Análisis de regresión sobre la relación de las estadísticas de MPG y PPG en partidos de postemporada de la NBA

Rudy Miranda Bastias

Github (scripts): https://github.com/SolaireLordOfSunlight/Linear-Regression

Abril, 2023

Introducción

Se busca confirmar si la relación entre la cantidad de puntos anotados por un jugador de la NBA, frente a la cantidad de minutos jugados por partido tienen una relación del tipo lineal.

Los datos corresponden a los playoff (post-temporada) de la temporada 2021-22 de la NBA obtenidos de su sitio web oficial. Un punto a enfatizar es que las 79 unidades de observación son jugadores de la misma posición, donde se toma en cuenta su promedio de puntos por partidos (PPG) y su promedio de minutos por partido (MPG).

Modelo Poblacional

$$PPG = \beta_0 + \beta_1 MPG + \varepsilon \tag{1}$$

Estimación de Parametros

Comandos R

```
table_values <- read.csv("./nba_stats.csv")
(summary(lm(formula = PPG ~ MPG, data = table_values)))</pre>
```

Resultados

Aqui el $\hat{\beta}_1$ indica que los jugadores en promedio anotan 0.53 por cada minuto jugado. Por otro lado $\hat{\beta}_0 = -1,92$ es un numero que no tiene sentido en la realidad, seria buena idea quitar el intercepto.

Interpretando R^2 , el 80% de la variación de la estadística PPG se explica por la de MPG.

Validación del Modelo

Proponemos las hipótesis

$$H_0: \beta_1 = 0$$

$$H_1:\beta_1\neq 0$$

rechazando H_0 dado el valor- $p \approx 0$ del resumen anterior.

Análisis de Residuos

Una hipótesis que deben cumplir nuestro modelo es que $\varepsilon_i = (Y_i - \bar{Y}) \sim N(0, \sigma^2)$ Aplicando distintos test de normalidad, tanto parametricos como no parametricos

Test	Valor P
Jarque-Bera	0.04469
Kolmogorov-Smirnov	3.847e-05
Shapiro-Wilk	0.1174
Anderson-Darling	0.1493

Con un nivel de significancia de 0.05, podriamos considerar la distribución como una normal.

Ahora, al hacer un test de hipótesis con el comando *t.test* sobre la media con la hipótesis nula H_0 : $\mu = 0$ obtenemos un valor p = 1, con lo que aceptamos H_0 .

Con ello se cumplen los dos supuestos de la distribución de los residuos.

V-A. Independencia de los Residuos

Aplicando el test de Durbin-Watson, con las siguientes hipótesis

 H_0 : los errores son independientes

 H_1 : los errores no son independientes

Aceptamos la hipótesis nula, puesto que el valor-p=0.21>0.05 el nivel de significancia con el cual trabajamos en este informe.

Referencia: https://fhernanb.github.io/libro_regresion/indep.html

Conclusión

Es clara la relación entre los minutos jugados y los puntos anotados, pero seria una buena desición incluir mas variables a este modelo en vez de solo dejarlo en dos, y como se dijo anteriormente podriamos quitar el intercepto de nuestra función de regresión poblacional.