Complex Functions

Assignment 2 Ari Feiglin

Exercise 2.1:

- (1) Suppose $f: \mathbb{C} \longrightarrow \mathbb{C}$ is a complex function such that for every real z, f is differentiable at z and $f(z) \in \mathbb{R}$. Prove that for every $z \in \mathbb{R}$, $f'(z) \in \mathbb{R}$.
- (2) Suppose $f: \mathbb{C} \longrightarrow \mathbb{C}$ is a complex function such that for every imaginary z, f is differentiable at z and $f(z) \in \mathbb{R}$. Prove that for every imaginary $z, f'(z) \in i\mathbb{R}$.
- (1) Since f'(z) exists for $z \in \mathbb{R}$, it is equal to (since we can take any path to 0):

$$f'(z) = \lim_{\substack{h \to 0 \\ h \in \mathbb{R}}} \frac{f(z+h) - f(z)}{h}$$

Since $z + h \in \mathbb{R}$, $f(z + h) - f(z) \in \mathbb{R}$ and so $\frac{f(z+h) - f(z)}{h} \in \mathbb{R}$ and so f'(z) is the limit of a real sequence, and therefore $f'(z) \in \mathbb{R}$ as required.

(2) Since f'(z) exists for $z \in i\mathbb{R}$, it is equal to:

$$f'(z) = \lim_{\substack{h \to 0 \\ h \in \mathbb{R}}} \frac{f(z+ih) - f(z)}{ih} = -i \cdot \lim_{\substack{h \to 0 \\ h \in \mathbb{R}}} \frac{f(z+ih) - f(z)}{h}$$

Since $ih \to 0$. Since $z + ih \in i\mathbb{R}$, $f(z + ih) - f(z) \in \mathbb{R}$ so $\frac{f(z+ih) - f(z)}{h} \in \mathbb{R}$, so the limit is real and therefore $f'(z) \in i\mathbb{R}$ (since the limit is multiplied by -i) as required.

Exercise 2.2:

Suppose f and g are two complex functions which are differentiable at $z \in \mathbb{C}$, then

- (1) f+g is differentiable at z and (f+g)'(z)=f'(z)+g'(z).
- (2) $f \cdot g$ is differentiable at z and (fg)'(z) = f'(z)g(z) + f(z)g'(z).
- (3) $\frac{f}{g}$ is differentiable at z and $g \neq 0$ in a neighborhood of z, then $\left(\frac{f}{g}\right)'(z) = \frac{f'(z)g(z) f(z)g'(z)}{g(z)^2}$.
- (1) Notice that

$$(f+g)'(z) = \lim_{h \to 0} \frac{f(z+h) + g(z+h) - (f(z) + g(z))}{h} = \lim_{h \to 0} \frac{f(z+h) - f(z)}{h} + \lim_{h \to 0} \frac{g(z+h) - g(z)}{h} = f'(z) + g'(z)$$

since the two limits on the right exist. So the limit defining (f+g)'(z) exists and is equal to f'(z)+g'(z) as required.

(2) Notice that

$$(fg)'(z) = \lim_{h \to 0} \frac{f(z+h)g(z+h) - f(z)g(z)}{h} = \lim_{h \to 0} \frac{f(z+h)(g(z+h) - g(z)) + g(z)(f(z+h) - f(z))}{h}$$
$$= g(z) \cdot \lim_{h \to 0} \frac{f(z+h) - f(z)}{h} + \lim_{h \to 0} f(z+h) \cdot \frac{g(z+h) - g(z)}{h} = f'(z)g(z) + f(z)g'(z)$$

1

where the right limit equals f(z)g'(z) as the product of two convergent limits. So the limit defining (fg)'(z) exists and is equal to the desired result, as required.

(3) Notice that

$$(g^{-1})'(z) = \lim_{h \to 0} \frac{\frac{1}{g(z+h)} - \frac{1}{g(z)}}{h} = \lim_{h \to 0} \frac{1}{g(z) \cdot g(z+h)} \cdot \frac{g(z) - g(z+h)}{h} =$$

$$= \frac{1}{g(z)} \cdot \lim_{h \to 0} \frac{1}{g(z+h)} \cdot \lim_{h \to 0} \frac{g(z) - g(z+h)}{h} = -\frac{g'(z)}{g(z)^2}$$

We can take this limit since $g \neq 0$ in a neighborhood of z, so for any sequence $h_n \to 0$, eventually $g(z + h_n) \neq 0$. Thus by above:

$$\left(\frac{f}{g}\right)'(z) = \left(f \cdot \frac{1}{g}\right)'(z) = \frac{f'(z)}{g(z)} - \frac{f(z)g'(z)}{g(z)^2} = \frac{f'(z)g(z) - f(z)g'(z)}{g(z)^2}$$

Exercise 2.3:

Show that $f(z) = x^2 + iy^2$ is differentiable at z if and only if x = y, and thus show why f is not analytic.

So we have $u = x^2$ and $v = y^2$ so $u_x = 2x$, $u_y = 0$, $v_x = 0$, $v_y = 2y$. In order to satisfy the Cauchy-Riemann equations we must have $u_x = v_y$ and $u_y = -v_x$, so 2x = 2y and 0 = 0. So it is necessary and sufficient for x = y in order to satisfy the Cauchy-Riemann equations. Since f is differentiable when u and v are and satisfy the Cauchy-Riemann equations, and since u and v are differentiable everywhere, f is differentiable if and only if x = y.

Notice that in order for f to be analytic at $z \in \mathbb{C}$, it must be differentiable in a domain D of z's. So z = x + ix, but since D is open, there must be an element $w \in D$ which is not on the line x = y and so f is not differentiable at w and hence not in D. So f is nowhere analytic.

Exercise 2.4:

Prove the chain rule for complex derivatives.

Note that a function f is differentiable at z_0 if and only if there exists a function $\varepsilon \colon \mathbb{C} \longrightarrow \mathbb{C}$ and a value $f'(z_0)$ such that:

$$f(z) = f(z_0) + (z - z_0)f'(z_0) + \varepsilon(z - z_0)$$

where $\frac{\varepsilon(h)}{h} \xrightarrow[h \to 0]{} 0$. This is trivial and is very reminiscent of infinitesimal calculus 3. And so we have ε_1 and ε_2 where:

$$f(z) = f(z_0) + (z - z_0)f'(z_0) + \varepsilon_1(z - z_0),$$
 $g(z) = g(f(z_0)) + (z - f(z_0))g'(f(z_0)) + \varepsilon_2(z - f(z_0))$

And we need to find an ε_3 such that

$$g \circ f(z) = g \circ f(z_0) + (z - z_0) \left(f'(z_0) \cdot g'(f(z_0)) \right) + \varepsilon_3(z - z_0)$$

So then:

$$g \circ f(z) = g(f(z_0)) + (f(z) - f(z_0))g'(f(z_0)) + \varepsilon_2(f(z) - f(z_0))$$

$$= g \circ f(z_0) + (z - z_0)(f'(z_0) \cdot g'(f(z_0))) + \varepsilon_1(z - z_0)g'(f(z_0)) + \varepsilon_2((z - z_0)f'(z_0) + \varepsilon_1(z - z_0))$$

So we define

$$\varepsilon_3(h) = \varepsilon_1(h) \cdot g'(f(z_0)) + \varepsilon_2(hf'(z_0) + \varepsilon_1(h))$$

And we claim that $\frac{\varepsilon_3(h)}{h}$ converges to 0 as h approaches 0. This is simple for the $\varepsilon_1 \dots$ part, let us look at the ε_2 part:

$$\frac{\varepsilon_2 \left(h f'(z_0) + \varepsilon_1(h) \right)}{h} = \frac{\varepsilon_2 \left(h \left(f'(z_0) + \frac{\varepsilon_1(h)}{h} \right) \right)}{h \left(f'(z_0) + \frac{\varepsilon_1(h)}{h} \right)} \left(f'(z_0) + \frac{\varepsilon_1(h)}{h} \right)$$

Which converges to 0 (the left converges to 0 by the characteristic of ε_2 and the right converges to $f'(z_0)$), as required.

Exercise 2.5:

Show that a non-constant analytic function cannot map a domain onto a line or curve.

Suppose f is a non-constant analytic function. Then there exists $z \in \mathbb{C}$ such that $f'(z) \neq 0$ and so if we view f as a function $f : \mathbb{R}^2 \longrightarrow \mathbb{C}^2$, by the Cauchy-Riemann equations $|J_f(z)| = u_x(z)^2 + u_y(z)^2 = v_x(z)^2 + v_y(z)^2$ which must be non-zero, otherwise f'(z) = 0. So by the inverse function theorem, there is a neighborhood \mathcal{U} of z and z of z of z such that $z \in \mathcal{U} \longrightarrow \mathcal{V}$ is bijective. So the curve contains an open set, but that it means its interior is non-empty which is a contradiction since (injective) curves are hollow.

Exercise 2.6:

Prove that there are no analytic functions f = u + iv where $u(x, y) = x^2 + y^2$.

Suppose there does exist such an analytic function. By the Cauchy-Riemann equations, $v_x = -u_y$ and $v_y = u_x$ so $v_x = -2y$ and $v_y = 2x$ and so $v_{xy} = -2$ and $v_{yx} = 2$. But these second order derivatives are constant, and therefore by Clairut's theorem, $v_{xy} = v_{yx}$ in contradiction.

Exercise 2.7:

Show that if f = u + iv is differentiable at $z \in \mathbb{C}$ then u and v are differentiable at (x, y) = z and satisfy the Cauchy-Riemann equations.

Notice that since f is differentiable, for its differentiation we can take any path of $h \to 0$ and get the same result. Specifically, we will take a look at what happens when $h \in \mathbb{R}$ and $h \in i\mathbb{R}$. So for $h \in \mathbb{R}$:

$$f'(z) = \lim_{\mathbb{R} \ni h \to 0} \frac{f(z+h) - f(z)}{h} = \lim_{h \to 0} \frac{u(x+h,y) + iv(x+h,y) - u(x,y) - iv(x,y)}{h} = \lim_{h \to 0} \frac{u(x+h,y) - u(x,y)}{h} + i\lim_{h \to 0} \frac{v(x+h,y) - u(x,y) - iv(x,y)}{h} = \lim_{h \to 0} \frac{u(x+h,y) - u(x,y) - iv(x,y)}{h} = \lim_{h \to 0} \frac{u(x+h,y) - u(x,y) - iv(x,y)}{h} = \lim_{h \to 0} \frac{u(x+h,y) - u(x,y) - iv(x,y)}{h} = \lim_{h \to 0} \frac{u(x+h,y) - u(x,y) - iv(x,y)}{h} = \lim_{h \to 0} \frac{u(x+h,y) - u(x,y) - iv(x,y)}{h} = \lim_{h \to 0} \frac{u(x+h,y) - u(x,y) - iv(x,y)}{h} = \lim_{h \to 0} \frac{u(x+h,y) - u(x,y) - iv(x,y)}{h} = \lim_{h \to 0} \frac{u(x+h,y) - u(x,y) - iv(x,y)}{h} = \lim_{h \to 0} \frac{u(x+h,y) - u(x,y) - iv(x,y)}{h} = \lim_{h \to 0} \frac{u(x+h,y) - u(x,y) - iv(x,y)}{h} = \lim_{h \to 0} \frac{u(x+h,y) - u(x,y) - iv(x,y)}{h} = \lim_{h \to 0} \frac{u(x+h,y) - u(x,y) - iv(x,y)}{h} = \lim_{h \to 0} \frac{u(x+h,y) - u(x,y) - iv(x,y)}{h} = \lim_{h \to 0} \frac{u(x+h,y) - iv(x,y) - iv(x,y)}{h} = \lim_{h \to 0} \frac{u(x+h,y) - iv(x,y) - iv(x,y)}{h} = \lim_{h \to 0} \frac{u(x+h,y) - iv(x,y) - iv(x,y)}{h} = \lim_{h \to 0} \frac{u(x+h,y) - iv(x,y) - iv(x,y)}{h} = \lim_{h \to 0} \frac{u(x+h,y) - iv(x,y) - iv(x,y)}{h} = \lim_{h \to 0} \frac{u(x+h,y) - iv(x,y) - iv(x,y)}{h} = \lim_{h \to 0} \frac{u(x+h,y) - iv(x,y) - iv(x,y)}{h} = \lim_{h \to 0} \frac{u(x+h,y) - iv(x,y) - iv(x,y)}{h} = \lim_{h \to 0} \frac{u(x+h,y) - iv(x,y) - iv(x,y)}{h} = \lim_{h \to 0} \frac{u(x+h,y) - iv(x,y) - iv(x,y)}{h} = \lim_{h \to 0} \frac{u(x+h,y) - iv(x,y) - iv(x,y)}{h} = \lim_{h \to 0} \frac{u(x+h,y) - iv(x,y) - iv(x,y)}{h} = \lim_{h \to 0} \frac{u(x+h,y) - iv(x,y) - iv(x,y)}{h} = \lim_{h \to 0} \frac{u(x+h,y) - iv(x,y)}{h} = \lim_{h \to 0} \frac{u(x+h,$$

And similarly for $ih \in i\mathbb{R}$:

$$f'(z) = \lim_{h \to 0} \frac{f(z+ih) - f(z)}{ih} = -i \lim_{h \to 0} \frac{u(x,y+h) + iv(x,y+h) - u(x,y) - iv(x,y)}{h} = -i \left(u_y(x,y) + iv_y(x,y)\right) = v_y(x,y) - iu_y(x,y)$$

And so we get that $u_x + iv_x = v_y - iu_y$ so $u_x(x, y) = v_y(x, y)$ and $v_x(x, y) = -u_y(x, y)$ as required. Notice that since f is differentiable at z there exists α and β such that

$$f(z+h) = f(z) + hf'(z) + \alpha(h) + i\beta(h)$$

where $\frac{\alpha(h)}{h}$, $\frac{\beta(h)}{h} \longrightarrow 0$ as $h \to 0$. We want to show that there exists an ε such that

$$u(z) = u(z+h) + u_x(z)h_1 + u_y(z)h_2 + \varepsilon(h)$$

where $\frac{\varepsilon(h)}{\sqrt{h_1^2 + h_2^2}} \longrightarrow 0$ as $h_1, h_2 \to 0$. Notice that by differentiability of f and the Cauchy-Riemann equations, we can take the real part of the equation above and get:

$$u(x + h_1, y + h_2) = \text{Re}\left(u(x) + (h_1 + ih_2)(u_x(x, y) - iu_y(x, y)) + \alpha(h)\right) = u(x) + u_x(x, y)h_1 + u_y(x, y)h_2 + \alpha(h_1, h_2)$$

So all we need to show is that $\frac{\alpha(h_1,h_2)}{\sqrt{h_1^2+h_2^2}} = \frac{\alpha(h)}{|h|} \longrightarrow 0$. This is true since $\left|\frac{\alpha(h)}{|h|}\right| = \frac{|\alpha(h)|}{|h|}$, which must converge to 0 since $\frac{\alpha(h)}{h}$ does and convergence in $\mathbb C$ is convergence in modulus, which for that same reason implies $\frac{\alpha(h)}{h}$ converges to 0. The proof is very similar for v.

Exercise 2.8:

- (1) Show that $e^z = e^x \cos(y) + ie^x \sin(y)$ is analytic over all of \mathbb{C} (entire).
- (2) Prove that $e^{z_1+z_2} = e^{z_1}e^{z_2}$.
- (1) Notice that $u(x,y) = e^x \cos(y)$ and $v(x,y) = e^x \sin(y)$ which are both differentiable as the product of elementary functions. And

$$u_x(x,y) = e^x \cos(y), \quad u_y(x,y) = -e^x \sin(y), \quad v_x(x,y) = e^x \sin(u), \quad v_y(x,y) = e^x \cos(y)$$

So we have that

$$u_x = v_y, \quad u_y = -v_x$$

So f satisfies the Cauchy-Riemann equations for every $z \in \mathbb{C}$ and u and v are differentiable for every $z \in \mathbb{C}$, so f is differentiable over all of \mathbb{C} and is therefore entire. Furthermore, notice that

$$f'(z) = u_x(z) + iv_x(z) = u(z) + iv(z) = f(z)$$

(2) Suppose $z_1 = x_1 + iy_1$ and $z_2 = x_2 + iy_2$ so $z_1 + z_2 = (x_1 + x_2) + i(y_1 + y_2)$ so: $e^{z_1 + z_2} = e^{x_1 + x_2} \left(\cos(y_1 + y_2) + i \sin(y_1 + y_2) \right) = e^{x_1} e^{x_2} \left(\cos(y_1) + i \sin(y_1) \right) \left(\cos(y_2) + i \sin(y_2) \right) = e^{z_1} \cdot e^{z_2}$ as required.

Exercise 2.9:

Find all the solutions to:

- (1) $e^z = 1$
- (2) $e^z = i$
- (3) $e^z = -3$
- (4) $e^z = 1 + i$

Lemma:

 $e^z = e^y$ if and only if $z = y + 2\pi i k$ for some $k \in \mathbb{Z}$.

Proof:

If z = a + bi and y = c + di then $e^z = e^a(\cos(b) + i\sin(b))$ and $e^y = e^c(\cos(d) + i\sin(d))$, and so in polar coordinates, $e^z = e^a \angle b$ and $e^y = e^c \angle d$, so $e^z = e^y$ if and only if $e^a = e^c$ and b = d as angles, so a = c by the injectivity of exponentials and $b = d + 2\pi k$ for some $k \in \mathbb{Z}$. Thus $z = a + bi = c + i(d + 2\pi k) = y + 2\pi i k$ as required.

To solve this problem, we transform w into polar form $|w| \angle \theta$, and from that we know $w = |w| \cdot e^{i\theta}$ by definition of the complex exponential, and so this is equal to $e^{\log|w|+i\theta}$. So the set of solutions to $e^z = w$ is $\{\log|w| + i\theta + i2\pi k \mid k \in \mathbb{Z}\}$.

- (1) Since $1 = e^0$ by our lemma above, $e^z = 1$ if and only if $z = 2\pi i k$ for any $k \in \mathbb{Z}$, ie $\{2\pi i k \mid k \in \mathbb{Z}\}$ is the set of solutions.
- (2) Since $i = e^{\frac{\pi}{2}i}$ by our lemma above, $e^z = i$ if and only if $z \in \{\frac{\pi}{2}i + 2\pi ik \mid k \in \mathbb{Z}\}.$
- (3) Since $-3 = 3e^{\pi i} = e^{\log 3 + i\pi}$, the solutions are $\{\log 3 + i\pi(2k+1) \mid k \in \mathbb{Z}\}$.
- (4) Since $1 + i = \sqrt{2}e^{i\frac{\pi}{4}}$ so the solutions are $\left\{\frac{1}{2}\log 2 + i\pi\left(\frac{1}{4} + 2k\right) \mid k \in \mathbb{Z}\right\}$.

Exercise 2.10:

Find the derivative of $\cos(z)$ for $z \in \mathbb{C}$.

Recall the definition of the complex cosine function:

$$\cos(z) = \frac{e^{iz} + e^{-iz}}{2}$$

Thus by linearity of the derivative and the chain rule (the derivative of $f(\alpha x)$ is $\alpha \cdot f'(\alpha x)$) we get that the complex cosine function is also entire (since the exponential is) and since $(e^z)' = e^z$:

$$\cos'(z) = \frac{ie^{iz} - ie^{-iz}}{2} = \frac{-e^{iz} + e^{-iz}}{2i} = -\sin(z)$$

So for every $z \in \mathbb{C}$, $\cos'(z) = -\sin(z)$ as we'd expect.

Exercise 2.11:

Show that

$$\sin(x + iy) = \sin(x)\cosh(y) + i\cos(x)\sinh(y)$$

where

$$\cosh(y) = \frac{e^y + e^{-y}}{2}, \quad \sinh(y) = \frac{e^y - e^{-y}}{2}$$

We know that

$$\sin(x+iy) = -\frac{i}{2} \left(e^{-y+ix} - e^{y-ix} \right) = -\frac{i}{2} \left(e^{-y} \operatorname{cis}(x) - e^{y} \operatorname{cis}(-x) \right) = -\frac{i}{2} \left(\cos(x) \left(e^{-y} - e^{y} \right) + i \sin(x) \left(e^{-y} + e^{y} \right) \right)$$

$$= \sin(x) \cdot \frac{e^{y} + e^{-y}}{2} + i \cos(x) \cdot \frac{e^{y} - e^{-y}}{2} = \sin(x) \cdot \cosh(y) + i \cos(x) \cdot \sinh(y)$$

as required