Design and Analysis of Algorithms

L34: Backtracking Algorithms Approach

Dr. Ram P Rustagi Sem IV (2020-Even) Dept of CSE, KSIT rprustagi@ksit.edu.in

Resources

- Text book 2: Horowitz
 - -Sec 7.1,7.2,7.3,7.4,7.5,8.2,11.1
- Text book 1: Levitin
 - Sec 12.1, 12.2
- R1: Introduction to Algorithms
 - Cormen et al.
- Youtube link of video lecture recording
 - https://www.youtube.com/watch?v=MVMC-Qnk36M&t=1657s

Overview of Backtracking

- Basic approach of backtracking
 - Determine problem solutions by systematically searching the solution space
- Approach to search the solution space
 - Construct a tree of solution space
 - Node of this tree corresponds to a tuple variable assigned a possible feasible value
 - Edge of tree corresponds to tuple variables x_{i} where x_{i} is assigned a possible value
 - Leaf node satisfying the constraints (criterion function) represents a solution
- Two kind of trees
 - Static trees, Dynamic trees

4-Queens Problem

Q: Place 4 queens on the board such that no queen attacks another

Approach: For each column, assign a variable, e.g. x_1 , x_2 , x_3 , x_4 respectively for columns a, b, c, d Each x_1 can take values from 1 to 4.

State Space: 4 Queens

Size of 4-queens state space: 4!=24

DAA/Backtracking, Branch&Bound, NP-Complete

Solution: 4-Queens

State Space: 4 Queens

Solution: (2,4,1,3) 3 Q: Can you find more solutions? 2 $x_1 = 1$ $x_1 = 4$ \mathbf{x}_1 $x_1 =$ \mathbf{x}_2 **X**3 X_4

Size of 4-queens state space: 4!=24

State Space: 4 Queens

- Solving 4-Queens problems
 - Build a complete possible tree
 - Called a static approach
 - Explore (traverse) the tree for possible solutions.
 - Prune the tree when come to a node where one can not traverse further
 - Backtrack to explore next path.
 - When leaf node is reached, a solution is found.
- Note: Building a static tree is independent of problem instance.
 - Tree is built for all possible solutions.

State Space: Sum of Subset problem

• Ex: S={11,13,24,7}, and m=31
Start

Solution Space: Subset sum problem

• Ex: S={11,13,24,7}, and m=31
Start

Solⁿ 1: {1,1,0,1}

 $SoI^n 2 = \{0, 0, 1, 1\}$

State Space: Subset Sum

- Solving sum of subset problems
 - Build a complete possible tree
 - Again a static approach
 - Explore (traverse) the tree for possible solutions.
 - Prune the tree on reaching a node where can not traverse further
 - Backtrack to explore next path.
 - When reach the leaf node, it is not necessary that a solution is found.
- Note: Building a static tree is independent of problem instance. e.g. even if value of elements of set or sum total changes, tree remains the same.
 - Tree is built for all possible solutions.

State Space Trees: Terminology

Terminology

- Each node in the tree defines a problem state
- All paths from root to other nodes define <u>state</u> <u>space</u>
 of problem
- Solution states are those problem states s for which the path from root to s defines a tuple in the solution space.
- Answer states are are those solution states s for which the path from root to s defines a tuple that is a member of the set of solutions.
- Tree organization is referred to **Space Tree**.

State Space Trees

- Dynamic Trees:
 - Tree organization is determined dynamically as the state space is being searched.
 - Tree organizations that are dependent on problem instance are called dynamic trees.
- Two ways to generate problem states
 - Backtracking, and Branch-n-Bound
 - Both begin with the root and generate other nodes
 - A node whose all children have not been generated is called a <u>live</u> node
 - Live node whose children are currently being generated is called \mathbb{E} -node.
 - A <u>dead</u> node is a generated node which is not to be expanded further, or whose all children are generated.

Backtracking Tree: 4 Queens

DAA/Backtracking, Branch&Bound, NP-Complete

RPR/

Backtracking Tree: Subset Sum

• Ex: $S = \{11, 13, 24, 7\}$, and m = 31

Backtracking: 3-color problem

 Construct the state space tree for the graph shown for 3-color problem.

Algo: Backtracking

Notations:

- $-(x_1, x_2, ..., x_i)$ be the path from root to a node in state space tree.
- $T(x_1, x_2, ..., x_i)$ be the set of all possible values for x_{i+1} such that $(x_1, x_2, ..., x_{i+1})$ is also a path to problem state
- B_{i+1} is boundary function predicate i.e. if $B_{i+1}(x_1, x_2, ..., x_{i+1})$ is false for path $(x_1, ..., x_{i+1})$, then path can't be extended to reach an answer state
- $-T(x_1, x_2, ..., x_n)=\emptyset$ (no more nodes to be explored)
- Candidates for position i+1 of solution vector $(x_1, ..., x_n)$
 - Those values generated by T and satisfies B_{i+1}

Algo: Backtracking

```
<u>Algo</u> Backtrack(<u>int</u> n)
  int k=1
  while (k) {
     if there remains an untried x[k] such that x[k] is in
     T(x[1],...,x[k-1]), and B(x[1],...,x[k]) is
     true, then {
        if (x[1], ...[x[k]) is a path to an answer node,
           output x[1:k]
        k++
     else
        k−− //backtrack to previous set
```

Summary

- Basic approach of backtracking
- Static tree
- Dynamic tree