Температура	на 1	Кю	ри
-------------	------	----	----

Теоретична обосновка

Температурата на Кюри T_c е критична температура за феромагнитните, като когато температурата на даден феромагнит е по-малка от T_c , то в него се поражда магнитен момент при поставяне във външно магнитно поле, а при $T>T_c$ магнитният момент на тялото остава нула, без значение от приложеното външно магнитно поле. Това се случва защото при поголяма температура частиците на феромагнита имат твърде висока средна кинетична енергия, и магнитните им моменти не могат да се ориентират в една и съща посока.

Опитна постановка

За да измерим наблюдаваме преходът между феромагнитно и парамагнитно състояние поставяме образецът в магнитно поле с градиент, който е успореден на магнитното поле в дадената точка. Така полето ще намагнити образецът, а градиентът на полето ще създаде сила, която действа на образецът, като силата е пропорционална на магнитният му момент.

$$\vec{F} = \vec{M} \cdot \nabla \vec{B}$$

Вижда се, че след преминаване на температурата на Кюри силата, действаща на образецът, е нула. Можем да измерим тази сила като окачим образецът на електронна везна и мерим показанията й докато го нагряваме.

На графиката е представена зависимостта на силата, действаща на образеца, като функция на напрежението на термодвойката. За да намерим температурата на Кюри, екстраполираме бързото спадане към нулата и вземаме пресечната точка на тази права с равновесното показание на везната, тоест когато температурата е над температурата на Кюри.

Фигура 1: F като функция на напрежението на термодвойката

На долната графика се вижда само частта от графиката, където силата, действаща на образеца, спада много бързо.

Фигура 2: Пад на F около температурата на Кюри

Като екстраполираме спадането на силата до правата F=-38mg, което е равновесната сила в нашия случай, получаваме $U_T=12.9mV$. На това напрежение отговаря на температура на Кюри $T_c\approx 610K$. Образецът найвероятно е от Никел.