НАЗВАНИЕ УЧРЕЖДЕНИЯ, В КОТОРОМ ВЫПОЛНЯЛАСЬ ДАННАЯ ЛАБОРАТОРНАЯ РАБОТА

тема: НАЗВАНИЕ ЛАБОРАТОРНОЙ РАБОТЫ

Лабораторная работа №12

Выполнил студент:	Owen U.N
(подпись студента)	
Группа	: 43426/1
Преподаватель:	Doe J.J
(подпись преподавателя)	

Цель работы

Исследование однофононного резонанса, его проявления в спектре отражения полупроводника. Наблюдение и сравнение спектров отражения для разных полупроводников (на примере Ge и SiC). Освоение метода исследования спектра отражения в ИК области.

Схема установки и проведение эксперимента

измерение отражения SiC и Ge в диапазоне длин волн от 4 до 15 мкм; - фиксация уровня шума (Uш) и введение соответствующих поправок; - построение графиков измеренных спектров в осях: коэффициент отражения — длина волны, с указанием погрешностей; - анализ спектра отражения SiC с использованием модели классического осциллятора, определение параметров модели; - сравнение экспериментальной величины коэффициента отражения германия (средней по спектру) с расчетной.

- 1. глобар
- 2. зеркало
- 3. зеркало
- 4. механический модулятор
- 5. входная щель монохроматора
- 6. плоское зеркало
- 7. параболическое зеркало
- 8. трехгранная призма
- 9. плоское зеркало
- 10. выходная щель монохроматора
- 11. сферическое зеркало
- 12. поворотная турель с образцами
- 13. сферическое зеркало
- 14. пироэлектрический фотоприемник
- 15. селективный усилитель сигнала

Рис. 1: Схема установки

Ход работы

1-2.Измерение отражения SiC и Ge

Перед проведением измерений посредством маломощной лампы накаливания была выполнена калибровка экспериментальной установки.

Зафиксированный уровень шума много меньше измеряемого сигнала, в связи с чем данный параметр не учитывался в вычислениях.

3. Построим график. Рис. 2

Error in setwd("~/Documents/Labs/lab08"): cannot change working directory

Рис. 2: График спектров отражения

4. Проанализируем спектр отражения SiC исользуя модель классического осциллятора. Для этого перестроим график в координатах: $(1+\sqrt{r})^2/(1-\sqrt{r})^2\sim 1/(\lambda^2-\lambda_0^2)$

Error in setwd("~/Documents/Labs/lab08"): cannot change working directory

Рис. 3: Перестроенный спектр

При аппроксимации функции получаем следущие значения.

$$y = 350.05 \cdot x + 9.73$$

$$tg\gamma = 350.05 \pm 28.64$$

$$C = 9.73 \pm 0.96$$

Из этого следует, что $\varepsilon_0 = C = 9.73$.

$$\frac{\varepsilon_0}{\lambda_0^2(\varepsilon_\infty - \varepsilon_0)} = -0.03$$

$$\varepsilon_{\infty} = \varepsilon_0 - \frac{\varepsilon_0}{\sqrt{2}} = 7.52$$

$$\varepsilon_{\infty} = \varepsilon_0 - \frac{\varepsilon_0}{\lambda_0^2} = 7.52$$

$$\omega_0 = \frac{c}{\lambda_0} = 23.80 \cdot 10^{12} Hz$$

Последний параметр γ подбирается. Рис. 4

Рис. 4: График спектров отражения. Подбор коэффициента

Наилучшее совпадение при $\gamma = 3.4 \cdot 10^6$. Тогда $\gamma/w_0 = 1.43 \times 10^{-7}$

5. Сравнение экспериментального коэффициента отражения Ge с расчетным Принимаем $n=4, k\ll 1$

$$r = \frac{(n-1)^2 + k^2}{(n+1)^2 + k^2} = \frac{(n-1)^2}{(n+1)^2} = 0.36$$

Результат усреднения экспериментальных значений: 0,46. Такое расхождение может быть объяснено путём учёта многократных отражений.

Рис. 5: Среднее значение коэффициента отражения германия

Вывод

В результате работы были проведены исследования двух образцов: SiC и Ge Модель классического осциллятора действительно может с высокой точностью описывать явление решеточного отражения. Данная модель после подбора коэффициентов показала совпадение расчетных значений с экспериментальными в исследуемой области. Была получена интепретация спектра для SiC через коэффициенты: $\varepsilon_0=9.73$, $\varepsilon_\infty=7.52,\,\omega_0=23.80\cdot 10^{12}Hz,\,\gamma/w_0=1.43\times 10^{-7}$

Теоретически рассчитанный коэффициент r(Ge) меньше среднего экспериментального на $\sim 20\%$. Однако, при расчёте коэффициента не было учтено многократное отражение света от границ образца. Расхождение может быть объяснено погрешностями при измерении и аппроксимации, несовершенством границ кристалла, а так же ненулевым показателем поглощения, которым мы пренебрегли в расчетах.

Приложение

Входные данные

Error in setwd("~/Documents/Labs/lab08"): cannot change working directory

	1	Al	SiC	Ge
1	4.00	249.70	46.60	122.50
2	5.00	179.50	30.80	84.10
3	6.00	90.70	13.50	43.30
4	7.00	77.10	14.00	37.50
5	8.00	58.50	7.35	27.80
6	9.00	33.60	3.83	16.57
7	10.00	22.30	3.15	10.76
8	10.50	17.45	11.81	8.38
9	10.70	16.60	12.02	8.07
10	11.00	13.37	10.63	6.16
11	12.00	8.30	7.40	3.93
12	13.00	5.00	2.72	2.18
13	14.00	2.62	1.20	1.15
14	15.00	1.10	0.43	0.53

Таблица 1: Входные данные