

Serial communication with the I²C bus

(the Inter-Integrated Circuit bus)

ECE 2534

Motivation: a microcontroller needs to communicate with several peripherals (maybe scattered around a circuit board)

uC ADC DAC uC Slave Slave

I²C interface

- SDA serial data
- SCL serial clock

I²C interface

- I²C is a standard for 2-wire, half-duplex, synchronous, serial communication
- Pronounced "Eye Squared See" or "Eye Two See"
- Developed by Phillips in the 1980s,
 and it became a de-facto standard in the 1990s
- "Duplex": communication can go in 2 directions
- "Half-duplex": communication can go in 2 directions, but only in 1 direction at any given time
- Normally used at the board level
- Often called a 2-wire serial "bus"

NA.

Example I2C interconnections between a microcontroller and an accelerometer chip

Figure 40. I²C Connection Diagram (Address 0x53)

M

Some I²C terminology

Term	Description
Transmitter	the device which sends data to the bus
Receiver	the device which receives data from the bus
Master	the device which initiates a transfer, generates clock signals and terminates a transfer
Slave	the device addressed by a master
Multi-master	more than one master can attempt to control the bus at the same time without corrupting the message
Arbitration	procedure to ensure that, if more than one master simultaneously tries to control the bus, only one is allowed to do so and the winning message is not corrupted
Synchronization	procedure to synchronize the clock signals of two or more devices

I²C data rates

Standard 100 kbit/s

■ Fast 400 kbit/s

■ Fast+ 1 Mbit/s

High speed 3.4 Mbit/s

I²C Physical Layer

Bit States

I²C protocol

- In the I2C interface protocol, each <u>device</u> has an address.
- When a master wishes to initiate a data transfer, it first transmits the I2C address of the device that it wants to "talk" to.
- All devices "listen" to see if this is their address. Within this address, bit 0 (the LSB) specifies whether the master wishes to read from or write to the slave device.
- The master and slave are always in opposite modes of operation (transmitter/receiver) during a data transfer. That is, they can be thought of as operating in either of the following two relations:
 - Master-transmitter and slave-receiver
 - □ Slave-transmitter and master-receiver
- In both cases, the master originates the clock signal (SCL).

I²C protocol, continued

- Data transfer may be initiated only when the bus is not busy
- During data transfer, the data line must remain stable whenever the SCLx clock line is high.
- Changes in the data line while the SCLx clock line is high will be interpreted as a Start or Stop condition.

NA.

I²C framing

- (A) IDLE: SCL, SDA high
- (B) START: SDA falls while SCL is high (D) SDA constant while SCL is high;
- (C) STOP: SDA rises while SCL is high
 - (D) SDA constant while SCL is high; SDA changes only when SCL is low

I²C bit transfer

Source: UM10204 - I2C-bus specification and user manual

I²C protocol, continued

- Data is transferred in byte-sized chunks, MSB first
- No restriction on the number of bytes in a transfer
- Between bytes, a slave can hold SCL low to force the master to wait
- "Clock stretching" the master can hold the clock low between bits to slow things down
- For each byte, there's a 9th clock pulse during which the receiver can indicate success (ACK = "acknowledge") by pulling SDA low
 - Sender must relinquish SDA
 - □ If SDA remains high, NACK (= "Not Acknowledge")
 - Master receiver can use NACK to signal slave transmitter that master wants no more data

14

I²C data transfers – example interaction

Figure 24-4: A Typical I²C™ Message: Read of Serial EEPROM (Random Address Mode)

Source: 61116E.pdf – PIC32 Reference Manual

I²C data transfer sequence

Summary

- The I²C bus is a popular way to connect several devices at the board level
 - □half-duplex
 - ■synchronous
 - □SDA, SCL
- A popular alternative: the SPI (Serial Peripheral Interface) bus