Solutions to Midtern Exam 3

#9.
$$\lim_{\chi \to \infty} \frac{\chi^3 + 2\chi + 1}{\chi^2 + \chi + 1} = \lim_{\chi \to \infty} \frac{1 + \frac{2}{\chi^2} + \frac{1}{\chi^3}}{\frac{1}{\chi} + \frac{1}{\chi^2} + \frac{1}{\chi^3}} = 0$$

#/
$$f(x) = 2x^3 - 4x^2$$

 $f'(x) = 6x^2 - 8x$
 $f'(x) = 6x^2 - 8x = 0$ (=) $x = 0$ or

#10.
$$\lim_{\chi \to 0} \frac{2\chi^2 + \chi + 2}{3\chi^2 - \chi + 1} = \lim_{\chi \to 0} \frac{2 + \frac{1}{\chi} + \frac{2}{\chi^2}}{3 - \frac{1}{\chi} + \frac{1}{\chi^2}} = \frac{2}{3}$$

#11.
$$-1 \le \cos t \le 1$$

$$= \frac{1}{1-e^{t}} \le \frac{\cos t}{1-e^{t}} \le \frac{1}{1-e^{t}}$$

f(x) roughly.

By Squeeze theorem, Since lim + 1

we have lim cost = 0

#12. lim $\sqrt{x} + 2 = \lim_{x \to 0} \sqrt{x} + \frac{2}{x} = 0$

Caudidates
$$x=0$$
 $x=\frac{4}{3}$ $x=2$ $x=-1$

$$f(0)=0, f(\frac{1}{3})=f(2)=0, f(-1)=-6$$

$$f(\frac{1}{3})=2\cdot\frac{4^{3}}{3^{3}}-4\cdot\frac{4^{2}}{3^{2}}=\frac{2\cdot4^{3}-12\cdot4^{2}}{3^{3}}=\frac{2\cdot4^{3}-12\cdot4^{2}}{3^{3}}=\frac{3^{3}}{3^{3}}$$
Since 64 (-6)

maximum is
$$-6$$
 at $x=-1$
maximum is 0 at $x=0$ or 2

