

Lucas Henrique Correia da Rocha

lucash.rocha@hotmail.com

Olá! Seja bem-vindo à documentação da biblioteca CalcNumCTEC. Esta biblioteca foi implementada inicialmente como compilação dos métodos estudados na disciplina de Cálculo Numérico a partir da atividade de monitoria no Centro de Tecnologia (CTEC) da Universidade Federal de Alagoas (UFAL). Meu nome é Lucas, fui monitor da disciplina no semestre de 2020.2 e, como resultado dos trabalhos realizados durante o exercício da função de monitor, auxiliando os alunos com a implementação dos métodos em linguagem Julia, resolvi juntar todas elas numa biblioteca.

Entretanto, durante a realização do trabalho, foram surgindo novas ideias, que foram sendo desenvolvidas e agregadas ao trabalho inicial, de forma a expandir a aplicabilidade da biblioteca, implementando novas funções e até mesmo tipos de dados específicos, a fim de facilitar o trabalho acadêmico.

Portanto, espero que esta biblioteca seja útil para você. E não deixe de dar feedback, em especial de melhorias para que possamos evoluir suas funcionalidades. Faça bom proveito! 😜

Introdução

1. INCLUSÃO DA BIBLIOTECA

Com o objetivo de simplificar o desenvolvimento e a utilização da biblioteca, o código está escrito num script com nome da biblioteca e a primeira coisa a ser feita, antes mesmo de usá-la, é colocar uma cópia do arquivo em algum local de fácil acesso. Por conveniência, em especial se o programa que você está escrevendo será compartilhado com outros usuários, é recomendado que ele seja guardado na mesma pasta do arquivo que o está chamando ou numa subpasta dela.

Depois disso, é preciso incluir o *script* no código em que estamos escrevendo! Em Julia, isso é feito através da função *include*, passando o diretório do arquivo. Veja o exemplo abaixo:

In [61]:

include("C:\\Users\\lucas\\Documents\\GitHub\\CalcNumCTEC\\CalcNumCTEC\\code\\CalcNumCTEC.jl")

Out[61]:

"CalcNumCTEC incluída com sucesso!"

Um jeito de garantir que a biblioteca foi incluída com êxito, conforme demonstrado no exemplo anterior, é executar o programa de modo que a chamada seja a última linha. Desta maneira, será exibida uma saída no terminal com a mensagem "CalcNumCTEC incluída com sucesso!". Pode-se ainda testar executando alguma das funções implementadas.

2. NOMENCLATURA DAS FUNÇÕES

A funções implementadas estão estrategicamente nomeadas de maneira lógica, facilitando a utilização com nomes triviais e de fácil memorização. O padrão utilizado para nomenclatura das funções é da forma:

O assunto está associado ao objeto principal da função, ou seja, ao resultado do que a função de fato implementa. São eles:

Assunto	ASSUNTO
Zeros de funções	Zeros
Sistemas de equações lineares	SEL
Sistemas de equações não lineares	SENL
Interpolação	Interpolacao
Ajuste	Ajuste
Integral	Integral
Integral dupla	IntegralDupla
Integral tripla	IntegralTripla
Derivadas	MDFCentradas

O método, por sua vez, como o próprio nome sugere, indica o método numérico utilizado para a determinação do resultado requerido. Veremos então, para cada função o método implementado e como essa nomenclatura é efetivamente utilizada.

3. ZEROS DE FUNÇÕES

A primeira classe de assuntos que veremos é a que determina raízes de funções quaisquer. Aqui, temos os três métodos clássicos para a determinação de zeros de funções:

• Método da Bisseção → MÉTODO = Bissecao

Classificado como um método intervalar, o Método da Bisseção consiste em estreitar um intervalo inicial a partir do ponto médio do mesmo até que o erro, calculado como $|f(x_k)|$, onde f é a função de análise, seja menor do que a tolerância.

Os parâmetros obrigatórios para sua utilização são: a função a ser analisada e os extremos a e b do intervalo. Para garantir a convergência do método, este só permitirá a execução da função se os valores de f(a) e f(b) possuírem valores simétricos, de maneira que, pelo Teorema do Valor Intermediário (TVI), verificamos a existência da raiz no intervalo dado. Vejamos um exemplo de utilização:

```
In [62]: f(x) = x^3 - \cos(x)
println("f(0) = \$(f(0))")
println("f(1) = \$(f(1))")
```

f(0) = -1.0f(1) = 0.45969769413186023

Daí, podemos concluir que $\exists x \in [0,1] \mid f(x) = 0$. Perceba ainda que, não é possível isolar x na equação $x^3 - cos(x) = 0$ de modo a obter este valor analiticamente, fazendo-nos ter de recorrer a métodos numéricos. Logo, podemos usar a função Zeros_Bissecao() para calcular este valor de x.

```
In [63]: x<sub>r</sub> = Zeros_Bissecao(f, 0, 1)
println("Raiz de f(x) = $x<sub>r</sub>")
```

Raiz de f(x) = 0.865474033101691

Além destes parâmetros obrigatórios, temos parâmetros adicionais referentes à convergência da função, são eles:

tol : Define a tolerância permitida para o erro da aproximação (valor padrão: 10^{-12}) </br> klim : Define a quantidade máxima de iterações para o caso do método não convergir (valor padrão: 10^6)

```
In [64]: x_r = Zeros_Bissecao(f, 0, 1, tol=0.01, klim=100)
println("Raiz de f(x) = x_r")
```

```
Raiz de f(x) = 0.8671875
```

Método das Cordas → MÉTODO = Cordas

Outro método, similar ao anterior, que foi implementado é o Método das Cordas. A única diferença para o anterior consiste na função de recorrência, calculando o valor de x para a próxima iteração com os valores da iteração anterior. Deste modo, a chamada da função é idêntica e é com os mesmos atributos, alterando-se apenas o nome da função.

```
In [65]:  x_r = Zeros\_Cordas(f, 0, 1) 
 x_{r2} = Zeros\_Cordas(f, 0, 1, tol=0.01, klim=100) 
 println("Raiz de f(x) (Método das Cordas - tolerância padrão) = <math>x_r")
 println("Raiz de f(x) (Método das Cordas - baixa tolerância). = <math>x_{r2}")

 Raiz de f(x) (Método das Cordas - tolerância padrão) = 0.865474033101691 
 Raiz de f(x) (Método das Cordas - baixa tolerância). = 0.8671875
```

• Método de Newton-Raphson \rightarrow *MÉTODO* = NR

Saindo agora do escopo dos métodos intervalares, o Método de Newton-Raphson difere dos anteriores pelo fato de que o chute inicial, ao invés de iniciar com um intervalo, é dado por um valor para x e o próximo valor é calculado a partir da interseção da reta tangente com o eixo x.

Para a implementação do método, a fim de evitar a determinação da derivada analiticamente, tomou-se a decisão de estimar este valor a partir de uma reta secante pelos pontos $(x_k, f(x_k))$ e $(x_k + tol, f(x_k + tol))$, onde tol é a tolerância da função.

De forma semelhante aos métodos anteriores, além de passar na chamada a função a ser analisada e o chute inicial, desta vez caracterizado por um único valor de x, é possível também determinar a tolerância e a quantidade limite de iterações do método.

A função utilizada para o cálculo da derivada, porém, será descrita mais adiante.

```
In [66]:  x_r = Zeros_NR(f, 1) 
 x_{r2} = Zeros_NR(f, 1, tol=0.1, klim=10) 
 println("Raiz de f(x) (Método NR - tolerância padrão) = $x_r") 
 println("Raiz de f(x) (Método NR - baixa tolerância). = $x_{r2}") 
 Raiz de f(x) (Método NR - tolerância padrão) = 0.8654740331016162 
 Raiz de f(x) (Método NR - baixa tolerância). = 0.8803328995715387
```

4. SISTEMAS DE EQUAÇÕES LINEARES

O próximo conjunto de funções está relacionado à resolução de sistemas lineares abrangendo métodos diretos, iterativos e até mesmo a verificação dos critérios de convergência.

• Eliminação de Gauss → *MÉTODO* = EliminGauss

O primeiro método para solução de sistemas de equações lineares trata-se de um método direto, denominado Método da Eliminação de Gauss, que consiste em realizar operações lineares nas linhas da matriz e do vetor que definem o sistema a fim de escalonar a matriz, ou seja, fazer com que ela tome a forma de uma matriz triangular superior, com os elementos abaixo da diagonal principal nulos.

```
\begin{bmatrix} a_{11} & a_{12} & a_{13} & \dots & a_{1n} \\ 0 & a_{22} & a_{23} & \dots & a_{2n} \\ 0 & 0 & a_{33} & \dots & a_{3n} \\ \dots & \dots & \dots & \dots \\ 0 & 0 & 0 & \dots & a_{nn} \end{bmatrix}
```

Com a matrix devidamente escalonada, o resultado pode ser calculado da última linha para a primeira utilizando-se os valores obtidos no passo anterior.

A função pode então ser chamada conforme o código abaixo. Veja ainda que podemos ainda validar o exemplo com o valor obtido através do operador nativo de Julia para o cálculo de sistemas de equações lineares com \approx (\approx):

```
In [67]: A = randn(5,5)
b = randn(5)

x = SEL_EliminGauss(A, b)

println("Vetor solução:")

using DelimitedFiles
writedlm(stdout, x)

println("\n", x ≈ A\b)
```

Vetor solução: 0.21268382261445784 -1.4770318082746958 0.10043993657177547 2.585401811995677 -0.18573291019424595

true

CRITÉRIOS DE CONVERGÊNCIA → MÉTODO = CritConverg

Usados para determinar o grau de convergência do sistema para os métodos iterativos a partir das características da matriz de coeficientes dos sistemas. Na verdade, o que estes critéios medem realmente é o grau de dominância dos termos Os métodos implementados são três:

a) Critério das linhas (β_i)

Calcula a soma dos elementos da linha dividido pelo elemento da diagonal principal na linha correspondente, compondo então um vetor com os valores β_i para cada linha i e retornando o maior deles.

$$eta_i = rac{\sum_{i=1}^n a_{ij}}{a_{ii}}$$

b) Critério das colunas (β_i)

Semelhantemente ao anterior, calcula a soma dos elementos da coluna dividido pelo elemento da diagonal principal na linha correspondente, armazenando então um vetor com os valores β_j para cada coluna j e retornando o maior deles.

$$eta_j = rac{\sum_{j=1}^n a_{ij}}{a_{jj}}$$

c) Critério de Sassenfield

Este, porém, é parecido com o primeiro, a primeira linha é calculada de maneira semelhante ao critério das linhas. Entretanto, na segunda linha em diante, os valores de β obtidos nas linhas anteriores são utilizados como multiplicadores para os elementos cujo índice da coluna é correspondente, ou seja:

$$eta_1 = rac{\sum_{i=1}^n a_{ij}}{a_{11}} \ eta_2 = eta_1 a_{21} + rac{\sum_{i=2}^n a_{ij}}{a_{11}} \ eta_3 = eta_1 a_{31} + eta_2 a_{32} + rac{\sum_{i=3}^n a_{ij}}{a_{33}}$$

Para quaisquer dos três métodos, quanto maior for o valor retornado pela função, mais difícil será a convergência dos métodos iterativos, ou seja, o método deverá convergir com erros maiores e para um número maior de iterações. Todavia, é suficiente para garantir a convergência que ao menos um destes valores estejam entre 0 e 1.

Assim, foi implementada apenas uma função para responder aos três critérios, de maneira que a escolha é feita através do parâmetro *modo*:

- '1' ou 'L' para o critério das linhas
- 'c' ou 'C' para o critério das colunas </code>
- 's' ou 'S' para o critério de Sassenfield

```
In [72]:
```

```
println("\nConvergência de A pelo critério das linhas...: ", SEL_CritConverg(A, '1'))
println("Convergência de A pelo critério das colunas...: ", SEL_CritConverg(A, 'c'))
println("Convergência de A pelo critério de Sassenfield: ", SEL_CritConverg(A, 's'))
```

```
Convergência de A pelo critério das linhas...: 9.496148069437828
Convergência de A pelo critério das colunas...: 11.04846703832951
Convergência de A pelo critério de Sassenfield: 1300.1595201331788
```