

تقديم مجموعات ميكانيكية متذبذبة

1 ـ تعريف بالمجموعة الميكانيكية المتذبذبة

المجموعة الميكانيكية هي مجموعة تنجز حركة دورية حول موضع توازنها المستقر . الحركة الدورية : هي حركة تتكرر مماثلة لنفسها خلال مدد زمنية متساوية .

2 ــ الحركة التذبذبية ومميزاتها .

2 ــ 1 تعريف

الحركة التذبذبية هي حركة ذهاب وإياب حول موضع معين ، وهي حركة تميز المتذبذبات الميكانيكية . هناك ثلاثة أنواع للحركة التذبذبية :

- ▽ الحركة التذبذبية الحرة : هي التي ينجزها متذبذب ميكانيكي دون اكتساب طاقة ما من المحيط الخارجي بعد إحداث حركته .
- الحركة التذبذبية المصانة: هي التي ينجزها المتذبذب وذلك بتعويض الطاقة المفقودة خلال التذبذبات بواسطة جهاز
 خارجي. مثال الساعة الحائطية.
- ☞ الحركة التذبية القسرية : عندما تفرض مجموعة ميكانيكة تسمى بالمثير تردد لذبذبات على المجموعة المتذبذبة والتي تسمى بالرنان .

2 ــ 2 مميزات الحركة التذبذبية

أ ــ موضع التوازن المستقر

كل متذبذب ميكانيكي حر لا يمكنه أن ينجز حركته التذبذبية إلا حول موضع توازنه المستقر .

ب ــ وسع الحركة

وسع الحركة لمتذبذب ميكانيكي حر و غير مخمد هو القيمة القصوى الموجبة التي يأخذها المقدار الذي يعبر عن مدى ابتعاد أو انحراف المتذبذب عن موضع توازنه المستقر .

بالنسبة للنواس الوازن والنواس البسيط ونواس اللي نستعمل الأفصول الزاوي $\, heta$.

بالنسبة للنواس المرن ، نستعمل الأفصول x (حركة إزاحة مستقيمية) .

3 ــ النواس المرن

3 ــ 1 تعريف

النواس المرن مجموعة ميكانيكية متذبذبة تتكون من جسم صلب مرتبط بأحد طرفي نابض صلابته $_{
m k}$ ذي لفات غير متصلة وكتلته مهملة ، ثبت طرفه الآخر بحامل .

k ثابتة تتعلق بشكل النابض وبطبيعته

عند إزاحة الجسم عن موضع توازنه المستقر وفق اتجاه محور النابض وتحريره ، فإنه ينجز حركة تذبذبية حرة حول هذا $\left(\mathrm{O}, \overline{\mathrm{i}}\right)$ متعامد وممنظم محوره $\left(\mathrm{O}, \overline{\mathrm{i}}\right)$ الموضع . نمعلم مواضع مركز قصور النواس المرن في معلم $\mathcal{R}\left(\mathrm{O}, \overline{\mathrm{i}}, \overline{\mathrm{j}}, \overline{\mathrm{k}}\right)$

أفقي بالأفصول (x(t

. بحيث أن $\vec{G}_{eq} = G_{eq}$. $\overline{G}_{eq} = x(t)\vec{i}$ عند التوازن المستقر

أثناء الحركة الحرة وغير المخمدة للنواس ، تأخذ $oldsymbol{x}$ قيما موجبة أكبرها $oldsymbol{x}_m$ وقيما سالبة أصغرها $oldsymbol{-x}_m$ ، نسمي $oldsymbol{x}_m$ وسع الحركة للنواس المرن .

3 ــ 2 دراسة ذبذبات المجموعة { جسم صلب ـ نابض }

أ ــ قوة الارتداد المطبقة من طرف نايض على الجسم

عند إزاحة الجسم عن موضع توازنه وتحريره ، تنجز المجموعة حركة تذبذبية تحت تأثير مجموعة من القوى :

Ē: وزن الجسم

 \vec{R} : تأثير السطح على الجسم (غياب الاحتكاك \vec{R} عمودية على السطح) ،

r̄: القوة المطبقة من طرف النابض على الجسم وهي **قوة ارتدا**د تسعى إلى إرجاع الجسم إلى موضعه البدئي .

ب ـ مميزات قوة الارتداد

نقطة التأثير : نقطة التماس الجسم والنابض .

خط التأثير : محور النابض

المنحى : موجه نحو داخل النابض في حالة النابض مطالا ، أو خارجه في حالة النابض مكبوس أو مضغوط الشدة : $F=k\Delta\ell=k\left(\ell-\ell_0
ight)$ الشدة : k طوله البدئي ، ℓ طوله النهائي .

3 ـ 3 ــ المعادلة التفاضلية

$$.\frac{d^2x}{dt^2} + \frac{k}{m}x = 0$$

المعادلة التفاضلية للنواس المرن :

حل المعادلة التفاضلية :

. rad طور التذبذبات عند اللحظة t وحدته: $(\frac{2\pi}{T_0}t+\phi)$

φ طور الذبذبات عند اللحظة t=0 نعبر عنه ب rad .

(m) وسع الحركة بالمتر x_m

s الدور الخاص للذبذبات ب $_0$

$$T_0 = 2\pi \sqrt{\frac{m}{k}}$$
 : عبير الدور الخاص

 $\left(N/m \right)$ كتلة الجسم (S) ب kg و k صلابة النابض ب m

$${
m f}_0 = rac{1}{{
m T}_0} = rac{1}{2\pi} \sqrt{rac{{
m k}}{{
m m}}}$$
 : نعبر كذلك عن التردد الخاص للذبذبات بالعلاقة التالية

وحدة التردد <mark>في النظام العالمي للوحدات هي الهرتز . (Hz)</mark>

3 ـ 4 خمود الذبذبات الميكانيكية

أ ــ ظاهرة الخمود

عند إزاحة متذبذب ميكانيكي (النواس المرن) عن موضع توازنه المستقر وتحريره ، فإنه ينجز ذبذبات حرة يتناقص وسعها تدريجيا مع الزمن ، إلى أن يتوقف عند موضع توازنه المستقر ، تسمى هذه الظاهرة : **بالخمود الميكانيكي** . تعزى هذه الظاهرة إلى الاحتكاكات والتي يمكن تصنيفه إلى نوعين :

- ــ احتكاكات صلبة والتي ينتج عنها خمود صلب للذبذبات .
- ـ احتكاكات مائعة والتي ينتج عنها خمود مائع للذبذبات .
 - ب ـ أنظمة خمود الذبذبات الميكانيكية .

الخمود بالاحتكاكات المائعة:

نشغل المعصفة ونزيح الخيال عن موضع توازنه ، ثم نحرره بدون سرعة بدئية . فنحصل على المنحنى (1) نثبت على الخيال قطعة من الورق المقوى ونعيد نفس التجربة فنحصل على المنحنى (2) مساحة الورق المقوى S_1 و منحنى (3) مساحة الورق المقوى $S_2 > S_3$ بحيث أن $S_2 > S_3$.

ـ حالة الخمود الضعيف : النظام شبه الدوري .

في هذه الحالة ينجز المتذبذب الميكانيكي ذبذبات يتناقص وسعها تدريجيا إلى أن يستقر المتذبذب عند موضع توازنه المستقر . كما أنه في هذه الحالة أن حركة المتذبذب ليست دورية نقول إنها شبه دورية ودورها T يقارب الدور الخاص $_0^{\rm T}$ للمتذبذب . عموما $_0^{\rm T}$. نسمي T شبه الدور .

شبه الدور بالنسبة لمتذبذب ميكانيكي خموده ضعيف هو المدة الزمنية T التي تفصل مرورين متتاليين للمتذبذب من موضع توازنه المستقر في نفس المنحى .

ملحوظة : كلما كان خمود المتذبذب ضعيفا ، كلما تناهى شبه الدور T نحو الدور الخاص T_0 .

ــ يكون الخمود مهما ، كلما تناقص وسع الحركة بشدة إلى أن ينعدم خلال فترة زمنية وجيزة .

ب ــ حالة الخمود الحاد : النظام اللادوري .

في هذه الحالة تكون حركة المتذبذب غير دورية ، نقول أنها لا دورية ، وحسب أهمية الخمود ، نحصل على الحالات التالية : ــ النظام تحت الحرج : ينجز المتذبذب ذبذبة واحدة قبل أن يتوقف .

- ـ النظام الحرج : حيث يعود المتذبذب إلى موضع توازنه المستقر دون أن يتذبذب .
- ــ النظام فوق الحرج : حيث يستغرق المتذبذب وقتا طويلا لكي يرجع إلى موضع توازنه المستقر دون أن يتذبذب .

ملحوظة : لصيانة حركة تذبذبية نوظف بعض الأجهزة الميكانيكة تكمن وظيفتها في تعويض الطاقة المبددة في كل دور .

3 ـ 5 ــ ظاهرة الرنين الميكانيكي

تعريف الذبذبات القسرية

تنجز مجموعة ميكانيكية ذبذبات قسرية عندما يفرض مثير دوره على هذه المجموعة التي تسمى بالرنان يتذبذب الرنان بنفس الدور T للمثير

ظاهرة الرنين الميكانيكي :

عند الرنين :

- وسع تذبذبات الرنان یکون قصویا
- دور المثير ودور الرنان يكونا متقاربين جدا .

تأثير الخمود على الرنين :

- ✓ في حالة الخمود الضعيف للرنان ، يأخذ وسع الذبذبات القسرية عند الرنين قيمة كبيرة ، نقول أن الرنين حادا .
- ✔ في حالة الخمود القوي للرنان ، يأخذ وسع الذبذبات القسرية عند الرنين قيمة صغير ، نقول إن الرنين ضبابي
 - ✓ تناقص وسع الذبذات القسرية مع نزايد خمود ذبذبات الرنان

4) نواس اللَّي :

4 ـ 1 ــ مزدوجة الارتداد المطبقة من طرف سلك اللي .

عند تطبيق مزدوجة قوتين على قضيب معلق بسلك ، فإن هذا الأخير يلتوي . وعند حذف المزدوجتين ، يعود السلك إلى موضع توازنه بفعل قوة الارتداد التي تطبقها مولدات السلك على القضيب وموجوع هذه القوى يكون مزدوجة تسمى بمزدوجة اللي ونرمز لها ب \mathcal{M}_{C} .

 $\mathcal{M}_{\rm C} = -{
m C}.\theta$: عزم هذه المزدوجة مستقل عن المحور ونعبر عنه بالعلاقة التالية ${
m C}$ rad بحيث أن ${
m C}$ ثابتة لي السلك وحدتها هي ${
m N.m.rad}^{-1}$ و ${
m \theta}$ زاوية اللي بطول السلك وبمقطعه وبنوعيته .

4 ـ 2 ــ المعادلة التفاضلية لحركة الجسم الصلب وحلها .

نعتبر نواس اللي في توازنه المستقر . ندير القضيب عن موضع توازنه بالزاوية $_{
m m}$ ، ونحرره بدون سرعة بدئية ، فينجز القضيب حركة تذبذبية حرة حول موضع توازنه المستقر .

نعتبر الاحتكاكات مهملة . $_{\Delta}$ عزم قصور القصيب بالنسبة للمحور $_{\Delta}$ المجسد بالسلك . و $_{\Delta}$ ثابتة اللي للسلك. ندرس حركة القضيب في مرجع مرتبط بالأرض والذي نعتبره مرجعا غاليليا ، ونمعلم موضع القضيب بأفصوله الزاوي $_{\Omega}$ والذي نقيسه بالنسبة لاتجاه مرجعي وهو اتجاه القضيب عند التوازن .

$${{
m d}^2 \theta \over {
m d}t^2} + {{
m C} \over {
m J}_\Delta} \theta = 0$$
 : تكون المعادلة التفاضلية لحركة القضيب هي

$$\theta(t) = \theta_{\mathrm{m}} \cos \left(\frac{2\pi}{T_{\mathrm{0}}} t + \phi \right)$$
 : حل المعادلة التفاضلية يكون على الشكل التالي

. و ϕ تتعلقان بالشروط البدئية للحركة $heta_{
m m}$

4 ـ 3 ــ الدور الخاص :

الدور الخاص للنواس اللي الحر هو كالتالي :

و C ثابتة اللي للسلك نعبر (Δ) نعبر عنه d عزم قصور القضيب (الجسم الصلب) بالنسبة للمحور (Δ) نعبر عنه d عزم قصور القضيب d

. N.m.rad
$$^{-1}$$
 عنها $f_0=rac{1}{T_0}=rac{1}{2\pi}\sqrt{rac{C}{J_A}}$: التردد الخاص لنواس اللي هو

5) النواس الوازن :

5 ـ 1 ـ المعادلة التفاضلية لحركة النواس الوازن وحلها .

. J_{Δ} وعزم قصوره بالنسبة لمحور الدوران Δ الأفقي m المجموعة المدروسة : الجسم (S) كتلته

المعلم : مرتبط بالأرض والذي نعتبره مرجعا غاليليا .

 $\theta(t)$ في كل لحظة نمعلم موضع النواس $\theta(t)$ بالأفصول الزاوي

جرد القوى المطبقة على المجموعة:

ــ وزنها P

_ تأثير المحور Δ على المجموعة \vec{R} .

 $\mathcal{M}_{\Delta}(ec{\mathrm{P}}) + \mathcal{M}_{\Delta}(ec{\mathrm{R}}) = \mathrm{J}_{\Delta}. \ddot{\Theta}$: Δ نطبق العلاقة الأساسية للتحريك على المجموعة في حالة الدوران حول المحور

 $\mathcal{M}_{\Delta}\left(\vec{\mathrm{R}}\right) = 0$: يتقاطع مع محور الدوران Δ فإن عزمها منعدم بالنسبة لهذا المحور $\vec{\mathrm{R}}$

$$\mathcal{M}_{\Delta}\left(\vec{P}\right) = J_{\Delta}.\ddot{\Theta}$$
 : وبالتالي

$$-\mathrm{mgd}\sin\theta = \mathrm{J}_{\Delta}.\ddot{\theta} \Rightarrow \ddot{\theta} + \frac{\mathrm{mgd}}{\mathrm{J}_{\Delta}}\sin\theta = 0$$
 (1) أي أن $\mathcal{M}_{\Delta}\left(\vec{\mathrm{P}}\right) = -\mathrm{mgd}\sin\theta$: لدينا

العلاقة التي تم التوصل إليها هي المعادلة التفاضلية لحركة النواس الوازن وهي غير خطية وبالتالي فحلها ليس جيبيا .

أ ـ حالة الذبذبات ذات وسع صغير .

 $\sin hetapprox 0$ تعتبر الذبذبات ذات وسع صغير إذا كانت $0 \leq 15^\circ$ بعني أن $0 \leq 0,26$ في هذه الحالة تكون $0 \approx 0$ $\sin heta$ و تصبح المعادلة التفاضلية

$$\ddot{\theta} + \frac{\text{mgd}}{J_{\Lambda}} \theta = 0 \qquad (2)$$

قياسا مع ما سبق حل هذه المعادلة التفاضلية هو على الشكل التالي :

$$\theta(t) = \theta_{m} \cos\left(\frac{2\pi}{T_{0}}t + \varphi\right)$$

ب ــ الدور الخاص لنواس وازن ينجز ذبذبات حرة وغير مخمدة وذات وسع صغير .

الدور الخاص لنواس وازن ينجز ذبذبات حرة وغير مخمدة وذات وسع صغير:

$$T_0 = 2\pi \sqrt{\frac{J_{\Delta}}{mgd}}$$

 $\left(\mathrm{kg.m^2}
ight)$ عزم قصور الجسم بالنسبة للمحور (Δ) نعبر عنه ب J_Δ

(m) لمسافة الفاصلة بين المحور Δ و مركز قصور المجموعة المتذبذبة . ب d

m كتلة المجموعة ونعبر عنها ب (kg)

. $\left(m/s^2\right)$ شدة الثقالة g

 ${
m f}_0=rac{1}{2\pi}\sqrt{rac{{
m mgd}}{{
m J}_{\Lambda}}}$: تعبير التردد الخاص ${
m f}_0$ لنواس وازن ينجز ذبذبات حرة غير مخمدة و ذات وسع صغير

5 ـ 2 ـ النواس البسيط

و $J_{\Delta} = m\ell^2$ و $J_{\Delta} = m\ell$ في هذه الحالة تكون المعادلة التفاضلية

على الشكل التالي :
$$\theta = \frac{g}{\ell} + \frac{g}{\theta}$$

$$\theta(t) = \theta_{\rm m} \cos \left(\frac{2\pi}{T_0} t + \phi \right)$$
 : وتقبل هذه المعادلة كحلا لها

وتمثل المعادلة الزمنية لحركة النواس البسيط .

$$T_0 = 2\pi \sqrt{\frac{\ell}{g}}$$
 : تعبير الدور الخاص للنواس البسيط

حيث ℓ طول النواس البسيط ب m و g شدة مجال الثقالة $\left(m/s^2\right)$.

طول النواس البسيط المتواقت مع النواس البسيط :

نقول أن النواس البسيط متواقت مع النواس الوازن إذا كان لهما نفس الدور أي أن دور النواس البسيط = دور النواس الوازن .

$$2\pi\sqrt{\frac{\ell}{g}} = 2\pi\sqrt{\frac{J_{\Delta}}{mgd}} \Rightarrow \ell = \frac{J_{\Delta}}{md}$$