Advanced Financial Models

October 8, 2018

CONTENTS	2
Contents	
0 Introduction	3
1 Discrete time models	4

3

0 Introduction

 $www.staslab.cam.ac.uk/\ mike/AFM/$ for course material. However lecture notes only come after lectures, so taking notes is still necessary..

m.tehranchi@statslab.cam.ac.uk

Assumptions for this course:

No dividends, zero tick size (continuous), no transaction costs, no short-selling constraints, infinitely divisible assets, no bid-ask spread, infinite market depth, agents have preferences for expected utility.

1 Discrete time models

We'll assume there are n assets with price P_t^i at time t for asset i. Apparently P_t^i is a random variable on some probability space $(\Omega, \mathcal{F}, \mathbb{P})$.

We'll use the notation $P=(P_t^1,...,P_t^n)_{t\geq 0}$ which is a *n*-dimensional stochastic process.

Information available at time t is modelled by a σ -algebra $\mathcal{F}_t \subseteq \mathcal{F}$.

The assumption will be $\mathcal{F}_s \subseteq \mathcal{F}_t$ for $s \leq t$ (in other words, \mathcal{F} is a filtration):

Definition. (Filtration)

A Filtration is a collection of σ -algebra $(\mathcal{F}_t)_{t\geq 0}$ such that $\mathcal{F}_s\subseteq \mathcal{F}_t$ for $s\leq t$.

We'll assume that \mathcal{F}_0 is trivial, i.e. if A is \mathcal{F}_0 measure then $\mathbb{P} = 0$ or 1. As a result $P_0^1, ..., P_0^n$ are constants.

We assume that $(P_t)_{t\geq 0}$ is adapted to the filtration, i.e. P_t is \mathcal{F}_t -measurable for all $t\geq 0$. Usually we assume the filtration is generated by P itself (so all the information is in the price).

Let c_t be the amount consumed at time t which will be a \mathcal{F}_t -measurable scalar, $H_t = (H_t^1, ..., H_t^n)$ be the vector of portfolio weights, so H_t^i is the number of shares held at (t-1,t] (remember we are in discrete time), which will be \mathcal{F}_{t-1} -measurable. $(c_t)_{t\geq 0}$ is adapted $(\mathcal{F}_t$ -measurable), $(H_t)_{t\geq 1}$ is predictable/previsible $(\mathcal{F}_{t-1}$ -measurable, n-dimensional.

Definition. The process (c, H) is self-financing if $H_t \cdot P_t = c_t + H_{t+1} \cdot P_t$ for all $t \ge 1$.

For example, X_0 be the initial wealth, $X_0 - c_0$ is the post-consumption wealth $(= H_1 \cdot P_0)$, $X_1 = H_1 \cdot P_1$ is the pre-consumption wealth at time 1, $X_1 - c_1$ is the post consumption wealth (which is $H_2 \cdot P_1$. In other words, at any specific time, consumption takes place and then price updates.

Background assumption on behaviour of an agent:

Say c^2 is preffered to c^1 iff $\mathbb{E}U(c_0^1, c_1^1, ...) < \mathbb{E}U(c_0^2, c_1^2, ...)$ where U is some investor utility function, which is increasing in all c_i , concave (so risk-avert)

Definition. An arbitrage is a self-financing investment-consumption strategy (c, H) such that there exists a non-random time T > 0 s.t. $c_0 = -H_1 \cdot P_0$, $c_t = (H_t - H_{t+1}) \cdot P_t$ for $1 \le t \le T - 1$, and $c_T = H_T \cdot P_T$ (in words, with initial wealth $X_0 = 0$ and post-consumption wealth at $T(X_T - C_T = 0)$, that $\mathbb{P}(c_t \ge 0)$ for all $0 \le t \le T$ = 1, and $\mathbb{P}(c_t > 0)$ for some $0 \le t \le T$ > 0.

Suppose (c^1, H^1) is self-financing with initial wealth X_0 , $(c^2, H^2) = (c^1, H^1) + (c, H)$, where (c, H) is an arbitrage. Then c^2 is preferred to c^1 .

The inverstor who believes there is an arbitrage would have no optimal investment-consumption policy.

Even further background assumption: the market is in equillibrium (supply = demand).

Definition. Given the market model, a martingale deflator is positive adapted process $(Y_t)_{t\geq 0}$ such that $(Y_t\cdot P_t)_{t\geq 0}$ is a martingale.

Theorem. (First fundamental theorem of asset pricing)
The market has no arbitrage if and only if there exists a martingale deflator.

Definition. Given an $(\Omega, \mathcal{F}, \mathbb{P})$ -integrable X ($\mathbb{E}|X| < \infty$), and $\mathcal{G} \subseteq \mathcal{F}$) a sub- σ -algebra of \mathcal{F} , a conditional expectation of X given \mathcal{G} is an integrable Y that is \mathcal{G} -measurable and such that $\mathbb{E}(X1_G) = \mathbb{E}(Y1_G)$ for all $G \in \mathcal{G}$.

Theorem. The conditional expectations exist and are unique in the sense that, if Y^1, Y^2 are both conditional expectations, then $Y^1 = Y^2$ almost surely.

We'll use the notation $Y = \mathbb{E}(X|\mathcal{G})$.

Example. Let $(G_n)_n$ be a partition of Ω , $\mathcal{G} = \sigma(G_n)$. Then $\mathbb{E}(X|\mathcal{G})(\omega) = \frac{\mathbb{E}(X1_{G_n})}{\mathbb{P}(G_n)} = \mathbb{E}(X|G_n)$ if $\omega \in G_n$ and $\mathbb{P}(G_n > 0)$, or anything else if $\mathbb{P}(G_n) = 0$ is a valid conditional expectation.