

COPENHAGEN BUSINESS ACADEMY

Multivariate and logistic regression

Jens Egholm Pedersen <jeep@cphbusiness.dk>

Recap

- Populations
 - Samples
 - How do we measure the difference?
- Distributions
 - Probability that the sample is distributed like the population
- Regression functions
 - Describes how the mean of the response variable changes
- Linear regression
 - Predict values based on the formula: y = ax + b
- Testing/training data

Goal of this block

- Have a basic understanding and knowledge of various terms, models and tests in statistics.
- Compute basic statistics on data using the Python's scientific stack and the Sklearn library.
- Develop an informed guess of when to choose a certain model to answer a concrete type of question and apply technology appropriately.

See also: BI plan

Goal for today

- Hand-in debriefing
- Dimensionality
- Multivariate linear regression
- Cross-validation
- Logistic regression
- Polynomial regression

See also: BI plan

Types of machine learning

- Is it trained by a human
 - Supervised / unsupervised
- Can they learn on the fly?
 - Online learning / offline (batch) learning
- Do they include new data?
 - Instance-based / model-based
- Today: supervised, offline model-learning

See also: Géron: Hands-on machine learning (book)

Linear regression

- Training a model
 - -y = ax + b
 - For a given x, what is y?
 - How long does it on average take to get 1000 points?
- What kind of machine learning?
 - Supervised, offline, model-based

See also: BI plan

Linear regression

What if there are multiple factors?

- How can we expand our model?
 - What is "one factor" in the model?
- $y = ax_1 + bx_2 + c$

See also: BI plan

Multivariate regression

- Multivariate regression
 - No longer simply one input value
- $y = ax_1 + bx_2 + c$

- What about our error models?
 - MAE?
 - MSE?
 - Pearson's r?

See also: Python for multivariate analysis

Multivariate regression

- Multivariate regression
 - No longer simply one input value

- Linear regression in sklearn
 - model = LinearRegression()
 - model.fit(.. ? ..)
 - model.predict (.. ? ..)

Hands-on: Wine

How do you get good wine?

 https://github.com/datsoftlyngby/sof t2017fall-business-intelligenceteaching-material

Array shapes

- What do you call an array with one dimension?
- What do you call an array with two dimensions?
- What do you call an array with three or more dimensions?

```
numpy.shape
np.random.sample(10)
np.random.sample(10).shape // (10, )
np.random.sample((10, 10)).shape // (10, 10)
```

Array zipping

- numpy.stack
 - Join a sequence of arrays along a new axis.
- Parameters:
 - arrays : sequence of array_like
 - axis: int, optional
 - The axis in the result array along which the input arrays are stacked.
- In a linear regression, how many input dimensions do we have?
 - How can we 'stack' two 1-d arrays into one 2-d array?
- numpy.stack((x, y), axis = 1)

Multivariate regression

- Multivariate regression
 - Multiple input variables
- What other problems could this help you solve?

 How do you verify that your model improves your ability to predict?

The curse of dimensionality

You have a unit square

Average distance between two random points

• In 2-d: .52

• In 3-d: .66

• In 1'000'000-d: 408.25

1 x 1

The curse of dimensionality

- Multivariate regression
 - Input values in multiple dimensions
 - I.e. We have to work with higher dimensionality

- My advice: don't try to visualise it
 - I know it's intuitive, but it won't help you

- Either:
 - Think about causality: how do they "bind"?
 - Reduce the dimensionality (sometimes necessary)

Dimensionality reduction

- Reducing dimensionality == compression
 - You will loose data

- Most common approaches:
 - Manifold (we won't touch this)
 - Principal component analysis

How can you simplify this?

PCA is

- 1) Finding a hyperplane
- 2) Project data onto that hyperplane

• PCA is

- 1) Finding a hyperplane
- 2) Project data onto that hyperplane

• PCA is

- 1) Finding a hyperplane
- 2) Project data onto that hyperplane

PCA in sklearn

- PCA is
 - Finding a hyperplane model = PCA() model.fit(X)
 - Project data onto that hyperplane model.transform(X)
- Not so fast.... What could be a problem here?
 - PCA finds the most significant dimensions (principal components)
 - What if one dimension is far more "impactful" than another?

Data standardisation

PCA assumes that all the data has the same variance

Problem: data rarely has the same variance

Solution: scale it to the same mean and std.dev

sklearn.preprocessing.scale()

Hands-on: Dimensionality

How do you handle high dimensionality?

 https://github.com/datsoftlyngby/sof t2017fall-business-intelligenceteaching-material

PCA explained

- PCA is
 - 1) Finding a hyperplane
 - 2) Project data onto that hyperplane

PCA explained

- PCA is
 - 1) Finding a hyperplane
 - 2) Project data onto that hyperplane

PCA gives you a matrix (W) that can project data

$$X_{projected} = X \cdot W_d$$

PCA explained

- PCA is
 - 1) Finding a hyperplane
 - 2) Project data onto that hyperplane

PCA gives you a matrix (W) that can project data

- sklearn.components_
- sklearn.explained_variance_ratio_

Under- and overfitting

Polynomial example

- Why is it bad?
 - How can you measure that?
 - How can you avoid that?
- One solution: "hide" data from the model

See also: Sklearn cross-validation

Cross-validation

- Training data versus testing data
 - Normally 80/20 split

Model training → model prediction

 Why not construct many models and switch between training/testing data?

See also: Sklearn cross-validation

Cross-validation

- 1) Split data into *n* "folds"
- 2) Choose one fold for testing and the rest for training
- 3) Repeat *n* times

Called: k-fold cross validation

• Solves overfitting, because data is "hidden"

See also: Sklearn cross-validation

K-fold cross-validation

- K-fold cross-valiation
 - Normally 10 folds

Still need one thing: How does the models compare?

from sklearn.model_selection import cross_val_score

See also: Example: Cross validation pipeline

So far: numerical predictions

- For wine quality of x, what is y?
- For income rate of x, what is y?

- What if we don't want to predict a number?
 - What is the gender (male/female/other)
 - Medical: what causes death?

See also: Example: Cross validation pipeline

Logistic regression

- Linear regression model:
 - y = ax + b
- Logistic regression model:

$$y = \frac{1}{1 + e^{-x}}$$

See also: Example: Cross validation pipeline

Logistic regression

- Linear regression model:
 - y = ax + b
- Logistic regression model:

$$y = \frac{1}{1 + e^{-x}}$$

See also: Example: logistic regression

Logistic regression errors

- We are no longer measuring distance to "actual"
 - Instead: right or wrongly classified?
- Do we have the same error metrics as before?
 - Nope
- For now use accuracy
 - sklearn.metrics.accuracy_score
- We'll talk more about that next week

Logistic regression in sklearn

- Same as with linear regression
 - Supervised, offline, model learning
- 1) Train the model
- 2) Predict

Only difference: categorical y value

from sklearn.linear_model import LogisticRegression

Next hand-in: Assignment 6

Deadline: 20th of November 23:59:59

- Multivariate linear regression:
 - Same hackernews data set
 - Modified to contain number of posts submitted

- Diagnosis of breast cancer
 - Logistic regression (benign/malign)

Next hand-in: Assignment 6

- Deadline: 20th of November 23:59:59
- The hand-in (on Moodle) should be a link to a GitHub release containing a single file with the code and written text for the assignment parts

- This can either be a .ipynb, .py, .pdf or .md file
- The file must be clearly identifiable. Please name it accordingly. (for instance report.pdf)