Diabetes Prediction using Logistic Regression

(Machine Learning)

https://www.linkedin.com/in/nibedita-sarkar/

logisticregression-1

June 8, 2023

1 Health Parameter Analysis and Diabetes Prediction using Logistic Regression

Logistic regression is a useful model for predicting binary outcomes, where there are only two possible classes. It is commonly used because it provides interpretable results, allows for estimating probabilities, and is computationally efficient. Logistic regression has fewer assumptions compared to other models, can handle non-linear relationships, and is robust to outliers. It also supports regularization techniques to prevent overfitting. Logistic regression is a well-studied and established model in statistics and machine learning. However, it may not be suitable for all classification problems, especially those with highly nonlinear relationships.

1.1 Define the Problem:

The problem is to create a logistic regression model based on the provided dataset that can predict the outcome of diabetes based on health parameters. The dataset contains various columns, including the outcome column, which represents whether a person has diabetes or not. The goal is to train the model using the training set and evaluate its performance on the testing set using the confusion matrix and accuracy score.

1.2 Importing necessary libraries:

```
[1]: import numpy as np
  import pandas as pd
  import matplotlib.pyplot as plt
  import seaborn as sns
  from sklearn.model_selection import train_test_split
  from sklearn.linear_model import LogisticRegression
  from sklearn.metrics import accuracy_score, confusion_matrix
  import warnings
  warnings.filterwarnings('ignore')
```

1.3 Build the dataset:

To build the dataset, you need to perform the following steps:

a) Load the dataset using pandas: Use the pandas library to load the dataset from the 'diabetes.csv' file

```
[2]: data = pd.read_csv("diabetes.csv")
  data.head(5)
```

[2]:	Pregnancies	Glucose	BloodPressure	SkinThickness	Insulin	BMI	\
0	6	148	72	35	0	33.6	
1	1	85	66	29	0	26.6	
2	8	183	64	0	0	23.3	
3	1	89	66	23	94	28.1	
4	0	137	40	35	168	43.1	

	DiabetesPedigreeFunction	Age	Outcome
0	0.627	50	1
1	0.351	31	0
2	0.672	32	1
3	0.167	21	0
4	2.288	33	1

b) Exploring the dataset Exploring the dataset is crucial for understanding its structure, identifying missing values, data distribution, correlations, and outliers, as well as for making informed decisions regarding data preprocessing and feature selection. It provides insights that guide data analysis and model building.

```
[3]: data.shape # Checking number of rows and coulmn in the dataset
```

[3]: (768, 9)

[4]: data.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 768 entries, 0 to 767
Data columns (total 9 columns):

#	Column	Non-Null Count	Dtype
0	Pregnancies	768 non-null	int64
1	Glucose	768 non-null	int64
2	BloodPressure	768 non-null	int64
3	SkinThickness	768 non-null	int64
4	Insulin	768 non-null	int64
5	BMI	768 non-null	float64
6	DiabetesPedigreeFunction	768 non-null	float64
7	Age	768 non-null	int64

dtypes: float64(2), int64(7)

memory usage: 54.1 KB

Outcome

data.info() - Checking the information about the dataset, including the number of entries, the number of columns, column names, data types of each column, and any missing values. It will help in understanding the structure and properties of the dataset.

int64

768 non-null

[5]: data.describe()

[5]:		Pregnancies	Glucose	BloodPressure	SkinThick	ness	Insulin	\
	count	768.000000	768.000000	768.000000	768.00	0000	768.000000	
	mean	3.845052	120.894531	69.105469	20.53	6458	79.799479	
	std	3.369578	31.972618	19.355807	15.95	2218	115.244002	
	min	0.000000	0.000000	0.000000	0.00	0000	0.000000	
	25%	1.000000	99.000000	62.000000	0.00	0000	0.000000	
	50%	3.000000	117.000000	72.000000	23.00	0000	30.500000	
	75%	6.000000	140.250000	80.000000	32.00	0000	127.250000	
	max	17.000000	199.000000	122.000000	99.00	0000	846.000000	
		BMI	DiabetesPedi	${ t greeFunction}$	Age	0	utcome	
	count	768.000000		768.000000	768.000000	768.	000000	
	mean	31.992578		0.471876	33.240885	0.	348958	
	std	7.884160		0.331329	11.760232	0.	476951	
	min	0.000000		0.078000	21.000000	0.	000000	
	25%	27.300000		0.243750	24.000000	0.	000000	
	50%	32.000000		0.372500	29.000000	0.	000000	
	75%	36.600000		0.626250	41.000000	1.	000000	
	max	67.100000		2.420000	81.000000	1.	000000	

data.describe() - Checks the descriptive statistics for the numerical columns in the dataset. The statistics include count, mean, standard deviation, minimum value, 25th percentile (Q1), median (50th percentile or Q2), 75th percentile (Q3), and maximum value. It provides a summary of the central tendency, spread, and distribution of the numerical data.

```
[6]: data.isnull().sum() # Checking if the dataset contains any null values.
```

```
[6]: Pregnancies
                                     0
     Glucose
                                     0
     BloodPressure
                                     0
     SkinThickness
                                     0
     Insulin
                                     0
                                     0
     BMI
     {\tt DiabetesPedigreeFunction}
                                     0
                                     0
     Age
     Outcome
                                     0
     dtype: int64
```

```
[7]: num_duplicates = data.duplicated().sum() # Checking if the dataset contains any
duplicate values

if num_duplicates > 0:
    print(f"The dataset contains {num_duplicates} duplicate values")
    data = data.drop_duplicates
    print("Number of duplicate values after dropping:", num_duplicates)
```

```
else:
    print("The dataset doesn't contain any duplicate values.")
```

The dataset doesn't contain any duplicate values.

```
[8]: data.hist(figsize=(10, 8)) # Checking Data Distribution
plt.tight_layout()
plt.show()
```


c) Extract data from the outcome column as a variable named Y: Extract the values from the 'outcome' column and assign them to a variable called Y.

```
[9]: X = data.iloc[:,:-1]
X.head(5)
```

[9]:	Pregnancies	Glucose	${ t BloodPressure}$	SkinThickness	Insulin	BMI	\
0	6	148	72	35	0	33.6	
1	1	85	66	29	0	26.6	
2	8	183	64	0	0	23.3	

3 4	1 89 0 137		66 40	23 35	94 168	28.1 43.1
	DiabetesPedigreeFunction	Age				
0	0.627	50				
1	0.351	31				
2	0.672	32				
3	0.167	21				
4	2.288	33				

d) Extract data from every column except the outcome column as a variable named X: Extract the data from all columns except the 'outcome' column and assign them to a variable called X.

```
[10]: Y = data.iloc[:,-1]
Y.head(5)
```

e) Divide the dataset into two parts for training and testing: Split the dataset into a training set and a testing set in a 70% - 30% proportion. This will be used to train the model on the training set and evaluate its performance on the testing set.

```
[12]: print(X_train.shape)
    print(X_test.shape)
    print(Y_train.shape)
    print(Y_test.shape)
```

```
(537, 8)
(231, 8)
(537,)
(231,)
```

1.4 Train the model:

```
[13]: logistic = LogisticRegression()
logistic.fit(X_train, Y_train)
```

[13]: LogisticRegression()

1.5 Evaluate the model:

```
[14]: Y_predict = logistic.predict(X_test)
    print("Y_predict:\n",Y_predict)
   Y_predict:
    [0\;0\;0\;0\;0\;0\;0\;0\;0\;0\;1\;0\;0\;0\;0\;1\;1\;0\;0\;1\;0\;0\;0\;0\;1\;1\;0\;1\;0\;1\;0\;0\;0\;0
    0 0 0 0 1 0 1 0 0]
[15]: print("Y_test:\n",Y_test)
   Y_test:
    737
         0
   505
        0
   296
   711
   329
        0
   405
        0
   315
        0
   131
        1
   364
        0
   322
   Name: Outcome, Length: 231, dtype: int64
[16]: score = accuracy_score(Y_test, Y_predict)
    print("Accuracy Score: ",score * 100)
   Accuracy Score: 79.22077922077922
[17]: confusion_matrix = confusion_matrix(Y_test, Y_predict)
    print("Confusion Matrix : \n", confusion_matrix)
   Confusion Matrix :
    [[131 11]
    [ 37 52]]
   1.6 Visually Understanding the performance of the model
[18]: # Create a figure and axis
    fig, ax = plt.subplots()
    # Plot the actual outcomes
```


1.7 Use the model:

Once the model is trained and evaluated, you can use it to make predictions on new, unseen data. This can be done by providing new input values to the model and using the predict function to obtain the predicted outcome.