Zadanie: ROZ Różnorodność

XXV OI, etap I. Plik źródłowy roz.* Dostępna pamięć: 512 MB.

16.10-13.11.2017

Dana jest dwuwymiarowa tablica liczb całkowitych A złożona z m wierszy i n kolumn. Podtablice tablicy A o wymiarach $k \times k$ nazwiemy jej k-fragmentami.

R'oznorodnością~k-fragmentu nazwiemy liczbę jego różnych elementów. Twoim zadaniem jest policzenie maksymalnej różnorodności k-fragmentu, spośród wszystkich k-fragmentów tablicy A, oraz sumy różnorodności wszystkich k-fragmentów tablicy A.

Wejście

Pierwszy wiersz standardowego wejścia zawiera trzy dodatnie liczby całkowite $m, n, k \ (k \le \min(m, n))$ oznaczające wymiary tablicy oraz podtablic.

Kolejne m wierszy zawiera po n liczb całkowitych będących kolejnymi liczbami z tablicy A. Liczby należą do przedziału [1, C]. Liczby w każdym wierszu są rozdzielone pojedynczymi odstępami.

Wyjście

Na standardowe wyjście należy wypisać dwie liczby całkowite oddzielone pojedynczym odstępem: maksymalną różnorodność k-fragmentu oraz sumę różnorodności wszystkich k-fragmentów.

Przykład

Dla danych wejściowych:

poprawnym wynikiem jest:

3 5 2

1 5 3 3 3

4 1 3 3 4

4 2 4 4 3

Wyjaśnienie do przykładu: Kolejne 2-fragmenty (od lewej do prawej) zaczynające się w górnym wierszu mają różnorodności 3, 3, 1 i 2, a kolejne 2-fragmenty zaczynające się poniżej mają różnorodności 3, 4, 2 i 2.

4 20

Testy "ocen":

locen: m = 3, n = 3, k = 2, niewielki test poprawnościowy;

 ${\tt 20cen:}\ m=20,\, n=100,\, k=10,$ każda liczba w tablicy jest sumą numeru wiersza i numeru kolumny;

3ocen: m = 1000, n = k = 1, wszystkie liczby w tablicy są takie same;

4ocen: m=n=k=200, wszystkie liczby w tablicy są różne;

5ocen: m=n=3000, k=1000, każda liczba w tablicy jest sumą numeru wiersza i numeru kolumny.

Ocenianie

Zestaw testów dzieli się na podzadania spełniające poniższe warunki. Testy do każdego podzadania składają się z jednej lub większej liczby osobnych grup testów.

Jeśli Twój program wypisze dwie liczby, z których tylko jedna będzie poprawna, uzyskasz połowę punktów za dany test. W takim wypadku druga liczba powinna mieścić się w jednym ze standardowych typów całkowitych.

Podzadanie	Ograniczenia na m, n, k	Ograniczenie na C	Liczba punktów
1	$m, n, k \le 100$	$C \le 10^5$	10
2	$m, n, k \le 600$	$C \le 100$	10
3	$m, n, k \le 600$	$C \le 10^5$	20
4	$n, k \le 3000, m \le 2k$	$C \le 10^5$	45
5	$m, n, k \le 3000$	$C \le 10^5$	15