

INFO 251: Applied Machine Learning

#### **Linear Models**

#### Announcements

- Assignment 3 due Monday
- Quiz 1 scheduled for March 2, first ~40 minutes of class
  - 10-15 multiple choice and short-answer questions
  - See piazza for details on quiz timing

#### **Course Outline**

- Causal Inference and Research Design
  - Experimental methods
  - Non-experiment methods
- Machine Learning
  - Design of Machine Learning Experiments
  - Linear Models and Gradient Descent
  - Non-linear models
  - Neural models
  - Unsupervised Learning
  - Practicalities, Fairness, Bias
- Special topics

# Key Concepts (last lecture)

- Cost Functions
- Gradient Descent
- Local and global minima
- Convex functions
- Incremental vs. Batch GD
- Learning rates
- Feature scaling

### Outline

- Regularization
- Ridge and Lasso
- Logistic regression (inference)
- Logistic regression (prediction)
- Support vector machines
- Kernels

### **Key Concepts (this lecture)**

- Regularization
- Ridge
- Lasso
- Logistic regression
- Simplified sigmoid cost function
- Odds ratios
- Overfitting revisited
- Support vector machines
- Hard vs. soft margins
- Kernel functions

# Overfitting revisited

 Overfitting: If we have too many features, our model may fit the training set very well, but fail to generalize to new examples







$$wages_i = \alpha + \beta_1 *educ_i + ... + \beta_5 *educ_i^5 + error_i$$

# Overfitting: Solutions

- Later in the course:
  - Feature selection
  - Model selection
  - Dimensionality reduction
- Now: Regularization
  - Keep all the features, but reduce magnitude of additional parameters

### Regularization: Intuition

- Occam's Razor
  - A principle of parsimony, economy, or succinctness used in problemsolving. It states that among competing hypotheses, the hypothesis with the fewest assumptions should be selected.



Ockham chooses a razor

### Regularization: Intuition

- Idea: Add a cost penalty for additional complexity in the model
- Example: polynomial regression
  - Model:  $Y_i = \theta_0 + \theta_1 X_i + ... + \theta_k X_i^k$
  - Parameters:  $\theta_0$ , ...,  $\theta_k$
  - Original "Cost":  $J(\theta) = \frac{1}{2N} \sum_{i=1}^{N} (\theta_0 + \theta_1 X_i + ... + \theta_k X_i^k Y_i)^2$



$$wages_i = \alpha + \beta * educ_i + error_i$$



$$wages_i = \alpha + \beta_1 *educ_i + ... + \beta_5 *educ_i^5 + error_i$$

### Regularization: Intuition

**Original Cost** 

• 
$$J(\theta) = \frac{1}{2N} \sum_{i=1}^{N} (\theta_0 + \theta_1 X_i + \dots + \theta_k X_i^k - Y_i)^2$$

Intuitive Goal

• 
$$J(\theta) = \frac{1}{2N} \sum_{i=1}^{N} (\theta_0 + \theta_1 X_i + ... + \theta_k X_i^k - Y_i)^2 + C(\theta_1, ..., \theta_k)$$

Penalized (Regularized) Cost

$$J(\theta) = \frac{1}{2N} \sum_{i=1}^{N} (\theta_0 + \theta_1 X_i + \dots + \theta_k X_i^k - Y_i)^2 + \lambda \sum_{j=1}^{k} \theta_j^2$$

penalty



"Ridge" coefficient

Regularization parameter

# Regularization and Linear Regression

- Original Gradient Descent
  - Repeat until convergence:

$$\alpha < -\alpha - R \frac{\partial}{\partial \alpha} J(\alpha, \beta)$$
$$\beta < -\beta - R \frac{\partial}{\partial \beta} J(\alpha, \beta)$$

• Original derivative of J (in linear regression,  $Y_i = \alpha + \beta X_i$ )

$$\alpha < -\alpha - R \frac{1}{N} \sum_{i=1}^{N} (\alpha + \beta X_i - Y_i)$$
  
$$\beta < -\beta - R \frac{1}{N} \sum_{i=1}^{N} (\alpha + \beta X_i - Y_i) \quad X_i$$

Regularized version has new partial derivatives:

$$\beta < -\beta - R \left[ \frac{1}{N} \sum_{i=1}^{N} (\alpha + \beta X_i - Y_i) X_i + \frac{\lambda}{N} \beta \right]$$

Rewritten:

$$\beta < \beta \left(1 - R\frac{\lambda}{N}\right) - R\frac{1}{N}\sum_{i=1}^{N} (\alpha + \beta X_i - Y_i) X_i$$

### Regularization: Some notes

$$J(\theta) = \frac{1}{2N} \sum_{i=1}^{N} (\theta_0 + \theta_1 X_i + \dots + \theta_k X_i^k - Y_i)^2 + \lambda \sum_{j=1}^{k} \theta_j^2$$

- How to select λ?
  - Cross validation!



### Regularization: Some notes

$$J(\theta) = \frac{1}{2N} \sum_{i=1}^{N} (\theta_0 + \theta_1 X_i + \dots + \theta_k X_i^k - Y_i)^2 + \lambda \sum_{j=1}^{k} \theta_j^2$$

- What happens in regularization if features are in different units?
  - Penalty on different scales
  - Solution: Scale features

### Outline

- Regularization
- Ridge and Lasso
- Logistic regression (inference)
- Logistic regression (prediction)
- Support vector machines
- Kernels

# "Ridge"

$$J(\theta) = \frac{1}{2N} \sum_{i=1}^{N} (\theta_0 + \theta_1 X_i + \dots + \theta_k X_i^k - Y_i)^2 + \lambda \sum_{j=1}^{k} \theta_j^2$$

- L<sub>2</sub> norm (ridge regression): penalty proportional to  $\theta^2$ 
  - Works best when a subset of the true coefficients are small
  - Will never set coefficients to zero exactly
  - Cannot perform variable selection in the linear model
  - Coefficients harder to interpret

# Ridge: Coefficient plot



#### LASSO

$$J(\theta) = \frac{1}{2N} \sum_{i=1}^{N} (\theta_0 + \theta_1 X_i + \dots + \theta_k X_i^k - Y_i)^2 + \lambda \sum_{j=1}^{k} |\theta_j|$$

- L<sub>1</sub> norm (lasso regression): penalty proportional to  $\theta$ 
  - Selects more relevant features and discards the others, vs. Ridge regression which reduces parameters but doesn't drive to zero
    - See ESL pp. 68
    - Andrew, Galen; Gao, Jianfeng (2007). "Scalable training of L<sub>1</sub>-regularized log-linear models". <u>Proceedings of the 24th International Conference on Machine Learning</u>
  - Not differentiable
  - Coefficients still difficult to interpret, though "post-lasso" versions can reduce bias (e.g., Belloni & Chernozhukov)

# LASSO: Coefficient plot

- Least Absolute Selection and Shrinkage Operator
  - See ESL section 3.4
  - Tibshirani (1996), "Regression Shrinkage and Selection via the Lasso"



# Other forms of Regularization

| Model ♦                         | Fit measure \$                   | Entropy measure <sup>[4][5]</sup> \$     |
|---------------------------------|----------------------------------|------------------------------------------|
| AIC/BIC                         | $  Y - X\beta  _2$               | $\ \beta\ _0$                            |
| Ridge regression                | $  Y - X\beta  _2$               | $\ \beta\ _2$                            |
| Lasso <sup>[6]</sup>            | $  Y - X\beta  _2$               | $\ \beta\ _1$                            |
| Basis pursuit denoising         | $  Y - X\beta  _2$               | $\lambda \ \beta\ _1$                    |
| Rudin-Osher-Fatemi model (TV)   | $  Y - X\beta  _2$               | $\lambda \ \nabla \beta\ _1$             |
| Potts model                     | $  Y - X\beta  _2$               | $\lambda \ \nabla \beta\ _0$             |
| RLAD <sup>[7]</sup>             | $  Y - X\beta  _1$               | $\ \beta\ _1$                            |
| Dantzig Selector <sup>[8]</sup> | $  X^{T}(Y - X\beta)  _{\infty}$ | $\ \beta\ _1$                            |
| SLOPE <sup>[9]</sup>            | $  Y - X\beta  _2$               | $\sum_{i=1}^{p} \lambda_i  \beta _{(i)}$ |

A linear combination of the LASSO and ridge regression methods is elastic net regularization.

### Outline

- Regularization
- Ridge and Lasso
- Logistic regression (inference)
- Logistic regression (prediction)
- Support vector machines
- Kernels





When you use a 10 layer Deep Neural Network where Logistic Regression would suffice



6:33 PM - 26 Sep 2018

911 Retweets 2,894 Likes















# Logistic regression: Basics

- Logistic regression
  - Models the (linear) relationship between one or more independent variables and one binary dependent variable
  - As with linear regression, can be used for inference and prediction; used to predict (and classify) binary outcomes

| Inference                                                                                               | Prediction                                                                               |
|---------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|
| What is the effect of an additional year of schooling on whether an individual is eligible for welfare? | Do we predict that an individual with 6 years of education will be eligible for welfare? |
| What caused the server to go down last week?                                                            | Will the server go down this week?                                                       |
| How big a factor is "home court advantage" in whether our team will win or lose?                        | Are we going to win this week?                                                           |

## Logistic Regression: Idea

- Logistic Regression: Model
  - The logistic regression model assumes that the independent variables have a linear relationship with the logit transformation of the dependent variable

## Logistic Regression: Idea

- Logit transformation maps probabilities to log of odds ratios
  - Odds ratio: probability success / probability failure
  - Example: Probability success = 0.8
    - Odds ratio is 4
    - "Odds of success are 4 to 1"
- In other words:
  - $logit(p) = log(\frac{p}{1-p}) = \alpha + \beta X + \cdots$

$$p = \frac{e^{\alpha + \beta X + \cdots}}{1 + e^{\alpha + \beta X + \cdots}}$$

# Logistic Regression: The logistic function

- Logistic (sigmoid) function:  $g(z) = \frac{e^z}{e^z + 1} = \frac{1}{1 + e^{-z}}$ 
  - Transforms  $[-\infty, +\infty] = > [0,1]$
  - Constrains output of our model between o and 1
  - In logistic regression,  $z = \alpha + \beta X + \cdots$



$$g(z) = \frac{1}{1 + e^{-(\alpha + \beta X + \cdots)}}$$

# Logistic Regression: Decision Boundary

- Interpretation of g(z)?
- Probability that y=1
- $P(y = 1 | x: \alpha, \beta)$
- Simple classifier
  - Predict y=1 if  $g(z) \ge 0.5$
  - Predict y=o if g(z)<o.5</p>



- Predict y=1 if z≥o
- Predict y=o if z<o</p>
- Typically,  $z = \alpha + \beta X + \cdots$



# Logistic Regression: Example

- Example: admission vs. GRE and GPA
  - Start with raw data
  - 2. Fit logistic regression
  - 3. Threshold converts g(z) to classification







# Logistic Regression: Coefficients

- How do we interpret the coefficients from a logistic regression?
  - The coefficient tells you what change to expect in the log odds ratio of your dependent variable, for a one-unit increase in your independent variable.
- Ways to make this more intelligible
  - Convert from log odds ratio to odds ratio
    - $\exp(\beta)$
  - Convert from odds ratio to probability
    - $\frac{odds}{1 + odds}$

# Logistic Regression: Coefficients

- Example with no predictor variables
  - Likelihood of being honor student

• 
$$logit(honor_i) = \alpha + \epsilon_i$$

• i.e., log(p/(1-p)) = -1.12546

| Logistic regression |             |           | LR ch |               | =              | 200<br>0.00 |           |
|---------------------|-------------|-----------|-------|---------------|----------------|-------------|-----------|
| Log likelihood      | = -111.3550 | 2         |       | Prob<br>Pseud | > chi2<br>o R2 | =           | 0.0000    |
| hon                 | Coef.       | Std. Err. | Z     | P> z          | [95% (         | Conf.       | Interval] |
| intercept           | -1.12546    | .1644101  | -6.85 | 0.000         | -1.4476        | 597         | 8032217   |

• Note that  $p = \exp(-1.12546)/(1+\exp(-1.12546)) = .245$ 

| hon    |           | Percent        | Cum.            |
|--------|-----------|----------------|-----------------|
| 0<br>1 | 151<br>49 | 75.50<br>24.50 | 75.50<br>100.00 |
| Total  | •         | 100.00         |                 |

# Logistic Regression: Coefficients

- Example with single predictor variable
  - Likelihood of honor student, by major
    - $logit(honor_i) = \alpha + \beta STEM_i + \epsilon_i$

|                             | - D.  -  [0.5% C. |         |
|-----------------------------|-------------------|---------|
| Log likelihood = -109.80312 | Pseudo R2         | = 0.013 |
|                             | Prob > chi2       | = 0.078 |
|                             | LR chi2(1)        | = 3.1   |
| Logistic regression         | Number of obs     | = 20    |

| $\exp(0.593) = 1.809$                      | stem            | .5927822      | .3414294 | 1.74  | 0.083 | 0764072   | 1.261972 |
|--------------------------------------------|-----------------|---------------|----------|-------|-------|-----------|----------|
| <ul><li>(this is the odds ratio)</li></ul> | intercept  <br> | -1.470852<br> | .2689555 | -5.47 | 0.000 | -1.997995 | 9437087  |
| <ul><li>(corresponds to p=0.644)</li></ul> |                 |               |          |       |       |           |          |

- The odds radio can also be seen in the cross-tabs:
  - Odds for non-STEM: 0.23 (17/74)
  - Odds for STEM: 0.42 (32/77)
  - Odds for STEM 81% higher
    - 0.42 / 0.23 = 1.809
    - 0.644 / (1-0.644) = 1.809

|        |          | _        |           |  |
|--------|----------|----------|-----------|--|
| hon    | yes      | no       | Total     |  |
| 0<br>1 | 74<br>17 | 77<br>32 | 151<br>49 |  |
| Total  | 91       | 109      | 200       |  |

### Outline

- Regularization
- Ridge and Lasso
- Logistic regression (inference)
- Logistic regression (prediction)
- Support vector machines
- Kernels

# Logistic Regression: General formulation

- Model ("hypothesis")
  - $P(Y_i = 1 | x: \theta) = g(z) = \frac{1}{1 + e^{-z}}$
- Parameters
  - $\theta$  are the parameters, often  $\alpha$ ,  $\beta$
  - If  $\theta = (\alpha, \beta)$ ,  $P(Y_i = 1) = \frac{1}{1 + e^{-(\alpha + \beta X_i)}}$
- Cost Function
  - $J(\theta) = \frac{1}{N} \sum_{i=1}^{N} \operatorname{Cost}(\widehat{Y}_i, Y_i)$
  - (more on this shortly)
- Objective
  - $\min_{\theta} J(\theta)$

# Logistic Regression: Cost function

#### Cost Function

- Linear regression:  $J(\alpha, \beta) = \frac{1}{2N} \sum_{i=1}^{N} (Y_i \alpha \beta X_i)^2$
- Why not  $J(\alpha, \beta) = \frac{1}{2N} \sum_{i=1}^{N} \left( Y_i \frac{1}{1 + e^{-\alpha \beta X_i}} \right)^2$



#### ■ Not convex ⊗

- Sigmoid function is complex,  $J(\alpha, \beta)$  is not convex...
- Susceptible to local minima, want to convert to something convex



# Logistic Regression: Cost function

- Cost Function (think of  $\hat{Y}_i = \frac{1}{1 + e^{-(\alpha + \beta X_i)}}$ )
  - $\operatorname{Cost}(\widehat{Y}_i, Y_i) = \begin{cases} -\log(\widehat{Y}_i) & \text{if } Y_i = 1\\ -\log(1 \widehat{Y}_i) & \text{if } Y_i = 0 \end{cases}$
  - $\operatorname{Cost}(\hat{Y}_i, Y_i) = -Y_i \cdot \log(\hat{Y}_i) (1 Y_i) \cdot \log(1 \hat{Y}_i)$



- This is convex:
  - If  $Y_i = 1$ , what is cost if  $\hat{Y}_i = 1$ ? What if  $\hat{Y}_i = 0$ ?
    - No cost if model predicts 1
    - Penalizes mistakes
  - If  $Y_i = 0$ , what is cost if  $\hat{Y}_i = 1$ ? if  $\hat{Y}_i = 0$ ?
    - No cost if model predicts o
    - Penalizes mistakes



## Logistic Regression: Gradient Descent

- How to minimize  $J(\theta)$ ?
  - $J(\theta) = -\frac{1}{N} \sum_{i=1}^{N} Y_i \cdot \log \hat{Y}_i + (1 Y_i) \log(1 \hat{Y}_i)$
- Gradient Descent!
  - $\theta \leftarrow \theta R \frac{\partial}{\partial \theta} J(\theta)$
- With revised cost function,  $\frac{\partial}{\partial \theta} J(\theta) = -\frac{1}{N} \sum_{i=1}^{N} (Y_i \hat{Y}_i) X_i$ 
  - Note similarities to linear regression! But not identical:
  - Logistic regression:  $\hat{Y}_i = \frac{1}{1 + e^{-(\alpha + \beta X_i)}}$
- Gradient Descent Algorithm (logistic regression)
  - Repeat until convergence:
  - $\beta \leftarrow \beta + R \frac{1}{N} \sum_{i=1}^{N} (Y_i \hat{Y}_i) X_i$
  - in other words:  $\beta \leftarrow \beta + R \frac{1}{N} \sum_{i=1}^{N} \left( Y_i \frac{1}{1 + e^{-(\alpha + \beta X_i)}} \right) X_i$

### Gradient descent: Example Quiz

- To ensure that gradient descent is working properly
  - 1. Plot  $J(\theta)$  as a function of  $\theta$ , and ensure  $J(\theta)$  is decreasing
  - 2. Plot  $J(\theta)$  as a function of number of iterations, and ensure  $J(\theta)$  is decreasing
  - Plot  $J(\theta)$  as a function of  $\theta$ , and make sure  $J(\theta)$  is convex
  - Plot  $J(\theta)$  as a function of learning rate R, and make sure  $J(\theta)$  in monotonic (either constantly increasing or constantly decreasing) in R

#### Outline

- Regularization
- Ridge and Lasso
- Logistic regression (inference)
- Logistic regression (prediction)
- Support vector machines
- Kernels

# Logistic Regression: Recap

Compare actual vs. predicted values from our logistic regression





### **Support Vector Machines**

- Generalizes the "linear discriminant"
- Starting point: Data as vectors
  - 1 variable: points on a (1-D) line
    - Discriminant is a number, a threshold
  - 2 variables: points on a (2-D) plane
    - Discriminant is a line
  - 3 variables: points in (3-D) space
    - Discriminant is a plane





# **SVMs:** Hyperplanes



# Maximizing the Margin



#### **SVM Definition**

- SVM defined by a separating plane
  - Represented by a weight vector w, and an intercept b
- Classifier function:  $f(x) = sign(w^Tx + b)$
- We can find an SVM classifier by solving the system of constraints (a quadratic programming problem):

maximize the margin

- $\max_{w,b}(\alpha)$
- where  $w^T x b \ge \alpha$
- and  $w^T x b \le -\alpha$
- with  $w^T w = 1$
- $a b \ge \alpha$  for points x in the first class  $a b \le -\alpha$  for points x in the second class

See Daume chapter 7

# **Soft-Margin SVM**

- What if there is no separating hyperplane?
  - Introduce penalties  $\xi_i$  to mis-classifications
  - Helps prevent overfitting



Image: John Canny

### Linear models: Recap

- Linear models rely on some notion of a linear boundary (i.e., a hyperplane)
- But real-world data are typically not linearly separable
- Some classifiers just make a decision as to which class an object is in;
  others estimate class probabilities

#### Outline

- Regularization
- Ridge and Lasso
- Logistic regression (inference)
- Logistic regression (prediction)
- Support vector machines
- Kernels

### Nonlinearly separable data



### Extending linear models

We are modeling y with feature x



- Classes are not separable with this feature
- One solution: non-linear classifier
- Another solution: add features!
  - E.g., X<sup>2</sup>



# **Kernel SVM**



### Kernel Methods: Example







#### Feature combinations

- Recall our feature space in digit classification
  - 28 x 28 pixels = 784 features
  - with 2nd order features: ~615k features
  - with 3rd order features: ~48om features



- Remember the "curse of dimensionality"?
  - We don't have enough data to train
- Adding interactions can help, but adding too many can hurt

### **Key Concepts (this lecture)**

- Regularization
- Ridge
- Lasso
- Logistic regression
- Simplified sigmoid cost function
- Odds ratios
- Overfitting revisited
- Support vector machines
- Hard vs. soft margins
- Kernel functions

### For Next Class:

- Read:
  - Chapters 5 and 6 of Daume