

Project scope

- Increase self-cuncumption of PV electricity in households
- Evaluate total efficiency of battery energy storage with a new BMS
- Demonstrate cost-effective solutions for thermal storage
- Test a new heat pump controller with smart grid functionality
- Develop a simple tool for system sizing

PV owner's pain

- Consumption profiles
 - Seasonal mismatch
 - Daily mismatch

- EnergyFlexHouses
 - NZEB design
 - 500+ data points
 - Side-by side rooms
 - Floor heating
 - Radiator heating

Experimental system configuration

System components

- 2 x 3.5 kWp PV system
- 4.8 kWh LiFePo battery
- 2.3 kVA battery inverter
- 6 kW(T) heat pump
- 250 I buffertank
- 180 I DHW tank
- Smart electricity meter
- 2 x WiFi sockets

Smart Grid in practice

An example of intelligent energy management: WEATHER SUNNY PORTAL DATA UTILITY GRID PV generation with SMA storage solutions and various controlled appliances. UTILITY METER FOR BILLING INTERNET PV GENERATOR **BATTERY APPLIANCE PURPOSES** SUNNY BOY RADIO-CONTROLLED SUNNY HOME INTELLIGENT INTELLIGENT SUNNY BOY / STORAGE / MANAGER 2.0 SOCKETS APPLIANCE APPLIANCE SUNNY TRIPOWER SUNNY ISLAND via WLAN via WLAN via ETHERNET **ROUTER** 3 3 . . . 3 3 6 Ethernet

- Overall control based on SMA Home Manager 2.0
- Connection to smart grid ready NILAN heatpump
 - 3 modes: Normal, off or high temperature (+10K)

INSTITUTE

Programming in Sunny Portal

Battery cycling results

- Monthly AC efficiency 66-77%
- Standby losses are significant! It may be better to buy some power insteat of starting up the battery inverter.
- Difficult to determine state of charge when not fully charged. This caused the voltage guard to trip the whole system

Heat storage solutions in family houses with heatpump

Theoretical heat storage capacity

- Total water volume = 250 + 180 = 430 liter.
- Q = M*Cp*dT = 430 kg * 4,186 kJ/kgK * 10 K = 18000 kJ =

5,0 kWh thermal (10K)

- Concrete floor mass = 2300 kg/m 3 * 0.1 m * 100 m 2 = 23000 kg
- Q = M*Cp*dT = 23000 * 2,38 kJ/kgK * 3 K = 164220 kJ = 45,6 kWh thermal (3K)
- Total equivalent electricity use in a heat pump = 15-20 kWh/cycle

Heat storage in 10 cm thick concrete floor

Getting the lowest possible temperature for the heat pump A generic problem. Bypass circuits should be avoided!

Period with heat storage only

Power modulation of the heatpump could help fill the gaps/cut the peaks

The power was reduced to 60% and the battery connected

Longer runtime and 100% seff consumption in daytime

Simulation model

Simulation results

PV system	8	kW
Battery	8	kWh
DHW storage	5	kWh
Buffertank	15	kWh

What have we learned?

- Smart Grid Ready does not mean end of all problems!
- Cloud monitoring and –control requires technical skills and a lot of attention
- Limited options for control of heat pumps as "dump load" for excess electricity
- Central heating systems are not built for grid flexibility, smarter control systems are required
- The tested system was time consuming to adjust and was sensitive to many small technical problems
- Differentiated tariffs = game changer

