Topología general

Pablo Pallàs

31 de mayo de 2023

Índice

1.	Espacios topológicos 1.1. Espacios topológicos	1 1
2.	Aplicaciones continuas y homeomorfismos	4
3.	Separación y numerabilidad	4
4.	Espacios métricos	4
5 .	Compacidad	4
6.	Conexión	4

1. Espacios topológicos

1.1. Espacios topológicos

Sea X un conjunto y $\mathcal{P}(X) = \{A : A \subset X\}$ el conjunto de sus partes, entonces:

Definición 1.1. Una topología sobre un conjunto X es un subconjunto $\tau \subseteq \mathcal{P}(X)$ que satisface:

- I. El conjunto vacío \emptyset y el conjunto total X pertenecen a τ .
- II. La unión arbitraria de elementos de τ también pertenece a τ .
- III. La intersección finita de elementos de τ también pertenece a τ .

El par (X, τ) lo denominaremos **espacio topológico** y a los elementos de τ los llamaremos **abiertos**.

Es decir, podríamos decir que una topología es una colección de subconjuntos que contiene al vacío y al total, y que es cerrada para las uniones arbitrarias y las intersecciones finitas.

Ejemplo 1.1.1. Sea X un conjunto arbitrario $y \tau_D = \mathcal{P}(X)$. Entonces, τ_D es una topología en X ya que contiene a todos los subconjuntos de X, en particular al vacío y al total, es cerrada para las uniones arbitrarias y para las intersecciones finitas. A esta topología la denominaremos topología discreta, y al conjunto X dotada de esta topología espacio discreto.

Ejemplo 1.1.2. Sea X un conjunto arbitrario $y \tau_I = \{\emptyset, X\}$. Entonces la colección τ_I es una topología sobre X: contiene al vacío y al total, la unión de ambos es $X \in \tau_I$ y la intersección es $\emptyset \in \tau_I$. Esta topología la denominaremos **topología indiscreta**, y es la topología más simple que puede tener un conjunto. A un conjunto X dotado con esta topología lo denominaremos **espacio indiscreto**.

Definición 1.2. Dos topologías τ_1, τ_2 sobre un conjunto X se dicen **comparables** si $\tau_1 \subset \tau_2$ ó $\tau_2 \subset \tau_1$. Si $\tau_1 \subset \tau_2$ diremos que τ_2 es más **fina** (tiene más abiertos) que τ_1 .

Intuitivamente podríamos decir que una topología τ' es más fina que otra τ si tiene todos los abiertos de τ y añgunos más. Una topología más fina distingue de forma "más fina" los puntos y sus alrededores. Evidentemente, sobre un conjunto X cualquiera la topología más fina que podemos encontrar es la topología discreta τ_D . Por otra parte, la topología indiscreta τ_I es la menos fina que podemos encontrar. Luego cualquier otra topología τ se encontrará entre estas dos: $\tau_I \subseteq \tau \subseteq \tau_D$.

Notar que si τ_1 y τ_2 son dos topologías sobre X es fácil ver que $\tau_1 \cap \tau_2$ es una topología sobre X. En general, la unión $\tau_1 \cup \tau_2$ no es necesariamente una topología.

Ejemplo 1.2.1. Consideremos el siguiente conjunto:

$$\tau_u = \{ U \subset \mathbb{R} : \forall x \in U \ \exists \epsilon > 0 \ t. \ q(x - \epsilon, x + \epsilon) \subset U \}.$$

Entonces:

- 1. $\emptyset \in \tau_u$ trivialmente $y \mathbb{R} \in \tau_u$ ya que si tenemos un $x \in \mathbb{R}$ $y \in \mathbb{R}$ entonces $(x-1,x+1) \in \mathbb{R}$.
- 2. Dada $\{U_i\}_{i\in J}$ una colección arbitraria de elementos de τ_u entonces, si consideramos un $x\in \cup_i U_i$ existirá un $i_0\in J$ tal que $x\in U_{i_0}$. Como $U_{i_0}\in \tau_u$ existirá un $\epsilon>0$ tal que $(x-\epsilon,x+\epsilon)\subset U_{i_0}\subset \cup_i U_i$ y así $\cup_i U_i\in \tau_u$.
- 3. Sean $U, V \in \tau_u$, $x \in U \cap V$. Como $x \in U$ existirá un $\epsilon_1 > 0$ tal que $(x \epsilon_1, x + \epsilon_1) \subset U$. Como $x \in V$ existirá un $\epsilon_2 > 0$ tal que $(x \epsilon_2, x + \epsilon_2) \subset V$. Ahora, si escogemos $\epsilon = \min\{\epsilon_1, \epsilon_2\}$ entonces tendremos:

$$(x - \epsilon, x + \epsilon) \subset U \subset U \cap V$$

$$(x - \epsilon, x + \epsilon) \subset U \subset U \cap V$$

 $y \ asi \ U \cap V \in \tau_u$.

Luego τ_u es una topología, que denominaremos **topología usual**. Al espacio topológico (\mathbb{R}, τ_u) lo denominaremos **recta real**.

Definición 1.3. Sea (X, τ) un espacio topológico, un conjunto $\mathfrak{B} \subset \tau$ de abiertos se dice **base** de τ si todo elemento de τ es unión de elementos de \mathfrak{B} . A estos elementos de \mathfrak{B} los denominaremos **abiertos básicos**.

Ejemplo 1.3.1. Veamos algunos ejemplos:

- 1. La propia topología τ es base de sí misma.
- 2. Es claro que $\mathfrak{B} = \{\{x\} : x \in X\}$ es base de la topología discreta τ_D sobre X.
- 3. El conjunto de intervalor $\mathfrak{B}_U = \{(a,b) : a,b \in \mathbb{R}\}$ es una base para la topología usual sobre \mathbb{R} , τ_U .

Proposición 1.4. Sea (X, τ) un espacio topológico, entonces $\mathfrak{B} \subset \tau$ es una base si y sólo si para todo $U \in \tau$ y todo $x \in U$ existe $B \in \mathfrak{B}$ tal que $x \in B \subset U$.

Demostración: Sea $x \in U$, si $\mathfrak{B} = \{B_i : B_i\tau\}$ es una base entonces $U \cup B_i$, por lo que existirá $B_k \in \mathfrak{B}$ tal que $x \in B_k \subset U$. Recíprocamente, dado $U \in \tau$, si para todo $x_i \in U$ existe $B_i \in \mathfrak{B}$ tal que $x_i \in B_i \subset U$ entonces es claro que $U = \cup B_i$.

Proposición 1.5. Sea (X, τ) un espacio topológico y $\mathfrak{B} \subset \tau$ una base, entonces $U \subset X$ es un abierto si y sólo si para todo $x \in U$ existe un $B \in \mathfrak{B}$ tal que $x \in B \subset U$. Luego:

Corolario 1.5.1. Sea (X, τ) un espacio topológico y $A \subset X$, entonces A es abierto si y sólo si para todo $x \in A$ existe un abierto $U \in \tau$ tal que $x \in U \subset A$.

Sin embargo, no toda familia de partes de un conjunto es una base para una topología. Para identificar a estos conjuntos especiales tenemos el siguiente resultado:

Proposición 1.6. Sea $\mathfrak{B} \subset \mathcal{P}(X)$ satisfaciendo:

- 1. Para todo $x \in X$ existe un $B \in \mathfrak{B}$ tal que $x \in B$.
- 2. Dados $B_1, B_2 \in \mathfrak{B}$ y $x \in B_1 \cap B_2$ existe $B \in \mathfrak{B}$ tal que $x \in B \subset B_1 \cap B_2$

Entonces, el conjunto $\tau_{\mathfrak{B}} \subset \mathcal{P}(X)$ definido por $U \in \tau_{\mathfrak{B}}$ si y sólo si para todo $x \in U$ existe $B \in \mathfrak{B}$ tal que $x \in B \subset U$ es una topología sobre X que tiene a \mathfrak{B} como base. Llamaremos a $\tau_{\mathfrak{B}}$ topología generada por \mathfrak{B} .

Demostración. Trivialmente se tiene que $\emptyset \in \tau_{\mathfrak{B}}$ y también está claro que $X \in \tau_{\mathfrak{B}}$.

Sea ahora $\{U_i\}_{i\in J}\subset \tau_{\mathfrak{B}}\ \mathrm{y}\ U=\cup_i U_i$, dado un $x\in U$ entonces $x\in U_k$ para algún $k\in J$ y existirá $B\in\mathfrak{B}$ tal que $x\in B\subset U_k\subset U$, por lo que $U\in\tau_{\mathfrak{B}}$.

Sean ahora U_1 y $U_2 \in \tau_{\mathfrak{B}}$ y veamos que $U_1 \cap U_2 \in \tau_{\mathfrak{B}}$, en efecto, dado $x \in U_1 \cap U_2$ existirán $B_1, B_2 \in \mathfrak{B}$ tales que $x \in B_1 \subset U_1$ y $x \in B_2 \subset U_2$, entonces $x \in B_1 \cap B_2$ y así existirá un $B \in \mathfrak{B}$ tal que $x \in B \subset B_1 \cap B_2 \subset U_1 \cap U_2$, por lo que $U_1 \cap U_2 \in \tau_{\mathfrak{B}}$.

Por inducción finita se sigue para cualquier subfamilia finita $\{U_1, \dots U_n\} \subset \tau_{\mathfrak{B}}$. Se concluye así que $\tau_{\mathfrak{B}}$ es una topología sobre X con base \mathfrak{B} .

Proposición 1.7. Sean \mathfrak{B}_1 y \mathfrak{B}_2 bases de sendas topologías $\tau_1 y \tau_2$ sobre un conjunto X, entonces τ_2 es más fina que τ_1 , es decir, $\tau_1 \subset \tau_2$ si y sólo si para todo $x \in X$ y todo $B_1 \in \mathfrak{B}_1$ tal que $x \in B_1$ existe $B_2 \in \mathfrak{B}_2$ tal que $x \in B_2 \subset B_1$.

Demostración. Supongamos que $\tau_1 \subset \tau_2$, dado $x \in X$ y $B_1 \in \mathfrak{B}_1$ tal que $x \in B_1$, en particular $B_1 \in \tau_1$ y por tanto $B_1 \in \tau_2$, entonces existe $B_2 \in \mathfrak{B}_2$ tal que $x \in B_2 \subset B_1$.

Recíprocamente, si $U \in \tau_1$ existirá $B_1 \in \mathfrak{B}_1$ tal que $x \in B_1 \subset U$ y como existe $B_2 \in \mathfrak{B}_2$ tal que $x \in B_2 \subset B_1$ se tiene entonces que $x \in B_2 \subset U$ y por tanto se sigue que $U \in \tau_2$.

Ejemplo 1.7.1. La familia \mathfrak{B}_S de los intervalos semiabiertos de la forma [a,b) satisfacen las condiciones de , luego forman base de una topología τ_S sobre \mathbb{R} . Al espacio topológico (\mathbb{R}, τ_S) ó simplemente \mathbb{R}_S se le conoce como **recta de Sorgenfrey**.

Notar que para todo $x \in \mathbb{R}$ y todo intervalo (a,b) tal que $x \in (a,b)$ está claro que $x \in [x,b) \subset (a,b)$, por lo que $\tau_U \subset \tau_S$, y como $[a,b) \notin \tau_U$ se sigue que la topología de Sorgenfrey es estrictamente más fina que la usual.

Definición 1.8.

- 2. Aplicaciones continuas y homeomorfismos
- 3. Separación y numerabilidad
- 4. Espacios métricos
- 5. Compacidad
- 6. Conexión

4