Evaluation of Remote Sensing Methods as Proxy for Salinity Measurements in the Lower Mekong Delta

Thailynn Munroe Graduate Research Assistant University of Alabama in Huntsville NASA SERVIR-Mekong

Saltwater Intrusion:

- Vietnam Delta major agricultural region
- 2015-2016 dry season was a record breaking drought year in Vietnam
- Salinity intrusion started 2 months earlier and extended further upstream than before, up to 50 km in some places
- Some mitigation practices include sluices and dykes, planting more salinity and drought resistant crops, combination pond/fields
- Need for better early warning system and water management

Background & relevant studies:

- Major motivation from Mekong needs assessment
- SMOS and SMAP measure ocean salinity
- In general, inverse relationship between CDOM and salinity in bays, estuaries, and lakes
- ► Keith et al. (2016) used MODIS and HICO to create CDOM and salinity algorithms for New England, Gulf of Mexico, and Mid-Atlantic
- ► Fang et al. (2007) performed similar study in Pearl River Estuary, China

Open Access image from Wikimedia Commons: https://commons.wikimedia.org/w/index.php?se go=Go&uselang=en&searchToken=6etruhbg7kvff

Viewing NDTI:

and band ratio:

Optical Satellite Imagery:

- Landsat 5 TM
- Using Google Earth Engine (GEE)
 - Around 70 points corresponded with satellite pass-overs
 - Using GEE simple cloud score band, only 4 points contained pixels less than 50% likely to be a cloud
 - ► GEE = somewhat of a black box...
- Using USGS Earth Explorer
 - ▶ USGS Surface Reflectance product → already atmospherically corrected
 - ► Much larger dataset
 - Plus/minus 1 day from observations

Image processing:

- Used cloud mask to remove clouds, cloud shadows, and land
- ► Calculated Normalized Difference Turbidity Index from Lacaux et al. (2007):

Calculated band ratio between red and blue bands

In-situ Data:

- Mekong River Commission: 48 permanent water quality monitoring stations
 - ► Focused on 7 stations Mekong Delta due to data sensitivity to location
 - Measurements taken "of surface water are taken from the river mid-stream every two months" or less
 - Evaluated in a lab
- Most have observations over 3 decades; many parameters
 - Used practical salinity units to combine parameters
 - Convert from milli-equivalents/liter to g/kg

In-situ TSS vs Salinity:

R3/R1 OLS for lower salinity stations:

SUMMARY OUTPUT

Regression Statistics				
Multiple R	0.169439716			
R Square	0.028709817			
Adjusted R Square	0.000958669			
Standard Error	0.704894074			
Observations	37			

ANOVA

	df	SS	MS	F	Significance F
Regression	1	0.51404033	0.51404033	1.034545211	0.316073326
Residual	35	17.39064793	0.496875655		
Total	36	17.90468826			

	Coefficients	Standard Error	t Stat	P-value
Intercept	1.505800313	0.205322186	7.333841231	1.42405E-08
X Variable 1	-1.212406412	1.191992402	-1.017125956	0.316073326

Log Salinity vs Log R3/R1

R3/R1 Polynomial regression: $Y = -22.83x^4 + 136.77x^3 - 299.85x^2 - 284.02x - 96.21$

Validation:

- ► Mean relative error: -36.43 %
- Root mean square error: 0.462 ppt
- ▶ Bias: -0.407

Cross validation (k-fold, k=n):

- ▶ LOO cross validation mean relative error: -270.87 %
- ▶ LOO cross validation root mean square error: 0.804 ppt

NDTI OLS for lower salinity stations:

SUMMARY OUTPUT

Regression Statistics				
Multiple R	0.430236184			
R Square Adjusted R Square	0.185103174			
	0.161820408			
Standard Error	0.645655229			
Observations	37			

ANOVA

	df	SS	MS	F	Significance F
Regression	1	3.31421463	3.31421463	7.950222518	0.007862975
Residual	35	14.59047363	0.416870675		
Total	36	17.90468826			

	Coefficients	Standard Error	t Stat	P-value
Intercept	1.361549633	0.106613406	12.77090459	9.82655E-15
X Variable 1	-4.96150314	1.7596392	-2.819613895	0.007862975

NDTI Polynomial regression: $Y = 1811x^4 - 395.3x^3 + 183.4x^2 - 1.521x - 1.415$

Validation:

- Mean relative error: -25.32 %
- Root mean square error: 0.451 ppt
- ▶ Bias: -0.28

Cross validation (k-fold, k=n):

- ▶ LOO cross validation mean relative error: -146.06 %
- ▶ LOO cross validation root mean square error: 0.786 ppt

Caveats and discussion:

- Many hydrologic parameters that could affect salinity, especially where salinity is low:
 - streamflow, precipitation
 - storm surge, surface runoff
 - sedimentation, nutrient loading, irrigation practices
 - evaporation, surface temperature
 - channel type (natural vs canal)
- ► Each station could have its own algorithm
- Would like to have had data from last winter

Conclusions:

- No significant correlation between R3/R1 ratio and salinity, or NDTI and salinity
- ► Many factors could be contributing to the local salinity levels
- Moving forward: will include Landsat 7 images, will look at relationship between other band combinations

References:

- Fang, L. G., Chen, S. S., Li, D., & Li, H. L. (2009). Use of reflectance ratios as a proxy for coastal water constituent monitoring in the pearl river estuary. *Sensors*, 9(1), 656-673. https://doi.org/10.3390/s90100656
- Keith, D.J.; Lunetta, R.S.; Schaeffer, B.A. (2016) Optical Models for Remote Sensing of Colored Dissolved Organic Matter Absorption and Salinity in New England, Middle Atlantic and Gulf Coast Estuaries USA. *Remote Sens.* 8, 283.
- ► Kutser, T., Pierson, D., Tranvik, L., Reinart, A., Sobek, S., & Kallio, K. (2005). Using satellite remote sensing to estimate the colored dissolved organic matter absorption coefficient in lakes. *Remote Sens. Environ.*, 8(6), 709-720.
- Lacaux, J. P., Tourre, Y. M., Vignolles, C., Ndione, J. A., & Lafaye, M. (2007). Classification of ponds from high-spatial resolution remote sensing: Application to Rift Valley Fever epidemics in Senegal. *Remote Sensing of Environment*, 106(1), 66-74. https://doi.org/10.1016/j.rse.2006.07.012
- Salinity Management Guide." Salinity Management Guide: Learn about Salinity and Water Quality. Water Reuse Foundation. Web. 28 Mar. 2017.