# **Pyramids**

Lecture-7

#### Contents

- Gaussian and Laplacian Pyramids
  - Reduce
  - Expand
- Applications of Laplacian pyramids
  - Image compression
  - Image composting
- Optical flow using Pyramids
  - interpolation

### **Pyramids**

- Very useful for representing images.
- Pyramid is built by using multiple copies of image.
- Each level in the pyramid is 1/4 of the size of previous level.
- The lowest level is of the highest resolution.
- The highest level is of the lowest resolution.

# **Pyramid**



# Gaussian Pyramids (reduce)

$$g_{l}(i,j) = \sum_{m=-2}^{2} \sum_{n=-2}^{2} w(m,n) g_{l-1}(2i+m,2j+n)$$

Level l

$$g_l = REDUCE[g_{l-1}]$$

### Convolution



## Reduce (1D)

$$g_l(i) = \sum_{m=-2}^{2} \hat{w}(m)g_{l-1}(2i+m)$$

$$g_{l}(2) = \hat{w}(-2)g_{l-1}(4-2) + \hat{w}(-1)g_{l-1}(4-1) + \hat{w}(0)g_{l-1}(4) + \hat{w}(1)g_{l-1}(4+1) + \hat{w}(2)g_{l-1}(4+2)$$

$$g_{l}(2) = \hat{w}(-2)g_{l-1}(2) + \hat{w}(-1)g_{l-1}\hat{w}(3) + \hat{w}(0)g_{l-1}(4) + \hat{w}(1)g_{l-1}(5) + \hat{w}(2)g_{l-1}(6)$$

### Reduce

#### Gaussian Pyramid



# Gaussian Pyramids (expand)

$$g_{l,n}(i,j) = \sum_{p=-2q=-2}^{2} \sum_{q=-2}^{2} w(p,q) g_{l,n-1}(\frac{i-p}{2}, \frac{j-q}{2})$$

$$g_{l,n} = EXPAND[g_{l,n-1}]$$

# Expand (1D)

$$g_{l,n}(i) = \sum_{p=-2}^{2} \hat{w}(p) g_{l,n-1}(\frac{i-p}{2})$$

$$g_{l,n}(4) = \hat{w}(-2) g_{l,n-1}(\frac{4+2}{2}) + \hat{w}(-1) g_{l,n-1}(\frac{4+1}{2}) + \hat{w}(0) g_{l,n-1}(\frac{4}{2}) + \hat{w}(1) g_{l,n-1}(\frac{4-1}{2}) + \hat{w}(2) g_{l,n-1}(\frac{4-2}{2})$$

$$g_{l,n}(4) = \hat{w}(-2)g_{l,n-1}(3) + \hat{w}(0)g_{l,n-1}(2) + \hat{w}(2)g_{l,n-1}(1)$$

## Expand (1D)

$$g_{l,n}(i) = \sum_{p=-2}^{2} \hat{w}(p) g_{l,n-1}(\frac{i-p}{2})$$

$$g_{l,n}(3) = \hat{w}(-2) g_{l,n-1}(\frac{3+2}{2}) + \hat{w}(-1) g_{l,n-1}(\frac{3+1}{2}) + \hat{w}(0) g_{l,n-1}(\frac{3}{2}) + \hat{w}(1) g_{l,n-1}(\frac{3-1}{1}) + \hat{w}(2) g_{l,n-1}(\frac{3-2}{2})$$

$$g_{l,n}(3) = \hat{w}(-1) g_{l,n-1}(2) + \hat{w}(1) g_{l,n-1}(1)$$

# Expand

#### Gaussian Pyramid



$$[w(-2), w(-1), w(0), w(1), w(2)]$$

Separable

$$w(m,n) = \hat{w}(m)\hat{w}(n)$$

•Symmetric

$$\hat{w}(i) = \hat{w}(-i)$$
$$[c, b, a, b, c]$$

The sum of mask should be 1.

$$a + 2b + 2c = 1$$

•All nodes at a given level must contribute the same total weight to the nodes at the next higher level.

$$a + 2c = 2b$$



$$\hat{w}(0) = a$$

$$\hat{w}(-1) = \hat{w}(1) = \frac{1}{4}$$

$$\hat{w}(-2) = \hat{w}(2) = \frac{1}{4} - \frac{a}{2}$$

a=.4 GAUSSIAN, a=.5 TRINGULAR

# Triangular



# Approximate Gaussian



#### Gaussian

$$\hat{w}(0) = a$$

$$\hat{w}(-1) = \hat{w}(1) = \frac{1}{4}$$

$$\hat{w}(-2) = \hat{w}(2) = \frac{1}{4} - \frac{a}{2}$$

### Gaussian

$$g(x) = e^{\frac{-x^2}{2o^2}}$$

 $\mathcal{X}$ 

g(x)

| -3   | -2  | -1 | 0 | 1  | 2   | 3    |
|------|-----|----|---|----|-----|------|
| .011 | .13 | .6 | 1 | .6 | .13 | .011 |



# Separability



### Algorithm

- Apply 1-D mask to alternate pixels along each row of image.
- Apply 1-D mask to each pixel along alternate columns of resultant image from previous step.

# Gaussian Pyramid







### Laplacian Pyramids

- Similar to edge detected images.
- Most pixels are zero.
- Can be used for image compression.

$$L_1 = g_1 - EXPAND[g_2]$$

$$L_2 = g_2 - EXPAND[g_3]$$

$$L_3 = g_3 - EXPAND[g_4]$$



Fig.5. First tour levels of the Gaussian and Laplacian pyramid. Gaussian images, upper row, were obtained by expanding pyramid arrays (Fig. 4) through Gaussian interpolation. Each level of the Laplacian pyramid is the difference between the corresponding and near higher levels of the Gaussian pyramid.

# Coding using Laplacian Pyramid

Compute Gaussian pyramid

$$g_1, g_2, g_3, g_4$$

Compute Laplacian pyramid

$$L_{1} = g_{1} - EXPAND[g_{2}]$$

$$L_{2} = g_{2} - EXPAND[g_{3}]$$

$$L_{3} = g_{3} - EXPAND[g_{4}]$$

$$L_{4} = g_{4}$$

Code Laplacian pyramid

### Decoding using Laplacian pyramid

- Decode Laplacian pyramid.
- Compute Gaussian pyramid from Laplacian pyramid.

$$g_{4} = L_{4}$$

$$g_{3} = EXPAND[g_{4}] + L_{3}$$

$$g_{2} = EXPAND[g_{3}] + L_{2}$$

$$g_{1} = EXPAND[g_{2}] + L_{1}$$

•  $g_1$  is reconstructed image.

#### Ø



Laplacian Pyramid

Fig. 5. First four levels of the Gaussian and Laplacian pyramid. Gaussian images, upper row, were obtained by expanding pyramid arrays (Fig. 4) through Gaussian interpolation. Each level of the Laplacian pyramid is the difference between the corresponding and next higher levels of the Gaussian pyramid.

# Image Compression (Entropy)

Bits per pixel

7.6



# **Image Compression**

1.58





(a)





.73

# Combining Apple & Orange



# Combining Apple & Orange



# Algorithm

- Generate Laplacian pyramid Lo of orange image.
- Generate Laplacian pyramid La of apple image.
- Generate Laplacian pyramid Lc by
  - copying left half of nodes at each level from apple and
  - right half of nodes from orange pyramids.
- Reconstruct combined image from Lc.

### Reading Material

- http://ww-bcs.mit.edu/people/adelson/papers.html
  - The Laplacian Pyramid as a compact code,
     Burt and Adelson, IEEE Trans on
     Communication, 1983.
- Fundamental of Computer Vision, Section 4.5.

http://www.cs.ucf.edu/courses/cap6411/book.pdf

### Lucas Kanade with Pyramids

- Compute 'simple' LK optical flow at highest level
- At level i
  - Take flow  $u_{i-1}$ ,  $v_{i-1}$  from level i-1
  - bilinear interpolate it to create  $u_i^*$ ,  $v_i^*$  matrices of twice resolution for level i
  - multiply  $u_i^*$ ,  $v_i^*$  by 2
  - compute  $f_t$  from a block displaced by  $u_i^*(x,y), v_i^*(x,y)$
  - Apply LK to get  $u_i'(x, y)$ ,  $v_i'(x, y)$  (the correction in flow)
  - Add corrections  $u_i' v_i'$ , i.e.  $u_i = u_i^* + u_i'$ ,  $v_i = v_i^* + v_i'$ .

## **Pyramids**











pyramid

pyramid

### Interpolation

## 1-D Interpolation

$$y = mx + c$$
$$f(x) = mx + c$$



### 2-D Interpolation

$$f(x,y) = a_1 + a_2x + a_3y + a_4xy$$
 Bilinear

X X

O X

# Bi-linear Interpolation Four nearest points of (x,y) are:

$$(\underline{x}, \underline{y}), (\overline{x}, \underline{y}), (\underline{x}, \overline{y}), (\overline{x}, \overline{y})$$
  
 $(3,5), (4,5), (3,6), (4,6)$ 

$$\underline{x} = \text{int}(x) \tag{3.2,5.6}$$

$$y = int(y)$$

$$= X_{(3,6)} X_{(4,6)} X_{(4,5)}$$

$$= X_{(3,5)} X_{(4,5)} X_{(4,5)}$$

$$\overline{x} = \underline{x} + 1$$

$$\overline{y} = y + 1$$

### Bi-linear Interpolation

$$f(x,y) = \overline{\varepsilon_x} \overline{\varepsilon_y} f(\underline{x},\underline{y}) + \underline{\varepsilon_x} \overline{\varepsilon_y} f(\overline{x},\underline{y}) + \underline{\varepsilon_x} \overline{\varepsilon_y} f(\overline{x},\underline{y}) + \underline{\varepsilon_x} \underline{\varepsilon_y} f(\overline{x},\overline{y})$$

$$\overline{\varepsilon_{x}} = \overline{x} - x$$

$$\overline{\varepsilon_{x}} = \overline{x} - x = 4 - 3.2 = .8$$

$$\overline{\varepsilon_{y}} = \overline{y} - y$$

$$\overline{\varepsilon_{y}} = \overline{y} - y = 6 - 5.6 = .4$$

$$\underline{\varepsilon_{x}} = x - \underline{x} = 3.2 - 2 = .2$$

$$\underline{\varepsilon_{x}} = y - \underline{y} = 5.6 - 5 = .6$$















