Technical University of Munich
Department of Computer Science
Data Analytics and Machine Learning Group

Randomized Message-Interception Smoothing Gray-box Certificates for Graph Neural Networks

Yan Scholten¹, Jan Schuchardt¹, Simon Geisler¹, Aleksandar Bojchevski², Stephan Günnemann¹

¹Technical University of Munich ²CISPA Helmholtz Center for Information Security

Motivation: Gray-box Certificates for GNNs

് ം Context

- GNNs are susceptible to adversarial examples
- Certificates provide provable robustness guarantees

Problem

- White-box certificates: Only certify specific models
- Black-box certificates: Ignore properties of the classifier

Solution

- Gray-box certificates: Exploit message-passing principles
- Robustness certificates against much stronger adversaries

Threat Model

THI Cat Wood

Adversaries control multiple nodes & manipulate features

How can we limit the propagation of adversarial messages?

Gray-box Certificates for Graph Neural Networks

Exploit message-passing principles: Intercept messages

- − Deleted Edge Intercepted Message Ablated Node

Randomized Message-Interception Smoothing

Majority vote under randomized message-interception

majority vote: g(G) = class A

Interception Smoothing Certificates

Provable robustness certificates: Worst-case assumption

- One adversarial message is enough to change the prediction

If adversary does not control enough probability mass $\Rightarrow g(G) = g(\tilde{G})$ for any graph $\tilde{G} \in \mathcal{B}_r(G)$

Certificates against Strong Adversaries

Robustness of Smoothed GAT on Cora-ML

- Stronger certificates against more distant nodes

Stronger Certificates for Sparser Graphs

Sparsification

- Reduces messages to intercept
- Reduces nodes that send messages

First Certificate against Stronger Adversaries

We certify robustness against features perturbations of arbitrary magnitude

- Existing certificates certify only a few attributes in the graph

[3] Aleksandar Bojchevski, Johannes Gasteiger, and Stephan Günnemann. Efficient Robustness Certificates for Discrete Data: Sparsity-Aware Randomized Smoothing for Graphs, Images and More. ICML 2020.

Efficient Message-Interception Smoothing

Certificates on Cora-ML: 17 seconds

tl;dr Gray-box Robustness Certificates for GNNs

Interception Smoothing: Gray-box Certificates for GNNs

- Exploit underlying message-passing principles of GNNs
- Certify robustness against strong adversaries
- Model-agnostic & efficient

