Summary for 204381: Chapter 6

Organized by

Saksinkarn Petchkuljinda 630510600

Basic Information

Date: 18 October 2023

Time: 12:00 PM — 3.00 PM

Venue: TBA

★ Calculator 🗮 🕏 Open Book

Table of Contents

Table of Contents

General Ways to Solve for x

Numerical Ways to Solve for x

General Approach

Bisection Method

Newton's Method

Secant Method

General Ways to Solve for x

Example Illustration the solutions for x that satisfy y = f(x) = 0

Given we have a function y = f(x), we want to find x^st that $y=f(x^st)=0.$ There are numerous way this is *useful*. For example:

• Solving quadratic equation: y = f(x) = $ax^2 + bx + c = 0$ leads to

$$x=rac{-b\pm\sqrt{b^2-4ac}}{2a}$$

1

• Solving general polynomial problems: given any equations can become y = f(x) = (x -

$$a)(x-b)\dots$$
 , then the solution for $y=f(x)=0$ is $x\in\{a,b,\dots\}$

• Solving for optimal points: the optimal point for f(x) is $(x^*,f(x^*))$ such that $f'(x^*)=0$

Numerical Ways to Solve for x

General Approach

- 1. **Random** the value for x^*
- 2. Evaluate $y \leftarrow f(x^*)$
- 3. Reevaluate the value of x^st until y approaches zero

Bisection Method

- 1. Assume that our solution is x^* within a closed interval $x^* \in [a,b]$
- 2. Given m=(a+b)/2 is the midpoint between a and b
- 3. Consider the following conditions:
 - If f(a)f(m) < 0, assign $b \leftarrow m$
 - ullet Otherwise, assign $a \leftarrow m$
- 4. Repeat from step 2 until f(m) pprox 0

Additional Illustration to describe how step 3 works.

Given x=r the true solution, and c_n is the estimated solution at the $n^{\rm th}$ iteration, then $|r-c_n|$ is the approximation error from the $n^{\rm th}$ iteration, which is

$$|r-c_n| \leq 2^{-(n+1)}(b_0-a_0)$$

where a_0, b_0 is the minimum and the maximum of expected interval for x^* respectfully. In other words, the rate of convergence for **Bisection Method** is *linear*.

Newton's Method

The difference between each iteration

- 1. Given x_0 be an initial **random** point.
- 2. Any next term x_i is

$$x_i = x_{i-1} - rac{f(x_{i-1})}{f'(x_{i-1})}$$

3. Repeat until $f(x_n)pprox 0$

 c_n is the approximation error at the $n^{
m th}$ iteration, then the rate of convergence is

$$e_{n+1}pprox ce_n^2$$

We can say that Newton's method finds the solution quicker than Bisection method.

In case when $f^{\prime}(x)$ couldn't be determined symbolically, then

$$f'(x)pprox rac{f(x_n)-f(x_{n-1})}{x_n-x_{n-1}}$$

Secant Method

is the modification from Newton's method. Instead of implicitly evaluate f'(x), it's done better using the approximation from prior value of x, in the same way you'd approximate any slope m.

$$x_{n+1} = x_n - f(x_n) rac{x_n - x_{n-1}}{f(x_n) - f(x_{n-1})}$$