Exercise 1. Let (X, \mathscr{A}, μ) be a measure space, and let A and A_1, A_2, \ldots belong to \mathscr{A} . Show that

- (a) $\{\chi_{A_n}\}$ converges to 0 in measure if and only if $\lim_n \mu(A_n) = 0$.
- (b) $\{\chi_{A_n}\}$ converges to 0 almost everywhere if and only if $\mu(\cap_{n=1}^{\infty}\cup_{k=n}^{\infty}A_k)=0$
- (c) $\{\chi_{A_n}\}$ converges to χ_A almost everywhere if and only if the three sets A, $\bigcap_{n=1}^{\infty} \bigcup_{k=n}^{\infty} A_k$ and $\bigcup_{n=1}^{\infty} \bigcap_{k=n}^{\infty} A_k$ differ only by μ -null sets (Hint: see exercise 2.1.1)

For reference, exercise 2.1.1 state that for (A_k) a sequence of subsets of X, and $B = \bigcup_{n=1}^{\infty} \bigcap_{k=n}^{\infty} A_k$ and $C = \bigcap_{n=1}^{\infty} \bigcup_{k=n}^{\infty} A_k$, we have $\lim \inf_k \chi_{A_k} = B$ and $\lim \sup_k \chi_{A_k} = C$.

Proof.

- (a) Let $\epsilon > 0$, we have $\{x \in X \mid |\chi_{A_n}(x)| > \epsilon\} = \{x \in X \mid \chi_{A_n}(x) = 1\} = A_n$, from which we deduce $\mu(\{x \in X \mid |\chi_{A_n}(x)| > \epsilon\}) = \mu(A_n)$. So $\{\chi_{A_n}\}$ converges in measure to 0 is equivalent to $\mu(A_n)$ converges to 0.
- (b) Let $\epsilon > 0$ and $n \in \mathbb{N}$. As before, we note that $A_n = \{x \in X \mid |\chi_{A_n}(x)| > \epsilon\}$. Define $B_n = \bigcup_{k=n}^{\infty} A_k$ and $B = \bigcap_{n=1}^{\infty} B_n$, and remark that $\{x \in X \mid \{\chi_{A_n}(x)\} \text{ does not converge to } 0 \}$ is a subset of B. Therefore if $\mu(\bigcap_{n=1}^{\infty} \bigcup_{k=n}^{\infty} A_k) = 0$, then $\{\chi_{A_n}\}$ converges to 0 almost everywhere.

Conversely, suppose that $\{\chi_{A_n}\}$ converges to 0 almost everywhere, and choose a μ -null set $N \subset \mathscr{A}$ such that $\{x \in X \mid \{\chi_{A_n}\}\}$ does not converge to $0 \} \subset N$. Define $D_n = A_n \cap N^C$; the series (χ_{D_n}) converges simply to 0 everywhere. Let $D = \bigcap_{n=1}^{\infty} \bigcup_{k=n}^{\infty} D_k$ and $x \in D$. Then for all $n, \exists k \geq n, \quad \chi_{D_n}(x) = 1$, which contradicts the simple convergence of (χ_{D_n}) to 0 on N^C . It follows that $D = \varnothing$, and thus $\mu(D) = 0$.

Next, define $S = \bigcap_{n=1}^{\infty} \bigcup_{k=n}^{\infty} A_k$. We have:

$$\mu(S) = \mu(S \cap N) + \mu(S \cap N^C)$$

$$\mu(S \cap N) \le \mu(N) = 0$$

$$\mu(S \cap N^C) = \mu\left(\bigcap_{n=1}^{\infty} \bigcup_{k=n}^{\infty} \left(A_k \cap N^C\right)\right) = \mu(D) = 0$$

which gives us $\mu(\bigcap_{n=1}^{\infty} \cup_{k=n}^{\infty} A_k) = 0$

(c)