Continuous Assessment Test - II

Programme Name & Branch: B. Tech.

Course Name & Code: <u>Applied Linear Algebra – MAT3004</u> Slot: <u>Cl+TCl+TCCl+V2</u>

Class Number(s): VL2018195000777

Exam Duration: 90 minutes

4

Maximum Marks: 50

Answer All the Questions $(5 \times 10 = 50)$

S. No.	Question	
	Let $A = \begin{pmatrix} 1 & -1 & 2 & 0 \\ 2 & -2 & 4 & 0 \\ 3 & -3 & 7 & 0 \end{pmatrix}$ Find a basis for the column space $C(A)$.	
X.	(1) Find a basis for the null space $N(A)$.	(3)
	Write the complete solution to $Ax = b$, where $b = \begin{pmatrix} 1 \\ 2 \\ 4 \end{pmatrix}$	(4)
	Show that the column space of the matrix A is $\{(x,y,z) \in \mathbb{R}^3 : x+y+z=0\}$, where $A = \begin{pmatrix} 1 & -1 & 0 \\ 0 & 1 & 0 \\ -1 & 0 & 0 \end{pmatrix}$.	(4)
	State the condition for a $m \times n$ matrix to have a left inverse. Find at least two left inverse of the matrix $A = \begin{pmatrix} -3 & -4 \\ 4 & 6 \\ 1 & 1 \end{pmatrix}$ if it exists.	(6)
10	p(x) = p(x + 1). Show that T is linear. b) Find the kernel of T and nullity of T. Write the matrix for T.	(2) (3) (5)
1		100
tb	Complete the following sentences appropriately for a 3 × 3 matrix. If the column space is a plane, the null space is a If the column space is a line, the null space is a If the column space is all of R³, the null space is a If the column space is the zero vector, the null space is a Find a 7 × 7 matrix A whose column space equals it null space, or argue briefly it cannot exist.	(4)
Let T: and T(If the column space is a line, the null space is a If the column space is all of R ³ , the null space is a If the column space is all of R ³ , the null space is a If the column space is the zero vector, the null space is a Find a 7 × 7 matrix A whose column space equals it mall space are as a line.	