Notes

August 29, 2014

last time assigned gcd stuff and assigned to read results

gcd definition

a, b not both 0, notation gcd(a, b) = (a, b)

facts

1. gcd exists and is unique follows from assigned theorems.

example

$$\gcd(6, 14) = 2$$

2. the gcd of a and b is a linear combination of a and b. ie, there exist $m, n \in \mathbb{Z}$ such that (a, b) = ma + nb in fact gcd(a.b) is the smallest positive ineger that is a linear combination of a and b

$$\{ma + nb \mid m, n \in \mathbb{Z}\}\$$

euclidean algorithm

$$(a,b) = (|a|,|b|)$$

we may assume that $a \ge b \ge 0$. $a = bq_1 + r_1$.

claim

$$(a,b) = (b,r_1)$$

 $d_1 = (a,b), \quad d_2 = (b,r_1)$
 $d_1|a \to d_1|(bq_1 + r_1)$
 $d_1|b \to d_1|r_1$
 $\to d_1|d^2$ because $d_2 = (b,r_1)$

similarly show that d2|d1 hence d1=d2 now we see

$$a = bq_1 + r_1$$

$$b = rq_2 + r_2$$

 $r_1 = r_2q_3 + r_3$
:

 $r_n = \text{zero remainder because remainders are shrinking}$

so
$$(a,b) = (r_{n-1},0) = r_{n-1}$$

example

find (33, 9)

$$33 = 9 * 3 + 6$$

$$9 = 6 * 1 + 3$$

$$6 = 3 * 2 + 0$$

$$(33,9) = 33$$

$$= 9 - 1 * (33 - 3 * 9)$$

$$= 9 - 1 * 33 + 3 * 9$$

$$= 4 * 9 + (-1) * 33$$

can also use euclidean algorithm to generate linear combination from gcd

1.2 prime numbers

definition

p > 1 is prime if the only positive divisors of p are 1 and p p > 1 is prime if the only divisors of p are ± 1 and p

definition

we say that a and b are relatively prime if gcd(a, b) = 1

proposition

let $p > 1, p \in \mathbb{Z}$ then p is prime iff the following property holds: $a, b \in \mathbb{Z}$ and p|ab then p|a or p|b only true if p is prime, $4 \not| 6 \cdot 6$

proof

assume p is prime. assume p|ab, then (p,a)=1 or (p,a)=p. this is because the only divisor of p is p or 1. case 1, (p,a)=p. then p|a and we are done. case 2, (p,a)=1. then there exists $m,n\in\mathbb{Z}$ such that mp+na=1.

$$mp + na = 1$$

$$bmp + bna = b$$

$$p|ab \rightarrow p|abp|bmp$$

since p|bmp and p|bna therefore p|b conversely

assume $\alpha|p$ with $\alpha>0$. Nee to prove that $\alpha=1$ or $\alpha=p$ $\alpha|p\to p=\alpha\cdot\beta$ with $\beta\in\mathbb{Z}$ by the property satisfied $p|\alpha orp|\beta$. if $p|\alpha$ since $\alpha|p$ we have $\alpha=p$. if $p|\beta$, since $\beta|p$ we have $\beta=p$ if $\beta=p$ then $\alpha=1$