Verification and Validation Report: The Nursery Project

Aaron Billones, billonea Gillian Ford, fordg Juan Moncada, moncadaj Steven Ramundi, ramundis

 $March\ 8,\ 2023$

1 Revision History

Date	Version	Notes
2023-03-08	1.0	Initial Revision

2 Symbols, Abbreviations and Acronyms

symbol	description
ART	Accessibility Requirements Test
CR	Conveyor Functional Requirement
CST	Conveyor Subsystem Test
EPET	Expected Physical Environment Test
LCD	Liquid-Crystal Display
LED	Light Emitting Diode
LRT	Learning Requirements Test
MG	Module Guide
MIS	Management Information Systems
NFR	Non-Functional Requirement
PDST	Pot Dispenser Subsystem Test
PDR	Pot Dispensing Functional Requirement
PCST	Pot-pulator Complete System Testing
PT	Precision Test
RT	Reliability Test
SCT	Safety Critical Test
SRS	Software Requirements Specification
SRT	Speed Requirements Test
TDST	Tray Dispenser Subsystem Test
TDR	Tray Dispensing Functional Requirement
VST	Verification Subsystem Test
VR	Verification Functional Requirement

Contents

1	Revision History	i
2	Symbols, Abbreviations and Acronyms	ii
3	Functional Requirements Evaluation	1
	3.1 Pot-pulator Complete System Testing	1
	3.2 Tray Dispenser Subsystem Testing	1
	3.3 Pot Dispenser Subsystem Testing	2
	3.4 Conveyor Subsystem Testing	4
	3.5 Verification Subsystem Testing	4
4	Nonfunctional Requirements Evaluation	5
	4.1 Safety Critical Testing	5
	4.2 Precision Testing	5
	4.3 Reliability Testing	6
	4.4 Expected Physical Environment Testing	6
	4.5 Speed Requirements Testing	6
	4.6 Learning Requirements Testing	7
	4.7 Accessibility Testing	7
5	Comparison to Existing Implementation	7
6	Unit Testing	8
	6.1 Hardware Testing	8
7	Changes Due to Testing	9
8	Trace to Requirements	10
9	Trace to Modules	12
\mathbf{L}	List of Tables	
	1 PCST Evaluation	1
	2 TDST Evaluation	1
	3 PDST Evaluation	2
	4 CST Evaluation	4

5	VST Evaluation	4
6	SCT Evaluation	5
7	PT Evaluation	6
8	RT Evaluation	6
9	EPET Evaluation	6
10	SRT Evaluation	6
11	LRT Evaluation	7
12	ART Evaluation	7
13	Corresponding Test IDs and Requirements	0
14	Corresponding Test IDs and Modules	2

3 Functional Requirements Evaluation

3.1 Pot-pulator Complete System Testing

Table 1: PCST Evaluation

Test Number	Description	Input	Expected Output	Actual Output	Result
PCST- 01	Tray Dispenser Operation	Sensor reading of status of tray stack	Normal system operation	Normal system operation	Pass
PCST- 02	On Switch for Tray Dispenser Error	Pot-pulator switch set to on	Normal system operation	Normal system operation	Pass
PCST- 03	Pot Dispenser Operation	Sensor reading of status of pot stack	Normal system operation	Normal system operation	Pass
PCST- 04	On Switch for Pot Dispenser Error	Pot-pulator switch set to on	Normal system operation	Normal system operation	Pass
PCST- 05	Conveyor Operation	Tray placed on conveyor	Normal system operation	Normal system operation	Pass
PCST- 06	Conveyor On Button	Pot-pulator switch set to on	Normal system operation	Normal system operation	Pass

3.2 Tray Dispenser Subsystem Testing

Table 2: TDST Evaluation

Test	Description	Input	Expected	Actual Output	Result
Number			Output		

TDST- 01	Tray Stack Detection	Sensor reads status of tray stack	Signal sent to microprocessor indicating trays are/are not present	Signal detected indicating presence of trays, no signal detected when trays are not present	Pass
TDST- 02	Operation from Tray Stack Detection	Sensor reads status of tray stack	Normal system operation	Normal system operation	Pass
TDST- 03	Tray from Stack to Conveyor	Stack of trays on tray dropper	One tray from stack is placed onto conveyor, next tray ready to be placed onto conveyor	One tray from stack is placed onto conveyor. Occasionally, two trays will be placed if there are only two remaining in the tray stack	Fail
TDST- 04	Verify Tray Status on Conveyor	Sensor reads status of tray on conveyor	Normal system operation	Tray dropper drops additional tray once first tray is no longer underneath tray dropper	Pass

3.3 Pot Dispenser Subsystem Testing

Table 3: PDST Evaluation

Test	Description	Input	Expected	Actual Output	Result
Number			Output		

PDST-	Pot from Stack	Simulated	Pot dispenser	Pot dispenser	Fail
01	to Tray	sensor input,	dispenses two	dispenses two	
		two pot	pots into	pots, 70% of	
		locations of	designated pot	cases tested	
		tray directly	locations	saw pots	
		below pot		dispensed into	
		dispenser		pot locations	
PDST-	Tray Sensing	Trays placed in	Signal sent to	Signal detected	Pass
02		front of sensor	microprocessor	indicating	
			indicating	presence of	
			trays are/are	trays, no	
			not present	signal detected	
				when trays are	
				not present	
PDST-	Ability to	N/A	N/A	N/A	Pass
03	Dispense 4"				
	Diameter Pots				
PDST-	Ability to	Ten pots,	Pot dispenser	Pot dispenser	Pass
04	Store/Dispense	simulated	dispenses two	dispenses two	
	Multiple Pots	sensor input	pots, reloads	pots at a time	
			from stack,	for 5 cycles	
			dispenses two	until all 10	
			pots, etc. until	pots are	
			pot storage is	dispensed	
			empty		
PDST-	Pot Storage	N/A	Signal output	Signal output	Pass
05	Detection		when no pots	when no pots	
			are detected in	are detected in	
			pot storage	pot storage	

3.4 Conveyor Subsystem Testing

Table 4: CST Evaluation

Test Number	Description	Input	Expected Output	Actual Output	Result
CST-01	Conveyor Ability to Move Trays	Simulated inputs indicating conveyor can start	Constant speed of conveyor motor and belt	Constant speed of conveyor motor and belt	Pass
CST-02	Conveyor Ability to Stop	Simulated signals from pot dispenser indicating tray is beneath pot dispenser	Conveyor motor and belt come to a stop	Conveyor motor and belt come to a stop	Pass
CST-03	Conveyor Belt Friction	Mass of tray, tilt angle of conveyor belt	Maximum acceleration of conveyor belt	Maximum acceleration of conveyor belt	Pass

3.5 Verification Subsystem Testing

Table 5: VST Evaluation

Test	Description	Input	Expected	Actual Output	Result
Number			Output		

VST-01	Verify Correct	Tray filled	Signal sent	Signal sent	Pass
	Number of	with pots and	indicating tray	indicating tray	
	Pots in Tray	tray not filled	has not been	has not been	
		with pots	completely	completely	
			filled with	filled with	
			pots, no signal	pots, no signal	
			sent indicating	sent indicating	
			all pot	all pot	
			locations are	locations are	
			filled	filled	

4 Nonfunctional Requirements Evaluation

4.1 Safety Critical Testing

Table 6: SCT Evaluation

Test Number	Description	Input	Expected Output	Actual Output	Result
SCT-01	Tray Dispenser Failure	Tray dispenser disconnect	System flags tray dispenser failure	System flags tray dispenser failure	Pass
SCT-02	Pot Dispenser Failure	Pot dispenser disconnect	System flags pot dispenser failure	System flags pot dispenser failure	Pass
SCT-03	Conveyor Failure	Conveyor disconnect	System flags conveyor failure	System flags conveyor failure	Pass
SCT-04	Verification Failure	Verification disconnect	System flags verification failure	System flags verification failure	Pass

4.2 Precision Testing

Table 7: PT Evaluation

Test	Description	Input	Expected	Actual Output	Result
Number			Output		
PT-01	Tray Dispenser Precision	N/A	N/A	N/A	Pass
PT-02	Pot Dispenser Precision	N/A	N/A	N/A	Pass

4.3 Reliability Testing

Table 8: RT Evaluation

Test	Description	Input	Expected	Actual Output	Result
Number			Output		
RT-01	Function Under Vibration	N/A	N/A	N/A	Pass

4.4 Expected Physical Environment Testing

Table 9: EPET Evaluation

Test Number	Description	Input	Expected Output	Actual Output	Result
EPET- 01	Function Under Aerial Pollution	N/A	N/A	N/A	Pass

4.5 Speed Requirements Testing

Table 10: SRT Evaluation

Test Number	Description	Input	Expected Output	Actual Output	Result
SRT-01	Acceleration Displacement of Trays	N/A	N/A	N/A	Pass
SRT-02	Pot Dispensing Rate	Stack of pots	Pots dispensed at desired rate	Pots dispensed at desired rate	Pass
SRT-03	Tray Dispensing Rate	Stack of trays	Trays dispensed at desired rate	Trays dispensed at desired rate	Pass

4.6 Learning Requirements Testing

Table 11: LRT Evaluation

Test Number	Description	Input	Expected Output	Actual Output	Result
LRT-01	Operational Simplicity	N/A	N/A	N/A	Pass

4.7 Accessibility Testing

Table 12: ART Evaluation

Test Number	Description	Input	Expected Output	Actual Output	Result
ART-01	Audio and Visual	Trigger signal	Corresponding light, sound, or	Corresponding light, sound, or	Pass
	Indicators		screen display	screen display	

5 Comparison to Existing Implementation

After doing some research, there were some existing products that perform a similar function as the Pot-pulator. However, these products are large industrial machines that cost tens of thousands of dollars, which is out of the price range for Sheridan Nurseries. Our goal was to develop a product that could perform the the desired function of filling trays with pots at a inexpensive price point. The existing products are more robust and can operate with larger loads within a given time frame. The Pot-pulator is intended to help solve Sheridan Nurseries' problem in an inexpensive manner. We believe that we have achived this within a budget of only 750 dollars.

6 Unit Testing

6.1 Hardware Testing

The following section includes testing that was performed on critical hardware components of the system. These tests were performed for the purpose of verifying and understanding the behaviour of each hardware component.

1. HT-01: AC Motor Control

Test Description: The conveyor operates using an AC motor. In order to control it, a potentiometer and mechanical relay were used. The potentiometer controls the motor speed, and the relay controls on/off rotation of the motor.

Input: Signal from Arduino to periodically switch the relay. Potentiometer position varies.

Expected Output: Conveyor starts and stops based on the switching of relay. The speed of conveyor slows and speeds up in accordance to the potentiometer.

Test Result: PASS

2. HT-02: Stepper Motor Control

Test Description: Many subsystems of the Pot-pulator uses stepper motors (ie. tray dispenser, pot dropper). Stepper drivers were wired and tested with step sizes that were offered by the drivers purchased.

Input: Signals from Arduino to turn the motor 1 full revolution in full, half, quarter, eighth, and sixteenth stepping modes.

Expected Output: 1 full revolution

Test Result: PASS

3. HT-03: Ultrasonic Range Finder Control

Test Description: These sensors are used to meaure distances within the system for complete operation. Measurements were observed and verfied with a physical measuring tool (ie. ruler, tape measure)

Input: Object placed in front of the sensor.

Expected Output: Distance measured and displayed in the serial mon-

itor (console).

Test Result: PASS

7 Changes Due to Testing

The changes due to testing are summarized below:

1. Verification:

The bases of the verification mounts were recently expanded away from the conveyer by approximately 5 cm on either side, to address issues with the pots being too close to the sensor when travelling down the conveyer, resulting in inaccurate readings.

2. Pot Dropper:

The part design of the threaded discs that drop the pots needed to be modified. After the inital testing of the pot dropper, the design resulted in pots being dropped in groups larger than 1. During each rotation of the stepper motors that are intended to drop 1 pot at a time, often times more than 1 pot would be dropped. Because of these results, the part design was changed and tested. The part design underwent multiple design changes in order to have the highest success rate when dropping pots.

3. Tray Dispenser:

The part design of the toothed cylinder which is responsible for dispensing the trays on to the conveyor was changed during testing. The diameter and number of teeth dictate whether or not the trays will drop one at a time with each motor increment. Several models were designed and tested until a design with diameter of approximately 5cm with 12 teeth was found to be the most effective model.

8 Trace to Requirements

The following table outlines all of the system tests and how they relate to the relevent requirements. The requirements can be referenced in the SRS document.

Table 13: Corresponding Test IDs and Requirements

Test ID	Supporting Requirements
TDST-01	TDR3, TDR5
TDST-02	TDR4, TDR5
TDST-03	TDR2
TDST-04	TDR2
PDST-01	PDR2
PDST-02	PDR2
PDST-03	PDR3
PDST-04	PDR4
PDST-05	PDR5, PDR6
PCST-01	TDR1
PCST-02	TDR5, TDR6
PCST-03	TDR7
PCST-04	PDR1
PCST-05	PDR6, PDR7
PCST-06	PDR8
VST-01	VR1
VST-02	VR2
SCT-01	NFR12
SCT-02	NFR12

SCT-03	NFR12
SCT-04	NFR12
PT-01	NFR13
PT-02	NFR14
RT-01	NFR17
EPET-01	NFR20
LRT-01	NFR6
ART-01	NFR7
SRT-01	NFR8
SRT-02	NFR9
SRT-03	NFR10

9 Trace to Modules

The following table outlines all of the system tests and how they relate to the relevent modules. The modules can be referenced in the MG document.

Table 14: Corresponding Test IDs and Modules

Test ID	Supporting Modules
TDST-01	M9
TDST-02	M9
TDST-03	M10
TDST-04	M10
PDST-01	M4
PDST-02	M4
PDST-03	M5
PDST-04	M3
PDST-05	M6
PCST-01	M9
PCST-02	M12
PCST-03	M6
PCST-04	M3
PCST-05	M3
PCST-06	M7
VST-01	M13
VST-02	M14
SCT-01	M12
SCT-02	M6
SCT-03	M8
SCT-04	M14
PT-01	M12
PT-02	M6

SRT-01	M12
SRT-02	M6
SRT-03	M12

Appendix — Reflection

The information in this section will be used to evaluate the team members on the graduate attribute of Lifelong Learning. Please answer the following questions:

1. In what ways was the Verification and Validation (VnV) Plan different from the activities that were actually conducted for VnV? If there were differences, what changes required the modification in the plan? Why did these changes occur? Would you be able to anticipate these changes in future projects? If there weren't any differences, how was your team able to clearly predict a feasible amount of effort and the right tasks needed to build the evidence that demonstrates the required quality? (It is expected that most teams will have had to deviate from their original VnV Plan.)

The VnV Plan differed slightly from the activities conducted for VnV. This was mainly due to design changes in our product. Primarily, the changes made to the mechanism responsible for placing trays onto the conveyor belt changed the way testing was done for this mechanism. Originally, trays were meant to be placed on the floor, adjacent to the conveyor belt, rather than directly above the conveyor belt as they are now. The implementation and design proposed for the original plan required more components, and thus, required more testing to be done. The design changes made to this component yielded less tests to establish its function, as well as changing the behaviour of the system as a whole. Specifically, our previous design required a reset button to be manually pressed by an operator to notify the system when stock was replenished, meaning this feature would have to be tested to ensure all aspects of the system were reset after a restock. Since the current design operates based on a rolling stock, and the sequence of the assembly is based entirely on the readings of multiple sensors, a manual reset was no longer required, and all tests involving this feature were not viable. In future projects, we can ensure that the design of our respective projects is finalized before creating a VnV Plan, thereby allowing us to follow the VnV Plan when conducting VnV activities.