Ryan Bishop Aamir Ali Ruchi Gupta Akhyar Zaman Pooja Aggarwal Christian Angel

Group #1 - Milestone 2 (Analysis Phase)

Table of Contents:

Executive Summary	Page: 2
System Request	Pages: 2-3
Feasibility Analysis	Pages: 3-7
Work Plan	Pages: 7-12
Staffing Plan	Pages: 13
Monitoring the Project	Pages: 14-17
Requirements Definitions	Pages: 17-18
Functional Models	Pages: 19-27
Structural Models	Pages: 28-40
Behavioral Models	Pages: 41-49
Appendices	Pages: 50

Executive Summary

Initially we define our nonfunctional and functional requirements which include a learning management, employee records management, employee skills management, and a customer relations management system. Our 'Systems Request' divulges the essential information, such as the business value and purpose of the project. Specific functionality can be derived from the use case diagram, along with the accompanying use case descriptions. An economic, technical, and organizational feasibility analysis shows us the project is fiscally and technically viable. We included activity diagrams detailing each use case, and CRC cards to define each relevant element to the SPMS. The learning management system aids administrators in creating and controlling course data, employee records management system is meant to allow supervisors to manage the service engineers' course completion and skill level, the employee skills management system helps retain employee records, and the customer relations management system includes the interface for clients to schedule service orders. The class diagram helps link all these elements as well as define their relationships. We included behavioral state machines to lay out use case states and communication diagrams to relay the relations between the actors. The CRUDE matrices further define these relationships per use case; lastly the appendix provides a high-level overview of the project.

1.) System Request - Service Personnel Management System (SPMS)

Project Sponsor:	- Thomas Tong, Expert Research Engineer of Agilent Technologies.
Business Need:	- SPMS has to be able to manage the training, scheduling and maintenance of service engineers.
Business Requirements:	 Be able to operate a database Be available to students with proper developmental tools

Business Value: System is expected to greatly improve facilitation of training for the service engineers, as well as scheduling and management carried out by their respective field supervisors, as well as improve user interface for clients creating SOs. This will allow employees to handle more service orders, improve customer satisfaction and reduce costs by increasing overall efficiency of business processes within the company.

Estimation of tangible benefits to the company after four years:

- \$5,000,000 increase in income from services
- \$1,000,000 saved from customer complaints
- \$2,000,000 saved from improved efficiency and integration of SE training program

Special Issues or Constraints:

- Students must have a basic knowledge of programming before learning how to use the

system.

- Deciding who can be granted full admin access

2.) Feasibility Analysis

Technical Feasibility: Can We Build It?

This project will contain a low level of risk due to the advancement of technology in the recent years. Technology is advancing every year and the number of proficient technicians and developers also increase. The IT department will recruit the employees that best fit our team and are well rehearsed with the technology we will be utilizing. The size of the project group would be around 5-6 people, so the project size is considered medium risk. Current size of the team makes it easier to communicate and integrate thoughts and ideas. Being able to communicate ideas effectively will make this project go smoother and make the group work together cohesively. We will avoid compatibility issues due to the fact we have a few employees that are familiar with the current technology and will be able to work effectively with the system.

Economic Feasibility: Should We Build it?

First, we must identify the costs and benefits (both tangible and intangible) of building the system:

Development Costs	Operational Costs
 Servers (Apache/NGINX) Domain Names Database License Application Development Labor 	 Advertising Service Equipment (Tools) Office Supplies Rent Salaries - SE, FP Service Vehicles Travel Costs Utilities
Tangible Benefits	Intangible Benefits
Increased Income from Services	Knowledgeable/Skilled Employees

- Reduction in Customer Complaints
- Reduction in Staff

- Increased Customer Satisfaction
- Better System Reliability

As we can see, there are two main types of costs ("Development" - from building the SPMS software applications, and "Operational" - costs that come from actually servicing repairs/running the brick-and-mortar business).

Now we can begin to assign values to these costs. It is important to conduct thorough research to obtain accurate estimates on the values:

	2016	2017	2018	2019	Total
Increased Income from Services	920.000		1,216,700	1,399,205	
Reduction in Customer Complaints	210,000		277,725	319,384	
Reduction in Staff	543,194	543,194	543,194	543,194	
TOTAL BENEFITS:	1,673,194	1,842,694	2,037,619	2,261,783	
PV OF BENEFITS:	1,624,460	1,736,916	1,864,710	2,009,565	7,235,651
PV OF ALL BENEFITS:	1,624,460	3,361,376	5,226,086	7,235,651	
4 Servers @ \$1,630	6,520	6,520	6,520	6,520	
4 Website domain names @ \$15	60	60	60	60	
Database license	5,000	5,000	5,000	5,000	
Development labor	453,096	0	0	0	
TOTAL DEVELOPMENT COSTS:	464,676	11,580	11,580	11,580	
Advertising Expense	4,500	2,500	2,000	2,000	
Equipment Expense	30,000	3,000	2,000	2,000	
Office Supply Expense	12,000	4,000	2,500	2,000	
Rent Expense	288,000	288,000	288,000	288,000	
Salary Expense - SE	376,820	376,820	376,820	376,820	
Salary Expense - FP	166,374	166,374	166,374	166,374	
Salary Expense - Trainer	200,000	200,000	200,000	200,000	
Salary Expense - Schedulers	110,000	110,000	110,000	110,000	
Salary Expense - Misc.	150,000	150,000	150,000	150,000	
Vehicle Expense @ \$30,000	150,000	0	0	0	
Travel Expense	10,400	10,400	10,400	10,400	
Utility Expense	12,000	12,000	12,000	12,000	
TOTAL OPERATIONAL COSTS:	1,510,094	1,323,094	1,320,094	1,319,594	
TOTAL COSTS:	1,974,770	1,334,674	1,331,674	1,331,174	
PV OF COSTS:	1,917,252	1,258,058	1,218,670	1,182,731	5,576,712
PV OF ALL COSTS:	1,917,252	3,175,311	4,393,981	5,576,712	3,370,712
FV OF ALL COSTS.	1,517,232	3,173,311	4,353,561	3,370,712	
TOTAL PROJECT BENEFITS - COSTS:	(301,576)	508,020	705,945	930,609	
YEARLY NPV:	(292,792)		646,040	826,834	1,658,939
CUMULATIVE NPV:	(292,792)	186,065	832,105	1,658,939	
			· · · ·		
RETURN ON INVESTMENT:	29.75%	(1,658,939 / 5,576	5,712)		
BREAK-EVEN POINT:	1.61	(break-even occu	rs in vear 2: 478.8	358 - 186.065/47	8.858 = 0.61)
		1 2 575 5664/	, , , , , , , , , ,	200,000, 17	-,-30 0.31/
INTANGIBLE BENEFITS:	Knowledgeable/Sl	killed Employees			
	Increased Custom				
	Better System Reli				

As we can see, this system is very cost effective/economically feasible. In year 2 we break-even and by year 4 we will make a profit of approximately \$1.7M (that's nearly 30% ROI).

Cost-Benefit-Analysis Justifications & Sources:

- Increased Income from Services and Reduction in Customer Complaints are assumed to improve at a compound rate of 15% (employees will become more knowledgeable/skillful with each additional year of experience, thus increasing their operational efficiency and leading to less customer complaints).
- Since SEs are being trained as needed, we do not have to employ a specialist in each service field. We can reduce the number of Service Engineers by 50% (from 10 to 5). The average annual salary of an SE is \$75,364 according to Glassdoor:
 https://www.glassdoor.com/Salaries/san-jose-field-service-engineer-salary-SRCH_IL.0,8_IM761_KO9,31.htm. Similarly, we can reduce the number of FPs by 50% (from 4 to 2) we do not need have as many supervisors. Average annual salary of an FP is \$83,187 according to Glassdoor:
 - https://www.glassdoor.com/Salaries/san-jose-field-operations-supervisor-salary-SRCH_I L.0,8 IM761 KO9,36.htm
- Server costs were estimated from AWS (Amazon Web Services): https://aws.amazon.com/ec2/pricing/on-demand/
- Domain name costs were estimated from Namecheap: https://www.namecheap.com/
- Database costs were estimated from the MySQL website: https://www.mysql.com/tcosavings/
- Development cost was estimated by looking up salaries on Glassdoor:
 - https://www.glassdoor.com/Salaries/san-jose-senior-software-engineer-salary-SR
 CH IL.0.8 IM761 KO9,33.htm

- https://www.glassdoor.com/Salaries/san-jose-senior-database-administrator-salary
 -SRCH IL.0,8 IM761 KO9,38.htm
- https://www.glassdoor.com/Salaries/san-jose-full-stack-web-developer-salary-SR
 CH IL.0,8 IM761 KO9,33.htm
- https://www.glassdoor.com/Salaries/san-jose-junior-software-developer-salary-S RCH_IL.0,8_IM761_KO9,34.htm
- o *Note*: Dev. team consists of 4 total 1 senior software engineer, 1 senior database administrator, 1 full-stack web developer and 1 junior software developer
- Salary expenses were also found on Glassdoor:
 - *Note*: Assuming SE team consists of 5 employees, FP team consists of 2 supervisors, training team consists of 2 trainers and schedulers.
- Rent expense was estimated for a 12,000 sq. ft. building in San Jose: http://www.loopnet.com/california/san-jose office-space-for-lease/
- Travel expense was calculated from current gas price per gallon times filling 5 service vehicles once per week for 52 weeks.
- All PV calculations used a 3% interest rate.

Organizational Feasibility: If We Build It, Will They Come?

From an organizational standpoint, the project is low risk. The goals of the project is to make a system that makes it easier for the Field Supervisors to manage the Service engineers' training, scheduling, and maintenance. This project has a champion, Thomas Tong, Expert Research Engineer of Agilent Technologies. Tong will keep the project management updated and educated on the goals of the project. Since the request came because managing the service engineers was difficult. The new system will have allow field supervisors to see whether they need to train engineers more or hire more, so the user acceptance will be high seeing how it will improve the business' overall performance.

3.) Work Plan

Work Breakdown Structure (WBS)

Task Number	Task Name	Duration (in weeks)	Dependency	Status
1	Milestone 1	2		Complete
1.1	System Request			Complete

1.1.1	Establish Project Sponsor			Complete
1.1.2	Determine business need		Complete	
1.1.3	Determine business requirements			Complete
1.1.4	Determine business value			Complete
1.1.5	Determine special issue or constrains			Complete
1.2	Feasibility analysis		All sub parts in 1.1	Complete
1.2.1	Determine Technical feasibility			Complete
1.2.2	Determine Economic feasibility			Complete
1.2.3	Determine Organizational feasibility			Complete
1.3	Workplan		All sub parts in 1.1, 1.2	Complete
1.3.1	Create work breakdown structure			Complete
1.3.2	Develop a Gantt chart			Complete
1.3.3	Develop a project effort estimation			Complete
1.4	Staffing plan		1.1	Complete
1.5	Project monitoring		All sub parts in 1.1, 1.2, 1.3	Complete
2	Milestone 2	2	1	Complete
2.1	Develop an analysis strategy			Complete
2.1.1	Functional Requirements		1	Complete

2.1.2	Nonfunctional Requirements		1	Complete
2.1.3	System proposal Outline			
2.2	Create Functional, Structural, and behavioral models		All subtasks of 2.1	Complete
3	Milestone 3	4	1,2 and all subtasks	In progress
3.1	Design class and methods		2.2	In progress
3.2	Design data management layer			Open
3.3	Design human computer interaction layer			Open
3.4	Design Physical Architecture layer			Open
4	Final Milestone		1,2,3 and all subtasks	Open
4.1	Construct system			Open
4.2	Install system			Open
4.3	Put system into operation			Open

Gantt Chart

ID	Task name	Duration	Start	Finish
1	Milestone 1	2	1/8	1/23
2	Milestone 2	2	1/30	2/13
3	Milestone 3	4	2/14	3/6
4	Milestone 4	1	3/7	3/13

GANTT CHART

- Task A: Milestone 1
- Task B: Milestone 2
- Task C: Milestone 3
- Task D: Milestone 4

Project Effort Estimation Unadjusted Actor Weighting table

Actor type	Description	Weight Factor	Number	Result		
Simple	External system with well-defined API	1	1	1		
Average	Protocol based interface system	2	2	5		
Complex	Human	3	3	10		
Unadjusted actor	Unadjusted actor weight total (UAW)					

Unadjusted Use Case Weight table

Use Case Type	Description	Weight Factor	Number	Result
Simple	1-3 transactions	5	1	5
Average	4-7 transactions	10	1	10
Complex	>7 transactions	15	1	15
Unadjusted use ca	30			

Unadjusted use case points (UUCP)= UAW+UUCW 46 = 16 + 30 Technical Complexity Factors

Factor Number	Description	Weight	Assigned Value (0-5)	Weight Value	Notes
T1	Distributed system	1.0	5	5.0	
T2	Response time	1.0	5	5.0	
Т3	End-user online efficiency	1.0	5	5.0	
T4	Complex internal processing	1.0	3	3.0	
T5	Reusability of code	1.0	3	3.0	
Т6	Easy to install	0.5	3	1.5	
T7	Ease of use	0.5	5	2.5	
Т8	Portability	0.5	2	1.0	
Т9	Ease of change	1.0	3	3.0	
T10	Concurrency	1.0	3	3.0	

T11	Security	1.0	5	5.0	
T12	Access for third parties	1.0	5	5.0	
T13	User training	1.0	4	4.0	
Technical Factor	46.0				

Technical complexity factor (TFC) = 0.6 + (0.01 * TFactor) 1.06 = 0.6 + (0.01 * 46)Environmental Factors

Factor Number	Description	Weight	Assigned Value (0-5)	Weighted Value	Notes
E1	Familiarity with system development process	1.5	2	3.0	
E2	Application experience	0.5	2	1.0	
E3	Object-orient ed experience	1.0	2	2.0	
E4	Lead analyst capability	0.5	2	1.0	
E5	Motivation	1.0	3	3.0	
E6	Requirements stability	2.0	2	4.0	
E7	Part time staff	-1.0	0	0	
E8	Difficulty of programming language	-1.0	2	-3.0	
Environmental	Factor Value (E	11.0			

Environmental factor (EF) = 1.4 + (-0.03 * EFactor) 1.07 = 1.4 + (-.03 * 11)

Adjusted use case points (UCP) = UUCP *TCF *ECF 52.17 = 46 * 1.06 * 1.07

Person hours multiplier (PHM) PHM = 20

Person hours = UPC * PHM 1,043.4 = 52.17 * 20

4.) Staffing Plan

Role	Description	Assigned To
Project Manager	Oversees the project to ensure that it meets its objectives in time and maximizes cost/benefit ratio	
Infrastructure Analyst	Oversees that the project has no technical issues. Documents the project appropriately.	
System Analysts	Focuses on the project's issues with Information Systems	
Business Analyst	Focuses on the project's issues with the Business to design the Information System	
Data Analytics Specialist	Interpreting data, analyzing results using statistical techniques.	
Programmer	Codes the Information System	
	Reports to	Everyone

⁻Reporting structure diagram goes here

5.) Monitoring the Project

	Duration	Dependency
I. Business Modeling A. Inception 1. Understand current Business Situation 2. Uncover Business process problem 3. Identify potential projects B. Elaboration C. Construction D. Transition E. Production		
II. Requirements A. Inception 1. Identify appropriate requirements analysis technique 2. Identify appropriate requirements gathering techniques 3. Identify functional and nonfunctional requirements 4. Analyze current systems 5. Create requirements definition a) Determine requirements to track b) Compile requirements as they are elicited c) Review requirements with sponsor B. Elaboration C. Construction D. Transition E. Production		II.A.1, II.A.2 II.A.1, II.A.2 II.A.3, II.A.4 II.A.5.a II.A.5.b
III. Analysis A. Inception 1. Identify business processes 2. Identify use cases B. Elaboration C. Construction D. Transition E. Production		III.A.1

IV.	Design A. Inception	
	 Identify potential classes 	III.A
	B. Elaboration	
	C. Construction	
	D. Transition	
	E. Production	
V.	Implementation	
	A. Inception	
	B. Elaboration	
	C. Construction	
	D. Transition	
	E. Production	
VI.	Test	
	A. Inception	
	B. Elaboration	
	C. Construction	
	D. Transition	
	E. Production	
VII.	Deployment	
	A. Inception	
	B. Elaboration	
	C. Construction	
	D. Transition	
	E. Production	
VIII.	Configuration and Change Management	
	A. Inception	
	1. Identify necessary access controls for	
	developed artifacts	
	2. Identify version control mechanisms for	
	developed artifacts	
	B. Elaboration	
	C. Construction	
	D. Transition	
	E. Production	
IX.	Project Management	

A. Inception 1. Create work-plan for the inception phase 2. Create system request 3. Perform feasibility analysis a) Perform technical feasibility analysis b) Perform economic feasibility analysis c) Perform organizational feasibility analysis 4. Identify project size 5. Identify staffing requirements 6. Compute cost estimate 7. Create work-plan for first iteration of the elaboration phase 8. Assess inception phase	IX.A.2 IX.A.3 IX.A.4 IX.A.5 IX.A.1 I.A, II.A, III.A IV.A, V.A, VI.A VII.A,
B. ElaborationC. ConstructionD. TransitionE. Production	VIII.A, IX.A, X.A, XI.A XII.A
X. Environment A. Inception 1. Acquire and install CASE tool 2. Acquire and install programming environment 3. Acquire and install configuration and change management tools 4. Acquire and install project management tools B. Elaboration C. Construction D. Transition E. Production	
XI. Operations and Support A. Inception	

B. Elabo C. Const D. Transi E. Produ	ruction tion	
A. Incept 1. 2.	Identify appropriate standards and enterprise models Identify reuse opportunities, such as patterns, frameworks, and libraries Identify similar past projects ration ruction tion	

6.) Requirements Definition

The first step in the Analysis Phase is to define what the system must do, or what characteristic the system must have. To determine the scope of the system, we will clearly list all performance/usability requirements (non-functional), as well as all process-oriented requirements (functional):

Nonfunctional Requirements

1. Operational Requirements

- 1.1 The system should establish a connection with client though the request
- 1.2 The system should create backlog every bug/error that is reported

2. Performance Requirements

- 2.1 Build a log of every activity/retain records for auditing purposes
- 2.2 Alert when no SE is found for SO
- 2.3 Automatic and manual marking for completion of courses

3. Security Requirements

- 3.1 Release updates that make the necessary changes to fix issue
- 3.2 Allow admin access to anything in application

4. Cultural and Political Requirements

4.1 No special cultural and political requirements are anticipated

Functional Requirements

1. Learning System Managemen

- 1.1 Create courses
- 1.2 Create course instances
- 1.3 Register to courses
- 1.4 Mark courses complete

2. Employee Skills Management

- 2.1 Allow Field Supervisors to register direct reports for courses
- 2.2 Allows supervisor to manage skill and skill level of direct reports
- 2.3 Allow Product Specialist to create/edit equipment/course/training items association
- 2.4 Allow Scheduler to view any SE's skills and courses

3. Employee Records Management

- 3.1 Record entry to each employee when hired
- 3.2 Record change in employee status
- 3.3 Retain employee records for auditing

4. Customer Relationship Management System

- 4.1 Creation and scheduling of Service Order's (SO)
- 4.2 Searching for matching SE
- 4.3 Alert when no SE is found for the SO
- 4.4 Schedule the SE for the SO
- 4.5 Record when the SO has been serviced

From here we can create a rudimentary outline of the Systems Proposal for the Service Personnel Management System:

Outline of the Systems Proposal

- 1. Table of Contents
- 2. Executive Summary
- 3. System Request
- 4. Economic Feasibility
- 5. Evolutionary Work Breakdown Structure
- 6. Requirements Definition
- 7. Functional Model (to be completed)
- 8. Structural Models (to be completed)
- 9. Behavioral Model (to be completed)

7.) Functional Models

Now we can begin the process of turning requirements into functional models. First, we will make a Use Case Diagram for the Service Personnel Management System:

Now we will create Use Case Descriptions for each use case:

Use Case Name: Learning Management System		ID: 1	Importance Level: High			
Primary Actor: Instructor	Use Ca	Jse Case Type: Overview, Essential				
Stakeholders and Interests:						
 Instructor can create courses 						
 Instructor can create course instances 						
 Employee can register to courses 						
Instructor (or system) marks courses comple	te for em	ployee				
Brief Description: This use case describes how the lea	arning sys	stem works for	both instructors and employees.			
Trigger:						
Type:						
Relationships:						
Association: Instructor, Employee, Employee Records Management						
Include:						
Extend:						
Generalization:						
Normal Flow of Events:						
1.						
SubFlows:						
S-1:						
Alternate/Exceptional Flows:						

Use Case Name: Employee Skills Management		ID: 2	Importance Level: High		
Primary Actor: Supervisor (SP)	Use Cas	Use Case Type: Overview, Essential			
Stakeholders and Interests:					
 Allow Field Supervisors to register direct repo 	orts for co	ourses			
 Allows supervisor to manage skill and skill le 	vel of dir	ect reports			
 Allow Product Specialist to create/edit equipn 	nent/cour	se/training iter	ns association		
 Allow Scheduler to view any SE's skills and of 	courses				
Brief Description: This use case describes how supervi	sors can	manage emplo	yees' skills.		
Trigger: Employee completes new skill.					
Type: External					
Relationships:					
Association: Supervisor (SP), Admin, Schedu	lers, Prod	łuct Specialist,	Learning System Management,		
Employee Records Manage	ment, CR	M			
Include:					
Extend:					
Generalization:					
Normal Flow of Events:					
1.					
SubFlows:					
S-1:					
Alternate/Exceptional Flows:					
-					

Use Case Name: Employee Records Management		ID: 3	Importance Level: High			
Primary Actor: Admin		Use Case Type: Overview, Essential				
Stakeholders and Interests:						
 Record entry to each employee when hired 						
 Record change in employee status 						
 Retain employee records for auditing 						
Brief Description: This use case describes how employ	yee's rec	ords are auto	matically updated when changes to			
other use cases occur.						
Trigger: Employee records change in a table schema.						
Type: Internal						
Relationships:						
Association: Admin, Learning System Manag	gement, I	Employee Sk	ills Management, CRM			
Include:						
Extend:	Extend:					
Generalization:	Generalization:					
Normal Flow of Events:						
1.						
SubFlows:						
S-1:						
Alternate/Exceptional Flows:						

Use Case Name: Customer Relationship Management		ID: 4	Importance Level: High	
Primary Actor: Supervisor (SP)		Use Case Type: Overview, Essential		
Stakeholders and Interests:				
 Creation and scheduling of Service Order's (S 	SO)			
 Searching for matching SE 				
 Alert when no SE is found for the SO 				
 Schedule the SE for the SO 				
 Record when the SO has been serviced 				
Brief Description: This use case describes how custom SE.	ers issue	orders and the	SPMS fulfills the order with an	
Trigger: Customer issues Service Order (SO).				
Type: External				
Relationships:				
Association: Supervisor (SP), Admin, Employ	yee Skill	s Management	, Employee Records	
Management				
Include:				
Extend:				
Generalization:				
Normal Flow of Events:				
1.				
SubFlows:				
S-1:				
Alternate/Exceptional Flows:				

Now we will create the activity diagram for the use cases:

Activity Diagram for Learning System Management.)

Activity Diagram for Employee skills Management.)

Activity Diagram for Employee Records Management.)

Activity Diagram for Customer Relationships Management.)

8.) Structural Models

a.) CRC Cards

Represents a kind of person, place, or thing about which the system will need to capture and store information.

Learning Management System

Front:

Class Name: Instructor ID: 1 Type: concrete, domain Description: Teaches the learning system to employees who are unfamiliar.

Responsibilities:

Collaborators:

- Instructor can create courses.

Employee

- Instructor can create course instances.
- Instructor marks courses complete for employees.

Back

Attributes:

EmployeeID(double):
FirstName(text): LastName(text): Role(text):
Department(text):

Relationships: Generalization:

Aggregation: Instructor Other Associations:

Employee Skills Management

Front

Class Name:Supervisor Type:co

Type:concrete,domain

ID: 1

Description: Manage Employees' smills.

Responsibilities:

Collaborators:

- Register direct reports for courses.

Admin Scheduler

- Manage skill and skill level.

Product Specialist

Back

Attributes:

EmployeeID(double); Clearance(double):

FirstName(text):

LastName(text):

Relationships:

Generalizations: Aggregation: Admin

Scheduler

Product Specialist

Front:

Class Name: Admin Type: concrete, domain

ID: 2

Description: Manage employees' information and

skills.

Responsibilities: Collaborators:
- Enter Employee's Supervisor
Information. Scheduler

- Change Employee's Product Specialist

Information.

Back

Attributes:

EmployeeID(double): Clearance(double):

Relationships: Generalizations:

Aggregation: Supervisor

Scheduler

Product Specialist

Front

Class Name:Product Specialist ID: 3

Type: concrete, domain

Description: Creates or edits training resources.

Responsibilities: Collaborators:
- Create equipment. Supervisor
- Create training items.
- Help edit the course. Scheduler

Back

Attributes:

EmployeeID(double):

EmployeeSkill_ID(double):

FirstName(text): LastName(text):

Relationships:

Generalizations:

Aggregation:Supervisor

Admin

Scheduler

Front

Class Name: Scheduler ID: 4

Type: concrete, domain

Description: View any SE's skills and

courses.

Responsibilities: Collaborators: - Schedule courses for employees. Supervisor Admin

- Maintain SE's Product Specialist

courses.

- View SE's skills.

Back

Attributes:

EmployeeID(double): FirstName(text):

LastName(text):

Relationships: Generalizations:

Aggregation: Supervisor

Admin

Product Specialist

Employee Records Management

Admin

Front

Class Name: Admin ID: 1 Type: Concrete, domain Description: manage employee records

Responsibilities Collaborators
Enter employee info when hired Employee
Change employee info

Back

Attributes:

EmployeeID(double): Clearance(double):

Relationships Generalization:

Aggregation: Employee

Employee

Front

Class Name: Employee ID: 2 Type: Concrete, domain Description: holds records for employees in company

Responsibilities Collaborators

Maintain info Admin

Back

Attributes:

EmployeeID(double):

Role(text):

FirstName(text):

LastName(text): Department(text):

Relationships

Generalization:

Aggregation: Admin

Customer Relationship Management

Client

Front

Class Name: Client ID: 1 Type: Concrete, domain Description: commissions engineers from Agilent

ResponsibilitiesCollaboratorsCreate SO'sService EngineerMark SO completeSupervisorService Order

Back

Attributes:

CompanyID(double): AddressStreet(text): CompanyName(text): AddressCity(text): ContactFirstName(text): AddressState(text): ContactLastName(text): PhoneNumber(text):

Relationships Generalization:

Aggregation: Service Engineer

Supervisor

Other Associations: Service Order

Service Order

Front

Class Name: Service Order ID: 2 Type: Concrete,

domain

Description: details task required by client

Responsibilities
Provide task/skills required of SE

Provide task/skills required of SE Supervisor
Provide client's info Service Engineer(SE)

Client

Collaborators

Back

Attributes:

ServiceOrderid(double): Status(text):

CustomerID(double): EmployeeSkillid(double): Productid(double):

Relationships Generalization: Aggregation:

Other Associations: Supervisor

Service Engineer Client

Supervisor

Front

Class Name: Client ID: 3 Type: Concrete, domain Description: Manages placing of direct reports (SEs)

Responsibilities

Collaborators Client

Track alerts through system Notify appropriate SE

Service Engineer

Service Order

Back

Attributes:

EmployeeID(double): FirstName(text): Clearance(double): LastName(text):

Relationships Generalization:

Aggregation: Service Engineer

Client

Other Associations: Service Order

Service Engineer

Front

Class Name: Service Engineer ID: 4 Type: Concrete,

domain

Description: fulfills service requested by SO's

Responsibilities Collaborators
Complete service required Supervisor
by SO when SP notifies Service Order

Back

Attributes:

EmployeeID(double): EmployeeSkillid(double): ContactFirstName(text):

ContactLastName(text): PhoneNumber(text):

Relationships Generalization:

Aggregation: Client Supervisor
Other Associations: Service Order

b.) Class Diagram

c.) Object Diagrams

9.) Behavioral Models

a.) Sequence Diagrams

Employee Skills Management System Use Case

Employee Records Management System Use Case

Customer Relationship Management System Use Case

b.) Communication Diagrams

Learning Management System Use Case

c.) Behavioral-State Machines

1. CRUDE Matrix- Learning management system

	Instructor	Courses	Employee
Instructor			
Courses	C, R, U, D		R, E
Employee	C, U, D		

2. CRUDE Matrix- Employee skills management

Supervisor	Skills	Admin	Product Specialist
------------	--------	-------	-----------------------

Supervisor		C, R, U	
Skills	C, R, U	C, R, U, D	C, R, U, D
Admin			
Product Specialist		C, R, U, D	

3. CRUDE Matrix- Employee Records Management

	Admin	Courses	Employee (SE)
Admin			R
Courses	C, R, U, D		R, E
Employee (SE)	C, R, U		

4. CRUDE Matrix- Customer's Relationship Mgmt System

	Client	Service Order	Supervisor(SE)	Service Engineer
Client			C, R, U, E	R
Service Order	C, R, U, D			E
Supervisor				
Service Engineer	D, U			

d) Behavioral Models

1. Learning Mgmt System

2. Employee Skills Mgmt

3. Employee Records Mgmt

4. Customer Relations Mgmt

10.) Appendices

The Service Personnel Management System could be very beneficial system to Agilent Technologies because other companies use this system and benefit greatly off of it. A company such as Smart and Final. They have a system that allows them to train employees when requested and always updates their statuses on the Dayforce Application. The system they have also allows them to know when someone is training so they won't be scheduled for work. They also monitor our performance as Cashiers with cameras to make sure if we need to be trained again they can provide the training although it rarely happens. Smart and Final also has a Website called SmartU that allows their employees to take course to specialize in other fields such as produce and meat. This system greatly benefits Smart and Final, and so we believe it would benefit Agilent Technologies greatly as well.

