1007ICT / 1807ICT / 7611ICT Compatem Systems & Metworks

https://eduassistpro.github.io/

3B. Digitald Logichanedu_assist Circuits

Dr. Sven Venema

Dr. Vallipuram Muthukkumarasamy

Last Lecture:

Topics Covered:

- Digital logica Basic logic gates Boolean algebra
- Combin https://eduassistpro.github.io/

Add WeChat edu_assist_pro

Lecture Content

- Learning objectives
- Logic unit, Selection logic, Decoder logic
- Multiplexing and demultiplexing Assignment Project Exam Help
- Half and

https://eduassistpro.github.io/

Add WeChat edu_assist_pro

Learning Objectives

At the end of this lecture you will have gained an understanding of:

Assignment Project Exam Help

- Selectio
- Decoder https://eduassistpro.github.io/
- Multiplexordd WeChat edu_assist_pro
- Demultiplexors
- Half and Full adders

Logic Unit

 Lets try to create a "programmable" logic unit that permits us to apply a predefined logic function to a given set of inputs.

We need a function that lets us select what operation to perform

Selection Logic

- Say we have a number of inputs 'A,B,C,D' and we want to select one of them to use in a logic function.
- We need a special function to switch the selected inputsing the number to the selection.
- We can select between A-D https://eduassistpro.github.io/

Decoder Logic

- Just say we want to select between one of 100's of possible inputs – we need 100's of selection inputs as well which gets too complicated.
- Decoders with N inputs allow us to enable any one of 2 possible selection lines.

• Basical https://eduassistpro.githwooded number and en nting the number

Inp	Inputs Outputs		V _{2t} Chatedu_assist_prox ₀				
s1	s2	x0	x1	x2	хЗ	$x0 = \overline{s1} \text{ AND } \overline{s2}$	Au l
0	0	1	0	0	0	x1 = s1 AND s2	X1 2 ^N outputs
0	1	0	1	0	0	x2 = s1 AND s2	X2
1	0	0	0	1	0	x3 = s1 AND s2	хз
1	1	0	0	0	1		S2 S1 N Inputs

Multiplexing

- Combining the selector and decoder we can create what is called a *Multiplexor*
- In general if we have N inputs we want to switch between we need to have log₂(N) selection lines.

Demultiplexing

 We can also switch in the opposite direction to send one input 'A' into one of many different outputs (eg X1..Xn)

Half-Adders

- In addition to logic functions we can also create maths functions.
- The simplest math function is the half-adder which imade 2 digits (Bits) to give a sum and a https://eduassistpro.github.io/

		Ouiii		
	O	0	0	
0	1	1	0	
1	0	1	0	
1	1	0	1	

Full-Adders

- If we want to add more than 1 bit values together we need to deal with the carry.
- Full-adders accept the two inputs to be added plus the carry from a previous stage.
- The Green With propagation delays

Full-Adders

 The logic to perform add with carry combines two half adders together.

Assignment ProjectAExxand Helpin

Cin	A	В	Sum	http:	s://eduassistpro.github.io/
0	0	0	0	0	Cin
0	0	1	1	Ando	WeChatedu_assist)proSum
0	1	0	1	0	B
0	1	1	0	1	Cout
1	0	0	1	0	
1	0	1	0	1	
1	1	0	0	1	Comp A I B Comp Comp
1	1	1	1	1	Sum A+B Sum Carry

Subtraction

- A B is the same as A + (-B)
- If we convert B to the negative equivalent of its value, we can use the basic adder as it is. We can use App Properties am Help
- However, c complemen https://eduassistpro.github.io/

Summary

Have considered:

- Selection logic
- Decoderigation Project Exam Help
- Multiplex https://eduassistpro.github.io/
- Half and Full adders edu_assist_pro

Next....

- Arithmetic logic unit
- Binary multiplication and division Assignment Project Exam Help
- Shifting

https://eduassistpro.github.io/

- Sequenti
 - Data latches, S-R L
- Clocks and synchronisation
- Registers, Buses, Computer memory
- Processors and Memory Organisation