Scientific Reading and Presentation

III. Human Genome Project 魏桐 10/16

Human genome

The history of Universe

https://www.open.edu/openlearn/science-maths-technology/science/physics-and-astronomy/the-big-bang

The evolution of life

Ancient hunter-gatherer life

The dawn of agriculture

The origin of agriculture

D'après J. Diamond et al. (2003) "Farmers and Their Languages: The First Expansions", Science

Aristotle (384-322 BC)

Aristotle (384-322 BC) Ancient Greek Philosopher

Aristotle's Scala naturae (highest to lowest)

Group	Examples (given by Aristotle)	Blood	Legs	Souls (Rational, Sensitive, Vegetative)	Qualities (Hot–Cold, Wet–Dry)
Man	Man	with blood	2 legs	R, S, V	Hot, Wet
Live-bearing tetrapods	Cat, hare	with blood	4 legs	S, V	Hot, Wet
Cetaceans	Dolphin, whale	with blood	none	S, V	Hot, Wet
Birds	Bee-eater, nightjar	with blood	2 legs	S, V	Hot, Wet, except Dry eggs
Egg-laying tetrapods	Chameleon, crocodile	with blood	4 legs	S, V	Cold, Wet except scales, eggs
Snakes	Water snake, Ottoman viper	with blood	none	S, V	Cold, Wet except scales, eggs
Egg-laying fishes	Sea bass, parrotfish	with blood	none	S, V	Cold, Wet, including eggs
(Among the egg-laying fishes): placental selachians	Shark, skate	with blood	none	S, V	Cold, Wet, but placenta like tetrapods
Crustaceans	Shrimp, crab	without	many legs	S, V	Cold, Wet except shell
Cephalopods	Squid, octopus	without	tentacles	S, V	Cold, Wet
Hard-shelled animals	Cockle, trumpet snail	without	none	S, V	Cold, Dry (mineral shell)
Larva-bearing insects	Ant, cicada	without	6 legs	S, V	Cold, Dry
Spontaneously-generating	Sponges, worms	without	none	S, V	Cold, Wet or Dry, from earth
Plants	Fig	without	none	V	Cold, Dry
Minerals	Iron	without	none	none	Cold, Dry

Aristotle (384-322 BC)

Aristotle's "Historia Animalium" ~350 BC

Leonardo Da Vinci (1452-1519)

Da Vinci (1452-1519) Italian Polymath

Charles Robert Darwin (1809-1882)

Darwin (1809-1882) English naturalist

Erasmus Darwin (1731-1802) English physician

en.wikipedia.org

Charles Robert Darwin (1809-1882)

Voyage on the HMS Beagle (1831-1836)

en.wikipedia.org

Charles Robert Darwin (1809-1882)

The Origin of Species (1859)

en.wikipedia.org

Darwin's tree of life

The Letter A & B. cains

Fix of whiten, C + B. The

frient prediction, B & D

rather greater historitan

Then former tond he

fromed. - King whiten

Gregor Johann Mendel (1822-1884)

Mendel (1809-1882) Austrian Abbot

Pea plant experiment from 1856-1863

Gregor Johann Mendel (1822-1884)

Pea plant experiment from 1856-1863

Mendel's law of inheritance

- The law of segregation
- The law of independent assortment
- The law of dominance

Friedrich Miescher (1844-1895)

Miescher (1844-1895) Swiss Physician

- Discovered DNA in 1869
- Experiment
 - Collected white blood cells
 - Lysed cells and isolated nuclei
 - Found a substance he called nuclein, which was presented in every tested cell type and high in phosphorus

Albrecht Kossel (1853-1927)

Kossel (1853-1927) German biochemist

 Isolated and described the five organic compounds that are present in nucleic acid: adenine, cytosine, guanine, thymine, and uracil.

Nobel Prize for Physiology or Medicine in 1910

Avery-Macleod-McCarty experiment

- **smooth (S)** bacteria strain pathogenic
- rough (R) bacteria strain non-pathogenic

Watson & Crick

Watson (center), Crick (right) met McCarty (left)

Photograph 51, Maurice Wilkins showed

https://www.yourgenome.org/stories/unravelling-the-double-helix

Watson & Crick – DNA double helix

Watson, Crick & Wilkins

Nobel Prize for Physiology or Medicine in 1962

Frederick Sanger (1918-2013)

Sanger (1844-1895) British Biochemist

Sanger chain-termination sequencing in 1977 Nobel Prize in Chemistry in 1980

Sanger sequencing: chemicals

• In 1986, Leroy Hood replaced radioactive labels with fluorescent labels in primers, which was commercialized in 1987 by Applied Biosystems (Nature, 321: 674–679).

 James Prober at DuPont labeled the terminators and improved dye sets, which were sold to Applied Biosystems later (Science, 238: 336–341).

Sanger sequencing: gel system

• In 1990, Harold Swerdlow used capillaries to separate DNA (J Chromatogr, 516: 61–67), which was established in analytical chemistry in the late 1980s.

• In 1993, B.L. Karger et. al. used a low viscosity non-cross-linked separation matrix in capillaries (Anal Chem, 65: 2851–2858).

The 1st automated sequencer

Model 370A launched in 1986 by Applied Biosystems

Model 3700 launched in 1998 by PE Biosystems

Section II Human Genome Project

Human Genome Project (1990-2003)

Nature (2003) 422:835-847

- A map of haplotype blocks and the tag SNPs that identify the haplotypes
- Enable to find genes and genetic variations that affect health and disease
- Associate a phenotype from the 10 million SNPs to roughly 500,000 tag SNPs

Human ENCODE project

- There have been genetic, evolutionary and biochemical approaches.
- The <u>ENCyclopedia Of DNA</u> <u>Elements</u> (ENCODE) launched by the US National Human Genome Research Institute (NHGRI) in September 2003
- ENCODE aims to identify all functional, in a sense of genetic, evolutionary, or biochemical, elements in the human genome.

ENCODE findings

- The human genome is pervasively transcribed.
- Numerous previously unrecognized transcription start sites have been identified.
- DNA replication timing is correlated with chromatin structure.
- A total of 5% of the bases in the genome are under evolutionary constraint in mammals.
- Different functional elements vary greatly in their sequence variability across the human population.

Roadmap Epigenomics Project

 The NIH Roadmap **Epigenomics Mapping** Consortium was launched with the goal of producing a public resource of human epigenomic data to catalyze basic biology and disease-oriented research.

BGI华大 Genotype-Tissue Expression Project (GTEx)

- The aim is to increase our understanding of how changes in our genes contribute to common human diseases, in order to improve health care for future generations.
- On Sept. 11, 2020, the final set of analyses from the GTEx Consortium were published in Science.

Human Cell Atlas Project

- To create cellular reference maps with the position, function and characteristics of every cell type in the body.
- Co-founded in 2016 by Dr Aviv Regev at the Broad Institute of MIT and Harvard (USA), and Dr Sarah Teichmann at the Wellcome Sanger Institute (UK). Now the global initiative has grown to encompass more than 2,200 members from over 75 countries around the world.

Clinical: GRAIL

"One test-many cancers" approach

- The mission of the company is to detect cancer early, when it can be cured.
- Galleri[™], a simple blood test that can detect over 50 types of cancers.

Human genomics nowadays

Tempo-spatial omics

Large population

Genome editing

Questions?

OMICS FOR ALL 基因科技造福人类

