Working with Images and Text

Reading, exploring and analyzing, feature extraction

Yordan Darakchiev

Technical Trainer iordan93@gmail.com

sli.do #DataScience

Table of Contents

- Image processing
 - Reading, exploring, manipulation
 - Convolution
 - Image morphology
- Text processing
 - Text preparation
 - Frequency analysis
 - TF-IDF

Image Processing

Understanding what people see

Loading and Inspecting Images

- There are many ways to read an image
 - One of the easiest is using scikit-image

```
from skimage.io import imread
tiger_image = imread("tiger.jpg")
```

Displaying the image

```
plt.imshow(tiger_image)
```

- The image is actually a matrix of pixels
 - Each pixel is an array of three values: R, G, B ∈ [0; 255]
 - Grayscale images only have one value per pixel
- Most image processing algorithms are easier to understand on grayscale images

```
red = tiger_image[:, :, 0]
green = tiger_image[:, :, 1]
blue = tiger_image[:, :, 2]
```

Image Histogram

- As usual, histograms tell us how the values are distributed
 - How many dark values, how many light values
 - Maximum brightness, peaks, etc.
- Histograms need to have a single variable
 - Take each channel separately, e.g., red
 - Convert the 2D matrix to 1D array: image.ravel()
 - Show the histogram as usual
 - It's common to use 256 bins

```
plt.hist(red.ravel(), bins = 256, color = "red")
plt.show()
```

 We can also plot all channels on a single histogram

Converting to Grayscale

- Sometimes working per channel is not necessary
 - We can combine all three channels and get a grayscale image
 - Simplest way: get the mean of all values

```
tiger_grayscale = np.mean(tiger_image, axis = 2)
```

- Better way: use coefficients for each channel
 - The human eye discerns colors differently
 - Were more sensitive to green colors
 - Some formulas are given here
 tiger_grayscale = 0.299 * red + 0.587 * green + 0.114 * blue
- Depending on the image, the differences may or may not be easy to see
 - It's easiest to see the differences when we compare the histograms
- For art purposes, we can experiment with our own coefficients for combining all channels

Convolution

- Convolution kernel (filter)
 - A small, usually 3x3, matrix of numbers
- Convolution process
 - Input: image, kernel; output: new image
 - Combining the image and a kernel
 - Apply the kernel over each pixel
 - Multiply the values element-wise (Hadamard product)
 - Sum all values
 - Assign the sum to the corresponding pixel in the output image
 - Image corners are treated in different ways, not really important how

35	40	41	45	50								Ī
40	40	42	46	52		0	1	0				
42	46	50	55	55	X	0	0	0			42	Ī
48	52	56	58	60		0	0	0				Ī
56	60	65	70	75								

Convolution (2)

- The choice of kernel depends what the output image will represent
 - Some ideas <u>here</u>

```
from scipy.ndimage.filters import convolve
convolve(image, kernel)
```

Example: box blur

```
box_blur_kernel = np.array([
    [1, 1, 1],
    [1, 1, 1],
    [1, 1, 1]
]) / 9

blurred = convolve(tiger_grayscale, box_blur_kernel)
plt.imshow(tiger_grayscale[150:250, 300:400], cmap = "gray")
plt.show()
plt.imshow(blurred[150:250, 300:400], cmap = "gray")
plt.show()
```


Image Morphology

- Four main operations (see <u>this</u> tutorial)
 - Dilation, erosion, opening, closing
- A simple series of algorithms for image transformation
- Basic methodology
 - Choose a structuring element (e.g., 2x2 square or cross)
 - Move the element around the image
 - Apply an operation
- Input: binary image
 - Pixel values 0 and 1, not [0; 255]
 - This is called thresholding
- Output: transformed image

Image Morphology (2)

- First get all values inside the structuring element
- Erosion: replace all values with the min value
 - Strips away a layer of pixels
 - Holes become larger
 - Small regions are eliminated

- Dilation: replace all values with the max value
 - Adds a layer of pixels
 - Gaps become smaller
 - Small gaps are filled in

Image Morphology (3)

- Opening: erosion followed by dilation
 - Pixels which survived erosion are restored to their original size
 - Opens up a gap between two objects connected by thin bridges

- Closing: dilation followed by erosion
 - Fills in holes in the regions while keeping the initial region sizes

Other Operations on Images

- Matrix operations pixel-wise
 - One image: Addition, gain, negative; resampling, cutting
 - Transformations perspective, warp, etc.
 - Two (or more) images: Addition (multiple exposure), subtraction (difference), division (normalization), averaging
- Thresholding (usually 2 levels)
- Fourier transform, filtering and convolution
- Contrast enhancement, histogram equalization
- Stacking (many 2D images ⇒ one 3D image)
- Analysis
 - Measurements, segmentation, object extraction / identification
 - Enhancements, inpainting

Text Processing

Understanding what people write

Text Data

- Documents, written in plain text
 - News, tweets, blog posts, poems, books, legal documents, etc.
 - May also be auto-generated (i.e., server logs)
- Objective
 - Preprocess the text data so that it's structured
 - Algorithms can analyze a table of numbers, not plain text
 - This is especially true for machine learning algorithms
- Applications
 - Sentiment analysis
 - Grouping texts similar topics, similar authors
 - Classification (e.g., spam / fake news prevention)
 - Text summarization, etc.

Character Frequencies

Reading is simple: open the file, read it, close it

```
text = ""
with open("alice.txt", "r", encoding = "utf-8") as f:
    text = f.read()
print(len(text))
```

- A string is a collection of characters
 - There are several ways to count them, the easiest being by using a library: collections. Counter

```
from collections import Counter
char_counter = Counter(text)
```

Most common characters (<u>"etaoin shrdlu"</u>)

```
char_counter.most_common(20)
```

Similarly, most common words: split by all non-word characters

```
import re
word_counter = Counter(re.split("\W+", text))
```

Preparing Text Data

- Before we start working with the text, we have to "normalize" and clean up the messy data
 - Remove all non-letter characters
 - Numbers, punctuation, whitespace, etc.
 - If needed, apply additional rules, e.g., if we're looking at tweets,
 @mention means a username and we may want to get rid of it
 - Transform all characters to lowercase
 - Remove "stopwords"
 - Words that are too frequent in all documents and don't contain much information such as "the", "a", "is", etc.
 - Perform stemming
 - Extract the stems of all words, e.g., "connected", "connection", "connecting" should all point to "connect"

Stopwords and Stemming: NLTK

- NLTK is a library for working with natural language
 - Contains all frequently used algorithms and corpora
 - Installation: as usual, using conda: conda install nltk
- Getting and removing stopwords
 - Download the words first

```
import nltk
nltk.download("stopwords")
from nltk.corpus import stopwords
stop = set(stopwords.words("english"))
sentence = "this is a foo bar sentence"
print([w for w in sentence.lower().split() if w not in stop])
```

Stemming – <u>Porter's algorithm</u> (includes many "manual" rules)

```
from nltk.stem.porter import *
stemmer = PorterStemmer()
words = ["caresses", "flies", "dies", "seizing", "itemization",
"sensational", "traditional", "reference", "plotted"]
print([stemmer.stem(word) for word in words])
```

TF - IDF

- Term frequency inverse document frequency
 - A common method to preprocess the text

$$w_{x,y} = tf_{x,y} \times log(\frac{N}{df_x})$$

TF-IDFTerm **x** within document **y**

 $tf_{x,y}$ = frequency of x in y df_x = number of documents containing x N = total number of documents

- High score: rare, specific words
 - Hypothesis: these may be better related to the topic
 - Note: This may also include misspelled words and / or names
- Low score: words that occur in nearly all documents

Using TF – IDF

Read the "20 newsgroups" dataset (from scikit-learn)

```
from sklearn.datasets import fetch_20newsgroups
# Download only some categories to speed up the process
newsgroups = fetch_20newsgroups()
```

■ Initialize the algorithm (<u>docs</u>) and compute the matrix

Get all feature names

```
feature_names = tfidf.get_feature_names()
```

Get the IDF for each word / n-gram in one document

```
doc = 0 # Change the index to view another document
feature_index = tfidf_matrix[doc, :].nonzero()[1]
tfidf_scores = zip(feature_index, [tfidf_matrix[doc, x] for x in feature_index])
for w, s in [(feature_names[i], s) for (i, s) in tfidf_scores]:
    print(w, s)
```

Summary

- Image processing
 - Reading, exploring, manipulation
 - Convolution
 - Image morphology
- Text processing
 - Text preparation
 - Frequency analysis
 - TF-IDF

Questions?