Peng Fu

Email: peng-fu@uiowa.edu Homepage: https://fermat.github.io/

Education

- Ph.D. Department of Computer Science, the University of Iowa, Iowa City, USA. August 2014.
- B.Eng. School of Computer Science, Huazhong University of Science and Technology, China. July 2009.

Research Interests

- Lambda calculus, type theory and their applications.
- Theorem proving and language-based verification.
- Type systems for functional programming languages.

Conference Publications

1. Proof Relevant Corecursive Resolution.

Peng Fu, Ekaterina Komendantskaya, Tom Schrijvers, Andrew Pond. International Symposium on Functional and Logic Programming, FLOPS 2016.

2. A Type-Theoretic Approach to Resolution.

Peng Fu, Ekaterina Komendantskaya. International Symposium on Logic-Based Program Synthesis and Transformation, LOPSTR 2015.

3. Self Types for Dependently Typed Lambda Encodings.

Peng Fu, Aaron Stump. Joint 25th International Conference on Rewriting Techniques and Applications and 12th International Conference on Typed Lambda Calculi and Applications, RTA-TLCA 2014.

Journal and Workshop Publications

1. Efficiency of Lambda-Encodings in Total Type Theory.

Aaron Stump, Peng Fu. Journal of Functional Programming, 2016.

2. A Framework for Internalizing Relations into Type Theory.

Peng Fu, Aaron Stump, Jeff Vaughan. International Workshop on Proof-Search in Axiomatic Theories and Type Theories, PSATTT 2011.

Dissertation

- Title: Lambda Encodings in Type Theory.
- Summary: The dissertation explores the reasoning of Scott-encoded programs using the comprehension principle.
- Committee: Aaron Stump, Cesare Tinelli, Kasturi Varadarajan, Ted Herman, Douglas Jones.

Research Projects

- Functional Certification of Rewriting (FCR)¹. A prototype type checker for analyzing and proving the nontermination of term rewriting system. Main features:
 - The certification of nonterminating rewriting is reduced to type checking.
 - The type checking algorithm is based on resolution with second-order matching.
- Corecursive Type Class². A prototype interpreter and type checker that implements the type class mechanism based on corecursive resolution. Main features:
 - It supports dictionary construction for nonterminating type class resolution.
 - It uses goal directed automated proof construction to construct type class evidence.
 - It provides a heuristic for generating intermediate lemma for proof construction.
- The Gottlob System³. A prototype interpreter for typed functional programming and theorem proving. Main features:
 - The functional programming fragment is equipped with Hindley-Miler type inference. The core language is based entirely on Scott encoding, without build-in data-type and pattern matching.
 - The theorem proving fragment can reason about the program with general recursion.
 - It can automatically synthesize an induction principle from an algebraic data type declaration, induction principle is not primitive in Gottlob.

Academic Positions

- Postdoctoral Research Assistant, Heriot-Watt University, UK. March 2016 August 2016.
- Postdoctoral Research Assistant, University of Dundee, UK. October 2014 March 2016.
- Teaching Assistant, "Algorithm and AI", 2015 Spring. Computer Science, The University of Dundee.
 - Taught basic functional programming in Haskell, the first Haskell class taught in University of Dundee.
 - Delivered one lecture per week (total 13 lectures, class size: around 50).
 - Ran one lab session per week.
 - Developed class materials, homeworks and part of the final exam.
- Graduate Teaching Assistant, "Programming Language Concepts", 2013 Spring, 2014 Spring. Department of Computer Science, The University of Iowa.
 - Graded assignments (Class size: around 70 both times).
 - Ran weekly office hours.
- Graduate Teaching Assistant, "Object-Oriented Software Development", 2013 Fall. Department of Computer Science, The University of Iowa.
 - Graded assignments (Class size: around 70).
 - Ran one lab session per week.

¹Source code available from: https://github.com/fermat/fcr

²Source code available from: https://github.com/fermat/corecursive-type-class

³Source code available from: https://github.com/fermat/gottlob

- Ran weekly office hours.
- Graduate Teaching Assistant, "Computer Networking", 2009 Fall. Department of Computer Science, The University of Iowa.
 - Graded assignments (Class size: around 30).
 - Ran weekly office hours.

Professional Service

- External Reviewer. 24th International Conference on Rewriting Techniques and Applications (RTA 2013). Reviewed: 1 paper.
- External Reviewer. 19th International Conference on Foundations of Software Science and Computation Structures (FoSSaCS 2016). Reviewed: 1 paper.
- External Reviewer. 32nd International Conference on Logic Programming (ICLP 2016). Reviewed: 1 paper.