Project 3.1

We look at a system of ODEs on the form

$$\boldsymbol{v}_t = \mathbf{A}\boldsymbol{v}(t), \qquad \boldsymbol{v}(0) = \boldsymbol{v}^0, \tag{1}$$

where $\mathbf{A} \in \mathbb{R}^{n \times n}$ and $\mathbf{v}^0 \in \mathbb{R}^n$ are given.

 \mathbf{a}

We let $\mu \in \mathbb{R}$ be an eigenvalue of \mathbf{A} , with corresponding eigenvector $\mathbf{w} \in \mathbb{R}^n$. We will verify that

$$\mathbf{v}(t) = e^{\mu t} \mathbf{w},$$

satisfies (1) with initial condition $v^0 = w$.

First we find \boldsymbol{v}_t :

$$\boldsymbol{v}_t = \frac{\mathrm{d}}{\mathrm{d}t} \boldsymbol{v}(t) = \frac{\mathrm{d}}{\mathrm{d}t} e^{\mu t} \boldsymbol{w} = \mu e^{\mu t} \boldsymbol{w} = \mu \boldsymbol{v}.$$

Using this we check that the matrix equation is satisfied:

$$\mathbf{A}\mathbf{v} = \mathbf{A}e^{\mu t}\mathbf{w} = e^{\mu t}\mathbf{A}\mathbf{w} = e^{\mu t}\mu\mathbf{w} = \mu e^{\mu t}\mathbf{w} = \mu\mathbf{v} = \mathbf{v}_t.$$

And we check the initial condition:

$$v^0 = v(0) = e^0 w = w.$$

b)

We now assume $\mu_1, \mu_2, \dots, \mu_n$ are n distinct eigenvalues of \mathbf{A} with corresponding eigenvectors $\mathbf{w}_1, \mathbf{w}_2, \dots \mathbf{w}_n$. And we will check that the function

$$v(t) = \sum_{k=1}^{n} c_k e^{\mu_k t} \boldsymbol{\omega}_k,$$

is a solution of (1) for any coefficients $c_1, c_2, \ldots, c_n \in \mathbb{R}$, with initial vector

$$v^0 = \sum_{k=1}^m c_k \omega_k.$$

Again, we start by finding v_t :

$$\boldsymbol{v}_t = \frac{\mathrm{d}}{\mathrm{d}t} \boldsymbol{v}(t) = \sum_{k=1}^n c_k \frac{\mathrm{d}}{\mathrm{d}t} e^{\mu_k t} \boldsymbol{w}_k = \sum_{k=1}^n c_k \mu_k e^{\mu_k t} \boldsymbol{w}_k.$$

Note that unlike the previous case, v_t is not an eigenvector itself. We now check that the matrix equation is fulfilled

$$\mathbf{A}\boldsymbol{v}(t) = \mathbf{A}\sum_{k=1}^n c_k e^{\mu_k t} \boldsymbol{\omega}_k = \sum_{k=1}^n c_k e^{\mu_k t} \mathbf{A} \boldsymbol{\omega}_k = \sum_{k=1}^n c_k e^{\mu_k t} \mu_k \boldsymbol{\omega}_k = \boldsymbol{v}_t.$$

And we also check the initial condition

$$\mathbf{v}^0 = \mathbf{v}(0) = \sum_{k=1}^n c_k e^{\mu_k 0} \boldsymbol{\omega}_k = \sum_{k=1}^n c_k \boldsymbol{\omega}_k$$
 q.e.d.

We just showed that the function and initial condition

$$v(t) = \sum_{k=1}^{n} c_k e^{\mu_k t} \boldsymbol{\omega}_k, \qquad v^0 = \sum_{k=1}^{n} c_k \boldsymbol{\omega}_k.$$
 (2)

is a solution to (1). We will now argue that in fact *all* solutions of the system of ODEs admits this form, when $\mu_1, \mu_2, \dots, \mu_n$ are the eigenvalues of **A**.

When we know that **A** har n distinct eigenvalues, we know that the corresponding n eigenvectors $\{\omega_k\}$ are non-zero and linearily independant. This means that the eigenvectors are a basis that span \mathbb{R}^n , it is there for readily apparent that any initial vector \mathbf{v}^0 can be expressed as

$$oldsymbol{v}^0 = \sum_k c_k oldsymbol{\omega}_k.$$

We have already shown that

$$v(t) = \sum_{k=1}^{n} c_k e^{\mu_k t} \boldsymbol{\omega}_k, \qquad v^0 = \sum_{k=1}^{n} c_k \boldsymbol{\omega}_k.$$
 (3)

is a solution of (1) with this initial condition. As we know the eigenvectors are linearily independant, the coefficients $\{c_k\}_{k=1}^n$, give n degrees of freedom—it then readily follows that any solution can be written on the form (2).

The Heat Equation

We now look at the heat equation with Dirichlet boundary conditions

$$u_t = u_{xx}, \quad x \in (0,1), \quad t > 0,$$
 (4)

$$u(0,t) = u(1,t) = 0, (5)$$

$$u(x,0) = f(x), \quad x \in (0,1).$$
 (6)

We can write it using the same operator notation we used in our last project, meaning $Lu = -u_{xx}$. The problem can then be written

$$u_t(x,t) = -(Lu)(x,t)$$
 for $x \in (0,1), t > 0,$
 $u(x,0) = f(x).$

We now approximate the problem by discretizing in the spatial dimension. We introduce a uniform mesh with n internal mesh points, and let $x_j = jh$, where h = 1/(n+1), so $x_0 = 0$ and $x_{n+1} = 1$ are the boundaries. We use a 2. order centeral finite difference approximation to approximate (-Lu)(x,t). To derive a numerical scheme, we now evaluate our PDE in an internal mesh point x_j :

$$[v_t(x,t) = -(Lu)(x,t)]_j \approx [v_t = D_x D_x u]_j,$$

which gives

$$v_t^j = \frac{v_{j+1} - 2v_j + v_{j-1}}{h^2}.$$

where v_t^j is shorthand for $v_t(x_j, t)$. This equation holds for all internal mesh points, i.e., for j = 1, 2, ..., n. Remember that $v_0 = v_{n+1} = 0$.

d)

We now let n = 2, and will show that the numerical scheme we derived leads to a system of ODE on the form of (1). From our numerical scheme, we then have the two equations

$$v_t^1 = \frac{1}{h^2} (v_2 - 2v_1 + v_0),$$

$$v_t^2 = \frac{1}{h^2} (v_3 - 2v_2 + v_1),$$

using that h = 1/(n+1) = 1/3 and $v_0 = v_3 = 0$, we get

$$v_t^1 = -9(2v_1 - v_2),$$

$$v_t^2 = -9(-v_1 + 2v_2).$$

Which can be written more compactly as a matrix equation

$$\boldsymbol{v}_t = \mathbf{A} \boldsymbol{v},$$

where

$$\mathbf{A} = -9 \begin{pmatrix} 2 & -1 \\ -1 & 2 \end{pmatrix} \text{ q.e.d.}$$

e)

We now let

$$f(x) = \sin(\pi x) - 3\sin(2\pi x),$$

and will find the solution to our semi-descreete problem with n=2. First we note that

$$v^0 = \begin{pmatrix} v(x_1, 0) \\ v(x_2, 0) \end{pmatrix} = \begin{pmatrix} f(x_1) \\ f(x_2) \end{pmatrix} = \begin{pmatrix} -\sqrt{3} \\ 2\sqrt{3} \end{pmatrix},$$

where $x_1 = 1/3$ and $x_2 = 2/3$.

We find the eigenvalues of

Α

to be $\mu_1 = -9$ and $\mu_2 = -27$ with the corresponding eigenvectors

$$oldsymbol{\omega}_1 = egin{pmatrix} 1 \ -1 \end{pmatrix} \qquad oldsymbol{\omega}_2 = egin{pmatrix} 1 \ 1 \end{pmatrix}.$$

We then see that

$$\boldsymbol{v}^0 = -\frac{3\sqrt{3}}{2}\boldsymbol{\omega}_1 + \frac{\sqrt{3}}{2}\boldsymbol{\omega}_2,$$

so the coefficients are $c_1 = -3\sqrt{3}/2$ and $c_2 = \sqrt{3}/2$, and the solution is

$$v(t) = \frac{\sqrt{3}}{2}e^{-27t}\omega_2 - \frac{3\sqrt{3}}{2}e^{-9t}\omega_1.$$

We will now show that for all values of n, we end up with a system of ODEs on the form (1) and will identify the matrix \mathbf{A} .

With n internal mesh points, we get the n equations:

$$v_t^j = \frac{v_{j+1} - 2v_j + v_{j-1}}{h^2}$$
 $j = 0, 1, \dots, n.$

If we use the fact that $v_0 = v_{n+1} = 0$, we can write these equations as the matrix equation

$$v_t = Av$$
.

where $v_t, v \in \mathbb{R}^n$ and $\mathbf{A} \in \mathbb{R}^{n \times n}$. We then see that \mathbf{A} becomes the tridiagonal matrix

$$\mathbf{A} = -\frac{1}{h^2} \begin{pmatrix} 2 & -1 & 0 & 0 & \dots & 0 \\ -1 & 2 & -1 & 0 & \dots & 0 \\ 0 & -1 & 2 & -1 & \dots & 0 \\ \vdots & \vdots & \ddots & \ddots & \vdots & \vdots \\ 0 & 0 & \dots & -1 & 2 & -1 \\ 0 & 0 & \dots & 0 & -1 & 2 \end{pmatrix}.$$

Which can be solved effectively using the Thomas' algorithm, which scales linear with n, i.e., $\mathcal{O}(n)$.

 \mathbf{g}

From section 2.4.2, p. 68 in *Introduction to Partial Differential Equations* by Tveito and Winther, we know that the eigenvalues of **A** are

$$\mu_k = -\frac{4}{h^2} \sin^2(k\pi h/2).$$

This can also be easily shown from the fact that **A** is both tridiagonal and Toeplitz (meaning the elements along all digaonals are constant). Tridiagonal Toeplitz matrices have known eigenvalues¹.

The corresponding eigenvectors are

$$\boldsymbol{\omega}(x_j) = \sin(k\pi x_j), \quad j = 1, 2, \dots, n.$$

The general solution to the problem (1) could be written

$$\boldsymbol{v}(t) = \sum_{k=1}^{n} c_k e^{\mu_k t} \boldsymbol{\omega}_k.$$

If we write this out for a single component of $\boldsymbol{v}(t)$, and insert for $\boldsymbol{\omega}_k$ we find

$$v(x_j, t) = \sum_{k=1}^{n} c_k e^{\mu_k t} \sin(k\pi x_j), \quad j = 1, 2, \dots, n.$$

¹http://en.wikipedia.org/wiki/Tridiagonal_matrix#Eigenvalues

h)

We now consider the initial function

$$f(x) = 3\sin(\pi x) + 5\sin(4\pi x).$$

We will now compare the semidiscrete solution we just found for n = 2, 4, 6 to the exact analytic solution.

It is trivial to see that

$$c_1 = 3, c_4 = 5.$$

Meaning the analytic solution is

$$u(x,t) = 3e^{-\pi^2 t} \sin(\pi x) + 5e^{-16\pi^2 t} \sin(4\pi x).$$

and the semi-discrete solution is

$$v(x,t) = 3e^{-\mu_1 t} \sin(\pi x) + 5e^{-\mu_4 t} \sin(4\pi x).$$

Where μ_1 and μ_4 depend on n. (Note, we earlier defined μ_k to be negative, now we define them to be positive and include a negative sign in the exponential).

We now notice that the only difference between the analytic solution and the semi-discrete one is in the exponential factor. This means that the solutions will be equal at t = 0, which of course is reasonable, as they are both equal to the known intial function f(x).

If we compute μ_1 and μ_4 for an increasing number of mesh points n, we see that the values seem to converge toward the known analytic values, which is good:

	μ_1	μ_4
Analytic	9.87	157.91
Semi-discrete, $n=2$	9.00	27.00
Semi-discrete, $n=4$	9.55	90.45
Semi-discrete, $n=6$	9.71	119.81
Semi-discrete, $n = 8$	9.77	133.87
Semi-discrete, $n = 16$	9.84	150.85
Semi-discrete, $n = 32$	9.86	156.01

We now plot the analytic solution and the semi-discreet solutions for a small time, t = 0.01, n = 2, 4, 6. The figure is shown on the next page. We see that as small values of n give a to small μ_1 and μ_4 we see that all of the semi-discrete solutions die out to slow, and so an animation would show that the smallest n take the longest to die out.

Figure 1: A plot of the known exact solution and semi-discrete solutions for n=2, n=4 and n=6 at time t=0.01. We clearly see that the approximate solutions die out too slowly.

i)

We define the discrete energy of a solution v as

$$E_h(t) = \langle v(x,t), v(x,t) \rangle_h = h \sum_{j=1}^n v(x_j, t)^2 \quad \text{for } t \ge 0.$$

Where we have used that $v_0 = v_{n+1} = 0$.

We will now look at how the discrete energy develops with time, we have

$$\frac{d}{dt}E_h(t) = h\sum_{j=1}^{n} \frac{d}{dt}v(x_j, t)^2 = h\sum_{j=1}^{n} 2v(x_j, t)v_t(x_j, t).$$

We now use the fact that any solution v satisfies

$$v_t(x_j, t) = -(L_h v)(x_j, t),$$

and so we have

$$\frac{\mathrm{d}}{\mathrm{d}t}E_h(t) = -2h\sum_{j=1}^n (L_h v)(x_j, t)v(x_j, t).$$

Or

$$\frac{\mathrm{d}}{\mathrm{d}t}E_h(t) = -2h\langle L_h v, v\rangle.$$

But from Lemma 2 we know that the operator L_h is positive-definite, meaning that for any solution v we know that

$$\langle L_h v, v \rangle \ge 0,$$

where the equality is only true for the trivial solution v = 0.

This means that

$$\frac{\mathrm{d}}{\mathrm{d}t}E_h(t) \le 0,$$

and

$$E_h(t) < E_h(0)$$
 for $t > 0$.

And so we see that any solution of the semi-discrete problem has the same energy decay characteristic as the analytic solution.

 \mathbf{j}

We will now obtain a fully discrete finite difference method by applying a forward difference to the time-derivative. This means we get an explicit forward Euler scheme for the heat equation. We use a uniform mesh in both dimensions, and sample our PDE in the points t_m and x_j :

$$\left[D_t v(x,t) = \left[D_x D_x v(x,t)\right]_i^m,\right.$$

writing out the finite difference operators gives

$$\frac{v_j^{m+1} - v_j^m}{\Delta t} = \frac{v_{j+1}^t - 2v_j^t + v_{j-1}^t}{h^2},$$

solving for v_j^{m+1} gives the numerical scheme

$$v_j^{m+1} = v_j^m + \frac{\Delta t}{h^2} (v_{j+1}^t - 2v_j^t + v_{j-1}^t)$$
 for $m = 0, 1, 2, \dots$

Writing the numerical scheme out for j = 1, 2, ..., n gives a system of n linear equations, which can be written as the matrix equation

$$\boldsymbol{v}^{m+1} = (\mathbf{I} + \Delta t \mathbf{A}) \boldsymbol{v}^m.$$

Where **A** is the same matrix as earlier, and I is the $n \times n$ identity matrix.

k)

As **A** is the same as before, we know that it has n distinct eigenvalues μ_k with corresponding eigenvectors ω_k .

As the n distinct eigenvectors span \mathbb{R}^n , we know that we can write the inital vector as

$$oldsymbol{v}^0 = \sum_{k=1}^n c_k oldsymbol{\omega}_k.$$

When calculating v^1 we have

$$\boldsymbol{v}^1 = (\mathbf{I} + \Delta t \mathbf{A})^m \sum_{k=1}^n c_k \boldsymbol{\omega}_k = \sum_{k=1}^n c_k \big(\mathbf{I} \boldsymbol{\omega}_k + \Delta t \mathbf{A} \boldsymbol{\omega}_k \big) = \sum_{k=1}^n c_k (1 + \Delta t \mu_k) \boldsymbol{\omega}_k.$$

But this process is repeatable, so to find the solution at t_m we just matrix-multiply m times. We then end up with

$$\boldsymbol{v}^m = \sum_{k=1}^n c_k (1 + \Delta t \mu_k)^m \boldsymbol{\omega}_k.$$

Or if we insert for ω_k and write the solution out in a single mesh point:

$$v(x_j, t_m) = \sum_{k=1}^{n} c_k (1 + \Delta t \mu_k)^m \sin(k\pi x_j)$$
 q.e.d

Exercise 4.16

 \mathbf{a}

We will now use Von Neumann stability analysis to show that the Crank-Nicolson scheme is unconditionally stable.

The numerical scheme is as follows

$$\frac{v_j^{m+1} - v_j^m}{\Delta t} = \frac{1}{2} \left(\frac{v_{j+1}^{m+1} - 2v_j^{m+1} + v_{j+1}^{m+1}}{\Delta x^2} + \frac{v_{j+1}^m - 2v_j^m + v_{j+1}^m}{\Delta x^2} \right).$$

We now insert a fourier element into this discrete equation, and see how the element grows, for some wave-number k we have

$$v_i^m = e^{at}e^{ikx},$$

inserting this and dividing by v_i^m gives:

$$e^{a\Delta t} - 1 = \frac{\Delta t}{2\Delta x^2} \left(e^{a\Delta t} + 1 \right) \left(e^{ik\Delta x} + e^{-ik\Delta x} - 2 \right).$$

We now use the fact that:

$$e^{ik\Delta x} + e^{-ik\Delta x} - 2 = 2\cos(k\Delta x) - 2 = -4\sin^2\left(\frac{k\Delta x}{2}\right).$$

to rewrite this as

$$e^{a\Delta t} - 1 = -2C(e^{a\Delta t} + 1)\sin^2\left(\frac{k\Delta x}{2}\right),$$

where $C = \Delta t/\Delta x^2$. Solving for the amplification factor gives

$$A = \left| \frac{v_j^{m+1}}{v_j^m} \right| = e^{a\Delta t} = \frac{1 - 2C\sin^2(k\Delta x/2)}{1 + 2C\sin^2(k\Delta x/2)}.$$

as \sin^2 evaluates within [0,1] we see that

$$|A| < 1$$
.

So the Crank-Nicolson scheme has no growing solutions for any value of C.

However, to avoid oscillating solutions, we also have to require that

$$A \geq 0$$
.

As the denominator cannot becomen negative, we see that

$$1 - 2C\sin^2(k\Delta x/2) \ge 0,$$

guarantees that $A \geq 0$. The worst-case here is that \sin^2 evaluates to 1, so we have

$$1 - 2C > 0$$
,

which gives the condition

$$C = \frac{\Delta t}{\Delta x^2} \le \frac{1}{2}.$$

b)

The Crank-Nicholson scheme is as follows

$$\frac{v_j^{m+1} - v_j^m}{\Delta t} = \frac{1}{2} \left(\frac{v_{j+1}^{m+1} - 2v_j^{m+1} + v_{j+1}^{m+1}}{\Delta x^2} + \frac{v_{j+1}^m - 2v_j^m + v_{j+1}^m}{\Delta x^2} \right).$$

Figure 2: Numerical molecule for the Crank-Nicolson scheme.

We see that this is in fact an *implicit* scheme, as v^{m+1} cannot be explicitly calculated from v^m , as is the case for the forward Euler scheme. Instead we must solve an algebraic problem, which is in fact a system of linear equation, i.e., a matrix-problem.

To make this more apparent, we rewrite the equation, using $C = \Delta t/\Delta x^2$:

$$-Cv_{j+1}^{m+1} + (2+2C)v_{j}^{m+1} - Cv_{j-1}^{m+1} = Cv_{j+1}^{m} + (2-2C)v_{j}^{m} + Cv_{j-1}^{m}$$

Writing out the equations for j = 1, ..., n, we see that this leads to the matrix equation:

$$\mathbf{A}_{+}\boldsymbol{v}_{j+1}=\mathbf{A}_{-}\boldsymbol{v}_{j},$$

where the matrices are both in $\mathbb{R}^{n\times n}$ and have the following elements:

$$\mathbf{A}_{\pm} = \begin{pmatrix} 2 \pm 2\alpha & \mp \alpha & \dots & 0 \\ \mp \alpha & 2 \pm 2\alpha & \dots & 0 \\ \vdots & \ddots & \ddots & \vdots \\ 0 & \dots & 2 \pm 2\alpha & \mp \alpha \\ 0 & \dots & \mp \alpha & 2 \pm 2\alpha \end{pmatrix},$$

so both matrices are tridiagonal Toeplitz.

If we simply compute the matrix-vector product on the right as

$$ilde{oldsymbol{v}}^m = \mathbf{A}_- oldsymbol{v}^m,$$

we have the matrix-equation

$$\mathbf{A}_{+}\boldsymbol{v}^{m+1}=\tilde{\boldsymbol{v}}^{m}.$$

Which is a matrix equation easily solved using the Thomas' algorithm.

 \mathbf{c}

In the last exercise, we showed that the Crank-Nicolson scheme gave rise to the following matrix equation:

$$\mathbf{A}_{+}\boldsymbol{v}_{j+1}=\mathbf{A}_{-}\boldsymbol{v}_{j}.$$

We know that A_+ is invertible (it is positive definite, which we will show soon), meaning we can left multiply by the inverse of A_+ to find

$$\boldsymbol{v}_{j+1} = \mathbf{A}_+^{-1} \mathbf{A}_- \boldsymbol{v}_j.$$

We can find the eigenvalues/eigenvectors of \mathbf{A}_{\pm} by writing them as

$$\mathbf{A}_{\pm} = 2\mathcal{I} \pm \Delta t \mathbf{A}, \qquad ext{where } \mathbf{A} = rac{1}{\Delta x^2} egin{pmatrix} 2 & -1 & \dots & 0 \ -1 & 2 & \dots & 0 \ dots & \ddots & \ddots & dots \ 0 & \dots & -1 & 2 \end{pmatrix}.$$

We know that **A** has the eigenvalues μ_k and corresponding eigenvectors

$$\boldsymbol{\omega}_{i}^{k} = \sin(k\pi x_{j}), \quad j = 1, 2, \dots, n.$$

This means that

$$(2\mathcal{I} \pm \Delta t \mathbf{A})\boldsymbol{\omega}_k = 2\mathcal{I}\boldsymbol{\omega}_k \pm \Delta t \mathbf{A} \boldsymbol{\omega}_k = (2 \pm \Delta t \mu_k)\boldsymbol{\omega}_k.$$

So we see that ω_k are also eigenvectors for \mathbf{A}_{\pm} , with eigenvalues $2 \pm \Delta t \mu_k$.

From the eigenvalue equation

$$\mathbf{A}\boldsymbol{\omega} = \lambda \boldsymbol{\omega}$$
.

we can find the eigenvalue of an inverse matrix. Assume **A** is invertible, and left-multiply with it:

$$\omega = \lambda \mathbf{A}^{-1} \omega$$
.

Rearring gives

$$\mathbf{A}^{-1}\boldsymbol{\omega} = \frac{1}{\lambda}\boldsymbol{\omega}.$$

So the inverse matrix has the same eigenvector with the reciprocal of the eigenvalue.

Since the eigenvectors ω_k in each case correspond to distinct eigenvalues, we know they are linearly independent, and span \mathbb{R}^n , meaning we can expand the inital vector as

$$\boldsymbol{v}^0 = \sum_{k=1}^n \gamma_k \boldsymbol{w}_k,$$

where the coefficient γ_k is found using the inner product with v^0

$$\gamma_k = \langle \mathbf{v}^0, \boldsymbol{\omega}_k \rangle = \Delta x \sum_{j=1}^n v_j^0 \sin(k\pi x_j).$$

We now have

$$\boldsymbol{v}^1 = \mathbf{A}_{\perp}^{-1} \mathbf{A}_{-} \boldsymbol{v}_0.$$

if we insert our expansion of the inital vector

$$oldsymbol{v}^1 = \sum_{k=1}^n \gamma_k oldsymbol{\mathsf{A}}_+^{-1} oldsymbol{\mathsf{A}}_- oldsymbol{\omega}_k,$$

which using the fact that $\boldsymbol{\omega}_k$ is an eigenvector gives

$$v^1 = \sum_{k=1}^n \gamma_k \frac{2 - \Delta t \mu_k}{2 + \Delta t \mu_k} \omega_k,$$

This process can of course be repeated indefinitely. This means that the solution of the Crank-Nicolson scheme admits the solutions:

$$\mathbf{v}_j^m = \sum_{k=1}^n \gamma_k a(\mu_k)^m \sin(k\pi x_j),$$

where

$$a(\mu_k) = (2 - \Delta t \mu_k)(2 + \Delta t \mu_k)^{-1}.$$

d)

We will no show that the amplification factor of the Crank-Nicolson scheme is equal to the analytic amplification factor to third order:

$$|a(\mu) - e^{-\mu t}| = \mathcal{O}(\Delta t^3)$$

We insert for $a(\mu)$ and Taylor expand $e^{-\mu t}$:

$$\left| \frac{2 - \Delta t \mu}{2 + \Delta t \mu} - \left(1 - \Delta t \mu + \frac{1}{2} \Delta t^2 \mu^2 - \frac{1}{6} \Delta t^3 \mu^3 + \mathcal{O}(\Delta t^4) \right|.$$

We now expand the Taylor terms into a fraction

$$\left| \frac{2 - \Delta t \mu}{2 + \Delta t \mu} - \frac{2 - \Delta t \mu + \frac{1}{2} \Delta t^3 \mu^3 - \frac{1}{3} \Delta t^3 \mu^3 + \frac{1}{12} \Delta t^4 \mu^4}{2 + \Delta t \mu} + \mathcal{O}(\Delta t^4) \right|.$$

Adding the fractions together now gives

$$\left| \frac{\frac{1}{6}\Delta t^3 \mu^3 + \frac{1}{12}\Delta t^4 \mu^4}{2 + \Delta t \mu} + \mathcal{O}(\Delta t^4) \right|.$$

Which can be simplified to

$$\left| \frac{\frac{1}{12}(2 + \Delta t\mu)\Delta t^3\mu^3}{2 + \Delta t\mu} + \mathcal{O}(\Delta t^4) \right| = \left| \frac{1}{12}\Delta t^3\mu^3 + \mathcal{O}(\Delta t^4) \right|.$$

So we see that

$$|a(\mu) - e^{-\mu t}| = \mathcal{O}(\Delta t^3),$$

holds and the Crank-Nicolson is of third-order locally, meaning it is second-order globally. We can compare this to both the explicit forward Euler method and the implicit backward Euler method, which both are first-order globally.

e)

We will now implement the Crank-Nicolson scheme. In exercise b) we outlined the method we will be using for solving the scheme, which resulting in solving the equation

$$\mathbf{A}_+ oldsymbol{v}^{m+1} = oldsymbol{ ilde{v}}^m, \qquad oldsymbol{ ilde{v}}^m = \mathbf{A}_- oldsymbol{v}^m.$$

Calculating $\tilde{\boldsymbol{v}}^m$ is straight forward. However, to solve the matrix equation, we will use the Thomas algorithm, so let us outline it.

The Thomas Algorithm

The Thomas algorithm, also known as the tridiagonal matrix algorithm, is a method to solve a matrix equation:

$$\mathbf{A}x = y$$

where the vector y is known, the matrix A is known and tridiagonal and x is to be found. We can write the augmented matrix to be solved as

$$(\mathbf{A} \mid \boldsymbol{y}) = \begin{pmatrix} b_1 & c_1 & 0 & \dots & 0 & y_1 \\ a_2 & b_2 & c_2 & \dots & 0 & y_2 \\ \vdots & \ddots & \ddots & \ddots & \vdots & \vdots \\ 0 & \dots & a_{n-1} & b_{n-1} & c_{n-1} & y_{n-1} \\ 0 & \dots & 0 & a_n & b_n & y_n \end{pmatrix},$$

where a_i , b_i , c_i and y_i are constants.

To solve the equation we must get the augmented matrix to upper triangular form. This requires only the elementary row operations

$$row_{i+1} - \frac{a_{i+1}}{b_i} row_i$$
 for $i = 1, 2, ..., n - 1$.

Due to **A** being tridiagonal, only a few values of row_{i+1} actually needs to be changed, giving

$$a'_{i+1} = 0,$$
 $b'_{i+1} = b_{i+1} - \frac{a_{i+1}}{b_i}c_i,$ $y'_{i+1} = y_{i+1} - \frac{a_{i+1}}{b_i}\tilde{y}_i.$

Written in pseudocode, the decomposition can be written

```
for i = 1:(n-1)

p = a(i+1)/b(i)

a(i+1) = 0

b(i+1) -= p*c(i)

y(i+1) -= p*y(i)
```

When the matrix is in upper triangular form, the answer \boldsymbol{x} can be found from a simple backward substitution, the pseudocode is

```
x(n) = y(n)/b(n)

for i = (n-1):1

x(i) = (y(i) - c(i)*x(i+1)) / b(i)
```

Implementation

We now implement the Crank-Nicolson method for our problem in C++:

```
void Crank_Nicolson(double **u, double r, int n, int m) {
    // Dynamic-memory allocation of vectors
    double *b, *v, p;
    b = new double[n+1];
    v = new double[n+1];
    double c = 2 - 2*r;
    b[0] = 2 + 2*r;
    for (int j=1; j<=m; j++)
         // Initialize tri-diag vectors
        for (int i=1; i<=n; i++)
             b[i] = b[0];
             v[i] \ = \ r*u[i+1][j-1] \ + \ c*u[i][j-1] \ + \ r*u[i-1][j-1];
        // Decomposition of matrix A
         for (int i=1; i<=(n-1); i++)
        {
             p = -r/b[i];
             b[i+1] += p*r;
v[i+1] -= p*v[i];
        // Forward substitution
        u[n][j] = v[n]/b[n];
        for (int i=n-1; i>=1; i--)
u[i][j] = (v[i] + r*u[i+1][j])/b[i];
    }
}
```

And our main program is as follows

```
#include <iostream>
#include <cmath>
#include <cstdlib>
#include <iomanip>
#include <fstream>
using namespace std;
void Crank_Nicolson(double **C, double, int, int);
int main(int argc, char* argv[]) {
    if (argc!=2) {
        cout << "Bad usage: " << argv[0] <<</pre>
        "Please specify outfile" << endl;
    exit(1);
   // Prepare outfile
    ofstream outfile;
    outfile.open(argv[1], ios::binary);
   int n = 11;
    int m = 250;
    double L = 1; double T = 0.1;
    double x0=0; double t0=0;
    double dx = L/(n+1);
    double dt = T/(m+1);
    double alpha = dt/dx/dx;
    double *x, *t;
   x = new double[n+2];
    t = new double[m+2];
```

```
for (int i=0; i<=n+1; i++)</pre>
        x[i] = x0 + i*dx;
    for (int i=0; i<=m+1; i++)</pre>
        t[i] = t0 + i*dt;
    // Dynamic-memory allocation of matrix
    double **u;
    u = new double *[n+2];
    for (int i=0; i<=n+1; i++)
        u[i] = new double[m+2];
    // Initial condition
    for (int i=0; i<=n+1; i++) {
        if (x[i] < 0.5)
            u[i][0] = 2*x[i];
            u[i][0] = 2*(1-x[i]);
    }
    // Boundry conditions
    for (int j=1; j \le m+1; j++)
        u[0][j] = u[n][j] = 0;
    Crank_Nicolson(u, alpha, n, m);
    // Writing results to outfile
    for (int i=0; i <= n+1; i++)
        for (int j=0; j \le m+1; j++)
            outfile.write((char*) &u[i][j], sizeof(double));
    outfile.close();
    return 0;
}
```

We now try to run our program for different values of $r = \Delta t/\Delta x^2$ to check the stability of the scheme. We see that for all r, even very large ones - the solution dies out over time as expected - there are no growing solutions. However, we see that when r > 0.5, there are small oscillations in the solution—this is different from the explicit forward Euler schemes where we can have oscillations that grow with time.

We thus see that the Crank-Nicolson scheme is unconditionally stable with respect to r in the sense that it always converges to the correct solution as time grows. It is however subject to oscillations, which the implicit backward euler method is not.