Minimal Expression Replacement GEneralization test for NLI

M E R GE

NLP GROUP

A small girl carries a girl. There is a girl. <PREMISE> <HYPOTHESIS>

typically what would a human reading (crowdworker) infer about the truth of **H** given **P**.

ENTAILMENT CONTRADICTION NEUTRAL

typically what would a human reading (crowdworker) infer about the truth of **H** given **P**.

NLI task

- Popular (100+).
- Easy task on reasoning.
- (Mostly) it is a three-way classification task.
- Simple/silly heuristics work due to annotation artifacts.
 - Hypothesis-only bias
 - Word overlap bias (WO)
 - Inverse WO bias
 - Negation bias

<HYPOTHESIS>

A small girl carries a girl. There is a girl. A small girl carries a girl. There is a female. A small girl is carrying a girl. There is no girl is not true.

Generalization & NLI

HOW DO MODELS GENERALIZE?

HOW DO SPURIOUS CORRELATIONS AFFECT THEM?

Generalization & NLI

HOW DO MODELS GENERALIZE

HOW DO SPURIOUS CORRELATIONS AFFECT THEM?

Generalization & NLI

HOW DO MODELS GENERALIZE MODELS?

HOW DO SPURIOUS CORRELATIONS AFFECT THEM?

Breaking NLI (Glockner et al. 2018):

The man is holding a saxophone

The man is holding a saxophone

c The man is holding an electric guitar

PaRTE (Verma et al. 2023): $\langle P, H, l \rangle \implies \langle Para(P), Para(H), l \rangle$

Study	Strategy	Creation	Val.	Sentence Mod.	M	R	S	wo	Evaluation	Dataset
Li et al. (2020)	Multiple	Auto.	$HVal_p$	P	Mix.	Mix.	N	N	Vs-G; Vs-O	SNLI; MNLI
Glockner et al. (2018)	Replace	Auto.	$HVal_f$	H	N	Mix.	Y	N	V-G	SNLI
Verma et al. (2023)	Paraphrase	Auto.	$HVal_f$	P/H; $P&H$	Y	Y	N	N	Vs-O	Pascal RTE1-3 (Dagan et al., 2005)
Srikanth et al. (2024)	Paraphrase	Mix.	HVal _{pf}	H;U	Y	Y	N	N	Vs-Vs; Vs-G	α -NLI (Bhagavatula et al., 2019); δ -NLI (Rudinger et al., 2020)
Arakelyan et al. (2024)	Paraphrase	Auto.	$HVal_p$	H	Y	Y	N	N	V-O	SNLI; MNLI; ANLI
Petrov (2025)*	Multiple	Auto.	N/A	H	N	N	N	N	V-G	SNLI
Kaushik et al. (2020)	Multiple	Man.	$HVal_f$	P; H	N	N	N	N	V-G	SNLI
Srikanth and Rudinger (2025)	Decompose	Auto.	Mix.	H	Y	Y	N	N	V-G; Vs-O	SNLI; δ -NLI

Study		Creation	Val.	Sentence Mod.	M	R	S	wo	Evaluation	Dataset
Li et al. (2020)	Multiple	Auto.	$HVal_p$	P	Mix.	Mix.	N	N	Vs-G; Vs-O	SNLI; MNLI
Glockner et al. (2018)	Replace	Auto.	$HVal_f$	H	N	Mix.	Y	N	V-G	SNLI
Verma et al. (2023)	Paraphrase	uto.	$HVal_f$	P/H; $P&H$	Y	Y	N	N	Vs-O	Pascal RTE1-3 (Dagan et al., 2005)
Srikanth et al. (2024)	Paraphrase	ix.	HVal _{pf}	H;U	Y	Y	N	N	Vs-Vs; Vs-G	α -NLI (Bhagavatula et al., 2019); δ -NLI (Rudinger et al., 2020)
Arakelyan et al. (2024)	Paraphrase	uto.	HVal _p	H	Y	Y	N	N	V-O	SNLI; MNLI; ANLI
Petrov (2025)*	Multiple	uto.	N/A	H	N	N	N	N	V-G	SNLI
Kaushik et al. (2020)	Multiple	Man.	$HVal_f$	P; H	N	N	N	N	V-G	SNLI
Srikanth and Rudinger (2025)	Decompose	Auto.	Mix.	H	Y	Y	N	N	V-G; Vs-O	SNLI; δ-NLI

Study	Strategy		Val.	Sentence Mod.	M	R	S	wo	Evaluation	Dataset
Li et al. (2020)	Multiple	Auto.	Val_p	P	Mix.	Mix.	N	N	Vs-G; Vs-O	SNLI; MNLI
Glockner et al. (2018)	Replace	Auto.	Val_f	H	N	Mix.	Y	N	V-G	SNLI
Verma et al. (2023)	Paraph	Auto.	l al_f	P/H; $P&H$	Y	Y	N	N	Vs-O	Pascal RTE1-3 (Dagan et al., 2005)
Srikanth et al. (2024)	Parapl	Mix.	H l _{pf}	H;U	Y	Y	N	N	Vs-Vs; Vs-G	α -NLI (Bhagavatula et al., 2019); δ -NLI (Rudinger et al., 2020)
Arakelyan et al. (2024)	Parapl	Auto.	\mathbf{l}_p	H	Y	Y	N	N	V-O	SNLI; MNLI; ANLI
Petrov (2025)*	Multip	Auto.	l l	H	N	N	N	N	V-G	SNLI
Kaushik et al. (2020)	Multipl	Man.	al_f	P; H	N	N	N	N	V-G	SNLI
Srikanth and Rudinger (2025)	Decomp	Auto.	ix.	H	Y	Y	N	N	V-G; Vs-O	SNLI; δ-NLI

Study	Strategy	Creation	alb	Sentence Mod.	M	R	S	wo	Evaluation	Dataset
Li et al. (2020)	Multiple	Auto	$HVal_p$		Mix.	Mix.	N	N	Vs-G; Vs-O	SNLI; MNLI
Glockner et al. (2018)	Replace	Aut	$HVal_f$		N	Mix.	Y	N	V-G	SNLI
Verma et al. (2023)	Paraphrase	Au	$HVal_f$	H; H H	Y	Y	N	N	Vs-O	Pascal RTE1-3 (Dagan et al., 2005)
Srikanth et al. (2024)	Paraphrase	M	HVal _{pf}	H J	Y	Y	N	N	Vs-Vs; Vs-G	α -NLI (Bhagavatula et al., 2019); δ -NLI (Rudinger et al., 2020)
Arakelyan et al. (2024)	Paraphrase	Αι	$HVal_p$	F	Y	Y	N	N	V-O	SNLI; MNLI; ANLI
Petrov (2025)*	Multiple	Au	N/A	J	N	N	N	N	V-G	SNLI
Kaushik et al. (2020)	Multiple	Mai	$HVal_f$	H	N	N	N	N	V-G	SNLI
Srikanth and Rudinger (2025)	Decompose	Auto	Mix.		Y	Y	N	N	V-G; Vs-O	SNLI; δ -NLI

Study	Strategy	Creation	Val.	Mod.	M	R	S	wo	Evaluation	Dataset
Li et al. (2020)	Multiple	Auto.	HVal ₁	P	Mix.	Mix.	N	N	Vs-G; Vs-O	SNLI; MNLI
Glockner et al. (2018)	Replace	Auto.	HVal	H	1	Mix.	Y	N	V-G	SNLI
Verma et al. (2023)	Paraphrase	Auto.	HVa	P/H; $P&H$		Y	N	N	Vs-O	Pascal RTE1-3 (Dagan et al., 2005)
Srikanth et al. (2024)	Paraphrase	Mix.	HV	H;U		Y	N	N	Vs-Vs; Vs-G	α -NLI (Bhagavatula et al., 2019); δ -NLI (Rudinger et al., 2020)
Arakelyan et al. (2024)	Paraphrase	Auto.	HVa	H		Y	N	N	V-O	SNLI; MNLI; ANLI
Petrov (2025)*	Multiple	Auto.	N/A	H		N	N	N	V-G	SNLI
Kaushik et al. (2020)	Multiple	Man.	HVal	P; H	1	N	N	N	V-G	SNLI
Srikanth and Rudinger (2025)	Decompose	Auto.	Mix.	H	Y	Y	N	N	V-G; Vs-O	SNLI; δ -NLI

Study	Strategy	Creation	Val.	Sentence Mod.	Λ	1	R	S	W	O	Evaluation	Dataset
Li et al. (2020)	Multiple	Auto.	$HVal_p$	P	N	lix.	Mix.	N			Vs-G; Vs-O	SNLI; MNLI
Glockner et al. (2018)	Replace	Auto.	$HVal_f$	H	N	1	Mix.	Y			V-G	SNLI
Verma et al. (2023)	Paraphrase	Auto.	$HVal_f$	P/H; $P&H$	Y		Y	N			Vs-O	Pascal RTE1-3 (Dagan et al., 2005)
Srikanth et al. (2024)	Paraphrase	Mix.	HVal _{pf}	H;U	Y		Y	N			Vs-Vs; Vs-G	α -NLI (Bhagavatula et al., 2019); δ -NLI (Rudinger et al., 2020)
Arakelyan et al. (2024)	Paraphrase	Auto.	$HVal_p$	H	Y	7	Y	N			V-O	SNLI; MNLI; ANLI
Petrov (2025)*	Multiple	Auto.	N/A	H	N	I	N	N	A		V-G	SNLI
Kaushik et al. (2020)	Multiple	Man.	$HVal_f$	P; H		I	N	N	N	i i	V-G	SNLI
Srikanth and Rudinger (2025)	Decompose	Auto.	Mix.	H			Y	N	N	4	V-G; Vs-O	SNLI; δ -NLI

Study	Strategy	Creation	Val.	Sentence Mod.	M	R	S	W	Evaluation	Dataset
Li et al. (2020)	Multiple	Auto.	$HVal_p$	P	Mix.	Mix.	N	7	Vs-G; Vs-O	NLI; MNLI
Glockner et al. (2018)	Replace	Auto.	$HVal_f$	H	N	Mix.	Y		V-G	VLI
Verma et al. (2023)	Paraphrase	Auto.	$HVal_f$	P/H; $P&H$	Y	Y	N		Vs-O	scal RTE1-3 (Dagan et al., 05)
Srikanth et al. (2024)	Paraphrase	Mix.	HVal _{pf}	H;U	Y	Y	N		Vs-Vs; Vs-G	NLI (Bhagavatula et al., 19); δ -NLI (Rudinger et al., 20)
Arakelyan et al. (2024)	Paraphrase	Auto.	$HVal_p$	H	Y	Y	N		V-O	ILI; MNLI; ANLI
Petrov (2025)*	Multiple	Auto.	N/A	H	N	N	N		V-G	NLI
Kaushik et al. (2020)	Multiple	Man.	$HVal_f$	P; H	N	N	N	ì	V-G	NLI
Srikanth and Rudinger (2025)	Decompose	Auto.	Mix.	H	Y	Y	N	N	V-G; Vs-O	SNLI; δ -NLI

CONSISTENCY

Study	Strategy	Creation	Val.	Sentence Mod.	M	R	S	wo	Evaluation	Dataset
Li et al. (2020)	Multiple	Auto.	HVal _p	P	Mix.	Mix.	N	N	Vs-G; Vs-O	SNLI; MNLI
Glockner et al. (2018)	Replace	Auto.	$HVal_f$	H	N	Mix.	Y	N	V-G	SNLI
Verma et al. (2023)	Paraphrase	Auto.	$HVal_f$	P/H; $P&H$	Y	Y	N	N	Vs-O	Pascal RTE1-3 (Dagan et al., 2005)
Srikanth et al. (2024)	Paraphrase	Mix.	HVal _{pf}	H;U	Y	Y	N	N	Vs-Vs; Vs-G	α -NLI (Bhagavatula et al., 2019); δ -NLI (Rudinger et al., 2020)
Arakelyan et al. (2024)	Paraphrase	Auto.	HVal _p	H	Y	Y	N	N	V-O	SNLI; MNLI; ANLI
Petrov (2025)*	Multiple	Auto.	N/A	H	N	N	N	N	V-G	SNLI
Kaushik et al. (2020)	Multiple	Man.	$HVal_f$	P; H	N	N	N	N	V-G	SNLI
Srikanth and Rudinger (2025)	Decompose	Auto.	Mix.	H	Y	Y	N	N	V-G; Vs-O	SNLI; δ -NLI

does not keep the WO; introduces syntactic changes

Study	Strategy	Creation	Val.	Sentence Mod.	M	R	S	wo	Evaluation	Dataset
Li et al. (2020)	Multiple	Auto.	$HVal_p$	P	Mix.	Mix.	N	N	Vs-G; Vs-O	SNLI; MNLI
Glockner et al. (2018)	Replace	Auto.	$HVal_f$	H	N	Mix.	Y	N	V-G	SNLI
Verma et al. (2023)	Paraphrase	Auto.	$HVal_f$	P/H; $P&H$	Y	Y	N	N	Vs-O	Pascal RTE1-3 (Dagan et al., 2005)
Srikanth et al. (2024)	Paraphrase	Mix.	HVal _{pf}	H;U	Y	Y	N	N	Vs-Vs; Vs-G	α -NLI (Bhagavatula et al., 2019); δ -NLI (Rudinger et al., 2020)
Arakelyan et al. (2024)	Paraphrase	Auto.	HVal _p	H	Y	Y	N	N	V-O	SNLI; MNLI; ANLI
Petrov (2025)*	Multiple	Auto.	N/A	H	N	N	N	N	V-G	SNLI
Kaushik et al. (2020)	Multiple	Man.	$HVal_f$	P; H	N	N	N	N	V-G	SNLI
Srikanth and Rudinger (2025)	Decompose	Auto.	Mix.	H	Y	Y	N	N	V-G; Vs-O	SNLI; δ -NLI

TEMPLATE BASED = plausible and correct, but...

- lexical diversity
- limited problems

						4				
Study	Strategy	Creation	Val.	Sentence Mod.	M	R	S	wo	Evaluation	Dataset
Li et al. (2020)	Multiple	Auto.	$HVal_p$	P	Mix.	Mix.	N	N	Vs-G; Vs-O	SNLI; MNLI
Glockner et al. (2018)	Replace	Auto.	$HVal_f$	H	N	Mix.	Y	N	V-G	SNLI
Verma et al. (2023)	Paraphrase	Auto.	$HVal_f$	P/H; $P&H$	Y	Y	N	N	Vs-O	Pascal RTE1-3 (Dagan et al., 2005)
Srikanth et al. (2024)	Paraphrase	Mix.	HVal _{pf}	H;U	Y	Y	N	N	Vs-Vs; Vs-G	α -NLI (Bhagavatula et al., 2019); δ -NLI (Rudinger et al., 2020)
Arakelyan et al. (2024)	Paraphrase	Auto.	HVal _p	H	Y	Y	N	N	V-O	SNLI; MNLI; ANLI
Petrov (2025)*	Multiple	Auto.	N/A	H	N	N	N	N	V-G	SNLI
Kaushik et al. (2020)	Multiple	Man.	$HVal_f$	P; H	N	N	N	N	V-G	SNLI
Srikanth and Rudinger (2025)	Decompose	Auto.	Mix.	H	Y	Y	N	N	V-G; Vs-O	SNLI; δ -NLI

syntactic changes '

Study	Strategy	Creation	Val.	Sentence Mod.	M	R	S	wo	Evaluation	Dataset
Li et al. (2020)	Multiple	Auto.	IVal_p	P	Mix.	Mix.	N	N	Vs-G; Vs-O	SNLI; MNLI
Glockner et al. (2018)	Replace	Auto.	IVal_f	H	N	Mix.	Y	N	V-G	SNLI
Verma et al. (2023)	Paraphrase	Auto.	IVal_f	P/H; $P&H$	Y	Y	N	N	Vs-O	Pascal RTE1-3 (Dagan et al., 2005)
Srikanth et al. (2024)	Paraphrase	Mix.	HVal _{pf}	H;U	Y	Y	N	N	Vs-Vs; Vs-G	α -NLI (Bhagavatula et al., 2019); δ -NLI (Rudinger et al., 2020)
Arakelyan et al. (2024)	Paraphrase	Auto.	$HVal_p$	H	Y	Y	N	N	V-O	SNLI; MNLI; ANLI
Petrov (2025)*	Multiple	Auto.	V/A	H	N	N	N	N	V-G	SNLI
Kaushik et al. (2020)	Multiple	Man.	IVal_f	P; H	N	N	N	N	V-G	SNLI
Srikanth and Rudinger (2025)	Decompose	Auto.	Mix.	H	Y	Y	N	N	V-G; Vs-O	SNLI; δ-NLI

does it bias the contrast set?

are they correct?

Study	Strategy	Creation	Val.	Sentence Mod.	M	R	S	wo	Evaluation	Dataset
Li et al. (2020)	Multiple	Auto.	IVal_p	P	Mix.	Mix.	N	N	Vs-G; Vs-O	SNLI; MNLI
Glockner et al. (2018)	Replace	Auto.	IVal_f	H	N	Mix.	Y	N	V-G	SNLI
Verma et al. (2023)	Paraphrase	Auto.	IVal_f	P/H; $P&H$	Y	Y	N	N	Vs-O	Pascal RTE1-3 (Dagan et al., 2005)
Srikanth et al. (2024)	Paraphrase	Mix.	HVal _{pf}	H;U	Y	Y	N	N	Vs-Vs; Vs-G	α -NLI (Bhagavatula et al., 2019); δ -NLI (Rudinger et al., 2020)
Arakelyan et al. (2024)	Paraphrase	Auto.	$HVal_p$	H	Y	Y	N	N	V-O	SNLI; MNLI; ANLI
Petrov (2025)*	Multiple	Auto.	V/A	H	N	N	N	N	V-G	SNLI
Kaushik et al. (2020)	Multiple	Man.	IVal_f	P; H	N	N	N	N	V-G	SNLI
Srikanth and Rudinger (2025)	Decompose	Auto.	Mix.	H	Y	Y	N	N	V-G; Vs-O	SNLI; δ-NLI

but then manual...

Study	Strategy	Creation	Val.	Sentence Mod.	M	R	S	wo	Evaluation	Dataset
Li et al. (2020)	Multiple	Auto.	$HVal_p$	P	Mix.	Mix.	N	N	Vs-G; Vs-O	SNLI; MNI I
Glockner et al. (2018)	Replace	Auto.	$HVal_f$	H	N	Mix.	Y	N	V-G	SNLI
Verma et al. (2023)	Paraphrase	Auto.	$HVal_f$	P/H; $P&H$	Y	Y	N	N	Vs-O	Pascal RTF 1-3 (Dagan et al., 2005)
Srikanth et al. (2024)	Paraphrase	Mix.	HVal _{pf}	H;U	Y	Y	N	N	Vs-Vs; Vs-G	α -NLI (B agavatula et al., 2019); δ -N I (Rudinger et al., 2020)
Arakelyan et al. (2024)	Paraphrase	Auto.	HVal _p	H	Y	Y	N	N	V-O	SNLI; MNI I; ANLI
Petrov (2025)*	Multiple	Auto.	N/A	H	N	N	N	N	V-G	SNLI
Kaushik et al. (2020)	Multiple	Man.	HVal _f	P; H	N	N	N	N	V-G	SNLI
Srikanth and Rudinger (2025)	Decompose	Auto.	Mix.	Н	Y	Y	N	N	V-G; Vs-O	SNLI; δ -NI I

what about these?

no benchmark constructed by

automatic-logic-pre servingtruly-minimal changes

no benchmark constructed by

automatic-logic-pre
servingtruly-minimal
changes

M E R GE

MERGE

MERGE: Seed problem-based evaluation

Pattern accuracy (PA) with a threshold

$$Acc_{th=0.5} = 1$$

$$Acc_{th=0.75} = 1$$

$$Acc_{th=0.95} = 0$$

Sample-based evaluation

Sample/variant accuracy (SA)

$$Acc_v = 0.75$$

Original/seed NLI problem

P: A small girl carries a girl.

H: There is a small girl.

 \mathcal{M}_1 , ... \mathcal{M}_n

Automatic generation of variants with MLMs

NLI model's predictions

P: A small boy carries a boy.

H: There is a **small boy**.

P: A small dog carries a dog.

Е

H: There is a small dog.

P: A little girl carries a girl.

H: There is a little girl.

P: A happy girl carries a girl.

H: There is a happy girl.

Minimality of MERGE

Variant problems require the exact same reasoning as the original/seed

problems:

P: A small girl carries a girl.

H: There is a small girl.

P: A small boy carries a boy.

H: There is a small boy.

The sort of minimal string edits:

P: A blond boy carries a boy.

H: There is a blond boy.

Many biases are preserved:

The (reverse) WO

Negation/antonymy

Hypothesis only

We replace single words with single words

Antonyms are different words; hence they remain

Usually, give-away words only occurs in a hypothesis

MERGE: Minimal Expression-Replacement GEneralization

Precaution!

Certain minimal expression replacements can lead to unsound NLI

Which affect the WO! Don't replace original words with co-occurring words!

Are we good? WELL...

- Are the variants plausible?
- Do they keep the syntax?

Generating variants

Generating variants (2)

Suggested words $W_M(PH, w^c)$ are such that:

- They differ from the co-occurring words in an NLI problem PH.
- At least one MLM from M suggests it and validates it, i.e., gives it a higher probability (>) than the original word.
- They get the same word class c tag as the original word.
- They are suggested for both premise P and hypothesis H.

If w is not in the tokenizer vocabulary of a MLM, then the suggestion set is empty, e.g., $W_M(PH, \text{mentorship}_>^c) = \emptyset$

AT LEAST ONE MODEL...

Setup of experiments

MLMs:

- BERT, RoBERTa, ALBERT, Electra, and BART, base and large, except ALBERT (b, xxl).
- 10k test SNLI, for nouns, verbs, adjectives.
- Manually annotated 100 examples * open-class category to evaluate efficiency of models.

Setup of experiments

MLMs (10):

- BERT, RoBERTa, ALBERT, Electra, and BART, base and large, except ALBERT (b, xxl).
- 10k test SNLI, for nouns, verbs, adjectives.
- Manually annotated 100 examples * open-class category to evaluate efficiency of models.
- After exclusion > annotate again.
- 91% plausible examples, but all logic-preserving.

no bart.

models are expected to get 90% variants correctly

Sample & pattern accuracy (PA) scores Sample accuracy (SA) drops for the

Sample accuracy (SA) drops for the variants compared to the seed problems.

~10K		~2.2K	~50K
سر ,)		

			1/		
Model	SNLI _{Test}	ALLSeed	ALL _{Var}	90	MT
BERT-B-S	90.5	89.6	88.9	-4.9	59
BERT-L-S	87.1	87.2	87.4	-4.5	47
RoBERTa-B-S	90.1	90.1	89.2	-4.5	47
DeBERTa-v3-B-S	91.7	92.1	90.7	-4.9	58
DeBERTa-v3-L-S	91.7	91.9	91.0	-4.9	54
BART-B-S	90.6	90.2	89.4	-4.3	57
OPT-1-3b-S	91.0	90.5	89.1	-8.6	58
GPT-2-L-S	90.9	90.9	89.5	-7.7	55
RoBERTa-L-SMFA	91.8	91.4	90.5	-5.0	59
BART-L-SMFA	92.0	91.9	90.5	-6.0	55
Electra-L-SMFA	91.1	90.6	90.0	-6.5	56
XLNet-L-SMFA	91.7	91.4	90.6	-5.4	55
ALBERT-XXL-SMFA	91.9	92.2	91.2	-4.8	57

Error analysis

- Models make almost all mistakes on seed problems they initially got incorrectly
- Variants of 31 problems (31*20) are all predicted incorrectly across models:
 - Only 30% had a correct label assigned
 - In line with Maadan et al., 2024 which showed models' mistakes are in line with annotator variation
- No seed problems that were incorrectly classified, with any of their variants classified correctly

Sample & pattern accuracy (PA) scores Sample accuracy (SA) drops for the

Sample accuracy (SA) drops for th variants compared to the seed problems.

Model	SNLI _{Test}	ALLSeed	ALL _{Var}	90	MT
BERT-B-S	90.5	89.6	88.9	-4.9	59
BERT-L-S	87.1	87.2	87.4	-4.5	47
RoBERTa-B-S	90.1	90.1	89.2	-4.5	47
DeBERTa-v3-B-S	91.7	92.1	90.7	-4.9	58
DeBERTa-v3-L-S	91.7	91.9	91.0	-4.9	54
BART-B-S	90.6	90.2	89.4	-4.3	57
OPT-1-3b-S	91.0	90.5	89.1	-8.6	58
GPT-2-L-S	90.9	90.9	89.5	-7.7	55
RoBERTa-L-SMFA	91.8	91.4	90.5	-5.0	59
BART-L-SMFA	92.0	91.9	90.5	-6.0	55
Electra-L-SMFA	91.1	90.6	90.0	-6.5	56
XLNet-L-SMFA	91.7	91.4	90.6	-5.4	55
ALBERT-XXL-SMFA	91.9	92.2	91.2	-4.8	57

Sample & pattern accuracy (PA) scores Sample accuracy (SA) drops for the

Sample accuracy (SA) drops for the variants compared to the seed problems.

~10K ~2.2K ~50K

SNLI _{Test}	ALLSeed	ALLVar	90	MT
90.5	89.6	88.9	-4.9	59
87.1	87.2	87.4	-4.5	47
90.1	90.1	89.2	-4.5	47
91.7	92.1	90.7	-4.9	58
91.7	91.9	91.0	-4.9	54
90.6	90.2	89.4	-4.3	57
91.0	90.5	89.1	-8.6	58
90.9	90.9	89.5	-7.7	55
91.8	91.4	90.5	-5.0	59
92.0	91.9	90.5	-6.0	55
91.1	90.6	90.0	-6.5	56
91.7	91.4	90.6	-5.4	55
91.9	92.2	91.2	-4.8	57
	90.5 87.1 90.1 91.7 91.7 90.6 91.0 90.9 91.8 92.0 91.1 91.7	90.5 89.6 87.1 87.2 90.1 90.1 91.7 92.1 91.7 91.9 90.6 90.2 91.0 90.5 90.9 90.9 91.8 91.4 92.0 91.9 91.1 90.6 91.7 91.4	87.187.287.490.190.189.291.792.190.791.791.991.090.690.289.491.090.589.190.990.989.591.891.490.592.091.990.591.190.690.091.791.490.6	90.5 89.6 88.9 -4.9 87.1 87.2 87.4 -4.5 90.1 90.1 89.2 -4.5 91.7 92.1 90.7 -4.9 91.7 91.9 91.0 -4.9 90.6 90.2 89.4 -4.3 91.0 90.5 89.1 -8.6 90.9 90.9 89.5 -7.7 91.8 91.4 90.5 -5.0 92.0 91.9 90.5 -6.0 91.1 90.6 90.0 -6.5 91.7 91.4 90.6 -5.4

^{*}models also make more mistakes on original incorrect seed problems

Easiest word class variants

Pattern Accuracy of models on seed problems sharing at least 2 different open-class words.

Comparisons are done on the same seed NLI problems, i.e., removing the difference in difficulty of NLI problems.

Do MLMs favor native NLI models?

If there is **any** favoritism, it can be seen at the extreme th>90%.

However, MLMs *do not favor native* NLI models.

Easiest: same model

Easier: another model and same model, but diff size.

Least easy: multiple models.

FILTERING CRITERIA?

Conclusion

MERGE test:

- Auto generating sample variants with MLMs
- Most friendly generalization test: preserves reasoning & biases

Models cannot maintain the same accuracy even for threshold of 60%.

Replacements with the easiest word classes: Verb, Adj, Noun.

No favoritism between shared LLMs.

Future work will involve more NLI datasets and NLU tasks.

