Chronic Kidney Disease Prediction

Problem Statement:

- Machine Learning → Here the input is in excel format, so we can consider the Input as Numbers. So in AI if input is Number we can give solution with Machine Learning.
- **Supervised** → In this problem we have clear idea about the requirement and the dataset, so we can continue with Supervised learning.
- **Classification** → Here the output is in categorical type (Classification), so we can continue with Classification.

Machine Learning → Supervised Learning → Classification

Basic Information about dataset:

- It has 25 columns and 339 rows.
- This dataset includes the client's personal details as input like Age, BP, Sugar etc.
- We need to predict the output as Classification (CKD is yes/no) and the output details are given in the dataset.

Pre-processing Method:

• In this model Pre-processing method is done for 12 columns which is

Ordinal data

- 1. RBC (normal/abnormal) to (0/1)
- 2. PC (normal/abnormal) to (0/1)
- 3. PCC (present/notpresent) to (0/1)
- 4. BA (present/notpresent) to (0/1)
- 5. HTN (yes/no) to (0/1)
- 6. DM (yes/no) to (0/1)
- 7. CAD (yes/no) to (0/1)
- 8. Appet (yes/poor) to (0/1)
- 9. PE (yes/poor) to (0/1)
- 10. ANE (yes/no) to (0/1)
- 11. Classification (yes/no) to (0/1)

> Nominal data

1. SG (a/b/c/d/e) to (0000/1000/0100/0010/0001)

Machine Learning Algorithms:

- 1. Support Vector Machine
- 2. Decision Tree
- 3. Random Forest
- 4. Logistic Regression
- 5. KNN
- 6. Navie Bayes

1. Support Vector Machine:

```
Accuracy = 0.98
```

 $ROC_AUC = 1.0$

The confusion Matrix: [[51 0] [2 80]]

The report:

me reporer	precision	recall	f1-score	support
0	0.96	1.00	0.98	51
1	1.00	0.98	0.99	82
accuracy			0.98	133
macro avg	0.98	0.99	0.98	133
weighted avg	0.99	0.98	0.99	133

The f1_macro value for best parameter {'C': 10, 'gamma': 'auto', 'kernel': 'sigmoid'}: 0.9850141736106648

2. Decision Tree:

```
Accuracy = 0.93
ROC AUC = 0.94
```

The confusion Matrix:
[[51 0]
[9 73]] The report:

		precision	recall	f1-score	support
	0	0.85	1.00	0.92	51
	1	1.00	0.89	0.94	82
accur	асу			0.93	133
macro	avg	0.93	0.95	0.93	133
weighted	avg	0.94	0.93	0.93	133

The f1_macro value for best parameter {'criterion': 'gini', 'max_features': 'log2', 'splitter': 'best'}: 0.9331095830246935

3. Random Forest:

 $\frac{Accuracy = 0.99}{ROC_AUC = 0.99}$

The confusion Matrix: [[51 0] [1 81]] The report: precision recall f1-score support 1.00 0.98 0.99 0.99 0.99 0.99 133 accuracy macro avg weighted avg 0.99 0.99 0.99 133 0.99 0.99 0.99

The f1 macro value for best parameter {'criterion': 'gini', 'max features': 'log2', 'n estimators': 100}: 0.9924946382275899

4. Logistic Regression:

The confusion Matrix:

Accuracy = 0.99 ROC_AUC = 1.0

[[51 0] [1 81]] The report: precision recall f1-score support 51 0 0.98 1.00 0.99 1.00 0.99 0.99 82 accuracy 0.99 133 macro avg 0.99 0.99 0.99 133 weighted avg 133 0.99 0.99 0.99

The f1_macro value for best parameter {'penalty': 'l2', 'solver': 'newton-cg'}: 0.9924946382275899

5. KNN:

Accuracy = 0.95 ROC_AUC = 1.0

```
The confusion Matrix:
[[51 0]
[ 6 76]]
The report:
                           recall f1-score support
               precision
           0
                   0.89
                            1.00
                                       0.94
                  1.00
           1
                            0.93
                                      0.96
    accuracy
                                       0.95
                                                  133
   macro avg
                   0.95
                            0.96
                                       0.95
                                                  133
weighted avg
                                      0.96
                            0.95
                   0.96
                                                 133
```

The f1_macro value for best parameter {'algorithm': 'auto', 'metric': 'minkowski', 'n_neighbors': 5, 'p': 2, 'weights': 'distance'}: 0.955283779067923

6. Navie Bayes:

```
Accuracy = 0.99
ROC AUC = 0.99
```

Fitting 5 folds for each of 1 candidates, totalling 5 fits The confusion Matrix:

[[51 0] [1 81]]

The report:

	precision	recall	f1-score	support
0	0.98	1.00	0.99	51
1	1.00	0.99	0.99	82
accuracy			0.99	133
macro avg	0.99	0.99	0.99	133
weighted avg	0.99	0.99	0.99	133

The f1_macro value for best parameter {}: 0.9924946382275899

Final Model:

Considering the Accuracy and ROC_AUC_Score value **Logistic Regression algorithm** is the best model from the above algorithms with high accuracy and threshold value.

Accuracy = 0.99 ROC AUC = 1.0