K. J. Somaiya College of Engineering, Mumbai-77 (Autonomous College Affiliated to University of Mumbai)

End Semester Exam April - May 2018

Max. Marks: 100
Class: TY-BTECH
Name of the Course: Digital Signal Processing
Course Code: UETC601

Duration: 3hrs Semester: VI Branch: EXTC

- (1) All Questions are Compulsory
 (2) Draw neat diagrams
 (3) Assume suitable data if necessary

No.		Max. Marks
Q1(a)	 i. Determine auto-correlation sequences of the following signals a. x(n)={1,2,1,1} b. y(n)={1,1,2,1} ii. Consider the system shown in figure x(n) z¹ y(n) Determine its impulse response h(n)	10 Marks
Q 1 (b)	Find the impulse response of an ideal lowpass filter with a linear phase response given by $ \begin{array}{ccc} H(e^{i\theta})\!\!=\!\!e^{-j\alpha\alpha} & 0\!\!\leq\!\!\omega \!\!\leq\!\!\alpha\\ =\!\!0 & \omega_c\!\!\leq\!\!\omega \!\!\leq\!\!\pi \end{array} $	10 Marks
Q2 (a)	 i. Find the inverse z-transform of X(z)= z+0.2 / (z+0.5)(z-1) , z >1 ii. Find the z-transform of the following discrete time signal, and find ROC x(n)=(-1/5)ⁿu (n)+5 (1/2)⁻ⁿu(-n-1) OR, Obtain the direct form I , direct form II, cascade and parallel form realization for the system y(n)=-0.1y(n-1)+0.2 y(n-2)+3 x(n)+3.6 x(n-1)+0.6 x(n-2) 	10 Marks

		-
Q2 (b)	Compute IDFT of the sequence X(k)={7,-0.707-j0.707,-j,0.707-j0.707,1,0.707+j0.707,j,-0.707+j0.707 using DIF algorithm	10 Marks
	OR,	
	An 8-point sequence is given by x(n)={2,2,2,2,1,1,1,1}.Compute 8-point DFT of x(n) by radix-2 DIT FFT	
Q3 (a)	Determine and sketch the magnitude and phase response of the following systems $y(n) = \frac{1}{8}[x(n) + x(n-1) + x(n-2) + x(n-3)]$ OR, $Use \ the \ DFT \ to \ compute \ the \ linear \ convolution \ of \ the \ signals $ $x_1 = \{1,-1,1\}; \ x_2 = \{2,2,1\}$	10 Marks
Q3 (b)	Consider an LTI system with impulse response $h(n) = (\frac{1}{3})^{ n }$ Determine and sketch the magnitude and phase spectra for the input and output signals for the following inputs: i. $x(n) = \cos \frac{3\pi n}{8}$, $-\infty \le n \le \infty$ ii. $x(n) = \{\dots, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, \dots\}$	10 Marks
Q4 (a)	Design an ideal bandpass filter with a frequency response $H(e^{j\alpha}) = 1 \text{ for } \frac{\pi}{4} \le \alpha \le \frac{3\pi}{4}$ $= 0 \text{ otherwise}$ Find the values of $h(n)$ for $N^m 11$ and plot the frequency response.	10 Marks
	OR, Design a filter with $H(e^{jo}) = e^{-j3c} - \frac{\pi}{4} \le \omega \le \frac{\pi}{4}$ $= 0 - \frac{\pi}{4} < \omega < \pi$	
Q4 (b)	Using a Hamming Window. Design a Chebyshev low pass filter with the specifications α _p =1dB ripple in the pass band 0≤ω≤0.2 π, α _s =15dB ripple in stop band 0.3 π≤ω≤π using bilinear transformation.	
Q5 (a)	Answer Any two. i. What is the process of decimation in frequency spectrum? ii. What is sub-band coding of speech signal? iii. What is multi rate DSP? State one application in details. iv. How spectral analysis of stationary signal is done?	10 Marks
Q5 (b)	Explain multistage approach to sampling rate conversion.	10 Marks

Duration: 3Hrs. Semester: MU-CBGS-VII Branch: Computer

K. J. Somaiya College of Engineering, Mumbai-77 (Autonomous College Affiliated to University of Mumbai)

End Semester Exam April- May 2016

Max. Marks: 100

Class: B.E.(Final)

Name of the Course: Digital Signal Processing Course Code: UCEC701

Instructions:

(1) All Questions are Compulsory (2) Draw neat diagrams

(3) Assume suitable data if necessary

Question		Max. Marks
No. O 1 (a)	What is discrete time system? How discrete time systems are classified?	10
Q ((a)		5
Q1 (b)	Sketch the following signals 1) u(-n+1) 2) u(-n-1)	
Q1(c)	Find the cross correlation between given signals.	5
	$x(n) = \{1,2,3,4\}, y(n) = \{4,3,2,1\}$ Find the circular convolution of the following sequences	5
Q2 (a)	X1(n)={1,-1,2,-4} and X2(n)={1,2,0,0}	
Q.2(b)	State whether the following systems are causal or not i. $y(n) = x(n) + 4x(n+1)$ ii. $y(n) = x(2n)$	5
Q2 (c)	Two discrete time I.T1 systems are connected in cascade. h1 (n) = $(1/2)^n u(n)$ and $h2(n) = (1/4)^n u(n)$. Determine unit sample response of this connection. OR Find if following systems are causal & FIR or not 1) $h(n)=4u(n+1)-4u(n-2)$ 2) $y(n)=0.8y(n-1)=x(n)$	10
Q3 (a)	Let X(K)={1, -2, 1- j, 2j, 0,,} is the 8-point DFT of a real valued sequence x(n) 1) What is the 8-point DFT P(k) such that p(n) -(-1) x(n) 2) What is the 8-point DFT Q(k) such that q(n) -(-1) x(n-4) OR	10
	Find 8 – point DFT of following sequence using radix – 2 DIT – FFT algorithm $x(n) = \{1, 1, 1, 1, 0, 0, 0, 0\}$	

25.05.2016(m)

Q3 (b)	Given h(n)=(1.2) Find the	5,201
	Given $h(n)=\{1,2\}$ Find the response of the system to the $1/P \times (n)=\{1,2,3\}$ using FFT-IFFT	10
Q4 (a)	Find the output y (n) of a filter whose impulse response is h (n) = $\{2, 2, 1\}$ and the input signal to the filter is x (n) = $\{3, 0, -2, 0, 2, 1, 0, -2, -1, 0\}$ using overlap-add method.	10
	OR	
Q4 (b)	Explain radix-2 DIT-FFT algorithm.	
Q+(0)	Explain spectral analysis using FFT	5
Q4 (c)	Evelote and 1	3
5. (0)	Explain carls' correlation coefficient with example.	5
Q5	Write short note and f	-
	Write short note on (any two)	20
	Energy and Power signal	
	2) DSP processor (TMS320C54X)	
	Any two applications of DSP	
	- FF	

Q3	 a) Design the second order Low Pass Digital Butterworth Filter whose cut off frequency is 1 KHz at sampling frequency 10⁴ samples per second. Use BLT method. 	10
	b) Use the Bilinear Transformation to design a Discrete Time Chebyshev High Pass filter with an equiripple passband with the following specifications $A_p = 0.9151 \ dB$ $A_s = 20 \ dB$	10
	$\omega_p = 0.3\pi \ \omega_s = 0.1\pi \ F_s = 1 \ kHz$	
	OR	
	a) Determine impulse response of linear phase FIR filter of length $M=4$ with $H(w)=1$ at $w=0$ and $H(w)=0.5$ at $w=\pi/2$	10
	b) The desired frequency response of a low pass filter is	10
	$H_d(e^{jw}) = \begin{cases} e^{-3jw} & -3\pi/4 \le \omega \le 3\pi/4 \\ 0 & otherwise \end{cases}$	
	Determine $H(e^{jw})$ for M using Blackman window.	
Q4 a)	 Explain in detail different signal processing operations used in sub-band coding. 	05
	ii. Explain VLIW Architecture of P-DSP	05
(4 b)	Draw the schematic block diagram of TMS320C5X and explain the major blocks?	10
	Explain the different addressing modes of TMS320C67XX DSP Processor	10
Q5	a) Explain dead band effect in finite precision arithmetic operation with the help of suitable example. b) In a recursive system the products are rounded to 4-bits including	10
	sign bit. The output round of noise power in direct form realization if the system function is	10
	$H(Z) = \frac{1}{(1 - 0.35Z^{-1})(1 - 0.62Z^{-1})}$ Assume the product range from -1 to 1.	
	OR	
	b) Write short notes on Limit Cycle Oscillation due to quantization	10

Question No.	THE RESIDENCE OF THE PARTY OF T	Mark
Q. 1	Attempt any Three. (All questions carry equal marks.) a) The transfer function of a system is given by $H(Z) = \frac{(2-Z^{-1})(1-Z^{-1})^2}{(1-2Z^{-1})(5-3Z^{-1}+2Z^{-3})} \text{ Realize the system in cascade structure.}$ b) A digital filter is characterized by the following properties, i) It is high pass and has one pole and one zero. ii) The pole is at distance $r = 0.9$ from the origin of Z plane. iii) Constant signals do not pass through the system. Find I) Pole zero pattern of the filter. II) System function $H(z)$ III) Compute magnitude response of the filter IV) Normalize the frequency response $H(\omega)$ so that $ H(\pi) =1$. V) Determine difference equation of the filter in time domain. c) Convert the high pass filter with system function $H(Z) = \frac{(1-Z^{-1})}{(1-aZ^{-1})}$, $a < 1$. into a Notch filter that rejects the frequency $\omega_0 = (\pi/4)$ and its harmonics, Find I) Difference equation of the notch filter. II) Sketch pole zero pattern of the notch filter. III) Sketch magnitude response of the both filters. d) Find and Sketch the autocorrelation function for $x(n) = \left(\frac{1}{2}\right)^n u(n)$. Also obtain the cross correlation of the sequences $x_1(n) = (2, 3, 4)$ and $x_2(n) = (1, 2, 3)$.	30
Q. 2	Attempt any Three. (All questions carry equal marks.) a) The impulse response of LTI system is $h(n) = (1, 2, 2)$. Find output $y(n)$ of the system for the input $x(n) = (1, 2)$ using DTFT and DFT. b) Compute linear and circular convolution of the following sequences using DFT, $x(n) = (1, 0.2, -1)$ and $h(n) = (1, -1, 0.2)$	30

Page 1 of 2

	c) Compute 8 point DFT of discrete time signal $x(n) = (1, 2, 1, 2, 1, 3, 1, 3)$ using radix-2 DIF FFT. Also sketch magnitude spectrum.	
	d) Find $x(n)$ for given $X(k) = \{0.5, (2+j), (3+j), j, 3, -j, (3-j2), (2-j)\}$ by performing IFFT.	
Q. 3	Attempt any one.	15
	a) Design a Linear phase FIR high pass filter using Hamming window with a cut off frequency $\omega_c=0.8~\pi$ rad/sample and N=7. Also plot the magnitude response of the filter. N=F114ex length	
	b) Design a linear phase FIR low pass filter with cut off frequency of 0.5 π rad/sample by taking 11 samples of ideal frequency response. Also plot the magnitude response of the filter.	
Q. 4	Attempt any one.	15
	a) Design a Butterworth digital IIR high pass filter using bilinear transformation by taking $T=0.5$ second to satisfy the following specifications. Pass band ripple $\leq 3.01~dB,$ Stop band attenuation $\geq 13.97~dB,$ Pass band edge frequency 0.65π rad/sample Stop band edge frequency 0.45π rad/sample.	
	b) Design a Butterworth digital IIR low pass filter using impulse invariant transformation by taking T = 1 second to satisfy the following specifications. $0.8 \leq \ \left H(e^{lw}) \right \leq 1 \ \text{for} \qquad 0 \leq w \leq 0.2\pi$ $\left H(e^{lw}) \right \leq 0.2 \ \text{for} 0.32\pi \leq w \leq \pi$	
Q. 5	Attempt any Five. (All questions carry equal marks.) a) What is multirate DSP system?	10
	b) What is decimation?	
	c) What is interpolation?	
	d) What are the advantages of multirate processing?	
	e) Give any two applications of DSP.	
	f) What is polyphase decomposition?	

Apr - May 2017

Max. Marks: 100 Class: T.Y. B. Tech

Name of the Course: Digital Signal and Image Processing Course Code: UCEC603
Instructions:

(1) All Questions are Compulsory
 (2) Draw neat diagrams
 (3) Assume suitable data if necessary

Duration: 3 hrs Semester: VI Branch: COMP

No.											
Q1(a) Show that any arbitrary signal can be expressed as the sum of two signals, one of which is EVEN and other is ODD.											
Q 1 (b)	Explain image fidelity criteria										
Q1(c)	State whether following signals are periodic, if yes then find their period i) $\cos (0.2 \pi n)$ ii) $\sin (0.2 \pi n) + \sin (0.18 \pi n)$										
Q1(d)	d) Prove that 2D DFT matrix is an unitary matrix.										
Q2 (a)	Explain in details Enhancement techniques in spatial domain used for images.										
Q2 (b)	Q2 (b) Find DFT of given sequence using DITFFT algorithm X(n)={1,2,3,4,4,3,2,1}										
	-				OR					1	
Q2 (b) Explain edge linking using Hough Transform											
Q3 (a)	i) Compute linear convolution of the following: X(n)={1,1,1,1} and h(n)={1,1,1,1} † ii) Determine auto-correlation of the following signal x(n) = {1,3,1,1}										
Q3 (b)	Perform Histogram Equalization for the following and obtain original as well as equalized histogram										
	Intensity	0	1	2	3	4	5	6	7	10	
	Number of Pixels	70	100	40	60	0	80	10	40		

Q3 (b)	Explain i) Homomorphic filtering ii) Sampling and Quantization	10
Q4 (a)	Write a note on Discrete Cosine transform and its application in image processing.	10
Q4 (b)	Determine the response of the given system input sequence $\times(n) = \{1, 0.5, 2\} + h(n) = \{1, 0.$	E-1,13.
Q4 (U)	Find the Huffman code for the following stream of data (28 points) {1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,4,4,4,5,5,5,6,6,7}	10
Q5 (a)	Explain the method of segmentation of images by Region splitting and merging	10
	Explain various types of redundancies in image. Specify techniques to remove redundancies	10
Q5 (b)		
Q5 (b)	OR	

K. J. Somaiya College of Engineering, Mumbai-77 (Autonomous College Affiliated to University of Mumbai)

End Semester Exam

Max. Marks: 100 Class: TY-BTECH

May-June 2019

Duration: 3hrs Semester: VI Branch: EXTC

Name of the Course: Digital Signal Processing (SECTION A)
Course Code: UETC601

FOR PWD

(1) All Questions are Compulsory (2) Draw neat diagrams

(3) Assume suitable data if necessary

Q 1 (a)	Consider FIR filter	Max. Marks
	$y(n)=x(n)+x(n-4)$ i. Calculate the values of magnitude response ii. Calculate the values of phase response iii. Compute its response to the input $x(n)=\cos\frac{\pi n}{2}+\cos\frac{\pi n}{4}$ $\infty< n<\infty$ iv. Calculate the values of magnitude response v. Calculate the values of phase response OR An FIR filter is described by the difference equation $y(n)=x(n)+x(n-10)$ i. Compute its magnitude response ii. Compute its phase response iii. Determine its response to the input $x(n)=\cos\frac{\pi n}{10}+3\sin(\frac{\pi n}{3}+\frac{\pi}{10})$ $-\infty< n<\infty$	2*5=10 marks
i	i. Perform linear convolution of finite duration sequences h(n)={1,1,2,1} and x(n)={1,-1,1,2,1,0,1,-4,3,2,1,0,1,1} by overlap-add method i. Perform linear convolution of finite duration sequences h(n)={1,1,2,1} and x(n)={1,-1,1,2,1,0,1,-4,3,2,1,0,1,1} by overlap-save method OR Find Z-transform and ROC of the signal x(n)= -b ⁿ u(-n-1) Determine z-transform and ROC of the finite duration signal x(n)={2,4,5,7,0,1}	5 marks 5 marks

Q2 (a)	i. Obtain direct I of LTI system governed by the equation:	5 marks
	$y(n) = -\frac{3}{2}y(n-1) + \frac{3}{32}y(n-2) + \frac{1}{64}y(n-3) + x(n) + 3x(n-1) + 2x(n-2)$	
	ii. Obtain direct II realization of LTI system governed by the equation:	5 marks
	$y(n) = -\frac{3}{2}y(n-1) + \frac{3}{32}y(n-2) + \frac{1}{64}y(n-3) + x(n) + 3x(n-1) + 2x(n-2)$	
Q2 (b)	i. Compute DFT of sequence x(n)={0,1,2,1} ii. Calculate values for magnitude response iii. Calculate values for phase response	5 marks 2marks 3marks
Q3	8 –point DFT of the given sequence x(n)={0,1,2,3,4,5,6,7}	
	x(0) - x(0)	
	x(4) W2 X(1)	
	x(2) W* X(2)	
	$x(6)$ W_1^4 W_2^4 $X(3)$	
	A (7)	
	x(5) W ⁴ ₂	
	$X(3)$ W_1^4 W_2^4 $X(6)$	
	$x(7)$ W_1^4 W_2^1 W_2^2 $X(7)$	
	i. Identify the type of algorithm ii. Arrange input in the order	1 Marks 1 Marks
	iii. Find out x(0),x(1),x(2),x(3),x(4),x(5),x(6),x(7),x(8) on output	1*8 Marks
	side	

(Autonomous College Affiliated to University of Mumbai)

End Semester Examinations

May-June 2019

Max. Marks: 100 Class: T. F. B. Tech

Name of the Course: Digital signal and Image Processing Course Code: UCEC603

Duration: 3Hrs Semester: VI Branch: COMP

- (1) All Questions are Compulsory
 (2) Draw neat diagrams
 (3) Assume suitable data if necessary

Question No.	200									Marks
Q 1 (a)	1) State the condition of stability of LTI system and determine for the given time system $h(n)=(0.3)^n u(n)+5\partial(n)$ is stable or not									
	2) For the cro	the giv	en causa elation.	l seque	nces x(n	= (8,9,2	,3} and	h(n)= {4	1,3,6}. Find	
				OR						
	Check	whethe	er followi	ing syst	em y(n)	= 2x(n-	1) + x(2	n) is:		
	2. 3.	Causa Time	or non-l l or non-c variant or or Dynan	causal Time i	nvariant					
Q 1 (b)	Given									10M
	13	54	12							
	13	11	57							
	11	10	12							
	Find 3 b	oit IGS	coded in	nage an	d calcul	ate comp	pression	factor ,l	BPP and	
Q2 (a)	Perform followin			alizatio	n and dr	aw new	equalize	d histog	gram of the	10M
			1.	2	3	4	5	6	7	
	Grey Level	.0	1	-			1			

Q2 (b)	Find I	OCT of	the give	en image	using matrix multiplication method:	10M
	2	4	4	2		
	4	6	8	3		
	2	8	10	4		1
	3	8	6	2		
1						
Q3 (a)	Expla	in any 1	ive zero	memory	point operations.	10M
Q3 (b)	diagra	m, com	adamard pute Ha 0,0,1,1,0	damard t	and its signal flow graph. Using Butterfly transform for	10M
Q4 (a)	Explai	n Morp	hologie	al operati	ion Opening and Closing	10M
9 96	SAPL	ain a	4,8	and	on Opening and Closing on Connectivity of a pixel suitable examples	
Q4 (b)	Explai	n Houg	h transf	orm with	suitable example	10M
	1			OR		
	Explain	n in det	ail Mon		ormalised moments and central moments.	W
Q5 (a)	segmen	itation.		entation?	Explain the following methods of image	10M
	1) Regi 2) Split	on gro and M				. 1
				OR		
	What a	re diffe	erent ty	pes of re of each.	dundancies in digital image? Explain in	
Q5 (b)	Write sl	nort not omorph ity crite	tes on nic filter eria	(any +	wo)	10M
			Commi	OR	akes the chain code invariant to rotation	

aho

(Autonomous College Affiliated to University of Mumbai)

End Semester Exam

MAY-JUNE 2021

Max. Marks: 50 Duration: 1 Hr. 45 Min.

Class: TY B.Tech Semester: VI

Name of the Course: Digital Signal and Image Processing

Branch: Computer Course Code: 2UCC601

- (1) All questions are compulsory
- (2) Draw neat diagrams
- (3) Assume suitable data if necessary

No.	Max
State True or False (1 Mark each) I. DCT is energy preserving Transform. II. Image segmentation does not depend on Illumination III. Image averaging can remove random noise. IV. Chain codes can be normalized. Multiple Choice Questions (2 M each) V. Given x(n)=Sin ((π/8) n²) Find fundamental Period A) 18 samples B) 16 samples C) 10 samples D) 15 samples VI. Is the function y[n] = x[n-1] – x[n-56] causal? A) The system is non causal B) The system is causal C) Both causal and non causal D) Anticausal VII. A pixel p at coordinates (x, y) has neighbors whose coordinates are g (x+1, y), (x-1, y), (x, y+1), (x, y-1) This set of pixels is called A) 4-neighbors of p B) Diagonal neighbors C) 8-neighbors	Marks 10

Q1 (B)	Attempt any FIVE questions out of the following (any 5 out of 7)	10
	I. Show that High pass= Original –Low Pass II. Check whether y(n) = n x(n) is linear or non-linear. III. Determine autocorrelation of the signal x(n)={1,2,1,1} IV. Justify if the energy of the signal is finite its power is zero V. Compute DFT of the given image using DIT-FFT: 0 1 2 1 1 2 3 2 2 3 4 3 1 2 3 2 VI. Explain Fidelity criteria	
	VI. Explain Fidelity criteria VII. State any two properties of DFT.	
Q2	Compare and contrast between the following(Any 2):	10
	Lossless and Lossy Compression Spatial domain and Frequency domain processing Segmentation based on discontinuities and Similarities	
Q 3	Generate Walsh Transform of given image	10
	2 1 2 1 1 2 3 2 2 3 4 3 1 2 3 2	
Q4	What is Morphology. Explain the basic operations in Morphology. OR Find the Arithmetic Codeword of the message INDIA.	10

K. J. Somaiya College of Engineering, Mumbai-77 (Autonomous College Affiliated to University of Mumbai)

End Semester Exam MAY-JUNE 2021

Max. Marks: 50

Duration: 1 Hr. 45 Min.

Class: TY B.Tech Semester: VI

Name of the Course: Digital Signal and Image Processing

Branch: Computer Course Code: 2UCC601

- (1) All questions are compulsory
- (2) Draw neat diagrams
- (3) Assume suitable data if necessary

Question No.		Max Marks
Q1 (A)	State True or False (1 Mark each)	10
- ' '	DCT is energy preserving Transform.	
	II. Image segmentation does not depend on Illumination	
	III. Image averaging can remove random noise.	
	IV. Chain codes can be normalized.	
	Multiple Choice Questions (2 M each)	
	V. Given x(n)=Sin ((π/8) n ²)	
	Find fundamental Period	
	A) 18 samples	
	B) 16 samples	
	C) 10 samples	
	D) 15 samples	
	VI.	
	Is the function $y[n] = x[n-1] - x[n-56]$ causal?	
	A) The system is non causal	
	B) The system is causal	
	C) Both causal and non causal	
	D) Anticausal	
	VII.	
	A pixel p at coordinates (x, y) has neighbors whose coordinates are given by:	
	(x+1, y), (x-1, y), (x, y+1), (x, y-1)	
	This set of pixels is called	
	A) 4-neighbors of p	
	B) Diagonal neighbors	
	C) 8-neighbors	
	D) M connectivity	

Q1 (B)	Attempt any FIVE questions out of the following (any 5 out of 7)	10
	I. Show that High pass= Original –Low Pass II. Check whether y(n) = n x(n) is linear or non-linear. III. Determine autocorrelation of the signal x(n)={1,2,1,1} IV. Justify if the energy of the signal is finite its power is zero V. Compute DFT of the given image using DIT-FFT: 0 1 2 1 1 2 3 2 2 3 4 3	
Q2	VI. Explain Fidelity criteria VII. State any two properties of DFT. Compare and contrast between the following(Any 2):	10
Q2	Lossless and Lossy Compression II. Spatial domain and Frequency domain processing III. Segmentation based on discontinuities and Similarities	10
Q 3	Generate Walsh Transform of given image 2 1 2 1 1 2 3 2 2 3 4 3 1 2 3 2	10
Q4	What is Morphology. Explain the basic operations in Morphology. OR Find the Arithmetic Codeword of the message INDIA.	10

K. J. Somaiya College of Engineering, Mumbal-77 (Autonomous College Affiliated to University of Mumbai)

End Semester Examinations

May-June 2022

Max. Marks: 100

Class: TY

Duration: 3 Hours Semester: VI

Name of the Course: Digital Signal and Image Processing

Branch: Computer Engineering Course Code: 2UCC601

Instructions:

All Questions are Compulsory Draw neat diagrams (1)

(2)

(3) Assume suitable data if necessary

01/-										
Q 1 (a)	Classify the following DT systems on linearity, time invariance, causality i. $y(n)=x^2(n)$ ii. $y(n)=e^{x(n)}$ iii. $y(n)=4x(n)+x(n-3)$									10
Q 1 (b)	i. What ii. Expla image	is Unit in in sh	ary tran ort sam	sform	matri and qu	x? Exp antiza	lain wi tion me	th exan	ple. r digital	10
Q2 (a)	Perform histo following im	gram e age data	qualiza	tion ar	nd drav	w new	equaliz	ted histo	ogram of the	10
	Gray Level	0	1	2	3	4	5	6	7	
	No. of pixels	700	1000	950	600	300	250	105	95	
Q2 (b)	Explain the us	se of hig	gh pass cement	filter	mask a	and hig	h boos	t filter r	nask for	10
Q3 (a)	Compute DFT (DIT- FFT sig	of the	digital w graph	image / Butt	given erfly d	below	using l	DIT-FF	T algorithm	10
	3	1 1	3	1					-	
	3	3 6	1							
4	2	2 3	4							
	0	1 2	3	1						

								-	OR		1
	De (bi	esign asis i	4 x 4	4 Has	ur tra	insfe	orm i	natri	x and represent the ro	w basis functions	
Q3 (b)	W	rite 8	v8 H	adam	band	****	-0.				1
	the	Butt	terfly		Section 1	9.000	mpus	C Dai	trix and its signal flo damard transform for	w graph, Using	1
-OR				Att	1)-	14,	3, 1,	3, 4,	3, 1, 1}		
Q4 (a)									or the given image ar where (x, y) ∈ R, whor the nodes.	d the predicate is tere R is the	10
	7	3	6	17	6	7	5	15			
	5	5	4	4	6	4	8	7			
	6	4	5	4	7	6	8	6			
	7	5	5	4	6	-	4	6			
	4	4	4	5	4	-	5	6			
	3	3	4	6	6	4	4	8	111111111111111111111111111111111111111		
	3	4	3	3	5	4	4	5			
	5	5	4	3	7	6	5	4			
	200								PR	0 1 6	
	Wha	t is in	mage	segi	nent	tatio	n? E	xplai	n the following meth	ods of image	
	- Gara	TATTICE	HOLL						45.7		10
	i. ii.			grov							
Q4 (b)	Find	varia	ble I	engtl	1 000	de us	sing l	Huffi	man coding for the sy	mhols and the	10
	data	given	belo	W.	F		mbo			The same same	10
					-	- 0	al	-	Probability 0.1	diam'r.	
					-		a2		0.2		
							a3	-	0.3		
	-					_	a4	-	0.14	-	
	7.1					_	a5		0.16		
					E		аб		0.1		
				nte o	n (a	ny o	ne)				10
Q5 (a)	Write	a det	tail n	ore o			211512				10
Q5 (a)	Write i. ii.	HO	ugh]	Frans orphi	forn	n lter				- 5	
	ii.	Hor	nom	Frans orphi	forn ic fil	lter	Tran	sfor	n with an example		

Semester: January 2024 – April 2024

Maximum Marks: 100 Examination: ESE Examination – KT Duration: 3 Hrs.

Programme code: 03
Programme: BTech. in EXTC Engg.

Name of the Constituent College:
K. J. Somaiya College of Engineering

Course Code: 116003C503 Name of the Course: Digital Signal Processing

Instructions: 1)Draw neat diagrams 2) All questions are compulsory

3) Assume suitable data wherever necessary

Que. No.	Question	Max. Marks
QI	Solve any Four	20
i)	What is Gibbs Phenomenon?	5
ii)	What is Region of convergence (ROC)? What is its significance?	5
iii)	Describe the desirable characteristics of windows.	5
iv)	Find the inverse Z-transform of $X(z) = \frac{z}{(z-3)(z-4)}$ $ z < 3$	5
v)	Short note on Poly phase decomposition	5
vi)	What is pre- warping?	5

Que. No.	Question	Max. Marks
Q2 A	Solve the following	10
i)	What are the differences and similarities between DIT and DIF FFT algorithm?	5
ii)	Explain the causes of finite word length effect in DSP.	5
	OR	
Q2 A	Obtain direct form II,cascade form realization for y(n)= -0.1y(n-1)+0.2y (n-2)+3 x(n)+3.6 x(n-1)+0.6 x(n-2)	10
Q2B	Solve any One	10
i)	Given x(n)=2 ⁿ and N=8, find X(k) using DIT-FFT algorithm.	10
ii)	An FIR filter is described by the difference equation $y(n)=x(n)+x(n-10)$ a) Compute and sketch its magnitude and phase response b) Determine its response to the input $x(n)=\cos\frac{\pi n}{10}+3\sin(\frac{\pi n}{3}+\frac{\pi}{10})$ $-\infty < n < \infty$	10

Que. No.	Question	Max. Marks
Q3	Solve any Two	20
i)	Design a digital Butterworth filter satisfying the constraints $0.707 \le H(e^{i\alpha}) \le 1$ for $0 \le \alpha \le \frac{\pi}{2}$ $ H(e^{i\alpha}) \le 0.2$ for $\frac{3\pi}{4} \le \alpha \le \pi$ With T=1 sec using bilinear transform .Realize the filter using most convenient $Structure$	10

ii)	to 0.65 mrad/san	phase FIR bandpass filter to pass frequencies in the range 0.4π nple by taking 7 samples of Hanning window sequence.	10
iii)	Determine the c	coefficients of a linear-phase FIR filter of length N=15 which has it sample response and a frequency response that satisfies the for k=0,1,2,3	10
	=0.4	for k=4 for k=5.6.7	

Que. No.	Question	Max. Marks
Q4	Solve any Two	20
i)	An analog signal contains frequencies upto 10kHz a) What range of sampling frequencies will allow exact reconstruction of this signal from its samples? b) Suppose this signal is sampled with a sampling frequency f _s =8kHz. State with explanation what will be the reconstructed signal corresponding to frequency component of 5 kHz	10
ii)	Determine the inverse z-transform of X(z)=\frac{1}{1+0.5z^{-2}-1.5z^{-1}} When (a) ROC: z >1 (b) ROC: z <0.5 (c) ROC:0.5< z <1	-10
iii)	Find the effect of coefficient quantization on pole locations of the given second order FIR system, when it is realized in direct and in cascade form. Assume a word length of 4 bits through truncation. $H(z)=1-0.9z^{-1}+0.2z^{-2}$	10

Que.	Question	Max. Marks
Q5	(Write notes / Short question type) on any four	20
i)	State and prove time shifting property of Z transform	5
ii)	What is zero padding? Why is it needed?	5
iii)	Write some advantages of multirate processing.	5
iv)	What is the reason that FIR filter is stable?	5
v)	Short note on Musical Sound Processing	5
vi)	Explain process of interpolation in frequency spectrum?	5

3) Assume suitable data wherever necessary

Que. No.			Question		Max. Marks
Q1	Solve any Four				20
i)	Determine whether th $\mathbf{x}(\mathbf{n}) = \sin \frac{\pi}{8} \mathbf{n}^2$	e following si	gnal is pe	riodic or not:	5
ii)	Given is a 3*3 image.	, plot its bit pl	anes.		5
		9	10	8	
		11	- 12	15	
		13	14	9	
iii)	Explain in short diffe	rent types of	discrete ti	me signals (ar	five). 5
iv)	Explain different mathematical operations on signals.			5	
v)	Write a short note on digital negative.			5	
vi)	Determine even and $x(n) = \{2,-2,6,-2\}$				5

Que. No.	Question	Max. Marks
Q2 A	Test the following systems for time invariance:	10
i)	y(n) = x(n) + x(n-1)	05
ii)	y(n) = 2nx(n)	05
	OR	
Q2 A	Construct the block diagram and signal flow graph of the discrete time system whose input-output relations are described by following difference equation $y(n) = 0.4y(n-1)+x(n)-3x(n-2)$	10
Q2B	Solve	10
i)	An 8 point sequence is given by $x(n) = \{2,1,2,1,1,2,1,2\}$. Compute 8-point DFT of $x(n)$ by radix-2 DIT-FFT.	10

Que. No.	Question	Max. Marks
Q3	Solve any Two	20
i)	Explain the following spatial enhancement techniques with suitable example	10

	and state one application of each. a) Contrast stretching b) Log Transformation	
ii)	Compute the discrete cosine transform (DCT) matrix for N = 4.	10
iii)	Explain Low-pass Filtering in Frequency Domain	10

Que. No.	Question	Max. Marks
Q4	Solve any Two	20
i)	Describe Canny Edge Detector in detail with an example.	10
ii)	Using Hough transform show that the following points are collinear. Also find the equation of the line for (x,y) plane are $(1,2)$; $(2,3)$ and $(3,4)$.	10
iii)	Explain different Morphological operations with necessary equations.	10

Que. No.	Question	Max. Marks
Q5	(Write notes / Short question type) on any four	20
i)	Run Length Encoding.	5
ii)	JPEG Compression	5
iii)	Hoteling Transform	5
iv)	Vector Quantization	5
v)	Region Split and Merge based segmentation	5
vi)	Image Moments	5

6.5.16 (m

K. J. Somaiya College of Engineering, Mumbai-77 (Autonomous College Affiliated to University of Mumbai) Semester: Jan-April 2016

Max. Marks: 100

End Semester Exam

Duration: 3 Hrs

Class: TE

Name of the Course: DSPP Course Code: UEXC605

Semester: VI

Branch: Electronics Engineering

Instructions: All Questions are Compulsory

No.		Max. Marks
Q1	 Argue and Justify the following with examples (Any Four) a) All the finite poles of FIR filter must lie at z = 0 b) An FIR Filter is always linear phase c) An FIR Filter is always stable. d) An Infinite Impulse Transformation is not suitable for the design of high pass filter. e) Butterworth and Chebyshev filters are always all poles. 	20
Q2	a) A sequence is given as $x(n) = \{1, +2j, 1+3j, 2+4j, 2+2j\}$. from basic definition find $X(k)$. If $x_1(n) = \{1, 1, 2, 2\}$ and $x_2(n) = \{2, 3, 4, 2\}$, Find $X_1(k)$ and $X_2(k)$ by using DFT only once.	10
	b) Compute 4 point DFT of sequence $x(n) = \cos(\frac{n\pi}{2})$ using DIT-FFT Algorithm. OR	10
	b) $x_1[n] = \{2, 1, 2, 1\}$ and $x_2[n]] = \{1, 2, 3, 4\}$ perform the circular convolution of the above two sequence using Discrete Fourier Transform and Inverse Discrete Fourier Transform method i.e. property of DFT	10