DESCRIPTION

The AM8205 uses advanced trench technology to provide excellent RDS(ON), low gate charge and operation with gate voltages as low as 2.5V. This device is suitable for use as a Battery protection or in other Switching application.

AM8205 is available in a TSSOP8 and SOT-26 packages.

ORDERING INFORMATION

Package Type	Part Number		
TSSOP8	TMX8	AM8205TMX8R	
		AM8205TMX8VR	
SOT-26	E6	AM8205E6R	
		AM8205E6VR	
Nata	V: Halogen free Package		
Note	R: Tape & Reel		
AiT provides all RoHS products			

Suffix "V" means Halogen free Package

FEATURES

- V_{DS}= 20V, I_D= 6A $R_{DS(ON)}$ < 22m Ω @ V_{GS} = 4.5V
 - $R_{DS(ON)}$ < 27m Ω @ V_{GS} = 2.5V
- High Power and current handing capability
- Lead free product is acquired
- Surface Mount Package
- Available in a TSSOP8 and SOT-26 packages.

APPLICATION

- **Battery protection**
- Load switch
- Power management

PIN DESCRIPTION

Schematic diagram

PIN DESCRIPTION

ABSOLUTE MAXIMUM RATINGS

T_A = 25°C, unless otherwise noted

;;	
V _{DS} , Drain-Source Voltage	20V
V _{GS} , Gate-Source Voltage	±12V
I _D , Drain Current-Continuous	6A
I _{DM} , Drain Current-Pulsed NOTE1	25A
P _D , Maximum Power Dissipation	1.5W
T _J ,T _{STG} , Operating Junction and Storage Temperature Range	-55°C~150°C

Stress beyond above listed "Absolute Maximum Ratings" may lead permanent damage to the device. These are stress ratings only and operations of the device at these or any other conditions beyond those indicated in the operational sections of the specifications are not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

THERMAL CHARACTERISTICS

Parameter	Symbol	Limit	Units
Thermal Resistance, Junction-to-Ambient NOTE2	Reja	83	°C/W

ELECTRICAL CHARACTERISTICS

 $T_A = 25$ °C, unless otherwise noted

Parameter	Symbol	Conditions	Min	Тур.	Max	Units
Off Characteristics						
Drain-Source Breakdown Voltage	BV _{DSS}	V _{GS} =0V,I _D =250μA	20	ı	-	V
Zero Gate Voltage Drain Current	IDSS	V _{DS} =20V,V _{GS} =0V	-	-	1	μΑ
Gate-Body Leakage Current	Igss	V _{GS} =±12V, V _{DS} =0V	-	-	±100	nA
On Characteristics NOTE3						
Gate Threshold Voltage	$V_{GS(th)}$	V _{DS} =V _{GS} ,I _D =250μA	0.5	0.7	1.2	V
5 . 6 . 6	Б	V _{GS} =4.5V,I _D =4.5A	-	16	22	mΩ
Drain-Source On-state Resistance	R _{DS(ON)}	V _{GS} =2.5V,I _D =3.5A	-	19	27	
Forward Transconductance	g FS	V _{DS} =5V,I _D =4.5A	-	10	-	S
Dynamic CharacteristicsNOTE4						
Input Capacitance	Ciss	101/11/101/	-	900	-	
Output Capacitance	Coss	V _{DS} =10V, V _{GS} =0V, F=1.0MHz	-	220	-	pF
Reverse Transfer Capacitance	Crss		-	100	-	
Switching Characteristics NOTE4						
Turn-on Delay Time	$t_{D(ON)}$		-	10	20	
Turn-on Rise Time	t R	V _{DD} =10V, I _D =1A,	-	11	25	no
Turn-off Delay Time	t _{D(OFF)}	V_{GS} =4.5V, R_{GEN} =6 Ω	-	35	70	ns
Turn-off Fall Time	t₅		-	30	60	
Total Gate Charge	Q _G	\/=10\/	-	12	15	
Gate-Source Charge	Q_GS	V _{DS} =10V, I _D =6A , V _{GS} =4.5V	-	2.3	-	nC
Gate-Drain Charge	Q_{GD}		-	1	-	
Drain-Source Diode Characteristics	1					
Diode Forward Voltage NOTE3	V_{SD}	V _{GS} =0V, I _S =1.7A	-	0.75	1.2	V
Diode Forward Current NOTE2	Is		-	-	1.7	Α

NOTE1: Repetitive Rating: Pulse width limited by maximum junction temperature.

NOTE2: Surface Mounted on FR4 Board, $t \le 10$ sec.

NOTE3: Pulse Test: Pulse Width ≤ 300µs, Duty Cycle ≤ 2%.

NOTE4: Guaranteed by design, not subject to production

TYPICAL CHARACTERISTICS

1. Power Dissipation

3. Output Characteristics

5. Transfer Characteristics

2. Drain Current

4. Drain-Source On-Resistance

6. Drain-Source On-Resistance

RDSON VS. VGS

Vgs Gate-Source Voltage (V)

Gate Charge

11. Safe Operation Area

8. Capacitance vs. VDS

Vds Drain-Source Voltage (V)

10. Source- Drain Diode Forward

Vsd Source-Drain Voltage (V)

12. Normalized Maximum Transient Thermal Impedance

Square Wave Pluse Duration(sec)

DETAILED INFORMATION

1. Switching Test Circuit

2. Switching Waveforms

PACKAGE INFORMATION

Dimension in TSSOP8 (Unit: mm)

Symbol	Min	Max	
D	2.900	3.100	
E	4.300	4.500	
b	0.190	0.300	
С	0.090	0.200	
E1	6.250	6.550	
Α	-	1.100	
A2	0.800	1.000	
A1	0.020	0.150	
е	0.650(BSC)		
L	0.500	0.700	
Н	0.250(TYP)		
θ	1°	7°	

Dimension in SOT-26(Unit: mm)

Symbol	Min	Max	
Α	1.050	1.250	
A1	0.000	0.100	
A2	1.050	1.150	
b	0.300	0.500	
С	0.100	0.200	
D	2.820	3.020	
Е	1.500	1.700	
E1	2.650	2.950	
е	0.950(BSC)		
E1	1.800	2.000	
L	0.300	0.600	
θ	0°	8°	

IMPORTANT NOTICE

AiT Semiconductor Inc. (AiT) reserves the right to make changes to any its product, specifications, to discontinue any integrated circuit product or service without notice, and advises its customers to obtain the latest version of relevant information to verify, before placing orders, that the information being relied on is current.

AiT Semiconductor Inc.'s integrated circuit products are not designed, intended, authorized, or warranted to be suitable for use in life support applications, devices or systems or other critical applications. Use of AiT products in such applications is understood to be fully at the risk of the customer. As used herein may involve potential risks of death, personal injury, or servere property, or environmental damage. In order to minimize risks associated with the customer's applications, the customer should provide adequate design and operating safeguards.

AiT Semiconductor Inc. assumes to no liability to customer product design or application support. AiT warrants the performance of its products of the specifications applicable at the time of sale.