

Subject Index of Volume 112

ac Impedance
 Cyclic voltammetry; Lithium–cobalt–nickel oxide; Lithium intercalation; Solution combustion synthesis (Suresh, P. (112) 665)

Al–Fe coating
 Molten carbonate fuel cell; Separator plate; Wet-seal corrosion (Jun, J. (112) 153)

Alkaline fuel cell
 Particulate anode; Surface area; Aluminum; Hydrogen peroxide (Popovich, N.A. (112) 36)

Alkaline storage batteries
 Nickel hydroxide; Structural characteristics; Chemical precipitation reaction (Song, Q. (112) 428)

Alpha lithium aluminate matrix
 Molten carbonate fuel cell; Tape casting; Pore-size distribution (Batra, V.S. (112) 322)

Aluminum electrolytic capacitors
 Sparking voltage; Capacity; Dissipation factor; Leakage current; Dextrose (Tsai, M.-L. (112) 643)

Aluminum
 Alkaline fuel cell; Particulate anode; Surface area; Hydrogen peroxide (Popovich, N.A. (112) 36)

Aluminum/air batteries
 Life-cycle analysis; Electric vehicles; Cost analysis (Yang, S. (112) 162)

Anode material
 Lithium ion batteries; Sensitivity to humidity; Silver; Natural graphite (Wu, Y.P. (112) 255)

Anode
 Direct methanol fuel cell; Mathematical modeling; Methanol crossover (Jeng, K.T. (112) 367)

Anode
 Tin oxide; Graphite; Lithium-ion battery; Pechini process (Zhang, R. (112) 596)

Artificial neural network (ANN)
 Fuel cell; Solid oxide fuel cells (SOFC); Neural network; Feed-forward network; Backpropagation (Arriagada, J. (112) 54)

Asymmetric alkylcarbonate
 Organic electrolyte; Viscosity; Conductivity; Lithium battery (Geoffroy, I. (112) 191)

Backpropagation
 Fuel cell; Solid oxide fuel cells (SOFC); Artificial neural network (ANN); Neural network; Feed-forward network (Arriagada, J. (112) 54)

Ball milling
 Ni_3Sn_4 ; Nanocrystalline; Grain boundary; Lithium-ion battery; Capacity (Lee, H.-Y. (112) 8)

Ball-milling
 Rechargeable lithium batteries; Fe–Si alloy; Composite electrode; Negative electrode (Lee, H.-Y. (112) 649)

Battery discharge unit
 Silver-ion conductors; Solid-state batteries; Polarization; Discharge characteristics (Murugaraj, R. (112) 184)

Battery electrodes
 Soft X-ray; Hard X-ray; Surface; Manganese; Reduction (Braun, A. (112) 231)

Battery
 Conductive additive; Porosity; Carbon black; X-ray photoelectron spectroscopy (XPS) (Manickam, M. (112) 116)

Battery
 Dendritic-zinc powder; Manganese dioxide; Impedance; High-rate discharge (Yang, C.-C. (112) 174)

Battery
 DMFC; Mobile phone; Methanol (Han, J. (112) 477)

Battery
 Lithium-ion cells; Recycling (Castillo, S. (112) 247)

Battery
 Vanadium oxide; Rare-earth (Almeida, E.C. (112) 290)

Benzoyl peroxide
 Gel polymer electrolyte; Tri(ethylene glycol) dimethacrylate; Lithium-ion battery (Kim, H.-S. (112) 469)

Blend
 Polymer electrolyte; Ionic conductivity; Copolymer; VTF equation (Polo Fonseca, C. (112) 395)

Calcium
 Corrosion; Pb anodes; Lead acid batteries; Doping tin (Slavkov, D. (112) 199)

CaO
 Methane; Steam reforming; Ni–YSZ cermets; Carbon deposition (Takeguchi, T. (112) 588)

Capacity fade
 Sony 18650 cells; Cycle number (Ramadass, P. (112) 614)

Capacity
 Aluminum electrolytic capacitors; Sparking voltage; Dissipation factor; Leakage current; Dextrose (Tsai, M.-L. (112) 643)

Capacity
 Cobalt vanadate; Glycine; Cycle-life; Lithium battery (Kim, Y.T. (112) 504)

Capacity
 Ni_3Sn_4 ; Ball milling; Nanocrystalline; Grain boundary; Lithium-ion battery (Lee, H.-Y. (112) 8)

Carbon anode
 Lithium ion battery; Initial irreversible capacity; Lithium phosphorus oxynitride; Sputtering deposition (Chung, K.-i. (112) 626)

Carbon black
 Conductive additive; Porosity; X-ray photoelectron spectroscopy (XPS); Battery (Manickam, M. (112) 116)

Carbon deposition
 Methane; Steam reforming; Ni–YSZ cermets; CaO (Takeguchi, T. (112) 588)

Carbon nanotube
 Catalytic decomposition; Lithium battery (Shin, H.-C. (112) 216)

Catalytic decomposition
 Carbon nanotube; Lithium battery (Shin, H.-C. (112) 216)

Cathode material
 Phase transition; Lithium intercalation; Lithium ion battery; LiMn_2O_4 ; Potential–composition profile (Abiko, H. (112) 557)

Cathode materials
 Lithiated nickel cobalt oxides; $\text{LiNi}_{0.8}\text{Co}_{0.2}\text{O}_2$; Zn-doping; Lithium ion batteries (Fey, G.T.K. (112) 384)

Cathode materials
 Lithium secondary batteries; Sol-gel method; Layered manganese; Li_2MnO_3 (Shin, S.-S. (112) 634)

Cathode materials
 Lithium-ion rechargeable battery; Lithium manganese nickel oxides; Layered structure (Kang, S.-H. (112) 41)

Cathode substrate
 Solid oxide fuel cell; Co-firing; Tubular flat-plate type cell; Oxygen partial pressure; Cell performance (Orui, H. (112) 90)

Cathode
 Lithium rechargeable polymer batteries; Polymer binder; Gel polymer electrolyte (Choi, N.-S. (112) 61)

Cell performance model
 Molten carbonate fuel cell (MCFC); Li/Na carbonate electrolyte; Initial and long-term performance (Morita, H. (112) 509)

Cell performance
 Solid oxide fuel cell; Co-firing; Tubular flat-plate type cell; Cathode substrate; Oxygen partial pressure (Orui, H. (112) 90)

Charge transport
 DC conduction; Current-voltage characteristics; Schottky emission; Poole-Frenkel mechanism; Polymer (Nagaraj, N. (112) 326)

Charge-discharge
 Lead-acid battery; Cycling; Microcycles; Wind turbine; Photovoltaic systems (Ruddell, A.J. (112) 531)

Chemical precipitation reaction
 Nickel hydroxide; Alkaline storage batteries; Structural characteristics (Song, Q. (112) 428)

Co-firing
 Solid oxide fuel cell; Tubular flat-plate type cell; Cathode substrate; Oxygen partial pressure; Cell performance (Orui, H. (112) 90)

CO_2 separation
 SOFC; MCFC; Power plants (Campanari, S. (112) 273)

Cobalt hydroxide
 Cobalt oxide; Dehydration; Waste LiCoO_2 ; Electrochemical-hydrothermal method (Myoung, J. (112) 639)

Cobalt oxide
 Cobalt hydroxide; Dehydration; Waste LiCoO_2 ; Electrochemical-hydrothermal method (Myoung, J. (112) 639)

Cobalt vanadate
 Glycine; Capacity; Cycle-life; Lithium battery (Kim, Y.T. (112) 504)

Coefficient of thermal expansion
 Solid oxide fuel cells; Scanning electron microscopy (Chou, Y.-S. (112) 130)

Composite electrode
 Rechargeable lithium batteries; Fe-Si alloy; Negative electrode; Ball-milling (Lee, H.-Y. (112) 649)

Composite electrolyte
 Li^+ -conducting glasses; Conductivity; Stability; Interfacial properties (Zhang, X.-W. (112) 209)

Composite polymer electrolyte
 PEO-PVA blend; Ionic conductivity; Zinc-air battery (Yang, C.-C. (112) 497)

Composite polymer electrolyte
 Polyethylene oxide; Trioxyethylene; CuS cathode (Chung, J.-S. (112) 671)

Compressive mica-based seals
 Thermal cycling; Solid oxide fuel cells (Chou, Y.-s. (112) 376)

Conductive additive
 Porosity; Carbon black; X-ray photoelectron spectroscopy (XPS); Battery (Manickam, M. (112) 116)

Conductivity
 Composite electrolyte; Li^+ -conducting glasses; Stability; Interfacial properties (Zhang, X.-W. (112) 209)

Conductivity
 Organic electrolyte; Viscosity; Lithium battery; Asymmetric alkylcarbonate (Geoffroy, I. (112) 191)

Constant phase element
 Lead-acid batteries; Electrochemical impedance spectroscopy; Equivalent circuits (Nelatury, S.R. (112) 621)

Copolymer
 Polymer electrolyte; Ionic conductivity; Blend; VTF equation (Polo Fonseca, C. (112) 395)

Corrosion
 Pb anodes; Lead acid batteries; Doping tin; Calcium (Slavkov, D. (112) 199)

Cost analysis
 Aluminum/air batteries; Life-cycle analysis; Electric vehicles (Yang, S. (112) 162)

Coupled characterization and modeling
 Ni-MH battery; Mathematical model; Oxygen evolution reaction (Pan, Y.H. (112) 298)

Crossover current
 2-Propanol; Methanol; Fuel cell; Open circuit voltage (Qi, Z. (112) 121)

Current collection
 PEMFC; Fuel cell; Segmented cell; Flow field (Rajalakshmi, N. (112) 331)

Current density
 Nickel hydroxide; Electrochemical; Precipitation; Discharge capacity; Preparation (Subbaiah, T. (112) 562)

Current interruption
 Ohmic loss; PEMFC; Stack (Mennola, T. (112) 261)

Current-voltage characteristics
 DC conduction; Schottky emission; Poole-Frenkel mechanism; Polymer; Charge transport (Nagaraj, N. (112) 326)

CuS cathode
 Polyethylene oxide; Trioxyethylene; Composite polymer electrolyte (Chung, J.-S. (112) 671)

Cycle number
 Capacity fade; Sony 18650 cells (Ramadass, P. (112) 614)

Cycle-life
 Cobalt vanadate; Glycine; Capacity; Lithium battery (Kim, Y.T. (112) 504)

Cycle-life
 Li-ion battery; $\text{LiNi}_{0.8}\text{Co}_{0.15}\text{Al}_{0.05}\text{O}_2$ (Shim, J. (112) 222)

Cycleability
 Platinum co-sputtering; V_2O_5 ; Micro-power source; Short-range order; Thin-film battery (Kim, H.-K. (112) 67)

Cyclic voltammetry
 ac Impedance; Lithium-cobalt-nickel oxide; Lithium intercalation; Solution combustion synthesis (Suresh, P. (112) 665)

Cyclic voltammetry
 Structural transformation; Hydrous ruthenium-iridium oxides; Electrochemical supercapacitor; Pseudocapacitance (Hu, C.-C. (112) 401)

Cycling performance
 Gel polymer electrolyte; Ionic conductivity; Lithium-ion polymer cell; Methyl methacrylate-styrene copolymer (Kang, D.-W. (112) 1)

Cycling test
 $\text{LiNi}_{1-y}\text{Co}_y\text{O}_2$ cathodes; XRD parameters; VA-metry (Moshtev, R. (112) 30)

Cycling
 Lead-acid battery; Microcycles; Charge-discharge; Wind turbine; Photovoltaic systems (Ruddell, A.J. (112) 531)

DC conduction
 Current-voltage characteristics; Schottky emission; Poole-Frenkel mechanism; Polymer; Charge transport (Nagaraj, N. (112) 326)

Dehydration
 Cobalt hydroxide; Cobalt oxide; Waste LiCoO_2 ; Electrochemical-hydrothermal method (Myoung, J. (112) 639)

Dendritic-zinc powder
 Manganese dioxide; Impedance; Battery; High-rate discharge (Yang, C.-C. (112) 174)

Dextrose
 Aluminum electrolytic capacitors; Sparking voltage; Capacity; Dissipation factor; Leakage current (Tsai, M.-L. (112) 643)

1,3-Dioxolane
 Lithium–sulfur battery; Polysulfide; Electrolyte; Tetra(ethylene glycol) dimethyl ether (Chang, D.-R. (112) 452)

Direct methanol fuel cell
 Anode; Mathematical modeling; Methanol crossover (Jeng, K.T. (112) 367)

Direct methanol fuel cells
 Gas chromatography; Parameter variations (Gurau, B. (112) 339)

Discharge capacity
 Nickel hydroxide; Electrochemical; Precipitation; Current density; Preparation (Subbaiah, T. (112) 562)

Discharge characteristics
 Silver-ion conductors; Battery discharge unit; Solid-state batteries; Polarization (Murugaraj, R. (112) 184)

Discharge curve
 Hydrogen storage alloy; Multi-phase composition; Ti–Ni-based alloy; XRD (Xu, Y.H. (112) 105)

Dissipation factor
 Aluminum electrolytic capacitors; Sparking voltage; Capacity; Leakage current; Dextrose (Tsai, M.-L. (112) 643)

DMFC
 Mobile phone; Battery; Methanol (Han, J. (112) 477)

Doping tin
 Corrosion; Pb anodes; Lead acid batteries; Calcium (Slavkov, D. (112) 199)

Efficiency
 Fuel cells; Fuel reforming; Water vapor exchanger; Models; Experiments (Williford, R.E. (112) 570)

Electric vehicles
 Aluminum/air batteries; Life-cycle analysis; Cost analysis (Yang, S. (112) 162)

Electrical properties
 LiCoO₂; Layered oxide; NMR; Lithium battery; Magnesium substitution (Levasseur, S. (112) 419)

Electrocatalyst
 Regenerative fuel cell; Polymer electrolyte; Water electrolysis (Ioroi, T. (112) 583)

Electrocatalytic effect
 Thionyl chloride; Schiff base; Primary battery (Kim, W.-S. (112) 76)

Electrochemical impedance spectroscopy
 Hybrid electric vehicles; High-power lithium-ion batteries (Chu, A. (112) 236)

Electrochemical impedance spectroscopy
 Impedance; Electrode resistance (Ramadass, P. (112) 606)

Electrochemical impedance spectroscopy
 Lead–acid batteries; Equivalent circuits; Constant phase element (Nelatury, S.R. (112) 621)

Electrochemical magnesium insertion
 Magnesium battery; Magnesium titanium phosphate (Makino, K. (112) 85)

Electrochemical supercapacitor
 Structural transformation; Hydrous ruthenium–iridium oxides; Cyclic voltammetry; Pseudocapacitance (Hu, C.-C. (112) 401)

Electrochemical
 Nickel hydroxide; Precipitation; Discharge capacity; Current density; Preparation (Subbaiah, T. (112) 562)

Electrochemical–hydrothermal method
 Cobalt hydroxide; Cobalt oxide; Dehydration; Waste LiCoO₂ (Myoung, J. (112) 639)

Electrode resistance
 Impedance; Electrochemical impedance spectroscopy (Ramadass, P. (112) 606)

Electrolyte concentration
 Laplace transform; Short- and long-time solutions (Hashim Ali, S.A. (112) 435)

Electrolyte
 Lithium–sulfur battery; Polysulfide; Tetra(ethylene glycol) dimethyl ether; 1,3-Dioxolane (Chang, D.-R. (112) 452)

Energy use
 Well-to-wheels analysis; Fuel-cell vehicles; Fuels; Greenhouse gas emissions; Hydrogen (Wang, M. (112) 307)

Equivalent circuits
 Lead–acid batteries; Electrochemical impedance spectroscopy; Constant phase element (Nelatury, S.R. (112) 621)

Experiments
 Fuel cells; Fuel reforming; Water vapor exchanger; Efficiency; Models (Williford, R.E. (112) 570)

FCV
 Fuel-cell; Reformer; Metal membrane; Fuel processor; Methanol (Han, J. (112) 484)

Fe–Si alloy
 Rechargeable lithium batteries; Composite electrode; Negative electrode; Ball-milling (Lee, H.-Y. (112) 649)

Feed-forward network
 Fuel cell; Solid oxide fuel cells (SOFC); Artificial neural network (ANN); Neural network; Backpropagation (Arriagada, J. (112) 54)

Flow field
 PEMFC; Fuel cell; Segmented cell; Current collection (Rajalakshmi, N. (112) 331)

Formic acid fuel cells
 Methanol conditioning; Membrane electrolyte assembly (Ha, S. (112) 655)

Fuel cell system
 Water balance; Fuel processing (Ahmed, S. (112) 519)

Fuel cell
 2-Propanol; Methanol; Crossover current; Open circuit voltage (Qi, Z. (112) 121)

Fuel cell
 Methanol; In situ; Reforming; Reformation; Kinetics (Samms, S.R. (112) 13)

Fuel cell
 PEMFC; Segmented cell; Current collection; Flow field (Rajalakshmi, N. (112) 331)

Fuel cell
 Solid oxide fuel cells (SOFC); Artificial neural network (ANN); Neural network; Feed-forward network; Backpropagation (Arriagada, J. (112) 54)

Fuel cells
 Fuel reforming; Water vapor exchanger; Efficiency; Models; Experiments (Williford, R.E. (112) 570)

Fuel processing
 Water balance; Fuel cell system (Ahmed, S. (112) 519)

Fuel processor
 Fuel-cell; Reformer; Metal membrane; FCV; Methanol (Han, J. (112) 484)

Fuel reforming
 Fuel cells; Water vapor exchanger; Efficiency; Models; Experiments (Williford, R.E. (112) 570)

Fuel-cell vehicles
 Well-to-wheels analysis; Fuels; Energy use; Greenhouse gas emissions; Hydrogen (Wang, M. (112) 307)

Fuels
 Reformer; Metal membrane; FCV; Fuel processor; Methanol (Han, J. (112) 484)

Fuels
 Well-to-wheels analysis; Fuel-cell vehicles; Energy use; Greenhouse gas emissions; Hydrogen (Wang, M. (112) 307)

Gas chromatography
Direct methanol fuel cells; Parameter variations (Gurau, B. (112) 339)

Gaskets
Polymer electrolyte fuel cell; Membrane electrode assembly; Stack (Pozio, A. (112) 491)

Gel electrolyte
Li-ion polymer battery; Poly(acrylonitrile); Thermal stability; Lithium nickel dioxide; Mesocarbon microbeads (Akashi, H. (112) 577)

Gel polymer electrolyte
Cycling performance; Ionic conductivity; Lithium-ion polymer cell; Methyl methacrylate-styrene copolymer (Kang, D.-W. (112) 1)

Gel polymer electrolyte
Lithium rechargeable polymer batteries; Polymer binder; Cathode (Choi, N.-S. (112) 61)

Gel polymer electrolyte
Tri(ethylene glycol) dimethacrylate; Benzoyl peroxide; Lithium-ion battery (Kim, H.-S. (112) 469)

Glycine
Cobalt vanadate; Capacity; Cycle-life; Lithium battery (Kim, Y.T. (112) 504)

Grain boundary
 Ni_3Sn_4 ; Ball milling; Nanocrystalline; Lithium-ion battery; Capacity (Lee, H.-Y. (112) 8)

Graphite anode
Self-discharge; Li-ion batteries; Solid electrolyte interphase (Wang, C. (112) 98)

Graphite
Tin oxide; Anode; Lithium-ion battery; Pechini process (Zhang, R. (112) 596)

Greenhouse gas emissions
Well-to-wheels analysis; Fuel-cell vehicles; Fuels; Energy use; Hydrogen (Wang, M. (112) 307)

Hard X-ray
Soft X-ray; Battery electrodes; Surface; Manganese; Reduction (Braun, A. (112) 231)

High-power lithium-ion batteries
Hybrid electric vehicles; Electrochemical impedance spectroscopy (Chu, A. (112) 236)

High-rate discharge
Dendritic-zinc powder; Manganese dioxide; Impedance; Battery (Yang, C.-C. (112) 174)

Hybrid electric vehicles
Electrochemical impedance spectroscopy; High-power lithium-ion batteries (Chu, A. (112) 236)

Hydrogen peroxide
Alkaline fuel cell; Particulate anode; Surface area; Aluminum (Popovich, N.A. (112) 36)

Hydrogen storage alloy
Multi-phase composition; Ti-Ni-based alloy; Discharge curve; XRD (Xu, Y.H. (112) 105)

Hydrogen storage alloys
Magnesium-based compounds; Mechanical alloying; Nickel-metal hydride battery (Ruggeri, S. (112) 547)

Hydrogen
Well-to-wheels analysis; Fuel-cell vehicles; Fuels; Energy use; Greenhouse gas emissions (Wang, M. (112) 307)

Hydrous ruthenium-iridium oxides
Structural transformation; Cyclic voltammetry; Electrochemical supercapacitor; Pseudocapacitance (Hu, C.-C. (112) 401)

Impedance
Dendritic-zinc powder; Manganese dioxide; Battery; High-rate discharge (Yang, C.-C. (112) 174)

Impedance
Electrode resistance; Electrochemical impedance spectroscopy (Ramaswamy, P. (112) 606)

In situ
Methanol; Reforming; Reformation; Kinetics; Fuel cell (Samms, S.R. (112) 13)

Initial and long-term performance
Molten carbonate fuel cell (MCFC); Li/Na carbonate electrolyte; Cell performance model (Morita, H. (112) 509)

Initial irreversible capacity
Lithium ion battery; Lithium phosphorus oxynitride; Carbon anode; Sputtering deposition (Chung, K.-i. (112) 626)

Interfacial properties
Composite electrolyte; Li^+ -conducting glasses; Conductivity; Stability (Zhang, X.-W. (112) 209)

Ionic conductivity
Composite polymer electrolyte; PEO-PVA blend; Zinc-air battery (Yang, C.-C. (112) 497)

Ionic conductivity
Cycling performance; Gel polymer electrolyte; Lithium-ion polymer cell; Methyl methacrylate-styrene copolymer (Kang, D.-W. (112) 1)

Ionic conductivity
Polymer electrolyte; Blend; Copolymer; VTF equation (Polo Fonseca, C. (112) 395)

Kinetics
Methanol; In situ; Reforming; Reformation; Fuel cell (Samms, S.R. (112) 13)

Laplace transform
Electrolyte concentration; Short- and long-time solutions (Hashim Ali, S.A. (112) 435)

Layered manganese
Lithium secondary batteries; Sol-gel method; Cathode materials; Li_2MnO_3 (Shin, S.-S. (112) 634)

Layered oxide
 LiCoO_2 ; NMR; Lithium battery; Electrical properties; Magnesium substitution (Levasseur, S. (112) 419)

Layered structure
Lithium-ion rechargeable battery; Cathode materials; Lithium manganese nickel oxides (Kang, S.-H. (112) 41)

Lead acid batteries
Corrosion; Pb anodes; Doping tin; Calcium (Slavkov, D. (112) 199)

Lead-acid batteries
Electrochemical impedance spectroscopy; Equivalent circuits; Constant phase element (Nelatury, S.R. (112) 621)

Lead-acid battery
Cycling; Microcycles; Charge-discharge; Wind turbine; Photovoltaic systems (Ruddell, A.J. (112) 531)

Leakage current
Aluminum electrolytic capacitors; Sparking voltage; Capacity; Dissipation factor; Dextrose (Tsai, M.-L. (112) 643)

Less battery storage system
Shepherd model; Recursive least square algorithm (Cherif, A. (112) 49)

Li-ion batteries
Self-discharge; Graphite anode; Solid electrolyte interphase (Wang, C. (112) 98)

Li-ion battery
Cycle-life; $\text{LiNi}_{0.8}\text{Co}_{0.15}\text{Al}_{0.05}\text{O}_2$ (Shim, J. (112) 222)

Li-ion polymer battery
Gel electrolyte; Poly(acrylonitrile); Thermal stability; Lithium nickel dioxide; Mesocarbon microbeads (Akashi, H. (112) 577)

Li/Na carbonate electrolyte
Molten carbonate fuel cell (MCFC); Cell performance model; Initial and long-term performance (Morita, H. (112) 509)

Li₂MnO₃
 Lithium secondary batteries; Sol-gel method; Layered manganese; Cathode materials (Shin, S.-S. (112) 634)

Li⁺-conducting glasses
 Composite electrolyte; Conductivity; Stability; Interfacial properties (Zhang, X.-W. (112) 209)

LiCoO₂
 Layered oxide; NMR; Lithium battery; Electrical properties; Magnesium substitution (Levasseur, S. (112) 419)

LiCoO₂-coated NiO cathode
 MCFC; Ni dissolution; Sol-impregnation (Kim, S.-G. (112) 109)

Life-cycle analysis
 Aluminum/air batteries; Electric vehicles; Cost analysis (Yang, S. (112) 162)

LiMn₂O₄
 Cathode material; Phase transition; Lithium intercalation; Lithium ion battery; Potential-composition profile (Abiko, H. (112) 557)

LiNi_{0.8}Co_{0.15}Al_{0.05}O₂
 Li-ion battery; Cycle-life (Shim, J. (112) 222)

LiNi_{0.8}Co_{0.2}O₂
 Lithiated nickel cobalt oxides; Zn-doping; Cathode materials; Lithium ion batteries (Fey, G.T.K. (112) 384)

LiNi_{1-y}Co_yO₂ cathodes
 XRD parameters; Cycling test; VA-metry (Moshtev, R. (112) 30)

Lithiated nickel cobalt oxides
 LiNi_{0.8}Co_{0.2}O₂; Zn-doping; Cathode materials; Lithium ion batteries (Fey, G.T.K. (112) 384)

Lithium battery
 Carbon nanotube; Catalytic decomposition (Shin, H.-C. (112) 216)

Lithium battery
 Cobalt vanadate; Glycine; Capacity; Cycle-life (Kim, Y.T. (112) 504)

Lithium battery
 LiCoO₂; Layered oxide; NMR; Electrical properties; Magnesium substitution (Levasseur, S. (112) 419)

Lithium battery
 Manganese dioxide; Lithium salts (Kim, H.-S. (112) 660)

Lithium battery
 Organic electrolyte; Viscosity; Conductivity; Asymmetric alkylcarboxylate (Geoffroy, I. (112) 191)

Lithium intercalation
 ac Impedance; Cyclic voltammetry; Lithium–cobalt–nickel oxide; Solution combustion synthesis (Suresh, P. (112) 665)

Lithium intercalation
 Cathode material; Phase transition; Lithium ion battery; LiMn₂O₄; Potential-composition profile (Abiko, H. (112) 557)

Lithium ion batteries
 Anode material; Sensitivity to humidity; Silver; Natural graphite (Wu, Y.P. (112) 255)

Lithium ion batteries
 Lithiated nickel cobalt oxides; LiNi_{0.8}Co_{0.2}O₂; Zn-doping; Cathode materials (Fey, G.T.K. (112) 384)

Lithium ion battery
 Cathode material; Phase transition; Lithium intercalation; LiMn₂O₄; Potential-composition profile (Abiko, H. (112) 557)

Lithium ion battery
 Initial irreversible capacity; Lithium phosphorus oxynitride; Carbon anode; Sputtering deposition (Chung, K.-i. (112) 626)

Lithium manganese nickel oxides
 Lithium-ion rechargeable battery; Cathode materials; Layered structure (Kang, S.-H. (112) 41)

Lithium nickel dioxide
 Li-ion polymer battery; Gel electrolyte; Poly(acrylonitrile); Thermal stability; Mesocarbon microbeads (Akashi, H. (112) 577)

Lithium phosphorus oxynitride
 Lithium ion battery; Initial irreversible capacity; Carbon anode; Sputtering deposition (Chung, K.-i. (112) 626)

Lithium rechargeable polymer batteries
 Polymer binder; Cathode; Gel polymer electrolyte (Choi, N.-S. (112) 61)

Lithium salts
 Lithium battery; Manganese dioxide (Kim, H.-S. (112) 660)

Lithium secondary batteries
 Sol-gel method; Layered manganese; Cathode materials; Li₂MnO₃ (Shin, S.-S. (112) 634)

Lithium–cobalt–nickel oxide
 ac Impedance; Cyclic voltammetry; Lithium intercalation; Solution combustion synthesis (Suresh, P. (112) 665)

Lithium–sulfur battery
 Polysulfide; Electrolyte; Tetra(ethylene glycol) dimethyl ether; 1,3-Dioxolane (Chang, D.-R. (112) 452)

Lithium-ion battery
 Gel polymer electrolyte; Tri(ethylene glycol) dimethacrylate; Benzoyl peroxide (Kim, H.-S. (112) 469)

Lithium-ion battery
 Ni₃Sn₄; Ball milling; Nanocrystalline; Grain boundary; Capacity (Lee, H.-Y. (112) 8)

Lithium-ion battery
 Polymer electrolyte; PVC/PEMA; PVC/PMMA; Phase separation; Mechanical strength (Han, H.-S. (112) 461)

Lithium-ion battery
 Tin oxide; Graphite; Anode; Pechini process (Zhang, R. (112) 596)

Lithium-ion cells
 Battery; Recycling (Castillo, S. (112) 247)

Lithium-ion polymer cell
 Cycling performance; Gel polymer electrolyte; Ionic conductivity; Methyl methacrylate–styrene copolymer (Kang, D.-W. (112) 1)

Lithium-ion rechargeable battery
 Cathode materials; Lithium manganese nickel oxides; Layered structure (Kang, S.-H. (112) 41)

Magnesium battery
 Magnesium titanium phosphate; Electrochemical magnesium insertion (Makino, K. (112) 85)

Magnesium substitution
 LiCoO₂; Layered oxide; NMR; Lithium battery; Electrical properties (Levasseur, S. (112) 419)

Magnesium titanium phosphate
 Magnesium battery; Electrochemical magnesium insertion (Makino, K. (112) 85)

Magnesium-based compounds
 Hydrogen storage alloys; Mechanical alloying; Nickel-metal hydride battery (Ruggeri, S. (112) 547)

Manganese dioxide
 Dendritic-zinc powder; Impedance; Battery; High-rate discharge (Yang, C.-C. (112) 174)

Manganese dioxide
 Lithium battery; Lithium salts (Kim, H.-S. (112) 660)

Manganese oxides
 Rechargeable lithium battery (Doeff, M.M. (112) 294)

Manganese
 Soft X-ray; Hard X-ray; Battery electrodes; Surface; Reduction (Braun, A. (112) 231)

Mathematical model
 Ni-MH battery; Oxygen evolution reaction; Coupled characterization and modeling (Pan, Y.H. (112) 298)

Mathematical modeling
 Direct methanol fuel cell; Anode; Methanol crossover (Jeng, K.T. (112) 367)

Mathematical modeling
 Phosphoric acid fuel cells (PAFCs); Two-dimensional model (Choudhury, S.R. (112) 137)

MCFC
 LiCoO₂-coated NiO cathode; Ni dissolution; Sol-impregnation (Kim, S.-G. (112) 109)

MCFC

SOFC; CO₂ separation; Power plants (Campanari, S. (112) 273)

Mechanical alloying

Hydrogen storage alloys; Magnesium-based compounds; Nickel-metal hydride battery (Ruggeri, S. (112) 547)

Mechanical strength

Lithium-ion battery; Polymer electrolyte; PVC/PEMA; PVC/PMMA; Phase separation (Han, H.-S. (112) 461)

Membrane electrode assembly

Polymer electrolyte fuel cell; Gaskets; Stack (Pozio, A. (112) 491)

Membrane electrolyte assembly

Methanol conditioning; Formic acid fuel cells (Ha, S. (112) 655)

Mesocarbon microbeads

Li-ion polymer battery; Gel electrolyte; Poly(acrylonitrile); Thermal stability; Lithium nickel dioxide (Akashi, H. (112) 577)

Metal membrane

Fuel-cell; Reformer; FCV; Fuel processor; Methanol (Han, J. (112) 484)

Methane

Steam reforming; Ni-YSZ cermets; Carbon deposition; CaO (Takeguchi, T. (112) 588)

Methanol conditioning

Formic acid fuel cells; Membrane electrolyte assembly (Ha, S. (112) 655)

Methanol crossover

Direct methanol fuel cell; Anode; Mathematical modeling (Jeng, K.T. (112) 367)

Methanol

2-Propanol; Fuel cell; Crossover current; Open circuit voltage (Qi, Z. (112) 121)

Methanol

DMFC; Mobile phone; Battery (Han, J. (112) 477)

Methanol

Fuel-cell; Reformer; Metal membrane; FCV; Fuel processor (Han, J. (112) 484)

Methanol

In situ; Reforming; Reformation; Kinetics; Fuel cell (Samms, S.R. (112) 13)

Methyl methacrylate-styrene copolymer

Cycling performance; Gel polymer electrolyte; Ionic conductivity; Lithium-ion polymer cell (Kang, D.-W. (112) 1)

Micro fuel cell

Series interconnection; Micromachining (Lee, S.J. (112) 410)

Micro-power source

Platinum co-sputtering; V₂O₅; Cycleability; Short-range order; Thin-film battery (Kim, H.-K. (112) 67)

Microcycles

Lead-acid battery; Cycling; Charge-discharge; Wind turbine; Photovoltaic systems (Ruddell, A.J. (112) 531)

Microfibrous copper materials

Zinc electrodes; Thin nickel electrodes; Secondary nickel zinc batteries (Zhu, W.H. (112) 353)

Micromachining

Micro fuel cell; Series interconnection (Lee, S.J. (112) 410)

Mobile phone

DMFC; Battery; Methanol (Han, J. (112) 477)

Models

Fuel cells; Fuel reforming; Water vapor exchanger; Efficiency; Experiments (Williford, R.E. (112) 570)

Molten carbonate fuel cell (MCFC)

Li/Na carbonate electrolyte; Cell performance model; Initial and long-term performance (Morita, H. (112) 509)

Molten carbonate fuel cell

Al-Fe coating; Separator plate; Wet-seal corrosion (Jun, J. (112) 153)

Molten carbonate fuel cell

Alpha lithium aluminate matrix; Tape casting; Pore-size distribution (Batra, V.S. (112) 322)

Multi-phase composition

Hydrogen storage alloy; Ti-Ni-based alloy; Discharge curve; XRD (Xu, Y.H. (112) 105)

Nanocrystalline

Ni₃Sn₄; Ball milling; Grain boundary; Lithium-ion battery; Capacity (Lee, H.-Y. (112) 8)

Natural graphite

Lithium ion batteries; Anode material; Sensitivity to humidity; Silver (Wu, Y.P. (112) 255)

Negative electrode

Rechargeable lithium batteries; Fe-Si alloy; Composite electrode; Ball-milling (Lee, H.-Y. (112) 649)

Neural network

Fuel cell; Solid oxide fuel cells (SOFC); Artificial neural network (ANN); Feed-forward network; Backpropagation (Arriagada, J. (112) 54)

Ni dissolution

MCFC; LiCoO₂-coated NiO cathode; Sol-impregnation (Kim, S.-G. (112) 109)

Ni-MH battery

Mathematical model; Oxygen evolution reaction; Coupled characterization and modeling (Pan, Y.H. (112) 298)

Ni-YSZ cermets

Methane; Steam reforming; Carbon deposition; CaO (Takeguchi, T. (112) 588)

Ni₃Sn₄

Ball milling; Nanocrystalline; Grain boundary; Lithium-ion battery; Capacity (Lee, H.-Y. (112) 8)

Nickel hydroxide

Alkaline storage batteries; Structural characteristics; Chemical precipitation reaction (Song, Q. (112) 428)

Nickel hydroxide

Electrochemical; Precipitation; Discharge capacity; Current density; Preparation (Subbaiah, T. (112) 562)

Nickel-metal hydride battery

Hydrogen storage alloys; Magnesium-based compounds; Mechanical alloying (Ruggeri, S. (112) 547)

NMR

LiCoO₂; Layered oxide; Lithium battery; Electrical properties; Magnesium substitution (Levasseur, S. (112) 419)

Ohmic loss

Current interruption; PEMFC; Stack (Mennola, T. (112) 261)

Open circuit voltage

2-Propanol; Methanol; Fuel cell; Crossover current (Qi, Z. (112) 121)

Organic electrolyte

Viscosity; Conductivity; Lithium battery; Asymmetric alkylcarbonate (Geoffroy, I. (112) 191)

Oxygen evolution reaction

Ni-MH battery; Mathematical model; Coupled characterization and modeling (Pan, Y.H. (112) 298)

Oxygen partial pressure

Solid oxide fuel cell; Co-firing; Tubular flat-plate type cell; Cathode substrate; Cell performance (Orui, H. (112) 90)

Parameter variations

Direct methanol fuel cells; Gas chromatography (Gurau, B. (112) 339)

Particulate anode

Alkaline fuel cell; Surface area; Aluminum; Hydrogen peroxide (Popovich, N.A. (112) 36)

Pb anodes

Corrosion; Lead acid batteries; Doping tin; Calcium (Slavkov, D. (112) 199)

Pechini process

Tin oxide; Graphite; Anode; Lithium-ion battery (Zhang, R. (112) 596)

PEMFC
 Current interruption; Ohmic loss; Stack (Mennola, T. (112) 261)

PEMFC
 Fuel cell; Segmented cell; Current collection; Flow field (Rajalakshmi, N. (112) 331)

PEO–PVA blend
 Composite polymer electrolyte; Ionic conductivity; Zinc–air battery (Yang, C.-C. (112) 497)

Phase separation
 Lithium-ion battery; Polymer electrolyte; PVC/PEMA; PVC/PMMA; Mechanical strength (Han, H.-S. (112) 461)

Phase transition
 Cathode material; Lithium intercalation; Lithium ion battery; LiMn₂O₄; Potential–composition profile (Abiko, H. (112) 557)

Phosphoric acid fuel cells (PAFCs)
 Two-dimensional model; Mathematical modeling (Choudhury, S.R. (112) 137)

Photovoltaic systems
 Lead-acid battery; Cycling; Microcycles; Charge–discharge; Wind turbine (Ruddell, A.J. (112) 531)

Platinum co-sputtering
 V₂O₅; Cycleability; Micro-power source; Short-range order; Thin-film battery (Kim, H.-K. (112) 67)

Polarization
 Silver-ion conductors; Battery discharge unit; Solid-state batteries; Discharge characteristics (Murugaraj, R. (112) 184)

Poly(acrylonitrile)
 Li-ion polymer battery; Gel electrolyte; Thermal stability; Lithium nickel dioxide; Mesocarbon microbeads (Akashi, H. (112) 577)

Polyaniline
 Potentiodynamic deposition; Pulse power; Redox supercapacitor; Stainless-steel (Rajendra Prasad, K. (112) 443)

Polyethylene oxide
 Trioxyethylene; Composite polymer electrolyte; CuS cathode (Chung, J.-S. (112) 671)

Polymer binder
 Lithium rechargeable polymer batteries; Cathode; Gel polymer electrolyte (Choi, N.-S. (112) 61)

Polymer electrolyte fuel cell
 Membrane electrode assembly; Gaskets; Stack (Pozio, A. (112) 491)

Polymer electrolyte
 Ionic conductivity; Blend; Copolymer; VTF equation (Polo Fonseca, C. (112) 395)

Polymer electrolyte
 Lithium-ion battery; PVC/PEMA; PVC/PMMA; Phase separation; Mechanical strength (Han, H.-S. (112) 461)

Polymer electrolyte
 Regenerative fuel cell; Electrocatalyst; Water electrolysis (Ioroi, T. (112) 583)

Polymer
 DC conduction; Current–voltage characteristics; Schottky emission; Poole–Frenkel mechanism; Charge transport (Nagaraj, N. (112) 326)

Polysulfide
 Lithium–sulfur battery; Electrolyte; Tetra(ethylene glycol) dimethyl ether; 1,3-Dioxolane (Chang, D.-R. (112) 452)

Poole–Frenkel mechanism
 DC conduction; Current–voltage characteristics; Schottky emission; Polymer; Charge transport (Nagaraj, N. (112) 326)

Pore-size distribution
 Molten carbonate fuel cell; Alpha lithium aluminate matrix; Tape casting (Batra, V.S. (112) 322)

Porosity
 Conductive additive; Carbon black; X-ray photoelectron spectroscopy (XPS); Battery (Manickam, M. (112) 116)

Potential–composition profile
 Cathode material; Phase transition; Lithium intercalation; Lithium ion battery; LiMn₂O₄ (Abiko, H. (112) 557)

Potentiodynamic deposition
 Polyaniline; Pulse power; Redox supercapacitor; Stainless-steel (Rajendra Prasad, K. (112) 443)

Power plants
 SOFC; MCFC; CO₂ separation (Campanari, S. (112) 273)

Precipitation
 Nickel hydroxide; Electrochemical; Discharge capacity; Current density; Preparation (Subbaiah, T. (112) 562)

Preparation
 Nickel hydroxide; Electrochemical; Precipitation; Discharge capacity; Current density (Subbaiah, T. (112) 562)

Primary battery
 Thionyl chloride; Electrocatalytic effect; Schiff base (Kim, W.-S. (112) 76)

2-Propanol
 Methanol; Fuel cell; Crossover current; Open circuit voltage (Qi, Z. (112) 121)

Pseudocapacitance
 Structural transformation; Hydrous ruthenium–iridium oxides; Cyclic voltammetry; Electrochemical supercapacitor (Hu, C.-C. (112) 401)

Pulse power
 Polyaniline; Potentiodynamic deposition; Redox supercapacitor; Stainless-steel (Rajendra Prasad, K. (112) 443)

PVC/PEMA
 Lithium-ion battery; Polymer electrolyte; PVC/PMMA; Phase separation; Mechanical strength (Han, H.-S. (112) 461)

PVC/PMMA
 Lithium-ion battery; Polymer electrolyte; PVC/PEMA; Phase separation; Mechanical strength (Han, H.-S. (112) 461)

Rare-earth
 Vanadium oxide; Battery (Almeida, E.C. (112) 290)

Rechargeable lithium batteries
 Fe–Si alloy; Composite electrode; Negative electrode; Ball-milling (Lee, H.-Y. (112) 649)

Rechargeable lithium battery
 Manganese oxides (Doeff, M.M. (112) 294)

Recursive least square algorithm
 Shepherd model; Less battery storage system (Cherif, A. (112) 49)

Recycling
 Lithium-ion cells; Battery (Castillo, S. (112) 247)

Redox supercapacitor
 Polyaniline; Potentiodynamic deposition; Pulse power; Stainless-steel (Rajendra Prasad, K. (112) 443)

Reduction
 Soft X-ray; Hard X-ray; Battery electrodes; Surface; Manganese (Braun, A. (112) 231)

Reformation
 Methanol; In situ; Reforming; Kinetics; Fuel cell (Samms, S.R. (112) 13)

Reformer
 Fuel-cell; Metal membrane; FCV; Fuel processor; Methanol (Han, J. (112) 484)

Reforming
 Methanol; In situ; Reformation; Kinetics; Fuel cell (Samms, S.R. (112) 13)

Regenerative fuel cell
 Polymer electrolyte; Electrocatalyst; Water electrolysis (Ioroi, T. (112) 583)

Scanning electron microscopy
 Solid oxide fuel cells; Coefficient of thermal expansion (Chou, Y.-S. (112) 130)

Schiff base
 Thionyl chloride; Electrocatalytic effect; Primary battery (Kim, W.-S. (112) 76)

Schottky emission
DC conduction; Current-voltage characteristics; Poole-Frenkel mechanism; Polymer; Charge transport (Nagaraj, N. (112) 326)

Secondary nickel zinc batteries
Microfibrous copper materials; Zinc electrodes; Thin nickel electrodes (Zhu, W.H. (112) 353)

Segmented cell
PEMFC; Fuel cell; Current collection; Flow field (Rajalakshmi, N. (112) 331)

Self-discharge
Graphite anode; Li-ion batteries; Solid electrolyte interphase (Wang, C. (112) 98)

Sensitivity to humidity
Lithium ion batteries; Anode material; Silver; Natural graphite (Wu, Y.P. (112) 255)

Separator plate
Molten carbonate fuel cell; Al-Fe coating; Wet-seal corrosion (Jun, J. (112) 153)

Series interconnection
Micro fuel cell; Micromachining (Lee, S.J. (112) 410)

Shepherd model
Recursive least square algorithm; Less battery storage system (Cherif, A. (112) 49)

Short- and long-time solutions
Laplace transform; Electrolyte concentration (Hashim Ali, S.A. (112) 435)

Short-range order
Platinum co-sputtering; V₂O₅; Cycleability; Micro-power source; Thin-film battery (Kim, H.-K. (112) 67)

Silver
Lithium ion batteries; Anode material; Sensitivity to humidity; Natural graphite (Wu, Y.P. (112) 255)

Silver-ion conductors
Battery discharge unit; Solid-state batteries; Polarization; Discharge characteristics (Murugara, R. (112) 184)

SOFC
MCFC; CO₂ separation; Power plants (Campanari, S. (112) 273)

Soft X-ray
Hard X-ray; Battery electrodes; Surface; Manganese; Reduction (Braun, A. (112) 231)

Sol-gel method
Lithium secondary batteries; Layered manganese; Cathode materials; Li₂MnO₃ (Shin, S.-S. (112) 634)

Sol-impregnation
MCFC; LiCoO₂-coated NiO cathode; Ni dissolution (Kim, S.-G. (112) 109)

Solid electrolyte interphase
Self-discharge; Graphite anode; Li-ion batteries (Wang, C. (112) 98)

Solid oxide fuel cell
Co-firing; Tubular flat-plate type cell; Cathode substrate; Oxygen partial pressure; Cell performance (Orui, H. (112) 90)

Solid oxide fuel cells (SOFC)
Fuel cell; Artificial neural network (ANN); Neural network; Feed-forward network; Backpropagation (Arriagada, J. (112) 54)

Solid oxide fuel cells
Scanning electron microscopy; Coefficient of thermal expansion (Chou, Y.-S. (112) 130)

Solid oxide fuel cells
Thermal cycling; Compressive mica-based seals (Chou, Y.-S. (112) 376)

Solid-state batteries
Silver-ion conductors; Battery discharge unit; Polarization; Discharge characteristics (Murugara, R. (112) 184)

Solution combustion synthesis
ac Impedance; Cyclic voltammetry; Lithium-cobalt-nickel oxide; Lithium intercalation (Suresh, P. (112) 665)

Sony 18650 cells
Capacity fade; Cycle number (Ramadass, P. (112) 614)

Sparkling voltage
Aluminum electrolytic capacitors; Capacity; Dissipation factor; Leakage current; Dextrose (Tsai, M.-L. (112) 643)

Sputtering deposition
Lithium ion battery; Initial irreversible capacity; Lithium phosphorus oxynitride; Carbon anode (Chung, K.-i. (112) 626)

Stability
Composite electrolyte; Li⁺-conducting glasses; Conductivity; Interfacial properties (Zhang, X.-W. (112) 209)

Stack
Current interruption; Ohmic loss; PEMFC (Mennola, T. (112) 261)

Stack
Polymer electrolyte fuel cell; Membrane electrode assembly; Gaskets (Pozio, A. (112) 491)

Stainless-steel
Polyaniline; Potentiodynamic deposition; Pulse power; Redox supercapacitor (Rajendra Prasad, K. (112) 443)

Steam reforming
Methane; Ni-YSZ cermets; Carbon deposition; CaO (Takeguchi, T. (112) 588)

Structural characteristics
Nickel hydroxide; Alkaline storage batteries; Chemical precipitation reaction (Song, Q. (112) 428)

Structural transformation
Hydrous ruthenium-iridium oxides; Cyclic voltammetry; Electrochemical supercapacitor; Pseudocapacitance (Hu, C.-C. (112) 401)

Surface area
Alkaline fuel cell; Particulate anode; Aluminum; Hydrogen peroxide (Popovich, N.A. (112) 36)

Surface
Soft X-ray; Hard X-ray; Battery electrodes; Manganese; Reduction (Braun, A. (112) 231)

Tape casting
Molten carbonate fuel cell; Alpha lithium aluminate matrix; Pore-size distribution (Batra, V.S. (112) 322)

Tetra(ethylene glycol) dimethyl ether
Lithium-sulfur battery; Polysulfide; Electrolyte; 1,3-Dioxolane (Chang, D.-R. (112) 452)

Thermal cycling
Compressive mica-based seals; Solid oxide fuel cells (Chou, Y.-S. (112) 376)

Thermal stability
Li-ion polymer battery; Gel electrolyte; Poly(acrylonitrile); Lithium nickel dioxide; Mesocarbon microbeads (Akashi, H. (112) 577)

Thin nickel electrodes
Microfibrous copper materials; Zinc electrodes; Secondary nickel zinc batteries (Zhu, W.H. (112) 353)

Thin-film battery
Platinum co-sputtering; V₂O₅; Cycleability; Micro-power source; Short-range order (Kim, H.-K. (112) 67)

Thionyl chloride
Electrocatalytic effect; Schiff base; Primary battery (Kim, W.-S. (112) 76)

Ti-Ni-based alloy
Hydrogen storage alloy; Multi-phase composition; Discharge curve; XRD (Xu, Y.H. (112) 105)

Tin oxide
Graphite; Anode; Lithium-ion battery; Pechini process (Zhang, R. (112) 596)

Tri(ethylene glycol) dimethacrylate
Gel polymer electrolyte; Benzoyl peroxide; Lithium-ion battery (Kim, H.-S. (112) 469)

Trioxylethylene
Polyethylen oxide; Composite polymer electrolyte; CuS cathode (Chung, J.-S. (112) 671)

Tubular flat-plate type cell
 Solid oxide fuel cell; Co-firing; Cathode substrate; Oxygen partial pressure; Cell performance (Orui, H. (112) 90)

Two-dimensional model
 Phosphoric acid fuel cells (PAFCs); Mathematical modeling (Choudhury, S.R. (112) 137)

V_2O_5
 Platinum co-sputtering; Cycleability; Micro-power source; Short-range order; Thin-film battery (Kim, H.-K. (112) 67)

VA-metry
 $LiNi_{1-y}Co_yO_2$ cathodes; XRD parameters; Cycling test (Moshtev, R. (112) 30)

Vanadium oxide
 Rare-earth; Battery (Almeida, E.C. (112) 290)

Viscosity
 Organic electrolyte; Conductivity; Lithium battery; Asymmetric alkyl-carbonate (Geoffroy, I. (112) 191)

VTF equation
 Polymer electrolyte; Ionic conductivity; Blend; Copolymer (Polo Fonseca, C. (112) 395)

Waste LiCoO₂
 Cobalt hydroxide; Cobalt oxide; Dehydration; Electrochemical-hydrothermal method (Myoung, J. (112) 639)

Water balance
 Fuel cell system; Fuel processing (Ahmed, S. (112) 519)

Water electrolysis
 Regenerative fuel cell; Polymer electrolyte; Electrocatalyst (Ioroi, T. (112) 583)

Water vapor exchanger
 Fuel cells; Fuel reforming; Efficiency; Models; Experiments (Williford, R.E. (112) 570)

Well-to-wheels analysis
 Fuel-cell vehicles; Fuels; Energy use; Greenhouse gas emissions; Hydrogen (Wang, M. (112) 307)

Wet-seal corrosion
 Molten carbonate fuel cell; Al–Fe coating; Separator plate (Jun, J. (112) 153)

Wind turbine
 Lead–acid battery; Cycling; Microcycles; Charge–discharge; Photovoltaic systems (Ruddell, A.J. (112) 531)

X-ray photoelectron spectroscopy (XPS)
 Conductive additive; Porosity; Carbon black; Battery (Manickam, M. (112) 116)

XRD parameters
 $LiNi_{1-y}Co_yO_2$ cathodes; Cycling test; VA-metry (Moshtev, R. (112) 30)

XRD
 Hydrogen storage alloy; Multi-phase composition; Ti–Ni-based alloy; Discharge curve (Xu, Y.H. (112) 105)

Zinc electrodes
 Microfibrous copper materials; Thin nickel electrodes; Secondary nickel zinc batteries (Zhu, W.H. (112) 353)

Zinc–air battery
 Composite polymer electrolyte; PEO–PVA blend; Ionic conductivity (Yang, C.-C. (112) 497)

Zn-doping
 Lithiated nickel cobalt oxides; $LiNi_{0.8}Co_{0.2}O_2$; Cathode materials; Lithium ion batteries (Fey, G.T.K. (112) 384)