DARE: Towards Robust Text Explanations in Biomedical and Healthcare Applications

Adam Ivankay, *IBM Research Zurich* Mattia Rigotti, *IBM Research Zurich* Pascal Frossard, *École Polytechnique Fédérale de Lausanne (EPFL)*

Introduction

Explainable AI

- Research in explainable AI has seen a surge in recent years
- Ever growing need to understand the black-box nature of deep neural networks
- Especially in safety-critical applications

Desiderata of explanation methods

Faithfulness

Explanation reflects the true causal process of the DNN

Robustness assumption

Plausibility

Explanation is aligned with the human reasoning about the task

Introduction

Explainable AI

Plausible Robustness

Adversarial Robustness of Attributions

general mills buying back 16.5 m shares | general mills inc. said monday it plans to buy back about 16.5 million shares of its common stock from beverage company diageo plc.

F("Business") = 100%

• Attributions are *fragile* in text

general mills buying back 16.5 m shares | ge mills inc . said monday it plans to buy back about 16.5 million shares of its common stock from beverage company diageo plc .

F("Business") = 99%

Problem Formulation

$$r(s) = \max_{\tilde{s} \in \mathcal{N}(s)} \frac{d[A(\tilde{s}, F, l), A(s, F, l)]}{d_s(\tilde{s}, s)}$$

$$argmax_{i \in \mathcal{L}} F_i(\tilde{s}) = argmax_{i \in \mathcal{L}} F_i(s)$$

Introduction

Explainable A

Contributions

I. Introduce DARE, a domain-adaptive attribution robustness estimator

Plausible Robustness

II. Show that attributions are fragile in critical biomedical use cases

III. Introduce FAR for text, a novel method to train robust networks

AR

I. DARE

Domain-Adaptive Attribution Robustness Estimator

- Algorithm to estimate adversarial robustness of attributions in text
- Two-step attack based on imperceptible word substitutions

1. Step: Word Importance Ranking

$$I_s = \nabla_s d[A(s+\varepsilon,F,l),A(s,F,l)]$$

2. Step: Candidate Substitution

$$C_i = MLM(v_i, s, |C|)$$

- Prediction and linguistic constraints
- Final Selection:

$$c_i = argmax_{\tilde{c} \in C_i} d[A(s_{\tilde{c}}, F, l), A(s, F, l)]$$

Plausibility

- Contextaware
- Domainspecific
- Can be trained on unlabelled data

I. DARE

II. Fragile Biomedical Attributions

Attributions change significantly

'took zoloft for 5 months. **no side** effects except **sexual** dysfunction. **i** didn't feel much **better or <u>happier</u> and it** made me feel really drowsy.'

'took zoloft for **5 months.** no **side** effects except **sexual dysfunction.** i didn't **feel much** better **or anything** and **it** made **me** feel **really** drowsy.'

Cosine similarity = -0.32

I. DARE

II. Fragile Biomedical Attributions

III. FAR for Text

Framework for Attributional Robustness

- "Adversarial training on predictions and attributions"
- Adversarial search

Robust Predictions

Robust Attributions

$$s_{adv} = argmax_{\tilde{s} \in \mathcal{N}(s)} \{ (1 - \gamma) \cdot l_c(\tilde{s}, F, l) + (\gamma \cdot d[A(\tilde{s}, F, l), A(s, F, l)] \}$$

Solved with DARE

Network training

$$\theta^* = argmin_{\theta} \sum_{s \in \mathcal{S}} \{ (1 - \delta) \cdot l_c(s_{adv}, F, l) + \delta \cdot d[A(s_{adv}, F, l), A(s, F, l)] \}$$

Solved with SGD-based optimizers

