Formale Sprachen und Automaten Prof. Dr. Uwe Nestmann - 12. Oktober 2023

Schriftlicher Test

Studierendenidentifikation:

NACHNAME	
VORNAME	
Matrikelnummer	
STUDIENGANG	□ Informatik Bachelor, □

Aufgabenübersicht:

AUFGABE	SEITE	Punkte	THEMENBEREICH
1	3	19	MODELLE REGULÄRER SPRACHEN
2	4	20	Untermengen-Konstruktion
3	5	8	CYK-ALGORITHMUS
4	6	13	Modelle Kontextfreier Sprachen

1,5 Punkte in diesem Test entsprechen einem Portfoliopunkt.

Korrektur:

AUFGABE	1	2	3	4	\sum
PUNKTE	19	20	8	13	60
ERREICHT					
Korrektor					
EINSICHT					

Aufgabe 1: Modelle Regulärer Sprachen

(19 Punkte)

Gegeben seien die Alphabete $\Sigma_1 \triangleq \{a, b, c\}$ und $\Sigma_2 \triangleq \{0, 1\}$.

a. (9 Punkte) Sei die folgende reguläre Sprache über Σ_1^* gegeben: $\mathbf{X} = \mathbf{\Sigma}$ der _AC $A_1 \triangleq \{ wca^n x \mid w \in \{ ab, ba \}^* \land x \in \Sigma_1^* \land n \in \mathbb{N} \land (|x| = 0 \lor (x = vac \land v \in \Sigma_1^*)) \}$ Gib einen NFA M_1 mit $L(M_1) = A_1$ an.

b. (7 Punkte) Sei $A_2 \triangleq \{ wv0, \varepsilon \mid w \in \Sigma_2^* \land v \in \{ 0^n1 \mid n \in \mathbb{N}^+ \}^+ \}$ eine reguläre Sprache über Σ_2^* . Gib eine Typ-3 Grammatik G_2 mit $L(G_2) = A_2$ an.

$$G_{12}=(\{S,T,U\}, \Sigma_{2}, P_{2}, S) \text{ mit } P_{2}:$$

 $S \rightarrow oS | 1S | oT | E$
 $T \rightarrow oT | 1U$
 $V \rightarrow o$

c. (3 Punkte) Sei $M_3 \triangleq (\{q_0, q_1, q_2, q_3, q_4, q_5\}, \Sigma_2, \delta_3, q_0, \{q_2, q_5\})$ ein DFA mit:

 $Gib \ L(M_3)$ an, ohne auf Automaten oder Grammatiken zu verweisen.

$$L(M_3) = (00)^{\frac{1}{4}} (010^{\frac{1}{4}} 1 + (100)^{\frac{1}{4}} 1) (00^{\frac{1}{4}} 1)^{\frac{1}{4}} 0^{\frac{1}{4}})$$

$$= (00)^{\frac{1}{4}} (010^{\frac{1}{4}} 1 + (100^{\frac{1}{4}} 1)^{\frac{1}{4}} 0^{\frac{1}{4}}) (00^{\frac{1}{4}} 1)^{\frac{1}{4}} 0^{\frac{1}{4}})$$

$$= (00)^{\frac{1}{4}} (010^{\frac{1}{4}} 1 + (100^{\frac{1}{4}} 1)^{\frac{1}{4}} 0^{\frac{1}{4}}) (00^{\frac{1}{4}} 1)^{\frac{1}{4}} 0^{\frac{1}{4}})$$

$$= (00)^{\frac{1}{4}} (010^{\frac{1}{4}} 1 + (100^{\frac{1}{4}} 1)^{\frac{1}{4}} 0^{\frac{1}{4}}) (00^{\frac{1}{4}} 1)^{\frac{1}{4}} 0^{\frac{1}{4}})$$

3/8

Matrikelnummer:	Name:

Aufgabe 2: Untermengen-Konstruktion

(20 Punkte)

Gegeben sei der NFA $M \triangleq (\{q_0, q_1, q_2, q_3, q_4, q_5, q_6\}, \Sigma, \Delta, \{q_0, q_5\}, \{q_2, q_3\})$ mit $\Sigma = \{a, b\}$ und Δ :

a. (20 Punkte) Berechne: Konstruiere nur mit Hilfe der Untermengen-Konstruktion den DFA M' zum NFA M. Gib die bei der Untermengen-Konstruktion entstehende Tabelle an.

Hinweis: Es ist nicht nötig die unerreichbaren Zustände anzugeben.

	٥	<u> </u>	
S {qo, 95}	3913	₹90,93,92,94}	So
£9,3	592,943	₹ 9 n 3	2 1
F {90,92,93,94?	{91,92,96}	{90,1933	S 2
F {92,96}	7 92,963	7933	53
F {92,196}	£02.94.943	3913	Sy
F 791,42, (6)	() () () () () () () () () ()	{90,93}	22
7 { 90, 93 }	7917	Ø	Sc
E {92,96}	{Q2,46)	•	S ₃
F {93}	\$	593)	
7 () () ()	₹ G2,96}	< 93 }	82
= {92,94,96}	,	*	Sq
<u> </u>	4	<u> </u>	

Aufgabe 3: CYK-Algorithmus

(8 Punkte)

Gegeben sei ein Alphabet $\Sigma \triangleq \{a, b, c\}$ sowie die Grammatik $G \triangleq (\{S, A, B, C, D, E, F\}, \Sigma, P, S)$ mit:

$$\begin{array}{cccc} P: & S & \rightarrow & AB \\ & A & \rightarrow & CD \mid CF \\ & B & \rightarrow & EE \mid EB \\ & C & \rightarrow & CC \mid a \mid c \\ & D & \rightarrow & EF \mid b \\ & E & \rightarrow & c \\ & F & \rightarrow & AD \mid b \end{array}$$

a. (8 Punkte) Berechne: Gegeben sei das Wort $w \triangleq abccc$. Löse mit dem CYK-Algorithmus das Wortproblem: $w \in L(G)$ oder $w \notin L(G)$.

$CYK_w(i,j)$	1	2	3	4	5
1: a	{c}	3A3	ø	<i>{</i> \$ <i>}</i>	{S}
2: b	₹DIF}	6	ø	Ø	
3: c	{c, E}	{Bic}	{B,c}		
4: c	{ c. E } { c. E }	{B,c}			
5: c	{(,E}				

wella), dase (YKw(1,5)

Aufgabe 4: Modelle Kontextfreier Sprachen

(13 Punkte)

Gegeben seien das Alphabet $\Sigma \triangleq \{\ a,\ b,\ c\ \}$, das Kelleralphabet $\Gamma \triangleq \{\ ullet$, $\ +,\ \Box\ \}$ und der PDA $M \triangleq (\{\ q_0,\ q_1,\ q_2,\ q_3,\ q_4\ \},\ \Sigma,\ \Gamma,\ \Box,\ \Delta,\ q_0,\ \{\ q_3\ \})$ mit Δ :

a. (4 Punkte) $\mathit{Gib}\ \mathrm{L}_{\mathrm{End}}(M)$ an, ohne auf Automaten oder Grammatiken zu verweisen.

b. (4 **Punkte**) $\mathit{Gib}\ \mathrm{L}_{\mathrm{Kel}}(M)$ an, ohne auf Automaten oder Grammatiken zu verweisen.

c. (5 Punkte) Gegeben seien das Alphabet $\Sigma' \triangleq \{a, b, c, d\}$ und die Grammatik $G \triangleq (\{S, T, D, C, W, X\}, \Sigma', P, S)$ mit den folgenden Produktionen:

 $Gib \ L(G)$ in Mengenschreibweise an.

Matrikelnummer:	Name:
Auf dieser Seite löse ich ein	nen Teil der Aufgabe — :
Teilaufgabe:	O

Matrikelnummer:	Name:
Auf dieser Seite löse ich einen Teil	der Aufgabe <u> </u> :
Teilaufgabe:	-