PERTEMUAN 6 SISTEM BILANGAN DAN KODE(2)

Kode Bilangan

6.1 Tabel Code Bilangan

Desimal	Biner	BCD	Excess-3	Code
Digit				Gray
0	0000	0000	0011	0000
1	0001	0001	0100	0001
2	0010	0010	0101	0011
3	0011	0011	0110	0010
4	0100	0100	0111	0110
5	0101	0101	1000	0111
6	0110	0110	1001	0101
7	0111	0111	1010	0100
8	1000	1000	1011	1100
9	1001	1001	1100	1101

6.2 Konversi Bilangan Decimal ke Excess-3

Kode Excess-3 ada hubungannnya dengan kode BCD dan kadang-kadang digunakan menggantikan BCD karena mempunyai keuntungan dalam operasi –operasi aritmatik tertentu. Pengkodean Excess 3 untuk bilangan desimal dilaksanakan dengan cara yang sama seperti BCD kecuali bahwa angka 3 ditambahkan pada setiap digit decimal sebelum mengkodekan dalam biner.

Contoh

Bilangan 46

46 masing-masingbit ditambah 3 sehinggamenjadi 79 makakode excess-3 adalah = 0111 1001

6.3 Konversi dari biner ke Gray

Setiap bilangan biner dapat diubah menjadi representasi kode Gray dengan cara seperti berikut :

- Bit pertama dari code gray sama dengan bit pertama dari bilangan biner
- Bit kedua dari kode gray sama dengan exclusive OR dari bit pertama dan kedua dari bilangan biner (akan sama dengan satu apabila kode biner tersebut berbeda, akan sama dengan 0 jika bit tersebut sama).

• Bit kode gray ketiga sama dengan exclusive OR dari bit kedua dan ketiga dari bilangan biner, dan seterusnya.

6.4 Konversi dari Grey ke Biner

Untuk mengubah dari gray ke biner diperlukan prosedure yang berlawanan dengan prosedure konversi dari biner ke gray

- Bit biner pertama adalah sama dengan bit kode gray pertama
- Apabila bit gray yang kedua 0, bit biner kedua sama dengan yang bertama, apabila bit gray kedua 1, bit biner kedua adalah kebalikan dari bit biner pertama

6.5 Kode ASCII

	000	001	010	011	100	101	110	111
0000	NUL	DEL	Space	0	@	Р		р
0001	SOH	DC1	ļ	1	Α	Q	а	q
0010	STX	DC2	"	2	В	R	b	r
0011	ETX	DC3	#	3	С	S	С	S
0100	EOT	DC4	\$	4	D	Т	d	t
0101	END	NAK	%	5	Е	U	е	u
0110	ACK	SYN	&	6	F	V	f	V
0111	BEL	ETB	ı	7	G	W	g	W
1000	BS	CAN	(8	Н	Χ	.h	Х
1001	VT	ESC)	9		Υ	i	у
1010	LF	SUB	*	:	J	Z	j	Z
1011	VT	ESC	+	• /	K		k	
1100	FF	FS	ı	<	L			
1101	CR	GS	-	=	М		m	
1110	SO	RS		>	N		n	

1111	SI	US	/	?	0	0	DLE

7. Operasi Arithmatik

7.1 Operasi Penjumlahan

7.2 Operasi Pengurangan

9	1001
6	0110
3	0011

Tahapan

- o Ubah bilangan pengurang menjadi komplemen ke –2
- o Jumlahkan dengan data 9

o Komplemen pertama dari bilangan 6 = 1001

o Komplemen ke dua dari bilangan 6 = 1010

o Penjumlahan 1001 dengan 1010 = 0 0 1 1

o Dengan demikian hasil nya adalah 0011 = 03

7.3 Perkalian bilangan biner

Perkalian bilangan biner dilakukan dengan cara yang sama dengan cara perkalian bilangan desimal

7.4 Pembagian Biner

7.5 Pemakaian sistem bilangan dalam pemograman

Address	Mechine	Menemonic	Action
	Code	Code	
7000	06 30	MVI B, 30	B:30
7002	0E 20	MVI C, 20	C:20
7004	16 40	MVI D, 40	D: 40
7006	78	MOV A, B	A:B:30
7007	81	ADD C	A: A + C: 50
7008	82	ADD D	A: A + D: 90
7009	CF	RST 1	

7.6 Penjelasan Program

- 7.6.1 Register B diisi data 30.
- 7.6.2 Register C diisi data 20.
- 7.6.3 Register D diisi data 40.
- 7.6.4 Data yang ada pada register B dipindah ke register A, yang sekarang register A berisi data 30.
- 7.6.5 Data pada register A dijumlahkan dengan data pada register C.

$$A = 30 + 20 = 50$$

7.6.6 Data pada register A dijumlahkan dengan data pada register D.

$$A = 50 + 40 = 90.$$

Pada program ditunjukan bahwa sejumlah instruksi mesin dalam kode hexa desimal, kemudian untuk melakukan penjumlah dilakukan dengan menggunakan kode ADD dalam hexa 82. Dengan demikian maka diperlukan pemahaman sistem bilangan untuk melakukan pemograman.