EPFL

MAN

Mise à niveau

Maths 1B Prepa-033(b)

Student: Arnaud FAUCONNET

Professor: Olivier WORINGER

Printemps - 2019

Chapter 3

Calcul différentiel

3.1 Axes paramétrés dans le plan

3.1.1 Introduction

On considère le plan muni d'un repère orthonormé $(0, \overrightarrow{e_1}, \overrightarrow{e_2})$

On appelle un paramètre dans le plan, la donnée d'un intervalle $I \subset \mathbb{R}$ et d'une fonction

$$\overrightarrow{r}: I \to \mathbb{R}^2, t \mapsto \overrightarrow{r}(t) = \overrightarrow{OM}(t)$$

$$\overrightarrow{r}(t) = x(t) \cdot \overrightarrow{e_1} + y(t) \cdot \overrightarrow{e_2} = \begin{pmatrix} x(t) \\ y(t) \end{pmatrix}$$

La fonction $\overrightarrow{r'}(t)$ est appellée fonction vectorielle et les fonctions scalaires x(t) et y(t) sont les fonctions coordonnées de $\overrightarrow{r'}(t)$

L'ensemble

$$\Gamma = \{M(t) \in \mathbb{R}^2 | \overrightarrow{OM}(t) = \overrightarrow{r}(t), t \in I\}$$

est appelé la trajectoire de l'axe paramétré.

Intuitivement un axe paramétré est une trajectoire muni d'un mode de parcours.

Exemple:

$$\overrightarrow{r_1}(t) = \begin{pmatrix} \cos(t) \\ \sin(t) \end{pmatrix}$$
 et $\overrightarrow{r_2}(t) = \begin{pmatrix} \cos(-2t) \\ \sin(-2t) \end{pmatrix}$

Soit 2 axes paramétrés différents ayant même trajectoire:

3.1.2 Fonction vectoriel

Soit

$$\overrightarrow{r}(t) = \begin{pmatrix} x(t) \\ y(t) \end{pmatrix}, \quad t \in I$$

Une fonction vectorielle définie sur un voisinage de $t_0 \in I$

- 1. Notation de limite
 - Définition:

$$\lim_{t \to t_0} \overrightarrow{r}(t) = \overrightarrow{r_0}$$

Si

$$\forall \epsilon > 0, \exists \delta > 0 \text{ t.q. } 0 < |t - t_0| < \delta \implies \|\overrightarrow{r}(t) - \overrightarrow{r_0}\| < \epsilon$$

Définition analogue lorsque $t \to \pm \infty$

• Proposition:

$$\lim_{t \to t_0} \overrightarrow{r}(t) = \overrightarrow{r_0} = \begin{pmatrix} x_0 \\ y_0 \end{pmatrix}$$

si et seulement si

$$\lim_{t \to t_0} x(t) = x_0 \quad \text{ et } \quad \lim_{t \to t_0} y(t) = y_0$$

2. Notion de continuité

Définition $\overrightarrow{r}(t)$ est continue en t_0 si

$$\lim_{t \to t_0} \overrightarrow{r}(t) = \overrightarrow{r}(t_0)$$

en d'autres termes si et seulement si

$$\forall \epsilon > 0, \exists \delta > 0 \text{ t.q. } |t - t_0| < \delta \implies \|\overrightarrow{r}(t) - \overrightarrow{r}(t_0)\| < \epsilon$$

Proposition $\overrightarrow{r}(t)$ est continue en t_0 si et seulement si x(t) et y(t) continues en t_0 autrement dit si et seulement si

$$\lim_{t \to t_0} x(t) = x(t_0)$$
 et $\lim_{t \to t_0} y(t) = y(t_0)$

3. Notions de dérivabilité

Définition $\overrightarrow{r}(t)$ est dérivable en t_0 si

$$\lim_{t \to t_0} \frac{\overrightarrow{r}(t) - \overrightarrow{r}(t_0)}{t - t_0}$$

existe.

Cette limite s'appelle le vecteur dérivé de $\overrightarrow{r}(t)$ et est noté

$$\frac{\dot{\vec{r}}}{\vec{r}}(t)$$
 ou $\frac{d\overrightarrow{r}}{dt}\Big|_{t_0}$

$$\overrightarrow{r}(t) = \lim_{h \to 0} \frac{\overrightarrow{r}(t+h) - \overrightarrow{r}(t)}{h}$$

Proposition $\overrightarrow{r}(t)$ est dérivable en t_0 si et seulement si x(t) et y(t) sont dérivable en t_0 et

$$\dot{\vec{r}}(t) = \begin{pmatrix} \dot{x}(t) \\ \dot{y}(t) \end{pmatrix}$$

Interprétation géométrique

$$\frac{\overrightarrow{r}(t+h)\overrightarrow{r}(t)}{h}$$

est un vecteur directeur de la sécante passant par les points M(t) et M(t+h) de la trajectoire Γ .

Lorsque $h \to 0$, le vecteur tend vers le vecteur dérivée $\dot{\overrightarrow{r}}(t)$

Donc si $\overrightarrow{r}(t) \neq \overrightarrow{0}$, le vecteur dérivée est un vecteur direction de la tangente à Γ en M(t).

La pente de la tangente à Γ à l'instant t est donc donnée par

$$m = \frac{\dot{y}(t)}{\dot{x}(t)}$$
 ou $m = \lim \frac{\dot{y}(t)}{\dot{x}(t)}$

Si $\dot{\overrightarrow{r}}(t) = \overrightarrow{0}$ alors le vecteur tangente à Γ est donnée par $\ddot{\overrightarrow{r}}(t)$ (et si $\ddot{\overrightarrow{r}}(t) = \overrightarrow{0}$, par $\ddot{\overrightarrow{r}}(t)$, etc.)

Ceci est une conséquence de la règle de BH:

$$m = \lim \frac{\dot{y}(t)}{\dot{x}(t)} = \stackrel{BH}{=} \lim \frac{\ddot{y}(t)}{\ddot{x}(t)}$$

3.1.3 Quelques éléments de l'étude d'un axe paramétré

Symétries déductibles de la parité des fonctions coordonnées

1. Si x(t) est pair et y(t) impair alors Γ est symétrique $/0_x$

2. Si x(t) est impaire et y(t) est pair alors Γ est symétrique $/0_y$

3. Si x(t) et y(t) sont impaires alors Γ est symétrique 0

Points doubles, points multiples A est un point double de Γ si

$$\exists t_1 \neq t_2 \in I \text{ t.q. } A \equiv M(t_1) \equiv M(t_2)$$

Exemple:

$$\overrightarrow{r}(t) = \begin{pmatrix} x(t) \\ y(t) \end{pmatrix} = \begin{pmatrix} \sin(2t) \cdot \cos(t) \\ \sin(2t) \cdot \sin(t) \end{pmatrix}, \quad t \in [0; 2\pi[$$

$$t \in \left\{0, \frac{\pi}{2}, \pi, \frac{3\pi}{2}\right\}$$

$$\implies M(t) = 0$$

0 est un point multiple d'ordre 4

Point stationnaire $M(t_0)$ est un point stationnaire de Γ si $\overrightarrow{r}(t) = \overrightarrow{0}$ autrement dit si et seulement si $\dot{x}(t_0) = \dot{y}(t_0) = 0$.

Dans ce cas la pente m de la tangente en ce point est donnée par

$$m = \lim_{t \to t_0} \frac{\dot{y}(t)}{\dot{x}(t)} \quad (\text{FI} : "\frac{0}{0}")$$

(éventuellement BH)

Autres points remarquables Si $t_0 \in I$ tel que \overrightarrow{r} soit continue en t_0 alors:

• Si

$$m = \frac{\dot{y}(t)}{\dot{x}(t)} = 0$$
 ou $\lim_{t \to t_0} \frac{\dot{y}(t)}{\dot{x}(t)} = 0$

 Γ admet un point à tangente horizontale.

Exemple: Si $\dot{y}(t_0) = 0$ et $\dot{x}(t_0) \neq 0$

• Si

$$m = \lim_{t \to t_0} \frac{\dot{y}(t)}{\dot{x}(t)} = \infty$$

alors Γ admet une tangente verticale en $M(t_0)$

Exemple: Si $\dot{x}(t_0) = 0$ et $\dot{y}(t_0) \neq 0$

Exemple:

$$\Gamma: \left\{ \begin{array}{l} x(t) = \frac{t^2}{1-2t} \\ y(t) = \frac{t^3}{1-2t} \end{array} \right., \quad t \in \mathbb{D}_{\text{déf}}$$

Montrons que Γ admet un point stationnaire, puis esquisse Γ au voisinage de ce point

$$\dot{x}(t) = \frac{2t(1-2t) - t^2(-2)}{(1-2t)^2} = \frac{-2t^2 + 2t}{(1-2t)^2}$$
$$\dot{x}(t) = 0 \iff t = 0 \text{ ou } t = 1$$

$$\dot{y}(t) = \frac{3t^2(1-2t) - t^3(-2)}{(1-2t)^2} = \frac{t^2(-4t+3)}{(1-2t)^2}$$
$$\dot{y}(t) = 0 \iff t = 0 \text{ ou } t = \frac{3}{4}$$

Unique point stationnaire en t = 0:

C'est l'origine. La pente en ce point est donnée par

$$m = \lim_{t \to 0} \frac{\dot{y}(t)}{\dot{x}(t)} = 0$$

O est un point stationnaire à tangente horizontale

Branches infinies On dit que Γ trajectoire de $\overrightarrow{r}(t) = \overrightarrow{OM}(t)$ admet une branche infinie en t_0 (fini ou infini) si et seulement si

$$\lim_{t \to t_0} \|\overrightarrow{OM}(t)\| = +\infty$$

autrement dit si et seulement si

$$x(t) \xrightarrow[t \to t_0]{} \infty$$
 ou $y(t) \xrightarrow[t \to t_0]{} \infty$

Trois cas peuvent se présenter

1. $\lim_{t\to t_0} x(t) = x_0$ et $\lim_{t\to t_0} y(t) = \infty$ alors Γ admet une AV: $x=x_0$

2. $\lim_{t \to t_0} x(t) = \infty$ et $\lim_{t \to t_0} y(t) = y_0$ alors Γ admet une AH: $y = y_0$

3.

$$\lim_{t \to t_0} x(t) = \infty \quad \text{ et } \quad \lim_{t \to t_0} y(t) = \infty$$

 Γ admet une intervalle AO:

$$y = mx + h$$

avec

$$m = \lim_{t \to t_0} \frac{y(t)}{x(t)}$$

et

$$h = \lim_{t \to t_0} [y(t) - m \cdot x(t)]$$

Remarque: Les instants t_0 qui définissent les branches infinies de Γ sont à chercher aux bornes (finies ou inifinies) du domaine de définition ou de continuité.

Exemple:

$$\Gamma: \left\{ \begin{array}{l} x(t) = \frac{t^2}{1-2t} \\ y(t) = \frac{t^3}{1-2t} \end{array} \right. \quad \mathbb{D}_{\text{d\'ef}} = \mathbb{R} \backslash \left\{ \frac{1}{2} \right\} = \left] -\infty; \frac{1}{2} \left[\ \cup \ \right] \frac{1}{2}; +\infty \left[\right]$$

3.1.4 Étude d'une courbe paramétrée

Le folium de Descartes

$$\left\{ \begin{array}{l} x(t) = \frac{3t}{1+t^3} \\ y(t) = \frac{3t^2}{1+t^3} \end{array} \right. \quad \mathbb{D}_{\text{déf}} = \mathbb{R} \backslash \{-1\}$$

- x(t) et y(t) ni périodique, ni pairs, ni impairs, pas de symétrie évidente. Étude sur $\mathbb{D}_{\text{déf}}$
- ullet Limite aux "points frontières" de $\mathbb{D}_{\mathrm{déf}}$

$$-t \to \pm \infty$$

$$\lim_{t \to \pm \infty} x(t) = 0$$
$$\lim_{t \to \pm \infty} y(t) = 0$$

$$M(t) \xrightarrow[t \to +\infty]{} (0,0)$$

(mais comment?)

$$-t \rightarrow -1$$

$$\lim_{t \to -1} x(t) = \infty, \lim_{t \to -1} y(t) = \infty$$

Recherche d'une éventuelle AO:

*
$$\lim_{t \to -1} \frac{y(t)}{x(t)} = \lim_{t \to -1} \frac{3t^2}{2t} = -1$$

*
$$\lim_{t\to -1} (y(t) - (-1)x(t))$$

$$= \lim_{t \to -1} \frac{3t^2 + 3t}{1 + t^3}$$

$$= \lim_{t \to -1} \frac{3t(t+1)}{t+1)(t^2 - t + 1)}$$

$$= \lim_{t \to -1} \frac{3t}{t^2 - t + 1}$$

Donc le folium de Descartes amdet (lorsque $t \rightarrow -1$) un AO:

$$AO: \quad y = -x - 1$$

Dérivées

$$\dot{x}(t) = 3\frac{(1+t^3) - t(3t^2)}{(1+t^3)^2}$$
$$= 3\frac{-2t^3 + 1}{(1+t^3)^2}$$

Signe de $\dot{x}(t)$

$$\dot{y}(t) = 3\frac{2t(1+t^3) - t^2(3t^2)}{(1+t^3)^2}$$
$$= 3\frac{t(-t^3+2)}{(1+t^3)^2}$$

Signe de $\dot{y}(t)$

• Points remarquables

Pas de zéros communs à $\dot{x}(t)$ et $\dot{y}(t)$, donc pas de points stationnaires

- en t=0, M(0,0) est un point à TH
- en $t=2^{\frac{1}{3}}, M(2^{\frac{1}{3}}, 2^{\frac{2}{3}})$ est un point à TH
- en $t=2^{-\frac{1}{3}}, M(2^{\frac{2}{3}}, 2^{\frac{1}{3}})$ est un point à TV
- lorsque $t \to \pm \infty, M(t) \to (0,0)$ et

$$\lim_{t\to\pm\infty}\frac{\dot{y}(t)}{\dot{x}(t)}=\lim_{t\to\pm\infty}\frac{t(-t^3+2)}{-2t^2+1}=\infty$$

Donc $M(t) \rightarrow (0,0)$ le long d'une "tangente" verticale.

• Tableau de variation

t	$-\infty$	-1		0		$2^{-\frac{1}{3}}$		$2^{\frac{1}{3}}$	$+\infty$
$\dot{x}(t)$	+		+		+	0	_		_
x(t)	$0 \nearrow^{+\infty}$		$-\infty$ \nearrow	0	7	$2^{\frac{2}{3}}$	\searrow	$2^{\frac{1}{3}}$	\searrow_0
$\dot{y}(t)$	_		_	0	+		+	0	_
y(t)	$0 \searrow_{-\infty}$		$+\infty \searrow$	0	7	$2^{\frac{1}{3}}$	7	$2^{\frac{2}{3}}$	\searrow_0
	$M \to 0$	Α̈́O		TH		TV		TH	$M(t) \to 0$
	"TV"	y = -x - 1		TH		TV		TH	"TV"

3.1.5 Le limaçon de Pascal

Soient γ le cercle de centre O et de rayon 1, A(2,0) et P un point courant de γ . Soient d la tangente à γ en P et M la projection orthogonale de A sur d. Le lien de M lorsque P décrit γ s'appelle le limaçon de Pascal.

- ullet Équations paramétriques de lieu de M
 - Choix du paramètre:

$$t \in [0, 2\pi]$$

ou mieux

$$t \in [-\pi, +\pi]$$

Donc

$$P(\cos(t), \sin(t))$$

- Équations de d et de (AM)

$$d: \begin{pmatrix} x - \cos(t) \\ y - \sin(t) \end{pmatrix} \cdot \begin{pmatrix} \cos(t) \\ \sin(t) \end{pmatrix} = 0 \iff x \cos(t) + y \sin(t) - 1 = 0$$
$$m_d = -\cot(t) \implies m_{(AM)} = \tan(t)$$

$$(AM): y - 0 = \tan(t)(x - 2)$$

- M est défini par $\{M\} = d \cap (AM)$

$$M: \begin{cases} x\cos(t) + y\sin(t) = 1 \\ y = \tan(t)(x - 2) \end{cases} \iff \begin{cases} x\cos(t) + y\sin(t) = 1 \\ x + \sin(t) - y\cos(t) = 2\sin(t) \end{cases} \cdot \cos(t)$$

$$\iff \begin{cases} x\cos^2(t) + y\sin(t)\cos(t) = \cos(t) \\ x\sin^2(t) + y\cos(t)\sin(t) = 2\sin^2(t) \end{cases} (2)$$

$$(1) + (2) \implies x = \cos(t) + 2\sin^2(t)$$

$$\begin{cases} x\cos(t) + y\sin(t) = 1 & | \cdot \sin(t) \\ x\sin(t) - y\cos(t) = 2\sin(t) & | \cdot (-\cos(t)) \end{cases}$$

$$\iff \begin{cases} x\cos(t)\sin(t) + y\sin^2(t) = \sin(t) & (1) \\ -x\cos(t)\sin(t) + y\cos^2(t) = -2\sin(t)\cos(t) & (2) \end{cases}$$

$$(1) + (2)y = \sin(t) - 2\sin(t)\cos(t)$$

$$\begin{cases} x(t) = \cos(t) + 2\sin^2(t) \\ y(t) = \sin(t) - 2\sin(t)\cos(t) \end{cases}$$

- Étude de l'arc paramétré x(t) est pair et y(t) est impair Donc Γ est symétrique $/0_x$ Étude sur $[0;\pi]$
 - Limite aux points frontières

$$x(0) = 1, y(0) = 0$$

 $x(\pi) = -1, y(\pi) = 0$

- Dérivées

$$\dot{x}(t) = -\sin(t) + 4\sin(t)\cos(t)$$
$$= \sin(t)(-1 + 4\cos(t))$$

$$\dot{x}(t) = 0 \iff \sin(t) = 0$$
 ou $\cos(t) = \frac{1}{4} \iff t = 0$ ou $t = 180^{\circ}$

ou

$$t = \arccos(\frac{1}{4}) \simeq 75^{\circ}$$

$$\begin{array}{c|ccccc} t & 0 & 75 & 180 \\ \hline \dot{x}(t) & // & 0 & + & 0 & - & 0 & // \end{array}$$

$$\dot{y}(t) = \cos(t) - 2\cos(2t) = \cos(t) - 2(\cos^2(t) - 1)$$

$$\dot{y}(t) = 0 \iff 4\cos^2(t) - \cos(t) - 2 = 0$$

$$\Delta = 1 + 32 = 33$$

$$\cos(t) = \frac{1 \pm \sqrt{33}}{8} = \begin{cases} \simeq -0.6 \\ \simeq +0.8 \end{cases}$$

Pas de point stationnaire, mais:

- * en $t_1 = 0, M(1,0)$: TH
- * en $t_2 \simeq 32^\circ, M(1,4;-0,4): \mathrm{TH}$
- * en $t_3 \simeq 75^{\circ}, M(2, 1; 0, 5) : TV$
- * en $t_4 \simeq 126^{\circ}, M(0,7;1,8)$: TH
- * en $t_5 \simeq 180^\circ, M(-1;0): TV$

t	t_1		t_2		t_3		t_4		t_5	
$\dot{x}(t)$	// 0	+		+	0	-		-	0	//
x(t)	//	$1 \nearrow 1.4$		\nearrow 2.1		≥0.7		\searrow -1		//
$\dot{y}(t)$	//	-	0	+		+	0	-		//
y(t)	//	$^{0}\searrow_{-0.4}$		>0.5		>1.8		\searrow_0		//
	TV	•	ΤΉ		Τ̈́V		ΤΉ		Τ̈́V	

