Inductive logic programming

Simon Jacquet

Faculty of Computer Science Unamur

December 20th 2021

Settings

$$B \wedge H \models E$$

$$B \wedge \overline{E} \models \overline{H}$$

$$(2)$$

$$B \wedge \overline{E} \models \overline{\bot} \tag{3}$$

$$\overline{\perp} \models \overline{H}$$
 (4)
 $H \models \bot$ (5)

- B: background knowledge
- H: hypothesis
- E: examples

- \bullet \perp : set of all true literals (wrt. $B \wedge \overline{E}$)
- ⊥: most specific clause

Covering algorithm

Algorithm 1: Cover set algorithm

```
input: h, i, B, M, E

1 If E = \emptyset return B

2 Let e be the first example in E

3 Construct clause \bot_i for e;

4 Construct clause H from \bot_i;

5 Let B = B \cup H

6 Let E' = \{e : e \in E \text{ and } B \models e\}

7 Let E = E - E'

8 Goto 1
```

```
เก
```


// Algorithm 2

// Algorithm 3

Algorithm for constructing \perp_i

Algorithm 2: Constructing \perp_i

- Add e
 to the background knowledge
- 2. $InTerms = \emptyset, \perp = \emptyset$
- Find the first head mode declaration h such that h subsumes a with substitution θ
 For each v/t in θ,

```
if v corresponds to a #type, replace v in h by t if v corresponds to a +type or -type, replace v in h by v_k where v_k is the variable such that k = hash(t) If v corresponds to a +type, add t to the set InTerms.
```

Add h to \perp .

For each body mode declaration b

For every possible substitution θ of variables corresponding to +type by terms from the set InTerms

Repeat recall times

If Prolog succeeds on goal b with answer substitution θ' For each v/t in θ and θ'

If v corresponds to #type, replace v in b by totherwise replace v in b by v_k where k = hash(t)If v corresponds to a -type, add t to the set InTerms Add \overline{b} to \bot

- Increment the variable depth
- Goto step 4 if the maximum variable depth has been achieved.

Algorithm for searching the lattice

Algorithm 3: Lattice search algorithm

```
input: h, i, B, M, E

1 Open = \{\Box\}, Closed = \emptyset

2 s = best(Open), Open = Open - s, Closed = Closed \cup \{s\};

3 if prune(s) then goto 5;

4 Open = (Open \cup \rho(s)) - Closed;

5 if terminated(Closed, Open) then return best(Closed);

6 if Open = \emptyset then return e;

// No generalisation
```


7 Goto 2

Algorithm for searching the lattice

Algorithm 3: Lattice search algorithm

```
input: h, i, B, M, E

1 Open = \{\Box\}, Closed = \emptyset

2 s = best(Open), Open = Open - s, Closed = Closed \cup \{s\};  // Node selection

3 if prune(s) then goto 5;  // Node pruning

4 Open = (Open \cup \rho(s)) - Closed;  // Clause refinement

5 if terminated(Closed, Open) then return best(Closed);  // End of search

6 if Open = \emptyset then return e;  // No generalisation

7 Goto 2
```

- To do so, we must be able to:
 - Compare solutions: best(⋅)
 - Build new hypotheses: $\rho(\cdot)$
 - Discard wrong solutions: $prune(\cdot)$
 - End the search: $terminated(\cdot)$

Using numbers in the search

- p_s : # true positives
- n_s : # false positives
- c_s : # atoms in body

- h_s: # optimistic estimate of literals needed
- $g_s = p_s c_s h_s$
- $\bullet \ f_s = p_s n_s c_s h_s$
- best(Open): returns state s in set Open
 - $c_s \leq c$
 - with maximum f_s
- prune(s): returns true iff either:
 - $n_s = 0$ and $f_s > 0$
 - $g_s \leq 0$
 - $c_{\rm s} > c$
- terminated(Closed, Open): return true iff:
 - s = best(Closed), $n_s = 0$, $f_s > 0$
 - $f_s \geq g_{best(Open)}$

Learning with only positive examples

- Progol is able to learn from only positive examples
 - n_s , in the previous slide, would always be 0
 - \bullet An empty hypothesis would maximize f_s
- It searches for a good compromise between the size of an hypothesis and its generality
- Using probability distributions, it considers the hypothesis maximizing its log-probability:

$$\log(P(H|E)) = d_m - m\log(g(H)) - sz(H)$$

• Work is still necessary to better understand how to compute the generality g(H) and size sz(H) of an hypothesis

Refinement operator $\rho(\cdot)$

- $s_0 = \langle \square, \emptyset, 0 \rangle$
- $\langle C', \theta', k' \rangle \in \rho(\langle C, \theta, k \rangle)$ iff either
 - **1** $C' = C, k' = k + 1, \theta' = \theta (k < n)$

Splittable variable

A variable is splittable if it corresponds to a +type, -type in a modeh or a -type in a modeb.

$\overline{\langle I, \theta' \rangle} \in \delta(\theta, k)$

Let
$$I_k = p(u_1, \ldots, u_m)$$

k-th literal of \perp_i

Let
$$I = p(v_1, \ldots, v_m)$$

- If u_j is not splittable: $v_j/u_j \in \theta$
- If u_i is splittable, either:
 - $v_i/u_i \in \theta'$
 - $v_j \notin dom(\theta)$, a new variable, and $\theta' = \theta \cup \{v_j/u_j\}$