IN THE SPECIFICATION:

Please amend the title of paragraph 0001 as follows:

FIELD OF THE INVENTION

Please amend the title of paragraph 0002 as follows:

BACKGROUND OF THE INVENTION

Please amend the title of paragraph 0013 as follows:

SUMMARY OF THE INVENTION

For each of the paragraphs listed in this section, please amend that paragraph by replacing it with the version given here.

Please replace paragraph 26 with the following:

Turning now to the drawings, and in particular to FIG. 1, one embodiment of a laser printing apparatus (2) according to the present invention is shown. Laser printing apparatus (2) may include one or more photosensitive drums, for example organic photoconductive drum (4). Photoconductive drum (4) is readily available from a variety of commercial sources. Laser printing apparatus (2) may also include a charging member, for example a corona wire (not shown), for applying a negative charge to photoconductive drum (4). Laser printing apparatus (2) may further include a laser optic system (8). Laser optic system (8) may be used to write a latent image (10) on photoconductive drum (4). As described in the background section of this disclosure, latent image (10) may be developed by attracting toner

(12) to photoconductive drum (4). Toner (12) may be positively charged by a charge roller
(6). Toner (12) may be [[a]] specially configured as discussed below. Laser printing
apparatus (2) may also include a print medium transport system, for example rollers (3) and
(5), for conveying paper (16) through the printing apparatus.

Please replace paragraph 29 with the following:

The suspension of the toner particles in the UV curable resin may be advantageously facilitated by the addition of one [[ore]] or more additives. A surfactant, for example

Nonoxinal™, may be added to the UV curable resin. The surfactant prevents the toner particles from settling, separating, gathering, etc. to ensure quality printing. In addition, a charge director, for example quaternary ammonium salts, may be added to the UV curable resin and toner particles. Charge directors enable compounds such as the toner suspension

UV curable resin to hold an electrical charge. By employing a toner-suspended UV curable resin that is capable of accepting an electric charge, an image on photoreceptor (4) comprising the toner/resin may be transferred from the photoreceptor to paper (16), in some embodiments even without contact between the paper and the photoreceptor. The image may "jump" a gap between the photoreceptor and the paper if desired, or there may be contact between the paper and photoreceptor in some embodiments. By creating a toner-suspended UV curable solution capable of accepting an electric charge, wear to the photoreceptor may advantageously be reduced as little or no cleaning of the photoreceptor by a doctor blade or other cleaning apparatus may be necessary.

Please replace paragraph 32 with the following:

Referring next to FIG. 4, an alternative embodiment for fusing toner to a print medium are is disclosed. According to the embodiment of FIG. 4, in place of rollers (18) and (19) shown in FIG. 1, there is UV light source (28). This alternative embodiment exemplifies that the UV light source (28) may be shaped in any convenient arrangement to cast UV light onto page (16). As UV sensitive toner, such as the toner particles suspended in a UV curable resin as discussed above, passes by UV light source (28), the UV sensitive toner is cured and fused to page (16). While other printing apparatuses may have disclosed simultaneously transferring an image to a page and UV curing the toner, the present invention contemplates, with regard to UV fusing, separately transferring an image to a page and curing the toner. The separate UV curing step advantageously facilitates the use of mostly-conventional laser printing apparatus, with the addition of a UV curing station (such as UV light source (28)) to either replace the traditional heating element/pressure roller arrangement altogether, or to be used in combination with the traditional pressure rollers, i.e. pressure rollers may be included or excluded according to need and desire with the addition of a UV curing station of the present invention. According to the present invention, there is no need for a specialized photosensitive belt as with prior UV cured printing apparatuses. Toners suspended in a UV curable resin require much less energy to fuse to a page than the traditional heat-fused toners, and the need for cooling systems including noise-adding fans may also be eliminated. Therefore, a laser printer may employing the present invention with UV cured images may be operated at reduced power and/or at higher print speeds. According this embodiment of the

present invention, there may or may not be contact between page (16) and any fusion-enhancing rollers. If a user desires to use a UV curing station with traditional heated rollers (preferably after disconnecting power to the heating element to conserve energy--but not necessarily so) or with rollers with no heating elements, there will be pressure-roller contact with the paper. However, in some embodiments there may be no rollers at all to facilitate toner fusing, instead the toner may be fused only by the application of UV light from source (28), which may be spaced from paper (16). The UV light (28) source may be added to a conventional laser printing apparatus, and/or the UV light source may be arranged before or after engagement of the paper with the pressure rollers.