1. Is this true or false:

$$(n \in \mathcal{N})(n \in \mathcal{N})(3m + 5m = 12)$$

Answer: This is false

Proof: By cases

Case 1: m = 1, n = 1: $3 \times 1 + 5 \times 1 = 8$ Case 2: m = 2, n = 1: $3 \times 2 + 5 \times 1 = 11$

Case 3: m = 1, n = 2: $3 \times 1 + 5 \times 2 = 13$

For all larger values of m or n, (3m + 5n) > 12.

So there are no values of m, n giving 12. This concludes the proof.

2. Is the sum of five consecutive integers always divisible by 5.

Answer: This is true.

Proof: Any 5 consecutive integers can be written as

$$n-2, n-1, n, n+1, n+2$$
 where $n \in \mathcal{Z}$

The sum of these 5 integers is

$$n-2+n-1+n+n+1+n+2$$
=5n+0

which is obviously divisible by 5. QED.

3. Is $(n^2 + n + 1)$ always odd for an integer n.

Answer: This is true

Proof:

We can rewrite $(n^2 + n + 1) = n(n + 1) + 1$

Either n is even, or (n+1) is even.

Therefore n(n+1) is even.

Therefore n(n+1) + 1 is odd.

This concludes the proof.

4. Prove that every odd natural number is one of 4n + 1 or 4n + 3

Proof.

By the division theorem, all natural numbers can be written as one of

$$4n, 4n + 1, 4n + 2, 4n + 3$$

where $n \in \mathcal{Z}$

Both 4n and 4n + 2 = 2(2n + 1) are even, and 4n + 1 and 4n + 3 are odd.

Since this covers all natural numbers, all the odd numbers must be one of 4n + 1 or 4n + 3. QED

5. Prove that for any integer n, at least one of n, n+2, n+4 is divisible by 3.

Proof: By the division theorem, any integer n can be written

$$n = 3q + r$$

where $q \in \mathcal{Z}, r \in \mathcal{Z}$ and $0 \le r < 3$

Case 1: r = 0 then n = 3q and is divisible by 3

Case 2: r = 1 then

$$n+2 = 3q + r + 2$$

= $3q + 1 + 2$
= $3q + 3 = 3(q + 1)$

which is divisible by 3

Case 3: r=2 then

$$n+4 = 3q + r + 4$$

$$= 3q + 2 + 4$$

$$= 3q + 6 = 3(q + 2)$$

which is divisible by 3

Hence for all possible values of r, one of n, n+2, n+4 is divisible by 3. QED.

6. Prove that the only prime triple is 3,5,7.

Proof: A prime triple is of form n, n+2, n+4 where all are prime numbers.

We just showed (Q5) that one of n, n+2, n+4 must be divisible by 3. Since a prime number is only divisible by itself and 1, all values of the triplet for n > 3 must be composite (divisible by 3 and another number). Therefore there are no other prime triplets than 3,5,7. QED.

7. Prove that for any natural number n

$$2 + 2^2 + 2^3 + \dots + 2^n = 2^{n+1} - 2$$

Proof: By induction

We need to show that

$$\sum_{k=1}^{n} 2^k = 2^{n+1} - 2$$

For n=1, the left hand side $=2^1=2$ and the right hand side is

$$2^{n+1} - 2 = 2^2 - 2 = 4 - 2 = 2$$

So the expression is valid for n=1

Then for n+1,

$$\sum_{k=1}^{n+1} 2^k = \sum_{k=1}^n 2^k + 2^{n+1}$$
 separating out last term

By induction hypothesis, assuming the expression is valid for n, this is

$$\sum_{k=1}^{n+1} 2^k = 2^{n+1} - 2 + 2^{n+1}$$
$$= 2 \times 2^{n+1} - 2$$
$$= 2^{n+2} - 2$$

which is the value of the expression for n+1 as required.

Hence, the theorem is proved by mathematical induction.

8. Theorem: If $\{a_n\}_{n=1}^{\infty}$ tends to limit L then for M > 0 the sequence $\{Ma_n\}_{n=1}^{\infty}$ tends to the limit ML. Proof:

Let $\epsilon > 0$ be given. If $\{a_n\}$ tends to limit L, we can choose N large enough that

$$|a_N - L| < \frac{\epsilon}{M}$$

Hence, multiplying by M

$$M|a_N - L| < \epsilon$$
$$|Ma_N - ML| < \epsilon$$

By the definition of a limit, this proves the theorem.

9. Give an example of a family of intervals $A_n = 1, 2, ...$ such that $A_{n+1} \subset A_n$ for all n and intersection $= \emptyset$

Answer: The family $A_n=(0,1/n]$ fulfils these criteria.

Proof:

a) Proof that $A_{n+1} \subset A_n$

Since (n+1) > n, it follows that 1/(n+1) < 1/n

Hence the interval (0,1/n] includes the interval (0,1/(n+1)] and thus $A_{n+1} \subset A_n$

b) Proof that intersection is \emptyset

Proof by contradiction. If the intersection is not \emptyset then there must be at least one member. Let x be the minimal such member.

By the Archimedean property, there is a $m \in \mathcal{N}$ such that m > 1/x and thus x will not be included in the intervals A_n for $n \ge m$

This is a contradiction, and thus there are no members and the intersection is the empty set.

Thus A_n fulfils the requirements. QED.

10. Give an example of a family of intervals $A_n = 1, 2, ...$ such that $A_{n+1} \subset A_n$ for all n and the intersection has one real member.

Answer: The family $A_n = [0, 1/n]$ fulfils these criteria.

Proof:

This is the same family as Q9, but with the addition of zero to the lower limit.

The proof that $A_{n+1} \subset A_n$ is as Q9.

Proof that the intersection has one real member:

As shown in Q9, the intersections of intervals excluding 0 has no members. There is no value of n for which 1/n = 0 thus the interval [0, 1/n] will always include 0 which is the single member of the intersection.

Thus A_n fulfils the requirements. QED.