Question 4 - PAC, VC dimension

Section 1

Look at the following classifiers family:

$$\mathcal{H} = \left\{ h_{a,b} \colon \, a,b \in \mathbb{R} \right\} \text{ where } h_{a,b}(x,y) = 1 \text{ iff } x \geq a \land y \geq b$$

Find the VCdim of this class with full proof.

Section 2

Consider instances X containing 4 boolean variables $\{X_1, X_2, X_3, X_4\}$ and responses Y are $(X_1 \land X_4) \lor (\neg X_1 \land X_3)$. We try to learn the function $f: X \to Y$ using a "depth 2 decision trees". A "depth-2 decision tree" is a tree with four leaves, all distance 2 from the root.

Analize the problem and give the lower bound on the sample complexity that matches this case.

<u>Section 3</u> – optional, 5 pts bonus.

In specific classification problem, let $\mathcal{X} \in \{0,1\}^d$ be our domain. Let \mathcal{H} be the classifiers family, such that:

$$\mathcal{H} = \left(\prod_{i \in R_1} x_i\right) \vee \left(\prod_{i \in R_2} x_i\right)$$

Where R_1 , R_2 are subgroups of $\{1, ..., d\}$.

Show that the <u>upper bound</u> of $VC(\mathcal{H})$ is 2d.

Hint: use combinatorics and VC upper bound we learned.