DS6030 Project Data Evaluation

Tyler Hobbs

2025-06-17

```
library(tidyverse)
library(GGally)
library(tidymodels)
library(discrim)
library(patchwork)
library(probably)
library(vip)
```

Loading the data and Pre-processing

```
train<-read_csv("HaitiPixels.csv")</pre>
```

```
## Rows: 63241 Columns: 4
## — Column specification
## Delimiter: ","
## chr (1): Class
## dbl (3): Red, Green, Blue
##
## i Use `spec()` to retrieve the full column specification for this data.
## i Specify the column types or set `show_col_types = FALSE` to quiet this message.
```

```
test1<-read table("orthovnir057 ROI NON Blue Tarps.txt", show col types = FALSE)
test1 sub<-test1[1:10]</pre>
colnames(test1_sub)<-c("ID","X","Y","Map X","Map Y", "Lat","Lon","B1","B2","B3")</pre>
test2<-read table("orthovnir067 ROI Blue Tarps data.txt",show col types = FALSE)</pre>
test3<-read table("orthovnir067 ROI Blue Tarps.txt", show col types = FALSE)
test3 sub<-test3[1:10]
colnames(test3 sub)<-c("ID","X","Y","Map X","Map Y", "Lat","Lon","B1","B2","B3")</pre>
test4<-read table("orthovnir067 ROI NOT Blue Tarps.txt",show col types = FALSE)</pre>
test4 sub<-test4[1:10]
colnames(test4 sub)<-c("ID","X","Y","Map X","Map Y", "Lat","Lon","B1","B2","B3")</pre>
test5<-read_table("orthovnir069_R0I_Blue_Tarps.txt",show_col_types = FALSE)</pre>
test5 sub<-test5[1:10]
colnames(test5_sub)<-c("ID","X","Y","Map X","Map Y", "Lat","Lon","B1","B2","B3")</pre>
test6<-read table("orthovnir069 ROI NOT Blue Tarps.txt",show col types = FALSE)</pre>
test6_sub<-test6[1:10]
colnames(test6 sub)<-c("ID","X","Y","Map X","Map Y", "Lat","Lon","B1","B2","B3")</pre>
test7<-read table("orthovnir078 ROI Blue Tarps.txt",show col types = FALSE)</pre>
test7_sub<-test7[1:10]
colnames(test7 sub)<-c("ID","X","Y","Map X","Map Y", "Lat","Lon","B1","B2","B3")</pre>
test8<-read_table("orthovnir078_R0I_NON_Blue_Tarps.txt",show_col_types = FALSE)</pre>
test8 sub<-test8[1:10]
colnames(test8_sub)<-c("ID","X","Y","Map X","Map Y", "Lat","Lon","B1","B2","B3")</pre>
combined_df_holdout<-bind_rows(test1_sub,test3_sub,test4_sub,test5_sub,test6_sub,test7_s
ub.test8 sub)
df fig<-combined df holdout[8:10]</pre>
df ID<-combined df holdout[1]</pre>
df figID<-cbind(df ID,df fig)</pre>
lonlatcords<-combined df holdout[6:10]</pre>
trainwoclass<-train[2:4]</pre>
```

Pre-processing

```
NonBlueholdout<-bind_rows(test1_sub,test4_sub,test6_sub,test7_sub,test8_sub)
NonBlueholdout new<-NonBlueholdout[8:10]
names (NonBlueholdout new) [1] <- "Red"
names(NonBlueholdout new)[2]<-"Green"</pre>
names(NonBlueholdout new)[3]<-"Blue"</pre>
NonBlueholdout new <- NonBlueholdout new %>%
  mutate(Class=1)
NonBlueholdout new <- NonBlueholdout new %>%
mutate(Class=factor(Class,labels=c("1")))%>%
  mutate(Class=case when(
    Class == 1 ~ "Non-Blue_Tarp"
  ))
Blueholdout<-bind_rows(test2,test3_sub,test5_sub)</pre>
Blueholdout new<-Blueholdout[1:3]</pre>
names(Blueholdout_new)[1]<-"Red"</pre>
names(Blueholdout new)[2]<-"Green"</pre>
names(Blueholdout new)[3]<-"Blue"</pre>
Blueholdout_new <- Blueholdout_new %>%
  mutate(Class=1)
Blueholdout_new <- Blueholdout_new %>%
mutate(Class=factor(Class,labels=c("1")))%>%
  mutate(Class=case_when(
    Class == 1 ~ "Blue Tarp"
holdout<-bind rows(Blueholdout new,NonBlueholdout new)
```

```
holdout<-holdout %>%
  mutate(type=case_when(
    Class == "Non-Blue_Tarp" ~ 0,
    Class == "Blue_Tarp" ~ 1
    ))
```

```
holdout<-holdout %>%
    mutate(
        group = paste(type, Class, sep="_"),
        group = factor(group),
)
```

Training

```
Haiti train<-train %>%
  mutate(type=case when(
    Class == "Rooftop" ~ "Non-Blue_Tarp",
    Class == "Soil" ~ "Non-Blue Tarp",
    Class == "Various Non-Tarp" ~ "Non-Blue Tarp",
    Class == "Vegetation" ~ "Non-Blue_Tarp",
    Class == "Blue Tarp" ~ "Blue_Tarp"
  ))%>%
  mutate(Class=case_when(
    Class == "Rooftop" ~ "Non-Blue Tarp",
    Class == "Soil" ~ "Non-Blue_Tarp",
    Class == "Various Non-Tarp" ~ "Non-Blue_Tarp",
    Class == "Vegetation" ~ "Non-Blue_Tarp",
    Class == "Blue Tarp" ~ "Blue Tarp"
  ))%>%
    mutate(
        type=factor(type, levels=c("Blue_Tarp", "Non-Blue_Tarp")))%>%
    mutate(
        group = paste(type, Class, sep=" "),
        group = factor(group),
set.seed(1)
formula<-Class~Red + Green + Blue</pre>
Haiti_recipe <- recipe(formula, data=Haiti_train) %>%
    step normalize(all numeric predictors())
names(df fig)[1]<-"Red"</pre>
names(df fig)[2]<-"Green"
names(df_fig)[3]<-"Blue"
```

Logistic, LDA, and QDA Models

```
holdout<-holdout%>%
  mutate(
    Class=factor(Class))
Haiti_train<-Haiti_train%>%
  mutate(
    Class=factor(Class))
logreg_model_full <- logistic_reg(mode="classification", engine="glm") %>%
  fit(formula, Haiti_train)
```

```
## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred
```

```
lda_model <- discrim_linear(mode="classification", engine="MASS") %>%
  fit(formula, Haiti_train)
qda_model <- discrim_quad(mode="classification", engine="MASS") %>%
  fit(formula, Haiti_train)
```

```
resamples <- vfold_cv(holdout, v=10, strata=type)
custom_metrics <- metric_set(roc_auc, accuracy)
cv_control <- control_resamples(save_pred=TRUE)</pre>
```

```
calculate metrics <- function(model, train, test, model name) {</pre>
bind rows(
# Accuracy of training set
bind cols(
model=model name,
dataset="train",
metrics(model %>% augment(Haiti_train), truth=Class, estimate=.pred_class),
),
# AUC of ROC curve of training set
bind cols(
model=model name,
dataset="train",
roc_auc(model %>% augment(Haiti_train), Class, .pred_Blue_Tarp, event_level="first"),
),
# Accuracy of holdout set
bind cols(
model=model_name,
dataset="test",
metrics(model %>% augment(holdout), truth=Class, estimate=.pred_class),
# AUC of ROC curve of holdout set
bind cols(
model=model name,
dataset="test",
roc auc(model %>% augment(holdout), Class, .pred Blue Tarp, event level="first"),
),
)
}
```

```
metrics_table <- function(all_metrics, caption) {
   all_metrics <- all_metrics %>% arrange(model, desc(dataset))
   all_metrics %>%
   pivot_wider(names_from=.metric, values_from=.estimate) %>%
   dplyr::select(-.estimator) %>%
   knitr::kable(caption=caption, digits=5) %>%
   kableExtra::kable_styling(full_width=FALSE)
}
```

```
all_metrics <- bind_rows(
calculate_metrics(logreg_model_full, Haiti_train, holdout, "Logistic Regression"),
calculate_metrics(lda_model, Haiti_train, holdout, "LDA"),
calculate_metrics(qda_model, Haiti_train, holdout, "QDA"),
)
metrics_table(all_metrics, "Metrics for the classification models")</pre>
```

Metrics for the classification models

model	dataset	accuracy	kap	roc_auc
LDA	train	0.98397	0.75336	0.98888
LDA	test	0.98014	0.38800	0.99146
Logistic Regression	train	0.99529	0.92073	0.99851
Logistic Regression	test	0.98817	0.56108	0.99840
QDA	train	0.99461	0.90604	0.99822
QDA	test	0.99491	0.68267	0.99209

```
get_roc_plot <- function(model, data, model_name) {
roc_data <- model %>%
augment(Haiti_train) %>%
roc_curve(truth=Class, .pred_Blue_Tarp, event_level="first")
roc_auc(model %>% augment(Haiti_train), Class, .pred_Blue_Tarp, event_level="first")
g <- autoplot(roc_data) +
labs(title=model_name)
return(g)
}</pre>
```

```
bind_rows(
augment(logreg_model_full, Haiti_train) %>% mutate(model="Logistic Regression Training S
et"),
augment(lda_model, Haiti_train) %>% mutate(model="LDA Training Set"),
augment(qda_model, Haiti_train) %>% mutate(model="QDA Training Set")
) %>%
group_by(model) %>%
roc_curve(truth=Class, .pred_Blue_Tarp, event_level="first") %>%
autoplot() + labs(title="ROC Plots Training Set")
```



```
get_roc_plot <- function(model, data, model_name) {
roc_data <- model %>%
augment(holdout) %>%
roc_curve(truth=Class, .pred_Blue_Tarp, event_level="first")
roc_auc(model %>% augment(holdout), Class, .pred_Blue_Tarp, event_level="first")
g <- autoplot(roc_data) +
labs(title=model_name)
return(g)
}</pre>
```

```
bind_rows(
augment(logreg_model_full, holdout) %>% mutate(model="Logistic Regression Holdout Set"),
augment(lda_model, holdout) %>% mutate(model="LDA Holdout Set"),
augment(qda_model, holdout) %>% mutate(model="QDA Holdout Set")
) %>%
group_by(model) %>%
roc_curve(truth=Class, .pred_Blue_Tarp, event_level="first") %>%
autoplot() + labs(title="ROC Plots Holdout Set")
```



```
threshold_scan <- function(model, data, model_name) {</pre>
threshold data <- model %>%
augment(holdout) %>%
probably::threshold_perf(Class, .pred_Blue_Tarp,
thresholds=seq(0.05, 0.95, 0.01), event_level="first",
metrics=metric_set(f_meas))
opt_threshold <- threshold_data %>%
arrange(-.estimate) %>%
first()
  thresh <- ggplot(threshold_data, aes(x=.threshold, y=.estimate)) +</pre>
  geom_line() +
  geom point(data=opt threshold, color="red", size=2) +
  labs(title=model_name, x="Threshold", y="F-Measure") +
  coord_cartesian(ylim=c(0.3, 0.9))
  return(list(
  graph=thresh,
  threshold=opt threshold %>%
  pull(.threshold)
 ))
}
thresh1 <- threshold_scan(logreg_model_full, test, "Logistic regression")</pre>
thresh2 <- threshold_scan(lda_model, test, "LDA")</pre>
thresh3 <- threshold scan(qda model, test, "QDA")</pre>
logreg_threshold <- thresh1$threshold</pre>
lda threshold <- thresh2$threshold</pre>
qda threshold <- thresh3$threshold
thresh1$graph + thresh2$graph + thresh3$graph
```


thresh1\$threshold

[1] **0.**95

thresh2\$threshold

[1] **0.**73

thresh3\$threshold

[1] 0.42

logthresh<-0.95

ldathresh<-0.73

qdathresh<-0.42

```
predict_at_threshold <- function(model, data, threshold) {
  return(
  model %>%
  augment(holdout) %>%
  mutate(.pred_class = make_two_class_pred(.pred_Blue_Tarp,
  c("Blue_Tarp", "Non-Blue_Tarp"), threshold=threshold)
)
)
}
predictions_logreg <- predict_at_threshold(logreg_model_full, holdout, logreg_threshold)
predictions_qda <- predict_at_threshold(qda_model, holdout, lda_threshold)
predictions_qda_05 <- predict_at_threshold(qda_model, holdout, qda_threshold)
conf_mat(predictions_logreg, truth=Class, estimate=.pred_class)</pre>
```

```
## Truth
## Prediction Blue_Tarp Non-Blue_Tarp
## Blue_Tarp 14991 7069
## Non-Blue_Tarp 729 1985834
```

```
conf_mat(predictions_qda, truth=Class, estimate=.pred_class)
```

```
## Truth
## Prediction Blue_Tarp Non-Blue_Tarp
## Blue_Tarp 10361 4405
## Non-Blue_Tarp 5359 1988498
```

```
conf_mat(predictions_qda_05, truth=Class, estimate=.pred_class)
```

```
## Truth
## Prediction Blue_Tarp Non-Blue_Tarp
## Blue_Tarp 11444 6164
## Non-Blue_Tarp 4276 1986739
```

```
metrics<-metric_set(yardstick::accuracy,yardstick::sens,yardstick::spec,yardstick::f_mea
s,yardstick::j_index)</pre>
```

```
calculate_metrics_at_threshold <- function(model, train, test, model_name, threshold) {</pre>
    bind rows(
        bind_cols(
            model=model_name, dataset="train", threshold=threshold,
            metrics(predict_at_threshold(model, train, threshold),
                truth=Class, estimate=.pred class),
        ),
        bind cols(
            model=model_name, dataset="test", threshold=threshold,
            metrics(predict at threshold(model, holdout, threshold),
                truth=Class, estimate=.pred_class),
        ),
    )
}
metrics at threshold <- bind rows(</pre>
    calculate_metrics_at_threshold(logreg_model_full, Haiti_train, holdout, "Logistic re
gression", logthresh),
    calculate_metrics_at_threshold(lda_model, Haiti_train, holdout, "LDA", ldathresh),
    calculate metrics at threshold(gda model, Haiti train, holdout, "QDA", gdathresh),
) %>% arrange(dataset)
metrics_table(metrics_at_threshold, "Performance metrics with optimized threshold")
```

Performance metrics with optimized threshold

model	dataset	threshold	accuracy	sens	spec	f_meas	j_index
LDA	train	0.73	0.98151	0.79300	0.98300	0.40168	0.77600
LDA	test	0.73	0.98151	0.79300	0.98300	0.40168	0.77600
Logistic regression	train	0.95	0.99612	0.95363	0.99645	0.79359	0.95008
Logistic regression	test	0.95	0.99612	0.95363	0.99645	0.79359	0.95008
QDA	train	0.42	0.99480	0.72799	0.99691	0.68675	0.72490
QDA	test	0.42	0.99480	0.72799	0.99691	0.68675	0.72490

```
Haiti train<-train %>%
  mutate(type=case when(
    Class == "Rooftop" ~ "Non-Blue_Tarp",
    Class == "Soil" ~ "Non-Blue Tarp",
    Class == "Various Non-Tarp" ~ "Non-Blue Tarp",
    Class == "Vegetation" ~ "Non-Blue_Tarp",
    Class == "Blue Tarp" ~ "Blue_Tarp"
  ))%>%
  mutate(Class=case_when(
    Class == "Rooftop" ~ "Non-Blue Tarp",
    Class == "Soil" ~ "Non-Blue_Tarp",
    Class == "Various Non-Tarp" ~ "Non-Blue_Tarp",
    Class == "Vegetation" ~ "Non-Blue_Tarp",
    Class == "Blue Tarp" ~ "Blue Tarp"
  ))%>%
    mutate(
        type=factor(type, levels=c("Blue_Tarp", "Non-Blue_Tarp")))%>%
    mutate(
        group = paste(type, Class, sep=" "),
        group = factor(group),
    )
set.seed(1)
formula<-Class~Red + Green + Blue
Haiti_recipe <- recipe(formula, data=Haiti_train) %>%
    step normalize(all numeric predictors())
tuningtrain<-Haiti train[1:4]</pre>
tuningtrain sub<- tuningtrain %>%
  mutate(Class=factor(Class,labels=c("Non-Blue_Tarp","Blue_Tarp")))%>%
 mutate(case when(
    Class == "Blue Tarp" ~ 1,
    Class == "Non-Blue Tarp" ~ 0
  ))
```

Random Forests:

```
tuningtrain$Red<-as.numeric(tuningtrain$Red)
tuningtrain$Green<-as.numeric(tuningtrain$Green)
tuningtrain$Blue<-as.numeric(tuningtrain$Blue)
tuningtrain$Class<-as.character(tuningtrain$Class)
formula<-Class~ Red + Green + Blue
rec <- recipe(formula, data=tuningtrain)
class(tuningtrain$Class)</pre>
```

```
## [1] "character"
```

```
forest<-rand_forest(mode="classification", trees=500,min_n = tune(), mtry=tune()) %>%
    set_engine("ranger",importance="impurity")

forests_workflow <- workflow() %>%
    add_recipe(rec) %>%
    add_model(forest)
```

```
parameters <- extract_parameter_set_dials(forests_workflow)%>%
update(
mtry = mtry(c(1, 3)),
min_n = min_n(c(2, 40))
)
```

autoplot(tune_results_forest)


```
show_best(tune_results_forest,metric="roc_auc")
```

```
## # A tibble: 5 × 8
      mtry min n .metric .estimator
                                     mean
                                               n
                                                   std err .config
##
    <int> <int> <chr>
                         <chr>
                                                     <dbl> <chr>
                                     <dbl> <int>
## 1
         2
              21 roc auc binary
                                      1.00
                                              10 0.0000348 Preprocessor1 Model5
## 2
         2
               2 roc auc binary
                                     1.00
                                              10 0.0000344 Preprocessor1 Model2
                                     1.00
## 3
         2
              40 roc auc binary
                                              10 0.0000388 Preprocessor1 Model8
## 4
         1
              21 roc auc binary
                                     1.00
                                              10 0.0000401 Preprocessor1 Model4
## 5
         1
              40 roc auc binary
                                              10 0.0000383 Preprocessor1 Model7
                                     1.00
```

```
best_parameters <- select_best(tune_results_forest, metric="roc_auc")
best_workflow <- forests_workflow %>%
    finalize_workflow(best_parameters) %>%
    fit(tuningtrain)
best_workflow
```

```
## == Workflow [trained] =
## Preprocessor: Recipe
## Model: rand_forest()
##
## — Preprocessor -
## 0 Recipe Steps
##
## --- Model ---
## Ranger result
##
## Call:
## ranger::ranger(x = maybe_data_frame(x), y = y, mtry = min_cols(~2L,
                                                                                x), num.tre
                                                    importance = ~"impurity", num.threads
es = \sim500, min.node.size = min rows(\sim21L, x),
= 1, verbose = FALSE,
                            seed = sample.int(10^5, 1), probability = TRUE)
##
## Type:
                                      Probability estimation
## Number of trees:
                                      500
## Sample size:
                                      63241
## Number of independent variables:
## Mtry:
                                      2
## Target node size:
                                      21
## Variable importance mode:
                                      impurity
## Splitrule:
                                      gini
## 00B prediction error (Brier s.):
                                      0.002167524
```

```
resamples <- vfold_cv(tuningtrain, v=10,strata=Class)
custom_metrics <- metric_set(roc_auc, accuracy)
cv_control <- control_resamples(save_pred=TRUE)

forest_cv <- fit_resamples(best_workflow, resamples, metrics=custom_metrics, control=cv_control)</pre>
```

```
cv_metrics <- bind_rows(
    collect_metrics(forest_cv) %>%
        mutate(model="Random Forest"),
)
cv_metrics %>%
    dplyr::select(model, .metric, mean) %>%
    pivot_wider(names_from=.metric, values_from=mean) %>%
    knitr::kable(caption="Random Forest Metrics", digits=5)
```

Random Forest Metrics

model	accuracy	roc_auc
Random Forest	0.99703	0.99974

```
bind_rows(
    collect_predictions(forest_cv) %>% mutate(model="Random Forest"),
) %>%
    group_by(model) %>%
    roc_curve(truth=Class, .pred_Blue_Tarp, event_level="first") %>%
    autoplot()+labs(title="Random Forest ROC plot")
```



```
cv_metrics <- bind_rows(
    collect_metrics(result_cvh) %>%
        mutate(model="Random Forests"),
)
cv_metrics %>%
    dplyr::select(model, .metric, mean) %>%
    pivot_wider(names_from=.metric, values_from=mean) %>%
    knitr::kable(caption="Random Forests Metrics", digits=5)
```

Random Forests Metrics

model	accuracy	roc_auc
Random Forests	0.99693	0.99974

Xg Boost

```
library(bonsai) # this is required
boost_wf <- workflow() %>%
add_recipe(recipe(formula, data=Haiti_train)) %>%
add_model(boost_tree(mode="classification", engine="lightgbm",
trees=500, tree_depth=tune(), learn_rate=tune()))
```

```
parameters <- extract_parameter_set_dials(boost_wf)
tune_xgboost <- tune_bayes(boost_wf,
resamples=resamples,
metrics=custom_metrics,
param_info=parameters, iter=25)</pre>
```

```
## ! No improvement for 10 iterations; returning current results.
```

```
autoplot(tune_xgboost)
```



```
select_best(tune_xgboost,metric='roc_auc')
```

```
best_boost_wf <- boost_wf %>%
  finalize_workflow(select_best(tune_xgboost, metric='roc_auc'))
```

boost_cv <- fit_resamples(best_boost_wf, resamples, metrics=custom_metrics, control=cv_c
ontrol)</pre>

```
cv_metrics <- bind_rows(
    collect_metrics(boost_cv) %>%
        mutate(model="Xg Boost Holdout"),
)
cv_metrics %>%
    dplyr::select(model, .metric, mean) %>%
    pivot_wider(names_from=.metric, values_from=mean) %>%
    knitr::kable(caption="Xg Boost Holdout Metrics", digits=5)
```

Xg Boost Holdout Metrics

model	accuracy	roc_auc
Xg Boost Holdout	0.997	0.9996

```
roc_cv_plot <- function(model_cv, model_name) {
  cv_predictions <- collect_predictions(model_cv)
  cv_roc <- cv_predictions %>%
    roc_curve(truth=Class, .pred_Blue_Tarp, event_level="first")
return(autoplot(cv_roc) + labs(title=model_name))
}
```

```
roc_boost <- roc_cv_plot(boost_cv, "Boosting")
roc_boost</pre>
```


Penalized Logistic Regression (elastic net penalty):

```
formula<-Class~Red+Green+Blue

recipe_spec <- recipe(formula, data=tuningtrain) %>%
    step_dummy(all_nominal(), -all_outcomes())
```

! No improvement for 10 iterations; returning current results.

autoplot(tune_wf_penalized)

select_best(tune_wf_penalized, metric="roc_auc")

```
## # A tibble: 1 × 3
## penalty mixture .config
## <dbl> <dbl> <chr>
## 1 0.0001 0.288 Preprocessor1_Model2
```

```
best_parameter_penalized <- select_best(tune_wf_penalized, metric="roc_auc")
best_wf_penalized <- finalize_workflow(wf_penalized, best_parameter_penalized)</pre>
```

```
cv_metrics <- bind_rows(
    collect_metrics(result_cv_penalized) %>%
        mutate(model="Penalized Logistic Regression"),
)
cv_metrics %>%
    dplyr::select(model, .metric, mean) %>%
    pivot_wider(names_from=.metric, values_from=mean) %>%
    knitr::kable(caption="Penalized Logistic Regression Metrics", digits=5)
```

Penalized Logistic Regression Metrics

model	accuracy	roc_auc
Penalized Logistic Regression	0.99369	0.99841

```
bind_rows(
    collect_predictions(result_cv_penalized) %>% mutate(model="Penalized Logistic Regres
sion"),
) %>%
    group_by(model) %>%
    roc_curve(truth=Class, .pred_Blue_Tarp, event_level="first") %>%
    autoplot()+labs(title="Penalized Logistic Regression ROC plot")
```

