Injecting Temporal-Aware Knowledge in Historical Named Entity Recognition

Carlos-Emiliano González-Gallardo, Emanuela Boros, Edward Giamphy, Ahmed Hamdi, José G. Moreno and Antoine Doucet

University of La Rochelle, France

CERES - 9 juin 2023

Motivation: "Rise of Digitization"

textual corpora for the Humanities and Social Sciences

mass digitization 1980's - 2000's

transcripts: manually | OCR | HTR

NLP → semantically enriched archives

challenges

- deteriorated documents
- quality of digitization
- diachrony: language change & evolution

Where are we?

NER in historical and digitized documents less performant & noticeable vs. modern documents

multilingual evaluation campaigns: HIPE@CLEF'20 & '22

HIPE – Identifying Historical People, Places and other Entities

Shared Task on Named Entity Recognition and Linking in Multilingual Historical Documents

English French German Finnish Swedish

NLP progress

- contextualized embeddings at character level [Bircher, S. 2019] → improves representations of OOVs
- fine-tuning of Transformers ecoders on historical collections [Boros, E. et al., 2020] → alleviates digitization errors
- transformation rules to model diachronic evolution of words [Kogkitsidou, E. et al., 2020] [Díez Platas, M.L, et al., 2021] → recognizes spelling variations
- Historical Multilingual Language Models for Named Entity Recognition (mhBERT) [Schweter, S., et al., 2022] → "historical" language model
- Wenjun THESIS (work in progress) :D

... what about temporality?

Temporal Knowledge-based Contexts for NER

NER Model Architecture

Knowledge Base & temporal information integration

Wikidata5m [Wang X. et al., 2021]

- knowledge graph
- ~ 5M Wikidata entities in the general domain
- aligned to corresponding Wikipedia pages (1st paragraph)

TKG [García-Durán A. et al., 2018]

- > 11k entities
- 150k time-related facts
- 508 2017 year scope
- multiple facts per entity → aggregation operator

Wikidata5m

TKG

Context Retrieval

Experimental Setup

Historical Collections

newspapers [19C - 20C] (hipe-2020)

- Swiss, Luxembourgish & American newspapers
- ~ 20k NEs

classical commentaries [19C] (ajmc)

- Ajax Multi-Commentary project
- ~ 7.5K universal & domain-specific NEs

challenges: multilingualism, code-switching, high density NEs

hipe-2020

ajmc

pers	work
	work.primlit scope
1	↑
	en till grid
Others would r	ender μοκρατής, mightyshouldered," comparing th
	Ajax in Il. 3.22 as ἔξοχος 'Αργείων κεφαλὴν ήδ'
εύρέας duov.	

	hipe-2020									ajmc									
	French			German			English			French			German			English			
Type	train	dev	test	train	dev	test	train	dev	test	train	dev	test	train	dev	test	train	dev	test	
LOC	3,089	774	854	1,740	588	595	_	384	181	15	0	9	31	10	2	39	3	3	
ORG	836	159	130	358	164	130	-	118	76	-	-	-		_	-	-	-	-	
PERS	2,525	679	502	1,166	372	311	_	402	156	577	123	139	620	162	128	618	130	96	
PROD	200	49	61	112	49	62	-	33	19	_	-	_	-	-	_	_		$-\epsilon$	
TIME	276	68	53	118	69	49	_	29	17	2	0	3	2	0	0	12	5	3	
WORK	_	-	-	-	_	-	_		-	378	99	80	321	70	74	467	116	95	
OBJECT	-	-		-	-		-	-	-	10	0	0	6	4	2	3	0	0	
SCOPE	_	-		-	_	-	-	-		639	169	129	758	157	176	684	162	153	

Table 1. Overview of the hipe-2020 and ajmc datasets. LOC = Location, ORG = Organization, PERS = Person, PROD = Product, TIME = Time, WORK = human work, OBJECT = physical object, and SCOPE = specific portion of work.

Configurations & evaluation

configurations:

- no-context: model with no extra contexts
- non-temporal: context jokers integration with no time-related information
- temporal-(10|25|50): context jokers integration with different year interval thresholds

□ micro level precision (P), recall (R) & F-measure (F1)□ strict (CS) & fuzzy (CF) boundary matching

Fr	French						German							English						
hi	hipe-2020		ajmc		hipe-2020			ajmc			hipe-2020			ajmc						
P		R	F1	P	R	F1	P	R	F1	P	R	F1	P	R	F1	P	R	F1		
-cont	text																			
S = 0.7	755	0.757	0.756	0.829	0.806	0.817	0.754	0.730	0.742	0.910	0.877	0.893	0.604	0.563	0.583	0.789	0.859	0.823		
$F \mid 0.8$	857	0.859	0.858	0.883	0.858	0.870	0.853	0.826	0.839	0.935	0.901	0.917	0.778	0.726	0.751	0.855	0.931	0.891		
n-ter	mpora	al																		
S = 0.7	762	0.767	0.765	0.829	0.783	0.806	0.759	0.767	0.763	0.930	0.898	0.913	0.565	0.601	0.583	0.828	0.871	0.849		
F 0.8	862	0.869	0.866	0.906	0.856	0.880	0.847	0.856	0.852	0.949	0.916	0.932	0.741	0.788	0.764	0.885	0.931	0.908		
mpora	al-50)																		
$S \mid 0.$	765	0.765	0.765	0.839	0.822	0.830	0.748	0.756	0.752	0.921	0.911	0.916	0.643	0.617	0.630	0.855	0.882	0.868		
$F \mid 0.$	867	0.867	0.867	0.901	0.883	0.892	0.833	0.842	0.838	0.937	0.927	0.932	0.794	0.762	0.777	0.916	0.945	0.931		
mpora	al-25	5																		
S = 0.7	759	0.756	0.757	0.848	0.839	0.844	0.757	0.743	0.750	0.925	0.903	0.914	0.621	0.630	0.625	0.833	0.876	0.854		
F 0.8	863	0.859	0.861	0.902	0.892	0.897	0.852	0.835	0.843	0.938	0.916	0.927	0.787	0.800	0.793	0.893	0.940	0.916		
mpora	al-10)																		
S = 0.7	762	0.764	0.763	0.848	0.839	0.844	0.760	0.765	0.762	0.917	0.898	0.907	0.605	0.646	0.625	0.866	0.888	0.877		
F 0.8	863	0.866	0.865	0.902	0.892	0.897	0.852	0.857	0.854	0.936	0.916	0.926	0.760	0.811	0.784	0.922	0.945	0.933		
Bi@HII	PE-20)22																		
$S \mid \underline{0.7}$	782	0.827	0.804	0.810	0.842	0.826	0.780	0.787	0.784	0.946	0.921	0.934	0.624	0.617	0.620	0.824	0.876	0.850		
$F \mid \underline{0.8}$	883	0.933	0.907	0.856	0.889	0.872	0.870	0.878	0.874	0.965	0.940	0.952	0.793	0.784	0.788	0.868	0.922	0.894		
											_							$\frac{907}{0.856}$ 0.889 0.872 $ \frac{0.870}{0.878}$ 0.878 0.874 $ \frac{0.965}{0.940}$ 0.952 $ 0.793$ 0.784 0.788 0.868 0.922 alts on French, German and English, for the hipe-2020 and ajmc datas		

Configurations & evaluation

configurations:

- no-context: model with no extra contexts
- non-temporal: context jokers integration with no time-related information
- temporal-(10|25|50): context jokers integration with different year interval thresholds

micro level precision (P), recall (R) & F-measure (F1) strict (CS) & fuzzy (CF) boundary matching

hipe-2020

Impact of Digitization Errors (ajmc)

35 AIAY. καὶ νῦν ἐπέγνως εὐ μ' ἐπ' ἀνδρὶ δυςμενεῖ βάσιν χυχλουντ', Αίαντι τῷ σαχεςφόρφ. κείνον γάρ, οὐδέν άλλον, ἰχνεύω πάλαι. 20 νυχτός γὰρ ήμᾶς τῆςδε πρᾶγος ἄσχοπον έχει περάνας, είπερ είργασται τάδε. ζομεν γαρ οὐδεν τρανές, άλλ' άλώμεθα. κάγω 'θελοντής τῷδ' ὑπεζύγην πόνω. έφθαρμένας γάρ άρτίως εύρίσχομεν 25 λείας άπάσας καὶ κατηναρισμένας έχ γειρός, αὐτοῖς ποιμνίων ἐπιστάταις. τήνδ' οὐν ἐκείνω πᾶς τις αἰτίαν νέμει. καί μοί τις όπτηρ αὐτὸν εἰςιδών μόνον πηδώντα πεδία σύν νεορράντω ξίφει. φράζει τε κάδήλωσεν εὐθέως δ' έγω κατ' ίχνος ἄσσω, καὶ τὰ μέν σημαίνομαι, τὰ δ' ἐκπέπληγμαι, κούκ ἔγω μαθεῖν ὅτου.

vet' Alaxidao.

19. τω σαχεςφόρω, wegen des gewaltigen Schildes (572) Il. 7. 219 ff., wodurch er von dem schnellfüssigen Lokrischen Aias, Oileus' Sohn, unterschieden wird. Zu dieser Ehrenwaffe bildet die uagris des später als μαστιγοφόρος heraustretenden wahnsinnigen Helden einen grellen Gegensatz.

21. egzozov, uperklärlich. vgl. 40. Von hier an folgt Od. der Aufforderung 12 f.

23. Il. 2. 486 hueis de xléos olor αχούομεν οὐθέ τι ίδμεν.

25. γάρ geht auf 21 πράγος ασχοπον έχει περάνας zurück, indem 23. 24 zur nähern Erläuterung von είπεο είονασται τάθε id a s Folgende, Ant. 229) dienen. Man beachte das viermalige γάρ seit 20. 27. Ex y Eto os, von Menschenhand hingestreckt, nicht von

wilden Thieren zerrissen. Die Hir-

πιγέ, "Ως τότ' ἀφιζήλη φωνή γέ- hätten verrathen können. Mit έπ iστάταις vgl. O. R. 1028.

28. Statt vénet Laur. A Toé-

30. πη δαν πεδία, die Ebene durchstürmen, wie 845 diconλατείν τὸν οὐρανόν, vgl. 164.

31. φράζει τε κάδήλωσεν, verkündet und gab dann die näheren Umstände an. Präsens neben Aor., wie Ant. 406.

32 f. κατ' ἔγνος ἄσσω, vgl. dunkel, mit Bezug auf νυχτός, 6.20. - σημαίνομαι, τεχμαίρομαι, lege ich mir aus, έξιχνοσχοπούμαι 997. Odysseus erkennt aus den Spuren, dass Aias der Thäter ist, aber den Grund des wahnsinnigen Schlachtens und Forttreibens der Thiere erkennt er nicht (τὰ δέ), beyor ihn Athene belehrt. - χούχ έχω μ. ότου, ότου μάθω ταῦτα, wesshalb du mir gerade recht kommst, vgl. 378. Das rathlose Staunen des Od. drückt sich in der bei den älteren Dichtern seltenen Verbindung mit dem ten lässt Soph, mitgemordet sein Inf. aus, weiss nicht von wem (231), weil sie sonst den Thater erfahren, wie εν απόρφ είχον

NEs affected by OCR:

- 10% German, English
- 27.5% French

observed improvements:

- noisy NEs: temporal-# 14% vs non-temporal
- character error rate <67%:

In Summary...

"Rise of Digitization" + (NLP + IR) -> semantically enriched archives for the Humanities and Social Sciences

In a nutshell

NER on historical collections with semantically relevant contexts & temporal information

contexts: mean-pooled representations in a Transformer-based model

temporality: collection's metadata & temporal knowledge graphs

Findings & ideas

temporality boosts NER when training data is missing

temporality helps on recognizing entities with digitation errors (to a certain extent)

short time spans → better for collections with restrained entity diversity & narrow year intervals

pertinence of contexts is dependent of time-related metadata & knowledge base... predicting year spans of big knowledge bases?

Merci!

Carlos-Emiliano González-Gallardo

carlos.gonzalez_gallardo@univ-lr.fi

Eugène Delacroix oil painting of promoting access to historical newspapers in the New Aquitaine region