Table 1.

Table 1.		
parameter	description	
M_o	mean anomaly at reference time	
Δn	mean motion difference	
\sqrt{a}	square root of semi-major axis	
Ω_o	longitude of ascending node at weekly epoch	
i_o	inclination angle at reference time	
ω	argument of perigee	
$\dot{\Omega}$	rate of right ascension	
e	eccentricity	
IDOT	rate of inclination angle	
C_{uc}	cosine term, argument of latitude	
C_{rc}	cosine term, radius	
C_{ic}	cosine term, inclination	
C_{us}	sine term, argument of latitude	
C_{rs}	sine term, radius	
C_{is}	sine term, inclination	
t_{oe}	ephemeris reference time	

Table 2.

$\operatorname{algorithm}$	description	
$\mu = 3.986004418 \times 10^{14} \text{ meters}^3/\text{sec}^2$	WGS84 (GPS) gravitational parameter	
$\dot{\Omega}_e = 7.2921151467 \times 10^{-5} \text{ rad/sec}$	WGS84 (GPS) earth rotation rate	
$n_o = \sqrt{\mu/a^3}$	computed mean motion	
$t_j = t - t_{oe}$	time from reference epoch	
$n=n_o+\Delta n$	corrected mean motion	
$M_j = M_o + nt_j$	mean anomaly	
$M_j = E_j - e\sin E_j$	Kepler's equation	
$\tan \nu_j = \sqrt{1 - e^2} \sin E_j / (\cos E_j - e)$	true anomaly	
$\phi_j = \nu_j + \omega$	argument of latitude	
$\delta u_j = C_{us} \sin 2\phi_j + C_{uc} \cos 2\phi_j$	argument of latitude correction	
$\delta r_j = C_{rs} \sin 2\phi_j + C_{rc} \cos 2\phi_j$	radius correction	
$\delta i_j = C_{is} \sin 2\phi_j + C_{ic} \cos 2\phi_j$	inclination correction	
$u_i = \phi_i + \delta u_i$	corrected argument of latitude	
$r_j = a(1 - e\cos E_j) + \delta r_j$	corrected radius	
$i_j = i_o + \delta i_j + IDOTt_j$	corrected inclination	
$x'_j = r_j \cos u_j$ $y'_j = r_j \sin u_j$	positions in orbital plane	
$\Omega_j = \Omega_o + (\dot{\Omega} - \dot{\Omega}_e)t_j - \dot{\Omega}_e t_{oe}$	corrected longitude of ascending node	
$x_j = x_j' \cos \Omega_j - y_j' \cos i_j \sin \Omega_j$	Earth-fixed	
$y_j = x_j' \sin \Omega_j + y_j' \cos i_j \cos \Omega_j$	coordinates	
$z_j = y_j' \sin i_j$		

If $t_j > 302,400$ s, subtract 604,800 s from t_j . If $t_j < -302,400$ s, add 604,800 s to t_j