

## Real Closed Field

Artie2000

June 15, 2025

**Lemma 1.** Fix a prime p, and let M/K be a separable Galois extension of degree  $p^k \cdot a$ , where  $p \nmid a$ . Then, for  $0 \leq l \leq k$ , there is an intermediate field M/L/K of degree  $[L:K] = p^l \cdot a$ .

*Proof.* Since M/K is Galois,  $|\operatorname{Gal}(M/K)| = p^k \cdot a$ . By Sylow's theorems at p,  $\operatorname{Gal}(M/K)$  has a subgroup H of degree  $p^{k-l}$ . By the Galois correspondence,  $[M^H:K] = p^l \cdot a$ .

**Lemma 2.** The separable quadratic extensions of a field K are classified by the set

$$\left(\frac{K^*}{(K^*)^2}\right) \setminus \{1 \cdot (K^*)^2\}$$

via the map  $x(K^*)^2 \to K(\sqrt{x})$ .

**Definition 3.** A real closed field R is an ordered field in which every positive element has a square root and every odd-degree polynomial has a root.

Let R be a real closed field. Note that, since R is ordered, char R = 0. In particular, its algebraic extensions are separable.

**Lemma 4.** Nontrivial algebraic extensions of R have even degree.

*Proof.* Let K/R be an algebraic extension of R. By the primitive element theorem,  $K = R(\alpha)$  for some  $\alpha \in K$ . Let f be the minimal polynomial of  $\alpha$  over K; then f is irreducible but deg f = [K : R]. Therefore, if [K : R] is odd, then [K : R] = 1; that is, K = R.

**Lemma 5.** Let K/R be a quadratic extension. Then K = R(i).

*Proof.* Fix  $x \in R^*$ . Then either x > 0 and  $x = 1 \cdot (\sqrt{x})^2$ , or x < 0 and  $x = -1 \cdot (\sqrt{-x})^2$ . Therefore  $R^*/(R^*)^2 = \{1, -1\}$ , and we are done by Lemma ??.

**Lemma 6.** There is no quadratic extension of R(i).

*Proof.* By Lemma ??, it suffices to show that every element of R(i) is a square. Indeed, take  $x = a + bi \in R(i)$  with  $a, b \in R$ . If b = 0, then either  $a \ge 0$  and so x is a square in R, or  $a \le 0$  and so  $a = (i\sqrt{-a})^2$  is a square in K. Now let  $b \ne 0$ . Then we compute  $x = (c + di)^2$ , where

$$c = \sqrt{\frac{a + \sqrt{a^2 + b^2}}{2}} \text{ and } d = \frac{b}{2c}.$$

These square roots lie in R(i) because squares are non-negative and  $\frac{a^2+b^2}{\geq}a^2$  so  $a+\sqrt{a^2+b^2}\geq 0$ .

**Theorem 7.** The only algebraic extensions of R are R itself and R(i).

*Proof.* By separability, every algebraic extension of R is contained in a Galois extension. Since R(i)/R has no intermediate fields, it suffices to show the result for Galois extensions.

Let K/R be a nontrivial Galois extension of degree  $2^k a$ , where  $k \geq 0$  and  $a \geq 1$  is odd. By Lemma ?? with p=2, there is an intermediate extension of degree a. By Lemma ??, a=1 (and  $k \geq 1$ ). Applying Lemma ??, there is an intermediate extension K/L/R of degree 2. By Lemma ??, L=K(i). If  $L \neq K(i)$ , then one more application of Lemma ?? yields an intermediate quadratic extension L/M/K(i), contradicting Lemma ??..#

Corollary 8.  $\bar{R} = R(i)$ .