lai qual o plano? Plano de Estudos

Roteiro

- 1. O mínimo necessário sobre Docker
 Uma "revisão introdutória"
- 2. Docker
 Conhecendo a plataforma
- 3. Primeiros passos em Docker Botando o container para rodar
- 4. VsCode

 Perfil de Desenvolvimento
- 5. O mínimo necessário sobre Python
 Uma "Revisão introdutória"
- 6. Python
 Data Types, Repetição, Módulo, Classe...

- 7. O mínimo necessário sobre Django Uma "revisão introdutória"
- 8. Django
 Conhecendo a framework
- 9. Primeiros passos em Django Botando o Django para rodar
- 11. Frameworks
 Conhecendo DataTables, Bootstrap, Echarts
- 12. Mkdocs

 Documentação é sempre bom
- 13. Criação do Projeto Mão na massa.

Uma "revisão introdutória"

Docker

O que é Docker?

O Docker é uma plataforma de virtualização de software que permite criar e executar aplicativos em contêineres.

Ele foi criado em 2013 pela empresa Docker, Inc. e é baseado em tecnologias de virtualização de nível de sistema operacional, que permitem que um aplicativo e suas dependências sejam empacotados em um contêiner isolado e portátil.

Inicialmente o Docker rodava somente no Linux, mas devido ao seu sucesso gerou uma parceria com a Microsoft que trouxe os contêineres Docker e sua funcionalidade para o Windows a partir das versões Windows Server 2016 e do Windows 10 Anniversary Update.

O que é um contêiner?

Containers (ou contêineres) são um tipo de tecnologia de virtualização que permite que um aplicativo ou serviço seja executado em um ambiente, sem a necessidade de uma máquina virtual completa, resolvendo a dor de cabeça "funciona na minha máquina".

Hoje para milhões de desenvolvedores, o Docker é o padrão de fato para criar e compartilhar aplicativos em contêineres, mas existem outras plataformas, como:

Pesquisa StackOverflow 2022

Docker é a ferramenta de desenvolvimento número 1 mais amada e continua sendo a ferramenta número 1 mais ferramenta desejada.

Docker teve um aumento, passou de 30% no ano passado para 37% este ano como ferramenta mais desejada.

Quais são as vantagens do uso do Docker?

- **Portabilidade:** O Docker permite que os aplicativos sejam empacotados em um formato padrão que pode ser executado em qualquer sistema operacional ou ambiente de hospedagem.
- **Eficiência:** Os contêineres são muito mais leves do que as máquinas virtuais, pois não precisam de emular um sistema operacional completo para serem executados.
- **Escalabilidade:** O Docker permite que os aplicativos sejam facilmente escalados horizontalmente, adicionando ou removendo instâncias conforme necessário.

Comparando contêineres e máquinas virtuais

Tipos de escalonamento

Vertical Horizontal Scale up

Core i3 4G Mem

Scale out

Core i3 4G Mem

Core i5 8G Mem

Core i3 4G Mem

Core i7 16G Mem

Facilitação

O Docker fornece ferramentas para gerenciar facilmente vários contêineres em várias máquinas.

O Docker Swarm é uma ferramenta que pode ser usada para gerenciar um cluster de servidores em que vários contêineres estão sendo executados.

Docker

Ritual do Hello World

H

```
#Baixando a imagem do Docker hub docker pull hello-world
```

#Verificando as imagens docker images

#Criando o container docker run hello-world

#Verificando os containers em execução docker ps

#Verificando todos os containers
docker ps -a

#Iniciando o container docker start ID ou NAME

#Parando o container
docker stop ID ou NAME

#Removendo a imagem docker rmi ID ou NAME

#Removendo o container docker rm ID ou NAME

Outros comandos

```
#Verificar informações de um container
docker inspect ID ou NAME

#Verificando logs de um container
docker container logs ID ou NAME

#Verificando processos do container
docker container top ID ou NAME

#Verificando recursos em uso
docker stats ID ou NAME

#Update de recursos
docker update ID ou NAME -m 256M --cpus 0.2
```


Como criar uma imagem?

Existem várias formas de criar uma imagem Docker, aqui estão algumas delas:

- 1. A partir de um Dockerfile: Um Dockerfile é um arquivo de texto que contém as instruções para criar uma imagem. Você pode criar um Dockerfile e executar o comando docker build para criar uma imagem a partir dele. O Dockerfile descreve o ambiente em que o aplicativo será executado e inclui todas as dependências necessárias.
- 2. A partir de um contêiner em execução: Se você tiver um contêiner em execução que esteja configurado exatamente como deseja, poderá criar uma imagem a partir dele usando o comando docker commit. Isso criará uma nova imagem a partir do estado atual do contêiner.
- 3. A partir de um arquivo tar: Você também pode criar uma imagem a partir de um arquivo tar que contenha o sistema de arquivos do contêiner. Você pode criar o arquivo tar usando a opção docker export e, em seguida, criar uma nova imagem a partir dele usando a opção docker import.
- **4. Usando uma ferramenta de terceiros:** Há também várias ferramentas de terceiros que podem ajudá-lo a criar imagens Docker, como o Docker Compose, que permite criar e gerenciar aplicativos multi-container.

Criando uma imagem com docker commit

```
#Criar o container com todos os requisitos para rodar a aplicação.
docker run -dti -p 8080:80 nginx

#Criar a imagem a partir do container existente.
docker commit ID ou NAME USERNAME/minha-primeira-imagem:1.0

#Inicializar um novo container a partir na imagem criada.
docker run -dti -p 8080:80 USERNAME/minha-primeira-imagem:1.0
```


Como compartilhar minha imagem?

Para compartilhar uma imagem Docker, você pode fazer o upload da imagem para um registro de contêineres (container registry) acessível pela Internet, como o Docker Hub.

```
#Faça login.
docker login --username=USERNAME

#Execute o push da imagem.
docker push USERNAME/minha-primeira-image:v1.0
```


Botando o container para rodar

Docker

Container UP


```
docker run -dti --name Ubuntu-Estudo -p 8000:8000 -p 8001:8001 -m 8G --cpus 0.5 ubuntu
Parâmetros
    -d: Inicia o contêiner em segundo plano (modo daemon).
    -t: Aloca um pseudo-TTY (terminal) para o contêiner.
    -i: Mantém STDIN aberto, mesmo que não esteja conectado.
    --name: Define um nome personalizado para o contêiner.
    -p 8000:8000: Mapeia a porta 8000 do host para a porta 8000 do contêiner.
    -р 8001:8001: Mapeia a porta 8001 do host para a porta 8001 do contêiner.
    -m 8G: Limita a memória RAM que o contêiner pode usar a 8GB.
    --cpus 0.5: Limita o número de CPUs que o contêiner pode usar a 0.5 (50% de uma CPU).
    ubuntu: Especifica a imagem que será usada para criar o contêiner. Neste caso, a imagem é "ubuntu".
docker exec -ti Ubuntu-Estudo /bin/bash
```


S2 S2

VsCode

Profile

Gerenciando perfis

Alternar entre perfis ajuda em não instalar extensões desnecessárias em host remotos.

- 1. Criar o profile.
- 2. Instalar as extensões:
 - Dev Containers
 - Django
 - Python
 - Isort
 - Autopep8

Gestão de pacotes

Linux

Bash

Comandos Linux mais comuns de gerenciamento de repositórios:

- apt update: Atualiza o índice de pacotes disponíveis nos repositórios configurados no sistema. Verifica se há atualizações disponíveis.
- apt upgrade: Atualiza os pacotes já instalados no sistema para suas versões mais recentes.
- apt install: Instala um pacote especifico no sistema.
- add-apt-repository: Adicionar repositórios mantidos por terceiros que não fazem parte dos repositórios oficiais das distribuições Linux.

Atualização e instalação pacotes necessários:

```
apt update -y
apt upgrade -y
apt install git -y
apt install build-essential checkinstall libreadline-gplv2-dev libncursesw5-dev libssl-dev libsqlite3-dev tk-dev libgdbm-dev libc6-dev libbz2-dev -y
add-apt-repository ppa:deadsnakes/ppa
apt install python3.11 python3.11-venv -y
```