CO544 Lab03 E20280

Task 1: Decision Tree Classifiers

(a) Handling Missing Values in Decision Trees

Decision trees handle missing values through several strategies:

1. Imputation (used here):

• Missing values are replaced by the **mean** of the feature.

```
from sklearn.impute import SimpleImputer
imputer = SimpleImputer(strategy='mean')
X_imputed = imputer.fit_transform(X)
```

2. Native Handling (scikit-learn >= 1.0):

o Decision trees can route samples with missing values during splitting.

3. Indicator Variables:

• Introduce new binary features indicating if a value was missing.

4. Model-Based Imputation:

• Estimate missing values using predictive models.

In this lab, **mean imputation** was applied before model training.

(b) Evaluate the Classifiers with Suitable Performance Metrics

Two decision trees were trained using:

- Gini Index
- Entropy

Metrics used for evaluation:

- Accuracy
- Precision
- Recall
- F1-Score

Results:

Gini Report:

	precision	recall	f1-score	support
1	0.95	1.00	0.97	18
2	1.00	0.88	0.94	17
3	0.91	1.00	0.95	10
accuracy			0.96	45
macro avg	0.95	0.96	0.95	45
weighted avg	0.96	0.96	0.95	45
Entropy Report:				
Entropy Report.				
Епиору Кероге.	precision	recall	f1-score	support
1		recall 0.94	f1-score	support 18
	precision			
1	precision 0.94	0.94	0.94	18
1 2 3	precision 0.94 0.94	0.94 0.94	0.94 0.94	18 17
1 2	precision 0.94 0.94	0.94 0.94	0.94 0.94 1.00	18 17 10

Both models show excellent classification performance with 96% accuracy.

(c) Demonstrate Pruning to Overcome Overfitting

Pre-Pruning (max_depth):

- Reduces tree size by limiting the maximum depth before training.
- Prevents overfitting by restricting tree complexity.

```
clf_gini_pruned = DecisionTreeClassifier(criterion='gini', max_depth=3, random_state=0)
```

Post-Pruning (max_depth):

- Prunes the tree after fitting by limiting the depth.
- Alternatively, ccp alpha parameter can be used for cost-complexity pruning.

```
clf_gini_postpruned = DecisionTreeClassifier(criterion='gini', max_depth=2, random_state=0)
```

Other Pruning Techniques:

- min_samples_split
- min_samples_leaf
- max_leaf_nodes
- ccp alpha

Both pre- and post-pruned decision trees were visualized to demonstrate reduced complexity.

(d) Visualisations done during the lab

```
Gini tree (pre-pruned) (Gini tree (pre-pruned))
```

Gini tree (post-pruned) (Gini tree (post-pruned))

Entropy tree (pre-pruned) (Entropy tree (pre-pruned))

Entropy tree (pre-pruned) (Entropy tree (post-pruned))

Task 2: k-Nearest Neighbors (kNN)

(a) Preprocess with Feature Scaling

kNN relies on distance calculations, so feature scaling is critical. Used StandardScaler:

```
from sklearn.preprocessing import StandardScaler

scaler = StandardScaler()

X_train_scaled = scaler.fit_transform(X_train)

X_test_scaled = scaler.transform(X_test)
```

(b) Tune k (and Distance Metric) via Cross-Validation

Used **GridSearchCV** to search for the optimal hyperparameters:

- Number of neighbors (n neighbors from 1 to 20)
- Distance metric: 'euclidean' or 'manhattan'

```
param_grid = {
    'n_neighbors': list(range(1, 21)),
    'metric': ['euclidean', 'manhattan']
}
```

Best Parameters Found:

```
Best k: 7
```

Best metric: euclidean

The runtime for grid search and fitting: ~0.67 seconds.

(c) Compare kNN's Accuracy, Precision/Recall, and Runtime to Decision Tree Results

kNN Results:

```
Accuracy: 0.9556
```

Classification Report:

precision recall f1-score support

1	0.90	1.00	0.95	18
2	1.00	0.88	0.94	17
3	1.00	1.00	1.00	10
accuracy			0.96	45
macro avg	0.97	0.96	0.96	45
weighted avg	0.96	0.96	0.96	45

Decision Tree (Gini) Results:

Accuracy: 0.9556

Classification Report:

	precision	recall	f1-score	support
1	0.95	1.00	0.97	18
2	1.00	0.88	0.94	17
3	0.91	1.00	0.95	10

Decision Tree (Entropy) Results:

Accuracy: 0.9556

Classification Report:

	precision	recall	f1-score	support
1	0.94	0.94	0.94	18
2	0.94	0.94	0.94	17
3	1.00	1.00	1.00	10

Summary Table:

Model	Accuracy	Macro Avg F1	Runtime (s)
kNN (k=7, euclidean)	0.9556	0.96	~0.67
Decision Tree (Gini)	0.9556	0.95	~0.01
Decision Tree (Entropy)	0.9556	0.96	~0.01

- Accuracy: All models achieved ~95.56% accuracy.
- Macro Avg F1: Slight advantage for Entropy Decision Tree and kNN.
- Runtime: Decision Trees were significantly faster to train than kNN with GridSearch.

Conclusion

- Decision Trees: Fast, interpretable, and effective. Can overfit but can be controlled by pruning.
- kNN: Slightly better balanced precision/recall. Needs careful scaling and parameter tuning.

Both models are highly competitive for this dataset. Runtime efficiency leans toward Decision Trees for smaller datasets; kNN may be beneficial for its slightly better balanced performance on certain classes.