|                                    |                                          |                                                          |                                                           | 1.0                                       | 14 t3)                                                            |                             | t <sub>3</sub>                                                        |
|------------------------------------|------------------------------------------|----------------------------------------------------------|-----------------------------------------------------------|-------------------------------------------|-------------------------------------------------------------------|-----------------------------|-----------------------------------------------------------------------|
| $	au_1^{\#2}$                      | 0                                        | 0                                                        | 0                                                         | $\frac{4i}{k(1+2k^2)(r_3+2r_5)}$          | $\frac{i\sqrt{2}(3k^2(r_3+2r_5)+4t_3)}{k(1+2k^2)^2(r_3+2r_5)t_3}$ | 0                           | $\frac{6 k^2 (r_3 + 2 r_5) + 8 t_3}{(1 + 2 k^2)^2 (r_3 + 2 r_5) t_3}$ |
| $\tau_{1}^{\#1}{}_{\alpha}$        | 0                                        | 0                                                        | 0                                                         | 0                                         | 0                                                                 | 0                           | 0                                                                     |
| $\sigma_{1}^{\#2}{}_{lpha}$        | 0                                        | 0                                                        | 0                                                         | $\frac{2\sqrt{2}}{k^2(1+2k^2)(r_3+2r_5)}$ | $\frac{3k^2(r_3+2r_5)+4t_3}{(k+2k^3)^2(r_3+2r_5)t_3}$             | 0                           | $-\frac{i\sqrt{2}(3k^2(r_3+2r_5)+4t_3)}{k(1+2k^2)^2(r_3+2r_5)t_3}$    |
| $\sigma_{1}^{\#1}{}_{\alpha}$      | 0                                        | 0                                                        | 0                                                         | $\frac{2}{k^2 (r_3 + 2 r_5)}$             | $\frac{2\sqrt{2}}{k^2(1+2k^2)(r_3+2r_5)}$                         | 0                           | $-\frac{4  \tilde{l}}{k  (1+2  k^2)  (r_3 + 2  r_5)}$                 |
| $\tau_{1}^{\#1}_{\alpha\beta}$     | $-\frac{i\sqrt{2}}{k(1+k^2)(2r_3+r_5)}$  | $\frac{i(3k^2(2r_3+r_5)+2t_2)}{k(1+k^2)^2(2r_3+r_5)t_2}$ | $\frac{3k^2(2r_3+r_5)+2t_2}{(1+k^2)^2(2r_3+r_5)t_2}$      | 0                                         | 0                                                                 | 0                           | 0                                                                     |
| $\sigma_{1}^{\#2}{}_{\alpha\beta}$ | $-\frac{\sqrt{2}}{k^2(1+k^2)(2r_3+r_5)}$ | $\frac{3k^2(2r_3+r_5)+2t_2}{(k+k^3)^2(2r_3+r_5)t_2}$     | $-\frac{i(3k^2(2r_3+r_5)+2t_2)}{k(1+k^2)^2(2r_3+r_5)t_2}$ | 0                                         | 0                                                                 | 0                           | 0                                                                     |
| $\sigma_{1}^{\#1}{}_{\alpha\beta}$ |                                          | $-\frac{\sqrt{2}}{k^2(1+k^2)(2r_3+r_5)}$                 | $\frac{i \sqrt{2}}{k(1+k^2)(2r_3+r_5)}$                   | 0                                         | 0                                                                 | 0                           | 0                                                                     |
|                                    | $\sigma_{1}^{\#1} \dagger^{lphaeta}$     | $\sigma_{1+}^{#2} + \alpha \beta = \frac{1}{\kappa^2}$   | $\tau_1^{\#1} + ^{\alpha \beta}$                          | $\sigma_{1}^{\#_1} +^{\alpha}$            | $\sigma_{1}^{\#2} +^{\alpha}$                                     | $\tau_{1}^{\#1} +^{\alpha}$ | $\tau_{1}^{\#2} + ^{\alpha}$                                          |

|                                         | $\omega_{1^{+}\alpha\beta}^{\#1}$   | $\omega_{1}^{\#2}{}_{\alpha\beta}$ | $f_{1^{+}\alpha\beta}^{\#1}$ | $\omega_{1}^{\sharp 1}{}_{lpha}$                        | $\omega_{1-\alpha}^{\#2}$   | $f_{1}^{\#1}{}_{\alpha}$ | $f_{1-\alpha}^{\#2}$       |
|-----------------------------------------|-------------------------------------|------------------------------------|------------------------------|---------------------------------------------------------|-----------------------------|--------------------------|----------------------------|
| $\omega_{1}^{\#1}\dagger^{\alpha\beta}$ | $k^2 (2r_3 + r_5) + \frac{2t_2}{3}$ | $\frac{\sqrt{2} t_2}{3}$           | $\frac{1}{3}i\sqrt{2}kt_2$   | 0                                                       | 0                           | 0                        | 0                          |
| $\omega_{1}^{\#2}\dagger^{\alpha\beta}$ | $\frac{\sqrt{2} t_2}{3}$            | <u>t2</u><br>3                     | <u>i kt2</u><br>3            | 0                                                       | 0                           | 0                        | 0                          |
| $f_{1}^{\#1}\dagger^{\alpha\beta}$      | $-\frac{1}{3}i\sqrt{2}kt_2$         | $-\frac{1}{3}ikt_2$                | $\frac{k^2t_2}{3}$           | 0                                                       | 0                           | 0                        | 0                          |
| $\omega_{1}^{#1}$ † $^{\alpha}$         | 0                                   | 0                                  | 0                            | $k^2 \left(\frac{r_3}{2} + r_5\right) + \frac{2t_3}{3}$ | $-\frac{\sqrt{2} t_3}{3}$   | 0                        | $-\frac{2}{3}ikt_3$        |
| $\omega_{1}^{#2} + \alpha$              | 0                                   | 0                                  | 0                            | $-\frac{\sqrt{2} t_3}{3}$                               | <u>t3</u><br>3              | 0                        | $\frac{1}{3}i\sqrt{2}kt_3$ |
| $f_{1}^{#1} \dagger^{\alpha}$           | 0                                   | 0                                  | 0                            | 0                                                       | 0                           | 0                        | 0                          |
| $f_{1}^{#2} \dagger^{\alpha}$           | 0                                   | 0                                  | 0                            | <u>2 i kt</u> 3<br>3                                    | $-\frac{1}{3}i\sqrt{2}kt_3$ | 0                        | $\frac{2k^2t_3}{3}$        |
|                                         |                                     |                                    |                              |                                                         |                             |                          |                            |



| _                                          | $\sigma_{2^{+}\alpha\beta}^{\#1}$ | $\tau_{2}^{\#1}{}_{\alpha\beta}$ | $\sigma_{2}^{\#1}{}_{\alpha\beta\chi}$ |
|--------------------------------------------|-----------------------------------|----------------------------------|----------------------------------------|
| $\sigma_{2}^{\#1} \dagger^{\alpha\beta}$   | $-\frac{2}{3k^2r_3}$              | 0                                | 0                                      |
| $	au_2^{\#1} \dagger^{lphaeta}$            | 0                                 | 0                                | 0                                      |
| $\sigma_2^{\#1} \dagger^{\alpha\beta\chi}$ | 0                                 | 0                                | 0                                      |
|                                            |                                   |                                  |                                        |

 $k^2 r_2 + t_2$ 

0

0

0

0

 $f_{0}^{#2}$ 

 $\omega_{_0^{+1}}^{*1}$ 

0

| $\omega_{0}^{\# +} + \begin{bmatrix} t_3 & -i \sqrt{2} kt_3 \end{bmatrix}$ | #            | $1 	 f_{0}^{#2} + 0 	 0$ | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | '== 0 3                                                       | ĸ    | = 0 3                                                           | 2                                          | 2                               | 21       |
|----------------------------------------------------------------------------|--------------|--------------------------|-------------------------------------------------------|---------------------------------------------------------------|------|-----------------------------------------------------------------|--------------------------------------------|---------------------------------|----------|
| Source constraints                                                         | SO(3) irreps | $\tau_0^{\#_2^2} == 0$   | $\tau_0^{\#1} - 2  i  k  \sigma_0^{\#1} = 0$          | $\tau_{1}^{\#2}{}^{\alpha}+2ik\;\sigma_{1}^{\#2}{}^{\alpha}=$ | 0 == | $\tau_1^{\#1}\alpha\beta + ik \ \sigma_1^{\#2}\alpha\beta == 0$ | $\sigma_{2^{-}}^{\#_{1}}\alpha\beta\chi=0$ | $\tau_{2+}^{\#1}\alpha\beta==0$ | Total #. |

| ? | $J^P = 0^-$          | ?           |   |
|---|----------------------|-------------|---|
|   | $-\frac{1}{k^{\mu}}$ | $\langle -$ | ? |

|     | Massive particle |                        |  |  |  |  |
|-----|------------------|------------------------|--|--|--|--|
| - ? | Pole residue:    | $-\frac{1}{r_2} > 0$   |  |  |  |  |
|     | Polarisations:   | 1                      |  |  |  |  |
|     | Square mass:     | $-\frac{t_2}{r_2} > 0$ |  |  |  |  |
|     | Spin:            | 0                      |  |  |  |  |
|     | Parity:          | Odd                    |  |  |  |  |



agrangian density

| ? | Quadratic pole | 2                                           |
|---|----------------|---------------------------------------------|
| ? | Pole residue:  | $-\frac{1}{r_3(2r_3+r_5)(r_3+2r_5)p^2} > 0$ |
|   | Polarisations: | 2                                           |

 $\partial_{\alpha}\omega_{\lambda}^{\ \ \alpha}\partial_{\kappa}\omega^{\theta\kappa\lambda} - \frac{1}{2}r_{3}\partial_{\theta}\omega_{\lambda}^{\ \ \alpha}\partial_{\kappa}\omega^{\theta\kappa\lambda} + r_{5}\partial_{\theta}\omega_{\lambda}^{\ \ \alpha}\partial_{\kappa}\omega^{\theta\kappa\lambda} - \frac{1}{2}r_{3}\partial_{\alpha}\omega_{\lambda}^{\ \ \alpha}\partial_{\kappa}\omega^{\kappa\lambda\theta} - \frac{1}{2}r_{3}\partial_{\alpha}\omega_{\lambda}^{\ \ \ \alpha}\partial_{\kappa}\omega^{\kappa\lambda\theta} - \frac{1}{2}r_{3}\partial_{\alpha}\omega^{\kappa\lambda\theta} - \frac{1}{2}r_{3}\partial_{\alpha}\omega^{\kappa\lambda\theta} + \frac{1}{2}r_{3}\partial_{\alpha}\omega^{\kappa\lambda\theta} - \frac{1}{2}r_{3}\partial_{\alpha}\omega^{\kappa\lambda\theta} + \frac{$ 

 $\partial_{\alpha}\omega_{\lambda}{}^{\alpha}{}_{\theta}\partial_{\kappa}\omega^{\kappa\lambda\theta} + r_{3}\,\partial_{\theta}\omega_{\lambda}{}^{\alpha}{}_{\alpha}\partial_{\kappa}\omega^{\kappa\lambda\theta} + 2\,r_{5}\,\partial_{\theta}\omega_{\lambda}{}^{\alpha}{}_{\alpha}\partial_{\kappa}\omega^{\kappa\lambda\theta} +$ 

 $t_3 \, \omega_{\alpha'}^{\ \alpha'} \, \omega_{\kappa\alpha}^{\ \kappa} + \frac{2}{3} \, t_2 \, \omega_{\kappa\lambda}^{\ \kappa\lambda} \, \omega_{\kappa\lambda}^{\ \prime} + \frac{1}{3} \, t_2 \, \omega_{\kappa\lambda}^{\ \prime} \, \omega_{\kappa\lambda}^{\ \prime} + f^{\alpha\beta} \, \tau_{\alpha\beta} +$ 

 $r_2 \partial_\theta \omega_{\alpha\beta}^{\phantom{\alpha\beta}} \partial_\kappa \omega^{\alpha\beta\theta} - \frac{2}{3} r_2 \partial_\theta \omega_{\alpha\beta}^{\phantom{\alpha\beta}} \partial_\kappa \omega^{\theta\alpha\beta} + \frac{1}{2} r_3 \partial_\alpha \omega_{\lambda}^{\phantom{\lambda}\alpha} \partial_\kappa \omega^{\theta\kappa\lambda} -$ 

| $t_3$                                     | $\begin{array}{c} \frac{1}{3} r_2  O_{\theta} \omega_{\alpha\beta} \\ r_5  O_{\alpha} \omega_{\lambda}^{\alpha}  \theta  \partial \\ r_5  O_{\alpha} \omega_{\lambda}^{\alpha}  \theta  \partial \\ r_5  O_{\alpha} \omega_{\lambda}^{\alpha}  \theta  \partial \\ \frac{1}{6} t_2  O_{\alpha} f_{\theta \kappa}  \partial \\ \frac{2}{3} t_3  \omega_{\kappa \lambda}^{\lambda}  \partial \\ \frac{2}{3} t_2  \omega_{\kappa \theta}  O^{\prime} \\ \frac{2}{3} t_3  \omega_{\kappa \lambda}^{\lambda}  \partial^{\prime} \\ \frac{2}{3} t_3  O_{\alpha} f^{\lambda}  \partial^{\prime} \\ \frac{2}{3} t_3  O_{\alpha} f^{\lambda}  \partial^{\prime} \\ \frac{2}{3} t_2  O^{\beta} \omega_{\lambda}^{\lambda}  \partial^{\prime} \\ \frac{2}{3} t_3  O^{\beta} \omega_{\lambda}^{\lambda$ | $\frac{1}{2} r_3 \partial_\alpha \omega_\lambda^\alpha$ $O_0^{\#} + \frac{1}{(1+2k)^2}$ | Source cons<br>SO(3) irreps |
|-------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|-----------------------------|
| ? $\stackrel{k^{\mu}}{\longrightarrow}$ ? | Quadratic pole  Pole residue: $-\frac{1}{r_3(2r_3+r_5)(r_3+2r_5)p^2} > 0$ Polarisations: 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                         |                             |

 $r_3 \partial_{\alpha} \omega_{\lambda}^{\phantom{\lambda} \alpha} \partial^{\lambda} \omega^{\theta \kappa}_{\phantom{\alpha} \kappa} + r_5 \partial_{\alpha} \omega_{\lambda}^{\phantom{\lambda} \alpha} \partial^{\lambda} \omega^{\theta \kappa}_{\phantom{\alpha} \kappa} + \frac{1}{2} \, r_3 \, \partial_{\theta} \omega_{\lambda}^{\phantom{\lambda} \alpha} \, \partial^{\lambda} \omega^{\theta \kappa}_{\phantom{\alpha} \kappa} - r_5 \, \partial_{\theta} \omega_{\lambda}^{\phantom{\lambda} \alpha} \, \partial^{\lambda} \omega^{\theta \kappa}_{\phantom{\alpha} \kappa}$ 

 $t_3 \; \omega_{,\lambda}^{\;\;\lambda} \; \partial^\kappa f_{\;\;\kappa}^{\;\; -\frac{1}{6}} \; t_2 \; \partial^\alpha f^\lambda_{\;\; \kappa} \; \partial^\kappa f_{\;\lambda\alpha}^{\;\; -\frac{1}{6}} \; t_2 \; \partial_\kappa f_{\;\;\theta}^{\;\; \lambda} \; \partial^\kappa f_\lambda^{\;\; \theta} + \frac{1}{6} \; t_2 \; \partial_\kappa f^\lambda_{\;\; \theta} \; \partial^\kappa f_\lambda^{\;\; \theta} + \frac{1}{6} \; \partial^\kappa f^\lambda_{\;\; \theta} \; \partial^\kappa f_\lambda^{\;\; \theta} + \frac{1}{6} \; \partial^\kappa f^\lambda_{\;\; \theta} \; \partial^\kappa f_\lambda^{\;\; \theta} + \frac{1}{6} \; \partial^\kappa f^\lambda_{\;\; \theta} \; \partial^\kappa f_\lambda^{\;\; \theta} + \frac{1}{6} \; \partial^\kappa f^\lambda_{\;\; \theta} \; \partial^\kappa f_\lambda^{\;\; \theta} + \frac{1}{6} \; \partial^\kappa f^\lambda_{\;\; \theta} \; \partial^\kappa f_\lambda^{\;\; \theta} + \frac{1}{6} \; \partial^\kappa f^\lambda_{\;\; \theta} \; \partial^\kappa f_\lambda^{\;\; \theta} + \frac{1}{6} \; \partial^\kappa f^\lambda_{\;\; \theta} \; \partial^\kappa f_\lambda^{\;\; \theta} + \frac{1}{6} \; \partial^\kappa f^\lambda_{\;\; \theta} \; \partial^\kappa f_\lambda^{\;\; \theta} + \frac{1}{6} \; \partial^\kappa f^\lambda_{\;\; \theta} \; \partial^\kappa f_\lambda^{\;\; \theta} + \frac{1}{6} \; \partial^\kappa f^\lambda_{\;\; \theta} \; \partial^\kappa f_\lambda^{\;\; \theta} + \frac{1}{6} \; \partial^\kappa f^\lambda_{\;\; \theta} \; \partial^\kappa f^\lambda_{\;\; \theta} + \frac{1}{6} \; \partial^\kappa f^$ 

 $t_3 \, \partial^{\alpha} f^{\lambda}_{\ \ \alpha} \, \partial^{\kappa} f_{\lambda \kappa} + \frac{1}{3} \, r_2 \, \partial_{\kappa} \omega^{\alpha \beta \theta} \, \partial^{\kappa} \omega_{\alpha \beta \theta} + \frac{2}{3} \, r_2 \, \partial_{\kappa} \omega^{\theta \alpha \beta} \, \partial^{\kappa} \omega_{\alpha \beta \theta} -$ 

 $r_2 \, \partial^\beta \omega_{\alpha}^{\ \alpha \lambda} \, \partial_\lambda \omega_{\alpha\beta}^{\ \ \prime} + {2 \over 3} \, r_2 \, \partial^\beta \omega_{\lambda}^{\ \lambda \alpha} \, \partial_\lambda \omega_{\alpha\beta}^{\ \ \prime} - 4 \, r_3 \, \partial^\beta \omega_{\lambda}^{\ \lambda \alpha} \, \partial_\lambda \omega_{\alpha\beta}^{\ \ \prime} -$ 

 $t_2 \,\, \omega_{_{IK}\theta} \,\, \partial^K f^{'\theta} - \tfrac{1}{3} \, t_2 \,\, \omega_{_{\theta IK}} \,\, \partial^K f^{'\theta} + \tfrac{2}{3} \, t_2 \,\, \omega_{_{\theta KI}} \,\, \partial^K f^{'\theta} + \tfrac{2}{3} \, t_3 \,\, \omega_{_{I}\alpha}^{\ \ \alpha} \,\, \partial^K f^{'}_{\ \ K} +$ 

 $t_3 \; \omega_{\kappa\lambda}^{\;\;\lambda} \; \partial^\kappa f'_{\;\;\prime} - \tfrac{4}{3} \, t_3 \, \partial^\alpha f_{\;\;\kappa\alpha} \, \partial^\kappa f'_{\;\;\prime} + \tfrac{2}{3} \, t_3 \, \partial_\kappa f^\lambda_{\;\;\lambda} \, \partial^\kappa f'_{\;\;\prime} + \tfrac{1}{3} \, t_2 \; \omega_{\iota\theta\kappa} \; \partial^\kappa f'^\theta -$