

Horizon 2020 European Union funding for Research & Innovation

Pinocchio

Rigid body derivatives

memmo

Nicolas Mansard (CNRS)

□ ^AM_B=(^AR_B, ^AAB) represents the motion of all the points of the body

$$^{\mathbf{A}}\mathbf{p} = {}^{\mathbf{A}}\mathbf{M}_{\mathbf{B}} {}^{\mathbf{B}}\mathbf{p}$$

v=(v,ω) represents the velocity of each point of the object

Velocity vector field

$$v: p \rightarrow v_n$$

Choices to represent

SE3 action to change velocity expression frame

nu = pin.Motion.Random()
nu.linear # 3-array
nu.linear # 3-array

aMb = pin.SE3.Random()

 $A_nu = aMb.act(B_nu)$

A_nuvec = aMb.action @ B nuvec

6D jacobians

6D jacobians

You *MUST* numdiff

```
def myFunction(x):
    ...
def myDerivative(x):
    ...
x=random
assert(norm(myDerivative(x)-
```


numdiff(myFunction,x))<1e-6)

You *MUST* numdiff

- When mathematical programming ...
 - ... start with finite differences (numdiff)

- Easier to implement
- Less error prone
- Works often just as well, only very slow
- □ You *NEED* finite differences to check

You *MUST* numdiff

Linear part of spatial velocity

Interpretation of

Linear rows of the jacobian

pin.getFrameJacobian(...,pin.LOCAL_WORLD_ALIGNED)[3:,:]

Explain rows of J

Posture cost and derivative

First implementation

$$c(q) = || q - qref ||^2$$

$$\nabla c = q - qref$$

When q lives in a Lie group

$$c(q) = r(q)^{T} r(q)$$

$$r(q) = pin.difference (rmodel, q, qref)$$

$$\nabla \mathbf{c} = 2\nabla \mathbf{r}^{\mathrm{T}}\mathbf{r}$$

$$\nabla r = \text{pin.dDifference(rmodel,q,qref)[0]}$$

Gravity cost

$$c(q) = g(q)^{T}g(q)$$

Derivatives

Whole body dynamics

$$M(q) a_q + b(q, v_q) = \tau_q$$

Inverse dynamics

$$\tau_q = \text{rnea}(q, v_q, a_q) = M(q) a_q + b(q, v_q)$$

Direct dynamics

$$a_q = aba(q, v_q, a_q) = M(q)^{-1} (\tau_q - b(q, v_q))$$

RNEA derivatives

Inverse dynamics

$$\tau_{q} = \text{rnea}(q, v_{q}, a_{q}) = M(q) a_{q} + b(q, v_{q})$$

Derivatives

pin.computeRNEADerivatives

(rmodel, rdata, q, vq, aq)

$$\Box \frac{\partial l_q}{\partial a}$$
 rdata.dtau_dq

$$\Box \frac{\partial v_q}{\partial v_q}$$
 rdata.dtau_dv

$$\frac{\partial^{n} q}{\partial a_{q}} = ???$$

ABA derivatives

Direct dynamics

$$a_q = aba(q, v_q, a_q) = M(q)^{-1} (\tau_q - b(q, v_q))$$

Derivatives

pin.computeABADerivatives

(rmodel, rdata, q, vq, aq)

- $\Box \frac{\partial a_q}{\partial a}$ rdata.ddq_dq
- $\Box \frac{\partial a_q}{\partial v_q}$ rdata.ddq_dv
- $\Box^{\partial a_q}/_{\partial \tau_a}$ rdata.Minv

Weighted gravity

- □ Cost function: $c(q)=g(q)^TM^{-1}g(q)$
- Derivatives

2.7 Derivations in Lie groups

Tangent applications and coefficient-wise jacobians

Tangent space

Representation of SO(3)

$$r \in SO(3) \cong R \in \mathbb{R}^{3\times3}$$

$$\cong q \in \mathbb{H} \cong \mathbb{R}^{4\times4}$$

Representation of SO(3) derivatives

$$\dot{r} \in \mathfrak{so}(3) = \mathbb{R}^3$$

Function of a rotation

$$f(r) = f(R) = f(q)$$

Tangent application

Thinking "finite differences"

$$r \in SO(3)$$
, $\Delta r \in \mathfrak{so}(3)$

$$f(r \oplus \Delta r) - f(r) \approx F_r \Delta r$$

□ Tangent application ⊕

$$\frac{df(r \oplus \Delta r)}{d\Delta r} := \mathsf{T}_{\mathsf{r}}\mathsf{f}$$

Coefficient-wise derivative

□ If we choose a specific representation...

$$f = f(q)$$

- \square What is df/dq₀?
 - \square What is dq₀?

$$\frac{\partial f}{\partial q_0} \approx \frac{f(q + [\varepsilon, 0, 0, 0]) + f(q)}{\varepsilon}$$

Let's call this quantiy "coefficient-wise" derivative

Tangent vs coefficient-wise

Both matrices are linked by

Coefficient-wise derivatives of f

Posture generator

Sample a configuration ...

... project it into contact

Contact planner

Python prototype

```
173
        def searchContactPosture(self, numberOfContacts, qquess=None, ntrial=100):
174
175
            Search (randomly) a contact configuration with a given number of contacts.
176

    number of contacts: between 1 and len(self.contactCandidates).

177
            - quess is a configuration, of dim rmodel.nq. If None, a random configuration is first
178
            sampled.
179
            - ntrial: number of random trial.
180
181
            If successfull, set self.success to True, and store the contact posture found in self.gcontact.
182
            If not sucessfull, set self.success to False.
183
            Returns self.success.
184
185
            assert 0 < numberOfContacts < len(self.contactCandidates)</pre>
186
            if aguess is None:
187
                 qquess = pin.randomConfiguration(self.rmodel)
188
189
            for itrial in range(ntrial):
190
                 limbs = random.sample(list(self.contactCandidates.values()), numberOfContacts)
191
                 stones = random.sample(self.terrain, numberOfContacts)
192
193
                 constraints = [Constraint(self.rmodel, limb.frameIndex, stone, limb.contactType)
194
                                for limb, stone in zip(limbs, stones)]
195
196
                 self.postureGenerator.run(qguess, constraints)
197
                 if self.postureGenerator.sucess:
                     # We found a candidate posture, let' s check that it is acceptable.
198
199
                     qcandidate = self.postureGenerator.qopt.copy()
200
201
                     # computeCollisions check collision among the collision pairs.
202
                     collision = pin.computeCollisions(self.rmodel, self.rdata,
                                                       self.collision model, self.collision data, qcandidate, True)
203
204
                     if not collision:
205
206
                         self.qcontact = qcandidate
207
                         self.success = True
208
                         return True
209
210
            self.success = False
            return False
211
```


