Total No. of Questions: 6

Total No. of Printed Pages:3

Enroll	ment No	•••••	•••••	•••••

Faculty of Engineering / Science End Sem Examination May-2024

CA5EL49 Theory of Computation

Programme: MCA / BCA-Branch/Specialisation: Computer MCA (Integrated) Application

 $\frac{\mathbf{D}}{N}$

) ura	tion: 3	3 Hrs.	Maximum Marks: 60			
lote:	All q	uestions are compulsor	y. Internal choices, if any, are indicated. Answers o			
Q .1 (1	MCQs	s) should be written in fu	ill instead of only a, b, c or d. Assume suitable data i			
eces	sary. l	Notations and symbols h	ave their usual meaning.			
Q.1 i.		Pumping Lemma is us	ed to prove that certain sets are-			
		(a) Not regular	(b) Regular			
		(c) CFG	(d) None of these			
	ii.	There aretupl	es in finite state machine.			
		(a) 4 (b) 5	(c) 6 (d) 7			
	iii.	Every grammar in Che	omsky normal form is-			
		(a) Regular	(b) Context sensitive			
		(c) Context free	(d) All of these			
	iv.	Which of the followin	g statements are true?			
		I. Every left-recu	rsive grammar can be converted to a right-			
		recursive gramn	nar and vice-versa			
			ductions can be removed from any context-free			
		•	able transformations			
		0 0 0	enerated by a context-free grammar all of whose			
		-	of the form X> w or X> wY (where, w is a			
		_	als and Y is a non-terminal), is always regular			
			trees of strings generated by a context-free			
		· ·	msky Normal form are always binary trees			
		(a) I, II, III and IV	(b) II, III and IV only			
		(c) I, III and IV only	(d) I, II and IV only			
	v.	The transition a push down automaton makes is additionally dependent				
		upon the:	(h) Input top o			
		(a) Stack(c) Terminals	(b) Input tape(d) None of these			
		(C) I CHIIIIIais	(u) INUITE UI HIESE			

P.T.O.

Q.6

	vi.	A Push down automata use which data structure-					1	
		(a) Stack (b) Queu	e	(c) I	Link l	ist (d)	Hash set	
	vii.	There aretup	les in	Turi	ng ma	achine.		1
		(a) 9 (b) 6		(c) 8	3	(d)	7	
	viii.	Which of the following	is NO	OT a	comp	onent of	a Turing machine?	1
		(a) Q (b) Σ		(c) V	$V_{\rm N}$	(d)	Γ (toy)	
	ix.			_		ems that	can be solved by non-	1
		deterministic polynomia	al alg					
		(a) NP (b) P		` ′	Hard	` ′	Complete	
	х.	Problems that cannot be	solv		•	-		1
		(a) Tractable problems				table pro		
		(c) Undecidable problem	ns	(d) I	Decid	able prol	olems	
0.0		D (" 1						_
Q.2	i.	Define star closure.	c et .					2
	ii. 	Write down all tuples of					C' .1 C.11 '	3
	iii.	Design a deterministic f			naton	that sati	sties the following:	5
OD	•	{w w has abab as a sub		<i>O</i> ,			4 4.1.1	_
OR	iv.	Convert Moory machine	e to N				re transaction table is-	5
				a	b	output		
			\mathbf{q}_0	q_1	\mathbf{q}_2	0		
			q ₁	q ₃	q ₀	1		
			\mathbf{q}_2	\mathbf{q}_0	q_1	1		
			\mathbf{q}_3	\mathbf{q}_2	\mathbf{q}_3	0		
0.2	•	Define anoman						•
Q.3	i. ::	Define grammar.	mala	ı hian	oroby	with av	o mn lo	2 8
OR	ii.	Explain all types of Cho	•	•	•		-	
OK	iii.	Convert CFG to Chomsky normal form, where S is start symbol-S->ASA aB					o	
		A->B S						
		A->blε						
		D->016						
Q.4	i.	Write down all tuples of	f nust	ı dov	n aut	omata		3
~ ··	ii.	Design a PDA where L=	_				and C is senarator	7
OR	iii.	Design a PDA with emp	•			, ,	-	7
-1	1111	2 101gm a 1 2/1 With Only			. 11010	_ (" 0		•
Q.5	i.	Explain all the tuples of	Turi	ng ma	achine	e.		4
(ii.	Design a Turing machin		_			>= 1}.	6
OR	iii.	Design a Turing machin		•			•	6
		Design a Taring machine for parentilesis enecker.						

	Attempt any two:	
i.	Explain in detail P and NP problems.	5
ii.	Elaborate recursive set and recursive enumerable set.	5
iii.	Explain the concept of post correspondence problem with help of one	5
	example.	

Marking Scheme

CA5EL49 (T) Theory of Computation

Q.1	i)	A)	1
	ii)	B)	1
	iii)	C)	1
	iv)	C)	1
	v)	A)	1
	vi)	A)	1
	vii)	D)	1
	viii)	D)	1
	ix)	A)	1
	x)	C)	1
Q.2	i.	Definition is of 2 marks	2
	ii.	Tuples corrected will be of 3 Marks	3
	iii.	The Whole machine should be correct without any failure	5
OR	iv.	The whole conversion process, if it is correct then it will be given 8 Marks otherwise marks Will be deducted according to the Step.	5
Q.3	i.	Definition if of 2 Marks	2
	ii.	Each Chomsky hierarchy is of 2 Marks	8
OR	iii.	null production is of 2 Marks	8
		remove Useless symbol is of 2 Marks Represent the final Ans if of 4 Marks	
Q.4	i.	Tuples corrected will be of 3 Marks	3
	ii.	Push and Pop Step is of 3 Marks each and 1 Marks for the Final step	7
OR	iii.	Push and Pop Step is of 3 Marks each and 1 Marks for the Final step	7
Q.5	i.	All Tuples corrected will be of 4 Marks	4
	ii.	If All transection step are corrected then 6 Marks will be given otherwise 4 marks will be given	6
OR	iii.	If All transection step are corrected then 6 Marks will be given otherwise 4 marks will be given	6

[1]

Q.6			
	i.	P and NP both are 2.5 Marks each	5
	ii.	Recursive set and Recursive Enumerable set both are 2.5 Marks each	5
OR	iii.	PCP is of 2.5 Marks and Example is of 2.5 Marks	5
