Q3

For upper bound observe that dot product of 2 unit vectors can be almost 1 by Cauchy Schwartz inequality $(\sum a_i^2)(\sum b_i^2) \ge (\sum a_ib_i)^2$.

 ϕ^i and ψ_j are both unit vectors, hence $|\phi^i * \psi_j| \le 1$ for any i, j, hence $\max(|\phi^i * \psi_i|) \le 1$ and $\mu(\phi, \psi) \le \sqrt{n}$.

For lower bound , take $g_i=\phi^i$ and express it as linear combination of columns of ψ and take transpose , since all rows of ϕ are normalised to unit magnitude . Hence we expressed a row of ϕ as linear combination of columns of ψ and then took transpose. So g_i is a row vector now.

Let $g_i^t = \sum_{k=1}^n a_k \psi_k$. Since g_i is unit normal g_i . $g_i^t = 1$ and hence $\sum_{k=1}^n a_k^2 = 1$. ψ is an orthonormal matrix and hence ψ_i . $\psi_j = 1$ for (i=j) and 0 otherwise so

 $|g_i \cdot \psi_j| = |a_j|$ as only $a_j(\psi_i^t \cdot \psi_j)$ is the non zero term in the dot product.

So $\mu(g_i,\psi)=\sqrt{n}\max_{j\in(0,1,\dots n-1)}|a_j|$. The denominator term in the original formula for coherence is onc since $\sum_{k=1}^n a_k^2=1$.

 $\sum_{k=1}^n |a_k|^2 = 1 \text{ , hence the min value of } S = \max_{j \in (0,1,\dots n-1)} |a_j| \text{ can be } \frac{1}{\sqrt{n}} \text{ since if the min value is } < \frac{1}{\sqrt{n}} \text{ , then for all j , } |a_j| < \frac{1}{\sqrt{n}} \text{ , this implies } |a_j|^2 < \frac{1}{n} \text{ and } \sum_{k=1}^n a_k^2 < n * \frac{1}{n} = 1.$ Hence we get $\sum_{k=1}^n a_k^2 < 1$ which is a contradiction to $\sum_{k=1}^n a_k^2 = 1$.

Whereas the min value of $\frac{1}{\sqrt{n}}$ can be achieved by setting $|a_j|=\frac{1}{\sqrt{n}}$ for all j. Then $\sum_{k=1}^n a_k^2=1$ also and $S=\max_{j\in(0,1,\dots n-1)}|a_j|=\frac{1}{\sqrt{n}}$ also .

Hence the minimal value of coherence is obtained when $g_i^t = \frac{1}{\sqrt{n}} \sum_{k=1}^n \psi_k$ and

$$min \ \mu(g_i, \psi) = \sqrt{n} * S = \sqrt{n} * \frac{1}{\sqrt{n}} = 1$$

So $\mu(g_i, \psi) \ge 1$

Now $\mu(\phi,\psi)=\max_{i\in(0,1,\dots n-1)}\mu(g_i,\psi)$ where we represented $g_i=\phi^i$ and all rows of ϕ can be independently chosen.

 $\mu(g_i,\psi) \geq 1 \text{ for all i, hence } \mu(\phi,\psi) \geq 1 \text{ and we showed that } \mu(g_i,\psi) = 1 \text{ is possible when } g_i^t = \frac{1}{\sqrt{n}} \sum_{k=1}^n \psi_k \text{ . Hence for all i, choose } g_i^t = \frac{1}{\sqrt{n}} \sum_{k=1}^n \psi_k \text{ , then each } \mu(g_i,\psi) = 1 \text{ and hence the minimum value of } \mu(\phi,\psi) = \max_{i \in (0,1,\dots,n-1)} \mu(g_i,\psi) = 1.$

Thus the value of coherence $\mu(\phi, \psi)$ must lie in the range $[1, \sqrt{n}]$.