Introduction to Machine Learning

Hyperparameter Tuning Advanced Tuning Techniques

Learning goals

- Basic idea of evolutionary algorithms
- and Bayesian Optimization
- and hyperband

HPO - MANY APPROACHES

- Evolutionary algorithms
- Bayesian / model-based optimization
- Multi-fidelity optimization, e.g. Hyperband

HPO methods can be characterized by:

- how the exploration vs. exploitation trade-off is handled
- how the inference vs. search trade-off is handled

Further aspects: Parallelizability, local vs. global behavior, handling of noisy observations, multifidelity and search space complexity.

EVOLUTIONARY STRATEGIES

- Are a class of stochastic population-based optimization methods inspired by the concepts of biological evolution
- Are applicable to HPO since they do not require gradients
- Mutation is the (randomized) change of one or a few HP values in a configuration.
- Crossover creates a new HPC by (randomly) mixing the values of two other configurations.

BO sequentially iterates:

- Approximate $\lambda \mapsto c(\lambda)$ by (nonlin) regression model $\hat{c}(\lambda)$, from evaluated configurations (archive)
- **Propose candidates** via optimizing an acquisition function that is based on the surrogate $\hat{c}(\lambda)$
- **Section 2 Evaluate** candidate(s) proposed in 2, then go to 1

Important trade-off: **Exploration** (evaluate candidates in under-explored areas) vs. **exploitation** (search near promising areas)

Surrogate Model:

- Probabilistic modeling of $C(\lambda) \sim (\hat{c}(\lambda), \hat{\sigma}(\lambda))$ with posterior mean $\hat{c}(\lambda)$ and uncertainty $\hat{\sigma}(\lambda)$.
- Typical choices for numeric spaces are Gaussian Processes; random forests for mixed spaces

Acquisition Function:

- Balance exploration (high $\hat{\sigma}$) vs. exploitation (low \hat{c}).
- Lower confidence bound (LCB): $a(\lambda) = \hat{c}(\lambda) \kappa \cdot \hat{\sigma}(\lambda)$
- Expected improvement (EI): $a(\lambda) = \mathbb{E}\left[\max\left\{c_{\min} C(\lambda), 0\right\}\right]$ where $(c_{\min}$ is best cost value from archive)
- Optimizing $a(\lambda)$ is still difficult, but cheap(er)

Upper plot: The surrogate model (black, solid) models the *unknown* relationship between input and output (black, dashed) based on the initial design (red points).

Lower plot: Mean and variance of the surrogate model are used to derive the expected improvement (EI) criterion. The point that maximizes the EI is proposed (green point).

Upper plot: The surrogate model (black, solid) models the *unknown* relationship between input and output (black, dashed) based on the initial design (red points).

Lower plot: Mean and variance of the surrogate model are used to derive the expected improvement (EI) criterion. The point that maximizes the EI is proposed (green point).

Upper plot: The surrogate model (black, solid) models the *unknown* relationship between input and output (black, dashed) based on the initial design (red points).

Lower plot: Mean and variance of the surrogate model are used to derive the expected improvement (EI) criterion. The point that maximizes the EI is proposed (green point).

Upper plot: The surrogate model (black, solid) models the *unknown* relationship between input and output (black, dashed) based on the initial design (red points). Lower plot: Mean and variance of the surrogate model are used to derive the expected

improvement (EI) criterion. The point that maximizes the EI is proposed (green point).

©

MULTIFIDELITY OPTIMIZATION

- Prerequiste: Fidelity HP $\lambda_{\rm fid}$, i.e., a component of λ , which influences the computational cost of the fitting procedure in a monotonically increasing manner
- Methods of multifidelity optimization in HPO are all tuning approaches that can efficiently handle a \mathcal{I} with a HP λ_{fid}
- The lower we set $\lambda_{\rm fid}$, the more points we can explore in our search space, albeit with much less reliable information w.r.t. their true performance.
- We assume to know box-constraints of λ_{fid} , so $\lambda_{\text{fid}} \in [\lambda_{\text{fid}}^{\text{low}}, \lambda_{\text{fid}}^{\text{upp}}]$, where the upper limit implies the highest fidelity returning values closest to the true objective value at the highest computational cost.

SUCCESSIVE HALVING

- Races down set of HPCs to the best
- Idea: Discard bad configurations early
- Train HPCs with fraction of full budget (SGD epochs, training set size); the control param for this is called multi-fidelity HP
- Continue with better $1/\eta$ fraction of HPCs (w.r.t $\widehat{\rm GE}$); with η times budget (usually $\eta=2,3$)
- Repeat until budget depleted or single HPC remains

MULTIFIDELITY OPTIMIZATION – HYPERBAND

Problem with SH

 Good HPCs could be killed off too early, depends on evaluation schedule

Solution: Hyperband

- Repeat SH with different start budgets $\lambda_{\text{fid}}^{[0]}$ and initial number of HPCs $p^{[0]}$
- Each SH run is called bracket
- Each bracket consumes ca. the same budget

or	η	=	4
----	--------	---	---

bracket 3		
t	$\lambda_{fid}^{[t]}$	$p_3^{[t]}$
0	1	82
1	4	20
2	16	5
3	64	1

I	bracket 2		
t	$\lambda_{fid}^{[t]}$	$p_2^{[t]}$	
0	4	27	
1	16	6	
2	64	1	

	bracket	1
t	$\lambda_{fid}^{[t]}$	$p_1^{[t]}$
0	16	10
4	0.4	0

ŀ	oracke	t 0
t	$\lambda_{fid}^{[t]}$	$p_0^{[t]}$
0	64	5

MORE TUNING ALGORITHMS:

Other advanced techniques besides model-based optimization and the hyperband algorithm are:

- Stochastic local search, e.g., simulated annealing
- Genetic algorithms / CMAES
- Iterated F-Racing
- Many more . . .

For more information see *Hyperparameter Optimization: Foundations, Algorithms, Best Practices and Open Challenges*, Bischl (2021)

