

Circular Motion

Revision

What We Will Learn

- The motion of objects traveling in a circle rather than in a straight line can be described using coordinates based on radius and angle rather than Cartesian coordinates.
- There is a relationship between linear motion and circular motion.

- Circular motion can be described in terms of the angular coordinate, angular frequency, and period.
- An object undergoing circular motion can have angular velocity and angular acceleration.

Polar Coordinates

- We can specify the position vector by giving its x- and ycomponents.
- We can also specify the same vector by giving two other variables: r and θ .
- The relationship between Cartesian coordinates and polar coordinates is:

$$x = r \cos \theta$$
 $r = \sqrt{x^2 + y^2}$
 $y = r \sin \theta$ $\theta = \tan^{-1} \left(\frac{y}{x}\right)$

Polar Coordinates

WORKED EXAMPLE

Plot the point indicated by the polar coordinates $(3, -\pi/2)$

[Ans: (0, -3)]

Angular Coordinates and Angular Displacement

- Like x and y, θ can be positive or negative, but θ is periodic:
 - A complete turn around the circle (360° or 2π rad) returns the position vector back to the same point.
- We define the angular displacement as:

$$\Delta\theta = \theta_2 - \theta_1$$

 We define the arc length to be the distance traveled along the circular path:

$$s = r\theta$$

where θ is measured in radians.

Angular Coordinates and Angular Displacement

WORKED EXAMPLE

Plot the point indicated by the Cartesian coordinates (-2, 0)

[Ans: $(2, \pi)$]

Determine the distance covered by a car travelling along a circular path of 100 km radius as it travels East to North

Angular Velocity

- Rate of change of displacement is velocity.
- Rate of change of angular displacement is angular velocity.

$$\overline{\omega} = \frac{\theta_2 - \theta_1}{t_2 - t_1} = \frac{\Delta \theta}{\Delta t}$$

$$\boxed{\overline{\omega} = \frac{\theta_2 - \theta_1}{t_2 - t_1} = \frac{\Delta \theta}{\Delta t}} \qquad \boxed{\omega = \lim_{\Delta t \to 0} \overline{\omega} = \lim_{\Delta t \to 0} \frac{\Delta \theta}{\Delta t} = \frac{d\theta}{dt}}$$

Frequency, f, measures numbers of turns around the circle. $\omega = 2\pi f = \frac{2\pi}{T}$

$$\omega = 2\pi f = \frac{2\pi}{T}$$

- Period T measures the time take to complete one revolution
- Relationship between linear and angular velocity

$$\vec{v} = r\omega \hat{t}$$
 $v = r\omega$

$$v = r\omega$$

Coordinate vector and velocity vector are perpendicular to each other at every point in time for circular motion.

Angular Velocity

WORKED EXAMPLE
$$V=Wr = \frac{2\pi}{T} = \frac{2\pi}{87.58 \times 24 \times 60 \times 60}$$

Compute the linear velocity of Mercury as it orbits the Sun in 87.98 days at an average distance of 57 909 050 km.

[Ans: 47.8 km/s]

Hamilton's Mercedes has a top speed of 323 km/h during the Singapore Formula 1 Grand Prix. Determine the angular velocity of the tyre knowing its diameter is 720 mm.

[Ans: 249 /s]

Angular Acceleration

■ The rate of change of angular velocity is the angular acceleration.

$$\overline{\alpha} = \frac{\Delta\omega}{\Delta t}$$

$$\alpha = \lim_{\Delta t \to 0} \overline{\alpha} = \lim_{\Delta t \to 0} \frac{\Delta\omega}{\Delta t} \equiv \frac{d\omega}{dt} = \frac{d^2\theta}{dt^2}$$

- The acceleration in circular motion has two components:
 - *Tangential acceleration* is related to the change in magnitude of the velocity.
 - Radial acceleration is related to the change in direction of the velocity.

$$\vec{a}(t) = \frac{d}{dt}\vec{v}(t) = \frac{d}{dt}(v\hat{t}) = \left(\frac{dv}{dt}\right)\hat{t} + v\left(\frac{d\hat{t}}{dt}\right)$$

$$a_{\rm t} = r\alpha$$
 $a_{\rm c} = v\omega = \frac{v^2}{r} = \omega^2 r$ Very important and useful equations

$$a = \sqrt{a_t^2 + a_c^2} = \sqrt{(r\alpha)^2 + (r\omega^2)^2} = r\sqrt{\alpha^2 + \omega^4}$$

Angular Acceleration

Applet that allows visualization of velocity and acceleration vectors in linear, circular and elliptical motion.

https://phet.colorado.edu/sims/cheerpj/ladybug-motion-2d/latest/ladybug-motion-2d.html?simulation=ladybug-motion-2d

Angular Acceleration

WORKED EXAMPLE

If a rotating disc changes its angular speed at the rate of 60 rad/s for 10 seconds. Calculate its angular acceleration during this time.

$$\alpha = \frac{\Delta W}{\Delta \Theta} = \frac{60}{10} = \frac{60}{10}$$

A 900-kg car moving at 10 m/s takes a turn around a circle with a radius of 25.0 m. Determine the acceleration and the net force acting upon the car.

$$a_{c} = \frac{V^{2}}{\Gamma} = \frac{10^{2}}{25} = 4m/s^{2}$$
[Ans: 4m/s², 3600 N]
$$F_{c} = ma_{c} = 900 \times 4$$

$$= 3600 \text{ N}$$

Centripetal Force

■ The centripetal force is not another fundamental force of nature. It should not be drawn on a free body diagram.

• It is the inward force necessary to provide the centripetal acceleration necessary for circular motion.

- It has to point inward toward the circle's center.
- Its magnitude is the product of the mass of the object and the centripetal acceleration required to force the object onto a circular path:

$$F_{\rm c} = ma_{\rm c} = mv\omega = m\frac{v^2}{r} = m\omega^2 r$$

WORKED EXAMPLE

A van of 1,250 kg travelling at 50 m/s covers a curve of radius of 200 m. Calculate the centripetal force.

[Ans: 15625 N]

Circular and Linear Motion

 Relationship between linear and angular quantities. The radius r, of the circular path is constant and provides the connection between the two sets of quantities.

Quantity	Linear	Angular	Relationship
Displacement	S	θ	$s = r\theta$
Velocity	V	ω	$v = r\omega$
Acceleration	а	α	$a_t = r\alpha$
			$a_t = r\alpha$ $a_c = r\omega^2$
			$\mathbf{a} = \mathbf{r}\alpha\mathbf{t} - \mathbf{r}\omega^2\mathbf{r}$

Constant Angular Acceleration

• Kinematical equations for constant angular acceleration are obtained in complete analogy to those for linear motion with constant acceleration:

$$\theta = \theta_0 + \omega_0 t + \frac{1}{2}\alpha t^2$$

$$\theta = \theta_0 + \overline{\omega}t$$

$$\omega = \omega_0 + \alpha t$$

$$\overline{\omega} = \frac{1}{2}(\omega + \omega_0)$$

$$\omega^2 = \omega_0^2 + 2\alpha(\theta - \theta_0)$$

Circular and Linear Motion

WORKED EXAMPLE

An athlete is rotating a discus in a circle of radius 80.0 cm at 10 rad/s and the angular speed is increasing at 50 rad/s². For this instant, find the tangential and centripetal components of the acceleration of the discus and the magnitude of the acceleration.

[Ans: 40 m/s^2 , 80 m/s^2 , 89.4 m/s^2]

You design an airplane propeller that is to turn at 2400 rpm. The forward airspeed of the plane is 75 m/s, and the speed of the propeller tips through the air must not exceed 270 m/s. Determine the maximum possible propeller radius and the corresponding acceleration of the propeller tip?

[Ans: 1.03 m, $6.5 \times 10^4 \text{ m/s}^2$]