

פרויקט גמר "זיהוי קולי של טיפה נופלת לבריכה"

פרויקט גמר הנדסי

: מאת

שגיב מרציאנו מנחים: ד"ר מירב ארוגטי וד"ר איתן פישר

מטרת הפרויקט

הפרויקט הנייל הינו פרויקט ראשוני, שמטרתו העיקרית היא לפתח כלי בקרה אשר הכניסה היא הקלטת קול וביציאה יתקבלו הפרמטרים של טיפות, כגון: מהירות הפגיעה במשטח רטוב, קוטר טיפה.

עיבוד הנתונים מתבסס על ניתוח הקול בשילוב עם לימוד מכונה (Machine Learning).

מערכת הניסוי

מיקרופון-

בריכה

מחוץ לתמונה: מצלמה לצילום מהיר של צל הטיפה, התאורה מול המצלמה

מספרים לא ממדיים

הסבר הנוסחה	הנוסחה	שם הנוסחה	מס' הנוסחה
יחס כוחות אינרציה וצמיגות	$Re = \frac{VD}{v}$	מסי ריינולדס	1
יחס בין כוחות האינרציה לבין כוחות פני השטח בזרימת נוזל.	$We = \frac{\rho v_d^2 D}{\sigma}$	מסי ובר	2
היחס בין כוחות הגרביטציה לבין מתח הפנים	$Bo = \frac{\rho g D^2}{\sigma} = \left(\frac{L}{\lambda_c}\right)^2 \lambda_c = \sqrt{\frac{\sigma}{\rho g}}$	מסי בונד	3
יחס בין כוח האינרציה לבין כוח הגרביטציה	$Fr = \frac{We}{Bo} = \frac{V_d^2}{Dg}$	מסי פראוד	4

		Fr	We	Re	Во
		v^2/(g*D)	ro*v^2*D/S	ro*v*D/mu	ro*g*D^2/S
a	Coalescence phenomenon	100	50	2635	0.5
b	Short thick jet phenomenon	300	100	3373	0.33
c	Thick jet phenomenon with secondary drop below the bubble entrapment regime	300	110	3639	0.36
d	Thin jet phenomenon	300	120	3867	0.4
e	Thin jet phenomenon with large bubble entrapment	300	150	4565	0.5
f	Long thick jet phenomenon with small bubble entrapment	300	180	5250	0.6
g	Long thick jet phenomenon	300	190	5448	0.63

Regimes during liquid drop impact on a liquid pool

סרטון המחשה- נפילת הטיפה + סאונד של אותה נפילה

ניתוח ספקטוגרמות:

אפשר שבאיור 20 שבה קוטר הטיפה הוא 55 מיימ אנו רואים יישהפיקיי- העוצמה המקסימלית מתקבלת באזור ה 6 קילו הרץ ואילו באיור 21 שבו קוטר הטיפה הוא 76 מיימ הפיק הוא באזור 4 קילו הרץ.

עד ליום זה יש לנו:

- בנק מידע של קולות של אימפקט טיפה עם קטרים וגבהים שונים
 - וידאו מצולם במהירות של 1000 תמונות לשניה

וויין!