(30) Priority data:

07/820,011

WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification ⁵ : C12N 5/16, 5/22, 15/12 C12N 15/85, C07H 15/12 A61F 2/02, 2/06		(11) International Publication Number:	WO 93/14193
		(43) International Publication Date:	22 July 1993 (22.07.93)

US

(21) International Application Number: PCT/US93/00445

(22) International Filing Date: 5 January 1993 (05.01.93)

(71) Applicant: YALE UNIVERSITY [US/US]; 451 College

Street, New Haven, CT 06510 (US).

6 January 1992 (06.01.92)

(72) Inventors: BELL, Leonard; 59 Tumblebrook Road, Woodbridge, CT 06525 (US). MADRI, Joseph, A.; 221 West Pond Road Extension, North Brandford, CT 06471 (US). WARREN, Stephen, L.; 514 Treat Lane, Orange, CT 06477 (US). LUTHRINGER, Daniel, J.; 149 North Willamon Drive, Beverly Hills, CA 90211 (US).

(74) Agent: KLEE, Maurice, M.; 1951 Burr Street, Fairfield, CT 06430 (US).

(81) Designated States: AU, BR, CA, FI, HU, JP, KR, NO, NZ, RU, European patent (AT, BE, CH, DE, DK, ES, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE).

Published

With international search report.

(54) Title: GENETICALLY ENGINEERED ENDOTHELIAL CELLS

CELL TYPE

(57) Abstract

Genetically engineered endothelial cells which exhibit enhanced cell migration, enhanced urokinase-type plasminogen activator (u-PA) activity, reduced mononuclear cell (e.g., monocyte) adhesion, and reduced fibronectin production are provided. The cells are modified by incorporation of the coding sequence for the c-src gene so that the cells express elevated levels of the tyrosine kinase protein, pp60c-src.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

	AT	Austria	FR	France	MR	Mauritania
	AU	Australia	GA	Gabon	MW	Malawi
		Barbados	GB	United Kingdom	NL	Netherlands
	BB	· ·	GN	Guinea	NO	Norway
	BE	Belgium	GR	Grace	NZ	New Zealand
ß	BF	Burkina Faso			PL	Poland
	BC	Bulgaria	HU	Hungary	PT	Portugal
- 1	BJ	Benin	ΙE	Ireland	RO	Romania
- (4	BR	Brazil	IT	Italy		Russian Federation
וי	CA	Canada	JP	Japan	RU	
	CF	Central African Republic	KP	Democratic People's Republic	SD.	Sudan
	CG	Congo		of Korea	SE	Sweden
	CH	Switzerland	KR	Republic of Korea	SK	Slovak Republic
	CI	('ôte d'Iwire	KZ	Knzakhstan	SN	Senegal
	CM	Cameroon	LI	Liechtenstein	SU	Soviet Union
	CS CS	Czerhoslovakia	LK	Sri Lanka	TD	Chad
			t.D	Luxembourge	TG	Togo
	CZ.	Czech Republic	MC	Monaco	UA	Ukraine
	DE	Germany	MG	Madagascar	US	United States of America
	DK	Denmark		_	VN	Viet Nam
	es	Spain	MI.	Mali	. ***	
	FI	Finland	MN	Mongolia		•

5 GENETICALLY ENGINEERED ENDOTHELIAL CELLS

The U.S. Government has a paid-up license in this invention and the right in limited circumstances to require the patent owner to license others on reasonable terms as provided for by the terms of Grants Nos. 5K11-HL02351, RO1-HL28373, and 9T32 DK07556 awarded by The National Institutes of Health, Bethesda, Maryland.

FIELD OF THE INVENTION

This invention relates to genetically engineered endothelial cells and, in particular, to genetically engineered endothelial cells which exhibit enhanced migration, enhanced plasminogen activator activity, reduced mononuclear cell (e.g., monocyte) adhesion, and reduced fibronectin production.

BACKGROUND OF THE INVENTION

Endothelial cells are specialized cells which form the lining of the heart and the blood vessels. Because of their direct contact with the circulating blood, a number of proposals have been made to genetically engineer these cells and use them as "in vivo" drug delivery systems. See, for example,

10

15

20

25

Culliton, B. J. 1989. "Designing Cells to Deliver Drugs, " Science. 246:746-751; and Zwiebel, J. A., M. Freeman, P. W. Kantoff, K. Cornetta, U. S. Ryan, and W. F. Anderson. 1989. "High-Level Recombinant Expression Gene in Rabbit Endothelial Cells Transduced Retroviral by Vectors, " Science. 243:220-222 (transfer of a human adenosine deaminase gene and a rat growth hormone gene to aortic : endothelial cells using a retroviral vector and demonstration of the secretion of rat growth hormone from such cells after seeding onto a synthetic vascular graft).

Endothelial cells are known to play an important role in the pathogenesis of atherosclerotic plaques, as well as in the success or failure of various surgical procedures, including vascular stent implantation, coronary angioplasty, and coronary bypass surgery using autologous veins or arteries or synthetic materials, such as, dacron or expanded polytetrafluoroethylene.

Endothelial cells affect both the disease process and efforts to reconstruct damaged vessels because, among other things, they can: 1) alter the thrombogenic properties of the blood vessel wall, 2) modulate smooth muscle cell proliferation and migration, and 3) affect vascular smooth muscle tone through multiple pathways including the renin-

angiotensin system (i.e., the system wherein the proteolytic enzyme renin cleaves two amino acids from angiotensin I to produce the hypertensive agent angiotensin II).

5 With regard to their interaction with the renin-angiotensin system, investigators have demonstrated in vitro that many of the constituents of that system, including angiotensinogen, renin, angiotensin-converting enzyme, and angiotensin II 10 receptors, are contained within endothelial cells thus forming an autocrine angiotensin system. Lilly, L. S., R. E. Pratt, R. W. Alexander, D. M. Larson, K. E. Ellison, M. A. Gimbrone, and V. J. Dzau. 1985. "Renin expression by vascular 15 endothelial cells in culture, " Circ. Res. 57:312-318; Caldwell, P. R. B., B. C. Seegal, and K. C. Hsu. 1976. "Angiotensin-converting enzyme: vascular endothelial localization, "Science (Wash. DC). 191:1050-1051; Ryan, U. S., J. W. Ryan, C. Whitaker, 20 and A. Chiu. 1976. "Localization of angiotensin converting enzyme (kininase II). Immunocytochemistry and immunofluorescence," Cell. 8:125-145; Johnson, A. R., and E. G. Erdos. 1977. "Metabolism of vasoactive peptides by human . 25 endothelial cells in culture: angiotensin converting enzyme (kininase II) and angiotensinase," J. Clin. Invest. 59:684-695; and Patel, J. M., F. R.

10

15

20

25

Yarid, E. R. Block. and M. K. Raizda. 1989. "Angiotensin receptors in pulmonary arterial and endothelial cells," Am. J. Physiol. 256:C987-C993. Also, interruption of the endothelial autocrine angiotensin system, with either angiotensin-converting enzyme inhibitor lisinopril or the angiotensin II receptor antagonist sar1, ile8angiotensin II, has been shown to lead to increased endothelial cell migration and urokinase plasminogen activator (u-PA) activity. See Bell, L. and J. A. Madri. 1990. "Influence of the angiotensin system on endothelial and smooth muscle cell migration, " Am. J. Pathol. 137:7-12. Although this work described a correlation between cell migration and u-PA activity, it did not establish a causal relationship between these biological functions.

In terms of clinical practice, restenosis following coronary angioplasty comprises significant medical problem since it occurs within six months following 30-50% of the procedures performed and is associated with substantial patient morbidity and health care expenditures. All angioplasties cause removal of the endothelial cell lining of the blood vessel. The principal reasons for the restenosis are acute thrombus formation due to loss of the anti-thrombotic surface provided by the endothelial cells and neointima formation due to

unchecked smooth muscle cell stimulation by blood-borne cells, including mononuclear cells, again due to the loss of the protective endothelial cell layer.

5 For example, Fishman, J. A., G. B. Ryan, M. J. Karnovsky. 1975. "Endothelial regeneration in the rat carotid artery and the significance of endothelial denudation in pathogenesis the of myointimal thickening, " Laboratory Investigation. 32:339-351 10 show that loss of endothelial cells with denudation injury to the blood vessel wall is correlated with the subsequent formation of a neointima, or ingrowth of smooth muscle cells from the media into the intima and elaboration of increased amount of extracellular matrix material resulting in a new intima. Schwartz, 15 S. M., C. C. Haudenschild, and E. M. Eddy. 1978. "Endothelial regeneration: I. Quantitative analysis of initial stages of endothelial regeneration in rat aortic intima, " Laboratory Investigation. 38:568-580 20 show that following denudation injury to an artery, in vivo, as would be expected following angioplasty or saphenous vein graft harvesting, remaining endothelial cells migrate O# restore integrity, and further Haudenschild, C. C. and S. M. 25 Schwartz. 1979. "Endothelial regeneration: II. Restitution of endothelial continuity, " Laboratory Investigation. 41:407-418 show that injured vessel

10

15

20

areas which are rapidly covered by a continuous layer of endothelium are protected from the development of neointima formation, or vessel lumen occlusion. Reidy, M. A. and S. M. Schwartz. 1981. "Endothelial regeneration: III. Time course of intimal after small defined injury to rat aortic endothelium, " <u>Laboratory Investigation</u>. 44:301-308 also show that rapid coverage of the injured area is beneficial since removal of only a small number endothelial cells from the vessel lumen allows rapid recoverage of the area with endothelial cells and prevents the development of neointima formation, or vessel lumen occlusion. Further, Madri, J. A., M. A. Reidy, O. Kocher, and L. Bell. 1989. "Endothelial cell behavior following denudation injury modulated by TGF-β1 and fibronectin," Laboratory Investigation. 60:755-765 show that changes in in vivo endothelial cell migration correlate with in <u>vitro</u> endothelial cell migration assays. rapid coverage of a denuded vessel segment, angioplasty or following saphenous vein harvesting for bypass surgery for example, is an important parameter in preventing the vessel occlusion that commonly follows these procedures.

Occlusion of peripheral arterial and coronary artery bypass grafts is a further frequent and important clinical finding. Two-thirds of the

WO 93/14193 PCT/US93/00445

-7-

saphenous vein coronary bypass grafts are either severely diseased or entirely occluded by six to eleven years following bypass surgery. Peripheral arterial bypass grafts have a similar fate. The occlusion is due to loss of endothelial cells from the surface of the vein graft during harvesting of the graft and at the time of initial surgery.

5

Synthetic grafts also exhibit high rates occlusion. Initially, grafts of this type are not 10 endothelialized. This results in a substantial incidence of early occlusion due to thrombosis. With time, the grafts become partially re-endothelialized by migration of arterial endothelial cells from the proximal and distal anastomotic sites from 15 ingrowth of capillary endothelial cells through the porous synthetic graft onto the luminal surface. However, the process of endothelial cell migration is normally slow and does not permit total coverage of the graft by arterial endothelial cells. 20 ingrowing capillary endothelial cells are capable of inhibiting clot formation than arterial endothelial cells. Attempts to reseed peripheral autologous endothelial grafts with cells demonstrated that incomplete coverage of the graft at 25 the time of seeding results in graft closure and lack of clinical benefit of the seeding procedure.

Thus. Zilla, P., R. Fasol, M. Deutsch, Fischlein, E. Minar, A. Hammerle, O. Krapicka, and M. 1987. "Endothelial cell Kadietz. seeding polytetrafluoroethylene vascular grafts in humans: A 5 preliminary report, " Journal of Vascular Surgery. 6:535-541 and Fasol, R., P. Zilla, M. Deutsch, M. Grimm, T. Fischlein, and G. Laugfer. 1989. endothelial cell seeding: Evaluation of its effectiveness by platelet parameters after one year," 10 Journal of Vascular Surgery. 9:432-436 describe the absence of any significant improvement in platelet factors or function, platelet uptake on the graft surface, or distal blood flow up to one year after peripheral arterial bypass with a synthetic graft in 15 patients who received synthetic grafts only partially coated with autologous endothelial cells. Ortenwall, P., H. Wadevik, J. Kutti, and B. Risberg. 1990. "Endothelial cell seeding reduces thrombogenicity of Dacron grafts in humans, " Journal of Vascular 20 Surgery. 11:403-410 did not observe any significant improvement in graft patency in patients who received synthetic graft partially coated with autologous Thus resedding of endothelial cells. grafts, or autologous grafts or denuded angioplasty 25 sites, with endothelial cells will not result clinical therapeutic benefit unless there is

10

15

virtually complete coverage of the vessel segment with a continuous layer of endothelium.

Fibronectin is a ubiquitous glycoprotein found as a component of most extracellular tissues as well as in plasma. It serves as a principal component of many interstitial tissues and functions as an adhesion molecule that allows many cell types to adhere to the extracellular matrix. Fibronectin is also present in many embryonic tissues and allows for optimal cell migration and location during various cell migratory events that occur during development.

Fibronectin is known to be deposited at sites of injury and forms part of the provisional matrix at the injury site. For example, following balloon de-endothelialization, plasma fibronectin is deposited at the site of de-endothelialization and medial injury and fibronectin is also synthesized and deposited by reactive medial smooth muscle cells and endothelial cells.

In vitro studies have demonstrated that fibronectin elicits an enhancement of aortic smooth muscle cell migration and retards aortic endothelial cell migration compared to other matrix components. See Madri, J. A., Pratt, B.M., and Yanniarello-Brown,

J., "Matrix-driven cell size changes modulate aortic endothelial cell proliferation and sheet migration",

Am. J. Pathol., 132, 18, 1988; Pratt, B.M., Harris,

A.S., Morrow, J.S., and Madri, J.A., "Mechanisms cytoskeletal regulation: modulation of aortic endothelial cell spectrin by the extracellular matrix", Am. J. Pathol., 117, 337, 1984; Leto, T.L., 5 Pratt, B.M., and Madri, J.A., "Mechanisms cytoskeletal regulation: modulation of aortic endothelial cell protein band 4.1 by the extracellular matrix", J. Cell Physiol., 127, 1986; Madri, J.A., Pratt, B.M., and Yannariello-Brown, J., "Endothelial cell-extracellular matrix 10 interactions: matrix as a modulator function", in Endothelial Cell Biology in Health and Disease, Simionescu, N. and Simionescu, M., Eds., Plenum Press, New York, 1988, 167; Pratt, B.M., Form, 15 D., and Madri, J.A., "Endothelial cell-extracellular matrix interactions", in Biology, Chemistry and Pathology of Collagen, Fleishmajer, R., Olsen, B. and Kuhn, K., Eds., Ann. N.Y. Acad. Sci., 460, 274, 1985; Madri, J.A., Kocher, O., Merwin, J.R., Bell, L., and 20 Yannariello-Brown, J., "The interactions of vascular cells with solid phase (matrix) and soluble factors", J. Cardiovasc. Pharmacol., 14, S70, 1989; and Merwin, J.R., Newman, W., Beall, D., Tucker, A., Madri, J.A., "Vascular cells respond differentially to 25 transforming growth factors beta1 and beta2," Amer. J. Pathol., 138: 37-51, 1991. Further, using an in vivo model of balloon de-endothelialization,

chronically denuded injured segment has been shown to contain increased fibronectin on its luminal surface as well as throughout its neointimal compartment. See Madri, J.A., Reidy, M.A., Kocher, O., and Bell, L., "Endothelial cell behavior following denudation 5 injury is modulated by TGF- β 1 and fibronectin", <u>Lab.</u> <u>Invest.</u>, 60, 755, 1989; and Basson, C.T., Kocher, O., Basson, M.D., Asis, Α., and Madri. J.A., "Differential modulation of vascular cell integrin and extracellular matrix expression in vitro by 10 TGF- β 1 correlates with reciprocal effects on cell migration", <u>J. Cell. Physiol.</u>, 153:118-128 1992. Reviews of these effects of fibronectin, as well of other components of the extracellular matrix and 15 of soluble factors associated therewith, can be found in Madri J.A., Bell L., "Vascular cell responses to injury: modulation by extracellular matrix and soluble factors," <u>Cell Interactions</u> Atherosclerosis, Ed. by H. Robenek and N. Severs, CRC 20 Press, Boca Raton, FL, Chapter 6, pp. 167-181, and Madri J.A., Bell L., Merwin J.R., "Modulation of vascular cell behavior by transforming growth factors β, " Molecular Reproduction and Development, 1992, 32:121-126.

In view of these effects on endothelial and smooth muscle cell migration, a reduction in the production of fibronectin by endothelial cells is

10

15

20

desirable since such a reduction will enhance the migration of endothelial cells relative to smooth muscle cells. As discussed above, such enhanced migration means a reduced likelihood of restenosis at the site of, for example, a coronary angioplasty, as well as a reduced likelihood of occlusion of autologous and synthetic vascular grafts.

Mononuclear cells are a group of circulating blood cells comprising monocytes and T-lymphocytes. Monocytes are large, amoeboid, phagocytic leukocytes derived from bone marrow and containing one large nucleus. T-lymphocytes are smaller, ovoid cells, containing one nucleus and scant cytoplasm. T-lymphocytes are involved in the modulation of cellular and humoral immunity. In vivo, mononuclear cells have been found to adhere to vessel wall luminal cells at sites of atherosclerosis. See Stemme S., Holm J., Hansson G.K., "T lymphocytes in human atherosclerotic plaques are memory cells expressing CD45RO and integrin VLA-1. Arterioscl. and Thromb, 1992, 12: 206-211. The cells are believed to contribute to the development of this major disease process.

In vitro, mononuclear cells have been shown to
adhere to migrating endothelial cells. See DiCorleto
P.E., De La Motte C.A., "Characterization of the
adhesion of the human monocytic cell line U937 to

cultured endothelial cells," J. Clin. Invest., 1985, 75: 1153-1161. In terms of restenosis at the site of a vessel wall injury, e.g., an injury resulting from angioplasty, endarterectomy, or synthetic or autologous grafting, such adherence to endothelial cells can increase smooth muscle cell proliferation and migration as well as increasing extracellular matrix deposition, all of which can increase the likelihood of restenosis.

10 Genetic engineering of endothelial cells has been performed by a number of workers in the art. For example, Nabel, E. G., G. Plautz, F. M. Boyce, J. C. Stanley, and G. J. Nabel. 1989. "Recombinant Gene Expression in Vivo Within Endothelial Cells of the 15 Arterial Wall, " Science. 244:1342-1343, describe experiments in which a gene for the marker protein β -galactosidase was transferred to endothelial cells using a retroviral vector and the thus modified cells were seeded onto the walls of an artery in vivo using a double balloon catheter to 20 isolate the section of the artery where the seeding took place. Nabel et al. report that up to four weeks after surgery, the seeded arteries were found to contain endothelial cells which expressed β-25 galactosidase.

Wilson, J. M., L. K. Birinyi, R. N. Salomon, P. Libby, A. D. Callow, and R. C. Mulligan. 1989.

10

"Implantation of Vascular Grafts Lined Genetically Modified Endothelial Cells." Science. 244:1344-1346, describe similar work wherein a β -galactosidase gene was transferred to endothelial cells using a retrovirus, the modified cells were seeded onto synthetic grafts, and the grafts were implanted in the carotid arteries of dogs. weeks later, the grafts were removed and found to still contain the genetically modified endothelial cells along their luminal surfaces.

Along these same lines, Dichek, D. A., R. Neville, J. A. Zwiebel, S. Freeman, M. B. Leon, F. Anderson. 1989. "Seeding of Intravascular Stents with Genetically Engineered Endothelial 15 Cells, " <u>Circulation</u>. 80:1347-1353, describe seeding of stainless steel stents with genetically engineered endothelial cells carrying in some cases a β -galactosidase gene and in others a human tissue-type plasminogen activator (TPA) gene. See 20 also PCT Patent Publication No. WO 90/06997 (transfer of β -galactosidase, rat growth hormone, and human adenosine deaminase. CD-4. and TPA genes to endothelial cells and seeding of silicon coated polyurethane grafts and stainless steel stents with 25 genetically engineered cells); and Zwiebel et al. 1989, supra.

Direct <u>in vivo</u> transformation of arterial endothelial cells using retroviral particles or plasmid carrying liposomes is described in Nabel, E. G., G. Plautz, and G. J. Nabel. 1990. "Site-Specific Gene Expression <u>in Vivo</u> by Direct Gene Transfer into the Arterial Wall," <u>Science</u>. 249:1285-1288. β -galactosidase was again used as a marker protein, and evidence of transformation could be found 21 weeks after transfection.

10 The cellular src gene (c-src gene) was identified in the late 1970's. See Stehelin, D., E. Varmus, J. M. Bishop, and P. K. Vogt. 1976. "DNA related to the transforming gene(s) of avian sarcoma viruses is present in normal avian DNA," Nature. 260:170-173; and Spector, D., H. E. Varmus, and J. M. 15 Bishop. 1978a. "Nucleotide sequences related to the transforming gene of avian sarcoma virus are present in DNA of uninfected vertebrates, " Proc. Nat. Acad. Sci. USA. 75:4102-4106. The gene appears to be 20 present in all animal species and is highly It encodes a 60,000 dalton protein, conserved. tyrosine kinase, which is localized cytoplasmic side of the platma membrane. The c-src protein will be designated herein as pp60c-src.

pp60c-src is a representative molecule of the src-family of membrane-bound tyrosine kinases including, but not limited to yes, lck, and fyn. (See

10

15

C. A. Koch, D. Anderson, M. F. Moran, C. Ellis, and T. Pawson. 1991 "SH2 and SH3 domains: elements that interactions of cytoplasmic signaling proteins, "Science. 252:668-674.) Certain critical and highly conserved noncatalytic domains in the src family of tyrosine kinases are called Src homology regions 2 and and are 3 involved protein-protein interactions. These Src-homology domains are also found in a series of critical molecules, including, but not limited to fyn, yes, PLC, p85, tensin, crk, vav, GAP, fps, arg, dabl, hck, blk, fgr, and nck. These domains are believed to regulate various cell effects of src and related molecules including, but not limited to, signal transduction pathways of tyrosine kinase receptors.

The sequence of the c-src gene has been known for some time. See Takeya, T. and H. Hanafusa. 1983. "Structure and Sequence of the Cellular Homologous to the RSV src Gene and the Mechanism for 20 Generating the Transforming Virus," Cell. 32:881-890. A copy of the nucleotide sequence for the coding region of this gene in the chicken and of the resulting pp60c-src protein as published by and Handfusa appear as SEQ. ID. NOS. 1 and 2, 25 respectively, set forth below. The corresponding human sequences are set forth as SEQ. ID. NOS. 3 and See Anderson, S. K., C. P. Gibbs, A. Tanaka,

Kung, and D. Fujita. 1985. "Human Cellular src Gene: Nucleotide Sequence and Derived Amino Acid Sequence of the Region Coding for the Carboxy-Terminal Two-Thirds of pp60c-src," Molecular and Cellular

Biology. 5:1122-1129 and Tanaka, A., C. P. Gibbs, R. R. Arthur, S. K. Anderson, H. Kung, and D. Fujita. 1987. "DNA Sequence Encoding the Amino-Terminal Region of the Human c-src Protein: Implications of Sequence Divergence among src-Type Kinase Oncogenes,"

Molecular and Cellular Biology. 7:1978-1983.

Various functions and properties of the c-src gene have been described in the literature. For example, Shalloway, D., P. M. Coussens, and P. Yaciuk. 1984. "Overexpression of the C-src Protein 15 Does Not Induce Transformation of NIH 3T3 Cells," Proc. Natl. Acad. Sci. USA. 81:7071-7075, have shown that genetically engineered mouse NIH 3T3 fibroblast cells which overexpress pp60c-src are not malignant. Azarnia, R. S. Reddy, T. E. Kmiecik, D. Shalloway, 20 and W. R. Loewenstein. 1988. "The Cellular src Gene Product Regulates Junctional Cell-to-Cell Communication, " Science. 23:398-401, have shown that overexpression of pp60c-src in NIH 3T3 cells causes a reduction in cell-to-cell transmission of molecules 25 400 to 700 dalton range. See also Loewenstein, W. R., and R. Azarnia. 1988. "Regulation of Intercellular Communication and Growth by the

25

Cellular src Gene," Annals New York Academy of Sciences. 551:337-346. Soriano, P., C. Montgomery, R. Geske, and A. Bradley. 1991. "Targeted Disruption of the c-src Proto-Oncogene Leads to Osteopetrosis in Mice," Cell. 64:693-702, have shown that mutation of the c-src gene results in a marked decrease in the rate of bone resorption in mice, i.e., osteopetrosis, thus suggesting that the normal c-src gene plays a role in bone formation.

In addition to the foregoing, Warren, S. L., 10 M. Handel and W. J. Nelson. 1988. expression o£ pp60c-src alters a selective morphogenetic property of epithelial cells in vitro without a mitogenic effect, " Mol. Cell. Biol. 15 8:632-646, have shown that the overexpression of pp60c-src in Madin-Darby canine kidney cells causes those cells to undergo changes in shape, including the formation of elongated cell processes having lengths in the range of 100 to 200 microns.

20 A gene related to the c-src gene is the oncogene v-src which forms part of the genome of the Rous sarcoma virus and causes that virus to produce sarcomas in chickens. v-src phosphorylates many more substrates compared to c-srd and overexpression of elicits a transformed phenotype while overexpression of c-src does not. See Takeya and Hanafusa, supra; and Hunter, T. 1987. "A Tail of Two

WO 93/14193 PCT/US93/00445

src's: Mutatis Mutandis, " Cell. 49:1-4. As with many malignant cells, cells infected with the Rous sarcoma virus have been found to exhibit increased production of urokinase-type plasminogen activator (u-PA). particular, Bell, S. M., R. W. Brackenbury, N. Leslie and J. L. Degen. 1990. "Plasminogen activator gene expression is induced by the src oncogene product and tumor promoters," J. Biol. Chem. 265:1333-1338, correlated have the increased production of u-PA after transformation of chicken embryo fibroblasts by the Rous sarcoma virus with an increase in cellular u-PA mRNA.

5

10

Significantly, none of the prior art in any way discloses or suggests the surprising results achieved by the present invention wherein increased expression 15 of pp60c-src by genetically engineered endothelial cells has been found to result in 1) enhanced migration of the cells, i.e., an enhanced ability to repair the endothelial lining of damaged vessels 20 and/or an enhanced ability to form an endothelial lining on grafts or stents: 2) enhanced urokinase-type plasminogen activator activity, an enhanced ability to dissolve or prevent the formation of the thrombi normally associated with vascular surgical procedures; 3) reduced mononuclear 25 cell (e.g., monocyte) adhesion to the cells, less likelihood of the formation of atherosclerotic

15

20

25

plaques in the region of the genetically engineered cells; and 4) reduced fibronectin production by the cells, e.g., reduced migration of smooth muscle cells in the region of the cells.

5 SUMMARY OF THE INVENTION

In view of the foregoing, it is an object of this invention to provide genetically engineered endothelial cells having improved therapeutic properties. More particularly, it is an object of the invention to provide genetically engineered endothelial cells which migrate at higher rates than corresponding endothelial cells which have not been genetically engineered. It is also an object of the invention to provide genetically engineered endothelial cells which have an enhanced ability to inhibit the formation of thrombi and/or to dissolve thrombi once they have formed. It is a further object of the invention to provide genetically engineered endothelial cells to which mononuclear cells, e.g., monocytes, are less likely to adhere than endothelial cells which have not be genetically engineered. It is an additional object of the invention to provide genetically engineered endothelial cells which produce reduced amounts fibronectin.

With regard to clinical applications, it is an object of the invention to provide genetically

engineered endothelial cells which can be used to improve the success of such surgical procedures as coronary angioplasty and vessel graft and stent implantation.

5 To achieve the foregoing and other objects, invention provides endothelial cells which have been genetically engineered to produce increased amounts of pp60c-src. As shown in the examples presented below, such genetically engineered cells exhibit 10 enhanced cell migration, enhanced u-PA production, reduced mononuclear cell adhesion, and fibronectin production and thus address long-standing problems in the field of vascular surgery of endothelial layer reconstruction 15 restenosis inhibition, including thrombus inhibition, at the surgical site.

The accompanying figures, which are incorporated in and constitute part of the specification, illustrate certain aspects of the invention, and together with the description, serve to explain the principles of the invention. It is to be understood, of course, that both the figures and the description are explanatory only and are not restrictive of the invention.

20

10

15

20

25

BRIEF DESCRIPTION OF THE DRAWINGS

Figure 1 shows the structure of the three retroviral vectors used in the examples. The abbreviations used in this figure are as follows: rectangular box with a central bar -- LTR; open triangle -- 5' splice site; open circle -- \$\psi\$ packaging signal; closed triangle -- 3' splice site; solid arrow -- Neo*; dotted arrow -- \$\text{Ai295}\$ (kinase-deficient) mutant; stripped arrow -- c-src gene; double vertical bar and attached dotted line -- SV40 early region promoter-enhancer; solid line -- rat genomic DNA; E -- EcoRI; B - BamHI.

Figure 2 shows the src kinase activity as determined by the in vitro kinase assay (see below) for cells infected with the vectors of Figure 1. The following abbreviations are used in this figure and in Figures 3, 4, 6, and 8: endothelial cells expressing elevated levels of c-src -- C-SRC; endothelial cells expressing the kinase negative mutant c-src, met-295 -- met-295; endothelial cells expressing Tn5 aminoglycoside phosphotransferase alone -- Neor.

Figure 3 shows migration rates relative to that of unmodified control cells ("BAEC CONT") of the C-SRC, met-295, and Neor cells. The "*" indicates P<0.001 for the C-SRC cells vs. noninfected endothelial cells.

15

Figure 4 shows u-PA activity during migration of the C-SRC, met-295, and Neor cells relative to that of unmodified control cells. u-PA activity was 4.9 ± 0.05 mPU/ μ g cell protein in the control cells. The "*" indicates P<0.001 for the C-SRC cells vs. noninfected endothelial cells. Similar results (not shown) were obtained with standard plasminogen zymography.

Figures 5A and 5B are photomicrographs at the leading edge of migration of Neor cells (Figure 5A) and C-SRC cells (Figure 5B) which have been stained for u-PA. The bar represents 50 μm .

Figure 6 shows the effect of antisera to bovine u-PA on c-src induced endothelial cell migration. The "*" indicates P<0.001 for the C-SRC cells vs. Neor cells, and the "#" indicates P<0.01 for the C-SRC cells incubated with antisera vs. untreated cells.

overexpression of pp60c-src on the adhesion of monocytes, specifically, U937 cells, to bovine aortic endothelial cells (BAEC) at the fronts of migrating monolayers. Each bar group represents the number of U937 cells bound in an area of 0.01 mm², starting from the edge of the migrating front (1) and moving toward the center of the dish (2,3,4). Open boxes = Numbers of U937 cells bound to control migrating

10

15

20

25

BAEC. Shaded boxes = Numbers of U937 cells bound to cultures of migrating BAEC that stably expressed the neomycin resistance gene (Neo^r). Black boxes = Numbers of U937 cells bound to cultures of migrating BAEC that stably express elevated levels of pp60^{c-src}.

Figure 8 shows fibronectin protein levels associated with 3 day migrating bovine aortic endothelial cells stably expressing the neomycin resistance gene (Neor) or the neomycin resistance gene and the c-src gene determined by the ELISA technique described below. Overexpression of pp60c-src is associated with decreased endothelial cell fibronectin protein at day 3 compared to BAEC expressing only the neomycin resistance gene.

Figure 9 illustrates the effect of TGF-B1 treatment on the adhesion of U937 cells to the fronts of migrating monolayers of BAEC overexpressing pp60c-src. Each bar group represents the number of U937 cells bound in an area of 0.01 mm², starting from the edge of the migrating front (1) and moving toward the center of the dish (2,3,4). Open boxes = Numbers of U937 cells bound to contiol Shaded boxes = Numbers transfected migrating BAEC. of U937 cells bound to cultures of c-src transfected migrating BAEC that have been treated with 0.5 ng/ml TGF- β 1.

15

DESCRIPTION OF THE PREFERRED EMBODIMENTS

discussed above, the present invention relates to endothelial cells which have been genetically engineered to express elevated levels of the pp60c-src protein.

The endothelial cells are obtained from the lining of a portion of the vascular system, e.g., a blood vessel or capillary, and are maintained in a tissue culture or other suitable biological medium. The cells will generally be from the patient being 10 treated, although they can be from another individual or another species, e.g., porcine or endothelial cells which can be readily obtained in large quantities, provided that anti-rejection therapies are used to control rejection of the non-autologous cells upon implantation. See, for example, copending U.S. patent application Serial No. 07/906,394, filed June 29, 1992, and entitled "Universal Donor Cells."

20 Insertion of one or more copies of the coding sequence of the c-src gene into the endothelial cells is accomplished using conventional recombinant genetic engineering techniques for transforming cells now known or subsequently developed. For example, 25 retroviral vectors, electroporation, calciumphosphate techniques, adenovirus vectors, or other means of gene transfer can be used for this purpose.

Whatever technique is chosen, a heterologous promoter will be included with the structural gene so that the pp60c-src protein or a selected portion thereof (see below) will be expressed in the modified endothelial cell.

Various vectors containing the coding sequence of the c-src gene are known in the art. For example, copies of this gene have been previously cloned into the pMc-srcAiSVneo and p5H plasmids. See Warren et 10 al., supra, and Levy, J. B., H. Iba, and H. Hanafusa. "Activation of the transforming potential of pp60c-src by a single amino acid change," Natl. Acad. Sci. USA 83:4228-4232. Deposits of the related v-src gene are available from the American 15 Type Culture Collection, 12301 Parklawn Drive, Rockville, Maryland, 20852, United States of America, in the vectors pEcoRIB, Rous sarcoma virus v-src oncogene (v-src), and pPvuIIE, Rous sarcoma virus v-src oncogene (v-src), (ATCC Accession Nos. 41005 and 41006, respectively). These vectors were cloned 20 from Rous sarcoma virus Schmidt Ruppin A2 and are available from the ATCC in freeze-dried Escherichia coli HB101.

In view of the fact that c-src gene is highly

conserved in all species and the fact that the c-src

and v-src genes share substantial regions of homology

(see Takeya and Hanafusa, supra), these previously

20

25

cloned c-src genes and/or the deposited v-src genes can be readily used to screen genetic libraries for the c-src gene for any particular species that may be desired. Examples of the types of approaches which can be used appear in the work of Anderson et al., 1985, supra, and Tanaka et al., 1987, supra, which are directed to the human c-src gene and protein. For clinical applications, the human c-src gene, sequenced by these workers, is generally preferred.

The DNA coding and amino acid sequences for representative c-src genes are set forth below in the Sequence Listing. In particular, SEQ. ID. NOS. 1 and 2 set forth the nucleotide and amino acid sequences for the c-src gene and the pp60c-src protein in the chicken, while SEQ. ID. NOS. 3 and 4 set forth the corresponding sequences in the human.

As detailed by Anderson et al., 1985, <u>supra</u>, and Tanaka et al., 1987, <u>supra</u>, these nucleotide and amino acid sequences exhibit very high levels of homology. Thus, the average amino acid sequence homology for these two very diverse species is 98% for exons 3 through 12. Significantly, the kinase active region, as well as the SH2 and SH3 regions which affect protein-protein interactions (see Koch et al., 1991, <u>supra</u>), are contained in these highly conserved portions of the protein molecule. The average homology for exon 2 is 71%, which is still

15

20

25

high, although not as high as for exons 3 through 12. As noted by Anderson et al., 1985, <u>supra</u>, exon 1 codes for a 5' untranslated region of mRNA and thus does not appear in the pp60c-src protein.

Similar homologies are seen on the DNA level. Thus, for exons 2-12, the percentage of identical nucleotides in the coding sequences of the chicken c-src gene and the human c-src gene is 85.4% (i.e., 1,374 nucleotides out of a total of 1,608). See Tanaka et al., 1987, supra, Table 1. Moreover, as evidenced by the fact that 94.2% of the amino acids for the chicken and human proteins are identical, Id., the majority of nucleotide changes are silent, third-position codon changes resulting in no amino acid substitutions.

As recognized in the art, the DNA coding and amino acid sequences of the c-src gene/protein for other species are similarly conserved.

In view of these homologies, the terms "c-src gene" and "pp60c-src protein" are used herein to describe these families of substantially similar DNA sequences and resulting proteins, it being understood that any particular member of the family can be used for any particular application either in identical form or with modification provided such modifications do not prevent the gene/protein from exhibiting the effects of enhanced cell migration, enhanced u-PA

10

15

20

25

activity, reduced mononuclear cell, e.g., monocyte, adhesion, and/or reduced fibronectin production. For example, it has been found that the migration and u-PA enhancements described in the examples presented below can also be achieved for a c-src gene which codes for asp, rather than gly, at amino acid position 63 in SEQ. ID. NO. 1.

In this regard, as discussed above, various subregions of the c-src gene/protein are highly conserved, including the SH2 and SH3 domains and the kinase active portion of the protein molecule. regions, individually or in combination, as well other subregions of the c-src gene, can be used the practice of the invention provided they produce the desired effects of enhanced endothelial cell migration, enhanced u-PA activity, reduced mononuclear, e.g., monocyte, adhesion, and/or reduced fibronectin production. Depending upon their length, such subregions can be obtained by direct synthesis, by digesting the c-src gene with restriction enzymes, by polymerase chain reaction amplification of all or a part of the desired sequence, or by combinations of such techniques.

The transformation of the endothelial cells is preferably performed in vitro with the transformed cells being implanted directly in the vessel wall using techniques of the type described in Nabel et

al., 1989, <u>supra</u>, or used to coat a graft, stent, or similar device which is then implanted. See Wilson et al., 1989, <u>supra</u>, Dichek et al., 1989, <u>supra</u>, Zwiebel et al., 1989, <u>supra</u>, and PCT Patent Publication No. WO 90/06997.

More particularly, endothelial cells, which have been genetically modified to express elevated levels of pp60c-src, can be implanted clinically in a patient's coronary artery by:

- 10 1. Harvesting the patient's endothelial cells or selecting endothelial cells which can be implanted in the patient through the use of, for example, anti-rejection techniques or processes.
- 2. Inserting the c-src gene or a part thereof into 15 the endothelial cells using, for example, a retroviral vector and, in particular, retroviral packaging system which produces viral vector particles which are free of replicating virus. See, for example, Varmus, H. E. 1982. 20 "Form and Function of Retroviral Proviruses," Science. 216:812-820; and Mann, R., Mulligan, and D. Baltimore. 1983. "Construction of a Retrovirus Packaging Mutant and It's Use to Produce Helper-Free Defective Retrovirus, " Cell.
- 25 33:153-159.
 - 3. Performing diagnostic catheterization of the patient to determine the severity, location and

25

amenability of the coronary (or peripheral) artery disease to angioplasty, atherectomy, laser therapy, or other forms of mechanical revascularization.

- 4. Assuming step (3) determines that therapeutic angioplasty is appropriate, performing a standard balloon angioplasty procedure.
 - 5. Using a standard wire exchange technique, removing the balloon angioplasty catheter and replacing it with a double balloon catheter having an infusion exit port positioned between the two balloons.
- 6. Positioning the double balloon catheter tip in the angioplastied coronary artery with the double balloons straddling the denuded segment of the artery, i.e., the portion of the artery in which the endothelial lining has been removed by the angioplasty procedure.
- 7. Gently inflating the double balloons while supporting the distal coronary circulation with standard perfusion techniques.
 - 8. Introducing the c-src modified endothelial cells into the extracorporeal end of the double balloon catheter and infusing the cells into the isolated space in the blood vessel between the two balloons at a concentration of, for example,

10

15

- $2-10 \times 10^6$ cells per 10 milliliters of solution to seed the denuded portion of the vessel.
- 9. After approximately twenty to thirty minutes, deflating the double balloon catheter so as to restore normal antegrade coronary perfusion.
- 10. Removing the double balloon catheter followed by standard post catheterization procedures.

Similarly, a synthetic or autologous vascular graft or stent can be coated with the c-src modified endothelial cells and then implanted in a patient by:

- 1. Preparing c-src modified endothelial cells as described in steps (1) and (2) above.
- 2. Performing diagnostic catheterization of the patient to determine the severity, location and amenability of the coronary (or peripheral) artery disease to vascular bypass surgery with autologous, synthetic, or other graft material.
- 3. In the case of a synthetic graft or stent, coating the graft or stent with Type I collagen and fibronectin in saturating amounts greater than or equal to 25 μg/ml in carbonate buffer, pH 9.4; in the case of an autologous graft, harvesting the saphenous vein or other vessel using conventional surgical techniques.
- 25 4. Cannulating the proximal end and ligating the distal end of the synthetic or saphenous vein graft.

- 5. Injecting the c-src modified endothelial cells, at a concentration of, for example, 2-10 x 10⁶ cells per 10 milliliters of solution, through the proximal cannulation port into the lumen of the graft and rotating the graft for approximately 60 minutes to allow the c-src modified endothelial cells to cover the graft surface.
- 6. Implanting the seeded graft in the coronary or peripheral artery using standard fine surgical techniques.

In either case, because the genetically modified endothelial cells express elevated levels pp60c-src, thev exhibit reduced fibronectin 15 production and, at least partially as a result thereof, enhanced cell migration thus providing improved and rapid coverage of the denuded vessel or graft in the case of angioplasty or bypass surgery, respectively. Moreover, because the cells exhibit enhanced u-PA activity, the probability of 20 thrombosis at the vessel wall surface is reduced. Further, because the cells exhibit reduced mononuclear cell adhesion, the likelihood restenosis of the vessel segment as well as the likelihood of plaque formation are reduced. 25

Without intending to limit it in any manner, the present invention will be more fully described by the

10

15

20

25

following examples. The materials and methods which are common to the examples are as follows.

I. Cell culture, migration, proliferation and size.

Bovine calf aortic endothelial cells (BAEC) were isolated, cultured with DME (Gibco Laboratories, Grand Island, NY), and characterized as described in Bell, L. and J. A. Madri. 1989. "Effect of platelet" factors on migration of cultured bovine endothelial and smooth muscle cells, " Circ. Res. 65:1057-1065. See also Madri J.A., Dreyer Pitlick F., Furthmayr H., "The collagenous components of subendothelium: Correlation of structure and function, " <u>Lab. Invest.</u>, 1980, 43: 303-315. adhesion and fibronectin production experiments, the cells were cultured in DMEM (Gibco) with 10% fibronectin-free fetal calf serum (Gibco).

Endothelial cells were first seeded into the middle of a steel fence and allowed to attach to the underlying Type I collagen matrix below; after cell attachment, the fence was removed and, with the loss of contact inhibition, the monolayer of cells commenced radial migration outward over a 6 day period. For the monocyte adhesion and fibronectin production experiments, a laminin matrix, as opposed to a Type I collagen matrix, was used and the monolayer of cells commenced radial migration outward over a 3 day period, as opposed to a 6 day period.

25

The laminin matrix was chosen because BAEC migrate well on laminin (see Madri J.A., Pratt B.M., Yannariello-Brown J., "Matrix driven cell size changes modulate aortic endothelial " cell proliferation and sheet migration, " Amer. J. Pathol. 1988, 132:18-27) and U937 cells do not exhibit detectable adhesion to this material. In this way, U937 cell adhesion to the baseline substratum was not a complicating factor in the endothelial/monocyte adhesion studies.

The role of u-PA in mediating changes in cell migration was evaluated during 3 day migrations of endothelial cells treated with either 5% immune anti-bovine urokinase antiserum administered daily or 5% nonimmune rabbit serum administered daily. See Saksela, O., and D. B. Rifkin. 1990. "Release of basic fibroblast growth factor-heparan sulfate complexes from endothelial cells by plasminogen activator-mediated proteolytic activity," J. Cell Biol. 110:767-775.

The possible contribution of changes in cell proliferation during migration was measured by trypsinizing migrating cells and counting aliquots in a Coulter counter (Coulter Electronics, Inc., Hialeah, FL).

Cell sizes during migration were measured on approximately 100 cells per treatment by morphometric

10

15

20

25

analysis with a digitizing tablet. See Bell and Madri, 1990, supra.

II. <u>Immunoblot analysis</u>.

Cell protein was extracted with RIPA buffer (1% Triton X-100, 1% sodium deoxycholate, 0.1% SDS, 0.15 M NaCl, 0.05 M Tris-HCl, pH 7.2, 1 mM PMSF, and 0.2 mM vanadate) and normalized for total protein using the bicinchonic acid assay. See Smith, P. K., R. I. Krohn, G. T. Hermansion, A. K. Mallia, F. H. Gartner, M. D. Provenzano, E. K. Fujimoto, N. M. Goeke, B. J. Olson and D. C. Klenk. 1985. "Measurement of protein using bicinchonic acid," Anal. Biochem. 150:76-85.

Equal protein loads of the cell lysates were run on a 6% reducing polyacrylamide gel, transferred to nitrocellulose paper, blocked with 4% PBSA, incubated with anti-src monoclonal antibody (MAb327) (Oncogene Science, Inc. Manhasset, NY). See Knecht, D. A. and R. L. Dimond. 1984. "Visualization of antigenic proteins on Western blots, " Anal. Biochem. 136:180-184; and Blake, M. S., K. H. Johnston, G. J. Russell-Jones and E. C. Gotschlich. 1984. "A rapid, sensitive method for detection of alkaline phosphatase-conjugated anti-antibody on Western blots, " Anal. Biochem. 136: 175-179. This antibody also immunoblots and precipitates pp60c-src from cells derived from a wide variety of including bovine vascular smooth muscle cells and

10

15

chicken, rat, and canine cells. See DiSalvo, J., D. Gifford, and A. Kokkinakis. 1988. "pp60c-src kinase activity in bovine coronary extracts is stimulated by ATP," Biochem. Biophys. Res. Commun. 153:388-394; Dorai, T., and L. H. Wang. 1990. "An alternative non-tyrosine protein kinase product of the c-src gene in chicken skeletal muscle," Mol. Cell. Biol. 10:4068-4079; and Warren et al., 1988, supra. Normal mouse sera was found not to immunoblot or precipitate the appropriate 60-kD moiety from bovine, canine, or rat cells.

The immunoblots were developed with rabbit anti-mouse IgG and ¹²⁵I-protein A and then exposed to XAR film (Eastman Kodak Co., Rochester, NY) at -70°C. Quantitative determinations of relative amounts of the src protein were performed using a densitometer (Hoefer Scientific Instruments, San Francisco, CA). III. Kinase assay.

Kinase activity was determined using an assay 20 which relies on the ability of c-src to autophosphorylate. That is, c-src has the ability to transfer a phosphate group to itself from a phosphate donor such as ATP. Accordingly, by labeling ATP in the gamma position with a p32 isotope, the kinase. 25 activity of c-scr can be determined by quantifying the amount of P32 incorporated into the c-src protein.

10

15

20

In accordance with this procedure, cell protein was extracted with RIPA buffer and normalized for total protein as above. Equal amounts of cell protein were then precleared with normal mouse IgG and incubated overnight with MAb327. The antigen/antibody complexes containing active enzyme were precipitated with Protein A sepharose beads, washed with RIPA buffer and subsequently suspended in a substrate-containing buffer composed of 20 mM Tris-HCl, Hq 7.2, mM MgCl₂ with 10 μ Ci γ^{32} ATP/reaction for 10 minutes at 30°C. Warren et al., 1988, supra. The reaction was stopped with excess unlabeled ATP. The beads were boiled solubilization buffer, loaded on a 10% reducing polyacrylamide gel, and the gel was developed with Kodak XAR film at -70°C. Quantitative determinations of relative amounts of c-src kinase activity were performed using a Hoefer densitometer to measure the levels of incorporation of P³² into the protein.

IV. Plasminogen activator activity assay.

Urokinase plasminogen activator activity was measured using the chromogenic substrate H-D-norleucyl-hexahydrotyrosyl-lysine-p-nitroanilide diacetate salt (American Diagnostica, Inc., Greenwich, CT) at a final concentration of 250 mM and human plasminogen at a final concentration of

25 μg/ml in 120 mM Tris-HCl pH 8.7 as described in Bell and Madri, 1990, supra. The results of this assay were confirmed by plasminogen zymography, modified from Granelli-Piperino and Reich, with final concentrations of non-fat milk 4%, 0.1 M Tris-HCl pH 7.2, 8 μg/ml plasminogen, and 1.25% agar. See Granelli-Piperino, A. and E. Reich. 1978. "A study of proteases and protease-inhibitor complexes in biological fluids," J. Exp. Med. 148:223-234.

10 V. Northern blot analysis.

Total cellular RNA was extracted with 4M guanidinium HCl, 5 mM sodium citrate pH 0.1% β -mercaptoethanol, and 0.5% Sarkosyl, centrifuged on a cushion of 5.7 M CsCl in 0.1 M EDTA, and re-extracted with a 4:1 mixture of chloroform and 15 1-butanol and ethanol precipitation. See Maniatis, T., E.F. Fritsch and J. Sambrook. 1982. Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory, Cold Spring Harbor, NY. 196. Total 20 cellular RNA, 20 μ g per lane, was electrophoresed through a 1% formaldehyde gel, transferred to Nytran filters and prehybridized with 0.5 M sodium phosphate pH 7.2, 7% SDS, 1% BSA, 1 mM EDTA for 2 hours at 65°C. See Mahmoudi, Μ. and V.K. Lin. "Comparison of two different hybridization systems in 25 Northern transfer analysis, " Biotech 7:331-333. The blot was hybridized overnight at 65°C with a labeled

dCT³²Pc-src DNA probe, washed twice with 2 x SSC and 0.1% SDS for 30 minutes at 65°C, and developed against Kodak XAR film at -70°C. See Warren et al., 1988, <u>supra</u>. Quantitative determinations of relative amounts of the src mRNA were performed using a Hoefer densitometer. All immunoblots, kinase assays, and RNA hybridizations were performed at least two times.

The c-src coding sequence (SEO. ID. NO. 1) 10 spliced into the helper-free Moloney retroviral vector McsrcΔiSVneo[+]. Id. McsrcAi295SVneo(+), a similar virus which encodes a kinase negative mutant of c-src, Met-295, and a control virus, Hippo42, that encodes Tn5 aminoglycoside phosphotransferase (Neor) 15 were also employed. See Jove, R., S. Kornbluth and H. Hanafusa. 1987. "Enzymatically inactive p60c-src ATP-binding site is mutant with altered fully phosphorylated in its carboxy-terminal regulatory region," Cell. 50:937-43. See also Bell 20 Luthringer D.J., Madri J.A., Warren S.L., "Autocrine angiotensin system regulation of endothelial cell behavior involves modulation of pp60c-src expression, " J. Clin. Invest. 1992, 89: 315-320 10-2 cells were transfected with plasmid DNA using 25 polybrene/DMSO shock. ψ -2 cells were selected G418 (Sigma Chemical Co.) and the filtered media from resistant cells was used to infect ψ -AM cells

described in Cone, R.D. and R.C. Mulligan. 1984. "High-efficiency gene transfer into mammalian cells: generation of helper-free recombinant retrovirus with broad mammalian host range, " Proc. Natl. Acad. Sci. 81:6349-6353. The resulting amphotropic virus was then used to infect subconfluent BAEC which were selected in G418, 400 μ g/ml, until all uninfected BAEC were killed (10 days). For the adhesion and fibronectin production experiments, 10 BAEC were selected in G418 for 3 weeks. Also, these experiments, the polybrene/DMSO shock treatment was conducted for 4 minutes at 20% DMSO and 30 μ g/ml polybrene, the selection of the transfected $\psi\text{-2}$ cells was performed using a G418 concentration 15 400 μ g/ml, the filtering of the media containing ecotropic viral particles was performed using 0.45 micron membranes, and the $\psi ext{-AM}$ were infected at a polybrene concentration of 8 µg/ml.

Infection of the endothelial cells and transfer 20 of the c-src gene was readily accomplished following these techniques. The transformed cells were found to grow stably for at least six months and to maintain their genetically altered properties for at least 2 years when frozen.

25 VII. Immunofluorescence.

Migrating cells were washed four times with PBS, periodate-lysine-paraformaldehyde fixed with

15

20

25

fixative, permeabilized with 0.2% Triton X-100, and blocked overnight with PBS with 3% BSA. Cells were incubated with either nonimmune rabbit serum or rabbit anti-bovine u-PA antisera and rhodamine conjugated goat anti-rabbit secondary antibody. Cells were examined on a MRC-600 confocal microscope Laboratories, Richmond, (Bio-Rad CA). Cells incubated with nonimmune serum demonstrated detectable staining.

10 VIII. Monocytic Cell Adhesion Assay

U937 cells obtained from the American Type Culture Collection, 12301 Parklawn Drive, Rockville, Maryland, 20852, United States of America, were used in the adhesion assay (accession number ATCC CRL 1593). These cells are human histiocytic lymphoma cells obtained from the pleural effusion of a 37-year-old Caucasian male with diffuse histiocytic lymphoma (Sundstrom and Nilsson, Int. J. Cancer 17:565-577, 1976). The cells were propagated in the medium suggested by the ATCC, i.e., RPMI 1640, 90%, fetal bovine serum, 10%. U937 cells were chosen for these experiments since they are widely used as a representative of monocyte cells.

Adhesion of the U937 cells to BAEC cultures that had been migrating for three days was assessed in the assay. BAEC cultures that had been migrating for this period of time were washed with RPMI 1640

10

medium, incubated with 3x106 U937 cells in 1.3 RPMI 1640 for two hours at 37°C, fixed buffered formalin/2% glutaraldehyde, washed and stained with hematoxylin. After the fixation and staining procedure, bound U937 cells were counted (nine adjacent microscopic fields, starting from the migrating edge and progressing inward, toward center of the dish; each field representing an area of 0.10 mm^2). Data are expressed as adherent cells/field. Shown are mean values and standard Significances were obtained using errors. unpaired t-test.

IX. ELISA protein determinations.

Purified human plasma fibronectin and affinitypurified antibodies against fibronectin were isolated 15 and purified as described in Basson C.T., Knowles W.J., Abelda S., Bell L., Castronovo V., Liotta L.A., J.A., "Spatiotemporal Madri segregation endothelial cell integrin and non-integrin 20 extracellular matrix binding proteins during adhesion events, " J. Cell. Biol. 1990, 110: 789-802, and Madri J.A., Roll F.J., Furthmayr H., Foidart J.M., ultrastructural localization of fibronectin and laminin in the basement membranes of the murine kidney," J. Cell. Biol. 1980, 86: 682-687. The 25 procedures of these references were also used to isolate and purify laminin from EHS tumor.

Concentrations of fibronectin in the medium and cell layers of migrating endothelial cells were determined by a quantitative ELISA inhibition assay sensitive to 0.1 ng. See Madri J.A., Pratt B.M., Tucker A.M., "Phenotypic modulation of endothelial cells by transforming growth factor- β depends upon the composition and organization of the extracellular matrix," J. Cell. Biol. 1988, 106:1375-1384.

X. Statistical analysis.

10 Changes in migration, proliferation, and u-PA activity were analyzed by analysis of variance and correction was made for multiple comparisons using the method of Bonferroni. Statistical significance was assumed for P<0.05. For the monocyte adhesion and fibronectin production experiments, statistical analyses were performed using the STATWORKS program and a MACINTOSH IIci computer.

Example 1

Enhanced Migration of Genetically

20

Engineered Endothelial Cells

This example demonstrates the enhanced migration of endothelial cells which have been genetically engineered to express higher than normal levels of pp60c-src.

Using the amphotropic, helper-free retroviral vector McsrcAiSVneo(+) described above, the c-src gene was transferred into subconfluent bovine aortic

20

endothelial cells (BAEC). In addition, BAEC were infected with the kinase negative c-src mutant, McsrcΔi295SVneo(+), and with a control Hippo42, that encodes Tn5 aminoglycoside phosphotransferase (Neor). The structures of the retroviral vectors used for these transformations are shown in Figure 1.

With regard to their general behavior, the c-src infected endothelial cells did not overgrow 10 monolayers or proliferate in suspension, were contact inhibited, exhibited sheet migration, and retained Factor VIII staining. The proliferation (determined by cell counting) of migrating cells that expressed elevated c-src levels, elevated levels of the kinase negative mutant, and Neor alone did not 15 differ. The cells that expressed elevated levels of c-src appeared rounder and less flattened than the cells expressing Neor alone, but their cytoplasmic areas were similar (552±19 vs. $626\pm63 \, \mu m^2$ respectively, P = not significant).

The transformed endothelial cells were tested for expression of pp60c-src, production of mRNA, and c-src kinase activity.

The cells transformed with the c-src expressed pp60c-src at higher levels than control 25 BAEC cells (i.e., cells that had undergone no genetic engineering) as evidenced by the fact that

immunoblot assay showed evidence of pp60°-src after exposure of the XAR film for less than one day to extracts from transformed cells while extracts from control cells required a seven day exposure before evidence of this protein was seen.

The steady state src protein levels for the endothelial cells that expressed the kinase negative mutant were found to be even higher than those for the cells that expressed elevated levels of the c-src protein (i.e., on the order of 11 fold higher). However, no biologic effects were observed as a result of the expression of the kinase negative mutant src protein.

Steady state level of the c-src retroviral mRNA transcript was fourfold greater in endothelial cells that expressed the kinase negative mutant than in cells that expressed elevated levels of wild-type c-src.

With regard to kinase activity, as shown in Figure 2, the <u>in vitro</u> src kinase activity was 2-3 fold greater in the cells that expressed elevated levels of c-src than in cells that expressed the kinase negative mutant or Neor alone.

25 Significantly, with regard to the critical variable of cell migration, it was found that endothelial cells that expressed elevated levels of

25

c-src migrated at a markedly faster rate in the fence assay than cells that expressed the kinase negative mutant, Neor alone, or noninfected cells. The results of these experiments are shown in Figure 3, where each column (bar) represents the result of 8-10 replicates and the mean ± 1 SEM is shown. The difference between the c-src infected cells and the control cells is statistically significant at the 0.001 level.

As discussed above, the enhanced migration rates shown in Figure 3 mean that the genetically engineered endothelial cells of the present invention are superior to unmodified cells in terms of their ability to cover denuded sections of blood vessels and/or synthetic or natural grafts.

Example 2

Enhanced u-PA Activity of Genetically Engineered Endothelial Cells

This example demonstrates the enhanced u-PA 20 activity of endothelial cells which have been genetically engineered to express higher than normal levels of pp60c-src.

Control and genetically modified cells of the types described above in Example 1 were used for these experiments. u-PA activity was determined as described above.

10

15

Figure 4 shows the results obtained. As shown therein, u-PA activity was significantly greater endothelial cells that expressed elevated levels of c-src than in cells that expressed the negative mutant. Neor alone, noninfected or endothelial cells. Each column (bar) in Figure 4 represents the result of 5 replicates and the $mean \pm 1$ SEM is shown. The difference between the c-src infected cells and the control cells was again statistically significant at the 0.001 level.

The enhanced production of u-PA is also illustrated by the photomicrographs of Figure 5. These photographs show the leading edge of the migrating endothelial cells after immunofluorescent staining as described above. Figure 5A shows cells expressing Neor alone, while Figure 5B shows cells expressing elevated levels of c-src. As can be seen in this figure, the cells which have been genetically modified in accordance with the invention have significantly higher levels of u-PA production. discussed above, this result means that these cells are superior to unmodified cells in terms of their ability to dissolve and/or prevent thrombus formation at the site of a surgical procedure.

20

PCT/US93/00445

5

20

25

Example 3

<u>Interrelationship Between Enhanced</u> <u>u-PA Activity and Enhanced Migration</u>

This example demonstrates that the enhanced migration achieved by the genetically engineered cells of the present invention is at least partially dependent on the enhanced u-PA production of those cells.

Antisera to bovine u-PA and nonimmune rabbit

antisera were used to demonstrate the dependence.

Migrating cells expressing elevated levels of pp60c-src and Neor cells were exposed to the antibodies. The results are shown in Figure 6, where each column (bar) represents the result of 4 replicates and the mean ± 1 SEM is shown.

The migration of the two cell types without antisera treatment are shown by the left most (solid) bars. As in Example 2, the c-src cells migrate significantly faster than the Neo^r cells (P<0.001). Incubation with nonimmune rabbit antisera did not significantly change the migration of either cell type as shown by the middle (cross-hatched) bars. Incubation with anti-u-PA antisera, however, did significantly reduce the migration of the c-src cells (P<0.01) but not that of the Neo^r cells as shown by the right most (open) bars.

WO 93/14193 PCT/US93/00445

-50-

As this data shows, there is an interrelationship between the enhanced migration and enhanced u-PA activity exhibited by the genetically engineered cells of the invention in that binding of the u-PA by antibody diminishes the migration rate of the cells.

Example 4

Reduced Adherence of Monocytes to Genetically Engineered Endothelial Cells

This example demonstrates the reduced adherence of monocytes to endothelial cells which have been genetically engineered to express higher than normal levels of pp60c-src.

5

Using the adhesion assay described above, the adherence of U937 cells to migrating cultures of 15 non-genetically engineered BAEC was determined. monocytes were found to exhibit significant adherence to the monolayers of migrating BAEC, specifically to cells at or near the migratory front. The U937 cells 20 adhered mainly around the periphery of endothelial cells in this region, consistent with the loss of continuous cell-cell contact and changes in the expression of fibronectin in the zone of the migrating fronts. See Madri J.A., Pratt B.M., 25 Yannariello-Brown J., "Matrix driven cell size changes modulate aortic endothelial cell proliferation and sheet migration, " Amer. J. Pathol.

20

1988, 132:18-27; Madri J.A., Reidy M., Kocher O., Bell L., "Endothelial cell behavior following denudation injury is modulated by TGF-β and fibronectin," Lab. Invest. 1989, 60:755-765; and DiCorleto P.E., De La Motte C.A., "Characterization of the adhesion of the human monocytic cell line U937 to cultured endothelial cells," J. Clin. Invest. 1985, 75: 1153-1161.

Stable overexpression of pp60c-src was found to

decrease U937 cell adherence to migrating BAEC.

Figure 7 illustrates this effect where the open bars represent the number of U937 cells bound to non-genetically engineered BAEC cells, the shaded bars, the number bound to BAEC cells expressing the

Neor gene, and the solid bars, the number bound to BAEC cells which overexpress pp60c-src.

As can be seen in this figure, overexpression of pp60c-src significantly decreases U937 cell adhesion to migrating BAEC (p < 0.05). This decrease is manifest throughout the entire width of the migratory front that exhibits U937 adherence (-25% at 0.0 to 0.1 mm, -50% at 0.1 to 1.2 mm, -60% at 0.2 to 0.3 mm, and -60% at 0.3 mm to 0.4 mm).

The reduced monocyte adhesion shown by these

25 experiments means that atherosclerotic plaques are
less likely to occur in a vessel or graft containing
the genetically engineered endothelial cells of the

10

15

20

invention than in a vessel or graft containing non-genetically engineered endothelial cells since, as discussed above, the adherence of mononuclear cells to the endothelial lining of the vessel wall contributes to the atherosclerotic disease process.

Example 5

Reduced Fibronectin Production by Genetically Engineered Endothelial Cells

This example demonstrates the reduced production of fibronectin by endothelial cells which have been genetically engineered to express higher than normal levels of pp60c-src.

Figure 8 shows the production of fibronectin, as determined by ELISA, of: 1) BAEC expressing only the neomycin resistance gene (neor), and 2) BAEC expressing the neomycin resistance gene overexpressing pp60c-src (c-src). As shown in this figure, migrating BAEC expressing the neomycin resistance gene and overexpressing pp60c-src exhibit significantly decreased steady state fibronectin levels (5.05 \pm 3.50 μ g/cell x 10-9) compared to migrating BAEC expressing only the neomycin resistance gene (35.50 \pm 1.90 μ g/cell x 10-9), seven-fold decrease (p < 0.05).

20

Example 6

Interrelationship Between

Monocyte Adhesion and Fibronectin Production

This example demonstrates that the reduced adhesion of monocytes to the genetically engineered cells of the present invention is at least partially dependent upon the reduced production of fibronectin by those cells.

The experiments employed the cytokine $TGF-\beta 1$ which is known to induce fibronectin production by 10 BAEC. See Madri J.A., Reidy M., Kocher O., Bell L., "Endothelial cell behavior following denudation injury is modulated by TGF- β and fibronectin," <u>Lab.</u> Invest. 1989, 60: 755-765. The TGF- β 1 used in these 15 tests was obtained from the National Cancer Institute, National Institutes of Health, Bethesda, Maryland.

In initial experiments, cultures of non-genetically engineered BAEC migrating on a laminin substrate were treated with TGF-β1 at a concentration of 0.5 ng/ml. This treatment resulted in a significant increase (70%) in adherence of U937 cells to the migrating fronts of the monolayers of BAEC.

TGF-β1 treatment of genetically engineer d BAEC was similarly found to result in an increase in U937 cell adherence at or near the migrating front.

10

15

20

25

Specifically, when treated with 0.5 ng/ml TGF- β 1, BAEC which express the neomycin resistance gene and overexpress pp60^{c-src} exhibit increased adherence for U937 cells similar to that observed in non-genetically engineered BAEC treated with the same concentration of TGF- β 1.

The results of these experiments are shown in Figure 9 wherein the open bars represent the reduced adherence achieved by the BAEC which overexpress pp60c-src and the open bars represent the increase in adherence resulting from the treatment of these cells with TGF-β1. As illustrated in this figure, a 150% increase in U937 cell adhesion results from the TGF-β1 treatment of the pp60c-src and neomycin resistance gene expressing cells (p < 0.05).Immunofluorescence using antibodies directed against fibronectin revealed that pp60c-src transfected BAEC treated with TGF-\$1 synthesized and deposited increased amounts of fibronectin into the cell layer compared to untreated cells.

As this data shows, there is an interrelationship between the reduced adhesion of monocytes to the genetically engineered endothelial cells of the invention and the reduced production of fibronectin by those cells.

A variety of modifications which do not depart from the scope and spirit of the invention will be

WO 93/14193 PCT/US93/00445

-55-

evident to persons of ordinary skill in the art from the disclosure herein. The following claims are intended to cover the specific embodiments described herein as well as such modifications, variations, and equivalents.

10

5

15

2.0

SEQUENCE LISTING

- (1) GENERAL INFORMATION:
 - (i) APPLICANT: Bell, Leonard
 Madri, Joseph A.
 Warren, Stephen L.
 Luthringer, Daniel J.
 - (ii) TITLE OF INVENTION: Genetically Engineered Endothelial Cells
 - (iii) NUMBER OF SEQUENCES: 4
 - (iv) CORRESPONDENCE ADDRESS:
 - (A) ADDRESSEE: Maurice M. Klee
 - (B) STREET: 1951 Burr Street
 - (C) CITY: Fairfield
 - (D) STATE: Connecticut
 - (E) COUNTRY: USA
 - (F) ZIP: 06430
 - (v) COMPUTER READABLE FORM:
 - (A) MEDIUM TYPE: 3.5 inch, 760 Kb storage
 - (B) COMPUTER: DELL 486/50
 - (C) OPERATING SYSTEM: DOS 5.0
 - (D) SOFTWARE: Displaywrite 3
 - (vi) CURRENT APPLICATION DATA:
 - (A) APPLICATION NUMBER:
 - (B) FILING DATE: 05-JAN-1993
 - (C) CLASSIFICATION:
 - (vii) PRIOR APPLICATION DATA:
 - (A) APPLICATION NUMBER: 07/820,011
 - (B) FILING DATE: 06-JAN-1992

- (viii) ATTORNEY/AGENT INFORMATION:
 - (A) NAME: Klee, Maurice M.
 - (B) REGISTRATION NUMBER: 30,399
 - (C) REFERENCE/DOCKET NUMBER: ALX-101PCT
 - (ix) TELECOMMUNICATION INFORMATION:
 - (A) TELEPHONE: (203) 255 1400
 - (B) TELEFAX: (203) 254 1101

- (2) INFORMATION FOR SEQ ID NO:1:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 1602 base pairs
 - (B) TYPE: Nucleic Acid
 - (C) STRANDEDNESS: Double
 - (D) TOPOLOGY: Linear
 - (ii) MOLECULE TYPE: cDNA to mRNA
 - (iii) HYPOTHETICAL: No
 - (iv) ANTI-SENSE: No
 - (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: Gallus, gallus
 - (x) PUBLICATION INFORMATION:
 - (A) AUTHORS: Takeya, Tatsuo Hanafusa, Hidesaburo
 - (B) TITLE: Structure and Sequence of the Cellular Gene Homologous to the RSV src Gene and the Mechanism for Generating the Transforming Virus
 - (C) JOURNAL: Cell
 - (D) VOLUME: 32
 - (F) PAGES: 881-890
 - (G) DATE: March, 1983

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:1:

ATG GGG Met Gly	AGC AGC Ser Ser	C AAG AGG Lys Sen 5	C AAG CO	CC AAG	GAC Asp 10	Pro	AGC Ser	CAG Gln	CG C Ar g	CGG Arg 15	Arg	48
AGC CTG Ser Leu	GAG CCA Glu Pro 20	A CCC GAC Pro Asp	C AGC AC Ser Th	CC CAC Ir His 25	His	GGG Gly	GGA Gly	TTC Phe	CCA Pro 30	GCC Ala	TCG Ser	96
CAG ACC Gln Thr	CCC AAC Pro Asn 35	AAG ACA	, YIS YI	C CCC a Pro 0	GAC Asp	ACG Thr	CAC His	CGC Arg 45	ACC Thr	CCC	AGÇ Ser	144
CGC TCC Arg Ser 50	TTT GGG Phe Gly	ACC GTG Thr Val	GCC AC Ala Th 55	C GAG r Glu	CCC Pro	AAG Lys	CTC Leu 60	TTC Phe	GGG Gly	GGC Gly	TTC Phe	192
AAC ACT Asn Thr	TCT GAC Ser Asp	ACC GTT Thr Val	Thr Se	G CCG r Pro	CAG Gln	CGT Arg 75	GCC Ala	GGG Gly	GCA Ala	CTG Leu	GCT Ala 80	240
GGC	GTC ACC Val Thr	ACT TTC Thr Phe 85	GTG GC	r CTC a Leu	TAC Tyr 90	GAC Asp	TAC Tyr	GAG Glu	TCC Ser	CGG Arg 95	ACT Thr	288
GAA ACG (Glu Thr)	AEP Leu 100	TCC TTC Ser Phe	AAG AAI Lys Lys	A GGA Gly 105	GAA Glu	CGC (CTG (Leu (Gln :	ATT Ile 110	GTC Val	AAC Asn	336
AAC ACG (Asn Thr (SAA GGT Slu Gly	GAC TGG Asp Trp	TGG CTG Trp Leu 120	Ala	CAT His	TCC (Ser 1	Leu :	ACT I Thr :	ACA (Fhr (GGA Gly	CAG Gln	384
ACG GGC T Thr Gly T	TAC ATC	CCC AGT Pro Ser	AAC TAT Asn Tyr 135	GTC Val	GCG (Pro S	rca (Ser <i>l</i> 140	Asp S	CC A	ATC (CAG Gln	4)2
GCT GAA G Ala Glu G 145	AG TGG lu Trp	TAC TTT Tyr Phe 150	GGG AAG Gly Lys	ATC Ile	Thr 1	CGT C Arg A	rg e	SAG T	CC (er (lu I	CGG Arg 160	480

CTC Leu	CTC	CTO	C AAC 1 Asn	CCC Pro 165	Glu	AAC Asn	CCC Pro	CGG Arg	GGA Gly 170	Thi	C TTC Phe	: TTG	GT(C CGG	GAG GLu	528
				Lys					Leu					Phe	GAC Asp	576 *
			Gly					His					Lys		GAC Asp	624
AGC Ser	GGC Gly 210	Gly	TTC Phe	TAC Tyr	ATC Ile	ACC Thr 215	TCA Ser	CGC Arg	ACA Thr	CAG Gln	TTC Phe 220	AGC Ser	AGC Ser	CTG Leu	CAG Gln	672
CAG Gln 225	CTG Leu	GTG Val	GCC Ala	TAC Tyr 230	TAC Tyr	TCC Ser	AAA Lys	CAT His	GCT Ala	GAT Asp 235	GGC	TTG Leu	TGC Cys	CAC His	CGC Arg 240	720
CTG Leu	ACC Thr	AAC Asn	GTC Val	TGC Cys 245	CCC Pro	ACG Thr	TCC Ser	AAG Lys	CCC Pro 250	CAG Gln	ACC Thr	CAG Gln	GGA Gly	CTC Leu 255	GCC Ala	768
AAG Lys	GAC Asp	GCG Ala	TGG Trp 260	GAA Glu	ATC Ile	CCC Pro	CGG Arg	GAG Glu 265	TCG Ser	CTG Leu	CGG Arg	CTG Leu	GAG Glu 270	GTG Val	AAG Lys	816
CTG Leu	GGG Gly	CAG Gln 275	GGC Gly	TGC Cys	TTT Phe	GGA Gly	GAG Glu 280	GTC Val	TGG Trp	ATG Met	GGG Gly	ACC Thr 285	TGG Trp	AAC Asn	GGC Gly	864
ACC Thr	ACC Thr 290	AGA Arg	GTG Val	GCC Ala	ATA Ile	AAG Lys 295	ACT Thr	CTG Leu	AAG Lys	CCC Pro	GGC Gly 300	AAC Thr	ATG Met	TCC Ser	CCG Pro	912
GAG Glu 305	GCC Ala	TTC Phe	CTG Leu	Gln	GAA Glu 310	GCC Ala	CAA Gln	GTG Val	Met	AAG Lys 315	AAG Lys	CTC Leu	CGG Arg	His	GAG Glu 320	960
AAG Lys	CTG Leu	GTT Val	Gln :	CTG ' Leu ' 325	TAC Tyr	GCA (Ala '	GTG Val	Val	TCG Ser 330	GAA Glu	GAG (CCC . Pro	ATC Ile	TAC Tyr 335	ATC Ile	1008

GTC Val	ACT Thr	GA(340	T 1-1-C	G AG	C AA	G GG S Gl	G AG y Se 34	r re	C CI	rg <i>gz</i> eu As	AT TI	CC CT ie Le 35	u Ly	AG GGA 's Gly	1056
GAG Glu	ATG Met	GGC Gly 355	. пуs	G TA S Ty	C CT r Le	G CG u Ar	G CT g Le 36	u Pro	A CA O Gl	G CI n Le	C GT u Va	C GA 1 As 36	p Me	G GC t Al	T GCT a Ala	1104
CAG Gln	ATT Ile 370	GCA Ala	TCC Ser	C GG Gl	C ATO	G GC(t Ala 379	2 TY	r GTO	GA Gl	G AG u Ar	G AT 9 Me 38	t As	C TA n Ty	C GT r Va	G CAC l His	1152
CGA Arg 385	طحط	CTG Leu	CGG Arg	GCC Ala	G GC0 A Ala 390	ASI	C ATO	C CTG	GT(G GG(1 G1; 395	y Gl	G AA	C CTO	G GTG	G TGC l Cys 400	1200
AAG Lys	GTG Val	GCT Ala	GAC Asp	TTT Phe 405	: GT	G CTG Leu	GCA Ala	CGC Arg	CTC Lev 410	ı Ile	C GAC ≘ Glu	GA(1 Asp	C AAC Asr	GAC Glu 415	TAC Tyr	1248
ACA (GCA Ala	CGG Arg	CAA Gln 420	GGT Gly	GCC Ala	AAG Lys	TTC	CCC Pro 425	ATC	AAG Lys	TGG Trp	ACA Thr	GCC Ala 430	Pro	GAG Glu	1296
GCA (CTC Leu 435	TAT Tyr	GGC Gly	CGG Arg	TTC Phe	ACC Thr 440	ATC Ile	AAG Lys	TCG Ser	GAT Asp	GTC Val 445	Trp	TCC Ser	TTC Phe	1344
GGC 2 Gly 1	ATC (lle 1 150	CTG Leu	CTG Leu	ACT Thr	GAG Glu	CTG Leu 455	ACC Thr	ACC Thr	AAG Lys	GGC	CGG Arg 460	GTG Val	CCA Pro	TAC Tyr	CCA Pro	1392
GGG A Gly M 465	TG (TC :	AAC Asn	AGG Arg	GAG Glu 470	GTG Val	CTG Leu	GAC Asp	CAG Gln	GTG Val 475	GAG Glu	AGG Arg	GGC Gly	TAC Tyr	CGC Arg 480	1440
ATG C	ro C	GC (Prd	CCC Pro 485	GAG Glu	TGC Cys	CCC Pro	GIU	TCG Ser 490	CTG Leu	CAT His	GAC Asp	CTC Leu	ATG Met 495	TGC Cys	1488
CAG TO	GC T ys T	Th Y	CGG 1 Arg 1	AGG Arg	GAC Asp	CCT Pro	GIU	GAG (Glu) 505	CGG Arg	CCC Pro	ACT Thr	Phe	GAG Glu 510	TAC Tyr	CTG Leu	1536

PCT/US93/00445

WO 93/14193

530

-62-

CAG GCC TTC CTG GAG GAC TAC TTC ACC TCG ACA GAG CCC CAG TAC CAG Gln Ala Phe Leu Glu Asp Tyr Phe Thr Ser Thr Glu Pro Glu Tyr Gln 515

CCT GGA GAG AAC CTA TAG Pro Gly Glu Asn Leu

- (3) INFORMATION FOR SEQ ID NO:2:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 533 amino acids
 - (B) TYPE: Amino Acid
 - (D) TOPOLOGY: Linear
 - (ii) MOLECULE TYPE: Protein
 - (iii) HYPOTHETICAL: No
 - (v) FRAGMENT TYPE: Complete Sequence
 - (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: Gallus, gallus
 - (x) PUBLICATION INFORMATION:
 - (A) AUTHORS: Takeya, Tatsuo Hanafusa, Hidesaburo
 - (B) TITLE: Structure and Sequence of the Cellular Gene Homologous to the RSV src Gene and the Mechanism for Generating the Transforming Virus
 - (C) JOURNAL: Cell
 - (D) VOLUME: 32
 - (F) PAGES: 881-890
 - (G) DATE: March, 1983

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:2:

Met Gly Ser Ser Lys Ser Lys Pro Lys Asp Pro Ser Gln Arg Arg
5 10 15

Ser Leu Glu Pro Pro Asp Ser Thr His His Gly Gly Phe Pro Ala Ser 20 25 30

Gln Thr Pro Asn Lys Thr Ala Ala Pro Asp Thr His Arg Thr Pro Ser 35 40 45

Arg Ser Phe Gly Thr Val Ala Thr Glu Pro Lys Leu Phe Gly Gly Phe 50 55 60

Asn Thr Ser Asp Thr Val Thr Ser Pro Gln Arg Ala Gly Ala Leu Ala 65 70 75 80

Gly Gly Val Thr Thr Phe Val Ala Leu Tyr Asp Tyr Glu Ser Arg Thr 85 90 95

Glu Thr Asp Leu Ser Phe Lys Lys Gly Glu Arg Leu Gln Ile Val Asn 100 105 110

Asn Thr Glu Gly Asp Trp Trp Leu Ala His Ser Leu Thr Thr Gly Gln 115 120 125

Thr Gly Tyr Ile Pro Ser Asn Tyr Val Ala Pro Ser Asp Ser Ile Gln 130 135 140

Ala Glu Glu Trp Tyr Phe Gly Lys Ile Thr Arg Arg Glu Ser Glu Arg 145 150 155 160

Leu Leu Leu Asn Pro Glu Asn Pro Arg Gly Thr Phe Leu Val Arg Glu 165 170 175

Ser Glu Thr Thr Lys Gly Ala Tyr Cys Leu Ser Val Ser Asp Phe Asp 180 185 190

Asn Ala Lys Gly Leu Asn Val Lys His Tyr Lys Ile Arg Lys Leu Asp 195 200 205

Ser Gly Gly Phe Tyr Ile Thr Ser Arg Thr Gln Phe Ser Ser Leu Gln 210 220

Gln Leu Val Ala Tyr Tyr Ser Lys His Ala Asp Gly Leu Cys His Arg 225 230 235 240

Leu Thr Asn Val Cys Pro Thr Ser Lys Pro Gln Thr Gln Gly Leu Ala 245 250 255

Lys Asp Ala Trp Glu Ile Pro Arg Glu Ser Leu Arg Leu Glu Val Lys 260 265 270

Leu Gly Gln Gly Cys Phe Gly Glu Val Trp Met Gly Thr Trp Asn Gly 275 280 285

Thr Thr Arg Val Ala Ile Lys Thr Leu Lys Pro Gly Thr Met Ser Pro 290 295 300

Glu Ala Phe Leu Gln Glu Ala Gln Val Met Lys Lys Leu Arg His Glu 305 310 315 320

Lys Leu Val Gln Leu Tyr Ala Val Val Ser Glu Glu Pro Ile Tyr Ile 325 330 335

Val Thr Glu Tyr Met Ser Lys Gly Ser Leu Leu Asp Phe Leu Lys Gly 340 350

Glu Met Gly Lys Tyr Leu Arg Leu Pro Gln Leu Val Asp Met Ala Ala 355 360 365

Gln Ile Ala Ser Gly Met Ala Tyr Val Glu Arg Met Asn Tyr Val His 370 380

Arg Asp Leu Arg Ala Ala Asn Ile Leu Val Gly Glu Asn Leu Val Cys 385 390 395 400

Lys Val Ala Asp Phe Gly Leu Ala Arg Leu Ile Glu Asp Asn Glu Tyr 405 410 415 Thr Ala Arg Gln Gly Ala Lys Phe Pro Ile Lys Trp Thr Ala Pro Glu 420 425 430

Ala Ala Leu Tyr Gly Arg Phe Thr Ile Lys Ser Asp Val Trp Ser Phe 435 440 445

Gly Ile Leu Leu Thr Glu Leu Thr Thr Lys Gly Arg Val Pro Tyr Pro 450 460

Gly Met Val Asn Arg Glu Val Leu Asp Gln Val Glu Arg Gly Tyr Arg 465 470 475 480

Met Pro Cys Pro Pro Glu Cys Pro Glu Ser Leu His Asp Leu Met Cys 485 490 495

Gln Cys Trp Arg Arg Asp Pro Glu Glu Arg Pro Thr Phe Glu Tyr Leu 500 505 510

Gln Ala Phe Leu Glu Asp Tyr Phe Thr Ser Thr Glu Pro Glu Tyr Gln 515 520 525

Pro Gly Glu Asn Leu 530

- (4) INFORMATION FOR SEQ ID NO:3:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 1611
 - (B) TYPE: Nucleic Acid
 - (C) STRANDEDNESS: Double
 - (D) TOPOLOGY: Linear
 - (ii) MOLECULE TYPE: cDNA to mRNA
 - (iii) HYPOTHETICAL: No
 - (iv) ANTI-SENSE: No
 - (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: Homo sapien
 - (viii) POSITION IN GENOME:
 - (A) CHROMOSOME/SEGMENT: Chromosome 20
 - (x) PUBLICATION INFORMATION:
 - (A) AUTHORS: Anderson, Stephen K.
 Gibbs, Carol P.
 Tanaka, Akio
 Kung, Hsing-Jien
 Fujita, Donald J.
 - (B) TITLE: Human Cellular src Gene:
 Nucleotide Sequence and Derived Amino
 Acid Sequence of the Region Coding for
 the Carboxy-Terminal Two-Thirds of
 pp60c-src
 - (C) JOURNAL: Molecular and Cellular Biology
 - (D) VOLUME: 5
 - (E) ISSUE: 5
 - (F) PAGES: 1122-1129
 - (G) DATE: May, 1985
 - (x) PUBLICATION INFORMATION:
 - (A) AUTHORS: Tanaka, Akio Gibbs, Carol P.

-68-

Arthur, Richard R. Anderson, Stephen K. Kung, Hsing-Jien Fujita, Donald J.

- (B) TITLE: DNA Sequence Encoding the Amino-Terminal Region of the Human c-src Protein: Implications of Sequence Divergence among src-Type Kinase Oncogenes
- (C) JOURNAL: Molecular and Cellular Biology
- (D) VOLUME: 7
- (E) ISSUE: 5
- (F) PAGES: 1978-1983
- (G) DATE: May, 1987

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:3:

ATG GGT Met Gly	AGC AAG Ser Ası	C AAG AG n Lys Se 5	C AAG C r Lys P	CC AAG	GAT Asp 10	Ala	AGC Ser	CAG Gln	CGG Ar g	CGC Arg	Arg	48
AGC CTG Ser Leu	GAG CCC Glu Pro 20	C GCC GA(D Ala Gli)	G AAC G 1 Asn V	TG CAC al His 25	Gly	GCT Ala	GGC Gly	GGG Gly	GGC Gly 30	GCT Ala	TTC Phe	96
CCC GCC Pro Ala	TCG CAG Ser Gln 35	ACC CCC	Ser Ly	AG CCA vs Pro 10	GCC Ala	TCG Ser	GCC Ala	GAC Asp 45	GGC Gly	CAC His	CGC Arg	144
GGC CCC Gly Pro 50	AGC GCG Ser Ala	GCC TTC Ala Phe	GCC CC Ala Pr 55	CC GCG	GCC Ala	GCC Ala	GAG Glu 60	CCC Pro	AAG Lys	CTG Leu	TTC Phe	192
GGA GGC Gly Gly 65	TTC AAC Phe Asn	TCC TCG Ser Ser 70	Asp Tr	C GTC r Val	ACC Thr	TCC Ser 75	CCG (CAG . Gln .	AGG Arg	GCG Ala	GGC Gly 80	240
CCG CTG (Pro Leu)	GCC GGT Ala Gly	GGA GTG Gly Val 85	ACC AC	C TTT r Phe	GTG Val 90	GCC Ala	CTC : Leu :	FAT (Fyr 1	GAC ' Asp '	TAT Tyr 95	GAG Glu	288
TCT AGG A	ACG GAG Thr Glu 100	ACA GAC Thr Asp	CTG TC Leu Se	C TTC r Phe 105	AAG :	AAA (Lys (GGC G	lu A	CGG (Arg 1	CTC Leu	CAG Gln	336
ATT GTC A	AAC AAC Asn Asn	ACA GAG Thr Glu	GGA GA Gly As 12	o Trp	TGG (CTG (Leu <i>l</i>	Ala H	AC I lis S .25	CG (Ser I	CTC Leu	AGC Ser	384
ACA GGA C Thr Gly G	AG ACA	GGC TAC Gly Tyr	ATC CCC Ile Pro 135	C AGC	AAC 1 Asn 1	lyr V	TG G al A	CG C la P	CC I	CC er	GAC Asp	432
TCC ATC C Ser Ile G 145	AG GCT	GAG GAG Glu Glu 150	TGG TAT	TTT (Gly I	AAG A ys I .55	TC A	CC A hr A	GA C rg A	rg. (SAG Slu 160	480

					. Leu					Pro					CTC Leu	
				Glu					Ala					Val	TCT Ser	
			Asn					Asn					Lys		CGC Arg	
		Asp										Thr			AAC Asn	672
			CAG Gln													720
			CTC Leu													768
			AAG Lys 260													816
			CTG Leu										Met			864
			ACC Thr													912
			GAG Glu													960
AGG Arg	CAT His	GAG Glu	AAG Lys	CTG Leu 325	Val	CAG Gln	TIG Leu	Tyr	GCT Ala 330	GTG Val	GTT Val	TCA Ser	Glu	GAG Glu 335	CCC Pro	1008

4.4.6	- 1y.	T TT,	e va. ∵34:	0	r Git	т лАл	r Met	345	Ly:	s Gly	y Sei	r Lei	u Let 35	u As O	C TTT p Phe	
CT(Lev	C AA(G GG(G Gl) 359	λ GTI	G ACI	A GG(C AAG	TAC Tyr 360	. ьег	G CGO	G CTC	CCI Pro	CA(Gl: 36!	a Let	G GT	G GAC L Asp	1104
ATG Met	GCT Ala 370	LALL	CAC Glr	ATC	C GCC Ala	C TCA Ser 375	. GTĀ	ATG Met	GCG Ala	TAC Tyr	GTG Val 380	. Glu	G CGC	ATO	G AAC Asn	1152
TAC Tyr 385	val	CAC His	CGG Arg	GAC Asp	CTT Leu 390	Arg	GCA Ala	GCC Ala	AAC Asn	ATC Ile 395	CTG Leu	GTG Val	GGA Gly	GAG	AAC Asn 400	1200
CTG Leu	GTG Val	TGC	AAA Lys	GTG Val 405	ALA	GAC Asp	TTT Phe	GGG Gly	CTG Leu 410	GCT Ala	CGG Arg	CTC Leu	ATT	GAA Glu 415	GAC Asp	1248
AAT Asn	GAG Glu	TAC Tyr	ACG Thr 420	GCG Ala	CGG Arg	CAA Gln	GGT Gly	GCC Ala 425	AAA Lys	TTC Phe	CCC Pro	ATC Ile	AAG Lys 430	TGG Trp	ACG Thr	1296
GCT Ala	CCA Pro	GAA Glu 435	GCT Ala	GCC Ala	CTC Leu	TAT Tyr	GGC Gly 440	CGC Arg	TTC Phe	ACC Thr	ATC Ile	AAG Lys 445	TCG Ser	GAC Asp	GTG Val	1344
110	TCC Ser 450	TTC Phe	GGG Gly	ATC Ile	CTG Leu	CTG Leu 455	ACT Thr	GAG Glu	CTC Leu	Thr	ACA Thr 460	AAG Lys	GGA Gly	CGG Arg	GTG Val	1392
CCC Pro 465	TAC Tyr	CCT Pro	GGG Gly	Mec	GTG Val 470	AAC Asn	CGC (GAG Glu	Val	CTG Leu 475	GAC Asp	CAG Gln	GTG Val	GAG Glu	CGG Arg 480	1440
GGC Gly	TAC Tyr	CGG Arg	Mer∭	CCC Pro 485	TGC Cys	CCG (CCG (Pro (siu (TGT Cys 490	CCC (Pro (GAG :	TCC Ser	Leu	CAC His 495	GAC Asp	1488
CTC I	ATG Met	Cys	CAG Gln 500	TGC '	TGG (Trp)	CGG 1 Arg 1	rys (SAG (Slu 1	CCT (GAG (Glu (GAG (Glu 1	Arg :	CCC Pro 1	ACC Thr	TTC Phe	1536

PCT/US93/00445

-72-

GAG Glu	TAC Tyr	CTG Leu 515	CAG Gln	GCC Ala	TTC Phe	CTG Leu	GAG Glu 520	GAC Asp	TAC Tyr	TTC Phe	ACG Thr	TCC Ser 525	ACC Thr	GAG Glu	CCC Pro	1584
	TAC Tyr 530							TAG								1611

- (5) INFORMATION FOR SEQ ID NO:4:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 536 amino acids
 - (B) TYPE: Amino Acid
 - (D) TOPOLOGY: Linear
 - (ii) MOLECULE TYPE: Protein
 - (iii) HYPOTHETICAL: No
 - (v) FRAGMENT TYPE: Complete Sequence
 - (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: Homo sapien
 - (x) PUBLICATION INFORMATION:
 - (A) AUTHORS: Anderson, Stephen K.
 Gibbs, Carol P.
 Tanaka, Akio
 Kung, Hsing-Jien
 Fujita, Donald J.
 - (B) TITLE: Human Cellular src Gene:
 Nucleotide Sequence and Derived Amino
 Acid Sequence of the Region Coding for
 the Carboxy-Terminal Two-Thirds of
 pp60C-src
 - (C) JOURNAL: Molecular and Cellular Biology
 - (D) VOLUME: 5
 - (E) ISSUE: 5
 - (F) PAGES: 1122-1129
 - (G) DATE: May, 1985
 - (x) PUBLICATION INFORMATION:
 - (A) AUTHORS: Tanaka, Akio
 Gibbs, Carol P.
 Arthur, Richard R.
 Anderson, Stephen K.
 Kung, Hsing-Jien
 Fujita, Donald J.

- (B) TITLE: DNA Sequence Encoding the Amino-Terminal Region of the Human c-src Protein: Implications of Sequence Divergence among src-Type Kinase Oncogenes
- (C) JOURNAL: Molecular and Cellular Biology
- (D) VOLUME: 7
- (E) ISSUE: 5
- (F) PAGES: 1978-1983
- (G) DATE: May, 1987

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:4:

Met Gly Ser Asn Lys Ser Lys Pro Lys Asp Ala Ser Gln Arg Arg Arg 5 10 15

Ser Leu Glu Pro Ala Glu Asn Val His Gly Ala Gly Gly Gly Ala Phe 20 25 30

Pro Ala Ser Gln Thr Pro Ser Lys Pro Ala Ser Ala Asp Gly His Arg
35 40 45

Gly Pro Ser Ala Ala Phe Ala Pro Ala Ala Ala Glu Pro Lys Leu Phe 50 55 60

Gly Gly Phe Asn Ser Ser Asp Thr Val Thr Ser Pro Gln Arg Ala Gly 65 70 75 80

Pro Leu Ala Gly Gly Val Thr Thr Phe Val Ala Leu Tyr Asp Tyr Glu 85 90 95

Ser Arg Thr Glu Thr Asp Leu Ser Phe Lys Lys Gly Glu Arg Leu Gln
100 105 110

Ile Val Asn Asn Thr Glu Gly Asp Trp Trp Leu Ala His Ser Leu Ser 115 120 125

Thr Gly Gln Thr Gly Tyr Ile Pro Ser Asn Tyr Val Ala Pro Ser Asp 130 135 140

Ser Ile Gln Ala Glu Glu Trp Tyr Phe Gly Lys Ile Thr Arg Arg Glu 145 150 155 160

Ser Glu Arg Leu Leu Asn Ala Glu Asn Pro Arg Gly Thr Phe Leu 165 170 175

Val Arg Glu Ser Glu Thr Thr Lys Gly Ala Tyr Cys Leu Ser Val Ser 180 185 190

- Asp Phe Asp Asn Ala Lys Gly Leu Asn Val Lys His Tyr Lys Ile Arg 195 200 205
- Lys Leu Asp Ser Gly Gly Phe Tyr Ile Thr Ser Arg Thr Gln Phe Asn 210 215 220
- Ser Leu Gln Gln Leu Val Ala Tyr Tyr Ser Lys His Ala Asp Gly Leu 225 230 235 240
- Cys His Arg Leu Thr Thr Val Cys Pro Thr Ser Lys Pro Gln Thr Gln 245 250 255
- Gly Leu Ala Lys Asp Ala Trp Glu Ile Pro Arg Glu Ser Leu Arg Leu 260 265 270
- Glu Val Lys Leu Gly Gln Gly Cys Phe Gly Glu Val Trp Met Gly Thr 275 280 285
- Trp Asn Gly Thr Thr Arg Val Ala Ile Lys Thr Leu Lys Pro Gly Thr 290 295 300
- Met Ser Pro Glu Ala Phe Leu Gln Glu Ala Gln Val Met Lys Lys Leu 305 310 315 320
- Arg His Glu Lys Leu Val Gln Leu Tyr Ala Val Val Ser Glu Glu Pro 325 330 335
- Ile Tyr Ile Val Thr Glu Tyr Met Ser Lys Gly Ser Leu Leu Asp Phe 340 345 350
- Leu Lys Gly Glu Thr Gly Lys Tyr Leu Arg Leu Pro Gln Leu Val Asp 355 360 365
- Met Ala Ala Gln Ile Ala Ser Gly Met Ala Tyr Val Glu Arg Met Asn 370 375 380
- Tyr Val His Arg Asp Leu Arg Ala Ala Asn Ile Leu Val Gly Glu Asn 385 390 395 400
- Leu Val Cys Lys Val Ala Asp Phe Gly Leu Ala Arg Leu Ile Glu Asp 405 410 415

Asn Glu Tyr Thr Ala Arg Gln Gly Ala Lys Phe Pro Ile Lys Trp Thr 420 425 430

Ala Pro Glu Ala Ala Leu Tyr Gly Arg Phe Thr Ile Lys Ser Asp Val

Trp Ser Phe Gly Ile Leu Leu Thr Glu Leu Thr Thr Lys Gly Arg Val 450 460

Pro Tyr Pro Gly Met Val Asn Arg Glu Val Leu Asp Gln Val Glu Arg 465 470 480

Gly Tyr Arg Met Pro Cys Pro Pro Glu Cys Pro Glu Ser Leu His Asp 485 490 495

Leu Met Cys Gln Cys Trp Arg Lys Glu Pro Glu Glu Arg Pro Thr Phe 500 505 510

Glu Tyr Leu Gln Ala Phe Leu Glu Asp Tyr Phe Thr Ser Thr Glu Pro 515 520 525

Gln Tyr Gln Pro Gly Glu Asn Leu 530 535 What is claimed is:

- 1. Endothelial cells transformed with a heterologous vector containing DNA coding for the c-src polypeptide.
- 2. The endothelial cells of Claim 1 wherein the cells exhibit enhanced migration in comparison to cells which have not been so transformed.
- 3. The endothelial cells of Claim 1 wherein the cells exhibit enhanced urokinase plasminogen activator activity in comparison to cells which have not been so transformed.
- 4. The endothelial cells of Claim 1 wherein the cells produce enhanced amounts of tyrosine kinase in comparison to cells which have not been so transformed.
- 5. The endothelial cells of Claim 1 wherein the cells exhibit enhanced tyrosine kinase activity in comparison to cells which have not been so transformed.
- 6. The endothelial cells of Claim 1 wherein the cells exhibit reduced monocyte adhesion in comparison to cells which have not been so transformed.
- 7. The endothelial cells of Claim 1 wherein the cells exhibit reduced fibronectin production in comparison to cells which have not been so transformed.

- 8. The endothelial cells of Claim 1 wherein the DNA coding for the c-src polypeptide is operably linked to a heterologous promoter.
- 9. The endothelial cells of Claim 1 wherein the cells are human endothelial cells.
- 10. Endothelial cells transformed with a heterologous vector containing DNA coding for at least a portion of the c-src polypeptide, said cells exhibiting enhanced migration in comparison to cells which have not been so transformed.
- 11. Endothelial cells transformed with a heterologous vector containing DNA coding for at least a portion of the c-src polypeptide, said cells exhibiting enhanced urokinase plasminogen activator activity in comparison to cells which have not been so transformed.
- 12. Endothelial cells transformed with a heterologous vector containing DNA coding for at least a portion of the c-src polypeptide, said cells exhibiting reduced monocyte adhesion in comparison to cells which have not been so transformed.
- 13. Endothelial cells transformed with heterologous vector containing DNA coding for least a portion of the c-src polypeptide, said dells exhibiting reduced fibronectin production comparison to cells which have not been 80 transformed.

- 14. A prosthesis for implantation in the vascular system of an animal comprising a solid support carrying endothelial cells transformed with a heterologous vector containing DNA coding for the c-src polypeptide.
- 15. The prosthesis of Claim 14 wherein the solid support comprises an autologous vascular graft.
- 16. The prosthesis of Claim 14 wherein the solid support comprises a synthetic vascular graft.
- 17. The prosthesis of Claim 14 wherein the solid support comprises a stent.
- 18. The prosthesis of Claim 14 wherein the endothelial cells exhibit enhanced migration in comparison to cells which have not been so transformed.
- 19. The prosthesis of Claim 14 wherein the endothelial cells exhibit enhanced urokinase plasminogen activator activity in comparison to cells which have not been so transformed.
- 20. The prosthesis of Claim 14 wherein the endothelial cells produce enhanced amounts of tyrosine kinase in comparison to cells which have not been so transformed.
- 21. The prosthesis of Claim 14 wherein the endothelial cells exhibit enhanced tyrosine kinase activity in comparison to cells which have not been so transformed.

- 22. The prosthesis of Claim 14 wherein the endothelial cells exhibit reduced monocyte adhesion in comparison to cells which have not been so transformed.
- 23. The prosthesis of Claim 14 wherein the endothelial cells exhibit reduced fibronectin production in comparison to cells which have not been so transformed.
- 24. The prosthesis of Claim 14 wherein the the DNA coding for the c-src polypeptide is operably linked to a heterologous promoter.
- 25. The prosthesis of Claim 14 wherein the endothelial cells are human endothelial cells.
- 26. A prosthesis for implantation in the vascular system of an animal comprising a solid support carrying endothelial cells transformed with a heterologous vector containing DNA coding for at least a portion of the c-src polypeptide, said endothelial cells exhibiting enhanced migration in comparison to cells which have not been so transformed.
- 27. A prosthesis for implantation in the vascular system of an animal comprising a solid support carrying endothelial cells transformed with a heterologous vector containing DNA coding for at least a portion of the c-src polypeptide, said endothelial cells exhibiting enhanced urokinase

plasminogen activator activity in comparison to cells which have not been so transformed.

- 28. A prosthesis for implantation in the vascular system of an animal comprising a solid support carrying endothelial cells transformed with a heterologous vector containing DNA coding for at least a portion of the c-src polypeptide, said endothelial cells exhibiting reduced monocyte adhesion in comparison to cells which have not been so transformed.
- 29. A prosthesis for implantation in the vascular system of an animal comprising a solid support carrying endothelial cells transformed with a heterologous vector containing DNA coding for at least a portion of the c-src polypeptide, said endothelial cells exhibiting reduced fibronectin production in comparison to cells which have not been so transformed.

F16. 1

CERC Het Neo

60 ---

FIG. 2

FIG. 3

FIG.4

FIG. 5A

FIG. 5B

FIG. 6

FIG.7

FIG. 8

FIG.9

INTERNATIONAL SEARCH REPORT

International application No. PCT/US93/00445

		·						
A. CL. IPC(5)	ASSIFICATION OF SUBJECT MATTER :C12N 5/16, 5/22, 15/12, 15/85; C07H 15/12; A6	i1F 2/02, 2/06						
	US CL: 435/240.2, 172.3, 320.1; 536 23.5; 600/36; 623/1, 11 According to International Patent Classification (IPC) or to both national classification and IPC							
	LDS SEARCHED	in national classification and IPC						
	documentation searched (classification system follow	ed by classification symbols)						
	435/240.2, 172.3, 320.1; 536 23.5; 600/36; 623/1	• •						
Documenta	ation searched other than minimum documentation to t	he extent that such documents are include	d in the fields searched					
Electronic	data base consulted during the international search (name of data base and, where practicable	, search terms used)					
Picase Se	Extra Sheet.							
C. DO	CUMENTS CONSIDERED TO BE RELEVANT							
Category*	Citation of document, with indication, where a	appropriate, of the relevant passages	Relevant to claim No.					
Y	WO, A, 90/06997 (Anderson et al. document.) 28 June 1990. See entire	1-29					
Y	Am. J. Pathol., vol. 137, no. 1, is "Influence Of Angiotensin System (Muscle Cell Migration", pages 7-12.	1-29						
Y	J. Biol. Chem., vol. 265, no. 3, issued "Plasminogen Activator Gene Express Oncogene Product And Tumor Promo	1-29						
Y ·	Circulation, vol. 80, no. 5, issued No "Seeding Of Intravascular Stents V Endothelial Cells", pages 1347-1353.	Vith Genetically Engineered	1-29					
			İ					
X - Furth	er documents are listed in the continuation of Box C	See patent family annex.						
Spe	cial categories of cited documents:	"T" later document published after the inter- date and not in conflict with the applicat						
	ument defining the general state of the art which is not considered a part of particular relevance	principle or theory underlying the inves						
E" earl L' doc	claimed invention cannot be d to involve an inventive step							
cite	ument which may throw doubts on priority claim(s) or which is I to establish the publication date of another citation or other ial reason (as specified)	"Y" document of particula relevance; the						
O" document referring to an oral disclosure, use, exhibition or other combined with one or up pro other such documents, such combination being obvious to a person skilled in the art.								
P" docs	ment published prior to the international filing date but later than priority date claimed	*&* document member of the same patent for						
ate f the a	ctual completion f the international search	Date of mailing of the international sear	ch report					
01 MARCI	f 1993	29 MAR 1993						
	ailing address of the ISA/US er of Patents and Trademarks	Authorized officer Symu Zu	you for					
Washington,	D.C. 20231	CHRISTOPHER S. P. LOW						
ECSTRING MO	. NOT APPLICABLE	Telephone No. (703) 308-0196						

INTERNATIONAL SEARCH REPORT

International application No. PCT/US93/00445

		10393100443
C (Continue	ation). DOCUMENTS CONSIDERED TO BE RELEVANT	
Category*	Citation of document, with indication, where appropriate, of the relevant pa	ssages Relevant to claim No.
Y	J. Vasc. Surg., vol. 11, issued 1990, Örtenwall et al., "Endothelial Cell Seeding Reduces Thrombogenicity Of Dac Grafts In Humans", pages 403-410. See entire document.	29 ron
Y	Molec. Cell. Biol., vol. 8, no. 2, Warren et al., "Elevated Expression Of pp60 ^{c-src} Alters A Selective Morphogenetic Property Of Epithelial Cells In Vitro Without A Mitogenic Effect", pages 632-646. See entire document.	1-29
Y	Biochim. Biophys. Acta, vol. 948, issued 1988, Perlmutter of "Specialized Protein Tyrosine Kinase Proto-Oncogenes In Hematopoietic Cells", pages 245-262. See entire document.	
	Cell, vol. 50, issued 11 September 1987, Jove et al., "Enzymatically Inactive p60 ^{c-src} Mutant With Altered ATP-Binding Site Is Fully Phosphorylated In Its Carboxy-Termina Regulatory Region", pages 937-943. See entire document.	1-29
1	Proc. Natl. Acad. Sci. USA, vol. 81, issued October 1984, one of al., "High-Efficiency Gene Transfer Into Mammalian Cells Generation Of Helper-Free Recombinant Retrovirus With Brown Mammalian Host Range", pages 6349-6353. See entire documents	s: pad
	Science, vol. 244, issued 16 June 1989, Nabel et al., "Recombinant Gene Expression in Vivo Within Endothelial C Of The Arterial Wall", pages 1342-1344. See entire docume	ells nt.
	*	
-		

INTERNATIONAL SEARCH REPORT

Intermional application No. PCT/US93/00445

B. FIELDS SEARCHED

Electronic data bases consulted (Name of data base and where practicable terms used):

Automated Patent System: USPAT and JPOABS DIALOG: files 434, 5, 155, 399, 159, 144, 266, 444,

CD-ROM ENTREZ sequences release 1.0

GENBANK, EMBL, vectorbank 6.4, UEMBL N-GeneSeq

Search terms:

endothelial cell(s) transformed transfected graft(s) prosthesis(es) c-src protein dna pp60c-src pp60v-src oncogene(s) protooncogene(s)

Form PCT/ISA/210 (extra sheet)(July 1992)*