Relatório de Análise de Algoritmos de Ordenação

Alunos: Davi Hoffmann, Leonardo Branco e Pedro Freiberger

Objetivo: analisar o desempenho de três algoritmos de ordenação: Bubble Sort, Insertion Sort e Quick Sort.

Resultados de Tempo de Execução (Exemplo Genérico)

Tipo de Conjunto de Dados	Elementos	Bubble Sort	Insertion Sort	Quick Sort
Aleatório	100	553299 ns	310301 ns	390099 ns
	1000	6927900 ns	2963900 ns	390601 ns
	10000	96704299 ns	21810301 ns	940000 ns
Crescente	100	5200 ns	27700 ns	21200 ns
	1000	125100 ns	36900 ns	718000 ns
	10000	11806201 ns	59001 ns	49995401 ns
Decrescente	100	8401 ns	4299 ns	10101 ns
	1000	788000 ns	116499 ns	356200 ns
	10000	76695499 ns	9558200 ns	35192100 ns

Comparação de Tempo de Execução dos Algoritmos de Ordenação

(Gráfico utilizando o tamanho de 1000 elementos)

Conclusão:

- Quick Sort é mais estável nas situações e adequado para grandes volumes de dados e situações desordenadas.
- Insertion Sort mais eficiente para dados ordenados.
- Bubble Sort é menos eficiente, porém é adequado para conjuntos de dados pequenos, mas eles sendo ordenados.