HOMEWORK 18

Note: * marked problems might be slightly more difficult or interesting than the unmarked ones.

- (1) Let X and Y be topological spaces. Show that a function $f: X \to Y$ is continuous if and only if it respects the convergence of all filters on X.
- (2) Let X be a set. Define a filter \mathcal{F} on S to be free if the intersection

$$\bigcap_{F \in \mathcal{F}} F = \emptyset$$

. Otherwise call it *fixed* (by any element $x \in \cap_{F \in \mathcal{F}}$).

Show that for an ultrafilter \mathcal{U} on S, the following are equivalent.

- (i) \mathcal{U} is fixed.
- (ii) $\mathcal{U} = \mathcal{U}_x$ for some element $x \in X$, where \mathcal{U}_x denotes the principal ultrafilter.
- (iii) There is some $x \in X$ such that $\{x\} \in \mathcal{U}$.
- (iv) \mathcal{U} contains a finite subset of X.

As a corollary, prove that if X is an infinite set, then an ultrafilter \mathcal{U} on X is free if and only if every set in \mathcal{U} is infinite if and only if \mathcal{U} contains the Fréchet filter on S.

- (3) Show that a space X is Hausdorff if and only if every ultrafilter \mathcal{U} on X converges to at most one point. Since we showed today in class that a space Y is compact if and only if every ultrafilter \mathcal{U} on Y converges to at least one point, this is yet another way of explicitly seeing the delicate tension between compactness and Hausdorffness.
- (4) Identify $\mathcal{P}(\mathbb{N})$ with the set $\{0,1\}^{\omega}$ naturally. The latter has the product topology. Consider a principal ultrafilter $\mathcal{U} \subseteq \mathcal{P}(\mathbb{N})$ as a subset in this topology.
 - (i) Is \mathcal{U} open?
 - (ii) Is \mathcal{U} closed?
- (5) Topology (Munkres), Chapter 4, Section 37, Exercise (4).
- (6)* Topology (Munkres), Chapter 4, Section 37, Exercise (5).