

Mensch-Computer-Interaktion 2

Data Analysis

Prof. Dr. Michael Rohs michael.rohs@hci.uni-hannover.de

Lectures

Session	Date	Topic		
1	6.4.	Introduction		
2	13.4.	Interaction elements		
3	20.4.	Event handling	GUI toolkits,	
4	27.4.	Scene graphs	interaction techniques	
5	4.5.	Interaction techniques		
	11.5.	no class (CHI)		
	18.5.	no class (spring break)		
6	25.5.	Experiments		
7	1.6.	Data Analysis	design and analysis	
8	8.6.	Data Analysis	of experiments	
9	15.6.	Visualization		
10	22.6.	Visualization		Klausur:
11	29.6.	Modeling interaction	current topics	28.7.2016
12	6.7.	Computer vision for interaction	beyond-desktop UIs	8-11 Uhr
13	13.7.	Computer vision for interaction		HG E214

Review

- Properties: Nominal scale, ordinal scale, interval scale, ratio scale?
- Why does correlation not imply causality? Counterexample?
- Internal validity? External validity?
- Explain: factor, independent variable, dependent variable, level, condition, trial
- Control variable? Random variable? Confounding variable?
- What is a "good" task?
- Why written instructions?
- What is counterbalancing?
- How to construct a balanced Latin square for n = 4?

HYPOTHESIS TESTING

Null Hypothesis Significance Testing (NHST)

- NHST: The use of statistical procedures to answer research questions
- Typical research question (generic):
 - Is the time to complete a task less using Method A than using Method B?
- For hypothesis testing, research questions are statements:
 - There is no difference in the mean time to complete a task using Method A vs. Method B.
- This is the null hypothesis (assumption of "no difference")
- Statistical procedures seek to reject or accept the null hypothesis

"Significant" implies that in all likelihood the difference observed is due to the test conditions (Method A vs. Method B).

"Not significant" implies that we cannot tell whether the difference observed is due to Method A vs. B or due to chance.

Example #1 - Details

Note: Within-subjects design

Portioinant	Method	
Participant	Α	В
1	5.3	5.7
2	3.6	4.8
3	5.2	5.1
4	3.6	4.5
5	4.6	6.0
6	4.1	6.8
7	4.0	6.0
8	4.8	4.6
9	5.2	5.5
10	5.1	5.6
Mean	4.5	5.5
→ SD	0.68	0.72

Example #2 - Details

Note: Within-subjects design

Portioinant	Method	
Participant	Α	В
1	2.4	6.9
2	2.7	7.2
3	3.4	2.6
4	6.1	1.8
5	6.4	7.8
6	5.4	9.2
7	7.9	4.4
8	1.2	6.6
9	3.0	4.8
10	6.6	3.1
Mean	4.5	5.5
→ SD	2.23	2.45

Example #1: Comparison of Time Differences

faster with method A

than with method B

Example #2: Comparison of Time Differences

faster with method A

than with method B

Confidence that "Method" has a Systematic Effect?

Trick: How likely are the observed results under the assumption that "method" has no effect?

Null Hypothesis: Assume "Method" has No Effect

- Assumption: Factor "method"
 (with levels A and B) has no effect
 - If so, then methods A and B are in fact the same condition

- If so, then whether A or B is shorter only depends on a participant's variability in execution speed
- If so, then for each participant the shorter execution time could equally likely have occurred with A as with B (\rightarrow coin flip)
- If so, then each direction (A < B, B < A) is equally likely; and for 10 users there are $2^{10} = 1024$ equally likely possibilities
- If so, then it is very unlikely that for all users the shorter execution time occurs with method A ($p = 1/2^{10} = 1/1024$)
- (other factors controlled or randomly distributed, no order effects)

Probability of Obtained Result under Null Hypothesis

- Assumption: Method has no effect, rows are independent
- For participant 1, values A=5.3 and B= 5.7 as likely as A=5.7 and B=5.3
- Generate all possible 2¹⁰ = 1024 orders (for 10 participants)
 - Each order equally likely
 - Unlikely that all small values with A
- Compute mean difference for each
- Compute fraction of means that is as extreme or more extreme as the obtained mean difference (-0.9)

Example 1:

Р	Α	В		Α	В
1	5.3	5.7		5.3	5.7
2	3.6	4.8	4-0-	4.8	3.6
3	5.2	5.1		5.1	5.2
4	3.6	4.5		4.5	3.6
5	4.6	6.0		6.0	4.6
6	4.1	6.8		6.8	4.1
7	4.0	6.0		6.0	4.0
8	4.8	4.6		4.6	4.8
9	5.2	5.5		5.5	5.2
10	5.1	5.6		5.6	5.1

Probability of Obtained Result under Null Hypothesis

Example 1:

Р	Α	В	diff
1	5.3	5.7	-0.4
2	3.6	4.8	-1.2
3	5.2	5.1	0.1
4	3.6	4.5	-0.9
5	4.6	6.0	-1.4
6	4.1	6.8	-2.7
7	4.0	6.0	-2.0
8	4.8	4.6	0.2
9	5.2	5.5	-0.3
10	5.1	5.6	-0.5
mean diff0.9			

 $p = 10 / 2^{10} = 0.0098 \rightarrow unlikely that null hypothesis is true$

Probability of Obtained Result under Null Hypothesis

Example 2:

Р	Α	В	diff	
1	2.4	6.9	-4.5	
2	2.7	7.2	-4.5	
3	3.4	2.6	8.0	
4	6.1	1.8	4.3	
5	6.4	7.8	-1.4	
6	5.4	9.2	-3.8	
7	7.9	4.4	3.5	
8	1.2	6.6	-5.4	
9	3.0	4.8	-1.8	
10	6.6	3.1	3.5	
	mean diff0.9			

 $p = 450 / 2^{10} = 0.4395 \rightarrow$ no evidence that null hypothesis is false

Randomization Tests

- If n is large, too much effort to enumerate all possibilities
- Alternative: Randomly pick large number (e.g., 10 000) of the possible assignments
 - Each possibility should have equal chance of being selected

Randomization Tests with Matched Samples

- Data discussed above are "matched samples"
 - Each participant generates two data points (one for each condition)
- Data from a single participant are not statistically independent
 - Slow participant is likely slow for both methods
 - Fast participant is likely fast for both methods
- Each participant generates a "matched pair"
 - (time method A, time for method B)
- Occurs with within-subject experiments
- For test, compute difference within each pair
 - If no effect, expect 0.0 difference on average
 - Differences are statistically independent

Randomization Test with Matched Samples

```
data = \{(t_{11}, t_{12}), (t_{21}, t_{22}), ..., (t_{n1}, t_{n2})\} // matched pairs of n participants
dataMeanDiff = abs(mean(t_{11} - t_{12}, t_{21} - t_{22}, ..., t_{n1} - t_{n2}))
                         // repetitions
r = 10000
M = zeros(r) // mean differences of each trial
for j = 1..r:
              // r repetitions
    D = zeros(n) // difference vector for j<sup>th</sup> trial
    for i = 1..n: // n participants
        (t_1, t_2) = data_i // data pair of participant i
        D_i = if (coin flip is head) t_1 - t_2 else t_2 - t_1
    M_i = mean(D)
p = (count(M_i \le -dataMeanDiff) + count(M_i \ge dataMeanDiff)) / r // extreme values
if p \leq 0.05 then "significant" else "not significant"
```


Randomization Tests with Independent Samples

- Occurs with between-subject experiments
 - Each participant randomly assigned to one group
- Each participant provides a single data point
 - Either time for method A or time for method B
- Data points are assumed to be statistically independent
- Null hypothesis: Method has no effect, i.e., the two groups represent the same condition
- Generate many random reassignments of users to groups
- Compute test statistic for each random reassignment
 - Example: Absolute difference between group means
- Compute fraction of reassignments that generate an effect as strong or stronger as the observed one

Example: Between-Subjects Designs

- Research question:
 - Do left-handed users and righthanded users differ in the time to complete an interaction task?
- The independent variable (handedness) must be assigned between-subjects
- There is one data point per participant
- The data points are independent

Participant	Task Completion Time (s)	Handedness
1	23	L
2	19	L
3	22	L
4	21	L
5	23	L
6	20	L
7	25	L
8	23	L
9	17	R
10	19	R
11	16	R
12	21	R
13	23	R
14	20	R
15	22	R
16	21	R
Mean	20.9	
SD	2.38	

Summary Data and Chart

Handedness

Randomization Test with Independent Samples

```
A = \{t_{11}, t_{12}, ..., t_{1n}\} // goup 1, participants 1..n
B = \{t_{2,(n+1)}, t_{2,(n+2)}, ..., t_{2,2n}\} // goup 2, participants n+1..2n
meanDiff = abs(mean(A) - mean(B)) // observed difference between groups
C = stack(A, B) // combine A and B, length(C) = 2n
r = 10000 // repetitions
M = zeros(r) // mean differences of each trial
for j = 1..r: // r repetitions
   permuted = shuffle(C)  // randomly shuffle all data
   group1 = permuted[1..n]  // randomized group 1
   group2 = permuted[n+1..2n] // randomized group 2
   M_i = mean(group1) - mean(group2) // difference between randomized groups
p = (count(M_i \le -meanDiff) + count(M_i \ge meanDiff)) / r // extreme values
if p ≤ 0.05 then "significant" else "not significant"
```


Between-Subjects Designs

Participant	Task Completion Time (s)	Handedness
1	23	L
2	19	L
3	22	L
4	21	L
5	23	L
6	20	L
7	25	L
8	23	L
9	17	R
10	19	R
11	16	R
12	21	R
13	23	R
14	20	R
15	22	R
16	21	R
Mean	20.9	
SD	2.38	

 $p = 939 / 10000 = 0.0939 \rightarrow$ no evidence that null hypothesis is false

Parametric and Non-Parametric Statistical Tests

- Non-parametric tests
 - Randomization tests are non-parametric
 - Data are not assumed to come from a particular statistical distribution
- Parametric tests
 - Data are assumed to come from a particular statistical distribution (for example the normal distribution)
- Selecting a test: Match the type of test with the experimental design and measurement scale of the data

Reminder: Normal Distribution

Some tests assume that DV is (roughly) normally distributed (under the null hypothesis)

$$DV = N(\mu, \sigma^2)$$

- μ = population mean
- σ = population standard deviation

Normal distribution:

$$f(x) = \frac{1}{\sigma\sqrt{2\pi}} \exp\left[-\frac{(x-\mu)^2}{2\sigma^2}\right]$$

Measurement Scales and Statistics

Scale	Relations	Statistics	Tests
Nominal	• Equivalence	ModeFrequency	Non-parametric tests
Ordinal	EquivalenceOrder	MedianPercentile	
Interval	EquivalenceOrderRatio of intervals	MeanStandard deviation	Parametric tests and non-parametric tests
Ratio	EquivalenceOrderRatio of intervalsRatio of values	Geometric meanCoefficient of variation	

Measurement Scales and Statistical Tests

Kind of Test	Statistical Tests	
	• Chi-square	
Non-parametric	 Mann-Whitney U (2 groups, between) Wilcoxon Signed-Rank (2 groups, within) Kruskal-Wallis (3+ groups, between) Friedman (3+ groups, within) 	
Parametric	 t-test (2 groups, independent samples, matched samples) ANOVA (2+ groups, one-way between, one-way within, two-way within, mixed factors, etc.) 	

Tests Discussed

- Parametric
 - t-test
 - Comparison of two groups
 - Analysis of variance (ANOVA)
 - Most common statistical procedure in HCl research
 - Used for ratio data and interval data
- Non-parametric
 - Randomization tests
 - Chi-square test
 - Used for nominal data
 - Mann-Whitney U, Wilcoxon Signed-Rank,
 Kruskal-Wallis, and Friedman tests
 - Used for ordinal data

ANALYSIS OF VARIANCE (ANOVA)

Analysis of Variance (ANOVA)

- Most widely used statistical test for hypothesis testing in factorial experiments
- Goal: Determine if an independent variable has a significant effect on a dependent variable
 - Remember, an independent variable has at least two levels (values, settings, test conditions)
- Goal (put another way): Determine if the test conditions yield different outcomes on the dependent variable
 - E.g., one of the test conditions is faster/slower than the other

Why Analyze the Variance?

- We are interested in differences between means
 - Is the time to complete a task less using Method A than using Method B?
- Seems odd that we analyse the variance...

Standard Deviation, Variance

- Standard deviation is a measure of variability about the mean
- Variance is the squared standard deviation
- Standard deviation of the entire population (of n data points)

$$\sigma = \sqrt{\frac{1}{n} \sum_{i=1}^{n} \left(data_i - \overline{data} \right)^2}$$

Standard deviation of a sample (of a larger population)

$$s = \sqrt{\frac{1}{n-1} \sum_{i=1}^{n} \left(data_i - \overline{data} \right)^2}$$

Dividing by n would introduce a bias

Basic Idea of Analysis of Variance

- Given: Independent variable IV with levels a₁ and a₂
- Continuous dependent variable DV is measured
- Idea: Look at variability within groups and across group means
 - More confident if small variability within group and large variability across means

Partitioning Sums of Squares

total deviation = within-group deviation + between-group deviation

$$Y_{i,j} - \overline{Y}_{T} = (Y_{i,j} - \overline{Y}_{Ai}) + (\overline{Y}_{Ai} - \overline{Y}_{T})$$

$$Y_{1,j} = \text{One Score from Level } a_{1}$$

$$Y_{1,j} = \text{One Score from Level } a_{2}$$

$$Y_{1,7} Y_{1,4} Y_{1,9} Y_{1,9} Y_{2,7} Y_{2,5} Y_{2,9} Y_{2,8} Y_{2,6} Y_{2,1}$$

$$Y_{1,6} Y_{1,2} Y_{1,3} Y_{1,1} Y_{1,5} Y_{2,4} Y_{2,2} Y_{2,3} Y_{2,6} Y_{2,1}$$

$$Y_{1,6} \overline{Y}_{A_{1}} \overline{Y}_{A_{1}} \overline{Y}_{A_{2}} \overline{Y}_{A_{2}}$$

$$Y_{1,6} \overline{Y}_{A_{1}} \overline{Y}_{A_{1}} \overline{Y}_{A_{2}} \overline{Y}_{A_{2}}$$

$$Y_{1,6} \overline{Y}_{A_{1}} \overline{Y}_{A_{1}} \overline{Y}_{A_{2}} \overline{Y}_{A_{2}} \overline{Y}_{A_{2}}$$

$$X_{1,6} \overline{Y}_{A_{1}} \overline{Y}_{A_{1}} \overline{Y}_{A_{2}} \overline{Y}_{A_{$$

Partitioning Sums of Squares

total deviation = within-group deviation + between-group deviation

$$Y_{i,j} - \overline{Y}_T = (Y_{i,j} - \overline{Y}_{Ai}) + (\overline{Y}_{Ai} - \overline{Y}_T)$$

this is also true for the sum of the squared deviations (no proof here)

$$\sum_{i=1}^{k} \sum_{j=1}^{n} (Y_{i,j} - \overline{Y}_{T})^{2} = \sum_{i=1}^{k} \sum_{j=1}^{n} (Y_{i,j} - \overline{Y}_{A_{i}})^{2} + \sum_{i=1}^{k} (\overline{Y}_{A_{i}} - \overline{Y}_{T})^{2}$$

$$SS_{total} = SS_{within-groups} + SS_{between-groups}$$

$$SS_{total} = SS_{error} + SS_{condition}$$

The sum of squared total deviations equals the sum of the squared within-group deviations (due to error sources) and the sum of the squared between-group deviations (due to conditions, if there is an effect)

Keppel: Introduction to Design & Analysis. 2nd ed., Freeman, 1992.

Degrees of Freedom (df)

- df = the number of independent sources of variation
- Sums of squares are divided by df to obtain a variance
 - Average sum of squares (mean squares)

•
$$MS = SS / df$$

$$df_{total} = n * k - 1$$

$$SS_{total} = \sum_{i=1}^{k} \sum_{j=1}^{n} (Y_{i,j} - \overline{Y}_T)^2$$
 $n = \text{number of observations}$ $n = \text{number of observations}$

k = number of conditions

in each condition

•
$$df_{between-groups} = k - 1$$

•
$$df_{within-groups} = n * k - k$$

$$SS_{within-groups} = \sum_{i=1}^{k} \sum_{j=1}^{n} (Y_{i,j} - \overline{Y}_{A_i})^2$$

•
$$df_{total} = df_{within-groups} + df_{between-groups}$$

F-Ratio (F-Statistic)

- Variability due to experimental condition
 - $MS_{condition} = MS_{between-groups} = SS_{between-groups} / df_{between-groups}$
- Variability due to error sources

•
$$MS_{error} = MS_{within-groups} = SS_{within-groups} / df_{within-groups}$$

- F-statistic
 - $F = MS_{condition} / MS_{error}$

$$F = \frac{between-group\ variability}{within-group\ variability}$$

F-Distribution

- F-ratio follows F-distribution with k-1, nk-k degrees of freedom, if null hypothesis is true and data is normally distributed
 - \blacksquare F(k-1, nk-k)
 - k groups, n values per group
- Probability density graph:
 - k = 3 groups
 - n = 10 values per group
 - $df_{bq} = k 1 = 2$
 - $df_{wg} = nk k = 27$

ss = sum of squares

Between-Subjects ANOVA

c	ondition	condition	condition		df = degrees of freedom MS = mean square
data	1	2	3		F = Fisher-ratio
participants 1, 2, 3	9	7	5		p = probability that F is
participants 4, 5, 6	3	3	0		larger than the given value
participants 7, 8, 9	3	2	4		
mean for condition	5	4	3	4	grand mean
squared differences from grand mean	25	9	1		
	1	1	16		
	1	4	0		
total sum of squares (ssTotal)	58				ssTotal = ssCondition + ssError
squared differences from condition means	16	9	4		
	4	1	9		
	4	4	1		
sum of squares from condition means	52				ssError
	SS	df	MS	F	р
ssCondition	6	2	3.000	0.346	0.721
ssError	52	6	8.667		
ssTotal	58	8			

Within-Subjects ANOVA

data	condition 1	condition 2	condition 3	mean for	participant	
participant 1	9	7	5	7		ss = sum of squares
participant 2	3	3	0	2		df = degrees of freedom
participant 3	3	2	4	3		MS = mean square
mean for condition	5	4	3	4	grand mean	F = Fisher-ratio
						p = probability that F is
squared differences from grand mean	25	9	1			larger than the given value
	1	1	16			
	1	4	0			
total sum of squares (ssTotal)	58			ssTotal =	ssCondition + ssP	articipant + ssError
squared differences from condition means	16	9	4			
·	4	1	9			
	4	4	1			
sum of squares from condition means	52			ssPartici	oant + ssError	
squared differences from participant means	4	0	4			
	1	1	4			
	0	1	1			
sum of squares from participant means	16			ssCondit	ion + ssError	
	SS	df	MS	F	р	
ssCondition = ssT - (ssP + ssE)	6	2	3.000	1.200	0.391	
ssParticipant = ssT - (ssC + ssE)	42	2	21.000			
ssError = ssT - ssC - ssP	10	4	2.500			
ssTotal	58	8				

Experiment Simulations, F-Histograms

- Simulate 100k experiments
- Generate data for 2 groups with 10 data points each
- Data points are independent
- Data points are from normal distributions with σ =1.0
- Group 1: μ_1 =0.0 (fixed mean)
- Group 2: μ₂=0.0, 0.5, 1.0, 1.5

F-Histogram (k = 2, n = 10, σ =1, μ_1 =0, μ_2 =0)

F-Histogram (k = 2, n = 10, σ =1, μ_1 =0, μ_2 =0.5)

F-Histogram (k = 2, n = 10, σ =1, μ_1 =0, μ_2 =1)

F-Histogram (k = 2, n = 10, σ =1, μ_1 =0, μ_2 =1.5)

Numpy Script to Simulate Experiments (1/3)

```
import numpy as np # import numpy
import matplotlib.pyplot as pp # import pyplot for graphical output
sigma = 1.0 # both distributions have the same standard deviation 1.0
mu1 = 0.0 \# mean of group 1
mu2 = 1.0 \# mean of group 2
groups = 2 \# 2 groups
groupSize = 10 # 10 data points in each group
experiments = 100000 # a huge number of experiments
results = np.zeros(experiments) # this array will hold the results
```


Numpy Script to Simulate Experiments (2/3)

```
for i in xrange(experiments): # simulate experiments
  data1 = sigma * np.random.randn(groupSize, 1) + mu1; # normally distributed
  data2 = sigma * np.random.randn(groupSize, 1) + mu2; # normally distributed
  data = np.hstack((data1, data2)) # horizontally stack data columns
  grandMean = np.mean(data) # overall mean
  groupMeans = np.mean(data, 0) # mean for each group
  bwGroupVar = np.sum(groupSize * (grandMean - groupMeans) ** 2) / (groups - 1)
  wiGroupVar = np.sum((data - groupMeans) ** 2) / (groups * groupSize - groups)
  F = bwGroupVar / wiGroupVar
  results[i] = F
```


Numpy Script to Simulate Experiments (3/3)

```
# histogram output

pp.figure() # a new figure window

# a normalized, cumulative histogram with 100 bins

pp.hist(results, bins = 100, normed = True, cumulative = True)

pp.hold(True) # keep histogram when adding line

pp.plot([0, 20], [0.95, 0.95]) # add horizontal line

pp.xlim(0, 20) # limit x-axis from 0 to 20

pp.show() # actually show the result
```


SciPy F-Statistic: scipy.stats.f

- Import module
 - import scipy.stats as st
- Probability density function
 - pdf
- Cumulative density function

- 95% of the distribution of F_{1.18} is below 4.414
- Percent point function (inverse of cdf)
 - print st.f.ppf(0.95, 1, 18) # output: 4.41387341917
 - 4.414 is the point at which 95% of the cdf is reached

SciPy F-Statistic: scipy.stats.f

Script to generate the figure

```
import numpy as np
import matplotlib.pyplot as pp
import scipy.stats as st
dfn, dfd = 1, 18
x = np.arange(0, 10, 0.01)
y = st.f.cdf(x, dfn, dfd)
pp.figure(figsize=(3,2))
pp.plot(x, y, 'b')
pp.grid()
p95 = st.f.ppf(0.95, dfn, dfd)
pp.plot([p95, p95], [0, 1], 'g')
pp.plot([0, 10], [0.95, 0.95], 'g')
```


Summary Analysis of Variance

- Measurements of DV are random samples of populations
- Null hypothesis: all measurements are from one population
 - H_0 : $\mu_1 = \mu_2$ (population means are equal)
- Alternative hypothesis: not all means are equal
 - Many possibilities, difficult to analyze \rightarrow focus on H_0
- The larger F, the more likely a systematic effect is present

- The larger F, the smaller the likelihood of H₀
- If probability of H_0 is low enough (typically $\alpha = 5\%$): reject $H_0 \rightarrow$ accept alternative hypothesis
- However, this is not a proof!

Errors in Hypothesis Testing

- Null hypothesis is true (there is no effect)
 - Experiment yields p ≤ 0.05, null hypothesis is rejected \rightarrow type I error (falsely rejecting the null hypothesis), probability α
 - Experiment yields p > 0.05
 → correctly accepting the null hypothesis
- Null hypothesis is false (there is an effect)
 - Experiment yields p ≤ 0.05, null hypothesis is rejected
 → correctly rejecting the null hypothesis
 - Experiment yields p > 0.05
 → type II error (failing to reject the null hypothesis), probability β
 - Power: Probability of finding an effect if there is one $(1-\beta)$

Sensitivity and Specificity

there is an effect		conditio	n (reality)	there is	
		condition positive condition negative		no effect	
test	test positive	true positive	false positive (type I error)	positive predictive value = true positive test positive	
result	test negative	false negative (type II error)	true negative	negative predictive value = true negative test negative	
		sensitivity = true positive condition positive	specificity = true negative condition negative		

Example #1 - Details

Note: Within-subjects design

Porticipant	Met	hod
Participant	Α	В
1	5.3	5.7
2	3.6	4.8
3	5.2	5.1
4	3.6	4.5
5	4.6	6.0
6	4.1	6.8
7	4.0	6.0
8	4.8	4.6
9	5.2	5.5
10	5.1	5.6
Mean	4.5	5.5
→ SD	0.68	0.72

Example #1 – ANOVA with Statistics Software

ANOVA Table for Task Completion Time (s)

Subject Method Method * Subject

DF	Sum of Squares	Mean Square	F-Value	P-Value	Lambda	Pow er
9	5.080	.564				
1	4.232	4.232	9.796	• .0121	9.796	.804
9	3.888	.432				

Probability of obtaining the observed data if the null hypothesis is true

- If the data points of both groups come from the same normal distribution, then the F-ratio follows the F-distribution
- $p(F_{1.9} < 9.796) = 0.9879$
- $p(F_{1,9} \ge 9.796) = 1 p(F_{1,9} < 9.796) = 0.0121$

• Reported as: $F_{1.9} = 9.80$, p < .05

(permutation test yielded p = 0.0098)

How to Report an ANOVA Result

The mean task completion time for Method A was 4.5 s. This was 20.1% less than the mean of 5.5 s observed for Method B. The difference was statistically significant ($F_{1.9} = 9.80$, p < .05).

- Report means
 - 4.5 s vs. 5.5 s
- Report effect sizes (as ratios or differences)
 - 20.1% (ratio of "improvement")
- State results of ANOVA
 - $F_{1.9} = 9.80, p < .05$

How to Report an ANOVA Result

The mean task completion time for Method A was 4.5 s. This was 20.1% less than the mean of 5.5 s observed for Method B. The difference was statistically significant ($F_{1.9} = 9.80$, p < .05).

- The actual results are the observations and measurements
 - So always report them!
- Statistical tests just have a supporting role
 - They allow estimating confidences in the conclusions to be drawn

Effect Size

- Describes magnitude of the association between IV and DV
 - Helps judging the practical relevance of a (stat. sig.) difference
- Unstandardized effect size ← typically used in HCI
 - Absolute difference between means
 - E.g., 1.0 s
 - Relative difference between means
 - E.g., 20.1%
 - Does not consider variability within groups
- Standardized effect size ← less often used in HCI
 - Size of effect relative to variability in the sample
 - Example: Cohen's d is absolute difference of means divided by standard deviation in the sample

Example #2 - Details

Note: Within-subjects design

Porticipant	Met	hod
Participant	Α	В
1	2.4	6.9
2	2.7	7.2
3	3.4	2.6
4	6.1	1.8
5	6.4	7.8
6	5.4	9.2
7	7.9	4.4
8	1.2	6.6
9	3.0	4.8
10	6.6	3.1
Mean	4.5	5.5
→ SD	2.23	2.45

Example #2 – ANOVA

ANOVA Table for Task Completion Time (s)

Subject Method Method * Subject

DF	Sum of Squares	Mean Square	F-Value	P-Value	Lambda	Pow er
9	37.372	4.152				
1	4.324	4.324	.626	.4491	.626	.107
9	62.140	6.904				

(permutation test yielded p = 0.4395)

Probability of obtaining the observed data if the null hypothesis is true

Reported as...

 $F_{1,9} = 0.626$, ns

Note: For non-significant effects, use "ns" if F < 1.0, or "p > .05" if F > 1.0.

Example #2 - Reporting

The mean task completion times were 4.5 s for Method A and 5.5 s for Method B. As there was substantial variation in the observations across participants, the difference was not statistically significant as revealed in an analysis of variance $(F_{1.9} = 0.626, \text{ ns})$.

More Than Two Test Conditions

Dorticinant	Test Condition					
Participant	Α	В	С	D		
1	11	11	21	16		
2	18	11	22	15		
3	17	10	18	13		
4	19	15	21	20		
5	13	17	23	10		
6	10	15	15	20		
7	14	14	15	13		
8	13	14	19	18		
9	19	18	16	12		
10	10	17	21	18		
11	10	19	22	13		
12	16	14	18	20		
13	10	20	17	19		
14	10	13	21	18		
15	20	17	14	18		
16	18	17	17	14		
Mean	14.25	15.13	18.75	16.06		
SD	3.84	2.94	2.89	3.23		

ANOVA (Single Factor, Within Subjects)

ANOVA Table for Dependent Variable (units)

Subject
Test Condition
Test Condition * Subject

DF	Sum of Squares	Mean Square	F-Value	P-Value	Lambda	Pow er
15	81.109	5.407				
3	182.172	60.724	4.954	.0047	14.862	.896
45	551.578	12.257				

- Single-factor, within-subjects design
- There was a significant effect of test condition on the dependent variable ($F_{3.45} = 4.95$, p < .005)
- Degrees of freedom (k=4 conditions, n=16 participants)
 - If k is the number of test conditions and n is the number of participants:
 - Participant dfs → n 1
 - Condition dfs \rightarrow k 1
 - Error dfs \rightarrow (n 1)(k 1)

Post Hoc Comparisons Tests

- A significant F-test means that at least two test conditions differed significantly
- Does not indicate which test conditions differed significantly from one another
- To determine which pairs differ significantly, post hoc comparisons are used
- Typically: t-tests, adjusted for multiple comparisons
 - Adjustment: Avoid inflation of type I errors
- Examples:
 - Bonferroni/Dunn, Fisher PLSD, Dunnett, Tukey/Kramer, Games/Howell,
 Student-Newman-Keuls, orthogonal contrasts, Scheffé

Type I Error Inflation under Multiple Comparisons

- Type I error: Falsely rejecting the null hypothesis, corresponds to α -level, typically $\alpha = 5\%$
- A single test: Type I error rate $\alpha^* = \alpha$
- Two (independent) tests: Type I error rate $\alpha^* = 1 (1 \alpha)^2$
 - First test no type I error $(p = 1 \alpha)$ and second test no type I error $(p = 1 \alpha)$
 - Both tests no error (if independent) $(1 \alpha)^2$
 - Combined error rate: $\alpha^* = 1 (1 \alpha)^2$
- k (independent) tests: $\alpha^* = 1 (1 \alpha)^k$
- If tests not independent: $\alpha^* = k \alpha$
- Modify α such that $\alpha^* \le 5\%$
- Bonferroni correction: $\alpha = \alpha^*/k$ (conservative)

$1 - (1 - \alpha)^k$	k $lpha$
5.0%	5.0%
9.8%	10.0%
14.3%	15.0%
18.5%	20.0%
22.6%	25.0%
26.5%	30.0%
	5.0% 9.8% 14.3% 18.5% 22.6%

Post Hoc Comparisons

Simple Bonferroni correction can be too conservative (inflating false negatives)

	Mean Diff.	Crit. Diff.	P-Value
A, B	875	3.302	.9003
A, C	-4.500	3.302	.0032
A, D	-1.813	3.302	.4822
B, C	-3.625	3.302	.0256
B, D	938	3.302	.8806
C, D	2.688	3.302	.1520

Test conditions A:C

and B:C differ
significantly $(\alpha \le 0.05)$

significance level: 5%

MacKenzie: Human-Computer Interaction - An Empirical Research Perspective.

S