MTH 525: Topology

Evan Fox (efox20@uri.edu)

November 6, 2022

Question 1.

Show that if A is closed in Y and Y is closed in X then A is closed in X.

Proof. Assume that A is closed in Y, then there exists a closed set of X, C such that $A = Y \cap C$. Then since this is the intersection of two closed sets in X, A is closed.

Question 2.

Let A, B, and A_{α} denote subsets of a space X. Prove the following:

- 1. If $A \subset B$, then $\bar{A} \subset \bar{B}$
- $2. \ \overline{A \cup B} = \overline{A} \cup \overline{B}$
- 3. $\overline{\bigcup A_{\alpha}} \supset \bigcup \overline{A_{\alpha}}$

Proof. (1) Let $A \subset B$. Let x be a limit point of A, then every nbhd of x intersects A in a point other than x, since $A \subset B$, every nbhd of x also must contain a point of B other than x, hence x is a limit point of B, it now follows

$$\overline{A} = (A \cup A') \subset (B \cup B') = \overline{B}$$

as desired.

(2) Let $x \in \overline{A \cup B}$ and suppose $x \notin \overline{B}$, then (since x is not a limit point) there exists a neighborhood of x, U which does not intersect B, now if there also exists a neighborhood V which doesn't intersect A in a point other than x, taking the intersection $U \cap V$ furnishes an open set containg x which doesn't intersect $A \cup B$ (in a point other than x), which is a contradiction. Hence every neighborhood or x must intersect A so that x belongs to the closure of A. Conversely, let $x \in \overline{A} \cup \overline{B}$, then suppose $x \in \overline{A} = A \cup A^p rime$, if $x \in A$, then we are done so assume that x is a limit point of A. Then every

neighborhood will intersect A in a point other than x, so every neighborhood intersects $A \cup B$ in a point other than x so that x belongs to the closure of $A \cup B$. If $x \in \overline{B}$, the argument is similliar.

(3)Let $x \in \bigcup \overline{A_{\alpha}}$, then $x \in \overline{A_{\alpha}}$ for some α , hence every neighborhood intersects A_{α} and thus intersects $\bigcup A_{\alpha}$, hence $x \in overline \bigcup A_{\alpha}$. To see that the converse is false, let $A_n = (0, \frac{n}{n+1})$ for $n \in \mathbb{N}$. Then $\bigcup_{n \in \mathbb{N}} A_n = (0, 1)$ so $1 \in \overline{\bigcup_{n \in \mathbb{N}} A_n}$. But for any A_k , the ϵ -ball of radius $\frac{1}{2} |\frac{k}{k+1} - 1|$, is a neighborhood around 1 which doesn't intersect A_k , hence $1 \notin \overline{A_k}$, since k was arbitrary, $1 \notin \bigcup \overline{A_k}$.

Question 3.

Let A, B, and A_{α} be as in the previous question. Determine if the following are true.

- 1. $\overline{A \cap B} = \overline{A} \cap \overline{B}$.
- 2. $\overline{\bigcap A_{\alpha}} = \bigcap \overline{A_{\alpha}}$.
- 3. $\overline{A \setminus B} = \overline{A} \setminus \overline{B}$.

Proof. (1) Let $x \in \overline{A \cap B}$, if $x \in A \cap B$ the result is clear so suppose that x is a limit point; then every neighborhood of x intersects $A \cap B$. Hence every neighborhood will intersect A and B, thus x is a limit point of A and B so $x \in \overline{A \cap B}$. Hence $\overline{A \cap B} \subset \overline{A} \cap \overline{B}$. The converse is false since $1 \in \overline{(0,1)}$ and $1 \in \overline{(1,2)}$ But $1 \notin \overline{(0,1)} \cap \overline{(1,2)}$.

- (2) Let $x \in \overline{\bigcap A_{\alpha}}$, then an arbitrary neighborhood U of x intersects $\bigcap A_{\alpha}$, and so U intersects each A_{α} , thus $x \in \overline{A_{\alpha}}$ and so it belongs to $\bigcap \overline{A_{\alpha}}$. The converse is false since it was false in the finite case. For example let $A_1 = (0,1)$ and $A_n = (1,n)$. Then $1 \in \bigcap \overline{A_k}$, but not in $\overline{\bigcap A_k}$.
- (3) We prove $\overline{A} \setminus \overline{B} \subset \overline{A \setminus B}$. Let $x \in \overline{A} \setminus \overline{B}$. Then $x \notin B$. If $x \in A$, then $x \in A \setminus B \subset \overline{A \setminus B}$, so assume that x is a limit point of A. It follows that every neighborhood of x intersects A in a point not in B, since otherwise it would contradict our assumption on x. Then every neighborhood intersects $A \setminus B$ so $x \in \overline{A \setminus B}$. The converse is false.

Question 4.

Let X and X' denote a single set in the two topologies \mathfrak{T} and \mathfrak{T}' , respectively. Let $i: X' \to X$ be the identity function.

- 1. Show that i is continuous iff \mathfrak{T}' is finer than \mathfrak{T}
- 2. Show that i is a homeomorphism iff $\mathfrak{T}' = \mathfrak{T}$

Proof. (1) Assume that i is continuous, then let U be open in X (i.e, $U \in \mathfrak{T}$). It follows from continuity that $i^{-1}(U) = U \subset X'$ is open, thus $\mathfrak{T} \subset \mathfrak{T}'$. Conversely, assume that \mathfrak{T}' is finer than \mathfrak{T} . Then let U be open in X, since \mathfrak{T}' is finer than \mathfrak{T} , we know that the preimage of U, which is itself, is open in X', hence i is continuous.

(2) If i is a homeomorphism, we know that it and its inverse are continuous, so we simply apply (1) in both directions to get $\mathfrak{T}' \subset \mathfrak{T}$ and $\mathfrak{T} \subset \mathfrak{T}'$ and hence $\mathfrak{T}' = \mathfrak{T}$. Now conversely, assume $\mathfrak{T}' = \mathfrak{T}$. Again by applying (1) in both directions we will get that $i: X' \to X$ is continuous and $i^{-1}: X \to X'$ is continuous, since it is also bijective, it is a homeomorphism.

Question 5.

Let Y be an ordered set in the order topology. Let $f, g: X \to Y$ be continuous.

- 1. Show that the set $\{x|f(x) \leq g(x)\}$ is closed in X
- 2. Show that $h(x) = min\{f(x), g(x)\}\$ is continuous.

Proof. (1) We prove X - S is open. If it is empty we are done, so suppose there exists $x_0 \in X - S$, i.e. assume $f(x_0) > g(x_0)$. Since Y is in the order topology, it is Hausdorff, thus there exists disjoint nbhd's V_1, V_2 with $f(x_0) \in V_1$ and $g(x_0) \in V_2$. Since f and g are continuous functions, there exists $U_1, U_2 \subset X$ around x_0 such that

$$f(U_1) \subset V_1$$
 and $g(U_2) \subset V_2$

Now take $U = U_1 \cap U_2$. Then for $x \in U$, we have $f(x) \in V_1$ and $g(x) \in V_2$, since $f(x_0) > g(x_0)$ and $V_1 \cap V_2 = \emptyset$, it follows f(x) > g(x) hence there is a

nbhd around x_0 contained in X - S, so x_0 is an interior point. Since it was chosen arbitrarily, it follows that X - S is open.

(2) Define $A = \{x | f(x) \leq g(x)\}$ and $B = \{x | g(x) \leq f(x)\}$. By the above argument both of these sets are closed and it is clear $A \cup B = X$. Further, $x \in A \cap B$ implies f(x) = g(x). Now define h(x) = f(x) when $x \in A$ and h(x) = g(x) for $x \in B$. Then we see $h(x) = \min\{f(x), g(x)\}$ and by the pasting lemma h is continous.

Question 6.

Let $F: \mathbb{R} \times \mathbb{R} \to \mathbb{R}$ be defined by the equation ...

- 1. Show that F is continuous in each variable separately
- 2. Compute $g(x) = F(x \times x)$
- 3. show that F is not continuous

Proof. (1) Without loss of generality fix $y \in \mathbb{R}$, if y = 0 the function just becomes the zero function which is continuous. If $y \neq 0$, then the function will never have a denominator of 0 since $x^2 + y^2 > 0$ for all x given $y \neq 0$. Then F just becomes a quotient of two continuous functions (polynomials are continuous) with a nonzero denominator on its domain and therefore is continuous. We can ignore that it was defined piecewise since the function will be zero iff x = 0. The situation for a fixed x is the same since there is clearly some symmetry with the variables, the proof would just be a relabeling of the above.

(2) if
$$y = x$$
 then $\frac{xy}{x^2 + y^2} = \frac{x^2}{2x^2} = \frac{1}{2}$ so
$$g(x) = \begin{cases} \frac{1}{2}, & \text{if } x \neq 0 \\ 0, & \text{if } x = 0 \end{cases}$$
 (1)

Note that q is not continuous at 0.

(3) Define $h: \mathbb{R} \to \mathbb{R}^2$ such that h(x) = (x, x). Then since maps into products are continuous iff the coordinate functions are continuous, we see that h is continuous. Now assume that F is continuous, then $F \circ h: \mathbb{R} \to \mathbb{R}$ is continuous (composition of continuous functions), but $F \circ h = F(x \times x) = g(x)$ is discontinuous at 0; a contradiction. Hence, F is not continuous.

Question 7.

Let $x_1, x_2, ...$ be a sequence of the points of the product space ΠX_{α} . Show that this sequence converges to the point x if and only in the sequence $\pi_{\alpha}(x_1), ...$ converges to $\pi_{\alpha}(x)$ for each α . Is this fact true if one uses the box topology instead of the product topology?

Proof. Suppose $(x_n) \to x$, let $V_\alpha \subset X_\alpha$ be a nbhd around $\pi_\alpha(x)$. Then the preimage $\pi_\alpha^{-1}(V_\alpha) \subset \Pi X_\alpha$ is an open set containing x, and thus contains all but finitely many points of the sequence (x_n) . But then V_α must contain all but finitely many points of the sequence $(\pi_\alpha(x_n))$. Hence $(\pi_\alpha(x_n)) \to \pi_\alpha(x)$. Since I only used the fact that projections are continous this direction is true in the product or box topology. The converse is only true in the product topology. Assume that $(\pi_\alpha(x_n)) \to \pi_\alpha(x)$ for all α . Then let $U = U_{\alpha 1} \times \ldots U_{\alpha m} \times X \times \ldots$ be a neighborhood around x. Then for each α_i there exists a k_i such that for all $k > k_i$, $\pi_{\alpha i}(x_k) \in U_{\alpha i}$. Now take $K = \max\{k_1, \ldots k_m\}$, then for k > K, $x_k \in U$. Hence $(x_n) \to x$. To see that this is false in the box topology, let $X = \mathbb{R}^\omega$ and consider the neighborhood $A = (-1,1) \times (\frac{-1}{2},\frac{1}{2}) \times \ldots$ around 0, and define the sequence $x_n = (\frac{1}{n},\frac{1}{n},\frac{1}{n},\ldots)$. Then each projection converges to 0 in \mathbb{R} , but for each index $k, x_k \notin A$ since the $(k+1)^{th}$ index of x_k is not in $(\frac{-1}{k+1},\frac{-1}{k+1})$. Hence the sequence cannot converge to zero.

Question 8.

Let \mathbb{R}^{∞} be the subset of R^{ω} consisting of all sequences that are eventually zero. What is the closure in the product and box topologies

Proof. First consider the product topology. Let $x \in \mathbb{R}^{\omega}$ and let $U = U_{\alpha 1} \times \cdots \times U_{\alpha n} \times \mathbb{R} \times \cdots$ be an open set of x. Then it is clear that U contains an element of \mathbb{R}^{∞} , we can pick any element from each $U_{\alpha i}$ for $i = 1, \ldots n$ and then just pick zeros for the rest. Hence every x is a limit point and thus \mathbb{R}^{∞} is dense in \mathbb{R}^{ω} so its closure is the whole space.

Now we consider the box topology. Let x be a limit point of \mathbb{R}^{∞} and assume that $x \notin \mathbb{R}^{\infty}$. We write $x = (x_{\alpha})_{\alpha \in J}$. Since this sequence is never eventually zero, for each term not equal to zero we can select an ϵ nbhd $U_{\alpha} = (x_{\alpha} - \epsilon_{\alpha}, x_{\alpha} + \epsilon_{\alpha})$ that does not contain zero. Then it is clear that this nbhd cannot

contain an element of \mathbb{R}^{∞} , hence x is not a limit point; a contradiction. Thus, \mathbb{R}^{∞} must contain all its limit points so, \mathbb{R}^{∞} is a closed subset in the box topology.

Question 9.

Proof. To show that h is a bijection, Let $(x_1, x_2, \ldots) \in \mathbb{R}^{\omega}$, then let $x = (\frac{x_1 - b_1}{a_1}, \frac{x_2 - b_2}{a_2}, \ldots)$. Since $a_i > 0$ each term is well defined. Then it is clear that $h(x) = (x_1, \ldots)$, hence h is a surjection. Now suppose that $h(x_1, x_2, \ldots) = h(x'_1, x'_2, \ldots)$. Then

$$(a_1x_1+b_1,a_2x_2+b_2,\dots)=(a_1x_1'+b_1,a_2x_2'+b_2,\dots)$$

so $a_i x_i + b_i = a_i x_i' + b_i$ with $a_i \neq 0$, so $x_i = x_i'$. Thus h is a bijection. Now we must show that h is continuous with a continuous inverse.

Let $U = \Pi U_{\alpha} = U_{\alpha 1} \times \cdots \times U_{\alpha n} \times \mathbb{R} \times \cdots$. Be an open set in the product topology and let $f_i(x) = a_i x + b_i$. Then

$$h^{-1}(U) = f_1^{-1}(U_{\alpha 1}) \times \cdots \times f_n^{-1}(U_{\alpha n}) \times f_{n+1}^{-1}(\mathbb{R}) \times \cdots$$

Since $a_i \neq 0$ each f_i is a bijection, and thus for k > n we have $f_k^{-1}(\mathbb{R}) = \mathbb{R}$ and by continuity of each polynomial f_i , each preimage is open. Hence $h^{-1}(U)$ is open in \mathbb{R}^{ω} under the product topology. To prove that the inverse is also continuous, we can write

$$h^{-1}(x_1, x_2, \dots) = \left(\frac{x_1 - b_1}{a_1}, \frac{x_2 - b_2}{a_2}, \dots\right)$$

again using the fact that $a_i \neq 0$. Theses are all bijective polynomials and so nothing stops us from just reapplying the above argument.

In the box topology, let $U = \Pi U_{\alpha}$ be an open set. Then if

$$h(x_1, x_2, \dots) = (f_1(x), f_2(x), \dots)$$

then $h^{-1}(U) = f_1^{-1}(U_\alpha) \times f_2^{-1}(U_\beta) \times \dots$ as above. Since each f_i is continuous, we have that each preimage is open, thus the product is open in the box topology and h is continuous. To prove that the inverse of h is continuous, by computing a formula for the inverse as in the previous paragraph, we will again see that each component function is continuous and make a similar argument.