

图 2.15 AD600 的高精度 HF AGC 放大器

6. 选型参考

AD600/AD602 的选型参考如表 2.6 所示。

表 2.6

AD600/AD602 的选型参考

型 号	增益范围	温度范围	封装形式
	7 A X D	2000	お来ルス
AD600AQ	0∼40dB	-40~85°C	CERDIP-16
AD600AR	0~40dB	-40~85℃	SOIC-16
AD600JN	0~40dB	-0~70℃	PDIP-16
AD600JR	0∼40dB	-0~70℃	SOIC-16
AD600SQ	0~40dB	-55~125℃	CERDIP-16
AD602AQ	−10~30dB	-40~85°C	CERDIP-16
AD602AR	−10~30dB	-40~85℃	SOIC-16
AD602JN	−10~30dB	-0~70℃	PDIP-16
AD602JR	-10~30dB	-0~70℃	SOIC-16
AD602 SQ	−10~30dB	−55~125°C	CERDIP-16

2.3 低噪声、90MHz 可调增益放大器 AD603

AD603 是主要用于 RF 和 IF AGC 系统的低噪声可调增益放大器,它具有引脚可编程增益功能,即-11~31dB、90MHz 带宽或 9~51dB、9MHz 带宽,也可以使用一个外部电阻设置增益范围内的任何增益。该增益控制信号是一个高阻抗(50MΩ)、低偏置(200nA)的差分输入信号,其控制系数为 25mV/dB,其控制接口输出的可以是一个差分控制电压,也可以是一个单端的正控制电压或负控制电压。

1. 特点

● 增益控制响应: dB 线性;

- 可控增益范围: -11~31dB (90MHz 带宽),
 9~51dB (9MHz 带宽);
- 带宽与增益变化无关;
- 輸入噪声: 1.3nV/√Hz;
- 增益精度: ±0.5dB (典型值)。

2. 引脚图及内部原理简图

AD603 的引脚图、内部原理简图及引脚表分别如图 2.16、图 2.17 和表 2.7 所示。

图 2.16 AD603 的引脚图

图 2.17 AD603 的内部原理简图

表 2.7

AD603 的引脚表

引脚号	引脚名	描述	引脚号	引脚名	描述	
1	GPOS	增益控制输入 HI(正电压增加增益)	5	FDBK	反馈	
2	GNEG	CH1 信号输入 LO (负电压增加增益)	6	VNEG	电源负	
3	VINP	放大器输入	7	V _{OUT}	放大器输出	
4	COMM	放大器地	8	VPOS	电源正	

3. 技术参数

AD603 的极限参数和主要技术参数如表 2.8 和表 2.9 所示。

表 2.8

AD603 的极限参数

C CONSTRUCTION OF THE CONS			
	电源电压± V _S		±7.5V
输入电压	引脚 3	连续	±2V
		10ms	$\pm v_{\mathrm{s}}$
	引脚 1, 2		$\pm v_{ m s}$

电源电压± V _S	±7.5V
工作温度范围 (A)	-40~85℃
工作温度范围 (S)	-55~125℃
储存温度范围	-65~150°C
引脚温度(焊接: 60s)	300℃

表 2.9 AD603 主要技术参数 (T_A =25°C, V_S =±5V, V_G =-500~500mV, V_{GNEG} =0V, G=-10~30dB, R_L =500 Ω , G_L =5pF, 另有说明除外)

	7 14		AD603		
参数	条件	最小	典型	典型 最大	
	4	輸入			
电阻	引脚 3 到 4	98	100	102	Ω
电容			2		pF
噪声谱密度	输入短路		1.4		nV/√H
峰值输入电压	f=100kHz		30	1.35	dB
	4	輸出			
-3dB 信号带宽	V _{OUT} =100mV		35		MHz
压摆速率	R _L ≥500Ω		275		V/µs
峰值输出	R _L ≥500Ω	±2.5	±3		v
输出阻抗	<i>f</i> ≤10MHz		2		Ω
输出短路电流			50		mA
	*	精度			
11	$V_{\rm G} = -500 \sim 500 \rm mV$	0	0.5	1	dB
增益误差	$T_{\rm A}=T_{\rm MIN}\sim T_{\rm MAX}$	-0.5	±0.2	0.5	dB
输出偏移电压	$V_{\rm G} = -500 \sim 500 \rm mV$				HI WAR
制山神砂屯压	$T_{\rm A}=T_{\rm MIN}\sim T_{\rm MAX}$		10	50	mV
输出偏移变化	$V_{\rm G} = -500 \sim 500 \mathrm{mV}$		10	50	mV
福山神多文化	$T_{\rm A}=T_{\rm MIN}\sim T_{\rm MAX}$				
	增益技	空制接口			
增益缩放因子	T _A =25℃	31.7	32	32.3	dB/V
月 皿 明 及 日 1	$T_{A} = T_{MIN} \sim T_{MAX}$				
GNEG、GPOS 电压范围	(注)	-0.75		2.5	v
输入偏置电流			0.35	1	μА
输入失调电流			10	50	nA
差分输入电阻	分输入电阻 引脚 1 到 2		15	- Andrew	ΜΩ
响应速率	满 40dB 增益变化	-	40		dB/μs
	E	电源			
额定电压范围		'±4.75	A	±5.25	v
静态电流	T _A =25℃		11	12.5	mA
ar ray table	$T_{A} = T_{MIN} \sim T_{MAX}$		A		

注: GNEG、GPOS 增益控制电压范围为: 在全温度范围内 (-40~85℃), -V_S+4.2V~+V_S-3.4V。

4. 主要技术参数特性曲线

AD603 的增益与外部电阻曲线和最大增益误差与外部电阻曲线分别如图 2.18 和图 2.19 - 116 -

图 2.18 AD603 的增益与外部电阻曲线 (假设内部电阻有 20%的最大冗余)

图 2.19 AD603 的最大增益误差与外部电阻曲线 [假设内部电阻有+20%(上)和-20%(下)的最大冗余]

5. 应用电路

AD603 的典型应用电路如图 2.20 和图 2.21 所示。

6. 选型参考

AD603 的选型参考如表 2.10 所示。

表 2.10

AD603 的选型参考

1 1 9	N. Bess	
AD603AR	−40~85°C	SOIC-8
AD603AQ	-40~85℃	CERDIP-8
AD603SQ	−55~125℃	CERDIP-8

2.4 双路、极低噪声可调增益放大器 AD604

AD604 是一种低噪声、高精度、双路线性分贝可调增益放大器(VGA),它主要用于超声应用中的时基可变增益场合,也可以用于其他各种要求低噪声、宽带及可变增益的地方。 AD604 的每个通道具有一个相关输入噪声为 0.8nV/√Hz 的高性能前置放大器和一个差分输入指数放大器 (DSX-AMP),每个 DSX-AMP 由一个 0~48.36dB 的衰减器和一个高速固定增益放大器组成。AD604 每个通道增益的基本描述方程为:

G(dB)=增益系数 $(dB/V) \times V_{GN}(V)$ +[前置放大器增益(dB)-19dB]

增益系数由 V_{REF} 决定, V_{GN} 为增益控制电压。例如,前置放大器增益设置为 14dB, V_{REF} 电压为 2.5V(增益系数为 20dB/V),则上述方程可简化为: $G(dB)=20(dB/V)\times V_{GN}(V)-5dB$,一般的 V_{REF} 电压为 2.500V 时,增益系数为 20dB/V; V_{REF} 电压为 1.666V 时,增益系数为 30dB/V; V_{REF} 电压为 1.25V 时,增益系数为 40dB/V。

1. 特点

- 最大增益时输入噪声:
 0.8nF/√Hz , 3.0pA/√Hz ;
- 两个独立的增益 dB 线性响应通道:
- 每个通道可调增益范围:
 0~48dB(前置增益=14dB),
 6~54dB(前置增益=20dB);
- 增益精度: ±1.0dB;
- -3dB 帯宽: 40MHz:
- 輸入阻抗: 300kΩ:
- 单端无极性增益控制。

2. 引脚图及内部原理简图

AD604 的引脚图、内部原理简图、内部电路原理简图(单路)及引脚表分别如图 2.22~图 2.24 和表 2.11 所示。

表 2.11

AD604 的引脚表

2500000				•			
引脚号	引脚名	描述	引脚号	引脚名	描述		
1	-DSXI	CH1 负信号输入	13	VGN2	CH2 增益控制输入和电源关断: 如接地,则器件关机,如接正电压,则设置增益		
2	+DSXI	CH1 正信号输入	14	VOCM	定义共模输出在 OUT1 和 OUT2		
3	PAO1	CH1 前置放大器输出	15	OUT2	CH2 信号输出		
4	FBK1	CH1 前置放大器反馈	16	GND2	地		
5	PAI1	CH1 前置放大器正输入	17	VPOS	正电源		
6	COM1	CH1 信号地,如接到正电源,前 置放大器 1 将进入掉电模式	18	VNEG	负电源		
7	СОМ2	CH2 信号地,如接到正电源,前 置放大器 2 将进入掉电模式	19	VNEG	负电源		
8	PAI2	CH2 前置放大器正输入	20	VPOS	正电源		
9	FBK2	CH2 前置放大器反馈	21	GND1	地		
10	PAO2	CH2 前置放大器输出	22	OUT1	CH1 信号输出		
11	+DSX	CH2 正信号输入	23	VREF	增益系数设置引脚		
12	-DSX	CH2 负信号输入	24	VGN1	CH1 增益控制输入和电源关断; 如接地,则器件关机,如接正电压,则设置增益		