Московский государственный технический университет им. Н. Э. Баумана

Курс «Технологии машинного обучения»
Отчёт по лабораторной работе №1

Выполнил:	Проверил:
Сергеев М. А.	Гапанюк Ю.Е.
группа ИУ5-64Б	

Дата: 14.05.25 Дата:

Подпись: Подпись:

Цель лабораторной работы: изучение различных методов визуализация данных.

Краткое описание. Построение основных графиков, входящих в этап разведочного анализа данных.

Рекомендуемые инструментальные средства можно посмотреть здесь.

Задание:

- Выбрать набор данных (датасет). Вы можете найти список свободно распространяемых датасетов <u>здесь.</u>
- Для первой лабораторной работы рекомендуется использовать датасет без пропусков в данных, например из <u>Scikit-learn.</u>
- Пример преобразования датасетов Scikit-learn в Pandas Dataframe можно посмотреть здесь.

Для лабораторных работ не рекомендуется выбирать датасеты большого размера.

- Создать ноутбук, который содержит следующие разделы:
- 1. Текстовое описание выбранного Вами набора данных.
- 2. Основные характеристики датасета.
- 3. Визуальное исследование датасета.
- 4. Информация о корреляции признаков.
- Сформировать отчет и разместить его в своем репозитории на github.

Ход выполнения:

Каждый образец содержит следующие колонки:

- 1. Alcohol содержание алкоголя.
- 2. Malic acid содержание яблочной кислоты.
- 3. Ash содержание золы.
- 4. Alcalinity of ash щелочность золы.
- 5. Magnesium содержание магния.
- 6. Total phenols общее содержание фенолов.
- 7. Flavanoids содержание флавоноидов.
- 8. Nonflavanoid phenols содержание нефлавоноидных фенолов.
- 9. Proanthocyanins содержание проантоцианидинов.
- 10. Color intensity интенсивность цвета.
- 11. Hue оттенок.
- 12. OD280/OD315 of diluted wines оптическая плотность (отношение OD280/OD315).
- 13. Proline содержание пролина.

Целевой признак:

• Class - класс вина (0, 1 или 2), соответствующий одному из трех культиваров.

2. Основные характеристики датасета data. head() Python alcohol malic acid ash alcalinity of ash magnesium total phenols production in the production of t

· ·	# Основные статистические характеристки набора данных data.describe()												
c acid		alcalinity of ash	magnesium	total phenols	flavanoids	nonflavanoid phenols	proanthocyanins	color intensity	hue	od280/od315 of diluted wines	proline	target	
00000	178.000000	178.000000	178.000000	178.000000	178.000000	178.000000	178.000000	178.000000	178.000000	178.000000	178.000000	178.000000	
36348	2.366517	19.494944	99.741573	2.295112	2.029270	0.361854	1.590899	5.058090	0.957449	2.611685	746.893258	0.938202	
17146	0.274344	3.339564	14.282484	0.625851	0.998859	0.124453	0.572359	2.318286	0.228572	0.709990	314.907474	0.775035	
40000	1.360000	10.600000	70.000000	0.980000	0.340000	0.130000	0.410000	1.280000	0.480000	1.270000	278.000000	0.000000	
02500	2.210000	17.200000	88.000000	1.742500	1.205000	0.270000	1.250000	3.220000	0.782500	1.937500	500.500000	0.000000	
65000	2.360000	19.500000	98.000000	2.355000	2.135000	0.340000	1.555000	4.690000	0.965000	2.780000	673.500000	1.000000	
82500	2.557500	21.500000	107.000000	2.800000	2.875000	0.437500	1.950000	6.200000	1.120000	3.170000	985.000000	2.000000	
00000	3.230000	30.000000	162.000000	3.880000	5.080000	0.660000	3.580000	13.000000	1.710000	4.000000	1680.000000	2.000000	
# Определим уникальные значения для целевого признака data['target'].unique()													
19] V 0.05													
·· array([0., 1., 2.])													

4. Информация о корелляции признаков l malic_acid ash alcalinity_of_ash magnesium total_phenols noids nonflavanoid_phenols hue od280/od315_of_diluted_wines target hocyanins color_intensity -0.561296 1.000000 0.164045 0.288500 -0.054575 -0.220746 0.248985 0.437776 0.164045 1.000000 0.443367 0.286587 0.128980 0.186230 0.009652 0.258887 -0.074667 0.223626 -0.049643 0.288500 0.443367 1.000000 -0.440597 -0.054575 0.286587 1.000000 0.214401 0.195784 -0.256294 0.236441 0.199950 0.055398 0.066004 -0.209179 0.265668 -0.561296 -0.074667 0.055398 0.433681 0.543479 -0.262640 0.295544 1.000000 0.565468 0.236183 -0.617369 0.519067 0.565468 -0.368710 0.003911 0.066004 0.699949 0.787194 -0.428815 1.000000 -0.788230 -0.440597 0.498115 0.330417 0.312761 1.000000 -0.633717 0.437776 -0.049643 -0.847498 0.489109 1.000000 В случае большого количества признаков анализ числовой корреляционной матрицы становится неудобен.

Из корреляционной матрицы можно сделать следующие выводы:

- 1. между flavanoids и total_phenols сильная положительная корреляция, поэтому будем использовать только один
 2. целевой признак слабо коррелирует с color_intensity, nonflavanoid_phenols, alcohol, malic_acid, ash, magnesium и hue, поэтому эти признаки стоит исключить из модели
 3. из flavanoids и total_phenols сильнее коррелирует с ключевым признаком flavanoids, поэтому лучше оставить его

Таким образом в модели останутся признаки alcalinity_of_ash, flavanoids, od280/od315_of_diluted_wines и proline