

密码学

第十讲 公钥密码(2)

张焕国

武汉大学计算机学院空天信息安全与可信计算教育部重点实验室

内容简介

第一讲 信息安全概论 第二讲 密码学的基本概念 第三讲 数据加密标准(DES) 第四讲 高级数据加密标准(AES) 第五讲 中国商用密码(SMS4) 第六讲 分组密码的应用技术 第七讲 序列密码 第八讲 复习 第九讲 公钥密码(1)

内容简介

第十讲 公钥密码(2)

第十一讲 数字签名(1)

第十二讲 数字签名(2)

第十三讲 HASH函数

第十四讲 认证

第十五讲 密码协议

第十六讲 密钥管理(1)

第十七讲 密钥管理(2)

第十八讲 复习

教材与主要参考书

教材

参考书

一、离散对数问题

- 1、基本情况:
- 公钥密码的理论模型是单向陷门函数
- ① 用正变换作加密,加密效率高;
- ② 用逆变换作解密,安全;
- ③ 把陷门信息作为密钥,且只分配给合法用户。确保合法用户能够方便地解密,而非法用户不能破译。
- 成功实例
- ① RSA密码建立在大合数分解的困难性之上。
- ② ElGamal密码建立在离散对数的困难性之上。
- ③ECC密码建立在椭圆曲线离散对数的困难性之上。

一、离散对数问题

- 2、离散对数问题:
- ①设p为素数,则模p的剩余构成有限域:

$$F_p = GF(p) = \{0,1,2,\dots,p-1\}$$

 F_p 的非零元素构成乘法循环群 F_p^*

$$F_p^* = \{1,2,...,p-1\}$$

=\{\alpha, \alpha^2, \alpha^3, \dots, \alpha^{p-1}\},

则称 $a \to F_p$ *的生成元或模 p 的本原元。

②求 a 的摸幂运算为:

$$y = a^x \mod p$$
, $1 \le x \le p-1$,

一、离散对数问题

- 2、离散对数问题
- ③求对数 x 的运算为

$$x = \log_a y$$
, $1 \le x \le p-1$

- 由于上述运算是定义在有限域 F_p 上的,所以称为离散对数运算。
- 从x计算y是容易的。可是从y计算x就困难得多,利用目前最好的算法,对于小心选择的p将至少需用 $O(p^{1/2})$ 次以上的运算,只要p足够大,求解离散对数问题是相当困难的。

- 准备: 随机地选择一个大素数p,且要求p-1有大素数因子。再选择一个模p的本原元 α 。将p和 α 公开作为密码的基础参数。
- (1) 密钥生成
- 用户随机地选择一个整数d作为自己保密的解密钥, $2 \le d \le p-2$ 。
- ●用户计算 $y = a^d \mod p$,并取y为自己公开的加密钥。
- 显然,由公开钥y 计算秘密钥d,必须求解离散对数,而这是极困难的。

- (2)加密
- 将明文消息M (0 $\leq M \leq p$ -1)加密成密文的过程如下:
- ①随机地选取一个整数k, $2 \le k \le p-2$ 。
- ②计算: $U = y^k \mod p$;

 $C_1 = a^k \mod p$;

 $C_2 = UM \mod p$;

③取 $C=(C_1, C_2)$ 作为的密文。

- (3)解密
- 将密文 (C_1, C_2) 解密的过程如下:
- ①计算 $V = C_1^d \mod p$
- ②计算

 $M = C_2 V^{-1} \mod p$

获得明文。

●解密的可还原性证明如下:

$$C_2 V^{-1} \mod p = (UM)V^{-1} \mod p$$

$$= UM (C_1^d)^{-1} \mod p$$

$$= UM ((a^k)^d)^{-1} \mod p$$

$$= UM ((a^d)^k)^{-1} \mod p$$

$$= UM ((y)^k)^{-1} \mod p$$

$$= UM (U)^{-1} \mod p$$

$$= M \mod p$$

(4) 安全性

- 由于ElGamal密码的安全性建立在GF(p)离散对数的困难性之上,而目前尚无求解GF(p)离散对数的有效算法,所以在p足够大时ElGamal密码是安全的。
- 为了安全p应为150位以上的十进制数,而且p-1应有大素因子。
- d和k都不能太小。
- 为了安全加密和签名所使用的k必须是一次性的。

(4) 安全性

- 如果 k不是一次性的,时间长了就可能被攻击着获得。又因y是公开密钥,攻击者自然知道。于是攻击者就可以根据 $U=y^k \mod p$ 计算出U,进而利用 Euclid算法求出 U^{-1} 。又因为攻击者可以获得密文 C_2 ,于是可根据式 $C_2=UM \mod p$ 通过计算 $U^{-1}C_2$ 得到明文M。
- 设用同一个k加密两个不同的明文M和M',相应的密文为(C_1 , C_2)和(C_1 ', C_2 ')。因为 C_2 / C_2 '= M/M',如果攻击者知道M,则很容易求出M'。

(5) ElGamal密码的应用

- 由于ElGamal密码的安全性得到世界公认,所以得 广泛的应用。
 - ■著名的美国数字签名标准DSS,采用了ElGamal密码的一种变形。
 - 电子邮件标准S/MIME采用了ElGamal密码。
 - ■俄罗斯的数字签名标准也是ElGamal密码的一种变形,而且数据规模选得更大。
- 为了适应不同的应用,人们在应用中总结出18种不同的ElGamal密码的变形。

- (5) ElGamal密码的应用
- ①加解密速度快

由于实际应用时ElGamal密码运算的素数p比RSA要小,所以ElGamal密码的加解密速度比RSA快。

②随机数源

由ElGamal密码的解密钥d和随机数k都应是高质量的随机数。因此,应用ElGamal密码需要一个好的随机数源,也就是说能够快速地产生高质量的随机数。

③大素数的选择

为了ElGamal密码的安全,p应为150位(十进制数)以上的大素数,而且p-1应有大素因子。

- 1、素域上的椭圆曲线
- 设p是大于3的素数,且 $4a^3+27b^2 \neq 0 \mod p$,称 $y^2 = x^3 + ax + b$, $a, b \in GF(p)$

为GF(p)上的椭圆曲线。

● 由椭圆曲线可得到一个同余方程:

$$y^2 = x^3 + ax + b \mod p$$

● 其解为一个二元组 $\langle x, y \rangle$, $x, y \in GF(p)$, 将此二元组 描画到椭圆曲线上便为一个点,故称其为一个解点。

2、素域上的椭圆曲线

为了利用解点构成交换群,需要引进一个0元素,并 定义如下的加法运算:

①定义单位元

引进一个无穷点O(∞,∞),简记为O,作为O元素。

$$0 (\infty, \infty) + 0 (\infty, \infty) = 0 + 0 = 0$$

并定义对于所有的解点P(x, y),

$$P(x, y) + O = O + P(x, y) = P(x, y)$$
.

- 2、素域上的椭圆曲线
- ②定义逆元素

设 $P(x_1, y_1)$ 和 $Q(x_2, y_2)$ 是解点,如果 $x_1=x_2$ 且 $y_1=-y_2$,则

 $P(x_1, y_1) + Q(x_2, y_2) = 0.$

这说明任何解点R(x, y) 的逆就是

R(x, -y)

注意: 规定无穷远点的逆就是其自己。

 $0\ (\infty,\ \infty)=0\ (\infty,\ \infty)$

- 2、素域上的椭圆曲线
- ③定义加法
- 设 $P(x_1, y_1) \neq Q(x_2, y_2)$, 且P和Q不互逆,则 $P(x_1, y_1) + Q(x_2, y_2) = R(x_3, y_3) . 其中$ $\begin{cases} x_3 = \lambda^2 x_1 x_2, \\ y_3 = \lambda(x_1 x_3) y_1, \\ \lambda = \frac{(y_2 y_1)}{(x_2 x_1)} \end{cases}$

- 2、素域上的椭圆曲线
- ③定义加法

• 当
$$P(x_1, y_1) = Q(x_2, y_2)$$
时
 $P(x_1, y_1) + Q(x_2, y_2) = 2P(x_1, y_1)$
 $= R(x_3, y_3)$ 。

其中

$$\begin{cases} x_3 = \lambda^2 - 2x_1, \\ y_3 = \lambda (x_1 - x_3) - y_1, \\ \lambda = \frac{(3x_1^2 + a)}{(2y_1)} \end{cases}$$
《 读 文学

- 2、素域上的椭圆曲线
- 作集合E={全体解点,无穷点O}。
- 可以验证,如上定义的集合*E*和加法运算构成加法交换群。
- 复习: 群G的定义
 - ■G是一个非空集,定义了一种运算,且运算是自封闭的;
 - 运算满足结合律;
 - **G**中有单位元;
 - G中的元素都有逆元;

3、椭圆曲线解点加法运算的几何意义

设 $P(x_1, y_1)$ 和 $Q(x_2, y_2)$ 是椭圆曲线上的两个点,则连接 $P(x_1, y_1)$ 和 $Q(x_2, y_2)$ 的直线与椭圆曲线的另一交点关于横轴的对称点即为 $P(x_1, y_1) + Q(x_2, y_2)$ 点。

3、椭圆曲线解点加法运算的几何意义:

4、例10-1

● 求出椭圆曲线 $y^2=x^3+x+6 \mod 11$ 的解点。由于p较小,使**GF**(p)也较小,故可以利用穷举的方法根据 $y^2=x^3+x+6 \mod 11$

求出所有解点。

则称 a是模p的平方剩余。

x	$x^3 + x + 6 \mod 11$	是否是模11平方剩余	y
0	6	No	
1	8	No	
2	5	Yes	4,7
3	3	Yes	5,6
4	8	No	
5	4	Yes	2,9
6	8	No	
7	4	Yes	2,9
8	9	Yes	3,8
9	7	No	
10	4	Yes	2,9

● 根据上表可知全部解点集为:

再加上无穷远点O,共13的点构成一个加法交换群。

● 由于群的元素个数为13, 而13为素数, 所以此群是循环群, 而且任何一个非0元素都是生成元。

● 由于是加法群,n个元素G相加表示为:

$$G+G+...+G=nG$$
,

并称为倍点运算。

- 我们取G = (2, 7) 为生成元,2倍点计算如下: 2G = (2, 7) + (2, 7) = (5, 2)
- 因为 λ = (3×2²+1) (2×7) -1 mod 11 =2×3-1 mod 11=2×4 mod 11=8。于是,

$$x_3 = 8^2 - 2 \times 2 \mod 11 = 5$$
,

$$y_3 = 8 (2-5) -7 \mod 11 = 2$$
.

$$G = (2, 7)$$
 $2G = (5, 2)$
 $3G = (8, 3)$ $4G = (10, 2)$
 $5G = (3, 6)$ $6G = (7, 9)$
 $7G = (7, 2)$ $8G = (3, 5)$
 $9G = (10, 9)$ $10G = (8, 8)$
 $11G = (5, 9)$ $12G = (2, 4)$

- ullet 在上例中,由于p较小,使GF(p)也较小,故可以利用穷举的方法求出所有解点。但是,对于一般情况要确切计算椭圆曲线解点数N的准确值比较困难。
- N满足以下不等式

$$P+1-2P^{1/2} \le N \le P+1+2P^{1/2}$$
.

- 5、GF(2m)上的椭圆曲线
- ●除了GF(p)上的椭圆曲线,还有定义在GF(2^m)上的圆曲线。
- 基于这两种椭圆曲线都可以设计出安全的椭圆曲线 密码。

- 6、椭圆曲线群上的离散对数问题
- ●在上例中椭圆曲线上的解点所构成的交换群 恰好是循环群,但是一般并不一定。于是我 们希望从中找出一个循环子群E₁。
- ●可以证明,当循环子群E₁ 的阶n是足够大的 素数时,这个循环子群中的离散对数问题是 困难的。

- 6、椭圆曲线群上的离散对数问题
- 设P是椭圆曲线上的一个解点,t 为一正整数,且 $1 \le t < n$ 。 于给定的P和t,计算tP = Q是容易的。但若已知P和Q点,要计算出t则是极困难的。这便是椭圆曲线群上的离散对数问题,简记为 ECDLP(Elliptic Curve Discrete Logarithm Problem)。
- 除了几类特殊的椭圆曲线外,对于一般ECDLP目前尚没有 找到有效的求解方法。因子分解和DLP问题都有亚指数求解 算法,而ECDLP尚没有发现亚指数求解算法。
- \bullet 于是可以在这个循环子群 E_1 中建立任何基于离散对数困难性的密码,并称这个密码为椭圆曲线密码。

- 1、椭圆曲线密码的一般情况
- ●一些国际标准化组织已把椭圆曲线密码作为新的信息安全标准。如,IEEE P1363/D4,ANSI F9.62,ANSI F9.63等标准,分别规范了椭圆曲线密码在Internet协议安全、电子商务、Web服务器、空间通信、移动通信、智能卡等方面的应用。
- 我国商用密码采用了椭圆曲线密码,并具体颁布了椭圆曲线密码标准算法SM2。

- 1、椭圆曲线密码的一般情况
- 椭圆曲线密码已成为除RSA密码之外呼声最高的公 钥密码之一。
- 它密钥短, 软件实现规模小、硬件实现节省电路。
- ●由于椭圆曲线离散对数问题尚没有发现亚指数算法,所以普遍认为,椭圆曲线密码比RSA和ElGamal密码更安全。
 - ■160位的椭圆曲线密码的安全性相当于1024位的RSA密码,
 - ■而且运算速度也较快。

或溪大学

- 1、椭圆曲线密码概况
- ElGamal密码建立在有限域GF(p)的乘法群的离散对数问题的困难性之上。而椭圆曲线密码建立在椭圆曲线群的离散对数问题的困难性之上。两者的主要区别是其离散对数问题所依赖的群不同。因此两者有许多相似之处。
- 基于GF (p) 和GF(2^m)上的椭圆曲线,都可以构成安全的椭圆曲线密码。

2、GF(p)上椭圆曲线密码基础参数

 $T = \langle p, a, b, G, n, h \rangle$

- ●p为大于3素数,p确定了有限域GF(p);
- 元素a,b ∈ GF(p), a和b确定了椭圆曲线:

 $y^2 = x^3 + ax + b$, $a, b \in GF(p)$

- G为循环子群 E_1 的生成元点,n为素数且为生成元G的阶,G和n确定了循环子群 E_1 ;
- h=|E|/n,并称为余因子,h将交换群E和循环子群 E_1 联系起来。

- 3、GF(p)上椭圆曲线密码的密钥
- 用户的私钥定义为一个随机数d,

$$d \in \{1,2,\cdots,n-1\}$$
.

● 用户的公开钥定义为Q点,

$$Q=dG$$
.

●由公开钥Q求私钥d是求解椭圆曲线离散对数问题, 当p足够大时,这是困难的。

- 4、GF(p)上椭圆曲线密码算法
- 设d为用户私钥,Q为用户公钥。
- 设明文数据为M, $0 \le M \le n-1$ 。
- 加密过程:
 - ① 选择一个随机数k,且 $k \in \{1,2,\dots,n-1\}$ 。
 - ② 计算点 X_1 $(x_1, y_1) = kG$ 。
 - ③ 计算点 $X_2(x_2, y_2) = kQ$, 如果分量 $x_2 = 0$, 则转①。
 - ④ 计算密文 $C = Mx_2 \mod n$ 。
 - ⑤ 以 (X_1, C) 为最终的密文数据。

- 4、GF(p)上椭圆曲线密码算法
- 解密过程:
 - ① 用私钥d求出点 X_2 :

$$dX_1 = d (kG)$$

$$= k(dG)$$

$$= k Q$$

$$= X_2 (x_2, y_2)$$

② 对C解密: 利用 x_2 计算得到明文

$$M = C x_2^{-1} \mod n$$
.

5、GF(p)上椭圆曲线密码的实现

- 由于椭圆曲线密码所依据的数学基础比较复杂, 从而使得其工程实现也比较困难。
- 虽然目前椭圆曲线密码的实现技术已经成熟,但 仍有些难度问题值得研究和改进。
- 难点:
 - ①安全椭圆曲线的产生;
 - 美国NIST公布了15条曲线
 - 我们应对取进行验证
 - 这之外还有好曲线吗?如何产生?
 - ②倍点运算。

- 5、GF(p)上椭圆曲线密码的实现
- 我们在椭圆曲线产生方面的研究
 - ①Koblitz椭圆曲线的产生;
 - 提出一种Koblitz椭圆曲线的演化产生算法
 - 在PC机上完成了GF(2²⁰⁰⁰)以下的曲线产生
 - 得到一大批安全曲线,其基域范围和曲线规模,都超过美国NIST的公开报道
 - ②素域上的椭圆曲线的产生;
 - 在PC机上实际产生出一大批安全椭圆曲线
 - 基域范围和曲线规模超过美国NIST的公开报道

1、推荐使用256位素域GF(p)上的椭圆曲线:

$$y^2 = x^3 + ax + b$$

曲线参数:

- 2、密钥:
- 私钥随机数d d \in [1, n-1]
- 公钥P=dG

- 3、加密算法:
- ① 产生随机数k, $1 \leq k \leq n-1$;
- ② 计算椭圆曲线点 $C_1 = kG = (x_1, y_1)$;
- ③ 计算椭圆曲线点 $kP=(x_2, y_2)$;
- ④ 计算 $t = KDF(x_2 \parallel y_2, klen)$,若t为全0比特串,则返回①;
- ⑤ 计算 $C_2 = M \oplus t$;
- ⑥ 计算 $C_3 = \text{Hash}(x_2 \parallel M \parallel y_2)$;
- ⑦ 输出密文 $C = C_1 \parallel C_2 \parallel C_3$ 。
- 说明: KDF(Z, klen)是密钥派生函数,它利用Hash函数从数据Z产生出长度为klen的密钥数据。

- 4、解密算法:
- ① 计算 $dC_1 = (x_2, y_2);$
- ② 计算 $t = KDF(x_2 \parallel y_2, klen)$,若t为全0比特 串,则报错并退出;
- ③ 计算 $M' = C_2 \oplus t$;
- ④ 输出明文M′。

5、解密正确性:

• 证明: $dC_1=d(kG)=k(dG)=kP=(x_{2},y_{2});$ 如果 (x_{2},y_{2}) 是正确的,则 $t=KDF(x_{2} \parallel y_{2},klen)$ 也将是正确的。

又因为 $C_2 = M \oplus t$, 所以 $M' = C_2 \oplus t$ 。

• 验证:根据解密得到的 x_2 、 y_2 和 M^{\prime} 重新计算 C_3 ,并于接收到的 C_3 比较,若相等则说明密文和解密正确,否则说明密文或解密不正确。

6、应用

- 我国二代居民身份证采用了SM2椭圆曲线密码。
- 我国的许多商用系统采用了SM2椭圆曲线密码。

6、比较:

- 传统ECC:
 - 计算点 X_2 $(x_2, y_2) = kQ$.
 - 计算密文 $C = Mx_2 \mod n$ 。
 - 最终密文是〈*X*₁, *C* >
- SM2:
 - 计算 $t = KDF(x_2 \parallel y_2, klen)$;
 - 计算 $C_2 = M \oplus t$;
 - 最终密文是〈C₁, C₂, C₃ >
- 比较
 - 传统ECC直接用 x_2 加密,加密是乘法; SM2对(x_2 , y_2)处理后产生t,用t加密,加密是摸2加。t与(x_2 , y_2)相关,更安全。
 - SM2增加了利用C3的验证,进一步确保密文和解密的正确性。
 - SM2的密文数据扩展较大。

或溪大学

作业题

1、p165第11题。

2、p165第15题:

以例5-6为例,分别以G=(2,7)为生成元点构造一个椭圆曲线密码,并设明文M=3,进行加密和解密计算。

