Software Information

- Please check, whether your inputs, the equations applied and the charactersitics are displayed correctly.
- You are welcome to send your feedback via https://github.com/oemof/tespy/issues.
- \bullet LATEX packages required are:
 - graphicx
 - float
 - hyperref
 - booktabs
 - amsmath
 - units
 - cleveref
- To supress these messages, call the model documentation with the keyword draft=False.

TESPy Version: 0.4.0 - dev

Commit: d918f10d@feature/self_documenting_models

CoolProp version: 6.4.0

Python version: 3.8.0 (default, Oct 28 2019, 16:14:01) [GCC 8.3.0]

1 Connections in design mode

1.1 Specified connection parameters

label	p in bar (1)	T in °C (2)
consumer cycle closer:out1_district heating pump:in1	10.000	60.000
$condenser:out2_consumer:in1$	-	90.000
ambient air:out1_fan:in1	1.000	12.000
evaporator:out1_sink ambient 1:in1	1.000	9.000
intercooler:out2_sink ambient 2:in1	-	30.000

Table 1: Specified connection parameters

1.2 Equations applied

$$0 = p - p_{\text{spec}} \tag{1}$$

$$0 = T(p,h) - T_{\text{spec}} \tag{2}$$

1.3 Specified fluids

label	NH3 (3)	air (4)	water (5)
coolant cycle closer:out1_condenser:in1	1.000	0.000	0.000
consumer cycle closer:out1_district heating pump:in1	0.000	0.000	1.000
ambient air:out1_fan:in1	0.000	1.000	0.000

Table 2: Specified fluids

1.4 Equations applied

$$0 = x_{\text{NH3}} - x_{\text{NH3,spec}} \tag{3}$$

$$0 = x_{\text{air}} - x_{\text{air,spec}} \tag{4}$$

$$0 = x_{\text{water}} - x_{\text{water,spec}} \tag{5}$$

1.5 Referenced values for mass flow

label	reference	factor in -	delta in kg/s
evaporator reciculation pump:out1_evaporator:in2	valve:out1_drum:in1	1.250	0

Table 3: Referenced values for mass flow

1.6 Equation applied

$$0 = value - value_{ref} \cdot factor + delta$$
 (6)

2 Components in design mode

2.1 Components of type CycleCloser

2.1.1 Mandatory constraints

$$0 = p_{\text{in},i} - p_{\text{out},i} \ \forall i \in [1]$$

$$0 = h_{\text{in},i} - h_{\text{out},i} \ \forall i \in [1]$$

$$\tag{8}$$

2.2 Components of type Condenser

2.2.1 Mandatory constraints

$$0 = \dot{m}_{\text{in},i} - \dot{m}_{\text{out},i} \ \forall i \in [1,2]$$

$$0 = x_{fl,\text{in},i} - x_{fl,\text{out},i} \,\forall fl \in \text{network fluids}, \,\forall i \in [1,2]$$

$$\tag{10}$$

$$0 = \dot{m}_{\text{in},1} \cdot (h_{\text{out},1} - h_{\text{in},1}) + \dot{m}_{\text{in},2} \cdot (h_{\text{out},2} - h_{\text{in},2})$$
(11)

2.2.2 Inputs specified

label	ttd_u (12)	pr1 (13)	pr2 (14)	subcooling (15)
condenser	5.000	0.990	0.990	True

Table 4: Parameters of components of type Condenser

2.2.3 Equations applied

$$0 = ttd_{\rm u} - T_{\rm sat}(p_{\rm in,1}) + T_{\rm out,2}$$
(12)

$$0 = p_{\text{in},1} \cdot pr1 - p_{\text{out},1} \tag{13}$$

$$0 = p_{\text{in},2} \cdot pr2 - p_{\text{out},2} \tag{14}$$

$$0 = h_{\text{out},1} - h\left(p_{\text{out},1}, x = 0\right) \tag{15}$$

2.3 Components of type Pump

2.3.1 Mandatory constraints

$$0 = \dot{m}_{\text{in},i} - \dot{m}_{\text{out},i} \,\forall i \in [1]$$

$$0 = x_{fl,\text{in},i} - x_{fl,\text{out},i} \ \forall fl \in \text{network fluids}, \ \forall i \in [1]$$
(17)

2.3.2 Inputs specified

label	eta_s (18)
district heating pump	0.800
evaporator reciculation pump	0.800

Table 5: Parameters of components of type Pump

2.3.3 Equations applied

$$0 = -(h_{\text{out}} - h_{\text{in}}) \cdot \eta_{\text{s}} + (h_{\text{out,s}} - h_{\text{in}})$$
(18)

2.4 Components of type HeatExchangerSimple

2.4.1 Mandatory constraints

$$0 = \dot{m}_{\text{in},i} - \dot{m}_{\text{out},i} \ \forall i \in [1]$$

$$0 = x_{fl,\text{in},i} - x_{fl,\text{out},i} \ \forall fl \in \text{network fluids}, \ \forall i \in [1]$$
 (20)

2.4.2 Inputs specified

label	Q(21)	pr (22)
consumer	-200000.000	0.990

Table 6: Parameters of components of type HeatExchangerSimple

2.4.3 Equations applied

$$0 = \dot{m}_{\rm in} \cdot (h_{\rm out} - h_{\rm in}) - \dot{Q} \tag{21}$$

$$0 = p_{\text{in},1} \cdot pr - p_{\text{out},1} \tag{22}$$

2.5 Components of type Valve

2.5.1 Mandatory constraints

$$0 = \dot{m}_{\text{in},i} - \dot{m}_{\text{out},i} \ \forall i \in [1]$$

$$0 = x_{fl,\text{in},i} - x_{fl,\text{out},i} \ \forall fl \in \text{network fluids}, \ \forall i \in [1]$$
 (24)

$$0 = h_{\text{in},i} - h_{\text{out},i} \,\forall i \in [1]$$

2.6 Components of type Drum

2.6.1 Mandatory constraints

$$0 = \sum \dot{m}_{\text{in},i} - \sum \dot{m}_{\text{out},j} \ \forall i \in \text{inlets}, \forall j \in \text{outlets}$$
 (26)

$$0 = x_{fl,\text{in},1} - x_{fl,\text{out},j} \,\forall fl \in \text{network fluids}, \,\forall j \in \text{outlets}$$
 (27)

$$0 = \sum_{i} (\dot{m}_{\text{in},i} \cdot h_{\text{in},i}) - \sum_{j} (\dot{m}_{\text{out},j} \cdot h_{\text{out},j}) \ \forall i \in \text{inlets } \forall j \in \text{outlets}$$
 (28)

$$0 = p_{\text{in},1} - p_{\text{in},i} \ \forall i \in \text{inlets} \setminus \{1\}$$

$$0 = p_{\text{in},1} - p_{\text{out},j} \ \forall j \in \text{outlets}$$
(29)

$$0 = h_{\text{out},1} - h (p_{\text{out},1}, x = 0)$$

$$0 = h_{\text{out},2} - h (p_{\text{out},2}, x = 1)$$
(30)

2.7 Components of type HeatExchanger

2.7.1 Mandatory constraints

$$0 = \dot{m}_{\text{in},i} - \dot{m}_{\text{out},i} \ \forall i \in [1,2]$$

$$\tag{31}$$

$$0 = x_{fl,\text{in},i} - x_{fl,\text{out},i} \,\forall fl \in \text{network fluids}, \,\forall i \in [1,2]$$
(32)

$$0 = \dot{m}_{\text{in},1} \cdot (h_{\text{out},1} - h_{\text{in},1}) + \dot{m}_{\text{in},2} \cdot (h_{\text{out},2} - h_{\text{in},2})$$
(33)

2.7.2 Inputs specified

label	ttd_u (34)	ttd_l (35)	pr1 (36)	pr2 (37)
evaporator	2.000	5.000	0.999	0.990
superheater		-	0.999	0.990
intercooler		-	0.990	0.999

Table 7: Parameters of components of type HeatExchanger

2.7.3 Equations applied

$$0 = ttd_{\rm u} - T_{\rm in,1} + T_{\rm out,2} \tag{34}$$

$$0 = ttd_{l} - T_{\text{out},1} + T_{\text{in},2} \tag{35}$$

$$0 = p_{\text{in},1} \cdot pr1 - p_{\text{out},1} \tag{36}$$

$$0 = p_{\text{in},2} \cdot pr2 - p_{\text{out},2} \tag{37}$$

2.8 Components of type Compressor

2.8.1 Mandatory constraints

$$0 = \dot{m}_{\text{in},i} - \dot{m}_{\text{out},i} \,\forall i \in [1] \tag{38}$$

$$0 = x_{fl,\text{in},i} - x_{fl,\text{out},i} \,\forall fl \in \text{network fluids}, \,\forall i \in [1]$$
(39)

2.8.2 Inputs specified

label	eta_s (40)	pr (41)
fan	0.650	-
compressor 1	0.850	-
compressor 2	0.900	3.000

Table 8: Parameters of components of type Compressor

2.8.3 Equations applied

$$0 = -(h_{\text{out}} - h_{\text{in}}) \cdot \eta_{\text{s}} + (h_{\text{out.s}} - h_{\text{in}})$$
(40)

$$0 = p_{\text{in},1} \cdot pr - p_{\text{out},1} \tag{41}$$

2.9 Components of type Splitter

2.9.1 Mandatory constraints

$$0 = \sum \dot{m}_{\text{in},i} - \sum \dot{m}_{\text{out},j} \ \forall i \in \text{inlets}, \forall j \in \text{outlets}$$

$$(42)$$

$$0 = x_{fl,\text{in}} - x_{fl,\text{out},j} \ \forall fl \in \text{network fluids}, \ \forall j \in \text{outlets}$$
 (43)

$$0 = h_{in} - h_{\text{out},j} \ \forall j \in \text{outlets}$$
 (44)

$$0 = p_{\text{in},1} - p_{\text{in},i} \ \forall i \in \text{inlets} \setminus \{1\}$$

$$0 = p_{\text{in},1} - p_{\text{out},j} \ \forall j \in \text{outlets}$$
(45)