### Two-stage exams: Study 3

George Kinnear 20/06/2020

#### Contents

| Data                                             | 1  |
|--------------------------------------------------|----|
| Mean at each stage (as bars)                     | 1  |
| Bar plot                                         |    |
| Mean at each stage (as points)                   |    |
| Mean at each stage (table, with standard errors) | 6  |
| Forming the Zipp tables                          | 7  |
| Forming the Zipp tables Table 5, first attempt   | 7  |
| Group dynamics: Stage 1 vs Stage 2               | 7  |
| Group dynamics                                   | 13 |
| Bayesian analysis                                | 19 |
| Experimental analysis                            | 28 |
|                                                  |    |

#### Data

Import the dataset.

#### Mean at each stage (as bars)

```
plotData = plotData %>%
  mutate(
    Stage = gsub(".*(\d).*","\label{eq:stage} # alternatively: Stage = parse_number(Stage)
  )
plotCounts = plotData %>% group_by(Q,Stage) %>% select(Stage,n) %>%
  mutate(scale_lab = paste0("Stage ",Stage, " (n=",n,")"))
limits <- aes(ymax = plotData$mean + plotData$se,</pre>
              ymin = plotData$mean - plotData$se)
p <- ggplot(data = plotData, aes(x = factor(Q), y = mean,</pre>
                                  fill = factor(Stage), label=n)) +
  geom_bar(stat = "identity",
             position = position_dodge(0.9))+
  geom_text(position = position_dodge(width = 0.9),aes(y=-0.05),angle=90) +
  geom_errorbar(limits, position = position_dodge(0.9),
                width = 0.25) +
  labs(x = "Question",
       y = "Percentage of students answering correctly",
       fill = "Stage") +
  scale_fill_manual(values=heathers, labels=paste0("Stage ",c(1:4))) + #plotCounts$scale_lab) +
  #scale_fill_grey() +
  scale_y_continuous(labels = scales::percent)
p
```



```
ggsave("Figs/Study3_S123_means.pdf", width=20, height=10, units="cm", dpi=300)
```

A look at the data (this only shows the first few rows, but for a sanity check the full table could be consulted):

```
S123data %>%
  group_by(Student) %>%
  mutate(
    Stage1sum = sum(Stage1score),
    Stage2sum = sum(Stage2score),
    Stage3sum = sum(Stage3score),
    qs = str_length(paste0(Stage1score, collapse=""))
) %>%
  ungroup() %>%
  mutate(
    S1max = max(Stage1sum)
) %>%
  arrange(-qs) %>%
  head() %>%
  knitr::kable()
```

| Q | Student         | Stage1score | Stage2score | Stage3score | Stage1sum | ${\rm Stage2sum}$ | ${\bf Stage 3 sum}$ | qs | S1max |
|---|-----------------|-------------|-------------|-------------|-----------|-------------------|---------------------|----|-------|
| 1 | 058ce $7$ a $0$ | 1           | 1           | 1           | 3         | 4                 | 4                   | 4  | 3     |
| 1 | 3966c674        | 1           | 1           | 1           | 1         | 3                 | 2                   | 4  | 3     |
| 1 | e1f2a406        | 0           | 1           | 1           | 2         | 2                 | 4                   | 4  | 3     |
| 1 | 3ad8b6e0        | 1           | 1           | 1           | 2         | 3                 | 3                   | 4  | 3     |
| 1 | 2d9b726e        | 0           | 1           | 1           | 1         | 4                 | 2                   | 4  | 3     |
| 1 | 3e9bfda8        | 1           | 1           | 1           | 2         | 3                 | 3                   | 4  | 3     |

#### Bar plot

```
barPlotData = data %>%
  dplyr::select(c('Q','Student','ZippGroup','Stage1score','Stage2score','Stage3score')) %>%
  gather('Stage1score','Stage2score','Stage3score',key="Stage", value="Score") %>%
  drop_na() %>%
  mutate(
   Stage=parse_number(Stage),
   expt = case_when(
      str_sub(ZippGroup,1,1)=="E" ~ "E",
     TRUE ~ "C"
   ),
   bar = case_when(
     Stage==1 & expt=="E" ~ "1E",
     Stage==1 & expt=="C" ~ "1C",
     Stage==2 ~ "2E",
     Stage==3 & expt=="E" ~ "3E",
     Stage==3 & expt=="C" ~ "3C"
   )
  ) %>%
  group_by(Q,bar) %>%
  summarise(
   mean=mean(Score,na.rm=TRUE),
   sd=sd(Score,na.rm=TRUE),
  n=n(),
```

```
se=sd/sqrt(n)
  ) %>%
  ungroup() %>%
  mutate(
    Q=paste0("Q",Q),
   Stage=parse_number(bar),
   Expt=str_sub(bar,2,2),
   ConditionOrder = case when(
      bar = "1C" \sim 1,
      bar=="1E" ~ 2,
      bar=="2E" ~ 3,
      bar = "3E" ~ 4,
      bar=="3C" ~ 5
   ),
   bar2=fct_reorder(bar,ConditionOrder)
  ) %>% arrange(Q,ConditionOrder)
barLabels = c("Stage 1 (Control)", "Stage 1 (Experimental)",
              "Stage 2 (Experimental)",
              "Stage 3 (Experimental)", "Stage 3 (Control)")
barColoursAlpha = c(alpha(heathers[1],.25), heathers[1], heathers[2], heathers[3], alpha(heathers[3],.25))
barColoursAlpha = c("#bfecf0",heathers[1],heathers[2],heathers[3],"#bfd9cd")
limits <- aes(ymax = barPlotData$mean + barPlotData$se,</pre>
              ymin = barPlotData$mean - barPlotData$se)
ggplot(data = barPlotData, aes(x = factor(Q), y = mean,
                                    fill = factor(bar), label=n)) +
  geom_bar(stat = "identity",
           position = position_dodge(0.9),color="white")+
  geom_text(position = position_dodge(width = 0.9),aes(y=-0.05),angle=90) +
  geom_errorbar(limits, position = position_dodge(0.9),
                width = 0.25) +
  labs(x = "Question",
       y = "Percentage of students answering correctly",
       fill = "Stage") +
  scale_fill_manual(values=barColoursAlpha, labels=barLabels) +
  scale_y_continuous(labels = scales::percent)
```



```
ggsave("Figs/Study3_S123_means.pdf",width=20,height=10,units="cm",dpi=300)
```

### Mean at each stage (as points)

```
ggplot(data=barPlotData,aes(x=bar2,y=mean,group=Q,label=n))+
  geom_line()+
  geom_errorbar(aes(ymax = barPlotData$mean + barPlotData$se,
                    ymin = barPlotData$mean - barPlotData$se),
                position = position_dodge(0.9),
                width = 0.5) +
  geom_point(position = position_dodge(0.9),size=5,
             aes(color=bar2))+
  facet_grid(cols=vars(Q))+
  labs(x = "Stage",
       y = "Percentage of students answering correctly",
       color = "Stage") +
  scale_y_continuous(labels = scales::percent)+
  scale_color_manual(values=barColoursAlpha, labels=barLabels)+
  coord_cartesian(ylim=c(0,1),clip="off")+
  geom_text(position = position_dodge(width = 0.9),
            aes(y=0, label=paste0("",barPlotData$n)),
            angle=90,
            color="#777777") +
  theme(strip.background = element_rect(fill=NA,colour = NA),
        strip.text = element_text(size=12, face="bold"),
```

```
axis.text.x = element_text(angle=90))
```



ggsave("Figs/Study3\_S123\_means\_pts.pdf",width=20,height=10,units="cm",dpi=300)

#### Mean at each stage (table, with standard errors)

```
tab = barPlotData %>%
  mutate(
    entry = pasteO(sprintf("%2.0f", mean*100), " (", sprintf("%2.1f", se*100), ")")
) %>%
  group_by(Q,bar) %>%
  select(Q,bar,entry) %>%
  spread(Q,entry)

tab$bar = barLabels
tab %>% knitr::kable()
```

| bar                    | Q1       | Q2       | Q3       | Q4       | Q5       |
|------------------------|----------|----------|----------|----------|----------|
| Stage 1 (Control)      | 66 (5.4) | 59 (5.2) | 20(4.5)  | 19 (4.6) | 17 (4.1) |
| Stage 1 (Experimental) | 64(3.6)  | 56(3.9)  | 27(3.4)  | 18(2.9)  | 13(2.6)  |
| Stage 2 (Experimental) | 97(1.4)  | 95(1.7)  | 87(2.6)  | 51(3.7)  | 70(3.5)  |
| Stage 3 (Experimental) | 87(3.8)  | 98 (1.6) | 98 (1.7) | 80 (4.8) | 83 (4.1) |
| Stage 3 (Control)      | 90(2.3)  | 93(2.0)  | 97(1.3)  | 83 (2.8) | 82 (3.0) |

### Forming the Zipp tables

This constructs the data in Table 5 of the paper. Note that this only has data for the experimental condition – the data for the full Table 5 (i.e. including the control condition) appears in the final section of this script, where the experimental analysis takes place.

#### Table 5, first attempt

| ZippGroup | numcorrect | numingroup | pc        | entry             |
|-----------|------------|------------|-----------|-------------------|
| E1        | 141        | 168        | 0.8392857 | 83.9 (141/168)    |
| E2        | 330        | 379        | 0.8707124 | 87.1 (330/379)    |
| E3        | 7          | 7          | 1.0000000 | $100.0 \ (7/7)$   |
| E4        | 277        | 296        | 0.9358108 | $93.6\ (277/296)$ |

### Group dynamics: Stage 1 vs Stage 2

Here we look at the relative performance in the groups across the first two stages.

```
groupCorrectness = data %>%
    group_by(Stage2group,Q) %>%
    summarise(
        GpSize = n(),
        S1sum = sum(Stage1score),
        S1avg = S1sum/GpSize,
        S2 = max(Stage2score),
        S2pc = ceiling(max(Stage2scorePC)) ## round up so that it's 1 if they were correct on second attemp
) %>%
    filter(
    !is.na(S2)
)
groupCorrectness %>% ungroup() %>% knitr::kable()
```

| Stage2group | Q | $\operatorname{GpSize}$ | S1sum | S1avg     | S2 | S2pc |
|-------------|---|-------------------------|-------|-----------|----|------|
| 1           | 1 | 4                       | 3     | 0.7500000 | 1  | 1    |
| 1           | 3 | 4                       | 1     | 0.2500000 | 1  | 1    |
| 1           | 4 | 4                       | 1     | 0.2500000 | 1  | 1    |
| 1           | 5 | 4                       | 0     | 0.0000000 | 1  | 1    |
| 2           | 1 | 3                       | 2     | 0.6666667 | 1  | 1    |
| 2           | 3 | 3                       | 0     | 0.0000000 | 1  | 1    |
| 2           | 4 | 3                       | 0     | 0.0000000 | 0  | 0    |
| 3           | 1 | 4                       | 2     | 0.5000000 | 1  | 1    |

| Stage2group | Q             | GpSize         | S1sum             | Slavg      | S2 | S2pc |
|-------------|---------------|----------------|-------------------|------------|----|------|
| 3           | 2             | 4              | 2                 | 0.5000000  | 1  | 1    |
| 3           | 4             | 4              | 1                 | 0.2500000  | 0  | 0    |
| 4           | 2             | 4              | 1                 | 0.2500000  | 1  | 1    |
| 4           | 3             | 4              | 1                 | 0.2500000  | 1  | 1    |
| 4           | 5             | 4              | 0                 | 0.0000000  | 1  | 1    |
| 5           | 1             | 4              | 3                 | 0.7500000  | 1  | 1    |
| 5           | 2             | 4              | 2                 | 0.5000000  | 1  | 1    |
| 5           | 4             | 4              | 0                 | 0.0000000  | 0  | 1    |
| 5           | 5             | 4              | 3                 | 0.7500000  | 1  | 1    |
| 6           | 1             | 4              | 4                 | 1.0000000  | 1  | 1    |
| 6           | 3             | 4              | 1                 | 0.2500000  | 1  | 1    |
| 6           | 5             | 4              | 0                 | 0.0000000  | 0  | 1    |
| 7           | 1             | 4              | 3                 | 0.7500000  | 1  | 1    |
| 7           | 3             | 4              | 1                 | 0.2500000  | 1  | 1    |
| 7           | 4             | $\overline{4}$ | 0                 | 0.0000000  | 0  | 0    |
| 8           | 1             | 4              | 2                 | 0.5000000  | 1  | 1    |
| 8           | 3             | 4              | 1                 | 0.2500000  | 1  | 1    |
| 8           | 4             | 4              | 0                 | 0.00000000 | 0  | 1    |
| 8           | 5             | 4              | 0                 | 0.00000000 | 1  | 1    |
| 9           | 1             | 4              | 4                 | 1.0000000  | 1  | 1    |
| 9           | 2             | 4              | $\overset{1}{2}$  | 0.5000000  | 1  | 1    |
| 9           | 5             | 4              | 0                 | 0.0000000  | 1  | 1    |
| 10          | 1             | 4              | $\ddot{3}$        | 0.7500000  | 1  | 1    |
| 10          | 3             | 4              | 1                 | 0.2500000  | 1  | 1    |
| 10          | 4             | 4              | 0                 | 0.0000000  | 0  | 0    |
| 10          | 5             | 4              | 0                 | 0.0000000  | 1  | 1    |
| 12          | 1             | 4              | 3                 | 0.7500000  | 1  | 1    |
| 12          | 2             | 4              | $\frac{3}{2}$     | 0.5000000  | 1  | 1    |
| 12          | 5             | 4              | 0                 | 0.0000000  | 0  | 0    |
| 13          | 2             | 4              | $\frac{\circ}{2}$ | 0.5000000  | 0  | 1    |
| 13          | 3             | 4              | 1                 | 0.2500000  | 1  | 1    |
| 13          | 4             | 4              | 0                 | 0.0000000  | 0  | 0    |
| 14          | 1             | 4              | 4                 | 1.0000000  | 1  | 1    |
| 14          | 3             | 4              | 1                 | 0.2500000  | 1  | 1    |
| 14          | 4             | 4              | 1                 | 0.2500000  | 1  | 1    |
| 15          | 1             | 3              | 0                 | 0.0000000  | 0  | 1    |
| 15          | 2             | 3              | 1                 | 0.3333333  | 1  | 1    |
| 15          | 4             | 3              | 1                 | 0.3333333  | 1  | 1    |
| 16          | 1             | 4              | 1                 | 0.2500000  | 1  | 1    |
| 16          | 2             | 4              | 4                 | 1.0000000  | 1  | 1    |
| 16          | 4             | 4              | 0                 | 0.0000000  | 0  | 0    |
| 17          | 1             | 4              | 3                 | 0.7500000  | 1  | 1    |
| 17          | 2             | 4              | 1                 | 0.2500000  | 1  | 1    |
| 17          | $\frac{2}{4}$ | 4              | 0                 | 0.0000000  | 0  | 0    |
| 17          | 5             | 4              | 0                 | 0.0000000  | 1  | 1    |
| 18          | 1             | 2              | $\frac{0}{2}$     | 1.0000000  | 1  | 1    |
| 18          | 2             | $\frac{2}{2}$  | $\frac{2}{2}$     | 1.0000000  | 1  | 1    |
| 18          | 5             | $\frac{2}{2}$  | 0                 | 0.0000000  | 0  | 0    |
| 19          | 2             | 3              | 1                 | 0.33333333 | 1  | 1    |
| 19          | 3             | 3              | $\frac{1}{2}$     | 0.6666667  | 1  | 1    |
| 19          | 5<br>5        | 3<br>3         | $\frac{2}{2}$     | 0.6666667  | 1  | 1    |
| 21          | $\frac{3}{2}$ | 3              | $\frac{2}{2}$     | 0.6666667  | 1  | 1    |
| 21          | 2             | 9              | L                 | 0.0000007  | 1  | 1    |

| Stage2group | Q | GpSize | S1sum | Slavg      | S2 | S2pc |
|-------------|---|--------|-------|------------|----|------|
| 21          | 3 | 3      | 2     | 0.6666667  | 1  | 1    |
| 21          | 4 | 3      | 0     | 0.0000000  | 0  | 0    |
| 22          | 2 | 4      | 0     | 0.0000000  | 1  | 1    |
| 22          | 3 | 4      | 4     | 1.0000000  | 1  | 1    |
| 22          | 4 | 4      | 2     | 0.5000000  | 1  | 1    |
| 23          | 1 | 3      | 1     | 0.3333333  | 1  | 1    |
| 23          | 2 | 3      | 3     | 1.0000000  | 1  | 1    |
| 23          | 5 | 3      | 2     | 0.6666667  | 1  | 1    |
| 24          | 2 | 4      | 1     | 0.2500000  | 1  | 1    |
| 24          | 3 | 4      | 0     | 0.0000000  | 0  | 0    |
| 24          | 5 | 4      | 0     | 0.0000000  | 1  | 1    |
| 25          | 2 | 4      | 2     | 0.5000000  | 1  | 1    |
| 25          | 3 | 4      | 3     | 0.7500000  | 1  | 1    |
| 25          | 4 | 4      | 0     | 0.0000000  | 0  | 1    |
| 26          | 1 | 4      | 3     | 0.7500000  | 1  | 1    |
| 26          | 3 | 4      | 1     | 0.2500000  | 1  | 1    |
| 26          | 4 | 4      | 1     | 0.2500000  | 1  | 1    |
| 26          | 5 | 4      | 0     | 0.0000000  | 0  | 1    |
| 28          | 2 | 4      | 3     | 0.7500000  | 1  | 1    |
| 28          | 3 | 4      | 1     | 0.2500000  | 1  | 1    |
| 28          | 4 | 4      | 2     | 0.5000000  | 1  | 1    |
| 28          | 5 | 4      | 0     | 0.0000000  | 0  | 1    |
| 29          | 1 | 4      | 3     | 0.7500000  | 1  | 1    |
| 29          | 2 | 4      | 4     | 1.0000000  | 1  | 1    |
| 29          | 4 | 4      | 0     | 0.0000000  | 0  | 1    |
| 29          | 5 | 4      | 0     | 0.0000000  | 0  | 1    |
| 30          | 1 | 4      | 3     | 0.7500000  | 1  | 1    |
| 30          | 3 | 4      | 1     | 0.2500000  | 1  | 1    |
| 30          | 4 | 4      | 1     | 0.2500000  | 1  | 1    |
| 30          | 5 | 4      | 3     | 0.7500000  | 1  | 1    |
| 31          | 2 | 3      | 1     | 0.3333333  | 1  | 1    |
| 31          | 3 | 3      | 1     | 0.33333333 | 1  | 1    |
| 31          | 4 | 3      | 1     | 0.3333333  | 1  | 1    |
| 31          | 5 | 3      | 1     | 0.33333333 | 1  | 1    |
| 32          | 2 | 4      | 2     | 0.5000000  | 1  | 1    |
| 32          | 3 | 4      | 1     | 0.2500000  | 1  | 1    |
| 32          | 4 | 4      | 1     | 0.2500000  | 1  | 1    |
| 33          | 1 | 4      | 2     | 0.5000000  | 1  | 1    |
| 33          | 2 | 4      | 2     | 0.5000000  | 1  | 1    |
| 33          | 4 | 4      | 1     | 0.2500000  | 1  | 1    |
| 33          | 5 | 4      | 0     | 0.0000000  | 1  | 1    |
| 34          | 1 | 4      | 3     | 0.7500000  | 1  | 1    |
| 34          | 2 | 4      | 1     | 0.2500000  | 1  | 1    |
| 34          | 4 | 4      | 1     | 0.2500000  | 1  | 1    |
| 35          | 1 | 4      | 3     | 0.7500000  | 1  | 1    |
| 35          | 3 | 4      | 2     | 0.5000000  | 1  | 1    |
| 35          | 4 | 4      | 1     | 0.2500000  | 1  | 1    |
| 35          | 5 | 4      | 2     | 0.5000000  | 1  | 1    |
| 36          | 2 | 4      | 0     | 0.0000000  | 0  | 0    |
| 36          | 3 | 4      | 1     | 0.2500000  | 1  | 1    |
| 36          | 5 | 4      | 0     | 0.0000000  | 0  | 0    |
| 37          | 2 | 4      | 1     | 0.2500000  | 1  | 1    |

| Stage2group | Q                    | GpSize           | S1sum             | Slavg      | S2 | S2pc |
|-------------|----------------------|------------------|-------------------|------------|----|------|
| 37          | 3                    | 4                | 1                 | 0.2500000  | 1  | 1    |
| 37          | 5                    | $\overline{4}$   | 0                 | 0.0000000  | 1  | 1    |
| 38          | $\overset{\circ}{2}$ | $\overset{-}{2}$ | 1                 | 0.5000000  | 1  | 1    |
| 38          | 3                    | 2                | 0                 | 0.0000000  | 0  | 1    |
| 38          | 5                    | 2                | 0                 | 0.0000000  | 0  | 0    |
| 39          | 1                    | 4                | 3                 | 0.7500000  | 1  | 1    |
| 39          | 3                    | 4                | $\frac{3}{2}$     | 0.5000000  | 1  | 1    |
| 39          | 4                    | 4                | 1                 | 0.2500000  | 1  | 1    |
| 40          | $\overline{2}$       | 4                | 2                 | 0.5000000  | 1  | 1    |
| 40          | 3                    | 4                | 1                 | 0.2500000  | 1  | 1    |
| 40          | 4                    | 4                | 0                 | 0.0000000  | 0  | 0    |
| 40          | 5                    | 4                | 1                 | 0.2500000  | 1  | 1    |
| 41          | 2                    | 4                | 4                 | 1.0000000  | 1  | 1    |
| 41          | 3                    | 4                | 2                 | 0.5000000  | 1  | 1    |
| 41          | 4                    | 4                | 1                 | 0.2500000  | 1  | 1    |
| 41          | 5                    | 4                | 0                 | 0.0000000  | 1  | 1    |
| 42          | 1                    | 4                | $\frac{\circ}{2}$ | 0.5000000  | 1  | 1    |
| 42          | 3                    | 4                | 0                 | 0.0000000  | 1  | 1    |
| 42          | 4                    | 4                | 0                 | 0.0000000  | 0  | 1    |
| 43          | 1                    | 4                | 1                 | 0.2500000  | 1  | 1    |
| 43          | 3                    | 4                | 0                 | 0.0000000  | 1  | 1    |
| 43          | 5                    | 4                | 0                 | 0.0000000  | 0  | 0    |
| 44          | 1                    | 3                | $\frac{0}{2}$     | 0.6666667  | 1  | 1    |
| 44          | 2                    | 3                | $\frac{2}{2}$     | 0.6666667  | 1  | 1    |
| 44          | 5                    | 3                | 0                 | 0.0000007  | 1  | 1    |
| 45          | 1                    | 4                | $\frac{0}{2}$     | 0.5000000  | 1  | 1    |
| 45          | 3                    | 4                | 1                 | 0.2500000  | 1  | 1    |
| 45          | 4                    | 4                | 2                 | 0.5000000  | 1  | 1    |
| 46          | 2                    | 4                | $\frac{2}{2}$     | 0.5000000  | 1  | 1    |
| 46          | 3                    | 4                | 0                 | 0.0000000  | 0  | 0    |
| 46          | 4                    | 4                | 0                 | 0.0000000  | 0  | 1    |
| 46          | 5                    | 4                | 0                 | 0.0000000  | 1  | 1    |
| 47          | 1                    | 3                | $\frac{0}{2}$     | 0.6666667  | 1  | 1    |
| 47          | 3                    | 3                | 1                 | 0.3333333  | 1  | 1    |
| 47          | 4                    | 3                | 0                 | 0.0000000  | 0  | 1    |
| 47          | 5                    | 3                | 1                 | 0.33333333 | 1  | 1    |
| 48          | 1                    | 4                | $\frac{1}{2}$     | 0.5000000  | 1  | 1    |
| 48          | 3                    | 4                | 0                 | 0.0000000  | 1  | 1    |
| 48          | 5                    | 4                | 0                 | 0.0000000  | 1  | 1    |
| 49          | 1                    | 4                | 3                 | 0.7500000  | 1  | 1    |
| 49          | 3                    | 4                | 1                 | 0.2500000  | 0  | 0    |
| 49          | 5                    | 4                | 0                 | 0.0000000  | 1  | 1    |
| 50          | 1                    | 4                | $\frac{0}{2}$     | 0.5000000  | 1  | 1    |
| 50          | 2                    | 4                | $\frac{2}{2}$     | 0.5000000  | 1  | 1    |
| 50          | 5                    | 4                | $\frac{2}{2}$     | 0.5000000  | 1  | 1    |
| 52          | 1                    | 4                | 3                 | 0.7500000  | 1  | 1    |
| 52<br>52    | 2                    | 4                | 3<br>4            | 1.0000000  | 1  | 1    |
| 52<br>52    | $\frac{2}{4}$        | 4                | 0                 | 0.0000000  | 0  | 0    |
| 53          | 1                    | 4                | $\frac{0}{2}$     | 0.5000000  | 1  | 1    |
| 53          | 2                    | 4                | $\frac{2}{2}$     | 0.5000000  | 1  | 1    |
| 53          | $\frac{2}{4}$        | 4                | 0                 | 0.0000000  | 0  | 0    |
| 54          | 1                    | 3                | $\frac{0}{2}$     | 0.6666667  | 1  | 1    |
| 94          | 1                    | 9                | 7                 | 0.0000007  | 1  | T    |

| Stage2group | Q              | GpSize         | S1sum         | Slavg                 | S2 | S2pc   |
|-------------|----------------|----------------|---------------|-----------------------|----|--------|
| 54          | 2              | 3              | 1             | 0.3333333             | 1  | 1      |
| 54          | 4              | 3              | 1             | 0.3333333             | 1  | 1      |
| 55          | 1              | 4              | 4             | 1.0000000             | 1  | 1      |
| 55          | 2              | 4              | 2             | 0.5000000             | 1  | 1      |
| 55          | 4              | 4              | 0             | 0.0000000             | 0  | 0      |
| 55          | 5              | $\overline{4}$ | 0             | 0.0000000             | 0  | 0      |
| 56          | 1              | 4              | 2             | 0.5000000             | 1  | 1      |
| 56          | 3              | 4              | 0             | 0.0000000             | 1  | 1      |
| 56          | 5              | 4              | 1             | 0.2500000             | 1  | 1      |
| 57          | 1              | 4              | 1             | 0.2500000             | 1  | 1      |
| 57          | $\overline{2}$ | 4              | 3             | 0.7500000             | 1  | 1      |
| 57          | 4              | 4              | $\frac{3}{2}$ | 0.5000000             | 0  | 1      |
| 57          | 5              | 4              | 0             | 0.0000000             | 0  | 1      |
| 58          | 1              | 4              | 3             | 0.7500000             | 1  | 1      |
| 58          | 3              | 4              | 3             | 0.7500000             | 1  | 1      |
| 58          | 4              | 4              | 1             | 0.2500000             | 1  | 1      |
| 59          | 2              | 4              | 2             | 0.5000000             | 1  | 1      |
| 59          | 3              | 4              | 1             | 0.2500000             | 1  | 1      |
| 59          | 4              | 4              | 2             | 0.5000000             | 1  | 1      |
| 59          | 5              | 4              | 0             | 0.0000000             | 1  | 1      |
| 60          | 1              | 3              | 3             | 1.0000000             | 1  | 1      |
| 60          | 2              | 3              | $\frac{3}{2}$ | 0.6666667             | 1  | 1      |
| 60          | 5              | 3              | 0             | 0.0000000             | 0  | 0      |
| 61          | $\frac{3}{2}$  | 4              | 3             | 0.7500000             | 1  | 1      |
| 61          | 3              | 4              | $\frac{3}{2}$ | 0.5000000             | 1  | 1      |
| 61          | 4              | 4              | 1             | 0.2500000             | 1  | 1      |
| 62          | 1              | 3              | 1             | 0.3333333             | 0  | 1      |
| 62          | 2              | 3              | 3             | 1.0000000             | 1  | 1      |
| 62          | 5              | 3              | 1             | 0.3333333             | 1  | 1      |
| 63          | 2              | 4              | 3             | 0.7500000             | 1  | 1      |
| 63          | 3              | 4              | 2             | 0.5000000             | 1  | 1      |
| 63          | 4              | 4              | 1             | 0.2500000             | 1  | 1      |
| 63          | 5              | 4              | 0             | 0.2500000             | 0  | 1      |
| 64          | 1              | 4              | $\frac{0}{2}$ | 0.5000000             | 1  | 1      |
| 64          | 3              | 4              | 0             | 0.0000000             | 1  | 1      |
| 64          | 5<br>5         |                |               | 0.0000000 $0.2500000$ | 1  | 1      |
| 65          | 2              | $\frac{4}{4}$  | 1<br>3        |                       | 1  | 1      |
| 65          | 3              | 4              | 2             | 0.7500000 $0.5000000$ | 1  | 1      |
| 65          |                | 4              |               | 0.0000000             | 0  |        |
| 66          | $\frac{4}{1}$  | 4              | $0 \\ 3$      | 0.7500000             | 1  | 0 $1$  |
| 66          | 3              | 4              | 3<br>1        | 0.7500000 $0.2500000$ | 1  | 1      |
| 66          | 3<br>4         | 4              |               | 0.2300000             | 0  |        |
|             |                | 4              | 0             |                       | 1  | 0      |
| 66          | 5              |                | 0             | 0.0000000 $0.3333333$ | 1  | 1<br>1 |
| 67<br>67    | 1              | 3              | 1             |                       |    |        |
| 67<br>67    | 2              | 3              | 2             | 0.6666667             | 1  | 1      |
| 67<br>67    | 4              | 3              | 1             | 0.3333333             | 1  | 1      |
| 67<br>69    | 5<br>1         | 3              | 0             | 0.0000000             | 1  | 1      |
| 68          | 1              | 4              | 3             | 0.7500000             | 1  | 1      |
| 68          | 3              | 4              | 0             | 0.0000000             | 1  | 1      |
| 68          | 4              | 4              | 3             | 0.7500000             | 1  | 1      |
| 69          | 1              | 2              | 2             | 1.0000000             | 1  | 1      |
| 69          | 3              | 2              | 0             | 0.0000000             | 1  | 1      |

| Stage2group | Q | GpSize | S1sum | S1avg     | S2 | S2pc |
|-------------|---|--------|-------|-----------|----|------|
| 69          | 5 | 2      | 1     | 0.5000000 | 1  | 1    |
| 70          | 2 | 4      | 3     | 0.7500000 | 1  | 1    |
| 70          | 3 | 4      | 0     | 0.0000000 | 0  | 1    |
| 70          | 4 | 4      | 0     | 0.0000000 | 0  | 0    |
| 70          | 5 | 4      | 0     | 0.0000000 | 0  | 0    |
| 71          | 1 | 4      | 2     | 0.5000000 | 1  | 1    |
| 71          | 2 | 4      | 3     | 0.7500000 | 1  | 1    |
| 71          | 4 | 4      | 1     | 0.2500000 | 1  | 1    |
| 71          | 5 | 4      | 1     | 0.2500000 | 1  | 1    |
| 72          | 1 | 4      | 2     | 0.5000000 | 1  | 1    |
| 72          | 3 | 4      | 0     | 0.0000000 | 0  | 0    |
| 72          | 4 | 4      | 1     | 0.2500000 | 1  | 1    |
| 72          | 5 | 4      | 0     | 0.0000000 | 1  | 1    |

```
groupPerfS12 = groupCorrectness %>%
  mutate(
    tot_group = cut(S1sum,breaks=c(-Inf,0.5,1.5,2.5,Inf),labels=c("0","1","2","3 or more"))
) %>%
  group_by(tot_group) %>%
  summarize(
    S2avg = mean(S2),
    S2se = sd(S2)/sqrt(n()),
    S2n = n(),
    S2Pavg = mean(S2pc),
    S2Pse = sd(S2pc)/sqrt(n())
)
groupPerfS12 %>% knitr::kable()
```

| tot_group | S2avg     | S2se      | S2n | S2Pavg    | S2Pse     |
|-----------|-----------|-----------|-----|-----------|-----------|
| 0         | 0.3913043 | 0.0591838 | 69  | 0.6231884 | 0.0587648 |
| 1         | 0.9538462 | 0.0262273 | 65  | 0.9692308 | 0.0215865 |
| 2         | 0.9629630 | 0.0259409 | 54  | 1.0000000 | 0.0000000 |
| 3 or more | 1.0000000 | 0.0000000 | 41  | 1.0000000 | 0.0000000 |

```
ggplot(groupPerfS12,aes(x=tot_group,y=S2avg,label=S2n))+
  geom_errorbar(aes(ymax = groupPerfS12$S2avg + groupPerfS12$S2se,
                   ymin = groupPerfS12$S2avg - groupPerfS12$S2se),
                position = position_dodge(0.9),
                width = 0.1)+
  geom_point(aes(colour="First attempt"),size=5)+
  geom_errorbar(aes(ymax = groupPerfS12$S2Pavg + groupPerfS12$S2Pse,
                    ymin = groupPerfS12$S2Pavg - groupPerfS12$S2Pse),
                position = position_nudge(x=0.1),
                width = 0.1)+
  geom_point(aes(y=S2Pavg,colour="Second attempt"),position=position_nudge(x=0.1),size=5)+
  scale_y_continuous(labels = scales::percent,breaks=seq(0,1,by=.2))+
  scale_color_manual(values=heathers) +
  coord_cartesian(ylim=c(0,1),clip="off")+
  geom_text(position = position_dodge(width = 0.9),
            aes(y=-0.01, label=paste0("n=",groupPerfS12$S2n)),
```



```
ggsave("Figs/Study3_S12_collab.pdf",width=15,height=7,units="cm",dpi=300)
```

#### Group dynamics

This replicates the analysis of Levy et al. (2018), producing Fig 7 of the paper. There is extra detail here, with the various measures like 'collaborative efficiency' shown for each group and also plotted.

Find the top scoring student in each group, and the "super" score (max score across all students in the group, by question)

```
S12data_scored = data %>%
  dplyr::select(Q,Stage1score,Stage2score,Student,Stage2group) %>%
  mutate(
    Group = Stage2group
) %>%
  dplyr::select(-Stage2group)

S1superandtop = S12data_scored %>%
  group_by(Group,Q) %>%
```

```
mutate(
    superstudent = max(Stage1score)
  ) %>%
  group_by(Group,Student) %>%
  mutate(
    topstudent = sum(Stage1score)/n() # the Student's mean score on the n() Questions
  ) %>%
  group_by(Group) %>%
  summarise(
    superstudent = sum(superstudent)/n(),
    topstudent = max(topstudent)
LevyA = S12data_scored %>%
  group_by(Student) %>%
  summarise(
    Stage1pc = sum(Stage1score)/n()
  ) %>%
  summarise(
    S1mean = mean(Stage1pc),
    S1sd = sd(Stage1pc),
    S1n = n()
  )
LevyAsd = LevyA$S1sd[[1]]
groupCorrectness = data %>%
  group_by(Stage2group,Q) %>%
  summarise(
    GpSize = n(),
    S1sum = sum(Stage1score),
    Slavg = Slsum/GpSize,
    S2 = max(Stage2score)
  )
LevyByGroup = groupCorrectness %>%
  mutate(
    Group = Stage2group
  ) %>%
  left_join(S1superandtop) %>%
# left_join(LevyA %>% select(S1sd)) %>%
  group_by(Group) %>%
  summarise(
    n = max(GpSize),
    IndivA = mean(S1avg),
    GroupB = mean(S2,na.rm=TRUE),
    TopC = max(topstudent),
    SuperD = max(superstudent),
    GainBA = (GroupB-IndivA)/LevyAsd,
    TopSurplus = (TopC-IndivA)/LevyAsd,
    SuperSurplus = (SuperD-IndivA)/LevyAsd,
```

```
CollabEfficiency = GainBA / na_if(SuperSurplus,0)
) %>%
ungroup()

LevyByGroup %>% knitr::kable(digits = 2)
```

| Group           | n             | IndivA         | GroupB       | TopC         | SuperD       | GainBA         | TopSurplus   | SuperSurplus        | CollabEfficiency |
|-----------------|---------------|----------------|--------------|--------------|--------------|----------------|--------------|---------------------|------------------|
| 1               | 4             | 0.35           | 1.00         | 0.8          | 0.8          | 3.02           | 2.09         | 2.09                | 1.44             |
| 2               | 3             | 0.27           | 0.67         | 0.4          | 0.4          | 1.86           | 0.62         | 0.62                | 3.00             |
| 3               | 4             | 0.30           | 0.67         | 0.6          | 0.8          | 1.70           | 1.39         | 2.32                | 0.73             |
| 4               | 4             | 0.30           | 1.00         | 0.6          | 0.8          | 3.25           | 1.39         | 2.32                | 1.40             |
| 5               | 4             | 0.45           | 0.75         | 0.8          | 0.8          | 1.39           | 1.63         | 1.63                | 0.86             |
| 6               | 4             | 0.35           | 0.67         | 0.6          | 0.6          | 1.47           | 1.16         | 1.16                | 1.27             |
| 7               | 4             | 0.30           | 0.67         | 0.6          | 0.8          | 1.70           | 1.39         | 2.32                | 0.73             |
| 8               | 4             | 0.25           | 0.75         | 0.4          | 0.6          | 2.32           | 0.70         | 1.63                | 1.43             |
| 9               | 4             | 0.40           | 1.00         | 0.4          | 0.6          | 2.79           | 0.00         | 0.93                | 3.00             |
| 10              | 4             | 0.30           | 0.75         | 0.6          | 0.6          | 2.09           | 1.39         | 1.39                | 1.50             |
| 12              | 4             | 0.25           | 0.67         | 0.4          | 0.4          | 1.93           | 0.70         | 0.70                | 2.78             |
| 13              | 4             | 0.25           | 0.33         | 0.4          | 0.6          | 0.39           | 0.70         | 1.63                | 0.24             |
| 14              | 4             | 0.45           | 1.00         | 0.6          | 0.8          | 2.55           | 0.70         | 1.63                | 1.57             |
| 15              | 3             | 0.20           | 0.67         | 0.6          | 0.6          | 2.17           | 1.86         | 1.86                | 1.17             |
| 16              | 4             | 0.35           | 0.67         | 0.6          | 0.6          | 1.47           | 1.16         | 1.16                | 1.27             |
| 17              | 4             | 0.20           | 0.75         | 0.4          | 0.4          | 2.55           | 0.93         | 0.93                | 2.75             |
| 18              | 2             | 0.40           | 0.67         | 0.4          | 0.4          | 1.24           | 0.00         | 0.00                | NA               |
| 19              | 3             | 0.47           | 1.00         | 0.6          | 0.8          | 2.48           | 0.62         | 1.55                | 1.60             |
| 21              | 3             | 0.47           | 0.67         | 0.6          | 0.6          | 0.93           | 0.62         | 0.62                | 1.50             |
| 22              | 4             | 0.50           | 1.00         | 0.6          | 0.8          | 2.32           | 0.46         | 1.39                | 1.67             |
| 23              | 3             | 0.53           | 1.00         | 1.0          | 1.0          | 2.17           | 2.17         | 2.17                | 1.00             |
| 24              | 4             | 0.15           | 0.67         | 0.4          | 0.4          | 2.40           | 1.16         | 1.16                | 2.07             |
| 25              | 4             | 0.40           | 0.67         | 0.6          | 0.6          | 1.24           | 0.93         | 0.93                | 1.33             |
| 26              | 4             | 0.45           | 0.75         | 0.6          | 0.8          | 1.39           | 0.70         | 1.63                | 0.86             |
| 28              | 4             | 0.40           | 0.75         | 0.8          | 0.8          | 1.63           | 1.86         | 1.86                | 0.88             |
| 29              | 4             | 0.40           | 0.50         | 0.6          | 0.6          | 0.46           | 0.93         | 0.93                | 0.50             |
| 30              | 4             | 0.50           | 1.00         | 0.8          | 1.0          | 2.32           | 1.39         | 2.32                | 1.00             |
| 31              | 3             | 0.40           | 1.00         | 0.8          | 1.0          | 2.79           | 1.86         | 2.79                | 1.00             |
| 32              | 4             | 0.30           | 1.00         | 0.6          | 0.8          | 3.25           | 1.39         | 2.32                | 1.40             |
| 33              | 4             | 0.30           | 1.00         | 0.8          | 0.8          | 3.25           | 2.32         | 2.32                | 1.40             |
| 34              | 4             | 0.25           | 1.00         | 0.4          | 0.6          | 3.48           | 0.70         | 1.63                | 2.14             |
| $\frac{35}{36}$ | 4             | $0.60 \\ 0.20$ | 1.00         | 0.8          | 1.0          | 1.86           | 0.93         | 1.86                | 1.00             |
| 30<br>37        | $\frac{4}{4}$ | 0.20 $0.30$    | 0.33<br>1.00 | $0.4 \\ 0.6$ | $0.6 \\ 0.8$ | $0.62 \\ 3.25$ | 0.93<br>1.39 | $1.86 \\ 2.32$      | 0.33<br>1.40     |
| 38              | 2             | 0.30           | 0.33         | $0.0 \\ 0.4$ | 0.6          | 0.15           | 0.46         | 1.39                | 0.11             |
| 39              | 4             | 0.50           | 1.00         | 0.4          | 1.0          | 2.09           | 1.16         | 2.09                | 1.00             |
| 40              | 4             | 0.35           | 0.75         | 0.6          | 0.8          | 1.86           | 1.16         | 2.09                | 0.89             |
| 41              | 4             | 0.50           | 1.00         | 0.8          | 0.8          | 2.32           | 1.10         | 1.39                | 1.67             |
| 42              | 4             | 0.30           | 0.67         | 0.3          | 0.3          | 2.62           | 0.46         | 0.46                | 5.67             |
| 43              | 4             | 0.10           | 0.67         | 0.2          | $0.2 \\ 0.4$ | 2.63           | 0.40 $0.46$  | 1.39                | 1.89             |
| 44              | 3             | 0.10           | 1.00         | 0.2          | 0.4          | 3.10           | 1.24         | 1.24                | 2.50             |
| 45              | 4             | 0.33 $0.40$    | 1.00         | 0.6          | 1.0          | 2.79           | 0.93         | $\frac{1.24}{2.79}$ | 1.00             |
| 46              | 4             | 0.40 $0.20$    | 0.50         | 0.0          | 0.4          | 1.39           | 0.93         | 0.93                | 1.50             |
| 47              | 3             | 0.20 $0.47$    | 0.30         | 0.2          | 0.4          | 1.33 $1.32$    | 0.62         | 1.55                | 0.85             |
| 48              | 4             | 0.30           | 1.00         | 0.6          | 0.6          | 3.25           | 1.39         | 1.39                | 2.33             |
| 49              | 4             | 0.40           | 0.67         | 0.6          | 0.8          | 1.24           | 0.93         | 1.86                | 0.67             |
|                 | _             | 33             | ,            | 0.0          | 0.0          |                | 0.00         |                     | J.J.             |

| Group | n | IndivA | GroupB | TopC | SuperD | GainBA | TopSurplus | SuperSurplus | CollabEfficiency |
|-------|---|--------|--------|------|--------|--------|------------|--------------|------------------|
| 50    | 4 | 0.40   | 1.00   | 0.6  | 1.0    | 2.79   | 0.93       | 2.79         | 1.00             |
| 52    | 4 | 0.40   | 0.67   | 0.6  | 0.6    | 1.24   | 0.93       | 0.93         | 1.33             |
| 53    | 4 | 0.30   | 0.67   | 0.4  | 0.6    | 1.70   | 0.46       | 1.39         | 1.22             |
| 54    | 3 | 0.33   | 1.00   | 0.4  | 0.8    | 3.10   | 0.31       | 2.17         | 1.43             |
| 55    | 4 | 0.40   | 0.50   | 0.6  | 0.6    | 0.46   | 0.93       | 0.93         | 0.50             |
| 56    | 4 | 0.35   | 1.00   | 0.6  | 0.6    | 3.02   | 1.16       | 1.16         | 2.60             |
| 57    | 4 | 0.45   | 0.50   | 0.6  | 0.8    | 0.23   | 0.70       | 1.63         | 0.14             |
| 58    | 4 | 0.55   | 1.00   | 0.6  | 1.0    | 2.09   | 0.23       | 2.09         | 1.00             |
| 59    | 4 | 0.25   | 1.00   | 0.6  | 0.6    | 3.48   | 1.63       | 1.63         | 2.14             |
| 60    | 3 | 0.47   | 0.67   | 0.6  | 0.6    | 0.93   | 0.62       | 0.62         | 1.50             |
| 61    | 4 | 0.55   | 1.00   | 1.0  | 1.0    | 2.09   | 2.09       | 2.09         | 1.00             |
| 62    | 3 | 0.47   | 0.67   | 0.6  | 0.8    | 0.93   | 0.62       | 1.55         | 0.60             |
| 63    | 4 | 0.50   | 0.75   | 0.6  | 0.8    | 1.16   | 0.46       | 1.39         | 0.83             |
| 64    | 4 | 0.30   | 1.00   | 0.4  | 0.8    | 3.25   | 0.46       | 2.32         | 1.40             |
| 65    | 4 | 0.45   | 0.67   | 0.6  | 0.6    | 1.01   | 0.70       | 0.70         | 1.44             |
| 66    | 4 | 0.35   | 0.75   | 0.6  | 0.6    | 1.86   | 1.16       | 1.16         | 1.60             |
| 67    | 3 | 0.27   | 1.00   | 0.4  | 0.6    | 3.41   | 0.62       | 1.55         | 2.20             |
| 68    | 4 | 0.45   | 1.00   | 0.6  | 0.8    | 2.55   | 0.70       | 1.63         | 1.57             |
| 69    | 2 | 0.50   | 1.00   | 0.6  | 0.6    | 2.32   | 0.46       | 0.46         | 5.00             |
| 70    | 4 | 0.25   | 0.25   | 0.4  | 0.4    | 0.00   | 0.70       | 0.70         | 0.00             |
| 71    | 4 | 0.35   | 1.00   | 0.6  | 0.8    | 3.02   | 1.16       | 2.09         | 1.44             |
| 72    | 4 | 0.25   | 0.75   | 0.4  | 0.6    | 2.32   | 0.70       | 1.63         | 1.43             |

```
ggplot(stack(LevyByGroup %>% select(IndivA,GroupB,TopC,SuperD)), aes(x = ind, y = values)) +
  geom_violin(fill=heathers[1]) +
  geom_boxplot(width=0.2,color=heathers[2],lwd=1) +
  geom_jitter(shape=16, position=position_jitter(0.2),alpha=0.5) +
  labs(x = "Average score of...",
      y = "Percentage correct") +
  scale_y_continuous(labels = scales::percent)
```



```
ggsave("Figs/Study3_LevyABCD.pdf", width=20, height=10, units="cm", dpi=300)
ggsave("Figs/Study3_LevyABCD_small.pdf",width=10,height=7,units="cm",dpi=300)
LevyByGroup %>% select(GainBA,TopSurplus,SuperSurplus,CollabEfficiency) %>%
 filter(CollabEfficiency>4)
## # A tibble: 2 x 4
##
    GainBA TopSurplus SuperSurplus CollabEfficiency
                           <dbl>
##
     <dbl>
               <dbl>
                                           <dbl>
      2.63
               0.464
                           0.464
                                            5.67
## 1
      2.32
               0.464
                           0.464
                                            5.
## 2
ggplot(stack(LevyByGroup %%% select(GainBA,TopSurplus,SuperSurplus,CollabEfficiency) %%%
             geom_violin(fill=heathers[1]) +
 geom_boxplot(width=0.2,color=heathers[2],lwd=1) +
 geom_jitter(shape=16, position=position_jitter(0.2),alpha=0.5) +
 labs(x = "Difference in average scores",
      y = "Difference (in SDs)")+
 theme(axis.text.x = element_text(angle = 15, hjust = 1))
```



Difference in average scores

```
ggsave("Figs/Study3_LevyDiffs.pdf",width=20,height=10,units="cm",dpi=300)
ggsave("Figs/Study3_LevyDiffs_small.pdf", width=10, height=7, units="cm", dpi=300)
LevyByGroup %>%
  summarise(
    CollabEfficiency_m = mean(CollabEfficiency, na.rm=TRUE),
    CollabEfficiency_sd = sd(CollabEfficiency, na.rm=TRUE),
  ) %>% knitr::kable(digits = 2)
```

```
CollabEfficiency sd
CollabEfficiency m
                                            n
               1.46
                                    0.96
                                           68
```

```
LevyByGroup %>%
  filter(CollabEfficiency>1) %>%
  count()
## # A tibble: 1 x 1
##
         n
##
     <int>
## 1
```

154

#### Bayesian analysis

Here we look at (and compare) the proportions in the 6 groups shown in Table 5 of the paper.

Using model code for the Bayesian First Aid alternative to the test of proportions.

```
require(rjags)
source("DBDA2E-utilities.R")
## Kruschke, J. K. (2015). Doing Bayesian Data Analysis, Second Edition:
## A Tutorial with R, JAGS, and Stan. Academic Press / Elsevier.
source("DBDAderivatives.R")
myData = S123data %>%
  select(ZippGroup, Stage3score)
myData = S123data %>%
  select(ZippGroup, Stage3score) %>%
  mutate(
    ZippGroup = as.numeric(str_sub(ZippGroup,2,2))
  )
params = c(2,2)
# The model string written in the JAGS language
model_string <- paste0("model {</pre>
for(i in 1:length(x)) {
 x[i] ~ dbinom(theta[i], n[i])
 theta[i] ~ dbeta(",params[1],", ",params[2],")
 x_pred[i] ~ dbinom(theta[i], n[i])
}")
# Running the model
modelS3 <- jags.model(textConnection(model_string), data = list(x = zipptab$numcorrect, n = zipptab$num
                   n.chains = 3, n.adapt=1000)
## Compiling model graph
##
     Resolving undeclared variables
##
     Allocating nodes
## Graph information:
     Observed stochastic nodes: 4
##
     Unobserved stochastic nodes: 8
##
     Total graph size: 17
##
## Initializing model
samplesS3 <- coda.samples(modelS3, c("theta", "x_pred"), n.iter=5000)</pre>
```

You can extract the mcmc samples as a matrix and compare the thetas of the groups. For example, the following shows the median and 95% credible interval for the difference between Group 1 and Group 2.

```
samp_mat <- as.matrix(samplesS3)</pre>
print(quantile(samp_mat[, "theta[2]"] - samp_mat[, "theta[1]"], c(0.025, 0.5, 0.975)))
##
          2.5%
                        50%
                                  97.5%
## -0.02627627 0.03463602 0.10322755
print(quantile(samp_mat[, "theta[4]"] - samp_mat[, "theta[3]"], c(0.025, 0.5, 0.975)))
                                  97.5%
                        50%
## -0.04878312 0.09406176 0.37668576
diagMCMC(samplesS3, parName = "theta[1]", saveName="Figs/Study3_S3props", saveType = "pdf")
                                      theta[1]
                                                  Autocorrelation
  Param. Value
       0.90
                                                                            ESS = 9375.9
                                                      8.0
       0.80
       0.70
                                                      0.0
                       3000 4000
                2000
                                   5000 6000
                                                                       15
                                                                          20
          1000
                                                          0
                                                               5
                                                                  10
                                                                                25
                                                                                    30
                                                                                         35
                      Iterations
                                                                        Lag
                                                                                  MCSE =
  shrink factor
                                     median
                                                                                  0.000295
                                                 Density
                                     97.5%
                                                      ω
       1.04
                                                      0
         1000 2000 3000 4000 5000 6000
                                                                 0.75
                                                                       0.80
                                                                              0.85
                                                                                    0.90
                                                           0.70
              last iteration in chain
                                                                  Param. Value
```

diagMCMC(samplesS3, parName = "theta[2]", saveName="Figs/Study3\_S3props", saveType = "pdf")

# theta[2]



diagMCMC(samplesS3, parName = "theta[3]", saveName="Figs/Study3\_S3props", saveType = "pdf")

# theta[3]



diagMCMC(samplesS3, parName = "theta[4]", saveName="Figs/Study3\_S3props", saveType = "pdf")





mode = -0.0387 51.3% < 0 < 48.7% 95% HDI mode = -0.0999 99.9% < 0 < 0.1% 95% HDI

mode = -0.0353 86.2% < 0 < 13.8% 95% HDI

mode = 0.835 95% HDI



## [1] 2369 ## [1] 3159 ## [1] 3948 ## [1] 4738 ## [1] 5527 ## [1] 6316 ## [1] 7106 ## [1] 7895 ## [1] 8685 ## [1] 9474 ## [1] 10263 ## [1] 11053

## [1] 11842 ## [1] 12632 ## [1] 13421 ## [1] 14211 ## [1] 15000 ## [1] 2 ## [1] 1 ## [1] 790 ## [1] 1580 ## [1] 2369

## [1] 1 ## [1] 1 ## [1] 790 ## [1] 1580

- ## [1] 3159
- ## [1] 3948
- ## [1] 4738
- ## [1] 5527
- ## [1] 6316
- ## [1] 7106
- ## [1] 7895
- ## [1] 8685
- ## [1] 9474
- ## [1] 10263
- ## [1] 11053
- ## [1] 11842
- ## [1] 12632
- ## [1] 13421
- ## [1] 14211
- ## [1] 15000
- ## [1] 3
- ## [1] 1
- ## [1] 790
- ## [1] 1580
- ## [1] 2369
- ## [1] 3159
- ## [1] 3948
- ## [1] 4738
- ## [1] 5527
- ## [1] 6316
- ## [1] 7106
- ## [1] 7895
- ## [1] 8685
- ## [1] 9474
- ## [1] 10263
- ## [1] 11053
- ## [1] 11842
- ## [1] 12632
- ## [1] 13421
- ## [1] 14211
- ## [1] 15000
- ## [1] 4
- ## [1] 1
- ## [1] 790
- ## [1] 1580
- ## [1] 2369
- ## [1] 3159
- ## [1] 3948
- ## [1] 4738
- ## [1] 5527
- ## [1] 6316
- ## [1] 7106
- ## [1] 7895
- ## [1] 8685
- ## [1] 9474 ## [1] 10263
- ## [1] 11053
- ## [1] 11842

## [1] 12632 ## [1] 13421 ## [1] 14211 ## [1] 15000





### Experimental analysis

This conducts the Bayesian analysis of the main experiment.

```
myData = data %>%
  dplyr::select(ZippGroup, Stage3score) %>%
  drop_na() %>%
  mutate(ZippGroup = fct_relevel(ZippGroup, "CO", after=Inf)) %>%
  mutate(ZippGroup = fct_relevel(ZippGroup, "C1", after=Inf)) %>%
  mutate(
    ZippGroup = case_when(
        ZippGroup=="CO" ~ 5,
        ZippGroup=="C1" ~ 6,
        TRUE ~ as.numeric(str_sub(ZippGroup,2,2))
    )
  )
  myData %>% group_by(ZippGroup) %>% summarise( mean(Stage3score)) %>% knitr::kable()
```

| ZippGroup | mean (Stage 3 score) |
|-----------|----------------------|
| 1         | 0.8392857            |
| 2         | 0.8707124            |
| 3         | 1.0000000            |
| 4         | 0.9358108            |
| 5         | 0.8705882            |

| ZippGroup | mean(Stage3score) |
|-----------|-------------------|
| 6         | 0.9400000         |

```
zipptab = myData %>%
  group_by(ZippGroup) %>%
  summarise(
   numcorrect = sum(Stage3score),
   numingroup = n()
)
zipptab %>% knitr::kable()
```

| ZippGroup | numcorrect | numingroup |
|-----------|------------|------------|
| 1         | 141        | 168        |
| 2         | 330        | 379        |
| 3         | 7          | 7          |
| 4         | 277        | 296        |
| 5         | 222        | 255        |
| 6         | 141        | 150        |

```
params = c(2,2)
# The model string written in the JAGS language
model_string <- paste0("model {</pre>
                       for(i in 1:length(x)) {
                       x[i] ~ dbinom(theta[i], n[i])
                       theta[i] ~ dbeta(",params[1],", ",params[2],")
                       x_pred[i] ~ dbinom(theta[i], n[i])
                       }")
# Running the model
modelEXPT <- jags.model(textConnection(model_string), data = list(x = zipptab$numcorrect, n = zipptab$n
                      n.chains = 3, n.adapt=1000)
## Compiling model graph
##
      Resolving undeclared variables
##
      Allocating nodes
## Graph information:
##
      Observed stochastic nodes: 6
##
      Unobserved stochastic nodes: 12
##
      Total graph size: 25
##
## Initializing model
samplesEXPT <- coda.samples(modelEXPT, c("theta", "x_pred"), n.iter=5000)</pre>
# Inspecting the posterior
#plot(samples)
#summary(samples)
# You can extract the mcmc samples as a matrix and compare the thetas
# of the groups. For example, the following shows the median and 95%
# credible interval for the difference between Group 1 and Group 2.
```

```
samp_mat <- as.matrix(samplesEXPT)</pre>
print(quantile(samp_mat[, "theta[2]"] - samp_mat[, "theta[1]"], c(0.025, 0.5, 0.975)))
##
          2.5%
                                  97.5%
                       50%
## -0.02836855 0.03491845 0.10216618
print(quantile(samp_mat[, "theta[4]"] - samp_mat[, "theta[3]"], c(0.025, 0.5, 0.975)))
                                  97.5%
                        50%
## -0.04819208 0.09248183 0.37211846
diagMCMC(samplesEXPT, parName = "theta[1]", saveName="Figs/Study3_EXPTprops", saveType = "pdf")
                                      theta[1]
                                                 Autocorrelation
  Param. Value
                                                                           ESS = 9442.1
                                                     8.0
       0.80
                                                     0.0
                      3000 4000
                2000
                                   5000 6000
                                                                               25
          1000
                                                          0
                                                              5
                                                                  10
                                                                      15
                                                                          20
                                                                                   30 35
                      Iterations
                                                                       Lag
                                                     15
                                                                                 MCSE =
  shrink factor
                                    median
                                                                                 0.00029
                                                 Density
                                                     10
                                    97.5%
       1.02
                                                     2
                                                     0
              2000 3000 4000 5000 6000
         1000
                                                           0.70
                                                                 0.75
                                                                       0.80
                                                                             0.85
                                                                                    0.90
              last iteration in chain
                                                                 Param. Value
```

diagMCMC(samplesEXPT, parName = "theta[2]", saveName="Figs/Study3\_EXPTprops", saveType = "pdf")

# theta[2]



diagMCMC(samplesEXPT, parName = "theta[3]", saveName="Figs/Study3\_EXPTprops", saveType = "pdf")

# theta[3]



diagMCMC(samplesEXPT, parName = "theta[4]", saveName="Figs/Study3\_EXPTprops", saveType = "pdf")



## theta[5]



diagMCMC(samplesEXPT, parName = "theta[6]", saveName="Figs/Study3\_EXPTprops", saveType = "pdf")

### theta[6]





```
Posterior Pred
```

```
## [1] 1
## [1] 1
## [1] 790
## [1] 1580
## [1] 2369
## [1] 3159
## [1] 3948
## [1] 4738
## [1] 5527
## [1] 6316
## [1] 7106
## [1] 7895
## [1] 8685
## [1] 9474
## [1] 10263
## [1] 11053
## [1] 11842
## [1] 12632
## [1] 13421
## [1] 14211
## [1] 15000
## [1] 2
## [1] 1
## [1] 790
## [1] 1580
## [1] 2369
```

- ## [1] 3159
- ## [1] 3948
- ## [1] 4738
- ## [1] 5527
- ## [1] 6316
- ## [1] 7106
- ## [1] /100
- ## [1] 7895
- ## [1] 8685
- ## [1] 9474
- ## [1] 10263
- ## [1] 11053
- ## [1] 11842
- ## [1] 12632
- ## [1] 13421
- ## [1] 14211
- ## [1] 15000
- ## [1] 3
- ## [1] 1
- ## [1] 790
- ## [1] 1580
- ## [1] 2369
- ## [1] 3159
- ## [1] 3948
- ## [1] 4738
- ## [1] 5527
- ## [1] 6316
- ## [1] 7106
- ## [1] 7895
- ## [1] 8685
- ## [1] 9474
- ## [1] 10263
- ## [1] 11053
- ## [1] 11842
- ## [1] 12632
- ## [1] 13421
- ## [1] 14211
- ## [1] 15000
- ## [1] 4
- ## [1] 1
- ## [1] 790
- ## [1] 1580
- ## [1] 2369
- ## [1] 3159
- ## [1] 3948
- ## [1] 4738
- ## [1] 5527
- ## [1] 6316
- ## [1] 7106
- ## [1] 7895
- ## [1] 8685
- ## [1] 9474 ## [1] 10263
- ## [1] 11053
- ## [1] 11842

- ## [1] 12632
- ## [1] 13421
- ## [1] 14211
- ## [1] 15000
- ## [1] 5
- ## [1] 1
- ## [1] 790
- ## [1] 1580
- ## [1] 2369
- ## [1] 3159
- ## [1] 3948
- ## [1] 4738
- ## [1] 5527
- ## [1] 6316
- ## [1] 7106
- ## [1] 7895
- ## [1] 8685
- ## [1] 9474
- ## [1] 10263
- ## [1] 11053
- ## [1] 11842
- ## [1] 12632
- ## [1] 13421
- ## [1] 14211
- ## [1] 15000
- ## [1] 6
- ## [1] 1
- ## [1] 790
- ## [1] 1580
- ## [1] 2369
- ## [1] 3159
- ## [1] 3948
- ## [1] 4738
- ## [1] 5527
- ## [1] 6316
- ## [1] 7106
- ## [1] 7895
- ## [1] 8685
- ## [1] 9474
- ## [1] 10263 ## [1] 11053
- ## [1] 11842
- ## [1] 12632
- ## [1] 13421
- ## [1] 14211
- ## [1] 15000









