Análise e Técnicas de Algoritmos

Jorge Figueiredo

Divisão e Conquista

Agenda

- Conceitos Básicos
- Template Genérico
- Exemplos

Motivação

- Pegar um problema de entrada grande.
- Quebrar a entrada em pedaços menores (DIVISÃO).
- Resolver cada pedaço separadamente. (CONQUISTA)
- Como resolver os pedaços?
- Combinar os resultados.

A Técnica

A técnica de divisão e conquista consistem de 3 passos básicos:

- Divisão: Dividir o problema original, em subproblemas menores.
- 2. Conquista: Resolver cada subproblema recursivamente.
- Combinação: Combinar as soluções encontradas, compondo uma solução para o problema original.

A Técnica

- Algoritmos baseados em divisão e conquista são, em geral, recursivos.
- A maioria dos algoritmos de divisão e conquista divide o problema em a subproblemas da mesma natureza, de tamanho n/b.
 - T(n) = a. T(n/b) + g(n)
 - Teorema Master para fazer análise.
- Vantagens:
 - Requer um número menor de acessos à memória.
 - São altamente paralelizáveis. Se existem vários processadores disponíveis, a estratégia propicia eficiência.

Quando Utilizar DeC?

Existem três condições que indicam que a estratégia de divisão e conquista pode ser utilizada com sucesso:

- Deve ser possível decompor uma instância em subinstâncias
- 2. A combinação dos resultados deve ser eficiente.
- As sub-instâncias devem ser mais ou menos do mesmo tamanho.

Quando Utilizar DeC?

É possível identificar pelo menos duas situações genéricas em que a abordagem por divisão e conquista é adequada:

- Problemas onde um grupo de operações são correlacionadas ou repetidas. A multiplicação de matrizes, que veremos a seguir, é um exemplo clássico.
- Problemas em que uma decisão deve ser tomada e, uma vez tomada, quebra o problema em peças disjuntas. Em especial, a abordagem por divisão-e-conquiasta é interessante quando algumas peças passam a ser irrelevantes.

Algoritmo Genérico

DivisãoeConquista(x) if x é pequeno ou simples do return resolver(x) else decompor x em conjuntos menores x₀, x₁, ... x_n for i ← 0 to n do y_i ← DivisãoeConquista(x_i) i ← i + 1 combinar y_i's return y

Exemplo 1

O problema consiste em encontrar o maior elemento de um array A[1..n]

Solução Ingênua

 $\begin{aligned} & \text{Maxim(A[1..n])} \\ & \text{max} \leftarrow A[1] \\ & \text{for } i \leftarrow 2 \text{ to n do} \\ & \text{if } A[j] > \text{max then} \\ & \text{max} \leftarrow A[i] \\ & \text{return max} \end{aligned}$

Exemplo 1

O problema consiste em encontrar o maior elemento de um array A[1..n]

Solução Ingênua

 $\begin{aligned} & \text{Maxim(A[1..n])} \\ & \text{maior} \leftarrow A[1] \\ & \text{for } i \leftarrow 2 \text{ to n do} \\ & \text{ if } A[j] > \text{maior then} \\ & \text{maior} \leftarrow A[i] \end{aligned}$ & return maior

Solução DeC

 $\begin{aligned} & \text{Maxim(A[x..y])} \\ & \text{if } x - y \leq 1 \text{ then} \\ & & \text{return } \max(A[x], A[y]) \\ & \text{else} \\ & & \text{m} \leftarrow x + y / 2 \\ & & \text{v1} \leftarrow \text{Maxim(A[x..m])} \\ & & \text{v2} \leftarrow \text{Maxim(A[m+1..y])} \\ & \text{return } \max(v1, v2) \end{aligned}$

Exemplo 2

• O problema consiste em computa a^n , em que $n \in N$.

Solução Ingênua

Pow(a, n)

p ← a

for i ← 2 to n do

p ← p × a

return p

Solução DeC

Pow(a, n)
if n=0 then
return 1
if n é par then
return Pow(a, n/2) × Pow(a, n/2)
else

return Pow(a,n-1/2) \times Pow(a, n-1/2) \times a

Multiplicação de Inteiros Grandes

- O problema consiste em multiplicar dois números inteiros grandes.
- A multiplicação clássica (a que aprendemos fazer na escola) requer tempo Θ(n²). Isso porque fazemos multiplicação dígito a dígito.

Solução Alternativa por Divisão e Conquista

- Para evitar maiores complicações, vamos assumir que o número de dígitos em cada número é potência de 2.
- A multiplicação de um número A por um número B pode ser efetuada dividindo-se o número original em dois super-dígitos e procedendo a multiplicação.

Multiplicação de Inteiros Grandes

 $Mult(A,B) = Mult(w,y).10^{2m} + (Mult(w,z)+Mult(x,y)).10^{m} + Mult(x,z)$

- A multiplicação por 10^m pode ser vista como o deslocamento de m posições para a direita.
- As adições envolvidas tomam tempo ⊕(n) cada.
- A multiplicação de dois inteiros longos é o resultado de 4 produtos de inteiros de tamanho metade do valor original, e um constante número de adições e deslocamentos, com tempo ⊙(n).

Multiplicação de Inteiros Grandes

Uma solução por divisão e conquista:

- Divisão: Dividir cada número em dois números com metade da quantidade de dígitos.
- 2. Conquista: Proceder a multiplicação das quatro partes.
- Combinação: Combinar os resultados com deslocamento e adições.

A análise do algoritmo que utiliza divisão e conquista requer a solução da seguinte relação de recorrência:

- $T(n) = 4.T(n/2) + \Theta(n)$
- Θ(n²)

Multiplicação de Inteiros Grandes

Uma Solução por Divisão e Conquista Mais Eficiente

- Por que n\u00e3o temos a efici\u00e9ncia desejada? Ora, temos 4 multiplica\u00f3\u00f3 de n\u00fameros de tamanho n/2.
- A solução seria reduzir o número de multiplicações? Isso é verdade pois sabemos que a adição e deslocamentos contribui com Θ(n).
- Se observarmos mais detalhadamente, podemos reduzir para três o número de multiplicações:
 - C= wy
 - D= xz
 - E= (wz + xy)

Multiplicação de Inteiros Grandes

- C= Mult(w,y)
- D= Mult(x,z)
- E= Mult((w+x, y+z)) C D = (wy+wz+xy+xz)-wy-xz=(wz + xy)
- Logo, $Mult(A,B) = C.10^{2m} + E.10^m + D$
- No total, fazemos 3 multiplicações, 4 adições e 2 subtrações de números com n/2 dígitos. É necessário ainda fazer deslocamentos mas, tudo isso representa Θ(n).
- $T(n) = 3.T(n/2) + \Theta(n)$
- T(n) é ⊕(n¹.585)

Multiplicação de Matrizes

- •Objetivo é multiplicar duas matrizes n×n.
- •Por exemplo, no caso de n=2, é necessário efetuar 8 multiplicações. (2^x , em que $x = log_2^8$)

$$\left|\begin{array}{cc} C_{11} & C_{12} \\ C_{21} & C_{22} \end{array}\right| = \left|\begin{array}{cc} A_{11} & A_{12} \\ A_{21} & A_{22} \end{array}\right| \left|\begin{array}{cc} B_{11} & B_{12} \\ B_{21} & B_{22} \end{array}\right|$$

$$C_{11} = a_{11}b_{11} + a_{12}b_{21}$$

$$C_{12} = a_{11}b_{12} + a_{12}b_{22}$$

$$C_{21} = a_{21}b_{11} + a_{22}b_{21}$$

$$C_{22} = a_{21}b_{12} + a_{22}b_{22}$$

Algoritmo de Strassen

- Strassen mostrou que um multiplicação de matrizes 2x2 pode ser feita com 7 multiplicações e 18 operações de adição e subtração. $(2^{\log_2 7} = 2^{2.807})$
- Redução feita usando divisão e conquista.

$$A \times B = R$$

A ₀	A ₁		B ₀	B ₁
A ₂	A ₃	×	B ₂	B ₃

$\mathbf{A}_0 \mathbf{\times} \mathbf{B}_0 \mathbf{+} \mathbf{A}_1 \mathbf{\times} \mathbf{B}_2$	$A_0 \times B_1 + A_1 \times B_3$
$A_2 \times B_0 + A_3 \times B_2$	$A_2 \times B_1 + A_3 \times B_3$

Algoritmo de Strassen

$$\begin{split} &C_{11} = P_1 + P_4 - P_5 + P_7 \\ &C_{12} = P_3 + P_5 \\ &C_{21} = P_2 + P_4 \\ &C_{22} = P_1 + P_3 - P_2 + P_6 \end{split}$$

$$\begin{vmatrix} C_{11} & C_{12} \\ C_{21} & C_{22} \end{vmatrix} = \begin{vmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{vmatrix} \begin{vmatrix} B_{11} & B_{12} \\ B_{21} & B_{22} \end{vmatrix}$$

$$\mathbf{P}_{1} = (\mathbf{A}_{11} + \mathbf{A}_{22})(\mathbf{B}_{11} + \mathbf{B}_{22})$$

$$P_2 = (A_{21} + A_{22}) \cdot B_{11}$$

 $P_3 = A_{11} \cdot (B_{12} - B_{22})$

$$P_3 = A_{11} * (B_{12} - B_{22})$$

$$P_4 = A_{22} * (B_{21} - B_{11})$$

$$\begin{split} P_1 &= (A_{11} + A_{22})(B_{11} + B_{22}) \\ P_2 &= (A_{21} + A_{22}) * B_{11} \\ P_3 &= A_{11} * (B_{12} * B_{22}) \\ P_4 &= A_{22} * (B_{21} * B_{11}) \\ P_5 &= (A_{11} + A_{12}) * B_{22} \\ P_6 &= (A_{21} * A_{11}) * (B_{11} + B_{12}) \\ P_7 &= (A_{12} * A_{22}) * (B_{21} + B_{22}) \end{split}$$

Algoritmo de Strassen

$$C_{11} = P_1 + P_4 - P_5 + P_7$$

$$\begin{split} C_{11} &= P_1 + P_4 - P_5 + P_7 \\ &= (A_{11} + A_{22})(B_{11} + B_{22}) + A_{22} * (B_{21} - B_{11}) - (A_{11} + A_{12}) * B_{22} + \\ &\quad (A_{12} - A_{22}) * (B_{21} + B_{22}) \\ &= A_{11} B_{11} + A_{11} B_{22} + A_{22} B_{11} + A_{22} B_{22} + A_{22} B_{21} - A_{22} B_{11} - \\ &\quad A_{12} B_{11} + A_{12} B_{22} + A_{23} B_{11} + A_{23} B_{22} + A_{23} B_{21} - A_{23} B_{11} - \\ &\quad A_{13} B_{11} + A_{12} B_{12} + A_{23} B_{11} + A_{23} B_{22} + A_{23} B_{21} - A_{23} B_{11} - A_{23} B_{23} - A_{23} B_{23$$
 $A_{11}B_{22}-A_{12}B_{22}+A_{12}B_{21}+A_{12}B_{22}-A_{22}B_{21}-A_{22}B_{22}$

 $= \mathbf{A}_{11}^{11} \mathbf{B}_{11} + \mathbf{A}_{12} \mathbf{B}_{21}$

Menor Distância Entre Pontos

Distância Euclideana

Menor Distância Entre Pontos

Closest Pair

Entrada: Um conjunto de pontos n $\mathcal{P} = \langle p_1, p_2, ..., p_n \rangle$, em duas dimensões.

Saída: O par de pontos $p_1 e$ p_2 que apresenta a menor distância euclideana.

Menor Distância Entre Pontos

Menor Distância Entre Pontos

- Solução Força Bruta é O(n²).
- Vamos assumir:
 - Não existem pontos com a mesma coordenada x.
 - Não existem pontos com a mesma coordenada y.
- Como resolver este problema considerando 1D?
- É possível aplicar Divisão e Conquista?

Menor Distância Entre Pontos – 2D

- Resolver recursivamente cada sub-problema, obtendo d_i e d_i.
- O que podemos observar?
 - Já temos a menor distância em cada uma das partes.
 - Fazer d= $\min\{d_i, d_i\}$.
 - Falta analisar distância entre pontos de sub-problemas distintos.
 - Devemos analisar todos os casos?
 - Somente pontos que se encontram em uma faixa de tamanho 2d em torno da linha divisória.

Menor Distância Entre Pontos - 2D

- Qual a quantidade de pontos que se encontram dentro da faixa de tamanho 2d?
 - Se considerarmos um p ∈ P₁, todos os pontos de P₂ que devem ser considerados devem estar em um retângulo R de dimensões d × 2d.

Menor Distância Entre Pontos - 2D

- Como determinar os seis pontos?
 - Projeção de pontos nos eixos **x** e **y**.
 - Pode-se fazer isso para todo \mathbf{p} ∈ $\mathbf{P}_{\mathbf{r}}$ e $\mathbf{P}_{\mathbf{r}}$, em O(n) (pontos
- Relação de recorrência é T(n)= 2.T(n/2) + O(n)
 - Sabemos que isso é O(n.log n)

ClosestPair(P)

Pré-processamento

Construir P_x e P_y como listas ordenadas pelas coordenadas x e y

Divisão

Quebrar P em P_I e P_r

Conquista

 $d_{l} = ClosestPair(P_{l})$

 $d_r = ClossetPair(P_r)$

Combinação

d= min{d_i, d_r} Determinar faixa divisória e pontos

Verificar se tem algum par com distância < d