





A typical adult human has a mass of about 70 kg. (a) What force does a full moon exert on such a human when it is directly overhead with its center 378,000 km away? (b) Compare this force with the force exerted on the human by the earth.







An 8 kg point mass and a 15 kg point mass are held in place 50.0 cm apart. A particle of mass m is released from a point between the two masses 20.0 cm from the 8 kg mass along the line connecting the two fixed masses. Find the magnitude and direction of the acceleration of the particle.









Ten days after it was launched toward Mars in December 1998, the Mars Climate Orbiter spacecraft (mass 629 kg) was  $2.87 \times 10^6$  km from the earth and travelling at  $1.20 \times 10^4$  km/h relative to the earth. At this time, what were (a) the spacecraft's kinetic energy relative to the earth and (b) the potential energy of the earth-spacecraft system? Mass of earth is  $5.97 \times 10^{24}$  kg









The International Space Station makes 15.65 revolutions per day in its orbit around the earth. Assuming a circular orbit, how high is this satellite above the surface of the earth? Mass of earth is  $5.97 \times 10^{24}$  kg and radius of earth is 6380 km.









NASA launched the Aura spacecraft to study the earth's climate and atmosphere. This satellite was injected into an orbit 705 km above the earth's surface, and we shall assume a circular orbit. (a) How many hours does it take this satellite to make one orbit? (b) How fast (in km/s) is the Aura spacecraft moving? Mass of earth is  $5.97 \times 10^{24}$  kg and radius of earth is 6380 km.



