# STA302 METHODS OF DATA ANALYSIS I

**MODULE 9: MODEL SELECTION TOOLS** 

PROF. KATHERINE DAIGNAULT



# **MODULE 9 OUTLINE**

- I. Numerical Measures of Goodness
- 2. All Possible Subsets Selection
- 3. Automated Selection Methods
- 4. Cautions for Automated Selection Tools

# MODEL SELECTION MOTIVATION

- We've encountered idea of "comparing models" in previous modules
  - Partial F Test for a subset of predictors
  - Adjusted  $R^2$  for models of different sizes
- These are part of a group of tools used for model selection
- Used to help determine "best" model for a given purpose
  - more predictors → predictions with low bias but high variance
  - too many predictors → over-fitted model

- Need to consider purpose of model:
  - Prediction: extra predictors help explain more variation, better accuracy if not over-fitted
  - Description: too many predictors or complicated transformations hurt interpretability
  - In both, some model selection will need to occur.
- Additional measures can be used to help determine a preferred model.
  - These are called likelihood-based measures of goodness
  - Used in conjunction with diagnostics and assessing assumptions to select "best" model.

© STA302 - DAIGNAULT

3

# **REVIEW OF LIKELIHOODS**

- Maximum likelihood is a method used to determine estimators of parameters.
- Likelihood is a function of the parameters given the observed data
  - it is a probability distribution that is maximized to find estimators.
- Depends on Normality assumption:
  - $y_i|x_{i1},...,x_{ip} \sim N(\beta_0 + \beta_1 x_{i1} + \cdots + \beta_p x_{ip},\sigma^2)$
- Assuming independence/uncorrelated errors, likelihood is product of n such Normals:

$$\left(\frac{1}{\sigma\sqrt{2\pi}}\right)^n exp\left(-\frac{1}{2\sigma^2}\sum_{i=1}^n \left[y_i - \left\{\beta_0 + \beta_1 x_{i1} + \dots + \beta_p x_{ip}\right\}\right]^2\right)$$

Natural log of likelihood easier to work with:

$$\ln(L(\boldsymbol{\beta}, \sigma^{2}|Y))$$

$$= -\frac{n}{2}\ln(2\pi) - \frac{n}{2}\ln(\sigma^{2})$$
RSS if  $\beta_{j}$ 's replaced with  $\hat{\beta}_{j}$ 's
$$-\frac{1}{2\sigma^{2}}\sum(y_{i} - \beta_{0} - \beta_{1}x_{i1} - \dots - \beta_{p}x_{ip})^{2}$$

If we replace  $\sigma^2$  with the MLE  $\hat{\sigma}_{MLE}^2 = {}^{RSS}/n$ , we simplify to:

$$\ln(L(\widehat{\boldsymbol{\beta}},\widehat{\sigma}^2 \mid Y)) = -\frac{n}{2}\ln(2\pi) - \frac{n}{2}\ln\left(\frac{RSS}{n}\right) - \frac{n}{2}$$

- Since we want a model with RSS as small as possible, this means the log-likelihood will also be small
- Can use this to create measures of goodness.

# **3 LIKELIHOOD MEASURES**

- Like  $R^2$ , log-likelihood only measures goodness without accounting for effect of additional predictors
- The 3 likelihood criteria introduce a penalty term
  - but each criteria penalizes differently
- Akaike's Information Criteria (AIC):

$$AIC = -2\left[\ln(L(\widehat{\boldsymbol{\beta}}, \widehat{\sigma}^2 \mid \boldsymbol{Y})) - (p+2)\right] \propto n \ln\left(\frac{RSS}{n}\right) + 2p$$

- Goodness:  $n \ln \left( \frac{RSS}{n} \right)$  where smaller is better
- Penalty for complexity: 2p to control for added X's
- A smaller AIC indicates a better model.

• When n is small or p is large fraction of n (i.e.,  $n/(p+2) \le 40$ ), a corrected AIC is used:

$$AIC_c = AIC + \frac{2(p+2)(p+3)}{n-p-1}$$

- Once again, smaller AIC<sub>c</sub> indicates better model.
- Finally, a Bayesian Information Criteria (BIC) uses a harsher penalty than AIC to favour simpler models:

$$BIC = -2\ln\left(L(\widehat{\beta}, \widehat{\sigma}^2 \mid Y)\right) + (p+2)\ln(n)$$

$$\propto n\ln\left(\frac{RSS}{n}\right) + (p+2)\ln(n)$$

As always, smaller BIC indicates a better model.

# USING LIKELIHOOD MEASURES FOR SELECTION

- Each criteria measures goodness with a different penalty for unnecessary complexity.
  - so, it's not reasonable to expect them all to always agree on the "best" model.
- For complete picture, consider all measures:
  - Adjusted  $R^2$ : look for largest or close to largest value
  - AIC, corrected AIC, BIC: look for smallest or close to smallest value
- Looking at models that are close to having smallest/largest values also helpful
  - if difference is very small, can opt for either option

- All measures depend on model assumptions holding
  - consider the assumptions of each model when using measures to explain slight differences or to select "suboptimal" model.
- Consider context of data and research question too
  - literature already highlights possible important variables that should possibly remain in "best" model
  - avoid accidently removing predictor(s) of interest even if measures indicate model without is preferred
- Diagnostics and measures of goodness should be used together to select preferred model.

### **EXAMPLE BY HAND & IN R**

```
> p = length(coef(model))-1
                                                            > model2 <- lm(Defective ~ Temperature, data=d)</pre>
> model <- lm(Defective ~ Temperature + Density + Rate, data=d)</pre>
                                                                                                                                                                  AIC
                                                                                                                                               BIC
                                                             > summary(model2)
                                                                                                            > n=nrow(d)
> summary(model)
                                                                                                            > cbind(summary(model)$adj.r_squared, extractAIC(model, k=2)[2]
                                                                                                                     extractAIC(model, k=log(n))[2],
lm(formula = Defective ~ Temperature + Density + Rate, data = d) lm(formula = Defective ~ Temperature, data = d)
                                                                                                                     extractAIC(model, k=2)[2]+ (2*(p+2)*(p+3)/(n-p-1)))
                                                                                                                                                    [,4]
                                                                                                                                 [,2]
                                                                                                                       [,1]
                                                                                                                                          [,3]
                                                                                                                                                                         AIC<sub>c</sub>
Residuals:
                                                             Residuals:
                                                                                                             [1,] 0.8657897 121.3989 127.0036 123.7066
             10 Median
                                                                 Min
                                                                           10 Median
                                                                                                     Max
-12.7367 -4.1116 -0.5755 2.7617 16.3279
                                                             -18.5952 -4.9203 -0.6253 4.2133 15.1861
                                                                                                                    for simple model:
Coefficients:
                                                             Coefficients:
                                                                                                                    > p = length(coef(model2))-1
           Estimate Std. Error t value Pr(>|t|)
                                                                        Estimate Std. Error t value Pr(>|t|)
                                                                                                                    > n=nrow(d)
                      65.9265
(Intercept) 10.3244
                                                             (Intercept) -40.938
                                                                                      5.298 -7.727 2.04e-08 ***
                                                                                                                    > cbind(summary(model2)$adj.r.squared, extractAIC(model2, k=2)[2],
Temperature 16.0779
                                      0.0635
                                                             Temperature 30.904
                                                                                      2.327 13.279 1.32e-13 ***
                                                                                                                            extractAIC(model2, k=log(n))[2],
                                      0.2332
Density
            -1.8273
                      1.4971 -1.221
                                                                                                                            extractAIC(model2, k=2)[2]+ (2*(p+2)*(p+3)/(n-p-1)))
Rate
            0.1167
                       0.1306
                               0.894
                                      0.3797
                                                             Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1
                                                                                                                                               [,3]
                                                                                                                              [,1]
                                                                                                                                       [,2]
                                                                                                                                                         [,4]
                                                                                                                    [1,,] 0.8580803 121.2977 124.1001 122.1548
Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' ' 1
                                                             Residual standard error: 7.312 on 28 degrees of freedom
                                                             Multiple R-squared: 0.863, Adjusted R-squared: 0.8581
Residual standard error: 7.11 on 26 degrees of freedom
                                                                                                                              likelihood criteria all smaller so
                                                             F-statistic: 176.3 on 1 and 28 DF, p-value: 1.317e-13
Multiple K-squarea: 0.8797, Adjustea K-squarea: 0.8658
                                                                                                                              simple model preferred
F-statistic: 63.36 on 3 and 26 DF, p-value: 4.371e-12
                                                    AIC = nln\left(\frac{RSS}{n}\right) + 2p = 30 ln\left(\frac{1314.35}{30}\right) + 2(3) = 119.40
RSS = 26 \times 7.11^2 = 1314.35
   p = 3: n = 26 + 4 = 30
                                                    AIC = 30ln\left(\frac{28 \times 7.312^2}{30}\right) + 2(1) = 119.30
                                                                                                                             smaller, so preferred model
  © STA302 - DAIGNAULT
```

# **MODULE 9 OUTLINE**

- I. Numerical Measures of Goodness
- 2. All Possible Subsets Selection
- 3. Automated Selection Methods
- 4. Cautions for Automated Selection Tools

# **COMPARING SETS OF MODELS**

- The four main measures to compare models are:
  - Adjusted  $R^2$ :  $R_{adj}^2 = 1 \frac{RSS/(n-p-1)}{SST/(n-1)}$
  - AIC: AIC  $\propto n \ln \left( \frac{RSS}{n} \right) + 2p$
  - Corrected AIC:  $AIC_c \propto n \ln \left( \frac{RSS}{n} \right) + 2p + \frac{2(p+2)(p+3)}{n-p-1}$
  - BIC: BIC  $\propto n \ln \left(\frac{RSS}{n}\right) + (p+2)\ln(n)$
- The RSS term drives the idea of goodness, while the rest are penalties for number of predictors.
  - we know that models with more predictors automatically have lower RSS even if not useful predictors

- Only a problem for comparing models with different number of predictors
  - if p is fixed between models, then only RSS changes so we'd prefer model with smallest RSS.
  - e.g., for all possible models with 3 predictors, the best one explains the most variation and so has smallest RSS
  - all four criteria would agree on the preferred model
- Criteria are then most helpful in comparing models with different p.
- Idea of comparing all models of the same size to each other is the root of our next tool.

## ALL POSSIBLE SUBSETS METHOD OF MODEL SELECTION

All possible subsets works in two steps:

- 1. Compare models of each size using adjusted  $R^2$
- 2. Use all four numerical criteria to pick the best of the best  $(R_{adj}^2, AIC, AIC_c, BIC)$

# All one-predictor models

• 
$$X_1$$
 has  $R_{adi}^2 = 0.84$ 

• 
$$X_2$$
 has  $R_{adj}^2 = 0.8$ 

• 
$$X_3$$
 has  $R_{adj}^2 = 0.83$ 

• 
$$X_4$$
 has  $R_{adj}^2 = 0.75$ 

### All two-predictor models

• 
$$X_1, X_2$$
 has  $R_{adj}^2 = 0.87$ 

• 
$$X_1, X_3$$
 has  $R_{adj}^2 = 0.88$ 

• 
$$X_1, X_4$$
 has  $R_{adj}^2 = 0.86$ 

• 
$$X_2, X_3$$
 has  $R_{adj}^2 = 0.89$ 

• 
$$X_2, X_4$$
 has  $R_{adj}^2 = 0.81$ 

• 
$$X_3$$
,  $X_4$  has  $R_{adj}^2 = 0.84$ 

# All three-predictor models

• 
$$X_1, X_2, X_3$$
 has  $R_{adj}^2 = 0.87$ 

• 
$$X_1, X_2, X_4$$
 has  $R_{adj}^2 = 0.88$ 

• 
$$X_1, X_3, X_4$$
 has  $R_{adj}^2 = 0.89$ 

• 
$$X_2, X_3, X_4$$
 has  $R_{adj}^2 = 0.85$ 

### All four-predictor models

• 
$$X_1, X_2, X_3, X_4$$
 has  $R_{adj}^2 = 0.9$ 

# **EXAMPLE IN R**

```
> #install.packages("leaps")
                                load new library
     > library(leaps)
     > best <- regsubsets(Defective ~ Temperature + Density + Rate, data=d,</pre>
                nbest = 1, nvmax=3)← maximum # predictors
how many best models in each subset
     > summary(best)
     Subset selection object
     Call: regsubsets.formula(Defective ~ Temperature + Density + Rate,
         data = d, nbest = 1, nvmax = 3)
     3 Variables (and intercept)
                 Forced in Forced out
     Temperature
                     FALSE
                                FALSE
                                       nothing forced to be
                                FALSE
     Density
                     FALSE
                                       excluded or included
                                FALSE
                     FALSE
     Rate
     1 subsets of each size up to 3
     Selection Algorithm: exhaustive
              Temperature Density Rate
                                       best SLR uses Temperature;
     1 (1) "*"
                                       best two-predictor
     2 (1) "*"
     3 (1) "*"
```

```
\label{eq:contrib} $$ $$ $$ install car package $$ $$ $$ $$ packageurl <- "https://cran.r-project.org/src/contrib/Archive/pbkrtest/pbkrtest_0.4-4.tar.gz" $$ $$ $$ #install.packages(packageurl, repos=NULL, type="source") $$ $$ $$ $$ install.packages("car", dependencies=TRUE) $$ $$ load the car library $$ $$ library(car) $$ $$ subsets(best, statistic = "adjr2", legend=FALSE) $$ plot each best model against the $R_{adj}^2$ $$
```

П

see how different the  $R_{adi}^2$  is between best models



# PROS & CONS OF ALL POSSIBLE SUBSETS

### Pros:

- All possible models are fit and compared
  - gives you the opportunity to investigate the best ones more directly
- Can be flexible in how we define "best" (e.g., maybe picking best 2 from each subset)
  - allows overall more flexibility in how you select your overall preference
- Nice systematic way to select possible "best" models
  - allows you to compare using many measures while gaining efficiencies by removing unneeded models

### Cons:

- Can be very impractical for large numbers of predictors
  - means you still need to compare at least p different models
- Best of each subset does not consider model issues
  - can perform this method without checking model assumptions
  - doesn't account for effect of multicollinearity or problematic observations
  - may mean decisions are not reliable unless manually check

# **MODULE 9 OUTLINE**

- I. Numerical Measures of Goodness
- 2. All Possible Subsets Selection
- 3. Automated Selection Methods
- 4. Cautions for Automated Selection Tools

# WHAT ARE AUTOMATED SELECTION METHODS?

- All possible subsets is cumbersome but provides a list of models
- Automated selection methods is another tool for model selection.
  - sequentially explores models from a specific starting model
  - uses AIC or BIC instead of  $R_{adj}^2$  to decide between models
- Three different automated selection methods:
  - forward selection
  - backward selection
  - stepwise selection

- Differ in the order in which models are created:
  - forward: start with intercept model and add predictors
  - backward: start at full model and delete predictors
  - stepwise: iterate between forward and backward
- At each step, model from previous step is taken and each possible predictor available is added/deleted
  - AIC or BIC computed for each, and smallest value is chosen
  - chosen model becomes the starting model for next step
  - once no smaller AIC/BIC value is obtained, last model is the preferred model

# FORWARD & BACKWARDS SELECTION PROCEDURES



# STEPWISE SELECTION PROCEDURE



# EXAMPLE OF FORWARD AND BACKWARDS SELECTION

- Use same function (stepAIC)
- Specify starting model
  - intercept for forward, full for backward
- Add end point
  - upper = full model in forward
  - lower = intercept in backward
- specify direction: "forward" or "backward"
- set k=2 for AIC or k=log(n) for BIC

```
> library(MASS)
                                   short for full model
direction = "forward", k=2)
Start: AIC=178.93 AIC of intercept model
Defective ~ 1
            Df Sum of Sq
                          RSS AIC -
+ Temperature 1
                9427.0 1496.9 121.30
                                       all 3 SLRs better
                9311.4 1612.5 123.53
+ Density
+ Rate
                 8559.6 2364.3 135.01
                       10923.9 178.93 intercept model
Step: AIC=121.3
                    best SLR now reference
Defective ~ Temperature
        Df Sum of Sq RSS AIC
                                  both 2-predictor
+ Density 1 142.05 1354.8 120.31
                                  models better
             107.10 1389.8 121.07
                   1496.8 121.30 Test SLR
Step: AIC=120.31
Defective ~ Temperature + Density best 2-predictor model
     Df Sum of Sq RSS AIC
                               2-predictor model
                1354.8 120.31
+ Rate 1 40.372 1314.4 121.40
                               better than full model
lm(formula = Defective \sim Temperature + Density, data = d[, -1])
Coefficients:
(Intercept) Temperature
                          Density
    46.238
                          -2.327
       selected model
```

```
change starting model
> stepAIC(lm(Defective ~ ., data=d[,-1]),
          scope=list(lower=lm(Defective ~ 1, data=d[,-1])),
          direction = "backward", k=2) ▼
           specify direction
                                         adjust end point
Start: AIC=121.4 AIC of full model
Defective ~ Temperature + Density + Rate
             Df Sum of Sq
                           RSS AIC
                   40.372 1354.8 120.31 only 2 two-predictor
- Rate
- Density
                   75.318 1389.8 121.07 models better
- Temperature 1 189.970 1504.4 123.45 than full
Step: AIC=120.31
Defective ~ Temperature + Density
             Df Sum of Sq RSS
                                  AIC
                         1354.8 120.31 no SLRs better than
<none>
- Density
              1 142.05 1496.8 121.30
- Temperature 1 257.67 1612.5 123.53 two-predictor model
lm(formula = Defective ~ Temperature + Density, data = d[, -1])
Coefficients:
(Intercept) Temperature
                            Density
     46.238
                             -2.327
                 18.050
      selected model
```

```
specify full model as starting point
                    > stepAIC(lm(Defective ~ ., data=d[,-1]),
                              direction="both", k=2)
                                                                 indicate you will work
                    Start: AIC=121.4
  AIC of full model
                                                                 in both directions
                    Defective ~ Temperature + Density + Rate
                                  Df Sum of Sq
                                                   RSS
                                                          AIC
                                        40.372 1354.8 120.31 best two-predictor model
                      Rate
                      Density
                                        75.318 1389.8 121.07
      all deletion
                                                1314.4 121.40
                    <none>
                       emperature 1 189.970 1504.4 123.45
                    Step: AIC=120.31 AIC of best two-predictor model
                    Defective ~ Temperature + Density
                                  Df Sum of Sq
                                                   RSS
                                                          AIC
considers both
                                               1354.8 120.31 current model is best
                     <none>
deleting (to get
                     - Density
                                   1 142.050 1496.8 121.30
SLRs) and adding
                    + Rate
                                        40.372 1314.4 121.40
back what was
                      Temperature 1 257.670 1612.5 123.53
removed
                    Call:
                    lm(formula = Defective \sim Temperature + Density, data = d[, -1])
                    Coefficients:
                    (Intercept) Temperature
                                                   Density
                         46.238
                                      18.050
                                                   -2.327
```

# EXAMPLE OF STEPWISE SELECTION

# **MODULE 9 OUTLINE**

- I. Numerical Measures of Goodness
- 2. All Possible Subsets Selection
- 3. Automated Selection Methods
- 4. Cautions for Automated Selection Tools

# PROS & CONS OF AUTOMATED SELECTION

### Pros:

- All less intensive than all possible subsets
  - with systematic way to select model from large number of predictors
- Give an idea of preferred model, although may not actually be the best one
- Stepwise selection accounts for conditional nature of linear regression
  - allows addition and removal of predictors
  - acknowledges importance of variable may fluctuate in presence of others

### Cons:

- All methods may not agree on preferred model
  - further, AIC and BIC may also disagree with each other
- Will run even in presence of model violations or other issues (e.g., multicollinearity)
  - can provide unreliable or even incorrect results
- Do not consider context of data or question in decision-making
  - easily select a model that omitted important evidencebased predictors.

# NOT ALL MODELS CONSIDERED



# **AUTOMATION IS IGNORANT**

- Automated methods can certainly be time-saving when p is large
- Blindly using them can cause you to select a model far from the "best"
  - this is because automated methods (and your computer) is ignorant of potential problems with the model/data
- Ignores context and purpose of the model
  - may remove predictor of interest or predictor known to be relevant from literature
  - extra predictors may aid with predictions

- Ignores model violations and other issues
  - does not check model assumptions at intermediate steps
  - does not perform diagnostics or address any such issues
- Actually creates bias in the model (Loeb & Potscher, 2005)
  - similar to p-hacking where we adjust methods until significant result occurs
  - caused by searching the data for significance rather than collecting data to test specific hypothesis
- Advice for using:
  - look for agreement between methods, perform all checks before and after, consider using intermediate models

# **MODULE TAKE-AWAYS**

- 1. How are the likelihood criteria of goodness computed?
- 2. What are the differences and similarities between the likelihood criteria of goodness?
- 3. How is a "best"/"preferred" model selected using likelihood criteria?
- 4. How does all possible subsets and the automated selection procedures select a "best" model?
- 5. What are the advantages and disadvantages of using automated and all possible subsets model selection?