$\begin{array}{c} {\rm MAT~337} \\ {\rm Sample~Midterm~Exam} \end{array}$

NAME

NO AIDS ALLOWED

Total: 250 points, not including a bonus problem

Problem 1 [30 points]

- (a) Give an example of a function $f: \mathbb{R} \longrightarrow \mathbb{R}$ that is continuous at exactly one point of its domain.
- (b) Show that $f(x,y) = \min\{x,y\}$ is continuous on \mathbb{R}^2 . Explain.

Problem 2 [45 points]

- (a) Prove that any Lipschitz function is uniformly continuous.
- (b) Is $f(x) = x^2$ uniformly continuous on [0,1]? Is it uniformly continuous on $[0,\infty)$?
- (c) Show that $f(x) = \cos x$ is Lipschitz on **R**.

Problem 3 [30 points] Let $f:(X,\rho)\longrightarrow (Y,\sigma)$ be a continuous map between two metric spaces. Let $C\subset X$ be a connected subset of a metric space X. Show that f(C) is connected.

Problem 4 [40 points] Prove that any closed subset of a compact metric space (X, ρ) is compact.

Problem 5 [45 points] Let $f:[0,1] \longrightarrow [0,1]$ be a continuous map. Show that there exists a point $x \in [0,1]$ such that f(x) = x.

Problem 6 [30 points] Show that a connected metric space having more than one point is uncountable.

Problem 7 [30 points] Let $f:(X,\rho)\longrightarrow (Y,\sigma)$ be a continuous map from a compact metric space (X,ρ) to a metric space (Y,σ) . Prove that f is uniformly continuous.