4.2 Theorem. Let $a, n \in \mathbb{N}$ with (a, n) = 1. Then $(a^j, n) = 1$ for any $j \in \mathbb{N}$.

Proof. Let j=2 be the base case such that $(a^2, n)=1$. Since (a, n)=1, by Theorem 1.38, there exists $x, y \in \mathbb{Z}$ such that ax + ny = 1. Multiplying by ax + ny,

$$ax + ny = (ax + ny)(ax + ny)$$
$$= a^2x^2 + 2axny + n^2y^2$$
$$= a^2x^2 + n(2axy + ny^2)$$
$$= a^2x' + ny'$$

where, by CPI, integers $x' = x^2$ and $y' = 2axy + ny^2$. Looking at the left hand side, we know that ax + ny = 1. Thus,

$$1 = a^2x' + ny'.$$

By Theorem 1.39, $(a^2, n) = 1$. Thus, the base case is true. Suppose our assumption is true for all j where $1 \le j \le k$. By induction, we want to show $(a^{k+1}, n) = 1$ is also true. By our assumption, $(a^k, n) = 1$. By Theorem 1.38, there exists $t, u \in \mathbb{Z}$ such that $a^k t + nu = 1$. Multiplying by ax + ny,

$$ax + ny = (a^kt + nu)(ax + ny)$$

$$= a^{k+1}tx + a^ktny + axnu + n^2uy$$

$$= a^{k+1}tx + n(a^kty + axu + nuy)$$

$$= a^{k+1}t' + nu'$$

where, by CPI, integers t' = tx and $u' = a^k ty + axu + nuy$. Looking at the left hand side, we know that ax + ny = 1. Thus,

$$1 = a^{k+1}t' + nu'.$$

By Theorem 1.39, $(a^{k+1}, n) = 1$. Thus, $(a^j, n) = 1$ for any $j \in \mathbb{N}$.