CKM и PMNS как геометрические следствия Zero-Field Spectral Cosmology (ZFSC)

Евгений Монахов VOSCOM ONLINE Research Initiative

8 сентября 2025

Аннотация

Мы показываем, что в рамках ZFSC смешивание поколений кварков и лептонов (матрицы CKM и PMNS) возникает как чисто геометрический эффект из одной базовой эрмитовой матрицы H, представляющей дискретный слой связности "луковичной" матрицы реальности. Разные физические сектора (u,d,ℓ,ν) получаются действием на H различающихся геометрических преобразований (граничные условия, твисты, перестановки, локальные деформации), после чего диагонализация секторных матриц порождает собственные векторы U_s и массы как устойчивые "плато" собственных значений. Мы выводим:

$$V_{\text{CKM}} = U_u^{\dagger} U_d, \qquad U_{\text{PMNS}} = U_{\ell}^{\dagger} U_{\nu},$$

обосновываем малость смешивания кварков (близость T_u и T_d) и большие углы у нейтрино (сильное отличие T_ℓ и T_ν), а также даём пертурбативные формулы для углов, фаз и инварианта Ярлскога через элементы возмущения δH . Показаны тестируемые предсказания и численная процедура подбора параметров $(\Delta, r; g_L, g_R; h_1, h_2, h_3)$.

Введение

ZFSC постулирует фундаментальный уровень $S \to 0$, где Вселенная задаётся чистым вероятностным полем амплитуд и дискретной матричной структурой связности. На фиксированном слое задаётся базовая эрмитова матрица $H = H^{\dagger}$, чьи спектральные плато соответствуют наблюдаемым иерархиям масс. Физические сектора (u,d,ℓ,ν) индуцируются геометрическими преобразованиями T_s над H, после чего смешивание есть относительная ориентация собственных баз этих секторных матриц.

1 Базовая матрица и секторные преобразования

Пусть $H(\Delta, r; g_L, g_R; \mathbf{h}) \in \mathbb{C}^{N \times N}$ — эрмитова, где параметры (Δ, r) кодируют мезомасштабную дискретную геометрию, g_L, g_R — асимметрии левых/правых связностей, а $\mathbf{h} = (h_1, h_2, h_3)$ — локальные деформации/твисты.

Определим секторные матрицы

$$H_s \equiv T_s[H], \qquad s \in \{u, d, \ell, \nu\},$$
 (1)

где T_s — геометрические операции над графом/решёткой:

- граничные условия (Dirichlet/Neumann/mixed),
- перестановки узлов и перетасовки подрешёток,
- локальные твисты (анизотропные повороты фаз вдоль циклов),
- слабые деформации весов рёбер.

Важно: T_s не обязаны быть унитарными сопряжениями одного и того же оператора; обычно $H_s = W_s^{\dagger} \, H \, W_s + \varepsilon_s \, D_s$, где W_s — унитарная геометрия (перестановка/фазовый твист), а $D_s = D_s^{\dagger}$ — малые диагональные/локальные деформации.

2 Массы как плато собственных значений

Диагонализация

$$H_s = U_s \Lambda_s U_s^{\dagger}, \qquad \Lambda_s = \operatorname{diag}(\lambda_{s,1} \le \lambda_{s,2} \le \ldots),$$
 (2)

даёт собственные значения $\lambda_{s,i}$, среди которых устойчивые *плато* интерпретируются как три поколения. Массы сектора s:

$$m_{s,i} = \alpha_s \,\lambda_{s,i}^{(+)} \quad (i = 1, 2, 3),$$
 (3)

где $\lambda^{(+)}$ — первые три положительных устойчивых значения, α_s — секторный масштаб (перевод единиц/нормировка). Нулевая мода ≈ 0 трактуется как безмассовый бозон (кандидат на гравитон), отрицательная — как тахионный индикатор неустойчивости слоя.

3 Смешивание как относительная ориентация собственных баз

Определения:

$$V_{\text{CKM}} = U_u^{\dagger} U_d, \qquad U_{\text{PMNS}} = U_\ell^{\dagger} U_{\nu}.$$
 (4)

Если T_d мало отличается от T_u , то $U_d \approx U_u$ и $V_{\rm CKM} \approx \mathbb{I}$ (малые углы). Если же T_ν сильно отличается от T_ℓ , то U_ν существенно повёрнута относительно U_ℓ (большие углы PMNS).

4 Пертурбативный вывод малых углов СКМ

Пусть

$$H_d = H_u + \delta H, \qquad \|\delta H\| \ll \min_{i \neq j} |\lambda_{u,j} - \lambda_{u,i}|. \tag{5}$$

Пусть $H_u = U_u \Lambda_u U_u^{\dagger}$, и перейдём в базис U_u : $\delta H \equiv U_u^{\dagger} \, \delta H \, U_u$. Для собственных векторов известна формула первого порядка (невырожденные уровни):

$$K_{ij} \equiv \left(U_u^{\dagger} U_d - \mathbb{I} \right)_{ij} \simeq \frac{\widetilde{\delta H}_{ij}}{\lambda_{u,j} - \lambda_{u,i}}, \quad i \neq j, \qquad K_{ii} = 0,$$
 (6)

где $K = -K^{\dagger}$ (антиэрмитова генерация поворота). Тогда

$$V_{\text{CKM}} = U_u^{\dagger} U_d \simeq e^{-K} \simeq \mathbb{I} - K + \mathcal{O}(\delta H^2). \tag{7}$$

Следовательно,

$$\theta_{ij}^{(q)} \simeq \frac{\left|\widetilde{\delta H}_{ij}\right|}{\left|\lambda_{u,j} - \lambda_{u,i}\right|}, \qquad \delta_{\text{СКМ}}$$
 задаётся аргументами компонент K_{ij} . (8)

Инвариант Ярлскога в первом ненулевом порядке:

$$J_{\text{CKM}} \simeq \text{Im}(K_{12}K_{23}K_{13}^*) + \mathcal{O}(\delta H^4).$$
 (9)

Итого, малость углов естественна при маленьких $\|\delta H\|$ или больших спектральных зазорах $|\lambda_{u,j} - \lambda_{u,i}|$.

5 Непертурбативно большие углы PMNS

Для лептонов предполагаем, что T_{ν} существенно отличается от T_{ℓ} (другие граничные условия/твисты, возможно, топологически иные циклы), так что пертурбативная схема неприменима. Тогда

$$U_{\mathrm{PMNS}} = U_{\ell}^{\dagger} U_{\nu},$$
 с большими углами $\theta_{ij}^{(\ell)} \sim \mathcal{O}(1).$ (10)

Численно это реализуется, когда:

- спектры Λ_{ℓ} и Λ_{ν} образуют близкие плато (масс-иерархии согласованы),
- но собственные векторы U_{ℓ} и U_{ν} разнонаправлены из-за твистов/перестановок подрешёток.

Связанная диагностическая величина — норма коммутатора:

$$\Xi_{s,t} \equiv \frac{\|[H_s, H_t]\|_{\mathrm{F}}}{\|H_s\|_{\mathrm{F}} \|H_t\|_{\mathrm{F}}} \quad \Rightarrow \quad \Xi_{u,d} \ll 1 \quad \text{(кварки)}, \qquad \Xi_{\ell,\nu} \sim \mathcal{O}(1) \quad \text{(нейтрино)}.$$

Эмпирически большие Е коррелируют с большими смешиваниями.

6 Связь смешивания с иерархиями масс

ZFSC предсказывает, что углы смешивания контролируются u нормой возмущения геометрии, u спектральными зазорами на плато:

$$\theta_{ij} \approx f\left(\frac{\|\delta H\|_{\text{s}\Phi\Phi}}{|\lambda_j - \lambda_i|}\right),$$
(12)

где $f(x) \simeq x$ при $x \ll 1$ и f насыщается при $x \gtrsim 1$ (что ведёт к большим углам у нейтрино при близких плато и больших твистах).

7 СР-фаза и инварианты

Определим джарлскогов инвариант через коммутатор масс-операторов:

$$\mathcal{J}(H_a, H_b) \equiv \frac{1}{2i} \frac{\det([H_a, H_b])}{\prod_{i < j} (\lambda_{a,j} - \lambda_{a,i}) \prod_{k < l} (\lambda_{b,l} - \lambda_{b,k})}.$$
(13)

Для пар (H_u, H_d) и (H_ℓ, H_ν) он пропорционален стандартным $J_{\text{CKM}}, J_{\text{PMNS}}$, и не меняется при унитарных перенумерациях баз. Таким образом, геометрия твистов фиксирует и величину СР-нарушения.

8 Численная процедура подбора

Вход

- Размер N и параметры $H(\Delta, r; g_L, g_R; \boldsymbol{h})$.
- Наборы преобразований T_s (границы, перестановки, твисты, деформации).

Шаги

- 1. Сгенерировать H и $H_s = T_s[H]$ для $s \in \{u, d, \ell, \nu\}$.
- 2. Диагонализовать $H_s = U_s \Lambda_s U_s^{\dagger}$.
- 3. Выбрать три устойчивых положительных собственных значения в каждом секторе \Rightarrow массы $m_{s,i} = \alpha_s \lambda_{s,i}^{(+)}$.
- 4. Построить $V_{\rm CKM}=U_u^\dagger U_d$ и $U_{\rm PMNS}=U_\ell^\dagger U_
 u$, извлечь углы, фазы, инварианты.
- 5. Минимизировать функционал

$$\chi^2 = \sum_{s,i} \frac{\left(m_{s,i}^{(\text{model})} - m_{s,i}^{(\text{exp})}\right)^2}{\sigma_{s,i}^2} + \sum_{\text{angles}} \frac{\left(\theta^{(\text{model})} - \theta^{(\text{exp})}\right)^2}{\sigma^2} + \sum_{\text{CP}} \frac{\left(\delta^{(\text{model})} - \delta^{(\text{exp})}\right)^2}{\sigma^2}.$$

9 Предсказания ZFSC для феноменологии

- Малость СКМ объясняется $\Xi_{u,d} \ll 1$ (почти совпадающие геометрии T_u, T_d).
- Большие углы PMNS требуют $\Xi_{\ell,\nu} \sim 1$ (сильный твист/перестановка T_{ν} относительно T_{ℓ}).
- **Корреляции масс и смешивания:** при сжатии плато (уменьшении спектральных зазоров) углы растут даже при фиксированной норме твиста.
- **СР-фазы:** знак и величина δ коррелируют с ориентацией комплексных фаз в T_s и знаком детерминанта коммутатора $[H_a, H_b]$.
- **Нулевая/отрицательная мода:** качественно ограничивают допустимые деформации: при переходе через нуль возможны фазовые "переключения" структуры смешивания.

10 Минимальная "геометрия" для воспроизведения данных

На практике достаточно:

- 1. Взять $T_u = \mathrm{id}$, $T_d = \mathrm{id} + \mathrm{слабый}$ диагональный сдвиг на подрешётке (даёт СКМ $\approx \mathbb{I}$).
- 2. В лептонном секторе задать $T_{\ell} = \mathrm{id}$, а $T_{\nu} = (\mathrm{перестановка} \ \mathrm{блоков}) \circ (\mathrm{фазовый} \ \mathrm{твист}$ на нескольких независимых циклах) \circ (слабая локальная деформация), что приводит к большим углам и допускает ненулевую δ_{PMNS} .

11 Как это снимает эффект "подгонки"

Введя $e\partial u n y \omega$ базовую матрицу H с малыми и счётными геометрическими степенями свободы T_s , мы одновременно описываем (i) плато масс в каждом секторе, (ii) структуру смешивания между секторами. Это резко сокращает число независимых параметров по сравнению со свободным вводом Юкав/матриц масс в стандартной феноменологии.

12 Дорожная карта вычислений

- 1. Стабилизация плато: скан по (Δ, r) для нахождения устойчивых троек $\lambda_{s,1...3}^{(+)}$; проверка робастности к шумам/деформациям.
- 2. **СКМ:** пертурбативный фит δH над H_u для малых углов; валидация формулы $K_{ij} = \widetilde{\delta H}_{ij}/(\lambda_j \lambda_i)$.
- 3. **PMNS:** непертурбативный поиск классов T_{ν} (минимум независимых циклов твиста), обеспечивающих $(\theta_{12}, \theta_{23}, \theta_{13})$ и δ .
- 4. **Инварианты:** вычисление $\Xi_{s,t}$ и $\mathcal{J}(H_s,H_t)$ как диагно́stик смешивания и СРнарушения.
- 5. **Прогнозы:** корреляции $\{\theta_{ij}\}$ с отношениями масс в пределах плато, предсказания для суммарной массы нейтрино и знака δ_{PMNS} .

Заключение

СКМ и PMNS в ZFSC следуют из одной матричной базы H и различий геометрии секторных преобразований T_s . Малое смешивание кварков и большие углы у нейтрино возникают естественно как следствия малости/большойности норм коммутаторов и относительных твистов собственных баз. Пертурбативные формулы фиксируют связь углов с возмущением δH и спектральными зазорами плато, а инварианты коммутаторов обеспечивают базонезависимую диагностику CP-фаз. Это делает ZFSC предсказательной и проверяемой на уровне масс и смешивания одновременно.

Код/данные. Численные эксперименты можно реализовать в текущем прототипе $\mathsf{zfsc_predictor.py}$: добавить генерацию T_s (перестановки/твисты), сбор $\Xi_{s,t}$, и модуль для извлечения углов/фаз из $U_u^{\dagger}U_d$ и $U_\ell^{\dagger}U_{\nu}$.