Methode	#Tests	#Fehler	Voll Abd.
distributeDishesDependingOnDistanceToPartyLocationTest()	5	0	Ja
calculateTotalPreferenceDifferenceTest()	3	0	Ja
countFoodPreferenceTypesTest()	4	0	Ja
extractAllPairsTest()	9	0	Ja
firstUniqueGroupConstellationTest()	5	0	Ja
secondUniqueGroupConstellationTest()	5	0	Ja
thirdUniqueGroupConstellationTest()	5	0	Ja
fourthUniqueGroupConstellationTest()	5	0	Ja
fifthUniqueGroupConstellationTest()	5	0	Ja
sixthUniqueGroupConstellationTest()	5	0	Ja
printClusterTest()	1	0	Ja

1. Distribute Dishe depending on Distance to Partylocation:

Vorbedingung: Eine Liste von Partygästen mit ihren Entfernungen zur Partylocation sowie eine Liste von Gerichten müssen vorhanden sein.

Ablauf: Die Methode nimmt eine Liste von Partygästen und ihre Distanzen zur Partylocation sowie eine Liste von Gerichten und verteilt die Gerichte basierend auf der Entfernung der Gäste zur Partylocation.

Erwartetes Verhalten: Paare, die näher an der Partylocation wohnen, servieren die Dessertgerichte, die etwas weiter entfernten Paare den Main Dish und die Paare am weitesten Weg den Starter Dish.

Tatsächliches Verhalten:

2. Calculate total Preference Difference:

Vorbedingung: Eine Liste von Partygästen mit ihren individuellen Präferenzwerten für bestimmte Gerichte muss vorhanden sein.

Ablauf: Die Methode berechnet die Gesamtpräferenzdifferenz, indem sie die individuellen Präferenzwerte der Gerichte für alle Gäste summiert.

Erwartetes Verhalten: Die Methode gibt die Gesamtzahl der Präferenzunterschiede zurück, die die Präferenzen aller Gäste für die jeweiligen Gerichte widerspiegelt.

3. Count Food Prefference Types:

Vorbedingung: Eine Liste von Gästen mit ihren Essenspräferenzen muss vorhanden sein.

Ablauf: Die Methode zählt die verschiedenen Arten von Essenspräferenzen in einer Liste von Gästen und ihren Präferenzen.

Erwartetes Verhalten: Die Methode gibt die Anzahl der unterschiedlichen Essenspräferenztypen zurück.

Tatsächliches Verhalten:

4. Extract all Pairs:

Vorbedingung: Eine Liste von Elementen, aus der Paare extrahiert werden sollen, muss vorhanden sein.

Ablauf: Die Methode extrahiert alle möglichen Paare aus einer Liste von Elementen.

Erwartetes Verhalten: Die Methode gibt eine Liste aller möglichen Paare (Tupel) zurück, die aus der ursprünglichen Liste gebildet werden können.

Tatsächliches Verhalten:

5. First unique Group Constellation:

Vorbedingung: Eine Liste von Gruppen oder Teilnehmern, die in Gruppen eingeteilt werden sollen, muss vorhanden sein.

Ablauf: Die Methode erstellt die erste eindeutige Gruppenkonstellation basierend auf den angegebenen Kriterien.

Erwartetes Verhalten: Die Methode gibt eine Liste von Gruppen zurück, die die erste eindeutige Konstellation darstellt.

6. Second unique Group Constellation:

Vorbedingung: Eine Liste von Gruppen oder Teilnehmern, die in Gruppen eingeteilt werden sollen, muss vorhanden sein.

Ablauf: Die Methode erstellt die zweite eindeutige Gruppenkonstellation basierend auf den angegebenen Kriterien.

Erwartetes Verhalten: Die Methode gibt eine Liste von Gruppen zurück, die die zweite eindeutige Konstellation darstellt.

Tatsächliches Verhalten:

7. Third unique Group Constellation:

Vorbedingung: Eine Liste von Gruppen oder Teilnehmern, die in Gruppen eingeteilt werden sollen, muss vorhanden sein.

Ablauf: Die Methode erstellt die dritte eindeutige Gruppenkonstellation basierend auf den angegebenen Kriterien.

Erwartetes Verhalten: Die Methode gibt eine Liste von Gruppen zurück, die die dritte eindeutige Konstellation darstellt.

Tatsächliches Verhalten:

8. Fourth unique Group Constellation:

Vorbedingung: Eine Liste von Gruppen oder Teilnehmern, die in Gruppen eingeteilt werden sollen, muss vorhanden sein.

Ablauf: Die Methode erstellt die vierte eindeutige Gruppenkonstellation basierend auf den angegebenen Kriterien.

Erwartetes Verhalten: Die Methode gibt eine Liste von Gruppen zurück, die die vierte eindeutige Konstellation darstellt.

9. Fifth unique Group Constellation:

Vorbedingung: Eine Liste von Gruppen oder Teilnehmern, die in Gruppen eingeteilt werden sollen, muss vorhanden sein.

Ablauf: Die Methode erstellt die fünfte eindeutige Gruppenkonstellation basierend auf den angegebenen Kriterien.

Erwartetes Verhalten: Die Methode gibt eine Liste von Gruppen zurück, die die fünfte eindeutige Konstellation darstellt.

Tatsächliches Verhalten:

10. Sixth unique Group Constellation:

Vorbedingung: Eine Liste von Gruppen oder Teilnehmern, die in Gruppen eingeteilt werden sollen, muss vorhanden sein.

Ablauf: Die Methode erstellt die sechste eindeutige Gruppenkonstellation basierend auf den angegebenen Kriterien.

Erwartetes Verhalten: Die Methode gibt eine Liste von Gruppen zurück, die die sechste eindeutige Konstellation darstellt.

Tatsächliches Verhalten:

11. Print Cluster:

Vorbedingung: Ein Cluster, dessen Informationen gedruckt werden sollen, muss vorhanden sein.

Ablauf: Die Methode druckt die Informationen eines gegebenen Clusters auf der Konsole aus.

Erwartetes Verhalten: Die Methode gibt die Clusterinformationen formatiert auf der Konsole aus.