

Ciência da Computação Algoritmos e Estrutura de Dados 1

Noções sobre complexidade de algoritmos

Prof. Rafael Liberato liberato@utfpr.edu.br

UTFPR

Roteiro

- Objetivos
- Fundamentos de Análise de Algoritmos
- Cálculo da função de custo
- Análise assintótica
 - > Classes de comportamento assintótico
- **Métodos de busca**
 - → Busca Linear
 - → Busca Binária

Objetivos

- Todo objeto do mundo real possui características na qual possamos categorizá-los e/ou compará-los
- Podemos categorizar sem mencionar os detalhes das reais dimensões
 - > Carro de médio porte. Passamos a ideia sem mencionar dimensões
- Com algoritmos não é diferente, precisamos compará-los e categorizá-los
 - → Quando buscamos soluções computacionais para problemas, a comparação é inevitável

Objetivos

- Como passar a ideia da complexidade de um algoritmo apenas mencionando sua categoria?
 - → Existem notações que representam essa categorização baseado no comportamento de execução do algoritmo
- Por ser uma introdução veremos somente a notação O, mas antes vamos ver como se analisa um algoritmo

Como analisar um algoritmo

- > Tempo gasto na execução não é uma boa opção
- → Contar o número de instruções executadas pelo algoritmo para uma determinada entrada
- Expressar este número em função do tamanho da entrada (Função de custo)

® Por exemplo

- \Rightarrow f(n) = 5n
- \rightarrow f(n) = 2n²

- A análise é realizada em função de N
 - > Número de elementos de um vetor
 - > Número de linhas de uma matriz

Biferentes entradas podem refletir em diferentes custos

- → Melhor caso
- → Pior caso
- > Caso médio

Exemplo: Busca sequencial no vetor

Quantas posições precisam ser percorridas:

Melhor caso:

Pior caso:

Caso médio

```
int busca (int* v, int n, int elemento) {
    int i;
    for (i=0; i<n; i++) {
        if(v[i] == elemento) return 1;
    }
    return 0;
}</pre>
```


- A análise sempre é realizada baseado em um determinado modelo computacional
- No nosso exemplo, vamos considerar o seguinte modelo:
 - → O computador tem um único processador
 - > Todos os acessos à memória têm o mesmo custo
 - → As instruções são executadas sequencialmente
 - → Não há execuções paralelas
 - → Todas as execuções têm custo igual, uma unidade

- ** Vamos analisar as diferenças entre funções de custo.

 Suponha:
 - 1) Um processador de 1GHz
 - 2 Uma instrução executada a cada ciclo de máquina 1GHz = 109 instruções por segundo
 - 3 Entrada de tamanho n = 1.000.000

Algoritmo com custo f(n) = n Tempo: 1 milissegundo

Algoritmo com custo f(n) = 100n Tempo: 1/10 de segundo

Algoritmo com custo $f(n) = n^2$ Tempo: 17 minutos

Algoritmo com custo $f(n) = n^3$ Tempo: 32 anos

Cálculo da função de custo

Exemplo

```
void troca(int *a, int *b) {
   int temp = *a;
   *a = *b;
   *b = temp;
}
```

```
f(n) = 3
```

```
for (i=0; i < n; i++)
v[i] = 0;</pre>
```

$$f(n) = 3n + 2$$

Análise assintótica

- Ma análise de algoritmos ignoramos os valores pequenos e nos concentramos nos valores enormes de M
- Para grandes valores de 17, as funções abaixo são equivalentes pois crescem com a mesma velocidade

Análise assintótica

★ Notação O

→ Delimita um limite superior

${ ilde{st}}$ Notação Ω

→ Delimita um limite inferior

Notação ⊕

→ Delimita um limite superior e inferior

Análise assintótica

- Nessa aula utilizaremos a notação O para analisar os exemplos.
- * Por exemplo

Considere o seguinte algoritmo que procura um elemento em um vetor

```
int busca (int* v, int n, int elemento) {
   int i;
   for (i=0; i<n; i++) {
       if(v[i] == elemento) return 1;
   }
   return 0;
}</pre>
```

Melhor caso:

O elemento é encontrado na primeira posição

Pior caso:

O elemento é encontrado na última posição ou não é encontrado

Caso médio:

O elemento é encontrado nas posições intermediárias

E Classes de comportamento assintótico

Podemos comparar algoritmos usando suas complexidades assintóticas

- \rightarrow Um algoritmo O(n) é melhor do que um $O(n^2)$
- Algoritmos com a mesma complexidade assintótica são equivalentes

Quando dois algoritmos têm a mesma complexidade

> Podemos desempatar usando as constantes da função

$\mathbf{E}_{\mathbf{h}} = \mathbf{O}(1)$

- * Complexidade constante
- Tempo de execução independe do tamanho da entrada
- Os passos do algoritmo são executados um número fixo de vezes

$\frac{g}{g} f(n) = O(\log n)$

- Complexidade logaritmica
- Típico de algoritmos que dividem um problema transformando-o em problemas menores (dividir para conquistar)

$$\frac{1}{5}f(n) = O(n)$$

- * Complexidade linear
- O algoritmo realiza um número fixo de operações sobre CADA elemento da entrada

$$\frac{E}{S}f(n) = O(n \log n)$$

- Típico de algoritmos que dividem um problema em subproblemas, resolve cada subproblema de forma independente, e depois combina os resultados
- **Exemplo: ordenações eficientes**

$$\frac{1}{2}f(n) = O(n^2)$$

- Complexidade quadrática
- Mormalmente em um laço dentro de outro
- **Exemplo:** Imprimir uma matriz

$\frac{g}{h} f(n) = O(n^3)$

- * Complexidade cúbica
- Exemplo: multiplicação de matrizes

$$\frac{1}{2}f(n) = O(Cn)$$

- * Complexidade exponencial
- Típicos de algoritmos que fazem busca exaustiva (força bruta) para resolver um problema
- Mão são úteis do ponto de vista prático
 - \rightarrow Se n=20, O(2ⁿ)=1.000.000

$\mathbf{E}_{\mathbf{f}(\mathbf{n})} = O(\mathbf{n}!)$

- * Complexidade exponencial
 - \Rightarrow Pior do que $O(c^n)$
- Típicos de algoritmos que fazem busca exaustiva (força bruta) para resolver um problema
- Mão são úteis do ponto de vista prático
 - Se n=20, O(n!) é maior do que 2 quintilhões

E Classes de Comportamento assintótico

Comparação

N	O(1)	O(log N)	O(N)	O(N log(N)	O(N²)	O(N³)	O(2 ⁿ)
0	0	0,00	0	0	0	0	1
5	1	2,32	5	3	25	125	32
10	1	3,32	10	10	100	1.000	1.024
15	1	3,91	15	18	225	3.375	32.768
20	1	4,32	20	26	400	8.000	1.048.576
25	1	4,64	25	35	625	15.625	33.554.432
30	1	4,91	30	44	900	27.000	1.073.741.824
35	1	5,13	35	54	1.225	42.875	34.359.738.368
40	1	5,32	40	64	1.600	64.000	1.099.511.627.776
45	1	5,49	45	74	2.025	91.125	35.184.372.088.832
50	1	5,64	50	85	2.500	125.000	1.125.899.906.842.620
55	1	5,78	55	96	3.025	166.375	36.028.797.018.964.000
60	1	5,91	60	107	3.600	216.000	1.152.921.504.606.850.000
65	1	6,02	65	118	4.225	274.625	36.893.488.147.419.100.000
70	1	6,13	70	129	4.900	343.000	1.180.591.620.717.410.000.000
75	1	6,23	75	141	5.625	421.875	37.778.931.862.957.200.000.000
80	1	6,32	80	152	6.400	512.000	1.208.925.819.614.630.000.000.000
85	1	6,41	85	164	7.225	614.125	38.685.626.227.668.100.000.000.000
90	1	6,49	90	176	8.100	729.000	1.237.940.039.285.380.000.000.000.000
95	1	6,57	95	188	9.025	857.375	39.614.081.257.132.200.000.000.000.000
100	1	6,64	100	200	10.000	1.000.000	1.267.650.600.228.230.000.000.000.000.000

E Classes de comportamento assintótico

- O(1)
- O(n)
- O(log n)
- O(n log n)
- $O(n^2)$
- $O(n^3)$
- $O(2^{n})$

Exemplos

Função de Custo	Categoria
5	O(1)
n	O(n)
7n + 9	O(n)
n²	O(n²)
10n ² + 20n +8	O(n²)

E Classes de comportamento assintótico

Para compreender os algoritmos cujo comportamento acompanha a função log n, vamos conhecer alguns métodos de busca.

Métodos de Busca

Métodos de busca

- ** O fato dos elementos de um vetor estarem ordenados facilita a busca?
 - → Sim
- * Como?
 - → Busca Linear
 - → Busca Binária

Busca Linear

Busca convencional com que estamos acostumados

- → A diferença é que no vetor ordenado a pesquisa terminará se um item com uma chave maior for encontrado
- → Entretanto não uma melhora muito significativa

```
int buscaLinear(int *v, int n, int elemento) {
   int i;
   for(i=0; i<n; i++) {
      count++;
      if(v[i] == elemento) return 1;
      if(v[i] > elemento) break;
   }
   return 0;
}
```


Busca Binária

🛞 É muito mais rápida do que a Pesquisa Linear

→ Para encontrar um número entre 1 e 100, precisamos, no máximo, de 7 passos

A pesquisa binária usa a mesma dinâmica de um jogo de adivinhação em que fazemos uma tentativa e obtemos as respostas:

- → É MAIOR
- → É MENOR
- → Acertou

Passo	os Número adiv	vinhado Resu	Faixas de Itado possíveis valores
0			1-100
1	50	Menor	1-49
2	25	Maior	26-49
3	37	Menor	26-36
4	31	Maior	32-36
5	34	Menor	32-33
6	32	Maior	33-33
7	33	Correto	

Busca Binária

A busca binária é um algoritmo que executa em O(log n)

« Vamos entender o porquê

- → A cada passo reduzimos nossa entrada pela metade.
- → Assim, se n=100 temos

```
Número de Divisões

50 2 1 2 3 4 5 6 7

25 2

12,5 2

6,25 2

3,13 2

1,57 2

0,79
```

Quantas vezes precisamos multiplicar o **2** por si mesmo para obter **100**

$$log_2(100) = 6,644$$

 $log_2(100) = 7 \{arredondado\}$

Ou seja, com **7** tentativas conseguimos encontrar um valos em um conjunto de **128** elementos

$$2^7 = 128$$

GIFPR

Busca Binária

Comparando

Exercício

Escreva uma versão recursiva da busca binária

Referências

- LAFORE Robert. Estrutura de Dados e Algoritmos em Java. 2ª Edição. Rio de Janeiro: Ciência Moderna, 2005.
- Análise assintótica: ordens O, Omega e Theta. Análise de Algoritmos. Prof. Paulo Feofiloff. http://www.ime.usp.br/~pf/analise_de_algoritmos/
- Ítalo Cunha. Material da disciplina de Algoritmos e Estrutura de Dados 1.
 Departamento de Ciência da Computação. UFMG.

http://homepages.dcc.ufmg.br/~cunha/