Connectionist Computing COMP 30230/41390

Gianluca Pollastri

office: E0.95, Science East.

email: gianluca.pollastri@ucd.ie

Credits

- Geoffrey Hinton, University of Toronto.
 - borrowed some of his slides for "Neural Networks" and "Computation in Neural Networks" courses.

- slides from his CS4018.
- Paolo Frasconi, University of Florence.
 - slides from tutorial on Machine Learning for structured domains.

Lecture notes on Brightspace

- Strictly confidential...
- Slim PDF version will be uploaded later, typically the same day as the lecture.
- If there is demand, I can upload onto Brightspace last year's narrated slides.. (should be very similar to this year's material)

Connectionist Computing COMP 30230

Books

- No book covers large fractions of this course.
- Parts of chapters 4, 6, (7), 13 of Tom Mitchell's "Machine Learning"
- Parts of chapter V of Mackay's "Information Theory, Inference, and Learning Algorithms", available online at:

http://www.inference.phy.cam.ac.uk/mackay/itprnn/book.html

 Chapter 20 of Russell and Norvig's "Artificial Intelligence: A Modern Approach", also available at:

http://aima.cs.berkeley.edu/newchap20.pdf

More materials later...

Marking

- 3 landmark papers to read, and submit a 10-line summary on Brightspace about: each worth 6-7%
- a connectionist model to build and play with on some sets, write a report: 30%
- Final Exam in the RDS (50%)

Assignment 1

- Read the first section of the following article by Marvin Minsky:
- http://web.media.mit.edu/~minsky/papers/SymbolicVs.Connectionist.html
- down to ".. we need more research on how to combine both types of ideas."
- Submit through BrightSpace a 250 word MAX summary by October 2nd at 23:59, any time zone of your choice (Baker Island?).
- One third of a grade down every 2 days late, that is: if you deserve an A and you're 1-2 days late you get an A-, 3-4 days late a B+, etc.
- Make sure it's gone through!

Connectionist Computing COMP 30230

Gradient descent and associators

- Complexity of gradient computation is minimal: o(nm)
- BUT, it is unclear how many steps along the gradient need to be taken...

• Much better storage of examples than with one-shot learning, though typically there will be residual error. $\Delta w_{ji} = -\eta \sum_{p=1}^{P} (y_j^{(p)'} - y_j^{(p)}) x_i^{(p)} = 0$

 $\eta \sum_{p=1}^{P} (y_j^{(p)} - y_j^{(p)'}) x_i^{(p)}$

Hopfield Nets

- Networks of <u>binary threshold</u> units.
- Feedback networks: each units has connections to all other units except itself.

Connectionist Computing COMP 30230

The energy function

 The global energy is the sum of many contributions. Each contribution depends on one connection weight and the binary states of two neurons:

$$E = -\frac{1}{2} \sum_{i,j} w_{ij} y_i y_j - \frac{1}{2} \sum_i b_i y_i$$

 The simple energy function makes it easy to compute how the state of one neuron affects the global energy (it is the activation of neuron!):

$$E(y_i = -1) - E(y_i = 1) = \sum_{j} w_{ij} y_j + b_i$$

Storing memories (learning)

If we want to store a set of memories:

$$y^{(1)},..,y^{(p)},..,y^{(p)}$$

 $y^{(p)} = (y_1^{(p)},..,y_m^{(p)})$

 if the states are -1 and +1 then we can use the update rule:

$$\Delta w_{ji} = \eta \sum_{p} y_i^{(p)} y_j^{(p)}$$

Connectionist Computing COMP 30230

Example

- Say we have 4 patterns of size 4:
- · (1, -1, -1, -1)
- · (-1, 1, -1, -1)
- · (-1, -1, 1, -1)
- · (-1, -1, -1, 1)

- We build the sigmoid Hopfield net based on the 4 patterns (Matlab nnet toolbox).
- Incidentally, here one-shot learning would not work: try.

Example

- Let's now start from some state Y for the neurons, and watch the network evolve.
- Y=(1 0 0 0)

Steps (1 update/neuron):

```
1: (0.4999 -0.6620 -0.6620 -0.6620)
```


Example (2)

- Different starting point:
- $Y=(0\ 0\ 0\ 0)$

Steps:

```
1: (-0.4273 -0.4273 -0.4273)
```

. .

stuck in the middle!

Example (3)

 Let's now try train a Hopfield net on slightly nastier vectors (the previous ones were orthogonal):

```
      (1.0000 -1.0000 -1.0000 0.3000)

      (0.1000 1.0000 -1.0000 -0.1000)

      (-1.0000 -1.0000 1.0000 -0.5000)

      (-1.0000 -1.0000 1.0000 1.0000)
```

Example (3)

- Let's start from some state Y for the neurons, and watch the network evolve.
- $Y=(1\ 0\ 0\ 0)$

Steps (1 update/neuron):

```
1: (0.9957 -0.3693 -0.3693 -0.0028)
5: (1.0000 -0.5332 -0.5332 -0.0040)
50: (1.0000 -0.5348 -0.5348 -0.0040) odd plateau
170: (1.0000 -0.5345 -0.5350 -0.0040)
5000: (1.0000 0.2032 -1.0000 1.0000) spurious min!
```

From Hopfield nets to Boltzmann machine

Hopfield nets (attempt to) minimise an energy function:

$$E(y) = -\frac{1}{2} \sum_{i,j} w_{ij} y_i y_j = -\frac{1}{2} \mathbf{y}^{\mathbf{T}} \mathbf{W} \mathbf{y}$$

$$\mathbf{y} = (y_1, ..., y_m)^T$$

$$\mathbf{W} = \begin{pmatrix} w_{11} & \dots & w_{1i} & \dots & w_{1n} \\ w_{j1} & \dots & w_{ji} & \dots & w_{jn} \\ w_{m1} & \dots & w_{mi} & \dots & w_{mn} \end{pmatrix}$$

 Replace the binary threshold units by binary stochastic units. A neuron is switched on/off with a certain probability instead of deterministically.

 Reminder: the energy reduction by switching a neuron on is:

$$z_i = \sum_j w_{ij} y_j = E(y_i = -1) - E(y_i = 1)$$

 The probability that a given unit is switched on is a function of the amount of energy that its change of state would contribute to the network's overall energy, and the "temperature" T.

$$\frac{exp(z_i/T)}{exp(z_i/T) + exp(-z_i/T)} = \frac{1}{1 + exp(-2z_i/T)}$$

Connectionist Computing COMP 30230

Hopfield vs. Boltzmann

- Since in Boltzmann networks the unit update rule (or activation function) has a probabilistic component, if we allow the network to run it will settle into a given equilibrium state only with a certain probability.
- Hopfield networks, on the other hand, are deterministic. Given an initial state their equilibrium state is determined.

- Temperature makes it easier to cross energy barriers.
 - Start at high temperature where its easy to cross energy barriers.
 - Reduce slowly to low temperature where good states are much more probable than bad ones.

Connectionist Computing COMP 30230

Implementing a probability distribution

 It can be shown that the Boltzmann machine generates configurations according to the distribution:

$$P(\mathbf{y}|\mathbf{W}) = \frac{1}{Z(\mathbf{W})} exp(\frac{1}{2}\mathbf{y^T}\mathbf{W}\mathbf{y})$$

Where:

$$Z(\mathbf{W}) = \sum_{\mathbf{v}} exp(\frac{1}{2}\mathbf{y}^{\mathbf{T}}\mathbf{W}\mathbf{y})$$

 Working on the probability distribution it is possible to devise the following learning rule:

$$\Delta w_{ij} = \eta \sum_{p=1}^{P} \left[y_i^{(p)} y_j^{(p)} - \sum_{\mathbf{y}} y_i y_j P(\mathbf{y} | \mathbf{W}) \right]$$

First term:

$$\eta \sum_{p=1}^{P} y_i^{(p)} y_j^{(p)}$$

 Empirical correlation between neurons i and j, measured from the examples (same as learning rule for Hopfield).

Second term:

$$\eta \sum_{\mathbf{y}} y_i y_j P(\mathbf{y}|\mathbf{W})$$

 Correlation between neurons i and j, measured on patterns generated according to the probability distribution underlying the model. Notice that we're summing over all possible patterns (2^N)

- The first term is readily evaluated from the examples.
- The second term can be estimated by letting the model evolve until equilibrium, measuring the correlations, and repeating many times: can be computationally tough.
- Monte Carlo.

Interpretation of learning terms

- First term: the network is awake and measures the correlations in the real world.
- Second term: the network sleeps and dreams about the world using the model it has of it.
- Once dream and reality coincide learning reaches an end. It is interesting to notice that the network unlearns its dreams.

Weakness of Hopfield nets and Boltzmann machines

- All units are visible, i.e. correspond to observable stuff (components of the examples).
- In this situation nothing more than second order interactions can be captured by Hopfield nets and the Boltzmann machine.
- If for instance the examples are bits of images, second order statistics are a poor representation.

Hidden units for Hopfield nets/Boltzmann machines

- Instead of using the net just to store memories, use it to construct interpretations of the input.
 - The input is represented by the visible units.
 - The interpretation is represented by the states of the hidden units.
- Higher order correlations can be represented by hidden units.
- More powerful model, but even harder to train.

Hidden units. Used to represent an interpretation of the inputs

Visible units. Used to represent the inputs