-4840-4

https://mathoverflow.net/questions/121959/classification-of-tori-of-gl2-up-to-conjugation

I make no claim to originality.

1. forms.

Def.
$$G_{1},G_{2}/F$$
 are called forms, if $\exists \ \alpha: G_{2},F \xrightarrow{\sim} G_{1},F$ as qps not as $\Gamma_{F}-qps!$ d is considered as the information of forms.

Thm.
$$\{F - forms \ of \ G \} \longrightarrow H'(\Gamma_F, Aut \ (G_{\overline{E}}))$$

$$[G_2, \lambda, G_{2,\overline{F}} \longrightarrow G_{\overline{F}}] \longrightarrow \gamma_{\lambda} = \lambda \sigma \lambda^{-1} \sigma^{-1} \longrightarrow G_{2,\overline{F}} \longrightarrow G_{\overline{F}}$$

$$G_1(F) := \{g \in G(\overline{F}) \mid (\varphi(\sigma) \circ \sigma) \ g = g \quad \forall \sigma \in \Gamma_F \}$$

$$[G_2, K, G_2, F] \longrightarrow G_{\overline{F}} \longrightarrow G_{\overline{F}$$

$$(G_2, \lambda) \sim (G'_1, \lambda')$$
, if $\exists \beta: G_2 \longrightarrow G'_2$ as an iso.

$$\begin{array}{ccc}
G_{2,\overline{F}} & \xrightarrow{\Delta} & G_{\overline{F}} \\
\beta_{\overline{F}} \downarrow & & \downarrow \lambda' \circ \beta_{\overline{F}} \circ \lambda^{-1} \\
G'_{2,\overline{F}} & \xrightarrow{\Delta'} & G_{\overline{F}}
\end{array}$$

Functorial on F. (Inflation - Restriction seq. [ECII, Appendix B, Prop 13]) Let E/F be finite Galois.

Rmk. We have the classification of connected reductive gps.

Ssplit red gp/F
$$\} \longleftrightarrow (X^*, \Delta, X_*, \Delta^*)$$

$$\begin{cases} \text{Split red gp/F } \} \longleftrightarrow (X^*, \Delta, X_*, \Delta^*) + \Gamma_{\text{F}}\text{-action} \\ = (X^*, \Delta, X_*, \Delta^*) + \text{H'}(\Gamma_{\text{F}}, \text{Out}(G_{\text{F}})) \end{cases}$$

$$\begin{cases} \text{red gp/F } \} \longleftrightarrow (X^*, \Delta, X_*, \Delta^*) + \text{H'}(\Gamma_{\text{F}}, \text{Aut}(G_{\text{F}})) \end{cases}$$

To understand the result, the following isos are needed:

$$Aut(G_{\bar{F}}) \cong Inn(G_{\bar{F}}) \times Aut(G_{,B},T_{,fu_{\bar{a}}})$$

Out
$$(G_{\overline{F}}) \cong Aut (G,B,T, \{u_a\})$$
 for embedding $\cong Aut (\mathcal{L}(G,B,T))$ for combinatorics

Also, by the Hilbert 90, one has $H'(\Gamma_F, Aut(G,B,T, iud)) \cong H'(\Gamma_F, Aut(G,B,T))$

2. torus case

Let us try to find all the forms of the split torus and. They're called (non-split) torus.

We know

$$Aut(G_m^n) \subseteq End(G_m^n) \qquad Hom(G_m,G_m) \cong \mathbb{Z}$$

$$II \qquad \qquad II \qquad \qquad (-)^n \iff n$$
 $GL_n(\mathbb{Z}) \subseteq M^{n \times n}(\mathbb{Z})$

Therefore,

$$H'(\Gamma_F, Aut(G_{m,F}^n)) = H'(\Gamma_F, GL_n(Z))$$

$$= Hom_{G'p}(\Gamma_F, GL_n(Z))/GL_n(Z)-conj$$

$$\underset{when F=R}{\longleftarrow} g \in GL_n(Z) \mid g^2 = Id \int/GL_n(Z)-conj$$

$$\begin{bmatrix}
\Gamma_{F} \text{ acts on } Aut (G_{m,F}^{n}) \subseteq End (G_{m,F}^{n}) \text{ trivially:} \\
\text{See } \overline{F} \text{-pts, } n = 1: \\
F^{\times} \xrightarrow{d} \overline{F}^{\times} \\
\downarrow \qquad \qquad \qquad \downarrow \qquad$$

E.g. n=1, F=1R

$$H'(\Gamma_F, Aut(G_{m,F})) \cong \{1, -1\}$$

$$G_m \quad G = ?SO_{27R}$$

$$G(IR) = \{g \in G_{m}(\mathbb{C}) \mid (\varphi(\sigma) \circ \sigma) g = g \}$$

$$= \{g \in \mathbb{C}^{\times} \mid (\overline{g})^{-1} = g\}$$

$$= \{g \in \mathbb{C}^{\times} \mid (gl = 1)\}$$

$$= S'$$

$$G(\mathbb{C}) = G_{m}(\mathbb{C}) = \mathbb{C}^{\times}$$

$$\Rightarrow G = \{Spec \mid R[x,y]/(x^{2}+y^{2}-1) = SQ_{2},R\}$$

$$Check: G(\mathbb{C}) = \{(x,y) \in \mathbb{C} \times \mathbb{C} \mid x^{2}+y^{2}-1 = 0\}$$

$$= \{(x,y) \in \mathbb{C} \times \mathbb{C} \mid (x+iy)(x-iy) = 1\}$$

$$= \{(x,y,t) \in \mathbb{C} \times \mathbb{C} \times \mathbb{C}^{\times} \mid x+iy = t\}$$

$$\Rightarrow \mathbb{C}^{\times}$$

$$SQ_{2}(K) = \{(x,y,y) \mid x,y \in K, x^{2}+y^{2} = 1\}$$

Rmk As a scheme,

Res
$$\alpha/R$$
 $G_m = Spec C[Z \times Z]^{\Gamma R}$

$$= Spec (C[t,t^{-1}] \otimes_{\mathbb{C}} C[s,s^{-1}])^{\Gamma R}$$

$$= Spec C[t,s,t^{-1},s^{-1}]^{\Gamma R}$$

$$= Spec R[\frac{t+s}{2},\frac{t-s}{2i},t^{-1}s^{-1}]$$

$$\cong Spec R[x,y,u]/((x^2+y^2)u-1)$$

Fact. Any (conn) IR-torus is product of
$$G_m$$
, $SO_{2,IR}$, $Resc_{IR}$ G_m

1 1 -1 (,')

1 T_{1}

Fact T_{1}

Indz T_{2}

Indz T_{2

More details can be found here: https://personal.math.ubc.ca/~cass/research/pdf/realtori.pdf

The classification is much more general than we may think of. When I really understand this I would make a new document for this. See: Dieudonné-Manin classification theorem in wiki http://faculty.bicmr.pku.edu.cn/~dingyiwen/dm.pdf

Rmk, Using the same argument, one can show that ST/IFP s.t TIFP = an, IFP = products of am, (aba), Resipping am

The torus
$$G$$
 crispol to -1 : Assume $S \in \mathbb{F}_{p^{2}} \setminus \mathbb{F}_{p}$, $S^{2} = \varepsilon \in \mathbb{F}_{p}$, $\binom{\varepsilon}{p} = -1$

$$G(\mathbb{F}_{p}) = \left\{ g \in G_{m}(\mathbb{F}_{p^{2}}) \mid (\varphi(\sigma) \circ \sigma) g = g \quad \forall \sigma \in \Gamma_{k} \right\}$$

$$= \left\{ a + b \right\} \in \mathbb{F}_{p^{2}} \mid \varphi(\sigma) (a - b \circ) = a + b \circ \right\}$$

$$= \left\{ a + b \right\} \in \mathbb{F}_{p^{2}} \mid a^{2} - b^{2} \varepsilon = 1 \right\}$$

$$\stackrel{\triangle}{=} \left\{ \binom{a \ b}{\varepsilon b \ a} \right\} \subseteq GL_{2}(\mathbb{F}_{p}) \right\}$$

3. other cases.

By using the same methods introduced in last section, we can compute the (inner) forms of reductive gps.

	inner forms	outer forms	
(G _m) ² (G _m) ²	, Ø	SOz SOz×Gm, (SOz) ² , Res _{C/IR} Gm product of lower rank torus	
GL2,1R SL2,1R PGL2,1R	Hx = GL,(IH@IR-) Hx= SUz,GIR	(U2, G/IR, W = U(1,1) U(2,0)) \$\phi\$ \$\phi\$	
GLn,IR	?	$U_{n,\mathcal{O}_{IR},\omega} = \begin{cases} \mathcal{U}\left(\frac{n}{2},\frac{n}{2}\right) & n \text{ even} \\ \mathcal{U}\left(\frac{n+1}{2},\frac{n-1}{2}\right) & n \text{ odd} \end{cases}$	
SLn,IR PGLn,IR	GLn/2(H⊗ _{IR} -) when n even	$SU(a,n-a)$ ep. $SU(2,1)$ \leftarrow	- need clavification
(SL ₂) ² /IR (SL ₂) ³ /IR	SL,×SU, (SU,), . ^{\$?} (8-1) possibilities	Res _{GIR} SL ₂	

?: I have no time to compute /don't know any symbol to represent quasi-split gp

See [SP98, Chapter 17] for a full classification of reductive groups of all types.

Compute Aut (GF)
Lemma. We understand Aut (GF) quite well.

	$G(\bar{F})/Z(G(\bar{F})) = G^{\alpha}$	⁽ (₹)	Aut(↓₀)	
G	$I \longrightarrow I_{nn}(G_{\overline{F}}) \longrightarrow$	\rightarrow Aut $(G_{\bar{r}}) \rightarrow$	Out (G=) -	→ 1
Trkn	1	$GL_{n}(\mathbb{Z})$	$GL_n(\mathbb{Z})$	
GLzir	PGL ₂ (C)	PGL2(C) x [±1]	<u>{\pmu}</u>	
SL2, IR	PGL2(C)	PGL2(C)	1	
PGL2, IR	PGLZ(C)	PGLL(C)	1	
n>3		612	Δ.	
GLn,IR	PGLn(C)	PGLn(C) x [±1]	8±13 02	
SLnir	PGLn(C)	PGLn(C) X [±1]	8±1}	
PGLnir	PGLn(C)	PGLn(C) X [±1]	8±13	
(SL)2/IR	PGLn(C)2	PGLn(C) > Stl	8±1}	
Resola SL2	PGLn(C)	PGLn(C) x [±1]	8±1}	with different PiR-action
(SL.) "/IR	PGLn(C)	PGL(C)"XS"	2,	11

Compute $H'(\Gamma_F, -)$

Method 1: Hilbert 90 + LES

Method 2: Use black box

p-adic field: Kottwitz's isomorphism

Theorem 12.7.7 There is a functorial isomorphism $H^1(k,G) \to \pi_1(G)_{\Theta,\text{tor}}$.

COROLLARY 2.4.3. The composition

$$[\bar{X}/(1-\vartheta)\bar{X}]_{\mathrm{tor}} \xrightarrow{\sim} H^{1}(\mathcal{F},\Omega_{C}) \xrightarrow{a_{*}^{-1}} H^{1}(\mathcal{F},N_{C}) \xrightarrow{b_{*}} H^{1}(\mathcal{F},G)$$

is a bijection.

$$[\bar{X}/(1-\vartheta)\bar{X}]_{\text{tor}} = \text{Irr}[\pi_0(\hat{Z}^{\hat{\vartheta}})].$$

real field:

Mikhail Borovoi, Galois cohomology of reductive algebraic groups over the field of real numbers https://arxiv.org/abs/1401.5913

3.1. Theorem. Let G, T_0, T , and W_0 be as above. The map

$$H^1(\mathbb{R},T)/W_0(\mathbb{R}) \to H^1(\mathbb{R},G)$$

induced by the map $H^1(\mathbb{R},T) \to H^1(\mathbb{R},G)$ is a bijection.

global field:

Mikhail Borovoi, Tasho Kaletha, Galois cohomology of reductive groups over global fields https://arxiv.org/pdf/2303.04120.pdf

E.g.
$$G = SL_{1,R}$$
, $F = IR$

$$G \qquad I \longrightarrow I_{nn}(G_{\overline{F}}) \longrightarrow Aut(G_{\overline{F}}) \longrightarrow Out(G_{\overline{F}}) \longrightarrow 1$$

$$SL_{1,R} \qquad PGL_{1}(\mathbb{C}) \qquad PGL_{1}(\mathbb{C}) \qquad 1$$

$$H'(\Gamma_{IR}, Aut(SL_{1}, \mathbb{C})) = H'(\Gamma_{IR}, PGL_{1}(\mathbb{C})) = \{I, \omega(I)\omega^{-1}\} \qquad \omega^{2}(I_{1}^{-1})\}$$

$$SL_{1,C} \qquad G = \{I, \omega(I)\omega^{-1}\} \qquad \omega^{2}(I_{1}^{-1})\}$$

$$= \{I, \omega(I)\omega^{-1}\} \qquad \omega^{2}(I_{1}^{-1})\}$$

$$= \{I, \omega(I)\omega^{-1}\} \qquad \omega^{2}[I_{1}^{-1}]\}$$

$$= \{I, \omega(I)\omega^{-1}\} \qquad \omega^{2}[I_{1}^{-1}]$$

$$= \{I, \omega(I)\omega^{-1}\} \qquad \omega^{2}[I_{1}^{-1}] \qquad \omega^{2}[I_{1}^{-1}]$$

$$= \{I, \omega(I)\omega^{-1}\} \qquad \omega^{2}[I_{1}^{-1}] \qquad \omega^{2}[I_{1}^{-1}] \qquad$$

4. conclusions on various forms

H'([F,-) as parameter space

$$1 \longrightarrow 1$$

$$I \longrightarrow Z(G(\bar{F})) \longrightarrow G(\bar{F}) \longrightarrow Inn(G_{\bar{F}}) \longrightarrow Aut(G_{\bar{F}}) \longrightarrow Out(G_{\bar{F}}) \longrightarrow 1$$

 $H^{1}(\Gamma_{F}, Z(G(\overline{F})))$ $\longrightarrow H^{1}(\Gamma_{F}, Z(G(\overline{F})))$ $\longrightarrow H^{1}(\Gamma_{F}, Z(G(\overline{F}))) \longrightarrow H^{1}(\Gamma_{F}, G(\overline{F}))$ $\longrightarrow H^{1}(\Gamma_{F}, Z(G(\overline{F}))) \longrightarrow H^{1}(\Gamma_{F}, G(\overline{F}))$ $\longrightarrow H^{1}(\Gamma_{F}, Z(G(\overline{F})))$ $\longrightarrow H^{1}(\Gamma_{F}, Z(G$

F-pure inner twists of $G^{3}/\longleftrightarrow H'(\Gamma_{F}, G(\overline{F}))$

G split:
$$\begin{cases} F - \text{forms of } G \\ \text{which are quasi-split} \end{cases} \longleftrightarrow H'(\Gamma_F, \text{Aut}(G_{\overline{F}}, B, T)) \cong H'(\Gamma_F, \text{Out}(G_{\overline{F}})) \\ \Gamma_F - \text{actions on } (X^*, \Delta, X_*, \Delta^*) \end{cases}$$

Q. Do we have

$$2H'(\Gamma_{F}, Inn(G_{\overline{F}})) \longrightarrow H'(\Gamma_{F}, Aut(G_{\overline{F}})) \longrightarrow H'(\Gamma_{F}, Out(G_{\overline{F}}))$$

$$1 \longrightarrow Inn(G_{\overline{F}})^{F} \longrightarrow Aut(G_{\overline{F}})^{\Gamma_{F}} \longrightarrow Out(G_{\overline{F}})^{\Gamma_{F}})^{\circ}$$

$$Inn'(G_{F}) \longrightarrow Aut'(G_{F}) \longrightarrow Out(G_{F})^{\circ}$$

Give one example s.t. $H'(\Gamma_F, Inn(G_{\overline{F}})) \longrightarrow H'(\Gamma_F, Aut(G_{\overline{F}}))$ is not inj?

Categorification of $H'(\Gamma_F, -)$ These categories are all groupoids. These $H'(\Gamma_F, -)$ are all achieved as isomorphism classes.

$\begin{array}{cccccccccccccccccccccccccccccccccccc$			
form $H'(\Gamma_{F}, Aut(G_{F})) \Rightarrow G_{3,F} \xrightarrow{\partial} G_{F} \xrightarrow{\partial} $		Obj	$Mov((G_{2}, \lambda), (G_{2}', \lambda'))$
$H'(\Gamma_{F}, Aut(G_{F}))$ $C_{2,F} \xrightarrow{\Delta} C_{F} \xrightarrow{\sigma(\Delta) \circ \Delta^{-1}}$ $C_{3,F} \xrightarrow{\sigma(\Delta) \circ \Delta^{-1}} C_{F} \sigma(\Delta$		$(G_{2}, \lambda_{i} G_{2}, \overline{F} \rightarrow G_{\overline{F}})$	$\beta: G_2 \longrightarrow G_2'$ iso
inner form $ (G_{2}, \lambda: G_{2}, \overline{F} \to G_{\overline{F}}) $ $G_{1}, A_{2}, A_{3}, A_{4}, A_{5}, A_{5},$	form	l .	1
inner form $Im \left(\begin{array}{cccccccccccccccccccccccccccccccccccc$	H'([F, Aut(GF))		$G'_{2,\overline{F}} \xrightarrow{\Delta'} G_{\overline{F}}$
$Im \begin{pmatrix} H'(\Gamma_{F}, Inn(G_{F})) \\ H'(\Gamma_{F}, Aut(G_{F})) \end{pmatrix}$ $St. G_{2,F} \xrightarrow{\Delta} G_{F}$ $G_{2,F} \xrightarrow{\Delta} G_{F}$ $G_{3,F} \xrightarrow{\Delta} G_{F}$ $G_{4,F} \Delta$	innak form	$(G_{2}, \lambda_{1}, G_{2}, \overline{F} \rightarrow G_{\overline{F}})$	$\beta: G_2 \longrightarrow G_2'$ iso
$Im \begin{pmatrix} H'(\Gamma_{F}, Inn(G_{F})) \\ H'(\Gamma_{F}, Aut(G_{F})) \end{pmatrix} \qquad \qquad$	une jom	s.t. G.F ~ d GE	⇒ Gaē ~ ~ Gē
full subcategory $\sigma(a) \circ a^{-1}$ is inner auto.	Im H'(PF, Inn(GF))	0 1 5	l .
full subcategory $\sigma(a) \circ a^{-1}$ is inner auto. Commutes $ \begin{array}{cccccccccccccccccccccccccccccccccc$	$H'(\Gamma_{F},Aut(G_{\overline{F}}))$	σω·21 G _F	
inner twist $ \begin{array}{ccccccccccccccccccccccccccccccccccc$	full subcaterous	G(x) = G(x) is inner outo	
inner twist $ \begin{array}{ccccccccccccccccccccccccccccccccccc$		o tarres a times acceso.	COMPACES
H'(Γ_{F} , Inn(G_{F}) S.t. $G_{2,F}$ σ σ σ σ σ σ σ			$\beta: G_2 \longrightarrow G_2'$ iso
less isomorphisms $G_{2,\overline{F}} \xrightarrow{\Delta} G_{\overline{F}}$ $G_{2,\overline{F}} \xrightarrow{\Delta'} G_{\overline{F}}$ $G_{2,\overline{F}} \xrightarrow{\Delta'} G_{\overline{F}}$ compared with $G_{2,\overline{F}} \xrightarrow{\Delta'} G_{\overline{F}}$ is inner auto.	inner twist	$S_{+} G_{3} = \xrightarrow{\lambda} G_{=}$	2+ C = 2 C=
less isomorphisms $G_{2,\overline{F}} \xrightarrow{\Delta} G_{\overline{F}}$ $G_{2,\overline{F}} \xrightarrow{\Delta'} G_{\overline{F}}$ $G_{2,\overline{F}} \xrightarrow{\Delta'} G_{\overline{F}}$ compared with $G_{2,\overline{F}} \xrightarrow{\Delta'} G_{\overline{F}}$ is inner auto.	H'(rf, Inn(GF))	σ <u></u>	B- J'0 B 0 2-1
compared with $\sigma(a) \circ a^{-1}$ is inner auto. $a' \circ \beta \in \sigma a^{-1}$ is inner auto.	,	1	. ↓
	inner form	blariac is timer acco.	a production
$(G_2, \lambda: G_{2,F} \to G_F, \phi) \qquad (\beta, \delta)$	4	l	1 1
$\phi \in Z'(\Gamma_{\overline{F}}, G(\overline{F})) \qquad \beta : G_2 \longrightarrow G'_2 \text{ iso } S \in G(\overline{F})$	burg imay thick	$\phi \in Z(\Gamma_{F}, G(F))$	$\beta: G_2 \longrightarrow G_2$ iso $S \in G(F)$
pure inner twist $S.t. G_{2,\overline{F}} \xrightarrow{\Delta} G_{\overline{F}}$ $S.t. G_{2,\overline{F}} \xrightarrow{\Delta} G_{\overline{F}}$	pure inner twist	s.t. G.F ~ ~ ~ GF	st G.F -2 GF
$H'(\Gamma_{\bar{F}},G(\bar{F}))$ of $\phi_{(G)-conj}$ $G_{\bar{F}}$ $\beta_{\bar{F}}$ $\beta_{\bar{F}}$ $\beta_{\bar{F}}$	$H'(\Gamma_{F},G(\bar{F}))$	5	1
		φω)-conj G _F	· · · · · · · · · · · · · · · · · · ·
$G_{z,\overline{F}} \xrightarrow{\Delta} G_{\overline{F}}$ $G_{z,\overline{F}} \xrightarrow{\Delta'} G_{\overline{F}}$ $G_{z,\overline{F}} \xrightarrow{\Delta'} G_{\overline{F}}$ $G_{z,\overline{F}} \xrightarrow{\Delta'} G_{\overline{F}}$		l	l .
$\phi_{i}(\sigma) = S^{-1}\phi_{i}(\sigma) \sigma(S)$			

	Obj	$Mor((G_{\Sigma}, \lambda), (G_{\Sigma}', \lambda'))$
rigid inner twist	$(G_2, \lambda: G_2, \overline{F} \to G_{\overline{F}}, Z, \overline{z})$ $Z \subset Z(G)$ finite q_p subscheme $z \in Z' \Big(\mathcal{U}(\overline{F}) \to \varepsilon^{rig}, \Big)$ $Z(\overline{F}) \to G(\overline{F}) \Big)$	(β, δ) $\beta: G_2 \longrightarrow G_2'$ iso $\delta \in G(\overline{F})$
$H'\left(u(\overline{F}) \rightarrow \mathcal{E}^{kg}, Z(\overline{F}) \rightarrow G(\overline{F})\right)$	S.t. $G_{2,\overline{F}} \xrightarrow{Q} G_{\overline{F}}$ $G_{2,\overline{F}} \xrightarrow{Q} G_{\overline{F}}$ $G_{2,\overline{F}} \xrightarrow{Q} G_{\overline{F}}$	S.t $G_{2,\overline{F}} \xrightarrow{\lambda} G_{\overline{F}}$ $\begin{cases} \beta_{\overline{F}} & \downarrow \delta_{-\text{conj}} \\ G'_{2,\overline{F}} & \xrightarrow{\lambda'} G_{\overline{F}} \end{cases}$
	Commutes	Commutes, and $Z_{s}(\sigma) = S^{-1}Z_{s}(\sigma) \sigma(S)$
basic Kottwitz set B(G) _{basic}	$(G_{2}, \lambda: G_{2}, \overline{F} \rightarrow G_{\overline{F}}, Z, \overline{z})$ $Z \subset Z(G)$ finite $q_{\overline{F}}$ subscheme $Z \in Z : \begin{pmatrix} D(\overline{F}) \rightarrow \varepsilon^{iso}, \\ Z(\overline{F}) \rightarrow G(\overline{F}) \end{pmatrix}$	(β, δ) $\beta: G_2 \longrightarrow G'_2$ iso $\delta \in G(\overline{F})$
$H'_{basic}(\mathcal{E}^{iso},G)$ $H'\left(D(\overline{F}) \to \mathcal{E}^{iso},\right)$ $Z(\overline{F}) \to G(\overline{F})$	S.t. $G_{2,\overline{F}} \xrightarrow{\lambda} G_{\overline{F}}$ $G_{2,\overline{F}} \xrightarrow{\lambda} G_{\overline{F}}$ $G_{2,\overline{F}} \xrightarrow{\lambda} G_{\overline{F}}$	S.t $G_{2,\overline{F}} \xrightarrow{\Delta} G_{\overline{F}}$ $\downarrow S\text{-conj}$ $G'_{2,\overline{F}} \xrightarrow{\Delta'} G_{\overline{F}}$
	Commutes	Commutes, and $z_{i}(\sigma) = \delta^{-1}z_{i}(\sigma) \sigma(\delta)$

https://mathoverflow.net/questions/117033/center-of-the-algebraic-group-g-mathbbr-for-a-centerless-g-https://math.stackexchange.com/questions/953526/relative-center-of-relative-group-scheme