Characterizing Bias in Machine Learning Algorithms for Detecting Alzheimer's Disease

Priya Bhirgoo¹, Sierra Gong¹, Anya Greenberg², Nidhish Nerur¹

1. Massachusetts Institute of Technology, Cambridge, MA 2. Harvard University, Cambridge, MA

Introduction

- Alzheimer's disease (AD) is the leading cause of dementia, posing growing clinical, economic, and societal challenges¹
- Early detection is critical for slowing disease progression, yet current diagnostic approaches rely heavily on specialists and biomarker tests, limiting accessibility¹
- In this study, we aim to develop an ML model that detects AD from clinical data while minimizing bias, ensuring equitable performance across patient groups

Data Preparation & Cohort Building

- We utilized demographic and comorbidity data as well as discharge and radiology notes from the MIMIC IV dataset
- Derived features were created to group subcategories, address missing values, and reduce sparsity across features
- Case cohort was built using ICD-10 codes representing AD diagnosis;
 control cohort was built excluding ICD-10 codes representing ADRD diagnosis
 - Propensity score matching using a logistic regression model was applied to identify controls with complete records which were demographically similar to the AD subjects in the case cohort

Category	# Cases	# Controls	
Total Count	1092	1084	
	\overline{Age}		
Mean	81.655	81.146	
Standard Deviation	8.938	9.083	
Median	83	83	
Min	48	47	
\mathbf{Max}	100	100	
Self-repo	orted Gender	,	
Female	685	672	
Male	407	412	
Self-reporte	ed Racial Gre	oup	
African America	135	138	
Asian	33	30	
Hispanic/Latino	50	$\frac{45}{779}$	
White	786		
Other	92	88	
La	nguage		
English	914	917	
Non-English	178	167	
Insura	nce Source		
Medicaid	84	69	
Medicare	943	947	
Other	65	68	

Methodology

Gemini Prediction LightGBM Prediction Model MIMIC IV Database MIMIC IV Database Structured Data: **Unstructured Data:** ${\bf Discharge\,+\,Radiology\,\,Notes}$ Structured Data: Unstructured Data: Demographics + Comorbidities Demographics + Comorbidities Discharge + Radiology Notes Prompt Engineering Gemini Note Summary Gemini One Sentence Gemini Note Summary Formulation Dimensionality Reduction LightGBM AD Prediction Model Gemini Prediction TPR \mathbf{FPR} Precision TPR \mathbf{FPR} Precision

Three key metrics were evaluated to assess model fairness:

- 1. Equal Opportunity: measured by TPR
- 2. Predictive Parity: measured by Precision
- 3. Equalized Odds: evaluated as the joint parity of TPR and FPR

For Equal Opportunity and Predictive Parity, two statistical tests were applied:

- 1. Subgroup-pair level: **Two-proportion Z-test** to detect significant differences between each subgroup pair within demographic attributes
- 2. Overall group level: **Chi-squared test** to determine if TPR or Precision significantly varied across all subgroups of a demographic attribute

All tests included bootstrap procedures to estimate 95% confidence intervals. Bias detection thresholds followed industry guidelines:

Equal Opportunity & Predictive Parity: p < 0.05 Equalized Odds Difference : > 0.1

Results

LightGBM Prediction Model

436

Sample Size

Race Group	Equal Opportunity Range	FPR Range	Predictive Parity Range	Sample Size
	′.	Training Set		
White	0.814-0.865	0.088-0.132	0.857 - 0.902	1267
African American	0.739 – 0.879	0.038 – 0.129	0.876 – 0.961	210
Hispanic/Latino	0.685 - 0.900	0.000 – 0.163	0.790 - 1.000	75
Other	0.779 – 0.927	0.138 – 0.328	0.724 – 0.890	136
Asian	1.000 - 1.000	0.000 – 0.194	0.852 – 1.000	50
		Testing Set		
White	0.570-0.701	0.288 - 0.430	0.605 - 0.734	327
African American	0.572 – 0.871	0.062 – 0.316	0.622 – 0.918	54
Hispanic/Latino	0.143 – 0.714	0.000 - 1.000	0.250 – 1.000	15
Other	0.516 – 0.970	0.000 – 0.372	0.500 – 1.000	27
Asian	0.500 – 1.000	0.000 - 0.647	0.263 – 1.000	13

- Chi-squared tests did not reveal any statistically different differences across racial groups
- Pairwise comparisons were not statistically different, however we have small sample sizes and wide confidence intervals

Gemini Prediction

Overall Model Performance

Metric	Value	
True Positive Rate (TPR)	0.634	
False Positive Rate (FPR)	0.241	
Precision	0.726	
Sample Size	2176	

Demographic Group	Equal Opportunity	Predictive Parity	Equalized Odds
Age Group	Х	×	Х
Sex	✓	\checkmark	\checkmark
Insurance Group	\checkmark	\checkmark	X
Language Group	\checkmark	\checkmark	\checkmark
Race Group	\checkmark	\checkmark	X

- Significant fairness disparities observed in TPR and precision across age groups, particularly poorer performance in individuals over age 90 (p < 0.01)
- Pairwise racial subgroup comparisons identified notable sensitivity differences, especially between African American and Hispanic/Latino individuals (p=0.0328)
- Equalized Odds analyses showed substantial inequities in model performance between the youngest (<70 years) and oldest (>90 years) groups, exceeding established fairness thresholds

Conclusions

- LightGBM achieved comparable predictive performance to Gemini
- Despite similar accuracy, the Gemini-based approach showed significantly greater fairness disparities across age and racial groups
- Future work includes:
 - 1. broadening the scope of fairness evaluation using additional metrics such as demographic parity, calibration within groups, and treatment equality
 - 2. investigating bias mitigation strategies across the ML pipeline for the LightGBM approach
 - 3. examining the internal decision-making processes of the Gemini model

Acknowledgements/References

We would like to thank our project mentors, Dr. Sudeshna Das Yingnan He, and Yu Leng, as well as the 6.7930 teaching staff, Dr. Peter Szolovits, Dr. David Sontag, Sofie and Ilker without whom this study would not have been possible.

1. Scheltens, Philip et al. Alzheimer's disease. Lancet. 397,10284 (2021). https://doi:10.1016/S0140-6736(20)32205-4