

QUESTÃO 1 (ALTERNATIVA A)

Como Leonardo da Vinci nasceu 391 anos antes de Pedro Américo, ele nasceu no ano 1843-391=1452. Por outro lado, Portinari nasceu 451 anos depois de Leonardo da Vinci, ou seja, ele nasceu no ano 1452+451=1903.

Outra solução: Leonardo da Vinci nasceu 391 antes de Pedro Américo e 451 antes de Portinari, logo Portinari nasceu 451–391 = 60 anos depois de Pedro Américo. Portanto, Portinari nasceu no ano 1843 + 60 = 1903.

QUESTÃO 2 (ALTERNATIVA D)

Todas as figuras são formadas por 16 partes iguais e $\frac{5}{8} = \frac{10}{16}$. Logo, a única figura que serve é a que tem 10 partes de cor cinza.

QUESTÃO 3 (ALTERNATIVA B)

À figura mostra que quando dividimos 25 pelo divisor, o quociente é 3 e o resto é 1. Logo o divisor é 8, que é um dos algarismos manchados. Como $25 \div 8 = 3,125$ segue que o outro algarismo manchado foi o 5, que é o menor dos algarismos manchados.

QUESTÃO 4 (ALTERNATIVA D)

Vamos listar todas as possibilidades:

- $(20 \div 2 + 3) \times 6 = (10 + 3) \times 6 = 13 \times 6 = 78$
- $(20 \div 2) + 3 \times 6 = 10 + 18 = 28$
- $20 \div (2+3) \times 6 = 20 \div 5 \times 6 = 4 \times 6 = 24$
- $20 \div 2 + (3 \times 6) = 10 + 18 = 28$

entrevistados. Logo essa alternativa é falsa.

• $20 \div (2+3\times 6) = 20 \div (2+18) = 20 \div 20 = 1$

Devemos também considerar a possibilidade de colocar parênteses em volta de um único número, como por exemplo $20 \div 2 + (3) \times 6$. Qualquer que seja o número escolhido, o resultado será sempre o mesmo, a saber, $20 \div 2 + 3 \times 6 = 10 + 18 = 28$.

Finalmente, notamos que em $20 \div 5 \times 6$ há o problema de decidir qual das duas operações deve ser feita em primeiro lugar. Em casos assim, a convenção habitual é efetuar as operações (\div e \times) na ordem em que aparecem da esquerda para a direita, que foi o que fizemos acima.

QUESTÃO 5 (ALTERNATIVA E)

O número total de bonequinhos é 5+3+8+4=20. Vamos agora analisar as alternativas uma a uma.

- (A) O número de pessoas que vai ao trabalho a pé corresponde a 8 bonequinhos, menos da metade de 20. Logo essa alternativa é falsa.
- (B) O número de pessoas que vai ao trabalho de bicicleta corresponde a apenas 4 bonequinhos, que é inferior aos que optam pelo ônibus ou ir a pé. Logo essa alternativa é falsa.
- (C) O número de pessoas que vai ao trabalho de ônibus corresponde a 5 bonequinhos. Como $\frac{5}{20} = 0.25$, isto corresponde a apenas 25% dos

- (D) O número de pessoas que vai ao trabalho de carro ou de ônibus corresponde a 3+5=8 bonequinhos, que é menos do que a metade do total. Logo, essa alternativa é falsa.
- (E) O número de pessoas que vai ao trabalho de carro corresponde a 3 bonequinhos. Como $\frac{3}{20}$ = 0,15, isto corresponde a 15% dos entrevistados. Logo essa alternativa é a verdadeira.

QUESTÃO 6 (ALTERNATIVA E)

Ao montar o cubo, o quadrado superior e o quadrado inferior ficam em faces opostas, o que nos deixa apenas as alternativas (A) e (E) para considerar. Observando que dos quatro quadrados em linha o primeiro e o terceiro a

contar da esquerda (ou da direita) também ficarão em faces opostas, ficamos somente com a alternativa (E).

Outra solução: Dentre as 4 faces alinhadas, as que são faces opostas no cubo são as que aparecem intercaladas, ou seja a 1^a e 3^a, e a 2^a e 4^a. Apenas na opção (E) a soma dos pontos nesses pares de faces é 7 (note que se a soma dos pontos em dois pares de faces opostas é 7 então a soma dos pontos no

QUESTÃO 7 (ALTERNATIVA D)

par restante também é 7).

A figura ilustra o seguinte fato: o número de retângulos que podem ser construídos com 12 quadradinhos corresponde ao número de maneiras de escrever 12 como produto de dois números naturais, que são três: 1×12 , 2×6 e 3×4 . Como podemos escrever 60 como produto de dois números de exatamente seis formas distintas, a saber, 1×60 , 2×30 , 3×20 , 4×15 , 5×12 e 6×10 , segue que podemos construir 6 retângulos diferentes com 60 quadradinhos cada um.

QUESTÃO 8 (ALTERNATIVA A)

Como a área de um quadrado de lado a é a^2 e o quadrado tem área 36 cm², segue que seu lado mede 6 cm, Temos que

$$\frac{3}{8} \text{ área} \rightarrow 36 \text{ cm}^2$$

$$\frac{1}{8} \text{ área} \rightarrow 36 \div 3 = 12 \text{ cm}^2$$

$$\frac{8}{8} \text{ área} \rightarrow 12 \times 8 = 96 \text{ cm}^2$$

Logo, o retângulo tem $96\,\mathrm{cm^2}$ de área e sua largura AD mede $6\,\mathrm{cm}$, portanto $6\times CD = 96$ e segue que $CD = 96 \div 6 = 16\,\mathrm{cm}$. Logo o perímetro do retângulo é $2\times (6+16) = 44\,\mathrm{cm}$.

Outra solução: Como a área de um quadrado de lado $a \in a^2$ e o quadrado tem área 36 cm², segue que seu lado mede 6 cm, que deve ser igual a $\frac{3}{8}$ do lado AB. Logo AB mede $\frac{8}{3} \times 6 = 16$ cm. Segue que as dimensões do retângulo são 16 cm e 6 cm, e seu perímetro é $2 \times (6+16) = 44$ cm.

QUESTÃO 9 (ALTERNATIVA C)

O enunciado diz que

9 copos pequenos + 4 copos grandes = 6 copos pequenos + 6 copos grandes

Isso significa que

3 copos pequenos = 2 copos grandes ,

que equivale a

6 copos pequenos = 4 copos grandes.

Segue que

1 jarra cheia = 6 copos pequenos + 6 copos grandes = = 4 copos grandes + 6 copos grandes = = 10 copos grandes

QUESTÃO 10 (ALTERNATIVA C)

A tabela abaixo representa todas as possibilidades para que o número de cabeças seja 5 (lembramos que banquinhos não têm cabeça e há pelo menos uma pessoa e uma vaca).

Cabeças		Pés	Pés de banquinhos
Vacas	Pessoas	(vacas e pessoas)	(22 – pés vacas e pessoas)
1	4	12	10
2	3	14	8
3	2	16	6
4	1	18	4

A última coluna representa as possibilidades para o número de pés de banquinhos que há no curral. Como cada banquinho tem 3 pés, o número total de pés de banquinhos deve ser um múltiplo de 3. O único múltiplo de 3 que aparece na última coluna é 6, correspondente a 2 banquinhos. Logo no curral havia 3 vacas, 2 pessoas e 2 banquinhos.

QUESTÃO 11 (ALTERNATIVA D)

Na figura dada a parte cinza obtida depois da primeira dobradura pode ser dividida em duas partes: um quadrado de lado 12 cm e um triângulo de área igual a metade da área do quadrado. A área do quadrado é $12 \times 12 = 144 \text{ cm}^2$, logo a área do triângulo é $\frac{1}{2} \times 144 = 72 \text{ cm}^2$. Assim, a área dessa parte cinza é $144 + 72 = 216 \text{ cm}^2$. Depois da segunda dobradura, obtemos duas partes cinzas iguais, cuja área total é $2 \times 216 = 432 \text{ cm}^2$.

Outra solução: note que a área do polígono formado pelo papel dobrado é igual à área original da tira menos as áreas das partes que se sobrepõem. Após a primeira dobra, a parte sobreposta é representada pelo triângulo mais escuro, e depois da segunda dobra forma-se outra parte sobreposta igual à primeira. Juntas essas partes têm área igual à de um quadrado de lado 12 cm. Conseqüentemente, a área do polígono é igual a $12 \times 48 - 12 \times 12 = 576 - 144 = 432 \text{ cm}^2$.

Outra solução: observamos que a área do polígono formado pela cartolina dobrada é igual à área em cinza na figura ao lado (dois quadrados e dois triângulos) que representa 6/8 da área da tira retangular. Logo, a área pedida é:

$$\frac{6}{8}\,\text{de}\,12\times48 = \frac{6}{8}\times12\times48 = 6\times12\times6 = 432\,\text{cm}^2\,.$$

QUESTÃO 12 (ALTERNATIVA D)

Mostramos a seguir como formar retângulos com duas cópias de cada uma das peças das alternativas (A), (B), (C) e (E).

O único caso em que isso não é possível é o da alternativa (D), conforme indicado a seguir:

QUESTÃO 13 (ALTERNATIVA B)

Hoje Dona Dulce comprou o dobro do que comprou ontem, logo ela deveria pagar $2 \times 12 = 24$ reais. Como ela pagou apenas 20 reais, a promoção fez com que ela economizasse 24-10=4 reais na compra de 8 caixas de leite. Logo o desconto em cada caixa de leite foi de $4 \div 8 = 0,50$ reais, ou seja, de R\$ 0,50.

QUESTÃO 14 (ALTERNATIVA E)

As letras V e Z têm a mesma área porque são formadas com as mesmas peças de cartolina, logo podemos eliminar as opções (B) e (C). Para comparar os perímetros, notamos primeiro que em ambas as figuras o segmento AB é maior que o segmento CD. Ao juntar as peças para formar a letra Z, as peças branca e cinza se juntam ao longo de AB, e assim

perímetro do \mathbf{Z} = perímetro da peça branca + perímetro da peça cinza – $2\times$ (comprimento de AB).

Do mesmo modo, vemos que

perímetro do \mathbf{V} = perímetro da peça branca + perímetro da peça cinza – $2 \times (comprimento de CD)$, donde concluímos que o perímetro do \mathbf{V} .

QUESTÃO 15 (ALTERNATIVA E)

Num tabuleiro quadrado $n \times n$, cada diagonal corta n quadradinhos. Por causa da simetria dos tabuleiros quadrados, temos dois casos:

- (i) se n é par (por exemplo, no tabuleiro 4×4) as duas diagonais se cortam num vértice (o vértice central). Nesse caso as duas diagonais cortam exatamente n + n = 2n quadradinhos.
- (ii) se n é ímpar (por exemplo, no tabuleiro 5×5) as duas diagonais se cortam no centro de um quadradinho (o quadradinho central). Nesse caso o quadradinho central é cortado duas vezes, uma por cada diagonal. Logo, as duas diagonais cortam no total n + n 1 = 2n 1 quadradinhos.

Se o número de quadradinhos cortados pelas diagonais em um tabuleiro $n \times n$ é 77, temos duas possibilidades. A primeira é n par, mas aqui teríamos 77 = 2n, o que não pode acontecer pois 77 é ímpar. Resta então a possibilidade n ímpar, quando temos 77 = 2n - 1. Logo n = 39 e o nosso tabuleiro é 39×39 .

QUESTÃO 16 (ALTERNATIVA E)

Uma maneira de preencher a tabela de acordo com as condições do enunciado é dada abaixo. Em cada etapa, indicamos com cor cinza as novas casas preenchidas; o leitor pode justificar cada um dos passos ilustrados. Notamos que a tabela final é única, independente do modo com que ela é preenchida.

1		4
3		
7		
4		3

1	8	4
3	5	
7		
4		3

1	8	6	4
3	5	2	
7			
4			3

1	8	6	4
3	5	2	7
7		5	1
4			3

1	8	6	4
3	5	2	7
7	2	5	1
4	6	8	3

Voltando à questão, vemos que a soma dos números nos quadradinhos cinzas marcados no desenho do enunciado é 6+8+5+1=20.

QUESTÃO 17 (ALTERNATIVA C)

Cada uma das meninas comeu 6 bombons. Como Cecília pagou R\$1,80 pelos seus, cada bombom custou (R\$1,80) \div 6 = R\$0,30. Beatriz comprou dez bombons e comeu seis, logo ela deu quatro para Cecília e por isso deve receber $4 \times R$0,30 = R$1,20$.

QUESTÃO 18 (ALTERNATIVA C)

Para cada uma das camisas pretas e azul é possível escolher três camisas de cor diferente, num total de $3\times3=9$ possibilidades; notamos que estar com uma camisa preta de mangas curtas é diferente de estar com uma de mangas compridas. Para as camisas cinza e branca podemos escolher qualquer calça, num total de $2\times4=8$ possibilidades. Ao final, temos 9+8=17 possibilidades.

Uma outra maneira de resolver a questão é a seguinte: são 5 as possibilidades de escolha de camisas e quatro a de calças, logo, sem levar em conta as cores, há $5 \times 4 = 20$ modos de se vestir. Destes, devemos descontar os casos em que se repetem as cores de calça e camisa, que são apenas três: camisa preta de mangas compridas com calça preta, camisa preta de mangas curtas com calça preta e camisa azul com calça azul. Logo, são 20-3=17 maneiras diferentes de se vestir com uma camisa e uma calça de cores distintas.

QUESTÃO 19 (ALTERNATIVA A)

Cada uma das três pessoas, em princípio, pode beber água ou suco, logo há $2\times2\times2=8$ possibilidades para considerar, conforme a tabela.

	Ari	Bruna	Carlos
1	água	água	água
2	suco	água	água
3	água	suco	água
4	suco	suco	água
5	água	água	suco
6	suco	água	suco
7	água	suco	suco
8	suco	suco	suco

Devemos agora analisar as condições do problema para decidir qual das possibilidades é a correta. A primeira condição (se Ari pede a mesma bebida que Carlos, então Bruna pede água) elimina as possibilidades 3 e 8. A segunda condição (se Ari pede uma bebida diferente da de Bruna, então Carlos pede suco) elimina a possibilidade 2. A terceira condição (se Bruna pede uma bebida diferente da de Carlos, então Ari pede água) elimina as possibilidades 4 e 6. Até o momento, restam as possibilidades 1, 5 e 7.

	Ari	Bruna	Carlos
1	água	água	água
5	água	água	suco
7	água	suco	suco

e como apenas um deles pede sempre a mesma bebida, chegamos a Ari, que sempre pede água.

QUESTÃO 20 (ALTERNATIVA C)

Como $\frac{2}{5}$ do número de alunos baianos é um número inteiro e $\frac{2}{5}$ é uma fração irredutível, concluímos que o

número de baianos é múltiplo de 5. Do mesmo modo concluímos que o número de mineiros é múltiplo de 7. Os múltiplos de 5 menores do que 31 são 5, 10, 15, 20, 25 e 30 e os múltiplos de 7 menores que 31 são 7, 14, 21, 28 (não incluímos o 0 entre os múltiplos pois o enunciado diz que há tanto baianos como mineiros no ônibus). Como 31 é a soma do número de baianos com o número de mineiros, a única possibilidade é que o ônibus tenha

10 baianos e 21 mineiros. Como $\frac{2}{5}$ do número de alunos baianos é de homens, segue que $1-\frac{2}{5}=\frac{3}{5}$ é de mulheres. Logo o total de mulheres no ônibus é

$$\frac{3}{5} \times 10 + \frac{3}{7} \times 21 = 6 + 9 = 15$$

Observação: É importante notar que a irredutibilidade das frações $\frac{2}{5}$ e $\frac{3}{7}$ é essencial no argumento acima.

Sabemos, por exemplo, que $\frac{3}{7} = \frac{6}{14}$ e que $\frac{6}{14} \times 21 = 9$ mas 14 não é divisor de 21.