식품의 맛

1. 식품의 맛

- (1) 관능적 특성(sensory characteristics)
- 향미(flavor)
- 텍스처(texture)
- 외관(appearance, 주로 color)
- (2) 향미(Flavor)
- 맛(taste)
- 냄새(odor)

2. 식품의 지각과 관련된 5가지 감각

- (1) 시각 (vision)
- (2) 청각 (audition)
- (3) 미각 (taste)
- (4) 후각 (smell/olfactory)
- (5) 촉각 (touch)
- 식품의 맛(taste) 은 입안에서 침이나 음식물의즙에 녹아 있는 화학성분들에 의해 느껴 지는 감각

3. 식품의 향미

- 식품의 맛 자체가 영양과 직접적인 관계는 없으며, 좋은 맛은 식욕을 증진시킬 뿐만 아니라 소화·흡수에도 긍정적인 영향을 주며 식품이 품질을 결정하는 중요한 요소로 작용
- 화학적 감각요소 (chemical feeling factors)
- (1) 맛(tastes)
 - 입안에서 수용성 자극 물질에 의해 느껴지는 미각(gustatory sensation)
- (2) 향(aromatics) 또는 냄새(odor)
- 입 속 식품으로부터 발산되는 휘발성 물질이 구강과 비강을 통하여 느껴지는 후각 (olfactory sensations)
- (3) 입 속 감촉(mouthfeel)
- 떫은, 매운, 얼얼한 것과 같은 감각이 구강과 비강에 있는 연조직의 말초신경을 자극하는 화학적 감각 요소

4. 미각기관

- (1) 혀 (Tongue)
- 표면에 유두(papilla)가 존재하며, 유두에는 미각세포인 미뢰(taste bud)가 있어 맛을 내는 물질이 미뢰에 접촉되면 자극이 뇌에 전달되어 맛 인지
- (2) 유두 (Papilla)
- 유곽유두(Circumvallate)

- 엽상 유두 (Foliate)
- 용상유두 (Fungiform)
- 사상유두 (Filiform)
 - :미뢰가 거의 존재하지 않음.
 - :촉감에 민감

5. 맛의 인식기작

- (1) 맛 성분이 침이나 물에 녹아 미공(taste bud)을 통하여 미뢰 내부로 들어가 맛 세포 내의 수용체와 결합
- (2) 이 자극이 미뢰 내부에 분포되어 있는 미각신경에 의해 대뇌의 미각중추에 전달
- (3) 학습되었던 어떤 맛으로 인식

6. 맛의 분류 (4원미)

- (1) 단맛(sweet)
- (2) 신맛(sour)
- (3) 짠맛(salty)
- (4) 쓴맛(bitter)

+

(5) 감칠맛(Umami)

7. 맛의 역가

- (1) 맛을 느낄 수 있는 맛성분의 최저농도로 몰(mole) 농도나 백분율(%)로 표시
- (2) 단맛> 짠맛> 신맛 >쓴맛
- (3) 사람의 미각 수용기에 의해 결정되므로 개인차가 큼
 - 연령, 흡연 여부, 건강 및 심리 상태, 피로의 정도 등

8. 미각의 변화

- (1) 온도
- 10~40℃, 30 ℃ 전후에서 가장 예민
- 설탕은 35~50℃ 에서 예민
- 짠맛은 18~35 ℃ 에서 예민
- 쓴맛을 내는 퀴닌은 10 ℃ 에서 예민
- (2) 용매와 기질
- 물리적 상태(기질)
- : 역가 : 유지>겔>거품 및 커스터드>수용액
- : 젤(전분 젤, 한천 젤리 등)이나 유지 중에 존재할 때 역가가 매우 높아 맛을 예민하게 느끼지 못함
- 점성
- : 용액의 점성이 높으면 수용성 물질이 미각기관으로 확산되는 것을 방해
- 지방에 대한 용해도가 크면 맛의 강도는 작아짐 (유화식품)

(3) 나이와 성별

- 연령 : 50대 후반기에 또는 60대 부터 미각에 대한 감퇴 - 성별 : 여자는 단맛과 짠맛에, 남자는 신맛에 더 예민

(4) 기타

- 수면 : 불수면은 신맛에 대한 역가 증가

- 공복(식사) : 식후 1시간 정도에는 둔하다가 3~4시간 후 예민해짐

- 흡연 : 흡연자가 쓴맛에 대한 역가 높음.

: 단맛, 짠맛, 신맛에 대한 역가는 차이가 없음

- 기타 : 신체적, 정신적, 식습관 등

9. 맛성분의 종류

(1) 단맛 (sweetness)

- 당류(포도당, 설탕, 과당 등), 당알코올(솔비톨, 만니톨, 자일리톨 등), 아미노산(글리신), 합성감미료(사카린, 아스파탐, 아세설팜-K 등)

- (2) 짠맛 (saltiness)
- 중성염에 의한 맛
- NaCl이 가장 순수한 짠맛
- (3) 신맛(sourness)
- 산 용액의 수소이온(H⁺)과 산의 염에 의한 맛
- 염산, 인산, 초산, 주석산, 구연산, 젖산 등
- (4) 쓴맛(bitterness)
- 카페인, 퀴닌 등 알칼로이드와 그 외 다양한 성분
- (5) 감칠맛(umami)
- MSG(mono sodium glutamate), 핵산성분(5'-IMP, 5'-XMP 등), 아미노산(글루탐산 등), 유기산(숙신산 등)

10. 단맛 성분의 상대적 감미도

종류	감미도	종류	감미도
당류		글리세롤(glycerol)	48
설탕(sucrose)	100	소르비톨(sorbitol)	48
과당(fructose)	150	에리스리톨(erythritol)	45
전화당(invert sugar)	120	이노시톨(inositol)	45
포도당(glucose)	70	만니톨(mannitol)	45
람노오스(rhamnose)	60	둘시톨(dulcitol)	41
글루코사민(glucosamine)	50	방향족화합물	
맥아당(maltose)	50	페릴라틴(perillartine)	200,000~500,000
자일로오스(xylose)	40	글리시리진(glycyrrhizin)	290
갈락토오스(galactose)	30	필로둘신(phyllodulcin)	63
유당(lactose)	20	인공감미료	
당알코올		사카린(saccharin)	20,000~70,000
자일리톨(xylitol)	75	아스파탐(aspartame)	20,000

11. 단맛

- (1) AH-B설에 의한 단맛 감지
 - 단맛을 내는 모든 물질은 산소나 질소와 같은 전기 음성원자(A)를 가지고, 이들은 수소 와 결합하여 AH에 해당하는 -OH, -NH₂로 존재 함
 - AH는 다른 전기음성원자인 B가 존재하여야 하며, 주로 산소나 질소 임
- 단맛을 내는 물질에 존재하는 AH-B는 미뢰수용 부위에 존재하는 동일한 AH-B 단위와 반응하여 수소결합을 형성하여, 이 자극이 뇌신경을 따라 전달되어 단맛을 느끼게 됨
- (2) 천연감미료와 인공감미료
- (3) 설탕은 상대감미도를 비교하기 위해 10% 설탕용액의 단맛을 100로 표시

12. 짠맛

- 생리적으로 중요한 맛 성분
- 중성염의 음이온(염소, 브롬, 요오드 이온 등)이 짠맛 성분
- 중성염의 양이온은 약한 쓴맛
- 짠맛 내는 물질: 염화나트륨(NaCl), 염화칼륨(KCl), 브롬화나트륨(NaBr) 등
- NaCl은 가장 순순한 짠맛을 가지고 있음
- 염화칼륨(KCl), 염화마그네슘(MgCl₂), 염화칼슘(KCl), 황산마그네슘(MgSO₄)등을 함유하면 짠맛 이외에 쓴맛이 느껴짐
- 짠맛의 세기: SO₄-2 > Cl > Br > I > HCO₃ > NO₃

13. 신맛

- 미각의 자극과 식용 증진효과
- 신맛 성분 : 유기산과 무기산(염산, 인산, 황산)
- 신맛은 수소이온(H⁺)과 해리되지 않은 산에 기인: pH와 신맛 강도는 정비례하지 않음
- 같은 pH에서 유기산이 무기산보다 더 신맛이 강함
- 산이 해리될 때 생성되는 음이온은 신맛에 영향을 줌
 - : 무기산의 음이온은 쓴맛이나 떫은맛 부여
 - : 유기산의 음이온은 상쾌한 맛과 특유의 감칠 맛 부여
- 젖산, 구연산, 주석산 등의 유기산은 상쾌한 맛과 특유한 감칠맛을 부여
- 신맛은 초산, 젖산, 숙신산, 말산, 타르타르산, 시트르산 등이며 신맛을 부여하고 pH를 낮추어 부패를 방지하는 효과가 있음
- 말산과, 시트르산 등은 과일 특유의 풍미를 부여

14. 쓴맛 (bitter taste)

- 일반적으로 식미를 나쁘게 하지만 약리작용을 하는 성분이 많음
- 약간의 쓴맛은 오히려 식품의 기호성을 높임(예 : 커피, 코코아, 맥주, 차, 초콜릿 등)
- 혀의 뒷부분에서 예민하게 지각되어 비교적 장시간 지속되는 가장 예민한 맛
- 대표적 쓴맛 성분 : 알칼로이드(alkaloid), 배당체(glycoside), 케톤류(ketone), 무기염류 및 단백분해물 등

15. 감칠맛 (savory, umami taste)

- 감칠맛(savory, umami taste)이란 단맛, 짠맛, 신맛, 쓴맛이 잘 조화된 구수한 맛
- 단일 물질에 의한 맛이 아닌 여러 맛을 내는 성분이 혼합 된 것
- 천연조미료로 간장, 된장, 젓갈류, 다시마 등 해조류, 버섯 등
- 아미노산과 유도체 및 핵산계 화합물