Titulo

Hecho por

DAVID GÓMEZ

UNIVERSIDAD

Estudiante de Matemáticas
Escuela Colombiana de Ingeniería Julio Garavito
Colombia
25 de noviembre de 2022

Titulo

UNIVERSIDAD

Sección 7.4

Índice

Pun																										
a																										
d		•		•		•											 •			•		 •				 •
Pun Pun																										
Pun	to	7																								
Proc	ce	di	m	ie	nt	os	3																			

Punto 1

 \mathbf{a}

Demostración con	suposición en	DS((\mathcal{L}))
------------------	---------------	-----	-----------------	---

- (i) Si no hay cuantificadores que afecten globalmente a la conclusión entonces se puede definir de la misma forma que en DS
- (ii) En caso de un cuantificador afectando la conclusión (o que sea referente a un objeto específico) hace falta ver las suposiciones y lograr llevarlas a un nivel del subconjunto al que se hace referencia (ej: tomar suposiciones de los pares para llegar a una conclusión sobre estos, sería lo mismo que reducir el conjunto a los pares y aplicar la definición para DS)

b

Derivaciones son suposiciones

- (i) Si no hay cuantificadores que afecten la conclusión globalmente entonces funciona tal como en DS
- (ii) Se toma todo $\psi \in \Gamma$ como verdadero y aplicando lo que aporta $DS(\mathcal{L})$ a lo que ya se tenía en DS más las suposiciones

 \mathbf{c}

igual a (b) pero con pasos en los que se justifique con \Rightarrow

 \mathbf{d}

igual a (b) pero con pasos en los que se justifique con \Leftarrow

Punto 2

Refutar $\forall x \phi \equiv \phi$

Al añadir un cuantificador, ya sea implícita o explícitamente, se está trabajando sobre los elementos de un conjunto, digamos A

Si x es libre en ϕ , $\forall x \phi$, hace referencia a una propiedad que cumplen todos los elementos AEn caso de que ϕ no tenga cuantificador ni mención de la variable x entonces decir $\forall x \phi$ no es algo que realmente tenga mucho significado, pues nos dice que una proposición la cual en sí misma es verdad, se cumple para todos los elementos.

En el caso de que x sea libre en ϕ , decir $\forall x\phi \equiv \phi$ nos dice que la propiedad ϕ que se cumple para todos los elementos de A se cumple también para todos los elementos de todos los conjuntos, cosa que no es cierta.

ej:

0.
$$\forall x(\sqrt{x^2}=x)$$
 Aquí el conjunto es \mathbb{R}^+
1. $\forall x(\sqrt{x^2}=x)\equiv \sqrt{x^2}=x$ Proposición a refutar(p0)
2. $\sqrt{x^2}=x$ Ecuanimidad(p1, p0)
3. $\forall y(\sqrt{x^2}=x)$ Aquí el conjunto es \mathbb{R} , Generalización(p2)
4. $\forall y(\sqrt{x^2}=x) \rightarrow \sqrt{(-1)^2}=(-1)$ x no libre en (-1)
5. $\sqrt{(-1)^2}=(-1)$ MPP(p4, p3)
6. $\sqrt{(-1)^2}=1$ Álgebra
7. $-1=1$

Punto 6

Tomando procedimiento 7.4.1

$$f(n)=\frac{1}{n},n>0$$
 0. $f(n)>f(n+1)$ Demostración 1
1. $\{\epsilon>0,n>100\}\vdash_{\mathrm{DS}(\mathcal{L})}|f(n)-0|<\epsilon$ Demostración 2
2. $limit(f,0)=true$

Demostración 1
$$true \\ \equiv \langle \operatorname{Aritmética} \rangle \\ 1 > 0 \\ \equiv \langle \operatorname{Aritmética} \rangle \\ n+1 > n \\ \equiv \langle \operatorname{Aritmética} \rangle \\ \frac{1}{n} > \frac{1}{n+1} \\ \equiv \langle \operatorname{Def.}(f) \rangle \\ f(n) > f(n+1)$$

Demostración 2
$$|f(n) - 0| < \epsilon$$

$$\equiv \langle \operatorname{Def.}(f) \rangle$$

$$\frac{1}{n} < \epsilon$$

$$\equiv \langle n > 100, \operatorname{transitividad}(<), \operatorname{Aritmética} \rangle$$

$$0 < \frac{1}{100} < \frac{1}{n} < \epsilon$$

$$\equiv \langle \operatorname{transitividad}(>), \epsilon > 0 \rangle$$

$$true$$

Punto 7

Tomando procedimiento 7.4.1

$$f(n)=\frac{1}{n+1}, n\in\mathbb{N}$$
0. $f(n)>f(n+1)$ Demostración 1
1. $\{\epsilon>0, n>100\}\vdash_{\mathrm{DS}(\mathcal{L})}|f(n)-0|<\epsilon$ Demostración 2
2. $limit(f,0)=true$

Demostración 1
$$true$$

$$\equiv \langle \operatorname{Aritmética} \rangle$$

$$1 > 0$$

$$\equiv \langle \operatorname{Aritmética} \rangle$$

$$n + 2 > n + 1$$

$$\equiv \langle \operatorname{Aritmética} \rangle$$

$$\frac{1}{n+1} > \frac{1}{n+2}$$

$$\equiv \langle \operatorname{Def}(f) \rangle$$

$$f(n) > f(n+1)$$

Demostración 2
$$|f(n) - 0| < \epsilon$$

$$\equiv \langle \operatorname{Def.}(f) \rangle$$

$$\frac{1}{n+1} < \epsilon$$

$$\equiv \langle n > 100, \operatorname{transitividad}(<), \operatorname{Aritmética} \rangle$$

$$0 < \frac{1}{101} < \frac{1}{n+1} < \epsilon$$

$$\equiv \langle \operatorname{transitividad}(<), \epsilon > 0 \rangle$$

$$true$$

Procedimientos

7.4.1

$$limit(f,0) \equiv (\forall \epsilon \in \mathbb{R} \mid \epsilon > 0 : (\exists m \in \mathbb{R} \mid m \ge 0 : (\forall n \in \mathbb{N} \mid n > m : |f(n) - 0| < \epsilon)))$$

Por metateorema 7.22, demostrar

$$\{\epsilon>0\} \vdash_{\mathrm{DS}(\mathcal{L})} (\exists m \in \mathbb{R} \,|\, m \geq 0 : (\forall n \in \mathbb{N} \,|\, n > m | f(n) - 0 | < \epsilon))$$

$$\begin{split} & (\exists m \in \mathbb{R} \,|\, m \geq 0 : (\forall n \in \mathbb{N} \,|\, n > m : |f(n) - 0| < \epsilon)) \\ & \equiv \quad \big\langle \text{ Az\'ucar sint\'actico } \big\rangle \\ & \exists m \in \mathbb{R} (m \geq 0 \land (\forall n \in \mathbb{N} \,|\, n > m : |f(n) - 0| < \epsilon)) \\ & \Leftarrow \quad \big\langle \text{ instanciaci\'on con testigo } a \,\big\rangle \\ & a \geq 0 \land (\forall n \in \mathbb{N} \,|\, n > a |f(n) - 0| < \epsilon) \\ & \equiv \quad \big\langle a \geq 0 \equiv true, \text{ Identidad}(\land) \,\big\rangle \\ & (\forall n \in \mathbb{N} \,|\, n > a |f(n) - 0| < \epsilon) \end{split}$$

Por metateorema 7.22, demostrar

$$\{\epsilon > 0, n > a\} \vdash_{\mathrm{DS}(\mathcal{L})} |f(n) - 0| < \epsilon$$