CS F364: Design & Analysis of Algorithm

Dynamic Programming 0/1 Knapsack Problem

Dr. Kamlesh Tiwari

Assistant Professor, Department of CSIS, BITS Pilani, Pilani Campus, Rajasthan-333031 INDIA

ONLINE Feb 08, 2021

(Campus @ BITS-Pilani Jan-May 2021)

http://ktiwari.in/algo

Fibonacci Number

Solution of F(n) = F(n-1) + F(n-2)

$$F_{I} = \frac{\phi^{I} - \hat{\phi}^{I}}{\sqrt{5}}$$

where $\phi=rac{1+\sqrt{5}}{2}$ and $\hat{\phi}=$

2) + 1 • Time needed $T(n) = T(n-1) + T(n \cdot T(0)) = T(1) = 1$

$$T(n) = \theta(\phi^n)$$

0-1 Knapsack Problem

Let knapsack can have 50kg

3 items of wt 10, 20, 30 of price Rs 60, 100 and 120 respectively

	S	. •,	6
	30	10	ן '
		_	
	20 \$100	+	- \$160
	20	10	l '
30 \$120	+	20 8100	- 6220
30	Ĭ	20	ן '
			-

	30 \$120	+	9\$	= \$180
	30		10] "
	20 \$100	+	09\$	= \$160
	20		10] "
30 \$120	+	\$100	9100	= \$220
00	Y	2	3	1 "
(,)			`	4

Which number next?

F(n) = F(n-1) + F(n-2)1, 1, 2, 3, 5, 8, 13, 21, ...?..

If $n \in \{0, 1\}$ Then return 1 Else return Fib(n) + Fib(n)Algorithm 1: Fib (n)

 To find the value of f(5) one need to compute

Times	-	7	က	2	က	
Value	f(4)	f(3)	f(2)	<i>f</i> (1)	t(0)	(O)

Using Memory

1 If $(n \in \{0,1\})$ Then $(n \in \{0,1\})$ Then $(n \in \{0,1\})$ Then $(n \in \{0,1\})$ 2. If $(n \in \{0,1\})$ 3. Eise $(n \in \{0,1\})$ 4. If $(n \in \{0,1\})$ 5. Eise $(n \in \{0,1\})$ 5. Eise $(n \in \{0,1\})$ 6. Then $(n \in \{0,1\})$ 6. Then $(n \in \{0,1\})$ 7. If $(n \in \{0,1\})$ 8. Eise $(n \in \{0,1\})$ 7. If $(n \in \{0,1\})$ 8. Eise $(n \in \{0,1\})$ 9. Eise $(n \in \{0,1\}$ Algorithm 2: Fib2

- Bottom-up approach
- Time complexity O(n)
 - Called dynamic

Problem Setting

- Item l₁, l₂,, l₃, ...
- Weight w₁, w₂, w₃, ...
- Knapsack with capacity W Profit p₁, p₂, p₃,
- Selected? $x_i = 1$ if i^{th} item is selected

One have to maximize

subject to

 $\sum_{j}^{n} p_{j} \times x_{j}$

 $\sum_{j=1}^n w_j \times X_j \leq W$

Exponential number of possibilities arises for evaluation

Solution Sketch

$M(i, w) = max(M(i-1, w), M(i-1, w-w_i) + p_i)$

10							
60							
80							
07							
90							
02							
8							
03							
02							
01							
00							
W,	က	7	-	4	က	4	7
ρį	စ	က	9	4	2	2	4
	0	-	0	က	4	2	9

・ ロットの ・ (字)・ (字)) (字)) (ら) な (ら) な (ら)

Thank You!

Thank you very much for your attention! (Reference¹)

Queries?

11 Book - Introduction to Algorithm, By THOMAS H. CORMEN, CHARLES E. LEISERSON, FONALD L. RIVEST, CLEFORD STEN.

Design & Analysis of Algo, (BITS F384) MW F (8-4PM) online@BITS-Plant Lecture-10(Feb.08, 2021)

Algorithm

_ '	Algorithm 3: 0/1-Knapsack (n, W)
-	Initialize M[0n, 0W] to zeros
2	for i from 1 to n do
က	for w from 0 to W do
4	if w < w; then
S	M[i, w] = M[i-1, w]
9	else
7	M[i, w] =
	$ \qquad \qquad \bigsqcup_{i=1}^{n} max(M[i-1,w],p_i+M[i-1,w-w_i]) $
8	 8 return M[n, W]
'	

Complexity? $O(n \times W)$

alysis of Algo. (BITS F384) M.W.F (3-4PM) online@BITS-Pilani Lectura-10(Feb 08, 2021) 8