Teoria de Cues i Simulació. Grau Interuniversitari d'Estadística i Investigació Operativa. Curs 2012-13. Convocatòria de Juny.

- **P1**. (10 punts) Unes instal·lacions portuàries tenen capacitat per allotjar a 4 vaixells i tenen un sistema únic de descàrrega de mercaderies que pot atendre un sol vaixell a la vegada. Si un vaixell anuncia la seva arribada però no se'l permet atracar per no haverhi disponibilitat, llavors es suposa que es cerca un altre port. El sistema de descàrrega permet servir a un vaixell cada dia en promig, amb un temps exponencialment distribuït; cada dia es reben en promig tres sol·licituds d'entrada al port i aquest número de sol·licituds està distribuït poissonianament. Contesteu les següents qüestions:
 - a) [0,5 p] Quin model permet estudiar el comportament del port? Dibuixeu el diagrama de taxes i calculeu-les.
 - b) [0,5 p] Amb quina probabilitat es rebutja una petició d'entrada al port?
 - c) [2 p] Quin és el temps mig d'espera d'un vaixell fins que s'inicia el procés de descàrrega de les bodegues?
 - d) [4 p] Considereu el temps entre les arribades de vaixells senars.
 - **d1**) [1 p] En un instant determinat se sap que el darrer vaixell que ha arribat a port és el 45é en el que va d'any. Quin és el temps mig que trigarà en arribar el següent vaixell (el 46)? i la seva desviació estàndar?
 - **d2**) [1] En les mateixes condicions de l'apartat d1) anterior quina és la distribució del temps fins l'arribada del vaixell 47? Calculeu la seva mitjana i el seva desviació estàndar.
 - **d3**) [2 p] En un instant determinat, quina és la probabilitat de que el temps fins al següent vaixell senar sigui superior a un dia?
 - e) [3 p] Quina de les dues alternatives següents permetrà millorar ls ingressos del port, sabent que per poder atracar en ell es paguen 12000€:

Alternativa 1: ampliar les instal·lacions de forma que hi càpiguen 8 vaixells.

Alternativa 2: comprar un nou sistema de descàrrega igual al ja existent.

Es demana avaluar les dues alternatives calculant quins són en cada cas els ingressos.

(problemes P2,P3 al revers)

P2 [6,5 punts] El sistema de venda d'entrades d'un local d'una enorme capacitat consta de 6 finestretes de forma que en cadascuna d'elles es forma una cua pròpia. El flux total de compradors és de 228 clients/hora essent les arribades poissonianes. No totes les portes reben la mateixa afluència de clients sinó que els 228 compradors/hora es reparteixen en les següents fraccions: per les finestretes 2, 3, i 5 és de 1/5 mentre que per les finestretes 1 i 6 és de 1/10. Cada finestreta tarda exactament 75 segons en expedir el tíquet d'entrada. Es demana:

- 1) [1,5 p] Models de cues per cada una de les 6 finestretes.
- 2) [1,5 p] Número mig de compradors en cada cua de cada finestreta.
- 3) [1 p] Esperança de la demora que experimentarà en cua un comprador.

Es proposa un nou sistema per a la venda d'entrades consistent en la formació d'una cua única, sent el temps mig d'atenció a un client igual que abans però ara el temps no és constant sinó distribuït seguint una 2-Erlang. Per aquesta nova situació es demana:

- 4) [1 p] Plantejar un model de cues pels clients que esperen ser atesos a les finestretes.
- 5) [1,5 p] Calculeu la demora mitjana que experimentaran aquests clients.

P3 [3,5 punts]

1319	2803	2061	9608	4167	3831	3340	7509	3359	8669
9992	9590	4232	1480	6077	3465	1932	5370	1072	7807
2400	6771	7164	1821	6170	9245	5791	3453	8305	6658
7220	3688	7989	1439	9171	6567	6899	7151	9439	6219
3253	7880	1782	2299	4181	8936	1243	939	7819	0884

(Seleccioneu els n^{os} anteriors per columnes començant amb el 1319 inicial; accepteu que són una mostra de una distribució uniforme entre 0 i 9999.)

Considereu una cua G/G/1 amb política de servei FIFO en la que el procés d'arribades ve donat per temps entre arribades distribuïts segons una llei uniforme entre [10, 20] mentre que els temps de servei pot prendre el valor 15 amb un 20% de probabilitats i 30 amb un 80% de probabilitats. Considereu les següents definicions:

- $x_i = \text{temps de servei del client } i$. (INPUT)
- t_i = instant de sortida del S.E. pel client i
- τ_i^S = instant d'entrada al S.S.
- τ_i = instant d'entrada al sistema d'espera (INPUT)

Utilitzeu les següents relacions entre els diferents instants d'entrada i sortida de la cua per mostrar el número de clients presents en el sistema d'espera en arribar el client i=1,2,3,4,5

Genereu els valors de les variables INPUT pel procediment de generació de números aleatoris que creieu convenient usant els números entre 0000 i 9999 anteriors.

Per
$$i = 1, 2, 3, ...n$$
:

1.
$$t_i = \tau_i^S + x_i$$

2.
$$\tau_i^S = max\{t_{i-1}, \tau_i\}$$

P1 SOLUCIÓ

a) Es tracta d'una M/M/1/4. cua finita: $\lambda = 3 \text{ vaixell/dia}$ $\mu = 1 \text{ vaixell/dia}$

b)
$$P_0 = \frac{1-\rho}{1-\rho^{k+1}} = \frac{1-3}{1-3^5} = \frac{1}{121}$$

$$P_4 = \rho^4 P_0 = 3^4 \frac{1}{121} = \frac{81}{121} \approx 66,94\%$$
 pèrdues

c)
$$L_q = L - (1 - P_0) = 426/121 - (1 - 1/121) = 306/121 \text{ vaixells}$$

$$\overline{\lambda} = \lambda (1 - P_4) = 120/121 \text{ vaixells / dia}$$

$$W_q = \frac{L_q}{\overline{\lambda}} = \frac{306/121}{120/121} = 51/20 \text{ dies}$$

d) D1) El temps residual fins al següent vaixell es distribueix també exponencialment; E[r46]=1/3 dia = σ

D2) r47 ~2-Erlang, r47 = r46 +
$$\tau_{46 \to 47}$$
 \rightarrow E[r47] = 1/3 + 1/3= 2/3 dia σ = 1/2^{1/2} 2/3 = 0.4714 dies.

D3) Cal calcular la densitat del temps de vida residual d'una 2-Erlang i calcular llavors la probabilitat.

$$f_r(t) = \frac{R_\tau}{E[\tau]} = \frac{3}{2}e^{-3t}(1+3t)$$

$$P(r \ge 1) = 1 - \frac{3}{2} \int_0^1 e^{-3t} (1 + 3t) dt = 1 + \frac{3}{2} \left\{ \frac{2}{3} + t \right\} e^{-3t} \Big]_0^1 = 0.5995$$

e) Alternativa 1: es passaria a un model M/M/1/8 Alternativa 2: " " M/M/2/4

En la actualitat els ingressos són $I_0 = c\overline{\lambda_0} = 11.900, 82 \in /dia$, sent $c = 12.000 \in$

En la <u>alternativa 1</u> (model M/M/1/8) el flux d'entrada $\overline{\lambda}_1$ és $P^{(1)}_0 = \frac{1-\rho}{1-\rho^{k+1}} = \frac{1-3}{1-3^9} = \frac{1}{9841}$;

Percentatge de pèrdues: $P^{(1)}_{8} = \rho^{8} P^{(1)}_{0} = 3^{8} \frac{1}{9841} = \frac{6561}{9841} \approx 2/3$

$$\overline{\lambda}_1 = \lambda (1 - P_8^{(1)}) = 3 \times (1 - 6561/9841) = 0,99989 \text{ vaixells / dia}$$

(Observis que encara que hi hagués espai per a k >> 8 , $\overline{\lambda}_1$ seria pràcticament igual.)

 $I_1 = c\overline{\lambda}_1 = 11998,78 / dia$ (amb prou feines hi ha millores malgrat la inversió de construir més molls!!)

En l'<u>alternativa 2</u>: Pèrdues en el model M/M/2/4: $P_4^{(2)} = C_4 P_0^{(2)} = 81/8 \times 8/203 = 81/203 \approx 0,399$

Com que només hi ha un $\sim 40\%$ de pèrdues aquest sistema proporcionarà ingressos més alts:

$$\overline{\lambda}_2 = \lambda(1 - P_4^{(2)}) = 3 \times (1 - 81/203) = 1,8029$$
vaixells / dia (!!)

$$I_2 = c\overline{\lambda}_2 = 21.635, 46 \in /dia$$

P2 Models M/D/1

 $\begin{array}{l} \mu = 48h^{\text{-}1} \\ \lambda i = 228/5 \ h^{\text{--}1}, \ \rho i = 0.95 \quad \text{per } i = 2.3.4.5 \\ \lambda j = 228/10 \ h^{\text{--}1} \ \rho j = 0.475 \ \text{per } j = 1.6 \end{array}$

2)
$$L_{qi} = \frac{\rho^2}{1-\rho} \frac{(1+C_x^2)}{2} = 9.025 \text{ clients}, \quad L_{qj} = \frac{\rho^2}{1-\rho} \frac{(1+C_x^2)}{2} = 0.2148 \text{ clients}$$

3)
$$W_{qi} = \frac{L_{qi}}{\lambda_i} = \frac{5.9.025}{228} = 0.198h$$
, $W_{qj} = \frac{L_{qj}}{\lambda_i} = 0.00942h = 1.87 \text{ min}$

4) M/D/6

S'usa l'aproximació d'Allen Cuneen; $\theta = 228/48 = 4,75$ $\rho = 4,75/6 = 0,791616$

$$\mathbf{C}(\mathbf{s},\theta) = \frac{\frac{\theta^{6}}{6!} \frac{1}{1-\rho}}{\sum_{j=0}^{5} \frac{\theta^{j}}{j!} + \frac{\theta^{6}}{6!} \frac{1}{1-\rho}} = \frac{76.25}{76.25 + 76.54} = 0.4990$$

$$W_q = \mathbf{C}(\mathbf{s}, \theta) \frac{C_x^2 + C_\tau^2}{2\mu(1 - \rho)} = 0.249 \,\text{min}$$

