kWintessence Identifying price-responsive electric loads

Pablo Felgueres github.com/felgueres

Introduction

Demand Response

Shift demand to available time periods by exploiting consumption elasticity.

Goal:

Identify price-responsive users.

Pipeline > Benchmark Clustering > Identify Responsive Users > Quantify Price Response

Subgroups with similar load profile Individual customer loads, where k = 6

Pipeline > Benchmark Clustering > Identify Responsive Users > Quantify Price Response

Identify Responsive Users

Price responsive?

Control vs. Time-of-use Tariffs, where k = 6

Pipeline > Benchmark Clustering > Identify Responsive Users > Quantify Price Response

Test-Control Example

H0:

Price induces a significant change of consumption behavior.

Response: -10.8 %

p-value: 1.6 e-04

Power: 99

Pipeline > Benchmark Clustering > Identify Responsive Users > Quantify Price Response

Quantify Response

Pipeline > Benchmark Clustering > Identify Responsive Users > Quantify Price Response

Quantify Response

Pipeline > Benchmark Clustering > Identify Responsive Users > Quantify Price Response

Conclusions

Takeaways

- > Systematic way of identifying responsive users.
- > Quantifiable response.

Application

> Target subgroups with specific strategies to maximize capacity utilization.

Future Work

- > Characterize responses.
- > Regression-model baseline using demographic and weather data.
- > Cluster based on frequency-based features instead of temporal.
- > Evaluate reliability and accuracy of clusters.

THANKS!

Any questions?

You can find me at:
github.com / felgueres
in / pablofelgueres