Supplementary Materials: LoginMEA

Taoyu Su^{a,b}, Xinghua Zhang^{a,b}, Jiawei Sheng^{a,*}, Zhenyu Zhang^c and Tingwen Liu^{a,b}

^aInstitute of Information Engineering, Chinese Academy of Sciences, Beijing, China ^bSchool of Cyber Security, University of Chinese Academy of Sciences, Beijing, China ^cBaidu Inc.

{sutaoyu, zhangxinghua, shengjiawei, liutingwen}@iie.ac.cn, zhangzhenyu07@baidu.com

1 Supplementary Details

1.1 Datasets details

In our experiments, we use two types of multi-modal EA datasets. (1) Cross-KG datasets: we select FB15K-DB15K and FB15K-YAGO15K public datasets, which are deemed as the most typical datasets in multi-modal entity alignment tasks built-in [3]. FB15K is a representative subset extracted from the Freebase knowledge base. Aiming to maintain an approximate entity number of FB15K, DB15K from DBpedia, and YAGO15K from YAGO are mainly selected based on the entities aligned with FB15K. (1) Bilingual datasets: DBP15k is a widely used cross-lingual EA benchmark. It consists of four language-specific knowledge graphs from DBpedia and includes three bilingual entity alignment settings: French-English (FR-EN), Japanese-English (JA-EN), and Chinese-English (ZH-EN). Additionally, DBpedia has released images for the English, French, and Japanese versions. Since Chinese images are not released in DBpedia, EVA [2] extracted them from the raw Chinese Wikipedia dump with the same process as described by DBpedia[1] The details of all multi-modal EA datasets are listed in 1.

Table 1. Statistics of the Datasets (Ent.→Entity, Rel.→Relation, Rel tr.→Relation triple, Attr.→Attribute, Attr tr.→Attribute triple).

Dataset	KG	#Ent.	#Rel.	#Rel tr.	#Attr.	#Attr tr.	#Image	#EA pairs
FB15K-DB15K	FB15K DB15K	14,951 12,842	1,345 279	592,213 89,197	116 225	29,395 48,080	13,444 12,837	12,846
FB15K-YAGO15K	FB15K YAGO15K	14,951 15,404	1,345 32	592,213 122,886	116 7	29,395 23,532	13,444 11,194	11,199
DBP15K _{ZH-EN}	ZH (Chinese) EN (English)	19,388 19,572	1,701 1,323	70,414 95,142	8,111 7,173	248,035 343,218	15,912 14,125	15,000
DBP15K _{JA-EN}	JA (Japanese) EN (English)	19,814 19,780	1,299 1,153	77,214 93,484	5,882 6,066	248,991 320,616	12,739 13,741	15,000
DBP15K _{FR-EN}	FR (French) EN (English)	19,661 19,993	903 1,208	105,998 115,722	4,547 6,422	273,825 351,094	14,174 13,858	15,000

1.2 Metric Details

To evaluate our IBMEA approach, we adopt the classical rank-based evaluation protocol of knowledge graph entity alignment. The following metrics are used:

Hits@N: Hits@N is the proportion of true aligned entities that appear in the first N entities of the sorted rank list. Hits@N can be

 Table 2. Best hyper-parameter settings of model and the search space for hyper-parameters used.

Hyper-parameters	Best setting	Search space		
Batch size	3500	1000, 1500, 3500, 7500, 10000		
Train epoch	600	500, 600, 700, 800, 900, 1000, 1500, 2000		
Learning rate	5e-3	3e-4, 6e-4, 3e-3, 6e-3, 3e-2		
Weight decay	1e-2	1e-3, 5e-3, 1e-2, 5e-2		
Decomposition factors R	8	2, 4, 8, 16, 32, 64, 128,256		
Graph input hidden dimension	300	200, 300, 400, 500		
Graph layer	3	1, 2, 3, 4, 5		
Graph feature size	300	100, 200, 300, 400, 500		
Visual feature size	100	100, 200, 300, 400, 500		
Attribute feature size	100	100, 200, 300, 400, 500		
Relation feature size	100	100, 200, 300, 400, 500		
temperature factor τ	0.1	0.05, 0.1, 0.15, 0.2, 0.25, 0.3		

Table 3. Hardware specifications of the used machine.

hardware	specification
RAM	251 GB
CPU	Intel(R) Xeon(R) Silver 4110 CPU @ 2.10GHz
GPU	NVIDIA(R) A100(80GB) x 4

defined as

$$Hits@N = \frac{1}{|\mathcal{S}|} \sum_{q \in \mathcal{S}} \mathbb{I}[rank(i) \le N], \tag{1}$$

where \mathcal{S} is the number of all testing alignment sets, rank_i refers to the rank position of the first correct mapping for the i-th query entities, and $\mathbb{I}[\operatorname{rank}(i) \leq N]$ yields 1 if i is ranked between 1 and \mathcal{S} , 0 otherwise. This metric is bounded in the [0,1] range and its values increase with \mathcal{S} , where the higher the better. Note that, $\operatorname{Hits}@1$ should be preferable, and it is equivalent to precision widely-used in conventional entity alignment.

MRR: Mean reciprocal rank (MRR) measures the number of aligned entity pairs predicted correctly. MRR is the average of the reciprocal ranks of results for a sample of candidate alignment entities:

Hits@N =
$$\frac{1}{|S|} \sum_{q \in S} \frac{1}{\operatorname{rank}(i)}$$
, (2)

MRR is a useful metric because it not only considers if the EA algorithm correctly aligns entities, but also the rank of the first correctly aligned entity. This means that MRR penalizes lower ranks more severely than higher ones, which is often more reflective of real-world performance. Higher MRR values indicate better performance, with 1 being the maximum achievable value.

^{*} Corresponding Author.

1.3 Implementation details

We report our best hyper-parameter settings across two MMKGs datasets and hyper-parameter search space in Table 2. It's noteworthy that all hyperparameter configurations were carefully tuned using a 10-trial grid search technique. Instead of always choosing the best-performing model, we balance the memory limit and model performance. We train and evaluate all our models on a machine with the specifications listed in Table 3.

References

- [1] J. Lehmann, R. Isele, M. Jakob, A. Jentzsch, D. Kontokostas, P. N. Mendes, S. Hellmann, M. Morsey, P. van Kleef, S. Auer, and C. Bizer. Dbpedia A large-scale, multilingual knowledge base extracted from wikipedia. Semantic Web. 6(2):167–195. 2015.
- wikipedia. Semantic Web, 6(2):167–195, 2015.

 [2] F. Liu, M. Chen, D. Roth, and N. Collier. Visual pivoting for (unsupervised) entity alignment. In <u>Proceedings of AAAI</u>, pages 4257–4266, 2021.
- [3] Y. Liu, H. Li, A. García-Durán, M. Niepert, D. Oñoro-Rubio, and D. S. Rosenblum. MMKG: multi-modal knowledge graphs. In <u>Proceedings of ESWC</u>, volume 11503, pages 459–474, 2019.