Performance Evaluation, etc

(cf. Grama et al.)

Amdahl's Law

- Black beast of researchers in the field of parallel computing until 1988
- It "limited" the speedup of a parallel machine to 20-50, regardless of the number of processors!
- In 1988, however, some researchers from Sandia National Labs obtained speedup of 1000 on a 1024 processors machine without violating the Amdahl's Law. How did they do?

Speedup

Measure of how much faster the computation executes versus the best serial code

Serial time divided by parallel time

Example: Painting a picket fence

- 30 minutes of preparation (serial)
- One minute to paint a single picket
- 30 minutes of cleanup (serial)

Thus, 300 pickets takes 360 minutes (serial time)

Computing Speedup

Number of painters	Time	Speedup
1	30 + 300 + 30 = 360	1.0X
2	30 + 150 + 30 = 210	1.7X
10	30 + 30 + 30 = 90	4.0X
100	30 + 3 + 30 = 63	5.7X
Infinite	30 + 0 + 30 = 60	6.0X

Potential speedup is restricted by serial portion

What if fence owner uses spray gun to paint 300 pickets in one hour?

- Better serial algorithm
- If no spray guns are available for multiple workers, what is maximum parallel speedup?

Amdhal's law

$$Speedup = \frac{1}{\frac{F_p}{N} + F_s}$$

Scalable problem

- Problems that increase the percentage of parallel time with their size are more scalable than problems with a fixed percentage of parallel time
- Encapase the problem size by doubling the grice dainer between same thank ting the problem size.
 - performance by increasing the problem size

 four times the number of grid points

 2D Grid Calculations 85 sec 85%

 twice the number of time steps

 Serial fraction 15 sec 97.84%

 Serial fraction 15 sec 2.16%

Maximum Speedup – Amdahl's law

Maximum Speedup – Amdahl's law

Speedup factor is given by:

$$S(n) = \frac{t_s}{ft_s + (1 - f)t_s/n} = \frac{n}{1 + (n - 1)f}$$

This equation is known as Amdahl's law

Amdahl's Law

• Thus, for $n \to \infty$:

$$S(n) \to \frac{1}{f}$$

- For instance, if the serial fraction is f = 5% (very plausible!) the maximum speed-up is 20!
- OBS The serial fraction represents that "fraction" of code that can not be parallelized (eg I / O, critical sections, etc.)

Scalability

How do we **extrapolate the performance** from **small** problems and small systems to **larger** problems with **larger** configurations?

The following example shows the evolution of the speed-up of **three algorithms** for a n-point Fast Fourier Transform (FFT) on 64 processors

For small values of n, it would seem that the Binary-exchange and 3-D transpose algorithms are the best, but for n > 18000, the 2-D transpose algorithm allows better speedup.

Moral: It is difficult to infer the scalability of data from observations and "small" machines

Scalability

The efficiency of a parallel program can be written as:

$$E = \frac{S}{p} = \frac{T_S}{pT_P}$$

or, by remembering the concept of parallel overhead $T_o = p T_P - T_S$, we have:

$$E = \frac{1}{1 + \frac{T_o}{T_S}}.$$

- For a given problem of dimension (i.e., the value T_S remains constant), if we increase the number of processors p, T_o increases
- At the contrary, the total **efficiency** of the program **decreases**. This is the case of all parallel programs.

Scalability: Example

- Consider the usual problem of adding n numbers on p processors (intelligent scaling algorithm)
- We have seen that (let's avoid asymptotic analysis, we work with constants):

$$T_P = rac{n}{p} + 2\log p - \left\{ egin{array}{l} \log p ext{ communication steps} \\ + \log p ext{ addition steps} \end{array}
ight.$$

$$S = \frac{n}{\frac{n}{p} + 2\log p}$$

$$E = \frac{1}{1 + \frac{2p \log p}{n}}$$

Scalability: Example

If we visualize the speedup for various sizes of input, we get:

Figure 5.8 Speedup versus the number of processing elements for adding a list of numbers.

The speedup tends to **saturate** and the **efficiency decreases** as a consequence of **Amdahl's Law**

Scalability: Features

- The total overhead function *To* is a function of both *Ts* (ie, the size of the problem) and the number of processors *p*
- In many cases, To grows sub-linearly with respect to Ts
- In such cases, the efficiency increases if the dimensions of the problem are increased, keeping the number of processors constant
- For these systems, we can **simultaneously increase** the size of the problem and the number of processors to maintain constant the efficiency (but how?)
- Such systems are called scalable parallel systems

Scalability: Features

- In a scalable system, the efficiency remains constant with the increase of both **p** and **n**.
- For example, in the case of the sum of *n* numbers on *p* processors, the efficiency remains constant at 0.8 if

$$n = 8 p \log p$$

Table 5.1 Efficiency as a function of n and p for adding n numbers on p processing elements.

n	p = 1	p = 4	p = 8	p = 16	p = 32
64	1.0	0.80	0.57	0.33	0.17
192	1.0	0.92	0.80	0.60	0.38
320	1.0	0.95	0.87	0.71	0.50
512	1.0	0.97	0.91	0.80	0.62

NB: Starting from 0.8 = 1/(1+2plogp/n) the above relation is found ...

Scalability: Conclusions

- Recall that parallel systems that are cost-optimal have efficiency Θ (1).
- Therefore, scalability and cost-optimality are closely related
- A scalable parallel system can be made cost-optimal if the number of processors and the size of the problem are chosen in an appropriate way

In summary:

- For a given size of the problem, if we increase the number of processors, the overall efficiency of the system decreases (for all systems)
- For some systems, the efficiency of a parallel system increases if the dimensions of the problem are increased while the number of processes remains constant

Isoefficiency

The two previous concept can be illustrated by the following chart

Figure 5.9 Variation of efficiency: (a) as the number of processing elements is increased for a given problem size; and (b) as the problem size is increased for a given number of processing elements. The phenomenon illustrated in graph (b) is not common to all parallel systems.

Isoefficiency

- Which is the growth rate of the size of the problem with respect to the number of processors in order to keep the efficiency constant?
- This rate determines the scalability of the system. The smaller, the better
- Before formalizing this concept, we must formally define what are "the size of the problem"

Isoefficiency

- Possible solutions: Size of input? Not good!
- ES: Let *n* be the input size of a matrix computation problem (eg, sum of matrices, matrix-matrix product). If *n* is doubled, there will be an increase of 8 times for an operation involving the **matrix matrix** product, while 4 times if the operation is a **sum** of matrices. So, it "depends" on the problem
- To this end, we define the problem size W the asymptotic number of operations associated with the best serial algorithm to solve the problem (in practice it is the sequential time!)

Isoefficiency: Formalism

• The parallel time can be written as (recall that $W = T_s$):

$$T_P = rac{W + T_o(W,p)}{p}$$

Thus, speedup is

$$egin{aligned} S &= rac{W}{T_P} \ &= rac{Wp}{W + T_o(W,p)}. \end{aligned}$$

Eventually, the expression becomes:

$$egin{aligned} E &= rac{S}{p} \ &= rac{W}{W + T_o(W,p)} \ &= rac{1}{1 + T_o(W,p)/W}. \end{aligned}$$

Isoefficiency: Formalism

- For scalable parallel systems, efficiency can be maintained at a fixed value (between 0 and 1), if the ratio To / W is kept constant
- For a given value and efficiency

$$E=rac{1}{1+T_o(W,p)/W}, \ rac{T_o(W,p)}{W}=rac{1-E}{E}, \ W=rac{E}{1-E}T_o(W,p).$$

If K = E / (1 - E) is a constant that depends on the efficiency to be maintained, given that To is a function of W and p, we have:

$$W = KT_o(W, p).$$

Isoefficiency: Formalism

- The previous formula takes the name of function isoefficiency
- From this formula, it is clear that the dimensions of the problem W can be obtained as a function of p through algebraic steps, in order to keep the efficiency constant
- This function determines the "easiness" with which a parallel system can maintain a constant efficiency and, consequently, achieve a speedup that increases in proportion to the number of processors

Isoefficiency: Example

- The overhead function for the problem of adding n numbers on p processors is approximated by 2p log p
- By replacing **To** with **2p log p**, we obtain:

$$W = K2p \log p.$$

So, the asymptotic isoefficiency function for this parallel system is

$$\Theta(p \log p)$$

- If the number of processors is increased from p to p' (that is, by a factor of p' / p), the size of the problem (in this case, n) must be increased by a factor (p' log p') / (p log p) in order to achieve the same efficiency of p processors.
- In this way, the speedup increases by a factor of p'/ p

Consider the sequential version of the trapezoidal rule:

```
h = (b-a)/n;
integral = (f(a) + f(b))/2.0;
x = a;
for (i = 1; i <= n-1; i++) {
    x = x + h;
    integral = integral + f(x);
}
integral = integral*h;</pre>
```

The execution time can be approximated by

$$T_{S}(n) = c_{1} + c_{2} \; (n\text{-}1) = k_{1}n + k_{2} \cong k_{1}n$$
 instructions "outside" the for

instructions "in" the for

n = trapezoid number

We consider the parallel version of trapezoid rule:

The parallel execution time can be approximated by

$$T_p(n, p) = k_1 n/p + k_2 \log_2(p) + k_3$$

instructions "due" to the Trap call

Instructions "due" to MPI Reduce (binary tree)

Being

$$T_o = p T_P - T_S$$

• We have (neglecting k_3)

$$T_o = k_1 n + k_2 p \log_2(p) - k_1 n = k_2 p \log_2(p)$$

From the definition of efficiency,

$$E = \frac{1}{1 + \frac{T_O}{W}} = \frac{1}{1 + \frac{k_2 p \log_2(p)}{k_1 n}} \Rightarrow n = \frac{E}{1 - E} \frac{k_2}{k_1} p \log_2(p)$$

• The formula $E = \frac{1}{1 + \frac{T_O}{W}} = \frac{1}{1 + \frac{k_2 p \log_2(p)}{k_1 n}}$

tells us that, in order to **maintain a constant efficiency**, "n should increase as $p \log_2(p)$ "

• For example, both p = 4 and n = 512. If we want to maintain the same efficiency with 8 (i.e. 2 p) processors, we have to impose (instead of doubling n as you might think):

$$\frac{k_2 4 \log_2(4)}{k_1 5 1 2} = \frac{k_2 8 \log_2(8)}{k_1 n} \Rightarrow n = 1536$$