1. Empirical formula from combustion analysis

 Empirical formula are derived from experimental (empirical) data about the composition of a compound. An empirical formula shows the simplest whole number ratio of the elements in a compound.

Example 1

The analysis of a 2.4800 g sample of an organic compound showed it contained 0.6020 g of carbon, 1.7762 g of chlorine with the remainder being hydrogen. What is the empirical formula of the compound?

m(H) = m(compound) - [m(C) + m(Cl)] = 2.4800 - [0.6020 + 1.7762] = 0.1018 g			Since the compound contains only C, H and O then the sum of their masses must be 2.4800 g.
С	Н	. Cl	List each element in the sample.
0.6020 g	0.1018 g	1.7762 g	List the mass of each element in the 2.480 g sample.
$\frac{0.6020}{12.01}$	0.1018 1.008	1.7762 35.45	Find the moles of each element by dividing the mass of each element my its molar mass.
0.05012	0.1010	0.05010	
$\frac{0.05012}{0.05010}$	0.1010 0.05010	0.05010	To find the simplest mole ratio, divide each by the smallest value, ie 0.05010.
1.000 ∴ the empirical	2.016 formula is CH ₂ CI	1.000	Thus the simplest whole number mole ratio of C:H:Cl is 1:2:1. The empirical formula CH_2Cl , shows this mole ratio.

Example 2

... the empirical formula is C2H7N

The complete combustion of a 3.648 g sample of a compound produced 7.137 g of carbon dioxide and 5.107 g of water. Find the compound's empirical formula if it contains the elements carbon, hydrogen and nitrogen only.

The empirical formula C2H7N, shows this ratio.

$n(CO_2) = \frac{m}{M} = \frac{7.137}{44.01} = 0.1622 \text{ mol}$	Find the moles of CO ₂ .
$n(C) = n(CO_2) = 0.1622 \text{ mol}$	Since there is one mole of C in every mole of CO ₂ .
$m(C) = n \times M = 0.1622 \times 12.01 = 1.948 g$	Since the carbon in CO ₂ originated from the organic compound, this gives the mass of C in the sample.
$n(H_2O) = \frac{m}{M} = \frac{5.107}{18.016} = 0.2835 \text{ mol}$	Find the moles of H ₂ O.
$n(H) = 2 \times n(H_2O) = 2 \times 0.2835 = 0.5669 \text{ m}$	There are two moles of H in every mole of H ₂ O.
$m(H) = n \times M = 0.5669 \times 1.008 = 0.5715 g$	Since the hydrogen in H ₂ O originated from the organic compound, this gives the mass of H in the sample.
m(N) = 3.648 - [m(C) + m(H)] = 3.648 - (1.949 + 0.5715) = 1.129 g	The sample contains C, H and N only and has a total mass of 3.648 g.
С Н	List each element in the compound.
1.948g 0.5713 g 1.42	List the mass of each element in the 3.648 g sample.
1.948 0.5713 1.12 12.01 1.008 1.4.0	
0.1622 0.5669 0.08 2.013 7.036 1.00	value ic 0.08058

2. Molecular formula

- The molecular formula shows the number of each type of atom present in one molecule of the substance.
- If the molecular mass and empirical formula of a compound are both known then
 the compound's molecular formula can be found.

Example 3

An organic compound has a molecular mass of 99.07 g mol⁻¹ and an empirical formula of CH₂Cl. What is its molecular formula?

$M(CH_2CI) = 12.01 + 1.008 \times 2 + 35.45 = 49.476 \text{ g mol}^{-1}$	Find the empirical formula mass from the known empirical formula CH ₂ Cl.
$\frac{\text{Molecular formula mass}}{\text{Empirical formula mass}} = \frac{99.07}{49.476} = 2.002$	Compare the molecular formula mass and empirical formula mass. The result 2, shows the M.F is twice the E.F.: double all
∴ molecular formula = C ₂ H ₄ Cl ₂	empirical formula subscripts to obtain the molecular formula.

 Molecular mass can be found from empirical data for the volume, pressure and temperature of a known mass of gas. If the compound is normally a solid or liquid it would first need to be vaporised in order to make these measurements.

Example 4

A 3.429 g sample of organic compound is vaporised and found to occupy a volume of 1.130 L at 101.3 kPa and 398 K. Determine the compound's molecular formula if its empirical formula is CH_2CI .

P V = n R T
$$ie$$
 $n = \frac{PV}{RT} = \frac{101.3 \times 1.130}{8.3145 \times 398} = 0.03461 \text{ mol}$ Find the moles of gas using the ideal gas law.* Take care to use the correct value of R.

Find the moles of gas using the ideal gas law.* Take care to use the correct value of R.

Find the moles of gas using the ideal gas law.* Take care to use the correct value of R.

Find the moles of gas using the ideal gas law.* Take care to use the correct value of R.

Find the moles of gas using the ideal gas law.* Take care to use the correct value of R.

Find the moles of gas using the ideal gas law.* Take care to use the correct value of R.

Find the moles of gas using the ideal gas law.* Take care to use the correct value of R.

Find the moles of gas using the ideal gas law.* Take care to use the correct value of R.

Find the moles of gas using the ideal gas law.* Take care to use the correct value of R.

Find the moles of gas using the ideal gas law.* Take care to use the correct value of R.

Find the moles of gas using the ideal gas law.* Take care to use the correct value of R.

Find the moles of gas using the ideal gas law.* Take care to use the correct value of R.

: molecular formula = C2H4Cl2

Alternatively, instead of using n = PV/RT, the gas volume at STP (V_{STP}) can be found using the combined gas law:

$$\frac{P_{STP} \ V_{STP}}{T_{STP}} = \frac{P_2 \ x \ V_2}{T_2} \qquad \qquad \textit{ie} \qquad V_{STP} = \frac{P_2 V_2 \ x \ 273}{T_2 \ x \ 101.3}$$

Then the moles of gas can be determined using the STP molar volume relationship:

$$n = \frac{V_{STP}}{22.4}$$