1 Diffie-Hellman key agreement

1.1 Finding a generator

a. (1) the element tested from 1 to 10; (2) the order of each such element; and (3) what (sub)group that element generates.

Element	Order mod 2027	Generated Group			
1	1	Trivial subgroup			
2	2026	Full group Z*_2027			
3	1013	Large prime-order subgroup			
4	1013	Large prime-order subgroup			
5	2026	Full group Z*_2027			
6	2026	Full group Z*_2027			
7	2026	Full group Z*_2027			
8	2026	Full group Z*_2027			
9	1013	Large prime-order subgroup			
10	1013	Large prime-order subgroup			
6	2026	Full group Z*_2027			
7	2026	Full group Z*_2027			
8	2026	Full group Z*_2027			
9	1013	Large prime-order subgroup			
10	1013	Large prime-order subgroup			

b.

• full group $g=2 \rightarrow order\ 2026$

 $2^{2026} \mod 2027 \equiv 1$, for all proper divisors d|2026, $2^d \neq 1 \mod 2027$,

 $2^1 \mod 2027 \neq 1, \, 2^2 \mod 2027 \neq 1, \, 2^{1013} \mod 2027 \neq 1, \, 2^{2026} \mod 2027 = 1$

Conclusion: g=2 passes all checks

• large prime-order subgroup $g=3 \rightarrow order\ 1013$

$$3^{1013} \mod 2027 \equiv 1, \, 3^1 \mod 2027 \neq 1$$

 $g^q \equiv 1 \mod p$, and $g \neq 1 \mod p$

Conclusion: g=3

1.2 Performing key exchange

a.

$$a = 8wy = 8 \times 62 = 496$$
, $b = 9xz = 9 \times 28 = 252$, $p = 2027$, $g = 2$

b.

$$A = g^a \mod p = 2^{496} \mod 2027 = 1450, B = g^b \mod p = 2^{252} \mod 2027 = 872$$

c.

$$s = B^a \mod p = 872^{496} \mod 2027 = 902$$
, $s = A^b \mod p = 1450^{252} \mod 2027 = 902$
They are agreeing on session key: 902

1.3 Sabotaging the protocol

a. p = 2027, g = 2, Alice's private key: a = 496, Malicious Bot's private key: $b^1 = 1013$, Both derive the same session key: $s = A^{b1} \mod p = 1450^{1013}$, mod 2027 = 1

b.

Alpha (α)	Alice's Message A	Shared Secret with Bob	Shared Secret with Bot
496	1450	902	1
497	873	68	2026
498	1746	513	1
499	1465	1396	2026
500	903	1112	1
501	1806	758	2026
502	1585	174	1
503	1143	1730	2026
504	259	472	1
505	518	103	2026

c.

The session keys are predictable and guessable, because one party uses a fixed exponent corresponding to a low-order subgroup. This breaks the security of Diffie-Hellman, as an attacker could easily guess or brute force the key.

2 The RSA cryptosystem

2.1 Textbook RSA encryption

a. $e = 28 \times 6 + 401 = 168 + 401 = 569$

b. $p = 2027, q = 2593, n = 2027 \times 2593 = 5256011, \phi(n) = (2026) \times (2592) = 5251392,$ e = 569, my public key is: (n = 5256011, e = 569)

c. $d = e^{-1} \bmod \phi(n) = 569^{-1} \bmod 5251392 = 230729,$ my full RSA private key is: n = 5256011, d = 230729

d.

q	r1	r2	s1	s2	t1	t2
9229	569	91	0	1	1	-9229
6	91	23	1	-6	-9229	55375
3	23	22	-6	19	55375	-175354
1	22	1	19	-25	-175354	230729
22	1	0	-25	569	230729	-5251392

gcd(5251392, 569) = 1,

Modular inverse $d = 569^{-1} \mod 5251392 = 230729$,

 $569 \cdot 230729 - 5251392 \cdot 25 = 1$, d = 230729

e.

Step	Bit	Square	Multiply
1	1	1	1024
2	0	1048576	
3	0	1430675	_
4	0	3615939	_
5	1	4207791	4104975
6	1	1180526	5232105
7	1	3847648	3239313
8	0	1047470	_
9	0	1104650	_
10	1	340707	1987242

Public key (n = 5256011, e = 569), Plaintext m = 1024, $c = 1024^{569} \mod 5256011 = 1987242$

f.

Ciphertext:
$$c = 1987242$$
, Private exponent: $d = 230729$, Primes: $p = 2027$, $q = 2593$, Modulus: $n = pq = 5256011$,
$$d^p = d \mod (p - 1) = 230729 \mod 2026 = 1791$$
,
$$d^p = d \mod (q - 1) = 230729 \mod 2592 = 41$$

$$M_p = c^{1791} \mod 2027 = 1024$$
,
$$M_q = c^{41} \mod 2593 = 1024$$

$$q^{-1} \mod p = 727$$
,
$$p^{-1} \mod q = 1663$$

$$M = (q \cdot q^{-1} \mod p \cdot Mp + p \cdot p^{-1} \mod q \cdot Mq) \mod n$$

$$M = (2593 \cdot 727 \cdot 1024 + 2027 \cdot 1663 \cdot 1024) \mod 5256011 + 1024$$

2.2 Distinguishing attacks against Textbook RSA and Random-Padded RSA

a.

Public key:
$$(n = 9005063, e = 17), C^* = 3155223, M1 = 111, M2 = 222$$

1. Encrypt both M1 and M2 using the public key:

$$\circ$$
 C1 = 111¹⁷ mod 9005063 = 6921938

$$\circ$$
 C2 = 222¹⁷ mod 9005063 = 3155223

2. Compare:

$$\circ$$
 C* = C2

Decryption result: 1024

The plaintext is M2 = 222, encrypting the same message always gets the same ciphertext.

Property exploited: Deterministic encryption is lacking semantic security.

b.

We could try:
$$C1 = M1^e \mod n$$
, $C2 = M2^e \mod n$, and compare directly to $C*$, because the scheme is deterministic. But with random padding, every message is encoded as: $Z = 1000 \cdot R + M$ and since R is chosen randomly for every encryption, the value of Z changes every time, even for the same M.

So, we cannot predict any specific ciphertext to a known message like before too many possible Z values exist:

- o For each M, there are 9004 possible Z values
- o And thus 9004 different ciphertexts for each M

3 Digital signatures and authentication

a.

- 1. The server chooses a crafted challenge $x = h(M^*)$ $x = h(M^*)$, where M^* is the message the server wants to forge as if it came from Alice.
- 2. The server sends this x to Alice in the login protocol.
- 3. Alice, unaware of the server's intent, signs x and returns:

```
s = Signsk(x) = Signsk(h(M*))
```

4. The server now possesses a valid signature s on h(M*), which is precisely what an email signature would look like for message M*.

The server succeeded forged Alice's signature on an arbitrary email message M*.

b.

- 1. Modify the challenge x sent by the server so that Alice signs only authentication specific data, e.g.: $x^1 = Hash("LOGIN" || x || ServerID || Timestamp)$
- 2. Slice signs $s = Signsk(x^1)$
- 3. The login protocol now uses structured data that:
 - a. Includes metadata like "LOGIN"
 - b. Is tied to the session via timestamp and server identity
 - c. Cannot be reused as a hash of any valid email message

c.

Never reuse the same cryptographic key across different protocols or application.

A signature in one protocol might be exploited to forge signatures in another like universal forgery attack.

4 Elliptic-curve cryptography

4.1 Elliptic-curve arithmetic

a.

b.

16 affine points on the curve, and 1 point at infinity, so the order of my curve is: 17

c.

$$G = (7,7) \& H = (12, 9)$$
: on the curve

d.

$$\lambda = \frac{3x12 + a^1}{2y1} \mod p,$$

$$x_3 = \lambda^2 - 2x_1 \bmod p,$$

$$y_3 = \lambda(x_1 - x_3) - y_1 \bmod p$$

the result is:
$$2G = G + G = 2$$
, 12

I draw a line connecting the points G = (7,7) and H = (12,9) on the plot of the curve over F13. This line intersects the curve at a third point R. Then, I reflect R across the x-axis (mod 13), which gives the result G+H. Since the plot uses a finite field, this reflection is equivalent to negating the y-coordinate modulo 13.

f.
$$\lambda = \frac{y2 - y1}{x2 - x1} \mod 13 = \frac{9 - 7}{12 - 7} = \frac{2}{5} \mod 13 = 2 \cdot 5^{-1} \mod 13$$

$$5^{-1} \mod 13 = 8, \text{ since } 5 \cdot 8 = 40 \equiv 1 \mod 13$$

$$\lambda = 2 \cdot 8 = 16 \equiv 3 \mod 13$$

$$x_3 = \lambda^2 - x_1 - x_2 \mod 13 = 3^2 - 7 - 12 = 9 - 19 = -10 \mod 13 = 3$$

$$y_3 = \lambda(x_1 - x_3) - y_1 = 3(7 - 3) - 7 = 3 \cdot 4 - 7 = 12 - 7 = 5$$
Result is: G + H = 3, 5

4.2 Elliptic-curve Diffie-Hellman key agreement

a. The order of point G = (7, 7) under the elliptic curve y² = x³ + 5x + 9 mod 13 found:

Order of G = 17, G generates the entire group of the curve, since the curve itself has order 17.

b. Alice's private key:
$$a = 5$$
, generate point: $G = (7, 7)$
The point: $A = a \cdot G = 5 \cdot (7, 7) = (3, 8)$

c. Bob's private key: b = 9, generate point: G = (7, 7)The public point: $B = b \cdot G = 9 \cdot (7, 7) = (9, 9)$