Temperatur, Gase, Thermodynamik

Atome

Der massenzahl: A = Z + N wo Z ist die anzahl protonen und electronen, N ist die Anzahl Neutronen.

Temperatur / Gasthermometer

Druck von ein Gas

$$p = \frac{F}{A} \tag{1}$$

F ist die Kraft und A die Flache. pascal: NM^{-2} , 1 atm = 1,0125 * 10⁵ Pa, 1 bar = 10⁵ Pa

Absolute Temperatur / Kelvin-Skala

Ideale Gase

$$pV = NkT (2$$

wo k die boltzman konstante, N die Anzahl der gasmolekule, T die temperatur(K), V die Volume(m^3) und p die Druck(Pa).

Wärmeenergie und Wärmekapazität

Warmekapazitat C:

$$C = \frac{\Delta Q}{\Delta T} \tag{3}$$

Wo Q ist die energie benotigt um den korper temperatur um T tauschen. Mann kann auch die warmkapazitat pro masse oder pro mol definieren. Wenn ΔT nicht zu gross ist, ist C eine konstante.

Warmkapazitat einer idealen einatomiges Gasses bei konstanten Volume V

$$C_V = \frac{3}{2}Nk\tag{4}$$

Warmkapazitat einer idealen einatomiges Gasses bei | Innere Energie des idealen Gasses konstanten Druck p

$$C_p = \frac{5}{2}Nk = C_V + Nk \tag{5}$$

fur zweiatomogis $\frac{7}{9}$

Die warmkapazitat von meisten korper ist nur abhangig von Anzahl Molen:

$$c \approx 25 \frac{J}{mol * K} \tag{6}$$

7.5.1 Mischtemperatur

$$C_1(T_{ende} - T_0) = C_2(T_1 - T_{ende}) \tag{7}$$

Latente Wärme

Energie gebraucht fur ein Phasenubergang

$$Q = mL (8$$

Wo L eine konstante specifik zu jede Substanz ist.

7.7 Wärmestrahlung

Jede korper emittiert und absorbiert strahlung. Wenn er warmer als sein Umgebung ist dann emittiert er mehr als er absorbiert und vis versa, bis thermische gleichgewicht.

Die Austrahlung

$$S(T) = \epsilon \sigma T^4 \tag{9}$$

Wobei σ eine konstante ist und die unitat von $S(T) = \frac{J}{sm^2}$ und $0 > \epsilon < 1$ 1 bei idealen Fall.

Erster Haupsatz - Thermodynamik

In einer geschlosennes System wird nach ein Zeit ein termischer Gleichgewicht erreicht.

Die innere Energie U Ist die gesamte Energie in eine Sys-(4) tem. U hangt nur von anfang und endzustand. $U = U_e - U_a$. V_1 anfangs volum, n ist Anzahl Atomen.

$$U = \frac{3}{2}NkT = \frac{3}{2}pV \tag{10}$$

$$dU = dQ + dW (11)$$

Mechanische Arbeit eines expandierenden Gases

Die energie ist von Gas geleistet

$$dW = -Fdx = -(pA)dx = -pdV (12)$$

$$W = -\int_{V_{e}}^{V_{e}} p dV = -p(V_{e} - V_{a})$$
 (13)

bei konstanten Druck

7.9.1 Isotherme expansion

Temperatur des gasses bleibt konstant und energie kommt von aussen.

$$Q = \int dQ = -\int dW = -W \tag{14}$$

7.9.2 Adiabatische Ausdehnung

Keine warme wird dem Gas ausgetauscht $\Rightarrow dQ = 0$, Temperatur des Gases wahrend der adiabatischen Expansion abnimmt. Bei der adiabatischen Expansion wird die im Gas gespeicherte Warmeenergie in mechanische Arbeit umgewan-

$$pV^{\gamma} = konst \tag{15}$$

$$TV^{\gamma - 1} = konst \tag{16}$$

 $\gamma = \frac{5}{3}$, fur ein zweiatomiges $\gamma = \frac{7}{5}$

7.10 Thermische Prozesse des idealen Gases

7.11Wärmemaschine

Warme ist in energie umgewandelt

$$Q_{isotherm} = -W_{isotherm} = nRT ln(\frac{V_2}{V_1})$$
 (17)

Wirkungsgrad Der Wirkungsgrad einer Warmemaschine ist definiert als Verhaltnis der geleisteten Arbeit zur zugefuhrten Warme:

$$\epsilon = \frac{|W|}{|Q_W|} = \frac{|Q_W| - |Q_K|}{|Q_W|} = 1 - \frac{Q_W}{Q_K}$$
(18)

Leistungszahl In ahnlicher Weise ist die Leistungszahl einer Warmepumpe definiert als das Verhaltnis der Warme, die dem kalten Reservoir entnommen wurde (QK>0), und der zugefu hrten mechanischen Arbeit (W>0):

$$c_L = \frac{Q_K}{W} \tag{19}$$

7.12 Zweiter Hauptsatz - Thermodynamik