Biçimsel Diller ve Soyut Makineler Matematiksel Temeller

Hafta 1

Mathematical Preliminaries

- · Kümeler
- Fonksiyonlar
- Bağıntılar
- · Graflar

KÜMELER

Küme:Ortak özellikli elemanlar topluluğu

$$A = \{1, 2, 3\}$$

$$B = \{train, bus, bicycle, airplane\}$$

Burada

$$1 \in A$$

$$ship \notin B$$

Küme Gösterimleri

$$C = \{a, b, c, d, e, f, g, h, i, j, k\}$$

$$C = \{a, b, ..., k\} \longrightarrow Sonlu (finite)set$$

$$S = \{2, 4, 6, ...\} \longrightarrow Sonsuz (infinite) s$$

$$S = \{j : j > 0, ve j = 2k, k > 0\}$$

$$A = \{1, 2, 3, 4, 5\}$$

Evrensel Küme: olası bütün elemanlar

Küme işlemleri

$$A = \{1, 2, 3\}$$

$$B = \{ 2, 3, 4, 5 \}$$

· Birleşim (Union)

Kesişim (Intersection)

$$A \cap B = \{2, 3\}$$

Fark (Difference)

$$A - B = \{ 1 \}$$

$$B - A = \{4, 5\}$$

Venn şeması

Tümleyen

Evrensel Küme= {1, ..., 7}

$$A = \{1, 2, 3\}$$
 $\overline{A} = \{4, 5, 6, 7\}$

{ cift tamsayılar} = { tek tamsayılar}

tamsayılar

DeMorgan Kuralları

$$\overline{A \cup B} = \overline{A \cap B}$$

$$\overline{A \cap B} = \overline{A \cup B}$$

Boş küme:

Ø

$$\emptyset = \{\}$$

$$SUØ = S$$

$$S \cap \emptyset = \emptyset$$

$$S - \emptyset = S$$

$$\emptyset - S = \emptyset$$

Alt küme

$$A = \{ 1, 2, 3 \}$$

$$B = \{1, 2, 3, 4, 5\}$$

$$A \subseteq B$$

Kapsama:

$$A \subset B$$

Ayrık Kümeler

$$A = \{1, 2, 3\}$$
 $B = \{5, 6\}$

$$A \cap B = \emptyset$$

Eleman sayısı

$$A = \{ 12, 15, 17 \}$$

$$|A| = 3$$

Alt kümeler

$$S = \{ a, b, c \}$$

$$2^{5} = { \emptyset, {a}, {b}, {c}, {a, b}, {a, c}, {b, c}, {a, b, c} }$$

Alt Küme sayısı:
$$|2^{5}| = 2^{|5|}$$
 (8 = 2³)

Kartezyen Çarpım

$$A = \{ 2, 4 \}$$

$$B = \{ 2, 3, 5 \}$$

$$A \times B = \{ (2, 2), (2, 3), (2, 5), (4, 2), (4, 3), (4, 5) \}$$

$$|A \times B| = |A| |B|$$

Fonksiyon

Bağıntılar

$$R = \{(x_1, y_1), (x_2, y_2), (x_3, y_3), ...\}$$

$$x_i R y_i$$

e. q. if
$$R = '>': 2 > 1, 3 > 2, 3 > 1$$

Eşdeğer bağıntılar

- · Reflexive: x R x
- · Symmetric: xRy yRx
- Transitive: x R y and $y R z \longrightarrow x R z$

- x = x
- x = y and y = z $\Rightarrow x = z$

GRAFLAR

Yönlü graf

Düğümler (Vertices)

$$V = \{ a, b, c, d, e \}$$

Kenarlar

$$E = \{ (a,b), (b,c), (b,e), (c,a), (c,e), (d,c), (e,b), (e,d) \}$$

Etiketli graflar

Yol

Yol (e, d), (d, c), (c, a)

Path

Path: Hiçbir düğümün tekrarlanmadığı alternatif Yol Simple path:hiçbir düğüm ve kenarın tekrarlanmadığı paralel kenarların bulunmadığı yol

Döngü (Cycle)

Cycle: Bir düğümden çıkıp tekrar kendine dönen kenar Simple cycle: sadece taban düğüm tekrarlanır

Euler Halkası

Tüm kenarlardan sadece birkez geçilerek oluşan Başlangıç ve bitiş düğümleri farklı olan Yola Euler yolu denir. Eğer başlangıç be bitiş düğümü farklı ise buna Euler Halkası denir.

Hamiltonian Cycle

Bütün düğümleri içeren basit bir döngü

İçerik

Otomatlar Düzgün İfadeler (Regüler Expression) DFA-NFA-NFA-E ve Dönüşümler, Gramer(Tür-0, Tür-1, Tür-2, Tür-3) PDA ve Dönüşümler Turing Makineleri Parsing (Ayrıştırma) LR1