ACKNOWLEDGEMENT

I would especially like to convey thanks to my seminar guide Mr. Krishna Prasad R, Assistant Professor of Computer Science and Engineering Department for providing encouragement, constant support and guidance which was of a great help to complete this seminar successfully.

I am grateful to Dr. Kavitha C, Head of the Department, Computer Science and Engineering for giving me the support and encouragement that was necessary for the completion of this seminar.

I would also like to express my gratitude to Dr. N. Rana Pratap Reddy, Principal, Global Academy of Technology for providing us congenial environment to work in.

Finally, I would like to thank my friends and my parents. Without their love, patience and support I would be unable to complete this work.

SATHYA NARAYANA R

1GA15CS134

ABSTRACT

The novel technologies developed aim at reducing the costs of the health sector, by increasing the empowerment of people and, in the same time, by improving the monitoring of patients with chronic diseases. Through the continuous assessment of symptoms, such systems can help the patients to managing their condition by their own, without needing direct supervision of specialized healthcare personnel. Currently, the patient monitoring systems based on internet of things (IoT) or cyber physical systems (CPS) are attracting considerable attention from the scientific community. Such emerging technologies have been used to various purposes: facilitate smoking cessation monitor patients with chronic heart failure detect early signs of arrhythmia or ischemia, provide diabetes education or monitor relevant physiological markers. Individuals with disabilities are likely to engage in behaviors that can put their health at risk and there is a strong need of technologies that can improve their daily-life conditions, enable social relations, and increase their degree of autonomy and safety.

TABLE OF CONTENTS

Sl. No	I	Particulars Particulars	Page. No
1.	Introduction		1
2.	System architecture		3
3.	Technology Used		6
4.	Implementation		10
5.	Applications		14
6.	Future scope		16
	Conclusion		17
	Bbibliography		18
	Appendix		19

LIST OF FIGURES

Figure No.	Figure Name	Page. No
Figure 1	The hardware architecture of the proposed system	4
Figure 2	Face tracking using a modified version.	7
Figure 3	The proposed DEEP-SEE FACE methodological framework.	10
Figure 4	The system performance variation with different parameters.	12
Figure 5	DEEP-SEE FACE performance evaluation	13

LIST OF TABLES

Table No	Table Name	Page No
Table 1	Experimental results of the DEEP-SEE FACE recognition	11
	module	