User Manual

Table of Contents

- User Manual
 - Table of Contents
 - 1. Introduction
 - 1.1 Product Overview
 - 1.2 Manual Content
 - o 2. Safety Information
 - o 3. System Requirements
 - 3.1 Hardware:
 - 3.2 Software:
 - 4. Hardware Setup
 - Step 1: Connect Go Board to Power
 - Step 2: Connect HDMI to Display
 - Step 3: Power On
 - 5. Software Installation
 - Step 1: Clone Github repository
 - Step 2: Install Python
 - Step 4: Install Driver
 - Step 5: Build and Execute the Software
 - 6. Getting Started
 - Step 1: Launch the Game
 - Step 2: Use the Go-board to Navigate
 - o 7. How to Play
 - 7.1 Objective:
 - 7.2 Controls:
 - 7.3 Level:
 - 7.4 Game Over:
 - 8. Troubleshooting
 - Problem: No Display Output
 - Problem: Go-board Inputs Are Not Responding
 - Problem: Game Crashes or Freezes
 - 9. FAQs
- Q: Can I modify the game?
- Q: Can I use a different control interface?
- 10. Go-Board Blueprint

1. Introduction

Global explanation about Frogger FPGA version purpose, the overview of the product and content of the manual.

1.1 Product Overview:

The Frogger Game is a recreation of the classic arcade game, designed to be played on a custom FPGA board using a Go-board for controls. The goal is to navigate the frog safely across the road and river to reach the other side.

1.2 Manual Content:

The user manual contain this following content:

- 1. Introduction
- 2. Safety Information
- 3. System Requirements
- 4. Hardware Setup
- 5. Software Installation
- 6. Getting Started
- 7. How to Play
- 8. Troubleshooting
- 9. FAQs
- 10. Go Board Blueprint

2. Safety Information

Before using the product, read the following safety precautions:

- Ensure that the FPGA and Go-board are placed on a stable surface.
- Avoid touching exposed electrical components while the system is powered.
- Disconnect power before making any hardware changes.
- Handle all components with care to avoid damage.

3. System Requirements

To ensure proper functionality, verify that you have the following:

3.1 Hardware:

- Go Board https://nandland.com/the-go-board/
- Micro USB wire
- HDMI-compatible display (for game visuals)
- HDMI wire with VGA adaptor
- PC or MAC

3.2 Software:

- FPGA design software (e.g., Quartus or Vivado)
- Pre-programmed bitstream file for the game
- Python 3.9 or later
- APIO
- Driver libusbK (v3.1.0.0) installed on the Go Board
- Windows or MACOS

4. Hardware Setup

Follow these steps to set up your hardware:

Step 1: Connect Go Board to Power

Plug a micro USB wire into the indicated port on the Go Board.

Step 2: Connect HDMI to Display

Use the HDMI cable to connect the Go Board to your display and plug it on the VGA port (see on the Go-Board blueprint page).

Step 3: Power On

Power on the Go Board and ensure the power indicator light is on (D5 LED).

Note: Ensure all connections are secure before powering on.

5. Software Installation

Step 1: Clone Github repository

 Clone this following repository → git clone <u>https://github.com/algosup/2024-2025-project-1-fpga-team-5</u>

Step 2: Install Python

Download Python on this following link: https://www.python.org/downloads/

Step 3: Install APIO

- Once Python was installed, in theTerminal on MACOS OR run cmd.exe in administrator mode on Windows, type the following command → -m pip install apio
- Install all package with this command →apio install -a

Step 4: Install Driver

- Plug in the Go Board to the computer.
- Enable driver using this command → apio drivers --ftdi-enable
- Windows only: A window called Zadig should appear.
- First, go to the Option button → List all devices.
- From the dropdown, select Dual RS232-HS (Interface 0) and libusbk form the Driver dropdown.
- Windows only: Click on replace Driver button.
- Windows only: Wait a couple minutes until the process is over.
- **Windows only**: After the pop up appeared with "The driver was installed successfully.", click on close and leave the window.
- Unplug and plug in the Go Board again. The setup is ready.

Step 5: Build and Execute the Software

- Plug in the Go Board to the computer.
- Go the terminal on MACOS or cmd.exe on Windows go to same path as the GitHub repository source code → \2024-2025-project-1-fpga-team-5\src

Type → apio upload

 Now the Go Board has the program inside and is ready to use the software while the device is powered ON.

6. Getting Started

Now that the hardware is set up and software is installed, you're ready to play the game.

Step 1: Launch the Game

- Upon booting the FPGA, the Frogger game should start automatically, and the game will be displayed on the monitor.

Step 2: Use the Go-board to Navigate

The Go-board buttons correspond to directional inputs for the game:

- Up Button (Sw1): Move frog up
- Down Button (Sw3): Move frog down
- Left Button (Sw2): Move frog left
- Right Button (Sw4): Move frog right
- Reset Command (Sw1+Sw2+Sw3+Sw4): Reset the game

7. How to Play

Objective:

Navigate your frog across the busy road and the river, avoiding obstacles such as cars and falling into the water.

Controls:

Use the Go-board buttons to move the frog:

- **Move Up**: Press the upper-left button
- **Move Down**: Press the lower-left button
- **Move Left:** Press the lower-right button
- Move Right: Press the upper-right button

Level:

For each level, The 7 segment displays increment a number between 0 and 99. If the game is over, the display comes back to 0.

Game Over:

The game ends if the frog is hit by a car or falls into the water. To restart the game, do the reset command on the FPGA.

8. Troubleshooting

If you encounter any issues, refer to this section for solutions.

Problem: No Display Output

• **Solution**: Verify that the HDMI cable is connected correctly. Check the power status of the FPGA.

Problem: Go-board Inputs Are Not Responding

• **Solution**: Ensure that the Go-board is securely connected to the FPGA. Reboot the FPGA to reinitialize the connection.

Problem: Game Crashes or Freezes

• **Solution**: Press the reset button on the FPGA to restart the game. If the problem persists, reload the bitstream file using the FPGA design software.

9. FAQs

Q: Can I modify the game?

• Yes, the github repository includes the source code. It can be modified as the user wants.

Q: Can I use a different control interface?

• While this version uses the Go-board, you can adapt the controls by modifying the input pins in the FPGA design.

10. Go Board Blueprint

Thank you for choosing our FPGA-based Frogger game! Enjoy the classic arcade experience.