

Home Gameboard Chemistry Organic Isomerism Chiral Antibiotics

Chiral Antibiotics

Part A Chloramphenicol

Chloramphenicol is an antibiotic drug. Its formula is given below.

Figure 1: Structure of chloramphenicol

List any of the letters **a-g** which are chiral centres in alphabetical order without spaces *e.g.*"ab".

Part B Penicillin

Penicillin is widely used to kill bacteria. The general structure of a penicillin molecule is given below.

Ar
$$\stackrel{\text{b}}{\underset{\text{CH}}{\text{CH}}} \stackrel{\text{C}}{\underset{\text{CH}}{\text{CH}}} \stackrel{\text{C}}{\underset{\text{COOH}}{\text{COOH}}}$$
 Ar = an aryl group

Figure 2: General structure of penicillin

List in alphabetical order (e.g."ab") any of the carbon atoms **a-i** which are chiral centres.

Part A adapted with permission from UCLES, A-Level Chemistry, June 1991, Paper 2, Question 5; Part B adapted with permission from UCLES, A-Level Chemistry, November 1995, Paper 3, Question 5

<u>Home</u> <u>Gameboard</u> Chemistry Organic Isomerism Asthma drugs

Asthma drugs

Part A Salbutamol

Salbutamol is a widely used anti-asthmatic drug. The structure of salbutamol is:

Figure 1: Structure of salbutamol

١	Mhich	of the	carhon	atoms	numbered	on the	structure	are chi	ral?
١	v v i iiGi i	OI LIIC	Calbull	awiis	HUHHDELEU		Suuciuic	ait cill	aı:

1, 2 and 3 are chiral
1 and 2 only are chiral
1 and 3 only are chiral
2 and 3 only are chiral
1 only is chiral
2 only is chiral
3 only is chiral
None of the labelled carbons are chiral

Part B Intal

The anti-asthma drug *Intal* contains disodium cromoglycate, which has the following structure:

Figure 2: Structure of disodium cromoglycate

How many chiral centres are there in the molecule?

Part A adapted with permission from UCLES, A-Level Chemistry, November 1995, Paper 4, Question 38; Part B adapted with permission from UCLES, A-Level Chemistry, June 1988, Paper 3, Question 22

Gameboard:

STEM SMART Chemistry Week 40

<u>Home</u> <u>Gameboard</u> Chemistry Organic Isomerism Chiral Centres

Chiral Centres

Part A Amino acids

Which of the following amino acids contains two chiral carbon atoms?

Figure 1: Amino acids A - E.

- () A

- () E

Part B Liquid crystal displays

The following compounds are used in liquid crystal displays in watches and calculators.

Figure 2: Compounds used in liquid crystal displays.

Which of the following are correct statements about these molecules?

- **1**. Both can exist in optically active forms.
- 2. Both have permanent dipoles.
- 3. Both react with bromine in the dark.
 - 1, 2 and 3 are correct
 - 1 and 2 only are correct
 - 1 and 3 only are correct
 - 2 and 3 only are correct
 - 1 only is correct
 - 2 only is correct
 - 3 only is correct
 - None of the statements is correct.

<u>Home</u> <u>Gameboard</u> Chemistry Organic Isomerism Drugs and Poisons

Drugs and Poisons

Many drugs show optical isomerism. The diagrams show the structure of three drugs.

amphetamine

phenobarbital

Figure 1: Structures of amphetamine, lidocaine and phenobarbital.

What is the total number of chiral carbon centres in these three structures?

Part B Poisons

Warfarin is used as a rat poison.

Figure 2: Structure of Warfarin.

How many chiral centres are present in the Warfarin molecule?

Part A adapted with permission from UCLES, A-Level Chemistry, June 1994, Paper 4, Question 20; Part B adapted with permission from UCLES, A-Level Chemistry, November 1992, Paper 4, Question 21

Gameboard:

STEM SMART Chemistry Week 40

<u>Home</u> <u>Gameboard</u> Chemistry Organic Isomerism Types of Isomerism

Types of Isomerism

Which types of stereoisomerism would be exhibited by the following compounds?

Part A Compound A

Figure 1: Compound A.

- Cis-trans
- Optical
- Both *cis-trans* and optical
- No isomerism

Part B	Compound B				
$CH_3CH=CHCH_2CH(OH)CH_3.$					
	Cis-trans				
	Optical				
	Both <i>cis-trans</i> and optical				
	No isomerism				
Part C	Compound C				
	Compound C $_{2}\mathrm{C=CHCH_{2}CH(OH)CH_{2}CH=C(CH_{3})_{2}}.$				
	$_{2}$ C=CHCH $_{2}$ CH(OH)CH $_{2}$ CH=C(CH $_{3}$) $_{2}$.				
	$_{2}\mathrm{C}\!=\!\mathrm{CHCH}_{2}\mathrm{CH}(\mathrm{OH})\mathrm{CH}_{2}\mathrm{CH}\!=\!\mathrm{C}(\mathrm{CH}_{3})_{2}.$ Cis-trans				
	$_{\rm C}{ m CHCH_2CH(OH)CH_2CH}{ m =C(CH_3)_2}.$ Cis-trans				
	${ m CC=CHCH_2CH(OH)CH_2CH=C(CH_3)_2}.$ Cis-trans Optical Both cis-trans and optical				
	${ m CC=CHCH_2CH(OH)CH_2CH=C(CH_3)_2}.$ Cis-trans Optical Both cis-trans and optical				

Adapted with permission from UCLES, A-Level Chemistry, 1989, Paper 1, Question 6.

Gameboard:

STEM SMART Chemistry Week 40

<u>Home</u> <u>Gameboard</u> Chemistry Organic Isomerism Natural Products

Natural Products

Part A Compound P

A product \mathbf{P} , isolated from a naturally-occurring source, has a molecular formula of $C_9H_{11}NO_3$. It possesses a chiral centre and it forms a zwitterion.

What could the structure of **P** be?

C HO
$$\longrightarrow$$
 CH₂ \longrightarrow CH₂ \longrightarrow CH₂ \longrightarrow COOH \longrightarrow H₂N

Figure 1: Possible structures of compound P.

- () A
- В
- () C

Part B Insect attractant

The diagram shows the structure of the insect attractant *methoprene*.

Figure 2: Structure of methoprene.

What is the total number of stereoisomers (cis-trans and optical) of this molecule?

Part A adapted with permission from UCLES, A-Level Chemistry, November 1995, Paper 4, Question 29; Part B adapted with permission from UCLES, A-Level Chemistry, June 1993, Paper 4, Question 22

Gameboard:

STEM SMART Chemistry Week 40

<u>Home</u> <u>Gameboard</u> Chemistry Organic Isomerism More Natural Products

More Natural Products

Part A Vitamin C

The diagram shows the structure of vitamin C.

Figure 1: Structure of vitamin C.

How many chiral centres are there in one molecule of vitamin C?

- 0
- ·
- 2
- 3
- () 4
- () 5

Part B Menthol

Menthol, a cyclohexane derivative is used in skin lotions since it counteracts itching. The structural formula of menthol is shown below.

Figure 2: Structure of menthol.

List in alphabetical order without spaces (e.g. abc) any of the carbon atoms a-j which are chiral.

Part A adapted with permission from UCLES, A-Level Chemistry, November 1991, Paper 1, Question 22; Part B adapted with permission from UCLES, A-Level Chemistry, June 1992, Paper 3, Question 4

Gameboard:

STEM SMART Chemistry Week 40

<u>Home</u> <u>Gameboard</u> Chemistry Organic Isomerism Optical Isomerism

Optical Isomerism

Part A Definition						
Optical isomers are that have the same structural and molecular, but are of each other.						
Optical isomerism is caused by molecules with a carbon atom joined to different groups. We call						
the carbon atom a or an carbon. It is often indicated by an asterisk, *. The two isomers are known as						
Items: mirror images two formulae enantiomers non-superimposable three asymmetric molecules chiral centre four						
Part B Chiral alkane						
Draw the structural formula of an alkane with the lowest M_r that can exhibit optical isomerism. Use the <u>structure editor</u> to generate a SMILES string.						

Part C Chiral alcohol

Draw the structural formula of one of the optical isomers of the alcohol with the lowest M_r that can show optical isomerism, indicating the stereochemistry with a wedged or hashed bond.

Use the <u>structure editor</u> to generate a SMILES string.

Part A created for isaacphysics.org by R. Less;
Part B adapted with permission from UCLES, A-Level Chemistry, June 1995, Paper 1, Question 9;
Part C created for isaacphysics.org by R. Less

Gameboard:

STEM SMART Chemistry Week 40

<u>Home</u> <u>Gameboard</u> Chemistry Organic Isomerism Formulae and Isomers

Formulae and Isomers

Part A $C_4H_{10}O$						
How many isomers (including both structural isomers and stereoisomers) are possible for $\mathrm{C_4H_{10}O}$?						
Part B $C_2H_2Br_2$						
In what ways could two compounds of molecular formula ${ m C_2H_2Br_2}$ be related to each other?						
1. structural isomers						
2. cis-trans isomers3. optical isomers						
1, 2 and 3 are correct						
1 and 2 only are correct						
2 and 3 only are correct						
1 only is correct						
2 only is correct						
3 only is correct						
1 and 3 only are correct						

Part C Chlorination of ethane

How many chiral compounds is it possible to prepare by subjecting ethane to repeated substitution by chlorine?

Part A adapted with permission from UCLES, A-Level Chemistry, 1989, Paper 3, Question 22; Part B adapted with permission from UCLES, A-Level Chemistry, 1988, Paper 3, Question 38; Part C adapted with permission from UCLES, A-Level Chemistry, June 1993, Paper 4, Question 23

Gameboard:

STEM SMART Chemistry Week 40

Home Gameboard Chemistry Organic Isomerism Chiral Resolution

Chiral Resolution

Separating enantiomers from a racemic mixture, also known as chiral resolution, can be achieved in multiple ways. In this question, we will focus on the technique of reacting the mixture with a **chiral resolving agent**.

Part A Moscher's acid

One chiral resolving agent, Moscher's acid, has the structure shown below.

Figure 1: Moscher's acid

Which	of the following	classes of	compounds	would react	with Moso	cher's acid?	Select all the	at apply
	amides							

amines

carboxylic acids

alcohols

Part B Alanine	
Alanine is the α -amino acid with a methyl side-chain. What are the two isomers present in a racemic mixtu of alanine? Give your answer in the form of SMILES strings copied from the <u>structure editor</u> separated by commas (no spaces).	re
Part C Separating isomers	
The two alanine isomers are (non-superimposable mirror images), so they have the same melt point, boiling point, etc. They therefore cannot be separated by conventional means. However, by reacting racemic mixture of alanine with a specific stereoisomer of Moscher's acid, two are obtained, which have different physical properties and can therefore be separated. This method works, because Moscher's acid contains a	
Items: diastereomers enantiomers chiral centre double bond benzene ring	

Created for isaacphysics.org by Andrea Chlebikova