8.4 Improper Riemann Integrals

August 15, 2015

8-33

1. p > 0 un rationnel

2.
$$f(x) := \frac{1}{x^p}$$

 $\diamond \ f \ \mathbf{est \ riemann \ impropre \ sur} \ (0,1] \ \mathbf{ssi} \ p < 1$

Si p = 1, alors $\int_0^1 f = \lim_{c \to 0} (-\log(c))$ qui tend vers $-\infty$.

Soit alors p < 1. On a

$$\begin{split} &\lim_{t\to 0} \int_t^1 f \\ = &\lim_{t\to 0} (\frac{1}{1-p} - \frac{t^{1-p}}{1-p}) \\ = &\frac{1}{1-p} (1 - \lim_{t\to 0} t^{1-p}) \end{split}$$

Or 1 - p est positif est donc $\lim_{t\to 0} t^{1-p} = 0$ (s.d.).

Mais cette limite ne peut converger si $p \ge 1$ est donc si f est riemann impropre, p < 1 (s.d.).

8-35

- 1. $f:[a,b)\to\mathbb{R}$ où $b\in\mathbb{R}\cup\{\infty\}$
- 2. f riemann pour tout $[a, c] \subseteq [a, b)$

 $\diamond f$ est riemann impropre ssi pour tout $c \in [a,b)$ f est riemann impropre sur [c,b) et alors $\int_a^b f = \int a^c f + \int c^b f$ Soit f riemann impropre sur [c,b) pour

tout $c \in [a, b)$. Alors

$$\int_{a}^{c} f + \int_{c}^{b} f$$

$$= \lim_{t \to c} \int_{a}^{t} f + \lim_{t \to c} \int_{c}^{b} f$$

$$= \lim_{t \to c} \left(\int_{a}^{t} f + \int_{t}^{b} f \right)$$

$$= \lim_{t \to c} \left(\int_{a}^{b} f \right) = \int_{a}^{b} f$$

par des applications de thm. 3.10 et thm. 5.8.

Soit alors f riemann impropre sur [a,b). Supposons de plus qu'il existe un c tel que f n'est pas riemann impropre sur [c,b).

Alors $h(z) := \int_a^c f$ est bornée puisque f est riemann sur tout $[a, c] \subseteq [a, b)$.

Soit alors $g(z) := \int_c^z f$. Alors $(\mathbf{spdg}) \lim_{z \to b} g(z) = \infty$. On donc

$$\int_{a}^{b} f = \lim_{z \to b} \int_{a}^{z} f$$

$$= \lim_{z \to b} \left(\int_{a}^{c} f + \int_{c}^{z} f \right)$$

$$= \lim_{z \to b} (h(z) + g(z))$$

Or, par ex. 3-22, cette limite est égale à ∞ . Donc, $\int_a^b f = \infty$, une contradiction.

Donc pour tout $c \in [a, b)$, f est riemann impropre sur [c, b).

L'argument présenté plus haut est alors applicable pour montrer que

$$\int_{a}^{c} f + \int_{c}^{b} f = \int_{a}^{b} f$$

8-37

- 1. $f:[a,b)\to\mathbb{R}$ où $b\in\mathbb{R}\cup\{\infty\}$
- 2. f riemann sur tout $[a, c] \subseteq [a, b)$

3. |f| riemann impropre sur [a, b)

 $\diamond~f$ est riemann impropre sur [a,b) et $\left|\int_a^b f\right| \leq \int_a^b |f|$

On a

$$0 \le f + |f| \le 2|f|$$

$$\Rightarrow$$

$$0 \le \int_a^c f + |f| \le 2 \int_a^c |f|$$

$$\Rightarrow$$

$$- \int_a^c |f| \le \int_a^c f \le \int_a^c |f|$$

$$\Rightarrow$$

$$- \int_a^b |f| \le \lim_{c \to b} \int_a^c f \le \int_a^b |f|$$

par prop. 5.21 (monotonie de l'intégrale). Donc $\int_a^b f$ existe.

Alors

$$\left| \int_{a}^{c} f \right| \le \int_{a}^{c} |f| \quad \text{pour tout } c \in [a, b)$$

(thm. 8.14) et donc

$$\lim_{c \to b} \left| \int_{a}^{c} f \right| \le \int_{a}^{b} |f|$$

Or, puisque $\int_a^b f$ existe, on a que $\lim_{c\to b} \left| \int_a^c f \right| = \left| \lim_{c\to b} \int_a^c f \right|$ par **ex. 2-12**.

8-38

 \diamond Construire $f:[1,\infty)\to[0,1]$ tq f est riemann impropre mais $\lim_{x\to\infty}f(x)\neq0$

On définit

$$I_i := [i, i + \frac{1}{2^{i+1}}) \text{ où } i \in \{1 \cdots\}$$

$$f_i := \begin{cases} (x - i)2^{i+1} \text{ si } x \in I_i \\ 0 \text{ sinon} \end{cases}$$

$$f := \sum_{i=1}^{\infty} f_i$$

f définit une série de triangle de base $\frac{1}{2^{i+1}}$ et de hauteur 1, donc d'air $\frac{1}{2^i}$ (s.d.).

De plus, f ne tend pas vers 0 lorsque $x \to \infty$. Car $\lim_{x \to \infty} f(x) = 0$ ssi

 $\forall \{a_n\} \text{ tq } a_i \to \infty \text{ } (i \to \infty), \text{ on a } \lim_{i \to \infty} f(a_i) = 0 \text{ } (\text{def. 3.1}).$

Soit alors $a_i := i + \frac{1}{2^{i+1}}$. Alors on a $f(a_i) = (i + \frac{1}{2^{i+1}} - i)2^{i+1} = 1$ pour tout i (**def.**). De plus, $a_i \to \infty$ $(i \to \infty)$, car $a_i > i$ (**def.**).

Soit alors $c \in [1, \infty)$. Alors il existe $i(c) \in \mathbb{N}$ minimum tel que $i(c) \geq c$ (thm. 1.32, thm. 1.27).

Alors $\lim_{c\to\infty}i(c)=\infty$ (s.d.). Puisque $f\geq 0$ (def.) on a que $F(t):=\int_1^t f$ est non décroissante (s.d.). On a alors

$$\int_{1}^{c} f \leq \int_{1}^{i(c)} f$$

$$= \sum_{j=1}^{i(c)} \int_{j}^{j + \frac{1}{2^{j+1}}} \sum_{i=1}^{\infty} f_{i}$$

$$= \sum_{j=1}^{i(c)} \int_{j}^{j + \frac{1}{2^{j+1}}} f_{j}$$

$$= \sum_{j=1}^{i(c)} \frac{1}{2^{j}}$$

Alors

$$\lim_{c \to \infty} \int_{1}^{c} f \le \lim_{c \to \infty} \sum_{j=1}^{i(c)} \frac{1}{2^{j+1}}$$

$$= \sum_{j=1}^{\infty} \frac{1}{2^{j}} = 1$$

et donc l'intégrale impropre existe (thm. 2.37 (thm. séquences monotones)).

8-39 : Critère de Cauchy

- 1. $f:[a,b)\to[0,\infty)$ où $b\in\mathbb{R}\cup\{\infty\}$
- 2. f riemann pour tout $[a, c] \subseteq [a, b)$

 $\diamond f$ est riemann impropre sur [a,b) ssi pour tout $\epsilon>0$ il existe $M\in [a,b)$ tel que pour tout $c,d\in (M,b)$ on a $\left|\int_c^d f\right|<\epsilon$

On pose $F(t) := \int_a^t f$. On a que

$$\forall \epsilon \exists M \text{ tq } d(t,b) < M \Rightarrow \left| F(t) - \lim_{x \to b} \int_{a}^{x} f \right| < \frac{\epsilon}{2}$$

Soit alors $t_1, t_2 \in (M, b)$ et, spdg, $t_1 < t_2$. Alors

$$\left| \lim_{x \to b} \int_{a}^{x} f - F(t_{1}) \right| + \left| F(t_{2}) - \lim_{x \to b} \int_{a}^{x} f \right| < \epsilon$$

$$\Rightarrow |F(t_{2}) - F(t_{1})| < \epsilon$$

$$\Rightarrow \left| \int_{t_{1}}^{t_{2}} f \right| < \epsilon$$

8-40

- 1. $f, g: [a, b) \to [0, \infty)$ où $b \in \mathbb{R} \cup \{\infty\}$
- 2. f, g riemann pour tout $[a, c] \subseteq [a, b)$

3.
$$\lim_{x \to b^{-}} \frac{f(x)}{g(x)} = K > 0$$

 $\diamond \int_a^b f$ conversge ssi $\int_a^b g$ converge

Indice: Près de b, on a que $g(x)(K - \epsilon) \le f(x) \le g(x)(K + \epsilon)$

On montre facilement l'énoncé donné par l'indice à partir de l'hyposthèse [3]. Supposons alors que $\int_a^b g$ existe et supposons de plus M tq pour tout $x \in (M,b)$, on ait $g(x)(K-\epsilon) \leq f(x) \leq g(x)(K+\epsilon)$. Alors

$$(K - \epsilon) \int_{M}^{t} g \le \int_{M}^{t} f \le (K + \epsilon) \int_{M}^{t} g$$

$$\Rightarrow$$

$$(K - \epsilon) \int_{M}^{b} g \le \int_{M}^{b} f \le (K + \epsilon) \int_{M}^{b} g$$

par monotonicité de l'intégrale et monotonicité de la limite. On a de plus, par [2], que $\int_a^M f$ est riemann. Alors

$$\int_{a}^{M} f + \int_{M}^{b} f$$

$$= \int_{a}^{M} f + \lim_{x \to b} \int_{M}^{x} f$$

$$= \lim_{x \to b} \int_{a}^{M} f + \lim_{x \to b} \int_{M}^{x} f$$

$$= \lim_{x \to b} \left(\int_{a}^{M} f + \int_{M}^{x} f \right)$$

$$= \lim_{x \to b} \int_{a}^{x} f = \int_{a}^{b} f$$

Supposons alors que $\int_a^b f$ existe. Alors pour tout M, $\int_M^b f$ existe (s.d.). Supposons alors M tel qu'il fut fait ci-haut. Alors

$$(K - \epsilon) \int_{M}^{t} g \le \int_{M}^{t} f$$

$$\Rightarrow$$

$$(K - \epsilon) \int_{M}^{b} g \le \int_{M}^{b} f$$

et donc $\int_M^b g$ existe. Puisque $\int_a^M g$ existe par [2], on peut conclure.

8-41

1. $f:(a,b]\to \mathbb{R}$

2.
$$g := x^{-2} f(a + \frac{1}{x})$$

 $\diamond f$ est riemann impropre sur (a,b] ssi g est riemann impropre sur $[\frac{1}{b-a},\infty)$ et alors les intégrales sont égales

Supposons alors f riemann impropre sur (a, b]. Alors, posant $y := \frac{1}{x-a}$, on a

$$\lim_{t \to a} \int_t^b f(x) dx$$

$$= \lim_{t \to a} \int_{\frac{1}{t-a}}^{\frac{1}{b-a}} f(a + \frac{1}{y})(-y^{-2}) dy$$

La fonction $-x^{-2}f(a+\frac{1}{x})$ est donc riemann impropre sur $[\frac{1}{b-a},\infty)$ (**def.**) et donc g est riemann impropre sur ce même interval (**thm. 8.25**).

La substitution inverse dans l'autre sens devrait nous asssurer que si g est riemann impropre, alors f l'est également.