EDS Assignment-5

Name-Namrata P Dolas Roll-632 PRN-202201060062 Batch-F2

```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
from pandas import Series, DataFrame

# Reading the tips.csv file
df1=pd.read_csv('/content/drive/MyDrive/Colab Notebooks/tips.csv')
```

df1.head(

	total_bill	tip	sex	smoker	day	time	size
0	16.99	1.01	Female	No	Sun	Dinner	2
1	10.34	1.66	Male	No	Sun	Dinner	3
2	21.01	3.50	Male	No	Sun	Dinner	3
3	23.68	3.31	Male	No	Sun	Dinner	2
4	24.59	3.61	Female	No	Sun	Dinner	4

from google.colab import drive
drive.mount('/content/drive')

Mounted at /content/drive

df1.tail()

	total_bill	tip	sex	smoker	day	time	size
239	29.03	5.92	Male	No	Sat	Dinner	3
240	27.18	2.00	Female	Yes	Sat	Dinner	2
241	22.67	2.00	Male	Yes	Sat	Dinner	2
242	17.82	1.75	Male	No	Sat	Dinner	2
243	18.78	3.00	Female	No	Thur	Dinner	2

df1.columns

```
Index(['total_bill', 'tip', 'sex', 'smoker', 'day', 'time', 'size'], dtype='object')
```

df1.info()

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 244 entries, 0 to 243
Data columns (total 7 columns):
# Column Non-Null Count Dtype
```

6/28/23, 2:50 PM

0	total_bill	244	non-null	float64
1	tip	244	non-null	float64
2	sex	244	non-null	object
3	smoker	244	non-null	object
4	day	244	non-null	object
5	time	244	non-null	object
6	size	244	non-null	int64
dtyp	es: float64(2	2), :	int64(1),	object(4)
memo	ry usage: 13	.5+ I	<Β	

df1.describe()

	total_bill	tip	size
count	244.000000	244.000000	244.000000
mean	19.785943	2.998279	2.569672
std	8.902412	1.383638	0.951100
min	3.070000	1.000000	1.000000
25%	13.347500	2.000000	2.000000

a=pd.DataFrame(df1['day'].value_counts())
a.reset_index(inplace=True)
plt.bar(a['index'],a['day'])

plt.scatter(df1['total_bill'],df1['tip'])
plt.show()

plt.scatter(x='total_bill',y='tip',data=df1)
fig=plt.figure(figsize=(5,4))
ax=fig.add_axes([1,1,1,1])
ax.legend(labels=('sun','mon','tue'))
plt.show()

import matplotlib.pyplot as plt
import pandas as pd

Histogram A histogram is basically used to represent data provided in a form of some groups. It is a type of bar plot where the X-axis represents the bin ranges while the Y-axis gives information about frequency. The hist() function is used to compute and create histogram of x.

```
import matplotlib.pyplot as plt
import pandas as pd
```

6/28/23, 2:50 PM

```
# initializing the data
x = data['total_bill']

# plotting the data
plt.hist(x)

# Adding title to the plot
plt.title("Tips Dataset")

# Adding label on the y-axis
plt.ylabel('Frequency')

# Adding label on the x-axis
plt.xlabel('Total Bill')

plt.show()
```


Customization that is available for the Histogram -

bins: Number of equal-width bins color: For changing the face color edgecolor: Color of the edges linestyle: For the edgelines alpha: blending value, between 0 (transparent) and 1 (opaque)

import matplotlib.pyplot as plt
import pandas as pd

```
# Adding label on the x-axis
plt.xlabel('Total Bill')
plt.show()
```


Scatter Plot Scatter plots are used to observe relationships between variables. The scatter() method in the matplotlib library is used to draw a scatter plot.

```
import matplotlib.pyplot as plt
import pandas as pd

# initializing the data
x = data['day']
y = data['total_bill']

# plotting the data
plt.scatter(x, y)

# Adding title to the plot
plt.title("Tips Dataset")

# Adding label on the y-axis
plt.ylabel('Total Bill')

# Adding label on the x-axis
plt.xlabel('Day')
plt.show()
```


Pie Chart Pie chart is a circular chart used to display only one series of data. The area of slices of the pie represents the percentage of the parts of the data. The slices of pie are called wedges. It can be created using the pie() method.

Customizations that are available for the Pie chart are -

explode: Moving the wedges of the plot autopct: Label the wedge with their numerical value. color: Attribute is used to provide color to the wedges, shadow: Used to create shadow of wedge.

✓ 0s completed at 2:48 PM