Exercices du chapitre 6

 $\boxed{\mathbf{12.}}$ Déterminer les minimums de f sur C dans les cas suivants :

a)
$$f:(x,y,z)\mapsto 4x^2+y^2+z^2$$
 et $C=\{(x,y,z); 2x+3y+z-12=0\}.$

b)
$$f:(x,y,z)\mapsto xy+2yz+2xz$$
 et $C=\{(x,y,z)\; ;\; xyz=32\}.$

c)
$$f:(x,y)\mapsto xy$$
 et $C=\{(x,y)\; ;\; xy>0 \text{ et } x^2+y^2=8\}.$

 $\boxed{ 13. }$ Déterminer les maximums de f sur C dans les cas suivants :

a)
$$f:(x,y,z)\mapsto xy^2z^2$$
 et $C=\{(x,y,z)\in (\mathbb{R}_+^*)^3\; ;\; x+y+z=12\}.$

b)
$$f:(x,y)\mapsto x^2y$$
 et $C=\{(x,y)\; ;\; 0\leq x\leq 1 \text{ et } 0\leq y\leq 1\}.$

c)
$$f:(x,y)\mapsto xy$$
 et $C=\{(x,y)\; ;\; (x+1)^2+y^2=1\}.$

14. Déterminer les extrémums de f sur C dans les cas suivants :

a)
$$f:(x,y,z)\mapsto x^2+y^2+z^2$$
 et $C=\{(x,y,z)\;;\;\frac{x^2}{64}+\frac{y^2}{36}+\frac{z^2}{25}=1\}.$

b)
$$f:(x,y)\mapsto x^2+2y^2-x$$
 et $C=\{(x,y)\; ;\; x^2+y^2\leq 1\}.$

c)
$$f:(x,y,z)\mapsto x^2+y^2+z^2$$
 et $C=\{(x,y,z)\; ;\; x^2+2y^2-z^2-1=0\}.$

15. Déterminer la hauteur de C (i.e. $z_{\text{max}} - z_{\text{min}}$); C étant l'intersection de la sphère d'équation $x^2 + y^2 + z^2 = 1$ et du cône d'équation $(x + 2z)^2 + y^2 = z^2$.

16. Déterminer les extrémums de $f: x \mapsto ||x||^2$ sur $C = \{x \in \mathbb{R}^n ; \langle Ax, x \rangle = 1\}$ où la matrice est symétrique.

Application à
$$n=2$$
 et $A=\begin{pmatrix} 1 & \sqrt{6} \\ \sqrt{6} & 2 \end{pmatrix}$.

17. Application à la géométrie.

a) Déterminer le point P du plan d'équation ax+by+cz+d=0 dont la distance à O est minimale.

b) Calculer la distance du point $M_0(x_0, y_0, z_0)$ à la droite d'équation

$$\begin{cases} ax + by + cz + d = 0 \\ a'x + b'y + c'z + d' = 0 \end{cases}.$$

18. Soit
$$C = \{(x, y, z) \in \mathbb{R}^3 ; x + y + z = -3 \text{ et } xy + xz + yz = 0\}.$$

- a) Montrer que C est borné et calculer les extrémums sur C de $f:(x,y,z)\mapsto xyz.$
- b) Retrouver ce résultat en étudiant, pour $\lambda \in {\rm I\!R},$ le nombre de racines réelles de

$$P_{\lambda}(x) = x^3 + 3x^2 - \lambda.$$