昆明理工大学 2010 级硕士研究生 数理统计 试卷(B)

专业年级:

考试时间:

学生姓名:

学号:

题	_	 111	四	五	六	总分
分						

可能用到的值:

$$F_{0.95}(19,14) = 2.39$$
, $F_{0.95}(1,8) = 5.23$, $F_{0.99}(12,15) = 3.67$;

$$F_{0.01}(15,12) = 4.01, u_{0.975} = 1.96, u_{0.95} = 1.65, t_{0.99}(27) = 2.473$$

$$\chi^2_{0.95}(1) = 3.8415$$

一、填空题。(每空3分,共计30分)

1 设随机变量 $X \square \chi^2(10)$, $Y \square Exp(\frac{1}{2})$, 且X与Y相互独立,则

$$D(X-2Y)=$$
_____.

2 设 X_1, X_2, X_3 相互独立且服从 $N(0, \sigma^2)$,则统计量 $\sqrt{\frac{2}{3}} \frac{X_1 + X_2 + X_3}{\left|X_2 - X_3\right|}$

服从_____分布。(请写出分布的类型和自由度,否不给分)。

3 设 X_1, X_2, X_3, X_4 是来自总体X的样本,设有下述四个统计量:

$$\hat{\alpha}_1 = \frac{1}{6} (X_1 + X_2) + \frac{1}{3} (X_3 + X_4),$$

$$\hat{\alpha}_2 = \frac{1}{100} (X_1 + 2X_2 + 3X_3 + 4X_4),$$

$$\hat{\alpha}_3 = \frac{1}{4} (X_1 + X_2 + X_3 + X_4),$$

$$\hat{\alpha}_4 = \frac{1}{4} (X_1 + X_2 - X_3 + X_4)$$

则这四个统计量中,总体均值的 UMVU 是

4 从两个正态总体中分别抽取容量为 20 和 15 的两独立样本,设总体方差相等, S_1^2 , S_2^2 分别为两本方差,则 $P\left(\frac{S_1^2}{S_2^2}>2.39\right)=$ ______. 5 在一个有 100 个同学的班级的《数理统计》的期末考试成绩中,有

5 在一个有 100 个同学的班级的《数理统计》的期末考试成绩中,有 16 个同学不及格,这个班的同学的不及格率的置信度为 0.95 的置信 区间为_____.

6 设袋中装有均匀的白球和黑球若干个,但是白球多还是黑球多是事先未知的,已知两种球的个数比是8:2,现在有放回地从袋中抽球三次,每次抽球一个,并且每次抽得的球都是白色,用似然原理判断袋子中那种颜色的球多?

7 设 $X_1, X_2, ..., X_{16}$ 是来自正态总体 $N(\mu, 4)$ 的样本,考虑检验问题 $H_0: \mu = 6 \leftrightarrow H_1: \mu \neq 6$,

如果
$$\bar{X}=6.98$$
,则该检验的 P 值为_____

8 为了提高某种产品的产量,考察原料用量(A)和来源地(B)这两个因素对产量是否有影响。假设原料来源地有三个: 甲地、乙地、丙地。原料的使用量有三种方案: 现用量、增加 5%、增加 8%,每个水平组合各做一次试验,得到数据如下表,那么在该问题的方差分析表中,因素A的均方差 \overline{S}_A^2 =______.

产量		原料用量(A)				
		A1(现用量)	A2(增加 5%)	A3(增加 8%)		
	甲地 B 1	59	70	66		
原料来源地(B)	乙地 B 2	63	74	70		
	丙地 B 3	61	66	71		

二 设总体 X 的密度函数为

$$p(x;\theta) = \begin{cases} \theta x^{\theta-1}, 0 < x < 1 \\ 0, other \end{cases}, \theta > 0,$$

 $X_1, X_2, ..., X_n$ 是来自总体 X 的样本,对可估函数 $g(\theta) = \frac{1}{\theta}$,

- (1) 求 $g(\theta)$ 的极大似然估计 $\hat{g}(\theta)$;
- (2) 说明 $\hat{g}(\theta)$ 是 $g(\theta)$ 的有效估计。

三 有人认为在大学中,男大学生的成绩与女大学生的成绩有明显差异。现从一所大学中随机抽取 16 位男生和 13 位女生,对他们用同样的题目进行测试。测试结果为: 男生平均成绩为 82 分,标准差 8 分;女生平均成绩为 78 分,标准差 7 分。假设男女生成绩分别服从分布 $N(\mu_1,\sigma_1^2)$ 和 $N(\mu_1,\sigma_2^2)$ 。问在显著水平为 α =0.02 时,判断男女生成绩有无显著差异

四 对 **1000** 个人做性别与色盲的调查,得到如下列联表,请根据该列联表在显著性水平 $\alpha = 0.05$ 下判断色盲与性别是否独立。

性别	视	合计	
二二二二	正常	色盲	TO VI
男	535	65	600
女	382	18	400
合计	917	83	1000

五 为了研究某种鱼的重量 X 和体长 Y 的关系,随机抓了 10 条鱼,其重量和体长的数据如下表:

重量	33	13	35	15	20	38	40	43	30	26
体长	8	4	9	5	7	10	11	10	9	8

根据以上数据,

- (1) 建立鱼的体长对其重量的样本回归直线 $\hat{y} = \hat{\beta}_0 + \hat{\beta}_1 x$ 。
- (2) 检验该一元线性回归方程的显著性($\alpha = 0.05$)。
- (3) 当鱼的重量为42时,预测鱼的平均长度。

(已知 $\bar{x} = 29.3, \bar{y} = 8.1 I_{xx} = 992.1 I_{yy} = 44.5$,计算结果保留四位小数)

六、(10 分)为了提高某化工厂产品的转化率,选择了三个有关因素: 反应温度 A, 反应时间 B 和用碱量 C, 每个因素取三个水平:

A: $80^{\circ}C$ $85^{\circ}C$ $90^{\circ}C$ (分别记为 A_1, A_2, A_3)

B: 90min 120min 150min (分别记为 B_1, B_2, B_3)

C: 5% 6% 7% (分别记为 C_1, C_2, C_3)

请根据下面的实验结果,用直观分析法寻找最佳水平组合。

水 因	A	В	С	空白列	转化率(%)
素平					
试验桌	j=1	j=2	j=3	j=4	
1	1	1	1	1	31
2	1	2	2	2	54
3	1	3	3	3	38
4	2	1	2	3	53
5	2	2	3	1	49
6	2	3	1	2	42
7	3	1	3	2	57
8	3	2	1	3	62
9	3	3	2	1	64
k_{1j}					
k_{2j}					
k_{3j}					
\overline{k}_{1j}					
$egin{array}{c} \overline{k}_{1j} \ \hline \overline{k}_{2j} \ \hline \overline{k}_{3j} \end{array}$					
\overline{k}_{3j}					
极差 R_j					