Lattice paths inside a table

M. Farrokhi D. G.

IASBS

Today!

 $\mathsf{Steps} {=} \{ (1,0) = \!\!\!\!\! \longrightarrow, \quad (1,1) = \!\!\!\!\!\! \nearrow, \quad (1,-1) = \!\!\!\!\!\!\! \searrow \}$

 $\mathsf{Steps} {=} \{ (1,0) = \!\!\!\!\! \longrightarrow, \quad (1,1) = \!\!\!\!\!\! \nearrow, \quad (1,-1) = \!\!\!\!\!\!\! \searrow \}$

Problem: Count the number of all possible legal paths!

Dyck paths (Walther von Dyck, 1856–1934)

$$(1,-1)=\searrow$$

Dyck paths (Walther von Dyck, 1856–1934)

$$S = \{(1,1) = \nearrow, (1,-1) = \searrow\}$$

$$I((0,0),(2n,0),S) = \frac{1}{n+1} {2n \choose n}$$
 the Catalan number C_n

Delannoy paths (Henri Delannoy, 1833–1915)

$$S = \{(1,1) = \nearrow, \quad (2,0) = \longrightarrow, \quad (1,-1) = \searrow\}$$

Delannoy paths (Henri Delannoy, 1833–1915)

$$S = \{(1,1) = \nearrow, \quad (2,0) = \longrightarrow, \quad (1,-1) = \searrow\}$$

$$D(n,n) := I((0,0),(2n,0),S) = \sum_{k=0}^{n} {n \choose k} {n+k \choose k}$$

Schröder paths (Ernst Schröder, 1841–1902)

$$(\mathbf{r}, \mathbf{r}) - \mathbf{y}$$

Schröder paths (Ernst Schröder, 1841–1902)

Motzin paths (Theodore Motzkin, 1908–1970)

Motzin paths (Theodore Motzkin, 1908–1970)

Our paths

$$(\mathbf{r}, \mathbf{r}) - \mathbf{y}$$

Our paths

An instant table

The $m \times \infty$ table

An instant table

10/40

An instant table

The $m \times \infty$ table

Notations

The $m \times \infty$ table

$$\mathcal{I}_m(n) := \mathcal{C}_m(n,1) + \cdots + \mathcal{C}_m(n,m).$$

(1)
$$\mathcal{I}_1(n) = 1$$
.

(1)
$$\mathcal{I}_1(n) = 1$$
.

(2)
$$\mathcal{I}_2(n) = 2^n$$
.

- (1) $\mathcal{I}_1(n) = 1$.
- (2) $\mathcal{I}_2(n) = 2^n$.
- (3) $\mathcal{I}_3(n)=Q_{n+1}$, a Pell-Lucas number defined as $Q_1=1$, $Q_2=3$, and $Q_{n+2}=2Q_n+Q_{n+1}$ for $n\geqslant 0$.

(1)
$$\mathcal{I}_1(n) = 1$$
.

- (2) $\mathcal{I}_2(n) = 2^n$.
- (3) $\mathcal{I}_3(n) = Q_{n+1}$, a Pell-Lucas number defined as $Q_1 = 1$, $Q_2 = 3$, and $Q_{n+2} = 2Q_n + Q_{n+1}$ for $n \ge 0$.
- (4) $\mathcal{I}_4(n) = 2F_{n+1}$ twice a Fibonacci number. Moreover,

$$C_4(n,1) = F_{2n-1}$$
 and $C_4(n,2) = F_{2n}$.

For $m \ge n$ we have

$$\mathcal{I}_{m+1}(n) - \mathcal{I}_m(n) = \sum_{i=0}^{n-1} \mathcal{C}_m(i,1) \mathcal{C}_m(n-i,1),$$

where $C_m(0,1) := 1$.

For $m \ge n$ we have

$$\mathcal{I}_{m+1}(n) - \mathcal{I}_m(n) = \sum_{i=0}^{n-1} C_m(i,1) C_m(n-i,1),$$

where $C_m(0,1) := 1$.

Theorem

For $m \ge 2n - 2$ we have

$$\mathcal{I}_{m+1}(n) - \mathcal{I}_m(n) = 3^{n-1}.$$

We have

$$\mathcal{I}_m(a+b-1) = \sum_{i=1}^m \mathcal{C}_m(a,i)\mathcal{C}_m(b,i)$$

for all $a, b \geqslant 1$.

We have

$$\mathcal{I}_m(a+b-1) = \sum_{i=1}^m \mathcal{C}_m(a,i)\mathcal{C}_m(b,i)$$

for all $a, b \geqslant 1$.

Theorem

We have

$$\mathcal{I}_m(n) = m3^{n-1} - 2\sum_{k=1}^{n-1} 3^{n-k-1} \mathcal{C}_m(k,1).$$

If $m \geqslant n$ and $1 \leqslant k \leqslant n$, then

$$C_m(k,1) = 3^{k-1} - \sum_{i=1}^{k-1} 3^{i-1} M_{k-i-1}.$$

Inside the $m \times \infty$ table, a nontrivial linear combination of columns entries is a constant if and only if $m \equiv 1 \pmod{4}$, and the equation is given by

$$\alpha_1 \mathcal{C}_m(n,1) + \alpha_3 \mathcal{C}_m(n,3) + \cdots + \alpha_{m-2} \mathcal{C}_m(n,m-2) + \alpha_m \mathcal{C}_m(n,m) = \lambda$$

for all $n \ge 1$, where $\lambda \ne 0$ is a fixed number and

$$\alpha_{2i+1} + \alpha_{m-2i} = (-1)^i 2\lambda,$$

for all $i = 0, \dots, (m-1)/4$.

Multipliers

■ Δ : the difference operator defined as $\Delta a(n) = a(n+1) - a(n)$ for any sequence $\{a(n)\}$ of numbers.

Multipliers

- Δ : the difference operator defined as $\Delta a(n) = a(n+1) a(n)$ for any sequence $\{a(n)\}$ of numbers.
- $\mathcal{M}_m = \mathcal{M}_m(\Delta)$: the multiplier function defined as

$$\mathcal{M}_m(0) = \begin{cases} 2, & m \text{ is odd,} \\ 1, & m \text{ is even,} \end{cases}$$

$$\mathcal{M}_m(1) = \Delta - 2 + \mathcal{M}_m(0)$$
, and

$$\mathcal{M}_m(n+2) = \Delta \mathcal{M}_m(n+1) - \mathcal{M}_m(n)$$

for all $n\geqslant 0$. Set $\mathcal{M}_o:=\mathcal{M}_1$ and $\mathcal{M}_e:=\mathcal{M}_2$.

Multipliers

- Δ : the difference operator defined as $\Delta a(n) = a(n+1) a(n)$ for any sequence $\{a(n)\}$ of numbers.
- $\mathcal{M}_m = \mathcal{M}_m(\Delta)$: the multiplier function defined as

$$\mathcal{M}_m(0) = \begin{cases} 2, & m \text{ is odd,} \\ 1, & m \text{ is even,} \end{cases}$$

$$\mathcal{M}_{\it m}(1) = \Delta - 2 + \mathcal{M}_{\it m}(0)$$
, and

$$\mathcal{M}_m(n+2) = \Delta \mathcal{M}_m(n+1) - \mathcal{M}_m(n)$$

for all $n \geqslant 0$. Set $\mathcal{M}_o := \mathcal{M}_1$ and $\mathcal{M}_e := \mathcal{M}_2$.

■ $\mathcal{M}' = \mathcal{M}'(\Delta)$: the multiplier function defined as $\mathcal{M}'(0) = 1$, $\mathcal{M}'(1) = \Delta$, and

$$\mathcal{M}'(n+2) = \Delta \mathcal{M}'(n+1) - \mathcal{M}'(n)$$

for all $n \ge 0$.

Lemma

Inside the $m \times \infty$ table, we have

$$\mathcal{M}_m(k-b)\mathcal{C}_m(n,a) = \mathcal{M}_m(k-a)\mathcal{C}_m(n,b)$$

for all a, b = 1, ..., k, where $k = \lceil m/2 \rceil$.

Corollary

Inside the $m \times \infty$ table, we have

$$\mathcal{M}_m(k-a)\mathcal{I}_m(n) = 2(\mathcal{M}_m(k-1) + \cdots + \mathcal{M}_m(1) + 1)\mathcal{C}_m(n,a)$$

for all a = 1, ..., k and $n \ge 1$, where $k = \lceil m/2 \rceil$.

In particular, for a = k, we have

$$\mathcal{I}_m(n) = \frac{2}{\mathcal{M}_m(0)} (\mathcal{M}_m(k-1) + \cdots + \mathcal{M}_m(1) + 1) \mathcal{C}_m(n,k)$$

for all $n \ge 1$.

Lemma

Inside the $m \times \infty$ table, we have

$$\mathcal{M}'(b-1)\mathcal{C}_m(n,a) = \mathcal{M}'(a-1)\mathcal{C}_m(n,b)$$

for all a, b = 1, ..., k, where $k = \lceil m/2 \rceil$.

Corollary

Inside the $m \times \infty$ table, we have

$$\mathcal{M}'(a-1)\mathcal{I}_m(n) = 2\left(\frac{\mathcal{M}'(k-1)}{\mathcal{M}_m(0)} + \mathcal{M}'(k-2) + \cdots + \mathcal{M}'(0)\right)\mathcal{C}_m(n,a)$$

for all a = 1, ..., k and $n \ge 1$, where $k = \lceil m/2 \rceil$.

In particular, for a = 1, we have

$$\mathcal{I}_m(n) = 2\left(\frac{\mathcal{M}'(k-1)}{\mathcal{M}_m(0)} + \mathcal{M}'(k-2) + \cdots + \mathcal{M}'(0)\right)\mathcal{C}_m(n,1)$$

for all $n \geqslant 1$.

Let

$$\mathcal{T}_m := egin{bmatrix} 1 & 1 & 0 & \cdots & 0 & 0 & 0 \ 1 & 1 & 1 & \cdots & 0 & 0 & 0 \ 0 & 1 & 1 & \cdots & 0 & 0 & 0 \ dots & dots & dots & dots & dots & dots & dots \ 0 & 0 & 0 & \cdots & 1 & 1 & 0 \ 0 & 0 & 0 & \cdots & 0 & 1 & 1 \end{bmatrix}$$

be the matrix of the $m \times \infty$ table, and $\mathcal{C}_m(n)$ be the n^{th} column of the $m \times \infty$ table. Then

$$\mathcal{T}_m \mathcal{C}_m(n) = \mathcal{C}_m(n+1)$$
 and $\mathcal{I}_m(n) = \mathbf{1}^T \mathcal{T}_m^n \mathbf{1}$

for all $n \geqslant 1$.

Let

$$\mathcal{O}_{1} = [1], \quad \mathcal{O}_{2} = \begin{bmatrix} 1 & 1 \\ 2 & 1 \end{bmatrix}, \quad \mathcal{O}_{k} = \begin{bmatrix} 1 & 1 & 0 & \cdots & 0 & 0 & 0 \\ 1 & 1 & 1 & \cdots & 0 & 0 & 0 \\ \vdots & & \ddots & & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & 1 & 1 & 1 \\ 0 & 0 & 0 & \cdots & 0 & 2 & 1 \end{bmatrix} \quad (k \geqslant 3),$$

and

$$\mathcal{E}_{1} = [2], \quad \mathcal{E}_{2} = \begin{bmatrix} 1 & 1 \\ 1 & 2 \end{bmatrix}, \quad \mathcal{E}_{k} = \begin{bmatrix} 1 & 1 & 0 & \cdots & 0 & 0 & 0 \\ 1 & 1 & 1 & \cdots & 0 & 0 & 0 \\ \vdots & & \ddots & & \vdots & \\ 0 & 0 & 0 & \cdots & 1 & 1 & 1 \\ 0 & 0 & 0 & \cdots & 0 & 1 & 2 \end{bmatrix} \quad (k \geqslant 3).$$

Also, let

$$\mathcal{T}_m^* = \begin{cases} \mathcal{O}_{\left\lceil \frac{m}{2} \right\rceil}, & m \text{ is odd,} \\ \mathcal{E}_{\left\lceil \frac{m}{2} \right\rceil}, & m \text{ is even} \end{cases}$$

be the reduced matrix of the $m \times \infty$ table for all $m \ge 1$.

Also, let

$$\mathcal{T}_m^* = egin{cases} \mathcal{O}_{\left\lceil \frac{m}{2}
ight\rceil}, & m ext{ is odd}, \ \mathcal{E}_{\left\lceil \frac{m}{2}
ight\rceil}, & m ext{ is even} \end{cases}$$

be the reduced matrix of the $m \times \infty$ table for all $m \ge 1$.

Assume $C_m^*(n)$ is the reduced n^{th} column in the $m \times \infty$ table including entries in the rows $1, \ldots, \lceil m/2 \rceil$.

Also, let

$$\mathcal{T}_m^* = egin{cases} \mathcal{O}_{\left\lceil \frac{m}{2}
ight\rceil}, & m ext{ is odd}, \ \mathcal{E}_{\left\lceil \frac{m}{2}
ight\rceil}, & m ext{ is even} \end{cases}$$

be the reduced matrix of the $m \times \infty$ table for all $m \ge 1$.

Assume $C_m^*(n)$ is the reduced n^{th} column in the $m \times \infty$ table including entries in the rows $1, \ldots, \lceil m/2 \rceil$.

Then

$$\mathcal{T}_m^* C_m^*(n) = C_m^*(n+1)$$

for all $n \ge 1$.

Lemma

For every $m \geqslant 1$, we have

$$\det \mathcal{T}_m^* = \begin{cases} (-1)^{\left \lfloor \frac{\lceil \frac{m}{2} \rceil + 1}{3} \right \rfloor} 2^{\chi_{3\mathbb{Z}}\left(\lceil \frac{m}{2} \rceil \right)}, & \text{m is odd}, \\ (-1)^{\left \lfloor \frac{\lceil \frac{m}{2} \rceil}{3} \right \rfloor} 2^{\chi_{3\mathbb{Z} + 1}\left(\lceil \frac{m}{2} \rceil \right)}, & \text{m is even}, \end{cases}$$

where χ denotes the characteristic function.

Lemma

For every $m \geqslant 1$, we have

$$\det \mathcal{T}_m^* = \begin{cases} (-1)^{\left \lfloor \frac{\lceil \frac{m}{2} \rceil + 1}{3} \right \rfloor} 2^{\chi_{3\mathbb{Z}}\left(\lceil \frac{m}{2} \rceil \right)}, & \text{m is odd}, \\ (-1)^{\left \lfloor \frac{\lceil \frac{m}{2} \rceil}{3} \right \rfloor} 2^{\chi_{3\mathbb{Z} + 1}\left(\lceil \frac{m}{2} \rceil \right)}, & \text{m is even}, \end{cases}$$

where χ denotes the characteristic function.

Corollary

Let
$$k = \lceil m/2 \rceil$$
. Then

$$\det([C_m^*(n+1)\cdots C_m^*(n+k)]) = \det(\mathcal{T}_m^*)^n$$

for all $n \ge 0$.

Theorem

Let $k = \lceil m/2 \rceil$ and $[\alpha_1 \cdots \alpha_k]^T$ be the solution to the matrix equation

$$[C_m^*(1)\cdots C_m^*(k)][\alpha_1\cdots\alpha_k]^T=[C_m^*(k+1)]$$

inside the $m \times \infty$ table. Then

$$C_m(n+k,i) = \alpha_1 C_m(n,i) + \dots + \alpha_k C_m(n+k-1,i)$$
 (1)

for all $1 \leqslant i \leqslant m$ and $n \geqslant 1$. As a result,

$$\mathcal{I}_m(n+k) = \alpha_1 \mathcal{I}_m(n) + \dots + \alpha_k \mathcal{I}_m(n+k-1)$$
 (2)

for all $n \ge 1$. Moreover, these recurrence relations are of the minimum degree.

Corollary

For every $m \geqslant 1$, the following polynomials are equal:

- (1) $\det(xI \mathcal{T}_m^*)$;
- (2) $\mathcal{M}_m(k)(x-1)$;
- (3) $x^k [1 \cdots x^{k-1}][C_m^*(1) \cdots C_m^*(k)]^{-1}[C_m^*(k+1)],$

where $k = \lceil m/2 \rceil$.

Corollary

The recurrence relations (1) and (2) are given by any of the formulas

$$\det((\Delta+1)I - \mathcal{T}_m^*)\mathcal{C}_m(n,i) = 0$$
 or $\mathcal{M}_m(k)\mathcal{C}_m(n,i) = 0$

and

$$\label{eq:det} \det((\Delta+1)I-\mathcal{T}_m^*)\mathcal{I}_m(n)=0 \quad \text{or} \quad \mathcal{M}_m(k)\mathcal{I}_m(n)=0,$$

respectively, for all i = 1, ..., m and $n \ge 1$, where $k = \lceil m/2 \rceil$.

Theorem

For any $m, k \geqslant 1$ and $1 \leqslant a \leqslant k$, we have

$$\mathcal{M}'(a-1)\mathcal{M}_m(k-1) \equiv \mathcal{M}_m(k-a) \pmod{\mathcal{M}_m(k)}.$$

Theorem

For any $m, k \geqslant 1$ and $1 \leqslant a \leqslant k$, we have

$$\mathcal{M}'(a-1)\mathcal{M}_m(k-1) \equiv \mathcal{M}_m(k-a) \pmod{\mathcal{M}_m(k)}.$$

Theorem

For any $m \geqslant 1$ and $a, b \geqslant 1$, we have

$$\mathcal{M}_m(a+b) = \mathcal{M}'(a)\mathcal{M}_m(b) - \mathcal{M}'(a-1)\mathcal{M}_m(b-1)$$

and

$$\mathcal{M}'(a+b) = \mathcal{M}'(a)\mathcal{M}'(b) - \mathcal{M}'(a-1)\mathcal{M}'(b-1).$$

Lemma

Let
$$m \geqslant 1$$
, $k = \lceil m/2 \rceil$, $0 \leqslant a \leqslant k$, and $0 \leqslant b \leqslant \min\{a, k-a\}$. Then

$$\mathcal{M}_o(b)\mathcal{C}_m(n,a) = \mathcal{C}_m(n,a-b) + \mathcal{C}_m(n,a+b).$$

Lemma

Let $m \geqslant 1$, $k = \lceil m/2 \rceil$, $0 \leqslant a \leqslant k$, and $0 \leqslant b \leqslant \min\{a, k-a\}$. Then

$$\mathcal{M}_o(b)\mathcal{C}_m(n,a) = \mathcal{C}_m(n,a-b) + \mathcal{C}_m(n,a+b).$$

Theorem

For any $m \geqslant 1$ and $a \geqslant b \geqslant 0$, we have

$$\mathcal{M}_o(b)\mathcal{M}_m(a) = \mathcal{M}_m(a+b) + \mathcal{M}_m(a-b)$$

and

$$\mathcal{M}_o(b)\mathcal{M}'(a) = \mathcal{M}'(a+b) + \mathcal{M}'(a-b).$$

Theorem

For any $a, b \geqslant 1$ we have

$$\mathcal{M}_{m}(ab) = \mathcal{M}'(a-1)\left(\mathcal{M}_{o}(b)\right)\mathcal{M}_{m}(b) - \mathcal{M}'(a-2)\left(\mathcal{M}_{o}(b)\right)\mathcal{M}_{m}(0)$$

and

$$\mathcal{M}'(ab) = \mathcal{M}'(a-1)\left(\mathcal{M}_o(b)\right)\mathcal{M}'(b) - \mathcal{M}'(a-2)\left(\mathcal{M}_o(b)\right)\mathcal{M}'(0).$$

Theorem (Factorization theorem for \mathcal{M}_o)

For all $a, b \ge 1$, we have

$$\mathcal{M}_o(ab) = \mathcal{M}_o(a) \circ \mathcal{M}_o(b) = \mathcal{M}_o(b) \circ \mathcal{M}_o(a).$$

As a result, if $n = p_1^{a_1} \dots p_k^{a_k}$ is the canonical factorization of n into distinct primes p_1, \dots, p_k , then

$$\mathcal{M}_o(n) = \mathcal{M}_o(p_1)^{a_1} \dots \mathcal{M}_o(p_k)^{a_k},$$

where all the products are the combination of functions.

Prime functions

■ $\mathcal{F}_{m,p}$ is a function defined on the set of multipliers $\{\mathcal{M}_m(n)\}$ as

$$\mathcal{F}_{m,p}(\mathcal{M}_m(n)) = \mathcal{M}'(p-1)(\mathcal{M}_e(n))\mathcal{M}_m(n) - \mathcal{M}'(p-2)(\mathcal{M}_e(n))\mathcal{M}_m(0).$$

Prime functions

■ $\mathcal{F}_{m,p}$ is a function defined on the set of multipliers $\{\mathcal{M}_m(n)\}$ as

$$\mathcal{F}_{m,p}(\mathcal{M}_m(n)) = \mathcal{M}'(p-1)(\mathcal{M}_e(n))\mathcal{M}_m(n) - \mathcal{M}'(p-2)(\mathcal{M}_e(n))\mathcal{M}_m(0).$$

 $lacksymbol{\mathcal{F}}_p'$ is a function defined on the set of multipliers $\{\mathcal{M}'(n)\}$ as

$$\mathcal{F}'_p(\mathcal{M}'(n)) = \mathcal{M}'(p-1)(\mathcal{M}_e(n))\mathcal{M}'(n) - \mathcal{M}'(p-2)(\mathcal{M}_e(n))\mathcal{M}'(0).$$

Theorem (Uniform factorization theorem)

Let $n = p_1^{a_1} \dots p_k^{a_k}$ be the canonical factorization of n into distinct primes p_1, \dots, p_k . Then

$$\mathcal{M}_m(n) = \mathcal{F}_{m,p_1}^{a_1} \dots \mathcal{F}_{m,p_k}^{a_k} \mathcal{M}_m(1)$$

and

$$\mathcal{M}'(n) = \mathcal{F'}_{p_1}^{a_1} \dots \mathcal{F'}_{p_k}^{a_k} \mathcal{M}'(1),$$

where all the products are the combination of functions.

Lemma

For all $n \ge 1$, we have

$$\mathcal{M}_e(n) = \mathcal{M}'(n) - \mathcal{M}'(n-1)$$

and

$$\mathcal{M}_o(n) = \mathcal{M}_e(n) + \mathcal{M}_e(n-1) = \mathcal{M}'(n) - \mathcal{M}'(n-2).$$

Corollary

For all $n \ge 1$, we have

$$1+\mathcal{M}_m(1)+\cdots+\mathcal{M}_m(n)=\mathcal{M}'(n)+(\mathcal{M}_m(0)-1)\mathcal{M}'(n-1).$$

Corollary

For all $n \ge 1$, we have

$$1+\mathcal{M}_m(1)+\cdots+\mathcal{M}_m(n)=\mathcal{M}'(n)+(\mathcal{M}_m(0)-1)\mathcal{M}'(n-1).$$

Corollary

Inside the $m \times \infty$ table, we have

$$\mathcal{M}_m(k-a)\mathcal{I}_m(n) = 2(\mathcal{M}'(k-1) + (\mathcal{M}_m(0)-1)\mathcal{M}'(k-2))\mathcal{C}_m(n,a)$$

for all
$$a = 1, ..., k$$
 and $n \ge 1$, where $k = \lceil m/2 \rceil$.

Theorem

For all $n \ge 1$, we have

$$\begin{split} \mathcal{M}_o(n) &= \sum_{i=0}^{\left\lfloor \frac{n}{2} \right\rfloor} (-1)^i \left[\binom{n+1-i}{i} - \binom{n-1-i}{i-2} \right] \Delta^{n-2i}, \\ \mathcal{M}_e(n) &= \sum_{i=0}^n (-1)^{\left\lceil \frac{i}{2} \right\rceil} \binom{n-\left\lceil \frac{i}{2} \right\rceil}{\left\lfloor \frac{i}{2} \right\rfloor} \Delta^{n-i}, \\ \mathcal{M}'(n) &= \sum_{i=0}^{\left\lfloor \frac{n}{2} \right\rfloor} (-1)^i \binom{n-i}{i} \Delta^{n-2i}. \end{split}$$

Relations to other polynomials

• $(1/2)\mathcal{M}_o(n)(2x)$ is the Chebyshev polynomial $T_n(x)$ of the first kind;

Relations to other polynomials

- $(1/2)\mathcal{M}_o(n)(2x)$ is the Chebyshev polynomial $T_n(x)$ of the first kind;
- $|\mathcal{M}_e(n)|(x)$ is the Fibonacci polynomial $F_{n+1}(x)$;

Relations to other polynomials

- $(1/2)\mathcal{M}_o(n)(2x)$ is the Chebyshev polynomial $T_n(x)$ of the first kind;
- $|\mathcal{M}_e(n)|(x)$ is the Fibonacci polynomial $F_{n+1}(x)$;
- $|\mathcal{M}'(n)|(x)$ is the Lucas polynomial $L_{n+1}(x)$.

Definition

A matrix $A \in GL(n,q)$ is a Singer element if $|A| = q^n - 1$.

Definition

A matrix $A \in GL(n, q)$ is a Singer element if $|A| = q^n - 1$.

$\mathsf{Theorem}$

Singer elements exist in every GL(n, q).

Definition

A matrix $A \in GL(n, q)$ is a Singer element if $|A| = q^n - 1$.

$\mathsf{Theorem}$

Singer elements exist in every GL(n, q).

The order of $\mathcal{E}_k \pmod{2}$ equals $2^k - 1$ if

$$k = 1, 2, 3, 5, 9, 11, 14, 23, 26, 29, 35, 39, 41, 53, ?, ?, ?, ...$$

Definition

A matrix $A \in GL(n, q)$ is a Singer element if $|A| = q^n - 1$.

Theorem

Singer elements exist in every GL(n, q).

The order of $\mathcal{E}_k \pmod{2}$ equals $2^k - 1$ if

$$k = 1, 2, 3, 5, 9, 11, 14, 23, 26, 29, 35, 39, 41, 53, ?, ?, ?, ...$$

Question

Which \mathcal{E}_k are Singer?

Linear combination of rows Linear combination of columns The multipliers \mathcal{M}_m and \mathcal{M}'

Thank You for Your Attention!