

Applied Linear Algebra

MATH363

Dr. McKenzie

Gonzaga University

EDITED BY

CAMERON WILLIAMSON

Contents

1	Linear Algebraic Systems	Z
2	Vector Spaces and Bases	3
	2.1 Real Vector Spaces	3
	2.2 Subspaces	4
	2.3 Span and Linear Independence	5
	2.3.1 Linear Independence and Dependence	8
	2.4 Basis and Dimension	8
	2.5 The fundamental Matrix Subspaces (Kernel and Image)	10
3	Inner Products and Norms	14
	3.1 Inner Products	14
	3.2 Inequalities	14
	3.3 Norms	14
	3.4 Positive Definite Matrices	14
	3.5 Completing the Square	14
	3.6 Complex Vector Spaces	14
4	Orthogonality	15
5	Mimimization and Least Squares	16
6	Equilibrium	17
7	Linearity	18
8	Eigenvalues and Singular Values	19
9	Iteration	20
10	Dynamics	21

Linear Algebraic Systems

Vector Spaces and Bases

§2.1 Real Vector Spaces

A vector space is the abstract reformulation of the quintessential properties of n-dimensional Euclidean Space \mathbb{R}^n , which is defined as the set of all real (column) vectors with n entries. The basic laws of vector addition and scalar multiplication in \mathbb{R}

Definition 2.1.1

A vector space is a set of V equipped with two operations:

- Addition: adding any pair of vectors \mathbf{v} , $\mathbf{w} \in V$ produces another vector $\mathbf{v} + \mathbf{w} \in V$;
- Scalar Multiplication: multiplying a vector $\mathbf{v} \in V$ by a scalar $c \in \mathbb{R}$ produces a vector $c\mathbf{v} \in V$

These are subject to the following axioms, valid for all u, v, w $\in V$ and all scalars $c, d \in \mathbb{R}$:

- Commutativity of Addition: v + w = w + v.
- Associativity of Addition: u + (v + w) = (u + v) + w.
- Additive Identity: There is a zero element $0 \in V$ satisfying v + 0 = v = 0 + v.
- Additive Inverse: For each $v \in V$ there is an element $-v \in V$ such that v+(-v)=0=(-v)+v.
- Distributivity: (c+d)v=(cv)+(dv), and c(v+w)=(cv)+(cw).
- Assosiativity of Scalar Multiplication: $c(d\mathbf{v}) = (cd)\mathbf{v}$.
- Unit for Scalar Multiplication: the scalar $1 \in \mathbb{R}$ satisfies 1v=v.

Theorem 2.1.1

Let V be a vector space.

- $0 \times \vec{V} = \vec{0}$
- $-1\vec{V} = -\vec{V}$
- $c \times \vec{0} = \vec{0}$
- If $c \times \vec{V} = \vec{0}$, then c = 0 or $\vec{V} = \vec{0}$

Here are some examples of vector spaces:

•
$$\mathbb{R}^n = \left\{ \begin{pmatrix} r_1 \\ r_2 \\ \vdots \\ r_n \end{pmatrix} \middle| r_1, r_2, r_n \in \mathbb{R} \right\}$$

- $M_{m \times n} = \text{The } m \text{ by } n \text{ matrices over } \mathbb{R}.$
- \mathbb{P}^n = the polynomials of degree $\leq n$.

Definition 2.1.2

Let V be a vector space over F. $W \leq V$ is a subspace of V if W is a vector space over F under the same operation as V.

An example of definition (2.1.2). Let $V = \mathbb{R}^3 = \left\{ \begin{pmatrix} a \\ b \\ c \end{pmatrix} \middle| a, b, c \in \mathbb{R} \right\}$. V is a vector space. If we let $W = \left\{ \begin{pmatrix} a \\ b \\ 0 \end{pmatrix} \middle| a, b \in \mathbb{R} \right\}$, then W is a subspace of V.

Theorem 2.1.2

et V be a vector space. Let $W \leq V$. W is a subspace of V if

- $w \neq 0$
- $\forall w_1 w_2 \in W; w_1 + w_2 \in W$
- $\forall c \in F; \vec{W} \in W; c \cdot \vec{W} \in W$

If we were to let $V = \mathbb{R}^3$ for $\begin{pmatrix} a \\ c \end{pmatrix}$. We can determine the following:

- $\{\vec{0}\}$ is a subspace of V.
- $\left\{ \begin{pmatrix} a \\ 0 \\ c \end{pmatrix} \middle| a, c \in \mathbb{R} \right\}$ is a subspace of V.
- Consider the equation $\left\{ \begin{pmatrix} x \\ 0 \\ x \end{pmatrix} \middle| x \in \mathbb{R} \right\} = W$ Show that W is a subspace of V.
 - $-\begin{pmatrix} 0\\0\\0 \end{pmatrix} \in W \text{ so } W \neq 0.$
 - $-\begin{pmatrix} x \\ x \\ 0 \end{pmatrix}, \begin{pmatrix} y \\ y \\ 0 \end{pmatrix} \in W. \text{ Then } \begin{pmatrix} x \\ x \\ 0 \end{pmatrix} + \begin{pmatrix} y \\ y \\ 0 \end{pmatrix} = \begin{pmatrix} x+y \\ x+y \\ 0 \end{pmatrix}$
 - $\, \left(\begin{smallmatrix} x \\ x \\ 0 \end{smallmatrix} \right) \in W \text{, then } c \times \left(\begin{smallmatrix} x \\ x \\ 0 \end{smallmatrix} \right) = \left(\begin{smallmatrix} cx \\ cx \\ 0 \end{smallmatrix} \right) \in W.$
 - Therefore we know that W is a subspace of V with respect to scalar multiplication and addition.
- $W = \left\{ \begin{pmatrix} x \\ y \\ 2x+3y \end{pmatrix} \middle| x, y \in \mathbb{R} \right\}$. W is a subspace of V.

 \mathbb{R}^3 only has 4 kinds of subspaces. \mathbb{R}^3 , $\{\vec{0}\}$, planes passing through the origin and lines that are passing through the origin.

§2.2 Subspaces

Definition 2.2.1

Let I be an interval in \mathbb{R} . Let $\mathbb{F}(I)$ be the vector space of functions $\mathbb{F} = I \to \mathbb{R}$.

- $\mathbb{C}^0(I)$ = the continuous functions from $I \to \mathbb{R}$ is a subspace.
- $\mathbb{P}^n(I) = \text{polynomials of degree} \leq n \text{ restricted to } \mathbb{F}(I)$. This is a subspace of $C^0(I)$.
- $\mathbb{P}^{\infty}(I) = \text{all polynomials on } I$. This is a subspace of $\mathbb{F}(I)$.
- $\mathbb{C}^n(I)$ = the set of functions $f:I\to\mathbb{R}$ such that $f',f''...f^{(n)}$ all exist and are continuous.
- $\mathbb{C}^{\infty}(I)$ = functions from $I \to \mathbb{R}$ such that f', f'', f''' all exist and are smooth functions
- A(I) = the functions in $\mathbb{C}^{\infty}(I)$ such that all $A \in I$, the power series $f(a) + \frac{f'(a)(x-a)}{1!} + \frac{f''(a)(x-a)^2}{2!} + \dots$ converges for all $x \in I$ sufficiently close to a.

Problem 1. Show that $v = \begin{pmatrix} x \\ y \\ 2x+y \end{pmatrix}$ is a subspace of \mathbb{R}^3 .

- Because $\begin{pmatrix} 0 \\ 0 \\ 2(0)+0 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$ is in v, v is not empty.
- Let $\vec{v_1} = \begin{pmatrix} x_1 \\ y_1 \\ 2x_1 + y_1 \end{pmatrix}$, $\vec{v_2} = \begin{pmatrix} x_2 \\ y_2 \\ 2x_2 + y_1 \end{pmatrix} \in V$

$$v_1 + v_2 = \begin{pmatrix} x_1 + x_2 \\ y_1 + y_2 \\ 2x_1 + y_1 + 2x_2 + y_2 \end{pmatrix} = \begin{pmatrix} x_1 + x_2 \\ y_1 + y_2 \\ 2(x_1 + x_2) + (y_1 + y_2) \end{pmatrix} \in V$$
 (2.1)

so v is closed with respect to addition.

• Let $r \in \mathbb{R}$ and $\begin{pmatrix} x \\ y \\ 2x+y \end{pmatrix} = \vec{v} \in v$

§2.3 Span and Linear Independence

If we let V be a vector space over \mathbb{R} and let $\vec{v_1}, \ldots, \vec{v_n} \in V$, then we can determine that

$$span(\{\vec{v_1}, \dots, \vec{v_n}\}) = \{c_1\vec{v_1} + \dots + c_n\vec{v_n} | c_1, \dots, c_n \in \mathbb{R}\}$$
 (2.2)

Proposition 2.3.1

The span of $\{\vec{v_1}, \vec{v_2}\}$ is a subspace of V.

Proof.

$$c_1\vec{v_1} + \dots + c_n\vec{v_n} \tag{2.3}$$

$$k_1 \vec{v_1} + \dots + k_n \vec{v_n} \in span \tag{2.4}$$

(2.5)

If we add together both of the equations above we get

$$(c_1 + k_1)\vec{v_1} + \dots + (c_n + k_n)\vec{v_n} \in span.$$
 (2.6)

$$r(c_1\vec{v_1} + \dots + c_n\vec{v_n}) \tag{2.7}$$

$$= rc_1\vec{v_1} + \dots + rc_n\vec{v_n} \in span \tag{2.8}$$

Problem 2. Let $V \in \mathbb{R}^3$. Also we are going to let

$$\vec{v_1} = \begin{pmatrix} 1 \\ 2 \\ 0 \end{pmatrix}, span(\vec{v_1}) = \left\{ c \begin{pmatrix} 1 \\ 2 \\ 0 \end{pmatrix} \middle| c \in \mathbb{R} \right\}$$
 (2.9)

 $\begin{pmatrix} 1\\2\\0 \end{pmatrix}$ is a vector in 3-space. $c \times \begin{pmatrix} 1\\2\\0 \end{pmatrix}$ expands, contracts, changes direction. This is a line which goes through $\begin{pmatrix} 0\\0\\0 \end{pmatrix}$.

$$c \begin{pmatrix} 1 \\ 2 \\ 0 \end{pmatrix} \tag{2.10}$$

is in the xy-plane, let's solve for y to find the equation of the line that is drawn by the vector:

$$\begin{pmatrix} c \\ 2c \\ 0 \end{pmatrix} \tag{2.11}$$

$$x = c \tag{2.12}$$

$$y = 2c \tag{2.13}$$

$$\frac{1}{2}y = c \tag{2.14}$$

$$\to y = 2x \tag{2.16}$$

(2.17)

Now we are going to let $\vec{v_2} = \begin{pmatrix} 1\\1\\0 \end{pmatrix}$. Consider the span of $(\{\vec{v_1}, \vec{v_2}\})$. The span of $(\{\vec{v_1}\vec{v_2}\})$ is a plane.

In \mathbb{R}^3 , if $\vec{0} \neq \vec{v} \in \mathbb{R}$, then the span \vec{v} is a line.

Problem 3. Let $v = \mathbb{P}^2$. v is the set of polynomials of degree $\leq 2 \in \mathbb{R}$.

- $span(1, x, x^2) = \mathbb{P}^2$
- $span(4,2x) = \mathbb{P}^1$, which means all polynomials of degree ≤ 1

Definition 2.3.1

Let v be a vector space. $\vec{v_1}, \ldots, \vec{v_n}$ are linearly dependant if there exists c_1, \ldots, c_n are not all zero, such that $c_1\vec{v_1} + \cdots + c_n\vec{v_n} = \vec{0}$, otherwise, $\vec{v_1}, \ldots, \vec{v_n}$ are linearly independent.

If we let $\vec{v_1} = \binom{1}{2}, \vec{v_2} = \binom{2}{4}$, we can do a simple test to see if they are linearly independent. We know that $2\vec{v_1} = \vec{v_2}$, which means that $2\vec{v_1} + -1\vec{v_2} = 0$. Because we can make $\vec{v_1} + \vec{v_2}$ by using a simple scalar value, these functions are linearly dependent.

Problem 4. Consider the following three matrices

$$\vec{v_1} = \begin{pmatrix} 1\\2\\1 \end{pmatrix}, \vec{v_2} = \begin{pmatrix} 2\\1\\1 \end{pmatrix}, \vec{v_3} = \begin{pmatrix} 8\\1\\11 \end{pmatrix}$$
 (2.18)

Are these matrices linearly dependent or independent from each other? The following equation will let us set up a matrix to determine the results:

$$c_1\vec{v_1} + c_2\vec{v_2} + c_3\vec{v_3} = \vec{0} \tag{2.19}$$

We must try to see if there are any c_n values that are not zero to make this true.

$$\begin{pmatrix} 1 & 2 & 8 \\ 2 & -1 & 1 \\ 1 & 3 & 11 \end{pmatrix} \begin{pmatrix} c_1 \\ c_2 \\ c_3 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$$
 (2.20)

$$= \begin{pmatrix} 1 & 2 & 8 & \vdots & 0 \\ 2 & -1 & 1 & \vdots & 0 \\ 1 & 3 & 0 & \vdots & 0 \end{pmatrix}$$
 (2.21)

By doing some elementary row operations, we can find that in row echelon form, the matrix from equation (2.21) can be written as

$$\begin{pmatrix}
1 & 2 & 8 & \vdots & 0 \\
9 & 1 & 3 & \vdots & 0 \\
0 & 0 & 0 & \vdots & 0
\end{pmatrix}$$
(2.22)

And from here we can solve for the different c_n values.

$$1c_1 + 2c_2 + 8c_3 = 0 (2.23)$$

$$c_1 + 3c_3 = 0 (2.24)$$

(2.25)

$$c_3 = -3c_3 (2.26)$$

$$c_1 = -2c_3 (2.27)$$

$$c_3 = c_3 \tag{2.28}$$

Because we have this relationship where c_1, c_2, c_3 all depend on each other, we can tell that this is linearly independent.

§2.3.1 Linear Independence and Dependence

§2.4 Basis and Dimension

Definition 2.4.1

A basis of a vector space v is a collection of vectors $\vec{v_1}, \ldots, \vec{v_n}$ that 1. span v and 2. are linearly dependent.

Problem 5. If we are looking at \mathbb{R}^2 , with $e_1 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$, and $e_2 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$ We can tell that this is a basis of \mathbb{R}^2 . We can tell this because the span of v is linearly independent. We can also see this because:

$$a \times e_1 + b \times e_2 = \begin{pmatrix} a \\ b \end{pmatrix} \tag{2.29}$$

Problem 6. Now we are going to look at an example in \mathbb{R}^3 , with $e_1 = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$, $e_2 = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}$, and $e_3 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$. We can figure out that this is a basis by doing the same technique as we did before:

$$c_1\vec{e_1} + c_2\vec{e_2} + c_3\vec{e_3} = 0 (2.30)$$

$$c_1 = c_2 = c_3 = 0 (2.31)$$

Because c_1 , c_2 , and c_3 are all equal to zero, $\vec{e_1}$, $\vec{e_2}$, and $\vec{e_3}$ form a basis.

Theorem 2.4.1

If a vector space v has a basis with n elements, then every basis of v has n elements. We say v has dimension n. We write down v = n

Theorem 2.4.2

If the dimension of v is n, then any collection of n+1 or more vectors must be linearly dependent.

Theorem 2.4.3

Suppose v = n

- 1. Every collection of more than n vectors is linearly dependent.
- 2. No set of fewer than n vectors spans v.
- 3. A set of n vectors is a basis if and only if it spans v.
- 4. A set of n vectors is a basis if and only if it is linearly dependent.

Problem 7. Assume $1, x, x^2$ is a basis for \mathbb{P}^2 . We are going to multiply 1×5 , $x \times 6$, and $x^2 \times 2$.

$$5 + 6x + 2x^2 \tag{2.32}$$

$$c_1 \times 1 + c_2 \times x + c_3 \times x^2 = 0 \tag{2.33}$$

$$dim(\mathbb{P}^2) = 3 \tag{2.34}$$

(2.35)

Theorem 2.4.4

 $\vec{v_1}, \dots \vec{v_2}$ form a basis of v if and only if for all $\vec{v} \in v$, there exist unique c_1, \dots, c_n such that $\vec{v} = c_1 \vec{v_1} + \dots c_n \vec{v_n}$

Problem 8. Let $v = \mathbb{R}^2$. Let $\vec{v} = \begin{pmatrix} 4 \\ 3 \end{pmatrix}$. We know from previous problems that $\begin{pmatrix} 1 \\ 0 \end{pmatrix} \begin{pmatrix} 0 \\ 1 \end{pmatrix}$ is a basis of \mathbb{R}^2 . We can also figure out what our basis is by trying to figure out what our c_1 and c_2 values should be. Because the matrices we know are a basis consist of 1's and 0's, we can see that

$$4 \begin{pmatrix} 1 \\ 0 \end{pmatrix} + \begin{pmatrix} 0 \\ 1 \end{pmatrix} = \begin{pmatrix} 4 \\ 3 \end{pmatrix}. \tag{2.36}$$

The coordinates of \vec{v} with respect to this basis, are (4,3). Let's consider a different basis. We are now going to look at the basis,

$$\left\{ \begin{pmatrix} 1\\-3 \end{pmatrix}, \begin{pmatrix} 2\\-1 \end{pmatrix} \right\} \tag{2.37}$$

Now we need to figure out the a and b values for this basis respectively.

$$a \begin{pmatrix} 1 \\ -3 \end{pmatrix} + b \begin{pmatrix} 2 \\ -1 \end{pmatrix} = \begin{pmatrix} 4 \\ 3 \end{pmatrix} \tag{2.38}$$

(2.39)

The coordinates of \vec{v} with respect to this basis are (4,3). Let's consider the same problem but with the following basis:

$$\left\{ \begin{pmatrix} 1\\ -3 \end{pmatrix}, \begin{pmatrix} 2\\ -1 \end{pmatrix} \right\} \tag{2.40}$$

Now, we are going to do the same thing as before, where we solve for a and b in the following equation

$$a\begin{pmatrix} 1\\ -3 \end{pmatrix} + b\begin{pmatrix} 2\\ -1 \end{pmatrix} = \begin{pmatrix} 4\\ 3 \end{pmatrix} \tag{2.41}$$

We can setup this to be a system of equations that we can turn into a matrix

$$\begin{cases} 1a + 2b = 4 \\ -3a + (-1)b = 3 \end{cases} \rightarrow \begin{bmatrix} 1 & 2 & \vdots & 4 \\ -3 & -1 & \vdots & 3 \end{bmatrix}$$
 (2.42)

And now we can use the basic row operation $R_2 = R_2 + 3R_1$ in order to solve for a and b.

$$\begin{bmatrix} 1 & 2 & \vdots & 4 \\ 0 & 5 & \vdots & 5 \end{bmatrix}$$
 (2.43)

$$5b = 15 a + 2b = 4 (2.44)$$

$$b = 3 1 + 2 * 3 = 4 (2.45)$$

$$a = -2 \tag{2.46}$$

§2.5 The fundamental Matrix Subspaces (Kernel and Image)

Definition 2.5.1

The image of an $m \times n$ matrix A is the subspace spanned by the columns of A.

Problem 9. Let's consider the following equation.

$$\begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix} \begin{bmatrix} r_1 \\ r_2 \\ r_3 \end{bmatrix} = \begin{bmatrix} x \\ y \end{bmatrix}$$
 (2.47)

When we multiply our the matrix, we see that the span of the columns give us all the possible $\begin{bmatrix} x \\ y \end{bmatrix}$ values. The span of the matrix

$$\begin{bmatrix} 1 \times r_1 & 2 \times r_2 & 3 \times r_3 \\ 4 \times r_1 & 5 \times r_2 & 6 \times r_3 \end{bmatrix}$$
 (2.48)

would be the values $\begin{bmatrix} 1 \\ 4 \end{bmatrix}$, $\begin{bmatrix} 2 \\ 5 \end{bmatrix}$, and $\begin{bmatrix} 3 \\ 6 \end{bmatrix}$

Definition 2.5.2

A space, A, is an $m \times m$ matrix, The kernel of A is

$$A = Ker(A) \tag{2.49}$$

$$= \{\vec{x} | A\vec{x} = \vec{0}\} \tag{2.50}$$

Using definition (2.5.2), if $A = \begin{bmatrix} 1 & 0 \\ 5 & 0 \end{bmatrix}$, then

$$\vec{x_1} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}, \vec{x_2} = \begin{bmatrix} 0 \\ 5 \end{bmatrix}. \tag{2.51}$$

Something to keep in mind: If $\vec{x_1}, \vec{x_2} \in Ker(A)$, then $r_1\vec{x_1} + r_2\vec{x_2} \in Ker(A)$. So the kernel of A is a subspace of the domain of the function.

Theorem 2.5.1

Assume $\vec{x_1}$ solves $A\vec{x} = \vec{b}$. Then, $\vec{x_2}$ is another solution to $A\vec{x} = \vec{b}$ if and only if $\vec{x_2} = \vec{x_1} + \vec{z}$, where $z \in Ker(A)$

Proposition 2.5.1

Let A be an $m \times n$ matrix. The following are true:

- 1. $Ker(A) = {\vec{0}}$
- 2. rank(A) = n
- 3. $A\vec{x} = \vec{b}$ has a unique solution for any \vec{b} in the integer of A.
- 4. $A\vec{x} = \vec{b}$ has no free variables.
- 5. A is non-singular.

Definition 2.5.3

Let A be $m \times n$.

$$coimg(A) = img(A^T) (2.52)$$

$$coker(A) = ker(A^T) (2.53)$$

(2.54)

The image of A is the span of its collumns. Thus the coimage is the span of its radius. Also the $\vec{r^T}$ in the cokernel of A are those \vec{r} such that $r \times A = \vec{0^T}$ since

$$(r \cdot A)^T = (\vec{0}^T)^T \tag{2.55}$$

$$A^T \cdot r^T = \vec{0} \tag{2.56}$$

Theorem 2.5.2

The Fundamental Theorem of Linear Algebra: Let A be an mxn matrix and let ${\bf r}$ be its rank. Then

$$dim(coimg(A)) = dim(img(A)) = rank(A) = rank(A^{T}) = r$$
(2.57)

$$span(A_{rows}) = span(A_{columns}) \tag{2.58}$$

$$dim(ker(A)) = n - r \tag{2.59}$$

$$dim(coker(A)) = m - r (2.60)$$

Let's take a look at an example using the fundamental theorem of linear algebra. Let

$$A = \begin{bmatrix} 1 & 2 & 3 & -1 \\ 1 & -1 & 0 & 2 \\ -1 & 1 & 0 & -2 \\ 2 & 1 & 3 & 1 \end{bmatrix}$$
 (2.61)

Let's do some row operations to get this matrix into row echelon form:

$$A = \begin{bmatrix} 1 & 2 & 3 & -1 \\ 0 & -3 & -3 & 3 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$
 (2.62)

From this form, we can tell that v_3 and v_4 both depend on v_1 and v_2 . Because there are only two pivot points within A that are filled with values other than 0, rank(A) = 0. We also know that the dimension of the column space is equal to the dimension of the row space. Let's find the dimension of the kernel of A:

$$dim(ker(A)) + rank = n (2.63)$$

$$dim(key(A)) + 2 = 4 \tag{2.64}$$

(2.65)

From here, we know that both y and z are free variables.

$$w + 2x + 3y - z = 0 (2.66)$$

$$-3x - 3y + 3z = 0 (2.67)$$

$$x + y - z = 0 (2.68)$$

$$x = -y + z \tag{2.69}$$

$$w = -2x - 3y + z (2.70)$$

$$= -2(-y+z) - 3y + z \tag{2.71}$$

$$= -y - z \tag{2.72}$$

Now we need to determine the basis for ker(A).

$$\begin{pmatrix} -y - z \\ -y + z \\ y \\ z \end{pmatrix} = \begin{pmatrix} -y \\ -y \\ -y \\ 0 \end{pmatrix} + \begin{pmatrix} -z \\ z \\ 0 \\ z \end{pmatrix} = y \begin{pmatrix} -1 \\ -1 \\ 1 \\ 0 \end{pmatrix} + z \begin{pmatrix} -1 \\ 1 \\ 0 \\ 1 \end{pmatrix}$$
 (2.73)

Our basis for ker(A) is $\begin{pmatrix} -1 \\ -1 \\ 1 \\ 0 \end{pmatrix}$ and $\begin{pmatrix} -1 \\ 1 \\ 0 \\ 1 \end{pmatrix}$.

Inner Products and Norms

- §3.1 Inner Products
- §3.2 Inequalities
- **§3.3** Norms
- §3.4 Positive Definite Matrices
- §3.5 Completing the Square
- §3.6 Complex Vector Spaces

Orthogonality

Mimimization and Least Squares

Equilibrium

Linearity

Eigenvalues and Singular Values

Iteration

Dynamics