

- Mhat happens to the load line if (i) V_{cc} enhanced to 25V, (ii) R_{C} increased to 4.7kΩ and (iii) R_{B} reduced to 500 kΩ. In each of these cases, other parameters of the circuit remain the same.
- For $\beta_{DC} = 200$, determine V_C . (Level grad.) $T_B = \frac{V_{BB} V_{BE}}{R_B} = \frac{10V 0 + V}{1 \text{ MLC}} = 9.3 \text{ M}$ if $T_C = \frac{1.86 \text{ MA}}{1 \text{ MLC}} = \frac{1.86 \text{ MA}}{2.34 \text{ M}}$.

 If β_{DC} varies between 25 to 300 then determine $V_{C(\text{max})}$ and $V_{C(\text{min})}$. $V_C = V_{CC} T_C R_C = \frac{2.00 \times 9.3 \text{ MA}}{2.34 \text{ M}} = \frac{1.86 \text{ MA}}{2.34 \text$
- Determine whether the transistor is saturated for each of these changes: (i) $R_B=33 \text{ k}\Omega$, $\beta_{DC}=100$. (ii) $V_{BB}=5V$, $\beta_{DC}=200$, (iii) $R_C=10 \text{ k}\Omega$, $\beta_{DC}=50 \text{ and } (iv) V_{CC}=10V$, $\beta_{DC}=100$.

- 2. For the given circuit in Fig.2,
 - a) Determine $V_{\rm C}$ and $V_{\rm E}$.
 - b) If $R_E = 3.6 \text{ k}\Omega$ then determine V_{CE} .
 - c) If $V_{CC} = 15$ V then determine V_C .
 - d) If the bae supply voltage $V_{\rm BB}$ decreases by 10%, what happens to the base current, collector current, and collector voltage?
- 3. For a given voltage-divider bias circuit in Fig.3
 - a) Is the voltage divider stiff?
 - b) Determine the operating point Q on the load line.
 - c) What will happen to this Q-point when β_{DC} varies between 50-300?
 - d) What will happen to this Q-point when R_E is doubled?
- √4. For the circuit shown in Fig.3, determine the resistor values (i.e., R_1 , R_2 , R_E and R_C) to meet these specifications: $V_{CC} = 10V$; V_{CE} @ midpoint, $I_C = 10$ mA and $\beta_{DC} = 100$ -300.

VCE, cert off

- 5. Analyse the circuit in Fig.4 to locate the Q-point on the load-line.
- 6. Analyse the given emitter-feedback circuit in Fig.5. How does the operating point change when β_{DC} varies from 100 to 300?

7. Analyse the given collector-feedback circuit in Fig.6. How does the operating point change when β_{DC} varies from 100 to 300? Compare the results of Ques 5 and 6 and suggest which circuit gives better stability of Q-point?

