FUNDAMENTOS DE COMPUTACIÓN PRÁCTICO 3 NATURALES

- Ej. 1 (a) Defina la función pos:: N -> Bool que recibe un natural y decide si es positivo (> 0) o no.
 - (b) Defina la función par::N->Bool que recibe un natural y decide si es par o no.
 - (c) Defina la función impar::N->Bool que recibe un natural y decide si es impar o no, sin usar la función par.
 - (d) Defina la función doble::N->N que recibe un natural calcula su doble (sin funciones auxiliares).
 - (e) Defina la función triple:: N -> N que recibe un natural calcula su triple (sin funciones auxiliares).
 - (f) Demuestre que $(\forall n :: \mathbb{N})$ par (doble n) = True.
 - (g) Demuestre que $(\forall n : : N)$ par n = not (impar n), con la primera definición de impar.
 - (h) Demuestre que $(\forall n :: \mathbb{N})$ n < doble n.
 - (i) Demuestre que ($\forall n :: \mathbb{N}$) doble $n \leq \text{triple } n$.

Puede utilizar los lemas de < vistos en clase.

- Ej. 2 (a) Defina la función todos::N->(N->Bool) ->Bool, que recibe un natural n y un predicado p, y devuelve True para todos los números entre O y n se cumple que p es verdadero. Ejemplos: todos tres par = False todos cuatro (< cinco) = True</p>
 - (b) Defina la función contar::N->(N->Bool) ->N, que recibe un natural n y un predicado p, y computa la cantidad de números entre O y n para los cuales p es verdadero. Ejemplo: contar par (S(S(S O))) = S (S O)
 - (c) Demuestre que $(\forall n :: \mathbb{N})$ contar n pos = n.

- (d) Demuestre que: $(\forall n :: \mathbb{N}, \forall p :: \mathbb{N} \rightarrow Bool)$ contar $n p \leq S n$. Puede utilizar los lemas de \leq vistos en clase.
- Ej. 3 (a) Defina la función (==)::N ->N ->Bool, que recibe dos naturales y devuelve True si ambos son iguales.
 - (b) Defina la función (<)::N ->N ->Bool, que recibe dos naturales y devuelve True si el primero es menor que el segundo.
 - (c) Demuestre que (==) conmutativa, o sea: $(\forall m::N, \forall n::N)$ m == n = n == m.
- Ej. 4 (a) Defina la función (+)::N ->N, que calcula la suma de dos naturales.
 - (b) Demuestre que ($\forall n :: \mathbb{N}$) doble n = n + n.
 - (c) Demuestre que $(\forall m :: N, \forall n :: N)$ par (m+n) = par m == par n.
 - (d) Demuestre que la suma es asociativa y conmutativa.
- Ej. 5 (a) Defina la función (*)::N ->N, que calcula el producto de dos naturales.
 - (b) Demuestre que el producto es conmutativo.
 - (c) Demuestre que el producto distribuye sobre la suma, o sea: $(\forall m::N, \forall n::N, \forall k::N)$ (m + n) * k = (m * k) + (n * k).
 - (d) Demuestre que el producto es asociativo.
- Ej. 6 (a) Defina las función potencia (^)::N->N->N, que recibe un natural m y un natural n y devuelve el resultado de elevar m a la n (o sea, mⁿ).
 - (b) Demuestre que $(\forall m :: N, \forall n :: N, \forall k :: N)$ $m^(n+k) = m^n * m^k$.
 - (c) Demuestre que $(\forall m :: \mathbb{N}, \forall n :: \mathbb{N}, \forall k :: \mathbb{N})$ $(m^n)^k = m^(n*k)$.
- Ej. 7 (a) Defina la función $\mathtt{sumi}: \mathbb{N} \to \mathbb{N}$, que recibe un natural \mathtt{n} y calcula la sumatoria de todos los naturales menores o iguales que \mathtt{n} (o sea, $\sum_{i=0}^{\mathtt{n}} i$).
 - (b) Defina la función sumfacts::N->N, que recibe un natural n y calcula la sumatoria de los factoriales de todos los naturales menores o iguales que n (o sea, $\sum_{i=0}^{n} i!$).

- (c) Defina la función $sumfi::(N \to N) \to N \to N$, que recibe un natural n y una función f y computa la sumatoria de (f i) para i = 0, ... n $(\sum_{i=0}^{n} (f i))$.
- (d) Reescriba la función sumfacts utilizando sumfi (un renglón).
- (e) Defina la función sumpi::(N->Bool) ->N->N, que recibe un natural n y un predicado p y computa la sumatoria de todos los naturales menores o iguales que n para los cuales p es verdadero.
- (f) Demuestre que ($\forall n :: \mathbb{N}, \forall p :: \mathbb{N} \to \mathsf{Bool}$) sumpi n p \leq sumi n p.

Puede utilizar los lemas de \leq vistos en clase.

- Ej. 8 (a) Defina la función min:: N -> N que calcula el mínimo de dos números naturales.
 - (b) Defina la función max:: N -> N que calcula el máximo de dos números naturales.
 - (c) Demuestre que $(\forall n :: \mathbb{N})$ min n n = n.
 - (d) Demuestre que $(\forall m :: N, \forall n :: N)$ max m n = max n m.
 - (e) Demuestre que $(\forall m :: N, \forall n :: N)$ m \leq max n m.
 - (f) Demuestre que ($\forall m :: N, \forall n :: N$) min m n \leq max m n.
 - (g) Demuestre que $(\forall m :: N, \forall n :: N)$ min m (m+n) = m.

Puede utilizar los lemas de \leq vistos en clase.