Politechnika Wrocławska Wydział Matematyki

Skład grupy: Agata Sobczak 268873

Katarzyna Kudełko 268762

Prowadzący laboratorium: dr inż. Rafał Połoczański Prowadzący wykład: dr hab. inż. Krzysztof Burnecki

Statystyka stosowana

Raport 2.

Lista 8.

Spis treści

1	Wstęp	3
	1.1 Definicje	3
2	Zadanie 1.	3
	2.1 Cel zadania	3
	2.2 Statystyka testowa	3
	$2.3 \mu \neq 1.5 \dots \dots \dots \dots \dots \dots \dots$	4
	$2.4 \mu > 1.5 \dots $	5
	$2.5 \mu < 1.5 \dots \dots \dots \dots \dots \dots \dots$	6
3	Zadanie 2.	7
	3.1 Cel zadania	7
	3.2 Statystyka testowa	7
	$3.3 \sigma^2 \neq 1.5 \dots \dots \dots \dots \dots \dots \dots \dots \dots $	8
	$3.4 \sigma^2 > 1.5 \dots \dots \dots \dots \dots \dots \dots \dots \dots $	9
	$3.5 \sigma^2 < 1.5 \dots \dots \dots \dots \dots \dots \dots \dots \dots $	10
4	Zadanie 3.	11
	4.1 Cel zadania	11
	4.2 Błąd I rodzaju	11
	4.2.1 Zadanie 1., μ	11
	4.2.2 Zadanie 2., σ^2	13
	4.3 Błąd II rodzaju	15
	4.3.1 Zadanie 1., μ	15
	4.3.2 Zadanie 2., σ^2	17
5	Interpretacja wyników	18
6	Wnioski	18
•	· · ·	18
	6.2 Zadanie 3	18

1 Wstęp

1.1 Definicje

- Błąd I rodzaju odrzucenie prawdziwej hipotezy zerowej H_0 .
- Poziom istotności testu oznaczany jako α , to prawdopodobieństwo popełnienia błędu I rodzaju.
- Przedział ufności przedział, który informuje o tym, że poszukiwana wartość mieści się w pewnym przedziałe.
- Błąd II $\operatorname{rodzaju}$ przyjęcie nieprawdziwej hipotezy zerowej H_0 .
- **P-wartość** najmniejsza wartość poziomu istotności α , przy któyrym wartość statystyki prowadzi do odrzucenia hipotezy zerowej H_0 .
- **Zbiór krytyczny** zbiór wartości statystyki prowadzący do odrzucenia hipotezy zerowej H_0 na rzecz hipotezy alternatywnej.
- **Hipoteza zerowa** H_0 hipoteza, któa poddana testom sprawdzającym, czy róznica między analizowanymi parametrami wynosi 0.
- Hipoteza alternatywna hipoteza przeciwstawna do weryfikowanej.

2 Zadanie 1.

2.1 Cel zadania

Celem zadania jest zweryfikowanie następujących hipotez alternatywnych:

- $\mu \neq 1.5$,
- $\mu > 1.5$,
- $\mu < 1.5$,

na poziomie istotności $\alpha=0.05$, przeciw hipotezie zerowej $H_0: \mu=1.5$, na podstawie próby pochodzącej z populacji generalnej o rozkładzie normalnym $N(\mu,0.2)$. Należy również narysować odpowiednie obszary kytyczne oraz wyznaczyć p-wartości dla każdej z hipotez.

2.2 Statystyka testowa

W przypadku testowania hipotez w rodzinie rozkładów normalnych w celu zbadania wartości średniej, statystykę T oblicza się przy użyciu następującego wzoru:

$$T = \frac{\overline{x} - \mu_0}{\frac{\sigma}{\sqrt{n}}}$$

gdzie:

- \bullet \overline{x} średnia z próby
- μ_0 wartość średniej w hipotezie zerowej,
- σ znane odchylenie standardowe,
- n liczność próby.

Podstawiając liczność próby n=1000, można estymować średnią:

$$\overline{x} = 1.4554659542499997 \approx 1.4555.$$

Następnie, po podstawieniu liczności próby n=1000, wartości hipotezy zerowej $\mu=1.5$ oraz $\overline{x}=1.4555$, otrzymana jest wartość statystyki testowej T:

$$T = -7.04145089960709 \approx -7.0414$$

Gdy H_0 jest prawdziwa, to T powinna przyjmować małe wartości (rozbieżność między średnią z próbki \overline{x} , a wartością hipotezy zerowej μ_0 , która jest testowana).

2.3 $\mu \neq 1.5$

Gdy $\mu \neq \mu_0$, zbiór krytyczny ma postać $\left(-\infty ; -z_{1-\frac{\alpha}{2}}\right] \cup \left[z_{1-\frac{\alpha}{2}} ; \infty\right)$,
gdzie $z_{1-\frac{\alpha}{2}}$ jest kwantylem rzędu $1-\frac{\alpha}{2}$ rozkładu $\mathcal{N}(0,1)$. Zatem szukany przedział akceptacji hipotezy zerowej, podstawiając $\alpha=0.05$, ma postać

$$(-\infty ; -1.96] \cup [1.96 ; \infty)$$

Jako iż wartość statystyki T mieści się w tym przedziale krytycznym, to odrzucona zostaje hipoteza zerowa.

Następnie obliczono p-wartość według wzoru:

$$2P_{H_0}(T > |t|) = 2(1 - P_{H_0}(T \le |t|)) = 2(1 - F_T(|t|)) = 2 - 2\Phi(|T|)$$

W analizowanej próbie p-wartość wynosi $1.9024 \cdot 10^{-12}$.

Rysunek 1: Wykres gęstości rozkładu N(0,1) z zaznaczoną wartością statystyki T i obszarem krytycznym

2.4 $\mu > 1.5$

Gdy $\mu > \mu_0$, zbiór krytyczny ma postać $[z_{1-\alpha}; \infty)$,gdzie $z_{1-\alpha}$ jest kwantylem rzędu $1-\alpha$ rozkładu $\mathcal{N}(0,1)$. Zatem szukany przedział akceptacji hipotezy zerowej, podstawiając $\alpha = 0.05$, ma postać

$$[1.64 ; \infty)$$

Jako iż wartość statystyki nie należy do przedziału krytycznego, zatem należy przyjąć hipotezę zerową. Następnie obliczono p-wartość według wzoru:

$$2P_{H_0}(T > t) = 1 - P_{H_0}(T \le t) = 1 - F_T(t)$$

W analizowanej próbie p-wartość wynosi 0.999999999990488 $\approx 1.$

Rysunek 2: Wykres gęstości rozkładu N(0,1) z zaznaczoną wartością statystyki T i obszarem krytycznym

2.5 $\mu < 1.5$

Gdy $\mu < \mu_0$, zbiór krytyczny ma postać $(-\infty; -z_{1-\alpha}]$,
gdzie $z_{1-\alpha}$ jest kwantylem rzędu $1-\alpha$ rozkładu
 $\mathcal{N}(0,1)$. Zatem szukany przedział akceptacji hipotezy zerowej, podstawiając $\alpha=0.05$, ma postać

$$(-\infty; -1.64]$$

Jako iż, wartość statystyki T mieści się w tym przedziale krytycznym, to odrzucona zostaje hipoteza zerowa.

Następnie obliczono p-wartość według wzoru:

$$P_{H_0}(T \le t) = F_T(t)$$

W analizowanej próbie p-wartość wynosi 5124129124134 · $10^{-13}\approx 9.512 \cdot 10^{-13}.$

Rysunek 3: Wykres gęstości rozkładu N(0,1) z zaznaczoną wartością statystyki T i obszarem krytycznym

3 Zadanie 2.

3.1 Cel zadania

Celem zadania jest zweryfikowanie następujących hipotez alternatywnych:

- $\sigma^2 \neq 1.5$,
- $\sigma^2 > 1.5$,
- $\sigma^2 < 1.5$,

na poziomie istotności $\alpha = 0.05$, przeciw hipotezie zerowej $H_0: \sigma^2 = 1.5$, na podstawie próby pochodzącej z populacji generalnej o rozkładzie normalnym $N(0.2, \sigma^2)$. Należy również narysować odpowiednie obszary kytyczne oraz wyznaczyć p-wartości dla każdej z hipotez.

3.2 Statystyka testowa

W przypadku testowania hipotez w rodzinie rozkładów normalnych w celu zbadania wariancji, statystykę χ^2 oblicza się przy użyciu następującego wzoru:

$$\chi^2 = \frac{(n-1)S^2}{\sigma^2_0},$$

gdzie:

- n liczność próby,
- $S^2 = \frac{\sum\limits_{i=1}^{n} (\bar{X} x_i)^2}{n-1}$ estymator wariancji,
- ${\sigma_0}^2$ wartość wariancji w hipotezie zerowej.

Podstawiając liczność próby n = 1000, można estymować wariancję:

$$S^2 = 1.6681207941464067 \approx 1.6681.$$

Następnie, po podstawieniu liczności próby n = 1000, wartości hipotezy zerowej $\sigma_0^2 = 1.5$ oraz $S^2 = 1.6681$, otrzymana jest wartość statystyki testowej χ^2 :

$$\chi^2 = 1110.968448901507 \approx 1110.9684$$

Gdy hipoteza zerowa jest prawdziwa, statystyka ma rozkład χ^2 z (n-1) stopniami swobody. Następnie sprawdza się, czy wartość danej statystyki znajduje się w obszarze krytycznym. Jeśli tak, hipoteza zerowa jest odrzucana. Prawdopodobieństwo, że statystyka χ^2 przyjmuje wartość spoza rozkładu χ^2 z (n-1) stopniami swobody, wynosi $1-\alpha$.

3.3 $\sigma^2 \neq 1.5$

Gdy $\sigma^2 \neq \sigma_0^2$, zbi
ór krytyczny ma postać $(-\infty,\chi^2_{\frac{\alpha}{2},n-1}] \cup [\chi^2_{1-\frac{\alpha}{2};n-1},\infty)$, a przedział akceptacji hipotezy to $(\chi^2_{\frac{\alpha}{2},n-1};\chi^2_{1-\frac{\alpha}{2},n-1})$, gdzie $\chi^2_{\alpha,\,n-1}$ - kwantyl rzędu α rozkładu χ^2 z (n-1) stopniami swobody.

Zatem szukany przedział akceptacji hipotezy zerowej, podstawiając $\alpha=0.05$, ma postać

$$(\chi^2_{0.025, 999}; \chi^2_{0.975, 999}) = (913.3009983021134; 1088.4870677259353) \approx (913.3010; 1088.4871)$$

Oznacza to, że statystyka $\chi^2=1110.9684$ jest poza zbiorem akceptacji hipotezy zerowej, więc należy ją odrzucić.

Następnie obliczono p-wartość według wzoru:

$$2P_{H_0}(\chi^2 > |\chi|) = 2(1 - P_{H_0}(Z \le |\chi|)) = 2(1 - F_{\chi^2}(|\chi|),$$

gdzie $F_{\chi^2}(|\chi|)$ - dystrybuanta rozkładu χ^2 z (n-1) stopniami swobody w punkcie $|\chi|$.

W analizowanej próbie p-wartość wynosi 0.015023252487834649 \approx 0.015, co oznacza, że dla $\alpha<0.015$ hipoteza zerowa zostanie przyjęta, a dla $\alpha>0.015$ - odrzucona.

Rysunek 4: Rozkład statystyki χ^2 pod warunkiem hipotezy zerowej, z zaznaczonym obszarem krytycznym oraz statystyką testową χ^2 .

3.4 $\sigma^2 > 1.5$

Gdy $\sigma^2 > {\sigma_0}^2$, zbiór krytyczny ma postać $[\chi^2_{1-\alpha;n-1},\infty)$, a przedział akceptacji hipotezy to $(-\infty;\chi^2_{1-\alpha,n-1})$, gdzie $\chi^2_{\alpha,\,n-1}$ - kwantyl rzędu α rozkładu χ^2 z (n-1) stopniami swobody.

Zatem szukany przedział akceptacji hipotezy zerowej, podstawiając $\alpha = 0.05$, ma postać

$$(-\infty; 1073.6426506574246) \approx (-\infty; 1073.6427)$$

Oznacza to, że statystyka $\chi^2=1110.9684$ znajduje się w zbiorze krytycznym, zatem zostaje odrzucona.

Następnie obliczono p-wartość według wzoru:

$$P_{H_0}(\chi^2 > |\chi|) = 1 - P_{H_0}(\chi^2 \le |\chi|) = 1 - F_{\chi^2}(|\chi|),$$

W analizowanej próbie p-wartość wynosi 0.007511626243917324 \approx 0.0075, co oznacza, że dla α < 0.0075 hipoteza zerowa zostanie przyjęta, a dla α > 0.0075 - odrzucona.

Rysunek 5: Rozkład statystyki χ^2 pod warunkiem hipotezy zerowej, z zaznaczonym obszarem krytycznym oraz statystyką testową $\chi^2.$

3.5 $\sigma^2 < 1.5$

Gdy $\sigma^2 < \sigma_0^2$, zbiór krytyczny ma postać $(-\infty; \chi^2_{\alpha,n-1}]$, a przedział akceptacji hipotezy zerowej to $(\chi^2_{\alpha,n-1},\infty)$, gdzie $\chi^2_{\alpha,\,n-1}$ - kwantyl rzędu α rozkładu χ^2 z (n-1) stopniami swobody.

Zatem szukany przedział akceptacji hipotezy zerowej, podstawiając $\alpha = 0.05$, ma postać

$$(926.6311609204329; \infty) \approx (926.6312; \infty)$$

Oznacza to, że statystyka $\chi^2=1110.9684$ znajduje się w zbiorze akceptacji hipotezy zerowej, zatem zostaje przyjęta.

Następnie obliczono p-wartość według wzoru:

$$P_{H_0}(\chi^2 > |\chi|) = F_{\chi^2}(|\chi|),$$

W analizowanej próbie p-wartość wynosi 0.9924883737560827 \approx 0.9925, co oznacza, że dla $\alpha>0.9925$ hipoteza zerowa zostanie przyjęta, a dla $\alpha<0.9925$ - odrzucona.

Rysunek 6: Rozkład statystyki χ^2 pod warunkiem hipotezy zerowej, z zaznaczonym obszarem krytycznym oraz statystyką testową χ^2 .

4 Zadanie 3.

4.1 Cel zadania

Celem zadania jest symulacyjne wyznaczenie błędu I rodzaju oraz błędu II rodzaju, a także wyznaczenie mocy testu.

4.2 Błąd I rodzaju

Algorytm wyznaczania symulacyjnie błędu I rodzaju:

- 1. Ustalić wartość α na poziomie 0.05 oraz liczbę powtórzeń N na 1000.
- 2. Wygenerować próbkę $X_1, X_2, ..., X_n$ o rozmiarze n = 1000 z rozkładu normalnego $N(\mu, \sigma^2)$, gdzie $\mu = 1.5$ i $\sigma = 0.2$ (parametry zgodne z H_0).
- $\bullet\,$ 3. Wyznaczyć wartość statystyki testowej Z lub $X^2,$ w zależności od zadania.
- 4. Określić obszar krytyczny na podstawie hipotezy alternatywnej dla danego zadania.
- 5. Jeżeli wartość statystyki testowej znajduje się w obszarze krytycznym, zwiększyć licznik odrzuconych hipotez zerowych o 1.
- 6. Powtórzyć N razy kroki numer 2.-5.
- 7. Obliczyć stosunek liczby odrzuconych hipotez zerowych do liczby powtórzeń N. Ten stosunek daje przybliżoną wartość błędu I rodzaju.

4.2.1 Zadanie 1., μ

Dla poziomu istotności $\alpha=0.05$, algorytm zostaje powtórzony M=100 razy. Otrzymane rezultaty są prezentowane na wykresie pudełkowym, obrazującym rozkład liczby odrzuconych hipotez zerowych.

Rysunek 7: Wykres pudełkowy przedstawiający wartość błędu I rodzaju dla wartości średniej dla hipotezy $\mu \neq 1.5$ i $\alpha = 0.05$

Rysunek 8: Wykres pudełkowy przedstawiający wartość błędu I rodzaju dla wartości średniej dla hipotezy $\mu>1.5$ i $\alpha=0.05$

Rysunek 9: Wykres pudełkowy przedstawiający wartość błędu I rodzaju dla wartości średniej dla hipotezy $\mu < 1.5$ i $\alpha = 0.05$

W tabeli zamieszczono wartości liczb odrzuconych hipotez zerowych dla różnych, dodatkowo rozważonych poziomów istotności, takich jak $\alpha=0.01$, $\alpha=0.05$ oraz $\alpha=0.1$. Poziomy istotności są przedstawione w kolumnach, a wiersze odpowiadają różnym powtórzeniom. W poszczególnych komórkach tabeli znajdują się wartości liczby odrzuconych hipotez zerowych.

	$\mu \neq 1.5$	$\mu > 1.5$	$\mu < 1.5$
α =0.01	0.01	0.011	0.01
α =0.05	0.050	0.050	0.049
α =0.1	0.099	0.099	0.1

Tabela 1: Wartości błędu I rodzaju dla μ dla różnych α w zależności od hipotezy alternatywnej.

4.2.2 Zadanie 2., σ^2

Te same działania zostały wykonane dla Zadania 2., poniżej przedstawione zostały wyniki.

Rysunek 10: Wykres pudełkowy przedstawiający wartość błędu I rodzaju dla wartości średniej dla hipotezy $\sigma^2 \neq 1.5$ i $\alpha=0.05$

Rysunek 11: Wykres pudełkowy przedstawiający wartość błędu I rodzaju dla wartości średniej dla hipotezy $\sigma^2>1.5$ i $\alpha=0.05$

Rysunek 12: Wykres pudełkowy przedstawiający wartość błędu I rodzaju dla wartości średniej dla hipotezy $\sigma^2<1.5$ i $\alpha=0.05$

	$\sigma^2 \neq 1.5$	$\sigma^2 > 1.5$	$\sigma^2 < 1.5$
α =0.01	0.01	0.008	0.01
α =0.05	0.05	0.049	0.052
α =0.1	0.1	0.096	0.103

Tabela 2: Wartości błędu I rodzaju dla σ^2 dla różnych α w zależności od hipotezy alternatywnej.

4.3 Błąd II rodzaju

Algorytm wyznaczania symulacyjnie błędu II rodzaju:

- 1. Ustalić poziom istotności α na 0.05, wartość średnią μ na wartość zgodną z hipotezą alternatywną (bliską wartości z hipotezy zerowej H_0), σ^2 na 0.2 i rozmiar próbki n na 1000.
- 2. Wygenerować próbkę $X_1, X_2, ..., X_n$ o rozmiarze n = 1000 z rozkładu normalnego $N(\mu, \sigma^2)$.
- 3. Wyznaczyć wartość statystyki testowej Z albo X^2 .
- 4. Wyznaczyć obszar krytyczny na podstawie hipotezy alternatywnej dla danego zadania.
- 5. Sprawdzić, czy wartość statystyki testowej znajduje się poza obszarem krytycznym.
- \bullet 6. Powtórzyć N=1000razy kroki numer 2.- 5. i zliczyć, ile razy wartość statystyki testowej jest poza obszarem krytycznym.
- 7. Obliczyć stosunek liczby przypadków, gdy wartość statystyki testowej jest poza obszarem krytycznym, do liczby powtórzeń N. Ten stosunek daje przybliżoną wartość błędu II rodzaju.

4.3.1 Zadanie 1., μ

Dla przedstawienia wyników błędu II rodzaju dla testów średniej, rozważono różne wartości μ i stworzono wykres, gdzie oś OX reprezentuje wartość μ , a oś OY przedstawia wartość błędu II rodzaju. Dodatkowo na wykresach umieszczono moc testu.

Rysunek 13: Błąd II rodzaju i moc testu dla $\mu \neq 1.5$ i $\alpha = 0.05$

Rysunek 14: Błąd II rodzaju i moc testu dla $\mu > 1.5$ i $\alpha = 0.05$

Rysunek 15: Błąd II rodzaju i moc testu dla $\mu < 1.5$ i $\alpha = 0.05$

4.3.2 Zadanie 2., σ^2

Te same działania zostały wykonane dla Zadania 2., poniżej przedstawione zostały wyniki.

Rysunek 16: Błąd II rodzaju i moc testu dla $\sigma^2 \neq 1.5$ i $\alpha = 0.05$

Rysunek 17: Błąd II rodzaju i moc testu dla $\sigma^2 > 1.5$ i $\alpha = 0.05$

Rysunek 18: Błąd II rodzaju i moc testu dla $\sigma^2 < 1.5$ i $\alpha = 0.05$

5 Interpretacja wyników

Wartości statystyki porównano z wartościami krytycznymi testu. Należało odrzucić hipotezę zerową dla $\mu \neq 1.5$ i $\mu < 1.5$, ponieważ ta wartość znajduje się w zbiorze krytycznym. Dla $\mu > 1.5$ wartość statystyki nie znajduje się w zbiorze krytycznym, więc nie ma podstaw do odrzucenia hipotezy zerowej.

Wartości statystyki porównano z wartościami krytycznymi testu. Należalo odrzucić hipotezę zerową dla $\sigma^2 \neq 1.5$ i $\sigma^2 > 1.5$, ponieważ ta wartość znajduje się w zbiorze krytycznym. Dla $\sigma^2 < 1.5$ wartość statystyki nie znajduje się w zbiorze krytycznym, więc nie ma podstaw do odrzucenia hipotezy zerowej.

6 Wnioski

6.1 Zadanie 1. i 2.

Zmieniając poziom ufności, wpływamy na próg, który decyduje o statystycznej istotności wyniku badania. Jeśli zwiększymy poziom ufności, oznacza to, że zmniejszamy poziom istotności. To prowadzi do rozszerzenia przedziału ufności i zmniejszenia prawdopodobieństwa popełnienia błędu pierwszego rodzaju, ale jednocześnie zwiększa moc testu. Z drugiej strony, zwiększenie poziomu istotności prowadzi do zawężenia przedziałów ufności, co zwiększa prawdopodobieństwo popełnienia błędu drugiego rodzaju i zwiększa moc testu.

Na podstawie otrzymanych wyników w obu zadaniach można stwierdzić, że wyznaczenie błędu pierwszego rodzaju zostało wykonane poprawnie. Wartości tych błędów są bardzo zbliżone do przyjętej wartości poziomu istotności α . Aby estymować błąd drugiego rodzaju oraz moc testu, widoczne jest, że im bardziej oddalamy się od hipotezy zerowej, tym mniejszy jest błąd drugiego rodzaju.

6.2 Zadanie 3.

Na podstawie otrzymanych wyników można stwierdzić, że skutecznie wyznaczono błąd I rodzaju dla testów dotyczących zarówno wartości średniej, jak i wariancji. Dla jednego, jak i drugiego przypadku, wyniki są zbliżone do przyjętego poziomu istotności α . Z analizy Tabeli 1. i Tabeli 2. wynika, że wraz ze wzrostem parametru α rośnie również błąd I rodzaju. Oznacza to, że istnieje większe prawdopodobieństwo odrzucenia hipotezy zerowej H_0 , gdy jest ona właściwa.

7 Literatura

[1] Wykłady dr hab. inż. Krzysztofa Burneckiego