# Explorations in Latent Space

Michael Murphy

#### Goals

- Last Summer I learned PCA w/ Libby
- This summer my goals were:
  - Reimplement PCA as a linear AE
  - Improve performance by constructing nonlinear AE
  - Become familiar with Jax and related libraries
  - Explore the question: what factors influence the structure of a representation?





### Linear Autoencoder

- 1. Transform 728d image vector (28x28) into 10d subspace (encode) and then back into 728d (decode) via matrix multiplication
- 2. Evaluate accuracy by comparing reconstructed image to original (MSE Loss Objective Function)
- 3. Optimize parameters (initialized as random matrices) by performing gradient descent on loss function



$$MSE = \frac{1}{N} \sum_{i=1}^{N} (y_i - \hat{y}_i)^2$$

## What Affects Performance of Linear AE?

- Number of steps
- **Batching (Stochastic Gradient Descent)**
- Learning rate
- # of Latent Dimensions







#### Nonlinear AE

- Same idea as linear AE, but contains "hidden layers" that perform nonlinear transformations (relu, tanh)
- Can capture more complex patterns in the data
- Number and size of hidden layer(s) affects performance





### Linear AE vs. Nonlinear AE vs. PCA Loss

- PCA performance is equivalent to the best possible linear AE



Image Reconstruction



## Interpolation

- Can we decode a combination of the z vectors for 2 different digits to yield an image that is a mix of the 2 digits?
- Linear AE just crossfades between the 2 digits
- Nonlinear AE decodes interesting digit-like images





## Supervised AE

- Can the model learn to reconstruct the image AND classify its digit from a lower dimensional representation?
- New objective function to optimize (once again with SGD):
   Reconstruction Loss AND Classification Loss





Digit Classification (i.e. 3, 7)

## Linear vs. Nonlinear Supervised AE



```
def accuracy(data, labs, params, end):
    correct = 0.
    for i in range(end):
        z = data[i] @ params[0] + params[1]
        y_hat = z @ params[4] + params[5]

    pred = jnp.where(y_hat == max(y_hat))[0][0]
    real = jnp.where(labs[i] == max(labs[i]))[0][0]

    if (pred == real):
        correct += 1

    return (correct / end)
```

```
Linear AE Accuracy (train data): 0.81
Nonlinear AE Accuracy (train data): 0.961
Linear AE Accuracy (test data): 0.802
Nonlinear AE Accuracy (test data): 0.947
```

# Supervised AE vs Unsupervised AE

- Used T-SNE to visualize the 10D representations of each digit in 3d
- Supervision makes digits more distinguishable!
- Switch to 3d interactive plots



#### Jax

#### Main Takeaways:

- Functional Programming
- grad()
- vmap()
- Just In Time (JIT) Compilation

#### Timing jit vs. non-jit training functions

```
#@title Timing jit vs. non-jit training functions
# timing for non jit training function - 10 steps
t0 = time.time()
for i in range(10):
  theta = train step(x,theta,0.0001)
t1 = time.time()
print(f"non-jit time: {t1 - t0}")
# timing for jit train function - 10 steps
t0 = time.time()
for i in range(10):
  theta = train step jit(x,theta,0.0001)
t1 = time.time()
print(f"jit time: {t1 - t0}")
```

```
non-jit time: 20.077202320098877
jit time: 6.219285488128662
```

## Optax

- Optimization Library for Jax
- Adam improves over SGD by scaling the gradient in terms of the curvature (momentum)
  - Helps with tuning the learning rate



## Optax

- Adam is slower (usually) for a given number of steps, but significantly more accurate!



## Killifish Data

- Last year, Libby and I performed PCA on 1.2mil x 12 array of Killifish motion data
- How would my AEs perform?

|         | frame_count | frame_timestamp | x_snout    | y_snout    | x_midbody  | y_midbody  | x_sidebody | y_sidebody | x_endbody  | y_endbody  | x_tail     | y_tail     | x_fan      | y_fan      |
|---------|-------------|-----------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|
| 0       |             | 1.619461e+09    | 109.540108 | 142.976059 | 124.138733 | 135.067261 | NaN        | NaN        | 151.504974 | 123.650360 | 165.433395 | 113.957596 | 180.608887 | 105.863663 |
| 1       |             | 1.619461e+09    | 107.265854 | 142.104813 | 121.822556 | 136.475708 | NaN        | NaN        | 147.926788 | 123.891907 | 160.844559 | 115.370964 | 174.711700 | 106.121666 |
| 2       | 2           | 1.619461e+09    | 105.351967 | 142.368988 | 119.697525 | 136.510712 | NaN        | NaN        | 145.834869 | 123.651062 | 160.248383 | 116.183006 | 174.869812 | 107.406532 |
| 3       | 3           | 1.619461e+09    | 103.469025 | 142.543152 | 117.734238 | 136.160843 | NaN        | NaN        | 143.201263 | 124.122238 | 158.663406 | 117.667580 | 176.247086 | 109.998772 |
| 4       | 4           | 1.619461e+09    | 102.180344 | 142.780396 | 115.806297 | 136.204010 | NaN        | NaN        | 142.057327 | 123.676147 | 157.429688 | 117.932121 | 176.791046 | 110.939461 |
|         |             |                 |            |            |            |            |            |            |            |            |            |            |            |            |
| 1723651 | 1726808     | 1.619548e+09    | 84.945068  | 53.992599  | 96.640488  | 65.568367  | NaN        | NaN        | 108.316635 | 89.087357  | 109.255569 | 107.692741 | 109.788170 | 128.898438 |
| 1723652 | 1726809     | 1.619548e+09    | 83.437828  | 49.815742  | 97.773056  | 63.414818  | NaN        | NaN        | 112.321381 | 86.499474  | 113.034012 | 104.349236 | 106.420898 | 123.391586 |
| 1723653 | 1726810     | 1.619548e+09    | 82.824081  | 46.829994  | 97.266914  | 60.762054  | NaN        | NaN        | 114.773003 | 81.535423  | 120.126129 | 98.978592  | 110.384720 | 118.568207 |
| 1723654 | 1726811     | 1.619548e+09    | 81.770180  | 42.896610  | 94.724854  | 55.871910  | NaN        | NaN        | 115.567490 | 77.666855  | 122.965393 | 94.156998  | 117.896706 | 115.093361 |
| 1723655 | 1726812     | 1.619548e+09    | 81.606567  | 42.340202  | 93.756645  | 53.572468  | NaN        | NaN        | 114.121025 | 74.155083  | 124.118027 | 88.861328  | 125.768005 | 111.091743 |

### Killifish Data

- Animations of the killifish motion for the first 1000 frames
- 12d data mapped to 4d and then reconstructed
- Linear AE reconstruction captures only the general position
- Nonlinear AE can capture more complex movement (tail flapping)



## Future Plans

- Hawaii
- Berkeley Statistics
  - DATA 8
  - Multivariable Calc
  - Linear Algebra
- Variational AE for Image Generation









## Thank You So Much To...

- Scott
- Yixiu
- Linderman Lab
- Stack overflow