

Description

The VSM110N02 uses advanced trench technology and design to provide excellent $R_{DS(ON)}$ with low gate charge. It can be used in a wide variety of applications.

General Features

- V_{DS} =20V, I_D =110A $R_{DS(ON)}$ <4m Ω @ V_{GS} =10V (Typ3m Ω)
- High density cell design for ultra low Rdson
- Fully characterized avalanche voltage and current
- Good stability and uniformity with high E_{AS}
- Excellent package for good heat dissipation
- Special process technology for high ESD capability

Application

- Power switching application
- Load switching
- Uninterruptible power supply

TO-252

Schematic Diagram

Package Marking and Ordering Information

Device Marking	Device	Device Package	Reel Size	Tape width	Quantity
VSM110N02-T2	VSM110N02	TO-252	-	-	-

Absolute Maximum Ratings (T_A=25℃unless otherwise noted)

Parameter	Symbol	Limit	Unit	
Drain-Source Voltage	V _{DS}	20	V	
Gate-Source Voltage	V _G s	±12	V	
Drain Current-Continuous	I _D	110	A A	
Drain Current-Continuous(T _C =100 °C)	I _D (100℃)	77		
Pulsed Drain Current	I _{DM}	200	А	
Maximum Power Dissipation	P _D	85	W	
Single pulse avalanche energy (Note 5)	E _{AS}	450	mJ	
Operating Junction and Storage Temperature Range	T_{J} , T_{STG}	-55 To 150	$^{\circ}$ C	

Thermal Characteristic

Thermal Resistance,Junction-to-Case ^(Note 2)	R _{θJC}	1.5	°C/W
---	------------------	-----	------

Electrical Characteristics (T_A=25°C unless otherwise noted)

Parameter	Symbol	Condition	Min	Тур	Max	Unit
Off Characteristics						
Drain-Source Breakdown Voltage	BV _{DSS}	V _{GS} =0V I _D =250μA	20	-	-	V
Zero Gate Voltage Drain Current	I _{DSS}	V _{DS} =20V,V _{GS} =0V	-	-	1	μΑ
Gate-Body Leakage Current	I _{GSS}	V _{GS} =±12V,V _{DS} =0V	-	-	±100	nA
On Characteristics (Note 3)						
Gate Threshold Voltage	$V_{GS(th)}$	V _{DS} =V _{GS} ,I _D =250µA	0.5	0.7	1.2	V
Drain-Source On-State Resistance	R _{DS(ON)}	V _{GS} =4.5V, I _D =30A	-	3	4	mΩ
Forward Transconductance	vard Transconductance g _{FS} V _{DS} =5V,I _D =30A		100	-	-	S
Dynamic Characteristics (Note4)						
Input Capacitance	C _{lss}			3000		PF
Output Capacitance	Coss	V_{DS} =10V, V_{GS} =0V, F=1.0MHz		700		PF
Reverse Transfer Capacitance	C _{rss}	Γ-1.0IVIΠZ		390		PF
Switching Characteristics (Note 4)						
Turn-on Delay Time	t _{d(on)}		-	12.5	-	nS
Turn-on Rise Time	t _r	VGS=10V,VDS=10V	-	35.5	-	nS
Turn-Off Delay Time	$t_{d(off)}$	RL=0. 5 Ω ,RGEN=3 Ω	-	40	-	nS
Turn-Off Fall Time	t _f		-	32.5	-	nS
Total Gate Charge	Q_g			30.4		nC
Gate-Source Charge	Q _{gs}	VGS=4.5V,VDS=10V,ID=30A		9.5		nC
Gate-Drain Charge	Q_{gd}			19.8		nC
Drain-Source Diode Characteristics						
Diode Forward Voltage (Note 3)	V _{SD}	V _{GS} =0V,I _S =20A	-	-	1.2	V
Diode Forward Current (Note 2)	Is	-	-	-	110	Α
Reverse Recovery Time	t _{rr}	TJ = 25°C, IF = 30A	-	35.3	-	nS
Reverse Recovery Charge	Qrr	di/dt = 100A/µs ^(Note3)	-	30.7	-	nC
Forward Turn-On Time	t _{on}	Intrinsic turn-on time is negligible (turn-on is dominated by LS+LD)				

Notes:

- $\textbf{1.} \ \textbf{Repetitive Rating: Pulse width limited by maximum junction temperature}.$
- 2. Surface Mounted on FR4 Board, t ≤ 10 sec.
- 3. Pulse Test: Pulse Width \leq 300 μ s, Duty Cycle \leq 2%.
- **4.** Guaranteed by design, not subject to production
- **5.** EAS condition: Tj=25 $^{\circ}$ C,V_{DD}=10V,V_G=10V,L=0.5mH,Rg=25 Ω

Test circuit

1) E_{AS} test Circuits

2) Gate charge test Circuit:

3) Switch Time Test Circuit:

Typical Electrical and Thermal Characteristics (Curves)

Figure 1 Output Characteristics

Figure 2 Transfer Characteristics

Figure 3 Rdson- Drain Current

Figure 4 Rdson-Junction Temperature

Figure 5 Gate Charge

Figure 6 Source- Drain Diode Forward

Figure 7 Capacitance vs Vds

Figure 9 Power De-rating

Figure 8 Safe Operation Area

Figure 10 Current De-rating

Square Wave Pluse Duration(sec)

Figure 11 Normalized Maximum Transient Thermal Impedance