June 20–23, 2017 MCP 2017

Significant Pattern Mining on Graphs

Mahito Sugiyama (NII, PRESTO)

Literature

- Sugiyama, M., Llinares-López, F., Kasenburg, N., Borgwardt, K.:
 Significant Subgraph Mining with Multiple Testing Correction, SIAM SDM 2015
- Llinares-López, F., Sugiyama, M., Papaxanthos, L.,
 Borgwardt, K.:

 Fast and Memory-Efficient Significant Pattern Mining via Permutation Testing,
 ACM SIGKDD 2015

Subgraph Mining

Find interesting subgraphs from graph databases

Database

Subgraph Mining

Find interesting subgraphs from graph databases

Discriminative Subgraph Mining

 Find discriminative subgraphs from supervised data (e.g. Drug discovery)

Discriminative Subgraph Mining

 Find discriminative subgraphs from supervised data (e.g. Drug discovery)

Challenges and Solutions

- In discriminative subgraph mining:
- 1. How to measure the discriminability of subgraphs?
- 2. How to enumerate all discriminative subgraphs?

Challenges and Solutions

- In discriminative subgraph mining:
- 1. How to measure the discriminability of subgraphs?
- 2. How to enumerate all discriminative subgraphs?
 - Answer to 1:
 - Compute the p-value via statistical hypothesis testing
 - Discriminative subgraph ←⇒
 (Statistically) Significant subgraph
 - Answer to 2:
 - Integrate evaluation of discriminability and enumeration of subgraphs

Computing p-value of Subgraph

• Given positive and negative sets of graphs \mathcal{G} , \mathcal{G}'

$$- |\mathcal{G}| = n, |\mathcal{G}'| = n' (n \le n')$$

 The p-value of each subgraph H is determined by the Fisher's exact test

$$-x = |\{G \in \mathcal{G} \mid H \sqsubseteq G\}|$$

	Occ.	Non-occ.	Total		
\mathscr{G} (Pos.)	X	n – x	n		
\mathscr{G}' (Neg.)) X'	n'-x'	n'		
Total	$X + X'$ $= \sigma$	(n-x) + $(n'-x')$	n + n'		
Support					


		~~~					
		Occ.	Non-occ.	Total			
	Positive	3	1	4			
Pos	Negative	1	3	4			
Neg	Total	4	4	8			
Tot Fisher's exact test: $p$ -value = 0.486							
Fisher's exact test: p-value = 0.429							







#### Minimum Achievable p-value $\Psi(\sigma)$

• Consider the minimum achievable p-value  $\Psi(\sigma)$  of a subgraph H for its support  $\sigma = |\{X \in \mathcal{X} \cup \mathcal{X}' \mid H \subseteq X\}|$ 

$$- \Psi(\sigma) = \min\{p(x) \mid x_{\min} \le x \le x_{\max}\}$$

$$\circ x_{\min} = \max\{o, \sigma - n'\}, x_{\max} = \min\{\sigma, n\}$$

			0.5			$\neg$
Occ.	Non-occ.	Total	' q(X)			Minimum
$\mathscr{G}$ (Pos.) $x$	n-x	n	oility			achievable <i>p</i> -value
$\mathcal{G}'$ (Neg.) $x'$	n'-x'	n'	Probability	_		
Total $x + x' = \sigma$	(n-x) + $(n'-x')$	n + n'	Prc			
	Support	= m	ax{0, f(i	mın	X	$= \min\{f(H), n\}$ $\frac{7}{22}$

 $0.3^{-}$ 

#### Computing $\Psi(\sigma)$

• Consider the minimum achievable p-value  $\Psi(\sigma)$  of a subgraph H for its support  $\sigma = |\{X \in \mathcal{X} \cup \mathcal{X}' \mid H \subseteq X\}|$ 

$$\Psi(\sigma) = \binom{n}{\sigma} / \binom{n+n'}{\sigma}$$

							1
	Occ.	Non-occ.	Total	' q(X)			Minimum
$\mathscr{G}$ (Pos.)	σ	n – σ	n	Probability			achievable <i>p</i> -value
$\mathscr{G}'$ (Neg.)	0	n'	n'	obak '			
Total	σ	(n – σ) + n′	n + n'	Pre			
Most bi	ased	case $(\sigma < n)$	= m	ax{0, <i>f</i> (	X _{min} H) – n'}	X	$= \min\{f(H), n\}$ $8/22$

0.3

#### **Testability**

• Consider the minimum achievable p-value  $\Psi(\sigma)$  of a subgraph H for its support  $\sigma = |\{X \in \mathcal{X} \cup \mathcal{X}' \mid H \subseteq X\}|$ 

$$\Psi(\sigma) = \binom{n}{\sigma} / \binom{n+n'}{\sigma}$$

• Tarone (1990) pointed out (and Terada et al. (2013) revisited):

For a subgraph H with its support  $\sigma$ , if the minimum achievable p-value  $\Psi(\sigma)$  is larger than the significance threshold, this is untestable and we can ignore it

- Significance threshold =  $\alpha$  / [# testable subgraphs]
- Untestable subgraphs can never be significant









#### **How to Find Testable Subgraphs?**



#### **Datasets**

Dataset	Size	#positive	avg.  <i>V</i>	avg.  <i>E</i>	max V	max  <i>E</i>
PTC (MR)	584	181	31.96	32.71	181	181
MUTAG	188	125	17.93	39.59	28	66
D&D	1178	691	284.32	715.66	5748	14267
NCI1	4208	2104	60.12	62.72	462	468
NCI167	80581	9615	39.70	41.05	482	478
NCI220	900	290	46.87	48.52	239	255

#### # Testable Subgraphs



#### **FWER Is Still Too Low!**



#### **Take Dependencies into Account**

- Problem: Dependencies between subgraphs are not considered
- Solution: Permutation test
  - Repeat random permutation of class labels ( $10^3 \sim 10^4$  times)
  - Get the null distribution of p-values
  - The optimal correction factor can be obtained

#### **Westfall-Young Permutation**

- 1. Randomly permute class labels
- 2. Compute *p*-values for all subgraphs using the permuted class labels
- 3. Find the minimum p-value  $p_{min}$  among them
  - Number of false positives  $> o \iff p_{min} < \delta$
- 4. Repeat steps 1 to 3 h times and obtain  $p_{\min}^1, p_{\min}^2, \dots, p_{\min}^h$ 
  - FWER( $\delta$ )  $\approx |\{i : p_{\min}^i \le \delta\}| / h$
- 5.  $\delta^*$  is the  $\alpha$ -quantile of  $p_{\min}^1, p_{\min}^2, \dots, p_{\min}^h$

#### **Westfall-Young Permutation**



#### **Using Support for Estimating FWER**



#### **Estimating FWER**



Estimator of FWER =  $|\{i: p_{\min}^i \le \Psi(\sigma)\}| / h$ 

#### "Westfall-Young light" [Llinares-López et al. KDD'15]

- Precompute h permuted labels;  $\sigma \leftarrow 1$ ;  $p_{\min}^{i} \leftarrow 1$
- Westfall-Young light does the following whenever a miner (like Gaston) finds a new frequent subgraph H:
  - for i ← 1 to h do:
    - ∘  $p^i$  ← the p-value of H for ith permutation
    - $\circ p_{\min}^i \leftarrow \min\{p_{\min}^i, p^i\}$
  - FWER ←  $|\{i: p_{\min}^i \le \Psi(\sigma)\}| / h$  // current FWER estimate
  - while FWER >  $\alpha$  do:
    - $\circ \sigma \leftarrow \sigma + 1$  //  $\sigma$  is the minimum support for mining
    - ∘ FWER  $\leftarrow |\{i : p_{\min}^i \le \Psi(\sigma)\}| / h$
  - Go children of H

#### **FWER in Subgraph Mining**



from [Llinares-López et al. KDD2015]

#### Conclusion

- Significant subgraph mining is introduced
  - Find statistically significant subgraphs while controlling the FWER
  - pattern mining (data mining) + MCP (statistics)
    - Sugiyama, M., Llinares-López, F., Kasenburg, N., Borgwardt, K.: Significant Subgraph Mining with Multiple Testing
       Correction, SIAM SDM 2015
    - Llinares-López, F., Sugiyama, M., Papaxanthos, L., Borgwardt, K.: Fast and Memory-Efficient Significant Pattern Mining via Permutation Testing, ACM SIGKDD 2015
- Ongoing projects:
  - Find significant subgraphs on a single massive graph
  - Find significant subtrees on a tree