

CENTRO UNIVERSITÁRIO DA FUNDAÇÃO HERMÍNIO OMETTO

NÚCLEO DE ENGENHARIA

ENGENHARIA ELÉTRICA

Projetos de Sistemas Elétricos

Projeto Final

Nome: Otávio Fagundes Couto de Morais RA: 107918

Nome: Guilherme Bueno Moraes RA: 105723

Araras

Junho 2025

1. INTRODUCÃO

O avanço tecnológico e a crescente demanda por produtos industriais impõem às empresas desafios constantes relacionados à eficiência, sustentabilidade e competitividade. Nesse contexto, o dimensionamento adequado de uma fábrica torna-se uma etapa fundamental para garantir que os processos produtivos sejam realizados de maneira otimizada, segura e economicamente viável. A ausência de um planejamento criterioso pode resultar em desperdícios de recursos, gargalos na produção, consumo excessivo de energia e impactos ambientais negativos.

Diante desse cenário, o presente projeto tem como objetivo propor o dimensionamento de uma fábrica, considerando aspectos elétricos, energéticos, produtivos e de layout, visando atender às demandas atuais do mercado de forma eficiente e sustentável. A relevância desse trabalho está diretamente ligada ao desenvolvimento socioeconômico, uma vez que contribui para a geração de empregos, redução de custos operacionais e estímulo à adoção de tecnologias sustentáveis. Além disso, este projeto se alinha aos interesses institucionais, promovendo a aplicação prática dos conhecimentos adquiridos no curso de Engenharia Elétrica e fortalecendo a integração entre teoria e prática.

Para a área de Engenharia Elétrica, este trabalho apresenta grande importância, pois permite a aplicação de conceitos relacionados ao planejamento de cargas, eficiência energética, segurança elétrica, automação industrial e gestão de sistemas elétricos. De ssa forma, o engenheiro eletricista assume um papel estratégico no desenvolvimento de projetos industriais que visam não apenas atender às normas técnicas, mas também promover soluções inovadoras e sustentáveis.

Este trabalho está estruturado nas seguintes etapas: levantamento de dados sobre a demanda produtiva; definição do layout fabril; dimensionamento dos sistemas elétricos, incluindo cargas, cabines primárias e painéis; análise de eficiência energética e sustentabilidade; além da apresentação de custos e viabilidade técnica e econômica do projeto. Como objetivo principal, busca-se elaborar um projeto que atenda às necessidades operacionais da fábrica, garantindo segurança, confiabilidade, eficiência e respeito aos padrões normativos e ambientais vigentes.

2. DESENVOLVIMENTO

Com base no problema proposto, nos dados fornecidos, na planta da fábrica fornecida e na lista de cargas fornecida, buscamos escolher qual seria o modelo dos motores mais adequados para à fábrica, chegando á conclusão que o modelo mais apropriado são os motores elétricos trifásicos WEG W22 IR3 Premium de 4 (quatro) polos.

Figura 1 - Motor WEG W22 IR3 Premium de 4 (quatro) polos

Fonte: WEG

Possuindo os dados técnicos dos motores, fornecidos pelo fabricante atravéz de seu site e com fator de potência e rendimento para motores a plena carga (100%), foi preenchida a tabela dos dados iniciais de cargas para, assim, prosseguir com a especificação do tranformador necessário e com o dimensionamento dos condutores da fábrica.

Tabela 1 – Dados iniciais de cargas

Setor	Carga	Potência mecânica (HP)	Fator de potência	Rendimento (%)	Potência ativa (kW)	Potência reativa (kVAr)	Potência aparente (kVA)
	Motor 1	60	0,85	95	45	32,17	16,94
1	Motor 2	150	0,86	95,8	110	77,01	39,30
1	Motor 3	20	0,81	93	15	11,49	6,74
	Motor 4	150	0,86	95,8	110	77,01	39,30
	Motor 5	20	0,81	93	15	11,49	6,74
2	Motor 6	20	0,81	93	15	11,49	6,74
	Motor 7	30	0,81	93,6	22	16,77	9,83
	Auxiliar	0	0,92	0	80	86,96	34,08
3	Auxiliar	0	0,92	0	80	86,96	34,08
	Aquecimento 1	0	1	0	30	30	0

Aquecimento 2	0	1	0	30	30	0
Aquecimento 3	0	1	0	30	30	0

Fonte: Otávio Morais.

Com dados da Tabela 1, o grupo buscou no mercado um transformador que supre o desejado para alimentar a alimentação da fábrica. O selecionado foi o transformador a seco WEG CST IP-00 AN, com potência de 750kVA, tensão de 13,8kV no primário e 0,38kV no secundário, com a possibilidade de fazer ligação Triângulo/Estrela, tendo como perda total 12kW e impedência de 6% (seis porncento)

Figura 2 – Transformador a Seco WEG

Fonte: WEG

Para o cálculos de dimensionamento dos condutores foi escolhido dimensionar os condutores por ampacidade e, como a temperatura média Goiânia, é de 24,5°C, o fator de temperatura considerado foi de 25°C e o metodo de instalação utilizado será B1 – condutores isolados ou cabos unipolares em B1

Para os condutores que alimentam o painel QGF (Quadro Geral de Força) foi escolhdo o fator de agrupamento para 2 (dois) circuitos - no método de instalação B1 - devido a necessidade de ser 3 (três) condutores por fase adotando 0,89 como fator de potência.

Tabela 2 – Cálculo do dimensionamento dos condutores que alimentam QGF (Quadro Geral de Força)

Painel	Potência aparente (kVA)	Fator de potência	Ip (A)	Cabo (mm²)	Capacidade (A)
QGF	193,73	0,89	1095,67	6x300	500

Fonte: Otávio Morais.

Considerando o fator de temperatura e o fator de agrupamento, os cálculos tiveram que

ser refeitos, chegando a um novo dimensionamento.

Tabela 3 – Novo dimensionamento dos condutores que alimentam QGF (Quadro Geral de Força)

Painel	Fator de temperatura (25°)	Fator de agrupamento	Ip' (A)	Cabo (mm²)	Capacidade (A)
QGF	1,04	0,88	1214,73	6x300	500

Fonte: Otávio Morais.

Após isso, foi feito o cálculo do dimensionamnto dos cabos que alimentam os painéis de cada área a a partir do QGF (Quadro Geral de Força), utilizando critérios de ampacidade, queda de tensão e seção mínima.

Tabela 4 – Cálculo do dimensionamento dos condutores que alimentam os painéis de cada área a a partir do QGF (Ouadro Geral de Força)

Potência Fator de Cabo Capacidade **Painel** aparente **Ip** (A) potência (mm^2) **(A)** (kVA) OGF – Área 1 553 102,27 0,845 526,61 300 QGF – Área 2 23,30 104,57 0.81 25 117 QGF – Área 3 68,16 0,968 679,64 400 661

Fonte: Otávio Morais.

Com isso, se determinou os disjunstores BT para cada área. O grupo optou por escolher disjuntores BT apenas da marac Siemens

Tabela 5 – Disjunstores BT para cada área

Painel Disjuntor (A) Modelo

QGF – Área 1 444...630 3VA1463-4EF32-0AA0 QGF – Área 2 88...125 3VA1225-4EF32-0AA0

QGF – Área 3 630...1000 3VA1580-5EF32-0AA0

Fonte: Otávio Morais.

Chegou-se á conclusão que as saídas dos painéis serão por cabos unipolares em eletroduto embutido na alvenaria, portanto, será considerado o fator de agrupamento para 1 (um) circuito no método de instalação B1. Portanto, os cálculos foram refeitos, entretanto, o dimensionamento dos condutores e dos disjuntore BT não foram alterados.

Tabela 6 – Novo dimensionamento dos condutores que alimentam QGF (Quadro Geral de Força)

Painel	Fator de temperatura (25°)	Fator de agrupamento	Ip' (A)	Cabo (mm²)	Capacidade (A)
QGF – Área 1	1,04	1	506,36	300	703
QGF – Área 2	1,04	1	100,54	25	135
QGF – Área 3	1,04	1	653,50	400	444

Fonte: Otávio Morais.

Com isso feito, foi realizado o cálculo do dimensionamento dos condutores que alimentam as cargas de cada área na fábrica, com o fator de temperatura de 25°C no método de instalação B1.

Para a Área 1 foi considerado um fator de agrupamento para 4 (quatro) circuitos. Para a Área 2 foi considerado um fator de agrupamento para 3 (três) circuitos. Para a Área 3 foi considerado um fator de agrupamento para 5 (cinco) circuitos.

Tabela 7 – Cálculo do dimensionamento dos condutores que alimentam as cargas da área 1

	Motor 1	Motor 2	Motor 3	Motor 4
Potência mecânica (HP)	60	150	20	150
Fator de potência	0,85	0,86	0,81	0,86
Potência aparente (kVA)	16,94	39,30	6,74	39,30
Ip (A)	84,65	202,65	30,22	202,65
Cabo (mm²)	16	70	4	70
Capacidade (A)	88	222	37	222
Fator de temperatura (25°)	1,04	1,04	1,04	1,04
Ip' (A)	81,39	194,86	29,06	194,86
Cabo (mm²)	16	70	4	70
Capacidade (A)	88	222	37	222

Fonte: Otávio Morais.

Tabela 8 – Cálculo do dimensionamento dos condutores que alimentam as cargas da área 2

	Motor 5	Motor 6	Motor 7
Potência mecânica (HP)	20	20	30
Fator de potência	0,81	0,81	0,81
Potência aparente (kVA)	6,74	6,74	9,83
Ip (A)	30,22	30,22	44,119
Cabo (mm²)	4	4	6
Capacidade (A)	37	37	48
Fator de temperatura (25°)	1,04	1,04	1,04
Ip' (A)	29,06	29,06	42,42
Cabo (mm²)	4	4	6
Capacidade (A)	37	37	48

Fonte: Otávio Morais.

Tabela 9 – Cálculo do dimensionamento dos condutores que alimentam as cargas da área 3

	Iluminação	Iluminação	Aquecimento	Aquecimento	Aquecimento
	1	2	1	2	3
Potência mecânica (HP)	0	0	0	0	0
Fator de potência	0,92	0,92	1	1	1
Potência aparente (kVA)	2,4	2,4	0	0	0
Ip (A)	11	10,58	78,94	78,94	78,94
Cabo (mm²)	1,5	1,5	16	16	16
Capacidade (A)	23	23	88	88	88
Fator de temperatura (25°)	1,04	1,04	1,04	1,04	1,04
Ip' (A)	10,58	10,58	75,91	75,91	75,91
Cabo (mm²)	1,5	1,5	16	16	16
Capacidade (A)	23	23	88	88	88

Fonte: Otávio Morais.

Com isso, se determinou os disjunstores BT para as cargas de cada área.

Tabela 10 - Variação de queda de tensão nos condutores que alimentam as cargas de cada área

Área	Carga	Disjuntor (A)	Modelo
	Motor 1	140200	3VA1220-4EF32-0AA0
1	Motor 2	350500	3VA1450-4EF32-0AA0
1	Motor 3	3732	3RV2321-4EC20
	Motor 4	350500	3VA1450-4EF32-0AA0
	Motor 5	2732	3RV2321-4EC20
2	Motor 6	2732	3RV2321-4EC20
	Motor 7	3545	3RV2331-4VC10
	Iluminação 1	1016	DRN-C16-1
	Iluminação 2	1016	DRN-C16-1
3	Aquecimento 1	5680A	5SL6380-7
	Aquecimento 2	5680A	5SL6380-7
	Aquecimento 3	5680A	5SL6380-7

Fonte: Otávio Morais.

Após o cálculo de todos os condutores presentes, foi realizado os mesmos dimensionamentos, mas por queda de tensão. Se observou que, como o dimensionamento dos cabos foram feitos por ampaciade, a queda de tensão dos circuitos foi inferior ao permitido por norma. Portanto, a seção dos condutores se mantiveram a mesma

Tabela 11 – Variação de queda de tensão nos condutores que alimentam QGF (Quadro Geral de Força)

Painel	Queda de tensão (V)	Queda de tensão (%)
QGF	1,04	0,75

Fonte: Otávio Morais.

Tabela 10 – Variação de queda de tensão nos condutores que alimentam os painéis de cada área a a partir do QGF (Quadro Geral de Força)

Painel	Queda de tensão (V)	Queda de tensão (%)
QGF – Área 1	2,90	0,738
QGF – Área 2	4,88	2,46
QGF – Área 3	3,63	13,723

Fonte: Otávio Morais.

Tabela 11 – Variação de queda de tensão nos condutores que alimentam as cargas de cada área

Área	Carga	Queda de tensão (V)	Queda de tensão (%)
	Motor 1	2,22	0,58
1	Motor 2	1,217	0,32
1	Motor 3	3,17	0,83
	Motor 4	1,21	0,32
	Motor 5	4,45	1,17
2	Motor 6	4,45	1,17
	Motor 7	4,33	1,14
	Iluminação 1	3,70	0,97
	Iluminação 2	3,70	0,97
3	Aquecimento 1	2,49	0,65
	Aquecimento 2	2,49	0,65
	Aquecimento 3	2,49	0,65

Fonte: Otávio Morais.

O grupo realizou um estudo para verificar se há necessidade de fazer correção de fator de potência em cada área.

Tabela 12 – Dados para o estudo de correção de fator de potência

Painel	Potência ativa (kW)	Queda de tensão (%)	Potência reativa (kVAr)	Fator de Potência	Ip' (A)	Capacidade (A)
QGF – Área 1	169,10	0,76	197,67	0,845	506,36	553
QGF – Área 2	32,19	1,28	23,0	0,81	100,54	117
QGF – Área 3	250	0,95	68,16	0,968	653,50	661

Fonte: Otávio Morais.

Tabela 12 – Estudo de correção de fator de potência

Painel	Potência reativa necessário (kVAr)	Q desejado(kVAr)	Fp desejado
QGF - Área 1	125,63	72,03	0,92
QGF - Área 2	26,02	13,71	0,92
QGF - Área 3	157,41	106,5	0,92

Fonte: Otávio Morais.

Foi concluído que nas áreas 1, 2 e 3 irão ser necessários capacitores para a correção de fator de potência.

Com todos os cálculos realizados, foi feito o diagrama unifilar da instalação da fábrica

Figura – Diagrama unifilar da fábrica

Fonte: Otávio Morais

3. RESULTADOS E DISCUSSÕES

Com base na análise dos dados coletados e os cálculos realizados permitiram avaliar a viabilidade e a conformidade da instalação elétrica projetada para a fábrica. A partir da definição dos principais pontos de carga, foi possível desenvolver o diagrama unifilar representando a distribuição de energia elétrica desde a subestação até os quadros gerais de força (QGF) das três áreas produtivas.

Com base na potência instalada, foi selecionado um transformador de 750 kVA, que atende de forma adequada à demanda, considerando um fator de potência médio de 0,85 e fator de simultaneidade aplicável às características operacionais da planta. A distribuição de baixa tensão é feita em 380/220 V, sistema trifásico com neutro, garantindo versatilidade para atender tanto cargas trifásicas quanto monofásicas.

A divisão da instalação em três QGF (Área 1, Área 2 e Área 3) mostrou-se eficiente para a organização dos circuitos e facilitou a manutenção, além de melhorar o equilíbrio de cargas. A seleção dos disjuntores foi realizada com base na NBR 5410 (para baixa tensão) e na NBR 14039 (para média tensão), garantindo que os dispositivos de proteção estejam adequados tanto para as condições normais de operação quanto para as situações de curtocircuito e sobrecarga.

Observou-se que a curva C dos disjuntores atende adequadamente às características das cargas da fábrica, especialmente os circuitos de força e iluminação, que são predominantemente resistivos e apresentam baixas correntes de partida. Adicionalmente, a análise da queda de tensão demonstrou que todos os trechos estão dentro dos limites estabelecidos pela NBR 5410, não comprometendo o desempenho dos equipamentos.

Por fim, a proposta da instalação garante não apenas a segurança dos usuários, mas também a continuidade operacional da planta, com uma configuração elétrica flexível, de fácil expansão futura e em total conformidade com as normas técnicas vigentes.

4. CONCLUSÃO

Conclui-se que o projeto da instalação elétrica proposto atende de forma segura, eficiente e tecnicamente adequada às necessidades da instalação, obedecendo às normas específicas do setor elétrico, como a NBR 5410: Instalações elétricas de baixa tensão, NBR 14039: Instalações elétricas de média tensão, NBR 5419: Proteção contra descargas atmosféricas, NBR IEC 60947: Componentes de manobra e proteção de baixa tensão, e NBR 16786: Eficiência energética em instalações elétricas industriais.

No desenvolvimento deste trabalho, foram também observadas as normas aplicáveis à elaboração de documentos técnicos e acadêmicos, tais como a NBR 14724: Trabalhos acadêmicos — Apresentação, que orienta a estruturação de textos acadêmicos, a NBR 6023: Referências — Elaboração, a NBR 10520: Citações — Apresentação. O cumprimento dessas normas assegura clareza, padronização e organização adequada do documento, facilitando sua compreensão, validação técnica e acadêmica.

Dessa forma, tanto do ponto de vista técnico da engenharia elétrica quanto da apresentação formal do projeto, conclui-se que a proposta atende integralmente aos requisitos normativos, operacionais e de segurança, estando apta para execução e futuras expansões.

REFERÊNCIAS

ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. **NBR 14039**: Instalações elétricas de média tensão de 1,0 kV a 36,2 kV – Requisitos. Rio de Janeiro, 2005.

ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. **NBR 5410**: Instalações elétricas de baixa tensão. Rio de Janeiro, 2004.

ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. **NBR 6023**: Informação e documentação - Trabalhos acadêmicos - Apresentação. Rio de Janeiro, 2018.

ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. **NBR 6024**: Informação e documentação - Trabalhos acadêmicos - Apresentação. Rio de Janeiro, 2012.

ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. **NBR 6028**: Informação e documentação - Trabalhos acadêmicos - Apresentação. Rio de Janeiro, 2003.

ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. **NBR 10520**: Informação e documentação - Trabalhos acadêmicos - Apresentação. Rio de Janeiro, 2002.

ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. **NBR 14724**: Informação e documentação - Trabalhos acadêmicos - Apresentação. Rio de Janeiro, 2011.

ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. **NBR IEC 60947**: Aparelhos de manobra e comando de baixa tensão. Rio de Janeiro, 2017.

ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. **NBR 16786**: Eficiência energética — Instalações elétricas em média tensão — Requisitos. Rio de Janeiro, 2019.