KING SAUD UNIVERSITY COLLEGE OF SCIENCES DEPARTMENT OF MATHEMATICS

MATH-244 (Linear Algebra); Final Exam; Semester 1 (1442 H)

Max. Marks: 40 Max. Time: 3 hours

Note: Attempt all the five questions!

Question 1 [3+2+3 marks]:

- a) If $A = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 0 & 3 \\ 2 & 1 & 3 \end{bmatrix}$, then find A^{-1} .
- b) Evaluate det(det(det(det(A) A2) A) A-1), where A is a square matrix of order 3 with det(A) = 3.
- c) Let $\begin{bmatrix} 1 & 0 & 2 & 0 & -3 \\ 0 & 1 & 5 & 0 & 2 \\ 0 & 0 & 0 & 1 & -2 \end{bmatrix}$ be reduced row echelon form of the augmented matrix of linear system AX = B. Explain! Why the system AX = C has a solution for any $C \in \mathbb{R}^3$?

Question 2 [5+3 marks]:

a) Find the values of α such that the following linear system:

$$x + y + z = 0$$

$$x + \alpha y + z = 1$$

$$x + y + (\alpha - 2)^2 z = 0$$

has:

- i) No solution;
- ii) Unique solution;
- iii) Infinitely many solutions.
- b) Let $v_1 = (1, 2, 0, 3, -1)$, $v_2 = (2, 4, 3, 0, 7)$, $v_3 = (1, 2, 2, 0, 9)$, $v_4 = (-2, -4, -2, -2, -3)$. Find a basis of the Euclidean space \mathbb{R}^5 which includes the vectors v_1, v_2, v_3, v_4 .

Question 3 [2+3+3 marks]:

- a) Let $\{x, y\}$ be linearly independent set of vectors in vector space V. Determine whether the set $\{2x, x + y\}$ is linearly independent or tot?

 b) Suppose G is a subspace of the Euclidean space \mathbb{R}^{15} of dimension S, $S = \{u, v, w\}$

and **Q** are two bases of the space **G** and
$$_{Q}P_{S} = \begin{bmatrix} 1 & 1 & 2 \\ 1 & 2 & -1 \\ 1 & -1 & 1 \end{bmatrix}$$
 be the transition matrix

from the basis S to the basis Q . Find $[g]_Q$ where g = 3v - 5u + 7w.

c) Let P_2 be the vector space of polynomials of degree ≤ 2 with the inner product: $\langle p, q \rangle = aa_1 + 2bb_1 + cc_1$ for all $p = a + bx + cx^2$, $q = a_1 + b_1x + c_1x^2 \in P_2$. Find $\cos \theta$, where θ is the angle between the polynomials $1 + x + x^2$ and $1 - x + 2x^2$.

Question 4 [3+1+4 marks]:

- a) Find an orthonormal basis for the subspace F = span(A) of Euclidean space \mathbb{R}^4 , where $A = \{x_1 = (1, 2, 3, 0), x_2 = (1, 2, 0, 0), x_3 = (1, 0, 0, 1)\}.$
- b) Let $S, T: \mathbb{R}^n \to \mathbb{R}^n$ be the linear transformations such that:

$$S(u) = T(u), S(v) = T(v) \text{ and } S(w) = T(w).$$

Show that S(x) = T(x) for all $x \in \text{span}(\{u, v, w\})$.

c) Let the linear transformation $\mathbf{T}: \mathbb{R}^2 \to \mathbb{R}^3$ be defined by:

$$T(x,y) = (x + 2y, x - y, 3x + y)$$

for all $v = (x, y) \in \mathbb{R}^2$. Find $[T]_B^C$, $[v]_B$ and $[T(v)]_C$, where $B = \{(1,-2), (2,3)\}$ and $C = \{(1,1,1), (2,1,-1), (3,1,2)\}$ are bases of \mathbb{R}^2 and \mathbb{R}^3 , respectively.

Question 5 [2×4 marks]:

Let
$$A = \begin{bmatrix} 2 & 0 & 1 \\ 0 & 1 & 0 \\ -3 & 0 & -2 \end{bmatrix}$$
. Then:

- i) Show that 1 and -1 are the eigenvalues of and find their algebraic and geometric multiplicities.
- ii) Find an invertible matrix P such that $P^{-1}AP$ is a diagonal matrix.
- iii) Show that A^{-1} exists and it is also diagonalizable.
- iv) Compute the matrix A^{2020} .