Machine Learning for Economic Analysis Problem Set 2

Jonas Lieber*

Due: 11:59pm Wed, Jan 31, 2023

Problem 1. We reconsider the model of problem 1 of the first problem set

$$Y = f(X) + U,$$

where $Y, U \in \mathbb{R}$ and $X \in \mathbb{R}^k$ and $f : \mathbb{R}^k \to \mathbb{R}$. Denote the joint distribution of (X, Y, U) by μ and assume that

1.
$$E_{\mu}[U|X] = 0$$
,

2.
$$E_{\mu}[U^2|X] = \sigma^2$$
.

Consider an i.i.d. dataset $(X_1, Y_1, U_1), \ldots, (X_n, Y_n, U_n)$ drawn from μ . Assume that the researcher observes only $(X_1, Y_1), \ldots, (X_n, Y_n)$. Suppose the researcher runs some algorithm to produce an estimate of f using this dataset. Denote this estimate by \hat{f} . We are interested in the performance of \hat{f} on an unseen independent datapoint (X^*, Y^*) , identically distributed to the data, in the conditional mean-square sense, i.e.,

$$MSE(\hat{f}|X^*) := \mathbb{E}[(\hat{f}(X^*) - Y^*)^2 | X^*].$$

Recall the decomposition

$$MSE(\hat{f}|X^*) = \mathbb{E}\left[\left(\hat{f}(X^*) - \mathbb{E}[\hat{f}(X^*)|X^*]\right)^2 \middle| X^* \right] + \left(\mathbb{E}[\hat{f}(X^*)|X^*] - f(X^*)\right)^2 + \sigma^2.$$
 (1)

1. Graduate students only, all other questions are for all students. Show the following formula for the fitted values of a linear regression with p parameters

$$\frac{1}{n}\sum_{i=1}^{n}Cov(\hat{y}_{i},y_{i})=\frac{p}{n}\sigma^{2}.$$

- 2. Where have you used knowledge of the true function f in the last problem set in part d?
- 3. In this problem, we consider the more realistic case that f is not known. Instead, you are given a dataset with i.i.d. draws $(X_1, Y_1), \ldots (Y_n, X_n)$. You can find the dataset on canvas as ps2data.csv.

^{*}Department of Economics, Yale University. jonas.lieber@yale.edu

- (a) How would you do part d again without knowing the function f? Use the prediction point $x^* = 1.7$.
- (b) Implement your procedure and try to reproduce the plot from part d without knowing f.
- 4. Implement a function for cross-validation. It should take as input
 - (a) a dataset (of any dimension, including numbers of observations that are not a multiple of K)
 - (b) K, a hyperparameter for cross-validation,
 - (c) a function of the dataset and a set of hyperparameters (the function should be able to accept multiple sets of hyperparameters, possibly of different length).

Do not use a function from a package, library etc. Code this function from scratch. Use this function to choose the best degree of a polynomial (between 0 and 30) that you can find using cross-validation.

- 5. How could you evaluate the conditional MSE for $X^* = 1.7$ for a model that you have selected with cross-validation? There should be two methods. Please describe which method you prefer and why.
- 6. Implement your preferred method to evaluate the conditional MSE for the chosen model for $X^* = 1.7$.
- 7. **Bonus**: Guess the function f.

Problem 2. Show that the formula for expected optimism shown in class also applies to 0-1 loss when Y is binary.

Problem 3. 1. Generate a dataset of 1000 individuals, with potential outcomes $Y_i(d)$, a treatment D_i that is not independent of the potential outcomes, and outcomes so that

$$\frac{1}{n} \sum_{\substack{i=1\\i:D_i=1}}^{n} Y_i - \frac{1}{n} \sum_{\substack{i=1\\i:D_i=0}}^{n} Y_i \tag{2}$$

does not approximate the ATE well.

2. Now consider the same potential outcomes and a treatment that is independent of the potential outcomes. Generate the observable outcomes. Does (2) estimate the ATE?

Problem 4. graduate students only Does the formula for expected optimism shown in class also apply when Y can take on three values, say 0, 1 and 2?