

Computação Gráfica:

Aula 9: Modelos Hierárquicos em Computação Gráfica

Prof. Dr. rer.nat. Aldo von Wangenheim

Modelos Hierárquicos

- Técnica para representar estruturas articuladas
 - Animais, humanos, robôs humanóides, braços mecânicos
- Usamos uma filosofia hierárquica para representar um objeto: árvore
 - Cada parte móvel ou articulada do nosso objeto é um nodo
 - Dependências de movimentos estão no modelo: hierarquia:
 - explícita: estrutura de dado árvore
 - implícita: açgoritmos hierárquicos
- Facilidade de aplicar transformações
 - Uma tranformação se reflete sobre o nodo sobre o qual é aplicada e todos os seus filhos

Pernas: Componentes Básicos e sua Hierarquia

Disciplina Computação Gráfica Curso de Ciência da Camputação INE/CTC/UFSC

Aplicando rotação em diferentes componentes do Modelo

Atingimos diferentes resultados e provocamos diferentes efeitos dependend o de onde aplicamos a rotação.

Tornando o Modelo Realista

Curso de Ciência da Camputação INE/CTC/UFS(

Curso de Ciência da Camputação INE/CTC/UFSO

Curso de Ciência da Camputação INE/CTC/UFS(

Curso de Ciência da Camputação INE/CTC/UFS(

Cálculos do Deslocamento Vertical


```
Displacement = LL - (upper_leg_vertical + lower_leg_vertical) upper_leg_vertical = X * cos(\rho) lower_leg_vertical = Y * cos(\phi) \phi = \rho - \theta
```

lmportante: Lembre-se de calcular o deslocamento para cac perna e depois tomar o menor deles como global.

Programando Modelos Hierárquicos

Desenhando o tronco

```
void desenhaTronco()
{
    glPushMatrix();
    glScalef(LARGTRONCO, ALTTRONCO, TORSO);
    glColor3f(0.0, 1.0, 1.0);

    glutSolidCube(1.0);
    glPopMatrix();
}
```

Desenhando a perna

- desenhaPerna() é uma função que reflete a hierarquia da perna: dividida em três segmentos articulados.
- Cada um desse segmentos deve ser movido por uma função particular (com suas matrizes).
- A função desenhaPerna() integra estas três funções, chamando-as com os ângulos adequados e também gerenciando as matrizes gloais da perna.

Desenhando a Perna: #1, a Coxa

```
void desenhaCoxa()
  glPushMatrix();
        glColor3f(0.0, 1.0, 0.0);
  glscalef(TAMARTQUADRIL, TAMARTQUADRIL, TAMARTQUADRIL);
  glutSolidSphere(1.0,8,8);
  glPopMatrix();
  glTranslatef(0.0, - ALTCOXA * 0.75, 0.0);
  glPushMatrix();
        glColor3f(0.0, 0.0, 1.0);
  glScalef(LARGCOXA, ALTCOXA, LARGCOXA);
  glutSolidCube(1.0);
  glPopMatrix();
```

Desenhando a Perna

```
void desenhaPerna(int ladoCorpo)
        glPushMatrix();
        glRotatef(angulos[ladoCorpo][0], 1.0, 0.0, 0.0);
        desenhaCoxa();
        glTranslatef(0.0, - ALTCOXA * 0.75, 0.0);
        glRotatef(angulos[ladoCorpo][1], 1.0, 0.0, 0.0);
        desenhaCanela();
        glTranslatef(0.0, - ALTCANELA * 0.75, 0.0);
        glRotatef(angulos[ladoCorpo][2], 1.0, 0.0, 0.0);
        desenhaPe();
        glPopMatrix();
```

Desenhando o Corpo

```
void desenhaTroncoEPernas()
<del>glP</del>ushMatrix();
  glTranslatef(0.0, deslVertical(), 0.0);
  desenhaTronco();
  glTranslatef(0.0, -(ALTTRONCO), 0.0);
__glPushMatrix();
  glTranslatef(LARGTRONCO * 0.33, 0.0, 0.0);
  desenhaPerna(ESQUERDA);
        glPopMatrix();
  glTranslatef(- LARGTRONCO * 0.33, 0.0, 0.0);
  desenhaPerna(DIREITA);
        glPopMatrix();
```

