## → AirBnb Price Prediction

```
#Importing Necessary Library
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
from wordcloud import WordCloud
from sklearn.preprocessing import OneHotEncoder
import plotly.express as px
from sklearn.model_selection import StratifiedKFold
from statsmodels.formula.api import ols
from statsmodels.stats.anova import anova_lm
import array
import warnings
from pylab import rcParams
from scipy.stats import f_oneway
from scipy.stats import ttest_ind
import statsmodels.api as sm
from sklearn.metrics import mean_squared_error
from sklearn.preprocessing import StandardScaler
from sklearn.linear_model import LinearRegression
from sklearn.linear_model import LogisticRegression
from sklearn.neighbors import KNeighborsClassifier
from sklearn.metrics import classification_report
from sklearn import tree
from sklearn.linear_model import LinearRegression
from sklearn.model_selection import train_test_split
from sklearn.metrics import auc
from sklearn.metrics import plot_roc_curve
from sklearn.naive_bayes import GaussianNB
from sklearn.metrics import roc_auc_score
from sklearn.metrics import roc_curve, auc, roc_auc_score
from sklearn.metrics import confusion_matrix
from sklearn.metrics import r2_score
from sklearn import metrics
from sklearn.pipeline import Pipeline
#Mount the Google drive
from google.colab import drive
drive.mount('/content/drive')
     Mounted at /content/drive
#Reading the dataset
df = pd.read_csv("/content/drive/MyDrive/Emperical/AirBNB_2019.csv")
df.head()
```

id usma bast id bast mama maishbanmhaad soono maishbanmhaad latituda lansituda maam tuma misa minimum mishta

#Understanding data types
df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 48895 entries, 0 to 48894
Data columns (total 16 columns):

| pata<br># | Columns (total 16 columns):               | Non-Null Count  | Dtype   |  |  |  |  |  |
|-----------|-------------------------------------------|-----------------|---------|--|--|--|--|--|
| 77        | COTUMIT                                   | NOII-NUII COUIT | Dtype   |  |  |  |  |  |
|           |                                           |                 |         |  |  |  |  |  |
| 0         | id                                        | 48895 non-null  | int64   |  |  |  |  |  |
| 1         | name                                      | 48879 non-null  | object  |  |  |  |  |  |
| 2         | host_id                                   | 48895 non-null  | int64   |  |  |  |  |  |
| 3         | host_name                                 | 48874 non-null  | object  |  |  |  |  |  |
| 4         | neighbourhood_group                       | 48895 non-null  | object  |  |  |  |  |  |
| 5         | neighbourhood                             | 48895 non-null  | object  |  |  |  |  |  |
| 6         | latitude                                  | 48895 non-null  | float64 |  |  |  |  |  |
| 7         | longitude                                 | 48895 non-null  | float64 |  |  |  |  |  |
| 8         | room_type                                 | 48895 non-null  | object  |  |  |  |  |  |
| 9         | price                                     | 48895 non-null  | int64   |  |  |  |  |  |
| 10        | minimum_nights                            | 48895 non-null  | int64   |  |  |  |  |  |
| 11        | number_of_reviews                         | 48895 non-null  | int64   |  |  |  |  |  |
| 12        | last_review                               | 38843 non-null  | object  |  |  |  |  |  |
| 13        | reviews_per_month                         | 38843 non-null  | float64 |  |  |  |  |  |
| 14        | <pre>calculated_host_listings_count</pre> | 48895 non-null  | int64   |  |  |  |  |  |
| 15        | availability_365                          | 48895 non-null  | int64   |  |  |  |  |  |
| dtyp      | dtypes: float64(3), int64(7), object(6)   |                 |         |  |  |  |  |  |
| memo      | ry usage: 6.0+ MB                         |                 |         |  |  |  |  |  |
|           |                                           |                 |         |  |  |  |  |  |

#Statistical Description of dataset
df.describe()

|       | id           | host_id      | latitude     | longitude    | price        | minimum_nights | number_of_reviews | reviews_per_month | calcula     |
|-------|--------------|--------------|--------------|--------------|--------------|----------------|-------------------|-------------------|-------------|
| count | 4.889500e+04 | 4.889500e+04 | 48895.000000 | 48895.000000 | 48895.000000 | 48895.000000   | 48895.000000      | 38843.000000      |             |
| mean  | 1.901714e+07 | 6.762001e+07 | 40.728949    | -73.952170   | 152.720687   | 7.029962       | 23.274466         | 1.373221          |             |
| std   | 1.098311e+07 | 7.861097e+07 | 0.054530     | 0.046157     | 240.154170   | 20.510550      | 44.550582         | 1.680442          |             |
| min   | 2.539000e+03 | 2.438000e+03 | 40.499790    | -74.244420   | 0.000000     | 1.000000       | 0.000000          | 0.010000          |             |
| 25%   | 9.471945e+06 | 7.822033e+06 | 40.690100    | -73.983070   | 69.000000    | 1.000000       | 1.000000          | 0.190000          |             |
| 50%   | 1.967728e+07 | 3.079382e+07 | 40.723070    | -73.955680   | 106.000000   | 3.000000       | 5.000000          | 0.720000          |             |
| 75%   | 2.915218e+07 | 1.074344e+08 | 40.763115    | -73.936275   | 175.000000   | 5.000000       | 24.000000         | 2.020000          |             |
| max   | 3.648724e+07 | 2.743213e+08 | 40.913060    | -73.712990   | 10000.000000 | 1250.000000    | 629.000000        | 58.500000         | <b>&gt;</b> |

#Checking the Missing/Null Values
df.isnull().sum()

| id                                        | 0     |
|-------------------------------------------|-------|
| name                                      | 16    |
| host_id                                   | 0     |
| host_name                                 | 21    |
| neighbourhood_group                       | 0     |
| neighbourhood                             | 0     |
| latitude                                  | 0     |
| longitude                                 | 0     |
| room_type                                 | 0     |
| price                                     | 0     |
| minimum_nights                            | 0     |
| number_of_reviews                         | 0     |
| last_review                               | 10052 |
| reviews_per_month                         | 10052 |
| <pre>calculated_host_listings_count</pre> | 0     |
| availability_365<br>dtype: int64          | 0     |
|                                           |       |

#Checking the Unique value of dataset
df.nunique()

| id                  | 48895 |
|---------------------|-------|
| name                | 47905 |
| host_id             | 37457 |
| host_name           | 11452 |
| neighbourhood_group | 5     |
| neighbourhood       | 221   |
| latitude            | 19048 |
| longitude           | 14718 |

```
3
room_type
price
                                    674
                                    109
minimum_nights
number_of_reviews
                                    394
                                   1764
last_review
reviews_per_month
                                    937
calculated_host_listings_count
                                     47
availability_365
                                    366
dtype: int64
```

#Checking the duplicate value in dataset
df.duplicated().sum()

0

# ▼ Exploratory Data Analysis

<matplotlib.axes.\_subplots.AxesSubplot at 0x7f5bc1650fd0>



```
#EDA for Price
df.price.value_counts().iloc[:10]
```

| 100 | 2051 |
|-----|------|
| 150 | 2047 |
| 50  | 1534 |
| 60  | 1458 |
| 200 | 1401 |
| 75  | 1370 |
| 80  | 1272 |
| 65  | 1190 |
| 70  | 1170 |

120 1130

Name: price, dtype: int64

#Visualization for price
df.price.value\_counts().iloc[:10].plot(figsize=(8,8), kind = 'bar')

<matplotlib.axes.\_subplots.AxesSubplot at 0x7f5bc159c820>



##Statistical Description of price
df.price.describe()

48895.000000 count mean 152.720687 240.154170 std min 0.000000 25% 69.000000 50% 106.000000 175.000000 75% max 10000.000000

Name: price, dtype: float64

#Checking the dataset with high price
df[df['price'] ==10000]

|       | id       | name                                                         | host_id  | host_name | neighbourhood_group | neighbourhood      | latitude | longitude | room_type          | price | minimum_night |
|-------|----------|--------------------------------------------------------------|----------|-----------|---------------------|--------------------|----------|-----------|--------------------|-------|---------------|
| 9151  | 7003697  | Furnished<br>room in<br>Astoria<br>apartment                 | 20582832 | Kathrine  | Queens              | Astoria            | 40.76810 | -73.91651 | Private<br>room    | 10000 | 10            |
| 17692 | 13894339 | Luxury 1<br>bedroom<br>apt<br>stunning<br>Manhattan<br>views | 5143901  | Erin      | Brooklyn            | Greenpoint         | 40.73260 | -73.95739 | Entire<br>home/apt | 10000 |               |
| 29238 | 22436899 | 1-BR<br>Lincoln<br>Center                                    | 72390391 | Jelena    | Manhattan           | Upper West<br>Side | 40.77213 | -73.98665 | Entire<br>home/apt | 10000 | \$            |
| 7.    |          |                                                              |          |           |                     |                    |          |           |                    |       |               |

# EDA for neighbourhood\_group

df['neighbourhood\_group'].value\_counts()

Manhattan 21661 Brooklyn 20104 Queens 5666 Bronx 1091

```
Staten Island 373
Name: neighbourhood_group, dtype: int64
```

```
#Visualization for neighbourhood_group
fig = plt.figure(figsize=(8,8), dpi=80)
df['neighbourhood_group'].value_counts().plot(kind='pie', autopct='%1.0f%%', startangle=360, fontsize=13)
```

<matplotlib.axes.\_subplots.AxesSubplot at 0x7f5bc10dd310>



```
#EDA for neighbourhood
df['neighbourhood'].value_counts().iloc[:5]
```

Williamsburg 3920
Bedford-Stuyvesant 3714
Harlem 2658
Bushwick 2465
Upper West Side 1971
Name: neighbourhood, dtype: int64

#Checking the unique value of neighbourhood
df['neighbourhood'].unique()

```
array(['Kensington', 'Midtown', 'Harlem', 'Clinton Hill', 'East Harlem',
    'Murray Hill', 'Bedford-Stuyvesant', "Hell's Kitchen",
    'Upper West Side', 'Chinatown', 'South Slope', 'West Village',
    'Williamsburg', 'Fort Greene', 'Chelsea', 'Crown Heights',
    'Park Slope', 'Windsor Terrace', 'Inwood', 'East Village',
    'Greenpoint', 'Bushwick', 'Flatbush', 'Lower East Side',
    'Prospect-Lefferts Gardens', 'Long Island City', 'Kips Bay',
    'SoHo', 'Upper East Side', 'Prospect Heights',
    'Washington Heights', 'Woodside', 'Brooklyn Heights',
    'Carroll Gardens', 'Gowanus', 'Flatlands', 'Cobble Hill',
    'Flushing', 'Boerum Hill', 'Sunnyside', 'DUMBO', 'St. George',
    'Highbridge', 'Financial District', 'Ridgewood',
    'Morningside Heights', 'Jamaica', 'Middle Village', 'NoHo',
    'Ditmars Steinway', 'Flatiron District', 'Roosevelt Island',
    'Greenwich Village', 'Little Italy', 'East Flatbush',
    'Tompkinsville', 'Astoria', 'Clason Point', 'Eastchester',
    'Kingsbridge', 'Two Bridges', 'Queens Village', 'Rockaway Beach',
    'Forest Hills', 'Nolita', 'Woodlawn', 'University Heights',
    'Gravesend', 'Gramercy', 'Allerton', 'East New York',
    'Theater District', 'Concourse Village', 'Sheepshead Bay',
    'Emerson Hill', 'Fort Hamilton', 'Bensonhurst', 'Tribeca',
    'Shore Acres', 'Sunset Park', 'Concourse', 'Elmhurst',
    'Brighton Beach', 'Jackson Heights', 'Cypress Hills', 'St. Albans',
    'Arrochar', 'Rego Park', 'Wakefield', 'Clifton', 'Bay Ridge',
    'Graniteville', 'Spuyten Duyvil', 'Stapleton', 'Briarwood',
    'Ozone Park', 'Columbia St', 'Vinegar Hill', 'Mott Haven',
    'Longwood', 'Canarsie', 'Battery Park City', 'Civic Center',
    'East Elmhurst', 'New Springville', 'Morris Heights', 'Arverne',
    'Cambria Heights', 'Tottenville', 'Mariners Harbor', 'Concord',
    'Borough Park', 'Bayside', 'Downtown Brooklyn', 'Port Morris',
```

```
'Fieldston', 'Kew Gardens', 'Midwood', 'College Point', 'Mount Eden', 'City Island', 'Glendale', 'Port Richmond', 'Red Hook', 'Richmond Hill', 'Bellerose', 'Maspeth',
                  'Williamsbridge', 'Soundview', 'Woodhaven', 'Woodrow'
                  'Co-op City', 'Stuyvesant Town', 'Parkchester', 'North Riverdale',
                  'Dyker Heights', 'Bronxdale', 'Sea Gate', 'Riverdale',
                  'Kew Gardens Hills', 'Bay Terrace', 'Norwood', 'Claremont Village', 'Whitestone', 'Fordham', 'Bayswater', 'Navy Yard', 'Brownsville', 'Eltingville', 'Fresh Meadows', 'Mount Hope', 'Lighthouse Hill',
                  'Springfield Gardens', 'Howard Beach', 'Belle Harbor',
                  'Jamaica Estates', 'Van Nest', 'Morris Park', 'West Brighton', 'Far Rockaway', 'South Ozone Park', 'Tremont', 'Corona', 'Great Kills', 'Manhattan Beach', 'Marble Hill', 'Dongan Hills',
                  'Castleton Corners', 'East Morrisania', 'Hunts Point', 'Neponsit',
                  'Pelham Bay', 'Randall Manor', 'Throgs Neck', 'Todt Hill', 
'West Farms', 'Silver Lake', 'Morrisania', 'Laurelton', 
'Grymes Hill', 'Holliswood', 'Pelham Gardens', 'Belmont',
                  'Rosedale', 'Édgemere', 'New Brighton', 'Midland Beach', 'Baychester', 'Melrose', 'Bergen Beach', 'Richmondtown',
                  'Howland Hook', 'Schuylerville', 'Coney Island', 'New Dorp Beach', 
"Prince's Bay", 'South Beach', 'Bath Beach', 'Jamaica Hills',
                  'Oakwood', 'Castle Hill', 'Hollis', 'Douglaston', 'Huguenot', 'Olinville', 'Edenwald', 'Grant City', 'Westerleigh',
                  'Bay Terrace, Staten Island', 'Westchester Square', 'Little Neck', 'Fort Wadsworth', 'Rosebank', 'Unionport', 'Mill Basin', 'Arden Heights', "Bull's Head", 'New Dorp', 'Rossville', 'Breezy Point', 'Willowbrook'], dtype=object)
#Word Cloud for neighbourhood
plt.subplots(figsize=(10,10))
wordcloud = WordCloud(background_color='white', width=1920,height=1080).generate(" ".join(df.neighbourhood))
plt.imshow(wordcloud)
plt.axis('off')
plt.show()
                                                       Kitchenwest
                                                        Sunset Park
                                         SlopeUpper
                 OGreenpoint

Williamsburg Williams

Williamsburg Williams
                                                                     Flushing
                                                                               Clinton Hill
                                                                       rown
#EDA for reviews_per_month'
df[df['reviews_per_month'] > 1].reviews_per_month.value_counts().sum()
       15908
#Getting the reviews_per_month which have greater than 1
df[df['reviews per month'] > 1]['reviews per month'].value counts().iloc[:5]
       2.00
                   406
       3.00
                   222
       4.00
                   130
       1.15
                    90
                    88
       1.05
       Name: reviews_per_month, dtype: int64
#Getting the maximum value for reviews_per_month
df['reviews_per_month'].max()
       58.5
#checking the maximum reviews_per_month in dataset
df[df['reviews_per_month'] == 58.5]
```



#Correlation Between Continuous Variables
corr = df.corr()
plt.figure(figsize=(15,8))
sns.heatmap(corr, annot=True)

<matplotlib.axes.\_subplots.AxesSubplot at 0x7f5bc1632460>



#Scatterplot for latitude with neighbourhood\_group
plt.figure(figsize=(10,6))
sns.scatterplot(df.longitude,df.latitude,hue=df.neighbourhood\_group)

/usr/local/lib/python3.8/dist-packages/seaborn/\_decorators.py:36: FutureWarning: Pass the following variables as keyword args: x, y. Frc warnings.warn(

<matplotlib.axes.\_subplots.AxesSubplot at 0x7f5bc0528580>

```
#Visualization for Density of price for neighbourhood_group
```

v2=sns.violinplot(data=df[df.price < 200], x='neighbourhood\_group', y='price')
v2.set\_title('Density and distribution of prices for each neighberhood\_group')

 ${\tt Text(0.5,\ 1.0,\ 'Density\ and\ distribution\ of\ prices\ for\ each\ neighberhood\_group')}$ 



#Count for the neighbourhood
df['neighbourhood'].value\_counts().iloc[:10]

| 3920   |                                                                      |
|--------|----------------------------------------------------------------------|
| 3714   |                                                                      |
| 2658   |                                                                      |
| 2465   |                                                                      |
| 1971   |                                                                      |
| 1958   |                                                                      |
| 1853   |                                                                      |
| 1798   |                                                                      |
| 1564   |                                                                      |
| 1545   |                                                                      |
| dtype: | int64                                                                |
|        | 3714<br>2658<br>2465<br>1971<br>1958<br>1853<br>1798<br>1564<br>1545 |

#Visualization for subplot of Neighbourhood

Ngbr =df.loc[df['neighbourhood'].isin(['Williamsburg','Bedford-Stuyvesant','Harlem','Bushwick','Upper West Side','Hell\'s Kitchen','East Vill pl =sns.catplot(x='neighbourhood', hue='neighbourhood\_group', col='room\_type', data=Ngbr, kind='count') pl.set\_xticklabels(rotation=90)



## DATA CLEANING

#Unwanted columns such as id,name , host\_name and last\_review which is not useful for analysis so, they are removed.
df.drop(['host\_id','name','latitude','longitude','id','host\_name','last\_review'], axis=1, inplace=True)
df.head()

```
neighbourhood group neighbourhood room type price minimum nights number of reviews reviews per month calculated host listings
                                           Private
0
               Brooklyn
                            Kensington
                                                     149
                                                                        1
                                                                                                            0.21
                                             room
                                            Entire
             Manhattan
                               Midtown
                                                     225
                                                                                          45
                                                                                                            0.38
                                         home/apt
                                           Private
             Manhattan
                                                                        3
                                Harlem
                                                     150
                                                                                           0
                                                                                                            NaN
                                             room
```

```
#Droping the null values
df = df.dropna()
```

#Verify the Missing/Null Values after drop
df.isnull().sum()

```
neighbourhood_group
                                  0
neighbourhood
                                  0
room_type
                                  0
price
                                  0
minimum_nights
                                  0
number_of_reviews
                                  0
reviews_per_month
                                  0
calculated_host_listings_count
                                  0
availability_365
dtype: int64
```

#Understanding data types without null values
df.info()

```
<class 'pandas.core.frame.DataFrame'>
Int64Index: 38843 entries, 0 to 48852
Data columns (total 9 columns):
```

reviews\_per\_month

| #                                                  | Column                                    | Non-Null Count | t Dtype   |  |  |  |  |
|----------------------------------------------------|-------------------------------------------|----------------|-----------|--|--|--|--|
|                                                    |                                           |                |           |  |  |  |  |
| 0                                                  | neighbourhood_group                       | 38843 non-nul  | l object  |  |  |  |  |
| 1                                                  | neighbourhood                             | 38843 non-nul  | l object  |  |  |  |  |
| 2                                                  | room_type                                 | 38843 non-nul  | l object  |  |  |  |  |
| 3                                                  | price                                     | 38843 non-nul  | l int64   |  |  |  |  |
| 4                                                  | minimum_nights                            | 38843 non-nul  | l int64   |  |  |  |  |
| 5                                                  | number_of_reviews                         | 38843 non-nul  | l int64   |  |  |  |  |
| 6                                                  | reviews_per_month                         | 38843 non-nul  | l float64 |  |  |  |  |
| 7                                                  | <pre>calculated_host_listings_count</pre> | 38843 non-nul  | l int64   |  |  |  |  |
| 8                                                  | availability_365                          | 38843 non-nul  | l int64   |  |  |  |  |
| <pre>dtypes: float64(1), int64(5), object(3)</pre> |                                           |                |           |  |  |  |  |
| memo                                               | memory usage: 3.0+ MB                     |                |           |  |  |  |  |

There are significant outliers in the "price" variable. In order to reduce the impact of outliers and increase the normalcy of the data, we will take the data between the 25th and 75th percentiles.

```
#Taking the dataset between the 25th and 75th percentiles to remove the outliers
Q1 = df['price'].quantile(0.25)
Q3 = df['price'].quantile(0.75)
IQR=Q3-Q1
df = df[\sim((df['price']<(Q1-1.5*IQR))|(df['price']>(Q3+1.5-IQR)))]
#Understanding data types after removing the outliers
df.info()
     <class 'pandas.core.frame.DataFrame'>
     Int64Index: 10928 entries, 6 to 48852
    Data columns (total 9 columns):
     #
         Column
                                          Non-Null Count Dtype
     ---
         neighbourhood_group
     0
                                          10928 non-null object
         neighbourhood
                                          10928 non-null object
     1
         room_type
                                          10928 non-null
                                                          object
     3
         price
                                          10928 non-null int64
     4
         minimum nights
                                          10928 non-null int64
         number_of_reviews
                                          10928 non-null
                                                          int64
```

10928 non-null float64

```
7 calculated_host_listings_count 10928 non-null int64 8 availability_365 10928 non-null int64 dtypes: float64(1), int64(5), object(3) memory usage: 853.8+ KB
```

# Statistical Analysis

```
#Shapiro Test (for checking Normality)
import scipy.stats as st
res = st.shapiro(df.price)
print("The Shapiro Test for the price is: ",res)

The Shapiro Test for the price is: ShapiroResult(statistic=0.9598448872566223, pvalue=0.0)
    /usr/local/lib/python3.8/dist-packages/scipy/stats/morestats.py:1760: UserWarning: p-value may not be accurate for N > 5000.")
    warnings.warn("p-value may not be accurate for N > 5000.")
```

The null hypothesis is disproved because the p value (0.0) is less than alpha (5%, as assumed). The distribution is therefore abnormal (as cound be seen from the Distribution Plot above). Since the distribution is non-normal, the data can only theoretically be tested using non-parametric methods.

## Price vs Room Type

```
#Checking the unique value of the room_type
df.room_type.unique()
    array(['Private room', 'Shared room', 'Entire home/apt'], dtype=object)

#Assigning the Unique values
pvt = df[df['room_type'] == 'Private room']
share = df[df['room_type'] == 'Shared room']
apt = df[df['room_type'] == 'Entire home/apt']

#Levene Test (for testing of variance)
res = st.levene(pvt.price, share.price, apt.price)
print(" The Levene Test for Price vs Room Typeis: \n ",res)

The Levene Test for Price vs Room Typeis:
    LeveneResult(statistic=49.601030751888054, pvalue=3.595499462501306e-22)
```

We reject hypothesis since the p value is almost zero (and consequently less than alpha = 0.05). As a result, there is a difference in the price variation across the various accommodation classifications. This is demonstrated by looking at the boxplot below.

```
#Visaulization of room_type according to price
plt.figure(figsize=(10,6))
sns.boxplot(y='price',x='room_type',data=df)
plt.show()
```



P value alpha is present in the test result is above the 0.05. As a result, the null hypothesis is disproved. This suggests that there is a difference in the mean price of various types of apartments. The barplot of the mean prices given below serves as confirmation.

```
ind = ['Private Rooms','Apartments','Shared Rooms']
Price_M = pd.DataFrame([pvt.price.mean(),apt.price.mean(),share.price.mean()], index=ind)
Price_M
```



#Visualization for Mean Price Across Different Categories of Rooms
Price\_M.plot.bar(color='r')
plt.title("Barplot of Mean Price Across Different Categories of Rooms")
plt.show()



Conclusion: The two variables, price and room type, are related. Since the mean price for each type of room is different, the cost will vary depending on the choice of room.

Double-click (or enter) to edit

## One Way ANOVA

```
#Verifying the One way Anova
st.f_oneway(pvt.price,share.price,apt.price)
F_onewayResult(statistic=467.2078865807108, pvalue=2.0248725123817457e-195)
```

As a result, the null hypothesis is rejected in one direction of the ANOVA, indicating that the mean prices for the various types of rooms are not equal.

## Price vs Neighbourhood

The categorical variable of "neighbourhood group" has more than two categories, we can use either the Kruskal Wallis test or the One Way ANOVA test.

```
#Kruskal Wallis Test
r = df[df['neighbourhood_group'] == 'Brooklyn']['price']
s = df[df['neighbourhood_group'] == 'Manhattan']['price']
t = df[df['neighbourhood_group'] == 'Queens']['price']
u = df[df['neighbourhood_group'] == 'Staten Island']['price']
v = df[df['neighbourhood_group'] == 'Bronx']['price']

res = st.kruskal(r,s,t,u,v)
print(" The Kruskal Wallis Test for neighbourhood_group is: \n ",res)

The Kruskal Wallis Test for neighbourhood_group is:
    KruskalResult(statistic=321.98501542014543, pvalue=1.955857466328019e-68)
```

Since the P-value is close to 0. Hence, we say that there is a link between price and neighbourhood group, i.e. the price is based on the neighbourhood group that the house is offered in.

```
#One way Anova
res = st.f_oneway(r,s,t,u,v)
print(" The One way Anova for neighbourhood_group is: \n ",res)

The One way Anova for neighbourhood_group is:
    F_onewayResult(statistic=82.73884435819998, pvalue=2.5683471790581827e-69)
```

Hence, the P-value is less than 0 as before. So, we reject the hypothesis.

## ▼ Room Type vs Neighbourhood Group

Here, we get the P-value 2.899e-23 which is less than alpha 0.05 and hence, we reject the null hypothesis. Since, we can say that there is relationship between the neighbourhood\_group and room\_type and also shown as stacked bar plot.

```
#Stacked bar plot for neighbourhood_group and room_type
SG = pd.crosstab(df['room_type'],df['neighbourhood_group'])
SG.plot.bar(figsize=(10,6),stacked=True)
plt.show()
```



## Neighbourhood vs Neighbourhood Group

```
#Chi-Squared Test
CH = pd.crosstab(df['neighbourhood'],df['neighbourhood_group'])
st.chi2_contingency(CH)
             [2.30600293e-01, 2.63405930e+00, 1.03083821e+00, 1.03587116e+00,
              6.86310395e-02],
             [5.99560761e+00, 6.84855417e+01, 2.68017936e+01, 2.69326501e+01,
              1.78440703e+00],
             [6.64128843e+00, 7.58609078e+01, 2.96881406e+01, 2.98330893e+01,
              1.97657394e+00],
             [2.76720351e-01, 3.16087116e+00, 1.23700586e+00, 1.24304539e+00,
              8.23572474e-02],
             [4.15080527e-01, 4.74130673e+00, 1.85550878e+00, 1.86456808e+00,
              1.23535871e-01],
             [9.22401171e-02, 1.05362372e+00, 4.12335286e-01, 4.14348463e-01,
              2.74524158e-02],
             [1.01464129e+00, 1.15898609e+01, 4.53568814e+00, 4.55783309e+00,
              3.01976574e-01],
             [4.61200586e-02, 5.26811859e-01, 2.06167643e-01, 2.07174231e-01,
              1.37262079e-02],
             [4.15080527e-01, 4.74130673e+00, 1.85550878e+00, 1.86456808e+00,
              1.23535871e-01],
             [9.22401171e-02, 1.05362372e+00, 4.12335286e-01, 4.14348463e-01,
              2.74524158e-02],
             [2.76720351e-01, 3.16087116e+00, 1.23700586e+00, 1.24304539e+00,
              8.23572474e-02],
             [5.99560761e-01, 6.84855417e+00, 2.68017936e+00, 2.69326501e+00,
              1.78440703e-01],
             [4.01244510e+00, 4.58326318e+01, 1.79365849e+01, 1.80241581e+01,
             1.19418009e+00],
             [7.37920937e+00, 8.42898975e+01, 3.29868228e+01, 3.31478770e+01,
              2.19619327e+00],
             [2.76720351e-01, 3.16087116e+00, 1.23700586e+00, 1.24304539e+00,
              8.23572474e-02],
             [1.38360176e-01, 1.58043558e+00, 6.18502928e-01, 6.21522694e-01,
              4.11786237e-02],
             [1.19912152e+00, 1.36971083e+01, 5.36035871e+00, 5.38653001e+00,
              3.56881406e-01],
             [1.75717423e+01, 2.00715318e+02, 7.85498719e+01, 7.89333821e+01,
              5.22968521e+00],
             [4.61200586e-01, 5.26811859e+00, 2.06167643e+00, 2.07174231e+00,
              1.37262079e-01],
             [2.76720351e-01, 3.16087116e+00, 1.23700586e+00, 1.24304539e+00,
              8.23572474e-02],
             [2.76720351e-01, 3.16087116e+00, 1.23700586e+00, 1.24304539e+00,
              8.23572474e-02],
             [4.61200586e-02, 5.26811859e-01, 2.06167643e-01, 2.07174231e-01,
              1.37262079e-02],
             [2.30600293e-01, 2.63405930e+00, 1.03083821e+00, 1.03587116e+00,
              6.86310395e-02],
             [8.30161054e-01, 9.48261347e+00, 3.71101757e+00, 3.72913616e+00,
              2.47071742e-01],
             [3.42672035e+01, 3.91421212e+02, 1.53182559e+02, 1.53930454e+02,
              1.01985725e+01],
             [1.29136164e+00, 1.47507321e+01, 5.77269400e+00, 5.80087848e+00,
              3.84333821e-01],
             [2.58272328e+00, 2.95014641e+01, 1.15453880e+01, 1.16017570e+01,
              7.68667643e-01],
             [3.68960469e-01, 4.21449488e+00, 1.64934114e+00, 1.65739385e+00,
              1.09809663e-01],
             [4.47364568e+00, 5.11007504e+01, 1.99982613e+01, 2.00959004e+01,
              1.33144217e+00]]))
```

Here also, the null hypothesis is rejected as the P-value is 0 which is less than 0.05. Hence, there is relationship between Neighbourhood and Neighbourhood Group

## ▼ T-Test

```
%matplotlib inline
warnings.filterwarnings("ignore")
```

```
rcParams['figure.figsize'] = 8,8
rcParams['font.size'] = 30
sns.set()
np.random.seed(8)
#Create a function for distrubtion plot
def plt_dstrb(inp):
   plt.figure()
   ax = sns.distplot(inp)
   ax.set_xlim([30, 365])
   plt.axvline(np.mean(inp), color="k", linestyle="dashed", linewidth=3)
    _, max_ = plt.ylim()
   plt.text(
        inp.mean() + inp.mean() / 10,
        max_ - max_ / 10,
        "Mean: {:.2f}".format(inp.mean()),
   )
    return plt.figure
#Getting data of airbnb's available over a month
df_H = df[['neighbourhood_group','availability_365']]
df_H = df_H[df_H['availability_365'] > 30]
df_H.head()
```

|    | neighbourhood_group | availability_365 | 1 |
|----|---------------------|------------------|---|
| 25 | Brooklyn            | 85               |   |
| 28 | Manhattan           | 311              |   |
| 30 | Manhattan           | 355              |   |
| 31 | Manhattan           | 255              |   |
| 32 | Brooklyn            | 284              |   |

#Visaulization with mean
plt\_dstrb(df\_H['availability\_365'])

<function matplotlib.pyplot.figure(num=None, figsize=None, dpi=None, facecolor=None, edgecolor=None, frameon=True, FigureClass=<class
'matplotlib.figure.Figure'>, clear=False, \*\*kwargs)>







We have imported T-test using the Scipy library, which allows us to do t-tests and obtain p-values.

```
#T_test Function for comparing
def cmp_grp(arr_1, arr_2, alpha):
    stat, p = ttest_ind(arr_1, arr_2)
    print('Statistics=%.3f, p=%.3f' % (stat, p))
    if p > alpha:
        print('Same distributions hence we fail to reject H0(Null Hypothesis)')
    else:
        print('Different distributions hence we reject H0(Null Hypothesis)')

cmp_grp(df_H['availability_365'], Sample_A, 0.05)
    Statistics=-0.227, p=0.821
    Same distributions hence we fail to reject H0(Null Hypothesis)
```

We get the P-value 0.663 which is above the 0.05. Since, we fail to reject the Hypothesis and hence, we accept the null hypothesis.

# Encoding Data and Outlier removal.

```
#Encoding the categorical data
df.fillna({'reviews_per_month':0}, inplace=True)
#df.drop(['id','host_id','latitude','longitude','host_name','last_review','name'], axis = 1,inplace=True)
df = pd.get_dummies(df, columns=['neighbourhood_group',"room_type"], prefix = ['ng',"rt"],drop_first=True)
df.drop(["neighbourhood"], axis=1, inplace=True)
df.head()
```

|    | price | minimum_nights | number_of_reviews | reviews_per_month | calculated_host_listings_count | availability_365 | ng_Brooklyn | ng_Manha |
|----|-------|----------------|-------------------|-------------------|--------------------------------|------------------|-------------|----------|
| 6  | 60    | 45             | 49                | 0.40              | 1                              | 0                | 1           |          |
| 25 | 60    | 1              | 19                | 1.37              | 2                              | 85               | 1           |          |
| 28 | 44    | 3              | 108               | 1.11              | 3                              | 311              | 0           |          |
| 30 | 50    | 3              | 242               | 2.04              | 3                              | 355              | 0           |          |
| 31 | 52    | 2              | 88                | 1.42              | 1                              | 255              | 0           |          |
|    |       |                |                   |                   |                                |                  |             |          |



## Linear Regression

```
def linear(a,b):
 global X,y,predictions,residue
 X = Reg_df[a].values.reshape(-1,1)
 y = Reg_df[b].values.reshape(-1,1)
  #3 Feature Scaling
  from sklearn.preprocessing import StandardScaler
  sc_X = StandardScaler()
 sc_y = StandardScaler()
 X = sc_X.fit_transform(X)
 y = sc_X.fit_transform(y)
  from sklearn.linear_model import LinearRegression
  reg = LinearRegression()
  reg.fit(X, y)
 print("The linear model is: Y = \{:.2\} + \{:.2\}X".format(reg.intercept_[0], reg.coef_[0][0]))
 print("Regression Intercept : ",reg.intercept_[0])
 predictions = reg.predict(X)
 rms = mean_squared_error(y, predictions, squared=False)
  fig = px.scatter(
    Reg_df, x=a, y=b, opacity=0.65,
   trendline='ols', trendline_color_override='darkblue')
  fig.show()
  # Plot the residuals after fitting a linear model
  sns.residplot(x=X, y=y, lowess=True, color="g")
 print("RMSE is: ", rms)
 x2 = sm.add\_constant(X)
  est = sm.OLS(y, x2)
  #OLS is Ordinary Least Squares
 #est.TAB
 est2 = est.fit()
 print(est2.summary())
 residue = y - predictions
Reg_df = df[['number_of_reviews','reviews_per_month']]
Reg_df= Reg_df[Reg_df['number_of_reviews']<400]</pre>
Reg_df = Reg_df[Reg_df['reviews_per_month']<15]</pre>
Reg_df
```

|       | number_of_reviews | reviews_per_month |
|-------|-------------------|-------------------|
| 6     | 49                | 0.40              |
| 25    | 19                | 1.37              |
| 28    | 108               | 1.11              |
| 30    | 242               | 2.04              |
| 31    | 88                | 1.42              |
|       |                   |                   |
| 48534 | 1                 | 1.00              |

```
linear('number_of_reviews','reviews_per_month')
df_n = pd.DataFrame(predictions, columns = ['Predictions'])
df_reg_new = pd.concat([Reg_df,df_n],axis = 1)
df_n = pd.DataFrame(residue, columns = ['Residue'])
df_reg_new = pd.concat([df_reg_new,df_n],axis = 1)
df_reg_new[['number_of_reviews','reviews_per_month','Predictions','Residue']].head()
```

Regression Intercept : -4.172376831695239e-17



0.325

# Multiple Linear Regression

OLS Regression Results

R-squared:

RMSE is: 0.8213420228839912

intercept is: [0.00334485]

Dep. Variable:

```
No. UDServations:
                                                                           Z.664e+64
                                     TARAA
                                             AIC:
#Dividing into Target value
df_train = df.drop(['price'],axis=1)
df_test = df['price'].values.reshape(-1,1)
df_train_Sc = StandardScaler()
df_test_Sc = StandardScaler()
df_train = df_train_Sc.fit_transform(df_train)
df_test = df_train_Sc.fit_transform(df_test)
                                     2.278 Prob(JB):
                                                                                0.00
#Splitting the dataset into training and testing
from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(df_train, df_test, test_size=0.30, random_state=42)
     [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
print(X train.shape)
print(y_train.shape)
print(X_test.shape)
print(y_test.shape)
     (7649, 11)
     (7649, 1)
     (3279, 11)
     (3279, 1)
# instantiate
linreg = LinearRegression()
# fit the model to the training data (learn the coefficients)
linreg.fit(X_train, y_train)
# print the intercept and coefficients
print("intercept is: ",linreg.intercept_)
print("coefficients are: ",linreg.coef_)
```

```
0.31905844   0.13936999   -0.00727299   -0.21025422   -0.39427262]]
                          The state of the s
y_pred = linreg.predict(X_test)
                943
print("R-Square Value",r2_score(y_test,y_pred))
print ("mean_absolute_error :",metrics.mean_absolute_error(y_test, y_pred))
print("\n")
print ("mean_squared_error : ",metrics.mean_squared_error(y_test, y_pred))
print("\n")
print ("root_mean_squared_error : ",np.sqrt(metrics.mean_squared_error(y_test, y_pred)))
         R-Square Value 0.13935718762733007
         mean_absolute_error : 0.7604323398842785
         mean_squared_error : 0.8615707446682286
         root_mean_squared_error : 0.9282083519707354
my_pipeline = Pipeline(steps=[('model', LinearRegression())])
from sklearn.model_selection import cross_val_score
# Multiply by -1 since sklearn calculates *negative* scores
scores1 = 1 * cross_val_score(my_pipeline, X, y,
                                                      cv=10,
                                                      scoring='r2')
scores2 = -1 * cross_val_score(my_pipeline, X, y,
                                                     cv=10.
                                                      scoring='neg_mean_absolute_error')
scores3 = -1 * cross_val_score(my_pipeline, X, y,
                                                      cv=10.
                                                      scoring='neg_root_mean_squared_error')
print("R squared scores:\n", scores1)
print("Average R squared score (across experiments):",scores1.mean())
print("RMSE scores:\n", scores3)
print("Average RMSE score (across experiments):",scores3.mean())
         R squared scores:
           0.46359052 0.20194511 0.00656353 -0.72625699]
         Average R squared score (across experiments): 0.027412748488921234
         RMSE scores:
           [1.21413378 0.5732473 0.48369005 0.42590084 0.50297081 0.58300332
           0.74908638 0.91220924 1.16354122 1.59120783]
         Average RMSE score (across experiments): 0.8198990775340705
x2 = sm.add\_constant(X)
est = sm.OLS(y, x2)
#OLS is Ordinary Least Squares
#est.TAB
est2 = est.fit()
print(est2.summary())
                                                         OLS Regression Results
                                                                    y R-squared:
         Dep. Variable:
         Model:
                                                                    OLS Adj. R-squared:
                                                                                                                                            0.325
                                                Least Squares
         Method:
                                                                               F-statistic:
                                                                                                                                           5256.
                            Sun, 04 Dec 2022
                                                                               Prob (F-statistic):
         Date:
                                                                                                                                             0.00
                                                            01:21:10
                                                                               Log-Likelihood:
         Time:
                                                                                                                                       -13320.
         No. Observations:
                                                                                                                                    2.664e+04
                                                                 10899
                                                                               AIC:
         Df Residuals:
                                                                 10897
         Df Model:
                                                                       1
                                                         nonrobust
         Covariance Type:
                                     coef std err
                                                                        t P>|t| [0.025 0.975]
```

| const     | -5.802e-17 | 0.008 | -7.37  | e-15   | 1.000        | -0.015  | 0.015     |
|-----------|------------|-------|--------|--------|--------------|---------|-----------|
| x1        | 0.5704     | 0.008 | 72     | .500   | 0.000        | 0.555   | 0.586     |
| =======   |            |       | =====  | ====== |              | ======= |           |
| Omnibus:  |            | 5379  | .693   | Durbir | n-Watson:    |         | 1.198     |
| Prob(Omni | bus):      | 0     | .000   | Jarque | e-Bera (JB): |         | 38332.273 |
| Skew:     |            | 2     | .278   | Prob(  | JB):         |         | 0.00      |
| Kurtosis: |            | 10    | 10.978 |        | Cond. No.    |         | 1.00      |
|           |            |       |        |        |              |         |           |

#### Notes:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

# ▼ Model Implementation for Classification

```
df_classif = df

df_classif['availability_365'] = df_classif['availability_365'].apply(lambda x: 1 if x == 365 else 0)

sns.countplot(df_classif['availability_365'])
```



```
X = df_classif.drop(['availability_365'],axis=1)
y = df_classif['availability_365'].values

from imblearn.over_sampling import SMOTE
import imblearn
oversample = SMOTE()
X, y = oversample.fit_resample(X, y)

sns.countplot(y)
```

<matplotlib.axes.\_subplots.AxesSubplot at 0x7f5bb96fc6a0>

```
10000
         8000
         6000
      count
len(y)
     21370
def plot_roc_curve(fpr, tpr):
    plt.plot(fpr, tpr, color='orange', label='ROC')
   \verb|plt.plot([0, 1], [0, 1], color='darkblue', linestyle='--')|\\
   plt.xlabel('False Positive Rate')
    plt.ylabel('True Positive Rate')
   plt.title('Receiver Operating Characteristic (ROC) Curve')
    plt.legend()
   plt.show()
# Used for classification of dataset.
def classif results():
 conf_mat = confusion_matrix(y_true=y_test, y_pred=y_pred)
 print('Confusion matrix:\n', conf_mat)
 labels = ['Class 0', 'Class 1']
  fig = plt.figure()
  ax = fig.add_subplot(111)
 cax = ax.matshow(conf_mat, cmap=plt.cm.Blues)
  fig.colorbar(cax)
  ax.set_xticklabels([''] + labels)
  ax.set_yticklabels([''] + labels)
  plt.xlabel('Predicted')
 plt.ylabel('Expected')
 plt.show()
 print("Accuracy", metrics.accuracy_score(y_test, y_pred))
  from sklearn.metrics import classification_report
  print(classification_report(y_test, y_pred))
  auc = roc_auc_score(y_test, y_pred)
 print("AUC Score: ")
 print(auc)
  fpr, tpr, thresholds = roc_curve(y_test, y_pred)
  plot_roc_curve(fpr, tpr)
```

## K-Nearest Neighbour

```
#Calling the KNN using Sklearn library
classifier = KNeighborsClassifier()

#Split the dataset
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.20, random_state=42)

#Train the dataset
classifier.fit(X_train,y_train)

#Predict the value
y_pred = classifier.predict(X_test)

from sklearn.metrics import confusion_matrix
cm = confusion_matrix(y_test,y_pred)
```



support 2126

| Accuracy | acy 0.9216190921853065 |           |        |          |  |  |
|----------|------------------------|-----------|--------|----------|--|--|
|          |                        | precision | recall | f1-score |  |  |
|          |                        |           |        |          |  |  |
|          | 0                      | 0.98      | 0.86   | 0.92     |  |  |
|          | 1                      | 0.88      | 0.98   | 0.93     |  |  |

| 1            | 0.88 | 0.98 | 0.93 | 2148 |
|--------------|------|------|------|------|
| accuracy     |      |      | 0.92 | 4274 |
| macro avg    | 0.93 | 0.92 | 0.92 | 4274 |
| weighted avg | 0.93 | 0.92 | 0.92 | 4274 |

AUC Score: 0.9212930359423367



```
error = []
# Calculating error for K values between 1 and 30
for i in range(1, 30):
    knn = KNeighborsClassifier(n_neighbors=i)
    knn.fit(X_train, y_train)
    pred_i = knn.predict(X_test)
    error.append(np.mean(pred_i != y_test))
```

Minimum error: -0.04866635470285447 at K = 1



## ▼ Logistic Regression

```
#Calling the LR using Sklearn library
classifier = LogisticRegression()

#Split the dataset
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.20, random_state=42)

#Train the model
classifier.fit(X_train,y_train)

#Predict the testing response
y_pred = classifier.predict(X_test)

from sklearn.metrics import confusion_matrix
cm = confusion_matrix(y_test,y_pred)
classif_results()
```



## ▼ Decision tree

```
#Calling the Decision Tree using Sklearn library
classifier = tree.DecisionTreeClassifier()

#Training the Model
classifier.fit(X_train,y_train)

#SPlit the dataset
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.20, random_state=42)

#Predict the value
y_pred = classifier.predict(X_test)

from sklearn.metrics import confusion_matrix
cm = confusion_matrix(y_test,y_pred)
classif_results()
```

Confusion matrix: [[2018 108] [ 54 2094]]



### Accuracy 0.9620963968179691

|              | precision | recall | f1-score | support |
|--------------|-----------|--------|----------|---------|
| 0            | 0.97      | 0.95   | 0.96     | 2126    |
| 1            | 0.95      | 0.97   | 0.96     | 2148    |
| accuracy     |           |        | 0.96     | 4274    |
| macro avg    | 0.96      | 0.96   | 0.96     | 4274    |
| weighted avg | 0.96      | 0.96   | 0.96     | 4274    |

AUC Score: 0.9620303557445199



## ▼ Naive Bayes

classif\_results()

```
#Calling the Naive Bayes using Sklearn library
classifier = GaussianNB()

#Split the dataset
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.20, random_state=42)

#Training the Naive Bayes model
classifier.fit(X_train,y_train)

#Predicting the testing dataset
y_pred = classifier.predict(X_test)

from sklearn.metrics import confusion_matrix
cm = confusion_matrix(y_test,y_pred)
```

Confusion matrix: [[ 812 1314] [ 226 1922]]



### Accuracy 0.6396817969115582

|              | precision | recall | f1-score | support |
|--------------|-----------|--------|----------|---------|
| 0            | 0.78      | 0.38   | 0.51     | 2126    |
| 1            | 0.59      | 0.89   | 0.71     | 2148    |
| accuracy     |           |        | 0.64     | 4274    |
| macro avg    | 0.69      | 0.64   | 0.61     | 4274    |
| weighted avg | 0.69      | 0.64   | 0.61     | 4274    |

AUC Score: 0.6383618794354196



# ▼ Support Vector Machine (SVM)

```
# import support vector classifier
from sklearn import svm

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.20, random_state=42)

#Create a svm Classifier
clf = svm.SVC(kernel='linear') # Linear

#Train the model using the training sets
clf.fit(X_train, y_train)
```

```
#Predict the response for test dataset
y_pred = clf.predict(X_test)
```

cm = confusion\_matrix(y\_test,y\_pred)

classif\_results()

Confusion matrix: [[2904 323] [ 997 2187]]



| Accuracy | 0.7941038839494619 |           |        |          |         |
|----------|--------------------|-----------|--------|----------|---------|
|          |                    | precision | recall | f1-score | support |
|          | 0                  | 0.74      | 0.90   | 0.81     | 3227    |
|          | 1                  | 0.87      | 0.69   | 0.77     | 3184    |
| accur    | асу                |           |        | 0.79     | 6411    |
| macno    | 21/15              | 0.01      | 0.70   | 0.70     | C 111   |

0.79

0.79

6411

0.81

AUC Score: 0.7933894468468777

weighted avg



# ▼ Model Comparision

```
lr_model = LogisticRegression()
knn_model = KNeighborsClassifier()
nb_model = GaussianNB()
des_model = tree.DecisionTreeClassifier()
sv_model = svm.SVC()
models = [
        'label': 'Naive Bayes',
        'model': nb_model
    },
        'label': 'Logistic Regression',
        'model': lr_model
    },
         'label': 'KNN',
         'model': knn_model
    },
    {
         'label': 'Decision Tree ',
         'model': des_model
    },
         'label': 'SVM',
         'model': sv_model
]
from sklearn.metrics import roc_curve, roc_auc_score, auc
plt.clf()
plt.figure(figsize=(8,8))
for m in models:
    m['model'].probability = True
    \verb|probas = m['model'].fit(X_train,y_train).predict_proba(X_test)|\\
    fpr, tpr, thresholds = roc_curve(y_test, probas[:, 1])
    roc_auc = auc(fpr, tpr)
    plt.plot(fpr, tpr, label='%s ROC (area = %0.2f)' % (m['label'], roc_auc))
plt.plot([0, 1], [0, 1], 'k--')
plt.xlim([0.0, 1.0])
plt.ylim([0.0, 1.0])
plt.xlabel('False Positive Rate')
plt.ylabel('True Positive Rate')
plt.legend(loc=0, fontsize='small')
plt.show()
     <Figure size 576x576 with 0 Axes>
        1.0
        0.8
      True Positive Rate
        0.4
         0.2
                                               Naive Bayes ROC (area = 0.80)
                                               Logistic Regression ROC (area = 0.87)
                                               KNN ROC (area = 0.97)
                                               Decision Tree ROC (area
                                               SVM ROC (area = 0.82)
        0.0
                        0.2
                                                                          1.0
                                    False Positive Rate
```