Generiranje naselja pomoću LSTM mreže

Čogelja, Granić, Lubina, Jurković, Juvančić, Logarušić 22. listopada 2024.

prijedlog

(I.) Ishod projekta

Ishod projekta je LSTM rekurzivna neuronska mreža na razini znakova koja generira realistična imena hrvatskih naselja.

Mreža radi sa vektorima koji predstavljaju slova hrvatske abecede proširene specijalnim znakovima $\Sigma = \{\text{hrv. abeceda}\} \cup \{\langle start \rangle, " \setminus 0"\}$. Ulaz mreže je one-hot vektor $\mathbf{x}^{(t)}$ dimezije $|\Sigma| = 32 + 2$.

$$\mathbf{x}_{i}^{(t)} = \begin{cases} 1, & \text{ako } i = j \\ 0, & \text{inače} \end{cases}$$
 (1)

Izlaz dobiven na kraju pojedinog vremenskog koraka t je vektor vjerojatnosti pojave pojednog znaka abecende.

$$\hat{\mathbf{y}}^{(t)} = \begin{bmatrix} p(c_0) \\ p(c_1|c_0) \\ \vdots \\ p(c_{|\Sigma|-1}|\bigcap_{i=0}^{|\Sigma|-2} c_i) \end{bmatrix} \qquad \text{Gdje} \quad c \in \Sigma$$
 (2)

Vjerojatnosti su dobivene softmax funkcijom parametriziranom hiperparametrom temperature $\tau.$

Na temelju tih vjerojatnosti se uzorkuje konačni izlazni vektor $\mathbf{y}^{(t)}$, odnosno t-ti znak u imenu naselja.

$$\mathbf{y}^{(t)} \sim \hat{\mathbf{y}}^{(t)} = \sigma_{\tau}(f(\mathbf{x}^{(t)}; \boldsymbol{\theta}))$$
 (3)

 $f(\mathbf{x}; \pmb{\theta})$ predstavlja ukupno djelovanje ćelija modela nad njenim ulazom parametrizirano hiperparametrima modela $\pmb{\theta} = \begin{bmatrix} |\mathbf{a}| & \mu & \tau \end{bmatrix}$ (opisani u poglavlju (II.))

Temperaturno uzorkovanje je izabrano, jer omogućava eksperimentiranje i generiranje zanimljivih toponima.

Izlaz mreže je niz znakova $\{\mathbf{y}^{(t)}\}\Big|_{t=0}^{T-1}$, odnosno ime naselja.

Željena točnost modela η je kada $\lim_{\tau \to 0} \eta = 0.5$

(II.) Tema i kratki opis

Fokus projekta je treniranje i razvijanje neuronske mreže za generiranje realističnih imena hrvatskih naselja. Korištenjem LSTM mreže, koja je prilagođena za analizu sekvencijskih podataka, cilj je razviti model sposoban za učenje jezičnih obrazaca i struktura iz postojećih imena naselja. Svrha mreže je generiranje novih imena temeljenih na tim naučenim obrascima, pri čemu se zadržavaju jezične i strukturne zakonitosti specifične za taj kontekst. U planu je karakterizirati mrežu sa sljedećim hiperparametrima:

- 1. Dimenzije skrivenog stanja: |a|
- 2. Stopa učenja: μ
- 3. Temperatura: τ
- 4. Broj LSTM ćelija

LSTM ćelija i mreža će biti implementirane u radnom okviru pyTorch.

Dizajn mreže i podešavanje hiperparametara se odvija paralelno sa implementacijom mreže u radnom okviru Keras.

Točan izgled ćelije i dizajn mreže će biti određeni naknadno.

BPTT će biti korišten kao algoritam učenja.

Funkcija pogreške će biti određena naknadno.

(III.) Zadatci na projektu i raspodjela posla

Ostvarenje projekta podrazumijeva slijedeće zadatke:

Zadatak	ETA	Developeri

	Uvod	5h	
Dokumentacija	Opis problema	3h	
	Opis eksperimentalnih	1d	Grupa
	rezultata		
	Diskusija i usporedba re-	1d	
	zultata		
	Lektoriranje	1d	
	Zaključak	4h	
Administrativni poslovi	Održavanje GitHub-a		Lubina, Jurković
	Sastanci		Grupa
Izrada prezentacije		3d	Jurković
	Obrada ulaznog skupa	1w	Granić, Logarušić,
Implementacija	podataka		Lubina
	Implementacija modela	1w	Jurković, Čogelja,
			Logarušić
	Dizajn modela u kerasu	1w	Lubina, Juvančić,
			Granić
Treniranje	Treniranje modela	2d	Jurković, Čogelja,
			Logarušić
	Ručna validacija modela	1w	Jurković, Granić,
Validacija			Logarušić
	Podešavanje hiperpara-	1w	Lubina, Juvančić,
	metara u kerasu		Granić

Tablica 1: Zadaci i estimacije

(IV.) Vremenski plan rada

U priloženoj tablici prikazan je okviran plan rada koji obuhvaća ključne datume i zadatke koji su planirani u sklopu projekta. Rokovi su estimirani uzimajući u obzir praznike i ispitne rokove (MI i ZI) kako bi se mogao predvidjeti realan tok aktivnosti. Rokovi su isto tako fleksibilni zbog akademskih obaveza članova grupe što osigurava aktivno sudjelovanje svih članova. Mogući iterativni postupci promjene dizajna mreže i/ili ćelije te ispravljanje grešaka nisu bili mogući za opisati, ali su uzeti u obzir kao i, ispravljanje raznih grešaka.

Rok	30.10.	15.12.	6.1.	15.1.
	1. Početak rada	1. Obrada ulaznog	1. Validacija modela	1. Pisanje dokumen-
		skupa podataka		tacije
Zadaci		2. Dizajn modela u	2. Podešavanje hi-	2. Priprema prezen-
		kerasu	perparametara u ke-	tacije
			rasu	
		3. Implemen-		
		tacija modela u		
		TensorFlow-u		

4. Treniranje mo-	
dela	

Tablica 2: Planirani tok rada na projektu