Lekcja

Temat: Pojęcie z zakresu elektroniki i elektrotechniki.

Napiecie elektryczne - napiecie jest to różnica potencjałów pomiędzy dwoma punktami obwodu elektrycznego konieczna do przeniesienia i jednostkowego ladunku dodatniego z punktu o niższym potencjale z punktu o niższym potencjale do punktu o wyższym potencjale. Napiecie oznacza się zwykle symbolem "U" Jednostka miary napiecia jest volt "V" 2. Natężenie prądu (prąd) - natężenie prądu jest szybkością przepływu ładunku elektrycznego obok penwnego punktu. Jednostką miary natężenia prądu jest amper "A". Natężenie prądu oznacza sie symbolem "I", a kierunek jego przepływu wskazuje strzałka. 3. Częstotliwość częstotliwość to określoną liczbę cykli występująca w jednostce czasu. Wzór: f=1/t Częstotliwość wyraża się w hercach "Hz". Częstotliwość jednego herca to jeden cykl w ciągu jednej sekundy. 4. Moc - moc pobierana przez urządzenie jest to iloczyn natężenia przepływającego prądu elektrycznego "I" oraz napięcia elektrycznego "U" P=U*I nic wyraża się w watach "W". Nic jest równa jednemu watowi, jeżeli praca 1 dżula "1J" zostaje wykonana w czasie jednej sekundy 5. Rezystancja razystancja to inaczej opór elektryczny "R". Jest zależnością między napięciem elektrycznym i natężeniem prądu elektrycznego R=U/I 1Ω[0hm]

(Patrz PNG wykresy prądu)

Prąd stały charakteryzuje się stałym natężeniem i kierunkiem. W przypadku urządzeń prądu stałego podaje się 2 parametry: napięcie i natężenie np.19V/3.42A.

19*3.42= ok.65W

Prąd przemienny to taki, którego natężenie zmienia się w czasie. W przypadku prądu przemiennego podaje się 3 parametry: napięcie, natężenie i częstotliwość.

Np. 100-240V,1.2A,5-/60Hz

Lekcia

Temat: Elementy elektroniczne stosowane w urządzeniach techniki komputerowej.

Elementy elektroniczne są wykonane z różnych materiałów i według różnych technologii, stąd mają różne właściwości i zastosowania. W układach elektronicznych występują:

1. Elementy bierne:

-rezystory
-kondensatory
-cewki
-transformatory

2.Elementy czynne: -diody

-tranzystory-układy scalone

Powtórzenie do sprawdzianu: 15,53125=1111,10001

1/32+1/2=17/32

1,75 1 1,5 1 1,0 1

10,225=1010,00(1100)

0,45 0 0,9 0 1,8 1 1,6 1 1,2 1 0,4 0 0,8 0 1,6 1

Rezystor – potocznie zwany opornik jest elementem biernym (pasywnym) obwodu elektrycznego. Wyróżnia się rezystory liniowe (prąd płynący przez taki rezystor jest wprost proporcjonalny do występującego na nim spadku napięcia) i nieliniowe. Rezystory służą do ograniczania prądu płynącego w określonych gałęziach obwodu oraz do ustalania odpowiednich spadków napięcia. Prąd przepływający przez rezystor powoduje wydzielanie się ciepła. Rezystory mają różne wymiary i kształty, są wytwarzane z różnych materiałów.

Oznaczenie rezystora na schematach:

Kondensator – jest to element pojemnościowy obwodu elektrycznego. Jest zbudowany z dwóch przewodników (okładzin), rozdzielone warstwą dielektryka. Doprowadzenie napięcia do okładzin kondensatora powoduje gromadzenie się na nich ładunku elektrycznego.

Symbol kondensatora:

Parametrem kondensatora jest pojemność oznaczana literą: C

Wyrażana jest w Faradach: F

Cewka – jest to element indukcyjny obwodu elektrycznego. Składa się z pewnej liczby zwojów drutu przewodzącego. Zwoje są nawinięte na powierzchni walca (cewka cylindryczna) lub na powierzchni pierścienia (cewka toroidalna). Ze względu na sposób nawinięcia zwojów można także podzielić na jednowarstwowe i wielowarstwowe. Wewnątrz zwojów może się znajdować dodatkowo rdzeń z materiału ferromagnetycznego. Symbol Cewki:

Parametrem Cewki jest: indukcyjność, oznaczana literą: L, którą wyraża się w Henrach (H)

Transformator składa się z dwóch sprzężonych magnetycznie cewek nawiniętych na wspólny rdzeń. Jedna tworzy uzwojenie pierwotne, druga – uzwojenie wtórne. Transformatory są używane przede wszystkim do zamiany (zmniejszania lub zwiększania) napięcia w obwodach prądu zmiennego. Podstawowym parametrem transformatora jest przekładnia – liczba określająca stosunek napięcia na uzwojeniu wtórnym do napięcia na uzwojeniu pierwotnym.

Dioda to dwuzaciskowy element elektroniczny zbudowany ze złącza półprzewodnikowego p-n lub złącza metal-półprzewodnik. Zależność prądu płynącego przez diodę od przyłożonego do jej zacisków napięcia jest nieliniowa. Poza tym jest ona niesymetryczna, tzn. dioda w jedną stronę przewodzi

prąd, a w drugą właściwie go nie przewodzi. Diody stosuje się głownie do prostowania prądu przemiennego (dioda prostownicza), jednak mają one także wiele innych zastosowań. Na przykład: diody świecące (LED), emitujące promieniowanie w zakresie światła widzialnego i podczerwieni, są używane w sprzęcie elektronicznym m.in. jako wskaźniki świetlne lub wyświetlacze numeryczne oraz nadajniki promieniowania podczerwonego. Fotodiody, reagujące na promieniowanie świetlne, wykorzystuje się m.in. w detektorach światła widzialnego i podczerwonego, miernikach odległości, komunikacji światłowodowej. Na schemacie diodę oznacza się literą D.

Dioda prostownicza:

Tranzystor – tranzystor to trójzaciskowy półprzewodnikowy element elektroniczny służący do wzmacniania sygnałów elektrycznych.

a)Tranzystor bipolarny – ma trzy wyprowadzenia:

- B- baze
- E- emiter
- C- kolektor

Jest zbudowany z 3 warstw półprzewodnika o przeciwnym typie przewodnictwa (struktury NPN lub PNP). Od sposobu przewodnictwa tych złączy zależy stan pracy tranzystora.

Tranzystor może pracować w stanach:

- -Przewodzenia (jako wzmacniacz sygnału)
- -Stan zaporowy (jako łącznik)
- -Stan nasycenia (jako łącznik)
- -Stan odwrócenia (jako dławik sygnału)

b)Tranzystor polowy - ma trzy wyprowadzenia:

- G- Bramke
- D- Dren
- S- źródło

W półprzewodniku między dwiema elektrodami (źródłem i drenem) powstaje tzw. Kanał.

Przez kanał płynie prąd, którego wielkość jest regulowana napięciem przyłożonym do trzeciej elektrody – bramki. Zastosowane w komputerze procesory, chipsety oraz inne elementy są zbudowane z milionów tranzystorów.

Układ scalony – to zminiaturyzowany układ elektroniczny, zawierający od setek do milionów podstawowym elementów elektronicznych, głównie tranzystorów i diod.

Zastosowanie układów scalonych:

- Przełączanie sygnału
- Wzmacnianie sygnału
- Generowanie sygnału
- Prostowanie sygnału

Układy cyfrowe oparte na układach scalonych stanowią podstawę techniki komputerowej.

Rezonator Kwarcowy – to element elektroniczny wykonany z kryształu kwarcu. Rezonator służy do stabilizacji drgań generatorów elektronicznych. Na schematach rezonator oznacza się literą "X". Parametrem jest częstotliwość pracy; waha się od kilkudziesięciu kHz do kilkuset MHz.

Lekcja

Temat: Układy cyfrowe.

Układy cyfrowe są rodzajem układów elektronicznych, w których sygnały napięciowe przyjmują tylko określoną liczbę stanów z przypisanymi im wartościami liczbowymi. Informacja wewnątrz urządzeń cyfrowych jest zakodowana za pomocą uporządkowanego ciągu cyfr. Zwykle liczba stanów wszelkich sygnałów wynosi 2 i przyjmują one wartości umowne. Operacje realizowane przez układy cyfrowe można opisać zgodnie z algebrą BOOLE'a, czyli językiem logiki matematycznych. Dlatego układy cyfrowe nazywa się także układami logicznymi.

Sygnały elektryczne istnieją w systemach cyfrowych w jednej z dwóch wartości:

- -Poziom niski (L)
- -Poziom wysoki (H)

W praktyce określa się dwa pola tolerancji, wewnątrz których powinien się znajdować poziom sygnału pojedynczego reprezentującego logiczne 0 i 1. 1 logiczna zawiera się więc w obrębie napięcia 3 do 5V, a 0 logiczne w obrębie napięcia 0 – 1V.

Cechy układów cyfrowych

- -Mają wejście (wejścia) i wyjście (wyjścia) gdzie mogą przyjąć sygnał 0 lub 1.
- -Realizują określoną funkcję sygnał na wyjściu zależy od sygnału na wejściu oraz stanu wewnętrznego układu

Zalety i wady układów cyfrowych

ZALETY:

- -Bezstratne kodowanie i przesyłanie informacji
- -Uproszczone zapisywanie i przechowywanie informacji cyfrowej
- -Mała wrażliwość na zakłócenia elektryczne
- -Możliwość tworzenia układów programowalnych, których działanie określa program komputerowy

WADY:

- -Skomplikowanie zarówno na poziomie elektrycznym, jak i logicznym
- -Możliwe przekłamanie stanów logicznych

Ze względu na sposób przetwarzania informacji rozróżnia się dwa typy układów cyfrowych:

-Układy kombinacyjne - Sygnały wyjściowe zmieniają się z mierzalnym małym opóźnieniem w stosunku do zmian sygnałów wejściowych (każdy stan wejść określa jednoznacznie stan wyjść)

-Układy sekwencyjne – stan wyjść zależy od poprzednich stanów wejść zapamiętanych w układzie. Układy sekwencyjne nazywa się też układami kombinacyjnymi z pamięcią.

Lekcja

Temat: Bramki logiczne.

Bramka logiczna to element realizujący pewną funkcję logiczną. Argumenty funkcji i sama funkcja mogą przyjmować jedną z dwóch wartości: 0 lub 1.

Rodzaje bramek logicznych:

- -NOT negacja (nie)
- -AND iloczyn logiczny (koniunkcja) i/oraz
- -NAND (not-and) negacja iloczynu logicznego (nie i)
- -OR suma logiczna (alternatywa) LUB
- -NOR (not-or) negacja sumy logicznej (nie lub)
- -X-OR (exclusive or) różnica symetryczna (ALBO)
- -EX-NOR(exclusive not-or) negacja różnicy symetrycznej (nie albo)

Schemat bramki NOT:

Tablica prawdy:

A	Q
1	0
0	1

Schemat bramki AND:

Tablica prawdy:

ABY

000

010

100

111

Schemat bramki OR:

Tablica prawdy:

p	q	$p \lor q$
0	0	0
0	1	1
1	0	1
1	1	1

Schemat bramki NOR:

Tablica prawdy:

АВҮ

001

010

100

110

Schemat bramki NAND:

Tablica prawdy:

XYZ

001

011

101

110

Schemat bramki XOR: (wynikiem bramki XOR jest 1 jeśli sygnały na wejściu są różne)

Tabela prawdy:

ABY

000

011

101

110

Schemat bramki XNOR: (na wyjściu otrzymamy 1 wtedy gdy sygnaly wejściowe są takie same)

B—V
Tabela prawdy:
A B Y
001
010
100
111
Do kartkówki:
Cechy układów cyfrowych
Zalety i wady układów cyfrowych
Układ kombinacyjny, układ sekwencyjny
Bramki logiczne, wszystkie bramki (bez ex-or i ex-nor) oznaczenie na schemacie, tabela prawdy.
Lekcja
Temat: Algebra Boole'a.
Funkcja logiczna(tzw. Boole'owska) to matematyczny model opisu cyfrowego układu kombinacyjnego. Jest wyrażeniem złożonym ze zmiennych dwójkowych oraz określonych operacji logicznych.
Zmienne dwójkowe mogą przyjmować dwie różne wartości (0 lub 1) i są oznaczane literami A,B,C,x,y,z itd.
Istnieją 3 podstawowe operacje logiczne:
-NIE (NOT)
-I (AND)
- LUB (OR)
Operacje te zapisuje się za pomocą znaków znanych z arytmetyki:
-Negacia: $\overline{(lub A')} \bar{A}$

-iloczyn logiczny A x B (lub AB) zwykłe mnożenie.

-suma logiczna A + B

Prawa algebry Boole'a

1. Prawo przemienności

$$A + B = B + A$$

$$AB = BA$$

2. Prawo łączności

$$(A+B) + C = A + (B+C)$$

$$(AB)C = A(BC)$$

3. Prawo rozdzielności:

$$A(B+C) = AB+AC$$

$$A+(BC)=(A+B)(A+C)$$

4. Twierdzenie 4:

$$A+A=A$$

$$AA = A$$

5. Twierdzenie 5:

$$AB + A\overline{B} = A$$

$$(A+B)(A+\overline{B}) = A$$

6. Twierdzenie 6:

$$A + AB = A$$

$$A(A+B)=A$$

7. Twierdzenie 7:

$$0 + A = A$$

$$0A = 0$$

8. Twierdzenie 8:

9. Twierdzenie 9:

$$\bar{A}$$
 + A = 1

$$\bar{A}A = 0$$