Тема 14 Държавен изпит

специалност Приложна математика

Диференчни методи за задачата на Коши за обикновено диференциално уравнение от първи ред.

Анотация

Диференчни методи за задачата на Коши за обикновено диференциално уравнение от първи ред.

- 1. Постановка на задачата на Коши за ОДУ от І ред. Геометрична интерпретация.
- 2. Същност на диференчните методи. Основни понятия.
- 3. Методи на Ойлер явен, неявен, подобрен. Извеждане, апроксимация, устойчивост, монотонност.
- 4. Явни методи на Рунге-Кута за ОДУ от I ред едно- и двуетапни. Метод на Рунге за практическа оценка на грешката. *Литература:* [14], [22].

1.

Нека разглеждаме едномерни функции u, които имат производна u' (следователно и непрекъснати). Нека е зададена двумерна функция f(x,y), като първия аргумент е дефиниран поне там, където u. Нека $\dot{\iota}$ е интервал от ДМ на u и ι_0 е реално число. Задача на Коши за ОДУ от първи ред при тази задания изглежда по следния начин:

Да се намери такава функция и , че

(1)
$$u'(x) = f(x, u(x)), \quad \forall x \in \mathcal{U}$$
$$u(x_0) = u_0$$

Геометрично, тази задча стои по следния начин: Да се намери функция, за чиято графика знаем ъгъла между допирателната и оста Ox^{-} и освен това знаем, че минава през т. (x_0 , u_0).

Теорема 1.1 (теорема за съществуване и единственост на (1))

Нека f(x,u) е дефинирана в правоъгълника $D = \{(x,u) \lor \cdot x - x_0 \lor \cdot a, \lor u - u_0 \lor \cdot b\}$ непрекъсната по двата си аргумента и Липшицова по втория си аргумент, т.е.

$$\exists K>0: \forall (x_1,u_1) \in D \forall (x_1,u_1) \in D \lor f(x_1,u_1) - f(x_2,u_2) \lor i K \lor u_1 - u_2 \lor i$$

Тогава ако h= $min\left(a,\frac{b}{M},\frac{1}{K}\right)$, тогава в интервала $\left(x_0-h,x_0+h\right)$ съществува единствено решение на $u'(x)=f(x,u(x)),\ u(x_0)=u_0.$

2.

Същността на числените методи за диференциални уравнения се състои в това, че в областта, в която е дефинирана фунцията, която търсим, се въвежда мрежа от точки, в които стойността на решението се апроксимира чрез подходящ алгоритъм.

Нека ⁶ е интервал, в който (1) има решение. Да въведем неравномерна мрежа(фиг. 1) от точки в този интервал, в които ще апроксимираме функцията.

$$\omega_h = \{ x_i = x_{i-1} + h_i \lor i = 1, 2, ..., n \}$$

Фиг. 1 Неравномерна мрежа – разтоянията между точките не са обезателно равни.

Да отбележим, че x_n е или $\stackrel{\circ}{X}$ или някоя точка, която е преди $\stackrel{\circ}{X}$, но въпреки това е близо.

Може да се въведе и равномерна мрежа (фиг. 2). При нея всички отсечки от вида $[x_{i-1},x_i]$ са равни на отнапред избрано число h, зависещо от избора на брой на точките.

$$\omega_{h} = \left\{ x_{i} = x_{0} + i \frac{x - x_{0}}{n} \middle| i = 0, 1, 2, \dots, n \right\}, h = \frac{x - x_{0}}{n}$$

Фиг. 2 Равномерна мрежа – разтоянията между точките са обезателно равни.

Стойностите на самото решение на (1) в точките от мрежата са n+1 мерния вектор $u_h = \{u_0 = u(x_0), ..., u_n = u(x_n)\}$

Разработвайки алгоритъм за числено решаване на (1) ще получим вектор- приближение, който също ще е n+1 мерен - $y=\{y_0,...,y_n\}$.

Нека означим диференциалния оператор в (1) с L, т.е. Lu=u и уравнението (1) е Lu=f(x,u)

За да реализираме алгоритъм е нужно да въведем апроксимиращ оператор L_h , който ще действа върху вектора y, за разлика от L, който действа върху непрекъснатата функция u.

Пример за такъв оператор е например оператора от явния метод на Ойлер, дефиниран така:

$$(L_h y)_i = \frac{y_{i+1} - y_i}{h}$$

Такъв оператор ще наричаме *мрежови оператор.* По аналогичен начин функцията f(x,u) ще заместим с $[\theta_h y]_i ($ *което например е равно на* $f(x_i, y_i))$

<u>Дефиниция 2.1</u> При горните означения **локална грешка на апроксимаця** за диференциалния оператор L в **i-тата** точката от мрежата ще наричаме $\Psi_i := (L_h u)_i - (Lu)_i$

Имайки в предвид, че и е точно решение на (1), то $(Lu)_i = (\theta_h \, u)_i = f(\, x_i, \, u(\, x_i))$

Тема 14

Изхождайки от това, можем да заключим, че *локалната грешка на апроксимация* представлява разликата между лявата страна и дясната страна на **диференчото** (не диференциалното!) уравнение, пресметната за точното решение на **диференциалната** задача.

В примера, който разгледахме, локалната грешка на апроксимация в точката і има вида

$$\Psi_i = \frac{u_{i+1} - u_i}{h} - f(x_i, u_i)$$

Целта на тази дефиниция е да се следи от какъв порядък грешка (спрямо стъпката h) правим. В случая $\Psi_i = O(h)$.

Функцията $\Psi_h = \{ \Psi_0, \Psi_1, ..., \Psi_n \}$ се нарича грешка на апроксимацията. Тя е мрежова функция.

Ще въведем норма в дискретния случай като аналог на С- нормата

Посредством

$$\overset{\ \ \, \iota \lor \ \iota_C = \max \lor y_i \lor \ \iota}{\ \ \, \iota \lor y \ \iota}$$
 . Приложено към вектора $\overset{\Psi_h}{\ \ \, }$ имаме

$$ec{\iota} \lor ec{\iota}_C = \max_{0 \le i \le n} \lor \Psi_i \lor ec{\iota}$$
 $ec{\iota} \lor \Psi_h \dot{\iota}$. За примера, който разгледахме мрежовата норма унаследява

порядъка O(h) .

Дефиниция 2.2 Моделна задача на задачата

(1)
$$u'(x) = f(x, u(x)), \quad \forall x \in \mathcal{U}$$
$$u(x_0) = u_0$$

наричаме задачата

(2)
$$u'(x) = \lambda u(x)$$
, $\forall x \in \mathcal{U}$
 $u(x_0) = u_0$

<u>Дефиниция 2.3</u> (Абсолютно устойчив числен метод за (1)).

Ако за решението на някакъв числен метод за решаване на (1), приложен към (2) се получава решение със свойствата

$$1\dot{\iota}|y| \le |u_0|$$
, при $\lambda \le 0$, $i = 0,1,...($ условие за устойчивост $)$

$$2 |y_i| \ge |u_0|$$
, при $\lambda > 0$, $i = 0,1,...$

4 $\stackrel{.}{\iota}$ $y_i \le 0$, ако $u_0 \le 0$, i = 0,1,...

То числения метод се нарича **абсолютно устойчив** !!!!!!Тази дефиниция е неточна

Дефиниция 2.4 (Монотонност на числен метод за (1))

Казваме, че числен метод, реализиран за (1) е монотонен, ако y_i не сменя знака си за $i=0,1,\dots$

Дефиниция 2.5 (Сходимост на числен метод за (1))

Нека $y_h = \{y_0, \dots, y_n\}$ е реализирано чрез някакъв числен метод приближение на решението на (1),

 $u_h = \{u_0 = u(x_0), \dots, u_n = u(x_n)\}$, в мрежата $\omega_h = \{x_i = x_{i-1} + h_i \lor i = 1, 2, \dots, n\}$. Да означим

вектора "грешка на метода" $z_h = u_h - y_h$. Казваме, че исления метод е сходящ по С норма ако

$$\begin{array}{c}
n \to \infty \\
\dot{c} \lor \dot{c}_C \xrightarrow{\dot{c}} \\
\dot{c} \lor z_h \dot{c}
\end{array}$$

3. (1)
$$u'(x) = f(x, u(x)), \quad \forall x \in \mathcal{U}$$
 $u(x_0) = u_0$

Нека сме избрали равномерна мрежа

$$\omega_{h} = \left\{ x_{i} = x_{0} + i \frac{x - x_{0}}{n} \middle| i = 0, 1, 2, \dots, n \right\}, h = \frac{x - x_{0}}{n}$$

Явен метод на Ойлер

1 н-н за извеждане на явната схема на Ойлер:

За извеждането му най- често се позовава на геометричната интуиция. В началния момент имаме, че уравнението $u-u_0=f(x_0,u_0)(x-x_0)$ е уравнението на допирателната с коефициент $f(x_0,u_0)$ в т.(x_0 , x_0 . В близост на тази точка графиката на решенето е

близо до допирателната. Заместваме решението с тази графика в следващата точка : X_1

$$x_1 - x_0 = h$$
 . Имаме

$$y_0 = u_0$$

$$y_1 = u_0 + f(x_0, u_0) h$$

Разсъждаваме аналогично(фиг. 3) и по индукция построяваме схемата

$$y_0 = u_0$$

$$y_1 = y_0 + f(x_0, y_0) h$$

. . .

$$y_{n+1} = y_n + f(x_n, y_n) h$$

Заб. Както отжелязахме в т.2, схемата има локална грешка на апроксимация O(h).

Устойчивост и монотоноост на явния метод на Ойлер

Да приложим явния метод на Ойлер върху моделната задача (2) при λ < 0

(2)
$$u'(x) = \lambda u(x)$$
, $\forall x \in \mathcal{U}$
 $u(x_0) = u_0$

$$\frac{y_{i+1} - y_i}{h} = \lambda y_i = \lambda y_{i+1} = (\lambda h + 1) y_i = .. = (1 + \lambda h)^{i+1} y_0$$

Ще имаме монотнонност ако знака y_{i+1} е постоянен, т.е. $1+\lambda h > 0 \iff h \le -\frac{1}{\lambda}$

Ще имаме устойчивост ако | $1+\lambda\,h$ |<= 1 \Leftrightarrow 1+ $h\,\lambda \le 1 \land -1 \le 1+h\,\lambda \Leftrightarrow h \le -\frac{2}{\lambda}$

Сходимостта на явния метод не е нужно да се доказва в темата)

Сходимост на явния метод на Ойлер

Да разгледаме задача (1) при условията от <u>Теорема 1.1</u> и нека приложим към нея явния метод на Ойлер. Нека y_h е вектора приближение. Имаме

$$\frac{y_{i+1}-y_i}{h}=f(x_i,y_i)$$

От друга страна, от дефиницията за локална грешка на апроксимация имаме

$$\frac{u_{i+1}-u_i}{h}=f(x_i,u_i)+\Psi_i+\delta_i$$

Тук δ_i е грешка от закръгляне (техническа грешка).

Тогава за грешката на апроксимация $\{z_i\}_{i=0,1,\dots}$ имаме

$$\frac{z_{i+1}-z_i}{h} = f(x_i, u_i) - f(x_i, y_i) + \Psi_i + \delta_i$$

Да представим Z_{i+1} чрез останалите и да оценим модула му:

$$|z_{i+1}| \le |z_i| + h|f(x_i, u_i) - f(x_i, y_i)| + h|\Psi_i| + h|\delta_i|, A_i = h \lor \Psi_i \lor + h \lor \delta_i \lor \delta_i$$

От условието на теорема 1.1 f е Липшицова по и и следователно имаме оценка $|z_{i+1}| \le |z_i| + hK|u_i - y_i| + A_i = |z_i| + hK|z_i| + A_i$

Прилагаме това неравенство последователно получаваме

$$i z_{i+1} \lor \le (1 + hK) \lor z_i \lor + A_i \le (1 + hK) ((1 + hK) \lor z_{i-1} \lor + A_{i-1}) + A_i \le ...$$

Получаваме

$$\&\, Z_{{}_{i+1}} \lor \le \! \big(1 \! + hK\big)^{i+1} \lor Z_0 \lor + \sum_{j=0}^i \big(1 \! + hK\big)^j A_j$$

Нека $|\Psi_i| \leq \Psi$, $|\delta_i| \leq \delta = \+i \lor A_i \lor \leq h (\Psi + \delta)$. Тогава имаме

$$\& z_{i+1} \lor \le (1 + hK)^{i+1} \lor z_0 \lor + (h(\Psi + \delta)) \frac{(1 + hK)^{i+1} - 1}{1 - 1 - hK}$$

Да припомним неравенството на Бернули : $\mathscr{C}^{x} \ge (1+x)$

$$\label{eq:continuous_eq} \mathcal{L} \, z_{\mathit{i+1}} \vee \leq \! \boldsymbol{\mathcal{Q}}^{\mathit{hK}(\mathit{i+1})} \! \vee z_{0} \vee \frac{+ \left(\, \boldsymbol{\varPsi} \! + \! \boldsymbol{\delta} \right)}{K} \left(\, \boldsymbol{\mathcal{Q}}^{\mathit{hK}(\mathit{i+1})} \! - \! 1 \right)$$

Ho $h(i+1)=x_{i+1}-x_0$

$$\mathbf{i}_{Z_{i+1}} \vee \leq \mathbf{e}^{K(x_{i+1}-x_0)} \vee z_0 \vee \frac{\mathbf{+} \left(\mathbf{\Psi} + \mathbf{\delta}\right)}{K} \left(\mathbf{e}^{K(x_{i+1}-x_0)} - 1\right)$$

Сега е ясно, че ако:

1)
$$u_0 = y_0$$
 , t.e. $z_0 = 0$ umame $i_i z_{i+1} \lor \le \frac{Mh + \delta}{K} (\mathscr{Q}^{K(x_{i+1} - x_0)} - 1)$

Ако няма грешка от закръгляване, т.е. $\delta=0$, имаме, че при h->0 $\dot{c}z_{i+1}\lor\dot{c}$ ->0

Тогава метода е сходящ

2)
$$u_0 \neq y_0$$
 , $\delta \neq 0$ – грешката расте експоненциално.

Неявен метод на Ойлер

Да интегрираме уравнението u'(x) = f(x, u(x)) в интервала $\begin{bmatrix} X_i, X_{i+1} \end{bmatrix}$ подобно както при явния метод на Ойлер

$$\int_{x_{i}}^{x_{i+1}} u'(x) dx = \int_{x_{i}}^{x_{i+1}} f(x, u(x)) dx$$

Нека вместо формулата на левите правоъгълници използваме формулата на десните правоъгълници. По този начин получаваме неявната схема на Ойлер:

$$y_{i+1} - y_i = hf(x_{i+1}, y_{i+1})$$

В общия случай това уравнение не може да се реши спрямо y_{i+1} . Да пресметнем локалната грешка на апроксимация:

$$\Psi_{i} = \frac{u_{i+1} - u_{i}}{h} - f(x_{i+1}, y_{i+1}) = 0$$

$$i \frac{u_{i+1} - u_i}{h} - u'_{i+1} = \frac{1}{h} (u_i + \frac{h}{1!} u'_i + \frac{h^2}{2!} u''_i (x_i + \theta_1 h) - u_i) - (u'_i + \frac{h}{1!} u''_i (x_i + \theta_2 h))$$

$$\Psi_i = \frac{h}{2} u''(x_i + \theta_1 h) - \frac{h}{1!} u''(x_i + \theta_2 h) = O(h)$$

Устойчивост и монотоноост на неявния метод на Ойлер

Да приложим неявния метод на Ойлер към моделната задача при $^{\lambda < 0}$:

$$\frac{y_{i+1} - y_i}{h} = \lambda y_{i+1}$$

$$y_{i+1} = \frac{1}{1-\lambda h} y_i = ... = \frac{1}{(1-\lambda h)^{i+1}} y_0$$

Ще имаме устойчивост ако $\frac{1}{1-\lambda} \frac{1}{h} \vee \frac{1}{1}$. Но понеже $\lambda < 0$ това е винаги изпълнено.

 $\frac{1}{1-\lambda\,h}$ >0, т.е. това, което получаваме от неявността е безусловна устойчивост и монотонност.

Подробен метод на Ойлер

Да интегрираме уравнението u'(x) = f(x, u(x)) в интервала $\begin{bmatrix} X_i, X_{i+1} \end{bmatrix}$ подобно както при явния метод на Ойлер

$$\int_{x_{i}}^{x_{i+1}} u'(x) \, dx = \int_{x_{i}}^{x_{i+1}} f(x, u(x)) \, dx$$

За апроксимация на дясната част използваме формулата на трапците . По този начин получаваме подробната схема на Ойлер :

$$y_{i+1} - y_i = \frac{h}{2} [f(x_{i+1}, y_{i+1}) + f(x_i, y_i)]$$

Тази схема също е неявна . Да проверим локалната грешка на апроксимация.

$$\begin{split} & \Psi_{i} = \frac{u_{i+1} - u_{i}}{h} - \frac{1}{2} [f(x_{i+1}, u_{i+1}) + f(x_{i}, u_{i})] = \frac{u_{i+1} - u_{i}}{h} - \frac{1}{2} [u_{i+1}' + u_{i}'] = \mathbf{i} \\ & \mathbf{i} \cdot \frac{1}{h} \left(u_{i} + \frac{h}{1!} u_{i}' + \frac{h^{2}}{2!} u_{i}''(x_{i}) + \frac{h^{3}}{3!} u'''(x_{i} + \theta_{1} h) - u_{i} \right) - \frac{1}{2} \left(u_{i}' + \frac{h}{1!} u_{i}''(x_{i}) + \frac{h^{2}}{2!} u_{i}'''(x_{i} + \theta_{2} h) + u_{i}' \right) = \mathbf{i} \\ & \frac{h^{2}}{6} u'''(x_{i} + \theta_{1} h) + \frac{h^{2}}{4} u_{i}'''(x_{i} + \theta_{2} h) = O \quad (h^{2}) \end{split}$$

Устойчивост и монотоноост на подробен метод на Ойлер

Да приложим неявния метод на Ойлер към моделната задача при $^{\lambda < 0}$:

$$rac{y_{i+1}-y_i}{h}$$
 $=$ $rac{\lambda}{2}(y_{i+1}$ + $y_i)$, следователно y_{i+1} $=$ $rac{2+h\lambda}{2-h\lambda}y_i$

За устойчивост имаме условие $i\frac{2+h\lambda}{2-h\lambda}\lor i1$, което е $-1<\frac{2+h\lambda}{2-h\lambda}<1$, което е изпълнено за всяко h>0.

Монотонност има при
$$\frac{2+h\lambda}{2-h\lambda} \ge 0 \Leftrightarrow h < \frac{-2}{\lambda}$$

4.

Методът на Рунге- Кута спада към явните едностъпкови методи за решаване на ОДУ от вида

(1)
$$u'(x) = f(x, u(x)), \quad \forall x \in \mathcal{U}$$
$$u(x_0) = u_0$$

или системи от ОДУ. Нека първо разгледаме уравнението (1) . Да въведем мрежа в $\frac{U}{U}$ и нека апроксимираме U'(x) чрез израза $\frac{y_{i+1}-y_i}{h}$. Същността на методът на Рунге- Кура

се състои в апроксимацията на f(x,u(x)), а именно с израз от вида $\frac{1}{h}\sum_{j=1}^s k_j p_j$. И ака имаме диференчното уравнение

$$(PK)rac{y_{i+1}\!-\!y_i}{h}\!=\!rac{1}{h}\!\sum_{i=1}^s k_i p_i$$
 , където

$$k_1 = hf(x_i, y_i)$$

$$j \ge 2 = i k_j = hf(x_i + \alpha_j h, y_i + \beta_{j1} k_1 + ... + \beta_{j,j-1} k_{j-1})$$

Казваме, че (РК) дефинира s- степенен явен метод на Рунге Кута. За параметри имаме $\{p_j\}_{j=1}^s$, $\{\alpha_j\}_{j=1}^s$, $\{\beta_{j,l}\}_{j=2,l=1}^{s,j-1}$. Тези параметри са свободни и ще ги избираме така, че да увеличим максимално порядъка на локалната грешка на апроксимация $\psi = \frac{u_{j+1} - u_i}{s} - \frac{1}{s} \sum_{k=0}^s k \cdot n$.

$$\Psi_{i} = \frac{u_{i+1} - u_{i}}{h} - \frac{1}{h} \sum_{j=1}^{s} k_{j} p_{j}$$

В общия случай системита за тези коефициенти, които се получават са нелинейни и нямат единствено решение.

Метод на Рунге Кута от степен 1 (s=1)

Нека s=1. Метода на Рунге Кута има вида:

$$\frac{y_{i+1} - y_i}{h} = \frac{1}{h} k_1 p_1 \quad , \qquad k_1 = hf(x_i, y_i)$$

Да пресметнем локалната грешка на апроксимация:

$$\Psi_{i} = \frac{u_{i+1} - u_{i}}{h} - \frac{1}{h} hf(x_{i}, y_{i}) p_{1} = \frac{u_{i} + hu_{i}' + \frac{h^{2}}{2} u_{i}'' + O(h^{3}) - u_{i}}{h} - p_{i}u_{i}' = (1 - p_{i}) u_{i}' + \frac{h}{2} u_{i}'' + O(h^{2})$$

Ясно е, че не можем да постигнем точност повече от O(h). За да я постигнем НДУ е

$$1-p_i=0$$
 , т.е. $p_i=1$. Тогава схемата на апроксимация има вида $\frac{y_{i+1}-y_i}{h}=f(x_i,y_i)$,

което е Явния метод на Ойлер.

Метод на Рунге Кута от степен 2 (s=2)

Нека s=1. Метода на Рунге Кута има вида:

$$\frac{y_{{\scriptscriptstyle i+1}}\!-\!y_{{\scriptscriptstyle i}}}{h}\!=\!\frac{1}{h}(k_{{\scriptscriptstyle 1}}p_{{\scriptscriptstyle 1}}\!+\!k_{{\scriptscriptstyle 2}}p_{{\scriptscriptstyle 2}})$$

$$k_1 = hf(x_i, y_i)$$

$$k_2 = hf(x_i + \alpha_2 h, y_i + \beta_{21} k_1)$$

Също извоад на ЛГА не е нужен!

Имаме 4 степени на свобода, които ще определим от условието за максимална ЛГА:

$$\varPsi_{i} = \frac{u_{i+1} - u_{i}}{h} - \frac{1}{h} (hf(x_{i}, y_{i})p_{1} + hf(x_{i} + \alpha_{2}h, y_{i} + \beta_{21}k_{1})p_{2})$$

$$\Psi_{i} = rac{u_{i} + hu_{i}^{'} + rac{h^{2}}{2}u_{i}^{''} + O(h^{3}) - u_{i}}{h} - p_{1}u_{i}^{'} - p_{2}f(x_{i} + \alpha_{2}h, y_{i} + eta_{21}k_{1})$$
 Ще развием

 $f(x_i+lpha_2\,h,y_i+eta_{21}\,k_1)$ по формулата на Тейлор около (${}^{X_i,\,y_i\.\iota}$:

$$f(x_{i} + \alpha_{2} h, y_{i} + \beta_{21} k_{1}) = f(x_{i}, y_{i}) + \frac{\alpha_{2} h}{1!} (\frac{\partial}{\partial x} f)_{\iota(x_{i}, y_{i})} + \frac{\beta_{21} k_{1}}{1!} (\frac{\partial}{\partial u} f)_{\iota(x_{i}, y_{i})} + O(h^{2})$$

Получаваме
$$\Psi_{i} = (1 - p_{1}) u_{i}^{'} + \frac{h}{2} u_{i}^{''} - p_{2} \alpha_{2} h \left(\frac{\partial}{\partial x} f\right)_{\iota(x_{i}, y_{i})} - p_{2} \beta_{21} u_{i}^{'} \left(\frac{\partial}{\partial u} f\right)_{\iota(x_{p}, y_{i})} + O(h^{2})$$

Трябва да пресметнем $u_{i}^{''}$: Да диференцираме (1) : $u^{\,\prime\prime}(x) = \frac{\partial f}{\partial x} + \frac{\partial f}{\partial u} u^{\,\prime}$. Подреждаме

събираменте в ЛГА по $\{f, \frac{\partial}{\partial x}f, \frac{\partial}{\partial u}f\}$, след заместване на $u_i = f, u_i = \frac{\partial f}{\partial x} + \frac{\partial f}{\partial u}f$:

$$\Psi_{i} = (1 - p_{1} - p_{2}) f(x_{i}, y_{i}) + \left[h(\frac{1}{2} - p_{2}\alpha_{2})\right] \frac{\partial f}{\partial x}(x_{i}, y_{i}) + \left[hf(x_{i}, y_{i})(\frac{1}{2} - p_{2}\beta_{21})\right] \frac{\partial f}{\partial u}(x_{i}, y_{i}) + \left[hf(x_{i}, y_{i})(\frac{1}{2} - p_{2}\beta_{21})\right] \frac{\partial f}{\partial u}(x_{i}, y_{i}) + \left[hf(x_{i}, y_{i})(\frac{1}{2} - p_{2}\beta_{21})\right] \frac{\partial f}{\partial u}(x_{i}, y_{i}) + \left[hf(x_{i}, y_{i})(\frac{1}{2} - p_{2}\beta_{21})\right] \frac{\partial f}{\partial u}(x_{i}, y_{i}) + \left[hf(x_{i}, y_{i})(\frac{1}{2} - p_{2}\beta_{21})\right] \frac{\partial f}{\partial u}(x_{i}, y_{i}) + \left[hf(x_{i}, y_{i})(\frac{1}{2} - p_{2}\beta_{21})\right] \frac{\partial f}{\partial u}(x_{i}, y_{i}) + \left[hf(x_{i}, y_{i})(\frac{1}{2} - p_{2}\beta_{21})\right] \frac{\partial f}{\partial u}(x_{i}, y_{i}) + \left[hf(x_{i}, y_{i})(\frac{1}{2} - p_{2}\beta_{21})\right] \frac{\partial f}{\partial u}(x_{i}, y_{i}) + \left[hf(x_{i}, y_{i})(\frac{1}{2} - p_{2}\beta_{21})\right] \frac{\partial f}{\partial u}(x_{i}, y_{i}) + \left[hf(x_{i}, y_{i})(\frac{1}{2} - p_{2}\beta_{21})\right] \frac{\partial f}{\partial u}(x_{i}, y_{i}) + \left[hf(x_{i}, y_{i})(\frac{1}{2} - p_{2}\beta_{21})\right] \frac{\partial f}{\partial u}(x_{i}, y_{i}) + \left[hf(x_{i}, y_{i})(\frac{1}{2} - p_{2}\beta_{21})\right] \frac{\partial f}{\partial u}(x_{i}, y_{i}) + \left[hf(x_{i}, y_{i})(\frac{1}{2} - p_{2}\beta_{21})\right] \frac{\partial f}{\partial u}(x_{i}, y_{i}) + \left[hf(x_{i}, y_{i})(\frac{1}{2} - p_{2}\beta_{21})\right] \frac{\partial f}{\partial u}(x_{i}, y_{i}) + \left[hf(x_{i}, y_{i})(\frac{1}{2} - p_{2}\beta_{21})\right] \frac{\partial f}{\partial u}(x_{i}, y_{i}) + \left[hf(x_{i}, y_{i})(\frac{1}{2} - p_{2}\beta_{21})\right] \frac{\partial f}{\partial u}(x_{i}, y_{i}) + \left[hf(x_{i}, y_{i})(\frac{1}{2} - p_{2}\beta_{21})\right] \frac{\partial f}{\partial u}(x_{i}, y_{i}) + \left[hf(x_{i}, y_{i})(\frac{1}{2} - p_{2}\beta_{21})\right] \frac{\partial f}{\partial u}(x_{i}, y_{i}) + \left[hf(x_{i}, y_{i})(\frac{1}{2} - p_{2}\beta_{21})\right] \frac{\partial f}{\partial u}(x_{i}, y_{i}) + \left[hf(x_{i}, y_{i})(\frac{1}{2} - p_{2}\beta_{21})\right] \frac{\partial f}{\partial u}(x_{i}, y_{i}) + \left[hf(x_{i}, y_{i})(\frac{1}{2} - p_{2}\beta_{21})\right] \frac{\partial f}{\partial u}(x_{i}, y_{i}) + \left[hf(x_{i}, y_{i})(\frac{1}{2} - p_{2}\beta_{21})\right] \frac{\partial f}{\partial u}(x_{i}, y_{i}) + \left[hf(x_{i}, y_{i})(\frac{1}{2} - p_{2}\beta_{21})\right] \frac{\partial f}{\partial u}(x_{i}, y_{i}) + \left[hf(x_{i}, y_{i})(\frac{1}{2} - p_{2}\beta_{21})\right] \frac{\partial f}{\partial u}(x_{i}, y_{i}) + \left[hf(x_{i}, y_{i})(\frac{1}{2} - p_{2}\beta_{21})\right] \frac{\partial f}{\partial u}(x_{i}, y_{i}) + \left[hf(x_{i}, y_{i})(\frac{1}{2} - p_{2}\beta_{21})\right] \frac{\partial f}{\partial u}(x_{i}, y_{i}) + \left[hf(x_{i}, y_{i})(\frac{1}{2} - p_{2}\beta_{21})\right] \frac{\partial f}{\partial u}(x_{i}, y_{i})$$

$$O(h^2)$$

Ако нулираме висчки тези събираеми, ще имаме ЛГА от 2ри порядък. Това е еквивалентно на системата

$$p_1 + p_2 = 1$$

$$p_2 \alpha_2 = 0.5$$

$$p_2 \beta_{21} = 0.5$$

Тема 14

Тази система няма единствено решение- напротив, при $p_2 \neq 0$ има едномерно пространство от решения, а при $p_2 = 0$ — двумерно. Последния случай, обаче отговаря на метода на Рунге Кута от първа степен и го отхвърляме.

Три стандартни решения, които се прилагат на практика са:

- $(p_1, p_2, \alpha_2, \beta_{21}) = (0.5, 0.5, 1, 1)$
- $(p_1, p_2, \alpha_2, \beta_{21}) = (0,1,0.5,0.5)$
- $(p_1, p_2, \alpha_2, \beta_{21}) = (0.25, 0.75, 2/3, 2/3)$

Всяко от тях поражда съответен метод на Рунге Кута от 2 степен с ЛГА $O(h^2)$.

Заб. Извода на ЛГА, който направихме не показва, че ЛГА не е по- висока. Оказва се, обаче, че при решенията на тази система НЕ дават по-голяма точност от $O(h^2)$.

Метод на Рунге Кута от по- висока степен (s=3,4,5,6)

Ще изброим няколко стандартни методи на РК за тези степени и ще посочим ЛГА

•
$$s=3$$
, $\Psi_i = O(h^3)$

$$\frac{y_{i+1} - y_i}{h} = \frac{1}{6 h} (k_1 + 4 k_2 + k_3)$$

$$k_1 = hf(x_i, y_i)$$

$$k_2 = hf\left(x_i + \frac{h}{2}, y_i + \frac{k_1}{2}\right)$$

$$k_3 = hf(x_i + h, y_i - k_1 + 2 k_2)$$

$$\bullet$$
 S=4, $\Psi_i = O(h^4)$

$$\frac{y_{i+1} - y_i}{h} = \frac{1}{6 h} (k_1 + 2 k_2 + 2 k_3 + k_4)$$

$$k_1 = hf(x_i, y_i)$$

$$k_2 = hf\left(x_i + \frac{h}{2}, y_i + \frac{k_1}{2}\right)$$

$$k_3 = hf\left(x_1 + \frac{h}{2}, y_1 + \frac{k_2}{2}\right)$$

$$k_4 = hf(x_i + h, y_i + k_3)$$

• s=5, $\Psi_i = O(h^4)$ (получава се изоставане)

• s=6, $\Psi_i=O(h^5)$

Метод на Рунге за практическа оценка на грешката. – да се види и в учебника за евентуална корекция

Нека имаме някаквъв числен метод със скорост на сходимост s, т.е.

$$u(x) = y_h(x) + O(h^s) \approx y_h(x) + C(h)h^s$$

<u>1сл. Нека е известно истинското решение и и s .</u>

Да предположим, че C(h) не се изменя много при промяна на стъпката. Нека

пресметнем решението за стъпка h и $\frac{h}{2}$ и знаем решенеито u. Имаме

$$u(x) = y_h(x) + Ch^s$$

$$u(x) = y_{\frac{h}{2}}(x) + C\frac{h^{s}}{2^{s}}$$

Да извадим двете уравнения и да решим спрямо С h^s :

$$0 = y_h(x) - y_{\frac{h}{2}}(x) = Ch^{s}(1 - 2^{-s}) \Leftrightarrow Ch^{s} = \frac{y_h(x) - y_{\frac{h}{2}}(x)}{(1 - 2^{-s})}$$

От последния израз можем да си пресметнем и да проверим поведението на **числения метод- наистина ли се постига такава ЛГА?** Нещо повече , използвайки това равенство получаваме, че

$$u(x) = y_h(x) + Ch^s = y_h(x) + \frac{y_h(x) - y_h(x)}{(-1+2^s)} 2^s$$

е подобрение на приближеното решение (без обяснене защо)

<u>2сл. Нека е известно истинското решение и и s е известно само за някаква моделна задача</u> Да предположим, че имаме ред s.

$$u(x) = y_h(x) + Ch^s$$

$$u(x) = y_{\frac{h}{2}}(x) + C\frac{h^{s}}{2^{s}}$$

Toect
$$2^{s} = \frac{u(x) - y_{h}(x)}{u(x) - y_{h}(x)} \Leftrightarrow s = \frac{\ln\left(\frac{u(x) - y_{h}(x)}{u(x) - y_{h}(x)}\right)}{\ln 2}$$

Какво правим? Пресмятаме израза $\frac{\ln(\frac{u(x)-y_{h}(x)}{u(x)-y_{h}(x)})}{\frac{1}{2}}$ във всички точки от $\frac{\ln 2}{\ln 2}$

мрежата . Ако в голям брой от тях имаме $\frac{\ln(\frac{u\ (x)-y_h(x)}{u\ (x)-y_h(x)})}{\ln 2} \ _{\alpha}$, то най-

вероятно реда на сходимост е α .

<u>Зсл. Не е известно нито истинското решение u , нито s.</u> Да вземем приближенията $u(x) = y_b(x) + Ch^s$

$$u(x) = y_{\underline{h}}(x) + C \frac{h^s}{2^s}$$

$$u(x) = y_{\frac{h}{4}}(x) + C\frac{h^{s}}{4^{s}}$$

Да извадим третото от второто и второто от първото:

$$y_h(x) - y_{\frac{h}{2}}(x) = Ch^s(1 - 2^{-s})$$

$$y_{\frac{h}{2}}(x) - y_{\frac{h}{4}}(x) = Ch^{s}2^{-s}(1 - 2^{-s})$$

От тук изразяваме s като разделим двете равенства:

$$2^{s} = \frac{Ch^{s}(1-2^{-s})}{Ch^{s}2^{-s}(1-2^{-s})} = \frac{y_{h}(x) - y_{h}(x)}{y_{h}(x) - y_{h}(x)} < \varepsilon > s = \ln\left(\frac{y_{h}(x) - y_{h}(x)}{y_{h}(x) - y_{h}(x)}\right) / \ln 2$$

Какво правим? 1 $n(\frac{y_h(x)-y_h(x)}{y_h(x)-y_h(x)})/\ln 2$ α , => най- вероятно реда на сходимост е α .

Тема 14

Забележка: В темата има все още доста неточности!

Литература:

- [1] Числени методи за ДУ, Т. Черногорова
- [2] Записки от лекциите по ЧМДУ, спец. математика, Т. Черногорова

Темата е разработена от Велико Дончев, уч. 2011/2012 г.