第五章 整数规划

5.1 整数规划的数学模型及解的特点

修贤超

机电工程与自动化学院 上海大学

xcxiu@shu.edu.cn

■ 整数规划问题的提出

□ 例 1: 某厂利用集装箱托运甲、乙两种货物,每箱体积、重量、可获利润及托运限制如下。问两种货物各托运多少箱使利润最大?

项目	体积	重量	利润
甲	5	2	20
乙	4	5	10
托运限制	24	13	

■ 整数规划问题的提出

例 1: 某厂利用集装箱托运甲、乙两种货物,每箱体积、重量、可获 利润及托运限制如下。问两种货物各托运多少箱使利润最大?

项目	体积	重量	利润
甲	5	2	20
乙	4	5	10
托运限制	24	13	

□ 设两种货物分别托运 x₁, x₂, 于是

max
$$z = 20x_1 + 10x_2$$

s.t.
$$\begin{cases} 5x_1 + 4x_2 \le 24\\ 2x_1 + 5x_2 \le 13\\ x_1, x_2 \ge 0$$
且为整数

□ 整数规划是指要求部分或全部决策变量的取值为整数的规划

- 整数线性规划问题的数学模型
 - □ 线性规划 v.s. 整数线性规划

$$\max(\min) \ z = \sum_{j=1}^{n} c_{j}x_{j}$$
s.t.
$$\begin{cases} \sum_{j=1}^{n} a_{ij}x_{j} \leq (\geq, =) \ b_{i}, \ i = 1, \dots, m \\ x_{j} \geq 0, \ j = 1, \dots, n \end{cases}$$

$$\downarrow \qquad \qquad \downarrow$$

$$\max(\min) \ z = \sum_{j=1}^{n} c_{j}x_{j}$$
s.t.
$$\begin{cases} \sum_{j=1}^{n} a_{ij}x_{j} \leq (\geq, =) \ b_{i}, \ i = 1, \dots, m \\ x_{j} \geq 0, \ j = 1, \dots, n \\ x_{j} \mapsto \Rightarrow \Rightarrow \Rightarrow \Rightarrow \end{cases}$$

- 整数线性规划问题的类型
 - 纯整数线性规划:全部决策变量都必须取整数值
 - □ 0-1 型整数线性规划: 决策变量只能取值 0 或 1
 - □ 混合整数线性规划: 决策变量中一部分必须取整数值, 另一部分可以不取整数值

■ 纯整数线性规划问题

□ 例 2: 某服务部门各时段(每 2h 为一时段)需要的服务员人数见下表。按规定,服务员连续工作 8h(即四个时段)为一班。现要求安排服务员的工作时间,使服务部门服务员总数最少。

时段	1	2	3	4	5	6	7	8
服务员最少数目	10	8	9	11	13	8	5	3

■ 纯整数线性规划问题

② 设在第 j 时段开始时上班的服务员人数为 x_j 。 由于第 j 时段开始时上班的服务员将在第 (j+3) 时段结束时下班,故决策变量只需考虑 x_1,x_2,x_3,x_4,x_5 ,于是数学模型为

min
$$z = x_1 + x_2 + x_3 + x_4 + x_5$$

$$\begin{cases} x_1 \ge 10 \\ x_1 + x_2 \ge 8 \\ x_1 + x_2 + x_3 \ge 9 \\ x_1 + x_2 + x_3 + x_4 \ge 11 \\ x_2 + x_3 + x_4 + x_5 \ge 13 \\ x_3 + x_4 + x_5 \ge 8 \\ x_4 + x_5 \ge 5 \\ x_5 \ge 3 \\ x_1, x_2, x_3, x_4, x_5 \ge 0$$
且为整数

■ 0-1 型整数线性规划

- □ 例 2: 现有资金总额为 B。可供选择的投资项目有 n 个,项目 j 所需投资额和预期收益分别为 a_j 和 c_j ($j=1,\ldots,n$)。此外,因种种原因,有 3 个附加条件:
 - 若选择项目 1 必须同时选择项目 2, 反之, 不一定
 - 项目 3 和项目 4 中至少选择一个
 - 项目 5、6、7 中恰好选择两个

应当怎样选择投资项目,才能使总预期收益最大?

- 0-1 型整数线性规划
 - □ 每一个投资项目都有被选择和不被选择两种可能,为此令

$$x_j = \begin{cases} 1 & \text{对项目}j$$
投资
$$0 & \text{对项目}j$$
不投资

于是,问题可表示为

■ 混合整数线性规划

 $flue{Q}$ 例 3: $lue{A_1}$ 和 A_2 生产某种物资,由于该种物资供不应求,故需要再建一家工厂。相应建设方案有 A_3 和 A_4 两个。这种物资的需求地有 B_1,B_2,B_3,B_4 四个。各工厂年生产能力、各地年需求量、各厂至各需求地的单位物资运费 c_{ij} (i,j=1,2,3,4) 如下

エ厂	B_1	B_2	B_3	B_4	生产能力 (kt/年)
A_1	2	9	3	4	400
A_2	8	3	5	7	600
A_3	7	6	1	2	200
A_4	4	5	2	5	200
需求量 (kt/年)	350	400	300	150	

工厂 A_3 和 A_4 的生产费用估计为 1200 万元或 1500 万元。现要决定应该建设工厂 A_3 还是 A_4 ,才能使今后每年的总费用 (包括物资运费和新工厂的生产费用) 最少。

- 混合整数线性规划
 - \square 设 x_{ij} 为由 A_i 送往 B_i 的物资数量,令

$$y = \begin{cases} 1 & 若建工厂A_3 \\ 0 & 若建工厂A_4 \end{cases}$$

min $z = \sum_{i=1}^{4} \sum_{j=1}^{4} c_{ij}x_{ij} + [1200y + 1500(1-y)]$

$$\lim_{i=1} z = \sum_{j=1}^{i} c_{ij} x_{ij} + [1200y + 1900]$$

$$\int x_{ij} + x_{0i} + x_{0i} + x_{ij} = 350$$

s.t.
$$\begin{cases} x_{11} + x_{21} + x_{31} + x_{41} = 350 \\ x_{12} + x_{22} + x_{32} + x_{42} = 400 \\ x_{13} + x_{23} + x_{33} + x_{43} = 300 \\ x_{14} + x_{24} + x_{34} + x_{44} = 150 \\ x_{11} + x_{12} + x_{13} + x_{14} = 400 \\ x_{21} + x_{22} + x_{23} + x_{23} = 600 \\ x_{31} + x_{32} + x_{33} + x_{34} = 2000y \\ x_{41} + x_{42} + x_{43} + x_{44} = 200(1 - y) \\ x_{ij} \ge 0, \ y = 0 \overrightarrow{\mathbb{R}} 1 \end{cases}$$

■ 整数线性规划求解方法探讨

🛛 原问题

max
$$z = 20x_1 + 10x_2$$

s.t.
$$\begin{cases} 5x_1 + 4x_2 \le 24\\ 2x_1 + 5x_2 \le 13\\ x_1, x_2 \ge 0$$
且为整数

□ 松弛问题

max
$$z = 20x_1 + 10x_2$$

s.t.
$$\begin{cases} 5x_1 + 4x_2 \le 24\\ 2x_1 + 5x_2 \le 13\\ x_1, x_2 \ge 0 \end{cases}$$

- 整数线性规划求解方法探讨
 - \square 求松弛问题 (不考虑整数条件) 的最优解为 A(4.8,0), 最优值 z=96
 - □ 求原问题的最优解
 - 设想一:将松弛问题的最优解进行四舍五入,即 (5,0)
 - 设想二:将松弛问题的最优解向下取整,即 (4,0), z=80

 \square 原问题的最优解 B(4,1),最优值 z=90

- 课堂练习
 - □ 求解下述整数线性规划问题

max
$$z = 3x_1 + 13x_2$$

s.t.
$$\begin{cases} 2x_1 + 9x_2 \le 40\\ 11x_1 - 8x_2 \le 82\\ x_1, x_2 \ge 0$$
且为整数

1.1 线性规划问题及其数学模型

■小结

- □ 整数规划的几种类型
 - 纯整数线性规划
 - 混合整数线性规划
 - 0-1 型整数线性规划

1.1 线性规划问题及其数学模型

■小结

- □ 整数规划的几种类型
 - 纯整数线性规划
 - 混合整数线性规划
 - 0-1 型整数线性规划
- □ 解的特点
 - 最优解不一定在顶点上达到
 - 最优解不一定是相应线性规划的最优解 "化整" 的整数解
 - 最优解不一定是相应线性规划最优解的临近点
 - 整数可行解远多于顶点, 枚举法不可取

$Q\&\mathcal{A}$

Thank you! 感谢您的聆听和反馈