SIMULATOR FOR SYNTHETIC MODULE

A SUMMER INTERN REPORT

Submitted by

G.SURESH

ROLL NO: B081195

in partial fulfillment of summer internship for award of the degree

of

BACHELOR OF TECHNOLOGY

in

ELECTRONICS & COMMUNICATION ENGINEERING

RGUKT Basar Campus

Rajiv Gandhi University of Knowledge Technologies (RGUKT)
Basar, Adilabad (Dist), Andhra Pradesh

July 2013

CERTIFICATE

Certified that the summer internship project report on *Simulator for Synthetic Module* is bonafide work of *G.Suresh*, Roll No: *B081195*, 3rd Year B.Tech in Electronics & Communication Engineering of RGUKT Basar. Campus of Rajiv Gandhi University of Knowledge Technologies (RGUKT), Andhra Pradesh carried out under my supervision during 29.04.2013 to 29.06.2013.

\mathbf{p}_1	lace.

Date: E.Raj Kumar

SUPERVISOR

Dy. Manager

D&E – Navi Divison,

Bharat Electronics Ltd,

IE-Nacharam,

Hyderabad-76.

ACKNOWLEDGEMENT

I take the opportunity to thank one and all who have helped me in making this project successful. I am extremely happy to present this project work under the guidance of **Mr. E. Raj Kumar**, Dy Manager, Navi Division, Bharat Electronics, Hyderabad.

I express my sincere gratitude to my external guide **B. Sankar Rao.** Bharat Electronics, Hyderabad. For his valuable guidance and encouragement at each stage of my project work.

I am very thankful to **Prof. Srinivas Sagar,** HOD, Department of Electronics and Communication Engineering, Rajiv Gandhi University of Knowledge & Technologies (RGUKT) for this encouragement for carrying out this project.

G.SURESH (B081195)

ABSTRACT

The simulator for a synthetic module is a PC based simulator test jig for testing a subsystem called synthetic channel of an Electronic Warfare system. Synthetic module generates the modulated RF in the frequency range of 8-18GHz. Required RF generation and modulation is selected from PC. Based on the selection from PC, related Address, Data and controls are generated from Processor module and given to the Synthetic module for RF Generation. The required RF modulation data is to be selected from the PC. PC communicates to the micro-controller through the RS232 interface. PC gives the required data to the microcontroller of simulator PCB through the level-converter (RS-232 standard). Microcontroller generates the address, data and controls on the address, data, I/O bus of micro controller based on the selection from PC. FPGA latches the required address, data and controls and gives different lines of address (10 bits) data (16 bits) and controls (8 bits) to the synthetic module through inter-connecting cable.

INDEX

CONTENTS	
1 INTRODUCTION	1
1.1 AIM	2
1.2 TOOLS REQUIRED	2
1.3 NEED FOR THE PROJECT	2
2 LITERATURE SURVEY	4
2.1 RADAR	5
2.2 ELECTRONIC WARFARE SYSTEMS	5
2.2.1ELECTRONIC WARFARE SUPPORT	6
2.2.2 ELECTRONIC ATTACK	7
2.2.3 ELECTRONIC PROTECTION	9
2.3 JAMING	10
2.3.1 NOISE JAMMING	10
2.3.2 DECSPECTION JAMMING	12
2.4 SYNTHETIC MODULE	12
3 THEORETICAL ANALYSIS	13
3.1 BLOCK DIAGRAM	14
3.2 SERIAL COMMUNICATION USING RS232	15
3.2.1 INTRODUCTION	15
3.2.2 COMMUNICATION METHODS	15
3.2.3 SERIAL PINOUT(D9 CONNECTOR)	17
3.3 LEVEL CONVERTOT(MAX 235)	17
3.3.1 GENERAL DESCRIPTION	17
3.3.2 APPLICATIONS	18
3.3.3 DUAL CHARGE-PUMP VOLTAGE CONVERTER	R 18

3.4 BUFFER (54F541)	18
3.4.1 GENERAL DESCRIPTION	18
3.4.2 FEATURES	19
3.4.3 PIN DIAGRAM	19
3.5 MICROCONTROLLER (M87C51FC)	
3.5.1 DESCRIPTION	19
3.5.2 FEATURES	21
3.5.3 PIN DIAGRAM	21
3.5.4 BLOCK DIAGRAM	22
3.6 FPGA (XC4012E)	
3.6.1 INTRODUCTION	23
3.6.2 DESCRIPTION	23
3.6.3 FUNCTIONAL DESCRIPTION	24
3.6.4 BASIC BUILDING BLOCKS	24
3.6.5 CONFIGURABLE LOGIC BLOCKS (CLBs)	24
3.6.6 PIN DESCRIPTIONS	26
3.7 PROM (AT17LV256)	
3.7.1 PROGRAMMING	26
3.8 XILINX	
3.8.1 DESIGN ENTRY	28
3.8.2 SYNTHESIS	28
3.8.3 IMPLEMENTATION	28
3.8.4 VERIFICATION	28
3 9 KEIL SOFTWARE	29

VII

4	EXPERIMENTAL ANALYSIS	30
	4.1 CIRCUIT DIAGRAM	31
	4.2 FLOW CHART	33
5	RESULT AND ANALYSIS	34
	5.1 TEST SETUP	35
	5.2 SNAP SHOTS	36
6	SUMMARY, CONCLUSION AND FUTURE SCOPE	40
R	REFERENCES	

VIII

List of Figures	Page No.
Block diagram of simulator for synthetic module	14
Connector serial pinout	17
MAX 235 pin diagram	17
Pin diagram of 54F541	19
Pin diagram of microcontroller	21
Block diagram of microcontroller	22
XC4000 Series Power Distribution	25
ISE design flow	27
Circuit Diagram	31
List of Photographs	Page. No
PCB designed TEST JIG	35
Experimental Test Setup	35
List of Tables	Page. No
Connector pin Description and Functions	16
List of components used	32
Few examples	39