Corpo em Queda Livre - II

Mário Leite

...

Como foi explanado na postagem anterior sobre este tema: um corpo abandonado a uma certa altura da superfície da Terra sofre uma queda livre sujeita a um aumento em sua velocidade de 9.80665 m/s (em média) a cada segundo. A principal equação desse tipo de movimento foi deduzida na postagem anterior: $\mathbf{H} = \mathbf{0.5*G*T^2}$; sendo \mathbf{H} a distância percorrida (em metros), \mathbf{T} o tempo de queda medido em segundos e \mathbf{G} a constante de aceleração da *gravidade* com valor médio de 9.80665 m/s². Naquela ocasião foi apresentada uma análise da queda do corpo com um programa codificado no "velho" e bom VB6.

Agora vamos apresentar o mesmo programa codificado em duas outras linguagens mais "modernas": em **C#** em **Python** (baseando no pseudocódigo) e com o corpo em queda por 30 segundos depois de abandonado. Neste caso são mostrados a distância percorrida em *metros* e a velocidade em cada instante **T** segundos definida como **V=GT** (em m/s) e desprezando a resistência do ar. A **figura 1** mostra um esquema da situação do corpo, a **figura 2** a saída do programa em **C#** e a **figura 3** uma simulação do corpo em queda com a codificação em **Python**, mostrando como um observador num referencial inercial da Terra vê o movimento desse corpo: <u>uma parábola com concavidade para baixo</u>.

Figura 1- Situação do corpo na Queda Livre

■ G:\BackupH	HD\HD-D\Cantinho da P	rogramação\Códigos\CShar	_	×
Análise	do movimento do	corpo em Queda Live		^
Tempo	Velocidade	Dist. Percorrida	-	
1 s	9,81 m/s	4,90 m		
2 5	19,61 m/s	19,61 m		
3 s	29,42 m/s	44,13 m		
4 s	39,23 m/s	78,45 m		
5 s	49,03 m/s	122,58 m		
6 s	58,84 m/s	176,52 m		
7 s	68,65 m/s	240,26 m		
8 5	78,45 m/s	313,81 m		
9 s	88,26 m/s	397,17 m		
10 s	98,07 m/s	490,33 m		
11 s	107,87 m/s	593,30 m		
12 s	117,68 m/s	706,08 m		
13 s	127,49 m/s	828,66 m		
14 s	137,29 m/s	961,05 m		
15 s	147,10 m/s	1103,25 m		
16 s	156,91 m/s	1255,25 m		
17 s	166,71 m/s	1417,06 m		
18 s	176,52 m/s	1588,68 m		
19 s	186,33 m/s	1770,10 m		
20 s	196,13 m/s	1961,33 m		
21 s	205,94 m/s	2162,37 m		
22 5	215,75 m/s	2373,21 m		
23 s	225,55 m/s	2593,86 m		
24 s	235,36 m/s	2824,32 m		
25 s	245,17 m/s	3064,58 m		
26 s	254,97 m/s	3314,65 m		
27 s	264,78 m/s	3574,52 m		
28 s	274,59 m/s	3844,21 m		
29 s	284,39 m/s	4123,70 m		
30 s	294,20 m/s	4412,99 m		
				~

Figura 2 - Saída do programa em C#: valores cinemáticos da Queda Livre

Figura 3 - Saída do programa em Python: movimento do corpo em Queda Livre

Pseudocódigo básico do programa:

```
Programa "QuedaLivre"
//Calcula o espaço percorrido e as velocidades de um corpo em queda livre.
//Em Pseudocódigo
//Autor: Mário Leite
//Data: 15/01/2023
   Const G=9.80665 //valor médio da aceleração da gravidade ao nível do mar
   Declare H, V: real
            T: inteiro
INÍCIO
   EscrevaLn("Distância percorrida na queda em ", T," segundos:", H, "m")
   EscrevaLn("Velocidade instantânea em ", T, " segundos:", V, "m/s")
   Para T De 1 Até 30 Faça
       {Simula uma parada temporária}
       H \leftarrow 0.5*G*(T^2)
       V \leftarrow G*T
       Escrevaln ("Distância percorrida na queda em ", T," segundos:", H, "m")
       Escrevaln("Velocidade instantânea em ", T, " segundos:", V, "m/s")
       EscrevaLn("")
    FimPara
FIM
```

```
using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Threading.Tasks;
using System. Threading; //contém a definição da classe Thread
namespace QuedaLivre
  //Calcula o espaço percorrido e as velocidades de um corpo em queda livre.
  //Autor: Mário Leite
  //Data: 15/01/2023
   internal class Program
       static void Main(string[] args)
           const double G = 9.80665; //valor médio da gravidade ao nível do mar
           double H, V;
           int T;
           Console.WriteLine(" Análise do movimento do corpo em Queda Live");
           for (T = 1; T <= 30; T++)
               H = 0.5 * G * (T * T);
               var HS = String.Format("{0:0.00}", H);
               V = G * T;
               var VS = String.Format("{0:0.00}", V);
               /* Faz as formatações adequadas para saída em forma de tabela */
               if (T<10)
                   Console.Write(" " + T.ToString() + " s");
               else if ((T >= 10) \&\& (T < 100))
                   Console.Write("
                                    " + T.ToString() + " s");
                   Console.Write("
                                        " + T.ToString() + " s");
               if (V<10)
                   Console.Write("
                                        " + VS + " m/s");
               else if((V>=10) && (V<100))
                   Console.Write(" " + VS + " m/s");
               else
                   Console.Write(" " + VS + " m/s");
               if (H < 10)
                                            " + HS + " m");
                   Console.WriteLine("
               else if ((H >= 10) \&\& (H < 100))
                                            " + HS + " m");
                   Console.WriteLine("
               else if ((H >= 100) \&\& (H < 1000))
                   Console.WriteLine("
                                           " + HS + " m");
               else
                   Console.WriteLine("
                                         " + HS + " m");
               Thread.Sleep(1000); //faz uma pausa de 1 segundo
           Console.ReadKey();
        } //fim do método principal
   } //fim da classe
} //fim do programa
```

Código-fonte do programa em Python: (simula o movimento de Queda Livre)

```
🖟 *QuedaLivre.py - D:\Cantinho da Programação\Códigos\Python\QuedaLivre.py (3.9.13)*
                                                               X
File Edit Format Run Options Window Help
Simula o movimento de um corpo em Queda Livra em T segundos.
Em Python 3.9
Autor: Mário Leite
Data: 15/01/2023
111
#----Importação de bibliotecas -----
import time
import numpy as np
import matplotlib.pyplot as plt
#-----Corpo base do programa ------
endwhile = "endwhile"
lstT = []
lstH = []
G = 9.6065 #estabelece o valor da aceleração da gravidade
Tempo = 30 #estabelece o tempo de queda
T = 1
#Loop para criar os valores do movumento (Tempo x Altura)
while (T<=Tempo):</pre>
      H = 0.5*G*(T**2)
      H = round(H, 2)
      lstT.append(T)
      lstH.append(H)
      T = T + 1
endwhile
#---- Faz a plotagem do movimento do corpo -----
MaxH = round(max(lstH)) + 1 #pega o maior valor de H
plt.title("Movimento do corpo em Queda Livre", size=12, color="blue")
plt.plot(lstT,lstH,'bo')
plt.xlabel("Tempo de queda (s)", size = 10, color="blue")
plt.ylabel("Distância percorrida (m)", size = 10, color="blue")
plt.axis([0, 32, MaxH, 0])
plt.show()
#---- Fim do programa ------
```