7.3 寄存器

1) 简单寄存器

2) 有控制功能的寄存器

通用四位并行寄存器74LS175

逻辑符号

八位三态输出并行寄存器74LS374

使能输入8位并行寄存器74LS377

寄存器的Verilog HDL描述

```
module myreg_8 (data, clk, reset, oe, q);
 input clk, reset, oe;
 input [7:0] data;
 output [7:0] q;
 reg [7:0] temp; //
   assign q = (oe = 1)? temp : 8'hzz; //
always @ (posedge clk or negedge reset)
     begin
       if (!reset) temp <= 8'h00; //
       else temp <= data;
     end
endmodule
```

7.4 移位寄存器

移位寄存器既能存储数据,又能对所存数据在时钟节拍作用下按位向高位(或低位)顺移。

按逻辑功能划分:串行输入——串行输出;

串行输入——并行输出;

并行输入——串行输出;

并行输入——并行输出。

按移位方式划分: 单向移位、双向移位、循环移位、扭环移位

利用移位操作,可实现简单的乘除法。

1) 串入——串出结构移位寄存器

串入—串出的Verilog HDL模型

```
module shifter_R (SERIN, CP, SEROUT);
 input SERIN, CP;
 output SEROUT;
 reg = [3:0]Q;
    always @ (posedge CP)
      begin
                                     可否?
        Q[3] < = SERIN;
                                     Q[3] = SERIN;
        Q[2] <= Q[3];
                                     Q[2] = Q[3];
        Q[1] <= Q[2];
                                     Q[1] = Q[2];
        Q[0] <= Q[1];
                                     Q[0] = Q[1];
      end
    assign SEROUT= Q[0]; //
```

endmodule

2) 串入——并出结构移位寄存器

串入—并出的Verilog HDL模型

```
module shifter_R (SERIN, CP, RD, OUT);
 input SERIN, CP, RD;
 output [3:0] OUT;
 reg = [3:0]Q;
    always @ (posedge CP)
      begin
        Q[3] < = SERIN;
        Q[2] <= Q[3];
        Q[1] <= Q[2];
        Q[0] <= Q[1];
      end
    assign OUT= (RD==1) ? Q:0; // ?
endmodule
```

3) 并入——串出结构移位寄存器

并入—串出的Verilog HDL模型

```
module shifter_R (SIN, CP, LD, Data, SEROUT);
 input SIN, CP, LD;
 input [3:0] Data;
 output SEROUT;
 reg [3:0]Q;
    always @ (posedge CP)
      if (LD==1) Q <=Data; \#\lambda
      else begin Q[3] <= SIN;
                  Q[2] <= Q[3];
                  Q[1] <= Q[2];
                   Q[0] < = Q[1];
            end
                                // 串出
    assign SEROUT= O[0];
endmodule
```

如何设计满足下列功能要求的移位寄存器?

- 1) 低有效异步清零
- 2) 保持
- 3) 右移一位
- 4) 左移一位
- 5) 并行置数

MSI移位寄存器74LS194的应用

74LS194是一个四位并入—并出、双向移位的寄存器,逻辑符号如下:

74LS194功能表

/CLR	S_1 S_0	CP	$Q_A Q_B Q_C Q_D$	功能
0	ΧX	X	0 0 0 0	清零
1	0 0	†	$Q_A Q_B Q_C Q_D$	保持
1	0 1	↑	$\mathbf{R_{IN}} \ \mathbf{Q_A} \ \mathbf{Q_B} \ \mathbf{Q_C}$	右移
1	1 0	↑	$\mathbf{Q_B} \ \mathbf{Q_C} \ \mathbf{Q_D} \ \mathbf{L_{IN}}$	左移
1	1 1	↑	A B C D	并行置数

74LS194的Verilog HDL模型

```
module my_194 (clr, clk, data, Rin, Lin, sel, Qout);
 input clr, clk, Rin, Lin;
 input [1:0] sel;
 input [3:0] data;
 output [3:0] Qout;
        [3:0] Qout;
 reg
   always @ (posedge clk or negedge clr)
      if (!clr) Qout <= 4'b0000;
      else case (sel)
          2'b00 : Qout<=Qout;
          2'b01: begin Qout<=Qout>>1;Qout[3]<=Rin;end
          2'b10: begin Qout<=Qout<<1;Qout[0]<=Lin;end
          2'b11 : Qout<=data;
           endcase
endmodule
```


例:分析串行输入数据转换为并行输出数据的电路。

分析: 两片74LS194构成串行右移并出电路

步骤	功能	S_1S_0				输	出			
/ CLR	清零	××	0	0	0	0	0	0	0	0
CP0	并入	11	A_{θ}	0	1	1	1	1	1	1
CP1	右移	01	A_1	$A_{\boldsymbol{\theta}}$	0	1	1	1	1	1
CP2	右移	01	A_2	A_{I}	$A_{\boldsymbol{\theta}}$	0	1	1	1	1
CP3	右移	01	A_3	A_2	A_{I}	$A_{\boldsymbol{\theta}}$	0	1	1	1
CP4	右移	01	A_4	A_3	A_2	A_{I}	$A_{\boldsymbol{\theta}}$	0	1	1
CP5	右移	01	A_5	A_4	A_3	A_2	A_I	$A_{\boldsymbol{\theta}}$	0	1
CP6	右移	01	A_{6}	A_5	A_4	A_3	$\overline{A_2}$	A_{I}	$A_{m{ heta}}$	0
CP7	并入	11	$A_{\boldsymbol{\theta}}$	0	1	1	1	1	1	1

功能:一个有"转换完毕"信号的7位串—并转换器。

这是将7位并行输入数据转换为串行输出数据的电路。请同学自行分析。

7.5 移位寄存器型计数器

如果将移位寄存器的输出以某种方式反馈 到串行输入端,则可得到连接简单、编码别具 特色、用途广泛的移位寄存器型计数器。

通过状态变化对CP计数,一般采用循环移位方式。

 $D_{n-1} = F (Q_{n-1}, Q_{n-2}, \dots, Q_0)$

(右移)移位寄存器型计数器电路结构示意图

7.5.1 环形计数器

反馈电路为: $D_{n-1} = Q_0$ 构成自循环的移位寄存器_。 现以n=4为例。

不能自启动,有无效循环和陷阱。

为了便于修改设计, 先作出基本反馈下的状态矩阵:

Q_1Q_0 Q_3Q_2	00	01	11	10
$\begin{bmatrix} 2322 \\ \theta\theta \end{bmatrix}$	0000	1000	1001	0001
01	0010	1010	1011	0011
11	0110	1110	1111	0111
10	0100	1100	1101	0101

状态表改进后经激励矩阵得到的激励方程: $D_3 = \overline{Q_3} \bullet \overline{Q_2} \bullet \overline{Q_1}$

$$Q_{3(t+1)}Q_{2(t+1)}Q_{I(t+1)}Q_{\theta(t+1)}$$

根据新的反馈方式: $D_3 = \overline{Q_3} \bullet \overline{Q_2} \bullet \overline{Q_l}$ 画电路图。

四位环形计数器的 $0001 \longrightarrow 1000 \longrightarrow 0100 \longrightarrow 0010$ 输出波形如下: Q_{3} Q_2 Q_1

- ●每一时刻只有一个触发器状态为1。(四位循环一个1)
- ●每个触发器的输出均为与CP等宽的脉冲。可直接用作 节拍发生器。
- ●只使用了n个触发器的n种状态,有2ⁿ-n个无效状态。

例1: 采用74LS194实现循环一个"1"的环形计数器。

解:根据功能表,设置成右移工作方式,将反馈逻辑引到 R_{IN}输入端。当启动清零后,循环一个"1"。

参照
$$D_3 = \overline{Q_3} \bullet \overline{Q_2} \bullet \overline{Q_1}$$
有: $R_{IN} = \overline{Q_A} \bullet \overline{Q_B} \bullet \overline{Q_C} = \overline{Q_A} + \overline{Q_B} + \overline{Q_C}$

$$Q_A Q_B Q_C Q_D$$

$$1 0 0 0$$

$$0 1 0 0$$

$$0 0 1 0$$

$$0 0 0 1$$

$$I - S_0$$

$$Q_A Q_B Q_C Q_D$$

$$O 0 0 1$$

$$O 0 0 1$$

$$O 0 0 1$$

$$O 0 1 0$$

$$O 0 0 1$$

例2:分析图示电路的逻辑功能。

解:从启动清零开始,根据反馈 条件和74LS194功能表,画出状 态转移图,进行分析。 四位右循环一个"0"; 循环一个"0"环形计数器; 模4环形计数器。

例3: 四位右循环一个"0"的Verilog HDL描述。

```
module R_shift_0 (clr, clk, Q);
 input clr, clk;
 output [3:0] Q;
        [3:0] Q;
 reg
   always @ (posedge clk or negedge clr)
     if (!clr) Q<=4'b0111;
     else case (Q)
           4'b0111 : Q<=4'b1011;
          4'b1011 : Q<=4'b1101;
          4'b1101 : Q<=4'b1110;
          4'b1110 : Q<=4'b0111;
           default : Q<=4'b0111;
           endcase
endmodule
```

7.5.2 扭环形计数器(Johnson计数器)

反馈电路为: $D_{n-1} = \overline{Q_0}$ 构成自循环的移位寄存器。现以n=4为例。

不能自启动,有无效循环。

依题意有如下状态表。

 $Q_{3(t+1)}Q_{2(t+1)}Q_{I(t+1)}Q_{\theta(t+1)}$

无效循环:

可以有多处改进而打破无 效循环。

可以将0010和0110的次态 从1001和1011改变为0001 和0011。经激励矩阵得到 激励方程:

$$egin{aligned} D_3 &= Q_0 + Q_1 ullet \overline{Q_3} \ D_2 &= Q_3 \ D_1 &= Q_2 \ D_0 &= Q_1 \end{aligned}$$

还可以将1101和1001的次态从0110和0100改变为1110和1100。经激励矩阵得到激励方程:

$$egin{aligned} D_3 &= \overline{Q_ heta} + \overline{Q_1} ullet Q_3 \ D_2 &= Q_3 \ D_1 &= Q_2 \ D_ heta &= Q_1 \end{aligned}$$

四位扭环形右移计数器波形图

特点: 1.相邻两组状态只有一位变化,符合可靠性编码原则。

- 2.常用于步进电机控制,也称步进码计数器。
- 3.便于构成无竞争现象问题的顺序脉冲发生器。
- 4.只使用n个触发器的2n种状态,有2n-2n个无效状态。

例1:分析采用74LS194构成扭环形计数器。

解:74LS194置成右移工作方式, Q_D 反相接入 R_{IN} ,当启动清零后,即进入有效循环。

观察: 1.上述电路也称模8步进码计数器。

2.若 Q_C 反相接入 R_{IN} ,可获得模6步进码计数器。

3.若 Q_R 反相接入 R_{IN} ,可获得模4步进码计数器。

例2: 4位左移扭环形计数器的Verilog HDL描述

关键是获得正确的状态图!

4位左移扭环形计数器的Verilog HDL描述

```
module R_shift_0 (clr, clk, Q);
 input clr, clk;
 output [3:0] Q;
        [3:0] Q;
 reg
   always @ (posedge clk or negedge clr)
     if (!clr) Q<=4'b0000;
     else case (Q)
           4'b0000 : Q<=4'b0001;
           4'b0001: Q<=4'b0011;
           4'b1000 : Q<=4'b0000;
           default : Q <= 4'b0000;
           endcase
endmodule
```

7.5.3 最大长度移位型计数器

n个触发器有 2^{n} 个状态,环形计数器用了n个状态,扭环形计数器用了 2^{n} 个状态。若反馈逻辑采用 $D_{n-1} = Q_{1} \oplus Q_{0}$,可构成最大长度移位型计数器。以n=3为例。

$$Q_{2(t+1)}Q_{I(t+1)}Q_{\theta(t+1)}$$

为打破无效循环,将000的次态 修改为100。

$$D_2 = \overline{Q_2} \bullet \overline{Q_1} + Q_0 \oplus Q_1$$

特点: 1.使用了n个触发器的2n-1种状态,只有1种无效状态。

2.不符合循环码编码规律,构成节拍发生器时,译码电路 较复杂,且可能有竞争险象。 例:分析图示电路的逻辑功能。

这是一个四位最大长度右移计数器。共有24-1=15种计数状态。

作业17:

7.11

7.13

7.15

7.16