

# RDBMS

Relationale Datenbankmanagement-Systeme

## **AGENDA**



#### 1. Das relationale Datenbankmodell

- 1.1 Tabellen, Attribute und Tupel
- 1.2 Beziehungen zwischen Tabellen
- 1.3 Primärschlüssel
- 1.4 Fremdschlüssel
- 2. Normalformen
- 3. Beispiele bekannte relationale Datenbank-Systeme



# 1. Das relationale Modell

Tabellen, Attribute und Schlüssel



### Das relationale Modell

#### Aufbau einer relationalen Datenbank beruht auf relationalem Modell

Eine relationale Datenbank ist eine Sammlung von:

- Tabellen, in denen sich die eigentlichen Daten befinden
- Beziehungen zwischen den Tabellen, die hergestellt werden können über:
  - Primärschlüssel und Fremdschlüssel

### Das relationale Modell - Tabellen



Alle Daten werden in Tabellen gespeichert

- Éine Spalte der Tabelle wird als Attribut bezeichnet
- Eine Zeile der Tabelle wird als Tupel oder **Datensatz** bezeichnet

Personaldaten können z.B. in einer Tabelle Person gespeichert werden:

#### **Tabelle Person**



### Das relationale Modell - Datentypen



Jedem Attribut wird bei Anlegen einer Tabelle ein Datentyp zugeordnet:

- In der Regel werden folgende Datentypen vom DBS unterstützt
  - Numerische Datentypen Ganzzahl, Gleitkommazahl, Datum
  - Alphanumerische Datentypen Character, Zeichenkette
  - Binäre Datentypen Bitfolge fester/variabler Länge
- Unterstützte Datentypen abhängig vom Datenbanksystem

| Zeichenkette<br> |          | Datum        | Zeichenkette |  |
|------------------|----------|--------------|--------------|--|
| Vorname          | Nachname | Geburtsdatum | Geschlecht   |  |
| Peter            | Kiel     | 01.01.1980   | maennlich    |  |
| Lisa             | Lebe     | 02.02.1970   | weiblich     |  |

#### Das relationale Modell – Der Primärschlüssel



**Der Primärschlüssel (Primary Key)** besteht aus einem/mehreren Attributen, über deren Wert jeder Datensatz eindeutig identifiziert werden kann

| PNR | Vorname | Nachname | Geburtsdatum | Geschlecht |  |
|-----|---------|----------|--------------|------------|--|
| 100 | Peter   | Kiel     | 01.01.1980   | maennlich  |  |
| 101 | Lisa    | Lebe     | 02.02.1970   | weiblich   |  |
| 102 |         |          |              |            |  |

Zusammengesetzter Primärschlüssel aus Vorname und Nachname.
 Jeder Datensatz muss über Vornamen + Nachnamen eindeutig identifiziert werden können.

Problem: Es dürfen dann keine zwei Personen mit gleichem Namen eingefügt werden

Besser: Primärschlüssel auf zusätzliches Attribut Personalnummer

Primärschlüssel auf PNR -> Jede PNR darf nur einmal vergeben werden

#### Das relationale Modell – Der Fremdschlüssel



Fremdschlüssel (Foreign Key) ermöglicht es, Beziehungen zwischen Datensätzen verschiedener Tabellen zu definieren

Beispiel: Für jede Person sollen Adressdaten (Straße, Ort) gespeichert werden

| PNR | Vorname | Nachname | Geburtsdatum | Geschlecht | Ort      | Strasse   |
|-----|---------|----------|--------------|------------|----------|-----------|
| 100 | Peter   | Kiel     | 01.01.1980   | maennlich  | Trier    | Nebenstr. |
| 100 | Peter   | Kiel     | 01.01.1980   | maennlich  | Koblenz  | Hauptstr. |
| 101 | Lisa    | Lebe     | 02.02.1970   | Weiblich   | Wittlich | Kirchstr. |

- 1. Möglichkeit ohne Fremdschlüssel: Erweiterung der Tabelle Person um 2 zusätzliche Attribute
  - → **Problem:** hat eine Person mehrere Adressen, werden Adressdaten mehrfach hinterlegt (unnötige Datenredundanz)

#### Das relationale Modell – Der Fremdschlüssel



2. Möglichkeit: Adressdaten werden in eigener Tabelle Adresse gespeichert.

#### **Tabelle Person**

| PNR | Vorname | Nachname Geburtsdatum |            | Geschlecht |
|-----|---------|-----------------------|------------|------------|
| 100 | Peter   | Kiel                  | 01.01.1980 | maennlich  |
| 101 | Lisa    | Lebe                  | 02.02.1970 | Weiblich   |

#### **Tabelle Adresse**

| PNR | ANR | Ort      | Strasse   |
|-----|-----|----------|-----------|
| 100 | 1   | Trier    | Nebenstr. |
| 100 | 2   | Koblenz  | Hauptstr. |
| 101 | 3   | Wittlich | Kirchstr. |

#### Problem:

Es wird nicht sichergestellt, dass eine PNR in der Adress-Tabelle tatsächlich in der Person-Tabelle existiert

(z.B. könnte ein Datensatz in der Person-Tabelle nachträglich gelöscht werden)

#### Lösung:

Es wird ein Fremdschlüssel angelegt, der diese Beziehung der Tabellen abbildet.

#### Das relationale Modell – Der Fremdschlüssel



Für PNR-Spalte der Adress-Tabelle wird Fremdschlüssel angelegt, der Primärschlüssel-Spalte PNR der Person-Tabelle referenziert.

#### Primärschlüssel

| PNR | Vorname | Nachname | Geburtsdatum | Geschlecht |
|-----|---------|----------|--------------|------------|
| 100 | Peter   | Kiel     | 01.01.1980   | maennlich  |
| 101 | Lisa    | Lebe     | 02.02.1970   | Weiblich   |

#### Fremdschlüssel

| PNR | ANR | Ort      | Strasse   |
|-----|-----|----------|-----------|
| 100 | 1   | Trier    | Nebenstr. |
| 100 | 2   | Koblenz  | Hauptstr. |
| 101 | 3   | Wittlich | Kirchstr. |

#### REFERENZIERT

Was passiert, wenn in Adress-Tabelle Datensatz eingefügt wird mit: PNR 20, ANR 1, Bonn, Hauptstr.

→ Datensatz kann nicht eingefügt werden, da die PNR in der Tabelle Person nicht existiert

#### Was passiert, wenn in aus der Person-Tabelle der Satz mit PNR 100 gelöscht wird?

→ abhängig vom Datenbanksystem und Angabe bei Foreign-Key Definition:

Adressdatensätze mit PNR 100 werden gelöscht

Löschvorgang wird nicht durchgeführt wegen Referenz

In Adress-Tabelle wird bei den ersten zwei Datensätzen die PNR auf NULL gesetzt

# Übungsaufgaben



In einer Datenbank liegen folgende Tabellen vor:

#### **Fahrer**

| fahrerID | Vorname | Nachname   | Einstellungsdatum |  |
|----------|---------|------------|-------------------|--|
| 1        | Мах     | Mustermann | 01.08.2012        |  |
| 2        | Sarah   | Mueller    | 15.02.2008        |  |

#### **Fahrzeug**

| FahrzeugID | Baujahr | Gewicht | Sitzplaetze |  |
|------------|---------|---------|-------------|--|
| 100        | 00 2005 |         | 40          |  |
| 101 2003   |         | 4000    | 45          |  |

#### **Fahrt**

|      |   | fahrzeugID | Abfahrt  | Zielort |  |
|------|---|------------|----------|---------|--|
|      |   | 100        | 01.01.16 | Berlin  |  |
| 1002 | 2 | 101        | 01.11.15 | Köln    |  |

- 1. Für welche Spalten der Tabellen Fahrzeug, Fahrt und Fahrer sollten Primärschlüssel angelegt werden?
- 2. Für welche Spalte welcher Tabelle sollte ein Fremdschlüssel angelegt werden? Welche Spalte welcher Tabelle referenziert der Fremdschlüssel?



# Normalisierung

Erste, zweite und dritte Normalform

## Normalisierung



 Ziel beim Entwurf einer Datenbank ist es, Daten so auf Tabellen zu verteilen, dass Datenredundanz vermieden wird.

#### Redundanzfreie Datenspeicherung:

kein Teil des Datenbestandes kann weggelassen werden, ohne dass dabei Informationen verloren gehen.

#### Beispiel für redundante Speicherung:

| PNR | Vorname               | ame Nachname Geburtsdatum Geschlecht |            | Ort       | Strasse  |           |
|-----|-----------------------|--------------------------------------|------------|-----------|----------|-----------|
| 100 | Peter Kiel 01.01.1980 |                                      | 01.01.1980 | maennlich | Trier    | Nebenstr. |
| 100 | Peter                 | Kiel                                 | 01.01.1980 | maennlich | Koblenz  | Hauptstr. |
| 101 | Lisa                  | Lebe                                 | 02.02.1970 | Weiblich  | Wittlich | Kirchstr. |

## Normalisierung



#### Normalisierung:

Attribute werden so auf Tabellen aufgeteilt, dass keine vermeidbaren Redundanzen mehr vorliegen.

#### Normalformen:

- Im Rahmen der Normalisierung wird Datensammlung schrittweise in die Normalformen 1. bis 5. gebracht: (4. bzw 5. Normalform in Praxis eher unüblich)
- diese bauen aufeinander auf: Datenschema in der 3. Normalform ist gleichzeitig immer in der 1. und 2. Normalform
- 1. Normalform ist dabei am schwächsten normalisiert, 5. Normalform ist am stärksten normalisiert

# Normalisierung - Ausgangslage



Beispiel: Ein Onlineshop verkauft Drucker und Zubehör.

| KNR | Name     | Straße    | Ort   | Datum    | ANR | Artikel | KatNR | Kategorie | Anzahl |
|-----|----------|-----------|-------|----------|-----|---------|-------|-----------|--------|
| 122 | Tom Kiel | Nebenstr. | Trier | 12.12.14 | 1   | Papier  | 10    | Zubehör   | 2      |
| 122 | Tom Kiel | Nebenstr. | Trier | 12.12.14 | 2   | Toner   | 20    | Toner     | 1      |
| 244 | Ina Lebe | Hauptstr. | Köln  | 03.05.15 | 1   | Papier  | 10    | Zubehör   | 2      |

- Alle Daten befinden sich in einer Tabelle
- Bestellt ein Kunde mehrere Artikel, wird für jeden bestellten Artikel ein Datensatz angelegt mit:
  - Datum der Bestellung
  - Kundennummer, Name und Adresse des Bestellers (ein Kunde hat hier immer genau 1 Adresse)
  - Artikel, die bestellte Anzahl und die Artikelkategorie/-kategorienummer



Eine Relation ist in der ersten Normalform, wenn alle Attributwerte atomar sind

- Wert eines Attributs darf nicht aus mehreren Werten zusammengesetzt werden
- Es kann ein eindeutiger Primärschlüssel bestimmt werden

Name beinhaltet zusammengesetzte Werte – Vorname und Nachname

unnormalisiert



| KNR | Name     | Straße    | Ort   | Datum    | ANR | Artikel | KatNR | Kategorie | Anzahl |
|-----|----------|-----------|-------|----------|-----|---------|-------|-----------|--------|
| 122 | Tom Kiel | Nebenstr. | Trier | 12.12.14 | 1   | Papier  | 10    | Zubehör   | 2      |
| 122 | Tom Kiel | Nebenstr. | Trier | 12.12.14 | 2   | Toner   | 20    | Toner     | 1      |
| 244 | Ina Lebe | Hauptstr. | Köln  | 03.05.15 | 1   | Papier  | 10    | Zubehör   | 2      |

1. Normalform



|   | KNR | Vorname | Nachname | S | traße     | Ort   | Datum    | ANR | Artikel | KatNR | Kategorie | Anzahl |
|---|-----|---------|----------|---|-----------|-------|----------|-----|---------|-------|-----------|--------|
|   | 122 | Tom     | Kiel     |   | lebenstr. | Trier | 12.12.14 | 1   | Papier  | 10    | Zubehör   | 2      |
|   | 122 | Tom     | Kiel     |   | lebenstr. | Trier | 12.12.14 | 2   | Toner   | 20    | Toner     | 1      |
| 4 | 244 | Ina     | Lebe     |   | lauptstr. | Köln  | 03.05.15 | 1   | Papier  | 10    | Zubehör   | 2      |



#### Es kann ein eindeutiger Primärschlüssel bestimmt werden

Eindeutiger Primärschlüssel muss hier aus mehreren Attributen zusammengesetzt werden.

| KNR | Vorname | Nachname | Straße    | Ort   | Datum    | ANR | Artikel | KatNR | Kategorie | Anzahl |
|-----|---------|----------|-----------|-------|----------|-----|---------|-------|-----------|--------|
| 122 | Tom     | Kiel     | Nebenstr. | Trier | 12.12.14 | 1   | Papier  | 10    | Zubehör   | 2      |
| 122 | Tom     | Kiel     | Nebenstr. | Trier | 12.12.14 | 2   | Toner   | 20    | Toner     | 1      |
| 244 | Ina     | Lebe     | Hauptstr. | Köln  | 03.05.15 | 1   | Papier  | 10    | Zubehör   | 2      |

Primärschlüsselattribute

Warum kann bei dieser Zusammenstellung ein Kunde einen Artikel an einem Tag nicht mehrmals bestellen?



Eine Relation ist **in der zweiten Normalform**, wenn jedes Nichtschlüsselattribut vom Schlüsselattribut (Primärschlüssel) **voll funktional** abhängig ist.

#### Begriffserklärungen

#### 1. Schlüsselattribute

Alle Attribute, die Teil des Primärschlüssels sind

#### 2. Nichtschlüsselattribute

Alle Attribute, die nicht Teil des Primärschlüssels sind

#### 3. voll funktionale abhängig

Ein Nichtschlüssel-Attribut ist abhängig von allen Primärschlüssel-Attributen und nicht nur von einer Teilmenge des Primärschlüssels

Wert eines Nichtschlüssel-Attributs kann nur eindeutig bestimmt werden, wenn alle Attributwerte des zusammengesetzten Primärschlüssels bekannt sind



#### Sind alle Nichtschlüsselattribute voll funktional abhängig vom Primärschlüssel?

| KNR | Vorname | Nachname | Straße    | Ort   | Datum    | ANR | Artikel | KatNR | Kategorie | Anzahl |
|-----|---------|----------|-----------|-------|----------|-----|---------|-------|-----------|--------|
| 122 | Tom     | Kiel     | Nebenstr. | Trier | 12.12.14 | 1   | Papier  | 10    | Zubehör   | 2      |
| 122 | Tom     | Kiel     | Nebenstr. | Trier | 12.12.14 | 2   | Toner   | 20    | Toner     | 1      |
| 244 | Ina     | Lebe     | Hauptstr. | Köln  | 03.05.15 | 1   | Papier  | 10    | Zubehör   | 2      |

#### Vorname, Nachname, Straße und Ort:

- Um Namen und Adressdaten des Kunden herauszufinden, muss nur KNR bekannt sein
- Datum der Bestellung und Artikelnummer sind für diese Attribute nicht wichtig
- Attribute sind nur abhängig von KNR > nicht voll funktional abhängig

#### **Artikel und Kategorie**

- Um Artikelnamen und Kategorie herauszufinden, muss nur die ANR bekannt sein
- Attribute sind nur abhängig von ANR → nicht voll funktional abhängig



#### Sind alle Nichtschlüsselattribute voll funktional abhängig vom Primärschlüssel?

| KNR | Vorname | Nachname | Straße    | Ort   | Datum    | ANR | Artikel | KatNR | Kategorie | Anzahl |
|-----|---------|----------|-----------|-------|----------|-----|---------|-------|-----------|--------|
| 122 | Tom     | Kiel     | Nebenstr. | Trier | 12.12.14 | 1   | Papier  | 10    | Zubehör   | 2      |
| 122 | Tom     | Kiel     | Nebenstr. | Trier | 12.12.14 | 2   | Toner   | 20    | Toner     | 1      |
| 244 | Ina     | Lebe     | Hauptstr. | Köln  | 03.05.15 | 1   | Papier  | 10    | Zubehör   | 2      |

#### Anzahl

- Um die Anzahl der Artikel herauszufinden, die ein Kunde an einem Tag bestellt hat, müssen sowohl KNR, ANR als auch Datum bekannt sein
- Menge ist abhängig von allen Schlüsselattributen (KNR, ANR, Datum)
  - → damit voll funktional abhängig



Nicht voll funktional abhängige Attribute werden in neue Tabelle übernommen - mit dem Schlüsselteil, von dem sie abhängig sind

- 1. Vorname, Nachname, Straße und Ort:
  - → Abhängig von Kundennummer → Auslagerung in neue Tabelle Kunde

| KNR | Vorname | Nachname | Straße    | Ort   | Datum    | ANR | Artikel | KatNR | Kategorie | Anzahl |
|-----|---------|----------|-----------|-------|----------|-----|---------|-------|-----------|--------|
| 122 | Tom     | Kiel     | Nebenstr. | Trier | 12.12.14 | 1   | Papier  | 10    | Zubehör   | 2      |
| 122 | Tom     | Kiel     | Nebenstr. | Trier | 12.12.14 | 2   | Toner   | 20    | Toner     | 1      |
| 244 | Ina     | Lebe     | Hauptstr. | Köln  | 03.05.15 | 1   | Papier  | 10    | Zubehör   | 2      |

**Bestellung** 

| KNR | Datum    | ANR | Artikel | KatNR | Kategorie | Anzahl |
|-----|----------|-----|---------|-------|-----------|--------|
| 122 | 12.12.14 | 1   | Papier  | 10    | Zubehör   | 2      |
| 122 | 12.12.14 | 2   | Toner   | 20    | Toner     | 1      |
| 244 | 03.05.15 | 1   | Papier  | 10    | Zubehör   | 2      |

#### Kunde

| KNR | Vorname | Nachname | Straße    | Ort   |
|-----|---------|----------|-----------|-------|
| 122 | Tom     | Kiel     | Nebenstr. | Trier |
| 244 | Ina     | Lebe     | Hauptstr. | Köln  |



Nicht voll funktional abhängige Attribute werden in neue Tabelle übernommen - mit dem Schlüsselteil, von dem sie abhängig sind

#### 2. Artikel, KNR und Kategorie

→ Abhängig von Artikelnummer → Auslagerung in neue Tabelle Artikel

| KNR | Datum    | ANR | Artikel | KatNR | Kategorie | Anzahl |
|-----|----------|-----|---------|-------|-----------|--------|
| 122 | 12.12.14 | 1   | Papier  | 10    | Zubehör   | 2      |
| 122 | 12.12.14 | 2   | Toner   | 20    | Toner     | 1      |
| 244 | 03.05.15 | 1   | Papier  | 10    | Zubehör   | 2      |

#### **Bestellung**

| KNR | KNR Datum |   | Anzahl |
|-----|-----------|---|--------|
| 122 | 12.12.14  | 1 | 2      |
| 122 | 12.12.14  | 2 | 1      |
| 244 | 03.05.15  | 1 | 2      |

#### **Artikel**

| ANR | Artikel | KatNR | Kategorie |
|-----|---------|-------|-----------|
| 1   | Papier  | 10    | Zubehör   |
| 2   | Toner   | 20    | Toner     |



#### Vollständiges Tabellenschema in der 2. Normalform





Eine Relation ist **in der dritten Normalform**, wenn kein Nichtschlüsselattribut vom Primärschlüssel **transitiv** abhängig ist.

#### Begriffserklärungen

#### 1. Transitive Abhängigkeit

Ein Nichtschlüsselattribut (NSA) C ist von einem anderen NSA B abhängig. Das NSA B ist wiederum vom Schlüsselattribut A abhängig.

Ein NSA C ist nur indirekt (über ein anderes NSA B) vom Schlüsselattribut A abhängig

→ Wenn der Attributwert B bekannt ist, kann man den Wert von C bestimmen



#### Überprüfung der Nichtschlüsselattribute auf transitive Abhängigkeit

#### **Bestellung**

| KNR | Datum    | ANR | Anzahl |
|-----|----------|-----|--------|
| 122 | 12.12.14 | 1   | 2      |
| 122 | 12.12.14 | 2   | 1      |
| 244 | 03.05.15 | 1   | 2      |

Nur ein NSA

keine transitiveAbhängigkeit

#### Kunde

| KNR | Vorname | Nachname | Straße    | Ort   |
|-----|---------|----------|-----------|-------|
| 122 | Tom     | Kiel     | Nebenstr. | Trier |
| 244 | Ina     | Lebe     | Hauptstr. | Köln  |

Wenn Vorname bekannt ist, kann man daraus nicht auf Nachnamen, Straße oder Ort schließen.

Das gilt auch für alle anderen NSA

→ Keine transitive Abhängigkeit

#### **Artikel**

| ANR | Artikel | KatNR | Kategorie |  |
|-----|---------|-------|-----------|--|
| 1   | Papier  | 10    | Zubehör   |  |
| 2   | Toner   | 20    | Toner     |  |

Wenn KatNR bekannt ist, kann man Kategorie eindeutig bestimmen

→ Kategorie ist von ANR nur transitiv abhängig



Kategorie wird aus Artikel-Tabelle entfernt und mit KNR in neue Tabelle übernommen

#### **Artikel**

| ANR | Artikel | KatNR | Kategorie |
|-----|---------|-------|-----------|
| 1   | Papier  | 10    | Zubehör   |
| 2   | Toner   | 20    | Toner     |



#### **Artikel**

| ANR | Artikel | KNR |  |
|-----|---------|-----|--|
| 1   | Papier  | 10  |  |
| 2   | Toner   | 20  |  |

#### Kategorie

| KatNR | Kategorie |
|-------|-----------|
| 10    | Zubehör   |
| 20    | Toner     |



In der dritten Normalform ergibt sich dann also folgendes Schema

#### **Bestellung**

| KNR | Datum    | ANR | Anzahl |
|-----|----------|-----|--------|
| 122 | 12.12.14 | 1   | 2      |
| 122 | 12.12.14 | 2   | 1      |
| 244 | 03.05.15 | 1   | 2      |

#### **Artikel**

| ANR Artikel |        | KatNR |
|-------------|--------|-------|
| 1           | Papier | 10    |
| 2           | Toner  | 20    |

#### **Kunde**

| KNR | Vorname | Nachname | Straße    | Ort   |
|-----|---------|----------|-----------|-------|
| 122 | Tom     | Kiel     | Nebenstr. | Trier |
| 244 | Ina     | Lebe     | Hauptstr. | Köln  |

#### Kategorie

| KatNR | Kategorie |  |
|-------|-----------|--|
| 10    | Zubehör   |  |
| 20    | Toner     |  |

# Übungsaufgabe



In einer Bibliothek werden Daten aller Bücher wie folgt in einer Tabelle gesammelt:

- Buchid, Autor, Name und Verlag des Buches
- Alle Kapitelnummern des Buches mit Namen und Seitenzahl

| BuchID | Name, Autor            | Verlag   | KapiteInr | Kapitelname     | Kapitelseiten |
|--------|------------------------|----------|-----------|-----------------|---------------|
| 1      | WI Band 1, Mustermann  | Springer | 1         | Einführung      | 25            |
| 1      | WI Band 1, Mustermann  | Springer | 2         | Aufgaben der WI | 40            |
| 2      | Grundlagen DB, Mueller | Oreilly  | 1         | Einführung      | 12            |

Bringe die Tabelle schrittweise in die erste und dann in die zweite Normalform.



### Verschiedene DBMS im Überblick

MySQL, PostgreSQL, MS SQL Server, Oracle 12c

## Popularität der RDBMS





Punkt-Berechnung auf Basis versch. Faktoren (Nennungen auf Webseiten, Anzahl technischer Diskussionen, Jobangeboteetc)

Quelle: http://db-engines.com/de/ranking\_trend/relational+dbms



# HOCHSCHULE TRIER Trier University of Applied Sciences Wirtschaft

#### Lizenz

Kommerziell (Eingeschränkt kostenlose Version)

#### **Entwicklung**

Seit 1979, entwickelt von ORACLE

#### Verbreitung und Einsatz

- Zählt zu den am weitesten verbreiteten RDBMS
- Wegen vergleichsweise hoher Lizenzkosten und sehr m\u00e4chtiger
   Technologie Einsatz vor allem in gr\u00f6\u00dferen Unternehmen

### **MYSQL**



#### Lizenz

- Open Source
- mittlerweile auch kommerzielle Lizenz mit erweiterter Funktionalität

#### **Entwicklung**

- Seit 1994, entwickelt von MySQL AB
- gehört mittlerweile ORACLE

#### **Verbreitung und Einsatz**

- Sehr weit verbreitet
- Einsatz vor allem im Webbereich
  - vergleichsweise einfache Administration



### Microsoft SQL Server



#### Lizenz

Kommerziell (Eingeschränkt kostenlose Version)



#### **Entwicklung**

- Seit 1989
- Entstanden aus Kooperation zwischen Microsoft und Sybase

#### Verbreitung und Einsatz

- Weite Verbreitung in kleinen/mittelständigen Unternehmen
- Einsatz auf Windows Betriebssystemen

## **PostgreSQL**



#### Lizenz

Open Source

#### **Entwicklung**

- Seit 1989 Postgre, seit 1996 Postgre SQL
- Entwickelt von der PostgreSQL Global Development Group

#### **Verbreitung und Einsatz**

- Weite Verbreitung
- in den meisten Linux-Distributionen enthalten

#### **Sonstiges**

- Zählt zu den objektrelationalen Systemen
- Im Vergleich zu MySQL sehr weite Entwicklung

