Data mining techniques to classify cancer types based on Gene Expression Data

Project Description:

This project focuses on the application of Data Mining techniques to classify cancer types based on gene expression data, using insights derived from the foundational study "Molecular Classification of Cancer: Class Discovery and Class Prediction by Gene Expression Monitoring" by Golub et al. The original study demonstrated how DNA microarray data could systematically differentiate between acute myeloid leukemia (AML) and acute lymphoblastic leukemia (ALL), pioneering a shift from morphology-based cancer diagnosis to molecular profiling.

Building on this research, the team will work with real-world gene expression datasets to replicate and expand upon methods like clustering (class discovery) and supervised classification (class prediction). They will implement algorithms such as K-Means clustering, Logistic Regression, Support Vector Machines, Random Forests, XGBoost, and Neural Networks, while exploring the effects of dimensionality reduction (e.g., PCA) and model tuning. The work will include rigorous model evaluation using cross-validation, confusion matrices, ROC analysis, and feature importance studies. Advanced components like SHAP value interpretation and t-SNE visualization are also integrated to enhance model transparency and data understanding.

This project not only provides practical experience in bioinformatics and Data Mining, but also echoes the broader goals of personalized medicine—leveraging molecular data to guide diagnosis and treatment. The outcome will be a complete, well-documented classification pipeline along with an analytical report, demonstrating the feasibility and power of gene expression monitoring for cancer classification.

Read the paper here - https://drive.google.com/file/d/1Q2CiHQdFsntX8DX-LVpfg_kr3KRGt4WA/view?usp=drive_link (though the paper is old, it is a landmark paper in cancer prediction and it is a gold standard dataset even today. They did not have machine learning during those days to analyse the data. Thus, this paper provides good data that is suitable for today's machine learning):

Download the data here - https://drive.google.com/drive/folders/1ah-
PGT90UCI6JH0vY5mh5pIOCwxgs4EJ?usp=sharing

In the data, target 0 denotes ALL (Acute Lymphoblastic Leukemia) and 1 denotes AML (Acute Myeloid Leukemia)

Task			
Install environment + setup all libraries			
Read and fully understand the dataset research paper			
Load the dataset, check basic structure, missing values, class balance			
Perform detailed EDA: histograms, correlation heatmaps, boxplots			
Preprocessing: scale features, PCA (retain 80-90% variance)			
Build Baseline Classifier (DummyClassifier, simple Logistic			
Regression)			
Implement K-Means Clustering; visualize clusters before/after PCA			
Evaluate Clustering: Silhouette score, Elbow method, Inertia plots			
Implement t-SNE visualization of data (2D scatter)			
Preprocess data variants: with/without PCA for future models			
Implement Naive Bayes Classifier			
Implement 5-fold Cross-validation for Naive Bayes			
Implement Logistic Regression with hyperparameter tuning			
(regularization)			
Implement 5-fold Cross-validation for Logistic Regression			
Compare Naive Bayes vs Logistic Regression: Accuracy, F1, ROC			
curves			
Implement Support Vector Machine (SVM) with linear kernel			
Implement SVM with RBF kernel; tune C and gamma			
Implement Random Forest Classifier			
Tune Random Forest: n_estimators, max_depth, min_samples_split			
Plot Feature Importance for Random Forest			
Implement XGBoost Classifier + PCA preprocessing			
Implement XGBoost + GridSearchCV for hyperparameter tuning			
Implement XGBoost without PCA and compare models			
Plot XGBoost Feature Importance; try early stopping			

(Optional Advanced) Implement SHAP values for XGBoost interpretability

Build a simple Neural Network (MLP) with 2 hidden layers

Tune Neural Network: number of neurons, activations, dropout

Compare XGBoost vs Neural Network on test metrics

Prepare graphs: Confusion Matrices, ROC curves, Accuracy/F1 tables

Buffer + Write Final Project Report (2–3 pages)

Evaluation

Tasks	Key Goals	Skills Evaluated
Install environment, Read dataset	Dataset loaded and	
paper, Load and explore data,	explored, EDA completed,	Python setup, Data
EDA (plots), Preprocessing	PCA applied (retain 80-90%	exploration,
(scaling, PCA)	variance)	Preprocessing
		techniques
		Model building,
Build baseline classifier,	Baseline model ready,	Clustering analysis,
Implement K-Means clustering,	Clustering implemented and	Visualization of high-
Evaluate clusters, Visualize	evaluated, t-SNE	dimensional
with t-SNE	visualization	data
	plotted	
Implement Naive Bayes and		Supervised model
Logistic Regression, Tune	Models cross- validated,	evaluation, Cross-
hyperparameters, Cross-	Hyperparameters tuned,	validation skills, Metric
validation,	ROC	interpretation
ROC analysis	curves plotted	
		Advanced model
Implement SVM (linear and		optimization, Ensemble
RBF), Tune SVM, Implement	SVM and RF models	methods, Feature
Random Forest, Plot feature	tuned, Feature	analysis
importance	importance	
	visualized	

Implement XGBoost (with/without		
PCA), Hyperparameter tuning	XGBoost models compared	Boosting expertise,
(GridSearchCV), Optional SHAP	(PCA vs no PCA), SHAP	Hyperparameter search,
values	analysis attempted	Explainable ML
	(optional)	(optional)
Build Neural Network, Tune	Neural Network tuned,	Deep learning basics,
architecture (layers, neurons,	Models compared, Final	Model comparison, Final
dropout), Compare NN vs	report prepared	reporting and
XGBoost, Final		documentation
report writing		
