殺手數獨的判斷方法

薛筑軒 陳瑞琳 詹翊瑄 高振綱 吳毅成 黃裕龍 國立交通大學資訊科學與工程研究所

{sunny,martian,rlixaoi,mikekao,icwu,march}@aigames.nctu.edu.tw

摘要

殺手數獨是一個從數獨衍生出的變種。遊戲起始盤面,不同於以往數獨直接給提示數,殺手數獨給的是一群格子的總和,這使得殺手數獨比起數獨較為複雜。本篇論文研究的是殺手數獨的判斷方法,藉由結合以往數獨的判斷方法,使得這判斷方法不僅可解決殺手數獨題目,也可解決傳統數獨題目。**關鍵詞**:殺手數獨,數獨,判斷方法。

1. 前言

數獨是一個家喻戶曉的數字填充遊戲,是由 Harold Garns (cf. [4]) 在1979年發明的。規則簡單, 卻讓人腦力激盪、愛不釋手。自2005起,常常可 在報章雜誌上見到數獨的身影,其熱門程度可想而 之。數獨的遊戲規則是一個在9格寬 x9 格高的盤 面上,填入數字1~9使每行、每列以及3格寬 x3 格高的小型九宮格,都不能出現相同的數字。遊戲 起始時,題目會先給定一些數字當作提示(clues), 遊戲目標就是藉由這些提示,在不違反遊戲規則的 情況下,把盤面上所有格子填上數字。

5	3			7					5	3	4	6	7	8	9	1	2
6			1	9	5				6	7	2	1	9	5	З	4	8
	9	8					6		1	9	8	3	4	2	5	6	7
8				6				3	8	5	9	7	6	1	4	2	3
4			8		3			1	4	2	6	8	5	3	7	9	1
7				2				6	7	1	3	9	2	4	8	5	6
	6					2	8		9	6	1	5	3	7	2	8	4
			4	1	9			5	2	8	7	4	1	9	6	3	5
				8			7	9	თ	4	5	2	8	6	1	7	9
	(a)										(b))					

圖 1: 數獨的題目(a)與答案(b)

如圖 1(a)就是一個數獨的題目,遊戲會事先給定一些提示,經由一些邏輯判斷,我們能一步步找到格子內的數字,最終填完整個盤面的數字,如圖 1(b)所示。有關數獨的研究相當的多,Delahaye [5]介紹許多有關數獨的性質,以及類似的遊戲;Graham Kendall [10]介紹許多 NP-complete 的 puzzle,Felgenhauer [6] 提出許多解數獨的方法,並且分類,我們許多的名詞定義也是從這篇與[1]而來;Fowler [7] 於 2007 開發出 sudoku solver and generator;最近熱門研究是一個有答案的數獨題目能否只要更少的提示,最少提示數問題因應而生(the minimum Sudoku problem)([3] [8] [9])。

殺手數獨[2]是一種從數獨衍生出的變種,結合了數獨 (Sudoku) 和數和 (Kakuro) 的玩法。遊戲規則是在一個 9 格寬 x 9 格高的盤面上,填入數字 1~9 使每行、每列以及 3 格寬 x 3 格高的小型九宫格,都不能出現相同的數字。並且殺手數獨把整個盤面再細分出許多用虛線表示的小區塊(Cage),每個小區塊左上角都會有個數值(clues),用來標明這個小區塊內數字的總和。並且每個小區塊內的數字都不可以重複。

(a)

4	2	8	8 7	1	6	3	5	9
6	¹⁶ 7	3	9	4	5	1	2	8
1	9	²³ 5	3	18	8	7	6	5 4
8	10 4	9	6	5	3	2	7	1
2	1	18	¹⁹ 4	8	7	5	9	9 3
3	5	7	24 1	9	²³	8	4	6
5	3	2	8	6	9	4	9 1	7
7	6	⁵ 4	2	3	16 1	9	8	5
9	8	1	5	7	4	6	5 3	2

(b)

圖 2: 殺手數獨的題目(a)、答案(b)和特殊名詞(c)

圖 2(a)就是一個殺手數獨的題目,不同於數獨 事先給定格子內的數字,而是給定小區塊的總和。 這使得殺手數獨比起數獨較為複雜。遊戲玩法則是在符合殺手數獨規則[2]的前提下,把盤面上所有的空格填上數字,如圖 2(b)。而圖 2(c)則是殺手數獨裡會用到的名詞。

本研究藉由結合以往數獨的判斷方法,提出延伸的方法以及新的方法,使其適用在殺手數獨的題目上。研究目的在於提出少數幾種判斷方法就可以找到殺手數獨的答案。本研究首先於第一章介紹數獨、殺手數獨的遊戲規則及確定研究問題。第二章中,定義了一些我們在研究中會用到的名詞。第三章為我們提出的判斷方法。第四章會提出結論。

2. 名詞定義

為了描述我們的方法,我們定義了以下的名詞:

- Digits (候選數):代表數字 1~9。
- Cell:代表盤面上1格寬 x1格高的格子。
- Region:盤面上一些 cells 的集合。
- Sum-region: 是一種 Region,其內部所有數字 總和為一個定值。
- Bucket:是一種 Region,其內部所有的 cell, 其數字不能重複。一個 Bucket 內可以只有一個 cell。
- Cage: 是一種 Bucket, 也是一種 Sum-region。
- Combination (組合): 一個 Region 包括 Cell、Cage、Sum-region 等之所有可能的組合。例如: 一個完全沒有受到其他數影響的 cell,其內部可能的組合是{1,2,3,4,5,6,7,8,9}。為了簡化,對一個 cell C,我們用 C.CB表示其所有組合。一個總和為 8 且個數為 3 的 Cage Γ,其內部可能的組合: Γ.CB = {125,134}。另外,一個總合為 8 且個數為 3 的 Sum-region S,其內部可能的組合: S.CB = {116,125,134,224,233}。
- 對於一個 Region R, |R| 代表 Region R 內 cell 的個數; SUM(R)代表 Region R 內數字的總 和。

3. 判斷方法

在[1]裡,整理出了數獨的三個判斷方法, Naked、Hidden、X-wing,但是這些方法對於殺手 數獨來說不夠完善,所以我們對這些方法進行一些 延伸,並新增5個殺手數獨的判斷方法(存在法、鴿 洞法、反向鴿洞法、配對法、45規則法),以下分 別做介紹:

3.1 Naked K

原來的定義是「在行、列以及 3x3 的 9 格區域中,若某 K 個格子中就只出現 K 種候選數,則這 K 種候選數不可能出現在這區域中的其他格子」,讓

我們看看下列的例子:

 $\frac{3}{4}$ 5

124

146

79

146 8	7	5 <mark>7</mark> 8 9	124 5	123 456	358 9	124 89	234 89	6 <mark>7</mark> 8 9	
	(a) Naked 1								
146 8	79	124 5 <mark>9</mark>	123 45	123 9	79	124 568	234 58	126 7 8	
	(b) Naked 2								

(c) Naked 3

37

39

124

568

123

126

78

圖 3: 原本定義的 Naked 系列範例

在圖 3(a)中,可觀察到左邊第 2 個的格子在 1 格中就只有 1 種候選數 7,根據定義這屬於 Naked 1,我們可把其他格子內的候選數 7 刪除;在圖 3(b)中,可觀察到藍色數字標明的格子中,那 2 個格子就只有 2 種候選數 7、9,根據定義這屬於 Naked 2,我們可把其他格子內的候選數 7、9 刪除;在圖 3(c)中,可觀察到藍色數字標明的格子中,那 3 個格子就只有 3 種候選數 3、7、9,根據定義這屬於 Naked 3,我們可把其他格子內的候選數 3、7、9 刪除。

以上傳統的 Naked 定義,只針對 Sudoku, 尤其局限於 cell。對於 Killer Sudoku, Cage 是很重要的概念,上述的定義無法來解決許多 Killer Sudoku 問題,因此我們延伸 Naked 定義如下:

定義一:在一個 Cage 中,存在 K 個 digits $\{D_1, D_2, D_3,...D_K\} = S$,存在 N 個不重疊的 Buckets $\{B_1, B_2,...,B_N\}$,其中 N \leq K,且 Cage 完全包含 B_1 U B_2 U...U B_N ,存在 N 個數 $\{K_1,K_2,...,K_N\}$ 使得 $K_1+K_2+...+K_N=K$,使得對於每一個 Bucket B_i 中的每一組 combination 都至少擁有 S 中的 K_i 個 digits,當有這種情況時我們稱之為「Naked K_1 。

依據此定義,應可很容易地獲得以下定理,在 此證明部分省略。

定理一:當任意 Cage 符合 Naked K 的狀況時,對於所有在 Cage 內不屬於那 N 個 Buckets 的 cells,則這些 cells 的 combinations 必不包含這 K 個 digits $\{D_1,D_2,D_3,...D_K\}$ 。

根據定理一我們可以將那些不屬於那 N 個 Buckets 的 cells C 的 C.CB 中,刪除掉擁有這 K 個 digits 的 combinations。讓我們看回剛剛的例子,如圖 3(a),在一個 Cage 中,存在 K=1 個 digit { D_1 =7 } = S,存在 N=1 個 Buckets { B_1 },其中 N \leq K,且 Cage 完全包含 B_1 ,存在 N=1 個數 { K_1 =1 },使得 K_1 = K_1 = K_2 = K_3 = K_4 = K_4 = K_4 = K_4 = K_5 = K_4 = K_4 = K_4 = K_4 = K_5 = K_4 = K_5

一我們可把 Cage 內所有不屬於 B₁ 的 cells, 其擁有 D₁=7 的 combinations 都刪除掉;如圖 3(b),在一個 Cage 中,存在 K=2 個 digits { $D_1=7$, $D_2=9$ } = S,存 在 N=2 個 Buckets { B₁, B₂ },其中 N≤K,且 Cage 完全包含 $B_1 \cup B_2$, 存在 N=2 個數 $\{K_1=1, K_2=1\}$, 使得 $K_1+K_2=K=2$,使得對 B_1 中的每一組 combination 都至少擁有 S 中的 K₁=1 個 digit、對 B₂ 中的每一組 combination 都至少擁有 S 中的 K₂=1 個 digit。這是新定義的 Naked 2。根據定理一我們可把 Cage 內所有不屬於 $B_1 \, \cdot \, B_2$ 的 cells, 其擁有 $D_1=7$, D₂=9 的 combinations 都刪除掉;如圖 3(c),在一個 Cage 中,存在 K=3 個 digits { D_1 =3, D_2 =7, D_3 =9 } = S, 存在 N=3 個 Buckets { B₁, B₂, B₃ } , 其中 N≤K , 且 Cage 完全包含 B₁UB₂UB₃, 存在 N=3 個數 { K₁=1, $K_2=1, K_3=1$ },使得 $K_1+K_2+K_3=K=3$,使得對 B_1 中 的每一組 combination 都至少擁有 S 中的 K₁=1 個 digit、對 B2 中的每一組 combination 都至少擁有 S 中的 K₂=1 個 digit、對 B₃ 中的每一組 combination 都至少擁有 S 中的 K3=1 個 digit。這是新定義的 Naked 3。根據定理一我們可把 Cage 內所有不屬於 $B_1 \cdot B_2 \cdot B_3$ 的 cells , 其擁有 $D_1=3$, $D_2=7$, $D_3=9$ 的 combinations 都刪除掉。接著讓我們來看看殺手數 獨才會出現的狀況:

(c) Naked 3

圖 4: 殺手數獨的 Naked 系列範例

如圖 4(a),在一個 Cage 中,存在 K=2 個 digits $\{D_1=1,D_2=2\}=S$,存在 N=2 個 Buckets $\{B_1,B_2\}$,其中 $N\leq K$,且 Cage 完全包含 $B_1\cup B_2$,存在 N=2 個數 $\{K_1=1,K_2=1\}$,使得 $K_1+K_2=K=2$,使得對 B_1 中的每一組 combination (註: B_1 僅有兩組

combinations{19,28}是因為我們假設其他組合影響 造成,如直的 Cage 限制造成的)都至少擁有 S 中的 K₁=1 個 digit、對 B₂中的每一組 combination 都至少 擁有S中的K2=1個digit。這是新定義的Naked2。 根據定理一我們可把 Cage 內所有不屬於 $B_1 \setminus B_2$ 的 cells, 其擁有 D₁=1, D₂=2 的 combinations 都刪除掉; 如圖 4(b), 在一個 Cage 中, 存在 K=3 個 digits { D₁=1, $D_2=2, D_3=3$ } = S , 存在 N=2 個 Buckets { B_1, B_2 } , 其中 N≤K,且 Cage 完全包含 B₁UB₂,存在 N=2 個 數 $\{K_1=2, K_2=1\}$,使得 $K_1+K_2=K=3$,使得對 B_1 中的每一組 combination 都至少擁有 S 中的 K₁=2 個 digits、對 B₂中的每一組 combination 都至少擁有 S 中的 K₂=1 個 digit。這是新定義的 Naked 3。根據定 理一我們可把 Cage 內所有不屬於 $B_1 \, \cdot \, B_2$ 的 cells, 其擁有 $D_1=1$, $D_2=2$, $D_3=3$ 的 combinations 都刪除掉; 如圖 4(c), 在一個 Cage 中, 存在 K=3 個 digits { D₁=1, 其中 N≤K,且 Cage 完全包含 B₁UB₂UB₃,存在 N=3 個數 $\{K_1=1, K_2=1, K_3=1\}$, 使得 $K_1+K_2+K_3=K=3$, 使得對 B₁ 中的每一組 combination 都至少擁有 S 中 的 K₁=1 個 digit、對 B₂ 中(B₂ 是由一個 cell 組成 Bucket)的每一組 combination 都至少擁有 S 中的 K₂=1 個 digit、對 B₃中的每一組 combination 都至少 擁有S中的K3=1個digit。這是新定義的Naked3。 根據定理一我們可把 Cage 內所有不屬於 $B_1 \, \cdot \, B_2 \, \cdot$ B₃ 的 cells, 其擁有 D₁=1, D₂=2, D₃=6 的 combinations 都刪除掉。

3.2 Hidden K

原本的定義是「在行、列以及 3x3 的 9 格區域中,若某 K 種候選數就只有出現在某 K 格中,則這 K 格中不可能有其他候選數,所以其他候選數應該 刪除」,參考以下範例:

246	346	23 5	238	134	123	237	346	127
789	7	7	9	689	68	89	7	89
			(a)	Hidde	n 1			
246	346	235	235	1 <mark>34</mark>	236	234	346	1 27
78	7	7	67	9	78	78	7	8 9
(b) Hidden 2								
247	137	125	235	123	12 6	235	12 4	123
8	9	79	7	59	8	7	6	9

(c) Hidden 3

圖 5: 原本定義的 Hidden 系列範例

在圖 5(a)中,可觀察到左邊第 3 個的格子,1 種候選數 5 只有出現在 1 格中,根據定義這屬於Hidden 1,我們可把這 1 格內候選數 5 以外的候選數刪除;在圖 5(b)中,可觀察到藍色數字標明的格子中,2 種候選數 1、9 只有出現在 2 格中,根據定義這屬於 Hidden 2,我們可把這 2 格內候選數 1、9

以外的候選數刪除;在圖 5(c)中,可觀察到藍色數字標明的格子中,3 種候選數 4、6、8 只有出現在 3 格中,根據定義這屬於 Hidden 3,我們可把這 3 格內候選數 4、6、8 以外的候選數刪除。

以上傳統的 Hidden 定義,只針對 Sudoku。對於 Killer Sudoku,上述的定義無法來解決許多 Killer Sudoku 問題,因此我們延伸 Hidden 定義如下:

定義二:在一個 Cage 中,存在 K 個 digits $\{D_1, D_2, ..., D_K\} = S$,存在 N 個互不重疊的 Buckets $\{B_1, B_2, ..., B_N\}$,其中 N \geq K,且 $B_1 \cup B_2 \cup ... \cup B_N$ 完全包含 Cage,且此 Cage 中確定包含 S 中的所有數,存在 N 個數 $\{K_1, K_2, ..., K_N\}$ 其中 $K_i = max$ (B_i 中的第 j 組 combination $C_{i,j}$ 擁有 S 中的 $K_{i,j}$ 個 digits),使得 $K_1 + K_2 + ... + K_N = K$,當有這種情況時我們稱之為「Hidden K」。

依據此定義,應可很容易地獲得以下定理,在 此證明部分省略。

定理二:當任意 Cage 符合 Hidden K 的狀況時,對於所有在 Cage 內的 Buckets B_i ,如果 B_i 的 K_i 不等於 0,則 B_i 只能存在擁有 K 個 digits 的 combinations。

根據定理二我們可將那些 Ki 不等於 0 的 Buckets B, 其 B.CB中, 刪除掉沒有這 K 個 digits 的 combinations。讓我們看回剛剛的例子,如圖 5(a), 在一個 Cage 中,存在 K=1 個 digit { D₁=5 } = S,存 在 N=9 個互不重疊的 Buckets { B₁, B₂,...,B₉ },其中 N≥K,且 B₁UB₂U...UB₉ 完全包含 Cage,且此 Cage 中確定包含 S 中的所有數,存在 N=9 個數 $\{K_1, K_2, ..., K_9\} \not\equiv \forall K_1 = \max(0, 0, 0, 0, 0, 0, 0) = 0$ $K_2 = \max(0, 0, 0, 0) = 0 \cdot K_3 = \max(0, 0, 1, 0) = 1 \cdot$ $K_{4...}$, 使得 $K_1 + K_2 + ... + K_9 = K = 1$ 。這是新定義 的 Hidden 1。根據定理二我們可將那些 K_i 不等於 0 的 Buckets B, 其 B.CB 中, 刪除掉沒有{ D_i=5 }的 combinations;如圖 5(b)以原本的 Hidden 2 為例, 在一個 Cage 中,存在 K=2 個 digits { D₁=1, D₂=9 } = S,存在 N=9 個互不重疊的 Buckets $\{B_1, B_2, ..., B_9\}$, 其中 N≥K,且 B₁UB₂U...UB₉ 完全包含 Cage,且此 Cage 中確定包含 S 中的所有數,存在 N=9 個數 $\{K_1, K_2, ..., K_9\} \not\equiv \forall K_1 = \max(0, 0, 0, 0, 0, 0) = 0 \cdot K_2$ $= \max(0, 0, 0, 0) = 0 \cdot K_3 = \max(0, 0, 0, 0) = 0 \cdot K_4...$ 使得 $K_1 + K_2 + ... + K_9 = K = 2$ 。這是新定義的 Hidden 2。根據定理二我們可將那些 K_i 不等於 0 的 Buckets B, 其 B.CB 中, 刪除掉沒有{ D₁=1, D₂=9 } 的 combinations;如圖 5(c) 以原本的 Hidden 3 為例, 在一個 Cage 中,存在 K=3 個 digits { D₁=4, D₂=6, $D_3=8$ } = S,存在 N=9 個互不重疊的 Buckets { B_1 , B₂,...,B₉},其中 N≥K,且 B₁UB₂U...UB₉完全包含 Cage, 且此 Cage 中確定包含 S 中的所有數,存在 N=9 個數{ $K_1, K_2, ..., K_9$ }其中 $K_1 = \max(0, 1, 0, 1)$

 $= 1 \cdot K_2 = max(0,0,0,0) = 0 \cdot K_3 = max(0,0,0,0,0) \\ = 0 \cdot K_4..., 使得 K_1 + K_2 + ... + K_9 = K=3 \circ 這是新定義的 Hidden <math>3 \circ$ 根據定理二我們可將那些 K_i 不等於 0 的 Buckets B,其 B.CB 中,刪除掉沒有{ D_1 =4, D_2 =6, D_3 =8}的 combinations。接著讓我們來看看殺手數獨才會出現的狀況:

圖 6: 殺手數獨的 Hidden 系列範例

如圖 6(a),在一個 Cage 中,存在 K=1 個 digit $\{D_1=4\}=S$,存在 N=3 個互不重疊的 Buckets $\{B_1,$ B₂, B₃ },其中 N≥K,且 B₁UB₂UB₃ 完全包含 Cage, 且此 Cage 中確定包含 S 中的所有數,存在 N=3 個 數{ K_1, K_2, K_3 }其中 $K_1 = \max(0, 0, 0, 0, 1, 1, 1, 0, 0,$ 1, 1) = $1 \cdot K_2 = \max(0) = 0 \cdot K_3 = \max(0, 0, 0) = 0$ 使得 $K_1 + K_2 + K_3 = K=1$ 。這是新定義的 $Hidden\ 1$ 。 根據定理二我們可把 B_1 內沒有 { $D_1=4$ }的 combinations 刪除。也就是 1269, 1278, 1359, 1368, 2358, 2367; 如圖 6(b), 在一個 Cage 中, 存在 K=2 個 digits { D_1 =4, D_2 =7 } = S , 存在 N=3 個互不重疊 的 Buckets { B₁,B₂,B₃ }, 其中 N≥K, 且 B₁∪B₂∪B₃ 完全包含 Cage, 且此 Cage 中確定包含 S 中的所有 數,存在 N=3 個數{ K₁, K₂, K₃ },其中 K₁ = max (0, $0, 0, 0, 0, 2, 0, 0, 0, 2, 0) = 2 \cdot K_2 = \max(0) = 0 \cdot K_3 =$ $\max(0,0) = 0$, 使得 $K_1 + K_2 + K_3 = K = 2$ 。這是新定義 的 Hidden 2。根據定理二我們可把 B₂, B₃ 內沒有 { D₁=4, D₂=7 }的 combinations 刪除。另外這例子做 雨次 hidden 1 也會產生同樣的結果;如圖 6(c),在 一個 Cage 中,存在 K=3 個 digits { D₁=3, D₂=4, D₃=8 } = S,存在 N=7 個互不重疊的 Buckets { B_1 , B_2 ,..., B_7 }, 其中 N \geq K,且 B_1 U B_2 U... U B_7 完全包含 Cage,且此 Cage 中確定包含 S 中的所有數,存在 N=7 個數{ K_1 , K_2 ,..., K_7 }, 其中 K_1 = \max (0, 1, 1) = 1 、 K_2 = \max (0, 0, 0, 0, 0) = 0 、 K_3 = \max (0, 1, 0, 0, 0, 1) = 1 、 K_4 ...,使得 K_1 + K_2 +...+ K_7 =K=3 。這是新定義的 Hidden 3 。根據定理二我們可把 B_1 , B_3 , B_5 內沒有{ D_1 =3, D_2 =4, D_3 =8 }的 combinations 刪除。

3.3 X-wing K

原本的定義是「若某個候選數,只出現在某 K 個橫列中相同的縱行上,則在這 K 縱行上的其他格子中,不可能有這個候選數,應該要刪除」,參考下列範例:

4	13 6	56	2	13 68	7	13 6	135 6 <mark>8</mark>	9	Α
135 9	8	256	134 9	134 69	346 9	123 456	7	134 6	
137 9	123 69	267	134 89	134 6 <mark>8</mark> 9	5	123 46	123 46 <mark>8</mark>	134 68	
6	347 9	457	134 579	2	349	8	134 5	134 7	
357 89	234 79	245 78	1345 789	1345 67 <mark>8</mark> 9	346 89	134 569	134 56	134 67	
357 89	347 9	1	345 789	3456 7 <mark>8</mark> 9	346 89	345 69	345 6	2	
18	146	3	458 9	45 <mark>8</mark> 9	248 9	7	124 6 <mark>8</mark>	146 8	
178	5	467 8	347 8	347 8	234 8	123 46	9	134 68	
2	47	9	6	34 78	1	34	34 8	5	Α
				В			В		

(a) **X-wing 2**

23 4	I	5	24 6	24 68	7	34 6	34 68	9	А
49	4 <mark>8</mark> 9	6	14 59	145 8 9	3	14 5	7	2	А
234 79	234 7 8 9	234 78	124 569	1245 6 <mark>8</mark> 9	245 689	134 56	134 56 <mark>8</mark>	134 68	
1234 5679	234 679	123 47	1234 5679	1245 679	245 69	8	123 456	13 4 67	
1234 5679	234 679	123 47	8	1245 679	245 69	1234 5679	123 456	134 67	
8	234 679	123 47	1234 5679	1245 679	245 69	1234 5679	123 456	134 67	
123 467	234 67 <mark>8</mark>	245 679	245 679	2456 7 8 9	245 689	123 467	123 46 <mark>8</mark>	134 678	
123 467	5	123 478	246 7	246 78	246 8	123 467	9	134 678	
24 67	246 78	9	24 67	3	T	24 67	24 68	5	Α
	В			В			В		

(b) **X-wing 3**

圖 7: 原本定義的 X-wing 系列範例

在圖 7(a)中,候選數 8 只出現在 2 個橫列中相同的縱行上,根據定義這屬於 X-wing 2 ,我們可把在這2 縱行上的其他格子的候選數 8 刪除;在圖 7(b)中,候選數 8 只出現在 3 個橫列中相同的縱行上,根據定義這屬於 X-wing 3 ,我們可把在這 3 縱行上

的其他格子的候選數 8 刪除。

以上傳統的 X-wing 定義,只針對 Sudoku。 對於 Killer Sudoku,上述的定義無法來解決許多 Killer Sudoku 問題,因此我們延伸 X-wing 定義如下:

定義三:存在 K 個互不重疊的 Cages,{ Γ_1 , Γ_2 , ..., Γ_K } = A,存在 1 個 digit { D } 一定會在 A 裡面,且存在另外 K 個互不重疊的 Cages,{ Γ'_1 , Γ'_2 , ..., Γ'_K } = B,A ≠ B,使得 D 只出現在 A∩B 的區域,當有這種情況時我們稱之為「X-Wing K_1 。

依據此定義,應可很容易地獲得以下定理,在 此證明部分省略。

定理三:當 Cages A 和 Cages B 擁有 X-wing K 的狀況時,所有在 B-A∩B 區域內的 cells,不存在擁有 D 這個 digit 的 combinations。

			_
1248	12467	12468	
1247	9	2367	В
12478	3456 7	34568	
1489			
12589			
12389			
6			
14589			
1489			
A			•

圖 8: X-wing 1

個互不重疊的 Cage, $\{\Gamma'_1\}=B$, $A \neq B$,使得 D=7 只出現在 A \cap B 的區域。根據定理三我們可把 B - A \cap B 區域內的 cells,擁有候選數 7 的 combinations 刪除。接著讓我們來看看殺手數獨才會出現的狀況:

sum = 8
combinations:
125 134

(a) X-wing 1

(b) X-wing 2

(c) X-wing 2

圖 9: 新定義的 X-wing 系列範例

如圖 9(a),存在 K=1 個互不重疊的 Cage, { Γ_1 } = A,存在 1 個 digit { D=1 } 一定會在 A 裡面,且存在另外 K=1 個互不重疊的 Cage,{ Γ_1 } = B,A ≠ B,使得 D=1 只出現在 A∩B 的區域,根據定理三我們可把 B - A∩B 區域內的 cells,擁有候選數 1 的 combinations 刪除。值得注意的是這例子同時也滿足 Naked 1,所以用 Naked 1 解釋也可;如圖(b)(c),存在 K=2 個互不重疊的 Cage,{ Γ_1 , Γ_2 } = A,存在 1 個 digit { D=1 } 一定會在 A 裡面,且存在另外 K=2 個互不重疊的 Cage,{ Γ_1 , Γ_2 } = B,A≠B,使得 D=1 只出現在 A∩B 的區域,根據定理三我們可把 B - A∩B 區域內的 cells,擁有候選數 1 的 combinations 刪除。

3.4 存在法(Existence method)

定理四:在一個 Cage Γ 中,對於每一個屬於 Γ 的 cell C,其 C.CB 中每一個 combination M (實際上也是個 digit) 必須存在於 Γ .CB 中所有組合裡的 digits。

存在法是以上述定理為基礎,若 C.CB 中的一個 digit,不存在於 Γ .CB 中之所有組合的 digits,則可刪除此 digit。例如圖 10,在一個 Cage Γ 的 Γ .CB 中不存在 digits = $\{9\}$,所以每一個屬於 Γ 的 cell Γ 必須刪除 combination $M=\{9\}$ 。

123	123	123	123 l
456	456	456	456 ¦
789	78 9	78 9	78 9

sum = 14

combs: 1238 1247 1256 1346 2345

圖 10: 存在法

3.5 鴿洞法(Pigeon-holed method)

定理五:在一個 Cage Γ 中,對於 Γ .CB 中的 combination M,存在少於 K 個 cells, $K \le |\Gamma|$,擁有 M 中的 K 個 digits。則必不存在此 combination M。

鴿洞法是以上述定理為基礎,若 Γ .CB 中的 combination M, Γ 內存在少於 K 個 cells, $K \le |\Gamma|$,擁有 M 中的 K 個 digits,則可刪除此 combination M。例如圖 11(a),在一個 Cage Γ 中,對於 Γ .CB 中的 combination $M = \{1238\}$,存在少於 K = 4 個 cells (只有 3 個), $K \le |\Gamma| = 4$,擁有 M 中的 K = 4 個 digits。則刪除 combination $M = \{1238\}$;如圖 11(b),在一個 Cage Γ 中,對於 Γ .CB 中的 combination $M = \{1238\}$,存在少於 K = 2 個 cells (只有 1 個), $K \le |\Gamma| = 2$,擁有 M 中的 K = 2 個 digits。則刪除 combination $M = \{1238\}$ 。同理可刪除 Γ .CB 中的 combinations = $\{1247, 1256\}$ 。

sum = 14

combs: 1238 1247 1256 1346 2345

(a)

3456	3456	3456	1234
78	78	78	5678

sum = 14

combs: 1238 1247 1256 1346 2345

(b)

圖 11: 鴿洞法

3.6 反向钨洞法(Reverse pigeon-holed method)

定理六:在一個 Cage 中存在 Cage Γ ,對於 Γ .CB 中的 combination M,使得其它擁有相同 digits 的 K 組 combination 必須填入多於 K 個的 Buckets,則必不存在此 combination M。

反向鴿洞法是以上述定理為基礎,若 Γ .CB 中的 combination M,使得其它擁有相同 digits 的 K 组 combination M。例如圖 12(a), Γ .CB 中的 combination M。例如圖 12(a), Γ .CB 中的 combination $M=\{14\}$ 使得 K=0 组 combination 必須填入 1>K=0 個的 Buckets B_1 ,則刪除此 combination $M=\{14\}$;如圖 12(b), Γ .CB 中的 combination $M=\{14\}$;使得 K=1 组 combination $M'=\{5\}$ 必須填入 2>K=1 個的 Buckets B_1 , B_2 ,則刪除此 combination $M=\{14\}$;如圖 12(c), Γ .CB 中的 combination $M=\{149\}$ 使得 K=1 组 combination $M'=\{25\}$ 必須填入 2>K=1 個的 Buckets B_1 , B_2 ,則刪除此 combination $M=\{149\}$ 。

圖 12: 反向鴿洞法

3.7 配對法(Pair match method)

定理七:在一個 Cage Γ 中',cell C_1 , C_2 , ..., C_K 屬於 Γ , $K = |\Gamma|$,對於一 C_i 中的 combination M_i ,在所有 C_j 中必須存在 combination M_j ' $1 \le i, j \le K$ ', $j \ne i$, 使得 M_i 和所有 M_j 可以組合成 Γ .CB 中的 combination M °

配對法是以上述定理為基礎,若有一個 combination M_i 找不到可以配對的 combination M_j 去組成 Γ .CB 中的 combination M ,則刪除此 combination M_i 。例如圖 13 ,在 $Cage\ \Gamma$ 中,cell C_2 中的 combination $M_2=\{5\}$,在 C_1 中不存在 combination $M_1=\{9\}$ 可以組合成 Γ .CB 中的 combination $M=\{59\}$,則我們可以刪除 cell C_2 中的 combination $M_2=\{5\}$ 。

圖 13: 配對法

3.8 45 規則法(45's rule method)

定理八:由一個到多個不重疊的 Sum- region (s)所 組合出的 Sum- region S_A ; 和另一(些)由一個到多個 不重疊的 Sum- region (s)所組合出的另一塊 Sum- region S_B ,且 SUM(S_A) \geq SUM(S_B),令(S_A - $S_A \cap S_B$) 為 R_A ,(S_B - $S_B \cap S_A$)為 R_B ,則 R_A - R_B = SUM(S_A) - SUM(S_B)。

45 規則法是以上述定理為基礎,由於一個 9 格大小的 Cage,其總和一定為 45 (1~9 加總),所以可利用這性質,計算出一些區塊間的總和關係。例如圖 14(a), $SUM(S_A) = 90 \ge SUM(S_B) = 85$,則 $(S_A-S_A\cap S_B)$ 即圖中黃色區塊, $(S_B-S_B\cap S_A)$ 即空集合,則黃色區塊-空集合 $=SUM(S_A) - SUM(S_B) = 90-85=5$;如圖 14(b), $SUM(S_A) = 45 \ge SUM(S_B) = 40$,則 $(S_A-S_A\cap S_B)$ 即圖中黃色區塊, $(S_B-S_B\cap S_A)$ 即圖中綠色區塊,則黃色區塊-綠色區塊= $SUM(S_A) - SUM(S_B) = 45 - 40 = 5$ 。

圖 14: 45 規則法

4. 結論

本章綜合研究結果,針對研究問題:(1)對於原數獨判斷方法,提出延伸並改良判斷方法,使之適用於的殺手數獨,(2)提出新的殺手數獨判斷方法,研究結果對於殺手數獨的判斷方法有了較完整的架構。本論文預計以本論文所提的方法,來設計資料結構及演算法,實作出一個殺手數獨的解題器(Solver)。

参考文獻

- [1] Huang, Y.-L., *The Study of Minimum Sudoku*, Master's thesis (in Chinese), Graduate Department of Compute Science, National Chiao Tung University, Taiwan, 2008
- [2] Daily Killer Sudoku, from http://www.dailykillersudoku.com/main/rules/
- [3] Hung-Hsuan Lin, I-Chen Wu, An Efficient Approach to Solving the Minimum Sudoku

- *Problem*, ICGA Journal (SCI), vol. 34(4), pp. 191-208, 2011.
- [4] Mailer G., A Guess-Free Sudoku Solver, Master's thesis, Graduate Department of Computer Science, The University of Sheffield, 2008
- [5] Delahaye, J.-P., *The Science Behind Sudoku*, Scientific American, Vol. 294(6), pp. 80–87, 2006
- [6] Felgenhauer, B., and Jarvis, F., Mathematics of Sudoku I, Math. Spectrum, Vol. 39, pp. 15–22, 2006
- [7] Fowler, G., Fowler's sudoku solver, 2007, from http://www2.research.att.com/~gsf/sudoku/sudoku. html.
- [8] Lin, H.-H., and Wu, I.-C., Solving the Minimum Sudoku Problem, International Conference on Technologies and Applications of Artificial Intelligence (TAAI 2010), Hsinchu, Taiwan, November, 2010
- [9] McGuire, G., Sudoku checker and the minimum number of clues problem, 2006, from http://www.math.ie/checker.html.
- [10] Graham Kendall, Andrew Parkes, Kristian Spoerer, A Survey Of NP-Complete Puzzles, ICGA, 2008