Physical properties

Reading on the GPG:

https://gpg.geosci.xyz/content/physical_properties/index.html

From Last Time

Finding Resources

Minerals

Aquifers and wells

Ground Water

Hydrocarbons

Geothermal Energy

Natural Hazards

Volcanoes

Tsunami

Geotechnical engineering

Tunnels

In-mine safety

Environmental

Water contamination

Salt water intrusion

http://www.centennialofflight.gov

Surface or Underground Storage

CO2 sequestration

Industrial Waste Disposal

Aquifer Storage and Recover

What do all these problems have in common?

 They all require ways to see into the earth without direct sampling.

Geophysical Surveys

Subsurface: Physical Properties and Contrasts

Geophysical Methods

- Geophysical surveys
 - Magnetic (magnetic susceptibility)
 - Seismic (density, elastic parameters)
 - Ground penetrating radar (electrical permittivity)
 - DC resistivity (electrical conductivity/resistivity)
 - Electromagnetic (electrical conductivity/resistivity)
 - Others
- Requires a contrast in physical properties

Today

- How do geophysicists differentiate materials?
- What are the different physical properties?
- What is the range of values defining each physical property?
- What factors impact different physical properties?

Using Geophysics

Which properties?
How do they connect with my application?

How do we differentiate materials?

- Characterize materials by physical properties:
 - Density
 - Magnetic susceptibility
 - Electrical conductivity
 - Chargeability
 - Electrical permittivity
 - Elastic moduli

Density

$$\rho = \frac{m}{V}$$

Density: ρ in g/cm³ or kg/m³

Mass: m in g or kg

Volume: V in cm³ or m³

Density of earth materials

Air: 0.001225 g/cm³

Water: 1.00 g/cm³

Ice: 0.917 g/cm³

Petroleum: 0.60 - 0.90 g/cm³

Sedimentary Rocks: 1.50 - 3.30 g/cm³

Igneous Rocks: 2.35 - 3.50 g/cm³

Metamorphic Rocks: 2.52 - 3.54 g/cm³

Ore-Bearing Rocks: 2.30 - 7.60 g/

Question: In general, why do sedimentary rocks have lower density compared to other types of rock?

Porous rocks

Density vs. depth (pressure)

Low density

High density

Density vs. depth (pressure)

Density vs. depth (pressure)

Composition

Heavy elements: magnesium, iron, lead, copper, silver, gold ...

Gravity exploration

cavity

mineralization

Elastic moduli and seismic velocity

Body waves

$$K = -V_0 \frac{\Delta P}{\Delta V}$$

$$v_s = \sqrt{rac{\mu}{
ho}}$$

shear modulus (rigidity)

$$\mu = \frac{Stress}{Strain} = \frac{Fl}{\Delta xA}$$

Surface waves

$$v_R = 0.9 \, v_s$$

$$0.9\,v_s < v_L < v_s$$

Seismic velocities

$$v_p = \sqrt{rac{K+4/3\mu}{
ho}} \hspace{0.5cm} v_s = \sqrt{rac{\mu}{
ho}} \hspace{0.5cm} v_R = 0.9\,v_s \hspace{0.5cm} 0.9\,v_s < v_L < v_s$$

Property	Symbol	Units
P-Wave Velocity	v_p	m/s or km/s
S-Wave Velocity	v_s	m/s or km/s
Bulk Modulus(Incompressibility)	K	Pa or GPa
Shear Modulus (Rigidity)	μ	Pa or GPa
Density	ρ	kg/m ³ or g/cm ³

Question: Why don't we just use the intrinsic properties?

Velocities of common rocks

Material	P-wave (m/s)	S-wave (m/s)
Air	343	N/A
Water	1450 - 1500	N/A
Ice	3400 - 3800	1700 - 1900
Oil	1200 - 1250	N/A
Vegetal Soil	300 - 700	100 - 300
Dry Sands	400 - 1200	100 - 500
Wet Sands	1500 - 2000	400 - 600
Saturated Shales and Clays	1100 - 2500	200 - 800
Porous and Saturated Sandstones	2000 - 3500	800 - 1800
Marls	2000 - 3000	750 - 1500
Chalk	2300 - 2600	1100 - 1300
Coal	2200 - 2700	1000 - 1400
Salt	4500 - 5500	2500 - 3100
Anhydrites	4000 - 5500	2200 - 3100
Limestones	3500 - 6000	2000 - 3300
Dolomites	3500 - 6500	1900 - 3600
Granite	4500 - 6000	2500 - 3300
Basalt	5000 - 6000	2800 - 2400
Gneiss	4400 - 5200	2700 - 3200

Fluids are not rigid at all.
Porosity and saturation
Clay content
Compaction and cementation

Velocity vs. depth

$$v_p = \sqrt{rac{K + 4/3\mu}{
ho}}$$

Question: velocity increase or decrease with depth?

Velocity vs. depth

Seismic tomography

- velocity = distance / travel time
- many ray paths from multiple pairs of source-receiver

Seismic tomography

Magnetic susceptibility

Magnetization

$$\vec{M} = \kappa \vec{H}$$

Susceptibilities of common rocks

igneous/metamorphic > sedimentary

mafic > felsic

mineralized > country rock

Mineral	Chemical formula
Magnetite	Fe_3O_4
Ilmenite	$FeTiO_3$
Hematite	Fe_2O_3
Maghemite	Fe_2O_3
Pyrite	FeS_2
Pyrrhotite	$Fe_{1-x}S(Fe_7S_8)$

Magnetic exploration

Mineralized rocks -> iron oxide/sulphide -> high susceptibility -> perturb local geo-magnetic field

Magnetic exploration

TM4

UXO's -> iron/steel -> high susceptibility -> perturb local geo-magnetic field

Electrical conductivity

resistivity (Ωm): reciprocal of conductivity (S/m)

 $\rho = \frac{1}{\sigma}$

Conductivity of common rocks

Concentration of charge carriers (electrons, ions)

Connectivity of porespace network

Conductivity measurements

Ohm's law

DC resistivity (electric resistivity tomography)

Question: how would the volt meter reading change if the electrodes are placed over a high conductivity body (e.g. a water-filled sinkhole)?

Electrical exploration

EM exploration

Resistivity logging

Chargeability

Induced polarization: sometimes the measured voltage does not change instantaneously after the source turns on and off.

Microscopic explanations

Membrane polarization

Electrode polarization

Effect of IP

$$V_{on}(t) = V_{\sigma} + V_s \Big[1 - e^{-t/ au} \Big]$$

$$V_{off}(t) = V_s\,e^{-t/ au}$$

Chargeability: relative contribution of the induced dipole moments to the total measured voltage

$$\eta = rac{V_s}{V_m}$$

Chargeability of common rocks

Material type	Chargeability (msec)
ground water	0
alluvium	1-4
gravels	3-9
precambrian volcanics	8-20
precambrian gneisses	6-30
schists	5-20
sandstones	3-12
argilites	3-10
quartzites	5-12

Mineral Type	Chargeability (msec)
pyrite	13.4
chalcocite	13.2
copper	12.3
graphite	11.2
chalcopyrite	9.4
bornite	6.3
galena	3.7
magnetite	2.2
malachite	0.2

 $\eta = 10\%$ is about 70 msec

DC and IP exploration

The "Cluny" copper/lead/zinc deposit

Volume rendered resistivity model

Volume rendered chargeability model

Dielectric permittivity

Compare: galvanic current $\vec{J} = \sigma \vec{E}$

$$ec{J}=\sigmaec{E}$$

and displacement current $D = \varepsilon \vec{E}$

Vacuum (free space) has a non-zero permittivity $arepsilon_0 = 8.8541878176 imes 10^{-12}$ F/m

Relative Permittivity

$$arepsilon_r = rac{arepsilon}{arepsilon_0}$$

Material	$arepsilon_r$
Air	1
Fresh Water	80
Sea Water	80

Material	$arepsilon_r$
Fresh Water Ice	3 - 4
Sea Water Ice	4-8
Snow	8 - 12
Permafrost	4-8

Material	$arepsilon_r$
Shales	5 - 15
Sandstones (dry)	2-3
Sandstones (wet)	5 - 10
Limestones	4-8
Granite	4-6
Coal (dry)	3.5
Coal (wet)	8

At high frequency: GPR

$$\nabla \times \mathbf{H} = \frac{\partial \mathbf{D}}{\partial t} + \mathbf{J}$$

$$ec{J}=\sigmaec{E}$$

$$ec{D}=arepsilonec{E}$$

ground penetrating radar (GPR)

GPR wave velocity
$$v = rac{c}{\sqrt{arepsilon_r}}$$

pulseEKKO PRO 100 MHz cross-section showing lake-bathymetry and sub-bottom profiling.

Solutions ... Geophysics

Subsurface: Physical Properties and Contrasts

Recap

- Characterize materials by physical properties:
 - Density
 - Magnetic susceptibility
 - Electrical conductivity
 - Chargeability
 - Electrical permittivity
 - Elastic moduli/velocity

Recap

- Each physical property has one or more survey methods:
 - Density → Gravity
 - Magnetic susceptibility → Magnetics
 - Electrical conductivity → DCR and EM
 - Chargeability → IP
 - Electrical permittivity → GPR
 - Elastic moduli/velocity → Seismology

Unit Activities

- Labs: (Physical Properties)
 - Monday, September 9th
 - Tuesday, September 10th
- TBL:
 - Wednesday, September 11th
- Quiz:
 - Wednesday, September 11th