

Localidade Espacial

Localidade Espacial □ blocos de cache com mais de uma palavra.

Se um item é referenciado, itens cujos endereços são próximos, tenderão a ser referenciado também.

Para que a localidade espacial seja aplicada a uma arquitetura, uma linha da cache deve ter mais do que uma instrução.

Localidade Espacial

Localidade Espacial

Localidade Espacial

blocos de cache com mais de uma palavra.

No exemplo da figura do slide anterior, pode ser observado que cada linha da cache possui 4 instruções (palavras).

Dois bits do endereço são utilizados para indicar a presença da instrução na linha da cache.

Desempenho

Escrita

na escrita de uma instrução de store o dado tem que ser escrito na cache quando houver valores diferentes entre cache e memória principal o que é uma inconsistência.

Um método é escrever também na memória principal, isto é chamado de writethrough.

Desempenho

Performance com write-through

O gcc tem 13% de instruções de store.

Na DECStation 3100 a CPI para store é 1.2 e gasta 10 ciclos a cada escrita □ nova CPI = 1.2+13% X 10 = 2.5 Isto reduz o desempenho por um fator maior que 2 □

solução possível

write buffer.

Desempenho

Outro esquema de atualização da memória

write back

a memória só é atualizada quando o bloco da cache que sofreu modificação for substituído por outro.

Bibliografia Base

STALLINGS, William. Arquitetura e Organização de Computadores. São Paulo: Pearson Education do Brasil, 2002.

MONTEIRO, Mário A. Introdução a Organização de Computadores. Rio de Janeiro: LTC, 2002.

David A. Patterson & John L. Hennessy. **Organização e projeto de computadores a interface Hardware/Software.** Tradução: Nery Machado Filho. Morgan Kaufmmann Editora Brasil: LTC, 2000.