# ГУАП

# КАФЕДРА № 43

| ОТЧЕТ<br>ЗАЩИЩЕН С ОЦЕНКОЙ   |       |                                   |                   |  |  |  |  |  |
|------------------------------|-------|-----------------------------------|-------------------|--|--|--|--|--|
| ПРЕПОДАВАТЕЛЬ                |       |                                   |                   |  |  |  |  |  |
| ст. преподаватель            |       |                                   | Н.А. Соловьева    |  |  |  |  |  |
| должность, уч. степень, зван | ие по | дпись, дата                       | инициалы, фамилия |  |  |  |  |  |
|                              |       | АТОРНОЙ РАБОТ<br>ицы на основе ХМ |                   |  |  |  |  |  |
|                              |       |                                   |                   |  |  |  |  |  |
| по курсу: Web-Технологии     |       |                                   |                   |  |  |  |  |  |
|                              |       |                                   |                   |  |  |  |  |  |
|                              |       |                                   |                   |  |  |  |  |  |
|                              |       |                                   |                   |  |  |  |  |  |
|                              |       |                                   |                   |  |  |  |  |  |
|                              |       |                                   |                   |  |  |  |  |  |
| РАБОТУ ВЫПОЛНИЛ              |       |                                   |                   |  |  |  |  |  |
| СТУДЕНТ ГР. №                | 4132  |                                   | Р.В.Шенин         |  |  |  |  |  |
|                              |       | подпись, дата                     | инициалы, фамилия |  |  |  |  |  |

1. Цель работы:

Изучение языка разметки XML и выполнение преобразования

2. Задание

Вариант: тема сайта «параллельные вычисления»

Базовая часть:

Подготовить файл xml, содержащий данные для таблицы. Наполнение таблицы

определяется вариантом, выбранным в лабораторной работе № 1 Таблица должна

содержать не менее 4 столбцов и 10 строк, один из столбцов должен отображать

графические файлы. Данные таблицы не должны дублировать информацию, ранее

использованную на разрабатываемом сайте.

Реализовать отображение на веб-сайте содержимого файла XML. Отобразить

данные из файла XML двумя способами: в таблице (пример 1) и построчно (пример 2).

Использовать инструкции xsl:if, xsl:apply-templates, xsl:sort, в XML файле применить

атрибуты тегов.

Подготовить файл с XML-схемой (файл xsd) и применить его для валидации

созданных XML документов используя online-сервис. Показать, что документ прошел

проверку.

Расширенная часть:

1.. По образцу из листингов № 8 или № 9 подготовить хml файл для данных, находящихся

в таблицах базы данных из лабораторной работы № 6

3.. Подготовить xsl файл для отображения созданного xml файла и отобразить его на сайте

4.. Все созданные в данной лабораторной страницы встроить в разработанный ранее сайт.

2

# 3. Копии экрана

# Параллельно вычислительные алгоритмы, используемые для высокопроизводительных вычислений Информация в таблице

| Algorithm | Language | Nodes | Performance | Image                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|-----------|----------|-------|-------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Charm++   | C++      | 75    | 450 GFLOPS  | CHARM Algorithm (II) for Mining Choosed Frequent Itemsets page, have MANNEY    Manney Color   Ma |
| CUDA      | Python   | 64    | 300 GFLOPS  | MEMORY CONTEXT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Hadoop    | Scala    | 200   | 700 GFLOPS  | Hadoop Ecosystem  Stem bases   |
|           |          |       |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

| 1         | I    | 1   | I          | I                                                        |
|-----------|------|-----|------------|----------------------------------------------------------|
| НРХ       | C++  | 50  | 350 GFLOPS | <b>EP</b> ®                                              |
| Legion    | С    | 90  | 500 GFLOPS | Алгоритм первичного осмотра                              |
| MapReduce | Java | 100 | 400 GFLOPS | Muga Shuffly Reduce  Figure 687  Sort Group by key Marge |
| MPI       | C++  | 32  | 250 GFLOPS | Message-Passing Interface (MPI)                          |

| OpenCL | Java    | 128 | 500 GFLOPS | OpenCL Host Program + Kernels  Control  On Chief Memory Interconnect  Accelerate  OpenCL  On Chief Memory Interconnect  Accelerate  OpenCL  On Chief Memory  Organian  OpenCL  |
|--------|---------|-----|------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| OpenMP | Fortran | 16  | 150 GFLOPS | #pragea onp sections bi) d()                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Spark  | Python  | 150 | 600 GFLOPS | Sansa Sectionary  Sansa Sectio |

# Информация построчно

### MPI - C++

Nodes: 32 Performance: 250 GFLOPS



# OpenMP - Fortran

Nodes: 16 Performance: 150 GFLOPS



#### CUDA - Python

Nodes: 64 Performance: 300 GFLOPS



# CUDA - Python

Nodes: 64 Performance: 300 GFLOPS



#### OpenCL - Java

Nodes: 128 Performance: 500 GFLOPS



### Hadoop - Scala

Nodes: 200 Performance: 700 GFLOPS Hadoop Ecosystem



#### Работы и задачи

| Job Name | Job Description                            | Job Status  | Job<br>Priority | Tasks |                             |                                                        |                        |
|----------|--------------------------------------------|-------------|-----------------|-------|-----------------------------|--------------------------------------------------------|------------------------|
|          | Поиск и фильтрация данных<br>в базе данных | выполняется | высокий         |       | Task Name                   | Task Description                                       | Task Status            |
|          |                                            |             |                 |       | Поиск по<br>ключевому слову | Поиск данных по<br>ключевому слову в<br>базе           | завершено              |
|          |                                            |             |                 |       | Фильтрация<br>результатов   | Фильтрация<br>полученных данных                        | выполняется            |
|          | Генерация отчетов по результатам анализа   | завершена   | низкий          |       | Task Name                   | Task Description                                       | Task<br>Status         |
|          |                                            |             |                 |       | Анализ структуры<br>файлов  | Анализ структуры и<br>формата файлов                   | ожидает                |
|          |                                            |             |                 |       |                             |                                                        | Формирование<br>отчета |
|          | Обработка и анализ файлов<br>на сервере    | ожидает     | средний         |       | Task Name                   | Task Description                                       | Task Status            |
|          |                                            |             |                 |       | Сканирование                | Сканирование файлов<br>на наличие<br>вредоносного кода | выполняется            |

# 4. Результат проверки ХМL-файлов

```
73 </parallel_computing>
XML schema (XSD) data
                               <xs:element name="algorithm" type="xs:string"/>
                               <xs:element name="language" type="xs:string"/>
                               <xs:element name="nodes" type="xs:int"/>
   11
   12
                               <xs:element name="performance" type="xs:string"/>
                               <xs:element name="image" type="xs:string" minOccurs="0"/>
                           </xs:sequence>
                           <xs:attribute name="id" type="xs:int" use="required"/>
                        </xs:complexType>
   16
   17
                    </xs:element>
   18
                </xs:sequence>
   19
            </xs:complexType>
        </xs:element>
   20
   21 </xs:schema>
                                                                                                   Validate
                                              Document Valid
```

#### 5. Листинг

#### XML-файлы

#### Parallelcomp.xml

```
<language>Fortran</language>
  <nodes>16</nodes>
  <performance>150 GFLOPS</performance>
  
</computation>
<computation id="3">
  <algorithm>CUDA</algorithm>
  <language>Python</language>
  <nodes>64</nodes>
  <performance>300 GFLOPS</performance>
  
</computation>
<computation id="4">
  <algorithm>OpenCL</algorithm>
  <language>Java</language>
  <nodes>128</nodes>
  <performance>500 GFLOPS</performance>
  
</computation>
<computation id="5">
  <algorithm>Hadoop</algorithm>
  <lasquage>Scala</language>
  <nodes>200</nodes>
  <performance>700 GFLOPS</performance>
  
</computation>
<computation id="6">
```

```
<algorithm>Spark</algorithm>
  <language>Python</language>
  <nodes>150</nodes>
  <performance>600 GFLOPS</performance>
  
</computation>
<computation id="7">
  <algorithm>MapReduce</algorithm>
  <language>Java</language>
  <nodes>100</nodes>
  <performance>400 GFLOPS</performance>
  
</computation>
<computation id="8">
  <algorithm>HPX</algorithm>
  <language>C++</language>
  <nodes>50</nodes>
  <performance>350 GFLOPS</performance>
  
</computation>
<computation id="9">
  <algorithm>Charm++</algorithm>
  <language>C++</language>
  <nodes>75</nodes>
  <performance>450 GFLOPS</performance>
  
</computation>
```

#### Parallelcomp\_bd.xml

```
<?xml version="1.0" encoding="UTF-8"?>
<jobs>
  <job job_id="1">
    <job name>Поиск в базе</job name>
    <job_description>Поиск и фильтрация данных в базе данных</job_description>
    <job status>выполняется</job status>
    <job priority>высокий</job priority>
    <tasks>
      <task task_id="1">
        <task_name>Поиск по ключевому слову</task_name>
        <task_description>Поиск данных по ключевому слову в базе</task_description>
        <task status>завершено</task status>
      </task>
      <task task_id="2">
        <task_name>Фильтрация результатов</task_name>
        <task description>Фильтрация полученных данных</task description>
        <task status>выполняется</task status>
```

```
</task>
    </tasks>
  </job>
  <job job_id="2">
    <job name>Обработка файлов</job name>
    <job_description>Обработка и анализ файлов на сервере</job_description>
    <job status>ожидает</job status>
    <job priority>средний</job priority>
    <tasks>
      <task task_id="3">
         <task_name>Сканирование файлов</task_name>
         <task_description>Сканирование
                                            файлов
                                                       на
                                                              наличие
                                                                          вредоносного
кода</task_description>
         <task status>выполняется</task status>
      </task>
    </tasks>
  </job>
  <job job_id="3">
    <job_name>Генерация отчетов</job_name>
    <job_description>Генерация отчетов по результатам анализа</job_description>
    <job status>завершена</job status>
    <job_priority>низкий</job_priority>
    <tasks>
      <task task_id="4">
         <task name>Анализ структуры файлов</task name>
         <task description>Анализ структуры и формата файлов</task description>
         <task status>ожидает</task status>
```

### XSL-файлы

## Parallelcomp\_tab.xsl

```
<?xml version="1.0" encoding="UTF-8"?>
<xsl:stylesheet version="1.0" xmlns:xsl="http://www.w3.org/1999/XSL/Transform">
  <xsl:template match="/">
    <html>
       <head>
         <style>
            table {
              width: 80%;
              border-collapse: collapse;
              margin-left: 10%;
            }
            th, td {
              border: 1px solid black;
              padding: 8px;
              text-align: left;
            }
```

```
th {
     background-color: #f2f2f2;
   }
 </style>
</head>
<body>
 <h2 style="text-align: center">Информация в таблице</h2>
 Algorithm
     Language
     Nodes
     Performance
     Image
   <xsl:for-each select="parallel_computing/computation">
     <xsl:sort select="algorithm"/>
     <xsl:value-of select="algorithm"/>
       <xsl:value-of select="language"/>
       <xsl:value-of select="nodes"/>
       <xsl:value-of select="performance"/>
       <xsl:if test="image">
          <img src="{image}" alt="Algorithm Image" width="250"/>
         </xsl:if>
```

```
</body>
</html>
</xsl:template>
</xsl:stylesheet>
```

### Parallelcomp\_postr.xsl

```
<?xml version="1.0" encoding="UTF-8"?>
<xsl:stylesheet version="1.0" xmlns:xsl="http://www.w3.org/1999/XSL/Transform">
  <xsl:template match="/">
    <html>
      <body style="font-family: Arial; font-size: 12pt; background-color: #EEE">
         <h2 style ="text-align: center">Информация построчно</h2>
         <xsl:for-each select="parallel_computing/computation">
           <div style="background-color: teal; color: white; padding: 4px; text-align: center ">
             <span style="font-weight: bold"><xsl:value-of select="algorithm"/> - </span>
             <xsl:value-of select="language"/>
           </div>
           <div style="margin-left: 20px; margin-bottom: 1em; font-size: 10pt">
             Nodes: <xsl:value-of select="nodes"/>
               <br/>>
               Performance: <xsl:value-of select="performance"/>
               <br/>>
               <xsl:if test="image">
```

## Parallelcomp\_bd.xsl

```
<?xml version="1.0" encoding="UTF-8"?>
<xsl:stylesheet version="1.0" xmlns:xsl="http://www.w3.org/1999/XSL/Transform">
 <xsl:template match="/">
   <html>
     <head>
     </head>
     <body>
       <h2 style="text-align: center">Работы и задачи</h2>
       Job Name
          Job Description
          Job Status
          Job Priority
          Tasks
```

```
<xsl:apply-templates select="jobs/job">
        <xsl:sort select="job_priority" />
       </xsl:apply-templates>
     </body>
 </html>
</xsl:template>
<xsl:template match="job">
 <xsl:value-of select="job_name"/>
   <xsl:value-of select="job_description"/>
   <xsl:value-of select="job_status"/>
   <xsl:value-of select="job_priority"/>
   Task Name
        Task Description
        Task Status
       <xsl:apply-templates select="tasks/task">
        <xsl:sort select="task_name" />
       </xsl:apply-templates>
```

```
</xsl:template>
  <xsl:template match="task">
    <xsl:value-of select="task_name"/>
      <xsl:value-of select="task_description"/>
      <xsl:value-of select="task_status"/>
    </xsl:template>
   </xsl:stylesheet>
                                     HTML-файлы
<!DOCTYPE html>
<html>
<head>
  <meta charset="UTF-8">
  <title>Parallel Computing Table</title>
  <style>
   /* Стили для заголовков */
    h1, h2, h3 {
      color: #336699; /* Цвет текста */
    }
   /* Стили для списка ссылок в навигации */
    nav ul li a {
      color: #333; /* Цвет текста */
      font-weight: bold; /* Жирный шрифт */
    }
```

```
/* Стили для элемента заголовка */
.myclass1 {
  background-color: rgb(254, 115, 249); /* Цвет фона */
  border-radius: 50px; /* Радиус границ */
}
/* Стили для результата */
#result {
  width: 300px; /* Ширина */
}
/* Стили для ссылок */
a:link, a:visited {
  color: blue; /* Цвет ссылок */
  text-decoration: none; /* Отмена подчеркивания */
  transition: color 0.3s; /* Плавное изменение цвета */
}
/* При наведении на ссылку */
a:hover {
  color: #ff0000; /* Цвет ссылки при наведении */
}
/* Стили для списка */
nav ul {
  list-style: none; /* Убираем маркеры списка */
```

```
padding: 0; /* Убираем отступы */
}
/* Стили для футера */
footer {
  text-align: center; /* Выравнивание текста по центру */
  padding: 20px 0; /* Внутренние отступы */
  background-color: rgb(254, 115, 249); /* Цвет фона */
  color: #333; /* Цвет текста */
  border-radius: 50px; /* Радиус границ */
}
/* Стили для адреса в футере */
footer address {
  font-style: normal; /* Отменяем курсив */
  color: #666; /* Цвет текста */
}
/* Стили для таблицы */
table {
  width: 100%; /* Ширина таблицы */
  border-collapse: collapse; /* Объединение границ */
  border-radius: 10px; /* Радиус границ */
  overflow: hidden; /* Скрытие содержимого, выходящего за границы */
  box-shadow: 0 4px 8px rgba(0, 0, 0, 0.1); /* Тень */
  font-family: Arial, sans-serif; /* Шрифт */
}
```

```
/* Стили для ячеек таблицы */
th, td {
  padding: 12px; /* Внутренние отступы */
  text-align: left; /* Выравнивание текста по левому краю */
  border-bottom: 1px solid #ddd; /* Граница снизу */
}
/* Стили для заголовков таблицы */
th {
  background-color: #f2f2f2; /* Цвет фона */
  color: #333; /* Цвет текста */
}
/* Стили для формы */
form {
  margin-top: 20px; /* Верхний отступ */
  width: 400px; /* Ширина */
  margin-left: auto; /* Автоматическое выравнивание по левому краю */
  margin-right: auto; /* Автоматическое выравнивание по правому краю */
  border: 1px solid #ccc; /* Граница */
  padding: 20px; /* Внутренние отступы */
  border-radius: 10px; /* Радиус границ */
  background-color: #f9f9f9; /* Цвет фона */
/* Стили для меток */
```

```
label {
  font-weight: bold; /* Жирный шрифт */
  margin-top: 10px; /* Верхний отступ */
}
/* Стили для полей ввода */
input[type="text"] {
  width: calc(100% - 10px); /* Ширина */
  padding: 10px; /* Внутренние отступы */
  margin-top: 5px; /* Верхний отступ */
  margin-bottom: 15px; /* Нижний отступ */
  border: 1px solid #ccc; /* Граница */
  border-radius: 5px; /* Радиус границ */
  box-sizing: border-box; /* Расчет размеров, включая границу и отступы */
}
/* Стили для кнопки отправки */
input[type="button"] {
  background-color: #4CAF50; /* Цвет фона */
  color: white; /* Цвет текста */
  padding: 10px 20px; /* Внутренние отступы */
  border: none; /* Граница */
  border-radius: 5px; /* Радиус границ */
  cursor: pointer; /* Изменение курсора при наведении */
  font-size: 16px; /* Размер шрифта */
}
```

```
/* При наведении на кнопку отправки */
  input[type="button"]:hover {
    background-color: #45a049; /* Цвет фона */
  }
</style>
<script>
  function loadXMLDoc(filename) {
    if (window.ActiveXObject) {
      // Код для ІЕ
      xhttp = new ActiveXObject("Msxml2.XMLHTTP");
    } else {
      // Код для других браузеров
      xhttp = new XMLHttpRequest();
    }
    xhttp.open("GET", filename, false);
    try {
      // Помощь для IE11
      xhttp.responseType = "msxml-document";
    } catch (err) {}
    xhttp.send("");
    return xhttp.responseXML;
  }
  function displayResult() {
    // Загрузка XML и XSL файлов
    xml = loadXMLDoc("parallelcomp.xml");
```

```
xsl_tab = loadXMLDoc("parallelcomp_tab.xsl");
xsl_postr = loadXMLDoc("parallelcomp_postr.xsl");
xml_bd = loadXMLDoc("parallelcomp_bd.xml");
xsl_bd = loadXMLDoc("parallelcomp_bd.xsl");
// Код для ІЕ
if (window.ActiveXObject || xhttp.responseType == "msxml-document") {
  ex1 = xml.transformNode(xsl_tab);
  document.getElementById("example").innerHTML = ex1;
  ex2 = xml.transformNode(xsl_postr);
  document.getElementById("example_2").innerHTML = ex2;
  ex3 = xml_bd.transformNode(xsl_bd);
  document.getElementById("example_3").innerHTML = ex3;
}
// Код для Chrome, Firefox, Opera и др.
else if (document.implementation && document.implementation.createDocument) {
  xsltProcessor 1 = new XSLTProcessor();
  xsltProcessor_1.importStylesheet(xsl_tab);
  resultDocument 1 = xsltProcessor 1.transformToFragment(xml, document);
  document.getElementById("example").appendChild(resultDocument_1);
  xsltProcessor_2 = new XSLTProcessor();
  xsltProcessor_2.importStylesheet(xsl_postr);
  resultDocument 2 = xsltProcessor 2.transformToFragment(xml, document);
```

```
document.getElementById("example_2").appendChild(resultDocument_2);
        xsltProcessor_3 = new XSLTProcessor();
        xsltProcessor_3.importStylesheet(xsl_bd);
        resultDocument_3 = xsltProcessor_3.transformToFragment(xml_bd, document);
        document.getElementById("example_3").appendChild(resultDocument_3);
      }
    }
  </script>
</head>
<body onload="displayResult()">
  <header class="myclass1" style="margin: 0 auto; text-align: center;">
    <h1>Параллельные вычисления</h1>
    <nav>
      \langle ul \rangle
        <a href="index.html">Главная</a>
        <a href="index2.html">Доп. информация</a>
        <a href="index3.html">Источники</a>
        <a href="third.html">Редактор JavaScript</a>
        <a href="third dop.html">Редактор рисунков</a>
        <a href="index4.html">Редактор таблиц</a>
        <a href="forma.html">Анкета</a>
        <a href="tableBD.php">Пример</a>
        <a href="indexajax.php">AJAX</a>
      </nav>
  </header>
```

<hr>

```
<h2 style="text-align: center;"> Параллельно вычислительные алгоритмы, используемые
для высокопроизводительных вычислений</h2>
  <div id="example"></div><br>
  <div id="example_2"></div><br>
  <div id="example_3"></div><br>
  <hr>
  <footer>
    <р>Параллельные вычисления. Автор: Шенин Р.В., группа 4132
    <address>
      Написано <a href="mailto:webmaster@example.com">webmaster</a>.
      Посетите
                следующий
                              сайт
                                    для
                                          более
                                                  подробной
                                                              информации:
href="https://ru.wikipedia.org/wiki/%D0%9F%D0%B0%D1%80%D0%B0%D0%BB%D0%BB
%D0%B5%D0%BB%D1%8C%D0%BD%D1%8B%D0%B5_%D0%B2%D1%8B%D1%87%D
0%B8%D1%81%D0%BB%D0%B5%D0%BD%D0%B8%D1%8F">wikipedia.org</a>.
    </address>
    Сайт был спроектирован и создан <time datetime="2024-02-20T08:00">20 февраля
2024</time>.
  </footer>
</body>
   </html>
                                   XSD-файлы
  <?xml version="1.0" encoding="UTF-8"?>
  <xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema">
    <xs:element name="parallel_computing">
      <xs:complexType>
        <xs:sequence>
```

```
<xs:element name="computation" maxOccurs="unbounded">
             <xs:complexType>
                <xs:sequence>
                  <xs:element name="algorithm" type="xs:string"/>
                  <xs:element name="language" type="xs:string"/>
                  <xs:element name="nodes" type="xs:int"/>
                  <xs:element name="performance" type="xs:string"/>
                  <xs:element name="image" type="xs:string" minOccurs="0"/>
               </xs:sequence>
               <xs:attribute name="id" type="xs:int" use="required"/>
             </r></re></re>
           </xs:element>
         </xs:sequence>
       </xs:complexType>
    </xs:element>
</xs:schema>
```