## Structural bioinformatics

Practice 6: Protein-protein docking

Course 2021-2022

Docking consists on exploring the conformational space of two interacting proteins

Ligand



Docking consists on exploring the conformational space of two interacting proteins

Ligand



Docking consists on exploring the conformational space of two interacting proteins

Ligand



Docking programs generate lots of possible conformations for the interaction under study

Ligand

Each of these docking conformations is called a docking pose



Docking programs generate lots of possible conformations for the interaction under study

Rigid body docking

Flexible docking





Docking programs can explore the conformational space of the interaction with different levels of depth

Non exhaustive







How can I know what is the right docking pose?



How can I know what:

But is not that easy...

- Electrostatics
- Solvatation

# Step 1: Use pydock to reconstruct the interaction between RhoGAP and RAB1A



**Step 2:** Use pydock knowing that <u>arginine 279</u> from RhoGAP is interacting with <u>threonine 129</u> from RAB1A















# iFrag represents its results as a heatmap where each axis represents the amino acid sequence



**Step 3:** Use the results of iFrag to select amino acids that should be included in the interacting interface and execute pydock



This is what we did on practical 3: reconstructing protein interactions using superimposition



This is what we did on practical 3: reconstructing protein interactions using superimposition



Ab initio docking

**Template guided docking** 

Not very reliable

Very reliable

Can be applied to any pair of proteins

Can only applied to protein interactions wih available templates

Is there an easy way to find structural templates for protein-protein interactions???

### 3did is a database for interacting protein domains



The database of three-dimensional interacting domains (3did) is a collection of high-resolution three-dimensional structural templates for domain-domain interactions. It contains templates for interactions between two globular domains as well as novel domain-peptide interactions, derived using a recently published method from our lab.

Start by searching a domain or a motif in the search box below. If you need help visit our help page to discover how to get started. The complete contents of the database are also available for download.



Upload the sequences of the proteins we are working with to the cluster and find what are their domains

hmmscan /shared/databases/pfam-3/Pfam-A.hmm 1f7cA.fa > 1f7cA.out

hmmscan /shared/databases/pfam-3/Pfam-A.hmm 4fmdF.fa > 4fmdF.out

#### Search the RhoGAP domain in the 3did database



## Here you have the page for the interaction between RhoGAP and RAS domains



DDI interaction between RhoGAP and Ras

5c2j B-A



### Check out the available templates for this interaction





| PDB ID        | Chain1 | Residues | Chain2 | Residues  | Score | Z-score | Topology | 3did | Visualization |
|---------------|--------|----------|--------|-----------|-------|---------|----------|------|---------------|
| 5c2j <b>₫</b> | В      | 5-178    | Α      | 363-511   | 13.24 | 5.92556 | 0:0      | View | Jmol          |
| 5c2k ₫        | Α      | 7-180    | Α      | 225-373   | 12.39 | 5.51575 | 0:0      | View | Jmol          |
| 5hpy ₫        | В      | 7-180    | Α      | 213-367   | 13.48 | 5.85199 | 0:0      | View | Jmol          |
| 5hpy ₫        | F      | 7-180    | Α      | 213-367   | 3.82  | 3.79582 | 2:3      | View | Jmol          |
| 5hpy ₫        | F      | 7-180    | D      | 213-366   | 13.42 | 5.69934 | 0:0      | View | Jmol          |
| 5irc ₫        | D      | 7-180    | В      | 1262-1414 | 16.05 | 6.10425 | 0:0      | View | Jmol          |
| 5irc ₫        | F      | 7-180    | Α      | 1262-1414 | 17.48 | 6.41067 | 0:0      | View | Jmol          |
| 5irc ₫        | F      | 7-180    | В      | 1262-1414 | 1.56  | 2.24966 | 1:2      | View | Jmol          |
| 5jcp ₫        | Α      | 7-180    | Α      | 920-1073  | 7.84  | 5.06104 | 0:0      | View | Jmol          |
| 5jcp <b>₫</b> | Α      | 7-180    | В      | 920-1073  | 1.53  | 1.77614 | 1:3      | View | Jmol          |

### How do you imagine the cytoplasm of one cell?





### How do you imagine the cytoplasm of one cell?





How is it possible that proteins know what are the proteins they have to interact with?







One theory states that non-native conformations also contribute to the stablishment of the interaction

Non-native conformation





Similarly to the process of protein folding, the process of finding a native conformation can be represented as a funnel of energy



Similarly to the process of protein folding, the process of finding a native conformation can be represented as a funnel of energy

