NUMBER THEORY, VECTOR CALCULUS AND COMPUTATIONAL METHODS (MA221TC)

UNIT 5: NUMERICAL METHODS

TUTORIAL SHEETS – 1

Objective type Questions:

1. Construct the table of differences for the data below and evaluate $\Delta^3 f(1)$

x	0	1	2	3	4
f(x)	1	1.5	2.2	3.1	4.6

- 2. The value of $\Delta^3[(1+3x)(1-5x)(1-4x)]$ taking interval of differencing h=1 is _____.
- 3. Construct the difference table of the polynomial $f(x) = x^3 + 5x 7$ for x = -1,0,1,2,3,4 and hence find $\Delta y_0, \Delta y_3, \Delta^2 y_1$.
- 4. The $(n+1)^{th}$ order difference of the n^{th} degree polynomial is _____.

Descriptive Questions:

1. Find a polynomial f(x) which takes the values given by the following table

x	0	1	2	3	4
f(x)	10	21	6	43	66

2. The following data defines the sea-level concentration of dissolved oxygen for fresh water as a function of temperature:

$T^o(\mathcal{C})$	0	8	16	24	32
O(mg/L)	14.621	11.843	9.870	8.418	7.305

Using Newton-Gregory formula, calculate the amount of oxygen when temperature $10^{o}C$ and $35^{o}C$.

3. From the following data, estimate the number of students who obtained marks between 40 and 45 using Newton's interpolation method

Marks:	30-40	40-50	50-60	60-70	70-80
Number of Students:	31	42	51	35	31

4. Estimate the values of f(22) and f(42) from the following data

х	-	_		35	-	_
f(x)	354	332	291	260	231	204

TUTORIAL SHEETS – 2

Descriptive Questions:

- 1. Given that f(0) = 0, f(1) = 18, f(3) = 18, f(5) = -230, f(6) = 18 find f(x) as a polynomial in x and hence find f(2).
- 2. The following table gives the viscosity of an oil as a function of temperature. Use Lagrange's formula to find viscosity of oil at a temperature of 140°.

Temp:	110	130	160	190
Viscosity:	10.8	8.1	5.5	4.8

3. Using Lagrange's interpolation, find the polynomial of lowest degree which agrees with the point (x, y) given in the following table. Hence find y(2.5)

х	3	2	1	-1	0
y(x)	8	26	32	-40	14

4. The following data was collected for the distance travelled versus time:

t(sec):	0	25	50	75	100	125
y(km):	0	32	59	78	92	100

Use numerical differentiation to calculate velocity and acceleration at t=25 and t=100.

5. A rod is rotating in a plane. The following table gives the angle θ (radians) through which the rod has turned for various values of the time t second.

		0.2					
θ :	0	0.12	0.49	1.12	2.02	3.20	4.67

Calculate the angular velocity and the angular acceleration of the rod, when t = 1.0 second.

6. Find f'(1), f''(1) and f'(3) from the following data:

х	1	2	3	4	5	6
f(x)	3.614	4.604	5.857	7.451	9.467	11.985

7. The following table gives the temperature θ (in degree Celsius) of a cooling body at different instants of time t (in sec).

t:	1	3	5	7	9
θ :	85.3	74.5	67	60.5	54.3

Calculate θ at t=2 and also find approximately the rate of cooling at t=9 sec.