Probeklausur

Task 1

```
\begin{aligned} & \textbf{function} \text{ INITSSSP}(G=(V,E),s\in V) \\ & \textbf{for } v\in V \text{ do} \\ & d[v]=-\infty \\ & d[s]=\infty \end{aligned} \\ & \textbf{function} \text{ Relax}(u,v\in V, \text{ weight } w) \\ & \textbf{if } d[v]<\min\{d[u],w(u,v)\} \text{ then} \\ & d[v]=\min\{d[u],w(u,v)\} \end{aligned} \\ & \textbf{function} \text{ Dijkstra}(\text{graph } G=(V,E), \text{ weights } w, \text{ node } s\in V) \\ & \text{initSSSP}(G,s) \\ & S=\emptyset, \ Q=V \\ & \textbf{while } Q\neq\emptyset \text{ do} \\ & \text{choose } u\in Q, \text{ so that } d[u] \text{ is maximum} \\ & Q=Q\setminus\{u\}, \ S=S\cup\{u\} \\ & \textbf{for } v\in N_G[u] \text{ do} \\ & \text{Relax}(u,v,w) \end{aligned}
```

Task 2

a)

:

After phase 4:

new $Q = \{w, v_3, v_1\}$

:

After phase 8:

 $\mathrm{new}\ Q=\emptyset$

b)

#pushes from node	to the right	to the left	total
s	0	0	0
\overline{u}	1	4	5
$\overline{v_1}$	1	3	4
v_2	1	2	3
$\overline{v_3}$	1	1	2
\overline{w}	1	0	1
t	0	0	0

$$\Rightarrow \sum = 15$$

c)

#pushes from node	to the right	to the left	total
8	0	0	0
\overline{u}	1	k+1	k+2
$\overline{v_1}$	1	k	k+1
v_2	1	k-1	k
<u>:</u>			
v_{k-1}	1	2	3
\overline{v}	1	1	2
\overline{w}	1	0	1
\overline{t}	0	0	0

$$\Rightarrow \sum_{i=1}^{k+2} i = \frac{(k+2)(k+3)}{2}$$

Task 3

Proof:

$$\begin{split} \sum_{e \in E} f(e) \Delta(e) &= \sum_{(u,v) \in V^2} f(u,v) \cdot \Delta(u,v) = \sum_{(u,v) \in V^2} f(v,u) \cdot \left(\pi(v) - \pi(u)\right) \\ &= \sum_{(u,v) \in V^2} f(u,v) \cdot \pi(v) - \sum_{(u,v) \in V^2} f(u,v) \cdot \pi(u) \\ &= \sum_{v \in V} \pi(v) \cdot \sum_{u \in V} f(u,v) - \sum_{u \in V} \pi(u) \cdot \sum_{v \in V} f(u,v) \\ &= \sum_{u \in V \setminus \{s,t\}} \pi(u) \cdot \sum_{v \in V} f(v,u) - \sum_{u \in V \setminus \{s,t\}} \pi(u) \cdot \sum_{v \in V} f(u,v) \\ &+ \pi(s) \underbrace{\sum_{v \in V} \left[f(v,s) - f(s,v) \right] + \pi(t) \cdot \underbrace{\sum_{v \in V} \left[f(v,t) - f(t,v) \right]}_{|f|} \quad (*) \end{split}$$

Task 4

a)

Sketch: Double y nodes; capacity 1 on every edge.

Construct a flow network (G, s, t, c) as follows:

$$G = (V, Z) \text{ with}$$

$$V = \{s, t\} \cup X \cup Z \cup Y^{(1)} \cup Y^{(2)}$$

$$Y^{(i)} = \{y^{(i)} | y \in Y\}, i = 1, 2$$

$$E = \{(s, x) | x \in X\} \cup \{(x, y^{(1)}) | (x, y) \in E_N\}$$

$$\cup \{(y_1^{(2)}, y_2^{(1)}) | (y_1, y_2) \in E_N\}$$

$$\cup \{(y^{(2)}, z) | (y, z) \in E_N\} \cup \{(z, t) | z \in Z\}$$

$$\cup \{(y^{(1)}, y^{(2)}) | y \in Y\}, c(e) = 1 \ \forall e \in E$$

b)

 $\ldots \Leftrightarrow (G, s, t, c)$ yields a flow f with |f| = |x|

c)

MaxSucnFlow, $\mathcal{O}(\sqrt{|V_N|} \cdot |E_N|)$