

TDT4136 - Introduction to Artificial Intelligence Assignment 5

Propositional and First Order Logic

*Name:*Sofie Othilie Dregi

Innholds for tegnelse

1.	Mod	lels and entailment in propositional logic	1
	1.1.	Validity and Soundness	1
	1.2.	Modelling	1
	1.3.	Modelling 2	4
2.	Reso	olution in propositional logic	5
	2.1.	Conjunctive Normal Form	5
	2.2.	Inference in propositional logic	5
3.	Rep	resentation in First-Order Logic (FOL)	6
	3.1.	a) Argument A	6
	3.2.	b) Argument B	6
4.	Reso	olution in FOL	7

1. Models and entailment in propositional logic

1.1. Validity and Soundness

- (a) Generate the vocabulary of the following argument.
- (b) Translate the argument into propositional logic statements.
- (c) Add a premise (P4) to make the conclusion of the argument valid.

P1 to P3 are the premises, C is the conclusion:

- (P1) If Peter's argument is valid and all the premises of Peter's argument are true, then Peter's argument is sound.
- (P2) If the premises of Peter's argument entail the conclusion of Peter's argument, then Peter's argument is valid.
- (P3) The premises of Peter's argument entail the conclusion of Peter's argument.
- (C) Peter's argument is sound.

1.2. Modelling

A sentence is satisfiable if it is true in or satisfied by some model.

(a)
$$(p \Rightarrow q) \Rightarrow (p \Rightarrow r) \Rightarrow (q \Rightarrow r)$$

p	q	r	$p \Rightarrow q$	$p \Rightarrow r$	$q \Rightarrow r$	$(p \Rightarrow r) \Rightarrow (q \Rightarrow r)$	Total
0	0	0	1	1	1	1	1
0	0	1	1	1	1	1	1
0	1	0	1	1	0	0	0
0	1	1	1	1	1	1	1
1	0	0	0	0	1	1	1
1	0	1	0	1	1	1	1
1	1	0	1	0	0	1	0
1	1	1	1	1	1	1	1

This complete model is not a tautology, as not all instances of the model is true.

This complete model is a tautology, as all instances of the model is true.

(c)
$$\neg (p \lor (q \Rightarrow \neg r)) \Rightarrow ((p \Rightarrow q) \land (p \Rightarrow r))$$

p	q	r	$q \Rightarrow \neg r$	$\neg (p \lor (q \Rightarrow \neg r))$	$p \Rightarrow q$	$p \Rightarrow r$	Total
0	0	0	1	0	1	1	1
0	0	1	0	1	1	1	1
0	1	0	1	0	1	1	1
0	1	1	1	0	1	1	1
1	0	0	1	0	0	0	1
1	0	1	1	0	0	1	1
1	1	0	0	0	1	0	1
1	1	1	1	0	1	1	1

This complete model is a tautology.

(d)
$$\neg(\neg p \lor (q \land r)) \Rightarrow (\neg(p \lor q) \land r)$$

p	q	r	$q \wedge r$	$\neg(\neg p \lor (q \land r))$	$\neg (p \lor q)$	$\neg (p \lor q) \land r$	Total
0	0	0	0	0	1	0	1
0	0	1	0	0	1	1	1
0	1	0	0	0	0	0	1
0	1	1	1	0	0	0	1
1	0	0	0	1	0	0	0
1	0	1	0	1	0	0	0
1	1	0	0	1	0	0	0
1	1	1	1	0	0	0	1

This complete model is not a tautology.

1.3. Modelling 2

p	q	r	$ \phi $	$(r \Rightarrow q)$
0	0	0	1	1
0	0	1	0	0
0	1	0	1	1
0	1	1	1	1
1	0	0	1	1
1	0	1	0	0
1	1	0	1	1
1	1	1	1	1

The expression is independent of p, meaning it doesnt affect the value of ϕ . ϕ is equvialent to $(r \Rightarrow q)$. If we want to include p, we can write $(r \Rightarrow q) \land (p \lor \neg p)$.

2. Resolution in propositional logic

- 2.1. Conjunctive Normal Form
- 2.2. Inference in propositional logic

- 3. Representation in First-Order Logic (FOL)
- 3.1. a) Argument A
- 3.2. b) Argument B

4. Resolution in FOL