Discrete Choice Models in R

Daniel Guhl & Sebastian Gabel

Institute of Marketing School of Business and Economics Humboldt University Berlin and

So1 GmbH Berlin

Introduction — 2 | 21

Laundry Detergent Choice in Supermarket

Introduction — 3 | 21

Orange Juice Choice in Experiment

If these were your only options, which would you choose?

1 / 16

Brand	Hohes C	Albi	Valensina	NONE: I wouldn't
Price	1,69 €/L	1,09 €/L	1,99 €/L	choose any of these.
FairTrade label	No	Yes	Yes	
Package type	Plastic bottle (PET)	Carton (Tetra Pak)	Plastic bottle (PET)	
	<u> </u>		<u> </u>	

Introduction 4 | 21

Session Choice at eRum...you picked well;)

10:45-12:15	Methodology 1 (McKinsey session)	Business 1	Packages 1
15:00-16:30	Methodology 2	Business 2	Packages 2
18:20-19:45	Methodology 3	Data workflow 1	BioR

Introduction 5 | 21

Discrete Choice Models: Background

- ▶ Discrete Choice Models: model and model assumptions (Train, 2009)
 - \triangleright Decision maker i obtains utility from alt. j at time t: $U_{ijt} = V_{ijt} + \epsilon_{ijt}$
 - \triangleright Decision maker is utility maximizer: $U_{ijt} > U_{ikt}, \ \forall k \neq j$
 - ho Error term is distributed iid type I EV: $P_{ijt} = \frac{\exp\{V_{ijt}\}}{\sum_k \exp\{V_{ikt}\}}$
 - Mixed Logit (MXL) or random effects MNL: decision makers have heterogeneous preferences: $V_{ijt} = x'_{ijt} \cdot \beta_i$ with $\beta_i \ MVN(\mu, \Sigma)$
- Discrete Choice Models are widely accepted
 - ▶ Daniel McFadden: 2000 Nobel Memorial Prize in Economic Sciences ("for his development of theory and methods for analyzing discrete choice")
 - Often used in academia (Chandukala et al., 2007)
 - Often used in practice (e.g., Apple vs. Samsung: The \$2 Billion Case, see Netzer/Sambandam, 2014)

Introduction 6 | 21

Discrete Choice Models in R

- Inference (and selected packages):
 - ▷ Classical (Maximum Simulated Likelihood): mlogit , gmnl
 - ▷ Bayesian (Hierarchical Bayes): bayesm , ChoiceModelR
- ▶ Stan (probabilistic programming language, see Carpenter et al., 2016):
 - Stan uses Hamiltonian Monte Carlo (NUTS, see Hoffmann/Gelman, 2014);
 more efficient than Gibbs/Metropolis-Hastings
 - ▷ Stan is open source, written in C++, and provides interfaces to many other prog. languages including Python, R, Stata, Matlab, Julia, ...
 - Nice features, e.g. ShinyStan, loo, parallel chains, model checking, output summary, plots, . . .
 - ▶ But: there is no implementation available for DCM, especially MXL

▶ Why is Stan a good idea?

- MXL models can be difficult to estimate
- ▶ R packages use optimized implementations of the "Allenby/Train-method" (see Train, 2009); but what about "non-standard models"?
- Ben-Akiva/McFadden/Train (2016): "Stan is the best general-purpose method, but ..."-argument

(Our First) MXL in Stan

```
1 data {
    int < lower = 1 > N:
                                                               number of obs.
    int < lower = 1 > K;
                                                               number of par.
    int < lower = 2 > J:
                                                               number of alts.
    int < lower = 1 > 1:
                                                               number of resp.
   int < lower = 1, upper = J > y[N];
                                                               dep var
    int < lower = 1, upper = l > id[N];
                                                               resp. index
    matrix[J, K] x[N];
                                                               x arrays
9
10
  parameters {
    vector[K] mu;
                                                                mean
    cov_matrix[K] Sigma;
13
                                                                cov matrix
    vector[K] beta[I];
                                                             // reps. par
15
16
  model {
    mu ~ normal(0, 100);
                                                             // priors
18
    Sigma ~ inv_wishart(K, diag_matrix(rep_vector(1.0, K)));
19
20
    for (i in 1:1) {
21
       beta[i] ~ multi_normal(mu, Sigma);
                                                             // sample beta_i
23
    for (n in 1:N) {
24
      y[n] ~ categorical_logit(x[n] * beta[id[n]]); // logLik
25
26
27
```

Simulation Study Setup

▶ General setup:

- Number of alternatives $J \in \{4,8\}$ (market shares: $ms_4 \in [14\%, 40\%]$ and $ms_8 \in [8\%, 24\%]$) and households $I \in \{150, 300\}$
- \triangleright Number of variables $K \in \{4,8\}$ (price +(J-1) alternative specific constants)
- ▷ Number of estimated coefficients $C = K + K \cdot (K+1)/2$ (means + full covariance matrix)
- ▶ Number of replications $R \in \{1, ..., 30\}$

▶ Variables:

$$ho \; \mathit{asc}_{j_1,j_2} = egin{cases} 1 & \mathsf{if} \; j_1 = j_2 \ 0 & \mathsf{otherwise} \end{cases}$$

- ▶ price ~ U(3,5)
- $\triangleright \ \beta_i \sim \mathsf{MVN}(\mu_{nj}, \Sigma_{nj})$

Approaches:

- \triangleright ours: Stan (single-core), Stan (multi-core, n=4)

Simulation Study Results (1)

Simulation Study Results (2)

Runtime

Effective Samples

- ▶ 162 s for 40,000 samples
- ▶ 225 effective samples

- ▶ 223 s for 40,000 samples
- ▶ 115 effective samples

- ▶ 842 s for 4,000 samples
- ➤ 2,490 effective samples

Time per Effective Sample

Willingness-to-pay for a Fair Trade Label

- Willingness-to-pay (WTP) is an essential measure in QME (Netzer/Sambandam, 2014)
- ▶ Marginal rate of substitution between attribute and price: $WTP = \frac{\partial V/\partial x}{|\partial V/\partial price|}$
- ▶ Scholars advocate estimation of DCM in WTP-space (Sonnier et al., 2007)
 - \triangleright Preference-space: $V_{ijt} = x'_{ijt} \cdot \beta_i \alpha_i \cdot price_{ijt}$
 - ho WTP-space: $V_{ijt} = \lambda_i \cdot (x_{ijt}^i \cdot \omega_i \textit{price}_{ijt})$
- ▶ MVN-prior directly on WTP (ω) instead of preferences (β)
- ► No R -package available for estimating DCM in WTP-space "out-of-the-box" in a bayesian framework (but there is gmm1 using MSL)
- However, product of parameters makes estimation more challenging
 - Even higher correlation in standard samplers
 - ▶ More iteration
 - Extreme thinning ("... kept every 100th draw")

Setup

Setup:

- Data from choice experiment of Paetz/Guhl (2016)
- → 4 attributes: brand (Albi, <u>Granini</u>, HohesC, Valensina), packaging (carton, <u>PET</u>), FT label (yes, <u>no</u>), price (1.09, 1.39, 1.69, 1.99 Euro)
- ▶ 200 respondents
- ▶ 16 choices each
- ▶ 4 alternatives (3 brands + no-buy)

► Stan:

- ▶ We run Stan in parallel (4 chains)
- \triangleright 3,500 iterations incl. 1,000 for "warmup" = 10,000 draws
- \triangleright Successful convergence: all R-values are < 1.005
- \triangleright Efficiency: between 0.75 and 1.5 s/n_{eff}

gmnl:

- ▶ 4000 Halton draws
- ▶ BHHH for optimization
- ▶ Runtime: 43 minutes

WTP estimates ("standard errors" in parentheses)

	Stan		gmnl	
Attribute	Mean	Std dev	Mean	Std dev
No-buy option	-1.425	0.655	-1.434	0.633
	(0.059)	(0.053)	(0.018)	(0.025)
Albi	-0.088	0.392	-0.066	0.460
	(0.036)	(0.035)	(0.019)	(0.021)
Granini	0.024	0.352	0.055	0.319
	(0.032)	(0.033)	(0.016)	(0.018)
Hohes C	0.240	0.512	0.234	0.541
	(0.042)	(0.040)	(0.016)	(0.021)
FT label (yes)	0.258	0.345	0.260	0.352
	(0.028)	(0.026)	(0.012)	(0.014)
Packaging (carton)	0.144	0.506	0.166	0.567
	(0.040)	(0.035)	(0.013)	(0.019)

Package dcm _______ 17 | 21

Status

- ► Main idea similar to rstanarm :
 - ▶ Pre-compiled Stan models for "standard" DCMs
 - ▷ Employs rstan as R interface to call Stan

▶ Data handling:

- ▶ Provides functions to create data for dcm
- ▶ Reshape bayesm , ChoiceModelR , and mlogit data

Supported models:

- "plain vanilla" MNL and MXL
- ▶ MXL in WTP-space
- ▶ MXL with log-norm price parameter
- ightharpoonup Models with μ as function of observables ("observed heterogeneity")

Outlook:

- ▷ About to release first version of dcm on github
- ▶ More models (additional help + feedback is welcome!)
- ▶ More convenience functions (e.g., analyzing output from bayesm or ChoiceModelR using rstan)

Conclusion — 18 | 21

Conclusion

- ▶ Stan seems work well for estimating Discrete Choice Models
- Our implementation outperforms specialized and optimized implementations of standard models in R
- ▶ Speed comparisons are worthless w/o taking the effective sample size into account
- ► Additional flexibility is great for research ("non-standard-models")
- ► Coding models in Stan is easy + great resources online (e.g., manuals, tutorials, case studies, ...)
- ▶ However, high performance code needs (some) optimization + "tricks"

Thank you very much for your attention! Questions?

References

Ben-Akiva, M., D. McFadden, & K. Train (2016): Foundations of Stated Preferences Elicitation Consumer Behavior and Choice-Based Conjoint Analysis. *Working Paper*.

Carpenter, B., A. Gelman, M. Hoffman, D. Lee, B. Goodrich, M. Betancourt, M. A. Brubaker, J. Guo, P. Li, & A. Riddell (2016): Stan: A probabilistic programming language. *Journal of Statistical Software* (in press).

Chandukala, S. R., J. Kim, T. Otter, P. E. Rossi, & G. M. Allenby (2007): Choice Models in Marketing: Economic Assumptions, Challenges and Trends. *Foundations and Trends in Marketing* 2(2), 97–184.

Hoffmann, M. & A. Gelman (2014): The No-U-Turn Sampler: Adaptively Setting Path Lengths in Hamiltonian Monte Carlo. *Journal of Machine Learning Research* 15(1), 1593–1623.

Netzer, O. & R. Sambandam (2014): Apple vs. Samsung: The \$2 Billion Case. *Columbia Case Works*, Columbia Business School.

Paetz, F. & D. Guhl (2016): Socially Conscious Consumption: Consumers' Willingness-To-Pay for Fair Trade Labels. *Proceedings of the DA2PL'2016*.

Sonnier, G., A. Ainslie, & T. Otter (2007): Heterogeneity distributions of willingness- to-pay in choice models. Quantitative Marketing and Economics 5(3), 313–331.

Train, K. (2009): Discrete Choice Methods with Simulation. 2nd edition, Cambridge University Press.

Appendix 21 | 21

Server spec

► CPU:

- ⊳ E5-2690 v2
- ▶ Intel Xeon (Ivy Bridge EP)
- ▷ 25MB L3 Cache
- DDR3 1866

► RAM:

- ▶ 256GB DDR3 1866 DIMM
- ▶ REG
- ▶ ECC