

Mathematical Foundations of Computer Science

Lecture 21: Spanning Trees

Trees

Which among the following graphs are trees?

Trees: A connected graph with no cycles

Equivalent Definitions of Trees

Theorem: Let G be a graph with n vertices and m edges

The following are equivalent:

- 1. G is a connected and acyclic (i.e. G is a tree)
- 2. Every two vertices of G are joined by a unique path
- 3. G is connected and m = n 1
- 4. G is acyclic and m = n 1
- 5. G is acyclic and if any two non-adjacent nodes are joined by an edge, the resulting graph has exactly one cycle

Proof of the Equivalence

How many implications do we need to show?

$$5 \times 4 = 20$$
?

To prove this, it suffices to show

$$1 \Rightarrow 2 \Rightarrow 3 \Rightarrow 4 \Rightarrow 5 \Rightarrow 1$$

Proof of $1 \Rightarrow 2$

Claim: If *G* is a tree (connected, acyclic), then every two nodes are joined by unique path.

Proof: (by contradiction). Suppose not.

Assume G is a tree that has two nodes u, v connected by two different paths:

Then there exists a cycle (formally: a closed walk. Then use PS5 #2)

Proof of $2 \Rightarrow 3$

Claim: If every two nodes are joined by unique path, then G is connected and m = n - 1.

Pf: Easy to see why connected. Prove m=n-1 by strong induction

Assume true for every graph with < n nodes. Let G have n nodes and let x and y be adjacent.

Let n_1 , m_1 be number of nodes and edges in G_1 n_2 , m_2 be number of nodes and edges in G_2

 G_1 : graph on vertices connected to x.

 G_2 : graph on vertices connected to y.

Then
$$m = m_1 + m_2 + 1 = (n_1 - 1) + (n_2 - 1) + 1 = n - 1$$

Proof of $3 \Rightarrow 4$

Claim: If G is connected and m = n - 1, then G is acyclic and m = n - 1

Proof sketch: (by contradiction). Suppose not.

Assume G is connected with m = n - 1, and G

has a cycle containing k nodes

Proof of the Equivalence

Ex: Prove the other statements similarly: $4 \Rightarrow 5$ and $5 \Rightarrow 1$

To show
$$1 \Rightarrow 2 \Rightarrow 3 \Rightarrow 4 \Rightarrow 5 \Rightarrow 1$$

Leaves of a Tree

Leaf of a tree is any vertex with degree =1

Theorem. There are at least 2 leaves in any tree on $n \ge 2$ nodes

Proof. A tree is connected. Hence every vertex has degree ≥ 1 . Suppose at most one vertex has degree = 1.

Leaves of a Tree

Leaf of a tree is any vertex with degree =1

Theorem. There are at least 2 leaves in any tree.

Very useful in Induction (to reduce tree size to n-1)

Spanning Trees

A spanning tree of a graph G is a tree that touches every node of G and uses only edges from G

Every connected graph has a spanning tree

 Minimal subgraph on all vertices of G that is connected.

Fact. Every connected graph has at least n-1 edges

Finding Optimal Trees

- Trees have many nice properties (connected, uniqueness of paths, no cycles, etc.).
- Great for Communication, Routing etc.

Problem: An ISP wants to set up the cheapest possible network between *n* people i.e. a tree with smallest communication link costs

Weighted Graphs

Weighted graphs G(V, E, w)

Edges have numbers associated with them, representing costs or extent of relations e.g. maps with distances.

The weights/ costs are all non-negative.

Minimum Spanning Trees (MST)

Problem: Find a minimum spanning tree, that is, a tree on all n vertices of the graph, such that the sum of the edge weights is minimum.

Can we do better?

Kruskal's algorithm (1st algorithm)

- 1. Start with empty graph on vertices of G.
- 2. Make a sorted list of edges S (weights are 1, 2, 3, 3.5, 4, 4.5, 5, 8, 10, 20)
- 3. While S is non-empty:
 - a. Pick an edge from S with minimal weight. Remove it from S, and try to include it in subgraph
 - b. If it connects two different trees, add the edge. Otherwise discard it.

Thm. Kruskal algorithm outputs a MST

Running the Algorithm

1. Start with empty graph on vertices of G.

2. Make a sorted list of edges S (weights are 1, 2, 3, 3.5, 4, 4.5, 5, 8, 10, 20)

- 3. While S is non-empty:
- a) Take the edge with min. weight in S

Proof of Kruskal MST Algorithm

For simplicity, assume all edge weights in graph are distinct

The algorithm outputs a spanning tree T. Suppose that it's not minimal.

Let *M* be a minimum spanning tree.

Let e be the first edge chosen by T (algorithm) that is not in M.

f we add a to M it areates a avala. Since this avala isn't fully

If we add e to M, it creates a cycle. Since this cycle isn't fully contained in T, the cycle has an edge $f \in M$ but not in T.

M' = M + e - f is another spanning tree (why?).

Analyzing the Algorithm

Recall: Algorithm output: T. Minimum spanning tree: M $e \in T \setminus M$ and $f \in M \setminus T$

Claim: Suppose M' = M + e - f is another spanning tree, then cost(e) < cost(f), and therefore cost(M') < cost(M)

Proof. Suppose not: cost(e) > cost(f).

Then *f* visited before *e* by algorithm. But *f* not added: it would have formed cycle

But all of these cycle edges are also edges of *M*, since *e* was the first edge not in *M*.

 $\bigcup v_7 \qquad \bigcup v_6$

Hence *M* has a cycle!

This contradicts the assumption M is a tree!

Why it works

We have S = (1, 2, 3, 3.5, 4, 4.5, 5, 8, 10, 20)

Greed is Good (in this case...)

 Kruskal MST algorithm: a greedy algorithm, by adding the least costly edge in each stage succeeds!

But — in math and life — if pushed too far, the greedy approach can lead to bad results.

Thank you!