Confidence intervals for a parameter with an upper or lower bound

Joshua N. Pritikin

Virginia Institute for Psychiatric and Behavioral Genetics Virginia Commonwealth University

 $08~{\rm Dec}~2016$

Acknowledgment

This research was aided by

- ▶ Mike Neale & Lance Rappaport
- ► Hao Wu (Boston College)
- ► OpenMx development team
- ▶ National Institute of Health R01-DA018673 (PI Neale)

Bayes' rule

$$P(A|B) \cdot P(B) = P(A \cap B) = P(B|A) \cdot P(A)$$

4 D > 4 B > 4 B > 4 B

Maximum likelihood

Let θ be a column vector of model parameters.

$$\Pr(\theta|data) = \frac{\Pr(data|\theta)\Pr(\theta)}{\Pr(data)} \tag{1}$$

$$\Pr(\theta|data) \propto \Pr(data|\theta) \Pr(\theta)$$
 (2)

$$\Pr(\theta|data) \propto \Pr(data|\theta)$$
 (3)

Inferential test

Ingredients:

- ► False positive rate
- ► Test statistic
- ► Test distribution

Example:

- ▶ False positive rate: $\alpha = .05$
- ► Test statistic: t
- ▶ Test distribution: Student's t with df = 10

Inferential test

Ingredients:

- ► False positive rate
- ► Test statistic
- ► Test distribution

Example:

- ▶ False positive rate: $\alpha = .05$
- ► Test statistic: t
- ▶ Test distribution: Student's t with df = 10

Wald-based Confidence interval (CI)

t similar to z

$$t\approx z\equiv\frac{\theta-\mu}{\mathrm{SE}_{\theta}}$$

- ▶ Symmetric by assumption
- ► Accuracy depends on parameterization

Wilk's likelihood ratio test

For

- ightharpoonup likelihood L
- \triangleright parameter θ
- ightharpoonup maximum likelihood point $\hat{\theta}$

and under certain regularity conditions¹,

$$(-2\log L(\theta)) - (-2\log L(\hat{\theta})) \xrightarrow{d} \chi_1^2.$$

Asymmetric example

Estimate correlation ρ

$$\begin{bmatrix} 1.00 & \rho \\ \rho & 1.00 \end{bmatrix}$$

when data are generated with covariance matrix

$$\begin{bmatrix} 1.00 & 0.90 \\ 0.90 & 1.00 \end{bmatrix}$$

An asymmetric example

Two kinds of parameter boundaries

- natural

 a boundary beyond which the model distribution is invalid or degenerate
- ► attainable separates the interpretable part of a distribution from the uninterpretable part

A natural boundary

Estimate correlation ρ

$$\begin{bmatrix} 1.00 & \rho \\ \rho & 1.00 \end{bmatrix}$$

 ρ has natural boundaries at ± 1

Latent growth curve model

An attainable bound

- \bullet σ_{slone}^2 has a natural lower bound near -0.1
- $\sigma_{slope}^2 \leq 0$ is uninterpretable
- ▶ We place an attainable lower bound at 0

Wu and Neale (2012) described how to correct the CI for an attainable bound.

Adjusted CI

Some notation

- $\xi = (\theta, \zeta)'$
- $\blacktriangleright f(\xi)$
- ξ
- $ightharpoonup z_a$
- $\lambda \chi^2(1-a,1) = z_a^2$

Estimation choices

- ► Geometry
 - ► Cone
 - ► Ring
- ▶ Optimization Form
 - Constrained
 - Unconstrained
- ▶ OpenMx Optimizer Engine
 - ► NPSOL
 - ► CSOLNP
 - ► SLSQP

Geometry

$$\underset{\theta}{\operatorname{arg\,min}} f(\xi) \quad \text{subject to } f(\hat{\xi}) + z_{0.5\alpha}^2 = f(\xi) \tag{4}$$

$$\underset{\theta}{\arg\min} \, f(\xi) \quad \text{subject to} \, \, f(\hat{\xi}) + z_{0.5\alpha}^2 > f(\xi) \tag{5} \label{eq:5}$$

Optimization

Constrained (as on previous slide):

$$\underset{\theta}{\arg\min} f(\xi) \quad \text{subject to } f(\hat{\xi}) + z_{0.5\alpha}^2 = f(\xi) \tag{6}$$

$$\underset{\theta}{\arg\min} f(\xi) \quad \text{subject to } f(\hat{\xi}) + z_{0.5\alpha}^2 > f(\xi) \tag{7}$$

Unconstrained minimization:

$$\theta + \left[f(\hat{\xi}) + z_{0.5\alpha}^2 - f(\xi) \right]^2 \tag{8}$$

$$\theta + \max\left[0, f(\hat{\xi}) + z_{0.5\alpha}^2 - f(\xi)\right] \tag{9}$$

Identification

Compare with Wald SE $\,$

Diagnostics

summary(model, verbose=TRUE)

- mxCheckIdentification
- ▶ mxTryHard

Next: bound adjusted CIs

So far, these slides apply to ordinary likelihood-based CI.

Change of reference

More notation

- $\blacktriangleright \xi = (\theta, \zeta)'$
- $\blacktriangleright f(\xi)$
- $ightharpoonup z_a$
- $\lambda \chi^2(1-a,1)=z_a^2$
- \triangleright $\theta_b, \theta_F, \theta_N$
- $\epsilon > 0$

Algorithm tour by color

6 Cases

Far limit θ_F

If $|\hat{\theta} - \theta_b| > \epsilon$ then the parameter bound θ_b is irrelevant.

Far limit θ_F

Far limit θ_F

$$\underset{\pm \theta}{\arg \min} f(\xi) \quad \text{subject to:} \tag{10}$$

$$d_1 < z_{0.5\alpha} \tag{11}$$

$$d_2 < z_{0.5\alpha} \tag{12}$$

$$\log \left[\Phi(d_1) + \Phi(d_2)\right] > \log(\alpha) \tag{13}$$

where

$$d_1 \equiv \sqrt{\max\left[f(\xi) - f(\hat{\xi}), 0\right]}$$
(14)

$$d_2 \equiv \sqrt{\max\left[f(\xi) - f(\hat{\xi}_{obs}), 0\right]}$$
 (15)

Far limit θ_F

Near limit θ_N

If $|\hat{\theta} - \theta_b| < \epsilon$ then the parameter bound θ_b is irrelevant.

Near limit θ_N

Let
$$d_0 \equiv \sqrt{f(\hat{\xi}_b) - f(\hat{\xi})}$$

Near limit θ_N

If $d_0 < z_{\alpha}$ then set θ_N to θ_b .

Near limit θ_N

If $z_{0.5\alpha} \leq \frac{d_0}{2}$ then the attainable bound is irrelevant.

etro **Method** Simulation Example References

Near limit θ_N

Let $d_L \equiv \max(\frac{d_0}{2}, z_{\alpha})$ and $d_U \equiv \min(d_0, z_{0.5\alpha})$.

$$\underset{+\theta}{\arg\min} f(\xi) \quad \text{subject to:} \tag{16}$$

$$d_L < d < d_U \tag{17}$$

$$\log(\alpha) < \log\left(\Phi(d) + \Phi\left[\frac{d_0 - d}{2} + \frac{d^2}{2\max(d_0 - d, 10^{-3}d^2)}\right]\right)$$
 (18)

where

$$d \equiv \sqrt{\max\left[f(\xi) - f(\hat{\xi}), 0\right]}$$
(19)

ntro **Method** Simulation Example References

Near limit θ_N

Method Simulation Example References

OpenMx user interface

Simply set an attainable bound

mxBounds(vars, min=0.0, max=NA)

Easy.

etro **Method** Simulation Example References

Maximum likelihood resembles a rainbow

Latent growth curve model

Method Simulation Example References

Conditions

- ▶ 3 parameters
- ▶ False positive rate $\alpha = .05$
- ▶ 25k replications per $bound \times \sigma_{slope}^2$ condition

Simulation results

Percentage of replications that σ_{slope}^2 was outside of the CI.

	σ_{slope}^2	lower	upper	total
unadjusted	0.0 0.3 0.6	2.364 2.248 2.244	2.840 2.672 2.696	5.204 4.920 4.940
adjusted	0.0 0.3 0.6	4.780 2.248 2.244	0.000 2.672 2.696	4.780 4.920 4.940

Total should be equal to false positive rate $\alpha = .05$.

Íntro Method **Simulation** Example References

Yeah!

Multilevel Confirmatory Factor Analysis

Method Simulation **Example** References

Results

Variable	Lower		Estimate	Upper	
	Estimate	Fit	<u> Listiniare</u>	Estimate	Fit
Unbounded σ_{RI}^2 cor_{PA-NA} Bounded	$0.07^{\dagger} \\ -17.23^{\dagger}$	32470.3 32550.71	$0.09 \\ -0.53$	$0.17 \\ -0.34$	32472.59 32472.59
σ_{RI}^2 cor_{PA-NA}	$0.01 \\ -0.73$	32471.45 32472.59	$0.09 \\ -0.53$	$\begin{array}{c} 0.17 \\ -0.34^{\dagger\dagger} \end{array}$	32472.59 32472.59

Note. † non-linear constraints were not satisfied during optimization. The optimizer might have converged to a satisfactory solution if given more time. †† At the upper bound of cor_{PA-NA} , σ_{RI}^2 was at its lower bound of 0.

OpenMx is a free and open source extension to the R statistical environment.

Software and support available at http://openmx.ssri.psu.edu/

Questions?

Steiger, J. H., Shapiro, A., & Browne, M. W. (1985). On the multivariate asymptotic distribution of sequential chi-square statistics. Psychometrika, 50(3), 253-263.

Wu, H., & Neale, M. C. (2012). Adjusted confidence intervals for a bounded parameter. Behavior genetics, 42(6), 886–898.

