Name	Vorname	Matrikel-Nr.	Datum TTMMJJ		

Allgemeine Hinweise:

- Zur Personalien-Kontrolle bitte einen Ausweis mit Lichtbild bereit zu halten.
- Die Klausurdauer beträgt 90 Minuten.
- Die Prüfungsunterlagen bestehen aus 8 Seiten mit 5 Aufgaben.
- Überprüfen Sie bitte die Vollständigkeit der Prüfungsunterlagen und tragen Sie auf jedem Blatt Ihren Namen und Ihre Matrikelnummer in dem dafür vorgesehenen Feld ein.
- Ein DIN-A4-Blatt mit einer Formelsammlung ist als Hilfsmittel zugelassen.
- Es sind keine elektronischen Hilfsmittel wie Taschenrechner, MP3-Player oder sonstigen elektronischen Kommunikationsmittel wie Handy erlaubt.
- Aufgaben sind auf den Prüfungsunterlagen zu lösen, ggf. kann die Rückseite benutzt werden. Der Lösungs-/Rechenweg muß bei allen Aufgaben erkennbar/ nachvollziehbar sein.
- Ungültige Lösungsversuche bitte deutlich markieren.
- Benutzen Sie **keinen Bleistift** und **keine rote Tinte**!

Aufgabe	1	2	3	4	5	Σ
max. Punktezahl	20	25	40	15	40	140
erreichte Punktezahl						

Name	Matrikel-Nr:	
	-	

Aufgabe 1 (20 Pkt.)

Beantworten oder ergänzen Sie folgende Fragen/Aussagen:

a) Vervollständigen Sie den Impulsplan an den Ausgängen Q und P eines pegelgesteuerten D-Flipflops mit einem Enable-Signal EN. Gehen Sie davon aus, daß im D-Flipflop eine logische Eins bereits gespeichert ist, d.h. Q = 1 und P = 0 sind. (6 Pkt.)

b) Zeigen Sie mit Hilfe der booleschen Algebra, daß die Zusammenfassung der drei Feldern aus dem linken KV-Diagramm möglich ist, und daß daraus zwei überlappende Gruppen mit je zwei Feldern resultieren. (6 Pkt.)

Na	ame	Matrikel-Nr:
c)	Erklären Sie den Begriff "einschrittig dazu zwei vierstellige, einschrittig d	ige Codierung" und geben Sie als Beispiel codierte Dualzahl an: (4 Pkt.)
	Benachbarte Elemente einer Meng die sich in genau einer Stelle unter	ge werden durch Binärmuster repräsentiert, rscheiden.
	Die Eigenschaft "benachbart" ist Menge definiert ist:	eine Relation, die auf den Elementen der
	 räumliche Nachbarschaft in Al zwei Knoten eines Zustandagr verbunde (0101)₂ und (0111)₂ 	
d)	Kreuzen Sie zutreffende Aussagen a Ein Minterm	an: (4 Pkt.)
	[] ist ein Summenterm.	
	[X] kann auch nicht negierte Varial	blen einer booleschen Funktion enthalten.
	[X] ist eine Konjunktion von Varial	blen.
	[] ist der Bestandteil der kanonisc	chen konjunktiven Normalform.
	Minterm ist ein Produktterm, in de genau einmal vorkommt (einfach	em jede Variable einer booleschen Funktion oder negiert).
	Produktterm ist eine Konjunktio negierter Form.	on von Variablen in negierter und nicht
	Minterm ist Bestandteil von Kanor	nischer Disjunktiver Normalform.

Name	Matrikel-Nr:				
			_	 _	_

Aufgabe 2 (25 Pkt.)

Das unten dargestellte Schaltnetz ist mit Hilfe der Axiome und Geseetze der booleschen Algebra zu minimieren und das Ergebnis als Schaltung bestehend nur aus NAND-Gattern zu zeichnen.

Lösung:

 $= u \cdot (z + x)$

Rekonstruktion und Minimierung der Funktion (18 Pkt.)

$$f1 = x \cdot z$$

$$f2 = x \oplus z = x' \cdot z + x \cdot z'$$

$$f3 = f1 + f2 = x \cdot z + x' \cdot z + x \cdot z'$$

$$y = u \cdot f3 = u \cdot (x \cdot z + x' \cdot z + x \cdot z')$$

$$= u \cdot (x \cdot z + x' \cdot z + x \cdot z + x \cdot z')$$

$$= u \cdot (z \cdot (x + x') + x \cdot (z + z'))$$

$$= u \cdot (z \cdot 1 + x \cdot 1)$$

Umwandlung zu NANDs (5 Pkt.)

$$y = u \cdot z + u \cdot x = (u \cdot z + u \cdot x)'' = ((u \cdot z)' \cdot (u \cdot x)')'$$

Name .	Matrikel-Nr:			
			 	 4

Aufgabe 3 (40 Pkt.)

Die Funktion g(a, b, c, d, e) = Σ (9, 11, 15, 25, 27, 29, (3, 7, 13, 19, 23, 31)) ist mit der QM-Methode zu minimieren.

Lösung:

Minimierung (30 Pkt.)

cde 000 001 011 010 110 111 101 100 ab -3 -7 -13 -31 -19 -23

HTWG Konstanz Digitaltechnik Seite 5 von 8

Name	Matrikel-Nr:
------	--------------

Primimplikantentabelle (8 Pkt.)

minimierte Funktionsgleichung (2 Pkt.)

Name .	Matrikel-Nr:		
ivallie ,	 Matriker-in.		

Aufgabe 4 (15 Pkt.)

Aus dem unten dargestellten Schaltnetz ist die boolesche Funktion f(a, b, c, d) zu rekonstruieren, hinsichtlich der Variablen a und b zu dekomponieren und mit einem 1-aus-4-Multiplexer zu realisieren.

Lösung:

Rekonstruktion der Funktion (5 Pkt.)

$$f1 = a \cdot b$$

$$f2 = a \cdot b' \cdot c$$

$$f3 = a' \cdot b \cdot d$$

$$f = f1 + f2 + f3 = a \cdot b + a \cdot b' \cdot c + a' \cdot b \cdot d$$

Dekomposition hinsichtlich a und b (10 Pkt.)

$$x0 := f(a=0, b=0, c, d) = 0 \cdot 0 + 0 \cdot 0' \cdot c + 0' \cdot 0 \cdot d = 0 + 0 + 0 = 0$$

$$x1 := f(a=0, b=1, c, d) = 0 \cdot 1 + 0 \cdot 1' \cdot c + 0' \cdot 1 \cdot d = 0 + 0 + d = d$$

$$x2 := f(a=1, b=0, c, d) = 1 \cdot 0 + 1 \cdot 0' \cdot c + 1' \cdot 0 \cdot d = 0 + c + 0 = c$$

$$x3 := f(a=1, b=1, c, d) = 1 \cdot 1 + 1 \cdot 1' \cdot c + 1' \cdot 1 \cdot d = 1 + 0 + 0 = 1$$

Aufgabe 5 (40 Pkt.)

Es ist ein selbst korrigierender Modulo-6-Vorwärtszähler mit flankengesteuerten D-Flipflops zu entwerfen. Dazu sind ein Zustandsgraph mit einer geeigneten Zuordnung fehlerhafter Zuständen, eine Funktionstabelle, KV-Diagramme und minimalisierte Funktionsgleichungen anzugeben. Die Zeichnung der Schaltung ist nicht erforderlich.

Lösung:

Zustandsgraph (2 Pkt.)

Funktionstabelle (28 Pkt.)

Q2	Q1	Q0	Q2 ⁺	Q1 ⁺	Q0 ⁺
0	0	0	0	0	1
0	0	1	0	1	0
0	1	0	0	1	1
0	1	1	1	0	0
1	0	0	1	0	1
1	0	1	0	0	0
1	1	0	?	?	?
1	1	1	?	?	?

KV-Diagramme (6 Pkt.)

Q'	1 Q0			
Q2\	00	01	11	10
0	0	1	0	1
1	0	0	(0)	(0)
				Q1 ⁺

Funktionsgleichungen (4 Pkt.)

HTWG Konstanz Digitaltechnik Seite 8 von 8