Rolle's Theorem, Mean Value Theorem

- 1. Let f be the function given by $f(x) = \sin(\pi x)$. What are the values of c that satisfy Rolle's Theorem on the closed interval [0,2]?
- 2. Let f be the function given by $f(x) = -x^3 + 3x + 2$. What are the values of c that satisfy the Mean Value Theorem on the closed interval [0,3]?
- The figure shows the graph of f. On the closed interval [a, b], how many values of c satisfy the conclusion of the Mean Value Theorem

- 4. Let f be the function given by $f(x) = \frac{x}{x+2}$. What are the values of c that satisfy the Mean Value Theorem on the closed interval [-1,2]?
 - (A) -4 only
- (B) 0 only
- (C) 0 and $\frac{3}{2}$ (D) -4 and 0

- 5. The continuous function f is defined on the interval $-3 \le x \le 6$. The graph of f consists of two quarter circles and two line segments, as shown in the figure above. Which of the following statements must be true?
 - I. The average rate of change of f on the interval $-3 \le x \le 6$ is $-\frac{1}{6}$.
 - II. There is a point c on the interval -3 < x < 6, for which f'(c) is equal to the average rate of change of f on the interval $-3 \le x \le 6$.
 - III. If h is the function given by $h(x) = f(\frac{1}{2}x)$, then $h'(6) = -\frac{1}{2}$.
 - (A) I and II only
 - (B) I and III only
 - (C) II and III only
 - (D) I, II, and III

Extreme Values, Critical Points, Increasing/Decreasing Intervals, First Derivative Test

- 1. At what values of x does $f(x) = (x-1)^3(3-x)$ have the absolute maximum?
 - (A) 1
- (B) $\frac{3}{2}$
- (C) 2
- (D) $\frac{5}{2}$
- 2. At what values of x does $f(x) = x 2x^{2/3}$ have a relative minimum?
 - (A) $\frac{64}{27}$
- (B) $\frac{16}{9}$ (C) $\frac{4}{3}$
- (D) 2

- 3. What is the minimum value of $f(x) = x^2 \ln x$?
 - (A) -e
 - (B) $-\frac{1}{2e}$
 - (C) $-\frac{1}{a}$
 - (D) $-\frac{1}{\sqrt{e}}$

- 4. The graph of a function f is shown above. Which of the following statements about f are true?
 - I. $\lim_{x \to a} f(x)$ exists.
 - II. x = a is the domain of f.
 - III. f has a relative minimum at x = a.
 - (A) I only
 - (B) I and II only
 - (C) I and III only
 - (D) I, II, and III
- A polynomial f(x) has a relative minimum at (-4,2), a relative maximum at (-1,5), a relative minimum at (3,-3) and no other critical points. How many zeros does f(x) have?
 - (A) one
- (B) two
- (C) three
- (D) four
- At x = 2, which of the following is true of the function f defined by $f(x) = x^2 e^{-x}$?
 - (A) f has a relative maximum.
 - (B) f has a relative minimum.
 - (C) f is increasing.
 - (D) f is decreasing.

The graph of f', the derivative of f, is shown in the figure above. Which of the following describes all relative extrema of f on the open interval (a,b)?

- (A) One relative maximum and two relative minima
- (B) Two relative maxima and one relative minimum
- (C) Two relative maxima and two relative minima
- (D) Three relative maxima and two relative minim
- 8. The first derivative of a function f is given by $f'(x) = \frac{3\sin(2x)}{x^2}$. How many critical values does f have on the open interval (0,10)?
 - (A) four
- (B) five
- (C) six
- (D) seven
- 9. The function f is continuous on the closed interval [-1,5] and differentiable on the open interval (-1,5). If f(-1) = 4 and f(5) = -2, which of the following statements could be false?
 - (A) There exist c, on [-1,5], such that $f(c) \le f(x)$ for all x on the closed interval [-1,5].
 - (B) There exist c, on (-1,5), such that f(c) = 0.
 - (C) There exist c, on (-1,5), such that f'(c) = 0.
 - (D) There exist c, on (-1,5), such that f(c) = 2.

x	-4	-3	-2	-1	.0	.1	2	3	.4	5
f'(x)	-1	-2	.0	.1	2	.1	.0	-2	-3	-1

10.

The derivative, f', of a function f is continuous and has exactly two zeros on [-4,5]. Selected values of f'(x) are given in the table above. On which of the following intervals is f increasing?

- (A) $-3 \le x \le 0$ or $4 \le x \le 5$
- (B) $-2 \le x \le 0$ or $4 \le x \le 5$
- (C) $-3 \le x \le 2$ only
- (D) $-2 \le x \le 2$ only

The figure above shows the graph of f', the derivative of the function f, for $-4 \le x \le 7$. The graph of f' has horizontal tangent lines at x = -1, x = 3, and x = 5.

(a) Sketch the graph of f(x). Find all critical values for -4 < x < 7.

(b) Find all values of x, for $-4 \le x \le 7$, at which f attains a relative minimum.

(c) Find all values of x , for $-4 \le x \le 7$, at which f attains a relative maximum.

(d) For $-4 \le x \le 7$, what is the absolute maximum value of f(x).

Second Derivative Test, Concavity, P.O.I

- 1. The graph of $y = x^4 2x^3$ has a point of inflection at
 - (A) (0,0) only
 - (B) (0,0) and (1,-1)
 - (C) (1,-1) only
 - (D) (0,0) and $(\frac{3}{2}, -\frac{27}{16})$
- 2. If the graph of $y = ax^3 6x^2 + bx 4$ has a point of inflection at (2,-2), what is the value of a+b?
 - (A) -2
- (B) 3
- (C) 6
- (D) 10
- 3. At what value of x does the graph of $f(x) = \sqrt{x} + \frac{1}{\sqrt{x}}$ have a point of inflection?
 - (A) $\frac{1}{2}$
- (B) 1
- (C) 3
- (D) $\frac{7}{2}$

- 4. The graph of $y = 3x^5 40x^3 21x$ is concave up for
 - (A) x < 0
 - (B) x > 2
 - (C) x < 0 or 0 < x < 2
 - (D) -2 < x < 0 or x > 2
- 5. Let f be a twice differentiable function such that f(1) = 7 and f(3) = 12. If f'(x) > 0 and f''(x) < 0 for all real numbers x, which of the following is a possible value for f(5)?
 - (A) 16
- (B) 17
- (C) 18
- (D) 19

- 6. The second derivative of the function f is given by $f''(x) = x(x+a)(x-e)^2$ and the graph of f'' is shown above. For what values of x does the graph of f have a point of inflection?
 - (A) b and c
- (B) b, c and e
- (C) b, c and d
- (D) a and 0
- 7. The first derivative of the function f is given by $f'(x) = (x^3 + 2) e^x$. What is the x-coordinate of the inflection point of the graph of f?
 - (A) -3.196
- (B) -1.260
- (C) -1
- (D) 0

HW -- Analytical Application of Differentiation

8. Let f be a twice differentiable function with f'(x) > 0 and f''(x) > 0 for all x, in the closed interval [2,8]. Which of the following could be a table of values for f?

(A)	x	f(x)
	2	-1
	4	3
	6	6
	8	8

(B)	х	f(x)
	2	-1
	4	2
	6	5
	8	8

(C)	x	f(x)
	2	-1
	4	1
	6	4
	8	8

(D)	x	f(x)
	2	8
	4	4
	6	1
	8	-1

- 9. (Calculator) Let f be the function given by $f(x) = 3\sin(\frac{2x}{3}) 4\cos(\frac{3x}{4})$. For $0 \le x \le 7$, f is increasing most rapidly when x =
 - (A) 0.823
- (B) 1.424
- (C) 1.571
- (D) 3.206

- 10. The graph of a twice differentiable function f is shown in the figure above. Which of the following is true?
 - (A) f''(2) < f(2) < f'(2)
 - (B) f'(2) < f''(2) < f(2)
 - (C) f'(2) < f(2) < f''(2)
 - (D) f(2) < f'(2) < f''(2)

- 11. At which of the five points on the graph in the figure above is $\frac{dy}{dx} > 0$ and $\frac{d^2y}{dx^2} > 0$?
 - (A) A
- (B) B
- (C) C
- (D) D

- 12. The graph of f', the derivative of function f, is shown above. If f is a twice differentiable function, which of the following statements must be true?
 - I. f(c) > f(a)
 - II. The graph of f is concave up on the interval b < x < c.
 - III. f has a relative minimum at x = c.
 - (A) I only
- (B) II only
- (C) III only
- (D) II and III only

The figure above shows the graph of f', the derivative of the function f, on the closed interval [-3,7]. The graph of f' has horizontal tangent lines at x=-1, x=1, and x=4. The function f is twice differentiable and $f(-2)=\frac{1}{2}$.

- (a) Find the x-coordinates of each of the points of inflection of the graph of f. Justify your answer.
- (b) At what value of x does f attain its absolute minimum value on the closed interval [-3,7].
- (c) Let h be the function defined by $h(x) = x^2 f(x)$. Find an equation for the line tangent to the graph of h at x = -2.

- 14. Let f be a twice differentiable function with f(1) = -1, f'(1) = 2, and f''(1) = 0. Let g be a function whose derivative is given by $g'(x) = x^2 \left[2f(x) + f'(x) \right]$ for all x.
 - (a) Write an equation for the line tangent to the graph of f at x = 1.
 - (b) Does the graph of f have a point of inflection when x = 1? Explain.
 - (c) Given that g(1) = 3, write an equation for the line tangent to the graph of g at x = 1.
 - (d) Show that $g''(x) = 4x f(x) + 2x(x+1)f'(x) + x^2 f''(x)$. Does g have a local maximum or minimum at x = 1? Explain your reasoning.

- 15. The figure above shows the graph of f', the derivative of a function f. The domain of f is the set of all real numbers x such that $0 \le x \le 8$.
 - (a) For what values of x does the graph of f have a horizontal tangent?
 - (b) On what intervals is f increasing?
 - (c) On what intervals is f concave upward?
 - (d) For what values of x does the graph of f have a relative maximum?
 - (e) Find the x-coordinate of each inflection point on the graph of $\,f\,$.

x	-1	-1 < x < 0	0	0 < x < 1	1	1 < x < 2	2	2 < x < 3
f(x)	1	+	0	-	-1	-	0	+
f'(x)	-4	-	0	-	DNE	+	1	+
f''(x)	2	+	0	-	DNE	-	0	+

Let f be a function that is continuous on the interval $-1 \le x < 3$. The function is twice differentiable except at x = 1. The function f and its derivatives have the properties indicated in the table above.

- (a) For -1 < x < 3, find all values of x at which f has a relative extrema. Determine whether f has a relative maximum or a relative minimum at each of these values. Justify your answer.
- (b) On the axis provided, sketch the graph of a function that has all the given characteristics of f.

- (c) Let h be the function defined by h'(x) = f(x) on the open interval -1 < x < 3. For -1 < x < 3, find all values of x at which h has a relative extremum. Determine whether h has a relative maximum or a relative minimum at each of these values. Justify your answer.
- (d) For the function h, find all values of x, for -1 < x < 3, at which h has a point of inflection. Justify your answer.

- > Sketch the graph of a function
- 1. Sketch a possible f(x) with the following characteristics.
- a. f'(x) > 0 for x > 2, f'(x) = 0 for $x \le 2$, f'' > 0 for x > 2, f(2) = 1

b. f'(x) > 0 for x > -1, f'(x) < 0 for x < -1, f'' < 0 for $x \ne 1$, f(-1) = -2

2. You are given a graph of f'(x). Sketch a possible graph of f(x).

b.

c.

d.

3. If f is a function such that f' > 0 for a < x < c, f'' < 0 for a < x < b, and f'' > 0 for b < x < c which of the following could be the graph of f?

(A)

- The graph of $f(x) = xe^{-x^2}$ is symmetric about which of the following
 - I. The x-axis
 - II. The y-axis
 - III. The origin
 - (A) I only
- (B) II only
- (C) III only
- (D) II and III only
- 5. Let f be the function given by $f(x) = \frac{-3x^2}{\sqrt{3x^4 + 1}}$. Which of the following is the equation of horizontal asymptote of the graph of f?
 - (A) y = -3
- (B) $y = -\sqrt{3}$ (C) $y = \sqrt{3}$ (D) y = 3
- 6. Let f be a function that is continuous on [a, c], such that the derivative of function f has the properties indicated on the table below. Which of the following could be the graph of f?

x	a < x < b	b	b < x < 0	0	0 < x < c
f'(x)	-	.0	+	3	+
f''(x)	+	+	+	0	-

Three graphs labeled I, II, and III are shown above. They are the graphs of f, f', and f''. Which of the following correctly identifies each of the three graphs?

- III
- III
- (C) III II
- (D) I III III

The graph of f is shown in the figure above. Which of the following could be the graph of f'?

9. Sketch the graph of $y = e^x(x-2)^3$.

10. Sketch the graph of $y = -3x^5 + 5x^3$ using the Second Derivative Test.

➢ L'Hospital's Rule

$$1. \quad \lim_{x \to -3} \left(\frac{x+3}{\sqrt{x^2-5}-2} \right)$$

2.
$$\lim_{x \to -2} \left(\frac{x^3 + x^2 - 8x - 12}{x^3 + 8x^2 + 20} \right)$$

3.
$$\lim_{x \to 1} \left(\frac{5x^4 - 4x^2 - 1}{10 - x - 9x^2} \right)$$

4.
$$\lim_{x\to 2} \left(\frac{3x^2 - 7x + 2}{x - 2} \right)$$

$$5. \quad \lim_{x \to 0} \frac{e^x - 1 - x}{x^2}$$

6.
$$\lim_{x \to 0} \frac{\sin^{-1} x}{x}$$

7.
$$\lim_{x \to 0} \left(\frac{1}{\tan} - \frac{1}{x} \right)$$

8.
$$\lim_{x \to 1^{-}} \left(\frac{2}{x^2 - 1} - \frac{x}{x - 1} \right)$$

$$9. \quad \lim_{x \to 0^+} (\tan x)^x$$

10.
$$\lim_{\theta \to \pi} \frac{\sin}{\theta - \pi}$$

11.
$$\lim_{x \to 1} \left(\frac{\ln x - x + 1}{e^x - ex} \right)$$

$$12. \lim_{x \to \infty} (x)^{\frac{1}{x}}$$

13.
$$\lim_{x \to \infty} \left(\frac{1 - 4x - 5x^2}{3x^2 - x - 4} \right)$$

$$14. \lim_{x \to 0} \frac{e^x - 1}{\sin x}$$

15. Use L'Hospital's Rule to find the exact value of $\lim_{x\to\infty} x[\ln(x+3) - \ln x]$. Show the work that leads to your answer.