Scilab Textbook Companion for Network Analysis And Synthesis by B. R. Gupta¹

Created by
Khan Salman Aafak
B.E (EXTC)
Electronics Engineering
Mumbai University
College Teacher
Chaya S Ravindra
Cross-Checked by
K. V. P. Pradeep

May 24, 2016

¹Funded by a grant from the National Mission on Education through ICT, http://spoken-tutorial.org/NMEICT-Intro. This Textbook Companion and Scilab codes written in it can be downloaded from the "Textbook Companion Project" section at the website http://scilab.in

Book Description

Title: Network Analysis And Synthesis

Author: B. R. Gupta

Publisher: S. Chand, New Delhi

Edition: 3

Year: 2009

ISBN: 81-219-3055-3

Scilab numbering policy used in this document and the relation to the above book.

Exa Example (Solved example)

Eqn Equation (Particular equation of the above book)

AP Appendix to Example(Scilab Code that is an Appednix to a particular Example of the above book)

For example, Exa 3.51 means solved example 3.51 of this book. Sec 2.3 means a scilab code whose theory is explained in Section 2.3 of the book.

Contents

Li	st of Scilab Codes	
1	Introduction to electronic circuits	5
2	single phase AC Circuits	24
3	Three Phase Circuits	89
4	network theorem	126
5	Network Theorem	145
7	Two Port Network	184
8	filter	193
9	Network Function	217

List of Scilab Codes

Exa 1.1	Resistance
Exa 1.2	Diameter
Exa 1.3	Alpha Rise in Temperature 6
Exa 1.4	Current
Exa 1.5	Power and Resistance
Exa 1.6	cost quantity of electricity number of electron rate of
	electrical energy
Exa 1.7	Power current voltage
Exa 1.11	Temperature coefficient
Exa 1.13	Resistance total power
Exa 1.14	Resistance
Exa 1.15	RESISTANCE CURRENT
Exa 1.16	ENERGY PERCENTAGE OF ENERGY 11
Exa 1.17	EMF
Exa 1.18	Inductance of Coil
Exa 1.19	Inductance
Exa 1.20	Resistance
Exa 1.21	Voltage Across Inductor
Exa 1.26	Inductor
Exa 1.27	Flux
Exa 1.28	Capacitor
Exa 1.29	Equivalent Capacitor
Exa 1.30	VLTAGE AND ENERGY
Exa 1.32	Current and Resistance
Exa 1.33	Introduction of Electric Circuits
Exa 1.34	Power
Exa 1.35	Resistance
Exa 1.36	change flux flux change voltage energy in inductor 17

Exa 1.37	Current
Exa 1.38	Current
Exa 1.39	Insulation resistance
Exa 1.40	Resistance
Exa 1.41	Resistance
Exa 1.42	Resistance
Exa 1.44	voltage
Exa 1.46	current
Exa 1.47	Resistance
Exa 1.48	Current
Exa 1.50	voltage
Exa 1.51	Power
Exa 1.52	equvalent inductance
Exa 1.53	equvalent resistance
Exa 2.1	average value RMS Value Form Factor Peak Factor RMS
	Value of sine wave
Exa 2.3	Form Factor Peak Factor
Exa 2.7	addition and substraction
Exa 2.8	ADDITION SUBSTRACTION MULTIPLICATION DI-
	VISION
Exa 2.9	Rate of change of current
Exa 2.10	rms
Exa 2.11	INSTANTANEOUS VALUE
Exa 2.12	current
Exa 2.13	Average Value of Voltage
Exa 2.14	Effective Value Form Factor
Exa 2.15	Average Value Effective Value Form Factor 29
Exa 2.16	ENERGY FORM FACTOR
Exa 2.17	RMS
Exa 2.20	Voltage
Exa 2.21	Voltage
Exa 2.22	Average
Exa 2.23	Average Energy
Exa 2.24	Current
Exa 2.25	VOLTAGE
Exa 2.26	Reading of moving coil Reading of hot wire Total Power
	Power dissipated

Exa 2.27	CURRENT POWER DISSIPATED INSTANTANEOUS
Exa 2.28	CURRENT
Exa 2.29	Capacitive Reactance susceptance and current
Exa 2.29 Exa 2.30	Impedance Admittance Current Power Factor Active
Exa 2.30	power Reactive Power Apparent Power
Exa 2.31	
Exa 2.31	Current Apparent Power Active Power
Exa 2.33	Active Power Current Voltage
Exa 2.55	Impedance Admittance Current Power Factor Apparant Power Active Power Posterior Power Voltage Agrees
	ent Power Active Power Reactive Power Voltage Across
Exa 2.34	resistance and capacitance
	Impedance Power Factor Power Consumed
Exa 2.35 Exa 2.36	Maximum Charge and Energy
Exa 2.30	XL XC Current Power Factor Apparent Power Active
Exa 2.37	Power Reactive Power
Exa 2.38	active power impedance
Exa 2.39	Current Voltage
Exa 2.40	1 Power factor 2 Apparent Reactive Active Power
Exa 2.40 Exa 2.41	Voltage across v1 v2 Impedance Admittance Power factor
Exa 2.41 Exa 2.42	Impedance
Exa 2.42 Exa 2.43	
Exa 2.43	Power Factor
Exa 2.44 Exa 2.45	Power Inductance
Exa 2.46	
Exa 2.40 Exa 2.47	P
Exa 2.47 Exa 2.49	current
Exa 2.49 Exa 2.51	Impedance admittance Current Power Factor Apparent
Exa 2.01	Power active Reactive Power
Exa 2.52	Total Current power Factor
Exa 2.53	Inductance Frequency
Exa 2.54	Single Phase AC Circuits
Exa 2.55	Resistance
Exa 2.56	Current Power Factor
Exa 2.57	Total Current Impedance Admittance Power factor Ap-
LAG 2.01	parent Power Active Power Reactive Power
Exa 2.58	Voltage Current power Factor Active Reactive Power
Exa 2.59	Total Current Shunt Capacitor
⊔ ∧a 4. ∪3	

Exa 2.60	Conductance Susceptance Current Power factor	55
Exa 2.61	admittance Impedance Total Current Power Factor Ac-	
	tive Power	56
Exa 2.62	Current impedance Active Power TotalActive Power Power	
	Factor Apparent Power Reactive Power	58
Exa 2.63	Current Power Factor	59
Exa 2.64	Current in branch Total Current	61
Exa 2.66	Power	61
Exa 2.67	Branch Impedance Total Impedance Branch Current	
	Total Current	62
Exa 2.68	Total Power	63
Exa 2.69	Line Current Impedance Circuits Phase Angle	63
Exa 2.70	Current Impedance	64
Exa 2.71	Power Power Factor	65
Exa 2.72	Power Factor Total volts Active Reactive power Overall	
	Power Factor	65
Exa 2.73	Inductance Capacitance	66
Exa 2.74	Current in each branch Total Current Power Factor To-	
	tal apparent Active Reactive Total Current	66
Exa 2.75	Current Total Apparent Active Reactive Power Power	
	Factor	67
Exa 2.76	magnitude Phase Angle Total Impedance	68
Exa 2.77	Power Factor	69
Exa 2.78	Voltage	69
Exa 2.79	Voltage	70
Exa 2.80	R1 X1 X2	71
Exa 2.81	Current in each branch Total Current Active Reactive	
	Apparent Power	71
Exa 2.82	Resistance Capacitance	72
Exa 2.83	Active Reactive Apparent Power	73
Exa 2.84	Frequency	73
Exa 2.85	Current	74
Exa 2.86	Resonant Frequency Upper Lower Half Frequency Band	
	Width Voltage	75
Exa 2.87	Inductance Q Current voltage	75
Exa 2.88	Resonant Frequency Rc	76
Exa 2.89	Resonant Frequency Q Band Width Out put Voltage .	76
Exa 2 90	R L C	77

Exa 2.91	Current at resonance	78
Exa 2.92	frequency	78
Exa 2.93	Self Inductane Mutual Inductance voltage induce	79
Exa 2.94	Mutual Inductance EMF	79
Exa 2.95	Mutual Inductance	79
Exa 2.96	Mutual Inductance Coefficient Coupling	80
Exa 2.97	L1 L2 M K	80
Exa 2.98	L1 L2 M N2	81
Exa 2.99	M K	81
Exa 2.100	Self Inductance Mutual Inductance Coefficient of cou-	
	pling	82
Exa 2.102	Equivalent Inductance	82
Exa 2.103	Equivalent Inductance	82
Exa 2.104	Self Inductance Total Inductance Energy	83
Exa 2.105	Self Inductance Mutual Inductance Turns of coil	84
Exa 2.106	Resonant Frequency Current	84
Exa 2.107	Average Value RMS Value	85
Exa 2.108	RMS	85
Exa 2.109	Real Power Reactive Power Power Factor	86
Exa 2.111	Total Power Factor Total Active and Reactive Power .	86
Exa 2.112	impedance resistance reactance	87
Exa 2.113	Resonant Frequency Dynamic Resistance Band width	88
Exa 3.1	Line Current Total Volts Ampere Active Power Reactive	
	Power	89
Exa 3.2	Load Impedance Line Voltage	89
Exa 3.3	Line Current Active and Reactive Power	90
Exa 3.4	Current	91
Exa 3.5	line current active and reactive power	91
Exa 3.6	Phase Current Line Current Total Active and Reactive	
	Power	92
Exa 3.7	line currents	93
Exa 3.8	Line Current Neutral Current Total power	94
Exa 3.9	Line Current Neutral Current	95
Exa 3.10	Voltage Line Currents	95
Exa 3.11	Reading on wattmeter	97
Exa 3.12	Phase Current of delta and star Active Power Power	
	Factor	97
Exa 3.13	Line voltage	98

Exa 4.14	Current voltage	99
Exa 3.15	Line Current Neutral Currents Reading of wattmeter .	100
Exa 3.16	Power and Power factor	101
Exa 3.18	Power ouputs	101
Exa 3.19	Current Power factor Active Reactive Power	102
Exa 3.20	Load Impedance	102
Exa 3.21	Line current Volt ampere Active and Reactive Power .	103
Exa 3.22	Phase Current Line Current Power Factor Active Powerand	d
	Reactive Power	103
Exa 3.23	impedance	103
Exa 3.24	Total Power and Power Factor	104
Exa 3.25	Line Current Total Power	104
Exa 3.26	current Power	105
Exa 3.27	Line Current and Total Power	106
Exa 3.28	Line Current Neutral Current Total power	107
Exa 3.29	Line current	107
Exa 3.30	R and x	108
Exa 3.31	Voltmeter	108
Exa 3.32	Line currents	108
Exa 3.33	Neutral Current	109
Exa 3.34	Line Current Total Voltmetter Active and Reactive Power	110
Exa 3.35	Total Active Power Toal Reactive Power Voltmetter Line	
	CurrentThree Phase Circuitsower factor	110
Exa 3.36	Phase current Total line current	111
Exa 3.37	current	111
Exa 3.39	Voltage	113
Exa 3.40	W1 and W2	114
Exa 3.41	Current	114
Exa 3.42	Za Zb Zc	115
Exa 3.43	Total Apparent active Reactive Power line Current Power	
	factor	116
Exa 3.44	Power and Power Factor	116
Exa 3.45	Line Current	117
Exa 3.47	total votamperes Active and Reactive Power	118
Exa 3.48	voltage	118
Exa 3.49	Phase Current Line Current Total active and reactive	
	Power W1 w2	119
Exa 3.50	Line current	120

Exa 3.51	Resistance reactance Power Factor
Exa 3.52	Line Current Power factor Active and Reactive Power
Exa 3.53	Current Active and Reactive Power
Exa 3.54	Voltage load impedance
Exa 3.55	Phase and Line Current
Exa 3.59	current
Exa 4.4	Numbers of trees
Exa 4.6	Currents
Exa 4.8	currents
Exa 4.9	current
Exa 4.10	Current
Exa 4.12	current
Exa 4.13	current
Exa 5.13	Current
Exa 4.14	current
Exa 4.16	current
Exa 4.17	voltage
Exa 4.19	currents
Exa 4.21	current and power
Exa 4.22	voltage
Exa 4.23	current
Exa 4.24	Current
Exa 4.25	Current
Exa 4.28	Current
Exa 4.29	Power
Exa 4.30	Current
Exa 4.32	Branch Current
Exa 4.36	Current
Exa 4.37	Current
Exa 4.38	Current
Exa 4.41	Voltage And Current
Exa 4.43	Node Voltage
Exa 4.44	Current
Exa 4.46	Current
Exa 4.47	V2
Exa 4.48	Voltage
Exa 4.49	Node Voltage
Exa 4.50	Voltage Vcd

Exa 4.51	Current	141
Exa 4.52	Voltage	142
Exa 4.56	Input Impedance	142
Exa 4.57	Primary and Secondry Current and voltage	142
Exa 4.58	current	143
Exa 4.62	I1 I2 Active and Reactive Power	143
Exa 5.1	Current	145
Exa 5.2	Voltage	146
Exa 5.3	Current	146
Exa 5.4	Current	148
Exa 5.6	Current	148
Exa 5.7	Power Total Power	149
Exa 5.8	Current	149
Exa 5.9	Deflection	150
Exa 5.10	Power dissipared	150
Exa 5.11	Voltage	151
Exa 5.12	Current	151
Exa 5.13	Current	152
Exa 5.14	Current	152
Exa 5.15	Current	153
Exa 5.16	Impedance	153
Exa 5.17	Impedance	153
Exa 5.18	Current and Resistance	154
Exa 5.19	RL Power	155
Exa 5.20	VOLTAGE	156
Exa 5.21	ZL Power	156
Exa 5.22	VOLTAGE	156
Exa 5.23	Vo	157
Exa 5.24	Voltage	158
Exa 5.25	Current	158
Exa 5.26	Current	159
Exa 5.27	Delta to Star	159
Exa 5.28	Total Impedance	160
Exa 5.29	Current	160
Exa 5.30	Current	161
Exa 5.31	Current	162
Exa 5.32	RL for Pmax	162
Exa 5.33	Current	163

Exa 5.34	Pmax Total Power RL	164
Exa 5.35	Thevenins equivalent circuits	164
Exa 5.36	maximum Power	165
Exa 5.37	Current	165
Exa 5.38	Current	166
Exa 5.39	RL and Pmax	167
Exa 5.40	R and Current	167
Exa 5.41	Current	168
Exa 5.42	Current	168
Exa 5.43	Current	169
Exa 5.44	current resistance	169
Exa 5.45	Current	170
Exa 5.46	Load Resistance	170
Exa 5.47	Thevenins and Nortan Equivalent	171
Exa 5.48	Current	171
Exa 5.49	current	172
Exa 5.50	Current	172
Exa 5.51	Resistance Power	173
Exa 5.52	Current	173
Exa 5.53	Vth Rth	174
Exa 5.54	Current	175
Exa 5.55	Current	175
Exa 5.56	Current	175
Exa 5.57	Current	176
Exa 5.58	Resistance	176
Exa 5.60	Current	177
Exa 5.62	Nortan equivalent	177
Exa 5.63	Thevenins Equivalent	178
Exa 5.64	ZL Power	178
Exa 5.65	Current	179
Exa 5.66	Change in current	179
Exa 5.67	Reciprocity Theorem	180
Exa 5.68	Equivalent Voltage	180
Exa 5.69	Current	181
Exa 5.70	Current	181
Exa 5.71	Current in R3	182
Exa 5.73	matrix	182
Exa 5.74	Reciprocity Theorem	182

Exa 7.2	Z Parameter	184
Exa 7.4	Z and Y Parameter	184
Exa 7.5	Z and Y Parameter	185
Exa 7.8		185
Exa 7.14		186
Exa 7.16		187
Exa 7.17		187
Exa 7.18	Impedance	188
Exa 7.20	Admittance Parameter	188
Exa 7.21	Ra Rb Rc	189
Exa 7.22		189
Exa 7.25	matrix	190
Exa 7.34	output Voltage	190
Exa 7.37		191
Exa 7.38		191
Exa 7.42		192
Exa 8.1	Frequency Impedance Attenuation Phase Shift	193
Exa 8.2		194
Exa 8.3	Impedance	194
Exa 8.4	L and C	195
Exa 8.5		195
Exa 8.6		196
Exa 8.7		196
Exa 8.8	m	197
Exa 8.9	m	197
Exa 8.10		198
Exa 8.11		199
Exa 8.12		199
Exa 8.13	C	199
Exa 8.14		200
Exa 8.15		200
Exa 8.16	1 0	200
Exa 8.17		201
Exa 8.18		201
Exa 8.19		202
Exa 8.20		203
Exa 8.21	•	203
Exa 8 22	•	204

Exa 8.23	Cutt off Frequency	204
Exa 8.24	Output Voltage	205
Exa 8.25	Gain	205
Exa 8.26	Mid Band Gain	206
Exa 8.27	R2 Mid abnd Gain Cutt of Frequency	206
Exa 8.28	Mid abnd Output	207
Exa 8.29	Gain at mid band	207
Exa 8.30	Design a Filter	207
Exa 8.31	Resistance	208
Exa 8.32	Impedance	208
Exa 8.33	Attenuation	209
Exa 8.34	Resistance	209
Exa 8.35	Impedance	210
Exa 8.36	Resistance	210
Exa 8.37	Impedance	210
Exa 8.38	Resistance	211
Exa 8.39	N	211
Exa 8.40	N	212
Exa 8.41	L	212
Exa 8.42	D	213
Exa 8.43	L	213
Exa 8.45	$\operatorname{design} T \dots \dots \dots \dots \dots$	213
Exa 8.46	Design lattice attenuator	214
Exa 8.47	Impedance	214
Exa 8.48	Resistance	215
Exa 8.49	Design lattice attenuator	215
Exa 9.24	Resonant frequency Q band width Impedance	217
Exa 9.26	Resonant frequency Q	217
Exa 9.32	Q	218
Exa 9.37	Poles and Zero	219
Exa 9.38	RLGC	219
Exa 9.46	Ia	220
Exa 9.50	Current	220
Eva 9 56	C	220

Chapter 1

Introduction to electronic circuits

Scilab code Exa 1.1 Resistance

Scilab code Exa 1.2 Diameter

```
//EXAMPLE 1-2 PG NO 18
2 R=0.69; //RESISTANCE
3 P=2.83*10^-8; //PRO
4 L=60; //LENGTH OF CABLE
5 a=(P*L)/R;
```

Scilab code Exa 1.3 Alpha Rise in Temperature

Scilab code Exa 1.4 Current

```
//EXAMPLE 1-4
1
                                                    PG NO
                                             18 - 19
2 R1 = 2.22;
                                      //RESISTANCE
                                      //RESISTANCE
3 R2 = 0.6;
4 R3=3;
                                      //Resistance
5 R4 = 4;
6 R5 = 5;
7 R6 = 6;
8 R7 = 2;
9 R=R1+R2+R3;
10 disp('i) Resistance (R) is = '+string ([R]) +'
      ohm ');
11 V = 12;
                                          //VOLTAGE
                                           //Current
12 I=V/R;
```

```
13 disp('ii) CURRENT (I) is = '+string ([I]) + 'A
     ');
14 I3=I;
     //CURRENT THROUGH 3 ohm RESISTANCE
15 disp('iii) CURRENT (I3) is = '+string ([I3]) +'
     A ');
16 I5=(I3*R4)/(R4+R5);
                                         //CURRENT
     THROUGH 5 ohm RESISTANCE
17 disp('iv) CURRENT (I5) is = '+string ([I5]) +'
     A ');
18 I4=(I3*R5)/(R4+R5);
                                      //CURRENT
     THROUGH 4 ohm RESISTANCE
19 disp('v) CURRENT (I4) is = '+string ([I4]) + 'A
     ');
20 V1=1.236;
    VOLTAGE ACROSS THREE PARALLEL RESISTANCE
21 I2=V1/R7;
                                                    //
     current
22 disp('vi) CURRENT (I2) is = '+string ([I2]) +'
    A ');
23 I1=V1;
                                                  //
     CURRENT THROUGH 1 ohm RESISTANCE
24 disp('iv) CURRENT (I1) is = '+string ([I1]) +'
     A ');
25 \text{ I6=V1/R6};
                                               //
     CURRENT THROUGH 6 ohm RESISTANCE
26 disp('vii) CURRENT (I6) is = '+string ([I6]) +'
     A ');
```

Scilab code Exa 1.5 Power and Resistance

```
//EXAMPLE 1-5 PG NO-19

V1=230; //VOLTAGE ONE

P1=1000; //POWER

R=V1*V1/P1; //RESISTANCE OF HEATER

V2=210; //VOLTAGE TWO

P2=V2*V2/R; //POWER OF HEATER WHEN VOLTAGE IS

210

R=(V1*V1)/P1 //Resistance

disp('i)RESISTANCE = '+string (R)+' ohm');

P2=(V2*V2)/R; //Power

disp('ii)POWER = '+string (P2)+' ohm');
```

Scilab code Exa 1.6 cost quantity of electricity number of electron rate of electrical energy

```
//EXAMPLE 1-6  PG NO-19-20
I=12;  //CURRENT
V=230;  //VOLTAGE
P=1000;  //POWER
T=3;  //TIME
S=3600;
E=(I*V/P)*T;  //ENERGY USED
Q=I*T*S;  //QUANTITY OF ELECTRICITY USED
IC=6.24*10^18;
N.C=IC*Q;  //NUMBER OF ELECTRON
R=I*V;  //RATE OF ENERGY
disp('i) ENERGY = '+string (E)+' KWh');
disp('ii) QUANTITY = '+string (Q)+' C');
disp('iiI) NUMBER OF ELECTRON = '+string (N.C)+' ');
disp('iiI) RATE OF ENERGY = '+string (R)+' W');
```

Scilab code Exa 1.7 Power current voltage

```
//Example 1_7 PG NO-20
1
               //current
2 I1=3;
                //current
3 I2=1;
               //Resistor
4 R = 4;
5 I = I1 - I2;
              //current through resistance
6 disp('i) Current Through resistance (I) = '+string (I
     ) + ' A');
7 P = I * I * R;
8 disp('ii) Power dissipated in resistor (P) = '+string
       (P) + 'W');
9 V = I * R;
10 disp('iii) voltage (V) = '+string (V)+' V');
            //power dissipated with 3A source
11 P1=V*I1;
12 disp('iv) power dissipated with 3A source (P1) = '+
     string (P1) + W';
```

Scilab code Exa 1.11 Temperature coefficient

```
1
                              //EXAMPLE 1-11
                                              PG NO-21
2 R55 = 58;
                               //resistance
                               //Resistance
3 R15 = 50;
4 T1 = 55;
                            //Temperature
5 T2=15;
                              //Temperature
6 A15 = [(R55/R15) - 1]/(T1 - T2);
                                          //alpha 15
                         = '+string (A15)+' ');
7 disp('i) ALPHA (A15)
8 T3=0;
9 A2=A15/[1+A15*(T3-T2)];
                                           //Alpha 2
10 disp('ii) ALPHA (A2) = '+string (A2)+' ');
```

Scilab code Exa 1.13 Resistance total power

```
1 / EXAMPLE 1-13 PG NO 21-22
```

Scilab code Exa 1.14 Resistance

```
1
                                              //EXAMPLE
                                                 1 - 14
                                                 PG NO-22
2 R1 = 4;
                               //Resistance
3 R2 = 2;
                               //Resistance
4 R3=8;
                                   //Resistance
5 RS = R1 + R2;
                                                        //
     resistance When Point A&B is short circuit
6 disp('i) resistance When Point A&B is short circuit
      = '+string (RS)+' ohm');
7 R0 = R1 + R2 + R3;
     //resistance When Point A&B is open circuit
8 disp('i) resistance When Point A&B is open circuit
    = '+string (RO)+' ohm');
```

Scilab code Exa 1.15 RESISTANCE CURRENT

Scilab code Exa 1.16 ENERGY PERCENTAGE OF ENERGY

```
//EXAMPLE 1-16
1
                                              PG NO-23
                           //ASSUMING
2 V = 1;
                                         //ASSUMING
3 t=1;
4 R1=30;
                                 //RESISTANCE
5 R2 = 20;
6 R3 = 10;
7 E30=(V/R1)*t;
                                             //ENERGY AT
      30 ohm RESISTANCE
8 disp('i) ENERGY = '+string (E30)+' ');
9 E20 = (V/R2) *t;
                                          //ENERGY AT 20
      ohm RESISTANCE
10 disp('ii) ENERGY = '+string (E20)+' ');
11 E10=(V/R3)*t;
                                           //ENERGY AT
     10 ohm RESISTANCE
12 disp('iii) ENERGY = '+string (E10)+' ');
13 TE=E30+E20+E10;
                                      //TOTAL ENERGY
             TOTAL ENERGY = '+string (TE)+' ');
14 disp('iv)
15 PTE=(E30/TE)*100;
                                        //PERCENTAGE OF
     TOTAL ENERGY
16 disp('ii) PERCENTAGE OF TOTAL ENERGY = '+string (
     PTE) + '% ');
```

Scilab code Exa 1.17 EMF

```
//EXAMPLE 1-17
PG NO-23

N=10^3; //Number of Turns

a=6.25*10^-4; //Diameter

1=0.25;

L=(N*N*4*%pi*10^-7*a)/(%pi*1); //
INDUCTANCE

disp('i)inductance = '+string (L)+' H');
e=L*100; //EMF

disp('ii)EMF = '+string (e)+' V')
```

Scilab code Exa 1.18 Inductance of Coil

```
//EXAMPLE 1-18
PG NO-23

E=0.05; //ENERGY

i=0.1; //CURRENT

L=2*E/i^2 //INDUCTANCE OF COIL

disp('i)inductance = '+string (L)+' H')
```

Scilab code Exa 1.19 Inductance

```
//EXAMPLE 1-19 PG NO
23
2 i=0.184 //derivative of I
3 e=0.16;
4 L=e/i; //Inductance
```

```
5 disp('i) Inductance = '+string (L)+' H')
```

Scilab code Exa 1.20 Resistance

```
//EXAMPLE 1-20 PG NO-24

2 A=20*10^-6;
3 L=30;
4 P20=1.72*10^-8;
5 R20=P20*L/A;
6 X0=0.00426;
7 I=5;
8 X20=X0/[1+(X0*20)];
9 R55=R20*(1+X20*(55-20));
10 P=I*I*R55;
11 disp('i)RESISTANCE = '+string(R20)+' ohm');
12 disp('i) ALPHA 20(X20)= '+string(X20)+' ohm');
13 disp('i)RESISTANCE = '+string(R55)+' ohm')
14 disp('i)POWER = '+string(P)+' w')
```

Scilab code Exa 1.21 Voltage Across Inductor

```
//EXAMPLE 1-21
1
                                                   PG NO
                        -24
2 L=200*10^-3;
                                       //INDUCTAR
                           // di/dt = (-2e^-t + 4e^-2t)
3 t1=1;
     =-1.9*10^{-7};
4 V=L*(-1.94*10^-7);
                                           //VOLTAGE AT
     TIME 1
5 disp('i) Voltage = '+string (V)+'V');
                                               // di / dt = (-2)
6 t2=0.1;
     e^-t+4e^--2t) ^2=0.216;
7 V1=L*0.5*(0.216);
                                         //VOLTAGE AT
     TIME 0.1
```

```
8 disp('ii) Voltage = '+string (V1)+'V');
```

Scilab code Exa 1.26 Inductor

```
//EXAMPLE 1-26 PG NO 27
L1=(1.1-0.8)/0.75; //Inductance
disp('i)Inductance = '+string (L1)+' H')
L2=3*L1; //Inductance
disp('ii)Inductance = '+string (L2)+' H')
```

Scilab code Exa 1.27 Flux

```
//EXAMPLE 1-27 PG NO27
1
2 L1=50*10^-3;
                                  // Inductar
3 L2=100*10^-3;
                                   //Inductar
4 X = (L1/L2);
                (L1/L2) = '+string (X) + ' ')
5 disp('i)
6 \quad Q1+Q2=600;
                       //flux
7 Q11=200;
                      //flux
8 \quad Q22 = 400
9 disp('ii) Flux Q11 = '+string (Q11)+' mWb');
10 \operatorname{disp}('iii') Flux Q22 = '+\operatorname{string}(Q22)+' \operatorname{mWb'});
```

Scilab code Exa 1.28 Capacitor

```
//EXAMPLE 1-28 PG NO-27
C1=60; //TWO CAPACITOR CONNECTED IN
SERIES
SEC=(C1*C1)/(C1+C1); //
EQUIVALENT CAPACITOR
```

```
4 disp('i) Equivalent Cpacitor (EC) is = '+string (EC) +' microF');
```

Scilab code Exa 1.29 Equivalent Capacitor

```
//EXAMPLE 1-29 PG NO
1
                            -27 - 28
                            //CAPACITOR
2 C1=12;
3 C2=4;
                             //CAPACITOR
4 C3=8;
5 C4=7;
6 C1 = (C1 * C2) / (C1 + C2);
                                              //CAPACITOR
      IN SEREIS
7 disp('i) Capacitor = '+string (C1)+' muF')
                                              //CAPACITOR
8 C2 = (C3 * C4) / (C3 + C4);
      IN PARALLEL
9 disp('i) Capacitor = '+string (C2)+' muF')
```

Scilab code Exa 1.30 VLTAGE AND ENERGY

```
//EXAMPLE 1-30 PG NO

-28

2 Q=80*10^-4; //COULUMB CHARGR

3 C=150*10^-6; //CAPACITANCE

5 C2=50*10^-6;

6 Va=Q/C1;

7 Vb=Q/C2;

8 E1=(0.5*C1*Va*Va)+(0.5*C2*Vb*Vb); //ENERGY

9 E2=0.5*C*(Va+Vb)*(Va+Vb);

10 disp('i) variable = '+string (Va)+' ohm')

11 disp('i) energy = '+string (E1)+' J')
```

```
13 disp('i)energy = '+string(E2)+' J')
```

Scilab code Exa 1.32 Current and Resistance

Scilab code Exa 1.33 Introduction of Electric Circuits

```
//EXAMPLE 1-33 PG NO-29-30

2 R1=29980; //RESISTANCE

3 I1=9.99; //current

4 R2=20;

5 I2=0.01; //current

6 r=20*0.01/9.99; //resistance

7 disp('i) resistance = '+string (r)+' ohm')
```

Scilab code Exa 1.34 Power

```
4 X=7.5;

5 P=(20/(R1+X))^2*(X); //Power

6 disp('i) Power (P) is = '+string (P) +' W');
```

Scilab code Exa 1.35 Resistance

```
//EXAMPLE 1-35
1
                                     PG NO 30-31
2 I1=4;
                              //Current
3 I2=6;
                                //Current
                                   //Voltage
4 V = 110;
5 Vab1=V-(6+4)*2;
6 VB = 80;
7 \text{ VC} = 50;
8 R11 = (Vab1 - VB)/I1;
9 R12=(Vab1-VC)/I2;
10 Vab2=V-(-2+20)*2;
                                           //Voltage
11 R21=(VB-Vab2)/2;
                                        //Resistance
12 R22=(Vab2-VC)/20;
                                     //Resistance
                                 //Current
13 I = (V - VB) / 2;
                             //Resistance
14 R = (VB - VC) / I;
15 disp('i) variable = '+string (Vab1)+' ohm')
16 disp('ii) resistance = '+string (R11)+' ohm')
17 disp('iii) resistance = '+string (R12)+' ohm')
18 disp('iv) variable = '+string (Vab2)+' ohm')
19 disp('v)resistance = '+string (R21)+' ohm')
20 disp('vi)resistance = '+string (R22)+' ohm')
21 disp('vii)
                 resistance = '+string (R) + 'ohm')
22 disp('viii) Current = '+string
                                       (I) + A'
```

Scilab code Exa 1.36 change flux flux change voltage energy in inductor

```
1 / EXAMPLE 1-36 PG NO-31
```

```
2 T=0.99425;
                   //TIME
3 disp('i)Time = '+string (T)+' seconds')
                  //DERAVATIVES OF 'I' W.R.T
4 X = 0.37;
5 disp('ii)(di\dt) = '+string (X)+' A\sec')
                 //CURRENT
6 LI=0.63;
7 \text{ dli} = 0.37;
                 // deravatives of 'SI' w.r.t
8 \operatorname{disp}('iii)(\operatorname{dsi}/\operatorname{dt}) = '+\operatorname{string}(\operatorname{dli}) + ' \operatorname{Wb-turns}/\operatorname{sec}')
9 VL=dli;
10 disp('iv)(VL) = '+string (VL)+' V')
11 Ri=0.63;
12 VR=Ri;
13 disp('v)VR = '+string (VR)+' V')
14 E=0.5*LI*LI;
                   //ENERGY
15 disp('vi)ENERGY stored in magnetic field = '+string
      (E) + 'J'
16 E1=LI*v; //ENERGY STORED IN MAGNETIC FIELD
17 H=Ri*Ri;
                  //HEAT
18 disp('vii) Rate of Energy stored in magnetic field =
        '+string (E1)+' W')
19 disp('viii) Rate of dissipation of heat in resistor =
       '+string (H)+' W')
20 disp('ix) Rate of supply of battery energy = '+string
       (Ri) + 'W'
```

Scilab code Exa 1.37 Current

```
9 disp('i) resistance = '+string (R)+' ohm')
10 disp('ii) resistance = '+string (R15)+' ohm')
11 disp('iii) current = '+string (I)+' A')
```

Scilab code Exa 1.38 Current

Scilab code Exa 1.39 Insulation resistance

```
//EXAMPLE 1-39 PG NO-32-33
                         //voltage
2 V = 440;
3 V1=5;
                          //voltage
4 R = 40;
                     //resistance
5 V2 = 220;
6 V3 = 100;
7 Rv = (V3*R)/[V2-V3];
                                   //insulation
      resistance
8 disp('i) Resistance (Rv) = ' + string (Rv)+' Kohm')
9 Ri=[Rv*(V-V1)]/V1;
                                  //insulation
      resistance
10 disp('iii) Resistance(Ri) = '+string (Ri)+' Kohm')
```

Scilab code Exa 1.40 Resistance

```
//EXAMPLE 1-40 PG
NO-33
P=1.72*10^-8; //PRO
t=0.03; //distance
R=[(4*P)/(%pi*0.03)]*0.47; //Resistance
disp('i) Resistance = '+string (R)+' ohm')
```

Scilab code Exa 1.41 Resistance

```
//EXAMPLE 1-41 PG
NO-33
P=1.72*10^-8; //PRO
t=0.03;
R=[(P*%pi)/(4*0.03*0.47)];
disp('i) Resistance = '+string (R)+' ohm')
```

Scilab code Exa 1.42 Resistance

Scilab code Exa 1.44 voltage

Scilab code Exa 1.46 current

Scilab code Exa 1.47 Resistance

Scilab code Exa 1.48 Current

Scilab code Exa 1.50 voltage

Scilab code Exa 1.51 Power

Scilab code Exa 1.52 equivalent inductance

```
//EXAMPLE 1-52 PG NO-46

L1=1;

L2=1;

L3=1;

L3=1;

Misp('i)DELTA INDUCTANCE

L4=1.5;

L5=1.5;

L5=1.5;

L=[L4*(L5+L6)]/[L4+L5+L6];

disp('ii)INDUCTANCE = '+string (L)+' H')
```

Scilab code Exa 1.53 equivalent resistance

Chapter 2

single phase AC Circuits

Scilab code Exa 2.1 average value RMS Value Form Factor Peak Factor RMS Value of sine wave

```
1
                    //EXAMPLE-2-1
                                                 EXAMPLE
                       -59
2 t=0.5;
3 x = 115;
                              //time
4 z = 310.6
5 A.V=0.2*x; //average value
6 R.M.S=(1/10)*z;
                                              //rms value
7 F=R.M.S/A.V;
                                            //form factor
8 P.F=60/R.M.S;
                                        //peak factor
9 S=60/(2)^0.5;
                                         //rms value of
      sine wave
10 \operatorname{disp}('i)R.M.S = '+\operatorname{string}(R.M.S)+'V'
11 disp('i) average value = '+string (A.V)+' V')
12 disp('i) orm factor = '+string (F)+' ')
13 disp('i peak factor = '+string (P.F)+' ')
                      = '+string (S)+' V')
14 disp('i) sine wave
```

Scilab code Exa 2.3 Form Factor Peak Factor

```
//EXAMPLE 2-3 PG NO-59-60
2 \text{ Vm} = 1;
3 AV1=0.318*Vm;
                                   //avegare value
                                    //RMS value
4 RMS1=0.5*Vm;
5 \text{ FF1} = \text{RMS1/AV1};
                                        //Form Factor
6 PF1 = Vm/RMS1;
                                         //Peak Factor
7 AV2=0.637*Vm;
                                     //Average
                                                   value
                                      //RMS value
8 RMS2=0.707*Vm;
                                       //Form Factor
9 FF2=RMS2/AV2;
                                        //Peak Factor
10 PF2=Vm/RMS2;
                        = '+string (FF1)+' ')
11 disp('i)Form Factor
12 disp('i)peak Factor
                        = '+string (PF1)+' ')
13 disp('i)Form Factor
                         = '+string (FF2)+' ')
14 disp('i)PEAK Factor
                              '+string (PF2)+' ')
```

Scilab code Exa 2.7 addition and substraction

```
//EXAMPLE 2-7
                                                 PG NO
1
                             64 - 65
2 V1 = 24.15 + \%i *6.47;
                                        //VOLTAGE
3 \quad V2=7.5+\%i*12.99;
                                           //VOLTAGE
                                      //ADITION fo v1&v2
4 X = V1 + V2;
                                         form = '+string
5 disp('i) ADITION is in rectangular
      (X) + V'
6 X1 = V1 - V2;
                                     //subsraction
                                                         o f
     v1&v2
7 disp('i) substraction is in rectangular
                                                form =
     string (X1) + V'
```

Scilab code Exa 2.8 ADDITION SUBSTRACTION MULTIPLICATION DIVISION

```
PG
                               //EXAMPLE 2-8
1
                                  NO - 65
2 A=3+\%i*1;
3 B=4+\%i*3;
4 X = A + B;
                             //ADDITION
5 \quad Y = A - B;
                               //SUBSTRACTION
6 \quad Z = A * B;
                               //MULTIPLICATION
7 U=A/B;
                               //DIVISION
8 V = A^4;
9 P=B^(1/3);
               ADDITION (A+B) is in polar form =
10 disp('ii)
      string (X) + ' ohm ');
11 disp('ii)
               SUBSTRACTION (A-B) is in polar form
       '+string (Y) +' ohm ');
              MULTIPLICATION (A*B) is in polar form
12 disp('ii)
     = '+string (Z) +' ohm ');
               DIVISION (A/B) is is in polar form
13 disp('ii)
      '+string (U) +' ohm ');
14 disp('ii)
               SQUARE OF A(A^4) is in polar form =
      '+string (V) +'
                       ohm ');
15 disp('ii)
               CUBE ROOT OF B (B^{(1/3)}) is in polar
     form = '+string (P) + 'ohm');
```

Scilab code Exa 2.9 Rate of change of current

```
9 i3=10*314.16*cos(314.16*t3);
10 disp('iii) Current = '+string (i3)+'A');
```

Scilab code Exa 2.10 rms

Scilab code Exa 2.11 INSTANTANEOUS VALUE

```
1
                //EXAMPLE 2-11 PG NO-66
2 W = 314.16;
3 \text{ PV} = 14.14;
                              //PEAK VALUE
                              //TIME
4 t=0.0025;
                             //CURRENT
5 i=PV*sin(W*t);
6 \quad T = 0.0175;
                          //TOTAL TIME
7 I = PV * sin(W*T);
8 disp('ii) CURRNT (i) is = '+string (i) +'
                                                       ')
9 disp('ii) CURRNT (I) is = '+string (I) +'
                                                       ')
```

Scilab code Exa 2.12 current

```
1 //EXAMPLE 2-12 PG NO-66-67
2 W1=80*%pi; //womega
```

```
3 W2=100*\%pi;
4 PV = 14.14;
                         //peak value
                         //time
5 t1=0.025;
6 t2=0.05;
7 t3=0.075;
8 I1=PV*(cos(80*\%pi*t1)+cos(100*\%pi*t1));
                       //current
9 I2=PV*(cos(80*\%pi*t2)+cos(100*\%pi*t2));
                        //current
10 I3=PV*(\cos(80*\%pi*t3)+\cos(100*\%pi*t3));
                        //current
                                 = '+string (I1) +' A'
11 disp('ii)
               CURRNT (I) is
     );
12 disp('ii)
               CURRNT (I) is = '+string (I2) + 'A
      <sup>'</sup>);
13 disp('ii)
               CURRNT (I) is = '+string (I3) +' A
      ');
```

Scilab code Exa 2.13 Average Value of Voltage

Scilab code Exa 2.14 Effective Value Form Factor

Scilab code Exa 2.15 Average Value Effective Value Form Factor

Scilab code Exa 2.16 ENERGY FORM FACTOR

Scilab code Exa 2.17 RMS

Scilab code Exa 2.20 Voltage

Scilab code Exa 2.21 Voltage

Scilab code Exa 2.22 Average

```
//EXAMPLE 2-22 PG NO-70-71
A=%pi/2;
//integrate(wt)=%pi/6
Eavg=1/A*(%pi+%pi)/6;
disp('i) Average Energy (Eavg) is = '+string (Eavg) +' Em');
```

Scilab code Exa 2.23 Average Energy

```
//EXAMPLE 2-23
                                  PG NO-71
1
2 A = \%pi/2;
                              //[integrate('0', wt, '%pi
                                 /3,)]^2 = \% pi/9
                              //integrate('%pi/3',wt,'%pi
4
                                 /2') = \% \text{pi} / 6;
5 E=1/A*[(\%pi/9)+(\%pi/6)];
6 disp('i) Energy
                      (E) is
                             = '+string (E) +' ');
                              (E) is = '+string (sqrt(
7 disp('ii) Square Energy
     E)) + ' ');
8 FF = [sqrt(E)*3]/2;
```

```
9 disp('iii) FORM FACTOR (FF) is = '+string (FF) +' ');
```

Scilab code Exa 2.24 Current

Scilab code Exa 2.25 VOLTAGE

Scilab code Exa 2.26 Reading of moving coil Reading of hot wire Total Power Power dissipated

```
6 \text{ RMS1=V/(R+R)};
                                     //RMS
7 disp('ii) CURRENT R.M.S in forward (R.M.S.1) is
        = '+string (RMS1) +' A ');
8 \text{ RMS2} = -V/(R+R1);
9 disp('ii) CURRENT R.M.S in Backward (R.M.S.2) is
        = '+string (RMS2) +' A ');
10 I1=RMS1*R2;
                                          //Current
11 disp('ii) Average CURRENT in forward (I1) is =
       '+string (I1) +' A ');
12 I2 = RMS2 * R2;
13 disp('ii) Average CURRENT in Backward (I2) is
     = '+string (I2) +' A ');
14 A = [I1 + I2]/2;
                                       //Ammeter
15 disp('ii) Reading of moving coil ammeter (A) is
        = '+string (A) +' A');
16 H.A = [0.5*[RMS1+(RMS2)^2]]^0.5;
                                                   //
     HOT AMMETER
17 disp('ii) Reading of hot wire ammeter (H.A) is
    = '+string (H.A) + 'A');
18 P=0.5*[(RMS1*V)+(RMS2*RMS2*600)];
                          //POWER
19 disp('ii) TOTAL AVERAGE POWER (P) is = '+
     string (P) + ' W ');
20 P1=0.5*[(RMS1*R)+(RMS2*RMS2*R1)];
21 disp('ii) TOTAL POWER dissipated in rectifier (P
     ) is = '+string(P1) + 'W';
```

Scilab code Exa 2.27 CURRENT POWER DISSIPATED INSTANTANEOUS CURRENT

Scilab code Exa 2.28 FREQUENCY

```
//EXAMPLE 2-28 PG NO-76
//Example 2-28 PG NO-76
//Frequency
L=0.2; //inductance
XL1=500;
XL=(2*%pi*F*L);
f=XL1/(2*%pi*L); //FREQUENCY
disp(' XL is = '+string(XL)+' ohms');
disp(' frequency is = '+string(f)+' Hz');
```

Scilab code Exa 2.29 Capacitive Reactance susceptance and current

Scilab code Exa 2.30 Impedance Admittance Current Power Factor Active power Reactive Power Apparent Power

```
PG NO
                             //EXAMPLE 2-30
1
                               -81 - 82
2 V = 230 + \%i * 0;
3 F = 50;
4 L=0.03;
5 R = 20;
6 XL=2*%pi*F*L;
7 disp('i)
             INDUCTANCE (XL) is in polar form = '+
     string (XL) + ' ohm ');
8 Z=R+\%i*XL;
9 disp('ii)
              IMPEDANCE (Z) is
                                in polar form =
     string (Z) + ' ohm ');
10 Y = 1/Z;
11 disp('iii) ADMITTANCE (Y) is
                                 in polar form
     string (Y) +' siemens ');
12 I=V/Z;
13 disp('iv)
             CURRENT (I) is in polar form
     string (I) + ' A ');
14 Vr=I*R;
15 disp('v)
             VOLTAGE (Vr) is
                              in polar form =
     string (Vr) + V';
16 VL=%i*XL*I
17 disp('vi)
              VOLTAGE (VL) is
                                in polar form = '+
     string (VL) + V';
18 \quad Q = 25.23;
                                 //TETA
19 PF = cos(Q);
              POWER FACTOR (PF) is = '+string (PF)
20 disp('vi)
      +' lagging ');
21 \quad P = V * I * \cos(Q);
                       //ACTIVE POWER
22 disp('vi) ACTIVE POWER (P) is in polar form = '
     +string (P) + W';
```

Scilab code Exa 2.31 Current Apparent Power Active Power

```
//EXAMPLE 2-31 PG NO=82
1
2 Z1 = 20.15 + \%i * 15.18;
3 \quad Z2=6.99+\%i*17.29;
                                //impedance
4 Z = Z1 + Z2;
5 V = 230 + \%i * 0;
                                 //Current
6 I=V/Z;
7 \text{ PF} = 0.64;
                                       //Power Factotr
                                         //Apparent Power
8 S = V * I;
9 P=S*PF;
                                           //Active Power
10 disp(' Impedanceis in rectangular form
                                              = '+string(
      Z) + ' \circ hm');
11 disp(' current
                    is in rectangular form = '+string(
      I) + 'A');
12 disp('S is in rectangular form = '+string(S)+'
     VA');
13 disp('POWER is in rectangular form = '+string(P)
      + ' W');
```

Scilab code Exa 2.32 Active Power Current Voltage

```
1 //EXAMPLE 2-32 PG NO-83
2 cos30=0.866;
3 sin30=0.5;
4 E1=141.42+%i*0;
```

Scilab code Exa 2.33 Impedance Admittance Current Power Factor Apparent Power Active Power Reactive Power Voltage Across resistance and capacitance

```
//EXAMPLE 2-33
                                               PG NO-84-85
1
                                  //Voltage
2 V = 230 + \%i * 0;
3 F = 50;
                               //Frequency
4 C=10^-4;
                                // Capacitor
5 R = 10;
                             //Resistance
6 XC=1/[2*\%pi*F*C];
                                     // Capacitor
              CAPACITOR (XC) is
                                   in polar form =
7 disp('i)
      string (XC) + ' ohm ');
8 Z=R-\%i*XC;
                                         //Impedance
                                   in polar form =
9 disp('ii)
               IMPEDANCE (Z) is
      string (Z) + ' ohm ');
10 Y = 1/Z;
                                      //Admittance
11 disp('iii) ADMITTANCE (Y) is
                                    in polar form
      string (Y) + '
                      siemens ');
12 I=V/Z;
                                       //current
               CURRENT (I) is in polar form
13 disp('iv)
      string (I) + ' A ');
14 Vr = I * R;
                                     // Voltage
15 disp('v)
             VOLTAGE (Vr) is in polar form =
```

Scilab code Exa 2.34 Impedance Power Factor Power Consumed

```
//EXAMPLE 2-34
                                                         PG NO
1
                                -85
2 V = 80 + \%i * 60;
                                    //voltage
                               //current
3 I = -4 + \%i * 10;
                           //Impedance
4 Z=V/I;
5 PF = 0.26;
                                   //power factor
                          //Power
6 P = V * I * PF;
7 disp('IMPEDANCE
                        is in rectangular form = '+string
     (Z) + ' \text{ ohm ')};
8 disp('POWER is in rectangular form = '+string(P)
     + ' W');
```

Scilab code Exa 2.35 Maximum Charge and Energy

```
1
                                //EXAMPLE-2-35
                                                            PG
                                  NO - 86
2 \text{ Vr} = 100;
                                 //VOLTAGE
3 P = 300;
                              //POWER
                              //CURRENT
4 I=P/Vr;
                              //voltage
5 V = 240;
6 F = 50;
                             //frequency
                                 //IMPEDANCE
7 Z=V/I;
8 R=Vr/I;
9 Xc = [Z^2 - R^2]^0.5;
10 C=1/[2*F*\%pi*Xc];
                                  //CAPACITOR
11 Vc = [(V*V) - (Vr*Vr)]^0.5;
```

```
12 Vm = sqrt(2) * Vc;
13 Qm = (sqrt(2) * Vc) * (C);
                                      //CHARGE
                           //MAXIMUM ENERGY
14 Em = 0.5 * [Xc * Vm * Vm];
15 disp('i) CURRENT (I) is = '+string (I) +' A'
     );
16 disp('ii) IMPEDANCE (Z) is = '+string (Z) +'
     ohm ');
17 disp('iii) RESISTANCE (R) is = '+string (R) +'
       ohm ');
18 disp('i)
             CAPACITOR (Xc) is = '+string (Xc) +'
      ohm ');
19 disp('i) CAPACITOR (C) is = '+string (C) +' F
     ');
20 disp('i) VOLTAGE (Vc) is = '+string (Vc) +' V
      ');
21 disp('i) MAXIMUM VOLTAGE (Vm) is = '+string (Vm
     ) + ' V ');
22 disp('i) MAXIMUM CHARGE (Qm) is = '+string (Qm)
      + ' C ');
23 disp('i) MAXIMUM ENERGY (Em) is = '+string (Em)
      + ' J ');
```

Scilab code Exa 2.36 XL XC Current Power Factor Apparent Power Active Power Reactive Power

```
10 disp('i) CAPACITOR (Xc) is = '+string (XC) +'
      ohm ');
11 Z=R+\%i*(XL-XC)
12 disp('i) IMPEDANCE (Z) is in polar form = '+
     string (Z) + ' ohm ');
                               //CURRENT
13 I=V/Z;
14 disp('i) CURRENT (I) is in polar form = '+
     string (I) +' ohm ');
                        //APPARENT POWER
15 AP = V * I;
16 disp('i) Apparent Power (AP) is in polar form =
      '+string (AP) +' VA ');
17 P=V*I*0.433;
                                 //active power
18 disp('i)
            ACTIVE POWER (P) is in polar form = '
     +string (P) + ' W ');
19 Q = V * I * 0.9013;
                                 //Reactive Power
20 disp('i) Reactive Power (Q) is in polar form
     '+string (Q) +' vars ');
```

Scilab code Exa 2.37 active power impedance

```
//EXAMPLE 2-37
                         PG NO-88
2 \text{ Xc}=4;
3 \text{ XL=6};
4 R=2;
                               //RESISTANCE
5 v=8.48+\%i*30;
6 \quad Z=R+\%i*(XL-Xc);
                                  //IMPEDANCE
7 \quad V = v;
8 I=V/Z;
                             //CURRENT
9 VL=%i*I*XL;
10 Vc = -\%i * I * Xc;
                                 //ACTIVE POWER
11 P=V*I*0.707;
12 disp('i) Active Power = '+string(P)+' W');
13 disp('ii) Impedance = '+string(Z)+' ohm');
14 disp('iii) Current is = '+string(I)+' A');
15 disp('iv) VL is = '+string(VL)+' V');
```

```
16 \operatorname{disp}('v)\operatorname{Vc} is = '+string(Vc)+' V');
```

Scilab code Exa 2.38 Current Voltage

```
//EXAMPLE 2-38 PG N0-88-89
1
2 Z=12-\%i*5;
3 V = 100;
                     //VOLTAGE
                    //CURRENT
4 I=V/Z;
5 disp('i) CURRENT (I) is in polar form = '+
     string (I) + ' A ');
6 Z1=4+\%i*3;
7 Z2=6-\%i*8;
                                      //impedance
8 V1 = I * Z1;
9 disp('i)
           voltage (V1) is in polar form
     string (V1) + ' V ');
10 V2 = I * Z2;
                                          //voltage
           voltage (V2) is in polar form = '+
11 disp('i)
     string (V2) + ' V ');
                                       //voltage
12 V3 = 2 * I;
13 disp('i) voltage (V3) is in polar form = '+
     string (V3) + , V ,);
                                         //ACTIVE POWER
14 P=V*I*0.9230;
15 disp('i) Active Power (P) is in polar form
     string (P) + ' W ');
```

Scilab code Exa 2.39 1 Power factor 2 Apparent Reactive Active Power

```
7 \sin Q = 0.766;
8 \text{ P=S*cosQ};
                                 //ACTIVE POWER
                                //REACTIVE POWER
9 Q=S*sinQ;
10 Z=V/I;
                               //IMPEDANCE
11 R=Z*cosQ;
                              //RESISTANCE
12 Xc=Z*sinQ;
                             //Xc
                            //CAPACITOR
13 C=1/(W*Xc);
14 P2 =S*(cosQ-1); //NEGATIVE PEAK POWER
15 P3 =S*(cosQ+1); //POSITIVE PEAK POWER
                        //NEGATIVE PEAK POWER
16 P1 = (P3 + P2)/2;
                      // POWER
17 S1 = (P3 - P1);
                                   //apparent power
18 disp('S is = '+string(S)+'VA');
19 disp('ACTIVE POWER is = '+string(P)+'W');
20 disp(' REACTIVE POWER is = '+string(Q)+' VAr');
21 disp('IMPEDANCE is = '+string(Z)+' ohm');
22 disp(' RESISTANCE is = '+string(R)+'ohm');
23 disp(' Xc is = '+string(Xc)+' ohm');
24 disp(' CAPACITOR is = '+string(C)+' F');
25 disp('POWER CURVE is = '+string(P2)+'W');
26 disp('POWER CURVE is = '+string(P3)+'W');
27 disp('POWER is = '+string(P1)+' W');
28 disp(' S is = '+string(S1)+' VA');
```

Scilab code Exa 2.40 Voltage across v1 v2 Impedance Admittance Power factor

```
//EXAMPLE 2-40 PG NO
-89-90

V1=52.33-%i*34.15878;

Z1=7.5-%i*9.999; //IMPEDANCE

Z2=3.488+%i*12; //IMPEDANCE

Z3=11.99+%i*5;

V2=[Z2/Z1]*V1;

disp('i) voltage (V2) is in polar form = '+
string (V2) +' V ');
```

```
8 V3 = [Z3/Z1] * V1;
                                           //voltage
9 disp('ii) voltage (V3) is in polar form = '+
     string (V3) + ' V ');
10 V = V1 + V2 + V3;
                                       //total voltage
11 disp('i) voltage (V) is in polar form = '+
     string (V) + ' V ');
12 \quad Z = Z1 + Z2 + Z3;
                                  //Total Impedance
13 disp('i) IMPEDANCE (Z) is in polar form
     string (Z) + V';
14 Y = 1/Z;
                                         //Admittance
15 disp('i) Y (Y) is in polar form = '+string (Y)
     + ' ohm ');
```

Scilab code Exa 2.41 Impedance

```
//EXAMPLE 2-41
                               PG NO-90
2 F1 = 50;
                                         //frequency
3 \ W = (2*\%pi*F1);
4 L=1;
                                         //inductar
5 C=10^-6;
                                            //capacitor
6 XL1=W*L;
7 Xc1=1/(W*C);
8 \quad Z1 = XL1 - Xc1;
9 F2=1000;
10 XL2 = (2 * \%pi * F2 * L);
11 Xc2=1/(2*\%pi*F2*C);
12 Z2 = (XL2 - Xc2);
                                      //impedance
13 disp('IMPEDANCE(Z1) is = '+string(Z1)+' ohm');
14 disp('IMPEDANCE(Z2)) is = '+string(Z2)+'ohm');
15 disp(' XL1 is = '+string(XL1)+' ohm');
16 disp(' Xc1 is = '+string(Xc1)+' ohm');
17 disp(' XL2 is = '+string(XL2)+' ohm');
18 \operatorname{disp}(' \operatorname{Xc2} is = '+\operatorname{string}(\operatorname{Xc2}) + ' \operatorname{ohm}');
```

Scilab code Exa 2.42 Resistance Inductance

Scilab code Exa 2.43 Power Factor

```
//EXAMPLE 2-43 PG NO
1
                               -91
                   //RESISTANCE
2 R1 = 6;
                   //RESISTANCE
3 R2 = 3;
4 R3=8;
                   //RESISTANCE
                   //IMPEDANCE
5 \quad Z1 = 7;
                     //IMPEDANCE
6 \quad Z2=5;
                     //IMPEDANCE
7 \quad Z3 = 10;
8 V = 7;
9 I = 1;
                    //POWER FACTOR
10 PF1=R1/Z1;
11 disp('i) Power Factor (PF1) is = '+string (PF1
     ) + ' ');
                      //POWER dissipated
12 PD1=V*I*0.857;
13 disp('i) Power Dissipated (PD1) is = '+string
      (PD1) + W';
14 PF2=R2/Z2;
```

```
15 disp('iii) Power Factor (PF2) is = '+string (
     PF2) + W';
16 PD2=Z2*PF2;
17 disp('i) Power Dissipated (PD2) is = '+string
     (PD2) + W';
18 PF3=R3/Z3;
19 disp('iii) Power Factor (PF3) is = '+string (
     PF3) + , W ,);
20 \text{ PD3} = \text{Z3} * \text{PF3};
21 disp('i) Power Dissipated (PD3) is = '+string
     (PD3) + ' W ');
22 A = [Z1^2 - R1^2]^0.5;
23 disp('i) REACTANCE OF COIL (A) is = '+string (
     A) + ' ohm ');
24 B = [Z2^2 - R2^2]^0.5;
25 disp('i) REACTANCE OF COIL (B) is = '+string (
     B) + ' ohm ');
26 \quad C = [Z3^2 - R3^2]^0.5;
27 disp('i) REACTANCE OF COIL (C) is = '+string (
     C) + ' ohm ');
28 TR = R1 + R2 + R3;
                                                    //
     TOTAL RESISTANCE
29 disp('i) TOTAL RESISTANCE (TR) is = '+string (
     TR) + ' ohm ');
30 TRC=A+B+C;
                                                     //
     TOTAL RACTANCE
31 disp('i) TOTAL REACTANCE (TRC) is = '+string (
     TRC) + ' ohm ');
32 TI = [TR^2 + TRC^2]^0.5;
                                         //TOTAL
     IMPEADNCE
             TOTAL IMPEDANCE (TI) is = '+string (
33 disp('i)
     TI) + ' ohm ');
34 \text{ PF=TR/TI};
                                                     //
     POWER FACTOR
```

```
35 disp('i) POWER FACTOR (PF) is = '+string (PF) +' lagging');
```

Scilab code Exa 2.44 Resistance Capacitance

```
PG
1
                             //EXAMPLE 2-44
                               NO 91 - 92
                                 //Resistance
2 R = 20;
3 V = 125;
                                 //VOLTAGE
4 I = 2.2;
                                  //CURRENT
                                  //IMPEDANCE
5 \quad Z=V/I;
6 disp('i) Impedance is = '+string(Z)+' ');
7 F = 50;
                     //FREQUENCY
8 XC=53.18
9 C=1/[2*\%pi*F*XC];
                                             //CAPACITANCE
10 disp('ii) Capacitor is = '+string(C)+' F');
```

Scilab code Exa 2.45 Power Inductance

```
//EXAMPLE 2-45 PG NO-92
2 I = 10;
                               //CURRENT
3 R=5;
                              //RESISTANCE
                             //POWER
4 P = I * I * R;
5 IL=250;
                             //IRON LOSS
6 \ Z=20;
7 r=5;
8 F = 50;
9 \ W=2*\%pi*F;
10 p1 = 750;
11 v = 200;
                                   //voltage
12 L=(Z*Z-r*r)^0.5/W;
                                      //iductance
13 cosQ=p1/(v*I);
14 disp('power is = '+string(P)+' W')
```

```
15 disp(' inductance is = '+string(L)+' H');
16 disp(' cos Q is = '+string(cosQ)+' lagging');
```

Scilab code Exa 2.46 P

Scilab code Exa 2.47 RMS

```
//EXAMPLE 2-47 PG NO 92
1
2 V=100/sqrt(2);
                                  //VOLTAGE
3 F = 100;
                                //FREQUENCY
4 L=0.018;
                                //INDUCTANCE
5 XL=2*%pi*F*L;
            INDUCTANCE (XL) is in polar form = '+
6 disp('i)
     string (XL) +' ohm ');
7 I=V/[(11.3+\%i*11.3)];
                                              //current
8 disp('ii) CURRENT (I) is in polar form = '+
     string (I) + ' A ');
9 VR = I * 10;
                                                //voltage
            Voltage Across Resister (VR) is
10 disp('i)
     string (VR) + ^{\prime} V ^{\prime});
```

Scilab code Exa 2.49 current

```
//EXAMPLE 2-49
                         PG NO-93
2 \text{ K=0.35};
               //CONSTANT
3 L1=0.1;
                 //INDUCTANCE
              //INDUCTANCE
4 L2=0.2;
5 M=K*(L1*L2)^0.5;
                //VOLTAGE
6 V = 125;
                //FREQUENCY
7 F = 50;
8 L=0.2;
              // TOTAL INDUCTANCE
9 I=V/(2*\%pi*F*L);
                     //CURRENT
10 disp(' M is = '+string(M)+' H');
11 disp(' current is = '+string(I)+' A');
```

Scilab code Exa 2.51 Impedance admittance Current Power Factor Apparent Power active Reactive Power

```
//example 2-51
                                           pg no-94
1
2 V = 230 + \%i * 0;
                                  //VOLTAGE
3 F = 50;
                                 //FREQUENCY
4 C=10^-4;
                                //CAPACITOR
5 R = 10;
                                //RESISTANCE
6 \cos(72.56) = 0.299;
7 \text{ XC=1/[2*\%pi*F*C]};
8 disp('i) INDUCTANCE (XC) is = '+string (XC) +'
       ohm ');
9 Z=R-\%i*XC;
                                      //impedance
10 disp('i) IMPEDANCE (Z) is
                                  in rectangular form =
       '+string (Z) +' ohm ');
                                   //admittance
11 Y=1/Z;
12 disp('i) ADMITTANCE (Y) is
                                  in rectangular form =
        '+string (Y) +' ohm ');
```

```
//CURRENT
13 I=V/Z;
              CURRENT (I) is in rectangular form =
14 disp('i)
      '+string (I) +' A ');
                     //POWER FACTOR
15 PF=0.299;
16 disp('i)
             POWER FACTOR (PF) is = '+string (PF)
     +' leading');
                      //APPARENT POWER
17 S = V * I;
             APPARENT POWER (S) is IN rectangular
18 disp('i)
     FORM = '+string (S) + 'VA');
                            //ACTIVE
                                        POWER.
19 P = V * I * 0.3;
             ACTIVE POWER (P) is in rectangular form
20 disp('i)
             '+string (P) + ' W ');
21 \quad Q = V * I * -0.1315;
                           //REACTIVE POWER
            REACTIVE POWER (Q) is in rectangular
22 disp('i)
            = '+string (Q) +' vars ');
     form
23 Vr = I * R;
24 disp('i)
             VOLTAGE (Vr) is in rectangular form =
     '+string (Vr) + ' V ');
25 \text{ Vc} = -\%i * I * XC;
             VOLTAGE (Vc) is = '+string (Vc) +' V
26 disp('i)
      ');
```

Scilab code Exa 2.52 Total Current power Factor

```
1 // EXAMPLE 2-53  PG NO-96
2 W=1000;
3 L=0.02;
4 XL=W*L;
5 Z=4.85;
6 V=(100/1.414);
7 I=(20.62/1.414);
8 cos(14.06)=0.97;
9 P=V*I*0.97;
10 z=1.18;
11 Leq=z/W;
```

```
12 disp(' XL is = '+string(XL)+' ohms');
13 disp(' POWER is = '+string(P)+' W');
14 disp(' Leq is = '+string(Leq)+' H');
```

Scilab code Exa 2.53 Inductance Frequency

```
//EXAMPLE 2-53
                                     PG NO=97
1
2 R = 15;
                         //RESISTANCE
3 V = 240 + \%i * 0;
                         //VOLTAGE
4 I=22.1;
5 \text{ Ir=V/R};
                         //CURENT
6 disp('i) CURRENT (Ir) is
                               = '+string (Ir) +' A
      <sup>'</sup>);
7 IL=[I^2-Ir^2]^0.5;
8 disp('i) CURRENT (IL) is = '+string (IL) +'
      ');
9 \text{ XL=V/IL};
            INDUCTANCE (XL) is = '+string (XL) +'
10 disp('i)
        ohm ');
11 L=XL/[2*\%pi*50];
12 disp('i)
            INDUCTANCE (L) is = '+string (L) + '
     H ');
13 IL1=[34<sup>2</sup>-Ir<sup>2</sup>]<sup>0.5</sup>;
14 disp('i) INDUCTANCE (IL1) is = '+string (IL1)
      + ' A ');
15 F=8/[2*\%pi*0.05];
16 disp('i) FREQUENCY (F) is = '+string (F) +'
      Hz ');
```

Scilab code Exa 2.54 Single Phase AC Circuits

```
1 //EXAMPLE 2-54 PG NO-98 2 \text{ C=159*10^--6}; //capacitor
```

```
3 F = 50;
                    //frequency
4 Xc=1/(2*\%pi*F*C);
                           //impedance
5 \text{ Z=8.94};
                          //voltage
6 V = 100;
7 I=V/Z;
                       //Current
8 \text{ PF} = 0.894
                       //power factor
9 S = V * I;
10 P = V * I * PF;
11 Q = V * I * (-0.447);
12 disp('CURRENT is = '+string(P)+' A');
13 disp('APPARENT POWER is = '+string(S)+' VA');
14 disp('active power is = '+string(P)+'W');
15 disp(' reactive power is = '+string(Q)+' vars');
```

Scilab code Exa 2.55 Resistance

```
//EXAMPLE 2-55 PG NO-99

//EXAMPLE 2-55 PG NO-99

Q=72.4;
tan(Q)=3.1524;
W=3000;
C=35*10^-6;
Xc=1/[W*C];
R=3.1524*Xc
disp('i) CAPACITOR (XC) is = '+string (Xc) +' ohm ');
disp('i) RESISTANCE (R) is = '+string (R) +' ohm ');
```

Scilab code Exa 2.56 Current Power Factor

```
1 //EXAMPLE 2-56 PG NO-99-100 2 V=230+%i*0;
```

```
3 R=15+\%i*0;
4 L=\%i*7.5;
5 \text{ Ir=V/R};
6 \quad Z1 = -\%i * 12
7 disp('i)
               CURRENT (Ir) is = '+string (Ir) + 'A
       ');
8 \text{ IL=V/L};
9 disp('i)
               INDUCTANCE CURRENT (IL) is = '+string
       (IL) + A';
10 Ic=V/Z1;
               CAPACITOR CURRENT (Ic) is = '+string
11 disp('i)
      (Ic) + 
                A ');
12 I = Ir + IL + Ic;
13 disp('i)
                CURRENT (I) is = '+string (I) + '
      <sup>'</sup>);
14 \quad Z=V/I;
15 disp('i)
              IMPEDANCE (Z) is = '+string (Z) + 'A
       ');
16 PF=0.8;
17 Leq=7.2/[2*\%pi*50];
18 disp('i) EQUIVALENT CURRENT (Ieq) is
      string (Leq) + ^{\prime} H ^{\prime});
```

Scilab code Exa 2.57 Total Current Impedance Admittance Power factor Apparent Power Active Power Reactive Power

```
//EXAMPLE 2-57 PG N0-100-101
V=240+%i*0;
R=400+%i*0;
Z1=%i*50;
Z2=-%i*40;
IR=V/R;
disp('i) CURRENT (IR) is = '+string (IR) +' A
');
IL=V/Z1;
```

```
CURRENT (IL) is = '+string (IL) +' A
9 disp('i)
      ');
10 IC=V/Z2;
           CURRENT (IC) is = '+string (IC) +' A
11 disp('i)
      ');
12 I = IR + IL + IC;
13 disp('i) CURRENT (I) is = '+string (I) +' A'
     );
14 Z=V/I;
15 disp('i) IMPEDANCE (Z) is = '+string (Z) +'
     ohms ');
16 Y=1/Z;
17 disp('i) ADMITTANCE (Y) is = '+string (Y) +'
     ohm ');
18 S = V * I;
19 disp('i) APPARENT POWER (S) is = '+string (S) +
     , VA ,);
20 P = V * I * 0.448;
21 disp('i) ACTIVE POWER (P) is = '+string (P) +'
      W ');
22 \quad Q = V * I * -0.94;
23 disp('i) REACTIVE POWER (Q) is = '+string (Q) +
     , vars ');
```

Scilab code Exa 2.58 Voltage Current power Factor Active Reactive Power

```
//EXAMPLE 2-58 PG NO
-101-102

Z1=2+%i*3;
Z2=1-%i*5;
Z3=4+%i*2;
Zeq=[Z2*Z3]/[Z2+Z3];
disp('i) IMPEDANCE EQUVALENT (Zeq) is = '+
string (Zeq) +' ohms ');
```

```
7 Z=Z1+Zeq;
8 disp('i) TOTAL IMPEDANCE (Z) is = '+string (Z)
     + ' ohm ');
9 V = 10;
10 R=5.65+\%i*1.588;
11 I=V/R;
12 disp('i) CURRENT (I) is = '+string (I) +' A')
13 VBC=I*Zeq;
14 disp('i) VOLTAGE (VBC) is = '+string (VBC) +'
     V ');
15 I2=VBC/Z2;
16 disp('i)
             CURRENT \qquad (I2) is \qquad = '*string (I2) + '
       A ');
17 I3=VBC/Z3;
18 disp('i) CURRENT (I3) is in polar form = '+
     string (I3) + ' A ');
19 S = V * I;
20 disp('i) APPARENT POWER (S) is in polar form = '
     +string (S) + ' VA ');
21 P = V * I * 0.963;
22 disp('i) ACTIVE POWER (P) is in polar form = '+
     string (P) + ' W ');
23 Q = V * I * -0.27;
24 disp('i) REACTIVE POWER (Q) is in polar form = '
     +string (Q) +' vars ');
```

Scilab code Exa 2.59 Total Current Shunt Capacitor

```
1    //EXAMPLE 2-59    PG NO-103
2    C1=15.5*10^3;
3    L=1000;
4    V=230;
5    PL1=10;    //active load power
6    PL2=6;    //active load power
```

```
7 QL1=7.5;
                     //reactive load power
8 QL2=8; //reactiveload power
                  //total active power
9 P=PL1+PL2;
                    //total reactive power
10 Q = QL1 + QL2;
11 AP = (P*P+Q*Q)^0.5;
                            //total apparent power
12 I = (AP*L)/V;
                           //TOTAL CURRENT
13 Ic = (C1/V);
14 Xc=V/Ic;
15 K = 16;
16 C=1/(2*\%pi*50*Xc);
17 I1=(L*K)/V;
18 disp('total active power is = '+string(P)+' KW');
19 disp(' total reactive power is = '+string(Q)+'K var
      <sup>'</sup>);
20 disp('total apparent power is = '+string(AP)+' KVA'
      );
21 disp('total current(I) is = '+string(P)+' A');
22 disp(' Ic is = '+string(P)+' A');
23 \operatorname{disp}(' \operatorname{Xc} is = '+\operatorname{string}(\operatorname{Xc}) + ' \operatorname{ohm}');
24 disp(' capacitor is = '+string(C)+' F');
25 disp(' current(I1) is = '+string(I1)+' A');
```

Scilab code Exa 2.60 Conductance Susceptance Current Power factor

```
siemens ');
11 G2=0.16;
12 B2=0.12;
13 TL=G1+G2;
                                //TOTAL CONDUCTANCE
14 disp('iii) TOTAL CONDUCTANCE (TL) is = '+string
     (TL) + ' siemens');
15 TS=B1+B2;
                                  //TOTAL SUSCEPTANCE
             TOTAL SUSCEPTANCE (TS) is = '+string
16 disp('iv)
     (TS) + ' siemens ');
                                   CURRENT
17 I1=V * Y1;
                               //
18 disp('v) CURRENT (I1) is = '+string (I1) + 'A'
     );
19 I2 = V * Y2;
20 disp('vi) CURRENT (I2) is = '+string (I2) +' A
     ');
                            //TOTAL CURRENT
21 TI = I1 + I2;
22 disp('vii) TOTAL CURRENT (TI) is
                                    = '+string (TI
     ) + ' A ');
23 PF=cos(degree(10.3));
24 disp('i) POWER FACTOR (PF) is = '+string (PF) +
     ' leading ');
```

Scilab code Exa 2.61 admittance Impedance Total Current Power Factor Active Power

```
string (Ycd) +' siemens ');
9 Zef=6-\%i*8;
10 Yef=1/Zef;
                                                  = '+
11 disp('i) ADMITTANCE (Yef) is in polar form
     string (Yef) +' siemens ');
12 Ybg=Yef+Ycd;
                                                    , +
13 disp('i) ADMITTANCE (Ybg) is in polar form
     string (Ybg) +' siemens ');
14 \text{ Zbg=1/Ybg};
15 disp('i) IMPEDANCE (Zbg) is in polar form
     string (Zbg) +' ohms');
16 TZ=1.6+\%i*7.2+4.4+\%i*0.8;
17 disp('i) TOTAL IMPEDANCE (TZ) is
                                   in polar form
       '+string (TZ) +' ohms ');
18 TI=V/TZ;
19 disp('i)
            TOTAL CURRENT (TI) is in polar form
     '+string (TI) + ' A ');
20 Icd=TI*[Zef/(Zcd+Zef)]
21 disp('i) CURRENT (Icd) is
                               in polar form
     string (Icd) + ' A ');
22 Ief=TI*[Zcd/(Zcd+Zef)];
23 disp('i) CURRENT (Ief) is
                              in polar form
     string (Ief) + 'A');
24 Pab=TI*TI*1.6;
25 disp('i) POWER (Pab) is in polar form
     string (Pab) + ' W ');
26 Pcd=Icd*Icd*4;
27 disp('i) POWER (Pcd) is
                             in polar form
     string (Pcd) + W';
28 Pef=Ief*Ief*6;
29 disp('i) POWER (Pef) is
                             in polar form
     string (Pef) + 'W');
30 TP=Pab+Pcd+Pef;
31 disp('i) TOTAL POWER (TP) is in polar form
     string (TP) + ' W ');
```

Scilab code Exa 2.62 Current impedance Active Power TotalActive Power Power Factor Apparent Power Reactive Power

```
//EXAMPLE 2-62
                                                 PG NO
1
                           -105 - 106
2 Z1 = 24 + \%i * 18;
3 \quad Z2 = 24 - \%i * 10;
4 Z3=2-\%i*0.148;
5 R1 = 24;
6 R2 = 24;
7 R3 = 32;
8 R4 = 16;
9 V = 2;
10 \text{ v1} = 128.3;
11 I=2;
12 \quad I3=32+\%i*24;
13 I4=16-\%i*30;
14 \ Z = Z1 + Z2;
15 disp('i)
             IMPEDANCE (Z) is in polar form
      string (Z) + ' ohms ');
16 I1=[Z2/(Z1+Z2)]*Z3;
17 disp('i) CURRENT (I1) is in polar form
      string (I1) +' ohms ');
18 I2 = [Z1/(Z1+Z2)]*Z3;
19 disp('i) CURRENT (I2) is in polar form
      string (I2) +' ohms ');
20 P1 = I1 * I1 * R1;
21 disp('i) POWER (P1) is in polar form
                                                     '+string
       (P1) + W';
22 P2=I2*I2*R2;
23 disp('i) POWER (P2) is
                               in polar form
                                                     '+string
       (P2) + W';
24 P3 = V * V * R3;
25 disp('i) POWER (P3) is
                               in polar form
                                                     '+string
```

```
(P3) + W';
26 \text{ P4=V*V*R4};
27 disp('i) POWER (P4) is in polar form = '+string
       (P4) + W';
P = P1 + P2 + P3 + P4;
29 disp('i) TOTAL POWER (P) is in polar form
     string (P) + 'W');
30 V1 = I1 * Z1;
31 disp('i) VOLTAGE (V1) is
                               in polar form
     string (V1) + V';
32 V2 = V1;
33 disp('i) VOLTAGE (V2) is
                               in polar form
                                                   ' +
     string (V2) + ' V ');
34 V3 = I3 * Z3;
35 disp('i) VOLTAGE (V3) is
                                                   ' +
                               in polar form
     string (V3) + V';
36 \quad V4 = I4 * Z3;
37 disp('i) VOLTAGE (V4) is
                               in polar form
                                                   ' +
     string (V4) + ' V ');
38 \quad V = V1 + V4 + V3;
39 disp('i%) VOLTAGE (V) is in polar form
     string (V) + V';
40 S = v1 * I;
41 disp('i) Apparent Power (S) is = '+string (S)
     + ' VA ');
42 Q=S*0.0726;
43 disp('i) Reactive Power (Q) is = '+string (Q) +
        Var ');
```

Scilab code Exa 2.63 Current Power Factor

```
4 Z3=24+\%i*70;
5 V = 230 + \%i * 0;
6 \text{ Y1}=1/\text{Z1};
7 disp('i) ADMITTANCE (Y1) is in polar form = '+
      string (Y1) +' siemens');
8 \quad Y2=1/Z2;
9 disp('ii) ADMITTANCE (Y2) is in polar form = '+
      string (Y2) + ' siemens');
10 \quad Y3=1/Z3;
11 disp('iii) ADMITTANCE (Y3) is in polar form = '+
      string (Y3) + ' siemens');
12 \quad Y = Y1 + Y2 + Y3;
13 disp('i) ADMITTANCE (Y) is in polar form = '+
      string (Y) + ' siemens');
14 Z13=29.763+%i*21.62;
15 \quad Z14=10-\%i*24;
16 \quad X = Z13 + Z14;
17 Y=18+\%i*80;
18 A=8-\%i*6;
19 disp('i) IMPEDANCE (X) is in polar form = '+
      string (X) + ' ohm');
20 Z = [\{X * Y\} / \{X + Y\}] + A;
21 disp('i) IMPEDANCE (Z) is in polar form = '+
      string (Z) + ' ohm');
22 I=V/Z;
23 disp('vi) CURRENT (I) is = '+string (I) +' A')
24 S = V * I;
25 disp('i) Apparent Power (S) is = '+string (S)
      + ' VA ');
26 P = V * I * 0.989;
27 disp('i) Active Power (P) is = '+string (P) +'
      W ');
28 \quad Q = V * I * 0.146;
29 disp('i) Reactive Power (Q) is = '+string (Q) +
     ' Var ');
```

Scilab code Exa 2.64 Current in branch Total Current

```
1 ZA=15+%i*15.708;
2 ZB=20+%i*0;
3 V=200+%i*0;
4 IA=V/ZA;
5 disp('i) CURRENT (IA) is = '+string (IA) +' A');
6 IB=V/ZB;
7 disp('ii) CURRENT (IB) is = '+string (IB) +' A');
8 I=IA+IB;
9 disp('vi) TOTAL CURRENT (I) is = '+string (I) +' A');
```

Scilab code Exa 2.66 Power

```
//EXAMPLE 2-66 PG NO
1
                                -108
2 I = 15;
3 Z1 = 10 + \%i * 15
4 Z2=6-\%i*8;
5 I1=[I*Z2]/(Z1+Z2);
6 disp('ii) CURRENT (I1) is in polar form = '+
     string (I1) + 'A');
7 I2=(I*Z1)/(Z1+Z2);
8 disp('ii) CURRENT (I2) is in polar form = '+
     string (I2) + 'A ');
9 P1=8.59^2*10;
10 disp('ii) Power (P1) is
                           in polar form = '+
     string (P1) + 'W');
11 P2=15.49^2*6;
```

```
12 disp('ii) Power (P2) is in polar form = '+string (P2) + 'W');
```

Scilab code Exa 2.67 Branch Impedance Total Impedance Branch Current Total Current

```
//EXAMPLE 2-67
                                             PG NO
1
                                -108 - 109
2 Z1 = 5;
3 V = 100 + \%i * 200;
                               //CURRENT
4 I1=16;
5 P1=I1*I1*Z1;
6 disp('i) POWER (P1) is = '+string (P1) + 'W');
7 P2 = 5000 - P1;
8 disp('ii) POWER (P2) is = '+string (P2) +' W')
9 Q1 = -69.02;
10 \cos(-69.02) = 0.35;
11 \quad Z2=Z1/0.358;
12 disp('iii) IMPEDANCE (Z2) is in polar form = '+
     string (Z2) + ' ohms ');
13 X1 = Z2 * -0.933;
            (X1) is
14 disp('i)
                      in polar form = '+string (X1)
      + ' ohms ');
15 \quad Z3=5-\%i*13.04;
16 I1=V/Z3;
17 disp('ii) CURRENT (I1) is in polar form = '+
     string (I1) + 'A');
18 P3=3720;
19 I2=P3/(223.6*0.8);
20 disp('ii) CURRENT (I2) is in polar form = '+
     string (I2) + 'A');
21 z2=8.6+\%i*6.45;
22 I3=V/z2;
23 disp('ii) CURRENT (I3) is in polar form = '+
```

```
string (I3) +' A ');
24 I=I1+I3;
25 disp('ii) CURRENT (I) is in polar form = '+
    string (I) +' A ');
26 Z=V/I;
27 disp('iii) IMPEDANCE (Z) is in polar form = '+
    string (Z) +' ohms ')
```

Scilab code Exa 2.68 Total Power

```
1
                                      //EXAMPLE 2-68
                                        PG NO-109-110
2 V = 100;
3 \quad Y1=0.16+\%i*0.12;
4 Y2 = -\%i * 0.15;
5 I1 = V * Y1;
6 disp('i)
            CURRENT (I1) is in polar form = '+
      string (I1) + 'A');
7 I2=V*Y2;
8 disp('ii) CURRENT (I2) is in polar form = '+
     string (I2) + 'A');
9 P = (V * I1 * 0.8) + (V * I2 * 0);
10 disp('iii) Power (P) is in polar form = '+string
       (P) + 'W';
11 I=I1+I2;
12 disp('ii) CURRENT (I) is in polar form =
     string (I) + 'A ');
```

Scilab code Exa 2.69 Line Current Impedance Circuits Phase Angle

```
1 //EXAMPLE 2-69 PG NO-110
2 F=50;
3 L=0.6;
```

```
4 R = 100;
5 XL=(%pi*2*F*L)
6 disp('i) INDUCTANCE (XL) is = '+string (XL) +'
     ohm ');
7 V = 230 + \%i * 0;
8 \text{ IR=V/R};
9 disp('ii) CURRENT (IR) is in polar form = '+
     string (IR) + 'A');
10 IL=V/(0+\%i*XL);
11 disp('iii) CURRENT (IL) is in polar form = '+
     string (IL) + ' A ');
12 I = IR + IL;
13 disp('iv) CURRENT (I) is in polar form = '+
     string (I) + 'A');
14 P=V*I*cos(degree(27.9));
15 disp('v) POWER (P) is in polar form = '+string (
     P) + 'W');
16 \quad Z=V/I;
17 disp('vi) IMPEDANCE (Z) is = '+string (Z) +'
     ohm ');
18 LEQ=41.39/(2*\%pi*F);
19 disp('ii) INDUCTANCE (LEQ) is = '+string (LEQ)
     + ' H ');
```

Scilab code Exa 2.70 Current Impedance

```
//EXAMPLE 2-70
                                       PG NO-110-111
2 ZA = -\%i * 227.36;
                                    //IMPEDANCE
3 \quad ZB = -\%i * 795.77;
                                              //IMPEDANCE
4 ZC = 500;
                                       //IMPEDANCE
                                      //VOLTAGE
5 V = 230 + \%i * 0;
6 IA=V/ZA;
                                         //CURRENT
            CURRENT (IA) is in polar form = '+
7 disp('i)
     string (IA) + 'A ');
8 	 IB=V/ZB;
```

Scilab code Exa 2.71 Power Power Factor

```
//EXAMPLE 2-71 PG NO-111
V=240;
cos (degree(62.74))=0.458;
Pm=V*2*0.458;
disp('i) POWER (Pm) is in rectangular form = '+
    string (Pm) +' W ');
I=(2*0.458+1.5)-%i*(2*0.89);
disp('i) CURRENT (I) is in rectangular form = '+
    string (I) +' A ')
P=V*3*0.805
disp('i) Power (P) is in rectangular form = '+
    string (P) +' W ')
```

Scilab code Exa 2.72 Power Factor Total volts Active Reactive power Overall Power Factor

```
//EXAMPLE 2-72 PG NO 111
P.F=0.5;
cosQ=0.5;
sinQ=0.866;
V=552;
I=2.3;
v=240;
PF1=0.89;
P=v*I*PF1;
Q=(V*V-P*P)^0.5;
disp('ACTIVE POWER is = '+string(P)+' W');
disp('REACTIVE POWER is = '+string(Q)+' vars');
```

Scilab code Exa 2.73 Inductance Capacitance

Scilab code Exa 2.74 Current in each branch Total Current Power Factor Total apparent Active Reactive Total Current

```
//EXAMPLE 2-74 PG NO-112
1
2 ZA = 10 + \%i * 7.226;
                                   //IMPEDANCE
3 \quad ZB = 5 + \%i * 10.99;
                                  //IMPEDANCE
                                    //VOLTAGE
4 V = 200 + \%i * 0;
5 IA=V/ZA;
                                       //CURRENT
                               in polar form =
6 disp('i) CURRENT (IA) is
     string (IA) + 'A ');
7 	 IB=V/ZB;
8 disp('ii) CURRENT (IB) is in polar form =
     string (IB) + ' A ');
9 I = IA + IB;
10 disp('iii) CURRENT (I) is in polar form =
     string (I) + 'A');
11 S = V * I;
12 disp('i) Apparent Power (S) is = '+string (S)
     + ' VA ');
13 P=V*I*0.63;
14 disp('i) Active Power (P) is = '+string (P) +'
      W ');
15 Q = V * I * 0.775;
16 disp('i) Reactive Power (Q) is = '+string (Q) +
      ' Var ');
```

Scilab code Exa 2.75 Current Total Apparent Active Reactive Power Power Factor

```
//EXAMPLE 2-75 PG NO-113
V=100+%i*0;
R=3+%i*2;
I=V/R;
CURRENT (I) is in polar form = '+string (I) +' A ');
ZA=10+%i*8;
ZB=9-%i*6;
ZC=3+%i*2;
```

```
9 IB=I*[ZA/(ZA+ZB)];
10 disp('i) CURRENT (IB) is in polar form =
     string (IB) + ' A ');
11 IA=I*[ZB/(ZA+ZB)];
12 disp('i) CURRENT (IA) is in polar form =
     string (IA) + 'A');
13 Z = [(ZA * ZB) / \{ZA + ZB\}] + ZC;
14 disp('vi) IMPEDANCE (Z) is = '+string (Z) +'
     ohm ');
15 V1 = I * Z;
16 disp('vi)VOLTAGE(V1) is = '+string(V1) + 'V'
     );
17 S = V1 * I;
18 disp('i) Apparent Power (S) is = '+string (S)
     + ' VA ');
19 P = V1 * I * 0.984;
20 disp('i) Active Power (P) is = '+string (P) +'
      W ');
21 Q = [S^2 - P^2]^0.5;
22 disp('i) Reactive Power (Q) is = '+string (Q) +
     , Var ,);
```

Scilab code Exa 2.76 magnitude Phase Angle Total Impedance

```
1 Z1=8+%i*10;
2 Z2=7+%i*9;
3 Z3=5-%i*2;
4 Z={Z1*Z2}/{Z1+Z2};
5 disp('vi) IMPEDANCE (Z) is in polar form = '+ string (Z) +' ohm ');
6 TZ=Z+Z3;
7 disp('vi) TOTAL IMPEDANCE (TZ) is = '+string (TZ) +' ohm ');
```

Scilab code Exa 2.77 Power Factor

```
//EXAMPLE 2-77 PG NO
1
                               -114
2 R = sqrt(2.5^2-1.724^2) -0.69;
3 disp('i) Resistance (R) is = '+string (R) +'
     ohm ');
4 R1=sqrt(2.5^2-1.92^2)-0.384;
5 disp('ii) Resistance (R1) is = '+string (R1) +
        ohm ');
6 \text{ r=5};
7 PF = (0.69 + R) / 2.5;
8 disp('iii) Power Factor (PF) is = '+string (PF
     ) + ' lagging ');
9 r1=10;
10 PF1=(0.384+R1)/2.5;
             Power Factor (PF1) is = '+string (
11 disp('iv)
     PF1) + ' lagging ');
```

Scilab code Exa 2.78 Voltage

Scilab code Exa 2.79 Voltage

```
1
                                     //EXAMPLE 2-79
                                        PG NO-115
2 I2=10+\%i*0;
3 \quad Z1 = 7 - \%i *8;
4 \quad Z2=5+\%i*6
5 V = I2 * Z1;
6 disp('i) VOLTAGE (V) is in polar form = '+string
      (V) + V';
7 I1=V/Z2;
8 disp('i) CURRENT (I1) is in polar form = '+
     string (I1) + 'A ')
9 I=I2-\%i*13.44;
10 disp('i) CURRENT (I) is in polar form = '+string
      (I) + A'
11 VAB=15.57*18.52;
12 disp('i) VOLTAGE (VAB) is in polar form = '+
     string (VAB) + 'V')
```

Scilab code Exa 2.80 R1 X1 X2

```
//EXAMPLE 2-80
PG NO
-115-16

2 I=12+%i*0;
3 X2=13.33;
4 R=10+%i*13.33;
5 V=I*R;
6 disp('i) VOLTAGE (V) is in polar form = '+string (V) +' V ')
7 V1=30-%i*27.67;
8 Z1=10.6165+%i*1.5;
9 R1=V1/Z1;
10 disp('i) RESISTANCE (R1) is in polar form = '+ string (R1) +' ohm ')
```

Scilab code Exa 2.81 Current in each branch Total Current Active Reactive Apparent Power

```
//EXAMPLE 2-81 PG NO
-116-117

2 Z1=10+%i*10;
3 Z2=20+%i*0;
4 Z3=20-%i*0.2;
5 V=100+%i*0;
6 I1=V/Z1;
7 disp('i) CURRENT (I1) is in polar form = '+
    string (I1) +' A ')

8 I2=V/Z2;
9 disp('i) CURRENT (I2) is in polar form = '+
    string (I2) +' A ')
```

Scilab code Exa 2.82 Resistance Capacitance

```
1
                      //EXAMPLE 2-82
                                              PG NO-117
2 Z1 = 4 + \%i * 314.16;
                                           //Impedance
3 I1=1/Z1;
                                               //CURRENT
4 disp('i)
              Current (I1) is =
                                      '+string (I1) +' A
       ');
5 I2=I1+\%i*90;
                                              //CURRENT
6 disp('ii) Current (I2) is =
                                       '+string (I2) +'
     A ');
7 \quad Z2=1/I2;
                                            //IMPEDANCE
8 disp('i)
             Impedance (Z2) is =
                                       '+string (Z2) + '
     ohm ');
9 R=310.16;
                                      //RESISTANCE
10 \text{ Xc} = 310.16;
11 F = 50;
12 C=1/(2*\%pi*F*Xc);
13 disp('i)
            Capacitor (C) is = '+string (C) +' F
       ');
```

Scilab code Exa 2.83 Active Reactive Apparent Power

```
1
                             //EXAMPLE 2-83
                                                PG NO
                                -117 - 118
2 V = 125 + \%i * 0;
3 I1=5+\%i*0;
4 I2=1.2+\%i*1.964;
5 \text{ Z2=V/I2};
               IMPEDANCE (Z2) is in polar form = '+
6 disp('iv)
     string (Z2) + ' ohm ');
7 R=28.26;
8 \text{ XC} = 46.43;
9 F = 50;
10 C=1/[2*\%pi*F*XC];
11 disp('iv) CAPACITOR (C) is in polar form = '+
      string (C) + 'F');
12 I = I1 + I2;
13 disp('iv)
             CURRENT (I) is in polar form = '+
      string (I) + 'A');
14 S = V * I;
             Apparent Power (S) is
15 disp('i)
                                     in polar form =
        '+string (S) + ' VA ');
16 P=S*0.953;
17 disp('i) Active Power (P) is in polar form
     string (P) + ' W');
18 Q=S*0.302;
19 disp('i) Reactive Power (Q) is
                                   in polar form =
      '+string (Q) +' Var ');
```

Scilab code Exa 2.84 Frequency

```
//EXAMPLE 2-84
1
                                             PG NO
                                  121 - 122
2 L=0.01;
                              //Inductance
3 C=0.04*10^-6;
                                  // Capacitor
4 Fo=1/[2*%pi*(sqrt(L*C))];
5 disp('i) Resonant Frequency (Fo) is = '+string
      (Fo) + 'Hz');
6 \ Z=50;
7 R=Z;
8 V = 100;
9 Io=V/R;
10 disp('ii) Current (Io) is = '+string (Io) +' A
       ');
11 Fc = (1/(2*\%pi))*[(1/(L*C))-(R^2/(2*L^2))]^0.5;
12 disp('iii) Cutt Frequency (Fc) is = '+string (
     Fc) + 'Hz');
13 Z1=50-\%i*2.5;
14 Xc=1/[2*\%pi*Fc*C];
15 \operatorname{disp}('iv)^{-} Xc (Xc) is = '+string (Xc) +' ');
16 Vc = [100/Z1] * Xc;
17 disp('v) VOLTAGE (Vc) is = '+string (Vc) +' V
      <sup>'</sup>);
18 FL=1/[(2*\%pi)*[(L*C)-[(R^2*C^2)/2]]^0.5];
19 disp('vi) Frequency (FL) is = '+string (FL) +'
     Hz ');
20 \quad Z2 = 50 + \%i * 2.5;
VL = [100/Z2]*(2*\%pi*FL*0.1);
22 disp('i) VOLTAGE (VL) is = '+string (VL) +' V
      ');
```

Scilab code Exa 2.85 Current

```
1 // \text{example } 285 \text{ pg no-} 126
2 I1=0.707;
```

```
3 I2=0.707;
4 db=20*log10(0.707);
5 disp(' Ration in db is = '+string(db)+' ');
```

Scilab code Exa 2.86 Resonant Frequency Upper Lower Half Frequency Band Width Voltage

```
//EXAMPLE 2-86 PG NO 126
2 L=0.5;
                                   //inductance
3 C=40*10^-6;
                                   //capacitor
4 Wo=1/(L*C)^0.5;
5 R = 10;
                                 //resistance
                                //voltage
6 V = 100;
7 Fo=Wo/(2*\%pi);
                               //frequency
8 Q = (Wo*L)/R;
9 W2 = 233.6;
                           //frequency
10 \text{ W1} = 213.6;
                         //frequency
11 B.W = W2 - W1;
                        //Band width
                    //current at resonance
12 Io=V/R;
13 Io1=0.707*Io;
                    //current at half power points
                    //voltage aacross inductance at
14 V1 = Q * V;
      resonance
15 disp(' frequency is = '+string(Wo)+' rad/sec');
16 disp(' frequency is = '+string(Fo)+' Hz');
17 disp('Q is = '+string(Q)+', ');
18 disp('BAND WIDTH is = '+string(B.W)+' rad/sec');
19 disp(' current at resonance is = '+string(Io)+' A');
20 disp(' current at half power points is = '+string(
      Io1)+' A');
21 disp('voltage aacross inductance at resonance
      '+string(V1)+' V');
```

Scilab code Exa 2.87 Inductance Q Current voltage

```
//EXAMPLE 2-87 PG NO-127
2 \text{ Wo} = 1000;
3 C=20*10^-6;
4 R=2;
5 V = 10;
6 L=1/((Wo^2)*C);
7 Q = (Wo*L)/R;
8 I=V/R;
9 Vr = I * R;
10 VL = Q * V;
11 Vc = Q * V;
12 disp('INDUCTANCE is = '+string(L)+' H');
13 \operatorname{disp}(', Q \text{ is} = '+\operatorname{string}(Q) + ', ');
14 disp('CURRENT(I) is = '+string(I)+' A');
15 disp('VOLTAGE ACROSS RESISTANCE is = '+string(Vr)+'
      V');
16 disp('VOLTAGE ACROSS INDUCTANCE is = '+string(VL)+'
17 disp(' VOLTAGE ACROSS CAPACITANCE is = '+string(Vc)+
      , V,);
```

Scilab code Exa 2.88 Resonant Frequency Rc

Scilab code Exa 2.89 Resonant Frequency Q Band Width Out put Voltage

```
//example 2-89 pg no-134
2 L=8*10^-3;
                              //INDUCTANCE
3 C=16*10^-9;
4 Wo=1/[L*C]^0.5;
                            //RESISTANCE
5 R = 10;
6 Fo=Wo/(2*\%pi);
                        //FREQUENCY
7 Q = (Wo*L)/R;
8 Rp = ((R*R) + (Wo*Wo*L*L))/R
9 Vo1 = 100;
10 B.W1=Wo/Q;
11 R2=10*10^3;
12 R3=60*10^3;
13 LR = (Rp*R2)/R3;
14 \ Q1 = (Q*LR)/Rp
15 \text{ Vo2} = 16.666;
16 B.W2=Wo/Q1;
17 disp('Wo is = '+string(Wo)+' rad/sec');
18 disp('Q is = '+string(Q)+' ');
19 disp(' Rp is = '+string(Rp)+' ohm');
20 disp('BAND WIDTH 1 is = '+string(B.W1)+' rad/sec');
21 disp('Load resistance is = '+string(LR)+' ohm');
22 disp(' Q1 is = '+string (Q1)+' ');
23 disp('BAND WIDTH2is = '+string(B.W2)+' rad/sec');
```

Scilab code Exa $2.90~\mathrm{R}~\mathrm{L}~\mathrm{C}$

Scilab code Exa 2.91 Current at resonance

Scilab code Exa 2.92 frequency

```
1 //EXAMPL2-92 PG NO-136
2 L=0.5;
3 R=25;
4 C=10^-6;
5 Wo= ((L- (R*R*C))/(5*10^-6*(0.5*0.5)))^0.5;
6 Q=(Wo*L)/R;
7 B.W=Wo/Q;
8 disp('FREQUENCY is = '+string(Wo)+' rad/sec');
9 disp('Q is = '+string(Q)+' ');
10 disp('band width is = '+string(B.W)+'rad/sec');
```

Scilab code Exa 2.93 Self Inductane Mutual Inductance voltage induce

```
//EXAMPLE 2-93 PG NO-139
N1=100;
Q1=0.05*10^-3;
I1=5;
L1=0.01;
L2=0.01;
K=0.6;
i=1000; //(di/dt=20/0.02)
M=K*((L1*L2)^0.5);
V=M*i;
disp('mutual induction is = '+string(M)+' H');
disp('voltage induce is = '+string(V)+' v');
```

Scilab code Exa 2.94 Mutual Inductance EMF

Scilab code Exa 2.95 Mutual Inductance

```
//EXAMPLE 2-95 PG NO
1
                                  -140
2 L=1.5;
                             //INDUCTANCE
3 a = (2000*0.01);
4 R=L/(4*\%pi*10^-7*a);
                                     //RESISTANCE
5 \operatorname{disp}('i) Resistance (R) is = '+string (R) +'
     ohm ');
6 \text{ N1} = 30;
7 N2 = 600;
8 M = (N1*N2)/R;
9 disp('ii) M(M) is = '+string(M) +' H');
10 e=M*(10/0.01);
11 disp('iii) e (e) is = '+string (e) +' V');
```

Scilab code Exa 2.96 Mutual Inductance Coefficient Coupling

```
1     //EXAMPLE-2.96     PG NO-140
2     M=0.125;
3     L1=0.2;
4     L2=0.15;
5     K=M/((L1*L2)^0.5)
6     disp('i) K = '+string (K)+' ');
```

Scilab code Exa 2.97 L1 L2 M K

```
//EXAMPLE-2.97 PG
NO-140
2 N1=500; //NUMBER OF TURN
3 N22=1500;
4 N12=500
5 Q1=0.6*10^-3; //FLUX OF COIL
6 I1=5; //CURRENT
7 Q12=0.3*10^-3;
```

```
8 L1=(N1*Q1)/I1
9 K=Q12/Q1;
10 L2=(N22/N12)*L1;
11 M=K*((L1*L2)^0.5);
12 disp('i) L1 = '+string (L2)+' ');
13 disp('ii) K = '+string (K)+' H');
14 disp('iii) L2 = '+string (L2)+' H');
15 disp('i) M = '+string (M)+' H ');
```

Scilab code Exa 2.98 L1 L2 M N2

```
//example - 2.98 pg no - 141
L1 = 37.5 * 10^ - 3;
M = 63.75 * 10^ - 3;
K = 0.85;
N1 = 250;
L2 = ((M/K)^2)/L1;
N2 = 250/((L1/L2)^0.5);
disp('i) L2 = '+string (L2)+' ');
disp('i) N2 = '+string (N2)+' ');
```

Scilab code Exa 2.99 M K

```
//EXAMPLE 2-99 PG
NO -141

L1=6.8;
L2=4.5;
C1=19.6;
C2=3;
M=(C1-C2)/4;
disp('i) M (M) is = '+string (M) +' mH ');
K=M/sqrt(L1*L2);
disp('ii) K (K) is = '+string (K) +' ');
```

Scilab code Exa 2.100 Self Inductance Mutual Inductance Coefficient of coupling

Scilab code Exa 2.102 Equivalent Inductance

```
//EXAMPLE 2-102 PG
NO-142

L1=0.3;
L2=0.8; //INDUCTANCE

K=0.7;
M=K*sqrt(L1*L2);
disp('i) M (M) is = '+string (M) +' H ');
Lp=[(L1*L2)-M^2]/[L1+L2-(2*M)];
disp('ii) Lp (Lp) is = '+string (Lp) +' H ');
```

Scilab code Exa 2.103 Equivalent Inductance

```
1 //Example 2-103 pg no-142 2 L1=10;
```

```
3 L2=5;
4 L3=6;
5 M12=2;
6 M23=1;
7 M13=1;
8 \quad X = 1
           // X=di/dt
9 V1 = (L1 * X) + (M12 * X) + (M13 * X);
10 V2 = (M12 * X) + (L2 * X) + (M23 * X);
11 V3 = (-M13 * X) + (-M23 * X) + (L3 * X);
12 V = V1 + V2 + V3;
13 Ls=L1+L2+L3+(2*M12)-(2*M23)-(2*M13);
14 disp('i) V1 = '+string (V1)+' ')
15 disp('ii') V2 = '+string (V2) + ' ')
16 disp('iii) V3 = '+string (V3)+'')
17 disp('iv) V = '+string(V)+'')
18 disp('v) equivlent indutance (Ls) = '+string (Ls)+'
      mH')
```

Scilab code Exa 2.104 Self Inductance Total Inductance Energy

```
// Example -2.104
                       pg no-143
2 L=38.5*10^{-3};
3 La=100*10^-3;
4 Lb=53.8*10^-3;
                              //CAPACITOR
5 C=0.3;
6 i = 3;
7 M = (C * L);
8 E1=(0.5*La*(3^2));
                            //energy in seriesauding
     connection
                            //ENERGY IN SERIES OPPOSING
9 E2=(0.5*Lb*(i^2));
      CONNECTION
10 disp('i) M = '+string (M)+' H')
11 disp('i) ENERGY aiding = '+string (E1)+' J')
12 disp('i) ENERGY opposing = '+string (E2)+' J')
```

Scilab code Exa 2.105 Self Inductance Mutual Inductance Turns of coil

```
//EXAMPLE-2.105
                                               PG-NO143
1
           //number of
2 N1 = 250;
                            turn
3 I1=2;
             //current
4 Q1=0.3*10^-3;
                            //phi
5 L1 = (N1 * Q1) / I1;
6 V2 = 63.75;
7 K=0.85;
           //x=di/dt
8 x=10^3;
9 M=V2/x;
10 L2=((V2/K)^2)/((37.510^-3)^0.5);
11 Q12=0.255*10^-3;
12 y=1.275*10^-7; //y=dQ12/dt
13 N2 = V2/y
14 ;
15 disp('i) L1 = '+string (L1)+' Tesla')
16 disp('ii) M = '+string (M)+' ')
17 disp('iii') L2 = '+string(L2)+'')
18 disp('iv) N2 = '+string (N2)+'')
```

Scilab code Exa 2.106 Resonant Frequency Current

```
//EXAMPLE-2.106 PG NO
-144

2 Fo=35.59; //frequency in HZ

3 V=50;

4 R=100;
5 I=V/R;
6 L=0.5;
7 XL=(2*%pi*Fo*L);
8 V.I=XL*L; //VOLTAGE ACROSS INDUCTION
```

Scilab code Exa 2.107 Average Value RMS Value

```
//EXAMPLE 2-107 PG
NO-145

Vm=100;
RMS=Vm/{sqrt(3)};
disp('i) RMS (RMS) is = '+string (RMS) +' ');
AVG=50;
FF=RMS/AVG;
disp('ii) Form Factor (FF) is = '+string (FF) +' ');
```

Scilab code Exa 2.108 RMS

```
1     //EXAMPLE 2-108     PG NO-146
2     I1=(100/1.414)^2;
3     I2=(10/1.414)^2;
4     R.M.S=(I1+I2)^0.5;
5     disp('R.M.S VALUE is = '+string(R.M.S)+' A');
```

Scilab code Exa 2.109 Real Power Reactive Power Power Factor

```
1
                       //EXAMPLE 2-109
                                                 PG NO
                          -146
2 V = 200;
3 I = 10;
4 W = 314;
5 \quad Z=V/I;
              IMPEDANCE (Z) is = '+string (Z) +'
6 disp('i)
     ohm ');
7 R=Z*0.707;
8 disp('ii)
               RESISTANCE (R) is
                                  = '+string (R) +'
     ohm ');
9 XC = Z * 0.707;
10 disp('iv)
               INDUCTANCE (XC) is
                                    = '+string (XC) +'
      ohm ');
11 C=1/(W*XC);
               CAPACITOR (C) is
                                 = '+string (C) +' F
12 disp('iv)
       ');
13 P = V * I * 0.707;
14 disp('i) Active Power (P) is
                                 in polar form
     string (P) + ' W ');
15 Q = V * I * 0.707;
16 disp('i) Reactive Power (Q) is
                                          polar form
                                      in
      '+string (Q) +' Var ');
```

Scilab code Exa 2.111 Total Power Factor Total Active and Reactive Power

```
1 //EXAMPLE 2-111 PG
NO-147
2 VCB=2.49-%i*12.50;
```

Scilab code Exa 2.112 impedance resistance reactance

```
//EXAMPLE 2-112 PG NO-148
1
2 I = 5;
3 R = 25;
4 Z=50;
5 \ Z1=40;
6 R1=[Z^2-R^2-1600]/50;
7 disp('i) RESISTANCE (R1) is = '+string (R1) +'
     ohm ')
8 X1 = [1600 - R1^2]^0.5;
9 disp('ii) INDUCTANCE (X1) is = '+string (X1) +'
      ohm ')
10 Pc = I * I * R1;
11 disp('iii) Power (Pc) is = '+string (Pc) +' W
      ');
12 P = I * I * (R + R1);
13 disp('iv) Power (P) is = '+string (P) +' W');
```

Scilab code Exa 2.113 Resonant Frequency Dynamic Resistance Band width

```
//example - 2.113 pg no -149
Wo = 9.798*10^3;
Fo = 1559.39;
C = 2;
F = 10*10^-6;
L = 10^-3;
D.R = L/(C*R); //DYNAMIC RESISTANCE
Q = (1/C)*((L/R)^0.5);
B.W = Wo/Q; //BAND WIDTH
disp('i) DYNAMIC RESISTANCE = '+string (D.R)+ ' ohm';
disp('ii) Q = '+string (Q)+' ');
disp('iii) BAND WIDTH = '+string (B.W)+'rad/sec';
```

Chapter 3

Three Phase Circuits

Scilab code Exa 3.1 Line Current Total Volts Ampere Active Power Reactive Power

```
//EXAMPLE 3-1 PG NO-172

VL=400;

Vp=400/sqrt(3);

Z=8-%i*10;

IL=Vp/Z;

S=sqrt(3)*(VL*IL);

P=S*(cos(-51.34));

Q=S*(sin(-51.34));

Von=230.94+%i*0;

Vbn=-115.47-%i*99.99

disp('i) RMS = '+string (S)+'A')
```

Scilab code Exa 3.2 Load Impedance Line Voltage

```
4 Z=8-%i*10; //Impedance
5 Ip=VL/12.81;
6 IL=sqrt(3)*Ip;
7 \text{ S=} \text{sqrt}(3) * VL * IL;
8 \text{ P=S*cos}(-51.34);
9 Q=S*sin(-51.34);
10 Vab = Vp + \%i * 0;
11 Vbc = -200 - \%i * 346.410;
12 Vca = -200 + \%i * 346;
13 Iab=Vab/Z;
14 Ibc=Vbc/Z;
15 Ica=Vca/Z;
16 Ia=Iab-Ibc;
17 Ib=Ibc-Iab;
18 Ic=Ica-Ibc;
19 disp('i) Peak current = '+string (Ip)+'A')
20 disp('i) S = '+string(S)+'VA'
21 disp('i) Active Power = '+string (P)+'W')
22 disp('i) Reactive power = '+string (Q)+'Vars')
23 disp('i) lab is in reactance form = '+string (lab)
     + 'A ')
24 disp('i) Ibc is in reactance form = '+string (Ibc)
     + 'A ')
25 disp('i) Ica is in reactance form= '+string (Ica)
     + 'A ')
26 disp('i) Ia is in reactance form = '+string (Ia)+'
     A ')
27 disp('i) Ib is in reactance form = '+string (Ib)+'
28 disp('i) Ic is in reactance = '+string (Ic)+'A')
```

Scilab code Exa 3.3 Line Current Active and Reactive Power

```
1 //EXAMPLE 3.3 PG NO 174
2 Zy=3+%i*5.196;
```

```
3 Zeq=2.55+%i*2.916;
4 Vp=230.94;
5 IL=59.61;
6 Ip=59.61;
7 VL=400;
8 cos(48.83)=0.658;
9 sin(48.83)=0.7527;
10 S=sqrt(3)*VL*IL;
11 P=sqrt(3)*VL*IL*0.658;
12 Q=sqrt(3)*VL*IL*0.7527;
13 disp('i) S = '+string (S)+'VA ')
14 disp('i) Active power = '+string (P)+'W ')
15 disp('i) Reactive power = '+string (Q)+'Vars ')
```

Scilab code Exa 3.4 Current

```
//EXAMPLE 3-4 PG NO-174
V=220;
Im=15.75+%i*21;
Z=5.33-%i*4;
LI=V/(sqrt(3)*Z);
TLI=LI+Im;
cos(-17.16)=0.955;
PF=sqrt(3)*0.955*V*32.42;
disp('i) Line current = '+string (LI)+'A ');
disp('i) TOTAL line current = '+string (TLI)+'A ');
disp('i) Power Factor = '+string (PF)+'W ');
```

Scilab code Exa 3.5 line current active and reactive power

```
1 //EXAMPLE 3-5 PG NO-175
2 Pm=6000;
```

```
3 \quad Qm = 8000;
4 Z=16-\%i*12;
5 V = 220;
6 \text{ PC=V/Z};
7 PL=3*V*11*0.799;
8 QL=3*V*11*(-0.6);
9 P=Pm+PL;
10 Q = Qm + QL;
11 PF = cos(1/tan(Q/P));
12 IL=P/(sqrt(3)*V*0.9555);
13 disp('i) Phase current = '+string (PC)+'A');
14 disp('i) PL
                 = '+string (PL)+'W');
15 disp('i) QL
                 = '+string (QL)+'Vars ');
16 disp('i) Active power = '+string (P)+'W');
17 disp('i) Reactive Power = '+string (Q)+'Vars ');
18 disp('i) Power factor = '+string (PF)+'lagging ')
19 disp('i) line current (IL) = '+string (IL)+'A');
```

Scilab code Exa 3.6 Phase Current Line Current Total Active and Reactive Power

```
//EXAMPLE 3-6 PG NO-175

Vac=100+%i*0;
Vcb=-50-%i*86.6;
Vba=-50+%i*86.6;
Zac=6+%i*8;
Rcb=20+%i*0;
Zba=4-%i*3;
Zcb=20+%i*0;
Iac=Vac/Zac;
disp('i) CURRENT (Iac) is in rectangular form = '+string (Iac) +' A ');
Icb=Vcb/Zcb;
CURRENT (Icb) is in rectangular form = '
```

```
'+string (Icb) + 'A');
13 Iba=Vba/Zba;
14 disp('i) CURRENT (IbA) is
                              in rectangular form =
      '+string (Iba) + 'A ');
15 Ia=Iac-Iba;
16 disp('i) CURRENT (Ia) is
                              in rectangular form = '
     +string (Ia) + 'A');
17 Ic=Icb-Iac;
18 disp('i) CURRENT (Ic) is
                              in rectangular form = '
     +string (Ic) + 'A');
19 Ib=Iba-Icb;
20 disp('i) CURRENT (Ib) is
                              in rectangular form =
     '+string (Ib) + 'A');
21 Pac=Vac*Iac*0.6;
22 disp('iv) Power (Pac) is in rectangular form
      '+string (Pac) + ' W ');
23 Pcb=Vcb*Icb;
24 disp('iv) Power (Pcb) is in rectangular form
        '+string (Pcb) + ' W ');
25 Pba=Vba*Iba*0.8;
26 disp('iv) Power (Pba) is in rectangular form =
     +string (Pba) + ' W ');
27 Qac=100*20*0.8;
28 disp('iv) Reactive Power (Qac) is in rectangular
           = '+string (Qac) +' vars ');
29 \quad Qba=100*20*-0.6
30 disp('iv) Reactive Power (Qba) is in rectangular
     form = '+string (Qba) +' vars ');
31 P = 600 + 500 + 1600;
32 disp('iv) Power (P) is = '+string (P) +' W');
33 \quad Q = 800 - 1200;
34 disp('iv) Power (Q) is = '+string (Q) +'
      <sup>'</sup>);
```

Scilab code Exa 3.7 line currents

```
//EXAMPLE 3-7 PG NO-176-177
1
2 Vab=400+\%i*0;
3 Vbc = -200 - \%i * 346.410;
4 R = 100;
5 \text{ Ica=0};
6 Iab=Vab/R;
7 disp('i) CURRENT (Iab) is in rectangular form =
      '+string (Iab) + 'A ');
8 \text{ Ibc=Vbc/R};
9 disp('i) CURRENT (Ibc) is
                               in rectangular form
      '+string (Ibc) + 'A');
10 Ia=Iab-Ica;
11 disp('i) CURRENT (Ia) is
                               in rectangular form
     +string (Ia) + 'A');
12 Ib=Ibc-Iab;
13 disp('i) CURRENT (Ib) is
                               in rectangular form
     +string (Ib) + 'A');
14 Ic=Ica-Ibc;
15 disp('i) CURRENT (Ic) is
                               in rectangular form
     +string (Ic) + 'A');
```

Scilab code Exa 3.8 Line Current Neutral Current Total power

```
//EXAMPLE 3-8 PG NO-177

2 Za=10-%i*8;
3 Zb=12+%i*0;
4 Zc=8+%i*10;
5 Van=230.94+%i*0;
6 Vbn=-115.47-%i*200;
7 Vcn=-115.47+%i*200;
8 Ia=Van/Za;
9 disp('i) CURRENT (Ia) is in rectangular form = '+string (Ia) +' A ');
10 Ib=Vbn/Zb;
11 disp('ii) CURRENT (Ib) is in rectangular form =
```

```
'+string (Ib) +' A ');

12    Ic=Vcn/Zc;
13    disp('iii) CURRENT (Ic) is in rectangular form =
        '+string (Ic) +' A ');

14    In=Ia+Ib+Ic;
15    disp('iv) CURRENT (In) is in rectangular form =
        '+string (In) +' A ');

16
17    P=(230.94*18.028*0.78)+(230.94*19.245)
        +(230.94*18.028*0.62)

18
19    disp('v) POWER (P) is in rectangular form = '+
        string (P) +' W ');
```

Scilab code Exa 3.9 Line Current Neutral Current

```
//EXAMPLE 3-9
PG NO
-178-179

2 Z1=10+%i*0;
3 Z2=13+%i*7.5;
4 Z3=-13+%i&7.5;
5 Z4=8.66-%i*5;
6 X=[Z1+Z2 Z3;Z3 Z2+Z4];
7 Z5=-104+%i*180.13;
8 Z6=280+%i*0;
9 Y=[Z5 Z3;Z6 Z2+Z4];
10 I1=det(Y/X);
11 disp('i) Current (I1) is = '+string (I1) +' A
');
```

Scilab code Exa 3.10 Voltage Line Currents

```
PG NO
                          //EXAMPLE 3-10
1
                            -180
2 Za=6+\%i*0;
3 \text{ Zb}=5.26+\%i*3;
4 Zc=3.535+\%i*3.535;
5 Van = 230.94 + \%i *0;
6 Vcn = -115.47 - \%i * 200;
7 Vbn = -115.47 + \%i * 200;
8 \text{ Ya}=1/\text{Za};
9 disp('i) admittance (Ya) is in rectangular form =
        '+string (Ya) +' siemens ');
10 Yb=1/Zb;
11 disp('i) admittance (Yb) is in rectangular form
     = '+string (Yb) +' siemens ');
12 Yc=1/Zc;
13 disp('i) admittance (Yc) is in rectangular form =
        '+string (Yc) +' siemens ');
14 Von=[(Van*Ya)+(Vbn*Yb)+(Vcn*Yc)]/(Ya+Yb+Yc);
15 disp('i) Voltage (Von) is
                                in rectangular form =
      '+string (Von) + ' V');
16 Vao=Van-Von;
17 disp('i) Voltage (Vao) is
                                 in rectangular form =
      '+string (Vao) + ' V');
18 Vbo=Vbn-Von;
19 disp('i) Voltage
                     (Vbo) is
                                 in rectangular form =
      '+string (Vbo) + ' V');
20 Vco=Vcn-Von;
21 disp('i) Voltage (Vco) is
                                in rectangular form
      '+string (Vco) + ' V');
22 \quad Ia=Vao*Ya;
23 disp('i) CURRENT (Ia) is
                                in rectangular form
      +string (Ia) + 'A');
24 \text{ Ib=Vbo*Yc};
25 disp('i) CURRENT (Ib) is
                                in rectangular form =
      +string (Ib) + 'A');
26 \quad Ic=Vco*Yc;
27 disp('i) CURRENT (Ic) is
                                in rectangular form =
      +string (Ic) + 'A');
```

Scilab code Exa 3.11 Reading on wattmeter

```
1
                              //EXAMPLE 3-11 PG NO-181
2
3 \text{ Vrn} = 230.94 + \% i * 0;
4 Vyn = -115.47 - \%i * 200;
5 Vbn = -115.47 + \%i * 200;
6 Yr = -\%i * 0.05;
7 Yy = \%i * 0.05;
8 \text{ Yb} = 0.05;
9 Von = [(Vrn*Yr) + (Vyn*Yy) + (Vbn*Yb)]/(Yr+Yy+Yb);
10 disp('i) Voltage (Von) is in rectangular form
      '+string (Von) + ' V');
11 Vyo = Vyn - Von;
12 disp('i) Voltage (Vyo) is
                                  in rectangular form
      '+string (Vyo) + ' V');
13 Iy = Vyo * Yy;
14 disp('iii) CURRENT (Iy) is in rectangular form
        '+string (Iy) + ' A ');
```

Scilab code Exa 3.12 Phase Current of delta and star Active Power Power Factor

```
8 disp('ii) CURRENT (Ipy) is in rectangular form =
       '+string (Ipy) + 'A ');
9 \text{ Rp} = 10;
10 Rpy=6;
11 Xp = 24;
12 Xpy = -8;
13 P1=3*Ip*Ip*Rp;
14 \operatorname{disp}('iii) Power (P1) is = '+string (P1) +' W
     <sup>'</sup>);
15 P2=Ipy*Ipy*3*Rpy;
16 disp('iv) Power (P2) is = '+string (P2) +' W'
     );
17 Q1=3*Ip*Ip*Xp;
18 disp('v) Power (Q1) is = '+string (Q1) +' W')
19 Qy=3*Ipy*Ipy*Xpy;
20 disp('vi) Power (Qy) is = '+string (Qy) +' W'
     );
21 P=P1+P2;
22 disp('vii) Power (P) is = '+string (P) +' W')
23 Q = Q1 + Qy;
24 disp('viii) Power (Q) is = '+string (Q) +' W'
     );
25 S = P + \%i * Q;
26 disp('ix) Power (S) is = '+string (S) +' W');
27 LI=S/[sqrt(3)*Vp];
28 disp('x) CURRENT (LI) is in rectangular form = '
     +string (LI) + 'A');
```

Scilab code Exa 3.13 Line voltage

```
1 //EXAMPLE 3-13
PG NO 182
2 VRY=375.877+%i*136.80;
```

```
3 disp('i) LINE VOLTAGE (VRY) is in rectangular form
        = '+string (VRY) + ' V ');
4 VYB = -69.45 - \%i * 393.923;
5 disp('ii) LINE VOLTAGE (VYB) is in rectangular
          = '+string (VYB) + 'V';
6 VBR = -306.41 + \%i * 257.11;
7 disp('iii) LINE VOLTAGE (VBR) is in rectangular
     form
          = '+string (VBR) + 'V';
8 \text{ VYR} = -\text{VRY};
            LINE VOLTAGE (VYR) is in rectangular form
9 disp('i)
        = '+string (VYR) + ' V ');
10 VRB=69.45+%i*393.923;
11 disp('i) LINE VOLTAGE (VRB) is in rectangular form
        = '+string (VRB) + ' V ');
12 VBY = 306.41 - \%i * 257.11;
13 disp('i) LINE VOLTAGE (VBY) is in rectangular form
        = '+string (VBY) + ' V ');
```

Scilab code Exa 4.14 Current voltage

```
//EXAMPLE 3-14 PG NO 182-183

2 X=[400+%i*0 -6+%i*0, -200-%i*346.410 6-%i*0];

3 Y=[12+%i*0 -6+%i*0, -6+%i*0 6-%i*8];

4 I1=52.31-%i*7.120;

5 I2=37.957-%i*14.23;

6 Ia=I1;

7 disp('i) CURRENT (Ia) is in rectangular form = '+string (Ia) +' A');

8 Ib=I2-I1;

9 disp('i) CURRENT (Ib) is in rectangular form = '+string (Ib) +' A');

10 IC=-I2;

11 disp('i) CURRENT (Ic) is in rectangular form = '+string (IC) +' A');

12 Z1=6+%i*0;
```

```
13 Vao=Ia*Z1;
14 disp('i) VOLTAGE (Vao) is in rectangular form =
         '+string (Vao) +' V ');
15 Vbo=Ib*Z1;
16 disp('i) VOLTAGE (Vbo) is in rectangular form =
         '+string (Vbo) +' V ');
17 Vco=IC*(-%i*8);
18 disp('i) VOLTAGE (Vco) is in rectangular form =
         '+string (Vco) +' V ');
```

Scilab code Exa 3.15 Line Current Neutral Currents Reading of wattmeter

```
//EXAMPLE 3-15 PG NO-185-186
1
2 \text{ Van} = 230.94 + \%i * 0;
3 Vbn = -115.47 - \%i * 200;
4 Vcn = -115.47 + \%i * 200;
5 V1=10*10^3;
6 \text{ Ia=V1/Van};
7 disp('i) CURRENT (Ia) is
                                in rectangular form =
      +string (Ia) + 'A');
8 V2=4*10^3;
9 Ic=V2/Van;
10 disp('i) CURRENT (Ic) is
                                 in rectangular form
      +string (Ic) + 'A');
11 V3=6*10^3;
12 Ib=V3/Van;
13 disp('i) CURRENT (Ib) is
                                in rectangular form
      +string (Ib) + 'A');
14 In=(Ia+Ib+Ic);
15 disp('i) CURRENT (In) is
                                in rectangular form
      +string (In) + 'A');
16 \quad W1 = [V1 + V2 + V3]/2;
17 disp('iv) Power (W1) is in rectangular form
      +string (W1) + ' W ');
```

Scilab code Exa 3.16 Power and Power factor

```
//example - 3.16 pg no - 186
W1=5920;
W2=2610;
P=8530;
tanQ=(1.732*(W2-W1))/(W1+W2);
cosQ=0.83;
P.F=cosQ;
disp('i) tanQ = '+string (tanQ)+' ');
disp('ii) POWER FACTOR = '+string (P.F)+' ');
```

Scilab code Exa 3.18 Power ouputs

```
//Example 3.18 pg no -186-187
2 \cos Q = 0.8;
3 \sin Q = 0.6;
4 VL=10000;
5 V = 5000 * 10^3;
                              //VOLTAGE
6 P.F=0.9;
                            //POWER FACTOR
7 IL=V/(1.732*VL*cosQ);
8 I1=IL*cosQ; //ACTIVE COMPONENT
9 I2=IL*sinQ; //REACTIVE COMPONENT
10 P=1.732*(VL*IL*P.F)
11 disp('i) IL = '+string (IL)+' A');
12 disp('i) ACTIVE COMPONENT = '+string (I1)+' A');
13 disp('i) REACTIVE COMPONENT = '+string (I2)+' A');
14 disp('i) P = '+string (P)+' KW');
```

Scilab code Exa 3.19 Current Power factor Active Reactive Power

Scilab code Exa 3.20 Load Impedance

```
1 //Example 3.20
                             pg no-187
                 //LINE CURRENT
 2 Ip=100;
 3 \text{ COSQ} = 0.787;
4 SINQ=0.617;
5 \text{ pi} = 3.14;
 6 Vp = 1100/1.732;
 7 W = (2*pi*50)
8 Z=Vp/Ip;
9 R=Z*COSQ;
10 \text{ Xc} = Z * SINQ
11 C=1/(W*Xc)
12 disp('i) Z = '+string(Z) + 'ohm');
13 \operatorname{disp}('ii') R = '+\operatorname{string}(R) + ' \operatorname{ohm}');
14 disp('iii) Xc = '+string (Xc) + 'ohm');
15 \operatorname{disp}('iiii') \operatorname{capacitance}(C) = '+\operatorname{string}(C) + 'F');
```

Scilab code Exa 3.21 Line current Volt ampere Active and Reactive Power

Scilab code Exa 3.22 Phase Current Line Current Power Factor Active Power and Reactive Power

```
//EXAMPLE 3.22 PG NO-188
Vp=230;
VL=230;
Ip=Vp/Z;
disp('i) CURRENT (Ip) is in rectangular form = '+string (Ip) +' A');
```

Scilab code Exa 3.23 impedance

```
//EXAMPLE 3-23 PG NO-188
2 Za=8.66+%i*5;
3 Zc=8.48+%i*8.48;
4 Zb=11.50+%i*9.642;
5 VRn=254+%i*0;
```

```
6 VYn = -127.02 - \%i * 220;
7 Vbn = -127.02 + \%i * 220;
8 \text{ Yr}=1/\text{Za};
9 disp('i) admittance (Ya) is in rectangular form =
        '+string (Yr) +' siemens ');
10 Yb=1/Zb;
11 disp('i) admittance (Yb) is in rectangular form
        '+string (Yb) +' siemens ');
12 Yy=1/Zc;
13 disp('i) admittance (Yc) is in rectangular form
        '+string (Yy) +' siemens ');
14
15 Von = [(VRn*Yr) + (Vbn*Yb) + (VYn*Yy)]/(Yr+Yb+Yy);
16
17 disp('i) Voltage (Von) is in rectangular form =
      '+string (Von) + ' V');
```

Scilab code Exa 3.24 Total Power and Power Factor

```
//EXAMPLE 3-24 PG NO-189
//EXAMPLE 3-24 PG NO-189
W1=-1200;
W2=3400;
P=W1+W2;
disp('iv) Power (P) is = '+string (P) +' W ');
X=[sqrt(3)*(W2-W1)]/P;
disp('iv) (tan (Q)) is = '+string (X) +' '
);
```

Scilab code Exa 3.25 Line Current Total Power

$$\begin{array}{cccc} 1 & & //\text{EXAMPLE } 3-25 & & \text{PG NO} \\ & & -189 & & \end{array}$$

```
2 Vac = 240 + \%i *0;
3 \text{ Vcb} = -120 - \%i * 207.84;
4 Vba = -120 + \%i * 207.84;
5 Zac = 20 + \%i * 0;
6 Zcb=12.99+\%i*7.5;
7 Zba=0+\%i*25;
8 Iac=Vac/Zac;
9 disp('i) CURRENT (Iac) is
                                in rectangular form =
      '+string (Iac) + 'A');
10 Icb=Vcb/Zcb;
11 disp('i) CURRENT (Icb) is
                                 in rectangular form
      '+string (Icb) + 'A');
12 Iba=Vba/Zba;
13 disp('i) CURRENT (Iba) is
                                in rectangular form
      '+string (Iba) + 'A');
14 Ia=Iac-Iba;
15 disp('i) CURRENT (Ia) is
                                in rectangular form
     +string (Ia) + 'A');
16 Ib=Iba-Icb;
17 disp('i) CURRENT (Ib) is
                                in rectangular form
     +string (Ib) + 'A');
18 Ic=Icb-Iac;
19 disp('i) CURRENT (Ic) is
                                in rectangular form
     +string (Ic) + 'A');
20 P = (240*12) + (240*16*0.866) + (240*9.6*0);
21 disp('iv) Power (P) is = '+string (P) +' W')
```

Scilab code Exa 3.26 current Power

```
1 Vab=200+%i*0;
2 Vbc=-100-%i*173.20;
3 Vca=-100+%i*173.20;
4 Zac=31+%i*59;
5 Zcb=30-%i*40;
```

```
6 Zba=80+\%i*60;
7 Iab=Vab/Zac;
8 disp('i) CURRENT (Iac) is
                             in rectangular form =
     '+string (Iab) + 'A');
9 Ibc=Vbc/Zcb;
10 disp('i) CURRENT (Icb) is
                              in rectangular form =
     '+string (Ibc) + 'A ');
11 Ica=Vca/Zba;
12 disp('i) CURRENT (Iba) is
                              in rectangular form =
     '+string (Ica) + 'A ');
13 Ia=Iab-Ica;
14 disp('i) CURRENT (Ia) is
                              in rectangular form
     +string (Ia) + 'A');
15 Ib=Ibc-Iab;
16 disp('i) CURRENT (Ib) is
                              in rectangular form
     +string (Ib) + 'A');
17 Ic=Ica-Ibc;
18 disp('i) CURRENT (Ic) is
                             in rectangular form =
     +string (Ic) + 'A');
19 P = (200*3*0.46) + (200*4*0.6) + (200*2*0.8);
20 disp('iv) Power (P) is = '+string (P) +' W')
```

Scilab code Exa 3.27 Line Current and Total Power

```
1     //EXAMPLE-3.27     PG NO-190-191
2     Zr=4;
3     Zy=5;
4     VL=400;
5     IL=103.1;
6     Q=36.6     //Q=TETA
7     COSQ=0.8028;
8     P=(1.732*VL*IL*COSQ)
9     disp('i) P = '+string (P)+' W');
```

Scilab code Exa 3.28 Line Current Neutral Current Total power

```
//EXAMPLE 3-28 PG NO-191
1
2 \text{ Van} = 230.94 + \%i * 0;
3 Vbn = -115.47 - \%i * 200;
4 Vcn = -115.47 + \%i * 200;
5 Za=12-\%i*16;
6 Zb = 12 + \%i * 0;
7 Zc = 8 + \%i * 6;
8 Ia=Van/Za;
9 disp('i) CURRENT (Ia) is in rectangular form =
      +string (Ia) + 'A');
10 Ib=Vbn/Zb;
11 disp('i) CURRENT (Ib) is
                                in rectangular form
      +string (Ib) + 'A');
12 Ic=Vcn/Zc;
13 disp('i) CURRENT (Ic) is
                                in rectangular form
      +string (Ic) + 'A');
14 NI = -(Ia + Ib + Ic);
15 disp('i) NEUTRAL CURRENT (NI) is in rectangular
      form = '+string (NI) + 'A');
16 P = (230.95*11.55*0.6) + (230.95*19.25*1)
      +(230.95*23.095*0.8);
17 disp('iv) Power (P) is = '+string (P) +' W')
```

Scilab code Exa 3.29 Line current

```
1 //Example -3.29 PG NO-191-192
2 IL=12.55;
3 V=460;
4 Z=V/(1.732*IL)
```

```
5 disp('i) Z = '+string(Z)+' ohm');
```

Scilab code Exa 3.30 R and x

Scilab code Exa 3.31 Voltmeter

```
//EXAMPLE -3.31 PG NO -193
Zr=3333.33;
Vry=200;
X=16666.66;
Y=346.40; //Y=(300-j173.2)
I=Y/X;
R.V=I*Zr;
disp('i) I = '+string (I)+'<-29.99 A');
disp('ii) READING OF VOLTMETER = '+string (R.V)+'<-30 degree V');</pre>
```

Scilab code Exa 3.32 Line currents

```
//EXAMPLE 3-32 PG NO-193
Vry=400+%i*0;
Vyb=-200-%i*346.41;
Vbr=-200+%i*346.410;
```

```
5 \quad I1=14.74-\%i*7.3;
6 I2=2.105-\%i*10.94;
7 Ir=I1;
8 disp('i) CURRENT (Ir) is
                               in rectangular form =
     +string (Ir) + 'A');
9 Iy = I2 - I1;
10 disp('i) CURRENT (Iy) is
                               in rectangular form =
     +string (Iy) + 'A');
11 Ib=-I2;
12 disp('i) CURRENT (Ib) is
                               in rectangular form =
     +string (Ib) + 'A');
13 Pr=16.45*16.45*10;
14 disp('i) Power (Pr) is = '+string (Pr) + 'W');
15 Py = Iy * Iy * 20;
16 disp('i) Power (Py) is
                            in rectangular form =
     string (Py) + 'W');
17 Pb=11.24*11.24*25;
18 disp('i) Power (Pb) is in rectangular form
     string (Pb) + 'W');
19 Vro = -(Ir * 10);
20 disp('i) VOLTAGE (Vro) is in rectangular
                                                form
       '+string (Vro) + ' V ');
21 \text{ Vrn} = 200 - \%i * 115.475;
22 disp('i) VOLTAGE (Vrn) is in rectangular form
       '+string (Vrn) + ' V ');
23 Von=Vro+Vrn;
24 disp('i) VOLTAGE (Von) is in rectangular
                                                form =
       '+string (Von) + ' V ');
```

Scilab code Exa 3.33 Neutral Current

```
5 disp('i) CURRENT (In) is in rectangular form = '+string (In) +' A');
```

Scilab code Exa 3.34 Line Current Total Voltmetter Active and Reactive Power

```
//EXAMPLE 3-34 PG NO
1
                              -194
2 \text{ Vp} = 230.94;
3 Van = 230.94 + \%i *0;
4 Vbn = -115.47 - \%i * 200;
5 Vcn = -115.47 + \%i * 200;
6 Z=8-\%i*10;
7 Ia=Van/Z;
8 disp('i) CURRENT (Ia) is in rectangular form = '
     +string (Ia) + 'A');
9 Ib=Vbn/Z;
10 disp('ii) CURRENT (Ib) is in rectangular form =
      '+string (Ib) + 'A ');
11 Ic=Vcn/Z;
12 disp('iii) CURRENT (Ic) is in rectangular form =
       '+string (Ic) + 'A');
13 S = sqrt(3) * 400 * 18.03;
14 disp('iv) APPARENT POWER (S) is = '+string (S)
     + ' VA ');
15 P=S*0.62;
16 \operatorname{disp}('v) Power (P) is = '+string (P) +' W');
17 Q=S*-0.8;
18 disp('vi) Power (Q) is = '+string (Q) +'
      ');
```

Scilab code Exa 3.35 Total Active Power Toal Reactive Power Voltmetter Line CurrentThree Phase Circuitsower factor

```
//EXAMPLE -3.35 PG NO-195
                  //POWER INPUT
2 I.P=163.44;
3 T.A.P=253.44; //TOTAL ACTIVE POWER
4 R.P=122.58; //REACTIVE POWER INDUCTION MOTOR
5 L=40; //REACTIVE POWER OF SPECIAL LOAD
6 \quad T.P=R.P+L;
               //TOTAL REACTIVE POWER
           //P+JQ
7 S=301.1;
                //OVERALL POWRER FACTOR
8 \quad X = T \cdot A \cdot P/S;
9 IL=S*10^3/(1.732*400)
10 disp('i)TOTAL REACTIVE POWER = '+string (T.P)+'
     Kvar')
11 disp('i) S = '+string (S)+' KVA')
12 disp('i)OVERALL POWER FACTOR (x) = '+string (X)+'
      lagging')
13 disp('iiii)LOAD CURRENT (IL) = '+string (IL)+' A'
     )
```

Scilab code Exa 3.36 Phase current Total line current

Scilab code Exa 3.37 current

```
//EXAMPLE 3-37
1
                                         PG NO-196-197
2 \text{ Vry} = 450 + \% i * 0;
3 Vyb = -225 - \%i * 389.711;
4 Vbr = -225 + \%i * 389.711;
5 Vrn = 225 - \%i * 130;
6 Vyn = -225 - \%i * 130;
7 Vbn=0+\%i*259.8;
8 Z1=10.60+\%i*10.60;
9 Z2=5+\%i*8.66;
10 Z3=2.6+\%i*1.5;
11 Z4=12.21+\%i*4.44;
12 Iry=Vry/Z1;
13 disp('i) CURRENT (Iry) is
                                   in rectangular form
      '+string (Iry) + ' A ');
14 Iyb = Vyb/Z2;
15 disp('i) CURRENT
                                  in rectangular form
                      (Iyb) is
      '+string (Iyb) + 'A ');
16 Ibr=Vbr/Z3;
17 disp('i) CURRENT
                       (Ibr) is
                                   in rectangular form
      '+string (Ibr) + 'A ');
18 I1=Iry-Ibr;
19 disp('i) CURRENT
                      (I1) is
                                 in rectangular form
      +string (I1) + 'A');
20 \quad I2 = Iyb - Iry;
21 disp('i) CURRENT
                      (I2) is
                                 in rectangular form
      +string (I2) + 'A');
22 \quad I3 = Ibr - Iyb;
23 disp('i) CURRENT
                                 in rectangular form
                      (I3) is
      +string (I3) + 'A');
24 \quad I4=Vrn/Z4;
25 disp('i) CURRENT (I4) is
                                 in rectangular form
      +string (I4) + 'A');
26 \quad I5 = Vyn/Z4;
27 disp('i) CURRENT (I5) is
                                 in rectangular form
      +string (I5) + 'A');
28 \quad I6 = Vbn/Z4;
29 disp('i) CURRENT (I6) is
                                 in rectangular form
```

```
+string (I6) + 'A');
30 \quad I7 = Vbn/(3 + \%i * 4);
31 disp('i) CURRENT (I7) is
                                 in rectangular form = '
      +string (I7) + 'A');
32 IR = I1 + I4;
33 disp('i) CURRENT (IR) is
                                 in rectangular form =
      +string (IR) + 'A');
34 IY = I1 + I4;
35 disp('i) CURRENT (IY) is
                                 in rectangular form
      +string (IY) + 'A');
36 \quad IB = I3 + I6 + I7;
37 disp('i) CURRENT (IB) is
                                 in rectangular form
      +string (IB) + 'A');
38 \text{ IN} = -(17);
39 disp('i) CURRENT (IN) is
                                 in rectangular form =
      +string (IN) + 'A');
```

Scilab code Exa 3.39 Voltage

```
1 VAB = 400 + \%i *0;
2 VBC = -200 - \%i * 346.41;
3 \text{ VCA} = 400 + \% i * 0;
4 Z1=300-\%i*398;
5 IAB=VAB/Z1;
6 disp('i) CURRENT (IAB) is
                                  in rectangular form =
      '+string (IAB) + ' A ');
7 VAD = IAB * 300;
8 disp('ii) VOLTAGE (VAD) is
                                    in rectangular form =
       '+string (VAD) + ' V ');
9 \text{ VDA} = -\text{VAD};
10 disp('iii) VOLTAGE (VDA) is
                                     in rectangular form =
         '+string (VDA) + ' V ');
11 VDC = VDA - VCA;
12 disp('iv) VOLTAGE (VDC) is
                                    in rectangular form =
       '+string (VDC) + 'VA');
```

```
13 VAC = 400 + \%i *0;
14 VCB = -200 - \%i * 346.41;
15 VBA = -200 + \%i * 346.410;
16 IAB1 = -(VAC)/Z1;
17 disp('v) CURRENT (IAB1) is in rectangular form =
        '+string (IAB1) + 'A ');
18 VAD1 = IAB1 * 300;
19 disp('vi) VOLTAGE (VAD1) is in rectangular form =
         '+string (VAD1) + ' V ');
20 \text{ VDA} = -\text{VAD};
21 disp('vii) VOLTAGE (VAAD) is
                                       in rectangular form
      = '+string (VDA) + ' V ');
22 \text{ VDC} = \text{VDA} + \text{VAC};
23 disp('viii) VOLTAGE (VDC) is in rectangular form
      = '+string (VDC) + 'V');
```

Scilab code Exa 3.40 W1 and W2

Scilab code Exa 3.41 Current

```
1 // CHAPTER -3 EXAMPLE NO 3.41 PG NO-200 2 Vp=230.94;
```

```
3 Xa=100+%i*155;
4 Ia=Vp/Xa;
5 COSQ=0.542;
6 P=COSQ;
7 disp('i) (Ia) = '+string (Ia)+' A')
```

Scilab code Exa 3.42 Za Zb Zc

```
1 Van = 254 + \%i * 0;
2 Vbn = -127.02 - \%i * 220;
3 Vcn = -127.02 + \%i * 220;
4 Ib=0-\%i*10;
5 Ic=0+\%i*20;
6 Ia=-(Ib+Ic);
7 disp('i) CURRENT (Ia) is
                                in rectangular form = '
      +string (Ia) + 'A');
8 Von = -173.20 + \%i * 100;
9 Vao = Van - Von;
10 disp('i) VOLTAGE (Vao) is
                                in rectangular form =
      '+string (Vao) + ' V ');
11 Vbo=Vbn-Von;
12 disp('i) VOLTAGE (Vbo) is
                                 in rectangular form
      '+string (Vbo) + ' V ');
13 Vco=Vcn-Von;
14 disp('i) VOLTAGE (Vco) is
                                in rectangular form
      '+string (Vco) + ' V ');
15 Za=Vao/Ia;
16 disp('i) IMPEDANCE (Za) is
                                  in rectangular form
       '+string (Za) + ' ohm ');
17 Zb = Vbo/Ib;
18 disp('i) IMPEDANCE (Zb) is
                                  in rectangular form
       '+string (Zb) + ' ohm ');
19 Zc=Vco/Ic;
20 disp('i) IMPEDANCE (Zc) is
                                  in rectangular form =
       '+string (Zc) + ' ohm ');
```

Scilab code Exa 3.43 Total Apparent active Reactive Power line Current Power factor

```
// \text{example} - 3.43 pg no -200-201
2 \text{ Ip=} 11 < 36.87;
3 PL=5808;
4 QL=4356;
5 \text{ Pm} = 6000;
6 Qm = 8000;
7 P = PL + Pm;
8 \quad Q = Qm - QL;
9 S=((P*P)+(Q*Q))^0.5;
10 X=P/S; //POWER FACTOR
11 disp('i)ACTIVE POWER (P) = '+string (P)+' W')
12 disp('i)REACTIVE POWER (Q) = '+string (Q)+' vars(
       inductive)')
13 disp('i)APPARENT POWER (S) = '+string (S)+' A')
14 \operatorname{disp}('i) power factor (X) = '+ \operatorname{string}(X) + ' \operatorname{lagging}
       ')
```

Scilab code Exa 3.44 Power and Power Factor

```
//EXAMPLE 3.44 PG NO-201
W1=800;
W2=-400;
P=W1+W2;
x=(1.723*(W2-W1))/(W1+W2) //tanQ=x
Q=-79.10;
y=0.189;
P=y //POWER FACTOR
disp('i)tanQ (x) = '+string (x)+' ')
disp('i) POWER factor (P) = '+string (P)+' ')
```

Scilab code Exa 3.45 Line Current

```
1
                        //EXAMPLE 3-45 PG NO-201-202
2 Vab=0+\%i*212;
3 Vbc = -183.6 - \%i * 106;
4 Vca=183.6-\%i*106;
5 \quad Za=10+\%i*0;
6 Zb=10+\%i*10;
7 Zc=0-\%i*20;
8 Zab = [(Za*Zb) + (Zb*Zc) + (Za*Zc)]/Zc;
9 disp('i) IMPEDANCE (Zab) is in rectangular form =
        '+string (Zab) + 'ohm ');
10 Zbc = [(Za*Zb)+(Zb*Zc)+(Za*Zc)]/Za;
11 disp('i) IMPEDANCE (Zbc) is in rectangular form =
        '+string (Zbc) +' ohm ');
12 Zca = [(Za*Zb) + (Zb*Zc) + (Za*Zc)]/Zb;
13 disp('i) IMPEDANCE (Zca) is in rectangular form =
        '+string (Zca) + ' ohm ');
14 Iab=Vab/Zab;
15 disp('i) CURRENT (Iab) is in rectangular form =
      '+string (Iab) + 'A');
16 Ibc=Vbc/Zbc;
17 disp('i) CURRENT (Ibc) is
                              in rectangular form
      '+string (Ibc) + 'A');
18 Ica=Vca/Zca;
19 disp('i) CURRENT (Ica) is
                              in rectangular form
      '+string (Ica) + 'A ');
20 Ia=Iab-Ica;
21 disp('i) CURRENT (Ia) is
                               in rectangular form =
     +string (Ia) + 'A');
22 Ib=Ibc-Iab;
23 disp('i) CURRENT (Ib) is
                               in rectangular form =
     +string (Ib) + 'A');
24 Ic=Ica-Ibc;
```

```
25 disp('i) CURRENT (Ic) is in rectangular form = '
+string (Ic) +' A');
```

Scilab code Exa 3.47 total votamperes Active and Reactive Power

```
//EXAMPLE 3-47
                                                   PG NO
1
                                  -202 - 203
2 \text{ Vab=} 212;
3 \text{ Vbc} = 212;
4 Vca=212;
5 \text{ Iab=10};
6 Ibc=5;
7 \text{ Ica=} 7.07;
8 P = [(Vab*Iab*0.707) + (Vbc*Ibc*0.707) + (212*7.07*0)];
9 disp('i) ACTIVE POWER (P) is = '+string (P) +' W
       <sup>'</sup>);
10 Q = [(Vab*Iab*0.707) + (Vbc*Ibc*-0.707) + (212*7.07*-1)]
11 disp('ii) REACTIVE POWER (Q) is = '+string (Q) +'
       vars ');
12 S = [P^2 + (Q^2)]^0.5;
13 disp('i) APPARENT POWER (S) is = '+string (S) +
      , VA ,);
```

Scilab code Exa 3.48 voltage

```
//EXAMPLE 3-48 PG NO-202-203
Vao=186.7-%i*87.06;
Vco=-38.5+%i*292.48;
Vbo=-(Vao+Vco);
disp('i) VOLTAGE (Vbo) is in rectangular form = '+string (Vbo) +' V ');
Vab=Vao-Vbo;
```

```
7 disp('i) VOLTAGE (Vab) is in rectangular form =
        '+string (Vab) +' V');
8 Van=201-%i*37.51;
9 Von=Van-Vao;
10 disp('i) VOLTAGE (Von) is in rectangular form =
        '+string (Von) +' V');
```

Scilab code Exa 3.49 Phase Current Line Current Total active and reactive Power W1 w2

```
//EXAMPLE 3-49 PG NO-203-204
1
2 Vab=400+\%i*0;
3 Vbc = -200 - \%i * 346.41;
4 Vca = -200 + \%i * 346.410;
5 Z1 = \%i * 10;
6 Z2 = -\%i * 20;
7 \quad Z3 = 10;
8 Iab=Vab/Z1;
9 disp('i) CURRENT (Iab) is in rectangular form =
      '+string (Iab) + 'A ');
10 Ibc=Vbc/Z2;
11 disp('ii) CURRENT (Ibc) is
                                in rectangular form =
       '+string (Ibc) + 'A');
12 Ica=Vca/Z3;
13 disp('iii) CURRENT (Ica) is
                                 in rectangular form =
        '+string (Ica) + 'A ');
14 Ia=Iab-Ica;
15 disp('iv) CURRENT (Ia) is
                               in rectangular form =
      '+string (Ia) + 'A');
16 Ib=Ibc-Iab;
17 disp('v) CURRENT (Ib) is
                               in rectangular form = '
     +string (Ib) + 'A');
18 Ic=Ica-Ibc;
19 disp('vi) CURRENT (Ic) is
                               in rectangular form =
      '+string (Ic) + 'A');
```

Scilab code Exa 3.50 Line current

```
//EXAMPLE 3-50 PG NO-204

2 I1=13.12-%i*9.15;
3 I2=-6.80-%i*19.55;
4 IaA=I1;
5 disp('i) CURRENT (IaA) is in rectangular form = '+string (IaA) +' A ');
6 IbB=I2-I1;
7 disp('i) CURRENT (IbB) is in rectangular form = '+string (IbB) +' A ');
8 IcC=-I2;
9 disp('i) CURRENT (IcC) is in rectangular form = '+string (IcC) +' A ');
```

Scilab code Exa 3.51 Resistance reactance Power Factor

```
//EXAMPLE 3-51 PG NO
-205
R1=1.5;
X=2.396;
X1=sqrt(X^2-R1^2);
disp('i) X1 is = '+string (X1) +'ohm ');
```

```
6 IL=100;
7 Ip=IL/1.732;
8 disp('ii) Peak Current = '+string (Ip) +' A ');
9 R2=4.5;
10 Z=7.1878;
11 X2=sqrt(Z^2-R2^2)
12 disp('iii) X2 is = '+string (X2) +'ohm ');
13 PF=R2/(Z);
14 disp('vi) Power Factor is = '+string (PF) +' ');
;
```

Scilab code Exa 3.52 Line Current Power factor Active and Reactive Power

```
//EXAMPLE 3-52 PG NO-205-206
1
2 \text{ Vp} = 230.94;
3 R = 20 + \%i * 30;
4 V = 400;
5 \text{ IL=Vp/R};
6 disp('i) CURRENT (IL) is in rectangular form = '
      +string (IL) + 'A');
7 \text{ PF} = 0.555;
8 P=sqrt(3)*V*IL*PF;
9 disp ('ii) ACTIVE POWER (P) is in rectangular form
     = '+string (P) + 'W');
10 Q = sqrt(3) *V*IL*56.289;
11 disp('iii) REACTIVE POWER (Q) is in rectangular
     form = '+string (Q) + 'vars');
12 S=sqrt(3)*V*IL;
13 disp('iv)APPARENT POWER (S) is in rectangular form
        = '+string (S) + ' VA ');
14 Ip=3.698;
15 \quad Z=V/Ip;
16 disp('i) IMPEDANCE (Z) is in rectangular form =
      '+string (Z) + ' ohm ');
```

Scilab code Exa 3.53 Current Active and Reactive Power

```
//EXAMPLE 3-53 PG NO-206-207
1
2 \text{ HP} = 2000;
3 \text{ Vp} = 2200;
4 E=0.93;
5 \text{ MI} = (\text{HP} * 735.5) / \text{E};
6 disp('i) MOTOR INPUT (MI) is in rectangular form
     = '+string (MI) + 'W');
7 Ip=MI/[3*Vp*0.85];
8 disp('i) CURRENT (Ip) is in rectangular form = '
     +string (Ip) + 'A');
9 AC = Ip * 0.85;
10 disp('i) ACTIVE CURRENT (AC) is in rectangular
     form = '+string (AC) + 'A');
11 RC=(Ip^2-AC^2)^0.5;
12 disp('i) REACTIVE CURRENT (RC) is in rectangular
     form = '+string (RC) + 'A');
13 LC=sqrt(3)*Ip;
14 disp('i) LINE CURRENT (LC) is in rectangular form
      = '+string (LC) + ' A ');
15 ALC=LC*0.85;
16 disp('i) ACTIVE LINE CURRENT (ALC) is in
      rectangular form = '+string (ALC) +' A');
17 RLC=(LC^2-ALC^2)^0.5;
```

```
18 disp('i) REACTIVE LINE CURRENT (RLC) is in rectangular form = '+string (RLC) +' A ');
```

Scilab code Exa 3.54 Voltage load impedance

```
//EXAMPLE 3-54 PG NO
1
                                    -207 - 208
2 Van=161.66+\%i*0;
3 Vbn = -80.83 - \%i * 140;
4 Vcn = -80.83 + \%i * 140;
5 \quad Z1 = 10 + \%i * 0;
6 Z2=8.66+\%i*5;
7 Z3=8.66-\%i*5;
8 YA = 1/Z1;
9 disp('i) ADMITTANCE (YA) is in rectangular form =
        '+string (YA) +' siemens ');
10 YB = 1/Z2;
11 disp('ii) ADMITTANCE (YB) is in rectangular form
     = '+string (YB) +' siemens ');
12 YC = 1/Z3;
13 disp('iii) ADMITTANCE (YC) is in rectangular form
      = '+string (YC) +' siemens ');
14 \quad Von = -[(Van * YA) + (Vbn * YB) + (Vcn * YC)]/[YA + YB + YC];
15 disp('iv) VOLTAGE (Von) is in rectangular form =
       '+string (Von) + ' V ');
16 Vao=Van-Von;
17 disp('v) VOLTAGE (Vao) is in rectangular form =
      '+string (Vao) + ' V ');
18 Vbo=Vbn-Von;
19 disp('vi) VOLTAGE (Vbo) is in rectangular form =
        '+string (Vbo) + ' V ');
20 \quad Vco=Vcn-Von;
21 disp('vii) VOLTAGE (Vco) is in rectangular form =
        '+string (Vco) + ' V ');
```

Scilab code Exa 3.55 Phase and Line Current

```
1
                                   //EXAMPLE 3-55
                                     PG NO-208-209
2 Vab=400+\%i*0;
3 Vbc = -220 - \%i * 381.05;
4 Vca = -220 + \%i * 381.05;
5 \quad Z1 = 0 + \%i * 25;
6 Z2=13+\%i*7.5;
7 \quad Z3 = 20 + \%i * 0;
8 IAB=Vab/Z1;
9 disp('i) CURRENT (IAB) is
                                in rectangular form
       '+string (IAB) + ' A ');
10 IBC=Vbc/Z2;
11 disp('i) CURRENT
                       (IBC) is
                                      rectangular form
                                  in
       '+string (IBC) + ' A ');
12 ICA=Vca/Z3;
13 disp('i) CURRENT
                     (ICA) is
                                 in rectangular form =
      '+string (ICA) + ' A ');
14 IA = IAB - ICA;
15 disp('i) CURRENT
                                 in rectangular form
                      (IA) is
      +string (IA) + 'A');
16 IB=IBC-IAB;
                                 in rectangular form
17 disp('i) CURRENT
                      (IB) is
      +string (IB) + 'A');
18 IC=ICA-IBC;
19 disp('i) CURRENT
                      (IC) is
                                 in rectangular form
      +string (IC) + 'A');
```

Scilab code Exa 3.59 current

```
1 	 //EXAMPLE 3-59 PG NO 267
```

```
2 V2 = 240 - \%i * 14.35;
3 V1 = 240 + \%i *0;
4 VL = 233.73 - \%i * 8.938;
5 R1=0.6+\%i*0.8;
6 R2=0.5+%i*0.866;
7 I1=(V1-VL)/R1;
8 I2 = (V2 - VL)/R2;
9 R3=16+%i*12;
10 I3=(VL/R3);
11 disp('i) current(I1) is in polar form = '+string (
      I1) + 'A ');
12 disp('i) current(I2) is in polar form =
                                               '+string (
      12) + A';
13 disp('i) current(I3) is in polar form = '+string (
      13) + A';
```

Chapter 4

network theorem

Scilab code Exa 4.4 Numbers of trees

Scilab code Exa 4.6 Currents

```
// EXAMPLE 4-6

PG NO-228

I1=-2.59*10^-3;

I2=-1.45*10^-3;

IR1=I1;

disp('i) CURRENT (IR1) is from A to B = '+
    string (IR1) +' A ');

IR2=I2;

disp('ii) CURRENT (IR2) is from B to E = '+
    string (IR2) +' A ');

from B
```

Scilab code Exa 4.8 currents

```
//EXAMPLE 4-8
                                                     PG
1
                               NO-230-231
2 V = 25;
3 \text{ Vm} = 0.64;
4 Vn = 3.05;
5 R1 = 5;
6 R2 = 9.64
7 I1 = (V-R2)/R1
8 disp('i) CURRENT (I1) is = '+string (I1) +'
     A ');
9 I2=R2/4;
10 disp('ii) CURRENT (I2) is = '+string (I2) +' A
      ');
11 I3 = (R2 - Vn) / 10;
12 disp('iii') CURRENT (I3) is = '+string (I3) +'
     A ');
13 I4 = (10 - Vn)/8;
14 disp('vi) CURRENT (I4) is = '+string (I4) +' A
      ');
15 I5=Vn/2;
16 disp('v) CURRENT (I5) is = '+string (I5) + 'A
      ');
```

Scilab code Exa 4.9 current

```
//EXAMPLE 4-9
                                           PG NO-232-233
2 X = [40 -8 -20; -8 18 -6; -20 -6 36];
3 \quad Y = [24 \quad -8 \quad -20; 0 \quad 18 \quad -6; 0 \quad -6 \quad 36];
4 \quad Z = [40 \quad 24 \quad -20; -8 \quad 0 \quad -6; -20 \quad 0 \quad 36];
5 \quad U = [40 -8 24; -8 18 0; -20 -6 0]
6 I1 = det(Y/X);
7 disp('CURRENT = '+string((I1))+' A');
8 I2 = det(Z/X);
9 disp(' CURRENT = '+string(I2)+' A');
10 I3 = det(U/X);
11 disp('CURRENT is = '+string(I3)+' A');
12 IR3=I2;
13 disp('CURRENT is = '+string(IR3)+' A');
14 IR4 = 0;
15 disp('CURRENT is = '+string(IR4)+' A');
16 IR5=I1-I3;
17 disp('CURRENT is = '+string(IR5)+' A');
18 IR6=I3;
19 disp('CURRENT is = '+string(IR6)+' A');
```

Scilab code Exa 4.10 Current

```
6 disp('i) Current (IR1) is = '+string (IR1) +'
      A from B to A');
7 IR2=-I1+I2;
                                           //CURRENT
     THROUGH 4.7 RESISTANCE
8 disp('ii) Current (IR2)
                           iѕ
                              = '+string (IR2) +
     'A from C to B');
  IR3 = -I2 + I3;
                                           //CURRENT
     THROUGH 6.8 RESISTANCE
                                   = '+string (IR3)
10 disp('iii) Current (IR3)
                            is
     +' A from C to D');
```

Scilab code Exa 4.12 current

```
//Example 4-12 PG NO234-235

VA=60.866;
VB=19.13;
R=60;
I60=(VA-VB)/R;
disp('CURRENT is = '+string(I60)+' A');
```

Scilab code Exa 4.13 current

Scilab code Exa 5.13 Current

```
//EXAMPLE 5-13 PG NO-305

2 Z1=10+%i*0;

3 Z2=-%i*5;

4 Z3=3+%i*4;

5 Z4=3-%i*4;

6 Z5=10+%i*2.5;

7 VTH=(Z1*Z2)/(Z3+Z2);

8 ZTH=2+((20-%i*15)/(3-%i*1));

9 ZL=VTH/(ZTH+Z5);

10 disp('i) VOLTAGE (VTH) is = '+string (VTH)+'V ');

11 disp('i) IMPEDANCE (ZTH) is = '+string (ZTH)+'ohm ');

12 disp('i) IMPEDANCE (ZL) is = '+string (ZL)+'A ');
```

Scilab code Exa 4.14 current

```
//EXAMPLE 4-14 PG NO-236

VA=61.38;

R1=60;

R2=110;

R3=25;

V1=120;

V2=40;

V3=60;

I120=(V1-VA)/R1;

disp('CURRENT is = '+string(I120)+'A');

I40=(VA+V2)/R2;

disp('CURRENT is = '+string(I40)+'A');

I60=(VA-V3)/R3;

disp('CURRENT is = '+string(I60)+'A');
```

Scilab code Exa 4.16 current

Scilab code Exa 4.17 voltage

Scilab code Exa 4.19 currents

```
//EXAMPLE 4-19
PG NO-236

i1=11.06;
i2=5.34;
i3=1.907;
IPR=i2-i3;
disp('CURRENT is = '+string(IPR)+' A');
IRS=i2;
VRS=IRS*10^-3*15*10^3;
```

```
9 disp('VOLTAGE is = '+string(VRS)+' A');
```

Scilab code Exa 4.21 current and power

```
//EXAMPLE 4-21 PG NO
1
                            -239
2 I1=4.46;
3 I2=9.46;
4 I3=10;
5 \quad I4 = 6.22;
6 V1 = 110.8;
7 IAB=I1
8 disp(' CURRENT is = '+string(IAB)+' A');
9 ICD=I2;
10 disp('CURRENT is = '+string(ICD)+' A');
11 IFE=I3-I1;
12 disp('CURRENT is = '+string(IFE)+' A');
13 IDE=I2-I4;
14 disp('CURRENT is = '+string(IDE)+' A');
15 IHG=I4;
16 disp('CURRENT is = '+string(IHG)+' A');
17 I5=5*V1
18 disp('CURRENT is = '+string(I5)+' A');
```

Scilab code Exa 4.22 voltage

```
7 V=[(V1/R1)+(V2/R2)]/[(1/50)+(1/20)+(1/10)];
8 disp(' Voltage is = '+string(V)+' V');
```

Scilab code Exa 4.23 current

```
//EXAMPLE 4-23 PG NO-240
11=-3/19;
V=12.632;
I6=I1+1;
disp('CURRENT is = '+string(I6)+' A');
```

Scilab code Exa 4.24 Current

Scilab code Exa 4.25 Current

Scilab code Exa 4.28 Current

```
//EXAMPLE 4-28
PG NO-243

2 I1=1.42;
3 I2=1.683;
4 I3=0.325;
5 Iba=I2-I1;
6 disp('CURRENT is = '+string(Iba)+' A');
7 Ibd=I1-I3;
8 disp('CURRENT is = '+string(Ibd)+' A');
9 Iac=I2;
10 disp('CURRENT is = '+string(Iac)+' A');
11 Icd=I3;
12 disp('CURRENT is = '+string(Icd)+' A');
```

Scilab code Exa 4.29 Power

Scilab code Exa 4.30 Current

Scilab code Exa 4.32 Branch Current

```
1
                                    //EXAMPLE 4-32
                                       PG NO-245-246
2 \text{ Vb} = 4.55;
3 \text{ Vc} = 2.57;
4 \text{ Vd} = 3.165;
5 \text{ Iab=2*(-Vb+9)};
6 disp('CURRENT is = '+string(Iab)+' A');
7 Ida=2*Vd;
8 disp(' CURRENT is = '+string(Ida)+' A');
9 Ibc=Vb-Vc;
10 disp('CURRENT is = '+string(Ibc)+' A');
11 Idc=Vd-Vc;
12 disp('CURRENT is = '+string(Idc)+' A');
13 Ibd=5*(Vb-Vd);
14 disp('CURRENT is = '+string(Ibd)+' A');
15 Ica=Vc;
16 disp('CURRENT is = '+string(Ica)+' A');
```

Scilab code Exa 4.36 Current

```
//EXAMPLE 4-36
                                                        PG
1
                                    NO - 250 - 251
2 I1=0.3;
3 I2 = -1.1;
4 V1 = 2 * I1;
5 disp('VOLTAGE is = '+string(V1)+' V');
6 V2=2*I2;
7 disp('VOLTAGE is = '+string(V2)+' V');
8 V3 = -5:
9 disp(' VOLTAGE is = '+string(V3)+' A');
10 V4 = -(2 * I1) + 4;
11 disp('VOLTAGE is = '+string(V4)+' V');
12 V5=2.8;
13 IAB=V4/2;
14 disp('CURRENT is = '+string(IAB)+' A');
15 IAD=V5/2;
16 disp('CURRENT is = '+string(IAD)+' A');
17 IAC=-V3/2;
18 disp('CURRENT is = '+string(IAC)+' A');
19 IDB=V1/2;
20 disp('CURRENT is = '+string(IDB)+' A');
21 \text{ IDC} = -V2/2;
22 disp('CURRENT is = '+string(IDC)+' A');
23 I = IAB + IAD + IAC - 2;
24 disp('CURRENT is = '+string(I)+' A');
```

Scilab code Exa 4.37 Current

```
//EXAMPLE 4-37 PG
NO-251-252
11=5;
12=2;
13=1;
1AB=I1;
disp('CURRENT is = '+string(IAB)+' A');
```

Scilab code Exa 4.38 Current

```
1
                                  //EXAMPLE 4-38
                                                     PG NO
                                     -252 - 253
2 VB = 15;
3 \text{ VC=6};
4 V = 20;
5 \quad IAB = (V - VB) / 1;
6 disp('CURRENT is = '+string(IAB)+' A');
7 IBE=VB/IAB;
8 disp(' CURRENT is = '+string(IBE)+' A');
9 IBC=(VB-VC)/4.5;
10 disp('CURRENT is = '+string(IBC)+' A');
11 ICE=VC/2;
12 disp('CURRENT is = '+string(ICE)+' A');
13 IDC=1;
14 disp('CURRENT is = '+string(IDC)+' A');
```

Scilab code Exa 4.41 Voltage And Current

```
1 //EXAMPLE-4-41
PG NO-254
2 I2=0.5;
```

Scilab code Exa 4.43 Node Voltage

```
//EXAMPLE 4-43
                                                       PG NO
1
                            -256 - 257
2 X = [3 -1 -2; 6 -1 -2; 6 -5 -16];
3 \operatorname{disp}('i) \operatorname{Ditermenent} X \quad is = '+\operatorname{string} (\det(X))
       +',';
4 X1 = [0 -1 -2; 80 -1 -2; 40 -5 -16];
5 V1 = X1/X;
6 disp('ii) Ditermenent V1 is = '+string (det(
      V1)) + V';
7 \quad X2 = [3 \quad 0 \quad -2; 6 \quad 80 \quad -2; 6 \quad 40 \quad -16];
8 V3=X2/X;
9 disp('iii) Ditermenent V3 is = '+string (det(
      V3)) + V';
10 X3 = [3 -1 0; 6 -1 80; 6 -5 40];
11 V4 = X3/X;
12 disp('iv) Ditermenent V4 is = '+string (det(
      V4)) + V';
```

Scilab code Exa 4.44 Current

Scilab code Exa 4.46 Current

```
//EXAMPLE 4-46
                                               PG NO
1
                               -258 - 259
2 X1 = [10 -104 - \%i *200; 0 205 + \%i *150];
3 X2 = [200 + \%i * 200 - 104 - \%i * 200; -104 - \%i * 200 205 + \%i * 150];
4 I1=det(X1/X2);
5 disp(' Current is in polar form= '+string(I1)+' A')
6 X3 = [200 + \%i * 200 \ 10; -104 - \%i * 200 \ 0];
7 X4 = [200 + \%i * 200 - 104 - \%i * 200; -104 - \%i * 200 205 + \%i * 150];
8 I2=det(X3/X4);
9 disp(' Current is in polar form = '+string(I2)+' A')
10 V = 10;
                                             //VOLTAGE
                                               //POWERE
11 P=V*5.1*10^-2;
12 disp('POWER is = '+string(P)+'W');
```

Scilab code Exa 4.47 V2

```
1 //EXAMPLE 4-47 PG
NO259-260
2 I2=0;
```

Scilab code Exa 4.48 Voltage

```
1
                            //EXAMPLE 4-48
                                               PG NO
                               -260
2 \text{ Vm} = 63.43 + \%i * 33.38;
3 V = 100 + \%i * 0;
4 V1=0+\%i*50
5 R1 = 5 + \%i * 0;
6 R2=8+\%i*6;
7 R3=12+%i*16;
8 I1=(V-Vm)/R1;
9 disp('i) Current (I1) is = '+string (I1) +' A
      ');
10 I2=(V1-Vm)/R2;
11 disp('ii) Current (I2) is = '+string (I2) +'
     A ');
12 I3 = (Vm)/R3;
13 disp('iii) Current (I3) is = '+string (I3) +'
      A ');
```

Scilab code Exa 4.49 Node Voltage

Scilab code Exa 4.50 Voltage Vcd

Scilab code Exa 4.51 Current

```
//EXAMPLE 4-51 PG
NO-262

X1=[14+%i*6 -%i*10 20+%i*0; -%i*10 24+%i*6 -8.66+%i
*5; -%i*10 -(4-%i*4) 0];

X2=[14+%i*6 -%i*10 -%i*10; -%i*10 24+%i*6 -(4-%i*4)
; -%i*10 -(4-%i*4) (34-%i*4)]

I3=det(X1/X2);
```

```
5 disp('i) Current (I3) is = '+string (I3) +' A
');
```

Scilab code Exa 4.52 Voltage

```
//EXAMPLE 4-52
PG NO-263

2 X=[(6+%i*2) (100+%i*0);(-6-%i*3.32) 0];
3 X1=[(6+%i*2) (-6-%i*3.32); (-6-%i*3.32) (16+%i*12)
];
4 I2=det(X/X1);
5 disp('i) Current (I2) is = '+string (I2) +' A
');
6 V=10*I2;
7 disp('ii) VOLTAGE (V) is = '+string (V) +' V
');
```

Scilab code Exa 4.56 Input Impedance

```
//EXAMPLE 4-56 PG NO-265
11=5.92-%i*4.833;
V=12+%i*0;
Z=V/I1;
disp('i) Input Impedance (Z) is = '+string (Z) +' ohm ');
```

Scilab code Exa 4.57 Primary and Secondry Current and voltage

Scilab code Exa 4.58 current

```
1
2  // Example : 4.58
3
4  v1=233.73-%i*8.934;
5  vs=240+%i*0;
6  r1=0.6+%i*0.8;
7  i1=(vs-v1)/r1;
8  disp('the value of I1 is = '+string(i1)+' Amp');
9  r2=0.5+%i*0.866;
10  vs1=239.5-%i*14.359;
11  i2=(vs1-v1)/r2;
12  disp('the value of I1 is = '+string(i2)+' Amp');
13  r3=16+%i*12;
14  i1=i1/r3;
15  disp('the value of I1 is = '+string(i1)+' Amp');
```

Scilab code Exa 4.62 I1 I2 Active and Reactive Power

```
2  I1=0.05-%i*6.49;
3  I2=0.040+%i*0.02;
4  R1=100;
5  R2=4+%i*200;
6  Vab=(R1*I2)-[R2*(I1-I2)];
7  disp('i) VOLTAGE (Vab) is = '+string (Vab) +' V
');
```

Chapter 5

Network Theorem

Scilab code Exa 5.1 Current

```
//EXAMPLE 5-1 PG NO-294
2 \text{ TR1} = 32;
3 R1 = 20;
4 R2=30;
5 R3 = 20;
6 V = 32;
7 Ir11=V/TR1;
8 Ir12=Ir11*(R1/(R1+R2));
9 Ir13=Ir11*(R2/(R1+R3));
10 TR2=40;
11 I#r2=R3/TR2;
12 I#r1=(R3/TR2)*I#r2;
13 I #r3 = (R3/TR2) * I #r1;
14 Ir3=Ir13+I#r3;
15 Ir1=Ir11-I#r1;
16 Ir2=Ir12-I#r2;
17 disp('i) current(Ir3) is = '+string (Ir3)+'A');
18 Ir3=Ir13+I#r3;
19 disp('i) current(Ir1) is = '+string (Ir1)+'A');
20 Ir1=Ir11-I#r1;
21 disp('i) current(Ir2) is = '+string (Ir2)+'A');
```

Scilab code Exa 5.2 Voltage

```
//EXAMPLE 5-2 PG NO-295
Vab1=7.059;
Vab2=2.353;
Vab=Vab1+Vab2;
disp('i) Votage(Vab) is = '+string (Vab)+'V');
```

Scilab code Exa 5.3 Current

```
//EXAMPLE 5-3 PG NO-296
2 \text{ TR1} = (90/14);
                                        //TOTAL RESISTANCE
3 R1 = 8;
4 R2 = 6;
5 R3 = 3;
                                        //VOLTS
6 E1 = 10;
7 IR11=E1*(1/TR1);
                                                     //
      Current in resistance one
8 IR12=IR11*(R1/(R1+R2));
                                        //Current in
     resistance Two
9 IR13=IR11*(R2/(R1+R2));
                                       //Current in
      resistance one
10 IR14=0;
11 TR2=10;
                                   //TOTAL RESISTANCE
12 IR23=TR2/E1;
13 IR21 = IR23 * (R2/(R2+R3));
14 IR22=IR23*(R3/(R2+R3));
15 IR24=0;
16 IR34 = (10/12);
17 IR32=TR2/(R2+(R3*R1/11));
18 IR31 = IR32 * (R1/(R1+R3));
```

```
19 IR33 = IR32 * (R3/(R1+R3));
20 IR1=(14-6-8)/9;
21 IR2=(8+3-11)/9;
22 \quad IR3 = (6+3)/9-1;
23 IR4 = IR34 + 0 + 0;
24 disp('i) CURRENT IN RESISTANCE ONE is = '+string
      (IR11) + 'V';
25 disp('i) CURRENT IN RESISTANCE ONE is
                                               '+string
      (IR12) + 'V';
26 disp('i) CURRENT IN RESISTANCE ONE is
                                               '+string
      (IR13) + 'V';
27 disp('i) CURRENT IN RESISTANCE ONE is
                                               '+string
      (IR14) + V';
28 disp('i) CURRENT IN RESISTANCE ONE is
                                                '+string
     (IR21) + V';
29 disp('i) CURRENT IN RESISTANCE ONE is
                                                '+string
      (IR22) + 'V';
30 disp('i) CURRENT IN RESISTANCE ONE is
                                               '+string
      (IR23) + 'V';
31 disp('i) CURRENT IN RESISTANCE ONE is
                                               '+string
      (IR24) + V';
32 disp('i) CURRENT IN RESISTANCE ONE is
                                                '+string
      (IR31) + V';
33 disp('i) CURRENT IN RESISTANCE ONE is
                                               '+string
      (IR32) + V';
34 disp('i) CURRENT IN RESISTANCE ONE is
                                               '+string
      (IR33) + V';
35 disp('i) CURRENT IN RESISTANCE ONE is
                                               '+string
      (IR34) + V';
36 disp('i) CURRENT IN RESISTANCE ONE is
                                               '+string
      (IR1) + V';
37 disp('i) CURRENT IN RESISTANCE TWO is
                                               '+string
                                            =
      (IR2) + 'V';
38 disp('i)CURRENT IN RESISTANCE THREE is
     string (IR3)+'V');
39 disp('i) CURRENT IN RESISTANCE FOUR is = '+string
      (IR4)+'');
```

Scilab code Exa 5.4 Current

```
1
2 E1 = 100 + \%i *0;
3 E2=43.30+\%i*25
4 Z1=1+\%i*3;
5 Z2=1-\%i*3;
6 Z3=2+\%i*4;
7 \quad Z4 = 3 - \%i * 3
8 Z5=1+\%i*5;
9 Z6=2-\%i*8;
10 Iab1=E1/((Z1+Z2)+((Z3*Z4)/(Z3+Z4)));
11 I2=E2/((Z5-Z6)+((Z3*Z1+Z2)/(Z3+Z1+Z2)));
12 Iab2=(I2*Z3)/(Z3+Z1+Z2)
13 disp('i) CURRENT (Iab1) is = '+string (Iab1)+'A'
     );
14 disp('i) CURRENT (I2) is = '+string (I2)+'A');
15 disp('i) CURRENT (Iab2) is = '+string (Iab2)+'A'
     );
```

Scilab code Exa 5.6 Current

```
//EXAMPLE 5-6 PG NO=299-300
TZ1=54.90+%i*85;
Z1=40+%i*0;
Z2=250-%i*132.625;
IR1=[Z1/TZ1]*[Z3/Z2];
disp('CURRENT is in polar form = '+string(IR1)+'A');
TZ2=173.64+%i*48.84;
Z4=20+%i*0;
```

```
10  Z5=250+%i*377;
11  Z6=0+%i*377;
12  IR2=[Z4/TZ2]*[Z6/Z5];
13  disp(' CURRENT is in polar form = '+string(IR2)+'A'
     );
14  IR=[IR1^2+IR2^2]^0.5;
15  disp(' CURRENT is in polar form = '+string(IR)+'A')
    ;
```

Scilab code Exa 5.7 Power Total Power

```
//EXAMPLE 5-7 PG NO-300
2 IR1=0.185;
                       //current
                       //current
3 IR2 = 0.0924;
                      //Resistance
4 R = 250;
                    //POWER
5 P1=IR1*IR1*R;
6 P2=IR2*IR2*R;
                  //POWER
7 P = P1 + P2;
                  //POWER
8 disp('i) POWER (P1) is = '+string (P1)+'W');
9 disp('i) POWER (P2) is = '+string (P2)+'W');
10 disp('i) POWER (P) is = '+string (P)+'W');
```

Scilab code Exa 5.8 Current

```
//EXAMPLE 5-8 PG NO-301
Vcb=40/7;
Vth=-6.2857;
RTH=9.4286;
R=10;
I=-Vth/[R+RTH];
disp('CURRENT is in polar form = '+string(I)+'A');
```

Scilab code Exa 5.9 Deflection

```
//EXAMPLE 5-9 PG NO-302
2 V=10; //Voltage
3 S=0.5*10^-5;
4 R1=2500;
5 R2 = 1050;
6 R3 = 200;
7 R4 = 500;
8 Van = (V/(R1+R4))*R4;
9 Vbn = (V/(R2+R3))*R3;
10 VTH=Van-Vbn;
11 RTH=((R1*R4)/(R1+R4))+((R2*R3)/(R2+R3));
12 I = VTH/(RTH+100);
13 GD=I/S;
                                  //Galvonater
     Deflection
14 disp('i) voltage (Van) is = '+string (Van)+'V');
15 disp('i) Voltage (Vbn) is = '+string (Vbn)+'V');
16 disp('i) Voltage (VTH) is = '+string (VTH)+'V');
17 disp('i) Resistance (RTH) is = '+string (RTH)+'
     ohms ');
18 disp('i) CURRENT (I) is = '+string (I)+'A');
19 disp('i) Galvoneter Deflection (GD) is = '+string
      (GD) + 'mm');
```

Scilab code Exa 5.10 Power dissipared

Scilab code Exa 5.11 Voltage

```
//EXAMPLE 5-11
PG NO-303

X=8+%i*8; //X=I1/V1;

X1=0+%i*30/25+%i*80; //X1=Va/V1;

V1=[20*(25+%i*80)]/(0+%i*30);

disp(' VOLTAGE is in polar form = '+string(V1)+'V');
;
```

Scilab code Exa 5.12 Current

```
//EXAMPLE 5-12 PG NO304-305
12=0.411+%i*0;
VTH=5+%i*0-(I2*5);
ZTH=1/(1+(1/2)+(1/5));
Iab=VTH/(ZTH+(2+%i*2));
disp('i) VOLTAGE (VTH) is in polar form = '+ string (VTH)+'V ');
disp('i) IMPEDANCE (ZTH) is in polar form = '+ string (ZTH)+'ohms');
```

```
8 disp('i) Current (Iab) is in polar form = '+
string (Iab)+'A');
```

Scilab code Exa 5.13 Current

```
//EXAMPLE 5-13 PG NO-305

2 Z1=10+%i*0;

3 Z2=-%i*5;

4 Z3=3+%i*4;

5 Z4=3-%i*4;

6 Z5=10+%i*2.5;

7 VTH=(Z1*Z2)/(Z3+Z2);

8 ZTH=2+((20-%i*15)/(3-%i*1));

9 ZL=VTH/(ZTH+Z5);

10 disp('i) VOLTAGE (VTH) is = '+string (VTH)+'V ');

11 disp('i) IMPEDANCE (ZTH) is = '+string (ZTH)+'ohm ');

12 disp('i) IMPEDANCE (ZL) is = '+string (ZL)+'A ');
```

Scilab code Exa 5.14 Current

```
//EXAMPLE 5-14 PG NO-306
//EXAMPLE 5-14 PG NO-306

V1=120;
V2=65;
R1=40;
R2=60;
IN=(V1/R1)+(V2/R2);
RN=(R1*R2)/(R1+R2);
IRL=IN*(RN/(RN+11));
disp('i) Current (IN) is = '+string (IN)+'A');
disp('i) Current (RN) is = '+string (RN)+'ohms');
disp('i) Current (IRL) is = '+string (IRL)+'A');
```

Scilab code Exa 5.15 Current

```
//EXAMPLE 5-15 PG NO-306
12=-0.67;
R1=8;
R2=2;
R3=5;
RN=R1+((R2*R3)/(R2+R3));
I=-I2*(RN/(10+RN));
disp('i) Resistance (RN) is = '+string (RN)+'ohm');
disp('i) Current3 (I) is = '+string (I)+'A');
```

Scilab code Exa 5.16 Impedance

```
//EXAMPLE 5-16 PG NO-307
2 Z1=2.828+%i*2.828;
3 Z2=0+%i*2.5;
4 R=10;
5 Z3=3+%i*4;
6 IN=Z1+Z2;
7 ZN=(R*Z3)/(R+Z3);
8 disp('i) current (IN) is = '+string (IN)+'A ');
9 disp('i) impedance (ZN) is = '+string (ZN)+'ohms ');
```

Scilab code Exa 5.17 Impedance

```
//EXAMPLE 5-17 PG NO-307-308
```

```
2 Z1 = 60 + \%i * 0;
3 \quad Z2=15.6-\%i*9;
4 Z3=10.42-\%i*6;
5 \quad Z4 = 25.98 - \%i * 15;
6 Z5=11.92-\%i*1.4;
7 I=2.5*10^-3;
8 Vab = ((Z1*Z2)/(Z3+Z2));
9 ZTH = (Z3*Z2)/(Z3+Z2);
10 Vax = I * Z3 * 10^3;
11 Vxy = Vab - Z4;
12 Zxy = ZTH + Z3;
13 IN=Z5/(Zxy*10^3);
14 ZN = Zxy;
15 disp('i) Voltage (Vab) is = '+string (Vab)+'V');
16 disp('i) Impedance (ZTH) is = '+string (ZTH)+'K
     ohms ');
17 disp('i) Voltage (Vax) is = '+string (Vax)+' ');
18 disp('i) Voltage (Vxy) is = '+string (Vxy)+'V');
19 disp('i) Impedance (Zxy) is = '+string (Zxy)+'K
     ohms ');
20 disp('i) Current (IN) is = '+string (IN)+'A');
21 disp('i) Impedance (ZN) is = '+string (ZN)+'K
     ohms ');
```

Scilab code Exa 5.18 Current and Resistance

```
//example 5-18 pg no-308-309
V=120;
R1=1200;
R2=400;
Vab=(V*R1)/(R1+R2);
Rab=(R1*R2)/(R1+R2);
IN=40/450;
RN=450;
Voltage (Vab) is = '+string (Vab)+'V')
```

```
;
10 disp('i) Resistance (Rab) is = '+string (Rab)+'
    ohms ');
11 disp('i) Current (IN) is = '+string (IN)+' mA');
12 disp('i) Resistance (RN) is = '+string (RN)+'
    ohms ');
```

Scilab code Exa 5.19 RL Power

```
//EXAMPLE -19 PG NO-312
2 V = 360;
3 R1 = 150;
4 R2=30;
5 \text{ Pm} = 900;
6 \text{ RL}=25;
7 VTH = (V*R1)/(R1+R2);
8 RTH=(R1*R2)/(R1+R2);
9 TR=30+((R1*RL)/(R1+RL));
                                       //total resistance
                                       //Current supplied
10 I = V/TR;
      by battery
11 P = V * 7;
                                   //Power supplied by
      battery
                                         //Percentage of
12 \text{ %PL} = \text{Pm} * 100/\text{P}
      power delivered to load
13 disp('i) Voltage (VTH) is = '+string (VTH)+'V';
14 disp('i) Resistance (RTH) is = '+string (RTH)+'
      ohms ');
15 disp('i) Total resistance (TR) is = '+string (TR)
      + ' ohms');
16 disp('i) Current (I) is = '+string (I)+' A');
17 disp('i) power (P) is = '+string (P)+' W');
18 disp('i) Percentage of power (%PL) is = '+string
      (\%PL) + \%\%;
```

Scilab code Exa 5.20 VOLTAGE

```
//EXAMPLE 5-20 PG NO -313
2 Z1=5+%i*0;
3 Z2=4-%i*3;
4 Z3=3+%i*3;
5 Z4=%i*3;
6 VTH=((Z1)/(3+(((Z4*Z2)/(Z3-Z4)))))*(Z4/(Z3-Z4))*(-Z4));
7 disp('i) Voltage (VTH) is = '+string (VTH)+'V');
```

Scilab code Exa 5.21 ZL Power

```
//EXAMPLE 5-21 PG NO -313-314
2 Z1=8.66+%i*5;
3 Z2=%i*1;
4 VTH=Z1-(Z1-1)*0.9;
5 ZTH=Z2+((9*1)/(9+1));
6 I=VTH/((0.9+%i*1)+(0.9-%i*1));
7 P=1.02^2*0.9;
8 disp('i) Voltage (VTH) is = '+string (VTH) +' V ');
9 disp('i) Impedance(ZTH) is = '+string (ZTH) +' ');
10 disp('i) Current (I) is = '+string (I) +'A ');
11 disp('i) Power (VTH) is = '+string (P) +' W ');
```

Scilab code Exa 5.22 VOLTAGE

```
//EXAMPLE 5-22 PG NO-315-316
1
2 I1=100;
3 I2=80;
4 I3=5;
5 R1 = 100;
6 R2 = 50;
7 R3 = 200;
8 IN = I1 + I2 - I3;
9 X=1/R1+1/R2+1/R3;
                                      //1/RN=X
10 RN=X;
11 VTH = IN * RN;
12 RTH = RN
13 disp('i) Voltage (VTH) is = '+string (IN) +'V');
14 disp('i) Voltage (VTH) is = '+string (1/RN) +'V'
     );
15 disp('i) Voltage (VTH) is = '+string (VTH) +'V')
16 disp('i) Voltage (VTH) is = '+string (RTH) +'V')
```

Scilab code Exa 5.23 Vo

```
//EXAMPLE 5-23  PG -NO 316-317
//EXAMPLE 5-23  PG -NO 316
```

```
;
14 disp('i) Voltage (VO2) is = '+string (VO2) +'V');
```

Scilab code Exa 5.24 Voltage

```
1 Z1=10+\%i*0;
2 \quad Z2 = 99.33 - \%i * 49.09222;
3 \quad Z3 = 20 + \%i * 0;
4 Z4=10+\%i*20;
5 \quad Z5 = 20.03 + \%i * 30.03;
6 Z6=15+\%i*20;
7 Z7=89.32-\%i*49.105;
8 IN = Z1 + Z2 - Z3;
9 ZN=1/((1/Z4)+(1/Z5)+(1/Z6));
10 VTH = (Z7/1000) * ZN;
11 ZTH = ZN
12 disp('i) Current (IN) is in rectangular form =
      '+string (IN) + 'V ');
13 disp('i) Impedance (1/ZN) is in rectangular form
     = '+string (1/ZN) + 'V ');
14 disp('i) Voltage (VTH) is in rectangular form
        '+string (VTH) + 'V ');
15 disp('i) Impedance (ZTH) is in rectangular form
     = '+string (ZTH) + 'ohm ');
```

Scilab code Exa 5.25 Current

Scilab code Exa 5.26 Current

```
//EXAMPLE 5-26 PG NO-319-320
1
2 Z1 = 70.71 + \%i * 70.71;
3 \quad Z2=10+\%i*5;
4 Z3 = -\%i * 5;
5 \quad Z4 = \%i * 5;
6 Z5=5-\%i*5;
7 X1 = [Z2 Z3 Z1, Z3 10 0, 0 Z4 0];
8 X2=[Z2 Z3 0,Z3 10 Z4,0 Z4 Z5];
9 \quad X3 = [0 \quad Z3 \quad 0, 0 \quad 10 \quad Z4, Z1 \quad Z4 \quad Z5];
10 X4=[Z2 Z3 0,Z3 10 Z4,0 Z4 Z5];
11 I3=X1/X2;
12 I1=X3/X4;
13 disp('i) Current (I3) is in polar = '+string (I3
      ) + ' A ');
14 disp('i) Current (I1) is in polar = '+string (I1
      ) + ' A ');
```

Scilab code Exa 5.27 Delta to Star

```
//EXAMPLE 5-27 PG NO-321
                         //Impedance
2 Z1 = (6 - \%i * 2.41);
3 \quad Z2 = (0 - \%i * 9.64);
                         //Impedance
                         //Impedance
4 Z3=4+\%i*0;
5 Z4=2+\%i*0;
                         //Impedance
6 Z5=0-\%i*2.41;
                          //Impedance
7 Za=Z2/Z1;
                           //Impedance
8 \text{ Zb} = (23*24)/21;
                            //Impedance
9 Zc = (Z4*Z5)/Z1;
                            //Impedance
10 disp('i) Impedance (Za) is in polar = '+string (
      Za) + ' ohms ');
11 disp('ii) Impedance (Zb) is in polar = '+string
      (Zb) + ' ohms ');
12 disp('iii) Impedance (Zc) is in polar =
       (Zc) + ' ohms');
```

Scilab code Exa 5.28 Total Impedance

```
//EXAMPLE 5-28 PG NO-322
2 Z1=0.6-%i*1.2;
3 Z2=0.6-%i*1.2;
4 Z3=1.2+%i*0.6;
5 Z=Z1+(((Z2+3)*(Z3+%i*3))/(Z2+3+Z3+%i*3));
6 disp('i) Impedance (Z) is in polar = '+string (Z ) +' ohms');
```

Scilab code Exa 5.29 Current

```
6 R3 = 85;
7 R4 = 880;;
8 I1=0.00266;
                            //Current
                             //Current
9 \quad I2 = 0.02676;
10 Va=V1-R1*I2;
11 Vb = V1 - R2 * I1;
12 VTH = Va - Vb;
13 RTH = ((R1*R3)/(R1+R3)) + (R2*R4)/(R2+R4)
14 I = (0.016) / (RTH + 20);
15 disp('i) Voltage (Va) is in polar = '+string (Va
     ) + ' V ');
16 disp('i) Voltage (Vb) is in polar = '+string (Vb
     ) + ' V ');
17 disp('i) Voltage (VTH) is in polar = '+string (
     VTH) + V
18 disp('i) Resistance (RTH) is in polar = '+string
      (RTH) + ' ohms ');
19 disp('i) Current (I) is = '+string (I) +' A')
```

Scilab code Exa 5.30 Current

```
//EXAMPLE 5-30 PG NO 324-325
1
                                //Voltage
2 V = 25;
                               //RESISTANCE
3 R1 = 50;
4 R2=35;
                              //RESISTANCE
5 R3 = 60;
                             //RESISTANCE
6 R4 = 10;
7 VTH=V-(R1*(R2/R3));
                           //THEVENINS VOLTAGE
8 RTH = (R1*R4)/R3;
9 I40 = -(VTH/(40 + RTH));
10 V40=40*I40;
11 disp('i) Impedance (VTH) is = '+string (VTH) +'
       V ');
12 disp('i) Impedance (RTH) is = '+string (RTH) +'
```

```
ohm ');
13 disp('i) Impedance (I40) is = '+string (I40) +'
A ');
14 disp('i) Impedance (V40) is = '+string (V40) +'
V ');
```

Scilab code Exa 5.31 Current

```
//EXAMPLE 5-31 PG NO-326;
V=25;
R1=50;
R2=40;
R3=10;
I=(V/(R1+((R2*R3)/(R2+R3))))*(R3/(R2+R3));
disp('i) Current (I) is = '+string (I) +' A ');
```

Scilab code Exa 5.32 RL for Pmax

```
//EXAMPLE 5-32 PG NO=326
1
2 V1 = 60;
                      //VOLTAGE
                    //VOLTAGE
3 V2=50;
4 V3 = 100;
                      //VOLTAGE
5 R1 = 60;
                    //RESISTANCE
6 R2 = 30;
                   //RESISTANCE
7 R3 = 40;
                  //RESISTANCE
8 VTH=V2+(R2*(2/3))-(R1*1);
9 RTH=((R1*R2)/(R1+R2))+((R1*R3)/(R1+R3));
10 RL=RTH;
11 I = VTH/(RTH+RTH);
                                    //CURRENT
                                   //POWER
12 P = (I * I) * RL;
13 disp('i) Voltage (VTH) is = '+string (VTH) +' V
       ');
```

Scilab code Exa 5.33 Current

```
1 /EXAMPLE 5-33 PG NO=327
2 R1=15; //RESISTANCE
3 R2=8; //RESISTANCE
          //RESISTANCE
4 R3=12;
5 R4 = 10;
6 R5=5.14;
7 R6 = 7.429;
8 R7 = 32.74;
9 V = 60;
10 Ra=(R1*R2)/(R1+R2+R3);
11 Rb = (R3*R2)/(R1+R2+R3);
12 Rc = (R1*R3)/(R1+R2+R3);
13 TR=R4+R5+((R6*R7)/(R6+R7)); //TOTAL RESISTANCE
14 I = V / TR
15 disp('i) Resistance (Ra) is = '+string (Ra) +'
     ohms ');
16 disp('i) Resistance (Rb) is = '+string (Rb) +'
       ohms ');
17 disp('i) Resistance (Rc) is = '+string (Rc) +'
     ohms ');
18 disp('i) Total Resistance (TR) is = '+string (TR
     ) + ' ohms ');
19 disp('i) Current (I) is = '+string (I) +' A');
```

Scilab code Exa 5.34 Pmax Total Power RL

```
//EXAMPLE 5-34 PG NO-327-328
2 V = 10;
3 R1 = 1;
4 R2 = 2;
5 R3 = 8.5;
                                       //Thevenins
6 VTH=V*(R1/R2);
     Voltage
7 RTH=R2+((R1*R1)/(R1+R1))+R2;
                                     //Thevenins
     Resistance
8 Pmax = (5/9)^2*RTH;
9 TR=R1+((R1*R3)/(R1+R3));
                                  //Total Resistance
                                  //Total Power
10 TP=V*(V/TR);
11 disp('i) Voltage (VTH) is = '+string (VTH) +' V
      ');
12 disp('i) Resistance (RTH) is = '+string (RTH) +'
       ohms ');
13 disp('i) Power (Pmax) is = '+string (Pmax) +' W
      ');
14 disp('i) Total resistance (TR) is = '+string (TR
     ) + ' ohms ');
15 disp('i) Total Power (TP) is = '+string (TP) +'
      W ');
```

Scilab code Exa 5.35 Thevenins equivalent circuits

Scilab code Exa 5.36 maximum Power

Scilab code Exa 5.37 Current

```
//RESISTANCE AT 50 V
8 R50=9.9;
     BATTERY
9 V = 50;
                                 //VOLTAGE
10 I1=V/R50;
                                 //CURRENT
11 I = I1 * [R/(R+R1)];
12 disp(' Current is (I1) = '+string(I1)+'A');
13 disp(' Current is (I) = '+string(I)+'A');
14 R100=R+[(R2*(R3+R4))/(R2+R3+R4)];
15 disp(' Resistance at 100 (R100) is = '+string(R100
     ) + 'ohm');
16 I2=100/R100;
17 disp(' Current is (I2) = '+string(I2)+'A');
18 I3 = [(I2*R2)/(R2+R5)];
19 disp(' Current is (I3) = '+string(I3)+'A');
20 I10=I3-I;
21 disp(' Current is (I10) = '+string(I10) + 'A');
```

Scilab code Exa 5.38 Current

```
//EXAMPLE 5-38 PG NO-331
R1=100;
R2=4;
R3=8;
R4=50;
R5=5;
VTH=(R1*((R2)/(R2+R3)))-((R3*R4)/(R3+R5));
RTH=((R3*R5)/(R3+R5))+((R2*R3)/(R2+R3));
I=VTH/(10+RTH);
disp('i) Voltage (VTH) is = '+string (VTH) +' V';
disp('i) Resistance (RTH) is = '+string (RTH) +' ohm');
disp('i) Current (I) is = '+string (I) +' A');
```

Scilab code Exa 5.39 RL and Pmax

Scilab code Exa 5.40 R and Current

```
12 disp('i) Resistance (R) is = '+string (R) +'
        ohm ');
13 disp('i) Total Resistance (TR) is = '+string (TR
      ) +' ohm ');
14 disp('i) Current (I) is = '+string (I) +' A ');
15 disp('i) Current (Ir) is = '+string (Ir) +' A'
      );
```

Scilab code Exa 5.41 Current

```
//EXAMPLE 5-41 PG NO-332-333
VTH=10;
V=10;
R1=10;
R2=10;
R3=16.67;
R4=50;
R5=5.56;
R6=3.33;
RTH=V+R5+(((R1+R3)*(R4+R6))/(R1+R3+R4+R6));
I=(V/RTH)-0.4;
disp('i) Resistance (RTH) is = '+string (RTH) +' ohm ');
disp('i) Currrent (I) is = '+string (I) +' A ');
;
```

Scilab code Exa 5.42 Current

Scilab code Exa 5.43 Current

Scilab code Exa 5.44 current resistance

Scilab code Exa 5.45 Current

```
//EXAMPLE5-45 PG NO-334-335
1
2 R1 = 10;
3 R2=5;
4 V = 15;
5 Vb = 9;
6 Va=(V*R2)/(R1+R2);
7 Vba=Vb-Va;
8 RTH = (R1*R2)/(R1+R2);
9 VTH=Vba;
10 Iba=VTH/(RTH+Vba);
11 disp('i) Voltage (Va) is = '+string (Va) +' V'
     );
12 disp('i) Voltage (Vba) is = '+string (Vba) + ' V
13 disp('i) Voltage (VTH) is = '+string (VTH) +' V
      ');
14 disp('i) REsistance (RTH) is = '+string (RTH) +'
       ohms ');
15 disp('i) Current (Iba) is = '+string (Iba) +' A
      ');
```

Scilab code Exa 5.46 Load Resistance

Scilab code Exa 5.47 Thevenins and Nortan Equivalent

```
//EXAMPLE 5-47 PG NO-336
//EXAMPLE 5-47 PG NO-336
//VOLTAGE
R1=2;
R2=1;
VTH=R1+((V-R1)/3);
RTH=R2+((R1*R2)/(R1+R2));
IN=((V*0.5)/(R1+0.5))+((R1/RTH)*(R1/VTH))
disp('i) Voltage (VTH) is = '+string (VTH) +' V';
disp('i) Resistance (RTH) is = '+string (RTH) +' ohm ');
disp('i) Current (IN) is = '+string (IN) +' A'
);
```

Scilab code Exa 5.48 Current

```
1 //EXAMPLE 5-48 PG NO-336-337 2 V=24;
```

Scilab code Exa 5.49 current

```
//EXAMPE 5-49 PG NO-337-338
//EXAMPE 5-49 PG NO-337-338
V1=120;
R1=20;
R2=30;
VTH=V1-((V1-V2)/(R1+R2))*R1;
RTH=(R1*R2)/(R1+R2);
disp('i) Voltage (VTH) is = '+string (VTH) +' V';
ohms ');
//EXAMPE 5-49 PG NO-337-338
```

Scilab code Exa 5.50 Current

```
1 / EXAMPLE - 5-50 PG NO-338
```

```
2 V1=240;
3 V2=140;
4 V=40;
5 R1=2;
6 R2=8;
7 R3=30;
8 VTH=((V1/V)*R3)-V2;
9 RTH=R1+((R3*(R1+R2))/V)+0.5;
10 I=VTH/(RTH+V2);
11 disp('i) Voltage (VTH) is = '+string (VTH) +' V ');
12 disp('i) Reesistance (RTH) is = '+string (RTH) + ' ohms');
13 disp('i) CURRENT (I) is = '+string (I) +' A ');
```

Scilab code Exa 5.51 Resistance Power

Scilab code Exa 5.52 Current

```
//EXAMPLE 5-52 PG NO-339
1
2 R1 = 2;
3 R2 = 4;
4 R3=2;
5 V = 0.389;
                      //VOLTAGE
6 I1=3.89;
                     //CURRENT
                            //TOTAL RESISTANCE
7 TR = ((R1*R2)/(R1+R2))+R2;
                          //CURRENT
8 I=V/TR;
                           //TOTAL
9 TI = I1 + I;
                                     CURRENT
10 disp('i) Total resistance (TR) is
                                    = '+string (TR
     ) + ' ohms ');
11 disp('i) Current (I) is = '+string (I) +' A');
12 disp('i) Total current (TI) is = '+string (TI) +
     , A ,);
```

Scilab code Exa 5.53 Vth Rth

```
//EXAMPLE 5-53 PG NO-339
1
2 R1 = 16;
3 R2 = 8;
4 R3=12;
5 Rd = (R1*R2)/(R1+R2+R1);
6 \text{ Rb} = \text{Rd};
7 Rc=(R1*R1)/(R1+R1+R2);
8 V = 180;
9 VTH = [180/(R1+Rd+Rc)]*Rc;
10 RTH=R3+[((Rc*(R1+Rd)))/(R1+Rc+Rd)]+Rd;
11 disp('i) Resistance (Rd) is = '+string (Rd) +'
     ohms ');
12 disp('i) Resistance (RC) is = '+string (Rc) +'
     ohms ');
13 disp('i) Voltage (VTH) is = '+string (VTH) +' V
      ');
14 disp('i) Resistance (RTH) is = '+string (RTH) +'
       ohms ');
```

Scilab code Exa 5.54 Current

Scilab code Exa 5.55 Current

```
//EXAMPLE 5-55 PG NO
-340-341

2 I1=1.2; //Current
3 I2=0.3; //Current
4 I=I1+I2;
5 disp(' Current is = '+string(I)+'A');
```

Scilab code Exa 5.56 Current

```
6 disp('i) CURRENT (I4) is = '+string (I4) +' A' , );
```

Scilab code Exa 5.57 Current

```
//EXAMPLE 5-57 PG NO-341-342

2 R1=22;
3 R2=33;
4 R3=10;
5 R4=15;
6 V=24;
7 TR=[(R1+R2)*(R3+R4)]/(R1+R2+R3+R4);
8 I=V/TR;
9 disp('i) Total Resistance (TR) is = '+string (TR ) +' Kohms');
10 disp('ii) CURRENT (I) is = '+string (I) +' A');
```

Scilab code Exa 5.58 Resistance

```
//EXAMPLE 5-57 PG NO-341-342

2 R1=22;
3 R2=33;
4 R3=10;
5 R4=15;
6 V=24;
7 TR=[(R1+R2)*(R3+R4)]/(R1+R2+R3+R4);
8 I=V/TR;
9 disp('i) Total Resistance (TR) is = '+string (TR ) +' Kohms');
10 disp('ii) CURRENT (I) is = '+string (I) +' A');
```

Scilab code Exa 5.60 Current

```
//EXAMPLE 5-60 PG NO-343
1
2 V = 60;
                          //VOLTAGE
3 R1 = 3;
4 R2 = 4;
5 R3=1.5;
6 R4 = 2.5;
7 IAB=12;
8 IBC=6;
9 ICD=6;
10 IBD=6;
11 VAB = 36;
12 VBC=9;
13 VCD = 15;
14 VBD=24;
15 VkIk=VAB*IAB+VBC*IBC+VCD*ICD+VBD*IBD-V*IAB
16 disp('ii) SUBMISSION OF VkIk (VkIk) is
      string (VkIk) + ' ');
```

Scilab code Exa 5.62 Nortan equivalent

```
10 ZN=[[Z3*Z2]/5]+R;
11 disp(' Impedance is = '+string(ZN)+'A');
```

Scilab code Exa 5.63 Thevenins Equivalent

```
//EXAMPLE 5-63 PG NO-345

IN=1.638-%i*0.614;

Z1=15+%i*0;

Z2=3-%i*1;

VTH=(Z1*Z2)/(Z3+Z2);

ZN=5.4+%i*0.21;

VTH1=IN*ZN

disp('ii) Voltage (VTH) is = '+string (VTH) +' V ');

disp('ii) Voltage (VTH) is = '+string (VTH) +' V ');
```

Scilab code Exa 5.64 ZL Power

```
//EXAMPLE 5-64 PG NO-345-346
2 Z1=4+%i*6;
3 R1=1;
4 V=100;
5 ZTH=(Z1*R1)/(Z1+R1);
6 Pmax=[100/(ZTH+ZTH)]^2*[0.93*cos(-6.11)]
7 disp('i) IMPEDANCE (ZTH) is = '+string (ZTH) +' ohms');
8 disp('ii) POWER (Pmax) is = '+string ([Pmax]) +' W');
```

Scilab code Exa 5.65 Current

```
//EXAMPLE 5-65 PG NO-346
1
2 V1 = 5;
3 G1=1;
4 V2=5;
5 G2 = (1/2);
6 V3=10;
7 G3 = (1/4);
8 EV = (V1*G1+V2*G2+V3*G3)/(G1+G2+G3);
                                                     //
     EQUIVALENT VOLTAGE
9 ER=1/(G1+G2+G3);
10 I = (EV * ER) / (EV + ER);
11 disp('i) Euivalent Resistance (EV) is = '+string
      (EV) + V';
12 disp('ii) Equivalent Resistance (ER) is
     string (ER) + ' ohms ');
13 disp('ii') CURRENT (I) is = '+string (I) +' A')
```

Scilab code Exa 5.66 Change in current

```
1 Z1=12.99+%i*7.5;
2 Z2=4-%i*3;
3 Z3=6+%i*8;
4 I1=Z1/Z2;
5 Z=Z3-Z2
6 I=(I1*Z)/Z3;
7 disp('ii) CURRENT (I1) is in polar form = '+ string (I1) +' A ');
8 disp('i) IMPEDANCE (Z) is in polar form = '+ string (Z) +' V ');
9 disp('ii) CURRENT (I) is in polar form = '+string (I) +' A ');
```

Scilab code Exa 5.67 Reciprocity Theorem

```
//EXAMPLE 5-67 PG NO-347-348
1
2 V = 10;
                   //VOLTAGE
3 R1 = 3;
                   //RESISTANCE
4 R2=4.91;
5 I1=V/R1;
                  //CURRENT
6 Isc1=1.11;
7 I2=V/R2;
8 Isc2=1.11;
9 disp('ii) CURRENT (I1) is = '+string (I1) +'
      ');
10 disp('ii) CURRENT (I2) is = '+string (I2) +'
      <sup>'</sup>);
```

Scilab code Exa 5.68 Equivalent Voltage

```
//EXAMPLE 5-68 PG NO-348
//EXAMPLE 5-68 PG NO-348
V1=3;
V2=0.75;
R=1=1;
R2=0.75;
V=V1+V2;
R=R1+R2;
disp('ii) Voltage (V) is = '+string (V) +' V');
disp('ii) Resistance (R) is = '+string (R) +' ohms');
```

Scilab code Exa 5.69 Current

```
//EXAMPLE 5-69 PG NO-349
1
2 V = 24;
                                 //VOLTAGE
3 R1 = 0.1;
4 R2 = 6;
5 R3 = 5;
6 I=V/[R1+(R3*R2)/(R3+R2)];
7 I1=I*(R3/(R2+R3));
8 I2=I*(R2/(R2+R3));
9 VTH = -(I1*2) - (-2*I2);
10 RTH=2.533;
11 IAB=VTH/(RTH+1);
12 disp('ii) CURRENT (I) is = '+string (I) +' A')
13 disp('ii) CURRENT (I1) is = '+string (I1) +' A
     ');
14 disp('ii) CURRENT (I2) is = '+string (I2) +' A
     ');
15 disp('ii) Voltage (VTH) is = '+string (VTH) +'
     V ');
16 disp('ii) CURRENT (IAB) is = '+string (IAB) +'
     A ');
```

Scilab code Exa 5.70 Current

```
8 disp('ii) CURRENT (TI) is = '+string (TI) +' A
');
```

Scilab code Exa 5.71 Current in R3

```
//EXAMPLE 5-71 PG NO=350-351

//EXAMPLE 5-71 PG NO=350-351

R1=5;
R2=4;
R3=10;
R=R1*R2/(R1+R2);
I=(R*R3)/(R+R3);
disp('ii) Resitance (R) is = '+string (R) +' ohms ');
disp('ii) CURRENT (I) is = '+string (I) +' A ');
```

Scilab code Exa 5.73 matrix

```
1  X=[4 2 ;2 4 ];
2  B=[20;10];
3  X=B
4  disp(' Current is = '+string(X)+'A');
```

Scilab code Exa 5.74 Reciprocity Theorem

```
1 R1=15;

2 V=20 //RESISTANCE

3 I1=V/R1;

4 I2=I1*(1/2);

5 R2=15;
```

Chapter 7

Two Port Network

Scilab code Exa 7.2 Z Parameter

```
1
                                             //EXAMPLE 7-2
                                                   PG NO
                                                -437 - 438
2 Z11=99+\%i*99;
3 \quad Z12 = -\%i * 100;
4 Z21=20-\%i*102.26;
5 Z22=90.06-\%i*120;
6 Z1 = Z11 - Z12;
7 disp('i) Impedance (Z1) is in rectangular form =
      '+string (Z1) + 'ohm ');
8 \quad Z2=Z22-Z12;
9 disp('ii) Impedance (Z2) is in rectangular form =
       '+string (Z2) + 'ohm ');
10 \quad Z3 = Z21 - Z12;
11 disp('iii) Impedance (Z3) is in rectangular
                                                        form
       = '+string (Z3) + 'ohm ');
```

Scilab code Exa 7.4 Z and Y Parameter

```
//EXAMPLE 7-4 PG NO
438-439

2 Z11=-0.4;
3 Z21=0.4;
4 Z12=-3.2;
5 Z22=1.2;
6 Z=[Z11 Z12;Z21 Z22];
7 X=det(Z);
8 disp(' delta is = '+string(X)+'');
9 Y=[(Z22/X) (-Z12/X);(-Z21/X) (Z11/X)];
10 disp(' ADMITTANCE is = '+string(Y)+'');
```

Scilab code Exa 7.5 Z and Y Parameter

```
//EXAMPLE 7-5 PG NO
-439-440

2 Z11=-0.4;
3 Z21=-3.2;
4 Z12=0.4;
5 Z22=1.2;
6 Z=[Z11 Z12;Z21 Z22];
7 X=det(Z);
8 disp(' delta is = '+string(X)+'');
9 Y=[(Z22/X) (-Z12/X);(-Z21/X) (Z11/X)];
10 disp(' ADMITTANCE is = '+string(Y)+'');
```

Scilab code Exa 7.8 Current and Voltage

Scilab code Exa 7.14 Y Parameter

```
//EXAMPLE 7-14
1
                                                         PG
                                      NO469 - 470
2 Y11a=0.86;
3 \text{ Y11b=1.5};
4 Y12a = -0.57;
5 \text{ Y12b} = -0.5;
6 Y21a = -0.57;
7 Y21b = -0.5;
8 \quad Y22a=0.714;
9 \quad Y22b=2.5;
10 Y11=Y11a+Y11b;
11 disp('i) IMPEDANCE (Y11) is = '+string (Y11) +'
      mho ');
12 Y12=Y12a+Y12b;
13 disp('i) IMPEDANCE (Y12) is = '+string (Y12) +'
      mho ');
14 Y21=Y21a+Y21b;
15 disp('i) IMPEDANCE (Y21) is = '+string (Y21) +'
      mho ');
16 \quad Y22 = Y22a + Y22b;
```

```
17 disp('i) IMPEDANCE (Y22) is = '+string (Y22) +' mho ');
```

Scilab code Exa 7.16 Image Parameter

```
//EXAMPLE 7-16 PG NO-473

zoc1=40;
zsc1=36.67;

zi1=sqrt((Zoc1*Zsc1));

disp('i) IMPEDANCE (Zi1) is = '+string (Zi1) +'
ohm ');

zoc2=30;
zsc2=27.5;

zi2=sqrt((Zoc2*Zsc2));
disp('ii) IMPEDANCE (Zi2) is = '+string (Zi2) +'
ohm ');

TETA=1/tanh(0.9167);
disp('iii) (TETA) is = '+string (TETA) +'degree
');
```

Scilab code Exa 7.17 Insertion Loss

Scilab code Exa 7.18 Impedance

```
1
                               //EXAMPLE 7-18 PG NO
                                  -477 - 478
2 Ra=7;
3 Rb=3;
4 Rc=3;
5 A = (Ra + Rb) / Rb;
6 disp('A is = '+string(A)+'');
7 B=Ra+Rc+[(Ra*Rc)/Rb];
8 disp('B is = '+string(B)+'');
9 C=1/Rb;
10 disp(' C is = '+string(C)+'');
11 D=(Rb+Rc)/Rb;
12 disp(' D is
                = '+string(D)+'');
13 Z11 = [(A*B)/(C*D)]^0.5;
14 disp(' Impedance is = '+string(Z11)+'ohm');
15 Z12=[(B*D)/(A*C)]^0.5;
16 disp('Impedance is = '+string(Z12)+'ohm');
17 Q=1/\cosh(2.62);
18 Y12 = -(1/17);
19 disp(' Admittance is = '+string(Y12)+'siemens');
```

Scilab code Exa 7.20 Admittance Parameter

```
1 Zoc1=2.923;
2 Zsc1=1.80;
3 Zi1=sqrt((Zoc1*Zsc1));
4 disp('i) IMPEDANCE (Zi1) is = '+string (Zi1) +' ohm ');
5 Zoc2=4.77;
```

```
6 Zsc2=2.95;
7 Zi2=sqrt((Zoc2*Zsc2));
8 disp('ii) IMPEDANCE (Zi2) is = '+string (Zi2) +'
ohm ');
9 TETA=1/tanh(0.619);
10 disp('iii) (TETA) is = '+string (TETA) +'degree
');
```

Scilab code Exa 7.21 Ra Rb Rc

```
//EXAMPLE 7-21 PG NO-481
Rb=0.05;
C=0.09;
Ra=1/[C-(Rb)];
disp('i) RESISTANCE = '+string (Ra)+' ohm');
C1=0.07;
Rc=1/(C1-Rb);
disp('ii) RESISTANCE = '+string (Rc)+' ohm');
```

Scilab code Exa 7.22 Z and Y Parameter

```
//EXAMPLE 7-22 PG NO
-482

2 Z11=4;
3 Z21=3;
4 Z12=3;
5 Z22=5;
6 Z=[Z11 Z12;Z21 Z22];
7 X=det(Z);
8 disp(' delta is = '+string(X)+'');
9 Y=[(Z22/X) (-Z12/X);(-Z21/X) (Z11/X)];
10 disp(' ADMITTANCE is = '+string(Y)+'');
```

Scilab code Exa 7.25 matrix

```
//EXAMPLE 7_25
                                                            PG
1
                                    NO-484-485
2 \text{ A1}=4/3;
3 \quad A2 = 5/3;
4 B1=11/3;
5 B2=2;
6 C1 = 1/3;
7 C2=2;
8 D1=5/3;
9 D2=3;
10 A = A1 + A2;
11 B=B1+B2;
12 C = C1 + C2;
13 D = D1 + D2;
14 X = (A*D) - (B*C);
15 disp(' X is = '+string(X)+'');
16 Z=[A1 B1;C1 D1]*[A2 B2; C2 D2];
17 disp('ABCD MATRIX is = '+string(Z)+'');
```

Scilab code Exa 7.34 output Voltage

Scilab code Exa 7.37 Y parameter

```
//EXAMPLE 7-37 PG NO
438-439

2 Z11=3.25;
3 Z21=0.75;
4 Z12=-0.75;
5 Z22=1.75;
6 Z=[Z11 Z12;Z21 Z22];
7 X=det(Z);
8 disp(' delta is = '+string(X)+'');
9 Y=[(Z22/X) (-Z12/X);(-Z21/X) (Z11/X)];
10 disp(' ADMITTANCE is = '+string(Y)+'');
```

Scilab code Exa 7.38 Impedance

```
1
                                   //EXAMPLE 7-38
                                                      PG NO
                                     -493
                                     //RESISTANCE
2 R1 = 4;
                                     //RESISTANCE
3 R2 = 4;
                                       //RESISTANCE
4 R3=8/9;
5 \quad Z10 = [R1*(R3+R2)]/[R1+R2+R3];
6 disp('Impedance is (Z10) = '+string(Z10) + 'ohm');
7 Z20 = [R1 * (R3 + R2)] / [R1 + R2 + R3];
                          (Z20) = '+string(Z20) + 'ohm');
8 disp(' Impedance is
9 Z1S = [R1*R3]/[R1+R3];
10 disp('Impedance is (Z1S) = '+string(Z1S)+'ohm');
11 Z2S = [R1*R3]/[R1+R3];
12 disp('Impedance is (Z1S) = '+string(Z2S)+'ohm');
```

Scilab code Exa 7.42 Z Parameter

```
1
                                                     //EXAMPLE7-42 PG
                                                          NO-495-496
2 Z11=2/3;
3 \quad Z22 = Z11;
4 \quad Z12=1/3;
5 \quad Z21 = Z12;
6 \quad A = Z11/Z21;
7 disp('A is (A) = '+string(A)+'ohm');
8 Z=[Z11 Z12;Z21 Z22]
9 X = det(Z);
10 disp(' Determinent is (X) = '+string(X)+'');
11 B=X/Z21;
12 \operatorname{disp}('B \text{ is } (B) = '+\operatorname{string}(B)+'\operatorname{ohm}');
13 C=1/Z21;
14 \operatorname{disp}(' C \text{ is } (C) = '+\operatorname{string}(C)+'\operatorname{mho}');
15 D=Z22/Z21;
16 disp(' D is (D) = '+string(D)+'mho');
```

Chapter 8

filter

Scilab code Exa 8.1 Frequency Impedance Attenuation Phase Shift

```
1
                    //EXAMPLE 8-1
                                        PG N0-510
2 L=0.02;
                           //INDUCTANCE
                           //CAPACITOR
3 C=4*10^-6;
4 Z = 200;
5 Fc=1/(%pi*(L*C)^0.5);
6 Z0=(L/C)^0.5;
7 Z1 = (\%i*2) * \%pi*Z*L;
8 Z2=1/(%i*2*\%pi*Z*C);
9 Z0*(\%pi)=[(4*Z1*Z2*Z2)/(Z1+4*Z2)]^0.5
10 F1 = 2000;
11 Z11=%i*%pi*F1*L;
12 Z22=1/(%i*\%pi*F1*C);
13 Z01 = [(4*Z11*Z22*Z22)/(Z1+4*Z22)]^0.5;
14 \operatorname{disp}('ii) POWER (Pmax) is = '+string ([Z1]) +'
     W ');
15 disp('ii) POWER (Pmax) is = '+string ([Z2]) +'
     W ');
16 disp('ii) POWER (Pmax) is = '+string ([Z0*(%pi)
     ]) + ' W ');
17 disp('ii) POWER (Pmax) is = '+string ([Z11]) +'
      W ');
```

```
18 disp('ii) POWER (Pmax) is = '+string ([Z22]) +'
W ');
19 disp('ii) POWER (Pmax) is = '+string ([Z01]) +'
W ');
```

Scilab code Exa 8.2 L and C

```
//example 8-2 pg no -511
Ro=600;
Fc=940;
L=Ro/(%pi*Fc);
C=1/(%pi*Ro*Fc);
disp('ii) INDUCTANCE (L) is = '+string ([L]) +'
H ')
disp('ii) CAPACITOR (C) is = '+string ([C]) +'
F ')
```

Scilab code Exa 8.3 Impedance

```
//INDUCTANCE
1 L=0.015;
                              //CAPACITOR
2 C=0.5*10^-6;
3 Z = 200;
4 Fc=1/(4*\%pi*(L*C)^0.5);
5 \quad ZO = (L/C)^0.5;
6 Z2=(\%i*2)*\%pi*Z*L;
7 Z1=1/(%i*2*\%pi*Z*C);
8 F1 = 2000;
9 Z01 = [(Z1 * Z2) / (1 + (Z1 / (4 * Z2)))]^0.5;
10 A = 8.147;
11 disp('ii) Impedance (ZO) is = '+string ([ZO]) +'
       W ');
12 disp('ii) FREQUENCY is = '+string ([Fc]) +' HZ
      ');
```

Scilab code Exa 8.4 L and C

```
//EXAMPLE -8-4 PG NO-514-515
Ro=3000;
Fc=2000;
L=Ro/(4*%pi*Fc);
C=1/(4*%pi*Fc*Ro);
disp('i) INDUCTANCE (L) is = '+string ([L]) +'
H ')
disp('ii) CAPACITOR (C) is = '+string ([C]) +'
F ')
```

Scilab code Exa 8.5 Band Width

```
//EXAMPLE 8-5 PG NO-517
//EXAMPLE 8-5 PG NO-517

C1=1;
C2=50;
X=1000;
//X=1/(2*%pi*(L1*C1)^0.5)
Y=X*2*(C1/C2)^0.5;
//Y=(Fc2-Fc1)
disp('ii) Frequency (Fc2-Fc1) is = '+string ([Y]) + 'Hz')
```

Scilab code Exa 8.6 Circuits Parameter

```
//EXAMPLE 8-7 PG NO-519
1
2 \text{ Ro} = 100;
3 \text{ Fc2=5000};
4 Fc1=500;
5 L1=Ro/[2*%pi*(Fc2-Fc1)];
6 disp('ii) INDUCTANCE (L1/2) is = '+string ([L1
     /2]) + ' H ')
7 C1 = (Fc2 - Fc1) / (2 * \%pi * Ro * Fc1 * Fc2)
8 disp('ii) CAPACITOR (2*C1) is = '+string ([2*C1
     ]) + ' F ')
9 L2=[Ro*(Fc2-Fc1)]/(4*\%pi*Fc1*Fc2);
10 disp('ii) INDUCTANCE (L2) is = '+string ([L2]) +
        Η ')
11 C2=1/(\%pi*(Fc2-Fc1));
12 disp('ii) CAPACITOR (C2) is = '+string ([C2]) +'
       F ')
```

Scilab code Exa 8.7 inductance

```
//EXAMPLE 8-7 PG NO-519
//EXAMPLE 8-7 PG NO-519
fc1=1000;
fc2=3000;
Ro=100;
L1=[(Ro*(Fc2-Fc1))/(2*%pi*Fc2*Fc1)]
disp('i) INDUCTANCE (L1/2) is = '+string ([L1]) +' H ')
C1=1/[2*%pi*(Fc2-Fc1)];
disp('ii) CAPACITOR (C1) is = '+string (C1) +' F ')
L2=Ro/[4*%pi*(Fc2-Fc1)];
disp('iii) INDUCTANCE (L2) is = '+string ([L2]) +' H ')
C2=(Fc2-Fc1)/(%pi*Ro*Fc1*Fc2)
```

```
12 \operatorname{disp}('ii) CAPACITOR (C2) is = '+string ([C2]) +' F ')
```

Scilab code Exa 8.8 m

```
1
                 // EXAMPLE 8-8 PG NO-523
2 \text{ Ro} = 600;
3 \text{ Fc} = 2500;
4 L=Ro/(%pi*Fc);
5 C=1/(%pi*Ro*Fc);
6 disp('i) INDUCTANCE (L) is = '+string ([L]) +'
     H ')
7 disp('ii) CAPACITOR (C) is = '+string ([C]) +'
     F ')
8 \text{ Fo} = 2600;
9 m=sqrt(1-(Fc/Fo)^2)
10 disp('iii) (m) is = '+string (m) +' ')
11 L1 = [(1-m*m)/4*m]*L;
12 disp('iv) INDUCTANCE (L1) is = '+string ([L1]) +
     ' H')
13 L2=0.5*m*L;
14 disp('ii) INDUCTANCE (L2) is = '+string ([L2]) +
      , H ,)
15 C1 = m * C;
16 disp('ii) CAPACITOR (C1) is = '+string (C1) +'
     F ')
```

Scilab code Exa 8.9 m

```
//EXAMPLE 8-9 PG NO-525
Ro=600;
Fc=3000;
L=Ro/(4*%pi*Fc);
```

```
5 disp('i) INDUCTANCE (L) is = '+string ([L]) +'
     H ')
6 C=1/(4*\%pi*Fc*Ro);
7 disp('ii) CAPACITOR (C) is = '+string ([C]) +'
     F ')
8 Fo = 2700;
9 \text{ m=} \text{sqrt} (1-(Fo/Fc)^2);
10 \operatorname{disp}('iii') (m) is = '+string ([m]) +' ');
11 X = (2*C)/m;
12 disp('iv) X (X) is = '+string ([X]) + 'F ');
13 Y=L/m;
14 disp('v) Y is = '+string([Y]) + 'H');
15 Z=(4*m*C)/(1-m^2);
                                                      //Z
     =4mC/1-m^2
16 disp('vi) Z (Z) is = '+string ([Z]) +' F');
17 Z1 = (4*m*L)/(1-m^2);
                                           //Z1=4mL/1-m^2
18 disp('vii') (Z1) is = '+string ([Z1]) + 'H'')
19 X1 = (2*L)/m;
20 \operatorname{disp}('\operatorname{viii}) X1 (X1) is = '+string ([X1]) +'
     Η ')
21 \text{ Y1=C/m};
22 disp('ix) Y1 is = '+string ([Y1]) +' F ')
```

Scilab code Exa 8.10 L and C

Scilab code Exa 8.11 L and C

Scilab code Exa 8.12 L

```
//EXAMPLE 8-12 PG NO-530
Fc=1000;
C=0.05*10^-6;
L=1/(%pi*%pi*Fc*Fc*C)
disp('i) INDUCTANCE (L) is = '+string ([L]) +'
H ')
```

Scilab code Exa 8.13 C

Scilab code Exa 8.14 L and C

Scilab code Exa 8.15 cutt off Frequency

```
//EXAMPLE 8-15 PG NO-531

L=50*10^-3;
C=0.2*10^-6;
Ro=(L/C)^0.5;
Fc=1/[%pi*(L*C)^0.5];
disp('i) RESISTANCE (Ro) is = '+string (Ro) +' ohm ')
disp('ii) FREQUENCY (Fc) is = '+string (Fc) +' Hz ')
```

Scilab code Exa 8.16 Cutt off Frequency Pass band

```
1 //EXAMPLE 8-16 PG NO-531
2 C=0.2*10^-6;
3 L=50*10^-3;
```

```
4 Ro=(L/C)^0.5;
5 Fc=1/[4*%pi*(L*C)];
6 disp('Hi) RESISTANCE (Ro) is = '+string (Ro) +'
        ohm ')
7 disp('Hi) FREQUENCY (Fc) is = '+string (Fc) +'
        Hz ')
```

Scilab code Exa 8.17 Cutt off Frequency Pass band

```
1
                                      //EXAMPLE 8-18
                                                 PG NO
                                         -533 - 534
2 Z1 = \%i * 413.05;
                                       //Impedance
                                        //Impedance
3 \quad Z2 = \%i * 334.45;
4 Zoc = (Z1/2) - Z2;
5 disp('i) Impedance(Zoc) is = '+string ([Zoc])
     + ' ohm ');
6 Zsc = (Z1/2) + [((Z1*-Z2)/2)/(-Z2+(Z1/2))];
7 disp('ii) Impedance (Zsc) is = '+string ([Zsc])
      + ' ohm ');
8 Zo=(Zoc*Zsc)^0.5;
9 disp('ii) Impedance (Zo) is = '+string ([Zo]) +
     ' ohm
            ');
```

Scilab code Exa 8.18 m

```
//EXAMPLE 8-18 PG NO-533
Ro=600;
Fc=1000;
L1=Ro/(%pi*Fc);
C2=1/(%pi*Ro*Fc);
Fo=1050;
m=[1-(Fc/Fo)]^0.5;
```

```
8 X = (0.5*m*L1);
9 Y = [(1-m*m)/4*m]*L1;
10 Z = m * C2;
11 A = (m*L1)/2;
12 B = [(1-m*m)/(2*m)]*L1;
13 C = (m*C2)/2;
14 disp('i) INDUCTAR (L1) is = '+string (L1) +' H
      ')
15 disp('ii) CAPACITOR (C2) is = '+string (C2) +'
     F ')
16 disp('iii) CONSTANT (m) is = '+string (m') +'
      ')
17 disp('iv)
               (X) is
                         = '+string (X) +'
                                              H ')
                         = '+string (Y) +'
18 disp('v)
               (y) is
                         = '+string (Z) +'
                                              F ')
19 disp('vi)
               (Z) is
20 disp('vii)
               (A) is
                         = '+string (A) +'
                                              Η ')
                            '+string (B) +'
                                              Η ')
21 disp('viii) (B) is
                         =
22 disp('x)
               (C) is
                         = '+string (C) +'
                                              F ')
```

Scilab code Exa 8.19 m and T

```
1
                                    //EXAMPLE 8-19
                                                     PG NO
                                       -534 - 535
2 \text{ Ro} = 600;
                                         //characteristics
      Impedance
3 \text{ Fc} = 1000;
                                         //cutt
                                                    οf
      frequency
4 L=Ro/(4*\%pi*Fc);
5 \text{ disp}('i) \text{ Inductance is} = '+\text{string}([L]) + ' H ')
6 C=1/[4*\%pi*Fc*Ro];
7 disp('ii) Capacitance is = '+string ([C]) +' F
      <sup>'</sup>);
8 m = 0.2;
```

```
9 X = (2*C)/m;
                                    //X=2C/m;
                      = '+string ([X]) +' F ');
10 disp('iii) X is
11 Y=L/m;
                                  Y = L/m;
12 disp('iv) Y is
                          '+string ([Y]) +' H ');
13 Z = (4*m*C)/[1-m^2];
14 disp('v) Z
                is
                          '+string ([Z]) +' F ');
15 \text{ m1} = 0.6;
16 X1 = (2*C)/m1;
                                       //X=2C/m;
                          '+string ([X1]) +' F ');
17 disp('iii) X is
18 Y1 = (2*L)/m1;
                                        Y1=L/m1;
19 disp('iv) Y is =
                          '+string ([Y1]) +' H ');
20 Z1 = (2*m1*C)/[1-m1^2];
21 disp('v) Z
              is
                          '+string ([Z1]) +' F ');
```

Scilab code Exa 8.20 impedance

```
//EXAMPLE 8-20 PG NO-535
Ro=450;
Fc=20000;
L=Ro/(4*%pi*Fc);
C=1/(4*%pi*Fc*Ro);
Z1=Ro/(2*%pi*Fc);
disp('i) IMPEDANCE (Z1) is = '+string (Z1) +' ');
```

Scilab code Exa 8.21 Inductance Capacitance

```
8 Zo=Ro/[1-(Fc/F)^2]^0.5;
9 disp('i) INDUCTAR (L) is = '+string (L) +' H ')
10 disp('ii) CAPACITOR (C) is = '+string (C) +' F
')
11 disp('i) IMPEDANCE (Z) is = '+string (Z) +' ohm
')
12 disp('ii) IMPEDANCE (Zo) is = '+string (Zo) +'
ohm ')
```

Scilab code Exa 8.22 Resonant Frequency Band Width Cutt off Frequency

```
1
               //EXAMPLE 8-22 PG NO-537-538
2 L=60*10^-3;
3 C=150*10^-9;
4 Fo=1/[2*\%pi*(L*C)^0.5];
5 disp('ii) FREQUENCY (Fo) is = '+string (Fo) +'
     Hz ')
6 R = 670;
7 B.W=R/L;
8 disp('ii) BAND WIDTH (B.W) is = '+string (B.W) +
     ' rad/sec')
9 FL=Fo-(1777.22/2);
10 disp('ii) Lower Cut of Frequency (FL) is = '+
     string (FL) + 'Hz')
11 Fu=Fo+(1777.22/2);
12 disp('ii) Upper Cut of Frequency (Fu) is = '+
     string (Fu) + ' Hz ')
```

Scilab code Exa 8.23 Cutt off Frequency

```
1 //EXAMPLE 8-23 PG NO-538
2 L=160*10^-3;
3 C=0.022*10^-6;
```

```
4 Fc=1/[%pi*(L*C)^0.5];
5 Zo=(L/C)^0.5;
6 disp('ii) Cut of Frequency (Fc) is = '+string (
    Fc) +' Hz')
7 disp('ii) IMPEDANCE (Zo) is = '+string (Zo) +'
    ohm')
```

Scilab code Exa 8.24 Output Voltage

```
//EXAMPLE 8-24 PG NO-541-542
2 Avf=1.56
3 Vo=2.262*10^-3;
4 R=15*10^3;
5 F=0.707;
6 C=0.002*10^-6;
7 Fc=1/(2*%pi*R*C);
8 disp('ii) Cut of Frequency (Fc) is = '+string (Fc) +' Hz')
9 Vo1=F*Vo;
10 A=20*log(1.56);
11 disp('ii) Out Put Voltage (Vo1) is = '+string (Vo1) +' V')
```

Scilab code Exa 8.25 Gain

```
//EXAMPLE 8-25 PG NO-542
fc=4000;
R=10*10^3;
C=1/[2*%pi*Fc*R];
disp('i) CAPACITOR (C) is = '+string (C) +' F'
Avf=1.586;
R1=15000
```

Scilab code Exa 8.26 Mid Band Gain

```
//EXAMPLE-8-26 PG NO-543
R=15.86;
MA=R/R1;
disp('i) mid band gain = '+string (MA)+' ');
```

Scilab code Exa 8.27 R2 Mid abnd Gain Cutt of Frequency

```
1
                     //EXAMPLE 8-27 PG NO-545
2 R2=0.586;
3 \text{ M.G} = 1 + 0.586;
                          //MID BAND GAIN
4 R=10^3;
5 C=0.02*10^-6;
                                        //Cut OFF
6 Fc=1/(2*\%pi*R*C);
     Frequency
7 G.Fc=0.707*M.G;
8 \text{ M.B.O=M.G*1.4};
9 disp('ii) Cut off Frequency (Fc) is = '+string
     (Fc) + ' ')
10 disp('ii) Gain at cutt of frequency (G.Fc) is
     '+string (G.Fc) +' ')
11 disp('ii) Mid band out Put (M.B.O) is = '+string
       (M.B.O) + ' mV ')
```

Scilab code Exa 8.28 Mid abnd Output

```
//EXAMPLE-8-28 PG NO
-545-546

2 Avf=1.586;
3 R1=10;
4 R2=[Avf-1]*R1;
5 Fc=5000;
6 R=2000;
7 C=1/[2*%pi*R*Fc]
8 disp('ii) Resistance (R2) is = '+string (R2) +' Kohm')
9 disp('ii) CAPACITOR (C) is = '+string (C) +' F'
')
```

Scilab code Exa 8.29 Gain at mid band

Scilab code Exa 8.30 Design a Filter

```
//EXAMPLE 8-30 PG NO-548
R1=10000;
Fc1=40000;
disp('ii) CAPACITOR (C1) is = '+string (C1) +'
    F ');
Fc2=8000;
R2=5000;
R2=5000;
C2=1/[R2*Fc2*2*%pi];
disp('ii) CAPACITOR (C2) is = '+string (C2) +'
    F ');
```

Scilab code Exa 8.31 Resistance

Scilab code Exa 8.32 Impedance

```
//EXAMPLE 8-32 PG NO-550
Zoc=200;
Zsc=187.5;
Zo=[Zoc*Zsc]^0.5;
R1=50;
R2=150;
R3=193.65;
```

```
8 N=[R1+R2+R3]/R1;
9 D=20*log10(N)
10 disp('ii) IMPEDANCE (Zo) is = '+string (Zo) +'
        ohm ');
11 disp('ii) (N) is = '+string (N) +' ');
12 disp('ii) (D) is = '+string (D) +' dB ');
```

Scilab code Exa 8.33 Attenuation

Scilab code Exa 8.34 Resistance

Scilab code Exa 8.35 Impedance

```
//EXAMPLE 8-35 PG NO-552
1
2 R1 = 200;
3 R2 = 200;
4 R3=100;
5 Zoc = [R1*(R2+R3)/(R1+R2+R3)];
6 disp('i) IMPEDANCE (Zoc) is = '+string (Zoc) +'
      ohm ');
7 Zsc = (R1*R3)/(R1+R3);
8 disp('ii) IMPEDANCE (Zsc) is = '+string (Zsc) +'
       ohm ');
9 Zo = [Zoc * Zsc]^0.5;
10 disp('iii) IMPEDANCE (Zo) is = '+string (Zo) +'
      ohm ');
11 N=2.618;
12 D=20*log10(N)
13 disp('ii) (D) is = '+string (D) + ' dB ');
```

Scilab code Exa 8.36 Resistance

```
//EXAMPLE 8-36  PG NO-552-553
N=31.622;
Ro=700;
R1=Ro*[(N^2-1)/(2*N)];
R2=Ro*[(N+1)/(N-1)];
disp('i) RESISTANCE (R1) is = '+string (R1) +' ohm ');
disp('ii) RESISTANCE (R2) is = '+string (R2) +' ohms ');
```

Scilab code Exa 8.37 Impedance

```
//EXAMPLE 8-37 PG NO-553
1
2 R1=657.08;
3 R2 = 44.316;
4 Zoc=R1+R2;
5 Zsc=R1+[(R1*R2)/(R1+R2)];
6 Zo=[Zoc*Zsc]^0.5;
7 N = [R2 + R1 + Zo] / R2;
              impedance (Zoc) is = '+string (Zoc)
8 disp('i)
     + ' ohm ');
9 disp('ii) impedance (Zsc) is = '+string (Zsc) +'
       ohm ');
10 disp('iii)impedance (Zo) is = '+string (Zo) +'
     ohm ');
11 \operatorname{disp}('iv) (N) is = '+string (N) +' ');
```

Scilab code Exa 8.38 Resistance

Scilab code Exa 8.39 N

Scilab code Exa 8.40 N

```
//EXAMPLE 8-40 PG NO-554-555
R1=459.089;
R2=22500';
Zoc=[R1*(R1+R2)]/{R1+R2+R1};
Zsc=[(R1*R2)/(R1+R2)];
Zo=[Zoc*Zsc]^0.5;
disp('i) impedance (Zoc) is = '+string (Zoc) +' ohm ');
disp('ii) impedance (Zsc) is = '+string (Zsc) +' ohm ');
disp('iii) impedance (Zoc) is = '+string (Zsc) +' ohm ');
```

Scilab code Exa 8.41 L

```
//EXAMPLE 8-41 PG NO-557
//EXAMPLE 8-41 PG NO-557
//IMPEDANCE
R1=[(N-1)/N]*Z;
R2=Z/(N-1);
disp('i) RESISTANCE (R1) is = '+string (R1) +' ohm ');
```

```
7 \operatorname{disp}('ii) RESISTANCE (R2) is = '+string (R2) + ohm ');
```

Scilab code Exa 8.42 D

Scilab code Exa 8.43 L

```
//EXAMPLE 8-43 PG NO-557

//EXAMPLE 8-43 PG NO-557

2 Z1=450;
3 Z2=300;
4 R1=[Z1*(Z1-Z2)]^0.5;
5 R2=[(Z1*Z2*Z2)/(Z1-Z2)]^0.5;
6 disp('ii) RESISTANCE (R1) is = '+string (R1) + ' ohm ');
7 disp('ii) RESISTANCE (R2) is = '+string (R2) + ' ohm ');
```

Scilab code Exa 8.45 design T

```
1 //EXAMPLE 8-45 PG NO-559-560
```

```
2 N=5.6234;
3 R1=500;
4 R2=R1/(N-1);
5 R3=R1*(N-1);
6 disp('i) RESISTANCE (R2) is = '+string (R2) +' ohm ');
7 disp('ii) RESISTANCE (R3) is = '+string (R3) + ohm ');
```

Scilab code Exa 8.46 Design lattice attenuator

Scilab code Exa 8.47 Impedance

```
//EXAMPLE 8-47 PG NO-561
R1=175;
R2=350;
Zoc=R1+R2;
Zsc=R1+[(R1*R2)/(R1+R2)];
Zo=[Zoc*Zsc]^0.5;
N=[R1+R2+Zo]/R2;
AT=20*log10(2.618);
disp('i) impedance (Zoc) is = '+string (Zoc) +' ohm ');
```

Scilab code Exa 8.48 Resistance

```
//EXAMPLE 8-48 PG NO-561
R=300;
N=31.62;
R1=[(N-1)/N]*R;
R2=R/(N-1);
disp('i) RESISTANCE (R1) is = '+string (R1) +' ohm ');
disp('ii) RESISTANCE (R2) is = '+string (R2) + ohm ');
```

Scilab code Exa 8.49 Design lattice attenuator

```
//EXAMPLE 8-49 PG NO-562
Ro=500;
N=10;
RA=Ro*[(N-1)/(N+1)];
RB=Ro*[(N+1)/(N-1)];
R1=Ro*[(N-1)/(N+1)];
R2=Ro*[(2*N)/(N^2-1)];
disp('ii) RESISTANCE (RA) is = '+string (RA) + ' ohm ');
disp('ii) RESISTANCE (RB) is = '+string (RB) + ' ohm ');
```

Chapter 9

Network Function

Scilab code Exa 9.24 Resonant frequency Q band width Impedance

```
1
                                  //EXAMPLE 9-24
                                    PG NO-608-609
2 L=20;
                                    //INDUCTANCE
                                  //RESISTANCE
3 R = 2 * L;
4 disp('i) Resistance (R) is = '+string ([R]) +'
     ohm ');
5 Wo=sqrt(101);
6 disp('ii) Wo (Wo) is = '+string ([Wo]) +' rad/
      sec ');
7 Q = (Wo*L)/R;
8 \operatorname{disp}('iii) Q is = '+\operatorname{string}([Q]) + ' ');
9 BW = Wo/Q;
10 disp('iv) BANDWIDTH (BW) is = '+string ([BW]) +'
      rad/sec ');
```

Scilab code Exa 9.26 Resonant frequency Q

```
1 //EXAMPLE 9-26
```

```
PG NO
                                  -609 - 610
2 C=10^-6;
3 X=5*10^6;
4 L=1/(C*X);
5 disp('i) INDUCTAR (L) is = '+string ([L]) +' H
      ');
6 R = 10 * L;
7 disp('ii) Resistance (R) is = '+string ([R]) +'
     ohm ');
8 \quad W=2.236*10^3;
9 Q = (W*L)/R;
10 \operatorname{disp}('iii') (Q) is = '+string ([Q]) +' ');
11 BW=W/Q;
12 disp('iv) Band Width (BW) is = '+string ([BW]) +
      ' rad/sec ');
```

Scilab code Exa 9.32 Q

```
//Example 9-32
                                                     PG
1
                                 NO 618 - 619
2 P1=1-\%i*50;
3 P2=1+\%i*150;
4 Z1=0+\%i*50;
5 I = [0.2*Z1]/[P1*P2];
6 disp('i) Current (I) is = '+string ([I]) +' A '
     );
7 L=5;
                                       //INDUCTAR
8 R = 10;
                                      //RESISTANCE
9 C=2*10^-5;
10 Wo=1/sqrt(L*C);
11 disp('ii) Wo (Wo) is = '+string ([Wo]) +' rad/
     sec ');
12 Q = (Wo * L) / R;
13 disp('iii) Q(Q) is = '+string([Q]) +' ');
```

Scilab code Exa 9.37 Poles and Zero

Scilab code Exa 9.38 R L G C

Scilab code Exa 9.46 Ia

Scilab code Exa 9.50 Current

Scilab code Exa 9.56 C

```
//example 9-56 pg no-636
Z1=8.05+%i*2.156; //IMPEDANCE
XL=2.155;
W=5000;
L=XL/W;
disp('i)INDUCTANCE (L) = '+string (L)+' H')
Z2=4.166-%i*7.216; //IMPEDANCE
Xc=7.216;
```