National Institute of Technology, Delhi

Name of the Examination: Re-Mid Sem Exam (Oct 2023)			
Branch	: ECE (B.Tech)	Semester	: 10
Title of Course	Electromagnetic Theory	Course Code	ECL-203

Time: 1 Hour 30 Minutes

Maximum Marks: 25

Note: All questions are compulsory. Figure in right hand margin indicates full marks for the question.

- 1. Given a vector $\mathbf{V} = (3x + Az) \, \hat{\mathbf{a}}_x + (Bx 5z) \, \hat{\mathbf{a}}_y + (4x 2z) \, \hat{\mathbf{a}}_y + (4x 2z) \, \hat{\mathbf{a}}_z$ What will be the values of A, B, C, and D if the vector \mathbf{V} is irrotational and solenoidal?
- A volume charge density is expressed as $\rho_v = 10z^2 x$ [3] $\sin(\pi y)$. Find the total charge inside the volume $(-1 \le x \le 2)$, $(0 \le y \le 1)$, $(3 \le z \le 3.6)$.
- 3. Find E at P(1,5,2) m in free space if a point charge of 6μ C is located at (1,1,1), the uniform line charge with density $\rho_L = 100$ nC/m along x axis..
- 4. $Q_1 = -20$ uC and $Q_2 = 50$ uC are the point charges located at P(-6,4, 6) and R(5, 8, -2) in free space. Find the force exerted on Q_2 by Q_1 in vector form.
- 5. The charge lies on the circular disc $r \le 4m$, z = 0, with [5] density $\rho_s = (10^{-4}/r)$ C/m². Determine **E** at r = 0, z = 3m.
- 6. Derive the expressions for electric field intensity and electric flux density at point P on the z axis at z = h m due to infinite sheet of charge place in xy plane with charge density ρ_s C/m².