IPESUP 2022/2023

Kholle 18 filière MP* Planche 1

- 1. Théorème de Cauchy linéaire d'ordre 1 : énoncé et preuve.
- 2. Soit n un entier supérieur ou égal à 3. Dans $\mathcal{M}_n(\mathbb{R})$, on considère la matrice

$$A = \begin{pmatrix} 0 & 0 & \dots & 0 & 1 \\ \vdots & \ddots & \ddots & 0 & 2 \\ \vdots & \ddots & \ddots & \vdots & \vdots \\ 0 & 0 & \dots & 0 & n-1 \\ 1 & 2 & \dots & n-1 & n \end{pmatrix}$$

Déterminer son polynôme caractéristique, puis la réduire.

3. Soit G un sous-groupe de SO_3 tel que $\forall h \in SO_3, \forall g \in G, hgh^{-1} \in G$. On suppose que G est connexe par arcs et distinct de $\{I_3\}$. Montrer que G contient une rotation d'angle π , puis que $G = SO_3$.

IPESUP 2022/2023

Kholle 18 filière MP* Planche 2

- 1. Caractérisation d'un système fondamental de solutions.
- 2. Soit $(E, \langle \cdot, \cdot \rangle)$ un espace euclidien de dimension $n \ge 2$ et u un endomorphisme autoadjoint défini positif. On note S la sphère unité de E et

$$f: E \to \mathbb{R}, x \mapsto \langle u(x), x \rangle \langle u^{-1}(x), x \rangle.$$

Déterminer le minimum de f sur S et déterminer en quels points de S ce minimum est atteint.

3. Quelles sont les composantes connexes par arcs de $O_n(\mathbb{R})$?

IPESUP 2022/2023

Kholle 18 filière MP* Planche 3

- 1. Méthode de variation des constantes pour l'ordre 2.
- 2. Soit *E* un espace euclidien et $f \in \mathcal{L}(E)$. On note $A = \{g \in \mathcal{L}(E) | gg^*g = g\}$.
 - (a) Comparer $ker(f^*f)$ et ker(f), $Im(f^*f)$ et Im(f).
 - (b) Montrer que f appartient à A si et seulement si f^*f est un projecteur orthogonal, si et seulement si pour tout élément x dans $\ker(f)^{\perp}$, $\|f(x)\| = \|x\|$.
 - (c) Montrer que si f appartient à A, alors

$$\ker(f)^{\perp} = \{x \in E \mid ||f(x)|| = ||x||\}$$

3. On considère l'application

$$\mu: O_n(\mathbb{R}) \times \mathcal{S}_n^{++}(\mathbb{R}) \to GL_n(\mathbb{R}), (O, S) \mapsto OS$$

Montrer qu'il s'agit d'un homéomorphisme (i.e une application continue bijective de réciproque continue).

