Catalyst Engineering

2dayclean

2025/09/24

Contents

11 Basics of Non-ideal Flow	1
11.1 Resident time distribution, RTD	2
11.1.1 Pulse experiment	2
11.1.2 Step experiment	2
11.2 Examples for RTD	3
11.2.1 RTD analysis	3
11.3 Conversion in non-ideal flow reactors	4
12 Compartment Model	5
12.1 PFR-based simple models	5
12.2 MFR-based simple models	5
12.3 Complicated models	5
13 Dispersion Model	5
13.1 Nondimensionalization of dispersion	5

11 Basics of Non-ideal Flow

We have already learned about what the ideal flow is.

Reactor의 Flow pattern에 대해 배울 때, 이미 ideal flow에 대해 다룬 바 있다. 우선, ideal reactor의 예시로 Batch reactor(Batch), Plug flow reactor(PFR), Mixed flow reactor(MFR; CSTR)에 대해 배웠으며, 이 중 steady-state와 ideal flow를 가정하는 PFR과 MFR에 대해 다음과 같은 특징을 가지고 있다고 배웠다.

- 1. PFR: no overtaking. 즉, First-in First-out하며 flow가 일정한 velocity vector와 동일한 resident time을 갖는다.
- 2. MRF: perfect mixing. 즉, inlet을 제외한 나머지 reactor에서 전부 uniform한 concentration을 갖는다.

그렇다면 non-ideality는 이를 만족하지 않는 데에서 나올 것이다. Real flow에서는 다음과 같은 non-ideality를 고려한다.

- 1. RTD : Resident Time Distribution. 실제 reactor에서 모든 element가 같은 resident time을 가지지는 않기 때문에 이를 고려해야 한다.
- 2. **State of Aggregation**: microfluid(SoA = 0)과 macrofluid(SoA = 1)인 경우만 학부에서 다루며, 개별이 free 하게 움직이고 intermix될 수 있는 경우가 micro, individual하게 flow하는 경우가 macro이다.
- 3. **Mixing** : PFR에서 가정했던 것과 달리, early mixing/uniform mixing/late mixing이 벌어질 수 있고 이를 고려 해야 한다.

11.1 Resident time distribution, RTD

Resident time distribution, 혹은 **Exit age distribution** E는 reactor 안에서 물질들이 얼마나 오래 머무르고 있는 지 그 resident time을 distribution으로 나타낸 것이다. RTD를 얻기 위해서는 **Tracer**가 될 물질을 Reactor에 넣어준후, outlet stream에서의 concentration을 측정해야 한다. Tracer의 움직임이 Reactant의 움직임을 설명해야 하므로, Reactant와 그 size/density 등이 유사해야 할 것이고, Tracer는 non-reactive해야할 것이며, non-toxic하고 detective 하기 용이해야 할 것이다.

Definition 11.1

Exit age distribution E는 reactor에서 element들의 resident time을 나타내는 함수이며, distribution이므로 $\int_0^\infty E dt = 1$ 을 만족해야 한다.

따라서, RTD는 일종의 확률 밀도 함수(probability density function; pdf)처럼 생각할 수 있으며, 일종의 'Reactor를 대표하는 함수'이다. 또한, RTD는 Tracer를 어떻게 넣느냐에 따라 얻는 방법이 달라진다. 가장 간단하고 쉬운 방법은 Pulse injection을 사용하는 것이다.

11.1.1 Pulse experiment

Reactor Vessel의 크기는 V, volumetric flow rate는 v와 같이 쓰도록 하자.

우선, M의 unit(kg 혹은 mol)을 갖는 tracer를 pulse 형태로 reactor에 injection해준다. 그리고 outlet에서 tracer의 concentration을 측정하면 $C_{\mathrm{pulse}}(t)$ curve를 얻을 수 있다. 아래첨자인 pulse는 pulse에 대한 response로서의 concentration profile임을 의미하는 것임에 유의하자. 간단히, C_p 와 같이 abbreviate하자.

순간적으로 pulse 신호를 넣어주었으므로 모든 tracer가 동등한 시간에 reactor에 투입되었다고 생각할 수 있다. 따라서, E는 단순히 C_p 를 normalization해주면 될 것이다. 즉,

$$E(t) := \frac{C_p(t)}{\int_0^\infty C_p dt}$$

와 같이 정의될 것이다. 특히, M 만큼의 tracer를 넣어주었는데, $M=\int_0^\infty vC_pdt$ 일 것이므로 (tracer의 양에 대한 보존식.) E의 분모는 사실 M/v와 같다고 생각할 수 있다. 그러면, t의 mean과 variance를 다음과 같이 구할 수 있다. 이는 전적으로 E가 일종의 pdf라는 데에 직관을 둔다.

$$\bar{t} := \mathbb{E}[t] = \int_0^\infty tEdt$$

$$\operatorname{var}[t] := \int_0^\infty (t - \bar{t})^2 Edt$$

그런데, 차원을 분석하면 E(t)의 차원은 $[s^{-1}]$ 이다. 따라서, nondimensionalization을 해줄 필요가 있다.

$$\theta := \frac{t}{\bar{t}}$$

$$E_{\theta} := \bar{t}E$$

그러면, E_{θ} 역시 넓이가 1인 pdf이며 여기서의 Expectation resident time은 1이다.

11.1.2 Step experiment

pulse 대신에, 순간적으로, 그리고 계속해서, C_{\max} 만큼의 농도로 tracer를 injection해줄 수 있다. 그러면 $C_{\text{step}}(t)$ curve를 얻게 되며, C_s 와 같이 abbreviate하자. 이 경우, stoichiometric하게 $\dot{m}=C_{\max}\cdot v$ 의 mass flow rate를 가지고 tracer가 inject되고 있을 것이다. 따라서, $C_{\max}=\frac{\dot{m}}{v}$ 와 같이 쓸 수 있을 것이다. 또한, $C_{\max}\cdot \bar{t}$ 가 $1-C_s$ 의 0에서 ∞

2dayclean 2

까지의 넓이어야 함을 고려해보면, (일종의 old-fluid이므로)

$$F := \frac{C_s}{C_{\max}}$$

라는 정의는 F를 일종의 'cumulative distribution', 즉 distribution function으로써 생각할 수 있음을 알 수 있다.

이러한 직관에 따르면, 당연히 다음과 같은 관계가 성립할 것이다.

$$\frac{dF}{dt} := E(t)$$

$$F(t) := \int_0^t Edt$$

따라서,

$$\begin{split} \bar{t} &= \int_0^\infty t E dt \\ &= \int_0^{C_{\text{max}}} t dF \\ &= \int_0^{C_{\text{max}}} t d \left(\frac{C_s}{C_{\text{max}}} \right) \\ &= \frac{1}{C_{\text{max}}} \int_0^{C_{\text{max}}} t dC_s \end{split}$$

를 얻을 수 있다.

11.2 Examples for RTD

PFR case

우선, PFR에 대해서는 아주 쉽게 얘기할 수 있다. 그 특성 상 Overtaking이 전혀 일어나지 않으므로, step injection에 대해 step function으로 response할 것을 알 수 있다. 즉, F는 다음과 같이 나타날 것이다.

$$F = \begin{cases} 0 & t < \bar{t} \\ 1 & t \ge \bar{t} \end{cases}$$

따라서, E curve는 $\delta(t-\bar{t})$ 이고, E_{θ} curve는 $\delta(t-1)$ 이다.

MFR case

MFR에 대해서는 간단한 미분 방정식을 세워 문제를 해결할 수 있다. 우선, pulse injection에 대한 물질 보존 식은 다음과 같이 주어진다.

$$V \frac{dC_p}{dt} = 0 - C_p v$$

$$\frac{dC_p}{C_p} = -\frac{dt}{\bar{t}}$$

$$C_p = C_0 \exp\left(-\frac{t}{\bar{t}}\right)$$

$$E = \frac{1}{\bar{t}} \exp\left(-\frac{t}{\bar{t}}\right)$$

이를 통해, $E_{\theta}=\exp{\left(-\theta\right)}$ 임을 얻을 수 있고, $F=1-\exp\left[-\frac{t}{\bar{t}}\right]$ 이다.

11.2.1 RTD analysis

반대로, RTD를 이용해 임의의 input injection에 대한 response를 추론할 수 있다. 이는 다음과 같은 물리적 논의를 통해 확인할 수 있다. 시간 t에 reactor를 나오는 tracer는 t'의 resident time을 갖는 input이 시간 t-t'에 injection된 것이라고 생각할 수 있다. 이 t'의 선택은 0에서 t까지 가능하다. 다시 말해, C_{out} 은 다음과 같이 표현할 수 있다.

$$C_{\text{out}}(t) = \int_0^t C_{\text{in}}(t - t')E(t')dt' = \int_0^t C_{\text{in}}(t')E(t - t')dt'$$

= $C_{\text{in}} * E = E * C_{\text{in}}$

따라서, Reactor는 일종의 kernel처럼 동작한다.

11.3 Conversion in non-ideal flow reactors

지금까지 논의한 Non-ideality에 대한 논의를 이용하여 non-ideal reactor에 대해 분석해보자. 우선, 다음과 같은 네가지의 요소에 대한 고려가 필요하다.

- 1. 반응동역학(Kinetics of reaction): reaction rate는 Temperature-dependent term과 concentration-dependent term으로 구분할 수 있으므로, 이 둘에 대한 이해가 필요하다.
- 2. RTD : reactor에 오래 머무를 수록 반응이 더 잘 진행될 확률이 높아진다.
- 3. Earliness and Lateness of mixing : 언제 mixing이 일어나는지는 중요한 요소이다.
- 4. Micro-/Macro-fluid

Microfluid의 경우에는 지금까지 반응공학에서 배웠던 요소들을 모두 사용하면 된다. 특히, reaction rate이 power rule을 따르는 경우 $(-r_A=kC_A^n)$, mixing의 선호도가 달라진다.

- *n* > 1 : Late mixing이 더 선호된다.
- n < 1: Early mixing이 더 선호된다.

이에 대한 자세한 논의는 Supplementary Material 1에 정리해 두었다.

Macrofluid case의 경우에는 간단하게 분석할 수 있다. 모든 clump들은 서로에게 영향을 주지 않을 것이므로, 일종의 '작은 batch'처럼 동작한다. 어떤 방울 i의 경우에, resident time이 t_i 라고 하자. 그러면, 이 particle에서 일어난 반응을 고려하면 다음과 같은 식을 세울 수 있을 것이다.

$$\frac{C_{Ai}}{C_{A0}} = \left(\frac{C_A}{C_{A0}}\right)_h (t_i) E(t_i) \Delta t_i$$

여기서 아랫첨자 b는 batch에서의 performace equation을 의미한다. 이 과정을 모든 clump에 대해 똑같이 적용하고 합을 계산하면 다음을 얻을 수 있다.

$$\frac{\bar{C}_A}{C_{A0}} = \sum \left(\frac{C_{Ai}}{C_{A0}}\right) = \sum \left(\frac{C_A}{C_{A0}}\right)_b (t_i) E(t_i) \Delta t_i$$

적분형으로는 다음처럼 간단히 쓸 수 있고, conversion rate와도 관련이 된다.

$$\begin{split} \frac{\bar{C}_A}{C_{A0}} &= \int_0^\infty \left(\frac{C_A}{C_{A0}}\right)_b E dt \\ 1 - \bar{X}_A &= \int_0^\infty \left(1 - X_A\right)_b E dt = \int_0^\infty E - X_A E dt = 1 - \int_0^\infty X_A E dt \\ \bar{X}_A &= \int_0^\infty X_A E dt \end{split}$$

2dayclean 4

즉, E는 **정말로** probability인데,

$$\mathbb{E}\left[\frac{C_A}{C_{A0}}\right] = \int_0^\infty \left(\frac{C_A}{C_{A0}}\right) E dt$$
$$\mathbb{E}\left[X_A\right] = \int_0^\infty X_A E dt$$

를 보면 그 생각이 (당연하게도) 명확해진다.

12 Compartment Model

반응기의 전체 부피 V에 대해, V를 다음과 같이 분류한다 : (1) PFR처럼 행동하는 공간, V_p , (2) MFR처럼 행동하는 공간, V_m , (3) stagnant한, 혹은 dead한 공간, V_d . 특히, 실제로 행동하는 공간 V_p 와 V_m 을 합쳐서 active volume이라고 하며 V_a 로 쓴다.

또한, 반응기에 들어가는 유량 v에 대해, v를 다음과 같이 분류한다 : (1) active flow v_a , (2) bypass flow v_b , (3) recycle flow v_r .

- 12.1 PFR-based simple models
- 12.2 MFR-based simple models
- 12.3 Complicated models

13 Dispersion Model

실제 반응기 내부를 흐르는 유체는 Diffusion, Convection, 그리고 우리가 알 수 없는 수많은 요인에 의해 Dispersion 이 발생하게 된다. 특히, PFR에서는 Pulse injection에 대한 response로 Dirac-delta function이 나와야 하는데, 실제로는 통과함에 따라 Broaden해지는 경향이 있다. 이를 Dispersion이라고 하며, Dispersion coefficient D를 이용하여 설명한다. D가 0이면 PFR 그 자체이며, D가 작으면 spreading이 느린 것이고, D가 크면 spreading이 빠른 것이다.

다음과 같은 diffusion equation (Fick's law)를 생각하자.

$$\frac{\partial C}{\partial t} = \mathfrak{D} \frac{\partial^2 C}{\partial x^2}$$

Analogously, 다음과 같은 'Dispersion model'을 생각한다.

$$\frac{\partial C}{\partial t} = \mathbb{D}\frac{\partial^2 C}{\partial x^2}$$

13.1 Nondimensionalization of dispersion

다음과 같은 Streamline transformation을 생각하자.

$$z = \frac{ut + x}{L}$$
$$\theta = \frac{t}{\bar{t}}$$

그러면, Dispersion equation이 다음과 같이 정리된다.

$$\frac{\partial C}{\partial \theta} = \left(\frac{\mathbb{D}}{uL}\right) \frac{\partial^2 C}{\partial z^2} - \frac{\partial C}{\partial z}$$

여기서 나오는 non-dimensional group인 $\left(\frac{\mathbb{D}}{uL}\right)$ 을 Vessel dispersion number라고 한다.

2dayclean 5