

UNIVERSIDADE FEDERAL DA GRANDE DOURADOS

Introdução ao Cálculo — Avaliação PS Prof. Adriano Barbosa

Química	05/09/2023
---------	------------

1	
2	
3	
4	
5	
Nota	

Aluno(a):	
-----------	--

Todas as respostas devem ser justificadas.

Avaliação P1:

- 1. Mário e Marcos decidiram comer pizza juntos. Mário decidiu repartir a pizza e retirou $\frac{1}{4}$ da pizza para ele e deu $\frac{1}{6}$ do que restou para Marcos. Para evitar discussões sobre quem comeu mais, da segunda vez que Mário foi repartir a pizza, ele ficou com $\frac{1}{6}$ do que havia restado e deu $\frac{1}{4}$ do que ficou para Marcos, dizendo que agora eles haviam comido a mesma quantidade de pizza. Mário estava certo?
- 2. Uma fábrica de canetas tem um custo fixo diário de produção de R\$ 120,00, mais R\$ 0,40 por caneta. Cada caneta é vendida por R\$ 1,20. Determine:
 - (a) O custo diário de produção de 80 canetas.
 - (b) O custo diário de produção de x canetas.
 - (c) O lucro da empresa com a venda de 200 canetas.
- 3. Um experimento de agronomia mostra que a temperatura média da superfície do solo t(x), em graus Celsius, é determinada em função do resíduo x de planta e biomassa na superfície, em g/m^2 , conforme registrado na tabela abaixo:

Qual a lei de formação da função t(x)?

- 4. Determine todos os valores reais de x para os quais (x-2)(x-1) > 0.
- 5. Uma indústria produz mensalmente x lotes de um produto. O valor mensal resultante da venda deste produto é $V(x) = 3x^2 12x$ e o custo mensal de produção é dado por $C(x) = 5x^2 40x 40$. Qual é o número de lotes mensais que essa indústria deve vender para obter lucro máximo?

Avaliação P2:

- 1. Há uma lenda que credita a invenção do xadrez a um brâmane de uma côrte indiana que, atendendo a um pedido do rei, inventou o jogo para demonstrar o valor da inteligência. O rei, encantado com o invento, ofereceu ao brâmane a escolha de uma recompensa. De acordo com essa lenda, o inventor do jogo de xadrez pediu ao rei que a recompensa fosse pega em grãos de arroz da seguinte maneira: 1 grão para a casa 1 do tabuleiro, 2 grãos para a casa 2, 4 para a casa 3, 8 para a casa 4 e assim sucessivamente. Ou seja, a quantidade de grãos para cada casa do tabuleiro correspondia ao dobro da quantidade da casa imediatamente anterior.
 - (a) De acordo com a lenda, qual é a quantidade de grãos de arroz correspondente à casa 8?
 - (b) Escreve uma função f que expresse a quantidade de grãos de arroz em função do número x da casa do tabuleiro.
 - (c) Escreva, na forma de potência, quantos grãos de arroz devem ser colocados na última casa do tabuleiro de xadrez.

- 2. Suponha que a desvalorização de um automóvel seja de 20% ao ano a partir de sua compra. Carlos comprou um automóvel pagando R\$ 50.000,00. Depois de quanto tempo seu valor será de R\$ 25.000,00? (Utilize $\log 2 = 0,3$)
- 3. (a) Seja $\frac{\pi}{2} < x < \pi$. O valor de x tal que sen $x = \frac{1}{2}$.
 - (b) Seja x um arco do terceiro quadrante. Se $\sec x = -4$, determine o valor de $\cot x$. $\left(\sec x = \frac{1}{\cos x}, \cot x = \frac{\cos x}{\sin x}\right)$
- 4. A população de peixes em uma lagoa varia conforme o regime de chuvas da região. Ela cresce no período chuvoso e decresce no período de estiagem. Esta população é descrita pela expressão $P(t)=10^3\left[\cos\left(\frac{t-2}{6}~\pi\right)+5\right]$ em que o tempo t é medido em meses. Determine:
 - (a) O valor máximo e mínimo da população.
 - (b) Em quais meses do ano a população atinge seu máximo e seu mínimo.
- 5. Suponha que uma revista publicou um artigo no qual era estimado que no ano 2016 + x, com $x \in \{0, 1, 2, \dots, 10\}$, o valor arrecadado dos impostos incidentes sobre as exportações em certo país, em milhões de dólares, poderia ser obtido pela função $f(x) = 200 + 12\cos\left(\frac{\pi}{3}x\right)$. Caso essa previsão se confirme, relativamente ao total arrecadado a cada ano, determine se as afirmações abaixo são verdadeiras ou falsas.
 - (a) O valor máximo ocorrerá apenas em 2021.
 - (b) Atingirá o valor mínimo apenas em duas ocasiões.
 - (c) Poderá superar 300 milhões de dólares.
 - (d) nunca será inferior a 200 milhões de dólares.

① Inicialmente é retirado $\frac{1}{4}$ para Mário restando $1-\frac{1}{4}=\frac{3}{4}$ de pizza da qual foi retirado $\frac{1}{6}$ para Marcos, logo a primeira porção de Marcos é $\frac{1}{6}\cdot\frac{3}{4}=\frac{3}{24}=\frac{1}{8}$ da pizza. Nesse momento, resta $1-\frac{1}{4}-\frac{1}{8}=\frac{5}{8}$ da pizza que é novamente repartido. A nova parte de Mário é $\frac{1}{6}\cdot\frac{5}{8}=\frac{5}{48}$ do pizza e sobram $\frac{5}{8}-\frac{5}{48}=\frac{30-5}{48}=\frac{25}{48}$ de pizza. A nova parte de Marcos é entau $\frac{1}{4}\cdot\frac{25}{48}=\frac{25}{192}$. Somando as partes de codo um:

Mário:
$$\frac{1}{4} + \frac{5}{48} = \frac{12+5}{48} = \frac{17}{48} \approx 0.35$$

Marcos: $\frac{1}{8} + \frac{25}{192} = \frac{24+25}{192} = \frac{49}{192} \approx 0.25$

Portanto, Mário comen mais pizza que Marcos e Mário está errado.

2 a) Cada caneta custa R\$0,40, logo 80 canetas custam 80.0,4 = 32. Adicionando o custo fixo diário de R\$120, 0 custo de produção diário de 80 canetas é de 120+32 = 152.

- b) O custo de produçãos de x canetas por dia é dado pela funçãos C(x) = 120 + 0.4x.
- c) 0 lucro diário ao vender zoo canetas é dado por 200.1/2 C(200) = 240 120 0,4.200 = 40.
- 3) Note que a variação nos valores de t(x) é sempre 0,04 independente do intervalo que tomomos x. Logo, t(x) é uma função afim, t(x) = ax+b. Tomando os valores de t(10) e t(20), temos:

$$7,24 = \pm (10) = 0.10 + b$$
 $\Rightarrow b = 7,24 - 10 a$

L

$$7,28 = t(20) = a \cdot 20 + b \Rightarrow 20a + 7,24 - 10a = 7,28$$

 $\Rightarrow 10a = 0,04 \Rightarrow a = 0,004$

$$e b = 7,24 - 10.0,004 = 7,20.$$

A Para que o produto de dois números reais seja positivo é necessário que ambos sejam positivos ou ambos sejam negativos. Logo,

$$\chi_{-1}>0$$
 & $\chi_{-2}>0$ \Rightarrow χ_{-1} & $\chi_{-2}<0$ \Rightarrow $\chi_{-1}<0$ Revenues tur $\chi_{-2}>0$ ou $\chi_{-1}<0$

$$L(x) = V(x) - C(x) = 3x^{2} - 12x - (5x^{2} - 40x - 40)$$

$$= 3x^{2} - 12x - 5x^{2} + 40x + 40 = -2x^{2} + 28x + 40$$

$$= (-2)(x^{2} - 14x - 20) = (-2)(x^{2} - 2 - 7x - 20 + 49 - 49)$$

$$= (-2) \left[(x-7)^2 - 69 \right]$$

Assim, o máximo de L(x) é

138 e ocorre quando x-7=0 $\Rightarrow x=7$.

Avaliação P2

(1) a)
$$\frac{\cos a}{1}$$
 $\frac{1}{2}$ $\frac{1}{3}$ $\frac{1}{4}$ $\frac{1}{5}$ $\frac{1}{6}$ $\frac{1}{4}$ $\frac{1}{8}$ $\frac{1}{12}$ $\frac{1}{14}$ $\frac{1}{15}$ $\frac{1}{15}$

A casa 8 corresponde a 128 gráos.

- b) A quantidade de grass no casa x é 2 2.
- c) A últime case é a de número 64 e o número de grās é 2^{63} .
- 2 Temos que:

	` \	ı		(1
ano	0	^	2		 .
$\frac{\omega_{V}\omega}{\omega_{V}}$		20	5 000 (03) trons (08). 20		t (as)
Valor	50.000	20.000 - 20.000 . 20	$\int 50.000 (0.8) - 50000 (0.8) \cdot \frac{20}{100}$		50000 (98)
		$=50.000\left(1-\frac{20}{100}\right)$	$=50000 (0,8) (1-\frac{20}{100})$		
		= 50.000 . (0,8)	$=50000\cdot(0.8)^{2}$		

Logo, o valor do automóvel t anos após sua compra é de $V(t) = 50.000 (0.8)^{t}$. Queremos t tal que:

$$V(t) = 25000 \Rightarrow 50000 (0.8)^{t} = 25000 \Rightarrow (0.8)^{t} = \frac{25000}{50000} = \frac{1}{2}$$

$$\Rightarrow log[(0,8)^t] = log(\frac{1}{2}) \Rightarrow t \cdot log(0,8) = log(1 - log(2))$$

$$\Rightarrow$$
 $t \cdot log(\frac{8}{10}) = -log 2 \Rightarrow $t \cdot (log 8 - log 10) = -log 2$$

$$\Rightarrow t \cdot \left[\log(2^3) - 1 \right] = -\log 2 \Rightarrow t = \frac{-\log 2}{3 \cdot \log_2 - 1} = \frac{-0.3}{3 \cdot 0.3 - 1} = 3 \text{ anos}.$$

$$sen 30° = \frac{1}{2}$$

$$\sin 30^{\circ} = \frac{1}{2}$$

 $90^{\circ} < 150^{\circ} < 180^{\circ}$ e $\sin 150^{\circ} = \sin 30^{\circ} = \frac{1}{2}$

6) Temos Secx =
$$-4 \Rightarrow \frac{1}{\cos x} = -4 \Rightarrow \cos x = -\frac{1}{4}$$
, com $\pi \leq x \leq \frac{3\pi}{2}$.

Pitágoras:
$$1^2 = \left(\frac{1}{4}\right)^2 + h^2 \Rightarrow h^2 = 1 - \frac{1}{16}$$

$$\Rightarrow h^2 = \frac{16 - 1}{16} \Rightarrow h = \frac{\sqrt{15}}{4}$$

$$\therefore \text{ Sen } x = -\frac{\sqrt{15}}{4}$$

Pitágoras:
$$1^2 = \left(\frac{1}{4}\right)^2 + h^2 \implies h^2 = 1 - \frac{1}{16}$$

$$\Rightarrow h^2 = \frac{16-1}{16} \Rightarrow h = \frac{\sqrt{15}}{4}$$

$$\therefore \text{ Sen } \mathcal{K} = -\frac{\sqrt{15}}{4}$$

Portanto,
$$\omega t_{gx} = \frac{\omega sx}{smx} = \frac{-1/4}{-1/5/4} = \frac{1}{\sqrt{15}} = \frac{1/5}{15}$$

(4a) Sabemos que

$$-1 \le \cos \alpha \le 1 \implies 4 \le \cos \alpha + 5 \le 6$$

$$(\times 10^{3}) + (\times 10^{3}) \le 10^{3} (\cos \alpha + 5) \le 6 \cdot 10^{3}, \forall \alpha \in \mathbb{R}.$$

Assim, o valor més, de pop. é 6000 e o mín. é 4.000.

b) O máximo ocorre quando « é múltiple par de T o mínimo quando « é múltiplo impar de T. Logo, umo tel1,2,...,12}

$$m\acute{o}x$$
: $\frac{t-2}{6}\pi = 2k\pi \Rightarrow t-2 = 12k \Rightarrow t = 12k+2 \Rightarrow t=2 (k=0)$

mín.:
$$\frac{t-2}{6}\pi = (2k+1)\pi \Rightarrow t-2 = 6(2k+1) \Rightarrow t = 12k+6+2 = 12k+8$$

 $\Rightarrow t=8 (k=0)$

(5) a) Sabemos que

 $(x 12) \qquad (+2\infty)$ $-1 \le \cos \alpha \le 1 \implies -12 \le 12 \cos \alpha \le 12 \implies 188 \le 200 + 12 \cos \alpha \le 212, \forall \alpha \in \mathbb{R}$ Logo, o máximo da arrecodação será 212 milhões e o mínimo será 188 milhões.

O mínimo ocorre en multiples impares de T enquanto o máximo ocorre en múltiples pares de T. Assim,

 $m\acute{o}x$: $\frac{\pi}{3}x = 2k\pi \Rightarrow x = 6k \Rightarrow x = \begin{cases} 0, k \Rightarrow \Rightarrow ano = 2016 \\ 6, k = 1 \Rightarrow ano = 2022 \end{cases}$

 $W\acute{n}$: $\frac{\pi}{3}x = (2k+1)\pi \Rightarrow x = 6k+3 \Rightarrow x = \begin{cases} 3, k=0 \Rightarrow ano = 2019 \\ 9, k=1 \Rightarrow ano = 2025 \end{cases}$

Portanto,

a) F b) V c) F d) F