13. 9. 2004

日本国特許庁 JAPAN PATENT OFFICE

JP04/11595

別紙添付の書類に記載されている事項は下記の出願書類に記載されている事項と同一であることを証明する。

This is to certify that the annexed is a true copy of the following application as filed with this Office.

出 願 年 月 日 Date of Application:

2003年 8月15日

出 顯 番 号 Application Number:

特願2003-293862

[ST. 10/C]:

[JP2003-293862]

出 願 人
Applicant(s):

大見 忠弘

日本ゼオン株式会社

東京エレクトロン株式会社

REC'D 0 4 NOV 2004

WIPO PCT

PRIORITY DOCUMENT

SUBMITTED OR TRANSMITTED IN COMPLIANCE WITH RULE 17.1(a) OR (b)

特許庁長官 Commissioner, Japan Patent Office 2004年10月21日

16

 【書類名】
 特許願

 【整理番号】
 M-1142

【提出日】平成15年 8月15日【あて先】特許庁長官殿【国際特許分類】C07C 19/08

【発明者】

【住所又は居所】 宮城県仙台市青葉区米ケ袋2-1-17-301

【氏名】 大見 忠弘

【発明者】

【住所又は居所】 東京都千代田区丸の内二丁目6番1号 日本ゼオン株式会社内

【氏名】 杉本 達也

【発明者】

【住所又は居所】 東京都千代田区丸の内二丁目6番1号 日本ゼオン株式会社内

【氏名】 山田 俊郎

【発明者】

【住所又は居所】 東京都千代田区丸の内二丁目6番1号 日本ゼオン株式会社内

【氏名】 田中 公章

【特許出願人】

【識別番号】 000205041 【氏名又は名称】 大見 忠弘

【特許出願人】

【識別番号】 000229117

【氏名又は名称】 日本ゼオン株式会社

【代理人】

【識別番号】 100071272

【弁理士】

【氏名又は名称】 後藤 洋介

【選任した代理人】

【識別番号】 100077838

【弁理士】

【氏名又は名称】 池田 憲保

【手数料の表示】

【予納台帳番号】 012416 【納付金額】 21,000円

【提出物件の目録】

【物件名】 特許請求の範囲 1

 【物件名】
 明細書 1

 【物件名】
 要約書 1

 【包括委任状番号】
 0303948

【請求項1】

不飽和フッ素化炭素化合物からなり、水素原子含有化合物量が90重量ppm以下のプラズマCVD用ガス。

【請求項2】

水分含有量が3重量ppm以下であることを特徴とする請求項1に記載のプラズマCV D用ガス。

【請求項3】

前記不飽和フッ素化炭素化合物が、オクタフルオロシクロペンテン、オクタフルオロー 2-ペンチンまたはヘキサフルオロー 1, 3-ブタジエンである請求項 $1\sim 2$ に記載のプラズマCVD用ガス。

【請求項4】

水素原子含有化合物を含有する不飽和フッ素化炭素化合物を、焼成した吸着剤に接触させることを特徴とする請求項1~3記載のCVD用ガスの製造方法。

【請求項5】

請求項1~3記載のガスを用いてプラズマCVDを行う工程を有する絶縁膜形成方法。

【請求項6】

不飽和フッ素化炭素化合物からなり、水素原子の含有量が 1×10^{-3} 原子%以下であることを特徴とするプラズマCVD用ガス。

【請求項7】

不飽和フッ素化炭素化合物からなり、水分含有量が0.5重量ppm以下であることを特徴とするプラズマCVD用ガス。

【請求項8】

請求項7において、水分含有量が0.1重量ppm以下であることを特徴とするプラズマCVD用ガス。

【書類名】明細書

【発明の名称】プラズマCVD用ガス

【技術分野】

[0001]

本発明は、半導体装置の製造分野において有用なプラズマCVD用ガスに関する。さら に詳しくは、水分などの水素原子含有化合物を低減した不飽和フッ素化炭素化合物から成 るプラズマCVD用ガス、その製造方法および該ガスを絶縁膜形成用のプラズマCVD用 ガスとして使用する方法に関する。

【背景技術】

[0002]

近年、半導体デバイスの高集積化が進展するに伴い、多層配線の技術が重要になってき ている。特に、多層配線構造においては、高集積度半導体装置の動作の高速化、消費電力 の低下および低発熱化等を目的として、同一配線層内の隣り合う配線間に存在する層間絶 縁膜の幅を狭め、かつ上下の配線層間の層間絶縁膜の厚さを薄くすることによる配線間容 量の低減が求められている。

[0003]

このような高集積度半導体装置の配線間容量の低減方法として、層間絶縁膜への低誘電 率材料の適用が有効である。低誘電率材料としては、酸化シリコンにフッ素を含ませたS iOF系や、アルキル基等の有機成分を有するシリカ、あるいはシロキサン含有液を熱硬 化することにより形成される有機SOG (Spin. On Glass) などの無機系材 料や、フッ素化炭素系化合物を原料にしたプラズマCVD法によるフッ素化アモルファス カーボンなどの有機系材料が開発されている。

[0004]

特に、最近では上記フッ素化炭素系化合物を原料にしたプラズマCVDの研究が活発に 行われている。例えば、特許文献1ではヘキサフルオロー1,3-ブタジエンまたは、ヘ キサフルオロー2ープチンを原料にして、プラズマCVD法によりフッ素化アモルファス カーボンの絶縁膜を形成し、それぞれ比誘電率が、2.1または2.5の膜を得ている。

[0005]

また、特許文献2では、さまざまな不飽和フッ素化炭素化合物が成膜ガスとして用いら れているが、膜密度および膜の表面粗さについての検討がされているだけである。さらに 、特許文献3では、高純度のオクタフルオロシクロペンテンを用いたプラズマCVDによ り、比誘電率が2.4の膜を得ている。

[0006]

しかしながら、これら従来のプラズマCVD用ガスを用いた方法では、高集積度半導体 装置の配線間容量低減に十分な効果がある比誘電率が小さい層間絶縁膜を得ることが出来 なかった。

[0007]

さらに、半導体装置を製造する場合、プラズマCVD法により得られた層間絶縁膜を有 する半導体素子に加熱処理を行なう。その際に腐食性ガスが発生し、半導体素子に悪影響 を及ぼすことが問題となっていた。

【特許文献1】特開平9-237783号公報

【特許文献2】特開2002-220668号公報

【特許文献3】特開2000-332001号公報

【発明の開示】

【発明が解決しようとする課題】

[0008]

本発明の目的は、比誘電率が小さな層間絶縁膜を製造するのに用いられるプラズマCV D用ガス、および、それを用いた絶縁膜形成方法を提供することにある。

【課題を解決するための手段】

[0009]

2/

[0010]

かくして本発明によれば、不飽和フッ素化炭素化合物からなり、水素原子含有化合物量が90重量ppm以下であるプラズマCVD用ガスが提供される。

[0011]

なお、水分含有量が3重量 p p m以下であることが好ましい。

[0012]

そして、不飽和フッ素化炭素化合物が、オクタフルオロシクロペンテン、オクタフルオロー2-ペンチンまたはヘキサフルオロー1,3-ブタジエンであることが特に好ましい

[0013]

さらに、プラズマCVD用ガスは、水素原子含有化合物を含有する不飽和フッ素化炭素 化合物を焼成した吸着剤に接触させて製造することが好ましい。

[0014]

また、本発明によれば、上記ガスを用いてプラズマCVDを行なう工程を有する絶縁膜 形成方法が提供される。

【発明の効果】

[0015]

本発明のプラズマCVD用ガスを用いて、プラズマCVDを行なうことにより、高集積度半導体装置の配線間容量低減に十分な効果がある比誘電率が小さな層間絶縁膜を再現性良く形成可能となるとともに、半導体装置の製造工程で該プラズマCVD用ガスで形成した層間絶縁膜を有する半導体素子に加熱処理しても腐食性ガスの発生がない顕著な効果を得ることが出来る。

【発明を実施するための最良の形態】

[0016]

本発明のプラズマCVD用ガスは、不飽和フッ素化炭素化合物からなり、水素原子含有化合物量が90重量ppm以下であることを特徴とする。

[0017]

本発明のプラズマCVD用ガスとして使用する不飽和フッ素化炭素化合物は、炭素原子 およびフッ素原子のみから構成され、二重結合又は三重結合を有する化合物をいう。その 炭素数は好ましくは2~7、より好ましくは2~5、さらに好ましくは4~5、特に好ま しくは5である。該不飽和フッ素化炭素化合物の具体例としては、テトラフルオロエチレ ンなどの炭素数が2である不飽和フッ素化炭素化合物;ヘキサフルオロプロペン、テトラ フルオロプロピン、テトラフルオロシクロプロペンなどの炭素数が3の不飽和フッ素化炭 素化合物;ヘキサフルオロー2ープチン、ヘキサフルオロー1ープチン、ヘキサフルオロ シクロブテン、ヘキサフルオロー1, 3ープタジエン、ヘキサフルオロー (1ーメチルシ クロプロペン)、オクタフルオロー1-ブテン、オクタフルオロー2-ブテンなどの炭素 数が4の不飽和フッ素化炭素化合物;オクタフルオロー1ーペンチン、オクタフルオロー 2-ペンチン、オクタフルオロー1, 3-ペンタジエン、オクタフルオロー1, 4-ペン タジエン、オクタフルオロシクロペンテン、オクタフルオロイソプレン、ヘキサフルオロ ビニルアセチレン、オクタフルオロー (1-メチルシクロブテン)、オクタフルオロー (1,2-ジメチルシクロプロペン)などの炭素数が5の不飽和フッ素化炭素化合物;ドデ カフルオロー1-ヘキセン、ドデカフルオロー2-ヘキセン、ドデカフルオロー3-ヘキ セン、デカフルオロー1, 3-ヘキサジエン、デカフルオロー1, 4-ヘキサジエン、デ カフルオロー1,5-ヘキサジエン、アカフルオロー2,4-ヘキサジエン、デカフルオ ロシクロヘキセン、ヘキサフルオロベンゼン、オクタフルオロー2-ヘキシン、オクタフ

3/

ルオロー3-ヘキシン、オクタフルオロシクロー1,3-ヘキサジエン、オクタフルオロ シクロー1, 4-ヘキサジエンなどの炭素数が6の不飽和フッ素化炭素化合物;ウンデカ フルオロー1ーヘプテン、ウンデカフルオロー2ーヘプテン、ウンデカフルオロー3ーへ プテン、ドデカフルオロシクロヘプテンなどの炭素数が7の不飽和フッ素化炭素化合物; が挙げられるが、テトラフルオロエチレン、ヘキサフルオロプロペン、テトラフルオロプ ロピン、テトラフルオロシクロプロペン、ヘキサフルオロー2ープチン、ヘキサフルオロ -1-ブチン、ヘキサフルオロシクロプテン、ヘキサフルオロ-1,3-ブタジエン、ヘ キサフルオロー(1-メチルシクロプロペン)、オクタフルオロー1-ブテン、オクタフ ルオロー2ープテン、オクタフルオロー1ーペンチン、オクタフルオロー2ーペンチン、 オクタフルオロー1, 3ーペンタジエン、オクタフルオロー1, 4ーペンタジエン、オク タフルオロシクロペンテン、オクタフルオロイソプレン、ヘキサフルオロビニルアセチレ ン、オクタフルオロー1ーメチルシクロブテン、オクタフルオロー1, 2ージメチルシク ロプロペンが好ましく、ヘキサフルオロー2ーブチン、ヘキサフルオロー1ープチン、ヘ キサフルオロシクロブテン、ヘキサフルオロー1, 3-ブタジエン、ヘキサフルオロー(1-メチルシクロプロペン)、オクタフルオロ-1-ブテン、オクタフルオロ-2-ブテ ン、オクタフルオロー1ーペンチン、オクタフルオロー2ーペンチン、オクタフルオロー 1, 3-ペンタジエン、オクタフルオロー1, 4-ペンタジエン、オクタフルオロシクロ ペンテン、オクタフルオロイソプレン、ヘキサフルオロビニルアセチレン、オクタフルオ ロー(1-メチルシクロプテン)、オクタフルオロー(1, 2-ジメチルシクロプロペン) がより好ましく、オクタフルオロー2ーペンチン、オクタフルオロー1, 3ーペンタジ エン、オクタフルオロシクロペンテンがさらに好ましく、オクタフルオロー2ーペンチン 、オクタフルオロシクロペンテンが特に好ましく、オクタフルオロー2ーペンチンがとり わけ好ましい。

[0018]

本発明のプラズマCVD用ガスは、不飽和フッ素化炭素化合物を通常90重量%以上、好ましくは95重量%以上、さらに好ましくは99重量%以上、特に好ましくは99.9重量%以上含有する。なお、本発明のプラズマCVD用ガスは、本発明の目的を阻害しない範囲で別種のプラズマCVD用ガスや希釈ガスを含有することもできるが、不飽和フッ素化炭素化合物以外の成分を含有しないことが好ましい。

[0019]

本発明において、水素原子含有化合物とは、プラズマCVD用ガス中に存在する水素原子を有する有機化合物、および水などの水素原子を有する無機化合物を意味する。

[0020]

本発明のプラズマCVD用ガス中の水素原子含有化合物量は90重量ppm以下、より好ましくは70重量ppm以下、さらに好ましくは50重量ppm以下、特に好ましくは10重量ppm以下である。また、本発明のプラズマCVD用ガス中の水分含有量は3重量ppm以下が好ましく、1重量ppm以下がさらに好ましく、0.5重量ppm以下が特に好ましい。具体的な例を上げると、水素原子の含有量が 1×10^{-3} 原子%以下であるプラズマCVDガスを使用した場合、成膜された膜中の水素の量を3原子%以下に抑えることができた。この場合におけるプラズマCVDガス中の水素原子化合物の量を水分量であらわすと、0.5重量ppm(水素原子の含有量の計算値は 1.17×10^{-3} 原子%である)である。このことから、プラズマCVDガス中の水分量は0.5重量ppm以下が好ましく、0.1重量ppm以下であることがより望ましいことが判明した。

[0021]

プラズマCVD用ガス中に水素原子含有化合物が存在すると、プラズマCVD法により 形成された膜中に水素原子が取り込まれる。この水素原子の存在により、膜の比誘電率の 上昇、膜形成の再現性の低下、膜を加熱処理したときの腐食性ガスの発生等が起きる。プ ラズマCVD法により形成した膜を層間絶縁膜として使用して半導体装置を製造する場合 、層間絶縁膜を有する半導体素子に加熱処理を行う工程が幾つもあるため、フッ化水素の 発生は半導体素子そのものに大きな影響を及ぼしてしまう。したがって、プラズマCVD

[0022]

なお、プラズマCVD用ガス中の水素原子含有化合物量は、例えば、水素原子を有する 有機化合物についてはガスクロマトグラフィー質量分析計により求め、水分についてはカ ールフィッシャー水分計により求めることが出来る。

[0023]

水素原子を有する有機化合物の低減方法としては吸着材により除去する、蒸留して低減 する、あるいは化学反応により別の沸点差の大きい化合物に変換してから蒸留するなどの 方法を適宜選択することができるが吸着剤による除去が好ましい。水分についても、吸着 剤による方法が好適に用いられる。水素原子を有する有機化合物の低減に用いられる吸着 剤としては、分子ふるい効果を有するゼオライト、モレキュラーシーブス3A、モレキュ ラーシープス4A、モレキュラーシープス5A、モレキュラーシープス13Xや、その他 ゼオライト、アルミナ、アルミナゲル、シリカ、シリカゲル、活性炭を挙げることができ る。活性炭も木炭、ヤシ殻炭、パーム核炭、素灰などを原料とする植物質系、泥炭、亜炭 、褐炭、瀝青炭、無煙炭などを原料とする石炭系などの中から適宜選択して使用すること ができる。水分の低減に用いられる吸着剤としては、分子ふるい効果による吸着除去剤と して良く使用されるモレキュラーシープス3A、モレキュラーシープス4A、モレキュラ ーシープス5A、モレキュラーシープス13Xや、アルミナなどを挙げることができるが 、除去性能の観点及び前記水素原子を有する有機化合物の低減も同時に行なうことができ ることから、モレキュラーシーブス13Xの使用が好ましい。また、これらの吸着剤は、 水素原子含有化合物の除去能力向上の観点から、使用前にヘリウムなどの不活性ガス雰囲 気下で通常100℃以上、好ましくは200℃以上、特に好ましくは300℃で焼成し活 性化してから用いることが好ましい。なお、吸着剤の焼成時間は、通常5時間以上、好ま しくは10時間以上である。

[0024]

さらに、吸着剤の使用量は、処理すべき水素原子含有化合物を含有する不飽和フッ素化炭素化合物 100重量部当たり、好ましくは5~100重量部、特に好ましくは10~30重量部である。吸着剤の使用量が少なすぎると、水素原子含有化合物の除去が不十分となる傾向があり、吸着剤の使用量が多すぎると、製造コストが高くなる。

[0025]

また、水素原子含有化合物を含有する不飽和フッ素化炭素化合物と、上記吸着剤との接触方法は、該不飽和フッ素化炭素化合物の入った容器に吸着剤を投入して放置する浸漬法、吸着剤を充填した管に該不飽和フッ素化炭素化合物をガス状または液状で流して接触させる流通式などのいずれの方法でも良く該不飽和フッ素化炭素化合物の性質に合わせて適宜選択することができる。

[0026]

なお、水素原子含有化合物を含有する不飽和フッ素化炭素化合物を得る方法としては、オクタフルオロシクロペンテンを例にとると、特開平9-95458号公報に記載されているように、1,2-ジクロロヘキサフルオロシクロペンテンを窒素気流下、ジメチルホルムアミド中でフッ化カリウムと反応させながら、反応器に装備した精留塔から生成物を抜き出すことにより、純度99.8~99.98%のものが得られる。こうして得られたオクタフルオロシクロペンテンを高段数を有する精留塔にて精密蒸留を行って、水分が30重量ppm程度のものが得ることができる。

[0027]

また、オクタフルオロー2ーペンチンを例にとると、公知の方法、もしくは本発明者らの出願に係る方法により製造することができる。本発明者らの出願に係る特願2001ー342791によれば、2,3ージヒドロデカフルオロペンタンと溶融水酸化カリウムを接触させて、生成するガス状化合物を冷却したトラップ内に捕集し、捕集された粗生成物

を精留塔にて精密蒸留することにより、純度99.9%以上のオクタフルオロー2ーペン チンが得られる。精密蒸留の際に、留分は冷却したトラップ内に捕集され、水分20重量 ppm程度のものが得られる。

[0028]

また、本発明のプラズマCVD用ガス中には、微量ガス成分である窒素ガスと酸素ガス が存在する場合もあるが、窒素ガスと酸素ガスの合計量は、プラズマCVD用ガスの重量 基準で30重量ppm以下が好ましい。

[0029]

なお、本発明のプラズマCVD用ガスは、任意の容器に充填して半導体の製造工程など のプラズマ反応に供される。なお、プラズマ反応を行なう際に、本発明のプラズマCVD 用ガスは、通常、プラズマCVD装置の中で、ヘリウム、ネオン、アルゴン、キセノンな どの不活性ガスとともに供給される。これらの不活性ガスは、プラズマCVD用ガス希釈 効果並びにプラズマの電子温度および電子密度を変化させる効果を有することから、プラ ズマ反応中のラジカルおよびイオンのバランスを制御して、適正な成膜条件を得ることが 可能となる。プラズマCVD装置の中における不活性ガスの供給量は、本発明のプラズマ CVD用ガス1モルに対して、通常、 $2\sim100$ モル、好ましくは $5\sim20$ モルである。

[0030]

本発明のプラズマCVD用ガスを用いるCVDとは、プラズマ放電により不飽和フッ素 化炭素化合物を活性化させて、イオン、ラジカルなどの活性種を発生させ、被処理物表面 にフルオロカーボンのポリマー膜を形成せしめることを言う。ポリマー膜が形成される工 程は必ずしも明確ではないが、電離解離条件下において、イオン、ラジカル種の発生とと もに、不飽和フッ素化炭素化合物の重合、開環反応等さまざまな反応が複雑に関与してい るものと考えられる。被処理物は特に限定されないが、半導体製造分野、電気電子分野お よび精密機械分野に用いられる物品、あるいは機能面から言えば、絶縁性、撥水性、耐腐 食性、耐酸性、潤滑性、反射防止等が要求される物品や部材表面である。その中でも、特 に、半導体装置の製造工程における絶縁膜および絶縁材料層の形成、並びに有機エレクト ロルミネセンス素子の保護膜の形成に特に好適に使用される。その具体例としては、アル ミニウム、銅またはタングステン金属配線上における層間絶縁膜、素子を保護するパッシ ベーション膜の形成などが挙げられる。プラズマCVDの手法としては、例えば特開平 9 - 237783号公報に記載の方法などを用いることができる。プラズマ発生条件は、通 常、平行平板の上部電極(シャワーヘッド)に印加する高周波電力10W~10kW、被 処理物温度0~500℃、反応室圧力0.0133Pa~13.3kPaの条件が採用さ れる。堆積する膜の厚さは、通常、 $0.01\sim10\mu$ mの範囲である。プラズマCVDに 用いる装置としては、平行平板型CVD装置が一般的であるが、マイクロ波CVD装置、 ECR-CVD装置、誘導結合プラズマ(ICP)CVD装置、および高密度プラズマC VD装置(ヘリコン波式、高周波誘導式)を用いることができる。

【実施例】

[0031]

以下に実施例を示し、本発明を具体的に説明するが、本発明はこれらの実施例によって その範囲を限定されるものではない。なお、特に断りが無い限り、実施例および比較例中 の「部」、「%」、および「ppm」はそれぞれ、「重量部」、「重量%」、および「重 量ppm」を意味する。

[0032]

また、以下の実施例および比較例における分析条件は下記のとおりである。

[0033]

(分析条件1) ガスクロマトグラフィー分析(以下、「GC分析」と略す。)

装置:ヒューレットパッカード社製HP6890

 $h \ni A : U \mid t \mid r \mid a \mid A \mid l \mid o \mid y^{+} \mid -1 \mid (s)$

(長さ50m、内径0.25mm、膜厚1.5μm)

カラム温度:10分間80℃に固定、その後20分間で200℃に昇温

インジェクション温度:200℃

キャリアーガス:ヘリウム (流量1m1/分)

検出器:FID

内部標準物質:nーブタンで行った。

[0034]

(分析条件2) ガスクロマトグラフィー質量分析(以下、「GC-MS分析」と略す。) [ガスクロマトグラフィー部分]

装置:ヒューレットパッカード社製 HP-6890

 $60 \text{ m} \times \text{I}$. D0. 25 mm, 0. $4 \mu \text{ md f}$

カラム温度:-20℃ キャリアーガス:へリウム

[質量分析計部分]

装置:ヒューレットパッカード社製 5973 NETWORK

検出器:EI型(加速電圧:70eV)

(分析条件3) カールフィッシャー水分分析(以下、「KF分析」と略す。)

装置:平沼産業製:AQ-7

発生液:ハイドラナール アクアライトRS

対極液:アクアライトCN 検出限界: 0.5ppm

[実施例1]

窒素気流下、滴下ロート、精留塔、温度計および攪拌装置を備えた四つロフラスコにフッ化カリウム 3 0 部およびN, N - ジメチルホルムアミド 4 7 部を仕込んだ。精留塔塔頂部に備え付けられたジムロート冷却器に- 2 0 $\mathbb C$ の冷媒を流し、精留塔の大気開放ラインに留分トラップを設けて、0. 5 時間かけてフラスコ内の温度を1 3 5 $\mathbb C$ に上げた。

[0035]

フラスコ内温度が135 \mathbb{C} に到達後、17.1 部/時間の速度で滴下ロートから1,2 ージクロロー3,3,4,4,5,5 ーヘキサフルオロシクロペンテン50.2 部を滴下して反応を開始した。反応開始から1.5 時間経過した時、塔頂部の温度が生成物の沸点 $(27\mathbb{C})$ に安定したのを確認して、留分の抜き出しを開始した。留分の抜き出し開始から 3 時間は0.105 部/時間の留出速度で抜き出し、その後、塔頂部の温度が $27\mathbb{C}$ から徐々に上昇し始めるまでの時間(留分の抜き出し開始から5 時間)は、0.105 部/時間以下の留出速度で留分の抜き出しを行ない、オクタフルオロシクロペンテン38.2 4 部を得た。収率は87.8%、GC分析で求めた純度は99.82%であった。

[0036]

次に、得られたオクタフルオロシクロペンテン38.24部及び沸騰石をガラス製丸底フラスコに仕込み、フラスコを理論段数55段のスルーザーパック精留塔に取り付けた。蒸留塔上部のコンデンサーには5 $\mathbb C$ の冷却水を循環させ、丸底フラスコをオイルバスに浸し、65 $\mathbb C$ で1時間全還流させた。そして、還流比40:1で留分を抜き出し、受器に捕集したところオクタフルオロシクロペンテンが34.5部得られた。収率は90.2%、GC分析で求めた純度は99.98%であった。

[0037]

また、市販のモレキュラーシーブス13Xに、ヘリウム雰囲気下、350℃で12時間の焼成処理を施したものを用意した。

[0038]

次に、得られたオクタフルオロシクロペンテン34.5部をステンレス製容器に入れ、上記焼成処理を施したモレキュラーシーブス13Xを5.4部加え一晩放置した後、オクタフルオロシクロペンテンを孔径 0.05μ mのフィルターを通過させながらステンレス製シリンダーに移した。シリンダーをバルブを介して真空ラインに繋ぎ、ステンレス製シリンダーを液体窒素で冷却して凍結脱気を3回実施し、プラズマCVD用ガスを得た。シ

リンダー内のプラズマCVD用ガスをGC-MS分析したところ水素原子を有する有機化 合物は検出されなかった(0ppm)。また、シリンダー内のプラズマCVD用ガスをK F分析したところ水分は検出限界以下であった。

[0039]

「実施例2]

ハステロイ製オートクレーブに、市販のペレット状水酸化カリウム(85%品)394 部と、1,1,1,2,3,4,4,5,5,5-デカフルオロペンタン(三井デュポン フロロケミカル製)300部を仕込んだ。内容物をよく攪拌して200℃、7.5時間反 応させた。オートクレーブを冷却後、捕集用トラップと真空ポンプを接続した。次に真空 ポンプを運転し、オートクレーブを減圧にすることにより反応混合物を留出させて、液体 窒素で冷却したトラップへ捕集した。捕集物の収量は182.5部であった。これをGC 分析すると、オクタフルオロー2ーペンチン、1, 1, 1, 2, 4, 5, 5, 5ーノナフ ルオロー2-ペンテン(以下、「反応中間体A」と略す。)、1,1,1,3,4,5, 5,5ーノナフルオロー2ーペンテン(以下、「反応中間体B」と略す。)、1,1,1 , 2, 3, 4, 4, 5, 5, 5ーデカフルオロペンタンを含んでいた。仕込んだ原料基準 の目的物の収率は20.6%、反応中間体A及びBの合計収率は44.2%であった。

[0040]

次に、ガラス製丸底フラスコに、得られた捕集物182.5部(オクタフルオロー2-ペンチンの含有量は26.6%、反応中間体AおよびBの合計含有量は67.2%)を東 科精器製KS型蒸留塔(理論段数35段)を用いて常圧で精留を行った。蒸留塔塔頂部の 冷媒温度は−5~−10℃に、留分トラップは−78℃に保った。この精留により、純度 99.6%のオクタフルオロー2ーペンチン留分(沸点5℃)を15.0部、純度99. 9%のオクタフルオロー2ーペンチン留分 (沸点5℃) を9.4部、純度99.8%の反 応中間体AおよびBの留分(沸点29℃)を89.5部得た。

[0041]

そして、得られた純度99.6%のオクタフルオロー2ーペンチン留分15.0部およ び純度99.9%のオクタフルオロー2ーペンチン留分9.4部を混合して再度、東科精 器製KS型蒸留塔(理論段数35段)を用いて常圧にて精留を行った。精留の結果、純度 99.99%のオクタフルオロー2ーペンチン留分(沸点5℃)が13.0部得られた。

[0042]

また、市販のモレキュラーシーブス13 Xに、ヘリウム雰囲気下、350℃で12時間 の焼成処理を施したものを用意した。

[0043]

さらに、得られたオクタフルオロー2ーペンチン留分(沸点5℃)13.0部をステン レス製容器に入れ、上記焼成処理を施したモレキュラーシーブス13Xを2.6部加え― 晩放置した後、オクタフルオロー2ーペンチンを孔径0.05μmのフィルターを通過さ せながらステンレス製シリンダーに移した。シリンダーをバルブを介して真空ラインに繋 ぎ、ステンレス製シリンダーを液体窒素で冷却して凍結脱気を3回実施し、プラズマCV D用ガスを得た。シリンダー内のプラズマCVD用ガスをGC-MS分析したところ水素 原子を有する有機化合物は検出されなかった(0ppm)。また、シリンダー内のプラズ マCVD用ガスをKF分析したところ水分は検出限界以下であった。

[0044]

「比較例1]

ヘリウム雰囲気下に350℃で12時間焼成したモレキュラーシープス13Xを5.4 部使用する代わりに、市販のモレキュラーシーブズ13Xをそのまま2.7部使用した以 外は、実施例1と同様にして実験を行ないステンレス製シリンダーに入れたプラズマCV D用ガスを得た。シリンダー内のプラズマCVD用ガスをGC-MS分析したところ水素 原子を有する有機化合物の合計量は、プラズマCVD用ガス重量基準で150ppmであ った。また、シリンダー内のプラズマCVD用ガスをKF分析したところ水分はプラズマ CVD用ガス重量基準で5ppmであった。

[0045]

[比較例2]

[0046]

[実施例3]

実施例1で製造したプラズマCVD用ガスを使ってプラズマCVDによる成膜を実施した。

[0047]

基板として一部アルミ蒸着したシリコン酸化膜ウェハを用い、プラズマCVD装置として平行平板型プラズマCVD装置を用い、そして実施例1で製造したプラズマCVD用ガスを使用して、次の条件により絶縁膜のプラズマCVDを実施した。プラズマCVD用ガスの流量:40sccm、アルゴンの流量:40sccm、圧力:250mTorr,RF出力(周波数13.56MHz):400W、基板温度:260℃。

[0048]

上記条件で処理した基板上に厚さ 0.5μ mの膜を得た。この膜はボイドの発生もなく緻密で均一であり、基板への密着性も良好であった。膜の比誘電率は 2.2 であり、成膜したシリコンウェハを真空容器内に置き、減圧下 400 で加温処理を行っても、フッ化水素の発生は認められなかった。

[0049]

「実施例4]

プラズマCVD用ガスを実施例2で製造したものに代える以外は、実施例3と同様に実験を行ない基板上に厚さ0.4μmの膜を得た。この膜はボイドの発生もなく緻密で均一であり、基板への密着性も良好であった。膜の比誘電率は1.8であり、成膜したシリコンウェハを真空容器内に置き、減圧下400℃で加温処理を行っても、フッ化水素の発生は認められなかった。

[0050]

[比較例3]

プラズマCVD用ガスを比較例1で製造したものに代える以外は、実施例3と同様に実験を行ない基板上に厚さ0.5μmの膜を得た。この膜はボイドの発生もなく緻密で均一であり、基板への密着性も良好であった。膜の比誘電率は2.4であった。しかしながら、成膜したシリコンウェハを真空容器内に置き、減圧下400℃で加温処理を行ったところ、GC-MS分析によりフッ化水素の発生が認められた。

[0051]

[比較例4]

プラズマCVD用ガスを比較例2で製造したものに代える以外は、実施例3と同様に実験を行ない基板上に厚さ0.4 μ mの膜を得た。この膜はボイドの発生もなく緻密で均一であり、基板への密着性も良好であった。膜の比誘電率は2.0であった。しかしながら、成膜したシリコンウェハを真空容器内に置き、減圧下400℃で加温処理を行ったところ、GC-MS分析によりフッ化水素の発生が認められた。

[0052]

実施例3~4および比較例3~4の結果を表1に示す。表1より、本発明の製造方法により不飽和フッ素化炭素化合物からなり、水素原子含有化合物量が90ppm以下のプラ

ズマCVD用ガスが得られていることがわかる。また、本発明のプラズマCVD用ガスを 用いた実施例3~4は、CVDにより生成した膜の比誘電率が低減され、かつ腐食性ガス であるフッ化水素の生成が抑制出来ていた。

【表 1 】

	フッ素化炭 素化合物	水素原子を有する 有機化合物量	水分	水素原子含有 化合物量	比誘電率	HFガス発生 の有無
実施例3	オクタフルオロシ クロヘ [®] ンテン	0ppm	0. 5ppm以下	0. 5ppm以下	2.2	無し
実施例4	オクタフルオロー 2ーヘ°ンチン	0ppm	0. 5ppm以下	0. 5ppm以下	1.8	無し
比較例3	オクタフルオロシ クロヘ・ンテン	150ppm	5ppm	155ppm	2.4	有り
比較例4	オクタフルオロー 2ーヘ°ンチン	130ppm	6ppm	136ppm	2.0	有り

(注)水分の検出限界は、0.5ppm

【要約】

【課題】 高集積度半導体装置の配線間容量低減に十分な効果がある比誘電率が小さな層間絶縁膜を再現性良く形成可能、かつ半導体装置の製造工程において半導体素子を加熱処理しても腐食性ガスの発生がない層間絶縁膜が形成可能な新規プラズマCVD用ガスを提供する。

【解決手段】 不飽和フッ素化炭素化合物からなり、水素原子含有化合物量が合計で90pm以下であるプラズマCVD用ガスを提供する。また、該プラズマCVD用ガスにおいては、水分含有量が3ppm以下であることが好ましい。

【選択図】 なし

【書類名】 出願人名義変更届

【整理番号】 M-1142

 【提出日】
 平成16年 8月10日

 【あて先】
 特許庁長官殿

【事件の表示】

【出願番号】 特願2003-293862

【承継人】

【識別番号】 000219967

【氏名又は名称】 東京エレクトロン株式会社

【承継人代理人】

【識別番号】 100071272

【弁理士】

【氏名又は名称】 後藤 洋介

【選任した代理人】

【識別番号】 100077838

【弁理士】

【氏名又は名称】 池田 憲保

【手数料の表示】

【予納台帳番号】 012416 【納付金額】 4,200円

ページ: 1/E

認定・付加情報

特許出願の番号 特願2003-293862

受付番号 50401353287

書類名 出願人名義変更届

担当官 小野木 義雄 1616

作成日 平成16年 9月10日

<認定情報・付加情報>

【承継人】

【識別番号】 000219967

【住所又は居所】 東京都港区赤坂五丁目3番6号

【氏名又は名称】 東京エレクトロン株式会社

【承継人代理人】 申請人

【識別番号】 100071272

【住所又は居所】 東京都港区西新橋1-4-10 第3森ビル 後

藤池田特許事務所

【氏名又は名称】 後藤 洋介

【選任した代理人】

【識別番号】 100077838

【住所又は居所】 東京都港区西新橋1-4-10 第3森ビル 後

藤池田特許事務所

【氏名又は名称】 池田 憲保

特願2003-293862

出願人履歴情報

識別番号

[000205041]

1. 変更年月日

1990年 8月27日

[変更理由]

新規登録

住 所

宮城県仙台市青葉区米ケ袋2-1-17-301

氏 名 大見 忠弘

出願人履歴情報

識別番号

[000229117]

1. 変更年月日

1990年 8月22日

[変更理由]

新規登録

住 所

東京都千代田区丸の内2丁目6番1号

氏 名 日本ゼオン株式会社

特願2003-293862

出願人履歴情報

識別番号

[000219967]

1. 変更年月日 [変更理由] 住 所 氏 名 2003年 4月 2日

住所変更

東京都港区赤坂五丁目3番6号

東京エレクトロン株式会社