Add Immediate Unsigned Word

ADDIU

31	26	25	21	20	16 15	()
ADDIU						:	
001001		rs		π		immediate	
6		5		5		16	_

Format: ADDIU rt, rs, immediate MIPS32 (MIPS I)

Purpose:

To add a constant to a 32-bit integer

Description: $rt \leftarrow rs + immediate$

The 16-bit signed *immediate* is added to the 32-bit value in GPR *rs* and the 32-bit arithmetic result is placed into GPR *rt*.

No Integer Overflow exception occurs under any circumstances.

Restrictions:

None

Operation:

```
\texttt{temp} \leftarrow \texttt{GPR[rs]} + \texttt{sign\_extend(immediate)} \texttt{GPR[rt]} \leftarrow \texttt{temp}
```

Exceptions:

None

Programming Notes:

The term "unsigned" in the instruction name is a misnomer; this operation is 32-bit modulo arithmetic that does not trap on overflow. This instruction is appropriate for unsigned arithmetic, such as address arithmetic, or integer arithmetic environments that ignore overflow, such as C language arithmetic.

Add Unsigned Word ADDU

3	31 26	5 25	21	20 16	15	11 10 6	5 0
	SPECIAL			,	,	0	ADDU
	000000		rs	rt	rd	00000	100001
	6		5	5	5	5	6

Format: ADDU rd, rs, rt MIPS32 (MIPS I)

Purpose:

To add 32-bit integers

Description: $rd \leftarrow rs + rt$

The 32-bit word value in GPR *rt* is added to the 32-bit value in GPR *rs* and the 32-bit arithmetic result is placed into GPR *rd*.

No Integer Overflow exception occurs under any circumstances.

Restrictions:

None

Operation:

```
\begin{array}{l} \mathsf{temp} \, \leftarrow \, \mathsf{GPR[rs]} \, + \, \mathsf{GPR[rt]} \\ \mathsf{GPR[rd]} \, \leftarrow \, \mathsf{temp} \end{array}
```

Exceptions:

None

Programming Notes:

The term "unsigned" in the instruction name is a misnomer; this operation is 32-bit modulo arithmetic that does not trap on overflow. This instruction is appropriate for unsigned arithmetic, such as address arithmetic, or integer arithmetic environments that ignore overflow, such as C language arithmetic.

Subtract Unsigned Word

SUBU

31	26	25	21	20 16	15	11	10 6	5		0
SPECIAL	,				,		0		SUBU	
000000		rs		rt	ra		00000		100011	
6		5		5	5		5		6	

Format: SUBU rd, rs, rt MIPS32 (MIPS I)

Purpose:

To subtract 32-bit integers

 $\textbf{Description:} \; \texttt{rd} \; \leftarrow \; \texttt{rs} \; - \; \texttt{rt}$

The 32-bit word value in GPR *rt* is subtracted from the 32-bit value in GPR *rs* and the 32-bit arithmetic result is and placed into GPR *rd*.

No integer overflow exception occurs under any circumstances.

Restrictions:

None

Operation:

```
\begin{array}{ll} \text{temp} & \leftarrow \text{GPR[rs]} - \text{GPR[rt]} \\ \text{GPR[rd]} \leftarrow \text{temp} \end{array}
```

Exceptions:

None

Programming Notes:

The term "unsigned" in the instruction name is a misnomer; this operation is 32-bit modulo arithmetic that does not trap on overflow. It is appropriate for unsigned arithmetic, such as address arithmetic, or integer arithmetic environments that ignore overflow, such as C language arithmetic.

And AND

31	26	25	21	20 1	6 15	11	10 6	5	0
SPECIAL				,	1		0	AND	
000000		rs		rt	rd		00000	100100	
6		5		5	5		5	6	

Format: AND rd, rs, rt MIPS32 (MIPS I)

Purpose:

To do a bitwise logical AND

 $\textbf{Description:} \; \texttt{rd} \; \leftarrow \; \texttt{rs} \; \; \texttt{AND} \; \; \texttt{rt}$

The contents of GPR *rs* are combined with the contents of GPR *rt* in a bitwise logical AND operation. The result is placed into GPR *rd*.

Restrictions:

None

Operation:

 $GPR[rd] \leftarrow GPR[rs]$ and GPR[rt]

Exceptions:

And Immediate ANDI

Format: ANDI rt, rs, immediate MIPS32 (MIPS I)

Purpose:

To do a bitwise logical AND with a constant

 $\textbf{Description:} \; \texttt{rt} \; \leftarrow \; \texttt{rs} \; \; \texttt{AND} \; \; \texttt{immediate}$

The 16-bit *immediate* is zero-extended to the left and combined with the contents of GPR *rs* in a bitwise logical AND operation. The result is placed into GPR *rt*.

Restrictions:

None

Operation:

 $\texttt{GPR[rt]} \leftarrow \texttt{GPR[rs]} \text{ and } \texttt{zero_extend(immediate)}$

Exceptions:

Not Or NOR

31	26	25	21	20	6 15	11	10 6	5	0
SPECIAL						,	0	N	IOR
000000		rs		rt		rd	00000	10	0111
6		5		5		5	5		6

Format: NOR rd, rs, rt MIPS32 (MIPS I)

Purpose:

To do a bitwise logical NOT OR

 $\textbf{Description:} \; \texttt{rd} \; \leftarrow \; \texttt{rs} \; \; \texttt{NOR} \; \; \texttt{rt}$

The contents of GPR *rs* are combined with the contents of GPR *rt* in a bitwise logical NOR operation. The result is placed into GPR *rd*.

Restrictions:

None

Operation:

GPR[rd] ← GPR[rs] nor GPR[rt]

Exceptions:

Or OR

31	26	25	21	20	16 1	5 11	10	6	5	0
SPECIAL						,	0		OR	
000000		rs		rt		rd	00000		100101	
6		5		5		5	5		6	-

Format: OR rd, rs, rt MIPS32 (MIPS I)

Purpose:

To do a bitwise logical OR

 $\textbf{Description:} \; \texttt{rd} \; \leftarrow \; \texttt{rs} \; \; \texttt{or} \; \; \texttt{rt}$

The contents of GPR *rs* are combined with the contents of GPR *rt* in a bitwise logical OR operation. The result is placed into GPR *rd*.

Restrictions:

None

Operation:

 $\texttt{GPR[rd]} \leftarrow \texttt{GPR[rs]} \text{ or } \texttt{GPR[rt]}$

Exceptions:

Or Immediate ORI

Format: ORI rt, rs, immediate MIPS32 (MIPS I)

Purpose:

To do a bitwise logical OR with a constant

 $\textbf{Description:} \; \texttt{rt} \; \leftarrow \; \texttt{rs} \; \; \texttt{or} \; \; \texttt{immediate}$

The 16-bit *immediate* is zero-extended to the left and combined with the contents of GPR *rs* in a bitwise logical OR operation. The result is placed into GPR *rt*.

Restrictions:

None

Operation:

 $\texttt{GPR[rt]} \leftarrow \texttt{GPR[rs]} \text{ or zero_extend(immediate)}$

Exceptions:

Exclusive OR XOR

31	26	25	21	20	16 15	11	10 6	5	0
SPECIAL						1	0	XOR	
000000		rs		rt	1	ra	00000	100110	
6		5		5	·	5	5	6	

Format: XOR rd, rs, rt MIPS32 (MIPS I)

Purpose:

To do a bitwise logical Exclusive OR

Description: $rd \leftarrow rs XOR rt$

Combine the contents of GPR rs and GPR rt in a bitwise logical Exclusive OR operation and place the result into GPR rd.

Restrictions:

None

Operation:

 $GPR[rd] \leftarrow GPR[rs] \text{ xor } GPR[rt]$

Exceptions:

Exclusive OR Immediate XORI

31	26	25	21	20	16	15)
XORI		***		aut		immodiata	
001110		rs		rt		immediate	
6		5		5		16	_

Format: XORI rt, rs, immediate MIPS32 (MIPS I)

Purpose:

To do a bitwise logical Exclusive OR with a constant

Description: $\operatorname{rt} \leftarrow \operatorname{rs} \operatorname{XOR} \operatorname{immediate}$

Combine the contents of GPR *rs* and the 16-bit zero-extended *immediate* in a bitwise logical Exclusive OR operation and place the result into GPR *rt*.

Restrictions:

None

Operation:

 $\texttt{GPR[rt]} \leftarrow \texttt{GPR[rs]} \ \texttt{xor} \ \texttt{zero_extend(immediate)}$

Exceptions:

Set on Less Than SLT

31	26	25	21	20	6 15	11	10 6	5	0
SPECIAL						1	0	SLT	
000000		rs		rt	r	ď	00000	101010	
6		5		5	4	5	5	6	

Format: SLT rd, rs, rt MIPS32 (MIPS I)

Purpose:

To record the result of a less-than comparison

Description: $rd \leftarrow (rs < rt)$

Compare the contents of GPR *rs* and GPR *rt* as signed integers and record the Boolean result of the comparison in GPR *rd*. If GPR *rs* is less than GPR *rt*, the result is 1 (true); otherwise, it is 0 (false).

The arithmetic comparison does not cause an Integer Overflow exception.

Restrictions:

None

Operation:

```
\begin{array}{l} \text{if GPR[rs]} < \text{GPR[rt] then} \\ \quad \text{GPR[rd]} \leftarrow 0^{\text{GPRLEN-1}} \mid \mid 1 \\ \text{else} \\ \quad \text{GPR[rd]} \leftarrow 0^{\text{GPRLEN}} \\ \text{endif} \end{array}
```

Exceptions:

Set on Less Than Immediate SLTI

Format: SLTI rt, rs, immediate MIPS32 (MIPS I)

Purpose:

To record the result of a less-than comparison with a constant

```
\textbf{Description:} \; \texttt{rt} \; \leftarrow \; (\texttt{rs} \; \texttt{<} \; \texttt{immediate})
```

Compare the contents of GPR *rs* and the 16-bit signed *immediate* as signed integers and record the Boolean result of the comparison in GPR *rt*. If GPR *rs* is less than *immediate*, the result is 1 (true); otherwise, it is 0 (false).

The arithmetic comparison does not cause an Integer Overflow exception.

Restrictions:

None

Operation:

```
if GPR[rs] < sign_extend(immediate) then  \begin{array}{l} \text{GPR[rd]} \leftarrow 0^{\text{GPRLEN-1}}|| \ 1 \\ \text{else} \\ \text{GPR[rd]} \leftarrow 0^{\text{GPRLEN}} \\ \text{endif} \end{array}
```

Exceptions:

Set on Less Than Unsigned

SLTU

31	26	25	21	20 1	5 15	11	10 6	5	0
SPECIAL							0	SLTU	J
000000		r	5	rt	rd		00000	10101	1
6		5	1	5	5		5	6	

Format: SLTU rd, rs, rt MIPS32 (MIPS I)

Purpose:

To record the result of an unsigned less-than comparison

Description: $rd \leftarrow (rs < rt)$

Compare the contents of GPR *rs* and GPR *rt* as unsigned integers and record the Boolean result of the comparison in GPR *rd*. If GPR *rs* is less than GPR *rt*, the result is 1 (true); otherwise, it is 0 (false).

The arithmetic comparison does not cause an Integer Overflow exception.

Restrictions:

None

Operation:

Exceptions:

Set on Less Than Immediate Unsigned

SLTIU

31	26	25	21	20	16	15)
SLTIU				4		:	
001011		rs		rt		immediate	
6		5		5		16	_

Format: SLTIU rt, rs, immediate MIPS32 (MIPS I)

Purpose:

To record the result of an unsigned less-than comparison with a constant

```
Description: rt \leftarrow (rs < immediate)
```

Compare the contents of GPR *rs* and the sign-extended 16-bit *immediate* as unsigned integers and record the Boolean result of the comparison in GPR *rt*. If GPR *rs* is less than *immediate*, the result is 1 (true); otherwise, it is 0 (false).

Because the 16-bit *immediate* is sign-extended before comparison, the instruction can represent the smallest or largest unsigned numbers. The representable values are at the minimum [0, 32767] or maximum [max_unsigned-32767, max_unsigned] end of the unsigned range.

The arithmetic comparison does not cause an Integer Overflow exception.

Restrictions:

None

Operation:

Exceptions:

Shift Word Left Logical

SLL

31	26	25	21	20	16 15	11	10	6	5		0
SPECIAL		0				•				SLL	
000000		00000		rt		rd	sa			000000	
6		5		5		5	5			6	

Format: SLL rd, rt, sa MIPS32 (MIPS I)

Purpose:

To left-shift a word by a fixed number of bits

Description: $rd \leftarrow rt << sa$

The contents of the low-order 32-bit word of GPR *rt* are shifted left, inserting zeros into the emptied bits; the word result is placed in GPR *rd*. The bit-shift amount is specified by *sa*.

Restrictions:

None

Operation:

$$s \leftarrow sa$$

 $temp \leftarrow GPR[rt]_{(31-s)..0} \mid \mid 0^s$
 $GPR[rd] \leftarrow temp$

Exceptions:

None

Programming Notes:

SLL r0, r0, 0, expressed as NOP, is the assembly idiom used to denote no operation.

SLL r0, r0, 1, expressed as SSNOP, is the assembly idiom used to denote no operation that causes an issue break on superscalar processors.

Shift Word Left Logical Variable

SLLV

31	26	25	21	20	16 15	11	10 6	5	0
SPECIAL						,	0	SLLV	
000000		I	rs .	rt	r	ra	00000	000100	
6			5	5		5	5	6	

Format: SLLV rd, rt, rs MIPS32 (MIPS I)

Purpose: To left-shift a word by a variable number of bits

Description: $rd \leftarrow rt \ll rs$

The contents of the low-order 32-bit word of GPR *rt* are shifted left, inserting zeros into the emptied bits; the result word is placed in GPR *rd*. The bit-shift amount is specified by the low-order 5 bits of GPR *rs*.

Restrictions: None

Operation:

```
\begin{array}{lll} \mathbf{s} & \leftarrow \mathtt{GPR[rs]_{4..0}} \\ \mathtt{temp} & \leftarrow \mathtt{GPR[rt]_{(31-s)..0}} \ | \ | \ \mathbf{0^s} \\ \mathtt{GPR[rd]} \leftarrow \mathtt{temp} \end{array}
```

Exceptions: None

Programming Notes:

Shift Word Right Arithmetic

SRA

31	26	25 2	1 20	16	15	11	10 6	5		0
SPECIAL		0			1				SRA	
000000		00000	rt		rd		sa		000011	
6		5	5		5		5		6	

Format: SRA rd, rt, sa MIPS32 (MIPS I)

Purpose:

To execute an arithmetic right-shift of a word by a fixed number of bits

Description: $rd \leftarrow rt \gg sa$ (arithmetic)

The contents of the low-order 32-bit word of GPR *rt* are shifted right, duplicating the sign-bit (bit 31) in the emptied bits; the word result is placed in GPR *rd*. The bit-shift amount is specified by *sa*.

Restrictions:

None

Operation:

```
s \leftarrow sa

temp \leftarrow (GPR[rt]_{31})^s \mid | GPR[rt]_{31..s}

GPR[rd] \leftarrow temp
```

Exceptions: None

Shift Word Right Arithmetic Variable

SRAV

31	26	25	21	20	16 15	11	10 6	5	0
SPECIAL						,	0	SRAV	
000000		r	S	rt		rd	00000	000111	
6		5	5	5		5	5	6	

Format: SRAV rd, rt, rs MIPS32 (MIPS I)

Purpose:

To execute an arithmetic right-shift of a word by a variable number of bits

Description: $rd \leftarrow rt \gg rs$ (arithmetic)

The contents of the low-order 32-bit word of GPR *rt* are shifted right, duplicating the sign-bit (bit 31) in the emptied bits; the word result is placed in GPR *rd*. The bit-shift amount is specified by the low-order 5 bits of GPR *rs*.

Restrictions:

None

Operation:

```
\begin{array}{lll} \mathbf{s} & \leftarrow & \mathtt{GPR[rs]_{4..0}} \\ \mathtt{temp} & \leftarrow & (\mathtt{GPR[rt]_{31})^s} & | \mid & \mathtt{GPR[rt]_{31..s}} \\ \mathtt{GPR[rd]} \leftarrow & \mathtt{temp} \end{array}
```

Exceptions:

Shift Word Right Logical

SRL

31	26	25 21	20 1	6 15	11 10	6	5		0
SPECIAL		0		1			S	RL	
000000		00000	rt	rd	sa		00	0010	
6		5	5	5	5			6	

Format: SRL rd, rt, sa MIPS32 (MIPS I)

Purpose:

To execute a logical right-shift of a word by a fixed number of bits

Description: $rd \leftarrow rt \gg sa$ (logical)

The contents of the low-order 32-bit word of GPR *rt* are shifted right, inserting zeros into the emptied bits; the word result is placed in GPR *rd*. The bit-shift amount is specified by *sa*.

Restrictions:

None

Operation:

```
s \leftarrow sa

temp \leftarrow 0<sup>s</sup> || GPR[rt]<sub>31..s</sub>

GPR[rd]\leftarrow temp
```

Exceptions:

Shift Word Right Logical Variable

SRLV

31	26	25	21	20 10	5 15	11	10 6	5	0
SPECIAL					,		0	SRLV	I
000000		r	'S	rt	rd		00000	00011	.0
6			5	5	5		5	6	

Format: SRLV rd, rt, rs MIPS32 (MIPS I)

Purpose:

To execute a logical right-shift of a word by a variable number of bits

Description: $rd \leftarrow rt \gg rs$ (logical)

The contents of the low-order 32-bit word of GPR *rt* are shifted right, inserting zeros into the emptied bits; the word result is placed in GPR *rd*. The bit-shift amount is specified by the low-order 5 bits of GPR *rs*.

Restrictions:

None

Operation:

```
\begin{array}{lll} \mathbf{s} & \leftarrow & \mathtt{GPR[rs]}_{4..0} \\ \mathtt{temp} & \leftarrow & \mathtt{0^s} & | & \mathtt{GPR[rt]}_{31..s} \\ \mathtt{GPR[rd]} \leftarrow & \mathtt{temp} \end{array}
```

Exceptions:

Branch on Not Equal BNE

Format: BNE rs, rt, offset MIPS32 (MIPS I)

Purpose:

To compare GPRs then do a PC-relative conditional branch

Description: if $rs \neq rt$ then branch

An 18-bit signed offset (the 16-bit *offset* field shifted left 2 bits) is added to the address of the instruction following the branch (not the branch itself), in the branch delay slot, to form a PC-relative effective target address.

If the contents of GPR rs and GPR rt are not equal, branch to the effective target address after the instruction in the delay slot is executed.

Restrictions:

Processor operation is **UNPREDICTABLE** if a branch, jump, ERET, DERET, or WAIT instruction is placed in the delay slot of a branch or jump.

Operation:

Exceptions:

None

Programming Notes:

With the 18-bit signed instruction offset, the conditional branch range is \pm 128 KBytes. Use jump (J) or jump register (JR) instructions to branch to addresses outside this range.

Branch on Equal BEQ

Format: BEQ rs, rt, offset MIPS32 (MIPS I)

Purpose:

To compare GPRs then do a PC-relative conditional branch

Description: if rs = rt then branch

An 18-bit signed offset (the 16-bit *offset* field shifted left 2 bits) is added to the address of the instruction following the branch (not the branch itself), in the branch delay slot, to form a PC-relative effective target address.

If the contents of GPR rs and GPR rt are equal, branch to the effective target address after the instruction in the delay slot is executed.

Restrictions:

Processor operation is **UNPREDICTABLE** if a branch, jump, ERET, DERET, or WAIT instruction is placed in the delay slot of a branch or jump.

Operation:

Exceptions:

None

Programming Notes:

With the 18-bit signed instruction offset, the conditional branch range is \pm 128 Kbytes. Use jump (J) or jump register (JR) instructions to branch to addresses outside this range.

BEQ r0, r0 offset, expressed as B offset, is the assembly idiom used to denote an unconditional branch.

Branch on Greater Than or Equal to Zero

BGEZ

31	26	25	21	20	16	15	0
REGIMM				BGEZ		c	
000001			rs	00001		Off	fset
6			5	5		1	6

Format: BGEZ rs, offset MIPS32 (MIPS I)

Purpose:

To test a GPR then do a PC-relative conditional branch

Description: if $rs \ge 0$ then branch

An 18-bit signed offset (the 16-bit *offset* field shifted left 2 bits) is added to the address of the instruction following the branch (not the branch itself), in the branch delay slot, to form a PC-relative effective target address.

If the contents of GPR rs are greater than or equal to zero (sign bit is 0), branch to the effective target address after the instruction in the delay slot is executed.

Restrictions:

Processor operation is **UNPREDICTABLE** if a branch, jump, ERET, DERET, or WAIT instruction is placed in the delay slot of a branch or jump.

Operation:

```
I: target_offset \leftarrow sign_extend(offset \mid \mid 0^2) condition \leftarrow GPR[rs] \geq 0 GPRLEN

I+1: if condition then

PC \leftarrow PC + target_offset
endif
```

Exceptions:

None

Programming Notes:

With the 18-bit signed instruction offset, the conditional branch range is \pm 128 KBytes. Use jump (J) or jump register (JR) instructions to branch to addresses outside this range.

Branch on Less Than or Equal to Zero

31	26	25	21	20	16	15	0
BLEZ				0		CC .	
000110		rs		00000		offset	
6		5		5		16	

Format: BLEZ rs, offset MIPS32 (MIPS I)

Purpose:

To test a GPR then do a PC-relative conditional branch

Description: if $rs \le 0$ then branch

An 18-bit signed offset (the 16-bit *offset* field shifted left 2 bits) is added to the address of the instruction following the branch (not the branch itself), in the branch delay slot, to form a PC-relative effective target address.

If the contents of GPR *rs* are less than or equal to zero (sign bit is 1 or value is zero), branch to the effective target address after the instruction in the delay slot is executed.

Restrictions:

Processor operation is **UNPREDICTABLE** if a branch, jump, ERET, DERET, or WAIT instruction is placed in the delay slot of a branch or jump.

Operation:

```
I: target_offset \leftarrow sign_extend(offset \mid \mid 0^2) condition \leftarrow GPR[rs] \leq 0<sup>GPRLEN</sup>

I+1: if condition then

PC \leftarrow PC + target_offset
endif
```

Exceptions:

None

Programming Notes:

With the 18-bit signed instruction offset, the conditional branch range is \pm 128 KBytes. Use jump (J) or jump register (JR) instructions to branch to addresses outside this range.

Branch on Less Than Zero BLTZ

31	26	25	21 2	20 16	15 0
REGIMM				BLTZ	CC.
000001		rs		00000	offset
6		5		5	16

Format: BLTZ rs, offset MIPS32 (MIPS I)

Purpose:

To test a GPR then do a PC-relative conditional branch

Description: if rs < 0 then branch

An 18-bit signed offset (the 16-bit *offset* field shifted left 2 bits) is added to the address of the instruction following the branch (not the branch itself), in the branch delay slot, to form a PC-relative effective target address.

If the contents of GPR rs are less than zero (sign bit is 1), branch to the effective target address after the instruction in the delay slot is executed.

Restrictions:

Processor operation is **UNPREDICTABLE** if a branch, jump, ERET, DERET, or WAIT instruction is placed in the delay slot of a branch or jump.

Operation:

```
 \begin{array}{lll} \textbf{I:} & & \texttt{target\_offset} \leftarrow \texttt{sign\_extend}(\texttt{offset} \ | \ | \ 0^2) \\ & & \texttt{condition} \leftarrow \texttt{GPR[rs]} < 0^{\texttt{GPRLEN}} \\ \textbf{I+1:} & & \texttt{if condition then} \\ & & & \texttt{PC} \leftarrow \texttt{PC} + \texttt{target\_offset} \\ & & \texttt{endif} \\ \end{array}
```

Exceptions:

None

Programming Notes:

With the 18-bit signed instruction offset, the conditional branch range is \pm 128 KBytes. Use jump and link (JAL) or jump and link register (JALR) instructions for procedure calls to addresses outside this range.

Jump J

Format: J target MIPS32 (MIPS I)

Purpose:

To branch within the current 256 MB-aligned region

Description:

This is a PC-region branch (not PC-relative); the effective target address is in the "current" 256 MB-aligned region. The low 28 bits of the target address is the *instr_index* field shifted left 2 bits. The remaining upper bits are the corresponding bits of the address of the instruction in the delay slot (not the branch itself).

Jump to the effective target address. Execute the instruction that follows the jump, in the branch delay slot, before executing the jump itself.

Restrictions:

Processor operation is **UNPREDICTABLE** if a branch, jump, ERET, DERET, or WAIT instruction is placed in the delay slot of a branch or jump.

Operation:

```
I:

I+1:PC \leftarrow PC<sub>GPRI,EN...28</sub> || instr_index || 0<sup>2</sup>
```

Exceptions:

None

Programming Notes:

Forming the branch target address by catenating PC and index bits rather than adding a signed offset to the PC is an advantage if all program code addresses fit into a 256 MB region aligned on a 256 MB boundary. It allows a branch from anywhere in the region to anywhere in the region, an action not allowed by a signed relative offset.

This definition creates the following boundary case: When the jump instruction is in the last word of a 256 MB region, it can branch only to the following 256 MB region containing the branch delay slot.

Jump and Link JAL

Format: JAL target MIPS32 (MIPS I)

Purpose:

To execute a procedure call within the current 256 MB-aligned region

Description:

Place the return address link in GPR 31. The return link is the address of the second instruction following the branch, at which location execution continues after a procedure call.

This is a PC-region branch (not PC-relative); the effective target address is in the "current" 256 MB-aligned region. The low 28 bits of the target address is the *instr_index* field shifted left 2 bits. The remaining upper bits are the corresponding bits of the address of the instruction in the delay slot (not the branch itself).

Jump to the effective target address. Execute the instruction that follows the jump, in the branch delay slot, before executing the jump itself.

Restrictions:

Processor operation is **UNPREDICTABLE** if a branch, jump, ERET, DERET, or WAIT instruction is placed in the delay slot of a branch or jump.

Operation:

```
I: GPR[31]\leftarrow PC + 8
I+1:PC \leftarrow PC<sub>GPRLEN..28</sub> || instr_index || 0^2
```

Exceptions:

None

Programming Notes:

Forming the branch target address by catenating PC and index bits rather than adding a signed offset to the PC is an advantage if all program code addresses fit into a 256 MB region aligned on a 256 MB boundary. It allows a branch from anywhere in the region to anywhere in the region, an action not allowed by a signed relative offset.

This definition creates the following boundary case: When the branch instruction is in the last word of a 256 MB region, it can branch only to the following 256 MB region containing the branch delay slot.

Jump Register JR

Format: JR rs MIPS32 (MIPS I)

Purpose:

To execute a branch to an instruction address in a register

Description: $PC \leftarrow rs$

Jump to the effective target address in GPR rs. Execute the instruction following the jump, in the branch delay slot, before jumping.

For processors that implement the MIPS16 ASE, set the *ISA Mode* bit to the value in GPR *rs* bit 0. Bit 0 of the target address is always zero so that no Address Exceptions occur when bit 0 of the source register is one

Restrictions:

The effective target address in GPR *rs* must be naturally-aligned. For processors that do not implement the MIPS16 ASE, if either of the two least-significant bits are not zero, an Address Error exception occurs when the branch target is subsequently fetched as an instruction. For processors that do implement the MIPS16 ASE, if bit 0 is zero and bit 1 is one, an Address Error exception occurs when the jump target is subsequently fetched as an instruction.

At this time the only defined hint field value is 0, which sets default handling of JR. Future versions of the architecture may define additional hint values.

Processor operation is **UNPREDICTABLE** if a branch, jump, ERET, DERET, or WAIT instruction is placed in the delay slot of a branch or jump.

Operation:

```
\begin{tabular}{ll} \textbf{I:} & temp \leftarrow GPR[rs] \\ \textbf{I+1:} & if & Config1_{CA} = 0 & then \\ & & PC \leftarrow temp \\ & else \\ & & PC \leftarrow temp_{GPRLEN-1..1} & || & 0 \\ & & & ISAMode \leftarrow temp_0 \\ & & end & if \\ \end{tabular}
```

Exceptions:

Jump Register, cont.

Programming Notes:

Software should use the value 31 for the *rs* field of the instruction word on return from a JAL, JALR, or BGEZAL, and should use a value other than 31 for remaining uses of JR.

31 2	6 25	21	20 16	15 11	10 6	5 0
SPECIAL			0	1	1	JALR
000000		rs	00000	rd	hint	001001
6		5	5	5	5	6

Format: JALR rs (rd = 31 implied) MIPS32 (MIPS I)

JALR rd, rs MIPS32 (MIPS I)

Purpose:

To execute a procedure call to an instruction address in a register

Description: $rd \leftarrow return_addr$, $PC \leftarrow rs$

Place the return address link in GPR *rd*. The return link is the address of the second instruction following the branch, where execution continues after a procedure call.

For processors that do not implement the MIPS16 ASE:

• Jump to the effective target address in GPR *rs*. Execute the instruction that follows the jump, in the branch delay slot, before executing the jump itself.

For processors that do implement the MIPS16 ASE:

• Jump to the effective target address in GPR rs. Set the ISA Mode bit to the value in GPR rs bit 0. Bit 0 of the target address is always zero so that no Address Exceptions occur when bit 0 of the source register is one

At this time the only defined hint field value is 0, which sets default handling of JALR. Future versions of the architecture may define additional hint values.

Restrictions:

Register specifiers rs and rd must not be equal, because such an instruction does not have the same effect when reexecuted. The result of executing such an instruction is undefined. This restriction permits an exception handler to resume execution by reexecuting the branch when an exception occurs in the branch delay slot.

The effective target address in GPR *rs* must be naturally-aligned. For processors that do not implement the MIPS16 ASE, if either of the two least-significant bits are not zero, an Address Error exception occurs when the branch target is subsequently fetched as an instruction. For processors that do implement the MIPS16 ASE, if bit 0 is zero and bit 1 is one, an Address Error exception occurs when the jump target is subsequently fetched as an instruction.

Processor operation is **UNPREDICTABLE** if a branch, jump, ERET, DERET, or WAIT instruction is placed in the delay slot of a branch or jump.

Operation:

```
\begin{tabular}{ll} {\bf I:} & temp \leftarrow GPR[rs] \\ & GPR[rd] \leftarrow PC + 8 \\ {\bf I+1:} & if & Config1_{CA} = 0 & then \\ & PC \leftarrow temp \\ & else \\ & PC \leftarrow temp_{GPRLEN-1..1} & || & 0 \\ & ISAMode \leftarrow temp_0 \\ & endif \\ \end{tabular}
```

Exceptions:

None

Programming Notes:

This is the only branch-and-link instruction that can select a register for the return link; all other link instructions use GPR 31. The default register for GPR *rd*, if omitted in the assembly language instruction, is GPR 31.

Load Byte LB

Format: LB rt, offset(base) MIPS32 (MIPS I)

Purpose:

To load a byte from memory as a signed value

Description: rt ← memory[base+offset]

The contents of the 8-bit byte at the memory location specified by the effective address are fetched, sign-extended, and placed in GPR *rt*. The 16-bit signed *offset* is added to the contents of GPR *base* to form the effective address.

Restrictions:

None

Operation:

```
\begin{array}{lll} v A d d r & \leftarrow sign\_extend(offset) + GPR[base] \\ (p A d d r, CCA) \leftarrow A d d ressTranslation (v A d d r, D A T A, LOAD) \\ p A d d r & \leftarrow p A d d r_{PSIZE-1...2} \mid \mid (p A d d r_{1...0} \ xor \ ReverseEndian^2) \\ memword \leftarrow Load Memory (CCA, BYTE, p A d d r, v A d d r, D A T A) \\ byte & \leftarrow v A d d r_{1...0} \ xor \ BigEndian CPU^2 \\ GPR[rt] \leftarrow sign\_extend(memword_{7+8*byte...8*byte}) \end{array}
```

Exceptions:

TLB Refill, TLB Invalid, Address Error

Load Halfword LH

Format: LH rt, offset(base) MIPS32 (MIPS I)

Purpose:

To load a halfword from memory as a signed value

Description: rt ← memory[base+offset]

The contents of the 16-bit halfword at the memory location specified by the aligned effective address are fetched, sign-extended, and placed in GPR *rt*. The 16-bit signed *offset* is added to the contents of GPR *base* to form the effective address.

Restrictions:

The effective address must be naturally-aligned. If the least-significant bit of the address is non-zero, an Address Error exception occurs.

Operation:

```
\begin{split} \text{vAddr} &\leftarrow \text{sign\_extend}(\text{offset}) + \text{GPR[base]} \\ \text{if } \text{vAddr}_0 \neq 0 \text{ then} \\ &\quad \text{SignalException}(\text{AddressError}) \\ \text{endif} \\ &(\text{pAddr}, \text{CCA}) \leftarrow \text{AddressTranslation (vAddr, DATA, LOAD)} \\ &\text{pAddr} \leftarrow \text{pAddr}_{\text{PSIZE-1..2}} \mid\mid (\text{pAddr}_{1..0} \text{ xor (ReverseEndian } \mid\mid 0)) \\ &\text{memword} \leftarrow \text{LoadMemory (CCA, HALFWORD, pAddr, vAddr, DATA)} \\ &\text{byte} \quad \leftarrow \text{vAddr}_{1..0} \text{ xor (BigEndianCPU } \mid\mid 0) \\ &\text{GPR[rt]} \leftarrow \text{sign\_extend(memword}_{15+8*\text{byte}..8*\text{byte}}) \end{split}
```

Exceptions:

TLB Refill, TLB Invalid, Bus Error, Address Error

Load Word LW

Format: LW rt, offset(base) MIPS32 (MIPS I)

Purpose:

To load a word from memory as a signed value

Description: rt ← memory[base+offset]

The contents of the 32-bit word at the memory location specified by the aligned effective address are fetched, sign-extended to the GPR register length if necessary, and placed in GPR *rt*. The 16-bit signed *offset* is added to the contents of GPR *base* to form the effective address.

Restrictions:

The effective address must be naturally-aligned. If either of the 2 least-significant bits of the address is non-zero, an Address Error exception occurs.

Operation:

```
\label{eq:vAddr} \begin{array}{l} {\rm vAddr} \; \leftarrow \; {\rm sign\_extend(offset)} \; + \; {\rm GPR[base]} \\ {\rm if} \; {\rm vAddr}_{1..0} \; \neq \; 0^2 \; {\rm then} \\ \qquad {\rm SignalException(AddressError)} \\ {\rm endif} \\ ({\rm pAddr}, \; {\rm CCA}) \leftarrow \; {\rm AddressTranslation} \; ({\rm vAddr}, \; {\rm DATA}, \; {\rm LOAD}) \\ {\rm memword} \leftarrow \; {\rm LoadMemory} \; ({\rm CCA}, \; {\rm WORD}, \; {\rm pAddr}, \; {\rm vAddr}, \; {\rm DATA}) \\ {\rm GPR[rt]} \leftarrow \; {\rm memword} \end{array}
```

Exceptions:

TLB Refill, TLB Invalid, Bus Error, Address Error

Load Byte Unsigned LBU

Format: LBU rt, offset(base) MIPS32 (MIPS I)

Purpose:

To load a byte from memory as an unsigned value

Description: rt ← memory[base+offset]

The contents of the 8-bit byte at the memory location specified by the effective address are fetched, zero-extended, and placed in GPR *rt*. The 16-bit signed *offset* is added to the contents of GPR *base* to form the effective address.

Restrictions:

None

Operation:

```
\begin{array}{lll} v A d d r & \leftarrow \text{sign\_extend(offset)} + \text{GPR[base]} \\ (p A d d r, \text{CCA}) \leftarrow \text{AddressTranslation (vAddr, DATA, LOAD)} \\ p A d d r & \leftarrow \text{pAddr}_{\text{PSIZE-1...2}} \mid \mid (p A d d r_{1...0} \text{ xor ReverseEndian}^2) \\ \text{memword} \leftarrow \text{LoadMemory (CCA, BYTE, pAddr, vAddr, DATA)} \\ \text{byte} & \leftarrow \text{vAddr}_{1...0} \text{ xor BigEndianCPU}^2 \\ \text{GPR[rt]} \leftarrow \text{zero\_extend(memword}_{7+8*\text{byte}..8*\text{byte}}) \end{array}
```

Exceptions:

TLB Refill, TLB Invalid, Address Error

Load Halfword Unsigned

LHU

31	26	25	21	20 16	15 0
LHU		1			-65-4
100101		base		rt	offset
6		5		5	16

Format: LHU rt, offset(base)

MIPS32 (MIPS I)

Purpose:

To load a halfword from memory as an unsigned value

```
Description: rt ← memory[base+offset]
```

The contents of the 16-bit halfword at the memory location specified by the aligned effective address are fetched, zero-extended, and placed in GPR *rt*. The 16-bit signed *offset* is added to the contents of GPR *base* to form the effective address.

Restrictions:

The effective address must be naturally-aligned. If the least-significant bit of the address is non-zero, an Address Error exception occurs.

Operation:

```
\label{eq:vAddr} \begin{array}{l} \text{vAddr}_0 \leftarrow \text{sign\_extend(offset)} + \text{GPR[base]} \\ \text{if } \text{vAddr}_0 \neq 0 \text{ then} \\ \text{SignalException(AddressError)} \\ \text{endif} \\ \text{(pAddr, CCA)} \leftarrow \text{AddressTranslation (vAddr, DATA, LOAD)} \\ \text{pAddr} \leftarrow \text{pAddr}_{\text{PSIZE-1..2}} \mid\mid (\text{pAddr}_{1..0} \text{ xor (ReverseEndian } \mid\mid 0)) \\ \text{memword} \leftarrow \text{LoadMemory (CCA, HALFWORD, pAddr, vAddr, DATA)} \\ \text{byte} \quad \leftarrow \text{vAddr}_{1..0} \text{ xor (BigEndianCPU } \mid\mid 0) \\ \text{GPR[rt]} \leftarrow \text{zero\_extend(memword}_{15+8*\text{byte}..8*\text{byte}}) \end{array}
```

Exceptions:

TLB Refill, TLB Invalid, Address Error

Load Word Left LWL

Format: LWL rt, offset(base) MIPS32 (MIPS I)

Purpose:

To load the most-significant part of a word as a signed value from an unaligned memory address

Description: rt ← rt MERGE memory[base+offset]

The 16-bit signed *offset* is added to the contents of GPR *base* to form an effective address (*EffAddr*). *EffAddr* is the address of the most-significant of 4 consecutive bytes forming a word (*W*) in memory starting at an arbitrary byte boundary.

The most-significant 1 to 4 bytes of W is in the aligned word containing the EffAddr. This part of W is loaded into the most-significant (left) part of the word in GPR rt. The remaining least-significant part of the word in GPR rt is unchanged.

The figure below illustrates this operation using big-endian byte ordering for 32-bit and 64-bit registers. The 4 consecutive bytes in 2..5 form an unaligned word starting at location 2. A part of W, 2 bytes, is in the aligned word containing the most-significant byte at 2. First, LWL loads these 2 bytes into the left part of the destination register word and leaves the right part of the destination word unchanged. Next, the complementary LWR loads the remainder of the unaligned word

Word at byte 2 in big-endian memory; each memory byte contains its own address most - significance least 0 2 3 5 6 8 9 Memory initial contents 4 h GPR 24 Initial contents e g 2 3 g h After executing LWL \$24,2(\$0) 3 2 4 5 Then after LWR \$24,5(\$0)

Figure 3-2 Unaligned Word Load Using LWL and LWR

Load Word Left (con't)

The bytes loaded from memory to the destination register depend on both the offset of the effective address within an aligned word, that is, the low 2 bits of the address ($vAddr_{1..0}$), and the current byte-ordering mode of the processor (big- or little-endian). The figure below shows the bytes loaded for every combination of offset and byte ordering.

Figure 3-3 Bytes Loaded by LWL Instruction

Load Word Left (con't)

Restrictions:

None

Operation:

```
\label{eq:vAddr} $$ \leftarrow sign_extend(offset) + GPR[base] $$ (pAddr, CCA) \leftarrow AddressTranslation (vAddr, DATA, LOAD) $$ pAddr \leftarrow pAddr_{PSIZE-1...2} \mid \mid (pAddr_{1...0} \ xor \ ReverseEndian^2) $$ if BigEndianMem = 0 then $$ pAddr \leftarrow pAddr_{PSIZE-1...2} \mid \mid 0^2 $$ endif $$ byte \leftarrow vAddr_{1...0} \ xor \ BigEndianCPU^2 $$ memword \leftarrow \ LoadMemory (CCA, byte, pAddr, vAddr, DATA) $$ temp \leftarrow memword_{7+8*byte...0} \mid \mid GPR[rt]_{23-8*byte...0} $$ GPR[rt] \leftarrow temp $$
```

Exceptions:

None

TLB Refill, TLB Invalid, Bus Error, Address Error

Programming Notes:

The architecture provides no direct support for treating unaligned words as unsigned values, that is, zeroing bits 63..32 of the destination register when bit 31 is loaded.

Historical Information

In the MIPS I architecture, the LWL and LWR instructions were exceptions to the load-delay scheduling restriction. A LWL or LWR instruction which was immediately followed by another LWL or LWR instruction, and used the same destination register would correctly merge the 1 to 4 loaded bytes with the data loaded by the previous instruction. All such restrictions were removed from the architecture in MIPS II.

Load Word Right LWR

31	26 25	21 20	16	15 0	
LWR	haaa		aut.	offset	
100110	base		п	onset	
6	5		5	16	

Format: LWR rt, offset(base) MIPS32 (MIPS I)

Purpose:

To load the least-significant part of a word from an unaligned memory address as a signed value

Description: rt ← rt MERGE memory[base+offset]

The 16-bit signed *offset* is added to the contents of GPR *base* to form an effective address (*EffAddr*). *EffAddr* is the address of the least-significant of 4 consecutive bytes forming a word (*W*) in memory starting at an arbitrary byte boundary.

A part of *W*, the least-significant 1 to 4 bytes, is in the aligned word containing *EffAddr*. This part of *W* is loaded into the least-significant (right) part of the word in GPR *rt*. The remaining most-significant part of the word in GPR *rt* is unchanged.

Executing both LWR and LWL, in either order, delivers a sign-extended word value in the destination register.

The figure below illustrates this operation using big-endian byte ordering for 32-bit and 64-bit registers. The 4 consecutive bytes in 2..5 form an unaligned word starting at location 2. A part of *W*, 2 bytes, is in the aligned word containing the least-significant byte at 5. First, LWR loads these 2 bytes into the right part of the destination register. Next, the complementary LWL loads the remainder of the unaligned word.

Load Word Right (cont.)

Figure 3-4 Unaligned Word Load Using LWL and LWR

The bytes loaded from memory to the destination register depend on both the offset of the effective address within an aligned word, that is, the low 2 bits of the address ($vAddr_{1..0}$), and the current byte-ordering mode of the processor (big- or little-endian). The figure below shows the bytes loaded for every combination of offset and byte ordering.

Load Word Right (cont.)

Figure 3-5 Bytes Loaded by LWL Instruction

Load Word Right (cont.)

Restrictions:

None

Operation:

```
\label{eq:vAddr} $$ \leftarrow sign\_extend(offset) + GPR[base] $$ (pAddr, CCA) \leftarrow AddressTranslation (vAddr, DATA, LOAD) $$ pAddr \leftarrow pAddr_{PSIZE-1...2} \mid \mid (pAddr_{1...0} \ xor \ ReverseEndian^2) $$ if BigEndianMem = 0 then $$ pAddr \leftarrow pAddr_{PSIZE-1...2} \mid \mid 0^2 $$ endif $$ byte \leftarrow vAddr_{1...0} \ xor \ BigEndianCPU^2 $$ memword \leftarrow \ LoadMemory (CCA, byte, pAddr, vAddr, DATA) $$ temp $\leftarrow \ memword_{31...32-8*byte} \mid \mid GPR[rt]_{31-8*byte...0} $$ GPR[rt] \leftarrow temp $$
```

Exceptions:

TLB Refill, TLB Invalid, Bus Error, Address Error

Programming Notes:

The architecture provides no direct support for treating unaligned words as unsigned values, that is, zeroing bits 63..32 of the destination register when bit 31 is loaded.

Historical Information

In the MIPS I architecture, the LWL and LWR instructions were exceptions to the load-delay scheduling restriction. A LWL or LWR instruction which was immediately followed by another LWL or LWR instruction, and used the same destination register would correctly merge the 1 to 4 loaded bytes with the data loaded by the previous instruction. All such restrictions were removed from the architecture in MIPS II.

Store Byte SB

Format: SB rt, offset(base) MIPS32 (MIPS I)

Purpose:

To store a byte to memory

Description: $memory[base+offset] \leftarrow rt$

The least-significant 8-bit byte of GPR *rt* is stored in memory at the location specified by the effective address. The 16-bit signed *offset* is added to the contents of GPR *base* to form the effective address.

Restrictions:

None

Operation:

```
\begin{array}{lll} v A d d r & \leftarrow \text{sign\_extend(offset)} + \text{GPR[base]} \\ (p A d d r, \text{CCA}) \leftarrow \text{AddressTranslation (vAddr, DATA, STORE)} \\ p A d d r & \leftarrow \text{pAddr}_{\text{PSIZE-1...2}} \mid \mid (p A d d r_{1...0} \text{ xor ReverseEndian}^2) \\ \text{bytesel} & \leftarrow \text{vAddr}_{1...0} \text{ xor BigEndianCPU}^2 \\ \text{dataword} & \leftarrow \text{GPR[rt]}_{31-8*\text{bytesel...0}} \mid \mid 0^{8*\text{bytesel}} \\ \text{StoreMemory (CCA, BYTE, dataword, pAddr, vAddr, DATA)} \end{array}
```

Exceptions:

TLB Refill, TLB Invalid, TLB Modified, Bus Error, Address Error

Store Halfword SH

Format: SH rt, offset(base) MIPS32 (MIPS I)

Purpose:

To store a halfword to memory

Description: memory[base+offset] ← rt

The least-significant 16-bit halfword of register *rt* is stored in memory at the location specified by the aligned effective address. The 16-bit signed *offset* is added to the contents of GPR *base* to form the effective address.

Restrictions:

The effective address must be naturally-aligned. If the least-significant bit of the address is non-zero, an Address Error exception occurs.

Operation:

Exceptions:

TLB Refill, TLB Invalid, TLB Modified, Address Error

Store Word SW

Format: SW rt, offset(base) MIPS32 (MIPS I)

Purpose:

To store a word to memory

Description: $memory[base+offset] \leftarrow rt$

The least-significant 32-bit word of register *rt* is stored in memory at the location specified by the aligned effective address. The 16-bit signed *offset* is added to the contents of GPR *base* to form the effective address.

Restrictions:

The effective address must be naturally-aligned. If either of the 2 least-significant bits of the address is non-zero, an Address Error exception occurs.

Operation:

```
vAddr ← sign_extend(offset) + GPR[base]
if vAddr<sub>1..0</sub> ≠ 0<sup>2</sup> then
    SignalException(AddressError)
endif
(pAddr, CCA)← AddressTranslation (vAddr, DATA, STORE)
dataword← GPR[rt]
StoreMemory (CCA, WORD, dataword, pAddr, vAddr, DATA)
```

Exceptions:

TLB Refill, TLB Invalid, TLB Modified, Address Error

31	26	25 21	20 16	15 0
	SWL	1		-65-4
	101010	base	rt	offset
	6	5	5	16

Format: SWL rt, offset(base) MIPS32 (MIPS I)

Purpose:

To store the most-significant part of a word to an unaligned memory address

Description: $memory[base+offset] \leftarrow rt$

The 16-bit signed *offset* is added to the contents of GPR *base* to form an effective address (*EffAddr*). *EffAddr* is the address of the most-significant of 4 consecutive bytes forming a word (*W*) in memory starting at an arbitrary byte boundary.

A part of W, the most-significant 1 to 4 bytes, is in the aligned word containing *EffAddr*. The same number of the most-significant (left) bytes from the word in GPR rt are stored into these bytes of W.

The following figure illustrates this operation using big-endian byte ordering for 32-bit and 64-bit registers. The 4 consecutive bytes in 2..5 form an unaligned word starting at location 2. A part of *W*, 2 bytes, is located in the aligned word containing the most-significant byte at 2. First, SWL stores the most-significant 2 bytes of the low word from the source register into these 2 bytes in memory. Next, the complementary SWR stores the remainder of the unaligned word.

Word at byte 2 in memory, big-endian byte order; each memory byte contains its own address - significance most least 5 6 Memory: Initial contents GPR 24 G Η 5 After executing SWL \$24,2(\$0) Е G Η 6 Then after SWR \$24,5(\$0)

Figure 3-6 Unaligned Word Store Using SWL and SWR

The bytes stored from the source register to memory depend on both the offset of the effective address within an aligned word—that is, the low 2 bits of the address (*vAddr1..0*)—and the current byte-ordering mode of the processor (big- or little-endian). The following figure shows the bytes stored for every combination of offset and byte ordering.

Store Word Left (cont.)

Figure 3-7 Bytes Stored by an SWL Instruction

Restrictions:

None

Operation:

Exceptions:

TLB Refill, TLB Invalid, TLB Modified, Bus Error, Address Error

Format: SWR rt, offset(base) MIPS32 (MIPS I)

Purpose:

To store the least-significant part of a word to an unaligned memory address

Description: $memory[base+offset] \leftarrow rt$

The 16-bit signed *offset* is added to the contents of GPR *base* to form an effective address (*EffAddr*). *EffAddr* is the address of the least-significant of 4 consecutive bytes forming a word (*W*) in memory starting at an arbitrary byte boundary.

A part of W, the least-significant 1 to 4 bytes, is in the aligned word containing *EffAddr*. The same number of the least-significant (right) bytes from the word in GPR rt are stored into these bytes of W.

The following figure illustrates this operation using big-endian byte ordering for 32-bit and 64-bit registers. The 4 consecutive bytes in 2..5 form an unaligned word starting at location 2. A part of W, 2 bytes, is contained in the aligned word containing the least-significant byte at 5. First, SWR stores the least-significant 2 bytes of the low word from the source register into these 2 bytes in memory. Next, the complementary SWL stores the remainder of the unaligned word.

Word at byte 2 in memory, big-endian byte order, each mem byte contains its address least — significance least 3 4 5 6 Memory: Initial contents GPR 24 F G Η 2 3 G Η 0 After executing SWR \$24,5(\$0) 0 Е G Η 6 Then after SWL \$24,2(\$0)

Figure 3-8 Unaligned Word Store Using SWR and SWL

Store Word Right (cont.)

The bytes stored from the source register to memory depend on both the offset of the effective address within an aligned word—that is, the low 2 bits of the address (*vAddr1..0*)—and the current byte-ordering mode of the processor (big- or little-endian). The following figure shows the bytes stored for every combination of offset and byte-ordering.

Figure 3-9 Bytes Stored by SWR Instruction

Restrictions:

None

Operation:

```
\label{eq:vAddr} \begin{array}{lll} \text{vAddr} &\leftarrow \text{sign\_extend(offset)} + \text{GPR[base]} \\ (\text{pAddr, CCA}) \leftarrow \text{AddressTranslation (vAddr, DATA, STORE)} \\ \text{pAddr} &\leftarrow \text{pAddr}_{\text{PSIZE-1..2}} \mid \mid (\text{pAddr}_{1..0} \text{ xor ReverseEndian}^2) \\ \text{If BigEndianMem} &= 0 \text{ then} \\ &\quad \text{pAddr} \leftarrow \text{pAddr}_{\text{PSIZE-1..2}} \mid \mid 0^2 \\ \text{endif} \\ \text{byte} &\leftarrow \text{vAddr}_{1..0} \text{ xor BigEndianCPU}^2 \\ \text{dataword} \leftarrow \text{GPR[rt]}_{31-8*\text{byte}} \mid \mid 0^{8*\text{byte}} \\ \text{StoreMemory(CCA, WORD-byte, dataword, pAddr, vAddr, DATA)} \end{array}
```

Exceptions:

TLB Refill, TLB Invalid, TLB Modified, Bus Error, Address Error

Move Conditional on Not Zero

MOVN

31	26	25	21	20 16	15	11	10 6	5	0
SPECIAL							0	MOVN	
000000		rs		rt	rd		00000	001011	
6		5		5	5		5	6	

Format: MOVN rd, rs, rt MIPS32 (MIPS IV)

Purpose:

To conditionally move a GPR after testing a GPR value

Description: if rt $\neq 0$ then rd \leftarrow rs

If the value in GPR rt is not equal to zero, then the contents of GPR rs are placed into GPR rd.

Restrictions:

None

Operation:

```
if GPR[rt] \neq 0 then GPR[rd] \leftarrow GPR[rs] endif
```

Exceptions:

None

Programming Notes:

The non-zero value tested here is the *condition true* result from the SLT, SLTI, SLTU, and SLTIU comparison instructions.

Move Conditional on Zero MOVZ

31	26	25	21	20	6 15	11	10 6	5	0
SPECIAL						,	0	MOVZ	
000000		rs		rt	r	d	00000	001010	
6		5		5	A	5	5	6	

Format: MOVZ rd, rs, rt MIPS32 (MIPS IV

Purpose:

To conditionally move a GPR after testing a GPR value

Description: if rt = 0 then $rd \leftarrow rs$

If the value in GPR rt is equal to zero, then the contents of GPR rs are placed into GPR rd.

Restrictions:

None

Operation:

```
\begin{array}{l} \text{if } \operatorname{GPR}[\operatorname{rt}] = 0 \text{ then} \\ \operatorname{GPR}[\operatorname{rd}] \leftarrow \operatorname{GPR}[\operatorname{rs}] \\ \text{endif} \end{array}
```

Exceptions:

None

Programming Notes:

The zero value tested here is the *condition false* result from the SLT, SLTI, SLTU, and SLTIU comparison instructions.

Load Upper Immediate

LUI

31 20	5 25 21	20 16	15 0
LUI	0		
001111	00000	rt	immediate
6	5	5	16

Format: LUI rt, immediate MIPS32 (MIPS I)

Purpose:

To load a constant into the upper half of a word

Description: $rt \leftarrow immediate \mid \mid 0^{16}$

The 16-bit *immediate* is shifted left 16 bits and concatenated with 16 bits of low-order zeros. The 32-bit result is placed into GPR *rt*.

Restrictions:

None

Operation:

 $\texttt{GPR[rt]} \leftarrow \texttt{immediate} \ | \ | \ 0^{16}$

Exceptions:

None