1 Discrete Random Variables and Expectation

A (real-valued) random variable X on a sample space Ω is a measurable function $X:\Omega\to\mathbb{R}$, and a discrete random variable is one which may take on only a countable number of distinct values. "X=a" represents the set $\{s\in\Omega\mid X(s)=a\}$, and we denote the probability of that event by $\mathbb{P}(X=a)=\sum_{s\in\Omega:X(s)=a}\mathbb{P}(s)$.

Random variables X_1, X_2, \cdots, X_n are mutually independent (simply called independent when k=2) if and only if, for any subset $I \subseteq \{1, 2, \cdots, k\}$ and any values $x_i \ (i \in I), \ \mathbb{P}(\bigcap_{i \in I} (X_i = x_i)) = \prod_{i \in I} \mathbb{P}(X_i = x_i)$.

The expectation of a discrete random variable X, denoted by $\mathbb{E}[X]$, is given by $\mathbb{E}[X] = \sum_i i \cdot \mathbb{P}(X = i)$. Note that the infinite series needs to be absolutely convergent (i.e. rearrangements do not change the value of the sum).

Theorem 1.1 (Linearity of expectation) For discrete random variables X_1, X_2, \dots, X_n with finite expectations and any contants c_1, c_2, \dots, c_n , $\mathbb{E}[\sum_{i=1}^n c_i X_i] = \sum_{i=1}^n c_i \mathbb{E}[X_i]$.