Mars Rover Kata - OOP Track - The Brief

License: Attribution-NonCommercial-NoDerivatives 4.0 International

You are working in an Engineering Squad for the Melody Mars Mission, tasked with designing software to manage robots and cool vehicles for space exploration!

Your Task

Setting the Scene

You have been asked to create a program to move rovers around the surface of Mars!

The surface of Mars is represented by a Plateau, you can make the assumption that the Plateau is a square/rectangular grid for the purpose of this task.

Rovers navigate the Plateau so they can use their special cameras and robot arms to collect samples back to Planet Earth

Representation of a Rover's Position on the Plateau

The Plateau is divided into a grid. A Rover's position is represented by x and y co-ordinates and the letters N, S, W, E to represent North, South, West, East (the four cardinal compass points) respectively.

Example

0 0 N

This means the Rover is at the bottom-left corner facing in the North direction.

Instructing a Rover to Move Around the Plateau

To move a Rover around the Plateau, a string of letters is sent to a Rover.

Here are the letters and their resultant action:

Letter	Action
L	Spins the Rover 90 degrees <i>Left</i> without moving from the current coordinate point/
R	Spins the Rover 90 degrees <i>Right</i> without moving from the current coordinate point/
М	Moves the Rover forward by one grid point, maintaining the same heading (i.e. from where the Rover is facing (its orientation)).

N.B. Assume that the square directly North from (x, y) is (x, y+1).

Inputs into the Program

First Line of Input to the Program

The first line inputted into the program represents the upper-right coordinates of the Plateau.

5 5

This Plateau has maximum (x, y) co-ordinates of (5, 5).

N.B. Assume that the lower-left coordinates is (0, 0).

Subsequent Lines of Input into the Program - Input to Rovers

This represents the instructions to move the rovers.

Each rover receives two lines of input.

First Line of Input to a Rover

The Rover's position is represented by two integers representing the X and Y coordinates and a letter representing where the Rover is facing (its orientation).

1 2 N

Second Line of Input to a Rover

A string of letters representing the instructions to move the Rover around the Plateau.

Movement Rules

Rovers move sequentially, this means that the first Rover needs to finish moving first before the next one can move.

Output

For each Rover, the output represents its final position (final coordinates and where it is facing).

Example Test Case

Lines of Input to the Program:

55

12N

LMLMLMLMM

33E

MMRMMRMRRM

Expected Output:

13N

51E

Your Solution

Feel free to implement an approach that you feel comfortable with to receive input into your program e.g. feeding input values into unit tests; input via a console application; supplying input via a file etc.

We would like you to apply Test-Driven Development (TDD) to test-drive your solution.

We would like to see production-quality code, this means you have thought carefully about your code design and that your code is clean and well-tested.

We'd love to see good unit test coverage and all unit tests passing.

Top Tips

- Sketch / plan out your ideas first, we recommend starting off by modelling what you need using the Unified Modelling Language (UML).
- · Commit into your Github repository frequently and with descriptive commit messages.

- · Aim for production-quality code: well-designed, easy to extend, readable, and well-tested.
- · Write a descriptive README to document the key features of your solution, your assumptions, approaches and future thoughts.
- Note down future thoughts / considerations:
 - You can assume that the Plateau is rectangular, but be sure to have a think about how easily your program can be extended
 upon in the future to support a different shaped Plateau.
 - How might your Plateau support other vehicles and not just Rovers?
- Have fun with it! It's not every day you get to put a Rover on Mars, get creative and enjoy! Once you've finished the task, if you want to extend your solution with a visual interface, a programmable Rover, obstacles, aliens, go for it!

Please submit your initial thoughts on design - a UML class diagram, sketches, ideas - to the "Part 1" assignment by Sunday. You will receive feedback early next week to help guide your solution.

Please submit a github link to your completed solution to the "Part 2" assignment by the following Sunday.

This Mars Rover Kata brief was inspired by https://kata-log.rocks/mars-rover-kata.

License: Attribution-NonCommercial-NoDerivatives 4.0 International