Circuito R

 $u = U_0 \operatorname{sen} \omega t$; $i = I_0 \operatorname{Sen}(\omega t)$

Circuito L

$$u = U_0 \operatorname{sen} \omega t$$
; $i = I_0 \operatorname{Sen}(\omega t - \frac{\pi}{2})$

Circuito C

$$u = U_0 \operatorname{sen} \omega t$$
; $i = I_0 \operatorname{Sen}(\omega t + \frac{\pi}{2})$

Circuito RL

$$\begin{aligned} \mathbf{u} &= \mathbf{U}_0 \operatorname{sen} \omega t \,; \quad \mathbf{i} &= \mathbf{I}_0 \operatorname{Sen} (\omega t - \frac{\pi}{2}); \quad V_R = R \cdot I \,; \quad V_L = X_L \cdot I \,; \\ \vec{V}_T &= \vec{V}_R + \vec{V}_L \,; \quad \varphi = \operatorname{arc.} \tan g \, \frac{X}{R} \end{aligned}$$

Circuito RC

 $u = U_0 \operatorname{sen} \omega t; \quad i = I_0 \operatorname{Sen}(\omega t + \frac{\pi}{2});$

$$V_{\scriptscriptstyle R} = R \cdot I$$
; $V_{\scriptscriptstyle c} = X_{\scriptscriptstyle c} \cdot I$; $\vec{V}_{\scriptscriptstyle T} = \vec{V}_{\scriptscriptstyle R} + \vec{V}_{\scriptscriptstyle c}$; $\varphi = arc. \tan g \frac{X}{R}$

Circuito RLC

Circuito Paralelo RC

Circuito Paralelo RL

Circuito Paralelo RLC

