1

Assignment 9

Gaydhane Vaibhav Digraj Roll No. AI20MTECH11002

linear equations are linear equivalent or not.

Download latex-tikz codes from

https://github.com/Vaibhav11002/EE5609/tree/ master/Assignment 9

1 Problem

Let \mathbb{F} be the field of complex numbers. Are the following two systems of linear equations equivalent? If so, express each equation in each system as a linear combination of the equations in the other system.

$$x_1 - x_2 = 0$$
$$2x_1 + x_2 = 0$$

and

$$3x_1 + x_2 = 0$$
$$x_1 + x_2 = 0$$

2 Solution

The given system of linear equations can be written as,

$$\mathbf{A}\mathbf{x} = 0 \tag{2.0.1}$$

$$\implies \begin{pmatrix} 1 & -1 \\ 2 & 1 \end{pmatrix} \mathbf{x} = 0 \tag{2.0.2}$$

$$\mathbf{B}\mathbf{x} = 0 \tag{2.0.3}$$

$$\implies \begin{pmatrix} 3 & 1 \\ 1 & 1 \end{pmatrix} \mathbf{x} = 0 \tag{2.0.4}$$

Now we can obtain **B** from matrix **A** by performing elementary row operations given as,

$$\mathbf{B} = \mathbf{C}\mathbf{A} \tag{2.0.5}$$

$$\begin{pmatrix} 3 & 1 \\ 1 & 1 \end{pmatrix} = \mathbf{C} \begin{pmatrix} 1 & -1 \\ 2 & 1 \end{pmatrix} \tag{2.0.6}$$

Abstract—This document solves whether two system of where C is product of elementary matrices given as,

$$\mathbf{C} = (\mathbf{E}_{7}\mathbf{E}_{6}\mathbf{E}_{5}\mathbf{E}_{4}\mathbf{E}_{3}\mathbf{E}_{2}\mathbf{E}_{1})$$

$$= \begin{pmatrix} 1 & 0 \\ \frac{1}{3} & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & \frac{2}{3} \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 3 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & \frac{1}{3} \end{pmatrix} \begin{pmatrix} 1 & 0 \\ -2 & 1 \end{pmatrix}$$

$$= \begin{pmatrix} \frac{1}{3} & \frac{4}{3} \\ \frac{-1}{3} & \frac{2}{3} \end{pmatrix} \quad (2.0.7)$$

Now, performing elementary operations on the right side of A we obtain matrix B given as,

$$\mathbf{B} = \mathbf{AP} \tag{2.0.8}$$

$$\begin{pmatrix} 3 & 1 \\ 1 & 1 \end{pmatrix} = \begin{pmatrix} 1 & -1 \\ 2 & 1 \end{pmatrix} \mathbf{P} \tag{2.0.9}$$

where, P is product of elementary matrices given by,

$$\mathbf{P} = (\mathbf{E}_{1}\mathbf{E}_{2}\mathbf{E}_{3}\mathbf{E}_{4}\mathbf{E}_{5})
= \begin{pmatrix} 1 & 0 \\ -2 & 1 \end{pmatrix} \begin{pmatrix} \frac{1}{3} & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 2 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 2 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix} = \begin{pmatrix} \frac{4}{3} & \frac{2}{3} \\ \frac{-5}{3} & \frac{-1}{3} \end{pmatrix}
(2.0.10)$$

Similarly, A can be obtained from matrix B from (2.0.5) as,

$$\mathbf{A} = \mathbf{C}^{-1}\mathbf{B} \tag{2.0.11}$$

$$\begin{pmatrix} 1 & -1 \\ 2 & 1 \end{pmatrix} = \mathbf{C}^{-1} \begin{pmatrix} 3 & 1 \\ 1 & 1 \end{pmatrix} \tag{2.0.12}$$

Matrix C is product of elementary matrices and hence invertible and is given as,

$$\mathbf{C}^{-1} = \begin{pmatrix} \mathbf{E_1}^{-1} \mathbf{E_2}^{-1} \mathbf{E_3}^{-1} \mathbf{E_4}^{-1} \mathbf{E_5}^{-1} \mathbf{E_6}^{-1} \mathbf{E_7}^{-1} \end{pmatrix}$$

$$= \begin{pmatrix} 1 & 0 \\ 2 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & 3 \end{pmatrix} \begin{pmatrix} 1 & -1 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} \frac{1}{3} & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & -1 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & \frac{3}{2} \end{pmatrix} \begin{pmatrix} 1 & 0 \\ -\frac{1}{3} & 1 \end{pmatrix}$$

$$= \begin{pmatrix} 1 & -2 \\ \frac{1}{2} & \frac{1}{2} \end{pmatrix} \quad (2.0.13)$$

Matrix A can also be obtained from (2.0.8) given as,

$$\mathbf{A} = \mathbf{B}\mathbf{P}^{-1} \tag{2.0.14}$$

$$\begin{pmatrix} 1 & -1 \\ 2 & 1 \end{pmatrix} = \begin{pmatrix} 3 & 1 \\ 1 & 1 \end{pmatrix} \mathbf{P}^{-1} \tag{2.0.15}$$

where.

$$\mathbf{P}^{-1} = \left(\mathbf{E}_{5}^{-1}\mathbf{E}_{4}^{-1}\mathbf{E}_{3}^{-1}\mathbf{E}_{2}^{-1}\mathbf{E}_{1}^{-1}\right)$$

$$= \begin{pmatrix} 1 & 0 \\ -1 & 1 \end{pmatrix} \begin{pmatrix} \frac{1}{2} & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & -2 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 3 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 2 & 1 \end{pmatrix}$$

$$= \begin{pmatrix} \frac{-1}{2} & -1 \\ \frac{5}{2} & 2 \end{pmatrix} \quad (2.0.16)$$

Thus (2.0.4) can be obtained from (2.0.2) by multiplying it with matrix \mathbb{C} , and by inverse row operations (2.0.2) can be obtained back from (2.0.4) since \mathbb{C} is product of elementary matrices and hence invertible.

Thus the two given homogeneous systems are row equivalent.

Now writing equations in matrix-vector form as,

$$3x_{1} + x_{2} = \begin{pmatrix} 3 & 1 \end{pmatrix} \mathbf{x}$$
 (2.0.17)

$$\Rightarrow \begin{pmatrix} 3 & 1 \end{pmatrix} \mathbf{x} = \frac{1}{3} \begin{pmatrix} 1 & -1 \end{pmatrix} \mathbf{x} + \frac{4}{3} \begin{pmatrix} 2 & 1 \end{pmatrix} \mathbf{x}$$
 (2.0.18)

$$x_{1} + x_{2} = \begin{pmatrix} 1 & 1 \end{pmatrix} \mathbf{x}$$
 (2.0.19)

$$\Rightarrow \begin{pmatrix} 1 & 1 \end{pmatrix} \mathbf{x} = \frac{-1}{3} \begin{pmatrix} 1 & -1 \end{pmatrix} \mathbf{x} + \frac{2}{3} \begin{pmatrix} 2 & 1 \end{pmatrix} \mathbf{x}$$
 (2.0.20)

(2.0.18), (2.0.20) is same as multiplying **C** with **A** as it takes the linear combination of each rows of matrix **A** i.e, (2.0.6)

$$x_{1} - x_{2} = \begin{pmatrix} 1 & -1 \end{pmatrix} \mathbf{x}$$
 (2.0.21)

$$\Rightarrow \begin{pmatrix} 1 & -1 \end{pmatrix} \mathbf{x} = (1) \begin{pmatrix} 3 & 1 \end{pmatrix} \mathbf{x} + (-2) \begin{pmatrix} 1 & 1 \end{pmatrix} \mathbf{x}$$
 (2.0.22)

$$2x_{1} + x_{2} = \begin{pmatrix} 2 & 1 \end{pmatrix} \mathbf{x}$$
 (2.0.23)

$$\Rightarrow \begin{pmatrix} 2 & 1 \end{pmatrix} \mathbf{x} = \frac{1}{2} \begin{pmatrix} 3 & 1 \end{pmatrix} \mathbf{x} + \frac{1}{2} \begin{pmatrix} 1 & 1 \end{pmatrix} \mathbf{x}$$
 (2.0.24)

(2.0.22), (2.0.24) is same as multiplying C^{-1} with **B** as it takes the linear combination of each rows of matrix **B** i.e, (2.0.12)

Thus each equation in each system can be expressed as a linear combination of the equations in the other system when they are equivalent.