

Applied Categorical & Nonnormal Data Analysis

Quantile Regression

By now you are familiar with OLS regression, a least squares criterion is not the only way to do regression. We could look at the absolute deviations from some point estimate, say the median. We would be trying to obtain the minimum absolute deviations (MAD).

According to Koenker (2000), quantile regression is a statistical technique intended to estimate and conduct inference about conditional quantile functions. Quantile regression methods offer a mechanism for estimationg the conditional median function in addition to other conditional quantile functions. Ordinary least squares regression asks the question "How does the conditional mean of Y depend on the covariates X?" Quantile regression asks this question at each quantile of the conditional distribution giving a more complete description of how the conditional distribution of Y given Y

In Stata this can be done using the **qreg** command. Here are some quantile regressions using the **hsb2** dataset.

use http://www.gseis.ucla.edu/courses/data/hsb2, clear

tabstat write, by(female) stat(n p25 p50 p75)

Summary for variables: write by categories of: female

female	N	p25	p50	p75
male female	91 109	41 50	52 57	59 62
Total	200	45.5	54	60

graph box write, over(female)

qreg write female, quan(.25) nolog

.25 Quantile Raw sum of		1222 E / about	- 45)	Nu	umber of	obs =	200
Min sum of		1333.5 (about 1243	. 43)	Ps	seudo R2	=	0.0679
write	Coef.	Std. Err.	t	P> t	[95%	Conf.	Interval]
female _cons	9 41	1.797523 1.287262	5.01 31.85	0.000 0.000	5.455 38.4		12.54475 43.5385

qreg write female, quan(.50) nolog

Median regres Raw sum of		1571 (about	: 54)	Nur	200	
Min sum of	deviations	1536		Pse	eudo R2 =	0.0223
write	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
female _cons	5 52	2.611711 1.927268	1.91 26.98	0.057 0.000	1503393 48.19939	10.15034 55.80061

qreg write female, quan(.75) nolog

.75 Quantile regression Raw sum of deviations		1084.5 (about	F 60)	Nu	mber of obs =	200
Min sum of		1060	. 007	Ps	eudo R2 =	0.0226
write	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
female _cons	3 59	1.23163 .9385943	2.44 62.86	0.016 0.000	.5712036 57.14908	5.428796 60.85092

list write in 10/14

	+			
	write 			
10. 11. 12. 13.	55 46 65 60 63			

replace write = 600 in 13
(1 real change made)

qreg write female, quan(.5) nolog

n regress	sion deviations	2111 (abou	+ 54)	Nι	umber of obs =	200
 	deviations	2076	C 34)	Ps	seudo R2 =	0.0166
 write	 Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
 female _cons	5 52	2.611711 1.927268	1.91 26.98	0.057 0.000	1503393 48.19939	10.15034 55.80061

replace write = 6000 in 13
(1 real change made)

qreg write female, quan(.5) nolog

Median regress Raw sum of o Min sum of o	deviations	7511 (abou 7476	t 54)		Number of o Pseudo R2	obs = =	200 0.0047
write	 Coef.	Std. Err.	t	P> t	 [95% (Conf.	Interval]
female _cons	 5 52	2.611711 1.927268	1.91 26.98	0.057 0.000			10.15034 55.80061

replace write =6000 if write>=60 (52 real changes made)

qreg write female, quan(.5) nolog

М	edian regres Raw sum of		316210 (abou	ı+ 5 <i>1</i>)	N	umber of ob	s =	200
	Min sum of		316175	10 54)	Р	seudo R2	=	0.0001
_	write	Coef.	Std. Err.	t	P> t	[95% Cd	onf.	Interval]
_	female	-	2.611711 1.927268	1.91 26.98	0.057 0.000	150339 48.1993	-	10.15034 55.80061

11n	7	v,	r	1.1	ır.	. +	_

						•		
Variable	n	Mean 	S.D.	Min 	. 25	Mdn 	. 75	Max
write	200	1625.97	2633.00	31.00	45.50	54.00	5000.00	6000.00

Note that increasing values greater than the median did not change the coefficients for the median regression.

We need to reload the data because of the changes that were made.

use http://www.gseis.ucla.edu/courses/data/hsb2, clear

tabstat write, by(prog) stat(n p25 median p75)

Summary for variables: write

by categories of: prog (type of program)

prog	N	p25	p50	p75
general academic vocation	45 105 50	44 52 40	54 59 46	59 62 54
Total	200	45 . 5	54	60

sort prog graph write, box by(prog)

xi: qreg write i.prog, quant(.50) nolog

(naturally coded; _Iprog_1 omitted) i.prog _Iprog_1-3

Median regression		Number of obs =	200
Raw sum of deviations Min sum of deviations	1571 (about 54) 1364	Pseudo R2 =	0.1318

 write	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
 _Iprog_2	5	1.955055	2.56	0.011	1.144477	8.855523
_Iprog_3	-8	2.302537	-3.47	0.001	-12.54079	-3.459214
_cons	54	1.646609	32.79	0.000	50.75276	57.24724

test _Iprog_2 _Iprog_3

$$F(2, 197) = 23.00$$

 $Prob > F = 0.0000$

(naturally coded; _Iprog_1 omitted)

.25 Quantile	regression			Number	of	obs	=	200
Raw sum of	deviations	1333.5 (abo	out 45)					
Min sum of	deviations	1159.5		Pseudo	R2		=	0.1305

write	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
_Iprog_2	8	2.717471	2.94	0.004	2.640933	13.35907
_Iprog_3	-4	3.262362	-1.23	0.222	-10.43364	2.433635
_cons	44	2.229953	19.73	0.000	39.60236	48.39764

test _Iprog_2 _Iprog_3

- _Iprog_2 = 0.0 _Iprog_3 = 0.0 (2)

$$F(2, 197) = 10.37$$

 $Prob > F = 0.0000$

xi: qreg write i.prog, quant(.75) nolog i.prog _Iprog_1-3 (

_Iprog_1-3 (naturally coded; _Iprog_1 omitted)

.75 Quantile regression
Raw sum of deviations
Min sum of deviations
993

Number of obs = 200

Raw sum of deviations
993

Pseudo R2 = 0.0844

write	Coef.	Std. Err.	t	P> t	[95% Conf.	. Interval]
_Iprog_2		1.576171	1.90	0.058	1083338	6.108334
_Iprog_3		1.888316	-2.65	0.009	-8.723908	-1.276092
_cons		1.284961	45.92	0.000	56.46595	61.53405

test _Iprog_2 _Iprog_3

$$F(2, 197) = 11.72$$

 $Prob > F = 0.0000$

We have been using dummy (indicator) coding for the categorical variable. There are other possible codings that we could use. For this example, I would like to use a coding that compares general with vocational and one that compares the average of general and vocational with academic. We can create the coding using variable characteristics in Stata and apply them to the model using the **xi3** command available for ATS via the Internet.

findit xi3

char prog[user] $(1 \ 0 \ -1 \ \setminus \ -.5 \ 1 \ -.5)$

xi3: qreg write u.prog, nolog
u.prog __Iprog_1-3

(naturally coded; _Iprog_3 omitted)

Median regression
Raw sum of deviations
Min sum of deviations
1571 (about 54)
Pseudo R2 = 0.1318

write	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
_Iprog_1		2.302537	3.47	0.001	3.459214	12.54079
_Iprog_2		1.560877	5.77	0.000	5.921826	12.07817
_cons		.8441035	62.79	0.000	51.33536	54.66464

In this next series of analyses we will look at models which include an interaction. We will use the variables **female** and **socst** and create an interaction **fxs**.

generate fxs = female*socst

qreg write female socst fxs, quant(.50) nolog

Median regression Number of obs = 200 Raw sum of deviations 1571 (about 54) Min sum of deviations 1170.167 Pseudo R2 = 0.2551

 write	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
female socst fxs _cons	.6666667 1666667	11.8569 .1567594 .2210759 8.357237		0.256 0.000 0.452 0.074	-9.883489 .357515 6026596 -1.481651	36.88349 .9758183 .2693262 31.48165

qreg write female socst fxs, quant(.25) nolog

.25 Quantile regression Raw sum of deviations 1333.5 (about 45)
Min sum of deviations 895 Pseudo R2 = 0.3288

write	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
female	9.1	5.512101	1.65	0.100	-1.770642	19.97064
socst	.7	.0696054	10.06	0.000	.5627283	.8372717
fxs	1	.1014278	-0.99	0.325	3000299	.1000299
_cons	9.3	3.770638	2.47	0.015	1.863769	16.73623

qreg write female socst fxs, quant(.75) nolog

.75 Quantile regress	ion	Number of	obs =	200
Raw sum of deviati	ons 1084.5 (about 60)			
Min sum of deviati	ons 866.3857	Pseudo R2	=	0.2011

write	Coef.	Std. Err.	t	P> t	[95% Conf	. Interval]
female socst fxs _cons	6 3142857	.0689976 .1016025	3.72 8.70 -3.09 6.69	0.000 0.000 0.002 0.000	9.536281 .4639269 5146602 17.2064	31.09229 .7360731 1139111 31.5936

Next, we will take a look at the same model using an alternative coding scheme involving the difference between the groups and the grand median.

xi3: qreg write e.female*socst, quan(.5) nolog

_Ifemale_0-1 d.female (naturally coded; _Ifemale_0 omitted)

(coded as above) d.female*socst _IfemXsocst_#

Median regression		Number of ob	s =	200
Raw sum of deviations	1571 (about 54)			
Min sum of deviations	1170.167	Pseudo R2	=	0.2551

write	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
_Ifemale_1	.5833333	5.928452	1.14	0.256	-4.941744	18.44174
socst		.110538	5.28	0.000	.3653369	.8013298
_IfemXsocs~1		.110538	-0.75	0.452	3013298	.1346631
_cons		5.928452	3.67	0.000	10.05826	33.44174

describe _Ifemale_1

variable name	9	display format	value label	variable label
Ifemale 1	byte	%8 . 0q		female(1 vs. grand mean)

tabulate _Ifemale_1

female(1 vs. grand mean)	Freq.	Percent	Cum.
-1 1	91 109	45.50 54.50	45.50 100.00
Total	200	100.00	

xi3: qreg write e.female*socst, quan(.25) nolog

_Ifemale_0-1 _IfemXsocst_# (naturally coded; _Ifemale_0 omitted) d.female d.female*socst (coded as above)

.25 Quantile regression		Number of obs	=	200
Raw sum of deviations	1333.5 (about 45)			
Min sum of deviations	895	Pseudo R2	=	0.3288

write	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
_Ifemale_1	.65	2.756051	1.65	0.100	885321	9.985321
socst		.0507139	12.82	0.000	.5499851	.7500149
_IfemXsocs~1		.0507139	-0.99	0.325	1500149	.0500149

_cons	13.85	2.756051	5.03	0.000	8.414679	19.28532
<pre>xi3: qreg write 3.female*socst, quan(.75) nolog d.female</pre>						
.75 Quantile	regression deviations	1001 E (abou	ı+ 60\	Nu	umber of obs =	200
	deviations 86		11 00)	P:	seudo R2 =	0.2011
write	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
_Ifemale_1 socst _IfemXsocs~1 _cons	.4428572 1571428		3.72 8.72 -3.09 12.65		4.76814 .3426699 2573301 29.16814	

Categorical Data Analysis Course

<u>Phil Ender</u> -- 5/15/04