Bootstrap (continued)

(MATH10093: L08)

- ► R live coding and debugging
- Parametric bootstrap
- Residual resampling, basic exchangeability
- ► Randomisation/permutation tests

Parametric bootstrap

- ▶ If the data size is small, basic Boostrap that resamples with replacement from the raw data has very little information.
- ▶ An alternative is to sample entirely new data from the model that was estimated on the whole data set.

Parametric Bootstrap sampling

Let $Y = \{(y_i, x_i), i = 1, \dots, N\}$ be a data collection with response values y_i and predictors/covariates x_i , such that the conditional data density function is $p(y_i|x_i, \theta)$. Let $\widehat{\theta}$ be the maximum likelihood estimate of θ .

- ▶ Define the Bootstrap sample $Y^{(j)}$ by drawing N pairs $(y_i^{(j)}, x_i)$, where for each $x_i, y_i^{(j)}$ is drawn from $p(y_i|x_i, \widehat{\theta})$.
- ▶ Repeat this procedure for j = 1, ..., J, with $J \gg 1$.

Depending on the problem, the x_i values can either be kept fixed to their values in the original data set, resampled with replacement, or simulated from some generative model.

Residual resampling

- We can relax model assumptions, e.g. if we don't trust a Gaussian assumption for regression residuals.
- Instead of resampling the raw data, we resample the model *residuals*.

Residual resampling in regression models

Let $Y = \{(y_i, x_i), i = 1, \dots, N\}$ be a data collection with response values y_i and predictors/covariates x_i , such that $\mu_i = \mathsf{E}(y_i|x_i,\theta)$ is the conditional expectation in a regression model. Let $\widehat{\theta}$ be the maximum likelihood estimate of θ , and $\widehat{\mu}_i = \mathsf{E}(y_i|x_i,\widehat{\theta})$.

- ▶ Define the residuals $r_i = y_i \widehat{\mu}_i$, and construct a residual Bootstrap sample $Y^{(j)}$ by drawing N pairs $(y_i^{(j)}, x_i)$, where for each x_i , $y_i^{(j)} = \widehat{\mu}_i + r_i^{(j)}$, where $r_i^{(j)}$ is drawn with replacement from the empirical distribution of $\{r_1, r_2, \ldots, r_N\}$.
- ightharpoonup Repeat this procedure for $j=1,\ldots,J$, with $J\gg 1$.

For x_i , the same options as for fully parametric Bootstrap are available.

► This is a simple example of an *exchangeability* assumption; we no longer assume Gaussianity, but we do assume that all the residuals come from somecommon, but unknown, distribution; the individual residuals are (probabilistically) indistinguishable.

Randomisation/permutation tests

When assessing differences between two statistical populations, the hypotheses often take the form of some kind of *exchangeability structure*.

Exchangeability test example

Let $Y_A=\{y_1^A,\ldots,y_{N_A}^A\}$ and $Y_B=\{y_1^B,\ldots,y_{N_B}^B\}$, and we want to test the hypotheses

 H_0 : The A and B come from the same distribution

 H_1 : The A and B do not come from the same distribution

- ▶ Given a test statistic $T(Y_A, Y_B)$, such as $\overline{y_{\cdot}^A} \overline{y_{\cdot}^B}$, we need the distribution of T under H_0 .
- ▶ Under H_0 , the joint sample $Y_{A\cup B}=\{y_1^A,\ldots,y_{N_A}^A,y_1^B,\ldots,y_{N_B}^B\}$ is a collection of exchangeable variables.
- ▶ Each random permutation of $Y_{A\cup B}$ has the same distribution as $Y_{A\cup B}$, under H_0 (but not under H_1).

Randomisation/permutation tests

Assume that large test statistics T indicate deviations from H_0 .

Permutation tests

- For $j=1,\ldots,J$, draw $Y_{A\cup B}^{(j)}$ as a random permutation of $Y_{A\cup B}$, and split the result into subsets $Y_A^{(j)}$ and $Y_B^{(j)}$ of size N_A and N_B , respectively.
- ▶ Compute the test statistics $T^{(j)} = T(Y_A^{(j)}, Y_B^{(j)})$.
- ▶ The average $\frac{1}{J}\sum_{j=1}^{J}\mathbb{I}\{T^{(j)}\geq T(Y_A,Y_B)\}$ is an unbiased estimator of the p-value w.r.t. T for the hypothesis H_0 : the elements of Y_A and Y_B are mutually exchangeable.
- ▶ If $N_A + N_B$ is small, the limit $J \to \infty$ can be obtained by using all possible permutations instead of independent random permutations.
- In other exchangeability situations, similar tests can be designed.

Statistical Computing summary

- R data structures, indexing
- ► Structured programming
- Numerical maximum likelihood estimation
- Proper scoring functions for assessing predictions
- Floating point computation error analysis
- Cross validation
- Bootstrap
- Permutation tests