Report problems 3

- Pleas solve both of the problems:
 - (A) Report problem (MPS)
 - (B) Report problem (EE in TPS)
- Please include your name and student id in your report.
- Please submit through ITC LMS
 (If you have any troubles, please send us email: t-okubo@phys.s.u-tokyo.ac.jp
- Deadline: 2019/1/31

(A) Report problem (MPS)

Try MPS approximation of a vector

- 1. Prepare a vector in m^N dimension. (It should be normalized.)
- 2. Make exact MPS from it.
- 3. By using low rank approximation based on SVD, make approximate MPS with bond dimension chi_{max} .
 - Note: After this approximation, the norm of vector becomes smaller.
- 4. Calculate distance between exact and approximate MPSs

$$\|\vec{v}_{ex} - \vec{v}_{ap}\|$$

- 5. Vary chi_max and investigate (and discuss) behavior of the distance.
- 6. (optional) by varying m, N, and type of vectors, discuss behavior of the distance.

(A) Report problem (MPS)

This can be done by sample python code Report_Random.py for a random vector.

Usage: python Report_Random.py -N N -m m -chi chi_max -s seed

output:

```
okubo$ python Report_Random.py
Parameters: N, m, chi_max = 10, 2, 20
Random seed: = None
Truncation: chi_max = 20
Distance between exact and truncated MPS = 0.22331729137806558
```

You can also consider a spin model by Report_Model.py.

Usage: python Report_Model.py -N N -m m -chi chi_max -Jz Jz -Jxy Jx -hx hx

```
okubo$ python Report_Model.py Model parameters: Jz, Jxy, hx = -1.0, 0.0, 0.5 Parameters: N, m, chi_max = 16, 2, 2 Ground state energy per bond = -0.33360646500808594 Energy of Exact MPS = -0.33360646500808566 Truncation: chi_max = 2 Energy of MPS with truncation = -0.33270456639893253 Distance between exact and truncated MPS = 0.10640004821107511
```

(A) Report problem (MPS)

Usage: python Report_Model.py -N N -m m -chi chi max -Jz Jz -Jxy Jxy -hx hx

$$\mathcal{H} = J_z \sum_{i=1}^{N-1} S_i^z S_{i+1}^z + J_{xy} \sum_{i=1}^{N-1} (S_i^x S_{i+1}^x + S_i^y S_{i+1}^y) - h_x \sum_{i=1}^{N} S_i^x$$

When we set

$$J_z = -1, J_{xy} = 0, h_x \neq 0$$
 Transverse filed Ising model with $S=(m-1)/2$

$$J_z = 1, J_{xy} = 1, h_x = 0$$

 $J_z=1, J_{xy}=1, h_x=0$ Heisenberg model with S=(m-1)/2

In sample codes, you can see help message by

python Report_Random -h python Report_Model.py -h

(B) Report problem (EE in TPS)

- 1. Explain the upper bound of entanglement entropy of TPS (compulsory)
 - 1. Consider enough large vector with dimension m^N and suppose it is represented by $L \times L$ square lattice TPS with bond dimension D. $(N = L^2)$, and the vector is normalized. We assume open boundary TPS.)
 - 2. Divide the system into two part:
 - $l \times l$ small square at the center of the lattice and the other part. Then, represent the reduced density matrix by tensors of TPS.
 - 3. Represent the maximum rank of the reduced density matrix by *D* and *l*.
 - (Please include "derivation" of the result.)

(B) Report problem (EE in TPS) (cont.)

- 1. Explain the upper bound of entanglement entropy of TPS (compulsory)
 - 4. Explain the upper bound of the entanglement entropy calculated from the reduced density matrix.

You can use the following fact:

$$-{\rm Tr}\ \rho\log\rho \leq \log({\rm dim}\rho)$$

$$\rho\ :\ \mbox{(reduced) density matrix}$$

In the report, it is enough to explain the upper bound roughly. (I don't require mathematically rigorous proof.)

It might be useful to use tensor network diagrams.

(B) Report problem (EE in TPS) (cont.)

- 2. Explain the upper bound of entanglement entropy of TPS in general dimension d (optional).
 - 1. By using similar argument to the case of square lattice TPS, explain the upper bound of EE of TPS on d-dimensional cubic lattice.

Keywords

第1回: 現代物理学における巨大なデータ

第2回: 現代物理学と情報圧縮

第3回: 情報圧縮の数理1 (線形代数の復習)

第4回: 情報圧縮の数理2 (特異値分解と低ランク近似)

第5回: 情報圧縮の数理3 (スパース・モデリングの基礎)

第6回:情報圧縮の数理4 (クリロフ部分空間法の基礎)

第7回: 物質科学における情報圧縮

第8回: データ解析の高速化:スパース・モデリングの物質科学への応用

第9回: データ空間の圧縮:クリロフ部分空間法の物質科学への応用

第10回: 高度なデータ圧縮:情報のエンタングルメントと行列積表現

第11回: 行列積表現の固有値問題への応用

第12回: テンソルネットワーク表現への発展

第13回: テンソルネットワーク繰り込みによる情報圧縮

就活・インターンシップに役立つ!

プレゼンスキル&ビジネスマナー講習

*** 受講者募集***

当講習会は、プロの講師をお招きし、自身の研究について専門外の方にも平易に伝え、アピールするためのプレゼンテーションスキルおよび、社会人として必要不可欠な基本ルール・ビジネスマナー(Eメール、名刺交換、電話応対など)を講義、実習を交えながら習得します。また、特別講座として、スティーブン・G・ブランク著『アントレプレナーの教科書』を共訳、出版された渡邊哲氏をお招きし、アントレプレナーシップの基本的な理念、そよびその必要性についてご講演いただきます。

2019年
2月4日

開催時間

 $9:30\sim17:40$

場が

東京大学物性研究所(柏キャンパス) *TX柏の葉キャンパス駅よりシャトルバスあり

参加対象

東京大学に所属する博士課程・修士課程の大学院生・博士研究員(PD)等で、主に物理/化学/情報科学分野の研究に携わっている方*研究科や専攻は問いません。

定員

20名程度(申込先着順) ※定員に達し次第、申込を締め切ります。

事前準備

プレゼンテーション講習用のスライド(ppt) を準備のこと。詳細はwebを参照。

服 装

スーツまたはそれに準じる服装

持ち物

ノートPC・スマートフォン、名刺入れ

プログラム(予定)

19:30~ 09:40	ガイダンス
9:40~14:00	ビジネスマナー講習
14:00~16:30	プレゼンテーション講習
16:30~17:30	特別講座
17:30~17:40	総括

※途中休憩、昼食を挟みます。

担当講師

【ビジネスマナー/プレゼンテーション講習】

メイン講師:下田 令雄成 氏 株式会社シャイニング 代表取締役 サブ講師:小川 雅則 氏

株式会社シャイニング 認定プロフェッショナル

【特別講座】

企業イノベーション&アントレプレナーシップ講座 ~イノベーションをビジネスとして成功させる方法~

講師:渡邊 哲氏

株式会社マキシマイズ 代表取締役

参加申込·詳細

下記サイトより事前申込要

申込期限:

1月29日(火)正午

期日:2/4@柏キャンパス

締切:1/29 (先着順)

· 残席10名程度

今回はプレゼン演習に重点

http://pcoms.issp.u-tokyo.ac.jp/events/eventsfolder/skillup2019