Nome: Cartão:

Prova 2

Dicas gerais:

- Lê todas as questões antes de começar e pergunta em caso de dúvidas.
- Responde a cada questão, ainda que a resposta não esteja completa.
- Em questões de formulação: documenta o significado de todas variáveis e restrições.

Questão 1 (Formulação, 2 pt)

Formule um programam que resolve o problema de sequenciamento de tarefas em máquinas paralelas idênticas ($P \mid\mid C_{\max}$): dado n tarefas com tempo de processamento $t_i,\ 1 \leq i \leq n$, e m máquinas queremos encontrar uma alocação de tarefas a máquinas tal que o duração total é minimizado. A duração total é definido pelo tempo de término da última tarefa.

Exemplo: Supõe que temos três tarefas com tempo de processamento $t_1=1h$, $t_2=1h$ e $t_3=2h$ e duas máquinas. Alocando tarefas 1 e 3 na primeira máquina e tarefa 2 na segunda, o processamento termina após 3h na primeira e após 1h na segunda maquina e a duração total é 3h. Alocando tarefas 1 e 2 na primeira máquina e tarefa 3 na segunda o processamento termina após 2h nas duas máquinas que é igual a duração total.

Questão 2 (Formulação, 2 pt)

Dado um grafo não-direcionado G = (V, A) um conjunto dominante D é um subconjunto do conjunto de vértices V tal que cada vértice ou faz parte de D ou possui um vizinho que faz parte de D. Formule um programa inteira que encontra o menor conjunto dominante.

Questão 3 (Dualidade, 2 pt)

Supõe que o dual do programa linear $P: \max\{c^t x \mid Ax \leq b_1, x \geq 0\}$ possui uma solução viável. É possível que P é ilimitado? É possível que o programa linear $\max\{c^t x \mid Ax \leq b_2, x \geq 0\}$ é ilimitado? (Observe que o lado direito mudou para b_2 .) Justifique a resposta.

Questão 4 (Analise de sensibilidade, 2 pt)

O dicionário final na solução de

maximiza
$$-5x_1 + 5x_2 + 13x_3$$

sujeito a $-x_1 + x_2 + 3x_3 \le 20$
 $12x_1 + 4x_2 + 10x_3 \le 90$
 $x_1, x_2, x_3 \in \mathbb{R}$

é

(com variáveis de folga x_4 e x_5). Usa análise de sensibilidade para responder as seguintes perguntas:

- a) Qual a solução ótima caso a função objetivo é modificada para $-4x_1 + 5x_2 + 13x_3$?
- b) Substituindo o coeficiente 5 de x_2 na função objetivo por 5+t, quais os limites de t tal que a solução atual mantem se ótima? Qual a função objetivo em função de t?

Questão 5 (Método Simplex dual, 2 pt)

Supõe que adicionamos a restrição

$$2x_1 + 3x_2 + 5x_3 \le 50$$

no programa linear da questão anterior. Insere essa restrição no dicionario final (chama a variável de folga x_6) e usa o método Simplex dual para determinar a nova solução e o novo valor da função objetivo.

Dica:

Após a solução de um sistema linear, temos o dicionário ótimo

$$z = z^* - (y_N^*)^t x_N$$
$$x_B = x_B^* - B^{-1} N x_N$$

com

$$x_B^* = B^{-1}b$$

$$y_N^* = ((B^{-1}N)^t c_B - c_N)$$

$$z^* = c_B^t B^{-1}b$$