Practice Problem 2.8 (solution page 181)

Fill in the following table showing the results of evaluating Boolean operations on bit vectors.

Web Aside DATA:BOOL More on Boolean algebra and Boolean rings

Web Aside DATA:BOOL More on Boolean algebra and Boolean rings The Boolean operations $[\cdot]$. & and ~ operating on bit vectors of length w form a Boolean algebra, for any integer w > 0. The simplest is the case where w = 1 and there are just two elements, but for the more general case there are 2^w bit vectors of length w. Boolean algebra has many of the same properties as arithmetic over integers. For example, just as multiplication distributes over addition, written $a \cdot b + c \cdot 0 = (a \cdot b) + (a \cdot c)$. Boolean operation $b \cdot a$ distributes over $[\cdot]$, written $a \cdot b \cdot c \cdot c \cdot c$ and $b \cdot c \cdot c \cdot c$ and $b \cdot c \cdot c \cdot c \cdot c \cdot c$ and $b \cdot c \cdot c \cdot c \cdot c$ and $b \cdot c \cdot c \cdot c \cdot c$ and $b \cdot c \cdot c \cdot c \cdot c$ and $b \cdot c \cdot c \cdot c \cdot c$ and $b \cdot c \cdot c \cdot c \cdot c$ and $b \cdot c \cdot c \cdot c \cdot c$ and $b \cdot c \cdot c \cdot c \cdot c \cdot c$ and $b \cdot c \cdot c \cdot c \cdot c \cdot c$ and $b \cdot c \cdot c \cdot c \cdot c \cdot c$ and $b \cdot c \cdot c \cdot c \cdot c \cdot c$ and $b \cdot c \cdot c \cdot c \cdot c \cdot c$ and $b \cdot c \cdot c \cdot c \cdot c \cdot c$ and $b \cdot c \cdot c \cdot c \cdot c \cdot c$ and $b \cdot c \cdot c \cdot c \cdot c \cdot c$ and $b \cdot c \cdot c \cdot c \cdot c \cdot c$ and $b \cdot c \cdot c \cdot c \cdot c \cdot c$ and $b \cdot c \cdot c \cdot c \cdot c \cdot c \cdot c$ and $b \cdot c \cdot c \cdot c \cdot c \cdot c$ and $b \cdot c \cdot c \cdot c \cdot c \cdot c$ and $b \cdot c \cdot c \cdot c \cdot c \cdot c$ and $b \cdot c \cdot c \cdot c \cdot c \cdot c$ and $b \cdot c \cdot c \cdot c \cdot c \cdot c$ and $b \cdot c \cdot c \cdot c \cdot c \cdot c$ and $b \cdot c \cdot c \cdot c \cdot c \cdot c$ and $b \cdot c \cdot c \cdot c \cdot c \cdot c$ and $b \cdot c \cdot c \cdot c \cdot c \cdot c$ and $b \cdot c \cdot c \cdot c \cdot c \cdot c \cdot c$ and $b \cdot c \cdot c \cdot c \cdot c \cdot c \cdot c$ and $b \cdot c \cdot c \cdot c \cdot c \cdot c \cdot c$ and $b \cdot c \cdot c \cdot c \cdot$

Operation	Result
a	[01001110
b	[11100001
~ a	
~b	
a & b	
$a \mid b$	
a ^ b	

