Homework 3

CSCI 4511W Spring 2018

March 21, 2018

Instructor: Dr.Maria Gini Joowon Kim(kimx4342)

- 1. Decide if the following sentences are valid, unsatisfiable, or neither. To do it, use the truth tables and equivalency rules in Chapter 7.
 - (a) $\operatorname{Big} \Rightarrow \operatorname{Big}$ $\rightarrow \operatorname{Valid}$

Big	Big	$Big \Rightarrow Big$
True	True	True
False	False	True

(b) $Big \Rightarrow Heavy$ $\rightarrow Neither (satisfiable)$

	Big	Heavy	$Big \Rightarrow Heavy$
Ì	True	True	True
	True	False	False
	False	True	True
	False	False	True

(c) $(Big \Rightarrow Heavy) \Rightarrow (\neg Big \Rightarrow \neg Heavy)$ $\rightarrow Neither (satisfiable)$

Big	Heavy	$\neg Big$	$\neg Heavy$	$Big \Rightarrow Heavy$	$\neg Big \Rightarrow \neg Heavy$
True	True	False	False	True	True
True	False	False	True	False	True
False	True	True	False	True	False
False	False	True	True	True	True

 $(Big \Rightarrow Heavy) \Rightarrow (\neg Big \Rightarrow \neg Heavy)$ True True False True

(d) Big \vee Heavy $\vee \neg$ Heavy

 \rightarrow Valid

Big	Heavy	$\neg Heavy$	$Big \lor Heavy \lor \neg Heavy$
True	True	False	True
True	False	True	True
False	True	False	True
False	False	True	True

(e) ((Big \land Dense) \Rightarrow Heavy) \Leftrightarrow ((Big \Rightarrow Dense) \lor (Heavy \Rightarrow Dense)) $\overline{\ \rightarrow\ Neither\ (satisfiable)\ }$

$egin{array}{ c c c c } \hline True & True \\ \hline True & True \\ \hline \end{array}$	te True	True	-		
Tmus Tmu		1746	True	True	True
$\mid 1 Tue \mid 1 Tu$	re False	True	True	True	False
True Fals	se $True$	False	False	False	True
True Fals	se False	False	False	True	True
False Tru	True	False	True	True	True
False Tru	re False	False	True	True	True
False Fals	se $True$	False	True	False	True
False Fals	se False	False	True	True	True

$(Big \Rightarrow Dense) \lor (Heavy \Rightarrow Dense)$	$((Big \land Dense) \Rightarrow Heavy) \Leftrightarrow ((Big \Rightarrow Dense) \lor (Heavy \Rightarrow Dense))$
True	True
True	False
False	False
True	True

(f) $(Big \Rightarrow Dense) \Rightarrow ((Big \land Heavy) \Rightarrow Dense)$

$\to \mathrm{Valid}$

Big	Heavy	Dense	$Big \Rightarrow Dense$	$Big \wedge Heavy$	$(Big \land Heavy) \Rightarrow Dense$
True	True	True	True	True	True
True	True	False	False	True	False
True	False	True	True	False	True
True	False	False	False	False	True
False	True	True	True	False	True
False	True	False	True	False	True
False	False	True	True	False	True
False	False	False	True	False	True

$(Big \Rightarrow Dense) \Rightarrow ((Big \land Heavy) \Rightarrow Dense)$
True

(g) Small \vee Cute \vee (Small \Rightarrow Cute)

$\to \mathrm{Valid}$

Small	Cute	$Small \Rightarrow Cute$	$Small \lor Cute \lor (Small \Rightarrow Cute)$
True	True	True	True
True	False	False	True
False	True	True	True
False	False	True	True

(h) (Small \land Cute) $\lor \neg$ Cute

 \rightarrow Neither (satisfiable)

Small	Cute	$\neg Cute$	$Small \wedge Cute$	$(Small \wedge Cute) \vee \neg Cute$
True	True	False	True	True
True	False	True	False	True
False	True	False	False	False
False	False	True	False	True

(i) ((Rain \Rightarrow Wet) \land (Wet \Rightarrow Cold)) \Rightarrow (Rain \Rightarrow Cold) $\overline{\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ }$

Rain	Wet	Cold	$Rain \Rightarrow Wet$	$Wet \Rightarrow Cold$	$Rain \Rightarrow Cold$	$(Rain \Rightarrow Wet) \land (Wet \Rightarrow Cold)$
True	True	True	True	True	True	True
True	True	False	True	False	False	False
True	False	True	False	True	True	False
True	False	False	False	True	False	False
False	True	True	True	True	True	True
False	True	False	True	False	True	False
False	False	True	True	True	True	True
False	False	False	True	True	True	True

$$((Rain\Rightarrow Wet) \land (Wet\Rightarrow Cold)) \Rightarrow (Rain\Rightarrow Cold)$$
 $True$
 $True$

(j) $((Rain \lor Wet) \land (\neg Wet \lor Cold)) \Rightarrow (Rain \lor Cold)$ $\longrightarrow Valid$

Rain	Wet	Cold	$\neg Wet$	$Rain \lor Wet$	$\neg Wet \lor Cold$	$Rain \lor Cold$
True	True	True	False	True	True	True
True	True	False	True	True	True	True
True	False	True	True	True	True	True
True	False	False	True	True	True	True
False	True	True	False	True	True	True
False	True	False	False	True	False	False
False	False	True	True	False	True	True
False	False	False	True	False	True	False

$(Rain \vee Wet) \wedge (\neg Wet \vee Cold)$	$((Rain \lor Wet) \land (\neg Wet \lor Cold)) \Rightarrow (Rain \lor Cold)$
True	True
False	True
False	True
False	True

- 2. For each of the following formulas, state briefly if it is a correct representation in propositional calculus of the sentence "If Bill works and his father stays at home, then his mother is happy" or not and explain why. The propositions used in the sentences should have an obvious interpretation.
 - \Rightarrow Possible propositional calculus of "If Bill works and his father stays at home, then his mother is happy" is (BillWork \land DadHome) \Rightarrow MomHappy
 - $\equiv \neg \text{ (BillWork} \land \text{DadHome)} \lor \text{MomHappy [Implication Elimination]}$
 - $\equiv (\neg \text{ BillWork} \lor \neg \text{ DadHome}) \lor \text{MomHappy [De Morgan]}$
 - $\equiv \neg \text{MomHappy} \Rightarrow \neg \text{(BillWork} \land \text{DadHome)} \text{[Contraposition]}$
 - (a) BillWork \land DadHome \land MomHappy
 - \rightarrow This is an <u>incorrect</u> representation. It says BillWork and DadHome and MomHappy and implies the conjunction of MomHappy, which should not.
 - (b) (BillWork \land DadHome) \Rightarrow MomHappy
 - \rightarrow This is a correct representation by the Implication Elimination I wrote above.
 - (c) (BillWork \vee DadHome) \Rightarrow MomHappy
 - \rightarrow This is an incorrect representation. It does not represent the conjunction of BillWork and DadHome.
 - (d) $MomHappy \Rightarrow (BillWork \land DadHome)$
 - \rightarrow This is an incorrect representation. If both sides are negated, than it would be a correct sentence by contraposition.
 - (e) \neg BillWork \lor (\neg MomHappy \lor DadHome)
 - \rightarrow This is an <u>incorrect</u> representation. If MomHappy is not negated and instead, DadHome is negated, than it would be a correct sentence by De Morgan.
- 3. Convert the following set of propositional clauses to CNF and prove by resolution with refutation that it is Pleasant.
 - (a) Cold \wedge Dry \Rightarrow Pleasant
 - $\equiv \neg \text{ (Cold } \land \text{ Dry)} \lor \text{ Pleasant [Implication Elimination]}$
 - $\equiv \neg \text{ Cold } \lor \neg \text{ Dry } \lor \text{ Pleasant [De Morgan]}$
 - (b) January \Rightarrow Winter \land Wet
 - $\equiv \neg \text{ January } \lor \text{ (Winter } \land \text{ Wet) [Implication Elimination]}$
 - $\equiv (\neg \text{ January } \lor \text{ Winter}) \land (\neg \text{ January } \lor \text{ Wet}) \text{ [Distributivity]}$
 - (c) Winter \Rightarrow Dry
 - $\equiv \neg$ Winter \lor Dry [Implication Elimination]
 - (d) Wet \Rightarrow Cold
 - $\equiv \neg \text{ Wet } \lor \text{ Cold [Implication Elimination]}$
 - (e) January

 \rightarrow

January, \neg January \vee (Winter \wedge Wet)

(Winter
$$\land$$
 Wet) $\equiv \neg$ Winter $\lor \neg$ Wet \neg Winter $\lor \neg$ Wet \lor Cold

$$\neg \ \mathbf{Winter} \ \lor \ \neg \ \mathbf{Wet} \ \lor \ \mathbf{Cold}$$

$$\neg \ \mathbf{Cold} \ \lor \ \neg \ \mathbf{Dry} \ \lor \ \mathbf{Pleasant} \ , \ \neg \ \mathbf{Winter} \ \lor \ \mathbf{Dry}$$

$$\neg \ \, \textbf{Winter} \ \lor \ \neg \ \, \textbf{Cold} \ \lor \ \, \textbf{Pleasant}$$

$$\neg \ \, \textbf{Winter} \ \lor \ \neg \ \, \textbf{Cold} \ \lor \ \, \textbf{Pleasant} \ , \ \neg \ \, \textbf{Winter} \ \lor \ \neg \ \, \textbf{Wet} \ \lor \ \, \textbf{Cold}$$

$$\neg \ \, \textbf{Winter} \ \lor \ \neg \ \, \textbf{Wet} \ \lor \ \, \textbf{pleasant}$$

$$\equiv \neg \ \, (\textbf{Winter} \ \land \ \, \textbf{Wet}) \ \lor \ \, \textbf{Pleasant} \ \, [\text{De Morgan}]$$

$$\equiv \ \, (\textbf{Winter} \ \land \ \, \textbf{Wet}) \ \Rightarrow \ \, \textbf{Pleasant} \ \, [\text{Implication Elimination}]$$

4. Programming questions.

- (a) Create a propositional data base, include in it the clauses from problem 3 above and prove it is Pleasant using the program.
- (b) Create a propositional data base and represent the following: "If the unicorn is mythical, then it is immortal but if it is not mythical then it is a mortal mammal. If the unicorn is either immortal or a mammal, then it is horned. The unicorn is magical, if it is horned."
- (c) Use ask to answer the following questions from the data base you created for the previous question:
 - i. is the unicorn mythical?
 - ii. is the unicorn magical?
 - iii. is the unicorn horned?

What can you say from the answers you get? Do the statements logically follow from the knowledge base? or not? \rightarrow The output of the program is attached, as well the code I modified.

```
■ ■ Terminal
 :imx4342@csel-kh4250-47:/home/kimx4342/Downloads/aima-python-master $ python3 logic.py
 Problem 1
Cold ∧ Dry ⇒ Pleasant
January ⇒ Winter ∧ Wet
Winter ⇒ Dry
 Wet ⇒Cold
 January
  All clauses in Knowledge Base:
  [(Pleasant | ~Cold | ~Dry), (Winter | ~January), (Wet | ~January), (Dry | ~Winter), (Cold | ~Wet), January]
 roblem 2
 If the unicorn is mythical, then it is immortal but if it is not mythical then it is a mortal mammal. If the unicorn is either immortal or a mammal, then it is horned. The unicorn is magical, if it is horned.
  Propositional logic:
Myth ⇒ Immortal, ¬Myth ⇒ Mortal, (Immortal V Mortal) ⇒ Horn, Horn ⇒ Magic
  All clauses in Knowledge Base:
[(Immortal | ~Myth), (Mortal | Myth), (~Immortal | Horn), (~Mortal | Horn), (Magic | ~Horn)]
Problem 3
   is the unicorn mythical? False
2. is the unicorn magical?
   is the unicorn horned?
    True
kimx4342@csel-kh4250-47:/home/kimx4342/Downloads/aima-python-master $
```

```
logic.py
SPACE = ' '
def probl():
    p1 kb = PropKB()
    Cold, Dry, Pleasant, Danuary, Winter, Wet = expr('Cold, Dry, Pleasant, Danuary, Winter, Wet')
    pl_kb.tell((Cold & Dry) | '==>' | Pleasant)
    pl_kb.tell(\(\int_{an}\)uary | '==>' | (\(\winter & \weta\))
pl_kb.tell(\(\winter | '==>' | Dry)
pl_kb.tell(\(\weta | '==>' | Cold)\)
    pl kb.tell(January)
    print('Problem 1')
    print(' Cold ∧ Dry → Pleasant \n Danuary → Winter ∧ Wet \n Winter → Dry \n Wet → Cold \n Danuary \n'.format(SPACE))
    print()
    print('{}All clauses in Knowledge Base: '.format(SPACE))
    print('{}{}'.format(SPACE,pl_kb.clauses))
    print()
    check = pl resolution(pl kb, Pleasant)
    print('{}Proved?: {}'.format(SPACE,check))
    print()
def prob2():
    p2 kb = PropKB()
    Myth, Immortal, Mortal, Horn, Magic = expr('Myth, Immortal, Mortal, Horn, Magic')
    p2_kb.tell(Myth | '==>' | Immortal)
p2_kb.tell(~Myth | '==>' | Mortal)
    p2_kb.tell((Immortal | Mortal) | '==>' | Horn)
    p2_kb.tell(Horn | '==>' | Magic)
    print('Problem 2')
    print(' If the unicorn is mythical, then it is immortal but if it is not mythical then it is a mortal mammal.'.format(SPACE))
    print(' If the unicorn is either immortal or a mammal, then it is horned.'.format(SPACE))
    print(' The unicorn is magical, if it is horned.{}'.format(SPACE,'\n'))
    print('{}Propositional logic: '.format(SPACE))
    print('{}{}Myth → Immortal, ¬Myth → Mortal, (Immortal v Mortal) → Horn, Horn → Magic{}'.format(SPACE,SPACE,'\n'))
    print('{}All clauses in Knowledge Base: '.format(SPACE))
    print('{}{}'.format(SPACE,p2_kb.clauses))
    print()
def prob3():
    p3 kb = PropKB()
    Myth, Immortal, Mortal, Horn, Magic = expr('Myth, Immortal, Mortal, Horn, Magic')
    p3_kb.tell(Myth | '==>' | Immortal)
p3_kb.tell(~Myth | '==>' | Mortal)
    p3_kb.tell((Immortal | Mortal) | '==>' | Horn)
    p3_kb.tell(Horn | '==>' | Magic)
    print('Problem 3')
    print('1. is the unicorn mythical?'.format(SPACE))
    print('{}{}{}'.format(SPACE,SPACE,p3_kb.ask_if_true(Myth)))
    print('2. is the unicorn magical?'.format(SPACE))
    print('{}{}{}'.format(SPACE,SPACE,p3_kb.ask_if_true(Magic)))
    print('3. is the unicorn horned?'.format(SPACE))
    print('{}{}{}'.format(SPACE,SPACE,p3_kb.ask_if true(Horn)))
if <u>__name__</u> == "__main__":
    probl()
    prob2()
    prob3()
    print()
```