Exercice 1 – Soit $p \ge 5$ un nombre premier et soit q une puissance de p. Soit E une courbe elliptique définie sur \mathbb{F}_q . Soit m un entier strictement positif. On note E[m] l'ensemble des points P de la courbe E qui vérifient [m]P = 0.

- 1) Donner un exemple de courbe sur \mathbb{F}_7 telle que E[2] contient au moins deux points.
- 2) On s'intéresse à présent au cas particulier m=p. Regardons la courbe E définie sur \mathbb{F}_{19} par l'équation affine $y^2=x^3+x$. Calculer $\operatorname{Card}(E(\mathbb{F}_{19}))$. Calculer $\operatorname{Card}(E[19])$.

Lorsqu'une courbe E définie sur \mathbb{F}_p vérifie $\operatorname{Card}(E(\mathbb{F}_p)) = p+1$, on dit que c'est une courbe **supersingulière** en p.

Exercice 2 – On étudie dans cet exercice la notion de courbe anormale. Soit p un nombre premier. Une courbe elliptique E définie sur \mathbb{F}_p est dite anormale en p si elle vérifie $\operatorname{Card}(E(\mathbb{F}_p)) = p$.

- 1) Quelle est la structure d'un groupe de cardinal p? Que peut-on en déduire pour $E(\mathbb{F}_p)$?
- 2) Donner un exemple de courbe anormale pour p=23.

Exercice 3 – On se propose dans cet exercice de calculer quelques logarithmes discrets.

1) Réviser les fonctions znlog, fflog. Terminer l'implémentation d'un calcul de log-discret sur une courbe elliptique (méthode de Pollard par exemple) et le tester sur des exemples sur $E(\mathbb{F}_{11^5})$.