EN530.603 Applied Optimal Control Homework #1

September 11, 2013

Due: September 25, 2013 (before class)

Lecturer: Marin Kobilarov

- 1. Find the stationary points (i.e. that satisfy $\nabla L = 0$) of the following and determine whether they are maxima, minima, or saddle points:
 - (a) $L(x) = (1 x_1)^2 + 100(x_2 x_1^2)^2$
 - (b) L(u) = (u-1)(u+2)(u-5)
 - (c) $L(u) = (u_1^2 + 3u_1 4)(u_2^2 u_2 + 6)$
- 2. Find the stationary points of the following and determine whether they are maxima, minima, or saddle points:

(a)

minimize
$$L(x) = \frac{1}{2}(x_1^2 + x_2^2 + x_3^2)$$
 (1)

subject to
$$f(x) = x_1 + x_2 + x_3 = 0$$
 (2)

(b)

minimize
$$L(u) = (u_1^2 + 3u_1 - 4)(u_2^2 - u_2 + 6)$$
 (3)

subject to
$$f(u) = u_1 - 2u_2 = 0$$
 (4)

3. Consider the optimization of a quadratic cost subject to linear constraints, i.e. minimize

$$L(x, u) = \frac{1}{2}x^T Q x + \frac{1}{2}u^T R u,$$

subject to

$$f(x, u) = Ax + Bu + c = 0,$$

where $x \in \mathbb{R}^n$, $u \in \mathbb{R}^m$; Q and R are positive definite matrices; A and B are matrices of appropriate size, and $c \in \mathbb{R}^n$. Derive the necessary and sufficient conditions for an optimal solution. Specify any assumptions made in obtaining the solution.

4. Implementation: you are free to use parts of the code provided at the course homepage.

(a) Write a MATLAB function which implements gradient descent to optimize the costfunction in problem 1a given by

$$L(x) = (1 - x_1)^2 + 100(x_2 - x_1^2)^2.$$

You can use either a constant or a variable stepsize. What is the effect of the step-size choice? Use a starting point at x = (0,0).

(b) Find analytically the optimum of the following problem:

$$minimize L(x, u) = x^2 + 10u^2$$
(5)

subject to
$$f(x, u) = x - 2u + 3 \le 0$$
 (6)

and use MATLAB fmincon function to verify your solution.

Note: email your code to marin@jhu.edu with subject line starting with: EN530.603.F2013; in addition attach a printout of the code to your homework solutions.

5. Consider the minimization of f(x) for $x \in \mathbb{R}^n$. Newton's method is derived by finding the direction $d^k \in \mathbb{R}^n$ which minimizes the local quadratic approximation f^k of f at x^k defined by

$$f^k(d) = f(x^k) + \nabla f(x^k)^T d + \frac{1}{2} d^T \nabla^2 f(x^k) d.$$

In contrast, the search direction d^k in a trust-region Newton method is derived by solving the constrained optimization

minimize
$$f^k(d)$$
 subject to $||d|| \le \gamma^k$,

for a given $\gamma^k > 0$ called the trust-region radius. Using the Lagrangian multiplier approach prove that this optimization is equivalent to solving

$$(\nabla^2 f(x^k) + \delta^k I)d^k = -\nabla f(x^k),$$

where $\delta^k \geq 0$. How do you interpret the value δ^k . Can you propose a reasonable choice for δ^k considering the properties of $\nabla^2 f(x^k)$.

- 6. Read one (or both) of the following two historical perspectives on optimal control and write a one-paragraph summary of the paper you choose:
 - (a) Arthur Bryson "Optimal Control—1950 to 1985", IEEE Control Systems, 1996
 - (b) Sussman and Willems, "300 Years of Optimal Control: From the Brachystochrone to the Maximum Principle", IEEE Control Systems, 1997