Calculus I

Reference: Computing a Riemann Sum limit directly, part 1

Todor Miley

2019

Example

For the region S underneath the parabola $y = x^2$ from 0 to 1, show that the area under the approximating rectangles approaches $\frac{1}{3}$, that is,

$$\lim_{n\to\infty}R_n=\frac{1}{3}.$$

- Each rectangle has width $\frac{1}{n}$.
- The heights are $\left(\frac{1}{n}\right)^2$, $\left(\frac{2}{n}\right)^2$, ..., $\left(\frac{n}{n}\right)^2$.
- New formula:

•
$$1^2 + 2^2 + 3^2 + \dots + n^2 = \frac{n(n+1)(2n+1)}{6}$$
.

