

Software Engineering I

3. Semester (20.08.2012 – 09.11.2012)

Kursprojekt: übers Thema und Literatur dazu

Prof. Dr. Dagmar Monett Díaz

Dagmar.Monett-Diaz@hwr-berlin.de

Agenda

- Hauptliteratur zum Thema Data Mining
- Aufgabenstellung
 - Erläuterungen
 - Entscheidungsbäume

Agenda

- Hauptliteratur zum Thema Data Mining
- Aufgabenstellung
 - Erläuterungen
 - Entscheidungsbäume

Hauptliteratur (i)

Data Mining: Practical Machine Learning Tools and Techniques

Ian H. Witten, Eibe Frank, Mark A. Hall

Taschenbuch: 629 Seiten, 3. Auflage

Verlag: Morgan Kaufmann, Januar 2011

Sprache: Englisch

ISBN-10: 978-0-12-374856-0

Website zum Buch:

http://www.cs.waikato.ac.nz/ml/weka/book.html

Hauptliteratur (ii)

Data Mining: Praktische Werkzeuge und Techniken für das maschinelle Lernen

Ian H. Witten, Eibe Frank

Taschenbuch: 406 Seiten, 1. Auflage

Verlag: Hanser Fachbuch, Januar 2001

Sprache: Deutsch

ISBN-10: 978-3446215337

(Deutsche Übersetzung! -siehe auch vorige Folie)

Hauptliteratur (iii)

Methoden wissensbasierter Systeme. Grundlagen, Algorithmen, Anwendungen

Christoph Beierle, Gabriele Kern-Isberner

Taschenbuch: 490 Seiten

Verlag: Vieweg Friedr. + Sohn Ver;

Auflage: 3., erw. A. (April 2006)

Sprache: Deutsch

ISBN-10: 3834800104

ISBN-13: 978-3834805041

(4. Auflage, Juni 2008)

Hauptliteratur (iv)

Data Warehousing und Data Mining: Eine Einführung in entscheidungsunterstützende Systeme

Markus Lusti

Taschenbuch: 2., überarbeitete und erweiterte

Auflage

Verlag: Springer, Oktober 2002

Sprache: Deutsch

ISBN-10: 3-540-42677-9

Agenda

- Hauptliteratur zum Thema Data Mining
- Aufgabenstellung
 - Erläuterungen
 - Entscheidungsbäume

Aufgabenstellung

Erstellung eines Programms, das den Algorithmus, einen "optimalen" Entscheidungsbaum zu finden, demonstriert (★).

- Zusammenarbeit Vorlesungen SEW und Datenanalyse!
- Fachübergreifende Aufgabe!
- Thema aus anderem Fach in SEW-I und II intensiviert!
- Selbständigkeit und Einarbeitung in einer neuen Thematik!
- Von Studierenden vorgeschlagen worden!

★: Siehe auch Aufgabenblatt!

Agenda

- Hauptliteratur zum Thema Data Mining
- Aufgabenstellung
 - Erläuterungen
 - Entscheidungsbäume

Entscheidungsbäume

In folgenden Folien:

Überblick nach [Beierle & Kern-Isberner, 2006]

Kapitel 5: Maschinelles Lernen

5.3: Erlernen von Entscheidungsbäumen (Seiten 104 bis 118).

Mehr übers Thema:

- Siehe weitere Literaturquellen!
- Vorlesung Datenanalyse,
 - 4. Semester, Prof. Höhne!!

Entscheidungsbäume

- Entscheidungsbäume dienen der Klassifikation von Objekten, die durch Mengen von (Attribut, Wert)-Paare beschrieben sind
- Entscheidung: welcher Klasse das betreffende Objekt zuzuordnen ist
- Vereinfachung:
 - binäre Klassifikation, d.h. **Ja/Nein**-Entscheidung (kann leicht verallgemeinert werden)

Entscheidungsbäume: Struktur

Ein solcher Entscheidungsbaum repräsentiert daher eine **boolesche Funktion**:

- Wurzel und innere Knoten des Baumes sind mit Attributen markiert und repräsentieren Abfragen, welchen Wert das betrachtete Objekt für das jeweilige Attribut (z.B. attr) hat
- Die von einem mit attr markierten Knoten ausgehenden Kanten sind mit den zu attr möglichen Attributwerten markiert
- Die Blätter sind mit dem Wahrheitswert markiert, der als Ergebnis der Funktion zurückgeliefert werden soll, wenn das Blatt erreicht wird. Sie enthalten die Klassifikation.

Objekte werden durch vollständige Pfade durch den Baum klassifiziert

Das Kino-Beispiel

Soll ich ins Kino gehen?

Bilder: [Beierle & Kern-Isberner, 2006]

Das Kino-Beispiel

Entscheidungssituation: "Kino – ja oder nein?"

zu klassifizierende Objekte: Situationen

relevante Attribute:

Ihrer Meinung nach, welche Eigenschaften bzw. Attribute könnten eine Situation beschreiben?

Das Kino-Beispiel

Entscheidungssituation: "Kino – ja oder nein?"

zu klassifizierende Objekte: Situationen

relevante Attribute:

Attribut	Werte
Attraktivität	hoch, mittel, gering
Preis	normal (\$) oder mit Zuschlag (\$\$)
Loge	verfügbar (ja) oder nicht (nein)
Wetter	schön, mittel, schlecht
Warten	Wartezeit (ja) oder nicht (nein)
Besetzung	Cast und Regie sind top, mittel(mäßig)
Kategorie	Action (AC), Komödie (KO), Drama (DR), SciFi (SF)
Reservierung	besteht (ja) oder nicht (nein)
Land	nationale (N) oder internationale (I) Produktion
Gruppe	mit Freunde(n), als Paar, oder allein

Möglicher Entscheidungsbaum

Generieren von Entscheidungsbäumen (i)

Lernverfahren:

aus einer Menge von Beispielen bzw. Datensätzen (genannt "Trainingsmänge") einen Entscheidungsbaum zu generieren!

 Ein Beispiel besteht dabei aus einer Menge von Attribut/Wert-Paaren <u>zusammen</u> mit der Klassifikation

Beispiele für das Kinoproblem

Acht positive und sieben negative **Beispiele**:

Beisp.	Attr.	Preis	Loge	Wetter	Warten	Bes.	Kat.	Land	Res.	Gruppe	Kino?
X_1	hoch	\$\$	ja	schlecht	ja	top	AC	int.	ja	Freunde	ja
X_2	mittel	\$	ja	mittel	nein	mittel	KO	int.	nein	Paar	ja
X_3	mittel	\$	nein	mittel	ja	mittel	DR	int.	nein	Freunde	nein
X_4	gering	\$	ja	mittel	ja	mittel	SF	int.	nein	allein	nein
X_5	mittel	\$	ja	mittel	nein	mittel	DR	int.	nein	Paar	ja
X_6	hoch	\$\$	ia	schön	nein	top	SF	int.	ja	Freunde	ia
X_7	mittel	\$	ja	schlecht	nein	mittel	KO	nat.	nein	Freunde	ja
X_8	mittel	\$	nein	schlecht	ja	mittel	AC	int.	nein	Freunde	ja
X_9	gering	\$	ja	schön	nein	mittel	KO	nat.	nein	Freunde	nein
X_{10}	mittel	\$	ja	schön	nein	mittel	KO	int.	nein	Paar	nein
X_{11}	hoch	\$	ja	mittel	ja	top	DR	int.	nein	Paar	ja
X_{12}	mittel	\$	nein	schlecht	ja	mittel	AC	nat.	nein	allein	nein
X_{13}	hoch	\$\$	ja	mittel	ja	mittel	SF	int.	nein	allein	nein
X_{14}	mittel	\$	ja	schön	ja	top	DR	int.	ja	Freunde	nein
X_{15}	mittel	\$	ja	schlecht	nein	mittel	AC	int.	nein	Paar	ja

Generieren von Entscheidungsbäumen (ii)

Trivialer Ansatz:

Man konstruiert einen Baum derart, dass für jedes Beispiel ein entsprechender Pfad von der Wurzel zu einem Knoten besteht.

Problem damit:

Wir können keine sinnvolle Generalisierung auf andere Fälle erwarten!

Dann, Lernaufgabe:

Erzeuge Entscheidungsbaum aus Trainingsmenge, so dass

- Beispiele der Trainingsmenge korrekt klassifiziert werden und
- sich der Entscheidungsbaum <u>auch</u> für andere Beispiele
 generalisieren lässt
 → Induktives Lernen

TDIDT Algorithmus

- 1. Wähle ein Attribut attr für den nächsten Knoten.
- Für jeden Wert von attr erzeuge einen Nachfolgeknoten; markiere die zugehörige Kante mit diesem Wert.
- Verteile die aktuelle Trainingsmenge auf die Nachfolgeknoten, entsprechend den jeweiligen Werten von attr.
- 4. Wende TDIDT auf die neuen Blattknoten an (Rekursion)

Test für das Attribut *Gruppe*:

Beim Wert *Gruppe* = *allein* werden **alle verfügbaren (drei) Beispiele** vollständig klassifiziert.

Bei den Werten Freunde und Paar sind weitere Tests notwendig.

Test für das Attribut *Kategorie*:

Das Attribut *Kategorie* kann **kein einziges Trainingsbeispiel** mit nur einem Test klassifizieren.

Gruppe ist also als erstes Attribut besser geeignet als Kategorie (klassifiziert **mehr** Beispiele).

<u>Gruppe</u> als Erstes und dann <u>Wetter</u>, für <u>Gruppe</u> = Paar.

Wetter klassifiziert alle übrige gebliebene Beispiele der Menge Gruppe = Paar vollständig.

<u>Gruppe</u> als Erstes und dann <u>Kategorie</u>, für Gruppe = Paar.

Kategorie kann zwei Beispiele (X2 und X10) nicht eindeutig klassifizieren.

D.h. Wetter als zweites Attribut an dieser Stelle besser geeignet.

Fälle für die rekursiven Lernprobleminstanzen (i)

An den (aktuellen) Blattknoten können vier verschiedene Fälle auftreten:

- 1. Alle Beispiele haben die gleiche Klassifikation C
 - → Blatt mit Klassifikation C

Fälle für die rekursiven Lernprobleminstanzen (ii)

An den (aktuellen) Blattknoten können vier verschiedene Fälle auftreten:

- 2. Beispielmenge ist <u>leer</u> → **Blatt mit Default-Klassifikation**
 - Kein Beispiel mit entsprechenden
 Attribut-Wert-Kombination vorhanden

 Bsp. für Default-Klassifikation: Wert der Mehrzahl der klassifizierten Beispiele an dem Elternknoten

- Wenn gleich: positive Klassifikation liefern

Fälle für die rekursiven Lernprobleminstanzen (iii)

An den (aktuellen) Blattknoten können vier verschiedene Fälle auftreten:

3. Es gibt noch positive und negative Beispiele, aber es sind keine Attribute mehr übrig → Inkonsistenz (es gibt Beispiele mit genau denselben Attributwerten, aber unterschiedlicher Klassifikation)

- Könnte bedeuten: einige Beispiele sind falsch
- aber auch: zusätzliche Attribute müssen eingeführt werden um Beispiele zu unterscheiden und damit die Situation vollständiger beschreiben zu können.

- Annahme für TDIDT: Abbruch mit Fehlermeldung

Fälle für die rekursiven Lernprobleminstanzen (iv)

An den (aktuellen) Blattknoten können vier verschiedene Fälle auftreten:

4. es gibt noch positive und negative Beispiele, die aktuelle Menge der Attribute ist <u>nicht leer</u> → nächster Rekursionsschritt

 Wähle bestes Attribut gemäß seiner "Wichtigkeit" aus

Wichtigkeit von Attributen

Zentrales Problem:

- Wie findet man das (jeweils nächste) beste Attribut, um den Entscheidungsbaum aufzubauen?
- Die Wichtigkeit eines Attributes ist jedoch ein relativer
 Begriff. Sie hängt stark von der aktuellen Beispielmenge ab!

Welches Attribut a soll als nächstes gewählt werden?

- Wähle dasjenige Attribut, das am wichtigsten ist, d.h. das
 - soviel Beispiele wie möglich klassifiziert
 - (→ Kardinalitätskriterium);
 - die meiste Information enthält

Vollständiger Lernalgorithmus

... zum Generieren von Entscheidungsbäumen

function DT(E; A; default)

Eingabe: E Menge von Beispielen

A Menge von Attributen

default Default-Klassikation

Ausgabe: Entscheidungsbaum

Vollständiger Lernalgorithmus

- ... zum Generieren von Entscheidungsbäumen
- Verwenden Sie das Konzept der Entropie (siehe Aufgabenblatt) um den besten Entscheidungsbaum zu bestimmen!
- So können Sie den Informationsgehalt eines Attributes, der durch den jeweiligen Informationsgewinn bestimmt wird, berechnen.
- Und recherchieren Sie weiter in dem Thema (siehe weitere <u>Literaturempfehlungen</u> sowie die Inhalte der <u>Vorlesung Datenanalyse</u>)!

Gruppenarbeit

Wissenstransfer, erste Überlegungen zum Projekt

1. Diskussion in Gruppen

3. Diskussion im Plenum

Software Engineering I

3. Semester (20.08.2012 – 09.11.2012)

Prof. Dr. Dagmar Monett Díaz

Dagmar.Monett-Diaz@hwr-berlin.de