Functions

A function f from a set A to a set B, written $f: A \to B$, is a relation $f \subseteq A \times B$ such that every element of A is related to exactly one element of B:

$$egin{aligned} orall a \in A, b_1, b_2 \in B \ (\langle a, b_1
angle \in f \wedge \langle a, b_2
angle \in f \implies b_1 = b_2) \ orall a \in A \ \exists b \in B \ (\langle a, b
angle \in f) \end{aligned}$$

The set A is called the **domain** and B the **co-domain** of f.

If $a \in A$, then f(a) denotes the **unique** $b \in B$ such that $\langle a,b \rangle \in f$

Function notation

We write B^A for the set of all functions from A to B

We see $f:A \to B$ as shorthand for $f \in B^A$

We define $f =_{A \to B} g \, \triangleq \, orall x \in A \ (f(x) =_B g(x))$

For any $V\subseteq A$, define the **image** of V under f to be $f[V]\triangleq \{\ b\in B\ |\ \exists a\in V(f(a)=b)\ \}$

The set f[A] is called the image set of f

If the domain A is the n-ary product $A_1 \times \ldots \times A_n$, then we often write $f(a_1, \ldots, a_n)$ instead of $f(\langle a_1, \ldots, a_n \rangle)$

Example 1

Let $A = \{1, 2, 3\}$ and $B = \{a, b, c\}$.

Let $f \subseteq A \times B$ be defined by $f = \{\langle 1, a \rangle, \langle 2, b \rangle, \langle 3, a \rangle\}$.

The image set of f, f[A], is $\{a, b\}$.

The image of $\{1,3\}$ under f, $f[\{1,3\}]$, is $\{a\}$.

Example 2

Let $A = \{1, 2, 3\}$ and $B = \{a, b\}$. Let $f \subseteq A \times B$ be defined by $f = \{\langle 1, a \rangle, \langle 1, b \rangle, \langle 2, b \rangle, \langle 3, a \rangle\}$.

This f is not a (well-defined) function.

1 has two images.