MATH 1013 Mock: Answers and Reminders

Andrew Lam

11 Dec, 2024

This document is prepared for people who obtained a MATH1013 Mock.

All Rights Reserved @Andrew Lam 2024.

Summary of Testing Areas

Testing Areas

- Function and Limits: (12 Points) Q1-4
- Oifferentiation: (22 Points) Q5-9, 16
- **Appli. of Differentiation**: (42 Points) Q10-11, 17, 19, 20(a)-(d)(ii)
- Integration: (24 Points) Q12-15, 18, 20(d)(iii)

Section 1

MC Questions (45 Points)

MC Answers

Item	1@	2*	3*	4*	5@
Ans	С	А	С	Е	А
Item	6*	7	8*	9	10
Ans	D	В	В	D	В
Item	11	12	13	14*	15
Ans	Α	С	В	Α	Е

Note:

- Questions with @ tag has easier variants appeared in other streams.
- Questions with * tag appeared in other streams.

MCQ 1C@/ Function and Limits/ Inverse Domain

Question 1

- Note that $e^{2x} \frac{1}{2} > -\frac{1}{2}$ for all x. Also, $\cos x \le 1$ for all x.
- So, the range of f(x) is $(\cos^{-1}(-\frac{1}{2}), \cos^{-1}(1)]$.
- Domain of the inverse of $f: [\cos^{-1}(1), \cos^{-1}(-\frac{1}{2})) = [0, \frac{2\pi}{3})$

Remarks: Closed/ Open Intervals

Pay attention to closed/ open intervals.

It is a usual area of trap in the final exam.

Reference: MATH 1013 2021-22 Fall Midterm #2

MCQ 2A*/ Function and Limits/ Limit [Rationalization]

Question 2

Apply rationalization to transform the expression to

$$\lim_{h\to 3} \frac{\sqrt{1+h}-2}{|h+3|} = \lim_{h\to 3} \frac{\sqrt{1+h}-2}{|h+3|} \cdot \frac{\sqrt{1+h}+2}{\sqrt{1+h}+2} = \lim_{h\to 3} \frac{h-3}{|h-3|(\sqrt{1+h}+2)|}$$

- Left limit $= \lim_{h \to 3^{-}} \frac{h-3}{-(h-3)(\sqrt{1+h}+2)} = \lim_{h \to 3^{-}} \frac{1}{-(\sqrt{1+h}+2)} = -\frac{1}{4}$
- Right limit

$$= \lim_{h \to 3^+} \frac{h-3}{(h-3)(\sqrt{1+h}+2)} = \lim_{h \to 3^+} \frac{1}{\sqrt{1+h}+2} = \frac{1}{4}$$

• As $\lim_{h\to 3^-} \frac{\sqrt{1+h}-2}{|h+3|} \neq \lim_{h\to 3^+} \frac{\sqrt{1+h}-2}{|h+3|}$, the limit does not exist.

Trap: Q2

Limit Trap for Absolute Values

- Be careful! |h-3| = -(h-3) for h < 3.
- Recall that limits only exist when left hand limit (-) equals to the right hand limit (+).
- Absolute values are often culprits of wrong answers in limit questions.

Reference: MATH 1012 Fall 2024-25 Fall Midterm #7

MCQ 3C*/ Function and limits/ Asymptotes

Question 3

Vertical asymptotes may occur when denominator equals zero.

When

$$(x^2-x)(x^2-5x-6)(x^2+4) = (x)(x-1)(x+1)(x-6)(x^2+4) = 0,$$

 $x = -1$ or 0 or 1 or 6.

- However, the numerator is $(x-1)^2$. The factor x-1 cancels out, meaning there is no vertical asymptote at x=1, as the limit at that point is finite.
- Thus, there are only three asymptotes (x = -1, x = 0, x = 6).

Trap: Q3

Factoring Trap of Vertical Asymptotes

Candidates may forget the definition of vertical asymptotes:

- The limit should tends to $\pm \infty$ when $x \to c!$
- However, when the factor gets cancelled out, the limit when $x \to c$ would be finite.
- Then x = c is NOT a vertical asymptote!

Reference: MATH 1013 2020-21 Fall Final #3/ MATH 1003 Sample Final #2

MCQ 4E*/ Function and Limits/ Limit [Graph]

Question 4

"Limit graph" involves these steps:

• Putting the limit inside:

$$\lim_{x \to 1^+} f(3f(x) - 5) = f(\lim_{x \to 1^+} 3f(x) - 5)$$

Substitution:

$$f(\lim_{x\to 1^+} 3f(x) - 5) = f(\lim_{y\to 1^-} 3y - 5)$$

The limit evaluates to

$$f(\lim_{u \to -2^{-}} u) = \lim_{u \to -2^{-}} f(u) = -2$$

Reference: MATH 1012 Fall 2023 Midterm Q7

MCQ 5A@/ Differentiation/ First Principles

Question 5

Group the terms to reduce the limit to manageable parts:

$$\lim_{h \to 0} \frac{hf(2+h)}{h} + \lim_{h \to 0} \frac{2(f(2+h) - f(2+h+h^2))}{h}$$

2 The first term simplifies to

$$\lim_{h \to 0} \frac{hf(2+h)}{h} = f(2+h) = \lim_{h \to 0} f(2+h) = f(2) = 4$$

The second term is a "0/0" limit. Applying L'Hôpital's Rule yields

$$2 \lim_{h \to 0} \frac{f'(2+h) - (1+2h)f'(2+h+h^2)}{1}$$

$$= 2 \left(\lim_{h \to 0} f'(2+h) - f'(2+h+h^2) + 2hf'(2+h+h^2) \right)$$

The second term evaluates to 2(f'(2) - f'(2) - 0f'(2)) = 0. Final answer : 4.

MCQ 6D*/ Differentiation/ Differentiability

Question 6

- L.H. derivative: $4e^x + m$ (the function is clearly continuous).
- R.H. derivative: $\frac{d(\ln(\ln(x+e)))}{dx} = \frac{d(\ln(\ln(x+e)))}{d(\ln(x+e))} \cdot \frac{d(\ln(x+e))}{d(x+e)} \cdot \frac{d(x+e)}{dx}$
- At x = 0, differentiability requires $4e^0 + m = \frac{1}{\ln(0+e)} \cdot \frac{1}{0+e} \implies m = \frac{1}{e} 4$

Reference: MATH 1013 2019-20 Fall Final #6

MCQ 7B/ Differentiation/ Inverse Function Thm

Question 7

- Chain rule: $\frac{d}{dx} (f \circ g^{-1}(x)) \Big|_{x=1} = f'(g^{-1}(x)) \Big|_{x=1} \cdot (g^{-1})'(x) \Big|_{x=1}$
- The first term evaluates to f'(1) = 4.
- \bullet By inverse function theorem, the second term evaluates to $1 \qquad \qquad 1 \qquad \qquad 1$

$$\frac{1}{g'(g^{-1}(x))} = \frac{1}{g(2)} = \frac{1}{3}.$$

• Combining, the answer is $\frac{4}{3}$.

Reference: MATH1012 Fall 2023-24 Midterm #15

Reminder/ Trap: Q7

Potential Trap on Derivative

In fact, this question could contain a hidden trap!

- If I didn't amend the question, the answer is actually 0 (the expression to differentiate was a constant!)
- Be careful if this happens in the finals...

MCQ 8B*/ Differentiation/ Log differentiation

Question 8

h(x) is an obvious candidate for logarithmic differentiation.

- Employing the method, $\ln h(x) = 2e^{3x} \ln x$.
- Differentiating,

$$\frac{1}{h(x)}h'(x) = \frac{h'(x)}{h(x)} = \frac{2e^{3x}}{x} + 3(2e^{3x})(\ln x) = e^{3x}\left(\frac{2}{x} + 6\ln x\right)$$

Reference: MATH1013 Fall 2018 Midterm #12

MCQ 9D/ Differentiation/ Newton's Method

Question 9

Recall the Newton's Method has iteration formula $x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$.

- The objective is $f(x_n) = x_n^3 1 + 3\cos x_n$
- Its derivative $f'(x_n) = 3x_n^2 3\sin x_n$
- So, the iteration formula is

$$x_{n+1} = x_n - \frac{x_n^3 - 1 + 3\cos x_n}{3x_n^2 - 3\sin x_n}$$

References: MATH 1013 2018-19 Fall Final #15

MCQ 10B/ Appli. of Differentiation/ Box Optimization

Question 10

The box has width and length both being (6-2x), and height x.

- Objective function is $V(x) = x(6-2x)(6-2x) = 4x^3 24x^2 + 36x$.
- $\frac{dV}{dx} = 12x^2 48x + 36 = 12(x 3)(x 1)$, which attains zero at $x^* = 1$ or $x^* = 3$.
- Note that $\frac{d^2V}{dx^2} = 24x 48$ which is < 0 for $x^* = 1$, and > 0 for $x^* = 3$. Therefore V(1) = 16 is the maximum volume attainable.

Reference: Libretexts// MATH 1012 2020-21 Fall Final #15

MCQ 11A/ Appli. of Differentiation/ Critical Points

Question 11

Note that
$$g(x) = \frac{(x-3)^{2024}}{2024} + C$$
:

- For A, g' changes sign (-to +) through x = 3. So g attains a minimum.
- For B, g"(x) = 2023(x 3)²⁰²², which does not change sign through x = 3.
 So g does not have an inflection point at x = 3.
- For C and D, $\frac{d}{dx}(xg(x)) = g(x) + xg'(x)$, which may not be zero as g(3) = C is arbitrary. So they are both not necessarily true.

Beware of the arbitrary constant!

MCQ 12C/ Integration/ Antiderivative

Question 12

Differentiate all answers:

A.
$$\frac{d}{dx}\left(-\frac{\sin x}{1+\cos x}+C\right)=-\frac{\cos x}{1+\cos x}-\frac{\sin^2 x}{(1+\cos x)^2}$$
 which simplies to
$$-\frac{1+\cos x}{(1+\cos x)^2}=-\frac{1}{1+\cos x}$$
 So, C is the answer as
$$\frac{d}{dx}\left(-\frac{\sin x}{1+\cos x}+C\right)=\frac{1}{1+\cos x}.$$

B.
$$\frac{d}{dx} \left(\frac{\cos x}{1 + \cos x} + C \right) = -\frac{\sin x}{1 + \cos x} - \frac{\sin x \cos x}{(1 + \cos x)^2}$$
which simplifies to
$$\frac{-\sin x (1 + \cos x)}{(1 + \cos x)^2} = -\frac{\sin x}{1 + \cos x}.$$

E. Similarly,
$$\frac{d}{dx}(\frac{\sin(x)\cos(x)}{1+\cos(x)}) = \frac{-\sin^2(x) + \cos^3(x) + \cos^2(x)}{(1+\cos(x))^2}$$

Reminder: Q12

Reminder: Antiderivatives

Sometimes you don't know when to start for "elegant integration by substitution".

- If a list of candidates are given, just do it (brute force) by testing with differentiation.
- In this question, spotting the negative sign can help reduce unnecessary calculations across choices.

Reference: MATH 1013 2017-18 Fall Final #12

MCQ 13B/ Integration/ FTC

Question 13

Applying Fundamental Theorem of Calculus with Chain rule,

- Differentiating w.r.t. x yields $f(x) + x^3 f(x^3) \cdot 3x^2 = 4x^3$
- Substituting x = 1 yields $f(1) + (1)f(1) \cdot 3(1) = 4(1)$
- f(1) = 1

Reference: MATH 1013 2017-18 Fall Final #17

MCQ 14A*/ Integration/ Substitution

Question 14

Note that
$$\int_0^1 \frac{1+2e^{3x}}{1+e^{3x}} dx = \int_0^1 \frac{1+e^{3x}}{1+e^{3x}} dx + \int_0^1 \frac{e^{3x}}{1+e^{3x}} dx.$$

- The first integral is simply $\int_0^1 dx = [x]_0^1 = 1$
- For the second integral, apply substitution $u = 1 + e^{3x}$: $du = 3e^{3x}dx$, when x = 1, $u = 1 + e^3$; when x = 0, u = 2.
- Then, the second integral

$$\int_0^1 \frac{e^{3x}}{1 + e^{3x}} dx = \int_2^{1 + e^3} \frac{1}{3} \frac{du}{u} = \frac{1}{3} [\ln u]_2^{1 + e^3} = \frac{1}{3} \ln(\frac{1 + e^3}{2})$$

• Summing up, the integral evaluates to $1 + \frac{1}{3} \ln(\frac{1+e^3}{2})$.

Reminder: Q14

Reminder: When to substitute? When to break?

- If you see similar terms in numerator/ denominator, factor/ divide them out. You will likely benefit from it!
- Recall differentiating a constant returns 0. For substitution:
 - 1 It is common to write $d(e^{ax} + k) = ae^{ax} dx$.
 - 2 Another common substitution is using $d(x^a + b) = ax^{a-1}dx$.
- Obtain the constant a for substitution by dividing it elsewhere.

It is also a common (careless) error that $e^0 = 1$, NOT zero.

Reference: MATH 1012 2015-16 Fall Final #9

MCQ 15E/ Integration/ Graph

Question 15

With the absolute sign in the integrand, we must split f into increasing and decreasing parts:

- f is increasing in (0,3), and $(\frac{13}{2},8)$; it is decreasing in $(3,\frac{13}{2})$.
- Thus, $\int_0^8 |f'(x)| dx = \int_0^3 f'(x) dx \int_3^{\frac{13}{2}} f'(x) dx + \int_{\frac{13}{2}}^8 f'(x) dx$
- The answer yields (4 (-5)) (-3 4) + (0 (-3)) = 19.

In recent years, more complex variants like $\int_0^8 f(x) \cdot |f'(x)| dx$ have appeared, but the method remains similar.

References: MATH 1013 2017-18 Fall Final #15/ 2019-20 Final #21

LQ 16 (a)/ Differentiation/ L'Hôpital's Rule

Question 16(a) - Constant A [4 pts]

The given limit is of 0/0 form.

- [1 pt: First application]
 Applying L'Hôpital once, the limit becomes $\lim_{x\to 0} \frac{2\sin x \cos x + 2Ax}{4x^3} = \lim_{x\to 0} \frac{\sin 2x + 2Ax}{4x^3}$
- [1 pt: Second Application]
 Applying the second time, $\lim_{x\to 0} \frac{2\cos 2x + 2A}{12x^2}$
- [2 pts: Deduce condition for limit to exist + Answer] The limit may exist only if it is of 0/0 form (the denominator $\to 0$). So, $2\cos(2(0)) + 2A = 0 \implies A = -1$

LQ 16 (b)/ Differentiation/ L'Hôpital's Rule

Question 16(b) - Limit L [3 pts]

- [1 pt: Third Application]
 The limit $\lim_{x\to 0} \frac{2\cos 2x 2}{12x^2}$ is of "0/0" form
 Applying L'Hôpital again reduces to $\lim_{x\to 0} \frac{-4\sin 2x}{24x}$
- [2 pt: Final Application + Answer]
 Applying L'Hôpital for a final time, the limit evaluates to $\lim_{x\to 0} \frac{-8\cos 2x}{24} = \frac{-8(1)}{24} = -\frac{1}{3}.$

Deduct 1 pt in (a) or (b) if does not state "0/0" condition. Sometimes, you need to deduce the form of limit from its existence: common technique in HKALE (that has appeared in Calc I finals).

LQ 17 (a) / Appli. of Differentiation / Similar Solids

Question 17(a) - Similar Solids [4 pts]

- [1 pt: Similar 2D for original cone] Suppose the height of the cone being "cut" to form the frustum is h' cm. Applying similar ratios, $\frac{h'}{h'+2A} = \frac{40}{50} \implies h' = 96$.
- [1 pt: Original Quantities of Volume/ Surface Area] Then, the volume of the cut cone is $\frac{\pi}{3}(96)(40^2) = 51200\pi$ cm³, and its curved surface area $\pi(\sqrt{96^2 + 40^2})(40) = 4160\pi \text{ cm}^2$.
- [2 pts: Similar 2D/ 3D for desired quantity + Followthrough] Applying similar solids, $\frac{V+51200\pi}{51200\pi}=\left(\frac{h+96}{06}\right)^3$ and $\frac{A+4160\pi}{4160\pi} = (\frac{h+96}{96})^2$ So, $V = \frac{25\pi}{432} \left[(96+h)^3 - 96^3 \right]$ and $A = \frac{65\pi}{144} \left[(96+h)^2 - 96^2 \right]$.

LQ 17 (b)/ Appli. of Differentiation/ Rate of Change

Question 17(b) - Rate of Change [4 pts]

- [1 pt: Differentiating w.r.t. t] $\frac{dV}{dt} = \frac{25\pi}{144} (96 + h)^2 \frac{dh}{dt} \text{ and } \frac{dA}{dt} = \frac{65\pi}{72} (96 + h) \frac{dh}{dt}$
- ullet [2 pts: Obtain trend/ proportion on dA/dt]
 - 1 With $\frac{dV}{dt}=60\pi~{
 m cm}^3~{
 m s}^{-1}$ fixed, $\frac{dh}{dt}\propto\frac{1}{(96+h)^2}$
 - 2 Consequently, $\frac{dA}{dt} \propto \frac{1}{(96+h)}$, which is decreasing as h increases from 0 to 24. [Exact answer: $\frac{dA}{dt} = \frac{26}{5(96+h)} \frac{dV}{dt}$]
- [1 pt: Answers with end points] So, $\frac{dA}{dt}$ decreases from $\frac{dA}{dt}\big|_{h=0} = \frac{13}{4}\pi$ to $\frac{dA}{dt}\big|_{h=24} = \frac{13}{5}\pi$ throughout.

Reminder: Q17

Use of Similarity

- Similar triangles/ solids are necessary for such mensuration rate of change questions.
- The key is to visualize the cut/ original solids to clarify what solids/ triangles to apply similarity.
- Beware of the power (2 or 3?) of similarity.
- There were many examples in HKDSE M2.

References:

HKDSE 2012 M2 #6; MATH 1013 2019-2020 Fall Final #12

LQ 18 (a)/ Integration/ Substitution

Question 18(a) - Substitution [5 pts]

Note that $x^3 = x(x^2) = x[(9 + x^2) - 9].$

- [1 pt: State substitution] Consider the substitution $u = 9 + x^2$. Then du = 2xdx.
- [2 pts: Split $x^2 = (x^2 + 9) 9$ and complete transformation] Rewrite $\frac{x^3}{9 + x^2} dx = \frac{x[(9 + x^2) - 9]}{9 + x^2} dx$ $= \frac{1}{2} (2xdx)[1 - \frac{9}{9 + x^2}] = \frac{1}{2} (1 - \frac{9}{u}) du$
- [2 pts: Evaluate u and back-substitute x]
 So, the integral becomes $\frac{1}{2}\int (1-\frac{9}{u})du = \frac{u}{2} \frac{9}{2}\ln|u| + C$.

 Finally, the answer is $\frac{9+x^2}{2} \frac{9}{2}\ln(9+x^2) + C$.

Alternative to LQ 18(a)

- [1 pt: State substitution] Consider the substitution $x = 3 \tan \theta$. Then $dx = 3 \sec^2 \theta d\theta$.
- [1 pt: Complete transformation]
 Then $\int \frac{x^3}{9+x^2} dx = \int \frac{27 \tan^3 \theta (3 \sec^2 \theta)}{9+9 \tan^2 \theta} d\theta = \int 9 \tan^3 \theta d\theta$
- [2 pts: Evaluate u and back-substitute x]

 Note that $\int 9 \tan^3 \theta d\theta = \int 9 \tan \theta \sec^2 \theta d\theta \int 9 \tan \theta d\theta$ $= 9 \int \tan \theta d(\tan \theta) + 9 \int \frac{d(\cos \theta)}{\cos \theta} = \frac{9}{2} \tan^2 \theta + 9 \ln|\cos \theta| + C$
- [1 pt: Back-substitute x] Finally, the answer is $\frac{x^2}{2} - \frac{9}{2} \ln(9 + x^2) + C$.

LQ 18 (b)/ Integration/ Riemann Integral

Question 18(b) - Identifying Riemann Integral [4 pts]

• [2 pts: Summation with interval + Division] Rewrite *S* in summation:

$$\lim_{n \to \infty} \frac{4}{n} \sum_{i=1}^{n} \left(\frac{i^3}{9n^3 + ni^2} \right) = \lim_{n \to \infty} \frac{4}{n} \sum_{i=1}^{n} \left(\frac{\left(\frac{i}{n} \right)^3}{9 + \left(\frac{i}{n} \right)^2} \right) = \lim_{n \to \infty} \frac{4}{n} \sum_{i=1}^{n} f(\frac{i}{n})$$

- [1 pt: End points and total interval] So, the Riemann sum uses (right) end-points $x_i = \frac{i}{n}$, meaning the sample points cover [0, 1], not [0, 4]. So, $\Delta x = \frac{1}{n}$.
- [1 pt: Correct Integral]

 The factor 4 in $\frac{4}{n}$ should be factored out, resulting in the integral

 4 $\int_{0}^{1} f(x)dx$. Thus, the student is NOT correct.

Reminder: Q18

In identifying the Riemann integral, always follow the steps:

- Rewrite the sum as a summation.
- ② Divide the fraction to spot any term relevant to $\frac{k \cdot i}{n}$ (k constant).
- **3** Determine the width b-a with the sample points x_i , not the multiple of $\frac{1}{n}$. Correspondingly, regenerate the term $\Delta x = \frac{b-a}{n}$
- Finally, convert the sum into the integral with bounds a and b.

Reference: 2018 HKDSE M2 #5(a)

LQ 19 (a)/ Appli. of Differentiation/ Implicit Diff.

Question 19(a) - Implicit Differentiation [4 pts]

• [2 pts: Implicitly differentiate each sides w.r.t. x] $y + x \frac{dy}{dx} = -y \sin(xy) - x \sin(xy) \frac{dy}{dx}$ So, $y(1 + \sin(xy)) + x \frac{dy}{dx}(1 + \sin(xy)) = 0$. The result follows.

- [2 pts: Considering counterargument] For $1 + \sin(xy) = 0$, $\sin(xy) = -1$, $xy \neq 0$ But, $\cos(xy) = \sqrt{1 (-1)^2} = 0 = xy$, contradicting with the requirement $xy \neq 0$.
- So, $y + x \frac{dy}{dx} = 0 \implies \frac{dy}{dx} = -\frac{y}{x}$

LQ 19 (b)(i)/ Appli. of Differentiation/ IVT

Question 19(b)(i) - Intermediate Value Theorem [3 pts]

- [1 pt: mention $\cos u$ is decreasing] Note that $\frac{d}{du}(\cos u - u) = -\sin u - 1 < 0$ for all $0 < u < \frac{\pi}{2}$. So, $\cos u$ is decreasing throughout $0 < u < \frac{\pi}{2}$.
- [2 pts: Applying IVT] Noting that $0 \cos(0) = -1 < 0$ and $\frac{\pi}{2} \cos(\frac{\pi}{2}) = \frac{\pi}{2} > 0$, The equation (*) has exactly one root in $\left[0, \frac{\pi}{2}\right]$.

LQ 19 (b)(ii)/ Appli. of Differentiation/ Tangent Slope

Question 19(b)(ii) - Tangent Slope [4 pts]

• [1 pt: Matching Slope]

The line *L* has slope -1. So, $\frac{dy}{dx} = -1 = -\frac{y}{x} \implies x = y$.

• [3 pts: Applying IVT]

Substituting x = y into the curve C, we have $x^2 = \cos(x^2)$.

- By (i), we know for $0 < x^2 < \frac{\pi}{2}$, there is exactly one value of x satisfying $x^2 = \cos(x^2)$.

 Denoting this value by x = u. Then, $u^2 = \cos(u^2)$.
- ② Also note that x = -u is the only value $\in (-\frac{\pi}{2}, 0)$ satisfying $x^2 = \cos(x^2)$.

Thus, there exists two tangents to C parallel to the straight line L: x + y = 0.

LQ 19 (c)/ Appli. of Differentiation/ MVT Inappropriacy

Question 19(c) - Mean Value Theorem [2 pts]

• [1 pt: point out discontinuity]

Note that f(x) is NOT defined at x = 0. Thus, f(x) is NOT continuous over [a, b].

Alternative answer:

Note that $f'(x) = \frac{dy}{dx} = -\frac{y}{x}$ is NOT defined at x = 0. Thus, f(x) is NOT differentiable over [a, b].

[1 pt: followthrough]
 As the prerequisites of MVT are not satisfied, the student's application of MVT is incorrect.

LQ 20 (a)(b)/ Appli of Differentiation/ Asymptotes

Question 22(a) - Asymptotes [2 pts] Question 22(b) - Derivative [2 pts]

- [2 pts: Asymptotes (Answers only)] Horizontal asymptote: y = 3; Vertical asymptote: x = 1
- [2 pts: Derivatives (Answers only)] $\frac{dy}{dx} = -\frac{4}{(x-1)^2} + \frac{2(k-1)}{(x-1)^3}; \qquad \frac{d^2y}{dx^2} = \frac{8}{(x-1)^3} \frac{6(k-1)}{(x-1)^4}$

You may find this unexpectedly short!

- This question highlights the use case of partial fractions/ long div.
- HKDSE features asymptotes in the first part after long div. Uses:
 - (1) Easy spotting of asymptotes and (2) Easy differentiation

LQ 20 (c)/ Appli. of Differentiation/ Min and Max

Question 20(c) - Minimum for all k? [5 pts]

- [1 pt: Set first derivative zero] Setting $\frac{dy}{dx} = 0 \implies -4(x-1) + 2(k+1) = 0 \implies x^* = \frac{k+1}{2}$
- [1 pt: Case Undefined] For k = 1, $x^* = 1$ where Γ is undefined. This cannot be minimum.
- [2 pts: Case Minimum] For $k \neq 1$, $\frac{d^2y}{dx^2}\Big|_{x=\frac{k+1}{2}} = \left[\frac{8}{(x-1)^3} \frac{6(k-1)}{(x-1)^4}\right]_{x=\frac{k+1}{2}} = -\frac{32}{(k-1)^3}$. For k < 1, $k-1 < 0 \implies -\frac{32}{(k+1)^3} = \frac{d^2y}{dx^2}\Big|_{x=\frac{-k+1}{2}} > 0$, i.e. Γ has a minimum point.
- [1 pt: Answer] Thus, the claim is incorrect: Γ only has minimum for $k \in (-\infty, 1)$.

LQ 20(d)(i), (ii)/ Appli. of Differentiation/ Sketch

Question 22(d)(i) - Inflection Points to Solve k [2 pts] Question 22(d)(ii) - Sketch Graph [4 pts]

[1 pt: Set second d. zero
$$+$$
 1 pt: Followthrough]

As
$$\frac{d^2y}{dx^2}\Big|_{x=4} = 0$$
, $\frac{8}{(4-1)^3} - \frac{6(k-1)}{(4-1)^4} = 0 \implies k = 5$

Each characteristic is worth 1 pt:

- Two asymptotes
- x-, y- intercepts (points C, D, E)
- Maximum and Inflection points (points B, A)
- Overall shape

LQ 20(d)(iii)/ Integration/ Area

Question 22(d)(iii) - Area Bounded [3 pts]

• [1 pt: Identify Area Integral]

The area $A = \int_{\frac{5}{2}}^{4} \frac{3x^2 - 2x - 5}{(x - 1)^2} dx = \int_{\frac{5}{2}}^{4} 3 + \frac{4}{x - 1} - \frac{4}{(x - 1)^2} dx$

• [1 pt: Evaluate the integral]

$$A = \left[3x + 4\ln|x - 1| + \frac{4}{x - 1}\right]_{\frac{5}{3}}^{4}$$

• [1 pt: Answer] The area is $\frac{7}{3} + 4 \ln \frac{9}{2} \approx 8.3496$.