Clase 8 - Análisis Matemático 1 - LC: Límites I

Eugenia Díaz-Giménez¹

eugenia.diaz@unc.edu.ar

8 de Abril de 2020

Índice

- 1 Límites
 - Definición
- 2 Propiedades
 - Propiedades Teoremas
 - Ejemplos
- 3 Límites laterales
 - Definición
 - Ejemplos

Definición de límites

Cómo se comporta una función cuando nos acercamos a un valor de x?

Figure: $f(x) = x^2 - 1$

Analicemos qué pasa **alrededor** de x = 2

Figure:
$$f(x) = x^2 - 1$$

$$f(x) = x^2 - 1$$

X	у
1	0
1.5	1.25
1.9	2.61
1.95	2.80
1.98	2.92
1.99	2.96
1.999	2.996
1.9999	2.9996

$$f(x) = x^2 - 1$$

X	у
3	8
2.5	5.25
2.1	3.41
2.05	3.20
2.02	3.08
2.01	3.04
2.001	3.004
2.0001	3.0004

Figure: $f(x) = x^2 - 1$

Figure:
$$f(x) = x^2 - 1$$

$$f(x) = x^2 - 1$$

	у
1.98	2.92
1.99	2.96
1.999	2.996
1.9999	2.9996
2	
2.0001	3.0004
2.001	3.004
2.01	3.04
2.02	3.08

$$x \rightarrow 2 \Rightarrow f \rightarrow 3$$

En este caso, además:

$$f(2) = 3$$

Sea
$$f(x) = \frac{x^2 - 1}{x - 1}$$
, analicemos qué pasa **alrededor** de $x = 1$

$$f(x) = \frac{x^2 - 1}{x - 1}$$

$$Dom f = \mathbb{R} - \{1\}$$

Х	у
0.5	1.5
0.9	1.9
0.99	1.99
0.999	1.999
1	#
1.001	2.001
1.01	2.01
1.1	2.1
1.5	2.5

$$x \rightarrow 1 \Rightarrow f \rightarrow 2$$

En este caso, además:

∄ *f*(1)

Sea
$$f(x) = sen\left(\frac{1}{x}\right)$$
, analicemos qué pasa **alrededor** de $x = 0$

Х	у
$\frac{1}{10\pi}$	0
$ \begin{array}{r} \frac{10\pi}{10\pi} \\ \frac{2}{23\pi} \end{array} $	-1
	0
$ \begin{array}{r} \frac{1}{30\pi} \\ \frac{2}{41\pi} \end{array} $	1
$\frac{1}{100\pi}$	0

$$x \rightarrow 0 \Rightarrow f \rightarrow ???$$

En este caso, además:

Definición

Si al acercarnos a un valor de x = a, la función se acerca a un valor L, diremos que el límite de f(x) es L cuando x tiende a a

Notación: $f(x) \rightarrow L$ cuando $x \rightarrow a$, o

$$\lim_{x\to a} f(x) = L$$
Simple have a fonce
$$\lim_{x\to a} cuandoppero$$
X-ba

Pero... cuán cerca es "cerca"?

Sea f(x) = x - 1, y tomemos a = 2.

Límites

Si queremos que f(x) esté a menos de 0.1 de L=1, llamando $0.1=\epsilon$, podemos escribirlos en términos de distancia:

$$|f(x) - L| < \epsilon$$

Cuáles son los valores de x para que eso se cumpla?

Sea f(x) = x - 1, y tomemos a = 2.

Si queremos que f(x) esté a menos de 0.1 de L=1, llamando $0.1=\epsilon$, podemos escribirlos en términos de distancia:

$$|f(x) - L| < \epsilon$$

Cuáles son los valores de x para que eso se cumpla?

$$0<|x-a|<\delta$$

Sea f(x) = x - 1, y tomemos a = 2.

Si queremos que f(x) esté a menos de 0.1 de L=1, llamando $0.1=\epsilon$, podemos escribirlos en términos de distancia:

$$|f(x)-L|<\epsilon \quad (1)$$

Cuáles son los valores de x para que eso se cumpla?

$$0 < |x - a| < \delta$$

Cuánto es delta?

Límites 0000000000

$$|f(x)-L|=|(x-1)-1|=|x-2|$$
(1) $<\epsilon$

Tomando $\delta = \epsilon = 0.1$ me aseguro que la función esté a menos de 0.1 de L = 1, es decir: cuando 0 < |x-2| < 0.1 se cumple que |f(x)-1| < 0.1

$$0 < |x - 2|$$
 nos dice que $x \neq 2$

$$|x-2| < 0.1 \implies -0.1 < x-2 < 0.1 \implies -0.1 + 2 < x < 0.1 + 2$$

$$\Rightarrow 1.9 < x < 2.1 \implies x \in (1.9, 2.1) - \{2\}$$

200 de

Sea f una función definida en un intervalo abierto I que contiene al punto a, excepto quizás en x = a, Decimos que: el límite para x que tiende a a de f(x) es el número Lsi para todo número $\epsilon > 0$, existe un correspondiente $\delta > 0$ tal que si la distancia entre x y a es menor que δ , entonces la distancia entre f(x) y L es menor que ϵ

$$\lim_{x\to a} f(x) = L$$

si

$$\forall \epsilon > 0, \exists \delta > 0 / \sin 0 < |x - a| < \delta \implies |f(x) - L| < \epsilon$$

Propiedades

Proposiciones y teoremas

Si
$$f(x) = c$$
, entonces $\lim_{x \to c} f(x) = c$

2 Si
$$f(x) = cx$$
, entonces $\lim_{x \to a} f(x) = ca$

Si
$$\lim_{x\to a} f(x) = L$$
 y $\lim_{x\to a} g(x) = M$, entonces:

$$\lim_{x\to a} \lim_{x\to a} (f+g)(x) = \lim_{x\to a} f(x) + \lim_{x\to a} g(x) = L + M$$

$$\lim_{x \to a} (f.g)(x) = L.M$$

Si
$$M \neq 0$$
, $\lim_{x \to a} \left(\frac{f}{g}\right)(x) = \frac{L}{M}$

d Si
$$n \in \mathbb{N}$$
, $\lim_{x \to a} \sqrt[n]{f(x)} = \sqrt[n]{L}$ (si n es par, L debe ser positivo)

$$\exists$$
 Si $f(x) \leq g(x)$, entonces $\lim_{x \to a} f(x) \leq \lim_{x \to a} g(x)$

Si
$$f(x) \le g(x) \le h(x)$$
 (quizás excepto en a), y además $\lim_{x \to a} f(x) = \lim_{x \to a} h(x) = L$, entonces $\lim_{x \to a} g(x) = L$ (Teorema del sandwich)

Aplicaciones y Ejemplos

■ Si p(x) es un polinomio, usando (2) y (3.b): $\lim_{x\to a} p(x) = p(a)$

Ejemplo: $\lim_{x \to 1} x^3 - 4x + 1 = -2$

■ Si $f(x) = \frac{p(x)}{q(x)}$ con p y q polinomios, y si $q(a) \neq 0$, usando (2), (3.b) y (3.c):

$$\lim_{x \to a} f(x) = \frac{p(a)}{q(a)}$$

Ejemplo:
$$\lim_{x\to 0} \frac{x^2-1}{x-3} = \frac{1}{3}$$

■ Si $f(x) = \sqrt[n]{p(x)}$, usando (2), (3.b) y (3.d): $\lim_{x \to a} f(x) = \sqrt[n]{p(a)}$

Ejemplo:
$$\lim_{x \to 1} \sqrt[3]{x^3 - 4x + 1} = \sqrt[3]{-2}$$

Otros ejemplos

Calcular

$$\lim_{x\to 3}\frac{x^2-9}{x-3}$$

ATENCIÓN: No puedo aplicar directamente la propiedad del cociente (3.c) ya que el denominador se anula $\lim_{x\to 0} (x-3) = 0$

$$\frac{x^2 - 9}{x - 3} = \frac{(x - 3)(x + 3)}{x - 3} = x + 3 \implies \lim_{x \to 3} \frac{x^2 - 9}{x - 3} = \lim_{x \to 3} (x + 3) = 6$$

Calcular

$$\lim_{x \to 0} \frac{2 - \sqrt{4 - x}}{x}$$

$$\frac{2 - \sqrt{4 - x}}{x} = \frac{(2 - \sqrt{4 - x})}{x} \frac{(2 + \sqrt{4 - x})}{(2 + \sqrt{4 - x})} = \frac{4 - (4 - x)}{x(2 + \sqrt{4 - x})} = \frac{x}{x(2 + \sqrt{4 - x})}$$

$$\lim_{x \to 0} \frac{2 - \sqrt{4 - x}}{x} = \lim_{x \to 0} \frac{1}{(2 + \sqrt{4 - x})} = \frac{1}{4}$$

Volvamos a tomar $f(x) = \frac{x^2 - 1}{x - 1}$, y analicemos qué pasa **alrededor** de x = 1

$$\lim_{x \to 1} \frac{x^2 - 1}{x - 1} = \lim_{x \to 1} \frac{(x + 1)(x - 1)}{(x - 1)} = \lim_{x \to 1} x + 1 = 2$$

	у	X
<i>x</i> < 1	1.5	0.5
	1.9	0.9
	1.99	0.99
	1.999	0.999
	∄	1
x > 1	2.5	1.5
	2.1	1.1
	2.01	1.01
	2.001	1.001

Límites laterales:

$$\lim_{x \to 1^{-}} f(x) = 2 \quad \lim_{x \to 1^{+}} f(x) = 2$$

Límites laterales

Límite por derecha

Decimos que L es el límite de f(x) cuando x tiende a a por la derecha si los valores de f(x) se aproximan a L cuando nos acercamos a x=a por valores más grandes (pero cercanos) que a: $L=\lim_{x\to a^+} f(x)$

Siemtre Socar

Límite por izquierda

Decimos que M es el límite de f(x) cuando x tiende a a por la izquierda si los valores de f(x) se aproximan a M cuando nos acercamos a x=a por valores más chicos (pero cercanos) que a: $M=\lim_{x\to a} f(x)$

Siempre socor

Teorema

Sea una función definida en un intervalo abierto que contiene a a (excepto quizás en x=a), entonces: el $\lim_{x\to a} f(x)$ existe y vale L, sí y sólo sí existen ambos límites laterales y son iguales:

$$\lim_{x \to a} f(x) = L \Leftrightarrow \lim_{x \to a^{-}} f(x) = L = \lim_{x \to a^{+}} f(x)$$

$$\lim_{x\to 1} f(x) = 2$$

$$\underset{x\to 1}{\lim} r(x) = x$$

$$f(x) = \begin{cases} x+1 & si & x < 1\\ 3 & si & x = 1\\ -(x-2)^2 + 3 & si & x > 1 \end{cases}$$

Calcular: $\lim_{x\to 1^-} f(x)$, $\lim_{x\to 1^+} f(x)$ $\lim_{x\to 1} f(x)$

$$\lim_{x\to 1^-} f(x)$$

$$x \rightarrow 1^- \Rightarrow x < 1$$

$$\lim_{x \to 1^{-}} f(x) = \lim_{x \to 1^{-}} x + 1 = 2$$

$$\lim_{x\to 1^+} f(x)$$

$$x \rightarrow 1^+ \Rightarrow x > 1$$

$$\lim_{x \to 1^+} f(x) = \lim_{x \to 1^+} -(x-2)^2 + 3 = 2$$

ya que los límites laterales existen y son iguales:

$$\lim_{x\to 1} f(x) = 2$$

$$f(x) = \begin{cases} |x| & \text{si} & x \le 0\\ 9 - (x - 3)^2 & \text{si} & 0 < x < 4\\ -1 & \text{si} & x \ge 4 \end{cases}$$

Calcular:
$$\lim_{x \to 4^-} f(x)$$
, $\lim_{x \to 4^+} f(x)$, $\lim_{x \to 4} f(x)$ y $\lim_{x \to 0^-} f(x)$, $\lim_{x \to 0^+} f(x)$, $\lim_{x \to 0} f(x)$

$$x \to 4^- \Rightarrow x < 4$$

$$\lim_{x \to 4^{-}} f(x) = \lim_{x \to 4^{-}} 9 - (x - 3)^{2} = 8$$

$$\lim_{x\to 4^+} f(x)$$

$$x \to 4^+ \Rightarrow x > 4$$

$$\lim_{x \to 4^+} f(x) = \lim_{x \to 4^+} -1 = -1$$

ya que los límites laterales son distintos:

$$\lim_{x\to 4} f(x) = \nexists$$

FIN