Individual Assignment 6

Topics: Classification and Regression Trees

YOUR NAME (in English): YUCHIH, SHIH

STUDENT ID: 103034034

Submission instruction:

- 1. Upload a single PDF to Canvas. It should include all the screenshots and answers (a)-(i).
- 2. Hand in the printed copy of your document in class.

Data Details and Goal:

The file "purchase_item.txt" contains transaction-level information for over 200,000 purchases of restaurant prepaid vouchers and coupons sold on EZTABLE. Each transaction includes the purchase of one or more vouchers/coupons. Our goal in this assignment is to build a predictive model for 'quantity' (=number of units sold in a single transaction).

Data Preparation:

We will use the data from Assignment 3 (linear regression). Reminder of what we did:

- Filtered the data and kept only the records for the "most popular" restaurant.
- Created derived variables: day-of-week of the transaction date (Excel function =WEEKDAY), and dummy variables for *type* and for *day-of-week (DOW)*
- Handled missing values for categorical columns by creating a new category NA, and for numerical columns removed rows if there are only a few.

Create Binned Quantity:

Bin Quantity into 20 bins with equal counts. Keep this Binned Quantity variable for Model 2.

R: use *cut()* or, in <u>package binr</u> use function *bins.quantiles()*

Data Partitioning:

Partition the data into training, validation, and test sets (XLMiner: use default %. R: use 50%-30%-20%). Use random seed 12345.

- (a) Using the information in the training set, what is a *naive prediction* for Quantity in a future purchase? Quantity = 1.
- **(b)** RMSE of this prediction on the test set = 13.0755.

Model Building: Regression Tree

We are going to model Quantity as a function of price, type, and DOW.

- (c) For *type*, if we include both dummies (type_coupon, type_voucher), is it possible to get a different tree compared to including only type_coupon? Yes

 Why?because coupon only includes 80% of the type data, and there is only 2 types.
- (d) For *DOW*, if we include all 7 dummies (DOW_1,..., DOW_7), is it possible to get a different tree compared to including only 6 dummies? No.

 Why?Because Saturday only includes under 5% of the data. I think it can barely affect the result.

Model 1: Quantity. Run a regression tree with Quantity as the outcome and price, type and DOW as predictors. We will build three trees: a deep *full tree*, a *pruned* (=minimum validation error) *tree*, and a *best-pruned tree* (smallest tree within 1 standard error from pruned tree).

XLMiner: *Predict* > *Regression Tree*.

- In Step 2: Min #Records in a terminal node: change to 100 (bigger full tree)
- In Step 3: Maximum #levels to display = 7. Check Full tree, Best Pruned Tree, Minimum Error Tree, and all three Detailed Report options.

R:

- Use *rpart()* to run a tree and *prp()* to plot a tree. See Figure 9.7 and https://www.statmethods.net/advstats/cart.html
- Argument *method="anova"* gives a regression tree
- For a full tree, use arguments minsplit=1, and cp=0.0001 (see Figure 9.10)
- To find the pruned tree and best pruned tree compute *xerror* and *xstd* (see Table 9.4)

(e) How many terminal nodes does each of the tre	es have?	
# Terminal nodes in Full tree	73	
# Terminal nodes in Pruned (Min Error) tree _	70	
# Terminal nodes in Best Pruned tree	20	

Variable Selection

Examine the regression trees.

- (f) Which are the two main predictors of Quantity? _price_ and _type_
- (g) Look at the top four levels of the full, pruned, and min-error trees. Are they identical?
 Yes. Why? _because they are using the same dataset. pruned trees are based on a full tree and prune those overfitted epochs.

Model Evaluation

(h) Compare the prediction errors of the training, validation, and test sets by examining their RMS Error (RMSE) and by plotting the three box plots.

XLMiner Hint: for side-by-side boxplots, place all three columns of residuals in one column and add another column with label "training/validation/test". Copy these two columns to Tableau for an easy boxplot (*Analysis*> uncheck Aggregate Measures)

Fill in the following table:

	Training	Validation	Test
RMSE	11.75461	15.7575	11.35505
Which tree used? (full, min err, best pruned)	best pruned	best pruned	best pruned

[Include your boxplots here: they should all have the same y-axis range]

(i) For good predictive accuracy of new records, which tree should we use? (Look at holdout error. XLMiner: worksheet RL_PruneLog. R: xerror)

Pruned

Model 2: Classification Tree on Binned Quantity.

Run a classification tree with outcome Binned_Quantity, and predictors price, type and DOW.

XLMiner: *Classify > Classification Tree*.

- In Step 2: Min #Records in a terminal node: change to 100 (bigger full tree)
- In Step 3: Maximum #levels to display = 7. Check Full tree, Pruned Tree, Minimum Error Tree.

R: Same instructions as before, but use argument *method="class"* for classification tree

(j) Compare the Classification Tree with the Regression Tree by filling the table:

	T	T
	Regression Tree	Classification Tree
Number of Terminal nodes in full tree	73	252
Number of Terminal nodes in best	70	5
pruned tree		
Predictor in first split	price	price
Value of split on first predictor	price = 374	
Predictors in top 3 layers of full tree	1.price	1.price
	2.weedays	2.weedays
	3.type	3.type
Predictors in top 3 layers of best	1.price	1.price
pruned tree	2.weedays	2.weedays
	3.type	3.type
Predict the Quantity for a purchase of		
a Voucher on DOW = 5, at price =		
\$2000. Use best pruned tree.		