Tabela de derivadas e primitivas e técnicas de derivação e primitivação

Glossário

f	função de <i>x</i>	sin	seno
F	primitiva de f	tan	tangente
С	constante de integração	cot	cotangente
log	logaritmo de base e	CSC	cosecante
sinh	seno hiperbólico	arcsin	arco cujo seno

cosh coseno hiperbólico argsinh argumento cujo seno hiperbólico é

Derivadas

Derivadas	
Versão simplificada	Generalização (seja $f = f(x)$)
a'=0, $a=$ constante	
$(x^k)' = k x^{k-1}, k \in \mathbb{R}$	$(f^k)' = kf^{k-1}f', k \in \mathbb{R}$
$(x^{k})' = k x^{k-1}, k \in \mathbb{R}$ $(\log x)' = \frac{1}{x}$ $(e^{x})' = e^{x}$	$(f^{k})' = k f^{k-1} f', k \in \mathbb{R}$ $(\log f)' = \frac{f'}{f}$
$(e^x)'=e^x$	$(\mathbf{e}^f)' = \mathbf{f}' \mathbf{e}^f$
$(a^{x})' = (\log a)a^{x}, a > 0$	$(a^f)' = (\log a)f'a^f, a > 0$
$(\sin x)' = \cos x$	$(\sin f)' = f' \cos f$
$(\cos x)' = -\sin x$	$(\cos f)' = -f' \sin f$
$(\tan x)' = \sec^2 x = \frac{1}{\cos^2 x}$	$(\tan f)' = f' \sec^2 f = \frac{f'}{\cos^2 f}$ $(\cot f)' = -f' \csc^2 f = -\frac{f'}{\sin^2 f}$
$(\tan x)' = \sec^2 x = \frac{1}{\cos^2 x}$ $(\cot x)' = -\csc^2 x = -\frac{1}{\sin^2 x}$	$(\cot f)' = -f' \csc^2 f = -\frac{f'}{\sin^2 f}$
$(\sec x)' = \sec x \tan x = \frac{\sin x}{\cos^2 x}$	$(\sec f)' = f' \sec f \tan f = f' \frac{\sin f}{\cos^2 f}$
$(\csc x)' = -\csc x \cot x = -\frac{\cos x}{\sin^2 x}$	$(\csc f)' = -f' \csc f \cot f = -f' \frac{\cos f}{\sin^2 f}$
$(\arcsin x)' = \frac{1}{\sqrt{1-x^2}}$	$(\arcsin f)' = \frac{f'}{\sqrt{1 - f^2}}$
$(\arctan x)' = \frac{1}{1+x^2}$	$(\arctan f)' = \frac{f'}{1+f^2}$
$(\arcsin x)' = \frac{1}{\sqrt{1 - x^2}}$ $(\arctan x)' = \frac{1}{1 + x^2}$ $(\arccos x)' = \frac{1}{ x \sqrt{x^2 - 1}}$	$(\arcsin f)' = \frac{f'}{\sqrt{1 - f^2}}$ $(\arctan f)' = \frac{f'}{1 + f^2}$ $(\arccos f)' = \frac{f'}{ f \sqrt{f^2 - 1}}$
$(\sinh x)' = \cosh x$	$(\sinh f)' = f' \cosh f$
$(\cosh x)' = \sinh x$	$(\cosh f)' = f' \sinh f$

Técnicas de derivação (sejam f e g funções de x)

recinione de derrugue (cojam re grangose de x)		
Derivada da soma	Derivada do produto	
(f+g)'=f'+g'	(fg)' = f'g + g'f	
Derivada do quociente	Derivada da função composta	
$\left(\frac{f}{g}\right)' = \frac{f'g - g'f}{g^2}, g \neq 0$	(f[g(x)])' = f'[g(x)]g'(x)	

Derivada parcial $\partial_x f(x, y, ...)$: considerar como uma constante tudo o que não seja x e aplicar as regras de derivação em ordem a x usuais.

Primitivas

Primitivas	0
Versão simplificada	Generalização
$\int x^k dx = \frac{x^{k+1}}{k+1} + C, \qquad k \neq -1$	$\int f' f^k dx = \frac{f^{k+1}}{k+1} + C, \qquad k \neq -1$
$\int \frac{1}{x} dx = \log x + C$	$\int \frac{f'}{f} dx = \log f + C$
$\int e^x dx = e^x + C$	$\int f' e^f dx = e^f + C$
$\int a^{x} dx = \frac{1}{\log a} a^{x} + C, \qquad a > 0$	$\int f' a^f dx = \frac{1}{\log a} a^f + C, \qquad a > 0$
$\int \log x dx = x \log x - x + C$	$\int f' \log f dx = f \log f - f + C$
$\int \sin x dx = -\cos x + C$	$\int f' \sin f dx = -\cos f + C$
$\int \cos x dx = \sin x + C$	$\int f' \cos f dx = \sin f + C$
$\int \tan x dx = -\log \cos x + C$	$\int f' \tan f dx = -\log \left \cos f \right + C$
$\int \cot x dx = \log \sin x + C$	$\int f' \cot f dx = \log \sin f + C$
$\int \sec x dx = \log \sec x + \tan x + C$	$\int f' \sec f dx = \log \left \sec f + \tan f \right + C$
$\int \csc x dx = \log \left \csc x - \cot x \right + C$	$\int f' \csc f dx = \log \left \csc f - \cot f \right + C$
$\int \sec^2 x dx = \tan x + C$	$\int f' \sec^2 f dx = \tan f + C$
$\int \csc^2 x dx = -\cot x + C$	$\int f' \csc^2 f dx = -\cot f + C$
$\int \sec x \tan x dx = \sec x + C$	$\int f' \sec f \tan f dx = \sec f + C$
$\int \csc x \cot x dx = -\csc x + C$	$\int f' \csc f \cot f dx = -\csc f + C$
$\int \frac{1}{a^2 + x^2} dx = \frac{1}{a} \arctan\left(\frac{x}{a}\right) + C$	$\int \frac{f'}{a^2 + f^2} dx = \frac{1}{a} \arctan\left(\frac{f}{a}\right) + C$
$\int \frac{1}{\sqrt{a^2 - x^2}} dx = \arcsin\left(\frac{x}{a}\right) + C$	$\int \frac{f'}{\sqrt{a^2 - f^2}} dx = \arcsin\left(\frac{f}{a}\right) + C$
$\int \frac{1}{x\sqrt{x^2 - a^2}} dx = \frac{1}{a} \operatorname{arc} \sec\left(\frac{x}{a}\right) + C$	$\int \frac{f'}{f\sqrt{f^2 - a^2}} dx = \frac{1}{a} \operatorname{arc} \sec\left(\frac{f}{a}\right) + C$
$\int \frac{1}{a^2 - x^2} dx = \frac{1}{2a} \log \left \frac{x + a}{x - a} \right + C$	$\int \frac{f'}{a^2 - f^2} dx = \frac{1}{2a} \log \left \frac{f + a}{f - a} \right + C$
$\int \arcsin x dx = x \arcsin x + \sqrt{1 - x^2} + C$	$\int f' \arcsin f dx = f \arcsin f + \sqrt{1 - f^2} + C$
$\int \arccos x dx = x \arccos x - \sqrt{1 - x^2} + C$	$\int f' \arccos f dx = f \arccos f + \sqrt{1 - f^2} + C$
$\int \arctan x dx = x \arctan x - \frac{1}{2} \log(1 + x^2) + C$	$\int f' \arctan f dx = f \arctan f - \frac{1}{2} \log(1 + f^2) + C$
$\int \sinh x dx = \cosh x + C$	$\int f' \sinh f dx = \cosh f + C$
$\int \cosh x dx = \sinh x + C$	$\int f' \cosh f dx = \sinh f + C$

Técnicas de integração

	roomono no miografao		
Ī	Integração por partes:	Integração por substituição:	
	$\int f(x)g(x)dx = g\int fdx - \int Fg'dx$	$\int f(x)dx = \int u'(t) f(u(t)) dt, x = u(t)$	

Divisão de polinómios:

Sejam P(x), Q(x), p(x), r(x) polinómios em x, com grau $P \ge$ grau Q e grau P < grau Q.

Então
$$\int \frac{P(x)}{Q(x)} dx = \int \frac{p(x)}{Q(x)} + r(x) dx$$
. Para efectuar a divisão, utiliza-se o 'algoritmo de

divisão longa' (por vezes também chamado de Regra de Ruffini). Para informação sobre este algoritmo, consultar http://en.wikipedia.org/wiki/Polynomial_long_division (em inglês).

Fracções racionais:

Sejam P(x), Q(x) polinómios em x sem raízes comuns. Para reescrever a fracção $\frac{P(x)}{Q(x)}$

como soma de fracções mais simples, faça-se:

- 1. Achar as raízes de Q(x) e suas muliplicidades r
- 2. Por cada raíz real a, de multiplicidade r, adicionar termos $\frac{A_1}{x-a} + \frac{A_2}{(x-a)^2} + \dots + \frac{A_r}{(x-a)^r}$
- 3. Por cada raíz complexa a+ib, de multiplicidade r, adicionar termos

$$\frac{B_1 + C_1 x}{(x-a)^2 + b^2} + \frac{B_2 + C_2 x}{((x-a)^2 + b^2)^2} + \dots + \frac{B_r + C_r x}{((x-a)^2 + b^2)^r}$$

4. Calcular os coeficientes A_i , B_i e C_i igualando as expressões 2. + 3. à fracção original (método dos coeficientes indeterminados). Para mais informação, consultar http://en.wikipedia.org/wiki/Partial_fraction (em inglês).

Algumas funções sem primitiva elementar:

$$\frac{\cos x}{x}$$
, $\frac{\sin x}{x}$, e^{x^2} , $\frac{1}{\log x}$, x^x , $\frac{\sin x}{\log x}$, $\frac{1}{\arcsin x}$, $\arcsin e^x$

Algumas fórmulas úteis

Funções hiperbólicas
$$\sinh x = \frac{e^x - e^{-x}}{2}, \quad \cosh x = \frac{e^x + e^{-x}}{2}, \quad \tanh x = \frac{\sinh x}{\cosh x}, \quad \coth x = \frac{\cosh x}{\sinh x}$$

Fórmulas trigonométricas	Fórmulas hiperbólicas
$\sin^2 x + \cos^2 x = 1$	$\cosh^2 x - \sinh^2 x = 1$
$\sin 2x = 2\sin x \cos x$	$\sinh 2x = 2\sinh x \cosh x$
$\cos 2x = \cos^2 x - \sin^2 x$	$ \cosh 2x = \cosh^2 x + \sinh^2 x $
$\sin^2 x = \frac{1 - \cos 2x}{2}$	$\sinh^2 x = \frac{1 + \cosh 2x}{2}$
$\cos^2 x = \frac{1 + \cos 2x}{2}$	$\cosh^2 x = \frac{-1 + \cosh 2x}{2}$
$e^{ix} = \cos x + i \sin x$	$e^x = \cosh x + \sinh x$