

Model Free Control

Outline

- Introduzione
- On-policy Vs Off-Policy
- On-policy Monte-Carlo
- On-policy TD learning (SARSA)
- Off-policy TD (Q-learning)

Model Free Prediction/Control

- Model-free prediction
 - Stimare la value function di un MDP non noto
- Model-free control
 - Ottimizzare la value function di un MDP non noto

Model Free Control

- Robot walking
- Robocup Soccer
- Portfolio Management

- Go
- Protein Folding
- Bioreactor

- Per la maggior parte di questi problemi, o:
 - Il modello del MDP non è noto, ma l'esperienza può essere campionata
 - Il modello del MDP è noto, ma è troppo grande per essere utilizzato, se non per campionamento
- Il Model Free Control può risolvere questi problemi

On-policy & Off-policy Learning

- On-policy learning
 - Apprendere sul campo
 - Apprendere la policy π dall'esperienza campionata da π
- Off-policy learning
 - Osservare qualcuno
 - lacktriangle Apprendere la policy π dall'esperienza campionata da μ

Policy Iteration Generalizzata

evaluation $V \rightarrow V^{\pi}$ $\pi \rightarrow \text{greedy}(V)$ improvement

Valutazione della Policy Stima di v_{π} Qualsiasi algoritmo di policy evaluation

Miglioramento della Policy Generazione di $\pi' \ge \pi$ Qualsiasi algoritmo di policy improvement

Policy Iteration Generalizzata con On-policy MC

- ▶ Valutazione della Policy Monte-Carlo policy evaluation, $V = v_{\pi}$?
- Miglioramento della Policy Genera un miglioramento greedy della policy?

Model-Free Policy Iteration tramite la Action-Value Function

Il miglioramento greedy della policy rispetto a V(s) necessita del modello di un MDP

$$\pi'(s) = \arg\max_{a \in \mathcal{A}} \mathcal{R}_s^a + P_{ss'}^a V(s')$$

Il miglioramento greedy della policy rispetto a Q(s,a) è model-free

$$\pi'(s) = \arg \max_{a \in \mathcal{A}} Q(s, a)$$

Monte Carlo Exploring Starts

Monte Carlo ES (Exploring Starts), for estimating $\pi \approx \pi_*$

```
Initialize:
     \pi(s) \in \mathcal{A}(s) (arbitrarily), for all s \in \mathcal{S}
     Q(s,a) \in \mathbb{R} (arbitrarily), for all s \in \mathcal{S}, a \in \mathcal{A}(s)
     Returns(s, a) \leftarrow \text{empty list, for all } s \in \mathcal{S}, \ a \in \mathcal{A}(s)
Loop forever (for each episode):
     Choose S_0 \in \mathcal{S}, A_0 \in \mathcal{A}(S_0) randomly such that all pairs have probability > 0
     Generate an episode from S_0, A_0, following \pi: S_0, A_0, R_1, \ldots, S_{T-1}, A_{T-1}, R_T
     G \leftarrow 0
     Loop for each step of episode, t = T-1, T-2, \ldots, 0:
          G \leftarrow \gamma G + R_{t+1}
           Unless the pair S_t, A_t appears in S_0, A_0, S_1, A_1, ..., S_{t-1}, A_{t-1}:
                Append G to Returns(S_t, A_t)
                Q(S_t, A_t) \leftarrow \text{average}(Returns(S_t, A_t))
                \pi(S_t) \leftarrow \operatorname{arg\,max}_a Q(S_t, a)
```

Policy Iteration Generalizzata con Action-Value Function

- ▶ Valutazione della Policy Monte-Carlo policy evaluation, $Q = q_{\pi}$?
- Miglioramento della Policy Genera un miglioramento greedy della policy?

Esempio di selezione di azioni greedy

"Behind one door is tenure - behind the other is flipping burgers at McDonald's."

- Ci sono due porte
- Apri la porta di sinistra e ottieni ricompensa 0 – V(sinistra) = 0
- Apri la porta di destra e ottieni ricompensa +1 – V(destra) = +1
- Apri la porta di destra e ottieni ricompensa +3 – V(destra) = +2
- Apri la porta di destra e ottieni ricompensa +2 – V(destra) = +2

. . .

Sei sicuro di aver scelto la porta migliore?

∈-greedy Exploration

- L'idea più semplice per garantire un'esplorazione continua
- lacktriangle Tutte le m azioni vengono sperimentate con una probabilità non nulla
 - \blacktriangleright Con probabilità 1- ϵ viene selezionata l'azione greedy
 - \blacktriangleright Con probabilità ϵ viene selezionata un'azione random

$$\pi(a|s) = \begin{cases} \epsilon/m + (1-\epsilon) & \text{if } a^* = \arg\max_{a \in \mathcal{A}} Q(s, a) \\ \epsilon/m & \text{otherwise} \end{cases}$$

∈-greedy Exploration

On-policy first-visit MC control (for ε -soft policies), estimates $\pi \approx \pi_*$

```
Algorithm parameter: small \varepsilon > 0
Initialize:
    \pi \leftarrow \text{an arbitrary } \varepsilon\text{-soft policy}
    Q(s, a) \in \mathbb{R} (arbitrarily), for all s \in \mathcal{S}, a \in \mathcal{A}(s)
    Returns(s, a) \leftarrow \text{empty list, for all } s \in \mathcal{S}, \ a \in \mathcal{A}(s)
Repeat forever (for each episode):
    Generate an episode following \pi: S_0, A_0, R_1, \ldots, S_{T-1}, A_{T-1}, R_T
    G \leftarrow 0
    Loop for each step of episode, t = T-1, T-2, \ldots, 0:
         G \leftarrow \gamma G + R_{t+1}
         Unless the pair S_t, A_t appears in S_0, A_0, S_1, A_1, ..., S_{t-1}, A_{t-1}:
              Append G to Returns(S_t, A_t)
              Q(S_t, A_t) \leftarrow \text{average}(Returns(S_t, A_t))
              A^* \leftarrow \operatorname{arg\,max}_a Q(S_t, a)
                                                                                         (with ties broken arbitrarily)
              For all a \in \mathcal{A}(S_t):
                        \pi(a|S_t) \leftarrow \begin{cases} 1 - \varepsilon + \varepsilon/|\mathcal{A}(S_t)| & \text{if } a = A^* \\ \varepsilon/|\mathcal{A}(S_t)| & \text{if } a \neq A^* \end{cases}
```

∈-greedy Policy improvement

Teorema:

▶ Per ogni policy ϵ -greedy π , la policy ϵ -greedy π' rispetto a q_{π} è un miglioramento, $v_{\pi'}(s) \ge v_{\pi}(s)$

$$egin{aligned} q_{\pi}(s,\pi'(s)) &= \sum_{a \in \mathcal{A}} \pi'(a|s) q_{\pi}(s,a) \ &= \epsilon/m \sum_{a \in \mathcal{A}} q_{\pi}(s,a) + (1-\epsilon) \max_{a \in \mathcal{A}} q_{\pi}(s,a) \ &\geq \epsilon/m \sum_{a \in \mathcal{A}} q_{\pi}(s,a) + (1-\epsilon) \sum_{a \in \mathcal{A}} rac{\pi(a|s) - \epsilon/m}{1-\epsilon} q_{\pi}(s,a) \ &= \sum_{a \in \mathcal{A}} \pi(a|s) q_{\pi}(s,a) = v_{\pi}(s) \end{aligned}$$

▶ Pertanto, dal policy improvement theorem $v_{\pi'}(s) \ge v_{\pi}(s)$

Monte-Carlo Policy Iteration

- Valutazione della Policy Monte-Carlo policy evaluation, $Q = q_{\pi}$
- Miglioramento della Policy ϵ -greedy policy improvement

Monte-Carlo Control

Ogni episodio

- ▶ Valutazione della Policy Monte-Carlo policy evaluation, $Q \approx q_{\pi}$
- Miglioramento della Policy ϵ -greedy policy improvement

Greedy in the Limit with Infinite Exploration (GLIE)

- Definizione (GLIE)
 - Tutte le coppie stato-azione vengono esplorate un numero infinito di volte

$$\lim_{k\to\infty}N_k\left(s,a\right)=\infty$$

La policy converge ad una policy greedy

$$\lim_{k \to \infty} \pi_k(a|s) = \mathbf{1}\left(a; \arg\max_{a' \in \mathcal{A}} Q_k(s, a')\right)$$

• ϵ -greedy è GLIE se ϵ si azzera a $\epsilon_k = \frac{1}{k}$

GLIE Monte-Carlo Control

Campionare il k-esimo episodio utilizzando

$$\pi$$
: { S_1 , A_1 , R_2 , ..., S_T } ~ π

▶ Per ogni stato S_t e azione A_t nell'episodio:

$$N(S_t, A_t) \leftarrow N(S_t, A_t) + 1$$

$$Q(S_t, A_t) \leftarrow Q(S_t, A_t) + \frac{1}{N(S_t, A_t)} (G_t - Q(S_t, A_t))$$

Migliorare la policy in base alla nuova action-value function

$$\epsilon \leftarrow \frac{1}{k}$$

$$\pi \leftarrow \epsilon - \operatorname{greedy}(Q)$$

- Teorema:
 - GLIE Monte-Carlo Control converge verso la action-value function ottimale

Esempio Blackjack

Esempio Blackjack – MC Control

On-Policy TD Control

MC Vs TD Control

- TD learning presenta diversi vantaggi rispetto a MC
 - Varianza inferiore
 - Online
 - Sequenze incomplete
- Intuizione Utilizzare TD piuttosto che MC nel nostro control loop
 - ightharpoonup Applicare TD a Q(s,a)
 - Utilizzare ϵ -greedy policy improvement
 - Aggiornare ad ogni time-step

Aggiornamento delle Action-Value Function con SARSA

On-Policy Control con SARSA

Ogni time-step

- ▶ Valutazione della Policy SARSA, $Q \approx q_{\pi}$
- Miglioramento della Policy ϵ -greedy policy improvement

Algoritmo SARSA per On-Policy Control

Sarsa (on-policy TD control) for estimating $Q \approx q_*$

```
Algorithm parameters: step size \alpha \in (0,1], small \varepsilon > 0

Initialize Q(s,a), for all s \in \mathbb{S}^+, a \in \mathcal{A}(s), arbitrarily except that Q(terminal, \cdot) = 0

Loop for each episode:

Initialize S

Choose A from S using policy derived from Q (e.g., \varepsilon-greedy)

Loop for each step of episode:

Take action A, observe R, S'

Choose A' from S' using policy derived from Q (e.g., \varepsilon-greedy)

Q(S,A) \leftarrow Q(S,A) + \alpha \left[R + \gamma Q(S',A') - Q(S,A)\right]

S \leftarrow S'; A \leftarrow A';

until S is terminal
```

Convergenza di SARSA

Teorema:

- ▶ L'algoritmo SARSA converge verso la action-value function ottimale $(Q(s,a) \rightarrow q_*(s,a))$ a condizione che:
 - ▶ Sequenza di policy $\pi_t(a|s)$ GLIE
 - ightharpoonup Sequenza di Robbins-Monro di step-size $lpha_t$

$$\sum_{\substack{t \equiv 1 \\ \infty}}^{\infty} \alpha_t = \infty$$

$$\sum_{t=1}^{\infty} \alpha_t^2 < \infty$$

Windy Gridworld

Temporal Difference Learning Gridworld Demo

https://cs.stanford.edu/people/karpathy/reinforcejs/gridworld_td.html

SARSA(λ)

n-step SARSA

▶ Consideriamo i seguenti n-step return, per $n = 1,2,...,\infty$

$$n = 1 \quad \text{(SARSA)} \quad q_t^{(1)} = R_{t+1} + \gamma Q(S_{t+1}, A_{t+1})$$

$$n = 2 \qquad q_t^{(2)} = R_{t+1} + \gamma R_{t+2} + \gamma Q(S_{t+2})$$
...
$$n = \infty \quad \text{(MC)} \quad q_t^{(\infty)} = R_{t+1} + \gamma R_{t+2} + \dots + \gamma^{T-1} R_T$$

Definiamo il n-step Q-return

$$q_t^{(n)} = R_{t+1} + \gamma R_{t+2} + \dots + \gamma^{n-1} R_{t+n} + \gamma^n Q(S_{t+n}, A_{t+n})$$

▶ n-step SARSA aggiorna Q(S,A) verso il n-step Q-return

$$Q(S,A) \leftarrow Q(S,A) + \alpha \left(q_t^{(n)} - Q(S,A)\right)$$

SARSA backups

Algoritmo n-step SARSA

```
n-step Sarsa for estimating Q \approx q_* or q_{\pi}
Initialize Q(s, a) arbitrarily, for all s \in S, a \in A
Initialize \pi to be \varepsilon-greedy with respect to Q, or to a fixed given policy
Algorithm parameters: step size \alpha \in (0,1], small \varepsilon > 0, a positive integer n
All store and access operations (for S_t, A_t, and R_t) can take their index mod n+1
Loop for each episode:
   Initialize and store S_0 \neq \text{terminal}
   Select and store an action A_0 \sim \pi(\cdot|S_0)
   T \leftarrow \infty
   Loop for t = 0, 1, 2, ...:
       If t < T, then:
           Take action A_t
           Observe and store the next reward as R_{t+1} and the next state as S_{t+1}
           If S_{t+1} is terminal, then:
               T \leftarrow t + 1
           else:
               Select and store an action A_{t+1} \sim \pi(\cdot|S_{t+1})
       \tau \leftarrow t - n + 1 (\tau is the time whose estimate is being updated)
       If \tau \geq 0:
           G \leftarrow \sum_{i=\tau+1}^{\min(\tau+n,T)} \gamma^{i-\tau-1} R_i
           If \tau + n < T, then G \leftarrow G + \gamma^n Q(S_{\tau+n}, A_{\tau+n})
           Q(S_{\tau}, A_{\tau}) \leftarrow Q(S_{\tau}, A_{\tau}) + \alpha \left[ G - Q(S_{\tau}, A_{\tau}) \right]
           If \pi is being learned, then ensure that \pi(\cdot|S_{\tau}) is \varepsilon-greedy wrt Q
   Until \tau = T - 1
```

SARSA(λ) - Forward View

$$q_t^{\lambda} = (1 - \lambda) \sum_{n=1}^{\infty} \lambda^{n-1} q_t^{(n)}$$

$$Q(S,A) \leftarrow Q(S,A) + \alpha (q_t^{\lambda} - Q(S,A))$$

SARSA(λ) - Backward View

- Il ritorno delle eligibility trace
- SARSA(λ) necessita di una eligibility trace per ogni coppia stato-azione

$$E_0(s,a) = 0$$

$$E_t(s,a) = \gamma \lambda E_{t-1}(s,a) + \mathbf{1}(S_t, A_t; s,a)$$

• Q(s,a) viene aggiornato per ogni stato s e azione a in proporzione al TD-error δ_t e alla eligibility trace $E_t(s,a)$

$$\delta_{t} = R_{t+1} + \gamma Q(S_{t+1}, A_{t+1}) - Q(S_{t}, A_{t})$$

$$Q(S_{t}, A_{t}) \leftarrow Q(S_{t}, A_{t}) + \alpha \delta_{t} E_{t}(s, a)$$

Algoritmo SARSA(λ)

```
Initialize Q(s, a) arbitrarily, for all s \in \mathcal{S}, a \in \mathcal{A}(s)
Repeat (for each episode):
   E(s, a) = 0, for all s \in S, a \in A(s)
   Initialize S, A
   Repeat (for each step of episode):
       Take action A, observe R, S'
       Choose A' from S' using policy derived from Q (e.g., \varepsilon-greedy)
       \delta \leftarrow R + \gamma Q(S', A') - Q(S, A)
       E(S,A) \leftarrow E(S,A) + 1
       For all s \in \mathcal{S}, a \in \mathcal{A}(s):
           Q(s,a) \leftarrow Q(s,a) + \alpha \delta E(s,a)
           E(s,a) \leftarrow \gamma \lambda E(s,a)
       S \leftarrow S' \colon A \leftarrow A'
   until S is terminal
```

SARSA(λ) - Gridworld

Action values increased by one-step Sarsa

Action values increased by 10-step Sarsa

Action values increased by Sarsa(λ) with λ =0.9

Off-policy TD Learning

Off-Policy Learning

- Valutare la policy target $\pi(a|s)$ per calcolare $v_{\pi}(s)$ o $q_{\pi}(s,a)$
- Seguendo la policy comportamentale $\mu(a|s)$

$$\{S_1, A_1, R_2, \dots, S_T\} \sim \mu$$

- Perché è importante?
 - Apprendere dall'imitazione (esseri umani, altri agenti,...)
 - Riutilizzare l'esperienza generata dalle vecchie policy
 - Apprendere una policy ottimale seguendo una policy esplorativa
 - Apprendere più policy seguendo una sola policy

Importance Sampling

 Stimare l'expectation facendo leva su una importance distribution esterna

Assegnare pesi tali che l'expectation empirica (su campioni di Q(X)) corrisponda all'expectation sotto P(X)

Importance Sampling per Off-Policy Monte Carlo

- lacktriangle Utilizzare i guadagni generati da μ per valutare π
- \blacktriangleright Pesare il guadagno G_t in base alla somiglianza tra le policy
- Moltiplicare le correzioni dell'importance sampling lungo l'intero episodio

$$G_t^{\pi/\mu} = \frac{\pi(A_t|S_t)}{\mu(A_t|S_t)} \frac{\pi(A_{t+1}|S_{t+1})}{\mu(A_{t+1}|S_{t+1})} \dots \frac{\pi(A_T|S_T)}{\mu(A_T|S_T)} G_t$$

Aggiornare il valore verso il guadagno corretto

$$V(S_t) \leftarrow V(S_t) + \alpha (G_t^{\pi/\mu} - V(S_t))$$

 L'importance sampling può aumentare drasticamente la varianza

Importance Sampling per Off-Policy TD

- lacktriangle Utilizzare i target TD generati da μ per valutare π
- Pesare i target TD $R+\gamma V(S')$ tramite l'importance sampling
- ▶ È necessaria una singola correzione dell'importance sampling

$$V(S_t) \leftarrow V(S_t) + \alpha \left(\frac{\pi(A_t|S_t)}{\mu(A_t|S_t)} (R_{t+1} + \gamma V(S_{t+1}) - V(S_t) \right)$$

- Varianza molto più bassa rispetto al MC
- Le policy devono essere simili solo per un singolo step

Q-Learning

- ▶ Off-policy learning di action-value Q(s,a)
- L'importance sampling non è necessario
- L'azione successiva viene scelta utilizzando la policy comportamentale $A_{t+1} \sim \mu(\cdot | St)$
- Ma prendiamo in considerazione azioni alternative $A'^{\pi}(\cdot|St)$
- lacksquare E aggiorniamo $Q(S_t, A_t)$ in base al valore dell'azione alternativa

$$Q(S_t, A_t) \leftarrow Q(S_t, A_t) + \alpha \left(R_{t+1} + \gamma Q(S_{t+1}, A') - Q(S_t, A_t)\right)$$

Off-policy Control tramite Q-Learning

- Consente di migliorare sia il comportamento che le policy target
- La policy target π è greedy rispetto a $Q(S_t, A_t)$

$$\pi(S_{t+1}) = \arg\max_{a'} Q(S_{t+1}, a')$$

- La policy comportamentale μ è ϵ -greedy rispetto a Q(s,a)
- L'obiettivo del Q-learning si riduce a

$$R_{t+1} + \gamma Q(S_{t+1}, A') = R_{t+1} + \gamma Q\left(S_{t+1}, \arg\max_{a'} Q(S_{t+1}, a')\right)$$

=
$$R_{t+1} + \max_{a'} \gamma Q(S_{t+1}, a')$$

Algoritmo Q-Learning Control

Teorema

▶ Il Q-learning control converge alla action-value ottimale, $Q(s,a) \rightarrow q_*(s,a)$

$$Q(S,A) \leftarrow Q(S,A) + \alpha \left(R + \max_{a'} \gamma Q(S',a') - Q(S,A) \right)$$

Algoritmo Q-Learning per Off-policy Control

Q-learning (off-policy TD control) for estimating $\pi \approx \pi_*$

Algorithm parameters: step size $\alpha \in (0, 1]$, small $\varepsilon > 0$

Initialize Q(s, a), for all $s \in S^+$, $a \in A(s)$, arbitrarily except that $Q(terminal, \cdot) = 0$

Loop for each episode:

Initialize S

Loop for each step of episode:

Choose A from S using policy derived from Q (e.g., ε -greedy)

Take action A, observe R, S'

$$Q(S, A) \leftarrow Q(S, A) + \alpha [R + \gamma \max_{a} Q(S', a) - Q(S, A)]$$

 $S \leftarrow S'$

until S is terminal

Q-learning & Exploration Demo

Intelligenza Artificiale

a.a. 2022/2023

Q-learning & Exploration Demo

https://www.aslanides.io/aixijs/demo.html

Dynamic Programming Vs Temporal Difference Learning

	Full Backup (DP)	Sample Backup (TD)
Bellman Expectation	$v_{\pi}(s) \leftrightarrow s$ $v_{\pi}(s') \leftrightarrow s'$	
Equation for $v_{\pi}(s)$	Iterative Policy Evaluation	TD Learning
Bellman Expectation	$q_{\pi}(s,a) \longleftrightarrow s,a$ r s' $q_{\pi}(s',a') \longleftrightarrow a'$	S,A R S'
Equation for $q_{\pi}(s, a)$	Q-Policy Iteration	Sarsa
Bellman Optimality Equation for $q_*(s, a)$	$q_*(s,a) \leftrightarrow s,a$ $q_*(s',a') \leftrightarrow a'$ Q-Value Iteration	Q-Learning

Take home messages

- Model-Free control sfrutta la action-value function
 - Il miglioramento della politica non necessita di un MDP
 - Generalized policy iteration
- \blacktriangleright È necessario mantenere una esplorazione sufficiente (ϵ -greedy)
- Off-policy control
 - Apprendimento della value-function di una policy target a partire dai dati generati da una diversa policy comportamentale
 - Importance sampling per far coincidere le expectation di due policy
- TD control
 - On-policy: SARSA(λ)
 - Off-policy: Q-learning