

ÜBER MICH

- Studium und Promotion am Karlsruher Institut für Technologie
 - Dissertation: Implizit inkrementelle Modellanalysen und -transformationen
 - Mitarbeit im Human Brain Project (Neurorobotik) über das Forschungszentrum Informatik (FZI)

- Industrieerfahrung bei Tecan Software Competence Center GmbH
 - 2018-2022
 - Software-Technologieentwicklung, Entwicklung von Konzepten und Prototypen im Bereich Laborautomatisierung
 - Teil der Arbeitsgruppe für SiLA2-Standard
- Seit 2023: Professur für Angewandtes Software Engineering

EINORDNUNG DER VERANSTALTUNG

- Pflichtveranstaltung Bachelor
 - Angewandte Informatik
 - Informatik Technischer Systeme
- Prüfung
 - Präsenzklausur (benotet, 90min)
 - Praktikum (benotet)
- Inhaltliche Voraussetzungen
 - Rechnernetze und Telekommunikation
 - Programmierung: bspw. Java für das Praktikum

Warnung

Die Vorlesung wurde in Hinblick auf die kommende PO 2024 inhaltlich angepasst. Inhalte unterscheiden sich z.T. von der Veranstaltung von Prof. Kaiser

ORGANISATION

- Vorlesung
 - 2 SWS
 - Fr 8:15 9:45
 - Folien über Stud.IP verfügbar
- Praktikum
 - 2 SWS
 - Theorieübungen und praktische Aufgaben
 - Praktikumsnote basierend auf praktischen Aufgaben
 - Praktische Übungen in C, Java oder C#
 - Übungsblätter über Stud.IP

- Aufwand 5 CP ~ 150h
 - 42h Anwesenheit
 - ~108h Selbststudium inkl. Prüfungsvorbereitung

PRÜFUNG & BENOTUNG

- Präsenzklausur
 - 90 min
 - 50% der Punkte garantieren Bestehen
- Praktikum
 - Bewertung von praktischen Aufgaben mit Punkten
 - Präsentation von theoretischen Aufgaben
 - 75% Anwesenheitspflicht
 - 50% der Punkte auf alle Praktikumsaufgaben garantieren Bestehen
- Gesamtnote
 - 60% Klausur
 - 40% Praktikum

MATERIALIEN

- Folien
 - Verfügbar über Stud.IP
- Übungsblätter
 - Verfügbar über Stud.IP

- Lehrbücher
 - Tanenbaum, van Steen: "Verteilte Systeme Grundlagen und Paradigmen", Pearson Studium, 2. Auflage, 2007, ISBN 978-3-8273-7293-2, 49,95€
 - Coulouris, Dollimore, Kindberg, Blair: "Distributed Systems Concepts and Design", Pearson Studium, 5. Auflage, 2012, ISBN 978-0132143011, 147,95€
 - HTTP/3.0 Explained, https://http3-explained.haxx.se/de
 - Michael Nygard: Release It!: Design and Deploy Production-Ready Software, O'Reilly Media, 2018, ISBN-13: 978-1680502398

PARTICIFY

- Kurs-Unterlagen bei Particify
 - https://arsnova.hs-rm.de/p/24881251
 - Code: 2488 1251
 - Q&A
 - Feedback zur Veranstaltung
 - Frageserien

AGENDA UND LERNZIELE

Agenda

- Geschichtliche Entwicklung
 - Vom ARPAnet zum Internet
 - Internet of Things
- Grundbegriffe Verteilter Systeme
 - Verteiltes Programm, verteilter Zustand
 - Transparenzarten nach ISO
- Standardisierung

Lernziele

- Grundbegriffe kennen und zuordnen können
- Historische Entstehung des Internets in groben Zügen wiedergeben können
- Standardisierungsprozesse erklären können

Halbleitertechnologie: Leistung und Kosten

Speicherchips

• 1973: 4 kBit

• 1985: 64 kBit

• 1998: 64 MBit

• 2008: 16 GBit

• 2018: 128 GBit

- Gesetz von Moore (1965): Alle anderthalb Jahre verdoppelt sich die Zahl der Transistorfunktionen auf der gleichen Grundfläche
- Entwicklung der Kosten je Transistorfunktion auf ca. 1/10 alle vier Jahre
- Immer wieder Ende des Gesetzes vorausgesagt
- Neuere Technologien: Z-RAM, MRAM, FeRAM, ...

Entwicklung der CPU-Komplexität

Moore's Law: The number of transistors on microchips doubles every two years Our World

Moore's law describes the empirical regularity that the number of transistors on integrated circuits doubles approximately every two years. This advancement is important for other aspects of technological progress in computing – such as processing speed or the price of computers.

Data source: Wikipedia (wikipedia.org/wiki/Transistor_count)

OurWorldinData.org – Research and data to make progress against the world's largest problems.

Licensed under CC-BY by the authors Hannah Ritchie and Max Roser.

in Data

Vom ARPANET zum Internet (I)

ARPA

Gründung der Advanced Research Project Agency (ARPA)

Reaktion auf Sputnik

Paketvermittlung

Idee von Packetswitching (PS) von Paul Baran

 1968 der ARPA präsentiert

Vorläufer von Routern

Erstes funktionsfähiges Netz

- 50 kBit/s, gemietet
- Interface Message
 Processors (RFC 1)
- Beim ersten
 Versuch nur zwei
 Zeichen übertragen,
 beim dritten Absturz

Vom ARPANET zum Internet (II)

Demonstration auf Konferenz

- Network Control Protocol als Protokoll
- Terminal-Sitzungen, Dateitransfer, E-Mail

Grundzüge TCP/IP

- Entwurf von TCP/IP durch Vinton Cerf und Bob Kahn
- TCP = Transmission
 Control Protocol
- IP = Internet Protocol

Telnet als kommerzielle Version des ARPAnet

Eingeführt durch BBN

TCP/IPv4

- Standardisierung von TCP und IPv4
- Verwendung von TCP/IP in ARPAnet

Verbreitung von TCP/IP

- Berkeley Unix 4.2
 BSD
- Frei zugänglicher Quellcode

Erster Name Server

 1984 standardisiert als DNS

Abspaltung des MILNET für militärische Zwecke

IETF

 Erstes Treffen der Internet Engineering Task Force (IETF) in San Diego

WAS WAR NOCHMAL DER UNTERSCHIED ZWISCHEN TCP UND UDP?

DAS WORLD-WIDE WEB

ARPANET wird eingestellt

 "World" als erster kommerzieller Internet-Provider

Erste Versionen von WorldWideWeb

World Wide Web am CERN in Genf

- Erster Browser, basierend auf NeXT Systemen
- Hauptentwickler: Tim Berners-Lee
- Parallel erste
 Versionen von
 HTTP, HTML, URL,
 URI

Line Mode Browser

- Plattformübergreifender Browser
- Limitiert auf Text

Veröffentlichung von HTML

Mosaic

- Plattformübergreifen der Browser, der auch Bilder darstellt
- Entwickelt von Eric Bina und Marc Andreessen an der University Illinois, gründen später Netscape

"Browserkrieg"

- Microsoft fürchtet um Relevanz
- Verdrängungswettbe werb zwischen Netscape und Microsoft

"BROWSERKRIEG"

- Ursprung: Microsoft sieht eigene Relevanz bedroht
 - Geschäftsmodell von Microsoft Mitte der 90er: Betriebssystemlizenzen
 - Wenn Anwendungen nur noch als Webanwendungen realisiert werden, ist Betriebssystem egal
 - Entwicklung eines eigenen Browsers, um Netscape Navigator zu verdrängen
 - Massiver Innovationsschub
 - Erster Browserkrieg endet mit Niederlage von Netscape
- Umfangreiche Klagen gegen Microsoft
 - Bündelung Internet Explorer mit Windows
- "Zweiter Browserkrieg"
 - Alternative Browser (neben Internet Explorer) gewinnen Anfang 2000er Marktanteile
 - Standardisierung

WACHSTUM DES INTERNETS

- Autonome Systeme
 - Steter Zuwachs
 - Stabiler Kern, Wachstum an der Peripherie
- Internet-Nutzer
 - Mittlerweile mehr als zwei Drittel der Menschheit online
 - In Europa fast 90%

Internet Penetration in Europe July 2022

Source: Internet World Stats - www.internetworldstats.com/stats4.htm Based on 5,475,899,417 world Internet users on July 31, 2022 Copyright © 2022, Miniwatts Marketing Group

[Map of the internet, Barett Lyon, 2006]

UBIQUITOUS NETWORKS

- 1968 Richard ("Dick") Morley entwickelt Programmable Logic Controller (PLC) für Industriefertigungsanlagen
- 1982 An der Carnegie Mellon University wird ein Getränkeautomat mit dem Internet verbunden
- 1994 Gründung der OPC Foundation → verteilte Systeme für Automatisierungstechnik
- 1995 Veröffentlichung der ersten IPv6 Spezifikation
- 1996 Hewlett-Packard und Nokia veröffentlichen mit dem OmniGo 700LX und dem 9000 Communicator erste Smartphone-Vorläufer
- 1997 Kristofer S. J. Pister, Joe Kahn und Bernhard Boser präsentieren Forschungsantrag zu Smart Dust
- 1999 Kevin Ashton prägt den Begriff des Internet of Things (IoT)
- 2003 Walmart setzt RFID Chips für die Inventarisierung ein
- 2006 Veröffentlichung von OPC UA
- 2012 General Electric bringt den Begriff Industrial Internet of Things (IIoT) in Umlauf
- 2015 Börsengang von FitBit

HEUTIGE KLASSEN VON RECHENSYSTEMEN

- Personal Computer (PC, Laptop), Workstations
- Server, Großrechner (Mainframes)
 - Hochverlässliche Verarbeitung von Massendaten
 - Hoch- bis Höchstleistungs-Ein-/Ausgabe-Einheiten
 - Erbringen
 Dienstleistungsfunktionen in Rechnernetzen
 - Mainframes z.T. immer noch wegen Altprogrammen erforderlich (Legacy-Systeme)

- Supercomputer
 - Vielzahl von Prozessoren/Knoten
 - Hohe Verarbeitungsleistung
 - Beispiel: Wettervorhersage, Eiweißsimulationen

- Embedded Systems
 - Teil von Maschinen, Geräten, Anlagen
 - Typischerweise eingeschränkte Rechenleistung
 - Cyber-Physical Systems / Industrie 4.0

Heute zumeist agierend als Bestandteile verteilter Systeme

MICROSERVICES BEI UBER

WAS GENAU IST DENN NUN EIN VERTEILTES SYSTEM?

Definitionsversuche

» A DISTRIBUTED SYSTEM IS A COLLECTION OF AUTONOMOUS COMPUTING ELEMENTS THAT APPEARS TO ITS USERS AS A SINGLE COHERENT SYSTEM.«

Maarten van Stehen, Andrew S. Tanenbaum

» A DISTRIBUTED SYSTEM IS ONE IN WHICH THE FAILURE OF A COMPUTER YOU DIDN'T EVEN KNOW EXISTED CAN RENDER YOUR OWN COMPUTER UNUSABLE.«

Leslie Lamport

WARUM VERTEILTE SYSTEME?

Verteilung ist notwendig...

- Reichweite
 - 69% der Menschheit nutzt regelmäßig das Internet
- Ressourcen
 - Viele Aufgaben auf einer einzelnen Maschine nicht lösbar
- Ausfallsicherheit
 - Verteiltes System kann Ausfall einer Maschine verkraften
- Unabhängigkeit
 - Lose Kopplung erlaubt unabhängige Entwicklung
 - Verschiedene Programmiersprachen für verschiedene Zwecke / Teams

WARUM VERTEILTE SYSTEME?

...aber wir wollen sie eigentlich nicht sehen

- Transparenz → Unsichtbarkeit von Eigenschaften
 - Ortstransparenz: Keine Kenntnis des Ortes notwendig, Ressource kann mit Namen verwendet werden
 - Zugriffstransparenz: Form des Zugriffs ist unabhängig ob Komponente lokal oder entfernt
 - Fehlertransparenz: Eingetretener Fehler wird nicht sichtbar, sondern durch Redundanz maskiert
 - Parallelitätstransparenz: Nebenläufige Zugriffe teilen sich Ressourcen ohne sich gegenseitig zu stören
 - Weitere Transparenzarten nach ISO: u.a. Migrationstransparenz, Replikationstransparenz,
 Nebenläufigkeitstransparenz, Skalierungstransparenz, Leistungstransparenz

BEISPIELE VERTEILTER SYSTEME

- Web
 - Geschäftsanwendungen
 - Kollaborative Systeme
 - Soziale Medien
 - E-Commerce
 - ...
- Internet of Things (IoT)
 - Wearables
 - Vernetzte Sensorik
 - Industrie 4.0
 - •

[https://commons.wikimedia.org/wiki/File:System-architecture-of-the-smart-factory.jpg]

GRUNDBEGRIFFE VERTEILTE SYSTEME

- Enge Kopplung
 - Softwarekomponenten, die durch gemeinsame Nutzung von Betriebsmitteln kommunizieren
 - Gemeinsam genutzte Objekte
 - Gemeinsam genutzter Speicher
 - Typischerweise im selben Prozess
- Lose Kopplung
 - Softwarekomponenten, die durch Nachrichtenaustausch (Message Passing) kommunizieren
 - · Dadurch höhere Autonomie
- Verteiltes Programm / Verteilte Anwendung
 - Menge von lose gekoppelten Softwarekomponenten, die für die Lösung eines Problems zusammenarbeiten
 - Beinhaltet verteilten Zustand, verteilte Kontrolle bzw. Koordination
- Verteiltes System
 - Rechnernetz, was verteiltes Programm ausführt

STANDARDISIERUNG

- Viele Freiheitsgrade bei der Kommunikation in verteilten Systemen → Standardisierung notwendig
 - Übereinkunft zur Vereinheitlichung von Dokumenten, Verfahren, Protokollen, usw.
 - De-jure (Norm) oder de-facto ("Industriestandard")
 - Unterschiedlicher Gültigkeitsbereich

[Bild: Wikipedia, CC-SA, KMJ]

WARUM SIND STANDARDS WICHTIG?

- Kompatibilität / Interoperabilität
 - Zwischen Programmiersprachen / Software-Plattformen
 - Erschwert Vendor-Lock-in
- Kostensenkung
 - Wiederverwendbarkeit (Implementierungen, Dienste, Werkzeuge, ...)
 - Kürzere Einarbeitungszeit → kürzere Entwicklungszeit
 - Dafür häufig Einstiegshürde (Ausnahme: offene Standards)
- Höhere Qualität
 - Typischerweise umfangreiche Review-Zyklen

WIE ENTSTEHT EIN STANDARD?

- Gründung eines Gremiums / Arbeitsgruppe
 - Öffentlich oder privat, teilweise kostenpflichtig
- Abgrenzung des Standardisierungsgegenstandes
- Iterativer Prozess
 - Begutachtung / Revision
 - Veröffentlichung (frei zugänglich oder eingeschränkt)
 - Aktualisierung
 - Unterschiedlich formaler Prozess
 - Beispiel: RFC (Request for Comments), von akademischer Demut geprägt
- Gegebenenfalls Übertrag des Standards an anderes Standardisierungsgremium
 - Sichtbarkeit

NORMUNGSORGANISATIONEN

- ISO (International Organization for Standardization)
 - Gegründet 1947, 164 Nationen
 - Alle Bereiche (weltweit)
- ITU (International Telecommunication Union)
 - Gegründet 1865, 196 Nationen
 - Technische Aspekte der Telekommunikation (weltweit)
- IEC (International Electrotechnical Commission)
 - Gegründet 1906, 80 Nationen
 - Elektrotechnik im weitesten Sinn, viele Normen zusammen mit ISO
- DIN (Deutsche Institut f

 ür Normung)
 - Gegründet 1917, über 2700 Mitglieder
 - Alle Bereiche (deutschlandweit)

RELEVANTE STANDARDISIERUNGSORGANISATIONEN

- IETF (Internet Engineering Task Force)
 - "Above the wire and below the application"
 - Freiwilligenvereinigung
- ICANN (Internet Corporation for Assigned Names and Numbers), inkl. IANA
 - Koordination und Vergabe von Adressen, Protokollnummern, Namen, etc.
 - Non-Profit-Organisation, bis 2016 der US-Regierung unterstellt
 - Vergibt auch Port-Nummern, Felder für Zertifikate, etc.
- IEEE (Institute of Electrical and Electronics Engineers)
 - Elektrotechnik und Informationstechnik
 - Weltweiter Berufsverband der Ingenieure (über 400.000 Mitglieder aus 160 Nationen)
 - Neben Standardisierung auch bspw. Verlag für wissenschaftliche Zeitschriften

RELEVANTE STANDARDISIERUNGSORGANISATIONEN

- OASIS (Organization for the Advancement of Structured Information Standards)
 - Dokumentenformate und Protokolle in der Telekommunikationstechnik
 - Non-Profit-Organisation
 - Wichtigste Standards: OpenDocument, BPEL, MQTT
- W3C (World Wide Web Consortium)
 - Webtechnologie
 - Industriekonsortium
- OMG (Object Management Group)
 - Systemübergreifende Objektorientierte Programmierung
 - Industriekonsortium
 - Wichtigste Standards: UML, CORBA, MDA

WORUM GEHT ES IN DER VORLESUNG?

- Wie programmiert man verteilte Systeme?
 - Kommunikationsmuster, Sockets, Architektur
- Wie arbeitet das World Wide Web?
 - HTTP/1.1, HTTP/2.0, QUIC, HTTP/3.0
- Wie arbeitet das Internet der Dinge?
 - MQTT, OPC UA, u.a.
- Wie kriegen wir das alles sicher hin?
 - Verschlüsselung, X.509 Zertifikate, TLS

- Wie erreichen wir Ortstransparenz?
 - Namen- und Verzeichnisdienste
- Wie erreichen wir Fehlertransparenz?
 - Resilience Patterns, Datenversionierung, verteilte Transaktionen
- Wie erreichen wir Parallelitätstransparenz?
 - Multiplexing
- Wie erreichen wir Zugriffstransparenz?
 - Remote Procedure Calls, gRPC

GLIEDERUNG

Datum	Vorlesung	Übungsblatt	Abgabe
19.04.2024	Einführung	HamsterLib	06.05.2024
26.04.2024	Netzwerkprogrammierung	Theorie	
03.05.2024	World Wide Web	HamsterRPC 1	20.05.2024
10.05.2024	Remote Procedure Calls	Theorie	
17.05.2024	Webservices	HamsterRPC 2	03.06.2024
24.05.2024	Fehlertolerante Systeme	Theorie	
31.05.2024	Transportsicherheit	HamsterREST	17.06.2024
07.06.2024	Architekturen für Verteilte Systeme	Theorie	
14.06.2024	Internet der Dinge	HamsterIoT	01.07.2024
21.06.2024	Namen- und Verzeichnisdienste	Theorie	
28.06.2024	Authentifikation im Web	HamsterAuth	15.07.2024
05.07.2024	Infrastruktur für Verteilte Systeme	Theorie	
12.07.2024	Wrap-Up	HamsterCluster (Bonus)	16.08.2024

MÖGLICHE PRÜFUNGSAUFGABEN

- In welchem Jahrzehnt wurde TCP/IP standardisiert?
- In welchem Jahrzehnt wurde HTTP standardisiert?
- Was versteht man unter den Begriffen verteiltes System, verteilte Anwendung, enger Kopplung, und loser Kopplung?
- Warum werden Anwendungen häufig als verteilte Systeme implementiert?
- Erläutern Sie Ortstransparenz, Zugriffstransparenz, Fehlertransparenz und Nebenläufigkeitstransparenz!
- Erläutern Sie die Notwendigkeit von Standards!