Problem

A winery wanted to find out whether people preferred red, white or rosé wines. They invited 12 people to taste one red, one white and one rose' wine with the order of tasting chosen at random and a suitable interval between tastings. Each person was asked to evaluate each wine with the scores tabulated in the table.

Subject	1	2	3	4	5	6	7	8	9	10	11	12
White	10	8	7	9	7	4	5	6	5	10	4	7
Red	7	5	8	6	5	7	9	6	4	6	7	3
Rose	8	5	6	4	7	5	3	7	6	4	4	3

Test the hypothesis that there is no significant difference between the three types of wines.

Solution

Step 1: Null and Alternative hypothesis

Block = Subjects

Condition = Types of wine

No. of blocks (n) = 12

No. of condition/treatment (k) = 3

Let M_1 , M_2 , and M_3 be the median scores given by subjects for white, red and rose wine respectively.

 H_0 : M1 = M2 = M3 (There is no significant diff. in the median scores given by subjects for three different wines i.e., all three wines are preferred the same.

H₁: median score of one wine different from median score of at least one other wine

(Three wines are preferred differently)

Step 2: level of significance

The level of significance chosen for the test = 5 %

Step 3: Test statistic

Since n = 12 and k = 3, we consider it as a small sample case

We find the test statistic using following steps

Step 1: rank the scores in each row (block). We assign a rank of 1 to the lowest score, 2 to next lowest value and so on. In case of tied scores, we assign the average rank to each tied score.

Step 2: find the rank sum of each column/condition

The appropriated test statistic is given by,

$$F_r = \frac{12}{n \cdot k(k+1)} \sum_{i=1}^k R_i^2 - 3n(k+1)$$

where,

n = number of rows

k = number of columns

 R_i = sum of ranks for the ith treatment/condition

Fr has chi-square distribution with k-1 degrees of freedom (large sample case)

Step 4: Calculated Fr

Subject	Types of wine						
	White	Red	Rose				
1	10 (3)	7(1)	8(2)				
2	8 (3)	5 (1.5)	5(1.5)				
3	7(2)	8(3)	6(1)				
4	9(3)	6(2)	4(1)				
5	7(2.5)	5(1)	7(2.5)				
6	4(1)	7(3)	5(2)				
7	5(2)	9(3)	3(1)				
8	6(1.5)	6(1.5)	7(3)				
9	5(2)	4(1)	6(3)				
10	10(3)	6(2)	4(1)				
11	4(1.5)	7(3)	4(1.5)				
12	7(3)	3(1.5)	3(1.5)				
Total	$R_1 = 27.5$	$R_2 = 23.5$	R ₃ = 21				
Av. Rank	\overline{R}_1 = 2.29	\overline{R}_2 = 1.95	\overline{R}_3 = 1.75				

Now,

$$F_r = \frac{12}{n \cdot k(k+1)} \sum_{i=1}^k R_i^2 - 3n(k+1)$$

$$= \frac{12}{12x3x(3+1)} \left\{ 27.5^2 + 23.5^2 + 21^2 \right\} - 3x12x(3+1)$$

$$= 1.7916$$

Step 5: Critical F

Critical value of F i.e. $F_{r(0.05)}(12,3) = 6.5$

AR: Fr < 6.5

RR: Fr ≥ 6.5

Using chi-square distribution (approximate distribution of Fr)

Critical chi-square i.e. $\chi^{2}_{0.05}(2) = 5.991$

Step 6: Statistical Decision

Since cal Fr = 1.79 < Critical F = 6.5, we do not reject H₀ at 5 % level of significance.

Step 7: Conclusion

The three brands of wine are equally preferred.