哈尔滨工业大学 形式语言与自动机

形式语言与自动机 作业五

cycleke

1 第一题

Let x and y are positive numbers. Please design a Turing Machine (diagram) to compute x - y of x and y. You should explain the notation of x and y. Hint: you may get the notation as simple as you can.

解 我们使用字符 0 来表示 x 和 y,利用 0^n 来表示数 n,用 1 来间隔。具体的说,纸带上开始是 $\cdots 0^x 10^y \cdots$ 。如果 x > y,那么纸带上结果是 0^{x-y} ,如果 $x \le y$,那么纸带上结果是 10^{y-x} ,值得注意的是,此处如果答案为 x-y=0,那么我们实际使用的是 -0。

所以我们只用将 1 前后成对的 0 消除,如果答案为正,最后清除 1。其转移图如下,初始时带头在 x 的开头。

图 1: 第一题

2 第二题

Let x and y are positive numbers. Please design a Turing Machine (diagram) to compute $x \div y$ (x divisible by y). You should explain the notation of x and y. Hint: you may get the notation as simple as you can.

哈尔滨工业大学 形式语言与自动机

解 我们使用字符 0 来表示 x 和 y,利用 0^n 来表示数 n,用 B 来间隔。具体的说,纸带上开始是 $\cdots 0^x B0^y \cdots$ 。最终纸带上的字符是 $\cdots 0^{x+y} \cdots$,由于图太大,此处给处转移表,其中 q_{40} 为接收状态。

4 F - F -	符号	
状态	В	0
q_0	(q_0, B, R)	$(q_1, 0, L)$
q_1	(q_2, B, L)	(q_2, B, L)
q_2	$(q_3, 0, L)$	$(q_3, 0, L)$
q_3	(q_4, B, R)	(q_4, B, R)
q_4	$(q_5, 0, R)$	$(q_5, 0, \mathbf{R})$
q_5	(q_6, B, R)	$(q_{40}, 0, L)$
q_6	(q_7, B, R)	$(q_6, 0, R)$
q_7	(q_7, B, R)	(q_8, B, R)
q_8	(q_{23}, B, L)	$(q_9, 0, L)$
q_9	(q_9, B, L)	$(q_{10}, 0, L)$
q_{10}	$(q_{11}, \mathbf{B}, \mathbf{R})$	$(q_{37}, 0, L)$
q_{11}	$(q_{40}, \mathbf{B}, \mathbf{L})$	$(q_{12}, 0, R)$
q_{12}	$(q_{12}, \mathbf{B}, \mathbf{R})$	$(q_{13}, 0, L)$
q_{13}	$(q_{14}, 0, L)$	$(q_{40}, 0, L)$
q_{14}	$(q_{15}, \mathbf{B}, \mathbf{L})$	$(q_{40}, 0, L)$
q_{15}	$(q_{16}, \mathbf{B}, \mathbf{L})$	$(q_{19}, 0, L)$
q_{16}	$(q_{16}, \mathbf{B}, \mathbf{L})$	$(q_{17}, 0, L)$
q_{17}	$(q_{18}, 0, R)$	$(q_{17}, 0, L)$
q_{18}	$(q_{12}, \mathbf{B}, \mathbf{R})$	$(q_{18}, 0, R)$
q_{19}	$(q_{20}, \mathbf{B}, \mathbf{L})$	$(q_{19}, 0, L)$
q_{20}	(q_{20}, B, L)	$(q_{21}, 0, L)$
q_{21}	(q_{22}, B, R)	$(q_{21}, 0, L)$
q_{22}	(q_{40}, B, L)	$(q_{40}, \mathbf{B}, \mathbf{L})$
q_{23}	$(q_{23}, 0, L)$	$(q_{24}, 0, R)$
q_{24}	(q_{40}, B, L)	$(q_{25}, \mathbf{B}, \mathbf{L})$
q_{25}	(q_{40}, B, L)	$(q_{26}, 0, L)$
q_{26}	(q_{32}, B, R)	$(q_{27}, 0, L)$
q_{27}	(q_{39}, B, L) $(q_{29}, 0, L)$	$(q_{27}, 0, L)$ $(q_{28}, 0, L)$
q_{28}	$(q_{29}, 0, L)$ (q_{30}, B, R)	$(q_{28}, 0, L)$ (q_{30}, B, R)
q_{29}	(q_{30}, B, R) (q_{31}, B, R)	$(q_{30}, \mathbf{B}, \mathbf{R})$ $(q_{30}, 0, \mathbf{R})$
q_{30}	(q_{31}, B, R) (q_{31}, B, R)	$(q_{30}, 0, R)$ (q_6, B, R)
q_{31}	(q_{31}, B, K) (q_{40}, B, L)	(q_6, B, R) (q_{33}, B, R)
q_{32}	(q_{34}, B, R)	$(q_{33}, \mathbf{B}, \mathbf{K})$ $(q_{40}, 0, \mathbf{L})$
q_{33}	(q_{34}, B, R) (q_{35}, B, L)	(q_{34}, B, R)
q_{34}	(q_{35}, B, L) (q_{35}, B, L)	(q_{34}, D, R) $(q_{36}, 0, L)$
$q_{35} = q_{36}$	(q_{33}, B, L) (q_{40}, B, L)	$(q_{36}, 0, L)$ $(q_{36}, 0, L)$
q_{37}	(q_{38}, B, R)	$(q_{36}, 0, L)$ $(q_{37}, 0, L)$
q_{38}	(q_{38}, B, R) (q_{40}, B, L)	(q_6, B, R)
q_{39}	(q_{39}, B, L)	(q_0, B, R) $(q_{28}, 0, L)$
q_{40}		— (120, °, 2)
740	l	

哈尔滨工业大学 形式语言与自动机

3 第三题

Show that the regular languages are closed under the following operations:

 $min(L) = \{w | w \text{ is in } L, \text{ but no proper prefix of } w \text{ is in } L\}$

证明 所有不合法的语言为 $L\Sigma^+$,所以 $min(L) = L - L\Sigma^+$ 。由于正则语言对于连接和差运算满足封闭性,所以 $L\Sigma^+$ 是正则语言, $min(L) = L - L\Sigma^+$ 是正则语言。 □

4 第四题

Use the CFL pumping lemma to show that the following language is not context free:

$$\{a^i b^j c^k | i < j < k\}$$

证明 假设 L 是一个 CFL,根据泵引理,存在一个对应的常正整数 n。

考虑字符串 $s = a^n b^{n+1} c^{n+2}$ 。根据泵引理,我们将 s 分割为 s = uvwxy,其中 $|vwx| \le n, vx \ne \varepsilon$ 。考虑下面两种情况

- (1) vwx 不包含字符 a,那么 uv^0wx^0y 中的长度 $\leq 2n+3$,又由于 $n \geq 1$,所以不可能存在 j,k,满足 $n < j < k, j+k \leq 2n+3$ 。
- (2) vwx 包含字符 a,那么 uv^9wx^9y 中 a 或 b 的个数必定大于 c 的,所以 $uv^9wx^9y \notin L$ 。

综上所述,L 不是一个 CFL。

5 第五题

Give a context-free grammar for the following language over the alphabet $\Sigma = \{a, b\}$:

$$L = \{a^i b^j | i \neq j \text{ and } i \neq 2j\}$$

解 我们定义一个 CFG $G = (\{S, A, B, C, X, Y, Z\}, \{a, b\}, P, S)$, 其中 P 为

 $S \to A|B|C$

 $A \rightarrow Xb$

 $X \to Xb|aXb|\varepsilon$

 $B \rightarrow aaYbbb$

 $Y \rightarrow aYb|aaYb$

 $C \rightarrow aZ$

 $Z \to aZ|aaZb|\varepsilon$