

CSE-208 Algorithms Lab

Lab: 09
Dynamic Programming

Fahad Ahmed

Lecturer, Dept. of CSE

E-mail: fahadahmed@uap-bd.edu

TASK-09

Problem:

Write a program for generating Fibonacci Number using DP:

- ✓ Tabulation: Bottom Up
- ✓ Memorization: Top down

Solve Maximum Subarray Sum Problem using Kadane's Algorithm (DP).

TASK-09

Problem:

Implement the following algorithm using Dynamic Programming:

1. 0-1 Knapsack Problem

Fibonacci Number

Let's think about Fibonacci number

In mathematical terms, the sequence Fn of Fibonacci numbers is defined by the recurrence relation

F(n) =
$$\begin{cases} 1 & \text{if } n = 0 \text{ or } 1 \\ F(n-1) + F(n-2) & \text{if } n > 1 \end{cases}$$

n	0	1	2	3	4	5	6	7	8	9	10
F(n)	1	1	2	3	5	8	13	21	34	55	89

<u>Pseudo code for the recursive</u> algorithm:

```
Procedure F(n)
   if n==0 or n==1 then
     return 1
   else
    return F(n-1) + F(n-2)
```

- Time Complexity: $\Theta(2^n)$
- Is it a good algorithm?
- Is there any way to improve?

METHOD 1 (USE RECURSION)

```
#include<stdio.h>
int fib(int n)
   if (n <= 1)
      return n;
   return fib(n-1) + fib(n-2);
int main ()
  int n = 6;
  printf("%d", fib(n));
  return 0;
```

Too many repeated work done

FIBONACCI NUMBER — RECURSION TREE FOR N=6

How many times each fib(n) is called?

Function	Count
fib(5)	1
fib(4)	2
fib(3)	3
fib(2)	5
fib(1)	7
fib(0)	5

METHOD 2 (USE DYNAMIC PROGRAMMING)

TABULATION: BOTTOM UP

It starts from solving the lowest level sub-problem. The solution to the lowest level sub-problem will help to solve next level sub-problem, and so forth.

```
#include<stdio.h>
int fib(int n)
\{//\ 1 \text{ extra to handle case, } n = 0
 int f[n+1];
 int i;
 f[0] = 0;
 f[1] = 1;
 for (i = 2; i \le n; i++)
    /* storing*/
    f[i] = f[i-1] + f[i-2];
 return f[n];
```

We can avoid the repeated work done in **method 1** by storing the Fibonacci numbers calculated so far.

```
int main ()
{
  int n = 6;
  printf("%d", fib(n));
  return 0;
}
```

DP USING MEMORIZATION (TOP DOWN APPROACH)

It starts from solving the highest-level sub-problems.

```
#include <bits/stdc++.h>
using namespace std;
int dp[10];
int fib(int n)
                                  Bottom
                                                                                        Top
  if (n \le 1)
     return n;
                                            int main()
  int first, second;
                                               int n = 9;
  if (dp[n - 1] != -1)
     first = dp[n - 1];
  else
                                               memset(dp, -1, sizeof(dp));
     first = fib(n - 1);
                                               cout \ll fib(n);
  if (dp[n - 2] != -1)
     second = dp[n - 2];
                                               return 0;
  else
     second = fib(n - 2);
  // memoization
  return dp[n] = first + second;
```

The Maximum Sub-Array Sum

MAXIMUM SUBARRAY— KADANE'S ALGORITHM

Kadane's Algorithm

Simple idea of the Kadane's algorithm is to look for all positive contiguous segments of the array (max_ending_here is used for this).

And keep track of maximum sum contiguous segment among all positive segments (max_so_far is used for this).

Each time we get a positive sum compare it with max_so_far and update max_so_far if it is greater than max_so_far

MAXIMUM SUBARRAY

Efficient solutions

Five solutions for this problem:-

- 1. Brute force approach I: Using 3 nested loops
- 2. Brute force approach II: Using 2 nested loops
- 3. Divide and Conquer approach: Similar to merge sort
- 4. Dynamic Programming Approach: Kadanes's Algorithm

MAXIMUM SUBARRAY— KADANE'S ALGORITHM

```
Initialize:
  max_so_far = INT_MIN
  max\_ending\_here = 0
Loop for each element of the array
     (a) max_ending_here = max_ending_here + a[i]
     (b) if(max_so_far < max_ending_here)
           max_so_far = max_ending_here
     (c) if (\max_{\text{ending\_here}} < 0)
           max\_ending\_here = 0
return max so far
```

Maximum Subarray— Kadane's Algorithm

```
int maxSubArraySum(int a[], int size)
  int max_so_far = INT_MIN, max_ending_here = 0;
  for (int i = 0; i < size; i++)
    max_ending_here = max_ending_here + a[i];
    if (max_so_far < max_ending_here)
       max_so_far = max_ending_here;
    if (\max \text{ ending here } < 0)
       max_ending_here = 0;
  return max_so_far;
```

Notice that each element has been visited only once.

Time Complexity = O(n)

MAXIMUM SUBARRAY- ADDITIONAL REQUIREMENTS

Print the subarray with the maximum sum, we maintain indices whenever we get the maximum sum.

Time Complexity: O(n)

```
Input:
```

```
\{-2, -3, 4, -1, -2, 1, 5, -3\}
```

Output:

Maximum contiguous sum is 7

Starting index 2

Ending index 6

TASK TO THINK

Maximum Product Subarray:

Given an array that contains both positive and negative integers, find the product of the maximum product subarray.

Time complexity is O(n)

Solution Link: https://www.geeksforgeeks.org/maximum-product-subarray/?ref=lbp

Try also: Using Two Traversals way

$$\{-2, -3, 4,\}$$
 MSS=4 MPS=24

TASK TO THINK

Find the longest subarray in a binary array with an equal number of 0s and 1s

Problem+ Solution Link:

https://practice.geeksforgeeks.org/problems/largest-subarray-of-0s-and-1s/1

0-1 Knapsack

KNAPSACK 0-1 PROBLEM – RECURSIVE FORMULA

$$B[k, w] = \begin{cases} B[k-1, w] & \text{if } w_k > w \\ \max\{B[k-1, w], B[k-1, w-w_k] + b_k\} & \text{else} \end{cases}$$

• The best subset of S_k that has the total weight w, either contains item k or not.

• First case: $w_k > w$

• Item *k* can't be part of the solution! If it was the total weight would be > w, which is unacceptable.

• Second case: $w_k \le w$

• Then the item k can be in the solution, and we choose the case with greater value.

KNAPSACK 0-1 PROBLEM

Consider the problem having weights and profits are:

- Weights: {2, 3, 4, 5}
- **Profits:** {3, 4, 5, 6}
- The weight of the knapsack is 5 kg
- The number of items is 4

KNAPSACK 0-1 EXAMPLE Weights: {2, 3, 4, 5}

i / w	0	1	2	3	4	5
0	0	0	0	0	0	0
1	0					
2	0					
3	0					
4	0					

for
$$w = 0$$
 to W
$$B[0,w] = 0$$

for
$$i = 1$$
 to n

$$B[i,0] = 0$$

1: (2,3)

2: (3,4)

3: (4,5)

4: (5,6)

KNAPSACK 0-1 EXAMPLE Weights: {2, 3, 4, 5}

i/w	0	1	2	3	4	5
0	0	Ø	0	0	0	0
1	0	Ŏ				
2	0					
3	0					
4	0					

$$i = 1$$

$$v_i = 3$$

$$w_i = 2$$

$$w = 1$$

$$w-w_i = -1$$

1: (2,3)

2: (3,4)

3: (4,5)

4: (5,6)

KNAPSACK 0-1	EXAMPLE	Weights: {2, 3, 4, 5}
		Profits: {3, 4, 5, 6}

i / w	0	1	2	3	4	5
0	0_	0	0	0	0	0
1	0	0	→ 3			
2	0					
3	0					
4	0					

$$i = 1$$
 $v_i = 3$
 $w_i = 2$
 $\mathbf{w} = 2$
 $\mathbf{w} - \mathbf{w}_i = 0$

1: (2,3)

2: (3,4)

3: (4,5)

4: (5,6)

i/w	0	1	2	3	4	5
0	0	0 -	0	0	0	0
1	0	0	3	3		
2	0					
3	0					
4	0					

$$i = 1$$
 $v_i = 3$
 $w_i = 2$
 $\mathbf{w} = 3$
 $w-w_i = 1$

1: (2,3)

2: (3,4)

3: (4,5)

4: (5,6)

KNAPSACK 0-1 EXAMPLE Weights: {2, 3, 4, 5}

i / w	0	1	2	3	4	5
0	0	0	0_	0	0	0
1	0	0	3	3	3	
2	0					
3	0					
4	0					

$$i = 1$$
 $v_i = 3$
 $w_i = 2$
 $\mathbf{w} = 4$
 $\mathbf{w} - \mathbf{w}_i = 2$

1: (2,3)

2: (3,4)

3: (4,5)

4: (5,6)

i/w	0	1	2	3	4	5
0	0	0	0	0_	0	0
1	0	0	3	3	3	3
2	0					
3	0					
4	0					

$$i = 1$$
 $v_i = 3$
 $w_i = 2$
 $\mathbf{w} = 5$
 $w-w_i = 3$

1:(2,3)

2: (3,4)

3: (4,5)

4: (5,6)

KNAPSACK 0-1 EXAMPLE Weights: {2, 3, 4, 5}

i / w	0	1	2	3	4	5
0	0	0	0	0	0	0
1	0	0	3	3	3	3
2	0	0				
3	0					
4	0					

$$i = 2$$

$$v_i = 4$$

$$w_i = 3$$

$$\mathbf{w} = 1$$

$$w-w_i = -2$$

1: (2,3)

2: (3,4)

3: (4,5)

4: (5,6)

KNAPSACK 0-1 EXAMPLE Weights: {2, 3, 4, 5}

i / w	0	1	2	3	4	5
0	0	0	0	0	0	0
1	0	0	1 3	3	3	3
2	0	0	3			
3	0					
4	0					

$$i = 2$$

$$v_i = 4$$

$$w_i = 3$$

$$\mathbf{w} = 2$$

$$w-w_i = -1$$

1:(2,3)

2: (3,4)

3: (4,5)

4: (5,6)

KNAPSACK 0-1 EXAMPLE Weights: {2, 3, 4, 5}

i/w	0	1	2	3	4	5
0	0	0	0	0	0	0
1	0	0	3	3	3	3
2	0	0	3	4		
3	0					
4	0					

$$i = 2$$

$$v_i = 4$$

$$w_i = 3$$

$$\mathbf{w} = 3$$

$$w-w_i = 0$$

1:(2,3)

2: (3,4)

3: (4,5)

4: (5,6)

i / w	0	1	2	3	4	5
0	0	0	0	0	0	0
1	0	0_	3	3	3	3
2	0	0	3	4	4	
3	0					
4	0					

$$i = 2$$
 $v_i = 4$
 $w_i = 3$
 $\mathbf{w} = 4$
 $\mathbf{w} - \mathbf{w}_i = 1$

1: (2,3)

2: (3,4)

3: (4,5)

4: (5,6)

KNAPSACK 0	-1	EXAMPLE	Weights:	$\{2, 3, 4, 5\}$
			Profits:	${3, 4, 5, 6}$

i/w	0	1	2	3	4	5
0	0	0	0	0	0	0
1	0	0	3	3	3	3
2	0	0	3	4	4	7
3	0					
4	0					

$$i = 2$$
 $v_i = 4$
 $w_i = 3$
 $\mathbf{w} = 5$
 $\mathbf{w} - \mathbf{w}_i = 2$

1: (2,3)

2: (3,4)

3: (4,5)

4: (5,6)

KNAPSACK 0-1	EXAMPLE	Weights:	$\{2, 3, 4, 5\}$
		Profits:	$\{3, 4, 5, 6\}$

i / w	0	1	2	3	4	5
0	0	0	0	0	0	0
1	0	0	3	3	3	3
2	0	, 0	, 3	, 4	4	7
3	0	↓ 0	V 3	† 4		
4	0					

$$i = 3$$

 $v_i = 5$
 $w_i = 4$
 $\mathbf{w} = 1..3$
 $w-w_i = -3..-1$

1:(2,3)

2: (3,4)

3: (4,5)

4: (5,6)

i/w	0	1	2	3	4	5
0	0	0	0	0	0	0
1	0	0	3	3	3	3
2	0 _	0	3	4	4	7
3	0	0	3	4	→ 5	
4	0					

$$i = 3$$

 $v_i = 5$
 $w_i = 4$
 $\mathbf{w} = 4$
 $\mathbf{w} - \mathbf{w}_i = 0$

1: (2,3)

2: (3,4)

3: (4,5)

4: (5,6)

<u>KNAPSACK 0-1 EXAMPLE</u> Weights: {2, 3, 4, 5} Profits: {3, 4, 5, 6}

i / w	0	1	2	3	4	5
0	0	0	0	0	0	0
1	0	0	3	3	3	3
2	0	0	3	4	4	7
3	0	0	3	4	5	▼ 7
4	0					

$$i = 3$$
 $v_i = 5$
 $w_i = 4$
 $\mathbf{w} = 5$
 $w-w_i = 1$

1: (2,3)

2: (3,4)

3: (4,5)

4: (5,6)

KNAPSACK 0-1 EXAMPLE Weights: {2, 3, 4, 5}

i/w	0	1	2	3	4	5
0	0	0	0	0	0	0
1	0	0	3	3	3	3
2	0	0	3	4	4	7
3	0	1 0	13	4	5	7
4	0	• 0	* 3	* 4	* 5	

$$i = 4$$
 $v_i = 6$
 $w_i = 5$
 $\mathbf{w} = 1..4$
 $w-w_i = -4..-1$

1: (2,3)

2: (3,4)

3: (4,5)

4: (5,6)

KNAPSACK 0-1 EXAMPLE Weights: {2, 3, 4, 5}

i / w	0	1	2	3	4	5
0	0	0	0	0	0	0
1	0	0	3	3	3	3
2	0	0	3	4	4	7
3	0	0	3	4	5	7
4	0	0	3	4	5	▼ 7

$$i = 4$$
 $v_i = 6$
 $w_i = 5$
 $\mathbf{w} = \mathbf{5}$
 $\mathbf{w} - \mathbf{w}_i = 0$

<u>Items:</u>

1: (2,3)

2: (3,4)

3: (4,5)

Profits: {3, 4, 5, 6}

4: (5,6)

KNAPSACK 0-1 EXAMPLE Weights: {2, 3, 4, 5}

i / w	0	1	2	3	4	5
0	0	0	0	0	0	0
1	0	0	3	3	3	3
2	0	0	3	4	4	7
3	0	0	3	4	5	7
4	0	0	3	4	5	7

We're DONE!!

The max possible value that can be carried in this knapsack is \$7

KNAPSACK 0-1 ALGORITHM

- This algorithm only finds the max possible value that can be carried in the knapsack
 - The value in dp[n,W]
- To know the *items* that make this maximum value, we need to trace back through the table.

```
    Let i = n and k = W
    if dp[i, k] ≠ dp[i-1, k] then
    mark the i<sup>th</sup> item as in the knapsack
    i = i-1, cpt = cpt-w<sub>i</sub>
    else
    i = i-1 // Assume the i<sup>th</sup> item is not in the knapsack
    // Could it be in the optimally packed knapsack?
```

i / w	0	1	2	3	4	5
0	0	0	0	0	0	0
1	0	0	3	3	3	3
2	0	0	3	4	4	7
3	0	0	3	4	5	1 7
4	0	0	3	4	5	7

<u>Items:</u>

1: (2,3)

2: (3,4)

3: (4,5)

4: (5,6)

$$i = 4$$
 $k = 5$
 $v_i = 6$
 $w_i = 5$
 $dp[i,k] = 7$
 $dp[i-1,k] = 7$

Knapsack:

i / w	0	1	2	3	4	5
0	0	0	0	0	0	0
1	0	0	3	3	3	3
2	0	0	3	4	4	↑ 7
3	0	0	3	4	5	7
4	0	0	3	4	5	7

<u>Items:</u>

1: (2,3)

2: (3,4)

3: (4,5)

4: (5,6)

$$i = 3$$

 $k = 5$
 $v_i = 5$
 $w_i = 4$
 $dp[i,k] = 7$
 $dp[i-1,k] = 7$

Knapsack:

i/w	0	1	2	3	4	5
0	0	0	0	0	0	0
1	0	0	3	3	3	3
2	0	0	3	4	4	- 7
3	0	0	3	4	5	7
4	0	0	3	4	5	7

<u>Items:</u>

Knapsack:
Item 2

1: (2,3)

2: (3,4)

3: (4,5)

4: (5,6)

$$i = 2$$

 $k = 5$
 $v_i = 4$
 $w_i = 3$
 $dp[i,k] = 7$
 $dp[i-1,k] = 3$
 $k - w_i = 2$

i/w	0	1	2	3	4	5
0	0	0	0	0	0	0
1	0	6	3	3	3	3
2	0	0	3	4	4	7
3	0	0	3	4	5	7
4	0	0	3	4	5	7

<u>Items:</u>

1: (2,3)

2: (3,4)

3: (4,5)

4: (5,6)

Knapsack:

Item 2 Item 1

$$i = 1$$

 $k = 2$
 $v_i = 3$
 $w_i = 2$
 $dp[i,k] = 3$
 $dp[i-1,k] = 0$
 $k - w_i = 0$

i/w	0	1	2	3	4	5
0	0	0	0	0	0	0
1	0	9	3	3	3	3
2	0	0	3	4	4	7
3	0	0	3	4	5	7
4	0	0	3	4	5	7

<u>Items:</u>	

1: (2,3)

2: (3,4)

3: (4,5)

4: (5,6)

Knapsack:
Item 2
Item 1

$$i = 1$$

 $k = 2$
 $v_i = 3$
 $w_i = 2$
 $dp[i,k] = 3$
 $dp[i-1,k] = 0$
 $k - w_i = 0$

The optimal knapsack should contain:

Item 1 and Item 2

k = 0, so we're DONE!

HOW TO FIND THE ITEMS THAT ARE IN THE SACK?

```
while (n != 0)
{
    if (dp[n][cpt] != dp[n - 1][cpt])
    {
        printf("\nPackage %d with Wt = %d and Val = %d\n",n, wt[n-1], val[n-1]);
        cpt = cpt - wt[n-1];
    }
    n--;
}
```

KNAPSACK 0-1 PROBLEM — RUN TIME for
$$w = 0$$
 to W

$$dp[0,w] = 0$$

$$O(W)$$

for
$$i = 1$$
 to n

$$[i,0] = 0$$

 $\mathbf{O}(n)$

for
$$i = 1$$
 to n
for $w = 0$ to W
< the rest of the code > $\mathbf{O}(W)$

What is the running time of this algorithm? $O(n*W) - of \ course, \ W \ can \ be \ mighty \ big$ $What \ is \ an \ analogy \ in \ world \ of \ sorting?$

Remember that the brute-force algorithm takes: $O(2^n)$

$$if(w[i]>c)$$

 $T[i, c] = T[i-1,c]$
 $else$
 $T[i, c] = \max(T(i-1, c), v[i] + T(i-1, c-w[i]))$

Assume, Sack capacity, C = 10Available Items $V = 7 \ 2 \ 1 \ 6 \ 12$ $W = 3 \ 1 \ 2 \ 4 \ 6$

Capacity

i	$\mathbf{v_i}$	$\mathbf{w_i}$	0	1	2	3	4	5	6	7 ♠	8	9	10
0	0	0											
1	2	1											
2	1	2											
3 🛧	7	3								A			
4	6	4											
5	12	6											

Any cell in the table represents the maximum value attained by choosing items from i items (not i^{th}) in a sack of capacity listed in the header. For example, the cell with value "A" represents that we can add items of total value "A" from 3 items and with a sack capacity=7 which is represented as T[3,7] = A

47

$$if(w[i]>c)$$

 $T[i, c] = T[i-1,c]$
 $else$
 $T[i, c] = \max(T(i-1, c), v[i] + T(i-1, c-w[i]))$

Assume, Sack capacity, C = 10Available Items $V = 7 \ 2 \ 1 \ 6 \ 12$ $W = 3 \ 1 \ 2 \ 4 \ 6$

i	v _i	w _i	0	1	2	3	4	5	6	7	8	9	10	←	Ca
0	0	0													
1	2	1													
2	1	2													
3	7	3													
4	6	4													
5	12	6													

$$if(w[i]>c)$$

 $T[i, c] = T[i-1,c]$
 $else$
 $T[i, c] = \max(T(i-1, c), v[i] + T(i-1, c-w[i]))$

Assume, Sack capacity, C = 10Available Items $V = 7 \ 2 \ 1 \ 6 \ 12$ $W = 3 \ 1 \ 2 \ 4 \ 6$

i	v _i	$\mathbf{w_i}$	0	1	2	3	4	5	6	7	8	9	10
0	0	0	0	0	0	0	0	0	0	0	0	0	0
1	2	1											
2	1	2											
3	7	3											
4	6	4											
5	12	6											

Capacity If i=0, no items are available, to put to the

available, to put to the sack, the maximum value we can attain is 0.

$$if(w[i]>c)$$

 $T[i, c] = T[i-1,c]$
 $else$
 $T[i, c] = \max(T(i-1, c), v[i] + T(i-1, c-w[i]))$

Assume, Sack capacity, C = 10Available Items $V = 7 \ 2 \ 1 \ 6 \ 12$ $W = 3 \ 1 \ 2 \ 4 \ 6$

i	v _i	\mathbf{w}_{i}	0	1	2	3	4	5	6	7	8	9	10	—	Capacity
0	0	0	0	0	0	0	0	0	0	0	0	0	0		
1	2	1	0												
2	1	2	0												
3	7	3	0												
4	6	4	0												
5	12	6	0												

If bag capacity is 0, we can't add anything into the sack. So, attained value is 0.

$$if(w[i]>c)$$

 $T[i, c] = T[i-1,c]$
 $else$
 $T[i, c] = \max(T(i-1, c), v[i] + T(i-1, c-w[i]))$

Assume, Sack capacity, C = 10Available Items $V = 7 \ 2 \ 1 \ 6 \ 12$ $W = 3 \ 1 \ 2 \ 4 \ 6$

i	$\mathbf{v_i}$	$\mathbf{w}_{\mathbf{i}}$	0	1	2	3	4	5	6	7	8	9	10	←	Capacity
0	0	0	0	0	0	0	0	0	0	0	0	0	0		
1	2	1	0												
2	1	2	0												
3	7	3	0												
4	6	4	0												
5	12	6	9												

$$T[1,1] = Max(T[1-1,1], v_1 + T[1-1,1-1])$$

= $Max(T[0,1], 2 + T[0,0])$
= $Max(0, 2+0) = 2$

$$if(w[i]>c)$$

$$T[i, c] = T[i-1,c]$$

$$else$$

$$T[i, c] = \max(\frac{T(i-1,c)}{v[i]} + \frac{T(i-1,c-w[i])}{v[i]}$$

Assume, Sack capacity, C = 10Available Items $V = 7 \ 2 \ 1 \ 6 \ 12$ $W = 3 \ 1 \ 2 \ 4 \ 6$

i	$\mathbf{v_i}$	\mathbf{w}_{i}	0	1	2	3	4	5	6	7	8	9	10	←	Capacity
0	0	0	0	0	0	0	0	0	0	0	0	0	0		
1	2	1	0	X											
2	1	2	0												
3	7	3	0												
4	6	4	0												
5	12	6	0												

 $T[1,1] = Max(T[1-1,1], v_1 + T[1-1,1-1])$ = Max(T[0,1], 2 + T[0,0])= Max(0, 2+0) = 2

$$if(w[i]>c)$$

 $T[i, c] = T[i-1,c]$
 $else$
 $T[i, c] = \max(T(i-1, c), v[i] + T(i-1, c-w[i]))$

Assume, Sack capacity, C = 10Available Items $V = 7 \ 2 \ 1 \ 6 \ 12$ $W = 3 \ 1 \ 2 \ 4 \ 6$

i	$\mathbf{v_i}$	$\mathbf{w_i}$	0	1	2	3	4	5	6	7	8	9	10	—	Capacity
0	0	0	0	0	0	0	0	0	0	0	0	0	0		
1	2	1	0	2											
2	1	2	0												
3	7	3	0												
4	6	4	0												
5	12	6	0												

$$T[1,1] = Max(T[1-1,1], v_1 + T[1-1,1-1])$$

$$= Max(T[0,1], 2 + T[0,0])$$

$$= Max(0, 2+0) = 2$$

```
if(w[i]>c)
T[i, c] = T[i-1,c]
else
T[i, c] = \max(\frac{T(i-1,c)}{v[i]} + \frac{T(i-1,c-w[i])}{v[i]}
```

Assume, Sack capacity, C = 10Available Items $V = 7 \ 2 \ 1 \ 6 \ 12$ $W = 3 \ 1 \ 2 \ 4 \ 6$

i	$\mathbf{v_i}$	$\mathbf{w}_{\mathbf{i}}$	0	1	2	3	4	5	6	7	8	9	10	→	Capacity
0	0	0	0	0	0	0	0	0	0	0	0	0	0		
1	2	1	0	2 Goin	2 g w ₁										
2	1	2	0	cell b											
3	7	3	0												
4	6	4	0												
5	12	6	0												

$$T[1,2] = Max(T[1-1,1], v_1 + T[1-1,2-1])$$

= $Max(T[0,1], 2 + T[0,1])$
= $Max(0, 2+0) = 2$

$$if(w[i]>c)$$

 $T[i, c] = T[i-1,c]$
 $else$
 $T[i, c] = \max(T(i-1, c), v[i] + T(i-1, c-w[i]))$

Assume, Sack capacity, C = 10Available Items $V = 7 \ 2 \ 1 \ 6 \ 12$ $W = 3 \ 1 \ 2 \ 4 \ 6$

i	$\mathbf{v_i}$	\mathbf{w}_{i}	0	1	2	3	4	5	6	7	8	9	10	—	Cap
0	0	0	0	0	0	0	0	0	0	0	0	0	0		
1	2	1	0	2	2										
2	1	2	0												
3	7	3	0												
4	6	4	0												
5	12	6	0												

$$T[1,2] = Max(T[1-1,1], v_1 + T[1-1,2-1])$$

= $Max(T[0,1], 2 + T[0,1])$
= $Max(0, 2+0) = 2$

$$if(w[i]>c)$$

 $T[i, c] = T[i-1,c]$
 $else$
 $T[i, c] = \max(T(i-1, c), v[i] + T(i-1, c-w[i]))$

Assume, Sack capacity, C = 10Available Items $V = 7 \ 2 \ 1 \ 6 \ 12$ $W = 3 \ 1 \ 2 \ 4 \ 6$

i	$\mathbf{v_i}$	$\mathbf{w_i}$	0	1	2	3	4	5	6	7	8	9	10
0	0	0	0	0	0	0	0	0	0	0	0	0	0
1	2	1	0	2	2	2	2	2	2	2	2	2	2
2	1	2	0										
3	7	3	0										
4	6	4	0										
5	12	6	0										

For any c >= 1,

$$T[1,c] = Max(T[1-1,1], v_1 + T[1-1,c-1])$$

 $= Max(T[0,1], 2 + T[0,c-1])$
 $= Max(0, 2+0) = 2$

$$if(w[i]>c)$$

 $T[i, c] = T[i-1,c]$
 $else$
 $T[i, c] = \max(T(i-1, c), v[i] + T(i-1, c-w[i]))$

Assume, Sack capacity, C = 10Available Items $V = 7 \ 2 \ 1 \ 6 \ 12$ $W = 3 \ 1 \ 2 \ 4 \ 6$

i	$\mathbf{v_i}$	\mathbf{w}_{i}	0	1	2	3	4	5	6	7	8	9	10	—
0	0	0	0	0	0	0	0	0	0	0	0	0	0	
1	2	1	0	2	2	2	2	2	2	2	2	2	2	
2	1	2	0											
3	7	3	0											
4	6	4	0											
5	12	6	0											

$$T(2,1)= T[2-1,1] as w_2 > c$$

= $T[1,1] = 2$

$$if(w[i]>c)$$

 $T[i, c] = T[i-1,c]$
 $else$
 $T[i, c] = \max(T(i-1, c), v[i] + T(i-1, c-w[i]))$

Assume, Sack capacity, C = 10Available Items $V = 7 \ 2 \ 1 \ 6 \ 12$ $W = 3 \ 1 \ 2 \ 4 \ 6$

i	v _i	w _i	0	1	2	3	4	5	6	7	8	9	10
0	0	0	0	0	0	0	0	0	0	0	0	0	0
1	2	1	0	2	2	2	2	2	2	2	2	2	2
2	1	2	0	2									
3	7	3	0										
4	6	4	0										
5	12	6	0										

$$T(2,1)= T[2-1,1] as w_2 > c$$

= $T[1,1] = 2$

```
if(w[i]>c)

T[i, c] = T[i-1,c]

else

T[i, c] = \max(T(i-1, c), v[i] + T(i-1, c-w[i]))
```

Assume, Sack capacity, C = 10Available Items $V = 7 \ 2 \ 1 \ 6 \ 12$ $W = 3 \ 1 \ 2 \ 4 \ 6$

i	$\mathbf{v_i}$	$\mathbf{w_i}$	0	1	2	3	4	5	6	7	8	9	10	—
0	0	0	0	0	0	0	0	0	0	0	0	0	0	
1	2	1	0	2	2	2	2	2	2	2	2	2	2	
2	1	2	0 G	2 ping w	' a									
3	7	3		ll bacl										
4	6	4	0											
5	12	6	0											

$$T[2,2] = Max(T[2-1,2], v_2 + T[1-1, 2-2])$$

= $Max(T[1,2], 1 + T[1,0])$
= $Max(2, 1) = 2$

$$if(w[i]>c)$$

 $T[i, c] = T[i-1,c]$
 $else$
 $T[i, c] = \max(T(i-1, c), v[i] + T(i-1, c-w[i]))$

Assume, Sack capacity, C = 10Available Items $V = 7 \ 2 \ 1 \ 6 \ 12$ $W = 3 \ 1 \ 2 \ 4 \ 6$

i	v _i	$\mathbf{w_i}$	0	1	2	3	4	5	6	7	8	9	10
0	0	0	0	0	0	0	0	0	0	0	0	0	0
1	2	1	0	2	2	2	2	2	2	2	2	2	2
2	1	2	0	2	2								
3	7	3	0										
4	6	4	0										
5	12	6	0										

$$T[2,2] = 2$$

```
if(w[i]>c)
T[i, c] = T[i-1,c]
else
T[i, c] = \max(T(i-1,c), v[i] + T(i-1,c-w[i]))
```

Assume, Sack capacity, C = 10Available Items $V = 7 \ 2 \ 1 \ 6 \ 12$ $W = 3 \ 1 \ 2 \ 4 \ 6$

i	$\mathbf{v_i}$	$\mathbf{w_i}$	0	1	2	3	4	5	6	7	8	9	10
0	0	0	0	0	0	0	0	0	0	0	0	0	0
1	2	1	0	2	2	2	2	2	2	2	2	2	2
2	1	2	0	2 Goi	2 ng w _o								
3	7	3	0		back								
4	6	4	0										
5	12	6	0										

$$T[2,3] = Max(T[2-1, 3], v_2 + T[2-1, 3-2])$$

= $Max(T[1,3], 1+ T[1,1])$
= $Max(2, 3) = 3$

$$if(w[i]>c)$$

 $T[i, c] = T[i-1,c]$
 $else$
 $T[i, c] = \max(T(i-1, c), v[i] + T(i-1, c-w[i]))$

Assume, Sack capacity, C = 10Available Items $V = 7 \ 2 \ 1 \ 6 \ 12$ $W = 3 \ 1 \ 2 \ 4 \ 6$

i	$\mathbf{v_i}$	$\mathbf{w_i}$	0	1	2	3	4	5	6	7	8	9	10	←	Capacity
0	0	0	0	0	0	0	0	0	0	0	0	0	0		
1	2	1	0	2	2	2	2	2	2	2	2	2	2		
2	1	2	0	2	2	3	3	3	3	3	3	3	3		
3	7	3	0	2	2	7	9	9	10	10	10	10	10		
4	6	4	0	2	2	7	9	9	10	13	15	15	16		
5	12	6	0	2	2	7	9	9	12	14	15	19	21		

So, simplest version is compare 1) the cell above the current cell and 2) v_i + value of w_i cell backward in previous row. Populate the current cell with whichever value is bigger.

Populate the table with this logic.

How to find the items that are in the bag?

i	$\mathbf{v_i}$	\mathbf{w}_{i}	0	1	2	3	4	5	6	7	8	9	10	←	Capacity
0	0	0	0	0	0	0	0	0	0	0	0	0	0		
1	2	1	0	2	2	2	2	2	2	2	2	2	2		
2	1	2	0	2	2	3	3	3	3	3	3	3	3		
3	7	3	0	2	2	7	9	9	10	10	10	10	10		
4	6	4	0	2	2	7	9	9	10	13	15	15	16		
5	12	6	0	2	2	7	9	9	12	14	15	19	21		

How to find the items that are in the bag?

i	$\mathbf{v_i}$	$\mathbf{w}_{\mathbf{i}}$	0	1	2	3	4	5	6	7	8	9	10	—	Capacity
0	0	0	0	0	0	0	0	0	0	0	0	0	0		
1	2	1	0	2	2	2	2	2	2	2	2	2	2		
2	1	2	0	2	2	3	3	3	3	3	3	3	3		
3	7	3	0	2	2	7	9	9	10	10	10	10	10		
4	6	4	0	2	2	7	9	9	10	13	15	15	16		
5	12	6	0	2	2	7	9	9	12	14	15	19	21		

How to find the items that are in the bag?

i	$\mathbf{v_i}$	$\mathbf{w_i}$	0	1	2	3	4	5	6	7	8	9	10	—	Capacity
0	0	0	0	0	0	0	0	0	0	0	0	0	0		
1	2	1	0	2	2	2	2	2	2	2	2	2	2		
2	1	2	0	2	2	3	3	3	3	3	3	3	3		
3	7	3	0	2	2	7	9	9	10	10	10	10	10		
4	6	4	0	2	2	7	9	9	10	13	15	15	16		
5	12	6	0	2	2	7	9	9	12	14	15	19	21		

 $Sack = \{\}$

- 1. Start with 21 (Green cell) and compare with the one above it (16).
- 2. As 21 and 16 are not equal item# 5 is included in the sack.
- 3. Go 6(weight if item) units back in previous row which is the next cell to check.

How to find the items that are in the bag?

i	$\mathbf{v_i}$	$\mathbf{w}_{\mathbf{i}}$	0	1	2	3	4	5	6	7	8	9	10	Capacity
0	0	0	0	0	0	0	0	0	0	0	0	0	0	
1	2	1	0	2	2	2	2	2	2	2	2	2	2	
2	1	2	0	2	2	3	3	3	3	3	3	3	3	
3	7	3	0	2	2	7	9	9	10	10	10	10	10	
4	6	4	0	2	2	7	9	9	10	13	15	15	16	
5	12	6	0	2	2	7	9	9	12	14	15	19	21	included

 $Sack = \{5\}$

How to find the items that are in the bag?

i	$\mathbf{v_i}$	\mathbf{w}_{i}	0	1	2	3	4	5	6	7	8	9	10	Capacity
0	0	0	0	0	0	0	0	0	0	0	0	0	0	
1	2	1	0	2	2	2	2	2	2	2	2	2	2	
2	1	2	0	2	2	3	3	3	3	3	3	3	3	
3	7	3	0	2	2	7	9	9	10	10	10	10	10	
4	6	4	0	2	2	7	9	9	10	13	15	15	16	Not Included
5	12	6	0	2	2	7	9	9	12	14	15	19	21	Included

Weight Left: 10-6=4

 $Sack = \{5\}$

- 1. Compare T[4,4] 9 (Green cell) with the one above it (9).
- 2. As both cell has same value item# 4 is not included in the sack.

How to find the items that are in the bag?

i	$\mathbf{v_i}$	$\mathbf{w}_{\mathbf{i}}$	0	1	2	3	4	5	6	7	8	9	10	Capacity
0	0	0	0	0	0	0	0	0	0	0	0	0	0	
1	2	1	0	2	2	2	2	2	2	2	2	2	2	
2	1	2	0	2	2	3	3	3	3	3	3	3	3	
3	7	3	0	2	2	7	9	9	10	10	10	10	10	Included
4	6	4	0	2	2	7	9	9	10	13	15	15	16	Not Included
5	12	6	0	2	2	7	9	9	12	14	15	19	21	Included

Sack = $\{5, 3\}$

- 1. Compare T[3,4] 9 (Green cell) with the one above it (3).
- 2. As the cells have different values item# 3 is included in the sack.
- 3. Go 3 units back in previous row which is the next cell to check.

How to find the items that are in the bag?

i	$\mathbf{v_i}$	$\mathbf{w}_{\mathbf{i}}$	0	1	2	3	4	5	6	7	8	9	10	Capacity
0	0	0	0	0	0	0	0	0	0	0	0	0	0	
1	2	1	0	2	2	2	2	2	2	2	2	2	2	
2	1	2	0	2	2	3	3	3	3	3	3	3	3	Not Included
3	7	3	0	2	2	7	9	9	10	10	10	10	10	Include
4	6	4	0	2	2	7	9	9	10	13	15	15	16	d Not
5	12	6	0	2	2	7	9	9	12	14	15	19	21	<mark>Included</mark> Included

Weight Left: 4-3=1

Sack = $\{5, 3\}$

- 1. Compare T[2,1] 2 (Green cell) with the one above it (2).
- 2. As both cells have same values item# 2 is not included in the sack.

How to find the items that are in the bag?

i	$\mathbf{v_i}$	\mathbf{w}_{i}	0	1	2	3	4	5	6	7	8	9	10	Capacity
0	0	0	0	0	0	0	0	0	0	0	0	0	0	
1	2	1	0	2	2	2	2	2	2	2	2	2	2	Included
2	1	2	0	2	2	3	3	3	3	3	3	3	3	Not Included
3	7	3	0	2	2	7	9	9	10	10	10	10	10	Included
4	6	4	0	2	2	7	9	9	10	13	15	15	16	Not Included
5	12	6	0	2	2	7	9	9	12	14	15	19	21	Included

Weight Left: 1-1=0

Sack = $\{5, 3, 1\}$

- 1. Compare T[1,1] 2 (Green cell) with the one above it (0).
- 2. As the cells have different values item# 1 is included in the sack.

How to find the items that are in the bag?

i	$\mathbf{v_i}$	\mathbf{w}_{i}	0	1	2	3	4	5	6	7	8	9	10	Capacity
0	0	0	0	0	0	0	0	0	0	0	0	0	0	
1	2	1	0	2	2	2	2	2	2	2	2	2	2	Included
2	1	2	0	2	2	3	3	3	3	3	3	3	3	Not Included
3	7	3	0	2	2	7	9	9	10	10	10	10	10	Included
4	6	4	0	2	2	7	9	9	10	13	15	15	16	Not Included
5	12	6	0	2	2	7	9	9	12	14	15	19	21	Included

Sack = $\{5, 3, 1\}$

As we have reached the 0^{th} row, we are done with item selection. So, the sack contains **1**, **3 and 5** item with value = 2+7+12=21

```
for (int i = 1; i \le n; i++)
     for (int j = 0; j \le cpt; j++)
      if(wt[i-1]<=j)
          dp[i][j]=max((val[i-1]+dp[i-1][j-wt[i-1]]),dp[i-1][j]);
       else
       dp[i][j] = dp[i-1][j];
printf("Max Value: %d",dp[n][cpt]);
```

KNAPSACK SPACE OPTIMIZED SIMULATION

```
int knapSack(int cpt, int wt[], int val[], int n)
  int dp[cpt + 1];
  memset(dp, 0, sizeof(dp));
  for (int i=0; i<n; i++)
       for (int j=0; j \le cpt; j++)
              if (wt[i - 1] \le j)
           dp[j] = max(dp[j], dp[j - wt[i - 1]] + val[i - 1]);
  return dp[cpt];
```

UNBOUNDED KNAPSACK

(REPETITION OF ITEMS ALLOWED)

KNAPSACK UNBOUNDED

Given a knapsack weight W and a set of \mathbf{n} items with certain value val_i and weight wt_i , we need to calculate the maximum amount that could make up this quantity exactly.

This is different from <u>classical Knapsack problem</u>, here we are allowed to use unlimited number of instances of an item.

KNAPSACK UNBOUNDED

Example:

items: {Apple, Orange, Melon}

weights: {1, 2, 3}

profits: {15, 20, 50}

capacity: 5

Different Profit Combinations:

- 5 Apples (total weight 5) => 75 profit
- 1 Apple + 2 Oranges (total weight 5) => 55 profit
- 3 Apples + 1 Orange (total weight 5) => 65 profit
- 2 Apples + 1 Melon (total weight 5) => 80 profit
- 1 Orange + 1 Melon (total weight 5) => 70 profit

Best Profit Combination: 2 Apples + 1 Melon with 80 profit.

• Can include multiple instances of the same resource

i	$\mathbf{v_i}$	$\mathbf{w}_{\mathbf{i}}$	0	1	2	3	4	5	6	7	8	9	10	←	Capacity
0	0	0	0	0	0	0	0	0	0	0	0	0	0		
1	2	1	0												
2	1	2	0												
3	7	3	0												
4	6	4	0												
5	12	6	0												

$$if(w[i]>c)$$

$$T[i, c] = T[i-1,c]$$

$$else$$

$$T[i, c] = \max(T[i-1, c], v[i] + \frac{T[i, c-w[i]]}{T[i, c]})$$

• Can include multiple instances of the same resource

i	$\mathbf{v_i}$	$\mathbf{w}_{\mathbf{i}}$	0	1	2	3	4	5	6	7	8	9	10	←	Capacity
0	0	0	0	0	0	0	0	0	0	0	0	0	0		
1	2	1	0	2	4	6	8	10	12	14	16	18	20		
2	1	2	0	2	4	6	8	10	12	14	16	18	20		
3	7	3	0	2	4	7	9	11	14	16	18	21	23		
4	6	4	0	2	2	7	9	11	14	16	18	21	23		
5	12	6	0	2	2	7	9	11	14	16	18	21	23		

$$if(w[i]>c)$$

$$T[i, c] = T[i-1,c]$$

$$else$$

$$T[i, c] = \max(T[i-1, c], v[i] + \frac{T[i, c-w[i]]}{T[i, c]})$$

How to find the items that are in the bag?

i	$\mathbf{v_i}$	$\mathbf{w_i}$	0	1	2	3	4	5	6	7	8	9	10	← Capacity
0	0	0	0	0	0	0	0	0	0	0	0	0	0	Not Included
1	2	1	0	2	4	6	8	10	12	14	16	18	20	Included – 1 times
2	1	2	0	2	4	6	8	10	12	14	16	18	20	Not Included
3	7	3	0	2	4	7	9 _	11	14	16	18	21	23	Included – 3 times
4	6	4	0	2	2	7	9	11	14	16	18	21	23	Not Included
5	12	6	0	2	2	7	9	11	14	16	18	21	23	Not Included

Sack = $\{3, 3, 3, 1\}$

As we have reached the 0^{th} row, we are done with item selection. So, the sack contains one quantity of item#1 and 3 quantity of item#3 with value = 1*2+3*7=23

```
for (int i = 1; i \le n; i++)
     for (int j = 0; j \le cpt; j++)
        if(wt[i-1] \le j)
           dp[i][j] = max((val[i-1] + dp[i][j - wt[i-1]]), dp[i-1][j]);
        else
           dp[i][j] = dp[i-1][j];
        printf("%d ",dp[i][j]);
     printf("\n");
```

REFERENCE

- Chapter 15 (15.1 and 15.3) (Cormen)
- http://www.shafaetsplanet.com/?p=3638
- https://www.javatpoint.com/0-1-knapsack-problem
- https://www.geeksforgeeks.org/0-1-knapsack-problem-dp-10/

Lab Test: Up to Lab-7 (Greedy)

Section B2: Section B1:

Section A2:

Thanks to All