Lecture 20 – The Pumping Lemma for Context-Free Languages

COSE215: Theory of Computation

Jihyeok Park

2023 Spring

- We have learned about the Pumping Lemma for Regular Languages (RLs).
- We could use it to **prove** that some languages are **NOT** regular.

- We have learned about the Pumping Lemma for Regular Languages (RLs).
- We could use it to prove that some languages are NOT regular.
- Is there a similar lemma for Context-Free Languages (CFLs)?

Recall

- We have learned about the Pumping Lemma for Regular Languages (RLs).
- We could use it to **prove** that some languages are **NOT** regular.
- Is there a similar lemma for Context-Free Languages (CFLs)?
- For example, is it possible to prove that the following language?

$$L = \{a^n b^n c^n \mid n \ge 0\}$$

Contents

1. Pumping Lemma for Context-Free Languages

Size of Parse Trees in Chomsky Normal Form Pumping Lemma Proof of Pumping Lemma

2. Proving Languages are Not Context-Free

Example 1: $L = \{a^n b^n c^n \mid n \ge 0\}$ Example 2: $L = \{0^n 10^n 10^n \mid n \ge 0\}$ Example 3: $L = \{ww \mid w \in \{a, b\}^*\}$

Example 4: $L = \{a^n b^m \mid m = n^2\}$

Example 5: $L = \{w \in \{a, b, c\}^* \mid N_a(w) = N_b(w) = N_c(w)\}$

Size of Parse Trees in Chomsky Normal Form

Theorem (Size of Parse Trees in Chomsky Normal Form)

For a given CFG G in Chomsky Normal Form, for all $w \in L(G)$, if the length of the longest path in the parse tree of w is n, then $|w| \le 2^{n-1}$. Note that the length of a path is the number of edges in the path.

Size of Parse Trees in Chomsky Normal Form

Theorem (Size of Parse Trees in Chomsky Normal Form)

For a given CFG G in Chomsky Normal Form, for all $w \in L(G)$, if the length of the longest path in the parse tree of w is n, then $|w| \le 2^{n-1}$. Note that the length of a path is the number of edges in the path.

For example, consider the following CFG in CNF, and the parse tree of w = aabb. The length of the longest path in the parse tree is 4, and the length of the word is 4. Thus, $|w| = 4 \le 2^3 = 2^{n-1}$.

$$\begin{array}{cccc} S & \rightarrow & \epsilon \mid AC \mid AB \\ D & \rightarrow & AC \mid AB \\ C & \rightarrow & DB \\ A & \rightarrow & a \\ B & \rightarrow & b \end{array}$$

Size of Parse Trees of Chomsky Normal Form − Proo PLRG

Proof) Let's perform induction on the length of the longest path n.

• (Basis Case) n = 1. Then, $|\epsilon| = 0 \le 2^{1-1}$ and $|a| = 1 \le 2^{1-1}$.

• (Induction Case) The first rule of S is in the form of $S \to XY$. The length of the longest path in the parse tree of X (or Y) is less than or equal to n-1. If $X \Rightarrow^* x \in \Sigma^*$ and $Y \Rightarrow^* y \in \Sigma^*$, then $|x| \le 2^{n-2}$ and $|y| \le 2^{n-2}$ (: I.H.). Thus, $|w| = |x| + |y| \le 2^{n-2} + 2^{n-2} = 2^{n-1}$.

Pumping Lemma for Context-Free Languages

Lemma (Pumping Lemma for Context-Free Languages)

For a given CFL L, there exists a positive integer n such that for all $z \in L$, if $|z| \ge n$, there exists a split z = uvwxy such that

- 1 |vx| > 0
- $|vwx| \leq n$
- $\exists \forall i \geq 0. \ uv^i wx^i y \in L$

Pumping Lemma for Context-Free Languages

Lemma (Pumping Lemma for Context-Free Languages)

For a given CFL L, there exists a positive integer n such that for all $z \in L$, if $|z| \ge n$, there exists a split z = uvwxy such that

- 1 |vx| > 0
- $|vwx| \leq n$
- $\exists \forall i \geq 0. \ uv^i wx^i y \in L$

A =

L is context-free

 $B = \exists n > 0. \ \forall z \in L. \ |z| \ge n \Rightarrow \exists z = uvwxy. \ \boxed{1} \land \boxed{2} \land \boxed{3}$

• Let L be a context-free language.

- Let L be a context-free language.
- Then, \exists CFG G in Chomsky Normal Form. s.t. L(D) = L.

- Let *L* be a context-free language.
- Then, \exists CFG G in Chomsky Normal Form. s.t. L(D) = L. Let $m \ge 0$ be the number of variables in G and $n = 2^m \ge 1$.

- Let L be a context-free language.
- Then, \exists CFG G in Chomsky Normal Form. s.t. L(D) = L. Let $m \ge 0$ be the number of variables in G and $n = 2^m \ge 1$.
- Take any $z = a_1 a_2 \cdots a_k \in L$ s.t. $|z| = k \ge n$.

- Let L be a context-free language.
- Then, \exists CFG G in Chomsky Normal Form. s.t. L(D) = L. Let $m \ge 0$ be the number of variables in G and $n = 2^m \ge 1$.
- Take any $z = a_1 a_2 \cdots a_k \in L$ s.t. $|z| = k \ge n$.
- Consider the longest path $(A_1(=S), A_2, \cdots, A_p)$ in the parse tree of z. Then, $p \ge m+1$ by Theorem of Size of Parse Trees in CNF.

- Let L be a context-free language.
- Then, \exists CFG G in Chomsky Normal Form. s.t. L(D) = L. Let $m \ge 0$ be the number of variables in G and $n = 2^m \ge 1$.
- Take any $z = a_1 a_2 \cdots a_k \in L$ s.t. $|z| = k \ge n$.
- Consider the longest path $(A_1(=S), A_2, \cdots, A_p)$ in the parse tree of z. Then, $p \ge m+1$ by Theorem of Size of Parse Trees in CNF.
- By Pigeonhole Principle, $\exists i, j. \ p m \le i < j \le p \text{ and } A_i = A_j$.
- Split the word z = uvwxy as follows:

- Let L be a context-free language.
- Then, \exists CFG G in Chomsky Normal Form. s.t. L(D) = L. Let $m \ge 0$ be the number of variables in G and $n = 2^m \ge 1$.
- Take any $z = a_1 a_2 \cdots a_k \in L$ s.t. $|z| = k \ge n$.
- Consider the longest path $(A_1(=S), A_2, \cdots, A_p)$ in the parse tree of z. Then, $p \ge m+1$ by Theorem of Size of Parse Trees in CNF.
- By Pigeonhole Principle, $\exists i, j. \ p m \le i < j \le p \text{ and } A_i = A_j.$
- Split the word z = uvwxy as follows:

$$p - m \le i < j \le p$$
 and
$$A_i = A_j$$

Proof of Pumping Lemma - 1 and 2

$$p - m \le i < j \le p$$
 and
$$A_i = A_j$$

- $\bullet \quad \boxed{1 |vx| > 0}$
 - Since i < j, the word vwx derived from A_i is not equal to the word w derived from A_i.
 - Thus, vx is not an empty word, and |vx| > 0.

Proof of Pumping Lemma - 1 and 2

$$p - m \le i < j \le p$$
 and
$$A_i = A_j$$

- $\bullet \quad \boxed{1 \mid vx \mid > 0}$
 - Since i < j, the word vwx derived from A_i is not equal to the word w
 derived from A_i.
 - Thus, vx is not an empty word, and |vx| > 0.
- $2 |vwx| \le n$
 - Since $p m \ge i$, the length of the longest path from A_i in the parse tree of z is p i + 1 is less than or equal to m + 1.
 - By Theorem of Size of Parse Trees in CNF, the length of the word vwx is less than or equal to $2^m = n$.

$$p - m \le i < j \le p$$
 and
$$A_i = A_j$$

• $3 \forall i \geq 0. \ uv^i wx^i y \in L$

- Let L be a context-free language.
- Then, \exists CFG G in Chomsky Normal Form. s.t. L(D) = L. Let $m \ge 0$ be the number of variables in G and $n = 2^m \ge 1$.
- Take any $z = a_1 a_2 \cdots a_k \in L$ s.t. $|z| = k \ge n$.
- Consider the longest path $(A_1(=S), A_2, \cdots, A_p)$ in the parse tree of z. Then, $p \ge m+1$ by Theorem of Size of Parse Trees in CNF.
- By Pigeonhole Principle, $\exists i, j. \ p m \le i < j \le p \text{ and } A_i = A_j$.
- Split the word z = uvwxy as follows. Then, it satisfies ①, ②, and ③.

$$p - m \le i < j \le p$$
 and
$$A_i = A_j$$

- Let L be a context-free language.
- Then, \exists CFG G in Chomsky Normal Form. s.t. L(D) = L. Let $m \ge 0$ be the number of variables in G and $n = 2^m \ge 1$.
- Take any $z = a_1 a_2 \cdots a_k \in L$ s.t. $|z| = k \ge n$.
- Consider the longest path $(A_1 (= S), A_2, \cdots, A_p)$ in the parse tree of z. Then, $p \ge m+1$ by Theorem of Size of Parse Trees in CNF.
- By Pigeonhole Principle, $\exists i, j$. s.t. $p m \le i < j \le p$ and $A_i = A_j$.
- Split the word z = uvwxy as follows. Then, it satisfies (1), (2), and (3).

$$p - m \le i < j \le p$$
 and
$$A_i = A_j$$

$$A = L$$
 is context-free

$$B = \exists n > 0. \forall z \in L. |z| \ge n \Rightarrow \exists z = uvwxy. \ 1 \land 2 \land 3$$

$$A = L$$
 is context-free

$$B = \exists n > 0. \forall z \in L. |z| \ge n \Rightarrow \exists z = uvwxy. \ 1 \land 2 \land 3$$

$$A \implies B$$
 (0)

$$A = L$$
 is context-free

$$B = \exists n > 0. \ \forall z \in L. \ |z| \ge n \Rightarrow \exists z = uvwxy. \ 1 \land 2 \land 3$$

$$A \implies B$$
 (0

$$B \implies A \stackrel{(X)}{=}$$

$$A = L$$
 is context-free

$$B = \exists n > 0. \ \forall z \in L. \ |z| \ge n \Rightarrow \exists z = uvwxy. \ \boxed{1} \land \boxed{2} \land \boxed{3}$$

$$A \implies B$$
 (0)

$$B \implies A \quad (X)$$

$$\begin{array}{cccc} A & \Longrightarrow & B & (\mathsf{O}) \\ B & \Longrightarrow & A & (\mathsf{X}) \\ \neg B & \Longrightarrow & \neg A & (\mathsf{O}) \end{array}$$

$$A = L$$
 is context-free \Downarrow $B = \exists n > 0. \forall z \in L. |z| \ge n \Rightarrow \exists z = uvwxy. 1 \land 2 \land 3$

$$\begin{array}{cccc}
A & \Longrightarrow & B & (O) \\
B & \Longrightarrow & A & (X) \\
\neg B & \Longrightarrow & \neg A & (O)
\end{array}$$

$$\neg B = \forall n > 0. \ \neg(\forall z \in L. \ |z| \ge n \Rightarrow \exists z = uvwxy. \ 1) \land (2) \land (3) \\
= \forall n > 0. \ \exists z \in L. \ \neg(|z| \ge n \Rightarrow \exists z = uvwxy. \ 1) \land (2) \land (3) \\
= \forall n > 0. \ \exists z \in L. \ |z| \ge n \land \neg(\exists z = uvwxy. \ 1) \land (2) \land (3) \\
= \forall n > 0. \ \exists z \in L. \ |z| \ge n \land \forall z = uvwxy. \ \neg(1) \land (2) \land (3) \\
= \forall n > 0. \ \exists z \in L. \ |z| \ge n \land \forall z = uvwxy. \ \neg(1) \land (2) \lor \neg(3) \\
= \forall n > 0. \ \exists z \in L. \ |z| \ge n \land \forall z = uvwxy. \ (1) \land (2) \Rightarrow \neg(3) \\
= \forall n > 0. \ \exists z \in L. \ |z| \ge n \land \forall z = uvwxy. \ (1) \land (2) \Rightarrow \neg(3)$$

To prove a language L is **NOT** context-free, we need to show that

$$\forall n > 0. \exists z \in L. |z| \ge n \land \forall z = uvwxy. (1) \land (2) \Rightarrow \neg (3)$$

- 1 |vx| > 0
- $|vwx| \leq n$
- **3** $\forall i$ ≥ 0. $uv^i wx^i y \in L$

Note that $\neg 3 = \exists i \geq 0$. $uv^i wx^i y \notin L$.

To prove a language L is **NOT** context-free, we need to show that

$$\forall n > 0. \exists z \in L. |z| \ge n \land \forall z = uvwxy. (1) \land (2) \Rightarrow \neg (3)$$

- 1 |vx| > 0
- $|vwx| \leq n$
- 3 $\forall i \geq 0$. $uv^i wx^i y \in L$

Note that $\neg (3) = \exists i \geq 0$. $uv^i wx^i y \notin L$.

We can prove this by following the steps below:

- \bullet Assume any positive integer n is given.
- **2** Pick a word $z \in L$.
- **3** Show that $|z| \geq n$.
- 4 Assume any split z = uvwxy is given, and $1 |vx| > 0 \land 2 |vwx| \le n$.
- **5** ¬(3) Pick $i \ge 0$, and show that $uv^i wx^i y \notin L$ using (1) and (2).

Let's prove that *L* is **NOT** context-free using the Pumping Lemma:

$$L=\{\mathtt{a}^n\mathtt{b}^n\mathtt{c}^n\mid n\geq 0\}$$

Let's prove that L is **NOT** context-free using the Pumping Lemma:

$$L = \{a^n b^n c^n \mid n \ge 0\}$$

- \bigcirc Assume any positive integer n is given.
- 2 Let $z = a^n b^n c^n \in L$.
- 3 $|z| = n + n + n = 3n \ge n$.
- 4 Assume any split z = uvwxy is given, and $1 |vx| > 0 \land 2 |vwx| \le n$.
- **5** Let i = 0. We need to show that $\neg 3 uv^0wx^0y \notin L$:
 - Since $2 |vwx| \le n$,

$$vx = a^p b^q$$
 (or $vx = b^p c^q$)

where $0 \le p, q \le n$.

- Since $\bigcirc{1}|vx| > 0$, we can remove at least one a or b (or b or c) from z without changing the number of c's (or a's) when i = 0.
- It means that $uv^0wx^0y \notin L$.

Let's prove that *L* is **NOT** context-free using the Pumping Lemma:

$$L = \{0^n 10^n 10^n \mid n \ge 0\}$$

Let's prove that L is **NOT** context-free using the Pumping Lemma:

$$L = \{0^n 10^n 10^n \mid n \ge 0\}$$

- 1 Assume any positive integer n is given.
- **2** Let $z = 0^n 10^n 10^n \in L$.
- 3 $|z| = n + 1 + n + 1 + n = 3n + 2 \ge n$.
- 4 Assume any split z = uvwxy is given, and $1 |vx| > 0 \land 2 |vwx| \le n$.
- **5** Let i = 0. We need to show that $\neg 3 uv^0wx^0y \notin L$:
 - Since $2 |vwx| \le n$,

vx does not contain 0's in the third block (or the first block).

- Since $\bigcirc{1}|vx| > 0$, we can remove at least one 0 in the first or second blocks (or second or third blocks) from z without changing the number of 0's in the third block (or first block) when i = 0.
- It means that $uv^0wx^0y \notin L$.

Let's prove that L is **NOT** context-free using the Pumping Lemma:

$$L = \{ww \mid w \in \{\mathtt{a},\mathtt{b}\}^*\}$$

Let's prove that L is **NOT** context-free using the Pumping Lemma:

$$L = \{ww \mid w \in \{a,b\}^*\}$$

- \bigcirc Assume any positive integer n is given.
- 2 Let $z = a^n b^n a^n b^n \in L$.
- 3 $|z| = n + n + n + n = 4n \ge n$.
- **4** Assume any split z = uvwxy is given, and $1 |vx| > 0 \land 2 |vwx| \le n$.
- **5** Let i = 0. We need to show that $\neg \bigcirc 3$ $uv^0wx^0y \notin L$:
 - Since $2 |vwx| \le n$,

vx does not contain a's (or b's) in both different blocks.

- Since $\bigcirc{1}|vx| > 0$, we can remove at least one a (or b) in one block from z without changing the other one when i = 0.
- It means that $uv^0wx^0y \notin L$.

Let's prove that *L* is **NOT** context-free using the Pumping Lemma:

$$L = \{a^n b^m \mid m = n^2\}$$

Let's prove that L is **NOT** context-free using the Pumping Lemma:

$$L = \{a^n b^m \mid m = n^2\}$$

- $oldsymbol{1}$ Assume any positive integer n is given.
- **2** Let $z = a^n b^{n^2} \in L$.
- 3 $|z| = n + n^2 \ge n$.
- **4** Assume any split z = uvwxy is given, and $1 |vx| > 0 \land 2 |vwx| \le n$.
- **5** Let i = n + 1. We need to show that $\neg \bigcirc 3$ $uv^{n+1}wx^{n+1}y \notin L$:
 - Let's use proof by contradiction. Assume that $uv^{n+1}wx^{n+1}y \in L$.
 - Since $2 |vwx| \le n$, $v = a^p$ and $u = b^q$ for some $0 \le p, q \le n$, and:

$$uv^{n+1}wx^{n+1}y=a^{n+np}b^{n^2+nq}\in L$$

- Then, $(n + np)^2 = n^2 + nq \Rightarrow n^2p^2 + 2np = nq \Rightarrow np^2 + 2p = q$.
- Since (1) |vx| > 0, p > 0 or q > 0. However, q > n if p > 0 and q = 0 if p = 0. Therefore, we have a contradiction.

Let's prove that *L* is **NOT** context-free:

$$L = \{ w \in \{ a, b, c \}^* \mid N_a(w) = N_b(w) = N_c(w) \}$$

where $N_{\rm a}(w)$, $N_{\rm b}(w)$, and $N_{\rm c}(w)$ are the number of a's, b's, and c's in w.

Let's prove that *L* is **NOT** context-free:

$$L = \{ w \in \{ a, b, c \}^* \mid N_a(w) = N_b(w) = N_c(w) \}$$

where $N_a(w)$, $N_b(w)$, and $N_c(w)$ are the number of a's, b's, and c's in w.

- It is much easier to use closure properties under intersection with regular languages.
- Consider a regular expressions $R = a^*b^*c^*$ and its language:

$$L(R) = \{a^i b^j c^k \mid i, j, k \ge 0\}$$

- If L is context-free, then $L \cap L(R)$ must be context-free as well because of the closure under intersection with regular languages.
- However, we know that the following language is **NOT** context-free:

$$L \cap L(R) = \{a^n b^n c^n \mid n \ge 0\}$$

• Therefore, *L* is **NOT** context-free.

Summary

1. Pumping Lemma for Context-Free Languages

Size of Parse Trees in Chomsky Normal Form Pumping Lemma Proof of Pumping Lemma

2. Proving Languages are Not Context-Free

Example 1: $L = \{a^n b^n c^n \mid n \ge 0\}$ Example 2: $L = \{0^n 10^n 10^n \mid n \ge 0\}$ Example 3: $L = \{ww \mid w \in \{a, b\}^*\}$ Example 4: $L = \{a^n b^m \mid m = n^2\}$

Example 5:
$$L = \{w \in \{a, b, c\}^* \mid N_a(w) = N_b(w) = N_c(w)\}$$

Next Lecture

Turing Machines (TMs)

Jihyeok Park
jihyeok_park@korea.ac.kr
https://plrg.korea.ac.kr