Prejšnjič smo za $f: \mathbb{R} \to \mathbb{C}$ definirali supp $f = \overline{\{x \in \mathbb{R}: f(x) \neq 0\}}$

Gledali bomo zvezne funkcije f, katerih nosilci so kompletni (zaprti in omejeni). Množico takšnih funkcij označimo s $C_c(\mathbb{R})$.

Bodi $f \in C_c(\mathbb{R})$. Tedaj obstaja tak interval [a, b], da je zunaj tega intervala $f \equiv 0$ (direktna posledica kompletnosti nosilca f). Poljeg tega zaradi zveznosti funkcije velja:

$$\int_{-\infty}^{\infty} |f(x)| \mathrm{d}x = \int_{a}^{b} |f(x)| \mathrm{d}x < \infty$$

Definicija. Bodi $f \in C - c(\mathbb{R})$. L^1 -norma funkcije f je

$$||f||_1 = \int_{-\infty}^{\infty} |f(x)| \mathrm{d}x$$

Definiramo lahko tudi razdaljo med f in g: $d(f,g) = ||f-g||_1$. Množico $C_c(\mathbb{R})$ lahko tedaj obravnavamo kot metrični prostor (preverimo lahko, da je tudi vektorski prostor.)

Zdaj vzamemo zaporedje funkcij f_n , ki konvergira proti neki funkciji f. To pomeni, da za vsak $\varepsilon > 0$ obstaja n_0 da za $n \ge n_0$ velja $||f_n - f|| < \varepsilon$. Ni pa nujno, da je f v $C_c(\mathbb{R})$. Lahko imamo na primer funkcije, ki so definirane na vedno večjem intervalu, tako da bi morala biti f definirana na celotni množici \mathbb{R} .

Metrični prostor $C_c(\mathbb{R})$ želimo dopolniti glede na L^1 mero. To pomeni, da moramo vanj vključiti limite vseh zaporedij $f_n \in C_c$. Definiramo $L^1(\mathbb{R}) = \{f : \mathbb{R} \to \mathbb{C}; ||f||_1 c < \infty\}$

Definicija. Naj bo $f \in L^1(\mathbb{R})$. Fourierova transformiranka funkcije f je funkcija \hat{f} , ki je za neki $\xi \in \mathbb{R}$ definirana kot

$$\hat{f}(\xi) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} f(x) \cdot e^{-ix\xi} dx$$

Opomba.
$$|\hat{f}|_1 = \frac{1}{\sqrt{2\pi}} \left| \int_{-\infty}^{\infty} f(x) \cdot e^{-ix\xi} dx \right| \le \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} |f(x)| \cdot |e^{-ix\xi}| = \frac{1}{\sqrt{2\pi}} ||f||_1$$

Trditev. (osnovne lastnosti Fourierovih transformirank)

- 1. \hat{f} je zvezna, $|\hat{f}| \leq \frac{1}{\sqrt{2\pi}} ||f||_1$
- 2. Naj bo $t \in \mathbb{R}$, definiramo $e_t : \mathbb{R} \to \mathbb{C}$ s predpisom

$$e_t(x) = e^{itx}$$

Tedaj velja:

$$\widehat{f \cdot e_t}(\xi) = \widehat{f}(\xi - t)$$

3. Naj bo a > 0 in $f_a(x) = f(ax)$. Tedaj je

$$\widehat{f}_a(\xi) = \frac{1}{a}\widehat{f}\left(\frac{\xi}{a}\right)$$

4. Za neki $t \in \mathbb{R}$ definiramo $f_t = f(x - t)$. Tedaj je

$$\widehat{f}_t(\xi) = e^{-it\xi} \, \widehat{f}(\xi)$$

5. Bodi funkcija (id $\cdot f$): $x \mapsto xf(x)$ element množice $L^1(\mathbb{R})$. Tedaj je

$$\widehat{(\mathrm{id} \cdot f)}(\xi) = -\frac{1}{i} \hat{f}'(\xi)$$

6. Če je f zvezno odvedljiva in je $f' \in L^1(\mathbb{R})$, potem je

$$\widehat{f}'(\xi) = i\xi \widehat{f}(\xi)$$

7.
$$\alpha \widehat{f + \beta} g(\xi) = \alpha \widehat{f}(\xi) + \beta \widehat{g}(\xi)$$

Dokaz.

1. Zveznost dokažemo tako, da izrazimo razliko

$$|\hat{f}(\xi+h) - \hat{f}(\xi)| = \frac{1}{\sqrt{2\pi}} \left| \int_{-\infty}^{\infty} f(x)e^{-ix\xi} \left(e^{-ixh} - 1 \right) dx \right|$$

$$\leq \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} |f(x)| \left| e^{-ixh} - 1 \right| dx$$

Ker mora biti $\int_{-\infty}^{\infty} |f(x)| < \infty$, mora obstajati tak A>0, da je $\int_{|x|>A} |f(x)| \mathrm{d}x$ poljubno majhen.

Poleg tega je $\lim_{h\to 0} |e^{-ihx}-1|=0$, torej lahko izberemo tak h, da je $|e^{-ihx}-1|<\varepsilon$, vsekakor pa je $|e^{-ihx}-1|\le |e^{ihx}|+|1|=2$. Sledi:

$$\frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} |f(x)| \left| e^{-ixh} - 1 \right| \mathrm{d}x \le \frac{1}{\sqrt{2\pi}} \int_{|x| > A} |f(x)| \cdot 2\mathrm{d}x + \frac{\varepsilon}{\sqrt{2\pi}} \int_{-A}^{A} |f(x)| \mathrm{d}x$$

Oba člena lahko naredimo poljubno majhna. Prvega z izbiro A, drugega pa z izbiro h.

2. Po definiciji:

$$\widehat{f \cdot e_t}(\xi) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} f(x)e^{itx}e^{-ix\xi} dx = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} f(x)e^{-i(x-t)\xi} dx$$

Vemo, da je dx = d(x - t).

3. Spet po definiciji:

$$\widehat{f}_a(\xi) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} f(ax)e^{-iax\xi} dx$$

Uvedemo novo spremenljivko t = ax, dt = adx:

$$= \frac{1}{a} \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} f(t)e^{-it\xi} dt = \frac{1}{a} \widehat{f}\left(\frac{\xi}{a}\right)$$

- 4. Podobno.
- 5. Sledila bo iz naslednje trditve:

6.

$$\widehat{f}'(\xi) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} f'(x)e^{-ix\xi} dx = \dots \text{ per partes } \dots = i\xi \cdot \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} f(x)e^{-ix\xi} dx = i\xi \widehat{f}(\xi)$$

7. Integral je linearen.

Opomba. Za $f \in L^1(\mathbb{R})$ je $\hat{f} \in C(\mathbb{R})$. Lahko definiramo preslikavo $\Lambda \colon L^1(\mathbb{R}) \to C(\mathbb{R})$, ki je zaradi lastnosti 7. linearna preslikava - pravimo ji Fourierova transformacija.

Konvolucija funkcij. Naj bosta $f, g \in L^1(\mathbb{R})$. kovolucija f in g je funkcija (f * g), definirana kot:

$$(f * g)(x) = \int_{-\infty}^{\infty} f(x - t)g(x)dt$$

2

Trditev. Lastnosti konvolucije. Naj bodo $f, g, h \in L^1(\mathbb{R})$ in α, β skalarja. Velja:

- 1. f * g = g * f
- 2. (f * g) * h = f * (g * h)
- 3. $(\alpha f + \beta g) * h = \alpha f * h + \beta f * h$
- 4. $f * g \in L^1(\mathbb{R}), ||f * g|| \le ||f|| \cdot ||g||$

Dokaz. Večinoma sledi iz lastnosti integrala.

Izrek.
$$\widehat{f*g} = \sqrt{2\pi}\widehat{f}\cdot\widehat{g}$$