

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н.Э. Баумана (национальный исследовательский университет)»

(национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ «Информатика и системы управления»							
КАФЕДРА «Программное обеспечение ЭВМ и информационные технологии»							
Лабораторная работа № <u>4</u>							
Дисциплина Методы вычислений							
Тема <u>Метод Ньютона</u>							
Вариант №2							
Студент Брянская Е.В.							
Студент							
Группа _ИУ7-21М							
Оценка (баллы)							
Преподаватель <u>Власов П.А.</u>							

Цель работы: изучение метода Ньютона для решения задачи одномерной оптимизации.

Содержание работы

- 1. реализовать модифицированный метод Ньютона с конечно-разностной аппроксимацией производных в виде программы на ЭВМ;
- 2. провести решение задачи

$$\begin{cases} f(x) \to min \\ x \in [a, b] \end{cases}$$

для данных индивидуального варианта;

- 3. организовать вывод на экран графика целевой функции, найденной точки минимума $(x^*, f(x^*))$ и последовательности отрезков $(x_i, f(x_i))$, аппроксимирующих точку искомого минимума (для последовательности точек следует предусмотреть возможность «отключения» вывода её на экран).
- 4. провести решение задачи с использованием стандартной функции fminbnd пакета MatLAB.

Целевая функция $f(x)$	[a, b]
$\cos\left(x^{5} - x + 3 + 2^{\frac{1}{3}}\right) + arctg\left(\frac{x^{3} - 5\sqrt{2}x - 4}{\sqrt{6}x + \sqrt{3}}\right) + 1.8$	[0, 1]

Основная идея метода Ньютона: за очередное приближение корня уравнения принимается точка пересечения с осью ОХ касательной к графику функции в точке, отвечающей текущему приближению.

Расчётное соотношение имеет вид:

$$x_{i+1} = x_i - \frac{g(x_i)}{g'(x_i)}$$

Необходимо реализовать модифицированный метод Ньютона, использующий конечноразностные аппроксимации вместо первой и второй производных:

$$f'(x_i) \approx \frac{f(x_i + h) - f(x_i - h)}{2h}$$
$$f''(x_i) \approx \frac{f(x_i + h) - 2f(x_i) + f(x_i - h)}{h^2}$$

где h – достаточно малая величина.

Условие окончания итераций: $\begin{bmatrix} |x_{i+1} - x_i| < \varepsilon, \\ |g(x_i)| < \varepsilon \end{bmatrix}$

Текст программы представлен на Листинге 1

Листинг 1

```
function lab04()
   clc();

  debugFlg = 1;
  delayS = 0.8;
  a = 0;
  b = 1;
  eps = 1e-6;
  h = 1e-4;

  fplot(@f, [a, b]);
  hold on;

  pause(3);
  modified_newton_method(a, b, eps, h, debugFlg, delayS);
end

function modified_newton_method(a, b, h, eps, debugFlg, delayS)
  x = (a + b) / 2;
  i = 1;
```

```
while 1
        f_{inc} = f(x + h);
        f dec = f(x - h);
        f_x = f(x);
        f1 = (f_inc - f_dec) / (2 * h);
        if debugFlg
            fprintf("Nº %2d:\t x = %.10f, f(x) = %.10f, f('(x) = %.10f \n'', i, x,
f_x, f1);
            plot(x, f_x, 'xk');
            hold on;
            pause(delayS);
        end
        if abs(f1) < eps</pre>
            break;
        end
        f2 = (f_inc - 2 * f_x + f_dec) / (h^2);
        x_{temp} = x;
        x = x_{temp} - f1 / f2;
        i = i + 1;
    end
    x star = x;
    f_star = f_x;
    if debugFlg
        fprintf('RESULT: %2d iterations: x=\%.10f, f(x)=\%.10f\n', i, x_star,
f star);
        scatter(x_star, f_star, 'r', 'filled');
    end
end
function y = f(x)
   y = cos(power(x,5) - x + 3 + power(2, 1/3)) + atan((power(x,3) - 5 * sqrt(2)*x))
-4) / (sqrt(6)*x + sqrt(3))) + 1.8;
end
```

Результаты расчетов для задачи из индивидуального варианта.

№ п/п	ε	N	χ^*	$f(x^*)$
1	0.01	15	0.6638926825	-0.2251354780
2	0.0001	15	0.6639626114	-0.2251354862
3	0.000001	15	0.6639626185	-0.2251354862

Обобщающая таблица (для ε = 1e-6)

№ п/п	Метод	N	X*	f(x*)
1	Поразрядного поиска	47	0.6639623642	-0.2251354862
2	Золотого сечения	30	0.6639624766	-0.2251354862
3	Парабол	13	0.6639622119	-0.2251354862
4	Ньютона модифицированный	15	0.6639626185	-0.2251354862
5	Функция fminbnd	9	0.6639606791	-0.2251354862