A Book of Abstract Algebra (2nd Edition)

Chapter AC, Problem 4E

Bookmark

Show all steps: ON

ON

Problem

Use mathematical induction to prove the following:

$$1^3 + 2^3 + \dots + n^3 = \frac{1}{4}n(n+1)^2$$

Step-by-step solution

Step 1 of 2

Objective:-

The objective is to prove $1^3 + 2^3 + \cdots + n^3 = \frac{1}{4}n^2(n+1)^2$ using mathematical induction.

Comment

Step 2 of 2

Proof:-

$$p(n): 1^3 + 2^3 + \dots + n^3 = \frac{1}{4}n^2(n+1)^2$$

Let consider rule for n=1.

$$p(1):1^3 = \frac{1}{4} \cdot 1^2 (1+1)^2$$

$$p(1):1=\frac{1}{\cancel{A}}\cdot\cancel{A}$$

$$p(1):1=1$$

This rule is true for n = 1.

Let this statement is true for n = k.

$$p(k): 1^3 + 2^3 + \dots + k^3 = \left(k\left(\frac{k+1}{2}\right)\right)^2 \qquad \dots (1)$$

Let consider rule for n = k + 1.

$$P(k+1): 1^3 + 2^3 + \dots + k^3 + (k+1)^3$$

Use the equation (1).

$$P(k+1):1^{3}+2^{3}+\cdots+k^{3}+(k+1)^{3}$$

$$P(k+1):\frac{1}{4}k^{2}(k+1)^{2}+(k+1)^{3} \qquad \{from \ equation (1)\}$$

$$P(k+1):(k+1)^{2}\left(\frac{k^{2}}{4}+k+1\right)$$

$$P(k+1):(k+1)^{2}\left(\frac{k^{2}+4k+4}{4}\right)$$

$$P(k+1):(k+1)^{2}\frac{1}{4}(k+2)^{2}$$

$$P(k+1):\frac{1}{4}(k+1)^{2}((k+1)+1)^{2}$$

This result also true for n = k + 1. Hence, by mathematical induction this rule is true for all positive integer n.

Proved

Comment

COMPANY

About Chegg Chegg For Good College Marketing Corporate Development **Investor Relations** Jobs Join Our Affiliate Program Media Center Site Map

LEGAL & POLICIES

Advertising Choices Cookie Notice **General Policies** Intellectual **Property Rights** Terms of Use Global Privacy Policy

Honor Code Honor Shield

CHEGG PRODUCTS AND SERVICES

Cheap Textbooks Chegg Coupon Chegg Play Chegg Study Help College Textbooks eTextbooks Flashcards Learn Chegg Math Solver

Mobile Apps Sell Textbooks Solutions Manual Study 101 Textbook Rental **Used Textbooks Digital Access** Codes Chegg Money

CHEGG NETWORK

EasyBib Internships.com Thinkful

CUSTOMER SERVICE

Customer Service Give Us Feedback Help with eTextbooks Help to use EasyBib Plus Manage Chegg Study Subscription Return Your Books Textbook Return Policy