- 1. $A = B \implies A^T = B^T$
- 2. $(A^T)^T = A$
- 3. $(A+B)^T = A^T + B^T$
- 4. $(AB)^T = B^T A^T$
- 5. $(kA)^T = kA^T, k \in \mathbb{R}$

Definição 1. Traço O traço de uma matriz quadrada A é o somatório dos elementos da diagonal principal. Denota-se $\operatorname{tr}(A)$.

Seja $k \in \mathbb{R}$.

- 1. $\operatorname{tr}(kA) = k \operatorname{tr}(A)$
- 2. $\operatorname{tr}(A+B) = \operatorname{tr}(A) + \operatorname{tr}(B)$
- 3. $\operatorname{tr}(AB) = \operatorname{tr}(BA)$
- 4. $\operatorname{tr}(AB) \neq \operatorname{tr}(A)\operatorname{tr}(B)$
- 5. $\operatorname{tr}(A^T) = \operatorname{tr}(A)$

Definição 2. Matriz simétrica Uma matriz quadrada é simétrica se, e somente se $A = A^T$.

Nota. O produto AA^T é sempre uma matriz simétrica.

Definição 3. Matriz antissimétrica Uma matriz é dita antissimétrica se, e somente se $A^T = -A$.

Nota. A é uma matriz antissimétrica se, e somente se os elementos posicionados simetricamente com relação à diagonal principal são opostos, isto é, $a_{ij} = -a_{ji}$.

Definição 4. Matriz ortogonal Uma matriz quadrada é dita ortogonal se, e somente se $A^T=A^{-1}$

Nota. Na matriz ortogonal ocorre: $AA^{-1} = I \implies AA^{T} = I$.

Propriedades dos determinantes:

- 1. $\det(A) = \det(A^T)$.
- 2. $\det(AB) = \det(A) \det(B)$.
- 3. $\det(A+B) \neq \det(A) + \det(B)$.
- 4. Se a matriz A possui uma linha ou coluna nulos então $\det(A) = 0$.
- 5. $\det(kA) = k^n \det(A)$.
- 6. Se A é inversível então $\det(A) = \frac{1}{\det(A^{-1})}$.
- 7. Se A é uma matriz ortogonal ocorre $\det(A) = \pm 1$.
- 8. Se A é uma matriz triangular, então $\det(A) = a_{11} \cdot a_{22} \cdot a_{33} \dots a_{nn}$.