Multi-genre classification of movies

Natural computation methods for machine learning

Victoria Bull, Caroline Pereira, Jayant Yadav

Our problem

- Image classification of movie posters
- Multi-label
- Many different ways to solve the problem

The data set

- 8052 movies with posters in different sizes
- Originally 28 different genres
- Unbalanced

Our approach

DenseNet

Our application

Custom CNN

Model	Accuracy
Custom CNN	4.1%
DenseNet-121	26.41%

Performance matic:

Check accuracy by picking top k genres from the output vector, where k is no. of genres in the ground truth.

prediction=> tensor([1,0,0,0,1,0,1])

ground_truth => tensor([1,0,1,0,1,0,0])

Accuracy =>2/3 = 66.67%

Results

Predicted genres: Action, Comedy,

Adventure

Ground Truth: Action, Comedy,

Adventure

Predicted genres: Action
Ground Truth: Action

Predicted genres: Crime, Drama **Ground Truth:** Comedy, Drama

Challenges

- Genre is an abstract concept
- Many classes wrt to dataset size
- Unbalanced dataset

Predicted genres: Crime, Drama **Ground Truth:** Crime, Drama

- Object detection
- Attention methods
- Other architectures

Conclusion/Future Work

- Use more metadata
- Balance out the dataset
- Object detection
- Better performance metric

Thank You!

Questions?