作业二:

1. 请解释 SP800-22 中近似熵测试与 SP800-90B 的最小熵估计的异同,标准请自行去 nist 官方 网站下载。

本人查阅了 90B 的文档 https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.
https://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-22r1a. pdf。

可以发现,22 的近似熵测试只是15个检测项中的一项检测,在标准的文档中我们也可以看到其具体的测试过程。

而对比 90B 的最小熵估计,则是一个整体的策略,针对是否是独立同分布的数据采取不同的策略进行一系列的熵估计,从其中选择最小的熵值作为熵估计值。

这两者比较的意义我认为不是很大。一个是具体的测试,另一个则是策略。

但是我们仍然可以从两者的原理、熵值是否存在高估低估等方面进行对比。

在原理方面,大致可以这么理解近似熵的计算过程。选择一个参数 m,然后计算 m 长的序列的一个评价指标,这个评价指标实际上是把原始序列作为一个 m 长序列的空间,然后计算 m 长序列在该空间的信息熵。然后增加一比特,计算 m+1 长序列在该空间的熵。不难推断,在最理想的情况下,m+1 长序列的熵应该比 m 长序列的熵多 1bit(由于标准中选用的是 1n 函数,所以应是 1n2 nat)。根据我粗浅的理解,我认为或许可以将 m+1 长的熵值减去 m 长的熵值,乘以 n 即可得出熵估计值(当然没有任何的理论依据)。不过标准中构造了一个统计量,对此统计量我暂时也不太理解是如何构造出来的,就不进行分析了。

而最小熵估计的原理,可以从最简单浅显的例子来理解。这个例子不仅在课件中有,在标准的 文档中也出现了。简单的解释一下,就是只考虑 k 个样本中出现概率最大的样本,将其出现的 信息熵作为最终的熵值。

另外,在文档中,最小熵估计还提到对于独立同分布的数据也存在熵被低估的情况。而根据最小熵估计这个名字我们也不难想到,该方法由于总是取用熵值最小的作为结果,所以它极有可能会对大部分数据的熵造成低估。而近似熵估计由于没有这种特点,可能在低估和高估熵值方面没有偏好。

2. 请下载 sp800-22 测试套件,学习使用指南,安装在 linux 或 mac os 机器上,按以下要求测试数据,生成最终报告,并对测试结果的报告作出解释,撰写实验报告。

套件和相关说明链接:

https://csrc.nist.gov/projects/random-bit-generation/documentation-and-software

参数设置:分组长度 100 万比特,分组数目 1000.

测试数据一:测试程序自带的 LCG 随机数生成器

测试数据二:链接: https://pan.baidu.com/s/1rhTVw4TEOprSvqX63UIKZw 提取码: b3fh (注意,测试程序选择的文件格式需要与被测文件一致)

本题目要求我们对测试结果进行解释并撰写实验报告。由于对测试结果的解释将体现在实验报告中,故下文只提供实验报告。

实验报告

实验目的

- 1. 学习使用 sp800-22 测试套件。
- 2. 学会阅读分析该测试套件生成的测试结果。
- 3. 撰写实验报告。

实验步骤

- 1. 下载测试套件及文档。
- 2. 阅读文档中第五章 user guide,对软件进行编译。对于 mac os 来说,实际上的操作很简单,只需要在项目的根目录下执行 make 命令,就可以生成可执行文件 access。
- 3. 对 LCG 随机数发生器生成的随机数以及老师提供的一个测试文件进行测试,得到最终的报告。 第 3 步具体言之,如下:
 - 3.1. 先测试 LCG 随机数发生器, 具体如下
 - 3.2. 执行命令./access 1000000 表示选择分组长度为一百万比特
 - 3.3. 接着根据提示选择测试的数据是 LCG 产生的随机数

3.4. 接着根据提示选择进行所有 15 项统计测试

3.5. 接着选择不调整参数,并输入分组长度1000,等待测试完成,大约需要两三个小时

说明,在这一步中,软件将会利用 LCG 生成 1000 组长度为一百万比特的数据,对每组数据进行上述统计测试。

- 3.6. 对老师提供的文件进行测试,具体如下
- 3.7. 大体步骤和之前一致。其中有几个需要注意的地方。

首先,由于测试文件有 130 多兆,据说可能会造成内存不足的情况。所以需要对文件进行分组测试。在本次测试当中,我选择只测试前 128 兆的数据,分 128 次测试,及一组为 1 兆字节(为 8388608 比特),分组数为 128. 那么需要执行的命令是./access 8388608,并且在程序提示"How many bitstreams?"时输入 128。

其次,需要将文件格式选为 Binary,因为当尝试用 vim 打开该文件时,发现其内容并不是 ascii 文本,而是一堆乱码。

3.8. 测试完成之后,便可以在文件夹中找到生成的报告。关于报告,不仅有每项测试的具体报告,最后还会有一个总的报告。

4. 实验结果分析

4.1. 首先对 LCG 的实验结果进行分析。

打开 final Analysis Report. txt。我们可以看到如下内容(开头几行)。

RESULTS FOR THE UNIFORMITY OF P-VALUES AND THE PROPORTION OF PASSING SEQUENCES

generator is <Linear-Congruential>

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 P-VALUE PROPORTION STATISTICAL TEST

98 89 105 111 103 89 106 96 104 99 0.859637 988/1000 Frequency
96 92 96 90 105 98 102 125 91 105 0.383827 986/1000 BlockFrequency
93 116 96 88 99 91 109 112 107 89 0.399442 991/1000 CumulativeSums

可以看到第二行文字会提示我们测试的随机数来源。

之后便是一个表格,表格的前十列分别是 C1 到 C10,那么这十个数据分别代表什么呢?我们知道,P-VALUE 的取值范围为区间 0 到 1。将这个区间进行 10 等分,分别统计 1000 组测试中计算得到的 P-VALUE 落在各个区间的组数,就是 C1 到 C10 的含义。我们将 C1 到 C10 的数据加起来,刚好等于 1000。

那么第 11 列的 P-VALUE 又是什么含义呢?它其实是对 C1-C10 这十个数的均匀性的衡量,是利用卡方分布进行统计的。而 P-VALUE 的值大于 0.01 即可认为其实均匀分布的,并且这个值越大越好。

接下来的一列是 PROPORTION, 它代表着 1000 组数据中 P-VALUE 值大于 0.01 的组数与 1000 的比值。其中 P-VALUE 值小于 0.01 就被认为是未通过该次测试。这一点我们可以到具体某项测试的结果里证实。例如第一行进行的是频率测试,我们找到频率测试的结果,搜索字符串 SUCCESS 和 FAILURE 出现的次数。会发现刚好是 988 次和 12 次. 如下图所示,同时我们也可以看到显示为 FAILURE 的测试中 P-VALUE 值也确实是低于 0.01 的。

第13列则提示了每一行对应的是什么测试。

而 15 项测试中,大部分的测试只占了统计结果的一行,而 NonOverlappingTemplate,RandomExcursions, RandomExcursionsVariant, Serial 这四项测试占据了多行。这又是为什么呢?

其中 NonOverlappingTemplate 这项测试可能因为包含了 148 个 Template 所以有 148 行结果。

而对于 RandomExcursions 这类 test 还有一个异常的地方,就是它们的通过比例的分母并不是 1000,而是比 1000 更小的数,通过在网上查阅资料(https://crypto.stackexchange.com/questions/71635/nist-random-excursion-results),发现一个说法是其需要的数据量更大,进行一次测试需要的数据为一千万比特,而每组一兆比特显然还没到一千万比特的量级,所以分母会小于 1000.

同时因为这个测试与其他测试的区别,导致了最后的文字总结中也出现了相应的分类讨论。如下:

The minimum pass rate for each statistical test with the exception of the random excursion (variant) test is approximately = 980 for a sample size = 1000 binary sequences.

The minimum pass rate for the random excursion (variant) test is approximately = 593 for a sample size = 607 binary sequences.

For further guidelines construct a probability table using the MAPLE program provided in the addendum section of the documentation.

在这段文字总结中,它提到出了 random excursion (variant) test 之外,1000 组数据通过测试的次数至少为 980,而单独考虑 random excursion (variant) test,607 组数据的通过次数至少为 593。通过简单的分析,我们可以发现这两个数值略均低于在实际测试中出现的最小值。

而对于老师提供的文件也可以进行上述分析,其中有两个异常的地方是

C1	C2	С3	C4	C5	С6	C7	C8	С9	C10	P-VALUE	PROPORTION	ST	ATISTICAL TEST
14	16	12	12	15	6	15	13	12	13	0. 706149	127/128		Frequency
13	12	9	10	13	13	10	16	13	19	0. 619772	128/128		BlockFrequency
15	11	13	15	6	16	7	14	10	21	0. 078086	127/128		CumulativeSums
12	16	15	10	7	14	21	8	12	13	0. 162606	127/128		CumulativeSums
14	14	11	12	14	7	14	16	15	11	0.772760	127/128		Runs
13	19	8	17	7	7	24	10	9	14	0.002792	126/128		LongestRun
34	18	12	15	9	11	5	10	9	5	0.000000	* 121/128	*	Rank

120 7 0 1 0 0 0 0 0 0 0.000000 * 30/128 * LinearComplexity

也就是说测试数据二没有通过两个测试,分别是 Rank 测试和 LinearComplexity 测试。