Lecture 16 Convexity

Note by Samion Suwito on 3/13/25

Convex Optimisation

Optimisation problem of form:

$$egin{aligned} \min_x f_0(x) \ ext{s.t.} \ f_i(x) \leq 0 \ \ orall i = 1 \dots m \end{aligned}$$

Where f_i s are convex functions

Convexity

A geometric concept

Definition: A convex set $C\subset\mathbb{R}^n$ is one of the property that if $x,y\in C$ then $\theta x+(1-\theta)y\in C\ \ \forall \theta\in[0,1]$

Any two points can be joined by a line segment and will be in C Here are a few examples of non-convex sets.

Connection between convexity & linear algebra is very deep (duality). Duality relates one problem to another.

Preview of Duality

$$\min_{x \in C} \|x - x_0\|_2$$

Where $x_0 \not\in C$ Find closest $x \in C$ to x_0 We can reform this problem as

$$\max \operatorname{dist}(x_0, H)$$

where H is a hyperplane separating x_0 from C.

Duality is important as it certifies optimality!

For any $x \in C$ and any H that separates x_0 from C we get:

$$\|x-x_0\| \geq \operatorname{dist}(x_0,H)$$

If we can find both of these are equal we therefore know that it's equal. A compute creates a dual problem and solves that too to Find the optimal value and creates a **certificate of optimality**. We consider the difference between the LHS and RHS to be the **duality gap**.

Back to Convexity

Examples of Convex Sets

1. Given a set of points $\{x_1,\ldots,x_n\}$, their *Linear Hull* $\mathcal{L}=\{\sum \lambda_i x_i; \lambda_i\in\mathbb{R}\}=\operatorname{Sp}\{x_1,\ldots,x_n\}$ is a convex set. Proof:

$$egin{aligned} x &= \sum \lambda_i x_i, & y &= \sum \mu_i x_i \in \mathcal{L} \ heta x + (1- heta) y &= \sum (heta \lambda_i + (1- heta) \mu_i) x_i \in \mathcal{L} \end{aligned}$$

2. Affine Hull: $\mathcal{A}=\{\sum \lambda_i x_i; \sum \lambda_i=1\}$ is a convex set Proof:

$$egin{aligned} x &= \sum \lambda_i x_i, & y &= \sum \mu_i x_i \in \mathcal{A} \ (heta \lambda_i + (1- heta) \mu_i) &= \xi_i \ \sum \xi_i &= heta \sum \lambda_i + (1- heta) \sum \mu_i = 1 \end{aligned}$$

3. Convex hull: $\cos\{x_1\dots x_n\}=\{\sum \lambda_i x_i: \sum \lambda_i=1, \lambda\geq 0\}=$ smallest convex set containing $\{x_1\dots x_n\}$

We can do the exact same proof as above but with $\lambda_i, \mu_i \geq 0$ showing how $\sum \lambda_i = \sum \mu_i = 1$

Difference between hulls:

4. Conic Hull =
$$\operatorname{conic}\{x_1,\dots x_n\}=\{\sum \lambda_i x_i, \lambda_i \geq 0\}$$
 where cone $C:x\in C \implies \alpha x\in C \ \forall \alpha \geq 0$ Smallest cone containing all of x_i

Examples:

- ullet Convex Hull of $\{vv^ op:v\in\mathbb{R}^n\}=$ all PSD matrices on \mathbb{R}^n
- Conic Hull of $\{vv^\top:v\in\mathbb{R}^n,\|v\|_2=1\}$ meaning the set of 1D projections (rank 1 matrices). It turns out to also be all PSD matrices when you write out the spectral decomposition.
- Linear Hull of $\{vv^{ op}:v\in\mathbb{R}^n,\|v\|_2=1\}=$ all symmetric n imes n matrices.

Operations that preserve Convexity:

Intersection.

If $\mathcal{A}=$ index set, C_lpha is convex $a\in\mathcal{A}$ then $\bigcap_{\alpha\in\mathcal{A}}C_lpha$ is convex.

Example 1: Every half space $\mathcal{H}_{a,b} = \{x: a^{ op}x \leq b\}$ is convex

 \implies Every polytope is convex $P = \bigcap_{i=1}^m \mathcal{H}_{a,b}$

Every convex set can be represented as an infinite intersection of half spaces.

Example 2:
$$\mathsf{SOC} = \{(x,t) \in \mathbb{R}^{n+1} : \|x\|_2 \leq t\}$$
 $\|x\|_2 \leq t \iff u^\top x \leq t \ \forall u : \|u\| \leq 1$

$$egin{aligned} SOC &= \{(x,t) \in \mathbb{R}^{n+1} : u^ op x \leq t \;\; orall u : \|u\|_2 \leq 1\} \ &= igcap_{u:\|u\|_{2 \leq 1}} \mathcal{H}_{u,t} \end{aligned}$$

Affine Transformations

Affine transformations of Convex sets are convex.

$$C$$
 convex, $AC + b = \{Ax + b : x \in C\}$

If
$$x,y\in AC+b \implies x=Ax'+b, y=Ay'+b$$
 for some $x',y'\in C$. $\theta x+(1-\theta)y=A(\theta x'+(1-\theta)y')+b\in AC+b$

Projection

Projections of Convex sets are convex. "Convex sets have shadows."

Convex Functions

In optimisation, we often consider functions $f:\mathbb{R}^n \to \mathbb{R} \cup \{-\infty,+\infty\}$. Effective domain: $\mathrm{dom}\ f=\{x:|f(x)|<\infty\}$

A function $f:\mathbb{R}^n o\mathbb{R}\cup\{+\infty\}$ is convex if

$$f(heta x + (1- heta)y) \leq heta f(x) + (1- heta)f(y) \ \ orall x,y, heta \in [0,1]$$

Can't put $-\infty$ or else we would have a situation like $+\infty+-\infty$.

Convex f

Examples

Example 1: Every norm $\|\cdot\|$ is convex. $\|\theta x+(1-\theta)y\|\leq \theta\|x\|+(1-\theta)\|y\|$ Example 2: $f(x)=\log\frac{1}{x}, x>0$ $\mathrm{dom} f=\mathbb{R}_{>0}$

Sometimes defined as

$$f(x) = \begin{cases} \log \frac{1}{x} > 0 \\ +\infty \le 0 \end{cases}$$

Recall: $\operatorname{epi} f = \{(x,t): f(x) \leq t\}$ this is a set in \mathbb{R}^{n+1} Claim: f is convex $\iff \operatorname{epi} f$ i a convex set.

If
$$(x_1,t_1),(x_2,t_2)\in \mathrm{epi} f$$

$$\Longrightarrow heta t_1 + (1- heta)t_2 \geq heta f(x_1) + (1- heta)f(x_2) \ \geq f(heta x_1 + (1- heta)x_2) \ \Longrightarrow (heta x_1 + (1- heta)x_2, heta t_1 + (1- heta)t_2) \in \mathrm{epi} f$$

Example: $f(x) = \log\left(\sum e^{x_i}\right) \approx \max_i x_i$ (log-sum-exp function) $\operatorname{epi} f = \left\{(x,t): \sum e^{x_i} \leq e^t\right\} = \left\{(x,t): \sum e^{(x_i-t)} \leq 1\right\}$ The above is therefore convex as $z \to e^z$ is convex.

Convexity Preserving Operations on Functions

• If f,g are convex $\implies \alpha f + \beta g$ is convex for $\alpha,\beta \geq 0$ Example: $H(p) = \sum p_i \log \frac{1}{p_i}$ (entropy function with probability distribution p) Example Pointwise max of convex functions in convex $h(x) = \max\{f(x),g(x)\}, x \in \mathbb{R}^n$ as this is taking the intersection of their epigraphs.`