Freezing-Point Depression

The freezing point of a 1 m solution of any nonelectrolyte solute in water is found by experiment to be 1.86°C lower than the freezing point of water. That is, when 1 mol of a nonelectrolyte solute is dissolved in 1 kg of water, the freezing point of the solution is -1.86°C instead of 0.00°C. When 2 mol of a nonelectrolyte solute is dissolved in 1 kg of water, the freezing point of the solution is -3.72°C. This is $2 \times (-1.86$ °C). In fact, for any concentration of a nonelectrolyte solute in water, the decrease in freezing point can be estimated by using the value of -1.86°C/m. This value, called the **molal freezing-point constant** (K_f) is the freezing-point depression of the solvent in a 1-molal solution of a nonvolatile, nonelectrolyte solute.

Each solvent has its own characteristic molal freezing-point constant. The values of K_f for some common solvents are given in **Table 2.** These values are most accurate for dilute solutions at 1 atmosphere of pressure. Some variations are introduced in the value of K_f at other pressures and with more-concentrated solutions. The table also shows the values of a related quantity called K_b , which you will study next.

As stated earlier, the freezing point of a solution containing 1 mol of a nonelectrolyte solute in 1 kg water is 1.86° C lower than the normal freezing point of water. The **freezing-point depression**, Δt_f , is the difference between the freezing points of the pure solvent and a solution of a nonelectrolyte in that solvent, and it is directly proportional to the molal concentration of the solution. As shown by the previous example, if the molal concentration is doubled, the freezing-point depression is doubled. Freezing-point depression can be calculated by the following equation.

$$\Delta t_f = K_f m$$

 K_f is expressed as °C/m, m is expressed in mol solute/kg solvent (molality), and Δt_f is expressed in °C. Sample Problems C and D show how this relationship can be used to determine the freezing-point depression and molal concentration of a solution.

	Normal f.p.	Molal f.p. constant,	Normal b.p.	Molal b.p. constant,
Solvent	(°C)	K_f (°C/m)	(°C)	K_b (°C/m)
Acetic acid	16.6	-3.90	117.9	3.07
Camphor	178.8	-39.7	207.4	5.61
Ether	-116.3	-1.79	34.6	2.02
Naphthalene	80.2	-6.94	217.7	5.80
Phenol	40.9	-7.40	181.8	3.60
Water	0.00	-1.86	100.0	0.51