

ไมโครคอนโทรลเลอร์ STM32

Serial Peripheral Interface (SPI)

- 🦢 SPI ถูกคิดค้นเมื่อ ค.ศ.1979 โดย Motorola
- ≥ ปัจจุบันถูกนำไปใช้กันมากในการสื่อสารระหว่าง MCU กับอุปกรณ์รอบข้าง ที่ต้องการความเร็วสูง
 - 🕜 ตัวอย่างเช่น SDCard จอแสดงผล ทัชสกรีน
- 🖖 เป็นบัสแบบ full-duplex รับส่งข้อมูลโดยใช้ขาข้อมูล 2 เส้น และการจัดการแบบ master-slave
- 🖖 ถือเป็น Synchronous serial interface
 - 🔐 ตามปกติจะมีขาสัญญาณ 4 เส้น (MOSI, MISO, SCLK, CS) (4-wire serial bus)
 - 🕜 ในกรณีที่รับส่งสัญญาณบนขาสัญญาณเส้นเดียว อาจเหลือสามเส้น (3-wire serial bus) (MOMI,SCLK,CS)
 - 🔐 อุปกรณ์บางประเภทไม่ต้องการส่งข้อมูลกลับ master จะใช้ขาสัญญาณเพียง 3 เส้น (ไม่มี MISO)
 - 🧼 ตัวอย่างเช่น WS2812B ที่เป็น LED สามสีพร้อม controller ในตัว และ MAX7219 ที่ใช้ขับ 7-segment / dot-matrix LED

Serial Peripheral Interface (SPI)

- 🕝 Dual SPI เปลี่ยนขา MISO/MOSI มาเป็น SIO0, SIO1 ใช้รับและส่งข้อมูลคราวละสองบิตต่อสัญญาณนาฬิกา
 - 🧼 SIO0 ส่ง b6,b4,b2,b0 SIO1 ส่ง b7,b5,b3,b1 ทำให้ส่งหนึ่งไบต์ต่อสัญญาณนาฬิกา 4 ลุก
 - 猀 การทำงานอาจอยู่ในรูปการส่งคำสั่งและ address ใน single mode แล้วรับข้อมูลแบบ dual mode
 - 🧼 หรืออาจเป็น Dual I/O command ที่ส่งคำสั่งเป็น single mode แล้วส่ง address และรับข้อมูลกลับเป็น dual mode
- 🔾 Quad SPI เพิ่มขา SIO2 และ SIO3 ทำให้สามารถส่งข้อมูลได้ 4 บิตต่อสัญญาณนาฬิกา
 - 🧼 การทำงานอาจเป็นการส่งคำสั่งแบบ single mode แล้วส่ง address และข้อมูลแบบ quad
 - W หรืออาจส่งคำสั่งและ address เป็น single mode แล้วตัวข้อมูลเป็นแบบ quad
- SDCard ที่ใช้กันโดยทั่วไป อาจรองรับการจัดการข้อมูลมากกว่าหนึ่งแบบ โดยอาศัยสัญญาณจาก master เพื่อบอกว่าจะ ทำงานในโหมดใด
 - SPI bus mode
 - 🦥 One-bit SD bus mode
 - Four-bit SD bus mode
 - 猀 Two-differential lines SD UHS-II mode

Serial Peripheral Interface (SPI)

SPI bus mode

MMC pin	SD pin	miniSD pin	microSD pin	Name	1/0	Logic	Description
1	1	1	2	nCS	I	PP	SPI Card Select [CS] (Negative logic)
2	2	2	3	DI	I	PP	SPI Serial Data In [MOSI]
3	3	3		VSS	S	S	Ground
4	4	4	4	VDD	S	S	Power
5	5	5	5	CLK	ı	PP	SPI Serial Clock [SCLK]
6	6	6	6	VSS	S	S	Ground
7	7	7	7	DO	0	PP	SPI Serial Data Out [MISO]
	8	8	8	NC nIRQ	O	OD	Unused (memory cards) Interrupt (SDIO cards) (negative logic)
	9	9	1	NC			Unused
		10		NC			Reserved
		11		NC			Reserved

Four-bit SD bus mode

MMC pin	SD pin	miniSD pin	microSD pin	Name	I/O	Logic	Description
	1	1	2	DAT3	I/O	PP	SD Serial Data 3
	2	2	3	CMD	1/0	PP, OD	Command, Response
	3	3		VSS	S	S	Ground
	4	4	4	VDD	S	S	Power
	5	5	5	CLK	I	PP	Serial clock
	6	6	6	VSS	S	S	Ground
	7	7	7	DAT0	I/O	PP	SD Serial Data 0
	8	8	8	DAT1 nIRQ	I/O O	PP OD	SD Serial Data 1 (memory cards) Interrupt Period (SDIO cards share pin via protocol)
	9	9	1	DAT2	I/O	PP	SD Serial Data 2
		10		NC			Reserved
		11		NC	•		Reserved

SPI: Characteristics

- 🖖 ขาสัญญาณ
 - C SCLK/SCK (Serial Clock) สัญญาณนาฬิกาจาก master
 - MOSI (Master Out Slave In) ข้อมูลส่งจาก master ไปยัง slave
 - MISO (Master In Slave Out) ข้อมูลส่งจาก slave กลับไปยัง master
 - CS/SS (Chip/Slave Select) สัญญาณจาก master กำหนด slave ที่ต้องการติดต่อ
 - 💜 ปกติมักจะเป็น Active low (ส่งลอจิก 0 เพื่อต้องการติดต่อ)

Master Slave

Memory SCLK Memory

SCLK MOSI

MISO

SPI

Slave

SCLK

MOSI

MISO

SPI

Master

- 🖖 กลไกพื้นฐานการทำงานมีลักษณะเป็น shift register ภายใน master และ slave
 - 💦 เมื่อต้องการส่งข้อมูล จะใช้สัญญาณ SCLK เพื่อดันบิตข้อมูลใน shift register หนึ่งตัวจาก master ไปยัง slave (ผ่าน MOSI)
 - o และใช้สัญญาณเดียวกันนั้นในการดันข้อมูลกลับจากทาง slave ไปยัง master (ผ่าน MISO)
 - จึงเห็นได้ว่ามีการรับและส่งข้อมูลพร้อมกันสองทาง
- 🖖 การส่งข้อมูลในลักษณะหลายไบต์ กระทำในลักษณะเป็นบิตต่อเนื่องกันไปจนกระทั่งหมดชุดข้อมูล
 - 🕝 ตัวอย่างเช่น หากมีข้อมูลส่งทั้งหมด 4 ไบต์ หมายความว่าจะมีบิตข้อมูลส่งไปทั้งหมด 32 บิตข้อมูลในคราวเดียว

SPI: Characteristics

Timing diagram

Clock Polarity (CPOL)

🧼 Idle at 0 (CPOL=0) สถานะปกติของ SCK เป็น 0 เมื่อ $\mathsf{CPHA} \! = \! 0$ ไม่มีการรับส่งข้อมูล

🐝 Idle at 1 (CPOL=1) สถานะปกติของ SLK เป็น 1 เมื่อ ไม่มีการรับส่งข้อมูล

Clock Phase (CPHA)

猀 เขียน/อ่านในจังหวะต้นสัญญาณ SCK (CPHA=0)

💜 เขียน/อ่านในจังหวะกลางสัญญาณ SCK (CPHA=1)

Mode	CPOL	СРНА
0	0	0
1	0	1
2	1	0
3	1	1

TODAY TOPIS IS SPI

SPI: Topology

ลักษณะการต่ออุปกรณ์ผ่าน SPI

🕜 แบบแยก slave ตัว master มีขาสัญญาณ SS/CS มากกว่าหนึ่งเส้น แต่ ละเส้นต่อไปยัง slave แต่ละตัว และส่งสัญญาณ active ไปที่ slave เพียง ตัวเดียว

🔐 แบบ daisy-chain ขา MISO ของ slave ตัวแรกต่อไปยัง MOSI ของตัวที่ สอง และเช่นนี้เรื่อยไป ทำให้สัญญาณที่ slave ตัวแรกส่งกลับคืน จะส่งไป ยัง slave ตัวที่สองแทน master ้ และเป็นเช่นนี้เรื่อยไป จนสัญญาณที่ ส่งคืนจาก slave ตัวสุดท้ายจึงย้อนกลับไปยัง master

🐝 ตัวอย่างการต่อในลักษณะนี้เห็นได้ใน WS2812B และ MAX7219

SPI ใน STM32

- 🎍 รองรับเป็นทั้ง master และ slave
- 날 ทำงานได้ทั้งเป็น full-duplex และ half-duplex
 - 🔐 ในโหมด half-duplex ขาสัญญาณจะเหลือเพียงเส้นเดียว (MOMI)
- 🆢 รองรับการทำงานแบบ 1bit 2bit และ 4bit (Quad SPI)
 - 🔐 ขึ้นอยู่กับช่องสัญญาณและรุ่น/เบอร์ย่อย
- 🕍 รองรับการจัดการแบบ SDIO
 - 🕜 ขึ้นอยู่กับช่องสัญญาณและ รุ่น/เบอร์ย่อย
- 🎍 ความเร็วของสัญญาณนาฬิกาสูงสุดขึ้นอยู่กับช่องสัญญาณและรุ่น/เบอร์ย่อย
 - STM32 บางรุ่นย่อย จะกำหนดความละเอียดของความเร็วสัญญาณนาฬิกาได้จำกัด ในขณะที่รุ่นสูงขึ้นไปมักจะสามารถ กำหนดความถี่ได้ละเอียดและตรงความต้องการได้ดีกว่า

สรุปหัวข้อ

- 🚵 SPI เป็นบัสสื่อสารข้อมูลแบบอนุกรมซิงโครนัสอีกรูปแบบหนึ่ง
 - 🕜 แตกต่างจากบัส I2C ตรงที่ SPI อาจแยกสายสัญญาณส่งและรับข้อมูลออกจากกัน และการส่งบิตข้อมูลไม่มี ACK แทรก ระหว่างไบต์
- ่ สัญญาณนาฬิกาสูงกว่า I2C ในระดับ MHz (อาจสูงถึงหลักสิบถึงร้อย MHz)
- 🖖 การต่อ slave หลายตัวพ่วงเข้าด้วยกันอาจทำในลักษณะควบคุมแยกด้วย CS/SS หรือต่อแบบ daisy-chain

