RCE Response U.S.S.N. 09/889,901 Page No. 2 of 18

IN THE SPECIFICATION:

Please add the following paragraphs to Page 6 of the PCT published specification, immediately following lines 2 and 3, that references U.S.S.N. 60/117,852 and U.S.S.N. 60/117,854 (from which these were taken – as shown on the attached pages thereof):

One such process is based on the Thermally Induced Phase Separation (TIPS) method of making porous structures and membranes. A mixture of polymer pellets, usually ground to a size smaller than supplied by the manufacturer, and a solvent, such as chlorotrifluoroethylene oligomer, is first mixed to a paste or paste-like consistency. The polymer comprises between approximately 12% to 35% by weight of the mixture. The solvent is chosen so the membrane formation occurs by liquid-liquid, rather than solidliquid phase separation when the solution is extruded and cooled. Preferred solvents are saturated low molecular weight polymers of chlorotrifluoroethylene. A preferred solvent is HaloVac® 60 from Halocarbon Products Corporation, River edge, N.J. Choice of the solvent is dictated by the ability of the solvent to dissolve the polymer when heated to form an upper critical solution temperature solution, but not to excessively boil at that temperature. Fiber extrusion is referred to as spinning and the extruded fiber length from the die exit to the take-up station is referred to as the spin line. The paste is metered into a heated extruder barrel where the temperature raised to above the upper critical solution temperature so that dissolution occurs. The homogeneous solution is then extruded through an annular die directly into a liquid cooling bath with no air gap. The liquid cooling bath is maintained at a temperature below the upper critical solution temperature of the polymer solution. The preferred bath liquid is not a solvent for the thermoplastic polymer, even at the extrusion temperature. Upon cooling, the heated and shaped solution undergoes phase separation and a gel fiber results. The die tip is slightly submerged for vertical spinning, i.e., the spin line falls downward, in the direction of a freely falling body. For horizontal spinning, where the spin line exits directly in the horizontal attitude,

RCE Response U.S.S.N. 09/889,901 Page No. 3 of 18

and is maintained more or less in that plane until at least the first guide roll, a specially design die is used. The die is firmly positioned against an insulated wall with the die tip penetrating through an opening having a liquid-tight seal in the insulator wall. A trough for cooling liquid flow is placed in a recess in the opposite side of the insulating wall, in a manner that will maintain the die nose outlet in a submerged condition. Cooling liquid flows in the trough and overflows in a region of the trough of lesser depth, keeping the die nose outlet submerged with a flow of cooling liquid. In both the vertical and horizontal methods, a booster heater and temperature control means is used to briefly raise the solution temperature at the die tip to prevent premature cooling. In a subsequent step, the dissolution solvent is removed by extraction and the resultant hollow fiber membrane is dried under restraint to prevent membrane shrinkage and collapse. Optionally the dried fiber may be heat set at 200°C to 300°C.

A modification of this process is also based on the Thermally Induced Phase Separation (TIPS) method of making porous structures and membranes. A mixture of polymer pellets, usually ground to a size smaller than supplied by the manufacturer, to about 100 to about 1000 micron size, preferably to about 300 microns, and an solvent, such as chlorotrifluoroethylene oligomer, is first mixed to a paste or paste-like consistency. The polymer comprises between approximately 12% to 75%, preferably 30% to 60%, by weight of the mixture. The solvent is chosen so the membrane formation occurs by liquid-liquid, rather than solid-liquid phase separation when the solution is extruded and cooled. Preferred solvents are saturated low molecular weight polymers of chlorotrifluoroethylene. A preferred solvent is HaloVac® 60 from Halocarbon Products Corporation, River Edge, NJ. Choice of the solvent is dictated by the ability of the solvent to dissolve the polymer when heated to form an upper critical solution temperature solution, but not to excessively boil at that temperature. Fiber extrusion is referred to as spinning and the extruded fiber length from the die exit to the take-up station is referred to as the spin line. The paste is metered into a heated extruder barrel

RCE Response U.S.S.N. 09/889,901 Page No. 4 of 18

where the temperature raised to above the upper critical solution temperature so that dissolution occurs. The homogeneous solution is then extruded through an annular die directly into a liquid cooling bath with no air gap. The liquid cooling bath is maintained at a temperature below the upper critical solution temperature of the polymer solution. The preferred bath liquid is not a solvent for the thermoplastic polymer, even at the extrusion temperature, Upon cooling, the heated and shaped solution undergoes phase separation and a gel fiber results. The die tip is slightly submerged for vertical spinning, i.e., the spin line falls downward, in the direction of a freely falling body. For horizontal spinning, where the spin line exits directly in the horizontal attitude, and is maintained more or less in that plane until at least the first guide roll, a specially design die is used. The die is firmly positioned against an insulated wall with the die tip penetrating through a opening having a liquid-tight seal in the insulator wall, A trough for cooling liquid flow is placed in a recess in the opposite side of the insulating wall, in a manner that will maintain the die nose outlet in a submerged condition. Cooling liquid flows in the trough and overflows in a region of the trough of lesser depth, keeping the die nose outlet submerged with a flow of cooling liquid. In both the vertical and horizontal methods, a booster heater and temperature control means is used to briefly raise the solution temperature at the die tip to prevent premature cooling. In a subsequent step, the dissolution solvent is removed by extraction and the resultant hollow fiber membrane is dried under restraint to prevent membrane shrinkage and collapse. Optionally the dried fiber may be heat set at 200°C to 300°C.

REMAINDER OF PAGE INTENTIONALLY BLANK