

THE NCUK INTERNATIONAL FOUNDATION YEAR

IFYME001 Mathematics Part 2 (Science & Engineering) Examination

Examination SessionSemester Two

Time Allowed 2 Hours 10 minutes (including 10 minutes reading time)

INSTRUCTIONS TO STUDENTS

SECTION A Answer ALL questions. This section carries 40% of the exam marks.

SECTION B Answer 4 questions. This section carries 60% of the exam marks.

The marks for each question are indicated in square brackets [].

Your School or College will provide a Formula Booklet.

- Answers must not be written during the first 10 minutes.
- Write your Candidate Number clearly on the answer books in the space provided.
- Write the answers in the answer books provided. Additional sheets will be provided on request.
- Write the section letter, the question number and numbers to parts of questions attempted clearly at the start of each answer.
- No written material is to be brought into the examination room.
- **No** mobile phones are allowed in the examination room.
- An approved calculator may be used in the examination.
- State the units where necessary.
- Full marks will only be given for full and detailed answers.

Section A Answer ALL questions. This section carries 40 marks.

Question A1

Differentiate $y = e^{-3x} \ln(\sin x)$ with respect to x. [3]

(You do not need to simplify your answer.)

Question A2

The function f(x) is given by $f(x) = x^2 - 8x + 15$ with domain $1 \le x \le 5$.

Find the range of f(x).

Question A3

Angle A is obtuse and sin A = $\frac{5}{13}$.

Without working out the value of angle A, find the exact value of sin 2A.

You must show each stage of your working. [4]

Question A4

Use integration by parts to find the exact value of $\int_{0}^{1} x e^{2x} dx$ giving your answer to **[6]** four significant figures.

In this question one mark will be awarded for the correct use of significant figures.

Question A5

Vectors \mathbf{a} and \mathbf{b} are defined as $\mathbf{a} = 8\mathbf{i} + \mathbf{j} - 2\mathbf{k}$ and $\mathbf{b} = 6\mathbf{i} + 4\mathbf{j} - 8\mathbf{k}$. [4]

Write down the unit vector $\mathbf{a} - \mathbf{b}$.

Question A6

If
$$y = \frac{x}{1 + x^2}$$
, find $\frac{dx}{dy}$ when $x = 3$. [5]

Question A7

An iterative formula is defined as $x_{n+1} = \frac{1}{2} \left[x_n + \frac{5}{x_n} \right]$ Starting with $x_0 = 2.8$, work out the values of x_1 , x_2 and x_3 .

Question A8

The curve $y = \sec x$ is rotated about the x-axis.

Find the volume formed between
$$x = \frac{1}{4}\pi$$
 and $\frac{1}{3}\pi$.

Question A9

Find the general solution of the differential equation
$$\frac{dy}{dx} = \frac{y}{1 + x^2}$$
 [4] (In your solution, you do not need to write y in terms of x .)

Question A10

The mean age of a group of 7 children is 11 years. When another child joins the group, the mean is now 10 years. Find the age of the child who joins the group.

Section B Answer 4 questions. This section carries 60 marks.

Question B1

a) i. The function f id defined by $f(x) = x^3 - 6x^2 + 20$.

Show that
$$f(x)$$
 has a root between $x = 2$ and $x = 3$. [3]

ii. Starting with the initial value $x_0 = 2.3$, use the Newton-Raphson [3] Method **once** to give a better approximation to the root of the equation in part i.

Give your answer to four significant figures.

b) A curve C has equation $3x^2 + 2xy^2 + y = 13$

i. Find
$$\frac{dy}{dx}$$
 in terms of x and y . [5]

ii. Find the equation of the normal to curve C at the point (1, 2). [4]

Give your answers to **one** decimal place.

Question B2

a) Given that $\cos 60^\circ = \frac{1}{2}$ and $\cos 45^\circ = \frac{1}{\sqrt{2}}$

i. Show that
$$\sin 60^{\circ} = \frac{\sqrt{3}}{2}$$
 [2]

ii. Find the exact value of cos 15°. [3]

You must show each stage of your working.

b) i. Use a trigonometric identity to show that
$$\csc^2 x = \cot^2 x + 1$$
. [3]

ii. Solve the equation
$$2 \csc^2 x - 5 \cot x = 5$$
 for $0 \le x \le 360^\circ$. [7]

Give your answers to one decimal place.

Question B3

- a) i. Sketch the graph of y = |2x 6| showing clearly the points where the graph crosses the x- and y-axes. [3]
 - ii. Find the values of x satisfying the equation |2x-6|=9. [3]
- b) Functions f and g are defined as follows:

$$f(x) = e^{3x+1}$$
 and $g(x) = x^2 - 4$.

- i. Write down the exact value of f[g(3)]. [2]
- ii. Write down an expression for $f^{-1}(x)$. [3]

Figure 1

Figure 1 shows the graph of y = g(x) (which is not drawn to scale).

iii. Draw a sketch of y = 2g(x - 2). On your sketch, show clearly the coordinates of the minimum point, and where the graph crosses the x- and y- axes.

Question B4

a) i. Use a trigonometric identity to find
$$\int \cos^2 x \, dx$$
. [4]

ii. Use the substitution
$$u = 1 + x^3$$
 to find $\int 6x^2(1 + x^3)^7 dx$.

b) i. Express
$$\frac{4}{(3+x)(1-x)}$$
 in the form $\frac{A}{3+x} + \frac{B}{1-x}$ [3]

ii. Show that the area beneath the curve
$$y = \frac{4}{(3+x)(1-x)}$$
 the [4] lines $x = -2$ and $x = -1$ is ln 3.

Question B5

The line l_1 has equation $\mathbf{r} = (\mathbf{i} - 2\mathbf{j} + 3\mathbf{k}) + t(2\mathbf{i} + 3\mathbf{j} + 4\mathbf{k})$ and the line l_2 has equation $\mathbf{r} = (-3\mathbf{i} + \mathbf{j} + 7\mathbf{k}) + s(5\mathbf{i} + 3\mathbf{j} + 4\mathbf{k})$ where t and s are scalars.

- a) Show that the lines l_1 and l_2 intersect, and find the coordinates of the point of intersection A.
- b) Find the acute angle between the lines l_1 and l_2 . [5]

Point B lies on the line l_1 and has coordinates (-3, -8, k).

d) Find the shortest distance between B and the line l_2 . [3]

Question B6

a) The midnight temperatures were recorded in Manchester during one week in February. The readings were 3, 0, -1, 2, 0, 4, 6 °C.

	E' 14	
I.	Find the mean.	[2]

ii. Find the standard deviation. [3]

b) The numbers of apples were counted on 120 trees and the results are shown below.

Number of apples	Frequency
80 - 90	4
91 - 100	6
101 - 110	12
111 - 120	18
121 - 130	34
131 - 140	36
141 - 150	10

(You may want to copy and extend the table to help you answer some of the questions below)

:		[7]
1	Estimate the mean.	1.31

- ii. Work out the cumulative frequencies [1]
- iii. On the graph paper provided draw a cumulative frequency curve. [3]
- iv. Use your curve to estimate the median and interquartile range. [2]
- v. The frequency distribution could be described as [1]

(choose one of the answers A, B, C or D below)

- A Positively skewed
- **B** Negatively skewed
- **C** Uniform
- **D** Bimodal