(90%) Juny John

FURTHER MATHEMATICS HIGHER LEVEL

August 2019

Name in block letters

Review Assignment

J	Ē	R	ደ	Y	١	l	A	N	G	
,		.,			 					

INSTRUCTIONS

- Do not use the calculator unless directed to do so in the question.
- There are 20 questions. Try to answer them all.
- · All numerical answers must be given exactly or correct to three significant figures.

Full marks are not necessarily awarded for a correct answer with no working. Answers must be supported by working or explanations. Where an answer is incorrect, some marks may be given for a correct method provided this is snown by written working. You are therefore advised to show all working. Working may be continued below the lines, if necessary.

Ť.	8.0	Phones a	frame.	And	See	1965	Hamiltonian	math

- (b) Draw a graph with an Eulerian circuit but no Hamiltonian cycle.
- (c) For what values of n does the complete graph K_n have an Eulerian circuit?

	$(a) \qquad (b) \qquad A$	
	是一遍冰书 n为有的 Kn	ー、ナ
,	Fulerian circui-	
	(c) onher n=1, there's no circuit & usually taking as Then in	_
	owhen not, in is even, then all vertices are neincuit	
	odd degreed, so it's not possible to	
<i>(</i>	start and end at all certices.	
	· n is odd, there are Enlerian circuits	
	· when n=2, a line connecting the two vertices	
	is the Enlerian circuit. X doesn't start & end at the same)
	Therefore, N=2 or all the odd numbers when n>2/ vertex	
	Make the vertices dearer	
	把端点标清楚	

9.

4

2	Consider the elementary matrices $E_1 = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}$ and $E_2 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ -2 & 0 & 1 \end{pmatrix}$ $E_1 = \begin{pmatrix} E_1 & E_2 & E_3 \\ E_4 & E_4 & E_4 \end{pmatrix}$
	 (a) To what elementary row operations do E₁ and E₂ correspond? (b) Write down det E₁ and det E₂. (c) Write down E₁⁻¹ and E₂⁻¹.
	(a) E: R> R R> R.
	Ez: R3 - 2R1 -> R3
	(b) det E, = -1
	$det E_{3} = 1 (c) E_{1}^{-1} = \begin{cases} 0 & 0 \\ 0 & 0 \end{cases}, E_{2}^{-1} = \begin{cases} 1 & 0 \\ 0 & 0 \end{cases}.$
	(001), (201).

3.	Consider the Abelian	group	((2, 4, 6, 8), (0))	where the o	øeration ∅ is r	nultiplication	modulo 10.
65 B	AND	boll or any and side.	flower in subscribe of a b	i an maner or on weapon on	be an accompanies on a 47th ones an	n a nort na for six attenuation and a 4	water to all to whater the security of the second

- (a) Construct the Cayley table for the group
- (b) List all the proper subgroups of the group.
- (c) Is this group cyclic? If so, name a generator.

(a) <u>0</u>	2	4	6	8.	食品或者医含盐油和普克油盐油	*******		医中央反音器分散法医学家
2	4	8	2	6	**********	*******	********	
4	8	6	4	2.			*********	********
	2_	4	6	8		<i></i>		
8	6	2	8	4	******			
	**********						*****	****
(6) (14	61.0	, i	******		**********	*****	********	******
	4 E 2 4 4 4 E 4							*********
(c) Yes	,		\ \Q _	= 4	********	* * * * * * * * * * * *	*******	*******
					.		********	********
女女的 电大线 电子源 各价 电影放 妆 电 θ	*****		7 A 1	19	® <u>2</u> ≥ 3	·dentit	*****	*****
	*********				******	*********	j	*******
*****	*****		*******	**+****	*********	*********	*******	****
* 6 * 8 * 4 * 5 * 7 * 6 * 7 * 8 * 8 * 7 * 8 *	* * * * * * * * * *				*****		7	*********
					ត់ តំស មនុស កា ស និ ស កា ស នេ		*********	*******
**********	********	*	******	*******	***********	*****	*****	*********
*********	******	*******	á.¥*******	*****		********	********	*******
******	******	****	******	*******	********	*******	********	*******
*********	******	******	*****	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	******	*****	*****	*****
医肠医激素的现在分词现象合分析验证	*****	******	*****	****	* * * * * * * * * * * * * * * * * * * *	********	· a · a · a · a · a · a · a · a · a · a	ги *,* и ж * * ж к * * *
្នប់ មេដង់ មេដង់ មេដង់ មេដង់ មេដង់ មេដង់ មេដង មេដង មេដង មេដង មេដង មេដង មេដង មេដង	********	*****	* * * * * * * * *	******	* * * * * * * * * * * * * * * * * * * *	******	*******	ម៉ែនិត្តខេត្តខេត្ត

4. A cycle graph C_n is a graph on n vertices that is a cycle.
(a) Draw the first five cycle graphs C ₁ through C ₅
(b) For what values of n is C _n bipartite?
(c) Prove that a bipartite graph contains no cycle of odd length.
(a) (b)
C, Cz Cz Cz Cz

(b) when n=2. (n is bipartite. 1 is own
い方人名其文都是 bipartite.
(c) a cycle starts and ends at the same vertex
In a bipartite graph, getting back to the starting
si de requires even-number moves, so there's no
Cycle of odd length

e de la constantination de la constantinatio
9
a contract of the contract of
v

5.	Consider	the	series	Σ.	(n(n + 1)
----	----------	-----	--------	----	---------------

- (a) Show that the series converges by comparing the series to a suitable p-series.
- (b) Show that $\frac{1}{n(n+1)} = \frac{1}{n} \frac{1}{n+1}$.
- (c) Hence find the exact sum of the series

for express vision rise assists agree on eric agricum
1a) \(\frac{\xi}{\xi} \) \(\frac{1}{\xi} \)
with < we when n is possive integer
= = = = = = = = = = = = = = = = = = =
P=2>1 in F. F. it converges.
therefore = niner also converges
Therefore $\tilde{\Xi}$ times also converges. (b) $\frac{1}{N} = \frac{N+1-N}{N(N+1)} = \frac{N}{N(N+1)}$
(c) \(\frac{1}{2} \sigma_1 \s

#600##400##600##600###60###############

6.	Consider	tho	matriv	М ::	_ (×	x + 2	1	whore	dot)	MA	4000	Ť
v.	CONSIDER	in the	HERRITE IV	18t ~	"∖,	¢ 2000	5 -x	1	MANGER	vest	LAF		ķ

- (a) Find the two possible values of x.
- (b) Let A be the matrix when x = 3. Find the smallest group of matrices that contains A and state another group to which this group is isomorphic.

(a) det M = 7.6x)-(x-5)	(X+v)	-	******	******	新春春春春 新春春春春春春	
-, -2x2+3x+10=1	******	*****	******	*****	* * * * * * * * * * * * * * * * * * * *	+ - + -
2x²-1x-9=0		a m p m m m m m m m m	*****	*******	*****	
· (x - 3)(2x+3)=0	, , , , , , , , , , , , , , , , , , ,		*******	*****		
 X = 3 or − ½ 	. * * * * * * * * * *		*****	******	<i>V</i> ***********	***
	******	*****	*******	*****	 * * * * * * * * * * * * * * * *	***
(b) A = (-2 -3)	2		B	8 00,000,000,000,000,000,000,000,000,000	mmuuuuus:	***
			D			***:
B = (2, 3)	B	D		A	8	* ,* *
**************************************	£	<u>.</u> B	A	D	<u>C</u>	***
	D	A.	В	c	D	
	*****	*****				
	******		*******		चंत्र संस्था चंत्र स्था क्रा स्था स्था स्था स्था स्था स्था स्था स्थ	% 16 A
	en e e e e e e e e e e e e e e e e e e	****			*********	***
******	* * # % * * * * * *	* * * * # * * * * *	*******	. * # * * *; * # # # #		8 * *
The group in question	#3	ìs ì	\$0 mo(بولازد		4 4 4
(D(G)6, A	⇔ 2	, ß	<⇒} {	.`C4	≒ >4)	/
I'm group in greation	\leftarrow		<u>_</u>	1	<u>~</u>	
				. ~ * * * * * * * * * * * * * * * * * *		
逻辑符3.		********	* * * * * * * * * * * * * * * * * * * *			**
		* * * * * * * * * *	*****			222

7.	Consider	the	series	1	$+\frac{1}{2}$	+	1	+ =	4	***	+	1	-	+++
					- 3		5	7				2n - 1		

- (a) Show that the ratio test cannot be used to establish the convergence or divergence of the series
- (b) Use the integral test, clearly stating any necessary conditions for its use, to establish whether the series converges or diverges.

(a) $\lim_{N\to\infty} \left \frac{\frac{1}{2n-1}}{\frac{1}{2n-1}} \right = \lim_{N\to\infty} \frac{2n-1}{2n-1} = 1$, in conclusive.
(b) the series is continuous, positive and decreasing.
$\int_{1}^{\infty} \frac{1}{2n-1} = \frac{\ln(2n-1)}{2} \Big _{1}^{\infty} = \infty$
Therefore, the series diverges.
,

- 8. Let ω be the cube root of unity which has smallest positive argument.
 - (a) Show that $1 + \omega + \omega^2 = 0$
 - 5) Find the matrix product $\begin{pmatrix} 1 & 1 & 1 \\ 1 & \omega^2 & \omega \\ 1 & \omega & \omega^2 \end{pmatrix} \begin{pmatrix} 1 & 1 & 1 \\ 1 & \omega & \omega^2 \\ 1 & \omega^2 & \omega \end{pmatrix}$ giving your answer in simplest form.
 - (c) Hence solve the following system giving your answers as real numbers.

$$x + y + z = 3$$

$$x + \omega y + \omega^2 z = -3$$

$$x + \omega^2 y + \omega z = -3$$

(c). From (b), we have:

$$\begin{pmatrix} 1 & 1 & 1 \\ 1 & w & w^2 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} -3 \\ -3 \end{pmatrix}.$$

9.	(a) State De Morgan's laws for sets.
	(b) Use Venn diagrams to show that $(A \cup B)' = A' \cap B'$.
	(c) With the help of De Morgan's laws prove that $[(A' \cup B) \cap (A \cup B')]' = A \triangle B$.
	(a) (BUB)' = A' 18'
	(A) 8)' = A' VB'.
	LMIN 21
	(b) [1/11/11] [1/11/11] [1/1/1/11]
	William Milling
	(AUB)' = A' A B'

	(c) [(A'UB))((AUB')]' = (A'UB)' V (AUB')'
	= (ANB') U (A' NB)
	= (ALB)U(BLA)
,	
	$= (A \triangle B)$
1	***************************************

	······································
	·

IO.	Consider	the	cycle	graph	Cs.

- (a) Draw the complement C's of Cs.
- (b) Draw another graph with five vertices that is also isomorphic to its complement.
- (c) If G is a simple graph with five vertices, find the sum of the adjacency matrices A(G) and A(G').

Turn over

	11. Consider the points $A(-3,9)$ and $B(1,5)$ in the Cartesian plane.
	(a) Find the equation of the circle with diameter [AB].
	(b) The locus of the point P such that PA = 3PB is the circle C. Find the centre and radius of C.
	(c) The tangents to C through A meet C at P1 and P2 respectively. Find the lengths AP1 and AP2.
	(a)
	$0B^2 = 2^1 + 1^2 = 8$
	0B= 2'+1'=8 (x+1) + 1y-7) = 8.
	(b) P. (o, b).
	P.A = 3/2, P.B=/2, soutisfy PA= 3PB.
	Pz (3,3)
	P2A=6/E, P2B=2/E, satisfy PA=3PB. ∠ Center ((3, 4), radius=3/E
÷ g	(C) Note: P. & Pz in (c) is different from that in Ub).
A	L(\frac{1}{2},\frac{4}{2})
	$A = \frac{q}{2} \overline{h}$
	-: AC= 元石 -: AP, = ([元] - [元] = AP2
	= 6.
•	
	$\angle AP_1 = AP_2 = 6$.
	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
	· · · · · · · · · · · · · · · · · · ·

12. The parametric equations of the hyperbola \mathcal{K} are $x = e^{t} + e^{-t}$ and $y = e^{t}$	E	= 6.	na u	and		P. 4	**** P.	are x	аЛ	hvnerb	the	or	nuations	ric ec	parametric	Ine	IZ.
--	---	------	------	-----	--	------	---------	-------	----	--------	-----	----	----------	--------	------------	-----	-----

- (a) Find the Cartesian equation of H.
- (b) Find the coordinates of the foci of \mathcal{H} .
- (c) Use parametric differentiation to find the gradient of \mathcal{H} when $t = \ln 2$.

(a)
$$x^2 = e^{xx} + e^{-xx} + 1$$
 $y^2 = e^{xx} + e^{-xx} - 2$
 $x^2 - y^2 = 4$

(b) $x^2 = 4$
 $x^2 - x^2 = 4$
 $x^2 - x^2 = 4$

(c) $x^2 - y^2 = 4$
 $x^2 - x^2 = 4$

(d) $x^2 - y^2 = 4$
 $x^2 - x^2 - y^2 = 4$

(e) $x^2 - x^2 - y^2 = 4$

(f) $x^2 - x^2 - y^2 = 4$

(g) $x^2 - x^2 - y^2 - y^2 = 4$

(g) $x^2 - x^2 - y^2 - y^2 = 4$

(g) $x^2 - x^2 - y^2 - y^2 = 4$

(g) $x^2 - x^2 - y^2 - y^2 = 4$

(g) $x^2 - x^2 - y^2 - y^2 = 4$

(g) $x^2 - x^2 - y^2 - y^2 - y^2 = 4$

(g) $x^2 - x^2 - y^2 - y^2 - y^2 = 4$

(g) $x^2 - x^2 - y^2 - y^2 - y^2 - y^2 = 4$

(g) $x^2 - x^2 - y^2 - y$

Turn over

13. Let S be the series $\sum_{n=0}^{\infty} \left(\frac{t}{t+1}\right)^n$ where $t \neq 0$	
(a) Find the value to which S converges when t = 1.	
(b) Determine the values of t for which S converges.	
(c) Find all values of t for which the sum of the series is greater than 10.	
(a) $\sum_{k=0}^{\infty} \frac{1}{2^k} = 1 + \frac{1}{2} + \frac{1}{4} + \cdots = 1 \cdot \frac{1 - (\frac{1}{4})^0}{1 - \frac{1}{4}} = \frac{1}{4} = 2$	
(b) in order for S to converge, the has to be less than 1. And	フー1.
(b) in order for 5 to converge, the instruction of the converge of the converg	<1
1. 1- (#m > 10	

tare the second of the second
1-1-1-1
(c) 1· 1-(+) > 10
0 t = -1, not defined
⊙ t <-1, diverge. V
9 +>-1, til
$\frac{1}{1-(\frac{t}{t+1})^{\infty}} > 10 - \frac{10t}{t+1}$
$\frac{1}{2} \cdot \frac{1}{1} \frac{1}{1} > 9$
4. 10 t > 9 t+9
: t > 1.
Therefore, $t < -1$ or $t > 9$.
×
^
me seif does hours hast. Me provided the service of the service o
J-M in thems
The axia
N91
diverge Bt 以为无 sum 而不是 on 为 sum)
l oction 1

14. (a) Prove that the base angles of an isosceles trapezium are equal.

	(b) Hence prove that an isosceles trapezium is cyclic.
	(c) An isosceles trapezium has sides of length 5, 5, 7 and 8. Use Ptolemy's theorem to find the lengths of the diagonals.
<u> </u>	(a) we have AD=BC, AB 11 CD.
5/1	Draw two heights AE and BF
e F	Since AB/1CD, the distance between the two lines shows
8	be the same, so AE=BF
	Therefore, DADE YDBCF, LD=LC.
	(b) : AB/1 CO
	CC+ LABC=180°.
	- LD+LABC=180° - ABCD is a cyclic quadrilateral.
	(c) {LD=LC,
	CO=OC => △AOC ≥ △ BCO.
	(c) {LD=LC,
	AC=80
	= ABCD is cyclic
	: Ac. BD = 7.84 52 = 81
	:. Ac=8 D=9

15. Consider the matrix
$$A = \begin{pmatrix} 1 & 1 & 1 & 1 \\ 1 & 2 & 3 & 4 \\ 2 & 3 & 4 & 6 \end{pmatrix} \begin{pmatrix} \chi \\ \chi \\ \chi \\ \chi \end{pmatrix} = \begin{pmatrix} 1 & 1 & 1 \\ \chi \\ \chi \\ \chi \end{pmatrix}$$
(a) Lies your calculator to find the reduced row scholar form for A

- (a) Use your calculator to find the reduced row echelon form for A.
- (b) Write down a basis for the row space of A.
- (c) State the rank of A.
- (d) State the nullity of A.
- (e) Find a basis for the null space of A.

(a) (10 -10)	A John
10 12 0 V	,
(b) {(10-10) (0120), (0001)}	•
(6) {(10-10), (0120), (0001)}.	
(c) rank = 3.	
(d) (x) (1) hullity (A)=1	
\x\\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	
(e) basis for null space: { [-2] }	
Tagriga daganay ang	

16. Consider the simple connected planar graph G with v vertices, e edges and f faces.
(a) State Euler's formula for G
(b) If $v \ge 3$ prove that $e \le 3v - 6$.
(c) Hence prove that K_n is not planar when $n \ge 5$.
(a) V - e + f = 2.
(b) three edges are the minimum required to form 2 faces
(2e > 3f = 2-4+e 2e > 6-34+3e
/ Vet 1 = 2 f
: e ≤ 3v-b
(c) V=573.
: e ≤ 15-6=9.
e(k;)= 5xy = 10>9.
it's not planar.
n7[]
() /)
(
いら次けた トフ5 9寸, Kn 包含了 Ks, 所以一定不是 planar.

······································

17. A matrix A is called <i>skew symmetric</i> if $A^{\Gamma} = -A$.
(a) Calculate the product $\begin{pmatrix} 1 & 2 & 3 \end{pmatrix} \begin{pmatrix} 0 & 1 & 2 \\ -1 & 0 & -3 \\ -2 & 3 & 0 \end{pmatrix} \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}$.
(b) Prove that if A is an $n \times n$ skew symmetric matrix and $\vec{x} \in \mathbb{R}^n$, then $\vec{x}^T A \vec{x} = 0$.
$(a) (173) \cdot {\binom{-1a}{8}}$
* 1 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
(b) A has dimension! NXN.
P, 9 C N.
In A. an. azz - ann = 0.
apq = - app
the product is - XI,p. apq: Xq1 = xp1 : apq: Xq1
· For agp, after ZTAZ.
the product is Zing app. Zpi = Zqi app. Zpi
Sum = 3q1 - 7p. (apq + app) =0.
This is the same for all p and g, so \$7A2=0.

	to (at the line) X2
	(b) Show that $\int_{0}^{\infty} xe^{-x} dx = \frac{b}{c}$
	(c) Find $\lim_{x\to 0^+} \frac{e^{-1/x}}{x}$.
	(a) lim ex-1-x = lim x2=0.
	Apply L'Hapital's Rule
	1m e ^x - 1
	Apply L'Hoprials Rule again.
	$\lim_{\epsilon \to 0} \frac{e^{x}}{1+e^{x}} = \frac{1}{2}$
	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
	(6) Ji xex dx
	$=-\times e^{-\times}-e^{-\times}$
	$=\lim_{x\to\infty}\left[-xe^{-x}-e^{-x}\right]-\left[-e^{-t}-e^{-t}\right]$
	$= \lim_{n \to \infty} \left[ -x \cdot \circ - \circ \right] - \left[ -\frac{2}{e} \right]$
	$= \frac{2}{e}$ (c) $\lim_{x\to 0} e^{-\frac{1}{x}} = 0 = \lim_{x\to 0^+} x$ . $J = \frac{1}{x}$
	Appy L'Hôpital's Rule
	(in et 6(-6)) lim et
	x->0
	Apply again, (2
	X-30 = 2X = = = = = = = = = = = = = = = = =
	Queston: How is the "+" in xist presented?
_	$y = \frac{1}{\pi}$ . $\lim_{x \to 0^+} e^{-\frac{1}{x}} = \lim_{y \to \infty} e^{-\frac{1}{y}}$ $\lim_{x \to 0^+} e^{-\frac{1}{x}} = \lim_{y \to \infty} \frac{e^{-\frac{1}{y}}}{\frac{1}{y}} = \frac{y}{e^{\frac{1}{y}}}$ Turn over
	y >0 = 0. x=y
	Bit = lim = ed = = = = = = = = = = = = = = = = =
	Turn over
	为少达的: 1000000000000000000000000000000000000
1	
١	

19. Consider the structure $(\mathbb{R} \setminus \{-1\}, \circ)$ where the operation $\circ$ is defined by $a \circ b = a + ab + b$ .
(a) Prove that the structure is an Abelian group
(b) Solve the equation $2 \circ (x \circ (-3)) = 5$ where $x \in \mathbb{R} \setminus \{-1\}$ .
(a) when a = 0 or b = 0,
$a \circ b = o + o \cdot b + b = b.$
Osa o is the identity.
a = b = a + a b + 5 + 1 - 1 = (a+1)(b+1)-1
if a o b = -1, then (a+1)(b+1)=0,
either a = -1 or b = -1 and that's not possible.
3 so it's closed within RI [-1].
a o b = a + a b + b , b o a = b + b a + b = a + a b + b .
D so it's abelian.
(aob)oc = (atabtb)c = atabtb+c+actabc+bc
= at btctabtactbc tabc
aolboc) = aolbtbctc) = atbtbctct abt abetac
Oso it's associative
For a 0 b = 0, (a+1) (b+1) = 1, then $a = \frac{-b}{b+1}$
For every b, its inverse b = bti.
O has inverse.
Therefore, from O-D, we know that it's an Abelian group
(b) $2 \circ (x-3-3x) = 2+x-x-3-3x+2x-6-6x=5$
X = ~ 7



20.	(a)	State	Menelaus'	2	theorem
Section 1	13.6	PA 101 1 10	TABLE THE THE PERS	40	THE REAL PROPERTY.

- (b) Use Menelaus's theorem to prove Ceva's theorem.
- (c) In the diagram, the numbers 3, 4 and 6 are the areas of their respective triangles. What is the area of the unmarked quadrilateral?



有方向性的依积为一1

(a) Menelan's theorem: As CD EF =1.

we consider signed lengths.



(b) 
$$\frac{AB}{BC}$$
  $\frac{CE}{EO}$   $\frac{DO}{OA} = 1$   $\frac{O}{O}$   $\frac{AB}{BC}$   $\frac{CO}{DE}$   $\frac{EF}{FA} = 1$ 



CD ... OA - 1 (2)

Le) 
$$\frac{80}{90} = \frac{1}{2}$$
,  $\frac{C0}{9E} = \frac{3}{2}$ .

$$\frac{S_{\Delta} \Theta c}{S_{\Delta} \Theta c} = \frac{3tA}{5} = \frac{3}{2}$$

$$\frac{S_{\Delta} \Theta o B}{S_{\Delta} \Theta o B} = \frac{\alpha}{2} = \frac{1}{2}$$

$$=$$
  $\begin{cases} a = \frac{9}{2} \\ b = 5 \end{cases}$ 

