```
In [ ]: import numpy as np
        import pandas as pd
        import matplotlib.pyplot as plt
        import seaborn as sns
        from itertools import product
        import plotly as py
        import plotly.graph_objs as go
        from sklearn.cluster import KMeans, DBSCAN, HDBSCAN, OPTICS, estimate_bandwidth, MeanShift, A
        from scipy.cluster.hierarchy import dendrogram, linkage
        from yellowbrick.cluster import KElbowVisualizer
        from sklearn.decomposition import PCA
        from sklearn.manifold import TSNE
        import umap.umap_ as umap
        import warnings
        warnings.filterwarnings('ignore')
       c:\coding\python\MTS\ML\venv\lib\site-packages\tqdm\auto.py:21: TqdmWarning: IProgress not fou
       nd. Please update jupyter and ipywidgets. See https://ipywidgets.readthedocs.io/en/stable/user
       _install.html
         from .autonotebook import tqdm as notebook_tqdm
In [ ]: df = pd.read_csv('onlinefoods.csv')
        print('There are {} rows and {} columns in our dataset.'.format(df.shape[0],df.shape[1]))
       There are 388 rows and 13 columns in our dataset.
In [ ]: df.sample(10)
```

Out[]:		Age	Gender	Marital Status	Occupation	Monthly Income	Educational Qualifications	Family size	latitude	longitude	Pin code
	100	24	Female	Single	Student	10001 to 25000	Post Graduate	3	12.9335	77.5691	560028
	224	25	Female	Married	Student	No Income	Post Graduate	2	12.8834	77.5486	560062
	275	23	Female	Single	Student	No Income	Post Graduate	4	13.0487	77.5923	560024
	12	23	Male	Single	Student	No Income	Post Graduate	5	12.8988	77.5764	560078
	325	27	Male	Married	Employee	25001 to 50000	Graduate	2	12.8845	77.6036	560076
	346	26	Male	Married	Employee	More than 50000	Graduate	4	12.9048	77.6821	560036
	153	21	Male	Single	Student	No Income	Graduate	2	12.9579	77.6309	560007
	113	23	Female	Single	Student	No Income	Graduate	5	13.0206	77.6479	560043
	365	22	Male	Single	Student	No Income	Graduate	3	13.0158	77.5390	560096
	371	28	Male	Married	Employee	25001 to 50000	Graduate	3	12.9369	77.6407	560095

In []: df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 388 entries, 0 to 387
Data columns (total 13 columns):

#	Column	Non-Null Count	Dtype
0	Age	388 non-null	int64
1	Gender	388 non-null	object
2	Marital Status	388 non-null	object
3	Occupation	388 non-null	object
4	Monthly Income	388 non-null	object
5	Educational Qualifications	388 non-null	object
6	Family size	388 non-null	int64
7	latitude	388 non-null	float64
8	longitude	388 non-null	float64
9	Pin code	388 non-null	int64
10	Output	388 non-null	object
11	Feedback	388 non-null	object
12	Unnamed: 12	388 non-null	object

dtypes: float64(2), int64(3), object(8)

memory usage: 39.5+ KB

In []: df.describe()

		Age	Family size	latitude	longitude	Pin code
	count	388.000000	388.000000	388.000000	388.000000	388.000000
	mean	24.628866	3.280928	12.972058	77.600160	560040.113402
	std	2.975593	1.351025	0.044489	0.051354	31.399609
	min	18.000000	1.000000	12.865200	77.484200	560001.000000
	25%	23.000000	2.000000	12.936900	77.565275	560010.750000
	50%	24.000000	3.000000	12.977000	77.592100	560033.500000
	75 %	26.000000	4.000000	12.997025	77.630900	560068.000000
	max	33.000000	6.000000	13.102000	77.758200	560109.000000

Out[]:

```
In [ ]: plt.figure(1, figsize=(15, 6))
    n = 0
    for x in ['Age', 'Family size', 'latitude' , 'longitude']:
        n += 1
        plt.subplot(1, 4, n)
        plt.subplots_adjust(hspace=0.5, wspace=0.5)
        sns.distplot(df[x], bins=15)
        plt.title('Distplot of {}'.format(x))
    plt.show()
```



```
In [ ]: sns.pairplot(df, vars=['Age', 'Family size', 'latitude' , 'longitude'], hue="Gender")
```

Out[]: <seaborn.axisgrid.PairGrid at 0x28826fae950>

32.5

plt.xlabel('Age')

plt.show()

plt.ylabel('Family Size')

plt.scatter(x='Age', y='Family size', data=df, s=100)


```
In []: X = df[['Age' , 'Family size']].iloc[: , :].values
inertia = []
for n in range(1 , 15):
    algorithm = KMeans(n_clusters=n, **kmeans_params)
    algorithm.fit(X)
    inertia.append(algorithm.inertia_)
```

```
In [ ]: plt.figure(1 , figsize = (15 ,6))
   plt.plot(np.arange(1 , 15) , inertia , 'o')
   plt.plot(np.arange(1 , 15) , inertia , '-' , alpha = 0.5)
   plt.xlabel('Number of Clusters') , plt.ylabel('Inertia')
   plt.show()
```



```
In []: model = KMeans(**kmeans_params)
    visualizer = KElbowVisualizer(model, k=(2, 15))

    visualizer.fit(X)
    visualizer.show()
    plt.show()
```



```
In [ ]: model = KMeans(**kmeans_params)
    visualizer = KElbowVisualizer(model, k=(2, 15), metric='silhouette')

    visualizer.fit(X)
    visualizer.show()
    plt.show()
```



```
In [ ]: kmeans = KMeans(n_clusters=2, **kmeans_params)
```

```
clusters = kmeans.fit_predict(X)
X_pca = pca.fit_transform(X)
```

```
In [ ]: pca = PCA(n_components=2)
        # Plot the clusters
        plt.scatter(X_pca[:, 0], X_pca[:, 1], c=clusters, cmap='viridis')
        plt.xlabel('PC1')
        plt.ylabel('PC2')
        plt.title('K-Means Clusters (PCA)')
        plt.show()
```

K-Means Clusters (PCA)


```
In [ ]: tsne = TSNE(n_components=2, random_state=42, perplexity=150)
        X_tsne = tsne.fit_transform(X)
        # Plot the clusters
        plt.scatter(X_tsne[:, 0], X_tsne[:, 1], c=clusters, cmap='viridis')
        plt.xlabel('t-SNE1')
        plt.ylabel('t-SNE2')
        plt.title('K-Means Clusters (t-SNE)')
        plt.show()
```



```
In [ ]: umap_ = umap.UMAP(n_components=2, random_state=42, n_neighbors=5|0, min_dist=0.05)
X_umap = umap_.fit_transform(X)

# Plot the clusters
plt.scatter(X_umap[:, 0], X_umap[:, 1], c=clusters, cmap='viridis')
plt.xlabel('UMAP1')
plt.ylabel('UMAP2')
plt.title('K-Means Clusters (UMAP)')
plt.show()
```


Выводы: Для данного датасета метод понижения размерности PCA оказался наиболее информативным для визуализации кластеров, полученных с помощью метода k-Means.

PCA четко разделил кластеры и сохранил их форму, в то время как другие методы (t-SNE и UMAP) не смогли этого сделать так же эффективно.