

Heat Transfer

Conduction Heat Transfer

Jin Zhao 赵瑾

Email: jin.zhao@buaa.edu.cn

Office: New main building D1116

HT Week 1 Recall

- Introduction -

- Three modes of heat transfer
 - **♦ Conduction:** Energy exchange through a fixed body or across bodies at the point of contact.
 - ♥ Convection: Energy conveyance by the bulk motion of a fluid accompanied by conduction between the fluid and the bodies it comes in contact with.
 - Radiation: Energy exchange through electromagnetic radiation and absorption.
 - **♦ In general, heat transfer mixes three modes mentioned above.**

- We will study all of these in this course
- First part Conduction HT

HT Week 1 Recall

- Introduction -

Table 1.5 Summary of heat transfer processes

Mode	Mechanism(s)	Rate Equation	Equation Number	Transport Property or Coefficient		
Conduction	Diffusion of energy due to random molecular motion	$q_x''(W/m^2) = -k\frac{dT}{dx}$	(1.1)	$k (W/m \cdot K)$		
Convection	Diffusion of energy due to random molecular motion plus energy transfer due to bulk motion (advection)	$q''(W/m^2) = h(T_s - T_\infty)$	(1.3a)	$h\left(\mathbf{W}/\mathbf{m}^2\cdot\mathbf{K}\right)$		
Radiation	Energy transfer by electromagnetic waves	$q''(W/m^2) = \varepsilon \sigma(T_s^4 - T_{sur}^4)$ or $q(W) = h_r A(T_s - T_{sur})$	(1.7) (1.8)	\mathcal{E} $h_r(W/m^2 \cdot K)$		

•	Conservation of Energy	$\Delta E_{ m st} = E_{ m in} - E_{ m out} + E_g$	(1.12b)
•	Using a dot over a term to indicate a rate	$\dot{E}_{\rm st} = \frac{dE_{\rm st}}{dt} = \dot{E}_{\rm in} - \dot{E}_{\rm out} + \dot{E}_{\rm g}$	(1.12c)
•	The simplified steady-flow thermal	$a \equiv \dot{m}c (T_{\perp} - T_{\perp})$	(1.12e)

energy equation

• The Surface Energy Balance $\dot{E}_{in} - \dot{E}_{out} = 0 \tag{1.13}$

HT Week 1 Recall

- Introduction -

WK1: Introduction to heat transfer

WK2: Conduction 1: Introduction of Conduction Heat transfer

WK3: Conduction 2: One-dimensional steady state conduction

WK4: Conduction 3: Two-dimensional steady state conduction

WK5: Conduction 4: Transient conduction

WK6: Conduction 5: Numerical heat transfer introduction

WK7: Numerical heat transfer – case study: conduction

WK8: Convection 1: Introduction and equations

WK9: Convection 2: Boundary layer and BL integration

WK10: Convection 3: Other solutions of BL equations

WK11: Convection 4: Internal flow

WK12: Convection 5: Other convective modes

WK13: Numerical heat transfer – case study: convection

WK14: Radiation: Introduction and fundamentals

WK15: Radiation: Radiation between surfaces.

WK16: Revision week

L2. Introduction to Condution

2.1 Fourier's Law

2.2 Thermal Conductivity

• 2.3 Heat Diffusion Equation

HT: Conduction

L2: Introduction to Conduction

Learning Objectives:

- Explain the Fourier's law
- Describe the thermal conductivity
- Develop the general heat conduction equation
- B.C. & I.C.

Conduction HT – Basic Concepts

Conduction

- Simplest among the three modes of heat transfer
- It occurs all three phases of matter (gas, liquid, and solid)
- The driving force of heat conduction is temperature gradient.
 - Whenever there is temperature gradient, there exists heat conduction.
 - The basic law of heat conduction is Fourier's law.

Conduction HT – Basic Concepts

Temperature field:

$$T = T(x, y, z, \tau)$$

Steady-state conduction:

$$\frac{\partial T}{\partial \tau} = 0 \qquad T = T(x, y, z)$$

Transient-state conduction:

$$T = T(x, y, z, \tau)$$

Conduction HT – Basic Concepts

• Temperature gradient:

• Since we will be dealing with other coordinates also, realize that the gradient takes on other forms:

Cartesian

$$\overline{\nabla}T = \overline{i}\frac{\partial T}{\partial x} + \overline{j}\frac{\partial T}{\partial y} + \overline{k}\frac{\partial T}{\partial z}$$

Cylindrical

$$\overline{\nabla}T = \overline{i}\frac{\partial T}{\partial r} + \overline{j}\frac{1}{r}\frac{\partial T}{\partial \phi} + \overline{k}\frac{\partial T}{\partial z}$$

<u>Spherical</u>

$$\overline{\nabla}T = \overline{i}\frac{\partial T}{\partial r} + \overline{j}\frac{1}{r}\frac{\partial T}{\partial \theta} + \overline{k}\frac{1}{r\sin\theta}\frac{\partial T}{\partial \phi}$$

Conduction HT – Basic Concepts

Isothermal surfaces

$$T = T(x, y, z)$$

$$\overline{\nabla}T = \overline{i}\frac{\partial T}{\partial x} + \overline{j}\frac{\partial T}{\partial y} + \overline{k}\frac{\partial T}{\partial z}$$

- Temperature field is a scalar
- Temperature gradient is a vector (perpendicular to the isothermal surfaces or isotherms, and from low T to high T)
- Heat is transferred from high T to low T.

Conduction HT – Basic Concepts

Heat Flux, q

 $q^{''}$

Heat flow is measured as the amount of energy transferred through any given plane per unit area and per unit time, which is called heat flux

heat
$$flux = q = \frac{energy}{area \cdot time} = \frac{\phi}{A \cdot t} = \frac{J}{m^2 \cdot s}$$

Heat Rate, Q

9

$$Q = q \cdot A = \frac{energy}{time} = \frac{\phi}{t}$$

2.1 Fourier's Law

Fourier's law is phenomenological

The temperature difference causes conduction

heat transfer

B Fourier, France (1768-1830)

(Steady-state heat conduction experiment, 1822)

If it is one-dimensional, steady-state:

$$Q_x \propto A \frac{\Delta T}{\Delta x}$$

 q_x : the heat transfer rate

A: the cross-sectional area

 ΔT : the temperature difference

 Δx : the rod length

Conduction HT – Basic Concepts

Fourier's Law

 When two differing temperatures occur on opposing sides of a material, the rate of heat transfer through the material is directly proportional to the surface area and temperature difference but inversely proportional to the thickness.

Mathematically:

$$Q \propto A\Delta T / \Delta x$$

$$Q = heat transfer rate or heat flux (J/s or W)$$

$$A = area(m^2)$$

$$\Delta T = temperature difference = T_2 - T_1 (^{\circ}C \text{ or }^{\circ}K)$$

$$\Delta x = thickness (m)$$

2.1 Fourier's Law (cont.)

- The heat transfer rate is material-dependent. (e.g., plastic, metal, etc.)
- The constant of proportionality is called **thermal** conductivity k, $W/m \cdot K$

$$Q_{x} = -kA \frac{dT}{dx}$$

heat flux:

$$q_x = \frac{Q_x}{A} = -k \frac{dT}{dx}$$

Note:

the minus sign – the heat is transferred in the direction of decreasing temperature

2.1 Fourier's Law (cont.)

One dimensional:

$$q_x = \frac{Q_x}{A} = -k \frac{dT}{dx}$$

A general statement of Fourier's law

three-dimensional, isotropic material

$$q = -k\nabla T = -k\left(\frac{\partial T}{\partial x}\vec{i} + \frac{\partial T}{\partial y}\vec{j} + \frac{\partial T}{\partial z}\vec{k}\right)$$

 $q_{x} = -k_{x} \frac{\partial T}{\partial x}$ $q_{y} = -k_{y} \frac{\partial T}{\partial y}$ y

(An alternative form)

$$\mathbf{q} = q_n \mathbf{n} = -k \frac{\partial T}{\partial n} \mathbf{n}$$

Note:

the heat flux – vector, perpendicular to the isothermal surfaces

L2. Introduction to Condution

2.1 Fourier's Law

2.2 Thermal Conductivity

• 2.3 Heat Diffusion Equation

$$q = -k\nabla T = -k\left(\frac{\partial T}{\partial x}\vec{i} + \frac{\partial T}{\partial y}\vec{j} + \frac{\partial T}{\partial z}\vec{k}\right)$$
$$k_x \equiv k_y \equiv k_z \equiv k$$

Isotropic material: k is independent of the coordinate direction

$$q = q_x \vec{i} + q_y \vec{j} + q_z \vec{k} = -\left(k_x \frac{\partial T}{\partial x} \vec{i} + \frac{\partial T}{\partial y} \vec{j} + \frac{\partial T}{\partial z} \vec{k}\right), \quad q_x = -k_x \frac{\partial T}{\partial x} \vec{i}$$

 Thermal conductivity depends strongly upon the material and usually also varies temperature.

In general:
$$k_{\text{metal}} > k_{\text{non-metal}}$$
; $k_{\text{solid}} > k_{\text{liquid}} > k_{\text{gas}}$

For fluids (gasses and liquids) conduction occurs through the random motion of the fluid particles.

FIGURE 2.4 Range of thermal conductivity for various states of matter at normal temperatures and pressure.

The Solid State

For solids, there are two mechanisms of heat transfer: the migration of free electrons and crystal lattice vibration.

- ➤ The migration of free electrons is similar to the conduction by random particle motion in gasses.
 - Since the number of free electrons is proportional to the electrical conductance of the material, better electrical conductors are better heat conductors.
- ➤ Lattice vibration is associate with vibrations of the atoms and molecules bound in the structure of solids. Basic, shake one side of a crystal and the other side moves in response.

How thermal conductivity depends on temperature?

FIGURE 2.5 The temperature dependence of the thermal conductivity of selected solids.

Fluids

Consider the flux across an imaginary boundary between two fluids (gasses and liquids) at different temperatures.

- For fluids (gasses and liquids) conduction occurs through the random motion of the fluid particles.
- As a result of this random motion, energy is transfer from side of the partition to the other - this is conduction.
- It also follows that as temperature increases, there is more random motion, and thus the conduction rate increases.

The Fluid State

FIGURE 2.9 The temperature dependence of the thermal conductivity of selected nonmetallic liquids under saturated conditions.

The Gas State

FIGURE 2.8 The temperature dependence of the thermal conductivity of selected gases at normal pressures. Molecular diameters (d) are in nm [10]. Molecular weights (\mathcal{M}) of the gases are also shown.

• Other thermal properties?

e.g. thermal diffusivity α

$$\alpha = \frac{k}{\rho c_p}$$

							Properties at Various Temperatures (K)								
	Melting Point (K)	Properties at 300 K				$k (W/m \cdot K)/c_p (J/kg \cdot K)$									
Composition		ρ (kg/m³)	$(J/kg \cdot K)$	$(W/m \cdot K)$	α·10 ⁶ (m ² /s)	100	200	400	600	800	1000	1200	1500	2000	2500
Aluminum															
Pure	933	2702	903	237	97.1	302	237	240	231	218					
Alloy 2024-T6 (4.5% Cu, 1.5% Mg, 0.6% Mn)	775	2770	875	177	73.0	482 65 473	798 163 787	949 186 925	1033 186 1042	1146					
Alloy 195, Cast (4.5% Cu)		2790	883	168	68.2			174 —	185						
Beryllium	1550	1850	1825	200	59.2	990 203	301 1114	161 2191	126 2604	106 2823	90.8 3018	78.7 3227	3519		
Bismuth	545	9780	122	7.86	6.59	16.5 112	9.69 120	7.04 127							
Boron	2573	2500	1107	27.0	9.76	190 128	55.5 600	16.8 1463	10.6 1892	9.60 2160	9.85 2338				
Cadmium	594	8650	231	96.8	48.4	203 198	99.3 222	94.7 242							
Chromium	2118	7160	449	93.7	29.1	159 192	111 384	90.9 484	80.7 542	71.3 581	65.4 616	61.9 682	57.2 779	49.4 937	
Cobalt	1769	8862	421	99.2	26.6	167 236	122 379	85.4 450	67.4 503	58.2 550	52.1 628	49.3 733	42.5 674		
Copper			20.5			402		202	2=0	2//		220			
Pure	1358	8933	385	401	117	482 252	413 356	393 397	379 417	366 433	352 451	339 480			
Commercial bronze (90% Cu, 10% Al)	1293	8800	420	52	14	2,52	42 785	52 460	59 545	433	451	400			
Phosphor gear bronze (89% Cu, 11% Sn)	1104	8780	355	54	17		41	65	74						
Cartridge brass (70% Cu, 30% Zn)	1188	8530	380	110	33.9	75	95 360	137 395	149 425						
Constantan (55% Cu, 45% Ni)	1493	8920	384	23	6.71	17 237	19 362								
Germanium	1211	5360	322	59.9	34.7	232 190	96.8 290	43.2 337	27.3 348	19.8 357	17.4 375	17.4 395			

2.3 Heat Diffusion Equation

Objective:

To determine the temperature distribution

Approach:

Fourier's law + Energy conservation equation

2.3 Heat Diffusion Equation

In Cartesian coordinates:

$$\overline{q} = -kA\overline{\nabla}T = \overline{i}q_x + \overline{j}q_y + \overline{k}q_z$$

$$q_x = -kA\frac{\partial T}{\partial x} \qquad q_y = -kA\frac{\partial T}{\partial y} \qquad q_z = -kA\frac{\partial T}{\partial z}$$

• To develop a generalized governing law for heat conduction, we begin by consider the fluxes in an element as shown:

2.3 Heat Diffusion Equation (cont.)

 A statement of energy conservation for this control mass (similar to the 1st Law) would be:

Let's consider this statement term by term.

2.3 Heat Diffusion Equation (cont.)

(1) consider the heat flux through the element:

Rate of flux of energy into the element
$$= [Heat influx] - [Heat outflux]$$

$$= [q''_x dy dz + q''_y dx dz + q''_z dy dx] -$$

$$= [q''_x + \frac{\partial q''_x}{\partial x} dx] dy dz + (q''_y + \frac{\partial q''_y}{\partial y} dy) dx dz + (q''_z + \frac{\partial q''_z}{\partial z} dz) dx dy]$$

$$= -(\frac{\partial q''_x}{\partial x} + \frac{\partial q''_y}{\partial y} + \frac{\partial q''_z}{\partial z}) dx dy dz$$

$$\frac{\partial q_x''}{\partial x} + \frac{\partial q_y''}{\partial y} + \frac{\partial q_z''}{\partial z} = \frac{\partial}{\partial x} \left(-k \frac{\partial T}{\partial x} \right) + \frac{\partial}{\partial y} \left(-k \frac{\partial T}{\partial y} \right) + \frac{\partial}{\partial z} \left(-k \frac{\partial T}{\partial z} \right) = \overline{\nabla} \cdot \left(-k \overline{\nabla} T \right)$$

2.3 Heat Diffusion Equation (cont.)

• (2) consider the heat generation term:

Rate of energy production in the element
$$\dot{q} \equiv \text{heat generation per unit mass}$$

$$\dot{q} \equiv \text{heat generation per unit mass}$$

$$(W/m^3)$$

 Sources of heat generation could be electrical resistance, chemical reactions, nuclear reactions, or even radiation absorption like in a microwave.

2.3 Heat Diffusion Equation (cont.)

(3) the rate of change of energy:

Rate of change of energy storage in the element
$$= \rho c_p \frac{\partial T}{\partial t} dx dy dz$$

$$= \rho c_p \frac{\partial T}{\partial t} dx dy dz$$

2.3 Heat Diffusion Equation (cont.) • Finally parts:

Finally, putting all these together, we get the heat diffusion equation:

$$\rho c_p \frac{\partial T}{\partial t} = \overline{\nabla} \cdot (k \overline{\nabla} T) + \dot{q}$$

- Note that this is a 2nd order differential equation!
- One common simplification of this equation is to assume that the material conductivity, k, is independent of position. This is valid if:
 - objects are made of a single material
 - k is not a strong function of T or T is nearly constant
- In this case, the diffusion equation can be written as:

$$\frac{1}{\alpha} \frac{\partial T}{\partial t} = \nabla^2 T + \frac{\dot{q}}{k}$$

where

$$\alpha = \frac{k}{\alpha c}$$
 = thermal diffusivity (m²/sec) $\nabla^2 = \overline{\nabla} \cdot \overline{\nabla} = \text{Laplace differential operation}$

2.3 Heat Diffusion Equation (cont.)

$$\frac{1}{\alpha} \frac{\partial T}{\partial t} = \nabla^2 T + \frac{\dot{q}}{k}$$

Cartesian

$$\nabla^2 T = \frac{\partial^2 T}{\partial x^2} + \frac{\partial^2 T}{\partial y^2} + \frac{\partial^2 T}{\partial z^2}$$

Cylindrical

$$\nabla^2 T = \frac{\partial^2 T}{\partial r^2} + \frac{1}{r} \frac{\partial T}{\partial r} + \frac{1}{r^2} \frac{\partial^2 T}{\partial \phi^2} + \frac{\partial^2 T}{\partial z^2}$$

Spherical

$$\nabla^2 T = \frac{1}{r} \frac{\partial^2}{\partial r^2} (rT) + \frac{1}{r^2 \sin \theta} \frac{\partial}{\partial \theta} \left(\sin \theta \frac{\partial T}{\partial \theta} \right) + \frac{1}{r^2 \sin^2 \theta} \frac{\partial^2 T}{\partial \phi^2}$$

L2. Introduction to Condution

2.1 Fourier's Law

• 2.2 Thermal Conductivity

• 2.3 Heat Diffusion Equation

2.4 Boundary and Initial Conditions

$$\frac{1}{\alpha} \frac{\partial T}{\partial t} = \nabla^2 T + \frac{\dot{q}}{k}$$

- Requirements:
 - > Two Boundary Conditions (2)

the heat equation is **second order in the spatial coordinates**

> One Initial Condition (1)

the heat equation is first order in time

2.4 Boundary and Initial Conditions

- IC:
 - $T(x_w, 0) = T_i$

- **TABLE 2.2** Boundary conditions for the heat diffusion equation at the surface (x = 0)
- 1. Constant surface temperature

$$T(0,t)=T_s$$

(2.31)

- Three types of BCs
- 2. Constant surface heat flux
 - (a) Finite heat flux

$$-k\frac{\partial T}{\partial x}\Big|_{x=0} = q_s''$$

(b) Adiabatic or insulated surface

$$\frac{\partial T}{\partial x}\Big|_{x=0} = 0$$

3. Convection surface condition

$$-k\frac{\partial T}{\partial x}\Big|_{x=0} = h[T_{\infty} - T(0, t)]$$

- BCs
 - Fixed temperature (First B.C.):
 - $T(0, t) = T_s$

- BCs
 - Fixed heat flux (Second B. C.)
 - $-k(dT/dx)_{x=0}=q''_s$

- BCs
 - Adiabatic Wall (Second B. C.)
 - $-k(dT/dx)_{x=0}=0$

- BCs
 - Convectively cooled (Third B. C.)
 - $-k(dT/dx)_{x=0}=h[T_{\infty}-T(0, t)]$

2.4 Boundary and Initial Conditions

BCs

- Fixed temperature (First B.C.):
 - $T(x_w,t) = T_s$
- Fixed heat flux (Second B. C.)
 - $-k(dT/dx)_{xw}=q_s$
- Adiabatic Wall (Second B. C.)
 - $-k(dT/dx)_{xw}=0$
- Convectively cooled (Third B. C.)
 - $-k(dT/dx)_{xw}=h(T_{\infty}-T_s)$

HT Week 2 Wrap Up

Fourier's Law

$$q = -k\nabla T = -k\left(\frac{\partial T}{\partial x}\vec{i} + \frac{\partial T}{\partial y}\vec{j} + \frac{\partial T}{\partial z}\vec{k}\right)$$

- Thermal Conductivity k, thermal diffusivity α
- Heat Diffusion Equation

$$\rho c_p \frac{\partial T}{\partial t} = \overline{\nabla} \cdot (k \overline{\nabla} T) + \dot{q}$$

Homework

 Develop the heat diffusion equation in cylindrical and spherical coordinates.

• P97: 2.12

• P101: 2.34 (optional)