

The Solution to the regularized LS problem is given by $\hat{\beta}_z = (X^TX + \tau II)^T X^TY$ We can write $Y = X\beta + \varepsilon$, giving us, $\hat{\beta} = (X^TX + zI)^T X^T (X\beta + \varepsilon)$ $= (X^TX + zI)^T X^T (X\beta) + (X^TX + zII)^T X^T \varepsilon$ $E[\hat{\beta}_{z}|x] = E[(x^{T}X + zII)^{T}X^{T}(x\beta + c) | X]$ $= E[(x^{T}X + zII)^{T}X^{T}E[x] + E[(x^{T}X + zII)^{T}x^{T}x\beta]$ $= (x^{T}X + zII)^{T}X^{T}E[E|x] + (x^{T}X + zII)^{T}x^{T}x\beta$ = (XTX+ZII) XTXB = SZ'SZB whose S = (XTX+TII), S = XTX $Cov(\hat{\beta}_{\epsilon}) = Cov((x^{T}X + zII)^{-1}X^{T}(x\beta + \epsilon))$ $= Cov((x^{T}X + zII)^{-1}X^{T}\epsilon)$ $= (x^{T}X + zII)^{-1}X^{T}Cov(\epsilon)X(x^{T}X + zII)^{-1}$ Cov(e) = 02, thosefose

 $Cov(\hat{B}_{\tau}) = \sigma^{2}(x^{T}x + \tau T)^{-1}x^{T}x(x^{T}x + \tau T)^{-1}$ $= \sigma^{2}S_{\tau}^{-1}SS_{\tau}^{-1}$