

COMPUTACIÓN EN LA NIEBLA

- El término "nube" se utiliza como una metáfora de Internet, basado en el dibujo de nubes utilizado en el pasado para representar a la red telefónica
- El concepto de una red de computadoras capaz de comunicar usuarios en distintas computadoras fue formulado por **J.C.R. Licklider** de *Bolt, Beranek and Newman* (**BBN**) en agosto de 1962, en una serie de notas que discutían la idea de una "Red Galáctica".
- En 1961, **John McCarthy** durante un discurso para celebrar el centenario del MIT, fue el primero en sugerir públicamente que la tecnología de tiempo compartido(Time-Sharing) de las computadoras podría conducir a un futuro donde el poder del cómputo e incluso aplicaciones específicas podrían venderse como un servicio

- En la década de 1960, algunas empresas comenzaron a proporcionar recurso compartidos como oficina de servicios
 donde se alquilaba tiempo y servicio de computo.
- A los usuarios se les cobraba un alquiler por el terminal, las horas de tiempo de conexión, tiempo del CPU y kilobytes mensuales de almacenamiento en disco
- Esta popularidad se desvaneció a mediados de los 70s cuando quedó claro que el hardware, software y las tecnologías de comunicación simplemente no estaban preparados

- Herb Grosch decía que la potencia de una computadora es proporcional al cuadrado de su precio (<u>Ley Grosch</u>), sin embargo la ley de Moore se encargó de desmentir esto.
- Grosch estaba equivocado sobre el modelo del costo de la computación en nube, no se equivocaba en su suposición de que las economías eficientes y adaptables podría alcanzar su objetivo si confían en centros de datos centralizados en lugar confiar en el almacenamiento de unidades.

- Uno de los pioneros en la computación en nube fue Salesforce.com, que en 1999 introdujo el concepto de entrega de aplicaciones empresariales a través de una sencilla página web
- Amazon era el siguiente en el tren, al lanzar Amazon Web Service en 2002.
- Google Docs en 2006, que realmente trajo el cloud computing a la vanguardia de la conciencia del público.
- Microsoft entraría hasta el 2009 con el lanzamiento de Windows Azure
- En 2011, Apple lanzó su servicio iCloud, un sistema de almacenamiento en la nube

Conceptos básicos

 La computación en la nube son servidores desde Internet encargados de atender las peticiones en cualquier momento.

 Se puede tener acceso a su información o servicio, mediante una conexión a internet desde cualquier dispositivo móvil o fijo ubicado en cualquier lugar.

 Sirven a sus usuarios desde varios proveedores de alojamiento repartidos frecuentemente por todo el mundo.

 Esta medida reduce los costos, garantiza un mejor tiempo de actividad y que los sitios web sean invulnerables a los delincuentes informáticos, a los gobiernos locales y a sus redadas policiales pertenecientes.

Computación en la nube

Cloud computing

- Hace referencia al uso de servidores remotos conectados a la Red, de forma que pueden ofrecerse servicios de computación a través de varios puntos de Internet
- A la hora de dibujar diagramas de red, este tipo de conexiones suele representarse dentro de una **nube** para indicar lejanía física o una conexión no directa, y esa imagen ha terminado por imponerse para crear la expresión.

Cloud computing: Beneficios

- Posibilidad de acceder a tus servicios desde cualquier parte del mundo
- No tener la necesidad de instalar software extra para usar software en la nube. (excepto un navegador)
- Posibilidad de acceder a tus servicios en dispositivos móviles (teléfonos, tablets, etc...)
- Tener una fácil escalabilidad de los recursos que nos brinda nuestro proveedor de servicios.

Cloud computing: Ejemplos

- Facebook
- Twitter
- Google (los servicios como gmail, youtube, el buscador, etc...)
- Wikipedia
- etc...

Fog computing

- La computación en la niebla o fog computing toma algunos elementos del cloud computing, pero los aplica a un ámbito local de procesamiento, y no a la nube
- Conforme vayamos usando más y más objetos inteligentes, estos irán recolectando datos de nuestras actividades que subirán a la Red y podremos usar en nuestro beneficio.
- En lugar de establecer canales de almacenamiento en la nube, los datos son procesados localmente en un dispositivo inteligente sin ser enviados a la nube

Fog computing: Beneficios

- Baja latencia y reconocimiento de la ubicación.
- Amplia distribución geográfica.
- Movilidad.
- Muy elevado número de nodos.
- · Papel predominante del acceso inalámbrico.
- Fuerte presencia del streaming.
- Aplicaciones en tiempo real.
- Heterogeneidad.

Fog computing: Ejemplos

Desventajas del Fog computing

- Tener el procesamiento y almacenamiento de parte de ellos en el punto de origen genera algunas dudas.
- Solo se transmite un resumen de la información
- No podemos saber si el proceso de cálculo ha sido correcto o no

Diferencias entre Cloud y Fog Computing

- La seguridad del cloud computing es mucho mayor que el fog computing
- La nube ofrece servicios, mientras que la niebla trabaja de manera local y manda reportes
- El internet de las cosas usa más la niebla, ya que no necesita realizar grandes cargas computacionales

Aplicaciones

Fog computing IoT

Cómputo en la niebla en el IIoT Fuente: (Aazam et al., 2018)

Arquitectura

Arquitectura de 3 capas del IoT Fuente: (Mukherjee & Matam, 2017)

Anexo

 https://www.ecorfan.org/spain/researchjournals/Computo_ Aplicado/vol3num11/Revista_de_Computo_Aplicado_V3_N1 1_3.pdf

