

Análisis del conjunto

SEPARACIÓN DE LOS DATOS

Problema: nuestros datos no presentan una estructura lógica

- Hay una columna que separa nuestros datos entre países desarrollados y países en vías de desarrollo.
- Las condiciones entre estos tipos de países son muy diferentes. No podemos usar el mismo modelo para predecir los dos al mismo tiempo: cada uno de ellos sigue patrones distintos.
- Por esta razón, usaremos solo una parte de los datos: los países en vías de desarrollo.

Análisis del conjunto

PREVISUALIZACIÓN DE LOS DATOS

▲ co	ountry	† Region	Vear ÷	Infant deaths	Under_five_deaths	Adult_mortality	Alcohol_consumption	Hepatitis_B	Measles	BMI ÷	Polio [‡]	Diphtheria [‡]	Incidents_HIV	GDP per capita
		Middle East	2015	_	13.0								_	
1 Tu	-	Asia	2015	51.5	67.9	201.0765							0.00	1076
3 Gu		South America	2007	32.8	40.5	222,1965							0.13	
	osta Rica	Central America and Caribbean	2006		11.2	95.2200							0.79	
	ussian Federation	Rest of Europe	2006		8.2	223.0000							0.18	
6 Jo		Middle East	2001	22.0	26.1	129.7640							0.08	
	loldova	Rest of Europe	2001	15.3	17.8	217.8570							0.13	2235
8 Br		South America	2012		17.0	150.2245							0.43	9057
	ahamas, The	Central America and Caribbean	2012			165.5380							0.24	
9 Da		Rest of Europe	2011	13.0	15.2 16.6	261.6095							0.46	
	omoros	Africa	2007	66.8	91.9	255.8815								
12 Ga		Africa	2012		57.1	256.8800							1.57	7181
13 Gh		Africa	2011	45.2	65.9	257.0865							0.93	1580
	nilippines	Asia	2001	28.2	36.9	214.2685							0.01	1847
	ongo, Rep.	Africa	2003	64.6	100.2	406.7020							2.23	
16 M	adagascar	Africa	2011	45.8 Population_ml	67.0 † Thinness_ten_ninet	237.6755 een years Thinne	0.8900 ss_five_nine_years			21.1	73	73	0.15	464
				-	78.53	4.9	4.8	7.8	76.5					
					83.21	27.1	28.0	5.0	65.4					
					0.75	5.7	5.5	7.9	67.0					
					4.35	2.0	1.9	7.9	78.2					
				1-	44.10	2.3	2.3	12.0	71.2					
					5.22	4.0	3.9	9.6	71.9					
					2.87	2.9	3.1	10.9	68.7					
				1:	99.29	2.8	2.8	7.3	74.2					
					0.36	2.5	2.5	11.0	72.3					
					48.20	2.9	3.0	10.5	68.3					
					0.64	7.3	7.2	3.5	60.7					
					1.75	6.3	6.2	7.8	62.9					
					25.39	6.9	6.8	6.8	61.4					
					79.67	1.0	9.7	7.7	68.8					
					3.41	9.1	8.8	5.7	53.8					

Análisis del conjunto

TIPOS DE LAS VARIABLES

<u>Cualitativas</u>

Nominales: Ordinales: Country y Region Year

Cuantitativas (continuas):

Sanitarias: Económicas: Hepatitis_B GPD_per_capita Measles
BMI

Incidents_HIV
Thinness_ten_nineteen_years
Thinness_five_nine_years

Naturales:
Infant_deaths
Under_five_deaths
Adult_mortality
Life Expectancy

Sociales:
Alcohol_consumption
Population_mIn
Schooling

VALORES NULOS Y SIMETRÍA

Na.omit()

Simetría:

[1] "Infant_deaths"

[1] 0.9196311

[1] "Adult_mortality"

[1] 1.300519

[1] "Measles"

[1] -0.7653451

[1] "Diphtheria"

[1] -1.52894

[1] "Population_mln"

[1] 7.54128

[1] "Schooling"

[1] -0.0516788

[1] "Year"

[1] 0

[1] "Alcohol_consumption"

[1] 0.8650686

[1] "BMI"

[1] 0.1620363

[1] "Incidents_HIV"

[1] 4.407009

[1] "Thinness_ten_nineteen_years"

[1] 1.547902

[1] "Life_expectancy"

[1] -0.7258087

[1] "Under_five_deaths"

[1] 1.154998

[1] "Hepatitis_B"

[1] -1.377481

[1] "Polio"

[1] -1.428882

[1] "GDP_per_capita"

[1] 3.649479

[1] "Thinness_five_nine_years"

[1] 1.631239

TRANSFORMACIONES BOXCOX Incidents_HIV: Histogram of conjunto_0\$Incidents_HIV Histogram of conjunto_0\$Incidents_HIV

conjunto_0\$Incidents_HIV

TRANSFORMACIONES BOXCOX

GPD_per_capita

TRANSFORMACIONES BOXCOX

Population_mln:

OUTLIERS

OUTLIERS

Distribución de las variables

NORMALIDAD DE LAS VARIABLES

[1] "Schooling"

```
Lilliefors (Kolmogorov-Smirnov) normality
        Lilliefors (Kolmogorov-Smirnov) normality
                                                        data: columnas numericas[. i]
data: columnas numericas[. il
                                                        D = 0.14172, p-value < 2.2e-16
D = 0.0886, p-value < 2.2e-16
                                                        [1] "Infant_deaths"
[1] "Year"
        Lilliefors (Kolmogorov-Smirnov) normality
                                                               Lilliefors (Kolmogorov-Smirnov) normality
 data: columnas_numericas[, i]
                                                        data: columnas_numericas[. i]
 D = 0.11513, p-value < 2.2e-16
                                                       D = 0.12943, p-value < 2.2e-16
 [1] "Adult_mortality"
                                                        [1] "Alcohol_consumption"
        Lilliefors (Kolmogorov-Smirnov) normality
                                                               Lilliefors (Kolmogorov-Smirnov) normality
data: columnas_numericas[, i]
                                                       data: columnas_numericas[, i]
D = 0.13501, p-value < 2.2e-16
                                                       D = 0.069743, p-value < 2.2e-16
[1] "Measles"
                                                       [1] "BMI"
        Lilliefors (Kolmogorov-Smirnov) normality
                                                               Lilliefors (Kolmogorov-Smirnov) normality
data: columnas_numericas[, i]
                                                       data: columnas_numericas[, i]
D = 0.18246, p-value < 2.2e-16
                                                       D = 0.33832, p-value < 2.2e-16
[1] "Diphtheria"
                                                       [1] "Incidents HIV"
                                                               Lilliefors (Kolmogorov-Smirnov) normality
        Lilliefors (Kolmogorov-Smirnov) normality
                                                       data: columnas_numericas[, i]
data: columnas_numericas[, i]
                                                       D = 0.11553, p-value < 2.2e-16
D = 0.39777, p-value < 2.2e-16
                                                       [1] "Thinness_ten_nineteen_years"
[1] "Population_mln"
        Lilliefors (Kolmogorov-Smirnov) normality
                                                               Lilliefors (Kolmogorov-Smirnov) normality
 data: columnas_numericas[, i]
                                                       data: columnas_numericas[, i]
D = 0.051681, p-value = 2.001e-15
                                                       D = 0.121, p-value < 2.2e-16
```

[1] "Life_expectancy"

```
Lilliefors (Kolmogorov-Smirnov) normality
data: columnas numericas[, i]
D = 0.16982, p-value < 2.2e-16
 [1] "Under_five_deaths"
         Lilliefors (Kolmogorov-Smirnov) normality
 data: columnas_numericas[, i]
 D = 0.16772, p-value < 2.2e-16
 [1] "Hepatitis_B"
         Lilliefors (Kolmogorov-Smirnov) normality
 data: columnas_numericas[, i]
 D = 0.18106, p-value < 2.2e-16
 [1] "Polio"
        Lilliefors (Kolmogorov-Smirnov) normality
        test
data: columnas_numericas[, i]
D = 0.26757, p-value < 2.2e-16
[1] "GDP_per_capita"
        Lilliefors (Kolmogorov-Smirnov) normality
data: columnas_numericas[, i]
D = 0.1158, p-value < 2.2e-16
[1] "Thinness_five_nine_years"
```

Correlaciones

CORRELACIONES ENTRE VARIABLES

Correlaciones entre las variables

CORRELACIONES ENTRE VARIABLES

Utilizamos Spearman porque las variables no siguen distribuciones normales.

Tests:

- Infant_deaths Under_five_deaths: p-value < 2.2e-16 (quitamos Infant_deaths)
- Adult_mortality Under_five_deaths: p-value < 2.2e-16 (quitamos Under_five_deaths)
- Polio Diphteria: p-value < 2.2e-16 (quitamos Diphtheria)
- Hepatitis_B Polio: p-value < 2.2e-16 (quitamos Polio)
- Thinness_five_nine_years Thinness_ten_nineteen_years : p-value < 2.2e-16 (quitamos Thinness_five_nine_years)
- BMI GPD_per_capita: p-value < 2.2e-16 (quitamos BMI)

Todas las correlaciones son significativas, por lo que **podemos** tener en cuenta su correlación.

Correlaciones

CORRELACIONES ENTRE VARIABLES

EESTADÍSTICAMENTE SIGNIFICATIVAS?

```
Coefficients:
                     Estimate Std. Error t value Pr(>|t|)
(Intercept)
                   61.2943251 0.6801629 90.117
                                                  < 2e-16
Adult_mortality
                   -0.0585091 0.0006764 -86.500 < 2e-16
Alcohol_consumption 0.1464876 0.0167562 8.742 < 2e-16
                                                          ***
Hepatitis_B
                    0.0490927 0.0031866 15.406
                                                  < 2e-16
Incidents_HIV
                   -0.1183423 0.0359621 -3.291
                                                  0.00101
GDP_per_capita
                    1.5664005 0.0942647 16.617 < 2e-16
                                                          ***
Population_mln
                    0.1495752
                               0.0227576
                                           6.573 6.14e-11
                                                          水水水
Schooling
                                                          水水水
                    0.4315321
                               0.0235150 \quad 18.351 \quad < 2e-16
```

R^2 ajustado: 0.9779

Todas las variables que entran en el modelo son estadísticamente significativas.

DIVISIÓN ENTRE TRAIN Y TEST

TRAIN(70%)

1566

TEST(30%)

672

ENTRENAMIENTO DEL MODELO

Hacemos validación cruzada

Comprobamos hipótesis:

```
Lilliefors (Kolmogorov-Smirnov) normality test
```

data: model.cv\$residuals D = 0.039311, p-value = 6.659e-06

Durbin-Watson test

data: model.cv

DW = 1.9189, p-value = 0.05418

studentized Breusch-Pagan test

data: model.cv BP = 138.8, df = 7, p-value < 2.2e-16

ENTRENAMIENTO DEL MODELO

Quitamos outliers con alto leverage:

```
> (outliers=c(which(rest>3),which(rest<(-3))))</pre>
1564 2021 1790 131 735 2243 936 2023 308 2270 742 1558 1439
181 373 463 512 582 672 870 901 1176 1401 1402 1469 1475
> rest[outliers] #obtenemos el valor del residuo estudentizado
     1564
              2021
                        1790
                                   131
                                            735
                                                     2243
                                                                         2023
                                                                936
                                                                                             2270
-3.289264 -3.741670 -3.271437 -4.086701 -3.121916 -3.348546 -4.064600 -3.110368 -3.394000 -3.231005
      742
            1558
-3.241067 -3.982211 -3.281908
```

Quitamos 1 a 1 y vamos hacienda validación cruzada

ENTRENAMIENTO DEL MODELO

Boxcox:

ENTRENAMIENTO DEL MODELO

Tras hacer boxcox comprobamos las variables:

```
Lilliefors (Kolmogorov-Smirnov) normality test

data: model.cv$residuals

D = 0.01606, p-value = 0.4331
```

```
Durbin-Watson test

data: model.cv

DW = 1.9183, p-value = 0.05385
```

```
studentized Breusch-Pagan test

data: model.cv

BP = 123.27, df = 7, p-value < 2.2e-16
```

ENTRENAMIENTO DEL MODELO

Quitamos outliers con alto leverage:

Quitamos 1 a 1 y hacemos validación cruzada

ECM RSME

ECM: 1.306823

RLM	~	~	~	~	~	~	~

MÉTODOS DE REGULARIZACIÓN

RIDGE

Lambda: 51.14625

ECM: 1.897826

MÉTODOS DE REGULARIZACIÓN

LASSO

Lambda: 1.598686

ECM: 1.451612

MÉTODOS DE REGULARIZACIÓN

ELASTIC NET

Lambda: 1.776318

ECM: 1.453092

MÉTODOS DE REDUCCION DE DIMENSIONALIDADES

MÉTODOS DE REDUCCION DE DIMENSIONALIDADES

PLS

1 COMP: 1.922561

3 COMPS: 0.6482499

TRAINING: % variance explained										
	1 comps	2 comps	3 comps	4 comps	5 comps	6 comps	7 comps			
X	40.13	60.16	67.20	76.85	84.25	92.94	100.00			
Life_expectancy	87.52	90.60	93.32	93.63	93.73	93.74	93.74			

CONCLUSIONES

MODELO GANADOR

PLS CON 3 COMPS

```
Data: X dimension: 1545 7
       Y dimension: 1545 1
Fit method: kernelpls
Number of components considered: 3
VALIDATION: RMSEP
Cross-validated using 10 random segments.
      (Intercept) 1 comps 2 comps 3 comps
CV
              556
                  197.9 168.7
                                    139.1
adjcv
             556 197.9 168.7 139.0
TRAINING: % variance explained
               1 comps 2 comps 3 comps
                 39.40
                          59.25
                                  66.10
Life_expectancy
                 87.37
                         90.88
                                  93.83
```

Thinness_five_nine_years/Thinness_ten_nineteen_years

Under five deaths/Infant deaths

REGRESIÓN LOGÍSTICA

REGRESIÓN LOGÍSTICA

CONCLUSIONES

Accuracy: 0.9489

Sensibilidad (verdaderos positivos): 0.9433 Especificidad (verdaderos negativos): 0.9466

BIBLIOGRAFÍA

