Documentation for 507. Perfect Number

Table of Contents

- 1. Problem Statement
- 2. Intuition
- 3. Key Observations
- 4. Approach
- 5. Edge Cases
- 6. Complexity Analysis
 - o Time Complexity
 - Space Complexity
- 7. Alternative Approaches
- 8. Test Cases
- 9. Final Thoughts

1. * Problem Statement

A perfect number is a positive integer equal to the sum of its positive divisors, excluding itself. Given an integer num, return true if it is a perfect number, otherwise return false.

2. 🕊 Intuition

Instead of checking all numbers from 1 to num - 1, we can optimize by checking only up to $\sqrt{\text{num}}$, because divisors come in pairs: if i divides num, then num / i is also a divisor.

3. **Q** Key Observations

- Every number is divisible by 1.
- Divisors always occur in pairs. If i divides num, then num / i also divides num.
- We must exclude num itself when calculating the sum.
- We should avoid adding the square root twice when i == num // i.

4. Approach

- Early return for num <= 1, as these can't be perfect numbers.
- Initialize total = 1 since 1 is a universal divisor.
- Loop i from 2 to sqrt(num):
 - o If num % i == 0, then both i and num //i are divisors.
 - \circ Add both to the sum, making sure not to double-count when i == num // i.
- Compare the final sum to the original number and return the result.

5. K Edge Cases

- num = $1 \rightarrow$ Should return False (no positive divisors other than itself)
- num = 0 or negative \rightarrow Should return False
- num is a known perfect number like 6, 28, 496, etc. \rightarrow Should return True
- num is a large non-perfect number → Should not time out due to the efficient algorithm

6. □ Complexity Analysis

Time Complexity:

• $O(\sqrt{n})$: We only iterate up to the square root of num.

Space Complexity:

• O(1): Constant space used for variables.

7. Alternative Approaches

- Brute Force:
 - O Check all integers from 1 to num 1.
 - o Time Complexity: O(n) too slow for large num.
- Lookup Table:

O Store known perfect numbers (e.g., 6, 28, 496, 8128, 33550336) in a set.

O Time Complexity: O(1)

o Limitation: Not scalable or general.

8. **♥** Test Cases

Input	Output	Explanation
28	True	Divisors: $1 + 2 + 4 + 7 + 14 = 28$
6	True	Divisors: $1 + 2 + 3 = 6$
496	True	Known perfect number
1	False	No proper divisors
10	False	Divisors: $1 + 2 + 5 = 8 \neq 10$
8128	True	Known perfect number

9. Final Thoughts

- The optimized solution is efficient enough for large inputs (num $\leq 10^8$).
- The perfect number problem connects with number theory and prime-related patterns.
- For deeper study, look into Euclid-Euler Theorem, which links perfect numbers with Mersenne primes.