

Caracterización del Sistema *Mal de Río Cuarto del Maíz* mediante Minería de Datos y Análisis de Redes

Integrantes

Knowledge Discovery in Database (KDD)

 Es un proceso no trivial de identificación de información útil y desconocida que permanece oculta en una base de datos [Fayyad, 1996]

• Es un proceso centrado en la persona (human-centered) [Brachman, 1996]

Mal de Río Cuarto virus

Análisis electroforético:

- Base de datos formada por perfiles electroforéticos + atributos que definen el ambiente de la planta
- Resultados de estudios anteriores: Algunos segmentos electroforéticos dependen de otros

Network Science

 Es el estudio de las redes que representan fenómenos físicos, biológicos y sociales conduciendo a modelos predictivos de estos fenómenos.

Topologías

Características comunes

The Money Network

Relación entre automotrices

Network Science

 Es el estudio de las redes que representan fenómenos físicos, biológicos y sociales conduciendo a modelos predictivos de estos fenómenos.

Topologías

Características comunes

Proceso de análisis

Identificación y representación de haplotipos

Definición de medidas de distancia

Cálculo de distancias

Creación de la red Visualización de exist. de perfiles por ambiente

Definición de dimensiones y nivel de detalle Generación de hipótesis y conclusiones

Visualización y análisis topológico

Identificación y representación de haplotipos

Identificación y representación de haplotipos

Identificación y representación de haplotipos

Hapl.	ВЗа	B3b	B5	В8	B9a	B9b	В9с	B10a	B10b	E5	E10
1	1	0	1	1	1	1	0	0	0	0	0
2	1	0	1	1	1	0	1	1	0	0	0
3	1	0	1	1	1	0	0	1	1	0	0
4	1	0	1	1	1	0	0	1	0	0	0
5	1	0	1	1	0	1	0	1	0	0	0
6	1	0	1	1	0	1	0	0	0	0	0
7	1	0	1	1	0	0	1	1	0	1	1
8	1	0	1	1	0	0	1 G	en 1ac	0	1	0
9	1	0	1	1	0	0	1	1	S 0	0	0
10	1	0	1	1	0	0	1	0	011	0	0
15	1	0	1	1	0	0	1	0	0	0	1
16	1	0	1	1	0	0	1	0	0	0	0
11	1	0	1	1	0	0	0	1	1	0	0
17	1	0	0	1	1	0	1	1	0	0	0
18	1	0	0	0	0	1	0	1	0	0	0
19	0	1	1	1	1	1	0	1	1	0	0
20	0	1	1	1	0	1	0	1	0	1	1
12	0	1	1	1	0	1	0	1	0	0	0
13	0	1	1	1	0	0	1	1	0	1	1
14	0	1	1	1	0	0	1	1	0	0	0
21	0	1	1	1	0	0	1	0	0	0	0

Definición de medidas de distancia

Definición de medidas de distancia

$$d_{ij} = dB3_{ij} + dB5_{ij} + dB8_{ij} + dB9_{ij} + dB10_{ij} + dBE5_{ij} + dBE10_{ij}$$

donde:

$$dB3_{ij} = (|B3a_i - B3a_j| + |B3b_i - B3b_j| + |B3a_i - B3a_j + B3b_i - B3b_j|)/2 \qquad (excepción 1)$$

$$dB5_{ij} = |B5_i - B5_j| \qquad (dist. de Hamming)$$

$$dB8_{ij} = |B8_i - B8_j| \qquad (dist. de Hamming)$$

$$dB9_{ij} = (|B9a_i - B9a_j| + |B9b_i - B9b_j| + |B9c_i - B9c_j| + |B9a_i - B9a_j + B9b_i - B9b_j + B9c_i - B9c_j|)/2 \qquad (excepción 1)$$

$$dB10_{ij} = (|B10a_i - B10a_j| + |B10b_i - B10b_j| + |B10a_i - B10a_j + B10b_i - B10b_j|)/2 \qquad (excepción 2)$$

$$dBE5_{ij} = |BE5_i - BE5_j| (1 - |B5_i - B5|) \qquad (excepción 2)$$

$$dBE10_{ij} = |BE10_i - BE10_j| (1 - (|B3a_i - B3a_j| OR |B3b_i - B3b_j|)) \qquad (excepción 2)$$

Cálculo de distancias

Identificación y representación de haplotipos

> Definición de medidas de distancia

Cálculo de distancias

Creación de la red Visualización de exist. de perfiles por ambiente

Definición de dimensiones y nivel de detalle Generación de hipótesis y conclusiones

Visualización y análisis topológico

Cálculo de distancias

Hapl.	6	1	5	18	8	7	16	9	10	15	11	3	4	2	17	13	20	21	14	12	19
6		1	1	3	3	3	1	2	2	2	3	3	2	3	4	4	3	2	3	2	4
1			2	4	4	4	2	3	3	3	4	3	2	2	3	5	4	3	4	3	3
5				2	2	2	2	1	3	3	2	2	1	2	3	3	2	3	2	1	3
18					4	4	4	3	5	5	4	4	3	4	3	5	4	5	4	3	5
8						1	2	1	3	2	3	3	2	2	3	2	3	3	2	3	5
7							2	1	3	2	3	3	2	2	3	1	2	3	2	3	5
16								1	1	1	3	3	2	2	3	3	4	1	2	3	5
9									2	2	2	2	1	1	2	2	3	2	1	2	4
10										2	2	2	3	3	4	4	5	2	3	4	4
15											4	4	3	3	4	3	4	2	3	4	6
11												1	2	3	4	4	4	4	3	3	3
3													1	2	3	4	4	4	3	3	2
4														1	2	3	3	3	2	2	3
2															1	3	4	3	2	3	3
17																4	5	4	3	4	4
13																	1	2	1	2	4
20																		3	2	1	3
21																			1	2	4
14																				1	3
12																					2
19																					

Creación de la red

Identificación y representación de haplotipos

Definición de medidas de distancia

Cálculo de distancias

Creación de la red Visualización de exist. de perfiles por ambiente

Definición de dimensiones y nivel de detalle Generación de hipótesis y conclusiones

Visualización y análisis topológico

Creación de la red

Visualización y análisis topológico

Visualización y análisis topológico

Clustering coefficient:
$$Cc_i = \frac{2c_i}{k_i(k_i - 1)}$$
 $CC = \frac{\sum_{i=1}^n Cc_i}{n} = 0,246$

Diámetro = 5

Distancia promedio = 2,767

Distribución de grado de conectividad:

$$k_i = \sum_{j=1}^{N} d_{ij} | d_{ij} = 1$$

Exploración

Identificación y representación de haplotipos

Definición de medidas de distancia

Cálculo de distancias

Creación de la red Visualización de exist. de perfiles por ambiente

Definición de dimensiones y nivel de detalle Generación de hipótesis y conclusiones

Visualización y análisis topológico

Exploración

Generación de hipótesis y conclusiones

Generación de hipótesis y conclusiones

$$SDH_A = \sum_{i=1}^{n_A - 1} \sum_{j=1}^{n_A - 1} \sum_$$

$$\sum_{j=i+1}^{n_A} d_{ij}$$

donde:

 SDH_A : suma de distancias entre los haplotipos del ambiente A n_A : cantidad de haplotipos del ambiente A d_{ij} : distancia entre el haplotipo i y el haplotipo j

Generación de hipótesis y conclusiones

$$E(SDH_A) = \sum_{i=1}^{n_A-1} \sum_{j=i+1}^{n_A} \left(1 - \left(1 - P(h_i)\right)^{n_A}\right) \left(1 - \left(1 - P(h_j)\right)^{n_A}\right) d_{ij}$$

donde:

 $E(SDH_A)$: valor esperado de SDH del ambiente A n_A : cantidad de haplotipos del ambiente A d_{ij} : distancia entre el haplotipo i y el haplotipo j $P(h_i)$: Probabilidad de existencia del haplotipo i

Conclusiones del proyecto

- Según el índice calculado, la variabilidad del Mal de Río Cuarto virus, ha disminuido con el tiempo, habiendo una clara división del indicador en la campaña posterior a la epidemia de la campaña 1996/97.
- La utilización de redes en el proceso de KDD resultó muy satisfactoria y logró resaltar un comportamiento del objeto de estudio que no había sido evidente hasta el momento.
- En un proceso centrado en la persona (human-centered), donde la creatividad y experiencia del analista juega un rol fundamental, la herramienta propuesta es capaz de ofrecer una perspectiva novedosa y complementaria con las demás técnicas del proceso de KDD

yatel

Arquitectura

Como librería

```
from yatel import dom, weight, db
 2
    \Boxhaps = [dom.Haplotype("hap0", b1=0, b2=1, b3=1),
             dom. Haplotype("hap1", b1=0, b2=1, b3=0),
             dom.Haplotype("hap2", b1=1, b2=1, b3=1)]
 5
 6
    □facts = [dom.Fact(haps[0].hap_id,
                        date="25/5/10", place="Rio Cuarto", clima="lluvioso"),
 8
              dom.Fact(haps[1].hap_id,
10
                        date="25/6/10", place="Rio Tercero",
11
                        clima="soleado", estado_maiz="muerto"),
              dom.Fact(haps[2].hap_id,
12
13
                        date="25/5/11", place="Rio Cuarto", clima="nublado"),
              dom.Fact(haps[0].hap_id,
14
15
                        date="25/5/10", clima="soleado", estado_maiz="aislado")]
16
17
     hamm = weight.Hamming()
18
    □ edges = [dom.Edge(hamm.weight(haps[0], haps[1]),
19
                        haps[0].hap_id, haps[1].hap_id),
20
              dom.Edge(hamm.weight(haps[1], haps[2]),
21
                       haps[1].hap_id, haps[2].hap_id)]
22
23
     conn = db.YatelConnection("sqlite", "/home/juan/slides.db")
24
     conn.init_with_values(haps, facts, edges)
25
26
     # SECOND TIME!
27
     conn.init_yatel_database()
```

Preguntas...

Gracias!!

