```
In [1]: import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
```

Out[2]:

	Loan_ID	Gender	Married	Dependents	Education	Self_Employed	ApplicantIncome	Coapplica
0	LP001002	Male	No	0	Graduate	No	5849	_
1	LP001003	Male	Yes	1	Graduate	No	4583	
2	LP001005	Male	Yes	0	Graduate	Yes	3000	
3	LP001006	Male	Yes	0	Not Graduate	No	2583	
4	LP001008	Male	No	0	Graduate	No	6000	
4								•

In [3]: df.info

Tu [3]:	at.	1n t o							
Out[3]:	<pre><bound dataframe.info="" method="" of<="" pre=""></bound></pre>				Loa	Loan_ID Gender Married Dependents			
	Edu	cation Self	_Employed	\					
	0	LP001002	Male	No	0		Graduate	No	
	1	LP001003	Male	Yes	1		Graduate	No	
	2	LP001005	Male	Yes	0		Graduate	Yes	
	3	LP001006	Male	Yes	0	Not	Graduate	No	
	4	LP001008	Male	No	0		Graduate	No	
	5	LP001011	Male	Yes	2		Graduate	Yes	
	6	LP001013	Male	Yes	0	Not	Graduate	No	
	7	LP001014	Male	Yes	3+		Graduate	No	
	8	LP001018	Male	Yes	2		Graduate	No	
	9	LP001020	Male	Yes	1		Graduate	No	
	10	LP001024	Male	Yes	2		Graduate	No	
	11	LP001027	Male	Yes	2		Graduate	NaN	
	12	LP001028	Male	Yes	2		Graduate	No	
	13	LP001029	Male	No	0		Graduate	No	
	14	LP001030	Male	Yes	2		Graduate	No	
	15	LP001032	Male	No	0		Graduate	No	
	16	LP001034	Male	No	1	Not	Graduate	No	_
	47	10001036	F 1 -	A.I.	^		C	NI a	•

In [4]: | df.info()

611 non-null object Dependents 599 non-null object Education 614 non-null object Self_Employed 582 non-null object ApplicantIncome 614 non-null int64 614 non-null float64 CoapplicantIncome LoanAmount 592 non-null float64 600 non-null float64 Loan Amount Term Credit_History 564 non-null float64 Property_Area 614 non-null object Loan_Status 614 non-null object

dtypes: float64(4), int64(1), object(8)

memory usage: 62.4+ KB

In [5]: df.describe()

Out[5]:

	ApplicantIncome	CoapplicantIncome	LoanAmount	Loan_Amount_Term	Credit_History
count	614.000000	614.000000	592.000000	600.00000	564.000000
mean	5403.459283	1621.245798	146.412162	342.00000	0.842199
std	6109.041673	2926.248369	85.587325	65.12041	0.364878
min	150.000000	0.000000	9.000000	12.00000	0.000000
25%	2877.500000	0.000000	100.000000	360.00000	1.000000
50%	3812.500000	1188.500000	128.000000	360.00000	1.000000
75%	5795.000000	2297.250000	168.000000	360.00000	1.000000
max	81000.000000	41667.000000	700.000000	480.00000	1.000000

In [6]: | df['Property_Area'].value_counts()

Out[6]: Semiurban 233 Urban 202 Rural 179

Name: Property_Area, dtype: int64

In [7]: df['ApplicantIncome'].hist(bins=50)

Out[7]: <matplotlib.axes._subplots.AxesSubplot at 0x21b65cc76d8>

In [8]: df.boxplot(column='ApplicantIncome')

Out[8]: <matplotlib.axes._subplots.AxesSubplot at 0x21b65ddca90>

In [9]: df['LoanAmount'].hist(bins=50)

Out[9]: <matplotlib.axes._subplots.AxesSubplot at 0x21b660b5e80>

In [10]: df.boxplot(column='LoanAmount')

Out[10]: <matplotlib.axes._subplots.AxesSubplot at 0x21b66175128>


```
In [11]:
         temp1 = df['Credit_History'].value_counts(ascending=True)
         temp2 = df.pivot_table(values='Loan_Status',index=['Credit_History'],aggfunc=lamb
         print ('Frequency Table for Credit History:')
         print (temp1)
         print ('\nProbility of getting loan for each Credit History class:')
         print (temp2)
         Frequency Table for Credit History:
         0.0
         1.0
                475
         Name: Credit_History, dtype: int64
         Probility of getting loan for each Credit History class:
                         Loan Status
         Credit_History
         0.0
                            0.078652
         1.0
                            0.795789
```

Typesetting math: 0%

```
In [13]: fig = plt.figure(figsize=(8,4))

ax1 = fig.add_subplot(121)
ax1.set_xlabel('Credit_History')
ax1.set_ylabel('Count of Applicants')
ax1.set_title("Applicants by Credit_History")
temp1.plot(kind='bar')

ax2 = fig.add_subplot(122)
temp2.plot(kind = 'bar')
ax2.set_xlabel('Credit_History')
ax2.set_ylabel('Probability of getting loan')
ax2.set_title("Probability of getting loan by credit history")
```

Out[13]: Text(0.5,1,'Probability of getting loan by credit history')

Credit_History

0.1

```
df.apply(lambda x: sum(x.isnull()),axis=0)
In [14]:
Out[14]: Loan_ID
                                0
         Gender
                               13
         Married
                                3
         Dependents
                               15
         Education
                                0
         Self_Employed
                               32
         ApplicantIncome
                                0
         CoapplicantIncome
                                0
         LoanAmount
                               22
         Loan_Amount_Term
                               14
         Credit_History
                               50
         Property_Area
                                0
         Loan_Status
                                0
         dtype: int64
In [15]:
         df['LoanAmount'].fillna(df['LoanAmount'].mean(), inplace=True)
In [16]:
         df['Self_Employed'].fillna('No',inplace=True)
```

Typesetting math: 0%

```
table = df.pivot table(values='LoanAmount', index='Self Employed', columns='Educa
# Define function to return value of this pivot table
def fage(x):
 return table.loc[x['Self Employed'],x['Education']]
# Replace missing values
df['LoanAmount'].fillna(df[df['LoanAmount'].isnull()].apply(fage, axis=1), inplac
                                          Traceback (most recent call last)
<ipython-input-17-7b68a5f9512f> in <module>()
      4 return table.loc[x['Self_Employed'],x['Education']]
      5 # Replace missing values
---> 6 df['LoanAmount'].fillna(df[df['LoanAmount'].isnull()].apply(fage, axis=
1), inplace=True)
C:\anaconda\lib\site-packages\pandas\core\series.py in fillna(self, value, meth
od, axis, inplace, limit, downcast, **kwargs)
   3420
                                                  axis=axis, inplace=inplace,
   3421
                                                  limit=limit, downcast=downcas
t,
-> 3422
                                                   **kwargs)
   3423
            @Appender(generic. shared docs['replace'] % shared doc kwargs)
   3424
C:\anaconda\lib\site-packages\pandas\core\generic.py in fillna(self, value, met
hod, axis, inplace, limit, downcast)
                            raise TypeError('"value" parameter must be a scala
   5398
r, dict '
   5399
                                             'or Series, but you passed a '
-> 5400
                                             '"{0}"'.format(type(value).__name_
_))
   5401
                        new data = self. data.fillna(value=value, limit=limit,
   5402
```

TypeError: "value" parameter must be a scalar, dict or Series, but you passed a
 "DataFrame"

```
In [18]: df['LoanAmount_log'] = np.log(df['LoanAmount'])
    df['LoanAmount_log'].hist(bins=20)
```

Out[18]: <matplotlib.axes._subplots.AxesSubplot at 0x21b67628940>


```
In [19]: df['TotalIncome'] = df['ApplicantIncome'] + df['CoapplicantIncome']
    df['TotalIncome_log'] = np.log(df['TotalIncome'])
    df['LoanAmount_log'].hist(bins=20)
```

Out[19]: <matplotlib.axes._subplots.AxesSubplot at 0x21b676f77f0>


```
In [21]: from sklearn.preprocessing import LabelEncoder
    var_mod = ['Gender', 'Married', 'Dependents', 'Education', 'Self_Employed', 'Property_
    le = LabelEncoder()
    for i in var_mod:
        df[i] = le.fit_transform(df[i])
    df.dtypes
```

```
Out[21]: Loan_ID
                                object
         Gender
                                 int64
         Married
                                 int64
                                 int64
         Dependents
         Education
                                 int64
         Self_Employed
                                 int64
         ApplicantIncome
                                 int64
         CoapplicantIncome
                               float64
         LoanAmount
                               float64
         Loan_Amount_Term
                               float64
         Credit_History
                               float64
         Property_Area
                                 int64
         Loan_Status
                                 int64
         LoanAmount_log
                               float64
         TotalIncome
                               float64
         TotalIncome_log
                               float64
         dtype: object
```

```
In [22]: #Import models from scikit learn module:
         from sklearn.linear model import LogisticRegression
         from sklearn.cross validation import KFold #For K-fold cross validation
         from sklearn.ensemble import RandomForestClassifier
         from sklearn.tree import DecisionTreeClassifier, export graphviz
         from sklearn import metrics
         #Generic function for making a classification model and accessing performance:
         def classification_model(model, data, predictors, outcome):
           #Fit the model:
           model.fit(data[predictors],data[outcome])
           #Make predictions on training set:
           predictions = model.predict(data[predictors])
           #Print accuracy
           accuracy = metrics.accuracy_score(predictions,data[outcome])
           print ("Accuracy : %s" % "{0:.3%}".format(accuracy))
           #Perform k-fold cross-validation with 5 folds
           kf = KFold(data.shape[0], n_folds=5)
           error = []
           for train, test in kf:
             # Filter training data
             train_predictors = (data[predictors].iloc[train,:])
             # The target we're using to train the algorithm.
             train_target = data[outcome].iloc[train]
             # Training the algorithm using the predictors and target.
             model.fit(train predictors, train target)
             #Record error from each cross-validation run
             error.append(model.score(data[predictors].iloc[test,:], data[outcome].iloc[te
           print ("Cross-Validation Score : %s" % "{0:.3%}".format(np.mean(error)))
           #Fit the model again so that it can be refered outside the function:
           model.fit(data[predictors],data[outcome])
```

C:\anaconda\lib\site-packages\sklearn\cross_validation.py:41: DeprecationWarnin g: This module was deprecated in version 0.18 in favor of the model_selection m odule into which all the refactored classes and functions are moved. Also note that the interface of the new CV iterators are different from that of this module. This module will be removed in 0.20.

"This module will be removed in 0.20.", DeprecationWarning)

Logestic Regression

Typesetting math: 0%

```
In [24]: outcome_var = 'Loan_Status'
    model = LogisticRegression()
    predictor_var = ['Credit_History']
    classification_model(model, df,predictor_var,outcome_var)
```

Accuracy: 80.945%

Cross-Validation Score: 80.946%

In [25]: #We can try different combination of variables:
 predictor_var = ['Credit_History','Education','Married','Self_Employed','Property
 classification_model(model, df,predictor_var,outcome_var)

Accuracy : 80.945%

Cross-Validation Score: 80.946%

Decision Tree

```
In [26]: model = DecisionTreeClassifier()
    predictor_var = ['Credit_History','Gender','Married','Education']
    classification_model(model, df,predictor_var,outcome_var)
```

Accuracy : 80.945%

Cross-Validation Score: 80.946%

```
In [27]: #We can try different combination of variables:
    predictor_var = ['Credit_History','Loan_Amount_Term','LoanAmount_log']
    classification_model(model, df,predictor_var,outcome_var)
```

Accuracy : 89.414%

Cross-Validation Score: 68.559%

Random Forest

Accuracy : 100.000%

Cross-Validation Score: 77.689%

In [29]: #Create a series with feature importances:
 featimp = pd.Series(model.feature_importances_, index=predictor_var).sort_values(
 print (featimp)

Credit_History 0.279387 TotalIncome_log 0.255215 LoanAmount_log 0.228393 Dependents 0.054111 Property_Area 0.048545 Loan_Amount_Term 0.041235 Married 0.026748 Education 0.024773 Self_Employed 0.020965 Gender 0.020629 dtype: float64

In [30]: model = RandomForestClassifier(n_estimators=25, min_samples_split=25, max_depth=7
predictor_var = ['TotalIncome_log','LoanAmount_log','Credit_History','Dependents'
classification_model(model, df,predictor_var,outcome_var)

Accuracy: 83.062%

Cross-Validation Score : 81.109%