

What we've learned.

A collaboration between Czech Tech and Drexel

Alex Alspach & Sean Mason Drexel University

<u>alexalspach@gmail.com</u> <u>seanmason337@gmail.com</u>

Why are we here?

Online HUBO

Our lab, Drexel Autonomous Systems Lab

Regli's Lab, Applied Comm. And Info. Networking

■ We are developing a system that will allow universities without a HUBO to test their ideas in a safe and secure environment.

We have learned a few things.

Accessibility

- Online registration
- □ Time slot reservation
- SVN account on server
- Worldwide access

Availability

- Web-based availability
 - Arena and robots
- Robot walks itself out to the workspace for the reservation
- Self charging

Adaptability

- More sensors more uses
- Dynamic environment
 - Obstacles can be added
- Multiple task workstations
 - Stations for grasping, stair climbing
 - Stations must be reset each time
 - Automatically walk to station

User Interface

- Sensor data visualization tools
- Full positional feedback
 - We already have a motion capture system
- Ability to easily add obstacles or change/ reset the environment
 - e.g. Mirek's click and raise plugin

Safety

- Gantry to lift and reset after failure
- Soft limits at arena extents
- Collision detection and avoidance
- HUBO will walk to reserved station
 - And back to the dock at the end

Software

- HUBO ROS package
 - Document how to communicate
 - sensor data visualization and logging
- Simulator integration
 - Streamline development and testing
- Ability to run code on server or on client.
- Ability to run code on HUBO for realtime applications

Documentation

- Installation guide
- Demonstrative example code
 - Presented in multiple language
- Courses
 - Beginner problems to be solved
 - Solution implementation

SND Implementation

Communication via IPC Brige

ROS – Syrotek Node Tree

ROS – Syrotek – Matlab Node Tree

Documentation of our work

- SVN has been updated and contains
 - IPC-Bridge package
 - ROS-Syrotek-MATLAB ROS Package
 - Launch files to establish communication
 - MATLAB files to speak to ROS
 - SND code
 - README files
- Final Report
 - Uploaded to our Wiki
 - PDF

