Review Problem 25

* Implement ADDI Rd, Rn, imm12 on our CPU

instr = men[PC]; FRO(RO) = RO(RN]+ ZE(mn12) PC=PC+4;

Signal	Value
Reg2Loc	×
ALUSrc	2
MemToReg	\circ
RegWrite	
MemWrite	0
BrTaken	0
UncondBr	X
ALUOp	+

Performance of Single-Cycle Machine

	Parallel de Account						हरें इस्	R5,2	0
PC Instr. Memory Adder mux setup	PC Instr. Memory mux Reg Read mux ALU mux retun	CBZ	PC Instr. Memory Reg Read ALU Data Memory	STUR	PC Instr. Memory Reg Read ALU Data Memory mux Reg Setup	LDUR	PC Instr. Memory mux Reg Read mux ALU mux Reg Setup ////	ADD, SUB	CPI?

Reducing Cycle Time

Do same work in two fast cycles, rather than one slow one Cut combinational dependency graph and insert register / latch

Pipelined Processor Overview

Divide datapath into multiple stages

Pipelining

Readings: 4.5-4.8

Example: Doing the laundry

Ann, Brian, Cathy, & Dave each have one load of clothes to wash, dry, and fold

Washer takes 30 minutes

Dryer takes 40 minutes

"Folder" takes 20 minutes

SIN Line

1 chelosof times

Pipelined Execution

Now we just have to make it work