WHAT IS CLAIMED IS:

1	1. A method of forming a simultaneous operation dual-bank flash
2	memory device, said method comprising the steps of:
3	providing a plurality of flash memory arrays;
4	providing row and column decoders for each flash memory array; and
5	partitioning the plurality of flash memory arrays into a first memory bank and
6	a second memory bank by coupling first bank row and column address lines between first
7	bank row and column pre-decoders and the row and column decoders associated with the first
8	memory bank, and by coupling second bank row and column address lines between second
9	bank row and column pre-decoders and the row and column decoders associated with the
I 0	second memory bank.
	A
	2. A method of forming a dual-bank flash memory device, said method
<u>-</u> 2	comprising the steps of:
±3 □4	providing a plurality of flash memory arrays, each memory array having
	associated row and column address decoders; and
5 5 46	partitioning the flash memory arrays into a first memory bank and a second
7	memory bank by: forming first bank pre-decoded column address lines and coupling
] / = 8	them between a first bank column address pre-decoder and the column address
9	decoders associated with the first bank,
10	forming second bank pre-decoded column address lines and coupling
11	them between a second bank column address pre-decoder and the column address
12	decoders associated with the second bank,
13	forming first bank pre-decoded row address lines and coupling them
14	between a first bank row address pre-decoder and the row address decoders associated
15	with the first bank, and
16	forming second bank pre-decoded row address lines and coupling them
17	between a second bank row address pre-decoder and the row address decoders
18	associated with the second bank.
1	7 3. The method of claim 2, wherein the sizes of the first and second
2	memory banks are variable, depending upon selection from and application of one a plurality
3	of preformed metal masks used to perform the step of partitioning.

4	4. The method of claim 3, wherein each memory array comprises first
5	and second halves, the first half having an associated column decoder and the second half
6	having an associated column decoder.
1	5. A simultaneous operation flash memory chip having a flexible memory
2	bank partition, comprising:
3	a plurality of memory arrays having associated row and column decoders, said
4	plurality of memory arrays partitioned into first and second memory banks;
5	a first bank column address pre-decoder coupled to the column address
6	decoders associated with the first memory bank;
7	a first bank row address pre-decoder coupled to the row address decoders
8	associated with the first memory bank;
1 9	a second bank column address pre-decoder coupled to the column address
10	decoders associated with the second memory bank; and
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	a second bank row address pre-decoder coupled to the row address decoders
12	associated with the second memory pank.
1	6. The simultaneous operation flash memory chip of claim 5, wherein the
1 2 3	partition between the first and second memory banks is determined by selecting from a
113 23 3	plurality of preformed metal masks and applying the selected mask during manufacture of the
4	flash memory chip.
1	7. The simultaneous operation flash memory chip of claim 6, wherein the
2	plurality of metal masks are distinguished from one other by variances in pre-decoded
3	address line patterns.
1	8. The simultaneous operation flash memory chip of claim 7, wherein the
2	pattern variances determine to which memory arrays pre-decoded first bank address lines are
3	coupled to and to which memory arrays pre-decoded second bank address lines are coupled
4	to.
1	9. A simultaneous operation flash memory device having a flexible dual-
2	bank architecture, comprising: a plurality of memory arrays capable of being partitioned into
3	a first memory bank and a second memory bank, the partitioning of arrays within the first and
4	second memory banks determined by how pre-decoded row and address lines are formed
5	during a process used to fabricate the device. (1) 3 19-10

.1	10. A method of forming a simultaneous operation flash memory device
2	having a flexible memory bank partition, said method comprising the steps of:
3	providing a plurality of flash memory arrays, each memory array having
4	associated row and column address decoders; and
5	partitioning the plurality of flash memory arrays into a first memory bank and
6	a second memory bank by:
7	coupling first bank row and column address lines between first bank
8	row and column pre-decoders and the row and column decoders associated with the
9	first memory bank and
10	coupling second bank row and column address lines between second
1	bank row and column pre-decoders and the row and column decoders associated with
1 2	the second memory bank,
3	wherein the step of partitioning is performed by selecting from a plurality of
13 14	preformed metal masks, said plurality of metal masks being distinguished from one other by
1 5	variances in pre-decoded address line patterns.