

ОНЛАЙН-ОБРАЗОВАНИЕ

Интегрирование

Дмитрий Музалевский Преподаватель

План на сегодня

- 1. Интегрирование
- 2. Первообразная функция
- 3. Неопределенный интеграл
- 4. Определенный интеграл
- 5. Расчет площади плоских фигур

Интегрирование

В дифференциальном исчислении решается задача нахождения производной или дифференциала данной функции. Пусть дана функция F(x). Тогда по определению производной $\lim_{\Delta x \to 0} \frac{\Delta F}{\Delta x} = F'(x)$. Обозначим F'(x) = f(x).

В интегральном исчислении решается задача, обратная задаче нахождения производной: отыскание функции F(x) по заданной её производной f(x). Таким образом, для заданной функции f(x) нужно найти такую функцию F(x), чтобы F'(x) = f(x).

Первообразная функция

Функция F(x) называется **первообразной функцией** для функции f(x) на некотором множестве D, если на этом множестве F'(x) = f(x).

Если F(x) есть первообразная функция для функции f(x), то каждая из функций F(x) + C, где C - произвольная постоянная, будет также первообразной для функции f(x), так как

$$(F(x) + C)' = F'(x) + C' = F'(x) = f(x)$$
.

Первообразная функция

Таким образом, если функция f(x) имеет хотя бы одну первообразную функцию, то она может иметь бесчисленное множество первообразных функций и все они отличаются одна от другой на постоянную величину.

Совокупность всех первообразных функций F(x)+C для функции f(x) называется **неопределённым интегралом** от функции f(x) и обозначается $\int f(x)dx = F(x)+C$. Процесс нахождения первообразной функции называется **интегрированием**. Переменная x называется **переменной интегрирования**, функция f(x) называется **подынтегральной функцией**, выражение f(x)dx -**подынтегральным выражением**.

Неопределенный интеграл

- Производная от неопределённого интеграла равна подынтегральной функции, т.е. $(\int f(x)dx)^{-1} = f(x)$.
- Дифференциал неопределённого интеграла равен подынтегральному выражению, т.е. $d \left(\int f(x) dx \right) = f(x) dx$.
- Неопределённый интеграл от дифференциала функции равен этой функции плюс произвольная постоянная, т.е. $\int dF(x) = F(x) + C$.
- Постоянный множитель можно выносить за знак интеграла: $\int k f(x) dx = k \int f(x) dx$.
- Неопределённый интеграл от алгебраической суммы функций равен алгебраической сумме интегралов от этих функций, т.е. $\int (f(x) \pm g(x)) dx = \int f(x) dx \pm \int g(x) dx.$
- Результат интегрирования не зависит от обозначения переменной интегрирования, т.е. если $\int f(x)dx = F(x) + C$, то при замене переменной интегрирования x на t $\int f(t)dt = F(t) + C$. Такое свойство называется **инвариантностью формулы интегрирования**.

Табличные интегралы

1	$\int \!\! dx = x + C$	7	$\int \cos x dx = \sin x + C$
2	$\int x^n dx = \frac{x^{n+1}}{n+1} + C$	8	$\int \frac{1}{\cos^2 x dx} = tgx + C$
3	$\int_{-X}^{1} dx = \ln x + C$	9	$\int \frac{1}{\sin^2 x dx} = -ctgx + C$
4	$\int e^x dx = e^x + C$	10	$\int \frac{1}{\sqrt{1-x^2}} dx = \arcsin x + C$
5	$\int a^x dx = \frac{a^x}{\ln a} + C$	11	$\int \frac{1}{1+x^2} dx = arctgx + C$
6	$\int \sin x dx = -\cos x + C$		

Определенный интеграл

Пусть функция y = f(x) определена на отрезке [a, b]. Выполним следующие действия.

- ullet Разобьём отрезок [a,b] точками $x_0 = a$, x_1 , x_2 , ..., $x_n = b$ на n отрезков [x_0 , x_1], [x_1 , x_2], ..., [x_{n-1} , x_n], которые называются частичными.
- В каждом частичном отрезке $[x_{i-1}, x_i]$ произвольно выберем точку $c_i \in [x_{i-1}, x_i]$, вычислим значение функции в этой точке $f(c_i)$ и произведение $f(c_i)\Delta x_i$, где $\Delta x_i = x_i x_{i-1}$.
- Если существует предел $\lim_{n \to \infty} \sum_{i=1}^n f(c_i) \Delta x_i$, который не зависит ни от способа разбиения отрезка [a,b], ни от выбора точек $c_i \in [x_{i-1},x_i]$, то он называется **определённым интегралом** от функции y = f(x) на отрезке $c_i \in [x_{i-1},x_i]$ и обозначается

$$f(x)$$

$$S$$

$$b x$$

$$\int_{a}^{b} f(x)dx = \lim_{n \to \infty} \sum_{i=1}^{n} f(c_i) \Delta x_i.$$

Определенный интеграл

Числа a и b называются нижним и верхним пределами интегрирования. Функция f(x) называется подынтегральной функцией, выражение f(x)dx - подынтегральным выражением, x — переменной интегрирования, [a,b] - отрезком интегрирования.

Пусть на отрезке [a,b] задана непрерывная функция $y = f(x) \ge 0$. Фигура, ограниченная сверху графиком функции y = f(x), снизу осью Ox, сбоку – прямыми x=a и x=b, называется **криволинейной трапецией**.

Определённый интеграл от неотрицательной функции численно равен площади криволинейной трапеции. В этом состоит **геометрический смысл определённого интеграла**.

Спасибо за внимание!