Instituto federal de Educação Ciência e Tecnologia de São Paulo

Curso de Graduação em Engenharia Eletrônica

MÓDULO DE FECHADURA

RELATÓRIO DA

DISCIPLINA

INTRODUÇÃO À

ENGENHARIA COM O

PROF. RICARDO PIRES

e Prof. César da

COSTA.

Alessandro Silvério Silva SP3037177

Igor Galdeano Rodrigues SP3037223

Gustavo Senzaki Lucente SP303724X

Luana M. C. Iwamura SP3037151

Luís Otávio Lopes Amorim SP3034178

São Paulo

2020

SUMÁRIO

SUMÁRIO	2
ÍNDICE DE FIGURAS	3
ÍNDICE DE TABELAS	4
1. INTRODUÇÃO	5
2. OBJETIVOS	7
3. JUSTIFICATIVA	7
4. METODOLOGIA	7
5. TABELA DE PREÇOS	8
6. CRONOGRAMA	9
7. SENSORES	9
7.1. Módulo RFID RC522	9
7.2. Teste do sensor	10
REFERÊNCIAS	12
ANEXOS	13
ANEXO A: CÓDIGO PARA TESTE DOS SENSORES	14

ÍNDICE DE FIGURAS

Figura 1 Fechadura egípcia	
Figura 2: Fechadura de Yale	
Figura 3: Fechadura elétrica	6
Figura 4: Fechadura biométrica	
Figura 5 - Módulo RFID RC522	10
Figura 6: Esquema elétrico teste dos sensores	11

ÍNDICE DE TABELAS

Tabela 1: Orçamento	8
Tabela 2: Cronograma	<u>ç</u>
Tabela 3: Conexões do RC522	10
Tabela 4: Conexões LCD	11

1. INTRODUÇÃO

A primeira fechadura que sem tem notícia (figura 1) data de 4000 A.C e foi criada no Egito. Se tratavam de dispositivos de madeira (seu maior defeito) que podiam ser abertos por grandes chaves também feitas de madeira. O funcionamento também era parecido com o de hoje em dia, a chave movia pequenos pistões que ficavam dentro da fechadura. O grande problema era que o material era muito fácil de ser rompido, diminuindo assim a segurança (CORDEIRO, 2018).

Figura 1 Fechadura egípcia

Fonte: https://incrivel.club/admiracao-curiosidades/8-coisas-que-os-antigos-egipcios-faziam-muitos-antes-do-resto-do-mundo-327860/

Por isso, com a habilidade no manuseio de metais, como ferro e bronze, os romanos utilizaram a mesma ideia e a adaptaram para serem feitas tanto as chaves quanto as fechaduras a partir de metais, isso aumentou ainda mais a segurança e permitiu uma diminuição no tamanho de ambos (REPRIZZO, 2018)

Ainda assim, a primeira patente de uma fechadura foi realizada no século XIX pelo médico Abraham Stransbury. E modelo de fechaduras utilizado hoje (figura 2) em dia, com a chave plana e dentada, foi criado por Linus Yale Jr. em 1861 (CANABARRO, 2019).

Figura 2: Fechadura de Yale

Fonte: https://pt.wikipedia.org/wiki/Fechadura_de_tambor_de_pinos

Hoje em dia, por mais que o modelo de Yale ainda seja utilizado, devido ao avanço da tecnologia, principalmente da eletrônica, o uso de fechaduras mais modernas se torna comum. Assim surgem os modelos elétricos e eletrônicos.

A fechadura elétrica (figura3) é mais simples, controlada por um botão que a abre devido a passagem de corrente elétrica por um solenoide. Por outro lado, a eletrônica é mais complexa e pode ser feita de vários jeitos dentre eles com abertura por senha, sensor RFID, impressão digital (figura 4) ou até mesmo leitura de íris (PIRES, 2020).

intelbros

Figura 3: Fechadura elétrica

Fonte: https://www.leroymerlin.com.br/fechadura-eletrica-ffx-2000-cinza-intelbras_89744515

Figura 4: Fechadura biométrica

Fonte: https://www.mgtechnologies.com.br/fechadura-biometrica-fr220-intelbras-senha-biometria

2. OBJETIVOS

O objetivo deste projeto é desenvolver uma fechadura eletrônica utilizando sensor de RFID visando menor custo de produção e maior aproveitamento dos componentes utilizados. A fechadura deverá manter salvo os usuários e possuir um usuário administrador que pode cadastrar ou remover usuários.

Além disso, o projeto busca incentivar nos participantes a busca por conhecimentos necessários de forma autônoma, sem que essa informação seja passada a eles de forma passiva.

3. JUSTIFICATIVA

Essa montagem foi escolhida pelo grupo devido à falta de segurança das fechaduras comuns e alto preço de fechaduras eletrônicas no mercado. Então a busca por materiais de baixo custo para tornar o produto mais acessível para o consumidor final é parte determinante para o sucesso do projeto.

4. METODOLOGIA

O projeto ocorrerá principalmente em duas etapas: pesquisa e montagem.

Na parte de pesquisa os conhecimentos necessários para a criação da fechadura serão buscados pelos alunos sendo utilizada a ajuda de livros, internet e dos professores.

Além disso, será necessário buscar pelos melhores componentes para serem utilizados, para garantir assim o melhor custo-benefício.

Na etapa de montagem serão feitos dois protótipos e uma montagem final. Os protótipos serão feitos para o teste e melhor conhecimento do sensor e do atuador e serão remontados até que funcionem perfeitamente.

- Protótipo 1: Tem como objetivo a verificação do funcionamento do microcontrolador (ATMEGA 328p) aliado a forma de abertura da fechadura (RFID)
- Protótipo 2: O atuador (eletroímã) será adicionado ao protótipo e a fechadura será apresentada.
- Projeto final: A fechadura pronta será apresentada com todas as suas funcionalidades e interfaces.

5. TABELA DE PREÇOS

Tabela 1: Orçamento

Componente	Valor		Quantidade	Т	otal
ATMEGA328p	R\$	5,55	1	R\$	5,55
Conector borne 2 vias	R\$	0,82	12	R\$	9,84
Display LCD	R\$	13,20	1	R\$	13,20
Fonte 12V 1A	R\$	5,81	1	R\$	5,81
Modulo rfid	R\$	5,12	1	R\$	5,12
Placa de fenolite	R\$	1,81	1	R\$	1,81
Soquete 28 pinos	R\$	2,20	4	R\$	8,80
Suporte LED 5mm	R\$	0,33	2	R\$	0,66
Frete	R\$	68,47	1	R\$	68,47
Total				R\$ 1	119,25

Fonte: autores

6. CRONOGRAMA

Tabela 2: Cronograma

							Se	ma	na					
		1	2	3	4	5	6	7	8	9	10	11	12	13
	Planejamento													
	Relatório			ĺ		ĺ								
ıra	Microcontrolador													
Fecadura RFID	Sensor RFID													
Fecad RFID	Abertura senha						 							
	Finalização													

Fonte: Autores

7. SENSORES

A fechadura utilizará apenas um tipo de sensor, o sensor de RFID que auxiliará na autenticação.

O termo RFID é a sigla para identificação por radiofrequências (Radio Frequency Identification), ou seja, é uma forma de por meio de ondas de rádio para identificação de algo (ROUSE, 2019).

Um sistema RFID possui 3 componentes: uma antena, um transceptor e um transponder. O transponder (etiqueta) é a identificação em si, cada transponder emite uma frequência diferente. A antena tem a função de receber essa frequência do transponder e repassá-la para o transceptor que converterá essa frequência para um sinal digital, que será tratado por um outro componente, no nosso caso, o ATMEGA328p (CIRIACO, 2009).

O transponder, também chamado de tag RFID, pode ser de dois tipos: ativo ou passivo. Uma tag passiva é aquela que emite um sinal apenas como resposta ao sinal da antena, já as tags ativas emitem seu próprio sinal, mas para isso precisam de uma bateria interna.

7.1. Módulo RFID RC522

O módulo RC522 (figura 5) que utilizaremos é uma placa que contém a antena e o transceptor. Ele se comunicará com o microcontrolador utilizando o protocolo I2C, por isso precisa ser conectado conforme a tabela 3 (GBUR, 2017).

Figura 5 - Módulo RFID RC522

Fonte: http://projectshopbd.com/product/rfid-rc522r15/

Tabela 3: Conexões do RC522

Sensor	Conexão
NSS	Pino 10
SCK	Pino 13
MOSI	Pino 11
MISO	Pino 12
IRQ	Não conecta
GND	GND
RST	Pino 9
VCC	3.3V

Fonte: Autores

7.2. Teste do sensor

O teste foi feito utilizando além do sensor, uma tela LCD, que foi ligada ao circuito conforme a tabela 4(COMPONENTES101, 2017). A tela exibiu a palavra "ABERTO" quando o sensor ler uma frequência aceita, caso contrário foi escrito no LCD "TRANCADO".

Tabela 4: Conexões LCD

LCD	Conexão
VSS	GND
VDD	5V
V0	Potenciômetro -> GND
RS	Pino 4
R/W	GND
E	Pino 3
DB0 - DB3	Não conecta
DB4- DB 7	Pinos 5 - 8
LED+	5V
LED-	GND

Fonte: Autores

O código utilizado para o teste do sensor está no anexo A, e a figura 6 representa o esquema da montagem final para o teste.

Figura 6: Esquema elétrico teste dos sensores

Fonte: Autores

REFERÊNCIAS

CANABARRO, Amanda. Quem inventou a fechadura? Disponível em: https://www.tricurioso.com/2019/01/22/quem-inventou-a-fechadura/ Acesso em: 23 de fev de 2020

CORDEIRO, Thiago. Como surgiu a chave? Disponível em: https://super.abril.com.br/mundo-estranho/como-surgiu-a-chave/ Acesso em: 23 de fev de 2020

PIRES, Cosme. Fechaduras Eletrônicas ou Elétricas – Como Escolher? Disponível em: https://www.fazfacil.com.br/reforma-construcao/fechaduras-eletronicas/ Acesso em: 23 de fey de 2020

REPRIZZO. História das chaves e fechaduras. Disponível em: https://reprizzo.com.br/2018/12/17/historia-das-chaves-e-fechaduras/ Acesso em: 23 de fev de 2020

ROUSE, Margaret. RFID (radio frequency identification). Disponível em: https://internetofthingsagenda.techtarget.com/definition/RFID-radio-frequency-identification Acesso em: 06 de set de 2020

CIRIACO, Douglas. Como funciona a RFID? Disponivel em: https://www.tecmundo.com.br/tendencias/2601-como-funciona-a-rfid-.htm Acesso em: 06 de set de 2020

GBUR, Felipe. Módulo RFID RC522 Mifare com Arduino. Disponível em: https://portal.vidadesilicio.com.br/modulo-rfid-rc522-mifare/ Acesso em: 06 de set de 2020

COMPONENTS101. 16X2 LCD Module. Disponível em: https://components101.com/16x2-lcd-pinout-datasheet Acesso em: 06 de set de 2020

ANEXOS

ANEXO A: CÓDIGO PARA TESTE DOS SENSORES

```
/*Pinagem
 * LCD RS - pino D4
 * LCD En - pino D3
 * LCD D4 - pino D5
* LCD D5 - pino D6
 * LCD D6 - pino D7
 * LCD D7 - pino D8
* RFID NSS - pino D10
 * RFID SCK - pino D13
 * RFID MOSI - pino D11
 * RFID MISO - pino D12
 * LED Vermelho - pino A5
 * LED Verde - pino A4
 */
#include <SPI.h> //comunicação com o modulo RFID
#include <MFRC522.h> //biblioteca do modulo RFID
#include <LiquidCrystal.h> //biblioteca da tela
#define SS PIN 10
#define RST PIN 9
// Instanciando o módulo RFID e LCD
MFRC522 mfrc522(SS_PIN, RST_PIN);
LiquidCrystal lcd(4, 3, 5, 6, 7, 8);
String UID= "";
void setup() {
  SPI.begin(); // Iniciar comunicação SPI
  mfrc522.PCD_Init(); // Inicia o módulo RFID
  lcd.begin(16, 2); // Inicializa o display LCD
  boot(); //rotina de texto inicial (serial e lcd)
void boot() {
  //Mensagem na tela
  lcd.clear();
  lcd.print(" Aproxime o seu");
  lcd.setCursor(0,1);
  lcd.print("cartao no leitor");
}
void ler_cartao() {
  //Procurar cartão
  if ( ! mfrc522.PICC_IsNewCardPresent()) {
    return;
  }
```

```
// Ler dados do cartão
  if ( ! mfrc522.PICC_ReadCardSerial()) {
   return;
  //Printar UID do cartão na porta serial
  for (byte i = 0; i < mfrc522.uid.size; i++) {</pre>
     UID.concat(String(mfrc522.uid.uidByte[i] < 0x10 ? " 0" : " "));</pre>
     UID.concat(String(mfrc522.uid.uidByte[i], HEX));
  }
}
void resposta (){
  UID.toUpperCase();
  //UID esperada do cartão liberado
  if (UID.substring(1) == "FF FF FF FF") {
    lcd.clear();
    lcd.setCursor(0, 0);
    lcd.print("Bem vindo");
    lcd.setCursor(0, 1);
    lcd.print("Acesso liberado!");
  }
  //UID esperada do cartão bloqueado
  else if (UID.substring(1) == "00 00 00 00") {
    lcd.clear();
    lcd.setCursor(0, 0);
    lcd.print("Usuario");
    lcd.setCursor(0, 1);
    lcd.print("Bloqueado");
  else if (UID.substring(1) =! ""){
    lcd.clear();
    lcd.setCursor(0, 0);
    lcd.print("Acesso negado");
}
void loop() {
  ler_cartao();
  resposta();
```