Step 1

Compute $n = pq = 137 \cdot 241 = 33017$

Step 2

Encrypt $a: c = a^e MOD n$

Modular Exponentiation

а	е	n	
12345	53	33017	
12345	53	12345	
25570	26		
22266	13	7245	
24501	6		
16924	3	22259	
32318	1	24983	

$$c = 24983$$

Step 3

Compute $\phi = (p-1)(q-1) = 136 \cdot 240 = 32640$

Step 4

Compute d: $gcd(\phi, e)$

Greatest Common Denominator

а	b	q	r	S	t
32640	53	615	45	-20	12317
53	45	1	8	17	-20
45	8	5	5	-3	17
8	5	1	3	2	-3
5	3	1	2	-1	2
3	2	1	1	1	-1
2	1	2	0	0	1
1	0			1	0

$$d = 12317$$

Step 5

Decrypt $c: c^d MOD n$

Modular Exponentiation

С	d	n	
24983	12317	33017	
24983	12317	24983	
29938	6158		
4362	3079	19746	
9252	1539	6931	
19440	769	29280	
1018	384		
12797	192		
31906	96		
12692	48		
29938	24		
4362	12		
9252	6		
19440	3	23137	
1018	1	12345	