

Public Key Cryptography: Elliptic Curve Cryptography (ECC) - Part 2

Dr. Ashok Kumar Das

IEEE Senior Member

Associate Professor

Center for Security, Theory and Algorithmic Research International Institute of Information Technology, Hyderabad

E-mail: ashok.das@iiit.ac.in

URL: http://www.iiit.ac.in/people/faculty/ashokkdas
 https://sites.google.com/view/iitkgpakdas/

Elliptic Curve Cryptography Key Exchange Protocol (ECC Key Exchange)

Elliptic Curve Cryptography (ECC)

Elliptic Curve Cryptography Key Exchange Protocol (ECC Key Exchange)

• Pick a large integer q, where q = p; p being a prime, or $q = 2^m$, for some positive integer m, and the elliptic curve parameters a ansd b for the elliptic curves:

$$y^2 = x^3 + ax + b \pmod{p}$$
 in $GF(p)$;
 $y^2 + xy = x^3 + ax^2 + b \pmod{p}$ in $GF(2^m)$.

- Pick a base point G = (x, y) in $E_q(a, b)$ whose order is a very large value n, that is, $nG = \mathcal{O}$.
- $E_q(a,b)$ and G are parameters of the cryptosystem known to all participants.

Elliptic Curve Cryptography (ECC)

Elliptic Curve Cryptography Key Exchange Protocol (ECC Key Exchange)

A key exchange between two users A and B can be accomplished as follows:

- A selects an integer n_A , where $n_A < n$. A's private key is n_A . A generates a public key $P_A = n_A G$; the public key is a point in $E_q(a,b)$.
- B similarly selects a private key n_B , where $n_B < n$. B's private key is n_B .
 - B generates a public key $P_B = n_B G$.
- A generates the secret key $K_{A,B} = n_A P_B$.
- *B* generates the secret key $K_{B,A} = n_B P_A$.

ECC Key Exchange Protocol (continued...)

Summary

User A	User B
1. Select private n_A	
2. Calculate public P_A	
3. $P_A = n_A G$	
,	1. Select private n_B
	2. Calculate public P_B
	3. $P_B = n_B G$
$4. K_{A,B} = n_A P_B$	4. $K_{B,A} = n_B P_A$

ECC Key Exchange Protocol (Continued...)

Correctness Proof

$$K_{A,B} = n_A \times P_B [\text{User A}]$$

 $= n_A \times (n_B \times G)$
 $= (n_A \times n_B) \times G$
 $= (n_B \times n_A) \times G$
 $= n_B \times (n_A \times G)$
 $= n_B \times P_A$
 $= K_{B,A} [\text{User B}]$

ECC Key Exchange Protocol (Continued...)

Problem [ECC Key Exchange]

Users A and B use the ECC key exchange technique with a common prime q=211 and an elliptic curve $E_q(a,b)$, where a=0 and b=-4. Let G=(2,2) a base point on $E_q(a,b)$.

- (a) If user A has private key $n_A = 121$, what is the A's public key P_A ?
- Solution: $P_A = n_A$. G = 121.(2,2) = (115,48).
- (b) If user *B* has private key $n_B = 203$, what is the *B*'s public key P_B ?
- Solution: $P_B = n_B$. G = 203.(2, 2) = (130, 203).
- (c) What is the secret shared key?
- Solution: $K_{A,B} = n_A P_B = 121.(185, 178) = (161, 69)$, by user A.
- $K_{B,A} = n_B.P_A = 203.(67, 106) = (161, 69)$, by user B.

ECC Key Exchange Protocol (Continued...)

Man-in-the-middle attack on ECC key exchange protocol???

ECC Key Exchange Protocol (continued...)

Man-in-the-middle attack on ECC key exchange protocol

User A	Adversary $\mathcal C$	User B
1. Select private n_A	,	
2. Calculate public P_A	Intercept & block PA	
3. $P_A = n_A G$	1. Select private n_C	
	2. Calculate public P_C	
	$3. P_C = n_C G$	
	3. $P_C = n_C G$ $P_C = n_C G$	
		1. Select private n _B
		2. Calculate public P_B
	Intercept & block P _B	3. $P_B = n_B G$
	4. $K_1 = n_C P_A$	`
$4. K_1 = n_A P_C$	$K_2 = n_C P_B$	$4. K_2 = n_B P_C$

ECC Encryption

- The first task in this system is to encode the plaintext message m to be sent as an x-y point P_m in $E_q(a,b)$. (For example, Koblitz method (Available at http://zoo.cs.yale.edu/classes/cs467/2012s/lectures/ln13.pdf)).
- It is the point P_m that will be encrypted as a ciphertext and subsequently decrypted.
- As with the ECC key exchange system, an encryption/decryption system requires a base point G and an elliptic curve $E_q(a, b)$.
- Let user A's private-public key pair $(KR_a, KU_a) = (n_A, P_A)$ and user B's private-public key pair $(KR_b, KU_b) = (n_B, P_B)$

ECC Encryption

- To encrypt and send a plaintext message (encoded) P_m to user B, user A proceeds as follows:
 - A chooses a random positive integer k.
 - \triangleright A produces the ciphertext C_m consisting of the pair of points

$$C_m = E_{PU_b}(P_m)$$

= $E_{P_B}(P_m)$
= $\{C_1, C_2\}$
= $\{kG, P_m + kP_B\},$

where $P_B = n_B G$.

ECC Decryption

- To decrypt the ciphertext C_m, user B proceeds as follows:
 - ▶ *B* uses its own private key $KR_b = n_B$.
 - ▶ The plaintext P_m is recovered as

$$P_{m} = D_{PR_{b}}(C_{m})$$

 $= D_{n_{B}}(C_{m})$
 $= C_{2} - n_{B}C_{1}$
 $= P_{m} + kP_{B} - n_{B}(kG)$
 $= P_{m} + k(n_{B}G) - n_{B}(kG)$
 $= P_{m}$

ECC Encryption/Decryption (Continued...)

Problem [ECC Encryption/Decryption]

Suppose two users A and B rely on the ECC key cryptosystem. An elliptic curve cryptosystem operates on the curve $y^2 = x^3 + ax + b \pmod{q}$ with the parameters $E_{11}(1,6)$, and the base point G = (2,7). Assume that B's private key is $n_B = 7$.

- (a) Find B's public key P_B .
- (b) Determine the ciphertext C_m , if the user A sends the message $P_m = (10, 9)$ with the random value k = 3.

ECC Encryption/Decryption (Continued...)

Solution:

- (a) $P_B = n_B G = 7.(2,7) = (7,2).$
- (b) $C_m = (C_1, C_2)$, where

$$C_1 = kG$$

= 3.(2,7)
= (8,3),

and

$$C_2 = P_m + kP_B$$

= $(10,9) + 3.(7,2)$
= $(10,9) + (3,5)$
= $(10,2)$.

ECC Encryption/Decryption (Continued...)

Online Demo on ECC Encryption/Decryption

- Generating private/public keys pair for User A (Alice) and User B (Bob)
- Encrypting a message
- Decryping a message

https://8gwifi.org/ecfunctions.jsp

Elliptic Curve Digital Signature Algorithm (ECDSA)

Digital Signatures

Signature Schemes

- A *signature scheme* is a five-tuple $(\mathcal{P}, \mathcal{A}, \mathcal{K}, \mathcal{S}, \mathcal{V})$, where the following conditions are satisfied:
- ullet 1. ${\cal P}$ is a finite set of possible messages;
- 2. A is a finite set of possible signatures;
- 3. K, the key space, is a finite set of possible keys;
- 4. For each $k \in \mathcal{K}$, there is a signing algorithm $sig_k \in \mathcal{S}$ and a corresponding verification algorithm $ver_k \in \mathcal{V}$. Each $sig_k : \mathcal{P} \to \mathcal{A}$ and $ver_k : \mathcal{P} \times \mathcal{A} \to \{true, false\}$ are functions such that the following equation is satisfied for every message $x \in \mathcal{P}$ and for every signature $y \in \mathcal{A}$:

```
ver_k(x, y) = true, if y = sig_k(x), ver_k(x, y) = false, if y \neq sig_k(x).
```

• The pair (x, y) with $x \in \mathcal{P}$ and $y \in \mathcal{A}$ is called a *signed message*.