Detection of Al-Generated Images: A Mixed Methods Study on Age-Related Differences

Enilda M. Velazquez, University of Central Florida, enilda.velazquez@ucf.edu Gabriela Flores-Cruz, MA, University of Central Florida, ga692434@ucf.edu Nelson A. Roque, PhD, The Pennsylvania State University, nur375@psu.edu

Background

- Al generated content is projected to occupy 10% of the internet by 2025 primarily in customer experience [4].
- Al growth brings challenges: Al may be used for creating and spreading misinformation.
- Age and analytical thinking have been identified as potential predictors of accuracy in misinformation detection in traditional media (i.e., news, [3,5]).

Research Question

Are there age-related differences in the ability to discern Al images from non-Al images?

Hypothesis

Older and Middle Adult age groups will experience lower accuracy (increased misses and false alarms) than the Young Adult age group.

Methods

- 3 (Age Group) x4 (Signal Detection) Within-Subjects ANCOVA with CRT as covariate.
- N = 190 (Male = 84, Female = 103, Other = 2)

Age Group	N
Young Adult (18-39)	104
Middle Adult (40-59)	64
Older Adult (60-89)	21
Missing	1

_	Real	Fake
		False
Real	Hit	Alarm
		Correct
Fake	Miss	Rejection

Key Findings

- Older adults (M = 0.426, SD = 0.150) exhibited significantly higher false alarms than younger adults (M = 0.306, SD = 0.180, p = 0.007, n2p = 0.053).
- Significant difference in correct rejections across age groups (p < .05, $\eta^2 p = 0.035$), but no significant post hoc comparisons.
- No significant effect of age on hits or misses.

Results of one-way ANCOVAs: Effects of Age on Signal Detection, Controlling for CRT Score.

ANCOVA	Dependent Variable	df	F	p	η² _p
Effect of Age on False Alarms, Controlling CRT Score	False Alarm Rate	2, 183	5.10	0.007*	0.053
Effect of Age on Hits, Controlling CRT Score	Hit Rate	2, 183	0.858	0.426	0.009
Effect of Age on Misses, Controlling CRT Score	Miss Rate	2, 183	1.682	0.189	0.018
Effect of Age on Correct Rejections, Controlling CRT Score	Correct Rejection Rate	2, 183	3.321	0.038*	0.035

Note. Type III Sum of Squares. *p<.05. **p<.001.

Post Hoc Comparisons - Effect of age on rate of false alarms.						Post Hoc Comp	arisons - Effect of	age on rate of	correct re	ejections.					
		Mean Difference	SE	t	Cohen's d	P _{bonf}			Mean Difference	SE	t	Cohen's d	p _{bonf}		
Young Adult	Middle Adult	-0.055	0.028	-1.98	-0.31 <i>7</i>	0.148	Young Adult	Middle Adult	0.043	0.029	1.509	0.242	0.399		
	Older Adult	-0.121	0.041	-2.927	-0.701	0.012*		Older Adult	0.103	0.043	2.404	0.576	0.052		
Middle Adult	Older Adult	-0.066	0.044	-1.524	-0.384	0.388	Middle Adult	Older Adult	0.06	0.045	1.326	0.334	0.559		

Note. P-value adjusted for comparing a family of 3. * p < .05Note. P-value adjusted for comparing a family of 3.

Key Takeaways

- Older adults were more sensitive to Al-generated images, challenging assumptions of age-related vulnerability to misinformation.
- Higher false alarm rates in older adults suggest increased Al image sensitivity as a potential protective factor.
- Older adults had a higher, though non-significant, rate of correctly rejecting fake Al images.
- Taken together, these suggest older adults may have more conservative sensitivity bias (B) in judging image authenticity.
- Findings align with previous research suggesting older adults' conservative response biases in decision-making [1,2].
- Future models should account for older adults' sensitivity to misinformation.
- Main limitations: limited image set size, small number of older adults in sample.

Conclusion

Our findings suggest that older adults may exhibit heightened sensitivity to Al-generated images, compared to other age groups. This aligns with some established patterns of cautious decision-making in older adult age groups and could serve as a protective factor in Al interactions.

References

- 1. Baron, A., & Breck, D. B. (1987). Are older adults generally more conservative? Some negative evidence from signal
- detection analyses of recognition memory and sensory performance. *Experimental Aging Research*, 13(3), 163–165.

 2. Criss, A. H., Aue, W., & Kılıç, A. (2014). Age and response bias: Evidence from the strength-based mirror effect.
- Quarterly Journal of Experimental Psychology, 67(10), 1910–1924.

 3. Frazier, I., Lighthall, N. R., Horta, M., Perez, E., & Ebner, N. C. (2019). CISDA: Changes in Integration for Social
- Decisions in Aging. WIREs Cognitive Science, 10(3), e1490. https://doi.org/10.1002/wcs.1490
- 4. Gartner. (2024). Generative AI: What Is It, Tools, Models, Applications and Use Cases. Gartner. https://www.gartner.com/en/topics/generative-ai
- 5. Pehlivanoglu, D., Lighthall, N. R., Lin, T., Chi, K. J., Polk, R., Perez, E., Cahill, B. S., & Ebner, N. C. (2022). Aging in an "infodemic": The role of analytical reasoning, affect, and news consumption frequency on news veracity detection. *Journal of Experimental Psychology: Applied*, 28(3), 468–485. https://doi.org/10.1037/xap0000426
- 6. Frederick, S. (2005). Cognitive reflection and decision making. Journal of Economic Perspectives, 19(4), 25-42. doi: 10.1257/089533005775196732

https://thecascadelab.com

