Modulus of a Counter

Binary Ripple Counter – Operational Basics

- The operation of a binary ripple counter can be best explained with the help of a typical counter of this type.
- Figure shows a four-bit ripple counter implemented with negative edge-triggered J-*K* flip-flops wired as toggle flip-flops.

- The output of the first flip-flop feeds the clock input of the second, and the output of the second flip-flop feeds the clock input of the third, the output of which in turn feeds the clock input of the fourth flip-flop.
- The outputs of the four flip-flops are designated as Q0 (LSB flip-flop), Q1, Q2 and Q3 (MSB flip-flop).

UP/DOWN Counters

- Counters are also available in integrated circuit form as UP/DOWN counters, which can be made to operate as either UP or DOWN counters.
- UP counter is one that counts upwards or in the forward direction by one LSB every time it is clocked.
- A four-bit binary UP counter will count as 0000, 0001, 0010, 0011, 0100, 0101, 0110, 0111, 1000, 1001, 1010, 1011, 1100, 1101, 1110, 1111, 0000, 0001, and so on.
- DOWN counter counts in the reverse direction or downwards by one LSB every time it is clocked. The four-bit binary DOWN counter will count as 0000, 1111, 1110, 1101, 1100, 1011, 1010, 1001, 1000, 0111, 0110, 0101, 0100, 0011, 0010, 0001, 0000, 1111

- shows a three-bit binary UP/DOWN counter. This is only one possible logic arrangement. As we can see, the counter counts upwards when UP control is logic '1' and DOWN Control is logic '0'.
- In this case the clock input of each flip-flop other than the LSB flip-flop is fed from the normal output of the immediately preceding flip-flop. The counter counts downwards when the UP control input is logic '0' and DOWN control is logic '1'.

BCD Counter: State Diagram

Qn	Qn+1	J	K
0	0	0	X
0	1	1	Х
1	0	Х	1
1	1	Х	0

Table 11.12 Example 11.9.

		uts	Inpu			Next state			te	Present state		
I_A K_A	J_A	K_B	J_B	K_C	J_C	A	В	C	A	В	С	
0 X	0	X	1	X	0	0	1	0	0	0	0	
X 1	X	X	0	X	0	0	0	0	1	0	0	
1 X	1	1	X	X	1	1	0	1	0	1	0	
X 1	X	1	X	X	0	0	0	0	1	1	0	
0 X	0	X	0	1	X	0	0	0	0	0	1	
X 1	X	X	1	0	X	0	1	1	1	0	1	
0 X	0	1	X	1	X	0	0	0	0	1	1	
X 1	X	1	X	1	X	0	0	0	1	1	1	

Solution

- The number of flip-flops required is three.
- Table 11.12 shows the desired circuit excitation table.
- The Karnaugh maps for J_A , K_A , J_B , K_B , J_C and K_C are shown in Figs 11.30(a) to (f) respectively.
- The simplified Boolean expressions are as follows:

$$J_A = B.\overline{C}$$

$$K_A = 1$$

	A	Α						
СĒ	X	1						
ĒВ	Х	1						
СВ	Х	1						
CB	X	1						
	(b)							

$$J_B = A.C + \overline{A}.\overline{C}$$

Example

Qn	Qn +1	J	K
0	0	0	Х
0	1	1	X
1	0	X	1
1	1	X	0

P.S			N.S		
Q2	Q1	Q0	Q2	Q1	Q0
0	0	1	0	1	0
0	1	0	1	0	1
1	0	1	1	1	1
1	1	1	0	0	1

J _{Q2}	K _{Q2}
0	Х
1	Х
Х	0
Х	1

J Q1	K _{Q1}
1	X
X	1
1	X
V	1

J Q0	K _{Q0}
X	1
1	X
X	0
X	0

P.S			N.S								
Q2	Q1	Q0	Q2	Q1	Q0	J _{Q2}	K _{Q2}	J _{Q1}	K _{Q1}	J Q0	K _{Q0}
0	0	1	0	1	0	0	Х	1	Х	X	1
0	1	0	1	0	1	1	Х	X	1	1	Х
1	0	1	1	1	1	Х	0	1	Х	X	0
1	1	1	0	0	1	X	1	X	1	X	0

Step 4: drown the K map

For K0 = Q'2

Step 5

J0 =1,
$$K0 = Q'2$$

$$J1 = 1, K1 = 1$$

$$J2 = Q1, K2 = Q1$$

Step 6: drown the circuit diagram