Kvantni algebrajski učinki

Strah

26. 5. 2022

mentor: doc. dr. Matija Pretnar

Motivacija

Kvantno programiranje

- · Novi problemi za teorijo programskih jezikov
- Enakost programov

Motivacija

└─ Motivacija

- 1. Dva izziva:
 - Strojna oprema
 - Programska oprema
- 2. Kloniranje
 - Linearnost

Pregled

- Kratek opis kvantne mehanike
- · Definiramo algebrajski jezik
- · Podamo model za ta jezik
- · "Dokažemo" polnost

Kvantni vektorji

Definicija (Binarni vektorji)

Binarni vektorji so elementi prostora $\mathbf{B}_n \coloneqq 2^n$ in jih pišemo kot nize.

Primer: $\mathbf{B}_2 = \{00, 01, 10, 11\}.$

Definicija (Kvantni prostor)

Kvantni vektorji (nadaljnje vektorji) so elementi prostora

 $\mathbf{H}_n := \mathbb{C}^{2^n}$. Kubiti so elementi $\mathbf{H} := \mathbf{H}_1$.

Če je $\{e_j\}$ standardna baza \mathbf{H}_n pišemo $|j\rangle \coloneqq e_j$.

Očitno je $\mathbf{H}_n = \mathcal{L}_{\mathbb{C}}(\{|j\rangle \mid j \in \mathbf{B}_n\}).$

Primeri

Primer (n=1)

$$a = \begin{bmatrix} a_0 \\ a_1 \end{bmatrix} = a_0 \left| 0 \right\rangle + a_1 \left| 1 \right\rangle = a_0 \begin{bmatrix} 1 \\ 0 \end{bmatrix} + a_1 \begin{bmatrix} 0 \\ 1 \end{bmatrix}.$$

Primer (n=2)

$$a = \begin{bmatrix} a_0 \\ a_1 \\ a_2 \\ a_3 \end{bmatrix} = \begin{bmatrix} a_{00} \\ a_{01} \\ a_{10} \\ a_{11} \end{bmatrix} = a_{00} |00\rangle + a_{01} |01\rangle + a_{10} |10\rangle + a_{11} |11\rangle.$$

Primer (Hadamardov vektor)

$$\mathbf{h}\coloneqq\rho\left(\left|0\right\rangle +\left|1\right\rangle \right),\quad \mathbf{h}_{n}\coloneqq\rho^{n}\textstyle\sum_{j\in\mathbf{B}_{n}}\left|j\right\rangle .$$

Blochova sfera

Kubit a predstavimo kot točko v \mathbb{S}^2 z identifikacijo:

$$a = \cos\frac{\theta}{2}|0\rangle + e^{i\varphi}\sin\frac{\theta}{2}|1\rangle$$

Tenzorski produkt

Definicija (Tenzorski produkt)

Tenzorski produkt prostorov \mathbf{H}_n in \mathbf{H}_m je enak \mathbf{H}_{n+m} . Če sta $a \in \mathbf{H}_n$ in $b \in \mathbf{H}_m$ je $a \otimes b \in \mathbf{H}_n \otimes \mathbf{H}_m = \mathbf{H}_{n+m}$.

Primer (n=m=1)

$$\begin{bmatrix} a_0 \\ a_1 \end{bmatrix} \otimes \begin{bmatrix} b_0 \\ b_1 \end{bmatrix} = \begin{bmatrix} a_0 b_0 \\ a_0 b_1 \\ a_1 b_0 \\ a_1 b_1 \end{bmatrix}$$

Posledica

$$\left|j\right\rangle \otimes \left|k\right\rangle = \left|j\right\rangle \left|k\right\rangle = \left|j\#k\right\rangle, \quad a\otimes b = \sum_{\substack{j\in\mathbf{B}_n,\\k\in\mathbf{B}_m}} a_j b_k \left|jk\right\rangle$$

Primeri

Primer

$$\mathbf{h}_n = \mathbf{h}^{\otimes n} = \rho^n \underbrace{(|0\rangle + |1\rangle) \otimes \cdots \otimes (|0\rangle + |1\rangle)}_{n}.$$

$$\mathbf{H}_n = \mathbf{H}^{\otimes n}$$
.

Definicija

Če lahko vektor $a \in \mathbf{H}_n$ zapišemo kot $\bigotimes_{j=1}^n a_j$ z $a_j \in \mathbf{H}$ pravimo, da je enostaven ali separabilen, sicer je pa sestavljen ali kvantno prepleten.

Unitarna vrata

Definicija (Unitarna vrata)

Unitarna vrata reda n so unitarne matrike dimenzije 2^n . Tenzorski produkt $U \otimes V = [u_{jk}V]_{j,k}$ uporabljen na $a \otimes b$ je enak $Ua \otimes Vb$.

Primer (Tenzorski produkt unitarnih vrat)

$$\begin{bmatrix} a_{00} & a_{01} \\ a_{10} & a_{11} \end{bmatrix} \otimes B = \begin{bmatrix} a_{00}B & a_{01}B \\ a_{10}B & a_{11}B \end{bmatrix}.$$

Primeri

Primer (Paulijeve matrike)

To so matrike rotacije okrog osi na Blochovi sferi:

$$I_2 = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, X = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}, Y = \begin{bmatrix} 0 & -i \\ i & 0 \end{bmatrix}, Z = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}.$$

Velja
$$X^2 = Y^2 = Z^2 = I_2$$
.

Primer (Paulijeve matrike)

Primeri

Primer (Hadamardova matrika)

Predstavlja rotacijo okrog x=z,y=0 premice.

$$\operatorname{Had} =
ho egin{bmatrix} 1 & 1 \ 1 & -1 \end{bmatrix}$$
 , $\operatorname{Had}(|0
angle) = \mathbf{h}$

Primer (Hadamardova matrika)

Kvantna meritev

Definicija (Kvantna meritev)

Meritev kubita $a=a_0\,|0\rangle+a_1\,|1\rangle$ označimo M(a) in je 0 z verjetnostjo $|a_0|^2$ in 1 z verjetnostjo $|a_1|^2$. To "uniči" kubit a.

Primer (Pogojna uporaba vrat)

if $\underline{\mathsf{measure}}(a) = 0$ then Ub else Vb

Kvantna kontrola

Definicija

Kontrola "na ena" in "na nič".

$$\begin{split} C_{r,s}(U) \, |j\rangle &= \begin{cases} |j\rangle & ; \quad j_r = 0 \\ |j_1 \ldots\rangle \, |Uj_s\rangle \, |\ldots \, j_n\rangle & ; \quad j_r = 1 \end{cases} \\ \overline{C}_{r,s}(U) \, |j\rangle &= \begin{cases} |j_1 \ldots\rangle \, |Uj_s\rangle \, |\ldots \, j_n\rangle & ; \quad j_r = 0 \\ |j\rangle & ; \quad j_r = 1 \end{cases} \end{split}$$

Posebej za $U \in \mathrm{U}_2$ označimo

$$\mathrm{cU} \coloneqq C_{1,2}(U) = D(\mathrm{I}_2, \mathrm{U}), \quad \mathrm{\bar{c}U} \coloneqq \overline{C}_{1,2}(U) = D(\mathrm{U}, \mathrm{I}_2).$$

Primeri

Primer

 $\quad \text{if } \underline{\text{measure}}(a) = 0 \ \text{then } (a, Ub) \ \text{else } (a, Vb)$

Primer (Prepleteni pari kubitov)

$$\begin{aligned} \operatorname{cX}(a \otimes |0\rangle) = "a \otimes b" &= a_0 \, |00\rangle + a_1 \, |11\rangle \\ a & - \bullet - a \\ |0\rangle & - b \end{aligned}$$

Algebrajski jezik

- · Tip kubitov qubit. Funkcije dostopanja:
 - $\operatorname{new}(a.t)$: Dodeli nov kubit, z začetno vrednostjo $|0\rangle$
 - \cdot apply $_{\Pi}(a;b.t)$: Uporabi vrata U na danem vektorju
 - measure(a; t, u): Izmeri kubit, nadaljuje v t ali u
 - discard(a; t) := measure(a; t, t)
- Za tipa A in B obstaja tip $A \otimes B$ prepletenih parov.

Aksiomi

(A) Kvantna negacija pred meritvijo je negacija po meritvi.

(B) Kvantna kontrola je po meritvi kot klasična kontrola.

- (C) Kvantna vrata uporabljena na zavrženih kubitih so odveč.
- (D) Meritve novih kubitov so vedno 0.

(E) Vrata kontrolirana z novimi kubiti se nikoli ne uporabijo.

(...) Plus še sedem manj zanimivih akisomov.

-Aksiomi

Lahko prestavim malo kasneje

- 1. Kvantna negacija in kontrola se obnašata kot klasični verziji.
- 2. discard dela kot pričakujemo.
- 3. Novi kubiti so vedno $|0\rangle$ glede na meritev in kontrolo.
- 4. Sklopa sta
 - 4.1 apply se razume z matrikami.
 - 4.2 Stvari komutirajo, kolikor lahko, do vezave spremenljivk.

Algebrajska teorija

Definicija

 $\label{eq:lemost_problem} \ref{eq:lemost_problem} \ref{eq:lemost_problem} \ensuremath{\text{Elemost_problem}} \ref{eq:lemost_problem}, \textit{kjer so } p, m_i \in \mathbb{N}.$

Neformalno členost pove, da operacija O sprejme p parametrov in k računskih spremenljivk, kjer i-ti veže m_i parametrov. Pišemo O : $(p \mid m_1,...,m_k)$.

$$\begin{split} \mathsf{new} : (0 \mid 1) & & \mathsf{measure} : (1 \mid 0, 0) & & \mathsf{apply}_{\mathsf{U}} : (n \mid n) \\ & \frac{\Gamma \mid \Delta, a \vdash t}{\Gamma \mid \Delta \vdash \mathsf{new}(a.t)} & \frac{\Gamma \mid \Delta \vdash t & \Gamma \mid \Delta \vdash u}{\Gamma \mid \Delta, a \vdash \mathsf{measure}(a; \, t, u)} \\ & \frac{\Gamma \mid \Delta, a_1, ..., a_n \vdash t}{\Gamma \mid \Delta, a_1, ..., a_n \vdash \mathsf{apply}_{\mathsf{U}}(a_1, ..., a_n; \, t)} \end{split}$$

C^* -algebre

Definicija

A je C^* -algebra, če:

- · je normiran C-vektorski prostor,
- · ima množenje in enoto,
- · ima involucijo, za katero velja $||x||^2 = ||x^*x||$

Za nas so $\mathbf{M}_n \coloneqq M_n(\mathbb{C})$ unitarne $n \times n$ matrike.

Definicija

Za $A, B \in \mathbf{Cstar}$ je $f: A \to B$ *-homomorfizem, če je linearna preslikava, ki ohranja množenje, enoto, in involucijo.

Kvantni algebrajski učinki

L C^* -algebre

 $\begin{aligned} & \textbf{Definicija} \\ & A_{II} & C^{**} \text{oligibitos}, \delta c \\ & +_{II} & c \text{monitor} C^{**} \text{extences} \text{prostor}, \\ & -_{III} & \text{monitor} \text{oligibitos}, \text{oligibitos}, \\ & -_{III} & \text{monitoricity}, \text{oligibitos}, \\ & -_{III} & -_{III} & \text{monitoricity}, \\ & -_{III} & -_{III} & -_{III} & -_{III} \\ & -_{III} & -_{III} & -_{III} & -_{III} \\ & -_{III} & -_{III} & -_{IIII} & -_{III} \\ & -_{III} & -_{III} & -_{III} & -_{III} \\ & -_{III} & -_{III} & -_{III} & -_{III} \\ & -_{III} & -_{III} & -_{III} & -_{III} \\ & -_{III} & -_{III}$

1. Involucija je hermitsko transponiranje

Matrike

Trditev

Velja $M_n(\mathbf{M}_p) = \mathbf{M}_{np}$

Vsaka linearna preslikava $f:X\to Y$ se naravno razširi do $M_n(f):M_n(X)\to M_n(Y).$

 $Velja\ M_n(X\oplus Y)\cong M_n(X)\oplus M_n(Y)$

Trditev

Izraze algebrajske teorije interpretiramo z unitarnimi matrikami: Izraz $x_1:m_1,...,x_k:m_k\mid a_1,...,a_p\vdash t$ interpretiramo kot linearno preslikavo

 $\llbracket t \rrbracket : \mathbf{M}_{2^{m_1}} \oplus \cdots \oplus \mathbf{M}_{2^{m_k}} \to \mathbf{M}_{2^p}.$

 $M_n(X)$ predstavlja n prepletenih parov X

Matrike

Trditev $\operatorname{Velja}\, M_n(\mathbf{M}_p) = \mathbf{M}_{np}$

Vsaka linearna preslikava $f: X \rightarrow Y$ se naravno razširi o $M_a(f): M_a(X) \rightarrow M_a(Y)$.

Velja $M_n(X \oplus Y) \cong M_n(X) \oplus M_n(Y)$

trattev

Lizzaze algebrajske teorije interpretiramo z unistarnimi matrikami: Lizzaz $x_1 : m_1, ..., x_k : m_k \mid a_1, ..., a_p \vdash t$ interpretiramo kot linearno preslibavo $[t] : \mathbf{M}_{2^{n_k}} \oplus ... \oplus \mathbf{M}_{2^{n_k}} \to \mathbf{M}_{2^n}$

Osnovne operacije

Definicija

Operaciji measure in apply $_{_{\hspace{-.05cm} U}}$ interpretiramo z *-homomorfizmoma measure : $\mathbf{M}_{2^0} \oplus \mathbf{M}_{2^0} \to \mathbf{M}_{2^1}$ in apply $_{_{\hspace{-.05cm} U}}: \mathbf{M}_{2^p} \to \mathbf{M}_{2^p}$, s predpisoma

$$\mathit{measure}(\alpha,\beta) = \begin{pmatrix} \alpha & 0 \\ 0 & \beta \end{pmatrix} \qquad \mathit{apply}_{\mathsf{U}}(A) = U^*AU.$$

 $\mathsf{measure} : (1 \mid 0, 0) \qquad \mathsf{apply}_{\mathsf{II}} : (p \mid p)$

Polnost

Izrek (Polnost v posebnem)

- 1. Za vsak *-homomorfizem $f: \mathbf{M}_{2^{m_1}} \oplus \cdots \oplus \mathbf{M}_{2^{m_k}} \to \mathbf{M}_{2^p}$ obstaja izraz v algebrajski teoriji, ki ne vsebuje operacije new, tako da je $x_1: m_1,...,x_k: m_k \mid a_1,...,a_p \vdash t$ in $[\![t]\!] = f$.
- 2. Če $\Gamma \mid \Delta \vdash t, u$ ne vsebujeta new in $[\![t]\!] = [\![u]\!]$ lahko izpeljemo $\Gamma \mid \Delta \vdash t = u$.

Dokaz

Definicija

Množica Bratelijevih diagram za signaturo $(p \mid m_1,...,m_k)$ je množica k-teric $(s_i)_i$, tako da velja $\sum_{i=1}^k s_k m_k = p$.

Izrek

*-homomorfizmi $\mathbf{M}_k \to \mathbf{M}_n$ so oblike $A \mapsto U^*D(A,...,A,0)U$ za neko unitarno matriko U.

Izrek

 $\mu: \mathbf{Brat}(p \mid m_1,...,m_k) \leftrightarrow \mathbf{Cstar}(\mathbf{M}_{2^{m_1}} \oplus \cdots \oplus \mathbf{M}_{2^{m_k}},\mathbf{M}_{2^p}): \rho$ obstajata in $\rho\mu = \mathrm{id}$.

Enakost $\rho(f)=\rho(g)$ velja natanko tedaj, ko obstaja unitarna matrika U, tako da za vsak \underline{A} velja $f(\underline{A})=U^*g(\underline{A})U$.

Kvantni algebrajski učinki

Note that the second product of the second product of $[m_1, \dots, m_k]$) is marked a smooth product of the second product of $[m_1, \dots, m_k]$) is marked to set of $[m_1, \dots, m_k]$ or $[m_1, \dots, m_k]$. Here $[m_1, \dots, m_k]$ is a so above of the second contains on a smooth of $[m_1, \dots, m_k]$ or $[m_1,$

└─ Dokaz

- 1. k < n, n = mk + r
- 2. $\mu(s_1,...,s_k)(A_1,...,A_k) = D(A_1,...,A_1,A_2,...,A_k)$.
- 3. Dokaz: znamo prehajat med **Brat** in **Cstar**, želimo iz *T* v **Cstar**, gremo prek **Brat**, znamo v **Brat**, iz **Brat** gremo z measure
- 4. Tako dobimo točno, kar želimo (obliko apply(measure(...)))
- Ostane pokazati, da je to surjekcija, sledi, ker lahko uporabimo aksiome, da preuredimo vsak izraz v tako obliko, te pa dobimo vse

Definicija

Operacijo new interpretiramo kot linearno preslikavo

$$\textit{new}: \mathbf{M}_{2^1} \rightarrow \mathbf{M}_{2^0}, \textit{s predpisom new} \begin{pmatrix} \alpha_{11} & \alpha_{12} \\ \alpha_{21} & \alpha_{22} \end{pmatrix} = \alpha_{11}.$$

Definicija

Element x C^* -algebre je pozitiven, če obstaja kak element y, da je $x=y^*y$.

Definicija

Preslikava f je popolnoma pozitivna, če za vsak $k \in \mathbb{N}$ preslikava $M_k(f)$ ohranja pozitivnost elementov.

Pišemo Cstar_{CPU}.

-new

new : $M_{2^1} \rightarrow M_{2^0}$, s predpisom new Element x C*-algebre je pozitiven, če obstaja kak element y, Definicija preslikava M_s (f) ohrania pozitivnost elementov. Pišemo Cstarcpu-

Dokaz, da ni *-homomorfizem: $\begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$

Polnost 2: Electric boogaloo

Izrek (Polnost v splošnem)

- 1. Za vsako linearno preslikavo $f: \mathbf{M}_{2^{m_1}} \oplus \cdots \oplus \mathbf{M}_{2^{m_k}} \to \mathbf{M}_{2^p}$, ki je popolnoma pozitivna in enotska, obstaja izraz v algebrajski teoriji, tako da je $t: (p \mid m_1, ..., m_k)$ in $[\![t]\!] = f$.
- 2. Če $\Gamma \mid \Delta \vdash t, u$ in $[\![t]\!] = [\![u]\!]$ lahko izpeljemo $\Gamma \mid \Delta \vdash t = u$.

Dokaz

Izrek (Stinespringov izrek o dilaciji)

Naj bo $f:\mathcal{A} \to \mathbf{M}_p$ CPU. Tedaj obstaja $q \geq p$ in *-homomorfizem $g:\mathcal{A} \to \mathbf{M}_q$ tako da je $f(A) = g(A)|_p$.

Izrek (o minimalnosti dilacije)

Lahko izberemo minimalno dilacijo; če je $r \geq p$ in $h: \mathcal{A} \to \mathbf{M}_p$ *-homomorfizem tak, da je $h(-)|_p = f(-)$ je $r \geq q$ in $g(-) = Uh(-)U^*|_q$.

Kvantni algebrajski učinki

└─ Dokaz

Diagrami

Dokaz

Izrek (Stinespringov izrek o dilaciji)

Noj bo $f:\mathcal{A} \to \mathbf{M}_p$ CPU. Tedaj obstoja $q \geq p$ in *-homomorfizem $g:\mathcal{A} \to \mathbf{M}_q$ taho da je $f(\mathcal{A}) = g(\mathcal{A})|_p$

Izrek (o minimalnosti dilacije)

Lahko izberemo minimalno dilacijo; če je $r \geq p$ in $h: \mathcal{A} \to \mathbf{M}_p$ +-homomorfizem tak, da je $h(-)|_p = f(-)$ je $r \geq q$ in $g(-) = Uh(-)U^*|_q$