9.5 Three Time Series Models

MBC 638

Data Analysis and Decision Making

2 of 41

Time Series Models

3 of 41

Time Series Models

1. First-order autoregressive model, a.k.a. AR(1)

4 of 41

Time Series Models

- 1. First-order autoregressive model, a.k.a. AR(1)
- 2. Moving average forecast model

5 of 41

Time Series Models

- 1. First-order autoregressive model, a.k.a. AR(1)
- 2. Moving average forecast model
- 3. Exponential smoothing model

Autoregressive Model: AR(1)

7 of 41

Autoregressive Model: AR(1)

 Takes advantage of linear relationship between successive values of time series

8 of 41

Autoregressive Model: AR(1)

- Takes advantage of linear relationship between successive values of time series
- First-order autoregressive model

9 of 41

Autoregressive Model: AR(1)

- Takes advantage of linear relationship between successive values of time series
- First-order autoregressive model
 - Linear regression equation: $y_t = \beta_0 + \beta_1 y_{t-1} + \varepsilon_t$

10 of 41

Autoregressive Model: AR(1)

- Takes advantage of linear relationship between successive values of time series
- First-order autoregressive model
 - Linear regression equation: $y_t = \beta_0 + \beta_1 y_{t-1} + \varepsilon_t$
 - y_t = output at time t

Autoregressive Model: AR(1)

- Takes advantage of linear relationship between successive values of time series
- · First-order autoregressive model
 - Linear regression equation: $y_t = \beta_0 + \beta_1 y_{t-1} + \varepsilon_t$
 - y_t = output at time t
 - Example: March; *t* = 3

12 of 41

Autoregressive Model: AR(1)

- Takes advantage of linear relationship between successive values of time series
- First-order autoregressive model
 - Linear regression equation: $y_t = \beta_0 + \beta_1 y_{t-1} + \varepsilon_t$
 - y_t = output at time t
 - Example: March; *t* = 3
 - $y_3 = \beta_0 + \beta_1 y_{3-1} + \varepsilon_3$

13 of 41

Autoregressive Model: AR(1)

- Takes advantage of linear relationship between successive values of time series
- First-order autoregressive model
 - Linear regression equation: $y_t = \beta_0 + \beta_1 y_{t-1} + \varepsilon_t$
 - y_t = output at time t
 - Example: March; *t* = 3
 - $y_3 = \beta_0 + \beta_1 y_{3-1} + \varepsilon_3$
 - I.e., predicting March data by using February data

Moving Average Model

15 of 41

Moving Average Model

A.k.a. "rolling average method"; smooths out short-term fluctuations

16 of 41

Moving Average Model

A.k.a. "rolling average method"; smooths out short-term fluctuations

 Uses average of last several values of time series to forecast next value; k = number of values in span

17 of 41

Moving Average Model

A.k.a. "rolling average method"; smooths out short-term fluctuations

- Uses average of last several values of time series to forecast next value; k = number of values in span
 - Example: Monthly data, span (k) = 3

Moving Average Model

A.k.a. "rolling average method"; smooths out short-term fluctuations

- Uses average of last several values of time series to forecast next value; k = number of values in span
 - Example: Monthly data, span (k) = 3
 - I.e., use average of values from January,
 February, and March to predict April value

19 of 41

Moving Average Model

A.k.a. "rolling average method"; smooths out short-term fluctuations

- Uses average of last several values of time series to forecast next value; k = number of values in span
 - Example: Monthly data, span (k) = 3
 - I.e., use average of values from January,
 February, and March to predict April value
- Can look back more than one time period

20 of 41

Moving Average Model

A.k.a. "rolling average method"; smooths out short-term fluctuations

- Uses average of last several values of time series to forecast next value; k = number of values in span
 - Example: Monthly data, span (k) = 3
 - I.e., use average of values from January,
 February, and March to predict April value
- Can look back more than one time period
- Disadvantage: If, say, n = 100 and k = 5, forecast overlooks 95% of available data

Exponential Smoothing Model

22 of 41

Exponential Smoothing Model

Best suited for forecasting time series without seasonal variation

23 of 41

Exponential Smoothing Model

- Best suited for forecasting time series without seasonal variation
- Unlike moving average model, data values not all weighted equally

24 of 41

Exponential Smoothing Model

- Best suited for forecasting time series without seasonal variation
- Unlike moving average model, data values not all weighted equally
- Forecasting equation: $\hat{y}_t = wy_{t-1} + (1 w)\hat{y}_{t-1}$

Exponential Smoothing Model

- Best suited for forecasting time series without seasonal variation
- Unlike moving average model, data values not all weighted equally
- Forecasting equation: $\hat{y}_t = wy_{t-1} + (1 w)\hat{y}_{t-1}$
 - \hat{y}_t = estimate of y at time period t

26 of 41

Exponential Smoothing Model

- Best suited for forecasting time series without seasonal variation
- Unlike moving average model, data values not all weighted equally
- Forecasting equation: $\hat{y}_t = wy_{t-1} + (1 w)\hat{y}_{t-1}$
 - \hat{y}_t = estimate of y at time period t
 - Example: *t* = February

27 of 41

Exponential Smoothing Model

- Best suited for forecasting time series without seasonal variation
- Unlike moving average model, data values not all weighted equally
- Forecasting equation: $\hat{y}_t = wy_{t-1} + (1 w)\hat{y}_{t-1}$
 - \hat{y}_t = estimate of y at time period t
 - Example: *t* = February
 - w = smoothing constant

Exponential Smoothing Model

- Best suited for forecasting time series without seasonal variation
- Unlike moving average model, data values not all weighted equally
- Forecasting equation: $\hat{y}_t = wy_{t-1} + (1 w)\hat{y}_{t-1}$
 - \hat{y}_t = estimate of y at time period t
 - Example: *t* = February
 - w = smoothing constant
 - Your choice, pick any number between 0 and 1

29 of 41

Exponential Smoothing Model

- Best suited for forecasting time series without seasonal variation
- Unlike moving average model, data values not all weighted equally
- Forecasting equation: $\hat{y}_t = wy_{t-1} + (1 w)\hat{y}_{t-1}$
 - \hat{y}_t = estimate of y at time period t
 - Example: *t* = February
 - w = smoothing constant
 - Your choice, pick any number between 0 and 1
 - Example: *w* = 80%

30 of 41

Exponential Smoothing Model: Example

• Formula: $\hat{y}_t = wy_{t-1} + (1 - w)\hat{y}_{t-1}$

Exponential Smoothing Model: Example

- Formula: $\hat{y}_t = wy_{t-1} + (1 w)\hat{y}_{t-1}$
- February forecast = \hat{y}_t

32 of 41

Exponential Smoothing Model: Example

- Formula: $\hat{y}_t = wy_{t-1} + (1 w)\hat{y}_{t-1}$
- February forecast = \hat{y}_t
- 80% of January value = $wy_{t-1} = 0.8 y_{t-1}$

33 of 41

Exponential Smoothing Model: Example

- Formula: $\hat{y}_t = wy_{t-1} + (1 w)\hat{y}_{t-1}$
- February forecast = \hat{y}_t
- 80% of January value = $wy_{t-1} = 0.8 y_{t-1}$
- 20% of January forecast = $(1 w) \hat{y}_{t-1}$ = $(1 - 0.8) \hat{y}_{t-1} = 0.2 \hat{y}_{t-1}$

34 of 41

Exponential Smoothing Model: Example

- Formula: $\hat{y}_t = wy_{t-1} + (1 w)\hat{y}_{t-1}$
- February forecast = \hat{y}_t
- 80% of January value = $wy_{t-1} = 0.8 y_{t-1}$
- 20% of January forecast = $(1 w) \hat{y}_{t-1}$ = $(1 - 0.8) \hat{y}_{t-1} = 0.2 \hat{y}_{t-1}$
- January forecast = $\hat{y}_{t-1} = \hat{y}_{2-1}$

Exponential Smoothing Model: Example

- Formula: $\hat{y}_t = wy_{t-1} + (1 w)\hat{y}_{t-1}$
- February forecast = \hat{y}_t
- 80% of January value = wy_{t-1} = 0.8 y_{t-1}
- 20% of January forecast = $(1 w) \hat{y}_{t-1}$ = $(1 - 0.8) \hat{y}_{t-1} = 0.2 \hat{y}_{t-1}$
- January forecast = $\hat{y}_{t-1} = \hat{y}_{2-1}$
 - January forecast incorporates data from December and prior months

36 of 41

Exponential Smoothing Model: Example

- Formula: $\hat{y}_t = wy_{t-1} + (1 w)\hat{y}_{t-1}$
- February forecast = \hat{y}_t
- 80% of January value = $wy_{t-1} = 0.8 y_{t-1}$
- 20% of January forecast = $(1 w) \hat{y}_{t-1}$ = $(1 - 0.8) \hat{y}_{t-1} = 0.2 \hat{y}_{t-1}$
- January forecast = $\hat{y}_{t-1} = \hat{y}_{2-1}$
 - January forecast incorporates data from December and prior months
- Final equation: $\hat{y}_2 = 0.8 \ y_{2-1} + (1 0.8) \ \hat{y}_{2-1}$

37 of 41

Exponential Smoothing Notes

38 of 41

Exponential Smoothing Notes

• The smaller the w, the greater its smoothing effect

Exponential Smoothing Notes

- The smaller the *w*, the greater its smoothing effect
 - Smoothing constant always between 0 and 1

40 of 41

Exponential Smoothing Notes

- The smaller the *w*, the greater its smoothing effect
 - Smoothing constant always between 0 and 1
 - Larger smoothing constant → more fluctuation
 → closer to actual data

41 of 41

Exponential Smoothing Notes

- The smaller the w, the greater its smoothing effect
 - Smoothing constant always between 0 and 1
 - Larger smoothing constant → more fluctuation
 → closer to actual data
- Excel uses "damping constant": (1 − w)