

Machine Learning

Chapter 6 지도 학습

(Logistic Regression, SVM, 분류평가지표, GridSearch)

학습목표

- 선형 분류모델을 이해하고 사용 할 수 있다.
- 다양한 분류평가 지표를 이해 할 수 있다.
- GridSearch를 이용한 파라미터 튜닝을 할 수 있다.

Linear Model

(Classification)

Linear Model - Classification

분류용 선형 모델

$$y = w_1x_1 + w_2x_2 + w_3x_3 + \dots + w_px_p + b > 0$$

- 특성들의 가중치 합이 0보다 크면 class를 +1 (양성클래스)로 0보다 작다면 클래스를 -1 (음성클래스)로 분류한다.
- 분류용 선형모델은 결정 경계가 입력의 선형함수

Linear Model - Classification

분류용 선형 모델

- Logistic Regression (Regression 단어가 붙지만 분류용 모델)
- Linear Support Vector Machine

Linear Model - Classification

장단점

- 선형 모델은 학습 속도가 빠르고 예측도 빠르다.
- 매우 큰 데이터 세트와 희소 (sparse)한 데이터 세트에서도 잘 동작한다.
- 특성이 많을 수록 더욱 잘 동작한다.
- 저차원(특성이 적은)데이터에서는 다른 모델이 더 좋은 경우가 많다.

- 선형 회귀로 풀리지 않는 문제 → 독립변수와 종속변수가 비선형 관계인 경우

- 회귀를 사용하여 데이터가 어떤 범주에 속할 확률을 0에서 1 사이의 값으로 예측하고 그 확률에 따라 가능성이 더 높은 범주에 속하는 것으로 분류해주는 지도 학습 알고리즘

흡연량과 폐암 발병의 관계 → 연속적으로 변하는 흡연량의 결과에 대해 "폐암에 걸렸다" 또는 "걸리지 않았다?"의 결과만 필요

- 선형 회귀

흡연량이 아주 작은 경우 폐암 발생확률이 음수 값이거나 1보다 커지는 문제

- 해결 방법은?

흡연량에 따라 폐암 발생확률이 0~1 범위의 값이 됨

종속변수 y와 독립변수 x가 동일한 범위가 되도록 조정

- → y를 확률 모형으로 변환
- → Log를 취해서 범위를 -∞ 에서 ∞로 변경

$$\frac{p(y)}{1-p(y)} \to \ln \frac{p(y)}{e-1-p(y)} = wx$$

x가 -∞~∞ 범위의 값이어도 p(y)는 0~1 범위 값이 나옴

$$p(y) = \frac{e^{wx}}{1 + e^{wx}}$$

Sigmoid 함수

주요 매개변수(Hyperparameter)

scikit-learn의 경우

LogisticRegression(C, max_iter)

- 규제 강도의 역수 : C (값이 작을수록 규제가 강해짐)
- 최대 반복횟수: max_iter (값을 크게 잡아 주어야 학습이 제대로 됨)
- 기본적으로 L2규제 사용, 중요한 특성이 몇 개 없다면 L1규제를 사용해도 무방 (주요 특성을 알고 싶을 때 L1 규제를 사용하기도 한다.)

wine 데이터셋

- 포트투칼의 비뉴 베르드 지방에서 만들어진 와인을 측정한 데이터
- 1,599개의 레드와인 데이터, 4,898개의 화이트와인 데이터 (총 6,497개 데이터)
- 12개의 정보와 1개의 클래스로 구성

	0	1	2	3	4	5	6	7	8	9	10	11	12
	주석산 농도	아세트 산농도	구연산 농도	진류당 분농도	염화나트 륨농도	유리아 화산 농도	총 아 황산 농도	밀도	рН	황산 칼륨 농도	알코올 도수	와인맛 (5-9등 급)	레드 1/화 이트0
964	8.5	0.47	0.27	1.9	0.058	18	36	0.99518	3.16	0.85	11.1	6	1
664	12.1	0.4	0.52	2	0.092	18	54	1	3.03	0.66	10.2	5	1
1692	6.9	0.21	0.33	1.8	0.034	18	136	0.9899	3.25	0.41	12.6	7	0
5801	6.7	0.24	0.31	2.3	0.044	18	113	0.99013	3.29	0.46	12.9	6	0
6497	6	0.21	0.38	0.8	0.02	22	98	0.98941	3.26	0.32	11.8	6	0

wine 데이터를 이용한 Logistic Regression 모델 학습

최적의 규제값 C를 찾아보자

교차 검증을 적용해 보자

SVM (Support Vector Machines)

- 종이에 선형적으로 분리 가능한 2가지 유형의 포인트가 있다고 가정하면 SV M은 이 점들을 2가지 유형으로 분리하고 모든 점들로부터 가능한 멀리 위치하는 직선을 발견
- N차원 장소에서 2가지 유형의 점 집합이 주어지면 SVM은 (N-1) 차원의 초평면(hyperplane)을 생성하여, 이 점들을 두 그룹으로 분리
- 커널이라는 방법을 사용하여 비선형 데이터 분리 → 선형 커널, 다항식 커널
 , RBF (Radial Basis Function) 커널

SVM (Support Vector Machines)

SVM (Support Vector Machines)

- 커널을 적용한 결정 경계의 변화

주요 매개변수(Hyperparameter)

scikit-learn의 경우

LinearSVC (C)

- 규제 강도 : C (값이 작을수록 규제가 강해짐)
- 기본적으로 L2규제를 사용, 하지만 중요한 특성이 몇 개 없다면 L1규제를 사용해도 무방

(주요 특성을 알고 싶을 때 L1 규제를 사용하기도 한다.)

wine 데이터를 LinearSVC 모델로 학습해보자.

분류 평가 지표

Confusion_matrix

정확도 (Accuracy) 전체 중에 정확히 맞춘 비율

$$Accuracy = \frac{TP + TN}{TP + TN + FP + FN}$$

Confusion_matrix

100명 중 암 환자는 5명

$$Accuracy = \frac{TP + TN}{TP + TN + FP + FN}$$

Confusion_matrix

100명 중 암 환자는 5명

$$Accuracy = \frac{TP + TN}{TP + TN + FP + FN}$$

100

Confusion_matrix

재현율 (Recall) 실제 양성 중에 예측 양성 비율

$$ext{Recall} = rac{ ext{TP}}{ ext{TP} + ext{FN}}$$

Confusion_matrix

100명 중 암 환자는 5명

$$ext{Recall} = rac{ ext{TP}}{ ext{TP} + ext{FN}}$$

Confusion_matrix

100명 중 암 환자는 5명

$$ext{Recall} = rac{ ext{TP}}{ ext{TP} + ext{FN}}$$

Confusion_matrix

정밀도 (Precision) 예측 양성 중에 실제 양성 비율

$$ext{Precision} = rac{ ext{TP}}{ ext{TP} + ext{FP}}$$

Confusion_matrix

100명 중 암 환자는 5명

$$Precision = \frac{TP}{TP + FP}$$

Confusion_matrix

100명 중 암 환자는 5명

$$Precision = \frac{TP}{TP + FP}$$

분류 평가지표 - 다중분류

Confusion_matrix

F1 - score 정밀도와 재현율의 조화평균

$$F = 2\frac{precision \cdot recall}{precision + recall}$$

주요 매개변수(Hyperparameter)

scikit-learn의 경우

confusion_matrix(실제값, 예측값)

유방암 데이터를 LogisticRegression으로 학습한 confusion matrix()를 출력해 보세요.

분류 평가지표

• 낮은 재현율보다 높은 정밀도를 선호하는 경우

어린아이에게 안전한 동영상(양성)을 걸러내는 분류기를 훈련 시킬 경우 좋은 동영상이 많이 제외되더라도(낮은 재현율) 안 전한 것들만 노출시키는(높은 정밀도) 분류기가 더 좋다.

• 낮은 정밀도보다 높은 재현율을 선호하는 경우

감시 카메라로 좀도둑(양성)을 잡아내는 분류기를 훈련시킬 경우 경비원이 잘못된 호출을 종종 받지만(낮은 정밀도) 거의 모든 좀도둑을 잡는(높은 재현율) 분류기가 더 좋다.

주요 매개변수(Hyperparameter)

scikit-learn의 경우

classification_report(실제값, 예측값)

유방암 데이터를 LogisticRegression으로 학습한 classification_report()를 출력해 보세요.

- macro avg : recall, precision, f1을 구해서 각각 평균을 낸 것 → 분류자 가 각 클래스에 대해 얼마나 평균적으로 잘 동작하는지 알고 싶을 때 사용
- weight avg (가중평균) : 개별치에 각각의 중요도,영향도(빈도) 등에 따라 가중치를 곱하여 구해지는 평균

ŗ	precision	recall f	support		
악성 양성	0.91 0.97	0.94 0.94	0.93 0.96	53 90	
accuracy macro avg weighted avg	0.94 0.94	0.94 0.94	0.94 0.94 0.94	143 143 143	

- 여러 임계값에서 분류기의 특성을 분석하는데 널리 사용되는 도구
- 클래스의 분포가 다르고 겹치는 부분이 존재한 경우에 Accuracy의 단점을 보완하기 위한 것
- 진짜 양성 비율 (TPR)에 대한 거짓 양성 비율 (FPR)을 나타냄

- 가짜 양성비율(FPR): 전체 음성 샘플 중에서 거짓 양성으로 잘못 분류한 비율
- 진짜 양성비율(TPR): 재현율

$$FPR = \frac{FP}{FP + TN}$$

$$\frac{TPR}{TP+FN} = \frac{TP}{TP+FN}$$

Gridsearch

GridSearch

- 매개변수을 선택하는 것은 머신러닝에서 중요한 일
- 관심 있는 매개변수들을 대상으로 가능한 모든 조합 시도하는 것

주요 매개변수(Hyperparameter)

scikit-learn의 경우

GridSearchCV(모델, 모델의 파라미터목록, cv)

• cv: 교차검증 시 나눌 fold 수

GridSearch

- best_params_ : GridSearch 후에 찾는 최고의 파라미터 값
- best_score_: 최고의 파라미터를 사용한 교차 검증 점수
- best_estimator_ : 전체 파라미터 값

iris 데이터를 사용하여 DecisionTree 모델의 최적 파라미터 찾기 (max_depth, min_leaf_nodes, min_samples_leaf)