Top-Down Parsing and Introduction to Bottom-Up Parsing

CS143

Lecture 7

Instructor: Fredrik Kjolstad
Slide design by Prof. Alex Aiken, with modifications

Predictive Top-Down Parsers

- Like recursive-descent but parser can "predict" which production to use
 - By looking at the next few tokens
 - No backtracking
- Predictive parsers accept LL(k) grammars
 - L means "left-to-right" scan of input
 - L means "leftmost derivation"
 - k means "predict based on k tokens of lookahead"
 - In practice, LL(1) is used

Recursive Descent vs. LL(1)

- In recursive-descent,
 - At each step, many choices of production to use
 - Backtracking used to undo bad choices
- In LL(1),
 - At each step, only one choice of production
 - That is
 - When a non-terminal A is leftmost in a derivation
 - And the next input symbol is t
 - There is a unique production $A \rightarrow \alpha$ to use
 - Or no production to use (an error state)
- LL(1) is a recursive descent variant without backtracking

Predictive Parsing and Left Factoring

```
E \rightarrow T + E \mid T
T \rightarrow int \left| int * T \right| (E)
```

- Hard to predict because
 - For T two productions start with int
 - For E it is not clear how to predict
- We need to <u>left-factor</u> the grammar

Left-Factoring Example

Recall the grammar

```
E \rightarrow T + E I T
T \rightarrow int I int * T I (E)
```

Factor out common prefixes of productions

$$E \rightarrow T X$$
 $X \rightarrow + E I \epsilon$
 $T \rightarrow int Y I (E)$
 $Y \rightarrow * T I \epsilon$

LL(1) Parsing Table Example

Left-factored grammar

$$E \rightarrow T X$$
 $X \rightarrow + E \mid \epsilon$
 $T \rightarrow (E) \mid int Y$ $Y \rightarrow * T \mid \epsilon$

The LL(1) parsing table: next input token

	int	*	+	()	\$
Е	ΤX			ΤX		
X			+ E		3	3
Т	int Y			(E)		
Y		* T	3		3	3

$$E \rightarrow T X$$
 $X \rightarrow + E \mid \epsilon$
 $T \rightarrow (E) \mid int Y$ $Y \rightarrow * T \mid \epsilon$

LL(1) Parsing Table Example

- Consider the [E, int] entry
 - "When current non-terminal is E and next input is int, use production E → T X"
 - This can generate an int in the first position

	int	*	+	()	\$
Ε	TX			ΤX		
X			+ E		3	3
Т	int Y			(E)		
Υ		* T	3		3	3

$$E \rightarrow T X$$
 $X \rightarrow + E \mid \epsilon$
 $T \rightarrow (E) \mid int Y$ $Y \rightarrow * T \mid \epsilon$

LL(1) Parsing Tables. Errors

- Consider the [Y,+] entry
 - "When current non-terminal is Y and current token is +, get rid of Y"
 - Y can be followed by + only if Y $\rightarrow \epsilon$

	int	*	+	()	\$
Е	ΤX			ΤX		
X			+ E		3	3
Т	int Y			(E)		
Υ		* T	3		3	3

$$E \rightarrow T X$$
 $X \rightarrow + E \mid \epsilon$
 $T \rightarrow (E) \mid int Y$ $Y \rightarrow * T \mid \epsilon$

LL(1) Parsing Tables. Errors

- Consider the [Y,(] entry
 - "There is no way to derive a string starting with (from non-terminal Y"
 - Blank entries indicate error situations

	int	*	+	()	\$
Е	ΤX			ΤX		
Х			+ E		3	3
Т	int Y			(E)		
Υ		* T	3	4	3	3

Using Parsing Tables

- Method similar to recursive descent, except
 - For the leftmost non-terminal S
 - We look at the next input token a
 - And choose the production shown at [S,a]
- A stack records frontier of parse tree
 - Non-terminals that have yet to be expanded
 - Terminals that have yet to matched against the input
 - Top of stack = leftmost pending terminal or non-terminal
- Reject on reaching error state
- Accept on end of input & empty stack

LL(1) Parsing Algorithm (using the table)

```
initialize stack = <S $> and next
repeat
  case stack of
      \langle X, \text{ rest} \rangle : if T[X,*\text{next}] = Y_1...Y_n
                           then stack \leftarrow <Y<sub>1</sub>...Y<sub>n</sub>, rest>;
                           else error ();
      \langle t, rest \rangle : if t == *next ++
                           then stack \leftarrow <rest>;
                           else error ();
until stack == < >
```

LL(1) Parsing Algorithm

\$ marks bottom of stack

```
initialize stack = <S $> and next
                                               For non-terminal X on top of stack,
    repeat
                                               lookup production
      case stack of
         \langle X, \text{ rest} \rangle : if T[X, *\text{next}] = Y_1...Y_n
                              then stack \leftarrow \langle Y_1...Y_n, \text{ rest} \rangle;
                              else error ();
                                                                  Pop X, push
                                                                  production rhs
         <t, rest>: if t == *next ++
                                                                  on stack.
For terminal t on top of stack, then stack \leftarrow <rest>;
                                                                  Note leftmost
check t matches next input else error ();
                                                                  symbol of rhs
token.
                                                                  is on top of
    until stack == < >
                                                                  the stack.
```

LL(1) Parsing Example X→+E|ε Y→*T|ε

$$E \rightarrow T X$$
 $T \rightarrow int Y I (E)$
 $X \rightarrow + E I \epsilon$ $Y \rightarrow * T I \epsilon$

Stack	Input	Action
E \$	int * int \$	ΤX
T X \$	int * int \$	int Y
int Y X \$	int * int \$	terminal
Y X \$	* int \$	* T
* T X \$	* int \$	terminal
T X \$	int \$	int Y
int Y X \$	int \$	terminal
Y X \$	\$	3
X \$	\$	ε
\$	\$	ACCEPT

Constructing Parsing Tables: The Intuition

• Consider non-terminal A, production $A \rightarrow \alpha$, and token t

- 1. Add T[A,t] = α if $A \rightarrow \alpha \rightarrow^* t \beta$
 - $-\alpha$ can derive a t in the first position
 - We say that $t \in First(\alpha)$

Greek letters denote strings of non-terminals and terminals

- 2. Add $T[A,t] = \varepsilon$ if $A \rightarrow \alpha \rightarrow^* \varepsilon$ and $S \rightarrow^* \gamma A t \delta$
 - Useful if stack has A, input is t, and A cannot derive t
 - In this case only option is to get rid of A (by deriving ε)
 - Can work only if t can follow A in at least one derivation
 - We say t ∈ Follow(A)

Computing First Sets

Definition

$$First(X) = \{ t \mid X \rightarrow^* t\alpha \} \cup \{ \epsilon \mid X \rightarrow^* \epsilon \}$$

Algorithm sketch:

- 1. First(t) = $\{t\}$
- 2. $\varepsilon \in First(X)$
 - if $X \rightarrow \varepsilon$ or
 - if $X \to A_1 \dots A_n$ and $\varepsilon \in First(A_i)$ for all $1 \le i \le n$
- 3. $First(\alpha) \subseteq First(X)$
 - if $X \rightarrow \alpha$ or
 - if $X \to A_1 \dots A_n \alpha$ and $\epsilon \in First(A_i)$ for all $1 \le i \le n$

First Sets: Example

```
1. First(t) = { t }
2. \varepsilon \in First(X)
     - if X \rightarrow \varepsilon or
     - if X → A_1...A_n and ε ∈ First(A_i) for all 1 ≤ i ≤ n
3. First(\alpha) \subseteq First(X)
     - if X \rightarrow \alpha or
     - if X → A<sub>1</sub>...A<sub>n</sub> α and ε ∈ First(A<sub>i</sub>) for all 1 ≤ i ≤ n
E \rightarrow T X
                             X \rightarrow + E \mid \varepsilon
T \rightarrow (E) I int Y \qquad Y \rightarrow *TI \epsilon
First(E) =
                                         First(X) =
First(T) =
                                        First(Y) =
```

First Sets: Example

Recall the grammar

$$E \rightarrow T X$$

 $T \rightarrow (E) I int Y$

$$X \rightarrow + E \mid \varepsilon$$

 $Y \rightarrow * T \mid \varepsilon$

First sets

```
First(() = {()} First(T) = {int, ()}

First()) = {()} First(E) = {int, ()}

First(int) = {(int)} First(X) = {+, \epsilon}

First(+) = {+} First(Y) = {*, \epsilon}

First(*) = {*}
```

Computing Follow Sets

Definition:

Follow(X) = { t | S
$$\rightarrow$$
* β X t δ }

- Intuition
 - If X → A B then First(B) ⊆ Follow(A) and Follow(X) ⊆ Follow(B)
 if B → * s then Follow(X) ⊆ Follow(A)
 - if $B \rightarrow^* \epsilon$ then $Follow(X) \subseteq Follow(A)$
 - If S is the start symbol then \$ ∈ Follow(S)

Computing Follow Sets (Cont.)

Algorithm sketch:

- 1. $\$ \in Follow(S)$
- 2. For each production $A \rightarrow \alpha X\beta$
 - First(β) $\{\epsilon\}$ ⊆ Follow(X)
- 3. For each production $A \rightarrow \alpha X \beta$ where $\epsilon \in First(\beta)$
 - Follow(A) ⊆ Follow(X)

Recall the grammar

$$E \rightarrow T X$$

 $T \rightarrow (E) I int Y$

$$X \rightarrow + E \mid \varepsilon$$

 $Y \rightarrow * T \mid \varepsilon$

\$ ∈ Follow(E)

$$E \rightarrow T X$$

 $T \rightarrow (E) I int Y$

$$X \rightarrow + E \mid \varepsilon$$

 $Y \rightarrow * T \mid \varepsilon$

- \$ ∈ Follow(E)
- First(X) ⊆ Follow(T)
- Follow(E) ⊆ Follow(X)
- Follow(E) ⊆ Follow(T) because ε ∈ First(X)

$$E \rightarrow T X$$
 $X \rightarrow + E \mid \varepsilon$
 $T \rightarrow (E) \mid \text{int } Y$ $Y \rightarrow * T \mid \varepsilon$

- \$ ∈ Follow(E)
- First(X) ⊆ Follow(T)
- Follow(E) ⊆ Follow(X)
- Follow(E) \subseteq Follow(T) because $\epsilon \in$ First(X)
-) ∈ Follow(E)

$$E \rightarrow T X$$

 $T \rightarrow (E) I int Y$

$$X \rightarrow + E \mid \varepsilon$$

 $Y \rightarrow * T \mid \varepsilon$

- \$ ∈ Follow(E)
- First(X) ⊆ Follow(T)
- Follow(E) ⊆ Follow(X)
- Follow(E) \subseteq Follow(T) because $\epsilon \in$ First(X)
-) ∈ Follow(E)
- Follow(T) ⊆ Follow(Y)

$$E \rightarrow T X$$

 $T \rightarrow (E) I int Y$

$$X \rightarrow + E \mid \varepsilon$$

 $Y \rightarrow * T \mid \varepsilon$

- \$ ∈ Follow(E)
- First(X) ⊆ Follow(T)
- Follow(E) ⊆ Follow(X)
- Follow(E) ⊆ Follow(T) because ε ∈ First(X)
-) ∈ Follow(E)
- Follow(T) ⊆ Follow(Y)
- Follow(X) ⊆ Follow(E)

$$E \rightarrow T X$$

 $T \rightarrow (E) I int Y$

$$X \rightarrow + E \mid \varepsilon$$

 $Y \rightarrow * T \mid \varepsilon$

- \$ ∈ Follow(E)
- First(X) ⊆ Follow(T)
- Follow(E) ⊆ Follow(X)
- Follow(E) ⊆ Follow(T) because ε ∈ First(X)
-) ∈ Follow(E)
- Follow(T) ⊆ Follow(Y)
- Follow(X) ⊆ Follow(E)
- Follow(Y) ⊆ Follow(T)

$$E \rightarrow T X$$

 $T \rightarrow (E) I int Y$

$$X \rightarrow + E \mid \varepsilon$$

 $Y \rightarrow * T \mid \varepsilon$

- \$ ∈ Follow(E)
- First(X) ⊆ Follow(T)
- Follow(E) ⊆ Follow(X)
- Follow(E) ⊆ Follow(T)
-) ∈ Follow(E)
- Follow(T) \subseteq Follow(Y)
- Follow(X) ⊆ Follow(E)
- Follow(Y) ⊆ Follow(T)

Computing the Follow Sets (for all symbols)

Follow Sets: Example

Recall the grammar

$$E \rightarrow T X$$
 $X \rightarrow + E \mid \epsilon$
 $T \rightarrow (E) \mid int Y$ $Y \rightarrow * T \mid \epsilon$

Follow sets

```
Follow(+) = { int, ( } Follow(*) = {int, ( } Follow(()) = { int, ( } Follow(()) = { int, ( } Follow(()) = { $, ) } Follow(()) = { $, ) } Follow(()) = { $, +, ) } Follow(()) = { $, +, ) } Follow(()) = { *, +, ) , $ } Follow(()) = { *, +, ) , $ }
```

Constructing LL(1) Parsing Tables

- Construct a parsing table T for CFG G
- For each production $A \rightarrow \alpha$ in G do:
 - For each terminal $t \in First(\alpha)$ do
 - T[A, t] = α
 - If $\varepsilon \in First(\alpha)$, then for each $t \in Follow(A)$ do
 - $T[A, t] = \varepsilon$
 - If $\varepsilon \in First(\alpha)$ and $\$ \in Follow(A)$ do
 - T[A, \$] = ε

Notes on LL(1) Parsing Tables

- If any entry is multiply defined then G is not LL(1)
 - If G is ambiguous
 - If G is left recursive
 - If G is not left-factored
 - And in other cases as well
- Most programming language CFGs are not LL(1)

Bottom-Up Parsing

- Bottom-up parsing is more general than top-down parsing
 - And just as efficient
 - Builds on ideas in top-down parsing
- Bottom-up is the preferred method
- Concepts today, algorithms next time

An Introductory Example

Bottom-up parsers don't need left-factored grammars

Revert to the "natural" grammar for our example:

```
E \rightarrow T + E \mid T
T \rightarrow int * T \rightarrow int | (E)
```

Consider the string: int * int + int

The Idea

Bottom-up parsing reduces a string to the start symbol by inverting productions:

Observation

$$E \rightarrow T + E \mid T$$

T \rightarrow int * T \rightarrow int | (E)

- Read the productions in reverse (from bottom to top)
- This is a reverse rightmost derivation!

int * int + int	$T \rightarrow int$
int * T + int	$T \rightarrow int * T$
T + int	$T \rightarrow int$
T + T	$E \rightarrow T$
T + E	$E \rightarrow T + E$
E	

Important Fact #1

Important Fact #1 about bottom-up parsing:

A bottom-up parser traces a rightmost derivation in reverse

A Bottom-up Parse

int * int + int

int * T + int

T + int

T + T

T + E

Ε

A Bottom-up Parse in Detail (1)

int * int + int

int * int + int

A Bottom-up Parse in Detail (2)

```
int * int + int
int * T + int
```


A Bottom-up Parse in Detail (3)

```
int * int + int
int * T + int
T + int
```


A Bottom-up Parse in Detail (4)

```
int * int + int
int * T + int
T + int
T + T
```


A Bottom-up Parse in Detail (5)

```
int * int + int
int * T + int
T + int
T + T
T + E
```


A Bottom-up Parse in Detail (6)

```
int * int + int
int * T + int
T + int
T + T
T + E
```


Where Do Reductions Happen?

Important Fact #1 has an interesting consequence:

- Let $\alpha\beta\omega$ be a step of a bottom-up parse
- Assume the next reduction is by $X \rightarrow \beta$
- Then
 is a string of terminals

Why? Because $\alpha X \omega \rightarrow \alpha \beta \omega$ is a step in a right-most derivation

Notation

- Idea: Split string into two substrings
 - Right substring is as yet unexamined by parsing (a string of terminals)
 - Left substring has terminals and non-terminals
- The dividing point is marked by a l
 - The I is not part of the string
- Initially, all input is unexamined lx₁x₂...x_n

Shift-Reduce Parsing

Bottom-up parsing uses only two kinds of actions:

Shift

Reduce

Shift

- Shift: Move I one place to the right
 - Shifts a terminal to the left string

 $ABCIxyz \Rightarrow ABCxIyz$

Reduce

- Apply an inverse production at the right end of the left string
 - If $A \rightarrow xy$ is a production, then

Cbxylijk ⇒ CbAlijk

The Example with Reductions Only

```
int * int I + int
                                       reduce T \rightarrow int
                                       reduce T → int * T
int * T I + int
T + int I
                                       reduce T \rightarrow int
T + TI
                                       reduce E \rightarrow T
T + EI
                                       reduce E \rightarrow T + E
ΕI
```

The Example with Shift-Reduce Parsing

I int * int + int	shift
int I * int + int	shift
int * I int + int	shift
int * int I + int	reduce T → int
int * T I + int	reduce T → int * T
TI+int	shift
T + I int	shift
T + int I	reduce T → int
T + T I	reduce E → T
T + E I	reduce $E \rightarrow T + E$
EI	

A Shift-Reduce Parse in Detail (1)

I int * int + int

A Shift-Reduce Parse in Detail (2)

```
l int * int + int
int l * int + int
```

A Shift-Reduce Parse in Detail (3)

```
I int * int + int
int I * int + int
int * I int + int
```

A Shift-Reduce Parse in Detail (4)

```
l int * int + int
int l * int + int
int * l int + int
int * int l + int
```

A Shift-Reduce Parse in Detail (5)

```
I int * int + int
int | * int + int
int * I int + int
int * int I + int
int *TI + int
                                                * int
                                      int
                                                                              int
```

A Shift-Reduce Parse in Detail (6)

I int * int + int

```
int | * int + int
int * I int + int
int * int I + int
int * T I + int
TI + int
                                                           int
                                        int
                                                                                   int
```

A Shift-Reduce Parse in Detail (7)

I int * int + int

```
int | * int + int
int * I int + int
int * int I + int
int * T I + int
TI + int
T + I int
                                                             int
                                         int
```

int

A Shift-Reduce Parse in Detail (8)

```
I int * int + int
int | * int + int
int * I int + int
int * int I + int
int * T I + int
TI + int
T + I int
T + int I
```


A Shift-Reduce Parse in Detail (9)

```
I int * int + int
int | * int + int
int * I int + int
int * int I + int
int *TI + int
TI + int
T + I int
T + int I
T + TI
```


A Shift-Reduce Parse in Detail (10)

```
I int * int + int
int | * int + int
int * I int + int
int * int I + int
int *TI + int
TI + int
T + I int
T + int I
T + TI
                                                           int
                                        int
                                                                                  int
T + EI
```

A Shift-Reduce Parse in Detail (11)

```
I int * int + int
int | * int + int
int * I int + int
int * int I + int
int * T I + int
TI + int
T + I int
T + int I
T + TI
                                                            int
                                         int
T + EI
ΕI
```

int

The Stack

- Left string can be implemented by a stack
 - Top of the stack is the I
- Shift pushes a terminal on the stack

 Reduce pops 0 or more symbols off of the stack (production rhs) and pushes a non-terminal on the stack (production lhs)

Conflicts

- In a given state, more than one action (shift or reduce) may lead to a valid parse
- If it is legal to shift or reduce, there is a shift-reduce conflict
- If it is legal to reduce by two different productions, there is a reduce-reduce conflict
- You will see such conflicts in your project!
 - More next time . . .