

This Page Is Inserted by IFW Operations
and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents *will not* correct images,
please do not report the images to the
Image Problem Mailbox.

(19) 日本国特許庁 (JP)

(12) 公開特許公報 (A)

(11) 特許出願公開番号

特開2003-146989

(P2003-146989A)

(43) 公開日 平成15年5月21日 (2003.5.21)

(51) Int.Cl.	識別記号	F I	テマコード(参考)
C 07 D 487/22		C 07 D 487/22	4 C 0 5 0
A 61 K 31/409		A 61 K 31/409	4 C 0 8 6
A 61 P 9/10	101	A 61 P 9/10	1 0 1
17/06		17/06	
17/12		17/12	

審査請求 有 請求項の数 8 OL (全 11 頁) 最終頁に続く

(21) 出願番号 特願2002-335247(P2002-335247)

(62) 分割の表示 特願平5-512531の分割

(22) 出願日 平成5年1月7日(1993.1.7)

(31) 優先権主張番号 822, 409

(32) 優先日 平成4年1月17日(1992.1.17)

(33) 優先権主張国 米国(US)

(71) 出願人 593108772

ヘルス リサーチ インコーポレイテッド
Health Research, Inc.

アメリカ合衆国、ニューヨーク州 14263、
バッファロー、エルム アンド カールトン
ストリーツ(番地なし)、ロズウェル
パーク キャンサー インスティテュート
ディヴィジョン内

(74) 代理人 100062144

弁理士 青山 葵 (外2名)

最終頁に続く

(54) 【発明の名称】 ピロフェオホルビド類および光力学療法におけるそれらの使用

(57) 【要約】

【課題】 光力学療法に現在用いられている薬物と比較して、改良された結果が得られる薬物を提供すること。

【解決手段】 ピロフェオホルビド化合物、それらの化合物を含有する薬剤組成物、およびそれらの化合物を光力学療法に用いて行われる治療法を提供する。ピロフェオホルビド化合物を宿主に注射すると、周囲の正常組織より高度に腫瘍組織に蓄積する。これらのピロフェオホルビド化合物を特定の波長の光で照射すると、これらの化合物は細胞毒性となり、正常組織の不可逆的な損傷を生じることなく腫瘍または癌組織を破壊する。ピロフェオホルビド化合物は光力学療法に現在用いられている薬物と比較して、改良された結果を示した。また、それらはさらに深い赤色の光をも吸収し、光力学療法に用いられる他の薬物と比較して組織透過が最適であり、かつ皮膚に保有される期間が短い。

【特許請求の範囲】

【請求項1】 式Iの化合物

(式中のR₁はCH₂OR₂であり、ここでR₂は1-20個の炭素を含む第一または第二アルキルであり；R₃は-CH₂CH₂CO₂R₄であり、ここでR₄はH、または1-20個の炭素を含むアルキルである)。

【請求項2】 R₁がCH₂-O-ヘキシルであり；R₃が-CH₂CH₂CO₂CH₃である、請求の範囲第1項に記載の化合物。

【請求項3】 標的であるウイルス、細胞または組織のインビトロでの破壊を行う方法であつて：該標的を有効量の請求の範囲第1項に記載の化合物と接触させ；そして該化合物により吸収される光で照射することよりなる方法。

【請求項4】 有効量の請求の範囲第1項に記載の化合物を薬剤学的に許容しうる賦形剤と混和したものからなる、標的であるウイルス、細胞または組織の処置のための薬剤組成物。

【請求項5】 本質的に、免疫グロブリンおよびレセプターリガンドよりなる群から選ばれる標的特異性成分に共有結合した請求の範囲第1項に記載の化合物からなる結合体。

【請求項6】 標識と結合した請求の範囲第1項に記載の化合物からなる、悪性組織の標識のための薬剤組成物。

【請求項7】 異常に高い速度で複製する異常な細胞の処置に使用するときの、請求の範囲第1項に記載の化合物。

【請求項8】 異常に高い速度で複製する異常な細胞の処置のための薬剤の調製のための請求の範囲第1項に記載の化合物の使用。

【発明の詳細な説明】

【0001】

【発明の属する技術分野】相互参照出願

本出願は本出願人が先に出願した米国特許出願第07/597,786号(1990年10月15日出願)の部分継続出願であり、この出願は米国特許出願第07/221,804号(1988年7月20日出願、現在は米国特許第5,002,962号、1991年3月26日交付)の部分継続出願であり、これら両者を本明細書に参

考として引用し、それに対して35 USC § 120の下での優先権を主張する。

【0002】発明の分野

本発明は、一般に感光性の療法用化合物および光力学療法(PDT)に関するものである。より詳細には、本発明はピロフェオホルビド(pyropheophorbide)類、それらを含有する配合物、およびそれらを癌の治療に用いることに関するものである。

【0003】

【従来の技術】発明の背景

米国特許第5,002,962号明細書に記載されるように、ポルフィリン関連化合物は正常組織と比較して腫瘍組織の方に高い濃度で蓄積し、これらの化合物を適切な波長の光で照射すると活性化された形態となり、これは減衰する際に細胞毒性を生じる。ポルフィリンまたは関連化合物を励起させると、実際に毒性物質である一重項酸素が形成されると考えられる。しかし投与された化合物は見掛け上はこの過程で分解しない。

【0004】“ヘマトポルフィリン誘導体”(HPD)の使用に関する文献に、ヘマトポルフィリンジクロリドをリップソン(Lipson, R.L.)ら、J.National Cancer Inst (1961) 26:1-8の方法で処理した際に得られた調製物を用いるこの方法が記載されている。より最近になって、このヘマトポルフィリン誘導体を適切なpHで処理すると凝集が起こり、混合物中の有効物質をサイズ分離した凝集物として粗製形態で調製しうることが示されている(たとえば米国特許第4,649,151号、明細書、本明細書中に参考として引用する)。この調製物は、商標フォトフリン(Photofrin)で市販されている。

【0005】フォトフリン組成物として市販されている調製物は混合物である。この混合物はエーテル結合で結合したポルフィリンを含有し(ドウエルティー(Dougherty, T.J.)ら、Adv Exp Med Bio (1983) 160:3-13)、より最近ではカッセル(Kassel, D)ら、Photochem Photobiol (1987) 46:463-568がこの混合物にはエステル結合したポルフィリンも含有されることを示した。スカウリズ(Scurides, P.A.)ら、Cancer Res (1987) 47:3439-3445は、ヘマトポルフィリンジメチルエステルから出発してエーテル結合ポルフィリンのオリゴマー混合物を合成した。この混合物はPDTにおいて有効であったが、フォトフリン調製物と同様に複雑な混合物であった。エステル結合により結合したヘマトポルフィリン2量体もパンディ(Pandy, P.K.)ら、Cancer Res (印刷中)により調製され、調製された2量体はフォトフリン組成物中に存在せず、かつインビトロアッセイにおいて不活性であることが示された。

【0006】このように当技術分野では、HPDを凝集させ、そして比較的高分子量の成分に分離させた場合に、調製された混合物の幾つかの要素が光力学療法において有効であることが知られている。先に本発明者らは、米

国特許第5,002,962号明細書に開示されるようにPDTに有用な単一化合物組成物を調製した。米国特許第5,002,962号明細書に開示される精製および確認された組成物は、米国特許第4,920,143および4,883,790号明細書に開示される化合物および方法と同様に光力学療法に有用である。

【0007】

【発明が解決しようとする課題および手段】発明の概要 ピロフェオホルビド化合物、これらの化合物を含有する薬剤組成物を光力学療法に用いることができる。ピロフェオホルビド類は下記一般構造式IまたはIIに包含される。

【化1】

I

【0008】式中のR₁はCH₂OR₂であり、ここでR₂は1-20個の炭素を含む第一または第二アルキルであり；R₃は-CH₂CH₂CO₂R₄であり、ここでR₄はH、または1-20個の炭素を含むアルキルである。本発明の他の化合物は下記の式IIに包含される：

【化2】

II

式中のR₅は-OR₆であり、ここでR₆は1-20個の炭素を含む第一または第二アルキルであり、R₇は-CH₂CH₂CO₂R₈であり、ここでR₈はH、または1-20個の炭素を含むアルキルである。特に好ましい化合物は、R₅が-O-ヘキシルであり、かつR₇が-CH₂CH₂CO₂Hまたは-CH₂CH₂CO₂CH₃のものである。本発明のピロフェオホルビド類を賦形剤と混和して、光力学療法に用いるのに適した薬剤学的に許容し合う配合物が提供される。本発明は、式IおよびIIの化合物の合成法をも包含する。

【0009】本発明は、本発明のピロフェオホルビド化合物を有効成分として含有する注射用薬剤組成物、ならびに本発明の化合物および組成物を用いて光力学療法を実施する方法をも包含する。

【0010】本発明は、特異的レセプター(たとえば細胞性レセプター)に結合しうるリガンドもしくは特定の抗原に結合しうる抗体に結合した本発明のピロフェオホルビド化合物、およびこれらの結合体を含有する組成物、ならびにこれらの結合体およびそれらの組成物を用いて光力学療法を実施する方法をも包含する。

【0011】本発明の主目的は、ピロフェオホルビド化合物、これらの化合物を含有する薬剤組成物、およびこれらの化合物を光力学療法に用いて行われる治療法を提供することである。

【0012】他の目的は、異常に速やかに複製する腫瘍細胞を有するヒトの治療法、アテローム性動脈硬化症の治療法、または細菌もしくはウイルス感染の不活化法を提供することである。

【0013】本発明の特色は、本発明のピロフェオホルビド化合物が光力学療法に用いられる通常の化合物と比較してスペクトルのさらに深く赤色部に及ぶ光をも吸収することである。

【0014】本発明の利点は、本発明のピロフェオホルビド化合物および薬剤組成物は組織透過が最適であり、光力学療法に用いられる他の化合物と比べて皮膚に保有される期間が比較的短いことである。

【0015】本発明の他の利点は、本発明のピロフェオホルビド化合物が光力学療法に用いられる通常の化合物の毒性と比較して、腫瘍細胞および罹患組織に対してより大きな毒性をもつことである。

【0016】本発明の他の利点は、ピロフェオホルビドを遊離酸(たとえば式IまたはIIにおいてR₃またはR₇が-C₂H₅CH₂CO₂Hである場合)として合成することができ、リボソームまたは界面活性剤の必要なしに容易に配合しうることである。

【0017】本発明の他の利点は、本発明のピロフェオホルビド化合物が光力学療法に用いられる通常の光増感剤と比較して、著しく低い用量の注射材料で有効であることである。

【0018】本発明のこれらおよび他の目的、利点および特色は、以下に本明細書の一部をなす付随する構造式を参照しながら十分に説明される構造、合成および使用の詳細を読むことによって当業者に明らかになるであろう。本明細書全体を通じて構造式中の同様な記号は同様な分子部分を表す。

【0019】図面の簡単な説明

第1図は式II(a)の化合物のFAB質量スペクトルである。

【0020】

【発明の実施の形態】本発明の好ましい形態の詳細な説明

本発明のピロフェオホルビド化合物、それらの化合物の薬剤組成物、合成法および使用法を開示する前に、本明細書に記載される特定の化合物、組成物、使用法または合成法はもちろん変更しうるので、本発明がこれらに限定されないことを理解すべきである。本発明の範囲は請求の範囲によってのみ限定されるのであるから、本明細書で用いる名称は特定の形態を記述するためのものにすぎず、限定のためのものではないことも理解すべきである。

【0021】本明細書および請求の範囲で用いる単数形("a"、"an"および"the")は、前後関係から明らかにそうでないことが示されない限り複数の意味を含み、たとえば"ピロフェオホルビド"にはそれらのピロフェオホルビドの混合物が含まれ、"抗体"に言及した場合これにはそれらの抗体の混合物が含まれ、"治療方法"に言及した場合これには本明細書を読むことによって当業者に明らかになる同様な方法の言及が含まれる。

【0022】特に指示しない限り、本明細書で用いるすべての技術用語および科学用語は光力学療法の分野の当業者が一般に理解しているものと同じ意味をもつ。本発明の実施および試験に際しては、本明細書に記載したものと同様または均等な方法をいずれも採用しうるが、以下に好ましい方法および物質を記載することを試みた。

【0023】本発明の本質は、光力学療法と関連づけて用いた場合に癌の治療に極めて有効であることが見出された新規化合物、およびそれらの化合物を含有する薬剤組成物の開示である。より詳細には、これらの化合物は下記一般構造式IおよびIIに包含されるピロフェオホルビド化合物である。

【化3】

【0024】式中のR₁はCH₂OR₂であり、ここでR₂は1-20個(好ましくは5-20個)の炭素を含む第一または第二アルキルであり;R₃は-CH₂CH₂CO₂R₄であり、ここでR₄は、Hま

たは1-20個の炭素を含むアルキルである。好ましい化合物は、R₁が-CH₂O-ヘキシルであり、かつR₃が-CH₂CH₂CO₂CH₃または-CH₂CH₂CO₂Hであるものである。本発明の他の化合物は下記の式IIに包含される:

【化4】

式中のR₅は-OR₆であり、ここでR₆は1-20個(好ましくは5-20個)の炭素を含む第一または第二アルキルであり、R₇は-CH₂CH₂CO₂R₈であり、ここでR₈はH、または1-20個の炭素を含むアルキルである。特に好ましい化合物は、R₅が-O-ヘキシルであり、かつR₇が-CH₂CH₂CO₂Hまたは-CH₂CH₂CO₂CH₃のものである。

【0025】構造式IおよびIIのピロフェオホルビド化合物を薬剤組成物として配合し、癌を治療するために療法上有効な量で患者に投与することができる。

【0026】本発明は構造式IおよびIIの化合物をすべて包含するが、構造式IIaの化合物が光力学療法と関連づけて用いた場合に癌の治療に特に有効であることが見出された。構造式IIaを下記に示す:

【化5】

【0027】構造式IIaの化合物を合成するため的一般的な反応経路を下記に示す:

【化6】

反応経路 1

【0028】出発原料

赤色光を吸収する上記化合物の製造に用いられる出発原料はメチル フェオホルビド-aであり、これはスピリナ・デストリドラターダ(Spirulina destridratada)からスマスおよびゴフの方法(D.Goff, P.h.D.学位論文、カリフォルニア大学、95616カリフォルニア州ディビス、1984、本明細書に参考として引用する)により単離される。要約すると、500gの乾燥スピリナを大容量のアセトン中にスラリー化し、次いで液体窒素を添加して凍結スラッシュを調製した。このスラッシュを5リットルの3口丸底フラスコに移し、窒素下に攪拌しながら2時間、加熱還流した。この混合物をブナーろうと上でワットマン汎紙により汎過し、アセトンで十分に洗浄した。この抽出および汎過工程をさらに2回反復した; 固体から緑色をすべて取り出すことはできなかった。

【0029】緑色の汎液を蒸発させ、グレードVの中性アルミナ上でのフラッシュクロマトグラフィーにより、まずn-ヘキサンで溶離して速やかに移動する黄色のバンドを除去し、次いでジクロロメタンで溶離してフェオフィチン-aを含有する主要な青色/灰色のピークを得た。フェオフィチン-aをメタノール中の硫酸500mlで12時間、室温で暗所において窒素下に処理したのち、ジク

ロロメタンで希釈した。反応混合物を水、次いで10%重炭酸ナトリウム水溶液ですすぎ、有機層を乾燥させ、蒸発させ、残渣をジクロロメタン/メタノールから再結晶して、1.8gのメチルフェオホルビド-aを得た。メチルフェオホルビド-aはインビボ殺腫瘍活性アッセイにおいて、5mg/kgの用量で注射した場合に不活性であると思われる。

【0030】結合体および標識ビロフェオホルビド類本質的に上記の化合物または調製物を有効成分として含む組成物を用いるほか、特異的な標的設定メカニズムを付与するために誘導体の形態を用いることができる。一般に用いられる標的特異性成分には、モノクローナル抗体、および細胞性レセプターに結合するリガンドが含まれる。組成物を適宜標識することもできる。

【0031】その場合、標的特異性成分はたとえば免疫グロブリンもしくはその一部、または特定のレセプターに対して特異的なリガンドである。免疫グロブリン成分は多様な物質のいずれであってもよい。それはポリクローナルまたはモノクローナル抗体調製物に由来するものであってもよく、全抗体、またこれらの抗体の免疫反応性フラグメント、たとえばF(ab')₂、FAB、もしくはFAB'フラグメントも含まれる。これらの免疫反応性フラグメ

ントを全抗体の代替として用いることは当技術分野で周知である。たとえばスピーゲルバーグ(Spiegelberg, H. L.)、"Immunoassays in the Clinical Laboratory" (1978)3: 1-23を参照されたい。これを本明細書に参考として引用する。

【0032】ポリクローナル抗血清は常法により、それに対する抗体が望まれている抗原を適切な哺乳動物に注射し、この抗原に対する血清中の抗体水準をアッセイし、力値が高い時点で抗血清を調製することにより調製される。モノクローナル抗体調製物も常法により、たとえばケーラーおよびミルスタインの方法により、免疫処置した動物から得た末梢血リンパ球または脾臓細胞を使用し、これらの細胞をウイルス感染、骨髄腫細胞との融合、または他の常法によって不死化し、そして単離したコロニーによる目的抗体の産生につきスクリーニングすることによって調製しうる。モノクローナルまたはポリクローナル抗体からのフラグメントの調製は常法により、スピーゲルバーグ(Spiegelberg, H. L.) (前掲)の記載に従って行うことができる。

【0033】特に有用な抗体には下記のものが含まれる: モノクローナル抗体調製物CAMAL1、これはマルコーム(Malcolm, A.)ら、Ex Hematol (1984)12:539-547の記載に従って調製しうる; ポリクローナルまたはモノクローナル抗M1抗体調製物、ニュー(New, D.)ら、J Immunol (1983)130:1473-1477(前掲)の記載による; ならびにB16G抗体、これはマイヤー(Maier, T.)ら、J Immunol (1983)131:1843; スチール(Steel J.K.)ら、Cell Immunol (1984)90:303の記載に従って調製される; これらの出版物すべてを本明細書に参考として引用する。

【0034】上記のリストは例示であって、もちろん限定ではない; 標的組織が分かると、この組織に対して特異的な抗体を常法により調製することができる。従って本発明は、目的とするいがなる標的に対しても毒性を及ぼすために適用することができる。

【0035】レセプターに対して特異的なリガンドとは、細胞表面のレセプターに結合し、従ってレセプターのものに相補的な外形(contour)および電荷パターンをもつ部分を意味する。多様な細胞タイプがホルモン、成長因子または神経伝達物質を結合すべく設計された特異的レセプターをもつことは十分に理解されている。ただしレセプターに対して特異的なこれらの形態のリガンドが知られており、かつ理解されているが、本明細書中で用いる“レセプターに対して特異的なリガンド”という句は、レセプターに特異的に結合する天然または合成の物質をいずれも意味する。

【0036】これらのリガンドの例には、ステロイドホルモン、たとえばプログステロン、エストロゲン、アンドロゲン、副腎皮質ホルモン; 成長因子、たとえば上皮増殖因子、神経成長因子、纖維芽細胞増殖因子など; 他の蛋白質系ホルモン、たとえばヒト成長因子、副甲状腺

ホルモンなど; ならびに神経伝達物質、たとえばアセチルコリン、セロトニンおよびドーパミンが含まれる。レセプターに結合しうる、これらの物質の類似体はいずれも含まれる。

【0037】本発明化合物への標的細胞特異性成分の結合は、いずれか適宜な手段によって行うことができる。蛋白質、たとえばIgおよびある種のレセプターリガンドについては、これらの部分間の直接共有結合は、たとえばカルボジイミドなどの脱水剤を用いて行うことができる。本発明の化合物を免疫グロブリン部分に共有結合させるための特に好ましい方法は、本質的にジメチルスルホキシド(DMSO)からなる反応媒質の存在下に1-エチル-3-(3-ジメチルアミノプロピル)カルボジイミド(EDCI)で処理することである。

【0038】もちろん他の脱水剤、たとえばジシクロヘキシリカルボジイミドまたはジエチルカルボジイミドも、通常の水性媒質および部分水性媒質と共に用いることができる。

【0039】非蛋白質系のレセプターリガンドをそれらの関連官能基に従って当技術分野で知られている手段により結合させて、2量体および3量体となすことができる。

【0040】結合体の有効部分は、2官能性であって2個の有効成分それぞれに共有結合しうるリンカー化合物を介して結合させることもできる。多様なこれらのリンカーが市販されており、一般的なリストには、たとえばベース・ケミカル社のカタログ中に見られるものが含まれる。これらのリンカーはホモ-またはヘテロ-2官能性部分であり、ジスルフィド、アミド、ヒドラゾンおよび他の多様な結合を形成しうる官能基を包含する。

【0041】他のリンカーには、ポリマー、たとえばポリアミン、ポリエーテル、ポリアミシアルコールケトンを、酸、アルデヒド、イソシアネートまたは他の多様な基により上記成分に誘導したものが含まれる。

【0042】結合体の有効部分を標的細胞特異性成分に結合させる際に用いられる方法には標準的手段がいずれも含まれ、結合方法は本発明の一部を構成しない。従ってこれらの結合体を調製するための当技術分野で知られている有効な方法はいずれも本発明の範囲に含まれ、よっておおまかにリンカーパーツは共有結合であるか、または当技術分野で入手しうるいずれかのリンカーパーツもしくはそれから標準的方法で誘導しうるものであるとのみ定義される。

【0043】本発明の化合物自体または結合体はさらに、薬物を標識した化合物またはイオンに誘導することができる。多様な標識部分を用いることができ、これには放射性同位体および蛍光性標識が含まれる。放射性同位体標識はインピボで容易に検出しうるので好ましい。

【0044】単独であるか、または特異的結合物質との結合体である化合物を、適切な放射性カチオンをボルフ

ィリン系内に配位させることにより放射性同位体で標識することができる。有用なカチオンにはテクネチウムおよびインジウムが含まれる。結合体の場合、特異的結合物質を標識に結合させることもできる。

【0045】投与および使用

一般に本発明のピロフェオホルビド化合物は、癌に罹患している宿主、たとえばヒトに、療法上有効な量でいざれか適切な手段、たとえば注射(静脈内または筋肉内)により投与するか、または経皮投与ができる。本発明のピロフェオホルビド化合物は、周囲の正常組織中に蓄積するよりはるかに高度に腫瘍細胞中に蓄積する。腫瘍組織に蓄積するのに十分な期間を置いたのち、ピロフェオホルビド化合物を細胞毒性にする特定の波長の光を化合物に照射し、これによりピロフェオホルビド化合物が蓄積している腫瘍または罹患組織を破壊する。ピロフェオホルビド化合物が蓄積していない周囲の正常な組織に不可逆的な損傷を起こさずに、これが達成される。

【0046】本発明化合物およびそれらと標的細胞特異性物質との結合体は、一般にヘマトポルフィリン誘導体およびフォトフリンIIの組成物に関して当技術分野で知られている様式で用いられる。これらの組成物は、可視光線を用いる照射による破壊に対して新生細胞または他の異常な組織を増感するのに有用である——光活性化に際して、これらの組成物は直接作用をもたず、それらが何らかの生物学的事象に関与することもない;しかし光活性化のエネルギーが内在性酸素に伝達されて、それを一重項酸素に変換すると思われる。この一重項酸素が細胞毒性効果に関与すると考えられる。さらに、蛍光を発する光活性化された形態のポルフィリン蛍光体は腫瘍の位置を示すのに役立つ。このように本発明の2量体および3量体化合物は、それらの生物学的效果を発揮する際に消費されず、または変化しない。

【0047】当技術分野で知られている一般的な適応症には、充実性腫瘍の腫瘍組織の破壊、血管内の粥腫(plaque)の溶解(たとえば米国特許第4,512,762号明細書参照);局所状態、たとえばアクネ、みずむし、いぼ、乳頭腫および乾癬の治療、ならびに感染主(infectious agent)に関する生物製剤(たとえば輸血用血液)の処理が含まれる。これららの感染主に膜が存在することにより薬物の蓄積が促進されるからである。他の用途には、アテローム性動脈硬化症に罹患したヒトの治療、および細菌またはウイルス感染の不活性化が含まれる。

【0048】組成物は当技術分野で一般に知られている方法で対象に投与するか、またはインピリトロ標的に適用するための、薬剤組成物として配合される。これらの薬剤組成物の要約は、たとえばRemington's Pharmaceutical Science、マック・パブリシング社、ペンシルバニア州イーストン、最新版に見られる。標識された、または標識されていない組成物を全身に、特に注射により投与するか、または局所的に用いることができる。

【0049】注射は静脈内、皮下、筋肉内、または腹腔内であってもよい。注射用製剤は通常の形態で、液状の液剤もしくは懸濁剤として、または注射前に液状となすのに適した固体剤として、または乳剤として調製することができる。適切な賦形剤は、たとえば水、食塩液、デキストラン、グリセリンなどである。もちろんこれらの組成物は少量の無毒性助剤、たとえば湿润剤または乳化剤、pH緩衝剤などを含有しうる。

【0050】全身投与は、徐放性もしくは持続放出性の系を埋め込むことにより、坐剤により、または適切に配合されている場合は経口的に行うこともできる。これらの投与様式に用いられる配合物は当技術分野で周知であり、これらの方法の要約は、たとえばRemington's Pharmaceutical Science(前掲)に見られる。

【0051】治療を局所的に行う場合、たとえば表在性腫瘍または皮膚障害の治療のためには、組成物をローション剤、懸濁剤またはバスタ剤を含めた標準的な局所用組成物により局所投与ができる。

【0052】化合物の投与量は、有効成分の選択、治療すべき状態、投与様式、個々の対象、および開業医の判定に依存する。製剤の特異性に応じて、少量または多量の投与量が必要であろう。標的組織に対する特異性が高い組成物、たとえば特異性の高いモノクローナル免疫グロブリン調製物または特異的レセプターとの結合体については、0.05-1mg/kgの用量が推奨される。標的組織に対する特異性がより低い組成物については、より高い、最高1-10mg/kgの用量が必要である。個々の治療方式に関する変数の数は多く、これらの推奨値からのかなりの逸脱が予想されるので、上記の範囲は推奨にすぎない。さらに本発明のある種の化合物は水にわずかに溶解しうるので、直接に食塩液または5%グルコース溶液中ににおいて投与し、従って界面活性剤または他の可溶化剤の混入を避けることができる。

【0053】光力学療法および本発明に関連する化合物の分野の当業者は、多数の因子を考慮して、適量および全般的な投与方式をより良く決定することができるであろう。たとえば患者の体格、体重および状態を、その療法に対する患者および彼らの疾患の反応性と同様に考慮しなければならない。比較的少量を1回投与した場合で、すら有益な効果があると考えられる。さらに、著しく大量の投与量はもちろん有毒となる可能性がある。従って投与量および投与間隔に関して詳細な情報を提供するよりむしろ、本発明のピロフェオホルビド化合物が光力学療法に関して一般に用いられる通常の化合物より腫瘍細胞に対して高度の毒性をもち、従ってより少量投与しうることを考慮しながら、これらの投与に際して採用される一般的な因子に注意を払うべきである。

【0054】

【実施例】実施例

以下の実施例は、当業者に本発明のピロフェオホルビド

化合物および薬剤組成物の調製法の十分な説明および記述を提供するためのものであって、本発明者らが本発明であるとみなすものの範囲を限定するためのものではない。用いた数値(たとえば量、温度など)に関しては精度を保証する努力を行ったが、若干の実験誤差および偏差を考慮すべきである。特に指示しない限り、部は重量部であり温度は°Cであり、圧力は大気圧またはその付近である。

【0055】実施例1

メチル ピロフェオホルビド-a(2):メチル フェオホルビド-a(1, 1.0g)は藻類スピルリナ・デストリドラターダから、スミス、ゴフおよびシンプソン(K.M.Smith, D.A.Goff, D.J.Simpson) J.Am.Chem.Soc., 1985, 107, 4941-4954; ならびにパンディ、ペレニール、スミスおよびドールティー(R.K.Pandey, D.A.Bellnier, K.M.Smit

h, T.J.Dougherty), Photochem.Photobiol., 1991 53, 65-72に記載の方法に従って得られた。これら両者を本明細書に参考として引用する。メチル フェオホルビド-aをコリジン(100ml)中で90分間、窒素流を徐々に導通しながら加熱還流した。参照:ケンナー、マッコンビーおよびスミス(G.W.Kenner, S.W.McCombie, K.M.Smith) J.Chem.Soc.Perkin Trans. 1973, 1, 2517-2523; 本明細書に参考として引用する。溶液を蒸発させ(0.1mmHg)、残渣をジクロロメタン/メタノールから再結晶した。収率820mg; 91%; 融点217-219°C、文献220-225°C; フィッシャーおよびステルン(H.Fisher, A.Stern), Die Chemie des Pyrrole, vol II, Part 2, p.64および74、アカデミック出版社、ライプツィヒ; 本明細書に参考として引用する。

【化7】

Vis: (max) 410 (112 000); 508 (11 000); 536
(9 600); 610 (8 200); 666 (45 000); NMR, ppm; 9.50, 9.38,
8.52 (各々 s, 3H, 3 meso H); 7.95-8.05 (m, 1H, CH-CH₂);
6.30 および 6.15 (各々 s, 1H, CH-CH₂); 5.27 - 5.12 (q, 2H,
10-CH₂); 4.50 (m, 8-HO; 4.28 (m, 7-H); 3.70 (q, 2H,
CH₂CH₃); 3.68 (s, 3H, CHCO₂CH₃); 3.62, 3.40, 3.22 (各々
s, 3H, 3CH₃); 2.70 (7a-H); 2.31(7a'-H); 2.56 (7b-H); 2.29
(7b'-H); 1.82 (d, 3H, 8-CH₃); 1.70 (t, 3H, CH₂CH₃); -
1.70 (s, 2H, 2 NH)

【0056】ピロフェオホルビド-a(3):メチル ピロフェオホルビド-a(2,250mg)を蒸留テトラヒドロフラン(50ml)に溶解し、4N HC1(125ml)を一度に添加した。反応混合物を窒素雰囲気下に室温で4時間攪拌した。反応は分析用tlc(シリカプレート)により、10%メタノール/ジクロロメタンを移動相として用いて監視された。次いで反応混合物を氷水に注入し、ジクロロメタンで抽出した。ジクロロメタン相を水で数回洗浄した(200mlで3回)。有機相を分離し、無水硫酸ナトリウムで乾燥させた。溶剤を蒸発させることにより残渣が得られ、これをジクロロメタン/ヘキサンから結晶化した。収量225mg。化合物の純度をtlcにより確認し、NMRスペクトル分析により構造を確認した。NMRデータは、プロピオン酸エステル(-CH₂CH₂CO₂CH₃)の-OCH₃プロトンに関する共鳴が失われた点以外は、2に関して記載したものと同様であった。

【0057】メチル-2-{1-(0-ヘキシル)エチル}デビニルピロフェオホルビド(4): ピロフェオホルビド-a(2, 2

00mg)を30%HBr/酢酸(5.0ml)に溶解し、ガラス栓をしたフラスコ(ゴム膜を用いてもよい)内で反応混合物を室温で2.5時間攪拌した。溶剤を高真空中に(1mmHg)除去し、得られた1-ブロモエチル誘導体を直ちにn-ヘキサン(3.0ml)で窒素雰囲気下に処理した。反応混合物を室温で45分間攪拌し、ジクロロメタン(100ml)で希釈した。ジクロロメタン相を水相が中性になるまで水で洗浄し(200mlで3回)、次いで無水硫酸ナトリウムで乾燥させた。溶剤の蒸発により残渣が得られ、これをグレードIIIアルミナ(6%水/中性アルミナ)上でジクロロメタンにより溶離してクロマトグラフィー処理した。最初の画分は出発原料と目的生成物(副量)の混合物であった。さらに同一溶剤で溶離して、目的生成物を得た。適宜な溶出液を混和した。溶剤を蒸発させると、粘稠な固体が得られ、これはジクロロメタン/ヘキサンから結晶化させることができた。収率70%。(反応経路1を参照されたい)

【化8】

Vis, (max); 408 (9000); 471 (3 200), 506 (8600); 536 (8,500); 604 (7,250); 660 (41 500). NMR, ppm; 9.79, 9.51, 8.53 (各々, s, 1H, meso-H); 5.90 (q, 2H, -CH(O-hexyl)CH₃; 5.08-5.30 (q, 2H, 10-CH₂); 4.47 (m, 8H); 4.29 (m, 7-HO; 3.75 (q, 2H, CH₂CH₃); 3.67 (s, 3H, CH₂CH₂CO₂CH₃); 3.67 (s, 6H, 2X CH₃); 3.38 及び 3.27 (各々, s, CH₃); 2.68 (7a-H) 2.28 (7a'-H), 2.55 (7b-H); 2.20 (7b'-H); 1.80 (d, 3H, CH₂CH₃); -1.70 (s, 2H, 2 NH); ヘキシル基につき, 3.72 (t, 2H, O-CH₂CH₂); 1.73 (2H, CH₂); 1.25 [bs, merged, 6H, (CH₂)₃]; 0.78 (t, 3H, CH₃) (第1図参照)

【0058】2-(1-(0-ヘキシル)エチル)デビニルビロフェオホルビド-a(5): ビロフェオホルビド-a(3,200mg)を4につき述べた方法に従って30%HBr/酢酸と反応させ、次いでn-ヘキサノールと反応させて、目的生成物を60-65%の收率で得た。構造はNMRスペクトル分析により確認された。

【0059】実施例2

腫瘍の治療

【0060】上記により合成した2-(1-(0-ヘキシル)エチル)デビニルビロフェオホルビド-a-反応経路1の構造式(5): S-RO- ここでR=(CH₂)₅CH₃ およびm=H、(式IIa) (5.0 mg)をツイーン80 (0.1ml)に溶解し、そして10mlのハンクス平衡塩類溶液(HBSS)と混合すると、0.22μM ミリポアフィルターにより沪過したのち、0.1%ツイーン80中の約0.5mg/ml溶液が得られる。腋窩に直經0.4-0.5mmの皮下SMT-F腫瘍を有するDBA/2マウス10匹、0.3mg/kg(体重)の上記溶液を(マウス当たりの注射容量が約0.2mlとなるようにHBSSに希釈したのち)静脈内注射する。約24時間後に腫瘍領域(腫瘍移植前に毛を剃り、脱毛されている)を660-670nmのレーザー光線で30分間、75mW/cm²の電力で照射して、135ジュール/cm²を付与する。あるいは670nm付近の比較的広いバンド幅および約283ジュール/cm²を放出するようにフィルター処理したキセノンアーク灯を用いることができる。

【0061】光処理の翌日、すべての腫瘍は平坦に見え(触診不可能)、その領域上にわずかな皮膚の蒼白化が認められる。これはその後数日間にわたって進行して、明白な腫瘍壊死となる。処理後7日目には、すべての腫瘍は依然として触診不可能であり、壊死性である。処理後30日目には10例中7例の腫瘍は依然として触診不可能であり、1例は処理後90日目まで腫瘍を有しないままである。

【0062】実施例3

皮膚クリアランス

【0063】白子イススマウス(HalCR)に実施例1に従って調製した式IIaの化合物0.1mg/kg(体重)を静脈内注射する。約24時間後に動物の後足を上記と同一線量の660-670nmのレーザー光線(135ジュール/cm²)またはキセノンアーク灯(283ジュール/cm²)で照射する。足の反応をその後数日間にわたって損傷に関して採点し、最大作用を判定する。これはこの場合、わずかな浮腫に相当する数值0.3である。注射と光処理の間隔を約48時間に延長すると、足の反応はゼロとなり(損傷を受けない)、これは増感剤のクリアランスまたは代謝を示す。

【0064】実施した実験の結果として得られたデータを下記の第1表に示す。

【化9】

ピロフェオホルビドエーテル類のインピボにおける腫瘍の光増感活性¹

注射量 (mg/kg) 式 II $R_5 = -O-(CH_2)_4-CH_3$ $R_7 = -CO_2CH_3$	間隔 (時間)	波長	腫瘍の反応 ²				正常な足の反応 ³	
			1日目	7日目	30日目	90日目	間隔 (時間)	最大反応
			0/40	-	-	-		
0.05	24	659	0/40	-	-	-		
0.1	24	659	6/6	6/6	1/6	1/6	24	0.3
0.3	24	659	3/5	4/5	0/5	-	48-72	0
0.1	24	655	0/10	-	-	-		
0.3	24	655	10/10	10/10	2/10	0/10	-	-
0.3	24	670	10/10	10/10	6/10	1/10	-	-
0.3	24	680	8/10	0/10	-	-	-	-
式 II $R_5 = -O-(CH_2)_4-CH_3$ $R_7 = -CO_2CH_3$								
0.3	24	660	6/6	6/6	2/6	3/6	-	-
0.1	24	660	5/5	3/5	0/5	-	-	-
式 II $R_5 = -O-CH_3$ $R_7 = -CO_2CH_3$								
0.1	24	660	0/6	-	-	-	-	-
0.3	3	660	0/6	-	-	-	-	-
式 I $R_1 = -CH_2-O(CH_2)_4-CH_3$ $R_2 = -CO_2CH_3$								
0.3	24	660	6/6	2/6	0/6	-	-	-

¹ DBA/2マウスにおけるSMT-F腫瘍; 75mW/cm²のレーザー光線からの光135J/cm²。

² 光処理後の指示された日における触診不可能な腫瘍の数/処理された腫瘍の数。

³ 白子スイスマウス; 腫瘍の治療と同じ条件を用いて足を照射。採点0.3-わずかな浮腫; 0-反応なし。

【0065】第1表に示したデータは、本発明のピロフェオホルビド化合物が約660nmの波長の光で活性化されることを明らかに証明する。さらにこれらの化合物を注射により投与し、約660nmの波長の光で照射すると、この処理は7日程度の短い期間で腫瘍の大きさを縮小することに関して効果が高いことが認められた。

【0066】さらに第1表のデータは、本発明の化合物が投与後24-48時間で皮膚から清掃されることを示す。これは、患者が長期間にわたる皮膚の光感受性をもたな

いという点で望ましい特色である。また第1表のデータは、光力学療法式に用いた場合に腫瘍の増殖に影響を及ぼすことに関して、式IIのヘキシリエーテルの方がメチルエーテルより好ましいことも示す。

【0067】本発明を特定の化合物、配合物および方法に関して記載したが、本発明の真の精神および範囲から逸脱することなく種々の変更をなしうること、および均等物と置換しうることは、当業者には理解されるであろう。さらに、その個体、投与法、合成法などに合わせて本発明の範囲内で多様な修正をなすことができる。これらの修正は以下に示す請求の範囲に含まれるものとする。

【図面の簡単な説明】

【図1】 図1は式II(a)の化合物のFAB質量スペクトルである。

(11) 103-146989 (P2003-14U58

【図1】

フロントページの続き

(51) Int.Cl. ⁷	識別記号	F I	マーク(参考)
A 61 P 31/04		A 61 P 31/04	
31/10		31/10	
31/12		31/12	
35/00		35/00	

(72)発明者 ラヴィンドラ・ケイ・パンディ
アメリカ合衆国ニューヨーク州14221, ウ
ィリアムスヴィル, レメイ・コート 75.

(72)発明者 トマス・ジェイ・ダガーティ
アメリカ合衆国ニューヨーク州14072, グ
ランド・アイランド, ウエスト・オークフ
ィールド 2306
Fターム(参考) 4C050 PA02
4C086 AA01 AA02 AA03 CB04 MA01
MA04 NA14 ZA45 ZA89 ZB26
ZB33 ZB35 ZC06

=JP 2003146989

Received by Dialog

Pyropheophorbide(s) for photo-dynamic treatment of tumours, etc. - absorb light of longer wavelength to optimise tissue penetration, and are retained in skin for relatively short time periods

Patent Assignee: HEALTH RES INC

Inventors: DOUGHERTY T J; PANDEY R K

Patent Family

Patent Number	Kind	Date	Application Number	Kind	Date	Week	Type
US 5198460	A	19930330	US 88221804	A	19880720	199315	B
			US 90597786	A	19901015		
			US 92822409	A	19920117		
WO 9313769	A1	19930722	WO 93US60	A	19930107	199330	
AU 9334337	A	19930803	AU 9334337	A	19930107	199348	
			WO 93US60	A	19930107		
NO 9402283	A	19940616	WO 93US60	A	19930107	199432	
			NO 942283	A	19940616		
FI 9402878	A	19940616	WO 93US60	A	19930107	199433	
			FI 942878	A	19940616		
EP 623020	A1	19941109	EP 93902943	A	19930107	199443	
			WO 93US60	A	19930107		
SK 9400768	A3	19950412	SK 94768	A	19930107	199524	
			WO 93US60	A			
JP 7505614	W	19950622	JP 93512531	A	19930107	199533	
			WO 93US60	A	19930107		
EP 623020	A4	19950125	EP 93902943	A		199546	
TW 267169	A	19960101	TW 92110042	A	19921215	199612	
AU 669876	B	19960627	AU 9334337	A	19930107	199636	
NO 302173	B1	19980202	WO 93US60	A	19930107	199812	
			NO 942283	A	19940616		
SK 279590	B6	19990111	WO 93US60	A	19930107	199911	
			SK 94768	A	19930107		
EP 1146046	A2	20011017	EP 93902943	A	19930107	200169	
			EP 2001115782	A	19930107		
JP 2003146989	A	20030521	JP 93512531	A	19930107	200342	
			JP 2002335247	A	19930107		
JP 3421991	B2	20030630	JP 93512531	A	19930107	200343	

WO 93US60	A	19930107
-----------	---	----------

Priority Applications (Number Kind Date): US 92822409 A (19920117); US 88221804 A (19880720); US 90597786 A (19901015)

Cited Patents: US 4949151; 1. journal ref.; EP 220686

Patent Details

Patent	Kind	Language	Page	Main IPC	Filing Notes
US 5198460	A		10	A61K-031/40	Cont of application US 88221804
					CIP of application US 90597786
					Cont of patent US 5002962
					CIP of patent US 5093349
WO 9313769	A1	E	34	A61K-031/40	
Designated States (National): AU CA FI JP KR NO					
Designated States (Regional): AT BE CH DE DK ES FR GB GR IE IT LU MC NL PT SE					
AU 9334337	A			A61K-031/40	Based on patent WO 9313769
NO 9402283	A			C07D-487/22	
FI 9402878	A			C07D-000/00	
EP 623020	A1	E		A61K-031/40	Based on patent WO 9313769
Designated States (Regional): AT BE CH DE DK ES FR GB GR IE IT LI LU MC NL PT SE					
SK 9400768	A3			A61K-031/40	
JP 7505614	W		8	C07D-487/22	Based on patent WO 9313769
EP 623020	A4			A61K-031/40	
TW 267169	A			C07D-487/22	
AU 669876	B			C07D-487/22	Previous Publ. patent AU 9334337
					Based on patent WO 9313769
NO 302173	B1			C07D-487/22	Previous Publ. patent NO 9402283
SK 279590	B6			A61K-031/40	Previous Publ. patent SK 9400768
EP 1146046	A2	E		C07D-487/22	Div ex application EP 93902943
					Div ex patent EP 623020
Designated States (Regional): AT BE CH DE DK ES FR GB GR IE IT LI LU MC NL PT SE					
JP 2003146989	A		11	C07D-487/22	Div ex application JP 93512531
JP 3421991	B2		13	C07D-487/22	Previous Publ. patent JP 7505614
					Based on patent WO 9313769

Abstract:

US 5198460 A

Pyrophaeophorbides of formulae (I) and (II) are new (where R1 = CH₂OR; R2, R6 = 1-20C prim. or sec. alkyl, R3, R4 = COOR₄; R4 = H or 1-20C alkyl; and R5 = OR₆).

USE/ADVANTAGE - (I) and (II) are used in photodynamic therapy to destroy target virus, cells, or tissue, by contact with the cpd. and irradiating with light absorbed by (I) or (II). Use is partic. to treat human abnormal rapidly replicating cells, e.g. tumour cells, without causing irreversible damage to normal tissue. Other uses disclosed are treatment of atherosclerosis, by dissolving plaque; inactivation of bacterial or viral infections, treatment of acne, athlete's foot, warts, papilloma, or psoriasis, or for sterilisation of blood for transfusion purposes. (I) and (II) absorb light of longer wavelength than conventional photodynamic cpds. (600-700 nm), optimise tissue penetration, are retained in skin for shorter time periods, and have greater toxicity for tumour cells or other diseased tissue than conventional cpds.. Used as free acids, allowing ease of formulation without need for liposomes or detergents, and are active parenterally at very low doses. Used as derivatised forms (e.g. with monoclonal antibodies or cellular receptor binding ligands, for specific targeting), or as labelled, e.g., with radioactive or fluorescent labels.

ho

Dwg.0/1

Derwent World Patents Index
© 2003 Derwent Information Ltd. All rights reserved.
Dialog® File Number 351 Accession Number 9432597