Занятие 2: Описательная статистика социальных сетей

ниу вшэ

Москва, 2017

Описательная статистика социальных сетей

Описательная статистика для социальных сетей разделяется на две категории индексов:

- Статистика для всей сети. Рассматриваются характеристики всего графа (плотность, взаимность, транзитивность/коэффициент кластеризации). Такие статистики имеет смысл сравнивать для разных графов.
- Статистика для элементов сети: вершин и ребер. Рассматриваются характеристики отдельных элементов графа (степени центральности, близости, посредничества и т.д.). Такие характеристики имеет смысл сравнивать для разных вершин/ребер одного графа.

Плотность и средняя степень

Отношение существующего в графе числа ребер ко всем возможным называется плотностью графа.

Для направленного графа плотность вычисляется так:

$$D = \frac{2E}{N(N-1)}$$

Для ненаправленного так:

$$D = \frac{E}{N(N-1)}$$

где D - плотность сети, E - число ребер, N - число вершин.

В подавляющем большинстве социальных сетей плотность очень низкая, так как число существующих ребер значительно меньше максимально возможного числа ребер.

Взаимность

Для направленных социальных сетей важным показателем является взаимность (реципрокность), показывающая долю взаимных связей в графе $r = \frac{E_{\text{REGIP}}}{E_{\text{REGIP}}}$

В большинстве социальных сетей взаимность высока, часто близка к 50%.

Транзитивность и коэффициент кластеризации

Транзитивность (коэффициент кластеризации) показывает, насколько справедливо выражение 'Друг моего дурга - мой друг'. $C = \frac{3Xtriangle}{Triade}$

Для большинства социальных сетей характерен высокий коэффициент кластеризации.

Значимость вершин

Какая из вершин в этой социальной сети наиболее значима?

На этот вопрос ответить не так просто. Рассмотрим, каким образом мы можем оценить значимость вершин.

Степень центральности (Degree Centrality)

Самый простой индекс, описывающий положение вершины в графе. Рассчитывается как число вершин, инцидентных данной (число вершин, связанных с целевой вершиной).

Рассчитывается как:

$$C_d = \sum_i A_{ij}$$

где \mathcal{C}_d - степень центральности, а A_{ij} - матрица смежностей.

Описывает локальное положение вершины, но не характеризует ее глобальное положение в сети.

Степень центральности: Расчет на графе

Степень центральности: Расчет на графе

$$C_d(A)=1$$

 $C_d(B)=3$

$$C_d(B)=3$$

 $C_d(C)=2$

$$C_d(D)=2$$

$$C_d(E)=2$$

Степень близости (Closeness Centrality)

Индекс, который призван описать, насколько вершина близка к другим вершинам сети. Основная идея в том, что чем ближе актор к другим, тем проще ему наладить с ними взаимодействие (Wasserman and Faust, 1994).

Рассчитывается как:

$$C_{cl} = (\sum_i d(i,j))^{-1}$$

где C_{cl} - степень близости, а $\sum_i d(i,j)$ - сумма путей от рассматриваемой вершины до всех остальных вершин графа.

Степень близости: Расчет на графе

Степень близости: Расчет на графе

$$C_d(A) = (1 + 2 + 3 + 2)^{-1} = 1/8$$

 $C_d(B) = (1 + 1 + 1 + 2)^{-1} = 1/5$
 $C_d(C) = (1 + 1 + 2 + 2)^{-1} = 1/6$
 $C_d(D) = (1 + 1 + 2 + 2)^{-1} = 1/6$
 $C_d(E) = (1 + 1 + 3 + 2)^{-1} = 1/7$

Степень близости: Расчет на графе

Иногда при расчетах степень близости стандартизируют на размер графа. В таком случае формула расчета выглядит следующим образом:

 $C_{cl} = ((\sum_i d(i,j))/(N-1))^{-1}$ где C_{cl} - степень близости, а $\sum_i d(i,j)$ - сумма путей от рассматриваемой вершины до всех остальных вершин графа, а N - число вершин.

 $C_{cl}(A) = ?; C_{cl}(B) = ?; C_{cl}(C) = ?; C_{cl}(D) = ?; C_{cl}(E) = ?$

Стандартизированная степень близости

 $C_{cl} = ((\sum_i d(i,j))/(N-1))^{-1}$ где C_{cl} - степень близости, а $\sum_i d(i,j)$ - сумма путей от рассматриваемой вершины до всех остальных вершин графа, а N - число вершин.

$$C_{cl}(A) = ((1+2+3+2)/4)^{-1} = 1/2$$

 $C_{cl}(B) = ((1+1+1+2)/4)^{-1} = 4/5$
 $C_{cl}(C) = ((1+1+2+2)/4)^{-1} = 2/3$
 $C_{cl}(D) = ((1+1+2+2)/4)^{-1} = 2/3$
 $C_{cl}(E) = ((1+1+3+2)/4)^{-1} = 4/7$

Степень посредничества (Betweenness Centrality)

Показатель, характеризующий степень контроля над распространением информации (Wasserman and Faust, 1994). Основная идея в том, что чем больше кратчайших путей между вершинами контролирует актор, тем выше его контроль.

Рассчитывается так:

$$C_b = \sum_{s \neq t \neq i} \frac{\sigma_{st}(i)}{\sigma_{st}}$$

где C_b - степень посредничества, $\sigma_{st}(i)$ - число кратчайших путей между каждой парой вершин, на которых лежит вершина i, а σ_{st} - число кратчайших путей между каждой парой вершин.

4□ > 4ⓓ > 4≧ > 4≧ > ½ 990

Степень посредничества (Betweenness Centrality)

$$C_b = \sum_{s \neq t \neq i} \frac{\sigma_{st}(i)}{\sigma_{st}}$$

где C_b - степень посредничества, $\sigma_{st}(i)$ - число кратчайших путей между каждой парой вершин, на которых лежит вершина i, а σ_{st} - число кратчайших путей между каждой парой вершин.

$$C_b(A) = ?; C_b(B) = ?; C_b(C) = ?; C_b(D) = ?; C_b(E) = ?$$

Степень посредничества (Betweenness Centrality)

 $C_b = \sum_{s \neq t \neq i} \frac{\sigma_{st}(i)}{\sigma_{st}}$ где C_b - степень посредничества, $\sigma_{st}(i)$ - число кратчайших путей между каждой парой вершин, на которых лежит вершина i, а σ_{st} - число кратчайших путей между каждой парой вершин.

$$C_b(A)=0$$

 $C_b(B)=1 \text{ (AC)} +1 \text{ (AD)} +1 \text{ (AE)} +0.5 \text{ (CD)}=3.5$
 $C_b(C)=0.5 \text{ (AE)} +0.5 \text{ (BE)} =1$
 $C_b(D)=0.5 \text{ (AE)} +0.5 \text{ (BE)} =1$
 $C_b(E)=0.5 \text{ (CD)}$

Собственный вектор (Eigenvector centrality)

Мера влиятельности вершины в социальной сети.

'Важность вершины равна сумме важностей соседей данной вершины' С чем более влиятельными вершинами соединена вершина, тем, соответственно, больше влияния у этой вершины.

 $C_i = \frac{1}{k} * \sum_j A_{ij} c_j$ где C_i - собственный вектор (eigenvector) вершины i, k - нормировочный коэффициент, A_{ij} - матрица смежностей, C_j - собственный вектор вершины j. Вопрос - для чего мы вводим нормировочный коэффициент? Какую проблему он призван решить?

Эйгенвектор (Eigenvector centrality)

Проблемой при вычислении эйгенвектора вершины является тот факт, что величина эйгенвектора вершины i зависит от величины эйгенвектора вершины j (рекурсивное определение).

$$C_i = \frac{1}{k} * \sum_j A_{ij} c_j$$

где C_i - эйгенвектор вершины i, k - нормировочный коэффициент, A_{ij} - матрица смежностей, C_i - эйгенвектор вершины j.

В матричной форме:

$$AC = \lambda C$$

где C - эйгенвектор (собственный вектор), λ - эйгензначение (собственное значение), A - матрица смежностей.

Вопрос: для каких сетей может быть использован собственный вектор?

Page Rank'

Пейдж ранк (Brin and Page, 1998) - параметр, который отражает влиятельность (авторитетность) вершин. Этот алгоритм ранжирования вершин графа лежал в основе ранжирования Google. Изначально разработан и предложен для направленного графа. Вероятность того, что в результате случайного блуждания по страницам пользователь откроет определенную страницу, пропорциональна PageRank этой страницы. $PR(A)=(1-d)+d(PR(T_1)/C(T_1)+...+PR(T_n/C(T_n)))$ где PR(A) - пейдж ранк вершины A, $PR(T_1$ - пейдж ранк соседней с Aвершины, $C(T_1$ - число соседей соседней с A вершины, d - вероятность попадания в вершину A в результате случайного блуждания.

Page Rank: Вычисление

Формирование матрицы вероятностей P. $P=D^{-1}A$, где P - матрица вероятностей перехода, A - матрица смежностей. На основании матрицы вероятностей мы строим стохастическую матрицу. Сумма элементов каждого из рядов такой матрицы должна равняться единице.

$$P'=P+\frac{se}{n}$$

где P' - стохастическая матрица, P - матрица вероятностей перехода, s - вектор индикатор вершин, e - единичный вектор, n - число узлов сети.

Таким образом, PageRank может быть представлен в следующем виде: $P'' = \alpha P' + (1 - \alpha) \frac{se}{n}$,

где P'' - PageRank, P' - стохастическая матрица, α - вероятность случайного перехода, s - вектор индикатор вершин, e - единичный вектор, n - число узлов сети.

Page Rank: Вариация

PageRank:

$$P''=lpha P'+(1-lpha)rac{\mathrm{ee}}{n},$$
где P'' - РадеRank, P' - стохастическая матрица, $lpha$ - вероятность

где P - Радекапк, P - стохастическая матрица, α - вероятность случайного перехода, s - вектор индикатор вершин, e - единичный вектор, n - число узлов сети.

- Какова должна быть мера случайностей при расчете PageRank?
- ullet При каких lpha структура графа не оказывает влияние на переход?

HITS: Хабы и авторитетные вершины

Алгоритм HITS предложен Джоном Кляйнбергом для анализа сетей цитирования.

Основная идея в том, что в сети существуют два типа вершин:

- Авторитетные вершины (*authorities*) популярные вершины, в контексте научных статей статьи, на которые многие ссылаются;
- Активные вершины-хабы (hubs) активные вершины, в контексте научных статей статьи, которые ссылаются на нмогие работы.

Для каждой из вершин реальной социальной сети одновременно существуют два показателя - авторитетность и хабность.

$$a_i = \sum_j A_{ji} h_j$$

 $h_i = \sum_j A_{ij} a_j$

Bonpoc: для каких случаев нерелевантен расчет хабности и авторитетности? В каком случае они равны? С каким другим показателем степени центральности в таком случае они совпадают?

Москва, 2017

Значимость вершин

Возвращаемся к вопросу о том, какая из вершин в этой социальной сети наиболее значима?

