In [2]:	Import modules
	<pre>import numpy as np import pandas as pd import seaborn as sns</pre>
	<pre>import matplotlib.pyplot as plt from sklearn import preprocessing, svm from sklearn.preprocessing import StandardScaler from sklearn.model_selection import train_test_split from sklearn.linear model import LinearDegragation</pre>
	<pre>from sklearn.linear_model import LinearRegression import xgboost as xg from sklearn.metrics import mean_squared_error as MSE from sklearn.metrics import make_scorer from sklearn.neural network import MLPRegressor</pre>
	<pre>from sklearn.model_selection import KFold from sklearn.model_selection import cross_val_score from sklearn.pipeline import Pipeline</pre>
	<pre>from sklearn.pipeline import FeatureUnion from sklearn.decomposition import PCA from sklearn.feature_selection import SelectKBest from tabulate import tabulate</pre>
	/Users/kobr0v/opt/anaconda3/lib/python3.9/site-packages/xgboost/compat.py:36: FutureWarning: pandas.Int64Index is de precated and will be removed from pandas in a future version. Use pandas.Index with the appropriate dtype instead.
In [3]:	<pre>from pandas import MultiIndex, Int64Index warnings.filterwarnings('ignore') def rmse(predict, actual): graph = np graph(MCE(predict actual))</pre>
	<pre>score = np.sqrt(MSE(predict, actual)) return score RMSE = make_scorer(rmse)</pre>
	Read the file and prepare the dataset
In [229	<pre>file="large_database.xlsx" database = pd.read_excel(file, usecols=[1,2,3,4,5,11, 9, 12]) X = pd.read_excel(file, usecols=[1,2,3,4,5])</pre>
	<pre>y = pd.read_excel(file, usecols=[9,11,12]) y1= pd.read_excel(file, usecols=[9]) y2= pd.read_excel(file, usecols=[12]) X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, shuffle=True, random_state=20)</pre>
	<pre>y1_train=y_train.iloc[:,0] y2_train=y_train.iloc[:,2] y1_test=y_test.iloc[:,0]</pre>
	p2_test=y_test.iloc[:,2] Descriptive statistics
In [230	database.describe()
Out[230]:	count 48.000000 48.000000 48.000000 48.000000 48.000000 48.000000 48.000000 48.000000
	mean 1373.485571 971.240832 44.469771 0.038613 8.298153 40.348828 0.042395 16.659639 std 612.312042 177.198329 34.831949 0.035407 1.983831 34.406977 0.035242 5.506392 min 293.393004 665.105557 2.672223 0.001253 2.191926 0.215625 0.000143 7.771517
	25% 912.240196 850.297525 19.104834 0.010301 7.220885 18.377344 0.018851 12.799274 50% 1254.637830 944.967107 32.599803 0.028017 8.151168 28.523437 0.029917 15.544078
	75 % 1747.808000 1076.448962 62.377415 0.057959 9.749421 55.094531 0.057217 20.164501 max 2911.111661 1503.124779 139.933084 0.182168 12.185881 172.640625 0.158789 32.765113
	Correlation matrix
In [231	<pre>corrmat = database.corr() plt.figure(figsize=(13, 6)) sns.heatmap(corrmat, vmax=1, annot=True, linewidths=.5) plt.wtickg(rotation=30, horizontalalignment="right")</pre>
	<pre>plt.xticks(rotation=30, horizontalalignment="right") plt.show()</pre>
	Vol dig - 1 0.4 0.032 -0.4 0.44 -0.05 -0.1 -0.52 -0.75 Vol PTV46 - 0.4 1 0.027 -0.13 0.11 0.015 -0.14 -0.087
	Overlap Vol - 0.032 0.027 1 0.81 -0.78 0.94 0.93 0.61 -0.50 OV/Vdig0.4 -0.13 0.81 1 -0.83 0.84 0.85 0.84 -0.25
	Distance - 0.44 0.11 -0.78 -0.83 1 -0.78 -0.8 -0.72 -0.00
	V450.05
	Dmoy - 0.52
	Replication of CFJ models
In [232	Linear Regression V45 = F(Overlap Vol) regressor = LinearRegression() regressor fit(X train["Overlap Vol"], array reghano(1 1) y1 train array)
	<pre>regressor.fit(X_train["Overlap Vol"].array.reshape(-1,1), y1_train.array) y1_pred = regressor.predict(X_test["Overlap Vol"].array.reshape(-1,1)) r_squared_train = regressor.score(X_train["Overlap Vol"].array.reshape(-1,1),y1_train) r_squared_test = regressor.score(X_test["Overlap Vol"].array.reshape(-1,1),y1_test)</pre>
	<pre>print("Training coefficient of determination R2: ",r_squared_train) print("Testing coefficient of determination R2: ",r_squared_test) plt.scatter(X_train["Overlap Vol"].array.reshape(-1,1), y1_train,color='g') plt.plot(X_test["Overlap Vol"].array.reshape(-1,1), y1_pred,color='k')</pre>
Out[232]:	Training coefficient of determination R2: 0.8754562517157654 Testing coefficient of determination R2: 0.9501134180471098
	175 -
	125 - 100 - 75 -
	75 - 50 - 25 -
	0 20 40 60 80 100 120 140
	Linear Regression V45 = F(OV/VoI)
In [233	<pre>regressor = LinearRegression() regressor.fit(X_train["OV/Vdig"].array.reshape(-1,1), y1_train.array) y1_pred = regressor.predict(X_test["OV/Vdig"].array.reshape(-1,1)) r_squared_test = regressor.score(X_test["OV/Vdig"].array.reshape(-1,1),y1_test)</pre>
	<pre>r_squared_train = regressor.score(X_train["OV/Vdig"].array.reshape(-1,1),y1_train) print("Training coefficient of determination R2: ",r_squared_train) print("Testing coefficient of determination R2: ",r_squared_test) plt.scatter(X_train["OV/Vdig"].array.reshape(-1,1), y1_train,color='g')</pre>
	<pre>plt.plot(X_test["OV/Vdig"].array.reshape(-1,1), y1_pred,color='k') Training coefficient of determination R2: 0.8086483932469174 Testing coefficient of determination R2: 0.3459264875385393</pre>
Out[233]:	[<matplotlib.lines.line2d 0x7f98122b7dc0="" at="">] 175 -</matplotlib.lines.line2d>
	125 -
	75 - 50 -
	0.000 0.025 0.050 0.075 0.100 0.125 0.150 0.175
	Linear Regression V45 = F(Distance)
In [234	<pre>regressor = LinearRegression() regressor.fit(X_train["Distance"].array.reshape(-1,1), y1_train.array) y1_pred = regressor.predict(X_test["Distance"].array.reshape(-1,1))</pre>
	<pre>r_squared_test = regressor.score(X_test["Distance"].array.reshape(-1,1),y1_test) r_squared_train = regressor.score(X_train["Distance"].array.reshape(-1,1),y1_train) print("Training coefficient of determination R2: ",r_squared_train) print("Testing coefficient of determination R2: ",r_squared_test)</pre>
	<pre>plt.scatter(X_train["Distance"].array.reshape(-1,1), y1_train,color='g') plt.plot(X_test["Distance"].array.reshape(-1,1), y1_pred,color='k') Training coefficient of determination R2: 0.6743918380270656</pre> Training coefficient of determination R2: 0.6743918380270656
Out[234]:	Testing coefficient of determination R2: 0.3795024601681817 [<matplotlib.lines.line2d 0x7f97f808bdf0="" at="">]</matplotlib.lines.line2d>
	150 -
	100 - 75 - 50 -
	25 - 0 -
	Multiple Linear Regression V45 = F(Overlap Vol, Distance)
In [235	<pre>regressor = LinearRegression() regressor.fit(X_train[["Overlap Vol","Distance"]], y1_train.array)</pre>
	<pre>y1_pred = regressor.predict(X_test[["Overlap Vol","Distance"]]) r_squared_test = regressor.score(X_test[["Overlap Vol","Distance"]],y1_test) r_squared_test = regressor.score(X_train[["Overlap Vol","Distance"]],y1_train) print("Training coefficient of determination R2: ",r_squared_train)</pre>
	<pre>print("Testing coefficient of determination R2: ",r_squared_test)</pre>
	Training coefficient of determination R2: 0.6743918380270656 Testing coefficient of determination R2: 0.883601176377753
	Testing coefficient of determination R2: 0.883601176377753 Creating Principal Component Regression model
In [236	Creating Principal Component Regression model # create feature union features = [] features.append(('pca', PCA(n_components=3))) features.append(('select_best', SelectKBest(k=3)))
In [236	<pre>Testing coefficient of determination R2: 0.883601176377753 Creating Principal Component Regression model # create feature union features = [] features.append(('pca', PCA(n_components=3))) features.append(('select_best', SelectKBest(k=3))) feature_union = FeatureUnion(features) # create pipeline estimators = [] estimators.append(('standardize', StandardScaler()))</pre>
In [236	<pre>Testing coefficient of determination R2: 0.883601176377753 Creating Principal Component Regression model # create feature union features = [] features.append(('pca', PCA(n_components=3))) features.append(('select_best', SelectKBest(k=3))) feature_union = FeatureUnion(features) # create pipeline estimators = [] estimators.append(('standardize', StandardScaler())) estimators.append(('feature_union', feature_union)) estimators.append(('linear_regression', LinearRegression())) PCR = Pipeline(estimators) kfold = KFold(n_splits=3)</pre>
	<pre>Testing coefficient of determination R2: 0.883601176377753 Creating Principal Component Regression model # create feature union features = [] features.append(('pca', PCA(n_components=3))) features.append(('select_best', SelectKBest(k=3))) feature_union = FeatureUnion(features) # create pipeline estimators = [] estimators.append(('standardize', StandardScaler())) estimators.append(('feature_union', feature_union)) estimators.append(('linear_regression', LinearRegression())) PCR = Pipeline(estimators) kfold = KFold(n_splits=3) PCR_results1 = cross_val_score(PCR, X, y1, cv=kfold, scoring=RMSE) PCR_results2 = cross_val_score(PCR, X, y2, cv=kfold, scoring=RMSE)</pre> PCR_fit(X,y1)
	<pre>Testing coefficient of determination R2: 0.883601176377753 Creating Principal Component Regression model # create feature union features = [] features.append(('pca', PCA(n_components=3))) features.append(('select_best', SelectKBest(k=3))) feature_union = FeatureUnion(features) # create pipeline estimators = [] estimators.append(('standardize', standardScaler())) estimators.append(('feature_union', feature_union)) estimators.append(('linear_regression', LinearRegression())) PCR = Pipeline(estimators) kfold = KFold(n_splits=3) PCR_results1 = cross_val_score(PCR, X, y1, cv=kfold, scoring=RMSE) PCR_results2 = cross_val_score(PCR, X, y2, cv=kfold, scoring=RMSE) PCR.fit(X,y1) out1 = PCR.predict(X) PCR.fit(X,y2) out2 = PCR.predict(X) print('RMSE Y1: ", rmse(out1,y1))</pre>
	<pre>Testing coefficient of determination R2: 0.883601176377753 Creating Principal Component Regression model # create feature union features = [] features.append(('pca', PCA(n_components=3))) features.append(('select_best', SelectKBest(k=3))) feature_union = FeatureUnion(features) # create pipeline estimators = [] estimators.append(('standardize', StandardScaler())) estimators.append(('feature_union', feature_union)) estimators.append(('linear_regression', LinearRegression())) PCR = Pipeline(estimators) kfold = KFold(n_splits=3) PCR_results1 = cross_val_score(PCR, X, y1, cv=kfold, scoring=RMSE) PCR_results2 = cross_val_score(PCR, X, y2, cv=kfold, scoring=RMSE) PCR.fit(X,y1) out1 = PCR.predict(X) PCR.fit(X,y2) out2 = PCR.predict(X)</pre>
	<pre>Testing coefficient of determination R2: 0.883601176377753 Creating Principal Component Regression model # create feature union features = [] features.append(('pca', PCA(n_components=3))) features.append(('select_best', SelectKRest(k=3))) feature union = FeatureUnion(features) # create pipeline estimators = [] estimators.append(('feature_union', feature_union)) estimators.append(('feature_union', feature_union))) PCR = Pipeline(estimators) Kfold = KFold(n_splits=3) PCR_results1 = cross_val_score(PCR, X, y1, cv=kfold, scoring=RMSE) PCR_results2 = cross_val_score(PCR, X, y2, cv=kfold, scoring=RMSE) PCR.fit(X,y1) out1 = PCR.predict(X) PCR.fit(X,y2) out2 = PCR.predict(X) print("RMSE Y1: ", rmse(out1,y1)) print("RMSE Y2: ", rmse(out2,y2)) pd.DataFrame(out2).to_clipboard()</pre>
	Creating Principal Component Regression model # create feature union features = [] features.append(('pea', PCA(n_components=3))) features.append(('select_best', SelectRBest(k=3))) feature union = PeatureUnion(features) # create pipeline estimators = [] estimators.append(('standardize', StandardScaler())) estimators.append(('feature_union', feature_union)) eStimators.append(('linear_regression', LinearRegression())) PCR = Pipeline(estimators) kfold = KFold(n_splits=3) PCR_results1 = cross_val_score(PCR, X, y1, cv=kfold, scoring=RMSE) PCR_results2 = cross_val_score(PCR, X, y2, cv=kfold, scoring=RMSE) PCR.fit(X,y1) out1 = PCR.predict(X) PCR.fit(X,y2) out2 = PCR.predict(X) print("RMSE Y1: ", rmse(out1,y1)) print("RMSE Y1: ", rmse(out2,y2)) pd.DataFrame(out2).to_clipboard() RMSE Y1: 9.97613459288511 RMSE Y2: 2.673158223016091
In [237	Creating Principal Component Regression model # create feature union features = [] features.append(('poa', FCA(n_components=3))) features.append(('select_bost', SelectRest(k=3))) features.append(('select_bost', SelectRest(k=3))) feature_union = PeatureUnion(features) # create pipeline estimators.append(('standardize', StandardScaler())) estimators.append(('feature_union', feature_union)) estimators.append(('linear_regression', LinearRegression())) PCR: = Pipeline(estimators) kfold = Krold(n_splits=3) PCR_results1 = cross_val_score(PCR, X, y1, cv=kfold, scoring=RMSE) PCR_results2 = cross_val_score(PCR, X, y2, cv=kfold, scoring=RMSE) PCR_fit(X,y1) out1 = PCR.predict(X) PCR.fit(X,y2) out2 = PCR.predict(X) PCR.fit(X,y2) out2 = PCR.predict(X) print("RMSE Y1: *, rnse(out1,y1)) print("RMSE Y1: *, rnse(out2,y2)) pd.DataFrame(out2).to_clipboard() RMSE Y1: 9.97613459288511 RNSE Y2: 2.673158223016091 Select ML models to be cross validated # prepare models models = [] models.append(('\sub ', LinearRegression())) models.append(('\sub ', K), XGBRegressor()))
In [237	Creating Principal Component Regression model # create feature union features = features = features = uppend(('pca', PCA(n components=3))) features.append(('select best', SelectReset(k=3))) features.append(('select best', SelectReset(k=3))) feature union = FeaturoDhion(features) # create pipeline estimators.append(('istandardize', StandardScaler())) catimators.append(('istandardize', StandardScaler())) catimators.append(('istandardize', StandardScaler())) extimators.append(('istandardize', StandardScaler())) extimators.ap
In [237	Creating Principal Component Regression model # create feature union (catures = [] (catures.append('poa', PcA(n_components-3))) features.append('poa', PcA(n_components-3))) feature union = PastureUnion(features) # create pleatine est.imators = [] ost.imators = append('standardize', StandardScalor())) ost.imators.append(('feature_union', feature_union)) PCR = Plpaline(est.imators) ktold = Krold(n_aplita-s) PCR_results1 = cross_val_score(PCR, X, y1, cv=kfold, scoring=RMSE) PCR_results2 = cross_val_score(PCR, X, y2, cv=kfold, scoring=RMSE) PCR_fit(X,Y1) outl = PCR.predict(X) PCR.fit(X,Y2) out2 = PCR.predict(X) PCR.fit(X,Y2) out2 = PCR.predict(X) print("EMSE Y2: ", rmse(out1,y1)) print("EMSE Y2: ", rmse(out2,y2)) pd.Datarrame(out2).to clipboard() RMSE Y1: 2.c73158223016091 Select ML models to be cross validated # prepare models models = [] models = (] models_append(('LR', LinearRegrossion())) models.append(('LR', LinearRegrossion())) models.append(('LR', MLR', MLR'
In [237 In [238	Creating Principal Component Regression model # create feature union features = [] features.apend(('pea', PcA(n components-3))) features.apend(('selet.best', Select.Reat(k*3))) features.apend(('selet.selet.Best', Select.Reat(k*3))) features.apend(
In [237 In [238	Creating Principal Component Regression model # create feature union foaturos = [] features.append(('pea', PCk(n components-3))) features.append((pea', PCk(n components-3))) feature.union = PeatureUnion(features) # create placet best , SelectRuses(k-3))) feature.union = PeatureUnion(features) # create placet loss , SelectRuses(k-3))) feature.union = PeatureUnion(features) # create placet loss , SelectRuses(k-3))) feature.union = PeatureUnion(feature) # create placet loss , SelectRuses(k-3))) feature.union = PeatureUnion(feature) # create placet loss , SelectRuses(k-3))) # PCR = Pipeline(estimators) # PCR = Pipeline(
In [237 In [238	Creating Principal Component Regression model # create feature union finature = {
In [237 In [238	Creating Principal Component Regression model # create feature union features = [] # create feature union = FeatureUnion(features) # create feature union = FeatureUnion(features) # create pipeline continuous = Paguline(unitabuse) # create pipeline(unitabuse) # create union) # create pipeline(unitabuse) # boxplot algorithm comparison # boxplot algorithm comparison
In [237 In [238	Creating Principal Component Regression model # create (eacure union
In [237 In [238	Creating Principal Component Regression model # create feature union features = [1 feature imposed ('policy 'Policy components-3))) Petitors = (1 features imposed ('policy 'Policy components-3))) Petitors imposed ('policy 'Policy 'Policy components-3))) Petitors imposed ('policy 'Policy
In [237 In [238	Creating Principal Component Regression model # create feature union # create feature features # create picture # proper models # proper mode
In [237 In [238	Creating Principal Component Regression model # create fracture union # create fracture union # create append(*poe*, PCA*) components** # create spend(*poe*, PCA*) components** # create spend(*
In [237 In [238	Creating Principal Component Regression model # Creating Principal Component Regression model # Creating Principal Component Regression model # Creating - Creatin
In [237 In [238	Creating Principal Component Regression model contacts of contact and the contact of the contac
In [237 In [238	Creating Principal Component Regression model # Street function unline # Street function # Street
In [237 In [238	Creating Principal Component Regression model # create foctore under # create foctore # creat
In [237 In [238	Creating Principal Component Regression model # create testure mane # create testure # create
In [237 In [238	Creating Principal Component Regression model # strated function with function and the component of the com
In [237 In [238	Creating Principal Component Regression model Forcest Forcest Name Forcest Name Forcest Forcest Name Forcest Forcest Name Forcest Forcest Name Forcest
In [237 In [238 In [239	Creating Principal Component Regression model # compose descriptions of the component Regression model # compose descriptions
In [239 In [240	Creating Principal Component Regression model Foresting Principal Component Regression model Foresting Component Regression Model Foresting Component Regression Regression Model Foresting Component Regression Regress
In [239 In [240	Creating Principal Component Regression model **Contact Institute within Component Regression model **Contact Institute Within Component Regression model **Contact Contact Within Component Regression Regression From Principal Component Within Component Regression Regressi
In [239 In [241	Creating Principal Component Regression model Suppose for the principal Component Regression model Suppose for the principal component Regression model Suppose for the principal component Regression for the pri
In [239 In [241	Creating Principal Component Regression model with the composition of
In [239 In [241	Creating Principal Component Regression model Creating Principal Component Regression model Construct State of Component Regression model Construct State of Component Regression Model Construct State of Component Regression State of Component
In [239 In [241	Creating Principal Component Regression model Activated Principal Component Regression model Control
In [240 In [240 In [241	Creating Principal Component Regression model Soldier and Principal Component Regression model
In [240 In [240 In [241	Creating Principal Component Regression model Advance of State (1985) (
In [240 In [240 In [241	Creating Principal Component Regression model Activated Principal Component Princ
In [240 In [240 In [241	Creating Principal Component Regression model Forting Principal Component Regression model Forting Component Regression model Forting Component Regression model Forting Component Regression model Forting Component Regression Regression model Forting Component Regression Regressio
In [240 In [240 In [241	Creating Principal Component Regression model Francisco International Component Regression International Principal Component I
In [240 In [240 In [241	Creating Principal Component Regression model Francis Agricultural Component Regressi