Hoeffding 補助定理

名前:松島完忠 学籍番号:t211d070 日付:7月2日

[演習 210] 一様分布に対する Hoeffding 補助定理

図 1 に a=-1,b=1 としたときの確率変数 $x\sim U(a,b)$ を考え、

 $t \in \{10^{-2.0}, 10^{-1.9} \dots, 10^{-0.1}, 10^{0}\}$ それぞれに対して、 $E[\exp(tx)]$ と $\exp(\frac{1}{8}t^{2}(b-a)^{2})$ の値をプロットしたものを示す。図 1より左辺は右辺より小さく、一様分布にたいしても Hoeffding 補助定理が成立していることが確認できる。

図 1:一様分布に対する Hoeffding 補助定理

[演習 220] 離散確率変数に対する Hoeffding 補助定理

図 1 に a=-1,b=1 としたときの確率変数 $x \in \{\pm 1\}$ を考え、

 $t \in \{10^{-2.0}, 10^{-1.9} \dots, 10^{-0.1}, 10^{0}\}$ それぞれに対して、 $E[\exp(tx)]$ と $\exp(\frac{1}{8}t^{2}(b-a)^{2})$ の値をプロットしたものを示す。図 2 より左辺は右辺より小さく、離散確率変数に対しても Hoeffding 補助定理が成立していることが確認できる。

図 2:離散確率変数に対する Hoeffding 補助定理

作成したプログラム

演習 210、演習 220 で作成したプログラムを図 3、図 4 に示す。 なお python を用いてコーディングを行った。

1	import numpy as np
2	import matplotlib.pyplot as plt
3	import scipy.stats as norm
4	import matplotlib.ticker as ticker
5	import math
6	
7	
8	def p(N, e, t, a, b):
9	n=N
10	S=[]
11	E=[]
12	ecount=0
13	Ebar = []
14	std = 0
15	
16	while True:
17	for i in range(5):
18	S=np.random.uniform(a,b,n)
19	sum=0.0
20	for x in S:
21	sum = sum + math.exp(t*x)
22	
23	E. append(float(sum)/float(n))
24	else:

25	std = np. std(E)
26	if(std <e):< th=""></e):<>
27	break
28	else:
29	n=n*10
30	E. clear ()
31	ecount=ecount+1
32	continue
33	
34	return np. average(E)
35	
36	a=-1
37	b=1
38	t=-2.0
39	N = 10
40	X=[]
41	RHS=[]
42	LHS=[]
43	
44	while t <=0:
45	e = 10.0**(-3)*(10**t)
46	X. append (math. log10 (10**t))
47	LHS. append (math. log10 (p (N, e, 10**(t), a, b)))
48	temp = ((10**t)*(10**t)*(b-a)*(b-a))/8.0

49	RHS. append (math. log10 (math. exp(temp)))
50	t=t+0. 1
51	
52	fig = plt.figure()
53	ax=fig. add_subplot(111, xlabel='log10(x)', ylabel='log10ofLHSandRHS')
54	plt.plot(X, LHS, color="red", marker="o", label="LHS")
55	plt.plot(X, RHS, marker="o", label="RHS")
56	ax. legend()

図 3:演習 210 で作成したプログラム

1	import numpy as np
2	import matplotlib.pyplot as plt
3	import scipy.stats
4	import matplotlib.ticker as ticker
5	import math
6	
7	
8	def p(N, e, t, a, b):
9	n=N
10	E=[]
11	ecount=0
12	std = 0
13	
14	while True:

15	for i in range(5):
16	S=np.random.uniform(a,b,n)
17	sum=0.0
18	for x in S:
19	if x<0.0:
20	sum = sum+math.exp(-t)
21	else:
22	sum = sum+math.exp(t)
23	
24	
25	E. append (float (sum) / float (n))
26	
27	else:
28	std = np. std(E)
29	if(std <e):< td=""></e):<>
30	break
31	else:
32	E. clear ()
33	n=n*10
34	continue
35	
36	return np. average(E)
37	
38	a=-1

```
39
     b=1
     t=-2.0
40
41
     N = 10
     X=[]
42
43
     RHS=[]
44
     LHS=[]
45
46
     while t \le 0:
47
          e = (10.0**(-3))*(10**t)
48
          X. append (math. log10 (10**t))
49
          tm=p(N, e, 10**t, a, b)
50
          LHS. append (math. log10 (tm))
51
          temp = ((10**t)*(10**t)*(b-a)*(b-a))/8.0
52
          RHS. append (math. log10 (math. exp(temp)))
53
          t=t+0.1
54
     fig = plt.figure()
55
56
     ax=fig. add\_subplot(111, xlabel='log10(x)', ylabel='log10ofLHSandRHS')
     plt.plot(X, LHS, color="red", marker="o", label="LHS")
57
     plt.plot(X, RHS, marker="o", label="RHS")
58
59
     ax. legend()
```

図 4:演習 220 で作成したプログラム