School of Aeronautics and Astronautics

Long Title of the Presentation with Line Breaks

First & Last-Name

School of Aeronautics & Astronautics Purdue University

April 24, 2015

Outline

- Introduction
 - Motivation
 - Preliminary Theory
- 2 Conclusion
- 3 Appendix

Introduction

Introduction

Scope

- ▶ Develop ...
- ▶ Prove ...
- ► Apply ...

Specific Contributions

- ► First achievement
- Second achievement
- ► Third achievement

Introduction

Scope

- ▶ Develop ...
- ▶ Prove ...
- ► Apply ...

Specific Contributions

- ► First achievement
- Second achievement
- ► Third achievement

Motivation

Google drone delivery¹

Bladeworx's light-rail surveillance³

Amazon drone delivery²

BP pipeline inspection⁴

¹⁾ www.thetimes.co.uk/tto/business/industries/technology/article4190571.ece

 $articles. latimes.com/2013/dec/03/business/la-fi-tn-amazon-ups-google-delivery-drones-20131203\\www.smartrailworld.com/how_drones_are_already-being-used-by-railways-around-the-world$

⁴⁾ townhall.com/news/us/2013/06/07/in-alaskas-oilfields-drones-countdown-to-takeoff-n1615231

Preliminary Theory & Notation

Consider the uncertain nonlinear system described by

$$\dot{x} = \varphi(x)^T \theta + \Delta(x, t) + u$$

where,

x: the state (scalar)

 $\varphi(x)$: vector of known basis functions

heta : vector of uncertain parameters

 $\Delta(x,t)$: disturbances & unmodeled dynamics

u: control input

For example, if $\dot{x} = a \sin x + d(x, t) + u$, then

$$\varphi = \sin x$$
, $\theta = a$, $\Delta(x, t) = d(x, t)$

Preliminary Theory & Notation

Consider the uncertain nonlinear system described by

$$\dot{x} = \varphi(x)^T \theta + \Delta(x, t) + u$$

where,

x: the state (scalar)

 $\varphi(x)$: vector of known basis functions

heta : vector of uncertain parameters

 $\Delta(x,t)$: disturbances & unmodeled dynamics

u: control input

For example, if $\dot{x} = a \sin x + d(x, t) + u$, then

$$\varphi = \sin x$$
, $\theta = a$, $\Delta(x, t) = d(x, t)$

Preliminary Theory & Notation

Consider the uncertain nonlinear system described by

$$\dot{x} = \varphi(x)^T \theta + \Delta(x, t) + u$$

where,

x: the state (scalar)

 $\varphi(x)$: vector of known basis functions

heta : vector of uncertain parameters

 $\Delta(x,t)$: disturbances & unmodeled dynamics

u: control input

For example, if $\dot{x} = a \sin x + d(x, t) + u$, then

$$\varphi = \sin x$$
, $\theta = a$, $\Delta(x, t) = d(x, t)$

Conclusion

Journal Papers:

- Submitted journal paper number 1
- Submitted journal paper number 2

APPENDIX: SUPPORTING MATERIALS

Projection-based Adaptation

The discontinuous projection is defined as follows.

$$\operatorname{Proj}_{\hat{\theta}_i}(\bullet_i) := \begin{cases} 0 & \text{if } \begin{cases} \hat{\theta}_i = \hat{\theta}_{i,max} \text{ and } \bullet_i > 0 \\ \hat{\theta}_i = \hat{\theta}_{i,min} \text{ and } \bullet_i < 0 \end{cases}$$

$$\bullet_i & \text{otherwise}$$

This guarantees that $\hat{\boldsymbol{\theta}}(t) \in \Omega_{\theta}$ for all t, and therefore $\tilde{\boldsymbol{\theta}}(t)$ is bounded.