01_Effektive Reichweite gerade

Versuchsthema

In diesem Versuch soll die effektive maximale Reichweite der/des Leser/s getestet werden. Und zwar wie in der Abbildung dargestellt in Front der Antenne, das heisst insbesondere keine laterale Verschiebung des Tags.

ABBILDUNG 1 - VERSUCHSANORDNUNG, DER RFID TAG IST IN DER FLUCHT DER ANTENNE

Bekannte Grundlagen

Die theoretische Reichweite des HF Magnetfelds beträgt 3.5m, die meisten Hersteller geben jedoch nur eine effektive Reichweite von bis zu einem Meter an.

Hypothese und erwartetes Ergebnis

Die Reichweite entspricht den von den Hersteller angegebenen Reichweiten oder liegt sogar ein bisschen unterhalb.

Versuchsaufbau

Beschreibung des Aufbaus

Der RFID Tag wird in der Front der Antenne mit der selben Ausrichtung plaziert. Danach wird der RFID Tag 10 mal abgefragt. Danach wird die Distanz um 10cm erhöht und die Abfrage wiederholt. Dies wird so oft wiederholt bis der Tag keine Rückmeldung gibt.

Variabeln

Unabhängige

• Distanz zwischen Tag und Leser in y-Richtung (siehe Abbildung 1)

Abhängige

• Antwort des RFID Tags auf Anfrage des Lesers

Konstanten

- Ausrichtung des Tags in alle Richtungen
- Ausrichtung des Tags zur Antenne

Dokumentierte Ereignisse

Distanz [cm]	Leseversuche erfolgreich [Anzahl]
10	10
20	10
30	10
40	10
50	10
60	10
70	0
65	10
66	0

Der Tag wurde mit einem Fischerklebeband an einem Holzpfosten fixiert. Danach wurde der Tag ausgelesen. Nach einem erfolgreichen Versuch wurde die Distanz erhöht.

- Leser
- Antenne
- Computerschnittstelle
- RFID Tag
- Massstab
- Etwas um Tag zu fixieren (Holz oder Plastik)

02_Lesegeschwindig keit Bulk Reading

Versuchsthema

In diesem Versuch soll getestet werden, wie schnell Tags ausgelesen werden können, insbesondere wenn es viele sind. Interessant wäre es zu wissen ob die Lesegeschwindigkeit stabil bleibt (also linear wächst) oder mit mehreren Tag auch exponentiell mehr Zeit gebrauch wird.

Bekannte Grundlagen

Die meisten Hersteller geben die Lesegeschwindigkeit ihrer Leser mit etwa 50 Tags/Sekunde an.

Hypothese und erwartetes Ergebnis

Da durch mehr Tags mehr Kollisionen entstehen, sprich der Suchbaum nur um ein Blatt grösser wird. Erwarten wir eine lineare Zunahme der Zeit die gebraucht wird um mehr Tags auszulesen. Wir erwarten daher, dass die Angaben der Hersteller korrekt sind.

Versuchsaufbau

Beschreibung des Aufbaus

Die Tags sollen auf einer ebenen Fläche nebeneinander (sodass Sie nicht aufeinanderliegen) plaziert werden, sofern dies möglich ist. Die Antenne wird über einen Halter in 40cm Höhe über den Tags plaziert. Die Anzahl der Tags wird mit jedem Schritt erhöht und die Zeit bis alle Tags ausgelesen sind gemessen. Jede Taganzahl wird 10 mal gelesen und gemessen.

Variabeln

Unabhängige

• Anzahl der Tags (1,5,10,20,40,60,80,100,125,150,175,200)

Abhängige

Geschwindigkeit um alle Tags auszulesen

Konstanten

- Distanz zwischen Tags und Antenne
- Ausrichtung Tags und Antenne

Dokumentierte Ereignisse

Anzahl Tags	Tags gefunden	Lesegeschwindigkeit [ms]
1	1	134.9749168
5	5	144.1426479
10	6	212.4553696
10	10	239.9707319
15	11-13	324.3950243
15	10	369.84123
15	6-8	305.8952259

Die Tags wurden unter dem Aufbau plaziert. Die gemessen Distanz betrug 42cm. Danach wurden die Tags nebeneinander auf dem Tisch plaziert mit einem horizontalen Abstand von 1cm und ausgelesen. Nach einem erfolgreichen Versuch wurde die Anzahl Tags erhöht.

Der Test wurde nach 15 abgebrochen, da wir dort schon Leseprobleme bekamen, nebeneinander. RFID Tags übereinander mit einer Mindestdistanz von 2cm gehen gut.

- Leser
- Tags
- Halter für Antenne (Holz, Plastik)
- Skript um Auslesung zu starten und Zeit zu messen

26

03_Seitliche Reichweite

Versuchsthema

Wir wollen herausfinden wie fest die laterale Abweichung vom Mittelpunkt der Antenne die Auslesung der Tags beeinflusst.

Bekannte Grundlagen

Wir wissen, dass eine Antenne ein nicht-uniformes Ausbreitungsmuster besitzt.

Antenna arrays

Principle of pattern multiplication

Antenna array field pattern = element pattern × array pattern

Hypothese und erwartetes Ergebnis

Unsere Hypothese ist, dass im Nahfeldbereich der Konus der Antenne nicht so verengt wird und wir daher die Entfernung in Luftlinie auch bei seitlicher Abweichung hinbekommen.

Versuchsaufbau

Beschreibung des Aufbaus

Ein Tag wird mit gleicher Ausrichtung zur Antenne in festen Abständen plaziert. In jeder vertikalen Distanz wird der Tag lateral ausgelenkt wird. Der Tag wird im horizontalen Abstand 15,30,45,60 und lateral in 0,5,10,15,20,25,30 jeweils 10 mal ausgelesen.

Versuchsparameter

Variabeln

Unabhängige

- Distanz
- laterale Distanz

Abhängige

Auslesen des Tags

Konstanten

• Ausrichtung RFID Tag zu Antenne

Dokumentierte Ereignisse

Horizontale Distanz [cm]	Laterale Distanz [cm]	Anzahl Erfolgreiche Lesungen
60	0	10
60	5	10
60	10	10
60	12.5	10
60	15	0
60	20	0
60	25	0
50	0	10
50	5	10
50	10	10
50	15	10
50	20	10
50	25	10
50	27.5	0
50	30	0
40	0	10
40	5	10
40	10	10
40	15	10
40	20	10
40	25	10
40	30	0
30	0	10
30	5	10
30	10	10
30	15	10
30	20	10

	105	
30	25	10
30	27.5	10
30	30	0
20	0	10
20	5	10
20	10	10
20	15	10
20	20	10
20	25	10
20	27.5	0
20	30	0
10	0	10
10	5	10
10	10	10
10	15	10
10	20	10
10	25	10
10	25	
10	30	10
10	35	10
10	40	10
10	45	10
10	50	0
0	50	10
0	55	0
-10	0	10
-10	5	10
-10	10	10
-10	15	10
-10	20	10
-10	25	10
-10	30	10
-10	35	10
-10	40	10
	45	10
-10 -10	50	10
-10	55	0
-20	0	10
	5	
-20		10
-20	10	10
-20	15	10
-20	20	10
-20	25	0
-30	0	10
-30	5	10
-30	10	10
-30	15	10
-30	20	10
-30	25	10
-30	30	0
-40	0	10
-40	5	10
-40	10	10
-40	15	10
-40	20	10
40	25	
-40		10
-40	30	0

-50	0	10
-50	5	10
-50	10	10
-50	15	10
-50	20	10
-50	25	10
-50	27.5	0
-50	30	0
-60	0	10
-60	5	10
-60	10	10
-60	15	10
-60	20	0
-70	0	0

Die Resultate wurden auf einem Raster gezeichnet:

Antenne - nicht skaliert

Danach wurden die Resultate an der Nulllinien gespiegelt (unter der Annahme, dass das Magnetfeld achsensymmetrisch ist), in der Grafik sind diese Punkte transparenter dargestellt und eine Modellierte Reichweite eingezeichnet:

Antenne - nicht skaliert

Da wir durch ein Zufall herausfanden, dass wir bei einer Ausrichtung von 90° zwischen Tag und Antenne nicht einen totalen Leseausfall sondern einen blinden Punkt besitzen, wurde die Testreihe wiederholt. Dabei kam die folgende Grafik heraus:

- Leser
- Antenne
- Computerschnittstelle
- RFID Tag
- Massstab
- Etwas um Tag zu fixieren (Holz oder Plastik)

04_Ausrichtung des Tags

Versuchsthema

Bei unseren Recherchen haben wir herausgefunden, dass die Kopplung der beiden Spulen (Tag, Antenne) von der Ausrichtung abhängen kann. In diesem Versuch soll herausgefunden werden, wie dies in Realbedingungen Auswirkungen hat.

Hypothese und erwartetes Ergebnis

Wir erwarten, dass die Ausrichtung des Tags einen vernachlässigbaren Effekt hat.

Versuchsaufbau

Beschreibung des Aufbaus

Der Tag wird 60cm in der Front der Antenne in den Achsen ausgelenkt, danach wird wiederholt der Tag abgefragt und Lesegeschwindigkeit und Präzision gemessen.

Versuchsparameter

Variabeln

Unabhängige

• Ausrichtung des Tags in den jeweiligen Achsen

Abhängige

• Lesegeschwindigkeit und Präzision

Konstanten

• Distanz zu Lesegerät

Dokumentierte Ereignisse

- Leser
- Antenne
- Computerschnittstelle
- RFID Tag
- Massstab
- Halterung für Antenne
- Etwas um Tag in der Auslenkung zu fixieren (Holz oder Plastik in alle Richtungen auslenkbar

05_Abschirmung durch Gegenstände

Versuchsthema

Bei unseren Recherchen wurde uns bewusst, das RFID durch verschiedenste Sachen abgeschirmt werden kann. Dies soll bei HF zwar nicht stark ins Gewicht fallen, aber über genau dies soll dieser Versuch aufklären. Vor allem in Hinblick auf Metal, Papier / Bücher und Plastik.

Bekannte Grundlagen

ABBILDUNG 1 - FREQUENCY CHARACTERISTICS (AUS "AN OVERVIEW OF PASSIVE RFID")

Hypothese und erwartetes Ergebnis

Wir denken, dass die verschiedensten Objekte nur einen vernachlässigbaren Einfluss auf Lesegeschwindigkeit und Reichweite haben.

Versuchsaufbau

Beschreibung des Aufbaus

Der Tag wird 60cm in der Front der Antenne in den Achsen plaziert, danach werden wiederholt der Tag abgefragt und Lesegeschwindigkeit und Präzision gemessen, dabei werden zwischen Antenne und Tag sukzessive mehr vom jeweiligen Objekt plaziert.

Variabeln

Unabhängige

- Anzahl und Art des Objekts
 - o Bücher
 - Metallplatten
 - Plastiboxen (Rako)

Abhängige

• Lesegeschwindigkeit und Distanz zu Antenne

Konstanten

Ausrichtung

Dokumentierte Ereignisse

Material	Anzahl	Distanz [cm]	Erfolgreiche Leseversuche
Hand	2	60	10
Buch+Hände	1	60	10
Buch+Hände	2	60	10
Buch+Hände	3	60	10
Buch+Hände	4	60	10
Buch+Hände	5	60	10
Buch+Hände	6	60	10
Buch+Hände	7	60	10
Buch+Hände	8	60	10
Buch+Hände	9	60	10
Buch (direkt	9	60	10
aufliegend)			
Rakobehälter	1	60	10
Rakobehälter	2	60	10
Aluminiumplatte	1	60	10

Aluminiumplatte	2	60	0
(aufeinander)			
Aluminiumplatte (mit	2	60	0
Luft dazwischen)			
Aluminiumplatte (mit	2	60	0
Luft und leicht			
verschoben in der			
Ausrichtung)			
Stahlblechplatte	1	60	10
Stahlblechplatte	2	60	0
(aufeinander)			
Stahlblechplatte	1	60	0
(direkt auf Tag)			
Rakobehälter mit	9 Bücher	60	10
Büchern auf Tag			
plaziert			

ABBILDUNG 2 - RAKOBEHÄLTER MIT BÜCHERN DES LETZTEN TESTS

- Leser
- Antenne
- Computerschnittstelle
- RFID Tag
- Massstab
- Halterung für Antenne
- Etwas um Tag zu fixieren
- Bücher
- Plastikboxen
- Metallplatten

06_Interferenz bei mehreren Antennen

Versuchsthema

In diesem Versuch soll getestet werden, wie fest sich mehrere Antennen beim Auslesen der Tags verhindern. Und vor allem welcher Abstand zwischen den Antenne gewahrt werden muss.

Hypothese und erwartetes Ergebnis

Wir können die Antennen in einem Abstand von 50cm mit gleicher Ausrichtung platzieren, ohne dass sich die Antennen gegenseitig stören.

Versuchsaufbau

Beschreibung des Aufbaus

Der RFID Tag wird in der Front der Antennen welche den Abstand 1m haben mit der selben Ausrichtung plaziert. Danach wird der RFID Tag 10 mal abgefragt. Danach wird die Distanz zwischen den Antennen um 10cm verringert und der Versuch wiederholt.

Variabeln

Unabhängige

• Distanz und Ausrichtung zwischen den Antennen

Abhängige

• Antwort des RFID Tags auf Anfrage des Lesers

Konstanten

• Ausrichtung des Tags in alle Richtungen

Dokumentierte Ereignisse

Die Antennen wurden mit der gleichen Ausrichtung nebeneinander plaziert. Danach wurde der Tag in der Flucht der zweiten Antenne plaziert. Nachdem dies geschehen war, wurde der Tag abwechselnd je zehn mal ausgelesen.

Distanz zwischen Antennen	Ausrichtung zwischen Antennen	Distanz zu Tag	Erfolgreiche Leseversuche 1	Erfolgreiche Leseversuche 2
50	0	40	0	10
30	0	40	0	10
0	0	40	0	10

Danach wurde der Tag in der Flucht beider Antennen plaziert welche 90° zueinander ausgerichtet waren.

Distanz zwischen Antennen	Ausrichtung zwischen Antennen [°]	Distanz zu Tag	Erfolgreiche Leseversuche 1	Erfolgreiche Leseversuche 2
30	60	20	10	10

- Leser
- Zwei LR Antennen
- Computerschnittstelle
- RFID Tag
- Massstab
- Etwas um Tag zu fixieren (Holz oder Plastik)
- Fixierung für Antennen

07_Auslesung bewegende Box

Versuchsthema

In diesem Versuch soll getestet werden, wie fest sich eine bewegendes Ziel auf die Auslesung der ID einwirkt

Bekannte Grundlagen

Wir wissen, dass die Hersteller von einer Lesegeschwindigkeit von 50 Tags pro Sekunde reden, das heisst für einen Tag ergibt dies eine $\frac{1}{50}$ stel Sekunde. Bei einer Maximalgeschwindigkeit des Roboters von 10m/s, ergibt dies 20cm Auslenkung des Tags

Hypothese und erwartetes Ergebnis

Wir nehmen an, dass die Bewegung der Box für einen Tag vernachlässigbar ist, jedoch bemerkbar wird, sobald wir die Tagzahl auf 200 erhöhen.

Versuchsaufbau

Beschreibung des Aufbaus

Die Antenne wird stehend fixiert, danach wird die Box an der Antenne vorbeigezogen. Es wird darauf acht gegeben, dass die Ausrichtung des Tags mit der Antenne übereinstimmt. Die Geschwindigkeit wird bei jedem Test erhöht, bis 10m/s erreicht sind.

Variabeln

Unabhängige

- Geschwindigkeit der Box
- Anzahl der Tags

Abhängige

- Antwort des RFID Tags auf Anfrage des Lesers
- Geschwindigkeit f
 ür vollst
 ändige Antwort

Konstanten

- Ausrichtung des Tags in alle Richtungen
- Position der Antenne

Dokumentierte Ereignisse

Anzahl Tags	Orientierung Tag zu Antenne	Geschwindigkeit der Box [m/s]	Anzahl erfolgreiche ausgelesene Tags
1	0	0.4	1
1	0	0.25	1
1	0	1	1
1	0	1.4	1
1	0	1.2	1
1	0	5.25	0
15	0/90	0.0	0
15	0/90	0.5	8
15	0/90	0.2	9
15	0/90	0.0(schütteln)	9
15	0/90	0.0(schütteln)	11
15	0/90	0.0(schütteln)	14
15	0/90	0.2	14
14	0	0.3	14
15	0	0.3	15

- Leser
- LR Antenne
- Rako Box
- Computerschnittstelle
- Sensor um Geschwindigkeit zu messen
- RFID Tag
- Massstab
- Etwas um Tag zu fixieren (Holz oder Plastik)
- Fixierung für Antennen

08_Störung durch WLAN

Versuchsthema

In diesem Versuch soll getestet werden, wie fest sich eine WLAN sender auf das Auslesen der Tags einwirkt.

Bekannte Grundlagen

Wir wissen das WLAN im Frequenzband 2.4 und 5 GHz sendet, und somit eigentlich keine Interferenz im 13.56MHz Band einbringen sollte.

Hypothese und erwartetes Ergebnis

Wir nehmen an, dass das WLAN die Lesegeschwindigkeit nicht beeinflusst.

Versuchsaufbau

Beschreibung des Aufbaus

Die Antenne wird stehend fixiert, und der RFID Tag in der Flucht plaziert. Eine WLAN Antenne / Router wird dazwischen plaziert (nicht direkt in der Flucht). Danach wird der Tag ausgelesen, mit jeder Wiederholung wird die Anzahl der Tags erhöht.

Variabeln

Unabhängige

Anzahl der Tags

Abhängige

- Antwort des RFID Tags auf Anfrage des Lesers
- Geschwindigkeit f
 ür vollst
 ändige Antwort

Konstanten

- Ausrichtung des Tags in alle Richtungen
- Position der Antenne

Dokumentierte Ereignisse

Ein Smartphone mit eingeschaltenem WIFI Hotspot wurde in der Fluch zwischen dem Tag und der Antenne plaziert. Alle Leseversuche waren erfolgreich

ID: 8

Name: Störung durch WLAN

PreParams: [Distanz zwischen Tags und Antenne (cm), Orientierung zwischen Tags und Antenne

(°)]

PostParams: [Anzahl Tags]

TestType: MultipleTagsMultipleReads

PreParameterInput: [42, 0] PostParameterInput: [1]

TestResults: Number of Tags: 1

E0, 04, 01, 50, 4F, 1F, FF, BB Seconds elapsed for read: 116 ms

Number of Tags: 1

E0, 04, 01, 50, 4F, 1F, FF, BB Seconds elapsed for read: 116 ms

Number of Tags: 1

E0, 04, 01, 50, 4F, 1F, FF, BB Seconds elapsed for read: 114 ms

Number of Tags: 1

E0, 04, 01, 50, 4F, 1F, FF, BB Seconds elapsed for read: 114 ms

Number of Tags: 1

E0, 04, 01, 50, 4F, 1F, FF, BB Seconds elapsed for read: 118 ms

Number of Tags: 1

E0, 04, 01, 50, 4F, 1F, FF, BB Seconds elapsed for read: 121 ms

Number of Tags: 1

E0, 04, 01, 50, 4F, 1F, FF, BB Seconds elapsed for read: 114 ms

Number of Tags: 1

E0, 04, 01, 50, 4F, 1F, FF, BB Seconds elapsed for read: 120 ms

Number of Tags: 1

E0, 04, 01, 50, 4F, 1F, FF, BB Seconds elapsed for read: 120 ms

Number of Tags: 1

E0, 04, 01, 50, 4F, 1F, FF, BB Seconds elapsed for read: 118 ms

- Leser
- LR Antenne
- WLAN Antenne und Router
- Computerschnittstelle
- RFID Tag
- Massstab
- Etwas um Tag zu fixieren (Holz oder Plastik)
- Fixierung für Antennen

09_Störung durch Smartphone

Versuchsthema

In diesem Versuch soll getestet werden, wie fest sich ein Smartphone auf das Auslesen der Tags einwirkt.

Bekannte Grundlagen

Wir wissen das Handys in einem anderen Frequenzbereich mit ihren Antennen kommunizieren, heutzutage haben Smartphones jedoch auch ein NFC Leser (NFC braucht ebenfall das 13.56MHz Band).

Hypothese und erwartetes Ergebnis

Wir nehmen an, dass das Handy das Auslesen des Tags nicht beeinflusst.

Versuchsaufbau

Beschreibung des Aufbaus

Die Antenne wird stehend fixiert, und der RFID Tag in der Flucht plaziert. Eine Smartphone mit NFC Sender wird dazwischen plaziert. Danach wird der Tag ausgelesen, mit jeder Wiederholung wird die Anzahl der Tags erhöht.

Variabeln

Unabhängige

Anzahl der Tags

Abhängige

- Antwort des RFID Tags auf Anfrage des Lesers
- Geschwindigkeit für vollständige Antwort

Konstanten

- Ausrichtung des Tags in alle Richtungen
- Position der Antenne
- Position des Smartphone

Dokumentierte Ereignisse

Ein Smartphone wurde auf einen Tag gelegt und danach in die Flucht.

ID: 9

Name: Störung durch Smartphone

PreParams: [Distanz zwischen Tags und Antenne (cm), Orientierung zwischen Tags und Antenne

(°)]

PostParams: [Anzahl Tags]

TestType: MultipleTagsMultipleReads

PreParameterInput: [42, 0] PostParameterInput: [1]

TestResults:

Could not find any RFIDs

Seconds elapsed for read: 107 ms

Could not find any RFIDs

Seconds elapsed for read: 102 ms

Could not find any RFIDs

Seconds elapsed for read: 100 ms

Could not find any RFIDs

Seconds elapsed for read: 105 ms

Could not find any RFIDs

Seconds elapsed for read: 100 ms

Could not find any RFIDs

Seconds elapsed for read: 110 ms

Could not find any RFIDs

Seconds elapsed for read: 102 ms

Could not find any RFIDs

Seconds elapsed for read: 98 ms

Could not find any RFIDs

Seconds elapsed for read: 108 ms

Could not find any RFIDs

Seconds elapsed for read: 101 ms

ID: 9

Name: Störung durch Smartphone

PreParams: [Distanz zwischen Tags und Antenne (cm), Orientierung zwischen Tags und Antenne

(°)]

PostParams: [Anzahl Tags]

TestType: MultipleTagsMultipleReads

PreParameterInput: [42, 0] PostParameterInput: [1]

TestResults: Number of Tags: 1

E0, 04, 01, 50, 4F, 1F, FF, BB

Seconds elapsed for read: 117 ms

Number of Tags: 1

E0, 04, 01, 50, 4F, 1F, FF, BB Seconds elapsed for read: 117 ms

Number of Tags: 1

E0, 04, 01, 50, 4F, 1F, FF, BB Seconds elapsed for read: 111 ms

Number of Tags: 1

E0, 04, 01, 50, 4F, 1F, FF, BB Seconds elapsed for read: 117 ms

Number of Tags: 1

E0, 04, 01, 50, 4F, 1F, FF, BB Seconds elapsed for read: 119 ms

Number of Tags: 1

E0, 04, 01, 50, 4F, 1F, FF, BB Seconds elapsed for read: 115 ms

Number of Tags: 1

E0, 04, 01, 50, 4F, 1F, FF, BB Seconds elapsed for read: 122 ms

Number of Tags: 1

E0, 04, 01, 50, 4F, 1F, FF, BB Seconds elapsed for read: 124 ms

Number of Tags: 1

E0, 04, 01, 50, 4F, 1F, FF, BB Seconds elapsed for read: 116 ms

Number of Tags: 1

E0, 04, 01, 50, 4F, 1F, FF, BB Seconds elapsed for read: 118 ms

Die Erkenntnis ist, dass ein Smartphone nicht genug stört, ausser es befindet sich direkt auf dem Tag.

- Leser
- LR Antenne
- Computerschnittstelle
- RFID Tag
- Massstab
- Etwas um Tag zu fixieren (Holz oder Plastik)
- Fixierung für Antennen
- Smartphone

10_Störung durch Kreditkarte

Versuchsthema

In diesem Versuch soll getestet werden, wie fest sich eine Kreditkarte auf das Auslesen der Tags einwirkt.

Bekannte Grundlagen

Wir wissen, dass das Kontaktlose Bezahlen ebenfalls mit NFC (also im 13.56MHz Frequenzband) funktioniert.

Hypothese und erwartetes Ergebnis

Wir nehmen an, dass die Kreditkarte das Auslesen des Tags nicht beeinflusst.

Versuchsaufbau

Beschreibung des Aufbaus

Die Antenne wird stehend fixiert, und der RFID Tag in der Flucht plaziert. Eine Kreditkarte mit Kontaktlosem Zahlen wird dazwischen plaziert. Danach wird der Tag ausgelesen, mit jeder Wiederholung wird die Anzahl der Tags erhöht.

Variabeln

Unabhängige

Anzahl der Tags

Abhängige

- Antwort des RFID Tags auf Anfrage des Lesers
- Geschwindigkeit f
 ür vollst
 ändige Antwort

Konstanten

- Ausrichtung des Tags in alle Richtungen
- Position der Antenne
- Position der Karte

Dokumentierte Ereignisse

Es wurden keine Störung durch die NFC Karte verzeichnet ausser wenn sie direkt aufliegend war.

ID: 10

Name: Störung durch Kreditkarte

PreParams: [Distanz zwischen Tags und Antenne (cm), Orientierung zwischen Tags und Antenne

(°)]

PostParams: [Anzahl Tags]

TestType: MultipleTagsMultipleReads

PreParameterInput: [42, 0] PostParameterInput: [1]

TestResults: Number of Tags: 1

E0, 04, 01, 50, 4F, 1F, FF, BB Seconds elapsed for read: 116 ms

Number of Tags: 1

E0, 04, 01, 50, 4F, 1F, FF, BB Seconds elapsed for read: 112 ms

Number of Tags: 1

E0, 04, 01, 50, 4F, 1F, FF, BB Seconds elapsed for read: 114 ms

Number of Tags: 1

E0, 04, 01, 50, 4F, 1F, FF, BB Seconds elapsed for read: 111 ms

Number of Tags: 1

E0, 04, 01, 50, 4F, 1F, FF, BB Seconds elapsed for read: 116 ms

Number of Tags: 1

E0, 04, 01, 50, 4F, 1F, FF, BB Seconds elapsed for read: 113 ms

Number of Tags: 1

E0, 04, 01, 50, 4F, 1F, FF, BB Seconds elapsed for read: 114 ms

Number of Tags: 1

E0, 04, 01, 50, 4F, 1F, FF, BB Seconds elapsed for read: 112 ms

Number of Tags: 1

E0, 04, 01, 50, 4F, 1F, FF, BB Seconds elapsed for read: 113 ms

Number of Tags: 1

E0, 04, 01, 50, 4F, 1F, FF, BB Seconds elapsed for read: 115 ms

- Leser
- LR Antenne
- Bankkarte
- Computerschnittstelle
- RFID Tag
- Massstab
- Etwas um Tag zu fixieren (Holz oder Plastik)
- Fixierung für Antennen

11_Störung durch Stromquellen

Versuchsthema

In diesem Versuch soll getestet werden, wie fest sich eine Stromquelle auf das Auslesen der Tags einwirkt.

Bekannte Grundlagen

Wir wissen, dass Strom auch ein elektromagnetisches Feld generiert.

Hypothese und erwartetes Ergebnis

Wir nehmen an, dass der Strom das Auslesen des Tags nicht beeinflusst.

Versuchsaufbau

Beschreibung des Aufbaus

Die Antenne wird stehend fixiert, und der RFID Tag in der Flucht plaziert. Eine Stromleiste und ein Laptop werden dazwischen plaziert. Danach wird der Tag ausgelesen, mit jeder Wiederholung wird die Anzahl der Tags erhöht.

Variabeln

Unabhängige

Anzahl der Tags

Abhängige

- Antwort des RFID Tags auf Anfrage des Lesers
- Geschwindigkeit für vollständige Antwort

Konstanten

- Ausrichtung des Tags in alle Richtungen
- Position der Antenne
- Position der Stromquellen

Dokumentierte Ereignisse

Eine Stromleiste mit eingesteckten Verbrauchern wurde in der Nähe des Tags plaziert und dieser ausgelesen. Es wurden keine Verluste verzeichnet

ID: 11

Name: Störung durch Stromquellen

PreParams: [Distanz zwischen Tags und Antenne (cm), Orientierung zwischen Tags und Antenne

(°)]

PostParams: [Anzahl Tags]

TestType: MultipleTagsMultipleReads

PreParameterInput: [42, 0] PostParameterInput: [1]

TestResults: Number of Tags: 1

E0, 04, 01, 50, 4F, 1F, FF, BB Seconds elapsed for read: 112 ms

Number of Tags: 1

E0, 04, 01, 50, 4F, 1F, FF, BB Seconds elapsed for read: 117 ms

Number of Tags: 1

E0, 04, 01, 50, 4F, 1F, FF, BB Seconds elapsed for read: 115 ms

Number of Tags: 1

E0, 04, 01, 50, 4F, 1F, FF, BB Seconds elapsed for read: 115 ms

Number of Tags: 1

E0, 04, 01, 50, 4F, 1F, FF, BB Seconds elapsed for read: 117 ms

Number of Tags: 1

E0, 04, 01, 50, 4F, 1F, FF, BB Seconds elapsed for read: 111 ms

Number of Tags: 1

E0, 04, 01, 50, 4F, 1F, FF, BB Seconds elapsed for read: 117 ms

Number of Tags: 1

E0, 04, 01, 50, 4F, 1F, FF, BB Seconds elapsed for read: 114 ms

Number of Tags: 1

E0, 04, 01, 50, 4F, 1F, FF, BB Seconds elapsed for read: 117 ms

Number of Tags: 1

E0, 04, 01, 50, 4F, 1F, FF, BB Seconds elapsed for read: 111 ms ID: 11

Name: Störung durch Stromquellen

PreParams: [Distanz zwischen Tags und Antenne (cm), Orientierung zwischen Tags und Antenne

(°)]

PostParams: [Anzahl Tags]

TestType: MultipleTagsMultipleReads

PreParameterInput: [42, 0] PostParameterInput: [1]

TestResults: Number of Tags: 1

E0, 04, 01, 50, 4F, 1F, FF, BB Seconds elapsed for read: 123 ms

Number of Tags: 1

E0, 04, 01, 50, 4F, 1F, FF, BB Seconds elapsed for read: 114 ms

Number of Tags: 1

E0, 04, 01, 50, 4F, 1F, FF, BB Seconds elapsed for read: 115 ms

Number of Tags: 1

E0, 04, 01, 50, 4F, 1F, FF, BB Seconds elapsed for read: 116 ms

Number of Tags: 1

E0, 04, 01, 50, 4F, 1F, FF, BB Seconds elapsed for read: 113 ms

Number of Tags: 1

E0, 04, 01, 50, 4F, 1F, FF, BB Seconds elapsed for read: 110 ms

Number of Tags: 1

E0, 04, 01, 50, 4F, 1F, FF, BB Seconds elapsed for read: 116 ms

Number of Tags: 1

E0, 04, 01, 50, 4F, 1F, FF, BB Seconds elapsed for read: 115 ms

Number of Tags: 1

E0, 04, 01, 50, 4F, 1F, FF, BB Seconds elapsed for read: 114 ms

Number of Tags: 1

E0, 04, 01, 50, 4F, 1F, FF, BB Seconds elapsed for read: 115 ms

- Leser
- LR Antenne
- Stromleiste
- Laptop
- Computerschnittstelle
- RFID Tag
- Massstab
- Etwas um Tag zu fixieren (Holz oder Plastik)
- Fixierung für Antennen

12_Auslesen von gestapelten Tags

Versuchsthema

In diesem Versuch soll getestet werden, wie fest sich das Stapeln von Tags auf das Auslesen der Tags einwirkt.

Bekannte Grundlagen

Wir wissen, dass es beim Auslesen mehreren Tags Kollisionen gibt. Wir wissen jedoch nicht, ob es eine Mindestdistanz für die Tags gibt, sodass Sie ausgelesen werden können ohne sich gegenseitig zu stören.

Hypothese und erwartetes Ergebnis

Wir nehmen an, dass das Stapeln das Auslesen des Tags nicht beeinflusst.

Versuchsaufbau

Beschreibung des Aufbaus

Die Antenne wird stehend fixiert, und der RFID Tag in der Flucht plaziert. Ein weiterer Tag wird auf den Tag darüber fixiert. Danach werden die Tags ausgelesen, mit jeder Wiederholung wird die Anzahl der Tags erhöht.

Variabeln

Unabhängige

Anzahl der Tags

Abhängige

- Antwort des RFID Tags auf Anfrage des Lesers
- Geschwindigkeit für vollständige Antwort

Konstanten

- Ausrichtung des Tags in alle Richtungen
- Position der Antenne
- Position der Tags

Dokumentierte Ereignisse

Es wurden mehrere Tags aufeinander gestapelt. Danach wurde verpackungsplastik zwischen die Tags plaziert und der Versuch wiederholt.

Anzahl Tags	Distanz zwischen Tags [cm]	Erfolgreiche Leseversuche
1	0	1
2	0	0
2	1	1
2	1.5	2
2	1.5	1
2	2.8	2
2	2	2
3	2.5	2
3	2.8	3
4	3	4
4	1.8	0
4	1.8	2
2	2	2
3	1.8	1
4	1.8	0
4	1.8 (versetzt)	4

Danach wurden die Tags in Bücher gelegt und mit verschiedener Ausrichtung ausgelesen. Die Distanz zwischen Tag und Antenne betrug dabei 42cm. Die Distanz zwischen den Tags jeweils 3cm.

Anzahl Tags	Orientierung zwischen Tag und Antenne [°]	Erfolgreiche Leseversuche
2	90	0
2	80	0
2	70	0
2	60	1
2	50	2

- Leser
- LR Antenne
- Computerschnittstelle
- RFID Tags
- Massstab

- Etwas um Tag zu fixieren (Holz oder Plastik) Fixierung für Antennen