Global exercise - GUE11

Tuan Vo

 $12^{\rm th}$ January, 2023

Summary of content covered: Analysis

- Review line integral of the 1st kind (scalar field) and 2nd kind (vector field)
- Surface integral of the 1st kind (scalar field) and 2nd kind (vector field)
- Gauss's theorem and its useful applications

1 Course evaluation

2 Analysis: Line integral and Surface integral

2.1 First kind: Scalar field

Recall 1. Line integral of a scalar field $\phi: \Omega \to \mathbb{R}$ is defined as follows

$$\int_{\Gamma} \phi \, ds := \int_{a}^{b} \phi(\gamma(t)) \|\gamma'(t)\| \, dt \tag{1}$$

Recall 2. Surface integral of a scalar field $\phi: \Omega \to \mathbb{R}$ is defined as follows

$$\int_{\Gamma} \phi \, ds := \int_{a}^{b} \phi(\gamma(t)) \|\gamma'(t)\| \, dt \tag{2}$$

2.2 Second kind: Vector field

Recall 3. Line integral of a **vector field** $f: \Omega \to \mathbb{R}^n$ is defined as follows

$$\int_{\Gamma} \mathbf{f} \cdot d\mathbf{x} := \int_{a}^{b} \langle \mathbf{f}(\gamma(t)), \gamma'(t) \rangle dt$$
 (3)

Recall 4. Line integral of a vector field $f: \Omega \to \mathbb{R}^n$ is defined as follows

$$\int_{\Gamma} \mathbf{f} \cdot d\mathbf{x} := \int_{a}^{b} \left\langle \mathbf{f}(\gamma(t)), \gamma'(t) \right\rangle dt \tag{4}$$

3 Analysis: Surface integral of the first kind

Example 1. Examine

Approach:

4 Analysis: Surface integral of the second kind

Example 2. Examine

Approach:

5 Analysis: Gauss theorem

Example 3. Examine

Approach: