Cours de probabilité Avancée

Diffalah LAISSAOUI

Université de Médéa Faculté des sciences Département de mathématiques et Informatique

L3 Maths

Mars 2022

Espérance d'une variable discrete

Definition

L'espérance d'une variable aléatoire est une valeur centrale de cette variable aléatoire (c'est un bary centre a chaque possible de la variable aléatoire est effectée de sa probabilité).

Definition

L'espérance d'une variable aléatoire discrète X est définit par :

$$E(X) = \sum_{X} xP(X = x) = \sum_{X} xf_{X}(x).$$

Remark

1/E(X) n'est pas une valeurs possible de X.// 2/E(X) existe si $\sum_{x} |x| f_{X}(x) < \infty$.

Exercise

Montrer que $\sum_{n} |x_n| \ CV \Rightarrow \sum_{n} x_n \ CV$.

Espérance d'une variable discrete

$$\bullet E(g(X)) = \sum_{x} g(x) f_{X}(x).$$

Espérance d'une variable discrete

- ② $E(X^n) = \sum_{x} x^n f_X(x)$. Moment d'ordre n.

Espérance d'une variable discrete

- ② $E(X^n) = \sum_{x} x^n f_X(x)$. Moment d'ordre n.

Espérance d'une variable discrete

- ② $E(X^n) = \sum_{x} x^n f_X(x)$. Moment d'ordre n.
- **③** Si X et Y sont indépendants alors $E(XY) = E(X) \times E(Y)$.

Variance d'une variable discrete

Plusieurs variable aléatoire peuvent avoir la même espérance.

Example

Soit *X*, *Y*, *Z* des variables aléatoires telles que $P(X = 1) = P(X = -1) = \frac{1}{8}$ et $P(X = 0) = \frac{6}{8}$. $P(Y = -300) = P(Y = -200) = P(Y = 300) = P(Y = 200) = \frac{1}{4}$.

 $P(Z = \frac{1}{2}) = P(X = -\frac{1}{2}) = 0.005$ et P(Z = 0) = 0.99, donc on a

E(X) = 0, E(Y) = 0, E(Z) = 0,

Definition

La variance est la dispersion des valeurs possibles autour de l'espérance.

Variance d'une variable discrete

Definition

La variance d'une variable aléatoire X est définit par :

$$Var(X) = E(X - E(X))^{2}$$

$$= \sum_{X} (x - E(X))^{2} f_{X}(x) = E(X^{2}) - (E(X))^{2}$$

$$= \sum_{X} x^{2} f_{X}(x) - (\sum_{X} x f_{X}(x))^{2}.$$

Covariance

Definition

Soient X, Y deux variables aléatoires, on appelle covariance de X et Y

$$Cov(X, Y) = E((X - E(X))(Y - E(Y)))$$
$$= E(XY) - E(X)E(Y).$$

Variance d'une variable discrete

Proposition

Soient X, Y deux variables aléatoires, alors on a les proprietes suivantes: 1/Var(X + Y) = Var(X) + Var(Y) + 2Cov(X, Y). 2/ $X \perp Y \Rightarrow Cov(X, Y) = 0$. 3/ $Cov(X, Y) = 0 \Rightarrow X \perp Y$.

Example

Soient X, Y deux variables aléatoires telles que

$$P(X = 0) = P(X = 1) = P(X = -1) = \frac{1}{3}$$
; $Y = \begin{cases} 0 \text{ si } X \neq 0 \\ 1 \text{ si } X = 0 \end{cases}$ alors on a $XY = 0 \Rightarrow F(XY) = 0$, d'autre part on a

$$XY = 0 \Rightarrow E(XY) = 0$$
, d'autre part on a

$$E(X) = 0 \times \frac{1}{3} + 1 \times \frac{1}{3} + (-1) \times \frac{1}{3} = 0$$
 donc

$$E(XY) - E(X)E(Y) = 0 - 0 = 0$$
 mais X et Y sont dépendants.

Definition

L'ecart type σ est la racine carré de la variance, $\sigma = \sqrt{Var(X)}$.

Inégalité de Markov

Proposition

Soit X une variable aléatoire positif alors

$$P(X \ge c) \le \frac{E(X)}{c}, \forall c > 0.$$

Démonstration.

Soit X une variable aléatoire positif on a

$$E(X) = \sum_{x} xP(X = x)$$

$$= \sum_{\{x/x \ge c\}} xP(X = x) + \sum_{\{x/x < c\}} xP(X = x)$$

$$\geq \sum_{\{x/x \ge c\}} xP(X = x) \ge \sum_{x \ge c} cP(X = x)$$

$$= c \sum_{x \ge c} P(X = x) = cP(X \ge c)$$

Inégalité de Tchebychev

Proposition

Soit X une variable aléatoire alors

$$P(|X - E(X)| \ge \epsilon) \le \frac{Var(X)}{\epsilon^2}, \forall \epsilon > 0$$

Démonstration.

On considère la variable aléatoire Y = |X - E(X)| puis on applique l'inégalité de Markov, on obtient

$$P(Y \ge \epsilon) = P(Y^2 \ge \epsilon^2) \le \frac{E(Y^2)}{\epsilon^2}$$

$$= \frac{E(|X - E(X)|^2)}{\epsilon^2}$$

$$= \frac{E(X - E(X))^2}{\epsilon^2} = \frac{Var(X)}{\epsilon^2}$$

Espérance d'une variable aléatoire continue

Definition

Nous disons que la variable aléatoire X admet une espérance mathématique si l'intégrale $\int\limits_{-\infty}^{+\infty} x f_X(x) dx$ converge absolument.

Definition

Nous appelons alors espérance mathématique de X, la valeur notée

$$E(X)$$
 et définie par $\int_{-\infty}^{+\infty} x f_X(x) dx$.

Variance d'une variable aléatoire continue

Definition

Soit X une variable aléatoire continue, la variance de X est définie par :

$$Var(X) = E(X - E(X))^{2}$$

$$= E(X^{2}) - (E(X))^{2}$$

$$= \int_{\mathbb{R}} x^{2} f_{X}(x) dx - \left(\int_{\mathbb{R}} x f_{X}(x) dx\right)^{2}.$$

Definition

L'ecart type σ est la racine carré de la variance, $\sigma = \sqrt{Var(X)}$.

