ภาคผนวก A

การทดลองที่ 1 ข้อมูลและคณิตศาสตร์ใน คอมพิวเตอร์

การทดลองนี้เป็นการทบทวนความเข้าใจและแบบฝึกหัดเสริมของเนื้อหาในบทที่ 2 เนื่องจากจำนวนบิทข้อมูลที่ ยาวขึ้นจำเป็นต้องใช้โปรแกรมคอมพิวเตอร์ช่วยคำนวณแทน โดยมีวัตถุประสงค์ ดังต่อไปนี้

- เพื่อให้เข้าใจการแปลงและคณิตศาสตร์สำหรับเลขจำนวนเต็มฐานสองชนิดไม่มีเครื่องหมายและมี เครื่องหมายแบบ 2-Complement
- เพื่อให้เข้าใจการแปลงและคณิตศาสตร์สำหรับเลขทศนิยมฐานสองมาตรฐาน IEEE754 ชนิด Single Precision
- เพื่อให้เข้าใจรหัส ASCII และ Unicode สำหรับข้อมูลตัวอักษร นอกจากเนื้อหาในบทที่ 2 แล้ว ผู้อ่านสามารถศึกษาเว็บเพจเพิ่มเติม เพื่อทำความเข้าใจอย่างลึกซึ้ง ได้แก่
- https://www.tutorialspoint.com/cprogramming/c_data_types.htm
- https://www3.ntu.edu.sg/home/ehchua/programming/java/ datarepresentation.html

ผู้อ่านจะพบว่าเนื้อหาในเว็บของมหาวิทยาลัยนั้นยาง ประเทศสิงคโปร์ เป็นการสอนพื้นภาษา Java ใช้งาน ข้อมูลเป็นเลขฐานสองเหมือนกับภาษา C/C++ ในเว็บที่สอง การทดลองจะครอบคลุมเนื้อหาตามทฤษฎี โดยจะ เริ่มจากเลขจำนวนเต็ม เลขทศนิยม และตัวอักษรตามลำดับ

A.1 การแปลงและคณิตศาสตร์สำหรับเลขฐานสองจำนวนเต็ม

A.1.1 การทดลอง

เนื่องจากการแปลงเลขฐานสิบเป็นฐานสองชนิดไม่มีเครื่องหมาย (unsigned) ผู้อ่านสามารถใช้เครื่องคิดเลข ทางวิทยาศาสตร์ทั่วไป ดังนั้น การทดลองนี้จะเน้นที่การแปลงเป็นเลขฐานสองชนิดมีเครื่องหมายแบบ 2 Complement สอดคล้องกับเนื้อหาในหัวข้อที่ 2.2 โดยผ่านเว็บเบราส์เซอร์ที่ผู้อ่านถนัด กรอกหรือคลิกที่ ชื่อลิงค์ ต่อไปนี้ http://www.free-test-online.com/binary/signed_converter.html ขอให้ผู้อ่าน ปฏิบัติตามการทดลอง ดังนี้

1. คลิกเลือกที่ปุ่ม Signed แล้วจึงกรอกเลข -123 ลงในกล่องข้อความ ดังรูปที่ A.1

รูปที่ A.1: กรอกเลข -123 ลงในกล่องข้อความ และคลิกเลือกที่ปุ่ม Signed เพื่อให้โปรแกรมแปลงเลขจำนวน เต็ม -123 เป็นเลขฐานสองชนิด Signed ชนิด 2 Complement

หน้าต่างมีลักษณะคล้ายเครื่องคิดเลข ประกอบด้วยปุ่มต่างๆ ดังนี้

- 'Bin2Dec' 'Dec2Bin' สำหรับแปลงเลขฐานสองเป็นฐานสิบไปและกลับ
- 'Dec2Hex' 'Hex2Dec' สำหรับแปลงเลขฐานสิบเป็นฐานสิบหกไปและกลับ
- 'Hex2Bin' 'Bin2Hex' สำหรับแปลงเลขฐานสองเป็นฐานสิบหกไปและกลับ
- ปุ่ม 0-9 และ A-F สำหรับกรอกตัวเลขฐานสิบและฐานสิบหก
- CL (Clear) สำหรับล้างค่าในกล่องข้อความให้เป็น 0
- RoR (Rotate Right) และ RoL (Rotate Left) สำหรับเลื่อนวนเลขที่อยู่ในกล่องข้อความทางขวาและ ซ้าย ตามลำดับ
- ShR (Shift Right) และ ShL (Shift Left) โดยป้อนเลข 0 เข้ามาแทน
- 2's C (omplement) สำหรับแปลงเลขฐานสองให้เป็นค่า 2's Complement

- +/- สำหรับกลับเครื่องหมายของตัวเลขฐานสิบในกล่องข้อความ
- 2. กดปุ่มเครื่องหมาย 'Dec2Bin' เพื่อให้เป็นเลขฐานสองชนิด Signed ดังรูปที่ A.2

11111111111111110000101			Binary	
0 •				
Unsigned	Signed			
Bin2Dec	Dec2Hex	Hex2Bin	CL	
Dec2Bin	Hex2Dec	Bin2Hex	RoR	
D	E	F	RoL	
Α	В	С	ShR	
7	8	9	ShL	
4	5	6		
1	2	3		
0	2's C +/-			

รูปที่ A.2: ผลลัพธ์จากการแปลงเลข -123 ให้เป็นเลขฐานสองชนิด Signed 2-Complement ความยาว 24 บิท

3. กดปุ่มเครื่องหมาย 'Bin2Hex' เพื่อแปลงเลขฐานสองที่ได้ให้เป็นเลขฐานสิบหกชนิด Signed ตามรูปที่ A.3

FFFF85			HEX
\circ	0		
Unsigned	Signed		
Bin2Dec	Dec2Hex	Hex2Bin	CL
Dec2Bin	Hex2Dec	Bin2Hex	RoR
D	E	F	RoL
Α	В	С	ShR
7	8	9	ShL
4	5	6	
1	2	3	
0	2's C	+/-	

รูปที่ A.3: ผลลัพธ์จากการแปลงเลข -123 ให้เป็นเลขฐานสิบหก 6 หลักจากเลขฐานสองชนิด Signed 2-Complement ความยาว 24 บิท

- 4. กดปุ่ม Hex2Bin เพื่อแปลงผลลัพธ์เลขฐานสิบหกที่ได้กลับไปเป็นฐานสอง แล้วเลือกตัวเลขฐานสอง ทั้งหมด แล้วทำการคัดลอก (Copy) หรือกดปุ่ม Ctrl-C พร้อมกัน
- 5. คลิกบนชื่อลิงค์ต่อไปนี้ เพื่อเปิดหน้าเว็บสำหรับ บวก/ลบ/คูณ/หาร เลขจำนวนเต็ม ทั้งชนิด Unsigned และ Signed ต่อไปนี้

http://www.free-test-online.com/binary/binary_calculator.html

6. กดเลือกปุ่มออพชั้น Signed ก่อนแล้วจึงทำการวาง (Paste) ลงในกล่องข้อความ เพื่อเปลี่ยนการทำงาน ให้อยู่ในโหมดตัวเลขฐานสองชนิดมีเครื่องหมายตามรูปที่ A.4

รูปที่ A.4: หน้าต่างวางเลขการแปลงเลข -123 ให้เป็นเลขฐานสองชนิด Signed 2-Complement ความยาว 24 บิท

- 7. กดปุ่ม '-' เพื่อทำการกระบวนการลบเลข แล้ววาง (Paste) เลข -123 อีกรอบในกล่องข้อความที่ว่างลง
- 8. กดปุ่ม = เพื่อแสดงผลลัพธ์

ร**ูปที่** A.5: ผลลัพธ์เลขการแปลงเลข (-123) - (-123) ให้เป็นเลขฐานสองชนิด Signed 2-Complement ความ ยาว 24 บิท

ในรูปที่ A.5 แสดงให้เห็นว่า -123 - (-123) = 0

A.1.2 กิจกรรมท้ายการทดลอง

จงทำการทดลองและตอบคำถามต่อไปนี้ โดยแสดงวิธีทำตามเนื้อหาในหัวข้อที่ 2.2.2 และตรวจคำตอบตามวิธี ทำการทดลองที่ได้ทำไป

1. จงแปลงเลขฐานสิบชนิดไม่มีเครื่องหมายต่อไปนี้ให้เป็นเลขฐานสอง 24 บิทและฐานสิบหกจำนวน 6 หลัก และบันทึกผลลัพธ์ที่ได้ลงในตาราง

ฐานสิบ	ฐานสอง		ฐานสิบหก
7	00000000000000000000111	2	<u>7</u> 16
8	00000000000000000001000	2	816
15	00000000000000000001111	2	F 16
16	00000000000000000010000	2	<u>10</u> 16
255	0000000000000011111111	2	FE16
256	000000000000010000000	2	100 16
65535	000000001111111111111111	2	_FFEE 16
65536	000000010000000000000000	2	_ 10000 _ 16

2. จงแปลงเลขฐานสิบต่อไปนี้ให้เป็นเลขฐานสองและฐานสิบหกชนิดมีเครื่องหมายแบบ 2-Complement และบันทึกผลลัพธ์ที่ได้ลงในตาราง

ฐานสิบ	ฐานสอง		ฐานสิบหก
+1	000000000000000000000001	_ 2	116
-1	111111111111111111111111	_ 2	_ FFFFF _ 16
+15	00000000000000000001111	_ 2	<u>F</u> 16
-16	11111111111111111111110000	_ 2	_ FFFFF0 _ 16
+255	00000000000000011111111	_ 2	<u>FE</u> 16
-256	111111111111111100000000	_ 2	_ FFFF00 _ 16
+65535	00000000111111111111111	_ 2	FFEF 16
-65536	11111111000000000000000000	_ 2	_ FF0000 _ 16

- 3. จงบวกเลข **2-Complement** ต่อไปนี้ แล้วบันทึกผลลัพธ์เป็นฐานสอง ฐานสิบ ข้อผิดพลาดที่แจ้งเตือน และอธิบายเหตุผลว่าทำไมจึงไม่ตรงกัน
 - - ผลลัพธ์ฐานสอง = ___1000000000000000000000000000001
 - ผลลัพธ์ฐานสิบหก = 80000001 ₁₆
 - ผลลัพธ์ฐานสิบ = __2147483649_ 10

 - เหตุผล...เลขเยอะเกินจนไม่สามารถแสดงผลได้
 - - ผลลัพธ์ฐานสิบหก = 100000000 ₁₆

 ผลลัพธ์ฐานสิบ = _4294967296 10 	
– ข้อผิดพลาดที่แจ้งเตือน Overflow - not enough binary digits to display the number 100000000000000	000000000000000000000000000000000000000
 เหตุผล เลขเยอะเกินจนไม่สามารถแสดงผลได้ 	
• 1000000000000000000000000000000000000	0000001
ผลลัพธ์ฐานสอง =01111111111111111111111111111111	2
 ผลลัพธ์ฐานสิบหก =7<u>FFFFFF</u> _ 16 	
- ผลลัพธ์ฐานสิบ = _ <u>2147483647</u> _ ₁₀	
 ข้อผิดพลาดที่แจ้งเตือน 	·····
- เหตุผล.	
• 1000000000000000000000000000000000000	0000000
ผลลัพธ์ฐานสอง =	2
- ผลลัพธ์ฐานสิบหก = <mark>0</mark> ₁₆	
- ผลลัพธ์ฐานสิบ = <mark>0</mark> ₁₀	
 ข้อผิดพลาดที่แจ้งเตือน	

A.2 การแปลงและคณิตศาสตร์สำหรับมาตรฐาน IEEE754

การทดลองเพื่อให้เข้าใจการแปลงเลขจำนวนจริงฐานสิบให้เป็นเลขฐานสองตามรูปแบบและฝึกการคำนวณ โดยใช้คณิตศาสตร์มาตรฐาน IEEE754 Single Precision มีความสอดคล้องกับเนื้อหาในหัวข้อที่ 2.6

A.2.1 การทดลองสำหรับ Single-Precision

การทดลองนี้จะเน้นที่การแปลงเลขจำนวนจริงให้เป็นเลขฐานสองทศนิยมชนิดลอยตัว สอดคล้องกับเนื้อหาใน หัวข้อที่ 2.6 ในรูปแบบ Single Precision โดยผ่านเว็บเบราส์เซอร์ที่ผู้อ่านถนัด กรอกหรือคลิกที่ชื่อลิงค์ต่อไปนี้

http://www.binaryconvert.com/convert_float.html เมื่อเว็บเพจปรากฎขึ้น ขอให้ผู้อ่านปฏิบัติตามการทดลอง ดังนี้

1. กรอกเลข 123 ลงในกล่องข้อความ แล้วกดปุ่ม Convert to binary ได้รูปที่ A.6

ร**ูปที่** A.6: ผลลัพธ์จากการแปลงเลข 123.0 ให้เป็นเลขฐานสองชนิด Single Precision

การเรียงตัวของผลลัพธ์เลขฐานสิบหกทางซ้ายมือมาจากเลขฐานสองทางขวามือ ซึ่งเกิดจากบิทข้อมูล ทั้งหมด 32 บิทตามรูปแบบของมาตรฐาน IEEE754 ชนิด Single Precision โปรดสังเกต กล่องสี่เหลี่ยมสีเขียว ตรงกับบิทที่เป็น '1' กล่องสีเทาตรงกับบิทที่เป็น '0' 0x หมายถึง เลขฐานสิบหก

2. กรอกเลข -123.0 ลงในกล่องข้อความ แล้วกดปุ่ม Convert to binary ได้รูปที่ A.7

รูปที่ A.7: ผลลัพธ์จากการแปลงเลข -123.0 ให้เป็นเลขฐานสองตามมาตรฐาน IEEE754 ชนิด Single Precision

โปรดสังเกตตำแหน่งของกล่องสี่เหลี่ยมหรือสีเทาที่ตรงกับบิท Sign Exponent และ Mantissa ดังนั้น เรา จะเห็นได้ว่าเฉพาะ Sign ที่มีการเปลี่ยนแปลง

3. คลิกบนลิงค์นี้ เพื่อทดลองบวกและคูณเลขในรูปแบบ Single Precision ด้วยลิงค์ต่อไปนี้ http://weitz.de/ieee/ เลื่อนหน้าเว็บลงไปด้านล่างสุด เพื่อค้นหาแถบเมนูตามรูปที่ A.8

binary32	binary64	binary128
	binary32	binary32 binary64

รูปที่ A.8: เมนูด้านล่างสุดของหน้าเว็บ เพื่อเลือกเลขฐานสองชนิด Single Precision (Binary32) และ Double Precision (Binary64)

4. เลื่อนหน้าเว็บกลับไปด้านบนสุดเพื่อกรอกเลข -123.0 ลงในกล่องข้อความซ้ายบน และ กรอกเลข 123.0 ลงในกล่องข้อความถัดลงมา แล้วกดปุ่ม + แล้วจะได้ผลลัพธ์ดังรูปต่อไปนี้

IEEE 754 Calculator

(See info at bottom of page.)

	Sign	Significand	Exponent
-123.0	1	1 . 11101100000000000000000	10000101
	_	1.921875	+6
		0xC2F60000 0b110000101111011000000000000	00000
123.0	0	1 .111011000000000000000000000000000000	10000101
	+	1.921875	+6
		0x42F60000 0b010000101111011000000000000	00000
+	-	× /	
0.0	0	0 .000000000000000000000000000000000000	0000000
	+	0.0	+0
		0x0000000	00000

รูปที่ A.9: ผลลัพธ์จากการบวกเลข -123.0+123.0 ให้เป็นเลขฐานสองชนิด Single Precision

จะสังเกตเห็นว่า ผลลัพธ์ที่ได้เรียกว่า True Zero ตามตารางที่ 2.12 5. กดปุ่ม x (คูณ) แล้วจะได้ผลลัพธ์ของ -123×123 ดังรูปต่อไปนี้

IEEE 754 Calculator

(See info at bottom of page.)

	Sign	Significand	Exponent
-123.0	1	1 . 11101100000000000000000	10000101
	-	1.921875 0xC2F60000 0b110000101111011000000000000	+6
123.0	0	1 . 11101100000000000000000	10000101
	+	1.921875 0x42F60000 0b0100001011110110000000000000	+6
+	-	x /	
-15129.0	1	1 .11011000110010000000000	10001100
	-	1.8468018 0xC66C6400 0b110001100110110001100100000	+13

รูปที่ A.10: ผลลัพธ์จากการคูณเลข -123.0 x 123.0 ให้เป็นเลขฐานสองชนิด Single Precision

A.2.2 กิจกรรมท้ายการทดลอง

จงใช้เว็บเพจลิงค์ต่อไปนี้ในการตอบคำถาม

https://www.h-schmidt.net/FloatConverter/IEEE754.html

Tools & Thoughts				
IEEE-754 1	Floatin	g Point Converte	r	
Translations: de				
		onvert between the decing (IEEE 754 floating point)	nal representation of numbers (like "1.02") and the binary format).	
IEEE 754 Converter (JavaScript), V0.22				
	Sign	Exponent	Mantissa	
Value:	+1	2 ⁻¹²⁶ (denormalized)	0.0 (denormalized)	
Encoded as:	0	0	0	
Binary:			••••	
You en	tered	0		
Value actually stored in float: 0			+1	
Error due to conversion: 0			4	
Binary Representation 000000000000000000000000000000000000			00000000000000000000	
Hexade	Hexadecimal Representation 0x00000000			

ร**ูปที่** A.11: เว็บสำหรับการตอบคำถามเพื่อสร้างเลขหรือแปลงเลขฐานสิบด้วยมาตรฐาน IEEE754 Single Precision การกดเลือกคือทำให้บิทนั้นเท่ากับ '1'

โดยแสดงวิธีทำตามเนื้อหาในหัวข้อที่ 2.6 และตรวจคำตอบตามวิธีทำการทดลองที่ได้ทำไป และกรอก ผลลัพธ์ลงบนเส้นประที่จัดไว้ให้เท่านั้น ยกตัวอย่างเช่น

- 1. จงสร้างเลข -0.0 $_{10}$ โดยการกดเลือกปุ่มสี่เหลี่ยมในส่วน Sign เท่านั้น เลขฐานสอง = 1 0 0 0|0 0 0|0 0|0 0|
- 2. จงสร้างเลข -1.0 $_{10}$ โดยการกดเลือกปุ่มสี่เหลี่ยมในส่วน Exponent เท่านั้น ต่อจากข้อที่แล้ว เลขฐานสอง = 1011 | 1111 | 1000 | 0
- 4. จงสร้างเลข 1.17549435082 \times 10⁻³⁸ ซึ่งเป็นค่านอมัลไลซ์ที่น้อยที่สุด (Normalized) เลขฐานสอง = _0000| 0000| 1000 | 0000| 0000 | 0000| 0000| 0000 2 ฐานสิบหก = 0_ 0_ 8_ 0_ 0_ 0_ 0_ 16

- 6. จงสร้างเลข 3.40282346639 $\times 10^{38}$ ซึ่งเป็นค่านอมัลไลซ์ที่มากที่สุด (Normalized) เลขฐานสอง = _0111|1111|0111|1111|1111|1111|1111|2 ฐานสิบหก = 7 f f f f f f f f

- 9. จงแปลงเลขฐานสองขนาด 32 บิทที่ได้จากกิจกรรมก่อนหน้านี้ ให้เป็น เลขจำนวนเต็ม โดยใช้ลิงค์ต่อไป นี้ http://www.binaryconvert.com/convert_signed_int.html เมื่อคัดลอกและวางเลข ครบแล้ว ให้กดปุ่ม Convert to decimal

A.3 รหัสของข้อมูลตัวอักษร

A.3.1 การทดลอง

การทดลองในหัวข้อนี้จะเป็นการแปลงรหัสตัวอักษรภาษาอังกฤษและไทย เป็นรหัส ASCII และ Unicode ชนิด UCS-2 ตามเนื้อหาในหัวข้อ 2.7 ผ่านทางเว็บไซต์ https://www.branah.com/ascii-converter ที่มี นักพัฒนาเพื่อเผยแพร่ความรู้เป็นวิทยาทานเช่นเดียวกับเว็บที่ได้ทดลองมา

- 1. เปิดเว็บตามลิงค์ต่อไปนี้ หรือ กดปุ่มซ้ายบนชื่อลิงค์ https://www.branah.com/ascii-converter
- 2. กรอกข้อความต่อไปนี้ ลงไปในกล่องข้อความ ASCII

ไทยกขคลbc

โปรดสังเกต ระหว่างตัวอักษรมี ช่องว่าง 1 ตัวอักษรเสมอ

3. กดปุ่ม Convert ซ้ายบนสุด จะได้ผลลัพธ์ดังรูปต่อไปนี้

ASCII Converter - Hex, decimal, binary, base64, and ASCII converter

Convert	ASCII (Example: a b c)
ไทยกขคลbo	
Add spaces	Remove spaces Convert white space characters
Convert	Hex (Example: 0x61 0x62 0x63) ☑ Remove 0x
e44 e17 e22 e01	1 e02 e04 61 62 63
Convert	Decimal (Example: 97 98 99)
3652 3607 3618	3 3585 3586 3588 097 098 099
Convert	Binary (Example: 01100001 01100010 01100011)
111001000100 · 01100011	111000010111 111000100010 111000000001 111000000
Convert	Base64 (Example: YSBiIGM=)
RCAXICIGASAC	IAQgYSBiIGM=

ร**ูปที่** A.12: ผลลัพธ์จากการกรอกและแปลงตัวอักษร ไ ท ย ก ข ค a b c เป็นรหัสต่างๆ

4. กล่องข้อความ Hex จะแสดงค่า Unicode สำหรับภาษาไทย และ ASCII สำหรับภาษาอังกฤษ ในรูปผู้ เขียนได้กดเลือก Remove 0x เพื่อความสะดวกในการอ่านค่า

A.3.2 กิจกรรมท้ายการทดลอง

- 1. จงอธิบายวิธีการหาค่าฐานสิบ 0 9 จากรหัส ASCII ของตัวอักษร 0 9
- 2. จงอธิบายวิธีการหาค่าฐานสิบ 0 9 จากรหัส Unicode ของตัวอักษร o ๙
- 3. จงเปิดเว็บที่มีข้อความภาษาไทย เช่น เว็บข่าว แล้วทดลองเปลี่ยนการนำเสนอบนจอเพื่อ View source เช่น Google Chrome ใช้เมนู Tool-> View Source แล้ว Find หรือกดปุ่ม CTRL-F คำว่า charset ว่ามีค่าเท่ากับ utf-8 หรือไม่ เพราะเหตุใด

1.ASCII เป็นเลขฐาน 2 7 bits หาค่าฐาน 10 โดยการแปลงจากฐาน 2 เป็น ฐาน 10 ดังนี้

์ ตัวอักษร 0 เลขฐาน 2 = 0110000 แปลงเป็น ฐาน 10 = 2^5+2^4 = 48 โดยการนำค่า 0,1 ในแต่ละบิทคูณด้วย 2^ตำแหน่งบิทโดยบิทขวาสุดเป็น 0 บิทถัดมาทางซ้ายเพิ่มไป 1

```
ตัวอักษร 0 -> ฐาน 10 = 48
ตัวอักษร 1 -> ฐาน 10 = 49
ตัวอักษร 2 -> ฐาน 10 = 50
ตัวอักษร 3 -> ฐาน 10 = 51
ตัวอักษร 4 -> ฐาน 10 = 52
ตัวอักษร 5 -> ฐาน 10 = 53
ตัวอักษร 6 -> ฐาน 10 = 54
ตัวอักษร 7 -> ฐาน 10 = 55
ตัวอักษร 8 -> ฐาน 10 = 56
ตัวอักษร 9 -> ฐาน 10 = 57
```

2. แปลงฐาน 2 ไปเป็น ฐาน 10 เหมือนข้อที่ 1

```
ตัวอักษร 0 -> ฐาน 10 = 3663
ตัวอักษร 1 -> ฐาน 10 = 3664
ตัวอักษร 2 -> ฐาน 10 = 3665
ตัวอักษร 3 -> ฐาน 10 = 3666
ตัวอักษร 4 -> ฐาน 10 = 3668
ตัวอักษร 5 -> ฐาน 10 = 3668
ตัวอักษร 6 -> ฐาน 10 = 3670
ตัวอักษร 8 -> ฐาน 10 = 3671
ตัวอักษร 9 -> ฐาน 10 = 3672
```

3.มีค่าเท่ากับ utf-8 เพราะ utf-8 มี Unicode ภาษาไทยอยู่ แต่ ASCII ไม่มีภาษาไทย ดังนั้นจึงจำเป็นต้องใช้ utf-8