Fonctions dérivables

Olivier Sellès, transcrit par Denis Merigoux

Table des matières

1	Définitions, faits généraux			2
	1.1	Dérivé	e et fonction dérivée	2
		1.1.1	Définitions	2
		1.1.2	Exemples	2
	1.2	Dévelo	ppements limités à l'ordre 1	3
	1.3	Opérations sur les dérivées		4
		1.3.1	Opérations générales	4
		1.3.2	Opérations pour les fonctions à valeurs dans $\mathbb C$	5
		1.3.3	Composition	5
		1.3.4	Dérivées à droite et à gauche	5
2	Thé	éorèmes	s spécifiques aux fonctions réelles	5
	2.1		ème de Rolle	5
		2.1.1	Extremum	5
		2.1.2	Lemme	6
		2.1.3	Énoncé du théorème	6
	2.2 Théorème des accroissements finis et conséquences		ème des accroissements finis et conséquences	6
		2.2.1	Théorème des accroissements finis	6
		2.2.2	Inégalités des accroissements finis	7
		2.2.3	Conséquences des inégalités des accroissements finis	7
		2.2.4	Variations des fonctions	9
	2.3	Dérivé	e d'une réciproque	11
3	Dérivées d'ordre supérieur			
	3.1			
		3.1.1	Définitions	
		3.1.2	Remarques, exemples	13
		3.1.3	Théorèmes généraux	
		3.1.4	Vocabulaire	
	3.2	Formules de Taylor		
		3.2.1	Étude préliminaire	
		3.2.2	Définition	
		3.2.3	Polynômes de Taylor des fonctions classiques	
		3.2.4	Inégalité de Taylor-Lagrange	
		3.2.5	Formule de Taylor-Young	
		3.2.6	Exercice	

Introduction

Soit I un intervalle non trivial de \mathbb{R} et $f: I \longrightarrow \mathbb{R}$ continue et $x_0 \in I$. On cherche la « meilleure » fonction affine approchant f au voisinage de x_0 . Soit $\varphi(x) = \alpha(x - x_0) + \beta$ une telle fonction, on prend $\varphi(x_0) = f(x_0) \Leftrightarrow \beta = f(x_0)$. Pour x voisin de x_0 , on pose

$$\Delta(x) = f(x) - \varphi(x)$$

$$= f(x) - f(x_0) - \alpha(x - x_0)$$

$$= (x - x_0) \left(\frac{f(x) - f(x_0)}{x - x_0} - \alpha \right)$$

L'erreur $\Delta(x)$ sera minimale si on prend

$$\alpha = \lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0}$$

Si cette limite existe, la droite $y = \alpha (x - x_0) + f(x_0)$ est la tangente à la courbe de f en x_0 .

1 Définitions, faits généraux

Dans la suite, $K = \mathbb{R}$ ou \mathbb{C} , I est un intervalle non trivial de \mathbb{R} .

1.1 Dérivée et fonction dérivée

1.1.1 Définitions

Soit $f: I \longrightarrow K$.

(1) Soit $x_0 \in I$, on dit que f est dérivable en x_0 si l'application

$$\mathcal{T}_{f,x_0}: I \setminus \{x_0\} \longrightarrow K$$

$$x \mapsto \frac{f(x) - f(x_0)}{x - x_0}$$

admet une limite finie $l \in K$ en x_0 . On note alors $l = f'(x_0)$ et on dit que l est la dérivée de f au point x_0 .

- (2) f est dérivable sur I si $\forall x_0 \in I$, f est dérivable en x_0 . Si c'est le cas, l'application $x \in I \mapsto f'(x)$ s'appelle la dérivée de f et se note f'.
- (3) On note $\mathcal{D}(I,K)$ l'ensemble des fonctions dérivables de I dans K.

1.1.2 Exemples

(1) Soit $n \in \mathbb{N}$ et $f: \mathbb{R} \longrightarrow \mathbb{R}$, $x_0 \in \mathbb{R}$. Pour $x \in \mathbb{R} \setminus \{x_0\}$, $x \mapsto x^n$

$$\mathcal{T}_{f,x_0} = \frac{x^n - x_0^n}{x - x_0}$$

$$= \frac{x - x_0}{x - x_0} \sum_{k=0}^{n-1} x^k x_0^{n-1-k}$$

$$\xrightarrow{x \to x_0} \sum_{k=0}^{n-1} x_0^k x_0^{n-1-k} = n x_0^{n-1}$$

f est donc dérivable sur \mathbb{R} et $\forall x \in \mathbb{R}$, $f'(x) = nx^{n-1}$.

(2) Soit $f: x \in \mathbb{R}_+ \longrightarrow \sqrt{x}$ et $x_0 \in \mathbb{R}_+$. Pour $x \in \mathbb{R}_+ \setminus \{x_0\}$,

$$\frac{f(x) - f(x_0)}{x - x_0} = \frac{\sqrt{x} - \sqrt{x_0}}{x - x_0}$$
$$= \frac{1}{\sqrt{x} + \sqrt{x_0}}$$

Si $x_0 > 0$, on sait que f est continue et

$$\sqrt{x} + \sqrt{x_0} \underset{x \to x_0}{\longrightarrow} 2\sqrt{x_0}$$

Si $x_0 = 0$, $\forall x > x_0$, $\sqrt{x} + 0 > 0$ et $\lim_{x \to 0} \sqrt{x} = 0$ donc $\frac{1}{\sqrt{x} + 0} \xrightarrow[x \to x_0]{} + \infty$. f n'est pas dérivable en 0. Cependant, f est dérivable en x et $f'(x) = \frac{1}{2\sqrt{x}}$.

1.2 Développements limités à l'ordre 1

Soit $f: I \longrightarrow \mathbb{R}, x_0 \in I$. Alors:

f est dérivable en $x_0 \Leftrightarrow f$ admet un développement limité à l'ordre 1 en x_0

C'est à dire $\exists \alpha, \beta \in \mathbb{R}$ et $\varepsilon : I \longrightarrow K$ telle que $\varepsilon (x) \underset{x \to x_0}{\longrightarrow} 0$ et $\forall x \in I$,

$$f(x) = \alpha (x - x_0) + \beta + (x - x_0) \varepsilon (x)$$

Démonstration

 \Rightarrow Soit $l = f'(x_0)$ donc pour $x \neq x_0$,

$$l = \lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0} = \lim_{x \to x_0} \mathcal{T}_{f, x_0}(x)$$

Or pour $x \neq x_0$:

$$f(x) = f(x_0) + (x - x_0) \mathcal{T}_{f,x_0}(x)$$

= $f(x_0) + l(x - x_0) + (x - x_0) (\mathcal{T}_{f,x_0}(x) - l)$

Posons $\varepsilon(x) = \begin{cases} 0 & \text{si } x = x_0 \\ \mathcal{T}_{f,x_0}(x) - l & \text{si } x \neq x_0 \end{cases}$. On a bien $\varepsilon(x) \underset{x \to x_0}{\longrightarrow} 0$ et, pour $x \in I$,

$$f(x) = f(x_0) + l(x - x_0) + (x - x_0) \varepsilon(x)$$

et ceci même si $x = x_0$.

 $\Leftarrow \text{ Supposons que, pour } x \in I, \ f\left(x\right) = \alpha\left(x - x_0\right) + \beta + \left(x - x_0\right)\varepsilon\left(x\right) \text{ avec } \varepsilon\left(x\right) \underset{x \to x_0}{\longrightarrow} 0. \text{ Or } f\left(x\right) \underset{x \to x_0}{\longrightarrow} f\left(x_0\right) \text{ car } f \text{ est continue en } x_0 \text{ et } f\left(x\right) \underset{x \to x_0}{\longrightarrow} \beta \text{ donc } \beta = f\left(x_0\right). \text{ Pour } x \in I \setminus \{x_0\},$

$$\frac{f(x) - f(x_0)}{x - x_0} = \alpha + \varepsilon(x) \underset{x \to x_0}{\longrightarrow} \alpha$$

donc f est dérivable en x_0 et $\alpha = f'(x_0)$.

Bilan Si f est dérivable en x_0 , on a donc, pour $x \in I$,

$$f(x) = f'(x_0)(x - x_0) + f(x_0) + (x - x_0)\varepsilon(x)$$

avec $\varepsilon(x) \xrightarrow[x \to x_0]{} 0$. On voit alors que $\lim_{x \to x_0} f(x) = f(x_0)$ donc f est continue en x_0 . Ainsi,

f dérivable en $x_0 \Rightarrow f$ continue en x_0

La réciproque est fausse comme le montre l'exemple de $x\longmapsto \sqrt{x}$ continue mais pas dérivable en 0.

1.3 Opérations sur les dérivées

1.3.1 Opérations générales

Version locale Soient $f, g: I \longrightarrow K$, $x_0 \in I$. On suppose que f et g sont dérivables en x_0 . Alors :

- (1) $\forall \alpha \in \mathbb{K}, \alpha f + g$ est dérivable en x_0 et $(\alpha f + g)'(x_0) = \alpha f'(x_0) + g'(x_0)$.
- (2) fg est dérivable en x_0 et $(fg)'(x_0) = f'(x_0)g(x_0) + f(x_0)g'(x_0)$.
- (3) Si de plus, $\forall x \in I$, $f(x) \neq 0$, alors $\frac{1}{f}$ est dérivable et $\left(\frac{1}{f}\right)'(x_0) = -\frac{f'(x_0)}{f^2(x_0)}$. Par conséquent $\frac{g}{f}$ est dérivable et x_0 et $\left(\frac{g}{f}\right)'(x_0) = \frac{g'(x_0)f(x_0) f'(x_0)g(x_0)}{f^2(x_0)}$

Version globale Soient $f, g \in \mathcal{D}(I, K)$. Alors:

- (1) $\forall \alpha \in K, \alpha f + g \in \mathcal{D}(I, K) \text{ et } (\alpha f + r)' = af' + g'.$
- (2) $fg \in \mathcal{D}(I, K)$ et (fg)' = f'g + fg'.
- (3) Si de plus, $\forall x \in I$, $f(x) \neq 0$, $\frac{1}{f} \in \mathcal{D}(I, K)$ et $\left(\frac{1}{f}\right)' = -\frac{f'}{f^2}$. Par conséquent, $\frac{g}{f} \in \mathcal{D}(I, K)$ et $\left(\frac{g}{f}\right)' = \frac{g'f fg'}{f^2}$

Démonstration Soit $x \in I \setminus \{x_0\}$.

(1)

$$\mathcal{T}_{\alpha f + g, x_0}(x) = \alpha \mathcal{T}_{x_0, f} + \mathcal{T}_{g, x_0}$$

D'où le résultat.

(2)

$$\mathcal{T}_{fg,x_{0}} = \frac{f(x)g(x) - f(x_{0})g(x_{0})}{x - x_{0}} \\
= \frac{f(x)g(x) - f(x)g(x_{0}) + f(x)g(x_{0}) - f(x_{0})g(x_{0})}{x - x_{0}} \\
= f(x)\mathcal{T}_{g,x_{0}} + g(x_{0})\mathcal{T}_{f,x_{0}}$$

Or f et g sont continues en x_0 donc $f(x) \underset{x \to x_0}{\longrightarrow} f(x_0)$ et $g(x) \underset{x \to x_0}{\longrightarrow} g(x_0)$. De plus, $\mathcal{T}_{f,x_0} \underset{x \to x_0}{\longrightarrow} f'(x_0)$ et $\mathcal{T}_{g,x_0} \underset{x \to x_0}{\longrightarrow} g'(x_0)$, d'où le résultat.

(3)

$$\mathcal{T}_{\frac{1}{f},x_{0}} = \frac{\frac{1}{f(x)} - \frac{1}{f(x_{0})}}{x - x_{0}}$$

$$= \frac{f(x) - f(x_{0})}{x - x_{0}} \cdot \left(-\frac{1}{f(x)f(x_{0})} \right)$$

$$\xrightarrow{x \to x_{0}} -f'(x_{0}) \cdot \frac{1}{f^{2}(x_{0})}$$

1.3.2 Opérations pour les fonctions à valeurs dans $\mathbb C$

Soit $f: I \longrightarrow \mathbb{C}$, $x_0 \in I$ et posons $u = \Re e(f)$ et $v = \Im m(f)$.

(1) f est dérivable en x_0 si et seulement si u et v sont dérivables en x_0 . On a alors de plus

$$f'(x_0) = u'(x_0) + iv'(x_0)$$

(2) f est dérivable sur I si et seulement si u et v sont dérivables sur I. On a alors de plus

$$f' = u' + iv'$$

(3) Si $f \in \mathcal{D}(I, \mathbb{C})$, alors $\overline{f} \in \mathcal{D}(I, \mathbb{C})$ et $(\overline{f})' = \overline{f'}$.

Démonstration

(1) Pour $x \in I \setminus \{x_0\}$, $\mathcal{T}_{f,x_0}(x) = \mathcal{T}_{u,x_0} + i\mathcal{T}_{v,x_0}$ donc $\Re (\mathcal{T}_{f,x_0}) = \mathcal{T}_{u,x_0}$ et $\Im (\mathcal{T}_{f,x_0}) = \mathcal{T}_{v,x_0}$, d'où le résultat d'après les théorèmes généraux sur les limites.

1.3.3 Composition

Soit $f: I \longrightarrow J$ où J est un intervalle non-trivial de \mathbb{R} et $g: J \longrightarrow K$.

(1) Soit $x_0 \in I$ et $y_0 = f(x_0) \in J$. Si f est dérivable en x_0 et si g est dérivable en y_0 , alors $g \circ f$ est dérivable en x_0 et

$$(g \circ f)'(x_0) = f'(x_0) g' \circ f(x_0)$$

(2) Si $f \in \mathcal{D}(I, J)$ et $G \in \mathcal{D}(J, K)$, alors $g \circ f \in \mathcal{D}(I, K)$ et $(g \circ f)' = f' \cdot g' \circ f$

pour $x \in I \setminus \{x_0\}$,

$$\frac{g \circ f(x) - g \circ f(x_0)}{x - x_0} = \psi(f(x)) \cdot \frac{f(x) - f(x_0)}{x - x_0}$$

Or f est continue en x_0 donc $f(x) \underset{x \to x_0}{\longrightarrow} f(x_0)$ donc $\psi \circ f(x) \underset{x \to x_0}{\longrightarrow} g' \circ f(x_0)$, et $\frac{f(x) - f(x_0)}{x - x_0} \underset{x \to x_0}{\longrightarrow} f'(x_0)$, d'où le résultat.

1.3.4 Dérivées à droite et à gauche

Soit $f: I \longrightarrow K$, $x_0 \in \text{Int}(I)$.

On dit que f est dérivable à gauche (respectivement à droite) en x_0 si \mathcal{T}_{f,x_0} admet une limite finie à gauche (respectivement à droite) en x_0 , notée alors $f'_g(x_0)$ (respectivement $f'_d(x_0)$).

On a immédiatement :

f dérivable en $x_0 \Leftrightarrow f$ dérivable à droite et à gauche en x_0 et $f_g'(x_0) = f_d'(x_0)$

2 Théorèmes spécifiques aux fonctions réelles

2.1 Théorème de Rolle

2.1.1 Extremum

Soit I un intervalle de \mathbb{R} , $f: I \longrightarrow \mathbb{R}$ et $x_0 \in I$. On dit que f présente un minimum local (respectivement maximum local) en x_0 si $\exists r > 0$ tel que :

- (1) $[x_0 r, x_0 + r] \subset I$
- (2) $\forall x \in [x_0 r, x_0 + r], f(x) \ge f(x_0)$ (respectivement $f(x) \le f(x_0)$).

On note que x_0 doit appartenir à l'intérieur de I pour pouvoir être un extremum.

2.1.2Lemme

Soit $f: I \longrightarrow \mathbb{R}$, $x_0 \in I$. Si f présente en x_0 un extremum local et si f est dérivable en x_0 , alors $f'(x_0) = 0$.

Démonstration Supposons que f présente en x_0 un minimum local, par exemple. Alors $\exists r > 0/[x_0 - r, x_0 + r] \subset$ $I \text{ et } \forall x \in [x_0 - r, x_0 + r], f(x) \ge f(x_0).$

- Pour $x \in [x_0 r, x_0[$, $\frac{f(x) f(x_0)}{x x_0} \le 0$ donc, par passage à la limite en $x_0, f'(x_0) \le 0$. Pour $x \in [x_0, x_0 + r]$, $\frac{f(x) f(x_0)}{x x_0} \ge 0$ donc, par passage à la limite en $x_0, f'(x_0) \ge 0$.

Ainsi, $f'(x_0) = 0$.

Piège! La réciproque de ce lemme est fausse!

Par exemple, $f: x \longrightarrow x^3$ est dérivable sur \mathbb{R} et f'(0) = 0, mais f ne présente en 0 ni minimum ni maximum local.

2.1.3 Énoncé du théorème

Soient $a, b \in \mathbb{R}$, a < b, $f : [a, b] \longrightarrow \mathbb{R}$ continue sur [a, b] et dérivable sur [a, b] telle que f(a) = f(b). Alors $\exists c \in [a, b[/f'(c)] = 0$.

Le théorème s'applique toujours lorsque f est dérivable sur [a,b].

Démonstration

- Si f est constante, alors $\forall x \in [a, b[, f'(x) = 0.$
- Supposons f non constante. f est continue sur le compact [a,b] donc f est bornée et atteint ses bornes. Posons alors $m = \min f$ et $M = \max f$. f n'est pas constante donc m < M et M ou/et m est/sont différent(s) de f(a) = f(b). Supposons par exemple $m \neq f(a)$, m est atteint en un point $c \in [a, b[$. Il est clair que f admet en c un minimum local donc f'(c) = 0 car f est dérivable en c.

2.2Théorème des accroissements finis et conséquences

2.2.1 Théorème des accroissements finis

Soient $a, b \in \mathbb{R}$, a < b et $f : [a, b] \longrightarrow \mathbb{R}$ continue sur [a, b] et dérivable sur [a, b]. Alors $\exists c \in [a, b[$ tel que

$$f'(c) = \frac{f(b) - f(a)}{b - a}$$

Cela signifie qu'il existe un point de la courbe de f entre a et b dont la tangente est parallèle à la droite passant par (a, f(a)) et (b, f(b)).

Démonstration Soit

$$g: [a, b] \longrightarrow \mathbb{R}$$

 $t \mapsto f(t) - \left[\frac{f(b) - f(a)}{b - a}(t - a) + f(a)\right]$

 $t \mapsto \frac{f(b) - f(a)}{b - a} (t - a) + f(a)$ est affine donc dérivable sur [a, b]. g est continue sur [a, b] et dérivable sur a, b. Or g(a) = 0 = g(b), donc, d'après le théorème de ROLLE, $\exists c \in [a, b]$ tel que :

$$g'(c) = 0 \Rightarrow f'(c) - \frac{f(b) - f(a)}{b - a} = 0$$

MPSI 2

Conséquence 1 Soit I un intervalle de \mathbb{R} , $f:I\longrightarrow K$ dérivable sur I. Alors

$$f$$
 est constante $\Leftrightarrow f' = 0$

Il suffit en fait d'avoir f continue sur I et dérivable sur Int (I).

Preuve

- ← Ce sens est le seul restant à démontrer, il est clair qu'une fonction constante possède une dérivée nulle.
 - Si f est réelle, soient $a, b \in \mathbb{R}$, a < b. Montrons que f(a) = f(b). f est dérivable sur $[a, b] \subset I$ donc, d'après le théorème des accroissements finis, il existe $c \in]a, b[$ tel que f(b) f(a) = f'(c)(b a) = 0, d'où f(b) = f(a).
 - Si f est à valeur dans \mathbb{C} , posons $u = \Re e(f)$ et $v = \Im m(f)$. u et v sont dérivables sur I, réelles, on a donc $f' = 0 = u' + iv' \Leftrightarrow u' = 0$ et v' = 0. D'après le cas précédent, u et v sont constantes donc f = u + iv aussi.

2.2.2 Inégalités des accroissements finis

Soit I un intervalle non trivial de \mathbb{R} , $f:I\longrightarrow\mathbb{R}$ dérivable telle que f' soit bornée. On pose $m=\inf f'$ et $M=\sup f'$. Alors, $\forall x,y\in I$:

(1)

$$m(y-x) \leqslant f(y) - f(x) \leqslant M(y-x)$$

(2) Si $\lambda = \sup |f'|$,

$$|f(y) - f(x)| \le \lambda |y - x|$$

Démonstration

(1) Soient $x, y \in I$ tels que x < y. f est dérivable sur $[x, y] \subset I$ donc, d'après le théorème des accroissements finis, $\exists c \in]x, y[$ tel que f(y) - f(x) = f'(c)(y - x). Or $m \le f'(c) \le M$ donc, puisque y - x > 0,

$$m(y-x) \le f'(c)(y-x) = f(y) - f(x) \le M(y-x)$$

(2) On a $|f(y) - f(x)| = f'(c)(y - x) \le \lambda(y - x) = \lambda|y - x|$. Si $y \le x$, alors $|f(x) - f(y)| \le \lambda|x - y| = \lambda|y - x|$.

Corollaire Soient $a, b \in \mathbb{R}$, a < b et $f : [a, b] \longrightarrow \mathbb{R}$ de classe $\mathcal{C}^{1 a}$. Alors f est lipschitzienne sur [a, b]. En effet, f' est continue sur le compact [a, b] donc elle est bornée. D'après le (2) du résultat précédent, $\exists \lambda \in \mathbb{R}_+$ tel que $\forall x, y \in I$, $|f(y) - f(x)| \le \lambda |y - x|$.

2.2.3 Conséquences des inégalités des accroissements finis

Résultat pour les fonctions à valeur dans \mathbb{C} Soient $a, b \in \mathbb{R}$, a < b. $f : [a, b] \longrightarrow K$ dérivable telle que f' est bornée. Soit $M \in \mathbb{R}_+$ telle que $\forall t \in [a, b], |f'(t)| \leq M$.

Alors

$$|f(b) - f(a)| \leq M(b-a)$$

En particulier, si $f \in \mathcal{D}(I, K)$ avec f' bornée et $M \ge \sup f'$, on a $\forall x, y \in I$, $|f(y) - f(x)| \le M |y - x|$.

a. C'est à dire que f est dérivable et f' est continue.

Démonstration C'est vrai pour les fonctions à valeurs réelles ^a.

Si f est à valeur dans \mathbb{C} , on veut montrer que $|f(b) - f(a)| \leq M(b-a)$.

On rappelle le lemme fantastique suivant b: pour $z \in \mathbb{C}$ et $A \in \mathbb{R}_+$,

$$|z| \leqslant A \Leftrightarrow \forall u \in \mathbb{C}, |\Re (uz)| \leqslant A |u|$$

Soit $u \in \mathbb{C}$, u(f(b-a)) = uf(b) - uf(a). Soit $g = u \cdot f$, montrons que $|\Re e(g(b)) - \Re e(g(a))| \le M |u| (b-a)$. Soit $\psi = \Re e(g)$, g est dérivable donc ψ aussi. De plus, $\forall t \in [a,b]$,

$$\psi'(t) = \Re \left(g'(t)\right)$$

$$\leq |g'(t)| = |u| |f'(t)|$$

$$\leq |u| |M|$$

 ψ est donc une fonction réelle à dérivée bornée, donc d'après le même résultat déjà démontré pour des fonctions réelles,

$$|\psi(b) - \psi(a)| \le |u| M(b - a)$$

Reformulation des inégalités des accroissements finis

Soient $a, b \in \mathbb{R}$ avec $a < b, f : [a, b] \longrightarrow \mathbb{C}$ et $g : [a, b] \longrightarrow \mathbb{R}$ continues sur [a, b] et dérivables sur [a, b] au moins. Si $\forall t \in [a, b], |f'(t)| \leq g'(t)$, alors

$$|f(b) - f(a)| \le g(b) - g(a)$$

On remarque que la première version du théorème n'est qu'un cas particulier de ce résultat : on l'applique à $f:[a,b] \longrightarrow K$ dérivable sur [a,b] avec $|f'| \leq g'$ où $g:[a,b] \longrightarrow \mathbb{R}$ associe Mt à t. On a bien g(b) - g(a) = M(b-a).

Démonstration

- On suppose $f : [a, b] \longrightarrow \mathbb{R}$. Posons pour $t \in [a, b]$, $\psi(t) = g(t) - f(t)$. ψ est continue sur [a, b], dérivable sur [a, b] et ∀t ∈ [a, b],

$$\psi'(t) = g'(t) - f'(t)$$

$$\geqslant |f'(t)| - f'(t)$$

$$\geqslant 0$$

Ainsi, ψ est croissante sue [a, b] donc

$$\psi(b) \geqslant \psi(a) \Leftrightarrow g(b) - f(b) \geqslant g(a) - f(a) \Leftrightarrow g(b) - g(a) \geqslant f(b) - f(a)$$

En considérant $t \mapsto g(t) + f(t)$, on obtient

$$g(b) - g(a) \geqslant f(a) - f(b)$$

d'où $|f(b) - f(a)| \le g(b) - g(a)$.

- Supposons $f:[a,b]\longrightarrow \mathbb{C}$. Montrons que $\forall u\in\mathbb{C}$,

$$|\Re \left(u\left(f\left(b\right) - f\left(a\right)\right)\right)| \le |u|\left(g\left(b\right) - g\left(a\right)\right)|$$

Posons $\varphi = \Re(uf)$, on sait que f est continue sur [a, b], dérivable sur [a, b] donc φ aussi et $\forall t \in [a, b]$,

$$\varphi'(t) = (\Re e(uf))'(t)$$

$$= \Re e(uf'(t))$$

$$\leq |uf'(t)|$$

$$\leq |u|g(t)$$

a. « Djàvu! »

 $b.\ \, \textit{``The magic lemma!"}: voir section 4.3.2.2 du cours complet page 56$

Posons alors h(t) = |u| g(t). φ et h sont réelles, continues sur [a, b] et dérivables sur [a, b] et $\forall t \in [a, b]$, $|\varphi'(t)| \leq h'(t)$ donc, d'après le cas réel,

$$|\varphi(b) - \varphi(a)| \le h(b) - h(a)$$

Application : approximation de $\ln(1+x)$ **par série entière** Pour $x \in [-1,1]$, montrons que

$$\ln(1+x) = \lim_{n \to +\infty} \sum_{k=1}^{n} \frac{(-1)^{k-1}}{k} x^{k}$$

Soit $x \in]-1,1]$ et $n \in \mathbb{N}^*$. On pose pour $t \in]-1,1]$ $h_n(t) = \sum_{k=1}^n \frac{t^k}{k} (-1)^{k-1}$. h_n est dérivable sur \mathbb{R} et $t \mapsto \ln(1+t)$ est dérivable sur $]-1,+\infty[$, par conséquent posons $f_n(t) = \ln(1+t) - h_n(t)$ et montrons que f_n tend vers 0 lorsque n tend vers $+\infty$. Pour t > -1

$$f'_n(t) = \frac{1}{1+t} - \sum_{k=1}^n t^{k-1} (-1)^{k-1}$$

$$= \frac{1}{1+t} - \sum_{k=0}^{n-1} (-t)^k$$

$$= \frac{1}{1+t} - \frac{1 - (-t)^n}{1+t}$$

$$= \frac{(-t)^n}{1+t}$$

- Supposons que $x \in [0, 1]$, pour $t \in [0, x]$,

$$\left|f'_{n}\left(t\right)\right| = \frac{\left|t\right|^{n}}{1+t} \leqslant t^{n} = g'\left(t\right)$$

où $g:\left[0,x\right]\longrightarrow\mathbb{R}$. D'après le théorème des accroissements finis appliqué à $\left[0,x\right],\left|f_{n}\left(x\right)-f_{n}\left(0\right)\right|\leqslant t\mapsto \frac{t^{n+1}}{n+1}$ $g\left(x\right)-g\left(0\right),$ c'est-à-dire

$$\left|\ln\left(1+x\right) - h_n\left(x\right)\right| \leqslant \frac{x^{n+1}}{n+1} \leqslant \frac{1}{n+1} \underset{n \to +\infty}{\longrightarrow} 0$$

- Si $x \in]-1,0[$, pour $t \in [x,0]$:

$$|f'_n(t)| \le \frac{(-t)^n}{1+t} \le \frac{(-t)^n}{1+x} = g'(t)$$

. D'après le théorème des accroissements finis reformulé,

$$|f_n(0) - f_n(x)| \le g(0) - g(x) \Leftrightarrow |\ln(1+x) - h_n(x)| \le \frac{(-x)^{n+1}}{(1+n)(1+x)} \le \frac{1}{(n+1)(1+x)} \xrightarrow[n \to +\infty]{} 0$$

En particulier, $\sum_{k=1}^{n} \frac{(-1)^k}{k} \xrightarrow[n \to +\infty]{} - \ln 2$.

2.2.4 Variations des fonctions

Soient $a, b \in \mathbb{R}$, a < b et $f : [a, b] \longrightarrow \mathbb{R}$ continue sur [a, b] et dérivable sur [a, b].

- Si $f' \ge 0$ sur [a, b], alors f est croissante.
- Si f' > 0 sur [a, b], alors f est strictement croissante.

Démonstration Soient $x, y \in [a, b]$ avec x < y. f est continue sur [x, y] et dérivable sur]x, y[donc, d'après le théorème des accroissements finis $\exists c \in [x, y[$ tel que

$$f(y) - f(x) = f'(c)\underbrace{(y - x)}_{>0}$$

- Si $f'(c) \ge 0$, alors $f(y) \ge f(x)$.
- Si f'(c) > 0, alors f(y) > f(x).

Variante Soit I un intervalle non trivial de \mathbb{R} , $f: I \longrightarrow \mathbb{R}$ dérivable. Alors :

- (1) f est croissante si et seulement si $f' \ge 0$.
- (2) Si $\forall t \in I$, f'(t) > 0, alors f est strictement croissante.
- (3) Posons $A = \{t \in I | f'(t) = 0\}$. f est strictement croissante sur I si et seulement si $f' \ge 0$ et Int $A = \emptyset^a$.

Un énoncé analogue existe pour les fonctions décroissantes.

Démonstrations

- (1) \Rightarrow Soit $x \in I$, montrons que $f'(x) \ge 0$. Soit $x \in I \setminus \{x\}$. Si y > x, $f(y) \ge f(x)$ donc $\frac{f(y) f(x)}{y x} \ge 0$. Si x > y, alors $f(x) \ge f(y)$ donc $\frac{f(y) f(x)}{y x} \ge 0$. Finalement, $\forall y \in I \setminus \{x\}$, $\mathcal{T}_{f,x}(y) \ge 0$ donc par passage à la limite lorsque $y \to x$, $f'(x) \ge 0$.
 - \Leftarrow Soient $x, y \in I$ avec x < y. f est dérivable sur [x, y] et $f' \ge 0$ donc, d'après le résultat sur la variation des fonctions, f est croissante sur [x, y] donc $f(x) \le f(y)$.
- (2) Si de plus, f' > 0 sur I on a, toujours d'après le résultat sur la variation des fonctions, f strictement croissante sur [x, y] donc f(x) > f(y).

(3)

- \Rightarrow D'après (1), $f' \geqslant 0$ car f est croissante sur I. Supposons Int $A \neq \emptyset$, et soit $\omega \in$ Int A. $A \in \mathcal{V}_{\mathbb{R}}(\omega)$ donc $\exists \varepsilon > 0$ tel que $[\omega \varepsilon, \omega + \varepsilon] \subset A \subset I$. Alors $\forall t \in [\omega \varepsilon, \omega + \varepsilon]$, f est dérivable en t et f'(t) = 0 donc f est constante sur $[\omega \varepsilon, \omega + \varepsilon]$. Or f est strictement croissante donc $\omega \varepsilon < \omega + \varepsilon$, ce qui est impossible.
 - $\Leftarrow f' \geqslant 0$ donc f est croissante d'après (1). Si f n'est pas strictement croissante, alors $\exists x, y \in I$ avec x > y et $f(x) \geqslant f(y)$. Pour $t \in [x, y]$, $f(x) \geqslant f(y) \geqslant f(y) \geqslant f(x)$ car f est croissante. Ainsi, f est constante sur [x, y] et $\forall t \in [x, y]$, f'(t) = 0. Ainsi $[x, y] \subset A$ donc Int $A \neq \emptyset$, ce qui est impossible.

Théorème de la limite de la dérivée

Soit I un intervalle non trivial de \mathbb{R} , $x_0 \in I$ et $f: I \longrightarrow \mathbb{R}$ continue sur I et dérivable sur $I \setminus \{x_0\}$ au moins. On suppose que $f': I \setminus \{x_0\} \longrightarrow \mathbb{R}$ admet une limite $l \in \overline{\mathbb{R}}$ en x_0 . Alors :

$$\frac{f(x) - f(x_0)}{x - x_0} \xrightarrow[x \to x_0]{l}$$

En particulier, si $l \in \mathbb{R}$, f est dérivable en x_0 et $f'(x_0) = l^a$. Si $l \in \{\pm \infty\}$, f n'est pas dérivable en x_0 .

a. f est alors définie sur I et continue en x_0 .

a. Cette condition ce produit lorsque A est fini ou même dénombrable. A ne doit en fait pas contenir d'intervalle non trivial.

Démonstration On suppose $l \in \mathbb{R}^a$. Montrons que $\frac{f(x) - f(x_0)}{x - x_0} \xrightarrow[x \to x_0]{} l$. Soit $\varepsilon > 0$, on cherche $\alpha > 0$ tel que $\forall x \in I \setminus \{x_0\}, |x - x_0| \le \alpha \Rightarrow \left| \frac{f(x) - f(x_0)}{x - x_0} - l \right| \le \varepsilon$. On sait que pour $x \neq x_0 f'(x) \xrightarrow[x \to x_0]{} l : \exists \beta > 0 \text{ tel que } |x - x_0| \leqslant \beta \Rightarrow |f'(x) - l| \leqslant \varepsilon.$

Prenons $\alpha = \beta$, et soit $x \in I \setminus \{x_0\}$ tel que $|x - x_0| \le \alpha$. f est continue sur $[x_0, x]$, dérivable sur $[x_0, x]$, dérivable sur $[x_0, x]$ donc,

d'après le théorème des accroissements finis, $\exists c_x \in]x_0, x[$ tel que $\frac{f(x) - f(x_0)}{x - x_0} = f'(c_x)$. Ainsi,

$$\left| \frac{f(x) - f(x_0)}{x - x_0} - l \right| = \left| f'(c_x) - l \right|$$

or $c \in]x_0, x[$ donc $|c_x - x_0| \leq |x - x_0| \leq \beta = \alpha$ donc $|f'(c_x) - l| \leq \varepsilon$.

Piège! Si f est continue sur I, dérivable sur $I \setminus \{x_0\}$ et si f' n'admet pas de limite en x_0 , on ne peut pas en conclure que f n'est pas dérivable.

Par exemple, soit

$$f: \mathbb{R} \longrightarrow \mathbb{R}$$

$$x \mapsto \begin{cases} 0 & \text{si } x = 0 \\ x^2 \sin \frac{1}{x} & \text{si } x \neq 0 \end{cases}$$

Il est clair que f est dérivable sur \mathbb{R}^* .

- Pour $x_0 = 0$ et $x \neq 0$,

$$\left| \frac{f(x) - f(x_0)}{x - x_0} \right| = \left| x \sin \frac{1}{x} \right| \leqslant |x| \underset{x \to 0}{\longrightarrow} 0$$

Donc pour $x \neq 0$, $\frac{f(x) - f(0)}{x - 0} \xrightarrow[x \to 0]{} 0$ donc f est dérivable en 0 et f'(0) = 0.

- Pourtant, pour $x \neq 0$, $f'(x) = 2x \sin \frac{1}{x} - \cos \frac{1}{x}$. $2x \sin \left(\frac{1}{x}\right) \xrightarrow[x \to 0]{} 0$ mais $\cos \left(\frac{1}{x}\right)$ n'admet pas de limite en 0, f'(x) n'admet donc pas de limite en 0 mais f est dérivable en 0^b

2.3Dérivée d'une réciproque

Soit I un intervalle non trivial de \mathbb{R} , $f:I\longrightarrow\mathbb{R}$ continue t strictement monotone, alors:

- (1) f induit une bijection de I dans J = f(I) notée encore $f \cdot g = f^{-1}$ est continue strictement monotone de J dans I de même monotonie que f.
- (2) Soit $x_0 \in I$, $y_0 = f(x_0)$. On suppose que f est dérivable en x_0 avec $f'(x_0) \neq 0$. Alors $g = f^{-1}$ est dérivable en y_0 et

$$g'(y_0) = \frac{1}{f'(x_0)}$$

Démonstration

- (1) Ce résultat est connu, voir le théorème de la bijection section 12.4.2.5 du cours complet page 198.
- (2) Pour $y \in J \setminus \{y_0\},$

$$\mathcal{T}_{g,y_0}(y) = \frac{g(y) - g(y_0)}{y - y_0} \\ = \frac{g(y) - g(y_0)}{f(g(y)) - f(g(y_0))}$$

a. Les cas où $l \in \{\pm \infty\}$ sont laissés au courageux lecteur!

b. En fait, f n'est pas de classe \mathcal{C}^1 : sa dérivée n'est pas continue.

g est injective donc $g(y) \neq g(y_0)$ pour $y \in J \setminus \{x_0\}$. Ainsi :

$$\mathcal{T}_{g,y_0}(y) = \frac{1}{\frac{f(g(y)) - f(g(y_0))}{g(y) - g(y_0)}}$$

g est continue donc $g\left(y\right) \underset{\substack{y \to y_0 \\ y \neq y_0}}{\longrightarrow} g\left(y_0\right)$ et on sait que $\mathcal{T}_{f,x_0}\left(x\right) \underset{\substack{x \to x_0 \\ x \neq x_0}}{\longrightarrow} f'\left(x_0\right)$ donc, par composition des limites,

pour $y \in J \setminus \{x_0\}$:

$$\mathcal{T}_{f,x_{0}}\left(g\left(y\right)\right) \xrightarrow[y \to y_{0}]{} f'\left(x_{0}\right) \Rightarrow \frac{1}{\mathcal{T}_{f,x_{0}}\left(g\left(y\right)\right)} \xrightarrow[y \to y_{0}]{} \frac{1}{f'\left(x_{0}\right)}$$

Si $f'(x_0) = 0$, supposons par exemple f strictement croissante. Alors $\forall x \neq x_0, \mathcal{T}_{f,x_0}(x) > 0$ car c'est le quotient de deux nombres négatifs ou positifs simultanément. Ainsi, pour $x \neq x_0, \mathcal{T}_{f,x_0}(g(y)) \xrightarrow[y \to y_0]{} 0^+$ donc g admet une tangente verticale en 0.

Reformulation Soit $f: I \longrightarrow K$ continue, strictement monotone et dérivable sur I telle que $\forall x \in I$, $f'(x) \neq 0$. Alors f induit une bijection de I sur J = f(I), $g = f^{-1}$ est dérivable sur J et $\forall y \in J$,

$$g'(y) = \frac{1}{f' \circ g(y)}$$

Application : étude de la racine n-ième Soit $n \in \mathbb{N}^*$, $f : \mathbb{R}_+ \longrightarrow \mathbb{R}$. f est strictement croissante et $x \mapsto x^n$

 $f(\mathbb{R}_+) = \mathbb{R}_+$ donc f est bijective et $\forall x \in \mathbb{R}_+$, $f^{-1}(x) = g(x) = \sqrt[n]{x}$. f est dérivable sur \mathbb{R}_+ et $\forall x \in \mathbb{R}_+^*$, $f'(x) = nx^{n-1} > 0$. Ainsi, $\forall y \in f(\mathbb{R}_+^*) = \mathbb{R}_+^*$, g est dérivable en g et

$$g'(y) = \frac{1}{f'(g(y))}$$
$$= \frac{1}{n(\sqrt[n]{y})^{n-1}}$$

Or $\left(\sqrt[n]{y}\right)^{n-1} = y^{1-\frac{1}{n}}$ donc $g'\left(y\right) = \frac{1}{n}y^{1-\frac{1}{n}}$.

3 Dérivées d'ordre supérieur

3.1 Définitions, faits de bases

3.1.1 Définitions

Soit I un intervalle non trivial de \mathbb{R} , $f:I\longrightarrow \mathbb{R}$. On définit (si possible) l'application $f^{(k)}$ pour $k\in \mathbb{N}$ par :

- (1) $f^{(0)} = f$
- (2) $\forall k \in \mathbb{N}$, si $f^{(k)}$ est bien définie et dérivable, alors $f^{(k+1)} = f'^{(k)}$ est bien définie. Sinon, $f^{(k+1)}$ n'est pas bien définie.
- Pour $n \in \mathbb{N}$, on dit que f est n fois dérivable sur I si $f^{(n)}$ est bien définie. On note $\mathcal{D}^n(I,K)$ l'ensemble des fonctions dérivable n fois de I dans K.
- f est de classe C^n sur I si f est n fois dérivable sur I et si $f^{(n)}$ est continue sur I. On note $C^n(I,K)$ l'ensemble des telles fonctions.
- -f est de classe \mathcal{C}^{∞} lorsque $\forall n \in \mathbb{N}, f$ est de classe \mathcal{C}^n .
- Lorsque f est dérivable n fois sur I, $f^{(n)}$ s'appelle la dérivée n-ième de f sur I.

3.1.2 Remarques, exemples

Remarques

- $\mathcal{D}^{0}(I,K) = \mathcal{F}(I,K)$
- $-\mathcal{D}^{1}(I,K) = \mathcal{D}(I,K)$ et si $f \in \mathcal{D}(I,K)$, $f^{(1)} = f'$.
- $-\mathcal{C}^{0}(I,K)=\mathcal{C}(I,K)$ est l'ensemble des fonctions continues de I dans K.
- Il est clair que $\forall n \in \mathbb{N}, \mathcal{D}^{n+1}(I,K) \subset \mathcal{C}^n(I,K) \subset \mathcal{D}^n(I,K)$.
- $\mathcal{C}^{\infty}(I,K) = \bigcap \mathcal{C}^{n}(I,K) = \bigcap \mathcal{D}^{n}(I,K)$
- $-f \in \mathcal{C}^{\infty}(I,K) \Leftrightarrow \forall n \in \mathbb{N}, f \in \mathcal{D}^{n}(I,K)$
- Si $f \in \mathcal{D}^2(I, K)$, on note $f^{(2)} = f''$ et si $f^{(3)}$ existe, on la note f'''.
- Supposons que $f \in \mathcal{D}^n(I, K)$, alors $\forall k \in [[0, n]], f^{(k)}$ est bien définie et $f^{(k)}$ est dérivable n k fois. De plus, pour $j \in [[0, n k]], (f^{(k)})^{(j)} = f^{(j+k)}$.
- Soit $n \ge 1$, $f \in \mathcal{D}(I, K)$. Alors

$$f \in \mathcal{D}^n(I, K) \Leftrightarrow f' \in \mathcal{D}^{n-1}(I, K)$$

Exemples

- Soit $f: I \longrightarrow \mathbb{R}$ constante. On sait que f est dérivable et f' = 0. On montre par récurrence que $\forall n \in 1$, $f^{(n)}$ existe et $f^{(n)} = 0$ donc $f \in C^{\infty}(I, K)$.
- L'application $f: I \longrightarrow K$ est dérivable et f' = 1 donc $f \in \mathcal{C}^{\infty}(I, K)$ d'après le cas précédent. $x \mapsto x$
- $-\circ \exp \operatorname{est} \mathcal{C}^{\infty} \operatorname{sur} \mathbb{R}.$
 - \circ ln est \mathcal{C}^{∞} sur \mathbb{R}_{+}^{*} .
 - \circ Pour $\alpha \in \mathbb{R}$, $x \longmapsto x^{\alpha}$ est \mathcal{C}^{∞} sur \mathbb{R}_{+}^{*} .
 - \circ sin, cos sont \mathcal{C}^{∞} sur \mathbb{R} .
 - \circ tan est \mathcal{C}^{∞} sur tout intervalle $I \subset \mathbb{R} \setminus \{\frac{\pi}{2} + \pi \mathbb{Z}\}.$

3.1.3 Théorèmes généraux

Théorème 1 Soit I un intervalle non trivial de \mathbb{R} , $f,g \in \mathcal{D}^n(I,K)$ (respectivement $\mathcal{C}^n(I,K)$ et $\mathcal{C}^{\infty}(I,K)$). Alors:

(1) $\forall \alpha \in K, \alpha f + g \in \mathcal{D}^n(I, K)$ (respectivement $\mathcal{C}^n(I, K)$ et $\mathcal{C}^{\infty}(I, K)$) et

$$(\alpha f + g)^{(n)} = \alpha f^{(n)} + g^{(n)}$$

(2) $fg \in \mathcal{D}^{n}(I,K)$ (respectivement $\mathcal{C}^{n}(I,K)$ et $\mathcal{C}^{\infty}(I,K)$) et, d'après la formule de Leibnitz,

$$(fg)^{(n)} = \sum_{k=0}^{n} {n \choose k} f^{(k)} g^{(n-k)}$$

- (3) On suppose de plus $\forall x \in I$, $f(x) \neq 0$. Alors $\frac{1}{f} \in \mathcal{D}^n(I, K)$ (respectivement $\mathcal{C}^n(I, K)$ et $\mathcal{C}^{\infty}(I, K)$) a. De plus, $\frac{g}{f} \in \mathcal{D}^n(I, K)$ (respectivement $\mathcal{C}^n(I, K)$) et $\mathcal{C}^{\infty}(I, K)$).
- (4) Si $K = \mathbb{C}$, $\overline{f} \in \mathcal{D}^n(I, K)$ (respectivement $\mathcal{C}^n(I, K)$ et $\mathcal{C}^{\infty}(I, K)$) et

$$\left(\overline{f}\right)^{(n)} = \overline{f^{(n)}}$$

Démonstrations

- (1) Soit H_n : $\forall f, g \in \mathcal{D}^n(I, K), \alpha f + g \in \mathcal{D}^n(I, K)$ et $(\alpha f + g)^{(n)} = \alpha f^{(n)} + g^{(n)}$ ».
 - $-H_0$ est trivialement vraie.

 $a.\$ Il n'existe pas de formule simple pour la dérivée $n\text{-}\mathrm{i\`eme}$ d'un quotient.

- Supposons H_n vraie pour $n \in \mathbb{N}$, soient $f, g \in \mathcal{D}^{n+1}(I, K)$. $n+1 \ge 1$ donc f et g sont au moins dérivables, on sait alors que $\alpha f + g$ est dérivable et $(\alpha f + g)' = \alpha f' + g'$. Or $f', g' \in \mathcal{D}^n(I, K)$ donc $\alpha f' + g' \in \mathcal{D}^I(I <, K)$, c'est-à-dire que $\alpha f + g \in \mathcal{D}^{n+1}(I, K)$. De plus

$$(\alpha f + g)^{(n+1)} = (\alpha f' + g')^{(n)}$$

= $\alpha f'^{(n)} + g'^{(n)}$
= $\alpha f^{(n+1)} + g^{(n+1)}$

- (2) Soit $H_n: \langle \forall f, g \in C^n(I, K), fg \in C^n(I, K) \text{ et } (fg)^{(n)} = \sum_{k=0}^n \binom{n}{k} f^{(k)} g^{(n-k)} \rangle$.
 - $-H_0$ est vraie : si $f,g \in \mathcal{C}^0(I,K)$, on sait que fg est continue de I dans K. De plus

$$(fg)^{(0)} = fg$$

$$= \sum_{k=0}^{0} {0 \choose k} f^{(k)} g^{(0-k)}$$

- Soit $n \in \mathbb{N}$, supposons que H_n est vraie et montrons H_{n+1} . Soient $f, g \in \mathcal{C}^{n+1}(I, K)$, on sait que f et g sont au moins dérivables et $f', g' \in \mathcal{C}^n(I, K)$. fg est alors dérivable et (fg)' = f'g + fg'. Or f' est de classe \mathcal{C}^n et $g \in \mathcal{C}^n(I, K)$ donc, d'après l'hypothèse de récurrence, $f'g \in \mathcal{C}^n(I, K)$. De même, $fg' \in \mathcal{C}^n(I, K)$. Ainsi, $f'g + fg' \in \mathcal{C}^n(I, K)$ donc $fg \in \mathcal{C}^{n+1}(I, K)$. De plus :

$$(fg)^{(n+1)} = ((fg)')^{(n)}$$

$$= (f'g + fg')^{(n)}$$

$$= (f'g)^{(n)} + (fg')^{(n)}$$

$$= \sum_{k=0}^{n} \binom{n}{k} f^{(k+1)} g^{(n-k)} + \sum_{k=0}^{n} \binom{n}{k} f^{(k)} g^{(n+1-k)}$$

$$= \sum_{k=1}^{n+1} \binom{n}{k-1} f^{(k)} g^{(n+1-k)} + \sum_{k=0}^{n} \binom{n}{k} f^{(k)} g^{(n+1-k)}$$

$$= \binom{n}{n} f^{(n+1)} g^{(0)} + \sum_{k=1}^{n} \underbrace{\left(\binom{n}{k-1} + \binom{n}{k}\right)}_{\binom{n+1}{k}} f^{(k)} g^{(n+1-k)} + \underbrace{\binom{n}{0}}_{\binom{n+1}{0}} f^{(0)} g^{(n+1)}$$

$$= \sum_{k=0}^{n+1} \binom{n+1}{k} f^{(k)} g^{(n+1-k)}$$

- (3) Soit $H_n: \langle \forall f \in \mathcal{C}^n(I, K \setminus \{0\}), \frac{1}{f} \text{ est de classe } \mathcal{C}^n \rangle$.
 - $-H_0$ est vraie, c'est trivial.
 - Soit $n \in \mathbb{N}$, supposons que H_n est vraie. Soit $f \in \mathcal{C}^{n+1}(I, K^*)$, f est déjà au moins dérivable, on sait alors que $\frac{1}{f}$ est aussi dérivable et $\left(\frac{1}{f}\right)' = -\frac{f'}{f^2}$. Or $f' \in \mathcal{C}^n(I, K)$ donc $-f' \in \mathcal{C}^n(I, K)$ et f^2 aussi d'après (2). D'après H_n , $\frac{1}{f^2}$ est de classe \mathcal{C}^n donc $-\frac{f'}{f^2} \in \mathcal{C}^n(I, K)$ donc $\frac{1}{f} \in \mathcal{C}^{n+1}(I, K)$.
- (4) Soit $H_n: \langle \forall f \in \mathcal{C}^n (I, K\mathbb{C}), \overline{f} \in \mathcal{C}^n (I, \mathbb{C}) \text{ et } (\overline{f})^{(n)} = \overline{f^{(n)}} \rangle$.
 - $-H_0$ est vraie : si f est continue, on sait que \overline{f} est continue et $\overline{f} = \overline{f}$!
 - Soit $n \in \mathbb{N}$ tel que H_n est vraie et $f \in \mathcal{C}^{n+1}(I,\mathbb{C})$. f est au moins dérivable donc \overline{f} est aussi dérivable et $\overline{f}' = \overline{f'}$. D'après l'hypothèse de récurrence, $\overline{f}' \in \mathcal{C}^n(I,\mathbb{C})$ car $f' \in \mathcal{C}^n(I,\mathbb{C})$ d'où $\overline{f} \in \mathcal{C}^{n+1}(I,\mathbb{C})$ et

$$(\overline{f})^{(n+1)} = (\overline{f}')^{(n)}$$

$$= \underline{f'^{(n)}}$$

$$= \underline{f^{(n+1)}}$$

Théorème 2 Soit $f: I \longrightarrow \mathbb{C}$ $n \in \mathbb{N}$ et on pose $u = \Re e(f)$ et $v = \Im m(f)$. Alors

 $f \in \mathcal{D}^{n}\left(I,\mathbb{C}\right)$ (respectivement $\mathcal{C}^{n}\left(I,\mathbb{C}\right)$ et $\mathcal{C}^{\infty}\left(I,\mathbb{C}\right)$) $\Leftrightarrow u,v \in \mathcal{D}^{n}\left(I,\mathbb{R}\right)$ (respectivement $\mathcal{C}^{n}\left(I,\mathbb{R}\right)$ et $\mathcal{C}^{\infty}\left(I,\mathbb{R}\right)$)

Démonstration

 \Leftarrow On sait que $f = \Re e(f) + i\Im m(f)$. Si $\Re e(f) \in \mathcal{C}^n(I,\mathbb{R})$ et $\Im m(f) \in \mathcal{C}^n(I,\mathbb{R})$, le résultat est vrai d'après le théorème 1 et

$$f^{(n)} = (\Re e(f))^{(n)} + i(\Im m(f))^{(n)}$$

$$\Rightarrow \text{ Si } f \in \mathcal{C}^{n}\left(I,\mathbb{C}\right), \text{ alors } \overline{f} \in \mathcal{C}^{n}\left(I,\mathbb{C}\right) \text{ donc } \Re \left(f\right) = \frac{f+\overline{f}}{2} \in \mathcal{C}^{n}\left(I,\mathbb{R}\right) \text{ et } \Im \left(f\right) = \frac{f-\overline{f}}{2} \in \mathcal{C}^{n}\left(I,\mathbb{R}\right).$$

Exemples

- $-t \longmapsto e^{it}$ est \mathcal{C}^{∞} de \mathbb{R} dans \mathbb{C} car cos et sin sont \mathcal{C}^{∞} .
- $-t \longmapsto t \text{ est } \mathcal{C}^{\infty} \text{ donc } \forall \alpha \in \mathbb{C}, t \longmapsto \alpha t^n \in \mathcal{C}^n(\mathbb{R}, \mathbb{C}).$ Par somme, toute fonction polynômiale et \mathcal{C}^{∞} . Par quotient, toute fonction rationnelle est de classe \mathcal{C}^{∞} sur toute intervalle où elle est définie.

Théorème 3 Soit $n \in \mathbb{N}$, I, J deux intervalles non triviaux de \mathbb{R} , $f \in \mathcal{D}^n(I, J)$ (respectivement $\mathcal{C}^n(I, J)$) et $g \in \mathcal{D}^n(J, K)$ (respectivement $\mathcal{C}^n(J, K)$) et $\mathcal{C}^{\infty}(J, K)$). Alors $g \circ f \in \mathcal{D}^n(I, K)$ (respectivement $\mathcal{C}^n(I, K)$) et $\mathcal{C}^{\infty}(I, K)$).

Démonstration Soit H_n : « $\forall f \in C^n(I, J), \forall g \in C^n(J, K), g \circ f \in C^n(I, K)$ ».

- $-H_0$ est vraie : si f et g sont continues, alors $g \circ f$ est continue.
- Soit $n \in \mathbb{N}$ tel que H_n est vraie, $f \in \mathcal{C}^{n+1}(I,J)$ et $g \in \mathcal{C}^{n+1}(J,K)$. On sait que f et g sont au moins dérivables sur I et J, donc $g \circ f$ est dérivable sur I et $(g \circ f)' = f' \cdot g' \circ f$. Or $f' \in \mathcal{C}^n(I,\mathbb{R})$, $f \in \mathcal{C}^n(I,J)$ et $g' \in \mathcal{C}^n(J,K)$ donc $g' \circ f \in \mathcal{C}^n(I,K)$ d'après H_n . Par produit, $(g \circ f)' \in \mathcal{C}^n(I,K)$ d'où $g \circ f \in \mathcal{C}^{n+1}(I,K)$.

Théorème 4 Soit I un intervalle non trivial de \mathbb{R} , $f:I\longrightarrow\mathbb{R}$ dérivable. On suppose $\forall x\in I,\ f'(x)>0$ ou $\forall x\in I\ \mathrm{S}f'(x)<0$. Alors :

- (1) f induit une bijection notée encore f sur J = f(I).
- (2) f^{-1} est dérivable sur J et

$$\left(f^{-1}\right)' = \frac{1}{f' \circ f^{-1}}$$

(3) Si $f \in \mathcal{D}^n(I, \mathbb{R})$ (respectivement $\mathcal{C}^n(I, \mathbb{R})$ et $\mathcal{C}^{\infty}(I, \mathbb{R})$), alors f^{-1} aussi.

Démonstration

- (1) « Djàvu! »
- (2) « $Dj\grave{a}vu!$ » b
- (3) Soit H_n : « Si f est de classe C^n , alors f^{-1} aussi ».
 - $-H_1$ est vraie car $(f^{-1})' = \frac{1}{f' \circ f^{-1}} \in \mathcal{C}^1(I,K)$ est continue par composition et quotient.
 - Supposons H_n vraie pour $n \in \mathbb{N}$ et soit $f \in \mathcal{C}^{n+1}\left(I,K\right)$. $f \in \mathcal{C}^n\left(I,K\right)$ donc $f^{-1} \in \mathcal{C}^n\left(I,K\right)$. $f' \in \mathcal{C}^n\left(I,K\right)$ donc $f \circ f^{-1}$ aussi donc $\left(f^{-1}\right)'$ aussi, d'où $f^{-1} \in \mathcal{C}^{n+1}\left(I,K\right)$.

a. Commentant les résultats d'un DS particulièrement vicieux sur les suites, M. Sellès s'adressa en ces termes à notre ami Willy de Picardie qui avait eu le malheur de vouloir démontrer par récurrence qu'une suite était bornéeSt

^{« –} Mais pourquoi t'as pas barré si tu savais que ça marcherait pas?

⁻ Bah je sais pas, j'ai oublié.

⁻ Quand il y a des bouses dans la rue, les mecs ils les ramassent. Toi, tu fais pareil. »

b. Il est ici à noter une déclaration solennelle de M. Sellès : « Le petit 1 et le petit 2 font partie du patrimoine immatériel de l'humanité ».

Vocabulaire 3.1.4

Soient I, J deux intervalles non triviaux de $\mathbb{R}, n \in \mathbb{N}^*$ et $f: I \longrightarrow J$. On dit que f est un \mathbb{C}^n -difféomorphisme a(respectivement \mathcal{C}^{∞} -difféomorphisme) si f est bijective, $f \in \mathcal{C}^n(I,J)$ et $f^{-1} \in \mathcal{C}^n(J,I)$ (respectivement

a. Désolé pour ce langage grossier.

Dans les hypothèses du théorème 4, f induit un C^n -difféomorphisme de I sur f(I).

3.2 Formules de Taylor

Étude préliminaire 3.2.1

Dérivée *n*-ième de $(t-a)^n$ Soient $a \in K$, $n \in \mathbb{N}$, on sait que $f_n : t \longrightarrow (t-a)^n \in \mathcal{C}^{\infty}(I,\mathbb{R})$. Quid de $f_n^{(k)}$ pour $k \in \mathbb{N}$?

Soit H_n : « Pour $t \in \mathbb{R}, \forall k \in [0, n], f_n^{(k)}(t) = \frac{n!}{(n-k)!} (t-a)^{n-k}$. Pour $k \ge n, f_n^{(k)}(t) = 0$ ».

- H_0 est vraie; $\forall t \in \mathbb{R}, f(t) = 0$ donc pour $k \in [0,0], k = 0$ et $f_0^{(0)}(t) = \frac{0!}{(0-0)!}(t-0)^0$. Pour $k \ge 1$,
- $f_0^{(k)}(t) = 0.$ Soit $n \in \mathbb{N}$ tel que H_n est vraie, montrons que H_{n+1} est vraie. Soit $k \in [0, n+1]$: $\circ \text{ Pour } k = 0 \text{ et } t \in \mathbb{R}, \ f_{n+1}^{(0)}(t) = (t-a)^{n+1} = \frac{(n+1)!}{(n+1-0)!} (t-a)^{n+1-0} \text{ donc c'est bon.}$
 - $\circ \forall t \in \mathbb{R}$,

$$f'_{n+1}(t) = (n+1)(t-a)^n$$

= $(n+1) f_n(t)$

Pour $k \in [1, n+1]$,

$$f_{n+1}^{(k)}(t) = (f'_{n+1})^{(k+1)}(t)$$

$$= [f_n^{(k-1)}(t)](n+1)$$

$$= (n+1)\frac{n!}{(n-k+1)!}(t-a)^{n-(k-1)}$$

$$= \frac{(n+1)!}{(n+1-k)!}(t-a)^{n+1-k}$$

En particulier $f_{n+1}^{(n+1)}$ est constante donc $\forall k > n+1, f_{n+1}^{(k)} = 0.$

Écriture des polynômes en fonction de leur dérivées Soit P polynômiale, on a $\forall t \in \mathbb{R}$, avec $m \in \mathbb{N}^*$ et $a_m \neq 0$:

$$P\left(t\right) = a_0 + a_1 t + \dots + a_m t^m$$

Pour $t \in \mathbb{R}$ et $k \in [0, m]$, soit $f_k(t) = t^k$. On a alors:

$$P^{(k)}(t) = \sum_{j=0}^{m} a_j f_j^{(k)}(t)$$

$$= \sum_{j=k}^{m} a_j \frac{j!}{(j-k)!} t^{j-k}$$

$$= k! a_k + \sum_{j=k+1}^{m} a_j \frac{j!}{(j-k)!} t^{j-k}$$

Ainsi, $P^{(k)}\left(0\right)=k!a_{k}$ d'où $a_{k}=\frac{P^{(k)}\left(0\right)}{k!}$ donc $\forall t\in\mathbb{R},\ P\left(t\right)=\sum_{k=0}^{m}\frac{P^{(k)}\left(0\right)}{k!}t^{k}$. De même, pour $b\in\mathbb{R}$ et $t\in\mathbb{R}$:

$$P(t) = \sum_{k=0}^{m} a_k (t + b - b)^k$$
$$= \sum_{k=0}^{m} \lambda_k (t - b)^k \text{ avec } \lambda_k \in \mathbb{R}$$

On aura par un calcul similaire au précédent, $\forall k \in [0, m], \lambda_k = \frac{p^{(k)}(b)}{k!}$ d'où pour $t \in \mathbb{R}$ et $b \in \mathbb{R}$

$$P(t) = \sum_{k=0}^{m} \frac{P^{(k)}(b)}{k!} (t - b)$$

3.2.2 Définition

Soit $f \in \mathcal{D}^n(I, K)$ avec $n \in \mathbb{N}$, et $a \in I$. Le polynôme de Taylor pour f à l'ordre n au point a est définit pour $t \in \mathbb{R}$ par :

$$T_{n,f,a}(t) = \sum_{k=0}^{n} \frac{f^{(k)}(a)}{k!} (t-a)^{k}$$

3.2.3 Polynômes de Taylor des fonctions classiques

- exp est \mathcal{C}^{∞} sur \mathbb{R} , et $\forall k \in \mathbb{N} \operatorname{dexp}^{(k)}(0) = 1 \operatorname{donc} \forall n \in \mathbb{N}$, pour $t \in \mathbb{R}$:

$$T_{n,\exp,a}(t) = \sum_{k=0}^{n} \frac{t^k}{k!}$$

- Pour $x \in]-1, +\infty[$, ln (1+x) est C^{∞} et $\forall k \in \mathbb{N}$, pour $t \in]-1, +\infty[$, on montre par récurrence que

$$(\ln(1+t))^{(k)} = \frac{(-1)^{k-1}}{(1+t)^k} (k-1)!$$

Ainsi pour $k \ge 1$, $(\ln(1+t))^{(k)}(0) = (-1)^{k-1}(k-1)!$. De plus, $\ln(1+0) = 0$ donc, $\forall n \in \mathbb{N}^*$ et pour $t \in \mathbb{R}$:

$$T_{n,t \longmapsto \ln(1+t),0} = f(0) + \sum_{k=1}^{n} \frac{(-1)^{k-1} (k-1)!}{k!} t^{k}$$
$$= \sum_{k=1}^{n} \frac{(-1)^{k-1}}{k} t^{k}$$

- Soit $\forall t > -1$, $f(t) = (1+t)^{\alpha}$ avec $\alpha \in (\mathbb{R} \setminus \mathbb{N})$. Pour $k \in \mathbb{N}$, $f \in C^{\infty}(]-1, +\infty[,\mathbb{R})$ donc pour $t \in \mathbb{R}$, $f^{(k)}(t) = \alpha (\alpha - 1) \cdots (\alpha - k + 1) (1 + t)^{\alpha - k}$. D'où $f^{(k)}(0) = \alpha (\alpha - 1) \cdots (\alpha - k + 1)$ donc pour $t \in \mathbb{R}$:

$$T_{n,f,0}(t) = \sum_{k=0}^{n} \frac{\alpha (\alpha - 1) \cdots (\alpha - k + 1)}{k!} t^{k}$$

Par analogie avec les entiers, on note pour $\alpha \in \mathbb{C}$ et $k \in \mathbb{N}$, $\binom{\alpha}{k} = \frac{\alpha(\alpha-1)\cdots(\alpha-k+1)}{k!}$. On a donc $\binom{\alpha}{0} = 1$, $\binom{\alpha}{1} = \alpha$ et $\binom{\alpha}{2} = \frac{\alpha(\alpha-1)}{2}$. Ainsi pour $t \in \mathbb{R}$:

$$T_{n,f,0}(t) = \sum_{k=0}^{n} {\alpha \choose k} t^{k}$$

- De même, on a

$$T_{2n+1,\sin,0} = \sum_{k=0}^{n} \frac{x^{2k+1}}{(2k+1)!} (-1)^{k}$$
$$= x - \frac{x^{3}}{6} + \frac{x^{5}}{120} + \dots + (-1)^{n} \frac{x^{2n+1}}{(2k+1)!}$$

$$T_{2n,\cos,0} = \sum_{k=0}^{2n} \frac{x^{2k}}{(2k)!} (-1)^k$$
$$= 1 - \frac{x^2}{2} + \frac{x^4}{24} + \dots + \frac{x^{2n}}{(2n)!} (-1)^n$$

- Les polynômes de sinh et cosh aux ordres 2n+1 et 2n sont les mêmes que ceux de cos et sin, en enlevant le $(-1)^k$.

3.2.4 Inégalité de Taylor-Lagrange

Soient $a, b \in \mathbb{R}$, $n \in \mathbb{N}$ et $f : [a, b] \longrightarrow K$ de classe C^{n+1} . Soit M un majorant de $|f^{(n+1)}|^a$ sur [a, b], alors :

$$|f(b) - T_{n,f,a}(b)| \le M \frac{|b-a|^{n+1}}{(n+1)!}$$

a. Avec les hypothèses du théorème, $f^{(n+1)}$ est continue sur le compact [a,b] donc bornée...

Démonstration

1^{er} cas On suppose a < b, procédons par récurrence sur \mathbb{N} .

Soit H_n : « Pour tout a < b, $\forall f \in \mathcal{C}^{n+1}([a,b],K)$, pour tout majorant M de $|f^{(n+1)}|$ sur [a,b], $|f(b) - T_{f,n,a}(b)| \le M \frac{|b-a|^{n+1}}{(n+1)!}$ »

- H_0 est vraie : soit $f \in C^1([a,b],K)$ et M un majorant de f' sur [a,b], alors $T_{0,f,a}(b) = f(a)$. D'après les inégalités des accroissements finis,

$$|f(b) - f(a)| \le M(b - a) = M \frac{(b - a)^1}{1!}$$

- Supposons que H_n est vraie pour $n \in \mathbb{N}$, soit $f \in \mathcal{C}^{n+2}([a,b],K)$ et M un majorant de $|f^{(n+2)}|$ sur [a,b]. Pour tout $x \in [a,b]$, on pose

$$\varphi(x) = f(x) - T_{n+1,f,a}(x) = f(x) - \sum_{k=0}^{n+1} \frac{f^{(k)}(a)}{k!} (x-a)^k$$

Il est clair que φ est de classe \mathcal{C}^{n+2} donc φ est au moins dérivable et $\forall x \in [a,b]$,

$$\varphi'(x) = f'(x) - \sum_{k=1}^{n+1} \frac{f^{(k)}(a)}{k!} \cdot k (x - a)^{k-1}$$

$$= f'(x) - \sum_{k=1}^{n+1} \frac{f^{(k)}(a)}{(k-1)!} (x - a)^{k-1}$$

$$= f'(x) - \sum_{k=0}^{n} \frac{f'^{(k)}(a)}{k!} (x - a)^{k}$$

$$= f'(x) - T_{n,f',a}(x)$$

Or $f' \in \mathcal{C}^{n+1}\left(\left[a,x\right],K\right)$ et $\forall t \in \left[a,x\right], \left|f'^{(n+1)}\left(t\right)\right| = \left|f^{(n+2)}\left(t\right)\right| \leqslant M$. D'après l'hypothèse de récurrence, on obtient pour tout x > a:

$$|f'(x) - T_{n,f',a}(x)| \le M \frac{(x-a)^{n+1}}{(n+1)!}$$

C'est vrai a posteriori pour x = a. Or $M \frac{|x-a|^{n+1}}{(n+1)!} = g'(x)$ où pour $x \in [a,b], g(x) = M \frac{(x-a)^{n+2}}{(n+2)!}$. φ est dérivable sur [a,b] et $\forall x \in [a,b], |\varphi'(x)| \leq g'(x)$ donc, d'après les inégalités des accroissements finis :

$$|\varphi(b) - \varphi(a)| \le g(b) - g(a) = M \frac{(b-a)^{n+2}}{(n+2)!}$$

 $- \operatorname{Or} \varphi(a) = 0 \operatorname{d'où}$:

$$|f(b) - T_{n+1,f,a}(b)| \le M \frac{|b-a|^{n+2}}{(n+2)!}$$

 $2^{\text{ème}}$ est Supposons a > b.

Soit $\psi: [0,1] \longrightarrow [b,a]$, ψ est de classe \mathcal{C}^{∞} , bijective. Soit $f: [b,a] \longrightarrow K$ de classe \mathcal{C}^{n+1} , M un $t \mapsto a + t \, (b-a)$

majorant de $|f^{(n+1)}|$ sur [b,a]. Pour $t \in [0,1]$, posons $g(t) = f(\psi(t))$. g est également de classe \mathcal{C}^{n+1} car $\psi \in \mathcal{C}^{\infty}([0,1],[b,a])$. De plus, $\forall t \in [0,1]$ et $\forall k \in [0,n+1]$, on montre par une récurrence immédiate que $g^{(k)} = (b-a)^k f^{(k)}(\psi(t))$. Par conséquent, pour tout $t \in [0,1]$,

$$\left|g^{(n+1)}(t)\right| = \left|b-a\right|^{k+1} f^{(n+1)}(\psi(t))$$

 $\leq M \left|b-a\right|^{n+1} = M'$

D'après le premier cas appliqué à q sur [0,1]:

$$|g(1) - T_{n,g,0}(1)| \le M' \frac{(1-0)^{n+1}}{(n+1)!}$$

 $\le M \frac{(b-a)^{n+1}}{(n+1)!}$

De plus,

$$|g(1) - T_{n,g,0}(1)| = \left| f(\psi(1)) - \sum_{k=0}^{n} \frac{g^{(k)}(0)}{k!} 1^{k} \right|$$

$$= \left| f(b) - \sum_{k=0}^{n} \frac{(b-a)^{k} f(\psi(0))}{k!} \right|$$

$$= \left| f(b) - \sum_{k=0}^{n} (b-a)^{k} \frac{f^{(k)}(a)}{k!} \right|$$

$$= \left| f(b) - T_{n,f,a}(b) \right|$$

D'où le résultat.

Applications

Développement en série entière de l'exponentielle complexe Montrons que $z \in \mathbb{C}$,

$$\exp(z) = \lim_{n \to +\infty} \sum_{k=0}^{n} \frac{z^k}{k!}$$

Soit $z \in \mathbb{C}$ et posons pour $t \in [0,1]$, $f(t) = \exp(tz)$. $f \in \mathcal{C}^{\infty}([0,1],\mathbb{C})$ comme composition et produit de fonctions de classe \mathcal{C}^{∞} et, en posant z = a + ib avec $a, b \in \mathbb{R}$, pour $t \in [0,1]$:

$$f'(t) = ae^{ta}e^{itb} + e^{ta}(-b\sin(tb) + ib\cos(tb))$$

$$= ae^{ta}e^{itb} + e^{ta}ibe^{itb}$$

$$= (a+ib)e^{t(a+ib)}$$

$$= z\exp(tz)$$

De même, on montez par une récurrence immédiate que $\forall k \in \mathbb{N}$ et pour tout $t \in [0,1]$, $f^{(k)}(t) = z^k \exp(tz)$. Ainsi pour $n \in \mathbb{N}$, $\forall t \in [0,1]$:

$$T_{n,f,0}(t) = \sum_{k=0}^{n} \frac{f^{(k)}(0)}{k!} t^{k}$$
$$= \sum_{k=0}^{n} \frac{z^{k}}{k!} t^{k}$$

En particulier, $T_{n,f,0}(1) = \sum_{k=0}^{n} \frac{z^{k}}{k!}$. Soit $n \in \mathbb{N}$, $f \in \mathcal{C}^{\infty}([0,1], \mathbb{C})$ et $\forall t \in [0,1]$,

$$\left| f^{(n+1)}(t) \right| = |z|^{n+1} \left| \exp(tz) \right|$$

$$\leq |z^{n+1}| e^{|a|}$$

D'après l'inégalité de TAYLOR-LAGRANGE,

$$|f(1) - T_{n,f,0}(1)| \le \frac{e^{|a|}|z|^{n+1}}{(n+1)!} (1-0)^{n+1} \Leftrightarrow \left| \exp(z) - \sum_{k=0}^{n} \frac{z^k}{k!} \right| \le e^{|a|} \underbrace{\frac{|z|^{n+1}}{(n+1)!}}_{\substack{n \to +\infty}} 0$$

D'où le résultat.

Développement en série entière de sin et cos Montrons que $\forall x \in \mathbb{R}$:

$$\cos x = \lim_{n \to +\infty} \sum_{k=0}^{n} (-1)^k \frac{x^{2k}}{(2k)!} \quad \text{et} \quad \sin x = \lim_{n \to +\infty} \sum_{k=0}^{n} (-1)^k \frac{x^{2k+1}}{(2k+1)!}$$

Soit $x \in \mathbb{R}$, $n \in \mathbb{N}$, cos est de classe C^{∞} sur \mathbb{R} et en particulier cos est de classe C^{2n+1} sur [0,x]. De plus $\forall t \in [0,x], |\cos^{(2n+1)}(x)| = |\sin(x)| \le 1$ donc, d'après l'inégalité de Taylor-Lagrange a,

$$\left|\cos x - T_{2n,\cos,0}(x)\right| \leqslant 1 \cdot \underbrace{\frac{\left|x - 0\right|^{2n+1}}{(2n+1)!}}_{n \to +\infty}$$

$$\sum_{k=0}^{n} (-1)^k \frac{x^{2k}}{(2k)!} = T_{2n,\cos,0}(x) \quad \text{et} \quad \sum_{k=0}^{n} (-1)^k \frac{x^{2k+1}}{(2k+1)!} = T_{2n+1,\sin,0}(x)$$

a. En effet on aura au paravant remarqué que pour $n\in\mathbb{N}$ et $x\in\mathbb{R}$:

Développement en série entière de $\ln(1+x)$ Montrons que $\forall x \in]-1,1]$:

$$\ln(1+x) = \lim_{n \to +\infty} \sum_{k=0}^{n} (-1)^k \frac{x^k}{k}$$

Posons pour $t \in]-1, +\infty]$, $f(t) = \ln(1+t)$. $f \in \mathcal{C}^{\infty}(]-1, +\infty]$, \mathbb{R}) et $\forall k \in \mathbb{N}^*$, une récurrence immédiate donne que pour tout $t \in]-1, +\infty]$:

$$f^{(k)}(t) = (-1)^{k-1} \frac{(k-1)!}{(1+t)^k}$$

En particulier, $f^{(k)}(0) = (-1)^k (k-1)!$. Pour $n \ge 1$ et $t \in \mathbb{R}$,

$$T_{n,f,0}(t) = \sum_{k=0}^{n} \frac{f^{(k)}(0)}{k!} t^{k}$$
$$= \sum_{k=0}^{n} \frac{t^{k}}{k}$$

Soit $x \in]-1,1]$:

- Si $x \in [0,1]$, soit $n \in \mathbb{N}$, $f \in \mathcal{C}^{n+1}([0,x],\mathbb{R})$ et $\forall t \in [0,x]$, $\left|f^{(n+1)}(t)\right| = \frac{n!}{(1+t)^{n+1}} \leqslant n!$ car $1+t \geqslant 1$. D'après l'inégalité de TAYLOR-LAGRANGE,

$$|f(x) - T_{n,f,0}(x)| \leq n! \frac{x^{n+1}}{(n+1)!}$$

$$\leq \frac{x^{n+1}}{n+1}$$

$$\leq \underbrace{\frac{1}{n+1}}_{n \to +\infty} \text{ car } x \leq 1$$

- Si $x \in]-1,0], \forall t \in [x,0]$ et $\forall n \in \mathbb{N}$:

$$f^{(n+1)}(t) = \frac{n!}{(1+t)^{n+1}}$$

$$\leq n! \cdot \sup_{x \leq t \leq 0} \frac{1}{(1+t)^{n+1}}$$

$$\leq \frac{n!}{(1+x)^{n+1}}$$

Or $f \in \mathcal{C}^{n+1}\left(\left[x,0\right],\mathbb{R}\right)$ donc, d'après l'inégalité de TAYLOR-LAGRANGE,

$$|f(x) - T_{n,f,0}(x)| \le \frac{1}{n+1} \frac{|x|^{n+1}}{(1+x)^{n+1}} = \frac{1}{n+1} \left(\frac{|x|}{1-|x|}\right)^{n+1}$$

 $\circ \text{ Si } \frac{|x|}{1-|x|} > 1 \Leftrightarrow |x| > 1-|x| \Leftrightarrow |x| > \frac{1}{2} \text{ donc si } x \in \left]-1, -\frac{1}{2}\right], \text{ alors } \frac{1}{n+1} \left(\frac{|x|}{1-|x|}\right)^{n+1} \underset{n \to +\infty}{\longrightarrow} +\infty$ donc on ne peut pas conclure de cette manière.

o Par contre, si $x \in \left[-\frac{1}{2}, 0\right], \frac{|x|}{1 - |x|} \le 1$ d'où le résultat.

Ainsi, on a montré que $\forall x \in \left[-\frac{1}{2}, 1\right]$,

$$\ln(1+x) = \lim_{n \to +\infty} \sum_{k=0}^{n} (-1)^k \frac{x^k}{k}$$

Formule de Taylor-Young 3.2.5

Soit I un intervalle non trivial de \mathbb{R} , $f: I \longrightarrow K$, $n \in \mathbb{N}$ et $a \in I$. On suppose de plus que fest de classe \mathcal{C}^n sur I . Alors :

$$f(x) - T_{n,f,a}(x) = o((x-a)^n)$$

Soit encore:

$$\frac{f(x) - T_{n,f,a}(x)}{(x-a)^n} \underset{x \neq a}{\longrightarrow} 0$$

Démonstration

- Pour n = 0 et $\forall t \in I$, $T_{0,f,a}(t) = f(a)$. On a bien $\frac{f(x) f(a)}{1} \xrightarrow[x \to a]{} 0$, car f est continue en a. Pour n = 1 et $x \in I$, $f(x) T_{1,f,a}(x) = f(x) (f(a) + f'(a)(x a))$. Donc pour $x \in I \setminus \{a\}$:

$$\frac{f\left(x\right) - T_{1,f,a}\left(x\right)}{x - a} = \frac{f\left(x\right) - f\left(a\right)}{x - a} - f'\left(a\right) \underset{\substack{x \to a \\ x \neq a}}{\longrightarrow} 0$$

car f est dérivable sur I.

- Soit H_n : $\forall g \in C^n(I, K)$, $\lim_{x \to a} \frac{g(x) T_{n,g,a}(x)}{(x a)^n} = 0$ ».
 - \circ On a vu que H_0 et H_1 sont vraies
 - o Supposons H_n vrai pour un entier n. Soit $f \in \mathcal{C}^{n+1}(I,K)$. On veut montrer que :

$$\delta(x) = \frac{f(x) - T_{n+1,f,a}(x)}{(x-a)^{n+1}} \underset{\substack{x \to a \\ x \neq a}}{\longrightarrow} 0$$

Soit $\varepsilon > 0$, on cherche $\alpha > 0$ tel que $\forall x \in I \setminus \{a\}$, $|x - a| \le \alpha \Rightarrow |f(x) - T_{n+1,f,a}(x)| \le \varepsilon |x - a|^{n+1}$. On sait que f' est de classe C^n sur I. D'après H_n , $\frac{f'(x) - T_{n,f',a}(x)}{(x - a)^n} \xrightarrow[x \to a]{} 0$ donc il existe β tel que

 $\forall x \neq a, |f'(x) - T_{n,f',a}(x)| \leq |x - a|^n$. Prenons $\alpha = \beta$: soit alors $x \in I \setminus \{a\}$, tel que $|x - a| \leq \beta$. \rightarrow Supposons x > a. Pour $t \in [a, x]$ on pose $\varphi(t) = f(t) - T_{n+1,f,a}(t)$. L'application φ est de classe C^{n+1} donc est au moins dérivable : $\forall t \in [a, x], \varphi'(t) = f'(t) - T_{n,f',a}(t)^a$. Donc $|\varphi'(t)| \leq \varepsilon |t - a|^n = C^{n+1}$ $\underbrace{\varepsilon(t-a)^n}_{\psi'(t)}. \text{ On a } \psi: t \in]a, x[\longrightarrow \frac{\varepsilon}{(n+1)} (t-a)^{n+1} \text{ D'après le théorème des accroissements finis}$ (II):

$$\left|\varphi\left(x\right)-\varphi\left(a\right)\right|\leqslant\psi\left(x\right)-\psi\left(a\right)$$

et comme $\varphi(a) = T_{n+1,f,a}(a) - f(a) = 0$,

$$|f(x) - T_{n+1,f,a}(x)| \leq \frac{\varepsilon}{n+1} (x-a)^{n+1}$$

$$\leq \varepsilon (x-a)^{n+1}$$

 \rightarrow Supposons x < a : « Left to the reader! ».

Remarque Taylor-Young affirme que si f est de classe C^n sur I et si $a \in I$, on peut écrire au voisinage de $a:f\left(x\right)=T_{n,f,a}\left(x\right)+\left(x-a\right)^{n}\varepsilon\left(x\right)$ où $\varepsilon\left(x\right)\underset{x\to a}{\longrightarrow}0,$ ce qui s'écrit aussi :

$$f(x) = T_{n,f,a}(x) + o((x-a)^n)$$

a. Ce calcul a été effectué précédemment, voir page 19.

Applications

- On sait que $\sin x \sim x$, trouvons un équivalent de $\sin x - x$ en 0. sin est de classe \mathcal{C}^3 sur \mathbb{R} donc au voisinage

$$\sin x = T_{3,\sin,0}(x) + o(x^3)$$

= $x - \frac{x^3}{6} + o(x^3)$

Ainsi, $\sin x - x = -\frac{x^3}{6} + o(x^3)$ donc $\sin x - x \approx -\frac{x^3}{6}$.

– Soient $n \in \mathbb{N}$, $f \in \mathcal{C}^n(I, K)$ et $a \in I$. Au voisinage de a,

$$f(x) = T_{n,f,a}(x) + o((x-a)^n)$$

$$= \sum_{k=0}^{n} \underbrace{\frac{f^{(k)}(a)}{k!} x^k}_{\lambda_k} + o((x-a)^n)$$

Si $\exists k \in [0, n]$ tel que $\lambda_k \neq 0$, alors on peut poser $m = \min\{k \in [0, n] | \lambda_k \neq 0\}$. Par conséquent, au voisinage de a,

$$f(x) = \lambda_m (x-a)^m + \underbrace{\sum_{k=m+1}^n \lambda_k (x-a)^k}_{=o((x-a)^m)} + \underbrace{o((x-a)^n)}_{=o((x-a)^m)}$$

Ainsi $f(a) \sim \lambda_m (x-a)^m$.

3.2.6 Exercice

Pour $x \in]0,1]$, on pose $\varphi(x) = \frac{1}{\sin x} - \frac{1}{x}$. Montrons que φ se prolonge en une fonction de classe \mathcal{C}^1 sur [0,1].

- Il est clair que $\varphi(x)$ ∈ \mathcal{C}^{∞} ([0, 1], ℝ).
- Pour $x \neq 0$,

$$\frac{1}{\sin x} - \frac{1}{x} = \frac{x - \sin x}{x \sin x}$$
$$\equiv 0 \quad \frac{x^3}{6x^2}$$
$$\equiv 0 \quad \frac{x}{6} \xrightarrow[x \to 0]{} 0$$

Ainsi, $\varphi(x) \xrightarrow[x \to 0]{} 0$. On pose alors $\tilde{\varphi} = \begin{cases} 0 & \text{si } x = 0 \\ \varphi(x) & \text{si } x \in]0,1] \end{cases}$. Il est clair que $\tilde{\varphi}$ est continue sur [0,1], dérivable sur [0,1] et $\forall x \in [0,1]$:

$$\varphi'(x) = \frac{1}{x^2} - \frac{\cos x}{\sin^2 x}$$
$$= \frac{\sin^2 x - x^2 \cos x}{x^2 \sin^2 x}$$
$$\equiv 0 \frac{\sin^2 x - x^2 \cos x}{x^4}$$

 $\cos\in\mathcal{C}^{2}\left(\mathbb{R},\mathbb{R}\right)$ donc, au voisinage de 0, d'après la formule de Taylor-Young :

$$\cos x = T_{2,\cos,0}(x) + o(x^2)$$

= $1 - \frac{x^2}{2} + o(x^2)$

Ainsi, au voisinage de 0, $\cos x = 1 - \frac{x^2}{2} + o(x^2)$.

$$\sin^2 x = T_{4,\sin^2,0}(x) + o(x^4)$$
$$= x^2 - \frac{x^4}{3} + o(x^4)$$

Ainsi, au voisinage de 0, $\sin^2 x = x^2 - \frac{x^4}{3} + \mathrm{o}\left(x^4\right)$. Par conséquent :

$$\sin^2 x - x^2 \cos x = \left(x^2 - \frac{x^4}{3} + o(x^4)\right) - \left(x^2 - \frac{x^4}{6} + o(x^4)\right)$$
$$= \frac{x^4}{6} + \underbrace{o(x^4) - o(x^4)}_{o(x^4)}$$

Donc $\sin^2 x - x^2 \cos x \sim \frac{x^4}{6}$ donc $\varphi'(x) \sim \frac{1}{6} \xrightarrow[x \to 0]{} \frac{1}{6}$. D'après le théorème « Limite de la dérivée a », $\tilde{\varphi}$ est dérivable en 0, $\tilde{\varphi}(0) = \frac{1}{6}$ et $\tilde{\varphi}$ est continue en 0.

a. Voir page 10.