Travaux Pratiques en Python 1

Exercice 1: Fonctions convexes

On considère les fonctions suivantes

$$\begin{split} f:[0,10] \to \mathbb{R} &\quad g:[0,10] \to \mathbb{R} &\quad h:[-10,10] \to \mathbb{R} &\quad u:[-10,10] \to \mathbb{R} \\ &\quad x \mapsto e^x, &\quad x \mapsto x^2, &\quad x \mapsto -x, &\quad x \mapsto x^3. \end{split}$$

- 1. En utilisant la bibliothèque matplotlib.pyplot de Python, tracer le graphe de la fonction f ainsi que ses tangentes en quelques points.
- 2. La fonction f semble-t-elle convexe?
- 3. Même question pour les fonctions g, h et u sur leur ensemble de définition respectif.

Exercice 2 : Développements de Taylor

Soit la fonction F définie par

$$F: [\frac{1}{2}, 10] \longrightarrow \mathbb{R}$$

$$x \longmapsto \ln(x) + \sqrt{x} + \cos(x).$$

- 1. Écrire à la main le développement de Taylor à l'ordre 1 puis à l'ordre 2 de F au point $x_0 = 3$.
- 2. Tracer sur une figure la courbe de F et montrer graphiquement que le développement de Taylor d'ordre 1 approche la courbe de manière affine et que celui d'ordre 2 approche la courbe de manière quadratique. (On fixera les axes de la fenêtre graphique à $x_{\text{max}} = 10$, $x_{\text{min}} = \frac{1}{2}$, $y_{\text{max}} = 7$ et $y_{\text{min}} = -5$ à l'aide de l'option x lim et y lim du module matplot lib.pyplot de Python).

Exercice 3: Limite de suites et vitesse de convergence

Soit (u_n) la suite définie par $u_n = \sin(a^n)$ où a = 0.7.

- 1. Tracer les 50 premières itérations de (u_n) en fonction de n. La suite semble-t-elle converger ? Si oui, quelle serait sa limite ?
- 2. En appliquant la formule du cours $\left(\frac{|u_{n+1}-\ell|}{|u_n-\ell|^p}\right)$ déterminer l'ordre de convergence de la suite. Pour cela, tracer en échelle logarithmique $|u_{n+1}-\ell|$ en fonction de $|u_n-\ell|$ et calculer la droite de régression linéaire à l'aide de la commande polyfit du module numpy de Python. L'ordre de convergence p apparaît alors comme le coefficient directeur de cette droite, expliquez pourquoi.
- 3. En traçant les 50 premières itérations de la suite (v_n) définie par $v_n = b^{p^n}$ avec b = 0.9 et p = 3, montrer graphiquement que (v_n) converge vers 0 et déterminer sa vitesse de convergence.

Exercice 4: Point fixe du cosinus

On considère la fonction $f(x) = \cos(x)$ dans l'intervalle [0, 1].

1. Écrire un script $point_fixe1.py$ qui fabrique et affiche le vecteur ligne des itérés $u_0, ...u_{20}$ lorsque $u_0 = 0$. Modifier ces instructions pour obtenir les 20 premiers termes de la suite $u = (u_n)$ lorsque $u_0 = \frac{\pi}{4}$, que constatez-vous?

- 2. On considère la fonction $f: f(x) = \cos(x)$. Tracer dans une même figure:
 - \bullet la courbe représentative de f en bleu,
 - la droite y = x en rouge,
 - la ligne brisée qui joint les points $(u_0,0),(u_0,f(u_0)),(u_1,u_1),(u_1,f(u_1)),...,(u_{10},u_{10})$, lorsque $u_0=\frac{\pi}{4}$, en vert.
- 3. On cherche à calculer une valeur approchée de l_0 , le point fixe de f dans [0,1]. Il s'agit de calculer les termes u_n de la suite u, tant que $|u_{n+1} u_n| > eps$ (on prendra $eps = 10^{-5}$). Pour cela, écrire une fonction $point_fixe$ qui prend en arguments la fonction f, u_0 et eps la précision souhaitée, et qui renverra une valeur approchée de l_0 .
- 4. (L'ordre de convergence) On rappelle que la définition d'ordre de convergence est sur la fiche de cours numéro 2. Calculer $err_n = |u_n l_0|$ avec $u_0 = 0$. En déduire l'ordre de convergence à l'aide de la fonction matplotlib.pyplot.loglog.

Exercice 5 : Point fixe et équation de Fibonacci

On étudie l'équation du troisième degré, proposée vers 1225 par Fibonacci:

$$x^3 + 2x^2 + 10x - 20 = 0, (1)$$

cette équation admet une et une seule solution réelle sur l'intervalle [1, 2].

- 1. Proposez une fonction f telle que la solution x_0 de f(x) = x soit la solution de l'équation (1). Puis, utilisez la fonction $point_fixe$ de l'exercice 4 (question 3) pour trouver cette solution.
- 2. Utilisez la même méthode que celle de la question 4 de l'exercice 4 pour déterminer l'ordre de convergence.