Q1

2 Points

Design a majority circuit function with three inputs in the following way:

Q1.1

1 Point

Write the **truth table** of a function $F_3(x,y,z)$, where the output agrees with the majority of the input, that is $F_3(x,y,z)=1$, if and only if at least two of the three variables: x,y,z have the value 1.

Q1.2 1 Point

Write the expression of a function $F_3(x,y,z)$ as a sum of minterms, and then minimize it by using a **K-Map**.

Q2

3 Points

Design a **majority circuit** function $F_4(x,y,z,t)$ with four inputs. Handle the **tie conditions** in a way that is **optimal** from the point of view of minimization of F_4 .

Q2.1

1 Point

Write the **truth table** for F_4 .

Q2.2

1 Point

Draw the **K-Map** for F_4 .

Q2.3 Extra Credit

1 Point

Derive all minimal forms of ${\cal F}_4$ from the K-Map.