Lezione 4 Algebra I

Federico De Sisti2025-03-10

0.1 Seconda parte della lezione

Domanda:

Cosa cambia in $\mathbb{K}[2]$ quando \mathbb{K} è un campo?

$$u_1 = \mathbb{K}$$

Chi è u_2 ?

 $p \in u_2$ se e solo se

$$\mathbb{K} \to \mathbb{K}[x]/(p)$$
 è suriettiva.

se e solo se $deg(p) = 1 \lor deg(p) = 0$

In generale

 $\forall i \geq 1 \quad u_{i+1} \setminus u_i$ è l'insieme dei polinomi di grado i **Attenzione** $\mathbb{K}[x,y]$ non è domino euclideo.

$$u_1 = \mathbb{K}$$

$$u_2 = ?$$

Definizione 1

R anello commutativo, $Dati\ r_1, \ldots, r_k \in R$ chiamiamo

$$(r_1, \dots, r_k) = \{ \sum_{i=1}^k a_i r_i \mid k \in \mathbb{Z}_{\geq 1} \ a_i \in \mathbb{R} \}.$$

Ideale generato da r_1, \ldots, r_k in R

Osservazione

 (r_1,\ldots,r_k) è il più piccolo ideale di R contenente r_1,\ldots,r_k

Definizione 2 (Ideale principale)

R anello commutativo $I \subseteq R$ ideale, si dice principale se $\exists r \in R$ tale che I = (r)

Definizione 3

R anello commutativo.

- R si dice Anello a ideali principali se tutti i suoi ideali sono principali.
- R si dice dominio a ideali principali se è un dominio d'integrità e un anello a ideali principali.

Esempio

 $R = (\mathbb{Z}, +, \cdot)$ è un dominio a ideali principali.

Esercizio

Trovare un anello a ideali principali che non sia un dominio $n \in \mathbb{Z}, n$ composto

 $\Rightarrow \mathbb{Z}/(n)$ è un anello a ideali principali che non è un dominio

Proposizione 1

 \mathbb{K} campo. $R = \mathbb{K}[x]$ è un dominio a ideali principali

Dimostrazione

 $\mathbb{K}[x]$ è dominio d'integrità poiché \mathbb{K} lo è.

Sia $I \subseteq R[x]$ ideale, $I \neq \{0\}$

Sia $f \in I \setminus \{0\}$ di grado minimo in I

 $Vogliamo\ dimostrare\ che\ I=(f)$

- $(f) \subseteq I$, infatti se $f \in I$ allora $q \cdot f \in I \ \forall q \in \mathbb{K}[x]$
- $I \subseteq (f)$, infatti $g \in I$ usiamo la divisione per f $\Rightarrow g = q \cdot f + r$ con $deg(r) < deg(f) \Rightarrow r = g - q \cdot f \in I$ $\Rightarrow r = 0 \Rightarrow g = q \cdot f \in (f)$

Esercizio

Dimostrare che se

- R dominio d'integrità
- \bullet R[x] dominio a ideali principali

Allora R è un campo

Soluzione

Dobbiamo verificare che dato $a \in R \setminus \{0\}$ esiste l'inverso moltiplicativo.

Consideriamo l'ideale $(a, x) \subseteq R[x]$

R[x]a ideali principali $\Rightarrow \exists p \in R[x]$ tale che (p) = (a,x)

Quindi:

$$\Rightarrow a = q_1 \cdot p$$
$$\Rightarrow x = q_2 \cdot p \rightarrow ax = \tilde{q}_2 \cdot p$$

Deduciamo che q_1 e p sono entrambi costanti.

Infatti il termine di grado più alto del prodotto $q_1 \cdot p$ è il prodotto dei termini direttivi di p e di q_1 (Stiamo usando il fatto che R sia dominio d'integrità) Se p costante

$$\Rightarrow q_2 = hx \text{ con } h \cdot p = 1$$

 $p \text{ invertibile} \Rightarrow (p) = R[x]$

 $1 \in (a, x) \Rightarrow \text{esistono } s, t \in R[x] :$

$$1 = a \cdot s + t \cdot x \Rightarrow s = \sum_{i \ge 0} s_i x^i \Rightarrow as_0 = 1.$$

Esercizio/Proposizione

Rdominio a ideali principali. Iideale, SeIè primo, allora Iè massimale. Soluzione

3

$$I=(p)\subseteq R$$
 I primo. Supponiamo che esista un ideale $J=(q)\subseteq R$ tale che $I\subseteq J$ $I\subseteq J\Rightarrow (p)\subseteq (q)\Rightarrow p=a\cdot q$ per qualche $a\in R$ I primo $\Rightarrow a\in I$ oppure $q\in I$

$$q \in I \Rightarrow q \in (p)$$

 $\Rightarrow (q) \subseteq (p)$
 $\Rightarrow J = I$

$$\begin{aligned} a &\in I \Rightarrow a \in (p) \\ \Rightarrow a &= k \cdot p \text{ per qualche } k \in R \\ \Rightarrow p &= a \cdot q = p \cdot k \cdot q \\ \Rightarrow p \cdot (1 - k \cdot q) &= 0 \\ \Rightarrow 1 + k \cdot q &= 0 \Rightarrow q \text{ invertibile} \\ J &= R \end{aligned}$$

Corollario 1

R dominio a ideali principali (PID) allora un ideale è primo se e solo se è massimale $\,$

Dimostrazione

Resta da verificare che I massimale \Rightarrow I primo I massimale \Rightarrow R/I campo \Rightarrow R/I dominio integrità \Rightarrow I primo