Presentación

Nombre: Edward Sosa

Fecha: 26/08/2025

Universidad: Santo Tomás

¿Qué es la Computadora Cuántica?

Una **computadora cuántica** usa principios de la mecánica cuántica para procesar información. En lugar de bits tradicionales (0 o 1), utiliza **qubits**, que pueden estar en 0, 1 o en ambos a la vez (**superposición**).

Esto le permite resolver ciertos problemas de forma mucho más rápida que una computadora clásica.

Arquitectura de un Computador Cuántico

La arquitectura de un computador cuántico incluye:

- Qubits como unidades de información.
- Puertas cuánticas para manipular estados.
- Sistema de control clásico para dirigir las operaciones.
- Mecanismos de refrigeración y aislamiento para mantener la coherencia cuántica.

Historia y Aspectos Clave

La computación cuántica surge en los años 80, a partir de ideas de físicos como Richard Feynman y David Deutsch. Hoy en día, empresas como IBM, Google y D-Wave desarrollan prototipos funcionales.

Ventajas:

- Procesamiento masivo en paralelo.
- Resolución rápida de problemas complejos.
- Potencial en criptografía y simulaciones.

Desventajas:

- Gran dificultad técnica.
- Sensibilidad al ruido y errores.
- ► Alto costo de construcción y mantenimiento.

Superposición

Permite que un qubit esté en **0** y **1** al mismo tiempo. Esto multiplica la capacidad de cálculo en comparación con un bit clásico.

Entrelazamiento

Dos qubits pueden estar conectados de tal forma que el estado de uno influye en el otro, incluso si están separados físicamente. Es una propiedad esencial para la computación y comunicación cuántica.

Interferencia Cuántica

La interferencia permite reforzar resultados correctos y cancelar los incorrectos en un algoritmo cuántico. Es clave para acelerar la búsqueda y optimización de soluciones.

Medición Probabilística

Cuando se mide un qubit, colapsa a 0 o 1 con cierta probabilidad. Esto introduce incertidumbre en los resultados y la necesidad de múltiples repeticiones.

Desafío de la Decoherencia

La decoherencia es la pérdida de propiedades cuánticas debido al ruido externo. Superarla es uno de los mayores retos en el desarrollo de computadoras cuánticas.

Tipos de Comunicación Cuántica

Incluye métodos como: - Teleportación cuántica. - Redes cuánticas seguras. - Criptografía cuántica.

Compuertas Cuánticas

Son los equivalentes cuánticos a las compuertas lógicas clásicas. Permiten manipular qubits mediante operaciones unitarias como Hadamard, Pauli-X, CNOT, entre otras.

¿Qué es un Computador Neuromórfico?

Un **computador neuromórfico** es un sistema diseñado para imitar la estructura y funcionamiento del cerebro humano. Se basa en **redes neuronales artificiales**, pero implementadas directamente en el hardware para lograr eficiencia en consumo de energía y velocidad en tareas cognitivas.

Su objetivo es procesar información de forma paralela y adaptativa, parecido a cómo lo hace el cerebro.

Arquitectura

La arquitectura neuromórfica incluye: - Neuronas y sinapsis artificiales. - Procesamiento en paralelo distribuido. - Uso de picos eléctricos (spikes) como en el cerebro.

Ventajas:

- Alta eficiencia energética.
- Buen desempeño en tareas de reconocimiento y aprendizaje.
- Escalabilidad.

Desventajas:

- Complejidad de diseño.
- Limitada compatibilidad con software tradicional.
- Aún en fase de investigación.

Hardware en Computación Neuromórfica

El hardware incluye:

- Chips neuromórficos (Loihi de Intel, TrueNorth de IBM).
- Memristores para emular sinapsis.
- Redes de transistores especializados.
- Unidades optimizadas para procesamiento en paralelo.

Tipos de Computación Neuromórfica

Existen diferentes enfoques:

- **Basada en hardware**: implementada en chips especializados.
- **Basada en software**: simulación de redes neuronales en computadores tradicionales.
- **Híbrida**: combinación de hardware especializado con soporte de software clásico.

¿Qué es un Computador Biológico?

Un **computador biológico** es un sistema que utiliza componentes biológicos (como ADN, proteínas o células) para realizar procesos de cómputo. Aprovecha las propiedades naturales de la biología para procesar, almacenar y transmitir información.

Su meta es ejecutar cálculos mediante reacciones químicas o procesos moleculares, en lugar de circuitos electrónicos.

Arquitectura de los Ordenadores Biológicos

La arquitectura de un computador biológico se basa en: - Moléculas de ADN o ARN como medio de almacenamiento y procesamiento. - Reacciones químicas controladas como operaciones lógicas. - Células vivas que actúan como entornos de cómputo.

Tipos de computadores biológicos:

- Computadores basados en ADN.
- Computadores celulares.
- Computadores híbridos bioelectrónicos.

Principales Hitos de la Computación Biológica

Algunos avances clave han sido: - 1994: Leonard Adleman utiliza ADN para resolver un problema matemático (primer computador de ADN). - 2002: Creación de circuitos lógicos usando ADN y proteínas. - 2013: Programación de células vivas para almacenar información genética. - Avances actuales: uso en medicina personalizada, biotecnología y detección de enfermedades.

¿Qué es la Computación Heterogénea?

La **computación heterogénea** es un paradigma que combina distintos tipos de procesadores (CPU, GPU, FPGA, aceleradores especializados) en un mismo sistema para aprovechar sus fortalezas y mejorar el rendimiento.

El objetivo es asignar cada tarea al hardware más adecuado, logrando eficiencia en velocidad y consumo energético.

Historia de la Computación Heterogénea

- Década de 2000: inicio de uso masivo de GPUs para cálculos científicos y gráficos.
- Avances en HPC (High Performance Computing) con clusters heterogéneos.
- Desarrollo de FPGAs y ASICs como aceleradores.
- Actualidad: integración en IA, Big Data, computación en la nube y edge computing.

Ventajas de la Computación Heterogénea

- Mayor rendimiento en aplicaciones específicas.
- Mejor aprovechamiento energético.
- ► Flexibilidad para combinar distintos tipos de hardware.
- Escalabilidad en sistemas de alto rendimiento.

Desventajas de la Computación Heterogénea

- Complejidad en la programación y optimización.
- Mayor costo de desarrollo.
- Dificultad de compatibilidad entre arquitecturas.
- Requiere especialistas para su implementación eficiente.

Computación de Borde

La **computación de borde** se refiere a procesar datos cerca del lugar donde se generan, en lugar de enviarlos a la nube o un servidor central. Esto mejora la latencia, eficiencia de ancho de banda y seguridad en aplicaciones críticas.

Historia

Se empezó a popularizar a partir de la década de 2010, gracias a la proliferación de dispositivos loT y la necesidad de procesamiento local.

Ventajas

- Reducción de latencia en procesamiento.
- Menor consumo de ancho de banda.
- Mayor privacidad y seguridad de los datos.

<u>De</u>sventajas

- Capacidad limitada de procesamiento en dispositivos locales.
- Mantenimiento y actualización de múltiples nodos.
- Mayor complejidad en la arquitectura de red.

Bibliografía Completa

- Nielsen, M. A., Chuang, I. L. (2010). Quantum Computation and Quantum Information. Cambridge University Press.
- 2. Feynman, R. (1982). Simulating physics with computers. *International Journal of Theoretical Physics*, 21(6-7), 467–488.
- 3. IBM Research. (2025). Quantum Computing Overview. IBM. https://www.ibm.com/quantum-computing/
- 4. Merolla, P. A., et al. (2014). A million spiking-neuron integrated circuit with a scalable communication network and interface. *Science*, 345(6197), 668–673.
- 5. Intel. (2025). Loihi Neuromorphic Chip. Intel Labs. https://www.intel.com/content/www/us/en/research/neuromorphic-computing.html

Bibliografía Completa

- 1. IBM Research. (2025). TrueNorth Neuromorphic System. IBM. https://www.research.ibm.com/articles/neuromorphic-computing.shtml
- 2. Adleman, L. M. (1994). Molecular computation of solutions to combinatorial problems. *Science*, 266(5187), 1021–1024.
- 3. Benenson, Y. (2012). Biomolecular computing systems: Principles, progress and potential. *Nature Reviews Genetics*, 13(7), 455–468.
- 4. Kirk, D. B., Hwu, W.-m. W. (2017). *Programming Massively Parallel Processors: A Hands-on Approach*. Morgan Kaufmann.

Bibliografía Completa

1. Asanovic, K., et al. (2006). The landscape of parallel computing research: A view from Berkeley. Technical Report UCB/EECS-2006-183, University of California, Berkeley.

Bibliografía Completa

- 1. Shi, W., Cao, J., Zhang, Q., Li, Y., Xu, L. (2016). Edge computing: Vision and challenges. *IEEE Internet of Things Journal*, 3(5), 637–646.
- 2. Satyanarayanan, M. (2017). The emergence of edge computing. *Computer*, 50(1), 30–39.