TITEL DER ARBEIT

Untertitel falls vorhanden

Bachelor Thesis

vorgelegt von

Vorname Name

am

01. Januar 2014

LuFG Wasserbau
Prof. Dr.-Ing. D. Bung
Fachbereich 2 – Bauingenieurwesen
Fachhochschule Aachen

Vorwort

Hier erscheint das Vorwort.

Aachen, im Januar 2014

Vorname Name

Kurzfassung

Dies ist die Kurzfassung

Abstract

This is an abstract.

Inhaltsverzeichnis

Vo	orwo1	t		II		
Κı	urzfa	ssung		III		
A۱	bstract					
A۱	bild	ungsve	erzeichnis	VII		
Та	belle	nverze	ichnis	VIII		
Va	riabl	enverz	zeichnis	IX		
A ı	ufgab	enstell	lung	X		
I	Ein	führuı	ng	1		
1	Einl	leitung		2		
	1.1	Allge	meines	2		
	1.2	Layou	ıt der Arbeit	2		
		1.2.1	Schriftart und -größe	2		
		1.2.2	Seitenränder	2		
		1.2.3	Verzeichnisse	3		
		1.2.4	Gliederung	3		
		1.2.5	Variablen	3		
		1.2.6	Referenzen	3		
		1.2.7	Abbildungen	3		
		1.2.8	Gleichungen	5		
2	Star	nd der l	Forschung bzw. Technik	6		
	2 1	Δ 11σοι	mainas	6		

II	Ansatz & Methodik	7	
2	Tiele dieser Arbeit barry Foresbungsensetz	8	
3	Ziele dieser Arbeit bzw. Forschungsansatz		
	3.1 Allgemeines	8	
4	Methodik	9	
	4.1 Allgemeines	9	
II	I Ergebnisanalyse	10	
5	Ergebnisse	11	
	5.1 Allgemeines	11	
ΙV	Schlussbetrachtungen	12	
6	Zusammenfassung	13	
	6.1 Allgemeines	13	
7	Fazit und Ausblick	14	
	7.1 Allgemeines	14	
Li	Literaturverzeichnis		
V	Anhang	16	
A	Grafische Ergebnisse	17	
	A.1 Modelllauf 1	17	
		1/	

Abbildungsverzeichnis

1.1	Bestimmung der Fließgeschwindigkeit u_m aus den Signalen beider Son-	
	denspitzen	4

Tabellenverzeichnis

Variablenverzeichnis

Variable	Definition	Einheit
A	Stollenquerschnittsfläche	m ²
A_1	Stollenquerschnittsfläche vor einer Querschnittsänderung	m ²
A_2	Stollenquerschnittsfläche hinter einer Querschnittsänderung	m ²
a	Schützöffnungshöhe	m
α	Speicherausgleichsgrad	dimensionslos
b	Schützbreite	m
β	Speicherausbaugrad	dimensionslos
С	Formänderungsbeiwert	dimensionslos
D	Hydraulischer Durchmesser	m
D_A	Hydraulischer Durchmesser im Austritt	m
D_i	Hydraulischer Durchmesser der betrachteten Stelle	m

Aufgabenstellung

Teil I

Einführung

1.1 Allgemeines

Diese Vorlage wurde mit dem Textsatzprogramm LaTeX erstellt und kann im LuFG Wasserbau kopiert werden. Grundsätzlich wird die Erstellung von Abschlussarbeiten mit LaTeX begrüßt. Sollte die Bearbeitung aber mit Hilfe anderer Programme erfolgen (z. B. Microsoft Office oder OpenOffice), so ist das Layout in Analogie zu diesem zu erstellen. Die vorgeschlagene Gliederung ist gegebenenfalls (je nach Aufgabenstellung) nach Absprache anzupassen.

1.2 Layout der Arbeit

Es ist ein einseitiges Layout zu wählen. Der Textteil wir mit arabischen Ziffern nummeriert. Kopfzeilen beinhalten den Kapitelnamen (links) sowie die Seitenzahl (rechts).

1.2.1 Schriftart und -größe

Die Schriftart ist eine Serifenschrift (Times oder Palatino) in 11 pt bei 1,5-fachem Zeilenabstand.

1.2.2 Seitenränder

Der Textkörper ist 22,7 cm hoch und 15 cm breit. Der linke Rand (Heftrand) ist 3,5 cm breit. Der Abstand zwischen Kopfzeile und Textkörper beträgt 0,8 cm; der Abstand zwischen Fußzeile und unterem Blattrand 3 cm.

1.2.3 Verzeichnisse

Alle Verzeichnisse (bis auf Literaturverzeichnis) werden vor dem eigentlichen Textteil aufgeführt und mit römischen Ziffern nummeriert. Auf ein Abbildungs- und Tabellenverzeichnis darf verzichtet werden. Das Literaturverzeichnis erscheint zwischen dem Textteil einem eventuellem Anhang.

1.2.4 Gliederung

Der Text ist bis zu maximal drei Ebenen (Überschriften) zu gliedern.

1.2.5 Variablen

Alle Variablen sind im Variablenverzeichnis aufzuführen. Zusätzlich sind alle Variablen beim ersten Erscheinen zu erläutern. Variablen werden grundsätzlich kursiv gesetzt (gilt nicht für die Einheiten und Abkürzung wie "min"und "max"sowie "sin"und "cos"). Relevante Regelwerke (z. B. DIN 1338 – Formelschreibweise und Formelsatz) können im LuFG Wasserbau eingesehen werden.

1.2.6 Referenzen

Die Referenz BUNG (2011) ist ein Beispiel für einen Zeitschriftenbeitrag; MATOS U. A. (2002) bezieht sich auf einen Konferenzbeitrag. Referenzen können auch in Klammern gesetzt werden (CHANSON, 1996). CHANSON (1992) ist ein technischer Bericht. Das folgende Zitat verweist auf eine Dissertation: BOES (2000)

Bei der Erstellung des Literaturverzeichnisses in IATEXwird die Verwendung von JabRef empfohlen.

1.2.7 Abbildungen

Abbildung 1.1(B) ist ein Beispiel für das Einfügen eines Fotos oder einer Grafik. Bei mehreren Einzelbildern (subfigures) sind Abb. 1.1(A) und 1.1(B) ebenso mit Untertiteln (caption) zu versehen:

(A) Beispielhafte Rohsignale (Ausschnitt)

Abbildung 1.1: Bestimmung der Fließgeschwindigkeit u_m durch Korrelation der Signale beider

Abbildung 1.1: Bestimmung der Fließgeschwindigkeit u_m durch Korrelation der Signale beider Sondenspitzen (mit $\Delta x_s = 5, 10$ mm ergibt sich in diesem Fall $u_m = 3, 19$ m/s)

1.2.8 Gleichungen

Gleichungen sind kapitelweise zu nummerieren:

$$\frac{v_1^2}{2 \times g} + \frac{p_1}{\rho \times g} + z_1 = \frac{v_2^2}{2 \times g} + \frac{p_2}{\rho \times g} + z_2 = \text{const.}$$
 (1.1)

2 Stand der Forschung bzw. Technik

2.1 Allgemeines

Teil II Ansatz & Methodik

3 Ziele dieser Arbeit bzw. Forschungsansatz

3.1 Allgemeines

4 Methodik

4.1 Allgemeines

Teil III

Ergebnisanalyse

5 Ergebnisse

5.1 Allgemeines

Teil IV Schlussbetrachtungen

6 Zusammenfassung

6.1 Allgemeines

7 Fazit und Ausblick

7.1 Allgemeines

Literaturverzeichnis

BOES 2000

BOES, R. M.: Zweiphasenströmung und Energieumsetzung an Großkaskaden. Zürich, Schweiz, ETH Zürich, Diss., 2000

BUNG 2011

BUNG, D.B.: Developing flow in skimming flow regime on embankment stepped spillways. In: *J. Hydraul. Res.* 49 (2011), Nr. 5, S. 639–648

CHANSON 1992

CHANSON, H.: Air Entrainment in Chutes and Spillways / University of Queensland. 1992 (CE133). – Forschungsbericht

CHANSON 1996

CHANSON, H.: *Air Bubble Entrainment in Free-Surface Turbulent Shear Flows*. San Diego: Academic Press, 1996

MATOS U. A. 2002

MATOS, J.; FRIZELL, K.H.; ANDRÉ, S.; FRIZELL, K.W.: On the Performance of Velocity Measurement Techniques in Air-water Flows. In: WAHL, T.L. (Hrsg.); PUGH, C.A. (Hrsg.); OBERG, K.A. (Hrsg.); VERMEYEN, T.B. (Hrsg.): *Proceedings of the Hydraulic Measurements & Experimental Methods Conference*. Estes Park, CO, 2002

Teil V

Anhang

A Grafische Ergebnisse

A.1 Modelllauf 1