Anticiper les besoins en énergie de la ville de Seattle

Le Besoin

Qui?

- La ville de Seattle
- Non-résidentiel
- Energie et gaz

Quoi?

- Prédire les besoins futurs
- Etudier la valeur de EnergyStarScore dans le modèle

Comment?

- Appliquer des modèles de prédiction linéaires
- Ne pas utiliser les variables énergétiques directement
- Définir le meilleur modèle

Ressources & méthode de pensée

Plusieurs Da	atasets			Quel dataset prioriser?	Quelle méthode?
Nom	Туре	Taille	•	Données utiles à la question?	Découverte du datasetNettoyage
2015-building-energy-benchmarking	Fichier CSV	1 552 Ko	•		 Affinage Tri des variables Remplissage Phase exploratoire Application des modèles et
2016-building-energy-benchmarking	Fichier CSV	1 207 Ko			
socrata_metadata_2015-building-energy	Fichier JSON	54 Ko			
socrata_metadata_2016-building-energy	Fichier JSON	45 Ko		comparaison	

Méthode d'analyse exploratoire

Etudier les datasets	Créer un jeu d'étude propre	Explorer Modéliser Comparer
Comprendre ce qu'on a à l'intérieur: Beaucoup de donnée? Présente? Manquante? Eparse? Constante? Régulière? Organisée? Quels indicateurs?	 Variables claires Donnée organisée Gestion des données manquantes et aberrantes Feature engineering 	 Création de pipeline & cross validation Choix et application des modèles via les pipe Comparaison

La Démarche

Comprendre ce qu'on a à l'intérieur:

- Beaucoup de donnée?
- Présente? Manquante?
- Eparse?
- Constante? Régulière?
- Organisée?
- Optimisée?
- Quels indicateurs?

Avant nettoyage


```
1 def doublons(k):
2     print("II y a " + str(k.index.size - k.drop_duplicates().index.size)+" doublons")
3     doublons(data)
II y a * doublons
```

```
1 print(data_2015.shape)
2 print(data_2016.shape)

(3340, 47)
(3376, 46)
```

Les méthodes de nettoyage

```
1 data_energyuse.shape
(3190, 220)
```


- Suppression des colonnes/lignes vides, inutiles(variables énergies), aberrantes, ou en double
- Filtrage sur les bâtiments non-résidentiels
- Changement des noms de variables communes
- Elimination des outliers (energystarscore,...)
- Vérification de variables sommes (gfa, siteenergyuse)
- Ajout d'une variable otherfuels et categorielle energie
- Récupération de la longitude et latitude
- Concaténation de 2015 et 2016 dans un même dataset
- Encoder sur les variables object
- Remplissage des valeurs manquantes via mediane
- Passage au log des variables target
- séparation des deux dataset contenant les variables target respectives

Comprendre ce qu'on a à l'intérieur:

- Beaucoup de donnée?
- Présente? Manquante?
- Eparse?
- Constante? Régulière?
- Organisée?
- Optimisée?
- Quels indicateurs?

Analyses Univariées

Comprendre ce qu'on a à l'intérieur:

- Beaucoup de donnée?
- Présente? Manquante?
- Eparse?
- Constante? Régulière?
- Organisée?
- Optimisée?
- Quels indicateurs?

Analyse multivariée

Analyse multivariée

- 0.8

- 0.6

- 0.2

- 0.0

- Comprendre ce qu'on a à l'intérieur:
 - Beaucoup de donnée?
 - Présente? Manquante?
 - Eparse?
 - Constante? Régulière?
 - Organisée?
 - Optimisée?
 - Quels indicateurs?

Data présente par Région sur les indicateurs choisis

Comprendre ce qu'on a à l'intérieur:

- Beaucoup de donnée?
- Présente? Manquante?
- Eparse?
- Constante? Régulière?
- Organisée?
- Optimisée?
- Quels indicateurs?

Machine Learning et méthodologie

- Indicateurs clairs
- Donnée organisée
- Gestion des données manquantes
- Gestion des indicateurs

Les mots d'ordre:

Modularité & automatisation

Optimisation

Robustesse

Modèles linéaires et classiques

Scoring

Comparaison

Importance des variables

En découle:

Pipelines

Gridsearch

Crossvalidation

Hyperopt sklearn

xgboost

Lasso, Ridge, SVR, Random Forest

DATAFRAME!

r2 et rmse

Machine Learning et méthodologie

- Indicateurs clairs
- Donnée organisée
- Gestion des données manquantes
- Gestion des indicateurs

En découle: **Pipelines** Gridsearch Crossvalidation Hyperopt sklearn xgboost Lasso, Ridge, SVR, Random Forest DATAFRAME! r2 et rmse

- Indicateurs clairs
- Donnée organisée
- Gestion des données manquantes
- Gestion des indicateurs

- Indicateurs clairs
- Donnée organisée
- Gestion des données manquantes
- Gestion des indicateurs

- Indicateurs clairs
- Donnée organisée
- Gestion des données manquantes
- Gestion des indicateurs

- Indicateurs clairs
- Donnée organisée
- Gestion des données manquantes
- Gestion des indicateurs

- Indicateurs clairs
- Donnée organisée
- Gestion des données manquantes
- Gestion des indicateurs

- Indicateurs clairs
- Donnée organisée
- Gestion des données manquantes
- Gestion des indicateurs

- Indicateurs clairs
- Donnée organisée
- Gestion des données manquantes
- Gestion des indicateurs

- Indicateurs clairs
- Donnée organisée
- Gestion des données manquantes
- Gestion des indicateurs

De l'importance d'EnergyStarScore

Apprentissage et ressenti

Critique:

Qu'est-ce que j'ai appris et ma pensée sur les technologies abordées

XGBRegressor(base_score=0.5, booster='gbtree', colsample_bylevel=0.8829119548287974, colsample_bynode=1, colsample_bytree=0.6628937541385697, gamma=7.317511939125787e-07, gpu_id=-1, importance_lype='gain', interaction_constraints=", learning_rate=0.06089857803867583, max_delta_step=0, max_depth=10, min_child_weight=2, missing=nan, monotone_constraints='()', n_estimators=2600, n_jobs=16, num_parallel_tree=1, objective='reg_linear', random_state=0, reg_alpha=0.178742166256787, reg_lambda=2.002400735833588, scale_pos_weight=1, seed=0, subsample=0.5638344363863476, tree_method='exact', validate_parameters=1, verbosity=None)

g

XGBRegressor(base_score=0.5, booster='gbtree', colsample_bylevel=0.6726521725890362, colsample_bynode=1, colsample_bytree=0.7974066587372607, gamma=0.0023815763092893145, gpu_id=-1, importance_type='gain', interaction_constraints="; learning_rate=0.04480475685904021, max_delta_step=0, max_depth=4, min_child_weight=6, missing=nan, monotone_constraints='()', n_estimators=1600, n_jobs=16, num_parallel_tree=1, objective='reg_linear', random_state=4, reg_alpha=0.46901677521628776, reg_lambda=2.2344712857026297, scale_pos_weight=1, seed=4, subsample=0.6572741862686372, tree method='exact', validate_parameters=1, verbosity=None)

