

Chinese word segmentation

Presenter: Mingxin Chen

Group: Mingxin Chen, Mingwei Wei, Bin Jiang, Ange Tong

What is Chinese word segmentation?

Background

Algorithm

Demonstration

Discussion

like ... this ...

•	语言	信息	处理
---	----	----	----

• 语言 / 信息 / 处理

• 鉴萍老师美丽大方

鉴萍/老师/美丽/大方

• 诚实是一种美德

• 诚实/是/一种/美德

Why segment?

Background

Algorithm

Demonstration

Discussion

valuations

The basic of information retrieval, information extraction, information classification and so on.

applications

- Polyphone recognition (多音字识别)
- Text proofreading (文本校对) eg. [于预 >> 干预]

and more ...

.....

Challenge

Background

Algorithm

Demonstration

Discussion

What is challenge of Chinese word segmentation?

To solve the ambiguity, of course!!!

So .. What do you mean ... ambiguity?

Like this ..

这个学生会打篮球

- 这个 / 学生 / 会 / 打 / 篮球
- 这个 / 学生会 / 打 / 篮球

OK, I got it.

Algorithm classification

Background

Algorithm

Demonstration

Hidden Markov Model Algorithm

Background

We define $C = \{B, M, E, S\}, O = 0102...0i$

Algorithm

Demonstration

Discussion

•	В	•	Begin of word
•	М	•	Middle of word
•	Е	•	End of word
•	S	•	Single word

O1O2O3O4O5O6O7O8O9O1O 你/现在/应该/去/幼儿园/了 B BE BE S BME S

Give us O, we should calculate C

That means we calculate $argmax \ C \ P((C1, C2...Ci|O1, O2...Oi)) = P(C|O)$ (1)

Simplify (1), we get $argmax \ C \ P(O|C)P(C)$ (2)

Analysis (2), we get final formula:

 $\operatorname{argmax} \mathsf{C} \ \mathsf{P}(01|C1) P(02|C2) ... P(0i|Ci) * P(C1) P(C2|C1) P(C3|C2) ... P(C_i|C_{i-1})$

A Pure-HMM Segmentation

Background

Algorithm

Demonstration

Discussion

We calculate three matrix

initial probability matrix
$$Pi = Count(C_i) / \sum_{i} Count(C_j)$$

state-transition matrix

Aij =
$$P(C_i|C_i) = \frac{P(C_i,C_j)}{P(C_i)} = Count(C_i,C_j)/Count(C_i)$$

emitter matrix

Bij =
$$P(O_j|C_i) = \frac{P(O_j, C_i)}{P(C_i)} = Count(O_j, C_i)/Count(C_i)$$

Add 1 smooth
 $Bij = P(O_j|C_i) = (Count(O_j, C_i) + 1)/(Count(C_i) + N)$

Viterbi Algorithm

Background

Algorithm

Demonstration

Discussion

Formula derivation

 $argmax \ C \ P((C1, C2...Ci|O1, O2...Oi))$

- = argmax C $P(O1|C1)P(O2|C2)...P(Oi|Ci) * P(C1)P(C2|C1)P(C3|C2)...P(C_i|C_{i-1})$
- $= \operatorname{argmax} \ C \ P(O1|C1) P(O2|C2) \dots P(O_{i-1}|C_{i-1}) * P(C1) P(C2|C1) P(C3|C2) \dots P(C_i|C_{i-1}) * P(Oi|Ci)$
- = argmax C $P((C1, C2, ..., C_{i-1}|O1, O2, ... O_{i-1})) * P(C_i|C_{i-1}) * P(Oi|Ci)$

argmax C P((C1, C2...Ci|O1, O2...Oi))

= argmax C $P((C1, C2, ..., C_{i-1}|O1, O2, ... O_{i-1})) * P(C_i|C_{i-1}) * P(Oi|Ci)$

Viterbi Algorithm

Background

Algorithm

Demonstration

Discussion

Process

Calculate the initial probability: P(C1|O1) = P(C1) * P(O1|C1)

 $\begin{aligned} & \mathsf{Calculate}P\big((C1,C2..Ct|O1,O2..Ot)\big) = \\ & \mathit{argmax} \ C \ P((C1,C2,...,C_{t-1}) \ \big| \ O1,O2,...O_{t-1}))) * P(C_t|C_{t-1}) \ * \ P(Ot|Ct), \\ & \mathsf{using} \ \mathsf{an} \ \mathsf{array} \ \mathsf{path} \ \mathsf{to} \ \mathsf{record} \ \mathsf{the} \ \mathsf{value} \ \mathsf{of} \ \mathsf{Ct} \ \mathsf{when} \ \mathsf{taking} \ \mathsf{the} \ \mathsf{maximum} \end{aligned}$

Get the maximum sequence: $argmax \ C \ P((C1,C2...\ Ci \mid O1,O2...Oi))$, we can get the value of Ci when P taking the maximum.

backtracking:

Using the path array to backtrack and get the hidden sequence. If the value is E or S then can be divided into a word.

A Pure-HMM Segmentation

Example

Background

Algorithm

Demonstration

Forward Maximum Matching Algorithm

Background

Algorithm

Demonstration

Backward Maximum Matching Algorithm

Background

Algorithm

Demonstration

Demo

Background

Algorithm

Demo

Background

Algorithm

Demonstration

Discussion

扬 帆 远东 做 与 中国 合作 的 先行 经济 结构 之首, 按吨 位计 占 世界 总数 的 是 经济 收入 的 重要 组成 部分 造业 规模 相对 较 小 。 希贸易始 终处 于 较低 的 水平 , 希腊 几乎 没有 在 中国 投资 。 经济 高速 发展 , 改革 开放 的 中国 远东 在 崛起 船 只 中有 40% 驶 向 远东 , 每个月几乎 都 有 两三 条船 停靠 中国 港口 。 感受 到 了 中国 经济 发展 的 大潮 。 他 要 与 中国 人 合作 。 他来 到 中国 , 成为 第一个 访华 的 大 船主 。

Demo

Background

Algorithm

Demonstration

Score of HMM

Background

Algorithm

Demonstration

Discussion

```
151227
        INSERTIONS: 2
151228
        DELETIONS: 3
151229
        SUBSTITUTIONS:
151230
       NCHANGE:
                    10
151231
       NTRUTH: 45
151232
        NTEST: 44
151233
        TRUE WORDS RECALL: 0.822
151234
        TEST WORDS PRECISION:
                                0.841
151235
        === SUMMARY:
151236
        === TOTAL INSERTIONS:
                                8496
151237
        === TOTAL DELETIONS:
                                4193
151238
        === TOTAL SUBSTITUTIONS:
                                    16237
151239
        === TOTAL NCHANGE: 28926
151240
        === TOTAL TRUE WORD COUNT: 106873
151241
        === TOTAL TEST WORD COUNT:
151242
        === TOTAL TRUE WORDS RECALL:
                                         0.809
        === TOTAL TEST WORDS PRECISION: 0.778
151243
151244
        === F MEASURE: 0.793
151245
        === 00V Rate:
                        0.026
151246
        === OOV Recall Rate:
                                0.431
151247
        === IV Recall Rate: 0.819
```

The result is not very satisfactory

Score of FMM

Background

Algorithm

Demonstration

```
148865 INSERTIONS: 2
148866 DELETIONS: 5
148867 SUBSTITUTIONS:
148868 NCHANGE:
148869 NTRUTH: 45
148870 NTEST: 42
148871
       TRUE WORDS RECALL: 0.733
148872 TEST WORDS PRECISION:
                               0.786
148873
       === SUMMARY:
       === TOTAL INSERTIONS:
148874
                               6134
148875
       === TOTAL DELETIONS:
                               4075
148876 === TOTAL SUBSTITUTIONS:
                                   11818
                                                 not bad
148877 === TOTAL NCHANGE: 22027
148878
       === TOTAL TRUE WORD COUNT: 106873
148879
       === TOTAL TEST WORD COUNT: 108932
148880
       === TOTAL TRUE WORDS RECALL:
                                       0.851
       === TOTAL TEST WORDS PRECISION: 0.835
148881
148882
       === F MEASURE: 0.843
148883 === OOV Rate:
                       0.026
148884 === OOV Recall Rate:
                               0.305
148885 === IV Recall Rate: 0.866
```

Score of BMM

Background

Algorithm

Demonstration

Discussion

```
152233
        INSERTIONS: 4
152234
        DELETIONS: 3
152235
        SUBSTITUTIONS:
152236 NCHANGE:
152237
       NTRUTH: 45
152238
        NTEST: 46
152239
       TRUE WORDS RECALL: 0.778
152240
                                0.761
       TEST WORDS PRECISION:
152241
        === SUMMARY:
152242
        === TOTAL INSERTIONS:
                                9502
152243
        === TOTAL DELETIONS:
                                1908
152244
        === TOTAL SUBSTITUTIONS:
                                    10211
152245
       === TOTAL NCHANGE: 21621
152246
       === TOTAL TRUE WORD COUNT:
        === TOTAL TEST WORD COUNT:
152247
        === TOTAL TRUE WORDS RECALL:
152248
                                        0.887
        === TOTAL TEST WORDS PRECISION: 0.828
152249
152250
        === F MEASURE: 0.856
152251
       === 00V Rate:
                        0.026
152252
        === 00V Recall Rate:
                                0.197
152253
        === IV Recall Rate: 0.905
```

Recall rate is high.

Thanks!