Solució al problema 12 I

a) Sigui

$$F(x,y,\lambda) = \begin{pmatrix} x^4 + y^4 - 2 \\ (x-1)^2 + (y-1)^2 - \lambda \end{pmatrix}.$$

Llavors

$$DF(x, y, \lambda) = \begin{pmatrix} 4x^3 & 4y^3 & 0 \\ 2(x-1) & 2(y-1) & -1 \end{pmatrix}.$$

Aleshores, quan x = y = 1, $\lambda = 0$:

$$DF(1,1,0) = \begin{pmatrix} 4 & 4 & 0 \\ 0 & 0 & -1 \end{pmatrix}.$$

Aleshores, pel TFI deduim que existeix en un entorn de x=1 una funció $(x,y(x),\lambda(x))$ tal que $y(1)=1,\,\lambda(1)=0$. Derivant les equacions respecte de λ obtenim

$$4x^{3} + 4y^{3}y' = 0$$
$$2(x - 1) + 2(y - 1)y' = \lambda'$$

Solució al problema 12 II

Fent x = 1:

$$4 + 4y' = 0$$
$$0 = \lambda'$$

Per tant, y'(1) = -1 i $\lambda'(1) = 0$. Tornant a derivar:

$$12x^{2} + 12y^{2}(y')^{2} + 4y^{3}y'' = 0$$

$$2 + 2(y')^{2} + 2(y - 1)y'' = \lambda''$$

Fent x = 1:

$$24 + 4y'' = 0$$
$$4 = \lambda''$$

Solució al problema 12 III

Per tant,
$$y''(1) = -6$$
, $\lambda''(1) = 4$, i
$$y(x) \approx 1 - (x-1) - 3(x-1)^2$$

$$\lambda(x) \approx 2(x-1)^2$$

Per tant, per $\lambda=0.01$ tenim

$$0.01\approx 2(x-1)^2,$$

el que implica que $x \approx 1 \pm \sqrt{0.005}$. Per tant, $x_1 \approx 1.070710678$, $x_2 \approx 0929289322$, $y_1 \approx 0.914289322$, $y_2 \approx 1.055710678$.

b) Si definim

$$F(x,y,\lambda) = \begin{pmatrix} f(x,y) \\ (x-x_0)^2 + (y-y_0)^2 - \lambda \end{pmatrix},$$

Solució al problema 12 IV

tenim que

$$DF(x,y,\lambda) = \begin{pmatrix} \nabla f(x,y)^T & 0 \\ 2(x-x_0) & 2(y-y_0) & -1 \end{pmatrix}.$$

Aleshores

$$DF(x_0, y_0, 0) = \begin{pmatrix} \nabla f(x_0, y_0)^T & 0 \\ 0^T & -1 \end{pmatrix}.$$

Sabem que $\frac{\partial f}{\partial x}(x_0,y_0) \neq 0$ o $\frac{\partial f}{\partial y}(x_0,y_0) \neq 0$. Suposem que la segona derivada és diferent de zero (l'altre cas és similar). Llavors, pel TFI tenim que existeix $(y(x),\lambda(x))$ tal que $y(x_0)=y_0$, $\lambda(x_0)=0$ i

$$f(x, y(x)) = 0$$

(x - x₀)² + (y(x) - y₀)² = \(\lambda(x)\)

Solució al problema 12 V

si $|x - x_0|$ és prou petit. A més

$$\frac{\partial f}{\partial x}(x, y(x)) + \frac{\partial f}{\partial y}(x, y(x))y'(x) = 0$$

$$2(x - x_0) + 2(y(x) - y_0)y'(x) = \lambda'(x).$$

Quan $x = x_0$:

$$\frac{\partial f}{\partial x}(x_0, y_0) + \frac{\partial f}{\partial y}(x_0, y_0)y'(x_0) = 0$$

$$0 = \lambda'(x_0).$$

Per tant $\lambda'(x_0) = 0$ i

$$y'(x_0) = -\left[\frac{\partial f}{\partial y}(x_0, y_0)\right]^{-1} \frac{\partial f}{\partial x}(x_0, y_0).$$

Solució al problema 12 VI

Derivant una segona vegada la segona equació i fent $x=x_0,\ y=y_0$ i $\lambda=0$:

$$2 + 2y'(x_0)^2 = \lambda''(x_0).$$

Per tant,

$$\lambda''(x_0) = 2 + \left[\frac{\partial f}{\partial y}(x_0, y_0)\right]^{-2} \left[\frac{\partial f}{\partial x}(x_0, y_0)\right]^2.$$

Per tant la funció $\lambda(x)$ té un mínim local en x_0 , és a dir, existeix $\delta>0$ tal que si $|x-x_0|<\delta$ llavors $\lambda(x)>0$. Per tant, si $\lambda>0$ existeixen dues solucions. Sigui $\lambda=h^2$. Si escrivim $x=x_0+hx_1(h)$ podem trobar el desenvolupament de Taylor de les dues solucions.