

Lie Groups and Lie Algebras (MAGIC008 TEST)

2011 TEST

Answer **3** questions.

1. (a) State the definition of a Lie group. [4]

(b) Prove that the set G_A of all invertible 3×3 -matrices that commute with the matrix

$$A = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}, \text{ i.e.,}$$

$$G_A = \{ X \in GL(3, \mathbb{R}) \mid XA = AX \},$$

is a Lie group. Describe G_A explicitly and find its dimension. [4]

- (c) Is G_A connected? How many connected components does this Lie group consist of? Justify your answer. [4]
- (d) Let G be a Lie group and $G_0 \subset G$ be its identity component. Prove that G_0 is a subgroup of G. [4]
- (e) Describe the identity component $(G_A)_0$ of the Lie group G_A and prove that $(G_A)_0$ is diffeomorphic to \mathbb{R}^5 .
- 2. Consider 3 vector fields in $\mathbb{R}^2(x,y)$:

$$\xi_1 = (-y, x), \quad \xi_2 = (1, 0), \quad \xi_3 = (0, 1).$$

- (a) Describe explicitly the action of the one-parameter group of diffeomorphisms Φ_{ξ}^t generated by the vector field $\xi = a\xi_1 + b\xi_2 + c\xi_3$, where $a,b,c\in\mathbb{R}^3$ are some constants. [4]
- (b) Compute the Lie brackets $[\xi_i, \xi_j]$, i, j = 1, 2, 3, and prove that the 3-dimensional space spanned by these vector fields is a Lie algebra. [4]
- (c) Describe the structure constants of this Lie algebra \mathfrak{g} in the basis ξ_1, ξ_2, ξ_3 . [4]
- (d) Describe explicitly the adjoint representation of this Lie algebra.

 Is this representation faithful? What is the center of g? [4]

MAGIC008-AB continued...

(e) Prove that \mathfrak{g} is isomorphic to the matrix Lie algebra

$$\left\{ \begin{pmatrix} 0 & -x & y \\ x & 0 & z \\ 0 & 0 & 0 \end{pmatrix}, \quad x, y, z \in \mathbb{R} \right\} \subset gl(3, \mathbb{R}).$$

[4]

3. (a) Give the definition of the special linear group $SL(n,\mathbb{R})$.

Explain why $SL(n,\mathbb{R})$ is a Lie group. [4]

- (b) Is $SL(n, \mathbb{R})$ compact? Justify your answer. [4]
- (c) State the definition of an (abstract) Lie algebra. Describe the Lie algebra $sl(n,\mathbb{R})$ of the Lie group $SL(n,\mathbb{R})$ and compute its dimension. Justify your answer. [4]
- (d) Let $\mathfrak g$ be a Lie algebra. State the definition of an ideal of $\mathfrak g$. Prove that $sl(n,\mathbb R)$ is an ideal of $gl(n,\mathbb R)$. [4]
- (e) Is so(n) an ideal of $sl(n, \mathbb{R})$? Justify your answer. [4]
- 4. (a) Let $\Phi: G \to GL(V)$ be a linear representation of a Lie group G on a vector space V. State the definition of an invariant subspace $L \subset V$.

 State the definition of an irreducuble representation. [4]
 - (b) Let V be the space of $n \times n$ -matrices. Consider the map

$$\Psi: SL(n,\mathbb{R}) \to GL(V), \quad X \mapsto \Psi_X$$

where $\Psi_X B = XBX^{\top}$, $X \in SL(n, \mathbb{R})$, $B \in V$. Verify that Ψ is a linear representation. Is this representation irreducible? [4]

(c) Describe explicitly the induced representation $\psi = d\Psi : sl(n, \mathbb{R}) \to gl(V)$ for the Lie algebra $sl(n, \mathbb{R})$. [4]

(d) Let n=3 and

$$B_0 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \in V, \qquad B = \begin{pmatrix} b_1 & 0 & 0 \\ 0 & b_2 & 0 \\ 0 & 0 & b_3 \end{pmatrix} \in V, \quad b_i > 0.$$

Prove that the stationary subgroups $St(B_0) = \{X \in SL(3,\mathbb{R}) \mid \Psi_X(B_0) = B_0\}$ and $St(B) = \{X \in SL(3,\mathbb{R}) \mid \Psi_X(B) = B\}$ are isomorphic. [4]

(e) Let $C = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \in V$. Describe the stationary subgroup St(C) and find the

dimension of the orbit $\mathcal{O}(C) = \{B \in V \mid B = XCX^{\top}, X \in SL(3, \mathbb{R})\}.$ [4]