

Data Analytics Stiftung Universität Hildesheim Marienburger Platz 22 31141 Hildesheim Prof. Dr. Dr. Lars Schmidt-Thieme

Thesis Unsupervised Real-Time Time-Series Anomaly Detection

Abdul Rehman Liaqat 271336, Liaqat@uni-hidesheim.de

Abstract

Anomaly detection is a crucial task for machine learning due to wide-spread usage and type. In particular, it is worth noting that most data arising in industrial setups are of a streaming nature, thus restricting the range of standard anomaly detection tools. This thesis will identify the potential approaches to learn the identification of abnormal behavior from large-scale streaming data. An empirical comparison of state-of-the-art methods will to be extended by a novel technical contribution. In this thesis, the focus is particularly on streaming time-series Anomaly Detection which changes in nature with time and novel contribution will especially try to target this dynamic nature of time-series.

Contents

1	Intr	oducti	tion						4
2	Multi-Model Architecture							5	
	2.1	Comp	ponents						5
	2.2	Comp	ponent Models Architecture						6
	2.3	Base (Component Architecture						7
	2.4	Modal	ality Nets						10
		2.4.1	Language Modality Net						11
		2.4.2	Image Modality Net						11
		2.4.3							12
		2.4.4							12
3	Experiments 1								13
	3.1	Datas	sets						13
	3.2	Basic	e Questions						13
	3.3	Result	lts			•	•		14
4	Con	onclusion 1							15
5	Discussions and Remarks							16	
	5.1	Gener	eral Review						16
	5.2		nical Review						16
6	Ref	erence	es						17

1 Introduction

2 References

4

- [1] F. Chollet, "Xception: Deep learning with depthwise separable convolutions," *CoRR*, vol. abs/1610.02357, 2016. [Online]. Available: http://arxiv.org/abs/1610.02357
- [2] L. et. al. (2017) Author discussion. [Online]. Available: https://github.com/tensorflow/tensor2tensor/issues/9
- [3] —. (2017) Github Code github code. [Online]. Available: https://github.com/tensorflow/tensor2tensor/blob/f9c859a7639831c6da864e360793a285613dcc5c/tensor2tensor/models/multimodel.py
- [4] L. Kaiser, A. N. Gomez, N. Shazeer, A. Vaswani, N. Parmar, L. Jones, and J. Uszkoreit, "One model to learn them all," CoRR, vol. abs/1706.05137, 2017. [Online]. Available: http://arxiv.org/abs/1706.05137
- [5] N. Shazeer, A. Mirhoseini, K. Maziarz, A. Davis, Q. V. Le, G. E. Hinton, and J. Dean, "Outrageously large neural networks: The sparsely-gated mixture-of-experts layer," CoRR, vol. abs/1701.06538, 2017. [Online]. Available: http://arxiv.org/abs/1701.06538