الاشتقاق و تطبيقاته

	محتوى الدرس	
2 2	تذكير و إضافات 1.1 العدد المشتق – الدالة المشتقة	1
2	1.2 المماس لمنحني دالة - الدالة التآلفية المماسة	
4	مشتقة مركب دالتين	
4	مشتقة الدالة العكسية	
5	الدوال الأصلية لدالة	4

1. تذكير و إضافات

10. العدد المشتق - الدالة المشتقة

تعاريف

I منصر من I مغرفة على مجال مفتوح I و I عنصر من

- م قابلة للاشتقاق في a إذا و فقط اذا f
- f'(a) العدد l يسمى العدد المشتق للدالة في a و نرمز له بالرمز •
- f قابلة للاشتقاق على I إذا كانت \hat{f} قابلة للاشتقاق في كل نقطة من f
 - $\cdot \ddot{f}': x \mapsto f'(x)$ الدالة المشتقة للدالة f على المالة المشتقة المدالة و

خاصية

a في a متصلة في a فإن b متصلة وي a

10. المماس لمنحني دالة - الدالة التآلفية المماسة

تعاريف

a دالة قابلة للاشتقاق في نقطة f

- المماس لمنحنى الدالة f في النقطة ذات الأفصولa هو المستقيم الذي معادلته f الماس لمنحنى الدالة ويتعالى النقطة ذات الأفصول والمستقيم الذي معادلته والدالة والمتعلم المتعلم المت
- الدالة التآلفية المماسة للدالة f في a هي الدالة الدالة التآلفية المماسة للدالة التآلفية المماسة للدالة و
- العدد f(a+h) سمى f'(a) سمى بيروار f(a+h) العدد والمائة بيروار f(a+h) العدد والمائة بيروار f(a+h)

ملاحظة

h = x - a الدالة φ تكتب كذلك $h \mapsto f'(a)h + f(a)$ الدالة φ تكتب كذلك $\frac{df}{dx}$ و تسمى الكتابة التفاضلية.

جدول مشتقات بعض الدوال الاعتيادية

دالتها المشتقة	قابلة للاشتقاق على	الدالة
$x \mapsto \cdots \cdots$	\mathbb{R}	$x \mapsto a; (a \in \mathbb{R})$
$x \mapsto \cdots \cdots$	\mathbb{R}	$x \mapsto x$
$x \mapsto \cdots \cdots$	\mathbb{R}	$x \mapsto x^n; (n \in \mathbb{N}^* \setminus \{1\})$

دالتها المشتقة	قابلة للاشتقاق على	الدالة
$x \mapsto \cdots \cdots$	R*	$x \mapsto \frac{1}{x}$
$x \mapsto \cdots \cdots$	\mathbb{R}_+^*	$x \mapsto \sqrt{x}$
$x \mapsto \cdots \cdots$	\mathbb{R}	$x \mapsto \sin x$
$x \mapsto \cdots \cdots$	\mathbb{R}	$x \mapsto \cos x$
$x \mapsto \cdots \cdots$	$\mathbb{R} \setminus \left\{ \frac{\pi}{2} + k\pi/k \in \mathbb{Z} \right\}$	$x \mapsto \tan x$

تمرين 1

 $f(x)=|x+1|\sqrt{3-2x}$: يلي: $]-\infty;rac{3}{2}$ على الدالة المعرفة على الدالة الدالة

- 1. أدرس قابلية اشتقاق الدالة f في 1- ثم أول هندسيا النتيجة.
 - ?-1 هل الدالة f متصلة في 2
- 3. أدرس قابلية اشتقاق الدالة f في $\frac{2}{2}$ ثم أو ل هندسيا النتيجة.
- f فصول 1. أفصول 1. أفصول 1. أفصول 1. أفصول 1.
 - f(1,0003) حدد تقریباً للعدد -6

العمليات على الدوال المشتقة

و g دالتان قابلتان للاشتقاق على مجال I و g عدد حقيقي f

دالتها المشتقة	قابلة للاشتقاق على	الدالة
$(f+g)' = \cdots \cdots$	I	f+g
$(kf)' = \cdots \cdots$	I	kf
$(fg)' = \cdots \cdots$	I	fg
$\left(\frac{1}{g}\right)' = \cdots \cdots$	$\{x \in I/g(x) \neq 0\}$	$\frac{1}{g}$
$\left(\frac{f}{g}\right)' = \cdots \cdots$	$\{x \in I/g(x) \neq 0\}$	$\frac{f}{g}$

نتائج

كل دالة حدودية قابلة للاشتقاق على ۩. كل دالة جذرية قابلة للاشتقاق على كل مجال ضمن مجموعة تعريفها.

2. مشتقة مركب دالتين

خاصية

a من مرفتین علی التوالي علی مجالین a و f التکن g و دالتین معرفتین علی التوالي علی مجالین g

- 0. إذا كانت f قابلة للاشتقاق في a و قابلة للاشتقاق في $g \circ f$ فإن $g \circ f$ قابلة للاشتقاق في $g \circ f$ لدينا: $(g \circ f)'(a) = f'(a)g'(f(a))$
- $g \circ f$ اذاً كانت f قابلة للاشتقاق على $G \circ f$ قابلة للاشتقاق على $G \circ f$ فإن $G \circ f$ قابلة للاشتقاق على $G \circ f$ اذاً كانت $G \circ f$ فإن $G \circ f$ قابلة للاشتقاق على $G \circ f$ لدينا: $G \circ f \circ f \circ f$

نتائج

I لتكن f دالة قابلة للاشتقاق على

- و الدالة f^n قابلة للاشتقاق على I و لدينا: I و لدينا: ولدينا: f^n الدالة f^n قابلة للاشتقاق على I
- و الدالة \sqrt{f} قابلة للاشتقاق على $\{x \in I/f(x)>0\}$ و لدينا: \sqrt{f}

تمرين 2

حدد مشتقات الدوال:

 $i: x \mapsto \sin\left(\sqrt{x^2+5}\right)$ $g: x \mapsto \sqrt{x^3+x^2-2}$ $g: x \mapsto \left(\frac{x+1}{x^2+3x+7}\right)^3$ $f: x \mapsto \cos(x^2+7x-1)$

3. مشتقة الدالة العكسية

نشاط 1

لتكن f دالة متصلة، رتيبة قطعا و قابلة للاشتقاق على مجال I و f^{-1} دالتها العكسية.

- $f(f^{-1})'(f(a))$ و حدد $f(a) \neq 0$ و عنصرا من $f(a) \neq 0$ بين أن $f(a) \neq 0$ قابلة للاشتقاق في f(a) و حدد $f(a) \neq 0$
 - $J = \{x \in f(I)/f'(f^{-1}(x)) \neq 0\}$ على الشتقاق على الشتقاق على f^{-1} عابلة للاشتقاق على 2
 - J على $f \circ f^{-1}$ على (۱) حدد مشتقة الدالة
 - $(f^{-1})'$ استنتج تعبير الدالة

خاصية

لتكن f دالة متصلة، رتيبة قطعا و قابلة للاشتقاق على مجال I و f^{-1} دالتها العكسية.

f(a) في الدالة f^{-1} قابلة للاشتقاق في $f'(a) \neq 0$ • ليكن f(a) عنصرا من f(a)

 $(f^{-1})'(f(a)) = \frac{1}{f'(a)}$ لدينا: $J = \{x \in f(I)/f'(f^{-1}(x)) \neq 0\}$ على $J = \{x \in f(I)/f'(f^{-1}(x)) \neq 0\}$ الدالة $J = \{x \in f(I)/f'(f^{-1}(x)) \neq 0\}$ لدينا: $J = \{x \in f(I)/f'(f^{-1}(x)) \neq 0\}$

نتائج

ليكن n عنصرا من \mathbb{N}^* و f دالة قابلة للاشتقاق على مجال I. الدالة $x\mapsto \sqrt[n]{x}$ قابلة للاشتقاق على 10; $+\infty$ [و لدينا: 10; $+\infty$ [10; $+\infty$ [10; $+\infty$ [10; 10

ملاحظة

 $(\forall r \in \mathbb{Q}^*): (f^r)' = rf'f^{r-1}$ \bullet $(\forall r \in \mathbb{Q}^*) (\forall x \in]0; +\infty[): (x^r)' = rx^{r-1}$

تمرين 3

عدد مشتقات الدوال: $i: x \mapsto x^{\frac{2}{3}} - \sqrt[4]{x^3+1} \; \boldsymbol{\cdot} h: x \mapsto \frac{1}{\sqrt[3]{x^2+7}} \; \boldsymbol{\cdot} g: x \mapsto \sqrt[3]{x^4} + (x-1)^{\frac{1}{3}} \; \boldsymbol{\cdot} f: x \mapsto (x^2+x)^{\frac{1}{3}}$

تمرين 4

1. بين أن كل من الدوال \sin و \cos و \tan تقبل دالة عكسية على التوالي على $\left[-\frac{\pi}{2}; \frac{\pi}{2}\right]$ و \sin و \sin . \sin عكسية للدوال \sin و \sin و \sin بدلالة x فقط.

4. الدوال الأصلية لدالة

نشاط 2

 $F(x)=rac{2x-3}{x+3}-x$ و $f(x)=rac{-x^2-6x}{(x+3)^2}$ نعتبر الدالتين $f(x)=\frac{2x-3}{x+3}-x$ و المعرفتين على $f(x)=\frac{2x-3}{x+3}-x$

- $(\forall x \in]-3;+\infty[):F'(x)=f(x)$ أن: 1.
- $\bullet(\forall x\in]-3;+\infty[):G'(x)=f(x)$ بحيث G بحيث 2.
- $(\forall x \in]-3; +\infty[): H'(x) = f(x)$ عددية تحقق H دالة عددية تحقق 3.
 - $-3;+\infty[$ على (H-F)' على (H-F) استنتج تعبير الدالة (H-F)

تعریف

I لتكن f دالة عددية معرفة على مجال

f في I في المية للدالة f على I كل دالة F قابلة للاشتقاق على I و مشتقتها هي

خاصية

I لتكن f دالة عددية معرفة على مجال I و F دالة أصلية للدالة f على f الدوال الأصلية للدالة f على f على f على الدوال الأصلية للدالة f على f على f على الدوال الأصلية للدالة f على f على f على الدوال الأصلية للدالة f على f على f على الدوال الأصلية للدالة f على الدوال الأصلية للدالة f على الدوال الأصلية للدالة f على f على الدوال الأصلية للدالة f على الدوال الدوال الذوال الذوال الأصلية للدالة f على الدوال الذوال ا

تمرين 5

 $g(x)=2x-rac{x-1}{x+1}$ و $f(x)=rac{2x^2+4x}{(x+1)^2}$:يلي: $g(x)=1;+\infty$ المعرفتين على g(x)=1

- $-1;+\infty$ ا على g دالة أصلية للدالة f على g دالة أصلية الدالة المارة g
- $-1;+\infty$ [على f على الدوال الأصلية للدالة الما على $-1;+\infty$

خاصية

I لتكن f دالة عددية معرِفة على مجال f و عنصر من f

G(a)=b إذا كانت f تقبل دالة أصلية على I فإنه توجد دالة أصلية G وحيدة للدالة f على I تحقق

تمرين 6

 $g(x)=\cos 2x$ و $f(x)=\sin(x)\cos(x)$ يلي: \mathbb{R} يما يلي: $f(x)=\sin(x)\cos(x)$

- \mathbb{R} على \mathbb{R} على الدالة المشتقة للدالة الحسب الدالة المشتقة الدالة على الدالة المشتقة الدالة الم
- 2. استنتج مجموعة الدوال الأصلية للدالة g على \mathbb{R} .
- $G\left(-rac{\pi}{2}
 ight)=-1$ التي تحقق G الله الأصلية G للدالة g للدالة g للدالة الأصلية على G

خاصية

كل دالة متصلة على مجال I تقبل دالة أصلية على I.

جدول دوال أصلية لدوال اعتيادية

I الدوال الأصلية للدالة f على	ا لجال I	f llul
$x \mapsto ax + k; k \in \mathbb{R}$	\mathbb{R}	$x \mapsto a; a \in \mathbb{R}$
$x \mapsto \frac{1}{2}x^2 + k; k \in \mathbb{R}$	\mathbb{R}	$x \mapsto x$
$x \mapsto \frac{1}{n+1}x^{n+1} + k; k \in \mathbb{R}$	\mathbb{R}	$x\mapsto x^n; n\in\mathbb{N}^*$
$x \mapsto -\frac{1}{x} + k; k \in \mathbb{R}$	\mathbb{R}^*_+ أو	$x \mapsto \frac{1}{x^2}$
$x \mapsto \frac{1}{(1-n)x^{1-n}} + k; k \in \mathbb{R}$	\mathbb{R}^*_+ أو	$x \mapsto \frac{1}{x^n}; n \in \mathbb{N}^* \setminus \{1\}$
$x \mapsto 2\sqrt{x} + k; k \in \mathbb{R}$	\mathbb{R}_+^*	$x \mapsto \frac{1}{\sqrt{x}}$
$x \mapsto n\sqrt[n]{x} + k; k \in \mathbb{R}$	\mathbb{R}_+^*	$x \mapsto \frac{1}{\sqrt[n]{x}^{n-1}}; n \in \mathbb{N}^* \setminus \{1\}$
$x \mapsto \sin(x) + k; k \in \mathbb{R}$	\mathbb{R}	$x \mapsto \cos x$
$x \mapsto -\cos(x) + k; k \in \mathbb{R}$	\mathbb{R}	$x \mapsto \sin x$
$x \mapsto \tan(x) + k; k \in \mathbb{R}$	\mathbb{R}	$x \mapsto 1 + \tan^2(x)$

ملاحظة

 $k\in\mathbb{R}$ حيث $x\mapsto rac{1}{r+1}x^{r+1}+k$ على \mathbb{R}^*_+ هي: \mathbb{R}^*_+ الدوال الأصلية للدالة $x\mapsto x^r$ على $x\mapsto x^r$ على المراد الأصلية للدالة الأصلية للدالة على المراد الأصلية للدالة المراد ا

العمليات على الدوال الأصلية

و v دالتین قابلتین للاشتقاق علی مجال u

دوالة أصلية للدالة f على المجال	المجال	f الدالة
u + v	I	u' + v'
uv	I	u'v + v'u
$-\frac{1}{u}$	u عليه u تنعدم عليه u	$\frac{u'}{u^2}$
$\frac{u}{v}$	v عليه v عليه v	$\frac{u'v-v'u}{v^2}$
$\frac{1}{n+1}u^{n+1}$	I	$u'u^n; n \in \mathbb{N}^*$
$2\sqrt{u}$	u كل مجال ضمن I تكون عليه u موجبة قطعا.	$\frac{u'}{\sqrt{u}}$
$\frac{1}{r+1}u^{r+1}$	u كل مجال ضمن I تكون عليه u موجبة قطعا.	$u'u^r; r \in \mathbb{Q}^* \smallsetminus \{-1\}$
$x \mapsto \frac{1}{a}u(ax+b)$	I	$x \mapsto u'(ax+b); (a;b) \in \mathbb{R}^* \times \mathbb{R}$
$u \circ v$	$v(I)\subset I$ کل مجال ا	$x \mapsto v'(x)u'(v(x))$

تمرين 7

حدد الدوال الأصلية للدالة f على I في الحالات التالية:

$$I =]0; +\infty[; f(x) = \frac{3}{x^2} - \cos(x) + 3$$
 (2
 $I = \mathbb{R} ; f(x) = \cos(3x)$ (4

$$I = \mathbb{R} \; ; \; f(x) = \frac{2x+1}{(x^2+x+1)^2}$$
 (6)

$$I = \mathbb{R} \; ; \; f(x) = (x-2)(x^2 - 4x + 1)^3$$
 (8

$$I = \mathbb{R} \; ; \; f(x) = x^5 + x^2 - 3x + 6 \quad (3$$
 $I =]0; +\infty[\; ; \; f(x) = -\frac{2}{\sqrt{x}} + \sin(x) - 1 \quad (3$

$$I = \mathbb{R} \; ; \; f(x) = \sin\left(2x + \frac{\pi}{6}\right) \quad \left(5\right)$$

$$I = \mathbb{R} \; ; \; f(x) = \frac{x}{\sqrt{x^2 + 1}} \quad (7)$$

تمرين 8

 $f(x)=rac{x^2-2x}{(x-1)^2}$ ايلي: $f(x)=\frac{x^2-2x}{(x-1)^2}$ يلي: المجال المج

- $\forall x \in]1; +\infty[: f(x) = a + \frac{b}{(x-1)^2}$:عدد العددين الحقيقيين a و b عيث b و a
 - $-1;+\infty$ ا الأصلية للدالة f على المجال الأصلية 2.
 - .2 حدد الدالة الأصلية G للدالة f التي تنعدم في G