Dynamic modeling of Natural Gas Processing Facilities

Luke Hanzon – BP

Contents

- Overview
 - BP Alaska
 - Modeling challenges
 - gPROMS based assessment
- Applications and benefits
- Future work

Overview

BP Alaska (BPXA) overview

Crude oil and gas received in separation centers

Gas

- Compressed, dehydrated
- Transported to Central Gas Facility (CGF)
- Natural Gas Liquids (NGLs) recovered

Dry gas

- Central Compression Plant (CCP)
- Reinjection
- Fuel gas

Modeling challenges

(Dynamic) modeling

- Critical facility operational support tool
 - Efficient operation of facility
 - Safe utilization of flare
- Connectivity of facilities
 - Events in one facility may impact others

Historical challenges

- Different tools
- Non commercial tools
- Limitations of tools
 - Speed, modeling basis (assumptions), applicability
- Fast turnaround often required

gPROMS-based assessment

- Long term engagement to overcome some of these challenges
 - _ 2013
 - <u>Key requirement</u>: use models for future studies
- Pressure relief and blowdown analysis
 - Detailed single facility modeling
 - Low temperature assessment
 - Screening analysis
 - Detailed analysis
 - Connected process and flare system
 - Pressure relief scenarios
 - Full system Blowdown and Emergency Shutdown (BESD)
- Full field modeling
 - Connected facility and pipeline model

Majority of facilities completed (expected end date 2017)

On-going

Application and benefits

Pressure relief and blowdown analysis

Pressure relief and blowdown analysis

- Long term project
 - **-** 2013-2017
 - 10 facilities
- Currently ~80% complete

- Benefits already seen
 - Models used for variety of different types of studies
 - Cost of engagement paid back many times over
 - Helped to greatly reduced outage time
 - Large monetary savings

Types of studies - I

Incident investigations

- Process upsets
- Inputs for consequence modeling software
- Concrete data
- Reduced assumptions

Operational questions

- Safe operating limits during changes in flare operations
 - Integrity issues, flare line blockages, maintenance, etc
- Proposed process changes impact on relief system capacity

Types of studies - II

3. Project questions

- Material selection
 - Process
 - Relief system
- Impact of proposed changes on relief scenarios
- Risk assessment inputs for TAR planning

4. Process Hazard Analysis / Risk Analysis

- Evaluating scenarios
- Relief conditions, event duration, timing, etc

5. Compliance

- Regulatory requirement for up to date documentation
- Models maintained through MOC process
 - Cost effective

Pressure relief and blowdown analysis: summary

"Our ability to now simulate a variety of conditions has enabled us to <u>reduce plant downtime</u> and production deferrals by <u>reducing uncertainty</u> in our understanding of our flare and relief systems."

"It has <u>reduced risk</u> in our operations by allowing us to perform numerous what if analyses, more <u>accurately</u> assessing our layers of protection"

Luke Hanzon, BP Alaska

Future work

Connected facility and pipeline model

Connected facility and pipeline model: summary

Subject:

 Development of field interconnecting model for analysis of transient response within gas transit system: facilities and gas pipelines

Problem:

- Multiple gas receiving facilities
- Connected to gas processing facilities
- Network of pipelines
- Conditions and process events can be communicated through network resulting in undesirable behavior
 - E.g. what happens in gathering centers when compressor in CGF is shut down

Connected facility and pipeline model: summary

Solution (under development):

- Dynamic gPROMS ProcessBuilder model
 - Hydraulic pipeline system
 - Gas receiving [8] facilities and gas processing facilities [2]
- To enable BP to analyze impact of gas process upsets at any facility on entire network performance
- Platform for future full gas-field production optimization

Separation facilities

