MODULE ONE: PRESENTING AND DESCRIBING INFORMATION

TOPIC 3: NUMERICAL DESCRIPTIVE MEASURES

Learning Objectives

At the completion of this topic, you should be able to:

- calculate and interpret numerical descriptive measures of central tendency, variation and shape for numerical data
- calculate and interpret descriptive summary measures for a population
- construct and interpret a box-and-whisker plot
- calculate and interpret the covariance and the coefficient of correlation for bivariate data

*Measures of Central Tendency, Variation and Shape

+Measures of Central Tendency

+Arithmetic Mean

For a sample of size n, the sample mean, denoted \overline{X} , is calculated:

$$\overline{X} = \frac{\sum_{i=1}^{n} X_i}{n} = \frac{X_1 + X_2 + \dots + X_n}{n}$$

$$X_i's \text{ are observed values}$$

Where Σ means to sum or add up

+Median

In an ordered array, the median is the 'middle' number (50% above, 50% below)

Its main advantage over the arithmetic mean is that it is not affected by extreme values

+Median

The <u>location</u> of the median:

Median = $\frac{n+1}{2}$ ranked value

• Note that $\frac{n+1}{2}$ is not the **value** of the median, only the **position** of the median in the ranked data

<u>Rule 1:</u> If the number of values in the data set is **odd**, the median is the **middle ranked value**

<u>Rule 2:</u> If the number of values in the data set is **even**, the median is the **mean** (average) of the **two middle ranked values**

+Mode

- A measure of central tendency
- Value that occurs most often (the most frequent)
- Not affected by extreme values
- Used for either numerical or categorical (nominal) data
- Unlike mean and median, there may be no unique (single) mode for a given data set

+Quartiles

Similar to the median, we find a quartile by determining the value in the appropriate **position** in the **ranked** data, where:

First quartile position: $Q_1 = (n+1)/4$

Second quartile position: $Q_2 = (n+1)/2$ (the median)

Third quartile position: $Q_3 = 3(n+1)/4$

where *n* is the number of observed values (sample size)

+Quartiles

Use the following rules to calculate the quartiles:

Rule 1 If the result is an integer, then the quartile is equal to the ranked value. For example, if the sample size is n = 7, the first quartile, Q1, is equal to the (7 + 1)/4 = 2, second-ranked value

Rule 2 If the result is a fractional half (2.5, 4.5, etc.), then the quartile is equal to the mean of the corresponding ranked values. For example, if the sample size is n = 9, the first quartile, Q1, is equal to the (9 + 1)/4 = 2.5 ranked value, halfway between the second- and the third-ranked values

Rule 3 If the result is neither an integer nor a fractional half, round the result to the nearest integer and select that ranked value. For example, if the sample size is n = 10, the first quartile, Q1, is equal to the (10 + 1)/4 = 2.75 ranked value. Round 2.75 to 3 and use the third-ranked value

+Measures of Variation

*Range

- Simplest measure of variation
- Difference between the largest and smallest values in data set
- Ignores the distribution of the data
- Like the Mean, the Range is sensitive to outliers

Range = 14 - 1 = 13

+Interquartile Range

Like the Median, Q_1 and Q_3 , the IQR is a **resistant summary** measure (resistant to the presence of extreme values)

Eliminates outlier problems by using the **interquartile range**, as high- and low-valued observations are removed from calculations

 $IQR = 3^{rd}$ quartile -1^{st} quartile

$$IQR = Q_3 - Q_1$$

*Interquartile Range

Example: Range = 200–10 = 190 (misleading)

+Variance and Standard Deviation

The **Sample Variance** – S²

- Measures average scatter around the mean
- Units are also squared

$$S^2 = \frac{\sum_{i=1}^{n} (X_i - \overline{X})^2}{n-1}$$

Where:

X = sample mean

n = sample size

 $X_i = i^{th}$ value of the variable X

+Variance and Standard Deviation

The **Sample Standard Deviation** – S

- Most commonly used measure of variation
- Shows variation about the mean
- Has the same units as the original data

$$S = \sqrt{\frac{\sum_{i=1}^{n} (X_i - \overline{X})^2}{n-1}}$$
 Where:

$$X = \text{sample mean}$$

$$n = \text{sample size}$$

$$X_i = i^{\text{th}} \text{ value of the}$$

Where:

 $X_i = i^{th}$ value of the variable X

+Variance and Standard Deviation

Advantages

- Each value in the data set is used in the calculation
- Values far from the mean are given extra weight as deviations from the mean are squared

Disadvantages

- Sensitive to extreme values (outliers)
- Measures of absolute variation not relative variation

+Comparing Standard Deviations

+Coefficient of Variation

Measures relative variation

• i.e. shows variation relative to mean

Can be used to compare two or more sets of data measured in different units

Always expressed as percentage (%)

$$CV = \left(\frac{S}{\overline{X}}\right) \cdot 100\%$$

+Shape

Figure 3.1

A comparison of three data sets differing in shape

+Shape

Figure 3.2

Column chart for number of adults in household

*Microsoft Excel Descriptive Statistics Output

	А	В		
1	Festival spending – international visitors			
2				
3	Mean	743.75		
4	Standard error	74.9867		
5	Median	744		
6	Mode	#N/A		
7	Standard deviation	259.761		
8	Sample variance	67476		
9	Kurtosis	-1.41411		
10	Skewness	-0.13236		
11	Range	776		
12	Minimum	343		
13	Maximum	1119		
14	Sum	8925		
15	Count	12		

Figure 3.3 Microsoft Excel summary statistics for festival expenditure

Microsoft® product screen shots are reprinted with permission from Microsoft Corporation.

*Numerical Descriptive Measures for a Population

- Population summary measures are called parameters
- The population mean is the sum of the values in the population divided by the population size, N

$$\mu = \frac{\sum_{i=1}^{N} X_i}{N} = \frac{X_1 + X_2 + \dots + X_N}{N}$$

+Population Variance and Standard Deviation

Population Variance:

 the average of the squared deviations of values from the mean

$$\sigma^2 = \frac{\sum_{i=1}^{N} (X_i - \mu)^2}{N}$$

 μ = population mean; N = population size; $X_i = i^{th}$ value of the variable X

Population Standard Deviation:

- shows variation about the mean
- is the square root of the population variance
- has the same units as the original data

$$\sigma = \sqrt{\frac{\sum_{i=1}^{N} (X_i - \mu)^2}{N}}$$

+The Empirical Rule

If the data distribution is approximately bell-shaped, then the interval:

- $\mu \pm 1\sigma$ contains about 68.26% of values of the population
- $\mu \pm 2\sigma$ contains about 95.44% of values of the population
- $\mu \pm 3\sigma$ contains about 99.73% of values of the population

+The Chebyshev Rule

	% of values found in intervals around the mean		
	Chebyshev	Empirical rule	
Interval	(any distribution)	(bell-shaped distribution)	
$(\mu - \sigma, \mu + \sigma)$	At least 0%	Approximately 68%	
$(\mu-2\sigma,\mu+2\sigma)$	At least 75%	Approximately 95%	
$(\mu - 3\sigma, \mu + 3\sigma)$	At least 88.89%	Approximately 99.7%	

Table 3.4

How data vary around the mean

+Z Scores

The difference between a given observation and the mean, divided by the standard deviation

$$Z = \frac{X - \overline{X}}{S}$$

For example:

- A Z score of 2.0 means that a value is 2.0 standard deviations from the mean
- A Z score above 3.0 or below -3.0 is considered an outlier (symmetrical distribution)

+Calculating Numerical Descriptive Measures from a Frequency Distribution

Sometimes only a frequency distribution is available, not the raw data

Use the midpoint of a class interval to approximate the values in that class $\sum_{m=f}^{c}$

 $\overline{X} = \frac{\displaystyle\sum_{j=1}^{} m_{j} f_{j}}{n}$

where: n = number of values or sample size $c = number of classes in the frequency distribution <math>m_j = midpoint of the j^{th} class$ $f_j = number of values in the j^{th} class$

+ Calculating Numerical Descriptive Measures from a Frequency Distribution

Approximating the Standard Deviation

$$S = \sqrt{\frac{\sum_{j=1}^{c} (m_j - \overline{X})^2 f_j}{n-1}}$$

$$S = \sqrt{\frac{\sum_{j=1}^{c} f_{j} m_{j}^{2} - n \bar{X}^{2}}{n-1}}$$

Note: Assume that all values within each class interval are located at the midpoint of the class

+Calculating Numerical Descriptive Measures from a Frequency Distribution (cont)

Table 3.6

Calculations needed to calculate approximations of the mean and standard deviation of the real estate prices

	Mid-point			
Asking price (\$)	Frequency	in \$000s	f _j m _j	f _i m _i ²
300,000 to < 350,000	8	325	2,600	845,000
350,000 to < 400,000	17	375	6,375	2,390,625
400,000 to < 450,000	21	425	8,925	3,793,125
450,000 to < 500,000	20	475	9,500	4,512,500
500,000 to < 550,000	16	525	8,400	4,410,000
550,000 to < 600,000	6	575	3,450	1,983,750
600,000 to < 650,000	7	625	4,375	2,734,375
650,000 to < 700,000	3	675	2,025	1,366,875
700,000 to < 750,000	0	725	0	0
750,000 to < 800,000	0	775	0	0
800,000 to < 850,000	2	825	_1,650	1,361,250
Totals	100		47,300	23,397,500

+Five-Number Summary and Boxand-Whisker Plot

Minimum(X_{smallest}) -- Q1 -- Median -- Q3 -- Maximum (X_{largest})

+Five Number Summary

	Type of distribution				
Comparison	Left skewed	Symmetrical	Right skewed		
Distance from X_{smallest} to	The distance from	Both distances are the	The distance X_{smallest} to		
the median versus the	X_{smallest} to the median is	same.	the median is less than		
distance from the median	greater than the distance		the distance from the		
to X _{largest} .	from the median to X_{largest} .		median to $X_{largest}$.		
Distance from X_{smallest} to	The distance from	Both distances are the	The distance from		
Q_1 versus the distance from Q_3 to $X_{largest}$.	$X_{\rm smallest}$ to Q_1 is greater than the distance from Q_3 to $X_{\rm largest}$.	same.	X_{smallest} to Q_1 is less the distance from Q_3 to X_{largest} .		
Distance from Q_1 to the median versus the distance from the median to Q_3 .	The distance from Q_1 to the median is greater than the distance from the the median to Q_3 .	Both distances are the same.	The distance from Q_1 to the median is less than the distance from the th median to Q_3 .		

Table 3.7 Relationships between the five-number summary and the type of distribution

+Distribution Shape and Box-and-Whisker Plots

Figure 3.6

Box-and-whisker plots and corresponding polygons for four distributions

+Covariance

The covariance is a measure of the strength and direction of the linear relationship between two numerical variables (X and Y):

$$cov(X,Y) = \frac{\sum_{i=1}^{n} (X_i - \overline{X})(Y_i - \overline{Y})}{n-1}$$

As a covariance can have any value, it is difficult to use it as a measure of the relative strength of a linear relationship

A better, and related, measure of the relative strength of a linear relationship is the Coefficient of Correlation, r

+Coefficient of Correlation

The coefficient of correlation measures the relative strength of a linear relationship between two numerical variables (X and Y)

Values range from -1 (perfect negative) to +1 (perfect positive)

Figure 3.7Types of association between variables

+Coefficient of Correlation (cont)

Figure 3.8 Six scatter diagrams and their sample coefficients of correlation, r

+Coefficient of Correlation - Calculation

The sample coefficient of correlation is the sample covariance divided by the sample deviations of *X* and *Y*

$$r = \frac{cov(X, Y)}{S_X S_Y}$$

where:

$$cov(X,Y) = \frac{\sum_{i=1}^{n} (X_i - \overline{X})(Y_i - \overline{Y})}{n-1}$$

$$S_{x} = \sqrt{\frac{\sum_{i=1}^{n} (X_{i} - \overline{X})^{2}}{n-1}}$$

$$S_{Y} = \sqrt{\frac{\sum_{i=1}^{n} (Y_{i} - \overline{Y})^{2}}{n-1}}$$

+Pitfalls in Numerical Descriptive Measures and Ethical Issues

Data analysis is *objective*

• Should report the summary measures that best meet the assumptions about the data set

Data interpretation is *subjective*

- Should be done in fair, neutral and transparent manner
- Should document both good and bad results
- Results should be presented in a fair, objective and neutral manner
- Should not use inappropriate summary measures to distort facts
- Do not fail to report pertinent findings even if such findings do not support original argument