Internetworking

G54ACC – IP and Up Lecture 1

Recap

- IP sits at layer 3
 - OSI network layer
 - TCP/IP Internet layer
- Approximates a fullyconnected network abstraction
- IP packets are hop-byhop routed by storeand-forward devices

- Overview
- Addressing
- Routing vs. Forwarding
- Address Management
- Control
- Evolution
- Alternatives & Summary

- Overview
 - Encapsulation
- Addressing
- Routing vs. Forwarding
- Address Management
- Control
- Evolution
- Alternatives & Summary

Overview

- Hosts are allocated addresses
- Generated data is encapsulated
- Packets passed to datalink for transmission
 - Commonly Ethernet in some form
 - Historic interest: Token-Ring, ATM
- Routers receive packets, examine, forward
 - May have non-IP devices between routers
 - Details of datalink are abstracted

Encapsulation

- Data comes down from above in chunks
 - Sockets API imposes
 buffers even on streams
 - These chunks may be too large for the datalink
 - Packetization generates suitable sized chunks
- IP header is prepended

RFC 791, Internet Protocol
http://www.rfc-editor.org/rfc/rfc791.txt
IEN 46, Addressing and Naming
http://www.postel.org/ien/txt/ien46.txt

- Overview
- Addressing
 - Address Aggregation
 - Classless Inter-Domain Routing
- Routing vs. Forwarding
- Address Management
- Control
- Evolution
- Alternatives & Summary

Addressing

- Host addresses in IPv4 are 32 bits long
 - Intended to be globally unique
 - Really it's interfaces that get allocated addresses
 - 32 bits is no longer enough
 - E.g., virtualization, mobile telephony
- Commonly depicted in 4 parts
 - -32 bits == 4 bytes
 - Dotted quad notation (msb first): a.b.c.d
 - E.g., 128.243.35.39 == 0x80f32327 == 2163417895

Address Aggregation

- Need to determine the route from the address
 - How do we get where we want to go?
 - Group addresses for efficiency: 2³² bits not enough but still a lot!
- Divide address into network and host parts
 - Hierarchical addressing
- Originally fixed: first 8 bits for network, remaining for hosts
 - What to do when >254 networks?
- Next, moved to classful: A, B, C, (D/multicast, E/reserved)
 - Indicate length of network part by high-order bits
 - But many wasted addresses as Internet grew

<u>Classless Inter-Domain Routing</u>

- Subnetting: make *netmask* explicit
 - Cluster addresses internally
- CIDR, RFC 1338
 - Gives rise to prefixes with explicit prefix lengths
- E.g., 172.16/12 == (172.16.0.0, 255.240.0.0)
 - -A = x/8, B = x/16, C = x/24 but required routing protocol changes

- Overview
- Addressing
- Routing vs. Forwarding
 - Forwarding
 - Other Forwarding Actions
- Address Management
- Control
- Evolution
- Alternatives & Summary

Routing vs. Forwarding

- Router receives an IP packet: what to do?
 - Drop or forward?
 - If forward, which port to transmit it on?
- Making this decision is forwarding
 - Which port gets it closer to the destination address?
 - IP bases this decision (almost) solely on dstip
- Building up the information to do so is routing
 - Where are all the addresses at the moment?

Forwarding

- Need to map packet's destination to port
- Routing generates (prefix, port) mapping
 - The forwarding table
- Map address to prefix via longest prefix match
 - Means the most specific entry is used
 - If no match, then use default route; else drop
- How to structure forwarding table?
 - Minimise lookup latency
 - Handle variable and substantial update dynamics

Other Forwarding Actions

- Decrement the time-to-live (TTL) field
 - Ensures that looping packets eventually die
- Perform any fragmentation necessary
 - IP abstracts datalinks with different max PDUs
 - Generate N packets from the first, setting fragment offset
- ...unless <u>D</u>on't <u>F</u>ragment is set:
 - Path MTU Discovery

- Overview
- Addressing
- Routing vs. Forwarding
- Address Management
 - Macro Internet-wide
 - Micro Network-local
- Control
- Evolution
- Alternatives & Summary

Address Management: Macro

- Internet Assigned Numbers Authority (IANA)
 - Co-ordinates number spaces
- Delegates netblocks to Regional Internet Registries (RIRs)
 - Africa, Asia/Pacific, North America, Latin America, EMEA
 - ...and down to <u>National and Local registries</u> (NIRs, LIRs)
- Approach appropriate registry for an allocation
 - Must provide suitable justification
 - Much harder to get a large allocation (== short prefix)
- Deeply manual process involving much politics
 - http://www.iana.org/numbers/ and http://www.iana.org/

Address Management: Micro

- Used to also be very manual
 - A big text file containing (IP, Ethernet) address map
 - Also needed to maintain subnet allocations for routing protocols
- <u>Dynamic Host Configuration Protocol</u>, DHCP
 - RFC 2131
 - "Can anyone give me an address?"
 - Usually provides a pile of other configuration information
- Address Resolution Protocol, ARP
 - "Does anyone know who's at <ipaddr>?"
- Both utilise IP broadcast address, 255.255.255.255

- Overview
- Addressing
- Routing vs. Forwarding
- Address Management
- Control: ICMP
- Evolution
- Alternatives & Summary

Internet Control Message Protocol

- ICMP: RFC 792
 - In-band control: uses IP messages
- Most common operations:
 - ECHO REQUEST/RESPONSE (ping "are you there?")
 - UNREACHABLE (host, network, gateway)
 - TIME EXCEEDED (TTL was decremented to zero)
- Implementation of traceroute
 - How to determine route your packets take?
 - Transmit packet to destination with increasing TTL
 - Receive ICMP time exceeded from each enabled gateway

- Overview
- Addressing
- Routing vs. Forwarding
- Address Management
- Control
- Evolution
 - Multicast
 - Mobile
 - IPv6
- Alternatives & Summary

Multicast

- Have considered unicast (1:1) and broadcast (1:all)
- IP natively supports multicast (M:N)
 - Efficiency gains if the routers do the replication
 - Note multicast support exists at some lower layers too...
- Everything becomes more complex
 - Need to manage group membership
 - Need to manage routing between groups
- For example,
 - IGMP controls local group membership
 - PIM, MOSPF handle routing between local groups
 - MBGP permits different routing between networks

Mobile

- IP can natively support mobility; RFC3344
 - Again, so do some lower layers...
- Assign Care-of-Address in addition to home address
 - Home-agent and foreign-agent manage nodes
- Again, adds complexity: protocols for
 - Authenticated registration to inform HA of CoA
 - Extension to ICMP for agent discovery
 - Routing protocols, typically tunnelling
- What about multicast? (ARP? Broadcast? ...)

IPv6

- IPv4 is dead! Long live IPv6!
 - Well, sort of: in transition since 1998
- Primary benefit: larger address space (128b)
 - But what about NAT
- Other benefits:
 - Integrated security, back-ported as IPSec
 - Various auto-configuration mechanisms
 - Mobility support: avoid triangular routing
 - Jumbograms, extended options space, ...
- Costs: all the other protocols need to change too!
 - Network layer is much more than just an encapsulation

- Overview
- Addressing
- Routing vs. Forwarding
- Address Management
- Control
- Evolution
- Alternatives & Summary

Alternatives

- Packet systems: CLNP, CLNS
 - Actually still used, a little! IS-IS/CLNP/802.3
- Circuit switching
 - A real actual copper circuit (old telephones)
 - Digital telephony implies framing (SONET, &c.)
 - Starting to move onto IP network anyway
- Statistical multiplexing with circuits
 - Virtual circuits (ATM)
 - Flow switching (Ipsilon)
- Compare circuit setup vs. Per-packet routing

Summary

- IP provides encapsulation and packetization of data from higher layers
- Packets are forwarded through the network toward the specified destination by routers
- Building up information to forward is routing
 - Topic of next lecture
- Several control protocols, processes and organizations provide IP infrastructure