The Tango Theme for Beamer

Showcase and Demonstration

Hochschule Düsseldorf University of Applied Sciences Fachbereich Maschinenbau und Verfahrenstechnik Faculty of Mechanical and Process Engineering

John Doe, Jason Miller, Tim Turner Univseristy of Applied Sciences Düsseldorf October 8, 2025

Introduction

Content I

1. Introduction

2. Elements

- Enumerate
- Itemize
- Alert
- Blocks
- Code Blocks

3. Practical

- Math
- Figures

4. Bibliography

Elements

Lists

List using the 'enumerate' environment:

- 1. First item.
- 2. Second item.
 - 2.1 Sub-list first item.
 - 2.2 Sub-list second item.
 - 2.2.1 Sub-sub-list first item.
 - 2.2.2 Sub-sub-list second item.

List using the 'itemize' environment:

- First item.
- Second item.
 - > Sub-list first item.
 - > Sub-list second item.
 - Sub-sub-list first item.
 - Sub-sub-list second item.

Elements

Alert, Blocks & Links

Sample of the 'alert' command.

Conventional Block

This block can be used to highlight key information of a given slide.

Example Block

Examples of different concepts can be placed inside this block.

Alert Block

Furthermore, one can put very important information inside this block.

This is a web-link github.com/schmaeke/tango-beamer.

Here we cite [Anand and Govindjee, 2020].

Elements

Code Blocks

```
using Stela, Stela. Tensors
# Create some tensors
a = Tensors.rand(Float16, 5, 10)
b = Tensors.rand(Float16, 10, 3)
# Do some computations
c = sum(a * b)^Float16(4)
# Pass through the graph
forward(c) # Compute c, result stored in c.data
backward(c) # Compute derivatives of c. stored in *.grad
println("dc/da = (a.grad)")
println("dc/db = (b.grad)")
# Visualize
to_dot_graph(c, "graph_file"; create_svg=true) # Export to Graphviz
```

Listing: Some random code

Practical

Some Math & Figures

Equilibrium conditions

$$-\nabla \cdot \boldsymbol{\sigma} = \mathbf{p} \qquad \forall \mathbf{x} \in \Omega \qquad (1a)$$

$$\sigma \cdot \mathbf{n} = \mathbf{t}$$
 $\forall \mathbf{x} \in \Gamma_N$ (1b)

$$\mathbf{u} = \overline{\mathbf{u}} \qquad \forall \mathbf{x} \in \Gamma_{D}$$
 (1c)

Linear strain-displacement relation

$$\varepsilon = \frac{1}{2} \left(\nabla \mathbf{u} + \nabla \mathbf{u}^{\mathsf{T}} \right) \tag{2}$$

Constitutive equation

$$\sigma = \mathbf{C} : \boldsymbol{\varepsilon}$$
 (3)

Resulting weighted-residual form

$$\int_{\Omega} \varepsilon(\mathbf{v}) : \mathbf{C} : \varepsilon(\mathbf{u}_{h}) d\Omega = \int_{\Omega} \mathbf{v} \, \mathbf{p} d\Omega + \int_{\Gamma_{N}} \mathbf{v} \, \mathbf{t} d\partial\Omega + \int_{\Gamma_{D}} \mathbf{v} \, \mathbf{t} d\partial\Omega$$

$$\wedge \quad \mathbf{u}_{h} = \overline{\mathbf{u}} \quad \forall \mathbf{x} \in \Gamma_{D} \tag{4}$$

Figure: Initial Ω and deformed $\hat{\Omega}$ configuration of solid-mechanics problem.

Bibliography

Literature I

- 33 Anand, L. and Govindjee, S. (2020). Continuum mechanics of solids. Oxford University Press.
- **55** Bathe, K.-J. (2006). Finite element procedures. Klaus-Jurgen Bathe.
- **55** Gould, P. L. and Feng, Y. (1994). Introduction to linear elasticity, volume 2. Springer.

GACM 2025, 11th Colloquium on Computational Mechanics

The Tango Theme for Beamer

Jan Niklas Schmäke Martin Ruess jan.schmaeke@hs-duesseldorf.de
martin.ruess@hs-duesseldorf.de

Funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) – 515687474.