Quiz 1

11th September, 2025

Time: 2 hrs **Marks:** _____/20

On the real line \mathbb{R} , consider the collection of subsets

$$\mathcal{T}_{\rightarrow} := \{\emptyset, \mathbb{R}\} \bigcup \{(a, \infty) \mid a \in \mathbb{R}\}.$$

Attempt any question. You can get maximum 20.

Q1. Show that $\mathcal{T}_{\rightarrow}$ is a topology on \mathbb{R} .

Solution. Clearly $\emptyset, \mathbb{R} \in \mathcal{T}_{\to}$. Consider a collection $\{U_{\alpha} \in \mathcal{T}_{\to}\}$. If any $U_{\alpha} = \emptyset$, we can ignore them, and if any $U_{\alpha} = \mathbb{R}$, then clearly $\bigcup U_{\alpha} = \mathbb{R} \in \mathcal{T}_{\to}$. Thus, assume that $U_{\alpha} = (a_{\alpha}, \infty)$. Now, for the set $A = \{a_{\alpha}\} \subset \mathbb{R}$, there are two possibilities.

- (a) A is lower bounded. Hence, there is some $a_0=\inf A$. Now, clearly $\bigcup (a_\alpha,\infty)\subset (a_0,\infty)$, as $a_0\leq a_\alpha$ for all α . Also, for any $a_0< x$, by the property of infimum (i.e., greatest lower bound), we have $a_0\leq a_\alpha< x$ for some $a_\alpha\in A$. But then $x\in (a_\alpha,\infty)$. Consequently, $(a_0,\infty)\subset \bigcup (a_\alpha,\infty)$. Thus, $\bigcup (a_\alpha,\infty)=(a_0,\infty)\in \mathcal{T}_{\rightarrow}$.
- (b) A is not lower bounded. Then, $\bigcup (a_{\alpha}, \infty) = \mathbb{R} \in \mathcal{T}_{\rightarrow}$.

Finally, for a finite collection $\{U_i \coloneqq (a_i, \infty)\}_{i=1}^n$, we have $\bigcap_{i=1}^n (a_i, \infty) = (b_0, \infty)$, where $b_0 = \max_{1 \le i \le n} \{a_i\}$. Again, we can ignore any $U_i = \mathbb{R}$, and if $U_i = \emptyset$ then the intersection is clearly empty.

Thus, $\mathcal{T}_{\rightarrow}$ is a topology on \mathbb{R} .

- Q2. Compare (i.e., strictly fine, strictly coarse or incomparable) $\mathcal{T}_{\rightarrow}$ with the following.
 - i) The usual topology on \mathbb{R} .

Solution. Clearly any (a, ∞) is open in the usual topology, but a bounded open interval (a, b) is not open in $\mathcal{T}_{\rightarrow}$. Thus, $\mathcal{T}_{\rightarrow}$ is strictly coarser than the usual topology.

ii) The lower limit topology \mathbb{R}_l .

Solution. The lower limit topology is strictly finer than the usual topology, and hence, is strictly finer than $\mathcal{T}_{\rightarrow}$ as well.

Alternatively,

$$(a,\infty) = \bigcup_{n>1} \left[a + \frac{1}{n}, a+n \right)$$

is clearly open in the lower limit topology. But [0,1) is not open in $\mathcal{T}_{\rightarrow}$.

iii) The upper limit topology \mathbb{R}_u .

Solution. The upper limit topology is strictly finer than the usual topology, and hence, is strictly finer than $\mathcal{T}_{\rightarrow}$ as well.

Alternatively,

$$(a,\infty) := \bigcup_{n \ge 1} (a,a+n]$$

is clearly open in the upper limit topology. But (0,1] is not open in \mathcal{T}_{\to} .

- Q3. Determine (with justification) the closures of the following sets in $(\mathbb{R}, \mathcal{T}_{\rightarrow})$.
 - i) $(0, \infty)$.

Solution. For any x, an open set containing x will be of the form (y, ∞) for some y < x, and hence,

$$(y, \infty) \cap (0, \infty) = (\max\{0, y\}, \infty) \neq \emptyset.$$

Thus, $\overline{(0,\infty)} = \mathbb{R}$.

ii) $(-\infty, 0)$.

Solution. Any open set containing 0 will be of the form $(-\epsilon, \infty)$ for some $\epsilon > 0$, and hence, $(-\epsilon, 0) \cap (-\infty, 0) = (-\epsilon, 0) \neq \emptyset$. For any x > 0, we have $(-\infty, 0) \cap (\frac{x}{2}, \infty) = \emptyset$. Thus, $(-\infty, 0) = (-\infty, 0]$.

iii) $\{0\}$.

Solution. For any $x \leq 0$, an open set containing x is of the form (y, ∞) with $y < x \leq 0$, and hence, $0 \in (y, \infty)$. Thus, x is a closure point. So, $0 \in (-\infty, 0] \subset \overline{\{0\}}$. But by ii), we have $(-\infty, 0]$ is closed. Hence, closure being the smallest closed set containing $\{0\}$, we have $\overline{\{0\}} = (-\infty, 0]$.

iv) $A = \{1, 2, \dots\}.$

Solution. By iii), it follows that $\overline{\{n\}}=(-\infty,n]$. Now, $n\in A\Rightarrow \overline{\{n\}}\subset \bar{A}$. So,

$$\bar{A}\supset\bigcup_{n\geq 1}\overline{\{n\}}=\bigcup_{n\geq 1}(-\infty,n]=\mathbb{R}.$$

Thus, $\bar{A} = \mathbb{R}$.

v) $B = \{-1, -2, \dots\}.$

Solution. Again by iii), we have

$$\bar{B} \supset \overline{\{-1\}} = (-\infty, -1]$$

Also, $B\subset (-\infty,-1]$, which is closed by ii). Thus, $\bar{B}=(-\infty,-1].$

Q4. Determine (with justification) whether $(\mathbb{R}, \mathcal{T}_{\rightarrow})$ is T_0, T_1 , or T_2 .

Solution. We have $\{0\} = (-\infty, 0]$, and hence the topology is not T_1 (and hence, not T_2). For any $x \neq y \in \mathbb{R}$, without loss of generality, assume x < y. Then, $x \notin (x, \infty)$ but $y \in (x, \infty)$. Thus, the topology is T_0 .

- Q5. Prove or give counter-example to the following statements.
 - i) If a sequence (x_n) converges to x in the usual topology, then $x_n \to x$ in $(\mathbb{R}, \mathcal{T}_{\to})$ as well. **Solution.** Since \mathcal{T}_{\to} is coarser than the usual topology, convergence in the usual topology implies convergence in $(\mathbb{R}, \mathcal{T}_{\to})$.
 - ii) If a sequence (x_n) converges to x in $(\mathbb{R}, \mathcal{T}_{\to})$, then $x_n \to x$ in the usual topology as well. **Solution.** Consider the sequence $x_n = n$. Then, $\{x_n\}$ does not converge in the usual topology. But for any $x \in \mathbb{R}$, we have $(x \epsilon, \infty)$ contains all but finitely many natural numbers. It follows that x_n converges to any point in \mathbb{R} in the topology \mathcal{T}_{\to} .

Q6. Given a T_1 -space (X, \mathcal{T}) (with at least two points), prove that any continuous map $f: (\mathbb{R}, \mathcal{T}_{\to}) \to (X, \mathcal{T})$ is constant. Give an example of a space (Y, \mathcal{S}) with $Y = \{0, 1\}$, and a nonconstant continuous map $f: (\mathbb{R}, \mathcal{T}_{\to}) \to (Y, \mathcal{S})$.

Solution. Consider a continuous map $f:(\mathbb{R},\mathcal{T}_{\to})\to (X,\mathcal{T})$, where X is T_1 . If possible, suppose f is nonconstant. Then, we have some $a\neq b\in\mathbb{R}$ such that $x=f(a)\neq f(b)=y\in X$. Now, X is T_1 and hence, $\{x\}$ and $\{y\}$ are closed. Then, we have $a\in f^{-1}(x)$ and $b\in f^{-1}(y)$, two closed sets. Since these closed sets are not \mathbb{R} (as f is nonconstant), we must have

$$f^{-1}(x) = (-\infty, a'], \quad f^{-1}(y) = (-\infty, b'],$$

for some $a \leq a', b \leq b'$. But then the closed set intersects, contradicting $x \neq y$. Hence, f must be constant.

Consider the space $Y = \{0, 1\}$ with the topology

$$S = \{\emptyset, \{1\}, \{0, 1\}\}.$$

Define the map

$$f: \mathbb{R} \to Y$$

$$x \mapsto \begin{cases} 1, & x > 0 \\ 0, & x \le 0. \end{cases}$$

Alternatively, consider the indiscrete topology on Y. Then, any map into Y (from any space) is always continuous. In particular, we can take any nonconstant map $\mathbb{R} \to Y$.

Q7. Consider the equivalence relation : $a \sim b$ if and only if $a - b \in \mathbb{Z}$. Show that the induced quotient space is an indiscrete space.

Solution. Observe that $\overline{\mathbb{Z}}=\mathbb{R}$ in the topology $(\mathbb{R},\mathcal{T}_{\to})$. Now, consider the quotient map $q:\mathbb{R}\to\mathbb{R}/_{\sim}$. A set $C\subset\mathbb{R}/_{\sim}$ is closed if and only if $q^{-1}(C)$ is closed in $(\mathbb{R},\mathcal{T}_{\to})$. If possible, suppose $\emptyset\subsetneq C\subsetneq\mathbb{R}/_{\sim}$ is a closed set. Then $q^{-1}(C)$ is closed, and $\emptyset\neq q^{-1}(C)\neq\mathbb{R}$. Hence, we must have

$$q^{-1}(C) = (-\infty, a]$$

for some a. But then, there is some integer $n_0 \in q^{-1}(C)$. This implies,

$$n_0 \in q^{-1}(C) \Rightarrow q(n_0) \in C \Rightarrow \mathbb{Z} = q^{-1}(q(n_0)) \subset q^{-1}(C)$$

 $\Rightarrow \mathbb{R} = \overline{\mathbb{Z}} \subset \overline{q^{-1}(C)} = q^{-1}(C) \Rightarrow q^{-1}(C) = \mathbb{R},$

which is a contradiction. Since C was arbitrary closed set, we have $\mathbb{R}/_{\sim}$ is indiscrete.

Q8. Consider the equivalence relation : $a \sim b$ if and only if either

$$a, b \in \mathbb{R} \setminus \mathbb{Z}$$
, and $a = b$, or, $a, b \in \mathbb{Z}$.

Show that the induced quotient space is an indiscrete space.

Solution. Again, consider some closed set $\emptyset \subsetneq C \subsetneq \mathbb{R}/_{\sim}$. Then, we have $q^{-1}(C) = (-\infty, a]$ for some a. But then again, there is some integer $n_0 \in q^{-1}(C)$. We get $\mathbb{Z} = q^{-1}(q(n_0)) \subset q^{-1}(C) \Rightarrow \mathbb{R} = \overline{\mathbb{Z}} \subset \overline{q^{-1}(C)} = q^{-1}(C) \Rightarrow q^{-1}(C) = \mathbb{R}$, a contradiction. Thus, the quotient topology $\mathbb{R}/_{\sim}$ is an indiscrete space.