

实验报告书

课程名称:			路由	技术原	理与应用
学	院 :	计算机			
专	业:		网络工程		
年	级:	2020级			
班	级:	2 班			
_		潘玥	学	号:	202010420211
任课教师:		.,,,	—_ · 利	呈琨	
开课时间:		2022	·	. –	学年第1学期

成都大学

年 月 日

实验成绩统计表

实验项目序号	实验项目成绩	占实验总成绩比例
实验 1		
实验 2		
实验3		
实验 4		
实验 5		
实验 6		
实验 7		
实验 8		
实验 9		
实验 10		
实验 11		
实验 12		
总成绩		教师签名

成都大学实验报告单

课程名称	路由技术原理 与应用	任课教师	程琨	学	院	计算机学院
学生姓名/学号 (小组成员)	潘玮	月 202010420	211	专 班	业 级	网络工程 20-2
实验室及地点		10318		实验	记期	22. 09. 09
实验项目名称		使用交换机构建简单局域网				
实验类型	□认知性 □验证性 □综合性 □设计性 □研究性 □创新性					
实 验 目 的及要求	交换机是构建园区网络的常用设备,本实验通过交换机构建局域网,并实现对交换机的配置管理。 1、了解交换机的工作原理; 2、熟悉交换机的基本管理命令; 3、熟悉交换机的接口管理方法; 4、掌握使用交换机构建简单局域网的方法。					
实验仪器、材料			eNSP、 Wire	shark		

实验内容及过程记录

一、任务 1: 在 eNSP 中创建交换机,并对交换机进行基本操作

Step1: 在 eNSP 中创建拓扑,部署一台 S3700 交换机并启动。双击设备打开 CLI 窗口。输入"?"可查看当前视图模式(即用户模式)下,能够使用的命令列表。

```
Tuser view commands:

cd Change current directory

check Check information

clear Clear information

clock Specify the system clock

cluster Run cluster command

cluster-ftp FTF command of cluster

compare Compare function

configuration Configuration interlock

copy Copy from one file to another

debugging Enable system debugging functions

delete Delete a file

dir List files on a file system

display Display current system information

fixdisk Recover lost chains in storage device

format Format the device

ftp Establish an FTP connection

hwtacacs-user

kill Release a user terminal interface

language-mode Specify the language environment

lidp Link Layer Disscovery Frotocol

local-user Add/Delete/Set user(s)

lock Lock the current user terminal interface

kkilr Create a new directory

more Display the connects of a file
```

图 1-1 用户视图模式能够使用的命令列表

Step 2: 进入系统视图:在用户视图下执行"system-view",进入系统视图。同样的可以查看当前视图模式下可使用的命令列表。

图 1-2 系统视图模式能够使用的命令列表

可以比较两个两个视图模式下可以使用的部分命令:

表 1-1 两种视图模式下前四个命令区别

	普通视图		系统视图
cd	Change current directory	aaa	AAA
clear	Clear information	acl	Specify ACL onfiguration information
check	Check information	alarm	Enter the alarm view
clock	Specify the system clock	anti-attack	Specify anti-attack configurations

区别还是很大的,很多命令在普通视图无法完成,但是能在普通视图进行的很多又不能在用户视图中使用。

Step3: 关闭用信息中心

- 1 [Huawei]undo info-center enable
- 2 Info: Information center is disabled.

Step 4: 更改网络设备名字: 在系统视图下, 执行 sysname 命令, 可更改设备名称

- 1 [Huawei]undo info-center enable
- Info: Information center is disabled.
- 3. [Huawei]sysname SW-1

Step 5: 查看交换机当前配置

```
#
sysname SW-1
#
undo info-center enable
#
cluster enable
ntdp enable
ndp enable
ndp enable
diffserv domain default
#
drop-profile default
#
drop-profile default
#
daaa
authentication-scheme default
authorization-scheme default
domain default
domain default
domain default
domain default
authorization-scheme default
accounting-scheme default
domain default
domain default
domain default
domain default-admin
local-user admin password simple admin
local-user admin service-type http
#
----- More -----
```

图 1-3 查看交换机当前配置

Step6: 查看 VLAN 配置: 查看交换机 VLAN 信息,如果不指定参数,则显示所有 VLAN 的信息。

```
[SM-1]display vlan
The total number of vlans is : 1

U: Up; D: Down; TG: Tagged; UT: Untagged;
MP: Vlan-mapping; ST: Vlan-stacking;
‡: ProtocolTransparent-vlan; *: Management-vlan;

VID Type Ports

1 common UT:Eth0/0/1(D) Eth0/0/2(D) Eth0/0/3(D) Eth0/0/4(D) Eth0/0/9(D) Eth0/0/9(D) Eth0/0/1(D) Eth0/0/1(D) Eth0/0/12(D) Eth0/0/13(D) Eth0/0/13(D) Eth0/0/14(D) Eth0/0/15(D) Eth0/0/16(D) Eth0/0/17(D) Eth0/0/12(D) Eth0/0/17(D) Eth0/0/17(D) Eth0/0/12(D) Eth0/0/17(D) Eth0/0/18(D) Eth0/0/19(D) Eth0/0/19(D
```

图 1-4 交换机 VLAN 信息

Step 7: 查看交换机接口信息

(1) 显示所有接口的信息 [SW-1] display interface

```
[SW-1]display interface
Etherneto/0/1 current state : DOWN
Line protocol current state : DOWN
Description:
Switch Fort, FVID : 1, TPID : 8100(Hex), The Maximum Frame Length is 9216
IF Sending Frames' Format is FKTFMT_ETHET_2, Hardware address is 4clf-cc06-0d5b
Last physical down time : 2022-09-19 11:31:08 UTC-08:00
Current system time: 2022-09-19 11:35:07-08:00
Hardware address is 4clf-cc06-0d5b
Last 300 seconds input rate 0 bytes/sec, 0 packets/sec
Last 300 seconds output rate 0 bytes/sec, 0 packets/sec
Input: 0 bytes, 0 packets
Output: 0 bytes, 0 packets
Input:
Unicast: 0 packets, Multicast: 0 packets
Broadcast: 0 packets, Multicast: 0 packets
Broadcast: 0 packets
Input:
Unicast: 0 packets
Input bandwidth utilization : 0%
Output bandwidth utilization : 0%
Etherneto/0/2 current state : DOWN
Line protocol current state : DOWN
Description:
----- More -----
```

图 1-5 所有接口的信息

(2) 显示指定接口的信息 [SW-1]display interface Ethernet0/0/1

```
[SW-1]display interface Ethernet0/0/1
Ethernet0/0/1 current state : DOWN
Line protocol current state : DOWN
Description:
Switch Fort, FVID : 1, TPID : 8100(Hex), The Maximum Frame Length is 9216
IP Sending Frames' Format is PKTFMT_ETHNT_2, Hardware address is 4clf-cc06-0d5b
Last physical down time : 2022-09-19 11:31:08 UTC-08:00
Current system time: 2022-09-19 11:46:55-08:00
Hardware address is 4clf-cc06-0d5b
Last 300 seconds input rate 0 bytes/sec, 0 packets/sec
Last 300 seconds output rate 0 bytes/sec, 0 packets/sec
Input: 0 bytes, 0 packets
Output: 0 bytes, 0 packets
Input:
Unicast: 0 packets, Multicast: 0 packets
Broadcast: 0 packets
Output:
Unicast: 0 packets, Multicast: 0 packets
Broadcast: 0 packets
Input bandwidth utilization : 0%
Output bandwidth utilization : 0%
Output bandwidth utilization : 0%
```

图 1-6 指定接口的信息

(3) 显示当前接口的信息

```
1 //进入 Ethernet0/0/1 接口
2 [SW-1]interface Ethernet0/0/1
3 //显示当前接口的配置信息
4 [SW-1-Ethernet0/0/1]display this
5 #
6 interface Ethernet0/0/1
7 #
8 return
```

Step8: 退出视图、保存配置并重启交换机

```
<SW-l>quit User interface con0 is available

Please Press ENTER.

<SW-l>save
The current configuration will be written to the device.
Are you sure to continue?[Y/N]y
Info: Please input the file name ( *.cfg, *.zip ) [vrpcfg.zip]:
Now saving the current configuration to the slot 0.
Save the configuration successfully.
<SW-l>reboot
Info: The system is now comparing the configuration, please wait.
Info: If want to reboot with saving diagnostic information, input 'N' and then e xecute 'reboot save diagnostic-information'.
System will reboot! Continue?[Y/N]:y
<SW-l>
```

图 1-7 步骤 8 操作

Step9: 重置交换机

- 6 <SW-1>reboot
- 7 Info: The system is now comparing the configuration, please wait.
- 8 Warning: All the configuration will be saved to the configuration file for th e next startup:, Continue?[Y/N]:n
- 9 Info: If want to reboot with saving diagnostic information, input 'N' and the n execute 'reboot save diagnostic-information'.
- 10 System will reboot! Continue?[Y/N]:y
- 11 <SW-1>
- 12 <Huawei>

二、任务 2: 使用交换机构建局域网

Step1: 创建拓扑

图 2-1 在 eNSP 中配置的网络拓扑

记录各主机的 MAC 地址如下表所示:

表 2-1 各主机的 MAC 地址

主机名	MAC 地址
Host-1	54-89-98-10-37-E0
Host-2	54-89-98-32-7A-FF
Host-3	54-89-98-EC-7D-9D
Host-4	54-89-98-D9-36-B9

Step 2: 更改交换机名称

- 1 <Huawei>system-view
- 2 Enter system view, return user view with Ctrl+Z.
- 3 [Huawei]sysname SW-1
- 4 [SW-1]

Step 3: 查看交换机 MAC 地址

(1) 初始状态下查看,发现 MAC 地址表皆为空

[SW-1]display mac-address
[SW-1]

图 2-1 初始状态下查看交换机 MAC 地址表

(2) 从 HOST-1 依次 Ping 其余各 HOST 机后查看交换机 MAC 地址 ①Host-1 依次 ping 其余主机,可见全 ping 通了:

```
PC>ping 192.168.64.12  
Ping 192.168.64.12: 32 data bytes, Press Ctrl_C to break From 192.168.64.12: bytes=32 seq=1 ttl=128 time=47 ms From 192.168.64.12: bytes=32 seq=2 ttl=128 time=47 ms  
--- 192.168.64.12 ping statistics --- 2 packet(s) transmitted  
2 packet(s) received  
0.00% packet loss  
round-trip min/avg/max = 47/47/47 ms  
PC>ping 192.168.64.13  
Ping 192.168.64.13: bytes=32 seq=1 ttl=128 time=47 ms  
Prom 192.168.64.13: bytes=32 seq=2 ttl=128 time=31 ms  
--- 192.168.64.13 ping statistics --- 2 packet(s) transmitted  
2 packet(s) received  
0.00% packet loss  
round-trip min/avg/max = 31/39/47 ms  
PC>ping 192.168.64.14  
Ping 192.168.64.14: 32 data bytes, Press Ctrl_C to break  
Prom 192.168.64.14  
Prom 192.168.64.14  
Ping 192.168.64.14  
Ping 192.168.64.14  
Ping 192.168.64.14  
Ping 192.168.64.15  
PC>ping 192.168.64.16  
PC>ping 192.168.64.17  
PC>ping 192.168.64.19  
PC>ping 192.168.64
```

图 2-2 Host-1 依次 ping 其余主机

②再次查看交换机 MAC 地址表

```
[SW-1]display mac-address
MAC address table of slot 0:

MAC Address VLAN/ PEVLAN CEVLAN Port Type LSP/LSR-ID VSI/SI MAC-Tunnel

5489-98dc-5035 1 - Eth0/0/1 dynamic 0/-
5489-98af-269e 1 - Eth0/0/5 dynamic 0/-
5489-989b-2c17 1 - Eth0/0/2 dynamic 0/-
5489-9892-7668 1 - Eth0/0/6 dynamic 0/-
5489-9892-7668 1 - Eth0/0/6 dynamic 0/-
```

图 2-2 再次查看交换机 MAC 地址表

③将 MAC 地址表与之前记录的各主机 MAC 地址进行比较:

表 2-2 交换机 MAC 地址表

MAC address	VLAN/V SI/SI	Port	Туре	MAC Compare
5489-98D5-690B	1	Eth0/0/1	dynamic	same
5489-9888-781D	1	Eth0/0/2	dynamic	same
5489-9800-6960	1	Eth0/0/5	dynamic	same
5489-9885-1779	1	Eth0/0/6	dynamic	same

可以看出在交换机中已经有了各主机的MAC地址等相关信息。

Step4: 保存拓扑

三、任务 3: 交换机接口的管理

Step1: 配置网络拓扑并规划 IP 地址

图 3-1 拓扑配置

Step 2: 查看交换机 SW-1 接口模式、接口速率信息:

```
[SW-1]display interface Ethernet brief
PHY: Physical
*down: administratively down
(1): loopback
(b): BFD down
InUti/OutUti: input utility/output utility
Interface PHY Auto-Neg Duplex Bandwidth InUti OutUti Trunk
Ethernet0/0/1 up enable half 100M 0% 0% --
Ethernet0/0/3 down enable half 100M 0% 0% --
Ethernet0/0/3 down enable half 100M 0% 0% --
Ethernet0/0/5 down enable half 100M 0% 0% --
Ethernet0/0/5 down enable half 100M 0% 0% --
Ethernet0/0/6 down enable half 100M 0% 0% --
Ethernet0/0/6 down enable half 100M 0% 0% --
Ethernet0/0/7 down enable half 100M 0% 0% --
Ethernet0/0/7 down enable half 100M 0% 0% --
Ethernet0/0/9 down enable half 100M 0% 0% --
Ethernet0/0/9 down enable half 100M 0% 0% --
Ethernet0/0/10 down enable half 100M 0% 0% --
Ethernet0/0/11 down enable half 100M 0% 0% --
Ethernet0/0/12 down enable half 100M 0% 0% --
Ethernet0/0/13 down enable half 100M 0% 0% --
Ethernet0/0/14 down enable half 100M 0% 0% --
Ethernet0/0/15 down enable half 100M 0% 0% --
Ethernet0/0/16 down enable half 100M 0% 0% --
Ethernet0/0/17 down enable half 100M 0% 0% --
Ethernet0/0/18 down enable half 100M 0% 0% --
Ethernet0/0/19 down enable half 100M 0% 0% --
Ethernet0/0/21 down enable half 100M 0% 0% --

Ethernet0/0/21 down enable half 100M 0% 0% --

Ethernet0/0/21 down enable half 100M 0% 0% --

Ethernet0/0/21 down enable half 100M 0% 0% --

Ethernet0/0/21 down enable half 100M 0% 0% --

Ethernet0/0/21 down enable half 100M 0% 0% --

Ethernet0/0/21 down enable half 100M 0% 0% --
```

图 3-2 机 SW-1 接口模式、接口速率信息

Step 3: 配置交换机 SW-1 GigabitEthernet 0/0/1 接口和 Ethernet 0/0/1 接口

① SW-1 GigabitEthernet0/0/1 的配置

```
[SW-1]interface GigabitEthernet0/0/1

[SW-1-GigabitEthernet0/0/1]descrip

[SW-1-GigabitEthernet0/0/1]description To_SW-2

[SW-1-GigabitEthernet0/0/1]undo nego

[SW-1-GigabitEthernet0/0/1]undo negotiation auto

[SW-1-GigabitEthernet0/0/1]duplex full

[SW-1-GigabitEthernet0/0/1]speed 100

[SW-1-GigabitEthernet0/0/1]flow-control
```

图 3-3 GigabitEthernet0/0/1 的配置过程

```
[SW-1-GigabitEthernet0/0/1]display this
#
interface GigabitEthernet0/0/1
port media type copper
  flow-control
description To_SW-2
#
return
```

图 3-4 查看 GigabitEthernet0/0/1 的配置结果

②SW-1 Ethernet 0/0/1 的配置

```
[SW-1]inter

[SW-1]interface Ethernet 0/0/1

[SW-1-Ethernet0/0/1]descr

[SW-1-Ethernet0/0/1]description To_Host-1

[SW-1-Ethernet0/0/1]undo negotiation auto

[SW-1-Ethernet0/0/1]duplex full

[SW-1-Ethernet0/0/1]speed 100

[SW-1-Ethernet0/0/1]flow-control

[SW-1-Ethernet0/0/1]display this
```

图 3-5 Ethernet 0/0/1 的配置过程

```
[SW-1-GigabitEthernet0/0/1]display this
#
interface GigabitEthernet0/0/1
port media type copper
  flow-control
description To_SW-2
#
return
```

图 3-6 查看 Ethernet 0/0/1 的配置结果

四、任务 4: 交换机的高级管理

Step 1: 配置网络拓扑并规划 IP 地址

图 4-1 网络拓扑

Step 2: 关闭指定接口的 MAC 地址学习功能并测试通信情况

①绑定前 Host-1 与 Host-2 的通信测试

```
PC>ping 192.168.64.13: 32 data bytes, Press Ctrl_C to break From 192.168.64.13: bytes=32 seq=1 ttl=128 time=63 ms From 192.168.64.13: bytes=32 seq=2 ttl=128 time=62 ms From 192.168.64.13: bytes=32 seq=3 ttl=128 time=47 ms --- 192.168.64.13 ping statistics --- 3 packet(s) transmitted 3 packet(s) received 0.00% packet loss round-trip min/avg/max = 47/57/63 ms PC>ping 192.168.64.14

Ping 192.168.64.14: 32 data bytes, Press Ctrl_C to break From 192.168.64.14: bytes=32 seq=1 ttl=128 time=62 ms From 192.168.64.14: bytes=32 seq=2 ttl=128 time=78 ms --- 192.168.64.14 ping statistics --- 2 packet(s) transmitted 2 packet(s) received 0.00% packet loss round-trip min/avg/max = 62/70/78 ms
```

图 4-2 绑定前 Host-1 ping Host-3/Host-4

```
PC>ping 192.168.64.13: 32 data bytes, Press Ctrl_C to break From 192.168.64.13: bytes=32 seq=1 ttl=128 time=78 ms

--- 192.168.64.13 ping statistics ---
1 packet(s) transmitted
1 packet(s) received
0.00% packet loss
round-trip min/avg/max = 78/78/78 ms

PC>ping 192.168.64.14

Ping 192.168.64.14: 32 data bytes, Press Ctrl_C to break From 192.168.64.14: bytes=32 seq=1 ttl=128 time=47 ms

--- 192.168.64.14 ping statistics ---
1 packet(s) transmitted
1 packet(s) received
0.00% packet loss
round-trip min/avg/max = 47/47/47 ms
```

图 4-3 绑定前 Host-2 ping Host-3/Host-4

具体结果如下表所示:

表 4-1Host-1 与 Host-2 的通信测试结果

序号	源主机	目的主机	通信结果
1	Host-1	Host-3	通
2	Host-1	Host-4	通
3	Host-2	Host-3	通
4	Host-2	Host-4	通

可见此时通信正常。

此时查看交换机 SW-1 的 MAC 地址表:

图 4-4 SW-1 的 MAC 地址表

- ②关闭 SW-1 指定接口的 MAC 地址学习功能
- (1) 关闭 Ethernet0/0/1 接口的 MAC 地址学习功能
- 1 [SW-1]interface Ethernet0/0/1
 - [SW-1-Ethernet0/0/1]mac-address learning disable action discard
- 3 [SW-1-Ethernet0/0/1]quit
- 4 [SW-1]
 - (2) 关闭 Ethernet0/0/2[~]Ethernet0/0/22 接口的 MAC 地址学习功能 重复上述操作,关闭接口 Ethernet 0/0/2~Ethernet 0/0/10 的 MAC 地址学习功能。

图 4-5 关闭 Ethernet0/0/2~Ethernet0/0/22 接口的 MAC 地址学习功能的部分操作

②重启交换机并重新测试网络连通性

使用 Ping 命令进行通信测试,验证当前 Host-1、Host-2 的通信情况:

```
PC>ping 192.168.64.13: 32 data bytes, Press Ctrl_C to break From 192.168.64.11: Destination host unreachable From 192.168.64.11: Destination host unreachable --- 192.168.64.13 ping statistics --- 2 packet(s) transmitted 0 packet(s) received 100.00% packet loss
PC>ping 192.168.64.14
Ping 192.168.64.14: 32 data bytes, Press Ctrl_C to break From 192.168.64.11: Destination host unreachable --- 192.168.64.11: Destination host unreachable --- 192.168.64.14 ping statistics --- 2 packet(s) transmitted 0 packet(s) received 100.00% packet loss
```

图 4-6 关闭学习功能并清除动态表项后 Host-1 的通信结果

```
PC>ping 192.168.64.14: 32 data bytes, Press Ctrl_C to break
From 192.168.64.12: Destination host unreachable
From 192.168.64.12: Destination host unreachable
From 192.168.64.12: Destination host unreachable
From 192.168.64.14: ping statistics ---
3 packet(s) transmitted
0 packet(s) received
100.009 packet loss
PC>ping 192.168.64.13
Fing 192.168.64.13: 32 data bytes, Press Ctrl_C to break
From 192.168.64.12: Destination host unreachable
--- 192.168.64.13 ping statistics ---
3 packet(s) transmitted
0 packet(s) received
100.00% packet loss
PC>
```

图 4-7 关闭学习功能并清除动态表项后 Host-2 的通信结果

明显可见如下结果:

表 4-2 关闭学习功能后 Host-1 与 Host-2 的通信测试结果

序号	源主机	目的主机	通信结果
1	Host−1	Host-3	不通
2	Host-1	Host-4	不通
3	Host-2	Host-3	不通
4	Host-2	Host-4	不通

Step 3: 将 Host-1 的 MAC 地址与 Ethernet 0/0/1 接口绑定

1 [SW-1]mac-address static 5489-9810-37e0 Ethernet0/0/1 vlan 1

查看 SW-1 当前的 MAC 地址表:

图 4-8 Host-1 的 MAC 地址与 Ethernet0/0/1 接口绑定后 SW-1 的 MAC 地址表

Step 4:测试网络通信情况

① 使用 Ping 命令进行网络通信测试,验证当前 Host-1、Host-2 的通信情况

```
PC>ping 192.168.64.13

Ping 192.168.64.13: 32 data bytes, Press Ctrl_C to break From 192.168.64.13: bytes=32 seq=1 ttl=128 time=63 ms

From 192.168.64.13: bytes=32 seq=2 ttl=128 time=63 ms

--- 192.168.64.13 ping statistics ---
2 packet(s) transmitted
2 packet(s) received
0.00% packet loss
round-trip min/avg/max = 63/63/63 ms

PC>ping 192.168.64.14

Ping 192.168.64.14: 32 data bytes, Press Ctrl_C to break From 192.168.64.14: bytes=32 seq=1 ttl=128 time=63 ms

--- 192.168.64.14 ping statistics ---
2 packet(s) transmitted
1 packet(s) received
50.00% packet loss
round-trip min/avg/max = 63/63/63 ms
```

图 4-9 绑定端口后 Host-1 的通信结果

```
PC>ping 192.168.64.14

Ping 192.168.64.14: 32 data bytes, Press Ctrl_C to break
From 192.168.64.12: Destination host unreachable
From 192.168.64.12: Destination host unreachable
From 192.168.64.12: Destination host unreachable
--- 192.168.64.14 ping statistics ---
3 packet(s) transmitted
0 packet(s) traceived
100.00% packet loss
PC>ping 192.168.64.13

Ping 192.168.64.13: 32 data bytes, Press Ctrl_C to break
From 192.168.64.12: Destination host unreachable
From 192.168.64.12: Destination host unreachable
From 192.168.64.12: Destination host unreachable
From 192.168.64.13 ping statistics ---
3 packet(s) transmitted
0 packet(s) transmitted
100.00% packet loss
PC>
```

图 4-10 同时 Host-2 的通信结果

序号	源主机	目的主机	通信结果
1	Host−1	Host-3	通
2	Host-1	Host-4	通
3	Host-2	Host-3	不通
4	Host-2	Host-4	不通

②将 Host-1 接入到 SW-1 的 8 号接口,再次测试通信情况

表 4-4 更换 Host-1 的接入位置后 Host-1 与 Host-2 的通信测试结果

序号	源主机	目的主机	通信结果
1	Host−1	Host-3	不通
2	Host-1	Host-4	不通
3	Host-2	Host-3	不通
4	Host-2	Host-4	不通

可见 Host-1 只能在 Ethernet 0/0/1 端口进行通信。

Step 5: 在交换机上配置生成树协议。

①恢复交换机 SW-1 的初始设置,在交换机之间增加链路。

图 4-11 在 SW-1 和 SW-2 间加一条链路

②关闭 SW-1 和 SW-2 的生成树协议并测试通信结果

表 4-8 关闭生成树协议通信测试结果

序号	源主机	目的主机	通信结果
1	Host−1	Host-2	不通
2	Host-1	Host-3	不通
3	Host-2	Host-4	不通

③查看 SW-1 的 GE 0/0/1 接口信息

```
[SW-1]display interface GigabitEthernet 0/0/1
GigabitEthernet0/0/1 current state : UP
Line protocool current state : UP
Description:
Switch Port, PVID : 1, TPID : 8100 (Hex), The Maximum Frame Length is 9216
IP Sending Frames' Format is PKTFMT ETHNT 2, Hardware address is 4clf-cc4e-4bdl
Last physical up time : 2022-09-19 14:49:49 UTC-08:00
Last physical down time : 2022-09-19 14:49:47 UTC-08:00
Current system time: 2022-09-19 14:49:17 UTC-08:00
Hardware address is 4clf-cc4e-4bdl
Last 300 seconds input rate 0 bytes/sec, 0 packets/sec
Last 300 seconds output rate 0 bytes/sec, 0 packets/sec
Input: 31447507 bytes, 523762 packets
Output: 47489497 bytes, 791063 packets
Input:
Unicast: 521882 packets, Multicast: 15 packets
Broadcast: 1865 packets
Output:
Unicast: 789161 packets, Multicast: 1902 packets
Broadcast: 0 packets
Input bandwidth utilization : 04
Output bandwidth utilization : 04
```

图 4-12 SW-1 的 GE 0/0/1 接口信息

可以看到,在交换机 SW-1 的 GE 0/0/1 接口上出现大量的数据流,同时输入命令时有明显卡顿现象。查看 SW-1 的 GE 0/0/2 接口、SW-2 的 GE 0/0/1 和 GE 0/0/2 接口,也有这种现象。

④在 SW-1 的 GE 0/0/1 接口进行抓包

图 4-13 在 SW-1 的 GE 0/0/1 接口进行抓包

由此可见,交换机间采用双链路通信时,如果关闭生成树协议,交换机间会出现广播包环路,严重消耗网络资源,最终导致整个网络资源被耗尽,网络瘫痪不可用。

Step6: 在交换机之间实现链路聚合

进行链路聚合后 SW-1 中的 MAC 地址表如下:

图 4-14 链路聚合后 SW-1 中的 MAC 地址表

同时测试网络功能:

表 4-9 链路聚合后通信测试

序号	源主机	目的主机	通信结果
1	Host−1	Host-2	通
2	Host−1	Host−3	通
3	Host-2	Host-4	通

Step 7: 保存拓扑图并关闭。

实验总结与体会								
这次试验花了挺长时间,主要还是对知识不熟悉。但至少搞清楚了 MAC 地址和 ip 地址之间的区别和关系。这次只是一个简单的局域网,以后还有更复杂的网络,希望能有更多机会动手实践。多做几次发现这个其实真的还挺有趣。 收获什么的都是空话套话,不过这次至少我还明白了可以通过交换机接口与指定 MAC 地								
 址绑定, 来实现对接入设备的控制。								
教师评语								
实验成绩	□优	□良	□中	□及格	□不及格	得分:		