Aggregate Demand and Sovereign Debt Crises

Francisco Roldán

New York University

Sovereign debt crises associated with deep recessions

 \cdot Conventional view: low output \implies high spreads

Sovereign debt crises associated with deep recessions

 \cdot Conventional view: low output \implies high spreads

1

- Spain: large output and consumption drops
 - $\cdot |\Delta C| > |\Delta Y| \implies$ Saving rate \uparrow in the crisis
- · IVs on Eurozone country-level data show
 - 1. High spreads cause output to fall
 - High spreads cause consumption to fall more than output

- Sovereign debt literature assumes hand-to-mouth households or Law of One Price
 - Saving rate in the crisis?
 - Consequences?
 - · Substantial fraction of government debt held by residents Spanish data

- Spain: large output and consumption drops
 - $\cdot |\Delta C| > |\Delta Y| \implies$ Saving rate \uparrow in the crisis
- IVs on Eurozone country-level data show
 - 1. High spreads cause output to fall
 - 2. High spreads cause consumption to fall more than output

- Sovereign debt literature assumes hand-to-mouth households or Law of One Price
 - Saving rate in the crisis?
 - · Consequences?
 - Substantial fraction of government debt held by residents spanish de

- Spain: large output and consumption drops
 - $\cdot |\Delta C| > |\Delta Y| \implies$ Saving rate \uparrow in the crisis
- · IVs on Eurozone country-level data show
 - 1. High spreads cause output to fall
 - 2. High spreads cause consumption to fall more than output

- Sovereign debt literature assumes hand-to-mouth households or Law of One Price
 - · Saving rate in the crisis?
 - · Consequences?
 - Substantial fraction of government debt held by residents

- Spain: large output and consumption drops
 - $\cdot |\Delta C| > |\Delta Y| \implies$ Saving rate \uparrow in the crisis
- · IVs on Eurozone country-level data show
 - 1. High spreads cause output to fall
 - 2. High spreads cause consumption to fall more than output

- Sovereign debt literature assumes hand-to-mouth households or Law of One Price
 - · Saving rate in the crisis?
 - Consequences?
 - · Substantial fraction of government debt held by residents Spanish data

THIS PAPER

- I propose a model of debt crises
 - Prominent role for household consumption/savings decision
 - · Heterogeneous domestic savers can choose to be exposed to sovereign debt
 - · Savings pattern in the crisis
 - Feedback loop between spreads and output
 - $\cdot \uparrow Spreads \implies \downarrow Demand \implies \downarrow Output$
- Model
 - · Expectations of outcomes in case of default
 - Aggregate income losses

TFP costs of default

Redistributive effects

- Domestic debt holdings
- Economy looks riskier when the default probability increases
 - Default risk interacts with precautionary behavior

THIS PAPER

- · I propose a model of debt crises
 - Prominent role for household consumption/savings decision
 - Heterogeneous domestic savers can choose to be exposed to sovereign debt
 - Savings pattern in the crisis
 - · Feedback loop between spreads and output
 - $\cdot \uparrow Spreads \implies \downarrow Demand \implies \downarrow Output$
- Model
 - · Expectations of outcomes in case of default
 - Aggregate income losses ← TFP costs of default

- Redistributive effects ← Domestic debt holdings
- Economy looks riskier when the default probability increases
 - · Default risk interacts with precautionary behavior

MAIN FINDINGS

- · Feedback effect explains significant portion of the crisis
 - · Calibration numbers soon
- · Highlight role of inequality, identity of debt holders
- New light on Aguiar-Gopinath facts
 - · Amplification of negative shocks, demand-driven recessions
 - In downturns volatility of C > volatility of Y

LITERATURE

- Sovereign risk affecting the supply side through finance Bocola (2016), Arellano, Bai, and Mihalache (2018), Balke (2017)
- Domestic debt and default incentives

 Gennaioli, Martin, and Rossi (2014), Mengus (2014), Mallucci (2015), Perez (2016), D'Erasmo and Mendoza (2016), Ferriere (2016)
- Sovereign risk and fiscal austerity
 Cuadra, Sánchez, and Sapriza (2010), Romei (2015), Bianchi, Ottonello, and Presno (2016), Anzoategui (2017),
 Philippon and Roldán (2018)
- Shocks affecting aggregate demand through redistribution Auclert (2017), Eggertsson and Krugman (2012), Korinek and Simsek (2016), ...

ROADMAP

- Evidence
- Description of Model
- Model Results
- The Crisis

EVIDENCE

SPAIN IN THE EUROZONE CRISIS

Spain in the 2000s

MAIN SPECIFICATION

• Regress outcome variable Q_{jt} on country j's spread

$$Q_{jt} = \beta Spread_{jt} + \gamma X_{jt} + \delta_t + \mu_j + \epsilon_{jt}$$

where $Q_{jt} = \log Y_{jt}, \log C_{jt}$

Bartik-like IV strategy (Martin and Philippon, 2017)

$$Spread_{jt} = \underbrace{\bar{\sigma}_{t} \left[\phi_{o} + \phi_{1} \frac{B_{j,t-12}}{Y_{j,t-12}} \right]}_{Z_{jt}} + \eta_{jt}$$

Data for 11 European countries between 1996Q1 – 2017Q4
 Austria, Belgium, Denmark, Finland, France, Germany, Ireland, Italy, Netherlands, Portugal, Spain

	Dependent variable:			
	$\log Y_{jt}$		$\log C_{jt}$	
	(1)	(2)	(3)	(4)
Spread _{jt}	-0.011*** (0.003)		-0.011*** (0.002)	
Spread _{jt} (IV)		-0.048** (0.019)		-0.088*** (0.022)
Model	OLS	IV	OLS	IV
Country + Time FE	\checkmark	\checkmark	\checkmark	\checkmark
Observations	968	968	968	968
Adjusted R ²	0.995	0.994	0.997	0.993

Standard errors in parentheses. *** p < 0.01, ** p < 0.05, * p < 0.1.

DESCRIPTION OF MODEL

GENERAL DESCRIPTION

- · Small open economy with
 - Uninsurable idiosyncratic income risk + Incomplete markets
 - Default risk
 - Nominal rigidities
- Actors:
 - · A government
 - · Issues long-term debt, purchases goods, decides repayment
 - Households
 - · Consume, work, save in the gov't bond + risk-free debt
 - · Differ in 'cash' holdings, idiosyncratic income shock
 - Firms
 - · Produce the goods with labor, subject to wage rigidities
 - Foreigners
 - · Lend to the government and to the private sector
 - · Price all assets

TIMELINE

Decisions within a period
Dashed ellipses encircle simultaneous decisions

GOVERNMENT POLICY

At each t, the government

- Chooses repayment $h_t \in \{1, 1-\hbar\}$
- Follows fiscal rules for new issuances $B'(S_t)$ and spending $G(S_t)$
 - · Can depend on full state: $(B_t, \lambda_t, \xi_t, \zeta_t, z_t)$
- Must satisfy its budget constraint

$$\underbrace{q_t^g}_{\text{debt price}}\underbrace{\left(B_t' - (1-\rho)B_t\right)}_{\text{new debt issued}} + \underbrace{T_t}_{\text{lump-sum}} + \underbrace{\tau W_t L_t}_{\text{payroll tax}} = \underbrace{G_t}_{\text{spending}} + \underbrace{\kappa B_t}_{\text{coupol}}$$

 $\rightarrow T_t$ summarizes a default / austerity tradeoff

PRIVATE ECONOMY

Given a government policy $h(S, \xi', z'), B'(S), T(S, q^g)$, in a comp eq'm

- Risk-neutral foreigners General Formulation
 - Price all assets

$$q^{h}(S) = \frac{1}{1 + r^{\star}}$$

$$q^{g}(S) = \frac{1}{1 + r^{\star}} \mathbb{E} \left[\underbrace{\mathbb{1}_{(\zeta'=1)}(1 - \xi')\kappa}_{coupon} + \underbrace{(1 - \rho)}_{depreciation} \underbrace{(1 - \hbar \mathbb{1}_{(\zeta=1 \cap \zeta' \neq 1)})}_{potential \ haircut} \underbrace{q^{g}(S')}_{resale \ price} \mid S \right]$$

PRIVATE ECONOMY

Given a government policy $h(S, \xi', z'), B'(S), T(S, q^g)$, in a comp eq'm

- Risk-neutral foreigners General Formulation
 - · Price all assets

$$q^{g}(S) = \underbrace{\frac{1}{1+r^{\star}}}_{q^{h}(S)} \mathbb{E} \left[\underbrace{\mathbb{1}_{(\zeta'=1)}(1-\xi')\kappa}_{coupon} + \underbrace{\frac{(1-\rho)}{depreciation}}_{depreciation} \underbrace{\frac{(1-\hbar\mathbb{1}_{(\zeta=1\cap\zeta'\neq1)})}{potential \ haircut}}_{potential \ haircut} \underbrace{q^{g}(S')}_{resale \ price} \mid S \right]$$

- Firms
 - · Traded and nontraded goods, CES aggregator, wage rigidities

$$Y_{Nt} = L_{Nt}^{\alpha_N} \left(1 - \Delta \mathbb{1}_{(\zeta \neq 1)} \right) \qquad \qquad Y_{Tt} = Z_t L_{Tt}^{\alpha_T} \left(1 - \Delta \mathbb{1}_{(\zeta \neq 1)} \right) \qquad \qquad \mathbf{w}_t \geq \mathbf{\bar{w}}$$

PRIVATE ECONOMY

Given a government policy $h(S, \xi', z'), B'(S), T(S, q^g)$, in a comp eq'm

- Risk-neutral foreigners General Formulation
 - Price all assets

$$q^{g}(S) = \underbrace{\frac{1}{1+r^{\star}}}_{q^{h}(S)} \mathbb{E} \left[\underbrace{\mathbb{1}_{(\zeta'=1)}(1-\xi')\kappa}_{\text{coupon}} + \underbrace{(1-\rho)}_{\text{depreciation}} \underbrace{(1-\hbar\mathbb{1}_{(\zeta=1\cap\zeta'\neq1)})}_{\text{potential haircut}} \underbrace{q^{g}(S')}_{\text{resale price}} \right| S \right]$$

- Firms
 - · Traded and nontraded goods, CES aggregator, wage rigidities

$$Y_{Nt} = L_{Nt}^{\alpha_N} \left(1 - \Delta \mathbb{1}_{(\zeta \neq 1)} \right) \qquad \qquad Y_{Tt} = Z_t L_{Tt}^{\alpha_T} \left(1 - \Delta \mathbb{1}_{(\zeta \neq 1)} \right) \qquad \qquad \mathbf{w}_t \geq \bar{\mathbf{w}}$$

- Households
 - · Access to both assets with borrowing limits, inelastic labor supply
- Approximation: $\lambda_t = \log \mathcal{N}(\mu_t, \Sigma_t)$. So $S = (B, \mu, \sigma, \xi, \zeta, z)$

· Given govt's policies, aggregates, and evolution of the state

$$\begin{split} v(\omega,\epsilon,\mathbf{S})^{\frac{\psi-1}{\psi}} &= \max_{c,a',b'} \left(1-\beta\right) c^{\frac{\psi-1}{\psi}} + \beta \mathbb{E}\left[\left(v(\underline{a'} + R_{\mathbf{S},\mathbf{S'}}b',\epsilon',\mathbf{S'})\right)^{1-\gamma} \middle| \omega,\epsilon,\mathbf{S}\right]^{\frac{1}{\psi(1-\gamma)}} \\ &\text{subject to } p_{\mathcal{C}}(\mathbf{S})c + q^h(\mathbf{S})a' + q^g(\mathbf{S})b' = \omega + \ell(\mathbf{S})\epsilon - T(\mathbf{S}) \\ &\ell(\mathbf{S}) = w(\mathbf{S})L(\mathbf{S})(1-\tau) + \Pi(\mathbf{S}) \\ &R_{\mathbf{S},\mathbf{S'}} = \mathbb{1}_{\left(\zeta'=1\right)}\kappa + \left(1-\rho\right)\left(1-\hbar\mathbb{1}_{\left(\zeta=1\right)\left(\zeta'\neq1\right)}\right)q^g(\mathbf{S'}) \\ &a' \geq \bar{a}; \qquad b' \geq \mathbf{O} \\ &\mathbf{S'} = \Psi(\mathbf{S},\xi',z',h') \\ &\operatorname{Exog\ LoMs\ for\ } (\epsilon,\xi,z); \ \operatorname{prob\ of\ } h' \ \operatorname{given\ } (\mathbf{S},\xi',z') \end{split}$$

· Given govt's policies, aggregates, and evolution of the state

$$v(\omega, \epsilon, \mathbf{S})^{\frac{\psi-1}{\psi}} = \max_{c, a', b'} (1 - \beta)c^{\frac{\psi-1}{\psi}} + \beta \mathbb{E} \left[\left(v(\underline{\mathbf{a'}} + R_{\mathbf{S}, \mathbf{S'}} \underline{\mathbf{b'}}, \epsilon', \mathbf{S'}) \right)^{1 - \gamma} \middle| \omega, \epsilon, \mathbf{S} \right]^{\frac{\psi(1 - \gamma)}{\psi(1 - \gamma)}}$$
subject to $p_{\mathcal{C}}(\mathbf{S})c + q^{h}(\mathbf{S})\underline{\mathbf{a'}} + q^{g}(\mathbf{S})\underline{\mathbf{b'}} = \omega + \ell(\mathbf{S})\epsilon - T(\mathbf{S})$

$$R_{\mathbf{S}, \mathbf{S'}} = \mathbb{1}_{(\zeta'=1)}\kappa + (1 - \rho) \left(1 - \hbar \mathbb{1}_{(\zeta=1)(\zeta'\neq 1)} \right) q^{g}(\mathbf{S'})$$

Skipping steps: in crisis times

$$\begin{array}{ll} \cdot \ \pi \uparrow \Longrightarrow \mathbb{E}\left[w'L'\right] = \pi \mathbb{E}\left[w'L'|\zeta' \neq 1\right] + (1-\pi)\mathbb{E}\left[w'L'|\zeta' = 1\right] \downarrow \leftarrow \text{Aggregate effect} \\ \cdot \ q^g \downarrow \Longrightarrow \omega \downarrow \text{ for all} \\ \cdot \ \text{cov}(R_{S,S'}, sdf' \mid S) \downarrow \qquad \qquad \leftarrow \text{ 'Savings technology' effect} \end{array}$$

· Given govt's policies, aggregates, and evolution of the state

$$v(\omega, \epsilon, \mathbf{S})^{\frac{\psi-1}{\psi}} = \max_{c, a', b'} (1 - \beta)c^{\frac{\psi-1}{\psi}} + \beta \mathbb{E} \left[\left(v(\underline{\mathbf{a'}} + R_{\mathbf{S}, \mathbf{S'}} \underline{\mathbf{b'}}, \epsilon', \mathbf{S'}) \right)^{1 - \gamma} \middle| \omega, \epsilon, \mathbf{S} \right]^{\frac{\psi}{\psi(1 - \gamma)}}$$
subject to $p_c(\mathbf{S})c + q^h(\mathbf{S})\underline{\mathbf{a'}} + q^g(\mathbf{S})\underline{\mathbf{b'}} = \omega + \ell(\mathbf{S})\epsilon - T(\mathbf{S})$

$$R_{\mathbf{S}, \mathbf{S'}} = \mathbb{1}_{(\zeta'=1)}\kappa + (1 - \rho) \left(1 - \hbar \mathbb{1}_{(\zeta=1)(\zeta'\neq 1)} \right) q^g(\mathbf{S'})$$

· Skipping steps: in crisis times

$$\begin{array}{ll} \cdot \ \pi \uparrow \Longrightarrow \ \mathbb{E}\left[w'L'\right] = \pi \mathbb{E}\left[w'L'|\zeta' \neq 1\right] + (1-\pi)\mathbb{E}\left[w'L'|\zeta' = 1\right] \downarrow \leftarrow \text{Aggregate effect} \\ \cdot \ q^g \downarrow \Longrightarrow \ \omega \downarrow \text{ for all} \\ \cdot \ \text{cov}(R_{S,S'}, sdf' \mid S) \downarrow \\ \end{array} \\ \leftarrow \text{ 'Savings technology' effect} \end{array}$$

· Given govt's policies, aggregates, and evolution of the state

$$v(\omega, \epsilon, \mathbf{S})^{\frac{\psi-1}{\psi}} = \max_{c, a', b'} (1 - \beta)c^{\frac{\psi-1}{\psi}} + \beta \mathbb{E} \left[\left(v(\underline{\mathbf{a'}} + R_{\mathbf{S}, \mathbf{S'}} \underline{b'}, \epsilon', \mathbf{S'}) \right)^{1 - \gamma} \middle| \omega, \epsilon, \mathbf{S} \right]^{\frac{\psi}{\psi(1 - \gamma)}}$$
subject to $p_c(\mathbf{S})c + q^h(\mathbf{S})\underline{a'} + q^g(\mathbf{S})\underline{b'} = \omega + \ell(\mathbf{S})\epsilon - T(\mathbf{S})$

$$R_{\mathbf{S}, \mathbf{S'}} = \mathbb{1}_{(\zeta'=1)}\kappa + (1 - \rho) \left(1 - \hbar \mathbb{1}_{(\zeta=1)(\zeta'\neq 1)} \right) q^g(\mathbf{S'})$$

Skipping steps: in crisis times

$$\begin{array}{ll} \cdot \ \pi \uparrow \Longrightarrow \ \mathbb{E}\left[w'L'\right] = \pi \mathbb{E}\left[w'L'|\zeta' \neq 1\right] + (1-\pi)\mathbb{E}\left[w'L'|\zeta' = 1\right] \downarrow \leftarrow \text{Aggregate effect} \\ \cdot \ q^g \downarrow \Longrightarrow \ \omega \downarrow \text{ for all} \\ \cdot \ \text{cov}(R_{\mathbf{S},\mathbf{S}'}, \mathsf{s}df' \mid \mathbf{S}) \downarrow \\ \leftarrow \text{ 'Savings technology' effect} \end{array}$$

$$Y_{N}^{d} = C\varpi \left(\frac{p_{N}}{p_{C}}\right)^{-\eta} + \frac{\vartheta_{N}}{p_{N}}G$$

$$Y_{N}^{s} = L_{N}^{\alpha_{N}} \left(1 - \mathbb{1}_{(\zeta \neq 1)}\Delta\right)$$

$$L_{N}^{d} = \left(\alpha_{N} \frac{p_{N}}{W}\right)^{\frac{1}{1-\alpha_{N}}}$$

$$Y_{N}^{d} = C\varpi \left(\frac{p_{N}}{p_{C}}\right)^{-\eta} + \frac{\vartheta_{N}}{p_{N}}G$$

$$Y_{N}^{s} = L_{N}^{\alpha_{N}} \left(1 - \mathbb{1}_{(\zeta \neq 1)}\Delta\right)$$

$$L_{N}^{d} = \left(\alpha_{N} \frac{p_{N}}{\max\{W, \bar{W}\}}\right)^{\frac{1}{1-\alpha_{N}}}$$

$$Y_{N}^{d} = C\varpi \left(\frac{p_{N}}{p_{C}}\right)^{-\eta} + \frac{\vartheta_{N}}{p_{N}}G$$

$$Y_{N}^{s} = L_{N}^{\alpha_{N}} \left(1 - \mathbb{1}_{(\zeta \neq 1)}\Delta\right)$$

$$L_{N}^{d} = \left(\alpha_{N} \frac{p_{N}}{\max\{w, \bar{w}\}}\right)^{\frac{1}{1-\alpha_{N}}}$$

$$\cdot C \downarrow \Longrightarrow p_{N} \downarrow \Longrightarrow w \downarrow$$

$$Y_{N}^{d} = C\varpi \left(\frac{p_{N}}{p_{C}}\right)^{-\eta} + \frac{\vartheta_{N}}{p_{N}}G$$

$$Y_{N}^{s} = L_{N}^{\alpha_{N}} \left(1 - \mathbb{1}_{(\zeta \neq 1)}\Delta\right)$$

$$L_{N}^{d} = \left(\alpha_{N} \frac{p_{N}}{\max\{W, \bar{W}\}}\right)^{\frac{1}{1 - \alpha_{N}}}$$

- $\cdot C \downarrow \Longrightarrow p_N \downarrow \Longrightarrow w \downarrow$
- Wage rigidity creates price stickiness

THE GOVERNMENT'S OBJECTIVE

- B'_t and G_t are 'exogenous' functions of S_t
- · Default / Repayment is an optimal choice
 - · Utilitarian objective

$$W(S) = \int v(s, S) d\lambda_S(s)$$

- In period t, observe S_{t-1} and (ξ_t, z_t)
- · Gov't understands $\mathsf{S}_t = \Psi(\mathsf{S}_{t-1}, \xi_t, \mathsf{Z}_t, \zeta_t)$ · Distribution
- · Default iff

$$\underbrace{\mathcal{W}\left(\Psi(S_{t-1},\xi_{t},Z_{t},\zeta_{t}\neq1)\right)}_{\text{v under def}} - \underbrace{\mathcal{W}\left(\Psi(S_{t-1},\xi_{t},Z_{t},\zeta_{t}=1)\right)}_{\text{v under rep}} \geq \sigma_{g} \xi_{t}^{\text{def}}$$

where
$$\xi_t^{\mathrm{def}} \stackrel{iid}{\sim} \mathcal{N}(\mathsf{0},\mathsf{1})$$

EQUILIBRIUM CONCEPT

Definition

Given fiscal rules B'(S), G(S), an equilibrium consists of

- A government policy $h'(S, \xi', z')$
- Policy functions $\{\phi_a, \phi_b, \phi_c\}$ (s, S)
- Prices $p_c(S), p_N(S), w(S), q^g(S)$. Quantities $L_N(S), L_T(S), \Pi(S), T(S)$
- Laws of motion $\mu'(S, \xi', z'; h), \sigma'(S, \xi', z'; h)$

such that

- The policy functions solve the household's problem
- The laws of motion are consistent with the policy functions
- · Firms maximize profits, $w(S) \geq \bar{w}$, markets clear igcap Market Clearing
- The government's default policy maximizes $\mathcal{W}\left(\Psi(\mathsf{S},\xi',z',\cdot)\right)$

PRELIMINARY RESULTS

Anticipated objective function Blue: repayment, red: default

PRELIMINARY RESULTS

Transfers Blue: repayment, red: default

PRELIMINARY RESULTS

20

PRELIMINARY RESULTS

Model: Benchmark

CALIBRATION

Parameter	Value	Description	Source
r*	4% ann.	Risk-free rate	Anzoategui (2017)
\hbar	50%	Haircut in case of default	Philippon and Roldán (2018)
Δ	10%	TFP loss in case of default	Philippon and Roldán (2018)
ϖ	0.74	Share of nontraded in prod	Anzoategui (2017)
ϑ_N	80%	Share of nontraded in G	Anzoategui (2017)
$ ho_\epsilon, \sigma_\epsilon$	(0.978, 0.022)	Idiosyncratic income	D'Erasmo and Mendoza (2016)
	Internally	y calibrated	Target (Spain)
$\rho_{\rm Z},\sigma_{\rm Z}$	(0.9, 0.025)	TFP process	(0.966, 0.013) AR(1) output
$1/\beta - 1$	5.2% ann.	Discount rate of HHs	Mean Debt-to-GDP 64%
$1/\beta - 1$ $\bar{\xi}$	0.11	Mean tax on coupons	Mean domestic holdings 50%
γ	6.25	Risk aversion	(0.962, 0.017) AR(1) consumption
au	12%	Progressivity of tax schedule	,

SIMULATED CRISES

Simulate model economy for 2000 years

- · Record all episodes of
 - i. High spreads for 6 quarters
 - ii. Default
- · Take 2-year windows around each
 - Left with 131 defaults (\sim 6% annual freq)
- · Compute distribution of endogenous variables around them

SIMULATED PATHS

SIMULATED DATA - HIGH SPREADS

Red: Median, Shaded blue: [0.25, 0.75] percentiles, Dashed green: Mean

SIMULATED DATA - DEFAULT EPISODES

Red: Median, Shaded blue: [0.25, 0.75] percentiles, Dashed green: Mean

STILL MISSING

- · Calibrate to match moments of Spanish economy
 - · Standard: output, employment, spreads, net exports
 - New: distribution of exposures from Morelli and Roldán (2018)
- · Compare episodes of high spreads in simulated data against
 - · Same economy with no nominal rigidities
 - · Same economy with **no risk**
 - Myopic domestic agents and foreigners who perceive no default risk
 - · Myopic domestic agents only
 - No TFP costs of default
- ← shuts down aggregate income losses
- No capital losses + $\hbar = 0$
- \leftarrow shuts down redistributive wealth effects

- ightarrow Notions of **potential** output
- · Difference is amplification through extra precautionary behavior
 - Different benchmarks emphasize different channels

CONCLUDING REMARKS

- · Interested in interaction of
 - Default risk
 - Precautionary behavior
 - + implications for amplification of shocks
- · Potentially helps explain severity of Eurozone debt crisis
 - · Exploit Spanish data for calibration of exposures
- · Key:
 - Aggregate + redistributive wealth effects if default
 - · Agents take precautions against those
 - Timing flips usual MPC / transfer argument
- · All comments welcome!

Italian firms' self-reported limits to production

Source: Eurostat

Greek firms' self-reported limits to production Source: Eurostat

HOUSEHOLD SURVEY

Companion paper: dom exp to Spanish sovereign risk ■■■

MEASURING EXPOSURES TO SOVEREIGN DEBT - BANKS

Measure exposure based on Philippon and Salord (2017)

- study European banks resolutions in Cyprus
- · average total recapitalization need was around 17.4% of assets
- private investors provided 33% of need via loss in equity (91%), junior debt (53%) and senior debt (14%)
- remaining 2/3 came from government intervention
 - → assumed not possible in Spain!
 - → remaining need comes from senior debt and depositors

MEASURING EXPOSURES TO SOVEREIGN DEBT - DEPOSITS

Work with different scenarios of loss on deposits:

Scenario	SD Loss	Dep. Loss
Extreme Mild Conservative	25% 50% 75%	14% 10% 5%

Table 1: Expected losses on deposits

- · Assume a 50% haircut on public debt that triggers a bank crisis
- \cdot Loss for depositors of 10%
- Overall, public debt and bank crisis would induce a fall of between 8% and 10% of financial assets

DATA - EXPOSURES

- Companion paper: dom exp to Spanish sovereign risk More
- · Pension funds, mutual funds, insurance perfect passthrough
- Deposits more complicated
 - Philippon and Salord (2017): bank resolutions in Cyprus Details

FISCAL RULES

	G _t /	Y _t	$\left(B_t'-(1-\rho)B_t\right)/Y_t$		
	(1)	(2)	(3)	(4)	
Unemployment _t	0.031 (0.039)	0.073*** (0.015)	0.334** (0.158)	0.346*** (0.059)	
Unemployment ²	0.002 (0.001)		0.0001 (0.006)		
B_t/Y_t	0.010* (0.005)	-0.017*** (0.002)	-0.010 (0.020)	0.009 (0.007)	
$(B_t/Y_t)^2$	-0.0002*** (0.00004)		0.0001 (0.0001)		
Net Exports _t	0.009 (0.019)	0.007 (0.012)	0.046 (0.075)	0.019 (0.046)	
Net Exports ²	-0.0001 (0.001)		-0.001 (0.003)		
Mean FE	20.675	21.085	1.079	0.571	
Country + Time FE	✓	✓	✓	✓	
Observations Adj. R ²	968 0.904	968 0.901	957 0.697	957 0.698	

Standard errors in parentheses. *** p < 0.01, ** p < 0.05, * p < 0.1.

FISCAL RULES (CONT'D)

EVOLUTION OF THE DISTRIBUTION

The law of motion for λ

- Policy functions ϕ_a, ϕ_b at S_t determine assets at t+1
- After seeing z_{t+1} , the government decides **repayment**
- · At S_{t+1} , relationship between $q^g(S_{t+1})$, $R_b(S_{t+1})$, μ_{t+1} , σ_{t+1}

$$R_b(\mathbf{S}_{t+1}) = \mathbb{1}_{(\zeta_{t+1}=1)}\kappa + (1-\rho)q^g(\mathbf{S}_{t+1})$$

$$\int \omega d\lambda_{t+1} = \int \phi_a(\mathbf{S}_t) + R_b(\mathbf{S}_{t+1})\phi_b(\mathbf{S}_t)d\lambda_t$$

$$\int \omega^2 d\lambda_{t+1} = \int (\phi_a(\mathbf{S}_t) + R_b(\mathbf{S}_{t+1})\phi_b(\mathbf{S}_t))^2 d\lambda_t$$

Defaults and output growth

Source: Panizza, Sturzenegger, and Zettelmeyer (2009)

SHARE OF DOMESTIC DEBT

Source: Morelli and Roldán (2018) on Banco de España

SHARE OF DOMESTIC DEBT

Source: Morelli and Roldán (2018) on Banco de España Dotted lines are sample averages

GENERAL SDF OF FOREIGNERS

• If risk-averse foreigners

$$q_t^h = \frac{1}{1+r^*} \mathbb{E}_t \left[\left(\frac{C_{t+1}^f}{C_t^f} \right)^{-\gamma_f} \right]$$
$$q_t^g = \frac{1}{1+r^*} \mathbb{E}_t \left[\left(\frac{C_{t+1}^f}{C_t^f} \right)^{-\gamma_f} R_{t,t+1}^b \right]$$

where
$$R_{t,t+1}^b = \mathbb{1}_{(\zeta_{t+1}=1)} \tilde{\kappa} + (1-\rho)(1-\hbar \mathbb{1}_{(\zeta_t=1\cap \zeta_{t+1}\neq 1)}) q_{t+1}^g$$

· Reduces to risk-neutral if

$$\operatorname{cov}\left(\left(\frac{C_{t+1}^f}{C_t^f}\right)^{-\gamma_f}, R_{t,t+1}^b\right) = 0$$

SOLUTION METHOD

- Guess a policy for the government
 - · Guess a law of motion for the distribution
 - Compute $q^g(S)$, q^h from lenders' sdf.
 - Compute w, L_N, L_T, Π, T as functions of (S, p_N)
 - Guess a relative price of nontraded goods p_N
 - \cdot Solve the household's problem at $(\mathbf{s},\mathbf{S},p_{\mathit{N}})$
 - $\boldsymbol{\cdot}$ Check market clearing for nontraded goods.
 - Iterate until $p_N(S)$ converges
 - Iterate until the law of motion converges
- · Iterate on the government's policy

	Unemployment _{jt}			S		
	(1)	(2)	(3)	(4)	(5)	(6)
Spread _{jt}	1.381*** (0.064)			0.461*** (0.097)		
Spread _{jt} (IV)		2.372*** (0.826)	1.951** (0.896)		1.634 (1.186)	2.048 (1.515)
Spread Non-fin _{jt}		-0.172 (0.297)	-0.450 (0.306)		0.654	0.832
Spread Fin _{jt}		-0.364 (0.530)	0.076		-0.265 (0.666)	-0.595 (0.901)
B_{jt}/Y_{jt}		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	0.040*** (0.012)		, ,	-0.035 (0.035)
Model	OLS	IV	IV	OLS	IV	IV
Country FE	Υ	Υ	Υ	Υ	Υ	Υ
Quad Time Trend	Υ	Υ	Υ	Υ	Υ	Υ
Observations	968	304	304	569	179	179
Adj. R ²	0.731	0.715	0.713	0.450	0.420	0.398

Standard errors in parentheses. *** p < 0.01, ** p < 0.05, * p < 0.1. Gilchrist-Mojon (2017) indices of corporate spreads for FRA, DEU, ITA, ESP. 2000Q1 – 2017Q4

· Three markets need to clear

$$\begin{aligned} Y_{Nt} &= C_{Nt} + \frac{\vartheta_N}{\rho_{Nt}} G_t \\ Y_{Tt} &= C_{Tt} + (1 - \vartheta_N) G_t - NFI_t \\ (L_{Nt} + L_{Tt} - 1) (w_t - \gamma w_{t-1}) &= 0 \end{aligned}$$

where net foreign inflows are

$$\mathsf{NFI}_t = \int \left(\omega - q_t^h \phi_a - q_t^g \phi_b\right) d\lambda_t - \kappa B_{t-1} + q_t^g (B_t - (1-
ho)B_{t-1})$$

FEEDBACK

				Dependent	: variable Q _{jt} :			
	$\log Y_{jt}$				log C _{jt}			
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
Spread _{jt}	-0.011*** (0.003)				-0.011*** (0.002)			
$Spread_{jt}$ (IV)		-0.048** (0.019)	-0.031 (0.023)	-0.031 (0.024)		-0.088*** (0.022)	-0.035** (0.017)	-0.035** (0.016)
R_{jt}^h			0.054***	0.049***			0.004	-0.009 (0.007)
R_{jt}^{s}			(0.010)	0.013			(0.007)	0.036
Model	OLS	IV	IV	IV	OLS	IV	IV	IV
Country + Time FE	✓	✓	✓	✓	✓	✓	\checkmark	✓
Observations	968	968	540	540	968	968	540	540
Adj. R ²	0.995	0.994	0.997	0.997	0.997	0.993	0.999	0.999

Standard errors in parentheses. *** p < 0.01, ** p < 0.05, * p < 0.1.

ECB borrowing rates for AUT, BEL, DEU, ESP, FRA, IRL, ITA, NLD, PRT. 2003Q1 - 2017Q4

Standard errors in parentneses. $^{n-p} \neq 0.01, ^{n-p} \neq 0.05, ^{n} \neq 0.1.$

ECB borrowing rates for AUT, BEL, DEU, ESP, FRA, IRL, ITA, NLD, PRT. 2003Q1 - 2017Q4

THE CYCLE IS THE TREND

	$\sigma(C)$	$\sigma(Y)$	$\sigma(C)/\sigma(Y)$	$\sigma(C)/\sigma(Y)$ (AG)
Austria	0.716	0.782	0.916	0.870
Belgium	0.556	0.795	0.700	0.810
Denmark	1.047	1.178	0.889	1.190
Finland	1.278	1.957	0.653	0.940
France	0.780	0.773	1.009	_
Germany	0.692	0.867	0.799	_
Ireland	3.140	3.680	0.853	_
Italy	1.165	0.978	1.191	_
Netherlands	1.726	1.244	1.388	1.070
Portugal	1.827	1.576	1.160	1.020
Spain	1.901	1.396	1.362	1.110

HP filtered data with $\lambda =$ 1600. Std deviations in %.

Spain in the 2000s

SPAIN IN THE EUROZONE CRISIS

Spain in the 2000s

LOW DEMAND?

Spanish firms' self-reported limits to production

Source: Eurostat

REFERENCES

- ANZOATEGUI, D. (2017): "Sovereign Debt and the Effects of Fiscal Austerity," mimeo, NYU. ARELLANO, C., Y. BAI, AND G. MIHALACHE (2018): "Default risk, sectoral reallocation. and persistent recessions," Journal of International Economics, 112, 182–199.
- AUCLERT, A. (2017): "Monetary Policy and the Redistribution Channel," Working Paper 23451. National Bureau of Economic Research.
- BALKE, N. (2017): "The Employment Cost of Sovereign Default," mimeo, UCL.
- BIANCHI, J., P. OTTONELLO, AND I. PRESNO (2016): "Unemployment, Sovereign Debt, and Fiscal Policy in a Currency Union." 2016 Meeting Papers 459. Society for Economic Dynamics. BOCOLA. L. (2016): "The Pass-Through of Sovereign Risk," Journal of Political Economy, 124,
- 879-926. D'ERASMO, P. AND E. G. MENDOZA (2016): "Optimal Domestic (and External) Sovereign
- Default," Working Paper 22509, National Bureau of Economic Research. EGGERTSSON, G. AND P. KRUGMAN (2012): "Debt, Deleveraging, and the Liquidity Trap: a
- Fisher-Minsky-Koo Approach." Quarterly Journal of Economics, 1469–1513. FERRIERE, A. (2016): "Sovereign default, inequality, and progressive taxation," Working
 - paper, European University Insitute.

