SIMATS ENGINEERING

ASSIGNMENT - D1

CSA0735 : COMPUTER NETWORKS

REGISTED NUMBER	NAME	QUESTIONS
192511172	SAMRAKSHINI. GI	VOICE COMMUNICATION IN ENTERPRISES[VOIP]

SCENARIO: A FIRM USES VOIP FOR ALL INTERNAL COMMUNICATION.

QUESTIONS:

A) Compare traditional telephony vs VOIP on OSI Layers.

OSI LAYER	TRADITIONAL TELEPHONY	VOIP VOICE OVER IP	
F. APPLICATIO	It was physical on , condeplet nestal application involved hare	It was softphones, IP phones or application like, skype, Zoom, Cisco	
6. PRESENTA - TION LAYER	palana I aldarilgga town ref boar on , soiou format convort	into digital formar	

OSI LAYER	TRADITIONAL TELEPHONY	VOIP VOICE OVER 1P
5. SESSION LAYER	There is no and distributions are allo since circuit - switched and controlled by telephon - a switched a.	cacu tI cacu ti axil laratarq naiccac 1912 1912 Llaratarq naitoitini aganam at 858.H consiccac
4. TRANSPORT LAYER	Hare, CIRCUIT ceruche pountsines centinuous dedicated path, there cencept de packets	900 coal tI oub barrafarg] [yaratal wal ot ref 957 re lartras aldailar capaccom
3. NETWORK LAYER	toraditional talaphany does rot use packet - suitch -ed network.	It was IP for addressing and and social voice packets across networks.
E. DATA LINK LAYER	batasibab asau tI re II, III asnil smaref on, [golans raissimanart basad	terredt3 cacu tI redta re i7-iW ipclandset 3 reyns -ce-red red ce-
1. PHYSICAL LAYER	Araleg en data rave naiceimenart beteint) carin ragges copper uire ragges pair), friog	Digital transmiss -ion ever LAN cables, fiber redics en Wi-Fi

- B) Recommed protocols for voice over IP.
- 1. SIP -> SESSION INITIATION PROTOCOL

 * Used for establishing, managing and
 terminating voice | video calls.

 * Application Layer protocol.
- 2. RTP > REAL-TIME TRANSPORT PROTOCOL

 * Transmits real-time audio (and video) ever

 TP retwork

 * Ensures proper sequencing and timing of voice packets.
- 3. RTCP -> RTP CONTROL PROTOCOL

 * Works alongside RTP to monitor call

 quality.

 * Provides feedback on delay, jitter and

 packet less.
- 4. UDP -> USER DATAGRAM PROTOCOL

 * Used to transport protocol for RTP

 and RTCP
- ref atiua lasatora evitarratia nA ESE.H . 3
- b. IP INTERNET PROTOCOL: Used for addressing and routing voice packets.
- T. DNS AND ENUM -> Used to map telephone.

 rumber to IP addresses.

C) EXPLAIN JITTER BUFFER AND ITS NEED,

at the receiving and of a voir system that collects incoming voice packets and arrange them in proper sequence before playback.

· NEED FOR JITTER BUFFER:

- cuounitras and continuous cuounitras but object playback slightly and buffering enough packets to compensate for delay variations.
 - · It reduces chappy audio, echo and packet loss issues.

D) SUGGEST ERROR RECOVERY FOR VOICE PACKETS,

Voice packets are avitioned of extraord value of extraordinary of the retransmitted. Error recovery is achieved using,

- 1. FEC -> FORWARD ERROR CORRECTION: Sends extra data for reconstruction of lost packets.
- 2. PLC -> PACKET LOSS CONCEALMENT: Fills in missing audio using previous data patterns.
- 3. POS -> QUALITY OF SERVICE: Prioritizes VoIP

 Traffic to reduce loss and delay.
- 4. REDUNDANCY -> Sends duplicate on partial voice packets to increase the chance of successful delivery.
- 5. ADAPTIVE CODECS -> It adjust to changing retwork conditions to preserve audio quality.