```
In [2]:
         #importing required libraries
          import pandas as pd
          from sklearn.model selection import train test split
          from sklearn import linear_model
          import statsmodels.api as sm
          import seaborn as sns
          from sklearn.metrics import r2 score
          import math
          import warnings
         warnings.filterwarnings("ignore")
In [3]:
          src dest df = pd.read parquet('src dest df.parquet')
          src_dest_df.timestamp = pd.to_datetime(src_dest_df.timestamp)
          src dest df.shape
         src dest df.dtypes
          src dest df.head(10)
Out[3]:
             cloud_geo_iso1
                               cloud_geo_iso2 latency_ms
             AWS.eu-west-1 AWS.ap-northeast-2
                                                 124.20
         67
             AWS.eu-west-1 AWS.ap-southeast-2
                                                 131.80
         68
             AWS.eu-west-1 AWS.ap-northeast-2
                                                 123.75
         69
             AWS.eu-west-1
                               AWS.eu-west-2
                                                   6.35
         70
             AWS.eu-west-1
                               AWS.us-west-1
                                                  72.35
             AWS.eu-west-1
                               AWS.eu-north-1
         71
                                                  23.75
             AWS.eu-west-1
                              AWS.eu-central-1
         72
                                                  14.55
             AWS.eu-west-1
                                AWS.us-east-1
         73
                                                  36.40
         74
             AWS.eu-west-1
                              AWS.ca-central-1
                                                  39.55
             AWS.eu-west-1
         75
                               AWS.eu-west-3
                                                  10.75
In [4]:
         # Feature engineering
         data = src dest df
         data.sort values(by='timestamp')
         data = src_dest_df[['timestamp','latency_ms']]
         data.head(20)
                                 timestamp
                                                 cloud_geo_iso1
                                                                      cloud_geo_iso2 \
         0
                2020-03-31 08:00:00+00:00
                                                  AWS.ap-east-1
                                                                       AWS.us-west-2
                                                  AWS.ap-east-1
         1
                2020-03-30 17:00:00+00:00
                                                                       AWS.us-west-2
                2020-03-31 05:00:00+00:00
         2
                                                  AWS.ap-east-1
                                                                       AWS.us-west-2
         3
                2020-03-31 09:00:00+00:00
                                                  AWS.ap-east-1
                                                                       AWS.us-west-2
                                                                       AWS.us-west-2
         4
                2020-03-31 22:00:00+00:00
                                                  AWS.ap-east-1
         495076 2020-03-21 10:00:00+00:00
                                             AWS.ap-southeast-2
                                                                       AWS.eu-west-2
         495077 2020-03-26 17:00:00+00:00
                                             AWS.ap-southeast-2
                                                                      AWS.eu-north-1
        495078 2020-03-26 02:00:00+00:00
                                             AWS.ap-southeast-1 AWS.ap-northeast-1
```

```
      495079
      2020-03-31
      04:00:00+00:00
      AWS.ap-southeast-2
      AWS.us-west-2

      495080
      2020-03-31
      02:00:00+00:00
      AWS.ap-southeast-2
      AWS.sa-east-1
```

	latency_ms	packet_loss_percent
0	156.55	0.0
1	154.60	0.0
2	153.85	0.0
3	155.60	0.0
4	155.00	0.0
495076	139.25	0.0
495077	149.95	0.0
495078	54.75	0.0
495079	71.50	0.0
495080	157.15	0.0

[495081 rows x 5 columns]

\cap	+-	[4]	
Vι	1 L	4	

timestamp latency_ms 2020-03-31 08:00:00+00:00 156.55 2020-03-30 17:00:00+00:00 154.60 2020-03-31 05:00:00+00:00 153.85 2020-03-31 09:00:00+00:00 155.60 2020-03-31 22:00:00+00:00 155.00 2020-03-30 16:00:00+00:00 115.90 2020-03-31 15:00:00+00:00 155.40 2020-03-31 03:00:00+00:00 155.10 2020-03-31 00:00:00+00:00 154.05 2020-03-30 23:00:00+00:00 115.80 2020-03-31 03:00:00+00:00 115.85 2020-03-31 07:00:00+00:00 115.45 2020-03-31 18:00:00+00:00 115.00 2020-03-30 20:00:00+00:00 114.85 2020-03-31 23:00:00+00:00 155.45 2020-03-31 10:00:00+00:00 115.25 2020-03-31 17:00:00+00:00 115.35 2020-03-31 14:00:00+00:00 114.60 2020-03-31 09:00:00+00:00 116.45 2020-03-31 22:00:00+00:00 113.50

```
In [5]: # creating moving-averages
  data['MA48'] = data['latency_ms'].rolling(48).mean()
  data['MA336'] = data['latency_ms'].rolling(336).mean()

# plotting the graph
```

```
import plotly.express as px
fig = px.line(data, x="timestamp", y=['latency_ms', 'MA48', 'MA336'], title='latency_an
fig.show()
```

latency_anomoly


```
In [6]: # drop moving-average columns
   data.drop(['MA48', 'MA336'], axis=1, inplace=True)
   # set timestamp to index
   data.set_index('timestamp', drop=True, inplace=True)
   # resample timeseries to hourly
   data = data.resample('H').sum()
   # create features from date
   data['day'] = [i.day for i in data.index]
   data['day_name'] = [i.day_name() for i in data.index]
   data['day_of_year'] = [i.weekofyear for i in data.index]
   data['week_of_year'] = [i.weekofyear for i in data.index]
   data['is_weekday'] = [i.isoweekday() for i in data.index]
   data['is_weekday'] = [i.isoweekday() for i in data.index]
   data.head()
```

Out[6]: latency_ms day day_name day_of_year week_of_year hour is_weekday

timestamp

	latency_ms	day	day_name	day_of_year	week_of_year	hour	is_weekday
timestamp							
2019-12-31 23:00:00+00:00	15320.55	31	Tuesday	365	1	23	2
2020-01-01 00:00:00+00:00	18155.50	1	Wednesday	1	1	0	3
2020-01-01 01:00:00+00:00	18187.60	1	Wednesday	1	1	1	3
2020-01-01 02:00:00+00:00	18159.30	1	Wednesday	1	1	2	3
2020-01-01 03:00:00+00:00	18161.85	1	Wednesday	1	1	3	3

In [14]:

from pycaret.anomaly import *
s = setup(data, session_id = 123)

	Description	Value
0	session_id	123
1	Original Data	(2185, 7)
2	Missing Values	False
3	Numeric Features	4
4	Categorical Features	3
5	Ordinal Features	False
6	High Cardinality Features	False
7	High Cardinality Method	None
8	Transformed Data	(2185, 32)
9	CPU Jobs	-1
10	Use GPU	False
11	Log Experiment	False
12	Experiment Name	anomaly-default-name
13	USI	bf21
14	Imputation Type	simple
15	Iterative Imputation Iteration	None
16	Numeric Imputer	mean
17	Iterative Imputation Numeric Model	None
18	Categorical Imputer	mode
19	Iterative Imputation Categorical Model	None

	Description	Value
20	Unknown Categoricals Handling	least_frequent
21	Normalize	False
22	Normalize Method	None
23	Transformation	False
24	Transformation Method	None
25	PCA	False
26	PCA Method	None
27	PCA Components	None
28	Ignore Low Variance	False
29	Combine Rare Levels	False
30	Rare Level Threshold	None
31	Numeric Binning	False
32	Remove Outliers	False
33	Outliers Threshold	None
34	Remove Multicollinearity	False
35	Multicollinearity Threshold	None
36	Remove Perfect Collinearity	False
37	Clustering	False
38	Clustering Iteration	None
39	Polynomial Features	False
40	Polynomial Degree	None
41	Trignometry Features	False
42	Polynomial Threshold	None
43	Group Features	False
44	Feature Selection	False
45	Feature Selection Method	classic
46	Features Selection Threshold	None
47	Feature Interaction	False
48	Feature Ratio	False
49	Interaction Threshold	None

In [15]:

checking of available models
models()

Out[15]: Name Reference

ID	Name	Reference
ID		
abod	Angle-base Outlier Detection	pyod.models.abod.ABOD
cluster	Clustering-Based Local Outlier	pyod.models.cblof.CBLOF
cof	Connectivity-Based Local Outlier	pyod.models.cof.COF
iforest	Isolation Forest	pyod.models.iforest.lForest
histogram	Histogram-based Outlier Detection	pyod.models.hbos.HBOS
knn	K-Nearest Neighbors Detector	pyod.models.knn.KNN
lof	Local Outlier Factor	pyod.models.lof.LOF
svm	One-class SVM detector	pyod.models.ocsvm.OCSVM
рса	Principal Component Analysis	pyod.models.pca.PCA
mcd	Minimum Covariance Determinant	pyod.models.mcd.MCD
sod	Subspace Outlier Detection	pyod.models.sod.SOD
sos	Stochastic Outlier Selection	pyod.models.sos.SOS

```
In [16]: # training the model
  iforest = create_model('iforest', fraction = 0.1)
  iforest_results = assign_model(iforest)
  iforest_results.head()
```

day_name day_of_year week_of_year hour is_weekday Anomaly / Out[16]: latency_ms day timestamp 2019-12-31 2 15320.55 365 1 23 0 31 Tuesday 23:00:00+00:00 2020-01-01 18155.50 1 Wednesday 1 1 0 3 1 00:00:00+00:00 2020-01-01 18187.60 0 Wednesday 1 01:00:00+00:00 2020-01-01 18159.30 1 Wednesday 1 2 0 02:00:00+00:00 2020-01-01

```
In [17]: # checking for anomalies
   iforest_results[iforest_results['Anomaly'] == 1].head()
```

1 Wednesday

Out[17]: latency_ms day day_name day_of_year week_of_year hour is_weekday Anomaly /
timestamp

18161.85

03:00:00+00:00

0

	latency_ms	day	day_name	day_of_year	week_of_year	hour	is_weekday	Anomaly	1
timestamp									
2020-01-01 00:00:00+00:00	18155.5	1	Wednesday	1	1	0	3	1	
2020-01-01 20:00:00+00:00	18156.5	1	Wednesday	1	1	20	3	1	
2020-01-01 22:00:00+00:00	18143.7	1	Wednesday	1	1	22	3	1	
2020-01-01 23:00:00+00:00	18181.2	1	Wednesday	1	1	23	3	1	
2020-01-02 00:00:00+00:00	18191.9	2	Thursday	2	1	0	4	1	

AWS- Latency Anomoly detection

