A. Kapanowski

Fizyka - ćwiczenia nr 9

29 kwietnia 2024

Zadanie 1. Ile ciepła musi pobrać lód o masie m=1kg i temperaturze $t_1=-10^{\circ}C$, aby zamienił się w wodę o temperaturze $t_3=15^{\circ}C$. Ciepło właściwe lodu wynosi $c_l=2220\frac{J}{kg\,K}$, ciepło topnienia lodu wynosi $L=333\frac{kJ}{kg}$, ciepło właściwe wody wynosi $c_w=4190\frac{J}{kg\,K}$.

Zadanie 2. Ze zbiornika o temperaturze $t_1=20^{\circ}C$ przepływa ciepło do zbiornika o temperaturze $t_2=-20^{\circ}C$. Pomiędzy zbiornikami są dwie płyty ceglana i styropianowa o grubościach odpowiednio $L_1=20\,cm$ i $L_2=10\,cm$ i współczynnikach przewodnictwa cieplnego $\kappa_1=0.8\frac{W}{mK}$ i $\kappa_2=0.036\frac{W}{mK}$. Znaleźć temperaturę na styku płyt przy założeniu stacjonarnego przepływu ciepła.

Zadanie 3. Obliczyć moc promieniowania cieplnego emitowanego przez ciało doskonale czarne w postaci kostki o boku $10\,cm$ i temperaturze $36.6^{\circ}C$.

Zadanie 4. W cylindrze znajduje się 12 litrów tlenu o temperaturze $20^{\circ}C$ pod ciśnieniem 15 atmosfer. Następnie gaz ogrzewamy do temperatury $35^{\circ}C$ i sprężamy do objętości 8.5 litra. Jakie jest końcowe ciśnienie gazu wyrażone w atmosferach?

Zadanie 5. Jeden mol tlenu (załóżmy, że jest on gazem doskonałym) jest rozprężany izotermicznie w temperaturze 310K od objętości początkowej $V_1 = 12l$ do objętości końcowej $V_2 = 19l$. Jaką pracę wykona gaz podczas rozprężania?

Zadanie 6. Obliczyć sprawność cyklu, który na diagramie p-V ma postać prostokąta. Objętość zmienia się w zakresie od V_0 do $2V_0$, ciśnienie zmienia się w zakresie od p_0 do $2p_0$.

Zadanie 7. Obliczyć sprawność cyklu przedstawionego na rysunku.

