范式和基本定理

School of Computer Wuhan University

- 1 命题逻辑
 - 命题
 - 符号化
 - 合式公式的形式文法
 - 合式公式的形式语义
- ② 公式之间的关系
 - 公式的语义性质
 - 逻辑等价
 - 永真蕴涵关系
 - 恒等变换与不等变换
 - 对偶性
- 3 范式和基本定理
 - 极大项
 - 主合取范式
 - 主析取范式
 - 联结词的扩充与规约
- 4 推理和证明方法
 - 有效结论
 - 自然推理的形式证明
 - 证明方法

- 1 命题逻辑
 - 命题
 - 符号化
 - 合式公式的形式文法
 - 合式公式的形式语义
 - ② 公式之间的关系
 - 公式的语义性质
 - 逻辑等价
 - 永真蕴涵关系
 - 恒等变换与不等变换
 - 对偶性
- 3 范式和基本定理
 - 极大项
 - 主合取范式
 - 主析取范式
 - 联结词的扩充与规约
- 4 推理和证明方法
 - 有效结论
 - 自然推理的形式证明
 - 证明方法

- 命题
- 符号化
- 合式公式的形式文法
- 合式公式的形式语义
- ② 公式之间的关系
 - 公式的语义性质
 - 逻辑等价
 - 永真蕴涵关系
 - 恒等变换与不等变换
 - 对偶性
- 3 范式和基本定理
 - 极大项
 - 主合取范式
 - 主析取范式
 - 联结词的扩充与规约
- 4 推理和证明方法
 - 有效结论
 - 自然推理的形式证明
 - 证明方法

命题逻辑

设G是公式:

- ① 如果对G的任意一个解释I,都有I(G) = 1,称G为重言式(永真式);
- ② 如果存在G的一个解释I, I(G) = 1, 称G为可满足公式(satisfiable);
- ③ 如果对G的任意一个解释I,都有I(G) = 0,称G为矛盾式(invalid).

Example

公式 $G = \neg((P \lor Q) \land P) \leftrightarrow \neg P$ 为重言式

命题逻辑

设 G 是公式:

- ① 如果对G的任意一个解释I,都有I(G) = 1,称G为重言式(永真式);
- ② 如果存在G的一个解释I, I(G) = 1, 称G为可满足公式(satisfiable);
- ③ 如果对G的任意一个解释I,都有I(G) = 0,称G为矛盾式(invalid).

公式 $G = \neg((P \lor Q) \land P) \leftrightarrow \neg P$ 为重言式.

	P	Q	$P \lor Q$	$(P \lor Q) \land P$	$\neg((P \lor Q) \land P)$	$\neg P$	G
$I_0 = 00$	0	0	0	0	1	1	1
$I_1 = 01$	0	1	1	0	1	1	1
$I_2 = 10$	1	0	1	1	0	0	1
$I_3 = 11$	1	1	1	1	0	0	1

命题逻辑

称公式F和G逻辑等价, iff, 公式(F) ↔ (G)是重言式, 记为: $F \Leftrightarrow G$.

$$\neg((P \lor Q) \land P) \Leftrightarrow \neg P$$

命题逻辑

称公式F和G逻辑等价, iff, 公式(F) ↔ (G)是重言式, 记为: $F \Leftrightarrow G$

$$\neg((P \lor Q) \land P) \Leftrightarrow \neg P$$

命题逻辑

称公式F和G逻辑等价, iff, 公式(F) ↔ (G)是重言式, 记为: $F \Leftrightarrow G$

$$\neg((P \lor Q) \land P) \Leftrightarrow \neg P$$

Properties

- \bullet $A \Leftrightarrow A$:
- \bigcirc if $A \Leftrightarrow B$, then $B \Leftrightarrow A$;
- 3 if $A \Leftrightarrow B$, and $B \Leftrightarrow C$, then $A \Leftrightarrow C$;

常用的"恒等式"

$\neg \neg P \Leftrightarrow P$	双重否定律
$P \wedge P \Leftrightarrow P$	可签件
$P \lor P \Leftrightarrow P$	幂等律
$P \wedge Q \Leftrightarrow Q \wedge P$	六ム体
$P \lor Q \Leftrightarrow Q \lor P$	交換律
$(P \land Q) \land R \Leftrightarrow P \land (Q \land R)$	从人体
$(P \lor Q) \lor R \Leftrightarrow P \lor (Q \lor R)$	结合律
$(P \land Q) \lor R \Leftrightarrow (P \lor R) \land (Q \lor R)$	分配律
$(P \lor Q) \land R \Leftrightarrow (P \land R) \lor (Q \land R)$	力"的件
$(P \wedge Q) \vee P \Leftrightarrow P$	可业体
$(P \lor Q) \land P \Leftrightarrow P$	吸收律
$(P \to Q) \Leftrightarrow \neg P \lor Q$	蕴涵表达式
$\neg (P \land Q) \Leftrightarrow \neg P \lor \neg Q$	Da Mauman 体
$\neg (P \lor Q) \Leftrightarrow \neg P \land \neg Q$	De Morgan律
$(P \to Q) \land (P \to \neg Q) \Leftrightarrow \neg P$	
$(P \lor \neg P) \Leftrightarrow \mathbb{T}$	排中律

称公式F永真蕴涵(Logical Implication)公式G, iff, 公式(F) → (G)是重言式, 记为: $F \Rightarrow G$.

$$P \wedge (P \rightarrow Q) \Rightarrow Q$$

永真蕴涵关系

称公式F永真蕴涵(Logical Implication)公式G, iff, 公式(F) \rightarrow (G)是重言式, 记为: $F \Rightarrow G$.

Example

$$P \wedge (P \rightarrow Q) \Rightarrow Q$$

Remark

对F和G中出现的所有原子的一个指派I,都有 $I(F) \leq I(G)$;即F为真的所有可能涵盖在G的为真的可能之中;相当于代数中的"不等式".

Properties

- ② if $A \Rightarrow B$ and $B \Rightarrow C$, then $A \Rightarrow C$;

称公式F永真蕴涵(Logical Implication)公式G, iff, 公式(F) → (G)是重言式, 记为: $F \Rightarrow G$

$$P \wedge (P \rightarrow Q) \Rightarrow Q$$

Remarks

对F和G中出现的所有原子的一个指派I,都有I(F) < I(G);即F为真的所有可 能涵盖在G的为真的可能之中: 相当于代数中的"不等式".

永真蕴涵关系

命题逻辑

称公式F永真蕴涵(Logical Implication)公式G, iff, 公式(F) \rightarrow (G)是重言式, 记为: $F \Rightarrow G$.

Example

$$P \wedge (P \rightarrow Q) \Rightarrow Q$$

Remarks

对F和G中出现的所有原子的一个指派I,都有 $I(F) \leq I(G)$;即F为真的所有可能涵盖在G的为真的可能之中;相当于代数中的"不等式".

Properties

- 2 if $A \Rightarrow B$ and $B \Rightarrow C$, then $A \Rightarrow C$;
- ① if $A \Rightarrow B$, then $\neg B \Rightarrow \neg A$;

1	$P \Rightarrow P \lor Q$
2	$P \wedge Q \Rightarrow P$
3	$P \wedge (P \rightarrow Q) \Rightarrow Q$
4	$\neg Q \land (P \rightarrow Q) \Rightarrow \neg P$
5	$\neg P \land (P \lor Q) \Rightarrow Q$
6	$(P \to Q) \land (Q \to R) \Rightarrow P \to R$
7	$(P \rightarrow Q) \Rightarrow (Q \rightarrow R) \rightarrow (P \rightarrow R)$
8	$(P \to Q) \land (R \to S) \Rightarrow (P \land R) \to (Q \land S)$

恒等式与不等式的证明

方法

- 真值表法: 判断A ↔ B或A → B的真值表是否恒为1;
- 对不等式 $A \Rightarrow B$,只需要判断在A为真时,B亦真;或者,B为假时,A亦假;
- 恒等、不等变换.

Example

Method 1

- ① 设, $P \wedge (P \rightarrow Q)$ 为真;
- ② 则,P为真, $P \rightarrow Q$ 亦真;
- ③ 所以, Q为真.

Method 2:

- ① 设, Q为假
- ② 分情况讨论
 - P为真,则, $P \to Q$ 为假,所以, $P \land (P \to Q)$ 为假;
 - P为假,则,P∧(P → Q)为假;

方法

命题逻辑

- 真值表法: 判断A ↔ B或A → B的真值表是否恒为1;
- 对不等式 $A \Rightarrow B$,只需要判断在A为真时,B亦真;或者,B为假时,A亦假;
- 恒等、不等变换.

Example: $P \wedge (P \rightarrow Q) \Rightarrow Q$

Method 1:

- ① 设, $P \wedge (P \rightarrow Q)$ 为真;
- ② 则, P为真, $P \rightarrow Q$ 亦真;
- ⑥ 所以, Q为真.

Method 2:

- ① 设, Q为假;
- ② 分情况讨论:
 - P为真,则,P → Q为假,所以,P ∧ (P → Q)为假;
 - P为假,则,P∧(P→Q)为假;

恒等变换与不等变换

Definition (Substitution)

设 $G(P_1, P_2, ..., P_n)$ 是一公式,F是另一公式,设 P_i 是公式G中的某一原子,将公式G中的 P_i 的每个出现用F替换,称为代入,代入后所得到的公式 $G(P_1, ..., P_{i-1}, F/P_i, P_{i+1}, ..., P_n)$ 称为代入实例.

Example

Theorem (代入规则)

设公式 $G(P_1, P_2, ..., P_n)$ 是重言式,则其任意的一个代入实例 $G(P_1, ..., P_{i-1}, F/P_i, P_{i+1}, ..., P_n)$ 也是重言式.

Corollary (代入规则)

- $\partial A \Leftrightarrow B = MA(F/P) \Leftrightarrow B(F/P) + M + B = \pm 3$
- 设A⇒B MA(F/P)⇒ B(F/P)机是重言式

恒等变换与不等变换

Definition (Substitution)

设 $G(P_1, P_2, \ldots, P_n)$ 是一公式, F是另一公式, 设 P_i 是公式G中的某一原子, 将 公式G中的P的每个出现用F替换, 称为代入, 代入后所得到的公 式 $G(P_1,\ldots,P_{i-1},F/P_i,P_{i+1},\ldots,P_n)$ 称为代入实例.

- 3 $G(F) \neq (\neg P \lor R \land Q) \lor \neg P \lor R$

Definition (Substitution)

设 $G(P_1, P_2, \ldots, P_n)$ 是一公式, F是另一公式, 设 P_i 是公式G中的某一原子, 将公式G中的 P_i 的每个出现用F替换, 称为代入, 代入后所得到的公式 $G(P_1, \ldots, P_{i-1}, F/P_i, P_{i+1}, \ldots, P_n)$ 称为代入实例.

Example

Theorem (代入规则)

设公式 $G(P_1, P_2, ..., P_n)$ 是重言式,则其任意的一个代入实例 $G(P_1, ..., P_{i-1}, F/P_i, P_{i+1}, ..., P_n)$ 也是重言式.

Corollary (代入规则)

- 设 $A \Leftrightarrow B$, 则 $A(F/P) \Leftrightarrow B(F/P)$ 也是重言式;

恒等变换与不等变换

Definition (Substitution)

设 $G(P_1, P_2, \ldots, P_n)$ 是一公式, F是另一公式, 设 P_i 是公式, G中的某一原子, 将 公式G中的P的每个出现用F替换, 称为代入, 代入后所得到的公 式 $G(P_1,\ldots,P_{i-1},F/P_i,P_{i+1},\ldots,P_n)$ 称为代入实例.

公式之间的关系

3 $G(F) \neq (\neg P \lor R \land Q) \lor \neg P \lor R$

Theorem (代入规则)

设公式 $G(P_1, P_2, ..., P_n)$ 是重言式,则其任意的一个代入实 例 $G(P_1,\ldots,P_{i-1},F/P_i,P_{i+1},\ldots,P_n)$ 也是重言式.

Corollary (代入规则)

- 设A ⇔ B, 则A(F/P) ⇔ B(F/P)也是重言式;
- 设 $A \Rightarrow B$, 则 $A(F/P) \Rightarrow B(F/P)$ 也是重言式.

替换规则

Definition (Replacement)

设G是一公式,A是在G的某一个位置出现的子公式,将该子公式用公式B置换的过程称为替换.

Example

Theorem (替换规则)

设,G/是公式G中的某个子公式A用B替换后得到的公式,如果 $A \Leftrightarrow B$,则 $G \Leftrightarrow G$ /.

Example

Definition (Replacement)

设G是一公式,A是在G的某一个位置出现的子公式,将该子公式用公式B置换 的过程称为替换.

$$\underbrace{(P \to Q) \land P}_{A} \Leftrightarrow \underbrace{(\neg P \lor Q) \land P}_{B}$$

Definition (Replacement)

设G是一公式,A是在G的某一个位置出现的子公式,将该子公式用公式B置换 的过程称为替换.

Theorem (替换规则)

设, G/是公式G中的某个子公式A用B替换后得到的公式, 如果A ⇔ B. 则 $G \Leftrightarrow G'$.

Definition (Replacement)

设G是一公式,A是在G的某一个位置出现的子公式,将该子公式用公式B置换的过程称为替换。

Example

Theorem (替换规则)

设,G/是公式G中的某个子公式A用B替换后得到的公式,如果 $A \Leftrightarrow B$,则 $G \Leftrightarrow G$ /.

Example

替换规则只能对恒等式成立,对不等式不成立! 即: if $A \Rightarrow B$, 则 $G \Rightarrow G'$.

$$\underbrace{P \wedge Q}_{A} \Rightarrow \underbrace{P}_{B}$$

$$\neg (P \wedge Q) \Rightarrow \neg P$$

Example

$$(P \rightarrow Q) \rightarrow (Q \lor R) \Leftrightarrow P \lor Q \lor R$$

Proof

$$(P \rightarrow Q) \rightarrow (Q \lor R)$$

$$(\neg P \lor Q) \to (Q \lor K)$$

$$\Leftrightarrow \neg(\neg P \lor Q) \lor (Q \lor R)$$

$$\Leftrightarrow (\neg \neg P \land \neg Q) \lor (Q \lor F)$$

$$4 \Leftrightarrow \underline{(P \land \neg Q) \lor (Q \lor R)}$$

$$5 \Leftrightarrow (\underline{(P \land \neg Q) \lor Q}) \lor R$$

$$7 \leftrightarrow ((B \lor Q) \land T) \lor B$$

$$8 \Leftrightarrow (\overrightarrow{P} \vee Q) \vee R$$

$$9 = RHS$$

4 D > 4 P > 4 B > 4 B >

Example (1/3)

```
(P \rightarrow Q) \rightarrow (Q \lor R) \Leftrightarrow P \lor Q \lor R
Proof.
```

$$(P \rightarrow Q) \rightarrow (Q \lor R) \Leftrightarrow P \lor Q \lor R$$

Proof.

$$(\underline{P \to Q}) \to (Q \vee R)$$

4 D > 4 P > 4 B > 4 B >

$$(P \rightarrow Q) \rightarrow (Q \lor R) \Leftrightarrow P \lor Q \lor R$$

Proof.

$$\begin{array}{ccc} & (\underline{P \rightarrow Q}) \rightarrow (Q \vee R) \\ 1 & \Leftrightarrow & (\neg P \vee Q) \rightarrow (Q \vee R) \end{array}$$

$$2 \Leftrightarrow \neg(\neg P \lor Q) \lor (Q \lor R)$$

$$\Rightarrow \overline{(\neg \neg P \land \neg Q)} \lor (Q \lor R)$$

$$\Leftrightarrow \quad (P \land \neg Q) \lor (Q \lor R)$$

$$A = ((P \lor O) \land (\neg O \lor O)) \lor A$$

$$7 \Leftrightarrow ((P \vee Q) \wedge \overline{\mathbb{T}}) \vee R$$

$$8 \Leftrightarrow (\overline{P \vee Q}) \vee R$$

$$9 = RHS$$

$$9 = RHS$$

(替换+蕴涵表达式)

$$(P \rightarrow Q) \rightarrow (Q \lor R) \Leftrightarrow P \lor Q \lor R$$

$$(\underline{P o Q}) o (Q \lor R)$$

$$1 \Leftrightarrow \underline{(\neg P \lor Q) \to (Q \lor R)}$$

$$2 \Leftrightarrow \overline{\neg(\neg P \lor Q) \lor (Q \lor R)}$$

$$B \Leftrightarrow (\neg \neg P \land \neg Q) \lor (Q \lor R)$$

$$\cdot \Leftrightarrow (P \land \neg Q) \lor (Q \lor R)$$

$$\Rightarrow \overline{((P \land \neg Q) \lor Q) \lor R}$$

$$6 \Leftrightarrow ((P \vee Q) \wedge (\neg Q \vee Q)) \vee$$

$$7 \Leftrightarrow ((P \lor Q) \land \mathbb{T}) \lor F$$

$$8 \Leftrightarrow (\overline{P \vee Q}) \vee R$$

$$9 = RHS$$

Example (1/3)

$$(P \rightarrow Q) \rightarrow (Q \lor R) \Leftrightarrow P \lor Q \lor R$$

$$(P o Q) o (Q \lor R)$$

$$1 \Leftrightarrow (\neg P \lor Q) \to (Q \lor R)$$

$$2 \Leftrightarrow \overline{\neg(\neg P \lor Q) \lor (Q \lor R)}$$

$$3 \Leftrightarrow \overline{(\neg \neg P \land \neg Q)} \lor (Q \lor R)$$

$$\Leftrightarrow (P \land \neg Q) \lor (Q \lor R)$$

$$((P \land \neg Q) \lor Q) \lor P$$

$$\Leftrightarrow (P \lor Q) \land (\neg Q \lor Q)) \lor R$$

$$7 \Leftrightarrow ((P \lor O) \land \overline{\mathbb{T}}) \lor R$$

$$8 \Leftrightarrow (P \vee Q) \vee R$$

$$9 = RHS$$

$$(P \rightarrow Q) \rightarrow (Q \lor R) \Leftrightarrow P \lor Q \lor R$$

$$(P \to Q) \to (Q \lor R)$$

$$1 \Leftrightarrow (\neg P \lor Q) \to (Q \lor R)$$

$$2 \Leftrightarrow \overline{\neg(\neg P \lor Q) \lor (Q \lor R)}$$

$$3 \Leftrightarrow (\neg \neg P \land \neg Q) \lor (Q \lor R)$$

$$4 \Leftrightarrow (P \land \neg Q) \lor (Q \lor R)$$

$$\Leftrightarrow ((P \land \neg Q) \lor Q) \lor R$$

$$\Leftrightarrow ((P \vee Q) \wedge (\neg Q \vee Q)) \vee R$$

$$7 \Leftrightarrow ((P \lor Q) \land \mathbb{T}) \lor R$$

$$8 \Leftrightarrow (P \vee Q) \vee R$$

$$\delta \Leftrightarrow (P \vee Q) \vee R$$

$$9 = RHS$$

$$(P \rightarrow Q) \rightarrow (Q \lor R) \Leftrightarrow P \lor Q \lor R$$

$$(\underline{P \to Q}) \to (Q \vee R)$$

$$1 \Leftrightarrow (\neg P \lor Q) \to (Q \lor R)$$

$$2 \Leftrightarrow \neg(\neg P \lor Q) \lor (Q \lor R)$$

$$3 \Leftrightarrow (\neg \neg P \land \neg Q) \lor (Q \lor R)$$

$$4 \Leftrightarrow (P \land \neg Q) \lor (Q \lor R)$$

$$5 \Leftrightarrow \overline{((P \land \neg Q) \lor Q) \lor R}$$

$$6 \Leftrightarrow ((P \vee Q) \wedge (\neg Q \vee Q)) \vee R$$

$$7 \Leftrightarrow ((P \vee Q) \wedge \mathbb{T}) \vee R$$

$$8 \Leftrightarrow (P \vee Q) \vee R$$

$$9 = RHS$$

$$9 = RHS$$

$$(P \rightarrow Q) \rightarrow (Q \lor R) \Leftrightarrow P \lor Q \lor R$$

$$(\underline{P \to Q}) \to (Q \vee R)$$

$$1 \Leftrightarrow (\neg P \lor Q) \to (Q \lor R)$$

$$2 \Leftrightarrow \neg(\neg P \lor Q) \lor (Q \lor R)$$

$$3 \Leftrightarrow \overline{(\neg \neg P \land \neg Q)} \lor (Q \lor R)$$

$$4 \Leftrightarrow (P \land \neg Q) \lor (Q \lor R)$$

$$5 \Leftrightarrow \overline{((P \land \neg Q) \lor Q) \lor R}$$

$$5 \Leftrightarrow (\underline{(P \land \neg Q) \lor Q}) \lor R$$

$$6 \Leftrightarrow ((P \vee Q) \wedge (\neg Q \vee Q)) \vee R$$

$$7 \Leftrightarrow ((P \vee Q) \wedge \mathbb{T}) \vee R$$

$$8 \Leftrightarrow (\overline{P \vee Q}) \vee R$$

$$9 = RHS$$

$$9 = RHS$$

$$(P \rightarrow Q) \rightarrow (Q \lor R) \Leftrightarrow P \lor Q \lor R$$

$$\begin{array}{ccc} (\underline{P \rightarrow Q}) \rightarrow (Q \lor R) \\ 1 & \Leftrightarrow & (\neg P \lor Q) \rightarrow (Q \lor R) \end{array}$$

$$\frac{1}{\sqrt{2}} \Rightarrow \frac{\sqrt{2}}{\sqrt{2}} \Rightarrow \sqrt{2} \Rightarrow \sqrt{2}$$

$$2 \Leftrightarrow \neg(\neg P \lor Q) \lor (Q \lor R)$$

$$3 \Leftrightarrow \overline{(\neg \neg P \land \neg Q)} \lor (Q \lor R)$$

$$4 \Leftrightarrow (P \land \neg Q) \lor (Q \lor R)$$

$$5 \Leftrightarrow \overline{((P \land \neg Q) \lor Q) \lor R}$$

$$6 \Leftrightarrow ((P \lor Q) \land (-Q \lor Q)) \lor ($$

$$6 \quad \Leftrightarrow \quad (\overline{(P \vee Q)} \wedge \underline{(\neg Q \vee Q)}) \vee R$$

$$7 \Leftrightarrow ((P \vee Q) \wedge \mathbb{T}) \vee R$$

$$8 \Leftrightarrow (P \vee Q) \vee F$$

$$9 = RHS$$

$$(P \rightarrow Q) \rightarrow (Q \lor R) \Leftrightarrow P \lor Q \lor R$$

Proof.

4 D > 4 P > 4 B > 4 B >

$$(P \rightarrow Q) \rightarrow (Q \lor R) \Leftrightarrow P \lor Q \lor R$$

Proof.

$$(P \to Q) \to (Q \lor R)$$

$$1 \Leftrightarrow (\neg P \lor Q) \to (Q \lor R)$$

$$2 \Leftrightarrow (\neg P \lor Q) \lor (Q \lor R)$$

$$3 \Leftrightarrow (\neg \neg P \land \neg Q) \lor (Q \lor R)$$

$$4 \Leftrightarrow (P \land \neg Q) \lor (Q \lor R)$$

$$5 \Leftrightarrow (P \land \neg Q) \lor Q \lor R$$

$$(K \land + 4 \Leftrightarrow + 4 \Rightarrow +$$

RHS

$$(P \to Q) \land \neg Q \Rightarrow \neg P$$

$$\neg((\neg P \lor Q) \land \neg Q \to \neg P)$$

$$2 \Leftrightarrow \neg(\neg((\neg P \lor Q) \land \neg Q) \lor \neg P)$$

$$3 \Leftrightarrow \neg \neg ((\neg P \lor Q) \land \neg Q) \land \neg \neg P)$$

$$4 \Leftrightarrow (\neg P \lor Q) \land \neg Q \land P$$

$$6 \quad \Leftrightarrow \quad ((\neg P \land \neg Q) \lor \mathbb{F}) \land P$$

$$\Leftrightarrow \quad \frac{(\neg P \land \neg Q) \land P}{(\neg P \land \neg Q) \land P}$$

$$\Rightarrow \overline{\mathbb{F} \wedge \neg Q}$$

$$9 \quad \Leftrightarrow \quad \underline{\mathbb{F} \wedge \neg Q}$$

$$9 \Leftrightarrow \underline{\mathbb{F} \wedge \neg Q}$$

$$(P \rightarrow Q) \land \neg Q \Rightarrow \neg P$$

等价于:
$$(P \rightarrow Q) \land \neg Q \rightarrow \neg P$$
 永真;

$$\neg((P \to Q) \land \neg Q \to \neg P)$$

$$1 \quad \Leftrightarrow \quad \neg((\neg P \lor Q) \land \neg Q \to \neg P)$$

$$2 \Leftrightarrow \neg(\neg((\neg P \lor Q) \land \neg Q) \lor \neg P)$$

$$3 \Leftrightarrow \neg\neg((\neg P \lor Q) \land \neg Q) \land \neg\neg P)$$

$$4 \Leftrightarrow (\neg P \lor Q) \land \neg Q \land P$$

$$\Leftrightarrow ((\neg P \land \neg Q) \lor \mathbb{F}) \land P$$

$$7 \Leftrightarrow (\overline{\neg P \land \neg Q) \land P}$$

$$\Leftrightarrow \mathbb{F} \wedge \neg Q$$

$$\begin{array}{ccc} 9 & \Leftrightarrow & \underline{\mathbb{F}} \wedge \neg Q \\ & & \end{array}$$

$$(P \to Q) \land \neg Q \Rightarrow \neg P$$

等价于: $(P \rightarrow Q) \land \neg Q \rightarrow \neg P$ 永真; 等价于: $(P \to Q) \land \neg Q \to \neg P \Leftrightarrow \mathbb{T}$;

$$\neg((P \to Q) \land \neg Q \to \neg P)$$

$$3 \Leftrightarrow \neg\neg((\neg P \lor Q) \land \neg Q) \land \neg\neg P)$$

$$4 \Leftrightarrow (\neg P \lor Q) \land \neg Q \land P$$

$$\Leftrightarrow ((\neg P \land \neg Q) \lor \mathbb{F}) \land P$$

$$7 \quad \Leftrightarrow \quad \underline{(\neg P \land \neg Q) \land P}$$

$$\Leftrightarrow \mathbb{F} \wedge \neg Q$$

$$9 \quad \Leftrightarrow \quad \underline{\mathbb{F} \land \neg Q}$$

$$(P \to Q) \land \neg Q \Rightarrow \neg P$$

Example

$$(P \rightarrow Q) \land \neg Q \Rightarrow \neg P$$

$$(P \to Q) \land \neg Q \Rightarrow \neg P$$

```
等价于: (P \rightarrow Q) \land \neg Q \rightarrow \neg P 永真;
等价于: (P \to Q) \land \neg Q \to \neg P \Leftrightarrow \mathbb{T};
等价于: \neg((P \to Q) \land \neg Q \to \neg P) \Leftrightarrow \mathbb{F};
Proof.
```

公式之间的关系

Example

$$(P o Q) \wedge \neg Q \Rightarrow \neg P$$

```
等价于: (P \rightarrow Q) \land \neg Q \rightarrow \neg P 永真;
等价于: (P \to Q) \land \neg Q \to \neg P \Leftrightarrow \mathbb{T};
等价于: \neg((P \to Q) \land \neg Q \to \neg P) \Leftrightarrow \mathbb{F};
Proof.
                    \neg((P \to Q) \land \neg Q \to \neg P)
```

$$(P \rightarrow Q) \land \neg Q \Rightarrow \neg P$$

等价于:
$$(P \to Q) \land \neg Q \to \neg P$$
 永真;
等价于: $(P \to Q) \land \neg Q \to \neg P \Leftrightarrow \mathbb{T}$;
等价于: $\neg((P \to Q) \land \neg Q \to \neg P) \Leftrightarrow \mathbb{F}$;
Proof.
$$\neg((P \to Q) \land \neg Q \to \neg P) \Rightarrow \mathbb{F};$$

$$\neg((P \to Q) \land \neg Q \to \neg P) \Rightarrow \mathbb{F};$$

$$\neg((P \to Q) \land \neg Q \to \neg P) \Rightarrow \mathbb{F};$$

$$\neg((P \to Q) \land \neg Q \to \neg P) \Rightarrow \mathbb{F};$$

$$\neg((P \to Q) \land \neg Q \to \neg P) \Rightarrow \mathbb{F};$$

$$\neg((P \to Q) \land \neg Q \to \neg P) \Rightarrow \mathbb{F};$$

$$\neg((P \to Q) \land \neg Q \to \neg P) \Rightarrow \mathbb{F};$$

$$\neg((P \to Q) \land \neg Q \to \neg P) \Rightarrow \mathbb{F};$$

$$\neg((P \to Q) \land \neg Q \to \neg P) \Rightarrow \mathbb{F};$$

$$\neg((P \to Q) \land \neg Q \to \neg P) \Rightarrow \mathbb{F};$$

$$\neg((P \to Q) \land \neg Q \to \neg P) \Rightarrow \mathbb{F};$$

$$\neg((P \to Q) \land \neg Q \to \neg P) \Rightarrow \mathbb{F};$$

$$\neg((P \to Q) \land \neg Q \to \neg P) \Rightarrow \mathbb{F};$$

$$\neg((P \to Q) \land \neg Q \to \neg P) \Rightarrow \mathbb{F};$$

$$\neg((P \to Q) \land \neg Q \to \neg P) \Rightarrow \mathbb{F};$$

$$\neg((P \to Q) \land \neg Q \to \neg P) \Rightarrow \mathbb{F};$$

$$\neg((P \to Q) \land \neg Q \to \neg P) \Rightarrow \mathbb{F};$$

$$\neg((P \to Q) \land \neg Q \to \neg P) \Rightarrow \mathbb{F};$$

$$\neg((P \to Q) \land \neg Q \to \neg P) \Rightarrow \mathbb{F};$$

$$\neg((P \to Q) \land \neg Q \to \neg P) \Rightarrow \mathbb{F};$$

$$\neg((P \to Q) \land \neg Q \to \neg P) \Rightarrow \mathbb{F};$$

$$\neg((P \to Q) \land \neg Q \to \neg P) \Rightarrow \mathbb{F};$$

$$\neg((P \to Q) \land \neg Q \to \neg P) \Rightarrow \mathbb{F};$$

$$\neg((P \to Q) \land \neg Q \to \neg P) \Rightarrow \mathbb{F};$$

$$\neg((P \to Q) \land \neg Q \to \neg P) \Rightarrow \mathbb{F};$$

$$\neg((P \to Q) \land \neg Q \to \neg P) \Rightarrow \mathbb{F};$$

$$\neg((P \to Q) \land \neg Q \to \neg P) \Rightarrow \mathbb{F};$$

$$\neg((P \to Q) \land \neg Q \to \neg P) \Rightarrow \mathbb{F};$$

$$\neg((P \to Q) \land \neg Q \to \neg P) \Rightarrow \mathbb{F};$$

$$\neg((P \to Q) \land \neg Q \to \neg P) \Rightarrow \mathbb{F};$$

$$\neg((P \to Q) \land \neg Q \to \neg P) \Rightarrow \mathbb{F};$$

$$\neg((P \to Q) \land \neg Q \to \neg P) \Rightarrow \mathbb{F};$$

$$\neg((P \to Q) \land \neg Q \to \neg P) \Rightarrow \mathbb{F};$$

$$\neg((P \to Q) \land \neg Q \to \neg P) \Rightarrow \mathbb{F};$$

$$\neg((P \to Q) \land \neg Q \to \neg P) \Rightarrow \mathbb{F};$$

$$\neg((P \to Q) \land \neg Q \to \neg P) \Rightarrow \mathbb{F};$$

$$\neg((P \to Q) \land \neg Q \to \neg P) \Rightarrow \mathbb{F};$$

$$\neg((P \to Q) \land \neg Q \to \neg P) \Rightarrow \mathbb{F};$$

$$\neg((P \to Q) \land \neg Q \to \neg P) \Rightarrow \mathbb{F};$$

$$\neg((P \to Q) \land \neg Q \to \neg P) \Rightarrow \mathbb{F};$$

$$\neg((P \to Q) \land \neg Q \to \neg P) \Rightarrow \mathbb{F};$$

$$\neg((P \to Q) \land \neg Q \to \neg P) \Rightarrow \mathbb{F};$$

$$\neg((P \to Q) \land \neg Q \to \neg P) \Rightarrow \mathbb{F};$$

$$\neg((P \to Q) \land \neg Q \to \neg P) \Rightarrow \mathbb{F};$$

$$\neg((P \to Q) \land \neg Q \to \neg P) \Rightarrow \mathbb{F};$$

$$\neg((P \to Q) \land \neg Q \to \neg P) \Rightarrow \mathbb{F};$$

$$\neg((P \to Q) \land \neg Q \to \neg P) \Rightarrow \mathbb{F};$$

$$\neg((P \to Q) \land \neg Q \to \neg P) \Rightarrow \mathbb{F};$$

$$\neg((P \to Q) \land \neg Q \to \neg P) \Rightarrow \mathbb{F};$$

$$\neg((P \to Q) \land \neg Q \to \neg P) \Rightarrow \mathbb{F};$$

$$\neg((P \to Q) \land \neg Q \to \neg P) \Rightarrow \mathbb{F};$$

$$\neg((P \to Q) \land \neg Q \to \neg P) \Rightarrow \mathbb{F};$$

$$\neg((P \to Q) \land \neg Q \to \neg P) \Rightarrow \mathbb{F};$$

$$\neg((P \to Q) \land \neg Q \to \neg P) \Rightarrow \mathbb{F};$$

$$\neg((P \to Q) \land \neg Q \to \neg P) \Rightarrow \mathbb{F};$$

$$\neg((P \to Q) \land \neg Q \to \neg P) \Rightarrow \mathbb{F};$$

$$\neg((P \to Q) \land \neg Q \to \neg P) \Rightarrow$$

(替换+蕴涵表达式)

$$(P \rightarrow Q) \land \neg Q \Rightarrow \neg P$$

等价于:
$$(P \to Q) \land \neg Q \to \neg P$$
 永真;
等价于: $(P \to Q) \land \neg Q \to \neg P \Leftrightarrow \mathbb{T}$;
等价于: $\neg ((P \to Q) \land \neg Q \to \neg P) \Leftrightarrow \mathbb{F}$;
Proof.
$$\neg ((P \to Q) \land \neg Q \to \neg P) \Leftrightarrow \mathbb{F}$$
;
$$\neg ((P \to Q) \land \neg Q \to \neg P) \Leftrightarrow \neg ((\neg P \lor Q) \land \neg Q \to \neg P) \Leftrightarrow \neg (\neg ((\neg P \lor Q) \land \neg Q) \lor \neg P) \Leftrightarrow \neg (\neg P \lor Q) \land \neg P) \Leftrightarrow \neg (\neg P \lor Q) \land \neg P \Leftrightarrow \neg (\neg P \lor Q) \land \neg P \Leftrightarrow \neg P \Leftrightarrow \neg P \lor Q) \land \neg P \Leftrightarrow \neg P \lor Q \Leftrightarrow \neg P \Leftrightarrow \neg P \Leftrightarrow \neg P \lor Q \Leftrightarrow \neg P \Leftrightarrow \neg P \lor Q \Leftrightarrow \neg P \Leftrightarrow \neg P \lor P \Leftrightarrow \neg P \Leftrightarrow \neg P \lor P \Leftrightarrow \neg P \Leftrightarrow$$

命题逻辑

$$(P \rightarrow Q) \land \neg Q \Rightarrow \neg P$$

(替换+蕴涵表达式)

(代入+替换+蕴涵表达式)

(代入+替换+De Morgan)

- 34/77 -

$$(P \rightarrow Q) \land \neg Q \Rightarrow \neg P$$

(替换+蕴涵表达式)

(代入+替换+蕴涵表达式)

(代入+替换+De Morgan)

$$(P \to Q) \land \neg Q \Rightarrow \neg P$$

$$(P \to Q) \land \neg Q \Rightarrow \neg P$$

```
等价于: (P \rightarrow Q) \land \neg Q \rightarrow \neg P 永真;
等价于: (P \to Q) \land \neg Q \to \neg P \Leftrightarrow \mathbb{T};
等价于: \neg((P \to Q) \land \neg Q \to \neg P) \Leftrightarrow \mathbb{F};
Proof.
                   \neg((P \to Q) \land \neg Q \to \neg P)
                \neg((\neg P \lor Q) \land \neg Q \rightarrow \neg P)
                                                                               (替换+蕴涵表达式)
          \Leftrightarrow \neg(\neg((\neg P \lor Q) \land \neg Q) \lor \neg P)
                                                                     (代入+替换+蕴涵表达式)
   3
          \Leftrightarrow \neg \neg ((\neg P \lor Q) \land \neg Q) \land \neg \neg P)
                                                                     (代入+替换+De Morgan)
          \Leftrightarrow (\neg P \lor Q) \land \neg Q \land P
                                                                        (代入+替换+双重否定)
                  \overline{((\neg P \land \neg Q) \lor (Q \land \neg Q))} \land P
                                                                            (代入+替换+分配律)
          \Leftrightarrow
                  ((\neg P \land \neg Q) \lor \mathbb{F}) \land P
                                                                                      (替换+排中律)
          \Leftrightarrow
```

$$(P \rightarrow Q) \land \neg Q \Rightarrow \neg P$$

```
等价于: (P \rightarrow Q) \land \neg Q \rightarrow \neg P 永真;
等价于: (P \to Q) \land \neg Q \to \neg P \Leftrightarrow \mathbb{T};
等价于: \neg((P \to Q) \land \neg Q \to \neg P) \Leftrightarrow \mathbb{F};
Proof.
                  \neg((P \to Q) \land \neg Q \to \neg P)
          \Leftrightarrow \neg((\neg P \lor Q) \land \neg Q \to \neg P)
                                                                              (替换+蕴涵表达式)
          \Leftrightarrow \neg(\neg((\neg P \lor Q) \land \neg Q) \lor \neg P)
                                                                    (代入+替换+蕴涵表达式)
   3
          \Leftrightarrow \neg \neg ((\neg P \lor Q) \land \neg Q) \land \neg \neg P)
                                                                   (代入+替换+De Morgan)
          \Leftrightarrow (\neg P \lor Q) \land \neg Q \land P
                                                                       (代入+替换+双重否定)
                  \overline{((\neg P \land \neg Q) \lor (Q \land \neg Q))} \land P
                                                                           (代入+替换+分配律)
   6
                ((\neg P \land \neg Q) \lor \mathbb{F}) \land P
                                                                                     (替换+排中律)
          \Leftrightarrow
   7
                  (\neg P \land \neg Q) \land P
                                                                                     (替换+简化式)
          \Leftrightarrow
```

$$(P \to Q) \land \neg Q \Rightarrow \neg P$$

```
等价于: (P \rightarrow Q) \land \neg Q \rightarrow \neg P 永真;
等价于: (P \to Q) \land \neg Q \to \neg P \Leftrightarrow \mathbb{T};
等价于: \neg((P \to Q) \land \neg Q \to \neg P) \Leftrightarrow \mathbb{F};
Proof.
                   \neg((P \to Q) \land \neg Q \to \neg P)
         \Leftrightarrow \neg((\neg P \lor Q) \land \neg Q \to \neg P)
                                                                               (替换+蕴涵表达式)
         \Leftrightarrow \neg(\neg((\neg P \lor Q) \land \neg Q) \lor \neg P)
                                                                     (代入+替换+蕴涵表达式)
   3
          \Leftrightarrow \neg \neg ((\neg P \lor Q) \land \neg Q) \land \neg \neg P)
                                                                    (代入+替换+De Morgan)
          \Leftrightarrow (\neg P \lor Q) \land \neg Q \land P
                                                                        (代入+替换+双重否定)
                  \overline{((\neg P \land \neg Q) \lor (Q \land \neg Q))} \land P
                                                                            (代入+替换+分配律)
   6
                ((\neg P \land \neg Q) \lor \mathbb{F}) \land P
                                                                                      (替换+排中律)
          \Leftrightarrow
   7
                 (\neg P \land \neg Q) \land P
                                                                                      (替换+简化式)
          \Leftrightarrow
                  \overline{(\neg P \land P) \land \neg Q}
                                                                                               (结合律)
```

Example

$$(P \to Q) \land \neg Q \Rightarrow \neg P$$

```
等价于: (P \rightarrow Q) \land \neg Q \rightarrow \neg P 永真;
等价于: (P \to Q) \land \neg Q \to \neg P \Leftrightarrow \mathbb{T};
等价于: \neg((P \to Q) \land \neg Q \to \neg P) \Leftrightarrow \mathbb{F};
Proof.
                   \neg((P \to Q) \land \neg Q \to \neg P)
          \Leftrightarrow \neg((\neg P \lor Q) \land \neg Q \to \neg P)
                                                                                 (替换+蕴涵表达式)
         \Leftrightarrow \neg (\neg ((\neg P \lor Q) \land \neg Q) \lor \neg P)
                                                                      (代入+替换+蕴涵表达式)
   3
          \Leftrightarrow \neg \neg ((\neg P \lor Q) \land \neg Q) \land \neg \neg P)
                                                                     (代入+替换+De Morgan)
          \Leftrightarrow (\neg P \lor Q) \land \neg Q \land P
                                                                          (代入+替换+双重否定)
                  \overline{((\neg P \land \neg Q) \lor (Q \land \neg Q))} \land P
                                                                              (代入+替换+分配律)
   6
                   ((\neg P \land \neg Q) \lor \mathbb{F}) \land P
                                                                                        (替换+排中律)
          \Leftrightarrow
                 (\neg P \land \neg Q) \land P
                                                                                        (替换+简化式)
          \Leftrightarrow
          \Leftrightarrow \overline{(\neg P \land P) \land \neg Q}
                                                                                                 (结合律)
   9
                   \mathbb{F} \wedge \neg Q
                                                                                        (替换+排中律)
           \Leftrightarrow
```

 $(\neg P \land \neg Q) \land P$

 $\Leftrightarrow (\neg P \land P) \land \neg Q$

 $\mathbb{F} \wedge \neg Q$

 \Leftrightarrow

 \Leftrightarrow

 \Leftrightarrow

Example (2/3)

Example

 $(P \rightarrow Q) \land \neg Q \Rightarrow \neg P$

(替换+简化式)

(替换+排中律)

(结合律)

(简化式)

9

10

Example

化简公式: $(P \rightarrow Q \lor \neg R) \land \neg P \land Q$;

解

$$(P \rightarrow Q \vee \neg R) \wedge \neg P \wedge Q$$

1 ⇔ $(\neg P \lor Q \lor \neg R) \land \neg P \land Q$ (代入+替换+蕴涵表达式

2 ⇔ ¬P∧Q (代入+替换+吸收律

Example

化简公式: $(P \rightarrow Q) \land (P \rightarrow R)$;

解:

$$(P \rightarrow Q) \land (P \rightarrow R)$$

 $1 \quad \Leftrightarrow \quad (\neg P \lor Q) \land (\neg P \lor R)$

 $\rightarrow P \vee (Q \wedge R)$

 $3 \Leftrightarrow \overline{P \to (Q \land R)}$

(替换+蕴涵表达式)

(代入+分配率)

(代入+蕴涵表达式)

Example

化简公式: $(P \rightarrow Q \lor \neg R) \land \neg P \land Q$;

解:

$$(P \rightarrow Q \vee \neg R) \wedge \neg P \wedge Q$$

1 ⇔ (¬P∨Q∨¬R)∧¬P∧Q (代入+替换+蕴涵表达式

2 ⇔ ¬P∧Q (代入+替换+吸收律

Example

化简公式: $(P \rightarrow Q) \land (P \rightarrow R)$;

解:

$$(P \rightarrow Q) \land (P \rightarrow R)$$

 $\Rightarrow (\neg P \lor Q) \land (\neg P \lor R)$

 $P \Leftrightarrow \overline{\neg P \lor (Q \land R)}$

 $3 \Leftrightarrow \overline{P \to (Q \land R)}$

(替换+蕴涵表达式)

(代入+分配率)

(代入+蕴涵表达式)

Example

化简公式: $(P \rightarrow Q \lor \neg R) \land \neg P \land Q$;

解:

$$(P \rightarrow Q \vee \neg R) \wedge \neg P \wedge Q$$

1 \Leftrightarrow (¬P∨Q∨¬R)∧¬P∧Q (代入+替换+蕴涵表达式

 $2 \Leftrightarrow \neg P \wedge Q$

(代入+替换+吸收律)

Example

化简公式: $(P \rightarrow Q) \land (P \rightarrow R)$;

解:

$$(P \to Q) \land (\underline{P} \to \underline{R})$$

 $1 \quad \Leftrightarrow \quad (\neg P \lor Q) \land (\neg P \lor R)$

 $2 \Leftrightarrow \neg P \lor (Q \land R)$

 $\frac{1}{P} \times (0 \land P)$

(替换+蕴涵表达式)

(ハバコカル干)

Example

化简公式: $(P \rightarrow Q \lor \neg R) \land \neg P \land Q$;

解:

$$(P \rightarrow Q \lor \neg R) \land \neg P \land Q$$

1 \Leftrightarrow $(\neg P \lor Q \lor \neg R) \land \neg P \land Q$ (代入+替换+蕴涵表达式)

 $2 \Leftrightarrow \neg P \land Q$

(代入+替换+吸收律)

Example

化简公式: $(P \rightarrow Q) \land (P \rightarrow R)$

解

$$(P \rightarrow Q) \land (P \rightarrow R)$$

 $\Rightarrow (\neg P \lor Q) \land (\neg P \lor R)$

 $\neg P \lor (Q \land R)$

 $P \to (O \land R)$

(替换+蕴涵表达式)

(代入十分配平)

(代入+蕴涵表达式)

解:

$$(P \rightarrow Q \lor \neg R) \land \neg P \land Q$$

 \Leftrightarrow $(\neg P \lor Q \lor \neg R) \land \neg P \land Q$ (代入+替换+蕴涵表达式)

 $\Leftrightarrow \neg P \land Q$ (代入+替换+吸收律)

Example

$$(P \rightarrow Q) \land (P \rightarrow R)$$

Example

化简公式: $(P \rightarrow Q \lor \neg R) \land \neg P \land Q$;

解:

$$(P \rightarrow Q \lor \neg R) \land \neg P \land Q$$

1 ⇔ (¬P∨Q∨¬R)∧¬P∧Q (代入+替换+蕴涵表达式)

2 ⇔ ¬P∧Q (代入+替换+吸收律)

Example

化简公式: $(P \rightarrow Q) \land (P \rightarrow R)$;

解:

$$(P \rightarrow Q) \land (P \rightarrow R)$$

 $. \Leftrightarrow (\neg P \lor Q) \land (\neg P \lor R)$

 $\frac{(P)(Q)(P)}{P}$

 $3 \Leftrightarrow \overline{P \to (O \land R)}$

(替换+蕴涵表达式)

(代入+分配率)

(代入+蕴涵表达式)

Example

化简公式: $(P \rightarrow Q \lor \neg R) \land \neg P \land Q$;

解:

$$(P \rightarrow Q \lor \neg R) \land \neg P \land Q$$

1 ⇔ (¬P∨Q∨¬R)∧¬P∧Q (代入+替换+蕴涵表达式)

2 ⇔ ¬P∧Q (代入+替换+吸收律)

Example

化简公式: $(P \rightarrow Q) \land (P \rightarrow R)$;

解:

$$(P \rightarrow Q) \land (P \rightarrow R)$$

$$1 \Leftrightarrow (\neg P \lor Q) \land (\neg P \lor R)$$

$$\neg P \lor (Q \land R)$$

$$3 \Leftrightarrow \overline{P \to (Q \land R)}$$

解:

$$(P \rightarrow Q \lor \neg R) \land \neg P \land Q$$

 \Leftrightarrow $(\neg P \lor Q \lor \neg R) \land \neg P \land Q$ (代入+替换+蕴涵表达式)

 $\Leftrightarrow \neg P \wedge Q$ (代入+替换+吸收律)

Example

化简公式: $(P \rightarrow Q) \land (P \rightarrow R)$:

解:

$$(P \rightarrow Q) \wedge (\underline{P \rightarrow R})$$

4 D > 4 A > 4 B > 4 B >

解:

命题逻辑

$$(P \rightarrow Q \lor \neg R) \land \neg P \land Q$$

⇔ (¬P∨Q∨¬R)∧¬P∧Q (代入+替换+蕴涵表达式)

 $\Leftrightarrow \neg P \land Q$ (代入+替换+吸收律)

Example

化简公式: $(P \rightarrow Q) \land (P \rightarrow R)$;

解:

$$(P \rightarrow Q) \wedge (\underline{P \rightarrow R})$$

解:

命题逻辑

$$(P \rightarrow Q \lor \neg R) \land \neg P \land Q$$

⇔ (¬P∨Q∨¬R)∧¬P∧Q (代入+替换+蕴涵表达式)

 $\Leftrightarrow \neg P \land Q$ (代入+替换+吸收律)

Example

化简公式: $(P \rightarrow Q) \land (P \rightarrow R)$;

解:

$$(P \to Q) \land (\underline{P \to R})$$

1
$$\Leftrightarrow$$
 $(\neg P \lor Q) \land (\neg P \lor R)$ (替换+蕴涵表达式)

$$2 \Leftrightarrow \overline{\neg P \lor (Q \land R)}$$

$$3 \Leftrightarrow P \to (Q \land R)$$

解:

命题逻辑

$$(P \rightarrow Q \vee \neg R) \wedge \neg P \wedge Q$$

⇔ (¬P∨Q∨¬R)∧¬P∧Q (代入+替换+蕴涵表达式)

 $\Leftrightarrow \neg P \land Q$ (代入+替换+吸收律)

Example

化简公式: $(P \rightarrow Q) \land (P \rightarrow R)$:

解:

$$(P \rightarrow Q) \land (\underline{P \rightarrow R})$$

$$1 \Leftrightarrow (\neg P \lor Q) \land (\neg P \lor R)$$
 (替换+蕴涵表达式)

$$2 \Leftrightarrow \neg P \lor (Q \land R)$$

$$3 \Leftrightarrow \overline{P \to (Q \land R)}$$

(代入+分配率)

(代入+蕴涵表达式)

Remarks

- ① 公式的整体变换:代入+恒等式:
- ② 公式的局部变换: 替换+恒等式
- ⑤ 局部变换的子公式与恒等式的形式不一样: 代入+替换+恒等式;
- @ 蕴涵表达式的使用;
- ⑤ 所有的恒等式和不等式都能够用基本恒等式和不等式用通过 代入和替换推出

- ❶ 公式的整体变换: 代入+恒等式;
- ② 公式的局部变换: 替换+恒等式
- ③ 局部变换的子公式与恒等式的形式不一样: 代入+替换+恒等式;
- @ 蕴涵表达式的使用;
- ⑤ 所有的恒等式和不等式都能够用基本恒等式和不等式用通过 代入和恭操推出

- ❶ 公式的整体变换: 代入+恒等式;
- ② 公式的局部变换: 替换+恒等式;
- ⑤ 局部变换的子公式与恒等式的形式不一样: 代入+替换+恒等式;
- @ 蕴涵表达式的使用;
- ⑤ 所有的恒等式和不等式都能够用基本恒等式和不等式用通过 代入和基本推出

- 公式的整体变换: 代入+恒等式;
- 公式的局部变换:替换+恒等式;
- ③ 局部变换的子公式与恒等式的形式不一样: 代入+替换+恒 等式.

- 公式的整体变换: 代入+恒等式:
- 公式的局部变换:替换+恒等式;
- ③ 局部变换的子公式与恒等式的形式不一样: 代入+替换+恒 等式.
- ◎ 蕴涵表达式的使用;

- 公式的整体变换: 代入+恒等式:
- 公式的局部变换:替换+恒等式;
- ③ 局部变换的子公式与恒等式的形式不一样: 代入+替换+恒 等式.
- ◎ 蕴涵表达式的使用;
- 所有的恒等式和不等式都能够用基本恒等式和不等式用通过 代入和替换推出.

对偶性(Duality)

Definition

设G是一个仅含有 \neg , \land 和 \lor 运算符号的公式; G的对偶公式G*是将G中的 \land , \lor , \blacksquare 和 \blacksquare 分别替换为 \lor , \land 和 \blacksquare , \blacksquare , \dotplus 并且 $\mathbf{保持原有的运算关系所得到的公式.$

Example

$$(P \land Q \lor \neg R)^*$$

$$= (P \lor Q) \land \neg R$$

$$\neq P \lor Q \land \neg R$$

$$= P \lor (Q \land \neg R)$$

Property

 $A^{**} = A$

Definition

命题逻辑

设G是一个仅含有 \neg , \land 和 \lor 运算符号的公式; G的对偶公式 G^* 是 将G中的 \land , \lor , \mathbb{T} 和 \mathbb{F} 分别替换为 \lor , \land 和 \mathbb{F} , \mathbb{T} , 并且保持原有的运 算关系所得到的公式.

$$(P \land Q \lor \neg R)^*$$

$$= (P \lor Q) \land \neg R$$

$$\neq P \lor Q \land \neg R$$

$$= P \lor (Q \land \neg R)$$

Definition

命题逻辑

设G是一个仅含有 \neg , \land 和 \lor 运算符号的公式; G的对偶公式G*是 将G中的 \land , \lor , \mathbb{T} 和 \mathbb{F} 分别替换为 \lor , \land 和 \mathbb{F} , \mathbb{T} , 并且保持原有的运 算关系所得到的公式.

$$(P \land Q \lor \neg R)^*$$

$$= (P \lor Q) \land \neg R$$

$$\neq P \lor Q \land \neg R$$

$$= P \lor (Q \land \neg R)$$

Property

$$A^{**} = A$$

Theorem

设
$$G(P_1,P_2,\ldots,P_n)$$
是一个仅含有 \neg , \land 和 \lor 运算符号的公式,则: $\neg G(P_1,P_2,\ldots,P_n) \Leftrightarrow G^*(\neg P_1,\neg P_2,\ldots,\neg P_n)$

Theorem

设 $G(P_1, P_2, \dots, P_n)$ 是一个仅含有 \neg , \land 和 \lor 运算符号的公式,则: $\neg G(P_1, P_2, \dots, P_n) \Leftrightarrow G^*(\neg P_1, \neg P_2, \dots, \neg P_n)$

Proof (对公式的递归结构用归纳法).

- Base: if G是P, T, F, 则原恒等式成立;
- ② 设 $G(P_1, P_2, \dots, P_n) = A(P_1, P_2, \dots, P_n) \land B(P_1, P_2, \dots, P_n)$, 并且, $A \Rightarrow B$ 满足上述恒等式:则:

③ 同理对: $G = \neg A \rightarrow G = A \lor B$ 有相同的结论.

Theorem

设 $G(P_1, P_2, \dots, P_n)$ 是一个仅含有 \neg , \land 和 \lor 运算符号的公式,则: $\neg G(P_1, P_2, \dots, P_n) \Leftrightarrow G^*(\neg P_1, \neg P_2, \dots, \neg P_n)$

Proof (对公式的递归结构用归纳法).

- Base: if G是P, T, F, 则原恒等式成立;
- ② 设 $G(P_1, P_2, \dots, P_n) = A(P_1, P_2, \dots, P_n) \land B(P_1, P_2, \dots, P_n)$,并且, A和R满足上状恒等式、删、

Theorem

设
$$G(P_1, P_2, \ldots, P_n)$$
是一个仅含有 \neg , \land 和 \lor 运算符号的公式,则:
$$\neg G(P_1, P_2, \ldots, P_n) \Leftrightarrow G^*(\neg P_1, \neg P_2, \ldots, \neg P_n)$$

Proof (对公式的递归结构用归纳法).

- Base: if G是P, T, F, 则原恒等式成立;
- ② 设 $G(P_1, P_2, \dots, P_n) = A(P_1, P_2, \dots, P_n) \land B(P_1, P_2, \dots, P_n)$, 并且, A和B满足上述恒等式; 则: $\neg G(P_1, P_2, \dots, P_n)$
 - $= \neg (A(P_1, P_2, \dots, P_n) \land B(P_1, P_2, \dots, P_n))$
 - $\Leftrightarrow A^*(\neg P_1, \neg P_2, \dots, \neg P_n) \vee B^*(\neg P_1, \neg P_2, \dots, \neg P_n)$ (1)
 - $= (A(\neg P_1, \neg P_2, \dots, \neg P_n) \land B(\neg P_1, \neg P_2, \dots, \neg P_n))^*$ = $C^*(\neg P_1, \neg P_2, \dots, \neg P_n)$
 - $= G (\neg P_1, \neg P_2, \ldots, \neg P_n)$
- ③ 同理对: $G = \neg A \pi G = A \vee B$ 有相同的结论.

Theorem

设
$$G(P_1, P_2, \dots, P_n)$$
是一个仅含有 \neg , \land 和 \lor 运算符号的公式,则:
$$\neg G(P_1, P_2, \dots, P_n) \Leftrightarrow G^*(\neg P_1, \neg P_2, \dots, \neg P_n)$$

Proof (对公式的递归结构用归纳法).

- Base: if G是P, T, F, 则原恒等式成立;
- ② 设 $G(P_1, P_2, \dots, P_n) = A(P_1, P_2, \dots, P_n) \land B(P_1, P_2, \dots, P_n)$, 并且, A和B满足上述恒等式; 则: $\neg G(P_1, P_2, \dots, P_n)$

$$= \neg (A(P_1, P_2, \dots, P_n) \land B(P_1, P_2, \dots, P_n))$$

(假设)

- $\Leftrightarrow A^*(\neg P_1, \neg P_2, \dots, \neg P_n) \vee B^*(\neg P_1, \neg P_2, \dots, \neg P_n)$
 - P2,...,¬Pn) (归纲仮及)

- $= G^*(\neg P_1, \neg P_2, \ldots, \neg P_n)$
- The Control Aventually
- ③ 同理对: $G = \neg A \rightarrow G = A \lor B$ 有相同的结论.

Theorem

设
$$G(P_1, P_2, ..., P_n)$$
是一个仅含有 \neg , \land 和 \lor 运算符号的公式,则:
$$\neg G(P_1, P_2, ..., P_n) \Leftrightarrow G^*(\neg P_1, \neg P_2, ..., \neg P_n)$$

Proof (对公式的递归结构用归纳法).

- Base: if G是P, T, F, 则原恒等式成立;
- ② 设 $G(P_1, P_2, ..., P_n) = A(P_1, P_2, ..., P_n) \land B(P_1, P_2, ..., P_n)$, 并且, A和B满足上述恒等式; 则:

$$\neg G(P_1, P_2, ..., P_n) = \neg (A(P_1, P_2, ..., P_n) \land B(P_1, P_2, ..., P_n))$$
(假设)

$$\Leftrightarrow \neg A(P_1, P_2, \dots, P_n) \vee \neg B(P_1, P_2, \dots, P_n)$$
 (De Morgan)

$$\Leftrightarrow A^*(\neg P_1, \neg P_2, \ldots, \neg P_n) \vee B^*(\neg P_1, \neg P_2, \ldots, \neg P_n)$$

$$= (A(\neg P_1, \neg P_2, \dots, \neg P_n) \land B(\neg P_1, \neg P_2, \dots, \neg P_n))$$
 (£

$$=G^*(\neg P_1, \neg P_2, \ldots, \neg P_n)$$

③ 同理对: $G = \neg A \pi G = A \vee B$ 有相同的结论.

Theorem

设
$$G(P_1, P_2, ..., P_n)$$
是一个仅含有 \neg , \land 和 \lor 运算符号的公式,则:
$$\neg G(P_1, P_2, ..., P_n) \Leftrightarrow G^*(\neg P_1, \neg P_2, ..., \neg P_n)$$

Proof (对公式的递归结构用归纳法).

- Base: if G是P, T, F, 则原恒等式成立;
- ② 设 $G(P_1, P_2, \dots, P_n) = A(P_1, P_2, \dots, P_n) \land B(P_1, P_2, \dots, P_n)$, 并且, A和B满足上述恒等式; 则:

$$\neg G(P_1, P_2, \dots, P_n)$$

$$= \neg (A(P_1, P_2, \dots, P_n) \land B(P_1, P_2, \dots, P_n)) \tag{@\emptyset}$$

$$\Leftrightarrow \neg A(P_1, P_2, \dots, P_n) \lor \neg B(P_1, P_2, \dots, P_n)$$
 (De Morgan)

$$\Leftrightarrow A^*(\neg P_1, \neg P_2, \dots, \neg P_n) \vee B^*(\neg P_1, \neg P_2, \dots, \neg P_n) \qquad (\mu)$$

$$=(A(\neg P_1, \neg P_2, \ldots, \neg P_n) \land B(\neg P_1, \neg P_2, \ldots, \neg P_n))^*$$

$$= G^*(\neg P_1, \neg P_2, \ldots, \neg P_n)$$

⑤ 同理对: $G = \neg A \rightarrow G = A \lor B$ 有相同的结论.

Theorem

设
$$G(P_1, P_2, ..., P_n)$$
是一个仅含有 \neg , \land 和 \lor 运算符号的公式,则:
$$\neg G(P_1, P_2, ..., P_n) \Leftrightarrow G^*(\neg P_1, \neg P_2, ..., \neg P_n)$$

Proof (对公式的递归结构用归纳法).

- Base: if G是P, T, F, 则原恒等式成立;
- ② 设 $G(P_1, P_2, ..., P_n) = A(P_1, P_2, ..., P_n) \land B(P_1, P_2, ..., P_n)$, 并且, A和B满足上述恒等式; 则: $\neg G(P_1, P_2, ..., P_n)$ $= \neg (A(P_1, P_2, ..., P_n) \land B(P_1, P_2, ..., P_n))$ (假设) $\Leftrightarrow \neg A(P_1, P_2, ..., P_n) \lor \neg B(P_1, P_2, ..., P_n)$ (De Morgan) $\Leftrightarrow A^*(\neg P_1, \neg P_2, ..., \neg P_n) \lor B^*(\neg P_1, \neg P_2, ..., \neg P_n)$ (归纳假设) $= (A(\neg P_1, \neg P_2, ..., \neg P_n) \land B(\neg P_1, \neg P_2, ..., \neg P_n))^*$ (定义)
 - $=G^*(\neg P_1, \neg P_2, \ldots, \neg P_n)$
- ③ 同理对: $G = \neg A \pi G = A \lor B$ 有相同的结论

Theorem

设
$$G(P_1, P_2, \dots, P_n)$$
是一个仅含有 \neg , \land 和 \lor 运算符号的公式,则:
$$\neg G(P_1, P_2, \dots, P_n) \Leftrightarrow G^*(\neg P_1, \neg P_2, \dots, \neg P_n)$$

Proof (对公式的递归结构用归纳法).

- Base: if G是P, T, F,则原恒等式成立;
- ② 设 $G(P_1, P_2, ..., P_n) = A(P_1, P_2, ..., P_n) \land B(P_1, P_2, ..., P_n)$, 并且, $A \Rightarrow B$ 满足上述恒等式; 则: $\neg G(P_1, P_2, ..., P_n)$ $= \neg (A(P_1, P_2, ..., P_n) \land B(P_1, P_2, ..., P_n))$ (假设) $\Leftrightarrow \neg A(P_1, P_2, ..., P_n) \lor \neg B(P_1, P_2, ..., P_n)$ (De Morgan) $\Leftrightarrow A^*(\neg P_1, \neg P_2, ..., \neg P_n) \lor B^*(\neg P_1, \neg P_2, ..., \neg P_n)$ (归纳假设) $= (A(\neg P_1, \neg P_2, ..., \neg P_n) \land B(\neg P_1, \neg P_2, ..., \neg P_n))^*$ (定义)

$$= G^*(\neg P_1, \neg P_2, \dots, \neg P_n)$$

③ 同理对: $G = \neg A \pi G = A \vee B$ 有相同的结论

Theorem

设
$$G(P_1, P_2, \dots, P_n)$$
是一个仅含有 \neg , \land 和 \lor 运算符号的公式,则:
$$\neg G(P_1, P_2, \dots, P_n) \Leftrightarrow G^*(\neg P_1, \neg P_2, \dots, \neg P_n)$$

Proof (对公式的递归结构用归纳法).

- Base: if G是P, T, F, 则原恒等式成立;
- ② 设 $G(P_1, P_2, ..., P_n) = A(P_1, P_2, ..., P_n) \land B(P_1, P_2, ..., P_n)$,并且, A和B满足上述恒等式; 则: $\neg G(P_1, P_2, ..., P_n)$ $= \neg (A(P_1, P_2, ..., P_n) \land B(P_1, P_2, ..., P_n))$ (假设) $\Leftrightarrow \neg A(P_1, P_2, ..., P_n) \lor \neg B(P_1, P_2, ..., P_n)$ (De Morgan) $\Leftrightarrow A^*(\neg P_1, \neg P_2, ..., \neg P_n) \lor B^*(\neg P_1, \neg P_2, ..., \neg P_n)$ (归纳假设) $= (A(\neg P_1, \neg P_2, ..., \neg P_n) \land B(\neg P_1, \neg P_2, ..., \neg P_n))^*$ (定义) $= G^*(\neg P_1, \neg P_2, ..., \neg P_n)$
- ③ 同理对: $G = \neg A \rightarrow G = A \lor B$ 有相同的结论.

相关推论(1/2)

Theorem

设F和G是仅含有¬, ∧和V运算符号的公式; 则:

 $F \Leftrightarrow G$ iff $F^* \Leftrightarrow G^*$

设F和G是仅含有¬, ∧和V运算符号的公式; 则:

 $F \Leftrightarrow G$ iff $F^* \Leftrightarrow G^*$

Proof.

```
F \Leftrightarrow G
```

iff $F^*(\neg P_1, \neg P_2, \dots, \neg P_n) \Leftrightarrow G^*(\neg P_1, \neg P_2, \dots, \neg P_n)$ (广义De Morgan iff $F^*(\neg \neg P_1, \neg \neg P_2, \dots, \neg \neg P_n) \Leftrightarrow G^*(\neg \neg P_1, \neg \neg P_2, \dots, \neg \neg P_n)$ (代入)

 $iff \ F^*(P_1, P_2, \dots, P_n) \Leftrightarrow G^*(P_1, P_2, \dots, P_n)$ (双重否定)

设F和G是仅含有¬, ∧和∨运算符号的公式; 则:

 $F \Leftrightarrow G$ iff $F^* \Leftrightarrow G^*$

$$F \Leftrightarrow G$$

iff
$$\neg F \Leftrightarrow \neg G$$

iff
$$F^*(\neg P_1, \neg P_2, \dots, \neg P_n) \Leftrightarrow G^*(\neg P_1, \neg P_2, \dots, \neg P_n)$$
 (产义De Morgan iff $F^*(\neg P_1, \neg P_2, \dots, \neg P_n) \Leftrightarrow G^*(\neg P_1, \neg P_2, \dots, \neg P_n)$ (代入)

设F和G是仅含有¬, ∧和V运算符号的公式; 则:

 $F \Leftrightarrow G$ iff $F^* \Leftrightarrow G^*$

Proof.

$$F \Leftrightarrow G$$
$$iff \neg F \Leftrightarrow \neg G$$

iff $F^*(\neg P_1, \neg P_2, \dots, \neg P_n) \Leftrightarrow G^*(\neg P_1, \neg P_2, \dots, \neg P_n)$ (广义De Morga iff $F^*(\neg P_1, \neg P_2, \dots, \neg P_n)$ (承入

iff $F^*(P_1, P_2, \dots, P_n) \Leftrightarrow G^*(P_1, P_2, \dots, P_n)$ (双重否定)

设F和G是仅含有¬, ∧和∨运算符号的公式; 则:

 $F \Leftrightarrow G$ iff $F^* \Leftrightarrow G^*$

$$F\Leftrightarrow G$$
iff $\neg F\Leftrightarrow \neg G$
iff $F^*(\neg P_1, \neg P_2, \dots, \neg P_n)\Leftrightarrow G^*(\neg P_1, \neg P_2, \dots, \neg P_n)$ (广义De Morgan)
iff $F^*(\neg P_1, \neg P_2, \dots, \neg P_n)\Leftrightarrow G^*(\neg P_1, \neg P_2, \dots, \neg P_n)$ (代入)
iff $F^*(P_1, P_2, \dots, P_n)\Leftrightarrow G^*(P_1, P_2, \dots, P_n)$ (双重否定)

设F和G是仅含有¬, ∧和∨运算符号的公式; 则:

 $F \Leftrightarrow G$ iff $F^* \Leftrightarrow G^*$

$$F \Leftrightarrow G$$
iff $\neg F \Leftrightarrow \neg G$

iff
$$F^*(\neg P_1, \neg P_2, \dots, \neg P_n) \Leftrightarrow G^*(\neg P_1, \neg P_2, \dots, \neg P_n)$$
 (广义De Morgan) iff $F^*(\neg P_1, \neg P_2, \dots, \neg P_n) \Leftrightarrow G^*(\neg P_1, \neg P_2, \dots, \neg P_n)$ (代入)

命题逻辑

设F和G是仅含有¬,∧和V运算符号的公式;则:

$$F \Leftrightarrow G$$
 iff $F^* \Leftrightarrow G^*$

$$\begin{array}{c} F\Leftrightarrow G\\ \textit{iff} \ \neg F\Leftrightarrow \neg G\\ \textit{iff} \ F^*(\neg P_1, \neg P_2, \ldots, \neg P_n)\Leftrightarrow G^*(\neg P_1, \neg P_2, \ldots, \neg P_n) \ (广义De\ Morgan)\\ \textit{iff} \ F^*(\neg \neg P_1, \neg \neg P_2, \ldots, \neg \neg P_n)\Leftrightarrow G^*(\neg \neg P_1, \neg \neg P_2, \ldots, \neg \neg P_n) \ (代入)\\ \textit{iff} \ F^*(P_1, P_2, \ldots, P_n)\Leftrightarrow G^*(P_1, P_2, \ldots, P_n) \end{array}$$
 (双重否定)

设F和G是仅含有¬, ∧和V运算符号的公式; 则:

 $F \Rightarrow G$ iff $G^* \Rightarrow F^*$

Proof

设F和G是仅含有¬, ∧和∨运算符号的公式; 则:

 $F \Rightarrow G$ iff $G^* \Rightarrow F^*$

设F和G是仅含有¬, ∧和∨运算符号的公式; 则:

 $F \Rightarrow G$ iff $G^* \Rightarrow F^*$

Proof.

 $F \Rightarrow G$

4 □ → 4 □ → 4 □ → 4 □ →

设F和G是仅含有¬, ∧和∨运算符号的公式; 则:

$$F \Rightarrow G$$
 iff $G^* \Rightarrow F^*$

$$F \Rightarrow G$$

iff
$$\neg G \Rightarrow \neg F$$

iff
$$\neg G \rightarrow \neg F \Leftrightarrow \mathbb{T}$$

iff
$$G^*(\neg P_1, \neg P_2, \dots, \neg P_n) \to F^*(\neg P_1, \neg P_2, \dots, \neg P_n) \Leftrightarrow \mathbb{T}(f \times De Morgan)$$

$$Iff G^*(\neg\neg P_1, \neg\neg P_2, \dots, \neg\neg P_n) \to F^*(\neg\neg P_1, \neg\neg P_2, \dots, \neg\neg P_n) \Leftrightarrow \mathbb{T} (\mathcal{K}\Delta)$$

$$:(\mathcal{C}^* \to \Gamma^* \to \Gamma^*) \wedge \mathbb{T}$$

iff
$$G^* o F^*\Leftrightarrow \mathbb{T}$$
 (双重否定₎

$$\mathcal{F}|G^*\Rightarrow F^*$$
 (定り

设F和G是仅含有¬, ∧和∨运算符号的公式; 则:

$$F \Rightarrow G$$
 iff $G^* \Rightarrow F^*$

$$F \Rightarrow G$$

iff
$$\neg G \Rightarrow \neg F$$

iff
$$\neg G \rightarrow \neg F \Leftrightarrow \mathbb{T}$$

iff
$$G^*(\neg P_1, \neg P_2, \dots, \neg P_n) \to F^*(\neg P_1, \neg P_2, \dots, \neg P_n) \Leftrightarrow \mathbb{T}$$
 (广义De Morgan

iff
$$C^* \to F^* \to \mathbb{T}$$
 (2,511)

$$(X \supseteq C \subset X) \longrightarrow (X \supseteq C \subset X)$$

设F和G是仅含有¬, ∧和∨运算符号的公式; 则:

$$F \Rightarrow G$$
 iff $G^* \Rightarrow F^*$

$$F \Rightarrow G$$

iff
$$\neg G \Rightarrow \neg F$$

iff
$$\neg G \rightarrow \neg F \Leftrightarrow \mathbb{T}$$

$$III \neg G \rightarrow \neg F \Leftrightarrow \mathbb{I}$$

iff
$$G^*(\neg P_1, \neg P_2, \dots, \neg P_n) \to F^*(\neg P_1, \neg P_2, \dots, \neg P_n) \Leftrightarrow \mathbb{T}$$
 (广义De Morgan)

$$iff G^* \to F^* \Leftrightarrow \mathbb{T} \qquad (\text{奴重否定})$$

iff
$$G^* \Rightarrow F^*$$
 (定义)

设F和G是仅含有¬, ∧和V运算符号的公式;则:

$$F \Rightarrow G$$
 iff $G^* \Rightarrow F^*$

Proof.

$$F \Rightarrow G$$
iff $\neg G \Rightarrow \neg F$
iff $\neg G \rightarrow \neg F \Leftrightarrow \mathbb{T}$
iff $G^*(\neg P_1, \neg P_2, \dots, \neg P_n) \rightarrow F^*(\neg P_1, \neg P_2, \dots, \neg P_n) \Leftrightarrow \mathbb{T}$ (广义De Morgan)
iff $G^*(\neg P_1, \neg P_2, \dots, \neg P_n) \rightarrow F^*(\neg P_1, \neg P_2, \dots, \neg P_n) \Leftrightarrow \mathbb{T}$ (代入)

iff $G^* \Rightarrow F^*$ (定义

设F和G是仅含有¬, ∧和∨运算符号的公式; 则:

$$F \Rightarrow G$$
 iff $G^* \Rightarrow F^*$

$$F \Rightarrow G$$

iff
$$\neg G \Rightarrow \neg F$$

iff
$$\neg G \rightarrow \neg F \Leftrightarrow \mathbb{T}$$

$$III \neg G \rightarrow \neg F \Leftrightarrow \mathbb{I}$$

iff
$$G^*(\neg P_1, \neg P_2, \dots, \neg P_n) \to F^*(\neg P_1, \neg P_2, \dots, \neg P_n) \Leftrightarrow \mathbb{T}$$
 (广义De Morgan)

$$\begin{array}{ll} \textit{iff } G^*(\neg\neg P_1,\neg\neg P_2,\ldots,\neg\neg P_n) \to F^*(\neg\neg P_1,\neg\neg P_2,\ldots,\neg\neg P_n) \Leftrightarrow \mathbb{T} & (代入) \\ \textit{iff } G^* \to F^* \Leftrightarrow \mathbb{T} & (双重否定) \end{array}$$

$$IH G^* \to F^* \Leftrightarrow \mathbb{T}$$
 (\$\text{X}\$)

设F和G是仅含有¬, ∧和V运算符号的公式; 则:

$$F \Rightarrow G$$
 iff $G^* \Rightarrow F^*$

$$\begin{array}{l} F \Rightarrow G \\ \textit{iff} \ \neg G \Rightarrow \neg F \\ \textit{iff} \ \neg G \rightarrow \neg F \Leftrightarrow \mathbb{T} \\ \textit{iff} \ G^*(\neg P_1, \neg P_2, \ldots, \neg P_n) \rightarrow F^*(\neg P_1, \neg P_2, \ldots, \neg P_n) \Leftrightarrow \mathbb{T} \ (\mathring{\Gamma} \ \& \text{De Morgan}) \\ \textit{iff} \ G^*(\neg P_1, \neg \neg P_2, \ldots, \neg \neg P_n) \rightarrow F^*(\neg P_1, \neg \neg P_2, \ldots, \neg \neg P_n) \Leftrightarrow \mathbb{T} \ (\mathcal{K} \ \land) \\ \textit{iff} \ G^* \rightarrow F^* \Leftrightarrow \mathbb{T} \qquad \qquad (双重否定) \\ \textit{iff} \ G^* \Rightarrow F^* \qquad \qquad (定义) \end{array}$$

范式和基本定理

命题逻辑

- 命题
- 符号化
- 合式公式的形式文法
- 合式公式的形式语义
- 2 公式之间的关系
 - 公式的语义性质
 - 逻辑等价
 - 永真蕴涵关系
 - 恒等变换与不等变换
 - 对偶性
- ③ 范式和基本定理
 - 极大项
 - 主合取范式
 - 主析取范式
 - 联结词的扩充与规约
- 4 推理和证明方法
 - 有效结论
 - 自然推理的形式证明
 - 证明方法

Remark (n个原子的公式共有220个不同的运算)

- 一元运算: 2²¹ = 4个: 恒等, 恒为1, 恒为0, 否定;
- ② 二元运算: $2^{2^2} = 16$ 个, 恒为1, 恒为0, \land , \lor , \rightarrow , \leftrightarrow , ...
- 在数字电路和程序设计中还常用到一些二元逻辑运算, 称为 对联结词的扩充。

Remark (n个原子的公式共有220个不同的运算)

- 一元运算: 2²¹ = 4个: 恒等, 恒为1, 恒为0, 否定;
- ② 二元运算: $2^{2^2} = 16$ 个, 恒为1, 恒为0, \land , \lor , \rightarrow , \leftrightarrow , ...
- 在数字电路和程序设计中还常用到一些二元逻辑运算, 称为 对联结词的扩充.

Remark (n个原子的公式共有220个不同的运算)

- 一元运算: 2²¹ = 4个: 恒等, 恒为1, 恒为0, 否定;
- ② 二元运算: 2²² = 16个, 恒为1, 恒为0, ∧, ∨, →, ↔, ...
- 在数字电路和程序设计中还常用到一些二元逻辑运算, 称为 对联结词的扩充.

Remark (n个原子的公式共有22"个不同的运算)

- 一元运算: 2²¹ = 4个: 恒等, 恒为1, 恒为0, 否定;
- ② 二元运算: $2^{2^2} = 16$ 个, 恒为1, 恒为0, \land , \lor , \rightarrow , \leftrightarrow , ...
- ◎ 在数字电路和程序设计中还常用到一些二元逻辑运算, 称为 对联结词的扩充.

Remark (n个原子的公式共有220个不同的运算)

- 一元运算: 2²¹ = 4个: 恒等, 恒为1, 恒为0, 否定;
- ② 二元运算: $2^{2^2} = 16$ 个, 恒为1, 恒为0, \land , \lor , \rightarrow , \leftrightarrow , ...
- ③ 在数字电路和程序设计中还常用到一些二元逻辑运算, 称为 对联结词的扩充.

		与非(NAND)	或非(NOR)	异或(XOR)
P	Q	$P \uparrow Q$	$P \downarrow Q$	$P \oplus Q$
0	0	1	1	0
0	1	1	0	1
1	0	1	0	1
1	1	0	0	0
等价式		$\neg (P \land Q)$	$\neg (P \lor Q)$	$(P \land \neg Q) \lor (\neg P \land Q)$

程序设计中的位运算

C语言的位运算(bitwise operator):

~(取否), &(合取), |(析取), ^(异或), <<(左位移), >>(右位移)

程序设计中的位运算

Example

C语言的位运算(bitwise operator):

~(取否), &(合取), |(析取), ^(异或), <<(左位移), >>(右位移)

程序设计中的位运算

Example

C语言的位运算(bitwise operator):

~(取否), &(合取), |(析取), ^(异或), <<(左位移), >>(右位移)

程序设计中的位运算

Example

C语言的位运算(bitwise operator):

~(取否), &(合取), |(析取), ^(异或), <<(左位移), >>(右位移)

程序设计中的位运算

Example

C语言的位运算(bitwise operator):

~(取否), &(合取), |(析取), ^(异或), <<(左位移), >>(右位移)

计算正数二进制表示中1出现的次数

```
int cardinal(unsigned long x)
  int count = 0;
  while (x != (unsigned long) 0) {
    x = x & -x;
    count++;
  return count;
```

命题逻辑

Definition

- 一个联结词的集合是全功能的, iff, 所有的运算均能用该集合中的联结词表示;
- 极小全功能联结词集合, iff, 该集合中删除任意的一个后不再 是全功能的.

Definition

- 一个联结词的集合是全功能的, iff, 所有的运算均能用该集 合中的联结词表示;
 - 极小全功能联结词集合, iff, 该集合中删除任意的一个后不再 是全功能的.

Definition

- 一个联结词的集合是全功能的, iff, 所有的运算均能用该集 合中的联结词表示;
- 极小全功能联结词集合, iff, 该集合中删除任意的一个后不再 是全功能的.

Definition

- 一个联结词的集合是全功能的, iff, 所有的运算均能用该集合中的联结词表示;
- 极小全功能联结词集合, iff, 该集合中删除任意的一个后不再 是全功能的.

- {¬,∧,∨}是全功能的;
- {¬,∧}和{¬,∨}是极小全功能的;
- \bullet {¬,→}是极小全功能的;
- {¬,↔}不是全功能的,因为: ↔ +¬永远只能有偶数个成假
 - 指派;
- {∧, ∨}不是全功能的,因为: ∧ + ∨的组合中面对每个原子都
 - 取直值的指派只能取直.

Definition

- 一个联结词的集合是全功能的, iff, 所有的运算均能用该集合中的联结词表示;
- 极小全功能联结词集合, iff, 该集合中删除任意的一个后不再 是全功能的.

- {¬,∧,∨}是全功能的;
- {¬,∧}和{¬,∨}是极小全功能的;
- {¬,→}是极小全功能的;
- $\{\neg, \leftrightarrow\}$ 不是全功能的,因为: $\leftrightarrow + \neg$ 永远只能有偶数个成假
 - 指派;
- {Λ,V}不是全功能的,因为: Λ + V的组合中面对每个原子都
- 取真值的指派只能取真.

Definition

- 一个联结词的集合是全功能的, iff, 所有的运算均能用该集合中的联结词表示;
- 极小全功能联结词集合, iff, 该集合中删除任意的一个后不再 是全功能的.

- {¬,∧,∨}是全功能的;
- {¬,∧}和{¬,∨}是极小全功能的;
- {¬,→}是极小全功能的:
- $\{\neg, \leftrightarrow\}$ 不是全功能的,因为: \leftrightarrow +¬永远只能有偶数个成假指派;
- {Λ,V}不是全功能的,因为: Λ + V的组合中面对每个原子都
 - 取真值的指派只能取真.

Definition

- 一个联结词的集合是全功能的, iff, 所有的运算均能用该集合中的联结词表示;
- 极小全功能联结词集合, iff, 该集合中删除任意的一个后不再 是全功能的.

- {¬,∧,∨}是全功能的;
- {¬,∧}和{¬,∨}是极小全功能的;
- {¬,→}是极小全功能的;
- {¬,↔}不是全功能的,因为: ↔ +¬永远只能有偶数个成假 指派;
- {∧,∨}不是全功能的,因为: ∧ + ∨的组合中面对每个原子都 取真值的指派只能取真.

Definition

- 一个联结词的集合是全功能的, iff, 所有的运算均能用该集 合中的联结词表示;
- 极小全功能联结词集合, iff, 该集合中删除任意的一个后不再 是全功能的.

- {¬,∧,∨}是全功能的;
- {¬,∧}和{¬,∨}是极小全功能的;

公式之间的关系

- $\{\neg, \rightarrow\}$ 是极小全功能的;
- $\{\neg, \leftrightarrow\}$ 不是全功能的,因为: \leftrightarrow +¬永远只能有偶数个成假 指派;

命题逻辑

Definition

- 一个联结词的集合是全功能的, iff, 所有的运算均能用该集合中的联结词表示;
- 极小全功能联结词集合, iff, 该集合中删除任意的一个后不再 是全功能的.

- {¬,∧,∨}是全功能的;
- {¬,∧}和{¬,∨}是极小全功能的;
- {¬,→}是极小全功能的;
- $\{\neg, \leftrightarrow\}$ 不是全功能的,因为: \leftrightarrow +¬永远只能有偶数个成假指派;
- $\{\land,\lor\}$ 不是全功能的,因为: \land + \lor 的组合中面对每个原子都取真值的指派只能取真.

Example ({ | } 是全功能的)

Example ({ | } 是全功能的)

Example ({ | } 是全功能的)

- $\bigcirc \neg P \Leftrightarrow P \downarrow P;$
- ③ 考虑P→Q:

Example ({ \} 是全功能的)

- $\bullet P \downarrow Q \Leftrightarrow \neg (P \lor Q);$
- $\bigcirc \neg P \Leftrightarrow P \downarrow P$
- 3 考虑P→Q:

$$P \rightarrow Q$$
 $\Rightarrow \neg P \lor Q$

$$\Leftrightarrow \neg \underline{\neg ((P \downarrow P) \lor Q)}$$

$$\Leftrightarrow \neg((P \downarrow P) \downarrow Q)$$

$$\Leftrightarrow ((P \downarrow P) \downarrow Q) \downarrow ((P \downarrow P) \downarrow Q)$$

Example ({ \} 是全功能的)

$$\bullet P \downarrow Q \Leftrightarrow \neg (P \lor Q);$$

$$\bigcirc \neg P \Leftrightarrow P \downarrow P;$$

$$P \rightarrow Q$$

$$\Leftrightarrow \neg P \lor Q$$

$$\Leftrightarrow \neg\neg((P \mid P))$$

$$\Leftrightarrow \neg \overline{((P \downarrow P) \downarrow Q)}$$

$$A ((P \mid P) \mid O) \mid$$

4□ > 4周 > 4 = > 4 = > ■ 900

Example ({↓}是全功能的)

 $\bullet P \downarrow Q \Leftrightarrow \neg (P \lor Q);$

$$\bigcirc \neg P \Leftrightarrow P \downarrow P$$

3 考虑P→Q:

$$P \to Q$$

$$\Leftrightarrow \neg P \lor Q$$

$$\Leftrightarrow \neg \neg ((P \downarrow P) \lor Q)$$

$$\Leftrightarrow \neg \overline{((P \downarrow P) \downarrow Q)}$$

Example ({↓}是全功能的)

- $\bullet P \downarrow Q \Leftrightarrow \neg (P \lor Q);$
- $\bigcirc \neg P \Leftrightarrow P \downarrow P;$
- 3 考虑P→Q:

$$P \to Q$$

$$\Leftrightarrow \neg P \lor Q$$

$$\Leftrightarrow \neg \neg ((P \downarrow P) \lor Q)$$

$$\Leftrightarrow \neg ((P \downarrow P) \downarrow Q)$$

4□ > 4周 > 4 = > 4 = > ■ 900

Example ({↓}是全功能的)

- $\bigcirc \neg P \Leftrightarrow P \downarrow P;$
- 3 考虑P→Q:

$$P \to Q$$

$$\Leftrightarrow \neg P \lor Q$$

$$\Leftrightarrow \neg \neg ((P \downarrow P) \lor Q)$$

$$\Leftrightarrow \neg ((P \downarrow P) \downarrow Q)$$

$$\Leftrightarrow ((P \downarrow P) \downarrow Q) \downarrow ((P \downarrow P) \downarrow Q)$$

- 1 命题逻辑
 - 命题
 - 符号化
 - 合式公式的形式文法
 - 合式公式的形式语义
- 2 公式之间的关系
 - 公式的语义性质
 - 逻辑等价
 - 永真蕴涵关系
 - 恒等变换与不等变换
 - 对偶性
- ③ 范式和基本定理
 - 极大项
 - 主合取范式
 - 主析取范式
 - 联结词的扩充与规约
- 4 推理和证明方法
 - 有效结论
 - 自然推理的形式证明
 - 证明方法

有效结论

Definition

设 H_1, H_2, \ldots, H_n , C是公式, 称C是 H_1, H_2, \ldots, H_n 的有效结论(Valide consequence), iff, 对任意的指派I, 如果, $I(H_1 \land H_2 \land \cdots \land H_n) = 1$, 则: I(C) = 1. 记为: $H_1, H_2, ..., H_n \vdash C$.

Definition

设 H_1, H_2, \ldots, H_n , C是公式, 称C是 H_1, H_2, \ldots, H_n 的有效结论(Valide consequence), iff, 对任意的指派I, 如果, $I(H_1 \land H_2 \land \cdots \land H_n) = 1$, 则: I(C) = 1. 记为: $H_1, H_2, ..., H_n \vdash C$.

Theorem

命题逻辑

Definition

设 H_1, H_2, \ldots, H_n , C是公式, 称C是 H_1, H_2, \ldots, H_n 的有效结论(Valide consequence), iff, 对任意的指派I, 如果, $I(H_1 \land H_2 \land \cdots \land H_n) = 1$, 则: I(C) = 1. 记为: $H_1, H_2, ..., H_n \vdash C$.

Theorem

有效结论

命题逻辑

Definition

设 H_1, H_2, \ldots, H_n , C是公式, 称C是 H_1, H_2, \ldots, H_n 的有效结论(Valide consequence), iff, 对任意的指派I, 如果, $I(H_1 \land H_2 \land \cdots \land H_n) = 1$, 则: I(C) = 1. 记为: $H_1, H_2, ..., H_n \vdash C$.

Theorem

- ② $(H_1 \land H_2 \land \cdots \land H_n) \rightarrow C$ 是重言式;

命题逻辑

Definition

设 H_1, H_2, \ldots, H_n , C是公式, 称C是 H_1, H_2, \ldots, H_n 的有效结论(Valide consequence), iff, 对任意的指派I, 如果, $I(H_1 \land H_2 \land \cdots \land H_n) = 1$, 则: I(C) = 1. 记为: $H_1, H_2, ..., H_n \vdash C$.

Theorem

- \bullet $H_1, H_2, \ldots, H_n \vdash C$:
- ② $(H_1 \land H_2 \land \cdots \land H_n) \rightarrow C$ 是重言式;

命题逻辑

Definition

设 H_1, H_2, \ldots, H_n , C是公式, 称C是 H_1, H_2, \ldots, H_n 的有效结论(Valide consequence), iff, 对任意的指派I, 如果, $I(H_1 \land H_2 \land \cdots \land H_n) = 1$, 则: I(C) = 1. 记为: $H_1, H_2, ..., H_n \vdash C$.

Theorem

- \bullet $H_1, H_2, \ldots, H_n \vdash C$:
- ② $(H_1 \land H_2 \land \cdots \land H_n) \rightarrow C$ 是重言式;
- **4** ¬(($H_1 \land H_2 \land \cdots \land H_n$) → C) 是矛盾式;

有效结论

命题逻辑

Definition

设 H_1, H_2, \ldots, H_n , C是公式, 称C是 H_1, H_2, \ldots, H_n 的有效结论(Valide consequence), iff, 对任意的指派I, 如果, $I(H_1 \land H_2 \land \cdots \land H_n) = 1$, 则: I(C) = 1. 记为: $H_1, H_2, ..., H_n \vdash C$.

Theorem

- ② $(H_1 \land H_2 \land \cdots \land H_n) \rightarrow C$ 是重言式;
- **4** ¬(($H_1 \land H_2 \land \cdots \land H_n$) → C) 是矛盾式;
- ⑤ H₁ ∧ H₂ ∧ · · · ∧ H₂ ∧ ¬C是矛盾式:

命题逻辑

Definition

设 H_1, H_2, \ldots, H_n , C是公式, 称C是 H_1, H_2, \ldots, H_n 的有效结论(Valide consequence), iff, 对任意的指派I, 如果, $I(H_1 \land H_2 \land \cdots \land H_n) = 1$, 则: I(C) = 1. 记为: $H_1, H_2, ..., H_n \vdash C$.

Theorem

- ② $(H_1 \land H_2 \land \cdots \land H_n) \rightarrow C$ 是重言式;
- **4** ¬(($H_1 \land H_2 \land \cdots \land H_n$) → C) 是矛盾式;
- ⑤ H₁ ∧ H₂ ∧ · · · ∧ H₂ ∧ ¬C是矛盾式:
- **⑥** $(H_1 \land H_2 \land \cdots \land H_n \land \neg C) \rightarrow \mathbb{F}$ 是永真;

命题逻辑

Definition

设 H_1, H_2, \ldots, H_n , C是公式, 称C是 H_1, H_2, \ldots, H_n 的有效结论(Valide consequence), iff, 对任意的指派I, 如果, $I(H_1 \land H_2 \land \cdots \land H_n) = 1$, 则: I(C) = 1. 记为: $H_1, H_2, ..., H_n \vdash C$.

Theorem

- ② $(H_1 \land H_2 \land \cdots \land H_n) \rightarrow C$ 是重言式;
- **4** ¬(($H_1 \land H_2 \land \cdots \land H_n$) → C) 是矛盾式;
- ⑤ H₁ ∧ H₂ ∧ · · · ∧ H₂ ∧ ¬C是矛盾式:
- **⑥** $(H_1 \land H_2 \land \cdots \land H_n \land \neg C) \rightarrow \mathbb{F}$ 是永真;
- $(H_1 \wedge H_2 \wedge \cdots \wedge H_n \wedge \neg C) \Rightarrow \mathbb{F}.$

A, B, C和D参加球赛: 条件如下:

A参加,则B或C也参加 $H_1 = A \rightarrow B \lor C$

B参加、则A不参加 $H_2 = B \rightarrow \neg A$

D参加,则C不参加 $H_3 = D \rightarrow \neg C$

证明: "如果A参加,则D不参加"($A \rightarrow \neg D$)是上述条件的有效结论.

命题逻辑

A. B. C和D参加球赛:条件如下:

A参加、则B或C也参加 $H_1 = A \rightarrow B \lor C$

B参加、则A不参加 $H_2 = B \rightarrow \neg A$

D 参加、则 C 不 参加 $H_3 = D \rightarrow \neg C$

证明: "如果A参加,则D不参加"($A \rightarrow \neg D$)是上述条件的有效结论.

方法1.

 $(A \to B \lor C) \land (B \to \neg A) \land (D \to \neg C) \Rightarrow (A \to \neg D)$ Equivalent to:

命题逻辑

A. B. C和D参加球赛:条件如下:

A参加、则B或C也参加 $H_1 = A \rightarrow B \lor C$

B参加、则A不参加 $H_2 = B \rightarrow \neg A$

D 参加、则 C 不 参加 $H_3 = D \rightarrow \neg C$

证明: "如果A参加,则D不参加"($A \rightarrow \neg D$)是上述条件的有效结论.

方法1.

Equivalent to: $(A \to B \lor C) \land (B \to \neg A) \land (D \to \neg C) \Rightarrow (A \to \neg D)$

 $(A \rightarrow B \lor C) \land (\underline{B} \rightarrow \neg A) \land (D \rightarrow \neg C)$

命题逻辑

A. B. C和D参加球赛:条件如下:

A参加、则B或C也参加 $H_1 = A \rightarrow B \lor C$

B参加、则A不参加 $H_2 = B \rightarrow \neg A$ D 参加、则 C 不 参加 $H_3 = D \rightarrow \neg C$

证明: "如果A参加,则D不参加"($A \rightarrow \neg D$)是上述条件的有效结论.

方法1.

Equivalent to: $(A \to B \lor C) \land (B \to \neg A) \land (D \to \neg C) \Rightarrow (A \to \neg D)$

 $(A \rightarrow B \lor C) \land (B \rightarrow \neg A) \land (D \rightarrow \neg C)$

1 \Leftrightarrow $(A \rightarrow B \lor C) \land (A \rightarrow \neg B) \land (D \rightarrow \neg C)$

命题逻辑

A. B. C和D参加球赛:条件如下:

A参加、则B或C也参加 $H_1 = A \rightarrow B \lor C$

B参加、则A不参加 $H_2 = B \rightarrow \neg A$

D 参加、则 C 不 参加 $H_3 = D \rightarrow \neg C$

证明: "如果A参加,则D不参加"($A \rightarrow \neg D$)是上述条件的有效结论.

方法1.

Equivalent to: $(A \to B \lor C) \land (B \to \neg A) \land (D \to \neg C) \Rightarrow (A \to \neg D)$

 $(A \rightarrow B \lor C) \land (B \rightarrow \neg A) \land (D \rightarrow \neg C)$

 $1 \Leftrightarrow (A \to B \lor C) \land (A \to \neg B) \land (D \to \neg C)$

 $2 \Leftrightarrow \overline{(A \to (B \lor C) \land \neg B) \land (D \to \neg C)}$

A. B. C和D参加球赛:条件如下:

A参加、则B或C也参加 $H_1 = A \rightarrow B \lor C$

B参加、则A不参加 $H_2 = B \rightarrow \neg A$

D 参加、则 C 不 参加 $H_3 = D \rightarrow \neg C$

证明: "如果A参加,则D不参加"($A \rightarrow \neg D$)是上述条件的有效结论.

方法1.

Equivalent to: $(A \to B \lor C) \land (B \to \neg A) \land (D \to \neg C) \Rightarrow (A \to \neg D)$

 $(A \rightarrow B \lor C) \land (B \rightarrow \neg A) \land (D \rightarrow \neg C)$

1 \Leftrightarrow $(A \rightarrow B \lor C) \land (A \rightarrow \neg B) \land (D \rightarrow \neg C)$

 $2 \Leftrightarrow (A \to (B \lor C) \land \neg B) \land (D \to \neg C)$

 $3 \Leftrightarrow (A \to (\overline{C \wedge \neg B})) \land (D \to \neg C)$

命题逻辑

A. B. C和D参加球赛:条件如下:

A参加、则B或C也参加 $H_1 = A \rightarrow B \lor C$

B参加、则A不参加 $H_2 = B \rightarrow \neg A$

D 参加、则 C 不 参加 $H_3 = D \rightarrow \neg C$

证明: "如果A参加,则D不参加"($A \rightarrow \neg D$)是上述条件的有效结论.

方法1.

Equivalent to: $(A \to B \lor C) \land (B \to \neg A) \land (D \to \neg C) \Rightarrow (A \to \neg D)$

 $(A \rightarrow B \lor C) \land (B \rightarrow \neg A) \land (D \rightarrow \neg C)$

1 \Leftrightarrow $(A \rightarrow B \lor C) \land (A \rightarrow \neg B) \land (D \rightarrow \neg C)$

 $2 \Leftrightarrow (A \to (B \lor C) \land \neg B) \land (D \to \neg C)$

 $3 \Leftrightarrow (A \to (C \land \neg B)) \land (D \to \neg C)$

 $4 \Leftrightarrow (A \to C) \land (A \to \neg B) \land (D \to \neg C)$

命题逻辑

A. B. C和D参加球赛:条件如下:

A参加、则B或C也参加 $H_1 = A \rightarrow B \lor C$

B参加、则A不参加 $H_2 = B \rightarrow \neg A$

D 参加、则 C 不 参加 $H_3 = D \rightarrow \neg C$

证明: "如果A参加,则D不参加"($A \rightarrow \neg D$)是上述条件的有效结论.

方法1.

Equivalent to: $(A \to B \lor C) \land (B \to \neg A) \land (D \to \neg C) \Rightarrow (A \to \neg D)$

 $(A \rightarrow B \lor C) \land (B \rightarrow \neg A) \land (D \rightarrow \neg C)$

1 \Leftrightarrow $(A \rightarrow B \lor C) \land (A \rightarrow \neg B) \land (D \rightarrow \neg C)$

 $2 \Leftrightarrow (A \to (B \lor C) \land \neg B) \land (D \to \neg C)$

 $3 \Leftrightarrow (A \to (C \land \neg B)) \land (D \to \neg C)$

 $4 \Leftrightarrow (A \to C) \land (A \to \neg B) \land (D \to \neg C)$

 $5 \Leftrightarrow (A \to C) \land (A \to \neg B) \land (C \to \neg D)$

A. B. C和D参加球赛:条件如下:

A参加、则B或C也参加 $H_1 = A \rightarrow B \lor C$

B参加、则A不参加 $H_2 = B \rightarrow \neg A$

D 参加、则 C 不 参加 $H_3 = D \rightarrow \neg C$

证明: "如果A参加,则D不参加"($A \rightarrow \neg D$)是上述条件的有效结论.

方法1.

Equivalent to: $(A \to B \lor C) \land (B \to \neg A) \land (D \to \neg C) \Rightarrow (A \to \neg D)$

 $(A \rightarrow B \lor C) \land (B \rightarrow \neg A) \land (D \rightarrow \neg C)$

1 \Leftrightarrow $(A \rightarrow B \lor C) \land (A \rightarrow \neg B) \land (D \rightarrow \neg C)$

 $2 \Leftrightarrow (A \to (B \lor C) \land \neg B) \land (\overline{D} \to \neg C)$

 $3 \Leftrightarrow (A \to (C \land \neg B)) \land (D \to \neg C)$

 $4 \Leftrightarrow (A \to C) \land (A \to \neg B) \land (D \to \neg C)$

 $5 \Leftrightarrow (A \to C) \land (A \to \neg B) \land (C \to \neg D)$

 $6 \Rightarrow (A \rightarrow C) \land (C \rightarrow \neg D)$

A. B. C和D参加球赛:条件如下:

A参加、则B或C也参加 $H_1 = A \rightarrow B \lor C$

B参加、则A不参加 $H_2 = B \rightarrow \neg A$ D 参加、则 C 不 参加 $H_3 = D \rightarrow \neg C$

证明: "如果A参加,则D不参加"($A \rightarrow \neg D$)是上述条件的有效结论.

方法1.

Equivalent to: $(A \to B \lor C) \land (B \to \neg A) \land (D \to \neg C) \Rightarrow (A \to \neg D)$

$$(A \to B \lor C) \land (\underline{B} \to \neg A) \land (D \to \neg C)$$

$$1 \Leftrightarrow (A \to B \lor C) \land (A \to \neg B) \land (D \to \neg C)$$

$$2 \Leftrightarrow (A \to (B \lor C) \land \neg B) \land (D \to \neg C)$$

$$2 \Leftrightarrow (A \to (B \lor C) \land \neg B) \land (D \to \neg C)$$

$$3 \Leftrightarrow (A \to \overline{(C \land \neg B)}) \land (D \to \neg C)$$

$$4 \Leftrightarrow \overline{(A \to C) \land (A \to \neg B)} \land (D \to \neg C)$$

$$5 \Leftrightarrow (A \to C) \land (A \to \neg B) \land (C \to \neg D)$$

$$6 \Rightarrow \overline{(A \rightarrow C) \land (C \rightarrow \neg D)}$$

$$7 \Rightarrow A \rightarrow \neg D$$
 (注意: 不等变换不能用替换规则)

方法2.

真值表【略】

 $(H_1 \wedge H_2 \wedge \cdots \wedge H_n) \Rightarrow C$

方法2.

真值表【略】

方法3.

 $(H_1 \wedge H_2 \wedge \cdots \wedge H_n) \Rightarrow C$

- ① 设结论为假, 即: $A \rightarrow \neg D$ 为假;
- ② :. A为真, D为真;
- ③ 设B为真:
- ④ 设B为假:

⑤ 由③④得: 前提为假

方法2.

真值表【略】

方法3.

 $(H_1 \wedge H_2 \wedge \cdots \wedge H_n) \Rightarrow C$

- ① 设结论为假,即: $A \rightarrow \neg D$ 为假;

方法2.

真值表【略】

方法3.

 $(H_1 \wedge H_2 \wedge \cdots \wedge H_n) \Rightarrow C$

- ① 设结论为假,即: $A \rightarrow \neg D$ 为假;
- ② : A为真, D为真;

方法2.

真值表【略】

方法3.

 $(H_1 \wedge H_2 \wedge \cdots \wedge H_n) \Rightarrow C$

- ① 设结论为假, 即: $A \rightarrow \neg D$ 为假;
- ② : A为真, D为真;
- ③ 设B为真:

• $B \to \neg A$ 为假,所以前提为假

④ 设B为假

6 由(3)(4)得: 前提为假

方法2.

真值表【略】

方法3.

 $(H_1 \wedge H_2 \wedge \cdots \wedge H_n) \Rightarrow C$

- ① 设结论为假, 即: $A \rightarrow \neg D$ 为假;
- ② :. A为真, D为真;
- ③ 设B为真:
 - $B \rightarrow \neg A \lambda R$, 所以前提为假;
- ④ 设B为假:

⑤ 由(3)(4)得: 前提为假.

方法2.

真值表【略】

方法3.

 $(H_1 \wedge H_2 \wedge \cdots \wedge H_n) \Rightarrow C$

- ① 设结论为假,即: $A \rightarrow \neg D$ 为假;
- ② : A为真, D为真;
- ③ 设B为真:
 - $B \to \neg A$ 为假,所以前提为假;
- △ 设B为假:

方法2.

真值表【略】

方法3.

 $(H_1 \wedge H_2 \wedge \cdots \wedge H_n) \Rightarrow C$

- ① 设结论为假,即: $A \rightarrow \neg D$ 为假;
- ② : A为真, D为真;
- ③ 设B为真:
 - $B \to \neg A$ 为假,所以前提为假;
- 個 设B为假:
 - 当C为真时: D→¬C为假;

方法2.

真值表【略】

方法3.

 $(H_1 \wedge H_2 \wedge \cdots \wedge H_n) \Rightarrow C$

① 设结论为假,即: $A \rightarrow \neg D$ 为假;

公式之间的关系

- ② : A为真, D为真;
- ③ 设B为真:
 - $B \to \neg A$ 为假,所以前提为假;
- 個 设B为假:
 - 当C为真时: D → ¬C为假;
 - 当C为假时: $A \rightarrow B \lor C$ 为假;

方法2.

真值表【略】

方法3.

 $(H_1 \wedge H_2 \wedge \cdots \wedge H_n) \Rightarrow C$

- ① 设结论为假, 即: $A \rightarrow \neg D$ 为假;
- ② ∴ A为真, D为真;
- ◎ 设B为真:
 - $B \to \neg A$ 为假,所以前提为假;
- 设B为假:
 - 当C为真时: D → ¬C为假;
 - 当C为假时: A → B ∨ C为假;
- ⑤ 由③④得: 前提为假.

- ① 设前提为真, 即: $A \rightarrow B \lor C$, $B \rightarrow \neg A$ 和 $D \rightarrow \neg C$ 均为真;

- ① 设前提为真, 即: $A \rightarrow B \lor C$, $B \rightarrow \neg A$ 和 $D \rightarrow \neg C$ 均为真:
- ② $\therefore A \rightarrow \neg B$ 为真;

- ① 设前提为真, 即: $A \rightarrow B \lor C$, $B \rightarrow \neg A$ 和 $D \rightarrow \neg C$ 均为真:
- ② $\therefore A \rightarrow \neg B$ 为真;
- **3** : $(A \rightarrow \neg B) \land (A \rightarrow B \lor C)$ 为真;

- ① 设前提为真, 即: $A \rightarrow B \lor C$, $B \rightarrow \neg A$ 和 $D \rightarrow \neg C$ 均为真:
- ② $\therefore A \rightarrow \neg B$ 为真;
- **3** : $(A \rightarrow \neg B) \land (A \rightarrow B \lor C)$ 为真;
- ④ ∴ $A \rightarrow (\neg B \land (B \lor C))$ 为真;

- ① 设前提为真、即: $A \rightarrow B \lor C$, $B \rightarrow \neg A$ 和 $D \rightarrow \neg C$ 均为真;
- ② $\therefore A \rightarrow \neg B$ 为真;
- **3** : $(A \rightarrow \neg B) \land (A \rightarrow B \lor C)$ 为真;
- ④ ∴ $A \rightarrow (\neg B \land (B \lor C))$ 为真;
- **⑤** ∴ $A \rightarrow (\neg B \land C)$ 为真;

- ① 设前提为真、即: $A \rightarrow B \lor C$, $B \rightarrow \neg A$ 和 $D \rightarrow \neg C$ 均为真;
- ② : $A \rightarrow \neg B$ 为真;
- **3** : $(A \rightarrow \neg B) \land (A \rightarrow B \lor C)$ 为真;
- ④ : $A \rightarrow (\neg B \land (B \lor C))$ 为真;
- **⑤** ∴ $A \rightarrow (\neg B \land C)$ 为真;
- **6** ∴ $A \rightarrow C$ 为真;

- ① 设前提为真、即: $A \rightarrow B \lor C$, $B \rightarrow \neg A$ 和 $D \rightarrow \neg C$ 均为真;
- ② : $A \rightarrow \neg B$ 为真;
- **3** : $(A \rightarrow \neg B) \land (A \rightarrow B \lor C)$ 为真;
- ④ ∴ $A \rightarrow (\neg B \land (B \lor C))$ 为真;
- **⑤** ∴ $A \rightarrow (\neg B \land C)$ 为真;
- **6** ∴ $A \rightarrow C$ 为真;
- 由①得: C → ¬D 为真;

- ① 设前提为真、即: $A \rightarrow B \lor C$, $B \rightarrow \neg A$ 和 $D \rightarrow \neg C$ 均为真;
- ② : $A \rightarrow \neg B$ 为真;
- **3** : $(A \rightarrow \neg B) \land (A \rightarrow B \lor C)$ 为真;
- ④ ∴ $A \rightarrow (\neg B \land (B \lor C))$ 为真;
- **⑤** ∴ $A \rightarrow (\neg B \land C)$ 为真;
- **6** ∴ $A \rightarrow C$ 为真;
- ② 由①得: $C \rightarrow \neg D$ 为真;
- 3 由(6)(7)得: A → ¬D 为真.

- 恒等和不等变换;

- 恒等和不等变换;
- ② 真值表;

- 恒等和不等变换;
- ② 真值表;
- 3 设结论为假,证明条件亦假;

证明有效结论的方法

- 恒等和不等变换;
- ② 真值表;
- 3 设结论为假,证明条件亦假;
- 设条件为真,证明结论亦真;

证明有效结论的方法

- 恒等和不等变换;
- ② 真值表;
- 3 设结论为假,证明条件亦假;
- 设条件为真,证明结论亦真;
- 证明序列.

命题逻辑

$$A \rightarrow B \lor C$$
, $B \rightarrow \neg A$, $D \rightarrow \neg C \vdash A \rightarrow \neg D$

证明序列.

(P)
$$\bigcirc$$
 $(A \rightarrow C) \land (A \rightarrow \neg B)$ \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc

$$B \to \neg A$$

$$((2)+T)$$

$$(2)+T) \quad \textbf{3} \quad D \rightarrow \neg C$$

$$(4)+T$$

Notation

在证明说明中用P(Premise)表示引入前提,用T(Tautology)表示恒等变换.

Definition

Definition

- 存在H_i, 使得: C_i = H_i; (引入条件)

Definition

- 存在H_i, 使得: C_i = H_i; (引入条件)
- ② $C_i = \mathbb{T}$; (引入永真)

Definition

- 存在H_i, 使得: C_i = H_i; (引入条件)
- ② $C_i = \mathbb{T}$; (引入永真)
- ③ 存在 $C_{i_1}, C_{i_2}, \ldots, C_{i_k}$, 其中: $i_i \leq i$, 并且: $C_{i_1} \wedge C_{i_2} \wedge \cdots \wedge C_{i_\ell} \Leftrightarrow C_{i_\ell}$ (恒等变换)

Definition

- 存在H_i, 使得: C_i = H_i; (引入条件)
- ② $C_i = \mathbb{T}$; (引入永真)
- ⑤ 存在C_{i1}, C_{i2},..., C_{ik}, 其中: i_i ≤ i, 并且: $C_{i_1} \wedge C_{i_2} \wedge \cdots \wedge C_{i_k} \Leftrightarrow C_{i_r}$ (恒等变换)
- ④ 存在 $C_{i_1}, C_{i_2}, \ldots, C_{i_k}$, 其中: $i_i \leq i$, 并且: $C_{i_1} \wedge C_{i_1} \wedge \cdots \wedge C_{i_k} \Rightarrow C_{i_i}$ (不等变换)

Theorem (Soundness & Completeness)

设 C_1, C_2, \ldots, C_m 是关于条件 H_1, H_2, \ldots, H_n 是一证明序列,则对每个 C_i 都有: $(H_1 \wedge H_2 \wedge \cdots \wedge H_n) \Rightarrow C_i$

即: $H_1, H_2, \ldots, H_n \vdash C_i$. 反之亦然.

Theorem (Soundness & Completeness)

 $\mathcal{C}C_1, C_2, \ldots, C_m$ 是关于条件 H_1, H_2, \ldots, H_n 是一证明序列,则对每个 C_i 都有: $(H_1 \wedge H_2 \wedge \cdots \wedge H_n) \Rightarrow C_i$

即: $H_1, H_2, \ldots, H_n \vdash C_i$. 反之亦然.

Proof.

命题逻辑

- □ 由于C₁满足足义中的条件,所以结论成立
- ② 设对任意的j < i, C;都是前提的有效结论; 则

Theorem (Soundness & Completeness)

 $\mathcal{C}C_1, C_2, \ldots, C_m$ 是关于条件 H_1, H_2, \ldots, H_n 是一证明序列,则对每个 C_i 都有: $(H_1 \wedge H_2 \wedge \cdots \wedge H_n) \Rightarrow C_i$

即: $H_1, H_2, \ldots, H_n \vdash C_i$. 反之亦然.

Proof.

命题逻辑

- ① 由于C1满足定义中的条件, 所以结论成立;
- ② 设对任意的j < i, C;都是前提的有效结论; 则

Theorem (Soundness & Completeness)

设 C_1, C_2, \ldots, C_m 是关于条件 H_1, H_2, \ldots, H_n 是一证明序列,则对每个 C_i 都有: $(H_1 \land H_2 \land \cdots \land H_n) \Rightarrow C_i$ 即: $H_1, H_2, \ldots, H_n \vdash C_i$. 反之亦然.

Proof.

命题逻辑

- ① 由于C1满足定义中的条件, 所以结论成立;
- ② 设对任意的j < i, Cj都是前提的有效结论; 则:

 - ② if $C_i = \mathbb{T}$: $(\vec{A}) \land \vec{A} \land \vec{A}$ $(H_1 \land H_2 \land \cdots \land H_n) \Rightarrow \mathbb{T}$
 - If C_i, ∧ C_i, ∧ · · · ∧ C_i, ⇒ C_i, 而由归纳假设:
 - $(H_1 \wedge H_2 \wedge \cdots \wedge H_n) \Rightarrow C_{i_j}$
 - $\therefore (H_1 \wedge H_2 \wedge \cdots \wedge H_n) \Rightarrow (C_{i_1} \wedge C_{i_2} \wedge \cdots \wedge C_{i_k}) \Rightarrow C_i$
 - 同理可证明,当 $C_i \wedge C_i \wedge \cdots \wedge C_k \Leftrightarrow C_i$ 时结论成立;

Theorem (Soundness & Completeness)

设 C_1, C_2, \ldots, C_m 是关于条件 H_1, H_2, \ldots, H_n 是一证明序列,则对每个 C_i 都有: $(H_1 \wedge H_2 \wedge \cdots \wedge H_n) \Rightarrow C_i$

Proof.

命题逻辑

对证明序列的下标用归纳法(正确性):

 $p: H_1, H_2, \ldots, H_n \vdash C_i$. 反之亦然.

- ① 由于Ci满足定义中的条件、所以结论成立;
- ② 设对任意的j < i, C_i 都是前提的有效结论; 则:
 - ① if $C_i = H_k$: (引入条件) $(H_1 \land H_2 \land \cdots \land H_n) \Rightarrow H_k$

Theorem (Soundness & Completeness)

设 C_1, C_2, \ldots, C_m 是关于条件 H_1, H_2, \ldots, H_n 是一证明序列,则对每个 C_i 都有: $(H_1 \wedge H_2 \wedge \cdots \wedge H_n) \Rightarrow C_i$

Proof.

命题逻辑

对证明序列的下标用归纳法(正确性):

即: H₁, H₂,..., H_n ⊢ C_i. 反之亦然.

- ① 由于Ci满足定义中的条件、所以结论成立;
- ② 设对任意的i < i, C_i 都是前提的有效结论;则:
 - ① if $C_i = H_k$: (引入条件) $(H_1 \land H_2 \land \cdots \land H_n) \Rightarrow H_k$
 - ② if $C_i = \mathbb{T}$: (引入永真) $(H_1 \wedge H_2 \wedge \cdots \wedge H_n) \Rightarrow \mathbb{T}$

Theorem (Soundness & Completeness)

 $\mathcal{C}C_1, C_2, \ldots, C_m$ 是关于条件 H_1, H_2, \ldots, H_n 是一证明序列,则对每个 C_i 都有: $(H_1 \wedge H_2 \wedge \cdots \wedge H_n) \Rightarrow C_i$

Proof.

对证明序列的下标用归纳法(正确性):

即: $H_1, H_2, \ldots, H_n \vdash C_i$. 反之亦然.

- ① 由于Ci满足定义中的条件、所以结论成立;
- ② 设对任意的i < i, C_i 都是前提的有效结论;则:
 - ① if $C_i = H_k$: (引入条件) $(H_1 \land H_2 \land \cdots \land H_n) \Rightarrow H_k$
 - ② if $C_i = \mathbb{T}$: (引入永真) $(H_1 \wedge H_2 \wedge \cdots \wedge H_n) \Rightarrow \mathbb{T}$
 - 3 if $C_i \wedge C_i \wedge \cdots \wedge C_i \Rightarrow C_i$, 而由归纳假设: $(H_1 \wedge H_2 \wedge \cdots \wedge H_n) \Rightarrow C_{i_1}$ $\therefore (H_1 \wedge H_2 \wedge \cdots \wedge H_n) \Rightarrow (C_{i_1} \wedge C_{i_2} \wedge \cdots \wedge C_{i_k}) \Rightarrow C_{i_k}$

Theorem (Soundness & Completeness)

 $\mathcal{C}C_1, C_2, \ldots, C_m$ 是关于条件 H_1, H_2, \ldots, H_n 是一证明序列,则对每个 C_i 都有: $(H_1 \wedge H_2 \wedge \cdots \wedge H_n) \Rightarrow C_i$ 即: $H_1, H_2, \ldots, H_n \vdash C_i$. 反之亦然.

Proof.

- ① 由于Ci满足定义中的条件、所以结论成立;
- ② 设对任意的i < i, C_i 都是前提的有效结论;则:
 - ① if $C_i = H_k$: (引入条件) $(H_1 \land H_2 \land \cdots \land H_n) \Rightarrow H_k$
 - ② if $C_i = \mathbb{T}$: (引入永真) $(H_1 \wedge H_2 \wedge \cdots \wedge H_n) \Rightarrow \mathbb{T}$
 - 3 if $C_i \wedge C_i \wedge \cdots \wedge C_i \Rightarrow C_i$, 而由归纳假设: $(H_1 \wedge H_2 \wedge \cdots \wedge H_n) \Rightarrow C_{i_1}$ $\therefore (H_1 \wedge H_2 \wedge \cdots \wedge H_n) \Rightarrow (C_{i_1} \wedge C_{i_2} \wedge \cdots \wedge C_{i_k}) \Rightarrow C_{i_k}$
 - ④ 同理可证明, 当 $C_{i_1} \land C_{i_2} \land \cdots \land C_{i_k} \Leftrightarrow C_{i_k}$ 时结论成立;

Theorem (Soundness & Completeness)

 $\mathcal{C}C_1, C_2, \ldots, C_m$ 是关于条件 H_1, H_2, \ldots, H_n 是一证明序列,则对每个 C_i 都有: $(H_1 \wedge H_2 \wedge \cdots \wedge H_n) \Rightarrow C_i$ 即: $H_1, H_2, \ldots, H_n \vdash C_i$. 反之亦然.

Proof.

- ① 由于Ci满足定义中的条件、所以结论成立;
- ② 设对任意的i < i, C_i 都是前提的有效结论;则:
 - ① if $C_i = H_k$: (引入条件) $(H_1 \land H_2 \land \cdots \land H_n) \Rightarrow H_k$
 - ② if $C_i = \mathbb{T}$: (引入永真) $(H_1 \wedge H_2 \wedge \cdots \wedge H_n) \Rightarrow \mathbb{T}$
 - 3 if $C_i \wedge C_i \wedge \cdots \wedge C_i \Rightarrow C_i$, 而由归纳假设: $(H_1 \wedge H_2 \wedge \cdots \wedge H_n) \Rightarrow C_{i_1}$ $\therefore (H_1 \wedge H_2 \wedge \cdots \wedge H_n) \Rightarrow (C_{i_1} \wedge C_{i_2} \wedge \cdots \wedge C_{i_k}) \Rightarrow C_{i_k}$
 - ④ 同理可证明, 当 $C_{i_1} \land C_{i_2} \land \cdots \land C_{i_k} \Leftrightarrow C_{i_k}$ 时结论成立;
 - 故结论成立.

Definition

常用的永真蕴涵关系的竖式表示称为推理规则(Inference Rule)

Example (三段论)

$$P \wedge (P \rightarrow Q) \Rightarrow Q$$

其对应的推理规则表示为:

$$\frac{P}{Q}$$
 $(P \rightarrow Q)$ (三段论)

Remark

在推理过程中的不等变换仅能使用代入规则!

推理规则.

名称	推理规则	对应的永真蕴涵关系
加法式	$\frac{P}{P \lor Q}$	$P \Rightarrow P \lor Q$
简化式	$\frac{P \wedge Q}{P}$	$P \wedge Q \Rightarrow P$
三段论,分离规则 Modus Ponens(MP)	$\frac{P P \to Q}{Q}$	$P \wedge (P \rightarrow Q) \Rightarrow Q$
拒取式 Modus Tollens(MT)	$\frac{\neg Q P \to Q}{\neg P}$	$\neg Q \land (P \rightarrow Q) \Rightarrow \neg P$
前提三段论 Hypothetical syllo- gism	$\frac{P \to Q Q \to R}{P \to R}$	$(P \to Q) \land (Q \to R) \Rightarrow P \to R$
复合式 Composition	$\frac{P \to Q P \to R}{P \to Q \land R}$	$(P \to Q) \land (P \to R) \Rightarrow P \to Q \land R$

推理规则.

名称	推理规则	对应的永真蕴涵关系
析取三段论 Disjunctive syllogism	$\frac{P \vee Q \neg Q}{P}$	$(P \lor Q) \land \neg Q \Rightarrow P$
合取式	$\frac{P}{P \wedge Q}$	$P \wedge Q \Rightarrow P \wedge Q$
构造性二难推理 Constructive dilemma	$P \rightarrow Q$ $R \rightarrow S$ $P \lor R$ $Q \lor S$	$(P \to Q) \land (R \to S) \land (P \lor R) \Rightarrow Q \lor S$
破坏性二难推理 Destructive dilemma	$P \to Q$ $R \to S$ $\neg Q \lor \neg S$ $\neg P \lor \neg R$	$(P \to Q) \land (R \to S) \land (\neg Q \lor \neg S) \Rightarrow \neg P \lor \neg R$

$$A \rightarrow B \lor C, B \rightarrow \neg A, D \rightarrow \neg C \vdash A \rightarrow \neg D$$

$$A \rightarrow B \lor C, B \rightarrow \neg A, D \rightarrow \neg C \vdash A \rightarrow \neg D$$

$$A \rightarrow B \lor C, B \rightarrow \neg A, D \rightarrow \neg C \vdash A \rightarrow \neg D$$

$$A \rightarrow B \lor C$$
, $B \rightarrow \neg A$, $D \rightarrow \neg C \vdash A \rightarrow \neg D$

$$A \rightarrow B \lor C, B \rightarrow \neg A, D \rightarrow \neg C \vdash A \rightarrow \neg D$$

方法1.

(P)

$$A \rightarrow B \lor C, B \rightarrow \neg A, D \rightarrow \neg C \vdash A \rightarrow \neg D$$

方法1.

(P)

(P)

$$A \rightarrow B \lor C, B \rightarrow \neg A, D \rightarrow \neg C \vdash A \rightarrow \neg D$$

方法1.

(P)

(P)

 $A \rightarrow \neg B$

(2)+T)

$$A \rightarrow B \lor C, B \rightarrow \neg A, D \rightarrow \neg C \vdash A \rightarrow \neg D$$

方法1.

(P)

(P)

 $A \rightarrow \neg B$

- (2)+T)
- **4** $A \rightarrow (B \lor C) \land \neg B$ (①3)+复合式)

$$A \rightarrow B \lor C$$
, $B \rightarrow \neg A$, $D \rightarrow \neg C \vdash A \rightarrow \neg D$

方法1.

(P)

(P)

 $A \rightarrow \neg B$

(2)+T)

4 $A \rightarrow (B \lor C) \land \neg B$ (①③+复合式)

(4)+T

命题逻辑

$$A \rightarrow B \lor C$$
, $B \rightarrow \neg A$, $D \rightarrow \neg C \vdash A \rightarrow \neg D$

(P)
$$\bigcirc A \rightarrow C$$

$$A \rightarrow \neg B$$

$$(2+T) \bigcirc D \rightarrow \neg C$$

$$C \rightarrow \neg D$$
 (8+T)

命题逻辑

$$A \rightarrow B \lor C, B \rightarrow \neg A, D \rightarrow \neg C \vdash A \rightarrow \neg D$$

(P)
$$(A \rightarrow C) \land (A \rightarrow \neg B)$$
 (5)+T)

$$B \to \neg A$$

$$(2+T) \bigcirc D \rightarrow \neg C$$

$$(4)+1)$$

$$\bigcirc$$
 A → ¬D (⑦⑨+前提三段

命题逻辑

$$A \rightarrow B \lor C, B \rightarrow \neg A, D \rightarrow \neg C \vdash A \rightarrow \neg D$$

(P) **6**
$$(A \rightarrow C) \land (A \rightarrow \neg B)$$
 (5)+T)

$$A \rightarrow \neg B$$

$$(2)+T) \quad \bigcirc \quad D \rightarrow \neg C$$

③
$$A \rightarrow (B \lor C) \land \neg B$$
 (①③+复合式) ◎ $C \rightarrow \neg D$ (⑧+T)

$$(8+T)$$

$$(4+T)$$

命题逻辑

$$A \rightarrow B \lor C, B \rightarrow \neg A, D \rightarrow \neg C \vdash A \rightarrow \neg D$$

(P)
$$\bullet$$
 $(A \rightarrow C) \land (A \rightarrow \neg B)$ $(5)+T$

$$B \to \neg A$$

$$A \rightarrow \neg B$$

$$(2+T)$$
 8 $D \rightarrow \neg C$

$$(8)+T$$

$$(4+T)$$

命题逻辑

$$A \rightarrow B \lor C, B \rightarrow \neg A, D \rightarrow \neg C \vdash A \rightarrow \neg D$$

(P)
$$\bullet$$
 $(A \rightarrow C) \land (A \rightarrow \neg B)$ \bullet

$$A \rightarrow \neg B$$

$$((2)+T)$$

$$(2)+T) \quad \textbf{3} \quad D \rightarrow \neg C$$

$$O \to \neg L$$

$$(8+T)$$

$$(4+T)$$

命题逻辑

$$A \rightarrow B \lor C, B \rightarrow \neg A, D \rightarrow \neg C \vdash A \rightarrow \neg D$$

(P)
$$\bullet$$
 $(A \rightarrow C) \land (A \rightarrow \neg B)$ $(5)+T$

$$B \to \neg A$$

$$A \rightarrow \neg B$$

$$((2)+T)$$

$$(2)+T) \quad \textbf{3} \quad D \rightarrow \neg C$$

$$()$$
 \bigcirc $($

$$(8+T)$$

$$(4+T)$$

命题逻辑

$$A \rightarrow B \lor C$$
, $B \rightarrow \neg A$, $D \rightarrow \neg C \vdash A \rightarrow \neg D$

方法1.

(P)
$$\bigcirc$$
 $(A \rightarrow C) \land (A \rightarrow \neg B)$ \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc

$$B \to \neg A$$

$$((2)+T)$$

$$(2)+T) \quad \textbf{3} \quad D \rightarrow \neg C$$

(④+T) ¹ A → ¬D (⑦⑨+前提三段论)

Notation

在证明说明中用P(Premise)表示引入前提,用T(Tautology)表示恒等变换.

证明方法

Remark

$$\mathbf{H} \to (P \to Q)$$

$$\Leftrightarrow \neg H \lor \neg P \lor Q$$

$$\Rightarrow \neg (\sqcap \land P) \lor Q$$

$$\triangle$$
 (\square \wedge D) \wedge Q

So, if
$$\mathbf{H} \to (P \to Q)$$
 永真, iff. $(\mathbf{H} \land P) \to Q$ 永真

证明方法

Remark

- 直接对结论些证明序列;

$$H \rightarrow (P \rightarrow Q)$$

$$\Leftrightarrow \neg (\Pi \land \Gamma) \lor Q$$

$$\Leftrightarrow (\mathbf{H} \land P) \rightarrow 0$$

So, if
$$H \to (P \to Q)$$
 \hat{x} , iff, $(H \land P) \to Q\hat{x}$

Remark

- 直接对结论些证明序列;
- ② 间接证明:条件和结论的等价变换,如,CP规则(Conditional Proof),反 证法等.

Theorem

 $H_1, H_2, \ldots, H_n \vdash P \rightarrow Q \text{ iff } H_1, H_2, \ldots, H_n, P \vdash Q$

Proof.

设. $\mathbf{H} = H_1 \wedge H_2 \wedge \cdots \wedge H_n$. 则:

$$\mathbf{H} \rightarrow (P \rightarrow Q)$$

$$\Leftrightarrow \neg H \lor \neg P \lor Q$$

$$\Leftrightarrow \neg (\mathbf{H} \wedge P) \vee Q$$

$$\Rightarrow \neg (\mathbf{H} \land P) \lor G$$

$$\Leftrightarrow (\mathbf{H} \land P) \rightarrow Q$$

So, if
$$H \to (P \to Q)$$
 \hat{x} , iff, $(H \land P) \to Q\hat{x}$, \hat{x} .

Remark

- 直接对结论些证明序列;
- 间接证明:条件和结论的等价变换,如,CP规则(Conditional Proof),反 证法等.

Theorem

$$H_1, H_2, \ldots, H_n \vdash P \rightarrow Q \text{ iff } H_1, H_2, \ldots, H_n, P \vdash Q$$

$$H \rightarrow (P \rightarrow Q)$$

$$\Leftrightarrow \neg H \lor \neg P \lor Q$$

$$\Leftrightarrow \neg (\mathbf{H} \wedge P) \vee Q$$

$$\Leftrightarrow \neg (\mathbf{H} \wedge P) \vee G$$

$$\Leftrightarrow (\mathbf{H} \wedge P) \to Q$$

Remark

- ① 直接对结论些证明序列;
- ② 间接证明:条件和结论的等价变换,如,CP规则(Conditional Proof),反证法等.

Theorem

$$H_1, H_2, \ldots, H_n \vdash P \rightarrow Q \text{ iff } H_1, H_2, \ldots, H_n, P \vdash Q$$

Proof.

设,
$$\mathbf{H} = H_1 \wedge H_2 \wedge \cdots \wedge H_n$$
, 则:

$$\mathbf{H} \rightarrow (P \rightarrow Q)$$

$$\Leftrightarrow \neg \mathbf{H} \vee \neg P \vee Q$$

$$\Leftrightarrow \neg (\mathbf{H} \wedge P) \vee Q$$

$$\Leftrightarrow \neg (\mathbf{H} \wedge P) \vee Q$$

$$\Leftrightarrow$$
 $(\mathbf{H} \land P) \rightarrow Q$

So, if
$$\mathbf{H} \to (P \to Q)$$
 $\hat{\mathbf{x}}$, iff, $(\mathbf{H} \land P) \to Q\hat{\mathbf{x}}$, $\hat{\mathbf{q}}$.

 $A \rightarrow B \lor C, B \rightarrow \neg A, D \rightarrow \neg C \vdash A \rightarrow \neg D$

$$A \rightarrow B \lor C, B \rightarrow \neg A, D \rightarrow \neg C \vdash A \rightarrow \neg D$$

方法2.

用CP规则等价于: $H_1, H_2, H_3, A \vdash \neg D$

$$A \rightarrow B \lor C, B \rightarrow \neg A, D \rightarrow \neg C \vdash A \rightarrow \neg D$$

方法2.

用CP规则等价于: $H_1, H_2, H_3, A \vdash \neg D$

$$A \rightarrow B \lor C, B \rightarrow \neg A, D \rightarrow \neg C \vdash A \rightarrow \neg D$$

用CP规则等价于: $H_1, H_2, H_3, A \vdash \neg D$

 $A \rightarrow B \lor C$, $B \rightarrow \neg A$, $D \rightarrow \neg C \vdash A \rightarrow \neg D$

方法2.

用CP规则等价于: $H_1, H_2, H_3, A \vdash \neg D$

1 A

(附加前提)

$$A \rightarrow B \lor C, B \rightarrow \neg A, D \rightarrow \neg C \vdash A \rightarrow \neg D$$

用CP规则等价于: $H_1, H_2, H_3, A \vdash \neg D$

- **1** A

(附加前提)

(P)

$$A \rightarrow B \lor C, B \rightarrow \neg A, D \rightarrow \neg C \vdash A \rightarrow \neg D$$

用CP规则等价于: $H_1, H_2, H_3, A \vdash \neg D$

- **1** A (附加前提)
 - (P)
 - \bullet $B \lor C$ ((1)(2)+MP)

 $A \rightarrow B \lor C$, $B \rightarrow \neg A$, $D \rightarrow \neg C \vdash A \rightarrow \neg D$

方法2.

用CP规则等价于: $H_1, H_2, H_3, A \vdash \neg D$

1 A (附加前提)

(P)

 \bullet \bullet \bullet \bullet \bullet \bullet ((1)(2)+MP)

(P)

$$A \rightarrow B \lor C, B \rightarrow \neg A, D \rightarrow \neg C \vdash A \rightarrow \neg D$$

用CP规则等价于: $H_1, H_2, H_3, A \vdash \neg D$

1 A (附加前提)

(P)

 \bullet \bullet \bullet \bullet \bullet \bullet ((1)(2)+MP)

(P)

 $A \rightarrow \neg B$ (4)+T

(P) (1)(5)+析取三段论)

$$A \rightarrow B \lor C, B \rightarrow \neg A, D \rightarrow \neg C \vdash A \rightarrow \neg D$$

方法2.

用CP规则等价于: $H_1, H_2, H_3, A \vdash \neg D$

- \mathbf{Q} \mathbf{A}
 - (附加前提) **⑤** ¬B

- $\bigcirc A \rightarrow B \lor C$ \bullet \bullet \bullet \bullet \bullet \bullet
- (1)(2)+MP)

(P) $\bigcirc C \rightarrow \neg D$

 $A \rightarrow \neg B$

(4)+T

$$A \rightarrow B \lor C, B \rightarrow \neg A, D \rightarrow \neg C \vdash A \rightarrow \neg D$$

用CP规则等价于: $H_1, H_2, H_3, A \vdash \neg D$

 \mathbf{Q} \mathbf{A}

- (附加前提) **⑥** ¬B
 - (P) (1)(5)+析取三段论)
- (1)(5)+MP

 \bullet \bullet \bullet \bullet \bullet \bullet

- $(1)(2)+MP) \qquad 0 \qquad D \rightarrow \neg C$

- (P)

(4)+T

$$A \rightarrow B \lor C, B \rightarrow \neg A, D \rightarrow \neg C \vdash A \rightarrow \neg D$$

用CP规则等价于: $H_1, H_2, H_3, A \vdash \neg D$

- \mathbf{Q} \mathbf{A} $A \rightarrow B \lor C$
- (附加前提)
- **⑥** ¬*B* (P) **(C)**

(1)(5)+MP)

 \bullet \bullet \bullet \bullet \bullet \bullet

- $(1)(2)+MP) \qquad 0 \qquad D \rightarrow \neg C$
- (①⑤+析取三段论)

- (P) $\bigcirc C \rightarrow \neg D$

- (4)+T

$$A \rightarrow B \lor C, B \rightarrow \neg A, D \rightarrow \neg C \vdash A \rightarrow \neg D$$

用CP规则等价于: $H_1, H_2, H_3, A \vdash \neg D$

 \mathbf{Q} \mathbf{A}

 $A \rightarrow B \lor C$

- - (P) **(**C
 - (附加前提) **⑥** ¬B
- (1)(5)+MP(①⑤+析取三段论)

- \bullet \bullet \bullet \bullet \bullet \bullet
 - $(\textcircled{1}\textcircled{2} + \mathsf{MP}) \qquad \textcircled{3} \quad D \to \neg C$

(P)

- (P) $\bigcirc C \rightarrow \neg D$

- (4)+T) $\Box \neg D$

$$A \rightarrow B \lor C, B \rightarrow \neg A, D \rightarrow \neg C \vdash A \rightarrow \neg D$$

用CP规则等价于: $H_1, H_2, H_3, A \vdash \neg D$

- \mathbf{Q} \mathbf{A}
 - (附加前提) **⑥** ¬B
 - (P) **(**C
- (①⑤+析取三段论)

- $A \rightarrow B \lor C$ \bullet $B \lor C$
- ((1)(2)+MP) **3** $D \rightarrow \neg C$

(P)

- (P) \bigcirc $C \rightarrow \neg D$

(8)+T

- (4)+T) $\bigcirc \neg D$

(1)(5)+MP)

$$A \rightarrow B \lor C, B \rightarrow \neg A, D \rightarrow \neg C \vdash A \rightarrow \neg D$$

用CP规则等价于: $H_1, H_2, H_3, A \vdash \neg D$

- \mathbf{Q} \mathbf{A}
 - (附加前提) **⑥** ¬B
 - (P) **(**C
- (1)(5)+MP)(①⑤+析取三段论)

- $A \rightarrow B \lor C$ \bullet $B \lor C$
- - $(\textcircled{1}\textcircled{2} + \mathsf{MP}) \qquad \textcircled{3} \quad D \to \neg C$

(P)

- (P) \bigcirc $C \rightarrow \neg D$

(8)+T

- (4)+T) $\bigcirc \neg D$

(7)9+MP

由有效结论的等价定理有: $H_1, H_2, \ldots, H_n \vdash C$ iff $H_1, H_2, \ldots, H_n, \neg C \vdash \mathbb{F}$ 称这样的条件和结论的变换为反证法.

Example

 $A \rightarrow B \lor C, B \rightarrow \neg A, D \rightarrow \neg C \vdash A \rightarrow \neg D$

方法3

反证法

Remark

由有效结论的等价定理有: $H_1, H_2, \ldots, H_n \vdash C$ iff $H_1, H_2, \ldots, H_n, \neg C \vdash \mathbb{F}$ 称这样的条件和结论的变换为反证法.

$$A \rightarrow B \lor C, B \rightarrow \neg A, D \rightarrow \neg C \vdash A \rightarrow \neg D$$

由有效结论的等价定理有: $H_1, H_2, \ldots, H_n \vdash C$ iff $H_1, H_2, \ldots, H_n, \neg C \vdash \mathbb{F}$ 称这样的条件和结论的变换为反证法.

$$A \rightarrow B \lor C, B \rightarrow \neg A, D \rightarrow \neg C \vdash A \rightarrow \neg D$$

方法3.

反证法

Remark

由有效结论的等价定理有: $H_1, H_2, \ldots, H_n \vdash C$ iff $H_1, H_2, \ldots, H_n, \neg C \vdash \mathbb{F}$ 称这样的条件和结论的变换为反证法.

$$A \rightarrow B \lor C, B \rightarrow \neg A, D \rightarrow \neg C \vdash A \rightarrow \neg D$$

方法3.

由有效结论的等价定理有: $H_1, H_2, \ldots, H_n \vdash C$ iff $H_1, H_2, \ldots, H_n, \neg C \vdash \mathbb{F}$ 称这样的条件和结论的变换为反证法.

Evample

$$A \rightarrow B \lor C, B \rightarrow \neg A, D \rightarrow \neg C \vdash A \rightarrow \neg D$$

方法3.

用反正法等价于: $H_1, H_2, H_3, \neg (A \rightarrow \neg D) \vdash \mathbb{F}$

- - (附加前提)

 \bigcirc $A \wedge l$

 $(\mathbb{1}+T)$

1

(①+简化式)

4 D

- (①+简化式)
- **6** D → −C
- (P)

a -c

(45)+MP)

由有效结论的等价定理有: $H_1, H_2, \ldots, H_n \vdash C$ iff $H_1, H_2, \ldots, H_n, \neg C \vdash \mathbb{F}$ 称这样的条件和结论的变换为反证法.

$$A \rightarrow B \lor C, B \rightarrow \neg A, D \rightarrow \neg C \vdash A \rightarrow \neg D$$

方法3.

- (附加前提)

由有效结论的等价定理有: $H_1, H_2, \ldots, H_n \vdash C$ iff $H_1, H_2, \ldots, H_n, \neg C \vdash \mathbb{F}$ 称这样的条件和结论的变换为反证法.

Example

$$A \rightarrow B \lor C, B \rightarrow \neg A, D \rightarrow \neg C \vdash A \rightarrow \neg D$$

方法3.

用反正法等价于: $H_1, H_2, H_3, \neg (A \rightarrow \neg D) \vdash \mathbb{F}$

- - (附加前提)

 $\mathbf{Q} A \wedge D$

 $(\mathbb{T}+T)$

O 1

(①+简化式

a D

①+简化式)

(P)

6 -C

(4)(5) + MP

由有效结论的等价定理有: $H_1, H_2, \ldots, H_n \vdash C$ iff $H_1, H_2, \ldots, H_n, \neg C \vdash \mathbb{F}$ 称这样的条件和结论的变换为反证法.

$$A \rightarrow B \lor C, B \rightarrow \neg A, D \rightarrow \neg C \vdash A \rightarrow \neg D$$

方法3.

- (附加前提)
- \triangle $A \wedge D$ (T)+T
- **3** A (①+简化式)

由有效结论的等价定理有: $H_1, H_2, \ldots, H_n \vdash C$ iff $H_1, H_2, \ldots, H_n, \neg C \vdash \mathbb{F}$ 称这样的条件和结论的变换为反证法.

Example

$$A \rightarrow B \lor C, B \rightarrow \neg A, D \rightarrow \neg C \vdash A \rightarrow \neg D$$

方法3.

- **3** A (①+简化式)
- **4** D (①+简化式)
 - $D \rightarrow \neg C$ (P
- **⑥** ¬*C* (**④⑤**+MP)

由有效结论的等价定理有: $H_1, H_2, \ldots, H_n \vdash C$ iff $H_1, H_2, \ldots, H_n, \neg C \vdash \mathbb{F}$ 称这样的条件和结论的变换为反证法.

$$A \rightarrow B \lor C, B \rightarrow \neg A, D \rightarrow \neg C \vdash A \rightarrow \neg D$$

方法3.

- (附加前提)
- \triangle $A \wedge D$ (T)+T
- **3** A (①+简化式)
- **a** D (①+简化式)
- (P)

反证法

命题逻辑

Remark

由有效结论的等价定理有: $H_1, H_2, \ldots, H_n \vdash C$ iff $H_1, H_2, \ldots, H_n, \neg C \vdash \mathbb{F}$ 称这样的条件和结论的变换为反证法.

$$A \rightarrow B \lor C, B \rightarrow \neg A, D \rightarrow \neg C \vdash A \rightarrow \neg D$$

方法3.

- (附加前提)
- \triangle $A \wedge D$ (T)+T
- **3** A (①+简化式)
- **a** D (①+简化式)
- (P)
- **6** ¬*C* (45+MP)

Remark

由有效结论的等价定理有: $H_1, H_2, \ldots, H_n \vdash C$ iff $H_1, H_2, \ldots, H_n, \neg C \vdash \mathbb{F}$ 称这样的条件和结论的变换为反证法.

$$A \rightarrow B \lor C, B \rightarrow \neg A, D \rightarrow \neg C \vdash A \rightarrow \neg D$$

方法3.

- (附加前提) $\bigcirc A \rightarrow B \lor C$
- \triangle $A \wedge D$ $(\textcircled{1}+\textbf{T}) \qquad \textcircled{3} \quad B \lor C \qquad (\textcircled{3}(\textcircled{7}+\textbf{MP})$
- **3** A (①+简化式)
- **4** D (①+简化式)
- (P)
- **6** ¬*C* (4)(5)+MP

Remark

由有效结论的等价定理有: $H_1, H_2, \ldots, H_n \vdash C$ iff $H_1, H_2, \ldots, H_n, \neg C \vdash \mathbb{F}$ 称这样的条件和结论的变换为反证法.

$$A \rightarrow B \lor C, B \rightarrow \neg A, D \rightarrow \neg C \vdash A \rightarrow \neg D$$

方法3.

用反正法等价于: $H_1, H_2, H_3, \neg (A \rightarrow \neg D) \vdash \mathbb{F}$

- (附加前提) $\mathbf{0} A \rightarrow B \lor C$

(P)

 \triangle $A \wedge D$

- $(\textcircled{1}+\textbf{T}) \qquad \textcircled{3} \quad B \lor C \qquad (\textcircled{3}(\textcircled{7}+\textbf{MP})$

3 A

- (①+简化式) ② B (⑥8+析取三段论)

4 D

- (①+简化式)

- (P)

6 ¬*C*

(4)(5)+MP

Remark

由有效结论的等价定理有: $H_1, H_2, \ldots, H_n \vdash C$ iff $H_1, H_2, \ldots, H_n, \neg C \vdash \mathbb{F}$ 称这样的条件和结论的变换为反证法.

$$A \rightarrow B \lor C$$
, $B \rightarrow \neg A$, $D \rightarrow \neg C \vdash A \rightarrow \neg D$

方法3.

用反正法等价于: $H_1, H_2, H_3, \neg (A \rightarrow \neg D) \vdash \mathbb{F}$

- - (附加前提) $\mathbf{0} A \rightarrow B \lor C$

(P)

 \triangle $A \wedge D$

- (1)+T

((3)(7)+MP)

3 A

- (①+简化式) ② B (⑥8+析取三段论)

4 D

- (①+简化式) [□] B → ¬A

- (P)

Remark

由有效结论的等价定理有: $H_1, H_2, \ldots, H_n \vdash C$ iff $H_1, H_2, \ldots, H_n, \neg C \vdash \mathbb{F}$ 称这样的条件和结论的变换为反证法.

$$A \rightarrow B \lor C$$
, $B \rightarrow \neg A$, $D \rightarrow \neg C \vdash A \rightarrow \neg D$

方法3.

用反正法等价于: $H_1, H_2, H_3, \neg (A \rightarrow \neg D) \vdash \mathbb{F}$

- (附加前提) $\mathbf{0} A \rightarrow B \lor C$

 \triangle $A \wedge D$

- (1)+T
- (①+简化式) **᠑** B
- (⑥8)+析取三段论)

3 A

4 D

- (①+简化式) [®] B → ¬A

(3) (+MP)

(P)

- (P)

6 ¬*C*

- (4)(5)+MP

由有效结论的等价定理有: $H_1, H_2, \ldots, H_n \vdash C$ iff $H_1, H_2, \ldots, H_n, \neg C \vdash \mathbb{F}$ 称这样的条件和结论的变换为反证法.

$$A \rightarrow B \lor C, B \rightarrow \neg A, D \rightarrow \neg C \vdash A \rightarrow \neg D$$

方法3.

用反正法等价于: $H_1, H_2, H_3, \neg (A \rightarrow \neg D) \vdash \mathbb{F}$

- - (附加前提) $\mathbf{0} A \rightarrow B \lor C$
- \triangle $A \wedge D$
 - (1)+T
- (3) (+MP)

- **3** A

- (①+简化式) **9** B (⑥⑧+析取三段论)

4 D

- (①+简化式) **⑩** B → ¬A

(P)

(P)

- (P)

6 ¬*C*

- (4)(5)+MP

由有效结论的等价定理有: $H_1, H_2, \ldots, H_n \vdash C$ iff $H_1, H_2, \ldots, H_n, \neg C \vdash \mathbb{F}$ 称这样的条件和结论的变换为反证法.

$$A \rightarrow B \lor C$$
, $B \rightarrow \neg A$, $D \rightarrow \neg C \vdash A \rightarrow \neg D$

方法3.

用反正法等价于: $H_1, H_2, H_3, \neg (A \rightarrow \neg D) \vdash \mathbb{F}$

- (附加前提) $\mathbf{0} A \rightarrow B \lor C$

(P) ((3)(7)+MP)

 \triangle $A \wedge D$ **3** A

- (1)+T
- (①+简化式) **᠑** B
- (⑥8)+析取三段论)

4 D

- (①+简化式) **⑩** B → ¬A

(P)

- (P) **1** ¬A

(9)(0+MP)

6 ¬*C*

- (4)(5)+MP

反证法

Remark

由有效结论的等价定理有: $H_1, H_2, \ldots, H_n \vdash C$ iff $H_1, H_2, \ldots, H_n, \neg C \vdash \mathbb{F}$ 称这样的条件和结论的变换为反证法.

$$A \rightarrow B \lor C, B \rightarrow \neg A, D \rightarrow \neg C \vdash A \rightarrow \neg D$$

方法3.

用反正法等价于: $H_1, H_2, H_3, \neg (A \rightarrow \neg D) \vdash \mathbb{F}$

- (附加前提) $\mathbf{0} A \rightarrow B \lor C$

(P) ((3)(7)+MP)

 \triangle $A \wedge D$ **3** A

- (1)+T

(⑥8)+析取三段论)

4 D

- (①+简化式) **⑩** B → ¬A
- (P)

- - (P) **1** ¬A

(910+MP)

6 ¬*C*

- (4)(5)+MP

(③①+合取式)

- 命题逻辑
 - 命题
 - 符号化
 - 合式公式的形式文法
 - 合式公式的形式语义
- 2 公式之间的关系
 - 公式的语义性质
 - 逻辑等价
 - 永真蕴涵关系
 - 恒等变换与不等变换
 - 对偶性
- 3 范式和基本定理
 - 极大项
 - 主合取范式
 - 主析取范式
 - 联结词的扩充与规约
- 4 推理和证明方法
 - 有效结论
 - 自然推理的形式证明
 - 证明方法

