

超小芯片级(5mm*5.5mm)超低功耗蓝牙 BLE5.0 模组数据手册

规格书版本号: V5.1

目录

一、	版本历史	1
二、	概述	2
三、	硬件规格	4
	3.1 封装与尺寸	4
	3.2 引脚定义	
	3.3 串口流控说明	8
	3.4 内部结构	8
	3.5 参考设计	<u>c</u>
	3.5.1 利用内部自带天线接法	g
	3.5.2 利用外部天线接法	g
	3.5.3 硬件设计注意事项	g
	3.5.4 外接天线部分设计参考	10
四、	电气参数	12
	4.1 最大耐受值	12
	4.2 推荐工作值	12
	4.3 IO 口直流特性	12
	4.4 射频特性	13
	4.5 功耗	13
五、	回流焊焊接建议	14
六、	超声波焊接注意事项	15
七、	供应信息	16
	7.1 型号定义	16
	7.2 包装方式	16

一、版本历史

表 1-1 修订记录

序号	版本号	发布时间	修订人	审核人	描述
1	V1.0	20190705	LMY	LJH	初代版本
2	V2.0	20200108	LMY	ZYP	增加配置引脚
3	V3.0	20201018	LMY	LJH	增加串口流控,以达到更高的传输速率
4	V5.0	20220106	LMY	LJH	框架升级,更新到 V5.0,提高性能与增加稳
					定性
5	V5.1	20220211	LMY	LJH	更新引脚和封装图,完善资料

二、概述

2.1 特性

- •本版本为可设置高速率流控版本,低速率时最高 30K Bytes/s,进入高速率模式后与大部分安卓 手机能够达到>70K Bytes/s 的速率(设置为硬件流控模式),与 IOS 手机可以达到>60K Bytes/s 的速率(设置为硬件流控模式)。
- ●供电电压范围: 1.7V~3.6V
- ●可提供最多 10 个 GPIO 口
- ●内置高性能天线(也可扩展外接天线)
- ●功能
 - 支持 BLE 5.1、嵌入低功耗蓝牙协议栈和 GATT 服务
 - 支持 BLE 从机(支持 OTA 空中升级功能)
 - 内置高速透传固件
 - 增加串口 RTS、CTS 流控选择,以达到最大通信速率和最小丢包率
- ●射频特性
 - 工作频率 2.4GHz, 支持 ISM 免费频段
 - 发射功率: -20dBm~+4dBm
 - 高接收灵敏度: -96dBm
 - 收发峰值电流 < 4.6mA
 - 内置天线在开阔地区的蓝牙传输距离: 5~10米
 - 外置天线在开阔地区的蓝牙传输距离: 40~80 米
- ●低功耗
 - 休眠电流< 2μA
 - 1 秒间隔广播电流 12.2μA(0dBm)或 15.5μA(+4dBm)
 - 2 秒间隔广播电流 6.5μA
- ●封装: LGA24, 焊盘间距: 0.75mm 和 0.8mm
- ●尺寸: 5mm*5.5mm*1.3mm(含内置天线)
- ●重量: 0.10g
- ■工作温度范围: -40~+105°C (最高极限稳定温度+120°C)
- ●符合 ROHS 标准

三、硬件规格

3.1 封装与尺寸

LGA24 封装,焊盘间距横向 0.75mm,纵向 0.8mm。详细尺寸如图 3-1、图 3-2、图 3-3 和图 3-4 所示。

图 3-1.1 俯视图

图 3-1.2 侧视图

图 3-1.3 底视图

DIMENSIONAL REFERENCES	Units:mm
DIMEDICAL PROPERTY OF THE PROP	C

SYMBOL	DIMENSI		SYMBOL	Tolerance of Form &Position	
SYMBOL	MIN	NOM	MAX	aaa	0.10
A	1.26	1.30	1.34	bbb	0.10
A1	0.27	0.30	0.33		
D	4.90	5.00	5.10		
E	5.40	5.50	5.60		
а	0.45	0.50	0.55		
e1		0.75 REF			
e2		0.80 REF			

图 3-1.4 尺寸图

3.2 引脚定义

图 3-2.1 引脚图

图 3-2.2 推荐封装尺寸图

表 3-2 引脚定义表

Pin	名称	类型	描述	透传模组功能
1	SWDCLK	INPUT	烧写调试接口时 	
1	SWEEK		钟	76 m (C/1) · 176 I
2	NC		空脚	 该引脚悬空即可
3	P0.14	OUTPUT	串口流控 RTS	BLE 串口流控 RTS 输出
		(UART RTS)		(允许外部串口数据发送使能)
				当使能流控后,RTS 引脚输出低电平 0 时,则
				允许外部设备向蓝牙发送数据;
				当 RTS 引脚输出高电平 1 时,则表示蓝牙忙,
				禁止外部设备向蓝牙发送数据;
4	P0.12	OUTPUT	BLE UART TX	蓝牙模组的串口 TX 引脚
				(透传模式下,该引脚为串口的 TX 引脚,与
				MCU 的 RX 连接)
5	P0.05/AIN3	INPUT	BLE UART RX	蓝牙模组的串口 RX 引脚
				(透传模式下,该引脚为串口的 RX 引脚,与
				MCU 的 TX 连接)
6	P0.04/AIN2	OUTPUT	连接状态	从机连接状态指示引脚
				(当输出为高电平时,模组作为从机已经成功
				被手机连接; 当输出为低电平时, 模组作为从
				机已经被手机断开连接。)
7	VCC_IN	POWER	电源输入 DC1.7V	模组电源输入引脚
		INPUT	~ 3.6V	
8	NC		空脚	该引脚悬空即可

			,	. 讨机注DIA 外机同本平成平 IIJ-1651WIII_LIIF(
9	P0.01	INPUT	BLE 蓝牙串口接	串口接收使能引脚(可设置,默认低电平有效)
			收使能	当设置低电平有效时: P0.01=0,模组的串口接
				收功能使能,此时 HJ-185 IMH 全速工作,可以
				进行指令发送或数据透传,模组的功耗会增加
				300~400μA; P0.01=1,模组的串口接收功能禁
				用,模组工作在低功耗状态。此时如果一秒一
				次进行广播,功耗<15μA。如果停止广播,功
				耗<2μA。
				当设置高电平有效时: P0.01=1,模组的串口接
				收功能使能; P0.01=0, 模组的串口接收功能禁
				用。
10	P0.00	OUTPUT	APP 数据到来提	APP 接收数据指示引脚
			示	当模组收到手机 APP 或者连接本模组的外部设
				备发送过来的数据时,BLE 模组需要将数据通
				过模组的串口 TX 引脚发出去。无论模组作为
				 主机还是从机,该引脚被拉高 T1 (ms) (T1 可
				以设置,范围为 1-255ms)之后才会将数据通过
				模组的串口TX引脚发出,数据发送完毕后才
				能拉低。平时该引脚保持低电平代表空闲。此
				引脚用来作为长连接低功耗设备的唤醒标志。
11	NC		分叶	
11			空脚	该引脚悬空即可
12	NC		空脚	该引脚悬空即可
13	NC		空脚	该引脚悬空即可
14	P0.16	INPUT	APP 配置使能	使能 APP 配置功能
				当该引脚被输入高电平时,则使能手机 APP 发
				送指令配置模组所有参数。
				当该引脚被输入低电平时,则禁止手机 APP 配
				置或读取模组参数。
				直域
15	P0.18	IO	 暂时无用	可配置为其它功能,目前保持悬空即可
16	nRESET	INPUT/Reset	硬件复位	外部硬件复位引脚
		Pin		低电平有效,低电平持续时间应在 1ms 以上。
17	SWDIO	Debug Port	仿真调试下载数	无需使用可悬空
	_	5	据	
18	P0.20	INPUT(UAR	串口流控 CTS	BLE 串口流控 CTS 输入
		T CTS)		(允许 BLE 串口向外发送数据使能)
				使能串口流控后,当 CTS 被外部输入低电平 0
				时,蓝牙串口允许向外发送数据;
				当 CTS 被外部输入高电平 1 时,蓝牙串口停止
				向外发送数据。

19	EXT-ANT	EXT ANT RF	外接天线引脚输	模组射频输出引脚,如果空间足够,最好加入
		OUTPUT	出	π 型滤波电路连接外部天线。
20	OB-ANT	Onboard ANT	板载天线输入	如果想使用板载天线,直接将 19 与 20 脚短路
21	GND	Ground	电源输入 GND	模组电源地,需要保证良好接入 GND 网络,且
				模组 GND 覆铜面积足够大

3.3 串口流控说明

HJ-185LHFC 高速流控版,可以通过指令来启用和停止串口流控。当串口流控使能后,BLE-CTS 和 BLE-RTS 引脚就被使能。

1、BLE-CTS 为输入状态,与外部设备的 MCU-RTS 连接,当 BLE-CTS 被外部输入低电平 0 时,蓝 牙串口允许向外发送数据;当 BLE-CTS 被外部输入高电平 1 时,蓝牙串口停止向外发送数据。

外部 MCU 根据自身串口接收缓冲区的情况,通过 IO 控制 BLE-CTS 引脚来允许和禁用 BLE 串口发送数据的频率和时间,从而保证自身缓冲区不溢出,达到最高速率和最低丢包率。

2、BLE-RTS 为输出状态,与外部设备的 MCU-CTS 连接,当 BLE-RTS 引脚输出低电平 0 时,则允许外部设备向蓝牙发送数据;当 BLE-RTS 引脚输出高电平 1 时,则表示蓝牙忙,禁止外部设备向蓝牙发送数据:

当 BLE-RTS 输出高电平时,我们依然预留了部分资源来接收外部数据,因为外部设备可能不能立即停止发送。

3.4 内部结构

图 3-4 HJ-185 IMH 内部结构图

3.5 参考设计

3.5.1 利用内部自带天线接法

图 3-5.1 内部天线接法图

3.5.2 利用外部天线接法

图 3-5.2 外部天线接法图

3.5.3 硬件设计注意事项

- 1、模组天线应放置于电路板的四周边缘位置,天线部分靠近主板边或者角,最好将模组放置在电路板的角落上。
- **2、**在蓝牙模组的天线附近及背面,尽量不放置其它元器件,并且不能走线。 如果放置器件或走 线将影响蓝牙性能。
- 3、将电路板每层都整体覆铜接 GND, 并需要确保模组尤其天线部分覆铜面积足够大, 并且良好

发注电子 tshjdz.com

(FULL 支持流控)OTA 从机高速率版本 HJ-185IMH_LHFC

接地。

- **4、**在整个电路板的覆铜区域需要打上过孔,尤其在模组和天线附近的覆铜,应尽可能多的打上过孔。
- 5、如果电路板上存在大功率器件或高压转换电路,需要将模组的 GND 覆铜与其他部分的 GND 覆铜隔离,采用单点接地的方式连接,并尽可能多的打上过孔以降低对射频信号的干扰。
- 6、模组不应该放入以金属为材料的外壳中,如果必须使用金属外壳,那必须将天线引出。
- 7、需要安装此蓝牙模组的产品中,一些金属材料的部件,如螺丝,电感等应该尽量远离蓝牙模组的射频天线部分。
- 8、滤波电容 C1, C2 要尽可能的靠近模组的电源输入引脚放置。
- 9、所有引脚请注意查看引脚图,与之相连的 IO 请注意 IO 模式和状态。
- **10、**GND 必须良好的接地。
- 11、输入电源建议进行磁珠或者电感滤波。
- 12、不需要用的引脚可悬空处理。

3.5.4 外接天线部分设计参考

1、**使用内部高性能天线:** 只需将 PIN19 与 PIN20 短接,即可使能内部高性能天线,如下图 3-5.3 所示,开阔地通信距离 5~10 米。

需要注意天线附近不能放置器件、不能走线,模组背面不能放置器件,覆铜应避开内部天线 区域,且模组 GND 覆铜足够大。

图 3-5.3 内部天线电路设计

2、使用外部 PCB 天线: PIN20 引脚悬空,将 PIN19 引脚通过一个 π 型滤波电路连接到 PCB

天线,如下图 3-5.4 所示,开阔地通信距离可达 40~80 米。

需要注意天线附近不能放置器件、不能走线,模组背面不能放置器件,覆铜应包裹模组及 PI 滤波电路,避开 PCB 天线。

图 3-5.3 外部 PCB 天线电路设计

四、电气参数

4.1 最大耐受值

表 4-1 最大耐受值

参数	最小值	最大值	单位
供电电压 VCC	1.7	3.6	V
IO 口电压	0	VCC	V
工作温度	-45	+120	°C
储存温度	-55	+135	°C

4.2 推荐工作值

表 4-2 推荐工作值

参数	推荐最小值	典型值	推荐最大值	单位
供电电压 VCC	1.8	3.3	3.6	V
IO 口电压	0	3.3	VCC	V
休眠工作电流		<2		μА
最大工作电流		5		mA
工作温度	-40	+25	+85	°C

4.3 IO 口直流特性

表 4-3 IO 口直流特性

IO 引脚	驱动能力	最小值	最大值	单位
输入低电平		0	0.4	V
输入高电平		0.7	VCC	V
输出低电平	5mA	0	0.6	V
输出高电平	5mA	3.3	VCC	V

4.4 射频特性

表 4-4 射频特性

属性	值	备注
蓝牙调制方式	GFSK	
频率范围	2.402 ~ 2.480Ghz	频宽: 2Mhz
频道数	40	
空中速率	1Mbps、2Mbps	
射频端口阻抗	50Ω	
发射功率	最大: +4dbm	
发射电流	典型值: 4.6mA	
接收电流	典型值: 4.6mA	
接收灵敏度	典型值:-94dbm,最大:-96dbm	
天线	板载天线	亦可外接天线

4.5 功耗

表 4-5 功耗

测试条件	典型值	单位
休眠模式	<2	μА
从机模式下 20ms 间隙广播	705	μА
从机模式下 1S 间隙广播	13.5	μА
从机模式下 20ms 连接间隙保持连接	138	μД
从机模式下 7.5ms 连接间隙保持连接	350	μА

五、回流焊焊接建议

推荐使用回流焊进行焊接。

HJ-185LHFC 模组板材均为耐高温板材,全部采用无铅工艺,最高测试耐温为 260℃。进行 10 次连续回流焊对性能和强度没有任何影响。具体参数如表 5-1 所示。

衣 3-1 凹流汗 多		
属性	值	
特性参数	全无铅工艺	
平均温度爬升率	3°C/秒 max	
最低温度	150°C	
最高温度	200°C	
回流焊时间	80-100 秒	
峰值温度	240±5°C	
平均温度下调率	6°C/秒 max	
温度从 25℃爬升到峰值温度时间	8 分钟 max	

图 5-1 回流焊温度曲线图

家佳电子 tshjdz.com

(FULL 支持流控)OTA 从机高速率版本 HJ-185IMH LHFC

六、超声波焊接注意事项

警告:请慎重考虑使用超声波焊接工艺,如果必须要使用超声波焊接工艺,请使用 40KHZ 高频率超声波焊接技术,设计过程中请将模组远离超声波焊接线和固定柱,以防止模组造成损伤! 具体超声波焊接事项,请联系我司技术进行咨询。

七、供应信息

7.1 型号定义

表 7-1 型号定义

类型	型号	描述
串口透传高速率	HJ-185IMH_LH	内置串口透传固件,该固件模组是蓝牙设备或者手机与 MCU 之
升级版	FC	间双向通信的桥梁,使用者不需要了解蓝牙协议栈,通过串口指
		令操作和串口数据收到即可,操作简单,缩短用户开发周期,加
		快产品上市。

7.2 包装方式

使用卷带和圆盘进行包装。使用芯片级的防静电铝箔袋密封,每袋放入干燥剂,工业级抽真空机保证不漏气、防潮、防水防尘(IP65)。实际包装效果如图 7-1 所示。

图 7-1 包装图

所有包装都将用标签注明货物信息,包括提供 ROHS 和防静电标志,料号中生产批次信息为 15 位标识。

唐山宏佳电子科技有限公司

HJ-185IMH_LHFC

Pb Free Reflow(260°C)

DATE CODE:P16al15bS17c001

注: P16a I15b S17c001 代表 PCB 生产于 2016 年 1 月, IC 生产于 2015 年 2

月, SMT 贴片于 2017 年 3 月第 1 批。

图 7-2 标签示例图

唐山宏佳电子科技有限公司