Types of Nuclear Radiation

- <u>Unstable atoms</u> emit excess energy from their nuclei to become more stable. The energy released is called <u>nuclear radiation</u>.
- There are *three main types of radiation* released by radioactive atoms: **Alpha**, **Beta**, and **Gamma radiation**.

Ct ⁴ ₂ He

- Alpha Particles are identical to helium nuclei.
- Because they are large, alpha particles have the least penetrating power.
- <u>Least</u> dangerous radiation. Can be stopped by a piece of paper. Particles cannot penetrate skin.
- Beta Particles are electrons that are emitted as nuclear radiation.
- Because they are much smaller, beta particles travel faster and can penetrate skin.
- Can be stopped by thin sheet of <u>metal</u> or <u>wood</u>.

β -1 e

- Gamma Rays are emitted in the form of waves.
- Gamma rays have **no mass** and high penetrating power. This makes them **extremely dangerous**.
- Can be stopped by thick layers of <u>concrete</u>.

Example 1:

Label <u>alpha</u>, <u>beta</u>, and <u>gamma</u> radiation in the diagram below.

Example 2:

An isotope of Uranium-238 emits an alpha particle. Write the equation below.

$$^{238}_{92} \text{ U} \longrightarrow ^{234}_{90} \text{ Th} + ^{4}_{2} \text{ He}$$

Example 3:

An isotope of Carbon-14 emits a beta particle. Write the equation below.

$${}^{14}_{6}C \longrightarrow {}^{14}_{7}C + {}^{0}_{-1}e$$

Example 4:

An isotope of Technetium-99 emits a gamma ray. Write the equation below.

$$^{99}_{43}\text{Tc*} \longrightarrow ^{99}_{43}\text{Tc} + ^{0}_{0}\text{Y}$$

Types of Nuclear Radiation - Practice

Instructions: Write the particle (Alpha, Beta, or Gamma) that completes the equation below.

1)
$${}^{54}_{27}$$
Co $\longrightarrow {}^{50}_{25}$ Mn + ${}^{4}_{2}$ He

$$^{4)} \, {}^{236}_{94} Pu \longrightarrow {}^{232}_{92} U + {}^{4}_{2} He$$

²⁾
$${}_{3}^{8}$$
 Li \longrightarrow ${}_{4}^{8}$ Be + ${}_{-1}^{0}$ e

5)
$${}^{60}_{27}$$
Co* \longrightarrow ${}^{60}_{27}$ Co + ${}^{0}_{0}$ Υ

$$^{3)} {}^{222}_{88} Ra \longrightarrow {}^{218}_{86} Rn + {}^{4}_{2} He$$

$$^{6)}$$
 $^{234}_{90}$ Th \longrightarrow $^{234}_{91}$ Pa + $^{0}_{-1}$ e

<u>Instructions</u>: Complete the following <u>alpha decay</u> equations.

7)
$${}^{263}_{106} \text{Sg} \longrightarrow {}^{259}_{104} \text{Rf} + {}^{4}_{2} \text{He}$$

$$^{9)}$$
 $^{149}_{64}$ Gd $\longrightarrow ^{145}_{62}$ Sm + $^{4}_{2}$ He

8)
$$^{256}_{103} \text{Lr} \longrightarrow ^{252}_{101} \text{Md} + ^{4}_{2} \text{He}$$

$$^{10)}{}^{237}_{93}\text{Np} \longrightarrow ^{233}_{91}\text{Pa} + ^{4}_{2}\text{He}$$

<u>Instructions</u>: Complete the following <u>beta decay</u> equations.

¹¹⁾
$$_{26}^{52}$$
 Fe $\longrightarrow _{27}^{52}$ Co + $_{-1}^{0}$ e

$$^{13)} \begin{array}{c} ^{24} \text{N} & \longrightarrow \begin{array}{c} ^{24} \text{Mg} \\ 12 \end{array} \text{Mg} + \begin{array}{c} ^{0} \text{e} \end{array}$$

¹²⁾
$$^{45}_{20}$$
 Ca \longrightarrow $^{45}_{21}$ Sc + $^{0}_{-1}$ e

$$^{14)}$$
 $^{35}_{16}$ S \longrightarrow $^{35}_{17}$ Cl + $^{0}_{-1}$ e

Types of Nuclear Radiation - Questions

Instructions: Identify the following descriptions as alpha, beta, or gamma:

- 1) This radiation can only be stopped by **thick concrete or lead**. Gamma
- 2) This particle can be stopped by **clothing** alone. Alpha
- 3) During this decay, no protons, neutrons, or electrons are lost.

 Gamma
- 4) During this type of decay, **two protons** are lost. Alpha
- 5) This particle has a -1 charge. Beta
- 6) This particle has a mass of 4. Alpha
- 7) This type of radiation is identical to an **electron**. Beta
- 8) This form of radiation has **no mass** and **no charge**. **Gamma**
- 9) This particle is represented as a **helium** atom. Alpha
- 10) This particle is emitted as in the form of **waves**.
- 11) This particle can be stopped by a **piece of paper**.

 Alpha
- 12) This particle has average (medium) penetrating power.

 Beta
- 13) This is the <u>least dangerous</u> type of radiation.

 Alpha
- 14) This is the <u>most dangerous</u> type of radiation. <u>Gamma</u>

Instructions: Use the nuclear equation below to answer the following questions:

$$\begin{array}{c} 32 \\ 15 \end{array} P \longrightarrow \begin{array}{c} 32 \\ 16 \end{array} S + \begin{array}{c} 0 \\ -1 \end{array} e$$

- 15) The picture above represents **what type** of nuclear decay?

 Beta Decay
- 16) What is the mass of the starting **phosphorus (P)** atom? ______32
- 17) What is the **mass of the particle released** above?
- 18) Which decay would have caused a larger change in mass?

 Alpha Decay

Types of Nuclear Radiation

- _____ emit excess energy from their nuclei to become more stable. The energy released is called _____.
- There are *three main types of radiation* released by radioactive atoms: **Alpha**, **Beta**, and **Gamma radiation**.

4 2 He

- _____ are identical to **helium nuclei**.
- Because they are large, **alpha particles** have the least penetrating power.
- _____ dangerous radiation. Can be stopped by a piece of paper. Particles cannot penetrate skin.
- _____ are **electrons** that are emitted as **nuclear radiation**.
- Because they are much smaller, **beta particles** travel faster and can **penetrate skin**.
- Can be stopped by thin sheet of _____ or ____

 $\frac{\beta}{{}^0}$

- _____ are emitted in the form of waves.
- Gamma rays have **no mass** and high penetrating power. This makes them **extremely dangerous**.
- Can be stopped by thick layers of ______

Example 1:

Label <u>alpha</u>, <u>beta</u>, and <u>gamma</u> radiation in the diagram below.

Example 2:

An isotope of Uranium-238 emits an <u>alpha particle</u>. Write the equation below.

$$^{238}_{92}$$
 U \longrightarrow +

Example 3:

An isotope of Carbon-14 emits a beta particle. Write the equation below.

$$^{14}_{6}$$
 C \longrightarrow ____ +

Example 4:

An isotope of Technetium-99 emits a gamma ray. Write the equation below.

99
 Tc* \longrightarrow $^{+}$

Types of Nuclear Radiation - Practice

<u>Instructions</u>: Write the particle (Alpha, Beta, or Gamma) that completes the equation below.

1)
$${}^{54}_{27}$$
Co $\longrightarrow {}^{50}_{25}$ Mn + _____

$$^{4)} \, {}^{236}_{94} Pu \longrightarrow {}^{232}_{92} U + \underline{\hspace{1cm}}$$

$$^{2)}$$
 $^{8}_{3}$ Li \longrightarrow $^{8}_{4}$ Be + _____

$$^{5)} \stackrel{60}{_{27}} \text{Co}^* \longrightarrow {}^{60}_{27} \text{Co} +$$

$$^{3)}\frac{222}{88}$$
Ra $\longrightarrow ^{218}_{86}$ Rn + _____

$$^{6)} \stackrel{234}{90} \text{Th} \longrightarrow ^{234}_{91} \text{Pa} +$$

Instructions: Complete the following *alpha decay* equations.

7)
$$^{263}_{106}$$
 Sg \longrightarrow _____ + ____

$$^{10)}{}^{237}_{93}Np \longrightarrow +$$

<u>Instructions</u>: Complete the following <u>beta decay</u> equations.

¹¹⁾
$$_{26}^{52}$$
 Fe \longrightarrow + _____

13)
$${}^{24}_{11}$$
 N \longrightarrow _____ + ____

$$^{12)}_{20}^{45}$$
 Ca \longrightarrow ____ + ____

$$^{14)} \, {}^{35}_{16} \, S \longrightarrow$$
 + _____

Types of Nuclear Radiation - Questions

Instructions: Identify the following descriptions as alpha, beta, or gamma:

- 1) This radiation can only be stopped by **thick concrete or lead**.
- 2) This particle can be stopped by **clothing** alone.
- 3) During this decay, no protons, neutrons, or electrons are lost.
- 4) During this type of decay, <u>two protons</u> are lost.
- 5) This particle has a -1 charge.
- 6) This particle has a mass of 4.
- 7) This type of radiation is identical to an <u>electron</u>.
- 8) This form of radiation has **no mass** and **no charge**.
- 9) This particle is represented as a **helium** atom.
- 10) This particle is emitted as in the form of **waves**.
- 11) This particle can be stopped by a **piece of paper**.
- 12) This particle has average (medium) penetrating power.
- 13) This is the <u>least dangerous</u> type of radiation.
- 14) This is the **most dangerous** type of radiation.

<u>Instructions</u>: Use the nuclear equation below to answer the following questions:

$$\begin{array}{c} 32 \\ 15 \end{array} P \longrightarrow \begin{array}{c} 32 \\ 16 \end{array} S + \begin{array}{c} 0 \\ -1 \end{array} e$$

- 15) The picture above represents **what type** of nuclear decay?
- 16) What is the mass of the starting **phosphorus (P)** atom?
- 17) What is the **mass of the particle released** above?
- 18) Which decay would have caused a **larger change in mass**?