5. Основы теории графов

Среди разделов дискретной математики теория графов и, особенно, алгоритмы на графах, находят наиболее широкое применение в программировании.

Причина:

теория графов предоставляет очень удобный язык для описания программных (и др.) моделей.

Сведения из истории

Теория графов многократно переоткрывалась разными авторами при решении различных прикладных задач.

Для примера рассмотрим три классические задачи.

1. Задача о кёнигсбергских мостах.

Имеется схематический план центральной части города Кёнигсберг (ныне Калининград), включающий два берега реки Преголя, два острова на ней и семь соединяющих их мостов (данные XVIII в.):

Задача состоит в том, чтобы обойти все четыре участка суши, пройдя по каждому мосту один раз, и вернуться в исходную точку.

В 1736 г. Леонард Эйлер показал: решения этой задачи не существует.

Точнее:

Эйлер получил необходимое и достаточное условие существования решения для всех задач подобного типа.

В процессе анализа задач этого типа используется понятие эйлерова цикла.

2. Задача о трех домах и трех колодцах.

Имеется три дома и три колодца, определенным образом расположенные на плоскости. Требуется провести от каждого дома к каждому колодцу тропинку так, чтобы тропинки не пересекались.

В современной формулировке: к каждому из трёх домов проложить без пересечений на плоскости трубы (рукава) от трех источников (электроснабжения, газоснабжения и водоснабжения).

В 1930 г. К. Куратовский показал: решения этой задачи не существует.

Точнее:

Куратовский получил достаточное условие существования решения для всех задач подобного типа (необходимое условие было известно ранее).

В процессе анализа было введено понятие планарности графа и доказано необходимое и достаточное условие планарности.

3. Задача о четырех красках.

Разделение плоскости на неперекрывающиеся области называется *картой*. Области на карте называются *соседними*, если они имеют общую границу.

Задача состоит в раскрашивании карты таким образом, чтобы никакие две соседние области не были закрашены одним цветом:

С конца XIX в. известна гипотеза, что для этого достаточно четырёх красок.

В 1976 г. К. Аппель и В. Хейкен (Иллинойский университет) опубликовали решение задачи, которое базировалось на переборе некоторых «базовых» вариантов с помощью компьютера.

Позднее анализ этой задачи проводился и другими исследователями (также с помощью компьютерных программ).

Решение задачи «программным путем» явилось прецедентом, породившим бурную дискуссию, которая не закончена до сих пор.

5.1 Основные понятия

Определение графа

Для понятия «*граф*» нет общепризнанного единого определения. Само название подразумевает наличие графической интерпретации.

Графические иллюстрации часто позволяют сразу «усмотреть» суть дела на интуитивном уровне, дополняя рассуждения

сначала рассмотрим определение на языке «графических» объектов.

Графом будем называть любую совокупность точек и линий, соединяющих эти точки.

Неважно, какой именно линией соединены точки (прямой или кривой, длинной или короткой и т. п.).

Важно только, соединены ли какие-то произвольно выбранные точки.

Точки будем называть **вершинами графа**, а соединяющие их линии – **ребрами**.

Вершины будем обозначать

 $m{v_1}, \ m{v_2}, \ m{v_3}, \dots, \ m{v_k}, \dots$ соответственно, $m{V}$ -множество вершин.

Ребра будем обозначать

$$e_1$$
, e_2 , e_3 , ..., e_l , ... соответственно, E -множество ребер.

Пример:

$$V = \{v_1, v_2, v_3, v_4\},$$

 $|V| = 4;$
 $E = \{e_1, e_2, e_3, e_4, e_5\},$
 $|E| = 5.$

Из предыдущего рассуждения следует, что граф можно определить, используя понятия теории множеств.

Поскольку каждое ребро в графе соединяет ровно две вершины, можно дать следующее определение.

Графом G(V, E) называется совокупность двух множеств: непустого множества V (множества вершин) и множества E двухэлементных подмножеств множества V (множества ребер):

$$G(V,E) \stackrel{\mathsf{def}}{=} \langle V,E \rangle, \quad V \neq \emptyset, \quad E \subset 2^V \& \forall e \in E \mid e \mid = 2.$$

Это определение будем рассматривать в качестве основного

Пример:

$$V = \{v_1, v_2, v_3, v_4\},$$

 $|V| = 4;$
 $E = \{e_1, e_2, e_3, e_4, e_5\},$
 $|E| = 5.$

Здесь
$$e_1=\{v_1,v_2\},\ e_2=\{v_2,v_3\},\ e_3=\{v_3,v_4\},\ e_4=\{v_1,v_4\},\ e_5=\{v_2,v_4\}.$$

Пусть

$$|V|=n, |E|=m.$$

Если хотят явно упомянуть эти числовые характеристики графа, то говорят, что \boldsymbol{G} – $(\boldsymbol{n}, \boldsymbol{m})$ -граф.

Инцидентность

Пусть v_1 , v_2 – вершины, $e = \{v_1, v_2\}$ – соединяющее их ребро.

Тогда вершина $\mathbf{v_1}$ и ребро **е** инцидентны, ребро **е** и вершина $\mathbf{v_2}$ также инцидентны.

Пример:

Вершина v_1 и ребро e_1 инцидентны;

вершина v_2 и ребро e_1 инцидентны;

вершина v_1 и ребро e_3 не инцидентны.

Смежность

Два ребра, инцидентные одной вершине, называются *смежными*; две вершины, инцидентные одному ребру, также называются *смежными*.

Множество вершин, смежных с вершиной \mathbf{v} , называется **множеством смежности** (или **окрестностью**) вершины \mathbf{v} и обозначается $\mathbf{\Gamma}^+(\mathbf{v})$:

$$\Gamma^{+}(v) \stackrel{\mathsf{def}}{=} \{ u \in V \mid \{u, v\} \in E \},$$

$$\Gamma^{*}(v) \stackrel{\mathsf{def}}{=} \Gamma^{+}(v) \cup \{v\}.$$

Ясно, что $u \in \Gamma^+(v) \Leftrightarrow v \in \Gamma^+(u)$.

Пример:

Смежные ребра:

$$e_1$$
 и e_2 ; e_2 и e_3 ; e_1 и e_5 ; ...

Несмежные ребра:

$$e_1$$
 и e_3 ; e_2 и e_4 .

Смежные вершины:

$$V_1$$
 и V_2 ; V_1 и V_4 ; V_2 и V_3 ; ...

Несмежные вершины:

$$V_1$$
 и V_3 .

$$\Gamma^+(v_1) = \{v_2, v_4\}, \quad \Gamma^+(v_2) = \{v_1, v_3, v_4\}.$$

Псевдографы

Предположим, что элементом множества \boldsymbol{E} может быть пара одинаковых (не различных) элементов множества \boldsymbol{V} : $\boldsymbol{e} = \{\boldsymbol{v_k}, \boldsymbol{v_k}\}$ (ребро \boldsymbol{e} имеет только одну инцидентную ему вершину).

Такой элемент **е** называется **петлей**.

В этом случае G(V, E) называется *графом с петлями* (или *псевдографом*).

Пример.

Ребра $\boldsymbol{e_6}$ и $\boldsymbol{e_7}$ – петли ($\boldsymbol{e_6}$ инцидентно только вершине $\boldsymbol{v_3}$, $\boldsymbol{e_7}$ – только $\boldsymbol{v_4}$).

Мультиграфы

Предположим, что **Е** является не множеством, а набором, который может содержать некоторые элементы по нескольку раз.

Такие повторяющиеся элементы **E** называются кратными ребрами

(имеют одни и те же инцидентные им вершины).

В этом случае G(V, E) называется **мультиграфом**.

Пример.

$$e_3 = \{v_3, v_4\}, \quad e_6 = \{v_3, v_4\}$$

 $e_4 = \{v_1, v_4\}, \quad e_7 = \{v_1, v_4\}$

 e_3 и e_6 ; e_4 и e_7 – кратные ребра.

Неорграфы

Во всех рассмотренных ранее примерах пары вершин, определяющие ребра графов, были неупорядоченными парами.

Так, в предыдущем примере одно и то же ребро e_2 может быть записано и как $\{v_2, v_3\}$, и как $\{v_3, v_2\}$.

В этом случае говорят, что ориентация ребра не задана.

Граф, для ребер которого не задана ориентация, называется **неориентированным графом** (или **неорграфом**).

Орграфы

Если пары вершин, определяющие ребра графов, рассматриваются как <u>упорядоченные</u> пары, т. е. $E \subset V \times V$, то говорят, что **задана ориентация ребра**

(задано направление движения по ребрам от вершины к вершине).

Граф, для ребер которого задана ориентация, называется *ориентированным графом* (или *орграфом*).

В орграфе вершины называются **узлами**, а ребра – **дугами**.

Пример.

$$e_3 = (v_3, v_4), e_6 = (v_4, v_3),$$

 $e_4 = (v_4, v_1), e_7 = (v_1, v_4).$

Отношения смежности вершин для графов, орграфов и псевдографов

В орграфе вершина \boldsymbol{v} смежна с вершиной \boldsymbol{u} , если существует дуга $(\boldsymbol{u},\,\boldsymbol{v})$.

При этом вершина \boldsymbol{u} может быть несмежна с вершиной \boldsymbol{v} (если нет дуги $(\boldsymbol{v}, \boldsymbol{u})$).

Отношение смежности вершин <u>в неорграфе</u> <u>симметрично</u>, а <u>в орграфе оно может не быть</u> <u>симметричным</u>.

Пример:

Вершина v_2 смежна с вершиной v_1 ;

вершина v_1 смежна с вершиной v_2 .

Вершина v_2 смежна с вершиной v_1 ;

но вершина v_1 не смежна с вершиной v_2 .

В неорграфе (без петель) обычно считают отношение смежности рефлексивным (каждая вершина смежна сама с собой).

В псевдографе, напротив, вершину не считают смежной с собой, если у неё нет петли.

Пример:

Все вершины смежны сами с собой.

Вершины $\mathbf{v_3}$ и $\mathbf{v_4}$ смежны сами с собой;

вершины **v₁** и **v₂** не **смежны** сами с собой.

Изоморфизм графов

Рассмотрим два графа:

Графы имеют одинаковую структуру: если «растянуть» ребра графа $\boldsymbol{G_2}$ в прямую линию, то получится граф $\boldsymbol{G_1}$ (с точностью до переобозначения вершин).

Построим соответствие

$$f: V \rightarrow U$$

где

 $oldsymbol{V}$ – множество вершин графа $oldsymbol{G_1}$,

 $oldsymbol{U}$ – множество вершин графа $oldsymbol{G_2}$:

$$f(v_1) = u_1; f(v_2) = u_3; f(v_3) = u_4;$$

$$f(v_4) = u_2; f(v_5) = u_5.$$

Соответствие **f** является взаимно-однозначной функцией (биекцией).

Это и объясняет одинаковую структуру графов G_1 и G_2 .

Два графа $G_1(V_1, E_1)$ и $G_2(V_2, E_2)$ называются изоморфными, если существует биекция

$$f: V_1 \rightarrow V_2$$

сохраняющая смежность, т. е.

$$e_1 = (u, v) \in E_1 \Leftrightarrow e_2 = (f(u), f(v)) \in E_2$$
.

Обозначение:

$$G_1 \sim G_2$$
 или $G_1 = G_2$.

Изоморфизм графов есть отношение эквивалентности. ! Проверить самостоятельно

Графы рассматриваются с точностью до изоморфизма (т. е. рассматриваются классы эквивалентности графов по отношению изоморфизма).

Пример.

Три диаграммы представляют один и тот же граф $K_{3,3}$.

Числовая характеристика, одинаковая для всех изоморфных графов, называется инвариантом графа.

Например:

n(G), m(G) – инварианты графа G.

Неизвестно никакого простого набора инвариантов, определяющих граф с точностью до изоморфизма.

В частности, количество вершин, рёбер и количество смежных вершин для каждой вершины не определяют граф даже в простейших случаях!

5.2 Элементы графов

Подграфы

Граф G'(V', E') называется **подграфом** графа G(V, E), если $V' \subset V \& E' \subset E$.

Обозначение: $G' \subset G$.

Если $V' = V \& E' \subset E$, то G' называется **остовным подграфом G**.

Если $V' \subset V \& E' \subset E \& (V' \neq V \vee E' \neq E),$ то G' называется **собственным подграфом** графа G.

Пример. e_1 **G**(**V**, **E**): e_4 e_2

Оба – собственные подграфы G.

 e_2

 e_3

Подграф G'(V', E') называется **правильным подграфом** графа G(V, E), если G' содержит все возможные рёбра G:

$$\forall u, v \in V' \quad ((u, v) \in E \implies (u, v) \in E').$$

Правильный подграф G'(V', E') графа G(V, E) определяется подмножеством вершин V'.

Степень (валентность) вершин графа

Количество рёбер, инцидентных вершине **v**, называется **степенью** (или **валентностью**) вершины **v**.

Обозначение: d(v).

Ясно, что для любой вершины и

- $0 \le d(v) \le n-1;$
- степень вершины d(v) равна количеству смежных с ней вершин:

$$d(v) = |\Gamma^+(v)|.$$

Количество вершин, не смежных с v, будем обозначать $\bar{d}(v)$.

Ясно, что
$$\forall v \in V$$
 $d(v) + \overline{d}(v) = n-1$.

Если степени всех вершин графа равны k:

$$\forall v \in V \quad d(v) = k ,$$

то граф называется *регулярным степени k*.

Степень регулярности обозначается r(G).

Для нерегулярных графов значение r(G) не определено.

Примеры.

$$G_1(V_1, E_1)$$
:

$$d(v_1) = d(v_3) = 2$$
,

$$d(v_2) = d(v_4) = 3$$
.

Граф не является регулярным.

$$G_2(V_2, E_2)$$
:

$$\forall v \in V_2 \quad d(v) = 3.$$

Регулярный граф степени 3.

$$r(G_2) = 3.$$

Если степень вершины равна нулю:

$$\boldsymbol{d}(\boldsymbol{v})=0,$$

то вершина **v** называется **изолированной**.

Если степень вершины равна 1:

$$d(v)=1,$$

то вершина **v** называется **концевой**, или **висячей**.

Пример.

$$d(v_1)=1,$$

 $d(v_2)=3,$
 $d(v_3)=d(v_4)=2,$
 $d(v_5)=0.$

Вершина v_1 является концевой, вершина v_5 – изолированной.

Для орграфов.

Число дуг, исходящих из узла \boldsymbol{v} , называется $\boldsymbol{nonycrenehbo}$ исхода узла \boldsymbol{v} .

Обозначение: $d^{-}(v)$.

Число дуг, входящих в узел \boldsymbol{v} , называется $\boldsymbol{nonycrenehbo}$ захода узла \boldsymbol{v} .

Обозначение: $d^+(v)$.

Теорема (лемма о рукопожатиях).

Сумма степеней вершин графа (мультиграфа) равна удвоенному количеству рёбер:

$$\sum_{v\in V}d(v)=2m.$$

Следствие.

Число вершин нечётной степени чётно.

Интерпретация:

в группе людей, некоторые из которых пожимают друг другу руки, число людей, пожавших руку нечётное число раз, должно быть четным

5.3 Представление графов в компьютерных программах

Существуют различные способы представления графов в компьютерных программах. Выбор наилучшего представления определяется требованиями конкретной задачи.

Далее будет рассмотрено четыре базовых представления.

В практическом программировании могут, кроме того, использоваться комбинации или модификации базовых представлений.

Матрица смежности

Матрицей смежности графа G(V, E) с |V| = n (имеющего n вершин) называется квадратная булева матрица M порядка n, элементы которой определяются правилом:

$$m_{ij} = egin{cases} 1, & \text{если вершина } v_i \text{ смежна с вершиной } v_j \,, \\ 0, & \text{если вершины } v_i \text{ и } v_j \text{ не смежны .} \end{cases}$$

Требуемый объем памяти пропорционален n^2 (обозначается $O(n^2)$).

Примеры:

• неорграф

$$M = egin{pmatrix} 0 & 1 & 0 & 1 \ 1 & 0 & 1 & 1 \ 0 & 1 & 0 & 1 \ 1 & 1 & 1 & 0 \end{pmatrix}$$

(принято: вершины не являются смежными сами себе).

• орграф

Замечание.

Матрица смежности неорграфа симметрична относительно главной диагонали, поэтому достаточно хранить только верхнюю (или нижнюю) треугольную матрицу.

Матрица смежности орграфа **не обязана** быть симметричной.

Для матрицы смежности неорграфа:

- число единиц в i-й строке (в j-м столбце) равно степени вершины v_i (v_j);
- сумма единичных элементов равна удвоенному числу ребер.

Для матрицы смежности орграфа:

- число единиц в i-й строке (в j-м столбце) равно полустепени исхода узла v_i (полустепени захода узла v_j);
- сумма единичных элементов равна числу дуг.

Для мультиграфа или псевдографа (графа с петлями) матрица смежности не будет булевой; при ее построении используется следующее правило:

элемент m_{ij} равен числу ребер, соединяющих вершины v_i и v_j , причем каждая петля учитывается дважды.

Матрица инциденций

Матрицей инциденций (n, m)-графа G(V, E) называется матрица H размерности $n \times m$, элементы которой определяются правилами:

для неорграфа

$$h_{ij} = egin{cases} 1, & \text{если } \textit{вершина } v_i \text{ инцидентна } \textit{ребру } e_j \,, \\ 0 & \text{в противном случае ;} \end{cases}$$

для орграфа

$$h_{ij} = egin{cases} -1, & \text{если } yзen \ v_i & \text{является началом } \partial yzu \ e_j \ , \\ 1, & \text{если } ysen \ v_i & \text{является концом } \partial yzu \ e_j \ , \\ 0, & \text{если } ysen \ v_i & u \ \partial yza \ e_j \ \text{не инцидентны} \ . \end{cases}$$

Примеры:

• неорграф

$$H = egin{pmatrix} 1 & 0 & 0 & 1 & 0 \ 1 & 1 & 0 & 0 & 1 \ 0 & 1 & 1 & 0 & 0 \ 0 & 0 & 1 & 1 & 1 \end{pmatrix}$$

орграф

$$H = egin{pmatrix} -1 & 0 & 0 & 1 & 0 \ 1 & -1 & 0 & 0 & -1 \ 0 & 1 & 1 & 0 & 0 \ 0 & 0 & -1 & -1 & 1 \end{pmatrix}$$

Объем памяти для хранения матрицы инциденций пропорционален **n·m** (обозначается **O**(**n·m**)).

Строки матрицы соответствуют вершинам (узлам), а столбцы – ребрам (дугам).

Для матрицы инциденций неорграфа:

- в любом столбце ровно два единичных элемента: если $h_{kj} = 1$ и $h_{lj} = 1$, то ребро e_j соединяет вершины v_k и v_l ;
- сумма единичных элементов в i-й строке равна степени вершины v_i .

Для матрицы инциденций орграфа:

- в любом столбце ровно один элемент равен 1 и ровно один элемент равен -1: если $\boldsymbol{h_{kj}}=1$ и $\boldsymbol{h_{lj}}=-1$, то узел $\boldsymbol{v_l}$ начало дуги $\boldsymbol{e_j}$, а узел $\boldsymbol{v_k}$ ее конец;
- число единиц в i-й строке равно полустепени захода узла v_i; число элементов, равных -1, полустепени исхода этого узла.

Списки смежности

Списком смежности называется представление графа с помощью списочной структуры, отражающей смежность вершин, и состоящей из массива указателей на списки смежных вершин (каждой вершине графа соответствует список, состоящий из вершин, смежных данной).

Требуемый объем памяти для неорграфа – O(n+2m); для орграфа – O(n+m).

Примеры:

• неорграф

• орграф

Массив ребер (дуг)

Массивом ребер (**массивом дуг**) называется представление графа с помощью массива $m \times 2$ (m – число ребер), содержащего список пар смежных вершин (узлов).

Для неорграфа пары вершин неупорядоченные, для орграфа – упорядоченные.

Требуемый объем памяти O(2m).

Примеры:

• неорграф

1	2
1	4
2	3
2	4
3	4

• орграф

1	2
2	3
2	4
4	1
4	3

5.4 Маршруты, цепи, циклы, связность

Маршрут

Маршрутом в графе называется последовательность, в которой чередуются вершины и рёбра, начинающаяся и кончающаяся вершиной:

 V_0 , e_1 , V_1 , e_2 , V_2 , ..., e_k , V_k , в которой любые два соседних элемента инцидентны, причём однородные элементы (вершины, рёбра) через один смежны или совпадают.

Если в маршруте $v_0 = v_k$, то маршрут называется **замкнутым**; в противном случае – **открытым**.

Замечание.

Приведенное определение подходит также для псевдо-, мульти- и орграфов.

При этом в графе (орграфе) достаточно указать только последовательность вершин (узлов) или только последовательность рёбер (дуг).

Цепь

Если все рёбра в маршруте различны, то маршрут называется **цепью**.

Если все вершины (а значит, и рёбра) различны, то маршрут называется **простой цепью**.

В цепи v_0 , e_1 , v_1 , e_2 , v_2 , ..., e_k , v_k вершины v_0 и v_k называются **концами цепи**.

Говорят, что цепь с концами **u** и **v** соединяет вершины **u** и **v**.

Обозначение: $\langle u,v \rangle$.

Можно показать:

если есть какая-либо цепь, соединяющая вершины \boldsymbol{u} и \boldsymbol{v} , то есть и простая цепь, соединяющая эти вершины.

Цикл

Замкнутая цепь называется **циклом**; замкнутая простая цепь называется **простым циклом**.

Число циклов в графе \boldsymbol{G} обозначается $\boldsymbol{z}(\boldsymbol{G})$.

Граф без циклов называется ациклическим.

Пример.

- V₁, V₃, V₁, V₄ –
 маршрут (но не цепь);
- V₁, V₃, V₅, V₂, V₃, V₄ –
 цепь (но не простая цепь);
- V₁, V₄, V₃, V₂, V₅ –
 простая цепь;
- V₁, V₃, V₅, V₂, V₃, V₄, V₁ –
 цикл (но не простой цикл);
- V₁, V₃, V₄, V₁ простой цикл.

Для орграфов

цепь называется *путем*; цикл называется *контуром*.

Путь из узла $oldsymbol{u}$ в узел $oldsymbol{v}$ обозначается $\langle oldsymbol{u}, oldsymbol{v}
angle$.

Связность

Две вершины в графе называются *связанными*, если существует соединяющая их цепь.

Граф, в котором все вершины связаны, называется **связным**.

Можно показать:

отношение связанности вершин является отношением эквивалентности.

! Проверить самостоятельно

Компоненты связности

Классы эквивалентности по отношению связанности (вершин) называются **компонентами связности** графа.

Число компонент связности графа G обозначается k(G).

Граф G является связным тогда и только тогда, когда k(G) = 1.

Если k(G) > 1, то G – несвязный граф.

Замечание.

Несвязный граф всегда можно представить как объединение связных компонент (которые можно рассматривать независимо).

Поэтому во многих случаях можно без ограничения общности предполагать, что рассматриваемый граф связен.

Точки сочленения, мосты и блоки

Вершина графа называется **точкой сочленения** (или **разделяющей вершиной**), если её удаление увеличивает число компонент связности графа.

Мостом называется ребро, удаление которого увеличивает число компонент связности графа.

Блоком называется связный граф, не имеющий точек сочленения.

Пример.

В данном графе

- вершины V_3 и V_7 точки сочленения, причем других точек сочленения нет;
- ребро $\{v_3, v_7\}$ *мост*, причем других мостов нет;
- подграфы $\{v_1, v_2, v_4\}$, $\{v_2, v_3, v_4\}$, $\{v_1, v_2, v_3, v_4\}$, $\{v_5, v_6, v_7\}$ и $\{v_7, v_8, v_9\}$ *блоки*, причем других блоков нет.

Удаление ребра $\{v_3, v_7\}$ приводит к появлению v_4 v_9 двух компонент

Удаление вершины v_3 приводит к появлению двух компонент связности: v_4

связности:

Справедливы следующие утверждения.

- В любом нетривиальном графе есть по крайней мере две вершины, которые не являются точками сочленения.
- Если вершина инцидентна мосту и не является висячей, то она является точкой сочленения.

! Но не каждая точка сочленения является концом моста

- Если граф *G(V, E)* связен, а вершина *v* не является точкой сочленения, то для любых двух других вершин *u* и *w* существует простая цепь <*u*, *w*>, не содержащая вершину *v*.
- Если граф *G(V, E)* связен, то ребро *е* является мостом тогда и только тогда, когда оно не принадлежит ни одному простому циклу.

Разрезы

Пусть G(V, E) – связный граф.

Разрезом графа G называется множество ребер $P \subset E$, удаление которых делает граф несвязным.

Мост – это ребро, представляющее собой одноэлементный разрез

Более общее определение:

разрезом графа G(V, E) называется множество ребер, удаление которых приводит к увеличению числа компонент связности.

Пример.

В графе **G** множество

ребер $P = \{e_5, e_6, e_7\}$

образует разрез (удаление этих ребер делает граф несвязным):

Достижимость вершин (узлов)

Вершина \boldsymbol{v} в графе $\boldsymbol{G}(\boldsymbol{V},\boldsymbol{E})$ называется \boldsymbol{g} достижимой из вершины \boldsymbol{u} , если существует цепь $\langle u,v \rangle$, соединяющая вершины \boldsymbol{u} и \boldsymbol{v} .

Узел \boldsymbol{v} в орграфе $\boldsymbol{G}(\boldsymbol{V}, \boldsymbol{E})$ называется $\boldsymbol{\mu}$ остижимым из узла \boldsymbol{u} , если существует путь $\langle \boldsymbol{u}, \boldsymbol{v} \rangle$ из узла \boldsymbol{u} в узел \boldsymbol{v} .

Матрица достижимости

Отношение достижимости вершин (узлов) в графе (орграфе) можно представить **матрицей достижимости** – квадратной матрицей **Т** порядка **п**, элементы которой определяются правилом:

$$t_{ij} = egin{cases} 1, & \text{если вершина } v_{j} \ \text{достижима из вершины } v_{i} \ , \ 0 & \text{в противном случае} \ . \end{cases}$$

Для неорграфа обычно каждая вершина считается достижимой сама из себя.

Длина маршрута

Длиной маршрута называется количество рёбер в этом маршруте (с учётом повторений).

Если маршрут имеет вид

 $M = v_0, e_1, v_1, e_2, v_2, \dots, e_k, v_k,$

то длина **М** равна **к**.

Обозначение: |M| = k.

Расстояние между вершинами

Расстоянием между вершинами и и v называется длина кратчайшей цепи $\langle u, v \rangle$.

Обозначение: d(u, v).

$$d(u,v) \stackrel{\mathsf{def}}{=} \min_{\{\langle u,v\rangle\}} |\langle u,v\rangle|.$$

Сама кратчайшая цепь, соединяющая две вершины графа, называется *геодезической*.

Если не существует цепи $\langle u,v \rangle$, то по определению $d(u,v) \stackrel{\mathbf{def}}{=} + \infty.$

Матрица минимальных расстояний

Матрицей минимальных расстояний графа G(V, E) называется квадратная матрица **D** порядка n (n -число вершин графа), элементы которой определяются правилом:

$$\mathbf{d}_{ij} = egin{cases} 0, & \text{если } i=j \ dig(v_i,v_jig), & \text{если существует цепь } ig\langle v_i,v_jig
angle, \\ \infty & \text{в противном случае} \ . \end{cases}$$

Ярусы

Множество вершин, находящихся на заданном расстоянии \boldsymbol{n} от вершины \boldsymbol{v} , называется \boldsymbol{spycom} .

Обозначение: D(v, n).

$$D(v,n) \stackrel{\mathsf{def}}{=} \{u \in V \mid d(u,v)=n\}.$$

Множество вершин всякого связного графа однозначно разбивается на ярусы относительно данной вершины.

Диаметр графа

Диаметром графа **G** называется длиннейшая геодезическая.

Обозначение: D(G).

$$D(G) \stackrel{\mathsf{def}}{=} \max_{u,v \in V} d(u,v).$$

Эксцентриситет вершины графа

Эксцентриситетом вершины v в связном графе G(V, E) называется максимальное расстояние от вершины v до других вершин графа.

Обозначение: e(v).

$$e(v) \stackrel{\mathsf{def}}{=} \max_{u \in V} d(u, v).$$

Из определения следует:

вершины с наибольшим эксцентриситетом – это концы диаметра (точнее, цепи, длина которой является диаметром).

Радиус и центр графа

Радиусом графа **G** называется наименьший из эксцентриситетов вершин.

Обозначение: R(G).

$$R(G) \stackrel{\mathsf{def}}{=} \min_{v \in V} e(v).$$

Вершина \mathbf{v} называется \mathbf{u} ентральной, если её эксцентриситет совпадает с радиусом графа: $\mathbf{e}(\mathbf{v}) = \mathbf{R}(\mathbf{G})$.

Множество центральных вершин называется **центром** графа. Обозначение: C(G).

$$C(G) \stackrel{\mathsf{def}}{=} \{ v \in V \mid e(v) = R(G) \}.$$

Пример.

Матрица минимальных расстояний:

$$D = \begin{bmatrix} 1 & 0 & 1 & 2 & 2 & 3 & 1 \\ 1 & 1 & 0 & 2 & 2 & 3 & 1 \\ 3 & 2 & 2 & 0 & 2 & 1 & 1 \\ 3 & 2 & 2 & 2 & 0 & 1 & 1 \\ 4 & 3 & 3 & 1 & 1 & 0 & 2 \\ 2 & 1 & 1 & 1 & 1 & 2 & 0 \end{bmatrix}$$

эксцентриситеты вершин

$$D(G) = 4$$
, $R(G) = 2$, $C(G) = \{v_7\}$.