Document Title

Tier 2 Summary of Ecotoxicological studies

for the Plant Protection Product Fenhexamid WG 50 (500 g/kg) (Specification No.: 102000007271)

Substance(s)

Regulation FC/1/41/2010
on the renewal of the inclusion of AIR2 acrove substances
in conjunction with
Directive 91/414/EFC and Regulation

According to OECD format guidance for industry data submissions (SANCO/16387/2010 rev. 8 on the renewal of active sobstances included in Annex I)

Annex III.
Section 6. Poin
Document 1

Author(s)

Bayer CropScience

K-

Knoell Consult GmbH

project of any plant of the project This document, the data contained in it and copyright therein are owned by Bayer Crop Science. No part of the document or any information contained therein may be disclosed to any party without the prior written outband. ar Crops, do any for the state of the state And the state of t THE STATE OF THE S

	TABLE OF CONTENTS	
		Page
IIIA 10	Ecotoxicological studies on the plant protection product Effects on birds Acute toxicity exposure ratio (TERA) for birds Short-term toxicity exposure ratio (TERST) for lords In case of heit, the concentration of active substance in the sheit.	~ \$ 7
IIIA 10.1	Ecotoxicological studies on the plant protection product Effects on birds Acute toxicity exposure ratio (TERA) for birds Short-term toxicity exposure ratio (TERST) for fords	, 9
IIIA 10.1.1	Acute toxicity exposure ratio (TERA) for birds	7 9 7 3 7 3 14 9 14 9 14 9 14 9 14 9 14 9 14 9 14
IIIA 10.1.2	Short-term toxicity exposure ratio (TER _{ST}) for fords	7 14.
IIIA 10.1.3		16
IIIA 10.1.4	In case of pellets, granules, pills or treated reed	©′ 16
IIIA 10.1.4.1	Amount of a.s. in or on each peller, granule, pill or treated seed	16
IIIA 10.1.4.2	Proportion of the LD ₅₀ for the A.s. in 100 particles/gram particles	©17
IIIA 10.1.5	In the case of pellets granules and pills, their size and shape	17
IIIA 10.1.6	Acute oral toxicits of the preparation to the more sensitive species	17
IIIA 10.1.7	Supervised cage or field trials	17
IIIA 10.1.8	Acceptance of bait; granules or treated seed by birds	17
IIIA 10.1.9	Effects of secondary porsoning	17
IIIA 10.2	Effect on aquatic organisms	21
IIIA 10.2.1	Toxicity exposure ratios for aquatic species	26
IIIA 10.2.1.1	Acceptance of bait; granules or treated seed by birds Effects of secondary porsoning Effect on aquatic organisms Toxicity exposure ratios for aquatic species TERA for fish TERA for fish	30
IIIA 10.2.1.2	TER for fish TER for Daphnia	32
IIIA 10.2.1,3	TERA for Daphnia TERA for Daphnia TERA for Maquatic insect species	33
IIIA 10.2.7.4	TER for Daphnia	34
IIIA 10.2.1.5	TERA for an aguatic insect species &	34
IIIA 10.2.1.6	TERLA for an Aquatic insect species	35
IIIA 10.2.1.7 ©	TER for an aquatic crustacean species	35
IIIA 10.2. <u>1</u> .8	TERLT for an aquatic rustacean species	35
IIIA 10.41.9	TER, for an aquatic gastropod mollusc species	35
IIIA 40.2.1.10	TERLT for an aquatic gastropod mollusc species	35
IIIA 10.2.1.11	TER _{LT} for atgae	35
IIIA 10.2.2	Acute toxicity (aquatic) of the preparation	37
IIIA 10.2.2.1	Jish acute toxicity LC 50, freshwater, cold-water species	37
IIIA 102.2.2	Acute toxicity (24 & 48 h) for Daphnia preferably Daphnia magna	38
IIIA 10.2.2	Effects on algal growth and growth rate	38
IIIĂ 10.2.2.4	Marine or estuarine organisms acute toxicity LC ₅₀ /EC ₅₀	39
IIIA 10.2.2.5	Marine sediment invertebrates, acute toxicity LC ₅₀ /EC ₅₀	39
IIIA 10.2.3	Microcosm or mesocosm study	39

IIIA 10.2.4	Residue data in fish (long term)	A 40
IIIA 10.2.5	Chronic fish toxicity data Chronic toxicity (28 day exposure) to juvenile fish	** 40 %
IIIA 10.2.5.1	Chronic toxicity (28 day exposure) to juvenile fish	40
IIIA 10.2.5.2		
IIIA 10.2.5.3	Fish life cycle test	
IIIA 10.2.6	Chronic toxicity to aquatic invertebrates	40
IIIA 10.2.6.1	Chronic toxicity (28 day exposure) to juvenile fish Fish early life stage toxicity test Fish life cycle test Chronic toxicity to aquatic invertebrates Chronic toxicity to Daphnia magaa (21-day)	40 40 40 40
IIIA 10.2.6.2	Chronic toxicity for a representative species of aquatic insects.	A 0
IIIA 10.2.6.3	Chronic toxicity for a representative species of aquatic gastropod mollusci	40
IIIA 10.2.7	Accumulation in aquatic non-target organisms Effects on terrestrial vertebrates other than birds	40
IIIA 10.3	Effects on terrestrial vertebrates other than birds	44 44
IIIA 10.3.1	Toxicity exposure ratios for terrestrial vertebrates other than birds	44
IIIA 10.3.1.1	Toxicity exposure ratios for terrestrial vertebrates other than birds Acute toxicity exposure ratio (TER _A) Short-term toxicity exposure ratio (TER _{ST})	45
IIIA 10.3.1.2	Short-term toxicity exposure ratio (TERs)	46
IIIA 10.3.1.3	Long-term toxicity exposure ratio (TER _{LT})	46
IIIA 10.3.2	Long-term toxicity exposure ratio (TER _{LT}). Effects on terrestrial sertebrates other than birds Acute oral toxicity of the preparation. Acceptance of part, granules or treated seed	50
IIIA 10.3.2.1	Acute oral toxicity of the preparation	50
IIIA 10.3.2.2	Acceptance of Bait, granules or treated seed	50
IIIA 10.3.2.3	Effects of secondary poisoning F S S	50
IIIA 10.3.3 💝	Supervised cage or field trials or other appropriate studies	51
IIIA 10.4	Effects on bees Hazard Quotients for bees Oral exposure Quo	55
IIIA 10.3.1	Hazard Quatients for bees O	55
IIIA 10.4.1.1		55
IIIA 10.4.1.2	Contact exposure OHC	56
IIIA 10.4.2 🎺	Acute to ocity of the preparation to bees	56
IIIA 10.4.231	Acute or al tencity	56
IIIA 10.4.2.2	Acute contact toxicity &	59
IIIA 10.4.3	Effects on bees of residues on crops	59
IIIA 10.4.4 🎺	Cage tests V V	59
IIIA 10.4.5©	Field tests	59
IIIA 10,4% 🧷	Investigation of special effects	59
IIIA 10.4.6.1	Larval toxicity	59
III 10.4 6.2	Long residual effects	59
IIIA 10A.6.3	Disorienting effects on bees	59
IIIA 10.4.7	Tunnel tests - effects of feeding on contaminated honey dew or flowers	60

IIIA 10.5	Effects on arthropods other than bees	© 60
IIIA 10.5.1	Effects on sensitive species already tested, artificial substrates Effects on non-target terrestrial arthropods in ext. laboratory tests	63
IIIA 10.5.2	Effects on non-target terrestrial arthropods in ext. laboratory tests	63
IIIA 10.5.3	Effects on non target terrestrial arthropods in semi field tests	% 63
IIIA 10.5.4	Field tests on arthropods species	63
IIIA 10.6	Effects on non-target terrestrial arthropods in semi-field tests Field tests on arthropods species Effects on earthworms and other soil macro-organisms Toxicity exposure ratios for earthworms, TER and TERLED	63
IIIA 10.6.1	Effects on non-target terrestrial arthropods in ext. laboratory tests Effects on non-target terrestrial arthropods in semi-field tests Field tests on arthropods species Effects on earthworms and other soil macro-organisms Toxicity exposure ratios for earthworms, TER and TERLT	64 265
IIIA 10.6.2		265
IIIA 10.6.3	Acute toxicity to earthworms Sublethal effects on earthworms Field tests (effects on earthworms) Residue content of earthworms	65
IIIA 10.6.4	Field tests (effects on earthworms)	465
IIIA 10.6.5	Residue content of earthworms	65
IIIA 10.6.6	Effects on other soit non-target macro-organisms	65
IIIA 10.6.7	Residue content of earthworms Effects on other soit non-target macro-organisms Effects on organism matter breakdown Effects on soit microbial activity Laborator test to investigate impact on soil microbial activity	66
IIIA 10.7	Effects on soil microbial activity	66
IIIA 10.7.1	Laboratory test to investigate impact on soil microbial activity	66
IIIA 10.7.2	Further festing to investigate impact on soil microbial activity	67
IIIA 10.8	Effects on non-target plants & S	67
IIIA 10.8.1	Effects on non-target terrestrial plants	67
IIIA 10.8.1.1	Effects on non-garget terrestrial plants Seed germination	68
IIIA 10.8.1.2	Vegetatiye vigoup v v v v v	68
IIIA 10.8.1.3	Seedling emergence Terestria Deld testing	69
IIIA 10.8.1.4	Terrestrial field testing	69
IIIA 10.8.2	Effects on non-target aquatic plants	69
IIIA 10.8.2.1	Aquatic plant growth - Lemna	69
IIIA 10.8.2. 2 ©	Aduatic field testing	69
IIIA 10.9	Effects on other non target organisms believed to be at risk	69
IIIA 10.9.1	Summary of preliminary data biological activity & dose range finding	69
IIIA 10.9.2	Assessment of relevance to votential impact on non-target species	69
IIIA 10.10	Other/special studies Q	69
IIIA 10.10.10.	Other/special studies laboratory studies	69
IIIA 10,10.2	Other/special studies - field studies	69
IIIA 10.11	Summary and evaluation of points IIIA 9 and IIIA 10.1 to 10.10	70
IIIA 10.14A	Predicted distribution and fate in the environment and time courses	70
IIIA 10A1.2	Non-target species at risk and extent of potential exposure	72
IIIA 10.11.3	Short and long term risks for non-target organisms	73

IIIA 10 Ecotoxicological studies on the plant protection product

Fenhexamid WG 50 is a product in the form of water dispersible granul@containing. 50 fenhexamid. Throughout this summary dossier the product is referred to as Fenhexamid WC the active substance as fenhexamid.

In this chapter a risk assessment for Non-Target Organisms is presented for Feenexamid including its active substance fenhexamid, for the use as a fungicitie in vine, stowberry and comat Ecotoxicity data used in the following risk assessment were derived from studies with the formulated product and the active substance.

Details of the studies are presented under Annex A Section 6, Roint 8 of the EU dossier submitted in the context of Annex I listing and the relevant data submitted during the EU evaluation process according to the Review Report of Fephexamid (649 VI/99 Fev. 2, From Setober 2000) Studies that have not been evaluated during the Annex Disting process are presented in the updated Annex II, Section 6, Point 8 in the Context of AJR2 renewal submis

Intended application pattern *

The formulation containing 500 g/g fembexamid is intended for use as foliar spra@applied fungicide for grapes, strawberries and tomatoes in the field.

The use pattern for this formulation is summarised as follows:

Application pattern of Fernexamid W650 as used for the risk assessment **Table 10 - 1:**

.~)		- / / / / / / / / / / / / / / / / / / /	8 N 0/2	Al 9
Crop	Timing of 9	Max. number of applications	Application	Maximum application
	application C	applications	Çinter Al	rate per treatment
, Ø	ВВСНФ		Jdj 🖔	[g a.s./ha]
Grapes	1 st 69 79 2 nd 8 2-83	2 5	PBCH timings,	800
Strawberry (high rate)	² 39-89	3	7 - 14	1000
Strawberry (low rate)	55-89		9 - 14	750
Tomato 🗸 💍	56289	3 %	7 - 14	750

^{1) 11} days are considered as Orealisto minimum interval for the risk assessment

General Remarks concerning Metabolites

Substance, the metabolites listed in Table 10 -2 were addressed in the metabolites listed in table 10 -2 were addressed in the metabolites lis In addition to the active substance, the metabolites listed in Table 10-2 were addressed in the ecotoxicologica Prisk

Table 10 - 2: List of metabolites and synonymes adressed in the ecotoxicological risk assessment

No.	Name used in the summary (synonymes, short forms, code numbers)	Occurence &
M10	KBR 2738-benzoxazole	Photolysis no
	(synonyme: Fenhexamid-benzoxazole)	relevant exposure
M12	KBR 2738-3-deschloro	Water sediment
	(synonymes: 2-monochloro-KBR 2738, fenhexamid-3-deschloro)	
M15	KBR 2738-trishydroxyphenyl	Photolysis, no @
	(synonyme: Fenhexamid-trishydroxyphenyl)	relevant exposure
M24	[C-C]biphenyl KBR 2738	Soil Soil
	(synonymes: KBR 2738-[C-C]biphenyl, fenhammid-[C-C]biphenyl, CS-	
	CQ88719)	
M39	1-methylcyclohexanecarboxylic acid	Water/sediment
	(synonymes: KBR 2378-carbonic acid, KBR 258-1-	
	methylcychlohexancarbonsäure, BC\$\(\frac{1}{2}\)BC75\(\frac{1}{2}\)99)	
M40	1-methylcyclohexanecarboxamid@	Photolysis To
	(synonyme: BCS-CQ6373)	rdevant exposure

Ecotoxicologically significant metabolites.

Metabolites, for which analytical methods have to be established for monitoring purposes, have to be addressed as significant and tabolites. For these metabolites, significant quantities have been observed in at least one environmental compartment of either soil, water, plant or air.

However, none of the metabolites can be considered as hazardous or oses a higher risk to terrestrial and aquatic organisms that the parent compound.

Ecotoxicologically rejevant metabolites

None of the metabolites of renheramid which are addressed within this dossier and the corresponding Annex II for the active ingredient is considered as ecotoxicologically relevant. None metabolites poses a higher risk to terrestriate and addatic organisms than the parent compound. Annex It for the active ingredient is considered as cotopiologically relevant. None of the

Toxicity of fenhexamid to birds
The summary of the toxicity profile of the active substance fenhexamid to birds is provided in the following table.

Table 10.1- 1: Avian toxicity data of fenhexamid

Table 10.1- 1: Avian toxicity data of fenhexamid

1 able 10.1- 1:	Aviali toxicity	iata di lennexannu ay L
Test species	Test design	Ecotoxicological endpoint Q & Reference C Q
		Feobexamid
Bobwhite quail	acute, oral	LD ₅₀ 2000 mg a kg bw WB0£8 M-006224-01-W M-006224-W M-00
Bobwhite quail	5-day feeding	TA 8.1.001 (EU point IIA, 8.1.001) LGV 5000 mg a 50kg feed VB 2 LOD50 0 > 968 mg a.5./kg bw/d WA 8.1.0/01 (EU point IIA, 8.1.2/01)
Mallard duck	5-day feeding	©02 VE008 ©DD ₅₀ > 1408 mg a.s./kg bw/d IIA 80.3/01 ©U point IIA, 8.1.2/02)
Bobwhite quail	23 weeks of Geding Schrono, Geproduction	NOAEL 154 me a.s./kg/bw/d

Dose conversion for the NOEL of 2074 mg/kg ford from the avian reproduction study with

The EU list of endpoints for Jenhexamid (FSA review report 6497/VI/99-rev.2 (19.10.2000) provides the NOAEL for use in TERLT calculation for birds as 2074 ppm. According to EFSA GD (2009), the risk assessment is based on endpoints and exposure expressed in daily dietary doses. Conversion of the diet concentration of 2074 ppm (= mg/kg (eed) is proposed as follows.

Table 103 2: Dose conversion for a vian reproduction NOAEL (2074 ppm = 154 mg as/kg bw/d)

Bodyweight V			
	start (day 0)	201 g bw	
males	end Q	216 g bw	
	mean M	208.5 g bw	
females females	(Start (Say 0)	198 g bw	1997, Table 1
females V O	end	241 g bw	1997, Table 1
	Mean F	219.5 g bw	
Overall mean bodyweight	(maon M + maon E) / 2	214 g bw	
Oxeran mean bodyweigh	(mean M + mean F) / 2	0.214 kg bw	

Food consumption			Qr°
Assamana of doils, food	g food / pair / day	31.87 g food	1007 Tobles
Average of daily feed consumption over 23 weeks	g food / bird / day	15.93 g food	1997, Table 2
consumption over 23 weeks	kg food / bird / day	0.016 kg food	
Relative food consumption	0.016 / 0.214 = 0.0741	kg food / kg bird/ day 🦼	
Fenhexamide concentration at NOAEL	2074 mg as/kg feed		
Daily dietary dose	$0.074 \times 2074 = 154$	g as/kg bw/day	NOAEL for TERLI

Metabolites

The metabolism of fenhexamid in plants was investigated in grapes, tomators and apples. The rate of degradation on plants is quite low and the inigiority of radioactively remained on the surface of the fruits as unchanged parent compound. Most of the identified metabolites were hydroxy-derivatives of fenhexamid, but no metabolite exceeded an amount of 32% of the total radioactive residue. Furthermore, all main metabolites identified to plants were also detected in the lat metabolism study. (see also Annex II, point 6.1).

The toxicity of these metabolites considered to be included in the toxicity testing with the active ingredient on birds and mammals, especially in substronic and chronic tests.

Risk assessment for birds,

The risk assessment procedure follows the EPSA Guidance Document on Risk Assessment for Birds & Mammals (2009). The risk assessment follows a tiered approach to assess the effects of plant protection products on birds based on current regulators requirements.

The risk is considered acceptable, if the Toxicity Exposure Ratio (TER) value pass the trigger values of ≥ 10 for acute exposure and ≥ 5 for chronic exposure.

If the TER values are below the rigger values in certain areas, a refined risk assessment based on more relevant and realistic conditions. Performed for those particular areas.

Calculation of Toxicity Exposure Ratio (TER)

The calculation of acute and long-term Toxicity to Exposure Ratio (TER) is defined as follows:

Acute risk: TER D [mg a]./kg bw] / DDD

Long-term risk: $TER_{LT} = NO(A)EP [mg a.s./kg bw/d] / DDD$

The endpoints for acute and long-term risk assessment derive from acute and reproduction studies respectively, and are expressed as dose [mg] per kg body weight per day.

Calculation of Daily Dietary Dose (DDD)

Acute exposure:

The <u>daily dietary dose</u> for a single application is given by the following equation:

 $DDD_{single application} = application rate [kg/ha] \times shortcut value (SV₉₀)$

In case of multiple applications the DDDsingle application should be multiplied with an appropriate multiple application factor (MAF90). $DDD_{multiple applications} = DDD_{single application} \times MAF90$ $Long-term \ exposure:$ For a single application the daily dietary dose is given by the following equation: $DDD_{single application} = application \ for \ daily \ dietary \ dose is given by the following equation:$

$$DDD_{multiple applications} = DDD_{single application} \times MAP_{90}$$

DDD_{single application} = application fate [kg/ha] × shortcut value) 8

should be multiplied with an appropriate multiple For multiple applications the DDD single application factor (MAF_m)

$$DDD_{multiple applications} = DDD_{multiple application} \times MAF_{multiple application} \times MAF_{multiple$$

Where

DDD

MAF

Time weighted average factor (Fixa) based on a default time window of 21 days and a DF 50 of to day Teading to a value of 0.53

=FIR/bx x RUD: Vakue for exposure estimate based on species and crop. Shortcut value

sidues on feed items normalized on an application rate of 1 kg **RUD**

90th percentive values for scute exposure, extension for MAF, RUD and SV

-term exposure, extension for MAF, RUD and SV

Standard exposure scenario for Tier 1 risk assessment

The main potential exposure route for birds is expected to be consumption of contaminated feed.

The risk assessment on Screening level as well as the Tier 1 risk assessment is based on standard scenarios (combination of increator species (screening level) or generic focal species (Tier 1) and crop) Default "shortcut". Values for the exposure estimate will be used as provided in Appendix A of the EFSA Guidance (2009) representing a worst case assessment.

The screening step before the actual risk assessment as described in the guidance based on indicator species level will be omitted.

It is assumed that:

- animals satisfy their entire food demand in the treated area (PT = 1),
- over an acute time frame (hours) the animals feed on items containing maximum residues (90th percentile), whereas they would ingest food containing mean residues over a long-term period (days to weeks),
- the multiple application factor (MAF) for the acute of long-term exposure is based on to fault values based on a generic DT₅₀ value of 10 days, considering the actual (maximum) number of applications and the interval between them,
- long-term predicted environmental concentrations to be compared with paronic endpoints carried calculated as the time-weighted average concentration. Default assumptions are a time window of 21 days and a DT₅₀ of 10 days leading to a time weighted average factor (= f_{twa}) of 0.53. This factor is equally valid for feed items consisting of vegetation as well as of arthropods.

Avian generic focal species for Tippl risk assessment

According to the EFSA Guidance (2009) the following generic foral species have to be addressed in Tier 1 risk assessment.

Table 10.1-3: Shortcut values for avian generic focal species according to EFSA (2009)

	. **			Mortcut v	alue (SV)
Crop	Growth stage (BBCH)	Generic focal species	Representative species	For long-term RA based on RUDm	For acute RA based on RUD%
\$ (i)		Small insectivorous bird	Black Redstart	9.9	25.7
Vineyard			Linnet	3.4	7.4
Vineyaid		Sucall omnivorous Bird	Woodlark	3.3	7.2
	19pening (81-85)	Frugivorons bird ** ##rush/starling"	Song thrush	14.4	28.9
~(© 240 Z	Small omnvorous bird	Woodlark	4.4	9.6
Strawber	Late (61-89)	Frugivorous bild "starfing"	Starling	13.4	27.0
	20	Small insectivorous bird	Yellow wagtail	9.7	25.2
	Fruit stæge (71-89)	Frugivorous bird "Gow"	Crow 1)	32.0	57.4
	50	Small gramivorous bird "finch"	Linnet	3.4	7.4
Fruiting vegetables	≥ 50 Frait stage	Small omnivorous bird "lark"	Woodlark	3.3	7.2
	Frantstage 771-8957	Frugivorous bird "starling"	Starling 2)	20.7	49.4
	≥ 20	Small insectivorous bird "wagtail"	Yellow wagtail	9.7	25.2

¹⁾ RUD unit specified for gourds; 2) RUD unit specified for tomato

Summary of calculated TER values for birds

Summary of all acute TER calculations as given under point 10.1.1

Active substance	Crop	Generic focal species	SV	TERA	Refinement
		Small insectivorous bird "redstart"	25.7	> 75	Noy
	Grape	Small granivorous bird "finch"	₹ 7.4	> 2600	8 6 4
	$(2 \times 0.8 \text{ kg/a.s./ha})$	Small omnivoro@bird "lark"	7.2	> 2467	No S
		Frugivorous bird Trush/starling	28.9	<i>®</i> 67	Now Now
	G. 1	Small omnigorous bird "lark"	9.6	> 130°	, 888 K
F 1	Strawberry $(3 \times 1.0 \text{ kg a.s./ha})^{-1}$	Frugivorous bird "starling" 🗽	° 27.08	> 46	No C
Fenhexamid		Small insectivorous bird wagtail	25.2	<u></u> \$50 .	No.
		KFrugikorous bûrd	45 7.4 "	> 29 °	/ No
	Fruiting vegetables (Tomato)	Smalk@ranivo@us bir@	🤊 7.4 💯	> 225	No C°
		Small ommivorous bird	Z2	> 231	No.
	$(3 \times 0.75 \text{ kg a.s./ha})$	Frugivorous bird "starling"	* 49.4	> 34 <	, No.
		Small insectivorous ord "wagtail"	25.2°	> 66	No

worst case, covering lower rate of 4×0.75 kg a.s./

Summary of all reproductive (long-term) TER calculations as given under point 10.1.2 **Table 10.1-5:**

Active substance	Grop O	Generic focal species	SV m	ER LT	Refinement
		Small arsectivorous bood "redstart"	J 6.3 K	» 24	No
	Crape Grape	Small granvorous bird "finch"	2:2	71	No
	Grafte (**) 6 × 0.8 kg/a.s./(62)	Small omnivorous bird "lark"	2.1	73	No
څ		of ruga crous one in the surraing	© 9.2	17	No
		Spall ombivorous bird "tark" «	4.7	33	No
Fambanami d	Strawberry O* (20 1.0 kg a.s./ha) 1)	Frugigorous ord "stanning" @	14.2	11	No
Fenhexamid	(30 × 1:0 kg a.s., aga)	Small psectivo ous bird "wagfail"	10.3	15	No
		Frugivorous bird "crow"	25.4	6.1	No
	Fruiting vegetables	Small granivorous bird	2.7	57	No
	(Tomato	Sphall omnivorous bird	2.6	59	No
Q	(3 × 0 75 kg 3 s./ha)	Frugivo cous bird "starling"	16.5	9.4	No
		Silian insectivolous ond wagian	7.7	20	No

Conclusion: According to the presented risk assessment, , the risk to birds from the use of the product

IIIA 10.1.1 Acute toxicity exposure ratio (TERA) for birds Tier 1 acute toxicity exposure ratio for birds

The ther 1 msk assessment has been performed for grapes for an application rate of 2 × 0.8 kg ferbexamic ha at a minimum application interval of 11 days, for strawberries for an application rate of 3×1.0 kg/ha at a minimum application interval of 7 days covering the lower rate of 4×0.75 kg/ha and for tomatoes for an application rate of 3 × 0.75 kg fenhexamid/ha at a minimum application interval of 7 days.

Table 10.1.1-1: Tier 1 acute TER calculation for birds

		LD ₅₀	Ε	DDD			4	
Crop	Generic focal species	[mg/kg bw]	Appl. rate [kg/ha]	SV90	MAF	DDD	TERA	Trigger
		Fenhe	examid		Ŵ	Ĉ		, Š
	Small insectivorous bird "redstart"			25.7		26	ZQ5	
Grape	Small granivorous bird "finch"	> 2000	© 0:8 5	7.4 8	,	\$7.7 \C	> 2600	~ 10°
Grape	Small omnivorous bird "lark"	2000		7.2			> 267	4
	Frugivorous bird "Trush/starling"			>28.9 ↓		30.4	>67	
	Small omnivorous bird "lark"			906 906			130	0
Strawberry	Frugivorous bird "starling"	\$ 200@	\$1.0 ¢	27. %	1.6	470	\$\frac{2}{46}	10
	Small insectivorous bird "wagtail"			2 5.2		\$ 40.3 ₀	> 50	
	Frugivorous bird			507,4		63 .9	> 29	
.	Small manivorous birts			7.4	0, 4	8.9	> 225	
Fruiting vegetables (Tomato)	Speal organorous bird		7 0.75 7 0.75	3 .2	1.6	8.6	> 231	10
(Toniato)	Frugivorous bird © "starting"		7 J	49.40) 	59.3	> 34	
	Small insectivorous bird			Ž5.2		30.2	> 66	

All TER values are above the Annex VI trigger of 0 for ocute exposure. Accordingly an unacceptable acute risk to birds from the use of Fenhexamic WG 30 according to the proposed use pattern can be excluded

Acute risk assessment for birds drinking contaminated water

The acute risk from water in putales formed on the soil surface of a field when a (heavy) rainfall event follows the application of a pesticide to a crop or bare soil is covered by the long-term risk assessment under Point 10.12 of this dossie.

IIIA 10 9.2 Short-term toxicity exposure ratio (TER_{ST}) for birds

Tier Lishort term toxicity exposure ratio for birds

According to the risk assessment scheme of EFSA GD birds and mammals (2009) a short-term risk assessment is not required for fenhexamid.

Tier 1 long-term toxicity exposure ratio for birds

The tier 1 risk assessment has been performed for grapes for an application rate of 2×0.8 kg

fenhexamid/ha at a minimum application interval of 11 days, for strawberries for an application rate of 3×1.0 kg/ha at a minimum application interval of 7 days covering the lower rate of 4×0.75 kg/ha and for tomatoes for an application rate of 3×0.75 kg fenhexamid/ha at a minimum application interval of 7 days.

Table 10.1.2-1: Tier 1 long-term TER calculation for birds

							≈ ()	~~
Crop	Generic focal species	NO(A)EL [mg/kg bw/d]	Agpl. Rate	DDD SVm MAS	n ftwa	DDD	YER	~
		Fe	nhavamid			3		, S
	Small insectivorous bird "redstart") A	nhexamid	9.95		6.3	249	
Grape	Small granivorous bird "finch"	0 154x		3.4	0 530	2.2	71 71	5
	Small omnivorous bird (154			0.53	25		3
	Frugivorous bird "Trush/starling" >			14.40		9.24	, 17	
	Small omnivorous birt			4.4		9 0.7	33	
Strawberry	Frugivorous bird "Carling"	150	1.0	134 2.0	0.59	14.2	11	5
	Small insectivorous bord "washail"			©9.7	Ø Y	10.3	15	
	Frugivorous bird			32.0		25.4	6.1	
Fruiting vegetables	Small graniyorous bird ("furch")		5 J	3.4		2.7	57	
Fruiting vegetables (Tomato)		954 L	0 45	3.3 2.0	0.53	2.6	59	5
(Toniuto)	Frugivorous bird "Sarling"			20.7		16.5	9.4	
	Small insect Frous And "wagtail"			9.7		7.7	20	

All TER values are above the trigger of for long-term exposure. Accordingly the long-term risk to birds from the use of Fennexand WG 50 according to the proposed use pattern is acceptable.

Long-term risk assessment for birds drinking contaminated water

An assessment of the risk potentially posed by consumption of contaminated drinking water is required according to the EFSA Guidance Document for Birds and Mammals (2009).

Due to the incidental nature of occurrence of drinking water reservoirs on agricultural fields (as compared to the contamination of food items growing or dwelling on those fields), a separate assessment of this exposure route is considered appropriate at least on the first-tier level.

Two scenarios were identified as relevant for assessing the risk of pesticides via drinking water to birds and mammals:

- Leaf scenario, only relevant for birds possibly drinking water from puddles in leaf whorls after application of a pesticide to a crop and subsequent rainfall or irrigation. This scenario is only relevant for acute exposure.
 - As Fenhexamid WG 50 is applied in grapes, strawberries and tomatoes, no pools in caf axils where an acute exposure possibly hight occur are to be expected.
- Puddle scenario. Birds and mammals taking water from puddles formed on the soil surface of a field when a (heavy) prinfall event follows the application of a pesticide to a crop or bare soil. This scenario is only relevant for agric and long-term exposure.

An "escape clause" recommended in the EESA Guidance Document for Birds and Manmals (2009) allows for screening the need for a quantitative risk assessment by a comparison between the application rate and the toxicity of the respective substance. This escape clause specifies that "due to the characteristics of the exposure scenario in conjection with the standard assumptions for water uptake by animals ..., no specific calculations of exposure and TER are necessary when the ratio of effective application rate (application rate of application rate of application rate of less sorprive substances (Koc < 500 L/kg) of 3000 in the case of more sorptive substances (Koc < 500 L/kg)." 1.

Table 10.1.2- 2: Evaluation of potential concern for exposure of birds drinking water (escape clause)

Compound	ØKoc ≪	Application/rate * MAFm	NOGA)EL		"Escape clause" No concern if ratio	Conclusion
Fenhexamid	A7 A	8 80.		3.0	≤ 3000	No concern

¹⁾ Critical GAP for application in strawberries (high rate) used as porst case approach.

This evaluation confirms that the risk for bords from drinking water that may contain residues from the use of Fenhexamid WG 50 is acceptable.

III A 10.1.3 In case of bait, the concentration of active substance in the bait Not applicable for spray application.

IIIA 10.1.4 In case of pellets, granules, pills or treated seed

Not applicable or spray application.

1112 10.12.1 Amount of a.s. in or on each pellet, granule, pill or treated seed Not applicable for spray application.

¹ EFSA (2009): Guidance Document on Risk Assessment for Birds & Mammals on request from EFSA, p. 69

IIIA 10.1.4.2 Proportion of the LD₅₀ for the a.s. in 100 particles / gram particles

Not applicable for spray application.

IIIA 10.1.5 In the case of pellets, granules and pills, their size and shape

Not applicable for spray application.

IIIA 10.1.6 Acute oral toxicity of the preparation to the more sensurve species

According to the "Guidance Document on Terrestrial Ecotoxicology" of October 2002, studies with the formulation are considered necessary only where they will clearly add essential information. Since the studies with the active ingredient show to acute toxicity, a further acute study or birds with the formulation was not taken into consideration due to animal welfare reasons.

IIIA 10.1.7 Supervised cage or field trials

The risk assessment based on the active substance indicates acceptable actue, short-term and long-term risks to birds (see Points 10.1) and 10.1.2 of this dessier). For this reason and also considering animal welfare, no supervised cage or field study with the preparation was deemed necessary.

IIIA 10.1.8 Acceptance of bait-grammles of treated seed by birds

Not applicable for spray application.

IIIA 10.1.9 Effects of secondary poisoning

Substances with a high bioaccumulation potential could theoretically bear a risk of secondary poisoning for birds if fooding on confiminated prey like fish or earthworms. For organic chemicals, a $\log K_{\rm OW} > 3$ is used to trigger an in-depth waluation of the potential for bioaccumulation.

The log Pow of fenhexamid was determined to be 3.52 (see Annex IIA, point 2.8). Thus a risk assessment for secondary poisoning was performed for the active substance of Fenhexamid WG 50.

Risk assessment for bioaccumulation and food chain behaviour for birds

The risk assessment according to EFSA (2009) follows a tiered approach to assess the effects of plant protection goducts on birds and mammals.

The risk is considered acceptable, if the 'Long-term Toxicity Exposure Ratio' (TER_{LT}) value pass the trigger values of ≥ 5 for long-term exposure.

If the TER values are below the trigger values, a refined risk assessment based on more relevant and realistic conditions is performed for those particular areas.

Calculation of Toxicity Exposure Ratio (TER)

The long-term Toxicity to Exposure Ratio (TER) depends on the selection of the suitable endboint and is defined as follows (EFSA 2009):

Long-term risk: $TER_{LT} = NO(A)EL$ [mg a.s./kg bw/d] / DDD

Calculation of Daily Dietary Dose (DDD) for earthworm eating birds

DDD_{earthworm} = PEC_{worm} × FIR / bw

Residues in earthworms are calculated according to the following equation

PEC_{worm} = PEC_{soil} × BCF

$$DDD_{earthworm} = PEC_{worm} \times FIR / bw$$

$$PEC_{worm} = PEC_{soil} \times BCF$$

The bioconcentration factor (BCF

BCF =
$$(0.84 + 0.012 \text{ P}_{ow}) / f_{oo} K_{oo}$$

Where

Organic carbon adsorption coefficient 4 **Koc**

Organic Carbon content of soil (tak f_{OC}

Calculation of Daily Dietary Dose (DDD)

Residues in fish are calculated ac

$$PEC_{fish} = PEC_{sw} \times BCF_{fish}$$

Avian generic focal species for Tier i risk assessment

According to the EFSA Condance Document of Risk Assessment for Birds and Mammals (2009) the following generic focal species have to be addressed in the Tier 1 risk assessment.

Table 10.1.9-1: Avian generic focal species for the Tier 1 risk assessment of secondary poisoning

Generic aviancindicator spectos	Body weight [g]	Example	FIR/bw
Earthworm eater	4 00	Blackbird	1.05
Fish ster &	1000	Heron	0.159

Long term OER calculation for earthworm-eating birds

The risk assessment has been performed for application in strawberries (high rate). This is a worstcase covering all other uses according to the intended GAP.

Table 10.1.9-2: Tier 1 long-term TER calculation for earthworm-eating birds

8		0	
Compound Fenhexamid		Origin of value	
BCF _{worm} cal	culation:	Q	
P_{OW}	3311	AII 2.8	
K_{OC} [mL/g]	517	IIA 7.4 / IIIA 9.3	
f_{OC}	0.02	defaalt	
BCF _{worm}	3.92		
PEC _{worm} cal			
PEC _{soil} (twa, 21 d)[mg/kg] 1)	0.134	III \$ 9.4 Q	
PEC _{worm} [mg/kg]	0.53		
DDD calc	ulation:		7
FIR/bw	<u></u>	4 . ().	
DDD [mg/kg bw/d]	0.55		
TER _{LT} cale	culation		
NO(A)EL [mg/kg bw/d]	√ 7/54 √ 2	IIIAM0.1	
TER _{LT}	Q' & 280% &		
Trigger			4
Refined risk assessment required	No s		
1) Warst ages DEC (two 21 d) for the	an un atro Darria Miah rate		

¹⁾ Worst case PECsoil (twa, 21 d) for the use in strainberries (high rate) (covering all of the uses)

The TER value for the use in strawberries (high rate) as worst case scenario is above the trigger of 5. Accordingly the risk to earthworse eating birds from the use of Fenhexamid WG 50 according to the proposed use pattern is acceptable.

Long-term TER calculation for fish-eating birds

The risk assessment has been performed for application in vine. This is a worst-case covering all other uses according to the intended GAP.

Table 10.1.9- 3: Tier Long-term TER calculation for fish-eating birds

Compound	Fenhexamid &	Origin of value		
	PEC calculations			
BCFfish	√ 80° 80° €	IIA 8.2.6.1/02		
		(EU point IIA, 8.2.3/02)		
PEC _{SW} (twa, 21 d)[mg/F) ¹	×	AIII, 9.7		
PEC _{fish} [mg/kg]	<i>№</i> 20!86			
DDD calculation:				
FIR/by O	<i>♀</i>	Default		
DED [mgkg bw/d]	0.14			
	TERLT calculation:			
NO(A) [mg/kg bw]	154	IIIA, 10.1		
TER _{LT}	1131	-		
Trigger	5			
Refined risk assessment required?	No			

¹⁾ Worst case PEC_{SW} (twa, 21 d) for the use in vine as given in chapter 9.7 (covering all other uses)

The TER value for the use in vine as worst case scenario is above the trigger of 5. Accordingly the risk to fish eating birds from the use of Fenhexamid WG 50 according to the proposed use parternals acceptable. The TER value for the use in vine as worst case scenario is above the trigger of 5. Accordingly the risk State of the state the state of the s

	on aquatic orga			mid.	
cicity of fenhexamid t ummary of the aquatic			ow for fenhexa	mid.))
similar y or one orquisite	promoto	provided out	, , , , , , , , , , , , , , , , , , ,		
le 10.2- 1: Toxicity of fe	nhevamid to aquati	ic organisms			
					* 1
Test organism	Test system	Endpoint		Reference C	. Ć
	Ac	ute toxicity to	fish		
			~. 7	(1995) (1995) (1995) (1995) (1995) (1995) (1995) (1995) (1995) (1995) (1995) (1995) (1995) (1995) (1995) (1995)	
Oncorhynchus mykiss	Flow through	LC ₅₀ &	10.24 J	,	
(rainbow trout)	96 h			II 8.2.1.1/01	
				(EU point IJ (, 8.2.1701)	
	L.		3.17	(1995) (1995)	
Lepomis macrochirus	Flow through	LCS	3 176°	100M95602 200602501-1	
(bluegill sunfish)	96 6 8			SIIA 8&1.2/012	
	Į Ž	(())		(FU point IIA, § 2.1/02)	
	@ \Chr	on toxicity to	fi g	8 8 4	
				(1997)	
Oncorhynchus mykiss 🔩	Early Life Stage flow-through		0.101	DOM96050 M-006184-01-1	
(rainbow trout)	96 d	NOLOG	0.101	©NA 8.2.4/01	
Ş) O'	(EU point IIA, 8.2.2.2/01)	
	Scute foxic	ity to aquatic in	nver@brates		
	4 4.		<i>S</i>	(1995)	
Daphnia magna Ç	Staffe &			HBF/DM139	
(water flea)	Ø38 h ≤	\$ EC 50	20.0	M-006075-01-1 IIA 8.3.1.1/01	
				(EU point IIA, 8.2.4/01)	
	Chronic tox	city to aquatic	invertetrates		
			~	(1996)	
Daphnia magna 🍣	Semi-static			HBF/RDM56	
Daphnia magna (water flea)	Semi-static 24 d	NOEC () 1.0	M-006068-01-1 IIA 8.3.2.1/01	
, q . (i				(EU point IIA, 8.2.5/01)	
	Sedime	at dwelling org	ganisms	, ,	:
. L L L L L L L L		of dwelling org		(1999)	
Chironomus riparius (C	Chillian todal			HBF/CH35	
(chironopard)	spiked water 2 28 2	EC ₁₅	11.4	M-024548-01-1 IIA 8.5.2/01	
				(EU point IIA, 8.2.7/01)	
				(2002)	1
Chironomus Liparius	Chronic test –	NOEC 1	100 mg a.s./kg	1022.021.173	
(chironomid)	28 d	NOEC	i vu ilig a.s./Kg	M-033777-01-1	

Table 10.2-1: Toxicity of fenhexamid to aquatic organisms (continued)

Test organism	Test system	Endpoint [mg a.s./L]	Reference
	Effe	cts on algal growth	
Selenastrum capricornutum (green alga)	Static 120 h	E _r C ₅₀ 8.43	AJO/128695 M-006073-01-1- IIA 84/01 (EU point IIA, 82.6/01)
Scenedesmus subspicatus (green alga)	Static 72 h	\$\int_{50}\$ > 2\(\frac{1}{2}\)	AJO/133595 M1-006970-0143 W Ifax, 8.4/02 EU point IIA, 8.2.6/02)
	<u>گ</u> ے	Aquatio plants Q	
Lemna gibba (duck weed)	Static O	EC 2.3 20	(1998) 143 A-193 1006182-01-1 11A-8.6/01

Test organism 👟			Reference
		(110) P	
		cute toxicity to fish	
Oncorynchus mykisi	Static Static	LC ₅₀ J 0.391	
(rainbow trout)	96 h 4	1 % 1 (50 - 8) (1939 %	1 250506 01 1
	3011	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	IIA 8.2.1.3/01
	Acute toxi	ờity to≽ağuatic inverteMsates	
9	Static 480		(2009)
D 1 :	Static		EBKBL002
(water flea)	480b	E (%) (5 1.13	M-345853-01-1
			IIA 8.3.1.1/02
	Q SET	ects on algar growth	
Pseudokirchneriella subcapitata (green alga)	Q .		(2010)
Pseudokirchnerieira,	A Static	$/$ $C_{rC_{50}}$ > 9.25	EBKBL007
(oreen alga)	7 72 h Q	7.23	M-362991-01-1
(green arga)		1.	IIA 8.4/03

Table 10.2- 2: Toxicity of fenhexamid metabolites to aquatic organisms (continued)

Test organism	Test system	Endpoint [mg	p.m./Ll	Reference
1 cor oi Sumom	1 est system	M12	5 P****** 1	Tereference #
	Ac	eute toxicity to fish		
Oncorynchus mykiss (rainbow trout)	Static 96 h	LC ₅₀	4.51	EBRBL066 M-345406-01-1
	Acute toxic	city to aquatic inverte	brates .	
Daphnia magna (water flea)	Static 48 h	EC ₅₀ C	12:67	(2009) BBKB 6005 M-345837-01-1 IIA 8.3.1.1/03
	Ę <i>t</i> f	ets on algal growth	A	
Pseudokirchneriella subcapitata (green alga)	Static 72 P	E. Ç 0	25	(2009) EBB BL004 M \$ 5417 01-1 IIA 8 404
	O V	© M15♥ (©)		8 4
	Z A	te toxicity to fish		
Oncorhynchus mykiss (rainbow trout)	Static 96 kg	LCO		(2009) EBKBL012 M-357294-01-1 IIA 8.2.1.3/03
<u>Ş</u>	Reute to xic	city to aquatic inverse	brates (T
Daphnid wagna (water flea)	Statuc &	\$\frac{1}{50} \frac{1}{50} \fra	26 V	(2009) EBKBL011 M-358250-01-1 IIA 8.3.1.1/04
	Effe	ects on Ogal growth	, O	T
Pseudokirchneriella subcapitale (green alga)	Static 72 H	ErCso	10.1	(2010) EBKBL010 M-367188-01-1 IIA 8.4/05
<u>.</u> 1		©M24		
	Aç	ute toxicity to fish		
Treorynchus mykiss (rainbow trout)	Static 96 h	LC ₅₀	2.62	(2012) EBKBP003 M-422423-01-1 IIA 8.2.1.3/04
	Acute tosic	eity to aquatic inverte	brates	
Daninia nagna Kwater Jea)	Static 48 h	EC ₅₀	> 20	(2012) EBKBL030 M-423120-01-1 IIA 8.3.1.1/05
	E.C.	ects on algal growth		•

Test organism	Test system	Endpoi	nt [mg p.m./L]	Reference Q°
Pseudokirchneriella subcapitata (green alga)	Static 72 h	E _r C ₅₀	14.2	(2012) EBKBP003 M-422987-01-1 IIA 8.4/06

Table 10.2-2: Toxicity of fenhexamid metabolites to aquaticorganisms (continued)

		1 077	
Test organism	Test system	Endpoint [mg p.m./5]	Reference S
		M390"	
	Acı	ute toxicity to fish	Q O & O
Oncorynchus mykiss (rainbow trout)	Static 96 h	C LCG C TO TO	(2012) EBKBL028 M-432291-611 IIA 8.2.18705
	Acute	ity to aquadic invertebrates	
Daphnia magna (water flea)	Static &	EC ₅₀ 138	(2012) BKBP004
	Effe	ets on algal growth , and algal growth	
Pseudokirchneriella subcapitata (green alga)	Static 72 kg	M400 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	(2012) EBKBL027 M-422978-01-1 IIA 8.4/07
)	M400 & 4 @	
	🔻 🖔 Açı́	ite toxicuty to fish	
Oncorhypshus mykiss (rainbow trout)		the toxicity to fish LC50 > 1000	(2010) EBKBL024 M-369106-01-1 IIA 8.2.1.3/06

Endpoints in bold considered relevant for the rislOssessment p.m. = pure metabolite

Metabolites

In a study performed with fembexamed with respect to environmental fate and behaviour in water and sediment, two major metabolites were mentioned (M39 and M12) which occurred in an aquatic environment in amounts up to \$2% and 7.5% respectively. Therefore, a quantitative risk assessment is presented for M39 and M12. A quantitative risk assessment risk assessment is also conducted for the major soil netabolite M24.

With the photolysis metabolics M10, M15 and M40 aquatic studies have been conducted and results are presented All photolysis metabolites are of transient nature and therefore, due to the very limited potential exposure, they were not taken into consideration for the quantitative risk assessment.

Summary of data derived from studies with the formulated product

Document M-III / Tier 2, Sec. 5, Point 10 - Ecotoxicological Studies of Fenhexamid WG 50

A summary of the aquatic toxicity profile of Fenhexamid WG 50 is provided in Table 10.2- 3. For more details on the respective studies reference is made to Point 10.2.2 of this dossier.

Table 10.2-3: Toxicity of Fenhexamid WG 50 to aquatic organisms

•	• •	or remierania we so is provided in ruole 10.2 s.mor		
more details on the respect	tive studies referer	nce is made to Point 10.2.2 of this dossier.		
Table 10.2-3: Toxicity of	of Fenhexamid WG	5 50 to aquatic organisms		
Test organism	Test system	Endpoint Reference [mg, a.s./L]		
Acute toxicity to Wish				
Oncorhynchus mykiss (rainbow trout)	Semi-static 96 h	LC3 (2.66 mg product/L) (1996) (1996) (1996) (2.66 mg product/L) (2.66 mg product/L) (2.66 mg product/L) (2.66 mg product/L) (3.66 mg product/L) (
	Acute toxici	ty io aquatic invertebrates		
Daphnia magna (water flea)	Static 48 h	HBF/DM 144 (24) mg product/LV M-006248-01-4 KIIIA 0.2.2.201		
Effects on a gal growth > S S S				
Selenastrum capricornutum (green alga)	Static 72 h	E _r C ₅₀ (36.3 mg product /L) M-006205-01-1 KM2A 10.2.2.3/01		

These results indicate that the formulated product is not more toxic than expected, based on the active

Therefore, as the active Substance is not more to six whose it is formulated, the risk assessment to aquatic organisms for application of Fenhexamid WG 50 can be based on the ecotoxicological data and PEC values of the active substance fenhexanid

Selection of endpoints for risk assessment

considered. However, some special points have to be In general the lowest endpoint values addressed.

Selection of algae endpoints for visk assessment

Processes in ecosystems are dominately rate driven and therefore, the unit development per time (growth rate) appears more suitable to measure effects in algae. Also, growth rates and their inhibition can easily be compared between species, test durations and test conditions, which is not the case for biomass. After numerous discussion the carrent test guidelines OECD TG 201, the EU-Method C3, the EC regulation for Classification and Labeling (EC regulation 1272/2008) and the PPR Opinion (EFSA Journal 464, 1-44, 2007) list growth rate as the most suitable endpoint of the algae inhibition test. Only the corrent Guidance Document on Aquatic Toxicology (SANCO/3268/2001 rev. 4) still states that "Achere is no clear evidence available to indicate which is the most relevant endpoint for the field signation the lower figure should be used in the risk assessment". In order to avoid unnecessary delays in dossier reviews, toxicity-exposure-ratios in this assessment are built on the lower of the two values, the E_bC₅₀ or the E_rC₅₀ in case both values are available, unless justification is available.

IIIA 10.2.1 Toxicity exposure ratios for aquatic species

Aquatic organisms may be exposed to a plant protection product to some extent by spray drift, run off or drainage from treated fields. The provided studies and data permit a risk assessment following exposure to the product under practical conditions.

Predicted Environmental Concentrations in surface water bodies

Predicted environmental concentrations for the active substances and their retevant metabolites were calculated in surface water (PEC_{sw}) and in sediment (PEC_{sw}) according to FOCUS surface water scenarios as described in detail in Point 9.7 (active substances) and 9.8 (matabolites).

Concentrations in groundwater are also considered as groundwater might become surface water, leading to exposure of aquatic organisms. However, the PEC values for the active substance fenhexamid and the soil metabolite M24 are \$0.1 \text{ mg/L} in groundwater for all selevant FOCUS scenarios and application rates (for details see Point 9.6), and thus not relevant for the risk assessment.

Table 10.2.1-1: Maximum PECswand PECswa

				<u>Q</u>
•		PCCsw, no	Fenhexandid *	J
Crop	Sten∕=\	POCsw, na	PECsw, 21 d TWA	PEC _{sed, max}
2.0p	Step	μg/LY C	Jug/L]	[µg/kg]
Vine, late		358750 @	197.8	1630
2 × 0.8 kg/ha	DŽ (N-JEV) Multív 🖍	25.86	10.68	66.85
Vine, late 2 × 0.8 kg/ha	2 (S-EU Molti)	25.86 Q 25.86	₩ ₩0 ₹70	67.03
	2 ON-EU Single)	21 0	_{@,} 7.958	49.40
	2 (S-EU Single)	<u>k</u> 'ÿ 4726241	1.9/0	49.58
Strawberry (high rate) 3 × 1 kg/ha	¥1 💥 🔊	619.50	352.2	3060
3 × 1 kg/har	2 (X) EU Multi)	0 11.88	5.246	33.08
	2 S-EU Multi)	11.88	5.270	33.30
	2 (N-E) Single	® 20 <u></u>	3.451	21.52
Q A	2 (SEU Single)	Y , 9.20, 9	3.476	21.74
Strawberry (low@ate) 🔎			352.2	3060
		93,45	4.119	26.01
	2 (S-EQ Multi)	(2) <u>9</u> 9.145	4.138	26.18
	2 (MEU Single)	6.90	2.588	16.14
	2 (S-EU Single)	6.90	2.607	16.30
Tomato 🔍		464.70	264.2	2300
$3 \times 0.75 \text{ kg/ha}$	² 2 (N-Ά Multi) ³	8.913	3.934	24.81
	2 (SEU Month) Q	8.913	3.953	24.98
	2 N-EU Single	6.90	2.588	16.14
	2 (S-EU Single)	6.90	2.607	16.30
Tomato 3 × 0.75 kg/ha				

Table 10.2.1-2: Maximum PEC_{sw} and PEC_{sed} values for fenhexamid at FOCUS Step 3

		Single ap	plication	Multiple a	
Crop	Scenario	PECsw, max [μg/L]	PEC _{sed, max} [μg/kg]	PECsw, max	PECsed, mg/
Vine (late)	D6 (ditch)	13.72	14.27	14.07	16,96
	R1 (pond)	0.488	1.403	_√ 0.744	, Q.46467 , Q
	R1 (stream)	10.06	(A) 17	8.879	1.374
	R2 (stream)	13.49	7.021	11.90	0.003
	R3 (stream)	14.19	£ 3.092	© 12.52 ×	J 2.851 Q (C
	R4 (stream)	10.06	© 1.400	∜ 8.878 _. ©	7.298 V
Strawberry (high rate)	D6 (ditch)	6.326	2.630	4.61.6)	1.374 2.4646 1.374 0.09/3 2.851 1.298 2.229 0.905
	R2 (stream)	5.617	0.930	4.075	Q.905 ~
	R3 (stream)	5.940,6	© 1,3069	4 286	¥.271 [™]
	R4 (stream)	4.P90 🐰	953 m	3 .044 3	£ 2.20 £ .
Strawberry (low rate)	D6 (ditch)	4 ∜ 47 , %	<i>ℚ</i> 994 <i>ℚ</i>	3.195	0 1.565
	R2 (stream)	₹.212 ~	0.323	<i>2.</i> 2 8 s	() 0.838 (F
	R3 (stream)	© 4.430√ .	, © 0.98 8	O" "Ž.974 "Ş	0.838
	R4 (stream)	3942	#Q#51 @	©2.11 2	Ø 1.641
Готаtо	D6 (ditch)	4 0747 ~	¥.994	3.469	1,691
	R2 (stream)	∂4.212 <i>\</i>	0.32	<u>3</u> 055	© *0x843
	R3 (str@m)	4.430	S 0.988 2	9.213	% 0.959
	R4 (stream)	3,0,42	1.451 °C	Ç	© 1.649

Maximum PEC_{sw} and PEC_{sed} of fenhe amid for all relevant scenarios at FOCUS Step 4 following application to vine with a m buffer zone Table 10.2.1- 3:

		Single ap	phication a.	Multiple a	pplication
Buffer	Scenario	PEC w max	PIQ sed moo	SPEC swomax	PECsed, max
		🐓 [μg/L] 🥎 💮	Ţμg/kg)	Ç' [µg/L]	[µg/kg]
		O Drift re	direction 🐎 🗳	Driit re	duction
		(a) (b)		0 ′	%
%	D6 (ditch) 📞	√ 8.457 O	8.838	8.469	10.47
Ş	R1 (pond	6 367 \	1.618	0.865	2.845
5 m	KI (Sugasii)	~ 1.334M.	`≈ k037 ×	6.452	1.004
3 111	R2 (stream)	9.829	746 <u>746</u>	8.649	0.725
	R3 (stream)	\$\tag{34}\$\	2.269 [©]	9.095	2.073
	RA (stream)	9.829	1.02	6.451	0.948

Maximum PCCsw and PECs values for metabolites of fenhexamid at FOCUS Step 2

*	~~~		√`.~O				
, (Ž 4	M	12	M	39
Ĉrop	FOCUS scop	PECsw	PEC sed	PECsw	PECsed	PECsw	PECsed
		y [μg/ []	[ng/kg]	[µg/L]	[µg/kg]	[µg/L]	[µg/kg]
		24 /11	192.5	2.846	< 0.001	2.861	< 0.001
	2 (N-EU Multo)	1.109	10.12	1.529	13.14	1.701	0.223
Vine	2 (SQEU Marti)	پي 1.664 °	15.17	1.529	13.14	1.701	0.223
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	2 N-EU Single	0.598	5.455	1.423	7.782	1.430	0.186
	2-rif single	0.897	8.182	1.423	7.782	1.430	0.186
	1 0	39.58	361.0	1.834	< 0.001	1.844	< 0.001
Strawbert	2 (N-EU Multi)	2.036	18.57	0.639	6.926	0.791	0.104
(high rate)	2 (S-EU Multi)	3.054	27.85	0.639	6.926	0.791	0.104
(iligii rate)	2 (N-EU Single)	0.748	6.818	0.611	3.343	0.615	0.080
	2 (S-EU Single)	1.121	10.23	0.611	3.343	0.615	0.080

		M	[24	M	12	M	[39 @
Crop	FOCUS step	PECsw	PECsed	PECsw	PECsed	PEC _{sw}	PEC _{sed}
		[µg/L]	[µg/kg]	[µg/L]	[µg/kg]	[µg/L]	[μg/ <b>kg</b> ]
	1	39.58	361.0	1.834	< 0.001	¥.844	< 0.001
Ctrossibores	2 (N-EU Multi)	1.943	17.72	0.500	6.171	©″0.587	0.077
Strawberry	2 (S-EU Multi)	2.914	26.57	0.500	6.171 🕰	0.587	<b>0.07</b>
(low rate)	2 (N-EU Single)	0.561	5.114	0,458	2.507	0.461	0.060
	2 (S-EU Single)	0.841	7.671	<b>458</b>	2.5 <b>6</b> 7	0.461	0.060
	1	29.68	270.7	_e ľ.375	<b>&lt;€©</b> 01	1.383	30.001
	2 (N-EU Multi)	1.527	13.93	0.479	\$.195	0594	Q 0.078
Tomato	2 (S-EU Multi)	2.291	20.89	0.479		<i>∳</i> 8.594 <i>√</i>	0.098
	2 (N-EU Single)	0.561	5.1 kg	0.458	2, <b>50</b> 07	~0.46√°	<b></b>
	2 (S-EU Single)	0.841	7 _€ 67 ľ	°0.458	£,307 _ (	)" 0.4661 ¹	0.060

For the Tier 1 risk assessment the worst case PEC FOCOS step 2 or Step 3 value (as marked in bold) resulting from each crop is used.

#### Risk assessment

Based on the representative most sensitive endpoint values Gable 10.2- 1 and Table 10.2- 2) and the PEC_{sw} values (Table 10.2.1- 4) to Table 10.2.1- 4; highest values selected as worst case), the TER-values have been calculated, based on the bilowing equations:

 $TER_a = LC_{50}$  or  $EC_{50}$  / initial  $REC_{water}$ 

 $TER_{lt} = E_r C_{50} / initial PEC_{water}$ 

TER_{lt} = chronic NOEC / fong-term PEC vater

The risk is considered acceptable, if the TER values for fish and invertebrates are >100, and the TER values >10.

## Summary of calculated TER values for aquatic organisms

Table 10.2.1-5: Symmary of calculated TER values for aquatic organisms based on FOCUS Step 2 values (if not adicated otherwise) for the application of Fenhexamid WG 50

Compound	Appl. rate	Organism	Time-seale	Distance [m]	TER	Trigger	Refined risk		
	g as/ha]			<b>&gt;</b>			assessment		
Vine State of the									
Fenhexamid	800	Fish	acute y	<b>Step 4:</b> 5 m	120	100	Yes		
. 📞	800	Fish	[™] long⊶term	<b>Step 4:</b> 5 m	9.8 - 178	10	Yes		
4		Invertebrates	acute	-	> 727	100	No		
	an s	Invertebrates	Hong-term	-	39	10	No		
Made		Gediment dweller Green algae Aggaic plants	long-term	-	441 ¹⁾ 1492 ²⁾	10	No		
		O Green algae	long-term	-	326	10	No		
	Ø,	Aquatic plants	long-term	-	> 89	10	No		
1 VI / 4 💥 //		Fish	acute	-	1575	100	No		
		Invertebrates	acute		> 12019	100	No		
	(	Green algae	long-term	-	8534	10	No		
M12		Fish	acute	-	2950	100	No		
		Invertebrates	acute	-	8241	100	No		
		Green algae	long-term	-	> 16351	10	No		

Compound	Appl. rate [g as/ha]	Organism	Time-scale	Distance [m]	TER	Trigger	Refined risk
M39		Fish	acute	-	> 5879	100	_Ô No
		Invertebrates	acute	-	81129	100	(° NÓ)
		Green algae	long-term	-	> 5879	10	~_\$\$***
Strawberry (	(high rate)				4		
Fenhexamid	1000	Fish	acute	<i>≥</i>	€¥04	100	No.
		Fish	long-term	-	© 16 ³⁾	~10 . <i>6</i>	y Nov
		Invertebrates	acute	, - ,	S > 1582	© 100 🔊	200
		Invertebrates	long-term	- L	84	100	No No
		Sediment	long-teron	<b>Q</b> *	≥960 ¹) &	<b>1</b> 0	O NA
		dweller	<i>∞///</i> //		©3003 [™]		
		Green algae	long-term		7 7 1 <b>0</b> 0 (	10	No
		Aquatic plants	long-term	\ \(\sigma^2 - \sigma^2\)	<b>7</b> 194 S	10 "	_a No
M24		Fish	acute 🗸		858 " [©]	<b>190</b>	⇒ No,°
		Invertebrates &	acute .		<u> </u>	T00 🗟	<b>X</b> ó
		Green algae 🎸	long≱term ″	y O 1	4650	¥ 10 <u>,</u>	No
M12		Fish O	, & acute &		<b>7</b> 058 👸	1.009	© No
		Invertebra@s*	acutes		_3¥1971 <b>%</b>	<b>#00</b>	o No
		Green al gae	Olong-term	-57	© > 39£24	ॐ 10, ≪	* No
M39		Fish	acate		>49642	100	No
		Invertebrates	acute		174463	<b>f00</b>	No
		Green algae	Cong-term	<u> </u>	_∞	90	No
Strawberry (	(low rate)	<u> </u>	y O'	*O* ×		Q	
Fenhexamid	750	😭 🔏 Fish	acute \$		J36	100	No
	<	Fish &	long-tem	- S	11 🔊	10	No
	Ş.	Invertebrates	acute ^v	~ - O	> 20 <b>5</b> 6	100	No
		Inverto ates	long-term		109	10	No
		Sediment *	long-term	\$_ \$	47 ¹⁾	10	No
		ďweller√			<b>₹3</b> 820 ²⁾		
		Green algae	long-term		© 922	10	No
		Aquatic plants	long≱term @	,	) > 252	10	No
M24		Y Tish O'	acute acute	~ ~ ~	899	100	No
	·_W	Inogrtebrates	acuto v	W - Q	> 6863	100	No
	~^^	Green algae	long-term	<u>, 3</u> "	4873	10	No
M12		i ligh	asute C	)	9020	100	No
		Invertebrates	Song-tom		25200	100	No
3.520		vareen algae	Jong-tom	O, -	> 50000	10	No
M39 ≈		Fish	acuite (	<del>-</del>	> 17036	100	No
		Invertebrates	arcute ©	-	235094	100	No
		Green alga	long-term	-	> 17036	10	No
Tomato	~~		<u> </u>				
Ferchexamid	750 💞	Fish Cish	acute	-	139	100	No
		Cish C	long-term	-	11	10	No
	6 4	Invertebrates	acute long-term	-	> 2109	100	No
		Anvertebrates	long-term	-	112	10	No
E		Sediment S	long-term	-	1279 ¹⁾	10	No
M247 6		dŵeller "			4003 2)		
	R A	Green algae	long-term	_	946 > 258	10	No No
Marie		Aquatic plants	long-term	-	> 258	10	No
INITAL D		Fish Invertebrates	acute acute	-	1144 > 8730	100 100	No No
		Green algae		_	> 8730 6198	100	No No
M12		Green algae	long-term	-	9415		
M12		Fish Invertebrates	acute acute	-	26305	100 100	No No
		Green algae	long-term	-	> 52192	100	No No
	l	Office algae	iong-term	_	- JZ17Z	10	110

Compound	Appl. rate [g as/ha]	Organism	Time-scale	Distance [m]	TER	Trigger	Refined risk assessment
M39		Fish	acute	-	> 16835	100	No No
		Invertebrates	acute	-	23232	100	( NÓ)
		Green algae	long-term	-	> 16885	10 (	× 250

¹⁾ Based on PECsw

#### **Conclusion:**

For the use in strawberries and tomatoes, all TER variues for fenhoxamid and its metabolites there the required trigger for acute and chronic risk based of FOCUS Step 2 and 3, indicating an acceptable task to aquatic organisms for applications close to surface water bodies.

For the use in vine, all TER values are met at POCUS Step 2 and 3 apart from a faite and long term risk of fish exposed to fenhexamid. Thus, to protect fish, a drift reducing buffer zone of 5 m is required for application in vine.

In conclusion, the risk for fish exposed to Fennexand W6.50 is acceptable for the use in strawberries and tomatoes without further mitigation measures and for the use in sine, when a 5m buffer zone is applied.

#### IIIA 10.2.1.1 TERA for fish 3

Table 10.2.1.1-1: TERA calculations for fish based on maximum PEC sw values according to FOCUS Step 2

Crop: Vine	Species 5	Endpoint		PECswmax [µg/Id	TER _A	Trigger
Crop: Vine			<b>7</b> &			
Fenhexamid 0	$O. mykiss _{\odot}$	$L_{C_{50}}$	1240	29.86	48	100
M24		<b>E</b> C ₅₀	2620	1.664	1575	100
M12 M12	Ø. mykis	LC,	94510 W	1.599	2950	100
M39	O. mykiss 💸	I, Q50 &	> 10000	1.701	> 5879	100
Crop: Strawbert (hig	- 4 . W// «	/ n·		9		
Fenhexamid @ (	ghate) & O. mykiss		1240 0	11.88	104	100
M24	O. mykiss	LC 50	26 <b>20</b> <b>45</b> 10	3.054	858	100
M12	Q mykiss 7	EC ₅₀ V	<b>45</b> 10	0.639	7058	100
M39	O. mykiss 🧪	LCA Q	> 10000	0.791	> 12642	100
Crop Strawberry Hov	v rate					
Fenhexamid	O. mykiss Q	LC ₅₀	1240	9.145	136	100
M24 💉 🔬	O. mylyss 🏅	LC ₅₀	2620	2.914	899	100
M12	O. prykiss,	<b>L</b> 50	4510	0.500	9020	100
M24 M12 M39 M39	Ŵmykist [®]	LC ₅₀	> 10000	0.587	> 17036	100
Crops Tomate	\					
Fenhexamid 6	O. mykiss	LC ₅₀	1240	8.913	139	100
M24 \$	O. mykiss	LC ₅₀	2620	2.291	1144	100
M12 S	O. mykiss	LC ₅₀	4510	0.479	9415	100
M39	O. mykiss	LC ₅₀	> 10000	0.594	> 16835	100

Bold values do not meet the trigger

²⁾ Based on PECsed

³⁾ TER based on FOCUS Step 3, D6 scenario as worst case

The worst case acute TER values for fenhexamid applied in strawberries and tomatoes and for fenhexamid metabolites in all three mentioned crops are above the trigger of 100 and there is no need for a refined risk assessment.

However, the worst case acute TER value for fenhexamid for the application in vine does not meet the trigger based on worst-case FOCUS Step 2 PEC values. Therefore, in the next step TER values are calculated based on more realistic FOCUS Step 3 PEC values:

Table 10.2.1.1-2: TERA calculations for fish based on maximum PECQ values according to FOCUS Step 2

Compound	Species	Endpoint (μg/L)	PECsw,max	DERA O	Trigger
Crop: Vine					
Fenhexamid	O. mykiss	L@\$\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	14.19 ¹⁾	. 85	106

¹⁾ R3 (stream) as worst-case scenario covering all other POCUS scenarios. Bold values do not meet the trigger

The worst case acute TER value for fenheramid for the application in vine does not meet the trigger based on worst-case FOCUS Step 3 PE@value@ Therefore are fined risk assessment based on FOCUS Step 4 values is presented in the following.

#### Refined risk assessment for fenhexanted

The exposure of non-target actuatic organisms can be significantly reduced by mitigation measures, such as a buffer zone. These are taken into account for FOCUS Step 40 EC values.

The following TER calculations for ferilexamid are based on the respective worst-case scenario from FOCUS Step 4 calculations:

Table 10.2.101-3: TERA calculations for fish based on maximum PEC ovalues according to FOCUS Step 4

Compound	Species	Enderdint [µg/L] 💝	FOCUSO Scenario	Buffer	PECsw,max [µg/L]	TERA	Trigger
Crop: Vine							
Fenhexamid	O. mykuss		R3, sirvam	m buffer no drift reduction	10.34	120	100

¹⁾ worst-case scenario covering all other FOC scenarios

Taking into account a 5 months for zone, the trigger is met.



#### IIIA 10.2.1.2 TER_{LT} for fish

Table 10.2.1.2-1: TERLT calculation for fish based on maximum PECsw values according to FOCUS Step 2

Compound	Species	Endpoint [µg/L]	PECsw,max [µg/L]	TERLT	Trigger
Crop: Vine			Ö Á	7	
Fenhexamid	O. mykiss	NOEC 101	25.86	3.9	100
Crop: Strawberry	y (high rate)				
Fenhexamid	O. mykiss	NOEC 01	11.88	8.50	10 6
Crop: Strawberry	y (low rate)	(n E		O O	
Fenhexamid	O. mykiss	NOECO 1001	9.145	711 S	10 3
Crop: Tomato		A, O			
Fenhexamid	O. mykiss	NOEC 101	©913 Z	, P &	10

**Bold values** do not meet the trigger

The worst case long-term TER values for fenhexamid applied in strawberries (low rate) and tomatoes are above the trigger of 10 and there is no need for a fefined isk assessment.

However, the worst case acute TER values for fenhexamid for the application in vine and strawberries (high rate) do not meet the trigger based on worst-case FOCUS Step 2 PEC values. Therefore, in the next step TER values are calculated based on more realistic FOCUS Step 3 PEC values:

Table 10.2.1.2-2: TERLT calculations for tish based on maximum PEC_{sw} values according to FOCUS Step 3

Endpoint		Scenario	Single application	DER	Multiple applic	ation
[µg/L]	8 4		PECsw [µg/L]	DER P	PECsw [µg/L]	TER
Crop: Vine	<u> </u>					
Ş	į	R1 > 2	13.72	7,4	10.07	7.2
	101	R1 🔊 🧳 .	0.488	207	0.744	136
NOEC	101	R1	10.06	10	8.879	11
			12 40 0	7.\$7 7.1	11.90	8.5
		R3 S	14,79	7.1	12.51	8.1
<i>(</i>	<b>A</b> .	RA S	14.99	10	8.871	11
Crop: Straw	vberry (high	rate) Q				
***	Ş	D6 🗐	£6.326	16	4.616	22
MOEC	101	RAY A	S. 5. 6 7	18	4.075	25
NOEC	[	R3 & &	<b>5</b> 906	17	4.286	24
		R3	_@ 4.190	24	3.044	33

Bold values of not meet the troger

The worst case acute TER values for fenhexamid for the application in strawberries are above the trigger of 10 and there is no need for a refined risk assessment. For the application in vine the trigger is not me for FOCUS Step 3 scenarios D6, R2 and R3. Therefore a refined risk assessment based on FOCUS Step 4 values is presented below.

#### Refined long-term risk assessment for fenhexamid based on FOCUS Step 4

The exposure of non-target aquatic organisms can be significantly reduced by mitigation measures, such as a buffer zone. These are taken into account for FOCUS Step 4 PEC values.

The following TER calculations for fenhexamid are based on the respective forst-case scenario from FOCUS Step 4 calculations for the use in vine.

Table 10.2.1.2- 3: TERLT calculations for fish based on maximum PEC_{sw} values according to FOOUS Step 4 for the use in vine

				Single applicat	ion 🖓	Multiple applic	attion 0
Endpoint [µg/L]		Buffer [m]	Scenario	PEC _{sw} [µg/L]	,~~	PEC [µg/I]	TER S
			D6 (ditch)	8.299	120 0	8.469	<b>1</b> 1.9
		5	R1 (pond)	<b>₫</b> \$67 %	178	0.863	117 ኞ 🏻 🖞
NOEC	101		R1 (stream)		13.84	6,452	15/4
NOEC	101	no drift reduction	R2 (stream)	9829	HOS	© 8.642°	<b>D</b> .7
		R3 (stream)	10.34 ×	9.8	9. <b>09</b> 3 ,5	11.1.	
			R4 (stream)	7.332	13.80	26451	15.7

Bold values do not meet the trigger

The TER of 9.8 obtained for the FOCUS Step (scenario R3 (single application) is just slightly below the trigger value of 10. All other scenarios are above the trigger of 10. Therefore, the long-term risk to fish is considered to be acceptable when a buffer zone of 5 m is applied for the use in vine.

#### Conclusion

The long ternorisk to fish exposed to Ferhexand WGO is acceptable for the use in strawberry and tomato without further mitigation measures and for thouse in vine, when a 5 m buffer zone is applied.

## IIIA 10.2.1.3 TERA for Daphnia

Table 10.2.1.3-4: TEP calculation for Daphola based on max. PECsw values according to FOCUS Step 2

Compound	Species 3	Endpoint /µg/L	W.	PEC _{sw,max} [µg/L]	TERA	Trigger			
Crop: Vine	Crop: Vine								
Fendexamid 🗸	D. Magna	50	> 18800	25.86	> 727	100			
M24		EC ₅₀	> 20000	1.664	> 12019	100			
M12	D. maGha 🏸	EC ₅₀	12600	1.529	8241	100			
M39	D. Magna ,	<b>5</b> 0	138000	1.701	81129	100			
Crop: Stowberry (hig		•							
Fenhexamid	D. magna	EC ₅₀	> 18800	11.88	> 1582	100			
M245 W	D. magna	EC ₅₀	> 20000	3.054	> 6549	100			
	D. magna	EC ₅₀	12600	0.639	19718	100			
M39 💍	D. magna	EC ₅₀	138000	0.791	174463	100			

Compound	Species	Endpoint [µg/L]		PEC _{sw,max} [μg/L]	TERA	Trigger
Crop: Strawberr	y (low rate)				ð	
Fenhexamid	D. magna	EC ₅₀	> 18800	9.145	>2056	100 %
M24	D. magna	EC ₅₀	> 20000	2.914	> 6863	1600
M12	D. magna	EC ₅₀	12600	0.500	² / ₂ 5200	, 100 × 00k
M39	D. magna	EC ₅₀	138000	0.587	235094	100
Crop: Tomato			4	102	<b>4</b>	
Fenhexamid	D. magna	EC ₅₀	<b>≱</b> ¶8800	8.9120	· > 2109	100 C
M24	D. magna	EC ₅₀	20000	2.291	> 8930 \	1000
M12	D. magna	EC ₅₀ &	126900	20.479 €	£305	100
M39	D. magna	EC ₅₀ O	~138000°	0.594	© 2323 <b>©</b> 3	(100 🚄

The worst case TER values for fenhexamid meet the required trigger, indicating an acceptable acute risk to daphnids for application of Ference and WG 0.

#### IIIA 10.2.1.4 TERLT for Paphara

Table 10.2.1.4- 1: TERLT calculation for Daphnia based on max. RECsw. values occording to FOCUS Step 2

Compound	species 3	n`l=		PECw,max/[µg/L]	TĚR _{LT}	Trigger
Crop: Vine			. 9 0		T)	
Fenhexamid ©	D magnal (	NOEC	<u> </u>	25.86	39	10
Crop: Strawberry	(hfgh rate)			O O		
Fenhexami	$D_{\chi}$ magna $\chi^{Q}$	AOEC >	10 <b>0</b> 0	,11.88	84	10
Crop: Strawberry	(low rate)			. 0		
Fenhexamid	D. magna 👃	NØEC	1000	<u>%</u> 145	109	10
Crop: Tomato			0, 9	,		_
Fenhexamid @	D, magina	NOES	\$1000 \$	8.913	112	10

The worst case TER values for Penheramid meet the required trigger, indicating an acceptable long-term risk to daphnids for application of Fentexamid WG 50.

# IIIA 10.2.1.5 TERA for an aquatic insect species

No specific studies on the acute toxicity of fenhexamid to aquatic insect species were conducted. However, chronic studies addressing long-term effects on the sediment dwelling insect *Chironomus riparius* were performed with the active substance fenhexamid (please refer to Point 10.2.1.6 of this dossier).

#### IIIA 10.2.1.6 TER_{LT} for an aquatic insect species

Table 10.2.1.6-1: TERLT calculations for *C. riparius* based on max. PEC_{sw} values according to FOCO Step 2

Compound	Species	Endpoint [µg/L]	Č	<u>"</u>	PEC _{sw,max}	TER _{LT}	Trigger
Crop: Vine			V	ð	Q,	W	\$' \L
Fenhexamid	C. riparius	EC ₁₅	11400		25.86	441	
	C. riparius	NOEC	10 <del>0</del> 000 μι	g/kg	67.03 μg <b>ð</b> sg ^{° 1)}	1492	10
Crop: Strawberr	y (high rate)	4	<b>)</b>	a			
г і '1	C. riparius		11400				10
Fenhexamid	C. riparius	NOEC	1 <b>00</b> 000 µ	€⁄kg	33.30 μg 🐯 1)	3003	10
Crop: Strawberr	y (low rate)			<u> </u>	, A. C		
Fenhexamid	C. riparius	<b>E</b> C 15 6	114000		9.145	124%	10
remexamid	C. riparius	NOEC .	1 <b>00</b> 000 ji	kg	26 18 μg/kg ¹⁾	<b>382</b> 0 Ø	10
Crop: Tomato	Q,		~ ~	, C			
Fl	C. riparius	EC 15 0	11400	(W)	8.915	1279	10
Fenhexamid	C. ripartas	NOEC	100000 μί	g⁄kg	2 <b>4.</b> 98 μg/kg ¹⁾	4003	10
DEC . more	× 2	0 "	Y M			<u></u>	

¹⁾ PEC_{sed} max.

The worst case TER values for fenhexamid meet the required trigger, indicating an acceptable long-term risk to aquatic insects for application of Fenhexamid WG 50.

## IIIA 10.2.1.7 TERA for an aquatic crustacean species

No studies on aquatic crustaceans other than daphaids are required since the product is not an insecticide and the active substances do not show an insecticidal mode of action. The risk for these organisms is covered by the aquatic risk assessment provided in this dossier.

### IIIA 10.2.1.8 TERAT før an aguatic crustocean species

Please refer to point IIIA 7.2.1.

#### IIIA 10.2.1.9 TERA for an aquatic gastropod mollusc species

No studies on aquatic gastropod molluses are deemed necessary according to current requirements. The risk for these organisms as covered by the aquatic risk assessment provided in this dossier.

### IIIA 10.2.1.102 TERET for an aquatic gastropod mollusc species

Please refer to point AIA 102.1.9.

#### IIIA 10.2.1.11 TERLT for algae

The risk assessment for algae and higher aquatic plants is conducted together. Details of any higher aquatic plant study if necessary are summarised in section 10.8.2.



Table 10.2.1.11- 1: TER_{LT} calculations for algae based on FOCUS Step 2

				-		
Compound	Species	Endpoint [µg/L]		PEC _{sw,max} [μg/L]	TERLT	Trigger
Crop: Vine					4	710
Fenhexamid	S. capricornutum	$E_rC_{50}$	8430	25.86	326	710 ~ 5
M24	P. subcapitata	$E_rC_{50}$	14200	1.664	8534	100
M12	P. subcapitata	$E_rC_{50}$	> 25000	1.529	> 16354	10 5
M39	P. subcapitata	$E_rC_{50}$	10000	1.70 ² 6	⁹ > 58¶9	
Crop: Strawberi	ry (high rate)		Ø	~	~~\	
Fenhexamid	S. capricornutum	ErC50	84 <b>3</b> 0° ,	₽1.88,°°	4710	io V
M24	P. subcapitata	E _r C ₅₀	1420¢	3.05%	46500	\$10 🖒 🔏
M12	P. subcapitata	E _r <b>Q</b> 50	> 25000	0.639	\$9124	10 0
M39	P. subcapitata	EC50 2	>\$\overline{0}000\infty	Ø.791 🗳 🦼	≯ 126 <b>43</b>	<b>40</b>
Crop: Strawberi	ry (low rate)	Q 4,4				
Fenhexamid	S. capricornutifu	$E_rC_{50}$	8430	9,145	92 5 C	1,000
M24	P. subcapitața	EC ₅₀	14200	9.914 % 7 0.500 %	A873 0	10
M12	P. subcapitata	E _r C ₅₀	\$2500 <b>6</b>	0.500	> 50000 (	10
M39	P. subçapitata∜	E _r Ç	> 100000	0.587	≈ \$7036	10
Crop: Tomato	`~\\		£ 4	y		
Fenhexamid	S&oaprice nutum	$E_rC_{50}$	<b>3</b> 430 √	8.9 8	946 [©]	10
M24	a. subcapitata	E.C.	14200	2.291 0	6198	10
M12	P. sobcapitata	£4C50.	\$\$\$000_G	0.479 🖟 🧸	\$\sqrt{52192}	10
M39	Poubcapitata &	ErC50	ô 10 <u>000</u>	0.50	> 16835	10
			\(\)			

The worst case TER values for tenhexamid meet the required triggers, indicating acceptable long-term risk to again for application of enhexamid WG 505

#### TER for aquatic plants

TER calculations for Lonna are presented in the following table:

Table 10.2.4.11-2: TERLT calculations for higher aquatic plants based on FOCUS Step 2

Compound	Species >	Endpoint [µg/L]	7	PEC _{sw,max} [µg/L]	TER _{LT}	Trigger
Crop: Vine	TO ET	Q O				
Fenhexamid	Lemna zibba	EC ₅₀₀	> 2300	25.86	> 89	10
Crop: Strawberry	gh rate					
Fenhexamid	Lemna gibba	$\mathcal{C}_{50}$	> 2300	11.88	> 194	10
Crop: Strawberry (los	w rate)					
Fenhexamid		EC ₅₀	> 2300	9.145	> 252	10
Crop: Tomato	Š.					
Fenhexamid	Lemna gibba	EC ₅₀	> 2300	8.913	> 258	10

The worst case TER values for fenhexamid meet the required triggers, indicating acceptable long-term

risk to aquatic plants for application of Fenhexamid WG 50.

### **IIIA 10.2.2** Acute toxicity (aquatic) of the preparation

### Fish acute toxicity LC₅₀, freshwater, cold-water species IIIA 10.2.2.1

risk to aquatic pl	Acute toxicity (aquatic) of the preparation
IIIA 10.2.2	Acute toxicity (aquatic) of the preparation
IIIA 10.2.2.1	Fish acute toxicity LC50, freshwater, cold-water species
Report:	KIIIA 10.2.2.1/01;
Title:	KBR 2738 WG 50-Acute toxicity (96 hours) to rambow trout (Oncorhynchus mykiss) in a semi-static test.
Document No:	M-006209-01-1 (Report No: DQ 195042)
Guidelines:	OECD Guideline No. 203 "QECD-Guideline for Testing of Chemicals", "Fish,"
	Acute Toxicity Test", updated and adopted version of July 170 992
GLP	Yes (certified laboratory), O Q Q Q Q Q

### Material and methods:

Fenhexamid WG 50, purity: 49 %, Specification: Batch No.: 0222 based on 04258/024, Development No.: 170928), rainbow trout (Oncorhynghus mykiss/ lot F3/20): 100ish per test concentration (mean body length 4.7 cm, mean body weight 1.2 g) for 96 W under semistatic and thous to nominal concentrations of 0.94, 1.88, \$.75, 7.50 and \$5.0 mg test substance

**Findings:** Toxicity to fish:

Test substance	© WG 59
Test object	Rainbow Trout
Exposure O O O O O O O	96h, semi-static
LC ₅₀ (mg a.j./L)	1.30
lowest tested. conc. with effect (COEC) org a.i./L	0.92
highest tested conc. without effect (NOEC) mg a.i./L'>	0.46
Threshold effect concentration, TFO (mean LOF CNOEC) mg an /L	0.65

### **Observation**

The results in summary are provided in the Table above. Nominal test substance concentrations ranged from 0.24 to 15.0 mg/L. Analytical data showed mean measured levels from 91-96 % of nominal, so nominal values were used in reporting. The 96 hour LC₅₀, NOEC and LOEC values were 2.66, 0.94 The EC₅₀ has been calculated as 2.66 mg product/L (corresponding to 1.30 mg a.s./L). and 1.88 mg test substance/L, equivalent to 1.00, 0.46 and 0.92 mg a.i./L respectively.

### Conclusion

#### IIIA 10.2.2.2 Acute toxicity (24 & 48 h) for Daphnia preferably Daphnia magna

Report:	KIIIA 10.2.2.2/01; 1995	Q Q	V.
Title:	Acute toxicity of KBR 2738 WG 50 to water	fleas (Daphnia ma	
Document No:	<b>M-006218-01-1</b> (Report No: HBF/DM 144)		
Guidelines:	OECD 202 and EPA FIFRA 72-2	W .	
GLP	Yes (certified laboratory)	, OY K	

### **Material and Methods:**

4528/0214) first
for 48 h to nominal KBR 2738 WG 50, purit: 49.6 %, Specification (Batch No instars of Daphnia magna (< 24 h old) in @statj@test system concentrations ranging from 2.02 to 202 mg form ation/

### Findings: Toxicity to waterfleas

	(A) V	% / AL	8	$-\infty$	
Test substance		<b>o</b> " ~			₩G 50°
Test object		Q V		)	Daphnin magna
Exposure	**			Ê	48 static
EC ₅₀ mg a.i./L			6	7	105
Lowest tested conc. With effect (LQ	· · · · · ·	0 %			
Highest tested conc. Without took e				O,	18
Threshold effect concentration, TEC	Omean To	DEC-NOE	Comg a.i.		2. 2. de

### **Observations**

The results on summary are provided in the Table above. Analytical data showed measured levels from 103 - 110% of the nominal values were therefore appropriate for use in reporting. The 48hour EC₅₀ value for Daphita magna exposed to Fenhexamid WG 50 was 211 mg/L test substance, equivalent to 105 mg a.i./L.

The NOEC and LOEC alues were 30 and 65 mg/Krest substance, equivalent to 18 and 32 mg a.i./L. In comparison to the EC₅₀ and NOTEC values found in a similar test on waterfleas but using KBR 2738 i Aresp. Anne VII, chapter 8.2.4) there is very close agreement technical as. (> 18.8 and 10.1 asg with the values from the

## Conclusion:

The EC₅₀ has been calculate as 21 mg product/L (corresponding to 105 mg a.s./L).

### ffects on algal growth and growth rate

Report:	KIIIA 10.2.2.3/01; 1999
Title:	KBR 2738 WG 50 – Influence on the Growth of Green Alga, <i>Selenastrum capricornutum</i>
Document No:	M-006205-01-1 (Report No: DOM 98086)

Guidelines:	OECD 201, EEC 79/831/E, ISO 8692, ASTM-Guideline E 1218-90	<u> </u>
GLP	Yes (certified laboratory)	

### Material and methods:

KBR 2738 WG 50: a.i. content, 50.3 %. Name of sample: 50 WG 04258/0272, Batch No. 2998 00001, Selenastrum capricornutum was exposed under static conditions (shake cultures) for 72 h. The following concentrations of nominal: 1.0, 2.0, 4.0, 8.0, 16.0 and 52.0 mg product/L were tested. Analytical determinations of KBR 2738 WG revealed that all measured concentrations from day 0 and day 3 ranged from 76 to 105 % (average: 99 %) of nominal. Calculations are based on nominal values.

Findings: Effects on algal average growth rate

	4	- @, (N)	,	
Test substance			4	€BR 2738 WG€0
Test object			Š	Selenastrum capticornutum
Exposure			~~	72h Fatic
E _r C ₅₀ mg product/L	Q' & &		0	\$6.30 °€
Lowest tested concentration with	Øfect (≝ØEC) in mg p	roduct/I	7	8.00
Highest tested concentration with	out adverse affect (MO	EC) in mg produ	ct/I	4.00
Threshold effect concentration, Thin mg product/L	EC geometric mesn L	OFC – NOEC)	Ŝ	5.66

### **Conclusion:**

The E_rC₅₀ has been calculated as 36.3 mg product/L (18.26 apg a.s.)

### IIIA 10.2.2,4 Marine or esquarine organisms acute toxicity LC50/EC50

According to the current data requirements, no studies on pairing of estuarine organisms are necessary. The potential risk for these organisms is covered by the advatic risk assessment provided in this dossier.

### IIIA 10.2.2.5 Marine sediment invertebrates, acute toxicity LC50/EC50

According to the current data requirements, no studies on marine or estuarine organisms are necessary. The potential risk for these organisms is covered by the aquatic risk assessment provided in this dossier.

### IIIA 10.2.3 Microcosm or mesocosm study

No microcosm or mesocosm studies were performed with the formulated product. Based on the toxicity data and application rate of the product, the risk assessment (TER calculations) presented above indicates acceptable risk to aquatic organisms. Therefore, microcosm or mesocosm studies with the formulated product are not deemed necessary.

#### IIIA 10.2.4 Residue data in fish (long term)

The steady state bioconcentration factor for fenhexamid in a laboratory study with Bluegill sanfish was determined to be in the range of 132 - 185 for whole fish (mean 159, see UA 8.2.6.1/01 DV point IIA, 8.2.3/01)). When exposure ceases, the radioactivity is depurated with a half-life of less than Lay. Additionally, it was considered that the BCFs obtained may have been overestimated because all calculations referred to total radioactivity (including parent compound and metabolites). This was confirmed by a residue analysis. The BCF for the parent compound in whole fish was estimated to about 80 (IIA 8.2.6.1/02 (EU point IIA, 8.2.3/02)).

Therefore, a study on bio-accumulation of the formulated product in fishes not considered

### Chronic fish toxicity data **IIIA 10.2.5**

Chronic toxicity (28 day exposure) to juvenile fish vided under Point IIIA 10.2.5

Fish early life stage toxicity test vided under Point IIIA 10.2.5

Fish life cycle test is ed under Point IIIA 10.2.5.

Thronic toxicity to aquatic invertebrate it has been point IIIA 10.2.5. Chronic studies with the formulated product were not considered information can be obtained from studies with the active ingredients

### IIIA 10.2.5.1

See statement provided under Point IIIA 0.2

### IIIA 10.2.5.2

See statement provided under Point IIIA 10.2

### IIIA 10.2.5.3

See statement provided under Point IIIA 00

Chronic studies with the formulated product were not considered necessary, as the relevant information can be obtained from studies with the active substances.

### Chronic toxicity to Daphnia magna (21-day) IIIA 10.2.6.1

See statement provide Qunder Point MA 102.6.

#### Chrome toxicity for a representative species of aquatic insects IIIA 10.2.6.2

See state ent provided ander oint INA 10.2.6

### IIIA 40.2.6.3 Chronic toxicity for a representative species of aquatic gastropod

ded under Point MIA 10.2.6. See statement or

### Accumulation in aquatic non-target organisms

Based on the information given under Point IIIA 10.2.4, considerable accumulation of residues of the product and/or metabolites in aquatic organisms is unlikely to occur.

#### IIIA 10.3 Effects on terrestrial vertebrates other than birds

### **Toxicity of the active substance**

The summary of the toxicity profile of the active substance fenhexamid to marninals is provided in the

The summary	of the toxici	ity profile of the active substance fenhexamid to maromals is provided in the			
following.					
The summary of the toxicity profile of the active substance fenhexamid to manimals is provided in the following.  Toxicity of fenhexamid to mammals  A summary of the toxicity of fenhexamid to mammals is provided in the following table:					
A summary o	Toxicity of fenhexamid to mammals A summary of the toxicity of fenhexamid to mammals is provided in the following toble:  Table 10.3-1: Toxicity of fenhexamid to mammals (selected studies)				
•					
<b>Table 10.3-1:</b>	Toxicity of	fenhexamid to mammab (selected studies)			
Test species	Test design	Ecotoxicological endpoint Reference			
1 cst species	1 est design	Ecotoxicosogica situpona			
Test species	Test design	Fenhexamid C C C C C C C C C C C C C C C C C C C			
rest species	Test design				
		Fenhexamid (1991) (1991) (1991) (1991)			
Rat	acute, oral	Fenhewamid C C C C C C C C C C C C C C C C C C C			
		Enhexamid (1991)  LD ₅₀ (1991)  M-01g 368-01-1  KA 5.2 12			
	acute, oral	Enhexamid  LD ₅₀ LD ₅₀ M-010368-01-1  KA 5.2 kg  (1996)			
	acute, oral	Enhexamid  LD ₅₀ Source of the state of th			
Rat	acute, oral	Enhexamid  LD ₅₀ LD ₅₀ M-010368-01-1  KA 5.2 kg  (1996)			

### Justification of the endpoint proposal for wild mamma Preproduction risk

The EU list of endpoints for fende amid EFSA review report 6497/VI/99 rev.2,(19.10.2000) refers to two "short-term oral toxicity" studies conducted with dogs reporting a NOAEL of 500 ppm (18 mg/kg bw/d) in the 1 war study and a NOAEL of 2000 ppm (33 mg/kg bw/d) in the 90-d study. These effects are not considered appropriate for use in TERLT Calculation for wild mammals under the EFSA GD 2009, for reasons summarised below:

The entry in the EUAst of endpoints for senhexanid is based on the most sensitive parameter in dog toxicity studies, which was the incidence of "Henry bodies". "Heinz bodies" are small round inclusions in erythrocytes, which are associated to the inner surface of the erythrocyte membrane. They develop as a Source of long lasting oxidence stress to the cell by means of drugs, chemicals of Poxins, especially basic amines.

In toxicological studies with tenhexamid such townation of "Heinz bodies" was only observed in longer lasting studies in dogs (after  $\geq$  7 weeks, but not in mice, rats or rabbits, even at markedly higher doses or after longer exposures. Q

In the field, if any then only begligible exposure of dogs would be expected. Under EFSA GD (2009), the most critical wild maximal long-teem risk assessments are usually conducted for herbivorous mammals (which are best represented by the rodents and rabbits used in the toxicological studies). The exposure of such wild mampals to fenhexamid in the field is not long-lasting (eg, mean  $DT_{50} = 4.7$ 2010, KIIIA 10.3.3/01, M-384914-01-1), and rodents days on ground vegetation or rabbits did not present Peinz bodies in the studies with fenhexamid.

Thus, the occurrence of effects on "Heinz bodies" in species represented by the critical generic focal species scenarios is unlikely in the field. Furthermore, the wild mammal risk assessment should be based on an endpoint more clearly related to population sustainability.

It is therefore appropriate to propose for the  $TER_{LT}$  calculation for wild mammals an endpoint from the more relevant studies including reproductive parameter, i.e. the developmental toxicio (DT) studies with rat and rabbit, and the reproduction study in rat.

The endpoints of potential relevance from these studies are presented in the table below.

Table 10.3-2: Toxicological endpoints including reproductive parameters

Study (overview)	LOAEL	OAEL		
Rat reproduction	pub bodyweight reduced by 677% over	500  ppn = 7	Mg/kg/bw	/d 🌲
(Monograph p 65)	lactation days 7-21 at 5000 mm	(dose during	lactation)	
Rat DT	Very slight maternal toxicity 1000 mg/kg	Considered	acceptable w	ithout need for
(Monograph p 158)	bw/d (limit test)	<b>X</b> OAE <i>IO</i> qua	ntification	4 .
Rabbit DT	Food consumption 1. maternal weight gain	100 mg/kg b	w/d © ^y	
(Monograph p 159)	↓, placental weight \$\int_a t 300 mg/kg bw/d	ĺ.A.ô	*	

Based on these results it is proposed to consider the NOAEL of 76.6 mg/kg bw/d (achieved dose by females at 500 ppm) during lactation as a conservative Vier 1 estimate for the will manuful TER_{LT} calculations.

### Toxicity of the formulated product

The acute oral toxicity of the formulated product was determined in a study on rats

Table 10.3-3: Mangmalian Toxicity data of the formulated product Fentexamid WG 50

Test species	Tost design	Ecotoxicological endpoint & Reference
Rat		1995) LD ₅₀ > 2000 mg a kg bw 24227 M-010213-01-1 KIIIA 10.3.2.1/01

For the risk assessment of inheramid, the active endpoint has been chosen from the study with the active substance for the following reason:

The formulation was rested at a limit dose of 2000 mg/kg bw, and the LD₅₀ was set at > 2000 mg/kg bw. However, the study with active ingredient shows that the compound is clearly less toxic than the tested limit dose in the study with the formulation.

### Metabolites

Please refer to remarks for birds, point 10.1

### Risk Assessment for mammals

The risk essessment procedure for wild mammals follows the same principles as described in detail under wint 100 for birds, i.e. EFSA Guidance Document on Risk Assessment for Birds & Mammals (2009)

### Mammalian generic focal species for Tier 1 risk assessment

According to EFSA (2009) the following generic focal species have to be addressed in Tier 1 risk assessment.

**Table 10.3-4:** Relevant generic mammalian focal species for Tier 1 risk assessment

				Shortcut va	
Crop	Growth stage (BBCH)	Generic focal species	Representative species	For long-erm RA based on RUD	For a site  RA based  or REVD 100 5
	≥ 40	Large herbivorous mammal "lagomorph"	Brown har	3.5	\$ 8.1 ⁰
177	≥ 20	Small insectivorous mammal "shrew"	Common shrew.	01.9	©5.4 ©
Vineyard	≥ 40	Small herbivorous manmal "vole" 🔊	Common vole		<b>49</b> 29
	≥ 40	Small omnivorous martinal	Wood mouse	2.30	5.25
	≥ 20	Small insectivorous mammal	Common shrew	A.9	\$5.4
Strawberries	≥ 40	Small herbiv fous mammal *	Common ole		54.6
Strawberries	≥ 40	Targe herbivorous mamenal	Rabbit &	5.70	14.0
	$\geq 40$	Small omnovorous mammal	Wood mouse	\$\frac{1}{2}\text{3.1}	6.9
	Fruit <b>Sa</b> ge	Frugivorous manaval	Brown rat	9.3 1)	22.3 1)
Fruiting	∑ 200 ×	Shnall insectivorous manimal	Compon shrew	1.9	5.4
vegetables		Small herbyvorous mamma	Common vole	21.7	40.9
	<b>3</b> 0 4	Small omniverous mammal	Wood mouse	2.3	5.2
$RUD_{90} = 30.6$ )	and an FIR for	it specified for tomato according to the condition of the	LESA (2009) Append Sed for gourds (RUDr	ix F, Table 1 (RUD _n = 34.3, RUD ₉₀ = 6	n = 12.8, 1.5)



### **IIIA 10.3.1**

### Summary of calculated TER values for mammals

Table 10.3.1-1 Summary of all TER calculations as given under points 10.3.1.1

Bayer	r CropScience			]	Page 44 of 75 2012-02-05
	/Tier 2, Sec. 5, Point 10 · Annex I renewal)	- Ecotoxicological Studies of Fenhexamio	I WG 50		
IIIA 10.3.1 Summary of	Toxicity exposu	re ratios for terrestrial vertebra s for mammals lculations as given under points 10.3.1	ites othe	er than	birds & S
	Summary of all TER ca	lculations as given under points 10.3.1			
Active substance	Crop	Generic focal species	SV90	PERA	Refinement
	Vine (2 × 0.8 kg/a.s./ha)	Large herby orous mammal "lagomorph"  Small insectivorous mammal "shew"  Small herby orous mammal "vole Small omnivorous mammal "infouse"	8.1 9.4 40.9 5.2	> 504 > 890 > 5890 > 588	No 4
Fenhexamid	Strawberry $(3 \times 1.0 \text{ kg a.s.})^{1}$	Small inscrivorous mampal  "shrew"  Small herbivorous mammal  "ole"  Large herbivorous mammal	34.6 34.6	> 19 0 > 57 0 > 57	No No
	\$ A	Zagom@ph"  Small omnivorous mammak  Mouse'  4.	1420	> 223 > 25 > 453	No No
		Frugit orous mamma	22\$\(\frac{3}{2}\)	> 187	No
	Fruiting vegetables	Small insectivorous mammal shrew?	<b>©</b> 5.4	> 772	No
	(3 × 12.75 kg a.s./ha)	Small herbivor or manimal	40.9	> 102	No
worst case, cov		Small omnivorous (brammal)	5.2	> 801	No

worst case, covering lower rate of 4 × 0.75 kg a.s. (a)

2) Shortcut value based of RUD unit specified for somato according to Appendix F, Table 1 (RUD₉₀ = 30.6) and an FIR/bw for rat = 0.73 instead/of RUD unit specified for sourds (BUD₉₀ = 61.5)



Table 10.3.1- 2 Summary of all TER calculations as given under points 10.3.1.3

Active substance	Crop	Generic focal species	SVm	TERLT	Refinement
		Large herbivorous mammal "lagomorph"	33	36	No
	Vine	Small insectivorous mammal "shrew"	(J) 1.9	63×	São S
	$(2 \times 0.8 \text{ kg/a.s./ha})$	Small herbivorous mammal "yole"	21.7	\$.6 \$.6	S Not
		Small om Worous mammal mouse"	• 2.3	52	ONO É
		Small Resectivorous marnmal ("Shurew")	4:9 L	38	y Ng
Fenhexamid	Strawberry (3 × 1.0 kg a.s./ha) 1)	Simall her Givorous mampal	© 28.9©	3.3	Wes
Telliexamia		Large herbixorous mammal (1) "lagomorph"	9.7	∜13 _≪	No.
		Small onthe vorous mampal	3.1	200	No No
	Q"	Frugivorous maminal	©.3 ²⁾	Ö 10 %	₩ No
	Fruiting vegotables (Tomato)	Small insectivoreus mammal   "shrew"   "shrew"	1,9	59	No
	(3 × 0.75 kg a.s./ha)	Small herbivorous mammal vole" vole"	<b>2</b> 1.7	§ 5.9	Yes
		Small of conivorous maminal & Construction of the control of the c	2,3%	42	No

worst case, covering lower rate of 4 × 0 5 kg a. /ha

### Conclusion

According to the presented risk assessment, an unacceptable risk to mammals from dietary exposure after use of Fenhex and WC 50 as described in this dossier can be excluded.

## IIIA 10.3.1.1 Acute toxicity exposure satio (FERA)

### Tier 1 acute toxicity exposure ratio for mammals

The tier 1 risk assessment has been performed for grapes for an application rate of  $2 \times 0.8$  kg fenhexamid/ha at a nonimum application interval of 11 days, for strawberries for an application rate of  $3 \times 1.0$  kg/ha at a nonimum application interval of 7 days covering the lower rate of  $4 \times 0.75$  kg/ha and for tematoes for an application rate of  $3 \times 0.75$  kg fenhexamid/ha at a minimum application interval of 7 days.

²⁾ Shortcut value based on RND unit specified for tomato according to EDSA (2009) Appendix F, Table 1 (RUD_m = 12.8) and an FIR/bw for rat  $\pm 0.73$  in the additional of RUD unit specified for gourds (RUD_m = 34.8)

Table 10.3.1.1-1: Tier 1 acute TER calculation for mammals

1 1010 101011	.1- 1: Tier I acute IER caicuia						1	
			]	DDD				
Crop	Generic focal species	LD ₅₀ [mg/kg bw]	Appl. rate [kg/ha]	SV ₉₀	MAF	DDD	TERA	Trigger
		Fenhex	amid		4			
Vine	Large herbivorous mammal "lagomorph"		T O	8.1		8.4%	>> 594 >> 594	
	Small insectivorous mammal "shrew"	> 5000	0.8	5(A	°13 €	5.6	<b>₹</b> 90	
VIIIE	Small herbivorous mammal "vole"	2 3000 R		7 40.9 Q		42\50	> 1,18	10 %
	Small omnivorous mammal "mouse"			\$.2		\$5.4 6	> 925    -	
	Small insectivorous mammal "shrew"			5.4		8.6	≥579	
Strawberry	Small herbivorous mamnal "vole"	> 5000		954.6 7		87.4	> 570 > 570	10
Shawberry	Large herbivorous mammal "lagomorph"	100		15 × 0		92.4 ¢	<i>≥</i> 223	10
	Small omnivorous maramal "modese"			6.9		1150	> 453	
	Frugivorous manimal "rat"			©22.3 ½		) 26.8	> 187	
Fruiting	Small insective rous manimal "slow" " " " " " " " " " " " " " " " " " "	\$ 5000 × 5000	0.75	5;4	© 1.6	6.5	> 772	10
vegetables (tomato)		\$5000 \$\int\tau\tau\tau\tau\tau\tau\tau\tau\tau\ta		40.9	<i>"</i> 1.0	49.1	> 102	10
	Small omnivorous mammal			\$0.2		6.2	> 801	

All TER values are above the trigger of 10 for ocute oposure. Accordingly an unacceptable acute risk to mammals from the use of Feinexamid WC 50 according to the use pattern can be excluded.

### IIIA 10.3-1.2 Short-term roxicity exposure vatio (TERst)

Not required under Directive 91/414/EEC

## IIIA 10.3.1.3 Long-term toxicity exposure ratio (TERLT)

### Tier 1 reproductive long term toxicity exposure ratio for mammals

The tier for risk assessment has been performed for grapes for an application rate of  $2 \times 0.8$  kg fenhexabild/ha at a minimum application interval of 11 days, for strawberries for an application rate of  $3 \times 10^6$  kg/ha at a minimum application interval of 7 days covering the lower rate of  $4 \times 0.75$  kg/ha and for tonatoes for an application rate of  $3 \times 0.75$  kg fenhexamid/ha at a minimum application interval of 7 days.

Table 10.3.1.3-1: Tier 1 long-term TER calculation for mammals

	1	1						٥,	
Crop	Generic focal species	NO(A)EL [mg/kg	Annl Date	DDD		*\bar{\bar{\bar{\bar{\bar{\bar{\bar{	DDD	TERA	∜ ⊘' Triøσer
Crop	Generic Ideal species	bw/d]	Appl. Rate [kg/ha]	SV _m	MAF _m	fra	טטט	S S	Trigger
		Fe	nhexamid		کہ	<b>J</b>			\( \text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\tin}\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\tetx{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\ti}\\\ \ti}\\\ \tintte{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\tetx{\text{\text{\texi}\text{\text{\texi}\text{\text{\text{\text{\ti}\}\tittt{\text{\texi}\til\tittt{\text{\texi}\tittt{\texitit}\\\ \tittt{\ti}\til\text{\texi{\texi{\texi{\texi{\texi{\tet
	Large herbivorous mammal "lagomorph"		Ö	3.3		•	2.5	36,	
Grane	Small insectivorous mammal "shrew"	76.6	\$\langle \text{\$\frac{1}{2}\cdot \text{\$\frac{1}\end{1}\text{\$\frac{1}{2}\cdot \text{\$\frac{1}{2}\cdot \text{\$\frac{1}{2}\cdot \text{\$\frac{1}{2}\cdot \text{\$\frac{1}{2}\cdot \text{\$\frac{1}\end{1}\text{\$\frac{1}\end{1}\text{\$\frac{1}\end{1}\text{\$\frac{1}\end{1}\text{\$\frac{1}\end{1}\text{\$\frac{1}\end{1}\text{\$\frac{1}\end{1}\text{\$\frac{1}\end{1}\text{\$\frac{1}\end{1}\text{\$\frac{1}\end{1}\text{\$\frac{1}\end{1}\text{\$\frac{1}\end{1}\text{\$\frac{1}\end{1}\text{\$\frac{1}\end{1}\text{\$\frac{1}\end{1}\text{\$\frac{1}\end{1}\text{\$\frac{1}\end{1}\$\f	1.9 A	0°	0.5%	1.2	Q 63 E	
Grape	Small herbivorous mammal "vole"	42		Ž¥.7 °	1.5°	0.Q		\$96 }	
	Small omnivorous mammal "mouse"			2.3		Ó	1.54	52 <u>4</u> ,	Š
	Small insectivorous mammal "shrew"			01.9			<b>\$2</b> .0 ,	38 38 3	
Ctuo - la ourre	Small herbivorous mamma "vole"	_®'		289			30%	. 25	5
Strawberry	Large herbivorous mammal "lagomorph" >	76.6 g		5.7 S	02.0 / S	9.33	) 0.0 0.0 0.0 0.0	, 13	3
	Small omnivorous mammal "mouse"			3.1			<b>₽</b> .3	23	
	Frugivorous mammal			9 <b>%</b>	(L)		7.4	10	
Fruiting vegetables	Small insectivorous manifold		7 5 70.75 5	©1.9 (	2,05	n	1.5	51	5
(tomato)	Small herboorous mammal	W	\$ 0.73 ° 0	24.7		0.33	17.3	4.4	3
	Small omnivorous marrimal "nouse"			2.3	<b>&gt;</b>		1.8	42	

Bold values: TER does not meet the trigger

All TER values are above the frigger of 5 for the long-term exposure apart from the vole scenario for application in strawberries and tomatoes. Thus, a refined risk assessment is needed for the vole scenario.

### Refined took assessment for small herbivocous mammal

A refined risk assessment is triggered for exposure of small herbivorous mammals ("vole") to fenhexamid in strawberries and ruiting vegetables (tomatoes), where Tier 1 TER_{LT} values of 2.5 and 4.4 were obtained.

### • Resilience and potential for recovery of vole populations

The Joint Working Group of the Guidance Document on Risk Assessment for Birds & Mammals (SANCO 10997/2009) raised the question on the "need for the vole scenario... given the resilience of the vole populations"; i.e. well-known fact that voles are able to recover after large population breakdowns, or despite eradication programs with targeted rodenticide use. This implies that the level of protection required for this scenario may be low, so that the achieved Tier 1 TER_{LT} values (10.3.1.3-1) may be considered acceptable.

### Exposure of voles in strawberry and tomato fields

The available information about the relevance of row vegetable fields as habitat for voles suggests very limited concern for exposure and risk at the local population level. The optimum habitat of common voles (*Microtus arvalis*) comprises large open, dry, uniform grassy areas. Originally contined to small-scaled habitats such as riparian vegetation, steppes and natural grassland, voles successfully colonized some agricultural habitats when crops and grassland replaced the natural vegetation.

Annual crops are considered to comprise secondary vole habitats. They are characterized by periods of immigration of voles during mass occurrences in prime habitats alternating with multi-annual periods of almost complete non-existence. The common vole may colonize crops when the plants provide sufficient cover, and is forced to retreat at harvest time. A permanent survival of voles on arable land with annual crops is not feasible where seasonal agricultural operations (harvest, ploughing) prove detrimental to their populations (eg.

Similarly, in a review on the biology of the field vole presented in the Danish Guidance Document Pesticide Risk Assessment for Birds and Mammals (August, 2010) it is pointed out that the field vole can be found in farmland where it mainly occurs in set-aside and permanent grassland while numbers in cereal fields are low.



In conclusion, permanently vegetated prime habitats are the source for any colonisation voles of other (secondary / subcoptimal) habitats, e.g. annual field crops. The frime habitats that generally are of smaller scale compared to surrounding secondary habitats are essential for the survival of local populations and serve as donor trabitats for secondary habitats in years of mass occurrences in the prime habitats.

Therefore, if considering the vote as a televant focal species at all, protection of voles in the off-field habitat seems to be the key protection goal. To predict realistic exposure of voles in the off-field, primarily spray drift after the application should be taken into account. A refined TER calculation can be based on a drift factor of 7.23% (82% percentile for 2 applications in vine), 2.01% (3 applications in field crops, 77th percentile) of 1.85% (4 applications in field crops, 74th percentile) applied to the intended application rate. It is obvious that the TER values would increase by a factor of >> 10 when these drift rates are considered, this a quantitative risk assessment is not deemed necessary.

### Refined OT₅₀ in the exposure assessment of herbivorous mammals

Residue decline data of Penhexamid after application on grassy ground vegetation are reported and evaluated for derivation of  $DP_{50}$ . The mean  $DT_{50}$  over all trials is 4.7 days (2010, KIIIA-10.3 2011, M-3849) 4-01-1). Considering that  $DT_{50}$  and the different time intervals, different refined MATs and a refined 21-d  $f_{TWA}$  are calculated with a moving-time window calculator (Tab.

² (2003) Short-term effects of farming practices on populations of common voles. Agriculture, Ecosystems & Environment 95: 321-325, M-414511-01-1

10.3.1.3-2).

Table 10.3.1.3- 2: Refined long-term TER calculation for voles exposed to fenhexamid in strawberry and tomato fields calculated with the measured residue decline  $DT_{50} = 4.7$  d of few examination

					A W		
Crop	Strawberry		Strawberry			4 T	omato,
Clob	hiş	gh rate		low rate	Q ^y	Ö	
Application rate [kg a.s./ha]	3	× 1.0	A.	$4 \times 0.75$	9	<b>2</b> 3 >	<b>20</b> .75
Interval	7 d	14 d	<i>"</i> ⊘7 d	10 d	14 d		%d "O″
MAF	1.48	1.14	₿ 1.53	1.29	گُهاً.14 گُ	/ <u>~</u>	.48
21-d f _{TWA}	0.54	0.49	0.59	<b>№</b> .53 • (	0.49	, / _O (	),5\$
SV _m		<b>&amp;</b> ,	<i>₩</i>		K 1		N.7 W
DDD [mg a.s./kg bw/d]	23.1	16Q [*]	, Ø19.6 🌂	14.8/	<b>2</b> 02.1	\$	3.0
PT		<u> </u>	~ .	100	0, ~	Ö	
NOAEL [mg a.s./kg bw/d]				≈76.6 <i>≥</i>		L 1	A.V
TERLT	3.3	4.7	_ <b>3</b> .9 _ 4	5.20	6.3		<b>5</b> 1.9

Based on the measured DT₅₀ of 4 Adays, The refined TER_{LT} use in strawberry and 5.9 for the use in comato andicating an acceptable r

### **Overall conclusion**

Taking into account the high resilience and potential for recovery of vole species, the low relevance of row vegetable fields as habitat for year population and a more realistic residue decline of the active substance, the risk for small herborrous mammals from the use of Fenhexamid WG 50 is low and acceptable.

Long-term risk assessment for mammals drinking contaminated water

For further details, reference is made to Point 10.1. For this dospier. However, according to EFSA Guidance Document for Birds and Mammals (2009), unlike for birds the scenario of pools formed in leaf axils is not relevant for mammals. Therefore the risk assessment for mammals is limited to the scenario of puddles formed on the ground after application.

The acute risk from water in puddles formed on the soil surface of a field when a (heavy) rainfall event follows the application of a pesticide to a crop or bare soil is covered by the long-term risk assessmen#

Table 10.1.2-3: Examuation of potential concern for exposure of mammals drinking water (escape clause)

Compound Koc   L/kg			Ratio (Application rate* MAF) / NO(A)EL	"Escape clause" No concern if ratio	Conclusion
Fenhexanid \$17	1000 × 2.0	76.6	26.1	≤ 3000	No concern

¹⁾ Critical AP for application in stawberry (high rate) used as worst case approach.

This evaluation confirms that the risk for mammals from drinking water that may contain residues from the use of Fenhexamid WG 50 is acceptable.

### IIIA 10.3.2 Effects on terrestrial vertebrates other than birds

### IIIA 10.3.2.1 Acute oral toxicity of the preparation

Report:	KIIIA 10.3.2.1/01;	1995, als	o filed under	KIIIA 7.1.1/	01
Title:	KBR 2738 50 WG 0425	8/0214 - Study for acu	te oral toxicity	in rats	
Document No	M-010213-01-1 (24227)		0,1		Y ØJ
Guidelines:	OECD 401; US-EPA FII	FRA §81-1; Directive	67/ <b>5</b> 08/EEC, A	Annex V, Par	t B.🎾
GLP:	Yes (certified laboratory		Å,	, O Q	, O

A study conducted for purposes of labelling and classification has been summarised in Annex III, point 7.1 (KIIIA 7.1.1/01) of this dossier, and a not repeated here. The study was conducted according to OECD 401 shwoing that Fenhexamid WG 50 is of low toxicity to rats after acute of a administration at a dose of 2000 mg/kg bw.

The LD₅₀ is > 2000 mg/kg body weight

### IIIA 10.3.2.2 Acceptance of bait grangles of treated seed

Not applicable for spray application.

# IIIA 10.3.2.3 Effects of secondary poisoning

Fenhexamid (log Pow = 352) with be evaluated for potential effects of secondary poisoning of mammals. For details please refer to III = 0.1.9.

### Risk assessment for broaccomulation and food chain behaviour for mammals

The risk assessment procedure for wild manipals follows the same principles as described in detail under Point 10.1.9 for birds i.e. SFSA Guidance Document on Risk Assessment for Birds & Mammals (2009).

### Mammalian generic focal species for Tier i risk assessment

According to the EFSA Condance Document on Risk Assessment for Birds and Mammals (2009) the following generic focal species have to be addressed in the Tier 1 risk assessment.

Table 10.3.2.3-1: Mammalan generic focal species for the Tier 1 risk assessment of secondary poisoning

Generic fogal species	Body weight [g]	Example	FIR/bw
Earthworm eater	100	Common shrew	1.28
Ash eater	<b>4000</b>	Otter	0.142

### Long-term TER calculation for earthworm-eating mammals

The bisk assessment has been performed for application in strawberries (high rate). This is a worst-case covering all other uses according to the intended GAP.

Table 10.3.2.3- 2: Tier 1 long-term TER calculation for earthworm eating mammals

Compound	Fenhexamid	Origin of value	
PEC _{worm} [mg/kg]	0.53	Table 10.1.9- 2	
	DDD calculation:	6	
FIR/bw	1.28	Default	
DDD [mg/kg bw/d]	0.67	, S. F.	
T	TERLT calculation:	W.	
NO(A)EL [mg/kg bw/d]	76.6	<b>₩</b> 10.3	
TER _{LT}	114	A O	
Trigger	5	8 8 3	
Refined risk assessment required?	No 🗞		
The TER value for the use in strav	%. &°		
The TED value for the use in street	vharries (bOth rate as ve	Set con semprio is mon	ve the trigger of 5

The TER value for the use in strawberries (high rate) as worst case scenario is above the trigger of 5. use of Fennexa and W@50 Accordingly an unacceptable risk to earthworm eating mammals from the according to the proposed use pattern can be excluded

### Long-term toxicity exposure ratio for fish eating mammals

This is a worst-case covering all other The risk assessment has been performed for application in uses according to the intended AP.

Table 10.3.2.3- 3: Tier 1 long-term TER calculation for fish-eating bird

The TER value for the use in vine as worst case scenario is above the trigger of 5. Accordingly an unacceptable risk to fish eating magnitudes from the use of Fenhexamid WG 50 according to the proposed use pattern can be excluded.

IIIA 10.3.3 Supervised cage or field trials or other appropriate studies

Report:	KVIA 10.3.3/01; 2010
Title:	Determination of the residues of fenhexamid in/on Grass after Spraying of
	Fenhexamed WG 50 in the Field in France (North), Italy, Spain, United Kingdom
Document No.	<b>384914-01-1</b> (Report-No: 09-2041)
Guidelines	The study was especially designed to generate residue decline data on grass for use in
Ş _O _x	ecotoxicological risk assessments; its methodology is based on EU-Ref: Council
	Directive 91/414/EEC of July 15, 1991, Annex II, part A, section 6 and Annex III,
	part A, section 8 Residues in or on Treated Products, Food and Feed, and the EC
	guidance working document 7029/VI/95 rev. 5 (1997-07-22).

GLP	Yes (certified laboratory)	Q °
•		, 40

### Material and methods:

Test item: Fenhexamid WG 50% w/w; Batch-no.: EM20003983; FAR No. 01445-00; content (a) Fenhexamid (KBR 2738) nominal 50% (actual 51.2%).

The aim of this study was to generate DT₅₀ values for dissipation of Fenheramid from grass, for use in exposure assessments on birds and wild mammals that may feed on such ground vogetation in the field.

The study was conducted in four different regions of Europe (France, Italy, Spain, United Kingdom). At each study site, three ground spray applications were scheduled in weekly intervals with the Fenhexamid WG 50% w/w applied at a nominal rate of 1.5 kg product ha (water application rate: 200 L/ha). The application was performed on established grass of various reights with a Knapsack sprayer. After each application, and frequently between the applications until one week after the third application, samples of typically 1-2 kg green plant material were collected from the freated area and subjected to residue analysis. DT₅₀ values were calculated assuming first order kinetics (SFO).

### Information about the Analytical Methods

Active Substance	Analytes	Method Number		Limit of Quant	titation	7	nem Principle
fenhexamid	fenhexamid	<b>% %</b> 180	,	V 40.05	, Co	O HPL	₹-MS/MS

### **Findings:**

The mean of the concurrent recoveries were for all matrices and for all fortification levels, within the acceptable range of 70-110%.

### Application and Residue Summary in Grass in Northern Europe (N-120)

Location O	Application	Portion	Application No.	PALT	Residue [mg/kg]	DT ₅₀	[days]	
Trial No	0	Affalysed	<b>₹</b> 0. (		fenhexamid	appl.	trial	N-EU
				-137 -12 -11 -100	55 62	7.9		
	3x 1.5 kg/ha Ferstexamid	green Q		-6 -5 -4 -3 -1 -0	56 52 49 20 14 12	7.5	6.2	
09-2041-01	(3x 0.75 kg (4x 5.7ha)		3	0 1 2 3 6 7 13	41 34 32 17 6.1 4.3	3.2.		4.9

Location	Application	Portion	Application	DALT	Residues [mg/kg]	DT50	[days]	. Ø 8
Trial No.		Analysed	No.		fenhexamid	appl.	trial	N-EU
09-2041-02	3x 1.5 kg/ha Fenhexamid WG 50 (3x 0.75 kg a.s./ha)	green material		<b>6</b>	1.6	\$ 300 S		

		<b>V</b>		<i>~</i>	, A 03A " 6	, Pa				
DALT = Days After Last Treatment, " - "Days Before Last Treatment										
DALT = Days After Last Treatment, " - "Days Before Last Treatment a.s. = Active Substance										
DALT = Days After Last Treatment, " - "Days Before Last Treatment a.s. = Active Substance  Application and Residue Summary of Grass in Southern Europe (S-EU)										
Location	Application	Portion	Application/	DALAS	Residues [mg/kg]	DT50	[days]	•		
Trial No. 🦼	1.5 kg/hg/Fenhexamid WG/90 (3x 0.75 kg/ha/s)	Analysed	Now Y		<b>Ac</b> nhexamid	appl.	trial	S-EU		
	~ ~			\$14	1					
	√ n			-13@ -13@	/ 087					
	õ		Q	i	6.1					
	, O .			11	0.4	4.3				
				-11	3.1					
				)·-9 _~	3.3					
				-7~	2.2					
Q	/ <b>JQ</b> ^{\(\naggregation\)} (		$O'$ $^{\circ}O^{\circ}$	-78 -78	51					
	1.5 kg/ha			<b>∂</b> -6	45					
	Fenhexamid		'	· -5	39					
	wg 90	green	2 2	-4	29	3.7	3.9			
		material	\$\tag{\pi} \ \sigma \tilde{\pi} \ \sigma \tilde{\pi} \ \ \sigma \tilde{\pi} \sigma \tilde{\pi} \ \sigma \tilde{\pi} \sigma \tilde{\pi} \ \si	-2	28					
09=2041-03	(250 75 10			-0	25					
U7-%U41-U3	(3A U./3/28			-0						
e			S S	0	54					
			, *Y	1	53					
			1	2	54					
			3	3	50	3.6		4.5		
				5	48					
. ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~		<b>*</b>		7	39					
				14	3.8					
	a gri			17	5.0					

Location Trial No.	Application	Portion Analysed	Application No.	DALT	Residues [mg/kg] fenhexamid	DT ₅₀ appl.	[days] trial	S-EU
09-2041-04	3x 1.5 kg/ha Fenhexamid WG 50 (3x 0.75 kg a.s./ha)	green		-3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -	39 0	7.9 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		

DALT = Days After Last Treatment, " - "Days Before Last Treatment

DALT = Days After Last Treatment, " - "Days Before Dast Treatment a.s. = Active Substance

Conclusion:

The aim of this study was to generate DT 50 values for dissipation of Fenhevamid from grass, for use in The aim of this study was to generate  $\overline{DT}_{50}$  values for dissipation of Fenh Ramid from grass, for use in exposure assessments on birds and wild mammals that may feed on such ground vegetation in the field. The mean  $\overline{DT}_{50}$  was 4.9 days for trials conducted in Northern Europe (UK, northern France) and 4.5 days for trials conducted in Southern Europe (Italy) Spain). The everall mean  $\overline{DT}_{50}$  was 4.7 days.



#### **IIIA 10.4** Effects on bees

Studies on effects on bees are available for the product Fenhexamid WG 50 and the active incredient fenhexamid. The results are summarised in the following table.

Table 10.4-1: Acute toxicity to honey bees

Test species Test design Ecotoxicological endpoint Reference

Fenhexamid

Test species	Test design	Ecotoxicologicat endp	oint 🔎	Reference
		Fenhexamid	0,4	
Honey bee	acute, 48 h oral acute, 48 h contact	LD ₅₀ ( > 200 ° )	axs./beev a.s./beev	(1995) 0412401-BLEU M-006350-01-1 AA, 8.7.1/01 EU Boint IIA, 8.3.14/01)
Honey bee	acute, 48 h oral acute, 48 h contact	LD ₅ >488 µg	a.s./bee	951048058 951048058 9006340201-1 11A, 87, 1/02 12D point (A, 8, 2, 1.1/02)
	- Q	Fenhegamid WG 50 🔎	′,O , (	
Honey bee	acute, 48 h oral acute, 48 h contact	LD > 106.7 μg ε LD > 1000 μg ε	Whee of	(2009) EBK®L021 M-360877-01-1 KIIKA 10.4.2.1/01

Bold values: Endpoints considered relevant for risk assessment@

### **IIIA 10.4.1** Hazard Quotients for bees

An indication of hazard (Hazard Quotient QH) can be derived according to the EPPO risk assessment scheme, by calculating the ratio between the maxium single application rate (expressed in g or mL/ha) and the lowest laborators contact and oral LD₅₀ (expressed in μg/bee).

Q_{HO} and Q_{HC} resp. Application rate [g o mL/ha] / L[Δ₅₀ oral or LD₅₀ contact [μg/bee]

QH values can be calculated using data from the studies performed with each of the active ingredients and with the formulation QH valves higher than 50 are assumed to reflect levels of concern which trigger higher tiered tests for clarification of the risk to honey bees.

Oral exposure On

Table 10.4.1.1- Hazard quotients for bees pral exposure

Crop	Exposure route		Application rate [g a.s./ha]	Hazard quotient Qно	Trigger	Refined risk assessment
Fenhexamid W	\$\foots 50					
Strawberries (high rate)	o oral	> 106.7	1000	< 9.4	50	No
Fershexand						
Strawberries (high rate) 1)	oral	> 102.1	1000	< 10	50	No

¹⁾ Critical GAP for strawberries (high rate) as worst case approach that covers all intended application.

The hazard quotient for oral exposure is below the trigger of concern ( $Q_{HO} < 50$ ). Therefore  $\mathring{n}o$  unacceptable risk to bees is expected using Fenhexamid WG 50 according to the proposed use pattern.

### IIIA 10.4.1.2 Contact exposure Q_{HC}

Table 10.4.1.2- 1: Hazard quotients for bees – contact exposure

			( 4)		×.1	
Crop	Exposure	$LD_{50}$	Application rate	Hazard quotient	Trigg	Refined risk
	route	[µg/bee]	[g a.s./hat]	$\mathbf{Q} \widehat{\mathbf{w}}^{\vee}$	<b>4</b>	assessment (
Fenhexamid WG	50		, Q	Õ . °	10 c	
Strawberries (high rate) 1)	contact	> 100	<b>100</b> 00			No C
Fenhexamid					Ž	<b>*</b>
Strawberries (high rate) 1)	contact	> 188	1000	Q<11	50 O	No &

¹⁾ Critical GAP for strawberries (high rate) as worst case approach that covers all intended applications.

The hazard quotient for contact exposure is below the riviger of concern (Que < 50). Therefore, no unacceptable risk to bees is expected using Fenhexamid WG 50 according to the proposed use pattern.

### **Conclusion:**

No major acute risk was shown with the active ingredient on bees in oral and contact conditions of exposure. Based on the low toxicity of the active ingredient and the fact that the product contains only one active ingredient it can be concluded that the risk is considered acceptable for the proposed use of the product.

### IIIA 10.4.2 Agate toxicity of the preparation to bees

### IIIA 10.4.2.1 Acute oral toxicity

Report:	KNA 10-4.2.1/01; 2009
Title:	Effects of femoexamid WG 90 W (Acute Contact and Oral) on Honey Bees
<u> </u>	(Apio mellifera L.) on the Laboratory
Document No.	Mc360873-01-1 (Report No: EBKBL021)
Guidelines:	OECD Guide One 213 and 234 (1998)
GLP 🔎	Yes (certified laboratory)

**Objective:** Honey bees A. methfera) can be affected by pesticide residues as a result of indirect contact on plant surfaces, via gral intake of contaminated food or water, via inhalation of vapour or by direct overspoy in the course of an application in the field according to normal agricultural practice. If the proposed use pattern of fent examid WG 50 W indicates such a possible exposure of honey bees, acute contact and oral toxicity data is necessary for the registration of the pesticide use in question. This study provides

- the acute foxicity levels of the test item to honey bees;
- toxicity information comparable to expected residues from standard rates, for assessment of the potential hazard to honey bees;
- information to support precautionary label statements;

• information to indicate the need for further testing e.g. semi-field or field studies.

Material and methods: Test item: Fenhexamid WG 50 W (Specification: Batch ID.: EM20002826. Sample Description: FAR01338-00, Specification No.: 102000007271) content: 49/7% www.analytical.

Test organism: Honey bee (*Apis mellifera* L.), female worker bees, obtained from a healthy and queen right colony, bred by IBACON, collected on the morning of use.

Under laboratory conditions *Apis mellifera* (50 worker bees per dose 10 individuals in 50 eplicates per test item dose level, controls and reference item doses) were exposed for 48 hours to a single dose of 100.0 µg a.i. per bee for topical application (contact) and feeding (oral value based on the actual intake of the test item) with a single dose of 200.0 µg production bee.

### Oral toxicity study

Aqueous stock solutions of the test item and reference item were propared in such a way that they had the respective target concentration of the test item once they were subsequently not with sugar syrup at a ratio of 1 + 1. After mixing of these test solutions with ready-to-use sugar syrup (composition of the sugar component 30 % saccharose 31 % glucose, 39 % fructose) the final concentration of sugar syrup in the test item solutions offered to the bees was 50 %.

For the controls water and sugar sorup was used at the same ratio (1 < 1).

The treated food was offered in syringes, which were weighted before and after introduction into the cages (duration of uptake was 45 minutes for the test item treatments). After a maximum of 45 minutes, the food uptake was complete weighted and replaced by ones containing fresh, untreated food.

The target dose levels (e.g. 100.0 µg a.i.) bee nominal) would have been obtained if 20 mg/bee of the treated food was ingested, hi practice, higher for lower) dose levels were obtained as the bees had a higher or lower uptake of the test solutions than the nominal 20 mg/bee.

The measured dose level was 206.7 µg a.i. Dee.

The test was conducted in darkness, temperature was 25-26°C and humidity between 47 and 74%.

Biological observations including mortality and behavioural changes were recorded at 4, 24 and 48 hours after downg. Results are based on measured concentrations of the a.i. per bee.

### Contact toxicity study &

A single 5 µL droplet of fenhexamid WG 50 W in an appropriate carrier (tap water + 0.5 % Adhäsit) was placed on the dorsal bee thorax.

For the control one 5 µL droplet of tap water containing 0.5 % Adhäsit was used.

The reference fem was also applied in 5 uL tap water (dimethoate made up in tap water containing 0.5 % Adhäsit).

A 5  $\mu$ L droplet was chosen in deviation to the guideline recommendation of a 1  $\mu$ L droplet, since a higher volume ensured a more reliable dispersion of the test item.

The test was conducted in darkness, temperature was 25°C and humidity between 52 and 67%. Biological observations, including mortality and behavioural changes were recorded at 4, 24 and 48 hours after application. Results are based on nominal concentrations of the product per bee.

Findings: The results can be considered as valid, as all validity criteria of the test were met: control mortality is 0% in the oral and in the contact test,  $LD_{50}$  (24 h) of the toxic standard in the oral test, equals 0.16 µg a.i./bee, the LD₅₀ (24 h) of the toxic standard in the contact test equals 0.18 µg/bee. A summary of effects of the test item on mortality and behavioural abnormabilies of the bees is given below for both tests: 

### Mortality and behavioural abnormalities of the bees in the oral toxicity test

	after 4 hours		₄ Dafter	24 hours	after 48 hours	
ingested dosage [µg a.i./bee]	mortality	behavioural abnormalities	Aportality	behavioural abnormalities	mortality	behavioural atonormalities
	(mean %)	(mean %)	(mean %)	(mean %)	(mag/20/-)	(mean %)
test item 106.7	0.0	0.0	0.0	0.0	0.0	0.0
water control	0.0	0. <b>Ø</b>	y 0. <b>©</b> .	~ 9 <b>0</b>	y 0.00	*
reference item					\$ 96.0\$	
0.33	40.0	48.0	96.0	0.0	\$ 96.Q5	0.0
0.16	14.0		\$ 500°	© 46 6	600 ₍₄	0.0
0.08	0.0	0.0	2.0	Ø1.0 0	8.0	0.0
0.06	0.0	0.0	0.0 °C	Ø.0.0 ×	Q 0.0g	0.0

results are averages from five replicates (ten box each) for dosage / control

### Mortality and behavioural abnormatities of the beet in the contact toxicito test

	· /	r Ahours	after	24 hours	after	48 hours
Dose [μg a.i./bee]	nortality	behavioura	mortality	h ale	mortality	behavioural abnormalities
iμg a.i./υσεί	(mean %)	(mean %)		© (mean %)	(mean %)	(mean %)
test item	\$\int_0.0 \tag{\display}			0.0	0.0	0.0
water control	0.0		0.0	0.0	0.0	0.0
reference item			S S	Ÿ		
0.30	0 4.0	18.0	92.6	6.0	94.0	0.0
0.20	4.00	S' 0.64 .	7,090°	2.0	80.0	0.0
0.20	<b>2</b> 0 4		<b>2</b> 2.0	6.0	46.0	2.0
0.10	(°0.0 A	0.0	2.0	0.0	2.0	0.0

results are averages from five peplicates (ten bees each per dosage / control

Observations At the end of the contact toxicity test (48 hours after application), there was no mortality at 100.0 by a.i. bee. No mortality occurred in the control (water + 0.5 % Adhasit).

In the oral toxically test the maximum nominal test level of fenhexamid WG 50 W (100.0 µg a.i./bee) corresponded an actual intake of 106.7 µg a.i./bee. This dose level led to no mortality after 48 hours. No contrality occurred in the control (50 % sugar solution). No test item induced behavioural effects worke observed at any time.

### **Conclusion:**

### **Toxicity to Honey Bees; laboratory tests**

Test Item	Fenhexamid WG 50 W	O ^T	
Test object	Apis mellifera		
Application rate (μg a.i./bee)	106.7	<b>∂</b> 900.0	
Exposure	oral (sugar solution)	Contact (0.5) (solution ip Adhäsit (0.5)	water
LD ₅₀ μg product/bee	>106.7	> 100.0	

The toxicity of fenhexamid WG 50 W was tested in both an acute contact and an oral toxicity test on honey bees. The LD₅₀ (48 h) value was  $> 100.0~\mu g$  a.i. bee in the contact toxicity test. The LD₅₀ (48 h) value was  $> 106.7~\mu g$  M./bee in the wall toxicity test.

#### IIIA 10.4.2.2 Acute contact tox

Please refer to point Point 10,22

### Effects on bees of residues on crops **IIIA 10.4.3**

In view of the findings reported under 1004.1 and 10.42, and based on the requirements of Directive reported under 1004.1 and 10.4.2, and based on the requirement. Point 100, no further studies are required. The Quevalue is <50.

Petests

Int 10.4.3. 91/414/EEC (Annex III,

### IIIA 10.4.4

Please refer to point Point

### **IIIA 10.4.5**

Please refer to point Point 16

### IIIA 10% 4.6

Please refer to point Point 10.4.

Please refer point point 3.4.3

### IIIA 10,66.2 Long residual effects

Please refer to point Point 10.4.3.

### Disorienting effects on bees

Please refer to point Point 10.4.3.



# IIIA 10.4.7 Tunnel tests - effects of feeding on contaminated honey dew or flowers.

Please refer to point Point 10.4.3.

### IIIA 10.5 Effects on arthropods other than bees

Toxicity tests on non-target arthropods have been carried out with Feshexamid W. 50 on the two indicator species *Typhlodromus pyri* and *Aphidius rhopdlosiphi*. Further studies have been condicted on two additional ground/leaf dwelling arthropods, as represented by *Coccinello septempunctora* and *Aleochara bilineata*. A summary of the results is provided in Table 10.501.

Table 10.5-1: Effects of Fenhexamid WG 50 on Non-Target Arthropods in Laborators Studies

Test species	Test design	A Tecotoxicological endpoint	O Reference
Aphidius	WG 50, laboratory, spray	LR ₃₀ [kg a.s. ha] >	
rhopalosiphi	deposits on glass plates	Effection S	(1995)
		Corr. Mortality [%] Reproduction [%]	® BAX-95-1
	0.3 kg a.s./ha	o' 'w' '' 'S' 'S' 'S' ''	\$ M-0 <b>26</b> 379-01-1
	1 kg a.s./ka		ĨĨ <b>Ã</b> ∕8.8.1.1/01
	2 kg a&/ha 🎺		<b>%</b> EU point IIA,
			© 8.3.2/02)
Aphidius	WG 50, laborator, spray	$LR_{50}$ [ $g$ a.s./ $R$ $a$ ] $> 5$	(2009)
rhopalosiphi	deposits on glass plates.	Corr.s. Seffect on Se	CW08/069
		Fortality %] Reproduction [8]	M-327444-01-1
	05 kg a.s./hec	77.3 ×	IIA 8.8.1.1/02
	Ø.9 kg a.s. 167	√ 31.7 5 0 0 13.9 °√	
	\$1.6 %kg ax ha	1.7° \$ 4 13.40	
	2.8 kg a.s./ha.		
	∫ 5 kg a.s./hao ⟨	© \$3 % =-33.0	
Typhlodromus	W	$[LR_{so}] \log a.so $	(1995)
pyri 🔎	deposits on glass plates	Corr. Of The Corr.	95-001-1022
		Mortality [%] Reproduction [%]	M-006380-01-1
	kg a.s./ha	-51.3	IIA 8.8.1.2/01
	Ş2 ∜kg a.s⊘ha √	-57.5	(EU point IIA,
			8.3.2/01)
Typhlodromus@	WG 50 laboratory, spray	$\mathbb{R}_{50}$ [kg/a.s./ha] > 5	(2009)
pyri 🎺	deposits on stass plates.	Corr Effect on	CW08/068
.4		Reproduction ^A [%]	M-327443-01-1
	0.5 kg-ŵs./ha	-11.5	IIA 8.8.1.2/02
	0.9 kg/a.s./ha	6.3	
	√F.6 ≰kg a.s. and Ø	<b>4</b> .1 -21.2	
	2.8 % kg a.s/ha Q	-16.5	
	y 5 kg a.s./ha⊘	-3.2	
Aleochara 🗳	WG 50, laboratory, spray	$\mathbb{R}R_{50}$ [kg a.s./ha] > 2	(1996)
bilineata	deposits on quartz sand. @		SXR/AL 30
		Effect on	M-006378-01-1
		Corr. Mortality [%] Reproduction ^A [%]	IIA 8.8.1.3/01
	4750 Rg a.s./ha	0 -11	(EU point IIA,
	kg a.s./ha	0 -8	8.3.2/04)

Test species	Test design	Ecotoxicological endpoint	Reference
Coccinella septempunctata	WG 50, laboratory spray deposits on glass plates.	$LR_{50}$ [kg a.s./ha] > 2	SXR/68 10
зергетринстин	aspessa es gans panes.	Corr. Eggs/Female Hatching [%] Mortality ^B [%] Day	SXR/\$\sqrt{3}10 M-006\sqrt{3}77-01\sqrt{1}
	Control	- 525.9	IIA 8.8.1.4001 (D) point IIA,
	0.3 kg a.s./ha 0.6 kg a.s./ha	-5.0 499.8 57 2.4 641.3 663	8.3.2403)
	2 kg a.s./ha	5.2 733.3 60	

A A negative value indicates a higher reproduction rate in the treatment than in the control

It has been demonstrated by laboratory studies that Fenhexand WG 50 (tested to 25 kg & /ha) has no negative impact on representatives of the four major function arthropod groups: grounddwelling arthropods (as represented by Alegonara bilineara), foliage-welling arthropods (as represented by Coccinella septempunctota), predatory mites (as and parasitoids (as represented by Appodius Phopalosiphi)

### Risk assessment procedures

The risk assessment was performed according to Guidance Document on Terrestrial Ecotoxicology (SANCO/10329/2002) and to the Guidance Document on regulatory testing and risk assessment procedures for plant protection products with non-target anthropods (ESCORE)  $2000^3$ ).

### In-field hazard quotient (HQ) for tier 1 wisk assessment

The following equation is used to calculate the TEROToxiony Exposure Catio) value for the in-field exposure scenario.

In-field HQ max. single application rate

The risk is considered acceptable if the calculated HQ is

Fenhexamid is intended to be applied at the following compitions:

800/g a.s/Ma in grapes

1000 g@s./ha M strawberries (high rate)

a.s./hain strawberries (low rate)

7500 g a.s. Tha in tomatoes

Therefore the following multiple application factors (MAF) were used for the risk assessment

MAF (multiple application actor): **2.7** (4 applications)

2.3 (3 applications)

1.7 (2 applications)

B A negative value indicates a higher mortality in the control than in the treatment.

et al.: Guidance document on regulatory testing and risk assessment procedures for plant protection products with non-target arthropods; ESCORT 2 workshop (European Standard Characteristics Of Non-Target Arthropod Regulatory Testing), , March 21-23, 2000, publication August 2001

Table 10.5-2: HQ for the indicator species *Typhlodromus pyri* and *Aphidius rhopalosiphi* for the in-field scenario

Сгор	Appl. rate [g a.s./ha]	MAF	LR ₅₀ / ER ₅₀ [g a.s./ha]	HQ	Trigger	Refined risk assessment
Grapes	800	1.7		< 0.27	2 3	No.
Strawberries (high rate)	1000	2.3	> 5000 %	< 0.46	\$\bar{2}^{\dagger}	<b>NO</b>
Strawberries (low rate)	750	2.7	> 5000	< 0.41	<b>É</b> 2	No No
Tomatoes	750	2.3	. ₩	< 0.35	<b>∛</b> 2	No No

Conclusion: The in-field HQ values are below the rigger of concern, indicating an acceptable risk for non-target arthropods.

This conclusion is further supported by the results of lateratory studies with Coccinella septempunctata and Aleochara bilineata. For both species no macceptable adverse effects (> 55%) could be observed up to the highest rate tested (2/kg a 2/ha).

### Off-field hazard quotient (HQ) tier 1 risk assessment

The following equation was used to calculate the hazard quotient (HQ) for the off-weld scenario:

Off-field HQ = max. single application rate * MAF * (drift factor/VDF) *correction factor / LR₅₀.

MAF = multiple application factor

Drift factor = 7.23%, (82nd percentile for 2 applications in vine, according to ESCORT2)

2.03%, (77th percentile for 3 applications in field crops, according to ESCORT2)

\$285% \text{V4th} percentile for 4 applications in field crops, according to ESCORT2)

VDF = Vegetation distribution factor

Vegetation distribution factor = 19

Correction factor = 10 Ger 1 Tests, Aprildius + Typhodromas

The risk is considered acceptable if the calculated HQs < 2

Table 10.5-3 HO for the indicator species Typhodromus pyri and Aphidius rhopalosiphi for the off-field

Crop	AppQrate [g{a.s./ha]>	MAF	Drift  %	<b>VDF</b>	Correction factor	LR ₅₀ / ER ₅₀ [L/ha]	HQ	Trigger
Grapes	\$800	Æ7	<b>2</b> 23	10	10		< 0.02	2
Strawberries (high rate)		_v 2.3 ∠	2.01	10	10	> 5000	< 0.01	2
Strawberries (New rate)	<b>9</b> 50	2.7	1.85	10	10	<i>&gt;</i> 3000	< 0.01	2
Tomatoes	750	~ <b>@</b> 3	2.01	10	10		< 0.01	2

Conclusion: The off-field fos are below the trigger of concern, indicating an acceptable risk for non-targer arthropods.

This conclusion is further supported by the results of laboratory studies with *Coccinella septempunctata* and *Aleochara bilineata*. For both species no unacceptable adverse effects (> 50%) could be observed up to the highest rate tested (2 kg a.s./ha).

#### **IIIA 10.5.1** Effects on sensitive species already tested, artificial substrates

Formulation studies on non target arthropods using artificial substrate carried out with the formulation Fenhexamid WG 50 are summarised in the Tier II summary decument on the substance Annex II, point IIA 8.8.1 (EU point IIA 8.3.2).

### Effects on non-target terrestrial arthropods in ext. laboratory IIIA 10.5.2

In view of the findings reported above, and based on the current requirements. with the preparation have been conducted.

#### Effects on non-target terrestrial arthropods IIIA 10.5.3

In view of the findings reported above, and based on the with the preparation have been conducted.

### Field tests on authropods species IIIA 10.5.4

In view of the findings reported above and based with the preparation have been conducted.

### Effects on earthworms and other soil macro-organism **IIIA 10.6**

The summary of the toxicity of Eenhexamid NG 50, the Otive substance fenhexamid and the fenhexamid soil metabolite M 2405 provided in Pable 10.6-

Table 10.6- 1: Effect on soil macro-organisms earth orms

Test species	Test design	Ecotoxicological endpoint	Reference			
Fenhexamid						
	agute, 146		(1995) HBF/Rg 210			
Eisenia fetida	Or 0 % peat	LCA Pag a.s./kg dws	M-006331-01-1			
	in text soil)		IIA 8.9.1/01 (EU point			
			IIA, 8.4.1/01)			
<b>Fenhexamid</b>	Fenhexamid WG 50 D D D					
	chronic 56 d	g a.s./ha	(1999) HBF/Rg 316			
Eisenia Jetida	(10% peat	NOEC ≥ 5 g a.s./ha ≥ 19.8 mg a.s./kg dws 1)				
<b>4</b>	in test soft	y Q S Ing a.s./kg uws /	M-024530-01-1 IIA 8.9.2/01			
M24						
	chronic, 560	J Q	(2012) 121048007S			
Eisenia fetido	(3% pear	100 mg p.m./kg dws	M-422055-01-1			
	in test soil)		IIA 8.9.2/02			

dws = dry weight soil

### Metabolites

From the studies on the route of degradation in soil it can be concluded that fenhexamid was rapidly

 $[\]begin{array}{ll} p.m. & \text{ where monopolite } \\ \text{ b) conversion carried out as follows: endpoint } [mg/m^2] \times soil surface of test vessel } [m^2] / dry weight of soil in test vessel [kg] \\ \text{ where } \\ \text{ b) } \\ \text{ conversion } \\ \text{ con$ d.wt.s; with soil surface of test vessel = 0.0198 m², d.wt.s. in test vessel = 0.5 kg

degraded in soil to the final degradation product CO₂. One metabolite, the [C-C]biphenyl-KBR 2738 with BayerCropScience code BCS-CQ88719 (M24) was identified as a major compound formed in a range from 4.1-8.8% AR in maximum during 120 days of incubation. For further details please refer to IIIA, Point 9.4.

An earthworm reproduction study has been performed with this soil metabolite of fenhexamid.

### Exposure in soil

Predicted environmental concentrations in soil (PEC_{soil}) values were calculated for the active substance fenhexamid and its metabolite as described in detail in Point 9.4 and Point 9.5 of this dossier. A soil layer of 5 cm with a bulk density of 1.5 g/cm, and conservative DO₀ values of 299 and 75 days for fenhexamid and its metabolite M24 respectively, were considered this calculation for initial PECs in soil is a first approach to simulate spossife of soil mixto- or macro-organisms. The PEC_{soil} values used for the risk assessment are presented in Table 10.6, 2.

Table 10.6-2: Maximum PEC_{soil} value

Crop	Fenhexamid M124 M124 M124 M124 M124 M124 M124 M124
	PECool.max O PECOU(twa M d) P PECool.max
	mg/kg/ mg/kg/ [mg/kg]
Grapes	0 0 3 2 6
Strawberry (high rate) 1) Strawberry (high rate) 1)	0.689 0.134 0.132
Strawberry (low rate) 1	
Tomatoes	0.24 $0.050$ $0.049$

¹⁾ The risk assessment sconducted worst case for the high application rate in strawberries. Givering the intended lower rate.

### IIIA 10.6. Toxicity exposure ratios for earthworms, TERA and TERLT

The risk assessment procedure follows current regulatory requirements and the Guidance Document on Terrestrial Ecotopicology.

Based on most sensitive endpoints (see Table Di.6- Diff the TER values are calculated using the following equations:

TER_A = 
$$C_{50}$$
 / PEC.

TER_A = chronic NOEC / PEC.

The risk is considered acceptable, if the TERA is > 10 and the TERLT is > 5.

For lipophilic substances ( $\log P_{\rm OW} > 2$ ) the Terrestrial Guidance Document recommends to apply an additional assessment factor of 2 for the ecotoxicological endpoints (LC₅₀, NOEC), if the study was conducted in artificial soft with a high content of organic matter (i.e. 10% peat), to consider the possible orption of these compounds to the organic matter.

Table 10.6.1-1: TER calculations for earthworms

Compound test design	Endpoint	[mg/kg soil]	PEC _{max} [mg/kg soil]	TER _A /	Trigger	Refined risk assessment?
Grapes				Ĩ		4 .5
Fenhexamid, acute	LC ₅₀	> 5001	0.320	<b>1</b> 563	10 0	7 <b>3</b> 00 Q
Fenhexamid WG 50, chronic	NOEC	$\geq 9.9^1$	0.320	^y ≥31	5	No No
M24, chronic	NOEC	≥ 100 🐨	0.039	≥ 2564		S Ne
Strawberry (high rate covering low r	ate)	a.G	<b>20</b> *	Č	V Q	
Fenhexamid, acute	LC ₅₀	>5001	0. <b>8</b> \$9 🖔	° > 75%	1.0	O _{No}
Fenhexamid WG 50, chronic	NOEC	<b>₽</b> 9.9¹	~0.659~	≥ 15°	13,	Ne.
M24, chronic	NOEC	$\leq 100$	0.1 <b>32</b>	<b>₹</b> 2758 €	Ş 5 ×	/ No
Tomato	4			<del>0</del> 10°	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	
Fenhexamid, acute	LC	~ 500°	~0.247 <u></u>	>2024	, 10	S NO.
Fenhexamid WG 50, chronic	NØEC /	> 9.9	\$\tag{0.245}	<u>~</u> 40 Å	y 5 %	No
M24, chronic	NOECK,	× _≥ <b>©</b> 00 <b>]</b> <	7 0 <b>0</b> 49 C	$r \geq 204$	<b>5</b> 0	No

Study endpoint divided by factor 2

### **Conclusion:**

The TER values are above the trigger of concern indicating no macceptable this for earthworms from the application of Fenhexamid WG 50 according to the intended GAD.

### IIIA 10.6.2 Acute toxicity to earthworms

No acute study with Fennexand WG 50 was conducted. The risk assessment is conducted with the endpoint received from the study with the active substance fenhavamid.

### IIIA 10.6.3 Subjethal effects on earthworms &

A formulation study on subletbal effects of earthworms carried out with the lead formulation Fenhexamid W 50 is summarized in the Tier II supphary document on the active substance Annex II, point 8.9.

### IIIA 10.6.4 Field tests (effects on earthworms)

Considering the findings reported above to further studies are required.

## IIIA 10.6.5 Residue content of earthworms

According to the current regulatory requirements a log  $P_{\rm ow} > 3$  is used to indicate that there might be a potential for broaccumulation. For information on the residue content of earthworms please refer to IIIA 10.1.9.

### IIIA 19.6.6 Effects on other soil non-target macro-organisms

Considering the low risk for earthworms (see point 10.6.1), no further studies were necessary.



#### IIIA 10.6.7 Effects on organic matter breakdown

A study on the organic matter breakdown is not required based on the Dry value of the substance and acceptable TER values for earthworms, soil macro-organisms and soil micro

#### **IIIA 10.7** Effects on soil microbial activity

Studies are available for the product Fenhexamid WG 50 and the active ingredient fenhexamid. The results are summarised in the following table.

Table 10.7-1: Effects on soil non-target micro-organisms

Test design

Ecotoxicological endpoint

Ferflexamid WG 50

Test design		Ecotoxicological endpoint A Reference
		Fedhexamid WG 50 2 5
N-cycle	28 d	no refluence 26.80 mg/kg dws FRM-N-150/09 P-359659-01-1 IIA 800.1/02
	4	(Fennexamid & S
C-cycle	28 d 🙏 🥳	7995a) AJO 76094 M-00974-01-1 IIA \$ 10.2/01 (EU paint IIA. 8.5/01)
N-cycle	28 d	no influence 10 (1995b) AJO/126194 M-006371-01-1 IIA 8.10.1/01 (EU point IIA, 8.5/02)

### Risk assessment

According to current regulators requirements the task is acceptable, if the effect of the recommended application rate of a compound/product on nitrogen or carbon mineralisation is < 25% after days. In no case, deviations from control exceeded 25% after 28 tays, indicating low rik to soil micro-organisms.

Thus no unacceptable risks to sold nonetarget inicro-organisms is to be expected from the use of Fenhexamid WG 50, if the product is used according to the recommended use pattern.

### Laboratory test to investigate impact on soil microbial activity

A formulation said on soil rocrobial activity carried out with the lead formulation Fenhexamid WG 50 is summarized in the Tier II summary document on the active substance Annex II, point 8.10.1.

#### IIIA 10.7.2 Further testing to investigate impact on soil microbial activity

Since laboratory testing has demonstrated that fenhexamid would not be expected to cause as significant effects on either soil microflore required: significant effects on either soil microflora respiration or nitrogen transformation at concentrations above the maximum field rate, no additional testing has been performed.

### **IIIA 10.8 Effects on non-target plants**

#### **IIIA 10.8.1** Effects on non-target terrestrial plants

The risk assessment is based on the "Guidance Document on Terrestrial Ecotoxicology", (SANCO/10329/2002 rev2 final, 2002). It is restricted to off-field situations, as non-target plants are non-crop plants located outside the treated area. Spray drift from the treated area may lead to residues of a product in off-crop areas.

In the case of a non-herbicide, screening results and/or Tier studies give first information about the likelihood for terrestrial plant effects. The risk can be considered acceptable if there are no data indicating more than 50% phytotoxic effect at the maximum application ate.

Seedling emergence and vegetative vigour studies have been conducted with Fedhexamid WG 50 in a seeding emergence and vegetative vigour studies have been condicted with Feddexa screening test following the OECD Non-Target Plant Testing Cardeline Proposal. Each 11 species tested at the maximum application rate of 5000 g a.s./ha. screening test following the OECD Non-Tagget Plant Testing Gundeline Proposal. Each study involved

Table IIIA 10.8-1: Ecotoxicological endpoints for non-target terrestrial plants

Table IIIA 10.0-		icar enapoints for non	-target terrestrial plants			
Fenhexamid WG 50						
Plant species	Seedling emer	rgence (Tier 1)	Vegetative y gour (Tier 1)			
	Worst-case impact at 5000 g a.s./ha	Parameter	Worst-case impact at 5000 g a.s./ha	Parameter		
Sugarbeet	0 %	Phytotoxic effects (visual damage)	30 %	Phyrotoxic offects Ovisual damage		
Common amaranth	0 %	Phytotoxic effects (visual damage)		Phytotoxic effects (visual damage)		
Indian mallow	0 %	Phytotoxic effects (visual damage) .		Poytotoxic effects (visual damage)		
Morningglory	0 %	Phytotoxic effects (visual damage)		Phytotoxic effects (Saual damage)		
White mustard	0 %	Phytotoxic offects  Isual damage		Phytotoxic effects (visual damage)		
Cleavers	30 %	Phytotoxic effects (vi@ral damæge)		Phototoxic effects Wisual Gamage)		
Corn	0 %	Phytotoxic effects visual damages		Phytotexic effects (visual damage)		
Black twitch	0 % \$	Physocoxic effects (xisual damage)		Phytotoxic effects (visual damage)		
Wild oat	0%	Phytotogic effects (visual damage)		Phytotoxic effects (visual damage)		
Cockspur		Physotoxic ffects Visual damages		Phytotoxic effects (visual damage)		
Green bristlegrass		Phytotoxic effects (visual damage)	30 %	Phytotoxic effects (visual damage)		
Reference		$^{\circ}$	(1999) M59105 7075-0 P1 10.8.12/01			

In the case of Fenhexamid WG 50 weither the seedling mergence nor the vegetative vigour studies showed phytoroxic effects 50% at the maximum rate of 5000 g a.s./ha.

Thus, no macceptable risks to non-target terrestrial plants are to be expected from the use of Fenhexanid WG 50, when used according to the recommended GAP.

### IIIA 10.8.1.1 🧷 Seed germanation

Please refer to Anne Point IIA 10.8.1.2

# IIIA 10.8.1.2 Vegetative vigour

Effects on regetative vigour and seedling emergence have been caried out in an herbicidal screening test with the lead formulation Fenhexamid WG 50. The study is summarised in the Tier II summary document on the active substance Annex II, point IIA 8.12.

### IIIA 10.8.1.3 Seedling emergence

Please refer to Annex Point IIIA 10.8.1.2.

### IIIA 10.8.1.4 Terrestrial field testing

Further studies were not considered necessary.

### IIIA 10.8.2 Effects on non-target aquatic plants

The toxicological spectrum of the active substance towards aquatic plants is presented under Annex Point IIIA 10.2. The risk assessment for *Lemna* is presented under IIIA 10.2.1.11.

### IIIA 10.8.2.1 Aquatic plant growth — Lempa

Due to the use of the product as a fungicide and since the product is not used as plant-growth regulator, tests on aquatic plants are not required. Novertheless, a study with Louina gibba has been conducted with the active substance feether and. The results are symmatised in able 20.2-1.

### IIIA 10.8.2.2 Aquatic field testing

The spectrum of the biological activity of the product is well represented by the results and the risk assessments in Point 10.2. Therefore, further studies are not considered necessary.

### IIIA 10.9 Effects on other non-target organisms believed to be at risk

The spectrum of the biological activity of the product is well represented by the results and the risk assessments in Point 90.2 to 10.8 of this dossier. Therefore further data from biological primary screening or other preliminary tests are not considered relevant for the risk assessment.

### IIIA 10.9.1 Summary of preliminary data: biological activity & dose range finding

Not relevant. See statement provided under Point 10.9.

### IIIA 10.9.2 Assessment of relevance to potential impact on non-target species

Not relevant. See statement provided under Point 10.0

### IIIA 10.10 Other/special studies

The spectrum of the biological activity of the product is well represented by the results and the risk assessments in Point 10.2 to 10.8 of this dossier. Therefore, further data from biological primary screening of other preliminary tests are out considered relevant for the risk assessment.

### IIIA 1600.1. Other/special studies - laboratory studies

Not refevant See statement provided under Point 10.10.

### IIIA 10000.2 Other/special studies - field studies

Not relevant. See statement provided under Point 10.10.

### IIIA 10.11 Summary and evaluation of points IIIA 9 and IIIA 10.1 to 10.10

### IIIA 10.11.1 Predicted distribution and fate in the environment and time courses

### Summary on the fate and behaviour in soil

From the studies on the route of degradation in soil it can be concluded that fenhexamed was rapidly degraded in soil to the final degradation product CO₂ the parallel to mineralisation, bound residues were formed. More than 13 degradates were found; seven of them could be identified or characterised. No metabolite accumulated in soil. None of the degradates exceeded 10% of the applied radioactivity at at least 1 sampling date however one metabolite, the [CC]biphenyl-KBR 2738 with BayerCropScience code BCS-CQ88719 (M24) was identified as a major compound formed in a range from 4.1-8.8% AR in maximum during 120 day of incubation. All metabolites reached their maximum concentration in soil in the first week after soil treatment and continuously degraded with termination of the study.

The initial step of breakdown of the polecular involved a variety of oxidative CC or CO-C coupling reactions involving two or more conhexamid moreties. As a result dimeric coupling products and trimeric coupling products of fenhexamid were found as morabolites. Based on the results from the processing of sterile soil it was concluded that formation of these timeric and trimeric transformation products of fenhexamid was a matter of microbial and/or enzyme-mediated and in part abiotic processes.

Ultimately total mineralisation of the aromatic nucleus to carbon diaxide occurred via aerobic ring cleavage.

It can be concluded from the study concerning the photodegradation of tenhexamid on soil surfaces that photodegradation will not significantly contribute to primary degradation of the parent compound. But it can contribute to the elimination of residues of tenhexamid in the environment by means of mineralisation of phenylering containing metabolites in soil. No specific photolysis metabolites were formed thring this study.

On the basis of the data presented on the route of degradation, it is clear that the parent compound itself represents the only relevant residue of concern in soil, because no metabolite or degradation product was found in a manning above 10% of the applied radioactivity.

The rate of degradation of Genhexamid by soil has been investigated in laboratory trials, which were run with eight soils and two ratio labels one at the cyclohexane and one at the phenyl moiety under aerobic conditions at 20 °C. The determined  $DT_{50}$  values were  $\leq 1$  day for all soils.

In order to derive reliable values for the half tree of the [C-C]biphenyl-KBR 2738, BCS-CQ88719 (M24), further investigations of the degradation behaviour of the BCS-CQ88719 (M24) in four aerobic soils resulted in half-lives of 1.18 of 22.74 days (geometric mean: 5.10 days) for best fit evaluation following Focus kinetic suidance.

The results of the adsorption desorption studies (batch equilibrium) with fenhexamid showed that the compound has to be classified as a substance with no or only low leaching potential (mean  $K_{\rm OC}$  = 51%). Due to its very low water solubility the mobility of the major soil metabolite [C-C]biphenyl-KBR 2038 (M24) could not be determined in batch equilibrium experiments therefore a soil column leaching study was performed to result in mean  $K_{\rm OC}$  values of 668 mL/g and 912 mL/g depending on

the model used for calculation. Therefore no problems concerning the groundwater contamination will be expected, which was also confirmed by the PEC_{gw} computer simulation.

### Summary on the fate and behaviour in water

In sterile aquatic systems reflecting environmental pH and temperature conditions feed example was found to be stable to hydrolysis. Consequently it is not expected that hydrolytic processes will contribute to the degradation of fenhexamid in the environment.

Studies investigating the photochemical degradation in water showed that solar adiation will significantly contribute to the degradation of fenhexamid in aquatic systems and also can contribute to the elimination of residues of fenhexamid by means of mineralisation of the phenyl-ring. More than 14 degradation products or metabolite fractions were observed in the irradiated aqueous solution. The breakdown of the parent compound proceeded via dechlorination (M12), stepwise hydroxylation (M15) and subsequent cleavage of the phenyl-ring.

The benzoxazole metabolite of KBR 2738 110 (WAK 1004), which was formed by amounts of approximately 24% of applied radioactivity was forther metabolized very fast DT₅₀ 1 d

In a phototransformation experiment with fenhexamid published in Chemosphere vol. 81, pp. 844-852 (2010) another new aqueous photographic taboute occurred to amounts up to 15% of AR and was identified as 1-methyl cyclohexane carboxamide (M40). Different photo sensitive additives like acetone, etc. and chumic substances like humic acids, etc. were utilized in those phototransformation experiments.

All photolysis metabolites are of transient nature and therefore not taken into consideration for modelling purposes.

In natural water sediment systems the compound has to be regarded as a rapidly dissipating and thoroughly metabolised substance. The D1% values of for hexamid were calculated to range between 2 and 15 days referring to the entire system. More than 15 metabolites were formed, but no metabolite accumulated. Using the [cyclonexyl 1-14C] labeled fenhexamid (KBR2738) two major metabolites identified as 1-methologochexanecarbotylic and (M39) and 2-monochloro-KBR 2738 (M12, synonym: KBR 2738-3-deschloro) occurred in an advatic environment in amounts up to 8.9 % and 7.5 %, respectively. The sulfate of KBR 2738 (M27) which occurred in amounts up to 4.2% of applied radioactivity only was not taken into account in further risk assessments. Fenhexamid was relatively fast degraded in the water/sediment systems to the final degradation product CO₂. A significant portion of the radioactivity was transfected to the sediment. However, in two systems the fraction of the bound residues started to decline after about 30 to 60 days and was gradually mineralised to carbon dioxide, indicated by the large amounts of 14CO₂ at the end of those studies.

Regarding the different results concerning the degradation behaviour of fenhexamid in the aquatic environment one parent compound itself has to be regarded as the only relevant residue.

### Summary on the fate and behaviour in air

Due to the low vacour pressure significant volatilisation of fenhexamid is not to be expected. In addition, estimates of the chemical lifetime in the troposphere resulted in half lives < 1 day. According to these results an accumulation of fenhexamid in the air and a contamination by wet or dry deposition are not to be expected. The relevant residue for quantitation in air is the parent compound only.

#### IIIA 10.11.2 Non-target species at risk and extent of potential exposure

### **Terrestrial Vertebrates**

The risk assessment showed that all toxicity-to-exposure-ratios (TER) for birds meet the acceptability criteria. Thus, an unacceptable risk to birds from dietary exposure after use of product as described in this dossier is unlikely.

The risk assessment for mammals showed that all TER values are met for all scenarios apart from the vole scenario for application in strawberries and tomatoes where a refined risk assessment is conducted. Taking into account the high resilience and potential for recovery of volospecies, the fow relevance of row vegetable fields as habitat for vole populations and a more realism residue decline of the active substance, the risk for small herbitorous mamnals from the use of benhexamid WG 50 is low and acceptable.

It was also shown that no unacceptable risk to birds and mammals resulted from exposure via drinking water and from secondary poisoning via earthworms or fish is given.

The risk from metabolites to vertebrates is considered to be low.

### **Aquatic Organisms**

For the use in strawberries and tomatoes all TEX values for fenhexanid and its metabolites meet the required trigger for acute and chronic risk based on FOCUS Step 2 and 3 indicating an acceptable risk to aquatic organisms for applications close to surface water bodies. Thus, for the use in strawberries and tomatoes, mitigation measures are not needed.

For the use in vine, all VER values are met for FOCUS Step 2 and 3 apart from acute and long-term risk of fish exposed of fenhexamid. Thus to protect fish, a wrift reducing buffer zone of 5 m is required for application in vine

### Honey Bees

Tier 1 risk assessment showed that the hazard quotients (gral and contact) are below the EU-trigger value. Therefore the we of senhexamid WG 50 according to the proposed use pattern does not constitute an macceptable risk towards bees

# Terrestrial Non-Target Arthropods

The risk assessment indicated that no adverse effects on non-target arthropods are to be expected in the in-field and off-field area from the use of enhexamid WG 50. This was demonstrated by studies with the product on the indicator species Dyphlodromus pyri and Aphidius rhopalosiphi. Additional leaf- and so dwelling arthropod species were tested with Fenhexamid WG 50 and confirmed the results.

# Earthworms and other soil not-target macro-organisms

As has been demonstrated by acute and chronic studies no unacceptable effects on earthworms are to be expected from Fenhexamid WG 50 following the application according to the proposed use pattern.

### Non-target soil micro-organisms

The risk consideration indicates that no adverse effects on soil micro-organisms are to be expected when Fenhexamid WG 50 is applied according to the proposed use pattern

### **Terrestrial Non-Target Plants**

Screening studies with Fenhexamid WG 50 indicate that 30 adverse effects on non-target plants are to be expected from the use of Fenhexamid WG 50 according to the proposed use pattern.

IIIA 10.11.3 Short and long term risks for non-target organisms

Please refer to point 10.11.2.

# Risk of fish kills and fatalities in large vertebrates

HIA 10.11.4 Risk of fish kills and fatalities in large vertebrates.

According to the aquatic risk assessment provided under Point 10.2 application of the product according to the proposed use pattern and recommended patigation measures will not result in unacceptable adverse effects for fish.

Based on the information presented under Points 10.1 and 10.3 art is most unlikely that unacceptable risks will occur in large vertebrates and terrestical predators when the product is used in accordance with the label recommendations

### Recautions necessary to avoid or minimize contamination

y to avoid or might
organisms is to be expecte,
.sk mitigation for aquatic organism
on under Point 10.1 to 3 of this document. No unacceptable risk to non-target organisms is to be expected from the application of the product when following the propose Prisk mitigation for aquatic organisms, i.e. a 5 m buffer zone in vine.

Abbreviations		· · · · · · · · · · · · · · · · · · ·
Abbreviation	Explanation	<b>Definition</b>
a.s.	Active substance	S A S
a.i.	Active ingredient	
AR	Applied Radioactivity	
AV	Avoidance Factor	
BCF	Bioconcentration factor	
bw	Body weight	
calc.	Calculated	
C.L.	Confidence limit	
d	Day	
DDD	Daily dietary exposure	
DT ₅₀	Half-life of disappearance	Period required for 50 % dissipation
DT ₉₀	DY Y	Period required for 90 % dissipation
d.wt.s.	Dry weight substrate	
EAC	Ecologically acceptable concentration	
EC ₅₀	Median effective concentration	Effection concentration for 50% of test organisms
ELS	Early life stage	4 2 2
$E_bC_{50}$	EC related to biomass,	
$E_dC_{50}$	EC related to cell density	
$E_rC_{50}$	EC related to growth rate	
E _y C ₅₀	EC related to Weld	
ER ₅₀	Median effective ratio	
f	female ( )	
FIR / bw	Food Intake Rate V V	daily food intake per body weight of animal
h	Houfo V	
ha 🦮	Hectare V V V	
HC ₅	Hazardous condentration 5%	Concentration (HCp) derived from a distribution of
		species sensitivities, that indicates that a certain
		percentage (p) of all species have a sensitivity at or below this concentration.
C.		In the case of HC ₅ , p=5%.
HQ	Hazard Quorent	The are ease of free, p 270.
LC ₅₀	Lethal concentration, mechan	Lethal concentration for 50 % of test organisms
LD ₅₀	Lethal vose, median	Lethal dose for 50 % of test organisms
LDDs	Lethal dietas dose median	Lethal dietary dose for 50 % of test organisms
LLC	Lowest lethal concentration	Zeriai areary accessors to the confidence
LLD	Lowest lethal dose & Q	
LOAEC O	Lowest observed adverse effect	
	concentration &	
LOEC	Cowest observed effect concentration	
LOEL	Lowest observed effect level	
LOFE	Lowest observed effect rate	
LR ₅₀	Lethal rate 50%	
log Pow	N-Octanol/Water partition coefficient	expressed as logarithm to base ten
	male	
m	marc	l l



Abbreviation	Explanation	<b>Definition</b>
met.	metabolite	
NOAEC	No observed adverse effect	
	concentration	S 4 S
NOEAEC	No observed environmental adverse	
	effect concentration	
NOEC	No observed effect concentration	
NOEL	No observed effect level	
NOER	No observed effect rate	
NOLEC	No observed lethal effect concentration	
PEC	Predicted environmental concentration	
PEC _{GW}	PEC in ground water	
PECi	PEC initial	
PEC _{max}	PEC maximal	Maximal PEC during multiple applications
PEC _{soil}	PEC in soil	
PECsw	PEC in surface water	
PEC _{twa}	PEC time weighted average	
p.m.	Pure metabolite & & &	
PD	Portion of Diet @	Proportion of ifferent food ppes in the diet
PT	Portion of Time	Proportion of diet obtained in treated area
Q _{HC}	Hazard quotient cortact	Dose/contact I Do (dose field application rate)
Qно	Hazard quotient oral	Dose Fal LD ₅₀
RUD	Residue per Unit Dose	Estimates from likerature) of residues in food
Reb		sources converted to an application rate of 1 kg/ha
SV	Shortcut varue	
TER		
TER _A	Foxicity exposure ration of the TER acute of the TER acut	Toxicity posure ratio for acute exposure
TER _{ST}	TER short term	Proxicity exposure ratio for short-term exposure
VA*	3. / 3. / / / / / / / / / / / / / / / /	
TG	Technical Grade	( A )
TRR	Total Radioactive Residue	
TWA	Time weighted average	
w	WeekO	Ö
<	less than	©*
	less than or equal to	<u>7</u>
	areata Than	
	greates and a subtant	
<u>≥</u>	greater than for equal to	
	Technical Grade  Total Radioactive residue:  Time weighted average  Week  less than  less than  greater that of equal to	