DAY 2 - Interfaces and Cables

Purinat33

Interfaces and Cables

Questions:

Take a look at the switch:

- 1. What are 10Base-T , 100Base-T , 1000Base-T , and auto-MDIX ?
- 2. What are used to plug into the switch ports?
- 3. What type of cables are used?

Answer:

The answers are all related to the "Ethernet" Important

• **Ethernet** is a <u>collection</u> of network protocols and standards. For now we will only focus on the **cabling** Ethernet standards.

Ethernet Cabling Standards Are defined in the IEEE 802.3 (IEEE = Institude of Electrical and Electronics Engineers)

Ethernet Standards (Copper): REMEMBER!

Speed	Common Name	IEEE Standards	Informal Name	Maximum Length
10 Mbps	Ethernet	802.3i	10Base-T	100m
$100~\mathrm{Mbps}$	Fast Ethernet	802.3u	100Base-T	100m
$1000~\mathrm{Mbps}$	Gigabit Ethernet	802.3ab	1000Base-T	100m
10 Gbps	10 Gigabit Ethernet	802.3an	10 GBase-T	100m

Trivia:

100Base-T

100 = Speed (100 Mbps)

 $Base = Baseband \ Signaling \ (Outside \ the \ scope \ of \ CCNA)$

T = Twisted Pair cabling

The cables are joined with **RJ-45** connectors, which can be plugged into devices' ports.

An RJ-45 connector.

An RJ-45 joined with an ethernet cable being plugged into a switch.

UTP Cabling (Unshielded Twisted Pair)

Contains 8 copper wires (4 pairs):

- Wiring Usage:
 - 1. 10Base-T and 100Base-T: Use 2 pairs of wires.
 - 2. 1000Base-T and 10GBase-T: Use All pairs of wires.

10Base-T and 100Base-T:

Uses Pin 1,2 and 3,6 in Transmission (Tx) and Receiving (Rx).

According to the diagram:

- PC transmits on Pin 1,2 and Receives on Pin 3,6.
- Switch transmit on Pin 3,6 and Receives on Pin 1,2.

According to the diagram:

- Router transmits on Pin 1,2 and Receives on Pin 3,6.
- Switch transmit on Pin 3,6 and Receives on Pin 1,2.

Devices with transmission and receiving on different pairs use **Straight-Through** cabling.

Q: What about devices that both transmit and receive on the same pair? (eg. 2 PC)

A: We connect transmission pins to receiving pins of the other device, and vice-versa.

Devices with transmission and receiving on the same pairs use **Crossover** cabling.

10Base-T and 100Base-T pins usage:

Transmits on PIN 1,2	Transmits on PIN 3,6
PC	Hub
Router	Switch
Wireless Access Point	
Firewall	

Traditionally devices must be connected correctly using either **Straight-Through Cable** or **Crossover Cable**, else the connection will not be established.

Though modern devices possess **Auto MDI-X** capability, which automatically detects when either type of cables is used and will change/switch Tx and Rx pins if needed.

1000Base-T and 10GBase-T cabling

All 8 wires (4 pairs) are used. Each wire is bidirectional. Concepts of **Cross Over** and **Straight Through** still apply. (1,2), (3,6), (4,5), (7,8)

Fiber Optics

In addition to $\bf RJ\text{-}45$ ports on devices, modern devices have $\bf SFP$ ports as well. (SFP = Small Form Pluggable)

Ports for SFP (Orange)

Fiber optic cables are then connected to the SFP

Transmission and Receiving on Fiber Optic cables.

Instead of copper + electricity, Fiber Optic uses $fiber\ glass + light\ beam$

- 1: the fiberglass core itself
- 2: cladding that reflects light
- 3: a protective buffer
- 4: the outer jacket of the cable

2 Types of Fiber Optic Cables:

1. Single-Mode:

Mrzeon (https://commons.wikimedia.org/wiki/File:Optical_fiber_types.svg), "Optical fiber types", edited,

https://creativecommons.org/licenses/by-sa/3.0/legalcode

- Thinner core diameter than Multi-Mode
- Light enters at a single angle (Mode) from a laser-based transmission.
- Allows longer cables than both UTP and Multi-Mode fiber.
- More expensive than multi-mode fiber (laser-based transmitter)

2. Multi-Mode:

- Core diameter is wider than single-mode fiber.
- Allows multiple angles (Modes) of light waves to enter the code.
- Allows longer cable than UTP but shorter than single-mode.
- Cheaper than Single-Mode fiber. (LED-based transmitter).

Ethernet Standards (Fiber): REMEMBER!

G 1		IEEE	Informal	Maximum
Speed	Cable Type	Standards	Name	Length
1 Gbps	Multi-Mode	802.3z	1000 Base-LX	550m (MM)
	Single-Mode			5 km (SM)
10 Gbps	Multi-Mode	802.3ae	$10 \mathrm{GBase}\text{-}\mathrm{SR}$	$400 \mathrm{m}$
10 Gbps	Single-Mode	802.3ae	$10 \mathrm{GBase\text{-}LR}$	$10 \mathrm{km}$
10 Gbps	Single-Mode	802.3ae	$10 \mathrm{GBase}\text{-}\mathrm{ER}$	$30 \mathrm{km}$

Table 2-5 Comparisons Between UTP, MM, and SM Ethernet Cabling

Criteria	UTP	Multimode	Single-Mode
Relative Cost of Cabling	Low	Medium	Medium
Relative Cost of a Switch Port	Low	Medium	High
Approximate Max Distance	100m	500m	40km
Relative Susceptibility to Interference	Some	None	None
Relative Risk of Copying from Cable Emissions	Some	None	None

Interference = EMI (Electromagnetic Interference)

UTP emits a faint signal outside the cable. Fiber Optic doesn't.

Summary

1. UTP Cabling standard.

Speed	Common Name	IEEE Standards	Informal Name	Maximum Length
10 Mbps	Ethernet	802.3i	10Base-T	100m
$100~\mathrm{Mbps}$	Fast Ethernet	802.3u	100Base-T	100m
$1000~\mathrm{Mbps}$	Gigabit Ethernet	802.3ab	1000Base-T	100m
10 Gbps	10 Gigabit Ethernet	802.3an	10 GBase-T	100m

2. Fiber Optic Cabling standard.

		IEEE	Informal	Maximum
Speed	Cable Type	Standards	Name	Length
1 Gbps	Multi-Mode	802.3z	1000 Base-LX	550m (MM)
	Single-Mode			5 km (SM)
10 Gbps	Multi-Mode	802.3ae	$10 \mathrm{GBase}\text{-}\mathrm{SR}$	$400 \mathrm{m}$
10 Gbps	Single-Mode	802.3ae	$10 \mathrm{GBase\text{-}LR}$	$10 \mathrm{km}$
10 Gbps	Single-Mode	802.3ae	10 GBase-ER	$30 \mathrm{km}$

- 3. UTP cabling connects to **RJ-45** connector and has 8 wires (4 pairs). Fiber Optic cable connects to **SFP** connector and has only 2 wires.
- 4. **10Base-T** and **100Base-T** uses 2 pairs of UTP cable while **1000Base-T** and **10GBase-T** uses all 4 pairs, each being bidirectional.

Transmits on PIN 1,2	Transmits on PIN 3,6
PC	Hub
Router	Switch

Transmits on PIN 1,2	Transmits on PIN 3,6
Wireless Access Point	-
Firewall	-

- 5. Devices transmitting on the same pins are connected using Crossover Cable while opposite pins transmission uses Straight Through Cable.
- 6. Devices with capabilities to detect and correct crossover and straight-through cables are said to have Auto MDI-X.
- $7.\,$ Comparison between UTP, Single-Mode, and Multi-Mode

Table 2-5	Gomparisons Between UTP, MM, and SM Ethernet Cabling				
Criteria		UTP	Multimode	Si	

Criteria	UTP	Multimode	Single-Mode
Relative Cost of Cabling		Medium	Medium
Relative Cost of a Switch Port		Medium	High
Approximate Max Distance		500m	40km
Relative Susceptibility to Interference	Some	None	None
Relative Risk of Copying from Cable Emissions	Some	None	None

10