

This Page Is Inserted by IFW Operations
and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

**As rescanning documents *will not* correct images,
please do not report the images to the
Image Problem Mailbox.**

⑯

Int. Cl. 3:

C 09 D 3/64

⑰ BUNDESREPUBLIK DEUTSCHLAND

DE 29 28 552 A 1

⑯

Offenlegungsschrift

29 28 552

⑰

Aktenzeichen:

P 29 28 552.7

⑰

Anmeldetag:

14. 7. 79

⑰

Offenlegungstag:

29. 1. 81

⑲

Unionspriorität:

⑯ ⑰ ⑱

⑳

Bezeichnung:

Wässrige Dispersionen urethanmodifizierter Polyester, Verfahren zu ihrer Herstellung und ihre Verwendung zur Herstellung von Lacken

㉑

Anmelder:

Bayer AG, 5090 Leverkusen

㉒

Erfinder:

Zabrocki, Karl, Dipl.-Chem. Dr., 4044 Büttgen;
Bottenbruch, Ludwig, Dipl.-Chem. Dr., 4150 Krefeld;
Weider, Franz, Dipl.-Chem. Dr., 5090 Leverkusen

DE 29 28 552 A 1

- 38 -
2928552

Patentansprüche

1. Wässrige Dispersionen von urethanmodifizierten
Polyestern, dadurch gekennzeichnet, daß sie aus

I. 25 - 60 Gew.-% urethanmodifizierten Oligo-
5 und/oder Polyestern mit Molekulargewichten
< 5000 und Säurezahlen von 10 - 40, und einem
Gehalt von < 1 Gew.-%, bezogen auf I, Harn-
stoffgruppen, wobei die Substanzen I durch
Umsetzung von urethanmodifizierten Oli-
10 go- und/oder Polyestern mit Säurezahlen < 10
und OH-Zahlen von 30 - 500 mit Di- und/oder
Tricarbonsäureanhydriden erhältlich sind,

15 IIa) 0,02 bis 4 Gew.-% mindestens eines nicht-
ionischen Emulgators mit einem berechneten
HLB-Wert von 10 bis 20, vorzugsweise ent-
sprechend der Formel

worin

R einen Alkylrest mit 12 bis 30 C-Atomen
20 oder

R¹ einen Alkylrest mit 4 bis 20 C-Atomen
oder

Le A 19 730

030065/0387

ORIGINAL INSPECTED

- 24 - 2

2928552

R² ein Wasserstoffatom, einen Methyl- oder Phenylrest,

5 R³ eine Methylgruppe, einen Phenylrest oder ein Wasserstoffatom,

R⁴ eine Methylgruppe oder ein Wasserstoffatom und

n eine Zahl von 10 bis 40, vorzugsweise 15 bis 25,

10 x eine Zahl von 1 bis 3,5, vorzugsweise 1 - 3,0, bedeuten,

15 IIb) 0,02 bis 4 Gew.-% mindestens eines polyether-modifizierten Polyester-Emulgatorharzes, das 10 bis 50, vorzugsweise 10 bis 20 Gew.-%, bezogen auf Emulgatorharz IIb, einkondensierte Polyalkylenglykolreste, vorzugsweise über Urethangruppen mit dem Polyester-Emulgatorharz-Molekül verbunden, enthält und

20 III 32 bis 75 Gew.-% wässriger Phase, die 30 bis 150 % der für eine vollkommene Neutralisation der Carboxylgruppen der Polyester I und IIb) ausreichende Alkali-, Ammoniak- oder Aminmenge enthält,

wobei sich die Prozentangaben der Komponenten I, IIa, IIb und III auf die Summe der Komponenten I - III beziehen,

bestehen.

5 2. Dispersionen nach Anspruch 1, dadurch gekennzeichnet, daß die urethanmodifizierten Oligo- und/oder Polyester I Molekulargewichte < 4000 besitzen.

10 3. Dispersionen nach Ansprüchen 1 und 2, dadurch gekennzeichnet, daß die urethanmodifizierten Oligo- und/oder Polyester I OH-Zahlen von 50 - 280 besitzen.

15 4. Verfahren zur Herstellung von Dispersionen gemäß Ansprüchen 1 - 3, dadurch gekennzeichnet, daß man I in Gegenwart von IIa und IIb in III dispergiert.

BAYER AKTIENGESELLSCHAFT 5090 Leverkusen, Bayerwerk
Zentralbereich
Patente, Marken und Lizenzen Pv/kl-c / VS

13. Juli 1979

Wässrige Dispersionen urethanmodifizierter Polyester,
Verfahren zu ihrer Herstellung und ihre Verwendung
zur Herstellung von Lacken

Die vorliegende Erfindung betrifft wässrige Dispersionen von urethanmodifizierten Polyestern, ein Verfahren zu ihrer Herstellung und ihre Verwendung zur Herstellung von Lacken.

5 Unter "wässrigen Dispersionen" werden im folgenden heterogene Systeme verstanden, die undurchsichtig sind und bei denen die organische Harzphase als Teilchen einer mittleren Größe von 50 - 5 000 nm in Wasser verteilt ist. Unter den Begriff "wässrige Dispersionen" fallen im folgenden also nicht jene Lösungen urethanmodifizierter Polyester, die durch neutralisierte Säuregruppen in wässriger Phase homogen verteilt sind und durchsichtige Lösungen bilden; derartige Harze besitzen in der Regel Säurezahlen > 40, werden in mit Wasser mischbaren organischen Lösungsmitteln vorgelöst und nach der Neutralisation mit Wasser zu homogenen, durchsichtigen Lösungen verdünnt.

10

15

Le A 19 730

030065/0387

Für den zunehmenden Einsatz wässriger Dispersionen von Lackbindemitteln sprechen hauptsächlich zwei Gründe:
Erstens besitzen sie den Vorteil, daß man auf die Verwendung organischer Lösungsmittel verzichten kann, und
zweitens neigen sie - anders als die aus organischer
Lösung applizierten Überzugsmittel - kaum zum Ablauen
an senkrechten Flächen (vgl. F. Armitage, L.G.
Trace, J. Oil and Colour Chemists Assoc. 1957, S. 860).

Es ist bereits bekannt, urethanmodifizierte Polyester
in wässriger Dispersion herzustellen und diese als
Beschichtungsmittel zu verwenden (D. Dieterich,
H. Reiff, Adv. in Urethane Science and Technology
4 (1976), 112 - 131). Nach dem besonders einfach
durchzuführenden Schmelzdispersierverfahren werden
entsprechend den in dieser Literaturstelle beschrie-
benen Herstellverfahren anionische oder kationische
Gruppen an die Polymerkette von Polyesterurethanen
geknüpft und diese Polyesterurethane anschließend un-
ter Salzbildung in der Wasserphase dispergiert. In
der Praxis haben sich anionische Systeme wegen ihrer
besseren Stabilität gegenüber Elektrolyten, Farbstof-
fen etc. besser bewährt. (A.P. Grekov, Sint. fiz. chim.
polimerov 21 (1977), 48 - 55).

Anionische dispergierbare Polyesterurethane lassen
sich gemäß D. Dieterich und H. Reiff dadurch
herstellen, daß man anionische, salzbildungsfä-
hige Gruppen tragende polyfunktionelle
Substanzen, z.B. Tri- und Tetracarbonsäuren,

carboxylmodifizierte Oligomere, Diaminosulfonsäuren bei der Isocyanatpolyadditionsreaktion in die Polymerkette einbaut. Bei diesem Reaktionsschritt besteht in hohem Maß die Gefahr von Nebenreaktionen, welche zur Schaumbildung, zu vernetzten Produktanteilen und somit zu unbrauchbaren Produkten führen. Die Umsetzung ist daher insbesondere bei großen Ansätzen nur schwer zu steuern. Außerdem lassen sich diese Reaktionen meist nur in Lösungsmitteln ausführen.

10

Die von D.Dieterich und H.Reiff beschriebenen Polyurethanionomeren enthalten aufgrund der Zusammensetzung der Ausgangsprodukte einen bestimmten Anteil Harnstoffgruppen und salzbildungsfähige Gruppen, was zwangsläufig die ausreichende Wasserfestigkeit und Wetterbeständigkeit daraus hergestellter Überzüge in Frage stellt.

15

Wie die Autoren beschrieben, führt die Vielzahl polarer Gruppen zu intermolekularer Wechselwirkung und Pseudogelbildung der Polyurethane (vor der Dispergierung).

20

Diese Schwierigkeiten werden gemäß DE-AS 1 237 306 durch die Herstellung anionischer Polyesterurethane aus hochmolekularen linearen, vorzugsweise aliphatischen Polyesterurethanen, die mit cyclischen, salzbildende Gruppen erzeugenden Verbindungen umgesetzt werden, umgangen. Mit Hilfe der dort beschriebenen Technik sind Polyesterurethane mit Molekulargewichten von 5000 bis 2 000 000 in wässriger Phase zu Produkten dispergierbar, welche sich auch zur Herstellung von

25

Le A 19 730

030065/0387

-X- 7- 2928552

Überzügen eignen. Lineare aliphatische Polyesterurethane besitzen als Überzüge den Nachteil ungenügender Härte und unzureichender Lösungsmittelbeständigkeit. Verwendet man als Basispolymer zur Herstellung der Polyesterurethane verzweigte und/oder aromatische Oligo- und Polyester, wie sie als Bindemittelbasis für den Lacksektor bekannt sind, so werden die damit hergestellten Polyesterurethane derartig hochviskos, daß sie nicht mehr unmittelbar aus der Schmelze, sondern nur noch unter Zusatz größerer Mengen Lösungsmittel dispergiert werden können.

Gegenstand der Erfindung sind wässrige Dispersionen von urethanmodifizierten Polyestern, dadurch gekennzeichnet, daß sie aus

I. 25 - 60 Gew.-% urethanmodifizierten Oligo- und/ oder Polyestern mit Molekulargewichten < 5000, vorzugsweise < 4000 und Säurezahlen von 10 - 40, vorzugsweise 10 - 30, und einem Gehalt von < 1, vorzugsweise unter 0,1, insbesondere unter 0,01, Gew.-%, bezogen auf I, Harnstoffgruppen, wobei die Substanzen I durch Umsetzung von urethanmodifizierten Oligo- und/oder Polyestern mit Säurezahlen < 10 und OH-Zahlen von 30 - 500, vorzugsweise 50 - 280, mit Di- und/oder Tricarbonsäureanhydriden, erhältlich sind,

IIa) 0,02 bis 4 Gew.-% eines nichtionischen Emulgators mit einem berechneten HLB-Wert von 10 bis 20, vorzugsweise entsprechend der Formel

Le A 19 730

030065/0387

- 5 - 8-

2928552

worin

R einen Alkylrest mit 12 bis 20 C-Atomen oder

R¹ einen Alkylrest mit 4 bis 20 C-Atomen oder

5

R² ein Wasserstoffatom, einen Methyl- oder Phenylrest,

R³ eine Methylgruppe, einen Phenylrest oder
ein Wasserstoffatom,

10

R⁴ eine Methylgruppe oder ein Wasserstoffatom
und

n eine Zahl von 10 bis 40, vorzugsweise 15
bis 25,

x eine Zahl von 1 bis 3,5, vorzugsweise 1-3,0 bedeuten,

15

IIB) 0,02 bis 4 Gew.-% mindestens eines polyethermodifizierten Polyester-Emulgatorharzes, das 10 bis 50, vorzugsweise 10 bis 20 Gew.-%, bezogen auf Emulgatorharz II b, einkondensierte Polyalkylenglykolreste, vorzugsweise über Urethangruppen mit dem Polyester-Emulgatorharz-Molekül verbunden, enthält und

20

Le A 19 730

030065/0387

-8-9-

2928552

III. 32 bis 75 Gew.-% wässriger Phase, die 30 bis 150 % der für eine vollkommene Neutralisation der Carboxylgruppen der Polyester I und II b) ausreichende Alkali-, Ammoniak- oder Aminmenge enthält,
5 wobei sich die Prozentangaben der Komponenten I, IIa, IIb und III auf die Summe der Komponenten I - III beziehen,
bestehen.

Es war überraschend, daß es möglich war, erfundsgemäße Dispersionen herzustellen, welche sich einerseits trotz Verzweigungen des Oligo- bzw. Polyesterharzes aus der Schmelze dispergieren und gleichzeitig andererseits trotz ihres relativ niedrigen Molekulargewichts zu Überzügen mit hervorragender Qualität verarbeiten lassen. Die erfundsgemäßen Dispersionen zeichnen sich überraschenderweise durch kleine Teilchengrößen der dispergierten Phase sowie durch gute Lagerstabilität aus. Die daraus herstellbaren Überzüge weisen ein ausgezeichnetes
10 Härte/Elastizitäts-Verhältnis, hohen Glanz sowie gute Haftung auf.
15

Die erfundsgemäß zu dispergierenden urethanmodifizierten Polyester kann man durch Umsetzung von Oligo- und/oder Polyestern und Polyisocyanaten herstellen, wonach das entstandene Additionsprodukt mit Carboxylgruppen bildenden Substanzen, vorzugsweise Dicarbonsäureanhydriden, "aufgesäuert" wird. Die Oligo- und Polyester, im folgenden als Vorkondensate bezeichnet, kann
20 man nach bekannten Verfahren aus Alkoholen und Carbon-
25

Le A 19-730

030065/0387

- 10 -

2928552

säuren herstellen, was z.B. bei D.H. Solomon: The Chemistry of Organic Filmformers, S. 75 - 101, John Wiley & Sons Inc., New York, 1967, beschrieben wird.

5 Für die Synthese der Vorkondensate bevorzugte Alkohole sind aliphatische, cycloaliphatische und/oder araliphatische Alkohole mit 1 bis 6, vorzugsweise 2 bis 4, an nichtaromatische C-Atome gebundenen OH-Gruppen und 1 bis 24 C-Atomen pro Molekül,
10 z.B. Glykole wie Ethylenglykol, Propylenglykol, Butandiole, Neopentylglykol, Trimethylpentandiol-1,3, Hexandiole; Etheralkohole wie Di- und Triethylenglykole; oxethylierte Bisphenole mit 2 Alkylenoxidresten pro Molekül; perhydrierte Bisphenole; ferner
15 Trimethylolethan, Trimethylolpropan, Trimethylolhexan, Glycerin, Pentaerythrit, Dipentaerythrit, Dimethylolcyclohexan, Mannit und Sorbit; einwertige, kettenabbrechende Alkohole wie Methanol, Propanol, Butanol, Cyclohexanol, 2-Ethyl-hexanol und
20 Benzylalkohol.

Besonders bevorzugte Alkohole sind Neopentylglykol, Trimethylolpropan, Dimethylolcyclohexan und Perhydabisphenol.

25 Die Vorkondensate können bis zu 15 Gew.-%, bezogen auf das Vorkondensat, einwertige Alkoholreste eingekondensiert enthalten.

Le A 19 730

030065/0387

Für die Synthese der Vorkondensate bevorzugte Säurekomponenten sind aliphatische, cycloaliphatische und/oder aromatische mehrbasische Carbonsäuren, vorzugsweise Di- und Tricarbonsäuren, mit 4 bis 12 C-Atomen pro Molekül oder deren verestigungsfähige Derivate (z.B. Anhydride oder Ester), z.B. Phthalsäureanhydrid, Isophthalsäure, Terephthalsäure, Tetrahydro- und Hexahydrophthalsäureanhydrid, Trimellithsäureanhydrid, Pyromellithsäureanhydrid, Maleinsäureanhydrid, Fumarsäure, Adipinsäure, Glutarsäure und Bernsteinsäure, Azelainsäure, Endomethylentetrahydrophthalsäure, ferner halogenierte Säuren wie Chlorphthalsäuren und Hexachlor-endomethylentetrahydrophthalsäure.

Die Vorkondensate können allein aus Polycarbonsäuren und mehrwertigen Alkoholen aufgebaut werden. Es ist aber auch möglich, sie durch Einkondensation von Monocarbonsäuren zu modifizieren.

Für die Herstellung der Vorkondensate bevorzugte Monocarbonsäuren sind aliphatische, cycloaliphatische und/oder aromatische Monocarbonsäuren mit 6 bis 35 C-Atomen pro Molekül wie Benzoësäure, Butylbenzoësäure, Tolylsäure, Hexahydrobenzoësäure, Abietinsäure, Milchsäure sowie Fettsäuren, deren Mischungen und Ester derselben wie Leinöl, Sojaöl, Holzöl, Saffloröl, Ricinusöl, Baumwollsaatöl, Erdnußöl, Tallölfettsäure, Leinölfettsäure, Sojaöl-, Holzöl-, Saffloröl- und Ricinenfettsäure und aus

~~-8-~~ 12-

2928552

natürlichen, ungesättigten Ölen oder Fettsäuren durch Konjugierung oder Isomerisierung gewonnene Produkte; bevorzugte gesättigte Fettsäuren sind beispielsweise Cocosfettsäuren, α -Ethylhexansäure, Isononansäure und lineare C_{16} - C_{18} -Monocarbon-säuren.

Ölmodifizierte Vorkondensate aus gleichen Rohstoffen wie Alkydharze führen im Rahmen der Erfindung zu besonders füllkräftigen Überzugsmitteln. Besonders bevorzugte Ölmodifizierte Vorkondensate sind solche mit Ölgehalten von 20 bis 50, vorzugsweise 25 bis 40 Gew.-%, berechnet als Triglycerid und bezogen auf Vorkondensat.

Vorkondensate für urethanmodifizierte Polyester-dispersionen, die zur Herstellung ofentrockener Lacke dienen, kommen in der Regel mit Ölgehalten von 0 bis 45 Gew.-% aus. Hohe Gehalte aromatischer Bestandteile der Vorkondensate verleihen dem Lacküberzug besondere Härte, hohe Gehalte aliphatischer Bestandteile der Vorkondensate geben ihm gute Elastizität.

Für die Herstellung lufttrocknender Lackbindemittel auf der erfindungsgemäßen Basis verwendet man in der Regel Vorkondensate mit Gehalten an trockenen Ölen zwischen 15 und 70, vorzugsweise 45 und 65 Gew.-%, bezogen auf Vorkondensat.

Le A 19 730

030065/0387

Die Vorkondensate lassen sich einstufig oder in mehreren Stufen herstellen, wobei eine Stufe beispielsweise ein separater Veresterungsschritt oder eine Ölverkochung sein kann. Das als Zahlenmittel bestimmte
5 Molekulargewicht des Vorkondensats beträgt 150 ~ 4500, vorzugsweise 250 bis 2500, bestimmt durch Dampfdruckosmometrie in Dioxan und Aceton, wobei bei differierenden Wertem der niedrigere als korrekt angesehen wird.

Die Auswahl von Art und Menge der einzelnen zum Vor-
10 kondensat zu kondensierenden Rohstoffe richtet sich nach dem gewünschten Molekulargewicht und nach dem Einsatzgebiet. Die Zusammenhänge zwischen Molekulargewicht und Rohstoffmenge sind bei U. Holfort, Farbe und Lack 68 (1962), S. 513 bis 517, s. 598 bis 607,
15 eingehend beschrieben.

Die Herstellung der Vorkondensate kann nach bekannten Verfahren (vgl. Methoden der Organischen Chemie (Houben-Weyl), Georg Thieme Verlag Stuttgart, 1963, Bd. 14/2, S. 1 bis 5, 21 bis 23, 40 bis 44; oder C.R.
20 Martens, Alkyd Resins, Reinhold Plastics Appl. Series, Reinhold Publ. Comp. 1961, S. 51 bis 59) erfolgen, wobei Alkohole, Carbonsäuren bzw. ihre Derivate und

Le A 19 730

030065/0387

gegebenenfalls Öle durch Schmelz- oder Azeotropveresterung, bevorzugt in einer Inertatmosphäre bei Temperaturen von 140 bis 260°C umgesetzt werden.

Die Reaktion kann dabei z.B. durch Messung der

5 Säurezahl und der Viskosität verfolgt werden.

Die Vorkondensate werden bis zu Säurezahlen <10, vorzugsweise <4 vereistert. Sie enthalten freie OH-Gruppen entsprechend OH-Zahlen von 30 bis 500, vorzugsweise 50 bis 280. Vorkondensate im niedrigeren

10 OH-Zahl-Bereich eignen sich besser für lufttrocknende, Vorkondensate im hohen OH-Zahl-Bereich besser für Einbrenn-Systeme.

Die OH-haltigen Vorkondensate werden mit Polyisocyanaten zu urethanmodifizierten Polyester umgesetzt. Als erfindungsgemäß einsetzbare Polyisocyanate kommen aliphatische, cycloaliphatische, araliphatische, aromatische und heterocyclische Polyisocyanate in Betracht, wie sie z.B. von W. Siefken in Justus Liebigs Annalen der Chemie, 562, Seiten 75 bis 136 beschrieben werden, beispielsweise Ethylendiisocyanat, 1,4-Tetramethylendiisocyanat, 1,6-Hexamethylendiisocyanat, 1,12-Dodecandiisocyanat, Cyclobutan-1,3-diisocyanat, Cyclohexan-1,3- und -1,4-diisocyanat, sowie beliebige Gemische dieser Isomeren, 1-Isocyano-3,3,5-trimethyl-5-isocyanatomethyl-cyclohexan (DE-AS 1 202 785, US-OS 3 401 190), 2,4- und 2,6-Hexahydrotoluylendiisocyanat sowie beliebige Ge-

15

20

25

mische dieser Isomeren, Hexahydro-1,3- und/oder -1,4-phenylen-diisocyanat, Perhydro-2,4'- und/oder -4,4'-Diphenylmethan-diisocyanat, 1,3- und 1,4-Phenylendiisocyanat, 2,4- und 2,6-Toluylendiisocyanat sowie beliebige Gemische dieser Isomeren, Diphenylmethan-2,4'- und/oder -4,4'-diisocyanat, Naphthylen-1,5-diisocyanat, Triphenylmethan-4,4',4"-triisocyanat, perchlorierte Aryl-polyisocyanate, wie sie z.B. in der DE-AS 1 157 601 (US 3 277 138) beschrieben werden, Carbodiimidgruppen aufweisende Polyisocyanate, wie sie in der DE-PS 1 092 007 (US 3 152 162) beschrieben werden, Diisocyanate, wie sie in der US 3 492 330 beschrieben werden, Isocyanuratgruppen aufweisende Polyisocyanaten, wie sie z.B. in der US 3 001 973, in den DE-PS 1 022 789, 1 222 067 und 1 027 394 sowie in den DE-OS 1 929 034 und 2 004 048 beschrieben werden, Urethangruppen aufweisende Polyisocyanate, wie sie z.B. in der BE 752 261 oder in der US 3 394 164 beschrieben werden, Biuretgruppen aufweisende Polyisocyanate, wie sie z.B. in der DE-PS 1 101 394 (US 3 124 605 und 3 201 372) sowie in der GB 889 050 beschrieben werden, durch Telomerisationsreaktionen hergestellte Polyisocyanate, wie sie z.B. in der US 3 654 106 beschrieben werden, Estergruppen aufweisende Polyisocyanate, wie sie z.B. in der GB 965 474 und 1 027 956, in der US 3 567 763 und in der DE-PS 1 231 688 genannt werden, polymere Fettsäurereste enthaltende Polyisocyanate gemäß der US 3 455 883.

- 16 -
- 18 -

2928552

Bevorzugt werden in der Regel die technisch leicht zugänglichen Di-, Tri- und Tetraisocyanate, z.B.
das 2,4- und 2,6-Toluylendiisocyanat sowie beliebige Gemische dieser Isomeren ("TDI"), 1,6-Hexamethylendiisocyanat, Perhydro-2,4'- und/oder -4,4'-di-phenylmethan-diisocyanat und 1-Isocyanato-3,3,5-trimethyl-5-isocyanatmethylcyclohexan.

5

Selbstverständlich können Gemische verschiedener Polyisocyanate verwendet werden.

10

Besonders bevorzugt sind dabei die letztgenannten drei nicht-aromatischen Diisocyanate, da sie zu besonders vergilbungsarmen Überzügen führen.

Die Mengenverhältnisse an Polyisocyanat und Vorkondensat sind vorzugsweise so zu wählen, daß

15

a) der Gehalt an NCO-Gruppen in den zur Komponente I umzusetzenden Reaktionspartnern 0,5 bis 25, vorzugsweise 3 bis 15 Gew.-%, bezogen auf die Komponente I, beträgt und gleichzeitig

20

b) im Mittel mindestens eine, vorzugsweise 2 bis 4 OH-Gruppen pro Molekül des Umsetzungsproduktes aus dem Vorkondensat und dem Polyisocyanat frei bleiben.

Die Umsetzung zwischen dem Vorkondensat und dem Polyisocyanat kann nach üblichen Techniken der Herstel-

Le A 19 730

030065/0387

lung von Urethanen erfolgen. Man kann die Vorkondensate direkt mit den Polyisocyanaten bei Raumtemperatur oder bei erhöhter Temperatur zur Umsetzung bringen, wobei mit und ohne Katalysator und mit und ohne Lösungsmittel gearbeitet werden kann. Als Katalysatoren eignen sich z.B. Benzoylchlorid oder tertiäre Amine. Als Lösungsmittel eignen sich z.B. Ester und Ketone. Es ist ebenfalls möglich, Gemische verschiedener einzeln hergestellter Vorkondensate einzusetzen, wobei als Mischungspartner auch OH-haltige unkondensierte Substanzen, z. B. Ethylenglykol, Propylenglykol, mitverwendet werden können.

In einer bevorzugten Ausführungsform wird auf Lösungsmittel und Katalysatoren verzichtet und die Umsetzung in der Schmelze bei 40 - 120, vorzugsweise 50 - 90°C, vorgenommen. Die Umsetzung wird als beendet angesehen, wenn der Gehalt an freiem NCO unter 0,8, vorzugsweise unter 0,3 Gew.-%, bezogen auf das Gewicht der Schmelze, abgesunken ist.

Die erhaltenen Umsetzungsprodukte werden anschließend mit Di- und/oder Tricarbonsäureanhydriden auf Säurezahlen von 10 - 40, vorzugsweise 10 - 30, aufgesäuert und ergeben so die Komponente I. Diese Umsetzung wird vorzugsweise ohne Lösungsmittel in der Schmelze bei erhöhter Temperatur z.B. 100 - 200, vorzugsweise 120 - 160°C, vorgenommen. Es ist möglich, bei dieser Reaktionsstufe an die Halbesterbildung weitere Veresterungsschritte anzuschließen, d.h. die entstandenen Halbester, vorzugsweise im höheren angegebenen Temperaturbereich, zu höhermolekularen Produkten weiterzukondensieren. Die ein-

Le A 19 730

030065/0387

zusetzenden Mengen an Polycarbonsäureanhydriden ergeben sich aus der gewünschten Säurezahl.

Als geeignete Polycarbonsäureanhydride sind bei-
spielhaft zu nennen: Maleinsäureanhydrid, Bernstein-
5 säureanhydrid, Phthalsäureanhydrid, Tetrahydrophthal-
säureanhydrid, Hexahydrophthalsäureanhydrid, Trimel-
lithsäureanhydrid, Norbornandicarbonsäureanhydrid,
Norbonendicarbonsäureanhydrid sowie weitere bei den
10 Polycarbonsäuren des Vorkondensates aufgeführte An-
hydride.

Harze des Aufbaus der Komponente I, bei denen die
Säurezahl im oberen vorgesehen Bereich liegt, eignen
sich bevorzugt für Einbrennsysteme, während
für Lufttrocknung vorgesehene Systeme bevorzugt
15 Säurezahlen im niedrigeren Bereich der vorgesehe-
nen Spanne besitzen.

Die urethanmodifizierten Polyester I sind wasserun-
lösliche, schmelzbare Massen, welche in den angege-
benen Mengen ohne weitere Zusätze nicht in wäßriger
20 Phase verteilbar sind. Es ist deswegen auch nicht
erwünscht, den Polyester I durch Einbau von Polyal-
kylenoxiden mit mehr als 3 Alkylenoxideinheiten pro
Molekül, z.B. sog. Polywachsen, zu modifizieren,
da derartige Bestandteile den Polyester I hydrophil
25 machen, was sich in geringerer Wasserbeständigkeit
der aus den erfundungsgemäßen Polyesterdispersionen
hergestellten Überzüge auswirkt. Vorzugsweise sind
die Komponenten I völlig frei von Ethergruppen.

Ein wichtiges Kriterium für die Brauchbarkeit der urethanmodifizierten Polyester I ist, daß sie schmelzbar sind. Es ist daher nicht erwünscht, die Polykondensation bzw. Polyaddition zur Herstellung der Komponente I auf irgendeiner der Stufen so weit voranzutreiben, daß gelartige Produkte oder Produkte mit elastomeren Eigenschaften entstehen. Dagegen ist es nicht unbedingt erforderlich, daß sich die Komponente I in üblichen Lacklösungsmitteln wie z.B.

5 Xylol oder Ethylglykolacetat, klar löst. Erstaunlicherweise wurde gefunden, daß auch aus nur teilweise in Xylol löslichen Harzen erfindungsgemäße Dispersions mit guten Eigenschaften herstellbar sind.

10 Hat man bei irgendeiner der Stufen zur Herstellung der Komponente I Lösungsmittel verwendet, so muß dieses spätestens vor der Dispergierung, z.B. durch Destillation, entfernt werden.

15 Die Komponente I wird erfindungsgemäß mit Hilfe der Emulgatoren IIa und IIb in wässriger Phase dispergiert.

20 Bevorzugte nichtionische Emulgatoren IIa) sind ethoxylierte aliphatisch substituierte Aromaten. So erhält man erfindungsgemäß Polyesterdispersionen mit besonders einheitlichen Teilchengrößen bei der Verwendung von ethoxylierten p-n-Nonylphenol. Andere bevorzugte Emulgatoren IIa) erhält man durch Ethoxy-

lierung von Anlagerungsprodukten von Styrol und sei-
nen Derivaten an Phenole, wie dies z.B. in der DE-
PS 1 121 814 beschrieben ist. Danach werden Styrol,
5 α -Methylstyrol oder Vinyltoluol an Phenol, Kresole
oder Xylenole angelagert und die erhaltenen Reak-
tionsprodukte ethoxyliert. In Emulgatormischungen
bedeutet n den Mittelwert an Polyethylenoxideinhei-
ten.

10 Bezuglich HLB-Werte siehe Ullmanns Encyclopädie
der Technischen Chemie, 4. Aufl., Bd. 10, S.
426 - 463, Verlag Chemie, Weinheim 1975.

15 Bevorzugte Emulgatorharze IIb) bestehen aus einem
gegebenenfalls ölmodifizierten Polyesterpartikel (hydro-
phob) und einem, gegebenenfalls durch Alkoxygruppen
mit 1 bis 4 C-Atomen terminierten, Polyalkylenoxid-
teil (hydrophil) mit 6 bis 100, vorzugsweise 10 bis
70 Alkylenoxidresten pro Polyalkylenoxidkette, wobei
der Polyalkylenoxidteil aus mehreren einzelnen Poly-
alkylenoxidketten besteht und die Alkylengruppe 2
bis 4, vorzugsweise 2 C-Atome enthält.

20 Die Emulgatorharze IIb) können 0,1 bis 10 Gew.-%,
bezogen auf Emulgatorharz IIb), Urethangruppen ent-

halten. Nach einer bevorzugten Ausführungsform werden die einseitig blockierten (z.B. veretherten) Polyalkylenoxide mit etwa äquimolaren Mengen Diisocyanat umgesetzt, so daß Polyalkylenoxide entstehen, die pro Molekül eine freie Isocyanatgruppe tragen, welche dann ihrerseits zur Anknüpfung an den Polyester teil von IIb) dienen kann.

Das mittlere Molekulargewicht der für die Herstellung der Emulgatorharze IIb) bevorzugten Polyester kann 400 bis 4000 betragen (dampfdruckosmometrisch in Aceton bestimmt).

Die verwendeten Polyalkylenoxide können Homopolyether, aber auch Copolyether in Block- oder statistischer Verteilung sein; Homopolyethylenoxide sind besonders bevorzugte Ausgangsmaterialien für die Herstellung der Emulgatorharze IIb).

Als Verknüpfer zwischen Polyester- und Polyalkylenoxidteil kommen im Prinzip sämtliche Diisocyanate in Betracht.

Besonders bevorzugt werden in der Regel die technisch leicht zugänglichen Polyisocyanate, z.B. das 2,4- und 2,6-Toluylendiisocyanat sowie beliebige Gemische dieser Isomeren ("TDI"), 1,6-Hexamethylen-

diisocyanat, Perhydro-2,4'- und/oder -4,4'-diphenylmethan-diisocyanat und 1-Isocyanato-3,3,5-trimethyl-5-isocyanatomethylcyclohexan.

Menge und Art des Emulgatorharzes IIb) werden am besten so ausgewählt, daß der Gesamtgehalt an Polyalkylenoxideinheiten im nichtflüchtigen Anteil der erfundungsgemäßen Polyesterdispersion unterhalb 4 Gew.-% bezogen auf die Summe der Komponenten I, IIa und IIb liegt.

Nach einer bevorzugten Ausführungsform enthält das Emulgatorharz IIb) im nicht-neutralisierten Zustand Carboxylgruppen entsprechend einer Säurezahl von weniger als 50, vorzugsweise 15 bis 35. Das Emulgatorharz IIb) kann bereits vor der Vereinigung mit der wässrigen Phase III teilweise oder ganz neutralisiert werden. Bevorzugte Neutralisationsmittel sind Alkalihydroxide, Ammoniak, primäre, sekundäre und tertiäre Amine, wie z.B. Ethylamin, Di- und Triethylamin, Mono-, Di- und Triethanolamin, Dimethylethanolamin, Methyldiethanolamin, Dimethylaminomethylpropanol. Die Neutralisation kann aber auch bei Zugabe in die wässrige Phase erfolgen.

Verfahren zur Herstellung der Emulgatorharze IIb) sind bekannt; vgl. DE-OS 25 28 212, 25 56 621.

Zu besonders glatten Dispersionen führen Emulgator-

harze IIb, die man dadurch herstellt, daß man einen Polyester mit Ölgehalten von 0 - 30 Gew.-% mit einer Säurezahl von < 5 und einer Hydroxylzahl von 50 - 250 als hydrophoben Teil herstellt, diesen mit den bereits erwähnten hydrophilen Isocyanatkomponenten bis zum 5
völligen Umsatz der NCO-Gruppen abreagieren läßt, anschließend mit einem Dicarbonsäureanhydrid auf Säurezahlen von 15 - 35 aufsäuert und entweder durch direkte Zugabe eines Amins in die Harzschnmelze oder durch 10
Zugabe der Harzschnmelze in die Amin und gegebenenfalls Komponente IIa enthaltende Wasserphase neutralisiert. Im letztgenannten Verfahren fällt das Emulgatorharz IIb zusammen mit dem Emulgator IIa 15
als wäßrige Lösung bzw. Dispersion, als sogenanntes Emulgatorkonzentrat, an.

Die urethanmodifizierten Polyester I können in wäßriger Phase dispergiert werden, indem man die Polyester I zusammen mit den Stoffen IIa) und IIb) in der Schmelze bei 80 bis 120°C innig verröhrt und anschließend 20
dieser Schmelze die wäßrige Phase III zusetzt. Dieser Prozeß kann in der Regel in einem üblichen Reaktor zur Herstellung von Polyestern vorgenommen werden. Schnellaufende Mischaggregate oder Rührwerke sind dabei meist nicht erforderlich. Selbstverständlich kann 25
die Schmelzdispersierung auch durch Zugabe der organischen Harzphase I und II in die wäßrige Phase III erfolgen.

Als vom Arbeitsablauf her besonders günstig hat sich ein Verfahren erwiesen, bei dem in der wäßrigen Phase III die Stoffe IIa) und IIb) in einem Rührkessel vorgelegt und anschließend die Polyester-Schmelze I unter Röhren zudosiert wird. IIb) wird dabei gegebenenfalls im neutralisierten Zustand vorgelegt.

Nach Vereinigung aller zur Dispersionsbildung erforderlichen Komponenten I, IIa, IIb und III wird die Dispersion in der Regel für 15 Minuten bis 5 Stunden bei 50 - 95 °C nachgeführt.

Die Komponente III enthält 30 bis 150 % der für eine vollkommene Neutralisation der Carboxylgruppen der Komponenten I und IIb) ausreichenden Alkali-, Ammoniak- oder Aminmenge. Geeignete Neutralisationsmittel wurden bereits im Zusammenhang mit der Komponente IIb genannt. Bevorzugt sind Dimethylmethanolamin und Triethylamin.

Zweckmäßigerweise wird bei der Emulgierung in der Schmelze das Neutralisationsmittel mit einem Teil des Wassers in die Schmelze eingebracht und nach dem Homogenisieren der Rest des Wassers zur Einstellung der Dispersion auf den gewünschten Festkörpergehalt, üblicherweise zwischen 30 und 50 Gew.-%, zugefügt.

Die Viskosität der entstehenden Dispersion ist be-

quem durch die Menge des zugegebenen Neutralisationsmittels beeinflußbar. Hat z.B. der Polyester I eine Säurezahl < 18, so führen Neutralisationsgrade von ca. 90 % bei ca. 40 Gew.-% Festkörper bereits zu hochviskosen Dispersionen. Geringere Neutralisationsgrade können unter diesen Umständen angezeigt erscheinen, da sie bei gleichem Festkörper gute Fließfähigkeit der Dispersionen gewährleisten. Bei niedrigeren Säurezahlen des Polyesters ist die geschilderte Viskositätsabhängigkeit weniger stark ausgeprägt. Es ist natürlich möglich, den angestrebten Neutralisationsgrad bzw. damit die gewünschte Viskosität in mehreren Stufen einzustellen.

Die erfindungsgemäßen Dispersionen können bei der Herstellung oder danach mit anderen Polymeren, z.B. Alkydhärsen, Polyacrylaten, Polyurethanen sowie Harthärsen, z.B. Kolophonium oder Xylol/Formaldehyd-Kondensaten, also unmodifizierten und modifizierten Polymeren, wie sie bei H. Kittel, Lehrbuch der Lacke und Beschichtungen, Bd. I, Teil 1, Verlag W. A. Colomb, Stuttgart-Berlin 1971, S. 122 bis 445 beschrieben sind, kombiniert werden.

Die erfindungsgemäßen Systeme eignen sich besonders gut zur Herstellung von Lacken, insbesondere Einbrennlacken, wobei sich als Öle insbesondere Ricinusöl und Sojaöl und die entsprechenden, gegebenenfalls dehydratisierten, Fettsäuren bewährt

haben. Den erfindungsgemäßen Dispersionen kann man wasserverdünnbare, vernetzende Aminoplastharze, z.B. Melaminharze, in Mengen von 10 bis 50, vorzugsweise 10 bis 30, Gew.-%, bezogen auf das Gemisch von Polyester I und Melaminharz, zusetzen. Diese Gemische können direkt nach Einstellung der notwendigen Viskosität und gegebenenfalls nach Zusatz von Katalysatoren und Hilfsstoffen zu Überzügen verarbeitet und thermisch ausgehärtet werden.

5

10 Die erfindungsgemäßen Dispersionen können gegebenenfalls auch für andere Einsatzgebiete als den Einbrennlacksektor verwendet werden, z.B. bei der Herstellung nichtflächiger Gebilde wie Formkörper, Gele und dergleichen.

15 Man kann den Dispersionen geringe Menge üblicher Hilfs- und Zusatzstoffe zusetzen, z.B. Schutzkolloide, Antischaummittel, Antiabsetzmittel, Frostschutzmittel, sowie viskositätsbeeinflussende Zusätze, Verlaufsmittel, Vernetzungskatalysatoren; jedoch ist 20 hier in jedem Fall die Verträglichkeit zu prüfen.

Mitunter ist es aus Gründen besserer Verarbeitbarkeit und Pigmentaufnahme günstig, die Dispersion bei der Lackherstellung auf bestimmte pH-Werte, z.B. 7,5 bis 8,5, zu bringen. Meist verwendet man dazu die bereits zur Neutralisation benutzten Neutralisationsmittel. Geringe Zusätze wassermischbarer Lösungsmittel.

25

tel, wie Ethanol oder Butylglykol, können ebenfalls zugefügt werden, jedoch ist das meistens nicht erforderlich. Die mit den erfindungsgemäßen Dispersio-
nen hergestellten Lacke lassen sich nach üblicher
5 Applikationstechnik, z.B. durch Taüchen, Spritzen,
Gießen auf die zu lackierenden Materialien auftra-
gen. Die dazu notwendige Viskosität stellt man in
der Regel durch Zugabe von Wasser ein.

Die aufgetragenen Lackfilme können bei Raumtemperatur
10 und bei höherer Temperatur, z.B. zwischen 60 und 360°C,
ausgehärtet werden. Der hohe Temperaturbereich wird
dabei vorzugsweise für ölarme und ölfreie Polyester I
benutzt.

15 Die folgenden Beispiele erläutern die Erfindung; die
angegebenen Teile sind Gewichtsteile, Prozentangaben
bedeuten Gewichtsprozente.

Der Begriff Vorkondensate deckt sich mit dem der Be-
schreibung. Die Komponente I wird als Harz
bezeichnet.

20 Emulgator IIa)

Auf Nonylphenol gepropftes Ethylenoxid (Molverhält-
nis 1:20) mit folgenden Eigenschaften:

Trübungspunkt (1 %ig in Wasser): ca. 100°C

Le A 19 730

030065/0387

- 28 -
- 25 -

2928552

Oberflächenspannung (0,1 g/l Wasser): 44,0 dyn/cm
Netzwirkung (DIN 53 901): ca. 60 sec. bei 60°C
Fp.: ca. 30°C
HLB-Wert: 16

5 Emulgator IIb)

In einer 2 l Rührbecher-Apparatur, die mit Innenthermometer, Rührer, Tropftrichter und Gaseinleitungsrohr versehen ist, werden 400 g eines auf n-Butanol gestarteten Polyethylenoxidalkohols des Molekulargewichts 10 2000 30 Minuten bei 120°C unter Anlegen eines Vakuums (15 Torr) entwässert. In die auf 100°C abgekühlte Schmelze werden zunächst 2 ml Benzoylchlorid eingeführt; danach fügt man 33,6 g Hexamethylendiisocyanat in einem Guß zu.

15 Nach 60 Minuten Reaktionszeit wird der Isocyanat-Gehalt der Mischung bestimmt. Die NCO-Zahl der Mischung beträgt danach 1,8 bis 1,9 % NCO (ber.: 1,94 %).
Nach Abkühlen der Schmelze erhält man die für weitere Umsetzungen geeignete hydrophile Isocyanatkomponente als wachsartig kristalline Substanz.

20 134 g Trimethylolpropan und 130,7 g Tetrahydrophthal-säureanhydrid werden bei 220°C unter Stickstoffatmosphäre bis zur Säurezahl 4 verestert. Die Viskosität der erhaltenen Vorstufe entsprach einer Auslaufzeit

Le A 19 730

030065/0387

(gemessen als 60 %ige Lösung in Dimethylformamid nach DIN 53 211, DIN-Becher 4) von 170 Sekunden.

500 g dieser Vorstufe werden im Vakuum entwässert und anschließend mit 88,2 g der hydrophilen Iso-
cyanatkomponente bei 100 bis 105°C miteinander um-
gesetzt, bis keine freien Isocyanatgruppen mehr
nachweisbar sind.

5 580 g dieses Produktes werden mit 39 g Tetrahydro-
phthalsäureanhydrid bei 120°C zu einem Polyhalb-
ester mit einer Säurezahl von ca. 27 umgesetzt.
10

Zu 610 g dieser Stufe gibt man unter Rühren bei
95 bis 100°C vorsichtig 26,1 g Dimethylethanolamin.

Das Harz erstarrt beim Abkühlen zu einer zähelasti-
schen, schmelzbaren Masse.

15 Vorkondensat A

1313,3 Teile eines Veresterungsproduktes aus Trime-
thylolpropan und einem Fettsäuregemisch mit ca.
50 % konjugierter Fettsäuren im Molverhältnis
1:1, 1294,7 Teile Dimethylterephthalat, 2426,7
20 Teile Neopentylglykol wurden in Gegenwart von 1,67
Teilen Tetrabutyltitanat unter Methanolabtrennung
umgeestert. Nach Beendigung der Methanolfreisetzung
wurden ca. 1140 Teile überschüssiges Neopentylgly-
kol im Vakuum abdestilliert. Man erhielt ein Pro-
dukt mit einer OH-Zahl von ca. 230.
25

- 30 -
- 27 -

2928552

Harz A

728,4 Teile Vorkondensat A werden unter Stickstoff-
atmosphäre auf 110°C aufgeheizt und 151,2 Teile Hexa-
methylendiisocyanat in 30 Minuten bei 110 - 114°C zu-
getropft. Nach 1 1/2 Stunden Reaktionszeit bei 120°C
5 betrug der Gehalt an freiem NCO ca. 0,1 %. 870 Teile
dieses Produktes wurden mit 43,6 Teilen Maleinsäure-
anhydrid bei 140°C bis zu einer Säurezahl von ca. 26
umgesetzt.

Le A 19 730

030065/0387

Beispiel 1

465 Teile Harz A, 20,0 Teile Emulgator IIb) und 15,0
Teile Emulgator IIa) werden 15 Minuten bei 120°C unter
Stickstoffatmosphäre gemischt, auf 80°C gekühlt und
5 eine Mischung aus 19,2 Teilen Dimethylethanolamin und
730,8 Teilen Wasser in 30 Minuten zugetropft, wobei
die Temperatur auf 50°C fällt. Man röhrt noch 30 Mi-
nuten bei 50°C nach und erhält eine Dispersion mit
ca. 40 % Festkörper.

10 100 Teile dieser Dispersion wurden mit 35 Teilen
Melaminharz, 6,3 Teilen 10 %-igem Dimethylethanol-
amin, 40 Teilen Wasser und 210 Teilen TiO₂-Pigment
in einer Perlmühle gemahlen und anschließend mit
425 Teilen Dispersion, 78 Teilen Melaminharz und
15 70 Teilen Wasser aufgelackt. Nach einem Tag Reife-
zeit wurde auf Glasplatte bzw. Blech gespritzt und
nach dem Ablüften 30 Minuten bei 140°C eingebrannt.
Man erhält einen hochglänzenden Überzug mit folgen-
den Eigenschaften:

20	Schichtdicke:	ca. 35 µ
	Glanz Gardner 60°:	94
	20°:	80
	Bleistifthärte:	4 H
	Pendelhärte:	150 sec
	Knickprobe:	gut

Le A 19 730

030065/0387

Lösungsmittelschädigung (Wattebausch, 1 Min.)

Toluol: keine

Ethylenglykolacetat: keine

Aceton: keine

5 Wasserfestigkeit bei

Raumtemperatur: 21 Tage ohne Einfluß

Harz B

1) 1759 Teile Fettsäuregemisch mit 50 Teilen kon-
10 jugierter Fettsäuren und 855 Teile Trimethy-

lolpropan werden bis zu einer Säurezahl von
ca. 2 in einer Stickstoffatmosphäre bei 230°C
vorverestert und anschließend 1848 Teile dieses
Esters mit 1553 Teilen Isophthalsäure und 1460

15 Teile Neopentylglykol zum Oligoester B1 (SZ 4)
umgesetzt.

2) 1275 Teile lineare gesättigte Fettsäuren (C_{16} - C_{18})
werden mit 675 Teilen Trimethylolpropan, 1660 Tei-

len Isophthalsäure und 1560 Teilen Neopentylglykol
in gleicher Weise zum Oligoester B2 (SZ 4) ver-

20 estert.

Beispiel 2

109,6 Teile Harz B1 und 107,0 Teile Harz B2 werden bei
110°C unter Stickstoffatmosphäre vorgelegt und unter

Röhren ein Gemisch aus 25,2 Teilen Hexamethylendiiso-
cyanat-1,6 und 33,3 Teilen 1-Isocyanato-3,35-trime-

20 thyl-5-isocyanatomethylcyclohexan zugetropft. Nach

Le A 19 730

030065/0387

einer Nachreaktionszeit bei 120°C gibt man 22,8 Teile Tetrahydrophthalsäureanhydrid zu und setzt bei 140°C zu einem urethanmodifizierten Ester mit einer Säurezahl von ~28 um.

5 267 Teile dieses Produktes, 24 Teile Emulgator IIb und 9 Teile Emulgator IIa werden bei 120°C vermischt, auf 90°C gekühlt und bei 90. - 65°C ein Gemisch aus 11,9 Teilen Dimethylethanolamin und 438,1 Teilen Wasser unter Röhren zugegeben. Man erhält eine sehr feinteilige lagerstabile Dispersion mit einem Festkörper von ca. 40 %.

10 15 Die Dispersion wurde mit Co-Siccattiv versetzt (0,03 % Co-Metall, bezogen auf Festkörper), auf eine Glasplatte aufgezogen und an der Luft bei Raumtemperatur trocknen lassen. Man erhielt nach 90 Minuten Trockenzeit einen trockenen, klaren, festen, widerstandsfähigen Lackfilm.

Vorkondensat C

20 25 23,6 Teile Hexandiol-1,6, 62,4 Teile Neopentylglykol, 11,4 Teile Propandiol-1,2, 6,7 Teile Trimethylolpropan, 51,8 Teile Phthalsäureanhydrid, 33,2 Teile Isophthalsäure und 29,2 Teile Adipinsäure werden unter Stickstoffatmosphäre unter Wasserabspaltung bei einer Maximaltemperatur von 220°C bis zu einer Säurezahl von ca. 3 verestert.

Le A 19 730

030065/0387

- 37 - 34-

2928552

Harz C

Zu 197,6 Teilen Vorkondensat C gibt man bei 110 - 120°C unter Röhren vorsichtig 31,9 Teile Hexamethylendiisocyanat zu und setzt so lange bei 120°C um, bis kein freies NCO mehr nachweisbar ist. Das Produkt wird anschließend mit 16,3 Teilen Tetrahydronphthalsäureanhydrid bei 140°C zum Polyhalbester aufgesäuert. Das Endprodukt hat eine Säurezahl von 27,6 - 28.

Beispiel 3

10 267 Teile Harz C, 24 Teile Emulgator IIb, 9 Teile Emulgator IIa werden bei 120°C verschmolzen, auf 90°C gebracht und ein Gemisch von 11,7 Teilen Dimethyllethanolamin und 438,3 Teile Wasser zugetropft. Man röhrt für 30 Minuten bei 60°C und kühlt langsam ab. Die entstandene Dispersion ist homogen und feinteilig und hat ca. 40 % Festgehalt.

15 50 Teile dieser Dispersion, 17,5 Teile Melaminharz, 3,1 Teile Dimethyllethanolamin, 20 Teile Wasser und 105 Teile TiO₂-Pigment werden auf einer Perlmühle angerieben. Das Mahlgut wird mit 212,5 Teilen Dispersion aus Beispiel 3 und 39 Teilen Melaminharz aufgelackt und mit Wasser auf Spritzviskosität verdünnt. Nach einer Reifezeit wird auf ein Prüfblech aufgespritzt und nach dem Ablüften 30 Minuten bei 120°C

Le A 19 730

030065/0387

- 35 -

- 32 -

2928552

eingebrannt. Man erhält einen hochglänzenden, elastischen Überzug mit folgenden Eigenschaften:

Schichtdicke:	35 - 40 / ^u
Glanz Gardner 60°:	95
5 20°:	86
Gitterschnitt:	1
Dornbiegeversuch ASTM-D-522-60:	32 %
Erichsen-Dehnung (DIN 53 156):	10
Schlagelastizität ASTM-D-2794 direkt:	82
10 indirekt:	82

Le A 19 730

030065/0387