Problem: Let $\mathbb{R}^{\infty} = \bigoplus_{n \geq 0} \mathbb{R}$, if equip it with the inner product $(x, y) = \sum_{n \geq 0} x_i y_i$. If the corresponding metric topology, Show the unit sphere $5^{\infty} = \{x \in \mathbb{R}^{\infty} \mid ||x|| = 1\}$ is contractible.

Solution

We need a homotopy from the identity map of 5° to a constant map.

Lef &: $\mathbb{R}^{\infty} \to \mathbb{R}^{\infty}$ be given by $(x_1, x_2, ...) \mapsto (0, x_1, x_2, ...)$, "shifting" all coordinates, Consider the map $f_{\mathcal{L}}: \mathbb{R}^{\infty} \to \mathbb{R}^{\infty}$ defined by $(x_1, x_2, ...) \mapsto (1-t)(x_1, x_2, ...) + t(0, x_1, x_2, ...)$ $(0 \le t \le 1)$.

Since f_{ξ} maps nonzero points to nonzero points, the map $x \mapsto \frac{f_{\xi}(x)}{|f_{\xi}(x)|}$ is well-defined on S^{∞} and gives a homotopy from $|f_{\xi}(x)|$ id (S^{∞}) to $g_{\xi}(x)$.

Now let $9t: \mathbb{R}^n \to \mathbb{R}^m$ be given by $(x_1, x_2, \dots) \mapsto (1-t) \mathscr{L}(x_1, x_2, \dots) + t(1, 0, 0, \dots) \quad (0 \le t \le 1).$

As before, 9t maps nonzero points to nonzero points, so the map $\times \mapsto 9t(x)$:s well-defined on 5^{∞} and gives a homotopy from |9t(x)|

& to a constant map.

The composition of these homotopies is a homotopy from the wentity of 5^{10} to a constant map, which shows 5^{10} is confractible.