

DataFrame:						
Out[12]:		Name	Age	Gender	Salary	City
	0	John	25	Male	50000	New York
	1	Alice	30	Female	60000	Los Angeles
	2	Bob	35	Male	70000	Chicago
	3	Emily	28	Female	55000	San Francisco
	4	David	40	Male	75000	Boston


```
In [2]: # from functools import reduce

# Dictionary of students' grades
student grades = {
    "Alice": [85, 90, 92],
    "Bob": [70, 65, 80],
    "Charlie": [55, 60, 58]
}
print("Data in dictionary:", student_grades)

# Higher-order function - Map: Add 5 bonus marks to each student's grades
updated_grades = {name: list(map(lambda x: x + 5, grades)) for name, grades in student_grades.items()}
print("Updated grades:", updated_grades)

# Higher-order function - Filter: Find students who passed (average grade >= 60)
passed_students = list(filter(lambda x: sum(x[1]) / len(x[1]) >= 60, student_grades.items()))
print("Students who passed:", passed_students)

# Higher-order function - Reduce: Calculate the total number of students
total_students = reduce(lambda x, : x + 1, student_grades, 0)
print("Total number of students:", total_students)

Data in dictionary: {'Alice': [85, 90, 92], 'Bob': [70, 65, 80], 'Charlie': [55, 60, 58]}
Updated grades: {'Alice': [90, 95, 97], 'Bob': [75, 70, 85], 'Charlie': [60, 65, 63]}
Students who passed: [('Alice', [85, 90, 92]), ('Bob', [70, 65, 80])]
Total number of students: 3
```

```
In [1]: from functools import reduce

# List of students' ages
ages = [18, 21, 19, 22, 20, 23]
print("List of student ages :", ages)

# Higher-order function - Map: Calculate age after 5 years
ages_after_5_years = list(map(lambda x: x + 5, ages))
print("Ages after 5 years:", ages_after_5_years)

# Higher-order function - Filter: Find students above 20 years old
above_20 = list(filter(lambda x: x > 20, ages))
print("Students above 20 years old:", above_20)

# Higher-order function - Reduce: Calculate average age
average_age = reduce(lambda x, y: x + y, ages) / len(ages)
print("Average age of students:", average_age)

List of student ages : [18, 21, 19, 22, 20, 23]
Ages after 5 years: [23, 26, 24, 27, 25, 28]
Students above 20 years old: [21, 22, 23]
Average age of students: 20.5
```


		OLS R	egress	sion Res	ults			
Dep. Varia	ble:		Υ	R-squa	 red:		1.000	
Model:		OLS		Adj. R-squared:			1.000	
Method:				F-statistic:			1.467e+30	
Date:	M	Mon, 29 Apr 2024		Prob (F-statistic):		c):	1.24e-45	
Time:		08:2	9:54	Log-Li	kelihood:		150.57	
No. Observa	ations:		5	AIC:			-297.1	
Df Residua	ls:		3	BIC:			-297.9	
Df Model:			1					
Covariance	Type:	nonro	bust					
			=====					
	coef	std err		t	P> t	[0.025	0.975]	
const	-3.3333	1.17e-14	-2.86	5e+14	0.000	-3.333	-3.333	
X1	6.6667	1.43e-14	4.66	5e+14	0.000	6.667	6.667	
X2	3.3333	2.75e-15	1.21	le+15	0.000	3.333	3.333	
Х3	2.887e-15	9.13e-15	6	3.316	0.773	-2.62e-14	3.19e-14	
Omnibus:		========	nan	 Durbin	 -Watson:	.=======	0.154	
Prob(Omnib	us):		nan	Jarque	-Bera (JB)	:	0.409	
Skew:	•			Prob(JB):		0.815		
Kurtosis:			Cond. No.			1.26e+17		

Basic EDA: 1. Summary Statistics: Salary Age 5.00000 5.000000 count 31.60000 mean 62000.000000 5.94138 10368.220677 std min 25.00000 50000.000000 25% 28.00000 55000.000000 50% 30.00000 60000.000000 75% 35.00000 70000.000000 40.00000 75000.000000 \max

Accuracy: 0.666666666666666						
Classificatio	n Report: precision	recall	f1-score	support		
1	0.81	0.72	0.76	87		
2	0.38	0.50	0.43	30		
accuracy			0.67	117		
macro avg	0.60	0.61	0.60	117		
weighted avg	0.70	0.67	0.68	117		
Confusion Mat						
	.r.tx:					
[[63 24]						
[15 15]]						

