Question 1

The burning of ³He in the vicinity of the H-burning shell may drive thermohaline mixing (salt-fingering convection) in the radiative zone of a low-mass upper RGB star? Estimate the maximum relative decrease of the mean molecular weight $(\Delta \mu/\mu)$ resulting from the reaction ³He(³He,2p)⁴He in the H-rich layer adjacent to the H-burning shell, where X=0.70, Y=0.28, and Z=0.014, for the mass fraction of ³He in the radiative zone equal to 0.006, assuming that all that mass fraction of ³He is consumed there.

Question 2

Write a system of differential equations that describe the evolution (changes with time) of the 12 C, 13 C, 14 N, and 15 N isotopic abundances, $y_i = X_i/A_i$ (mole g⁻¹), occurring in the first CNO cycle, 12 C(p, γ) 13 N(e^{+ ν}) 13 C(p, γ) 14 N(p, γ) 15 O(e^{+ ν}) 15 N(p, α) 12 C (also known as the CN branch). Assume that the positron decays of 13 N and 15 O are instantaneous. Use these equations to show that the total mass fraction of the CN isotopes is conserved and to find the equilibrium (when all the time derivatives are zero, and the abundances do not change) isotopic ratio $y(^{12}$ C)/ $y(^{13}$ C) at $T = 25 \times 10^6$ K. To answer the last question, use the NACRE adopted rates $\lambda_1 = \langle \sigma v \rangle_1 N_A = 1.28 \times 10^{-12}$ (cm³ s⁻¹ mole⁻¹) and $\lambda_2 = \langle \sigma v \rangle_2 N_A = 5.18 \times 10^{-12}$ (cm³ s⁻¹ mole⁻¹) for the reactions 12 C(p, γ) 13 N and 13 C(p, γ) 14 N, respectively, at this temperature.