Assessment Schedule – 2022

Calculus: Apply integration methods in solving problems (91579)

Evidence Statement

	Expected coverage	Achievement (u)	Merit (r)	Excellence (t)
ONE (a)	$4\ln x - \tan x + c$	Correct integral.		
(b)	6.4	Correct solution.		
(c)	$\int_{0}^{\frac{\pi}{4}} \sin^{2}(2x) dx$ $= \int_{0}^{\frac{\pi}{4}} \left(\frac{1}{2} - \frac{1}{2}\cos(4x)\right) dx$ $= \left[\frac{x}{2} - \frac{1}{8}\sin 4x\right]_{0}^{\frac{\pi}{4}}$ $= \left(\frac{\pi}{8} - \frac{1}{8}\sin \pi\right) - (0 - 0)$ $= \frac{\pi}{8}$	Correct integral.	Correct solution with correct integral. Accept 0.393.	
(d)	$y = \frac{4}{\sqrt{3x - 2}} = 4(3x - 2)^{\frac{-1}{2}}$ $Area = \int_{1}^{k} 4(3x - 2)^{\frac{-1}{2}} dx$ $= \left[\frac{8}{3}(3x - 2)^{\frac{1}{2}}\right]_{1}^{k}$ $= \frac{8}{3}\sqrt{3k - 2} - \frac{8}{3} \times 1 = 8$ $\sqrt{3k - 2} - 1 = 3$ $\sqrt{3k - 2} = 4$ $3k - 2 = 16$ $k = 6$	Correct integral.	Correct solution with correct integral.	

(e)	Limits of integration $(e^{x})^{2} = 3e^{x} + 10$ $(e^{x})^{2} - 3e^{x} - 10 = 0$	Correct integral expression for area with correct limits and e^{2x} .	Correct integration.	Correct solution with correct integration.
	$(e^{x} - 5)(e^{x} + 2) = 0$ $e^{x} = 5$ or $e^{x} = -2$ no			
	$x = \ln 5$			
	Area = $\int_0^{\ln 5} (3e^x + 10) dx - \int_0^{\ln 5} e^{2x} dx$ = $\int_0^{\ln 5} (3e^x + 10 - e^{2x}) dx$			
	$= \left[3e^x + 10x - \frac{e^{2x}}{2} \right]_0^{\ln 5}$			
	$= \left(3e^{\ln 5} + 10\ln 5 - \frac{e^{2\ln 5}}{2}\right) - \left(3 + 0 - \frac{1}{2}\right)$			
	$= (15 + 10 \ln 5 - 12.5) - 2.5$			
	$=10\ln 5$			

NØ	N1	N2	A3	A4	M5	M6	E7	E8
No response; no relevant evidence.	ONE partial solution.	1u	2u	3u	1r	2r	1t with minor error(s).	1t

	Expected coverage	Achievement (u)	Merit (r)	Excellence (t)
TWO (a)	$\frac{e^{3x}}{3} - \frac{2}{3}x^{\frac{3}{2}} + c$	Correct integral.		
(b)	$\int_{1}^{k} \frac{2}{\sqrt{x}} dx = 8$ $\int_{1}^{k} 2x^{-\frac{1}{2}} dx = 8$ $\left[4\sqrt{x}\right]_{1}^{k} = 8$ $4\sqrt{k} - 4 = 8$ $4\sqrt{k} = 12$ $\sqrt{k} = 3$ $k = 9$	Correct solution with correct integral.		
(c)	$\frac{dy}{dx} = \frac{1}{3y^2(x-1)}$ $\int 3y^2 dy = \int \frac{1}{x-1} dx$ $y^3 = \ln x-1 + c$ $x = 2, y = -1$ $-1 = \ln(1) + c$ $c = -1$ When $y = 1$ $1 = \ln(x-1) - 1$ $\ln(x-1) = 2$ $x = e^2 + 1 (= 8.389)$	Correct integration.	Correct solution with correct integral.	
(d)	$a(t) = 0.9e^{0.3t}$ $v(t) = 3e^{0.3t} + c$ When $t = 2$, $v = 10$ $10 = 3e^{0.6} + c$ $c = 4.534$ $v(t) = 3e^{0.3t} + 4.534$ Distance travelled in 5th second of motion $= \int_{4}^{5} (3e^{0.3t} + 4.534) dt$ $= \left[10e^{0.3t} + 4.534t\right]_{4}^{5}$ $= (10e^{1.5} + 4.534 \times 5) - (10e^{1.2} + 4.534 \times s4)$ $= 16.1497 \text{ m}$	Correct equation for v.	Correct solution with correct integrals.	

(e)	$\frac{\mathrm{d}h}{\mathrm{d}t} = \frac{-1}{4}\sqrt{(h-6)^3}$	Correct integral wrt <i>h</i> .	Correct solution of DE.	Correct solution of problem with all integrals correct.
	$\int (h-6)^{\frac{-3}{2}} dh = \int \frac{-1}{4} dt$			integrals correct.
	$-2(h-6)^{-\frac{1}{2}} = \frac{-t}{4} + c$			
	$(h-6)^{\frac{-1}{2}} = \frac{t}{8} + k$			
	$\frac{1}{\sqrt{h-6}} = \frac{t}{8} + k$			
	When $t = 0$, $h = 150$ $\frac{1}{\sqrt{144}} = k$			
	$k = \frac{1}{12}$			
	$\frac{1}{\sqrt{h-6}} = \frac{t}{8} + \frac{1}{12}$			
	$h = 15$ $\frac{1}{\sqrt{9}} = \frac{t}{8} + \frac{1}{12}$			
	$\frac{t}{8} = \frac{1}{4}$			
	t=2			

NØ	N1	N2	A3	A4	M5	M6	E7	E8
No response; no relevant evidence.	ONE partial solution.	1u	2u	3u	1r	2r	1t with minor error(s).	1t

	Expected coverage	Achievement (u)	Merit (r)	Excellence (t)
THREE (a)	$\frac{1}{8}(2x+5)^4+c$	Correct integral.		
(b)	8.92	Correct solution.		
(c)	$\int_{5}^{8} \frac{4x - 5}{x - 3} dx$ $\frac{4x - 5}{x - 3} = 4 + \frac{7}{x - 3}$ $\int_{5}^{8} \frac{4x - 5}{x - 3} dx = \int_{5}^{8} \left(4 + \frac{7}{x - 3}\right) dx$ $= \left[4x + 7\ln x - 3 \right]_{5}^{8}$ $= (32 + 7\ln 5) - (20 + 7\ln 2)$ $= 18.41$	Correct integral.	Correct solution with correct integral.	
(d)	Limits of integration $x = x + \cos x$ $\cos x = 0$ $x = \frac{-\pi}{2}, \frac{\pi}{2}$ $Area = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} (x + \cos x) dx - \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} x dx$ $= \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} (\cos x) dx$ $= \left[\sin x \right]_{-\frac{\pi}{2}}^{\frac{\pi}{2}}$ $= 11$ $= 2$	Correct integral.	Correct solution with correct integral.	
(e)	Area of rectangle = $2k \times \frac{2}{k} = 4$ Area under curve = $\int_{k}^{3k} \frac{2}{x} dx$ = $\left[2 \ln x\right]_{k}^{3k}$ = $2 \ln 3k - 2 \ln k$ = $\ln 9k^2 - \ln k^2$ = $\ln \left(\frac{9k^2}{k^2}\right)$ = $\ln 9$ Shaded area = $4 - \ln 9$ a = 4, b = -1, and $c = 9$.	Correct integration.	Correct area under curve with correct integration.	Correct solution. Accept 4-ln9. Accept 4-2ln3.

NCEA Level 3 Calculus (91579) 2022 — page 6 of 6

NØ	N1	N2	A3	A4	M5	M6	E7	E8
No response; no relevant evidence.	ONE partial solution.	1u	2u	3u	1r	2r	1t with minor error(s).	1t

Cut Scores

Not Achieved	Achievement	Achievement with Merit	Achievement with Excellence	
0 – 7	8 – 14	15 – 20	21 – 24	