

# ENCH 423 / ENPE 423 / ENER 400 Term Project

# CO<sub>2</sub> Recovery from Flue Gas Through Amine Scrubbing

Submitted by: Group 34

Amin Al-Sudani - 30000758

Shamila Bennett - 30064548

Jaeyun Chung - 10077863

Jamil Jama - 30039199

Ahmed Mahmoud – 30018707

Raahem Sheikh - 30029715

Date of Submission: April 5, 2019

#### Letter of Transmittal

To: Dr. Qingye Lu

Department of Chemical and Petroleum Engineering Schulich School of Engineering University of Calgary 2500 University Drive NW Calgary AB, T2N 1N4

Re: ENER 400/ ENPE 423 Term Project Winter of 2019

Date: April 5, 2019

This design project report is to be presented to Dr. Qingye Lu, Professor of ENER 400/ ENPE 423/ ENCH 423 – Engineering Design and Economics. This design project report was performed by Group 34. All data found, researched and calculated are referenced.

We researched and analyzed the process of Amine Scrubbing, Amine Scrubbing examines the absorption of CO<sub>2</sub> from the atmosphere. We researched the economic and the technical sides related to our study to determine if the project is feasible.

We chose our plant location to be by the Athabasca Oil Sands at Fort McKay, near Fort McMurray. The reason why we chose this location is because of two factors: the high flow rates of CO<sub>2</sub> coming out of refineries, meaning much more concentration of CO<sub>2</sub> in the atmosphere; and because of the lack of competitors present at this location. Because we are reducing the emission of greenhouse gases emitted by these refineries, we will also be contributing to solving problems occurring in our world today such as global warming and climate change.

Please refer to the Design Project report for more detailed information regarding Amine Scrubbing

Best regards,

Group 34

Names: Amin Al-Sudani, Shamila Bennett, Jaeyun Chung, Jamil Jama, Ahmed Mahmoud, Raahem Sheikh

*University of Calgary* 

# **Table of Contents**

| Nomenclature                                   | 5  |
|------------------------------------------------|----|
| Executive Summary                              | 6  |
| Background Information                         | 1  |
| Market Evaluation                              | 1  |
| Case Study                                     | 3  |
| Process Design and Description                 | 3  |
| Heat Integration                               | 5  |
| Plant Location                                 | 6  |
| Economic Analysis                              | 7  |
| Capital Cost Estimation                        | 8  |
| Operating Costs                                | 9  |
| Economic Potential:                            | 9  |
| Sensitivity Analysis                           |    |
| Risk Assessment                                | 11 |
| Process Hazard Analysis                        | 11 |
| Environmental Impact                           | 11 |
| Commercial Risk                                | 12 |
| Conclusions and Recommendations                | 12 |
| References                                     | 13 |
| Appendices                                     |    |
| Appendix A - Background Information            |    |
| Appendix B – Case Study                        | 16 |
| Appendix C – Process Design Tables and Figures | 17 |
| Appendix D - Equipment Specifications          | 22 |
| Appendix E – Plant Location Figures            | 27 |
| Appendix F – Cost Analysis                     | 29 |
| Appendix G – Risk Analysis                     | 31 |
| Appendix H – Economical Analysis Calculations  | 33 |
| Appendix I – Condensed Full Report             | 35 |
| Appendix I – Full Material and Energy Report   | 37 |

# Table of Figures

| Figure 1: Total Carbon Dioxide Emissions from Fossil Fuels in 2010                     | 15 |
|----------------------------------------------------------------------------------------|----|
| Figure 2: Process Chemistry Loop for Carbon Engineering DAC Pilot Plant                |    |
| Figure 3: General Process Flow Diagram as Described by the GPSA                        | 17 |
| Figure 4: PFD of Amine Scrubbing Process                                               | 19 |
| Figure 5: HYSYS Simulation Run and Stream Data for Flue Gas                            | 19 |
| Figure 6: HYSYS Simulation Run and Stream Data for Flue Gas                            | 20 |
| Figure 7: Variation of Pressure and Temperature with Tray Position for Desorber Column | 20 |
| Figure 8: Un-optimised E-100 Heat Exchanger                                            | 21 |
| Figure 9: Optimised E-100 Heat Exchanger                                               | 21 |
| Figure 10: Plant Location Near Fort Mackay                                             | 27 |
| Figure 11: Geological Formations of the Athabasca Oil Sands Region                     | 28 |
| Table 1: Project Operating Costs of the Quest CCS Facility                             |    |
| Table 2: Inlet and Outlet Mass Flowrates                                               |    |
| Table 3: Inlet and Outlets Energy Flow rates                                           |    |
| Table 4: Data Regarding the Flue and Atmospheric Models                                |    |
| Table 5: Comparison Between Atmospheric and Flue Gas Model                             |    |
| Table 6: Information about Items, Rates, Operating Pressure and Temperature            |    |
| Table 7: Absorber and Desorber Conditions and Sizing Specifications                    |    |
| Table 8: Desorber Reflux Condenser Sizing Specifications                               |    |
| Table 9: Desorber Reboiler Conditions and Sizing Specifications                        |    |
| Table 10: Desorber Reflux Pump Efficiency and Specifications                           |    |
| Table 11: Desorber Heat Exchanger Specifications and Design Conditions                 | 25 |
| Table 12: Process Heater/Cooler Specifications and Design Conditions                   | 26 |
| Table 13: CO2 Final Separator Design Specifications and Operating Conditions           | 27 |
| Table 14: Summary of Project Capital Cost                                              |    |
| Table 15: Summary of Operating Costs                                                   | 29 |
| Table 16: Net Cash flow Analysis for The First Five Years                              | 30 |
| Table 17: Profitability Indicators for the First Five Years                            | 30 |
| Table 18: Capital Cost Estimation                                                      | 30 |
| Table 19: Process Hazards                                                              | 31 |
| Table 20: Environmental Hazards                                                        | 31 |
| Table 21: Commercial Risks                                                             | 32 |
| Table 22: Qualitative Risk Matrix                                                      | 32 |

| Equation 2: Annual Deprecation Cost  | Equation 1: Sample Calculations Regarding Process Design | 18 |
|--------------------------------------|----------------------------------------------------------|----|
| Equation 3: Unit Depreciation        | Equation 2: Annual Deprecation Cost                      | 33 |
| Equation 4. Total Payanua            | Equation 3: Unit Depreciation                            | 33 |
| Equation 4: Total Revenue            | Equation 4: Total Revenue                                |    |
| Equation 5: Annual Income Before Tax | <u> </u>                                                 |    |
| Equation 6: Product Cost             | 1                                                        |    |
| Equation 7: Economic Potential       | 1                                                        |    |

#### Nomenclature

AER: Alberta Energy Regulator

AEP: Alberta Environment and Parks

BFD: Block Flow Diagram

CAPP: Canadian Association of Petroleum Producers

CCS: Carbon Capture and Storage

CO<sub>2</sub>: Carbon Dioxide

DAC: Direct Air Capture

EOR: Enhanced Oil Recovery

FIC: Fixed Capital Investment

GHG: Greenhouse Gas

GPSA – Gas Processors Suppliers Association

IRR: Internal Rate of Return

ISBL: Inside Battery Limits Investment

LSD: Legal Subdivision

Mbarrels: 1000 barrels

MEA: Monoethanolamine

MM: Million

NPV: Net Present Value

NRR: Net Return Rate

OSBL: Outside Battery Limits Investment

PFD: Process Flow Diagram

WC: Working Capital

### **Executive Summary**

The team decided to establish our plant near Fort McKay. The purpose of our plant is to recover carbon dioxide, a greenhouse gas, that is being polluted into our atmosphere by employing a process referred as Amine Scrubbing. This process uses an amine solvent to absorb the CO<sub>2</sub> from flue gas. Because Alberta has a high demand for natural gas, there are a lot of CO<sub>2</sub> emissions in the atmosphere, thus we can expect that there is a higher concentration of CO<sub>2</sub>. It is estimated that there are 135,100 tonnes of CO<sub>2</sub> being released as flue gas per day.

As estimated though ASPEN, our capital cost for this project was \$19MM USD, our contingency factor was 10%. This was to prepare for unexpected expenses that might arise, thus our total FCI was said to be \$21 MM USD. With the location factor and the working capital, the final FCI calculated was around \$38 MM USD. The utilities cost estimated by ASPEN was estimated to be at about \$51 MM USD, and the book value of the equipment was \$17 MM USD. Using the straight-line depreciation method, the salvage values for these utilities after 10 years are 3.6 MM USD.

The project is technically feasible and simulated on ASPENHysys but has proven to be not economically feasible. The cost analysis demonstrated that the capital cost and operating cost way too high for the relatively little sales - due to the low value for CO<sub>2</sub>. The cost analysis was performed with a sales price of \$50 per metric ton of CO<sub>2</sub>. The CO<sub>2</sub> is sold for enhanced oil recovery operations, which utilizes CO<sub>2</sub>, to the oil production companies nearby. **Overall there is no profit being produced thus making the project economically non-feasible, unless receiving a government grant.** Regardless, selling the CO<sub>2</sub> allows us to offset the recovery costs.

In our risk analysis there were three types of risks/hazards: process hazards, environmental hazards, and commercial risks, each having their own probable risks. In process hazards, the two most probable risks were amine degradation and the change in flue gas composition due to corroded pipes. For environmental hazards, the most probable was waste water getting released into the atmosphere. For the commercial risk the most probable issue was that the project is not running according to schedule. However, this only has a moderate impact on the project and doesn't harm any of the workers or the environment.

# **Background Information**

Amine scrubbing has been used since the 1930s to separate carbon dioxide from natural gas and hydrogen. The absorption of CO<sub>2</sub> into aqueous amine solution is regarded to be one of the most promising technologies for post combustion CO<sub>2</sub> capture due to its maturity, cost effectiveness, and capacity to handle large amounts of exhaust streams. [1]

It has been noted that CO<sub>2</sub> concentrations have been rising since the industrial revolution. This is primarily due to anthropogenic CO<sub>2</sub> emissions, commonly from combustion of fossil fuels for energy, the of increase has grown throughout the years as we begin to depend more and more on the burning of fossil fuels for energy – this can be seen from Figure (1) of Appendix (A), where more populated areas of the world demand more energy and therefore use more fossil fuels. [2] This will result in an increase in global temperatures which is commonly referred to as global warming. This in turn leads to issues such as melting of snow in the ice caps, rising sea levels, and more severe weather patterns. With that said, reducing the increase of CO<sub>2</sub> concentrations is essential to reducing the risks of global warming. [3]

There are a few different types of technology options for CO<sub>2</sub> removal, such as absorption of CO<sub>2</sub> using chemical solvents, Adsorbed beds, Membrane filters. Even though these methods are effective, they also have certain drawbacks to them. For example, Absorption uses chemical solvents that are commercially available, and the operations would be done at an ordinary temperature and pressure. Certain drawbacks or problems to this method would include the heat of solvent due to regeneration being too high. Another example would be Adsorption. This method is very effective and efficient in recapturing CO<sub>2</sub>; however, it needs to be run at very high pressure thus making it costly.[4]

#### **Market Evaluation**

One of the main reasons for considering CO<sub>2</sub> removal is the costs related to Carbon tax. Alberta currently has a Carbon tax program in place where \$30 per tonne of carbon emissions is charged, with future increases coming in the following years. If considering the oil sands emissions limit of 100 mega tonnes that Alberta has in place as part of its Climate Leadership Plan [5], the total carbon tax currently amounts to approximately \$3 billion. By capturing and redirecting these carbon emissions to other uses, such as Carbon Capture and Storage (CCS) for Enhanced Oil Recovery (EOR) and/or selling for use in other processes or products such as food grade CO<sub>2</sub>carbon costs can be minimized and can even create profit.

This report is considering Fort McMurray as its location. As a major location for oil sands production, there is an abundance of carbon emissions present that can be captured, either by a separate capture facility or through retrofitting of existing production plants to capture emissions. Captured emissions can then be repurposed for CCS processes, and as the CO<sub>2</sub> is obtained "locally", transportation costs are further reduced.

Aside from CCS, CO<sub>2</sub> can be sold for commercial purposes; Praxair and Air Liquide are examples of industrial gas companies that market compressed CO<sub>2</sub> as one of its products. As they have penetration into a wide variety of markets such as food processing and welding [6], some demand at the very minimum can be expected and therefore, a potential source of profit. A 2016 report by Synapse Energy Economics projected that in the US at 2022, the general price for CO<sub>2</sub> would be in the range of 15 USD to 25 USD per ton, which will increase over time. [7] However, another study conducted by Advanced Resources International Inc. in 2011 assumes a cost of \$45 per ton CO<sub>2</sub> for use in Enhanced Oil Recovery processes [8], which suggests that more profits can be made than the projected price mentioned earlier. This, in conjunction with the carbon tax savings of \$30 per ton from not releasing CO<sub>2</sub> into the atmosphere, provides an avenue for making profit while reducing operating costs.

# Case Study

A report by the American Physical Society (APS) from 2011 states that, with current technologies, a typical direct air capture (DAC) system that uses chemicals will cost approximately \$600 or more per metric ton of CO<sub>2</sub> removed [9]. The technical challenges of this system are further proven by the theoretical system that the APS designed; using the guideline of 20 tons of CO<sub>2</sub> per year per square meter of area for air flow, for a 1000 megawatt coal power plant, "a DAC system consisting of structures 10 meters high that removes CO<sub>2</sub> from the atmosphere as fast as this coal plant emits CO<sub>2</sub> would require structures whose total length would be about 30 kilometers." [9] The sheer scope of this system would have extremely high capital costs as well as regular recurring costs such as the cost for chemicals, maintenance and personnel, not to mention the amount of power required to operate this facility. A conundrum of this is that the power used by such a system will most likely be mostly sourced from fossil fuel generators which will nullify a major portion of the amount of CO<sub>2</sub> captured.

A study published in 2018 by a Canadian company called Carbon Engineering showed that they were able to develop a system that, through testing with a pilot plant, reduced the DAC levelized cost to a range of 94 to 232 USD per ton of CO<sub>2</sub> [10]. This was achieved by developing a loop process that uses the chemicals KOH and CaOH in an air-liquid contactor, as shown in Figure (2) of Appendix (B).

While this pilot system shows a significant decrease in costs compared to a typical DAC system, a carbon capture and storage (CCS) system is still much economical as proven by a currently operating facility; the 2017 annual report for the Quest CCS facility near Edmonton, Canada, states that it captures approximately 1.2 million tons of CO<sub>2</sub> per year for an operating cost of approximately \$32 million in 2017, as shown in Table (2) of Appendix (B). [11] This results in an approximate cost of only \$26.67 per ton of CO<sub>2</sub>, which, combined with the Carbon tax savings and the government funding received, results in significant savings compared to no CO<sub>2</sub> capture.

# Process Design and Description

The objective of the process is to remove carbon dioxide gas from atmosphere. This is performed using a liquid amine solvent that has an affinity to carbon dioxide vs other gasses. When the air and amine solvent are mixed, the amine attaches to it the carbon dioxide molecules effectively removing it from the air. This happens at the "absorbing column" is designed to allow for maximum contact between the phases. The fluids are then separated; the air is now free of carbon dioxide and is free to exhaust into the atmosphere, the liquid amine (which now contains carbon dioxide) is then taken for further processing to allow the removal of carbon dioxide so the solvent can be reused, and the carbon dioxide sold. This removal of carbon dioxide happens at the "desorption column" which essentially heats up the solvent in low pressure until carbon dioxide can escape. The lean amine (which now only carries residual loading of CO<sub>2</sub>) is recycled back to the "absorbing column." This recycling of solvent, absorption and desorption is an effective way

to remove CO<sub>2</sub> gas from air. A general process flow diagram described by the GPSA [12] is as illustrated in Figure (3) of Appendix (C).

This process of amine scrubbing is utilized as an effluent management system. The feed stream is carbon dioxide flue gas from a nearby facility. The process designed to release clean (carbon dioxide reduced air) air into the atmosphere and sell the sequestered carbon dioxide gas to a drilling company utilizing this gas for enhanced oil recovery. The carbon dioxide gas can also be sold for dry ice products as well soda companies. An estimated value of \$50 USD per ton is placed allowing us to offset the operating cost of the waste treatment plant with some revenue.

Current CO<sub>2</sub> concentration in our atmosphere is 406.58 ppm and is accelerating at the rate of 0.7ppm per year. Pre industrial revolution concentration was 280ppm and is expected to cross the 500ppm mark around 2050. [13] This rapid increase in CO<sub>2</sub> would create a global temperature rise of 3C and would cause irreparable environmental impacts. [14] This makes CO<sub>2</sub> capture and recovery necessary for the survival of the human species. Alberta has \$1.24 billion to two carbon capture and storage projects which reduce carbon emission by 2.76 million tonnes per year. It is evident that the demand as well as the funding for this carbon capture process exists.

Aspen HYSYS was used to simulate the amine scrubbing process as shown in Appendix (C) as Figure (6). Amine Package was utilized with the thermodynamic model Kent-Eisenberg. 30,000 moles of inlet flue gas were assumed with a CO<sub>2</sub> concentration of 0.0385 mole fraction. MEA (Monoethanolamine) was used as the amine solvent. Properties of this amine solution were extracted from GPSA Data Book, 14<sup>th</sup> edition (chapter 21: hydrocarbon treating) [12]. The amine circulation calculations yield a required rate of 38,812 kmol of 28% by weight MEA solution. Relevant calculations are attached in Appendix (C) as Equation (1).

A 96.3% efficient CO2 recovery is achieved where 48.9 tonnes of CO2 is removed from the atmosphere every hour – that is 8 and a half Olympic sized swimming pools every hour. Material Balance is as attached in Appendix (C) as Table (2).

Note that 1.63 % exists due to the recycle function employed in the simulation. To assist with the convergence of the recycle flow, an allowing sensitivity was inputted. Total consumed energy per hour is  $1.23 \times 10^9$  kJ; that is 8.8 MJ per kilogram CO<sub>2</sub>. This is a severely high energy consumption when compared to optimized literature values of around 4MJ per kilogram of CO<sub>2</sub>. [15] The energy balance is attached in Appendix (C) as Table (3). Note than an error of 2.65% exists due to the sensitivity of the recycle function.

Equipment were sized using Aspen HYSYS and are attached in Appendix (D) as multiple tables; Table (5) shows the sizing for key unit operations - the absorber, Desorber and an economizer (heat exchanger). The absorber (T-100) is sized for 25 trays, a vessel diameter of 10 m and a height of 12.3 m; the Desorber (T-101) is also sized for 25 trays, a vessel diameter 5.18m and a height of 20.3m; and the heat exchanger (E-100) sizing resulted in a heat transfer area of 150.8m, tube OD of 25.4mm and length of 6m, the number of shell and tube passes are 1. Temperature, pressure and vapor flow profiles for the desorber (T-101) can be found in Appendix (D), Table (8). This heat exchanger is utilized for the thermal exchange between the hot lean amine exiting the absorber and

the cold rich amine exiting the desorber. This heat exchange between the two process streams allows for a reduction for hot and cold utilities.

Summary of the Utility data, with rate, cost per hour and operating temperatures and pressures can be found in Appendix (C), Table (6). Primary utility fluid is steam used in the reboiler with the reboiler duty of 1.222x10<sup>5</sup> kW.

A comparative study between flue gas recovery and atmospheric recover was performed. The inlet flow rate of gas was held constant as the control variable. In both cases the inlet flowrate is approximately 870,000 kg/hr for atmospheric air or flue gas. The air stream for the atmospheric air was modelled with a carbon dioxide concentration of 0.03 mol%, this is consistent with the average carbon dioxide found in our air (around 400ppm, but modelled as 500ppm). The co2 content in the flue stream was consistent with literature data found with a value of 3.85 mol%. The atmospheric air stream is modelled at ambient temperatures and pressure. A comparison of inlet air streams can be found Table (4) of Appendix (C.). It should be noted that the atmospheric co2 capture model has an air collection system design with three parallel compressors to collect and compress the air. The compressors are followed by aerial coolers that cool the compressed air for effective absorption of co2, as absorption is optimal in high pressures and low temperatures. Three individual inlet streams are independently compressed and cooled. It is designed in this fashion to accommodate for the high gas flow rates. It is impossible to compress and cool the given volume of gas without the temperature being outlandishly high. There for a parallel design is adopted to allow for reasonable temperatures to maintain.

As evident from the inlet stream data it is there is more CO2 to recover from a flue gas recovery system than direct atmospheric recovery. The collection system proves to be extremely expensive, the operating costs high and the co2 recovered very low. A summarized cost, production, and energy comparison is provided in Table (5) of Appendix (C).

#### **Heat Integration**

In order to fully optimize the E-100 heat exchanger a pinch analysis was performed. Pinch analysis is a technique to reduce energy consumption and maximize heat recovery.

Currently the inlet hot stream inlet is at 145 °C and outlet at 130.1 °C, the cold stream inlet is at 33.38 °C and outlet at 50 °C. The temperature-enthalpy diagram of this exchange is as attached in figure (8): Appendix(C). As evident, this heat exchange is un-optimized. A pinch analysis study reveals that, that to maximize heat transfer, the hot stream inlet should be at 53 °C and outlet at 38 °C. This is assuming a minimum pinch point temperature differential of 10°C.

Based on Figure [9] in Appendix C, the pinch point position for the hot stream is 50 °C and for the cold stream, it's 38 °C. The maximum heat that can be recovered between both streams is 10,691 kW. The cold stream requires an additional 20,300 kW to heat it. A heating utility with an output of 122,000 kW currently being used. The hot stream requires an additional 21,195 kW to cool it. A cooling utility with an output of 210,900 kW is currently being used.

Currently the hot and cold utility are consuming 332,995 kW of energy that can be saved. Implementing this pinch analysis to our process would result in an overall savings of \$1582.4 per hour or \$13.86 million per year, for the steam utility cost of \$1.32x10<sup>-6</sup> kJ. As the main operating cost of this design is utility cost, it is imperative that this study be implemented in our design.

#### Plant Location

The location of our Carbon Capture plant will be in the Athabasca Region, 3 km north of Fort MacKay – a satellite image of the location is provided as Figure (10) of Appendix E. The approximate area of the facility will be 74 acres or (400m × 750m) with the specific Legal Subdivision (LSD) coordinates of (LSD: 13-6-95-10W4). A map view can be seen in Figure (10) of Appendix (E).[16] This is public land in Alberta held by the federal government, thus being subjected to federal and provincial regulations. The relevant federal regulations are the "Federal Real Property and Federal Immovable Act" [17], the "Territorial Lands Act" [18] and the AER have created the Public Lands Act [19]. The sole purpose for these regulatory documents is to ensure that the operations on this public land are carried out in a responsible manner and that work is done closely in conjunction with Alberta Environment and Parks (AEP).

According to the Canadian Association of Petroleum Producers (CAPP), the Alberta oil sands emit 9.8% of all GHG emissions in Canada, which is the main reason why this area was chosen.[20]

Once the bitumen is extracted, it is transported to upgraders where it is upgraded. Upgraders are facilities that upgrade bitumen (or extra heavy oil) into synthetic crude oil. Each barrel of bitumen has roughly 100kg of CO2. There are 5 upgraders in the Fort McMurray Area: Syncrude, Shell, CNRL, Suncor, and Nexen. Totalling up to 1351 M barrels of bitumen produced by all these upgraders per day. This amounts to 135,100 tonnes of CO2 being released as flue gas per day. We aim to capture as much of this CO2 as possible from these upgraders as well as the other facilities in this area.[21]

The geology of this location works well with the storage of CO2. In order for the successful storage of CO2, it must be stored in a permeable formation lying underneath multiple overlying layers of an impermeable formation that can act as a seal, so the CO2 does not escape.

Appendix (E): Figure (11) displays the geology of the Athabasca Oil Sands. [22] The top formations contain unconsolidated materials of sandstone, silt, and shale. Underneath are cretaceous formations, which mostly consist of shale rocks. At the very bottom is the Devonian waterways formation. The Waterways formation is 213m thick of argillaceous limestones. Carbon Dioxide can be stored here since limestone is a permeable rock type, and the upper layer of cretaceous shale formations can act as a proper seal, because of shales' impermeable properties. This makes this location overall the best area for the safe storage of CO2.

With the abundance of gas pipelines in this area, CO2 can also be transported and be used as an artificial lift method in older oil wells or as a commercial product. There is also a lack of

competition since there are only 3 carbon capture plants that are currently operating in Alberta, none of which are in this area. [23][7]

### **Economic Analysis**

In order to determine the economic viability of the project, a detailed economic analysis of the project was done using standard conceptual stage techniques. All of the process equipment that was used in our simulations was used to estimate the capital as well as operating cost for the unit. Data from this was then used to determine if the project is to be profitable.

With the nature of the proposed project being one of environmental improvement, the likelihood of being profitable is slim. The viability of the project will be due to government grants as well as cost incentives for the parent plant from carbon tax.

The analysis performed was done over a period of twenty years with a CEPCI of 603.1 [24] for 2018. All prices shown are in USD. Plant location factor was omitted in the analysis shown in Appendix (F) but cost was adjusted within the report and shown in Table (12), Table (13) and Table (16) with a factor of 1.6 for the Fort McMurray location chosen, as Fort McKay is located only about 60 km north of Fort McMurray. [25]

As this is a conceptual phase, the process equipment, sizing and general flowrates may need to be changed as more details of the project come together. This will affect the capital as well as the operating costs.

#### **Capital Cost Estimation**

Capital cost at the preliminary stage is a combination of the FCI and the WC. FCI for this project was calculated through Aspen Capital Cost Estimation software using the process equipment and specifications that were simulated in Aspen HYSYS.

The FCI is comprised of ISBL, OSBL, and engineering costs. Costs specific to this project include:[25]

#### **ISBL**

- Plant Cost
  - o Infrastructure
- Direct Field Cost
  - o Equipment
  - Installation
  - o Piping
  - o Electrical
  - Instrumentation and Controls
- Indirect Field Cost
  - Construction
  - o Insurance
  - Labor
  - o Misc. Overhead

#### **OSBL**

- Additions to Infrastructure
- Power Generation
- Shipping Facilities

#### **Engineering**

- Detailed Designs
- Procurement
- Construction Supervision
- Project Management
- Contractors Fees

ASPEN has estimated that the capital cost will be approximately \$19,000,000. This is including all of the costs as described above. A contingency factor of 10% was added to the FCI to account for any unforeseen costs that may arise as a result of continued planning. This cost is usually said to be only 10% of the ISBL and OSBL, but as ASPEN has done this estimation, the 10% was taken as the entire FCI just for ease of calculation. This brings the FCI to approximately \$21,000,000.

Lastly, there needs to be a working capital cost associated with the initial investment. The working capital, as a rule, needs to be able to cover at least one month of operations. This will include: [25]

- Raw Materials
- Salaries
- Cost of Utilities
- Maintenance Supplies
- Miscellaneous Items

For conceptual phase projects, working capital is generally 10%-20% of the FCI. For this project it has been taken as 15% of the FCI. Working capital was calculated to be just over \$3,000,000 for the first year. This working capital was added to the FCI to generate our final value for initial investment. The final capital cost for the project was calculated at just under \$24,000,000. [25]

The capital costs estimated for the project was then multiplied by the location factor of 1.6 for Fort McMurray giving us a total just under \$38,000,000. [25]

A summary of the above information as well as a detailed account of the capital cost estimation can be found in Appendix (F).

#### **Operating Costs**

The operating costs required to extract carbon dioxide from the flue gas and separate it into a pure product involve variable and fixed costs. Feedstocks and utilities are the variable costs in this study. Flue gas from a gas fired plant is obtained at no cost. Using Aspen Process Economic Analyzer, the utilities cost amounted to 51,856,100 USD, as shown in Table (13) of Appendix (F). This relatively high estimate compared to the capital cost resulted from the Rich Amine Desorption column high reboiler duty demand, to maximize the separation of the carbon dioxide from the Rich Amine, a process that is more efficient at temperatures in the range of 127 C to 145 °C. The second highest cost of steam production appeared in the Pumped Rich Amine Heater, which was needed to achieve the required temperature of the rich Amine fed into the desorption column. The 690 kPa steam cost for this Desorption Column Reboiler was 3397.63 USD/hr while the pumped Rich Amine Heater steam cost was 2077.1 USD/hr. The other relatively lower demanding utilities resulted from cooling water used in the condenser desorption column and that being used in cooling the lean amine coming out of the desorption column before being reintroduced back into the absorption column. The cooling water cost for the Desorption Column Condenser and the Lean Amine cooler were 82.40 USD/hr and 285.35 USD/hr, respectively. Freon-12 refrigerant was used to cool the CO2 overhead product out of the Desorption Column at a cost of 57.94 USD/hr. The electricity cost required to pump the evolved Rich Amine from the absorption column was 195.878 USD/hr. The water stream leaving the V-100 Separator as seen in Appendix C, Figure 6 is composed of 99.76 % H<sub>2</sub>0 and 0.24 % CO2 by mole. Hence, waste water treatment incorporation is not environmentally or commercially required. The total operating labor cost was 657,450 USD/yr while the maintenance cost amounted to 328,725 USD/yr as per Aspen calculations. Table (13) in Appendix (F) summarizes the operating costs incurred using Aspen Economic Analyzer

The depreciable cost for the proposed plant equipment was obtained using the straight line method with a salvage value of 20%, as a fraction of the initial capital cost. The depreciable capital cost of the plant equipment was evaluated at 17.96 MM USD. This results in a salvage value of 3.6MM USD. The annual depreciation based on equation 2 in Appendix H is 1.44 MM USD while the depreciable cost is 14.4 MM USD over a 10-year period. The unit depreciation using equation 3 and based on a production volume of 429,240 metric ton of CO2/yr over a 10-year period resulted in a unit depreciation of 0.00335 USD/kg.

#### **Economic Potential:**

To calculate the unit price of production (USD/kg), Equation (6) of Appendix (H) is used. The total operating costs were found to be 57.779 MM USD/yr. The production rate was 48928.5 kg/hr, which amounts to 429,240/ton CO2/yr. Hence the unit production price based on Equation (6) is 138 USD/ton.

The market value of CO2 for enhanced oil recovery is estimated at 50 USD/ton as discussed in the Market Evaluation section. The annual CO2 produced is 429,240 ton/yr. Hence the total annual revenue using Equation (4) in Appendix (H) is 21.462 million USD. The annual income before tax is calculated using Equation (5) in Appendix (H) and amounts to -36,317,000 USD. Hence no tax is applied for this negative value. The resulting economic potential of this project based on 1 Ton of produced carbon dioxide is calculated based on equation 7 and comes out to be -37.773120 MM USD/yr. The economic potential analysis result is to be expected, as the motive of the plant setup is to focus purely on maximizing the removal of CO2 from flue gas rather than to maximize to the profitability potential. This proposal is to be funded to achieve the sole aim of mitigating Carbon emissions. What follows is a comparison between using two sources of CO2 and the efficacy when it comes to the efficiency of the removal and the costs incurred. Tables (14) and (15) in Appendix (F) summarize the project profitability including the net earnings cash flow, NPV, IRR, and NRR. Since a negative value of cash flow of approximately -45 MM USD has resulted each year, profitability data cannot be graphed as shown in Table (15) of Appendix (F)

## Sensitivity Analysis

To investigate the adaptation ability of the plant setup and operation to differing sources of Feed CO2, using atmospheric air as a source for CO2 removal was investigated as potential scheme. The techno-economic analysis was performed to compare its viability to using flue gas as a source. The preliminary design is simulated in Aspen HYSYS, as shown in Appendix (C), Figure (5) The major design deviations from the flue gas setup involve the requirement of incorporating compressors and subsequent coolers to direct the feed into the absorption column at the required state variables. The coolers are required due to the high temperature of the compressed air which is not favorable for absorption. The rest of the train design is identical to that of the flue gas setup. The capital and operating costs will correspondingly change due to the addition of compressors and the heat duty variations being sensitive to flowrate and composition changes. The capital cost obtained for the atmospheric air run using Aspen Economic Analyzer was 125,075,000 USD while the operating costs were 149,073,000 USD. The capital costs are about 7-fold that of the flue gas run while the operating costs are 3 times that of the flue gas run. The rate of producing dry CO2 1509.3003 kg/h resulting in the production of 130403 Tonne/Yr compared to 429,240 Tonne/Yr produced from flue gas. This agrees with mass transfer principles which favor high concentration gradient for absorption to occur efficiently. With a utility cost of 132,560,000 USD, the cost of production is 1016 USD/Ton. This cost is 10-fold that of the flue gas run which had a 138 USD/Ton production cost. The difference in the rate is due to the concentration of CO2 in atmospheric air being 0.03% by mole based on a concentration 406 ppm in Fort McMurray whereas in the flue gas it was 3.85 % by mole. Therefore, a major contributor to the difference in production rate is the flowrate difference in the feeds, whereby in flue gas 50796 kg/hr of CO2 is being fed to the absorption column while, for the atmospheric air, it amounted to 8662 kg/hr. The flue gas evidently is a more commercially and technically viable source of removing CO2.

#### Risk Assessment

The risk assessment for a plant at conceptual stage is vital in understanding if the project is worth taking to the next level. By using tools such as a risk matrix, the risks are laid out and easy to understand.

At this level, the risks that are being assessed are quite broad and cover a very wide range of equipment, processes, tasks and finances. For this proposal, the risk assessment has been divided into process hazards, environmental risks and commercial risks. For each of these categories, certain hazards were identified, and a risk level was assigned based on the likelihood of that hazard occurring, as well as what the impact to the project would be if that event actually occurred.

The risk matrix, as seen from Table (20) of Appendix (G), was taken from Project Risk Manager [26] Once the risk level was identified, mitigation strategies were put in place to reduce either the likelihood that the event would occur or to at least reduce the severity. In most cases for this project although the likelihood of the events occurring was reduced, it was found that even with mitigation strategies in place, the impact of these hazards remained quite high.

More precise hazards and mitigation strategies will become apparent at a later stage of production.

#### **Process Hazard Analysis**

The process hazard analysis is the portion of this risk assessment that will go through the most changes and will become more up to date as the project progresses. What was found through case studies and research into other types of plants is that there is a huge risk of corrosion and leaking of the chemicals required to perform the process. By implementing standardized operating procedures, maintenance schedules and choosing the right materials for the job, the risks for most of these hazards was reduced from major to moderate. While there are still some hazards that pose a very high risk, these can be maintained by constant assessment and being vigilant.[27]

The process hazard risk assessment can be found in Appendix G Table (17).

#### **Environmental Impact**

With this project trying to follow the global millennium challenge and its ultimate goal to reduce a plant's emissions, the environmental impact was taken very seriously. Most of the hazards mentioned in the environmental impact assessment were of leaking either process fluids or water back into the environment. These fluids can contain contaminants or heat and can also include an increase in the very emissions that we are trying to be contain. By once again ensuring that we have the right materials for the job, working closely with the local and federal environmental groups, installing a water treatment unit, as well as using the existing process and systems that will already be in place at the plant, the risk of these hazards occurring is able to be greatly reduced.

The environmental impact assessment can be found in Appendix (G) Table (18).

#### Commercial Risk

With the entire project required to be commercially profitable in order to continue operation, the greatest risk lies in this category. The likelihood of these events occurring are generally less than with environmental or the process hazards but have a much greater impact on the project. If there was a breakdown in the financing of the project, it would cease to operate. Mitigation strategies for this category did not seem to do much as the impact remains high. With keeping good communication with plant workers, politicians, and legislative groups, there is a much lower risk of having catastrophic consequences to the project.

The commercial risk assessment can be found in Appendix (G). Table (19).

#### Conclusions and Recommendations

After a detailed research on Amine Scrubbing, according to our process design and financial analysis we have concluded that performing Amine scrubbing using the gas in the atmosphere is not a feasible idea, economically. However, this project is targeted as a gas waste treatment, and a grant from government would offset the costs incurred. The cost of production for this project is estimated to be at 57M USD/year. This included both the operating cost and the maintenance cost. The revenue calculated was at 21.46M USD/year, resulting in a significant loss. This project is not worth the investment since we are not close to the breakeven point.

Out of all the amines there is, we recommend using MDEA as the primary amine for use because it provides the removal process with the highest treating capacity. Because CO2 gas is considered an acid gas, it is highly toxic and dangerous to us as humans and also to the environment, and it is very important for us to filter out all the CO2 if we want to come close to creating an impact on global warming. Training employees is also recommended to ensure that the proper amount of amine is being used. No excess amines should be used because this can cost us in the long run, due to expenses.

Another recommendation to keep in mind is the energy consumed. This a major factor impacting our cost value. In order to reduce our energy consumption one can install an increment number of trays in both the absorber and the regenerator unit. This can result in a decrease in spending by reducing the reflux ratio which separates the CO2 from the vapour that was injected from the reboiler.

#### References

- [1] G. T. Rochelle, "Amine Scrubbing for CO2 Capture," Science (80-. )., 2009.
- [2] S. K. Johnson, "Global carbon dioxide emissions in one convenient map," 2014. [Online]. Available: https://arstechnica.com/science/2014/09/global-carbon-dioxide-emissions-in-a-map/. [Accessed: 28-Mar-2019].
- [3] H. Liu, R. Idem, and P. Tontiwachwuthikul, "Introduction and Background Information: By Using the Amine Based Solvents," 2019, pp. 1–5.
- [4] International Energy Agency, "Carbon Dioxide Capture in the Cement Industry," no. July, pp. 1–180, 2008.
- [5] Government of Alberta, "Climate Leadership Plan Implementation Plan 2018-19," no. June, p. 18, 2018.
- [6] Air Liquide, "Gas Carbon Dioxide." [Online]. Available: https://industry.airliquide.ca/gas-carbon-dioxide. [Accessed: 20-Feb-2019].
- [7] P. Luckow *et al.*, "Spring 2016 National Carbon Dioxide Price Forecast," *Synap. Energy Econ.*, pp. 1–35, 2016.
- [8] M. L. Godec, "Global Technology Roadmap for CCS in Industry Sectoral Assessment CO2 Enhanced Oil Recovery," *United Nations Ind. Dev. Organ.*, pp. 1–44, 2011.
- [9] J. Blackstock *et al.*, "Direct Air Capture of CO2 with Chemicals Panel on Public Affairs," *Technology*, 2011.
- [10] D. W. Keith, G. Holmes, D. St. Angelo, and K. Heidel, "A Process for Capturing CO2 from the Atmosphere," *Joule*, vol. 2, no. 8, pp. 1573–1594, 2018.
- [11] Alberta Department of Energy, "QUEST CARBON CAPTURE Annual Summary Report," no. March, 2018.
- [12] Gas Processors Suppliers Association, *Engineering Data Book*. Tusla, Okla.: Gas Processors Suppliers Association, 2017.
- [13] N. Jones, "How the World Passed a Carbon Threshold and Why It Matters," *Yale School of Forestry& Environmental Studies*, 2017. [Online]. Available: https://e360.yale.edu/features/how-the-world-passed-a-carbon-threshold-400ppm-and-why-it-matters. [Accessed: 02-Apr-2019].
- [14] D. Spratt, "What would 3 degrees mean?," *Climate Code Red*, 2010. [Online]. Available: http://www.climatecodered.org/2010/09/what-would-3-degrees-mean.html. [Accessed: 01-Apr-2019].
- [15] I. Oleksandrivna Vozniuk, Aspen HYSYS process simulation and Aspen ICARUS cost estimation of CO2 removal plant. 2019.

- [16] Grid Atlas, "LSD: 13-6-95-10 W4." [Online]. Available: https://www.gridatlas.com/map/places. [Accessed: 01-Apr-2019].
- [17] Government of Canada, Federal Real Property and Federal Immovables Act. Canada, 1991.
- [18] Government of Canada, Territorial Lands Act. Canada, 1985.
- [19] Province of Alberta, Public Lands Act. Canada, 2000.
- [20] Syncrude, "Greenhouse Gas Emissions." [Online]. Available: https://www.syncrude.ca/environment/energy-and-climate-change/greenhouse-gas-emissions/. [Accessed: 28-Mar-2019].
- [21] National Energy Board, "Canadian Refinery Overview 2018 Energy Market Assessment," 2018. [Online]. Available: https://www.syncrude.ca/environment/energy-and-climate-change/greenhouse-gas-emissions/. [Accessed: 29-Mar-2019].
- [22] Regional Aquatics Monitoring Program, "Geologic features of the Athabasca oil sands." [Online]. Available: http://www.ramp-alberta.org/river/geography/geological+prehistory/mesozoic.aspx.
- [23] National Energy Board, "Market Snapshot: Canadian carbon capture and storage projects will soon sequester up to 6.4 million tonnes of CO2 per year," 2016. [Online]. Available: https://ags.aer.ca/data-maps-models.htm. [Accessed: 01-Apr-2019].
- [24] S. Jenkins, "CHEMICAL ENGINEERING PLANT COST INDEX: 2018 ANNUAL VALUE," *Chemical Engineering*, 2019. [Online]. Available: https://www.chemengonline.com/2019-cepci-updates-january-prelim-and-december-2018-final/. [Accessed: 31-Mar-2019].
- [25] Q. (Gemma) Lu, "Lecture 10 Capital Cost," University of Calgary, Calgary, 2019.
- [26] M. Shuttleworth, "Qualitative vs. Quantitative Risk Analysis: What's the difference?," 2017. [Online]. Available: https://www.project-risk-manager.com/blog/qualitative-and-quantitative-risk-analysis/. [Accessed: 01-Apr-2019].
- [27] A. Krzemień, A. Więckol-Ryk, A. Duda, and A. Koteras, "Risk Assessment of a Post-Combustion and Amine-Based CO2 Capture Ready Process," *J. Sustain. Min.*, vol. 12, no. 4, pp. 18–23, 2013.

# Appendices



Figure 1: Total Carbon Dioxide Emissions from Fossil Fuels in 2010

# Appendix B – Case Study



Figure 2: Process Chemistry Loop for Carbon Engineering DAC Pilot Plant
[10]

 ${\it Table~1: Project~Operating~Costs~of~the~Quest~CCS~Facility}$ 

[11]

| Cost Category                                | Oct 1, 2015 - Dec<br>31, 2016 | 2017<br>Jan 1 - Dec 31 |
|----------------------------------------------|-------------------------------|------------------------|
| Power                                        | 3,717.70                      | 4,513.96               |
| Steam                                        | 8,414.46                      | 8,834.50               |
| Compressed Air                               | 67.67                         | 62.59                  |
| Cooling Water                                | 427.95                        | 389.81                 |
| Direct Labour and Personnel Costs            | 7,829.42                      | 5,635.83               |
| Maintenance Materials and Technical Services | 969.42                        | 942.63                 |
| Property Tax                                 | 2,003.72                      | 2,000.28               |
| Sequestration Opex                           | 7,052.85                      | 6,797.59               |
| MMV after Operations                         | 1,690.41                      | 1,655.74               |
| Post Closure Stewardship Fund                | 272.07                        | 264.28                 |
| Other Well Costs                             | 431.49                        | 442.12                 |
| Subsurface Tenure Costs                      | 362.50                        | 420.00                 |
| Pipeline - Inspection and Pigging            | 145.78                        | 340.49                 |
| Amine                                        | 340.67                        | 0.00                   |
| Chemicals                                    | 20.35                         | 97.92                  |
| Vendor rebates                               | -122.32                       | -100.36                |
| Corporate and Other Costs                    | 119.24                        | 205.95                 |
| Total                                        | 33,743.37                     | 32,503.34              |

# Appendix C – Process Design Tables and Figures



Figure 3: General Process Flow Diagram as Described by the GPSA

*[141* 

Table 2: Inlet and Outlet Mass Flowrates

| Inlet Material<br>Stream | Mass Flow (kg/hr) | Outlet Material<br>Stream | Mass Flow (kg/hr) |
|--------------------------|-------------------|---------------------------|-------------------|
| Collected Flue Gas       | 880789            | Air                       | 842914            |
| Makeup Water             | 32884             | Water                     | 6939              |
| Total Mass In            | 913673            | Dry CO2                   | 48909             |
|                          |                   | Total Mass Out            | 898762            |

Table 3: Inlet and Outlets Energy Flow rates

| Inlet Stream       | Energy Flow (kJ/hr) | Outlet Stream    | Energy Flow (kJ/hr) |
|--------------------|---------------------|------------------|---------------------|
| Collected Flue Gas | 260,728,802         | Air              | 255,968,224         |
| Pump Energy        | 661,751             | Condenser Energy | 63,843,332          |
| Reboiler Energy    | 430,231,789         | Cooler Energy    | 759,156,208         |
| Make up Water      | 62,255,802          | Water            | 13,193,566          |
| Heater Energy      | 439,788,699         | Dry CO2          | 10,245,676          |
|                    |                     | CO2 Cooler       | 21,507,579          |
| Total              | 1,069,155,238       | Total            | 1,097,527,453       |

|                             | Flue Gas | Collected       | Individual Inlet |
|-----------------------------|----------|-----------------|------------------|
|                             | Stream   | Atmospheric Air | stream           |
| Pressure (kPa)              | 25       | 30              | 25               |
| Temperature (°C)            | 200      | 260             | 98               |
| Overall Molar Flow (kmol/h) | 30,000   | 30,000          | 10000            |
| Overall Mass Flow (kg/h)    | 880,800  | 863,000         | 288,000          |
| CO2 Molar Flow (kmol/h)     | 1,154.2  | 9.903           | 3.301            |
| CO2 Mass Flow (kg/h)        | 50,796.5 | 435.8           | 145.3            |
| CO2 Mol Frac                | 0.0385   | 0.003           | 0.003            |
| CO2 Mass Frac               | 0.0577   | 0.005           | 0.005            |

Table 4: Data Regarding the Flue and Atmospheric Models

Table 5: Comparison Between Atmospheric and Flue Gas Model

|                                    | Atmospheric Model | Flue Gas Model |
|------------------------------------|-------------------|----------------|
| Inlet Gas Mass (kg/h)              | 863,000           | 880,800        |
| Carbon Dioxide Produced (kg/h)     | 740.2             | 48,910         |
| Removal efficiency                 | 0.839             | 0.963          |
| Reboiler energy per kg CO2 (MJ/kg) | 2,400             | 8.8            |
| Capital Cost (USD)                 | 125,075,000 USD   | 20,234,900     |
| Operating Cost(USD)                | 149,073,000 USD   | 57,779,700     |

Equation 1: Sample Calculations Regarding Process Design

Calculation of Amine Required:

Lean Amine Gas Loading (residual CO2):  $\frac{0.025 \text{ mol CO2}}{\text{mol MEA}}$ 

Maximum Rich Amine Gas Loading:  $\frac{0.5 \text{ mol CO2}}{\text{mol MEA}}$ 

MEA Solution (wt%): 0.28 MEA (0.0625 mol frac), 0.72 H2O

Inlet CO2: 1154 kmol/h

MEA required:  $\frac{1154 \text{kmol CO2}}{(0.5 - 0.025) \text{kmol CO2}/\text{kmol MEA}} = 2429.4 \text{ km ol MEA}$ 

Solution Required:  $\frac{2429.4 \text{ km ol MEA}}{0.0625} = 38,872 \text{ kmol}$ 



Figure 4: PFD of Amine Scrubbing Process



Figure 5: HYSYS Simulation Run and Stream Data for Flue Gas



Figure 6: HYSYS Simulation Run and Stream Data for Flue Gas



Figure 7: Variation of Pressure and Temperature with Tray Position for Desorber Column

#### TEMPERATURE - ENTHALPY DIAGRAM (E-100 UNOPTIMISED)



Figure 8: Un-optimised E-100 Heat Exchanger

#### TEMPERATURE - ENTHALPY DIAGRAM (E-100 OPTIMISED)



Figure 9: Optimised E-100 Heat Exchanger

Table 6: Information about Items, Rates, Operating Pressure and Temperature

| Fluid       | Item<br>Description   | Rate   | Rate<br>Units | Cos | st per Hour<br>(USD) | Operating<br>Pressure<br>(kPa) | Operating<br>Temperature<br>(°C) |
|-------------|-----------------------|--------|---------------|-----|----------------------|--------------------------------|----------------------------------|
| Water       | E-101                 | 9001.7 | M3/H          | \$  | 285.35               | 345                            | 35                               |
| Water       | T-101-Main<br>TS-cond | 2599.4 | M3/H          | \$  | 82.40                | 345                            | 35                               |
| Refrigerant | E-102                 | 340.8  | TON/H         | \$  | 57.94                | 105                            | -29.8                            |
| Steam       | T-101-Main<br>TS-reb  | 189.7  | TON/H         | \$  | 3,397.63             | 689.5                          | 164.3                            |
| Steam       | E-103                 | 115.9  | TON/H         | \$  | 2,077.09             | 689.5                          | 164.3                            |
| Electricity |                       | 195.97 | KW            | \$  | 15.18                | -                              | -                                |

# Appendix D - Equipment Specifications

Table 7: Absorber and Desorber Conditions and Sizing Specifications

| Equipment                            | DTW TRAYED T-100-TS-<br>1-tower (Absorber) | DTW TRAYED T-101-<br>Main TS-tower (Desorber) |
|--------------------------------------|--------------------------------------------|-----------------------------------------------|
| Tray type                            | SIEVE                                      | SIEVE                                         |
| Vessel Diameter (m)                  | 10.05                                      | 5.18                                          |
| Vessel tangent to tangent height (m) |                                            |                                               |
| Design gauge pressure (KPa)          | 243.67                                     | 488.67                                        |
| Design Temperature C                 | 125.00                                     | 176.23                                        |
| Operating Temperature C              | 52.06                                      | 146.23                                        |
| Number of Trays                      | 25                                         | 25                                            |
| Tray spacing (cm)                    | 609.60                                     | 609.60                                        |
| Molecular weight overhead product    | 29.36                                      | 22.66                                         |

Table 8: Desorber Reflux Condenser Sizing Specifications

| Equipment                            | DHT HORIZ DRUMT-101-Main TS- |
|--------------------------------------|------------------------------|
|                                      | condenser/ accumulator       |
| Liquid Volume (m3)                   | 6.31                         |
| Vessel diameter (m)                  | 1.37                         |
| Vessel Tangent to Tangent Length (m) | 4.27                         |
| Design gauge pressure (kPa)          | 478.67                       |
| Design Temperature (Deg. C))         | 153.76                       |
| Operating Temperature (Deg. C)       | 123.76                       |

Table 9: Desorber Reboiler Conditions and Sizing Specifications

| Equipment                           | DRB U TUBE T-101-Main TS-reboiler |
|-------------------------------------|-----------------------------------|
| Number of identical items           | 1.00                              |
| Heat transfer area [M2]             | 5616.48                           |
| Tube design gauge pressure [KPAG]   | 758.17                            |
| Tube design temperature [DEG C]     | 194.30                            |
| Tube operating temperature [DEG C]  | 164.30                            |
| Tube outside diameter [MM]          | 25.40                             |
| Shell design gauge pressure [KPAG]  | 488.67                            |
| Shell design temperature [DEG C]    | 176.92                            |
| Shell operating temperature [DEG C] | 146.92                            |
| Tube length extended [M]            | 6.10                              |
| Tube pitch [MM]                     | 31.75                             |
| Tube pitch symbol                   | TRIANGULAR                        |
| Number of tube passes               | 2.00                              |
| Duty [MEGAW]                        | 108.93                            |
| TEMA type                           | BKU                               |

Table 10: Desorber Reflux Pump Efficiency and Specifications

| Equipment                    | DCP CENTRIF T-101-Main<br>TS-reflux pump |
|------------------------------|------------------------------------------|
| Liquid flow rate [L/S]       | 17.57                                    |
| Fluid specific gravity       | 0.94                                     |
| Design gauge pressure [KPAG] | 478.67                                   |
| Design temperature [DEG C]   | 153.41                                   |
| Fluid viscosity [MPA-S]      | 0.50                                     |
| Pump efficiency [PERCENT]    | 70.00                                    |

Table 11: Desorber Heat Exchanger Specifications and Design Conditions

| Equipment                           | DHE TEMA EXCH T-101-Main TS-cond |
|-------------------------------------|----------------------------------|
| Number of identical items           | 1.00                             |
| Heat transfer area [M2]             | 455.45                           |
| Front end TEMA symbol               | В                                |
| Shell TEMA symbol                   | Е                                |
| Rear end TEMA symbol                | M                                |
| Tube design gauge pressure [KPAG]   | 413.67                           |
| Tube design temperature [DEG C]     | 166.58                           |
| Tube operating temperature [DEG C]  | 35.00                            |
| Tube outside diameter [MM]          | 25.40                            |
| Shell design gauge pressure [KPAG]  | 478.67                           |
| Shell design temperature [DEG C]    | 166.58                           |
| Shell operating temperature [DEG C] | 136.58                           |
| Tube length extended [M]            | 6.10                             |
| Tube pitch [MM]                     | 31.75                            |
| Number of tube passes               | 1.00                             |
| Number of shell passes              | 1.00                             |

Table 12: Process Heater/Cooler Specifications and Design Conditions

| Equipment                           | DHE TEMA<br>EXCH E-100 | DHE TEMA<br>EXCH E-101 | DHE TEMA EXCH<br>E-102 | DHE TEMA<br>EXCH E-103 |
|-------------------------------------|------------------------|------------------------|------------------------|------------------------|
| Number of identical items           | 1.00                   | 1.00                   | 1.00                   | 1.00                   |
| Heat transfer area [M2]             | 150.80                 | 7081.81                | 269.33                 | 663.20                 |
| Front end TEMA symbol               | В                      | В                      | В                      | В                      |
| Shell TEMA symbol                   | Е                      | Е                      | Е                      | Е                      |
| Rear end TEMA symbol                | M                      | M                      | M                      | M                      |
| Tube design gauge pressure [KPAG]   | 568.67                 | 413.67                 | 285.34                 | 758.17                 |
| Tube design temperature [DEG C]     | 176.92                 | 163.21                 | 153.76                 | 194.30                 |
| Tube operating temperature [DEG C]  | 50.00                  | 35.00                  | -29.80                 | 164.30                 |
| Tube outside diameter [MM]          | 25.40                  | 25.40                  | 25.40                  | 25.40                  |
| Shell design gauge pressure [KPAG]  | 488.67                 | 448.67                 | 478.67                 | 528.67                 |
| Shell design temperature [DEG C]    | 176.92                 | 163.22                 | 153.76                 | 140.00                 |
| Shell operating temperature [DEG C] | 146.92                 | 133.22                 | 123.76                 | 110.00                 |
| Tube length extended [M]            | 6.10                   | 6.10                   | 6.10                   | 6.10                   |
| Tube pitch [MM]                     | 31.75                  | 31.75                  | 31.75                  | 31.75                  |
| Number of tube passes               | 1.00                   | 1.00                   | 1.00                   | 1.00                   |
| Number of shell passes              | 1.00                   | 1.00                   | 1.00                   | 1.00                   |

Table 13: CO2 Final Separator Design Specifications and Operating Conditions

| Equipment                            | DVT CYLINDER V-100 |
|--------------------------------------|--------------------|
| Liquid volume [M3]                   | 5.85               |
| Vessel diameter [M]                  | 1.37               |
| Vessel tangent to tangent height [M] | 3.96               |
| Design gauge pressure [KPAG]         | 438.67             |
| Design temperature [DEG C]           | 22.00              |
| Operating temperature [DEG C]        | 20.00              |

# Appendix E – Plant Location Figures



Figure 10: Plant Location Near Fort Mackay



Figure 11: Geological Formations of the Athabasca Oil Sands Region

[18]

# Appendix F – Cost Analysis

Table 14: Summary of Project Capital Cost

| PROJECT CAPITAL S           | SUMMARY | TOTAL | COST          |
|-----------------------------|---------|-------|---------------|
| Purchased Equipment         | Cost    | \$    | 5,512,600.00  |
| Equipment Setting           | Cost    | \$    | 103,026.00    |
| Piping                      | Cost    | \$    | 2,944,350.00  |
| Civil                       | Cost    | \$    | 432,385.00    |
| Steel                       | Cost    | \$    | 105,401.00    |
| Instrumentation             | Cost    | \$    | 794,820.00    |
| Electrical                  | Cost    | \$    | 683,159.00    |
| Insulation                  | Cost    | \$    | 329,578.00    |
| Paint                       | Cost    | \$    | 97,161.70     |
| Other                       | Cost    | \$    | 5,075,400.00  |
| Subcontracts                | Cost    | \$    | -             |
| G and A Overheads           | Cost    | \$    | 420,662.00    |
| Contract Fee                | Cost    | \$    | 649,705.00    |
| Escalation                  | Cost    | \$    | -             |
| Contingencies               | Cost    | \$    | 3,086,680.00  |
| Total Project Cost          | Cost    | \$    | 20,234,900.00 |
| Adjusted Total Project Cost | Cost    | \$    | 17,958,500.00 |

Table 15: Summary of Operating Costs

| OPERATING COST RESULTS SUMMARY |           |    |               |  |
|--------------------------------|-----------|----|---------------|--|
| Total Operating Labor and      | Cost/Year | \$ | 986,175.00    |  |
| Total Utilities Cost           | Cost/Year | \$ | 51,856,100.00 |  |
| Total Operating Cost           | Cost/Year | \$ | 57,779,700.00 |  |
| Operating Labor Cost           | Cost/Year | \$ | 657,450.00    |  |
| Maintenance Cost               | Cost/Year | \$ | 328,725.00    |  |
| Operating Charges              | Cost/Year | \$ | 164,363.00    |  |
| Plant Overhead                 | Cost/Year | \$ | 493,088.00    |  |
| Subtotal Operating Cost        | Cost/Year | \$ | 53,499,700.00 |  |
| G and A Cost                   |           | \$ | 4,279,980.00  |  |

Table 16: Net Cash flow Analysis for The First Five Years

|                                                       |             | Year 1 |              | Yea | ar 2         | Year 3 |              | Yea | ır 4         | Yea | r 5          |
|-------------------------------------------------------|-------------|--------|--------------|-----|--------------|--------|--------------|-----|--------------|-----|--------------|
| R (Revenue)                                           | Cost/Period | \$     | (45,095,700) | \$  | (42,613,200) | \$     | (43,517,900) | \$  | (44,431,100) | \$  | (45,352,000) |
| DEP (Depreciation Expense)                            | Cost/Period | \$     | 1,436,680    | \$  | 1,436,680    | \$     | 1,436,680    | \$  | 1,436,680    | \$  | 1,436,680    |
| E (Earnings Before Taxes)                             | Cost/Period | \$     | (46,532,400) | \$  | (44,049,900) | \$     | (44,954,600) | \$  | (45,867,800) | \$  | (46,788,700) |
| TAX (Taxes)                                           | Cost/Period | \$     |              | \$  |              | \$     |              | \$  |              | \$  |              |
| NE (Net Earnings)                                     | Cost/Period | \$     | (46,532,400) | \$  | (44,049,900) | \$     | (44,954,600) | \$  | (45,867,800) | \$  | (46,788,700) |
| TED (Total Earnings)                                  | Cost/Period | \$     | (45,095,700) | \$  | (42,613,200) | \$     | (43,517,900) | \$  | (44,431,100) | \$  | (45,352,000) |
| TEX (Total Expenses (Excludes Taxes and Depreciation) | Cost/Period | \$     | 46,122,400   | \$  | 61,298,500   | \$     | 63,137,500   | \$  | 65,031,600   | \$  | 66,982,500   |
| CF (CashFlow for Project)                             | Cost/Period | \$     | (45,095,700) | \$  | (42,613,200) | \$     | (43,517,900) | \$  | (44,431,100) | \$  | (45,352,000) |

Table 17: Profitability Indicators for the First Five Years

|                                         |           | Year 1 |          | Year 2             | Year 3             | Year 4             | Year 5              |
|-----------------------------------------|-----------|--------|----------|--------------------|--------------------|--------------------|---------------------|
| NPV (Net Present Value)                 | Cost/Year | \$     | -        | \$ (37,579,700.00) | \$ (67,172,300.00) | \$ (92,356,300.00) | \$ (113,783,000.00) |
| IRR (Internal Rate of Return)           | Percent   | \$     | -        | N/A                | N/A                | N/A                | N/A                 |
| MIRR (Modified Internal Rate of Return) | Percent   | \$     | 5.63     | N/A                | N/A                | N/A                | N/A                 |
| NRR (Net Return Rate)                   | Percent   | \$     | (71.79)  | N/A                | N/A                | N/A                | N/A                 |
| PO (Payout Period)                      | Period    | \$     | -        | N/A                | N/A                | N/A                | N/A                 |
| ARR (Accounting Rate of Return)         | Percent   | \$     | (441.91) | N/A                | N/A                | N/A                | N/A                 |
| PI (Profitability Index)                |           | \$     | 0.28     | N/A                | N/A                | N/A                | N/A                 |

Table 18: Capital Cost Estimation

| Item                                    | Cost            |
|-----------------------------------------|-----------------|
| <b>Cumulative Capital Cost</b>          | \$18,856,400.00 |
| <b>Capital Cost With Contingency</b>    | \$20,742,040.00 |
| Working Capital                         | \$3,111,306.00  |
| CAP (Capital Costs)                     | \$23,853,346.00 |
| Capital Cost Adjusted for Fort McMurray | \$38,165,353.60 |

# Appendix G – Risk Analysis

Table 19: Process Hazards

|                                |                                 |                 |           |              |                             |             | After Mitigation |              |  |
|--------------------------------|---------------------------------|-----------------|-----------|--------------|-----------------------------|-------------|------------------|--------------|--|
| Hazard                         | Description                     | Probability     | Impact    | Risk         | Possible Mitigation         | Probability | Impact           | Risk         |  |
|                                |                                 |                 |           |              | Chosing the right           |             |                  |              |  |
|                                | Corrosion from improper         |                 |           |              | material for the job and    |             |                  |              |  |
|                                | absorber, pump, and valve       |                 |           |              | following a strict          |             |                  |              |  |
| Material Corrosion             | material.                       | Probable        | High      | 16 - Major   | inspection schedule         | Possible    | High             | 12 - Major   |  |
|                                | CO2 being present in amine at   |                 |           |              |                             |             |                  |              |  |
|                                | a temperature above 100°C can   |                 |           |              |                             |             |                  |              |  |
|                                | cause carbamate                 |                 |           |              |                             |             |                  |              |  |
|                                | polymerization, the most        |                 |           |              | Testing the amine for       |             |                  |              |  |
|                                | common cause of amine           |                 |           |              | qualiy and replacing it     |             |                  |              |  |
| Amine Degradation              | degradation.                    | Highly Probable | Low       | 10 - Major   | according to a schedule.    | Possible    | Low              | 6 - Moderate |  |
|                                |                                 |                 |           |              |                             |             |                  |              |  |
|                                |                                 |                 |           |              | Monitoring when the         |             |                  |              |  |
|                                | No flowrate into the system of  |                 |           |              | parent plant is shut down   |             |                  |              |  |
|                                | either flue gas or amine caused |                 |           |              | or when flow is reduced     |             |                  |              |  |
|                                | by blockages, human error, or   |                 |           |              | to react and shut the       |             |                  |              |  |
| No Flow Into the system        | equipment failure.              | Possible        | Medium    | 9 - Moderate | sweetening unit down.       | Unlikely    | Medium           | 6 - Moderate |  |
| •                              |                                 |                 |           |              | Monitoring and              |             |                  |              |  |
|                                | Due to pipeline leakages and    |                 |           |              | maintaining all             |             |                  |              |  |
|                                | improper seals on equipment     |                 |           |              | connection points           |             |                  |              |  |
| Loss of Solvent/Flue Gas       | and valves.                     | Unlikely        | Medium    | 6 - Moderate | (valves, fittings etc.      | Possible    | Medium           | 9 - Moderate |  |
|                                | Similar to no flow. Too much    |                 |           |              | Having automated            |             |                  |              |  |
|                                | amine flow caused by human      |                 |           |              | systems and level           |             |                  |              |  |
|                                | error or malfunctioning valves  |                 |           |              | controllers in place to act |             |                  |              |  |
| Overflow                       | or pumps.                       | Possible        | High      | 12 - Major   | as a backup.                | Unlikely    | High             | 8 - Moderate |  |
|                                |                                 |                 |           |              | Pressure alarms and         |             |                  |              |  |
|                                | Usually due to too much flue    |                 |           |              | release valves in place     |             |                  |              |  |
|                                | gas flow with an obstrucion in  |                 |           |              | throughout the system to    |             |                  |              |  |
|                                | the gas outlet, causing an      |                 |           |              | automatically reduce        |             |                  |              |  |
|                                | accumulation of gas in the      |                 |           |              | pressure until the issue is |             |                  |              |  |
| Pressure Increases             |                                 | Possible        | Very High | 15 - Major   | resolved.                   | Unlikely    | Very High        | 10 - Major   |  |
|                                | Can be due to corrosion in the  |                 | , , ,     |              |                             |             | 1                |              |  |
|                                | pipelines, but can be due to    |                 |           |              |                             |             |                  |              |  |
|                                | different combustion materials  |                 |           |              | Adjusting amine flowrate    |             |                  |              |  |
| Change in Flue Gas Composition | present.                        | Highly Probable | Low       | 10 - Major   | to accommodate.             | Possible    | Low              | 6 - Moderate |  |

Table 20: Environmental Hazards

|                               |                                       |             |        |              |                               | Af          | After Mitigation |              |
|-------------------------------|---------------------------------------|-------------|--------|--------------|-------------------------------|-------------|------------------|--------------|
| Hazard                        | Description                           | Probability | Impact | Risk         | Possible Mitigation           | Probability | Impact           | Risk         |
|                               | Amine leaking from vessels, corroded  |             |        |              | Monitoring corrosion,         |             |                  |              |
|                               | pipes, or valves into the outside     |             |        |              | valves and fittings, and      |             |                  |              |
| Amine Leakage                 | invironment                           | Possible    | High   | 12 - Major   | doing equipment checks        | Unlikely    | High             | 8 - Moderate |
|                               | Combustion process from the           |             |        |              | If an increase in emissions   |             |                  |              |
|                               | reboiler or heater may cause          |             |        |              | is detected through           |             |                  |              |
|                               | additional emissions if not closely   |             |        |              | installed monitors,           |             |                  |              |
|                               | monitored or combusting the           |             |        |              | production will be            |             |                  |              |
| Increased Emissions from      | material completely. Amine, CO2, CO,  |             |        |              | slowed/stopped until the      |             |                  |              |
| Scrubbing Unit                | Nox, Sox                              | Possible    | Medium | 9 - Moderate | problem is recitfied.         | Unlikely    | Medium           | 6 - Moderate |
|                               |                                       |             |        |              |                               |             |                  |              |
|                               | Due to the placement of the plant, as |             |        |              | Building onto an existing     |             |                  |              |
|                               | well as activity in the surrounding   |             |        |              | plant will reduce the risk of |             |                  |              |
| Demolishment of Ecosystems    | areas.                                | Possible    | High   | 12 - Major   | demolishing an ecosystem      | Rare        | High             | 4 - Moderate |
|                               |                                       |             |        |              | Water contaminated with       |             |                  |              |
|                               | Wastewater from heat exchangers       |             |        |              | chemicals/heat can be         |             |                  |              |
| Contaminated Wastewater being | contaminated with chemicals, or heat  |             |        |              | treated before release        |             |                  |              |
| released into environment     | being released to environment.        | Probable    | High   | 16 - Major   | back into the environment.    | Rare        | High             | 4 - Moderate |

Table 21: Commercial Risks

|                            |                                  |                 |           |            |                                                                        | , and a     | After Mitigati | on           |
|----------------------------|----------------------------------|-----------------|-----------|------------|------------------------------------------------------------------------|-------------|----------------|--------------|
| Hazard                     | Description                      | Probability     | Impact    | Risk       | Possible Mitigation                                                    | Probability | Impact         | Risk         |
|                            | The existing plant that is being |                 |           |            | Taking stock of everything                                             |             |                |              |
|                            | built upon may have technology   |                 |           |            | in the existng plant and                                               |             |                |              |
| Existing Plant with out of | that is not compatible for flue  |                 |           |            | retrofitting the parts that                                            |             |                |              |
| Date Technology            | gas capture                      | Possible        | High      | 12 - Major | require update                                                         | Rare        | High           | 4 - Moderate |
|                            | The equipment required for flue  |                 |           |            | looking at schematics to                                               |             |                |              |
|                            | gas capture and sweetening may   |                 |           |            | see what can be moved or                                               |             |                |              |
| No Room for Required       | not fit in the already exisiting |                 |           |            | where new equipment                                                    |             |                |              |
| Equipment                  | plant design                     | Possible        | High      | 12 - Major | can be placed                                                          | Unlikely    | High           | 8 - Moderate |
|                            | Project not following schedule   |                 |           |            | Daily/Weekly meetings<br>and deadlines to stay on                      |             |                |              |
| Timing                     | may cause financial setbacks     | Highly Probable | Medium    | 15 - Major | '                                                                      | Probable    | Medium         | 12 - Major   |
|                            | Possibility of not getting       | <u> </u>        |           |            | Meeting with proper government agencies and poloticians to ensure that |             |                |              |
| Permits                    | required permits to build        | Unlikely        | Very High | 10 - Major | all legislation is being met                                           | Rare        | Very High      | 5 - Moderate |
|                            |                                  |                 |           |            | By staying on track with                                               |             |                |              |
|                            | New plant may take longer than   |                 |           |            | other miigation strategies the likelihood of a return                  |             |                |              |
| No Return on Investment    | expected to turn a profit        | Possible        | Very High | 15 - Major | on investment is higher.                                               | Unlikely    | Very High      | 10 - Major   |

Table 22: Qualitative Risk Matrix

[22]

|             |                    |               | 5x5 F         | RISK MATRIX   |               |               |
|-------------|--------------------|---------------|---------------|---------------|---------------|---------------|
| 1           | Highly<br>Probable | 5<br>Moderate | 10<br>Major   | 15<br>Major   | 20<br>Severe  | 25<br>Severe  |
|             | Probable           | 4<br>Moderate | 8<br>Moderate | 12<br>Major   | 16<br>Major   | 20<br>Severe  |
| PROBABILITY | Possible           | 3<br>Minor    | 6<br>Moderate | 9<br>Moderate | 12<br>Major   | 15<br>Major   |
| PROB        | Unlikely           | 2<br>Minor    | 4<br>Moderate | 6<br>Moderate | 8<br>Moderate | 10<br>Major   |
|             | Rare               | 1<br>Minor    | 2<br>Minor    | 3<br>Minor    | 4<br>Moderate | 5<br>Moderate |
|             |                    | Very Low      | Low           | Medium        | High          | Very High     |
|             |                    |               |               |               |               |               |
|             |                    |               |               | IMPACT        |               |               |
|             |                    |               |               |               |               |               |

#### Appendix H – Economical Analysis Calculations

Equation 2: Annual Deprecation Cost

$$Annual\ Depreciation\ Cost\left(\frac{USD}{yr}\right) = \frac{Depreciable\ Capital\ Cost(USD)}{10yr}$$
 
$$Annual\ Depreciation\ Cost\left(\frac{USD}{yr}\right) = \frac{14.4*10^6\ USD}{10yr} = 1.44\ \text{million\ USD}$$

Equation 3: Unit Depreciation

$$\textit{Unit Depreciation (USD/kg)} = \frac{\textit{Depreciable Capital Cost(USD)}}{(10yr)(\textit{Production Volume}(\frac{\textit{Kg}}{\textit{yr}})}$$
 
$$\textit{Unit Depreciation (USD/kg)} = \frac{14.4*10^6 \; \textit{USD}}{(10yr)(429240000(\frac{\textit{Kg}}{\textit{yr}}))} = 0.00335 \; \textit{USD/kg}$$

Equation 4: Total Revenue

Total Revenue (USD/kg)=Unit Price(USD) \* Quantity of products Products Produced

Total Revenue (USD/yr)=
$$50(USD/Ton)$$
 \*  $429240\frac{Ton}{yr}$  = 21,462000 USD

Equation 5: Annual Income Before Tax

Annual Income Before Tax=Revenue - (Fixed Operating Costs + Variable Operating Costs

Annual Income Before Tax = 21,462000 USD - 57,779,000 = -36,317,000 USD

Equation 6: Product Cost

$$Product Cost (USD/kg) = \frac{Operating Costs(\frac{USD}{yr}) + CCA}{(Production Rate(\frac{Kg}{yr}))}$$

Product Cost (USD/kg)= 
$$\frac{57.779*10^{6} \left(\frac{USD}{yr}\right) + 1,436680 \left(\frac{USD}{yr}\right)}{(429,240000 \left(\frac{Kg}{yr}\right))} = 0.138 \text{ USD/kg} = 138 \text{ USD/ton}$$

Equation 7: Economic Potential

*Economic Potential=Sales Revenue — Cost of Feedstocks* 

$$Economic\ Potential = 21.462*10^{6}(\frac{_{USD}}{_{yr}}) - (138\,\frac{_{USD}}{_{Ton}}))*(429,240\frac{_{Ton}}{_{yr}})) = -37,773120\ \mathrm{USD/yr}.$$

# Appendix I – Condensed Full Report

| 1           |                                                 |                      |                      | Case Name:           | CO2 Conture Save Elu                | e Gas Model_iteration8_ | antimized final has        |  |  |  |  |  |
|-------------|-------------------------------------------------|----------------------|----------------------|----------------------|-------------------------------------|-------------------------|----------------------------|--|--|--|--|--|
| 2           |                                                 | LEGENDS              |                      |                      | <u> </u>                            | e das Woder_iterations_ | optimized_finar.nsc        |  |  |  |  |  |
| 4           |                                                 | Burlington,<br>USA   | MA                   | Unit Set:            | SI                                  |                         |                            |  |  |  |  |  |
| 5           |                                                 |                      |                      | Date/Time:           | Date/Time: Thu Apr 04 21:57:56 2019 |                         |                            |  |  |  |  |  |
| 6<br>7<br>8 | Wo                                              | rkbook:              | Case (Main           | 1)                   |                                     |                         |                            |  |  |  |  |  |
| 9           |                                                 |                      |                      | Material Streams     | S                                   | Fluid Pk                | g: All                     |  |  |  |  |  |
| 11          | Name                                            |                      | Rich Amine           | Air                  | Pumped Rich Amine                   | Hot Rich Amine          | CO2                        |  |  |  |  |  |
| 12          | Vapour Fraction                                 |                      | 0.0000               | 1.0000               | 0.0000                              | 0.0000                  | 1.0000                     |  |  |  |  |  |
| 13          | Temperature                                     | (C)                  | 33.29                | 25.20                | 33.38                               | 50.00 *                 | 100.8                      |  |  |  |  |  |
| 14          | Pressure                                        | (kPa)                | 200.0                | 180.0                | 500.0 *                             | 460.0                   | 410.0                      |  |  |  |  |  |
| 15          | Molar Flow                                      | (kgmole/h)           | 8.896e+004           | 2.944e+004           | 8.896e+004                          | 8.896e+004              | 1500<br>5.585e+004         |  |  |  |  |  |
| 16<br>17    | Mass Flow<br>Liquid Volume Flow                 | (kg/h)<br>(m3/h)     | 1.743e+006<br>1755   | 8.429e+005<br>979.4  | 1.743e+006<br>1755                  | 1.743e+006<br>1755      | 5.585e+004<br>66.19        |  |  |  |  |  |
| 18          | Heat Flow                                       | (kJ/h)               | -2.880e+009          | 2.560e+008           | -2.880e+009                         | -2.764e+009             | 1.856e+007                 |  |  |  |  |  |
| 19          | Name                                            | (R3/11)              | Cool Lean Amine      | Prepared LeanAmine   | Lean Amine                          | Cold Lean Amine         | Mixed Amine                |  |  |  |  |  |
| 20          | Vapour Fraction                                 |                      | 0.0000               | 0.0000               | 0.0000                              | 0.0000                  | 0.0000                     |  |  |  |  |  |
| 21          | Temperature                                     | (C)                  | 130.1                | 25.00 *              | 145.0                               | 25.00 *                 | 25.00                      |  |  |  |  |  |
| 22          | Pressure                                        | (kPa)                | 380.0                | 260.0 *              | 420.0                               | 340.0                   | 340.0                      |  |  |  |  |  |
| 23          | Molar Flow                                      | (kgmole/h)           | 8.746e+004           | 8.840e+004 *         | 8.746e+004                          | 8.746e+004              | 8.929e+004                 |  |  |  |  |  |
| 24          | Mass Flow                                       | (kg/h)               | 1.687e+006           | 1.705e+006           | 1.687e+006                          | 1.687e+006              | 1.720e+006                 |  |  |  |  |  |
| 25          | Liquid Volume Flow                              | (m3/h)               | 1689                 | 1707                 | 1689                                | 1689                    | 1722                       |  |  |  |  |  |
| 26          | Heat Flow                                       | (kJ/h)               | -2.092e+009          | -2.885e+009          | -1.976e+009                         | -2.851e+009             | -2.914e+009                |  |  |  |  |  |
| 27          | Name                                            |                      | Make up Water        | Dry CO2              | Water                               | Cool CO2                | Collected Flue Gas         |  |  |  |  |  |
| 28          | Vapour Fraction                                 |                      | 0.0000               | 1.0000               | 0.0000                              | 0.7441                  | 1.0000                     |  |  |  |  |  |
| 29          | Temperature                                     | (C)                  | 25.00 *              | 20.00                | 20.00                               | 20.00 *                 | 25.00 *                    |  |  |  |  |  |
| 30          | Pressure<br>Malan Flanc                         | (kPa)                | 370.0 *              | 370.0                | 370.0<br>383.9                      | 370.0<br>1500           | 200.0 *                    |  |  |  |  |  |
| 31          | Molar Flow<br>Mass Flow                         | (kgmole/h)<br>(kg/h) | 1825<br>3.288e+004 * | 1116<br>4.891e+004   | 6939                                | 5.585e+004              | 3.000e+004 *<br>8.808e+005 |  |  |  |  |  |
| 33          | Liquid Volume Flow                              | (m3/h)               | 32.95                | 59.23                | 6.962                               | 66.19                   | 1027                       |  |  |  |  |  |
| 34          | Heat Flow                                       | (kJ/h)               | -6.226e+007          | 1.025e+007           | -1.319e+007                         | -2.948e+006             | 2.607e+008                 |  |  |  |  |  |
| 35          | Name                                            |                      | Hotter Rich Amine    | Depressed Amine      |                                     |                         |                            |  |  |  |  |  |
| 36          | Vapour Fraction                                 |                      | 0.0001               | 0.0000               |                                     |                         |                            |  |  |  |  |  |
| 37          | Temperature                                     | (C)                  | 110.0 *              | 25.00                |                                     |                         |                            |  |  |  |  |  |
| 38          | Pressure                                        | (kPa)                | 420.0                | 260.0 *              |                                     |                         |                            |  |  |  |  |  |
| 39          | Molar Flow                                      | (kgmole/h)           | 8.896e+004           | 8.929e+004           |                                     |                         |                            |  |  |  |  |  |
| 40          | Mass Flow                                       | (kg/h)               | 1.743e+006           | 1.720e+006           |                                     |                         |                            |  |  |  |  |  |
| 41          | Liquid Volume Flow                              | (m3/h)<br>(kJ/h)     | 1755<br>-2.324e+009  | 1722<br>-2.914e+009  |                                     |                         |                            |  |  |  |  |  |
| 42          | Heat Flow                                       | (KJ/II)              | -2.3246+009          | -2.9146+009          |                                     |                         |                            |  |  |  |  |  |
| 44          |                                                 |                      |                      | Compositions         |                                     | Fluid Pk                | g: All                     |  |  |  |  |  |
| 45          | Name                                            |                      | Rich Amine           | Air                  | Pumped Rich Amine                   | Hot Rich Amine          | CO2                        |  |  |  |  |  |
| 46          | Comp Mole Frac (Oxygen)                         |                      | 0.0000               | 0.1868               | 0.0000                              | 0.0000                  | 0.0004                     |  |  |  |  |  |
| 47          | Comp Mole Frac (MEAmine                         | )                    | 0.0280               | 0.0000               | 0.0280                              | 0.0280                  | 0.0000                     |  |  |  |  |  |
| 48          | Comp Mole Frac (H2O)                            |                      | 0.9578               | 0.0175               | 0.9578                              | 0.9578                  | 0.2601                     |  |  |  |  |  |
| 49          | Comp Mole Frac (CO2)                            |                      | 0.0142               | 0.0028               | 0.0142                              | 0.0142                  | 0.7385                     |  |  |  |  |  |
| 50          | Comp Mole Frac (Nitrogen)                       |                      | 0.0000               | 0.7928               | 0.0000                              | 0.0000                  | 0.0009                     |  |  |  |  |  |
| 51          | Name                                            |                      | Cool Lean Amine      | Prepared LeanAmine   | Lean Amine                          | Cold Lean Amine         | Mixed Amine                |  |  |  |  |  |
| 52          | Comp Mole Frac (Oxygen) Comp Mole Frac (MEAmine | `                    | 0.0000               | 0.0000 *             | 0.0000                              | 0.0000                  | 0.0000<br>0.0279           |  |  |  |  |  |
| 53<br>54    | Comp Mole Frac (H2O)                            | )                    | 0.0285<br>0.9698     | 0.0282 *<br>0.9697 * | 0.0285<br>0.9698                    | 0.0285<br>0.9698        | 0.0279                     |  |  |  |  |  |
| 55          | Comp Mole Frac (CO2)                            |                      | 0.0018               | 0.0022 *             | 0.9698                              | 0.9698                  | 0.0017                     |  |  |  |  |  |
| 56          | Comp Mole Frac (Nitrogen)                       |                      | 0.0000               | 0.0022               | 0.0000                              | 0.0000                  | 0.0000                     |  |  |  |  |  |
| 57          | Name                                            |                      | Make up Water        | Dry CO2              | Water                               | Cool CO2                | Collected Flue Gas         |  |  |  |  |  |
| 58          | Comp Mole Frac (Oxygen)                         |                      | 0.0000 *             | 0.0006               | 0.0000                              | 0.0004                  | 0.1834 *                   |  |  |  |  |  |
| 59          | Comp Mole Frac (MEAmine                         | )                    | 0.0000 *             | 0.0000               | 0.0000                              | 0.0000                  | 0.0000 *                   |  |  |  |  |  |
| 60          | Comp Mole Frac (H2O)                            |                      | 1.0000 *             | 0.0066               | 0.9976                              | 0.2601                  | 0.0000 *                   |  |  |  |  |  |
| 61          | Comp Mole Frac (CO2)                            |                      | 0.0000 *             | 0.9916               | 0.0024                              | 0.7385                  | 0.0385 *                   |  |  |  |  |  |
| 62          | Comp Mole Frac (Nitrogen)                       |                      | 0.0000 *             | 0.0012               | 0.0000                              | 0.0009                  | 0.7781 *                   |  |  |  |  |  |
| 63          | Aspen Technology Inc.                           |                      | Aspen                | HYSYS Version8 (2)   | 7.0.0.8138)                         |                         | Page 1 of 2                |  |  |  |  |  |

| гл                                                 |                                                |              |                   |                 |                                  |                |                    |                                              |                 |                     |
|----------------------------------------------------|------------------------------------------------|--------------|-------------------|-----------------|----------------------------------|----------------|--------------------|----------------------------------------------|-----------------|---------------------|
| 2                                                  |                                                | LEGENDS      |                   |                 | Case Name:                       | CO2            | 2 Capture_Save_Flu | e Gas Moo                                    | lel_iteration8_ | optimized_final.hsc |
| 3                                                  |                                                | Burlington,  |                   |                 | Unit Set:                        | SI             |                    |                                              |                 |                     |
| 5                                                  |                                                | USA          |                   |                 | Date/Time:                       | Thu            | Apr 04 21:57:56 20 | 19                                           |                 |                     |
| 6                                                  |                                                |              |                   |                 |                                  |                |                    |                                              |                 |                     |
| 7<br>8                                             | Worl                                           | kbook        | : Case (Ma        | ain             | ) (continued                     | (b             |                    |                                              |                 |                     |
| 9                                                  |                                                |              |                   | Con             | npositions (contin               | nued)          | )                  |                                              | Fluid Pk        | g: All              |
| 11                                                 | Name                                           |              | Hotter Rich Amine | ,               | Depressed Amine                  |                |                    |                                              |                 |                     |
| 12                                                 | Comp Mole Frac (Oxygen)                        |              | 0.000             | _               | 0.0000                           |                |                    |                                              |                 |                     |
| 13                                                 | Comp Mole Frac (MEAmine)                       |              | 0.023             | _               | 0.0279                           |                |                    |                                              |                 |                     |
| 14                                                 | Comp Mole Frac (H2O)                           |              | 0.95              |                 | 0.9704                           |                |                    |                                              |                 |                     |
| 15                                                 | Comp Mole Frac (CO2) Comp Mole Frac (Nitrogen) |              | 0.014             |                 | 0.0017<br>0.0000                 |                |                    |                                              |                 |                     |
| 17                                                 | Comp Wole Fac (Willogen)                       |              | 0.000             | 00              |                                  |                |                    |                                              |                 |                     |
| 18                                                 |                                                |              |                   |                 | Energy Streams                   |                |                    |                                              | Fluid Pk        | g: All              |
| 19                                                 | Name                                           |              | Pump Energy       |                 | Condensor Energy                 | Rel            | boiler Energy      | Cooler I                                     | Energy          | CO2 Cooler          |
| 20                                                 | Heat Flow                                      | (kJ/h)       | 6.618e+0          | 05              | 6.384e+007                       |                | 4.302e+008         |                                              | 7.592e+008      | 2.151e+007          |
| 21                                                 | Name                                           |              | Heater Energy     | 00              |                                  |                |                    |                                              |                 |                     |
| 22                                                 | Heat Flow                                      | (kJ/h)       | 4.398e+0          | 08              |                                  |                |                    |                                              |                 |                     |
| 24                                                 |                                                |              |                   |                 | Unit Ops                         |                |                    |                                              |                 |                     |
| 25                                                 | Operation Name                                 | Ope          | eration Type      |                 | Feeds                            |                | Products           |                                              | Ignored         | Calc Level          |
| 26                                                 | T 100                                          |              | • •               | Pre             | pared Lean Amine                 |                | Rich Amine         |                                              | .,,             | 2500 *              |
| 27                                                 | T-100 Absorber                                 |              |                   |                 | lected Flue Gas                  |                | Air                |                                              | No              | 2500 *              |
| 28                                                 | E-100                                          | Heat Exc     |                   | nped Rich Amine |                                  | Hot Rich Amine |                    | No                                           | 500.0 *         |                     |
| 29                                                 | £ 100                                          | Ticat Exc    | Treat Extendinger |                 | n Amine                          | -              | Cool Lean Amine    |                                              | 110             | 300.0               |
| 30                                                 | P-100                                          | Pump         | Pump              |                 | ch Amine                         |                | Pumped Rich Amine  | <u>;                                    </u> | No              | 500.0 *             |
| 32                                                 |                                                |              |                   |                 | Pump Energy<br>Hotter Rich Amine |                | Lean Amine         |                                              |                 |                     |
| 33                                                 | T-101                                          | Distillation |                   |                 | iler Energy CO2                  |                |                    |                                              | No              | 2500 *              |
| 34                                                 |                                                |              |                   |                 |                                  | T i            | Condensor Energy   |                                              |                 |                     |
| 35                                                 | E-101                                          | Cooler       |                   | Coo             | ol Lean Amine                    |                | Cold Lean Amine    |                                              | No              | 500.0 *             |
| 36                                                 | E-101                                          | Cooler       |                   |                 |                                  |                | Cooler Energy      |                                              | NO              | 300.0 *             |
| 37                                                 | E-102                                          | Cooler       |                   | CO              | 2                                | -              | Cool CO2           |                                              | No              | 500.0 *             |
| 38                                                 |                                                |              |                   | Cal             | d Lean Amine                     |                | CO2 Cooler         |                                              |                 |                     |
| 39<br>40                                           | MIX-100                                        | Mixer        |                   |                 | ke up Water                      | $\dashv$       | Mixed Amine        |                                              | No              | 500.0 *             |
| 41                                                 |                                                |              |                   |                 | ol CO2                           | 1              | Water              |                                              |                 |                     |
| 42                                                 | V-100                                          | Separator    |                   |                 |                                  | _              | Dry CO2            |                                              | No              | 500.0 *             |
| 43                                                 | E-103                                          | Heater       |                   | Hot             | Rich Amine                       |                | Hotter Rich Amine  |                                              | No              | 500.0 *             |
| 44                                                 |                                                |              |                   |                 | nter Energy                      | _              |                    |                                              |                 |                     |
| 45                                                 | RCY-1<br>VLV-100                               | Recycle      |                   | _               | pressed Amine                    |                | Prepared Lean Am   | ine                                          | No              | 3500 *<br>500.0 *   |
| 46<br>47                                           | V L V -1UU                                     | Valve        |                   | IVIIX           | xed Amine                        |                | Depressed Amine    |                                              | No              | 500.0 *             |
| 48                                                 |                                                |              |                   |                 |                                  |                |                    |                                              |                 |                     |
|                                                    |                                                |              |                   |                 |                                  |                |                    |                                              |                 |                     |
| 50                                                 |                                                |              |                   |                 |                                  |                |                    |                                              |                 |                     |
| 51                                                 |                                                |              |                   |                 |                                  |                |                    |                                              |                 |                     |
| 52                                                 |                                                |              |                   |                 |                                  |                |                    |                                              |                 |                     |
| 53                                                 |                                                |              |                   |                 |                                  |                |                    |                                              |                 |                     |
| 54                                                 |                                                |              |                   |                 |                                  |                |                    |                                              |                 |                     |
| 56                                                 |                                                |              |                   |                 |                                  |                |                    |                                              |                 |                     |
| 57                                                 |                                                |              |                   |                 |                                  |                |                    |                                              |                 |                     |
| 50<br>51<br>52<br>53<br>54<br>55<br>56<br>57<br>58 |                                                |              |                   |                 |                                  |                |                    |                                              |                 |                     |
| 59                                                 |                                                |              |                   |                 |                                  |                |                    |                                              |                 |                     |
| 60                                                 |                                                |              |                   |                 |                                  |                |                    |                                              |                 |                     |
| 61                                                 |                                                |              |                   |                 |                                  |                |                    |                                              |                 |                     |
| 62                                                 | Asnon Took 1 I                                 |              |                   | nor T           | IVCVC Varriante (O               | 700            | 0 0120)            |                                              |                 | Do 2 -£ 2           |
| 63                                                 | Aspen Technology Inc.                          |              | Asj               | pen f           | HYSYS Version8 (2)               | 7.0.0          | 0.0130)            |                                              |                 | Page 2 of 2         |

# Appendix I – Full Material and Energy Report

| 1        |                                       |                             |                    |        |                        |       |                                         |                              | _             |                |         |
|----------|---------------------------------------|-----------------------------|--------------------|--------|------------------------|-------|-----------------------------------------|------------------------------|---------------|----------------|---------|
| 2        |                                       | LEGENDS                     |                    |        | Case Name:             | CO    | 2 Capture_Save_Flue                     | Gas Model_iteration          | 18_op         | otimized_fina  | al.hsc  |
| 3        | aspentech                             | Burlington,<br>USA          | MA                 |        | Unit Set:              | SI    |                                         |                              |               |                |         |
| 5        |                                       | OOA                         |                    |        | Date/Time:             | Thu   | Apr 04 21:51:42 201                     | 9                            |               |                |         |
| 6        | N                                     | 04                          | D' A.              | . • .  | _                      |       | FI                                      | uid Package:                 | Bas           | sis-1          |         |
| 7        | water                                 | iai Strea                   | am: Rich An        | nın    | е                      |       | Pi                                      | operty Package:              | Ami           | ine Pkg - KE   |         |
| 9        |                                       |                             |                    |        |                        |       |                                         | -1 - 1,7 3 -                 |               |                |         |
| 10       |                                       |                             |                    |        | CONDITIONS             |       |                                         |                              |               |                |         |
| 11       | Vapour / Phase Fraction               |                             | Overall 0.0000     | A      | queous Phase           |       |                                         |                              |               |                |         |
| 12<br>13 | Temperature:                          | (C)                         | 33.29              |        | 1.0000                 |       |                                         |                              | +             |                |         |
| 14       | Pressure:                             | (kPa)                       | 200.0              |        | 200.0                  |       |                                         |                              |               |                |         |
| 15       | Molar Flow                            | (kgmole/h)                  | 8.896e+004         |        | 8.896e+004             |       |                                         |                              | _             |                |         |
| 16       | Mass Flow                             | (kg/h)<br>(m3/h)            | 1.743e+006<br>1755 |        | 1.743e+006<br>1755     |       |                                         |                              |               |                |         |
| 17<br>18 | Std Ideal Liq Vol Flow Molar Enthalpy | (kJ/kgmole)                 | -3.238e+004        |        | -3.238e+004            |       |                                         |                              |               |                |         |
| 19       |                                       | kJ/kgmole-C)                | 77.49              |        | 77.49                  |       |                                         |                              | 土             |                |         |
| 20       | Heat Flow                             | leat Flow (kJ/h)            |                    |        | -2.880e+009            |       |                                         | -                            | Ţ             |                |         |
| 21       | Liq Vol Flow @Std Cond                | 1648 *                      |                    | 1648   |                        |       |                                         |                              |               |                |         |
| 22       |                                       |                             |                    | C      | OMPOSITION             |       |                                         |                              |               |                |         |
| 24       |                                       |                             |                    |        | hyarall Dhasa          |       |                                         |                              |               |                | 0.0000  |
| 25       |                                       |                             |                    |        | verall Phase           |       |                                         | Vapo                         | - 1           |                | 0.0000  |
| 26<br>27 | COMPONENTS                            | MOLAR FLO<br>(kgmole/l      |                    | ION    | MASS FLOW              |       | MASS FRACTION                           | LIQUID VOLUM<br>FLOW (m3/h)  | 1E            | LIQUID V       |         |
| 28       | Oxygen                                | , 0                         | <i>'</i>           | 0000   | (kg/h)<br>20.0977      |       | 0.0000                                  | 0.01                         | 77            | FRAC           | 0.0000  |
| 29       | MEAmine                               | 2489.                       | -                  | 0.0280 |                        | 48    | 0.0873                                  | 149.55                       | 88            |                | 0.0852  |
| 30       | H2O                                   | 85206.                      | 8913 0.9           | 0.9578 |                        | 06    | 0.8808                                  | 1538.10                      | 84            |                | 0.8764  |
| 31       | CO2                                   | 1261.                       | <del></del>        | 142    | 55506.4719<br>38.6884  |       | 0.0319                                  | 67.25                        | $\rightarrow$ |                | 0.0383  |
| 32       | Nitrogen<br>Total                     | 88960.                      |                    | 0000   | 38.68<br>1.742672761e+ | _     | 0.0000<br>1.0000                        | 0.04<br>1754.98              |               |                | 1.0000  |
| 34       |                                       |                             |                    |        |                        |       |                                         | - II                         |               |                |         |
| 35       |                                       |                             |                    | Ac     | queous Phase           | ,     | 1                                       | Phas                         | e Frac        | ction          | 1.000   |
| 36<br>37 | COMPONENTS                            | MOLAR FLO<br>(kgmole/l      |                    | ION    | MASS FLOW (kg/h)       |       | MASS FRACTION                           | LIQUID VOLUME<br>FLOW (m3/h) |               | LIQUID V       |         |
| 38       | Oxygen                                | , ,                         |                    | 0000   | 20.09                  | 77    | 0.0000                                  | 0.01                         | 77            | 11010          | 0.0000  |
| 39       | MEAmine                               | 2489.                       | 9653 0.0           | 280    | 152096.79              | 48    | 0.0873                                  | 149.55                       | 88            |                | 0.0852  |
| 40       | H2O                                   | 85206.                      |                    | 578    | 1.535010708e+          | -     | 0.8808                                  | 1538.1084                    |               |                | 0.8764  |
| 41<br>42 | CO2<br>Nitrogen                       | 1261.                       | <u> </u>           | 0142   | 55506.47<br>38.68      |       | 0.0319                                  | 67.25                        |               |                | 0.0383  |
| 43       | Total                                 | 88960.                      |                    | 0000   | 1.742672761e+          |       | 1.0000                                  | 1754.98                      | _             |                | 1.0000  |
| 44       |                                       |                             | A 1                |        |                        |       | FI                                      | uid Package:                 | Bas           | sis-1          |         |
| 45       | Mater                                 | ial Strea                   | am: Air            |        |                        |       | Pi                                      | operty Package:              | Δmi           | ine Pkg - KE   |         |
| 46<br>47 |                                       |                             |                    |        |                        |       | • • • • • • • • • • • • • • • • • • • • | operty r ackage.             | AIIII         | ille i kg - KL | -       |
| 48       |                                       |                             |                    |        | CONDITIONS             |       |                                         |                              |               |                |         |
| 49       |                                       |                             | Overall            | ١      | /apour Phase           |       |                                         |                              |               |                |         |
| 50       | Vapour / Phase Fraction               | (0)                         | 1.0000             |        | 1.0000                 |       |                                         |                              | +             |                |         |
| 51<br>52 | Temperature: Pressure:                | (C)<br>(kPa)                | 25.20<br>180.0     |        | 25.20<br>180.0         |       |                                         |                              | +             |                |         |
| 53       | Molar Flow                            | (kgmole/h)                  | 2.944e+004         |        | 2.944e+004             |       |                                         |                              |               |                |         |
| 54       | Mass Flow                             | (kg/h)                      | 8.429e+005         |        | 8.429e+005             |       |                                         |                              |               |                |         |
| 55       | Std Ideal Liq Vol Flow                | (m3/h)                      | 979.4              |        | 979.4                  | _     |                                         |                              | +             |                |         |
| 56<br>57 | Molar Enthalpy  Molar Entropy (       | (kJ/kgmole)<br>kJ/kgmole-C) | 8694<br>186.5      |        | 8694<br>186.5          |       |                                         |                              | +             |                |         |
| 58       | Heat Flow                             | (kJ/h)                      | 2.560e+008         |        | 2.560e+008             |       |                                         |                              | $\top$        |                |         |
| 59       | Liq Vol Flow @Std Cond                | (m3/h)                      |                    |        |                        |       |                                         |                              |               |                |         |
| 60       |                                       |                             |                    |        |                        |       |                                         |                              |               |                |         |
| 61<br>62 |                                       |                             |                    |        |                        |       |                                         |                              |               |                |         |
| 63       | Aspen Technology Inc                  |                             | Aspen              | HYS    | YS Version 8 (27       | 7.0.0 | 0.8138)                                 |                              |               | Page           | 1 of 16 |
| _        | Licensed to: LEGENDS                  |                             | -,                 |        | 1=                     |       |                                         |                              |               | * Specified b  |         |

Licensed to: LEGENDS \* Specified by user.

| 1                    |                                                                        |                         |                       |                      |            | Case Name:               | CO2           | 2 Capture_Save_Flue ( | Gas Model_iteration8_o       | ptimized_final.hsc        |  |  |
|----------------------|------------------------------------------------------------------------|-------------------------|-----------------------|----------------------|------------|--------------------------|---------------|-----------------------|------------------------------|---------------------------|--|--|
| 3                    |                                                                        | LEGENDS<br>Burlington,  |                       |                      |            |                          | SI            |                       |                              |                           |  |  |
| 5                    |                                                                        | USA                     |                       |                      |            | Date/Time:               | Thu           | Apr 04 21:51:42 2019  |                              |                           |  |  |
| 6                    |                                                                        |                         |                       |                      |            |                          |               | Flui                  | d Package: Ba                | sis-1                     |  |  |
| 7<br>8               | Mater                                                                  | ial Stre                | am:                   | Air (con             | tin        | ued)                     |               |                       |                              | nine Pkg - KE             |  |  |
| 9                    |                                                                        |                         |                       |                      | С          | OMPOSITION               |               |                       |                              |                           |  |  |
| 11                   |                                                                        |                         |                       |                      | C          | verall Phase             |               |                       | Vapour Fr                    | action 1.0000             |  |  |
| 12<br>13<br>14       | COMPONENTS                                                             | MOLAR FL<br>(kgmole/    |                       | MOLE FRACT           | ION        | MASS FLOW<br>(kg/h)      |               | MASS FRACTION         | LIQUID VOLUME<br>FLOW (m3/h) | LIQUID VOLUME<br>FRACTION |  |  |
| 15                   | Oxygen                                                                 |                         | .2190                 |                      | 868        | 176039.006               | 7             | 0.2088                | 154.7351                     | 0.1580                    |  |  |
| 16                   | MEAmine                                                                | 1                       | .2335                 |                      | 000        | 14.262                   | $\rightarrow$ | 0.0000                | 0.0140                       | 0.0000                    |  |  |
| 17<br>18             | H2O<br>CO2                                                             |                         | .7610                 |                      | 175<br>028 | 9273.470<br>3691.916     | $\rightarrow$ | 0.0110                | 9.2922<br>4.4732             | 0.0095<br>0.0046          |  |  |
| 19                   | Nitrogen                                                               | 1                       | 83.8887<br>23342.5594 |                      | 928        | 653895.128               | _             | 0.7758                | 810.9080                     | 0.8279                    |  |  |
| 20                   | Total                                                                  | 29442                   |                       |                      | 000        | 842913.783               | _             | 1.0000                | 979.4225                     | 1.0000                    |  |  |
| 21<br>22             |                                                                        |                         |                       |                      | ٧          | apour Phase              |               |                       | Phase Fra                    | action 1.000              |  |  |
| 23                   | COMPONENTS                                                             | MOLAR FL<br>(kgmole/    |                       | MOLE FRACT           | ION        | MASS FLOW<br>(kg/h)      |               | MASS FRACTION         | LIQUID VOLUME<br>FLOW (m3/h) | LIQUID VOLUME<br>FRACTION |  |  |
| 25                   | Oxygen                                                                 |                         | 5501.2190             |                      | 868        | 176039.006               | 7             | 0.2088                | 154.7351                     | 0.1580                    |  |  |
| 26                   | MEAmine                                                                | 1                       | 0.2335                |                      | 000        | 14.262                   | $\rightarrow$ | 0.0000                | 0.0140                       | 0.0000                    |  |  |
| 27                   | H2O<br>CO2                                                             |                         | .7610<br>.8887        | 0.0175               |            | 9273.470                 | _             | 0.0110<br>0.0044      | 9.2922<br>4.4732             | 0.0095<br>0.0046          |  |  |
| 28<br>29             | Nitrogen                                                               | 23342                   | - 1                   | 0.0028<br>0.7928     |            | 3691.9160<br>653895.1280 |               | 0.0044                | 810.9080                     | 0.0046                    |  |  |
| 30                   | Total                                                                  | 29442                   |                       |                      | 000        | 842913.783               | _             | 1.0000                | 979.4225                     | 1.0000                    |  |  |
| 32<br>33<br>34<br>35 | Mater                                                                  | ial Stre                | am:                   | Pumped               |            | ich Amine                | <b>9</b>      | Pro                   | perty Package: Am            | nine Pkg - KE             |  |  |
| 36                   |                                                                        |                         |                       | Overall              | А          | queous Phase             |               |                       |                              |                           |  |  |
| 37                   | Vapour / Phase Fraction                                                | (0)                     |                       | 0.0000               |            | 1.0000                   |               |                       |                              |                           |  |  |
| 38<br>39             | Temperature: Pressure:                                                 | (C)<br>(kPa)            |                       | 33.38<br>500.0 *     |            | 33.38<br>500.0           |               |                       |                              |                           |  |  |
| 40                   | Molar Flow                                                             | (kgmole/h)              |                       | 8.896e+004           |            | 8.896e+004               |               |                       |                              |                           |  |  |
| 41                   | Mass Flow                                                              | (kg/h)                  |                       | 1.743e+006           |            | 1.743e+006               |               |                       |                              |                           |  |  |
| 42                   | Std Ideal Liq Vol Flow                                                 | (m3/h)                  |                       | 1755                 |            | 1755                     |               |                       |                              |                           |  |  |
| 43                   | Molar Enthalpy                                                         | (kJ/kgmole)             |                       | -3.237e+004          |            | -3.237e+004              |               |                       |                              |                           |  |  |
| 44<br>45             | Molar Entropy ( Heat Flow                                              | (kJ/kgmole-C)<br>(kJ/h) |                       | 77.50<br>-2.880e+009 |            | 77.50<br>-2.880e+009     |               |                       |                              |                           |  |  |
| 46                   | Liq Vol Flow @Std Cond                                                 | (m3/h)                  |                       | 1648 *               |            | 1648                     |               |                       |                              |                           |  |  |
| 47<br>48             |                                                                        |                         |                       |                      | C          | OMPOSITION               |               |                       |                              |                           |  |  |
| 49<br>50             |                                                                        |                         |                       |                      | С          | verall Phase             |               |                       | Vapour Fr                    | action 0.0000             |  |  |
| 51<br>52             | COMPONENTS                                                             | MOLAR FL<br>(kgmole/    |                       | MOLE FRACT           | ION        | MASS FLOW<br>(kg/h)      |               | MASS FRACTION         | LIQUID VOLUME<br>FLOW (m3/h) | LIQUID VOLUME<br>FRACTION |  |  |
| 53                   | Oxygen                                                                 |                         | .6281                 | 0.0                  | 000        | 20.097                   | 7             | 0.0000                | 0.0177                       | 0.0000                    |  |  |
| 54                   | MEAmine                                                                |                         | .9653                 | 0.0280               |            | 152096.794               | $\rightarrow$ | 0.0873                | 149.5588                     | 0.0852                    |  |  |
| 55                   | H2O                                                                    | 85206                   | -                     | 0.9578               |            | 1.535010708e+0           | $\rightarrow$ | 0.8808                | 1538.1084                    | 0.8764                    |  |  |
| 56<br>57             | CO2<br>Nitrogen                                                        |                         | .2327                 |                      | 000        | 55506.471<br>38.688      | _             | 0.0319                | 67.2533<br>0.0480            | 0.0383                    |  |  |
| 58                   | Total                                                                  | 88960                   |                       |                      | 000        | 1.742672761e+0           |               | 1.0000                | 1754.9861                    | 1.0000                    |  |  |
| 59<br>60<br>61<br>62 |                                                                        |                         | •                     |                      |            |                          | •             |                       |                              |                           |  |  |
| 63                   | Aspen Technology Inc. Aspen HYSYS Version 8 (27.0.0.8138) Page 2 of 16 |                         |                       |                      |            |                          |               |                       |                              |                           |  |  |

| 1        |                         |                      |           |             |            | Case Name:               | CO       | 2 Canture Save Flue    | Gas Model_iteration8_c       | ntimized final hsc        |
|----------|-------------------------|----------------------|-----------|-------------|------------|--------------------------|----------|------------------------|------------------------------|---------------------------|
| 2        |                         | LEGENDS              |           |             |            |                          |          | 2 Capture_Cave_r rue   | Gas Model_iterationo_c       | pumizeu_imai.nsc          |
| 3        |                         | Burlington,<br>USA   | MA        |             |            | Unit Set:                | SI       |                        |                              |                           |
| 5        |                         |                      |           |             |            | Date/Time:               | Thu      | ı Apr 04 21:51:42 2019 |                              |                           |
| 6        | Motor                   | ial Stra             | <b>.</b>  | Dumnor      | 1 D        | iah Amin                 | _ /      | /oontin                | id Package: Ba               | sis-1                     |
| 7<br>8   | Mater                   | iai Sire             | aiii.     | rumped      | אג         | ich Amin                 | е (      | Pro                    | pperty Package: Ar           | nine Pkg - KE             |
| 9        |                         |                      |           |             |            | OMPOSITION               |          |                        |                              |                           |
| 10<br>11 |                         |                      |           |             |            | OWIFOSITION              |          |                        |                              |                           |
| 12       |                         |                      |           |             | Ac         | queous Phase             | !        |                        | Phase Fra                    | action 1.000              |
| 13<br>14 | COMPONENTS              | MOLAR FL<br>(kgmole/ |           | MOLE FRACT  | ION        | MASS FLOW<br>(kg/h)      |          | MASS FRACTION          | LIQUID VOLUME<br>FLOW (m3/h) | LIQUID VOLUME<br>FRACTION |
| 15       | Oxygen                  | , ,                  | .6281     | 0.0         | 000        | 20.09                    | 77       | 0.0000                 | 0.0177                       | 0.0000                    |
| 16       | MEAmine                 | 2489                 | .9653     | 0.0         | 280        | 152096.79                | 48       | 0.0873                 | 149.5588                     | 0.0852                    |
| 17       | H2O                     | 85206                |           | 1           | 578        | 1.535010708e+            |          | 0.8808                 | 1538.1084                    | 0.8764                    |
| 18       | CO2                     |                      | 1261.2327 |             | 142        | 55506.47<br>38.68        |          | 0.0319<br>0.0000       | 67.2533<br>0.0480            | 0.0383<br>0.0000          |
| 19<br>20 | Nitrogen<br>Total       | 88960.0984           |           |             | 000        | 1.742672761e+            |          | 1.0000                 | 1754.9861                    | 1.0000                    |
| 21       |                         |                      |           |             |            | _                        |          | Flu                    | id Package: Ba               | sis-1                     |
| 22       | Mater                   | ial Strea            | am:       | Hot Ric     | h A        | mine                     |          | De                     | operty Package: Ar           | nine Pkg - KE             |
| 23<br>24 |                         |                      |           |             |            |                          |          | Pit                    | ррепу Раскаде: Аг            | nine Pkg - KE             |
| 25       |                         |                      |           |             | (          | CONDITIONS               |          |                        |                              |                           |
| 26       |                         |                      |           | Overall     | A          | queous Phase             |          |                        |                              |                           |
| 27       | Vapour / Phase Fraction |                      |           | 0.0000      |            | 1.0000                   |          |                        |                              |                           |
| 28       | Temperature:            | (C)                  |           | 50.00 *     |            | 50.00<br>460.0           |          |                        |                              |                           |
| 29<br>30 | Pressure:<br>Molar Flow | (kPa)<br>(kgmole/h)  |           | 460.0       | 8.896e+004 |                          |          |                        |                              |                           |
| 31       | Mass Flow               | (kg/h)               |           | 1.743e+006  |            | 8.896e+004<br>1.743e+006 |          |                        |                              |                           |
| 32       | Std Ideal Liq Vol Flow  | (m3/h)               |           | 1755        | 1755       |                          |          |                        |                              |                           |
| 33       | Molar Enthalpy          | (kJ/kgmole)          |           | -3.107e+004 |            | -3.107e+004              |          |                        |                              |                           |
| 34       |                         | kJ/kgmole-C)         |           | 79.23       |            | 79.23                    |          |                        |                              |                           |
| 35       | Heat Flow               | (kJ/h)               |           | -2.764e+009 |            | -2.764e+009              |          |                        |                              |                           |
| 36<br>37 | Liq Vol Flow @Std Cond  | (m3/h)               |           | 1648 *      |            | 1648                     | <u> </u> |                        |                              |                           |
| 38       |                         |                      |           |             | С          | OMPOSITION               | l        |                        |                              |                           |
| 39<br>40 |                         |                      |           |             | 0          | verall Phase             |          |                        | Vapour F                     | raction 0.0000            |
| 41<br>42 | COMPONENTS              | MOLAR FL<br>(kgmole/ |           | MOLE FRACT  | ION        | MASS FLOW<br>(kg/h)      |          | MASS FRACTION          | LIQUID VOLUME<br>FLOW (m3/h) | LIQUID VOLUME<br>FRACTION |
| 43       | Oxygen                  | , ,                  | .6281     | 0.0         | 000        | 20.09                    | 77       | 0.0000                 | 0.0177                       | 0.0000                    |
| 44       | MEAmine                 | 2489                 | .9653     | 0.0         | 280        | 152096.79                | 48       | 0.0873                 | 149.5588                     | 0.0852                    |
| 45       | H2O                     | 85206                |           | 1           | 578        | 1.535010708e+            |          | 0.8808                 | 1538.1084                    | 0.8764                    |
| 46       | CO2                     | 1261                 | .3811     |             | 000        | 55506.47<br>38.68        |          | 0.0319<br>0.0000       | 67.2533<br>0.0480            | 0.0383<br>0.0000          |
| 47<br>48 | Nitrogen<br>Total       | 88960                |           |             | 000        | 1.742672761e+            |          | 1.0000                 | 1754.9861                    | 1.0000                    |
| 49       |                         |                      |           |             |            | ueous Phase              |          |                        | Phase Fra                    |                           |
| 51<br>52 | COMPONENTS              | MOLAR FL<br>(kgmole/ |           | MOLE FRACT  | ION        | MASS FLOW<br>(kg/h)      |          | MASS FRACTION          | LIQUID VOLUME<br>FLOW (m3/h) | LIQUID VOLUME<br>FRACTION |
| 53       | Oxygen                  | , ,                  | .6281     | 0.0         | 000        | 20.09                    | 77       | 0.0000                 | 0.0177                       | 0.0000                    |
| 54       | MEAmine                 | 2489                 | .9653     | 0.0         | 280        | 152096.79                |          | 0.0873                 | 149.5588                     | 0.0852                    |
| 55       | H2O                     | 85206                |           |             | 578        | 1.535010708e+            |          | 0.8808                 | 1538.1084                    | 0.8764                    |
| 56       | CO2                     |                      | 2327      |             | 000        | 55506.47<br>38.68        |          | 0.0319<br>0.0000       | 67.2533<br>0.0480            | 0.0383<br>0.0000          |
| 57<br>58 | Nitrogen<br>Total       | 88960                | .3811     |             | 000        | 1.742672761e+            |          | 1.0000                 | 1754.9861                    | 1.0000                    |
| 59       |                         |                      |           |             |            |                          |          |                        |                              |                           |
| 60       |                         |                      |           |             |            |                          |          |                        |                              |                           |
| 61       |                         |                      |           |             |            |                          |          |                        |                              |                           |
| 62<br>63 | Aspen Technology Inc    |                      |           | Asnen       | HYS\       | S Version 8 (27          | 7 () (   | ) 8138)                |                              | Page 3 of 16              |
| აა       | sport recritiology fric |                      |           | Aspen       |            | . 5 1010110 (2)          | (        | 3.3100/                |                              | 1 490 0 01 10             |

| 1                         |                           |                         |         |                    |            |                     |               |                     |                             |          |                  |              |
|---------------------------|---------------------------|-------------------------|---------|--------------------|------------|---------------------|---------------|---------------------|-----------------------------|----------|------------------|--------------|
| 2                         |                           | LEGENDS                 |         |                    |            | Case Name:          |               | 2 Capture_Save_Flu  | e Gas Model_iteratio        | n8_opt   | imized_final.hsc | ;            |
| 3                         |                           | Burlington, N<br>USA    | MΑ      |                    |            | Unit Set:           | SI            |                     |                             |          |                  |              |
| 5                         |                           |                         |         |                    |            | Date/Time:          | Thu           | Apr 04 21:51:42 201 | 9                           |          |                  |              |
| 6<br>7                    | Mator                     | ial Strea               | m· C    | <b>0</b> 2         |            |                     |               | F                   | luid Package:               | Basi     | s-1              |              |
| 8                         | iviatei                   | iai Su ca               | C       | UZ                 |            |                     |               | F                   | roperty Package:            | Amir     | ne Pkg - KE      |              |
| 9                         |                           |                         |         |                    | -          | CONDITIONS          |               |                     |                             |          |                  |              |
| 10<br>11                  |                           |                         | Over    | ılıc               |            | apour Phase         |               |                     |                             |          |                  |              |
| 12                        | Vapour / Phase Fraction   |                         | Ovei    | 1.0000             |            | 1.0000              |               |                     |                             |          |                  |              |
| 13                        | Temperature:              | (C)                     |         | 100.8              |            | 100.8               |               |                     |                             |          |                  |              |
| 14                        | Pressure:                 | (kPa)                   |         | 410.0              |            | 410.0               |               |                     |                             | _        |                  |              |
| 15<br>16                  | Molar Flow<br>Mass Flow   | (kgmole/h)<br>(kg/h)    | 5.5     | 1500<br>85e+004    |            | 1500<br>5.585e+004  |               |                     |                             |          |                  |              |
| 17                        | Std Ideal Liq Vol Flow    | (m3/h)                  | 0.0     | 66.19              |            | 66.19               |               |                     |                             |          |                  |              |
| 18                        | Molar Enthalpy            | (kJ/kgmole)             | 1.2     | 37e+004            |            | 1.237e+004          |               |                     |                             |          |                  |              |
| 19                        |                           | kJ/kgmole-C)            |         | 213.0              |            | 213.0               |               |                     |                             |          |                  |              |
| 20                        | Heat Flow @Std Cond       | (kJ/h)                  | 1.8     | 56e+007<br>55.92 * |            | 1.856e+007<br>55.92 |               |                     |                             |          |                  |              |
| 21<br>22                  | Liq Vol Flow @Std Cond    | (m3/h)                  |         | 00.9Z <sup>*</sup> |            |                     |               |                     |                             | _        |                  |              |
| 23                        |                           |                         |         |                    | С          | OMPOSITION          |               |                     |                             |          |                  |              |
| Overall Phase Vapour Frac |                           |                         |         |                    |            |                     |               |                     | ction 1.0                   | 0000     |                  |              |
| 25<br>26                  | COMPONENTS                | MOLAR FLO               | NA/ NAC | LE EDACE           |            | MASS FLOW           |               | MASS FRACTION       |                             |          |                  |              |
| 27                        | COMPONENTS                | LE FRACT                | ION     | (kg/h)             |            | MASS FRACTION       | FLOW (m3/h)   | /IE                 | FRACTION                    |          |                  |              |
| 28                        | Oxygen                    | 0.6                     | 281     | 0.0                | 004        | 20.09               | 77            | 0.0004              | <u> </u>                    | 77       |                  | 0003         |
| 29                        | MEAmine                   |                         | 000     |                    | 000        | 0.00                |               | 0.0000              | _                           |          |                  | 0000         |
| 30                        | H2O                       | 390.2                   |         |                    | 601        | 7030.81             | $\rightarrow$ | 0.1259              |                             | _        |                  | 1064         |
| 31<br>32                  | CO2<br>Nitrogen           | 1107.9                  | 811     |                    | 385<br>009 | 48758.48<br>38.68   |               | 0.8731              | _                           |          |                  | 3926<br>0007 |
| 33                        | Total                     | 1500.1                  |         |                    | 000        | 55848.08            | _             | 1.0000              |                             | _        |                  | 0000         |
| 34                        |                           | •                       | •       |                    | Va         | apour Phase         |               |                     | Phas                        | e Frac   | tion 1.          | .000         |
| 35<br>36                  | 001/001/51/50             | 1401 45 51 0            |         |                    | ľ          | •                   |               |                     |                             |          |                  |              |
| 37                        | COMPONENTS                | MOLAR FLO<br>(kgmole/h) |         | LE FRACT           | ION        | MASS FLOW<br>(kg/h) |               | MASS FRACTION       | LIQUID VOLUM<br>FLOW (m3/h) | ΊE       | FRACTION         |              |
| 38                        | Oxygen                    | 0.6                     | 281     | 0.0                | 004        | 20.09               | 77            | 0.0004              | 0.01                        | 77       | 0.0              | 0003         |
| 39                        | MEAmine                   | 1                       | 000     |                    | 000        | 0.00                |               | 0.0000              | -                           |          |                  | 0000         |
| 40                        | H2O<br>CO2                | 390.2<br>1107.9         |         |                    | 601<br>385 | 7030.81<br>48758.48 | $\rightarrow$ | 0.1259<br>0.8731    |                             | _        |                  | 1064<br>3926 |
| 41<br>42                  | Nitrogen                  |                         | 811     |                    | 009        | 38.68               |               | 0.8731              | +                           |          |                  | 0007         |
| 43                        | Total                     | 1500.1                  |         |                    | 000        | 55848.08            | _             | 1.0000              |                             |          |                  | 0000         |
| 44                        | Mada                      | 04                      | 0.      |                    |            | A•                  |               | F                   | luid Package:               | Basi     | s-1              |              |
| 45                        | Mater                     | ial Strea               | m: Co   | ol Le              | an         | Amine               |               | F                   | roperty Package:            | Amir     | ne Pkg - KE      |              |
| 46<br>47                  |                           |                         |         |                    |            |                     |               |                     | .opony r donage.            | 7 (11111 | .orng ILL        |              |
| 48                        |                           | <u>.</u>                |         |                    |            | CONDITIONS          |               |                     |                             |          |                  |              |
| 49                        |                           |                         | Over    |                    | Ac         | queous Phase        |               |                     |                             |          |                  |              |
| 50                        | Vapour / Phase Fraction   | (0)                     |         | 0.0000             |            | 1.0000              |               |                     |                             |          |                  |              |
| 51<br>52                  | Temperature: Pressure:    | (C)<br>(kPa)            |         | 130.1<br>380.0     |            | 130.1<br>380.0      |               |                     |                             | $\dashv$ |                  |              |
| 53                        | Molar Flow                | (kgmole/h)              | 8.7     | 46e+004            |            | 8.746e+004          |               |                     |                             | -        |                  |              |
| 54                        | Mass Flow                 | (kg/h)                  |         | 87e+006            |            | 1.687e+006          |               |                     |                             |          |                  |              |
| 55                        | Std Ideal Liq Vol Flow    | (m3/h)                  |         | 1689               |            | 1689                |               |                     |                             |          |                  |              |
| 56                        | Molar Enthalpy            | (kJ/kgmole)             | -2.3    | 92e+004            |            | -2.392e+004         |               |                     |                             | _        |                  |              |
| 57<br>58                  | Molar Entropy ( Heat Flow | kJ/kgmole-C)<br>(kJ/h)  | -2.0    | 88.04<br>92e+009   |            | -2.092e+009         |               |                     |                             | -        |                  |              |
| 59                        | Liq Vol Flow @Std Cond    | (m3/h)                  | -2.0    | 1673 *             |            | 1673                |               |                     |                             | -        |                  |              |
| 60                        |                           | ,                       |         |                    | 1          |                     |               | · ·                 |                             |          |                  |              |
| 61                        |                           |                         |         |                    |            |                     |               |                     |                             |          |                  |              |
| 62                        | Aonan Tachnalam Inc       |                         |         | Acnos              | LVCV       | (C \/oroion 0 /0    | 7.0.0         | 0120\               |                             |          | Dogg 4 -f        | 16           |
| 63                        | Aspen Technology Inc      |                         |         | Aspen              | птоү       | S Version 8 (27     | .0.0          | 1.0130)             |                             |          | Page 4 of        | 10           |

| П                |                           |                        |         |                      |            |                         |               |                       |                              |                           |
|------------------|---------------------------|------------------------|---------|----------------------|------------|-------------------------|---------------|-----------------------|------------------------------|---------------------------|
| 2                |                           | LEGENDS                |         |                      |            | Case Name:              | CO2           | 2 Capture_Save_Flue ( | Gas Model_iteration8_o       | otimized_final.hsc        |
| 3                |                           | Burlington,            | MA      |                      |            | Unit Set:               | SI            |                       |                              |                           |
| 5                |                           | USA                    |         |                      |            | Date/Time:              | Thu           | Apr 04 21:51:42 2019  |                              |                           |
| 6                |                           |                        |         |                      |            |                         |               | . Flu                 | id Package: Ba               | sis-1                     |
| 7                | Mater                     | ial Strea              | am:     | Cool Le              | an         | Amine (c                | or            | ntinued<br>Pro        | perty Package: Am            | ine Pkg - KE              |
| 9                |                           |                        |         |                      |            | - ALPONITION            |               |                       | persy : sieneger :           |                           |
| 10               |                           |                        |         |                      |            | OMPOSITION              |               |                       |                              |                           |
| 12               |                           |                        |         |                      | 0          | verall Phase            |               |                       | Vapour Fr                    | action 0.0000             |
| 13<br>14         | COMPONENTS                | MOLAR FLO<br>(kgmole/h |         | MOLE FRACTI          | ON         | MASS FLOW<br>(kg/h)     |               | MASS FRACTION         | LIQUID VOLUME<br>FLOW (m3/h) | LIQUID VOLUME<br>FRACTION |
| 15               | Oxygen                    | 1                      | 0000    |                      | 000        | 0.000                   | $\rightarrow$ | 0.0000                | 0.0000                       | 0.0000                    |
| 16               | MEAmine                   | 2489.                  |         |                      | 285        | 152096.794              | _             | 0.0902                | 149.5588                     | 0.0886                    |
| 17<br>18         | H2O<br>CO2                | 84816.<br>153          | 3294    |                      | 698<br>018 | 1.527979896e+0          |               | 0.9058<br>0.0040      | 1531.0634<br>8.1761          | 0.9066<br>0.0048          |
| 19               | Nitrogen                  |                        | 0000    |                      | 000        | 0.000                   | $\rightarrow$ | 0.0000                | 0.0000                       | 0.0000                    |
| 20               | Total                     | 87459.                 | -       |                      | 000        | 1.686824673e+0          | _             | 1.0000                | 1688.7983                    | 1.0000                    |
| 21 Aqueous Phase |                           |                        |         |                      |            |                         |               |                       | Phase Fra                    | ction 1.000               |
| 22               | COMPONENTS                | MOLAR FLO              | )W      | MOLE FRACTI          |            | MASS FLOW               |               | MASS FRACTION         | LIQUID VOLUME                | LIQUID VOLUME             |
| 24               | 00 0.12.11.0              | (kgmole/h              | -       |                      | 0.,        | (kg/h)                  |               |                       | FLOW (m3/h)                  | FRACTION                  |
| 25               | Oxygen                    | 0.                     | 0000    | 0.0                  | 000        | 0.000                   | 0             | 0.0000                | 0.0000                       | 0.0000                    |
| 26               | MEAmine                   | 2489.                  |         |                      | 285        | 152096.794              |               | 0.0902                | 149.5588                     | 0.0886                    |
|                  |                           |                        |         |                      |            |                         |               | 0.9058                | 1531.0634                    | 0.9066                    |
| 28               | CO2                       | <del> </del>           | 3294    |                      | 018        |                         |               | 0.0040                | 8.1761                       | 0.0048                    |
| 29<br>30         | Nitrogen<br>Total         | 87459.                 | 0000    |                      | 000        | 0.000<br>1.686824673e+0 | _             | 1.0000                | 0.0000<br>1688.7983          | 1.0000                    |
| 31               | Total                     | 67439.                 | 3120    | 1.0                  | 000        | 1.000024073640          | 0             |                       |                              |                           |
| 32               | Mater                     | ial Strea              | am:     | Prepare              | d L        | ean Amir                | 1e            | Fiu                   | id Package: Ba               | sis-1                     |
| 33               | mator                     |                        |         | ора.о                |            |                         |               | Pro                   | perty Package: Am            | ine Pkg - KE              |
| 34               |                           |                        |         |                      |            | CONDITIONS              |               |                       |                              |                           |
| 35<br>36         |                           |                        |         | Overall              |            | queous Phase            |               |                       |                              |                           |
| 37               | Vapour / Phase Fraction   |                        |         | 0.0000               |            | 1.0000                  |               |                       |                              |                           |
| 38               | Temperature:              | (C)                    |         | 25.00 *              |            | 25.00                   |               |                       |                              |                           |
| 39               | Pressure:                 | (kPa)                  |         | 260.0 *              |            | 260.0                   |               |                       |                              |                           |
| 40               | Molar Flow                | (kgmole/h)             |         | 8.840e+004 *         |            | 8.840e+004              |               |                       |                              |                           |
| 41               | Mass Flow                 | (kg/h)                 |         | 1.705e+006           |            | 1.705e+006              |               |                       |                              |                           |
| 42               | Std Ideal Liq Vol Flow    | (m3/h)                 |         | 1707                 |            | 1707                    |               |                       |                              |                           |
| 43               | Molar Enthalpy            | (kJ/kgmole)            |         | -3.264e+004          |            | -3.264e+004             |               |                       |                              |                           |
| 44<br>45         | Molar Entropy ( Heat Flow | kJ/kgmole-C)<br>(kJ/h) |         | 77.07<br>-2.885e+009 |            | 77.07<br>-2.885e+009    |               |                       |                              |                           |
| 46               | Liq Vol Flow @Std Cond    | (m3/h)                 |         | 1688 *               |            | 1688                    |               |                       |                              |                           |
| 47               | ,                         | , , ,                  |         |                      | С          | OMPOSITION              |               | l .                   |                              |                           |
| 48<br>49         |                           |                        |         |                      |            | verall Phase            |               |                       | Vapour Fr                    | action 0.0000             |
| 50<br>51         | OOMBONENTS                | MO: 45 5:              | 214/    | MOLESTAGE            |            |                         | ī             | MAGO ED ACTICI        | '<br>                        |                           |
| 52               | COMPONENTS                | MOLAR FLO<br>(kgmole/h |         | MOLE FRACTI          | ON         | MASS FLOW<br>(kg/h)     |               | MASS FRACTION         | LIQUID VOLUME<br>FLOW (m3/h) | LIQUID VOLUME<br>FRACTION |
| 53               | Oxygen                    |                        | .0000 * | 0.0                  | 000 *      | 0.000                   | 00 *          | 0.0000 *              | 0.0000 *                     | 0.0000 *                  |
| 54               | MEAmine                   | 2490.                  | -       |                      | 282 *      | 152111.056              | $\rightarrow$ | 0.0892 *              | 149.5728 *                   | 0.0876 *                  |
| 55               | H2O                       | 85721.                 |         | 0.9                  | 697 *      | 1.544284179e+0          | 06 *          | 0.9058 *              | 1547.4006 *                  | 0.9064 *                  |
| 56               | CO2                       |                        | .9088 * |                      | 022 *      | 8401.841                | _             | 0.0049 *              | 10.1799 *                    | 0.0060 *                  |
| 57               | Nitrogen                  |                        | .0000 * |                      | * 000      | 0.000                   | _             | 0.0000 *              | 0.0000 *                     | 0.0000 *                  |
| 58               | Total                     | 88402.                 | 1599    | 1.0                  | 000        | 1.704797077e+0          | Ö             | 1.0000                | 1707.1533                    | 1.0000                    |
| 59<br>60         |                           |                        |         |                      |            |                         |               |                       |                              |                           |
| 61               |                           |                        |         |                      |            |                         |               |                       |                              |                           |
| 62               |                           |                        |         |                      |            |                         |               |                       |                              |                           |
| H                | Aspen Technology Inc      |                        |         | Aspen                | HYSY       | S Version 8 (27.        | .0.0          | ).8138)               |                              | Page 5 of 16              |
| 63               | Alapon recrimology inc    | •                      |         |                      |            |                         |               |                       |                              | i ago o oi io             |

| 1              |                             |                          |                      |      | O No                  | 00    | 2 Ot O Fl            | One Madel Newstano           | Code d Coal bas           |  |  |  |  |
|----------------|-----------------------------|--------------------------|----------------------|------|-----------------------|-------|----------------------|------------------------------|---------------------------|--|--|--|--|
| 2              |                             | LEGENDS                  |                      |      | Case Name:            |       | Z Capture_Save_Flue  | Gas Model_iteration8_o       | pumized_iinai.nsc         |  |  |  |  |
| 3              |                             | Burlington, MA<br>USA    |                      |      | Unit Set:             | SI    |                      |                              |                           |  |  |  |  |
| 5              |                             |                          |                      |      | Date/Time:            | Thu   | Apr 04 21:51:42 2019 | )                            |                           |  |  |  |  |
| 6<br>7         | Matar                       | ial Stream               | · Dropara            |      | oan Ami               | na    | /conti               | uid Package: Ba              | sis-1                     |  |  |  |  |
| 8              | IVIALEI                     | iai Sireaiii             | . Fiepaie            | uL   | -can Ann              | IIC   | Pro                  | operty Package: Am           | nine Pkg - KE             |  |  |  |  |
| 9              |                             |                          |                      | C    | OMPOSITION            |       |                      |                              |                           |  |  |  |  |
| 10<br>11<br>12 |                             |                          |                      | Ac   | queous Phase          |       |                      | Phase Fra                    | action 1.000              |  |  |  |  |
| 13             | COMPONENTS                  | MOLAR FLOW<br>(kgmole/h) | MOLE FRACT           |      | MASS FLOW<br>(kg/h)   |       | MASS FRACTION        | LIQUID VOLUME<br>FLOW (m3/h) | LIQUID VOLUME<br>FRACTION |  |  |  |  |
| 15             | Oxygen                      | 0.0000                   | 0.0                  | 000  | 0.00                  | 00    | 0.0000               | 0.0000                       | 0.0000                    |  |  |  |  |
| 16             | MEAmine                     | 2490.1988                | 0.0                  | 282  | 152111.05             | 68    | 0.0892               | 149.5728                     | 0.0876                    |  |  |  |  |
| 17             | H2O                         | 85721.6522               | +                    | 697  | 1.544284179e+         | -     | 0.9058               | 1547.4006                    | 0.9064                    |  |  |  |  |
| 18             | CO2                         | 190.9088                 | 1                    | 022  | 8401.84               | -     | 0.0049               | 10.1799                      | 0.0060                    |  |  |  |  |
| 19<br>20       | Nitrogen<br>Total           | 0.0000<br>88402.7599     | 1                    | 000  | 0.00<br>1.704797077e+ |       | 0.0000<br>1.0000     | 0.0000<br>1707.1533          | 0.0000<br>1.0000          |  |  |  |  |
| 21             | Total                       | 00402.7000               | 1.0                  | .000 | 1.70470707701         | -     |                      | 1                            | sis-1                     |  |  |  |  |
| 22<br>23       | Material Stream: Lean Amine |                          |                      |      |                       |       |                      |                              |                           |  |  |  |  |
| 24             |                             |                          |                      |      |                       |       |                      |                              |                           |  |  |  |  |
| 25             | CONDITIONS                  |                          |                      |      |                       |       |                      |                              |                           |  |  |  |  |
| 26<br>27       |                             |                          |                      |      |                       |       |                      |                              |                           |  |  |  |  |
| 28             | Temperature:                | (C)                      | 145.0                |      | 145.0                 |       | 145.0                |                              |                           |  |  |  |  |
| 29             | Pressure:                   | (kPa)                    | 420.0                |      | 420.0                 |       | 420.0                |                              |                           |  |  |  |  |
| 30             | Molar Flow                  | (kgmole/h)               | 8.746e+004           |      | 0.3926                |       | 8.746e+004           |                              |                           |  |  |  |  |
| 31             | Mass Flow                   | (kg/h)                   | 1.687e+006           |      | 7.572                 |       | 1.687e+006           |                              |                           |  |  |  |  |
| 32             | Std Ideal Liq Vol Flow      | (m3/h)                   | 1689                 |      | 7.581e-003            |       | 1689                 |                              |                           |  |  |  |  |
| 33             | Molar Enthalpy              | (kJ/kgmole)              | -2.260e+004          |      | 1.630e+004            |       | -2.260e+004          |                              |                           |  |  |  |  |
| 34             | Molar Entropy ( Heat Flow   | kJ/kgmole-C)<br>(kJ/h)   | 89.56<br>-1.976e+009 |      | 213.1<br>6400         |       | 89.56<br>-1.976e+009 |                              |                           |  |  |  |  |
| 36             | Liq Vol Flow @Std Cond      | (m3/h)                   | 1673 *               |      | 7.511e-003            |       | 1673                 |                              |                           |  |  |  |  |
| 37             |                             | · ·                      |                      | C    | OMPOSITION            |       |                      |                              |                           |  |  |  |  |
| 38<br>39       |                             |                          |                      |      |                       |       |                      |                              |                           |  |  |  |  |
| 40             | COMPONENTO                  | MOLAR FLOW               | MOLE EDACE           |      | overall Phase         |       | MAGO EDAGTION        | Vapour Fr                    |                           |  |  |  |  |
| 42             | COMPONENTS                  | MOLAR FLOW<br>(kgmole/h) | MOLE FRACT           |      | MASS FLOW<br>(kg/h)   |       | MASS FRACTION        | FLOW (m3/h)                  | FRACTION                  |  |  |  |  |
| 43             | Oxygen<br>MEAmine           | 0.0000<br>2489.9653      | +                    | 285  | 0.00<br>152096.79     | -     | 0.0000               | 0.0000<br>149.5588           | 0.0000<br>0.0886          |  |  |  |  |
| 45             | H2O                         | 84816.6180               | _                    | 698  | 1.527979896e+         | _     | 0.0902               | 1531.0634                    | 0.0886                    |  |  |  |  |
| 46             | CO2                         | 153.3294                 | 1                    | 018  | 6747.98               | -     | 0.0040               | 8.1761                       | 0.0048                    |  |  |  |  |
| 47             | Nitrogen                    | 0.0000                   | 0.0                  | 000  | 0.00                  | 00    | 0.0000               | 0.0000                       | 0.0000                    |  |  |  |  |
| 48             | Total                       | 87459.9128               | 1.0                  | 000  | 1.686824673e+         | 06    | 1.0000               | 1688.7983                    | 1.0000                    |  |  |  |  |
| 49<br>50       |                             |                          |                      | ٧    | apour Phase           |       |                      | Phase Fra                    | action 4.489e-006         |  |  |  |  |
| 51<br>52       | COMPONENTS                  | MOLAR FLOW<br>(kgmole/h) | MOLE FRACT           |      | MASS FLOW<br>(kg/h)   |       | MASS FRACTION        | LIQUID VOLUME<br>FLOW (m3/h) | LIQUID VOLUME<br>FRACTION |  |  |  |  |
| 53             | Oxygen                      | 0.0000                   | <del>-  </del>       | 000  | 0.00                  | -     | 0.0000               | 0.0000                       | 0.0000                    |  |  |  |  |
| 54             | MEAmine                     | 0.0112                   | <del>-</del>         | 285  | 0.68                  | -     | 0.0902               | 0.0007                       | 0.0886                    |  |  |  |  |
| 55             | H2O<br>CO2                  | 0.3807<br>0.0007         | +                    | 018  | 6.85<br>0.03          | -     | 0.9058<br>0.0040     | 0.0069                       | 0.9066<br>0.0048          |  |  |  |  |
| 56<br>57       | Nitrogen                    | 0.0007                   | 1                    | 000  | 0.03                  | _     | 0.0040               | 0.0000                       | 0.0048                    |  |  |  |  |
| 58             | Total                       | 0.3926                   | -                    | 000  | 7.57                  |       | 1.0000               | 0.0076                       | 1.0000                    |  |  |  |  |
| 59             |                             |                          | •                    |      | •                     |       |                      |                              |                           |  |  |  |  |
| 60             |                             |                          |                      |      |                       |       |                      |                              |                           |  |  |  |  |
| 61             |                             |                          |                      |      |                       |       |                      |                              |                           |  |  |  |  |
| 62             | Aspen Technology Inc        |                          | Asnen                | HYSY | YS Version 8 (27      | 7.0.0 | ) 8138)              |                              | Page 6 of 16              |  |  |  |  |
| US             | , topon recimology inc      |                          | Aspen                |      | 10 101310110 (2)      | .0.0  | 7.0100)              |                              | 1 490 0 01 10             |  |  |  |  |

| LEGENDS   Buringhon, MA   URS   SI   Date/Time: Thu Apro4 2151-142 2019   Fluid Peak-large: Basis-1   Property Packlage: Amine PAg - KE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1            |                                  |           |       |               |      | Case Name:      | CO    | 2 Conturo Sovo Eluo    | Can Madel iterations of | entimized final has       |  |  |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|----------------------------------|-----------|-------|---------------|------|-----------------|-------|------------------------|-------------------------|---------------------------|--|--|--|
| Material Stream: Lean Amine (continued)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |              |                                  |           |       |               |      |                 |       | 2 Capture_Save_Flue    | Gas Model_iterationo_c  | pumized_imai.nsc          |  |  |  |
| Material Stream: Lean Amine (continued)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |              |                                  | -         | MA    |               |      | Unit Set:       | SI    |                        |                         |                           |  |  |  |
| Material Stream: Lean Amine (continued)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |              |                                  |           |       |               |      | Date/Time:      | Thu   | ı Apr 04 21:51:42 2019 |                         |                           |  |  |  |
| COMPOSITION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | -            | Matan                            | :-I C4    |       | 1 a a s a A s | :-   | - / m4!m        |       | Flu                    | uid Package: Ba         | sis-1                     |  |  |  |
| COMPONENTS   MOLAR FLOW   MOLE FRACTION   MASS FLOW   (light midsh)   Mole Fraction   1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Н            | water                            | iai Strea | am:   | Lean Ar       | nın  | e (contin       | ue    |                        | operty Package: Ar      | nine Pka - KE             |  |  |  |
| 10   Aqueous Phase                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -            |                                  |           |       |               |      |                 |       |                        |                         | ·····•                    |  |  |  |
| COMPONENTS   MCLAR FLOW   MOLE FRACTION   MASS FRACTION   LIQUID VOLUME   FRACTION   Mass FRACTION   LIQUID VOLUME   FRACTION   Mass FRACTION   Mass FRACTION   LIQUID VOLUME   FRACTION   Mass FRACTION   Mass FRACTION   LIQUID VOLUME   FRACTION   Mass F | 10           |                                  |           |       |               | С    | OMPOSITION      |       |                        |                         |                           |  |  |  |
| Comparison   Com | $\mathbf{H}$ |                                  |           |       |               | Ac   | ueous Phase     | !     |                        | Phase Fra               | action 1.000              |  |  |  |
| Tell Markenine                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Н            | COMPONENTS                       |           |       | MOLE FRACT    | ION  |                 |       | MASS FRACTION          |                         | LIQUID VOLUME<br>FRACTION |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 15           |                                  | 0.        | .0000 | 0.0           | 000  | 0.00            | 00    | 0.0000                 | 0.0000                  | 0.0000                    |  |  |  |
| Total                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -            |                                  |           |       |               |      |                 |       |                        | <u> </u>                | 0.0886                    |  |  |  |
| Nitrogen                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $\vdash$     |                                  |           |       |               |      |                 |       |                        | +                       | 0.9066<br>0.0048          |  |  |  |
| Total                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -            |                                  |           |       |               | _    |                 | -     |                        | +                       | 0.0048                    |  |  |  |
| Material Stream: Cold Lean Amine                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -            | •                                |           |       |               |      |                 |       |                        |                         | 1.0000                    |  |  |  |
| Property Package: Amine PRg - KE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -            |                                  |           |       |               |      |                 |       | Flu                    | ıid Package: Ba         | sis-1                     |  |  |  |
| CONDITIONS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Н            | Material Stream: Cold Lean Amine |           |       |               |      |                 |       |                        |                         |                           |  |  |  |
| CONDITIONS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $\vdash$     |                                  |           |       |               |      |                 |       |                        |                         |                           |  |  |  |
| Overall   Aqueous Phase                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $\mathbf{H}$ | - CONDITIONS                     |           |       |               |      |                 |       |                        |                         |                           |  |  |  |
| Temperature: (C)   25.00   25.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -            |                                  |           |       |               |      |                 |       |                        |                         |                           |  |  |  |
| 29   Pressure: (kPa)   340.0   340.0   340.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 27           |                                  |           |       |               |      |                 |       |                        |                         |                           |  |  |  |
| 30   Molar Flow   (kgmole/h)   8.746e+004   8.746e+006   8.746e+006  | 28           | Temperature:                     | , ,       |       | 25.00 *       |      | 25.00           |       |                        |                         |                           |  |  |  |
| 32   Mass Flow   (kg/h)   1.687e+006   1.687e+006                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -            |                                  | 1 1       |       |               |      |                 |       |                        |                         |                           |  |  |  |
| Stil Ideal Liq Vol Flow                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -            |                                  |           |       |               |      |                 |       |                        |                         |                           |  |  |  |
| 33   Molar Enthalpy   (kJ/kgmole)   -3.260e+004   -3.260e+004                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $\vdash$     |                                  |           |       |               |      |                 |       |                        |                         |                           |  |  |  |
| Molar Entropy                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -            |                                  | 1         |       |               |      |                 |       |                        |                         |                           |  |  |  |
| Section   Sect | $\vdash$     |                                  |           |       |               |      |                 |       |                        |                         |                           |  |  |  |
| COMPOSITION   COMPONENTS   MOLAR FLOW (kgmole/h)   MOLE FRACTION   MASS FLOW (kg/h)   MASS FRACTION   LiQUID VOLUME   LiQUID VOLUME   FLOW (m3/h)   FRACTION   MASS FLOW (m3/h)   FRACTION   MASS FLOW (m3/h)   FRAC | 35           |                                  |           |       | -2.851e+009   |      | -2.851e+009     |       |                        |                         |                           |  |  |  |
| COMPOSITION   Overall Phase                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 36           | Liq Vol Flow @Std Cond           | (m3/h)    |       | 1673 *        |      | 1673            |       |                        |                         |                           |  |  |  |
| Components                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -            |                                  |           |       |               | С    | OMPOSITION      |       |                        |                         |                           |  |  |  |
| 40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -            |                                  |           |       |               | 0    | verall Phase    |       |                        | Vanour F                | raction 0.0000            |  |  |  |
| Ageous Phase   Phase Fraction   1   COMPONENTS   MOLAR FLOW (kgmole/h)   MOLE FRACTION (kg/h)   MEAmine   2489.9653   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000    | -            |                                  |           |       |               |      |                 |       |                        | ·<br>1                  |                           |  |  |  |
| 44         MEAmine         2489.9653         0.0285         152096.7948         0.0902         149.5588         0.0           45         H2O         84816.6180         0.9698         1.527979896e+06         0.9058         1531.0634         0.3           46         CO2         153.3294         0.0018         6747.9826         0.0040         8.1761         0.0           47         Nitrogen         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         1688.7983         1.0         1.0         49         49         49         49         49         49         49         49         49         49         49         49         49         49         49         49         49         49         49         49         49         49         49         49         49         49         49         49         49         49         49         49         49         49         49         49         49         49         49         49         49         49         49         49         49         49         49         49         49         49         49 <td>42</td> <td></td> <td>(kgmole/l</td> <td>h)</td> <td></td> <td></td> <td>(kg/h)</td> <td></td> <td></td> <td>FLOW (m3/h)</td> <td>LIQUID VOLUME<br/>FRACTION</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 42           |                                  | (kgmole/l | h)    |               |      | (kg/h)          |       |                        | FLOW (m3/h)             | LIQUID VOLUME<br>FRACTION |  |  |  |
| H2O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -            |                                  |           |       |               |      |                 |       |                        | <u> </u>                | 0.0000                    |  |  |  |
| CO2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -            |                                  |           |       | <del> </del>  |      |                 | _     |                        | <del>1</del>            | 0.0886<br>0.9066          |  |  |  |
| Arrivage   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   | -            |                                  |           |       |               |      |                 | -     |                        |                         | 0.9066                    |  |  |  |
| Total   87459.9128   1.0000   1.686824673e+06   1.0000   1688.7983   1.0000   1.686824673e+06   1.0000   1688.7983   1.0000   1.686824673e+06   1.0000   1.0000   1.0000   1.0000   1.00000   1.00000   1.00000   1.00000   1.00000   1.00000   1.00000   1.00000   1.00000   1.00000   1.00000   1.00000   1.00000   1.00000   1.00000   1.00000   1.00000   1.00000   1.00000   1.00000   1.00000   1.00000   1.00000   1.00000   1.00000   1.00000   1.00000   1.00000   1.00000   1.00000   1.00000   1.00000   1.00000   1.00000   1.00000   1.00000   1.00000   1.00000   1.00000   1.00000   1.00000   1.00000   1.00000   1.00000   1.00000   1.00000   1.00000   1.00000   1.00000   1.00000   1.00000   1.00000   1.00000   1.00000   1.00000   1.00000   1.00000   1.00000   1.00000   1.00000   1.00000   1.00000   1.00000   1.00000   1.00000   1.00000   1.00000   1.00000   1.00000   1.00000   1.00000   1.00000   1.00000   1.00000   1.00000   1.00000   1.00000   1.00000   1.00000   1.00000   1.00000   1.00000   1.00000   1.00000   1.00000   1.00000   1.00000   1.00000   1.00000   1.00000   1.00000   1.00000   1.00000   1.00000   1.00000   1.00000   1.00000   1.00000   1.00000   1.00000   1.00000   1.00000   1.00000   1.00000   1.00000   1.00000   1.00000   1.00000   1.00000   1.000000   1.00000   1.00000   1.00000   1.00000   1.00000   1.00000   1.00000   1.00000   1.00000   1.00000   1.00000   1.00000   1.00000   1.00000   1.00000   1.00000   1.00000   1.00000   1.000000   1.00000   1.00000   1.00000   1.00000   1.00000   1.00000   1.00000   1.00000   1.00000   1.00000   1.00000   1.00000   1.00000   1.00000   1.00000   1.00000   1.00000   1.00000   1.00000   1.00000   1.00000   1.00000   1.00000   1.00000   1.00000   1.00000   1.00000   1.00000   1.00000   1.00000   1.00000   1.000000   1.00000   1.00000   1.00000   1.00000   1.00000   1.00000   1.00000   1.00000   1.00000   1.00000   1.00000   1.00000   1.00000   1.00000   1.00000   1.00000   1.000000   1.000000   1.000000   1.00000   1.00000   1.000000   1.000000   1.000000   1.000 | -            |                                  |           |       |               |      |                 | _     |                        | +                       | 0.0000                    |  |  |  |
| Aqueous Phase   Phase Fraction   1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -            |                                  |           |       |               |      |                 |       |                        | +                       | 1.0000                    |  |  |  |
| 51         COMPONENTS         MOLAR FLOW (kgmole/h)         MOLE FRACTION (kg/h)         MASS FLOW (kg/h)         MASS FRACTION FLOW (m3/h)         LIQUID VOLUME F                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -            |                                  |           |       |               | Ac   | ueous Phase     | !     |                        | Phase Fra               | action 1.000              |  |  |  |
| 53         Oxygen         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0002         149.5588         0.0         0.0         0.0000         152096.7948         0.0902         149.5588         0.0         0.0         0.0         0.0008         1531.0634         0.0         0.0         0.0         0.0058         1531.0634         0.0         0.0         0.0000         8.1761         0.0         0.0         0.0         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 51           | COMPONENTS                       |           |       | MOLE FRACT    | ION  |                 |       | MASS FRACTION          |                         | LIQUID VOLUME<br>FRACTION |  |  |  |
| 54         MEAmine         2489.9653         0.0285         152096.7948         0.0902         149.5588         0.0           55         H2O         84816.6180         0.9698         1.527979896e+06         0.9058         1531.0634         0.3           56         CO2         153.3294         0.0018         6747.9826         0.0040         8.1761         0.0           57         Nitrogen         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000           58         Total         87459.9128         1.0000         1.686824673e+06         1.0000         1688.7983         1.0           60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |              | Oxygen                           | , ,       |       | 0.0           | 000  |                 | 00    | 0.0000                 | i ' '                   | 0.0000                    |  |  |  |
| 66         CO2         153.3294         0.0018         6747.9826         0.0040         8.1761         0.0           57         Nitrogen         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000           58         Total         87459.9128         1.0000         1.686824673e+06         1.0000         1688.7983         1.0           69         60         61         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |              | MEAmine                          | 2489.     | .9653 | 0.0           | 285  | 152096.79       | 48    | 0.0902                 | 149.5588                | 0.0886                    |  |  |  |
| 57         Nitrogen         0.0000         0.0000         0.0000         0.0000         0.0000           58         Total         87459.9128         1.0000         1.686824673e+06         1.0000         1688.7983         1.000           59         60         61         61         61         61         60         61                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |              |                                  |           |       |               | _    |                 | _     |                        | +                       | 0.9066                    |  |  |  |
| 58         Total         87459.9128         1.0000         1.686824673e+06         1.0000         1688.7983         1.0000           59         60         61         61         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -            |                                  |           |       | î e           |      |                 | -     |                        | <del> </del>            | 0.0048                    |  |  |  |
| 59<br>60<br>61                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -            |                                  |           |       |               |      |                 |       |                        |                         | 0.0000                    |  |  |  |
| 60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -            | ı otal                           | 87459.    | 9128  | 1.0           | UUU  | 1.686824673e+6  | Ub    | 1.0000                 | 1688.7983               | 1.0000                    |  |  |  |
| 61                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -            |                                  |           |       |               |      |                 |       |                        |                         |                           |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -            |                                  |           |       |               |      |                 |       |                        |                         |                           |  |  |  |
| [62]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -            |                                  |           |       |               |      |                 |       |                        |                         |                           |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 63           | Aspen Technology Inc.            |           |       | Aspen         | HYSY | S Version 8 (27 | 7.0.0 | 0.8138)                |                         | Page 7 of 16              |  |  |  |

| 1                                                                                                                              |                                      |                        |              |                    |      |                        |               |                     |                |                  |                         |         |
|--------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|------------------------|--------------|--------------------|------|------------------------|---------------|---------------------|----------------|------------------|-------------------------|---------|
| 2                                                                                                                              |                                      | LEGENDS                |              |                    |      | Case Name:             | CO2           | 2 Capture_Save_Flue | Gas Model_it   | eration8_c       | optimized_final         | l.hsc   |
| 3                                                                                                                              |                                      | Burlington,<br>USA     | MA           |                    |      | Unit Set:              | SI            |                     |                |                  |                         |         |
| 5                                                                                                                              |                                      | 00/1                   |              |                    |      | Date/Time:             | Thu           | Apr 04 21:51:42 201 | 9              |                  |                         |         |
| 6                                                                                                                              | N                                    | 04                     |              |                    |      |                        |               | F                   | luid Package:  | Ва               | asis-1                  |         |
| 7                                                                                                                              | water                                | ial Strea              | am: w        | xea A              | ımı  | ne                     |               | P                   | roperty Packag | ge: Ar           | nine Pkg - KE           |         |
| 9                                                                                                                              |                                      |                        |              |                    |      | CONDITIONS             |               |                     |                |                  | -                       |         |
| 10                                                                                                                             |                                      | l                      |              |                    | ï    | CONDITIONS             | ı             |                     |                | 1                |                         |         |
| 11<br>12                                                                                                                       | Vapour / Phase Fraction              |                        | Ove          | 0.0000             | A    | queous Phase<br>1.0000 |               |                     |                |                  |                         |         |
| 13                                                                                                                             | Temperature:                         | (C)                    |              | 25.00              |      | 25.00                  |               |                     |                |                  |                         |         |
| 14                                                                                                                             | Pressure:                            | (kPa)                  |              | 340.0              |      | 340.0                  |               |                     |                |                  |                         |         |
| 15                                                                                                                             | Molar Flow                           | (kgmole/h)             |              | 029e+004           |      | 8.929e+004             |               |                     |                |                  |                         |         |
| 16<br>17                                                                                                                       | Mass Flow Std Ideal Liq Vol Flow     | (kg/h)<br>(m3/h)       | 1.4          | 720e+006<br>1722   |      | 1.720e+006<br>1722     |               |                     |                |                  |                         |         |
| 18                                                                                                                             | Molar Enthalpy                       | (kJ/kgmole)            | -3.2         | 263e+004           |      | -3.263e+004            |               |                     |                |                  |                         |         |
| 19                                                                                                                             | Molar Entropy (                      | kJ/kgmole-C)           |              | 77.06              |      | 77.06                  |               |                     |                |                  |                         |         |
| 20                                                                                                                             | Heat Flow                            | (kJ/h)                 | -2.9         | 14e+009            |      | -2.914e+009            |               |                     |                |                  |                         |         |
| 21<br>22                                                                                                                       | Liq Vol Flow @Std Cond               | (m3/h)                 |              | 1706 *             |      | 1706                   |               |                     |                | ļ                |                         |         |
| 23                                                                                                                             | T COMPOSITION                        |                        |              |                    |      |                        |               |                     |                |                  |                         |         |
| 24                                                                                                                             | Overall Phase Vanour Fraction 0,0000 |                        |              |                    |      |                        |               |                     |                |                  |                         |         |
| 25<br>26                                                                                                                       | 5                                    |                        |              |                    |      |                        |               |                     |                |                  |                         |         |
| 27 COMPONENTS MOLAR FLOW MOLE FRACTION MASS FLOW MASS FRACTION LIQUID VOLUME LIQUID VC 27 (kgmole/h) (kg/h) FLOW (m3/h) FRACTI |                                      |                        |              |                    |      |                        |               |                     |                |                  |                         |         |
| 28                                                                                                                             | Oxygen                               | 0.                     | 0000         | 0.0                | 000  | 0.00                   | 00            | 0.0000              |                | 0.0000           |                         | 0.0000  |
| 29                                                                                                                             | MEAmine                              | 2489.                  |              |                    | 279  | 152096.79              | $\rightarrow$ | 0.0884              | -              | 149.5588         |                         | 0.0869  |
| 30<br>31                                                                                                                       | H2O                                  | 86641.                 |              |                    | 704  | 1.560863896e+0         |               | 0.9076              |                | 564.0138         |                         | 0.9084  |
| 32                                                                                                                             | CO2<br>Nitrogen                      |                        | 3294<br>0000 |                    | 017  | 6747.98                |               | 0.0039              | - <del>i</del> | 8.1761<br>0.0000 | 1                       | 0.0047  |
| 33                                                                                                                             | Total                                | 89285.                 |              |                    | 000  | 1.719708673e+          | _             | 1.0000              | -              | 721.7486         |                         | 1.0000  |
| 34<br>35                                                                                                                       |                                      |                        |              |                    | Ac   | queous Phase           |               |                     |                | Phase Fr         | action                  | 1.000   |
| 36<br>37                                                                                                                       | COMPONENTS                           | MOLAR FLO              |              | LE FRACT           | ION  | MASS FLOW<br>(kg/h)    |               | MASS FRACTION       | LIQUID V       |                  | LIQUID VO               |         |
| 38                                                                                                                             | Oxygen                               | , ,                    | 0000         | 0.0                | 000  | 0.00                   | 00            | 0.0000              | <u> </u>       | 0.0000           | 110.01                  | 0.0000  |
| 39                                                                                                                             | MEAmine                              | 2489.                  | 9653         | 0.0                | 279  | 152096.79              | 48            | 0.0884              | 1              | 149.5588         |                         | 0.0869  |
| 40                                                                                                                             | H2O                                  | 86641.                 |              |                    | 704  | 1.560863896e+          | $\rightarrow$ | 0.9076              |                | 564.0138         |                         | 0.9084  |
| 41<br>42                                                                                                                       | CO2<br>Nitrogen                      |                        | 3294<br>0000 |                    | 017  | 6747.98                |               | 0.0039              | -              | 0.0000           |                         | 0.0047  |
| 43                                                                                                                             | Total                                | 89285.                 |              |                    | 000  | 1.719708673e+          | _             | 1.0000              | _              | 721.7486         |                         | 1.0000  |
| 44<br>45<br>46                                                                                                                 | Mater                                | ial Strea              | am: Ma       | ake up             | o W  | /ater                  |               |                     | luid Package:  |                  | asis-1<br>mine Pkg - KE |         |
| 47<br>48                                                                                                                       |                                      |                        |              |                    |      | CONDITIONS             |               |                     |                |                  |                         |         |
| 49                                                                                                                             |                                      |                        | Ove          | rall               | A    | queous Phase           |               |                     |                |                  |                         |         |
| 50                                                                                                                             | Vapour / Phase Fraction              |                        |              | 0.0000             |      | 1.0000                 |               |                     |                |                  |                         |         |
| 51<br>52                                                                                                                       | Temperature: Pressure:               | (C)<br>(kPa)           |              | 25.00 *<br>370.0 * |      | 25.00<br>370.0         |               |                     |                |                  |                         |         |
| 53                                                                                                                             | Molar Flow                           | (kgmole/h)             |              | 1825               |      | 1825                   |               |                     |                |                  |                         |         |
| 54                                                                                                                             | Mass Flow                            |                        | 3.288e+004   |                    | _    |                        |               |                     |                |                  |                         |         |
| 55                                                                                                                             | Std Ideal Liq Vol Flow               | (m3/h)                 |              | 32.95              |      | 32.95                  |               |                     |                |                  |                         |         |
| 56                                                                                                                             | Molar Enthalpy                       | (kJ/kgmole)            | -3.4         | 11e+004            |      | -3.411e+004            |               |                     |                |                  |                         |         |
| 57<br>58                                                                                                                       | Molar Entropy (<br>Heat Flow         | kJ/kgmole-C)<br>(kJ/h) | -6 :         | 74.32<br>226e+007  |      | 74.32<br>-6.226e+007   | _             |                     |                |                  |                         |         |
| 59                                                                                                                             | Liq Vol Flow @Std Cond               | (m3/h)                 | 3.2          | 32.93 *            |      | 32.93                  |               |                     |                |                  |                         |         |
| 60<br>61<br>62                                                                                                                 |                                      |                        |              |                    |      |                        |               |                     |                |                  |                         |         |
| 63                                                                                                                             | Aspen Technology Inc.                |                        |              | Aspen              | HYSY | S Version 8 (27        | 7.0.0         | ).8138)             |                |                  | Page                    | 8 of 16 |

| 1 1                                                                                                                              |                                                                                                                                                                                 |                                                                                                                         |                                                                                                                                       |                                          |                                                                                                                                                                          |                                           |                                                                                                                                               |                                                                                 |                                                                             |  |  |  |  |  |
|----------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|-----------------------------------------------------------------------------|--|--|--|--|--|
| 2                                                                                                                                |                                                                                                                                                                                 | LEGENDS                                                                                                                 |                                                                                                                                       |                                          | Case Name: C                                                                                                                                                             | CO2 C                                     | Capture_Save_Flue G                                                                                                                           | Gas Model_iteration8_op                                                         | otimized_final.hsc                                                          |  |  |  |  |  |
| 3                                                                                                                                |                                                                                                                                                                                 | Burlington, M<br>USA                                                                                                    | 1A                                                                                                                                    |                                          | Unit Set: S                                                                                                                                                              | SI                                        |                                                                                                                                               |                                                                                 |                                                                             |  |  |  |  |  |
| 5                                                                                                                                |                                                                                                                                                                                 | OOA                                                                                                                     |                                                                                                                                       |                                          | Date/Time: T                                                                                                                                                             | Thu Ap                                    | pr 04 21:51:42 2019                                                                                                                           |                                                                                 |                                                                             |  |  |  |  |  |
| 6                                                                                                                                | Matau                                                                                                                                                                           | ial Ctuan                                                                                                               | m. Maka                                                                                                                               | - \A                                     | lata:: (a a :::                                                                                                                                                          | 4:                                        | Fluid                                                                                                                                         | d Package: Bas                                                                  | sis-1                                                                       |  |  |  |  |  |
| 7                                                                                                                                | water                                                                                                                                                                           | iai Strea                                                                                                               | m: Make uj                                                                                                                            | D VV                                     | ater (cont                                                                                                                                                               | tını                                      | uea)<br>Prop                                                                                                                                  | perty Package: Am                                                               | nine Pkg - KE                                                               |  |  |  |  |  |
| 9                                                                                                                                |                                                                                                                                                                                 |                                                                                                                         |                                                                                                                                       |                                          | OMPOSITION                                                                                                                                                               |                                           |                                                                                                                                               |                                                                                 | -                                                                           |  |  |  |  |  |
| 10<br>11                                                                                                                         |                                                                                                                                                                                 |                                                                                                                         |                                                                                                                                       |                                          |                                                                                                                                                                          |                                           |                                                                                                                                               |                                                                                 |                                                                             |  |  |  |  |  |
| 12                                                                                                                               | 001/001/51/70                                                                                                                                                                   | 1101 15 51 01                                                                                                           |                                                                                                                                       |                                          | verall Phase                                                                                                                                                             | Ι.                                        |                                                                                                                                               | Vapour Fra                                                                      |                                                                             |  |  |  |  |  |
| 13<br>14                                                                                                                         | COMPONENTS                                                                                                                                                                      | MOLAR FLO\<br>(kgmole/h)                                                                                                |                                                                                                                                       | ION                                      | MASS FLOW<br>(kg/h)                                                                                                                                                      | , N                                       | MASS FRACTION                                                                                                                                 | LIQUID VOLUME<br>FLOW (m3/h)                                                    | LIQUID VOLUME<br>FRACTION                                                   |  |  |  |  |  |
| 15                                                                                                                               | Oxygen                                                                                                                                                                          |                                                                                                                         |                                                                                                                                       | 0000 *                                   | 0.0000                                                                                                                                                                   | _                                         | 0.0000 *                                                                                                                                      | 0.0000 *                                                                        | 0.0000 *                                                                    |  |  |  |  |  |
| 16                                                                                                                               | MEAmine                                                                                                                                                                         | 1                                                                                                                       |                                                                                                                                       | 0000 *                                   | 0.0000                                                                                                                                                                   | _                                         | 0.0000 *                                                                                                                                      | 0.0000 *                                                                        | 0.0000 *                                                                    |  |  |  |  |  |
| 17                                                                                                                               | H2O<br>CO2                                                                                                                                                                      | 1825.3                                                                                                                  |                                                                                                                                       | 0000 *                                   | 32884.0000                                                                                                                                                               | _                                         | 1.0000 *<br>0.0000 *                                                                                                                          | 32.9504 *<br>0.0000 *                                                           | 1.0000 *<br>0.0000 *                                                        |  |  |  |  |  |
| 18                                                                                                                               | Nitrogen                                                                                                                                                                        |                                                                                                                         |                                                                                                                                       | 0000 *                                   | 0.0000                                                                                                                                                                   |                                           | 0.0000 *                                                                                                                                      | 0.0000 *                                                                        | 0.0000 *                                                                    |  |  |  |  |  |
| 20                                                                                                                               | Total                                                                                                                                                                           | 1825.35                                                                                                                 |                                                                                                                                       | 0000                                     | 32884.0000                                                                                                                                                               | _                                         | 1.0000                                                                                                                                        | 32.9504                                                                         | 1.0000                                                                      |  |  |  |  |  |
| 21                                                                                                                               | . 2141                                                                                                                                                                          | 1020.3                                                                                                                  | 1.0                                                                                                                                   |                                          |                                                                                                                                                                          | -                                         | 1.0000                                                                                                                                        | 02.0004                                                                         | 1.0000                                                                      |  |  |  |  |  |
| 22                                                                                                                               |                                                                                                                                                                                 | 1                                                                                                                       |                                                                                                                                       | Ac                                       | ueous Phase                                                                                                                                                              |                                           | 1                                                                                                                                             | Phase Fra                                                                       | ction 1.000                                                                 |  |  |  |  |  |
| 23<br>24                                                                                                                         | COMPONENTS                                                                                                                                                                      | MOLAR FLO\<br>(kgmole/h)                                                                                                |                                                                                                                                       | ION                                      | MASS FLOW<br>(kg/h)                                                                                                                                                      | N                                         | MASS FRACTION                                                                                                                                 | LIQUID VOLUME<br>FLOW (m3/h)                                                    | LIQUID VOLUME<br>FRACTION                                                   |  |  |  |  |  |
| 25                                                                                                                               | Oxygen                                                                                                                                                                          | (kgmole/n)<br>0.00                                                                                                      |                                                                                                                                       | 0000                                     | 0.0000                                                                                                                                                                   | 0                                         | 0.0000                                                                                                                                        | 0.0000                                                                          | 0.0000                                                                      |  |  |  |  |  |
| 26                                                                                                                               | MEAmine                                                                                                                                                                         | 0.00                                                                                                                    |                                                                                                                                       | 0000                                     | 0.0000                                                                                                                                                                   | _                                         | 0.0000                                                                                                                                        | 0.0000                                                                          | 0.0000                                                                      |  |  |  |  |  |
| 27                                                                                                                               | H2O                                                                                                                                                                             | 1825.3                                                                                                                  | 576 1.0                                                                                                                               | 0000                                     | 32884.0000                                                                                                                                                               | )                                         | 1.0000                                                                                                                                        | 32.9504                                                                         | 1.0000                                                                      |  |  |  |  |  |
| 28                                                                                                                               | CO2                                                                                                                                                                             | 0.00                                                                                                                    | 000 0.0                                                                                                                               | 0000                                     | 0.0000                                                                                                                                                                   | 0                                         | 0.0000                                                                                                                                        | 0.0000                                                                          | 0.0000                                                                      |  |  |  |  |  |
| 29                                                                                                                               | Nitrogen                                                                                                                                                                        | 0.00                                                                                                                    | 000 0.0                                                                                                                               | 0000                                     | 0.0000                                                                                                                                                                   | 0                                         | 0.0000                                                                                                                                        | 0.0000                                                                          | 0.0000                                                                      |  |  |  |  |  |
| 30                                                                                                                               | Total                                                                                                                                                                           | 1825.3                                                                                                                  | 576 1.0                                                                                                                               | 0000                                     | 32884.0000                                                                                                                                                               | )                                         | 1.0000                                                                                                                                        | 32.9504                                                                         | 1.0000                                                                      |  |  |  |  |  |
| 32<br>33<br>34                                                                                                                   | Mater                                                                                                                                                                           | ial Strea                                                                                                               | m: Dry CO                                                                                                                             | 2                                        |                                                                                                                                                                          | Departure Deplace No. Apriles Director    |                                                                                                                                               |                                                                                 |                                                                             |  |  |  |  |  |
| 35                                                                                                                               | CONDITIONS I                                                                                                                                                                    |                                                                                                                         |                                                                                                                                       |                                          |                                                                                                                                                                          |                                           |                                                                                                                                               |                                                                                 |                                                                             |  |  |  |  |  |
| $\vdash$                                                                                                                         |                                                                                                                                                                                 |                                                                                                                         | 0                                                                                                                                     |                                          |                                                                                                                                                                          | A                                         | Diana                                                                                                                                         |                                                                                 |                                                                             |  |  |  |  |  |
| 36                                                                                                                               | Vanour / Phase Fraction                                                                                                                                                         |                                                                                                                         | Overall                                                                                                                               |                                          | apour Phase                                                                                                                                                              | Aqu                                       | ueous Phase                                                                                                                                   |                                                                                 |                                                                             |  |  |  |  |  |
| 36<br>37                                                                                                                         | Vapour / Phase Fraction Temperature:                                                                                                                                            | (C)                                                                                                                     | 1.0000                                                                                                                                |                                          | apour Phase 1.0000                                                                                                                                                       | Aqu                                       | 0.0000                                                                                                                                        |                                                                                 |                                                                             |  |  |  |  |  |
| 36<br>37<br>38                                                                                                                   | Vapour / Phase Fraction Temperature: Pressure:                                                                                                                                  | (C)<br>(kPa)                                                                                                            |                                                                                                                                       |                                          | apour Phase                                                                                                                                                              | Aqu                                       |                                                                                                                                               |                                                                                 |                                                                             |  |  |  |  |  |
| 36<br>37                                                                                                                         | Temperature:                                                                                                                                                                    | (C)<br>(kPa)<br>(kgmole/h)                                                                                              | 1.0000<br>20.00                                                                                                                       |                                          | /apour Phase<br>1.0000<br>20.00                                                                                                                                          | Aqu                                       | 0.0000<br>20.00                                                                                                                               |                                                                                 |                                                                             |  |  |  |  |  |
| 36<br>37<br>38<br>39                                                                                                             | Temperature: Pressure:                                                                                                                                                          | (kPa)                                                                                                                   | 1.0000<br>20.00<br>370.0                                                                                                              |                                          | 7apour Phase<br>1.0000<br>20.00<br>370.0                                                                                                                                 | Aqu                                       | 0.0000<br>20.00<br>370.0                                                                                                                      |                                                                                 |                                                                             |  |  |  |  |  |
| 36<br>37<br>38<br>39<br>40                                                                                                       | Temperature: Pressure: Molar Flow                                                                                                                                               | (kPa)<br>(kgmole/h)                                                                                                     | 1.0000<br>20.00<br>370.0<br>1116                                                                                                      |                                          | 7apour Phase<br>1.0000<br>20.00<br>370.0<br>1116                                                                                                                         | Aqu                                       | 0.0000<br>20.00<br>370.0<br>0.0000                                                                                                            |                                                                                 |                                                                             |  |  |  |  |  |
| 36<br>37<br>38<br>39<br>40<br>41                                                                                                 | Temperature: Pressure: Molar Flow Mass Flow                                                                                                                                     | (kPa)<br>(kgmole/h)<br>(kg/h)                                                                                           | 1.0000<br>20.00<br>370.0<br>1116<br>4.891e+004                                                                                        |                                          | 7apour Phase<br>1.0000<br>20.00<br>370.0<br>1116<br>4.891e+004                                                                                                           | Aqu                                       | 0.0000<br>20.00<br>370.0<br>0.0000<br>0.0000                                                                                                  |                                                                                 |                                                                             |  |  |  |  |  |
| 36<br>37<br>38<br>39<br>40<br>41<br>42                                                                                           | Temperature: Pressure: Molar Flow Mass Flow Std Ideal Liq Vol Flow Molar Enthalpy Molar Entropy (                                                                               | (kPa) (kgmole/h) (kg/h) (m3/h) (kJ/kgmole) kJ/kgmole-C)                                                                 | 1.0000<br>20.00<br>370.0<br>1116<br>4.891e+004<br>59.23<br>9178<br>199.9                                                              |                                          | /apour Phase 1.0000 20.00 370.0 1116 4.891e+004 59.23 9178 199.9                                                                                                         | Aqu                                       | 0.0000<br>20.00<br>370.0<br>0.0000<br>0.0000<br>0.0000<br>-3.437e+004<br>73.72                                                                |                                                                                 |                                                                             |  |  |  |  |  |
| 36<br>37<br>38<br>39<br>40<br>41<br>42<br>43<br>44                                                                               | Temperature: Pressure: Molar Flow Mass Flow Std Ideal Liq Vol Flow Molar Enthalpy Molar Entropy ( Heat Flow                                                                     | (kPa) (kgmole/h) (kg/h) (m3/h) (kJ/kgmole) kJ/kgmole-C) (kJ/h)                                                          | 1.0000<br>20.00<br>370.0<br>1116<br>4.891e+004<br>59.23<br>9178<br>199.9<br>1.025e+007                                                |                                          | 7 (apour Phase 1.0000 20.00 370.0 1116 4.891e+004 59.23 9178 199.9 1.025e+007                                                                                            | Aqu                                       | 0.0000<br>20.00<br>370.0<br>0.0000<br>0.0000<br>0.0000<br>-3.437e+004<br>73.72<br>0.0000                                                      |                                                                                 |                                                                             |  |  |  |  |  |
| 36<br>37<br>38<br>39<br>40<br>41<br>42<br>43<br>44<br>45                                                                         | Temperature: Pressure: Molar Flow Mass Flow Std Ideal Liq Vol Flow Molar Enthalpy Molar Entropy (                                                                               | (kPa) (kgmole/h) (kg/h) (m3/h) (kJ/kgmole) kJ/kgmole-C)                                                                 | 1.0000<br>20.00<br>370.0<br>1116<br>4.891e+004<br>59.23<br>9178<br>199.9                                                              |                                          | /apour Phase 1.0000 20.00 370.0 1116 4.891e+004 59.23 9178 199.9                                                                                                         | Aqu                                       | 0.0000<br>20.00<br>370.0<br>0.0000<br>0.0000<br>0.0000<br>-3.437e+004<br>73.72                                                                |                                                                                 |                                                                             |  |  |  |  |  |
| 36<br>37<br>38<br>39<br>40<br>41<br>42<br>43<br>44<br>45<br>46<br>47                                                             | Temperature: Pressure: Molar Flow Mass Flow Std Ideal Liq Vol Flow Molar Enthalpy Molar Entropy ( Heat Flow                                                                     | (kPa) (kgmole/h) (kg/h) (m3/h) (kJ/kgmole) kJ/kgmole-C) (kJ/h)                                                          | 1.0000<br>20.00<br>370.0<br>1116<br>4.891e+004<br>59.23<br>9178<br>199.9<br>1.025e+007                                                | \                                        | 7 (apour Phase 1.0000 20.00 370.0 1116 4.891e+004 59.23 9178 199.9 1.025e+007                                                                                            | Aqu                                       | 0.0000<br>20.00<br>370.0<br>0.0000<br>0.0000<br>0.0000<br>-3.437e+004<br>73.72<br>0.0000                                                      |                                                                                 |                                                                             |  |  |  |  |  |
| 36<br>37<br>38<br>39<br>40<br>41<br>42<br>43<br>44<br>45<br>46<br>47                                                             | Temperature: Pressure: Molar Flow Mass Flow Std Ideal Liq Vol Flow Molar Enthalpy Molar Entropy ( Heat Flow                                                                     | (kPa) (kgmole/h) (kg/h) (m3/h) (kJ/kgmole) kJ/kgmole-C) (kJ/h)                                                          | 1.0000<br>20.00<br>370.0<br>1116<br>4.891e+004<br>59.23<br>9178<br>199.9<br>1.025e+007                                                | C                                        | (apour Phase<br>1.0000<br>20.00<br>370.0<br>1116<br>4.891e+004<br>59.23<br>9178<br>199.9<br>1.025e+007<br>48.97                                                          | Aqu                                       | 0.0000<br>20.00<br>370.0<br>0.0000<br>0.0000<br>0.0000<br>-3.437e+004<br>73.72<br>0.0000                                                      | Vapour Fr                                                                       | action 1.0000                                                               |  |  |  |  |  |
| 36<br>37<br>38<br>39<br>40<br>41<br>42<br>43<br>44<br>45<br>46<br>47<br>48<br>49<br>50                                           | Temperature: Pressure: Molar Flow Mass Flow Std Ideal Liq Vol Flow Molar Enthalpy Molar Entropy ( Heat Flow                                                                     | (kPa) (kgmole/h) (kg/h) (m3/h) (kJ/kgmole) kJ/kgmole-C) (kJ/h) (m3/h)                                                   | 1.0000 20.00 370.0 1116 4.891e+004 59.23 9178 199.9 1.025e+007 48.97 *                                                                | C                                        | 1.0000 20.00 370.0 1116 4.891e+004 59.23 9178 199.9 1.025e+007 48.97  OMPOSITION  verall Phase  MASS FLOW                                                                |                                           | 0.0000<br>20.00<br>370.0<br>0.0000<br>0.0000<br>0.0000<br>-3.437e+004<br>73.72<br>0.0000                                                      | LIQUID VOLUME                                                                   | LIQUID VOLUME                                                               |  |  |  |  |  |
| 36<br>37<br>38<br>39<br>40<br>41<br>42<br>43<br>44<br>45<br>46<br>47<br>48<br>49<br>50<br>51                                     | Temperature: Pressure: Molar Flow Mass Flow Std Ideal Liq Vol Flow Molar Enthalpy Molar Entropy ( Heat Flow Liq Vol Flow @Std Cond                                              | (kPa) (kgmole/h) (kg/h) (m3/h) (kJ/kgmole) kJ/kgmole-C) (kJ/h) (m3/h)                                                   | 1.0000<br>20.00<br>370.0<br>1116<br>4.891e+004<br>59.23<br>9178<br>199.9<br>1.025e+007<br>48.97 *                                     | C                                        | 1.0000 20.00 370.0 1116 4.891e+004 59.23 9178 199.9 1.025e+007 48.97  OMPOSITION                                                                                         | N                                         | 0.0000 20.00 370.0 0.0000 0.0000 0.0000 -3.437e+004 73.72 0.0000 0.0000                                                                       | · · · · · · · · · · · · · · · · · · ·                                           |                                                                             |  |  |  |  |  |
| 36<br>37<br>38<br>39<br>40<br>41<br>42<br>43<br>44<br>45<br>46<br>47<br>48<br>49<br>50                                           | Temperature: Pressure: Molar Flow Mass Flow Std Ideal Liq Vol Flow Molar Enthalpy Molar Entropy ( Heat Flow Liq Vol Flow @Std Cond                                              | (kPa) (kgmole/h) (kg/h) (m3/h) (kJ/kgmole) kJ/kgmole-C) (kJ/h) (m3/h)  MOLAR FLO\ (kgmole/h)                            | 1.0000 20.00 370.0 1116 4.891e+004 59.23 9178 199.9 1.025e+007 48.97 *                                                                | CCO                                      | (apour Phase 1.0000 20.00 370.0 1116 4.891e+004 59.23 9178 199.9 1.025e+007 48.97  OMPOSITION  verall Phase  MASS FLOW (kg/h)                                            | N 000                                     | 0.0000 20.00 370.0 0.0000 0.0000 0.0000 -3.437e+004 73.72 0.0000 0.0000                                                                       | LIQUID VOLUME<br>FLOW (m3/h)                                                    | LIQUID VOLUME<br>FRACTION                                                   |  |  |  |  |  |
| 36<br>37<br>38<br>39<br>40<br>41<br>42<br>43<br>44<br>45<br>46<br>47<br>48<br>49<br>50<br>51<br>52<br>53                         | Temperature: Pressure: Molar Flow Mass Flow Std Ideal Liq Vol Flow Molar Enthalpy Molar Entropy ( Heat Flow Liq Vol Flow @Std Cond  COMPONENTS  Oxygen                          | (kPa) (kgmole/h) (kg/h) (m3/h) (kJ/kgmole) kJ/kgmole-C) (kJ/h) (m3/h)  MOLAR FLO) (kgmole/h)                            | 1.0000 20.00 370.0 1116 4.891e+004 59.23 9178 199.9 1.025e+007 48.97 *                                                                | CC OO(ION)                               | (apour Phase 1.0000 20.00 370.0 1116 4.891e+004 59.23 9178 199.9 1.025e+007 48.97  OMPOSITION  verall Phase  MASS FLOW (kg/h) 20.0970                                    | N 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0   | 0.0000 20.00 370.0 0.0000 0.0000 0.0000 -3.437e+004 73.72 0.0000 0.0000  MASS FRACTION 0.0004                                                 | LIQUID VOLUME<br>FLOW (m3/h)                                                    | LIQUID VOLUME<br>FRACTION<br>0.0003                                         |  |  |  |  |  |
| 36<br>37<br>38<br>39<br>40<br>41<br>42<br>43<br>44<br>45<br>46<br>47<br>48<br>49<br>50<br>51<br>52<br>53                         | Temperature: Pressure: Molar Flow Mass Flow Std Ideal Liq Vol Flow Molar Enthalpy Molar Entropy ( Heat Flow Liq Vol Flow @Std Cond  COMPONENTS  Oxygen MEAmine                  | (kPa) (kgmole/h) (kg/h) (m3/h) (kJ/kgmole) kJ/kgmole-C) (kJ/h) (m3/h)  MOLAR FLOI (kgmole/h) 0.66                       | 1.0000 20.00 370.0 1116 4.891e+004 59.23 9178 199.9 1.025e+007 48.97 *  W MOLE FRACT 280 0.00 0.00 422 0.00                           | CC OO(10N)                               | /apour Phase 1.0000 20.00 370.0 1116 4.891e+004 59.23 9178 199.9 1.025e+007 48.97  OMPOSITION  verall Phase  MASS FLOW (kg/h) 20.0970 0.0000                             | N 0 0 0 0 1 1                             | 0.0000 20.00 370.0 0.0000 0.0000 0.0000 -3.437e+004 73.72 0.0000 0.0000  MASS FRACTION 0.0004 0.0000                                          | LIQUID VOLUME<br>FLOW (m3/h)<br>0.0177<br>0.0000                                | LIQUID VOLUME<br>FRACTION<br>0.0003<br>0.0000                               |  |  |  |  |  |
| 36<br>37<br>38<br>39<br>40<br>41<br>42<br>43<br>44<br>45<br>46<br>47<br>48<br>49<br>50<br>51<br>52<br>53<br>54<br>55             | Temperature: Pressure: Molar Flow Mass Flow Std Ideal Liq Vol Flow Molar Enthalpy Molar Entropy ( Heat Flow Liq Vol Flow @Std Cond  COMPONENTS  Oxygen MEAmine H2O              | (kPa) (kgmole/h) (kg/h) (m3/h) (kJ/kgmole-C) (kJ/h) (m3/h) (m3/h)  MOLAR FLO\ (kgmole/h) 0.66                           | 1.0000 20.00 370.0 1116 4.891e+004 59.23 9178 199.9 1.025e+007 48.97 *  W MOLE FRACT 280 0.0 000 0.0 422 0.0 751 0.9                  | CC CO C | (apour Phase 1.0000 20.00 370.0 1116 4.891e+004 59.23 9178 199.9 1.025e+007 48.97  OMPOSITION  verall Phase  MASS FLOW (kg/h) 20.0970 0.0000 132.2711                    | N 0 0 0 0 1 1 1 1 3 3 3 1 1 1 1 1 1 1 1 1 | 0.0000 20.00 370.0 0.0000 0.0000 0.0000 -3.437e+004 73.72 0.0000 0.0000  MASS FRACTION 0.0004 0.0000 0.00027                                  | LIQUID VOLUME<br>FLOW (m3/h)<br>0.0177<br>0.0000<br>0.1325                      | LIQUID VOLUME<br>FRACTION<br>0.0003<br>0.0000<br>0.0022                     |  |  |  |  |  |
| 36<br>37<br>38<br>39<br>40<br>41<br>42<br>43<br>44<br>45<br>46<br>47<br>48<br>49<br>50<br>51<br>52<br>53<br>54<br>55<br>56       | Temperature: Pressure: Molar Flow Mass Flow Std Ideal Liq Vol Flow Molar Enthalpy Molar Entropy ( Heat Flow Liq Vol Flow @Std Cond  COMPONENTS  Oxygen MEAmine H2O CO2          | (kPa) (kgmole/h) (kg/h) (m3/h) (kJ/kgmole-C) (kJ/h) (m3/h) (m3/h)  MOLAR FLO\ (kgmole/h) 0.66 0.00 7.36                 | 1.0000 20.00 370.0 1116 4.891e+004 59.23 9178 199.9 1.025e+007 48.97 *  W MOLE FRACT 280 0.0 000 0.0 422 0.0 751 0.9 811              | CC CO C | (apour Phase 1.0000 20.00 370.0 1116 4.891e+004 59.23 9178 199.9 1.025e+007 48.97  OMPOSITION  verall Phase  MASS FLOW (kg/h) 20.0970 0.0000 132.2711 48717.6438         | N 0 0 0 1 1 1 3 3 8 8                     | 0.0000 20.00 370.0 0.0000 0.0000 0.0000 -3.437e+004 73.72 0.0000 0.0000 0.0000  MASS FRACTION 0.0004 0.0000 0.0027 0.9961                     | LIQUID VOLUME<br>FLOW (m3/h)<br>0.0177<br>0.0000<br>0.1325<br>59.0277           | LIQUID VOLUME<br>FRACTION<br>0.0003<br>0.0000<br>0.0022<br>0.9967           |  |  |  |  |  |
| 36<br>37<br>38<br>39<br>40<br>41<br>42<br>43<br>44<br>45<br>46<br>47<br>48<br>49<br>50<br>51<br>52<br>53<br>54<br>55<br>56<br>57 | Temperature: Pressure: Molar Flow Mass Flow Std Ideal Liq Vol Flow Molar Enthalpy Molar Entropy ( Heat Flow Liq Vol Flow @Std Cond  COMPONENTS  Oxygen MEAmine H2O CO2 Nitrogen | (kPa) (kgmole/h) (kg/h) (m3/h) (kJ/kgmole) (kJ/kgmole-C) (kJ/h) (m3/h)  MOLAR FLO) (kgmole/h) 0.6i 0.0i 7.3 1106.9 1.13 | 1.0000 20.00 370.0 1116 4.891e+004 59.23 9178 199.9 1.025e+007 48.97 *  W MOLE FRACT 280 0.00 0.00 4.22 0.0.751 0.98 811 0.0.265 1.02 | CC CO C | (apour Phase 1.0000 20.00 370.0 1116 4.891e+004 59.23 9178 199.9 1.025e+007 48.97  OMPOSITION  verall Phase  MASS FLOW (kg/h) 20.0970 0.0000 132.2711 48717.6438 38.6878 | N 0 0 0 0 1 1 3 3 8 8 3 3 3               | 0.0000 20.00 370.0 0.0000 0.0000 0.0000 -3.437e+004 73.72 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 1.0000 0.0002 0.0002 0.0002 0.0008 1.0000 | LIQUID VOLUME<br>FLOW (m3/h)<br>0.0177<br>0.0000<br>0.1325<br>59.0277<br>0.0480 | LIQUID VOLUME<br>FRACTION<br>0.0003<br>0.0000<br>0.0022<br>0.9967<br>0.0008 |  |  |  |  |  |

| 1        |                         |                          |               |       | Case Name:          | CO2           | 2 Capture Save Flue G | Gas Model_iteration8_o       | otimized final.hsc        |
|----------|-------------------------|--------------------------|---------------|-------|---------------------|---------------|-----------------------|------------------------------|---------------------------|
| 3        |                         | LEGENDS<br>Burlington, M | ΛΔ            |       |                     | SI            |                       |                              |                           |
| 4        |                         | USA                      |               |       |                     |               |                       |                              |                           |
| 5        |                         |                          |               |       | Date/Time:          | Thu           | Apr 04 21:51:42 2019  |                              |                           |
| 7        | Mater                   | ial Strea                | m: Dry CO     | 2 (c  | ontinued            | )             | Flui                  | d Package: Bas               | sis-1                     |
| 8        |                         |                          |               | _ , - |                     | <u> </u>      | Pro                   | perty Package: Am            | ine Pkg - KE              |
| 9        |                         |                          |               | c     | OMPOSITION          |               |                       |                              |                           |
| 11       |                         |                          |               | ٧     | apour Phase         |               |                       | Phase Fra                    | ction 1.000               |
| 13       | COMPONENTS              | MOLAR FLO                | W MOLE FRACT  | ION   | MASS FLOW           |               | MASS FRACTION         | LIQUID VOLUME                | LIQUID VOLUME             |
| 14       |                         | (kgmole/h)               |               |       | (kg/h)              |               |                       | FLOW (m3/h)                  | FRACTION                  |
| 15       | Oxygen                  |                          |               | 0006  | 20.097              | _             | 0.0004<br>0.0000      | 0.0177                       | 0.0003                    |
| 16<br>17 | MEAmine<br>H2O          |                          |               | 0000  | 0.000<br>132.271    | $\rightarrow$ | 0.0007                | 0.0000<br>0.1325             | 0.0000                    |
| 18       | CO2                     | 1106.9                   |               | 9916  | 48717.643           | _             | 0.9961                | 59.0277                      | 0.9967                    |
| 19       | Nitrogen                | 1.3                      |               | 0012  | 38.687              | 8             | 0.0008                | 0.0480                       | 0.0008                    |
| 20       | Total                   | 1116.3                   | 265 1.0       | 0000  | 48908.699           | 8             | 1.0000                | 59.2259                      | 1.0000                    |
| 21<br>22 |                         |                          |               | Ad    | ueous Phase         |               |                       | Phase Fra                    | ction 0.0000              |
| 23<br>24 | COMPONENTS              | MOLAR FLOV<br>(kgmole/h) |               | ION   | MASS FLOW<br>(kg/h) |               | MASS FRACTION         | LIQUID VOLUME<br>FLOW (m3/h) | LIQUID VOLUME<br>FRACTION |
| 25       | Oxygen                  | 0.0                      | 000 0.0       | 0000  | 0.000               | 0             | 0.0000                | 0.0000                       | 0.0000                    |
| 26       | MEAmine                 | 0.0                      | 000 0.0       | 0000  | 0.000               | 0             | 0.0000                | 0.0000                       | 0.0000                    |
| 27       | H2O                     |                          |               | 9976  | 0.000               | $\rightarrow$ | 0.9941                | 0.0000                       | 0.9929                    |
| 28<br>29 | CO2<br>Nitrogen         |                          |               | 0024  | 0.000               | _             | 0.0059<br>0.0000      | 0.0000                       | 0.0071                    |
| 30       | Total                   |                          |               | 0000  |                     |               |                       | 0.0000                       | 1.0000                    |
| 31       | Total                   | 0.0                      | 1.0           | ,000  | 0.000               | <u> </u>      |                       |                              | sis-1                     |
| 32       | Mater                   | ial Strea                | m: Water      |       |                     |               |                       |                              |                           |
| 33       |                         |                          |               |       |                     |               | Proj                  | perty Package: Am            | ine Pkg - KE              |
| 34<br>35 |                         |                          |               |       | CONDITIONS          |               |                       |                              |                           |
| 36       |                         |                          | Overall       | \     | /apour Phase        | A             | Aqueous Phase         |                              |                           |
| 37       | Vapour / Phase Fraction |                          | 0.0000        |       | 0.0000              |               | 1.0000                |                              |                           |
| 38       | Temperature:            | (C)                      | 20.00         |       | 20.00               |               | 20.00                 |                              |                           |
| 39       | Pressure:               | (kPa)                    | 370.0         |       | 370.0               |               | 370.0                 |                              |                           |
| 40       | Molar Flow<br>Mass Flow | (kgmole/h)<br>(kg/h)     | 383.9<br>6939 |       | 0.0000              |               | 383.9<br>6939         | +                            |                           |
| 42       | Std Ideal Liq Vol Flow  | (m3/h)                   | 6.962         |       | 0.0000              |               | 6.962                 |                              |                           |
| 43       | Molar Enthalpy          | (kJ/kgmole)              | -3.437e+004   |       | 9178                |               | -3.437e+004           |                              |                           |
| 44       | Molar Entropy (         | kJ/kgmole-C)             | 73.72         |       | 199.9               |               | 73.72                 |                              |                           |
| 45       | Heat Flow               | (kJ/h)                   | -1.319e+007   |       | 0.0000              |               | -1.319e+007           |                              |                           |
| 46       | Liq Vol Flow @Std Cond  | (m3/h)                   | 6.949 *       |       | 0.0000              |               | 6.949                 |                              |                           |
| 47<br>48 |                         |                          |               | C     | OMPOSITION          |               |                       |                              |                           |
| 49<br>50 |                         |                          |               | C     | verall Phase        |               |                       | Vapour Fr                    | action 0.0000             |
| 51<br>52 | COMPONENTS              | MOLAR FLO                |               | ION   | MASS FLOW<br>(kg/h) |               | MASS FRACTION         | LIQUID VOLUME<br>FLOW (m3/h) | LIQUID VOLUME<br>FRACTION |
| 53       | Oxygen                  | , ,                      |               | 0000  | (kg/n)<br>0.000     | 6             | 0.0000                | 0.0000                       | 0.0000                    |
| 54       | MEAmine                 |                          |               | 0000  | 0.000               | $\rightarrow$ | 0.0000                | 0.0000                       | 0.0000                    |
| 55       | H2O                     | 382.9                    | 310 0.9       | 976   | 6898.540            | 6             | 0.9941                | 6.9125                       | 0.9929                    |
| 56       | CO2                     | 0.9                      |               | 0024  | 40.845              | $\rightarrow$ | 0.0059                | 0.0495                       | 0.0071                    |
| 57       | Nitrogen                |                          |               | 0000  | 0.000               | _             | 0.0000                | 0.0000                       | 0.0000                    |
| 58       | Total                   | 383.8                    | 592 1.0       | 0000  | 6939.387            | 3             | 1.0000                | 6.9620                       | 1.0000                    |
| 59<br>60 |                         |                          |               |       |                     |               |                       |                              |                           |
| 61       |                         |                          |               |       |                     |               |                       |                              |                           |
| 62       |                         |                          |               |       |                     |               |                       |                              |                           |
| 63       | Aspen Technology Inc    |                          | Aspen         | HYS   | /S Version 8 (27.   | .0.0          | .8138)                |                              | Page 10 of 16             |

| 1        |                                  |                          |              | Case Name:          | CO         | 2 Capture Save Flue ( | Gas Model_iteration8_o | otimized final.hsc   |                              |                           |
|----------|----------------------------------|--------------------------|--------------|---------------------|------------|-----------------------|------------------------|----------------------|------------------------------|---------------------------|
| 3        |                                  | LEGENDS<br>Burlington, I | МΔ           |                     |            | Unit Set:             | SI                     |                      |                              |                           |
| 4        |                                  | USA                      | IVIA         |                     |            |                       |                        |                      |                              |                           |
| 5        |                                  |                          |              |                     |            | Date/Time:            | Thu                    | Apr 04 21:51:42 2019 |                              |                           |
| 6<br>7   | Mater                            | ial Strea                | am:          | Water (             | con        | tinued)               |                        | Flui                 | d Package: Ba                | sis-1                     |
| 8        |                                  |                          |              |                     |            |                       |                        | Pro                  | perty Package: Am            | ine Pkg - KE              |
| 9        |                                  |                          |              |                     | C          | OMPOSITION            |                        |                      |                              |                           |
| 11       |                                  |                          |              |                     | ٧          | apour Phase           |                        |                      | Phase Fra                    | ction 0.0000              |
| 13<br>14 | COMPONENTS                       | MOLAR FLC<br>(kgmole/h   |              | MOLE FRACT          | ION        | MASS FLOW<br>(kg/h)   |                        | MASS FRACTION        | LIQUID VOLUME<br>FLOW (m3/h) | LIQUID VOLUME<br>FRACTION |
| 15       | Oxygen                           | 0.0                      | 0000         | 0.0                 | 0006       | 0.000                 | 00                     | 0.0004               | 0.0000                       | 0.0003                    |
| 16       | MEAmine                          |                          | 0000         |                     | 0000       | 0.000                 | -                      | 0.0000               | 0.0000                       | 0.0000                    |
| 17       | H2O                              |                          | 0000         |                     | 0066       | 0.000                 | _                      | 0.0027               | 0.0000                       | 0.0022                    |
| 18       | CO2<br>Nitrogen                  |                          | 0000         |                     | 916<br>012 | 0.000                 | _                      | 0.9961<br>0.0008     | 0.0000                       | 0.9967<br>0.0008          |
| 20       | Total                            |                          | 0000         |                     | 0000       | 0.000                 |                        | 1.0000               | 0.0000                       | 1.0000                    |
| 21       |                                  | I                        |              |                     |            | ueous Phase           |                        |                      | Phase Fra                    | ction 1.000               |
| 22       |                                  |                          |              |                     |            |                       |                        |                      |                              |                           |
| 23<br>24 | COMPONENTS                       | MOLAR FLC<br>(kgmole/h   |              | MOLE FRACT          | ION        | MASS FLOW<br>(kg/h)   |                        | MASS FRACTION        | LIQUID VOLUME<br>FLOW (m3/h) | LIQUID VOLUME<br>FRACTION |
| 25       | Oxygen                           | 1                        | 0000         |                     | 0000       | 0.000                 |                        | 0.0000               | 0.0000                       | 0.0000                    |
| 26       | MEAmine                          |                          | 0000         |                     | 0000       | 0.000                 | _                      | 0.0000               | 0.0000                       | 0.0000                    |
| 27       | H2O<br>CO2                       | 382.9                    | 9310<br>9281 |                     | 976<br>024 | 6898.540              | _                      | 0.9941<br>0.0059     | 6.9125<br>0.0495             | 0.9929                    |
| 28<br>29 | Nitrogen                         |                          | 0000         |                     | 0000       |                       |                        | 0.0000               | 0.0000                       | 0.0000                    |
| 30       | Total                            | 383.8                    | -            |                     | 0000       | 6939.387              |                        | 1.0000               | 6.9620                       | 1.0000                    |
| 31       |                                  |                          |              |                     |            |                       |                        | Flui                 | d Package: Ba                | sis-1                     |
| 32       | Mater                            | ial Strea                | am:          | Cool CC             | )2         |                       |                        | D                    | namic Daalcanac Am           | ina Dira I/E              |
| 33       |                                  |                          |              |                     |            |                       |                        | PIO                  | perty Package: Am            | ine Pkg - KE              |
| 35       |                                  |                          |              |                     | (          | CONDITIONS            |                        |                      |                              |                           |
| 36       |                                  |                          |              | Overall             | \          | /apour Phase          |                        | Aqueous Phase        |                              |                           |
| 37       | Vapour / Phase Fraction          |                          |              | 0.7441              |            | 0.7441                |                        | 0.2559               |                              |                           |
| 38       | Temperature:                     | (C)                      |              | 20.00 *             |            | 20.00                 |                        | 20.00                |                              |                           |
| 39       | Pressure:                        | (kPa)                    |              | 370.0               |            | 370.0                 |                        | 370.0                |                              |                           |
| 40       | Molar Flow                       | (kgmole/h)               |              | 1500                |            | 1116                  |                        | 383.9                |                              |                           |
| 41<br>42 | Mass Flow Std Ideal Liq Vol Flow | (kg/h)<br>(m3/h)         |              | 5.585e+004<br>66.19 |            | 4.891e+004<br>59.23   |                        | 6939<br>6.962        |                              |                           |
| 43       | Molar Enthalpy                   | (kJ/kgmole)              |              | -1965               |            | 9178                  |                        | -3.437e+004          |                              |                           |
| 44       |                                  | kJ/kgmole-C)             |              | 167.6               |            | 199.9                 |                        | 73.72                |                              |                           |
| 45       | Heat Flow                        | (kJ/h)                   |              | -2.948e+006         |            | 1.025e+007            |                        | -1.319e+007          |                              |                           |
| 46       | Liq Vol Flow @Std Cond           | (m3/h)                   |              | 55.92 *             |            | 48.97                 |                        | 6.949                |                              |                           |
| 47<br>48 |                                  |                          |              |                     | C          | OMPOSITION            |                        |                      |                              |                           |
| 49<br>50 |                                  |                          |              |                     | 0          | verall Phase          |                        |                      | Vapour Fr                    | action 0.7441             |
| 51<br>52 | COMPONENTS                       | MOLAR FLC                |              | MOLE FRACT          | ION        | MASS FLOW<br>(kg/h)   |                        | MASS FRACTION        | LIQUID VOLUME<br>FLOW (m3/h) | LIQUID VOLUME<br>FRACTION |
| 53       | Oxygen                           |                          | 6281         | 0.0                 | 0004       | (kg/II)<br>20.097     | 77                     | 0.0004               | 0.0177                       | 0.0003                    |
| 54       | MEAmine                          |                          | 0000         |                     | 0000       | 0.000                 | -                      | 0.0000               | 0.0000                       | 0.0000                    |
| 55       | H2O                              | 390.2                    |              |                     | 2601       | 7030.811              | -                      | 0.1259               | 7.0450                       | 0.1064                    |
| 56       | CO2                              | 1107.9                   |              |                     | '385       | 48758.489             |                        | 0.8731               | 59.0772                      | 0.8926                    |
| 57       | Nitrogen                         |                          | 3811         |                     | 0009       | 38.688                |                        | 0.0007               | 0.0480                       | 0.0007                    |
| 58       | Total                            | 1500.1                   | 1856         | 1.0                 | 0000       | 55848.087             | 71                     | 1.0000               | 66.1879                      | 1.0000                    |
| 59       |                                  |                          |              |                     |            |                       |                        |                      |                              |                           |
| 60<br>61 |                                  |                          |              |                     |            |                       |                        |                      |                              |                           |
| 62       |                                  |                          |              |                     |            |                       |                        |                      |                              |                           |
| 63       | Aspen Technology Inc             |                          |              | Aspen               | HYS        | S Version 8 (27       | 7.0.0                  | ).8138)              |                              | Page 11 of 16             |

| 1              |                                  |                          |                |          | O N                   | 00.01 0 ==            | On Malling                     | attacha di Contr          |
|----------------|----------------------------------|--------------------------|----------------|----------|-----------------------|-----------------------|--------------------------------|---------------------------|
| 2              |                                  | LEGENDS                  |                | -        | Case Name: C          | O2 Capture_Save_Flu   | e Gas Model_iteration8_o       | ptimized_final.hsc        |
| 3              |                                  | Burlington, M<br>USA     | 1A             |          | Unit Set: S           | 1                     |                                |                           |
| 5              |                                  | 00/1                     |                |          | Date/Time: TI         | nu Apr 04 21:51:42 20 | 19                             |                           |
| 6              | Motor                            | ial Ctrac                | m. Cool C      | <u> </u> | (aantinuad            | I <b>N</b>            | luid Package: Ba               | sis-1                     |
| 7<br>8         | iviatei                          | iai Sirea                | m: Cool C      | UZ (     | Continued             |                       | Property Package: An           | nine Pkg - KE             |
| 9              |                                  |                          |                | C        | OMPOSITION            |                       |                                |                           |
| 11             |                                  |                          |                | ٧        | apour Phase           |                       | Phase Fra                      | action 0.7441             |
| 13             | COMPONENTS                       | MOLAR FLOV               | W MOLE FRAC    | ΓΙΟΝ     | MASS FLOW<br>(kg/h)   | MASS FRACTION         | I LIQUID VOLUME<br>FLOW (m3/h) | LIQUID VOLUME<br>FRACTION |
| 15             | Oxygen                           | 0.62                     | 280 0.         | 0006     | 20.0970               | 0.0004                | · , ,                          | 0.0003                    |
| 16             | MEAmine                          | 0.00                     | 000 0.         | 0000     | 0.0000                | 0.0000                | 0.0000                         | 0.0000                    |
| 17             | H2O                              | 7.34                     | <del>- 1</del> | 0066     | 132.2711              | 0.0027                | _                              | 0.0022                    |
| 18             | CO2                              | 1106.97                  | _              | 9916     | 48717.6438            | 0.9961                | +                              | 0.9967                    |
| 19             | Nitrogen<br>Total                | 1.38                     |                | 0012     | 38.6878<br>48908.6998 | 0.0008                |                                | 0.0008<br>1.0000          |
| 20             | Total                            | 1110.32                  | 200 1.         | 0000     | 48908.6998            | 1.0000                | 59.2259                        | 1.0000                    |
| 22             |                                  |                          |                | Ac       | queous Phase          |                       | Phase Fra                      | oction 0.2559             |
| 23<br>24       | COMPONENTS                       | MOLAR FLO\<br>(kgmole/h) | W MOLE FRAC    | TION     | MASS FLOW<br>(kg/h)   | MASS FRACTION         | LIQUID VOLUME<br>FLOW (m3/h)   | LIQUID VOLUME<br>FRACTION |
| 25             | Oxygen                           | 0.00                     | 000 0.         | 0000     | 0.0006                | 0.0000                | · ' '                          | 0.0000                    |
| 26             | MEAmine                          | 0.00                     | 000 0.         | 0000     | 0.0000                | 0.0000                | 0.0000                         | 0.0000                    |
| 27             | H2O                              | 382.93                   | 310 0.         | 9976     | 6898.5406             | 0.9941                | 6.9125                         | 0.9929                    |
| 28             | CO2                              | 0.92                     | _              | 0024     | 40.8454               | 0.0059                | +                              | 0.0071                    |
| 29             | Nitrogen                         | 0.00                     |                | 0000     | 0.0006                | 0.0000                |                                | 0.0000                    |
| 30             | Total                            | 383.85                   | 592 1.         | 0000     | 6939.3873             | 1.0000                | <u>'</u>                       | 1.0000                    |
| 32<br>33<br>34 | Mater                            | ial Strea                | m: Collect     |          | Flue Gas              |                       |                                | sis-1<br>nine Pkg - KE    |
| 35             |                                  |                          | Overall        |          | /apour Phase          |                       |                                |                           |
| 36<br>37       | Vapour / Phase Fraction          |                          | 1.0000         | <u> </u> | 1.0000                |                       |                                |                           |
| 38             | Temperature:                     | (C)                      | 25.00          |          | 25.00                 |                       |                                |                           |
| 39             | Pressure:                        | (kPa)                    | 200.0          |          | 200.0                 |                       |                                |                           |
| 40             | Molar Flow                       | (kgmole/h)               | 3.000e+004     | ×        | 3.000e+004            |                       |                                |                           |
| 41             | Mass Flow                        | (kg/h)                   | 8.808e+005     |          | 8.808e+005            |                       |                                |                           |
| 42             | Std Ideal Liq Vol Flow           | (m3/h)                   | 1027           |          | 1027                  |                       |                                |                           |
| 43             | Molar Enthalpy                   | (kJ/kgmole)              | 8691           |          | 8691                  |                       |                                |                           |
| 44             |                                  | kJ/kgmole-C)             | 186.5          | +        | 186.5                 |                       |                                |                           |
| 45<br>46       | Heat Flow Liq Vol Flow @Std Cond | (kJ/h)<br>(m3/h)         | 2.607e+008     | 1        | 2.607e+008            |                       |                                |                           |
| 47             | EIG VOI I IOW @ SIG COIIG        | (1110/11)                |                |          | OMPOSITION            |                       |                                |                           |
| 48<br>49       |                                  |                          |                |          |                       |                       | Vanor: F-                      | action 1.0000             |
| 50             |                                  |                          |                |          | verall Phase          |                       | Vapour Fr                      |                           |
| 51<br>52       | COMPONENTS                       | MOLAR FLO\<br>(kgmole/h) |                | ΓΙΟΝ     | MASS FLOW<br>(kg/h)   | MASS FRACTION         | I LIQUID VOLUME<br>FLOW (m3/h) | LIQUID VOLUME<br>FRACTION |
| 53             | Oxygen                           | 5501.8                   | <del>- 1</del> | 1834 *   | 176059.1044           | * 0.1999              |                                | 0.1506 *                  |
| 54             | MEAmine                          |                          |                | 0000 *   | 0.0000                |                       |                                | 0.0000 *                  |
| 55             | H2O                              |                          |                | 0000 *   | 0.0000                |                       | _                              | 0.0000 *                  |
| 56             | CO2                              | 1154.2                   |                | 0385 *   | 50796.5466            | +                     | _                              | 0.0599 *                  |
| 57             | Nitrogen                         | 23343.9                  |                | 7781 *   | 653933.8164           |                       |                                | 0.7894 *                  |
| 58             | Total                            | 30000.00                 | UUU   1.       | 0000     | 880789.4674           | 1.0000                | 1027.2553                      | 1.0000                    |
| 59<br>60<br>61 |                                  |                          |                |          |                       |                       |                                |                           |
|                |                                  |                          |                |          |                       |                       |                                |                           |
| 62<br>63       | Aspen Technology Inc             |                          | Aspen          | HYS      | YS Version 8 (27.0    | .0.8138)              |                                | Page 12 of 16             |

| 1              |                                  |                           |                       |              | Case Name:             | CO   | 2 Capture Save Flue     | Gas Model_iteration8_o       | otimized final.hsc        |
|----------------|----------------------------------|---------------------------|-----------------------|--------------|------------------------|------|-------------------------|------------------------------|---------------------------|
| 3              |                                  | LEGENDS<br>Burlington, MA |                       |              | Unit Set:              | SI   |                         |                              |                           |
| 4              |                                  | USA                       | •                     |              | Date/Time:             |      | . Apr. 04 21:51:42 2016 |                              |                           |
| 5<br>6         |                                  |                           |                       |              | Date/Time.             | HIL  | Apr 04 21:51:42 2019    |                              |                           |
| 7              | Mater                            | ial Strear                | n: Collecte           | ed I         | Flue Gas               | (c   | ontinue FII             | uid Package: Ba              | sis-1                     |
| 8              |                                  |                           |                       |              |                        | `    | Pr                      | operty Package: Am           | nine Pkg - KE             |
| 9              |                                  |                           |                       | C            | OMPOSITION             |      |                         |                              |                           |
| 11             |                                  |                           |                       | ٧            | apour Phase            |      |                         | Phase Fra                    | action 1.000              |
| 13             | COMPONENTS                       | MOLAR FLOW<br>(kgmole/h)  | MOLE FRACT            | ION          | MASS FLOW<br>(kg/h)    |      | MASS FRACTION           | LIQUID VOLUME<br>FLOW (m3/h) | LIQUID VOLUME<br>FRACTION |
| 14<br>15       | Oxygen                           | 5501.847                  | 70 0.1                | 834          | 176059.10              | 44   | 0.1999                  | 154.7527                     | 0.1506                    |
| 16             | MEAmine                          | 0.00                      | <del>-  </del>        | 0000         | 0.00                   | 00   | 0.0000                  | 0.0000                       | 0.0000                    |
| 17             | H2O                              | 0.000                     | 0.0                   | 0000         | 0.00                   | 00   | 0.0000                  | 0.0000                       | 0.0000                    |
| 18             | CO2                              | 1154.212                  | - t                   | 385          | 50796.54               |      | 0.0577                  | 61.5466                      | 0.0599                    |
| 19<br>20       | Nitrogen<br>Total                | 23343.940<br>30000.000    |                       | 781          | 653933.81<br>880789.46 |      | 0.7424<br>1.0000        | 810.9560<br>1027.2553        | 0.7894<br>1.0000          |
| 21             | Total                            | 30000.000                 | 1.0                   | 1000         | 880789.40              | 74   |                         | · ·                          | sis-1                     |
| 22<br>23       | Mater                            | ial Strear                | n: Hotter F           | Ricl         | n Amine                |      |                         | _                            | nine Pkg - KE             |
| 24             |                                  |                           |                       |              |                        |      |                         |                              | g                         |
| 25             |                                  |                           |                       |              | CONDITIONS             |      |                         |                              |                           |
| 26             |                                  |                           | Overall               | ١            | /apour Phase           |      | Aqueous Phase           |                              |                           |
| 27             | Vapour / Phase Fraction          | (2)                       | 0.0001                |              | 0.0001                 |      | 0.9999                  |                              |                           |
| 28<br>29       | Temperature: Pressure:           | (C)<br>(kPa)              | 110.0 *<br>420.0      |              | 110.0<br>420.0         |      | 110.0<br>420.0          |                              |                           |
| 30             | Molar Flow                       | (kgmole/h)                | 8.896e+004            |              | 8.647                  |      | 8.895e+004              |                              |                           |
| 31             | Mass Flow                        | (kg/h)                    | 1.743e+006            |              | 283.6                  |      | 1.742e+006              |                              |                           |
| 32             | Std Ideal Liq Vol Flow           | (m3/h)                    | 1755                  |              | 0.3291                 |      | 1755                    |                              |                           |
| 33             | Molar Enthalpy                   | (kJ/kgmole)               | -2.612e+004           |              | 1.254e+004             |      | -2.613e+004             |                              |                           |
| 34             |                                  | kJ/kgmole-C)              | 85.41                 |              | 213.6                  |      | 85.40                   |                              |                           |
| 35             | Heat Flow Liq Vol Flow @Std Cond | (kJ/h)<br>(m3/h)          | -2.324e+009<br>1648 * |              | 1.084e+005<br>0.3172   |      | -2.324e+009<br>1648     |                              |                           |
| 36<br>37       | Liq voi i low @ Sta Colla        | (1113/11)                 | 1040                  | _            |                        |      | 1046                    |                              |                           |
| 38<br>39       |                                  |                           |                       |              | OMPOSITION             |      |                         |                              |                           |
| 40             |                                  |                           |                       |              | verall Phase           |      |                         | Vapour Fr                    |                           |
| 41<br>42       | COMPONENTS                       | MOLAR FLOW<br>(kgmole/h)  |                       |              | MASS FLOW<br>(kg/h)    |      | MASS FRACTION           | FLOW (m3/h)                  | LIQUID VOLUME<br>FRACTION |
| 43             | Oxygen<br>MEAmine                | 0.628<br>2489.968         | <del>-  </del>        | 0000<br>0280 | 20.09<br>152096.79     |      | 0.0000                  | 0.0177<br>149.5588           | 0.0000<br>0.0852          |
| 44<br>45       | H2O                              | 85206.89°                 | <del> </del>          | 1280<br>1578 | 1.535010708e+          | _    | 0.0873                  | 1538.1084                    | 0.0852                    |
| 46             | CO2                              | 1261.232                  |                       | 142          | 55506.47               |      | 0.0319                  | 67.2533                      | 0.0383                    |
| 47             | Nitrogen                         | 1.38                      | 1 0.0                 | 0000         | 38.68                  | 84   | 0.0000                  | 0.0480                       | 0.0000                    |
| 48             | Total                            | 88960.098                 | 1.0                   | 0000         | 1.742672761e+          | 06   | 1.0000                  | 1754.9861                    | 1.0000                    |
| 49<br>50       |                                  |                           |                       |              | apour Phase            |      |                         | Phase Fra                    |                           |
| 51<br>52       | COMPONENTS                       | MOLAR FLOW<br>(kgmole/h)  |                       |              | MASS FLOW<br>(kg/h)    |      | MASS FRACTION           | LIQUID VOLUME<br>FLOW (m3/h) | LIQUID VOLUME<br>FRACTION |
| 53             | Oxygen                           | 0.39                      | _                     | 453          | 12.52                  |      | 0.0442                  | 0.0110                       | 0.0335                    |
| 54<br>55       | MEAmine<br>H2O                   | 0.000<br>2.93             |                       | 0008<br>395  | 0.39<br>52.88          |      | 0.0014<br>0.1865        | 0.0004<br>0.0530             | 0.0012<br>0.1610          |
| 56             | CO2                              | 4.31                      |                       | 987          | 189.77                 |      | 0.1865                  | 0.0530                       | 0.1610                    |
| 57             | Nitrogen                         | 1.00                      |                       | 158          | 28.04                  |      | 0.0989                  | 0.0348                       | 0.1057                    |
| 58             | Total                            | 8.64                      |                       | 0000         | 283.62                 | 74   | 1.0000                  | 0.3291                       | 1.0000                    |
| 60<br>61<br>62 | Aspen Technology Inc             |                           | Acnon                 | HVSV         | YS Version 8 (2)       | 700  | ) 8138)                 |                              | Page 13 of 16             |
| 63             | Aspen Technology Inc             |                           | Aspen                 | 1113         | 10 VEISIUITO (2)       | .0.0 | 7.0130)                 |                              | rage 13 UI 10             |

| 1                                                             |                                  |                          |                          |              | Case Name:                  | CO    | 2 Captura, Sava Eluc | Gas Model_iteration8_o       | ntimized final hea        |  |  |  |  |
|---------------------------------------------------------------|----------------------------------|--------------------------|--------------------------|--------------|-----------------------------|-------|----------------------|------------------------------|---------------------------|--|--|--|--|
| 3                                                             |                                  | LEGENDS                  |                          |              |                             |       | z Capiure_Save_Flue  | Gas Wodel_Refations_o        | pumizeu_imai.nsc          |  |  |  |  |
| 4                                                             |                                  | Burlington, MA<br>USA    |                          |              | Unit Set:                   | SI    |                      |                              |                           |  |  |  |  |
| 5                                                             |                                  |                          |                          |              | Date/Time:                  | Thu   | Apr 04 21:51:42 201  | 9                            |                           |  |  |  |  |
| 7                                                             | Mater                            | ial Stream:              | Hotter F                 | 2icł         | h Amina /                   |       | ntinua               | uid Package: Ba              | sis-1                     |  |  |  |  |
| 8                                                             | Water                            | iai oti caiii.           | 1 lotter i               | \iCi         |                             |       | P                    | roperty Package: Am          | nine Pkg - KE             |  |  |  |  |
| 9<br>10                                                       |                                  |                          |                          | С            | OMPOSITION                  |       |                      |                              |                           |  |  |  |  |
| 11                                                            |                                  |                          |                          | Ac           | queous Phase                |       |                      | Phase Fra                    | action 0.9999             |  |  |  |  |
| 13                                                            | COMPONENTS                       | MOLAR FLOW<br>(kgmole/h) | MOLE FRACT               | ION          | MASS FLOW (kg/h)            |       | MASS FRACTION        | LIQUID VOLUME<br>FLOW (m3/h) | LIQUID VOLUME<br>FRACTION |  |  |  |  |
| _                                                             | Oxygen                           | 0.2366                   | 0.0                      | 0000         | 7.57                        | 16    | 0.0000               | 0.0067                       | 0.0000                    |  |  |  |  |
| _                                                             | MEAmine                          | 2489.9588                | 1                        | 280          | 152096.39                   |       | 0.0873               | 149.5584                     | 0.0852                    |  |  |  |  |
| _                                                             | H2O<br>CO2                       | 85203.9555<br>1256.9206  |                          | )579<br>)141 | 1.534957820e+<br>55316.69   |       | 0.8810<br>0.0317     | 1538.0554<br>67.0233         | 0.8766<br>0.0382          |  |  |  |  |
| _                                                             | Nitrogen                         | 0.3801                   | +                        | 0000         | 10.64                       | -     | 0.0000               | 0.0132                       | 0.0000                    |  |  |  |  |
| _                                                             | Total                            | 88951.4516               | 1                        | 0000         | 1.742389133e+               |       | 1.0000               | 1754.6570                    | 1.0000                    |  |  |  |  |
| 21 Fluid Package: Basis-1 22 Material Stream: Depressed Amine |                                  |                          |                          |              |                             |       |                      |                              |                           |  |  |  |  |
| 23                                                            | Property Package: Amine Pkg - KE |                          |                          |              |                             |       |                      |                              |                           |  |  |  |  |
| 24<br>25                                                      |                                  |                          |                          |              |                             |       |                      |                              |                           |  |  |  |  |
| 26                                                            | 55                               |                          |                          |              |                             |       |                      |                              |                           |  |  |  |  |
| 27                                                            | Vapour / Phase Fraction          |                          | 0.0000                   |              | 1.0000                      |       |                      |                              |                           |  |  |  |  |
| _                                                             | Temperature:                     | (C)                      | 25.00                    |              | 25.00                       |       |                      |                              |                           |  |  |  |  |
| _                                                             | Pressure:                        | (kPa)                    | 260.0 *                  |              | 260.0                       |       |                      |                              |                           |  |  |  |  |
| _                                                             | Molar Flow<br>Mass Flow          | (kgmole/h)<br>(kg/h)     | 8.929e+004<br>1.720e+006 |              | 8.929e+004<br>1.720e+006    |       |                      |                              |                           |  |  |  |  |
| _                                                             | Std Ideal Liq Vol Flow           | (m3/h)                   | 1722                     |              | 1722                        |       |                      |                              |                           |  |  |  |  |
| _                                                             | Molar Enthalpy                   | (kJ/kgmole)              | -3.263e+004              |              | -3.263e+004                 |       |                      |                              |                           |  |  |  |  |
| 34                                                            | Molar Entropy (                  | kJ/kgmole-C)             | 77.06                    |              | 77.06                       |       |                      |                              |                           |  |  |  |  |
| _                                                             | Heat Flow                        | (kJ/h)                   | -2.914e+009              |              | -2.914e+009                 |       |                      |                              |                           |  |  |  |  |
| 36<br>37                                                      | Liq Vol Flow @Std Cond           | (m3/h)                   | 1706 *                   |              | 1706                        |       |                      |                              |                           |  |  |  |  |
| 38                                                            |                                  |                          |                          | С            | OMPOSITION                  |       |                      |                              |                           |  |  |  |  |
| 39<br>40                                                      |                                  | 1                        |                          | 0            | verall Phase                |       |                      | Vapour Fr                    |                           |  |  |  |  |
| 41<br>42                                                      | COMPONENTS                       | MOLAR FLOW<br>(kgmole/h) | MOLE FRACT               |              | MASS FLOW<br>(kg/h)         |       | MASS FRACTION        | LIQUID VOLUME<br>FLOW (m3/h) | LIQUID VOLUME<br>FRACTION |  |  |  |  |
|                                                               | Oxygen                           | 0.0000                   |                          | 0000         | 0.00                        | -     | 0.0000               | 0.0000                       | 0.0000                    |  |  |  |  |
| _                                                             | MEAmine<br>H2O                   | 2489.9653<br>86641.9756  |                          | )279<br>)704 | 152096.79-<br>1.560863896e+ | _     | 0.0884<br>0.9076     | 149.5588<br>1564.0138        | 0.0869<br>0.9084          |  |  |  |  |
| _                                                             | CO2                              | 153.3294                 | 1                        | 017          | 6747.98                     | -     | 0.0039               | 8.1761                       | 0.9064                    |  |  |  |  |
| _                                                             | Nitrogen                         | 0.0000                   |                          | 0000         | 0.00                        | _     | 0.0000               | 0.0000                       | 0.0000                    |  |  |  |  |
| 48                                                            | Total                            | 89285.2704               | 1.0                      | 0000         | 1.719708673e+               | 06    | 1.0000               | 1721.7486                    | 1.0000                    |  |  |  |  |
| 49<br>50                                                      |                                  |                          |                          | Ac           | queous Phase                |       |                      | Phase Fra                    | action 1.000              |  |  |  |  |
| 51<br>52                                                      | COMPONENTS                       | MOLAR FLOW<br>(kgmole/h) | MOLE FRACT               | ION          | MASS FLOW<br>(kg/h)         |       | MASS FRACTION        | LIQUID VOLUME<br>FLOW (m3/h) | LIQUID VOLUME<br>FRACTION |  |  |  |  |
|                                                               | Oxygen                           | 0.0000                   | 1                        | 0000         | 0.00                        |       | 0.0000               | 0.0000                       | 0.0000                    |  |  |  |  |
| _                                                             | MEAmine                          | 2489.9653                |                          | 279          | 152096.79                   |       | 0.0884               | 149.5588                     | 0.0869                    |  |  |  |  |
| _                                                             | H2O<br>CO2                       | 86641.9756<br>153.3294   |                          | 0704         | 1.560863896e+               | _     | 0.9076<br>0.0039     | 1564.0138<br>8.1761          | 0.9084<br>0.0047          |  |  |  |  |
|                                                               | Nitrogen                         | 0.0000                   | 1                        | 0000         | 0.00                        | -     | 0.0000               | 0.0000                       | 0.0000                    |  |  |  |  |
| _                                                             | Total                            | 89285.2704               |                          | 0000         | 1.719708673e+               |       | 1.0000               | 1721.7486                    | 1.0000                    |  |  |  |  |
| 59                                                            |                                  |                          |                          |              | <u> </u>                    |       |                      |                              |                           |  |  |  |  |
| -1                                                            |                                  |                          |                          |              |                             |       |                      |                              |                           |  |  |  |  |
| _                                                             |                                  |                          |                          |              |                             |       |                      |                              |                           |  |  |  |  |
|                                                               | Aspen Technology Inc             |                          | Aspen                    | HYS          | YS Version 8 (27            | 7.0.0 | ).8138)              |                              | Page 14 of 16             |  |  |  |  |
| 59<br>60<br>61<br>62                                          |                                  |                          |                          |              |                             |       |                      | ,                            | Paç                       |  |  |  |  |

| T <sub>1</sub> |                                                                        |                                                             |                 |                                   |                         |
|----------------|------------------------------------------------------------------------|-------------------------------------------------------------|-----------------|-----------------------------------|-------------------------|
| 2              | LEGENDS                                                                | Case Name: CO                                               | O2 Capture_Sa   | ve_Flue Gas Model_iteration       | on8_optimized_final.hsc |
| 3              | Burlington, MA<br>USA                                                  | Unit Set: SI                                                | l               |                                   |                         |
| 5              | USA                                                                    | Date/Time: Th                                               | nu Apr 04 21:51 | :42 2019                          |                         |
| 6              |                                                                        | _                                                           |                 | Fluid Package:                    | Basis-1                 |
| 7              | Energy Stream: P                                                       | ump Energy                                                  |                 | Property Package:                 | Amine Pkg - KE          |
| 9              |                                                                        | CONDITIONS                                                  |                 |                                   |                         |
| 10             | Data Tarana                                                            |                                                             | D 400           |                                   |                         |
| 11<br>12       | Duty Type:         Direct Q           Duty SP:         6.618e+005 kJ/h | Duty Calculation Operation:  Minimum Available Duty:        | P-100           | Maximum Available Duty            | r:                      |
| 13             | .,.                                                                    | UNIT OPERATIONS                                             |                 |                                   |                         |
| 14<br>15       | FEED TO                                                                | PRODUCT FROM                                                |                 | LOGICAL (                         | CONNECTION              |
| 16             | Pump: P-100                                                            |                                                             |                 |                                   |                         |
| 17<br>18       |                                                                        | UTILITIES                                                   |                 |                                   |                         |
| 19             |                                                                        | ( No utilities reference this stream                        | am )            |                                   |                         |
| 20<br>21       |                                                                        | PROCESS UTILITY                                             |                 |                                   |                         |
| 22             |                                                                        |                                                             |                 |                                   |                         |
| 23             | Energy Stream: C                                                       | andonsor Engrav                                             |                 | Fluid Package:                    | Basis-1                 |
| 25             | Energy Stream: C                                                       | ondensor Energy                                             |                 | Property Package:                 | Amine Pkg - KE          |
| 26             |                                                                        | CONDITIONS                                                  |                 |                                   |                         |
| 27             |                                                                        | CONDITIONS                                                  | 0.001.0         |                                   |                         |
| 28<br>29       | Duty Type:         Direct Q           Duty SP:         6.384e+007 kJ/h | Duty Calculation Operation: Conder  Minimum Available Duty: | nser @COL2      | Maximum Available Duty            | r                       |
| 30             | Duty 01 . 0.30464007 R0/11                                             | •                                                           |                 | Waximum Available Duty            |                         |
| 31             |                                                                        | UNIT OPERATIONS                                             |                 |                                   |                         |
| 32             | FEED TO                                                                | PRODUCT FROM Distillation:                                  | T-101           | LOGICAL C                         | CONNECTION              |
| 34             |                                                                        | UTILITIES                                                   | 1-101           |                                   |                         |
| 35<br>36       |                                                                        | ( No utilities reference this stream                        | am )            |                                   |                         |
| 37             |                                                                        | PROCESS UTILITY                                             |                 |                                   |                         |
| 38<br>39       |                                                                        | FROCESS OTIETT                                              |                 |                                   |                         |
| 40             |                                                                        |                                                             |                 | Fluid Package:                    | Basis-1                 |
| 41             | Energy Stream: R                                                       | eboiler Energy                                              |                 |                                   |                         |
| 42<br>43       |                                                                        |                                                             |                 | Property Package:                 | Amine Pkg - KE          |
| 44             |                                                                        | CONDITIONS                                                  |                 |                                   |                         |
| 45             | Duty Type: Direct Q                                                    |                                                             | oiler @COL2     |                                   |                         |
| 46<br>47       | Duty SP: 4.302e+008 kJ/h                                               | Minimum Available Duty:                                     |                 | Maximum Available Duty            | r:                      |
| 48             |                                                                        | UNIT OPERATIONS                                             |                 |                                   |                         |
| 49             | FEED TO                                                                | PRODUCT FROM                                                |                 | LOGICAL C                         | CONNECTION              |
| 50             | Distillation: T-101                                                    |                                                             |                 |                                   |                         |
| 51<br>52       |                                                                        | UTILITIES                                                   |                 |                                   |                         |
| 53             |                                                                        | ( No utilities reference this stream                        | am )            |                                   |                         |
| 54<br>55       |                                                                        | PROCESS UTILITY                                             |                 |                                   |                         |
| 56             |                                                                        | LP Steam Generation                                         |                 |                                   |                         |
| 57<br>58       | Energy Stream: C                                                       | ooler Energy                                                |                 | Fluid Package:  Property Package: | Basis-1 Amine Pkg - KE  |
| 59<br>60       |                                                                        | CONDITIONS                                                  |                 | .,,                               | <u> </u>                |
| 61<br>62       | Duty Type: Direct Q                                                    | Duty Calculation Operation:                                 | E-101           |                                   |                         |
| 63             | Aspen Technology Inc.                                                  | Aspen HYSYS Version 8 (27.0                                 |                 |                                   | Page 15 of 16           |

| 1        |                                                                        | Case Name: CO2 Ca                        | anture Sa         | ve_Flue Gas Model_iteration | on8 optimized final hsc |  |
|----------|------------------------------------------------------------------------|------------------------------------------|-------------------|-----------------------------|-------------------------|--|
| 3        | LEGENDS<br>Burlington, MA                                              |                                          | Unit Set: SI      |                             |                         |  |
| 4        | USA                                                                    |                                          |                   |                             |                         |  |
| 5<br>6   | Date/Time: Thu Apr 04 21:51:42 2019  Fluid Package: Basis-1            |                                          |                   |                             |                         |  |
| 7        | Energy Stream: 0                                                       | Cooler Energy (continu                   | ed)               | Property Package:           | Amine Pkg - KE          |  |
| 9        |                                                                        | CONDITIONS                               |                   | 1 Toperty Fackage.          | Annie i kg - NL         |  |
| 10<br>11 | Duty SP: 7.592e+008 kJ/h                                               | Minimum Available Duty:                  |                   | Maximum Available Duty      | :                       |  |
| 12       | UNIT OPERATIONS                                                        |                                          |                   |                             |                         |  |
| 13<br>14 | FEED TO                                                                | PRODUCT FROM                             |                   | LOGICAL C                   | ONNECTION               |  |
| 15<br>16 |                                                                        | Cooler:                                  | E-101             |                             |                         |  |
| 17       | UTILITIES                                                              |                                          |                   |                             |                         |  |
| 18<br>19 | ( No utilities reference this stream )                                 |                                          |                   |                             |                         |  |
| 20<br>21 |                                                                        |                                          |                   |                             |                         |  |
| 22       | <u> </u>                                                               | 200.0                                    |                   | Fluid Package:              | Basis-1                 |  |
| 23<br>24 | Energy Stream: CO2 Cooler                                              |                                          | Property Package: | Amine Pkg - KE              |                         |  |
| 25<br>26 |                                                                        | CONDITIONS                               |                   |                             |                         |  |
| 27       | Duty Type: Direct Q                                                    | Duty Calculation Operation:              | E-102             |                             |                         |  |
| 28       | Duty SP: 2.151e+007 kJ/h                                               | Minimum Available Duty:                  |                   | Maximum Available Duty      | :                       |  |
| 29<br>30 |                                                                        | UNIT OPERATIONS                          |                   |                             |                         |  |
| 31<br>32 | FEED TO                                                                | PRODUCT FROM Cooler:                     | E-102             | LOGICAL C                   | ONNECTION               |  |
| 33       | UTILITIES                                                              |                                          |                   |                             |                         |  |
| 34<br>35 | ( No utilities reference this stream )                                 |                                          |                   |                             |                         |  |
| 36<br>37 | PROCESS UTILITY                                                        |                                          |                   |                             |                         |  |
| 38       |                                                                        |                                          |                   |                             |                         |  |
| 39<br>40 | Energy Stream: Heater Energy                                           |                                          | Fluid Package:    | Basis-1                     |                         |  |
| 41       |                                                                        |                                          |                   | Property Package:           | Amine Pkg - KE          |  |
| 42<br>43 |                                                                        | CONDITIONS                               |                   |                             |                         |  |
| 44<br>45 | Duty Type:         Direct Q           Duty SP:         4.398e+008 kJ/h | Duty Calculation Operation:              | E-103             | Maximum Available Duty      | :                       |  |
| 46       | Duty 3F. 4.3906+000 NJ/II                                              | Minimum Available Duty:  UNIT OPERATIONS |                   | Waximum Available Duty      |                         |  |
| 47<br>48 | FEED TO                                                                | PRODUCT FROM                             |                   | LOGICAL                     | ONNECTION               |  |
| 49       | Heater: E-103                                                          | TRODUCTTROW                              |                   | LOGICAL                     | STATE OF TOTAL          |  |
| 50<br>51 |                                                                        | UTILITIES                                |                   |                             |                         |  |
| 52       | ( No utilities reference this stream )                                 |                                          |                   |                             |                         |  |
| 53<br>54 | PROCESS UTILITY                                                        |                                          |                   |                             |                         |  |
| 55       |                                                                        |                                          |                   |                             |                         |  |
| 56<br>57 |                                                                        |                                          |                   |                             |                         |  |
| 58<br>59 |                                                                        |                                          |                   |                             |                         |  |
| 60<br>61 |                                                                        |                                          |                   |                             |                         |  |
| 61<br>62 |                                                                        |                                          |                   |                             |                         |  |
| 63       | Aspen Technology Inc.                                                  | Aspen HYSYS Version 8 (27.0.0.81         | 138)              |                             | Page 16 of 16           |  |