The following shows the original form of the impedance matrix for the balanced 3-phase wound field induction machine prior to the application of the passive transformations C_1 and C_2 . This is shown to give some appreciation of the existence of passive transformations.....

* DO NOT COPY THIS *

Original 1/m matrix consists of 36 non-zero terms -> 6 volt equations, depending of 6 currents

· Application of C1 => non-zero terms reduce

$$\begin{vmatrix}
V_{1} \\
V_{2}
\end{vmatrix} = \begin{bmatrix}
Z_{11} & Z_{12} \\
Z_{21} & Z_{22}
\end{bmatrix} \begin{bmatrix}
I_{1} \\
I_{2}
\end{bmatrix}$$

$$\begin{vmatrix}
V_{1} & I_{1} \\
V_{2} & Z_{21}
\end{vmatrix} = \begin{vmatrix}
V_{2} & I_{1} \\
V_{2} & Z_{22}
\end{vmatrix} = \begin{vmatrix}
V_{1} & I_{1} \\
V_{2} & Z_{21}
\end{vmatrix}$$

$$\begin{vmatrix}
V_{1} & V_{2} & V_{2} \\
V_{2} & Z_{21}
\end{vmatrix} = \begin{vmatrix}
V_{1} & V_{2} & V_{2} \\
V_{2} & Z_{21}
\end{vmatrix}$$

$$\begin{vmatrix}
V_{1} & V_{2} & V_{2} & V_{2}
\end{vmatrix} = \begin{vmatrix}
V_{1} & V_{2} & V_{2}
\end{vmatrix}$$

$$\begin{vmatrix}
V_{2} & V_{2} & V_{2}
\end{vmatrix} = \begin{vmatrix}
V_{2} & V_{2} & V_{2}
\end{vmatrix}$$

$$\begin{vmatrix}
V_{2} & V_{2} & V_{2}
\end{vmatrix} = \begin{vmatrix}
V_{2} & V_{2} & V_{2}
\end{vmatrix}$$

$$\begin{vmatrix}
V_{2} & V_{2} & V_{2}
\end{vmatrix} = \begin{vmatrix}
V_{2} & V_{2}
\end{vmatrix}$$

$$\begin{vmatrix}
V_{2} & V_{2} & V_{2}
\end{vmatrix} = \begin{vmatrix}
V_{2} & V_{2}
\end{vmatrix}$$

$$\begin{vmatrix}
V_{2} & V_{2} & V_{2}
\end{vmatrix}$$

· Rotor- rotor,
$$Z_{22}$$
 a (R_2+L_2p) M_2p M_2p

$$= 6 M_2p (R_2+L_2p) M_2p$$

$$= (M_2p M_2p (R_2+L_2p))$$

· Rotor - stator, 221

$$a [mp \cos \theta_1 + m_3 p \cos 30]$$
 $mp \cos \theta_2 + m_3 p \cos 30]$ $mp \cos \theta_3 + m_3 p \cos 30]$

· Stator-rotor, Z12

- coefficient of mutual inductance is same between 2 windings, whichever is made the primary...