National University of Singapore EE5904/ME5404 Neural Networks

Mathematical Review

1) Mathematical notation

∃ - there exist

 \forall - for all

 \Leftrightarrow - if and only if

2) Euclidean Space, Rⁿ

Euclidean space, R^n : The set of all column vectors, $\mathbf{x} = (x_1, ..., x_n)^T$

Addition of two vectors, $\mathbf{x}+\mathbf{y}=(x_1+y_1,...,x_n+y_n)^T$

Multiplication of a vector with a scalar, λ , are defined as : $\lambda \mathbf{x} = (\lambda x_1, \dots, \lambda x_n)^T$

Inner product (or scalar product) of two vectors $\mathbf{x} = (x_1, x_2, ..., x_n)^T$ and $\mathbf{y} = (y_1, y_2, ..., y_n)^T$ is denoted by $\mathbf{x}^T \mathbf{y}$:

$$\mathbf{x}^T \mathbf{y} = \sum_{i=1}^n x_i y_i$$

A norm || . || on R^n is a mapping that assigns a scalar $||\mathbf{x}||$ to every $\mathbf{x} \in R^n$ and that has the following properties:

- (a) $||\mathbf{x}|| \ge 0 \ \forall \ \mathbf{x} \in \mathbf{R}^{\mathbf{n}}$
- (b) $||c\mathbf{x}|| = |c| ||\mathbf{x}||$ for every $c \in R$ and every $\mathbf{x} \in R^n$

(c)
$$||\mathbf{x}|| = 0 \Leftrightarrow \text{if } \mathbf{x} = \mathbf{0}$$

(d)
$$||\mathbf{x}+\mathbf{y}|| \le ||\mathbf{x}|| + ||\mathbf{y}|| \ \forall \ \mathbf{x},\mathbf{y} \in \mathbb{R}^n$$
 (Triangular inequality)

Euclidean norm of
$$\mathbf{x}$$
, $||\mathbf{x}|| = \sqrt{(\mathbf{x}^T \mathbf{x})} = \left(\sum_{i=1}^n x_i^2\right)^{\frac{1}{2}}$

Schwartz inequality (applies to the Euclidean norm):

$$|\mathbf{x}^{\mathrm{T}}\mathbf{y}| \le ||\mathbf{x}||.||\mathbf{y}||$$

with equality holding if and only if $\mathbf{x} = \alpha \mathbf{y}$ for some scalar α

3) Matrices

$$\mathbf{m} \times \mathbf{n} \text{ matrix} \Longrightarrow \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & & \vdots \\ \vdots & & \ddots & \\ a_{m1} & \cdots & & a_{mn} \end{bmatrix} = \mathbf{A} = [\mathbf{a}_{ij}]$$

Product of a matrix **A** and a scalar α , α **A** or $\mathbf{A}\alpha = [\alpha a_{ij}]$

Product of two matrices A and B:

Let **A**, **B**, **C** be a mxn, nxp and mxp matrices, respectively.

AB = **C**=[
$$c_{ij}$$
], where $c_{ij} = \sum_{k=1}^{n} a_{ik} b_{kj}$

Transpose of a mxn matrix **A** is the nxm matrix $\mathbf{A}^{T} = [\mathbf{a}'_{ij}] = [\mathbf{a}_{ji}]$

A square matrix **A** is *symmetric* if $\mathbf{A}^T = \mathbf{A}$

Non-singular matrix

A square matrix (nxn) **A** is called *non-singular* or *invertible* if there is an nxn matrix called the inverse of **A** (denoted by \mathbf{A}^{-1}), such that $\mathbf{A}^{-1}\mathbf{A} = \mathbf{I} = \mathbf{A}\mathbf{A}^{-1}$, where **I** is the nxn identity matrix.

Positive Definite and Semidefinite Matrices

A square nxn matrix **A** is said to be *positive semidefinite* if $\mathbf{x}^T \mathbf{A} \mathbf{x} \ge 0 \ \forall \mathbf{x} \in \mathbb{R}^n$

A square nxn matrix **A** is said to be *positive definite* if $\mathbf{x}^T \mathbf{A} \mathbf{x} > 0 \ \forall \mathbf{x} \in \mathbb{R}^n$

The matrix **A** is said to be *negative* semidefinite (definite) if –**A** is positive semidefinite (definite).

4) Derivatives

Let $f: \mathbb{R}^n \to \mathbb{R}$ be some function.

Partial Derivative:

For a fixed $x \in \mathbb{R}^n$, the first partial derivative of f at the point x in the ith coordinate is defined by

$$\frac{\partial f(\mathbf{x})}{\partial x_i} = \lim_{\alpha \to 0} \frac{f(\mathbf{x} + \alpha \mathbf{e}_i) - f(\mathbf{x})}{\alpha}$$

where \mathbf{e}_{i} is the *i*th unit vector.

Gradient:

If the partial derivatives with respect to all coordinates exist, f is called differentiable at \mathbf{x} and its *gradient* at \mathbf{x} is defined as:

$$\nabla f(\mathbf{x}) = \begin{pmatrix} \frac{\partial f(\mathbf{x})}{\partial x_1} \\ \vdots \\ \frac{\partial f(\mathbf{x})}{\partial x_n} \end{pmatrix}$$

Note: ∇f is orthogonal to the corresponding level surface $f(x_1,...,x_n)=C$

Various Definitions

The function f is called *differentiable* if it is differentiable at every $\mathbf{x} \in \mathbb{R}^n$.

The function f is said to be *continuously differentiable* if $\nabla f(\mathbf{x})$ exists for every \mathbf{x} and is a continuous function of \mathbf{x} .

The function f is said to be *twice differentiable* if the gradient $\nabla f(\mathbf{x})$ is itself a differentiable function.

Hessian Matrix

For this case, we can define Hessian matrix of f at \mathbf{x} ,

$$\nabla^2 f(\mathbf{x}) = \left[\frac{\partial^2 f(\mathbf{x})}{\partial x_i \partial x_j} \right], \text{ i.e. the elements are the second}$$
partial derivatives of f at \mathbf{x} .

The function f is twice continuously differentiable if $\nabla^2 f(\mathbf{x})$ exists and is continuous.

Vector-valued function

A vector-valued function $\mathbf{f}: \mathbb{R}^n \to \mathbb{R}^m$ is differentiable (continuously differentiable) if each component f_i of \mathbf{f} is differentiable (continuously differentiable).

Gradient matrix of the vector-valued function

The gradient matrix of \mathbf{f} , $\nabla \mathbf{f}(\mathbf{x})$, is the nxm matrix whose ith column is $\nabla f_i(\mathbf{x})$,

$$\nabla \mathbf{f}(\mathbf{x}) = \begin{bmatrix} \nabla f_1(\mathbf{x}) & \cdots & \nabla f_m(\mathbf{x}) \end{bmatrix}$$

Jacobian of the vector-valued function Jacobian of $\mathbf{f} = (\nabla \mathbf{f}(\mathbf{x}))^{\mathrm{T}}$

Chain rule

Let $\mathbf{f}: \mathbb{R}^k \to \mathbb{R}^m$ and $\mathbf{g}: \mathbb{R}^m \to \mathbb{R}^n$ be continuously differentiable functions, and let $\mathbf{h}(\mathbf{x}) = \mathbf{g}(\mathbf{f}(\mathbf{x}))$.

The chain rule for differentiation states that

$$\nabla \mathbf{h}(\mathbf{x}) = \nabla_{\mathbf{x}} \mathbf{f}(\mathbf{x}) \nabla_{\mathbf{f}} \mathbf{g}(\mathbf{f}(\mathbf{x})), \forall \mathbf{x} \in \mathbb{R}^k$$

Special examples

If $\mathbf{f}: \mathbb{R}^n \to \mathbb{R}^m$ is of the form $\mathbf{f}(\mathbf{x}) = \mathbf{A}\mathbf{x}$, where \mathbf{A} is an m x n matrix,

$$\nabla \mathbf{f}(\mathbf{x}) = \mathbf{A}^{\mathrm{T}}$$

If $f : \mathbb{R}^n \to \mathbb{R}$ is of the form $f(\mathbf{x}) = \mathbf{x}^T \mathbf{A} \mathbf{x}/2$, where **A** is a symmetric n x n matrix,

$$\nabla f(\mathbf{x}) = \mathbf{A}\mathbf{x}$$
$$\nabla^2 f(\mathbf{x}) = \mathbf{A}$$

5) Unconstrained Optimization Techniques

Local and global minima

 x^* : local min if $\exists \varepsilon > 0$ s.t. $f(x^*) \le f(x)$, $\forall x$ in $||x - x^*|| \le \varepsilon$ x^* : strictly local min if $\exists \varepsilon > 0$ s.t. $f(x^*) < f(x)$. $\forall x$ in $||x - x^*|| \le \varepsilon$

 x^* : strictly local min if $\exists \ \epsilon > 0$ s.t. $f(x^*) < f(x)$, $\forall x$ in $||x-x^*||$

 $\leq \epsilon$

 x^* : global min if $\exists \ \epsilon > 0 \text{ s.t. } f(x^*) \le f(x), \ \forall x \in \mathbb{R}^n$

