

Mar
$$pD(p) - C(D(p))$$
 $pD'(p) + D(p) - C'(D(p)) \cdot D'(p) = 0$.

 $pD'(p) + D(p) - C'(D(p)) + D(p)D'(p) = -D(p)$
 $p-C'(D(p)) = -D(p) = \frac{1}{E}$,

where $E = -D'(p) \cdot p$ is the prize clasticity $D(p)$ demand.

Across E , $\Phi(more inelastic)$, higher markup.

D(b) = A - Bb, = unit=1kg D'(p) = -B = -10 say: P=Rs. Re 11 => 10 kg less demanded.

per hy

10 kg per Rupee.

p = Re total. Suppose I meanine neight : 50 m quintals (100 kg): Unit free maain of response to fire Then O. I quintal I per Rufee. So 'B' defends on units. And in the limit, D'(P). + D(P) This is -we and sing a grate start and proton $E = -D'(p) \cdot \frac{p}{D(p)} \cdot D \cdot E < 1$ in the lastic : elasti: more than profestionate I in demand due to 1 inforce. 9=D(b)\$ = p D'(P) = - = | - = | - = | V= I(P). so elashing = - D (p) P: = E Alternatively, lnq = - Elnp clashing = dlug = - E. E=1: pq=1: rectangular hyperbola $\Sigma = 2$: $9 = \frac{1}{p^2}$: clash 23 $gq = \frac{1}{\sqrt{P}}$: inclash2.

1 - JY 16:

. while me

Deadwayht loss under different clash 2 hies

Straight line Demand

$$\mathcal{E} = -\frac{\mathcal{D}'(\flat) \cdot \mathcal{P}}{\mathcal{D}(\flat)} = +\frac{\mathcal{B} \cdot \flat}{A - \mathcal{B} \flat} = \frac{\beta A}{\overline{O}\beta} = \frac{\sqrt{\Upsilon}}{\overline{\Upsilon}S}$$

At the midpoint of the demand ourse, ... E=1

Clouds to To its North West, & > 1; k > 00 as a long in zero dem To its South East &< 1. > 0 as by mans to year fine.

Revenue = $(a-bq)\cdot q$ Marginal Revenue = $(a-bq)\cdot 1 + qr(-b)$ = a-2bq.

monspecy entrut possible MC = C'(q)=0,

gr = 0B.

At lugher C'(.),

gr M < DB; The mangarast

operates where E > 1.

p = a - b p =

Second - Order Conditions

Now, : prize 13 not a given, revenue R(b) = p D(p)need not be concave: so even if C(D(b)) is convex, T(p) = p D(p) - C(D(p)) need not be concave or granzenceve.

R'(p) = PD'(b) +D(p)

R''(p) = pD''(p) + D'(p) + D'(p)

One sufficient condition for $R''(p) \leq 0$ is $D''(p) \leq 0$ (linear or concare demand).

More generally, for $R''(P) \leq 0$, D(P) must not be "too conver".

Cost Distortions

Shareholders can been reward structure of managers based on the ferformance of the firm relative to that of competing firms. This incentive scheme is about in a monopoly; I can lead to slack.

Pria Discrimination

First degree or perfect.

If the montpolist can change a difference prose for each unit, then

can go up tall the toway. to WTP-

Alternatively, it can set a two-part tout to accomplish this:

Suppose ten monopolist charges p* 1 3 sells q * units.

AB = CS(q*, p*) = f (p(v) - p*) dq.

Manifolate Contract

T(q)=5+*q+\$BA, Fq>0
7 q=0.

Sweeps up all tru surplus as a participation or not user fee

Other applications: Franchise contracts: Mac Donalds.

Third-degree finte discriming.

m. different markets/locaton/no arbitrage.

demographies: insmed/not;

semor citizens discounts et .

Man SpiD(pi) - C Di(pi)

FOC wort pi: piD'(pi)+D(pi) - C'().D: "(pi)=0.

=> p:-e'(SD;(b;)) = 1 p:

In more inclashed markets, markup is higher

Second deprec price (1 quality) discrimination

Setting

- Perfer have different preferences for quantity/quality of a good.
- Firm knows this; knows what these different preferences look like, but
 - either does not know which const has what preference
 - or cannot legally discriminate between cons 5.
- Can offer a menu of prices & grantities, s.t. cons so with different preferences will themselves self-select different items (pi, qi) items from the menu.

Examples:

- economy class & business class airfe train fares
- Tatkal passports
- Youtube & Youtube Premium 7 Platforms
- Amazon Prime & normal purchaser
- Regular Customer offers
- TV per channel backs which there will the
- Quality differentiated prices at any market place or mandi
- Why did Tata Namo fail to win over a merhet, even though it was targeted to a supposed consumer at the low value and I the spectrum?

Model.

Consumers are differentiated into 2 "types" by preference for appality /quantity.

all other goods. (Quasilinear) ; it =1,2:

B- 82 > 8, ...

V(0)=0, V "<0

Given any quality /quantity q,

 $u(q_1, \theta_{2i}) - u(q_1, \theta_{ii}) = (\theta_2 - \theta_1) v(q_1)$ is increasing in q_1 .

($\theta_2 - \theta_1$) $v'(q_1) > 0$).

i.e. Type of agent is willing to paymore for a unit increase Monopolist will change a tariff T(qr) for quantity q or good of quality of. We can think of a unit price p as a linear tariff: T(V) = p.q. And T(q) = A + pg is a two-part tariff or affine tariff. T(q) can also be nonlinear in general: If consumer type i buys quantity /quality q at & tariff T=T(q), her whilety and a significant = 0; v(q) + y - T ...; we will simply write To with quasilinear utility, benefit optimal demand for q dies not depend on y. Let the montposet have a unit cost of prod " c . (for unit quantity or quality) We can Assume v'(0) = 000, so an optimum will always enit. or go by an example : $V(q_1) = \frac{(1-q_1)^2}{2}$ V'(V) = 1-9. For a linear tariff T(q) = pq, Consumer maxes 0; V(y) - pq FOC: 0: V'(V) = p Here, Pi(1-q)=p. Then, let occi. Po invein de aure I type i 9,

isoprofit Ti= cqi+K, 1C2 1C, . { (9; T) | 0, v(4) - T = k }. utility I so as of In Kor Thes. Stope BICI. T = 0, V(q)-R $\frac{d\tau}{dq}\Big|_{t} = \theta_1 \, V'(q_T)$.

Take any (q, T).
An 102 passes them (q, T), steeper than 10, · dT = 02 V'(V) > 0, V'(V).

Menspolist does not know any specific consts freference / type but knows that & proportion of type 1 consumers

Manpolat If is very small, bu monopolat may with to not serve type, at all Simple example:

Profest information first best Manopolist can knows o; o the coust & can make a personalized offer: Max Til- cgi s.t. 0: = V(qi) - Ti > 0. ____ - 1.R. Given any q; will choose Ti sit. 10: V(qi) - Ti = 0 => Max [0: V(qi) - cqi] = This is ALSO social surplus : CS+PS.

(0: V(qi) - T; + T; - cqi). Foc: 0: v'(vi) = c. If v(q) = 1-(1-q)? tuis => 8. (1-qr:) = c. 9. 11 . 9. And profit T = (0: v(q1) - c) dq1 Ti = Onv(qi) MI LA MANUFACTURE OF CONTRACTOR Social of himan: Marginel social benefit D; V(4 ?*) equals marginel social (T= 0, v(9)) Passes Then origin

First-best 13 NOT incentive compatible

```
LO Topias
```

Man A (Ti - cqi) + (1-12) (Tz - cqz)

s.t.
$$\theta_1 V(q_1) - T_1 \ge 0$$
 - $1R_1$
 $\theta_2 V(q_2) - T_2 \ge 0$ - $1R_2$
 $\theta_1 V(q_1) - T_1 \ge \theta_1 V(q_2) - T_2$ - $1c_1$
 $\theta_2 V(q_2) - T_2 \ge \theta_2 V(q_1) - T_1$ - $1c_2$

If (q_1,T_1) , (q_2,T_2) are available, then type 2 can always buy (q_1,T_1) & get $\theta_2 \vee (q_1) - T_1 > \theta_1 \vee (q_1) - T_1$

i' 1 Cz must hold,

θ2 V(q2) - T2 ≥ θ2 V(q1) -T1 > 0, V(q1) -T1.

so, if 8, V(9,1)-Ti≥0, toul 152 holds,

then $\theta_2 V(\gamma_2) - \tau_2 \geq 0$ is anternatically satisfied, with '>'.

So ignore 1Rz.

This also means

0 / 0, V(9,) - Ti = 0- / at 1 TI max.

Suppose not.

Then 0, V(q1)-T1 > 0 - 1R,

k 02 V (92) - T2 > 0 anyway. - 1 R2

& IC, & IC2 will not be disturbed, & nor are IR, & IR & disturbed.

IT Is. Contradicting IT max.

 $\frac{1}{2} \sqrt{(q_2)} - T_2$ $\frac{1}{2} \sqrt{(q_2)} = T_1$ $\frac{1}{2} \sqrt{(q_1)} - T_1$ $\frac{1}{2} \sqrt{(q_1)} = T_1$ $\frac{1}{2} \sqrt{(q_1)} = T_1$

Keeping &2 fixed in zome A, 1 T2 as much as teasible.

=> 1Cz must bind.

If this is the offered (91,5 Ti), then (9/2, Tz) must be in zone A to satisfy IC2.

Then, IC, is automatically satisfied with 67?

```
so, 0, v(q1) = T,
                 θ2 V(q2) - T2 = θ2 V(q1) - T, = (θ2 - 01) V(q1). : 1 Firm ander facto
                                                                                   · Herstein
                            => T2 = 8= (v(q2)-v(q1))+ T,
                                                                                 surplus. It
                                     = 02 (V(92) - V(91) + 01 V(91)
                                                                                 addinamel
                                     = 02 V(NZ) + - (02 - 01) V(Q1).
                                                                                   cost to
                                                                                   often ay
                                           Emplies that type 2 gets
                                                                                   tre qua
                                                                                     V(91).
                         λ (θ, V(q1) - cq1)
                           +(1-x) (02 V(9/2) - cq2 - (02-01) V(9/1))
                                                                                  And leads
                                                                                8 4,1(9,5) > C.
              Foc:
                          x(0, V'(1,1) - C) 4 (1-x)(02-0,) V'(1,1) = 0.
                                                                                   47
                          02 V'(92) = c
 The marginal
  cost & princip
additional q, is
not just c:
Halm includes
                        18, v'(v) =>e+
(02-81) hi(eli),
                    [ x 8, 7 (1-x) (82-81)] V'(91) = 2x
me add mar mus
                          Q1 ν'(q1) [ λ - + (1-λ) (θ2-θ1)] = λ c
                             81 V / (91) = [ 1 = 1-> 1 = 02 - 01 ] = c
                                                   This is $ >0, & 17 1 is laye
                            (so, 0, v'(v1) > c.
                                                                               enough, if is < 1.
                    (i) 9, is real law; (ii) 9/2 is socially of timel
                    (iii) Type 1 surplus fully extracted.
(iv) Type 2 has surplus (info sent.).
                          ( x suffrietly hap)
    \frac{1-\lambda}{\lambda} \frac{(\theta_2-\theta_1)}{\theta_1} < 1
```


as well.

Set S, function $f: S \to \mathbb{R}$. x^* is a man g f on S if $f(x^*) \ge f(x)$, $\forall x \in S$ Start max if $f(x^*) > f(x) \forall x \neq x^*$.

Local Max:

Need a toplogy Z on S.

Z is a of collectron of subsets & C S = 1.

DLS & Z

z is closed under arbitrary unions & from a intersections.

GEZ, Gis Known as an open set.

* is a break man if $f(n^*) \ge f(n)$ + x EG, where G is an open set centaining n^* .

For a metrz space S_{\perp} or a memed vectorspace, $y \in G$ is an orinterior point $i7: B(y, \varepsilon) \subseteq G$ for some $\varepsilon > 0$. $B(y, \varepsilon) = {8 \in S \mid S(3, y) < \varepsilon \mid S}$.

ais an ofen set it all its points are enterior foints.

Theorem 1) Suffer n^* is a local man or min in tru interior of S, & suppose f is differentiable at n^* .

Then $\nabla f(n^*) = 0$

7f(n*)+ & 1; 7g:(n*) = 3

Theorem 3) Suppose x* is a man of on

N () Ex ER" | gi(xi) = ci, i=1, yak, A xj ≥ 0, j=1, yng, & soften Rand (Dg (x*)) = &

Then 3 x1 *, -, xe* sit.

trainin: 2x; - 21 xi 2gi < 0, xj >0; with Complementer reachness

st. pan+byy = w, x>0, y>0

2 (x, \$y, A) = x+y + 2 (w - px x - pyy)

FOC) 26 = 1-2/2 < 0, 2 30, mon cs

DX = 1 - Apy = 0, y = 0 wAn Cs.

w- px x - py y = 0.

Se pa x+ py y = w. | px | < 1

If I give up I im If Y, I get by rupees. With which I buy Py Gai in wary = by Gai in whilly = by > 1

So, buy only x.

```
Again in whility = by . Ux.
                                             by · ux - uy = 0 ⇒ ux = bx.
     : du = u(x+++, y-1) - u(x,y)
Or if you like dy less \Rightarrow \frac{pydy}{px} more for x: u_x \cdot \frac{py}{px} dy - u_y dy = 0

Back to linear utility:

\frac{at}{max}

I. Suppose x = 0, y > 0: \Rightarrow y = \frac{w}{py}.
                       & 1- Apy = 0 => \( \lambda = \frac{1}{p_y} \).
                     1- 1/2 < 0 => 1- px = 0
                                          \Rightarrow \begin{vmatrix} p_x \\ p_y \end{vmatrix} \ge 1
              suppose x >0, y=0: x= w.
                                 x = jn
                             1- λ þy ε 0 => 1- þy ε 0
                                              ≥ | px ≤ 1 | .
    11. Suffer at mar.

11. Suffer at mar.

20, 420. => 1-1/2=0, 1-2/2=0
                                                         > 1 = 1 = by
      ω = have demands: π(p_n, p_y, ω) = \begin{cases} ω & γ & ∞ & p_x \\ ω - p_y & γ & p_y \end{cases}
\frac{ω - p_y γ}{p_x} = \begin{cases} ω & γ & p_x \\ γ & p_y \end{cases} = \begin{cases} ω & γ & p_y \\ γ & p_y \end{cases}
0 & γ & p_y \\ γ & p_y \end{cases} = \begin{cases} ω & γ & p_y \\ γ & p_y \end{cases}
```