Effect of uniform distributions of bonded and debonded fibers on the growth of the fiber/matrix interface crack in UD laminates with different fiber contents under transverse loading

Luca Di Stasio^{a,b}, Janis Varna^b, Zoubir Ayadi^a

^a Université de Lorraine, EEIGM, IJL, 6 Rue Bastien Lepage, F-54010 Nancy, France
^bLuleå University of Technology, University Campus, SE-97187 Luleå, Sweden

Abstract

1. Introduction

2. RVE models & FE discretization

- 2.1. Models of Representative Volume Element(RVE)
 - (a) A debonded fiber every 2 fully bonded ones.
- (b) Central debonded fiber with 1 fiber each side.
- (c) A debonded fiber every 4 fully bonded ones.
- (d) Central debonded fiber with 2 fibers each side.
- (e) A debonded fiber every 6 fully bonded ones.
- (f) Central debonded fiber with 3 fibers each side.

Figure 1: Models of single-ply laminates with a single layer of fibers and debonds repeating at different distances (left column), and corresponding Representative Volume Elements (right column).

- 2.2. Finite Element (FE) discretization
- 5 2.3. Validation of the model

3. Results & Discussion

- 3.1. Effect of Fiber Volume Fraction
- 3.2. Interaction between debonds in UD laminates with a single layer of fibers
- 3.3. Influence of layers of fully bonded fibers on debond's growth in a centrally located line of debonded fibers
- 3.4. Interaction between debonds in UD laminates with multiple layers of fibers
- 3.5. Comparison with the single fiber model with equivalent boundary conditions

4. Conclusions & Outlook