Probabilistic Inventory Models

Marginal cost of surplus per unit C₁=purchase cost -salvage value

Marginal cost of shortage per unit C₂=selling price - purchase cost

Let generalized probability distribution of the demand of the items be a discrete distribution as

Observation	i	1	2	•••	n
Demand	Di	D_1	D ₂		D _n
Probability	Pi	P ₁	P ₂		Pn

The optimal order size D_i is determined by the relation

$$P_{i-1} < \frac{C_2}{C_1 + C_2} < P_i$$

Q1: the daily demand of bread at a bakery follows a discrete distribution as follow:

S No.	1	2	3	4	5	6	7	8	9	10	11
D	25	26	27	28	29	30	31	32	33	34	35
Р	0.2	0.11	0.1	0.09	0.08	0.12	0.14	0.05	0.04	0.04	0.03

The purchase price of the bread is Rs. 8 per packet. The selling price of the bread is Rs. 11 per packet. If the bread packet nit sold within the day of purchase, they are sold at Rs. 4 per packet to hotels for secondary use. Find the optimal order size of the bread.

Solution:

purchase price of the bread is Rs. 8 per packet

selling price of the bread is Rs. 11 per packet

salvage price of the bread is Rs. 4 per packet

Marginal cost of surplus per unit $C_1 = 8 - 4 = 4$

Marginal cost of shortage per unit $C_2 = 11 - 8 = 3$

Therefore, cumulative probability

$$P = \frac{3}{4+3} = 0.43$$

Now we find the cumulative probability of demand.

S#	D	P	Cum P
1	25	0.2	0.2
2	26	0.11	0.31
3	27	0.1	0.41
4	28	0.09	0.5
5	29	0.08	0.58
6	30	0.12	0.7
7	31	0.14	0.84
8	32	0.05	0.89
9	33	0.04	0.93
10	34	0.04	0.97
11	35	0.03	1

From the table it follows that

$$P_3 < \frac{C_2}{C_1 + C_2} = 0.43 < P_4$$
$$0.41 < 0.43 < 0.5$$

Therefor, the optimal order size is D₄ which is equal to 28 breads

Q1: A probability Distribution of monthly sales of a certain item is as follows.

Monthly	0	1	2	3	4	5	6
Sales (r)							
Probability	0.02	0.05	0.3	0.27	0.2	0.1	0.06
P(r)							

The cost of carrying inventory is Rs. 10 per unit per month the current policy is to maintain a stock of four items at the beginning of each month. Assume that the cost of shortage is proportional to both time and quantity, obtain the computed cost of a shortage of one item for one unit of time.

Sol:

 C_1 = Rs. 10 per unit per month,

Q = a stock of four items = 4

Since the demand is uniformly distributed over the month, the least value of shortage cost C_2 can be determined using the relation.

$$\begin{split} \sum_{r=0}^{Q-1} P(r) \ + \ (Q - \frac{1}{2}) \sum_{r=Q}^{\infty} \frac{P(r)}{r} & \leq \frac{c_2}{c_1 + c_2} \leq \sum_{r=0}^{Q} P(r) \ + \ (Q + \frac{1}{2}) \sum_{r=Q+1}^{\infty} \frac{P(r)}{r} \\ \text{LHS=} \qquad \qquad \sum_{r=0}^{Q-1} P(r) \ + \ (Q - \frac{1}{2}) \sum_{r=Q}^{\infty} \frac{P(r)}{r} \leq \frac{c_2}{c_1 + c_2} \\ \sum_{r=0}^{Q-1} P(r) \ + \ (4 - \frac{1}{2}) \sum_{r=4}^{6} \frac{P(r)}{r} = \ 0.020 + .050 + .30 + .27 + (7/2)(0.2\frac{1}{4} + .1\frac{1}{5} + \frac{.06}{6}) \\ & = 0.92 = \frac{c_2}{c_1 + c_2} \end{split}$$

 $C_1 = 10$

 $C_2 = 115$

$$\begin{split} \text{RHS} &= \frac{c_2}{c_1 + c_2} \leq \sum_{r=0}^Q P(r) \ + (Q + \frac{1}{2}) \sum_{r=Q+1}^\infty \frac{P(r)}{r} \\ &\sum_{r=0}^4 P(r) \ + (4 + \frac{1}{2}) \sum_{r=5}^6 \frac{P(r)}{r} = \ 0.020 + .050 + .30 + .27 + 0.2 + (9/2)(0.1 \frac{1}{5} + \frac{.06}{6}) \\ &= 0.975 = \frac{c_2}{c_1 + c_2} \end{split}$$

C₁=10

 $C_2 = 390$

115≤ C2 ≤390