85]:	DATE IPG2211A2N 0 1/1/1985 72.5052 1 2/1/1985 70.6720 2 3/1/1985 62.4502 3 4/1/1985 55.3151 392 9/1/2017 98.6154 393 10/1/2017 93.6137 394 11/1/2017 97.3359 395 12/1/2017 114.7212 396 1/1/2018 129.4048
36]: 36]: 37]:	<pre>df.isnull().sum() DATE 0 IPG2211A2N 0 dtype: int64 df["Value"] = df["IPG2211A2N"] df = df.drop("IPG2211A2N", axis=1) df.shape (397, 2)</pre>
38]:	Value DATE 1985-01-01 72.5052 1985-02-01 70.6720 1985-03-01 62.4502 1985-04-01 57.4714 1985-05-01 55.3151 2017-09-01 98.6154
[9]:	2017-11-01 93.6137 2017-12-01 114.7212 2018-01-01 129.4048 397 rows × 1 columns import matplotlib.pyplot as plt plt.figure(figsize=(16,8)) plt.xlabel("DATE") plt.ylabel("Value") plt.ylabel("Value") plt.title("production graph") plt.title("production graph") plt.plot(df)
[9]:	[<matplotlib.lines.line2d 0x1fb15acefa0="" at="">] production graph 130 - 110 - 100 - 80 - 80 -</matplotlib.lines.line2d>
L0]:	70
4]:	from statsmodels.tsa.seasonal import seasonal_decompose result = seasonal_decompose(df) result.plot()
	Pit.show() Figure size 1152x864 with 0 Axes> 125 100 108 1992 1996 2000 2004 2008 2012 2016 100 101 102 103 104 105 106 107 107 108 1092 1996 2000 2004 2008 2012 2016 108 1092 1996 2000 2004 2008 2012 2016
28]:	<pre>#perform dickey fuller test from statsmodels.tsa.stattools import adfuller def adfuller_test(timeseries): #Determing rolling statistics(mean and std) rolmean = timeseries.rolling(12).mean() rolstd = timeseries.rolling(12).std() #Plot rolling statistics: plt.figure(figsize=(14,8)) plt.plot(timeseries, color='blue', label='Original') plt.plot(rolmean, color='red', label='Rolling Mean') plt.plot(rolstd, color='black', label = 'Rolling Std')</pre>
29]:	plt.legend(loc='best') plt.title('Rolling Mean and Standard Deviation') plt.show(block=False) print("Results of dickey fuller test") adft = adfuller(timeseries, autolag='AIC') # output for dft will give us without defining what the values are. #hence we manually write what values does it explains using a for loop output = pd.Series(adft[0:4], index=['Test Statistics', 'p-value', 'No. of lags used', 'Number of observations used']) for key, values in adft[4].items(): output['critical value (%s)'%key] = values print(output) Rolling Mean and Standard Deviation
	Toriginal Rolling Mean Rolling Std 100 - Rolling Std 40 - 20 -
80]:	1984 1988 1992 1996 2000 2004 2008 2012 2016 Results of dickey fuller test Test Statistics -2.256990 p-value 0.186215 No. of lags used 15.000000 Number of observations used 381.000000 critical value (1%) -3.447631 critical value (5%) -2.869156 critical value (10%) -2.570827 dtype: float64 df["First_seasonal_diff"] = df["Value"]-df["Value"].shift(12) df
80]:	Value First_seasonal_diff DATE 1985-01-01 72.5052 NaN 1985-02-01 70.6720 NaN 1985-03-01 62.4502 NaN 1985-04-01 57.4714 NaN 1985-05-01 55.3151 NaN 2017-09-01 98.6154 -4.1483 2017-10-01 93.6137 2.1270 2017-11-01 97.3359 4.4459 2017-12-01 114.7212 1.9518 2018-01-01 129.4048 14.5543 397 rows × 2 columns 20 columns
31]:	Rolling Mean and Standard Deviation 15 Original Rolling Mean Rolling Std 10 Rolling Std
	-10 - 1988 1992 1996 2000 2004 2008 2012 2016 Results of dickey fuller test Test Statistics -5.673482e+00 p-value 8.812645e-07 No. of lags used 1.200000e+01 Number of observations used 3.720000e+02 critical value (1%) -3.448052e+00 critical value (5%) -2.869341e+00 critical value (10%) -2.570926e+00 dtype: float64
32]: 32]:	<pre>from statsmodels.graphics.tsaplots import plot_acf,plot_pacf plot_acf(df["First_seasonal_diff"].iloc[13:],lags=20) plot_pacf(df["First_seasonal_diff"].iloc[13:],lags=20)</pre> Partial Autocorrelation 10 08 06 04 02 00
	Autocorrelation Autocorrelation 0.6 0.4 0.2 0.0
	Partial Autocorrelation 0
32]: 32]:	df_stationay = df.drop(["Value"], axis=1) df_stationay = df_stationay.dropna() df_stationay
4]:	<pre>model = ARIMA(df_stationay, order=(3,1,3)) result_AR = model.fit(disp = 0) plt.plot(df_stationay)</pre>
	plt.title("sum of squares of residuals") C:\Users\U.R Computer\anaconda\lib\site-packages\statsmodels\tsa\base\tsa_model.py:524: ValueWarning: No frequency information was provided, so inferred ency MS will be used. warnings.warn('No frequency information was' C:\Users\U.R Computer\anaconda\lib\site-packages\statsmodels\tsa\base\tsa_model.py:524: ValueWarning: No frequency information was provided, so inferred ency MS will be used. warnings.warn('No frequency information was' C:\Users\U.R Computer\anaconda\lib\site-packages\statsmodels\base\model.py:547: HessianInversionWarning: Inverting hessian failed, no bse or cov_params a ble warnings.warn('Inverting hessian failed, no bse or cov_params ' C:\Users\U.R Computer\anaconda\lib\site-packages\statsmodels\tsa\arima_model.py:472: FutureWarning: statsmodels.tsa.arima_model.ARMA and statsmodels.tsa.arima_model.ARIMA have been deprecated in favor of statsmodels.tsa.arima_model.ARIMA (note the . between arima and model) and statsmodels.tsa.SARIMAX. These will be removed after the 0.12 release. statsmodels.tsa.arima.model.ARIMA makes use of the statespace framework and is both well tested and maintained. To silence this warning and continue using ARMA and ARIMA until they are removed, use: import warnings warnings.filterwarnings('ignore', 'statsmodels.tsa.arima_model.ARMA',
4]:	warnings.filterwarnings('ignore', 'statsmodels.tsa.arima_model.ARIMA',
5]: 5]:	result_AR.summary() ARIMA Model Results Dep. Variable: D.First_seasonal_diff No. Observations: 384 Model: ARIMA(3, 1, 3) Log Likelihood -938.531 Method: css-mle S.D. of innovations 2.747 Date: Fri, 07 May 2021 AIC 1893.063
	Time: 17:30:18 BIC 1924.668 Sample: 02-01-1986 HQIC 1905.599 const -01-01-2018 const -0.0056 std err z P> z [0.025] 0.975] const -0.0056 0.003 -2.127 0.033 -0.011 -0.000 ar.L1.D.First_seasonal_diff -1.0432 0.048 -21.518 0.000 -1.138 -0.948 ar.L3.D.First_seasonal_diff -0.1272 0.074 -1.725 0.085 -0.272 0.017 ma.L1.D.First_seasonal_diff 0.7055 0.020 34.759 0.000 0.666 0.745 ma.L2.D.First_seasonal_diff -0.7056 0.016 -44.604 0.000 -0.737 -0.675
	ma.L3.D.First_seasonal_diff
66]:	result_AR.plot_predict(1,500) x=result_AR.forecast(steps=200) 15
ŀ6]:	<pre>model = sm.tsa.statespace.SARIMAX(df_stationay, order=(3,1,2), seasonal_order=(3,1,2,12)) result_SAR = model.fit(disp = 0) plt.plot(df_stationay) plt.plot(result_SAR.fittedvalues, color='red') plt.title("sum of squares of residuals") C:\Users\U.R Computer\anaconda\lib\site-packages\statsmodels\tsa\base\tsa_model.py:524: ValueWarning: No frequency information was provided, so inferred ency MS will be used. warnings.warn('No frequency information was' C:\Users\U.R Computer\anaconda\lib\site-packages\statsmodels\tsa\base\tsa_model.py:524: ValueWarning: No frequency information was provided, so inferred ency MS will be used.</pre>
16]:	warnings.warn('No frequency information was' C:\Users\U.R Computer\anaconda\lib\site-packages\statsmodels\tsa\statespace\sarimax.py:965: UserWarning: Non-stationary starting autoregressive parameters. d. Using zeros as starting parameters. warn('Non-stationary starting autoregressive parameters' C:\Users\U.R Computer\anaconda\lib\site-packages\statsmodels\tsa\statespace\sarimax.py:977: UserWarning: Non-invertible starting MA parameters found. Using sas starting parameters. warn('Non-invertible starting MA parameters found.' C:\Users\U.R Computer\anaconda\lib\site-packages\statsmodels\base\model.py:566: ConvergenceWarning: Maximum Likelihood optimization failed to converge. Clublered surnings.warn("Maximum Likelihood optimization failed to " Text(0.5, 1.0, 'sum of squares of residuals') sum of squares of residuals
77]:	df_stationay["Forecast"] = result_SAR.predict(start=100, end=400) df_stationay[["First_seasonal_diff", "Forecast_1"]].plot(figsize=(16,8))
77]:	<pre><axessubplot:xlabel='date'> First_seasonal_diff Forecast_1 10 - 5 -</axessubplot:xlabel='date'></pre>
	-10 - 1989 1994 1999 2004 2009 2014 DATE