μφι Fachschaft MathPhysInfo

Mathematik-Vorkurs

Kapitel II: Beweise

24. September 2025

In einem **Beweis** versuchen wir, für gegebene Aussagen A, B die Implikation $A \implies B$ nachzuweisen.

Definition

Ein **mathematischer Satz** ist die Feststellung in einem mathematischen Text, dass eine Aussage A "gilt".

Definition

Axiome sind Aussagen, die nicht bewiesen, sondern schlicht als "gegeben" vorausgesetzt werden.

Es gibt noch weitere Aussagentypen, wie Korolar, Proposition etc.

Mathematik-Vorkurs 2 / 15

wichtige Floskeln:

hinreichend: "Wenn A gilt, dann gilt auch B" (A \Longrightarrow B) d.h. die Vorraussetzung A ist "hinreichend" notwendig: umgekehrt ist die Gültigkeit von B notwendig für die Gültigkeit von V (\neg B \Longrightarrow \neg A) Ein - genau ein: " Es existiert ein a mit Eigenschaft A" bedeutet: es existiert mindestens so ein a (d.h. vllt auch mehrere) " Es existiert genau ein a" bedeutet, dass es nur so ein a existiert O.B.d.A (Ohne Beschränkung der Allgemeinheit) trivial

Mathematik-Vorkurs 3 / 15

Mithilfe von **direkten Beweisen** wird $A \Longrightarrow B$ unter Verwendung von Axiomen und bereits bewiesenen Sätzen, direkt mit Hilfe von Schlussregeln hergeleitet.

Beispiel

Eine Äquivalenzaussage, besteht aus zwei Implikationen.

"A gilt genau dann, wenn B gilt" (A \iff B)

154	216	nia

Aussage:

Beweis durch Ringschluss:

Wenn ein Satz in Form mehrerer äquivalenter Aussagen formuliert wurde, zersetzen wir diese analog in Implikationen.

Beispiel

Aussage: Folgende Aussage sind äquivalent

- (i)
- (ii)
- (iii)

$$"(i) \Rightarrow (ii):"$$

990

Beim **Beweis durch Kontraposition** verwenden wir $(A \Longrightarrow B) \Longleftrightarrow (\neg B \Longrightarrow \neg A)$. Um $A \Longrightarrow B$ zu beweisen, führen wir einen direkten Beweis für $\neg B \Longrightarrow \neg A$.

Beispiel

Mithilfe **Widerspruchsbeweis** beweist man die Gültigkeit einer Aussage, indem die Negation der Aussage falsch ist.

Beispiel

Beispiel	

Außer durch direkter Beweis der Negation der Aussage, verwendet man üblicherweise **Gegenbeispiele** um einen Widerspruchsbeweis zu zeigen.

Beispiel		

4 U P 4 UP P 4 E P

Bei einem **Beweis durch vollständige Fallunterscheidung** wird jeder der möglichen Fälle einzeln betrachtet.

Beispiel

Beispiel	

Satz

Aussageb über unendliche Mengen kann mit dem **Prinzip der vollständigen Induktion** beweisen.

Sei A_n eine Folge von Aussagen ($n \in \mathbb{N}$), welche folgende Bedingungen erfüllen:

- ▶ Induktionsanfang: Die Aussage A₁ ist gültig
- ▶ Induktionsschluss: $\forall n \in \mathbb{N}$ folgt aus der Gültigkeit von A_n die Gültigkeit von A_{n+1}

Dann gelten alle Aussagen A_n ($n \in \mathbb{N}$).

Beispiel

Geometrische Reihe
$$\sum_{k=0}^{\infty}q^k=q^0+q^1+q^2+q^3+...=\frac{1}{1-q}$$
 für $|q|<1$

Induktionsanfang:

Induktionsvorraussetzung:

Induktionsschluss:

