Minimização de Valores de Arestas em um Grafo

Pedro Vanzella

19 de novembro de 2015

Resumo

Uma solução para o problema de minimização do valor de imposto pago sobre transferências bancárias é apresentado. Utiliza-se um grafo para representar o conjunto de transferências, e minimiza-se o valor das arestas, através da busca por transitividades.

1 Introdução

Uma recente mudança na regulamentação de impostos reativou uma antiga taxa sobre operações financeiras. Esta taxa, chamada de CPMF, incide em 1% sobre toda e qualquer transação bancária.

Um banco teve a idéia de minimizar o valor total pago deste imposto através de atalhos em transferências realizadas internamente.

Por exemplo, digamos que haja cinco correntistas, 1, 2, 3, 4 e 5, e haja as seguintes transferências entre eles:

- 1 transfere \$500 para 2.
- 2 transfere \$230 para 3.
- 3 transfere \$120 para 4.
- 1 transfere \$120 para 4.
- 2 transfere \$200 para 5.

É possível fazer quatro transferências, respeitando os valores iniciais e finais de saldo das contas destes cinco correntistas, mas minimizando o valor de cada transferência, de modo a pagar menos imposto:

1 transfere \$70 para 2

1 transfere \$110 para 3

1 transfere \$240 para 4

1 transfere \$200 para 5

Podemos ver que, em ambos os casos, o total enviado e o total recebido não foi alterado - apenas os valores parciais mudaram e, com eles, o valor pago em impostos.

Do ponto de vista dos correntistas, nada mudou - e.g. o extrato do correntista 1 ainda mostrará duas transferências, uma de \$500 para o correntista 2 e uma de \$120 para o correntista 4 - , mas internamente as transferências realizadas foram bastante diferentes. Podemos ver uma representação gráfica disto na Figura 1.

Figura 1: Representação da entrada e da saída como grafos

2 Entrada

O arquivo de entrada está no formato mostrado na $_1$ 5 5 Figura 2. A primeira linha tem dois valores: a quantidade de correntistas e a quantidade de transações $_3$ 2 3 230 descritas no arquivo. Como veremos na Seção $_3$, $_4$ 120 estas informações não serão necessárias. $_5$ 2 5 200

As linhas seguintes têm três valores cada: o correntista que originou a transação, o correntista de destino da transação, e o valor da transação. Por exemplo, na linha 2 da Figura 2, lemos "Uma transferência de 500 da conta do correntista 1 para a conta do correntista 2.".

Figura 2: Arquivo de entrada

Este arquivo de entrada representa o exemplo da Seção 1 e da Figura 1a.

3 Estrutura de Dados

A estrutura escolhida para representar o grafo foi a de Lista de Adjacências, como mostrado na Figura 3.

Outras alternativas, como a representação em Matriz de Adjacências também são possíveis, acarretando custos diferentes para acessos e remoções. No entanto, o acesso aos adjacentes de um nodo por Lista de Adjacentes se dá em O(adj), enquanto por Matriz de Adjacências se dá em O(n), onde n é o número de nodos do grafo. Como espera-se que haja menos arestas em um nodo do que nodos no grafo, a performance da Lista de Adjacências tende a ser ligeiramente melhor para esta aplicação.

No entanto, o fator principal para a escolha da representação por Lista de Adjacências foi a facilidade de se trabalhar com ela.

```
class Graph:

public list <Node> nodes

class Node:
 public int val
 public list <Edge> edges

class Edge:
 public Node from
 public Node to
 public int val
```

Figura 3: Representação das classes do grafo

Para ler o arquivo de entrada e criar os nodos e arestas, utilizamos o Algoritmo 1. Veja que ele está na classe **Mardita**, que contém uma instância do grafo.

Onde add_node está descrito no Algoritmo 2 e add_edge está descrito no Algoritmo 3.

Algoritmo 2: Criação de Nodos

O Algoritmo 2, que pertence à classe **Graph**, primeiro verifica se já há um nodo com este nome em sua coleção de nodos. Caso haja, retorna ele. Se não houver, chama o construtor da classe **Node** para criar um novo nodo, adiciona à sua coleção e então retorna o nodo criado.

A primeira vista, poderíamos ter utilizado um *set* em vez de uma lista para armazenar a coleção de nodos, dado que não queremos dois nodos iguais nela. No entanto, a unicidade garantida seria do objeto nodo, quando queremos na verdade a unicidade do nome do nodo.

Algoritmo 3: Criação de Arestas

Classe: Node

Entrada: to: Nodo de origem; val: Inteiro, representando o valor da aresta

Saída: Instancia da classe Edge

para cada e em self.edges faça

```
se e.to = to então

retorna e.update(val); /* Se a aresta já existe,
aumenta seu valor */

e \leftarrow Graph.Edge(self, to, val); /* Cria nova Edge */
self.edges.add(e); /* Adiciona à coleção de arestas */
retorna e
```

O Algoritmo 3 é parecido com o Algoritmo 2, pois ele verifica a unicidade da aresta. A diferença é que arestas são consideradas iguais, neste problema caso suas origens e destinos sejam iguais. Como estamos verificando todas as arestas que partem de um nodo, basta comparar o destino.

O construtor da aresta recebe três parâmetros: de onde, para onde e o valor da aresta.

Caso a aresta já exista, soma-se o valor das transações, de modo a criar apenas uma aresta entre dois nodos. Um exemplo disto pode ser visto na Figura 4. O grafo da Figura 4a representa duas transações, com a mesma origem e o mesmo destino. Ao somar-se o valor de suas arestas, temos o grafo da Figura 4b. Este é o que é utilizado pelo algoritmo.

Figura 4: Consolidação de arestas com mesma origem e destino

4 Algoritmo

Há duas coisas a serem feitas para resolver o problema: precisamos calcular quanto imposto é pago (Seção 4.1) e reduzir o número de arestas no grafo, bem como seus valores (Seção 4.2).

4.1 Cálculo de Total de Imposto Pago

Este algoritmo é executado duas vezes - uma antes de reduzir-se as arestas, e uma após, de modo a sabermos qual foi a economia.

Algoritmo 4: Cálculo de Imposto Pago Classe: Mardita

Entrada: Todas as arestas do grafo

Saída: Total de imposto pago

 $total \leftarrow 0$

para todo e em self.graph.edges faça

 \perp total \leftarrow total + e.valor

retorna $total \times 0.01$

No Algoritmo 4 vemos como o total de imposto é calculado. Apenas acumula-se o valor de todas as arestas e multiplica-se por 0.01, que é o percentual do imposto.

Nota-se que está acessando-se a propriedade edges da classe **Graph**, mas a mesma não parecia ter acesso às arestas, conforme visto na Figura 3.

De fato, a lista de arestas está na classe **Node**. Para termos acesso a elas, basta termos um método na classe **Graph** que itera por todos os nodos, coletando todas as arestas. A unicidade das arestas é garantida no momento de inserção, então pode-se fazer como é visto no Algoritmo 5.

```
Algoritmo 5: Coleção de todas as arestas
```

Classe: Graph

Entrada: Uma instância da classe textbfGraph Saída: Uma lista de instâncias da classe Edge

para todo n em self.nodes faça

para todo e em n.edges faça | adiciona e em edges

retorna edges

4.2 Redução das Arestas

Este é o algoritmo principal, onde o problema é de fato solucionado. O pseudocódigo pode ser visto no Algoritmo 6.

Algoritmo 6: Redução de Arestas

```
Classe: Mardita
para todo u em self.graph.nodes faça
    vs \leftarrow adjacentes de u
    enquanto vs não estiver vazia faça
                                          /* Remove um elemento de vs */
        v \leftarrow vs.pop();
        para todo a adjacente a v faça
            se valor de < v, a > < valor de < u, v > então
                 tmp \leftarrow valor de < v,a >
                 remove <v, a>
                 valor de \langle u,v \rangle \leftarrow diminui de tmp
                 se já existe aresta entre u e a então
                  | valor de \langle u, a \rangle \leftarrow aumenta de tmp
                 senão
                     cria aresta <u, a> com valor tmp
                     vs \leftarrow a; /* Nodo a agora é adjacente de u */
            senão
                 se v está em vs então
                     \operatorname{remove} \, v \, \operatorname{de} \, vs \; ; \quad /* \, v \, \operatorname{pode} \, \operatorname{ter} \, \operatorname{sido} \, \operatorname{conectado} \,
                      novamente graças a um ciclo */
                 tmp \leftarrow valor de < u,v >
                 remove <u,v>
                 valor de \langle v,a \rangle \leftarrow diminui de tmp
                 cria aresta <u,a> com valor tmp
                 vs \leftarrow a; /* Nodo a é agora é adjacentes de u */
```

A idéia do Algoritmo 6 é encontrar transitividade entre os nodos - isto é, para um grafo $G = \{n, e\}$ com $n = \{A, B, C\}$ e $e = \{(A, B, x), (B, C, y)\}$, gerar uma nova aresta (A, C, x - y), remover a aresta (B, C, x) e alterar o valor da aresta (A, B) para y - x.

Para isto, encontra-se os "amigos dos amigos" de cada nodo no grafo (linhas 2-4 da Figura ??). A verificação da linha 5 é importante para que não criemos uma transação de valor negativo.

Caso a verificação da linha 5 seja positiva, podemos atualizar o valor da primeira aresta (u, v), subtraindo o valor da aresta (v, a). Também removemos a aresta (v, a) do grafo.

O próximo passo é criar a aresta (u, a). Há um porém: a aresta (u, a) pode já existir. Neste caso, apenas soma-se o valor da aresta (v, a). Caso a aresta não exista, cria-se uma aresta (u, a) com o valor da aresta (v, a).

Um exemplo mínimo disto pode ser visto na Figura 5.

Figura 5: Redução aplicada a um grafo simples.

Figura 6: Redução aplicada a um grafo onde o valor de <
v,a> é superior ao de <
u,v>

Pode-se facilmente validar o algoritmo com um teste de mesa na Figura 5, ou mesmo na Figura 1.

Olhando-se para a Figura 5, vemos que os saldos dos correntistas são os mesmos (*i.e.*, o correntista 1 teve uma redução de 100 em seu saldo, o correntista 2 teve um aumento de 50, bem como o correntista 3). A única coisa que mudou entre a Figura 5a e a Figura 5b foram os valores e os destinos das transferências. Somando-se e multiplicando pelo valor do imposto, vemos que na Figura 5a pagaríamos 1.50 de imposto (*i.e.*, 1% de 150), enquanto na Figura 5b pagaríamos 1.00 de impost (*i.e.*, 1% de 100).

5 Resultados

Teste	Economia	Transações	Iterações
1	5321.10	264	2533
2	4077.60	235	2648
3	2478.32	165	304
4	2225.54	140	222
5	1462.09	99	155
6	2921.33	186	884
7	1033.03	91	162
8	4124.53	232	528
9	2791.65	165	320
10	2428.67	153	280

Tabela 1: Resultados dos testes da Turma 128

É possível ver na Tabela 1 que há uma economia significativa em cada um dos casos de teste, e o processamento ocorre em um tempo bem aceitável.

Vemos também que o tempo de processamento é proporcional ao número de transações. Isto faz sentido, dado que cada transação é uma aresta no grafo.

De fato, o algoritmo passará por cada aresta uma vez, e apenas uma vez. Isto daria uma complexidade de O(e), onde e é o número de arestas. No entanto, novas arestas são criadas, e estas devem ser verificadas por transitividade, de modo a otimizar ao máximo as transações. Como cada par de arestas pode gerar uma nova aresta, a complexidade fica $O(e + \frac{e}{2})$. No entanto, a notação O despresa os termos constantes, e ficamos novamente com O(e).

6 Conclusão

Há, possivelmente, a possibilidade de reduzir mais ainda algumas arestas. Esta é apenas uma solução possível, e não necessariamente a melhor.