Ю. И. Димитриенко, А. Ю. Дубровина, А. П. Соколов

МОДЕЛИРОВАНИЕ УСТАЛОСТНЫХ ХАРАКТЕРИСТИК КОМПОЗИЦИОННЫХ МАТЕРИАЛОВ НА ОСНОВЕ МЕТОДА АСИМПТОТИЧЕСКОГО ОСРЕДНЕНИЯ И «ХИМИЧЕСКОГО» КРИТЕРИЯ ДЛИТЕЛЬНОЙ ПРОЧНОСТИ

Предложен метод расчета усталостных характеристик композиционных материалов, основанный на использовании метода асимптотического осреднения периодических структур, конечно-элементном методе расчета тензоров концентрации микронапряжений в компонентах композита, модели разрушения пучка моноволокон в композите при многоосном нагружении, а также «химического» критерия длительной прочности. Представлены результаты численных расчетов усталостной прочности композитов слоисто-волокнистой структуры.

E-mail: dimit.bmstu@gmail.com

Ключевые слова: композиционные материалы, сопротивление усталости, метод асимптотического осреднения, химический критерий прочности, слоисто-волокнистые композиты.

Проблема прогнозирования долговечности конструкций из композиционных материалов приобретает все большую актуальность в связи с расширением областей применения этих материалов в последние годы. Применение композитов в конструкциях современных и перспективных самолетов требует тщательного изучения поведения материалов при переменных нагрузках, а также возможности прогнозирования долговечности и остаточного ресурса конструкций из композитов. Однако, в отличие от традиционных конструкционных материалов, существующие методики расчета усталостной прочности композиционных материалов разработаны еще крайне не достаточно. Широко известные критерии длительной прочности изотропных материалов (сплавов, полимеров) [1—4], как правило, могут быть применены лишь для частных процессов нагружения.

В работах [5, 6] был предложен новый критерий длительной прочности композиционных материалов, основанный на термодинамическом подходе к моделированию прочности, при котором в качестве основной меры, «регистрирующей» накопление дисперсных повреждений в материале, было предложено использовать химический потенциал μ (в механике сплошных сред известный как термодинамический потенциал Боуэна [7, 8]), но записанный для вязкоупругих тел.

Физическое обоснование для выбора химического потенциала основано на идее, что разрушение микросвязей между молекулами полимеров, вызванное как механическими, так и чисто химическими процессами, может быть охарактеризовано одной и той же величиной, имеющей некоторый энергетический порог. В физической химии такая величина давно широко используется для описания различного рода предельных переходов (фазовых превращений) — это химический потенциал, скачкообразное изменение которого $\Delta \mu$ и является характеристикой фазового превращения. Используя предложенную химикомеханическую аналогию, в [5] был сформулирован критерий механического разрушения полимеров, как достижение химическим потенциалом предельного значения $\Delta \mu^*$, а мерой близости к этому значению выбрано отношение $z(t) = \Delta \mu / \Delta \mu^*$, называемое параметром повреждаемости. Однако для того, чтобы учесть вклад механических факторов в термодинамический химический потенциал μ потребовалось записать его с учетом напряжений и деформаций в рамках модели термовязкоупругого поведения материала (в химии обычно эти «механические» слагаемые не учитывают). Кроме того, поскольку химико-механическая аналогия имеет логическое обоснование только на молекулярном уровне, а на макроскопическом уровне разрушение материала определяется еще и другими факторами (главным образом неоднородным напряженным состоянием в надмолекулярной структуре), то при переходе к интересующему макроуровню, в критерии длительной прочности было предложено ядра функционалов брать не из деформационных вязкоупругих характеристик полимеров, а непосредственно из базовых макроиспытаний на длительную прочность при некоторых фиксированных программах нагружения. Полученный в результате таких положений критерий прочности был назван «химическим» критерием длительной прочности, его апробация на различных материалах и программах нагружения (включая сложные режимы знакопеременного усталостного нагружения — достаточно «неудобные» для функциональных критериев длительной прочности) показала хорошие результаты.

Целью настоящей работы являлось применение «химического» критерия длительной прочности для моделирования усталостных характеристик композиционных материалов, в рамках предложенной ранее концепции: усталостные свойства структурных компонентов композита известны, требуется определить усталостные характеристики композиционного материала в целом. В качестве математического аппарата, позволяющего агрегировать свойства компонентов и получать на выходе искомые свойства композита, применен метод асимптотического осреднения [9–12].

Формулировка локальных задач теории упругости.

Метод асимптотического осреднения позволяет сформулировать локальные задачи теории упругости L_{pa} на ячейке периодичности [9, 10]

$$\begin{cases}
\sigma_{ij(pq)/j}^{\alpha} = 0; \\
\sigma_{ij(pq)}^{\alpha} = C_{ijkl}^{\alpha} \varepsilon_{kl(pq)}^{\alpha}; x_{i} \in (\widetilde{V}_{\alpha\xi} \cup \Sigma_{s}^{'} \cup \Sigma_{s}); \\
\varepsilon_{ij}^{\alpha} = \frac{1}{2} \left(U_{i(pq)/j}^{\alpha} + U_{j(pq)/i}^{\alpha} \right), x_{i} \in \widetilde{V}_{\alpha\xi}; U_{i(pq)}^{\alpha} = U_{i(pq)}^{N}; \\
U_{i(pq)}^{\alpha} = U_{i(pq)}^{N}; \\
\left(\sigma_{ij(pq)}^{\alpha} - \sigma_{ij(pq)}^{N}\right) n_{j} = 0; x_{i} \in \widetilde{\Sigma}_{\xi_{\alpha}N}.
\end{cases} \tag{1}$$

Здесь $\sigma_{ij}^{\alpha}(pq)$ — псевдонапряжения [9, 10]; $\varepsilon_{ij}^{\alpha}$ — псевдодеформации; $U_i^{\alpha}(pq)$ — псевдоперемещения в компоненте $\widetilde{V}_{\alpha\xi}$ композита ($\alpha=1$... N, индекс N соответствует матрице композита) в рамках 1/8 ячейки периодичности (ЯП) \widetilde{V}_{ξ} ; $\widetilde{\Sigma}_{\xi_{\alpha\beta}}$ — поверхность контакта компонентов, координатные плоскости — $\Sigma_s=\{\xi_s=0\}$, а $\Sigma_s'=\{\xi_s=a_p/2\}$, s=1,2,3 торцевые поверхности ячейки периодичности; ξ_s — локальные координаты в ЯП; $j=\partial/\partial\xi_j$; λ^{α} ; μ^{α} — константы Ламе и C_{ijkl}^{α} — модули упругости компонентов. К задаче (1) присоединяются условия на торцевых поверхностях и на координатных плоскостях, которые различны для разных p и q:

Условия на торцевых поверхностях Σ_s :

$$\begin{cases} U_{i(pq)}^{\alpha} = \frac{a_{p}}{2} \overline{\varepsilon}_{pq} \delta_{ip}; U_{j(pq)/i}^{\alpha} = 0; \\ U_{k(pq)/i}^{\alpha} = 0; \xi_{m} \in \Sigma_{i}^{'}; i \neq j \neq k \neq i; p = q; \\ U_{i(pq)}^{\alpha} = \frac{a_{p}}{4} \overline{\varepsilon}_{pq} \delta_{ip}; U_{j(pq)/j}^{\alpha} = 0; \\ U_{k(pq)}^{\alpha} = 0; \xi_{m} \in \Sigma_{i}^{'}; i \neq j \neq k \neq i; p \neq q. \end{cases}$$

$$(2)$$

Условия на плоскостях симметрии Σ_s имеют аналогичный вид, но с нулевой правой частью. Здесь $\overline{\varepsilon}_{pq}$ — макродеформации композита, которые заданы для ЯП.

Для численного решения локальных задач (1),(2) применялся метод конечного элемента [11].

Эффективные определяющие соотношения композита. После решения серии задач L_{pq} для всех значений (pq) и нахождения псевдоперемещений $U^{\alpha}_{i(pq)}$ и псевдонапряжений $\sigma^{\alpha}_{ij(pq)}$ в компонентах композиционного материала, используя интегрирование псевдонапряжений по областям, занятым компонентами композиционного материала,

можно вычислить средние напряжения в композиционном материале $\bar{\sigma}_{ii}$ (макронапряжения):

$$\overline{\sigma}_{ij} = \sum_{p,q}^{3} \overline{\sigma}_{ij(pq)}, \quad \overline{\sigma}_{ij(pq)} = \langle \sigma_{ij(pq)}^{\alpha} \rangle = \sum_{\alpha=1}^{N} \int_{V(\alpha)} \sigma_{ij(pq)}^{\alpha} dV, \tag{3}$$

которые связаны с макродеформациями $\overline{\varepsilon}_{pq}$ с помощью эффективных определяющих соотношений упругости

$$\overline{\sigma}_{ij} = \overline{C}_{ijpl} \overline{\varepsilon}_{kl}, \tag{4}$$

где \overline{C}_{ijpq} — компоненты тензора эффективных модулей упругости композиционного материала, которые вычисляются по формулам

$$\overline{C}_{ijpq} = \left\langle C_{ijpq}^{(0)} \right\rangle, \ C_{ijpq}^{(0)} \left(\xi_l \right) = \frac{\sigma_{ij(pq)}^{\alpha} \left(\xi_l \right)}{\overline{\varepsilon}_{pq}}, \tag{5}$$

где по р и q суммирования нет.

Тензоры концентрации напряжений в компонентах композита. Тензор концентраций напряжений $B^{\alpha}_{ijkl}(\xi_m)$, связывающий напряжения в компонентах композиционного материала $\sigma^{\alpha}_{ij}(\xi_m) = \sum_{p,q} \sigma^{\alpha}_{ij(pq)}$ (микронапряжения) и макронапряжения $\overline{\sigma}_{ii}$,

$$\sigma_{ii}^{\alpha}(\xi_m) = B_{iikl}^{\alpha}(\xi_m) \overline{\sigma}_{kl}$$

определяем с помощью следующих соотношений [10]:

$$B_{ijkl}^{\alpha}(\xi_m) = \sum_{p,q} C_{ijpq}^{(0)}(\xi_m) \overline{\Pi}_{pqkl}, \tag{6}$$

где $\overline{\Pi}_{pqsn} = \overline{C}_{ijpq}^{-1}$ — тензор упругих податливостей, тензор $C_{ijpq}^{\ (0)}(\xi_l)$ определяется формулой (6).

«Химический» критерий длительной прочности. Моделирование усталостной прочности композита основано на поиске допустимых предельных значений микронапряжений $\sigma_{ij}^{\alpha}(\xi_m)$ в компонентах композита. Согласно химическому критерию длительной прочности разрушение компонента композита в некоторой точке ξ_m^* в момент времени $t^*(\xi_m^*)$ происходит, если в этот момент достигает значения 1 параметр повреждаемости $z_{\alpha}(t)$:

$$z_{o}(t^{*}(\xi_{m}^{*})) = 1. (7)$$

Параметр повреждаемости $z_{\alpha}(t)$ состоит из двух частей: обратимых и необратимых повреждений [5]

$$z_{\alpha}(t) = z_{\alpha r}(t_*) + z_{\alpha d}(t_*).$$
 (8)

Параметр обратимых повреждений z_{∞_r} для изотропных сред имеет вид

$$z_{\infty r}(t) = A_{\infty +} \sigma_{\infty +}^{2} + A_{\infty -} \sigma_{\infty -}^{2} + A_{\infty} \sigma_{\infty u}^{2} + K_{\infty 0} \int_{0}^{t} \frac{\sigma_{\infty u +}^{2}(\tau) d\tau}{(t - \tau)^{\gamma}} - \Gamma_{\infty 0}^{2} \left(\int_{0}^{t} \frac{\sigma_{\infty u +}^{2}(\tau) d\tau}{(t - \tau)^{\beta}} \right)^{2},$$
(9)

где $A_{\alpha+}$, $A_{\alpha-}$, A_{α} , $K_{\alpha0}$, $\Gamma_{\alpha0}$, γ , β — набор констант модели; $\sigma_{\alpha} = \sigma_{ii}^{\alpha}$ — среднее напряжение; $\sigma_{\alpha u}$ — интенсивность напряжений; $\sigma_{\alpha u+}$ являются комбинацией $\sigma_{\alpha u}$ и σ_{α} :

$$\sigma_{\alpha u^{+}} = \frac{1}{2} \left(|\sigma_{\alpha u}^{2} - \zeta \sigma_{\alpha^{-}}^{2}| + \sigma_{\alpha u}^{2} - \zeta \sigma_{\alpha^{-}}^{2} \right); \quad \sigma_{\alpha \pm} = \frac{1}{2} \left(|\sigma_{\alpha}| \pm \sigma_{\alpha} \right); \quad (10)$$

 ζ — константа модели; $\sigma_{\alpha^{\pm}}$ — знакопостоянные инварианты. Константы $A_{\alpha^{+}}, A_{\alpha^{-}}, A_{\alpha}$ можно выразить через пределы статической прочности компонентов композита на растяжение $\sigma_{\alpha T}$, сжатие $\sigma_{\alpha C}$ и сдвиг $\sigma_{\alpha S}$:

$$A_{\alpha+} = \frac{1}{\sigma_{\alpha T}^2} - \frac{1}{3\sigma_{\alpha S}^2}; \quad A_{\alpha-} = \frac{1}{\sigma_{\alpha C}^2} - \frac{1}{3\sigma_{\alpha S}^2}; \quad A_{\alpha} = \frac{1}{3\sigma_{\alpha S}^2}.$$
 (11)

Для необратимой части повреждений $z_{\alpha d}(t)$ имеет место следующее выражение:

$$z_{\alpha d}(t) = D_{\alpha} \int_{0}^{t} \sigma_{\alpha u+}^{2}(\tau) d\tau - D_{\alpha} \omega \int_{0}^{t} \sigma_{\alpha u+}(\tau) \int_{0}^{\tau} \exp(-\phi(\tau - x)) \sigma_{\alpha u+}(x) dx d\tau, \quad (12)$$

где D_a , ω , ϕ — константы.

«Химический» критерий усталостной прочности при циклическом нагружении. При простом (пропорциональном) моногармоническом нагружении макронапряжения $\overline{\sigma}_{ij}$ и микронапряжения σ_{ij} изменяются во времени t по закону

$$\sigma^{\alpha}_{ij} = \hat{\sigma}^{\alpha}_{ij} \frac{1}{1+k} (k + \sin \omega t), \quad \overline{\sigma}_{ij} = \hat{\overline{\sigma}}_{ij} \frac{1}{1+k} (k + \sin \omega t), \quad (13)$$

где $\hat{\sigma}_{ij}$ и $\bar{\sigma}_{ij}^{\alpha}$ — амплитуда колебаний макро- и микронапряжений; k — параметр асимметрии цикла; $\omega \geq 0$ — частота нагружения. Рассмотрим многоцикловое нагружение, когда число циклов $N=t\omega$ велико, а колебания являются знакопостоянными: $|\mathbf{k}| \geq 1$. Тогда инварианты $\sigma_{\alpha u+}$ и σ_{α} также изменяются по закону (13) с амплитудами $\hat{\sigma}_{\alpha u+}$ и $\hat{\sigma}_{\alpha}$.

Для «не очень» больших значений времени t_* вкладом необратимых повреждений (12) функционале (8) можно пренебречь. Тогда, если циклическое нагружение происходит только в области сжатия или только растяжения ($k \ge 1$), критерий (7)—(9) можно преобразовать к следующему виду [6]:

$$A_{\alpha+}\hat{\sigma}_{\alpha+}^2 + A_{\alpha-}\hat{\sigma}_{\alpha-}^2 + \hat{A}_{2\alpha}\hat{\sigma}_{\alpha u}^2 = 1, \tag{14}$$

где обозначены функции от параметра асимметрии цикла нагружения

$$N_{1\alpha}(k) = \frac{K_{\alpha 0}}{1 - \gamma} f_1(k), \qquad N_{2\alpha}(k) = \frac{\Gamma^2_{\alpha 0}}{(1 - \beta)^2} f_2(k),$$

$$f_1(k) = \frac{k^2 + 0.5}{(|k| + 1)^2}; \qquad f_2(k) = \left(\frac{k}{|k| + 1}\right)^2$$
(15)

и функции времени

$$\hat{A}_{2\alpha}(k,t_*) = \frac{1}{3\hat{\sigma}_{\alpha S}^2}, \quad \hat{\sigma}_{\alpha S}^2 = \left(1/\hat{\sigma}_{\alpha S}^2 + 3N_{1\alpha}(k)t_*^{1-\gamma} - 3N_{2\alpha}(k)t_*^{2-2\beta}\right)^{-1}. \quad (16)$$

Критерий (14) позволяет найти время до разрушения t_* компонента композита при фиксированных амплитудах микронапряжений $\hat{\sigma}^{\alpha}_{ij}$, т. е. (14) фактически является критерием усталостной прочности.

Критерий усталостной прочности для нитей в композите. Одним из наиболее широко применяемых компонентов в современных композитах являются высокопрочные армирующие нити, которые ориентируют по специальным направлениям, например, собирают в многослойный пакет, слои которого образуют заданные углы с некоторым выделенным направлением (рис. 1). Это так называемые слоисто-волокнистые композиты (СВК). Нити состоят из большого числа моноволокон, пропитанных матрицей. Моноволокна имеют различную длину и их упруго-прочностные свойства, как правило, обладают масштабным эффектом [12]. Поэтому для описания упруго-прочностных свойств нитей применяют специальные модели, учитывающие особенности их разрушения при различных видах напряженного состояния. Примем далее модель, предложенную в [12], согласно которой каждая нить с номером α в собственной системе координат

Рис. 1. Слоисто-волокнистый композит

 $O_{\xi_m}^{\normalfont{\alpha}}$, связанной с ее геометрической формой, является трансверсально-изотропной, и ее усталостные свойства описываются двумя параметрами повреждаемости $z_{1\alpha}(t)$ и $z_{2\alpha}(t)$. Параметр $z_{1\alpha}(t)$ учитывает только свойства в направлении укладки моноволокон, а второй — только в поперечных направлениях и при продольных сдвигах:

$$z_{1\alpha} = \frac{Y_{1\alpha+}^2}{\hat{\sigma}_{\alpha T}^{l2}} + \frac{Y_{1\alpha-}^2}{\hat{\sigma}_{\alpha C}^{l2}}; \tag{17}$$

$$z_{2\alpha} = \left(\frac{1}{\hat{\sigma}_{\alpha T}^2} - \frac{1}{3\hat{\sigma}_{\alpha S}^2}\right)^2 Y_{2\alpha +}^2 + \left(\frac{1}{\hat{\sigma}_{\alpha C}^2} - \frac{1}{3\hat{\sigma}_{\alpha S}^2}\right)^2 Y_{2\alpha -}^2 + \frac{1}{12\hat{\sigma}_{\alpha S}^2} \left(Y_{2\alpha}^2 + 3Y_{3\alpha}^2 + 12Y_{4\alpha}^2\right). \tag{18}$$

Усталостное разрушение нити по типу 1 или 2 наступает, когда достигается соответствующее предельное условие

$$z_{1\alpha}(t_*) = 1; \ z_{2\alpha}(t_*) = 1.$$
 (19)

В (17) и (18) обозначены инварианты тензоров амплитуд напряжений $\overset{\smile}{\sigma}_{\alpha ij}$, записанные в собственной системе координант $O\overset{\smile}{\xi}{}^{\alpha}_{m}$, связанной с ориентацией нити:

$$Y_{1\alpha\pm} = \frac{1}{2} (|\breve{\sigma}_{\alpha33}| \pm \breve{\sigma}_{\alpha33}), \quad Y_{2\alpha\pm} = \frac{1}{2} (|\breve{\sigma}_{\alpha11} + \breve{\sigma}_{\alpha22}| \pm (\breve{\sigma}_{\alpha11} + \breve{\sigma}_{\alpha22})),$$

$$Y_{3\alpha}^{2} = (\breve{\sigma}_{\alpha11} - \breve{\sigma}_{\alpha22})^{2} + 4\breve{\sigma}_{\alpha12}^{2}, \quad Y_{4\alpha}^{2} = \breve{\sigma}_{\alpha13}^{2} + \breve{\sigma}_{\alpha23}^{2}.$$
(20)

Направление 3 здесь полагается соответствующим криволинейной оси нити, а направления 1 и 2 — ортогональны к нему. Переход к единой для всех компонентов системе координат $O\xi_m$ осуществляется с помощью тензорных преобразований

$$\overset{\smile}{\sigma}_{\alpha ij} = Q_{aik} Q_{ajl} \, \hat{\sigma}_{\alpha kl}, \tag{21}$$

где $Q_{\alpha j l}$ — матрицы поворота. Пределы $\hat{\sigma}_{\alpha T}^l$ и $\hat{\sigma}_{\alpha C}^l$ усталостной прочности нити при растяжении и сжатии в направлении укладки моноволокон вычисляются по формулам [12]:

$$\hat{\sigma}_{\alpha T}^{l} = \hat{\sigma}_{fT} H_0 \frac{\varphi_f^{r_f}}{(1 - \varphi_f)^{S_f}} \left(\frac{E_f}{2G_m}\right)^{S_f} \left(\frac{\hat{\sigma}_{mS}}{\hat{\sigma}_{fT}}\right)^{\omega_f}; \tag{22}$$

$$\hat{\sigma}_{\alpha C}^{l} = \hat{\sigma}_{mS} h_{C}^{\ell}, \quad h_{C}^{\ell} = \begin{cases} s_{C}^{-1/2}, & B_{m2} > B_{m4} \\ s_{T}^{-1/2}, & B_{m2} < B_{m4} \end{cases},$$

$$s_{T,C} = (B_{m2} - B_{m4})^{2} \left(\frac{\hat{\sigma}_{mS}}{\hat{\sigma}_{mT,C}}\right)^{2} + B_{m2} B_{m4},$$
(23)

где H_0 , r_f , S_f , ω_f — Вейбулловские параметры разброса прочности моноволокон в нити [12]; φ_f — коэффициент армирования нити (доля моноволокон в нити); $\hat{\sigma}_{mT,C,S}$ — пределы усталостной прочности матрицы на растяжение, сжатие и сдвиг; $\hat{\sigma}_{fT}$ — среднестатистический по пучку моноволокон предел усталостной прочности моноволокон на растяжение, которые имеют выражение, аналогичное (16):

$$\hat{\sigma}_{mS}^{2} = (1/\sigma_{mS}^{2} + 3N_{1m}(k)t_{*}^{1-\gamma} - 3N_{2m}(k)t_{*}^{2-2\beta})^{-1};$$

$$\hat{\sigma}_{mT,C}^{2} = (1/\sigma_{mT,C}^{2} + N_{1m}(k)t_{*}^{1-\gamma} - N_{2m}(k)t_{*}^{2-2\beta})^{-1};$$

$$\hat{\sigma}_{fT}^{2} = (1/\sigma_{fT}^{2} + N_{1f}(k)t_{*}^{1-\gamma_{f}} - N_{2f}(k)t_{*}^{2-2\beta_{f}})^{-1},$$
(24)

где $\sigma_{mT,C,S}$ — пределы статической прочности матрицы на растяжение, сжатие и сдвиг; σ_{fT} — средний предел статической прочности моноволокон в нити.

В формулах (22) обозначены коэффициенты концентрации напряжений в той части матрицы, которая находится в составе нити (окружает моноволокна):

$$B_{m1} = (1 - \delta_f)\delta_f + \frac{v_f}{2}\delta_f^2 \frac{E_f}{E_m}\sin^2 2\Phi_f, \quad B_{m2} = \frac{E_m}{\varphi_f E_f} \left(1 + \varphi_f \frac{E_f}{E_m} tg^2 2\Phi_f\right),$$

$$B_m = tg\Phi_m \quad B_m = (1 - \delta_f)\delta_f + \frac{1 + v_f}{2}\delta_f^2 \frac{E_f}{E_m}\sin^2 2\Phi_m \quad \delta_f = 2\left(\frac{\varphi_f}{E_m}\right)^{1/2}$$

$$B_{m4} = tg\Phi_f, \quad B_{m3} = (1 - \delta_f)\delta_f + \frac{1 + v_f}{2}\delta_f^2 \frac{E_f}{E_m}\sin^2 2\Phi_f, \quad \delta_f = 2\left(\frac{\varphi_f}{\pi}\right)^{1/2}.$$
(25)

Здесь Φ_f — угол разориентации моноволокон в нити; E_m , E_f — модули упругости матрицы и моноволокон; v_f — коэффициент Пуассона моноволокон.

Разрушение нити при продольном сжатии возникает вследствие потери устойчивости моноволокон. Потеря устойчивости объясняется наличием угла разориентации моноволокон Φ_f . В результате потери устойчивости моноволокно изгибается и в матрице возникают напряжения, ведущие к ее разрушению или к отслаиванию моноволокна.

Пределы усталостной прочности нити при поперечном растяжении, сжатии и сдвиге, а также при продольном сдвиге нити выражаются по формулам

$$\hat{\sigma}_{T,C,S} = \frac{1}{B_{m1}} \hat{\sigma}_{mT,C,S}, \qquad \hat{\sigma}_{S}^{l} = \frac{1}{B_{m2}} \hat{\sigma}_{mS}.$$
 (26)

Критерий усталостной прочности композита. Полагаем, что ЯП композита состоит из системы N-I нитей ($\alpha=1\dots N-1$), каждая из которых ориентирована по своему направлению, задаваемому соб-

ственной криволинейной системой координат $O_m^{\Sigma}(\alpha)$. Вся система нитей окружена матрицей, которой соответствует индекс $\alpha=N$. Тогда усталостное разрушение композита описывается системой критериев усталостной прочности (17), (18) для каждой нити $\alpha=1$... N-1 и критерия (14) при $\alpha=N$ — для матрицы:

$$\max\{z_{1a}(t_*), z_{2a}(t_*), z_N(t_*)\} = 1, \quad \alpha = 1 \dots N - 1, \tag{27}$$

где $z_{N}(t_{*})$ — параметр повреждаемости матрицы, согласно (14),

$$z_N(t_*) = A_{m+}\hat{\sigma}_{m+}^2 + A_{m-}\hat{\sigma}_{m-}^2 + \hat{A}_{2m}(t_*)\hat{\sigma}_{mu}^2.$$
 (28)

Подставляя в (27) выражение (5) для компонент микронапряжений, получим искомый критерий усталостной прочности, выраженный через макронапряжения $\hat{\overline{\sigma}}_{ii}$.

Критерий (27) для каждого момента времени t_* гиперповерхность в 6-мерном пространстве макронапряжений $\hat{\overline{\sigma}}_{ij}$

$$\Omega(\hat{\overline{\sigma}}_{ij}, t_*, k) = 1. \tag{29}$$

Для того, чтобы пользоваться этой поверхностью при проведении расчетов конструкций из композитов на усталость, часто удобно иметь способ представления поверхности не в виде алгоритма решения уравнения (27), а в виде множества точек $\hat{\bar{\sigma}}_{ij}^{\{\rho\}}$, $\rho=1,2,\ldots$ на поверхности усталостной прочности в 6-мерном пространстве макронапряжений. Точки $\hat{\bar{\sigma}}_{ij}^{\{\rho\}} \in \Sigma_C$ на поверхности усталостной прочности композитов находим с помощью следующего алгоритма. В 6-мерном пространстве макронапряжений из нулевой точки осуществляем пропорциональное (простое) нагружение по лучу

$$\hat{\overline{\sigma}}_{i}^{\{\rho\}} = \hat{\overline{\sigma}}_{0} n_{i}^{\{\rho\}} \tau^{\{\rho\}}, \ \rho = 1, 2, \dots, \tag{30}$$

где $n_i^{\{\rho\}}$ — направляющие косинусы луча нагружения $(n_i^{\{\rho\}}n_i^{\{\rho\}}=1);$ $\hat{\overline{\sigma}}_0$ — размерная константа напряжений; τ — переменный параметр движения по лучу; $\hat{\overline{\sigma}}_i^{\{\rho\}}$ — координатный столбец напряжений, образованный из компонент тензора $\hat{\overline{\sigma}}_{ij}$. Подставляя выражение (30) в (29), и учитывая, что все критерии усталостной прочности (27), (28) матрицы и нитей являются однородными функциями 2-го порядка, получаем для параметра τ следующее значение:

$$\tau^{\{\rho\}} = 1/\sqrt{\Omega(\hat{\overline{\sigma}}_0 n_i^{\{\rho\}}, t_*, k)}.$$

Подставляя найденное выражение для $\tau^{\{\rho\}}$ в (30), находим координаты точки $\hat{\overline{\sigma}}_{ij}^{\{\rho\}}$, $\rho=1,\,2,\,\dots$ в пространстве напряжений.

Результаты численного моделирования. В качестве примера разработанного метода был рассмотрен слоисто-волокнистый композит, с тремя типами армирующих нитей ($\alpha = 1...3$, N = 4), уложенных в плоскости, ортогональной к оси $O\xi_1$. Все нити были прямолинейными, но отличались углом ϕ_α поворота оси $O\xi_1$: нити $\alpha = 1$ были ориентированы под углом $\phi_1 = 0$ ° оси $O\xi_3$, нити $\alpha = 2$ — под углом $\phi_2 = 90$ °, а угол ϕ_3 нити $\alpha = 3$ варьировался в диапазоне от 0 до 90°. Такие композиты широко применяют на практике и образуются выкладкой или спирально кольцевой намоткой.

Характеристики моноволокон в нитях соответствовали органическим волокнам, а характеристики матрицы — эпоксидной матрицы со следующими значениями констант:

Рис. 2. Графики зависимости эффективных модулей упругости композита СВК от угла армирования ϕ

Частота нагружения была выбрана равной 17 Гц. На рис. 2 показаны графики зависимости эффективных модулей упругости композита СВК E_1 , E_2 , E_3 от угла армирования $\phi_3 = \phi$. На рис. 3 аналогичные зависимости для модулей сдвига G_{12} , G_{13} , G_{23} , а на рис. 4 — для коэффициентов Пуассона v_{12} , v_{13} , v_{23} . Эффективные упругие модули рассчитаны по формулам (5). Результаты конечно-элементного решения локальных задач (2) в ЯП обсуждались в работах [9, 10].

Рис. 3. Зависимости модулей сдвига эпоксидного органопластика СВК от угла армирования ϕ

Рис. 4. Зависимости коэффициентов Пуассона композита СВК от угла армирования $\pmb{\phi}$

Рис. 5. Графики зависимости пределов статической прочности композита СВК при растяжении и сдвиге от угла армирования ϕ

Рис. 6. Графики зависимости пределов статической прочности эпоксидного органопластика СВК при сжатии от угла армирования ϕ

Графики зависимости пределов статической прочности при t=0 композита СВК σ_{T2} , σ_{T3} , σ_{S23} , σ_{C2} , σ_{C3} от угла армирования ϕ показаны на рис. 5 и 6. Пределы прочности соответствуют фиксированным точкам, являющимися пересечениями осей координат с поверхностью прочности (29) при t=0: $\Omega(\bar{\sigma}_{ii}^{\{\rho\}},0,0)=1$:

$$\sigma_{T2}=\bar{\sigma}_{22}^{\{\rho\}},$$
 остальные $\bar{\sigma}_{ij}^{\{\rho\}}=0;$ $\sigma_{T3}=\bar{\sigma}_{33}^{\{\rho\}},$ остальные $\bar{\sigma}_{ij}^{\{\rho\}}=0;$ $\sigma_{S23}=\bar{\sigma}_{23}^{\{\rho\}},$ остальные $\bar{\sigma}_{ij}^{\{\rho\}}=0;$ $\sigma_{C2}=-\bar{\sigma}_{22}^{\{\rho\}},$ остальные $\bar{\sigma}_{ij}^{\{\rho\}}=0;$ $\sigma_{C33}=-\bar{\sigma}_{33}^{\{\rho\}},$ остальные $\bar{\sigma}_{ij}^{\{\rho\}}=0.$

Рис. 7. Сечения поверхности статической прочности эпоксидного органопластика СВК плоскостью ($\bar{\sigma}_{22}, \bar{\sigma}_{33}$) при различных углах ϕ

Рис. 8. Графики усталостной прочности эпоксидной матрицы при растяжении, сжатии и сдвиге

Рис. 9. Графики усталостной прочности $\hat{\sigma}_{T,C,S}(t)$ и $\hat{\sigma}^l_{T,C}(t)$ органических нитей при поперечном растяжении, сжатии и сдвиге

На рис. 7 показаны сечения поверхности статической прочности композита (условно-мгновенное нагружение при t=0) плоскостью $(\overline{\sigma}_{22},\overline{\sigma}_{33})$ при различных углах $\phi_3=\phi$. Сечения поверхности образованы совокупностью отрезков, которые соответствуют разным типам разрушения композита. Отрезки, близкие к вертикальным, соответствуют разрушению слоя с углами армирования $\phi_1=0$ °, отрезки, близкие к го-

Рис. 10. Графики усталостной прочности $\hat{\sigma}_{T,C,S}(t)$ и $\hat{\sigma}^l_{T,C}(t)$ органических нитей при продольном растяжении и сжатии

Рис. 11. Сечения поверхности усталостной прочности эпоксидного органопластика СВК плоскостью $(\bar{\sigma}_{22}, \bar{\sigma}_{33})$ при различных значениях времени t циклического нагружения

Рис. 12. Сечения поверхности усталостной прочности эпоксидного органопластика СВК плоскостью $(\bar{\sigma}_{22}, \bar{\sigma}_{33})$ при различных значениях времени t циклического нагружения

ризонтальным — слою с углом армирования ϕ_1 = 90 °. Разрушение слоя с углами ϕ происходит в зонах стыка отрезков разных семейств. Таким образом, разрушение композита носит сложный комбинированный характер и зависит от значений углов армирования.

На рис. 8 показаны графики усталостной прочности $\hat{\sigma}_{mT,C,S}(t)$ матрицы, рассчитанные по формулам (24) для значений (32). Усталость рассматривалась на базе $10^3...10^7$ с. На рис. 9 и 10 показаны графики усталостной прочности $\hat{\sigma}_{T,C,S}(t)$ и $\hat{\sigma}_{T,C}^l(t)$ нитей, рассчитанные по формулам (22), (23) и (26) для тех же моментов времени.

На рис. 11 и 12 показаны сечения поверхности усталостной прочности композита СВК плоскостями ($\bar{\sigma}_{22}$, $\bar{\sigma}_{33}$) и ($\bar{\sigma}_{22}$, $\bar{\sigma}_{23}$) для значения угла $\phi = 45$ °. Поверхности соответствуют четырем различным значениям времени $t = 10^4$, 10^5 , 10^6 и 10^7 с. Характер усталостного разрушения композита в целом не изменяется во времени, поверхности усталостной прочности самоподобно смещаются внутрь к началу координат, вследствие уменьшения значений усталостной прочности матрицы и армирующих нитей. Самоподобие поверхностей обусловлено тем, что СВК композит рассматриваемой структуры с углами армирования 0, 45, 90 ° разрушается только из-за разрушения матрицы в разных слоях, разрыва моноволокон в композите данного типа не происходит, как при статическом, так и при усталостном нагружении. Экспериментальные данные в целом подтверждают данные выводы.

Выводы. Разработана математическая модель усталостного разрушения композиционных материалов, в которой тензоры концентрации микронапряжений рассчитываются на основе конечно-элементного решения локальных задач на ячейках периодичности. Модель учитывает различные механизмы микроразрушения композита: в следствие разрушения матрицы при растяжении, сжатии и сдвиге, а также при комбинированном нагружении, и вследствие разрушения армирующих нитей по 2-м типам — из-за поперечного расслоения и из-за обрыва нитей при продольном растяжении или сжатии. Представлены результаты численного моделирования усталостных характеристик слоисто-волокнистых композитов, которые показали, что поверхности усталостной прочности зависят от структуры армирования композитов, и образованы из частей нескольких поверхностей, соответствующих разным типам разрушения композита.

СПИСОК ЛИТЕРАТУРЫ

- 1. Малмейстер А. К. Сопротивление композитных и полимерных материалов. Рига: Изд-во «Зинатне», 1980.
- 2. Илью шин А. А., Победря Б. Е. Основы математической теории термовязкоупругости. М.: Наука. 1970.

- 3. Гольденблат И. А., Копнов В. А. Критерии прочности и пластичности конструкционных материалов. М.: Машиностроение. 1968.
- 4. Петров В. А., Башкарев А. Я., Веттегрень Е. И. Физические основы прогнозирования долговечности конструкционных материалов. СПб.: Политехника. 1993.
- 5. Димитриенко Ю. И., Димитриенко И. П. Прогнозирование долговечности полимерных элементов конструкций с помощью «химического» критерия длительной прочности // Вопросы оборон. техники. № 1/2. 2002. С. 15–21.
- 6. Димитриен ко Ю. И., Димитриен ко И. П. Расчет сопротивления усталости композитов на основе «химического» критерия длительной прочности // Вопросы оборон. техники. № 1/2. 2002. С. 21–25.
- 7. Димитриенко Ю.И.Нелинейная механика сплошной среды. М.: Физматлит. 2009. 624 с.
- 8. Димитриенко Ю.И.Универсальные законы механики и электродинамики сплошной среды // Механика сплошной среды. Т. 2. Изд-во МГТУ им. Н.Э. Баумана. 2011. 560 с.
- 9. Димитриенко Ю.И., Кашкаров А.И. Расчет эффективных характеристик композитов с периодической структурой методом конечных элементов // Вестник МГТУ им. Н.Э. Баумана. Естественные науки. 2002. № 2. С. 95–108.
- 10. Димитриенко Ю. И., Соколов А. П. Об упругих свойствах композиционных материалов // Математическое моделирование. 2009. Т. 21. № 4. С. 96–110.
- 11. Д и м и т р и е н к о Ю. И., С о к о л о в А. П. Метод конечного элемента для решения локальных задач механики композиционных материалов: учебное пособие. М.: Изд-во МГТУ им. Н.Э. Баумана. 2010. 66 с.
- 12. Димитриенко Ю. И. Механика композиционных материалов при высоких температурах. М.: Машиностроение, 1997. 356 с.

Статья поступила в редакцию 27.10.2011.