A closed ball in a big vector space is not compact

The title should probably be "in at least one infinite-dimensional vector space, a closed ball of radius 2 centered at the origin is not compact," but that is an awkward title. It is not too hard to extend the idea here, and one can show that in a infinite-dimensional Hilbert space¹ every non-empty closed ball is not compact.

First, I claim a general fact about metric spaces, that a collection of isolated singletons is closed, even if there are infinitely many such singletons. To understand it, one should sketch the balls used in the proof.

Lemma. Suppose that (X, d) is a metric space. Suppose $W \subseteq X$ has the property that every element of W is isolated away from every other element by a distance $\delta > 0$, in the precise sense that, for this $\delta > 0$, $x \in W$ implies $B_{\delta}(x) \cap W = \{x\}$. Then W is closed.

Proof. We show $\overline{W} \subseteq W$ so that $W = \overline{W}$ and thus W is closed. Let $y \in \overline{W}$. Then there is $x \in B_{\delta}(y) \cap W$, by definition 6.7. But then $y \in B_{\delta}(x)$.

If $y \notin W$ then $x \neq y$ so d(x,y) > 0. Noting $0 < d(x,y) < \delta$, let

$$\epsilon = \min \left\{ \frac{1}{2} d(x, y), \delta - d(x, y) \right\} > 0.$$

Let $z \in B_{\epsilon}(y)$. Then

$$d(x,z) \le d(x,y) + d(y,z) < d(x,y) + \epsilon \le d(x,y) + \delta - d(x,y) = \delta$$

so $z \in B_{\delta}(x)$. We have proven that $B_{\epsilon}(y) \subseteq B_{\delta}(x)$. On the other hand, $x \notin B_{\epsilon}(y)$ because otherwise $d(x,y) < \epsilon \le \frac{1}{2}d(x,y)$, a contradiction. So now $B_{\epsilon}(y) \cap W = \emptyset$ because otherwise $B_{\delta}(x) \cap W \supseteq B_{\epsilon}(y) \cap W$ contains a point other than x. This contradicts $y \in \overline{W}$. So in fact $y \in W$ and thus W is closed.

Now recall the vector space I described in class:

$$X = \{f : [0,1] \to \mathbb{R} : f \text{ is continuous}\}.$$

(The standard notation is X = C([0,1]).) We define both an inner product and a metric,

$$\langle f, g \rangle = \int_0^1 f(x)g(x) dx,$$

 $d(f, g) = \left(\int_0^1 (f(x) - g(x))^2 dx\right)^{1/2} = \langle f - g, f - g \rangle^{1/2}.$

One can find an infinite orthonormal set in X. To be concrete, for k = 1, 2, ... let

$$f_k(x) = \frac{1}{\sqrt{2}}\sin(k\pi x).$$

Trigonometric integrals—a good exercise in calculus—give $\langle f_j, f_k \rangle = 0$ if $j \neq k$, while $\langle f_k, f_k \rangle = 1$. Note that if $j \neq k$ then

$$d(f_i, f_k)^2 = \langle f_i - f_k, f_i - f_k \rangle = \langle f_i, f_i \rangle - 2 \langle f_i, f_k \rangle + \langle f_k, f_k \rangle = 1 - 0 + 1 = 2.$$

¹See en.wikipedia.org/wiki/Hilbert_space.

Let

$$W = \bigcup_{k=1}^{\infty} \{f_k\} = \{f_1, f_2, \dots, f_k, \dots\}.$$

If $u,v \in W$ are distinct then $d(u,v) = \sqrt{2}$. Apply the lemma with $\delta = \sqrt{2}$ to conclude W is closed. This fact removes the technical hang-up, experienced in lecture, in showing that there is a closed and bounded set that is not compact.

Proposition. The closed radius 2 ball in X centered at the origin, namely

$$C = \overline{B_2(0)} = \{ f \in X : d(f,0) \le 2 \},\,$$

is not compact.

Proof. Let $U_k = B_{1/2}(f_k)$, an open set containing f_k . Note that $U_j \cap U_k = \emptyset$ if $j \neq k$ because if $g \in U_j \cap U_k = B_{1/2}(f_j) \cap B_{1/2}(f_k)$ then

$$\sqrt{2} = d(f_j, f_k) \le d(f_j, g) + d(g, f_k) < \frac{1}{2} + \frac{1}{2} = 1,$$

which is false. Now, with W defined above,

$$\mathcal{U} = \{X \setminus W\} \cup \{U_1, U_2, \dots, U_k, \dots\}$$

is an infinite open cover of C. In particular, if $h \in C \cap W$ then $h = f_k$ for some k and thus $h \in U_k$, while if $x \in C \setminus W$ then $x \in X \setminus W$. On the other hand, no proper subcover of \mathcal{U} is a cover. This is because $\mathcal{U} \setminus \{U_k\}$ does not contain $f_k \in C$ and $\mathcal{U} \setminus \{X \setminus W\}$ does not contain $0 \in C$ (in particular). Thus C is not compact.