ИКОНОМИЧЕСКИ УНИВЕРСИТЕТ - ВАРНА

СЕРТИФИЦИРАНА СИСТЕМА ЗА УПРАВЛЕНИЕ НА КАЧЕСТВОТО ISO 9001:2008

9002 Варна · бул. "Княз Борис I" 77 · Телефон 052 643 360 · Телефакс 052 643 365 · www.ue-varna.bg

Приложение 1

УКАЗАНИЯ ПО ДИСЦИПЛИНАТА

Обектно ориентирано програмиране

Обща информация:

Наименование на дисциплината: Обектно ориентирано програмиране

Семестър/Академична година: Зимен семестър / 2019 - 2020

Форма на обучение: Редовна

Информация за контакт с преподавателския екип:

доц. д-р Павел Петров катедра "Информатика"

e-mail: petrov@ue-varna.bg

https://ue-varna.bg/bg/KatedraPersonalPage.aspx?pid=7102&did=8479

гл. ас. д-р Стойчо Стоев катедра "Информатика" e-mail: s.stoev@ue-varna.bg

https://ue-varna.bg/bg/KatedraPersonalPage.aspx?pid=7079&did=8479

Кратко описание на дисциплината:

"Обектно ориентирано програмиране" е дисциплина, чрез която се представя съвременната концепция за моделиране на обекти от реалния свят чрез програмен код. В приложен аспект знанията и уменията се затвърждават чрез един от утвърдените в практиката обектно ориентирани езици за програмиране, а именно С++. Като разширение на езика С, неговото изучаване дава възможност в дълбочина да се разгледат основните положения при обектно ориентираното програмиране.

Основните направления на дисциплината са: капсулация на данни, абстракция, наследяване и полиморфизъм. Прилагането на тези концепции дава възможност за по-добро преизползване на програмния код, по-добра поддръжка и разширяване на функционалността на приложенията.

Специфични знания и умения по отношение на приложни аспекти на обектно ориентираното програмиране се осигуряват чрез:

- обектно ориентиран език за програмиране С++17;
- интегрирана среда за разработка Microsoft Visual Studio.

Ключовите теми в дисциплината са свързани с основните принципи на обектно ориентираното проектиране и програмиране, капсулиране, наследяване, полиморфизъм, стандартни програмни библиотеки.

Цели на курса:

Основният фокус на дисциплината е върху овладяването на обектно ориентирания подход за програмиране и използването на стандартните обектно ориентирани програмни библиотеки.

Конкретните цели на дисциплината са свързани с придобиването на познания за:

- Основни етапи при създаването на обектно ориентирано приложение.
- Интерфейс и имплементация на класове. Конструктори. Деструктор. Обекти.
- Режими на достъп до членовете на клас. Статични членове. Приятелски функции и класове.
- Единично и множествено наследяване. Предефиниране на членове.
- Множествено наследяване, използващо виртуални родителски класове.
- Виртуални функции. Полиморфизъм.
- Абстрактни класове.
- Чисто виртуални (абстрактни) функции. Абстрактни класове.
- Предефиниране на оператори. Потоци. Шаблони. Изключения.
- Стандартна библиотека с шаблони STL. Контейнери. Итератори. Алгоритми.

След приключване на обучението по тази дисциплина студентите трябва да могат:

- да създават обектно ориентирани приложения на базата на класове и обекти;
- да използват възможностите на обектно ориентираните програмни библиотеки за обработка на текстова информация, работа с файлове и използване на динамичен масив;
- да работят с интегрирана среда за разработка.

Организация и структура на работа по дисциплината:

Занятията по дисциплината са под формата на лекции и упражнения в компютърни зали.

Текущият контрол по дисциплината "Обектно ориентирано програмиране" се формира от: входен тест, присъствие, домашни работи (20 точки), Контролна

работа №1 (10 точки), Контролна работа №2 (10 точки) и защита на Курсов проект (10 точки) - до макс. 40 т.

Входен тест, присъствие, домашни работи - отделните компоненти са по време на упражненията и са върху текущия учебен материал.

Контролна работа №1 е по време на упражненията и е върху материала за използване на обектно ориентираните библиотечни класове string и fstream. Ще се проведе на 21-25.10.2019 г. Критерии при оценяване - степен на изпълнение на поставените задачи за създаване на компютърна програма.

Контролна работа №2 е по време на упражненията и е върху материала за използване на обектно ориентираните библиотечни класове fstream и vector. Ще се проведе на 25-29.11.2019 г. Критерии при оценяване - степен на изпълнение на поставените задачи за създаване на компютърна програма.

Курсовият проект представлява самостоятелно разработена от студентски екип информационна система за автоматизиране на част от дейността на фирма. Разработката се извършва на екипен принцип в групи от 2 до 4 души и трябва да има програмно меню за: въвеждане на данни; обработка; извеждане на резултат. Защита на курсов проект: 16-20.12.2019 г. Предава се на хартиен носител, а на защитата се носи на електронен носител с цел демонстрация.

Критерии при оценяване на разработките:

по 1 точка за:

- Наличие на курсов проект
- Добро оформление на загл. стр., описание и смислено съдържание
- Данните се съхраняват във файлове (fstream)
- Има поне 3 класа
- Има смислено наследяване
- Използван е полиморфизъм
- Използвани са чисто виртуални функции и абстр. класове
- Има множествено наследяване
- Използвани са контейнери (напр. vector)
- Има обработка на изключения

Изпитът по дисциплината е под формата на електронен тест в тестовия център на университета и се състои от 20 въпроса. Време за решаване - 1 час.

Съдържание на дисциплината по теми:

ТЕМА 1. Обектно ориентирано проектиране и програмиране

- 1.1. Концепция за създаване на обектно ориентирани приложения.
- 1.2. Основни етапи при създаването на обектно ориентирано приложение.

ТЕМА 2. Класове

- 2.1. Дефиниция на клас. Методи и свойства. Интерфейс и имплементация.
- 2.2. Конструктори. Деструктор.

ТЕМА 3. Обекти

- 3.1. Инициализация.
- 3.2. Предаване като аргументи на функции.
- 3.3. Динамично създаване и работа с обекти.

ТЕМА 4. Капсулиране

- 4.1. Режими на достъп до членовете на клас.
- 4.2. Статични членове. Указател this.
- 4.3. Приятелски функции и класове.

ТЕМА 5. Наследяване

- 5.1. Единично наследяване. Предефиниране на членове.
- 5.2. Множествено наследяване.
- 5.3. Множествено наследяване, използващо виртуални родителски класове.

ТЕМА 6. Виртуални функции

- 6.1. Виртуални функции.
- 6.2. Полиморфизъм.
- 6.3. Чисто виртуални (абстрактни) функции. Абстрактни класове.

ТЕМА 7. Разширени възможности на С++

- 7.1. Предефиниране на оператори.
- 7.2. Входно-изходни потоци.
- 7.3. Шаблони на функции и класове.
- 7.4. Изключения. Предизвикване и прихващане на изключение.

TEMA 8. Стандартна библиотека с шаблони STL

- 8.1. Контейнери.
- 8.2. Итератори.
- 8.3. Алгоритми.

Литература:

ЗАДЪЛЖИТЕЛНА (ОСНОВНА) ЛИТЕРАТУРА:

- 1. Петров П., ОБЕКТНО ОРИЕНТИРАНО ПРОГРАМИРАНЕ, УИ Наука и икономика, Варна, 2017 [У 1524]
- 2. Ваньо Иванов, Програмиране и използване на компютри: модул Обектно-ориентирано програмиране на езика С++, София: ТУ, 2015.
- 3. Елена Захариева-Стоянова, Обектно-ориентирано програмиране с език C++, Габрово: Унив. изд. "Васил Априлов", 2013.
- 4. The C++ Resources Network http://www.cplusplus.com/

ПРЕПОРЪЧИТЕЛНА (ДОПЪЛНИТЕЛНА) ЛИТЕРАТУРА:

- 1. Вл. Николов, Обектно-ориентирано програмиране I част : сборник от тестове и задачи, Варна: ТУ, 2013.
- 2. Петър Стойков, Иван Иванов, Обектно-ориентирано програмиране, София: За буквите О писменехь, 2014.

- 3. Bjarne Stroustrup, C++ Guide (Quick Study Computer), Pearson Education, 2013.
- 4. Damien Loison, C++ 11 & 14 Tips: Understand novelties in C++ with working examples, Terse&Good publishing, 2015.
- 5. Marc Gregoire, Professional C++, Jhon Wiley & Sons, 2014.
- 6. Peter Gottschling, Discovering Modern C++: An Intensive Course for Scientists, Engineers, and Programmers (C++ In-Depth), Pearson Education, 2015.
- 7. Scott Meyers, Effective Modern C++: 42 Specific Ways to Improve Your Use of C++11 and C++14, O'Reilly, 2014.