Lehrstuhl für STEUERUNGS-UND REGELUNGSTECHNIK

Technische Universität München Prof. Dr.-Ing./Univ. Tokio Martin Buss

OPTIMIERUNGSVERFAHREN IN DER AUTOMATISIERUNGSTECHNIK

Übung 4: Numerische nichtlineare Optimierung

1. Aufgabe

Gegeben ist eine Kostenfunktion $f(\underline{x})$ und deren Gradient $\nabla f(\underline{x})$.

- 1.1 Zeigen Sie: Die Gradienten stehen senkrecht auf den Isokosten $\mathcal{N}_k = \{\underline{x} | f(\underline{x}) = k\}.$
- 1.2 Zeigen Sie: Wenn für eine Suchrichtung \underline{d} mit

$$\underline{x}^{neu} = \underline{x}^{alt} + \sigma \underline{d}$$

für kleine σ gilt: $(\nabla f)^T \underline{d} < 0$, so folgt daraus

$$f(\underline{x}^{neu}) < f(\underline{x}^{alt}).$$

2. Aufgabe

2.1 Zeigen Sie: Bei exakter Liniensuche (d.h. $\sigma = \arg\min f(\underline{x} - \sigma \nabla f)$) gilt:

$$\nabla f(\underline{x}^{(k)}) \perp \nabla f(\underline{x}^{(k+1)}).$$

2.2 Berechnen Sie für

$$f(x_1, x_2) = 2x_1^2 + x_2^2 - 4x_1 - 2x_2 + 3$$

die konjugierten Gradienten $\underline{d}^{(0)}$ und $\underline{d}^{(1)}$ für $\underline{x}^{(0)}=(5,-5)^T$ mit dem Verfahren von Polak und Ribiere. Zeigen Sie zeichnerisch, dass das Verfahren in zwei Schritten konvergiert.

