Transcriptomes as phenotypes

Bringing Genetics to Genomics

David Angeles-Albores, Ph.D.
Alm Laboratory
MIT

Online Slides Available at <u>dangeles.github.io</u>

The geneticist's arsenal

Null mutants (**Epistasis**)

Allelic series (dominance)

Crosses (maternal effects)

Genetics orders genes along pathways using Batesonian epistasis

Epistasis analysis in a nutshell:

- (A) Choose phenotype (based on expertise)
- (B) Phenotype single, double NULL mutants
- (C) Check if double mutant = a single mutant

Yes?

Infer pathway

No?

Genetic interaction is 'complex', need more information

RNA-seq offers the possibility of a new kind of phenotypes

Genome-wide

Quantitative

Unbiased

Transcriptomes are powerful, but complicated

log Fold Change of Expression

To use genetic methods in a genomic context, we need specialized statistical machinery

For details, see:

- **Epistasis**: Angeles-Albores *et al*, *PNAS*, 2018; Angeles-Albores *et al*, *G3*, 2017
- **Dominance**: Angeles-Albores, *Genetics*, 2018

Transcriptome-wide epistasis analysis in a nutshell:

Choose phenotype Compute a statistic for phenotype all genes in phenotype is Batesonian

Transcriptome-wide epistasis: Defining a phenotype

Diff. Exp. Genes relative to WT

Transcriptome-wide epistasis analysis in a nutshell:

Choose phenotype Compute a statistic for phenotype all genes in phenotype is Batesonian

What does our black box do?

- (1) Calculate: **expected** double mutant value (Add the single mutant log Fold Changes)
- (2) Compute: difference = observed expected
- (3) Plot difference vs. expected for all transcripts and **determine line of best fit**

An example: Does sperm status have effects independent of aging?

WT fog-2 Young, Young, Young adult Sperm NO Sperm, 'Middle-aged' Aged, Aged, NO Sperm, NO Sperm, adult

Angeles-Albores, Leighton and Sternberg, G3, 2017

Age affects more genes than *fog-2*, so we find the commonly affected subset

Diff. Exp. Genes relative to WT

First, show that both perturbations have equivalent effects

-log10(q)

A slope of -½ indicates that sperm loss through aging is the same as never having sperm

Observed - Expected

Behind the math: **Observed**

1/2 Expected

In(FC) time

In(FC) fog-2

In(FC) time + In(FC) fog-2

The *C. elegans* female state was inferred from transcriptome profiling

Transcriptomes can be used to think about biochemistry

Accounts for most effects of knocking out **a**

Accounts for a few effects of knocking out **a**

Hypoxia factor 1 (*hif-1*) is degraded by VHL-1 in an EGL-9 dependent manner

Using HIF-1 abundance as phenotype leads to the canonical genetic diagram:

If we could measure HIF-1-OH abundance, we would write the genetic pathway as:

Choosing a phenotype affects the outcome of the genetic reconstruction:

However, both pathways obey the same set of epistatic rules!

$$egl-9 = egl-9;vhl-1$$

$$hif-1 = egl-9; hif-1$$

Sequencing hypoxia pathway mutants reveals ~50 genes that behave as if controlled by HIF-1-OH

Hypothesis: A subset of genes is strongly responsive to HIF-1-OH levels

Transcriptomes + Biochemical Models can lead to testable hypotheses about molecular functions.

Transcriptomes are phenotypes in other organisms, such as bacteria!

Fuqing's Question:

Do probiotics affect antibiotic response in a gut bacterium?

+/- Probiotic

+/- Antibiotic

A slope of -1 indicates complete inhibition of the effect of antibiotics by probiotics for a subset of genes

log FC (antibiotic) + log FC (Probiotic)

Transcriptomes are phenotypes in other organisms, such as bacteria!

Transcriptomes as phenotypes: The geneticist's new arsenal

Null mutants (Transcriptome-wide Epistasis)

Allelic series (Transcriptome-wide dominance)

Crosses (Transcriptome-wide maternal effects)

Epistasis analyses can be automated

An example of automated reconstruction

Reconstructed network structure (no valences!)

Real edges

Missing edges (smaller = weaker)

Extra edges (should not be there)

Transcriptomes are phenotypes

Deploying transcriptomes in a **rich experimental context** makes them powerful

We developed **statistical and conceptual machinery** to use transcriptomes productively

Transcriptomes are Phenotypes!

Paul Sternberg

Sternberg Lab

Carmie Puckett Robinson

Daniel Leighton

Tiffany Khaw

Tiffany Tsou

Hillel Schwartz

Millard and Muriel Jacobs Genetics and Genetics Lab

Igor Antoshechkin Vijaya Kumar

Erich Schwarz

Barbara Wold

Brian Williams

Matt Thomson

