作业反馈3-8

TC第24.1节练习2、3、4 TC第24.2节练习2 TC第24.3节练习2、4、7 TC第24.5节练习2、5 TC第24章问题2、3

24.1-4

Modify the Bellman-Ford algorithm so that it sets v.d to $-\infty$ for all vertices v for which there is a negative-weight cycle on some path from the source to v.

```
BELLMAN-FORD(G, w, s)
   INITIALIZE-SINGLE-SOURCE (G, s)
   for i = 1 to |G.V| - 1
        for each edge (u, v) \in G.E
            RELAX(u, v, w)
   for each edge (u, v) \in G.E
       if v.d > u.d + w(u, v)
            return FALSE
    return TRUE
```

```
Line 5-7:
   for i = 1 to |G.V| - 1
   for each edge (u, v) in G.E
   if v.d > u.d + w(u, v)
   v.d = -inf
```

$$v.d = -\infty$$

24.3-4

Professor Gaedel has written a program that he claims implements Dijkstra's algorithm. The program produces v.d and $v.\pi$ for each vertex $v \in V$. Give an O(V+E)-time algorithm to check the output of the professor's program. It should determine whether the d and π attributes match those of some shortest-paths tree. You may assume that all edge weights are nonnegative.

```
for each vertex v in G
assert(v.d == v.pi.d + w(v.pi, v))
for each edge (u, v) in G
assert(v.d <= y.d + w(u, v))
```

是否有问题?


```
CHECK-DIJKSTRA(G, w)
        for every vertex u belongs to G
             for every (u, v) belongs to G.E
                 if(v.pi != u && u.d + w(u, v) < v.d)
                      return false
                 if(v.pi == u && u.d + w(u, v) != v.d)
                      return false
        return true
```

24.3-4

Professor Gaedel has written a program that he claims implements Dijkstra's algorithm. The program produces v.d and $v.\pi$ for each vertex $v \in V$. Give an O(V+E)-time algorithm to check the output of the professor's program. It should determine whether the d and π attributes match those of some shortest-paths tree. You may assume that all edge weights are nonnegative.

• 具有唯一的节点s, s.d = 0, $s.\pi = Nil$

```
for each vertex v in G.V-{s}

assert(v.d == v.pi.d + w(v.pi, v))

for each edge (u, v) in G

assert(v.d <= y.d + w(u, v))
```

24-2 Nesting boxes

A *d*-dimensional box with dimensions $(x_1, x_2, ..., x_d)$ *nests* within another box with dimensions $(y_1, y_2, ..., y_d)$ if there exists a permutation π on $\{1, 2, ..., d\}$ such that $x_{\pi(1)} < y_1, x_{\pi(2)} < y_2, ..., x_{\pi(d)} < y_d$.

- a. Argue that the nesting relation is transitive.
- **b.** Describe an efficient method to determine whether or not one *d*-dimensional box nests inside another.
- c. Suppose that you are given a set of n d-dimensional boxes $\{B_1, B_2, \ldots, B_n\}$. Give an efficient algorithm to find the longest sequence $\langle B_{i_1}, B_{i_2}, \ldots, B_{i_k} \rangle$ of boxes such that B_{i_j} nests within $B_{i_{j+1}}$ for $j=1,2,\ldots,k-1$. Express the running time of your algorithm in terms of n and d.

- a. 假设 $x = (x_1, x_2, ..., x_d)$ nests within $y = (y_1, y_2, ..., y_d)$, $y = (y_1, y_2, ..., y_d)$ nests within $z = (z_1, z_2, ..., z_d)$. 则, $\exists \pi_1, \pi_2 \in S_d(d)$ 阶对称群) $\ni x_{\pi_1(i)} < y_i, y_{\pi_2(i)} < z_i \ \forall i \in \{1, 2, ..., d\}$. 于是, 有 $x_{\pi_1(\pi_2(i))} < y_{\pi_2(i)} < z_i \ \forall i \in \{1, 2, ..., d\}$. 因此, $x = (x_1, x_2, ..., x_d)$ nests within $z = (z_1, z_2, ..., z_d)$.
 - o. 现将两个数组中的元素从小到大排序, 然后逐个比较大小. 如果 x 的元素逐个比 y 小, 则 x nests in y. 如果使用快速排序, 平均时间复杂度为 $\Theta(d \lg d)$.
- c. 可以先将所有的 B_i 两两比较,确定其 nesting 关系,此过程的时间复杂度为 $\Theta(n^2d\lg d)$. 在这个过程中可以构建一个图 G=(V,E),其中 $V=\{B_1,B_2,\ldots,B_n\}\cup\{S\},\ E=\{(B_u,B_v)|B_u \text{ nests within }B_v\}\cup\{(S,B_i)|i=1,2,\ldots,n\}$. 每条边的权都是 1. 于是,问题转化为在 G中求以 S 为源的关键路径. 求关键路径的时间复杂度为 $\Theta(|V|+|E|)$,即 $\Theta(n^2)$. 综上,算法的时间复杂度为 $\Theta(n^2d\lg d)$.

还有什么办法?

24-3 Arbitrage

Arbitrage is the use of discrepancies in currency exchange rates to transform one unit of a currency into more than one unit of the same currency. For example, suppose that 1 U.S. dollar buys 49 Indian rupees, 1 Indian rupee buys 2 Japanese yen, and 1 Japanese yen buys 0.0107 U.S. dollars. Then, by converting currencies, a trader can start with 1 U.S. dollar and buy $49 \times 2 \times 0.0107 = 1.0486$ U.S. dollars, thus turning a profit of 4.86 percent.

Suppose that we are given n currencies c_1, c_2, \ldots, c_n and an $n \times n$ table R of exchange rates, such that one unit of currency c_i buys R[i, j] units of currency c_j .

a. Give an efficient algorithm to determine whether or not there exists a sequence of currencies $\langle c_{i_1}, c_{i_2}, \dots, c_{i_k} \rangle$ such that

$$R[i_1, i_2] \cdot R[i_2, i_3] \cdots R[i_{k-1}, i_k] \cdot R[i_k, i_1] > 1$$
.

Analyze the running time of your algorithm.

b. Give an efficient algorithm to print out such a sequence if one exists. Analyze the running time of your algorithm.

observing that
$$R[i_1,i_2] \cdot R[i_2,i_3] \dots R[i_{K-1},i_K] \cdot R[i_K,i_1] > 1$$
. if and only if $\frac{1}{R[i_1,i_2]} \cdot \frac{1}{R[i_2,i_3]} \dots \frac{1}{R[i_{K-1},i_K]} \cdot \frac{1}{R[i_K,i_1]} < 1$, Taking logs
$$\log \frac{1}{R[i_1,i_2]} + \log \frac{1}{R[i_2,i_3]} + \log \frac{1}{R[i_{K-1},i_K]} + \log \frac{1}{R[i_{K-1},i_K]} + \dots + \log^p \frac{1}{R[i_K,i_1]} < 0$$
 负权 cycle

Therefore if we define the weight of edge (v_i, v_j) as $\varpi(v_i, v_j) = \lg \frac{1}{R[i, j]}$ = $-\lg R[i, j]$.

Bellman Ford

Arbitrage(R)

- 1 **for** each pair (i,j)
- $2 R[i,j] = -\log(R[i,j])$
- $3 R[j, i] = -\log(1/R[i, j])$
- 4 **return** not Bellman-Ford(G, R, 0)