Subespaço afim de \mathbb{R}^2

Definição

Se $\mathcal{F} \subseteq \mathbb{R}^2$ é um conjunto não vazio, \mathcal{F} diz-se um subespaço afim do plano se quaisquer que sejam $A, B \in \mathcal{F}$, $\{\lambda A + \mu B : \lambda, \mu \in \mathbb{R} \mid e \mid \lambda + \mu = 1\}$ está contido em \mathcal{F} .

Exemplo

- 1. Se P é um ponto, $\{P\}$ é subespaço afim de \mathbb{R}^2
- 2. \mathbb{R}^2 é subespaço afim de \mathbb{R}^2
- 3. As retas são subespaços afins de \mathbb{R}^2

Exemplo

- 1. Os semiplanos não são subespaços afins de \mathbb{R}^2
- 2. Nenhum polígono é subespaço afim de \mathbb{R}^2

Teorema

Os únicos subespaços afins do plano são os conjuntos singulares de pontos, as retas e o plano.

Geometria Analítica em \mathbb{R}^n , $n \ge 1$

Consideramos o e.v. real

 $\mathbb{R}^n = \{(a_1, \dots, a_n) : a_1, \dots, a_n \in \mathbb{R}\}$ como conjunto de <u>pontos</u> Fixa-se um *referencial cartesiano*, cuja origem é o ponto $O = (0, \dots, 0)$ e cujos eixos coordenados são as n retas $OX_i = \{(0, \dots, x_i, \dots, 0) : x_i \in \mathbb{R} \text{ \'e a } i\text{-\'esima coordenada}\}$ Dados pontos distintos A, B representamos o vetor definido pelos pontos A, B por $\overrightarrow{AB} = B - A$.

Definição

Seja $k \in \mathbb{N}$ e sejam $A_1, \ldots, A_k \in \mathbb{R}^n$. Uma combinação afim dos pontos A_1, \ldots, A_k é uma expressão do tipo

$$\lambda_1 A_1 + \ldots + \lambda_k A_k$$
 onde $\lambda_1, \ldots \lambda_k \in \mathbb{R}$ e $\sum_{i=1}^k \lambda_i = 1$.

Definição

Diz-se que três pontos A, B, C de \mathbb{R}^n são não colineares se os vetores \overrightarrow{AB} e \overrightarrow{AC} são linearmente independentes.

Exemplo

Sejam A, B, $C \in \mathbb{R}^3$ pontos não colineares.

O conjunto

$$\pi = \{\lambda \mathbf{A} + \mu \mathbf{B} + \delta \mathbf{C} : \lambda, \mu, \delta \in \mathbb{R} \ \mathbf{e} \ \lambda + \mu + \delta = \mathbf{1}\}$$

é o plano que contém os pontos A, B, C.