

Licenciatura en Tecnología Digital

Tecnología Digital VI: Inteligencia Artificial

scikit-learn, árboles y taller

Clase práctica 3

Motivación

• ¿Cómo podemos implementar concretamente un árbol de decisión?

• ¿Cómo determinamos el valor de sus hiperparámetros?

Organización

Etapa 	Inicio		Duración
	Sección 1	Sección 2	Duración
Introducción	08:00	09:45	05'
scikit-learn	08:05	09:50	20'
Árboles	08:25	10:10	20'
Taller Intervalo de práctica	08:45	10:30	30'
Taller Puesta en común	09:15	11:00	20'
Cierre	09:30	11:15	05'
Fin de la clase	09:35	11:20	-

scikit-learn | Qué

¿Qué es scikit-learn?

scikit-learn es la librería más útil y robusta para machine learning en Python.

En gran parte escrita en Python, se construye **sobre** las bases de NumPy, SciPy y Matplotlib.

Proporciona implementaciones de **algoritmos** de aprendizaje automático y herramientas para el **preprocesamiento** de datos y la **evaluación** de modelos.

Desarrollada por David Cournapeau como un proyecto de Google Summer of Code en 2007, fue lanzada públicamente como una librería *open-source* en 2010.

scikit-learn | Por qué

¿Por qué seleccionamos scikit-learn?

Varios algoritmos supervisados, no supervisados y semi-supervisados.

scikit-learn | Por qué

scikit-learn | Por qué

¿Por qué seleccionamos scikit-learn?

- Varios algoritmos supervisados, no supervisados y semi-supervisados.
- Implementaciones eficientes de dichos algoritmos de aprendizaje automático.
- Herramientas adicionales para el preprocesamiento de datos, la selección y extracción de atributos, el ajuste de hiperparámetros y la evaluación de modelos.
- Buena integración con NumPy, SciPy, Pandas y Matplotlib.
- Buen rendimiento en tiempo de ejecución.
- Extensa documentación oficial en https://scikit-learn.org.
- Tiene una API clara y consistente.

Las funcionalidades están agrupadas en **módulos**. Cada módulo está dedicado a una **tarea en particular**.

Ejemplos de módulos son:

- sklearn.datasets
- sklearn.preprocessing
- sklearn.model_selection
- sklearn.metrics
- sklearn.linear model
- sklearn.tree

from sklearn import linear_model

Las **clases** proporcionan una forma estructurada de **organizar** el código. Representan componentes **independientes**.

Por **ejemplo**, en el módulo **sklearn.linear_model** hay clases como:

- LinearRegression
- LogisticRegression
- Ridge
- Lasso

from sklearn.linear_model import
LogisticRegression

Se llama **objeto** a la **instancia** de una clase.

A modo de **ejemplo**, una instancia de la clase **LogisticRegression** y, pues, un objeto es **reg_log = LogisticRegression()**

Un objeto tiene asociados atributos y métodos.

Los **atributos** representan ciertas **características** del objeto.

Mientras que los **métodos** son funciones que definen **acciones** sobre el objeto.

scikit-learn | Modo

Para conocer la forma en que utilizar esta librería, veamos td6-p03-c-scikit-learn.ipynb.

Tengamos en cuenta que también contamos con los archivos X_train.csv, X_test.csv, y_train.csv y y_test.csv.

scikit-learn | Dónde

¿Dónde podemos encontrar recursos útiles sobre scikit-learn?

Primera opción: documentación oficial.

Cheat sheets: **DataCamp**.

Tutoriales: **<u>DataCamp</u>** y **<u>Tutorials Point</u>**.

Árboles

Para conocer cómo implementar, específicamente, árboles de decisión con la librería scikit-learn, veamos td6-p03-c-arboles.ipynb.

Taller | Consignas

Para conocer las consignas del taller, veamos td6-p03-d-taller-consignas.ipynb.

Taller | Resoluciones

Para conocer las resoluciones del taller, veamos td6-p03-e-taller-resoluciones.ipynb.

Cierre

Hoy vimos y practicamos, entre otras cuestiones,

- cómo podemos implementar concretamente un árbol de decisión y
- cómo determinamos el valor de sus hiperparámetros.

¡Recuerden registrar su grupo del TP1 en el Campus Virtual! El cierre es el este Viernes.

Pueden darnos feedback de la clase <u>acá</u>.