SAMB for "Cs1"

Generated on 2023-06-12 22:51 by MultiPie 1.1.7

- Group: No. 6 C_s^1 Pm (b-axis setting) [monoclinic]
- Associated point group: No. 4 $\ C_s \ m$ (b-axis setting) [monoclinic]
- Generation condition
 - model type: tight_binding
 - time-reversal type: electric
 - irrep: [A']
 - spinful
- Unit cell:

$$a=1.0,\ b=1.0,\ c=1.0,\ \alpha=90.0,\ \beta=90.0,\ \gamma=90.0$$

• Lattice vectors:

$$\boldsymbol{a}_1 = \begin{pmatrix} 1.0 & 0 & 0 \end{pmatrix}$$

$$\mathbf{a}_2 = \begin{pmatrix} 0 & 1.0 & 0 \end{pmatrix}$$

$$\mathbf{a}_3 = \begin{pmatrix} 0 & 0 & 1.0 \end{pmatrix}$$

Table 1: High-symmetry line: Γ -X.

symbol	position	n	symbol	pc	sitio	on
Γ	$\begin{pmatrix} 0 & 0 \end{pmatrix}$	0)	X	$\left(\frac{1}{2}\right)$	0	0)

• Kets: dimension = 4

Table 2: Hilbert space for full matrix.

No.	ket	No.	ket	No.	ket	No.	ket
1	(p_x,\uparrow) @A ₁	2	(p_x,\downarrow) @A ₁	3	(p_y,\uparrow) @A ₁	4	(p_y,\downarrow) @A ₁

• Sites in (primitive) unit cell:

Table 3: Site-clusters.

	site	position	mapping
S_1	A_1	$\begin{pmatrix} 0 & 0 & 0 \end{pmatrix}$	[1,2]

• Bonds in (primitive) unit cell:

Table 4: Bond-clusters.

	bond	tail	head	n	#	b@c	mapping
B_1	b_1	A_1	A_1	1	1	$ \begin{array}{c cccc} \left(0 & 0 & -1\right) @ \left(0 & 0 & \frac{1}{2}\right) \end{array} $	[1,2]
B_2	b_2	A_1	A_1	1	2	$\begin{pmatrix} 1 & 0 & 0 \end{pmatrix} @ \begin{pmatrix} \frac{1}{2} & 0 & 0 \end{pmatrix}$	[1,2]
B_3	b_3	A_1	A_1	1	3	$ \left[\begin{array}{ccc} \left(0 & 1 & 0 \right) @ \left(0 & \frac{1}{2} & 0 \right) \end{array} \right] $	[1,-2]
B_4	b_4	A_1	A_1	2	1		[1,2]
B_5	b_5	A_1	A_1	2	2	$ \left(\begin{array}{cccc} 0 & 1 & 1 \end{array} \right) @ \left(\begin{array}{cccc} 0 & \frac{1}{2} & \frac{1}{2} \end{array} \right) $	[1]
	b_6	A_1	A_1	2	2	$ \left(\begin{array}{ccc} 0 & -1 & 1 \end{array} \right) @ \left(\begin{array}{ccc} 0 & \frac{1}{2} & \frac{1}{2} \end{array} \right) $	[2]
B_6	b_7	A_1	A_1	2	3	$\begin{pmatrix} 1 & 0 & 1 \end{pmatrix} @ \begin{pmatrix} \frac{1}{2} & 0 & \frac{1}{2} \end{pmatrix}$	[1,2]
B_{7}	b_8	A_1	A_1	2	4	$ \left(\begin{array}{ccc} -1 & 1 & 0 \end{array} \right) @ \left(\begin{array}{ccc} \frac{1}{2} & \frac{1}{2} & 0 \end{array} \right) $	[1]
	b ₉	A_1	A_1	2	4	$ \begin{pmatrix} -1 & -1 & 0 \end{pmatrix} @ \begin{pmatrix} \frac{1}{2} & \frac{1}{2} & 0 \end{pmatrix} $	[2]

• SAMB:

No. 1
$$\hat{\mathbb{Q}}_0^{(A')}$$
 [M₁, S₁]

$$\hat{\mathbb{Z}}_1 = \mathbb{X}_1[\mathbb{Q}_0^{(a,A')}] \otimes \mathbb{Y}_1[\mathbb{Q}_0^{(s,A')}]$$

$$\hat{\mathbb{Z}}_1(\boldsymbol{k}) = \mathbb{X}_1[\mathbb{Q}_0^{(a,A')}] \otimes \mathbb{U}_1[\mathbb{Q}_0^{(s,A')}]$$

No. 2
$$\hat{\mathbb{Q}}_2^{(A',2)}$$
 [M₁, S₁]

$$\hat{\mathbb{Z}}_2 = \mathbb{X}_2[\mathbb{Q}_2^{(a,A',2)}] \otimes \mathbb{Y}_1[\mathbb{Q}_0^{(s,A')}]$$

$$\hat{\mathbb{Z}}_2(\boldsymbol{k}) = \mathbb{X}_2[\mathbb{Q}_2^{(a,A',2)}] \otimes \mathbb{U}_1[\mathbb{Q}_0^{(s,A')}]$$

No. 3
$$\hat{\mathbb{Q}}_0^{(A')}(1,1)$$
 [M₁, S₁]

$$\hat{\mathbb{Z}}_3 = \mathbb{X}_3[\mathbb{Q}_0^{(a,A')}(1,1)] \otimes \mathbb{Y}_1[\mathbb{Q}_0^{(s,A')}]$$

$$\hat{\mathbb{Z}}_3(\boldsymbol{k}) = \mathbb{X}_3[\mathbb{Q}_0^{(a,A')}(1,1)] \otimes \mathbb{U}_1[\mathbb{Q}_0^{(s,A')}]$$

No. 4
$$\hat{\mathbb{Q}}_2^{(A',3)}(1,-1)$$
 [M₁, S₁]

$$\hat{\mathbb{Z}}_4 = \mathbb{X}_4[\mathbb{Q}_2^{(a,A',3)}(1,-1)] \otimes \mathbb{Y}_1[\mathbb{Q}_0^{(s,A')}]$$

$$\hat{\mathbb{Z}}_4(\mathbf{k}) = \mathbb{X}_4[\mathbb{Q}_2^{(a,A',3)}(1,-1)] \otimes \mathbb{U}_1[\mathbb{Q}_0^{(s,A')}]$$

No. 5
$$\hat{\mathbb{Q}}_0^{(A')}$$
 [M₁, B₁]

$$\hat{\mathbb{Z}}_5 = \mathbb{X}_1[\mathbb{Q}_0^{(a,A')}] \otimes \mathbb{Y}_2[\mathbb{Q}_0^{(b,A')}]$$

$$\hat{\mathbb{Z}}_5(\textbf{\textit{k}}) = \mathbb{X}_1[\mathbb{Q}_0^{(a,A')}] \otimes \mathbb{U}_1[\mathbb{Q}_0^{(s,A')}] \otimes \mathbb{F}_1[\mathbb{Q}_0^{(k,A')}]$$

No. 6
$$\hat{\mathbb{Q}}_2^{(A',2)}$$
 [M₁, B₁]

$$\hat{\mathbb{Z}}_6 = \mathbb{X}_2[\mathbb{Q}_2^{(a,A',2)}] \otimes \mathbb{Y}_2[\mathbb{Q}_0^{(b,A')}]$$

$$\hat{\mathbb{Z}}_6(\mathbf{k}) = \mathbb{X}_2[\mathbb{Q}_2^{(a,A',2)}] \otimes \mathbb{U}_1[\mathbb{Q}_0^{(s,A')}] \otimes \mathbb{F}_1[\mathbb{Q}_0^{(k,A')}]$$

No. 7
$$\hat{\mathbb{Q}}_0^{(A')}(1,1)$$
 [M₁, B₁]

$$\hat{\mathbb{Z}}_7 = \mathbb{X}_3[\mathbb{Q}_0^{(a,A')}(1,1)] \otimes \mathbb{Y}_2[\mathbb{Q}_0^{(b,A')}]$$

$$\hat{\mathbb{Z}}_7(\boldsymbol{k}) = \mathbb{X}_3[\mathbb{Q}_0^{(a,A')}(1,1)] \otimes \mathbb{U}_1[\mathbb{Q}_0^{(s,A')}] \otimes \mathbb{F}_1[\mathbb{Q}_0^{(k,A')}]$$

No. 8
$$\hat{\mathbb{Q}}_2^{(A',3)}(1,-1)$$
 [M₁, B₁]

$$\hat{\mathbb{Z}}_{8} = \mathbb{X}_{4}[\mathbb{Q}_{2}^{(a,A',3)}(1,-1)] \otimes \mathbb{Y}_{2}[\mathbb{Q}_{0}^{(b,A')}]$$

$$\hat{\mathbb{Z}}_8(\boldsymbol{k}) = \mathbb{X}_4[\mathbb{Q}_2^{(a,A',3)}(1,-1)] \otimes \mathbb{U}_1[\mathbb{Q}_0^{(s,A')}] \otimes \mathbb{F}_1[\mathbb{Q}_0^{(k,A')}]$$

No. 9
$$\hat{\mathbb{G}}_1^{(A')}(1,1)$$
 [M₁, B₁]

$$\hat{\mathbb{Z}}_9 = \mathbb{X}_7[\mathbb{M}_1^{(a,A')}(1,1)] \otimes \mathbb{Y}_3[\mathbb{T}_0^{(b,A')}]$$

$$\hat{\mathbb{Z}}_9(\mathbf{k}) = \mathbb{X}_7[\mathbb{M}_1^{(a,A')}(1,1)] \otimes \mathbb{U}_1[\mathbb{Q}_0^{(s,A')}] \otimes \mathbb{F}_2[\mathbb{T}_0^{(k,A')}]$$

No. 10
$$\hat{\mathbb{G}}_1^{(A')}(1,-1)$$
 [M₁, B₁]

$$\hat{\mathbb{Z}}_{10} = \mathbb{X}_{8}[\mathbb{M}_{1}^{(a,A')}(1,-1)] \otimes \mathbb{Y}_{3}[\mathbb{T}_{0}^{(b,A')}]$$

$$\hat{\mathbb{Z}}_{10}(\mathbf{k}) = \mathbb{X}_{8}[\mathbb{M}_{1}^{(a,A')}(1,-1)] \otimes \mathbb{U}_{1}[\mathbb{Q}_{0}^{(s,A')}] \otimes \mathbb{F}_{2}[\mathbb{T}_{0}^{(k,A')}]$$

No. 11
$$\hat{\mathbb{G}}_3^{(A',1)}(1,-1)$$
 [M₁, B₁]

$$\hat{\mathbb{Z}}_{11} = \mathbb{X}_9[\mathbb{M}_3^{(a,A',1)}(1,-1)] \otimes \mathbb{Y}_3[\mathbb{T}_0^{(b,A')}]$$

$$\hat{\mathbb{Z}}_{11}(\pmb{k}) = \mathbb{X}_9[\mathbb{M}_3^{(a,A',1)}(1,-1)] \otimes \mathbb{U}_1[\mathbb{Q}_0^{(s,A')}] \otimes \mathbb{F}_2[\mathbb{T}_0^{(k,A')}]$$

No. 12
$$\hat{\mathbb{G}}_3^{(A',2)}(1,-1)$$
 [M₁, B₁]

$$\hat{\mathbb{Z}}_{12} = \mathbb{X}_{10}[\mathbb{M}_3^{(a,A',2)}(1,-1)] \otimes \mathbb{Y}_3[\mathbb{T}_0^{(b,A')}]$$

$$\hat{\mathbb{Z}}_{12}(\boldsymbol{k}) = \mathbb{X}_{10}[\mathbb{M}_{3}^{(a,A',2)}(1,-1)] \otimes \mathbb{U}_{1}[\mathbb{Q}_{0}^{(s,A')}] \otimes \mathbb{F}_{2}[\mathbb{T}_{0}^{(k,A')}]$$

No. 13
$$\hat{\mathbb{Q}}_0^{(A')}$$
 [M₁, B₂]

$$\hat{\mathbb{Z}}_{13} = \mathbb{X}_1[\mathbb{Q}_0^{(a,A')}] \otimes \mathbb{Y}_4[\mathbb{Q}_0^{(b,A')}]$$

$$\hat{\mathbb{Z}}_{13}(\boldsymbol{k}) = \mathbb{X}_1[\mathbb{Q}_0^{(a,A')}] \otimes \mathbb{U}_1[\mathbb{Q}_0^{(s,A')}] \otimes \mathbb{F}_3[\mathbb{Q}_0^{(k,A')}]$$

No. 14
$$\hat{\mathbb{Q}}_{2}^{(A',2)}$$
 [M₁, B₂]

$$\hat{\mathbb{Z}}_{14} = \mathbb{X}_2[\mathbb{Q}_2^{(a,A',2)}] \otimes \mathbb{Y}_4[\mathbb{Q}_0^{(b,A')}]$$

$$\hat{\mathbb{Z}}_{14}(\boldsymbol{k}) = \mathbb{X}_2[\mathbb{Q}_2^{(a,A',2)}] \otimes \mathbb{U}_1[\mathbb{Q}_0^{(s,A')}] \otimes \mathbb{F}_3[\mathbb{Q}_0^{(k,A')}]$$

No. 15
$$\hat{\mathbb{Q}}_0^{(A')}(1,1)$$
 [M₁, B₂]

$$\hat{\mathbb{Z}}_{15} = \mathbb{X}_3[\mathbb{Q}_0^{(a,A')}(1,1)] \otimes \mathbb{Y}_4[\mathbb{Q}_0^{(b,A')}]$$

$$\hat{\mathbb{Z}}_{15}(\mathbf{k}) = \mathbb{X}_3[\mathbb{Q}_0^{(a,A')}(1,1)] \otimes \mathbb{U}_1[\mathbb{Q}_0^{(s,A')}] \otimes \mathbb{F}_3[\mathbb{Q}_0^{(k,A')}]$$

No. 16
$$\hat{\mathbb{Q}}_2^{(A',3)}(1,-1)$$
 [M₁, B₂]

$$\hat{\mathbb{Z}}_{16} = \mathbb{X}_4[\mathbb{Q}_2^{(a,A',3)}(1,-1)] \otimes \mathbb{Y}_4[\mathbb{Q}_0^{(b,A')}]$$

$$\hat{\mathbb{Z}}_{16}(\boldsymbol{k}) = \mathbb{X}_4[\mathbb{Q}_2^{(a,A',3)}(1,-1)] \otimes \mathbb{U}_1[\mathbb{Q}_0^{(s,A')}] \otimes \mathbb{F}_3[\mathbb{Q}_0^{(k,A')}]$$

No. 17
$$\hat{\mathbb{G}}_{1}^{(A')}(1,1)$$
 [M₁, B₂]

$$\hat{\mathbb{Z}}_{17} = \mathbb{X}_7[\mathbb{M}_1^{(a,A')}(1,1)] \otimes \mathbb{Y}_5[\mathbb{T}_0^{(b,A')}]$$

$$\hat{\mathbb{Z}}_{17}(\boldsymbol{k}) = \mathbb{X}_{7}[\mathbb{M}_{1}^{(a,A')}(1,1)] \otimes \mathbb{U}_{1}[\mathbb{Q}_{0}^{(s,A')}] \otimes \mathbb{F}_{4}[\mathbb{T}_{0}^{(k,A')}]$$

No. 18
$$\hat{\mathbb{G}}_1^{(A')}(1,-1)$$
 [M₁, B₂]

$$\hat{\mathbb{Z}}_{18} = \mathbb{X}_{8}[\mathbb{M}_{1}^{(a,A')}(1,-1)] \otimes \mathbb{Y}_{5}[\mathbb{T}_{0}^{(b,A')}]$$

$$\hat{\mathbb{Z}}_{18}(\boldsymbol{k}) = \mathbb{X}_{8}[\mathbb{M}_{1}^{(a,A')}(1,-1)] \otimes \mathbb{U}_{1}[\mathbb{Q}_{0}^{(s,A')}] \otimes \mathbb{F}_{4}[\mathbb{T}_{0}^{(k,A')}]$$

No. 19
$$\hat{\mathbb{G}}_{3}^{(A',1)}(1,-1)$$
 [M₁, B₂]

$$\hat{\mathbb{Z}}_{19} = \mathbb{X}_{9}[\mathbb{M}_{3}^{(a,A',1)}(1,-1)] \otimes \mathbb{Y}_{5}[\mathbb{T}_{0}^{(b,A')}]$$

$$\hat{\mathbb{Z}}_{19}(\boldsymbol{k}) = \mathbb{X}_9[\mathbb{M}_3^{(a,A',1)}(1,-1)] \otimes \mathbb{U}_1[\mathbb{Q}_0^{(s,A')}] \otimes \mathbb{F}_4[\mathbb{T}_0^{(k,A')}]$$

No. 20
$$\hat{\mathbb{G}}_3^{(A',2)}(1,-1)$$
 [M₁, B₂]

$$\hat{\mathbb{Z}}_{20} = \mathbb{X}_{10}[\mathbb{M}_{3}^{(a,A',2)}(1,-1)] \otimes \mathbb{Y}_{5}[\mathbb{T}_{0}^{(b,A')}]$$

$$\hat{\mathbb{Z}}_{20}(\textbf{\textit{k}}) = \mathbb{X}_{10}[\mathbb{M}_{3}^{(a,A',2)}(1,-1)] \otimes \mathbb{U}_{1}[\mathbb{Q}_{0}^{(s,A')}] \otimes \mathbb{F}_{4}[\mathbb{T}_{0}^{(k,A')}]$$

No. 21
$$\hat{\mathbb{Q}}_0^{(A')}$$
 [M₁, B₃]

$$\hat{\mathbb{Z}}_{21} = \mathbb{X}_1[\mathbb{Q}_0^{(a,A')}] \otimes \mathbb{Y}_6[\mathbb{Q}_0^{(b,A')}]$$

$$\hat{\mathbb{Z}}_{21}(\boldsymbol{k}) = \mathbb{X}_1[\mathbb{Q}_0^{(a,A')}] \otimes \mathbb{U}_1[\mathbb{Q}_0^{(s,A')}] \otimes \mathbb{F}_5[\mathbb{Q}_0^{(k,A')}]$$

No. 22
$$\hat{\mathbb{Q}}_2^{(A',2)}$$
 [M₁, B₃]

$$\hat{\mathbb{Z}}_{22} = \mathbb{X}_2[\mathbb{Q}_2^{(a,A',2)}] \otimes \mathbb{Y}_6[\mathbb{Q}_0^{(b,A')}]$$

$$\hat{\mathbb{Z}}_{22}(\textbf{\textit{k}}) = \mathbb{X}_2[\mathbb{Q}_2^{(a,A',2)}] \otimes \mathbb{U}_1[\mathbb{Q}_0^{(s,A')}] \otimes \mathbb{F}_5[\mathbb{Q}_0^{(k,A')}]$$

No. 23
$$\hat{\mathbb{Q}}_0^{(A')}(1,1)$$
 [M₁, B₃]

$$\hat{\mathbb{Z}}_{23} = \mathbb{X}_{3}[\mathbb{Q}_{0}^{(a,A')}(1,1)] \otimes \mathbb{Y}_{6}[\mathbb{Q}_{0}^{(b,A')}]$$

$$\hat{\mathbb{Z}}_{23}(\boldsymbol{k}) = \mathbb{X}_{3}[\mathbb{Q}_{0}^{(a,A')}(1,1)] \otimes \mathbb{U}_{1}[\mathbb{Q}_{0}^{(s,A')}] \otimes \mathbb{F}_{5}[\mathbb{Q}_{0}^{(k,A')}]$$

No. 24
$$\hat{\mathbb{Q}}_2^{(A',3)}(1,-1)$$
 [M₁, B₃]

$$\hat{\mathbb{Z}}_{24} = \mathbb{X}_4[\mathbb{Q}_2^{(a,A',3)}(1,-1)] \otimes \mathbb{Y}_6[\mathbb{Q}_0^{(b,A')}]$$

$$\hat{\mathbb{Z}}_{24}(\boldsymbol{k}) = \mathbb{X}_4[\mathbb{Q}_2^{(a,A',3)}(1,-1)] \otimes \mathbb{U}_1[\mathbb{Q}_0^{(s,A')}] \otimes \mathbb{F}_5[\mathbb{Q}_0^{(k,A')}]$$

No. 25
$$\hat{\mathbb{Q}}_1^{(A',1)}(1,1)$$
 [M₁, B₃]

$$\hat{\mathbb{Z}}_{25} = -\mathbb{X}_{12}[\mathbb{M}_{1}^{(a,A^{\prime\prime},2)}(1,1)] \otimes \mathbb{Y}_{7}[\mathbb{T}_{1}^{(b,A^{\prime\prime})}]$$

$$\hat{\mathbb{Z}}_{25}(\textbf{\textit{k}}) = -\mathbb{X}_{12}[\mathbb{M}_{1}^{(a,A^{\prime\prime},2)}(1,1)] \otimes \mathbb{U}_{1}[\mathbb{Q}_{0}^{(s,A^{\prime})}] \otimes \mathbb{F}_{6}[\mathbb{T}_{1}^{(k,A^{\prime\prime})}]$$

No. 26
$$\hat{\mathbb{Q}}_1^{(A',2)}(1,1)$$
 [M₁, B₃]

$$\hat{\mathbb{Z}}_{26} = \mathbb{X}_{11}[\mathbb{M}_1^{(a,A^{\prime\prime},1)}(1,1)] \otimes \mathbb{Y}_7[\mathbb{T}_1^{(b,A^{\prime\prime})}]$$

$$\hat{\mathbb{Z}}_{26}(\pmb{k}) = \mathbb{X}_{11}[\mathbb{M}_{1}^{(a,A'',1)}(1,1)] \otimes \mathbb{U}_{1}[\mathbb{Q}_{0}^{(s,A')}] \otimes \mathbb{F}_{6}[\mathbb{T}_{1}^{(k,A'')}]$$

No. 27
$$\hat{\mathbb{Q}}_1^{(A',2)}(1,-1)$$
 [M₁, B₃]

$$\hat{\mathbb{Z}}_{27} = \mathbb{X}_{13}[\mathbb{M}_{1}^{(a,A'',1)}(1,-1)] \otimes \mathbb{Y}_{7}[\mathbb{T}_{1}^{(b,A'')}]$$

$$\hat{\mathbb{Z}}_{27}(\textbf{\textit{k}}) = \mathbb{X}_{13}[\mathbb{M}_{1}^{(a,A'',1)}(1,-1)] \otimes \mathbb{U}_{1}[\mathbb{Q}_{0}^{(s,A')}] \otimes \mathbb{F}_{6}[\mathbb{T}_{1}^{(k,A'')}]$$

No. 28
$$\hat{\mathbb{G}}_2^{(A',1)}(1,-1)$$
 [M₁, B₃]

$$\hat{\mathbb{Z}}_{28} = -\mathbb{X}_{15}[\mathbb{M}_{3}^{(a,A^{\prime\prime},4)}(1,-1)] \otimes \mathbb{Y}_{7}[\mathbb{T}_{1}^{(b,A^{\prime\prime})}]$$

$$\hat{\mathbb{Z}}_{28}(\textbf{\textit{k}}) = -\mathbb{X}_{15}[\mathbb{M}_{3}^{(a,A'',4)}(1,-1)] \otimes \mathbb{U}_{1}[\mathbb{Q}_{0}^{(s,A')}] \otimes \mathbb{F}_{6}[\mathbb{T}_{1}^{(k,A'')}]$$

No. 29
$$\hat{\mathbb{G}}_2^{(A',2)}(1,-1)$$
 [M₁, B₃]

$$\hat{\mathbb{Z}}_{29} = -\mathbb{X}_{14}[\mathbb{M}_{3}^{(a,A'',1)}(1,-1)] \otimes \mathbb{Y}_{7}[\mathbb{T}_{1}^{(b,A'')}]$$

$$\hat{\mathbb{Z}}_{29}(\textbf{\textit{k}}) = -\mathbb{X}_{14}[\mathbb{M}_{3}^{(a,A^{\prime\prime},1)}(1,-1)] \otimes \mathbb{U}_{1}[\mathbb{Q}_{0}^{(s,A^{\prime})}] \otimes \mathbb{F}_{6}[\mathbb{T}_{1}^{(k,A^{\prime\prime})}]$$

No. 30
$$\hat{\mathbb{Q}}_{1}^{(A',1)}$$
 [M₁, B₃]

$$\hat{\mathbb{Z}}_{30} = -\mathbb{X}_{16}[\mathbb{M}_{1}^{(a,A'',2)}] \otimes \mathbb{Y}_{7}[\mathbb{T}_{1}^{(b,A'')}]$$

$$\hat{\mathbb{Z}}_{30}(\boldsymbol{k}) = -\mathbb{X}_{16}[\mathbb{M}_{1}^{(a,A^{\prime\prime},2)}] \otimes \mathbb{U}_{1}[\mathbb{Q}_{0}^{(s,A^{\prime})}] \otimes \mathbb{F}_{6}[\mathbb{T}_{1}^{(k,A^{\prime\prime})}]$$

No. 31
$$\hat{\mathbb{Q}}_0^{(A')}$$
 [M₁, B₄]

$$\hat{\mathbb{Z}}_{31} = \mathbb{X}_1[\mathbb{Q}_0^{(a,A')}] \otimes \mathbb{Y}_8[\mathbb{Q}_0^{(b,A')}]$$

$$\hat{\mathbb{Z}}_{31}(\mathbf{k}) = \mathbb{X}_1[\mathbb{Q}_0^{(a,A')}] \otimes \mathbb{U}_1[\mathbb{Q}_0^{(s,A')}] \otimes \mathbb{F}_7[\mathbb{Q}_0^{(k,A')}]$$

No. 32
$$\hat{\mathbb{Q}}_{2}^{(A',2)}$$
 [M₁, B₄]

$$\hat{\mathbb{Z}}_{32} = \mathbb{X}_2[\mathbb{Q}_2^{(a,A',2)}] \otimes \mathbb{Y}_8[\mathbb{Q}_0^{(b,A')}]$$

$$\hat{\mathbb{Z}}_{32}(\boldsymbol{k}) = \mathbb{X}_2[\mathbb{Q}_2^{(a,A',2)}] \otimes \mathbb{U}_1[\mathbb{Q}_0^{(s,A')}] \otimes \mathbb{F}_7[\mathbb{Q}_0^{(k,A')}]$$

No. 33
$$\hat{\mathbb{Q}}_0^{(A')}(1,1)$$
 [M₁, B₄]

$$\hat{\mathbb{Z}}_{33} = \mathbb{X}_3[\mathbb{Q}_0^{(a,A')}(1,1)] \otimes \mathbb{Y}_8[\mathbb{Q}_0^{(b,A')}]$$

$$\hat{\mathbb{Z}}_{33}(\mathbf{k}) = \mathbb{X}_3[\mathbb{Q}_0^{(a,A')}(1,1)] \otimes \mathbb{U}_1[\mathbb{Q}_0^{(s,A')}] \otimes \mathbb{F}_7[\mathbb{Q}_0^{(k,A')}]$$

No. 34
$$\hat{\mathbb{Q}}_2^{(A',3)}(1,-1)$$
 [M₁, B₄]

$$\hat{\mathbb{Z}}_{34} = \mathbb{X}_4[\mathbb{Q}_2^{(a,A',3)}(1,-1)] \otimes \mathbb{Y}_8[\mathbb{Q}_0^{(b,A')}]$$

$$\hat{\mathbb{Z}}_{34}(\pmb{k}) = \mathbb{X}_4[\mathbb{Q}_2^{(a,A',3)}(1,-1)] \otimes \mathbb{U}_1[\mathbb{Q}_0^{(s,A')}] \otimes \mathbb{F}_7[\mathbb{Q}_0^{(k,A')}]$$

No. 35
$$\hat{\mathbb{G}}_1^{(A')}(1,1)$$
 [M₁, B₄]

$$\hat{\mathbb{Z}}_{35} = \mathbb{X}_7[\mathbb{M}_1^{(a,A')}(1,1)] \otimes \mathbb{Y}_9[\mathbb{T}_0^{(b,A')}]$$

$$\hat{\mathbb{Z}}_{35}(\boldsymbol{k}) = \mathbb{X}_{7}[\mathbb{M}_{1}^{(a,A')}(1,1)] \otimes \mathbb{U}_{1}[\mathbb{Q}_{0}^{(s,A')}] \otimes \mathbb{F}_{8}[\mathbb{T}_{0}^{(k,A')}]$$

No. 36
$$\hat{\mathbb{G}}_1^{(A')}(1,-1)$$
 [M₁, B₄]

$$\hat{\mathbb{Z}}_{36} = \mathbb{X}_{8}[\mathbb{M}_{1}^{(a,A')}(1,-1)] \otimes \mathbb{Y}_{9}[\mathbb{T}_{0}^{(b,A')}]$$

$$\hat{\mathbb{Z}}_{36}(\boldsymbol{k}) = \mathbb{X}_{8}[\mathbb{M}_{1}^{(a,A')}(1,-1)] \otimes \mathbb{U}_{1}[\mathbb{Q}_{0}^{(s,A')}] \otimes \mathbb{F}_{8}[\mathbb{T}_{0}^{(k,A')}]$$

No. 37
$$\hat{\mathbb{G}}_3^{(A',1)}(1,-1)$$
 [M₁, B₄]

$$\hat{\mathbb{Z}}_{37} = \mathbb{X}_9[\mathbb{M}_3^{(a,A',1)}(1,-1)] \otimes \mathbb{Y}_9[\mathbb{T}_0^{(b,A')}]$$

$$\hat{\mathbb{Z}}_{37}(\pmb{k}) = \mathbb{X}_9[\mathbb{M}_3^{(a,A',1)}(1,-1)] \otimes \mathbb{U}_1[\mathbb{Q}_0^{(s,A')}] \otimes \mathbb{F}_8[\mathbb{T}_0^{(k,A')}]$$

No. 38
$$\hat{\mathbb{G}}_3^{(A',2)}(1,-1)$$
 [M₁, B₄]

$$\hat{\mathbb{Z}}_{38} = \mathbb{X}_{10}[\mathbb{M}_{3}^{(a,A',2)}(1,-1)] \otimes \mathbb{Y}_{9}[\mathbb{T}_{0}^{(b,A')}]$$

$$\hat{\mathbb{Z}}_{38}(\textbf{\textit{k}}) = \mathbb{X}_{10}[\mathbb{M}_{3}^{(a,A',2)}(1,-1)] \otimes \mathbb{U}_{1}[\mathbb{Q}_{0}^{(s,A')}] \otimes \mathbb{F}_{8}[\mathbb{T}_{0}^{(k,A')}]$$

No. 39
$$\hat{\mathbb{Q}}_0^{(A')}$$
 [M₁, B₅]

$$\hat{\mathbb{Z}}_{39} = \mathbb{X}_1[\mathbb{Q}_0^{(a,A')}] \otimes \mathbb{Y}_{10}[\mathbb{Q}_0^{(b,A')}]$$

$$\hat{\mathbb{Z}}_{39}(\boldsymbol{k}) = \mathbb{X}_1[\mathbb{Q}_0^{(a,A')}] \otimes \mathbb{U}_1[\mathbb{Q}_0^{(s,A')}] \otimes \mathbb{F}_9[\mathbb{Q}_0^{(k,A')}]$$

No. 40
$$\hat{\mathbb{Q}}_{2}^{(A',2)}$$
 [M₁, B₅]

$$\hat{\mathbb{Z}}_{40} = \mathbb{X}_2[\mathbb{Q}_2^{(a,A',2)}] \otimes \mathbb{Y}_{10}[\mathbb{Q}_0^{(b,A')}]$$

$$\hat{\mathbb{Z}}_{40}(\textbf{\textit{k}}) = \mathbb{X}_2[\mathbb{Q}_2^{(a,A',2)}] \otimes \mathbb{U}_1[\mathbb{Q}_0^{(s,A')}] \otimes \mathbb{F}_9[\mathbb{Q}_0^{(k,A')}]$$

No. 41
$$\hat{\mathbb{Q}}_1^{(A',1)}$$
 [M₁, B₅]

$$\hat{\mathbb{Z}}_{41} = \mathbb{X}_5[\mathbb{Q}_2^{(a,A^{\prime\prime},2)}] \otimes \mathbb{Y}_{11}[\mathbb{Q}_1^{(b,A^{\prime\prime})}]$$

$$\hat{\mathbb{Z}}_{41}(\pmb{k}) = \mathbb{X}_{5}[\mathbb{Q}_{2}^{(a,A'',2)}] \otimes \mathbb{U}_{1}[\mathbb{Q}_{0}^{(s,A')}] \otimes \mathbb{F}_{10}[\mathbb{Q}_{1}^{(k,A'')}]$$

No. 42
$$\hat{\mathbb{Q}}_0^{(A')}(1,1)$$
 [M₁, B₅]

$$\hat{\mathbb{Z}}_{42} = \mathbb{X}_{3}[\mathbb{Q}_{0}^{(a,A')}(1,1)] \otimes \mathbb{Y}_{10}[\mathbb{Q}_{0}^{(b,A')}]$$

$$\hat{\mathbb{Z}}_{42}(\boldsymbol{k}) = \mathbb{X}_{3}[\mathbb{Q}_{0}^{(a,A')}(1,1)] \otimes \mathbb{U}_{1}[\mathbb{Q}_{0}^{(s,A')}] \otimes \mathbb{F}_{9}[\mathbb{Q}_{0}^{(k,A')}]$$

No. 43
$$\hat{\mathbb{Q}}_2^{(A',3)}(1,-1)$$
 [M₁, B₅]

$$\hat{\mathbb{Z}}_{43} = \mathbb{X}_4[\mathbb{Q}_2^{(a,A',3)}(1,-1)] \otimes \mathbb{Y}_{10}[\mathbb{Q}_0^{(b,A')}]$$

$$\hat{\mathbb{Z}}_{43}(\pmb{k}) = \mathbb{X}_4[\mathbb{Q}_2^{(a,A',3)}(1,-1)] \otimes \mathbb{U}_1[\mathbb{Q}_0^{(s,A')}] \otimes \mathbb{F}_9[\mathbb{Q}_0^{(k,A')}]$$

No. 44
$$\hat{\mathbb{Q}}_1^{(A',2)}(1,-1)$$
 [M₁, B₅]

$$\hat{\mathbb{Z}}_{44} = \mathbb{X}_{6}[\mathbb{Q}_{2}^{(a,A^{\prime\prime},1)}(1,-1)] \otimes \mathbb{Y}_{11}[\mathbb{Q}_{1}^{(b,A^{\prime\prime})}]$$

$$\hat{\mathbb{Z}}_{44}(\textbf{\textit{k}}) = \mathbb{X}_{6}[\mathbb{Q}_{2}^{(a,A'',1)}(1,-1)] \otimes \mathbb{U}_{1}[\mathbb{Q}_{0}^{(s,A')}] \otimes \mathbb{F}_{10}[\mathbb{Q}_{1}^{(k,A'')}]$$

No. 45
$$\hat{\mathbb{G}}_1^{(A')}(1,1)$$
 [M₁, B₅]

$$\hat{\mathbb{Z}}_{45} = \mathbb{X}_{7}[\mathbb{M}_{1}^{(a,A')}(1,1)] \otimes \mathbb{Y}_{12}[\mathbb{T}_{0}^{(b,A')}]$$

$$\hat{\mathbb{Z}}_{45}(\mathbf{k}) = \mathbb{X}_7[\mathbb{M}_1^{(a,A')}(1,1)] \otimes \mathbb{U}_1[\mathbb{Q}_0^{(s,A')}] \otimes \mathbb{F}_{11}[\mathbb{T}_0^{(k,A')}]$$

No. 46
$$\hat{\mathbb{Q}}_1^{(A',1)}(1,1)$$
 [M₁, B₅]

$$\hat{\mathbb{Z}}_{46} = -\mathbb{X}_{12}[\mathbb{M}_{1}^{(a,A^{\prime\prime},2)}(1,1)] \otimes \mathbb{Y}_{13}[\mathbb{T}_{1}^{(b,A^{\prime\prime})}]$$

$$\hat{\mathbb{Z}}_{46}(\pmb{k}) = -\mathbb{X}_{12}[\mathbb{M}_{1}^{(a,A^{\prime\prime},2)}(1,1)] \otimes \mathbb{U}_{1}[\mathbb{Q}_{0}^{(s,A^{\prime})}] \otimes \mathbb{F}_{12}[\mathbb{T}_{1}^{(k,A^{\prime\prime})}]$$

No. 47
$$\hat{\mathbb{Q}}_1^{(A',2)}(1,1)$$
 [M₁, B₅]

$$\hat{\mathbb{Z}}_{47} = \mathbb{X}_{11}[\mathbb{M}_{1}^{(a,A^{\prime\prime},1)}(1,1)] \otimes \mathbb{Y}_{13}[\mathbb{T}_{1}^{(b,A^{\prime\prime})}]$$

$$\hat{\mathbb{Z}}_{47}(\pmb{k}) = \mathbb{X}_{11}[\mathbb{M}_{1}^{(a,A'',1)}(1,1)] \otimes \mathbb{U}_{1}[\mathbb{Q}_{0}^{(s,A')}] \otimes \mathbb{F}_{12}[\mathbb{T}_{1}^{(k,A'')}]$$

No. 48
$$\hat{\mathbb{G}}_{1}^{(A')}(1,-1)$$
 [M₁, B₅]

$$\hat{\mathbb{Z}}_{48} = \mathbb{X}_8[\mathbb{M}_1^{(a,A')}(1,-1)] \otimes \mathbb{Y}_{12}[\mathbb{T}_0^{(b,A')}]$$

$$\hat{\mathbb{Z}}_{48}(\boldsymbol{k}) = \mathbb{X}_{8}[\mathbb{M}_{1}^{(a,A')}(1,-1)] \otimes \mathbb{U}_{1}[\mathbb{Q}_{0}^{(s,A')}] \otimes \mathbb{F}_{11}[\mathbb{T}_{0}^{(k,A')}]$$

No. 49
$$\hat{\mathbb{Q}}_1^{(A',2)}(1,-1)$$
 [M₁, B₅]

$$\hat{\mathbb{Z}}_{49} = \mathbb{X}_{13}[\mathbb{M}_{1}^{(a,A^{\prime\prime},1)}(1,-1)] \otimes \mathbb{Y}_{13}[\mathbb{T}_{1}^{(b,A^{\prime\prime})}]$$

$$\hat{\mathbb{Z}}_{49}(\pmb{k}) = \mathbb{X}_{13}[\mathbb{M}_{1}^{(a,A'',1)}(1,-1)] \otimes \mathbb{U}_{1}[\mathbb{Q}_{0}^{(s,A')}] \otimes \mathbb{F}_{12}[\mathbb{T}_{1}^{(k,A'')}]$$

No. 50
$$\hat{\mathbb{G}}_3^{(A',1)}(1,-1)$$
 [M₁, B₅]

$$\hat{\mathbb{Z}}_{50} = \mathbb{X}_{9}[\mathbb{M}_{3}^{(a,A',1)}(1,-1)] \otimes \mathbb{Y}_{12}[\mathbb{T}_{0}^{(b,A')}]$$

$$\hat{\mathbb{Z}}_{50}(\textbf{k}) = \mathbb{X}_{9}[\mathbb{M}_{3}^{(a,A',1)}(1,-1)] \otimes \mathbb{U}_{1}[\mathbb{Q}_{0}^{(s,A')}] \otimes \mathbb{F}_{11}[\mathbb{T}_{0}^{(k,A')}]$$

No. 51
$$\hat{\mathbb{G}}_3^{(A',2)}(1,-1)$$
 [M₁, B₅]

$$\hat{\mathbb{Z}}_{51} = \mathbb{X}_{10}[\mathbb{M}_{3}^{(a,A',2)}(1,-1)] \otimes \mathbb{Y}_{12}[\mathbb{T}_{0}^{(b,A')}]$$

$$\hat{\mathbb{Z}}_{51}(\pmb{k}) = \mathbb{X}_{10}[\mathbb{M}_{3}^{(a,A',2)}(1,-1)] \otimes \mathbb{U}_{1}[\mathbb{Q}_{0}^{(s,A')}] \otimes \mathbb{F}_{11}[\mathbb{T}_{0}^{(k,A')}]$$

No. 52
$$\hat{\mathbb{G}}_2^{(A',1)}(1,-1)$$
 [M₁, B₅]

$$\hat{\mathbb{Z}}_{52} = -\mathbb{X}_{15}[\mathbb{M}_{3}^{(a,A^{\prime\prime},4)}(1,-1)] \otimes \mathbb{Y}_{13}[\mathbb{T}_{1}^{(b,A^{\prime\prime})}]$$

$$\hat{\mathbb{Z}}_{52}(\pmb{k}) = -\mathbb{X}_{15}[\mathbb{M}_{3}^{(a,A'',4)}(1,-1)] \otimes \mathbb{U}_{1}[\mathbb{Q}_{0}^{(s,A')}] \otimes \mathbb{F}_{12}[\mathbb{T}_{1}^{(k,A'')}]$$

No. 53
$$\hat{\mathbb{G}}_2^{(A',2)}(1,-1)$$
 [M₁, B₅]

$$\hat{\mathbb{Z}}_{53} = -\mathbb{X}_{14}[\mathbb{M}_{3}^{(a,A^{\prime\prime},1)}(1,-1)] \otimes \mathbb{Y}_{13}[\mathbb{T}_{1}^{(b,A^{\prime\prime})}]$$

$$\hat{\mathbb{Z}}_{53}(\pmb{k}) = -\mathbb{X}_{14}[\mathbb{M}_{3}^{(a,A'',1)}(1,-1)] \otimes \mathbb{U}_{1}[\mathbb{Q}_{0}^{(s,A')}] \otimes \mathbb{F}_{12}[\mathbb{T}_{1}^{(k,A'')}]$$

No. 54
$$\hat{\mathbb{Q}}_1^{(A',1)}$$
 [M₁, B₅]

$$\hat{\mathbb{Z}}_{54} = -\mathbb{X}_{16}[\mathbb{M}_{1}^{(a,A'',2)}] \otimes \mathbb{Y}_{13}[\mathbb{T}_{1}^{(b,A'')}]$$

$$\hat{\mathbb{Z}}_{54}(\boldsymbol{k}) = -\mathbb{X}_{16}[\mathbb{M}_1^{(a,A^{\prime\prime},2)}] \otimes \mathbb{U}_1[\mathbb{Q}_0^{(s,A^\prime)}] \otimes \mathbb{F}_{12}[\mathbb{T}_1^{(k,A^{\prime\prime})}]$$

No. 55
$$\hat{\mathbb{Q}}_0^{(A')}$$
 [M₁, B₆]

$$\hat{\mathbb{Z}}_{55} = \mathbb{X}_1[\mathbb{Q}_0^{(a,A')}] \otimes \mathbb{Y}_{14}[\mathbb{Q}_0^{(b,A')}]$$

$$\hat{\mathbb{Z}}_{55}(\textbf{\textit{k}}) = \mathbb{X}_1[\mathbb{Q}_0^{(a,A')}] \otimes \mathbb{U}_1[\mathbb{Q}_0^{(s,A')}] \otimes \mathbb{F}_{13}[\mathbb{Q}_0^{(k,A')}]$$

No. 56
$$\hat{\mathbb{Q}}_{2}^{(A',2)}$$
 [M₁, B₆]

$$\hat{\mathbb{Z}}_{56} = \mathbb{X}_2[\mathbb{Q}_2^{(a,A',2)}] \otimes \mathbb{Y}_{14}[\mathbb{Q}_0^{(b,A')}]$$

$$\hat{\mathbb{Z}}_{56}(\boldsymbol{k}) = \mathbb{X}_2[\mathbb{Q}_2^{(a,A',2)}] \otimes \mathbb{U}_1[\mathbb{Q}_0^{(s,A')}] \otimes \mathbb{F}_{13}[\mathbb{Q}_0^{(k,A')}]$$

No. 57
$$\hat{\mathbb{Q}}_0^{(A')}(1,1)$$
 [M₁, B₆]

$$\hat{\mathbb{Z}}_{57} = \mathbb{X}_{3}[\mathbb{Q}_{0}^{(a,A')}(1,1)] \otimes \mathbb{Y}_{14}[\mathbb{Q}_{0}^{(b,A')}]$$

$$\hat{\mathbb{Z}}_{57}(\pmb{k}) = \mathbb{X}_{3}[\mathbb{Q}_{0}^{(a,A')}(1,1)] \otimes \mathbb{U}_{1}[\mathbb{Q}_{0}^{(s,A')}] \otimes \mathbb{F}_{13}[\mathbb{Q}_{0}^{(k,A')}]$$

No. 58
$$\hat{\mathbb{Q}}_2^{(A',3)}(1,-1)$$
 [M₁, B₆]

$$\hat{\mathbb{Z}}_{58} = \mathbb{X}_4[\mathbb{Q}_2^{(a,A',3)}(1,-1)] \otimes \mathbb{Y}_{14}[\mathbb{Q}_0^{(b,A')}]$$

$$\hat{\mathbb{Z}}_{58}(\mathbf{k}) = \mathbb{X}_{4}[\mathbb{Q}_{2}^{(a,A',3)}(1,-1)] \otimes \mathbb{U}_{1}[\mathbb{Q}_{0}^{(s,A')}] \otimes \mathbb{F}_{13}[\mathbb{Q}_{0}^{(k,A')}]$$

No. 59
$$\hat{\mathbb{G}}_{1}^{(A')}(1,1)$$
 [M₁, B₆]

$$\hat{\mathbb{Z}}_{59} = \mathbb{X}_{7}[\mathbb{M}_{1}^{(a,A')}(1,1)] \otimes \mathbb{Y}_{15}[\mathbb{T}_{0}^{(b,A')}]$$

$$\hat{\mathbb{Z}}_{59}(\boldsymbol{k}) = \mathbb{X}_7[\mathbb{M}_1^{(a,A')}(1,1)] \otimes \mathbb{U}_1[\mathbb{Q}_0^{(s,A')}] \otimes \mathbb{F}_{14}[\mathbb{T}_0^{(k,A')}]$$

No. 60
$$\hat{\mathbb{G}}_1^{(A')}(1,-1)$$
 [M₁, B₆]

$$\hat{\mathbb{Z}}_{60} = \mathbb{X}_{8}[\mathbb{M}_{1}^{(a,A')}(1,-1)] \otimes \mathbb{Y}_{15}[\mathbb{T}_{0}^{(b,A')}]$$

$$\hat{\mathbb{Z}}_{60}(\pmb{k}) = \mathbb{X}_{8}[\mathbb{M}_{1}^{(a,A')}(1,-1)] \otimes \mathbb{U}_{1}[\mathbb{Q}_{0}^{(s,A')}] \otimes \mathbb{F}_{14}[\mathbb{T}_{0}^{(k,A')}]$$

No. 61
$$\hat{\mathbb{G}}_3^{(A',1)}(1,-1)$$
 [M₁, B₆]

$$\hat{\mathbb{Z}}_{61} = \mathbb{X}_{9}[\mathbb{M}_{3}^{(a,A',1)}(1,-1)] \otimes \mathbb{Y}_{15}[\mathbb{T}_{0}^{(b,A')}]$$

$$\hat{\mathbb{Z}}_{61}(\mathbf{k}) = \mathbb{X}_{9}[\mathbb{M}_{3}^{(a,A',1)}(1,-1)] \otimes \mathbb{U}_{1}[\mathbb{Q}_{0}^{(s,A')}] \otimes \mathbb{F}_{14}[\mathbb{T}_{0}^{(k,A')}]$$

No. 62
$$\hat{\mathbb{G}}_3^{(A',2)}(1,-1)$$
 [M₁, B₆]

$$\hat{\mathbb{Z}}_{62} = \mathbb{X}_{10}[\mathbb{M}_{3}^{(a,A',2)}(1,-1)] \otimes \mathbb{Y}_{15}[\mathbb{T}_{0}^{(b,A')}]$$

$$\hat{\mathbb{Z}}_{62}(\pmb{k}) = \mathbb{X}_{10}[\mathbb{M}_{3}^{(a,A',2)}(1,-1)] \otimes \mathbb{U}_{1}[\mathbb{Q}_{0}^{(s,A')}] \otimes \mathbb{F}_{14}[\mathbb{T}_{0}^{(k,A')}]$$

No. 63
$$\hat{\mathbb{Q}}_0^{(A')}$$
 [M₁, B₇]

$$\hat{\mathbb{Z}}_{63} = \mathbb{X}_1[\mathbb{Q}_0^{(a,A')}] \otimes \mathbb{Y}_{16}[\mathbb{Q}_0^{(b,A')}]$$

$$\hat{\mathbb{Z}}_{63}(\textbf{\textit{k}}) = \mathbb{X}_1[\mathbb{Q}_0^{(a,A')}] \otimes \mathbb{U}_1[\mathbb{Q}_0^{(s,A')}] \otimes \mathbb{F}_{15}[\mathbb{Q}_0^{(k,A')}]$$

No. 64
$$\hat{\mathbb{Q}}_{2}^{(A',2)}$$
 [M₁, B₇]

$$\hat{\mathbb{Z}}_{64} = \mathbb{X}_2[\mathbb{Q}_2^{(a,A',2)}] \otimes \mathbb{Y}_{16}[\mathbb{Q}_0^{(b,A')}]$$

$$\hat{\mathbb{Z}}_{64}(\boldsymbol{k}) = \mathbb{X}_2[\mathbb{Q}_2^{(a,A',2)}] \otimes \mathbb{U}_1[\mathbb{Q}_0^{(s,A')}] \otimes \mathbb{F}_{15}[\mathbb{Q}_0^{(k,A')}]$$

No. 65
$$\hat{\mathbb{Q}}_1^{(A',1)}$$
 [M₁, B₇]

$$\hat{\mathbb{Z}}_{65} = \mathbb{X}_{5}[\mathbb{Q}_{2}^{(a,A^{\prime\prime},2)}] \otimes \mathbb{Y}_{17}[\mathbb{Q}_{1}^{(b,A^{\prime\prime})}]$$

$$\hat{\mathbb{Z}}_{65}(\pmb{k}) = \mathbb{X}_{5}[\mathbb{Q}_{2}^{(a,A'',2)}] \otimes \mathbb{U}_{1}[\mathbb{Q}_{0}^{(s,A')}] \otimes \mathbb{F}_{16}[\mathbb{Q}_{1}^{(k,A'')}]$$

No. 66
$$\hat{\mathbb{Q}}_0^{(A')}(1,1)$$
 [M₁, B₇]

$$\hat{\mathbb{Z}}_{66} = \mathbb{X}_{3}[\mathbb{Q}_{0}^{(a,A')}(1,1)] \otimes \mathbb{Y}_{16}[\mathbb{Q}_{0}^{(b,A')}]$$

$$\hat{\mathbb{Z}}_{66}(\boldsymbol{k}) = \mathbb{X}_{3}[\mathbb{Q}_{0}^{(a,A')}(1,1)] \otimes \mathbb{U}_{1}[\mathbb{Q}_{0}^{(s,A')}] \otimes \mathbb{F}_{15}[\mathbb{Q}_{0}^{(k,A')}]$$

No. 67
$$\hat{\mathbb{Q}}_2^{(A',3)}(1,-1)$$
 [M₁, B₇]

$$\hat{\mathbb{Z}}_{67} = \mathbb{X}_{4}[\mathbb{Q}_{2}^{(a,A',3)}(1,-1)] \otimes \mathbb{Y}_{16}[\mathbb{Q}_{0}^{(b,A')}]$$

$$\hat{\mathbb{Z}}_{67}(\textbf{\textit{k}}) = \mathbb{X}_{4}[\mathbb{Q}_{2}^{(a,A',3)}(1,-1)] \otimes \mathbb{U}_{1}[\mathbb{Q}_{0}^{(s,A')}] \otimes \mathbb{F}_{15}[\mathbb{Q}_{0}^{(k,A')}]$$

No. 68
$$\hat{\mathbb{Q}}_1^{(A',2)}(1,-1)$$
 [M₁, B₇]

$$\hat{\mathbb{Z}}_{68} = \mathbb{X}_{6}[\mathbb{Q}_{2}^{(a,A^{\prime\prime},1)}(1,-1)] \otimes \mathbb{Y}_{17}[\mathbb{Q}_{1}^{(b,A^{\prime\prime})}]$$

$$\hat{\mathbb{Z}}_{68}(\mathbf{k}) = \mathbb{X}_{6}[\mathbb{Q}_{2}^{(a,A'',1)}(1,-1)] \otimes \mathbb{U}_{1}[\mathbb{Q}_{0}^{(s,A')}] \otimes \mathbb{F}_{16}[\mathbb{Q}_{1}^{(k,A'')}]$$

No. 69
$$\hat{\mathbb{G}}_1^{(A')}(1,1)$$
 [M₁, B₇]

$$\hat{\mathbb{Z}}_{69} = \mathbb{X}_{7}[\mathbb{M}_{1}^{(a,A')}(1,1)] \otimes \mathbb{Y}_{18}[\mathbb{T}_{0}^{(b,A')}]$$

$$\hat{\mathbb{Z}}_{69}(\boldsymbol{k}) = \mathbb{X}_7[\mathbb{M}_1^{(a,A')}(1,1)] \otimes \mathbb{U}_1[\mathbb{Q}_0^{(s,A')}] \otimes \mathbb{F}_{17}[\mathbb{T}_0^{(k,A')}]$$

No. 70
$$\hat{\mathbb{Q}}_1^{(A',1)}(1,1)$$
 [M₁, B₇]

$$\hat{\mathbb{Z}}_{70} = -\mathbb{X}_{12}[\mathbb{M}_{1}^{(a,A^{\prime\prime},2)}(1,1)] \otimes \mathbb{Y}_{19}[\mathbb{T}_{1}^{(b,A^{\prime\prime})}]$$

$$\hat{\mathbb{Z}}_{70}(\mathbf{k}) = -\mathbb{X}_{12}[\mathbb{M}_{1}^{(a,A'',2)}(1,1)] \otimes \mathbb{U}_{1}[\mathbb{Q}_{0}^{(s,A')}] \otimes \mathbb{F}_{18}[\mathbb{T}_{1}^{(k,A'')}]$$

No. 71
$$\hat{\mathbb{Q}}_1^{(A',2)}(1,1)$$
 [M₁, B₇]

$$\hat{\mathbb{Z}}_{71} = \mathbb{X}_{11}[\mathbb{M}_{1}^{(a,A^{\prime\prime},1)}(1,1)] \otimes \mathbb{Y}_{19}[\mathbb{T}_{1}^{(b,A^{\prime\prime})}]$$

$$\hat{\mathbb{Z}}_{71}(\textbf{\textit{k}}) = \mathbb{X}_{11}[\mathbb{M}_{1}^{(a,A'',1)}(1,1)] \otimes \mathbb{U}_{1}[\mathbb{Q}_{0}^{(s,A')}] \otimes \mathbb{F}_{18}[\mathbb{T}_{1}^{(k,A'')}]$$

No. 72
$$\hat{\mathbb{G}}_1^{(A')}(1,-1)$$
 [M₁, B₇]

$$\hat{\mathbb{Z}}_{72} = \mathbb{X}_8[\mathbb{M}_1^{(a,A')}(1,-1)] \otimes \mathbb{Y}_{18}[\mathbb{T}_0^{(b,A')}]$$

$$\hat{\mathbb{Z}}_{72}(\boldsymbol{k}) = \mathbb{X}_{8}[\mathbb{M}_{1}^{(a,A')}(1,-1)] \otimes \mathbb{U}_{1}[\mathbb{Q}_{0}^{(s,A')}] \otimes \mathbb{F}_{17}[\mathbb{T}_{0}^{(k,A')}]$$

No. 73
$$\hat{\mathbb{Q}}_1^{(A',2)}(1,-1)$$
 [M₁, B₇]

$$\hat{\mathbb{Z}}_{73} = \mathbb{X}_{13}[\mathbb{M}_{1}^{(a,A^{\prime\prime},1)}(1,-1)] \otimes \mathbb{Y}_{19}[\mathbb{T}_{1}^{(b,A^{\prime\prime})}]$$

$$\hat{\mathbb{Z}}_{73}(\textbf{\textit{k}}) = \mathbb{X}_{13}[\mathbb{M}_{1}^{(a,A'',1)}(1,-1)] \otimes \mathbb{U}_{1}[\mathbb{Q}_{0}^{(s,A')}] \otimes \mathbb{F}_{18}[\mathbb{T}_{1}^{(k,A'')}]$$

No. 74
$$\hat{\mathbb{G}}_3^{(A',1)}(1,-1)$$
 [M₁, B₇]

$$\hat{\mathbb{Z}}_{74} = \mathbb{X}_9[\mathbb{M}_3^{(a,A',1)}(1,-1)] \otimes \mathbb{Y}_{18}[\mathbb{T}_0^{(b,A')}]$$

$$\hat{\mathbb{Z}}_{74}(\pmb{k}) = \mathbb{X}_9[\mathbb{M}_3^{(a,A',1)}(1,-1)] \otimes \mathbb{U}_1[\mathbb{Q}_0^{(s,A')}] \otimes \mathbb{F}_{17}[\mathbb{T}_0^{(k,A')}]$$

No. 75
$$\hat{\mathbb{G}}_3^{(A',2)}(1,-1)$$
 [M₁, B₇]

$$\hat{\mathbb{Z}}_{75} = \mathbb{X}_{10}[\mathbb{M}_{3}^{(a,A',2)}(1,-1)] \otimes \mathbb{Y}_{18}[\mathbb{T}_{0}^{(b,A')}]$$

$$\hat{\mathbb{Z}}_{75}(\mathbf{k}) = \mathbb{X}_{10}[\mathbb{M}_{3}^{(a,A',2)}(1,-1)] \otimes \mathbb{U}_{1}[\mathbb{Q}_{0}^{(s,A')}] \otimes \mathbb{F}_{17}[\mathbb{T}_{0}^{(k,A')}]$$

No. 76
$$\hat{\mathbb{G}}_2^{(A',1)}(1,-1)$$
 [M₁, B₇]

$$\hat{\mathbb{Z}}_{76} = -\mathbb{X}_{15}[\mathbb{M}_{3}^{(a,A'',4)}(1,-1)] \otimes \mathbb{Y}_{19}[\mathbb{T}_{1}^{(b,A'')}]$$

$$\hat{\mathbb{Z}}_{76}(\pmb{k}) = -\mathbb{X}_{15}[\mathbb{M}_{3}^{(a,A'',4)}(1,-1)] \otimes \mathbb{U}_{1}[\mathbb{Q}_{0}^{(s,A')}] \otimes \mathbb{F}_{18}[\mathbb{T}_{1}^{(k,A'')}]$$

No. 77
$$\hat{\mathbb{G}}_2^{(A',2)}(1,-1)$$
 [M₁, B₇]

$$\hat{\mathbb{Z}}_{77} = -\mathbb{X}_{14}[\mathbb{M}_{3}^{(a,A'',1)}(1,-1)] \otimes \mathbb{Y}_{19}[\mathbb{T}_{1}^{(b,A'')}]$$

$$\hat{\mathbb{Z}}_{77}(\mathbf{k}) = -\mathbb{X}_{14}[\mathbb{M}_{3}^{(a,A'',1)}(1,-1)] \otimes \mathbb{U}_{1}[\mathbb{Q}_{0}^{(s,A')}] \otimes \mathbb{F}_{18}[\mathbb{T}_{1}^{(k,A'')}]$$

No. 78
$$\hat{\mathbb{Q}}_{1}^{(A',1)}$$
 [M₁, B₇]

$$\hat{\mathbb{Z}}_{78} = -\mathbb{X}_{16}[\mathbb{M}_{1}^{(a,A'',2)}] \otimes \mathbb{Y}_{19}[\mathbb{T}_{1}^{(b,A'')}]$$

$$\hat{\mathbb{Z}}_{78}(\mathbf{k}) = -\mathbb{X}_{16}[\mathbb{M}_{1}^{(a,A'',2)}] \otimes \mathbb{U}_{1}[\mathbb{Q}_{0}^{(s,A')}] \otimes \mathbb{F}_{18}[\mathbb{T}_{1}^{(k,A'')}]$$

Table 5: Atomic SAMB group.

group	bra	ket
M_1	$(p_x,\uparrow),(p_x,\downarrow),(p_y,\uparrow),(p_y,\downarrow)$	$(p_x,\uparrow),(p_x,\downarrow),(p_y,\uparrow),(p_y,\downarrow)$

Table 6: Atomic SAMB.

symbol	type	group	form
\mathbb{X}_1	$\mathbb{Q}_0^{(a,A')}$	M_1	$\begin{pmatrix} \frac{1}{2} & 0 & 0 & 0 \\ 0 & \frac{1}{2} & 0 & 0 \\ 0 & 0 & \frac{1}{2} & 0 \\ 0 & 0 & 0 & \frac{1}{2} \end{pmatrix}$
\mathbb{X}_2	$\mathbb{Q}_2^{(a,A',2)}$	M_1	$\begin{pmatrix} \frac{1}{2} & 0 & 0 & 0\\ 0 & \frac{1}{2} & 0 & 0\\ 0 & 0 & -\frac{1}{2} & 0\\ 0 & 0 & 0 & -\frac{1}{2} \end{pmatrix}$
\mathbb{X}_3	$\mathbb{Q}_0^{(a,A')}(1,1)$	M_1	$\begin{pmatrix} 0 & 0 & 0 & -\frac{1}{2} \\ 0 & 0 & -\frac{i}{2} & 0 \\ 0 & 0 & 0 & \frac{i}{2} \\ \frac{i}{2} & 0 & 0 & 0 \\ 0 & -\frac{i}{2} & 0 & 0 \end{pmatrix}$
\mathbb{X}_4	$\mathbb{Q}_{2}^{(a,A',3)}(1,-1)$	M_1	$\begin{pmatrix} 0 & 0 & 0 & -\frac{i}{2} \\ 0 & 0 & -\frac{i}{2} & 0 \\ 0 & \frac{i}{2} & 0 & 0 \\ \frac{i}{2} & 0 & 0 & 0 \end{pmatrix}$
\mathbb{X}_{5}	$\mathbb{Q}_2^{(a,A^{\prime\prime},2)}$	M_1	$\begin{pmatrix} 0 & 0 & \frac{1}{2} & 0 \\ 0 & 0 & 0 & \frac{1}{2} \\ \frac{1}{2} & 0 & 0 & 0 \\ 0 & \frac{1}{2} & 0 & 0 \end{pmatrix}$
\mathbb{X}_6	$\mathbb{Q}_2^{(a,A'',1)}(1,-1)$	M_1	$\begin{pmatrix} 0 & 0 & 0 & -\frac{1}{2} \\ 0 & 0 & \frac{1}{2} & 0 \\ 0 & \frac{1}{2} & 0 & 0 \\ -\frac{1}{2} & 0 & 0 & 0 \end{pmatrix}$

 $continued\ \dots$

Table 6

		I	
symbol	type	group	form
\mathbb{X}_7	$\mathbb{M}_{1}^{(a,A')}(1,1)$	M_1	$\begin{pmatrix} 0 & \frac{\sqrt{19}i}{19} & 0 & \frac{3\sqrt{19}}{38} \\ -\frac{\sqrt{19}i}{19} & 0 & \frac{3\sqrt{19}}{38} & 0 \\ 0 & \frac{3\sqrt{19}}{38} & 0 & -\frac{2\sqrt{19}i}{19} \\ \frac{3\sqrt{19}}{38} & 0 & \frac{2\sqrt{19}i}{19} & 0 \end{pmatrix}$
\mathbb{X}_8	$\mathbb{M}_1^{(a,A')}(1,-1)$	M_1	$\begin{bmatrix} 0 & -\frac{i\sqrt{3}8i}{76} & 0 & -\frac{\sqrt{3}8}{76} \\ \frac{7\sqrt{3}8i}{76} & 0 & -\frac{\sqrt{3}8}{76} & 0 \\ 0 & -\frac{\sqrt{3}8}{76} & 0 & -\frac{5\sqrt{3}8i}{76} \\ -\frac{\sqrt{3}8}{76} & 0 & \frac{5\sqrt{3}8i}{76} & 0 \end{bmatrix}$
\mathbb{X}_9	$\mathbb{M}_{3}^{(a,A',1)}(1,-1)$	M_1	$ \left(\begin{array}{cccc} 0 & 0 & \frac{1}{2} & 0 \\ 0 & 0 & 0 & -\frac{1}{2} \\ \frac{1}{2} & 0 & 0 & 0 \end{array} \right) $
\mathbb{X}_{10}	$\mathbb{M}_{3}^{(a,A',2)}(1,-1)$	M_1	$ \begin{pmatrix} 0 & \frac{1}{4} & 0 & -\frac{1}{4} \\ -\frac{\sqrt{2}i}{4} & 0 & -\frac{\sqrt{2}}{4} & 0 \\ 0 & -\frac{\sqrt{2}}{4} & 0 & -\frac{\sqrt{2}i}{4} \\ -\frac{\sqrt{2}}{4} & 0 & \frac{\sqrt{2}i}{4} & 0 \end{pmatrix} $
\mathbb{X}_{11}	$\mathbb{M}_{1}^{(a,A'',1)}(1,1)$	M_1	$\begin{bmatrix} 0 & -\frac{3\sqrt{19}i}{38} & 0 & -\frac{\sqrt{19}}{19} \\ \frac{3\sqrt{19}i}{3} & 0 & -\frac{\sqrt{19}}{19} & 0 \end{bmatrix}$
\mathbb{X}_{12}	$\mathbb{M}_{1}^{(a,A'',2)}(1,1)$	M_1	$\begin{pmatrix} -\frac{1}{2} & 0 & 0 & 0 \\ 0 & \frac{1}{2} & 0 & 0 \\ 0 & 0 & -\frac{1}{2} & 0 \\ 0 & 0 & 0 & \frac{1}{2} \end{pmatrix}$
\mathbb{X}_{13}	$\mathbb{M}_{1}^{(a,A'',1)}(1,-1)$	M_1	$ \begin{pmatrix} 0 & \frac{5\sqrt{38}}{76} & 0 & \frac{\sqrt{38i}}{76} \\ \frac{5\sqrt{38}}{76} & 0 & -\frac{\sqrt{38i}}{76} & 0 \\ 0 & \frac{\sqrt{38i}}{76} & 0 & \frac{7\sqrt{38}}{76} \\ -\frac{\sqrt{38i}}{76} & 0 & \frac{7\sqrt{38}}{76} & 0 \end{pmatrix} $
\mathbb{X}_{14}	$\mathbb{M}_{3}^{(a,A'',1)}(1,-1)$	$ m M_1$	$\begin{pmatrix} 0 & \frac{\sqrt{2}}{4} & 0 & \frac{\sqrt{2}i}{4} \\ \frac{\sqrt{2}}{4} & 0 & -\frac{\sqrt{2}i}{4} & 0 \\ 0 & \frac{\sqrt{2}i}{4} & 0 & -\frac{\sqrt{2}}{4} \\ -\frac{\sqrt{2}i}{4} & 0 & -\frac{\sqrt{2}}{4} & 0 \end{pmatrix}$

 $continued \dots$

Table 6

symbol	type	group	form
\mathbb{X}_{15}	$\mathbb{M}_{3}^{(a,A^{\prime\prime},4)}(1,-1)$	M_1	$\begin{pmatrix} \frac{1}{2} & 0 & 0 & 0\\ 0 & -\frac{1}{2} & 0 & 0\\ 0 & 0 & -\frac{1}{2} & 0\\ 0 & 0 & 0 & \frac{1}{2} \end{pmatrix}$
X ₁₆	$\mathbb{M}_{1}^{(a,A^{\prime\prime},2)}$	$ m M_1$	$ \begin{pmatrix} 0 & 0 & -\frac{i}{2} & 0 \\ 0 & 0 & 0 & -\frac{i}{2} \\ \frac{i}{2} & 0 & 0 & 0 \\ 0 & \frac{i}{2} & 0 & 0 \end{pmatrix} $

Table 7: Cluster SAMB.

symbol	type	cluster	form
\mathbb{Y}_1	$\mathbb{Q}_0^{(s,A')}$	S_1	(1)
\mathbb{Y}_2	$\mathbb{Q}_0^{(b,A')}$	B_1	(1)
\mathbb{Y}_3	$\mathbb{T}^{(b,A')}$	B_1	(i)
\mathbb{Y}_4	$\mathbb{Q}_0^{(b,A')}$	B_2	(1)
\mathbb{Y}_5	$\mathbb{T}_{0}^{(b,A')}$	B_2	(i)
\mathbb{Y}_6	$\mathbb{Q}_0^{(b,A')}$	B_3	(1)
\mathbb{Y}_7	$\mathbb{T}_1^{(b,A^{\prime\prime})}$	B_3	(i)
\mathbb{Y}_8	$\mathbb{Q}_0^{(b,A')}$	B_4	(1)
\mathbb{Y}_9	$\mathbb{T}_0^{(b,A')}$	B_4	(i)
\mathbb{Y}_{10}	$\mathbb{Q}_0^{(b,A')}$	B_5	$\begin{pmatrix} \frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} \end{pmatrix} \\ \begin{pmatrix} \frac{\sqrt{2}}{2} & -\frac{\sqrt{2}}{2} \\ \frac{\sqrt{2}i}{2} & \frac{\sqrt{2}i}{2} \end{pmatrix}$
\mathbb{Y}_{11}	$\mathbb{Q}_{1}^{(b,A'')}$ $\mathbb{T}_{0}^{(b,A')}$	B_5	$\begin{pmatrix} \sqrt{2} \\ \frac{2}{2} \\ - \end{pmatrix}$
\mathbb{Y}_{12}	$\mathbb{T}_0^{(b,A')}$	B_5	$\left(\begin{array}{ccc} \frac{\sqrt{2}i}{2} & \frac{\sqrt{2}i}{2} \end{array}\right)$
\mathbb{Y}_{13}	$\mathbb{T}_{1}^{(b,A^{\prime\prime})}$	B_5	$\begin{pmatrix} 2 & 2 \\ \sqrt{2}i & -\frac{\sqrt{2}i}{2} \end{pmatrix}$
\mathbb{Y}_{14}	$\mathbb{Q}_0^{(b,A')}$	B ₆	(1)

 $continued\ \dots$

Table 7

symbol	type	cluster	form
\mathbb{Y}_{15}	$\mathbb{T}_0^{(b,A')}$	В6	(i)
\mathbb{Y}_{16}	$\mathbb{Q}_0^{(b,A')}$	B_{7}	$\begin{pmatrix} \sqrt{2} & \sqrt{2} \\ 2 & 2 \end{pmatrix}$
\mathbb{Y}_{17}	$\mathbb{Q}_1^{(b,A^{\prime\prime})}$	B_{7}	$\left(\begin{array}{cc} \sqrt{2} & -\sqrt{2} \\ 2 & \end{array}\right)$
\mathbb{Y}_{18}	$\mathbb{T}_0^{(b,A')}$ $\mathbb{T}_1^{(b,A'')}$	B_{7}	$\left(\begin{array}{cc} \sqrt{2}i & \sqrt{2}i \\ 2 & 2 \end{array}\right)$
\mathbb{Y}_{19}	$\mathbb{T}_1^{(b,A^{\prime\prime})}$	B_{7}	$\left(\begin{array}{cc} \sqrt{2}i & -\sqrt{2}i \\ 2 & -1\end{array}\right)$

Table 8: Uniform SAMB.

symbol	type	cluster	form
\mathbb{U}_1	$\mathbb{Q}_0^{(s,A')}$	S_1	(1)

Table 9: Structure SAMB.

symbol	type	cluster	form
\mathbb{F}_1	$\mathbb{Q}_0^{(k,A')}$	B_1	$\sqrt{2}c_{001}$
\mathbb{F}_2	$\mathbb{T}_{0}^{(k,A')}$	B_1	$\sqrt{2}s_{001}$
\mathbb{F}_3	$\mathbb{Q}_0^{(k,A')}$	B_2	$\sqrt{2}c_{002}$
\mathbb{F}_4	$\mathbb{T}^{(k,A')}$	B_2	$\sqrt{2}s_{002}$
\mathbb{F}_5	$\mathbb{Q}_0^{(k,A')}$	B_3	$\sqrt{2}c_{003}$
\mathbb{F}_6	$\mathbb{T}^{(k,A^{\prime\prime})}$	B_3	$\sqrt{2}s_{003}$
\mathbb{F}_7	$\mathbb{Q}_0^{(k,A')}$	B_4	$\sqrt{2}c_{004}$
\mathbb{F}_8	$\mathbb{T}^{(k,A')}$	B_4	$\sqrt{2}s_{004}$
\mathbb{F}_9	$\mathbb{Q}_0^{(k,A')}$	B_{5}	$c_{005} + c_{006}$
\mathbb{F}_{10}	$\mathbb{Q}_{1}^{(k,A^{\prime\prime})}$	B_5	$c_{005} - c_{006}$

 $continued \dots$

Table 9

symbol	type	cluster	form
\mathbb{F}_{11}	$\mathbb{T}_0^{(k,A')}$	B_5	$s_{005} + s_{006}$
\mathbb{F}_{12}	$\mathbb{T}_1^{(k,A^{\prime\prime})}$	B_5	$s_{005} - s_{006}$
\mathbb{F}_{13}	$\mathbb{Q}_0^{(k,A')}$	B_6	$\sqrt{2}c_{007}$
\mathbb{F}_{14}	$\mathbb{T}_0^{(k,A')}$	B_6	$\sqrt{2}s_{007}$
\mathbb{F}_{15}	$\mathbb{Q}_0^{(k,A')}$	B_{7}	$c_{008} + c_{009}$
\mathbb{F}_{16}	$\mathbb{Q}_1^{(k,A^{\prime\prime})}$	B_{7}	$c_{008} - c_{009}$
\mathbb{F}_{17}	$\mathbb{T}_0^{(k,A')}$	B_{7}	$s_{008} + s_{009}$
\mathbb{F}_{18}	$\mathbb{T}_1^{(k,A^{\prime\prime})}$	B_{7}	$s_{008} - s_{009}$

Table 10: Polar harmonics.

No.	symbol	rank	irrep.	mul.	comp.	form
1	$\mathbb{Q}_0^{(A')}$	0	A'	-	_	1
2	$\mathbb{Q}_1^{(A^{\prime\prime})}$	1	$A^{\prime\prime}$	_	_	y
3	$\mathbb{Q}_2^{(A^{\prime\prime},1)}$	2	$A^{\prime\prime}$	1	_	$\sqrt{3}yz$
4	$\mathbb{Q}_2^{(A^{\prime\prime},2)}$	2	$A^{\prime\prime}$	2	_	$\frac{\sqrt{3}xy}{\sqrt{3}(x-y)(x+y)}$
5	$\mathbb{Q}_2^{(A',2)}$	2	A'	2	_	$\frac{\sqrt{3}(x-y)(x+y)}{2}$
6	$\mathbb{Q}_2^{(A',3)}$	2	A'	3	_	$\sqrt{3}xz$

Table 11: Axial harmonics.

No.	symbol	rank	irrep.	mul.	comp.	form
1	$\mathbb{G}_1^{(A'',1)}$	1	$A^{\prime\prime}$	1	_	X

 $continued\ \dots$

Table 11

No.	symbol	rank	irrep.	mul.	comp.	form
2	$\mathbb{G}_1^{(A^{\prime\prime},2)}$	1	$A^{\prime\prime}$	2	_	Z
3	$\mathbb{G}_1^{(A')}$	1	A'	_	_	Y
4	$\mathbb{G}_3^{(A'',1)}$	3	$A^{\prime\prime}$	1	_	$\frac{X(2X^2-3Y^2-3Z^2)}{2}$
5	$\mathbb{G}_3^{(A^{\prime\prime},4)}$	3	$A^{\prime\prime}$	4	_	$\frac{\sqrt{15}Z(X-Y)(X+Y)}{2}$
6	$\mathbb{G}_3^{(A',1)}$	3	A'	1	_	$\sqrt{15}XYZ$
7	$\mathbb{G}_3^{(A',2)}$	3	A'	2	_	$-\frac{Y(3X^2-2Y^2+3Z^2)}{2}$

• Group info.: Generator = $\{m_{010}|0\}$

Table 12: Conjugacy class (point-group part).

rep. SO	symmetry operations
{1 0}	{1 0}
$\{m_{010} 0\}$	$\{m_{010} 0\}$

Table 13: Symmetry operations.

No.	SO	No.	SO	No.	SO	No.	SO	No.	SO
1	$\{1 0\}$	2	$\{m_{010} 0\}$						

Table 14: Character table (point-group part).

	1	m_{010}
A'	1	1
$A^{\prime\prime}$	1	-1

Table 15: Parity conversion.

\leftrightarrow
''(A')

Table 16: Symmetric product, $[\Gamma \otimes \Gamma']_+$.

	A'	$A^{\prime\prime}$
A'	A'	$A^{\prime\prime}$
$A^{\prime\prime}$		A'

Table 17: Anti-symmetric product, $[\Gamma \otimes \Gamma]_{-}$.

A'	$A^{\prime\prime}$
_	_

Table 18: Virtual-cluster sites.

No.	р	ositi	on	No.	p	ositio	n
1	(0	1	0)	2	(0	-1	0)

Table 19: Virtual-cluster basis.

symbol	1	2
$\mathbb{Q}_0^{(A')}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{2}}{2}$
$\mathbb{Q}_1^{(A^{\prime\prime})}$	$\frac{\sqrt{2}}{2}$	$-\frac{\sqrt{2}}{2}$