Non-Negative Matrix Factorization

Daniele Coppola Viktor Gsteiger Maša Nešić Matteo Oldani

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

The Algorithm

$$V = W \times H$$

$$H_{[i,j]}^{n+1} = H_{[i,j]}^n \cdot \frac{((W^n)^T V)_{[i,j]}}{((W^n)^T W^n H^n)_{[i,j]}}$$

$$W_{[i,j]}^{n+1} = W_{[i,j]}^{n} \cdot \frac{(V(H^{n+1})^{T})_{[i,j]}}{(W^{n} H^{n+1} (H^{n+1})^{T})_{[i,j]}}$$

Cost analysis

Asymptotic runtime complexity :

$$O(m \cdot n \cdot r + m \cdot r^2 + n \cdot r^2 + n^2 \cdot r + m \cdot n)$$

Cost - measured by counting operations inside the code:

```
2 * m * n * r + 5 * m * n + 3 +

number_of_iterations * (6 * m * n * r +

3 * m * r * r +

3 * n * r * r +

5 * m * n +

2 * m * r +

2 * n * r + 3)
```

 $V: m \times n$ $W: m \times r$ $H: r \times n$

Baseline Implementations

NNMF (double precision) on i5-6600K, 3.5 GHz, r = 16

Matrix Multiplication Optimizations

- Blocking (block size = 16)
- Loop unrolling to have 8 independent lines of computations
- Vectorization of the computation

Performance Plots - Matrix Multiplication

int idx b = k * B n col + jj;for (kk = k; kk < k + nB; kk++){ a0 = mm256 set1 pd(A[Aii + kk]);a1 = mm256 set1 pd(A[Aii + A n col + kk]);b0 = _mm256_load_pd((double *) &B[idx_b]); $b1 = mm256 load_pd((double *) &B[idx_b + 4]);$ b2 = mm256 load pd((double *) &B[idx b + 8]); $b3 = _mm256_load_pd((double *) \&B[idx_b + 12]);$ $r0 = _{mm256_{fmadd_pd(a0, b0, r0)}};$ $r1 = _mm256_fmadd_pd(a0, b1, r1);$ $r2 = _mm256_fmadd_pd(a0, b2, r2);$ $r3 = _{mm256_fmadd_pd(a0, b3, r3)};$ r4 = mm256 fmadd pd(a1, b0, r4); $r5 = mm256 fmadd_pd(a1, b1, r5);$ $r6 = _{mm256}fmadd_pd(a1, b2, r6);$ $r7 = _{mm256_{fmadd_pd(a1, b3, r7)}}$ $idx_b += B_n_{col}$;

Input matrix size

Matrix Padding

- R multiple of block size
 - Outperforming BLAS
- R not multiple of block size
 - Blas outperforming us

- More computation but better microarchitecture usage
- Outperforming BLAS
- Padding with 0s

Algorithmic optimization 1 – Reuse entries of W

■ Reduces the number of read accesses to (Wⁿ)^T in the computation of Hⁿ⁺¹, and to (Hⁿ⁺¹)^T in the computation of Wⁿ⁺¹ by half

Algorithmic optimization 4 – Reuse block of W across 2 iterations

■ The calculated block of Wⁿ⁺¹ is immediately used in the calculation of (Wⁿ⁺¹)^TV and (Wⁿ⁺¹)^T Wⁿ⁺¹

Runtime and Performance Plots

Flops/cycle

NNMF (double precision) on i5-6600K, 3.5 GHz, r = 16

Roofline Plot

NNMF (double precision) on i5-6600K, 3.5 GHz, r = 16

Speedup

NNMF (double precision) on i5-6600K, 3.5 GHz, r = 16

Average speedup:

- Optimization 61 23.95
- Optimization 60 22.07
- Optimization 48 21.05
- Optimization 51 20.49
- Optimization 54 19.24
- Optimization 24 17.84
- Optimization 42 7.71

Benchmarking plot

Questions?

Appendix

Runtime and Performance Plots - scalar

NNMF (double precision) on i5-6600K, 3.5 GHz, r = 16

Performance Scalar Optimizations

Runtime Scalar Optimizations

Roofline Scalar Optimizations

Performance Scalar Algorithmic Optimizations

Runtime Scalar Algorithmic Optimizations

Roofline Scalar Algorithmic Optimizations

Performance BLAS Optimizations

Runtime BLAS Optimizations

Roofline BLAS Optimizations

Performance Vectorized Optimizations

NNMF (double precision) on i5-6600K, 3.5 GHz, r = 16

Runtime Vectorized Optimizations

Roofline Vectorized Optimizations

Performance Vectorized Algorithmic Optimizations

Runtime Vectorized Algorithmic Optimizations

Roofline Vectorized Algorithmic Optimizations

Rectangular matrices - Optimization 61

Rectangular matrices - Optimization 54

Algorithmic optimization 2 – Interleave matrix multiplications

- Avoids having to store and reread the numerator and the denominator
- The same approach is used in the calculation of Wⁿ⁺¹ as well

numerator - N
$$H_{[i,j]}^{n+1} = H_{[i,j]}^{n} \cdot \frac{((W^n)^T V)_{[i,j]}}{((W^n)^T W^n H^n)_{[i,j]}}$$
denominator_left - DI
$$denominator - D$$

```
V: m \times n

W: m \times r

H: r \times n

Dl: r \times r

N: r \times n

D: r \times n
```

```
N = matrix_mul(W^T, V)
D = matrix_mul(Dl, H) contain triple loops
for(i=0; i<r; i++)
  for (j=0; j< n; j++)
    H[i][j] = H[i][j] * N[i][j] / D[i][j]
for(i=0; i<r; i++)
  for(j=0; j<n; j++)
     accumulator N = 0
    accumulator D = 0
    for (k=0; k < m; k++)
       accumulator_N += W^{T}[i][k] * V[k][j]
       if(k < r)
         accumulator D += Dl[i][k] * H[k][j]
    H[i][j] = H[i][j] * accumulator N / accumulator D
```

Algorithmic optimization 3 – Reuse block of H

■ The calculated block of H^{n+1} is immediately used in the calculation of $V(H^{n+1})^T$ and $H^{n+1}(H^{n+1})^T$

Additional analysis

- opt47 reduces cache misses by blocking
- opt53 reduces cache misses reusing W
- opt60 computes the approximation matrix WH one block at the time
- opt61 decrease in cache misses is higher than 60 and 53 combined

V:800x800

W: 800x16

H: 800x16