T.C.

KIRIKKALE
ÜNİVERSİTESİ
BİLGİSAYAR
MÜHENDİSLİĞİ

AĞ OPTİMİZASYONU

DR. EVRENCAN ÖZCAN

DERS İÇERİĞİ

- AĞ OPTİMİZASYONUNA GİRİŞ
 - OPTİMİZASYON KAVRAMI
 - TEMEL ŞEBEKE KAVRAMLARI
 - ŞEBEKE OPTİMİZASYONUNUN UYGULAMA ALANLARI
- MİNİMUM YAYILAN AĞAÇ PROBLEMİ
- EN KISA YOL PROBLEMİ
- MAKSİMUM AKIŞ PROBLEMİ
- PROJE YÖNETİMİ
 - KRİTİK YOL METODU (CPM)
 - PROJE DEĞERLENDİRME VE GÖZDEN GEÇİRME TEKNİĞİ (PERT)
 - PROJE PLANLAMASINDA ZAMAN-MALİYET İLİŞKİSİ

PERT

- CPM'de tüm faaliyetlerin sürelerinin net olarak bilindiği varsayılır. Bir çok projede bu geçerli değildir.
- PERT te ise faaliyetlerin süreleri rassal değişken olarak modellenir.

- PERT'te her faaliyet için proje yöneticileri üç değeri belirlemelidir:
 - ▶ İyimser süre (a)
 - ▶ Kötümser süre (b)
 - ▶ Sürenin en olası değeri (m)

PERT (Süre)

- ▶ **T**_{ij} : (i,j) faaliyetinin süresi.
- PERT T_{ij} 'nin beta dağılımına uyduğunu varsayar.
- Bu varsayıma göre T_{ij} 'nin ortalaması (beklenen değeri) ve varyansı şu şekilde hesaplanabilir:

$$E(\mathbf{T}_{ij}) = (a + 4m + b) / 6$$

var $\mathbf{T}_{ij} = (b - a)^2 / 36$

PERT (Beta Olasılık Dağılımı)

PERT (yol)

- PERT tüm faaliyetlerin sürelerinin bağımsız olduğunu varsayar.
- Buna göre herhangi bir yoldaki faaliyetleri tamamlamanın ortalama değeri ve varyansı şu şekilde hesaplanır:

$$\sum_{(i,j)\in yol} E(\mathsf{T}_{ij})$$

$$\sum_{(i,j)\in yol} \operatorname{var} T_{ij}$$

PERT (Kritik yol)

- CP : CPM ile bulunan kritik yol üzerindeki faaliyetlerin toplam süresini gösteren rassal değişken
- PERT, CPM ile elde edilen kritik yolun Merkezi Limit Teoremine göre normal dağıldığını varsayar ve CP'yi şu şekilde hesaplar:

$$CP = \sum_{(i,j) \in kritik \ yol} T_{ij}$$

Örnek: Widgetco (belirsiz faaliyet süreleri)

Widgetco örneğinde faaliyetler için a, b, m değerleri tablodaki gibi verilmiş olsun.

Faaliyet	а	b	m	
(1,2)	5	13	9	
(1,3)	2	10	6	
(3,5)	3	13	8	
(3,4)	1	13	7	
(4,5)	8	12	10	
(5,6)	9	15	12	

Projenin beklenen bitiş zamanını ve varyansını bulunuz.

Örnek: Widgetco (belirsiz faaliyet süreleri)

$$E(T_{12}) = (5+13+9\times4)/6 = 9$$
, $varT_{12} = (13-5)^2/36 = 1.78$

$$varT_{12} = (13-5)^2/36 = 1.78$$

$$E(T_{13}) = 6$$

$$E(T_{35}) = 8$$

$$varT_{35} = 2.78$$

$$E(T_{34}) = 7$$

$$varT_{34} = 4$$

$$E(T_{45}) = 10$$

$$varT_{45} = 0.44$$

$$E(T_{56}) = 12$$

$$varT_{56} = 1$$

$$E(T_{23}) = 0$$

$$varT_{23} = 0$$

Faaliyet	а	b	m	
(1,2)	5	13	9	
(1,3)	2	10	6	
(3,5)	3	13	8	
(3,4)	1	13	7	
(4,5)	8	12	10	
(5,6)	9	15	12	

Örnek: Widgetco (belirsiz faaliyet süreleri)

Kritik yol: 1-2-3-4-5-6
 E(CP) = 9 + 0 + 7 + 10 + 12 = 38
 var(CP) = 1.78 + 0 + 4 + 0.44 + 1 = 7.22
 standart sapma (CP) = (7.22)^{1/2} = 2.69

Örnek: CP için olasılık analizi

Önceki örnekteki projenin 35 gün içerisinde bitme olasılığı nedir?

ÇÖZÜM

 CP normal dağılıma uyduğu göz önüne alınırsa çözüm Z tablosu yardımı ile bulunabilir.

$$P(\mathbf{CP} \le 35) = P[(\mathbf{CP} - 38)/2.69 \le (35 - 38)/2.69)]$$

= $P(\mathbf{Z} \le -1.12) = 0.1314$

Tables of the Normal Distribution

Probability Content from -oo to Z

Z	0.00	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09
	0.5000	0.5040	0.5080	0.5120	0.5160	0.5199	0.5239	0.5279	0.5319	0.5359
0.1	0.5398	0.5438	0.5478	0.5517	0.5557	0.5596	0.5636	0.5675	0.5714	0.5753
0.2	0.5793	0.5832	0.5871	0.5910	0.5948	0.5987	0.6026	0.6064	0.6103	0.6141
0.3	0.6179	0.6217	0.6255	0.6293	0.6331	0.6368	0.6406	0.6443	0.6480	0.6517
0.4	0.6554	0.6591	0.6628	0.6664	0.6700	0.6736	0.6772	0.6808	0.6844	0.6879
0.5 J	0.6915	0.6950	0.6985	0.7019	0.7054	0.7088	0.7123	0.7157	0.7190	0.7224
0.6	0.7257	0.7291	0.7324	0.7357	0.7389	0.7422	0.7454	0.7486	0.7517	0.7549
0.7	0.7580	0.7611	0.7642	0.7673	0.7704	0.7734	0.7764	0.7794	0.7823	0.7852
	0.7881									
0.9	0.8159	0.8186	0.8212	0.8238	0.8264	0.8289	0.8315	0.8340	0.8365	0.8389
-	0.8413									
1.1	0.8643	0.8665	0.8686	0.8708	0.8729	0.8749	0.8770	0.8790	0.8810	0.8830
-	0.8849									
1.3	0.9032	0.9049	0.9066	0.9082	0.9099	0.9115	0.9131	0.9147	0.9162	0.9177
	0.9192									
1.5	0.9332	0.9345	0.9357	0.9370	0.9382	0.9394	0.9406	0.9418	0.9429	0.9441
•	0.9452									
	0.9554									
-	0.9641									
-	0.9713									
	0.9772									
-	0.9821									
	0.9861									
	0.9893									
•	0.9918									
	0.9938									
	0.9953									
-	0.9965									
	0.9974									
-	0.9981									
3.0	0.9987	0.9987	0.9987	0.9988	0.9988	0.9989	0.9989	0.9989	0.9990	0.9990

Örnek: CP için olasılık analizi

Projenin 35 gün içerisinde tamamlanma olasılığı %13.14'tür

T.C.
KIRIKKALE
ÜNİVERSİTESİ
BİLGİSAYAR
MÜHENDİSLİĞİ

AĞ OPTİMİZASYONU

DR. EVRENCAN ÖZCAN
OFİS:275
EVRENCAN.OZCAN@KKU.EDU.TR

