LIMITES

Definição. Se f(x) torna-se arbitrariamente próxima de um único número L, quando x tende a c pelos dois lados, então $\lim_{x\to c} f(x) = L$ (lê-se: "o **limite** de f(x), quando x tende a c, é L").

Determinação de um limite. Para calcular $\lim_{x\to c} f(x) = L$ pode-se:

- 1. Substituir na função f(x) o x por c, ou seja, $\lim_{x\to c} f(x) = f(c)$.
- 2. Caso a função não esteja definida no valor *c*, pode-se tentar simplificar a expressão (por exemplo, fatorar um polinômio) e voltar a substituir *x* por *c*.
- 3. Construir uma tabela para analisar o comportamento de f(x) quando x tende a c.

Exemplo. Calcular o $\lim_{x\to 1} \frac{x^{3}-1}{x-1}$.

- 1. Substituindo x por 1 na função $\frac{x^3-1}{x-1}$ temos que $\frac{x^3-1}{x-1} = \frac{1^3-1}{1-1} = \frac{0}{0}$ (indeterminação).
- 2. Como a substituição não funcionou, podemos tentar simplificar a expressão e neste caso obteremos: $\frac{x^3-1}{x-1}=\frac{(x-1)(x^2+x+1)}{x-1}=x^2+x+1$. Assim, podemos reescrever o limite original e calcular por substituição da seguinte forma: $\lim_{x\to 1}\frac{x^3-1}{x-1}=\lim_{x\to 1}x^2+x+1=1^2+1+1=3$.
- 3. O mesmo resultado seria obtido utilizando a tabela a seguir para analisar o comportamento da função $\frac{x^3-1}{x-1}$ quando x tende a 1. Veja que quando x fica cada vez mais próximo de 1, f(x) fica cada vez mais próximo de 3.

	X S	x se aproxima de 1			se aproxima de	2 1
X	0,900	0,990	0,999	1,001	1,010	1,100
f(x)	2,710	2,970	2,997	3,003	3,030	3,310

Pela esquerda, f(x) se aproxima de 3 f(x) se aproxima de 3 pela direita

Propriedades de limites. Suponha que b e c sejam números reais e que n seja um número inteiro positivo:

- 1. $\lim_{x\to c} b = b$
- $2. \quad \lim_{x \to c} x = c$
- 3. $\lim_{x\to c} x^n = c^n$
- 4. $\lim_{x \to c} \sqrt[n]{x} = \sqrt[n]{c}$

Operação com limites. Suponha que b e c sejam números reais e que n seja um numero inteiro positivo. Suponha também que f e g sejam funções com os seguintes limites $\lim_{x\to c} f(x) = L$ e $\lim_{x\to c} g(x) = K$:

- 1. Múltiplo por escalar: $\lim_{x\to c} [b.f(x)] = b.\lim_{x\to c} f(x) = b.L$
- 2. Soma ou diferença: $\lim_{x\to c} f(x) \pm g(x) = L \pm K$
- 3. Produto: $\lim_{x\to c} f(x) \cdot g(x) = L \cdot K$
- 4. Quociente: $\lim_{x\to c} \frac{f(x)}{g(x)} = \frac{L}{K}$
- 5. Potência: $\lim_{x\to c} [f(x)]^n = L^n$
- 6. Raiz: $\lim_{x\to c} \sqrt[n]{f(x)} = \sqrt[n]{L}$

Existência de um limite. Se f é uma função e c e L são números reais, então $\lim_{x\to c} f(x) = L$ se e somente se tanto o limite pela esquerda como o pela direta forem iguais a L, ou seja, $\lim_{x\to c} f(x) = L$

$$\lim_{x\to c^{-}}f(x)=L=\lim_{x\to c^{+}}f(x).$$

Fonte: Larson, R. Cálculo.

Exercícios 1.5

Nos Exercícios 1-8, complete a tabela e utilize o resultado para estimar o limite. Use uma ferramenta gráfica para traçar o gráfico da função para confirmar o resultado.

1. $\lim_{x \to 2} (2x + 5)$

x	1,9	1,99	1,999	2	2,001	2,01	2,1
f(x)				?			

2. $\lim_{x \to 0} (x^2 - 3x + 1)$

x	1,9	1,99	1,999	2	2,001	2,01	2,1
f(x)			0.410.7	?			

3. $\lim_{x\to 2} \frac{x-2}{x^2-4}$

x	1,9	1,99	1,999	2	2,001	2,01	2,1
f(x)				?		10-2	

4. $\lim_{x\to 2} \frac{x-2}{x^2-3x+2}$

x	1,9	1,99	1,999	2	2,001	2,01	2,1
f(x)				?			

5. $\lim_{x\to 0} \frac{\sqrt{x+1}-1}{x}$

x	-0,1	-0,01	-0,001	0	0,001	0,01	0,1
f(x)				?			

6. $\lim_{x\to 0} \frac{\sqrt{x+2}-\sqrt{2}}{x}$

x-0	^						
x	-0,1	-0,01	-0,001	0	0,001	0,01	0,1
f(x)				?			

7. $\lim_{x \to 4} \frac{\frac{1}{x+4} - \frac{1}{4}}{x}$

x-+0	λ				
x	-0,5	-0,1	-0,01	-0,001	0
f(x)					?

8. $\lim_{x \to 0^+} \frac{\frac{1}{2+x} - \frac{1}{2}}{2x}$

x	0,5	0,1	0,01	0,001	0
f(x)					?

Nos Exercícios 9-12, utilize o gráfico para determinar o limite (se existir).

9.

(a) $\lim_{x\to 0} f(x)$

10.

(a) $\lim_{x \to 1} f(x)$

11.

12

Exercício extra 1. Calcule $\frac{f(x+\Delta x)-f(x)}{\Delta x}$ sabendo que f(x)=x+2. Em seguida, calcule $\lim_{\Delta x \to 0} \frac{f(x+\Delta x)-f(x)}{\Delta x}$.

2

Exercício extra 2. Calcule $\frac{f(x+\Delta x)-f(x)}{\Delta x}$ sabendo que f(x)= x². Em seguida, calcule $\lim_{\Delta x \to 0} \frac{f(x+\Delta x)-f(x)}{\Delta x}$.

(a) $\lim_{x\to 0} g(x)$

(a) $\lim_{x \to -2} h(x)$

(b) $\lim_{x \to a} g(x)$

(b) $\lim_{x \to 0} h(x)$

Nos Exercícios 13 e 14, determine o limite de (a) f(x) + g(x), (b) f(x)g(x) e (c) f(x)/g(x), quando x tende a c.

$$13. \lim_{x \to \infty} f(x) = 3$$

14.
$$\lim_{x \to c} f(x) = \frac{3}{2}$$

$$\lim g(x) = 9$$

$$\lim_{x \to c} g(x) = \frac{1}{2}$$

Nos Exercícios 15 e 16, determine o limite de (a) $\sqrt{f(x)}$, (b) [3f(x)] e (c) $[f(x)]^2$, quando x tende a c.

15.
$$\lim_{x \to 0} f(x) = 16$$

16.
$$\lim f(x) = 9$$

Nos Exercícios 17-22, utilize o gráfico para determinar o limite (se existir).

(a)
$$\lim_{x \to a} f(x)$$

(b) $\lim_{x \to a} f(x)$

(c)
$$\lim f(x)$$

Nos Exercícios 23-40, determine o limite.

23.
$$\lim_{x\to 2} x^2$$

24.
$$\lim_{x \to -2} x^3$$

25.
$$\lim_{x \to 0} (2x + 5)$$

26.
$$\lim_{x\to 0} (3x-2)$$

27.
$$\lim_{x\to 1} (1-x^2)$$

28.
$$\lim_{x\to 2} (-x^2 + x - 2)$$

29.
$$\lim_{x \to 0} \sqrt{x+6}$$

30.
$$\lim_{x\to 4} \sqrt[3]{x+4}$$

31.
$$\lim_{x \to -3} \frac{2}{x+2}$$

32.
$$\lim_{x \to -2} \frac{3x+1}{2-x}$$

33.
$$\lim_{x \to -2} \frac{x^2 - 1}{2x}$$

34.
$$\lim_{x \to -1} \frac{4x - 5}{3 - x}$$

35.
$$\lim_{x \to 7} \frac{5x}{x+2}$$

36.
$$\lim_{x \to 3} \frac{\sqrt{x+1}}{x-4}$$

37.
$$\lim_{x \to 3} \frac{\sqrt{x+1} - 1}{x}$$

38.
$$\lim_{x \to 5} \frac{\sqrt{x+4}-2}{x}$$

39.
$$\lim_{x \to 1} \frac{\frac{1}{x+4} - \frac{1}{4}}{x}$$

40.
$$\lim_{x \to 2} \frac{\frac{1}{x+2} - \frac{1}{2}}{x}$$

Nos Exercícios 41-60, determine o limite (se existir).

41.
$$\lim_{x \to 1} \frac{x^2 - 1}{x - 1}$$

42.
$$\lim_{x \to -1} \frac{2x^2 - x - 3}{x + 1}$$

43.
$$\lim_{x \to 2} \frac{x-2}{x^2-4x+4}$$

44.
$$\lim_{x\to 2} \frac{2-x}{x^2-4}$$

45.
$$\lim_{t \to 4} \frac{t+4}{t^2 - 16}$$

46.
$$\lim_{t \to 1} \frac{t^2 + t - 2}{t^2 - 1}$$

47.
$$\lim_{x \to -2} \frac{x^3 + 8}{x + 2}$$

48.
$$\lim_{x \to -1} \frac{x^3 - 1}{x + 1}$$

49.
$$\lim_{x \to -2} \frac{|x+2|}{x+2}$$

50.
$$\lim_{x \to 2} \frac{|x-2|}{x-2}$$

51.
$$\lim_{x \to 2} f(x)$$
, em que $f(x) = \begin{cases} 4 - x, & x \neq 2 \\ 0, & x = 2 \end{cases}$

52.
$$\lim_{x \to 1} f(x)$$
, em que $f(x) = \begin{cases} x^2 + 2, & x \neq 1 \\ 1, & x = 1 \end{cases}$

53.
$$\lim_{x \to 3} f(x)$$
, em que $f(x) = \begin{cases} \frac{1}{3}x - 2, & x \le 3\\ -2x + 5, & x > 3 \end{cases}$

54.
$$\lim_{s \to 1} f(s)$$
, em que $f(s) = \begin{cases} s, & s \le 1 \\ 1 - s, & s > 1 \end{cases}$

55.
$$\lim_{\Delta x \to 0} \frac{2(x + \Delta x) - 2x}{\Delta x}$$

56.
$$\lim_{\Delta x \to 0} \frac{4(x + \Delta x) - 5 - (4x - 5)}{\Delta x}$$

57.
$$\lim_{\Delta x \to 0} \frac{\sqrt{x+2+\Delta x} - \sqrt{x+2}}{\Delta x}$$

58.
$$\lim_{\Delta x \to 0} \frac{\sqrt{x + \Delta x} - \sqrt{x}}{\Delta x}$$

59.
$$\lim_{\Delta t \to 0} \frac{(t + \Delta t)^2 - 5(t + \Delta t) - (t^2 - 5t)}{\Delta t}$$

60.
$$\lim_{\Delta t \to 0} \frac{(t + \Delta t)^2 - 4(t + \Delta t) + 2 - (t^2 - 4t + 2)}{\Delta t}$$

Análise gráfica, numérica e analítica Nos Exercícios 61-64, use uma ferramenta gráfica para traçar o gráfico da função e estimar o limite. Use uma tabela para reforçar sua conclusão. Em seguida, determine o limite por meio de métodos analíticos.

61.
$$\lim_{x \to 1^{-}} \frac{2}{x^2 - 1}$$

62.
$$\lim_{x \to 1^+} \frac{5}{1-x}$$

63.
$$\lim_{x \to -2^-} \frac{1}{x+2}$$

64.
$$\lim_{x\to 0^-} \frac{x+1}{x}$$

Nos Exercícios 65-68, use uma ferramenta gráfica para estimar o limite (se este existir).

(T) 65.
$$\lim_{x \to 2} \frac{x^2 - 5x + 6}{x^2 - 4x + 4}$$

66.
$$\lim_{x \to 1} \frac{x^2 + 6x - 7}{x^3 - x^2 + 2x - 2}$$

67.
$$\lim_{x \to -4} \frac{x^3 + 4x^2 + x + 4}{2x^2 + 7x - 4}$$
 68. $\lim_{x \to -2} \frac{4x^3 + 7x^2 + x + 6}{3x^2 - x - 14}$

68.
$$\lim_{x \to -2} \frac{4x^3 + 7x^2 + x + 6}{3x^2 - x - 14}$$

69. Meio ambiente O custo (em dólares) para remover p% dos poluentes da água de um pequeno lago é dado por

$$C = \frac{25\,000p}{100 - p}, \quad 0 \le p < 100$$

em que C é o custo e p é a porcentagem de poluentes.

- (a) Determine o custo para remover 50% dos poluentes.
- (b) Qual a porcentagem de poluentes que pode ser removida por \$ 100 000?
- (c) Calcule lim C. Explique sua conclusão.
- 70. Juros compostos Você efetuou um depósito de \$ 2 000 em uma conta que é capitalizada trimestralmente a uma taxa anual de r (na forma decimal). O saldo A após 10 anos é

$$A = 2000 \left(1 + \frac{r}{4}\right)^{40}.$$

O limite de A existe quando a taxa de juros tende a 6%? Se sim, qual é esse limite?

71. Juros compostos Considere um certificado de depósito que confere 10% (taxa porcentual anual) para um depósito inicial de \$ 1 000. O saldo A após 10 anos é

$$A = 1\ 000(1+0.1x)^{10/x}$$

em que x é a duração do período de capitalização (em anos).

(a) Use uma ferramenta gráfica para traçar o gráfico de A, em que $0 \le x \le 1$.

- (b) Utilize os recursos zoom e trace para estimar o saldo para capitalização trimestral e para capitalização diária.
- (c) Utilize os recursos zoom e trace para estimar

O que você acha que esse limite representa? Explique sua conclusão.

- 72. Lucro Considere a função do lucro P para o fabricante da Seção 1.4, Exercício 71(b). O limite de P existe quando x tende a 100? Se sim, qual é esse limite?
- 73. O limite de

$$f(x) = (1+x)^{1/x}$$

é uma base natural para diversas aplicações empresariais, como você verá na Seção 4.2.

$$\lim_{x \to 0} (1+x)^{1/x} = e \approx 2,718$$

(a) Mostre que esse limite é razoável completando a tabela.

x	-0,01	-0,001	-0,0001	0	0,0001	0,001	0,01
f(x)							

- (T) (b) Use uma ferramenta gráfica para traçar o gráfico f e confirmar a resposta do item (a).
 - (c) Determine o domínio e a imagem da função.

X	1,9	1,99	1,999	2	3.
f(x)	0,2564	0,2506	0,2501	?	

X	2,001	2,01	2,1
f(x)	0,2499	0,2494	0,2439

$$\lim_{x \to 2} \frac{x-2}{x^2-4} = \frac{1}{4}$$

X	-0,1	-0,01	-0,001	0	5
f(x)	0,5132	0,5013	0,5001	?	1

x	0,001	0,01	0,1
f(x)	0,4999	0,4988	0,4881

$$\lim_{x \to 0} \frac{\sqrt{x+1} - 1}{x} = 0.5$$

7

X	-0,5	-0,1	-0,01	-0,001	0
f(x)	-0,0714	-0,0641	-0,0627	-0,0625	?

$$\lim_{x \to 0} \frac{\frac{1}{x+4} - \frac{1}{4}}{x} = -\frac{1}{16}$$

- 9. (a) 1 (b) 3 11. (a) 1 (b) 3
- 13. (a) 12 (b) 27 (c) 1/3
- 15. (a) 4 (b) 48 (c) 256
- 17. (a) 1 (b) 1 (c) 1
- 19. (a) 0 (b) 0 (c) 0
- 21. (a) 3 (b) -3 (c) Limite não existe.
- 23, 4 25, -1 27, 0 29, 3 31, -
- 33. $-\frac{3}{4}$ 35. $\frac{35}{9}$ 37. $\frac{1}{3}$ 39. $-\frac{1}{20}$ 41.
- 43. Limite não existe. 45. Limite não existe.
- 47. 12 49. Limite não existe. 51. 2

53. -1 55. 2 57.
$$\frac{1}{2\sqrt{y+2}}$$
 59. $2t-5$

61.

x	0	0,5	0,9	0,99
f(x)	-2	-2,67	-10,53	-100,5

x	0,999	0,9999	1
f(x)	-1000,5	-10 000,5	Não definida

63.

x	-3	-2,5	-2,1	-2,01
f(x)	-1	-2	-10	-100

x	-2,001	-2,0001	-2
f(x)	-1000	-10 000	Não definida

65.

Limite não existe.

67.

$$-\frac{17}{9} \approx -1,8889$$

- 69. (a) \$25 000 (b) 80%
 - (c) ∞; A função de custo aumenta ilimitadamente quando x tende a 100 pela esquerda. Portanto, de acordo com o modelo, não é possível remover 100% dos poluentes.

71. (a) 3 000

(b) Para x = 0.25, $A \approx $2.685,06$.

Para
$$x = \frac{1}{365}$$
, $A \approx $2,717,91$.

(c) $\lim_{x\to 0^+} 1000(1+0.1x)^{10/x} = 1000e \approx $2718.28;$ Capitalização contínua

73. (a)

x	-0,01	-0,001	-0,0001	0
f(x)	2,732	2,720	2,718	Não definida

x	0,0001	0,001	0,01
f(x)	2,718	2,717	2,705

$$\lim_{x \to 0} (1 + x)^{1/x} \approx 2,718$$

APROFUNDAMENTO EM LIMITES

Definição 1. Sejam f uma função e p um ponto do domínio de f ou extremidade de um intervalo do domínio de f. Dizemos que f tem limite L em p (ou seja, $\lim_{x\to p} f(x) = L$) quando para todo $\varepsilon > 0$, existe um $\delta > 0$ tal que se x está no intervalo aberto $(p - \delta, p + \delta)$ e $x \neq p$, então f(x) está no intervalo aberto $(L - \varepsilon, L + \varepsilon)$.

- (a) f não está definida em p, mas existe L que satisfaz a Definição 1.
- (b) f está definida em p, mas não é contínua em p, entretanto existe L satisfazendo a Definição 1 (neste caso, a restrição $x \neq p$ é essencial)
- (c) $f \in \text{continua em } p$, assim L = f(p) satisfaz a Definição 1
- (d) Não existe L satisfazendo a Definição 1 em p.

Utilizando o símbolo de valor absoluto (o módulo), a definição anterior pode ser resumida por:

para todo
$$\varepsilon > 0$$
, existe $\delta > 0$ tal que, para todo $x \in D_f$, se $0 < |x - p| < \delta$ então $|f(x) - L| < \varepsilon$.

Exercício. Use a Definição 1 para provar que $\lim_{x\to 4} (3x-5) = 7$.

Sabemos que f(x) = 3x - 5, p = 4 e L = 7. Devemos mostrar que para um $\varepsilon > 0$ arbitrário, podemos achar um $\delta > 0$ tal que

(*) se
$$0 < |x - 4| < \delta$$
 então $|(3x - 5) - 7| < \varepsilon$

Na resolução de problemas de desigualdade deste tipo, podemos em geral obter uma escolha adequada de δ examinando a afirmação à direita. Isto conduz às seguintes desigualdades equivalentes:

$$\begin{aligned} |(3x-5)-7| &< \varepsilon & \text{(expressão de } \varepsilon) \\ |3x-12| &< \varepsilon & \text{(simplificação)} \\ |3(x-4)| &< \varepsilon & \text{(fator comum)} \\ 3|x-4| &< \varepsilon & \text{(propriedade do valor absoluto)} \\ |x-4| &< \frac{1}{2}\varepsilon & \text{(multiplicação por } \frac{1}{2}) \end{aligned}$$

A designaldade final nos dá a chave necessária para escolher δ , ou seja, se $\delta \leq \frac{1}{3}\varepsilon$ obtemos:

$$\begin{array}{ll} 0<|x-4|<\delta & \text{(expressão de }\delta)\\ 0<|x-4|<\frac{1}{3}\varepsilon & \text{(escolha de }\delta\leq\frac{1}{3}\varepsilon)\\ 0<3|x-4|<\varepsilon & \text{(multiplicação por 3)}\\ 0<|3x-12|<\varepsilon & \text{(propriedade do valor absoluto)}\\ 0<|(3x-5)-7|<\varepsilon & \text{(forma equivalente)}. \ \ \textbf{Isto verifica (*), completando a prova.} \end{array}$$

Auto-avaliação 1. Use a Definição 1 para provar que $\lim_{x\to 2} (5x-2) = 8$.

Alguns limites e propriedades especiais.

1. Limite de função composta: $\lim_{x\to p} g(f(x)) = \lim_{u\to a} g(u)$.

2. Limite fundamental: $\lim_{x\to 0} \frac{sen x}{x} = 1$

3. $\lim_{x \to +\infty} \left(1 + \frac{1}{x}\right)^x = e = \lim_{x \to 0} (1 + x)^{\frac{1}{x}}$

4. $\lim_{x\to 0} \frac{a^x-1}{x} = \ln a$, sendo a uma constante real.

5. Regra de L'Hospital: Se calcularmos $\lim_{x\to c}\frac{f(x)}{g(x)}$ por substituição de x por c e obtivermos uma indeterminação do tipo $\frac{0}{0}$ ou $\frac{\infty}{\infty}$, temos que $\lim_{x\to c}\frac{f(x)}{g(x)}=\lim_{x\to c}\frac{f'(x)}{g'(x)}$ onde f'(x) é a derivada de f(x) e g'(x) é a derivada de g(x).

Exemplo 1. Para calcular $\lim_{x\to 1} \frac{(3-x^3)^4-16}{x^3-1}$, façamos $u=3-x^3$ e teremos $\frac{(3-x^3)^4-16}{x^3-1} = \frac{u^4-16}{2-u}$ (já que $x^3=3-u$ e $x\neq 1$). Quando x tende a 1, temos que u tende a 2, então

$$\lim_{x \to 1} \frac{(3-x^3)^4 - 16}{x^3 - 1} = \lim_{u \to 2} \frac{u^4 - 16}{2 - u} \stackrel{fatoração}{=} \lim_{u \to 2} \frac{(u - 2)(u + 2)(u^2 + 4)}{2 - u}$$
$$= -\lim_{u \to 2} (u + 2)(u^2 + 4) = -32.$$

Exemplo 2. Para calcular $\lim_{x\to -1}\frac{\sqrt[3]{x+2}-1}{x+1}$, façamos $u=\sqrt[3]{x+2}$, assim $x=u^3-2$. Logo, $\frac{\sqrt[3]{x+2}-1}{x+1}=\frac{u-1}{(u^3-2)+1}=\frac{u-1}{u^3-1}$. Quando x tende a - 1, u tende a 1, então $\lim_{x\to -1}\frac{\sqrt[3]{x+2}-1}{x+1}=\lim_{u\to 1}\frac{u-1}{u^3-1}=\lim_{u\to 1}\frac{u-1}{(u-1)(u^2+u+1)}=\lim_{u\to 1}\frac{1}{u^2+u+1}=\frac{1}{3}$.

Auto-avaliação 2. Calcule os limites: a) $\lim_{x\to 1} \frac{\sqrt{x^2+3}-2}{x^2-1}$ e b) $\lim_{x\to -1} \sqrt{\frac{x^3+1}{x+1}}$.

Exemplo 3. Para calcular $\lim_{x\to 0}\frac{sen\ 5x}{x}$, façamos u=5x e teremos $\frac{sen\ 5x}{5x}=\frac{sen\ u}{\frac{u}{5}}=5\frac{sen\ u}{u}$. Quando x tende a 0, u tende a 0, então $\lim_{x\to 0}\frac{sen\ 5x}{x}=\lim_{u\to 0}5\frac{sen\ u}{u}\stackrel{Prop.2}{=}5.1=5$.

Auto-avaliação 3. Calcule $\lim_{x\to 0} \frac{sen\ 10x}{x}$

Exemplo 4. Mostrar que $\lim_{x\to 0}\frac{e^x-1}{x}=1$. Fazendo $u=e^x-1$, temos $x=\ln(1+u)$ $e^{\frac{e^x-1}{x}}=\frac{u}{\ln(1+u)}=\frac{1}{\ln(1+u)^{\frac{1}{u}}}$. Neste caso, quando h tende a 0 então u também tende a 0, assim:

$$\lim_{x \to 0} \frac{e^x - 1}{x} = \lim_{u \to 0} \frac{1}{\ln(1 + u)^{\frac{1}{u}}} \stackrel{Prop.3}{=} \frac{1}{\ln e} = 1.$$

7

Auto-avaliação 4. Mostre que $\lim_{x\to 0} \frac{\pi^{x}-1}{x} = \ln \pi$.

Exemplo 5. $\lim_{x\to 1}\frac{x^2-1}{x-1}\stackrel{derivadas}{=}\lim_{x\to 1}\frac{2x}{1}=\frac{2.1}{1}=2.$

104 Um Curso de Calculo - Vol. I

0<x<8== 1>6 Davo $\epsilon > 0$ e tomando-se $\delta = \frac{1}{\epsilon}$ Justificação

Fill 1 = +8

EXEMPLO 2 Calcule lim x e justifique.

Solução

x>8⇒x>€. Dado $\epsilon > 0$ e tomando-se $\delta = \epsilon$

Logo.

.π x = +∞. x → +x

Teorem

 $\lim_{x \to +\infty} [f(x) + g(x)] = +\infty$ $\lim_{x \to +\infty} f(x) g(x) = +\infty$ $\lim_{x \to +\infty} f(x) = +\infty$

 $\lim_{x \to +\infty} f(x) g(x) = -\infty \quad \text{se } L < 0$ $\lim_{x \to +\infty} f(x) = L L \text{ real,} \qquad \lim_{x \to +\infty} f(x) g(x) = +\infty \text{ so } L > 0$ x+=(x) 8 =+x

 $x - = (x) g(x) f \text{ mil } \Leftrightarrow x + = (x) g \text{ mil }$

 $x + \lim_{x \to +\infty} [f(x) + g(x)] = +\infty$ $= \lim_{x \to +\infty} [f(x) + g(x)] = -\infty$ $\lim_{x\to +x} f(x) = L L \operatorname{real}$ in f(x)=L. L real

Extensões do Conceito de Limite

 $\lim_{x \to +\infty} f(x) g(x) = +\infty \quad \text{se } L < 0.$ $\lim_{x \to +\infty} f(x) g(x) = -\infty \quad \text{se } L > 0$ $\lim_{x \to +\infty} [f(x) + g(x)] = -\infty$ $\lim_{x \to +\infty} f(x) g(x) = +\infty$ 1 $\lim_{x \to +\infty} f(x) = L, L \text{ real,}$ $\lim_{x \to +\infty} g(x) = -\infty$ $\lim_{x \to +\infty} f(x) = -\infty$ $\lim_{x \to +\infty} g(x) = -\infty$

Demonstração. Para as demonstrações de (a) e (b), veja Exs. 13 e 14. As demonstrações dos demais itens ficam a cargo do leitor.

Observamos que o teorema anterior continua válido se substituirmos " $x \to +\infty$ " por " $x \to -\infty$ " ou por " $x \to p$ " ou por " $x \to p$ " ou por " $x \to p$ ".

Observations and the property of the property Observação. O teorema anterior sugere-nos como operar com os símbolos $+\infty e^{-\infty} + \infty$ $T_{-\infty} = T_{-\infty} = T$

Indeterminações

$$+\infty - (+\infty), -\infty - (-\infty), 0 \cdot \infty, \frac{\infty}{\infty}, \frac{0}{0}, 1^{\infty}, 0^{0}, \infty^{0}$$

EXEMPLO 3. Calcule $\lim_{x \to +\infty} x^2$.

Solução

$$\lim_{x \to +\infty} x^2 = \lim_{x \to +\infty} x \cdot x = +\infty.$$

EXEMPLO 4. Calcule $\lim_{x \to +\infty} (3x^2 - 5x + 2)$.

Solução

$$\lim_{x \to +\infty} (3x^2 - 5x + 2) = \lim_{x \to +\infty} x^2 \left[3 - \frac{5}{x} + \frac{2}{x^2} \right] = +\pi (+\infty \cdot 3).$$

EXEMPLO 5. Calcule $\lim_{x \to +\infty} \frac{x^3 + 3x - 1}{2x^2 + x + 1}$.

$$\lim_{x \to +\infty} \frac{x^3 + 3x - 1}{2x^2 + x + 1} = \lim_{x \to +\infty} \frac{x^3 \left[1 + \frac{3}{x^2} - \frac{1}{x^3} \right]}{\left[2 + \frac{1}{x} + \frac{1}{x^2} \right]} = \lim_{x \to +\infty} \frac{1 + \frac{3}{x^2} - \frac{1}{x^3}}{2 + \frac{1}{x} + \frac{1}{x^2}} = +\infty(+\infty, \frac{1}{2})$$