Measurements of the Specific Heats, C_{σ} , and C_{ν} , of Dense Gaseous and Liquid Ethane

Hans M. Roder

Institute for Basic Standards, National Bureau of Standards, Boulder, Colorado 80302

(August 20, 1976)

The specific heats of saturated liquid ethane, C_{σ} , have been measured at 106 temperatures in the temperature range 93 to 301 K. The specific heats at constant volume, C_v , have been measured at 19 densities ranging from 0.2 to 3.1 times the critical density, at temperatures between 91 and 330 K, with pressures to 33 MPa, at 200 PVT states in all. The uncertainty of most of the measurements is estimated to be less than 2.0 percent. As the critical point is approached the uncertainty rises to about 5.0 percent. The measurements were performed to provide input data for accurate calculations of the thermodynamic properties for ethane. They are believed to be the most comprehensive specific heat measurements available for the liquid and vapor states of ethane.

Key words: Constant volume; ethane; heat capacity; liquid; saturated liquid; specific heat;

1. Introduction

For the calculation of the thermodynamic properties of a fluid, properties such as internal energy, enthalpy, entropy, and velocity of sound, especially at temperatures less than critical, one needs either the latent heat of vaporization or a specific heat along a path traversing the temperatures of interest. Heat capacity measurements are much easier to make than latent heat measurements, and they are not restricted to the liquid-vapor curve but can be made at temperatures and densities in the single phase fluid region as well.

For ethane, the specific heat of the saturated liquid, C_{σ} , was measured from 93 to 301 K, and specific heats at constant volume, C_v , were measured on 19 isochores with densities ranging from 1.5 mol/l to 21 mol/l with temperatures from 91 to 330 K and

pressures up to 33 MPa [1].¹

In a forthcoming publication Goodwin [2] uses the present results together with extensive PVT data to construct a complete thermodynamic network for ethane from the triple point to 600 K with pressures up to 70 MPa.

2. Experimental Method

The basics of the specific heat experiment are deceptively simple. The heat capacity of a sample of fluid is determined in principle as follows. A sample holder is filled with a known amount of

sample, N, and is placed in an adiabatic environment. If we now apply a carefully measured amount of heat, Q, to the sample holder, then the temperature of sample and holder will rise to a new value, from an initial temperature, T_1 , to a final temperature, T_2 , the change in temperature being ΔT . To obtain the heat capacity of the sample we must account for the heat absorbed by the container. This is accomplished by conducting a second experiment with the sample holder empty to find the heat capacity of the empty container, C_0 . With

$$C_0 = \frac{Q_{\text{MT}}}{\Delta T_{\text{MT}}} \tag{1}$$

the desired specific heat of the sample can be calculated from

$$C = \frac{Q - C_0 \cdot \Delta T}{\Delta T \cdot N} \cdot \tag{2}$$

Thus, the parameters we must measure in the experiment are C_0 , Q, ΔT , and N.

3. Apparatus and Procedures

The apparatus used is a constant volume adiabatic calorimeter fully described by Goodwin [3]. The essential features are a spherical sample holder, a filling capillary, a heating/cooling interceptor guard ring, an adiabatic shield, and a platinum resistance thermometer mounted on the sample holder. Calorimeter and cryostat are shown in figure 1. The refrigerants used were liquid nitrogen, ice, and cold

^{*}This work was carried out at the National Bureau of Standards under the sponsorship of the American Gas Association.

¹ Figures in brackets indicate the literature references at the end of this paper.

water. The instrument has been used to measure the specific heats, C_{σ} and C_{v} , of hydrogen [4, 5], oxygen [6, 7], fluorine [8, 9], and methane [10]. Measurements of the heat of fusion and of the solid-solid transition in ethane with this apparatus have been reported elsewhere [11]. Minor modifications to the system have been described by Goodwin and Weber [6].

Figure 1. Calorimeter and cryostat.

The major experimental parameters are Q, ΔT , and N. These are measured as follows. We obtain the calorimetric heating rate from nearly simultaneous readings of the potential and current applied to the calorimeter heater. The time of the heating interval is measured by an electronic counter triggered by the potential across the calorimeter heater. Temperatures are measured with the platinum resistance thermometer. The thermometer was calibrated by the NBS Temperature Section. Temperatures are on the IPTS-68 scale. The temperature of the adiabatic shield and guard ring are controlled to the sample temperature with difference thermocouples and automatic power regulation. The amount of sample is determined from an observed temperature T and pressure P in the single-phase domain, from the bomb volume at this T, P, and from the fluid density derived from an equation of state [2].

The ethane used in these experiments was commercially available research grade with minimum purity certified by the supplier at 99.98 percent. This purity was verified by chromatographic analysis.

The procedures used for measurement of the empty calorimeter, for loading of the sample, and for the specific heat measurements are the same as those used previously [4-10] except for filling the sample holder at low densities, and in the sequence of measurements. Differences in the filling of the calorimeter arise because the critical temperature of ethane is above room temperature. The ethane supply tank is normally at room temperature, about 296 K and the corresponding supply pressure, vapor pressure, is about 4 MPa. Fillings with liquid densities down to 12 mol/l are determined by selecting the temperature of the calorimeter, as before. However, different techniques had to be used to achieve densities below 12 mol/l. One was to raise the filling pressure by placing the ethane supply tank in a hot water bath, up to 40 °C. The other was to fill the sample holder around 12 mol/l, heat it to a temperature above critical, and then bleed it in small increments down to the desired density.

The sequence of measurements adopted was to

conduct the C_{σ} and C_{v} measurements with a single filling rather than with different fillings as was the practice before. In this scheme the sample holder is filled to a known density in the single phase region and is then cooled to a temperature where both liquid and vapor are present in the calorimeter. Heating intervals are applied to the two phase sample, the data reduction yields values of C_{σ} . During these measurements both liquid and vapor densities are changing, gradually filling the sample holder. From that point on the data reduction is carried out to yield values of C_r . The heating interval in which the sample holder contains both two phase and single phase fluid is called the "breakthrough" point. A sharp change in rate of temperature rise can be seen on a recorder trace of calorimeter temperature, and both guard ring and shield heaters show a slight "bump" on the recorder traces of the differential thermocouples corresponding to a change in power requirement.

4. Calculations and Adjustments

The data reduction applicable to this experiment has been described in detail by Goodwin and Weber [6, 7]. However, for ethane the separate programs of C_{σ} and C_{r} were combined and a phasefinder developed that would pinpoint the "breakthrough" point of each filling. The phasefinder, the filling conditions, and the PVT conditions at which each point was measured are based on the equation of state by Goodwin [2].

One of the primary experimental parameters is the total amount of sample in the system, N. The pressure and temperature at filling are measured, the corresponding density is calculated from the PVT surface, and N is evaluated from a knowledge of the calorimeter volume, and the various ancillary volumes such as capillary, connector, and valve volumes. As mentioned before, the critical point of ethane, at 305.33 K, is above room temperature. A number of fillings and experimental measurements

were made between 305 and 330 K. For these runs the portion of the sample in the capillary is not negligible, and has to be accounted for accurately. All of the "nuisance" volumes were revised, in particular the valve volume which, nominally at room temperature, was larger than previously estimated. To partially alleviate the problem the valve was thermostated at 40 °C, and a variable valve temperature was included in the data reduction routines. The amount in the capillary is determined by assuming a temperature distribution along the capillary. This distribution was changed to accommodate a variable temperature at the valve end.

Several other corrections made in the programs are reviewed briefly. The calorimeter volume depends both on temperature, thermal expansion, and on pressure [4, 6]. Since the sample holder is a thin stainless steel sphere it stretches as the pressure increases. Thus, in a C_v measurement work is done by the sample due to the increase in sample volume. This correction developed by Walker [12] ranges from 0.5 to 5 percent of the resulting C_v value. However, it can be made accurately. The density for each C_v measurement is calculated from the filling density after correcting for sample holder expansion and the amount compressed into the filling capillary [7]. In the case of a C_{σ} measurement the effects of the latent heat of vaporization and heat absorbed by the vapor must be subtracted [4, 6, 8]. This type of correction has been derived by Hoge [13].

It is worthwhile to mention that of the three state variables, pressure, temperature, and density, only temperature is measured during the measurement of a specific heat point. The amount of sample in the calorimeter is used to establish the density and pressure at the mean temperature of the experiment. While the total amount of sample remains constant, the distribution between calorimeter and capillary changes from point to point because the calorimeter volume changes with temperature and pressure. Thus, while the results for C_v are corrected to be a true C_v , the measurements of a given run are made at slightly changing mean densities.

Curvature adjustments have been made for the C_{σ} values at temperatures above 101.5 K. Adjustments to the experimental gross heat capacity-liquid and vapor-range from 0.002 J/mol-K to 0.366 J/mol-K, or up to 0.16 percent of the total value of C_{σ} . Curvature adjustments for the values of C_{v} were not significant, and were, therefore, omitted.

5. Heat Capacity of the Empty Calorimeter

Early estimates revealed that under the best of circumstances 50 percent of the applied heat is required for the calorimeter; for the very low densities at the highest temperatures up to 93 percent of the heating goes to raise the temperature of the calorimeter. Since the critical temperature of ethane is 305.33 K it appeared desirable to make at least some of the C_v measurements at temperatures above

critical. An upper limit of 338 K is imposed by the fact that the platinum resistance thermometer is mounted with Wood's metal, which melts at 65 °C. Measurements on the other fluids had been carried out to only 300 K, therefore, an extension of the measurements on the empty calorimeter were indicated.

Remeasuring the heat capacity of the calorimeter C_0 provided an opportunity to conduct additional checks of the system with regard to systematic errors, and to see if the precision of the measurements could be improved. The measurements of the heat capacity of the empty calorimeter included large and small ΔT 's from 8 to 0.5 K; large and small applied powers, from 1.0 to 0.23 W; runs with deliberate temperature offsets in both guard ring and shield temperatures, 3 K (100 μ V) hot and cold; as well as different coolants in the refrigerant tank, runs 2, 3, 4, with ice and runs 5, 6, 7 with liquid nitrogen. The results of these measurements, some 92 points, are shown in table 1. The applied temperature differences are small enough so that a curvature correction is not required. Intercomparison of the data is achieved by using the functional representation developed by Goodwin and Weber [6].

$$\operatorname{Log}_{e}(C_{0}/50) = \sum_{i=1}^{8} C_{i} \cdot (100/T)^{i-1}. \tag{3}$$

Values of the coefficients, C_i , are given in the heading of table 1.

Points 208 through 304 are included in table 1 to show the most extreme variation in ΔT . They were not used to obtain the coefficients, C_i , because during these runs one of the d.c. amplifiers had a large bias which was not corrected until the start of run 4. The analytical curve represents the heat capacities of the empty calorimeter with an imprecision of 0.07 percent. To the level of 0.1 percent in Co there are no discernible systematic errors that can be related to the size of the ΔT , the size or rate of the applied heating, the temperature gradient of the capillary, or to temperature errors in shield or guard ring systems. The agreement of the present values with those measured by Goodwin and Weber [6] is well within the imprecision of the separate measurements. In the temperature range 87 to 320 K the uncertainty in the quantity $(Q - \bar{C}_o \Delta T)/\Delta T$ will range from 0.04 to 0.08 J/K due to the uncertainties in \bar{C}_{o} alone.

6. Results

The results to be presented include values for the specific heat of saturated liquid ethane, values for the specific heat of single phase ethane, both in compressed liquid and in gaseous states, and a limited set of measurements on methane, made for purposes of comparison. As mentioned above, both C_{σ} and C_{v} measurements were made during a single filling. Table 2 gives the loading conditions for all experimental runs; the runs are shown in density-temperature coordinates in figure 2. Temperature and pres-

Table 1. Heat capacity of the empty calorimeter

Coefficients, eq [3]: C1= 1.352617652, C2= -7.469809247, C3=30.953781888, C4=-76.348710878 C5=110.748213166, C6=-94.987724059, C7=44.485629941, C8= -8.756298569

Run No. — Point	Temperature	Power	Time	Heat, Q	ΔT	C_0	C_0 Calc.	Dev.	Remarks
No.	K	W	s	J	K	J/K	J/K	0/0	Remarks
No. 208 209 210 302 303 304 401 402 403 404 405 406 407 408 409 410 411 412 413 414 501 502 503 504 505 506 507 508 509 511 601 602 603 604 605 606 607 608	X 300. 294 302. 419 303. 809 275. 050 275. 881 278. 500 279. 032 283. 489 287. 955 292. 433 296. 923 295. 532 300. 004 304. 486 309. 774 314. 120 318. 482 309. 649 314. 300 319. 013 273. 211 277. 724 282. 215 286. 704 291. 192 295. 681 300. 167 304. 708 309. 206 314. 458 319. 745 127. 080 131. 608 136. 098 142. 318 150. 056 131. 622 134. 090 137. 347	W 0. 23661 . 23724 . 23720 . 24587 . 24655 . 93146 1. 00346 1. 00375 1, 00340 1. 00384 1. 00392 1. 00062 1. 00050 1. 00075 1. 00114 1. 00111 1. 00083 1. 01274 1. 01203 1. 01194 1. 01106 1. 01099 1. 01067 1. 01099 1. 01067 1. 01023 1. 00964 1. 00927 1. 00864 1. 009766 57391 57368 57390 1. 00467 58565 58574 58516	723. 20 721. 35 185. 20 181. 92 360. 18 361. 54 360. 92 360. 25 361. 62 360. 78 361. 63 360. 49 361. 54 361. 05 360. 63 360. 05 358. 38 360. 84 361. 65 363. 70 360. 42 361. 01 361. 04 360. 65 361. 07 360. 42 361. 01 361. 04 360. 65 361. 07 360. 48 483. 74 482. 10 482. 80 482. 50 899. 00 485. 05 174. 94 347. 34	J 171. 11 171. 13 43. 93 44. 73 88. 80 336. 76 362. 53 361. 60 362. 85 362. 07 363. 52 361. 64 362. 60 361. 27 363. 52 361. 64 362. 60 361. 27 360. 81 360. 32 358. 79 361. 24 361. 95 368. 33 364. 76 365. 31 365. 02 364. 89 364. 34 364. 55 363. 82 487. 91 363. 53 276. 68 276. 97 276. 91 515. 94 487. 31 102. 48 203. 83 203. 25	X 2. 066 2. 061 2. 528 549 1. 091 4. 129 4. 446 4. 416 4. 414 4. 387 4. 387 4. 357 4. 357 4. 357 4. 357 4. 357 4. 357 4. 357 4. 358 4. 291 4. 298 4. 291 4. 298 4. 291 4. 298 4. 442 4.	82. 810 83. 040 83. 142 81. 523 81. 389 81. 559 81. 543 82. 526 82. 733 82. 683 83. 010 83. 232 83. 636 83. 884 84. 235 83. 620 84. 044 84. 442 81. 219 81. 572 81. 871 82. 199 82. 520 82. 814 83. 132 83. 447 83. 711 84. 100 84. 418 59. 390 60. 662 61. 945 63. 588 65. 474 60. 607 61. 354 62. 225	3. 088 83. 230 83. 322 81. 311 81. 373 81. 566 81. 605 81. 927 82. 243 82. 555 82. 862 82. 767 83. 069 83. 367 83. 712 83. 992 84. 269 83. 704 84. 004 84. 303 81. 173 81. 509 81. 835 82. 155 82. 469 82. 777 83. 080 83. 381 83. 675 84. 014 84. 349 59. 270 60. 644 61. 920 63. 562 65. 422 60. 636 61. 360 62. 261	0/0 -0. 34 23 22 26 . 02 01 08 04 04 15 10 07 16 09 13 04 10 . 05 . 16 . 06 . 08 . 04 . 05 . 06 . 08 . 04 . 05 . 06 . 08 . 04 . 05 . 06 . 08 . 04 . 05 . 06 . 08 . 04 . 05 . 06 . 08 . 04 . 05 . 06 . 08 . 04 . 05 . 06 . 08 . 04 . 06 . 08 . 04 . 06 . 08 . 04 . 10 . 08 . 20 . 03 . 04 . 08 . 04 . 05 . 06 . 08 . 04 . 10 . 08 . 20 . 03 . 04 . 08 . 07 01 06	Not used in fit Guard ring 3 K cold Guard ring 3 K cold Guard ring 3 K hot

611	147. 463	. 58495	514, 99	301. 24	4. 647	64. 827	64. 819	. 01
		. 58497	693. 56	405. 71	6. 141	66. 064	66, 039	. 04
612	152. 806				5. 143	67. 734	67. 782	07
613	161, 128	. 57559	605.25	348. 38				
614	167. 386	. 57535	897. 63	516. 45	7. 490	68. 948	68. 983	05
615	174, 725	. 57518	899. 07	517. 13	7. 355	70. 309	70. 284	. 04
616	175, 502	1. 01504	263. 20	267. 16	3. 793	70. 431	70. 415	. 02
	179. 197	1. 01430	262. 02	265. 77	3, 742	71, 022	71. 025	 00
617			261. 33	264. 77	3. 703	71. 509	71. 567	08
618	182. 608	1. 01317					72. 122	08
619	186. 241	1. 01301	262. 22	265. 63	3. 686	72. 065		
620	188. 966	1. 01269	136. 12	137. 84	1. 899	72. 580	72. 525	. 08
621	190. 803	1. 01218	135. 19	136. 84	1. 878	72. 861	72. 790	. 10
622	194, 400	1. 01244	392. 67	397. 55	5. 425	73. 275	73. 295	 03
623	199. 723	1. 01223	392, 50	397. 30	5. 372	73. 962	74. 009	06
			516. 29	524. 84	7. 062	74. 323	74. 353	04
624	202. 396	1. 01658		146, 42	1. 954	74. 940	74. 906	. 04
625	206. 831	. 28352	516. 44					04
626	208. 722	. 28345	519. 22	147. 17	1. 960	75. 102	75. 134	
627	212. 843	. 97721	517. 07	505. 29	6. 685	75. 583	75. 619	05
628	220, 458	1. 01519	654. 30	664. 24	8. 686	76. 476	76. 469	. 01
629	226. 417	. 28269	920, 69	260. 27	3. 377	77. 059	77. 096	05
630	229. 716	. 28266	922. 57	260. 77	3. 365	77. 501	77. 430	. 09
			658. 73	668. 38	8. 567	78. 014	78. 006	. 01
631	235. 624	1. 01464				77. 793	77. 748	. 06
632	232, 939	. 58665	783. 62	459. 71	5. 909			
633	238. 781	. 58629	784. 29	459. 82	5. 872	78. 313	78. 304	. 01
634	244, 575	. 58619	780. 71	457. 64	5. 807	78. 810	78. 833	 03
635	250. 293	. 58579	786. 49	460. 72	5. 808	79. 320	79. 334	02
636	256, 055	. 58558	784, 73	459, 52	5. 756	79. 836	79. 821	. 02
637	261. 790	. 58544	785. 31	459. 75	5. 723	80. 339	80. 287	. 06
			782. 99	457. 91	5. 665	80. 832	80. 737	. 12
638	267. 500	. 58482			5. 657	81. 207	81. 172	. 04
639	273. 202	. 58484	785. 46	459. 37				. 01
640	277. 804	. 58479	786. 09	459. 70	5. 639	81. 520	81. 515	
641	283. 507	. 58451	784. 38	458. 47	5. 594	81. 956	81. 928	. 03
642	289. 440	. 58427	785. 21	458. 77	5. 567	82. 403	82. 347	. 07
643	295, 144	. 58405	784. 02	457. 90	5. 529	82. 822	82. 741	. 10
644	87. 956	. 58825	329. 66	193. 92	4. 522	42. 888	42. 881	. 01
645	92. 450	. 58814	346. 38	203. 72	4. 502	45. 250	45. 272	05
		. 58758	361. 11	212. 18	4. 469	47. 476	47. 464	. 02
646	.96. 923				4. 456	49. 524	49. 519	. 01
647	101. 371	. 58799	375. 32	220. 68				. 04
648	105. 801	. 58779	388. 99	228. 64	4. 442	51. 476	51. 454	
649	110. 252	. 58769	407. 99	239. 77	4. 499	53. 297	53. 290	. 01
650	114, 693	. 58742	421.62	247. 67	4. 503	54. 999	55. 013	02
651	119. 179	. 58700	435. 77	255, 80	4. 519	56. 604	56. 645	07
652	123. 684	. 58733	450. 21	264. 42	4. 549	58. 134	58. 179	08
$652 \\ 653$	128. 143	. 58676	450. 00	264. 04	4. 435	59. 538	59. 601	08 10
					5. 616	81. 429	81. 442	02
701	276. 822	. 58535	781. 32	457. 34				
702	282. 678	. 58521	785. 71	459. 80	5. 617	81. 865	81. 869	00
703	276. 345	. 58488	784.87	459. 05	5. 642	81. 369	81. 407	05
704	281. 862	. 58439	784. 15	458. 25	5. 606	81. 749	81. 810	07
705	276. 552	. 58419	781. 97	456, 82	5. 612	81. 400	81. 422	03
706	282, 382	. 58464	783. 58	458. 11	5. 598	81. 834	81. 847	02
			782, 35	455. 70	5. 604	81. 320	81. 359	05
707	275. 701	. 58248			5. 610	81. 706	81. 763	07
708	281. 212	. 58417	784. 63	458. 36	5, 610	01. 700	01. 700	01

Guard ring 3 K cold Guard ring 3 K cold Guard ring 3 K hot Guard ring 3 K hot Shield 3 K cold Shield 3 K cold Shield 3 K hot Shield 3 K hot

Table 2. Calorimeter loading conditions for the measurement runs

Run	Pressure	Density	Temperature	Calorimeter	Total	Valve	Breakthroug	gh conditions
No.		v	•	volume	sample	temperature	Density	Temperature
	MPa	mol/l	K	$ m cm^3$	mol	K	mol/l	K
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18	4. 0982 3. 8329 4. 0753 3. 8996 2. 3023 3. 8980 3. 4113 4. 0396 3. 9223 3. 9178 3. 9875 5. 3477 5. 0159 4. 9503 5. 4586 6. 0158 4. 0370 3. 2471	14. 641 20. 998 16. 135 19. 648 18. 923 17. 985 16. 912 15. 059 14. 001 12. 950 11. 978 5. 886 4. 610 9. 179 3. 269 11. 045 7. 884 20. 298 1. 583	258. 899 110. 512 231. 874 147. 427 165. 524 190. 218 214. 723 251. 910 268. 047 280. 749 289. 559 310. 707 308. 612 304. 928 329. 810 299. 922 313. 979 129. 892 319. 878	73. 238 72. 794 73. 150 72. 892 72. 928 73. 018 73. 089 73. 215 73. 267 73. 308 73. 339 73. 425 73. 444 73. 401 73. 491 73. 387 73. 444 72. 845 73. 431	1. 0730 1. 5289 1. 1811 1. 4326 1. 3802 1. 3135 1. 2363 1. 1028 1. 0261 9495 8786 4325 3387 6740 2406 8109 5796 1. 4790	296. 45 296. 45 296. 45 296. 45 314. 65 314. 55 314. 27 314. 19 314. 16 314. 00 313. 42 314. 15 313. 15 313. 59 313. 25 313. 25 313. 17 296. 45 313. 78	14. 659 21. 013 16. 157 19. 664 18. 932 18. 001 16. 925 15. 071 14. 010 12. 956 11. 981 5. 889 4. 612 9. 181 3. 277 11. 053 7. 894 20. 314 1, 587	254. 048 108. 627 227. 207 144. 870 163. 802 186. 776 211. 275 247. 239 263. 866 277. 448 287. 411 305. 158 303. 177 303. 179 296. 609 294. 671 305. 106 127. 574 274. 258

Figure 2. The locus of experimental runs in the density-temperature plane.

 	the two phase	
 	 measurements	resulting in C_{σ}
	measurements	resulting in C_{\bullet}

sure, obtained by computation from laboratory observations, are in effect direct measurements. The volume of the calorimeter is computed, the density is obtained from the equation of state [2]. The total number of moles, N, includes the amount in capillary and valve with the upper stem temperature equal to the indicated valve temperature. Breakthrough density and temperature define the point on the saturation boundary applicable to the run in question. The values are calculated from the equation of state, the loading conditions and the vapor pressure by considering the variation of calorimeter volume with temperature and pressure.

6.1. Performance Tests: The Specific Heats \mathbf{C}_o and \mathbf{C}_v of Methane

Prior to making measurements on ethane we made a limited set of measurements on methane. The purpose was to check on the operation of the instrument by comparison to the values previously measured by Younglove [10]. Several values of C_{σ} and 29 values of C_{τ} were measured at three different filling densities and at widely differing temperatures. Results and comparisons are shown in table 3. Two conclusions can be drawn from the measurements on methane. One is rather surprising, namely that the values of the specific heats calculated from the raw data will differ, if slightly different PVT surfaces are used in the data reduction process. The other is expected, namely that the values of the specific heats depend directly on the values measured for the heat

capacity of the empty calorimeter.

To calculate the present results, which are shown in column 5 of table 3, we used Goodwin's most recent formulation of the PVT surface of methane [14]. Since Younglove used a different, earlier formulation [15], a second calculation of our results using the earlier PVT surface is shown in column 6 of table 3. One of the most important differences between these two PVT surfaces is the assignment of critical density, 10.0 mol/l for reference [14], and 10.15 mol/l for reference [15]. The intercomparison of the two calculations is given in column 7. Clearly, both C_{σ} and C_{v} are sensitive to the PVT surface used in the data reduction process. Furthermore, the differences vary from point to point on the PVTsurface. Recomputing all of Younglove's results with the two different PVT surfaces leads to maximum differences of .08 percent in both C_{σ} and C_{v} . Accordingly, the most consistent way to compare the present results with those of Younglove [10] is to use the same PVT surface. This comparison involves columns 6 and 10 of table 3, with differences given in column 11. The disagreement between the two experiments runs from -1 to +1 percent. Several explanations were considered, only one of which is displayed in table 3. There exists a consistent offset, 0.4 percent, between the C_0 measured in the course of this experiment and that measured by Younglove [10]. In column 8 we have calculated our present results on methane using Younglove's [10] values for C_0 and Goodwin's earlier formulation of the PVT surface [15]. Column 9 shows the departure of the values in column 8 from those in column 6. Finally, a comparison of columns 9 and 11 suggests if not quantitatively, then at least qualitatively, that indeed the difference in the values of the C_0 's is the explanation for the difference between the present measurements and those of Younglove [10].

6.2. The Specific Heats, C_{σ} , of Saturated Liquid Ethane

The specific heat of saturated liquid ethane was measured for 106 temperatures. The lowest was 93.7 K, the triple point is 90.348 K, the highest temperature was 301.5 K, the critical point is 305.33 K. Values of C_{σ} along with the experimental conditions, experimental parameters, and the various correction terms are given in table 4. A plot of C_{σ} is shown in figure 3. The measurements for C_{σ} were made with ΔT between 3 and 5 kelvin, and with loadings such that at each temperature C_{σ} is defined by at least two different fillings (see column 11, table 4). Curvature corrections were necessary only at temperatures above 101 K. The results for C_{σ} are represented with an analytical equation as follows:

$$C_{\sigma} = C_1 + C_2 T + C_3 T / (T_c - T)^{0.6} + C_4 / T + C_5 / T^2$$
 (4)

where T_c is the critical temperature, 305.33 K and values of the coefficients are given in the heading of table 4. Values calculated from eq. (4) and differences between experimental and calculated values expressed in percent are also given in table 4. The standard deviation of the entire fit is 0.3 J/mol-K. For temperatures below 260 K the imprecision in the experiment is ± 0.1 percent, not much larger than that experienced for measurements of the empty calorimeter. Considering all sources the estimated uncertainty in the measured value of C_{σ} is about 0.5 percent generally, increasing to about 5 percent within a few kelvin of the critical point.

Comparison with the earlier measurements of Wiebe et al. [16], and Witt and Kemp [17] is made using eq (4) for interpolation. Differences in C_{σ} are shown in table 5. They are negligible at low temperatures but increase gradually to 5 percent at the highest temperatures of comparison. The explanation of the differences lies in the different PVT surfaces used to evaluate the experimental data and correction terms, in particular the rather large difference in assignment of the critical density, 6.80 mol/l this experiment and 6.99 mol/l for the other authors.

6.3. The Specific Heats, $C_{\prime\prime}$, of Dense Gaseous and Liquid Ethane

The specific heats at constant volume were measured at 19 densities ranging from 0.2 to 3.1 times the critical density, at temperatures between 91 and 330 K, and with pressures to 33 MPa. As shown in figure 2, a given density is limited either by the maximum allowable system pressure, about

					The s _l	pecific heat, C_{σ}	, of saturated	liquid methan	e	
	Saturati	on conditions reference [14		Results this	paper calcula	ted with C_0 an	d PVT sources	s below		
$\begin{array}{c} \mathrm{Run} \ \mathrm{No}. \\ -\mathrm{point} \\ \mathrm{No}. \end{array}$				C_0 : This paper PVT : Ref. [14]	This ref.	pape r [15]	Ref Ref	. [10] . [15]	Interpolated	from ref. [10]
	Vapor pressure MPa	Liquid density mol/l	$\operatorname*{Temperature}_{K}$	$\mathrm{J/mol} ext{-}K$	J/mol-K	Dev. col 5 to 6 0/0	J/mol-K	Dev. col 6 to 8 0/0	J/mol-K	Dev. col 6 to 10 0/0
118 119 120	0. 1436 . 1721 . 2219	25. 939 25. 710 25. 365	116. 044 118. 479 122. 089	56. 58 56. 76 57. 29	56. 74 56. 91 57. 44	-0. 27 27 27	56. 97 57. 16 57. 70	-0. 42 43 44	56. 52 56. 75 57. 19	0. 39 . 29 . 45
					The sp	ecific heat, C_v ,	of singlephase	e fluid methan	e	
D. N.	PVT	conditions ba		Results this	paper calculat	ed with C_0 and	PVT sources	below		
Run No. —point No.	Pressure Density Temperature			C_0 : This paper PVT : Ref. [14]		paper 7. [15]		[10] [15]	Interpolated	from ref. [10]
	Pressure MPa	Pa mol/l K		$\mathrm{J/mol} ext{-}K$	J/mol-K	Dev. col 5 to 6 0/0	$\mathrm{J/mol} ext{-}K$	Dev. col 6 to 8 0/0	J/mol-K	Dev. col 6 to 10 0/0
101 102 103 104 105 106	6. 4874 6. 7965 7. 2646 7. 8939 8. 6908 9. 6540 4. 6707	11. 802 11. 801 11. 798 11. 795 11. 791 11. 786 11. 811	200. 945 202. 608 205. 115 208. 469 212. 697 217. 783 190. 959	34. 01 33. 47 32. 77 32. 16 31. 56 31. 12 51. 72	34. 21 33. 67 32. 96 32. 36 31. 75 31. 31 52. 03	-0.60 60 60 60 60 59	34. 62 34. 08 33. 37 32. 75 32. 13 31. 67 52. 45	-1. 20 -1. 21 -1. 23 -1. 22 -1. 20 -1. 16 81	34. 42 33. 88 33. 04 32. 45 31. 69 31. 00	-0. 61 63 23 29 . 18 . 98
108 109 110 111 112 113 114 115 116 117	4. 9409 5. 2290 5. 5236 5. 8105 6. 1116 6. 4166 6. 7237 7. 1915 7. 8235 8. 6216	11. 809 11. 808 11. 807 11. 805 11. 804 11. 802 11. 801 11. 798 11. 795 11. 791	192. 489 194. 092 195. 713 197. 280 198. 915 200. 564 202. 217 204. 724 208. 095 212. 330	40. 10 37. 79 36. 47 35. 39 34. 65 34. 09 33. 41 32. 87 32. 24 31. 63	40. 34 38. 02 36. 69 35. 60 34. 85 34. 30 33. 61 33. 06 32. 43 31. 82	60 60 60 60 60 60 60 60 60	40. 76 38. 44 37. 11 36. 02 35. 27 34. 71 34. 03 33. 47 32. 83 32. 20	$\begin{array}{c} -1.\ 05 \\ -1.\ 11 \\ -1.\ 15 \\ -1.\ 18 \\ -1.\ 19 \\ -1.\ 20 \\ -1.\ 22 \\ -1.\ 22 \\ -1.\ 20 \\ \end{array}$	37. 09 35. 79 35. 24 34. 59 33. 92 33. 10 32. 49 31. 75	-1. 09 54 -1. 11 86 92 11 18 . 21
$201 \\ 202 \\ 203 \\ 204 \\ 205$	6. 5423 7. 6896 9. 4196 11. 7168 13. 9877	20. 504 20. 499 20. 489 20. 479 20. 470	170. 403 172. 193 174. 898 178. 506 182. 089	30. 30 30. 33 30. 22 30. 16 30. 09	30. 21 30. 26 30. 17 30. 11 30. 04	. 27 . 22 . 16 . 17 . 17	30. 44 30. 49 30. 40 20. 35 20. 28	74 75 77 79 80	30. 63 30. 57 30. 51 30. 42 30. 33	$\begin{array}{c} -1.38 \\ -1.03 \\ -1.12 \\ -1.01 \\98 \end{array}$
301 302 303 304 305 306 307	6. 8455 8. 5366 10. 1996 12. 6822 15. 9591 19. 5801 23. 5208	23. 445 23. 438 23. 431 23. 417 23. 403 23. 385 23. 368	146. 608 148. 358 150. 090 152. 695 156. 170 160. 058 164. 346	31. 16 31. 13 31. 14 31. 10 31. 05 31. 01 30. 93	31. 15 31. 12 31. 13 31. 08 31. 03 31. 01 30. 92	. 04 . 04 . 04 . 05 . 07 . 03 . 05	31. 20 31. 28 31. 29 31. 25 31. 20 31. 18 31. 11	48 49 50 52 54 57 60	31. 50 31. 46 31. 42 31. 35 31. 27 31. 18 31. 11	-1. 13 -1. 07 92 85 76 56 60

Table 4. The specific heat, C_{σ} , of saturated liquid ethane

Coefficients, eq[4]: C1=0.2264822683E+02, C2=0.8796160711E-01, C3=0.1090640627E+01, C4=0.5371201054E+04, C5=-0.2123389940E+06														
Run No. —point No.	Vapor pressure MPa	Liquid density mol/l	$\begin{array}{ c c c c c }\hline \text{Tem-} \\ \text{perature} \\ K \end{array}$		$C_{\sigma}Calc.$ $J/mol-K$	Dev. 0/0	Heat, Q	$\Delta T K$	$C_0 \ J/K$	Sample mol	Calorim- eter Vol- ume cm³	Expansion + capillary correction J/mol-K	Vaporiza- tion+vapor correction J/mol-K	Curvatur correction J/mol-K
202 203 1801 204 1802 205 1803 206 1804 127 1805 401 128 1806 402 129 1807 403 130 1808 404 131 405 132 406 133 407 134 412 421 135 501 136 502 137 503 138 601 504 518 505	0. 0000	21. 558 21. 436 21. 398 21. 317 21. 274 21. 198 21. 152 21. 080 21. 031 21. 026 20. 943 20. 931 20. 846 20. 779 20. 751 20. 669 20. 615 20. 438 20. 320 20. 261 20. 148 20. 085 19. 911 19. 797 19. 757 19. 750 19. 611 19. 499 19. 425 19. 323 19. 240 19. 147 19. 055 19. 049 19. 012 18. 992 18. 981 18. 870 18. 867	93. 712 97. 045 98. 095 100. 322 101. 482 103. 565 104. 828 106. 788 108. 142 110. 531 110. 862 113. 180 115. 760 118. 003 119. 454 120. 599 122. 751 123. 782 124. 252 127. 423 129. 007 132. 037 133. 712 136. 389 138. 362 141. 365 142. 460 142. 604 146. 274 149. 205 151. 131 153. 786 155. 932 158. 321 160. 684 160. 830 161. 771 162. 290 162. 575 165. 384 165. 464	68. 27 68. 30 68. 44 68. 45 68. 46 68. 53 68. 35 68. 60 68. 60 68. 60 68. 62 68. 71 68. 82 68. 84 68. 93 68. 97 68. 95 69. 96 69. 22 69. 29 69. 29 69. 39 69. 50 69. 62 69. 78 69. 78 70. 57 70. 76 70. 87 71. 03 70. 96 71. 22 71. 23	68. 14 68. 29 68. 32 68. 40 68. 50 68. 54 68. 59 68. 63 68. 68 68. 69 68. 75 68. 79 68. 81 68. 87 68. 91 69. 00 69. 03 69. 04 69. 14 69. 19 69. 30 69. 36 69. 46 69. 55 69. 68 69. 73 69. 74 69. 93 70. 09 70. 21 70. 37 70. 51 70. 86 70. 93 70. 99 71. 21 71. 22	0. 18	504. 66 504. 23 508. 65 499. 81 507. 43 503. 65 508. 13 502. 83 507. 45 622. 67 698. 13 751. 16 624. 36 701. 10 750. 67 624. 10 698. 71 755. 80 620. 83 754. 44 624. 02 755. 80 686. 18 747. 04 685. 20 749. 49 685. 67 748. 66 684. 78 755. 08 684. 78 755. 80 686. 18 757. 48 686. 18 757. 48 687. 688 758. 688 759. 688 75	3. 358 3. 318 3. 408 3. 252 3. 365 3. 246 3. 334 4. 3215 3. 298 4. 506 4. 943 4. 874 4. 473 4. 874 4. 408 4. 832 4. 727 4. 254 4. 808 4. 641 4. 667 4. 667 4. 626 4. 857 4. 808 4. 626 4. 857 4. 808 4. 626 4. 857 4. 808 4. 626 4. 857 4. 867 4. 867 8. 867 8	45. 910 47. 520 48. 020 49. 040 50. 490 51. 040 51. 870 52. 430 53. 530 54. 440 55. 130 55. 410 56. 230 56. 740 57. 140 57. 870 60. 770 61. 250 62. 000 62. 530 63. 590 63. 630 64. 540 65. 230 66. 250 66. 710 67. 210 67. 210 67. 910 68. 010 68. 620 68. 620	1. 5289 1. 4790 1. 5289 1. 4790 1. 5289 1. 4790 1. 5289 1. 4790 1. 5289 1. 4790 1. 5289 1. 4790 1. 0730 1. 4790 1. 4326 1. 0730 1. 4790 1. 4326 1. 0730 1. 4326 1. 0730 1. 4326 1. 0730 1. 4326 1. 0730 1. 4326 1. 0730 1. 4326 1. 0730 1. 4326 1. 0730 1. 3802 1. 0730 1. 3802 1. 0730 1. 3802 1. 0730 1. 3802 1. 0730 1. 3802 1. 0730 1. 3802 1. 0730 1. 3802 1. 0730 1. 3802 1. 0730 1. 3802 1. 0730 1. 3802 1. 0730 1. 3802 1. 0730 1. 3135	72. 726 72. 733 72. 735 72. 740 72. 742 72. 750 72. 754 72. 757 72. 762 72. 763 72. 775 72. 780 72. 784 72. 775 72. 780 72. 784 72. 780 72. 849 72. 803 72. 803 72. 803 72. 819 72. 819 72. 826 72. 832 72. 840 72. 842 72. 843 72. 845 72. 848 72. 848 72. 848 72. 848 72. 848 72. 848 72. 848 72. 848 72. 848 72. 886 72. 873 72. 879 72. 886 72. 893 72. 898 72. 898 72. 898 72. 898 72. 898 72. 898 72. 898 72. 898 72. 898 72. 898 72. 898 72. 898 72. 898 72. 898 72. 898	0. 000	-0. 000 000 000 000 000 000 000 000 000 000 000 000 000 010 000 010 000 020 000 030 040 000 080 010 110 110 140 180 180 220 220 220 020 030 260 010	

748

16. 806

16.705

16.596

213. 835

215.978

218. 259

77.41

77.87

78.37

77.45

77.86

78.32

-.06

. 01

. 07

747. 19

739. 54

746. 39

. 3893

. 4230

. 4613

304

107

305

Saturation conditions Run No. Calorim Expansion+ Vaporiza-Curvature $\operatorname*{C_{\sigma}}{J/mol\text{-}K}$ $\overset{C_0}{J/K}$ - point No. $C_{\sigma}Calc.$ ΔT Dev. Heat, Q Sample capillary tion+vapor correction eter correction J/mol-K Vapor Liquid Tem-J/mol-K 0/0Kcorrection J/mol-K mol Volpressure density $_{K}^{\mathrm{perature}}$ J/mol-K ume MPa mol/l ${\rm cm^3}$ 18. 685 18. 684 170. 038 170. 061 71.72 71.6972. 920 72. 920 140 0.0430 71.61 1.0730 0.002 -0.3000. 15 683. 91 4.660 69.470 603 . 0431 71.61 . 10 752. 92 4.602 69.470 1. 3135 . 002 . 010 141 . 0501 18.589 172.446 71.91 758.69 5. 147 1.0730 72. 927 . 003 -. 320 . 030 -. 360 71.83 . 11 69, 890 604 . 0573 18. 501 18. 382 174.613 72. 08 72. 34 72. 04 . 06 72. 933 70. 260 752. 45 4.563 1. 3135 . 002 142 . 0683 72.33 177. 535 . 02 758.05 5.096 70.750 1.0730 72.942 . 004 72. 52 72. 90 . 060 -. 400 605 179. 126 751. 80 756. 20 4. 524 71. 010 . 003 . 0749 18.317 72, 49 . 03 1. 3135 72. 947 72. 87 72. 98 72. 957 143 18.176 182. 564 . 0909 . 04 5.034 71.560 1.0730 606 . 110 . 0963 18. 133 183.603 73.00 . 03 753.08 4.497 71.720 1. 3135 72.960 . 004 186. 415 187. 540 72. 150 72. 320 701 18.016 1. 2363 -.,020. 1119 73.42 73. 31 . 15 755.67 4.638 72.969 . 005 17.968 144 . 1187 73.46 73.45 . 02 4.990 72.972 -.430756. 57 1.0730 . 006 17. 960 101 . 1200 187, 745 73.37 73.47 -.13739. 12 754. 21 4.877 72. 350 72. 820 72.973 . 006 -. 430 . 030 1.0730 702 17.822 73. 88 1. 2363 72. 982 . 1416 190.995 73.94 . 08 4.593 . 006 17. 756 17. 628 102 . 1530 74. 06 192.556 74.08 -.02738.00 4.824 73.040 1.0730 72. 987 . 007 -.440-. 440 . 090 -. 450 . 170 -. 430 . 020 . 270 703 . 1767 73. 450 73. 690 . 007 195. 533 74.49 74.49 . 00 753.06 4. 552 1.2363 72.997 103 74. 75 . 1923 17.550 197, 332 74.74 73. 002 . 01 740.70 4.798 1.0730 17. 432 17. 342 704 . 2177 200.029 75. 14 75. 13 . 01 753. 12 4.517 74.050 1. 2363 73.011 . 008 104 . 2383 74. 310 202.057 75.40 75.44 -.05735. 51 4.724 1.0730 73.017 . 010 75. 45 75. 90 301 . 2391 17. 339 75. 45 746. 93 73. 017 . 009 202. 127 -.004.571 74. 320 1. 1811 17. 234 17. 217 705 . 2651 204, 490 75.83 . 09 752.84 4.478 74.620 1. 2363 73.025 . 010 302 . 2694 204.866 75.76 75.89 748.89 . 070 -.174.565 74.660 1. 1811 73.026 . 010 105 . 2915 17. 133 76. 19 735. 14 74. 890 . 012 -.390206.723 76. 15 4.681 73.032 -.051.0730 706 17. 036 . 3186 208.85076.55 . 400 76.43 -.16728.544.307 75. 150 1. 2363 73.039 . 011 303 75. 210 75. 450 73. 040 73. 047 . 180 . 3255 17.012 209. 372 76.56 76.64 748.35 4. 523 1.1811 . 012 -.1177. 00 -. 330 . 320 4. 675 106 . 3529 16.921 211.363 . 014 76.97 -.04740.46 1.0730

75. 730

75.980

76. 230

1.1811

1.0730

1. 1811

73.055

73.062

73. 069

. 014

. 017

-. 230 . 490

4. 480

4.628

4.437

Table 4. The specific, C_{σ} , of saturated liquid ethane—Continued

1	.08	. 5020	16, 487	220. 536	78. 87	78. 79	. 09	735. 37	4. 561	76. 480	1. 0730	73. 077	. 019	100	
	306	. 5421	16. 384	222. 647	79. 13	79. 25	14	745. 84	4. 404	76. 700	1. 1811	73. 084	. 019	. 700	
	.09	5907	16. 264	225, 058	79. 79	79. 79	00	738. 77	4. 546	76. 960	1. 0730	73. 092	. 022	. 070	
	10	. 6896	16. 038	229. 541	80. 79	80, 86	09	734. 29	4. 483	77. 410	1. 0730	73. 107	. 025	. 300	
		. 7366	15. 937	231. 507	81. 41	81. 36	. 05	769. 10	4.614	77. 610	1. 1028	73. 114	. 026	. 670	
	301	. 7992	15. 807	233. 988	81. 97	82. 03	07	739. 19	4. 474	77. 850	1. 0730	73. 122	. 029	. 580	
	11		15. 695	236. 091	82. 60	82. 61	01	773. 02	4.600	78, 050	1. 1028	73. 129	. 029	1. 010	
	302	. 8553	15. 543	238. 894	83. 41	83. 44	03	810. 00	4. 856	78. 310	1. 0730	73. 139	. 033	. 970	
	12	. 9344		240. 641	84. 06	83. 97	. 10	772. 07	4. 551	78. 480	1. 1028	73. 145	. 033	1. 430	
	303	. 9863	15. 447	243. 704	84. 90	84. 97	09	809. 41	4. 809	78. 750	1. 0730	73. 156	. 038	1. 460	
	13	1. 0825	15. 275		85. 26	85. 35	11	655. 14	3. 836	78. 850	1. 1028	73. 160	. 037	1. 910	0
	304	1. 1189	15. 212	244. 814	86. 41	86. 40	000	786. 22	4. 725	79. 110	1. 0260	73. 171	. 043	1. 380	
	001	1. 2188	15. 043	247. 726	86. 56	86. 67	13	808. 37	4. 758	79. 180	1. 0730	73. 173	. 043	2.070	
	14	1. 2453	14. 999	248. 469	88. 29	88. 24	. 05	786. 10	4. 678	79. 520	1. 0260	73. 188	. 048	2, 060	
	002	1. 3930	14. 761	252. 414		90. 33	. 03	784. 89	4. 625	79. 900	1. 0260	73. 205	. 054	2. 910	
	903	1. 5827	14. 468	257. 059	90. 39	91. 81	. 06	785. 82	4. 755	80. 150	. 9495	73. 216	. 063	2. 270	
	001	1. 7130	14. 274	260. 020	91. 87		17	787. 80	4. 611	80. 200	1. 0260	73. 218	. 060	3. 740	
	905	1. 7461	14. 225	260. 744	92. 04	92. 19	17 $ 24$	687. 69	4. 021	80. 250	1. 0260	73. 221	. 061	3. 910	
	004	1. 7756	14. 182	261. 383	92. 32	92. 54		785. 32	4. 699	80. 520	. 9495	73. 234	. 071	3. 450	
	002	1. 9373	13. 948	264. 754	94. 60	94. 50	. 11		4. 675	80. 820	. 9495	73. 252	. 080	5. 000	
	003	2. 1805	13. 603	269. 456	97. 75	97. 66	. 09	790. 15	4. 622	81. 240	. 9494	73. 270	. 089	7. 050	
	004	2. 4435	13. 236	274. 128	101. 37	101. 47	10	789. 86		81. 270	. 8786	73. 272	. 097	5. 490	0. 002
	01	2. 4671	13. 203	274. 528	101. 81	101. 84	03	784. 34	4. 725	81. 620	. 8786	73. 212	. 108	8. 260	. 005
11	02	2. 7585	12. 795	279. 261	106. 68	106. 78	09	783. 94	4. 661		. 6739	73. 308	. 156	3. 470	. 013
14	101	3. 0487	12. 381	283. 620	112. 75	112. 69	. 05	753. 66	4. 841	81. 940	. 8785	73. 309	. 121	12. 230	. 012
11	03	3. 0713	12. 348	283. 946	112. 85	113. 21	32	784. 57	4. 602	81. 960		73. 327	. 174	8. 440	. 022
14	102	3. 3806	11. 888	288. 238	121. 72	121. 33	. 32	659. 46	4. 154	82. 260	. 6739	73. 342	. 158	21. 760	. 048
16	601	3. 6532	11. 456	291. 779	130. 47	130. 84	29	749. 65	4. 389	82. 510	. 8108	73. 342	. 193	16, 110	. 048
14	103	3. 7091	11. 364	292. 479	133. 41	133. 19	. 16	662. 09	4. 093	82. 560	. 6739	73. 345		16. 250	. 047
14	114	3. 7139	11. 355	292. 539	133. 54	133. 40	. 11	651. 15	4. 025	82. 560	. 6739		. 193	16. 650	. 062
17	701	3. 9357	10. 967	295. 236	146. 32	144. 80	1. 04	496. 69	3. 142	82. 750	. 5795	73. 357	. 240	29. 830	. 143
14	115	4. 0476	10. 756	296. 550	151. 71	152. 27	37	651. 54	3. 944	82. 840	. 6738	73. 363	. 213	30. 370	. 146
14	104	4. 0571	10. 737	296. 661	152. 77	152. 98	14	661. 25	3. 994	82. 840	. 6738	73. 363	. 213	30. 370 32. 170	. 153
	702	4. 2086	10. 426	298. 389	167. 24	166. 28	. 57	499. 15	3. 091	82. 960	. 5795	73. 371	. 259	59. 180	
	116	4. 3812	10. 025	300. 295	187. 54	188. 77	66	589. 30	3. 467	83. 090	. 6738	73. 379	. 232		. 331
	105	4. 4048	9. 965	300. 550	191. 34	192. 82	77	590. 93	3. 471	83. 110	. 6738	73. 380	. 234	62. 640	. 366
	703	4. 4911	9. 729	301. 473	212. 29	210. 92	. 64	499. 06	2. 990	83. 170	. 5794	73. 384	. 278	68. 370	. 358

35 MPa, which in turn leads to a maximum pressure of 33 MPa at the mean temperature of the experiment, or by the upper limit in temperature, 330 K. Values of C_v along with the experimental conditions, the major experimental parameters, and the correction term are given in table 6. The temperature and density dependence of C_v is illustrated in figure 4. For a wide range of densities to either side of the critical density the specific heat increases sharply as the coexistence enevelope is approached. At liquid densities far removed from critical the temperature dependence is relatively weak.

Table 5. Comparison of the calculated C_{σ} with results of others

Temperature K	C_{σ} -calculated this paper J/mol-K	C_0 from the literature J/mol-K	Difference in 0/0
	Refere	nce [16]	
96. 77 96. 82 98. 06 101. 54 107. 08 108. 65 115. 74 116. 19 122. 70 123. 60 128. 08 128. 49 132. 65 138. 30 138. 18 138. 31 142. 43 143. 36 151. 75 152. 60 154. 99 156. 98 157. 42 160. 10 162. 65 164. 49 165. 93 168. 09 170. 18 172. 05 172. 69 178. 17 181. 50 182. 03 190. 00 199. 86 208. 88 212. 80 220. 48 228. 76 236. 21 244. 61 252. 53 258. 22 265. 25 273. 06 278. 07 284. 07 294. 85	68. 27 68. 28 68. 32 68. 44 68. 60 68. 64 68. 81 68. 82 69. 00 69. 02 69. 16 69. 17 69. 32 69. 54 69. 55 69. 73 69. 55 70. 58 70. 61 70. 80 70. 45 70. 58 70. 61 70. 80 71. 14 71. 26 71. 44 71. 62 71. 79 71. 85 72. 39 72. 75 72. 81 73. 75 75. 11 76. 56 78. 78 80. 67 82. 65 88. 29 90. 89 94. 80 100. 53 105. 41 113. 41 129. 25 142. 89	68. 46 68. 76 68. 55 68. 63 68. 55 68. 67 68. 45 69. 13 69. 17 69. 55 69. 51 69. 84 69. 84 70. 10 70. 05 69. 84 70. 10 71. 10 71. 18 71. 73 71. 31 71. 60 71. 77 72. 15 72. 82 73. 32 73. 32 73. 32 74. 37 75. 66 77. 80 80. 61 82. 32 83. 96 87. 14 88. 44 92. 33 98. 11 101. 33 109. 12 122. 69 135. 79	$\begin{array}{c} -0.3 \\7 \\3 \\4 \\0 \\ 1.2 \\5 \\5 \\5 \\5 \\5 \\5 \\5 \\4 \\5 \\4 \\5 \\4 \\5 \\4 \\5 \\4 \\5 \\4 \\5 \\4 \\5 \\4 \\5 \\4 \\5 \\4 \\5 \\4 \\5 \\5 \\4 \\5 $

Table 5. Comparison of the calculated C_{σ} with results of others— Continued

Temperature K	C_{σ} -calculated this paper J/mol-K	C_0 from the literature $ m J/mol-K$	Difference in 0/0
	Referen	ce [17]	
91. 59 92. 97 94. 94 96. 60 98. 23 98. 89 100. 49 104. 05 106. 67 109. 24 111. 67 114. 20 116. 24 119. 33 122. 72 125. 96 129. 47 134. 49 138. 72 142. 83 145. 97 149. 80 153. 58 157. 95 162. 82 167. 43 172. 02 176. 54 180. 88	68. 03 68. 10 68. 20 68. 27 68. 33 68. 35 68. 41 68. 51 68. 59 68. 65 68. 71 68. 77 68. 82 69. 90 69. 90 69. 20 69. 39 69. 20 69. 39 69. 56 69. 75 69. 75 69. 91 70. 13 70. 36 70. 65 71. 01 71. 38 71. 79 72. 23 72. 68	68. 30 68. 46 68. 38 68. 25 68. 88 68. 38 68. 34 68. 59 68. 88 68. 92 69. 13 69. 01 69. 17 69. 30 69. 43 69. 55 69. 64 69. 76 69. 89 70. 05 70. 31 70. 77 71. 02 71. 52 71. 56 72. 06 72. 11	$\begin{array}{c} -0.4 \\5 \\3 \\0 \\8 \\0 \\1 \\4 \\4 \\6 \\5 \\6 \\5 \\6 \\5 \\6 \\5 \\6 \\5 \\5 \\4 \\3 \\5 \\5 \\4 \\3 \\5 $

Representation of the specific heats has been achieved by Goodwin [2] who correlates the available PVT data, the specific heats of the ideal gas, the specific heat of the saturated liquid from this experiment, and selected values of C_v from runs 1, 8, and 9. Values of C_v calculated from his equation of state and differences between experimental and calculated values expressed in percent are given in table 6. A scan of column 7 in table 6 reveals that the agreement between experimental and calculated values is excellent over much of the PVT surface, i.e., a nominal 2 percent or less. It is only in the region near the critical point where the experimental heat capacities increase drastically that the representation is not able to match the experimental surface of C_v , departures reach values of up to 18 percent. The agreement for the very lowest density, run 19, is particularly gratifying since for this run the experimental uncertainty in C_v is about 2 percent, whereas the calculation of C_v from ideal gas and a very small PVT contribution should have very little error attached to it.

Experimental measurements of specific heats have been made by other authors [18,19], however these measurements are measurements of the specific heat at constant pressure, C_p . The values can be compared only indirectly to the present measure-

Figure 3. The specific heats, C_{σ} , of saturated liquid ethane.

FIGURE 4. The specific heats, C_v, of dense gaseous and liquid ethane.

ments through the use of a PVT surface. Since C_p

are at those values of pressure and density common measurements are normally made along isobars to both sets of data. For the results of Furtado while C_v measurements are made along isochores, [18] and the present measurements this intercomthe most appropriate PVT states for comparisons parison is given in table 7. The pressures are taken

Run No.	I	PVT condition	ons		C _v calc.						Calorim-	Volume
point No.	Pressure MPa	Density mol/l	$\begin{array}{c} \text{Tempera-} \\ \text{ture} \\ K \end{array}$	J/mol-K	from Goodwin [2] J/mol–K	Dev. 0/0	Heat, Q	$K = K \times K$	J/K	Sample mol	eter volume cm³	change correction J/mol-K
116 117 118 119 120 121 122 123 124 125 126 146 147 148 149 150 151	4. 1720 7. 5074 10. 8447 14. 1443 17. 4012 20. 6171 21. 1487 24. 3353 27. 4843 30. 6035 33. 6956 3. 3933 5. 0544 6. 7546 8. 4463 10. 1277 11. 7992 13. 4607	14. 644 14. 628 14. 616 14. 604 14. 592 14. 580 14. 578 14. 567 14. 555 14. 543 14. 532 14. 637 14. 631 14. 624 14. 618 14. 612 14. 606	258. 973 265. 038 271. 085 277. 105 283. 089 289. 038 290. 026 295. 968 301. 879 307. 773 313. 655 257. 577 260. 618 263. 680 266. 736 269. 783 272. 823 275. 855	47. 20 47. 57 48. 61 49. 12 49. 76 49. 84 50. 48 51. 13 51. 82 52. 46 47. 20 47. 30 47. 38 47. 74 47. 92 48. 20 48. 48	47. 10 47. 58 48. 10 48. 64 49. 21 49. 79 49. 89 50. 48 51. 09 51. 71 52. 32 47. 00 47. 23 47. 47. 73 47. 73 47. 73 48. 25 48. 53	0. 20 03 14 07 18 06 09 01 06 22 25 42 16 19 02 13 10 10	806. 66 805. 26 806. 72 805. 29 805. 78 804. 40 806. 75 806. 34 805. 76 806. 49 805. 85 404. 93 404. 05 405. 73 404. 37 404. 37	6. 065 6. 054 6. 015 5. 962 5. 922 5. 863 5. 873 5. 772 5. 730 5. 682 3. 029 3. 050 3. 057 3. 037 3. 023 3. 011 2. 994	80. 060 80. 550 81, 010 81. 450 81. 900 82. 320 82. 390 83. 190 83. 580 83. 960 79. 950 80. 190 80. 440 80. 680 80. 910 81. 140 81. 370	1. 0725 1. 0722 1. 0721 1. 0721 1. 0721 1. 0721 1. 0721 1. 0720 1. 0720 1. 0720 1. 0720 1. 0722 1. 0722 1. 0722 1. 0722 1. 0722 1. 0721 1. 0721 1. 0721 1. 0721	73. 240 73. 297 73. 354 73. 412 73. 470 73. 528 73. 538 73. 596 73. 654 73. 770 73. 226 73. 255 73. 284 73. 313 73. 342 73. 371 73. 400	2. 173 1. 372 1. 371 1. 386 1. 407 1. 429 1. 433 1. 456 1. 480 1. 503 1. 527 2. 898 1. 438 1. 384 1. 375 1. 376 1. 382 1. 390
208 209 210 211 212 213 214	3. 6415 7. 4628 11. 4471 15. 3828 19. 8576 24. 8511 29. 7379	20. 996 20. £81 20. 969 20. 957 20. 944 20. 930 20. 915	110. 494 112. 401 114. 288 116. 167 118. 324 120. 762 123. 178	44. 79 46. 07 46. 20 46. 21 46. 28 46. 41 46. 43	45. 02 45. 06 45. 10 45. 13 45. 17 45. 20 45. 22	52 2. 18 2. 39 2. 33 2. 41 2. 62 2. 60	249. 72 245. 90 247. 71 246. 42 315. 54 324. 08 324. 68	1. 938 1. 896 1. 897 1. 878 2. 464 2. 433 2. 422	53. 390 54. 140 54. 860 55. 560 56. 340 57. 200 58. 010	1. 5284 1. 5280 1. 5279 1. 5279 1. 5279 1. 5279 1. 5278	72. 793 72. 829 72. 868 72. 906 72. 950 73. 000 73. 050	4. 605 3. 385 3. 332 3. 325 3. 323 3. 338 3. 356
308 309 310 311 312 313 314 315 316 317 318	3. 6029 5. 8108 8. 0795 10. 3326 12. 5647 13. 6122 17. 9966 22. 3017 26. 5329 30. 7076 33. 7881	16. 140 16. 129 16. 121 16. 113 16. 105 16. 101 16. 086 16. 071 16. 056 16. 041 16. 029	231. 182 234. 160 237. 158 240. 148 243. 126 244. 528 250. 439 256. 303 262. 126 267. 928 272. 246	45. 31 45. 16 45. 53 45. 79 46. 06 46. 08 47. 34 47. 92 48. 53 48. 91	44. 84 45. 07 45. 30 45. 53 45. 77 45. 88 46. 35 46. 84 47. 91 48. 36 48. 72	1. 03 . 21 . 50 . 56 . 63 . 44 . 71 1. 06 . 01 . 35 . 39	402. 58 404. 39 405. 00 404. 52 404. 88 806. 74 806. 99 806. 20 806. 48 806. 20 402. 54	2. 983 3. 032 3. 022 3. 005 2. 995 5. 961 5. 908 5. 847 5. 799 5. 747 2. 853	77. 580 77. 870 78. 150 78. 430 78. 700 78. 830 79. 350 79. 840 80. 310 80. 770 81. 100	1. 1806 1. 1802 1. 1802 1. 1802 1. 1801 1. 1801 1. 1801 1. 1801 1. 1800 1. 1800	73. 143 73. 176 73. 211 73. 245 73. 279 73. 295 73. 363 73. 431 73. 499 73. 566 73. 617	3. 292 1. 870 1. 823 1. 815 1. 818 1. 811 1. 830 1. 854 1. 880 1. 907 1. 937
409 414 410 411 415 416 417 418 419 420 423	1. 6032 4. 7513 4. 7903 9. 4211 9. 4536 14. 2813 19. 0188 23. 6646 28. 2240 31. 7899 4. 7430	19. 657 19. 643 19. 643 19. 624 19. 624 19. 609 19. 594 19. 579 19. 565 19. 553 19. 643	145. 929 148. 039 148. 064 151. 130 151. 151 154. 270 157. 366 160. 437 163. 485 165. 894 148. 027	44. 78 44. 89 44. 98 44. 41 44. 39 44. 48 44. 66 44. 84 44. 93 45. 10 44. 78	43. 67 43. 73 43. 74 43. 83 43. 83 43. 93 44. 03 44. 13 44. 23 44. 30 43. 73	2. 49 2. 57 2. 76 1. 20 1. 25 1. 24 1. 41 1. 58 1. 57 1. 76 2. 33	161. 75 421. 18 415. 86 415. 62 420. 32 421. 01 420. 11 419. 85 420. 06 248. 70 424. 39	1. 212 3. 121 3. 078 3. 113 3. 149 3. 135 3. 107 3. 085 3. 069 1. 807 3. 155	64. 450 64. 950 64. 960 65. 670 65. 670 66. 360 67. 020 67. 640 68. 250 68. 700 64. 950	1. 4324 1. 4320 1. 4320 1. 4316 1. 4316 1. 4316 1. 4315 1. 4315 1. 4315	72. 866 72. 901 72. 902 72. 953 72. 954 73. 008 73. 062 73. 115 73. 169 73. 211 72. 901	3. 424 4. 002 4. 013 2. 975 2. 974 2. 957 2. 965 2. 980 2. 999 3. 026 3. 802

Table 6. The specific heat, Cv, of singlephase fluid ethane—Continued

Run No.	[PVT condition	ons		C_v calc.						Calorim-	Volume
point No.	Pressure MPa	Density mol/l	$egin{array}{c} { m Tempera-} \ { m ture} \ { m \it \it K} \end{array}$	J/mol-K	from Goodwin [2] J/mol–K	Dev. 0/0	Heat, Q	$rac{\Delta T}{K}$	$C_0 \ J/K$	Sample mol	eter volume cm³	change correction J/mol-K
907 908 909 910 911 912 913 914 915 916 917 919 920 921 922 923	3. 3507 5. 2994 7. 2349 9. 1760 11. 1122 13. 0368 14. 9508 16. 8538 18. 7466 20. 6314 22. 5043 24. 5909 26. 4506 28. 3059 30. 1546 31. 9987	14. 004 13. 994 13. 983 13. 976 13. 968 13. 961 13. 954 13. 947 13. 940 13. 933 13. 926 13. 911 13. 904 13. 897 13. 890	266. 868 270. 918 274. 958 278. 996 283. 030 287. 053 291. 068 295. 074 299. 072 303. 068 307. 053 311. 509 315. 497 319. 489 323. 481 327. 478	48. 30 48. 29 48. 61 48. 89 49. 18 49. 57 49. 99 50. 34 50. 72 51. 12 51. 58 52. 00 52. 44 53. 30 53. 80	47. 62 47. 97 48. 33 48. 71 49. 09 49. 49 49. 88 50. 29 50. 70 51. 11 51. 53 52. 00 52. 42 52. 84 53. 26 53. 68	1. 42 . 66 . 56 . 38 . 18 . 17 . 22 . 10 . 04 . 02 . 10 0 . 05 . 01 . 07 . 21	533. 44 532. 42 532. 78 532. 34 532. 86 532. 29 532. 31 532. 39 532. 40 532. 51 530. 25 530. 82 530. 82 531. 84 529. 10 530. 45	4. 050 4. 019 4. 019 4. 002 3. 989 3. 964 3. 943 3. 925 3. 906 3. 887 3. 850 3. 833 3. 810 3. 802 3. 763 3. 752	80. 690 81. 000 81. 300 81. 600 81. 890 82. 180 82. 460 82. 740 83. 010 83. 270 83. 540 84. 080 84. 330 84. 580 84. 830	1. 0259 1. 0256 1. 0454 1. 0253 1. 0252 1. 0252 1. 0252 1. 0252 1. 0251 1. 0251 1. 0251 1. 0251 1. 0251 1. 0251	73. 256 73. 292 73. 327 73. 362 73. 398 73. 434 73. 470 73. 506 73. 542 73. 578 73. 614 73. 655 73. 691 73. 728 73. 764 73. 801	1. 430 1. 893 1. 401 1. 259 1. 242 1. 232 1. 250 1. 260 1. 272 1. 285 1. 299 1. 315 1. 329 1. 343 1. 358 1. 372
1006 1007 1008 1009 1010 1011 1012 1014 1015 1016 1017 1018	3. 8940 5. 4845 7. 0695 8. 6596 8. 7885 10. 3808 11. 9663 15. 1274 16. 7073 18. 2826 19. 8541 21. 4289	12. 950 12. 941 12. 932 12. 925 12. 925 12. 918 12. 912 12. 900 12. 894 12. 888 12. 882 12. 876	280. 688 284. 835 288. 976 293. 117 293. 453 297. 602 301. 740 310. 014 314. 163 318. 308 322. 453 326. 617	49. 94 49. 93 50. 22 50. 47 50. 60 50. 83 51. 20 51. 71 52. 22 52. 68 53. 17 53. 56	48. 89 49. 29 49. 69 50. 09 50. 13 50. 54 50. 96 51. 81 52. 25 52. 68 53. 11 53. 55	2. 11 1. 29 1. 06 . 75 . 94 . 57 . 46 20 05 0	532. 04 531. 99 534. 04 532. 16 534. 37 533. 14 532. 61 533. 64 531. 89 531. 33 532. 03 532. 16	4. 084 4. 063 4. 075 4. 048 4. 061 4. 036 4. 013 3. 990 3. 954 3. 929 3. 913 3. 896	81. 730 82. 020 82. 310 82. 600 82. 620 82. 910 83. 180 83. 730 84. 260 84. 520 84. 780	0. 9493 . 9491 . 9488 . 9488 . 9487 . 9487 . 9487 . 9486 . 9486 . 9486 . 9486 . 9486	73. 308 73. 340 73. 372 73. 404 73. 407 73. 440 73. 472 73. 538 73. 571 73. 605 73. 638 73. 672	1. 183 1. 602 1. 136 1. 024 1. 021 1. 008 1. 009 1. 026 1. 037 1. 049 1. 061 1. 074
1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116	4. 3795 5. 6995 4. 5546 5. 8805 7. 2048 8. 5348 9. 8732 11. 1743 12. 4352 13. 6959 14. 9594 16. 2269	11. 976 11. 968 11. 975 11. 967 11. 959 11. 954 11. 948 11. 943 11. 938 11. 933 11. 923	290. 820 295. 076 291. 384 295. 658 299. 925 304. 195 308. 490 312. 666 316. 715 320. 765 324. 828 328. 907	51. 74 51. 64 51. 62 51. 73 51. 98 52. 14 52. 37 52. 65 52. 99 53. 33 53. 62 54. 03	50. 15 50. 54 50. 20 50. 60 51. 00 51. 42 51. 84 52. 26 52. 66 53. 07 53. 48 53. 89	3. 07 2. 13 2. 75 2. 19 1. 88 1. 39 1. 02 . 76 . 62 . 49 . 27	536. 23 336. 58 538. 51 537. 49 532. 89 537. 27 537. 32 504. 24 502. 63 501. 18 503. 47 502. 60	4. 164 4. 150 4. 183 4. 154 4. 116 4. 137 4. 123 3. 854 3. 825 3. 798 3. 800 3. 776	82. 440 82. 740 82. 480 82. 780 83. 060 83. 350 83. 630 83. 900 84. 160 84. 410 84. 670 84. 920	. 8784 . 8782 . 8784 . 8781 . 8779 . 8779 . 8778 . 8778 . 8778 . 8778	73. 347 73. 351 73. 351 73. 381 73. 411 73. 441 73. 501 73. 530 73. 559 73. 588 73. 618	1. 012 1. 372 1. 038 1. 346 0. 890 . 838 . 829 . 832 . 839 . 847 . 857

Table 6. The specific heat, Cr, of singlephase fluid ethane—Continued

Run No.	I	PVT condition	ons	C _v J/mol-K	C_v calc. from Goodwin [2] J/mol-K					- -	Calorim-	Volume
point No.	Pressure MPa	Density mol/l	Tempera- ture K			Dev. 0/0	Heat, Q	${\Delta T \over K}$	$C_0 \ J/K$	Sample mol	eter volume cm³	change correction J/mol-K
1810 1811 1812 1813 1814 1815	6. 0623 11. 0190 16. 1127 21. 1154 26. 0147 30. 8178	20. 289 20. 270 20. 254 20. 239 20. 224 20. 209	131. 088 133. 939 136. 801 139. 647 142. 469 145. 270	45. 99 45. 15 45. 23 45. 25 45. 40 45. 46	44. 25 44. 31 44. 37 44. 43 44. 49 44. 54	3. 77 1. 85 1. 89 1. 80 2. 01 2. 03	381, 55 381, 37 382, 21 381, 25 381, 83 380, 71	2. 837 2. 874 2. 861 2. 836 2. 820 2. 795	60. 490 61. 320 62. 110 62. 870 63. 600 64. 290	1. 4783 1. 4780 1. 4780 1. 4780 1. 4779 1. 4779	72. 866 72. 918 72. 972 73. 025 73. 079 73. 132	4. 067 3. 151 3. 144 3. 155 3. 172 3. 192
1901 1902 1903 1904 1905 1906 1907 1908 1909 1910	2. 7144 2. 7708 2. 8271 2. 8980 2. 9836 3. 0687 3. 1531 3. 2372 3. 3213 3. 4004	1. 585 1. 585 1. 585 1. 585 1. 584 1. 584 1. 583 1. 583 1. 582 1. 582	288. 868 292. 068 295. 282 299. 364 304. 333 309. 311 314. 289 319. 287 324. 315 329. 076	49. 30 49. 21 48. 28 48. 87 49. 32 49. 10 49. 85 50. 21 50. 18 51. 11	48. 60 48. 71 48. 84 49. 04 49. 32 49. 65 50. 00 50. 39 50. 81 51. 22	$\begin{array}{c} 1.\ 43 \\ 1.\ 02 \\ -1.\ 16 \\\ 34 \\ -0 \\ -1.\ 10 \\\ 31 \\\ 37 \\ -1.\ 26 \\\ 22 \end{array}$	280. 23 281. 45 281. 02 435. 51 436. 70 435. 44 436. 06 435. 39 435. 80 383. 50	3. 182 3. 189 3. 180 4. 908 4. 901 4. 870 4. 855 4. 828 4. 816 4. 219	82. 310 82. 530 82. 750 83. 030 83. 360 84. 000 84. 320 84. 630 84. 930	. 1162 . 1162 . 1162 . 1162 . 1162 . 1162 . 1162 . 1162 . 1162 . 1162	73. 322 73. 333 73. 344 73. 359 73. 376 73. 394 73. 412 73. 429 73. 447 73. 464	. 173 . 174 . 175 . 176 . 178 . 180 . 182 . 184 . 187 . 189

Table 7. Intercomparison of $C_{\mathfrak{p}}$ and $C_{\mathfrak{p}}$

Charles Tari	1					Mary I de la company de la com	1
Pressure MPa ref. [18]	Density mol/l This paper	Temperature K from eq. ref. [2]	$C_{ v}$ J/mol-K interpol.	PVT Contr. J/mol-K calc. ref. [2]	C_{p} J/mol-K calc. col. 4,5	C_p J/mol-K interpol. ref [18]	Diff
3. 4474	14. 647	257. 677	47. 19	44. 44	91. 64	90. 43	-1. 3
6. 8948	14. 630	263. 928	47. 41	41. 87	89. 28	88. 29	-1. 1
10. 3421	14. 617	270. 176	48. 00	39. 64	87. 64	87. 15	6
13. 7895	14. 605	276. 459	48. 55	37. 72	86. 27	86. 01	3
6. 8948	20. 983	112. 105	45. 94	23. 41	69. 35	68. 58	$ \begin{array}{c c} -1.1 \\ -1.5 \end{array} $
13. 7895	20. 962	115. 407	46. 19	23. 17	69. 36	68. 34	
6. 8948	16. 125	235. 582	45. 31	34. 72	80. 03	79. 59	6
13. 7895	16. 100	244. 770	46. 08	32. 80	78. 88	79. 09	
1. 7237 6. 8948 13. 7895	19. 656 19. 634 19. 611	146. 015 149. 450 153. 944	44. 79 44. 69 44. 46	26. 12 25. 80 25. 39	70. 91 70. 49 69. 85	69. 97 70. 06 70. 00	-1. 4 6
6. 8948	18. 904	169. 041	44. 22	27. 18	71. 40	71. 43	0 7
13. 7895	18. 879	174. 296	44. 80	26. 63	71. 44	70. 92	
6. 8948	17. 971	193. 014	44. 16	29. 20	73. 36	74. 08	1. (
13. 7895	17. 945	199. 373	44. 38	28. 38	72. 76	72. 67	1
6. 8948	16. 896	218. 724	44. 89	32. 10	76. 99	76. 45	<u> </u>
13. 7895	16. 869	226. 616	45. 20	30. 77	75. 97	76. 03	
3. 4474	15. 062	250. 932	46. 72	41. 53	88. 26	87. 42	-1. 0
6. 8948	15. 044	256. 692	46. 98	39. 54	86. 53	85. 99	6
10. 3421	15. 030	262. 445	47. 46	37. 78	85. 24	84. 71	6
13. 7895	15. 017	268. 213	48. 00	36. 22	84. 22	83. 83	5
3. 4474 6. 8948 10. 3421 13. 7895	14. 004 13. 985 13. 971 13. 958	267. 065 274. 251 281. 423 288. 629	48. 30 48. 54 49. 06 49. 74	50. 15 46. 23 43. 00 40. 33	98. 44 94. 77 92. 06 90. 07	97. 38 93. 93 91. 31 89. 67	-1. 1 8 8
4. 9160 6. 8948 8. 6184 10. 3421 13. 7895	12. 944 12. 933 12. 925 12. 918 12. 905	283. 347 288. 518 293. 012 297. 507 306. 513	49. 88 50. 22 50. 44 50. 83 51. 49	60. 62 56. 10 52. 78 49. 93 45. 28	110. 51 106. 31 103. 21 100. 76 96. 77	106. 99 104. 85 102. 07 100. 07 95. 46	-3. 3 -1. 4 -1. 3 -1. 4
4. 9160 6. 8948 8. 6184 10. 3421 13. 7895	11. 973 11. 961 11. 954 11. 946 11. 933	292. 548 298. 929 304. 461 309. 999 321. 071	51. 49 51. 96 52. 15 52. 47 53. 35	80. 27 70. 21 63. 61 58. 39 50. 62	131. 76 122. 17 115. 76 110. 86 103. 97	129. 01 *109. 17 113. 57 109. 53 103. 25	*-11. *-1. -1. -1.
5. 6468	5. 883	314. 096	62. 30	404. 02	466. 31	501. 97	7.
6. 8948	9. 166	316. 310	57. 35	171. 78	229. 12	*197. 27	*-16.
8. 6184	9. 158	326. 292	56. 89	116. 33	173. 22	164. 57	-5.
4. 6678 4. 9160 5. 1711	3. 274 3. 272 3. 271	310. 787 316. 685 322. 812	55. 29 54. 35 53. 89	94. 73 80. 07 69. 26	150. 03 134. 42 123. 15	149. 97 134. 19 123. 24	-0 :
4. 9160	11. 047	298. 730	53. 57	116. 03	169. 59	162. 31	$ \begin{array}{c} -4. \\ -1. \\ -2. \\ -2. \\ - \end{array} $
6. 8948	11. 035	306. 527	53. 59	91. 41	145. 00	142. 31	
8. 6184	11. 027	313. 282	53. 56	78. 02	131. 58	127. 85	
10. 3421	11. 020	320. 026	53. 94	68. 58	122. 53	119. 45	
12. 0658	11. 013	326. 749	54. 30	61. 55	115. 85	115. 11	
5. 6468	7. 888	311. 185	63. 62	509. 77	573. 39	527. 29	-8.
6. 8948	7. 880	320. 609	60. 60	217. 16	277. 77	273. 85	-1.
6. 8948	20. 286	131. 554	45. 81	24. 64	70. 45	69. 02	-2.
13. 7895	20. 261	135. 496	45. 14	24. 33	69. 47	69. 04	

^{*}Some of Furtado's values [18] may be in error by as much as 10 percent, see text.

from reference [18], the densities from the present measurements. A temperature corresponding to the P and ρ of an intersection is obtained from the equation of state [Goodwin, 2], and experimental values of C_v and C_p are interpolated from the two sets of data. The comparison is completed by calculating a value of C_p from

$$C_{p} = C_{v} + \frac{T \left(\frac{\partial P}{\partial T}\right)^{2}_{\rho}}{\rho^{2} \left(\frac{\partial P}{\partial \rho}\right)_{T}}$$
 (5)

The second term in equation 5 is the contribution from the PVT surface. It is clear from table 7 that in almost all cases the PVT contribution to C_p -calculated is as large or larger than the value of C_v . The mean deviation between calculated and experimental C_p for the 50 intersections is just under 2 percent. This implies that the thermodynamic consistency between experimental C_v and C_p measurements is indeed excellent, i.e., at least as good as 2 percent, but quite probably much better than that for two reasons. First, a large part of the total discrepancy must be assigned to errors in the PVT surface derivatives. Second, some of the values presented by Furtado [18] may be in error by as much as 10 percent. A detailed example is as follows.

In our table 7 a comparison is made at 6.8948 MPa (1000 psia) and 298.929 K (78.40°F). Furtado's closest smoothed value of C_p taken from his table VIII–5 at 6.8948 MPa (1000 psia) and 299.817 K (80°F) is 111.84 J/mol-K (0.889 BTU/lb-°F). This value changes to 124.06 J/mol-K if interpolated from his table VIII–3, a table of smoothed enthalpies, or to 122.4 J/mol-K if interpolated from his figure VIII–6, a plot of C_p versus temperature for the 1000 psia isobar. Thus the inconsistencies in Furtado's values, depending on how they are obtained, are at times as large at 10 percent.

7. Discussion

It is readily apparent that accurate values of C_0 are essential if we wish to obtain accurate values of either C_σ or C_v . A change of 0.1 percent in C_0 , for example, will result in a change of 1 percent in the values of C_v calculated for run 19. The temperature increment, ΔT , is evaluated at the middle of the heating interval by extrapolating the temperature drift rates just before heating and after an equilibrating time has elapsed. Since the drift is linear the statistics of the extrapolation can be used to estimate an uncertainty in the ΔT . For the first 14 points of C_0 the average slope uncertainty was 0.19×10^{-3} K/min, since the average elapsed time to the center of the measurement interval is about 20 min, the average uncertainty in ΔT turns out to be ± 0.004 K. This in turn implies that if we seek 0.1 percent precision in the specific heats the ΔT must be 4 K or larger. The choice of ΔT , as shown in tables 4 and 6, was based on this consideration and on the idea

that there ought to be at least 5 points per experimental run. The imprecision in the temperature time data is attributed to the exact setting or resetting of the platinum thermometer current rather than potentiometer inaccuracy. Potentiometer inaccuracy was actually reduced from values given by Goodwin and Weber [6] to a maximum of 0.003 K by consideration of a potentiometer calibration. Heat leak to and from the sample is estimated to be less than 0.1 percent by considering the difference in drift rates before heating and after equilibration has been reached. Shield temperatures lag at the start of the heating interval by about 0.02 K. They lag again at the end of the heating interval after the power is turned off. The two lags compensate to produce a nearly adiabatic environment during the entire heating interval. Deliberate changes of temperature along the capillary were introduced to see if the applied heat, and therefore the results could be changed. In run 14 points 1401-1413 were obtained with liquid nitrogen in the refrigerant tank. These points were duplicated for 1414-1425 using cold water as coolant. The results, as shown in tables 4 and 6, are virtually identical. However, when we applied deliberate heating to the capillary, actually quite drastic heating 100 ma to a 140 Ω heater, the results changed. Points 508-517 differ from those obtained in a duplicate run 520-527 without heating the capillary by 1 percent at the lowest temperature. The difference disappears entirely at the highest temperature of the run. However, rather than changing the applied heat, heating the capillary apparently changes the distribution of sample between calorimeter and stem.

The same problem, distribution of sample between calorimeter and stem, is thought to give rise to the curvature of the runs. Runs 18, 4, 5, 6, and 7 show a definite curvature as to two phase boundary is approached, see figure 4, if compared to the values calculated by Goodwin [2]. The curvature seems to abate at pressures above the critical pressure, or at a point where mass change between calorimeter and stem has stabilized. It is possible that a heat of vaporization correction to Q should be included for the C_v calculation as long as sample is being transferred from calorimeter to stem. It should be noted that the correction term, column 13 of table 6, is irregular for the first few points of the runs in question.

Sample distribution is also thought to explain the departure of point 208 from the rest of run 2. The possibility exists that for run 208 the capillary was frozen, because if point 208 is recalculated with zero stem volume the value of C_v is increased by about 2.5 percent.

We had hoped to employ the breakthrough points to resolve the problem of sample distribution. Experimental breakthrough temperatures agree well with calculated values; densities and total sample agree to a point where we are confident that the calorimeter volume has not changed. However, to calculate C_{σ} and C_{v} values from a breakthrough point requires that we know the time of breakthrough

exactly in order to proportion the applied heat Q. There is simply too much lag in the response of the recorders to permit an accurate determination of the

breakthrough time.

The imprecision in the experiment depends primarily on the imprecision of C_0 and on the amount of sample since in most cases the ΔT is around 4 K. For liquid densities the imprecision from point to point along an isochore is about 0.1 percent with occasional differences as large as 0.3 percent. For densities less than critical the imprecision, the variation of C_v point to point from a smooth curve, increases to about 1 percent. The inaccuracy or uncertainty of the present measurements is estimated from the comparison to the experiments of others and from the comparison to values calculated from the PVT correlation. We consider the excellent agreement between the present results and the experiments of others [10, 16, 17, 18], in particular the agreement with experimental values of C_p , and we consider the results of deliberately introducing changes in the present experiment. It is difficult to see how systematic errors larger than about 2 percent for liquid densities or larger than 5 percent for vapor densities close to critical could remain undetected in the present experiment.

8. References

[1] The S. I. (international system) unit of pressure is the Pascal (1 Pa=1 N/m²). The bar is 10^5 Pa, also 1 atm= 1.01325×10^5 Pa, 1 lb/in²=6894.757 Pa, 1 dyne/cm²= 10^{-1} Pa: see Page, C. H. and Vigoureux, P., Nat. Bur. Stand. (U.S.), Spec. Publ. 330, (Jan. 1971). Also one mole ethane=30.07 g, based on the ¹²C scale and the natural isotopic abundance averages: see Remy, H., Chem. Berichte 101, 1 (1968).

[2] Goodwin, R. D., Roder, H. M., and Straty, G. C., Nat. Bur. Stand. (U.S.), Tech. Note 684 (in press), for provisional data see Goodwin, R. D., Nat. Bur. Stand. (U.S.), NBSIR 74-398 (1 June 1974). (Available as COM 74-11717 from the National Technical Vision Conference Springfold, VA 29161) Information Services, Springfield, VA 22161.

[3] Goodwin, R. D., J. Res. Nat. Bur. Stand. (U.S.) 65C (Eng. and Instr.), No. 4, 231–243 (Oct.–Dec. 1961).
[4] Younglove, B. A., and Diller, D. E., Cryogenics 2,

283 (1962).

[5] Younglove, B. A., and Diller, D. E., Cryogenics 2, 348 (1962).

[6] Goodwin, R. D., and Weber, L. A., J. Res. Nat. Bur. Stand, (U.S.) 73A, (Phys. and Chem.), No. 1, 1-13 (Jan.-Feb. 1969).

[7] Goodwin, R. D., and Weber, L. A., J. Res. Nat. Bur. Stand. (U.S.) 73A, (Phys. and Chem.), No. 1, 15–24 (Jan.-Feb. 1969).

[8] Goodwin, R. D., and Prydz, R., J. Res. Bur. Stand. (U.S.) 74A, (Phys. and Chem.), No. 4, 499-505 (July-Aug. 1970).

[9] Prydz, R., and Goodwin, R. D., J. Res. Nat. Bur. Stand. (U.S.) 74A, (Phys. and Chem.), No. 5, 661–665 (Sept.-Oct. 1970).

[10] Younglove, B. A., J. Res. Nat. Bur. Stand. (U.S.) 78A, (Phys. and Chem.) No. 3, 401–420 (May–June 1974).

Roder, H. M., J. Chem. Phys. 65, 1371 (1976). Walker, P. A., Dissertation (University of London, 1956). [13] Hoge, H. J., J. Res. Nat. Bur. Stand. (U.S.) 36, 111–118, (1946) RP1693.

[14] Goodwin, R. D., Nat. Bur. Stand. (U.S.), Tech. Note 653 208 pages (April 1974).

[15] Goodwin, R. D., and Prydz, R., J. Res. Nat. Bur. Stand. (U.S.) 76A, (Phys. and Chem.), No. 2, 81–102 (Mar.-Apr. 1972).

[16] Wiebe, R., Hubbard, K. H., and Brevoort, M. J., J. Am. Chem. Soc. 52, 611 (1930).

[17] Witt, R. K., and Kemp, J. D., J. Am. Chem. Soc. **59**, 273 (1937).

[18] Furtado, A., Ph.D. Thesis, Department of Chem. Engineering, University of Michigan (Dec. 1973).
[19] Bier, K., Kunze, J., and Maurer, G., to be published, J. Chem. Thermodynamics 8, 857 (1976).

(Paper 80A5-915)