

WEEK 3: REVISION

FINAL EXAM

CONTENTS

- 1. Four Fundamental Subspaces
- 2. Orthogonal Vectors and Subspaces
- 3. Projections
- 4. Least Squares and Projections onto a Subspace
- 5. Example of Least Squares

1. FOUR FUNDAMENTAL SUBSPACES

Suppose **A** is a $m \times n$ matrix.

$$A = \begin{cases} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{cases}$$
 linearly independent space is $C(\mathbf{A})$, a subspace of \mathbb{R}^m .

Columns for is $N(\mathbf{A})$, a subspace of \mathbb{R}^n .

- The column space is C(A), a subspace of \mathbb{R}^m .
- The row space is $C(\underline{\mathbf{A}}^T)$, a subspace of $\underline{\mathbb{R}}^n$.
- The nullspace is N(A), a subspace of \mathbb{R}^n .
- The left nullspace is $N(\mathbf{A}^T)$, a subspace of \mathbb{R}^m .

C(A)

 $\dim r$

column space

all Ax

2. ORTHOGONAL VECTORS AND SUBSPACES

Two real vectors \underline{x} and yare orthogonal if

$$x^{T} y = 0 \text{ or } y^{T}x = 0$$

 $x.y = 0 \text{ or } y.x = 0$

 $C(A^{\mathrm{T}})$ $\dim r$ row space all $A^{\mathrm{T}}y$

 $R(A) \bot N(A) \checkmark$ $C(A) \perp N(A^T)$

The big picture

orthogonal Complement nullspace Ax = 0N(A)

Rank - number of independent columns - rows

rank(A) + nullity(A) = n

dimension n-r

$$\dim(C(A^T)) + \dim(N(A^T)) = m$$

3. PROJECTIONS

The projection (*p*) of *b* onto a line and onto S (column space of A).

4. LEAST SQUARES APPROXIMATIONS

y = mal+C

- \triangleright It often happens that Ax = b has no solution.
- > The usual reason is: *too many equations*.
 - > The matrix A has more rows than columns.
 - \triangleright There are more equations than unknowns (*m* is greater than *n*).
 - \triangleright Then columns span a small part of m-dimensional space.

SOME SOLVED PROBLEMS

$$span \left[egin{array}{c} 1 \ 2 \ -1 \end{array}
ight]$$

Nullspace is N(A)

$$span \begin{bmatrix} -4 \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} -2 \\ 0 \\ 1 \end{bmatrix}$$

Find the fundamental spaces of
$$A = \begin{bmatrix} 1 & 4 & 2 \\ 2 & 8 & 4 \\ -1 & -4 & -2 \end{bmatrix}$$
 $\Rightarrow \begin{bmatrix} 4 & 2 \\ 2 & 8 & 4 \\ 0 & 0 & 0 \end{bmatrix}$

Row space is
$$\mathfrak{C}(A^T)$$
, \mathfrak{F}_{-4} $\mathfrak{$

Left nullspace is $N(\mathbf{A}^T)$

$$span \begin{bmatrix} -2 \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}$$

SOLUTION TO Ax = b

$$A = \begin{bmatrix} 1 & 3 & 0 & 2 \\ 0 & 0 & 1 & 4 \\ 1 & 3 & 1 & 6 \end{bmatrix}$$

Find the condition on (b_1, b_2, b_3) for Ax = b to be solvable.

$$\begin{bmatrix} A & b \end{bmatrix} = \begin{bmatrix} 1 & 3 & 0 & 2 & b_1 \\ 0 & 0 & 1 & 4 & b_2 \\ 1 & 3 & 1 & 6 & b_3 \end{bmatrix} \longrightarrow \begin{bmatrix} 1 & 3 & 0 & 2 & b_1 \\ 0 & 0 & 1 & 4 & b_2 \\ 0 & 0 & 0 & 0 & b_3 - b_1 - b_2 \end{bmatrix}$$

Now we get 0 = 0 in the third equation only if $b_3 - b_1 - b_2 = 0$.

$$b_1 + b_2 = b_3$$

This condition puts b in the column space of A.

How to find the projection matrix for
$$a = \begin{bmatrix} -1 \\ 3 \\ -2 \end{bmatrix}$$
?

$$\mathbb{P} = rac{aa^T}{a^Ta}$$

$$aa^{T} = \begin{bmatrix} -1 & 3 & -2 & 1 \end{bmatrix} \begin{bmatrix} -1 \\ 3 \\ -2 \\ 1 \end{bmatrix} = \begin{bmatrix} 1 & -3 & 2 & -1 \\ -3 & 9 & -6 & 3 \\ 2 & -6 & 4 & -2 \\ -1 & 3 & -2 & 1 \end{bmatrix}$$
 Projection of $b = \begin{bmatrix} 1 \\ 0 \\ 1 \\ 1 \end{bmatrix}$ onto a :

$$\underline{a^Ta} = egin{bmatrix} -1 \ 3 \ -2 \ 1 \end{bmatrix} egin{bmatrix} -1 \ 3 \ -2 \ 1 \end{bmatrix} = 15$$

$$\mathbb{P} = rac{1}{15} egin{bmatrix} 1 & -3 & 2 & -1 \ -3 & 9 & -6 & 3 \ 2 & -6 & 4 & -2 \ -1 & 3 & -2 & 1 \end{bmatrix}$$

Projection of
$$b = \begin{bmatrix} -1\\0\\1\\1 \end{bmatrix}$$
 onto a :

$$p=\mathbb{P}*b$$

$$p = \frac{1}{15} \begin{bmatrix} 1 & -3 & 2 & -1 \\ -3 & 9 & -6 & 3 \\ 2 & -6 & 4 & -2 \\ -1 & 3 & -2 & 1 \end{bmatrix} * \begin{bmatrix} 1 \\ 0 \\ 1 \\ 1 \end{bmatrix} = \frac{1}{15} \begin{bmatrix} 2 \\ -6 \\ 4 \\ -2 \end{bmatrix}$$

LEAST SQUARES METHOD

Solve:
$$\mathbf{A}^T A \widehat{\mathbf{x}} = \mathbf{A}^T \mathbf{b}$$
 $\hat{x} = \begin{bmatrix} \theta' \\ \hat{\theta}'' \end{bmatrix}$

$$A = \begin{bmatrix} 1 & 1 \\ 2 & 1 \\ 3 & 1 \\ 4 & 1 \\ 5 & 1 \end{bmatrix} A^{T} = \begin{bmatrix} 1 & 2 & 3 & 4 & 5 \\ 1 & 1 & 1 & 1 & 1 \end{bmatrix} b = \begin{bmatrix} 2 \\ 1 \\ 3 \\ 4 \\ 4 \end{bmatrix}$$

$$\begin{bmatrix} 55 & 15 \\ 15 & 5 \end{bmatrix} \begin{bmatrix} \hat{\theta}' \\ \hat{\theta}'' \end{bmatrix} = \begin{bmatrix} 49 \\ 14 \end{bmatrix}$$

Solving this we get,
$$\hat{x} = \begin{bmatrix} 0.7 \\ 0.7 \end{bmatrix}$$

Best fit line:
$$y = 0.7x + 0.7$$

Distance of points from line = residuals Least squares regression line: Minimizes sum of square residuals

Best fit line: y = 0.7x + 0.7

