Capítulo

1

Introdução ao Pentest e Técnicas de Intrusão

Jean Carlos Martins Miguel e Rafael Menezes Barboza

Resumo

O minicurso Introdução ao Pentest e Técnicas de Intrusão, em nível intermediário, consiste em apresentar os procedimentos para a execução da técnica de Pentest em um ambiente controlado e isolado por máquinas virtuais vulneráveis de sistemas operacionais Linux e Windows, simulando um ambiente empresarial comum em muitas empresas. Abordam-se neste curso, técnicas de reconhecimento de alvo com utilização de ferramentas e técnicas como NMAP, Netcat, e exploração de vulnerabilidades com uso da ferramenta Metasploit.

1.1. Informações gerais

Para a realização deste minicurso recomenda-se que o candidato tenha conhecimentos prévios nas áreas de Segurança da Informação, Redes de Computadores, Sistemas Operacionais e afinidade com o sistema operacional Linux. Estes requisitos são necessários pois o curso tem como principal base conexões remotas através de endereços IPs e portas TCP/UDP, além disso, o sistema operacional usado para realizar os ataques é o Kali-Linux, distribuição baseada em GNU Linux. O nível de profundidade do minicurso é intermediário.

1.2. Equipe ministrante

O minicurso proposto é ministrado por alunos do curso de Ciência da Computação da Universidade Tecnológica Federal do Paraná - câmpus Campo Mourão.

 Jean Carlos Martins Miguel - Acadêmico do curso de Ciência da Computação da UTFPR - Campo Mourão e membro do grupo de cibersegurança desde 2017. Recentemente desenvolveu tutoriais em Segurança da Informação, o qual objetivouse a sistematização de ataques e vulnerabilidades, testes de intrusão em sistemas para estudo de diversos tipos de ataques e de vulnerabilidades, para futuramente serem desenvolvidos mecanismos e ferramentas para a prevenção e detecção de ataques similares. • Rafael Menezes Barboza - Acadêmico do curso de Ciência da Computação da UTFPR - Campo Mourão e membro do grupo de cibersegurança desde 2018. Desenvolve um projeto de Iniciação Tecnológica e Inovação sobre "Estudo de casos de ataques cibernéticos à sistemas a industriais" junto à Fundação Parque Tecnológico Itaipu - Brasil.

O Grupo de Pesquisa em Cibersegurança da UTFPR campus Campo Mourão é um grupo composto por professores, alunos e colaboradores externos (professores de outras instituições, egressos da UTFPR, profissionais) que tem o interesse em desenvolver projetos científicos e de extensão na área de Cibersegurança. O grupo investiga técnicas e ferramentas de segurança, como também ataques e ameaças cibernéticas, com o intuito de desenvolver novas técnicas e ferramentas computacionais para a proteção de redes de computadores, sistemas computacionais e de dados. Também atua na conscientização de usuários por meio de seminários e palestras, tanto de caráter técnico como informativo, visando disseminar a cultura de Segurança da Informação (InfoSec) para a comunidade acadêmica e externa.

1.3. Infraestrutura e materiais

Com intuito de trazer uma melhor experiência para os alunos durante o minicurso será necessário utilizar um laboratório, por exemplo, laboratório - E101, contendo aparelho projetor e computadores que suportam no mínimo duas máquinas virtuais executando simultaneamente. Isso é necessário pois grande parte do minicurso é baseada em atividades práticas individuais, seguindo as instruções passadas pelos ministrantes do minicurso.

Os requisitos de infraestrutura são:

- Aparelho projetor.
- Um computador por aluno matriculado.
- Os computadores devem conter o software VirtualBox para virtualizar os sistemas:
 - Kali Linux 64 Bits
 - Windows 7 SP1 64 Bits

Os sistemas operacionais usados nas maquinas virtuais sendo eles "Kali Linux Light x64 e Windows 7 SP1 x64"serão disponibilizados para a equipe organizadora do evento pelos próprios autores do minicurso. As ferramentas necessárias para conduzir o curso serão previamente instaladas na máquinas virtuais distribuídas.

1.4. Importância da Segurança Cibernética

Defesas e métodos de segurança contra ataques cibernéticos no início da era virtual eram mínimas ou inexistentes. Um aluno do ensino médio ou um hacker inexperiente obtinham acesso aos sistemas e redes sem muito esforço. Porém, os índices de ataques e invasões foram crescendo à medida que cada vez mais informações importantes e confidenciais eram gerenciadas pelos meios tecnológicos modernos. Logo, o interesse de hackers, ativistas e nações em deter informações e controle sobre sistemas e dados foram aumentando.

Países do mundo todo tornaram-se mais conscientes da ameaça de ataques cibernéticos. As ameaças impostas por ataques cibernéticos agora encabeçam a lista das maiores ameaças à segurança nacional e econômica na maioria dos países, sinalizando a importância da cibersegurança e salientando o seu crescimento.

Além da segurança nacional, empresas, indústrias e usuários comuns também são alvos de ataques e podem sofrer com o cibercrime. Para mitigar essas situações é interessante que todos tenham o básico de conhecimento sobre segurança cibernética e os riscos que os cibercriminosos podem oferecer. Tendo noção dos perigos cibernéticos, os usuários de dispositivos tecnológicos tornam-se mais conscientes e seguros diante dos riscos que podem enfrentar. Logo trabalhos de pesquisa e iniciativas educacionais como este minicurso são maneiras de conscientizar os usuários e partilhar o conhecimento sobre a área.

Diante do cenário atual, o profissional Pentester e empresas de segurança cibernética passam a ser muito requisitados na busca por vulnerabilidades e potenciais ameaças que podem comprometer os usuários ou clientes envolvidos com sistemas e informações.

1.5. O PenTest

O termo PenTest é derivado de Penetration Test, em português a melhor tradução seria Testes de Intrusão ou de Invasão é um conjunto de técnicas e ferramentas utilizadas para identificar falhas de segurança em sistemas e redes corporativas. Através dessas técnicas, o profissional Pentester irá identificar as vulnerabilidades existentes na arquitetura da empresa, explorá-las e entregar um relatório à empresa, que deverá então tomar as devidas ações para corrigir as falhas de segurança.

Apesar de ser uma simulação de um ataque hacker, é importante mencionar que o PenTest é uma atividade profissional e sobretudo ética. Uma empresa contrata esses serviços para ter seus sistemas analisados por uma empresa ou profissional qualificado.

1.6. Profissão

Um Pentester é um profissional com elevados conhecimentos em diversas áreas da computação, principalmente em sistemas operacionais, redes de computadores e segurança da informação. Ele faz uso de aplicativos e ferramentas para explorar vulnerabilidades e busca identificar quais tipos de informações podem ser obtidas por meio dessa falha. Esse Profissional também é chamado de Auditor Pentest e até mesmo de Ethical Hacker (hacker ético).

As empresas que contratam o serviço de pentest podem escolher diferentes tipos de análise que são White Box, Black Box e Gray Box. Cada tipo de análise possui suas características e podem ser aplicadas de acordo com a estratégia e o objetivo da análise pentest.

Na análise White box o profissional ou empresa responsável pelo pentest receberão dos contratantes as informações e acessos privilegiados como versões de aplicativos, mapa da rede, acesso físico e lógico aos sistemas e rede alvos.

O Black box é uma estratégia totalmente oposta ao White Box, onde o Pentes-

ter não recebe nenhuma informação ou acesso privilegiado do alvo tornando a tarefa de descobrir vulnerabilidades e pontos de acesso mais realista e próximo de um real ataque hacker. Algumas empresas usam esta abordagem para validar sua própria resposta a incidentes de segurança.

Por fim, a estratégia Gray box é uma mistura das duas estratégias citadas acima (White Box e Black Box), em que o Pentester possui algumas mas não todas informações e acessos. Na grande maioria das vezes essas informações recebidas são afirmadas durante a contratação do serviço.

1.7. Fases do Pentest

A análise Pentest é dividido em fases. Esta seção aborda as principais fases para a realização de pentest.

Reconhecimento: Nesta fase a equipe de Pen Testers realizam o levantamento detalhado de informações possíveis sobre a empresa analisada. São documentadas algumas informações, como por exemplo : ramo de atuação, existência de filiais ou empresa associadas a ela, serviços prestados, endereço físico (se houver), além de nome e e-mails de profissionais que ocupam cargos altos, como gerentes e diretores. Essas informações ajudarão o Pentester a observar em quais locais e serviços ele deve focar para encontrar vulnerabilidades.

Varredura: Nesta fase é realizada uma varredura do que está presente na rede. Por exemplo, a faixa de IPs, quais os servidores existentes, os sistemas operacionais utilizados, as portas abertas, entre outros.

Obtenção de Acesso e Exploração: Com base no que foi identificado na fase de varredura, nesta fase cada item deverá ser analisado e explorado, isto é, efetivamente identificar e explorar as vulnerabilidades existentes. Utilizando técnicas e ferramentas identifica-se os serviços vulneráveis e que tipo de informação, falhas ou controles podem ser obtidos através daquele serviço.

Obtenção de Evidências e Reporte: As evidências de todas as falhas e vulnerabilidades identificadas são coletadas pela equipe. Com base nessas informações, através de um relatório, a equipe irá mostrar todos os possíveis prejuízos que a empresa pode ter com cada tipo de vulnerabilidade.

1.8. Vulnerabilidades

Vulnerabilidades são descritas como qualquer fraqueza ou brecha em sistemas, redes, processos que podem ser explorados e comprometerem de alguma forma o estado natural das coisas ou violarem regras/politicas de segurança. As vulnerabilidades podem ser encontradas em software, hardware e também em pessoas, que podem ser influenciadas pelo atacante a realizaram ações que contribuírem para um ataque através de engenharia social.

Quando uma vulnerabilidade encontrada não é de conhecimento do fornecedor do hardware ou do software esta é rotulada como vulnerabilidade **zero-day**. Na maioria das vezes a vulnerabilidade é explorada por um logo tempo podendo até ser comercializada

por empresas fachadas e grupos de interesses no mercado negro.

Até que a organização e a equipe de desenvolvedores atuem no desenvolvimento de um solução para a vulnerabilidade, esta pode ser explorada por qualquer um que detenha da informação e do código de exploração (exploit). Mesmo após lançado a solução para a vulnerabilidade, muitos usuários optam por não atualizaram e receberem a correção, ficando vulneráveis a ataques.

Indústrias e setores empresariais estão entre os principais usuários de software desatualizados. Como esses grupos de usuários devem manter suas máquinas e sistemas sempre operando acabam por não realização os patches (atualizações de software), pois geralmente são frequentes e demoradas, além de que mudanças podem ocasionar o mal funcionamento de algo. Por essas razões as empresas costumam não atualizar os software tornando-se mais suscetíveis a ataques.

Durante o minicurso será explicado e demonstrado vulnerabilidades presentes em softwares comuns e usuais como por exemplo às vulnerabilidades presentes no software Adobe Reader v9.3.4 (CVE-2010-2862 e CVE-2010-1240) e em sistemas operacionais como no caso da vulnerabilidade (CVE-2017-0144) presente no protocolo SMB (Server Message Block) do Windows e percussor do famoso ataque Wannacry.

Também será relacionado vulnerabilidades com ataques famosos a indústria e aos usuários de computadores no geral. Enfatizando como pequenas vulnerabilidades podem afetar um grande número de usuários e causar danos a estruturas críticas essenciais a uma sociedade.

1.9. Ferramentas

Nesta seção são abordadas algumas das principais ferramentas utilizadas pelos profissionais de Pentest no teste de intrusão, e que também serão usadas durante o minicurso.

1.9.1. Nmap

O Nmap ou (Network Mapper) é uma ferramenta de licença aberta para mapear e auditar redes utilizando pacotes IP e determinar quais hosts estão disponíveis na rede, quais serviços (nome do aplicativo e versão) esses hosts estão oferecendo, quais sistemas operacionais (e versões do sistema operacional) estão executando, entre outras funcionalidades. Esse procedimento é mais conhecido como varredura ou scanning.

É comum os profissionais que utilizam a ferramenta Nmap usarem o modo "linha de comando"para trabalhar, portanto é a forma que abordada durante o minicurso. Há uma interface gráfica para a ferramenta Nmap chamada "Zenmap"que pode também ser utilizada com o mesmo propósito.

A ferramenta Nmap disponibiliza várias maneiras de realizar varreduras de portas, que variam de acordo com o nível de detalhamento necessário para a coleta de informações. Quanto maior o nível de detalhamento desejado mais são as chances da busca ser identificada e bloqueada.

Esta ferramenta pode ser muito útil para identificar quais recursos estão ativos e com portas abertas e então protegê-las ou elaborar ou utilizar um exploit para realizar a

exploração na tentativa de conseguir ter acesso ao alvo.

Principais comandos:

- nmap 192.168.2.2 = Análise de um host.
- nmap -p 80 192.168.2.2 = Análise de um host na porta 80.
- nmap teste.com = Análise de um domínio.
- nmap -v 192.168.2.0/24 = Análise de uma rede de 255 endereços com método verbose.
- nmap -O 192.168.2.2 = Detecta o sistema operacional do alvo.
- nmap -sv 192.168.2.2 = Analisa as versões dos serviços que estão disponíveis nas portas abertas.

1.9.2. NetCat

O Netcat é uma ferramenta de licença aberta que lê e envia dados através de conexões de rede, usando o protocolo TCP/IP. Sua função é proporcionar um ambiente de conexão com serviços via texto.

Com o netcat é possível se conectar a qualquer endereço IP e Porta que estejam abertos e aceitarem conexão e assim podendo enviar para o serviço em questão, comandos via texto. Se os comandos passados fazem parte do protocolo que o serviço opera as informações enviadas são interpretadas e executadas assim ocorrendo a comunicação. Hackers e profissionais da área de segurança costumam chamar a ferramenta netcat de canivete suíço diante das infinidades de formas de uso e funcionalidades que cooperar em uma análise ou ataque.

A sua principal interface é por linha de comando. Existem versões da ferramenta para todos os principais sistemas operacionais (Windows, Linux, Mac OS), tornado o uso da ferramenta mais acessível a diversidade de cenários.

Principais Comandos:

- netcat host port = Conetar a um host/domínio na porta especificada.
- netcat -1 4444 = Escutar conexões TCP na porta 4444.

1.9.3. Metasploit Framework:

É um projeto de Segurança da Informação com a finalidade de análise de vulnerabilidades de segurança em plataformas, servidores e em sistemas operacionais, além de facilitar testes de invasão (pentests) e no desenvolvimento de assinaturas para Sistemas de Detecção de Intrusão (IDS).

Com o Metasploit é possível realizar testes de invasão (pentests). É possível fazer desde uma varredura mais simples até uma análise ou invasão mais completa, explorando vulnerabilidades em programas instalados.

Possui duas versões: uma comercial e outra gratuita. Utilizaremos a versão gratuita instalada por padrão no Kali Linux.

Quase todas as interações feitas com o Metasploit são através de módulos, que sao pequenos sofwtares que podem ser usados pelos metasploit.

Os tipos de módulo são:

- Exploits ("modules/exploits") = São definidos como módulos que utilizam payloads.
- Auxiliares ("modules/auxiliary") = Incluem port scanners, fuzzers, sniffers e outros.
- Payloads ("modules/") = Consiste em um código que executa remotamente.
- Encoders ("modules/encoders")= Garantem que payloads cheguem ao seus destinos intactos.
- Nops ("modules/nops") = Mantém o tamanho dos payloads consistente.

Principais Comandos:

- msfconsole = Inicializar o Metasploit em modo console.
- search = Buscar por um exploit, vulnerabilidade (CVE), Sistemas Operacionais.
- show = Utilizado para mostrar as opções, este comando pode ser utilizado com outros parâmetros, por exemplo:
 - show options = Mostrar as opções disponíveis a partir de um exploit definido.
 - show targets = Mostrar os alvos vulneráveis a partir de um exploit definido.
- set LHOST = Definir o Dominio/Máquina Local (IP_Atacante).
- set LROST = Definir a Máquina Remota (IP_Vítima).
- use = Comando para utilizar um exploit, por exemplo:
 - use auxiliary/scanner/smb/smb_ms17_010.
- run ou exploit = Executa um exploit definido.
- help = Mostra uma lista dos comandos principais do metasploit e suas descrições.
- msfupdate = É utilizado para atualizar o Metasploit com as últimas versões dos exploits.
- search name:"module name" type:"module type" = Utilizado para procurar módulos dentro do Metasploit. Ex:msf > search name:microsoft type:exploit

• info "module path" = Mostra as informações sobre um módulo específico. Ex: info auxiliary/admin/http/iis uth bypass

Exploit: Os Exploits são um subconjunto de programas maliciosos (*malwares*). Programas maliciosos com dados ou códigos executáveis capazes de aproveitar as vulnerabilidades de sistemas em um computador local ou remoto.

Ativos: Exploram um host específico, executam até completar e então saem.

Passivos: Aguardam pela entrada de hosts e os exploram assim que eles se conectam. Na maioria das vezes focados em clientes como browsers, clientes FTP, etc.

Payload: São scripts utilizados para interagir com o sistema invadido. São divididos em três grupos.

Singles: Realizam uma tarefa simples no sistema invadido, como por exemplo, abrir um programa, criar um arquivo. Ex.: "windows/shell bind tcp"

Stagers: Configuram uma conexão de rede entre o atacante e a vitima .Ex.: "windows/shell/bind tcp"

Stages: São componentes transferidos pelos Stagers que podem proporcionar recursos avançados ao atacante. Ex.: Meterpreter, VPNInjection.Ex.: "windows/shell/bind tcp"

Meterpreter: Meterpreter é um payload que utiliza stagers de injeção de DLL na memória. Ele se comunica através do socket do stager e fornece uma API client-side Ruby.

1.10. Prática e exploração de vulnerabilidades

Nesta seção apresenta-se na prática como utilizar as ferramentas de Pentest para explorar algumas vulnerabilidades. Essas práticas objetivam conscientizar sobre alguns perigos das vulnerabilidades e da importância do estudo de segurança cibernética para prevenir ataques.

1.10.1. Exploração de Vulnerabilidades em Sistemas Operacionais

Para demonstrar como ocorre uma exploração de vulnerabilidades em Sistemas Operacionais é utilizado o sistema operacional Windows 7 Home Premium SP1 que possui uma vulnerabilidade crítica no protocolo de comunicação e compartilhamento de arquivos remoto SMB (Server Message Block).

O código de exploração (exploit) EternalBlue é elemento de um conjunto de programas secretos revelados pelo grupo Shadow Brokers em 14 de abril de 2017 e foi utilizado no ciberataque mundial com o ransomware WannaCry e o malware Adylkuzz. O código explora uma vulnerabilidade do Microsoft Windows, mais precisamente na implantação do protocolo Server Message Block, que permite compartilhamento de arquivos que quando relacionado a ataques malware, pode ajudar na disseminação do malware entre as maquinas da rede.

A vulnerabilidade foi categorizada como CVE-2017-0144 e está presente em várias versões do sistema operacional Windows. Sua exploração consiste no envio de um pacote malicioso especialmente criado e não autenticado ao servidor SMBv.1 alvo. A atualização de segurança resolve a vulnerabilidade, corrigindo a maneira como o SMBv1

lida com essas solicitações.

CVE-2017-0144: O servidor SMBv1 no Microsoft Windows Vista SP2; Windows Server 2008 SP2 e R2 SP1; Windows 7 SP1; Windows 8.1; Windows Server 2012 Gold e R2; Windows RT 8.1; e Windows 10 Gold, 1511 e 1607; e o Windows Server 2016 permite que atacantes remotos executem código arbitrário por meio de pacotes criados, também conhecido como "Vulnerabilidade de execução remota de código do Windows SMB". - (MITRE)

Como já abordado a exploração desta vulnerabilidade acontece através de um arquivo PDF malicioso criado pelo atacante. A Figura 1.1 demostra intuitivamente como acontece a exploração. A máquina atacante ou hacker manipula através da ferramenta Metasploit um pacote SMB inserindo o exploit responsável por explorar a vulnerabilidade na vítima, o pacote é enviado para a vitima na porta do serviço SMB vulnerável ocorrendo a executam o exploit e do payload "shell reverso" responsável por disponibilizar o shell da vitima na máquina atacante.

Figura 1.1. Exploração da vulnerabilidade no protocolo SMB do Windows através de um pacote SMB malicioso.

1.10.2. Exploração de Vulnerabilidades em Software

Para demonstrar como ocorre uma exploração de vulnerabilidades em softwares é utilizado o software leitor de arquivos PDF Adobe Reader versão 9.3.4 que possui duas vulnerabilidades críticas, sendo uma delas possível de realizar a exploração remota por meio de arquivos PDF maliciosos.

A fim de contextualizar os perigos presentes em vulnerabilidades de software, foi selecionado o Adobe Reader que é uns dos famosos de leitores de arquivos PDF e, é amplamente utilizado por usuários de todos os tipos, inclusive em ambientes empresariais/industriais. Vulnerabilidades deste tipo, podem por em risco a segurança de computadores e redes, podendo ser o caminho perfeito para um ataque hacker.

A empresa Adobe emitiu em agosto de 2010 um boletim de segurança que reporta venerabilidades presentes no sofware Adobe Reader versão 9.3.4 e anteriores permitindo que arquivos PDF maliciosos consigam executar códigos arbitrários remotamente. As

vulnerabilidades citadas foram categorizadas como CVE-2010-2862 e CVE-2010-1240, melhores descritas a seguir.

CVE-2010-2862: "Estouro de inteiro no CoolType.dll no Adobe Reader 8.2.3 e 9.3.3 e no Acrobat 9.3.3 permite que atacantes remotos executem código arbitrário por meio de uma fonte TrueType com um grande valor max Composite Points em uma tabela Maximum Profile (maxp).- (MITRE).

CVE-2010-1240: "O Adobe Reader e o Acrobat 9.x anteriores a 9.3.3 e 8.x anteriores a 8.2.3 no Windows e Mac OS X, não restringem o conteúdo de um campo de texto na caixa de diálogo de aviso Iniciar arquivo, o que facilita para os invasores remotos para induzir os usuários a executar um programa local arbitrário que foi especificado em um documento PDF, conforme demonstrado por um campo de texto que afirma que o botão Abrir permitirá que o usuário leia uma mensagem criptografada.- (MITRE)

O exploit responsável por explorar esta falha "adobe_cooltype_sing" já é público na Internet e incluído nas maiorias das ferramentas de exploração como o metasploit. Junto ao exploit pode ser inseridos programas como "shell reverso"ou algum executável, e programas são conhecidos como "payloads". Para a prática de exploração no minicurso será utilizado um payload muito conhecido chamado "reverse_shell_tcp"que abre uma conexão da máquina vitima para a máquina atacante, disponibilizando para o hacker o shell da vitima.

Como já abordado, a exploração desta vulnerabilidade acontece através de um arquivo PDF malicioso criado pelo atacante. A Figura 1.2 mostra intuitivamente como acontece a exploração. A máquina atacante ou hacker manipula através da ferramenta Metasploit um arquivo PDF inserindo o exploit responsável por explorar a vulnerabilidade na vitima, o arquivo depois de manipulado é enviado para as vitimas que ao abrirem o arquivo PDF malicioso com o software vulnerável executam o exploit e assim executam payload responsável por disponibilizar o shell da vitima na máquina atacante.

Figura 1.2. Exploração da vulnerabilidade no software Adobe Reader por meio de um arquivo PDF malicioso.

1.11. Pós-Exploração

Trata-se de uma técnica utilizada logo após o atacante ter acesso a máquina da vítima, e com a utilização de algumas ferramentas, pode-se ir mais a fundo e descobrir o máximo possível de informações do alvo e da rede interna, e fazer entre outras coisas na máquina alvo, como por exemplo: escrever arquivos, ver a versão do sistema operacional explorado, o IP da máquina, e muito mais coisas que vai da criatividade no caso do invasor, que pode inclusive instalar um backdoor na máquina da vítima para depois quando a mesma for desligada, o atacante ainda ter acesso total ao sistema infectado.

No minicurso iremos mostrar apenas alguns comandos utilizados através do **meterpreter** (um payload). Ele primeiro manda um pequeno executável para a vítima que será o responsável por se comunicar com a estação do atacante e pegar o resto das instruções a serem executadas.

Principais Comandos:

- download: O comando 'download' faz o download de um arquivo da máquina remota. Observe o uso das barras duplas ao fornecer o caminho do Windows. Ex: download c:\boot.ini
- execute = O comando 'execute' executa um comando no destino.
- idletime = A execução de 'idletime ' exibirá o número de segundos que o usuário na máquina remota ficou ocioso.
- ipconfig = O comando 'ipconfig' exibe as interfaces de rede e endereços na máquina remota.
- ls = Como no Linux, o comando "ls" listará os arquivos no diretório remoto atual.
- migrate = Usando o módulo de postagem 'migrar', você pode migrar para outro processo na vítima.
- Ps = O comando 'ps' exibe uma lista de processos em execução no destino.
- enumdesktops = Mostra quantos desktops ativos a vítima tem.
- getdesktop = Mostra qual é o desktop atual onde o Meterpreter está sendo executado.
- keyscan_dump = Mostra o que foi capturado com o keylogger.
- keyscan_start = Inicia o keylogger.
- keyscan_stop = Para o keylogger.
- screenshot = Tira uma foto do desktop remoto.
- setdesktop = Muda para outro desktop, se a máquina remota tiver mais que um.

1.11.1. Técnicas não convencionais

Muitas vezes diante de um procedimento de invasão ou exploração de vulnerabilidades o atacante não encontram maneiras convencionais de acessar remotamente um determinado dispositivo, pois nem sempre serviços como SSH, FTP ou execução de payloads estão disponíveis no nível de privilégio que o atacante se encontra. Por isso, um excelente profissional de segurança detém de várias técnicas muitas das vezes não convencionais para acessar dispositivos e ambientes.

Nesta seção aborda-se uma técnica não convencional de comunicação remota entre duas máquinas, esta tarefa terá auxílio da ferramenta Netcat realizar uma conexão entre as maquinas em uma determinada porta. O objetivo da atividade é direcionar o shell da máquina alvo para a máquina atacante (KaliLinux), podendo a maquina atacante executar comandos no shell da máquina alvo remotamente.

A Figura 1.3 mostra um exemplo de ataque não convencional utilizando a ferramenta Netcat para realizar uma conexão reversa entre maquinas envolvidas.

Figura 1.3. Shell Reverso com Netcat