Hw 3 due today, 5p 2.4: 2,6,34,4	1		
2.4: 2,6,34,4	9,42		
2.2: 20,32			
2.2: 20.32			
Midtern 1, Wed 21	9		
Ch 1-3.3			
Some practice on Co	was .		
HW 4 Lue Fri 2/1	27 20		
3, 1; 6, 24, 32, 34 3, 2; 24, 34 3, 3; 30, 38	7738		
3.3 30 38			
(00) exercise but not collect	tel:		
3.3: 90			
0		4	
Kank-Nullity Theorem	For a nxm matrix	A	
	a) dim(inA) = ran	b(1) = # of	leading 'L's in mef (A)
		K(A)	
	b) dim (kerA)+ dim (i	m(A)) = m	
		ا ا	
	"nullity of A" ra	rk A	
	6') (nullity of A) + (re	m(A) = M	
For a) too 4 -(1	2 2-3 Ling (bar)	4)=2, 742	=4-#0664
	2 2-3) dim (kor)	11 = 2	=4 = # of columns of A
	(Last time)		
b) Consider p	rojection projy: IR3 -	->R's for p	lane V in R3
1	<i>y</i> / 00 "	<i>I</i>	
i Pro ju(x)	IMLP	$roj_{V}J = V$	lin(V) = 2
	k end o	$\begin{aligned} roj_{V} &= V, \\ roj_{V} &= L, \\ +1 &= 3 = M \end{aligned}$	lin(1) - 1
	Perg	(300) - 4	ran(6) - 1
	2	+1 = 3 = M	
Questions a) Can	you find a 3x3 ma	trix A such that	im(A) = ker(A),
1:		1 201 0 3	(1, 4) (1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1
hin pe	f(x) + dir(inA) = 3	no. Because di	Por 1 230 moder
11 70	2 × 3 = 6 1 / 1 - 1 / 1/2	$\alpha = A - D \cap \alpha$	2 - 3v2 mainiv
0) 16	7 / ~~~ 1 / 7 / 7 / 1/5 FIC	> 11-106 for	C- 2x3 matrix
Can	you find a 3x3 ma A) + din(inA) = 3 so 3x3 matrix A satisfic A be invertible? No!		

 R^3 T_c R^2 T_B R^3 Im(BC) is contained in Im(B).

The $\tilde{z} \in in(BC)$, then there is some vector $\tilde{x} \in R^3$ such that $BC\vec{x} = \vec{z}$ but $\vec{g} = C\vec{x}$ then $BC\vec{x} = B\vec{g} \in im(B)$ So every vector in im(BC) is also in im(B) => dim(in (BC)) \le dim(in(B)) By rank-nullify $\lim_{B\to\infty} (in(B)) + \lim_{B\to\infty} (kar(B)) = 2$ $=) \lim_{\Omega \to \Omega} (\operatorname{in}(BC)) \leq 2$ $\lim_{\Omega \to \Omega} (\operatorname{in}(A))$ Since ZZlim (in(A)) = 3 - dim (herca)) => dim (kerA) = 1 => /rerA = {0}3 so A is not invertible. The Vi, ..., vn in R^ form a besis of Rn if and only is A = (1 1) is invertible. $in(\vec{v}_1 \cdots \vec{v}_n) = Span \{\vec{v}_1, \dots, \vec{v}_n\}$ V, ..., Vn is a basis of Rn (>> dim (span {v, ..., vn}) = n (=> lim (im (A)) = n (2 din (leer (A)) = 0 (12ank-Mility) (=> |zer(A) = 30} => A is invertible.

Eg For which Values (e is (1) 1) (-1) a basis of \mathbb{R}^3 ? Check (1 1 -1) invertible (1 1-1) R, = R,-R2 (1 0-3)

[12 = R-R1 | 0 1 2 | 0 0 k-4) | 0 0 k-4) We can finish row reduction only when \$ # #2 So, we have a bosis when 12 # ± 2. Coordinates Consider a subspace $V = 5pan \begin{cases} 1 \\ 2 \\ 1 \end{cases}$ S_0 $u = 2 v_1 + 1 v_2$ Since Jin V = 2, in can be described by just the numbers.

\[
\begin{pmatrix}
\delta_1 & \delta_2 & \delta_1 & \delta_2 &