1.9 Bipartite graphs

1.9.1 Basics

Definition 1.9.1 (bipartite graph). 1. A graph G whose vertex set can be partitioned³ into two sets A and B such that every edge in E(G) is incident with one vertex in A and one vertex in B is called bipartite graph. The sets A and B are called a bipartition.

2. A graph G whose vertex set can be partitioned into two sets A and B such that A and B are independent sets is called bipartite graph. The sets A and B are called a bipartition.

Comment: we will call the empty graph on one vertex bipartite.

Examples: $K_{m,n}$ and other bipartite graphs

Theorem 1.9.1. Every tree is bipartite.

Proof. Let u be a vertex in T and define $A \subseteq V(T)$ and $B \subseteq V(T)$, such that $A = \{w \in V(T) \mid d(u, w) = 2k\}$ where d(u, w) denotes the length of the path between u and w. Recall that there is only one such path by Theorem 1.8.1. Likewise $B = \{w \in V(T) \mid d(u, w) = 2k + 1\}$ where d(u, w) denotes the length of the path between u and w. Since T is connected we have $A \cup B$ is the vertex set of T. Suppose there is an edge e = (w, v) in T such that $w, v \in A$. Consider the path $uu_1u_2 \dots u_{2k-1}w$ if $u_{n-1} = v$ then the path from u to v is of odd length contradicting the fact that $u \in A$. If $u \in \{u_1, \dots, u_{2k-2}\}$ then we have a cycle in T contradiction T is a tree. Hence $uu_1u_2 \dots u_{2k-1}wv$ is a path of odd length in T contradicting $v \in A$. Thus there is no edge among the vertices in A. Similarly there are no vertices among the edges of B thus A and B are bipartition of T implying that T is a bipartite graph. \square

Theorem 1.9.2. A graph is bipartite if and only if it has only even cycles.

Proof. If the graph is bipartite it contains no odd cycles.

If the graph is not bipartite it contains an odd cycle. Indeed let H be a component of G, that is not bipartite (one must exist). Since H is connected it has a spanning tree T. Trees are bipartite and therefore T has a bipartition (A, B). Since H is not a bipartite graph then (A, B) is not a bipartition of H, and therefore there is an edge $e = \{u, v\}$ such that both u and v are in the same set A or B. Without loss of generality let $u, v \in A$. Since (A, B) is a bipartition of T then the edge e is not in the edge set of T. Since T is a connected there is a path $P = ux_1x_2, \ldots, x_nv$ in T that connects u and v. Since u and v are in the same bipartition the length of the path is even. Then adjoining e to P we obtain an odd length cycle in H.

³A partition of a set S is a collection of sets P_1, \ldots, P_n such that for $i \neq j$ $P_i \cap P_j = \emptyset$ and $S = P_1 \cup P_2 \cup \ldots \cup P_n$