ES 200 ENVIRONMENTAL STUDIES

Module-C

Anthropogenic effects on ecosystem, water quality & health, water & wastewater treatment

Lecture-5

Amritanshu Shriwastav CESE, IIT Bombay amritan@iitb.ac.in

Learning Objectives

Conventional Surface Water Treatment System

Water collection, treatment, and distribution

Typical Water Use Pattern

Municipal Water Treatment

- The purpose of municipal water treatment is to bring raw water up to potable water quality.
- Most of the raw water sources are either surface water (rivers, lakes) or groundwater.
- Depending on the source, characteristics of the raw water vary and so do the treatment options.

Reading Assignment

What are the major differences in the quality of surface water and groundwater?

Characteristic pollutants in raw surface water

- > Large floating matter (e.g. leaves, plastic etc.)
- Dissolved and suspended solids/particles (organic and inorganic)
- Biological agents (e.g. pathogens)

Unit Processes

- As the pollutants differ widely in their properties, a single treatment process is not feasible/efficient for all of them.
- Multiple unit processes targeted for some specific pollutant/group of pollutants are designed and used.
- > A sequential operation of these unit processes is called as the treatment train, and which results in comprehensive treatment of the water.

Screening

Removes large solids

- Logs
- > Branches
- Rags
- > Fish

Simple process

Trash removal can be manual or mechanized

Protects pumps and pipes in WTP

https://webpages.uidaho.edu/larc380/new380/assets/images/waterTreatment/images/CC/BarScreenFrankVincentzCC-BY-SA-3jpg.jpg

Coagulation – Flocculation – Sedimentation

- > Smaller particles still remain in the water, which need to be removed.
- > Basic and oldest mechanism for their removal is gravitational settling (or sedimentation) as per Stokes' Law.
- However, some particles are either too small to settle, or have some electrostatic charge (e.g. dust/soil particles are in general negatively charged) due to which they repel each other and do not settle efficiently (called as Colloids).
- One basic process to remove such particles is by some how bringing them together, so as to increase their effective size (and thus weight) leading to better settling properties.
- It requires the understanding of particle-particle interactions.

Coagulation – Flocculation – Sedimentation

Particle-Particle Interaction

https://qp h.ec.quor acdn.net /mainqimgc34900ab b3b89b65 b1fce658 81b53c99

An **Energy Barrier** is to be crossed if two particles in a colloid are to come together.

- ✓ Increase the energy of the particles (e.g. increase the temperature or stirring etc.)
- ✓ Lower the Energy Barrier (e.g. remove the charges on particles, add particles with opposite charges etc.)

 Destabilizing the particles

Coagulation – Flocculation – Sedimentation

Coagulation is the process of destabilizing the particles.

- Change the property of Media so that repulsion does not start even when particles are brought much closer (reduce the thickness of counter ions)
- Change the properties of Particles so that their charges are neutralized (reduce the overall repulsion)
- Provide external bridges (e.g. precipitates) to connect the far located particles

Coagulation – Flocculation – Sedimentation

Some common coagulants:

Alum $[Al_2(SO_4)_3 \cdot 18H_2O]$ FeCl₃

These coagulants can either produce active species that neutralize the charge on the particles (e.g. $AI(OH)_2^+$, $AIOH^{2+}$ etc.) or produce flocs (e.g. $AI(OH)_3$) that entrap the colloid particles.

Coagulation requires very rapid mixing of coagulants with the particles for short duration (1-2 minutes)

Coagulation – Flocculation – Sedimentation

Flocculation is the process of getting the destabilized particles to collide with each other so that they could form flocs (or larger/heavier particles).

- Require some relative motion between particles
- \rightarrow Gentle mixing for long time (1 2 hours)

Coagulation - Flocculation - Sedimentation

Once sufficiently large flocs are formed, they are allowed to settle by gravity. The process is called as sedimentation or settling.

http://www.ecologixsystems.com/images/chemical-jar-tests.jpg

Lecture 5 : ES 200 Module C

Coagulation - Flocculation - Sedimentation

particles is so high that sedimentation can only occur through compaction of the structure.

Lecture 5 : ES 200 Module C

Coagulation – Flocculation – Sedimentation

Municipal Surface Water Treatment: Discrete Settling

https://theconstructor.org/wp-content/uploads/2016/12/types-of-sedimentation-tank.jpg

- Stokes Law
- Circular or Rectangular Channel

https://ak2.picdn.net/shutterstock/videos/4148686/thumb/1.jpg?i10c=img.resize(height:160)

Lecture 5 : ES 200 Module C

Filtration: Rapid Sand Filter

Some flocs still resist settling Water Size (mm) Depth (cm) **Anthracite** 0.70 30 0.45 - 0.55Sand 45 Gravel 5-60 45 Depth can vary depending on various factors Lecture 5 : ES 200 Module C

Filtration: Rapid Sand Filter

- Removes the flocs that resist settling
- > Filtration due to Mechanical Straining and Adsorption
- ► Æffluent ~ 0.5 NTU
- Requires frequent backwashing (with treated water) as huge head loss is encountered after ~12 hours of operation

Reading Assignment

What is Slow Sand Filtration?

Disinfection by Chlorination

- > Primary disinfection: To kill any pathogens in the water
- Secondary (or Residual) disinfection: To prevent pathogen regrowth in the water during the period before use

Free Chlorine Disinfection

$$Cl_{2(aq)} + H_2O \rightarrow HOCI + H^+ + Cl^-$$

 $HOCI \rightarrow OCl^- + H^+$

HOCI: Hypochlorite Ion

Disinfection by Chlorination

- > Free chlorine oxidizes the bacterial cell, thus killing them.
- Free available residual chlorine: [HOCl] + [OCl-] helps in residual disinfection; however they have short life time in water.
- Ammonia is added to react with free chlorine and form chloramines (NH₂Cl, NHCl₂, and NCl₃).
- Chloramines are less effective oxidants, but more persistent in water, and thus can provide residual disinfection in distribution systems for longer durations.
- Problem with chlorination occurs due to the formation of Disinfection byproducts (DBPs), many of which are carcinogenic.

Disinfection by Chlorination

Free Chlorine Disinfection: Break Point Chlorination

Lecture 5: ES 200 Module C

Next Lecture:

Conventional Municipal Wastewater Treatment System