Miejsce na naklejkę z kodem szkoły

CKE

MATEMATYKA

POZIOM ROZSZERZONY

PRZYKŁADOWY ZESTAW ZADAŃ NR 2

Czas pracy 150 minut

Instrukcja dla zdającego

- 1. Sprawdź, czy arkusz egzaminacyjny zawiera 4 strony (zadania 1 11). Ewentualny brak zgłoś przewodniczącemu zespołu nadzorującego egzamin.
- 2. Rozwiązania zadań i odpowiedzi zamieść w miejscu na to przeznaczonym.
- 3. W rozwiązaniach zadań przedstaw tok rozumowania prowadzący do ostatecznego wyniku.
- 4. Pisz czytelnie. Używaj długopisu/pióra tylko z czarnym tuszem/atramentem.
- 5. Nie używaj korektora, a błędne zapisy przekreśl.
- 6. Pamiętaj, że zapisy w brudnopisie nie podlegają ocenie.
- 7. Obok każdego zadania podana jest maksymalna liczba punktów, którą możesz uzyskać za jego poprawne rozwiązanie.
- 8. Możesz korzystać z zestawu wzorów matematycznych, cyrkla i linijki oraz kalkulatora.

Życzymy powodzenia!

MARZEC ROK 2008

Za rozwiązanie wszystkich zadań można otrzymać łącznie 50 punktów

Wypełnia zdający przed rozpoczęciem pracy
PESEL ZDAJĄCEGO

KOD ZDAJĄCEGO

Zadanie 1. *(5 pkt)*

Suma trzech liczb rzeczywistych dodatnich jest równa 13. Druga liczba jest trzy razy większa od pierwszej. Wyznacz trzy liczby spełniające podane warunki tak, aby suma ich kwadratów była najmniejsza.

Zadanie 2. (4pkt)

Na rysunku przedstawiono wykres pewnej funkcji wykładniczej $f(x) = a^x$ dla $x \in R$:

- a) Narysuj wykres funkcji g, który jest obrazem wykresu funkcji f w przesunięciu o wektor $\vec{u} = [2, -1]$.
- b) Wyznacz a i zapisz wzór funkcji g otrzymanej w wyniku tego przesunięcia.
- c) Odczytaj z wykresu zbiór wszystkich argumentów, dla których g(x) > 0.

Zadanie 3. (4 pkt)

Wyznacz wszystkie wartości parametru m, dla których jedynym rozwiązaniem rzeczywistym równania $x^3 + m^3x^2 - m^2x - 1 = 0$ jest liczba 1.

Zadanie 4. (5 pkt)

Wiadomo, że okrąg jest styczny do prostej o równaniu y = 2x - 3 w punkcie A = (2,1) i styczny do prostej o równaniu $y = \frac{1}{2}x + 9$ w punkcie B = (-4,7). Oblicz promień tego okręgu.

Zadanie 5. (3 pkt)

Narysuj wykres funkcji f(x) = |x-1|+3 określonej dla $x \in R$, a następnie na jego podstawie podaj liczbę rozwiązań równania f(x) = m w zależności od parametru $m \in R$.

Zadanie 6. *(5 pkt)*

Właściciel sklepu z odzieżą kupił w hurtowni koszulki, płacąc za nie 720 zł. Gdyby każda koszulka kosztowała o 2 złote mniej, to za tę samą kwotę mógłby kupić o 5 koszulek więcej. Oblicz, ile koszulek kupił w tej hurtowni wspomniany właściciel sklepu. Podaj cenę jednej koszulki.

Zadanie 7. (4 pkt)

W czworokącie wypukłym ABCD dane są: |AB| = 2, $|BC| = \sqrt{3}$, |CD| = 3, |DA| = 4 i $| < DAB | = 60^{\circ}$. Oblicz pole tego czworokąta.

Zadanie 8. (5 pkt)

W graniastosłupie prawidłowym sześciokątnym płaszczyzna ABC zawierająca przekątne sąsiednich ścian bocznych, wychodzących z tego samego wierzchołka, jest nachylona do podstawy graniastosłupa pod kątem $\alpha=60^\circ$. Pole przekroju graniastosłupa tą płaszczyzną równa się $8\sqrt{3}$. Zaznacz na poniższym rysunku kąt α . Oblicz objętość tego graniastosłupa.

Zadanie 9. (5 pkt)

W trójkącie równoramiennym ABC, w którym |AC| = |BC| wysokość CE jest dwa razy dłuższa od wysokości AD (patrz rysunek). Oblicz kosinusy wszystkich kątów wewnętrznych trójkąta ABC.

Zadanie 10. (5 pkt)

Ciąg geometryczny (a_n) jest określony wzorem $a_n = 3^{1-n}$ dla $n \ge 1$.

- a) Oblicz iloraz tego ciągu.
- b) Oblicz $\log_3 a_1 + \log_3 a_2 + \log_3 a_3 + ... + \log_3 a_{100}$ czyli sumę logarytmów, o podstawie 3, stu początkowych, kolejnych wyrazów tego ciągu.

Zadanie 11. *(5 pkt)*

Rzucamy trzykrotnie symetryczną kostką sześcienną do gry. Oblicz prawdopodobieństwa następujących zdarzeń:

- A na każdej kostce wypadnie nieparzysta liczba oczek,
- B suma kwadratów liczb wyrzuconych oczek będzie podzielna przez 3.

BRUDNOPIS