1 Consistency

Rules have the following shape:

$$r: t \to t' \text{ if } \overline{eq}_n$$

where \overline{eq}_n is a sequence of equational conditions that we use to define which transitions are possible and which are not.

Rules are defined by using variables so that with a finite amount of rules we can capture infinite possible scenarios.

Now we proceed to show how concrete instances can be generated starting from the schemas. First some notation.

Definition 1 (Ground Terms). For a given signature $\Sigma = \langle Sorts, Operations \rangle$ the set of ground terms T_{Σ} is inductively defined as follows:

- a. All constants of sorts S in Operations are ground terms of sort S.
- b. For every function symbol $f: S_1, \ldots, S_n \to S$ in Operations, if t_1, \ldots, t_n are ground terms of sorts S_1, \ldots, S_n , respectively, then $f(t_1, \ldots, t_n)$ is a ground term of sort S where $S_1, \ldots, S_n \in Sorts$

With T_{Σ}^n we indicate all the ground terms up to the *n*-nth iteration of the inductive definition. For example, T_{Σ}^0 is the set of constant symbols, T_{Σ}^1 is the set of ground terms given by all the possible applications of the operators to T_{Σ}^0 , and so on.

With $T_{\Sigma,S}^n$ we indicate the ground terms of sort S up to the n-nth iteration.

Algorithm 1 getInstances(Σ, r, E, n)

```
 \begin{array}{ll} \langle Sorts, Operators \rangle \leftarrow \Sigma \\ V \leftarrow vars(r) & \rhd \mbox{ Get vars used by the rule} \\ S = \{\{v\} \times T^n_{\Sigma, type(v)} | v \in V\} \\ ConcInst = S_{v_1} \times \ldots \times S_{v_m} \\ ConcRules \leftarrow \emptyset \\ \mbox{ for each } i \in ConcInst \mbox{ do} \\ CR \leftarrow instantiate(i,r) \\ t' \rightarrow t' \mbox{ if } \overline{eq}_l \leftarrow CR \\ \mbox{ if } E \vdash \overline{eq}_l \mbox{ then} \\ ConcRules \leftarrow ConcRules \cup \{t \rightarrow t'\} \\ \mbox{ end if} \\ \mbox{ end for} \\ \mbox{ return } ConcRules \cup getInstances(\Sigma, r, E, n+1) \end{array}
```