MATH 240 HW1

Hanzhang Yin

Aug/26/2024

Question 1

Proof. Define a function f as:

$$f: \mathbb{N} \to \{1, 4, 7, 10, 13, \dots\} : n \rightarrowtail 3n - 2$$

Now we need to show f is one to one and onto.

• Prove f is one to one

Proof. To prove f is one to one, we must show that if $f(n_1) = f(n_2)$, then $n_1 = n_2$.

Suppose $f(n_1) = f(n_2)$. Then:

$$3n_1 - 2 = 3n_2 - 2$$

$$\Rightarrow 3n_1 = 3n_2 \Rightarrow n_1 = n_2$$

Since $n_1 = n_2$, f is injective.

 \bullet Prove f is onto

Proof. To prove f is *onto*, we need to show for every $m \in \{1, 4, 7, 10, 13, \dots\}$, there exists an $n \in \mathbb{N}$ s.t. f(n) = m.

Take any $m \in \{1, 4, 7, 10, 13, \dots\}$. We want to find n such that 3n-2=m. Solving for n:

$$3n-2=m\Rightarrow 3n=m+2\Rightarrow n=\frac{m+2}{3}$$

Since m is of the form 3k-2 for some integer k, and n=k is an integer. Therefore, $n \in \mathbb{N}$, and f is onto.

Since f is one to one and onto, it is a bijection. Hence, f(n) = 3n - 2 is a explicit bijection from the set \mathbb{N} to $\{1, 4, 7, 10, 13, \dots\}$.

Question 2

Proof. Define a function f as:

$$f:(0,1)\to\mathbb{R}_{>0}:n\mapsto\frac{n}{1-n}$$

Now we need to show f is one to one and onto.

 \bullet Prove f is one to one

Proof. To prove f is one to one, we must show that if $f(n_1) = f(n_2)$, then $n_1 = n_2$.

Suppose $f(n_1) = f(n_2)$. Then:

$$\frac{n_1}{1 - n_1} = \frac{n_2}{1 - n_2}$$

$$\Rightarrow x_1(1 - x_2) = x_2(1 - x_1)$$

$$\Rightarrow x_1 - x_1x_2 = x_2 - x_2x_1$$

$$\Rightarrow x_1 = x_2$$

Thus, f is one to one.

• Prove f is onto

Proof. To prove f is onto, we need to show for every $m \in \mathbb{R}_{>0}$, there exists an $n \in (0,1)$ s.t. f(n) = m.

Take any m > 0. We want to find n such that $\frac{n}{1-n} = m$. Solving for n:

$$n = m(1-n) \Rightarrow n + nm = m \Rightarrow n(1+m) = m \Rightarrow n = \frac{m}{1+m}$$

Note that m>0, this implies $0<\frac{m}{1+m}<1$, hence $n\in(0,1)$. Thus, for every m>0, there is an $n\in(0,1)$ s.t. f(n)=m. (i.e. f is onto)

Since f is one to one and onto, it is a bijection. Hence, $f(n) = \frac{n}{1-n}$ is a explicit bijection from the set (0,1) to $\mathbb{R}_{>0}$.

Question 3

Proof. Define a function f as:

$$f:(0,1)\to\mathbb{R}_{>0}:n\mapsto\frac{n}{1-n}$$

Now we need to show f is one to one and onto.

 \bullet Prove f is one to one

Proof. To prove f is one to one, we must show that if $f(n_1) = f(n_2)$, then $n_1 = n_2$.

Suppose $f(n_1) = f(n_2)$. Then:

$$\frac{n_1}{1 - n_1} = \frac{n_2}{1 - n_2}$$

$$\Rightarrow x_1(1 - x_2) = x_2(1 - x_1)$$

$$\Rightarrow x_1 - x_1x_2 = x_2 - x_2x_1$$

$$\Rightarrow x_1 = x_2$$

Thus, f is one to one.

• Prove f is onto

Proof. To prove f is onto, we need to show for every $m \in \mathbb{R}_{>0}$, there exists an $n \in (0,1)$ s.t. f(n) = m.

Take any m > 0. We want to find n such that $\frac{n}{1-n} = m$. Solving for n:

$$n = m(1-n) \Rightarrow n + nm = m \Rightarrow n(1+m) = m \Rightarrow n = \frac{m}{1+m}$$

Note that m>0, this implies $0<\frac{m}{1+m}<1$, hence $n\in(0,1)$. Thus, for every m>0, there is an $n\in(0,1)$ s.t. f(n)=m. (i.e. f is onto)

Since f is one to one and onto, it is a bijection. Hence, $f(n) = \frac{n}{1-n}$ is a explicit bijection from the set (0,1) to $\mathbb{R}_{>0}$.