Transforming λ -NFA to NFA

Two steps:

Step I: λ – completion

Step II: λ – transition removal

(I). λ -Completion

Given a λ -NFA $M=(Q,\Sigma,\delta,s,F)$ perform the following process:

For all $p,q,r\in Q$:

whenever $(p,\lambda,q),(q,\lambda,r)$ are in δ add (p,λ,r) to δ until no new transitions are added to δ and let this be $\underline{\delta'}$.

Let the new λ -NFA be $M' = (Q, \Sigma, \delta', s, F')$ where $F' = F \cup \{p \mid (p, \lambda, f) \in \delta \text{ and } f \in F\}$ and $\delta' = \delta \cup \{(p, \lambda, q) \mid p \vdash^+ q\}$

Example:

Claim 1: For any $p, q \in Q$,

 $p \vdash_{M}^{+} q \text{ if and only if } p \vdash_{M'} q$

Claim 2: For any $p, q \in Q, x \in \Sigma^*$,

 $px \vdash_M^* q \text{ if and only if } px \vdash_{M'}^* q$

Theorem: L(M') = L(M)

Example:

(II) λ -Transition Removal

Given a λ -completed λ -NFA

$$M = (Q, \Sigma, \delta, s, F),$$

perform the following process:

- $(0) \quad \delta' = \delta;$
- (i) For all $p, q, r \in Q$, if (p, λ, q) and (q, a, r) in δ then add (p, a, r) to δ' ;
- (ii) Delete all λ -transitions from δ' .

$$\begin{array}{l} \textbf{Now we got} \ M' = (Q, \ \Sigma, \ \delta', \ s, \ F) \\ \textbf{where} \ \delta' = (\delta \cup \{(p, a, r) \mid (p, \lambda, q), (q, a, r) \in \delta\}) \\ -\{(p, \lambda, q) \mid p, q \in Q\} \end{array}$$

Example

Claim Whenever

$$sx \vdash_M^* f$$

for some $f \in F$, we have

$$sx \vdash_{M'}^* f$$

and vice versa.

$$\underline{\mathbf{Claim}}\ L(M') = L(M)$$

Theorem

$$\mathcal{L}_{\lambda-NFA} = \mathcal{L}_{NFA}$$