Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi Approved by AICTE, New Delhi, Accredited By NAAC, Bengaluru And NBA, New Delhi

DEPARTMENT OF MATHEMATICS

Course: NUMBER THEORY, VECTOR CALCULUS AND COMPUTATIONAL METHODS	СІЕ-ІІ	Maximum marks: 50
Course code: 22MA21C	Second semester 2022-2023 Physics Cycle Branch: AI, BT, CD, CS, CY, IS, SPARK-C	Time: 10:00AM-11:30AM Date: 21-08-2023

Sl. No.	Questions	M	ВТ	СО
1	Using the method of variation of parameters, solve the differential equation			
	$\frac{d^2y}{dx^2} - 2\frac{dy}{dx} + 2y = e^x \tan(x).$			
2	Reduce the differential equation $x \frac{d^2y}{dx^2} + 5 \frac{dy}{dx} + 4 \frac{y}{x} = \log_e(x)$, where $x > 0$, to a	10	1.2	2
	linear differential equation with constant coefficients and hence solve.	10	L3	3
3. (a)	a) The current in an LRC circuit is governed by the differential equation			
	$L\frac{d^2q}{dt^2} + R\frac{dq}{dt} + \frac{q}{c} = E(t)$. A circuit in series has an electromotive force given by			
	$E(t) = 0V$, a resistor of 10Ω , an inductor of $0.25H$ and a capacitor of $0.001F$. If the	6	L2	2
	initial current and the initial charge on the capacitor are both zero, determine the			
	charge on the capacitor at any time $t > 0$.			
3. (b)	Find all the solutions of the linear congruence $6x \equiv 15 \pmod{21}$.	4	L2	2
4. (a)	By using the Euclidean algorithm, determine the greatest common divisor d of 2947	7	L1	1
	and 3997 and find integers x and y to satisfy $2947x + 3997y = d$.			
4. (b)	Compute the last two digits of the number 87 ⁴⁷⁴ .	3	L2	2
5	Given the public key $(e, n) = (11,65)$, encrypt plain text J B E, where the alphabets			
	$A, B, C, \dots X, Y, Z$ are assigned the numbers 2,3,, 26,27. Give the cipher text. Find	10	L3	4
	the private key d .			

BT-Blooms Taxonomy, CO-Course Outcomes, M-Marks

B1 Blooms fuxonomy, co course outcomes, 141 Marks											
	Particulars	CO1	CO2	CO3	CO4	L1	L2	L3	L4	L5	L6
Marks											
Distribution	Max Marks	7	13	20	10	7	13	30			