

Enatures

LPDDR5/LPDDR5X SDRAM

MT62F1536M32D4, MT62F3G32D8, MT62F768M32D2, MT62F768M64D4, MT62F1536M64D8

reatures	Options	Marking
• Architecture	Operating Voltage	F
– 17.1 GB/s maximum bandwidth per channel	$-V_{\rm DD1}/V_{\rm DD2H}/V_{\rm DD2L}/V_{\rm DDQ}/V_{\rm DDQ}$	
– Frequency range: 1067–5 MHz (data rate range per	(ODT off only):1.80V/1.05V/ V_{DD2H} or	
pin: 8533–40 Mb/s with WCK:CK = 4:1)	$0.90V/0.50V$ or $0.45V^{1}/0.30V$	
Selectable CKR (WCK:CK = 2:1 or 4:1)	Array configuration	
• LPDDR5X data interface	- 768 Meg x 32 (768M16 x 2Ch x 1R)	768M32
 Single x16 channel/die 	- 1536 Meg x 32 (768M16 x 2Ch x 2R)	1536M32
 Double-data-rate command/address entry 	- 3 Gig x 32 (1536M16 x 2Ch x 2R)	3G32
– Differential command clocks (CK_t/CK_c) for	- 768Meg x 64 (768M16 x 4Ch x 1R)	768M64
high-speed operation	- 1536Meg x 64 (768M16 x 4Ch x 2R)	1536M64
– Differential data clocks (WCK_t/WCK_c)	Device configuration	
Optional differential read strobe (RDQS_t/RDQS_c)	– 2 die in package (768M16 x 2 die)	D2
– 16 <i>n</i> -bit or 32 <i>n</i> -bit prefetch architecture	– 4 die in package (768M16 x 4 die)	D4
 Command-selectable burst lengths (BL = 16 or 32) 	– 8 die in package (768M16 x 8 die)	D8
in bank group or 16-bank modes	– 8 die in package (1536M8 x 8 die)	D8
 Background ZQ calibration/command-based ZQ 	• FBGA RoHS-compliant, "green" package	•
calibration	– 315-ball TFBGA	DS
 Optional link protection (link ECC) 	12.4mm x 15.0mm (TYP)	
– Partial-array self refresh (PASR) and partial-array	Seated height 1.1mm (MAX)	
auto refresh (PAAR) with segment mask	– 315-ball LFBGA	DV
 Ultra-low-voltage core and I/O power supplies 	12.4mm x 15.0mm (TYP)	
$-V_{DD1} = 1.70-1.95V$; 1.80V TYP	Seated height 1.3mm (MAX)	
$-V_{DD2H} = 1.01-1.12V$; 1.05V TYP	– 441-ball TFBGA	EK
$-V_{DD2L} = V_{DD2H}$ or 0.87–0.97V; 0.90V TYP	14.0mm x 14.0mm (TYP)	
$-V_{DDQ} = 0.50V \text{ or } 0.45V^1 \text{ TYP}; 0.30V \text{ TYP (ODT off)}$	Seated height 1.1mm (MAX)	
only) only)	 Speed grade, cycle time (^tWCK) 	
• I/O characteristics	– 8533 Mb/s	-023
– Interface-LVSTL 0.5/0.3	– 7500 Mb/s	-026
– I/O type: Low-swing single-ended, V _{SS} terminated	 Operating temperature 	
– V _{OH} -compensated output drive	$-25^{\circ}\text{C} \le \text{T}_{\text{C}} \le +85^{\circ}\text{C}$	WT
– Programmable V_{SS} on-die termination (ODT)	-40 °C $\leq T_C \leq +95$ °C	IT
 Non target ODT support 	• Revision	:В
– DVFSQ support		

Note: 1. $V_{DDQ} = 0.45V$ (TYP) only supported in 441-ball package up to 6400 Mb/s.

Data copyWrite X

• Low power features

single-ended RDQS

– DVFSC: Dynamic voltage frequency scaling core

- Single-ended CK, single-ended WCK and

Part Number Ordering Information

Figure 1: Part Number Chart

FBGA Part Marking Decoder

Due to space limitations, FBGA-packaged components have an abbreviated part marking that is different from the part number. Micron's FBGA part marking decoder is available at www.micron.com/decoder.

LPDDR5/LPDDR5X Data Sheet List

For general LPDDR5/LPDDR5X specifications, please refer to the data sheets below.

- General LPDDR5/LPDDR5X Specifications 1: Mode Registers
- General LPDDR5/LPDDR5X Specifications 2: AC/DC and Interface Specifications

2

• General LPDDR5/LPDDR5X Specifications 3: Features and Functionalities

Y4BM LPDDR5/LPDDR5X SDRAM

Contents

Part Number Ordering Information	2
FBGA Part Marking Decoder	
LPDDR5/LPDDR5X Data Sheet List	
Important Notes and Warnings	
General Notes	
Device Configuration	
Refresh Requirement Parameters	
Package Block Diagrams	
Dual Die, Dual Channel, Single Rank	
Quad Die, Dual Channel, Dual Rank	
Eight Die, Dual Channel, Dual Rank	
Quad Die, Quad Channel, Single Rank	
Eight Die, Quad Channel, Dual Rank	
Ball Assignments and Descriptions	
Package Dimensions	
315-Ball Package (Package Code: DS)	
315-Ball Package (Package Code: DV)	
441-Ball Package (Package Code: EK)	
Product-Specific Mode Register Definition	
I _{DD} Parameters	
Revision History	
Rev. D – 08/2022	
Rev. C – 04/2022	
Rev. B – 12/2021	
Rev. A = 10/2021	

List of Figures

Figure 1: Part Number Chart	2
Figure 2: Dual Die, Dual Channel, Single Rank Package Block Diagram	
Figure 3: Quad-Die, Dual-Channel, Dual-Rank Package Block Diagram	
Figure 4: Eight-Die, Dual-Channel, Dual-Rank Package Block Diagram	
Figure 5: Quad Die, Quad Channel, Single Rank Package Block Diagram	
Figure 6: Eight Die, Quad Channel, Dual Rank Package Block Diagram	
Figure 7: 315-Ball Dual-Channel Discrete FBGA	
Figure 8: 441-Ball Quad-Channel FBGA	
Figure 9: 315-Ball TFBGA – 12.4mm (TYP) × 15.0mm (TYP) × 1.1mm (MAX) (Package Code: DS)	
Figure 10: 315-Ball LFBGA – 12.4mm (TYP) × 15.0mm (TYP) × 1.3mm (MAX) (Package Code: DV)	
Figure 11: 441-Ball TERGA = 14 0mm (TYP) × 14 0mm (TYP) × 1 1mm (MAX) (Package Code: FK)	

Y4BM LPDDR5/LPDDR5X SDRAM

List of Tables

Table 1: Die Organization in the Package (x32)	8
Table 2: Die Organization in the Package (x64)	
Table 3: Die Addressing	
Table 4: Refresh Requirement Parameters	
Table 5: 315-Ball/Pad Descriptions	15
Table 6:	
Table 7: Mode Register Contents	22
Table 8: WT I _{DD} Parameters – Single Die	
Table 9: WT Full-Array Power-Down Self Refresh Current – Single Die	
Table 10: IT I _{DD} Parameters – Single Die	26
Table 11: IT Full-Array Power-Down Self Refresh Current – Single Die	28

Important Notes and Warnings

Micron Technology, Inc. ("Micron") reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions. This document supersedes and replaces all information supplied prior to the publication hereof. You may not rely on any information set forth in this document if you obtain the product described herein from any unauthorized distributor or other source not authorized by Micron.

Automotive Applications. Products are not designed or intended for use in automotive applications unless specifically designated by Micron as automotive-grade by their respective data sheets. Distributor and customer/distributor shall assume the sole risk and liability for and shall indemnify and hold Micron harmless against all claims, costs, damages, and expenses and reasonable attorneys' fees arising out of, directly or indirectly, any claim of product liability, personal injury, death, or property damage resulting directly or indirectly from any use of non-automotive-grade products in automotive applications. Customer/distributor shall ensure that the terms and conditions of sale between customer/distributor and any customer of distributor/customer (1) state that Micron products are not designed or intended for use in automotive applications unless specifically designated by Micron as automotive-grade by their respective data sheets and (2) require such customer of distributor/customer to indemnify and hold Micron harmless against all claims, costs, damages, and expenses and reasonable attorneys' fees arising out of, directly or indirectly, any claim of product liability, personal injury, death, or property damage resulting from any use of non-automotive-grade products in automotive applications.

Critical Applications. Products are not authorized for use in applications in which failure of the Micron component could result, directly or indirectly in death, personal injury, or severe property or environmental damage ("Critical Applications"). Customer must protect against death, personal injury, and severe property and environmental damage by incorporating safety design measures into customer's applications to ensure that failure of the Micron component will not result in such harms. Should customer or distributor purchase, use, or sell any Micron component for any critical application, customer and distributor shall indemnify and hold harmless Micron and its subsidiaries, subcontractors, and affiliates and the directors, officers, and employees of each against all claims, costs, damages, and expenses and reasonable attorneys' fees arising out of, directly or indirectly, any claim of product liability, personal injury, or death arising in any way out of such critical application, whether or not Micron or its subsidiaries, subcontractors, or affiliates were negligent in the design, manufacture, or warning of the Micron product.

Customer Responsibility. Customers are responsible for the design, manufacture, and operation of their systems, applications, and products using Micron products. ALL SEMICONDUCTOR PRODUCTS HAVE INHERENT FAILURE RATES AND LIMITED USEFUL LIVES. IT IS THE CUSTOMER'S SOLE RESPONSIBILITY TO DETERMINE WHETHER THE MICRON PRODUCT IS SUITABLE AND FIT FOR THE CUSTOMER'S SYSTEM, APPLICATION, OR PRODUCT. Customers must ensure that adequate design, manufacturing, and operating safeguards are included in customer's applications and products to eliminate the risk that personal injury, death, or severe property or environmental damages will result from failure of any semiconductor component.

Limited Warranty. In no event shall Micron be liable for any indirect, incidental, punitive, special or consequential damages (including without limitation lost profits, lost savings, business interruption, costs related to the removal or replacement of any products or rework charges) whether or not such damages are based on tort, warranty, breach of contract or other legal theory, unless explicitly stated in a written agreement executed by Micron's duly authorized representative.

General Notes

Throughout the data sheet, figures and text refer to DQs as DQ. DQ should be interpreted as any or all DQs collectively, unless specifically stated otherwise.

RDQS, CK, and WCK should be interpreted as RDQS_t, RDQS_c, CK_t, CK_c, and WCK_t, WCK_c respectively unless specifically stated otherwise. CA includes all CA pins used for a given density.

In timing diagrams, CMD is used as an indicator only. Actual signals occur on CA[6:0].

 V_{REF} indicates $V_{REF(CA)}$ and $V_{REF(DO)}$.

Complete functionality is described throughout the entire document. Any page or diagram may have been simplified to convey a topic and may not be inclusive of all requirements.

Any specific requirement takes precedence over a general statement.

Any functionality not specifically stated herein is considered undefined, illegal, is not supported, and will result in unknown operation.

Device Configuration

Table 1: Die Organization in the Package (x32)

Die Organization	768M32 (24 Gb/package)	1536M32 (48 Gb/package)	3G32 (96 Gb/package)
Channel A	x16 mode × 1 die	-	-
Channel B	x16 mode × 1 die	-	-
Channel A, rank 0	_	x16 mode × 1 die	-
Channel B, rank 0	-	x16 mode × 1 die	-
Channel A, rank 1	-	x16 mode × 1 die	-
Channel B, rank 1	-	x16 mode × 1 die	-
Channel A, rank 0 DQ[7:0]	_	-	x8 mode × 1 die
Channel A, rank 1 DQ[7:0]	-	-	x8 mode × 1 die
Channel B, rank 0 DQ[7:0]	-	-	x8 mode × 1 die
Channel B, rank 1 DQ[7:0]	_	-	x8 mode × 1 die
Channel A, rank 0 DQ[15:8]	-	-	x8 mode × 1 die
Channel A, rank 1 DQ[15:8]	-	-	x8 mode × 1 die
Channel B, rank 0 DQ[15:8]	_	-	x8 mode × 1 die
Channel B, rank 1 DQ[15:8]	_	-	x8 mode × 1 die

Notes: 1. Refer to the Package Block Diagram section in this data sheet.

Table 2: Die Organization in the Package (x64)

Die Organization	768M64 (48 Gb/package)	1536M64 (96 Gb/package)
Channel A, rank 0	x16 mode × 1 die	x16 mode × 1 die
Channel B, rank 0	x16 mode × 1 die	x16 mode × 1 die
Channel C, rank 0	x16 mode × 1 die	x16 mode × 1 die
Channel D, rank 0	x16 mode × 1 die	x16 mode × 1 die
Channel A, rank 1	-	x16 mode × 1 die
Channel B, rank 1	-	x16 mode × 1 die
Channel C, rank 1	-	x16 mode × 1 die
Channel D, rank 1	-	x16 mode × 1 die

Notes: 1. Refer to the Package Block Diagram section in this data sheet.

Table 3: Die Addressing

Description		b/pkg), 1536M3 ib/pkg), 1536M6		3 G	32 (96 Gb/packa	ge)
Density per die		12Gb			12Gb	
Bits		12,884,901,888		12,884,901,888		
Bank mode	BG mode	16B mode	8B mode	BG mode	8B mode	
Configuration	48Mb × 16 DQ		96Mb × 16 DQ × 8 banks	96Mb × 8 DQ × 4 banks × 4BG	96Mb × 8 DQ × 16 banks	192Mb × 8 DQ × 8 banks

Table 3: Die Addressing (Continued)

Description		b/pkg), 1536M3 ib/pkg), 1536M6		3G	32 (96 Gb/packa	ge)		
Number of banks	4	16	8	4	16	8		
Number of bank groups	4	1	1	4	1	1		
Array prefetch bits	256	256	512	128	128	256		
Rows per bank		49,152			98,304			
Columns		64			64			
Page size 2048 (bytes)		2048	4096	1024 1024		2048		
Native burst 16 length		16	32	16	16	32		
Number of I/Os		16		8				
Bank address	BA[1:0]	BA[3:0]	BA[2:0]	BA[1:0]	BA[3:0]	BA[2:0]		
Bank group BG[1:0] address		-	- BG[1:0]		-	-		
Row address	R[15:0]] (R14 = 0 when R	15 = 1)	R[16:0] (R15 = 0 when R16 = 1)				
Column address	C[5:0]			C[5:0]				
Burst address	t address B[3:0] B		B[4:0]	B[3:0]	B[3:0]	B[4:0]		
Burst starting address bound- ary		128-bit			128-bit	,		

Notes: 1. Refer to the SDRAM Addressing section in General LPDDR5/LPDDR5X Specifications 3.

2. Refer to the Speed Grades and Effective Burst Length in General LPDDR5/LPDDR5X Specifications 3.

Refresh Requirement Parameters

Table 4: Refresh Requirement Parameters

		12Gl	Die Die	
Parameter	Symbol	BG and 16B Mode	8B Mode	Unit
REFRESH cycle time (all banks)	^t RFCab	280	280	ns
REFRESH cycle time (per bank)	^t RFCpb	140	140	ns
Per bank refresh to per bank refresh time (different bank)	^t PBR2PBR	90	90	ns
Per bank refresh to ACTIVATE command time (different bank)	^t PBR2ACT	7.5	10	ns

Note: 1. This table only describes refresh parameters that are density dependent. Refer to Refresh Requirement section in General LPDDR5/LPDDR5X Specifications 3 for all refresh parameters.

Package Block Diagrams

Dual Die, Dual Channel, Single Rank

Figure 2: Dual Die, Dual Channel, Single Rank Package Block Diagram

Quad Die, Dual Channel, Dual Rank

Figure 3: Quad-Die, Dual-Channel, Dual-Rank Package Block Diagram

Eight Die, Dual Channel, Dual Rank

Figure 4: Eight-Die, Dual-Channel, Dual-Rank Package Block Diagram

Quad Die, Quad Channel, Single Rank

Figure 5: Quad Die, Quad Channel, Single Rank Package Block Diagram

Eight Die, Quad Channel, Dual Rank

Figure 6: Eight Die, Quad Channel, Dual Rank Package Block Diagram

Ball Assignments and Descriptions

Table 5: 315-Ball/Pad Descriptions

Symbol	Туре	Description
CK_t_[A:B] CK_c_[A:B]	Input	Clock: CK_t and CK_c are differential clock inputs. All double data rate (DDR) command/address inputs are sampled on both crossing points of CK_t and CK_c. The first crossing point is the rising (falling) edge of CK_t (CK_c) and second crossing point is falling (rising) edge of CK_t (CK_c). Single data rate (SDR) inputs, CS is sampled on the crossing point that is the rising (falling) edge of CK_t (CK_c).
CS0_[A:B], CS1_[A:B]	Input	Chip select: CS is part of the command code, and is sampled on the rising (falling) edge of CK_t (CK_c) unless the device is in power-down or deep sleep mode where it becomes an asynchronous signal. Each rank (0, 1) has its own CS signals. CS1_[A:B] become NC pins in a single-rank package.
CA[6:0]_[A:B]	Input	Command/address inputs: Provide the command and address inputs according to the command truth table.
WCK[1:0]_t_[A:B] WCK[1:0]_c_[A:B]	Input	Data clock: WCK_t and WCK_c are differential clock inputs used for write data capture and read data output.
DQ[15:0]_[A:B]	I/O	Data input/output: Bidirectional data bus.
RDQS[1:0]_t_[A:B] RDQS[1:0]_c_[A:B]	I/O Output	Read data strobe: RDQS_t and RDQS_c are differential output clock signals used to strobe data during a READ operation. RDQS_t is also used as a parity pin during write link protection enabled. Each byte of data has RDQS_t and RDQS_c signals.
DMI[1:0]_[A:B]	I/O	Data mask inversion: DMI serves multiple functions such as data mask (DM), data bus inversion (DBI), and parity at READ with ECC operation by setting the mode register. DMI is a bidirectional signal and each byte of data has a DMI signal.
ZQ_A	Reference	ZQ calibration reference: Used to calibrate the output drive strength and the termination resistance. The ZQ pin should be connected to V_{DDQ} through a 240 Ω ±1% resistor.
$V_{DDQ}, V_{DD1}, V_{DD2H}, V_{DD2L}$	Supply	Power supplies: Isolated on the die for improved noise immunity.
V _{SS}	Supply	Ground reference: Power supply ground reference.
RESET_n	Input	Reset: When asserted LOW, the RESET pin resets the die. Reset is an asynchronous signal.
NC	_	No connect: Not internally connected.

Y4BM LPDDR5/LPDDR5X SDRAM Ball Assignments and Descriptions

Figure 7: 315-Ball Dual-Channel Discrete FBGA

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	
Α	NC	NC	V _{DDQ}	DMI0_A	V _{SS}	V _{DD2L}	V _{DD2H}	V _{DD2H}	V _{DD2H}	V _{DD2L}	V _{SS}	DMI1_A	V _{DDQ}	NC	NC	A
В	NC	V _{DDQ}	RDQS0_t_A	V _{SS}	DQ4_A	V _{DD2L}	V _{DD2H}	V _{ss}	V _{DD2H}	V _{DD2L}	DQ12_A	V _{SS}	RDQS1_t_A	V _{DDQ}	NC	В
С	V _{DD1}	DQ1_A	V _{DDQ}	RDQ\$0_c_A	V _{SS}	DQ5_A	V _{DD2H}	V _{ss}	V _{DD2H}	DQ13_A	V _{SS}	RDQ\$1_c_A	V _{DDQ}	DQ9_A	V _{DD1}	С
D	DQ0_A	V _{SS}	DQ3_A	V _{DDQ}	WCK0_c_A	V _{SS}	V _{ss}	V _{DD2H}	V _{SS}	V _{SS}	WCK1_c_A	V _{DDQ}	DQ11_A	V _{SS}	DQ8_A	D
E	V _{SS}	DQ2_A	V _{SS}	WCK0_t_A	V _{DDQ}	DQ6_A	V _{DD2H}	V _{SS}	V _{DD2H}	DQ14_A	V _{DDQ}	WCK1_t_A	V _{SS}	DQ10_A	V _{SS}	E
F	V _{DDQ}	V _{SS}	V _{DDQ}	V _{DDQ}	DQ7_A	V _{DD2H}	V _{DD2H}	V _{SS}	V _{DD2H}	V _{DD2H}	DQ15_A	V _{DDQ}	V _{DDQ}	V _{SS}	V _{DDQ}	F
G	V _{DDQ}	V_{DDQ}	V _{SS}	CA0_A	V _{SS}	CS1_A	V _{SS}	CA2_A	V _{SS}	CA4_A	V _{SS}	CA6_A	V _{SS}	V _{DDQ}	V _{DDQ}	G
н	RESET_N	V _{DD2L}	V _{SS}	V _{SS}	CA1_A	V _{SS}	CS0_A	V _{SS}	CK_t_A	V _{SS}	CA3_A	V _{SS}	CA5_A	V _{DD2L}	ZQ_A	н
J	V _{SS}	V _{DD2L}	V _{SS}	RFU	V _{DD2H}	RFU	V _{SS}	V _{SS}	CK_c_A	V _{SS}	V _{DD2H}	V _{SS}	V _{SS}	V _{DD2L}	V _{SS}	J
Κ	V _{DD2H}	V _{SS}	V _{SS}	V _{ss}	V _{DD2H}	К										
L	V _{SS}	V _{DD2H}	V _{SS}	L												
М	V _{DD2H}	V _{ss}	V _{SS}	V _{SS}	V _{DD2H}	М										
N	V _{SS}	V _{DD2L}	V _{SS}	V _{SS}	V _{DD2H}	V _{SS}	CK_c_B	V _{SS}	V _{SS}	V _{SS}	V _{DD2H}	V _{SS}	V _{SS}	V _{DD2L}	V _{SS}	N
Р	RFU	V _{DD2L}	CA5_B	V _{SS}	CA3_B	V _{SS}	CK_t_B	V _{SS}	CS0_B	V _{SS}	CA1_B	V _{SS}	V _{SS}	V _{DD2L}	RFU	Р
R	$V_{\rm DDQ}$	$V_{\rm DDQ}$	V _{SS}	CA6_B	V _{SS}	CA4_B	V _{SS}	CA2_B	V _{SS}	CS1_B	V _{SS}	CA0_B	V _{SS}	V _{DDQ}	V _{DDQ}	R
Т	$V_{\rm DDQ}$	V _{SS}	V _{DDQ}	V _{DDQ}	DQ15_B	V _{DD2H}	V _{DD2H}	V _{SS}	V _{DD2H}	V _{DD2H}	DQ7_B	V _{DDQ}	V _{DDQ}	V _{SS}	V _{DDQ}	Т
U	V _{SS}	DQ10_B	V _{SS}	WCK1_t_B	V _{DDQ}	DQ14_B	V _{DD2H}	V _{SS}	V _{DD2H}	DQ6_B	V _{DDQ}	WCK0_t_B	V _{SS}	DQ2_B	V _{SS}	U
٧	DQ8_B	V _{SS}	DQ11_B	V _{DDQ}	WCK1_c_B	V _{SS}	V _{SS}	V _{DD2H}	V _{SS}	V _{SS}	WCK0_c_B	V _{DDQ}	DQ3_B	V _{SS}	DQ0_B	٧
W	V _{DD1}	DQ9_B	V _{DDQ}	RDQ\$1_c_B	V _{SS}	DQ13_B	V _{DD2H}	V _{SS}	V _{DD2H}	DQ5_B	V _{SS}	RDQS0_c_B	V _{DDQ}	DQ1_B	V _{DD1}	w
Υ	NC	$V_{\rm DDQ}$	RDQS1_t_B	V _{SS}	DQ12_B	V _{DD2L}	V _{DD2H}	V _{SS}	V _{DD2H}	V _{DD2L}	DQ4_B	V _{SS}	RDQS0_t_B	V _{DDQ}	NC	Y
AA	NC	NC	V _{DDQ}	DMI1_B	V _{SS}	V _{DD2L}	V _{DD2H}	V _{DD2H}	V _{DD2H}	V _{DD2L}	V _{SS}	DMI0_B	V _{DDQ}	NC	NC	АА
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	
	vss	V _D	D1 \	V _{DD2H}	V _{DD2L}	V _{DDC}		riew (ball d	own) RDQS	wcĸ	DQ,DM	II CA	, CS, ZQ, RE	SET	NC, RFU	

Y4BM LPDDR5/LPDDR5X SDRAM Ball Assignments and Descriptions

Table 6:

Symbol	Туре	Description
CK_t_[A:D] CK_c_[A:D]	Input	Clock: CK_t and CK_c are differential clock inputs. All double data rate (DDR) command/address inputs are sampled on both crossing points of CK_t and CK_c. The first crossing point is the rising (falling) edge of CK_t (CK_c) and second crossing point is falling (rising) edge of CK_t (CK_c). Single data rate (SDR) inputs, CS is sampled on the crossing point that is the rising (falling) edge of CK_t (CK_c).
CS0_[A:D], CS1_[A:D]	Input	Chip select: CS is part of the command code, and is sampled on the rising (falling) edge of CK_t (CK_c) unless the device is in power-down or deep sleep mode where it becomes an asynchronous signal. Each rank (0, 1) has its own CS signals. CS1_[A:D] become NC pins in a single-rank package.
CA[6:0]_[A:D]	Input	Command/address inputs: Provide the command and address inputs according to the command truth table.
WCK[1:0]_t_[A:D] WCK[1:0]_c_[A:D]	Input	Data clock: WCK_t and WCK_c are differential clock inputs used for WRITE data capture and READ data output.
DQ[15:0]_[A:D]	I/O	Data input/output: Bidirectional data bus.
RDQS[1:0]_t_[A:D] RDQS[1:0]_c_[A:D]	I/O Output	Read data strobe: RDQS_t and RDQS_c are differential output clock signals used to strobe data during a READ operation. RDQS_t is also used as a parity pin during write link protection enabled. Each byte of data has RDQS_t and RDQS_c signals.
DMI[1:0]_[A:D]	I/O	Data mask inversion: DMI serves multiple functions such as data mask (DM), data bus inversion (DBI), and parity at READ with ECC operation by setting the mode register. DMI is a bidirectional signal and each byte of data has a DMI signal.
ZQ_A_C, ZQ_B_D	Reference	ZQ calibration reference: Used to calibrate the output drive strength and the termination resistance. The ZQ pin should be connected to V_{DDQ} through a 240 Ω ±1% resistor.
$V_{DDQ}, V_{DD1}, V_{DD2H}, V_{DD2L}$	Supply	Power supplies: Isolated on the die for improved noise immunity.
V _{SS}	Supply	Ground reference: Power supply ground reference.
RESET_n	Input	Reset: When asserted LOW, the RESET pin resets the die. Reset is an asynchronous signal.
NC	-	No connect: Not internally connected.
RFU	-	Reserved Future Use: Not internally connected.

Figure 8: 441-Ball Quad-Channel FBGA

Package Dimensions

315-Ball Package (Package Code: DS)

Figure 9: 315-Ball TFBGA - 12.4mm (TYP) × 15.0mm (TYP) × 1.1mm (MAX) (Package Code: DS)

19

Notes: 1. All dimensions are in millimeters.

2. Solder ball composition: SACQ with CuOSP pads (Sn-4Ag-0.5Cu-3Bi-0.05Ni)

12.4 ±0.1 -

315-Ball Package (Package Code: DV)

Figure 10: 315-Ball LFBGA - 12.4mm (TYP) × 15.0mm (TYP) × 1.3mm (MAX) (Package Code: DV)

20

Notes: 1. All dimensions are in millimeters.

2. Solder ball composition: SACQ with CuOSP pads (Sn-4Ag-0.5Cu-3Bi-0.05Ni)

441-Ball Package (Package Code: EK)

Figure 11: 441-Ball TFBGA - 14.0mm (TYP) × 14.0mm (TYP) × 1.1mm (MAX) (Package Code: EK)

Notes: 1. All dimensions are in millimeters.

2. Solder ball composition: SACQ with CuOSP pads (Sn- 4Ag-0.5Cu-3Bi-0.05Ni)

Product-Specific Mode Register Definition

Table 7: Mode Register Contents

Mode									
Register	OP7	OP6	OP5	OP4	OP3	OP2	OP1	OP0	
MRO	Per-pin DFE	Pre- emphasis	Unified NT ODT behavior mode	DMI output behavior mode	Optimized refresh mode	Enhanced WCK always-on mode	Latency mode	NT ODT timing mode	
		OP[0] =	1b: Device sup	ports differer	nt NT ODT late	ency for DQ ar	nd RDQS		
	OF	P[1] = 0b: Devi			cy for 768M32 s x8 mode late		58M64, 1536N	164	
		ОР	P[2] = 1b: Devi	ce supports er	hanced WCK	always-on mo	ode		
			OP[3] = 1b: [Device suppor	ts optimized r	efresh mode			
			• • • • • • • • • • • • • • • • • • • •		havior mode 1				
		OP[5] =			ollows the uni		ehavior		
					orts pre-emph				
1404			OP[7] = 0b	: Device does	not support p	er-pin DFE			
MR1							ARFM sup- port	CS ODT OP support	
	OP[0] = 0b: Device does not support CS ODT behavior OP								
			OP[1] =		es not suppor	t ARFM			
MR5					cturer ID				
MDC	1111 1111b: Micron								
MR6	Revision ID1 0000 0111b								
MR8	I/O width Density Type								
	OP[7:6] = for 768M32 768M64,	= 00b: x16 2, 1536M32, 1536M64 o: x8 for 3G32			101b: 12Gb		OP[1:0] = 01b: LPDDR5X SDRAM		
MR13	VRO								
	OP[2] = 0b: Normal operation (default) 1b: Output the $V_{REF(CA)}$ value on DQ7 and $V_{REF(DQ)}$ value on DQ6								
MR19			WCK2DQ OSC FM						
	OP[5] = 1b: WCK2DQ OSC FM supported								
MR21	WXS				ODTD-CSFS	WXFS	RDCFS	WDCFS	
	OP[0] = 1b: WRITE DATA COPY function supported								
	OP[1] = 1b: READ DATA COPY function supported								
					function supp				
					DTD-CS is sup	•	J 1		
	OP[7] = 1b: Data to be written can be selected with 0 and 1								

Y4BM LPDDR5/LPDDR5X SDRAM Product-Specific Mode Register Definition

Table 7: Mode Register Contents (Continued)

Mode Register	OP7	OP6	OP5	OP4	OP3	OP2	OP1	OP0
MR22	RE	сс	WE	WECC				
				00b: Write lin /rite link ECC				
				00b: Read linl ead link ECC e		` '		
MR24	DFES				Read DCA			
	OP[3] = 0b: Device does not support Read DCA							
	OP[7] = 0b: Device supports DFE							
MR26		RDQSTFS						
	OP[6] = 1b: Read/write-based RDQS_t TRAINING function supported							
MR27	RAAI	MULT			RAAIMT			RFM
	OP[0] = 1b: RFM is required							
	OP[5:1] = 01110b: 112							
	OP[7:6] = 01b: 4X							
MR43		SBEC rule						
	OP[6] = 1b: Simultaneous SBE on each DQ byte and DMI are independently counted							
MR57	RFMSB RAADEC							DEC
	OP[1:0] = 10b: 2 × RAAIMT							
	OP[3:2] = 00b: 1 = Does not support single-bank mode							
MR63-R164	Reserved N	Reserved MR bits MR63 through MR164 are RFU by JEDEC standard and should not be accessed by user.						

Notes: 1. The contents of mode registers described here reflect information specific to each die in these packages.

- 2. Refer to General LPDDR5/LPDDR5X Specification 1 for mode registers not described here.
- 3. Write link ECC and read link ECC are supported.

I_{DD} Parameters

Refer to the $I_{\rm DD}$ Specification Parameters and Test Conditions section in General LPDDR5 Specifications 2 for detailed conditions.

Table 8: WT I_{DD} Parameters – Single Die

		x8 Mode S	peed Grade	x16 Mode S	x16 Mode Speed Grade		
Symbol	Supply	7500 Mb/s	8533 Mb/s	7500 Mb/s	8533 Mb/s	Unit	Note
I _{DD01}	V_{DD1}	3.0	3.0	4.5	4.5	mA	
I _{DD02H}	V _{DD2H}	27.5	27.5	28.0	28.0		
I _{DD02L}	V _{DD2L}	0.2	0.2	0.2	0.2		
I _{DD0Q}	V_{DDQ}	0.6	0.6	0.6	0.6		
I _{DD2P1}	V _{DD1}	1.5	1.5	1.5	1.5	mA	
I _{DD2P2H}	V _{DD2H}	2.0	2.0	2.0	2.0		
I _{DD2P2L}	V_{DD2L}	0.2	0.2	0.2	0.2		
I _{DD2PQ}	V_{DDQ}	0.6	0.6	0.6	0.6		
I _{DD2PS1}	V _{DD1}	1.5	1.5	1.5	1.5	mA	
I _{DD2PS2H}	V _{DD2H}	2.0	2.0	2.0	2.0		
I _{DD2PS2L}	V _{DD2L}	0.2	0.2	0.2	0.2		
I _{DD2PSQ}	V_{DDQ}	0.6	0.6	0.6	0.6		
I _{DD2N1}	V _{DD1}	1.5	1.5	1.5	1.5	mA	
I _{DD2N2H}	V _{DD2H}	15.5	15.5	16.0	16.0		
I _{DD2N2L}	V _{DD2L}	0.2	0.2	0.2	0.2		
I _{DD2NQ}	V_{DDQ}	0.6	0.6	0.6	0.6		
I _{DD2NS1}	V_{DD1}	1.5	1.5	1.5	1.5	mA	
I _{DD2NS2H}	V _{DD2H}	15.5	15.5	16.0	16.0		
I _{DD2NS2L}	V _{DD2L}	0.2	0.2	0.2	0.2		
I _{DD2NSQ}	V_{DDQ}	0.6	0.6	0.6	0.6		
I _{DD3P1}	V _{DD1}	1.5	1.5	1.5	1.5	mA	
I _{DD3P2H}	V _{DD2H}	5.5	5.5	5.5	5.5		
I _{DD3P2L}	V _{DD2L}	0.2	0.2	0.2	0.2		
I _{DD3PQ}	V_{DDQ}	0.6	0.6	0.6	0.6		
I _{DD3PS1}	V _{DD1}	1.5	1.5	1.5	1.5	mA	
I _{DD3PS2H}	V _{DD2H}	5.5	5.5	5.5	5.5	1	
I _{DD3PS2L}	V _{DD2L}	0.2	0.2	0.2	0.2	1	
I _{DD3PSQ}	V _{DDQ}	0.6	0.6	0.6	0.6	1	

Table 8: WT I_{DD} Parameters - Single Die

		x8 Mode S	peed Grade	x16 Mode S _l			
Symbol	Supply	7500 Mb/s	8533 Mb/s	7500 Mb/s	8533 Mb/s	Unit	Note
I _{DD3N1}	V _{DD1}	1.7	1.7	1.7	1.7	mA	
I _{DD3N2H}	V _{DD2H}	20.5	20.5	21.0	21.0		
I _{DD3N2L}	V _{DD2L}	0.2	0.2	0.2	0.2		
I _{DD3NQ}	V_{DDQ}	0.6	0.6	0.6	0.6		
I _{DD3NS1}	V _{DD1}	1.7	1.7	1.7	1.7	mA	
I _{DD3NS2H}	V _{DD2H}	20.5	20.5	21.0	21.0		
I _{DD3NS2L}	V_{DD2L}	0.2	0.2	0.2	0.2		
I _{DD3NSQ}	V_{DDQ}	0.6	0.6	0.6	0.6		
I _{DD4R1}	V _{DD1}	9.0	10.0	11.0	12.0	mA	3, 4
I _{DD4R2H}	V _{DD2H}	285.0	315.0	425.0	475.0		
I _{DD4R2L}	V _{DD2L}	0.2	0.2	0.2	0.2		
I _{DD4RQ}	V_{DDQ}	58.0	63.0	116.0	126.0		
I _{DD4W1}	V _{DD1}	8.0	9.0	10.0	11.0	mA	3
I _{DD4W2H}	V _{DD2H}	200.0	220.0	280.0	310.0		
I _{DD4W2L}	V _{DD2L}	0.2	0.2	0.2	0.2		
I _{DD4WQ}	V_{DDQ}	0.6	0.6	0.6	0.6		
I _{DD51}	V _{DD1}	17.0	17.0	17.0	17.0	mA	
I _{DD52H}	V _{DD2H}	115.0	115.0	115.0	115.0		
I _{DD52L}	V_{DD2L}	0.2	0.2	0.2	0.2		
I _{DD5Q}	V_{DDQ}	0.6	0.6	0.6	0.6		
I _{DD5AB1}	V _{DD1}	2.5	2.5	2.5	2.5	mA	
I _{DD5AB2H}	V _{DD2H}	23.5	23.5	24.0	24.0		
I _{DD5AB2L}	V_{DD2L}	0.2	0.2	0.2	0.2		
I _{DD5ABQ}	V_{DDQ}	0.6	0.6	0.6	0.6		
I _{DD5PB1}	V _{DD1}	2.5	2.5	2.5	2.5	mA	
I _{DD5PB2H}	V _{DD2H}	23.5	23.5	24.0	24.0		
I _{DD5PB2L}	V_{DD2L}	0.2	0.2	0.2	0.2		
I _{DD5PBQ}	V_{DDQ}	0.6	0.6	0.6	0.6		

Notes: 1. Published I_{DD} values except I_{DD4RQ} are the maximum I_{DD} values speed grade considering the worst-case conditions of process, temperature, and voltage.

^{2.} BG mode. DVFSC and DVFSQ disabled.

^{3.} BL = 16, DBI disabled.

^{4.} I_{DD4RQ} value is reference only. Typical value. Output load = 5pF; R_{ON} = 40 ohms; T_{C} = 25°C

^{5.} $V_{DD1} = 1.70 - 1.95V$; $V_{DD2H} = 1.01 - 1.12V$; $V_{DD2L} = 0.87 - 0.97V$; $V_{DDQ} = 0.47 - 0.57V$; $T_{C} = -25^{\circ}C$ to $+85^{\circ}C$

6. Notes 1 and 2 apply to entire table.

Table 9: WT Full-Array Power-Down Self Refresh Current - Single Die

Temperature	Symbol	Supply	Value	Unit
25°C	I _{DD61}	V _{DD1}	0.25	mA
	I _{DD62H}	V _{DD2H}	0.45	
	I _{DD62L}	V _{DD2L}	- (See note 4)	
	I _{DD6Q}	V _{DDQ} - (See note 4)		
85°C	I _{DD61}	V _{DD1}	3.00	
	I _{DD62H}	V _{DD2H}	9.00	
	I _{DD62L}	V _{DD2L}	0.20	
	I _{DD6Q}	V_{DDQ}	0.60	

- Notes: 1. $I_{DD6}25^{\circ}\text{C}$ is the typical value in the distribution with nominal V_{DD} and a reference-only value. $I_{DD6}85^{\circ}\text{C}$ is the maximum I_{DD} guaranteed value considering the worst-case conditions of process, temperature, and voltage.
 - 2. DVFSC and DVFSQ disabled.
 - 3. $V_{DD1} = 1.70 1.95V$; $V_{DD2H} = 1.01 1.12V$; $V_{DD2L} = 0.87 0.97V$; $V_{DDQ} = 0.47 0.57V$; $T_{C} = -25^{\circ}C$ to $+85^{\circ}C$
 - 4. V_{DD2L} and V_{DDQ} power rails are not used during power-down self refresh

Table 10: IT I_{DD} Parameters – Single Die

		x8 Mode Speed Grade		x16 Mode Sp			
Symbol	Supply	7500 Mb/s	8533 Mb/s	7500 Mb/s	8533 Mb/s	Unit	Note
I _{DD01}	V _{DD1}	3.3	3.3	3.3	3.3	mA	
I _{DD02H}	V _{DD2H}	29.5	29.5	30.0	30.0		
I _{DD02L}	V _{DD2L}	0.2	0.2	0.2	0.2		
I _{DD0Q}	V_{DDQ}	0.6	0.6	0.6	0.6		
I _{DD2P1}	V _{DD1}	1.5	1.5	1.5	1.5	mA	
I _{DD2P2H}	V_{DD2H}	2.2	2.2	2.2	2.2		
I _{DD2P2L}	V_{DD2L}	0.2	0.2	0.2	0.2		
I _{DD2PQ}	V_{DDQ}	0.6	0.6	0.6	0.6	1	
I _{DD2PS1}	V _{DD1}	1.5	1.5	1.5	1.5	mA	
I _{DD2PS2H}	V _{DD2H}	2.2	2.2	2.2	2.2		
I _{DD2PS2L}	V _{DD2L}	0.2	0.2	0.2	0.2		
I _{DD2PSQ}	V_{DDQ}	0.6	0.6	0.6	0.6		
I _{DD2N1}	V _{DD1}	1.5	1.5	1.5	1.5	mA	
I _{DD2N2H}	V _{DD2H}	16.5	16.5	17.0	17.0		
I _{DD2N2L}	V_{DD2L}	0.2	0.2	0.2	0.2		
I _{DD2NQ}	V_{DDQ}	0.6	0.6	0.6	0.6		

Table 10: IT I_{DD} Parameters – Single Die

		x8 Mode S	peed Grade	x16 Mode Sp			
Symbol	Supply	7500 Mb/s	8533 Mb/s	7500 Mb/s	8533 Mb/s	Unit	Note
I _{DD2NS1}	V_{DD1}	1.5	1.5	1.5	1.5	mA	
I _{DD2NS2H}	V _{DD2H}	16.5	16.5	17.0	17.0		
I _{DD2NS2L}	V _{DD2L}	0.2	0.2	0.2	0.2		
I _{DD2NSQ}	V_{DDQ}	0.6	0.6	0.6	0.6		
I _{DD3P1}	V _{DD1}	1.5	1.5	1.5	1.5	mA	
I _{DD3P2H}	V _{DD2H}	6.0	6.0	6.0	6.0		
I _{DD3P2L}	V _{DD2L}	0.2	0.2	0.2	0.2		
I _{DD3PQ}	V_{DDQ}	0.6	0.6	0.6	0.6		
I _{DD3PS1}	V _{DD1}	1.5	1.5	1.5	1.5	mA	
I _{DD3PS2H}	V _{DD2H}	6.0	6.0	6.0	6.0		
I _{DD3PS2L}	V _{DD2L}	0.2	0.2	0.2	0.2		
I _{DD3PSQ}	V_{DDQ}	0.6	0.6	0.6	0.6		
I _{DD3N1}	V _{DD1}	1.7	1.7	1.7	1.7	mA	
I _{DD3N2H}	V_{DD2H}	21.5	21.5	22.0	22.0		
I _{DD3N2L}	V _{DD2L}	0.2	0.2	0.2	0.2		
I _{DD3NQ}	V_{DDQ}	0.6	0.6	0.6	0.6		
I _{DD3NS1}	V _{DD1}	1.7	1.7	1.7	1.7	mA	
I _{DD3NS2H}	V_{DD2H}	21.5	21.5	22.0	22.0		
I _{DD3NS2L}	V _{DD2L}	0.2	0.2	0.2	0.2		
I _{DD3NSQ}	V_{DDQ}	0.6	0.6	0.6	0.6		
I _{DD4R1}	V _{DD1}	9.0	10.0	11.0	12.0	mA	3, 4
I _{DD4R2H}	V_{DD2H}	290.0	320.0	430.0	480.0		
I _{DD4R2L}	V _{DD2L}	0.2	0.2	0.2	0.2		
I _{DD4RQ}	$V_{\rm DDQ}$	58.0	63.0	116.0	126.0		
I _{DD4W1}	V _{DD1}	8.0	9.0	10.0	11.0	mA	3
I _{DD4W2H}	V _{DD2H}	205.0	225.0	285.0	315.0		
I _{DD4W2L}	V _{DD2L}	0.2	0.2	0.2	0.2		
I _{DD4WQ}	V _{DDQ}	0.6	0.6	0.6	0.6	1	
I _{DD51}	V _{DD1}	17.0	17.0	17.0	17.0	mA	
I _{DD52H}	V _{DD2H}	115.0	115.0	115.0	115.0	1	
I _{DD52L}	V _{DD2L}	0.2	0.2	0.2	0.2	1	
I _{DD5Q}	V _{DDQ}	0.6	0.6	0.6	0.6	1	

Table 10: IT IDD Parameters – Single Die

		x8 Mode Speed Grade x16 Mode Speed Grade					
Symbol	Supply	7500 Mb/s	8533 Mb/s	7500 Mb/s	8533 Mb/s	Unit	Note
I _{DD5AB1}	V_{DD1}	2.5	2.5	2.5	2.5	mA	
I _{DD5AB2H}	V _{DD2H}	23.5	23.5	24.0	24.0		
I _{DD5AB2L}	V_{DD2L}	0.2	0.2	0.2	0.2		
I _{DD5ABQ}	V_{DDQ}	0.6	0.6	0.6	0.6		
I _{DD5PB1}	V _{DD1}	2.5	2.5	2.5	2.5	mA	
I _{DD5PB2H}	V _{DD2H}	23.5	23.5	24.0	24.0		
I _{DD5PB2L}	V_{DD2L}	0.2	0.2	0.2	0.2		
I _{DD5PBQ}	V_{DDQ}	0.6	0.6	0.6	0.6		

- Notes: 1. Published I_{DD} values except I_{DD4RQ} are the maximum I_{DD} values considering the worst-case conditions of process, temperature, and voltage.
 - 2. BG mode. DVFSC and DVFSQ disabled.
 - 3. BL = 16, DBI disabled.
 - 4. I_{DD4RO} value is reference only. Typical value. Output load = 5pF; R_{ON} = 40 ohms; T_C = 25°C
 - 5. $V_{DD1} = 1.70 1.95V$; $V_{DD2H} = 1.01 1.12V$; $V_{DD2L} = 0.87 0.97V$; $V_{DDO} = 0.47 0.57V$; $T_{C} = -40^{\circ}C$ to $+95^{\circ}C$
 - 6. Notes 1 and 2 apply to entire table.

Table 11: IT Full-Array Power-Down Self Refresh Current - Single Die

Temperature	Symbol	Supply	Value	Unit
25°C	I _{DD61}	V _{DD1}	0.25	mA
	I _{DD62H}	V _{DD2H}	0.45	1
	I _{DD62L}	V _{DD2L}	- (See note 4)	
	I _{DD6Q}	V _{DDQ}	- (See note 4)	
95°C	I _{DD61}	V _{DD1}	3.70	
	I _{DD62H}	V _{DD2H}	12.00	
	I _{DD62L}	V _{DD2L}	- (See note 4)	
	I _{DD6Q}	V _{DDQ}	- (See note 4)	

- Notes: 1. $I_{DD6}25^{\circ}\text{C}$ is the typical value in the distribution with nominal V_{DD} and a reference-only value. $I_{DD6}95^{\circ}\text{C}$ is the maximum I_{DD} guaranteed value considering the worst-case conditions of process, temperature, and voltage.
 - 2. DVFSC and DVFSQ disabled.
 - 3. $V_{DD1} = 1.70 1.95V$; $V_{DD2H} = 1.01 1.12V$; $V_{DD2L} = 0.87 0.97V$; $V_{DDO} = 0.47 0.57V$; $T_{C} = -40^{\circ}C$ to $+95^{\circ}C$

28

4. V_{DD2L} and V_{DDO} power rails are not used during power-down self refresh.

Revision History

Rev. D - 08/2022

- Corrected the package Z height on page#1
- Correct 3G32 Die Addressing in Table#3
- Clarify the 3G32 MPN on page#1
- Update VDDQ support on page#1
- General clarifications, namely on page#1
- Correct FBGA code in the Part Number Chart on page#2

Rev. C - 04/2022

• Updated WT and IT IDD tables

Rev. B - 12/2021

• Updated Mode Register table

Rev. A - 10/2021

• Initial Preliminary release

8000 S. Federal Way, P.O. Box 6, Boise, ID 83707-0006 208-368-4000, micron.com/support

Micron and the Micron logo are trademarks of Micron Technology, Inc.
All other trademarks are the property of their respective owners.

This data sheet contains minimum and maximum limits specified over the power supply and temperature range set forth herein. Although considered final, these specifications are subject to change, as further product development and data characterization sometimes occur.

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

Micron Technology:

MT62F1536M64D8CZ-023 AAT:C MT62F1536M64D8CZ-023 WT ES:C MT62F1536M64D8CZ-023 WT ES:C TR MT62F1536M64D8CZ-023 WT:C MT62F1536M64D8CZ-023 WT:C TR MT62F1536M64D8CZ-026 WT:C MT62F1536M64D8CZ-026 WT:C TR MT62F1536M64D8EK-023 WT ES:C MT62F1536M64D8EK-023 WT ES:C TR MT62F1536M64D8EK-023 WT:C MT62F1536M64D8EK-023 WT:C TR MT62F1536M64D8EK-026 WT:C MT62F1536M64D8EK-026 WT:C TR MT62F3G32D8DV-023 WT ES:C MT62F3G32D8DV-023 WT ES:C TR MT62F3G32D8DV-023 WT:C MT62F3G32D8DV-023 WT:C TR MT62F768M32D2DS-023 AIT:C MT62F768M32D2DS-023 AIT:C TR MT62F768M32D2DS-023 AUT:C MT62F768M32D2DS-023 AUT:C TR MT62F768M32D2DS-023 FAAT:C MT62F768M32D2DS-023 FAAT:C TR MT62F768M32D2DS-023 WT ES:C MT62F768M32D2DS-023 WT ES:C TR MT62F768M32D2DS-023 WT:C MT62F768M32D2DS-023 WT:C TR MT62F768M32D2DS-026 WT:C MT62F768M32D2DS-026 WT:C TR MT62F768M64D4CZ-023 WT ES:C TR MT62F768M64D4CZ-023 WT:C MT62F768M64D4CZ-023 WT:C TR MT62F768M64D4CZ-026 WT:C MT62F768M64D4CZ-026 WT:C TR MT62F768M64D4EK-023 AAT:C MT62F768M64D4EK-023 AAT:C TR MT62F768M64D4EK-023 AIT:C MT62F768M64D4EK-023 AIT:C TR MT62F768M64D4EK-023 AUT:C MT62F768M64D4EK-023 AUT:C TR MT62F768M64D4EK-023 FAAT:C MT62F768M64D4EK-023 FAAT:C TR MT62F768M64D4EK-023 WT ES:C MT62F768M64D4EK-023 WT ES:C TR MT62F768M64D4EK-023 WT:C MT62F768M64D4EK-023 WT:C TR MT62F768M64D4EK-026 WT:C MT62F768M64D4EK-026 WT:C TR