AD-763 365

SURFACE EFFECT TAKE-OFF AND LANDING SYSTEM (SETOLS) SUBSONIC STATIC STABILITY OUT OF GROUND EFFECT

H. Dulany Davidson, Jr., et al

Naval Ship Research and Development Center

Prepared for:

Advanced Research Project Agency

October 1972

DISTRIBUTED BY:

SURFACE EFFECT TAKE-OFF AND LANDING SYSTEM (SETOLS)
SUBSONIC STATIC STABILITY OUT OF GROUND EFFECT

by

H. Dulany Davidson, Jr. and Lawrence A. Frank

Sponsored by
ADVANCED RESEARCH PROJECTS AGENCY
ARPA Order No. 2121

APPROVED FOR PUBLIC RELEASE: DISTRIBUTION UNLIMITED

AVIATION AND SURFACE EFFECTS DEPARTMENT

Evaluation Report AI-97

October 1972

Reproduced by
NATIONAL TECHNICAL
INFORMATION SERV!CE
US Department of Commerce
Springfield VA 22151

NAVAL SHIP RESEARCH AND DEVELOPMENT CENTER

> BETHESDA MARYTAND 20034

ONCLASSIFIED Security Classification					
DOCUMENT CON					
(Security classification of title, body of abstract and indexing 1. ORIGINATING ACTIVITY (Corporate author) Aviation Surface Effects Department		22. REPORT SECURITY CLASSIFICATION Unclassified			
Naval Ship Research and Development Cente Bethesda, Maryland 20034	er	26. GROUP			
SURFACE EFFECT TAKE-OFF AND LANDING SYSTE OUT OF GROUND EFFECT	em (setols) s	UBSONIC ST	ATIC STABILITY		
4. OESCRIPTIVE NOTES (Type of report end inclusive dates) Evaluation Report					
5. AUTHOR(S) (First name, middle initial, iset name) H. Dulany Davidson, Jr. and Lawrence A. F	'rank	· · · · · · · · · · · · · · · · · · ·			
6. REPORT DATE	78. TOTAL NO. O	T DACES	7b. NO. OF REFS		
	30 3	3	3		
86. CONTRACT OR GRANT NO. ARPA Order No. 2121	98. ORIGINATOR	REPORT NUMI	BER(5)		
b. PROJECT NO. NSRDC 1620-009	Evaluation	Evaluation Report AL-97			
c,	9b. OTHER REPORT NO(S) (Any other numbers that may be assign this report)		ther numbers that may be assigned		
d.					
APPROVED FOR PUBLIC RELEASE: DISTR 11. SUPPLEMENTARY NOTES Available in DDC	12. SPONSORING	MILITARY ACTIV	arch Project Agency		
	Arlington,	Arlington, Virginia 22209			
The effect of a deployed air cushi high performance aircraft was studied at Center's 8 x 10 foot subsonic wind tunnel Bell Aerospace Corporation and Boeing wer and air cushions designed by Goodyear (tw. Engineering Incorporated (SANDAIRE), and F-8C. The effects of the air cushion land to very detrimental destabilization on bo configuration.	the Naval Shi . Air cushic e fitted to a o configurati Bell were fit ding gear rar	p Research on designs ten perce ons), San ted to a f aged from n	n and Development submitted by ent scale A-4E Diego Aircraft ten percent scale minor destabilization.		

DD FORM 1473 (PAGE 1)
S/N 0101-807-6801

UNCLASSIFIED

Security Classification

UNCLASSIFIED

Security Classification	LIN	K A	LIN	K 8	LIN	k C
KEY WORDS	ROLE	WT	ROLE	V/ T	ROLF	WΤ
A-14						
Air cushion						
F-8						
Landing gear						
Low speed						
Static stability						
Surface effect						
]				
					/	
					/	
					/	
					1/	
					/	
				,	/	
				/		
				i i		
·						

DD FORM 1473 (BACK)
(PAGE 2)

UNCLASSIFIED

ia

Security Classification

SURFACE EFFECT TAKE-OFF AND LANDING SYSTEM (SETOLS) SUBSONIC STATIC STABILITY OUT OF GROUND EFFECT

bу

H. Dulany Davidson, Jr. and Lawrence A. Frank

This research was supported by the Advanced Research Projects Agency of the Department of Defense and was monitored by the Naval Air Systems Command.

APPROVED FOR FUBLIC RELEASE: DISTRIBUTION UNLIMITED

The views and conclusions contained in this document are those of the author and should not be interpreted as necessarily representing the official policies, either expressed or implied of the Advanced Research Projects Agency or the U. S. Government.

October 1972

Evaluation Report AL-97

11

TABLE OF CONTENTS

INTRODUCTION	ABSTRACT	Pag 1
MODELS		
WIND TUNNEL CONDITIONS	MODEL C	_
MIND TUNNEL CONDITIONS		
DATA ANALYSIS		2
REFERENCES		2
Figure 1 - Three View Drawing of the Basic Configuration of the 10% Scale F-8C Model	DATA ANALYSIS	3
Figure 1 - Three View Drawing of the Basic Configuration of the 10% Scale F-8C Model	REFERENCES	4
of the 10% Scale F-8C Model	LIST OF FIGURES	
of the 10% Scale A-4E Model		5
Figure 3 - Air Cushion Landing Gear Designs for F-8		6
Figure 4 - Air Cushion Landing Gears for A-4		
Figure 5 - Bottom View of Air Cushion Models		·
Figure 6 - SANDAIRE Air Cushion Configuration Mounted on the F-8	-	
the F-8		
the F-8		12
Figure 8 - Goodyear Air Cushion Configuration #1 Mounted on the F-8		12
on the F-8		L
on the F-8	O	14
Figure 10 - Bell Air Cushion Configuration Mounted on the A-4		15
the A-4	Figure 10 - Bell Air Cushion Configuration Mounted on	-/
on the A-4		16
Figure 12 - Effect of SANDAIRE Air Cushion Landing Gear on the F-8 Aerodynamic Characteristics		17
Figure 13 - Effect of Bell Air Cushion Landing Gear on the F-8 Aerodynamic Characteristics		
the F-8 Aerolynamic Characteristics		18
Gear on the F-8 Aerodynamic Characteristics		20
Gear on the F-8 Aerodynamic Characteristics 24 Figure 16 - Effect of Bell Air Cushion Landing Gear on	Figure 14 - Effect of Goodyear Model #1 Air Cushion Landing Gear on the F-8 Aerodynamic Characteristics	22
Figure 16 - Effect of Bell Air Cushion Landing Gear on	Figure 15 - Effect of Goodyear Model #2 Air Cushion Landing	24
	Figure 16 - Effect of Bell Air Cushion Landing Gear on	26

NOTATION

b	wing span (F-8 - 42.41 in.) (A-4 - 33.0 in.)
ē	mean aerodynamic chord (F-8 - 14.14 in.) (A-4 - 12.96 in.)
C^{D}	drag coefficient; $\frac{drag}{qS}$
$C_{\underline{L}}$	lift coefficient; $\frac{\text{lift}}{\text{qS}}$
C _m	pitching moment coefficient; pitching moment qSc
q	tunnel dynamic pressure; lbs/ft2

wing reference area (F-8 - 3.75 ft^2) (A-4 - 2.60 ft^2)

angle of attack in degrees

S

ABSTRACT

The effect of a deployed air cushion landing gear on the stability of a high performance aircraft was studied at the Naval Ship Research and Development Center's 8 x 10 foot subsonic wind tunnel. Air cushion designs submitted by Bell Aerospace Corporation and Boeing were fitted to a ten percent scale A-4E and air cushions designed by Goodyear (two configurations), San Diego Aircraft Engineering Incorporated (SANDAIRE), and Bell were fitted to a ten percent scale F-8C. The effects of the air cushion landing gear ranged from minor destabilization, to very detrimental destabilization on both aircraft in the landing approach configuration.

INTRODUCTION

A program is under way at the Naval Ship Research and Development Center (NSRDC) to study the feasibility of an air cushion landing gear on a high performance aircraft. Aircraft carrier interface, static stability, and cushion dynamics are under investigation in a surface effects take-off and landing system (SETOLS) program. This report covers the effects of an air cushion landing gear on the out of ground effect drag and static stability characteristics of the A-4 and F-8 aircraft.

MODELS

The ten percent models of the A-4 and F-8 were originally capable of simulating only the high speed configurations and had to be modified to simulate the landing configuration (Figures 1 and 2). The F-8 airplane model had interchangeable brackets to deflect the wing leading edge and flaps. Additional brackets were constructed to permit the deflections required for the landing configuration. The wing fuselage attachment was altered to enable the positioning of the wing at a 7° angle of incidence for the landing configuration. Because of internal ducting and fibre glass coating, conventional landing gear simulation was not feasible.

The A-4 model did not have moveable leading edges or flaps. Since the airplane employs a split flap, a wooden wedge bonded to the wing lower surface adequately simulated the flap deflection. The A-4 also did not have a landing gear.

The initial air cushion designs submitted by the contractors (Figures 3 and 4) were made into wood models. All models excepting the Goodyear model #2 had concave bottoms (Figure 5). Photographs of the finished models on the aircraft are shown in Figures 6 through 11.

CORRECTIONS

Wind tunnel data from other facilities were used to correct the data to a landing configuration, such that the data could be compared on a valid incremental basis (Ref. 1 - 3). The following increments were added to the data:

- 1. Landing gear effects added to the A-4 conventional landing configuration.
- 2. Trailing edge flap effects added to the A-4 Boeing air cushion configuration. (This was done because the wooden wedge used for a flap could not be added when the Boeing gear was attached.)
- 3. Landing gear effect added to the F-8 conventional landing configuration. No corrections were made for leading edge slats on the A-4 since none of the configurations simulating the A-4 model had slats down.

WIND TUNNEL CONDITIONS

A tunnel dynamic pressure of 65 lb/ft² was used. The models were run through an angle of attack range cf -4 to 18 degrees with side slip angles of 0 and 5 degrees. Horizontal tail deflections of 0 and -5 degrees were set on the F-8 and deflections of -4 and -8 degrees were set on the A-4.

The six component TSB-7 balance used for readout is accurate to 0.5% of the balances maximum rated loads. Based on maximum loads of 1000 lbs normal force, 100 lbs axial force, and 500 lbs side force the following accuracy was calculated for the lift drag and pitching moment coefficients.

F-8	A-14
$C_{L} \pm .0206$	+ .0296
$C_{D} \pm .0020$	+ .0030
C + .0053	<u>+</u> .0098

DATA ANALYSIS

The air cushion design submitted by SANDAIRE had the largest effect on the longitudinal stability of the F-8. The minimum drag was increased by approximately 50% and the angle of zero lift was increased one degree (Figure 12). The airplane was unstable in pitch about the $\frac{1}{4}$ chord point of the mean aerodynamic chord but there was sufficient elevator travel for trim.

The Bell design also had a significant effect on the aerodynamic characteristics of the F-8 (Figure 13). The minimum drag was increased approximately 25% and the angle of attack at zero lift was increased $\frac{1}{2}$ a degree. This configuration was more destabilizing than the SANDAIRE design.

The Goodyear Model #1 for the F-8 increased the minimum drag by about 25%. The lift curve was unaffected but there was a slight decrease in longitudinal stability (Figure 14).

The Goodyear Model #2 design had a small effect on the F-8 aero-dynamic characteristics. The minimum drag was decreased slightly and the lift curve was unaffected. There was an insignificant decrease in longitudinal stability (Figure 15).

The air cushion designed by Bell for the A-4 had significant effects on the airplane aerodynamics (Figure 16). The minimum drag was 10% lower than the conventional landing configuration. The angle of zero lift was increased $5\frac{1}{2}$ degrees and the maximum lift obtainable was around 5 to 8% less than the conventional landing configuration. Because of the forward location of the bag, it had a strong destabilizing effect on the airplane. The bag blocked the airflow to the flaps, rendering them ineffective. The Bell configuration is neutrally stable at lift coefficients below 0.3, and becomes very unstable above lift coefficients of 0.6. Horizontal tail settings in excess of -12° are required to trim the airplane

The wind tunnel results using the Boeing design for the A-4 (not presented) indicated that severe trim changes would be encountered. Results from another investigation using the same model indicated that the method of correcting the data (using incremental flap data from Reference 3) was not valid. Results for this configuration will be presented in a later report.

REFERENCES

- Cronk, A. E. Low Speed Test of a .15 Scale F-8U-2N Model for Chance Vought Corporation, Texas Engineering Experiment Station, College Station, Texas. December 1962. Project Number LTV - 001 - 014.
- 2. Ogawa, H. Results of High Speed Tests of an A4D-1 O.10 Scale Model at the NACA LAL 8 Foot Transonic Wind Tunnel. Douglas Aircraft Co., Inc., El Segundo, Calif. August 1955. Report No. ES 26043
- 3. Wolhart, W. D. and H. S. Fletcher. Wind-Tunnel Investigation at Low Speed of the Static Lateral and Longitudinal Stability Characteristics of a 1/10 Scale Model of the Douglas A4D-I Airplane.

 NACA RM SL54H13

Figure 1 - Three View Drawing of the Basic Configuration of the 10% Scale F-8C Model

Figure 2 - Three View Drawing of the Basic Configuration of the 10% Scale A-4E Model

All Dimensions in Inches

SANDAIRE Configuration

Figure 3 - Air Cushion Landing Gear Designs for F-8

All Dimensions in Inches

Bell Configuration

Figure 3 (Continued)

Secretary of

(

Figure 3 (Concluded)

Figure 4 - Air Cushion Landing Gears for A-4

Boeing Configuration

1

Figure 5 - Bottom View of Air Cushion Models

Figure 6 - SANDAIRE Air Cusion Configuration Mounted on the F-8

Figure 7 - Bell Air Cushion Configuration Mounted on the F-8

Figure 8 - Goodyear Air Cushion Configuration #1 Mounted on the F-8

Figure 9 - Goodyear Air Cushion Configuration #2 Mounted on the F-8

Figure 10 - Bell Air Cushion Configuration Mounted on the A-4

Figure 11 - Boeing Air Cushion Configuration Mounted on the A-4

Figure 12 - Effect of SANDAIRE Air Cushion Landing Gear on the F-8 Aerodynamic Characteristics

11-

Figure 12 - (Concluded)

P. Chichester

I rectificant

Figure 13 - Effect of Bell Air Cushion Landing Gear on the F-8 Aerodynamic Characteristics

Figure 13 - (Concluded)

Figure 14 - Effect of Goodyear Model #1 Air Cushion Landing Gear on the F-8 Aerodynamic Characteristics

Figure 14 - (Concluded)

The Samuel

Profesional Contraction of Contracti

S - 111 Service of

Asimilasi de

1 Sperment

Figure 15 - Effect of Goodyear Model #2 Air Cushion Landing Gear on the F-8 Aerodynamic Characteristics

Figure 15 - (Concluded)

Sales Contraction

Programme of

A Service Services

Figure 16 - Effect of Bell Air Cushion Landing Gear on the A-4 Aerodynamic Characteristics

