ChiMie L'oxydo-réduction. Le cours

Une réaction d'oxydoréduction est un échange d'électrons.

1. Etude de l'action de l'acide chlorhydrique sur le zinc.

L'équation de la transformation est :

$$2 H^{+} + Zn \rightarrow Zn^{2+} + H_{2}$$

Les 2 ions H⁺ ont gagnés 2 électrons; H⁺ est un oxydant

Le métal zinc a perdu 2 électrons; Zn est un réducteur

Un oxydant est une espèce susceptible de capter au moins un électron.

Un réducteur est une espèce susceptible de perdre au moins un électron.

2. Le couple oxydant/réducteur.

L'ion H⁺ est susceptible de gagner un électron, c'est un oxydant. Il devient du dihydrogène qui est susceptible de perdre deux électrons, c'est un un réducteur.

On obtient un couple oxydant / réducteur : H⁺ / H₂

Le métal zinc est un réducteur (il perd 2 électrons) et devient l'ion zinc (un oxydant) : Zn / Zn²⁺

3. Le couple rédox et sa demi-équation rédox.

On peut écrire un schéma formel noté demi-équation rédox : 2 H⁺ + 2e = H₂

Une oxydation correspond à une perte d'électrons : un réducteur est oxydé, subit une oxydation.

Une réduction est un gain d'électrons : un oxydant est réduit, subit une réduction.

Des couples à connaitre :

Couple	Nom de l'oxydant	Nom du réducteur	Demi Équation
$\mathbf{H}^{+}_{(\mathrm{aq})}/\mathbf{H}_{2(\mathbf{g})}$	Ion H ⁺ (aqueux)	Dihydrogène	$2\mathbf{H}^{+}_{(aq)} + 2\mathbf{e}^{-} = \mathbf{H}_{2(g)}$
M ⁿ⁺ (aq)/M(s)	Cation métallique	métal	$\mathbf{M}^{n^{+}}_{(aq)} + \mathbf{n} \ \mathbf{e}^{-} = \mathbf{M}_{(s)}$
Fe ³⁺ (aq)/Fe ²⁺ (aq)	Ion fer (III)	Ion fer (II)	$Fe^{3+}_{(aq)} + 1e^{-} = Fe^{2+}_{(aq)}$
MnO _{4 (aq)} /Mn ²⁺ (aq)	Ion permanganate violet	Ion manganèse (II) incolore	$MnO_{4(aq)} + 8H^{+} + 5e^{-} = Mn^{2+}_{(aq)} + 4H_{2}O$
$I_{2(aq)}/I_{(aq)}$	diiode	Ion iodure	$I_{2(aq)} + 2 e^{-} = 2I_{(aq)}^{-}$
$S_4O_6^{2-}(aq)/S_2O_3^{2-}(aq)$	Ion tétrathionate	Ion thiosulfate	$S_4O_6^{2-}_{(aq)} + 2 e^- = 2 S_2O_3^{2-}_{(aq)}$

ChiMie L'oxydo-réduction. Le cours

4. Des demi-équations rédox à l'équation d'oxydoréduction.

Expérience : Fe^{3+}/Fe^{2+} : $Fe^{3+}+e=Fe^{2+}$

 $I_2(aq) / I^-$: 2I- = $I_2 + 2e$

 $2 I^{-} + Fe^{3+} \rightarrow I_2 + Fe^{2+}$

Une réaction d'oxydoréduction correspond à un transfert d'électrons entre un oxydant d'un couple rédox 1 et un réducteur d'un couple rédox 2.

Il faut donc combiner la demi-équation rédox du couple 1 avec la demi-équation rédox du couple 2 afin d'éliminer les électrons.

Méthode d'écriture des demi-équations électroniques :

- a. Oxydant + e- = réducteur
- b. Equilibrer tous les atomes autres que O et H.
- c. Equilibrer les O en ajoutant des molécules d'eau.
- d. Equilibrer les H en ajoutant des protons H+.
- e. Compléter le nombre d'électrons pour respecter les charges électriques.

Méthode pour écrire les réactions d'oxydoréduction :

a. On écrit les deux demi équations :

réducteur 1 = oxydant 1 + n₁ é

oxydant 2 + n₂ é = réducteur 2

b. On s'arrange pour avoir le même nombre d'électrons transférés dans les deux équations ; pour cela, on multiplie par n2 la première et par n1 la seconde :

n2 * réducteur 1 = **n2** * oxydant 1 + **n2** * n1 é

n1 * oxydant 2 + **n**1 * n2 é = **n**1 * réducteur 2

c. On additionne alors les deux demi équations, les électrons n'apparaissent plus :

 n_1 * oxydant 2 + n_2 * réducteur 1 \rightarrow n_2 * oxydant 1 + n_1 * réducteur 2