Министерство науки и высшего образования Крымский федеральный университет имени В.И.Вернадского

Таврическая академия Факультет математики и информатики

Ю. С. Пашкова

ЛЕКЦИИ ПО МАТЕМАТИЧЕСКОМУ АНАЛИЗУ

Симферополь - 2020

Оглавление

1	Пре	едел ф	рункции. Непрерывность.	5
	1.1	Поня	гие функции	5
		1.1.1	Определение функции.	5
		1.1.2	Способы задания функции	6
		1.1.3	Важнейшие классы функций. Элементарные функции.	7
		1.1.4	Понятие обратной функции	11
		1.1.5	Суперпозиция функций. Сложная функция	14
	1.2	Поня	гие предела функции	15
		1.2.1	Определение предела функции в точке	15
		1.2.2	Предел функции $f(x)$ на бесконечности	23
		1.2.3	Бесконечный предел функции $f(x)$ в точке	24
		1.2.4	Бесконечный предел функции $f(x)$ на бесконечности.	26
	1.3	Одно	сторонние пределы функции. Арифметические опера-	
		ции н	ад функциями, имеющими предел	28
		1.3.1	Конечные односторонние пределы функции в точке	28
		1.3.2	Бесконечные односторонние пределы функции $f(x)$ в	
			точке	32
		1.3.3	Арифметические операции над функциями, имеющи-	
			ми предел	35
		1.3.4	Первый замечательный предел	39
		1.3.5	Второй замечательный предел	43
	1.4	Лекці	ия №9. Локальные свойства функций, имеющих предел.	50
		1.4.1	Сохранение знака функции, имеющей предел	50
		1.4.2	Локальная ограниченность функции	54
	1.5	Преде	ел монотонной функции	55
	1.6	Лекці	ия №18. Общий признак существования конечного пре-	
		дела (функции. Бесконечно малые функции и их сравнение	63
		1.6.1	Общий признак существования конечного предела функ	-
			ции	63

		1.6.2	Бесконечно малые, бесконечно большие функции и			
			их сравнение			
	1.7	Непр	рерывность функции			
		1.7.1	Понятие непрерывности функции в точке и на мно-			
			жестве			
		1.7.2	Классификация точек разрыва функции 72			
	1.8	Свойс	ства непрерывных функций			
		1.8.1	Арифметические операции над непрерывными функ-			
			циями			
		1.8.2	Понятие сложной функции. Непрерывность сложной			
			функции			
		1.8.3	Непрерывность строго монотонной функции 82			
	1.9	Непре	ерывность элементарных функций. Свойства функций,			
		непре	рывных на отрезке			
		1.9.1	Непрерывность элементарных функций 90			
		1.9.2	Свойства функций, непрерывных на отрезке 92			
2	Про	ризводная функции и дифференциал. 104				
	2.1					
		2.1.1	Определение производной функции			
		2.1.2	Производные некоторых элементарных функций 107			
		2.1.3	Дифференцируемость функции. Дифференциал 112			
	2.2	Геоме	трический смысл производной и дифференциала. Ос-			
			ые правила дифференцирования			
		2.2.1	Геометрический смысл производной и дифференциала. 117			
		2.2.2	Физический смысл производной и дифференциала 121			
		2.2.3	Основные правила дифференцирования			
	2.3	Произ	зводная обратной функции. Производная сложной функ-			
		ции.				
		2.3.1	Производная обратной функции			
		2.3.2	Производная сложной функции			
	2.4	Логар	рифмическая производная функции. Производная функ-			
		ции, заданной параметрически. Производная функции, заданной неявно				
		2.4.1	Логарифмическая производная функции 141			
		2.4.2	Производная функции, заданной параметрически 144			
		2.4.3	Производная функции, заданной неявно			
		2.4.4	Гиперболические функции и их производные 149			

	2.4.5	Использование дифференциала в приближенных вы-			
		числениях	51		
2.5	Произ	водные и дифференциалы высших порядков 1	54		
	2.5.1	Определение производных и дифференциалов выс-			
		ших порядков	54		
	2.5.2	Примеры нахождения производных высших порядков. 1	56		
	2.5.3	Арифметические операции над производными выс-			
		ших порядков	60		
2.6	Основные теоремы дифференциального исчисления 16				
	2.6.1	Возрастание и убывание функции в точке	65		
	2.6.2	Локальный максимум и локальный минимум функ-			
		ции. Теорема Ферма.	67		
	2.6.3	Теорема Дарбу	71		
	2.6.4	Теорема Ролля	73		
2.7	Теорема Лагранжа. Формула Коши. Следствия				
	2.7.1	Теорема Лагранжа. Формула конечных приращений 1	77		
	2.7.2	Формула Коши	31		
	2.7.3	Некоторые следствия теоремы Лагранжа	83		
2.8	Раскр	ытие неопределенностей. Правило Лопиталя 18	39		
	2.8.1	Heoпределенность вида $\frac{0}{0}$	90		
	2.8.2	Hеопределенность вида $\frac{\infty}{\infty}$	96		
	2.8.3	∞ Другие виды неопределенности	99		
2.9		ула Тейлора			
2.0	2.9.1	Формула Тейлора для многочлена			
	2.9.2	Разложение произвольной функции. Остаточный член	<i>,</i> 1		
	2.5.2	в форме Пеано	ე5		
	2.9.3	Примеры разложения элементарных функций по фор-	50		
	2.5.6	муле Тейлора	12		
	2.9.4	Другие формы остаточного члена			
	2.9.5	Приближенные формулы			
2.10	Исследование поведения функции с помощью производной 22				
2.10		Монотонность функции на интервале			
		Экстремумы функции			
		Наибольшее и наименьшее значения функции на от-	- 1		
	0.0	резке	34		
	2.10.4	Выпуклость и вогнутость функции на отрезке 23			
		Точки перегиба			

Глава 1

Предел функции. Непрерывность.

1.1 Понятие функции.

1.1.1 Определение функции.

Обозначим через X и Y два множества.

Определение 1.1.1. Говорят, что на множестве X задана (определена) функция со значениями в множестве Y, если в силу некоторого закона f каждому элементу $x \in X$ соответствует и единственный элемент $y \in Y$.

В этом случае множество X называют областью определения функции, символ x — аргументом функции или независимой переменной.

Если $x_0 \in X$, то соответствующий ему элемент $y_0 \in Y$ называется значением функции на элементе x_0 (или при $x = x_0$) и обозначается $f(x_0)$.

Определение 1.1.2. Множество

$$f(X)=\{y\in Y: \text{ существует } x\in X \text{ такой, что } f(x)=y\}$$

называется множеством значений функции.

Замечание 1.1.3. В зависимости от природы множеств X и Y термин "функция" имеет ряд синонимов: отображение, преобразование, морфизм, оператор, функционал.

Мы будем употреблять чаще всего термин: функция, отображение.

Символическая запись функции f, ее области определения и области значений может быть следующей:

$$y = f(x), \quad X = D(f) = D(y),$$

 $f: X \to Y, \quad X \xrightarrow{f} Y,$

И

$$f(X) = E(f) = R(f).$$

1.1.2 Способы задания функции.

1). Аналитический (посредством формулы).

Примеры 1.1.4. 1°. $y = ax^2, a \neq 0$.

$$2^{\circ}$$
. $y = \sqrt{1 - x^2}$.

При таком способе задания функции область определения X не задается заранее и, чащу всего, имеется ввиду естественная область определения, то есть множество тех значений аргумента, при которых формула имеетсмысл.

Так, в примере 2° :

$$D(f) = \{x : 1 - x^2 \ge 0\},\,$$

то есть

$$D(f) = [-1, 1].$$

2). Графический (посредством графика).

Определение 1.1.5. Графиком функции f называется множество

$$\Gamma_f = \{(x, y) \subset \mathbb{R}^2 : x \in D(f), y = f(x)\}$$

Графический способ задания функции сводится к изображению функциональной зависимости в виде кривой на плоскости.

3). Табличный (посредством таблицы).

x_1	x_2	x_3	
y_1	y_2	y_3	

1.1.3 Важнейшие классы функций. Элементарные функции.

1°. Целая функция.

$$y = a_n x^n + a_{n-1} x^{n-1} + \dots + a_0$$

где, $a_0, a_1, ..., a_n$ постоянные, $n \in \mathbb{N}$.

$$D(f) = R$$

Пример 1.1.6. Квадратичная функция

$$y = ax^2 + bx + c, \ a \neq 0.$$

2°. Дробно-рациональная функция.

$$y = \frac{a_n x^n + a_{n-1} x^{n-1} + \dots + a_0}{b_m x^m + b_{m-1} x^{m-1} + \dots + b_0}, \ n, m \in \mathbb{N}.$$

$$D(f) = \left\{ x : b_m x^m + b_{m-1} x^{m-1} + \dots + b_0 \neq 0 \right\}.$$

Пример 1.1.7.

$$y = \frac{5x^2 + 3x - 1}{x^2 - 1}.$$

$$D(f) = \{x \in \mathbb{R} : x^2 - 1 \neq 0\} = (-\infty, 1) \cup (-1, 1) \cup (1, +\infty).$$

3°. Степенная функция.

$$y = x^{\mu}$$
. $\mu \in \mathbb{R}$.

$$D(y) = \left\{ egin{array}{ll} \mathbb{R}_+ = (0, +\infty), & ext{ если } \mu \in \mathbb{R}, \\ \mathbb{R}, & ext{ если } \mu \in \mathbb{R}_+ \end{array}
ight.$$

Примеры 1.1.8.

 $3^{\circ}.1$). При $\mu \in \mathbb{Z}$ мы получаем рациональную функцию. В частности,

$$y = x^{-1} = \frac{1}{x}, \quad y = x^{-2} = \frac{1}{x^2}, \dots$$

3°.2) При
$$\mu = \frac{m}{n}, \quad m, n \in \mathbb{N}$$

$$y = x^{\frac{m}{n}} = \sqrt[n]{x^m}.$$

4° . Показательная функция.

$$y = a^x$$
, $a > 0$, $a \neq 1$,
$$D(y) = \mathbb{R}.$$

Пример 1.1.9. Экспонента

$$y = e^x$$
.

5°. Логарифмическая функция.

$$y = \log_a x, \ a > 0, \ a \neq 1,$$

 $D(y) = (0, +\infty).$

Пример 1.1.10. Экспонента

$$y = \log_e x = \ln x$$
.

6°. Тригонометрические функции.

- 6.1) Синус $y = \sin x$, $D(y) = \mathbb{R}$;
- 6.2) Косинус $y = \cos x$, $D(y) = \mathbb{R}$;
- 6.3) Тангенс $y = \operatorname{tg} x$, $D(y) = \{x \in \mathbb{R} : x \neq \frac{\pi}{2} + \pi n, n \in \mathbb{N}\};$
- 6.4) Котангенс $y = \operatorname{ctg} x$, $D(y) = \{x \in \mathbb{R} : x \neq \pi n, n \in \mathbb{N}\};$
- 6.5) Cekahc $y = \sec x$, $D(y) = \{x \in \mathbb{R} : x \neq \frac{\pi}{2} + \pi n, n \in \mathbb{N}\};$
- 6.6) Косеканс $y = \csc x$, $D(y) = \{x \in \mathbb{R} : x \neq \pi n, n \in \mathbb{N}\}.$

7°. Гиперболические функции.

7.1). Гиперболический синус

$$y = \sinh x = \frac{e^x - e^{-x}}{2}, \ D(y) = \mathbb{R};$$

7.2). Гиперболический косинус

$$y = \operatorname{ch} x = \frac{e^x + e^{-x}}{2}, \ D(y) = \mathbb{R};$$

7.3). Гиперболический тангенс

$$y = \operatorname{th} x = \frac{\operatorname{sh} x}{\operatorname{ch} x}, \ D(y) = \mathbb{R};$$

7.4). Гиперболический котангенс

$$y = \operatorname{cth} x = \frac{\operatorname{ch} x}{\operatorname{sh} x}, \ D(y) = \{x \in \mathbb{R} : \ \operatorname{sh} x \neq 0\} = \{x \in \mathbb{R} : x \neq 0\}.$$

Замечание 1.1.11. Имеют место следующие формулы:

1).
$$\operatorname{ch}^{2} x - \operatorname{sh}^{2} x = 1. \tag{1.1.1}$$

Действительно,

$$\operatorname{ch}^{2} x - \operatorname{sh}^{2} x = \left(\frac{e^{x} + e^{-x}}{2}\right)^{2} - \left(\frac{e^{x} - e^{-x}}{2}\right)^{2} =$$

$$= \frac{e^{2x} + 2 + e^{-2x}}{4} - \frac{e^{2x} - 2 + e^{-2x}}{4} = \frac{2+2}{4} = 1.$$

2).
$$ch 2x = ch^{2} x + sh^{2} x.$$
 (1.1.2)

Действительно,

$$\operatorname{ch}^{2} x + \operatorname{sh}^{2} x = \left(\frac{e^{x} + e^{-x}}{2}\right)^{2} + \left(\frac{e^{x} - e^{-x}}{2}\right)^{2} =$$

$$= \frac{e^{2x} + 2 + e^{-2x}}{4} + \frac{e^{2x} - 2 + e^{-2x}}{4} = \frac{2e^{2x} + 2e^{-2x}}{4} = \frac{e^{2x} + e^{-2x}}{2} = \operatorname{ch} 2x.$$

3).
$$\operatorname{sh} 2x = 2 \operatorname{sh} x \cdot \operatorname{ch} x. \tag{1.1.3}$$

Действительно,

$$2 \operatorname{sh} x \cdot \operatorname{ch} x = 2 \left(\frac{e^x - e^{-x}}{2} \right) \left(\frac{e^x + e^{-x}}{2} \right) =$$
$$= 2 \frac{e^{2x} - e^{-2x}}{4} = \frac{e^{2x} - e^{-2x}}{2} = \operatorname{sh} 2x.$$

4).
$$\operatorname{ch}(x+y) = \operatorname{ch} x \operatorname{ch} y + \operatorname{sh} x \operatorname{sh} y. \tag{1.1.4}$$

Действительно,

$$\operatorname{ch} x \operatorname{ch} y + \operatorname{sh} x \operatorname{sh} y = \left(\frac{e^x + e^{-x}}{2}\right) \left(\frac{e^y + e^{-y}}{2}\right) + \left(\frac{e^x - e^{-x}}{2}\right) \left(\frac{e^y - e^{-y}}{2}\right) =$$

$$= \frac{e^{x+y} + e^{-x+y} + e^{x-y} + e^{-x-y}}{4} + \frac{e^{x+y} - e^{-x+y} - e^{x-y} + e^{-x-y}}{4} =$$

$$= \frac{2e^{x+y} + 2e^{-x-y}}{4} = \frac{e^{(x+y)} + 2e^{-(x+y)}}{2} = \operatorname{ch}(x+y).$$

5).
$$\operatorname{ch}(x - y) = \operatorname{ch} x \operatorname{ch} y - \operatorname{sh} x \operatorname{sh} y. \tag{1.1.5}$$

Действительно,

$$\operatorname{ch} x \operatorname{ch} y - \operatorname{sh} x \operatorname{sh} y = \left(\frac{e^x + e^{-x}}{2}\right) \left(\frac{e^y + e^{-y}}{2}\right) - \left(\frac{e^x - e^{-x}}{2}\right) \left(\frac{e^y - e^{-y}}{2}\right) =$$

$$= \frac{e^{x+y} + e^{-x+y} + e^{x-y} + e^{-x-y}}{4} - \frac{e^{x+y} - e^{-x+y} - e^{x-y} + e^{-x-y}}{4} =$$

$$= \frac{2e^{-x+y} + 2e^{x-y}}{4} = \frac{e^{(x-y)} + e^{-(x-y)}}{2} = \operatorname{ch}(x - y).$$

6).
$$\operatorname{sh}(x+y) = \operatorname{sh} x \operatorname{ch} y + \operatorname{ch} x \operatorname{sh} y. \tag{1.1.6}$$

Действительно,

$$sh x ch y + ch x sh y = \left(\frac{e^x - e^{-x}}{2}\right) \left(\frac{e^y + e^{-y}}{2}\right) + \left(\frac{e^x + e^{-x}}{2}\right) \left(\frac{e^y - e^{-y}}{2}\right) = \\
= \frac{e^{x+y} - e^{-x+y} + e^{x-y} - e^{-x-y}}{4} + \frac{e^{x+y} + e^{-x+y} - e^{x-y} - e^{-x-y}}{4} = \\
= \frac{2e^{x+y} - 2e^{-x-y}}{4} = \frac{e^{(x+y)} - e^{-(x+y)}}{2} = sh(x+y).$$

7).
$$\operatorname{sh}(x - y) = \operatorname{sh} x \operatorname{ch} y - \operatorname{ch} x \operatorname{sh} y. \tag{1.1.7}$$

Действительно,

$$\operatorname{sh} x \operatorname{ch} y - \operatorname{ch} x \operatorname{sh} y = \left(\frac{e^x - e^{-x}}{2}\right) \left(\frac{e^y + e^{-y}}{2}\right) - \left(\frac{e^x + e^{-x}}{2}\right) \left(\frac{e^y - e^{-y}}{2}\right) =$$

$$= \frac{e^{x+y} - e^{-x+y} + e^{x-y} - e^{-x-y}}{4} - \frac{e^{x+y} + e^{-x+y} - e^{x-y} - e^{-x-y}}{4} =$$

$$= \frac{2e^{x-y} - 2e^{-x+y}}{4} = \frac{e^{(x-y)} - e^{-(x-y)}}{2} = \operatorname{sh}(x - y).$$

1.1.4 Понятие обратной функции.

Пусть

$$f: X \to Y$$

некоторая функция, определенная на множестве X, и Y=f(X) (В этом случае говорят, что функция f отображает X на Y).

Если $y_0 \in Y$, то существует такое $x_0 \in X$, что

$$f(x_0) = y_0$$

Отметим, что такое $x_0 \in X$ может быть не единственное.

Определение 1.1.12. В случае, когда по каждому $y \in Y$ найдется лишь один $x \in X$, такой что

$$f(x) = y,$$

на множестве Y можно определить функцию со значениями в области X, которая обозначается:

$$g: Y \to X$$

или

$$x = g(y)$$
.

Эта функция g называется обратной к функции f и обозначается

$$g = f^{-1},$$

Так как

$$f^{-1} = g$$
 и $g^{-1} = f$,

то функции f и g называются взаимно обратными.

Ясно, что если y = f(x), то $x = f^{-1}(y)$. Поэтому

$$y = f(x) = f(f^{-1}(y))$$

И

$$x = f^{-1}(y) = f^{-1}(f(x))$$

Пример 1.1.13. Функции

$$y = a^x$$

И

$$x = \log_a y$$

обратные друг другу.

Замечание 1.1.14. Пусть функции

$$y = f(x)$$

И

$$x = g(y)$$

обратные друг другу.

Чаще всего, для обозначения обратной функции сохраняю положение зависимой и независимой переменных. Т.е. пишут, что функции

$$y = f(x)$$

И

$$y = q(x) = f^{-1}(x)$$

обратны друг другу. Поэтому, при такой форме записи, графики обратных друг другу функций симметричны относительно биссектрисы первого и третьего координатных углов.

Примеры 1.1.15. Обратные тригонометрические функции:

- 1). Apkcuhyc $y = \arcsin x$;
- 2). Арккосинус $y = \arccos x$;
- 3). Apktahrenc $y = \operatorname{arctg} x$;
- 4). Арккотангенс $y = \operatorname{arcctg} x$.

Напомним некоторые определения.

Определение 1.1.16. • Пусть $|a| \le 1$. Арксинусом числа a называется угол $\alpha \in \left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$, синус которого равен a:

$$\alpha = \arcsin a \Leftrightarrow \alpha \in \left[-\frac{\pi}{2}, \frac{\pi}{2} \right], \sin \alpha = a.$$

• Пусть $|a| \leq 1$. Арккосинусом числа a называется угол $\alpha \in [0, \pi]$, косинус которого равен a:

$$\alpha = \arccos a \Leftrightarrow \alpha \in [0, \pi], \cos \alpha = a.$$

• Арктангенсом числа a называется угол $\alpha \in \left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$, тангенс которого равен a:

$$\alpha = \operatorname{arctg} a \Leftrightarrow \alpha \in \left(-\frac{\pi}{2}, \frac{\pi}{2}\right), \operatorname{tg} \alpha = a.$$

• Арккотангенсом числа a называется угол $\alpha \in (0, \pi)$, котангенс которого равен a:

$$\alpha = \operatorname{arcctg} a \Leftrightarrow \alpha \in (0, \pi), \operatorname{ctg} \alpha = a.$$

1.1.5 Суперпозиция функций. Сложная функция.

Пусть заданы две функции f и g таким образом, что:

- 1). Функция y = f(x) отображает множество X в множество Y,
- 2). Функция z = f(y) отображает множество Y в множество Z.

Используя эти два отображения, можно построить отображение множества X на множество Z:

$$X \xrightarrow{f} Y \xrightarrow{g} Z$$

Определение 1.1.17. Полученную таким образом функцию

$$z = h(x)$$

называют суперпозицией функций f и g и обозначают:

$$h = g \circ f$$

Определение 1.1.18. Функция h(x), являющаяся суперпозицией функций f и g:

$$h(x) = (g \circ f)(x) = g(f(x)),$$

называется сложной функцией.

1.2 Понятие предела функции.

1.2.1 Определение предела функции в точке.

Определение 1.2.1. Точка a называется предельной точкой множества E, если в каждой ее окрестности найдётся хотя бы одна точка из множества.

Понятие предельной точки множества можно определить эквивалентным образом.

Определение 1.2.2. Точка a называется предельной точкой множества E, если существует последовательность $\{x_n\}$ точек множества E, отличных от a:

$$\{x_n\} \subset E, \ x \neq a,$$

сходящаяся к a, т.е. такая. что

$$\lim_{n \to \infty} x_n = a.$$

Определение 1.2.3. Пусть y = f(x) – некоторая функция, определенная на множестве X и a — предельная точка множества X = D(f) (считаем X бесконечным).

Число A называется *пределом функции* y = f(x) при $x \to a$ (в точке x = a), если для любой последовательности $\{x_n\}$ точек множества X, отличных от a:

$$\{x_n\} \subset X, \ x \neq a,$$

сходящейся к a, соответствующая последовательность

$$f(x_1), f(x_2),, f(x_n),$$

значений функции сходится к A, т.е.

$$\lim_{n \to \infty} f(x_n) = A.$$

В этом случае пишут:

$$\lim_{x \to a} f(x) = A.$$

Замечание 1.2.4.

$$(A=\lim_{x o a}f(x))\Longleftrightarrow ($$
для любой $\{x_n\}\subset X\colon \lim_{n o\infty}x_n=a,\ x_n
eq a\Longrightarrow \lim_{n o\infty}f(x_n)=A.)$

Замечание 1.2.5. Это определение предела функции называют определением предела по Гейне. Поэтому иногда это фиксируют в записи

$$\lim_{x \to a} f(x) \stackrel{(\Gamma)}{=} A.$$

Замечание 1.2.6. Предел функции f(x) в точке x=a (по Гейне) определяется однозначно, так как последовательность $\{f(x_n)\}$ может иметь только один предел.

Примеры 1.2.7. 1). Пусть функция постоянна:

$$f(x) = c$$
 для любого $x \in \mathbb{R}$.

Тогда для любого $a \in \mathbb{R}$

$$\lim_{x \to a} f(x) = c.$$

2). Рассмотрим линейную функцию

$$f(x) = x, x \in \mathbb{R}.$$

Пусть $a \in \mathbb{R}$ — произвольное.

Так для любой последовательности $\{x_n\}\subset \mathbb{R},$ сходящейся к a и такой, что $x_n\neq a$ для любого $n\in \mathbb{N},$ имеем:

$$f(x_n) = x_n,$$

т.е. соответствующая последовательность

$$f(x_1), f(x_2),, f(x_n), ...$$

значений функции тоже сходится к a, то

$$\lim_{x \to a} f(x) = \lim_{x \to a} x = a$$

Понятие предела функции y = f(x) в точке x = a может быть определенно и другим способом.

Определение 1.2.8. (По Коши) Число A называется npedenom функции y = f(x) в точке x = a (при $x \to a$), если для любого числа $\varepsilon > 0$ найдется такое число $\delta > 0$, что для любого $x \in D(f)$, удовлетворяющего неравенству

$$0 < |x - a| < \delta,$$

выполняется неравенство

$$|f(x) - A| < \varepsilon$$
.

Замечание 1.2.9. Это определение предела функции называют определением предела по Коши и фиксируют в записи

$$\lim_{x \to a} f(x) \stackrel{(K)}{=} A.$$

Замечание 1.2.10.

$$\lim_{x \to a} f(x) \stackrel{(K)}{=} A$$

тогда и только тогда, когда для любого числа $\varepsilon > 0$ найдется такое число $\delta > 0$, что для любого $x \in D(f)$ из δ -окрестности $U_{\delta}(a)$ точки $a, x \neq a$, соответствующее значение f(x) принадлежит ε -окрестности $U_{\varepsilon}(A)$ точки A.

Теорема 1.2.11. Определения предела функции f(x) в точке x = a по Гейне и по Коши эквивалентны.

Доказательство. Пусть

$$\lim_{x \to a} f(x) \stackrel{(K)}{=} A.$$

Рассмотрим последовательность $\{x_n\}\subset X=D(f)$ такую, что $x_n\neq a$ для любого $n\in\mathbb{N}$ и

$$\lim_{n \to \infty} x_n = a.$$

Выберем произвольно $\varepsilon > 0$. Поскольку

$$\lim_{x \to a} f(x) \stackrel{(K)}{=} A,$$

то существует $\delta>0$ такое, что для любого $x\in D(f)$, удовлетворяющего неравенству

$$0 < |x - a| < \delta,$$

выполняется неравенство

$$|f(x) - A| < \varepsilon$$
.

Далее, последовательность $\{x_n\}$ — сходящаяся:

$$\lim_{n \to \infty} x_n = a.$$

Поэтому по $\delta>0$ найдется номер $N=N_\delta$ такой, что для любого $n\geq N_\delta$ выполняется неравенство

$$0 < |x_n - a| < \delta.$$

Но тогда для любого $n \geq N_{\delta}$ выполняется неравенство

$$|f(x_n) - A| < \varepsilon.$$

Но это означает, что

$$\lim_{n \to \infty} f(x_n) = A.$$

Таким образом

$$\lim_{x \to a} f(x) \stackrel{(\Gamma)}{=} A$$

Обратно, пусть

$$\lim_{x \to a} f(x) \stackrel{(\Gamma)}{=} A$$

Допустим, что f(x) не имеет предела в точке x = a в смысле Коши, т.е.

$$\lim_{x \to a} f(x) \stackrel{(K)}{\neq} A$$

Это значит, что существует такое $\varepsilon_0>0,$ что для любого $\delta>0$ найдется такое $x_\delta\in D(f),$ что

$$0 < |x_{\delta} - a| < \delta,$$

в то время как

$$|f(x_{\delta}) - A| \geqslant \varepsilon_0.$$

Рассмотрим последовательность таких чисел

$$\delta_n = \frac{1}{n}$$

и обозначим

$$x_n = x_{\delta_n} = x_{\frac{1}{n}}.$$

Тогда

$$0 < |x_n - a| < \delta_n = \frac{1}{n}$$

И

$$|f(x_n) - A| \geqslant \varepsilon_0.$$

Но тогда

$$\lim_{n \to \infty} x_k = a,$$

в то время как последовательность значений $f(x_n)$ не стремится к A. Но это противоречит тому, что по предположению,

$$\lim_{x \to a} f(x) \stackrel{(\Gamma)}{=} A.$$

Следовательно, наше предположение неверно, т.е.

$$\lim_{x \to a} f(x) \stackrel{(K)}{=} A.$$

Таким образом, определения предела функции f(x) в точке x=a по Гейне и по Коши эквивалентны.

Замечание 1.2.12. В приведенных определениях предела функции f(x) в точке x=a по Гейне и по Коши предполагается, что точки a и A — конечные. Поэтому в этом случае подчеркивают, что речь идет о конечном пределе функции f(x) в конечной точке x=a. В дальнейшем мы будем пользоваться тем определением предела, которое будет удобно. Кроме того, нужно иметь ввиду, что точка x=a может не принадлежать области определения D(f) функции f(x).

Примеры 1.2.13. 1). Найдем

$$\lim_{x \to 2} \frac{x^2 - 4}{x - 2}.$$

Заметим, что функция

$$f(x) = \frac{x^2 - 4}{x - 2}$$

не определена в точке x=2. Но, как уже отмечалось, на определение предела этот факт не влияет. Поэтому, при $x\neq 2$ мы можем провести сокращение

$$\frac{x^2 - 4}{x - 2} = x + 2$$

и рассматривать предел

$$\lim_{x \to 2} \frac{x^2 - 4}{x - 2} = \lim_{x \to 2} (x + 2).$$

Пусть последовательность $\{x_n\}\subset D(f)$ такая, что $x_n\neq 2$ для любого натурального $n\in\mathbb{N}$ и

$$\lim_{n\to\infty} x_n = 2.$$

Тогда

$$\lim_{n \to \infty} f(x_n) = \lim_{n \to \infty} (x_n + 2) = 2 + 2 = 4.$$

Поэтому

$$\lim_{x \to 2} (x+2) = 4.$$

Следовательно

$$\lim_{x \to 2} \frac{x^2 - 4}{x - 2} = 4.$$

2). Найдем предел

$$\lim_{x \to 1} x^2.$$

Сначала воспользуемся определением предела по Гейне.

Так как для любой последовательности $\{x_n\}$ такой, что $x_n \neq 1$ для любого натурального $n \in \mathbb{N}$ и

$$\lim_{n \to \infty} x_n = 1$$

имеем, что

$$\lim_{x_n \to 1} x_n^2 = \lim_{x_n \to 1} x_n \cdot \lim_{x_n \to 1} x_n = 1,$$

ТО

$$\lim_{x \to 1} x^2 \stackrel{(\Gamma)}{=} 1.$$

Теперь установим этот факт при помощи определения предела по Коши. Итак, покажем, что

$$\lim_{x \to 1} x^2 \stackrel{(K)}{=} 1.$$

Согласно определения, для любого положительного $\varepsilon>0$ должно существовать такое положительное $\delta>0$, что для любого x, удовлетворяющего неравенству

$$0 < |x - 1| < \delta$$
,

справедливо неравенство

$$|x^2 - 1| < \varepsilon.$$

Действительно, запишем $|x^2-1|$ как произведение модулей:

$$|x^2 - 1| = |x + 1| \cdot |x - 1|.$$

Рассмотрим окрестность $U_{\frac{1}{2}}(1)$, содержащий точку 1:

$$U_{\frac{1}{2}}(1) = \left(\frac{1}{2}; \frac{3}{2}\right),$$

Пусть

$$x \in \left(\frac{1}{2}; \frac{3}{2}\right).$$

Тогда

$$x+1 \in \left(\frac{3}{2}; \frac{5}{2}\right).$$

Следовательно

$$|x+1| < \frac{5}{2}.$$

Отсюда

$$|x^2 - 1| = |x + 1| \cdot |x - 1| < \frac{5}{2} \cdot |x - 1|.$$

Левая часть этого выражения должна быть меньше ε . Это требование автоматически будет выполнено, если потребовать, чтобы правая часть была меньше ε . То есть

$$\frac{5}{2} \cdot |x - 1| < \varepsilon \Rightarrow |x - 1| < \frac{2}{5} \cdot \varepsilon.$$

Пусть теперь

$$\delta < \min \left\{ \frac{1}{2}, \, \frac{2}{5} \cdot \varepsilon \right\}.$$

Тогда при

$$0 < |x - 1| < \delta,$$

Имеем:

$$|x^2 - 1| = |x + 1| \cdot |x - 1| < \frac{5}{2} \cdot |x - 1| < \frac{5}{2} \cdot \delta < \frac{5}{2} \cdot \frac{2}{5} \cdot \varepsilon = \varepsilon,$$

т.е.

$$\lim_{x \to 1} x^2 \stackrel{(K)}{=} 1.$$

3). Пусть

$$f(x) = \sin \frac{1}{x}.$$

Покажем, что при $x \to 0$ эта функция предела не имеет.

Пусть сначала

$$x_n = \frac{1}{\pi n}.$$

Тогда

$$f(x_n) = \sin(\pi n) = 0$$

и при $n \to \infty$ мы имеем

$$x_n \to 0$$

И

$$f(x_n) \to 0.$$

Если теперь

$$x_n' = \frac{1}{\frac{\pi}{2} + 2\pi n},$$

ТО

$$f(x_n') = \sin\left(\frac{\pi}{2} + 2\pi n\right) = 1.$$

Следовательно

$$x_n' \to 0$$
,

в то время как

$$f(x'_n) \to 1.$$

Так как полученные пределы оказались различными, то функция f(x) не имеет предела при $x \to 0$.

1.2.2 Предел функции f(x) на бесконечности.

Допустим. что в области определения D(f) существуют бесконечно большие последовательности. Тогда можно определить понятие предела функции f(x) на бесконечности.

Определение 1.2.14. Число A называется пределом функции f(x) при $x \to \infty$ (на бесконечности), если для любой последовательности $\{x_n\} \subset D(f)$ такой, что $x_n \to \infty$, последовательность значений функции

$$f(x_1), f(x_2), \ldots, f(x_n), \ldots$$

стремится к A:

$$\lim_{n \to \infty} f(x_n) = A.$$

Эквивалентно, число A называется пределом функции f(x) при $x \to \infty$ (на бесконечности), если для любого $\varepsilon > 0$ существует такое K > 0, что для любого $x \in D(f)$ такого, что

$$|x| \geq K$$

выполняется неравенство

$$|f(x) - A| < \varepsilon$$
.

В этом случае пишут

$$A = \lim_{x \to \infty} f(x).$$

Аналогично определяются пределы функции f(x) при $x \to +\infty$ и $x \to -\infty$.

Определение 1.2.15. Число A называется пределом функции f(x) при $x \to +\infty$, если для любой последовательности $\{x_n\} \subset D(f)$ такой, что $x_n \to +\infty$, последовательность значений функции

$$f(x_1), f(x_2), \ldots, f(x_n), \ldots$$

стремится к A:

$$\lim_{n \to \infty} f(x_n) = A.$$

Эквивалентно, число A называется пределом функции f(x) при $x \to +\infty$, если для любого $\varepsilon > 0$ существует такое K > 0, что для любого $x \in D(f)$ такого, что

$$x \ge K$$

выполняется неравенство

$$|f(x) - A| < \varepsilon$$
.

В этом случае пишут

$$A = \lim_{x \to +\infty} f(x).$$

Определение 1.2.16. Число A называется пределом функции f(x) при $x \to -\infty$, если для любой последовательности $\{x_n\} \subset D(f)$ такой, что $x_n \to -\infty$, последовательность значений функции

$$f(x_1), f(x_2), \ldots, f(x_n), \ldots$$

стремится к A:

$$\lim_{n \to \infty} f(x_n) = A.$$

Эквивалентно, число A называется пределом функции f(x) при $x \to -\infty$, если для любого $\varepsilon > 0$ существует такое K > 0, что для любого $x \in D(f)$ такого, что

$$x < -K$$

выполняется неравенство

$$|f(x) - A| < \varepsilon$$
.

В этом случае пишут

$$A = \lim_{x \to -\infty} f(x).$$

1.2.3 Бесконечный предел функции f(x) в точке.

Пусть a — предельная точка области определения D(f) функции f(x). Тогда можно определить понятие бесконечного предела функции f(x) в точке x.

Определение 1.2.17. Говорят, что функция f(x) имеет бесконечный предел при $x \to a$, если для любой последовательности $\{x_n\} \subset D(f)$ такой, что $x_n \to a$, последовательность значений функции

$$f(x_1), f(x_2), \ldots, f(x_n), \ldots$$

стремится к ∞ :

$$\lim_{n\to\infty} f(x_n) = \infty.$$

Эквивалентно, функция f(x) имеет бесконечный предел при $x \to a$, если, если для любого K>0 существует такое $\delta>0$, что для любого $x\in D(f)$ такого, что

$$0 < |x - a| < \delta$$

выполняется неравенство

$$|f(x)| > K$$
.

В этом случае пишут

$$\lim_{x \to a} f(x) = \infty.$$

Аналогично определяются еще два бесконечных предела функции f(x) при $x \to a$.

Определение 1.2.18. Говорят, что функция f(x) стремится к $+\infty$ при $x \to a$, если для любой последовательности $\{x_n\} \subset D(f)$ такой, что $x_n \to a$, последовательность значений функции

$$f(x_1), f(x_2), \ldots, f(x_n), \ldots$$

стремится к $+\infty$:

$$\lim_{n \to \infty} f(x_n) = +\infty.$$

Эквивалентно, функция f(x) стремится к $+\infty$ при $x \to a$, если, если для любого K>0 существует такое $\delta>0$, что для любого $x\in D(f)$ такого, что

$$0<|x-a|<\delta$$

выполняется неравенство

$$f(x) > K$$
.

В этом случае пишут

$$\lim_{x \to a} f(x) = +\infty.$$

Определение 1.2.19. Говорят, что функция f(x) стремится к $-\infty$ при $x \to a$, если для любой последовательности $\{x_n\} \subset D(f)$ такой, что $x_n \to a$, последовательность значений функции

$$f(x_1), f(x_2), \ldots, f(x_n), \ldots$$

стремится к $-\infty$:

$$\lim_{n\to\infty} f(x_n) = -\infty.$$

Эквивалентно, функция f(x) стремится к $-\infty$ при $x \to a$, если, если для любого K>0 существует такое $\delta>0$, что для любого $x\in D(f)$ такого, что

$$0 < |x - a| < \delta$$

выполняется неравенство

$$f(x) < -K$$
.

В этом случае пишут

$$\lim_{x \to a} f(x) = -\infty.$$

1.2.4 Бесконечный предел функции f(x) на бесконечности.

Допустим, что в области определения D(f) существуют бесконечно большие последовательности. Тогда можно определить понятие предела функции f(x) на бесконечности.

Определение 1.2.20. Говорят, что функция f(x) имеет бесконечный предел при $x \to \infty$, если для любой последовательности $\{x_n\} \subset D(f)$ такой, что $x_n \to \infty$, последовательность значений функции

$$f(x_1), f(x_2), \ldots, f(x_n), \ldots$$

стремится к ∞ :

$$\lim_{n \to \infty} f(x_n) = \infty.$$

Эквивалентно, функция f(x) имеет бесконечный предел при $x \to a$, если, если для любого K > 0 существует такое P > 0, что для любого $x \in D(f)$ такого, что

выполняется неравенство

$$|f(x)| > K.$$

В этом случае пишут

$$\lim_{x \to \infty} f(x) = \infty.$$

Аналогично определяются еще два бесконечных предела функции f(x) при $x \to \infty$.

Определение 1.2.21. Говорят, что функция f(x) стремится к $+\infty$ при $x \to \infty$, если для любой последовательности $\{x_n\} \subset D(f)$ такой, что $x_n \to \infty$, последовательность значений функции

$$f(x_1), f(x_2), \ldots, f(x_n), \ldots$$

стремится к $+\infty$:

$$\lim_{n \to \infty} f(x_n) = +\infty.$$

Эквивалентно, функция f(x) стремится к $+\infty$ при $x \to \infty$, если, если для любого K>0 существует такое P>0, что для любого $x\in D(f)$ такого, что

выполняется неравенство

$$f(x) > K$$
.

В этом случае пишут

$$\lim_{x \to \infty} f(x) = +\infty.$$

Определение 1.2.22. Говорят, что функция f(x) стремится к $-\infty$ при $x \to \infty$, если для любой последовательности $\{x_n\} \subset D(f)$ такой, что $x_n \to \infty$, последовательность значений функции

$$f(x_1), f(x_2), \ldots, f(x_n), \ldots$$

стремится к $-\infty$:

$$\lim_{n \to \infty} f(x_n) = -\infty.$$

Эквивалентно, функция f(x) стремится к $-\infty$ при $x \to \infty$, если, если для любого K>0 существует такое P>0, что для любого $x\in D(f)$ такого, что

выполняется неравенство

$$f(x) < -K.$$

В этом случае пишут

$$\lim_{x \to \infty} f(x) = -\infty.$$

Замечание 1.2.23. Аналогично могут быть определены следующие бесконечные пределы:

1).
$$\lim_{x \to +\infty} f(x) = \infty.$$

2).
$$\lim_{x \to +\infty} f(x) = +\infty.$$

3).
$$\lim_{x \to +\infty} f(x) = -\infty.$$

4).
$$\lim_{x \to -\infty} f(x) = \infty.$$

5).
$$\lim_{x \to -\infty} f(x) = +\infty.$$

6).
$$\lim_{x \to -\infty} f(x) = -\infty.$$

1.3 Односторонние пределы функции. Арифметические операции над функциями, имеющими предел.

1.3.1 Конечные односторонние пределы функции в точке.

Определение 1.3.1. Число A называется пределом функции f(x) при $x \to a$ справа, если для любой последовательности $\{x_n\} \subset D(f)$ такой, что $x_n > a$ и $\lim_{n \to \infty} x_n = a$ следует, что последовательность $\{f(x_n)\}$ сходится к A.

$$A = \lim_{x \to a+0} f(x) = f(a+0).$$

Аналогично определяется предел функции f(x) при $x \to a$ слева.

$$A = \lim_{x \to a-0} f(x) = f(a-0).$$

Пример 1.3.2.

$$y = sign x = \begin{cases} 1, & x > 0 \\ 0, & x = 0 \\ -1, & x < 0 \end{cases}$$

Рассмотрим поведение функции при $x \to 0$ справа и слева.

Очевидно, что предел справа равен

$$f(0+0) = \lim_{x \to 0+0} f(x) = \lim_{x \to 0+0} \operatorname{sign} x = 1.$$

Аналогично, левосторонний предел равен

$$f(0-0) = \lim_{x\to 0-0} f(x) = \lim_{x\to 0-0} \operatorname{sign} x = -1.$$

Значение же функции в точке x = 0 равно

$$f(0) = 0.$$

Замечание 1.3.3. Следовательно, в общем случае числа f(a+0), f(a-0), и f(a), если $a \in D(f)$, различны.

Теорема 1.3.4. Если существуют и равны пределы функции справа и слева

$$f(a-0) = f(a+0) = A,$$

то существует предел функции f(x) при $x \to a$ и он тоже равен A:

$$\lim_{x \to a} f(x) = A.$$

Доказательство. 1). Проведем сначала доказательство этой теоремы, используя определение предела по Гейне (по Гейне).

Пусть последовательность $\{x_n\} \subset D(f)$ и

$$\lim_{n \to \infty} x_n = a.$$

Рассмотрим подпоследовательности

$$\{x_{n_k}\} \subset \{x_n\}: \quad x_{n_k} < a$$

И

$$\{x_{n'_k}\} \subset \{x_n\}: \quad x_{n'_k} > a.$$

Так как

$$\lim_{n \to \infty} x_n = a,$$

то любая ее подпоследовательность тоже сходится и имеет тот же предел. Поэтому

$$\lim_{k \to \infty} x_{n_k} = a,$$

И

$$\lim_{k \to \infty} x_{n'_k} = a.$$

и потому

$$\lim_{k \to \infty} f(x_{n_k}) = A = f(a - 0), \quad x_{n_k} < a,$$

И

$$\lim_{k \to \infty} f(x_{n'_k}) = A = f(a+0), \quad x_{n'_k} > a$$

Пусть $\varepsilon>0$. Тогда существует такое $N=N_{\varepsilon}$, что для любого $n_k\geq N$ и любого $n_k'\geq N$ выполняются неравенства:

$$|f(x_{n_k}) - A| < \varepsilon$$

И

$$|f(x_{n_k'}) - A| < \varepsilon.$$

Следовательно, для любого $n \ge N$ выполняется неравенство

$$|f(x_n) - A| < \varepsilon.$$

Это значит, что

$$\lim_{n \to \infty} f(x_n) = A$$

для любой последовательности

$$\lim_{n \to \infty} x_n = a.$$

Следовательно, существует предел функции f(x) при $x \to a$ и

$$\lim_{x \to a} f(x) = A.$$

2). Теперь проведем доказательство этой теоремы используя определение предела по Коши (по Коши).

Так как

$$\lim_{x \to a-0} f(x) = f(a-0) = A,$$

то для любого $\varepsilon > 0$ существует такое $\delta_1 > 0$, что для любого $x \in D(f)$, удовлетворяющего неравенству

$$a - \delta_1 < x < a$$

выполняется неравенство

$$|f(x) - A| < \varepsilon. \tag{1.3.1}$$

Аналогично, так как

$$\lim_{x \to a+0} f(x) = f(a+0) = A,$$

то для этого же $\varepsilon > 0$ существует такое $\delta_2 > 0$, что для любого $x \in D(f)$, удовлетворяющего неравенству

$$a < x < a + \delta_2$$

выполняется неравенство

$$|f(x) - A| < \varepsilon. \tag{1.3.2}$$

Пусть

$$\delta = \min\{\delta_1, \, \delta_2\}.$$

Тогда для любого $x \in D(f)$, удовлетворяющего неравенству

$$a - \delta < x < a + \delta, \ x \neq a$$

выполняется неравенство

$$|f(x) - A| < \varepsilon$$
.

Следовательно, существует предел функции f(x) при $x \to a$ и

$$\lim_{x \to a} f(x) = A.$$

Замечание 1.3.5. Очевидно, что имеет место и обратное утверждение. То есть, если существует

$$\lim_{x \to \infty} f(x) = A,$$

то существуют оба односторонних предела f(a+0) и f(a-0) и они равны:

$$f(a-0) = f(a+0) = A.$$

1.3.2 Бесконечные односторонние пределы функции f(x) в точке.

Пусть a — предельная точка области определения D(f) функции f(x). Тогда можно определить бесконечные односторонние пределы функции f(x) в точке a.

Определение 1.3.6. Говорят, что функция f(x) имеет бесконечный предел при $x \to a$ справа $(x \to a+0)$, если для любой последовательности $\{x_n\} \subset D(f)$ такой, что $x_n \to a, \ x_n > a, \$ последовательность значений функции

$$f(x_1), f(x_2), \ldots, f(x_n), \ldots$$

стремится к ∞ :

$$\lim_{n\to\infty} f(x_n) = \infty.$$

Эквивалентно, функция f(x) имеет бесконечный предел при $x \to a$ справа, если для любого K > 0 существует такое $\delta > 0$, что для любого $x \in D(f)$ такого, что

$$a < x < a + \delta$$

выполняется неравенство

$$|f(x)| > K$$
.

В этом случае пишут

$$\lim_{x \to a+0} f(x) = \infty.$$

Аналогично определяются еще два бесконечных предела функции f(x) при $x \to a$ справа.

Определение 1.3.7. Говорят, что функция f(x) стремится к $+\infty$ при $x \to a$ справа, если для любой последовательности $\{x_n\} \subset D(f)$ такой, что $x_n \to a, \ x_n > a, \$ последовательность значений функции

$$f(x_1), f(x_2), \ldots, f(x_n), \ldots$$

стремится к $+\infty$:

$$\lim_{n \to \infty} f(x_n) = +\infty.$$

Эквивалентно, функция f(x) стремится к $+\infty$ при $x \to a$ справа, если, если для любого K>0 существует такое $\delta>0$, что для любого $x\in D(f)$ такого, что

$$a < x < a + \delta$$

выполняется неравенство

$$f(x) > K$$
.

В этом случае пишут

$$\lim_{x \to a+0} f(x) = +\infty.$$

Определение 1.3.8. Говорят, что функция f(x) стремится к $-\infty$ при $x \to a$ справа, если для любой последовательности $\{x_n\} \subset D(f)$ такой, что $x_n \to a, \ x_n > a, \$ последовательность значений функции

$$f(x_1), f(x_2), \ldots, f(x_n), \ldots$$

стремится к $-\infty$:

$$\lim_{n\to\infty} f(x_n) = -\infty.$$

Эквивалентно, функция f(x) стремится к $-\infty$ при $x \to a$ справа, если, если для любого K>0 существует такое $\delta>0$, что для любого $x\in D(f)$ такого, что

$$a < x < a + \delta$$

выполняется неравенство

$$f(x) < -K$$
.

В этом случае пишут

$$\lim_{x \to a+0} f(x) = -\infty.$$

Перейдем к определению бесконечных односторонних пределов слева.

Определение 1.3.9. Говорят, что функция f(x) имеет бесконечный предел при $x \to a$ слева $(x \to a - 0)$, если для любой последовательности $\{x_n\} \subset D(f)$ такой, что $x_n \to a$, $x_n < a$, последовательность значений функции

$$f(x_1), f(x_2), \ldots, f(x_n), \ldots$$

стремится к ∞ :

$$\lim_{n \to \infty} f(x_n) = \infty.$$

Эквивалентно, функция f(x) имеет бесконечный предел при $x \to a$ слева, если для любого K>0 существует такое $\delta>0$, что для любого $x\in D(f)$ такого, что

$$a - \delta < x < a$$

выполняется неравенство

$$|f(x)| > K$$
.

В этом случае пишут

$$\lim_{x \to a-0} f(x) = \infty.$$

Аналогично определяются еще два бесконечных предела функции f(x) при $x \to a$ слева.

Определение 1.3.10. Говорят, что функция f(x) стремится к $+\infty$ при $x \to a$ слева, если для любой последовательности $\{x_n\} \subset D(f)$ такой, что $x_n \to a, \ x_n < a, \$ последовательность значений функции

$$f(x_1), f(x_2), \ldots, f(x_n), \ldots$$

стремится к $+\infty$:

$$\lim_{n \to \infty} f(x_n) = +\infty.$$

Эквивалентно, функция f(x) стремится к $+\infty$ при $x \to a$ слева, если для любого K>0 существует такое $\delta>0$, что для любого $x\in D(f)$ такого, что

$$a - \delta < x < a$$

выполняется неравенство

$$f(x) > K$$
.

В этом случае пишут

$$\lim_{x \to a-0} f(x) = +\infty.$$

Определение 1.3.11. Говорят, что функция f(x) стремится к $-\infty$ при $x \to a$ слева, если для любой последовательности $\{x_n\} \subset D(f)$ такой, что $x_n \to a, \ x_n < a, \$ последовательность значений функции

$$f(x_1), f(x_2), \ldots, f(x_n), \ldots$$

стремится к $-\infty$:

$$\lim_{n \to \infty} f(x_n) = -\infty.$$

Эквивалентно, функция f(x) стремится к $-\infty$ при $x \to a$ слева, если для любого K>0 существует такое $\delta>0$, что для любого $x\in D(f)$ такого, что

$$a - \delta < x < a$$

выполняется неравенство

$$f(x) < -K$$
.

В этом случае пишут

$$\lim_{x \to a-0} f(x) = -\infty.$$

1.3.3 Арифметические операции над функциями, имеющими предел.

Если f(x) и g(x) — две функции с общей областью определения

$$D(f) = D(y) = D,$$

то определены функции

$$f(x) + g(x) = (f+g)(x),$$

$$f(x) - g(x) = (f - g)(x),$$

$$f(x) \cdot g(x) = (f \cdot g)(x),$$

$$\frac{f(x)}{g(x)} = \left(\frac{f}{g}\right)(x)$$
, если $g(x) \neq 0$ для любого $x \in D$.

Пусть a — предельная точка общей области определения D = D(f) = D(g) функций f(x) и g(x).

Теорема 1.3.12. *Если существуют конечные пределы*

$$\lim_{x \to a} f(x) = A \quad u \quad \lim_{x \to a} g(x) = B,$$

mo

1). Существует предел

$$\lim_{x \to a} [f(x) + g(x)] = \lim_{x \to a} f(x) + \lim_{x \to a} g(x) = A + B.$$

2). Существует предел

$$\lim_{x \to a} [f(x) - g(x)] = \lim_{x \to a} f(x) - \lim_{x \to a} g(x) = A - B.$$

3). Существует предел

$$\lim_{x \to a} [f(x) \cdot g(x)] = \lim_{x \to a} f(x) \cdot \lim_{x \to a} g(x) = A \cdot B$$

4). Если $B \neq 0$, то существует предел

$$\lim_{x \to a} \frac{f(x)}{g(x)} = \frac{\lim_{x \to a} f(x)}{\lim_{x \to a} g(x)} = \frac{A}{B}.$$

Доказательство. Доказательство теоремы следует из доказательства соответствующей теоремы для последовательностей.

Действительно, докажем, например первое из этих утверждений.

Для любой последовательности $\{x_n\}\subset D$ такой, что $x_n\to a,\ x_n\neq a,$ имеем:

$$\lim_{n \to \infty} f(x_n) = A$$

И

$$\lim_{n \to \infty} g(x_n) = B.$$

Тогда существует предел

$$\lim_{n \to \infty} [f(x_n) + g(x_n)] = \lim_{n \to \infty} f(x_n) + \lim_{n \to \infty} g(x_n) = A + B.$$

Следовательно, существует

$$\lim_{x \to a} [f(x) + g(x)] = \lim_{x \to a} f(x) + \lim_{x \to a} g(x) = A + B.$$

Остальные утверждения доказываются аналогично.

Следствие 1.3.13. 1). Если a- предельная точка области определения D(f) функций f(x), то

$$\lim_{x \to a} [cf(x)] = c \lim_{x \to a} f(x).$$

2).
$$\lim_{x \to x_0} [a_n x^n + a_{n-1} x^{n-1} + \dots + a_0] = a_n x_0^n + a_{n-1} x_0^{n-1} + \dots + a_0,$$

m.e. если

$$P_n(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_0,$$

mo

$$\lim_{x \to x_0} P_n(x) = P_n(x_0).$$

3). Если

$$P_n(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_0,$$

$$Q_m(x) = b_m x^m + a_{m-1} x^{m-1} + \dots + b_0,$$

u

$$Q(x_0) \neq 0,$$

mo

$$\lim_{x \to x_0} \frac{P_n(x)}{Q_m(x)} = \lim_{x \to x_0} \frac{a_n x^n + a_{n-1} x^{n-1} + \dots + a_0}{b_n x^n + b_{n-1} x^{n-1} + \dots + b_0} = \frac{P_n(x_0)}{Q_m(x_0)}.$$

В следующей теореме рассматривается предельный переход в неравенствах. Доказательство теоремы следует из доказательства соответствующей теоремы для последовательностей. Обозначим через

$$\overset{\circ}{U}_{\varepsilon}(a) = (a - \varepsilon, \ a) \cup (a, \ a + \varepsilon)$$

выколотую ε -окрестность точки a.

Теорема 1.3.14. Пусть a- предельная точка общей области определения D=D(f)=D(g) функций f(x) и g(x) и пусть существуют конечные пределы

$$\lim_{x \to a} f(x) = A \quad u \quad \lim_{x \to a} g(x) = B,$$

1). Если для некоторого $\varepsilon>0$ для любого $x\in \overset{\circ}{U}_{\varepsilon}(a)\cap D$ выполнено неравенство

mo

$$\lim_{x \to a} f(x) = A \le B = \lim_{x \to a} g(x).$$

2). Если для некоторого $\varepsilon>0$ для любого $x\in \overset{\circ}{U}_{\varepsilon}(a)\cap D$ выполнено неравенство

$$f(x) \le g(x),$$

mo

$$\lim_{x \to a} f(x) = A \le B = \lim_{x \to a} g(x).$$

3). Если для некоторого $\varepsilon>0$ для любого $x\in \overset{\circ}{U}_{\varepsilon}(a)\cap D$ выполнено неравенство

$$f(x) > g(x),$$

mo

$$\lim_{x \to a} f(x) = A \ge B = \lim_{x \to a} g(x).$$

4). Если для некоторого $\varepsilon>0$ для любого $x\in \overset{\circ}{U}_{\varepsilon}(a)\cap D$ выполнено неравенство

$$f(x) \ge g(x),$$

mo

$$\lim_{x \to a} f(x) = A \ge B = \lim_{x \to a} g(x).$$

Наконец, также как и для последовательностей, имеет место следующая теорема.

Теорема 1.3.15. Пусть a- предельная точка общей области определения D=D(f)=D(g)=h(x) функций f(x), g(x) и h(x). Если

1). Для некоторого $\varepsilon>0$ для любого $x\in \overset{\circ}{U}_{\varepsilon}(a)\cap D$ выполнено неравенство

$$f(x) \le h(x) \le g(x)$$
.

2). Существуют конечные пределы функций f(x) и g(x) при $x \to a$, причем

$$\lim_{x \to a} f(x) = A = \lim_{x \to a} g(x).$$

Тогда существует предел функции h(x) при $x \to a$ и

$$\lim_{x \to a} h(x) = A.$$

1.3.4 Первый замечательный предел.

Теорема 1.3.16. Предельное значение функции

$$f(x) = \frac{\sin x}{x}$$

 $npu \ x \to 0$ существует и равно 1:

$$\lim_{x \to 0} \frac{\sin x}{x} = 1.$$

Доказательство. 1). Докажем сначала, что предел справа равен единице:

$$\lim_{x \to 0+0} \frac{\sin x}{x} = 1.$$

Рассмотрим на координатной плоскости окружность радиуса R с центром в начале координат O и отметим на ней точки A и B так, чтобы точка A лежала на оси абсцисс, а точка B — в первом квадранте. Обозначим

$$\angle AOB = x$$
.

По построению, угол $\angle AOB$ — острый. Поэтому

$$0 < x < \frac{\pi}{2}.$$

Обозначим через C точку пересечения продолжения радиуса OB с перпендикуляром к оси абсцисс в точке A. Ясно, что (AC) — касательная к окружности.

Рассмотрим равнобедренный треугольник $\triangle AOB$, круговой сектор AOB и прямоугольный треугольник $\triangle AOC$.

Так как

$$\triangle AOB \subset \text{cekt}AOB \subset \triangle AOC$$
,

то их площади связаны следующими неравенствами:

$$S_{\triangle AOB} < S_{\text{cekt.}AOB} < S_{\triangle AOC}$$
.

Вычислим площади этих фигур:

• $S_{\triangle AOB} = \frac{1}{2} \cdot OA \cdot OB \cdot \sin \angle AOB = \frac{1}{2} \cdot R^2 \cdot \sin x;$

 $S_{\text{cekt.}AOB} = \frac{1}{2} \cdot OA \cdot OB \cdot x = \frac{1}{2} \cdot R^2 \cdot x;$

 $S_{\triangle AOC} = \frac{1}{2} \cdot OA \cdot AC = \frac{1}{2} \cdot OA \cdot OA \cdot \operatorname{tg} x = \frac{1}{2} \cdot R^2 \cdot \operatorname{tg} x.$

Получаем неравенство:

$$\frac{1}{2} \cdot R^2 \cdot \sin x < \frac{1}{2} \cdot R^2 \cdot x < \frac{1}{2} \cdot R^2 \cdot \operatorname{tg} x.$$

Сокращая все части неравенства на $\frac{1}{2} \cdot R^2$ и учитывая, что $0 < x < \frac{\pi}{2}$, получим:

$$0 < \sin x < x < \operatorname{tg} x, \tag{1.3.3}$$

откуда, учитывая. что при переходе к обратным величинам, знаки неравенства меняются на противоположные, получаем

$$\frac{1}{\sin x} > \frac{1}{x} > \frac{1}{\operatorname{tg} x} > 0.$$

Умножим все части последнего неравенства на $(-\sin x)$. Так как

$$-\sin x < 0$$
.

то получим

$$(-\sin x) \cdot \frac{1}{\sin x} < (-\sin x) \cdot \frac{1}{x} < (-\sin x) \cdot \frac{1}{\operatorname{tg} x} < 0$$

или

$$-1 < -\frac{\sin x}{x} < -\cos x.$$

Прибавляя к каждой части последнего неравенства единицу 1, получим:

$$0 < 1 - \frac{\sin x}{x} < 1 - \cos x. \tag{1.3.4}$$

Преобразуем правую часть этого неравенства и учитывая неравенство (1.3.3), получим:

$$1 - \cos x = 2\sin^2\frac{x}{2} < 2\sin\frac{x}{2} < \frac{x}{2} \cdot 2 = x.$$

Тогда неравенство (1.3.4) примет вид:

$$0 < 1 - \frac{\sin x}{x} < x.$$

Переходя к пределу при $x \to 0 + 0$, получим

$$\lim_{x \to 0+0} \left[1 - \frac{\sin x}{x} \right] = 0 \Rightarrow \lim_{x \to 0+0} \frac{\sin x}{x} = 1.$$

2). Докажем теперь, что предел слева тоже равен единице:

$$\lim_{x \to 0-0} \frac{\sin x}{x} = 1.$$

Пусть

$$-\frac{\pi}{2} < x < 0.$$

Тогда, учитывая нечетность функции $\sin x$, получим:

$$\frac{\sin(-x)}{(-x)} = \frac{-\sin x}{-x} = \frac{\sin x}{x}.$$

Поэтому

$$\lim_{x \to 0-0} \frac{\sin x}{x} = \lim_{-x \to 0+0} \frac{\sin(-x)}{(-x)} = 1.$$

3). Так как

$$\lim_{x \to 0+0} \frac{\sin x}{x} = 1,$$

$$\lim_{x \to 0-0} \frac{\sin x}{x} = 1,$$

то по теореме об односторонних пределах, существует (двусторонний предел)

$$\lim_{x \to 0} \frac{\sin x}{x} = 1,$$

Замечание 1.3.17. Если $x_n \to 0$ при $n \to \infty$, то

$$\lim_{n \to 0} \frac{\sin x_n}{x_n} = 1.$$

Пример 1.3.18. Найти предел

$$\lim_{n\to\infty}\cos\frac{\varphi}{2}\cdot\cos\frac{\varphi}{2^2}\cdot\ldots\cdot\cos\frac{\varphi}{2^n}.$$

Воспользуемся следующим тригонометрическим представлением функции $\sin \varphi$:

$$\sin \varphi = 2 \sin \frac{\varphi}{2} \cdot \cos \frac{\varphi}{2} = 2^2 \cos \frac{\varphi}{2} \cdot \cos \frac{\varphi}{2^2} \cdot \sin \frac{\varphi}{2^2} = \dots$$
$$= 2^n \cos \frac{\varphi}{2} \cdot \cos \frac{\varphi}{2^2} \cdot \dots \cdot \cos \frac{\varphi}{2^n} \cdot \sin \frac{\varphi}{2^n}.$$

Поэтому

$$\cos\frac{\varphi}{2}\cdot\cos\frac{\varphi}{2^2}\cdot\ldots\cdot\cos\frac{\varphi}{2^n} = \frac{\sin\varphi}{2^n\sin\frac{\varphi}{2^n}} = \frac{\sin\varphi}{\varphi}\cdot\frac{\frac{\varphi}{2^n}}{\sin\frac{\varphi}{2^n}}.$$

Так как

$$\lim_{n \to \infty} \frac{\varphi}{2^n} = 0,$$

ТО

$$\lim_{n \to \infty} \frac{\sin \frac{\varphi}{2^n}}{\frac{\varphi}{2^n}} = 1.$$

Поэтому

$$\lim_{n\to\infty}\cos\frac{\varphi}{2}\cdot\cos\frac{\varphi}{2^2}\cdot\ldots\cdot\cos\frac{\varphi}{2^n}=\lim_{n\to\infty}\frac{\sin\varphi}{\varphi}\cdot\frac{\frac{\varphi}{2^n}}{\sin\frac{\varphi}{2^n}}=\frac{\sin\varphi}{\varphi}\lim_{n\to\infty}\frac{\frac{\varphi}{2^n}}{\sin\frac{\varphi}{2^n}}=\frac{\sin\varphi}{\varphi}.$$

1.3.5 Второй замечательный предел.

В этом параграфе мы докажем теорему

Теорема 1.3.19. Предельное значение функции

$$f(x) = \left(1 + \frac{1}{x}\right)^x$$

 $npu \ x \to \infty$ существует и равно е:

$$\lim_{x \to \infty} \left(1 + \frac{1}{x} \right)^x = e.$$

Доказательство. 1). Найдем область определения функции

$$f(x) = \left(1 + \frac{1}{x}\right)^x.$$

$$D(f) = \left\{ x \in \mathbb{R} \colon 1 + \frac{1}{x} > 0 \right\}.$$

Так как

$$1 + \frac{1}{x} > 0 \Rightarrow \frac{x+1}{x} > 0 \Rightarrow x \in (\infty, -1) \cup (0, +\infty),$$

то

$$D(f) = (\infty, -1) \cup (0, +\infty).$$

2).

Замечание 1.3.20. Нужно доказать, что какова бы ни была бесконечно большая последовательность $\{x_n\}$ значений аргумента функции

$$f(x) = \left(1 + \frac{1}{x}\right)^x,$$

соответствующая последовательность $\{f(x_n)\}$ значений этой функции имеет своим пределом число e, т.е.

$$\lim_{x_n \to \infty} \left(1 + \frac{1}{x_n} \right)^{x_n} = e.$$

Один частный случай мы уже рассматривали. А именно, мы доказали:

Утверждение 1.3.21.

$$\lim_{n \to \infty} \left(1 + \frac{1}{n} \right)^n = e.$$

Из утверждения 1.3.21 непосредственно получаем:

Следствие 1.3.22. Для любой бесконечно большой возрастающей последовательности индексов $\{n_k\}$, $n_k \uparrow +\infty$,

$$\lim_{n_k \to \infty} \left(1 + \frac{1}{n_k} \right)^{n_k} = e.$$

- 3). Рассмотрим следующие четыре группы бесконечно больших последовательностей $\{x_n\}$ значений аргумента.
 - 1° Бесконечно большие последовательности $\{n_k\}$ (не обязательно монотонные), элементами которых являются натуральные числа. К указанной группе относится, например, последовательность

$$2, 2, 1, 1, 3, 3, 2, 2, 4, 4, \ldots, n + 1, n + 1, n, n, \ldots$$

 2^{o} Бесконечно большие последовательности $\{x_{k}\}$, элементы которых, начиная с некоторого номера K, состоят из положительных вещественных чисел:

$$x_k > 0, \ k > K, \ x_k \to +\infty.$$

 3^{o} Бесконечно большие последовательности $\{x_{k}\}$, элементы которых, начиная с некоторого номера K, состоят из отрицательных вещественных чисел:

$$x_k < -1, \ k > K, \ x_k \to -\infty.$$

 4^{o} Бесконечно большие последовательности $\{x_{k}\}$, содержащие бесконечно много как положительных, так и отрицательных чисел:

$$x_k \in (\infty, -1) \cup (0, +\infty), |x_k| \to +\infty.$$

Произвольная бесконечно большая последовательность значений аргумента $\{x_k\}$ относится к одной их этих групп. Поэтому теорема будет доказана, если мы проведем доказательство для каждого из этих случаев.

4). Докажем, что

$$\lim_{x_k \to \infty} \left(1 + \frac{1}{x_k} \right)^{x_k} = e$$

для каждого из приведенных выше четырех случаев.

 4.1^{0}) Пусть $\{n_{k}\}$ — бесконечно большая не обязательно монотонная последовательность первой группы.

Утверждение 1.3.23.

$$\lim_{k \to \infty} \left(1 + \frac{1}{n_k} \right)^{n_k} = e.$$

Доказательство. Так как

$$\lim_{n \to \infty} \left(1 + \frac{1}{n} \right)^n = e,$$

то для любого $\varepsilon>0$ существует такой номер N_{ε} , что для любого $n\geq N_{\varepsilon}$ выполняется неравенство

$$\left| \left(1 + \frac{1}{n} \right)^n - e \right| < \varepsilon.$$

Поскольку последовательность $\{n_k\}$ — бесконечно большая, то по этому N_ε можно указать такой номер $K=K(N_\varepsilon)$, что для любого $k\geq K$ выполняется неравенство

$$n_k \geq K$$
.

Следовательно, для любого $k \geq K$ выполняется неравенство

$$\left| \left(1 + \frac{1}{n_k} \right)^{n_k} - e \right| < \varepsilon.$$

Следовательно,

$$\lim_{k \to \infty} \left(1 + \frac{1}{n_k} \right)^{n_k} = e.$$

 4.2^{o}) Пусть теперь $\{x_{k}\}$ бесконечно большая последовательность второй группы, элементы которой, начиная с некоторого номера K, состоят из положительных вещественных чисел:

$$x_k > 0, \ k \ge K, \ x_k \to +\infty.$$

Так как $\{x_k\}$ бесконечно большая последовательность, то найдется номер $K_1 \geq K$ такой, что для любого $k \geq K_1$ выполняется неравенство

$$x_k > 1$$
.

Утверждение 1.3.24.

$$\lim_{k \to \infty} \left(1 + \frac{1}{x_k} \right)^{x_k} = e.$$

$$[x_k] = n_k.$$

Тогда

$$n_k \le x_k < n_k + 1, \quad n_k \to +\infty.$$

Считаем, что $k \ge K_1$ и поэтому $x_k > 1$. Следовательно,

$$n_k \geq 1$$
,

т.е.

$$1 \le n_k \le x_k < n_k + 1.$$

Переходя к обратным величинам, получим

$$\frac{1}{n_k+1} < \frac{1}{x_k} \le \frac{1}{n_k}.$$

и потому

$$1 + \frac{1}{n_k + 1} < 1 + \frac{1}{x_k} \le 1 + \frac{1}{n_k}.$$

Следовательно,

$$\left(1 + \frac{1}{n_k + 1}\right)^{n_k} < \left(1 + \frac{1}{x_k}\right)^{x_k} \le \left(1 + \frac{1}{n_k}\right)^{n_k + 1}.$$

Бесконечно большая последовательность $\{n_k\}$ — первой группы. Поэтому. используя утверждение 1.3.23, получаем:

$$\lim_{k \to \infty} \left(1 + \frac{1}{n_k + 1} \right)^{n_k} = \lim_{k \to \infty} \frac{\left(1 + \frac{1}{n_k + 1} \right)^{n_k + 1}}{1 + \frac{1}{n_k + 1}} = \frac{e}{1} = e$$

И

$$\lim_{k\to\infty}\left(1+\frac{1}{n_k}\right)^{n_k+1}=\lim_{k\to\infty}\left(1+\frac{1}{n_k}\right)^{n_k}\cdot\left(1+\frac{1}{n_k}\right)=e\cdot 1=e.$$

Следовательно, и в этом случае

$$\lim_{k \to \infty} \left(1 + \frac{1}{x_k} \right)^{x_k} = e.$$

Замечание 1.3.25. Фактически мы доказали, что

$$\lim_{x \to +\infty} \left(1 + \frac{1}{x} \right)^x = e.$$

 4.3°) Пусть теперь $\{x_k\}$ бесконечно большая последовательность третье группы, элементы которой, начиная с некоторого номера K, состоят из отрицательных вещественных чисел:

$$x_k < -1, \ k \ge K, \ x_k \to -\infty.$$

Утверждение 1.3.26.

$$\lim_{k \to \infty} \left(1 + \frac{1}{x_k} \right)^{x_k} = e.$$

Доказательство. Обозначим

$$y_k = -x_k$$
.

Тогда при $k \geq K$

$$y_k > 1, \quad y_k \to +\infty,$$

т.е. $\{y_k\}$ — бесконечно большая последовательность второго типа. Кроме того,

$$\left(1 + \frac{1}{x_k}\right)^{x_k} = \left(1 - \frac{1}{y_k}\right)^{-y_k} = \left(\frac{y_k - 1}{y_k}\right)^{-y_k} = \left(\frac{y_k}{y_k - 1}\right)^{y_k} =$$

$$= \left(\frac{y_k - 1 + 1}{y_k - 1}\right)^{y_k} = \left(1 + \frac{1}{y_k - 1}\right)^{y_k} = \left(1 + \frac{1}{y_k - 1}\right)^{y_k - 1} \cdot \left(1 + \frac{1}{y_k - 1}\right)$$

Так как

$$y_k - 1 > 0, \quad y_k - 1 \to +\infty,$$

то в силу 1.3.24,

$$\lim_{k\to\infty}\left(1+\frac{1}{y_k-1}\right)^{y_k-1}=e.$$

Кроме того,

$$\lim_{k \to \infty} \left(1 + \frac{1}{y_k - 1} \right) = 1.$$

Поэтому

$$\lim_{k \to \infty} \left(1 + \frac{1}{x_k} \right)^{x_k} = e.$$

Замечание 1.3.27. Фактически мы доказали, что

$$\lim_{x \to -\infty} \left(1 + \frac{1}{x} \right)^x = e.$$

 4.4^{o}) Пусть теперь $\{x_{k}\}$ бесконечно большая последовательность четвертой группы, содержащая бесконечно много как положительных, так и отрицательных чисел:

$$x_k \in (\infty, -1) \cup (0, +\infty), |x_k| \to +\infty.$$

Утверждение 1.3.28.

$$\lim_{k \to \infty} \left(1 + \frac{1}{x_k} \right)^{x_k} = e.$$

Доказательность Обозначим через $\{x_k'\}$ подпоследовательность последовательности $\{x_k\}$, состоящую из всех неотрицательных чисел, а через $\{x_k''\}$ — подпоследовательность последовательности $\{x_k\}$, состоящую из всех отрицательных чисел.

Тогда, по доказанному.

$$\lim_{x_k' \to +\infty} \left(1 + \frac{1}{x_k'} \right)^{x_k'} = e$$

И

$$\lim_{x_k'' \to -\infty} \left(1 + \frac{1}{x_k''} \right)^{x_k''} = e$$

Для любого $\varepsilon > 0$ найдутся такие K_1 и K_2 , что для любого $k \geq K_1$ выполняется неравенство

$$\left| \left(1 + \frac{1}{x_k'} \right)^{x_k'} - e \right| < \varepsilon, \tag{1.3.5}$$

а для любого $k \geq K_2$ выполняется неравенство

$$\left| \left(1 + \frac{1}{x_k''} \right)^{x_k''} - e \right| < \varepsilon, \tag{1.3.6}$$

Тогда для любого $k \ge K = K_1 + K_1$ выполняются оба неравенства (1.3.5) и (1.3.6). Поэтому для любого $k \ge K$ выполняется неравенство

$$\left| \left(1 + \frac{1}{x_k} \right)^{x_k} - e \right| < \varepsilon,$$

т.е. и в этом случае

$$\lim_{k \to \infty} \left(1 + \frac{1}{x_k} \right)^{x_k} = e.$$

Так как мы рассмотрели все возможные случаи, то теорема полностью доказана, т.е.

$$\lim_{x \to \infty} \left(1 + \frac{1}{x} \right)^x = e.$$

Следствие 1.3.29. Имеют место следующие предельные соотношения.

1).

$$\lim_{x \to 0} (1+x)^{\frac{1}{x}} = e.$$

2).

$$\lim_{x \to 0} \frac{\ln(1+x)}{x} = 1.$$

$$\lim_{x \to 0} \frac{e^x - 1}{x} = 1.$$

$$\lim_{x \to 0} \frac{a^x - 1}{x} = \ln a.$$

1.4 Лекция №9. Локальные свойства функций, имеющих предел.

1.4.1 Сохранение знака функции, имеющей предел.

Напомним, что проколотой δ -окрестностью точки a называется множество

$$\overset{\circ}{U}_{\delta}(a) = (a - \delta, a) \cup (a, a + \delta).$$

Пусть a — предельная точка области определения функции f(x).

Теорема 1.4.1. Если функция f(x) имеет конечный предел

$$\left[\lim_{x \to a} f(x) = A > p\right],$$

где p — некоторое вещественное число, то существует такое $\delta>0$, что для любого $x\in \overset{\circ}{U}_{\delta}(a)\cap D(f)$ выполняется неравенство

$$f(x) > p.$$

Доказательство. Пусть $\varepsilon > 0$ такое, что

$$0 < \varepsilon < A - p$$
.

Так как

$$\lim_{x \to a} f(x) = A,$$

то для этого $\varepsilon>0$ существует такое $\delta=\delta_{\varepsilon}>0$, что для любого $x\in \overset{\circ}{U_{\delta}}(a)\cap D(f)$ выполняется неравенство

$$|f(x) - A| < \varepsilon.$$

Раскрывая модуль, получаем:

$$-\varepsilon < f(x) - A < \varepsilon \Rightarrow A - \varepsilon < f(x) < A + \varepsilon.$$

Но

$$p < A - \varepsilon$$
.

Поэтому для любого $x \in \overset{\circ}{U}_{\delta}(a) \cap D(f)$

$$p < A - \varepsilon < f(x) < A + \varepsilon$$

т.е. для любого $x\in \overset{\circ}{U}_{\delta}(a)\cap D(f)$ выполняется неравенство

$$f(x) > p$$
.

Следствие 1.4.2. *Если функция* f(x) *имеет конечный предел*

$$\lim_{x \to a} f(x) = A > 0,$$

то существует такое $\delta>0,$ что для любого $x\in \overset{\circ}{U}_{\delta}(a)\cap D(f)$ выполняется неравенство

$$f(x) > 0.$$

Аналогично доказывается следующая теорема.

Теорема 1.4.3. Если функция f(x) имеет конечный предел

$$\lim_{x \to a} f(x) = A < q,$$

где q — некоторое вещественное число, то существует такое $\delta>0$, что для любого $x\in \overset{\circ}{U}_{\delta}(a)\cap D(f)$ выполняется неравенство

$$|f(x) < q|.$$

Следствие 1.4.4. *Если функция* f(x) *имеет конечный предел*

$$\lim_{x \to a} f(x) = A < 0,$$

то существует такое $\delta>0,$ что для любого $x\in \overset{\circ}{U}_{\delta}(a)\cap D(f)$ выполняется неравенство

f(x) < 0.

Пусть теперь a — предельная точка общей области определения функций f(x) и g(x):

$$D = D(f) = D(g)$$

Также как для последовательностей. имеет место следующая теорема.

Теорема 1.4.5. Если функции f(x) и g(x)

1). Имеют конечный пределы

$$\lim_{x \to a} f(x) = A$$

u

$$\lim_{x \to a} g(x) = B;$$

2). Имеет место неравенство,

$$A < B$$
.

то существует такое $\delta>0,$ что для любого $x\in \overset{\circ}{U}_{\delta}(a)\cap D$ выполняется неравенство

$$f(x) < g(x).$$

Доказательство. Пусть $\varepsilon > 0$ такое, что

$$\varepsilon < \frac{B-A}{3}$$
.

Так как

$$\lim_{x \to a} f(x) = A,$$

то для этого $\varepsilon>0$ существует такое $\delta_1>0$, что для любого $x\in \overset{\circ}{U}_{\delta_1}(a)\cap D(f)$ выполняется неравенство

$$|f(x) - A| < \varepsilon \Rightarrow A - \varepsilon < f(x) < A + \varepsilon.$$

Так как

$$\lim_{x \to a} g(x) = B,$$

то для этого $\varepsilon > 0$ существует такое $\delta_2 > 0$, что для любого $x \in \overset{\circ}{U}_{\delta_2}(a) \cap D(g)$ выполняется неравенство

$$|g(x) - B| < \varepsilon \Rightarrow B - \varepsilon < g(x) < B + \varepsilon.$$

Пусть

$$\delta = \min\{\delta_1, \, \delta_2\}.$$

Тогда

$$\overset{\circ}{U}_{\delta}(a) \subset \overset{\circ}{U}_{\delta_1}(a), \ \overset{\circ}{U}_{\delta}(a) \subset \overset{\circ}{U}_{\delta_2}(a).$$

Кроме того,

$$D = D(f) = D(g).$$

Поэтому для любого $x \in \overset{\circ}{U}_{\delta}(a) \cap D$ одновременно выполняются неравенства

$$A - \varepsilon < f(x) < A + \varepsilon$$

И

$$B - \varepsilon < g(x) < B + \varepsilon.$$

Но

$$A + \varepsilon = A + \frac{B - A}{3} < B - \frac{B - A}{3} = B - \varepsilon.$$

Поэтому для любого $x \in \overset{\circ}{U}_{\delta}(a) \cap D$ выполняется неравенство

$$f(x) < A + \varepsilon < B - \varepsilon < g(x),$$

т.е. выполняется неравенство

$$f(x) < q(x)$$
.

1.4.2 Локальная ограниченность функции.

Определение 1.4.6. Функция f(x) называется ограниченной в окрестности точки x=a (локально ограниченной), если существуют такие $\delta>0$ и M>0, что для любого $x\in \overset{\circ}{U}_{\delta}(a)\cap D(f)$ выполняется неравенство

$$|f(x)| < M|.$$

Теорема 1.4.7. Если существует конечный предел

$$\lim_{x \to a} f(x) = A < \infty,$$

то существуют такие $\delta>0$ и M, что для любого $x\in \overset{\circ}{U}_{\delta}(a)\cap D(f)$ выполняется неравенство

$$|f(x)| < M|,$$

m.e. функция f(x) локально ограничена в окрестности точки a.

Доказательство. Так как

$$\lim_{x \to a} f(x) = A,$$

то для любого положительного числа $\varepsilon>0$ существует такое $\delta>0$, что для любого $x\in \overset{\circ}{U}_{\delta}(a)\,\cap\, D(f)$ выполняется неравенство

$$|f(x) - A| < \varepsilon$$
.

Зафиксируем $\varepsilon>0.$ Тогда для любого $x\in \overset{\circ}{U}_{\delta}(a)\cap D(f)$ выполняется неравенство

$$-\varepsilon < f(x) - A < \varepsilon,$$

или

$$A - \varepsilon < f(x) < A + \varepsilon$$
.

Обозначим

$$M=\max\{|A-\varepsilon|,|A+\varepsilon|\}$$

Тогда для любого $x\in \overset{\circ}{U}_{\delta}(a)\cap D(f)$ выполняется неравенство

$$|f(x)| < M,$$

т.е. функция f(x) локально ограничена в окрестности точки a.

1.5 Предел монотонной функции.

Определение 1.5.1. Функция f(x) называется

• возрастающей на множестве $D \subset D(f)$, если из того , что $x_1, x_2 \in D$ и $x_1 < x_2$ следует

$$f(x_1) < f(x_2).$$

• убывающей на множестве $D \subset D(f)$, если из того , что $x_1, x_2 \in D$ и $x_1 < x_2$ следует

$$f(x_1) > f(x_2).$$

• неубывающей множестве $D \subset D(f)$, если из того , что $x_1, x_2 \in D$ и $x_1 < x_2$ следует

$$f(x_1) \le f(x_2).$$

• невозрастающей множестве $D \subset D(f)$, если из того , что $x_1, x_2 \in D$ и $x_1 < x_2$ следует

$$f(x_1) \ge f(x_2).$$

Примеры 1.5.2. 1^0 . Функция y = x возрастает на \mathbb{R} .

- 2^0 . Функция y = signx не убывает на \mathbb{R} .
- 3^0 . Функция $y=\operatorname{tg} x$ возрастает на $D=\left(-\frac{\pi}{2};\frac{\pi}{2}\right)$.
- 4^{0} . Функция $y = \operatorname{ctg} x$ убывает на $D = (0; \pi)$.
- 5^0 . Функция y = -[x] не возрастает на \mathbb{R} .

Теорема 1.5.3. Пусть функция y = f(x) монотонно возрастает (неубывает) на множестве $D \subset D(f)$ и a- предельная точка D такая, что $x < a < +\infty$ для всех $x \in D$.

1). Если при этом f(x) ограничена сверху на D, т.е. существует такое число M, что

$$f(x) \le M$$

для любого $x \in D$, то существует конечный предел

$$\lim_{x \to a-0} f(x) = A \le M.$$

2). Если же f(x) неограничена сверху на D, то

$$\lim_{x \to a-0} f(x) = +\infty.$$

Доказательство. 1). Пусть функция f(x) ограничена сверху и M такое число, что

$$f(x) \leq M$$

для любого $x \in D$. Тогда множество

$$E = \{ f(x) \colon x \in D \}$$

значений функции непусто и ограничено сверху. Следовательно, существует конечный супремум

$$\sup_{x \in D} E = A.$$

В силу свойств супремума, для любого $\varepsilon>0$ тогда существует такой элемент $x_{\varepsilon}\in D,$ что

$$A - \varepsilon < f(x_{\varepsilon}) \le A$$
.

Так как $x_{\varepsilon} \in D$, то $x_{\varepsilon} < a$. Далее, функция f(x) — монотонно возрастает (неубывает) на D. Поэтому для любого $x \in D$ такого, что

$$x_{\varepsilon} < x < a$$

имеем

$$A - \varepsilon < f(x_{\varepsilon}) < f(x) \le A.$$

(В случае неубывающей функции неравенство примет вид

$$A - \varepsilon < f(x_{\varepsilon}) \le f(x) \le A.$$

Следовательно, для любого $x \in D$ такого, что

$$x_{\varepsilon} < x < a$$

выполняется неравенство

$$A - \varepsilon < f(x) \le A$$
.

Обозначим

$$\delta = a - x_{\varepsilon}.$$

Тогда получаем, что для любого $x \in D$ такого, что

$$a - \delta < x < a$$

выполняется неравенство

$$A - \varepsilon < f(x) \le A$$
.

Но это означает, что существует

$$\lim_{x \to a-0} f(x) = A.$$

2). Пусть теперь функция f(x) неограничена сверху Тогда множество

$$E = \{ f(x) \colon x \in D \}$$

значений функции неограничено сверху. Следовательно,

$$\sup_{x \in D} E = +\infty.$$

Поэтому для любого K>0 тогда существует такой элемент $x_K\in D$, что

$$K < f(x_K)$$
.

Так как $x_K \in D$, то $x_K < a$. Далее, функция f(x) — монотонно возрастает (неубывает) на D. Поэтому для любого $x \in D$ такого, что

$$x_K < x < a$$

имеем

$$K < f(x_K) < f(x).$$

(В случае неубывающей функции неравенство примет вид

$$K < f(x_K) \le f(x)$$
.

Следовательно, для любого $x \in D$ такого, что

$$x_K < x < a$$

выполняется неравенство

$$K < f(x)$$
.

Обозначим

$$\delta = a - x_K$$
.

Тогда получаем, что для любого $x \in D$ такого, что

$$a - \delta < x < a$$

выполняется неравенство

$$K < f(x)$$
.

Но это означает, что существует

$$\lim_{x \to a-0} f(x) = +\infty.$$

Теорема 1.5.4. Пусть функция y = f(x) монотонно возрастает (неубывает) на множестве $D \subset D(f)$ $u + \infty$ — предельное значение для D, т.е. D содержит последовательности $\{x_n\}$ такие, что

$$\lim_{n \to +\infty} x_n = +\infty.$$

1). Если при этом f(x) ограничена сверху на D, т.е. существует такое число M, что

$$f(x) \leq M$$

для любого $x \in D$, то существует конечный предел

$$\lim_{x \to +\infty} f(x) = A \le M.$$

2). Если же f(x) неограничена сверху на D, то

$$\lim_{x \to +\infty} f(x) = +\infty.$$

Доказательство. 1). Если f(x) ограничена сверху на D, тот доказательство повторяет доказательство пункта 1). предыдущей теоремы. Изменения заключаются только в том, чтобы обозначить

$$P = x_{\varepsilon}$$
.

Тогда получаем, что для любого $x \in D$ такого, что

выполняется неравенство

$$A - \varepsilon < f(x) \le A$$
.

Но это означает, что существует

$$\lim_{x \to +\infty} f(x) = A.$$

2). Если f(x) неограничена сверху на D, тот доказательство повторяет доказательство пункта 2). предыдущей теоремы. Изменения заключаются только в том, чтобы обозначить

$$P = x_K$$
.

Тогда получаем, что для любого $x \in D$ такого, что

выполняется неравенство

$$K < f(x)$$
.

Но это означает, что существует

$$\lim_{x \to +\infty} f(x) = +\infty.$$

Аналогично формулируются и доказываются теоремы для убывающих и невозрастающих функций.

Теорема 1.5.5. Пусть функция y = f(x) монотонно убывает (невозрастает) на множестве $D \subset D(f)$ и a- предельная точка D такая, что $x < a < +\infty$ для всех $x \in D$.

1). Если при этом f(x) ограничена снизу на D, т.е. существует такое число m, что

$$f(x) \ge m$$

для любого $x \in D$, то существует конечный предел

$$\lim_{x \to a-0} f(x) = A \ge m.$$

2). Если же f(x) неограничена снизу на D, то

$$\lim_{x \to a-0} f(x) = -\infty.$$

Теорема 1.5.6. Пусть функция y = f(x) монотонно убывает (невозрастает) на множестве $D \subset D(f)$ и $+\infty$ — предельное значение для D, т.е. D содержит последовательности $\{x_n\}$ такие, что

$$\lim_{n \to +\infty} x_n = +\infty.$$

1). Если при этом f(x) ограничена снизу на D, т.е. существует такое число m, что

$$f(x) \ge m$$

для любого $x \in D$, то существует конечный предел

$$\lim_{x \to +\infty} f(x) = A \ge m.$$

2). Если же f(x) неограничена снизу на D, то

$$\lim_{x \to +\infty} f(x) = -\infty.$$

Замечание 1.5.7. В теоремах 1.5.3, 1.5.4, 1.5.5 и 1.5.6 рассматривались пределы слева. Аналогично можно формулировать теоремы о существовании предела монотонной функции справа.

Теорема 1.5.8. Пусть функция y = f(x) монотонно возрастает (неубывает) на множестве $D \subset D(f)$ и a- предельная точка D такая, что $-\infty < a < x$ для всех $x \in D$.

1). Если при этом f(x) ограничена снизу на D, т.е. существует такое число m, что

$$f(x) \ge m$$

для любого $x \in D$, то существует конечный предел

$$\lim_{x \to a+0} f(x) = A \ge m.$$

2). Если же f(x) неограничена снизу на D, то

$$\lim_{x \to a+0} f(x) = -\infty.$$

Теорема 1.5.9. Пусть функция y = f(x) монотонно возрастает (неубывает) на множестве $D \subset D(f)$ и $-\infty$ — предельное значение для D, т.е. D содержит последовательности $\{x_n\}$ такие, что

$$\lim_{n \to +\infty} x_n = -\infty.$$

1). Если при этом f(x) ограничена снизу на D, т.е. существует такое число m, что

$$f(x) \ge m$$

для любого $x \in D$, то существует конечный предел

$$\lim_{x \to -\infty} f(x) = A \ge m$$

2). Если же f(x) неограничена снизу на D, то

$$\lim_{x \to -\infty} f(x) = -\infty.$$

Теорема 1.5.10. Пусть функция y = f(x) монотонно убывает (невозрастает) на множестве $D \subset D(f)$ и a- предельная точка D такая, что $-\infty < a < x$ для всех $x \in D$.

1). Если при этом f(x) ограничена сверху на D, т.е. существует такое число M, что

$$f(x) \leq M$$

для любого $x \in D$, то существует конечный предел

$$\lim_{x \to a+0} f(x) = A \le M.$$

2). Если же f(x) неограничена сверху на D, то

$$\lim_{x \to a+0} f(x) = +\infty.$$

Теорема 1.5.11. Пусть функция y = f(x) монотонно убывает (невозрастает) на множестве $D \subset D(f)$ и $-\infty$ — предельное значение для D, т.е. D содержит последовательности $\{x_n\}$ такие, что

$$\lim_{n \to +\infty} x_n = -\infty.$$

1). Если при этом f(x) ограничена сверху на D, т.е. существует такое число M, что

$$f(x) \leq M$$

для любого $x \in D$, то существует конечный предел

$$\lim_{x \to -\infty} f(x) = A \le M.$$

2). Если же f(x) неограничена сверху на D, то

$$\lim_{x \to -\infty} f(x) = +\infty.$$

- 1.6 Лекция №18. Общий признак существования конечного предела функции. Бесконечно малые функции и их сравнение.
- 1.6.1 Общий признак существования конечного предела функции.

В следующей теореме сформулирован общий признак существования конечного предела функции f(x). Этот признак часто называют признаком Больцано-Коши или критерием Коши. Предполагается, что a — предельная точка области определения D(f) функции f(x).

Теорема 1.6.1. (Признак Больцано-Коши или Критерий Коши) Для то-го, чтобы существовал конечный предел

$$\lim_{x \to a} f(x) = A < \infty ,$$

необходимо и достаточно, чтобы для любого $\varepsilon > 0$ нашлось такое $\delta > 0$, что для любых $x', x'' \in \overset{\circ}{U}_{\delta}(a) \cap D(f)$ было выполнено неравенство:

$$|f(x') - f(x'')| < \varepsilon |.$$

Доказательство. Необходимость. Пусть существует конечный предел

$$\lim_{x \to a} f(x) = A < \infty.$$

Это означает, что для любого $\varepsilon>0$ существует такое $\delta>0$, что для всех $x\in \overset{\circ}{U}_{\delta}(a)\cap D(f)$ выполняется неравенство

$$|f(x) - A| < \frac{\varepsilon}{2}.$$

Пусть $x', x'' \in \overset{\circ}{U}_{\delta}(a) \cap D(f)$. Тогда одновременно

$$|f(x') - A| < \frac{\varepsilon}{2}$$

И

$$|f(x'') - A| < \frac{\varepsilon}{2}.$$

Следовательно

$$|f(x') - f(x'')| = |(f(x') - A) + (A - f(x''))| \le$$

$$\le |f(x') - A| + |f(x'') - A| < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon,$$

то есть, для любых $x', x'' \in \overset{\circ}{U}_{\delta}(a) \cap D(f)$ выполняется неравенство

$$|f(x') - f(x'')| < \varepsilon.$$

Достаточность. Пусть для любого $\varepsilon>0$ существует такое $\delta>0$, что для любых $x',x''\in \overset{\circ}{U}_{\delta}(a)\cap D(f)$ выполняется неравенство

$$|f(x') - f(x'')| < \varepsilon.$$

Пусть $\{x_n\}$ — произвольная последовательность из области определения D(f) такая, что $x_n \neq a$ для любого натурального $n \in \mathbb{N}$ и

$$\lim_{n \to \infty} x_n = a.$$

Тогда для этого $\delta>0$ существует номер $N=N_\delta$ такой, что для любого $n\geq N$ выполняется неравенство

$$0<|x_n-a|<\delta.$$

Ясно, что если $n' \geq N$, то также

$$0 < |x_{n'} - a| < \delta.$$

Так как $x_n, x_{n'} \in \overset{\circ}{U}_{\delta}(a) \cap D(f)$, то выполняется неравенство

$$|f(x_n) - f(x_{n'})| < \varepsilon.$$

Таким образом, последовательность $\{f(x_n)\}$ удовлетворяет критерию Коши существования конечного предела последовательности. Поэтому последовательность $\{f(x_n)\}$ сходится.

Итак, для любой последовательности $\{x_n\}$ из области определения D(f) такой, что $x_n \neq a$ для любого натурального $n \in \mathbb{N}$ и

$$\lim_{n \to \infty} x_n = a$$

последовательность $\{f(x_n)\}$ сходится.

Допустим, что $\{x_n\}$ и $\{x_n'\}$ две такие последовательности, что $x_n \to a, x_n' \to a,$

$$\lim_{n \to \infty} f(x_n) = A,$$

$$\lim_{n \to \infty} f(x_n') = A'.$$

И

$$A \neq A'$$
.

Рассмотрим последовательность

$$x_1, x_1', x_2, x_2', \ldots$$

Ясно, что эта последовательность сходится к a, а последовательность

$$f(x_1), f(x_1'), f(x_2), f(x_2'), \ldots$$

не имеет предела, так как имеет два частичных предела A и A'. Противоречие показывает, что

$$A = A'$$
.

Таким образом, для любой последовательности $\{x_n\}$ из области определения D(f) такой, что $x_n \neq a$ для любого натурального $n \in \mathbb{N}$ и

$$\lim_{n \to \infty} x_n = a$$

последовательность $\{f(x_n)\}$ сходится к одному и тому же числу A, т.е.

$$\lim_{x \to a} f(x_n) = A$$

не зависит от выбора последовательности x_n . Это означает, что существует предел функции f(x):

$$\lim_{x \to a} f(x) = A < \infty.$$

1.6.2 Бесконечно малые, бесконечно большие функции и их сравнение.

Определение 1.6.2. Функция y = f(x) называется бесконечно малой при $x \to a$ (в точке x = a), если существует

$$\lim_{x \to a} f(x) = 0.$$

Пример 1.6.3. Функция

$$f(x) = (x - a)^n, \ n \in \mathbb{N}$$

является бесконечно малой в точке x = a.

Замечание 1.6.4. Если существует

$$\lim_{x \to a} f(x) = A,$$

то

$$\lim_{x \to a} [f(x) - A] = 0.$$

Следовательно функция

$$\boxed{\alpha(x) = f(x) - A}$$

является бесконечно малой в точке x = a.

Тогда

$$f(x) = A + \alpha(x)$$
.

Таким образом, если существует предел

$$\lim_{x \to a} f(x) = A,$$

то функция f(x) представима в виде

$$f(x) = A + \alpha(x),$$

где $\alpha(x)$ — бесконечно малая функция в точке x = a.

Пусть $\alpha(x)$ и $\beta(x)$ — две бесконечно малые при $x \to a$ функции.

Определение 1.6.5. Функция $\alpha(x)$ называется бесконечно малой более высокого порядка, чем $\beta(x)$ (имеет более высокий порядок малости), если

$$\lim_{x \to a} \frac{\alpha(x)}{\beta(x)} = 0.$$

Символически этот факт записывается так

$$\alpha(x) = o(\beta(x))$$
 при $x \to a$

или

$$\alpha = o(\beta)$$
 при $x \to a$.

Пример 1.6.6. Функции

$$\boxed{\alpha(x) = \sin x - x}$$

И

$$\beta(x) = x$$

бесконечно малые при $x \to 0$.

Так как

$$\lim_{x \to 0} \frac{\sin x - x}{x} = 0,$$

TO

$$\sin x - x = o(x) \text{ при } x \to 0.$$

Определение 1.6.7. Бесконечно малые функции $\alpha(x)$ и $\beta(x)$ называются бесконечно малыми одного порядка, если существует конечный предел

$$\lim_{x \to a} \frac{\alpha(x)}{\beta(x)} = K \neq 0.$$

Пример 1.6.8. Функции

$$\alpha(x) = \sin 2x$$

И

$$\beta(x) = x$$

при $x \to 0$ являются бесконечно малыми одного порядка малости. Действительно

 $\lim_{x \to 0} \frac{\sin 2x}{x} = 2.$

Определение 1.6.9. Бесконечно малые функции $\alpha(x)$ и $\beta(x)$ называются эквивалентными при $x \to a$, если

$$\lim_{x \to a} \frac{\alpha(x)}{\beta(x)} = 1.$$

Символически записывают

$$\alpha(x) \sim \beta(x)$$
 при $x \to a$.

Замечание 1.6.10. Все приведенные определения носят локальный характер, т.е. определяются в некоторой окрестности точки a.

Определение 1.6.11. Функция f(x) называется бесконечно большой в точке а справа (слева), если для любого положительного M найдется положительное δ такое, что для всех $x \in D(f)$, удовлетворяющих условию

$$a < x < a + \delta,$$

выполняется неравенство

$$\left(\boxed{a - \delta < x < a} \quad \Rightarrow \quad \boxed{|f(x)| > M} \right)$$

Символическая запись

$$\lim_{x \to a+0} \overline{f(x)} = \infty \quad \Leftrightarrow \quad \overline{f(a+0)} = \infty$$

или

$$\lim_{x \to a \to 0} f(x) = \infty \iff f(a - 0) = \infty$$

Пример 1.6.12. Функция $y = \operatorname{tg} x$ является бесконечно большой в точке $x = \frac{\pi}{2}$ и справа и слева:

$$\lim_{x \to \frac{\pi}{2} - 0} \operatorname{tg} x = +\infty$$

И

$$\lim_{x \to \frac{\pi}{2} + 0} \operatorname{tg} x = -\infty.$$

Пусть функция y = f(x) определена на полуполосе $(a, +\infty)$.

Определение 1.6.13. Функция y = f(x) называется бесконечно большой при $x \to +\infty$, если для любого M>0 существует A>a такое, что для любого x>A выполняется неравенство

В этом случае пишут, что

$$\lim_{x \to +\infty} f(x) = \infty.$$

Замечание 1.6.14. Аналогично определяется бесконечно большая функция при $x \to -\infty$

$$\lim_{x \to -\infty} f(x) = \infty.$$

Замечание 1.6.15. Бесконечно большая функция может быть определенного знака. Тогда используют следующие символические записи:

- $\left|\lim_{x\to a+0} f(x) = +\infty\right|$ или $f(a+0) = +\infty$;
- $\left[\lim_{x\to a-0} f(x) = +\infty\right]$ или $f(a-0) = +\infty$;
- $\lim_{x \to a+0} f(x) = -\infty$ или $f(a+0) = -\infty$;
- $\lim_{x \to a-0} f(x) = -\infty$ или $f(a+0) = -\infty$;
- $\lim_{x \to +\infty} f(x) = +\infty$ или $f(+\infty) = +\infty$;

•
$$\lim_{x \to -\infty} f(x) = +\infty$$
 или $f(-\infty) = +\infty$;

•
$$\lim_{x \to +\infty} f(x) = -\infty$$
 или $f(+\infty) = -\infty$;

$$ullet$$
 $\lim_{x \to -\infty} f(x) = -\infty$ или $f(-\infty) = -\infty$.

1.7 Непрерывность функции.

1.7.1 Понятие непрерывности функции в точке и на множестве.

Пусть функция y = f(x) определена в некоторой окрестности точки x = a.

Определение 1.7.1. Функция y = f(x) называется *непрерывной* в точке a если

$$\lim_{x \to a} f(x) = f(a) .$$

Замечание 1.7.2. Так как

$$a = \lim_{x \to a} x,$$

то символически условие непрерывности функции может быть записано так:

$$\lim_{x \to a} f(x) = f\left(\lim_{x \to a} x\right),\,$$

то есть возможен переход к пределу под знаком функции.

Если функция f(x) определена в левой полуокрестности точки a, то есть в $(a - \varepsilon, a]$, или в правой полуокрестности $[a, a + \varepsilon)$, то могут быть определены понятия непрерывности функции f(x) слева или справа.

Определение 1.7.3. • Функция y = f(x) называется непрерывной в точке а слева, если

$$\left[\lim_{x \to a-0} f(x) = f(a) \right] \Leftrightarrow \left[f(a-0) = f(a) \right].$$

• Функция y = f(x) называется непрерывной в точке а справа, если

$$\lim_{x \to a+0} f(x) = f(a) \quad \Leftrightarrow \quad \boxed{f(a+0) = f(a)}.$$

Замечание 1.7.4. Ясно, что f(x) непрерывна в точке a тогда и только тогда, когда она непрерывна в точке a слева и справа, то есть, когда выполняется равенство

$$f(a-0) = f(a) = f(a+0)$$
.

Примеры 1.7.5. 1). y = x

Эта функция непрерывна в каждой точке $x_0 \in \mathbb{R}$ так как

$$\lim_{x \to x_0} x = x_0.$$

2).
$$y = [x]$$
, $x_0 = 1$.
$$\lim_{x \to 1-0} f(x) = 0, \quad \lim_{x \to 1+0} f(x) = 1 = f(1).$$

Функция непрерывна в точке x=1 справа, но не является непрерывной слева, и потому, эта функция непрерывной не является.

3).
$$y = signx$$
, $x_0 = 0$.
$$\lim_{x \to 0-0} f(x) = -1, \ f(0) = 0, \ \lim_{x \to 0+0} f(x) = +1.$$

 Φ ункция не является непрерывной в точке x=0 ни слева, ни справа.

Определение 1.7.6. Функция f(x) называется непрерывной на множествее $X \subset D(f)$, если она непрерывна в каждой точке $x \in X$.

Определение 1.7.7. Если f(x) определена на [a,b], то она непрерывна на [a,b], если она непрерывна в каждой внутренней точке (a,b), непрерывна в точке x=a справа и непрерывна в точке x=b слева.

Пример 1.7.8.

$$f(x) = \begin{cases} 1, & x \in [0, 1], \\ 0, & x \notin [0, 1] \end{cases}$$

Функция f(x) непрерывна на [0,1], но не является непрерывной на $\mathbb{R} = D(f)$.

Определение 1.7.9. Пусть точка x_0 либо принадлежит области определения функции $f(x) \in D(f)$, либо является ее предельной точкой. Точка x_0 , называется *точкой разрыва функции* f(x), если выполнено одно из следующих условий:

- 1). Либо не существует число $f(x_0)$, то есть функция не определена в точке $x = x_0$;
- 2). Либо не существует предел $\lim_{x\to x_0} f(x)$ (или он равен $\pm\infty$);
- 3). Либо существует $f(x_0)$ и $\lim_{x \to x_0} f(x)$, но

$$\lim_{x \to x_0} f(x) \neq f(x_0).$$

Замечание 1.7.10. Конечный предел

$$\lim_{x \to x_0} f(x)$$

не существует, если

- Либо не существует предел слева f(a-0);
- Либо не существует предел справа f(a + 0);
- Либо существуют и предел слева f(a-0) и предел справа f(a+0), но они не равны:

$$f(a-0) \neq f(a+0).$$

1.7.2 Классификация точек разрыва функции.

Пусть, как и выше, точка x_0 либо принадлежит области определения D(f) функции f(x), либо является ее предельной точкой.

Разрывы І рода.

Определение 1.7.11. Точка $x = x_0$ называется точкой устранимого разрыва функции f(x), если существует

$$\lim_{x \to x_0} f(x) = A,$$

HO

- 1.) Либо f(x) не определена в точке x_0 ,
- 2). Либо $f(x_0) \neq A$.

Замечание 1.7.12. Если положить (доопределить или переопределить)

$$f(x_0) = A,$$

то функция f(x) станет непрерывной в точке x_0 , то есть разрыв будет устранен.

Примеры **1.7.13.** 1)

$$y = \frac{x^2}{|x|}$$

Область определения этой функции $D(f) = \mathbb{R} \setminus 0$, т.е. в точке x = 0 функция не определена. Если доопределить функцию в точке x = 0 равенством

$$f(0) = 0$$
,

то функция f(x) станет непрерывной. Поэтому в точке x=0 функция f(x) имеет устранимый разрыв.

2).

$$y = \begin{cases} \frac{\sin x}{x}, & x \neq 0 \\ 2, & x = 0 \end{cases}$$

Легко видеть, что существует

$$\lim_{x \to 0} f(x) = \lim_{x \to 0} \frac{\sin x}{x} = 1,$$

в то время как

$$f(0) = 2.$$

Функцию f(x) можно переопределить в точке x = 0, полагая

$$f(0) = 1$$
.

Тогда функция f(x) станет непрерывной. Поэтому в точке x=0 функция f(x) имеет устранимый разрыв.

Определение 1.7.14. Точка x_0 называется *разрывом І рода* (точкой разрыва І рода), если

- 1.) Либо это точка устранимого разрыва,
- 2). Либо в этой точке существуют левосторонний и правосторонний пределы, но они не равны между собой

$$f(x_0-0)\neq f(x_0+0)$$
.

Примеры 1.7.15. 1).

$$y = signx = \begin{cases} 1, & x > 0 \\ 0, & x = 0 \\ -1, & x < 0 \end{cases}$$

Так как

$$f(0+0) = \lim_{x \to 0+0} f(x) = 1$$

И

$$f(0-0) = \lim_{x \to 0-0} f(x) = -1,$$

то точка x = 0 — точка разрыва (неустранимого) I рода.

2).

$$y = [x].$$

Рассмотрим точку $x_0 = 1$.

Так как

$$f(1+0) = \lim_{x \to 1+0} f(x) = 1$$

И

$$f(1-0) = \lim_{x \to 1-0} f(x) = 0,$$

то точка $x_0 = 1$ — точка разрыва (неустранимого) I рода.

3).

$$y = \frac{x}{|x|}.$$

В точке x = 0 функция не определена. Так как

$$f(0+0) = \lim_{x \to 0+0} f(x) = 1$$

И

$$f(0-0) = \lim_{x \to 0-0} f(x) = -1,$$

то точка x = 0 — тоже точка неустранимого разрыва I рода.

Разрывы II рода.

Определение 1.7.16. Точка x_0 называется *точкой разрыва II рода* функции f(x), если

- 1.) Либо не существует один из односторонних пределов $f(x_0 + 0)$ или $f(x_0 0)$,
- 2). Либо один из этих пределов бесконечен.

Примеры 1.7.17. 1.)

$$y = \sin\frac{1}{x}$$

Так как не существует ни f(0+0), ни f(0-0), то точка x=0 — точка разрыва II рода.

2.)

$$y = \operatorname{tg} x$$
.

Точка $x = \frac{\pi}{2}$ — точка бесконечного разрыва (II рода).

Определение 1.7.18. Функция f(x) называется *кусочно непрерывной на* [a,b], если она непрерывна во всех точках [a,b], кроме быть может, конечного числа точек, в которых она имеет разрывы I рода.

1.8 Свойства непрерывных функций.

1.8.1 Арифметические операции над непрерывными функциями

Пусть функция f(x) и g(x) определены на одном и том же множестве

$$D = D(f) = D(g).$$

Теорема 1.8.1. Пусть функции f(x) и g(x) непрерывны в точке $x_0 \in D$. Тогда

- 1). Функция f(x) + g(x) непрерывна в точке x_0 .
- 2). Функция f(x) g(x) непрерывна в точке x_0 .
- 3). Функция $f(x) \cdot g(x)$ непрерывна в точке x_0 .
- 4). Если $g(x_0) \neq 0$, то функция $\left\lceil \frac{f(x)}{g(x)} \right\rceil$ непрерывна в точке x_0 .

Доказательство. Доказательство сводится к очевидным равенствам:

- 1). $\lim_{x \to x_0} [f(x) + g(x)] = \lim_{x \to x_0} f(x) + \lim_{x \to x_0} g(x) = f(x_0) + g(x_0).$
- 2). $\lim_{x \to x_0} [f(x) g(x)] = \lim_{x \to x_0} f(x) \lim_{x \to x_0} g(x) = f(x_0) g(x_0).$
- 3). $\lim_{x \to x_0} [f(x) \cdot g(x)] = \lim_{x \to x_0} f(x) \cdot \lim_{x \to x_0} g(x) = f(x_0) \cdot g(x_0)$
- 4). Если $g(x_0) \neq 0$, то $g(x) \neq 0$ в некоторой δ -окрестности $U_{\delta}(x_0)$ точки x_0 . Поэтому функция $\frac{f(x)}{g(x)}$ определена в этой окрестности. Следовательно,

$$\lim_{x \to x_0} \frac{f(x)}{g(x)} = \frac{\lim_{x \to x_0} f(x)}{\lim_{x \to x_0} g(x)} = \frac{f(x_0)}{g(x_0)}.$$

Замечание 1.8.2. Очевидно, что если f(x) непрерывна в точке x_0 и $k \in \mathbb{R}$ произвольное число, то функция kf(x) также непрерывна в точке x_0 :

$$\lim_{x \to x_0} kf(x) = k \lim_{x \to x_0} f(x) = kf(x_0).$$

Следствие 1.8.3. *1). Многочлен*

$$P_n(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_0$$

является функцией, непрерывной в каждой точке $x_0 \in \mathbb{R}$:

$$\lim_{x \to x_0} P_n(x) = P(x_0) = a_n x_0^n + a_{n-1} x_0^{n-1} + \dots + a_0.$$

2) Дробно-рациональная функция

$$R(x) = \frac{P_n(x)}{Q_m(x)}$$

непрерывна в каждой точке $x_0 \in D(R)$, то есть в каждой точке $x_0 \in \mathbb{R}$, в которой $Q_m(x_0) \neq 0$:

$$\lim_{x \to x_0} R(x) = R(x_0) = \frac{P_n(x_0)}{Q_m(x_0)}.$$

1.8.2 Понятие сложной функции. Непрерывность сложной функции.

Напомним определение сложной функции.

Пусть заданы две функции φ и f таким образом, что:

- 1). Функция $x = \varphi(t)$ отображает множество T в множество $X = \varphi(T)$,
- 2). Функция y = f(x) отображает множество X в множество Y.

Используя эти два отображения, можно построить отображение множества T на множество Y:

$$T \xrightarrow{\varphi} X \xrightarrow{f} Y$$
.

Определение 1.8.4. Полученную таким образом функцию

$$y = F(t)$$

называют суперпозицией функций φ и f и обозначают:

$$F = f \circ \varphi.$$

Определение 1.8.5. Функция F(t), являющаяся суперпозицией функций φ и f:

$$F(t) = (f \circ \varphi)(t) = f(\varphi(t)),$$

называется сложсной функцией.

Замечание 1.8.6. Функция, полученная в результате суперпозиции более чем двух функций, тоже называют сложной.

Пусть функция

$$x(t) = \varphi(t)$$

определена на множестве T и пусть на множестве x(T) определена функция

$$y = f(x)$$
.

Тогда на множестве T задана сложная функция

$$y = f(x) = f(\varphi(t)) = F(t).$$

Теорема 1.8.7. *Пусть*

1). Функция

$$x = \varphi(t)$$

непрерывна в точке t_0 .

2). Функция

$$y = f(x)$$

непрерывна в точке $x_0 = \varphi(t_0)$.

Тогда сложная функция

$$y = F(t) = f(\varphi(t))$$

непрерывна в точке t_0 .

Доказательство. Покажем, что

$$\lim_{t \to t_0} F(t) = F(t_0).$$

Для этого достаточно показать, что для любой последовательности $\{t_n\}\subset T$ такой, что $\lim_{n\to\infty}t_n=t_0$ имеет место

$$\lim_{n \to \infty} F(t_n) = F(t_0).$$

Так как

$$F(t_n) = f(\varphi(t_n)),$$

то ввиду непрерывности функции $\varphi(t)$ в точке t_0 имеем:

$$\lim_{n \to \infty} \varphi(t_n) = \varphi(t_0).$$

Возможны два случая:

1. $\left| \varphi(t_n) \neq \varphi(t_0) \right|$ лишь для конечного числа номеров.

Тогда начиная с некоторого номера N

$$\varphi(t_n) = \varphi(t_0).$$

Следовательно для любого $n \geq N$

$$F(t_n) = f(\varphi(t_n)) = F(t_0)$$

и потому

$$\lim_{\substack{t_n \to t_0 \\ n \to \infty}} F(t_n) = F(t_0).$$

2. $|\varphi(t_n) \neq \varphi(t_0)|$ для бесконечного числа номеров.

Тогда эти члены последовательности образуют подпоследовательность

$$x_{n_k} = \varphi(t_{n_k})$$

которая также сходится к $\varphi(t_0)$:

$$\lim_{k \to \infty} \varphi(t_{n_k}) = \varphi(t_0).$$

Следовательно

$$\lim_{k \to \infty} F(t_{n_k}) = \lim_{k \to \infty} f(\varphi(t_{n_k})) = f(\varphi(t_0)) = F(t_0).$$

Так как для членов подпоследовательности $\varphi(t_n)$, отличных от $\varphi(t_{n_k})$ имеем:

$$\varphi(t_n) = \varphi(t_0) \longrightarrow \varphi(t_0),$$

то и для всей последовательности $\{F(t_n)\}$ имеем:

$$\lim_{n \to \infty} F(t_n) = \lim_{n \to \infty} f(\varphi(t_n)) = f(\varphi(t_0)) = F(t_0).$$

Итак, в обоих случаях

$$\lim_{n \to \infty} F(t_n) = F(t_0),$$

то есть функция F(t) непрерывна в точке t_0 .

Замечание 1.8.8. Сформулируем определение непрерывности функции y = f(x) в точке x_0 , используя определение предела функции по Коши:

$$\lim_{x \to x_0} f(x) = f(x_0)$$

тогда и только тогда, когда для любого положительного числа $\varepsilon > 0$ найдется такое число $\delta > 0$, что из условия

$$x \in U_{\delta}(x_0)$$

следует, что

$$f(x) \in U_{\varepsilon}(f(x_0)) :$$

$$x \in U_{\delta}(x_0) \Longrightarrow f(x) \in U_{\varepsilon}(f(x_0)).$$

Приведем еще одно доказательство теоремы 1.8.2.

Доказательство. (Второе доказательство теоремы 1.8.2) Пусть

$$\varphi(t_0) = x_0, \quad f(x_0) = y_0.$$

1. Так как функция

$$y = f(x)$$

непрерывна в точке $x_0 = \varphi(t_0)$, то для любого положительного числа $\varepsilon > 0$ найдется такое число $\delta > 0$, что из условия

$$x \in U_{\delta}(x_0)$$

следует, что

$$\boxed{f(x) \in U_{\varepsilon}(y_0)} : \\
\boxed{x \in U_{\delta}(x_0)} \Longrightarrow \boxed{f(x) \in U_{\varepsilon}(y_0)}. \tag{1.8.1}$$

2. Так как функция

$$x = \varphi(t)$$

непрерывна в точке t_0 , то для любого положительного числа $\delta>0$ найдется такое число $\gamma>0$, что из условия

$$t \in U_{\gamma}(t_0)$$

следует, что

$$\boxed{\varphi(t) \in U_{\delta}(x_0)} : \\
\boxed{t \in U_{\gamma}(t_0)} \Longrightarrow \boxed{x = \varphi(t) \in U_{\delta}(x_0)}. \tag{1.8.2}$$

Мы получили, что для любого положительного числа $\varepsilon>0$ найдется такое число $\gamma>0$, что из условия

$$t \in U_{\gamma}(t_0)$$

следует, что

$$F(t) \in U_{\varepsilon}(y_0) :$$

$$t \in U_{\gamma}(t_0) \Longrightarrow y = F(t) \in U_{\varepsilon}(y_0).$$

Таким образом, сложная функция

$$y = F(t) = f(\varphi(t))$$

непрерывна в точке t_0 .

1.8.3 Непрерывность строго монотонной функции

Теорема 1.8.9. Для того, чтобы строго монотонная на отрезке [a,b] функция y = f(x) была непрерывной на [a,b], необходимо и достаточно, чтобы любое число γ , заключенное между числами $\alpha = f(a)$ и $\beta = f(b)$, было бы значением этой функции.

Доказательство. Без ограничения общности считаем, что функция

$$y = f(x)$$

строго монотонно возрастает на отрезке [a, b]. Тогда

$$\alpha = f(a) < f(b) = \beta.$$

Необходимость.

Пусть $\gamma \in (\alpha, \beta)$, т.е.

$$\alpha < \gamma < \beta$$
.

Покажем, что существует такое число $c \in (a, b)$ такое. что

$$f(c) = \gamma.$$

Рассмотрим множество

$$E = \{x \in [a, b] \colon f(x) \le \gamma\}.$$

Так как

$$f(a) = \alpha < \gamma$$

то $a \in E$. Следовательно, множество E не пусто:

$$E \neq \emptyset$$
.

Далее, для любого $x \in E$ имеем:

$$f(x) < \gamma < \beta = f(b)$$
.

Функция f(x) строго монотонно возрастающая, поэтому для любого $x \in E$

$$f(x) < f(b) \Rightarrow x < b$$
.

Следовательно, множество E ограничено сверху и число b одна из его верхних границ. Таким образом. по теореме о существовании супремума, существует супремум множества E, которое мы обозначим

$$sup E = c$$

Покажем, что

$$f(c) = \gamma.$$

Возможны следующие случаи:

- 1). c = a;
- $2). \quad \boxed{c \in (a,b)}, \text{ r.e. } \boxed{a < c < b};$
- 3). c = b.

Рассмотрим каждый из этих случаем в отдельности.

1). c = a.

Рассмотрим последовательность $\{x_n\} \subset (a,b)$ такую, что

$$x_n \downarrow c = a$$
.

Так как $x_n > c$, то $x_n \notin E$ для любого натурального $n \in \mathbb{N}$.

Следовательно, для любого натурального $n \in \mathbb{N}$

$$f(x_n) > \gamma$$
.

Так как функция y = f(x) непрерывна в точке a справа, то переходя к пределу имеем:

$$\lim_{n \to \infty} f(x_n) = f(a) = \alpha \ge \gamma.$$

Но по условию

$$\alpha < \gamma < \beta$$
.

Противоречие показывает, что случай

$$c = \alpha$$

невозможен.

2).
$$c \in (a, b)$$
, r.e. $a < c < b$.

Рассмотрим произвольное $x \in [a, c)$.

Так как

$$\sup E = c$$
,

то существует такое $x' \in E$, такое что

$$x < x' \le c$$
.

Следовательно,

$$f(x') \leq \gamma$$
,

т.е., учитывая строгое возрастание функции f(x), имеем

$$f(x) < f(x') \le \gamma$$
.

Таким образом,

$$x \in E$$

и потому

$$[a,c)\subset E$$

Пусть теперь $x \in (c,b]$. Так как

$$\sup E = c$$
,

To $x \notin E$, T.e.

$$E \cap (c,b] = \emptyset$$

3).
$$c = b$$
.

Рассмотрим последовательность $\{x_n\}\subset (a,b)$ такую, что

$$x_n \uparrow c = b$$

Так как $x_n < c$, то $x_n \in E$ для любого натурального $n \in \mathbb{N}$.

Следовательно, для любого натурального $n \in \mathbb{N}$

$$f(x_n) \le \gamma.$$

Так как функция y = f(x) непрерывна в точке b слева, то переходя к пределу имеем:

$$\lim_{n \to \infty} f(x_n) = f(b) = \beta \le \gamma.$$

Но по условию

$$\alpha < \gamma < \beta$$
.

Противоречие показывает, что случай

$$c = \beta$$

тоже невозможен.

Таким образом, мы показали, что

$$c \in (a, b)$$
.

Рассмотрим две последовательности $\{x'_n\}$ и $\{x''_n\}$ такие, что

$$\{x'_n\} \subset (a,c), \quad \{x''_n\} \subset (c,b),$$

$$x'_n \uparrow c, \quad x''_n \downarrow c.$$

Тогда

$$f(x_n') \le \gamma < f(x_n'').$$

Переходя в этом неравенстве к пределу при $n \to \infty$ и используя непрерывность функции f(x) в точке c, имеем:

$$f(c) \le \gamma \le f(c)$$
.

Следовательно,

$$f(c) = \gamma$$
.

Таким образом, для любого числа

$$\alpha < \gamma < \beta$$
.

мы построили такое число $c \in (a, b)$, что

$$f(c) = \gamma$$
.

Достаточность. Пусть теперь для любого числа γ , такого что

$$\alpha < \gamma < \beta$$

существует такое число $c \in (a, b)$, что

$$f(c) = \gamma.$$

Покажем, что функция f(x) непрерывна на [a,b], т.е. непрерывна в каждой точке $x \in (a,b)$, непрерывна в точке x=a справа и непрерывна в точке x=b слева.

1). Пусть
$$c \in (a, b]$$
 и

$$f(c) = \gamma.$$

Покажем, что

$$f(c-0) = f(c),$$

т.е. что функция f(x) непрерывна в точке c слева.

Так как

$$c \in (a, b] \Rightarrow a < c$$
.

Следовательно,

$$\alpha = f(a) < f(c) = \gamma.$$

Пусть $\varepsilon > 0$ такое, что

$$\gamma - \varepsilon > \alpha$$
.

Так как

$$\boxed{\alpha < \gamma - \varepsilon < \gamma \le \beta},$$

то по условию, существует число $d \in (a, b)$ такое, что

$$f(d) = \gamma - \varepsilon.$$

Кроме того, так как

$$f(d) = \gamma - \varepsilon < \gamma = f(c),$$

ТО

$$d < c$$
.

Поэтому для любой последовательности $\{x_n\}\subset [a,b]$, такой, что

$$x_n \uparrow c$$
,

существует такой номер N, то для любого $n \geq N$ выполняется неравенство

$$d < x_n < c$$
.

Поэтому, для любого $n \ge N$

$$f(d) < f(x_n) < f(c),$$

т.е.

$$\gamma - \varepsilon < f(x_n) < f(c) = \gamma.$$

Следовательно, существует предел

$$\lim_{n \to \infty} f(x_n) = \gamma = f(c).$$

Таким образом,

$$f(c-0) = f(c).$$

2). Пусть $c \in [a,b)$ и

$$f(c) = \gamma$$

Покажем, что

$$f(c+0) = f(c),$$

т.е. что функция f(x) непрерывна в точке c справа.

Так как

$$c \in [a, b) \Rightarrow c < b$$
.

Следовательно,

$$\gamma = f(c) < f(b) = \beta.$$

Пусть $\varepsilon > 0$ такое, что

$$\gamma + \varepsilon < \beta$$
.

Так как

$$\alpha \le \gamma < \gamma + \varepsilon < \beta,$$

то по условию, существует число $d_1 \in (a,b)$ такое, что

$$f(d_1) = \gamma + \varepsilon.$$

Кроме того, так как

$$f(c) = \gamma < \gamma + \varepsilon = f(d_1),$$

TO

$$c < d_1$$
.

Поэтому для любой последовательности $\{x_n\}\subset [a,b],$ такой, что

$$x_n \downarrow c$$
,

существует такой номер N_1 , то для любого $n \geq N_1$ выполняется неравенство

$$c < x_n < d_1$$
.

Поэтому, для любого $n \ge N_1$

$$f(c) < f(x_n) < f(d_1),$$

т.е.

$$\gamma = f(c) < f(x_n) < f(d_1) = \gamma + \varepsilon.$$

Следовательно, существует предел

$$\lim_{n \to \infty} f(x_n) = \gamma = f(c)$$

Таким образом,

$$f(c+0) = f(c).$$

Таким образом, мы показали, что функция f(x) непрерывна на [a,b], т.е. непрерывна в каждой точке $\in (a,b)$, непрерывна в точке a справа и непрерывна в точке b слева.

Замечание 1.8.10. Для функции f(x), строго монотонно убывающей на [a,b], доказательство теоремы аналогично.

Замечание 1.8.11. Заметим, что утверждение теоремы 1.8.9 остается справедливым и в случае, когда

$$a = -\infty$$

или

$$b = +\infty$$

В этом случае

$$\alpha = \lim_{x \to -\infty} f(x)$$

И

$$\beta = \lim_{x \to +\infty} f(x)$$

Следствие 1.8.12. Пусть на сегменте [a,b] задана строго монотонная непрерывная функция

$$y = f(x)$$

u nycmb

$$\alpha = f(a), \quad \beta = f(b).$$

Тогда на отрезке $[\alpha, \beta]$ (или $[\beta, \alpha]$) определена обратная функция

$$x = f^{-1}(y),$$

которая также строго монотонна и непрерывна.

Доказательство. Как и выше. без ограничения общности, считаем, что f(x) строго монотонно возрастает на [a,b].

Так как функция f(x) строго монотонно возрастает и непрерывна, то

$$f([a,b]) = [\alpha,\beta].$$

Тогда обратная функция

$$x = f^{-1}(y),$$

также строго монотонно возрастает,

$$f^{-1}: [\alpha, \beta] \to [a, b]$$

и, в силу только что доказанной теоремы, непрерывна.

Теорема 1.8.13. Монотонно возрастающая (убывающая) на [a,b] функция может иметь на [a,b] лишь разрывы первого рода, то есть скачки.

Доказательство. Пусть функция f(x) монотонно возрастает на [a,b]. Рассмотрим сначала

$$a < x_0 \le b$$
.

Для произвольного элемента x такого, что

$$a < x < x_0$$

имеем:

$$f(x) < f(x_0)$$
.

Поэтому функция f(x) монотонно возрастает на отрезке $[a, x_0]$ и ограничена сверху. Следовательно существует предел

$$\lim_{x \to x_0 - 0} f(x) = f(x_0 - 0) \le f(x_0).$$

Если

$$f(x_0 - 0) = f(x_0),$$

то функция f(x) непрерывна слева. Если же

$$f(x_0 - 0) \neq f(x_0),$$

то в точке x_0 имеет место скачок.

Аналогично рассматривается случай

$$a \le x_0 < b$$
.

1.9 Непрерывность элементарных функций. Свойства функций, непрерывных на отрезке.

1.9.1 Непрерывность элементарных функций.

- 1° . Показательная функции $y = a^{x}$
- 1). При a>1 эта функция строго возрастает и при изменении x в интервале $(-\infty,+\infty)$ принимает все значения из интервала $(0,+\infty)$:

$$f:(-\infty,+\infty)\to(0,+\infty)$$

Следовательно $y = a^x$ непрерывна на $(-\infty, +\infty)$.

2). Аналогично при 0 < a < 1 функция $y = a^x$ строго убывает и при изменении x в интервале $(-\infty, +\infty)$ принимает также все значения из интервала $(0, +\infty)$:

$$f: (-\infty, +\infty) \to (0, +\infty).$$

Следовательно и в этом случае функция $y = a^x$ непрерывна на $(-\infty, +\infty)$.

2° . Логарифмическая функция $y = \log_a x$

Эта функция непрерывна как обратная к монотонной и непрерывной функции $y=a^x$.

Заметим, что

$$f:(0,+\infty)\to(-\infty,+\infty)$$

3°. Тригонометрические функции.

$$3.1) y = \sin x$$

Рассмотрим произвольную точку $x_0 \in \mathbb{R}$.

Оценим разность $|\sin x - \sin x_0|$:

$$0 \le |\sin x - \sin x_0| = \left| 2\sin \frac{x - x_0}{2} \cos \frac{x + x_0}{2} \right| \le 2 \left| \sin \frac{x - x_0}{2} \right| \left| \cos \frac{x + x_0}{2} \right| \le 2 \left| \sin \frac{x - x_0}{2} \right| \le 2 \left| \sin \frac{x$$

Поэтому

$$\lim_{x \to x_0} |\sin x - \sin x_0| = 0,$$

т.е.

$$\lim_{x \to x_0} \sin x = \sin x_0.$$

Следовательно, функция $y = \sin x$ непрерывна в любой точке $x_0 \in \mathbb{R}$ и потому непрерывна на $\mathbb{R} = (-\infty, +\infty)$.

$$3.2) \sqrt{y = \cos x}$$

Рассмотрим произвольную точку $x_0 \in \mathbb{R}$.

Оценим разность $|\cos x - \cos x_0|$:

$$0 \le |\cos x - \cos x_0| = \left| 2\sin \frac{x - x_0}{2} \sin \frac{x + x_0}{2} \right| \le 2 \left| \sin \frac{x - x_0}{2} \right| \left| \sin \frac{x + x_0}{2} \right| \le 2 \left| \sin \frac{x - x_0}{2} \right| \le 2 \left| \sin \frac{x$$

Поэтому

$$\lim_{x \to x_0} |\cos x - \cos x_0| = 0,$$

т.е.

$$\lim_{x \to x_0} \cos x = \cos x_0 \,.$$

Следовательно, функция $y = \cos x$ непрерывна в любой точке $x_0 \in \mathbb{R}$ и потому непрерывна на $\mathbb{R} = (-\infty, +\infty)$.

3.1)
$$y = \operatorname{tg} x$$
, $x_0 \neq \frac{\pi}{2} + \pi n, n \in \mathbb{Z}$. Так как

$$y = \operatorname{tg} x = \frac{\sin x}{\cos x},$$

следовательно функция $y = \operatorname{tg} x$ непрерывна в любой точке

$$x_0: x_0 \neq \frac{\pi}{2} + \pi n, n \in \mathbb{Z},$$

как отношение двух непрерывных функций.

3.4)
$$y = \operatorname{ctg} x$$
, $x_0 \neq \pi n, n \in \mathbb{Z}$. Так как

$$y = \operatorname{ctg} x = \frac{\cos x}{\sin x},$$

следовательно функция $y = \operatorname{ctg} x$ непрерывна в любой точке

$$x_0: x_0 \neq \pi n, n \in \mathbb{Z},$$

как отношение двух непрерывных функций.

Свойства функций, непрерывных на отрезке. 1.9.2

3.10.2.1. Теорема об обращении функции в ноль.

Теорема 1.9.1. (Первая теорема Больцано-Коши.)

Eсли функция f(x)

1). Определена и непрерывна на [a, b];

2).

$$f(a) \cdot f(b) < 0,$$

то есть f(x) принимает на концах отрезка [a,b] значения разных знаков,

то существует точка $c \in (a,b)$ такая что

$$f(c) = 0.$$

Доказательство. Для определенности положим

$$\boxed{f(a) < 0} \quad \text{и} \quad \boxed{f(b) > 0}.$$

1). Разделим отрезок [a,b] пополам точкой $\frac{a+b}{2}$. Может случится, что

$$f\left(\frac{a+b}{2}\right) = 0$$

Тогда можно положить

$$c = \frac{a+b}{2}$$

и теорема доказана.

Если

$$f\left(\frac{a+b}{2}\right) > 0$$

то обозначим

$$\boxed{[a_1, b_1] = \left[a, \frac{a+b}{2}\right]}$$

Если же

$$f\left(\frac{a+b}{2}\right) < 0$$

то обозначим

$$a_1, b_1] = \left[\frac{a+b}{2}, b\right]$$

То есть, из двух отрезков

$$\left[a, \frac{a+b}{2}\right], \left[\frac{a+b}{2}, b\right]$$

в качестве $[a_1, b_1]$ выбираем тот, на концах которого функция f(x) принимает значения разных знаков (отрицательное на левом конце и положительное на правом):

$$f(a_1) < 0, \quad f(b_1) > 0.$$

2). Разделим теперь этот отрезок $[a_1,b_1]$ пополам точкой $\frac{a_1+b_1}{2}$ и повторим рассуждения.

Может случится, что

$$f\left(\frac{a_1+b_1}{2}\right)=0$$

Тогда можно положить

$$c = \frac{a_1 + b_1}{2}$$

и теорема доказана.

Если

$$f\left(\frac{a_1+b_1}{2}\right) > 0$$

то обозначим

$$[a_2, b_2] = \left[a_1, \frac{a_1 + b_1}{2}\right].$$

Если же

$$f\left(\frac{a_1+b_1}{2}\right)<0$$

то обозначим

$$[a_2, b_2] = \left[\frac{a_1 + b_1}{2}, b_1\right]$$

То есть, из двух отрезков

$$\left[a_1, \frac{a_1 + b_1}{2}\right], \left[\frac{a_1 + b_1}{2}, b_1\right]$$

в качестве $[a_2, b_2]$ выбираем тот, на концах которого функция f(x) принимает значения разных знаков (отрицательное на левом конце и положительное на правом):

$$f(a_2) < 0$$
, $f(b_2) > 0$.

3). Продолжая процесс построения промежутков

$$\boxed{[a,b]\supset [a_1,b_1]\supset ...\supset [a_k,b_k]},$$

мы либо через конечное число шагов получим точку

$$c = \frac{a_k + b_k}{2},$$

в которой

$$f(c) = f\left(\frac{a_k + b_k}{2}\right) = 0,$$

либо получим бесконечную последовательность вложенных друг в друга отрезков

$$[a,b]\supset [a_1,b_1]\supset ...\supset [a_n,b_n]\supset$$

такую, что длина n-го отрезка

$$b_n - a_n = \frac{b - a}{2^n} \to 0,$$

при этом, для любого $n \in \mathbb{N}$

$$\boxed{f(a_n) < 0} \quad \text{и} \quad \boxed{f(b_n) > 0}.$$

Тогда по лемме о вложенных промежутках, существует единственная точка

$$c = \bigcap_{n=1}^{\infty} [a_n, b_n].$$

При этом

$$a_n \le c \le b_n$$

И

$$c = \lim_{n \to \infty} a_n = \lim_{x \to \infty} b_n.$$

Так как функция f(x) непрерывна на отрезке [a, b], то

$$f(c) = \lim_{n \to \infty} f(a_n) \le 0$$

И

$$f(c) = \lim_{x \to \infty} f(b_n) \ge 0.$$

Следовательно.

$$f(c) = 0.$$

Примеры 1.9.2. 1). Найдем, сколько решений имеет уравнение

$$2^x = 4x.$$

Ясно, что x = 4 решение:

$$2^4 = 4 \cdot 4 = 16.$$

Покажем, что это уравнение иметь другие корни. Для этого рассмотрим функцию

$$f(x) = 2^x - 4x.$$

на отрезке

$$\left[0, \ \frac{1}{2}\right].$$

Действительно, функция $f(x) = 2^x - 4x$ непрерывна на отрезке $\left[0, \ \frac{1}{2}\right]$,

$$f(0) = 1 \ge 0,$$

И

$$f\left(\frac{1}{2}\right) = \sqrt{2} - 2 < 0.$$

Таким образом на интервале $\left(0,\,\frac{1}{2}\right)$ данное уравнение, в силу доказанной теоремы, имеет еще один корень.

2). Рассмотрим алгебраический многочлен нечетной степени:

$$f(x) = P_{2n+1}(x) = a_{2n+1}x^{2n+1} + a_{2n}x^{2n} + \dots + a_0.$$

При $x \to +\infty$ многочлен f(x) имеет знак a_{2n+1} .

При $x \to -\infty$ многочлен f(x) имеет знак $-a_{2n+1}$.

Следовательно этот многочлен имеет хотя бы один вещественный корень.

3.10.2.2. Теорема о промежуточном значении

.

Теорема 1.9.3. (Вторая теорема Больцано-Коши.) Если функция f(x)

- 1). Определена и непрерывна на отрезке [a, b];
- 2). На концах отрезка [a, b] функция принимает неравные значения

$$f(a) = A, \quad f(b) = B, \quad A \neq B$$

то для любого числа C, лежащего между числами A и B, существует точка $c \in (a,b)$ такая, что

$$f(c) = C$$
.

Доказательство. Для определенности считаем, что

$$A < B$$
.

Пусть число C лежит между числами A и B:

$$A < C < B$$
.

Рассмотрим на отрезке [a,b] функцию

$$\varphi(x) = f(x) - C.$$

Функция φ непрерывна на [a,b]. Кроме того

$$\varphi(a) = f(a) - C = A - C < 0$$

И

$$\varphi(b) = f(b) - C = B - C > 0.$$

Следовательно, по по первой теореме Больцано-Коши об обращении функции в ноль, существует точка $c \in (a,b)$ такая, что

$$\varphi(c) = f(c) - C = 0.$$

Но тогда

$$f(c) = C.$$

Замечание 1.9.4. Функция f(x) может быть определена и непрерывна на бесконечном интервале I.

В этом случае, если для любых двух точек x_1, x_2 этого интервала, таких что

$$x_1 < x_2$$

$$f(x_1) = A, \ f(x_2) = B, \ A \neq B,$$

то для любого числа C, лежащего между A и B, найдется точка $c \in (x_1, x_2)$ такая, что

$$f(c) = C$$
.

Итак, непрерывная на промежутке функция, переходя от одного своего значения к другому хотя бы раз принимает каждое промежуточное значение.

Таким образом, значения функции f(x) заполняют некоторый промежуток (конечный или бесконечный).

Действительно, пусть

$$M = \sup_{[a,b]} f(x), \ m = \inf_{[a,b]} f(x)$$

(Возможно $M=+\infty$, или $m=-\infty$).

Рассмотрим некоторое y_0 , лежащее между m и M:

$$\boxed{m < y_0 < M}.$$

Тогда существует y_1 и y_2 такие, что $y_1=f(x_1),\,y_2=f(x_2)$ и

$$\boxed{m \le y_1 < y_0 < y_2 \le M}$$

(по определению точных нижней и верхней граней).

Тогда по доказанной й теореме о промежуточном значении, существует число $x_0 \in (x_1, x_2)$ такое, что

$$f(x_0) = y_0,$$

т.е., y_0 — значение функции f(x).

Таким образом, значения f(x) заполняют промежуток между m и M, хотя сами m и M ему могут не принадлежать.

Замечание 1.9.5. Для монотонной функции из этого факта вытекает непрерывность. В общем случае это не так.

Пример 1.9.6. Рассмотрим функцию

$$f(x) = \begin{cases} \sin\frac{1}{x}, & x \in [-1,0) \cap (0,1]; \\ 0, & x = 0. \end{cases}$$

Множество значений функций будет отрезок

$$E(f) = [-1, 1],$$

в то время как функция f(x) разрывна в точке x = 0.

3.10.2.3. Теорема об ограниченности функции.

Заметим, что если функция f(x) определена на всем отрезке [a, b], это не значит, что она ограничена на [a, b].

Пример 1.9.7. Рассмотрим функцию

$$f(x) = \begin{cases} \frac{1}{x}, & x \in (0, 1]; \\ 0, & x = 0. \end{cases}$$

Эта функция определена на отрезке [0, 1], но неограничена.

Заметим, что в точке x=0 функция терпит разрыв, хотя на полуинтервале (0,1] она непрерывна.

Иначе обстоят дела с функциями, непрерывными на всем отрезке [a, b].

Теорема 1.9.8. (Первая теорема Вейерштрасса.) Если f(x) определена и непрерывна на [a,b], то она ограничена на этом отрезке. То есть существуют такие конечные числа m и M, что

$$m \le f(x) \le M$$

для любого $x \in [a, b]$.

Доказательство. Допустим противное, то есть что f(x) неограничена на [a,b].

Тогда для любого натурального числа n найдется точка $x_n \in [a,b]$ такая что

$$|f(x_n)| \ge n.$$

Полученная последовательность $\{x_n\}$ ограничена:

$$a \le x_n \le b$$
.

Следовательно, по теореме Больцано-Вейерштрасса, из последовательности $\{x_n\}_{n=1}^{\infty}$ можно выделить сходящуюся подпоследовательность $\{x_{n_k}\}_{k=1}^{\infty}$. Пусть

$$\lim_{k \to \infty} x_{n_k} = x_0.$$

Так как

$$a \le x_{n_k} \le b,$$

то и

$$\boxed{a \le x_0 \le b}.$$

Функция f(x) непрерывна на [a,b]. Следовательно

$$\lim_{x \to x_0} f(x) = f(x_0).$$

Потому

$$\lim_{k \to \infty} f(x_{n_k}) = f(x_0).$$

Но с другой стороны

$$\boxed{|f(x_{n_k})| > n_k \to \infty}$$

при $k \to \infty$.

Полученное противоречие доказывает ограниченность функции f(x).

3.10.2.3. Наибольшее и наименьшее значение функции.

Можно видеть, что функция ограничена на [a, b], то своих наибольших и наименьших значений она может и не достигать.

Пример 1.9.9. Рассмотрим функцию

$$f(x) = x - [x], \ x \in [0,3]$$

Ясно, что

$$\sup_{[0,3]} f(x) = 1,$$

но он не достигается.

Отметим, что f(x) разрывна в точках $x = k \in \mathbb{Z}$.

Теорема 1.9.10. (Вторая теорема Вейерштрасса). Если функция f(x) определена и непрерывна в [a,b], то она достигает в этом промежутке своих точных верхней и нижней граней, то есть в [a,b] найдутся такие точки x_0 и x_1 , что

$$f(x_0) = \min_{[a,b]} f(x) = m$$

u

$$f(x_1) = \max_{[a,b]} f(x) = M$$

Доказательство. 1). Пусть

$$\boxed{m = \inf_{[a,b]} f(x)}.$$

По первой теореме Вейерштрасса, функция f(x) ограничена. Поэтому m — конечное.

Допустим. что m не достигается, то есть не существует точки $x \in [a,b],$ такой что f(x) = m. Таким образом,

$$\boxed{m - f(x) < 0}$$

для любого $x \in [a, b]$.

Рассмотрим функцию

$$\varphi(x) = \frac{1}{m - f(x)}.$$

Эта функция непрерывна на [a,b] и, следовательно, ограничена снизу. То есть существует такое $\nu < 0$, что для любого $x \in [a,b]$.

$$\varphi(x) = \frac{1}{m - f(x)} \ge \nu \Rightarrow \frac{1}{f(x) - m} \le -\nu \Rightarrow f(x) - m \ge \frac{1}{-\nu}$$

Тогда

$$m - f(x) \le \frac{1}{\nu}$$

и потому

$$f(x) \ge m - \frac{1}{\nu} > m$$

для любого $x \in [a,b]$. Но это противоречит определению инфимума. Следовательно, существует такое $x_0 \in [a,b]$, что

$$f(x_0) = \min_{[a,b]} f(x) = m.$$

2). Пусть

$$M = \sup_{[a,b]} f(x).$$

По первой теореме Вейерштрасса, функция f(x) ограничена. Поэтому M — конечное.

Допустим. что M не достигается, то есть не существует точки $x \in [a,b]$, такой что f(x) = M. Таким образом,

$$M - f(x) > 0$$

для любого $x \in [a, b]$.

Рассмотрим функцию

$$\psi(x) = \frac{1}{M - f(x)}.$$

Эта функция непрерывна на [a,b] и, следовательно, ограничена сверху. То есть существует такое $\mu>0$, что для любого $x\in[a,b]$.

$$\psi(x) = \frac{1}{M - f(x)} \le \mu$$

Тогда

$$\boxed{M - f(x) \ge \frac{1}{\mu}}$$

и потому

$$f(x) \le M - \frac{1}{\mu} < M$$

для любого $x \in [a,b].$ Но это противоречит определению супремума. Следовательно, существует такое $x_1 \in [a,b],$ что

$$f(x_1) = \max_{[a,b]} f(x) = M.$$

Глава 2

Производная функции и дифференциал.

- 2.1 Производная функции.
- 2.1.1 Определение производной функции.

Определение 2.1.1. Пусть функция y = f(x) определена в некоторой ε -окрестности $U_{\varepsilon}(x_0)$ точки x_0 и пусть $x \in U_{\varepsilon}(x_0)$. Если существует конечный предел отношения

$$\frac{f(x) - f(x_0)}{x - x_0}$$

при $x \to x_0$, то этот предел называется производной функции f(x) в точке x_0 и обозначается $f'(x_0)$:

$$f'(x_0) = \lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0}.$$
 (2.1.1)

Введем следующие обозначения:

И

$$\Delta x = x - x_0$$

 $\Delta y = y(x) - y(x_0) = f(x) - f(x_0) = f(x_0 + \Delta x) - f(x_0).$

Определение 2.1.2. $\Delta x = x - x_0$ называется приращением аргумента, а $\Delta y = y(x) - y(x_0)$ — приращением функции в точке x_0 , отвечающем приращению аргумента Δx .

Замечание 2.1.3. Легко видеть, что

$$x \to x_0 \Leftrightarrow \Delta x = x - x_0 \to 0.$$

Поэтому равенство (2.1.1) можно переписать в виде

$$f'(x_0) = \lim_{\Delta x \to 0} \frac{f(x_0 + \Delta x) - f(x_0)}{\Delta x} = \lim_{\Delta x \to 0} \frac{\Delta y}{\Delta x}.$$
 (2.1.2)

Замечание 2.1.4. Если для некоторой точки x_0 выполняется

$$\lim_{\Delta x \to 0} \frac{\Delta y}{\Delta x} = \infty, \tag{2.1.3}$$

$$\lim_{\Delta x \to 0} \frac{\Delta y}{\Delta x} = +\infty \tag{2.1.4}$$

или

$$\lim_{\Delta x \to 0} \frac{\Delta y}{\Delta x} = -\infty, \tag{2.1.5}$$

то говорят, что в этой точке x_0 существует бесконечная производная, равная соответственно ∞ , $+\infty$ или $-\infty$, и пишут

$$f'(x_0) = \infty$$
, $f'(x_0) = +\infty$ или $f'(x_0) = -\infty$.

Во всех остальных случаях производная $f'(x_0)$ подразумевается конечной.

Замечание 2.1.5. Существую различные обозначения производной функции f(x) в точке x_0 .

• Немецкий математик Готфрид Вильгельм Лейбниц (1646-1716) ввел следующее обозначение производной:

$$\frac{dy}{dx}$$
, $\frac{df(x_0)}{dx}$.

Для частных производных функций многих переменных он использовал обозначение

 $\frac{\partial y}{\partial x}$.

• Французский математик Жозеф Луи Лагранж (1736-1813) использовал следующее обозначение:

$$y', f'(x_0).$$

• Французский математик Луи Огюстен Коши (1783-1857) использовал следующее обозначение:

$$Dy$$
, $Df(x_0)$.

Определение 2.1.6. Пусть функция y = f(x) определена в правой полуокрестности $[x_0, x_0 + \varepsilon)$ точки x_0 и существует конечный предел отношения

$$\frac{f(x) - f(x_0)}{x - x_0}$$

при $x \to x_0 + 0$, то этот предел называется производной функции f(x) в точке x_0 справа или правой производной и обозначается $f'(x_0 + 0)$:

$$f'(x_0 + 0) = \lim_{x \to x_0 + 0} \frac{f(x) - f(x_0)}{x - x_0} = \lim_{\Delta x \to 0 + 0} \frac{f(x_0 + \Delta x) - f(x_0)}{\Delta x}.$$
 (2.1.6)

Определение 2.1.7. Пусть функция y = f(x) определена в левой полуокрестности $(x_0 - \varepsilon; x_0]$ точки x_0 и существует конечный предел отношения

$$\frac{f(x) - f(x_0)}{x - x_0}$$

при $x \to x_0 - 0$, то этот предел называется производной функции f(x) в точке x_0 слева или левой производной и обозначается $f'(x_0 - 0)$:

$$f'(x_0 - 0) = \lim_{x \to x_0 - 0} \frac{f(x) - f(x_0)}{x - x_0} = \lim_{\Delta x \to 0 - 0} \frac{f(x_0 + \Delta x) - f(x_0)}{\Delta x}.$$
 (2.1.7)

Замечание 2.1.8. Часто правую и левую производные обозначают следующим образом:

$$f'(x_0 + 0) = f'_+(x_0),$$

$$f'(x_0 - 0) = f'_{-}(x_0).$$

Также как для функций, имеющих предел, имеет место следующая теорема:

Теорема 2.1.9. Для того, чтобы функция y = f(x) имела в точке x_0 конечную производную $f'(x_0)$, необходимо и достаточно, чтобы существовали $f'(x_0 + 0)$ и $f'(x_0 - 0)$ и чтобы они были равны:

$$f'(x_0 + 0) = f'(x_0 - 0).$$

Ясно, что в этом случае выполняется равенство

$$f'(x_0 + 0) = f'(x_0 - 0) = f'(x_0).$$

Замечание 2.1.10. Если функция y = f(x) имеет производную $f'(x_0)$ в каждой точке $x_0 \in D_1(f) \subset D(f)$, то эта производная в свою очередь будет представлять собой функцию, определенную на $D_1(f)$. Эту функцию мы будем обозначать f'(x). Итак, для любого $x \in D_1(f)$

$$f'(x) = \lim_{\Delta x \to 0} \frac{f(x + \Delta x) - f(x)}{\Delta x} = \lim_{\Delta x \to 0} \frac{\Delta y}{\Delta x}.$$
 (2.1.8)

Определение 2.1.11. Операция нахождения (вычисления) производной f'(x) функции f(x) называется дифференцированием или операцией дифференцирования.

2.1.2 Производные некоторых элементарных функций.

 1°). y = c, c = const.

Для любой точки $x \in D(f) = \mathbb{R} = (-\infty, +\infty)$ имеем:

$$\Delta y = c - c = 0.$$

Поэтому

$$\lim_{\Delta x \to 0} \frac{\Delta y}{\Delta x} = 0.$$

Следовательно,

$$y' = (c)' = 0.$$

 2^{o}). $y = \sin x$.

Для любой точки $x \in D(f) = \mathbb{R} = (-\infty, +\infty)$ имеем:

$$\Delta y = \sin(x + \Delta x) - \sin x = 2\sin\frac{\Delta x}{2} \cdot \cos\left(x + \frac{\Delta x}{2}\right)$$

Поэтому

$$\lim_{\Delta x \to 0} \frac{\Delta y}{\Delta x} = \lim_{\Delta x \to 0} \frac{2\sin\frac{\Delta x}{2} \cdot \cos\left(x + \frac{\Delta x}{2}\right)}{\Delta x} =$$

$$= \lim_{\Delta x \to 0} \frac{\sin\frac{\Delta x}{2}}{\frac{\Delta x}{2}} \cdot \cos\left(x + \frac{\Delta x}{2}\right) = \lim_{\Delta x \to 0} \frac{\sin\frac{\Delta x}{2}}{\frac{\Delta x}{2}} \cdot \lim_{\Delta x \to 0} \cos\left(x + \frac{\Delta x}{2}\right) =$$

$$= \cos x,$$

так как

$$\lim_{\Delta x \to 0} \frac{\sin \frac{\Delta x}{2}}{\frac{\Delta x}{2}} = 1 \ (\Piервый замечательный предел)$$

И

$$\lim_{\Delta x \to 0} \cos \left(x + \frac{\Delta x}{2} \right) = \cos x \text{ (Непрерывность функции cos x)}$$

Следовательно,

$$y' = (\sin x)' = \cos x.$$

 3^{o}). $y = \cos x$

Для любой точки $x \in D(f) = \mathbb{R} = (-\infty, +\infty)$ имеем:

$$\Delta y = \cos(x + \Delta x) - \cos x = -2\sin\frac{\Delta x}{2} \cdot \sin\left(x + \frac{\Delta x}{2}\right)$$

Поэтому

$$\lim_{\Delta x \to 0} \frac{\Delta y}{\Delta x} = \lim_{\Delta x \to 0} \frac{-2\sin\frac{\Delta x}{2} \cdot \sin\left(x + \frac{\Delta x}{2}\right)}{\Delta x} =$$

$$= -\lim_{\Delta x \to 0} \frac{\sin \frac{\Delta x}{2}}{\frac{\Delta x}{2}} \cdot \sin \left(x + \frac{\Delta x}{2} \right) = -\lim_{\Delta x \to 0} \frac{\sin \frac{\Delta x}{2}}{\frac{\Delta x}{2}} \cdot \lim_{\Delta x \to 0} \sin \left(x + \frac{\Delta x}{2} \right) =$$
$$= -\sin x,$$

так как, как и выше,

$$\lim_{\Delta x \to 0} \frac{\sin \frac{\Delta x}{2}}{\frac{\Delta x}{2}} = 1 \ (\Piервый замечательный предел)$$

И

$$\lim_{\Delta x \to 0} \sin \left(x + \frac{\Delta x}{2} \right) = \sin x \text{ (Непрерывность функции sin x)}$$

Следовательно,

$$y' = (\cos x)' = -\sin x.$$

 4^{o}). Показательная функция $y = a^{x}$, a > 0.

Для любой точки $x \in D(f) = \mathbb{R} = (-\infty, +\infty)$ имеем:

$$\Delta y = a^{x+\Delta x} - a^x = a^x (a^{\Delta x} - 1).$$

Поэтому

$$\lim_{\Delta x \to 0} \frac{\Delta y}{\Delta x} = \lim_{\Delta x \to 0} \frac{a^x (a^{\Delta x} - 1)}{\Delta x} = a^x \lim_{\Delta x \to 0} \frac{a^{\Delta x} - 1}{\Delta x} = a^x \ln a,$$

так как

$$\lim_{\Delta x \to 0} \frac{a^{\Delta x} - 1}{\Delta x} = \ln a \ (\text{Следствие второго замечательного предела}).$$

Следовательно,

$$y' = (a^x)' = a^x \ln a.$$

 5°). Функция $y = e^{x}$.

Для любой точки $x \in D(f) = \mathbb{R} = (-\infty, < +\infty)$ имеем:

$$y' = (e^x)' = e^x.$$

 6^o). Логарифмическая функция $y=\log_a x$. Для любой точки $x\in D(f)=(0,+\infty)$ имеем:

$$\Delta y = \log_a(x + \Delta x) - \log_a x = \log_a \left(1 + \frac{\Delta x}{x}\right) = \frac{\ln\left(1 + \frac{\Delta x}{x}\right)}{\ln a}.$$

Поэтому, при фиксированном $x \in (0, +\infty)$,

$$\lim_{\Delta x \to 0} \frac{\Delta y}{\Delta x} = \lim_{\Delta x \to 0} \frac{\ln\left(1 + \frac{\Delta x}{x}\right)}{\Delta x \ln a} = \lim_{\Delta x \to 0} \frac{\ln\left(1 + \frac{\Delta x}{x}\right)}{\frac{\Delta x}{x} \cdot x \ln a} =$$

$$= \frac{1}{x \ln a} \cdot \lim_{\Delta x \to 0} \frac{\ln \left(1 + \frac{\Delta x}{x}\right)}{\frac{\Delta x}{x}} = \frac{1}{x \ln a},$$

так как

$$\lim_{\Delta x \to 0} \frac{\ln\left(1+\frac{\Delta x}{x}\right)}{\frac{\Delta x}{x}} = 1 \; \text{(Следствие второго замечательного предела)}.$$

Следовательно,

$$y' = (\log_a x)' = \frac{1}{x \ln a}.$$

 7^{o}). Логарифмическая функция $y = \ln x$.

Для любой точки $x\in D(f)=(0,+\infty)$ имеем:

$$y' = (\ln x)' = \frac{1}{x}.$$

 8^{o}). Линейная функция y = kx + b.

Для любой точки $x \in D(f) = \mathbb{R} = (-\infty, +\infty)$ имеем:

$$\Delta y = [k(x + \Delta x) + b] - [kx + b] = k\Delta x.$$

Поэтому

$$\lim_{\Delta x \to 0} \frac{\Delta y}{\Delta x} = \lim_{\Delta x \to 0} \frac{k \Delta x}{\Delta x} = k.$$

Следовательно,

$$y' = (kx + b)' = k.$$

В частности,

$$(x)' = 1.$$

9°). Степенная функция $y=x^n, \ n\in\mathbb{N}, \ n\geq 2.$

По формуле бинома Ньютона имеем:

$$(a+b)^n = \sum_{m=0}^n C_n^m a^{n-m} b^m,$$

где биномиальные коэффициенты вычисляются по формуле

$$C_n^m = \frac{n!}{m!(n-m)!}.$$

Для любой точки $x \in D(f) = \mathbb{R} = (-\infty, +\infty)$ имеем:

$$\Delta y = (x + \Delta x)^n - x = \sum_{m=0}^n C_n^m x^{n-m} \Delta x^m =$$

$$= \left[x^n + nx^{n-1} \Delta x + \frac{n(n-1)}{2} x^{n-2} \Delta x^2 + \dots + \Delta x^n \right] - x^n =$$

$$= nx^{n-1} \Delta x + \frac{n(n-1)}{2} x^{n-2} \Delta x^2 + \dots + \Delta x^n =$$

$$= \Delta x \left[nx^{n-1} + \frac{n(n-1)}{2} x^{n-2} \Delta x + \dots + \Delta x^{n-1} \right]$$

Поэтому

$$\lim_{\Delta x \to 0} \frac{\Delta y}{\Delta x} = \lim_{\Delta x \to 0} \left[nx^{n-1} + \frac{n(n-1)}{2} x^{n-2} \Delta x + \ldots + \Delta x^{n-1} \right] = nx^{n-1}.$$

Следовательно,

$$y' = (x^n)' = nx^{n-1}.$$

2.1.3 Дифференцируемость функции. Дифференциал.

4.1.3.1. Понятие дифференцируемости.

Определение 2.1.12. Пусть функция y = f(x) определена в некоторой ε -окрестности $U_{\varepsilon}(x_0)$ точки x_0 и пусть $x \in U_{\varepsilon}(x_0)$.

Функция y = f(x) называется дифференцируемой в точке x_0 , если ее приращение

$$\Delta y = f(x_0 + \Delta x) - f(x_0),$$

отвечающее приращению аргумента

$$\Delta x = x - x_0,$$

представимо в виде

$$\Delta y = A \cdot \Delta x + \alpha(\Delta x) \Delta x,\tag{2.1.9}$$

где A — постоянная, а функция $\alpha(\Delta x)$ — бесконечно малая при $\Delta x \to 0$:

$$\lim_{\Delta x \to 0} \alpha(\Delta x) = 0.$$

Определение 2.1.13. Если Функция y = f(x) дифференцируема в точке x_0 и ее приращение имеет вид

$$\Delta y = A \cdot \Delta x + \alpha(\Delta x) \Delta x$$

то выражение

$$A \cdot \Delta x$$

называется дифференциалом функции f(x) в точке x_0 и обозначается dy или $df(x_0)$:

$$dy = df(x_0) = A \cdot \Delta x. \tag{2.1.10}$$

Замечание 2.1.14. Если Функция y = f(x) дифференцируема в точке x_0 и ее приращение имеет вид

$$\Delta y = A \cdot \Delta x + \alpha(\Delta x) \Delta x,$$

то

$$\lim_{\Delta x \to 0} \frac{\alpha(\Delta x) \Delta x}{\Delta x} = \lim_{\Delta x \to 0} \alpha(\Delta x) = 0.$$

Поэтому

$$\alpha(\Delta x)\Delta x = o(\Delta x)$$

при $\Delta x \to 0$. Следовательно, представление (2.1.9) равносильно следующему:

$$\Delta y = A \cdot \Delta x + o(\Delta x), \tag{2.1.11}$$

или следующему:

$$\Delta y = dy + o(\Delta x) = df(x_0) + o(\Delta x). \tag{2.1.12}$$

Замечание 2.1.15. • Если

$$dy = df(x_0) \neq 0,$$

то дифференциал dy — главная часть приращения функции в точке x_0 . При этом,

$$\Delta y \approx dy$$

при $\Delta x \to 0$.

• Если A = 0, то

$$dy = df(x_0) = 0.$$

В этом случае

$$\Delta y = o(\Delta x)$$

при $\Delta x \to 0$.

• Для более симметричной записи приращение Δx обозначают dx и называют дифференциалом независимой переменной.

Это обозначение естественно, так как если рассмотреть функцию

$$y = x$$
,

то для этой функции приращение Δy имеет вид:

$$\Delta y = \Delta x$$
,

т.е.

$$dy = dx = \Delta x$$
.

Наконец, используя это замечание, равенство (2.1.10) можно переписать в виде

$$dy = A \cdot dx. \tag{2.1.13}$$

4.1.3.2. Связь между дифференцируемостью функции и существованием конечной производной.

Рассмотрим связь между дифференцируемостью функции f(x) в точке x_0 и существованием конечной производной $f'(x_0)$ этой функции в этой точке.

Теорема 2.1.16. Для того, чтобы функция f(x) была дифференцируемой в точке x_0 , необходимо и достаточно, чтобы она имела в этой точке конечную производную $f'(x_0)$.

Доказательство. Необходимость

Пусть функция f(x) была дифференцируемой в точке x_0 . Следовательно, ее приращение

$$\Delta y = f(x_0 + \Delta x) - f(x_0),$$

отвечающее приращению аргумента

$$\Delta x = x - x_0$$
.

представимо в виде

$$\Delta y = A \cdot \Delta x + \alpha(\Delta x) \Delta x$$
.

где A — постоянная, а функция $\alpha(\Delta x)$ — бесконечно малая при $\Delta x \to 0$:

$$\lim_{\Delta x \to 0} \alpha(\Delta x) = 0.$$

Тогда существует предел

$$\lim_{\Delta x \to 0} \frac{\Delta y}{\Delta x} = \lim_{\Delta x \to 0} \frac{A \cdot \Delta x + \alpha(\Delta x) \Delta x}{\Delta x} = \lim_{\Delta x \to 0} [A + \alpha(\Delta x)] = A.$$

Следовательно, существует конечная производная $f'(x_0)$ и

$$f'(x_0) = A.$$

Достаточность

Пусть существует конечная производная $f'(x_0)$ функции f(x) в точке x_0 . Следовательно, существует конечный предел

$$\lim_{\Delta x \to 0} \frac{\Delta y}{\Delta x} = f'(x_0).$$

Тогда разностное отношение представимо в виде:

$$\frac{\Delta y}{\Delta x} = f'(x_0) + \alpha(\Delta x),$$

функция $\alpha(\Delta x)$ — бесконечно малая при $\Delta x \to 0$:

$$\lim_{\Delta x \to 0} \alpha(\Delta x) = 0.$$

Но тогда имеет место представление приращения Δy в виде

$$\Delta y = f'(x_0)\Delta x + \alpha(\Delta x)\Delta x.$$

Следовательно, функция f(x) дифференцируема в точке x_0 .

Замечание 2.1.17. Дифференциал дифференцируемой функции имеет вид

$$dy = f'(x_0) \cdot dx. \tag{2.1.14}$$

Примеры 2.1.18. Вычислим дифференциалы некоторых элементарных функций.

1). Для функции y = c

$$dc = 0$$
.

2). Для функции $y = \sin x$

$$d(\sin x) = \cos x \cdot dx.$$

3). Для функции $y = \cos x$

$$d(\cos x) = -\sin x \cdot dx.$$

4). Для функции $y=a^x$

$$d(a^x) = a^x \ln a \cdot dx.$$

5). Для функции $y = \log_a x$

$$d(\log_a x) = \frac{1}{x \ln x} \cdot dx.$$

6). Для функции $y = x^n$

$$d(x^n) = nx^{n-1} \cdot dx.$$

4.1.3.2. Связь между дифференцируемостью функции и непрерывностью.

Рассмотрим связь между дифференцируемостью функции в точке x_0 и непрерывностью в этой точке.

Теорема 2.1.19. Если функция f(x) дифференцируемой в некоторой точке x_0 , то она непрерывна в этой точке.

Доказательство. Пусть y = f(x) дифференцируема в точке x_0 . Следовательно

$$\triangle y = A \triangle x + \alpha(\triangle x) \cdot \triangle x$$

Рассмотрим предел этого выражения при $\triangle x \to 0$:

$$\lim_{\triangle x \to 0} \triangle y = \lim_{\triangle x \to 0} (A \triangle x + \alpha(\triangle x) \cdot \triangle x) = 0$$

То есть

$$\lim_{x \to x_0} (f(x) - f(x_0)) = 0,$$

или

$$\lim_{x \to x_0} (f(x) = f(x_0).$$

Это и означает непрерывность функции y = f(x) в точке x_0 .

Замечание 2.1.20. Обратное утверждение не верно!

Пример 2.1.21. Рассмотрим функцию y = |x| в точке $x_0 = 0$. Найдем левую и правую производную этой функции в 0.

$$f'(0 \pm 0) = \lim_{x \to 0 \pm 0} \frac{f(x) - f(0)}{x} = \lim_{x \to 0 \pm 0} \frac{\pm x - 0}{x} = \pm 1.$$

Следовательно, в точке $x_0=0$ функция не имеет производной. При этом, функция y=|x| непрерывна в точке $x_0=0$.

Следствие 2.1.22. Если функция y = f(x) имеет конечную производную в некоторой точке x_0 , то она непрерывна в этой точке.

2.2 Геометрический смысл производной и дифференциала. Основные правила дифференцирования

2.2.1 Геометрический смысл производной и дифференциала.

Пусть функция f(x) определена на интервале (a,b) и непрерывна в точке $x_0 \in (a,b)$.

Пусть точка $M_0(x_0, y_0)$ лежит на графике функции f(x).

Рассмотрим такое приращение Δx в точке x_0 , чтобы $x_0 + \Delta x \in (a, b)$. Соответствующее приращение функции имеет вид

$$\Delta y = f(x_0 + \Delta x) - f(x_0).$$

Обозначим через M точку графика с координатами $(x_0 + x, y_0 + \Delta y)$:

$$M(x_0+x, y_0+\Delta y).$$

Проведем секущую M_0M . Пусть эта секущая пересекает ось (Ox) под углом $\varphi(\Delta x)$. Этот угол зависит от приращения Δx . Тогда уравнение секущей M_0M можно записать следующим образом (как уравнение прямой, проходящей через точку $M_0(x_0, y_0)$, с угловым коэффициентом):

$$y = k(\Delta x)(x - x_0) + y_0$$
, (2.2.1)

где

$$k(\Delta x) = \operatorname{tg} \varphi(\Delta x) = \frac{\Delta y}{\Delta x}.$$

Замечание 2.2.1. Если точка $M(x_0+x,\,y_0+\Delta y)$ движется по графику к точке $M(x_0,y_0),$ то $\Delta x\to 0$ и поэтому

$$|M_0M| \to 0.$$

Действительно, так как функция f(x) непрерывна в точке x_0 , то

$$\lim_{\Delta x \to 0} \Delta y = 0$$

и потому

$$\lim_{\Delta x \to 0} |M_0 M| = \lim_{\Delta x \to 0} \sqrt{(\Delta x)^2 + (\Delta y)^2} = 0.$$

Определение 2.2.2. Если существует конечный предел

$$\lim_{\Delta x \to 0} k(\Delta x) = k_0,$$

то прямая, задаваемая уравнением

$$y = k_0(x - x_0) + y_0, (2.2.2)$$

называется *касательной (наклонной)* к графику функции y = f(x) в точке M_0 (в точке x_0).

Если же

$$\lim_{\Delta x \to 0} k(\Delta x) = \infty,$$

то прямая, задаваемая уравнением

$$\boxed{x = x_0},\tag{2.2.3}$$

называется вертикальной касательной к графику функции y = f(x) в точке M_0 .

Замечание 2.2.3. Касательная к графику функции y = f(x) в точке M_0 представляет собой предельное положение секущей M_0M при $M \to M_0$.

Замечание 2.2.4. Уравнение (2.2.3) вертикальной касательной может быть получено из уравнения (2.2.1). Действительно,

$$y = k(\Delta x)(x - x_0) + y_0 \Rightarrow \frac{y}{k(\Delta x)} = x - x_0 + \frac{y_0}{k(\Delta x)}.$$

Переходя к пределу в последнем равенстве к пределу при $k(\Delta x) \to \infty$, получим:

$$x = x_0$$
.

Теорема 2.2.5. Пусть функция y = f(x) Определена в некоторой окрестности $U_{\varepsilon}(x_0)$ точки x_0 (на интервале (a,b)) и непрерывна в точке x_0 . Наклонная касательная к графику функции f(x) в точке $M_0(x_0, f(x_0))$ существует тогда и только тогда, когда существует конечная производная $f'(x_0)$ функции f(x) в точке x_0 . При этом, уравнение касательной имеет вид:

$$y = f'(x_0)(x - x_0) + f(x_0). (2.2.4)$$

Доказательство. Наклонная касательная к графику функции f(x) в точке $M_0(x_0, f(x_0))$ существует тогда и только тогда, когда существует конечный предел

$$\lim_{\Delta x \to 0} k(\Delta x) = k_0,$$

 H_0

$$k(\Delta x) = \frac{\Delta y}{\Delta x}.$$

Поэтому, конечный предел

$$\lim_{\Delta x \to 0} k(\Delta x) = k_0$$

существует тогда и только тогда, когда существует конечный предел

$$\lim_{\Delta x \to 0} \frac{\Delta y}{\Delta x} = f'(x_0),$$

т.е. существует конечная производная $f'(x_0)$ функции f(x) в точке x_0 . \square

Замечание 2.2.6. Заметим, что мы получили равенство

$$f'(x_0) = k_0 = \lg \alpha \,\, , \tag{2.2.5}$$

где α — величина угла, образованного касательной с положительным направлением оси (Ox).

Следствие 2.2.7. Наклонная касательная к графику функции f(x) в точке $M_0(x_0, f(x_0))$ существует тогда и только тогда, когда функция f(x) дифференцируема в точке x_0 .

Замечание 2.2.8. Равенство (2.2.5) объясняет геометрический смысл конечной производной $f'(x_0)$ функции f(x) в точке x_0 :

• Конечная производная $f'(x_0)$ функции f(x) в точке x_0 равна угловому коэффициенту k_0 касательной к графику функции f(x) в точке $M_0(x_0, f(x_0))$:

$$f'(x_0) = k_0$$

или

• Конечная производная $f'(x_0)$ функции f(x) в точке x_0 равна тангенсу $\operatorname{tg} \alpha$ угла, образованного касательной с положительным направлением оси (Ox):

$$f'(x_0) = \operatorname{tg} \alpha .$$

Замечание 2.2.9. Выясним теперь геометрический смысл дифференциала функции f(x) в точке x_0 . Так как

$$dy = df = f'(x_0)\Delta x = f'(x_0)(x - x_0) = (x - x_0) \operatorname{tg} \alpha = NK,$$

то из уравнения касательной

$$y = f'(x_0)(x - x_0) + f(x_0)$$

имеем:

$$y - f(x_0) = f'(x_0)(x - x_0) = dy.$$

Следовательно, дифференциал функции f(x) в точке x_0 равен приращению ординаты касательной, проведенной к графику функции f(x) в точке $M_0(x_0, f(x_0))$.

Пример 2.2.10. Найдем касательную к графику функции

$$y = x^2$$

в точке $M_0(1,1)$.

Так как

$$y'(x) = 2x$$

$$y'(1) = 2$$

И

$$y(1) = 1,$$

то уравнение касательной имеет вид:

$$y = 2(x - 1) + 1,$$

ИЛИ

$$y = 2x - 1.$$

2.2.2 Физический смысл производной и дифференциала.

Пусть функция

$$y = f(x)$$

представляет собой закон движения материальной точки.

Вычислим среднюю скорость v_{cp} за промежуток времени от x_0 до $x_0 + \Delta x$:

$$v_{cp} = \frac{f(x_0 + \Delta x) - f(x_0)}{\Delta x} = \frac{\Delta y}{\Delta x}.$$

Для характеристики неравномерного движения большую роль играет мгновенная скорость

$$v = \lim_{\Delta \to 0} \frac{\Delta y}{\Delta x} = f'(x_0)$$
.

Таким образом, физический смысл производной состоит в том, что $f'(x_0)$ есть мгновенная скорость материальной точки в момент времени x_0 .

Пример 2.2.11. Пусть материальная точка падает под действием силы тяжести.

Закон движения материальной точки в этом случае имеет вид:

$$s = \frac{gt^2}{2}.$$

Тогда

$$\Delta s = s(t + \Delta t) - s(t) = \frac{g(t + \Delta t)^2}{2} - \frac{gt^2}{2} = \frac{gt^2 + 2gt\Delta t + (\Delta t)^2 - gt^2}{2} = gt\Delta t + \frac{g}{2}(\Delta t)^2.$$

Отсюда средняя скорость может быть записана в виде

$$v_{cp} = \frac{\Delta s}{\Delta t} = gt + \frac{g}{2}\Delta t.$$

Тогда мгновенная скорость есть

$$v = \lim_{\Delta t \to 0} \frac{\Delta s}{\Delta t} = gt.$$

С другой стороны, так как

$$\Delta s = gt\Delta t + o(\Delta t),$$

ТО

$$ds = vdt = gt\Delta t$$

Таким образом, физический смысл дифференциала функции y = f(x) состоит в том, что этот дифференциал равен расстоянию, которое прошла бы материальная точка, двигаясь равномерно со скоростью, равной мгновенной скорости v в момент времени t.

Замена приращения Δs на дифференциал ds означает, что мы предполагаем движение на этом участке равномерным.

2.2.3 Основные правила дифференцирования.

Пусть функции $y_1 = f_1(x)$ и $y_2 = f_2(x)$ определены и непрерывны в некоторой окрестности $U_{\varepsilon}(x_0)$ точки x_0 . В следующей теореме приведены правила нахождения производной суммы, разности, произведения и частного двух функций.

Теорема 2.2.12. Пусть функции $y_1 = f_1(x)$ и $y_2 = f_2(x)$ имеют производные в точке x_0 . Тогда

1°. Сумма функций

$$y = y_1 + y_2 = f_1(x) + f_2(x)$$

имеет производную в точке x_0 и

$$y' = (y_1 + y_2)' = y_1' + y_2' = f_1'(x_0) + f_2'(x_0)$$

 2^o . Разность функций

$$y = y_1 - y_2 = f_1(x) - f_2(x)$$

имеет производную в точке x_0 и

$$y' = (y_1 - y_2)' = y_1' - y_2' = f_1'(x_0) - f_2'(x_0)$$

3°. Произведение функций

$$y = y_1 \cdot y_2 = f_1(x) \cdot f_2(x)$$

имеет производную в точке x_0 и

$$y' = (y_1 \cdot y_2)' = y_1' y_2 + y_1 y_2' = f_1'(x_0) f_2(x_0) + f_1(x_0) f_2'(x_0).$$

4^o . Если $y_2(x_0) \neq 0$, то частное функций

$$y = \frac{y_1}{y_2} = \frac{f_1(x)}{f_2(x)}$$

имеет производную в точке x_0 и

$$y' = \left(\frac{y_1}{y_2}\right)' = \frac{y_1'y_2 - y_1y_2'}{y_2^2} = \frac{f_1'(x_0)f_2(x_0) - f_1(x_0)f_2'(x_0)}{f_2^2(x_0)}$$

Доказательство. Рассмотрим такое приращение аргумента $\Delta x \neq 0$, что $x_0 + \Delta x \in U_{\varepsilon}(x_0)$, и соответствующие приращения функций $y_1 = f_1(x)$ и $y_2 = f_2(x)$:

$$\Delta y_1 = f_1(x + \Delta x) - f_1(x_0)$$

И

$$\Delta y_2 = f_2(x + \Delta x) - f_2(x_0)$$

Тогда

$$f_1(x_0 + \Delta x) = f_1(x_0) + \Delta y_1$$

И

$$f_2(x_0 + \Delta x) = f_2(x_0) + \Delta y_1$$

 1^o . Пусть

$$y = y_1 + y_2 = f_1(x) + f_2(x)$$
.

Тогда

$$\Delta y = [f_1(x_0 + \Delta x) + f_2(x_0 + \Delta x)] - [f_1(x_0) + f_2(x_0)] =$$

$$= [f_1(x_0 + \Delta x) - f_1(x_0)] + [f_2(x_0 + \Delta x) - f_2(x_0)] = \Delta y_1 + \Delta y_2.$$

Следовательно,

$$\frac{\Delta y}{\Delta x} = \frac{\Delta y_1}{\Delta x} + \frac{\Delta y_2}{\Delta x}$$

и потому

$$\lim_{\Delta x \to 0} \frac{\Delta y}{\Delta x} = \lim_{\Delta x \to 0} \frac{\Delta y_1}{\Delta x} + \lim_{\Delta x \to 0} \frac{\Delta y_2}{\Delta x}$$

Пределы справа существуют, так как

$$\lim_{\Delta x \to 0} \frac{\Delta y_1}{\Delta x} = y_1' = f_1'(x_0)$$

И

$$\lim_{\Delta x \to 0} \frac{\Delta y_2}{\Delta x} = y_2' = f_2'(x_0).$$

Поэтому существует и предел слева

$$\lim_{\Delta x \to 0} \frac{\Delta y}{\Delta x} = y' = (y_1 + y_2)'$$

и имеет место равенство

$$y' = (y_1 + y_2)' = y_1' + y_2' = f_1'(x_0) + f_2'(x_0).$$

 2^o . Пусть

$$y = y_1 - y_2 = f_1(x) - f_2(x).$$

Тогда

$$\Delta y = [f_1(x_0 + \Delta x) - f_2(x_0 + \Delta x)] - [f_1(x_0) - f_2(x_0)] =$$

$$= [f_1(x_0 + \Delta x) - f_1(x_0)] - [f_2(x_0 + \Delta x) - f_2(x_0)] = \Delta y_1 - \Delta y_2.$$

Следовательно,

$$\frac{\Delta y}{\Delta x} = \frac{\Delta y_1}{\Delta x} - \frac{\Delta y_2}{\Delta x}$$

и потому

$$\lim_{\Delta x \to 0} \frac{\Delta y}{\Delta x} = \lim_{\Delta x \to 0} \frac{\Delta y_1}{\Delta x} - \lim_{\Delta x \to 0} \frac{\Delta y_2}{\Delta x}$$

Пределы справа существуют, так как

$$\lim_{\Delta x \to 0} \frac{\Delta y_1}{\Delta x} = y_1' = f_1'(x_0)$$

И

$$\lim_{\Delta x \to 0} \frac{\Delta y_2}{\Delta x} = y_2' = f_2'(x_0).$$

Поэтому существует и предел слева

$$\lim_{\Delta x \to 0} \frac{\Delta y}{\Delta x} = y' = (y_1 - y_2)'$$

и имеет место равенство

$$y' = (y_1 - y_2)' = y_1' - y_2' = f_1'(x_0) - f_2'(x_0).$$

 $[3^o.]$ Пусть

$$y = y_1 \cdot y_2 = f_1(x) \cdot f_2(x).$$

Тогда

$$\Delta y = f_1(x_0 + \Delta x)f_2(x_0 + \Delta x) - f_1(x_0)f_2(x_0) =$$

$$= [f_1(x_0) + \Delta y_1][f_2(x_0) + \Delta y_2] - f_1(x_0)f_2(x_0) =$$

$$= f_1(x_0)f_2(x_0) + \Delta y_1f_2(x_0) + f_1(x_0)\Delta y_2 + \Delta y_1\Delta y_2 - f_1(x_0)f_2(x_0) =$$

$$= \Delta y_1f_2(x_0) + f_1(x_0)\Delta y_2 + \Delta y_1\Delta y_2.$$

Следовательно,

$$\frac{\Delta y}{\Delta x} = \frac{\Delta y_1}{\Delta x} f_2(x_0) + f_1(x_0) \frac{\Delta y_2}{\Delta x} + \frac{\Delta y_1}{\Delta x} \Delta y_2$$

и потому

$$\lim_{\Delta x \to 0} \frac{\Delta y}{\Delta x} = \lim_{\Delta x \to 0} \left[\frac{\Delta y_1}{\Delta x} f_2(x_0) \right] + \lim_{\Delta x \to 0} \left[f_1(x_0) \frac{\Delta y_2}{\Delta x} \right] + \lim_{\Delta x \to 0} \left[\frac{\Delta y_1}{\Delta x} \Delta y_2 \right].$$

Пределы справа существуют, так как

$$\lim_{\Delta x \to 0} \left[\frac{\Delta y_1}{\Delta x} f_2(x_0) \right] = y_1' f_2(x_0),$$

$$\lim_{\Delta x \to 0} \left[f_1(x_0) \frac{\Delta y_2}{\Delta x} \right] = f_1(x_0) y_2'$$

И

$$\lim_{\Delta x \to 0} \left[\frac{\Delta y_1}{\Delta x} \Delta y_2 \right] = y_1' \lim_{\Delta x \to 0} \Delta y_2 = 0.$$

(Функция $y_2 = f_2(x)$ имеет производную в точке x_0 и потому непрерывна в точке x_0 , т.е. $\lim_{\Delta x \to 0} \Delta y_2 = 0$.)

Поэтому существует и предел слева

$$\lim_{\Delta x \to 0} \frac{\Delta y}{\Delta x} = y' = y_1' f_2(x_0) + f_1(x_0) y_2'$$

и имеет место равенство

$$y' = (y_1 \cdot y_2)' = y_1'y_2 + y_1y_2' = f_1'(x_0)f_2(x_0) + f_1(x_0)f_2'(x_0).$$

[4°.] Пусть

$$y = \frac{y_1}{y_2} = \frac{f_1(x)}{f_2(x)}, \quad f_2(x) \neq 0.$$

Тогда

$$\Delta y = \frac{f_1(x_0 + \Delta x)}{f_2(x_0 + \Delta x)} - \frac{f_1(x_0)}{f_2(x_0)} =$$

$$= \frac{f_1(x_0) + \Delta y_1}{f_2(x_0) + \Delta y_2} - \frac{f_1(x_0)}{f_2(x_0)} =$$

$$= \frac{f_1(x_0)f_2(x_0) + \Delta y_1f_2(x_0) - f_1(x_0)f_2(x_0) - f_1(x_0)\Delta y_2}{[f_2(x_0 + \Delta x)]f_2(x_0)} =$$

$$= \frac{\Delta y_1f_2(x_0) - f_1(x_0)\Delta y_2}{[f_2(x_0 + \Delta x)]f_2(x_0)} =$$

Следовательно,

$$\frac{\Delta y}{\Delta x} = \frac{\frac{\Delta y_1}{\Delta x} f_2(x_0) - f_1(x_0) \frac{\Delta y_2}{\Delta x}}{[f_2(x_0 + \Delta x)] f_2(x_0)}$$

и потому

$$\lim_{\Delta x \to 0} \frac{\Delta y}{\Delta x} = \lim_{\Delta x \to 0} \frac{\frac{\Delta y_1}{\Delta x} f_2(x_0) - f_1(x_0) \frac{\Delta y_2}{\Delta x}}{[f_2(x_0 + \Delta x)] f_2(x_0)} = \frac{\lim_{\Delta x \to 0} \left[\frac{\Delta y_1}{\Delta x} f_2(x_0) - f_1(x_0) \frac{\Delta y_2}{\Delta x} \right]}{\lim_{\Delta x \to 0} [f_2(x_0 + \Delta x)] f_2(x_0)}$$

Предел справа существует, так как

$$\lim_{\Delta x \to 0} \left[\frac{\Delta y_1}{\Delta x} f_2(x_0) \right] = y_1' f_2(x_0),$$

$$\lim_{\Delta x \to 0} \left[f_1(x_0) \frac{\Delta y_2}{\Delta x} \right] = f_1(x_0) y_2'$$

И

$$\lim_{\Delta x \to 0} f_2(x_0 + \Delta x) = f_2(x_0).$$

(Функция $y_2 = f_2(x)$ имеет производную в точке x_0 и потому непрерывна в точке x_0 .)

Поэтому существует и предел слева

$$\lim_{\Delta x \to 0} \frac{\Delta y}{\Delta x} = y'$$

и имеет место равенство

$$y' = \left(\frac{y_1}{y_2}\right)' = \frac{y_1'y_2 - y_1y_2'}{y_2^2} = \frac{f_1'(x_0)f_2(x_0) - f_1(x_0)f_2'(x_0)}{f_2^2(x_0)}.$$

Следствие 2.2.13. Если функция y = f(x) имеет производную в точке x_0 , то для любой постоянной с функция

$$y_1 = c \cdot y = c \cdot f(x)$$

тоже имеет производную в точке x_0 и имеет место равенство

$$y_1' = c \cdot y' = c \cdot f'(x).$$

Следствие 2.2.14. Если функции $y_1 = f_1(x), y_2 = f_2(x), \dots, y_n = f_n(x)$ имеют производные в точке x_0 , то любая их линейная комбинация

$$y = c_1 f_1(x) + c_2 f_2(x) + \ldots + c_n f_n(x)$$

тоже имеет производную в точке x_0 и имеет место равенство

$$y' = c \cdot y' = [c_1 f_1(x) + c_2 f_2(x) + \dots + c_n f_n(x)]' = c_1 f_1'(x) + c_2 f_2'(x) + \dots + c_n f_n'(x)$$

Пример 2.2.15. 1). Найдем производную функции

$$y = \operatorname{tg} x = \frac{\sin x}{\cos x}, \quad x \neq \frac{\pi}{2} + \pi k, \ k \in \mathbb{Z}.$$

Использую правило дифференцирования частного двух функций, имеем:

$$y' = (\operatorname{tg} x)' = \left(\frac{\sin x}{\cos x}\right)' = \frac{(\sin x)' \cos x - \sin x (\cos x)'}{(\cos x)^2} = \frac{(\cos x) \cos x - \sin x (-\sin x)}{\cos^2 x} = \frac{\cos^2 x + \sin^2 x}{\cos^2 x} = \frac{1}{\cos^2 x}.$$

Следовательно,

$$\boxed{(\operatorname{tg} x)' = \frac{1}{\cos^2 x}}.$$

1). Найдем производную функции

$$y = \operatorname{ctg} x = \frac{\cos x}{\sin x}, \quad x \neq \pi k, \ k \in \mathbb{Z}.$$

Аналогично, использую правило дифференцирования частного двух функций, имеем:

$$y' = (\operatorname{ctg} x)' = \left(\frac{\cos x}{\sin x}\right)' = \frac{(\cos x)' \sin x - \cos x (\sin x)'}{(\sin x)^2} = \frac{(-\sin x)\sin x - \cos x (\cos x)}{\sin^2 x} = \frac{-\sin^2 x - \cos^2 x}{\sin^2 x} = -\frac{1}{\sin^2 x}.$$

Следовательно,

$$ctg x)' = -\frac{1}{\sin^2 x}.$$

Замечание 2.2.16. Формулы теоремы 2.2.12 имеют место и для дифференциалов. То есть имеют место следующие равенства:

1.
$$d(y_1 + y_2) = dy_1 + dy_2$$

2.
$$d(y_1 - y_2) = dy_1 - dy_2$$

3.
$$d(y_1 \cdot y_2) = dy_1 \cdot y_2 + y_1 \cdot dy_2 = y_2 \cdot dy_1 + y_1 \cdot dy_2$$

4.
$$d\left(\frac{y_1}{y_2}\right) = \frac{dy_1 \cdot y_2 - y_1 \cdot dy_2}{y_2^2} = \frac{y_2 \cdot dy_1 - y_1 \cdot dy_2}{y_2^2}$$

$$5. \quad d(c \cdot y) = c \cdot dy.$$

Докажем, например. формулу 3.

$$d(y_1 \cdot y_2) = (y_1 \cdot y_2)' dx = (y_1' \cdot y_2 + y_1 \cdot y_2') dx =$$

$$= y_2 \cdot (y_1' dx) + y_1 (y_2' dx) = y_2 \cdot dy_1 + y_1 \cdot dy_2.$$

2.3 Производная обратной функции. Производная сложной функции.

2.3.1 Производная обратной функции.

Пусть функция y = f(x) определена на множестве X, f(X) = Y,

$$f: X \to Y$$

и существует обратная функция $x = f^{-1}(y)$:

$$f^{-1}:Y\to X.$$

Замечание 2.3.1. Если функция y = f(x) строго монотонна на X, то обратная функция $x = f^{-1}(y)$ существует.

Теорема 2.3.2. Пусть функция y = f(x)

- 1). Определена, непрерывна и строго монотонна в некоторой окрестности $U_{\varepsilon}(x_0)$ точки x_0 ;
- 2). Существует производная $f'(x_0) \neq 0$.

Тогда обратная функция $x = f^{-1}(y)$ имеет производную в точке $y_0 = f(x_0)$, причем

$$[f^{-1}(y)]'_{y=y_0} = \frac{1}{f'(x_0)}.$$

Доказательство. Рассмотрим приращение $\Delta x \neq 0$ такое, что

$$x = x_0 + \Delta x \in U_{\varepsilon}(x_0),$$

и пусть

$$\Delta y = f(x_0 + \Delta x) - f(x_0)$$

приращение функции, отвечающее приращению Δx . Так как функция y=f(x) строго монотонна, то

$$\Delta y \neq 0 \Leftrightarrow \Delta x \neq 0$$

И

$$\Delta y \to 0 \Leftrightarrow \Delta x \to 0.$$

Следовательно, существует предел

$$\lim_{\Delta y \to 0} \frac{\Delta x}{\Delta y} = \lim_{\Delta y \to 0} \frac{1}{\frac{\Delta y}{\Delta x}} = \frac{1}{\lim_{\Delta x \to 0} \frac{\Delta y}{\Delta x}} = \frac{1}{f'(x_0)}.$$

Таким образом, обратная функция $x=f^{-1}(y)$ имеет производную в точке $y_0=f(x_0),$ и

$$[f^{-1}(y)]'_{y=y_0} = \frac{1}{f'(x_0)}. (2.3.1)$$

Замечание 2.3.3. Отметим, что графики функций y = f(x) и $x = f^{-1}(y)$ в одной и той же системе координат совпадают.

Рассмотрим геометрический смысл равенства (2.3.1).

Пусть касательная к графику этих функций в точке $M(x_0, y_0)$ пересекает ось Ox под углом, величина которого равна α , а ось Oy под углом, величина которого равна β .

Легко видеть, что

$$\alpha + \beta = \frac{\pi}{2} = 90^{\circ}.$$

Используя геометрический смысл производной дифференцируемой функции, имеем с одной стороны

$$f'(x_0) = \operatorname{tg} \alpha$$

и, с другой сторон,

$$[f^{-1}(y)]'_{y=y_0} = \operatorname{tg} \beta$$

Следовательно,

$$[f^{-1}(y)]'_{y=y_0} = \operatorname{tg} \beta = \operatorname{tg} \left(\frac{\pi}{2} - \alpha\right) = \operatorname{ctg} \alpha = \frac{1}{\operatorname{tg} \alpha} = \frac{1}{f'(x_0)}$$

Замечание 2.3.4. используя обозначение производной Лейбница, формулу (2.3.1) можно переписать в виде

$$\left| \frac{dx}{dy} \right|_{y=y_0} = \frac{1}{\left| \frac{dy}{dx} \right|_{x=x_0}} \right|.$$

Примеры 2.3.5. Вычислим производные обратных тригонометрических функций. Напомним, что

• Арксинусом числа $a \in [-1,1]$ называется угол $\alpha \in \left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$, синус которого равен a:

$$\alpha = \arcsin a \Leftrightarrow \alpha \in \left[-\frac{\pi}{2}, \frac{\pi}{2} \right], \sin \alpha = a.$$

• Арккосинусом числа $a \in [-1,1]$ называется угол $\alpha \in [0,\pi]$, косинус которого равен a:

$$\alpha = \arccos a \Leftrightarrow \alpha \in [0,\,\pi]\,,\ \cos \alpha = a.$$

• Арктангенсом числа a называется угол $\alpha \in \left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$, тангенс которого равен a:

$$\alpha = \operatorname{arctg} a \Leftrightarrow \alpha \in \left(-\frac{\pi}{2}, \frac{\pi}{2}\right), \operatorname{tg} \alpha = a.$$

• Арккотангенсом числа a называется угол $\alpha \in (0, \pi)$, котангенс которого равен a:

$$\alpha = \operatorname{arcctg} a \Leftrightarrow \alpha \in (0, \pi), \operatorname{ctg} \alpha = a.$$

1). Рассмотрим функцию

$$y = \arcsin x, \quad x \in [-1, 1],$$

обратную к функции

$$x = \sin y, \ y \in \left[-\frac{\pi}{2}, \frac{\pi}{2} \right].$$

Так как производная

$$x' = (\sin y)' = \cos y = 0$$

при $y=\pm\frac{\pi}{2}$, то чтобы выполнялись условия теоремы 2.3.2, необходимо требовать, чтобы $y\neq\pm\frac{\pi}{2}$, и потому, $x\neq\pm1$.

Итак, при $x \neq \pm 1$ имеем:

$$(\arcsin x)' = \frac{1}{(\sin y)'} = \frac{1}{\cos y}.$$

При $y \in \left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$ имеем:

$$\cos y > 0 \Rightarrow \cos y = \sqrt{1 - \sin^2 y} = \sqrt{1 - x^2}.$$

Следовательно

$$(\arcsin x)' = \frac{1}{\sqrt{1 - x^2}}.$$

2). Рассмотрим функцию

$$y = \arccos x$$
, $x \in [-1, 1]$,

обратную к функции

$$x = \cos y, \quad y \in [0, \pi].$$

Так как производная

$$x' = (\cos y)' = -\sin y = 0$$

при y=0 и $y=\pi,$ то чтобы выполнялись условия теоремы 2.3.2, необходимо требовать, чтобы $y\neq 0$ и $y\neq \pi,$ и потому, $x\neq \pm 1.$

Итак, при $x \neq \pm 1$ имеем:

$$(\arccos x)' = \frac{1}{(\cos y)'} = \frac{1}{-\sin y} = -\frac{1}{\sin y}.$$

При $y \in (0, \pi)$ имеем:

$$\sin y > 0 \Rightarrow \sin y = \sqrt{1 - \cos^2 y} = \sqrt{1 - x^2}.$$

Следовательно

$$(\arccos x)' = -\frac{1}{\sqrt{1-x^2}}.$$

3). Рассмотрим функцию

$$y = \operatorname{arctg} x$$
, $x \in (-\infty, +\infty)$,

обратную к функции

$$x = \operatorname{tg} y, \ y \in \left(-\frac{\pi}{2}, \frac{\pi}{2}\right).$$

Так как производная

$$x' = (\operatorname{tg} y)' = \frac{1}{\cos^2 y} \neq 0$$

для любого $y \in \left(-\frac{\pi}{2}, \, \frac{\pi}{2}\right)$, то условия теоремы 2.3.2 выполнены.

Поэтому

$$(\operatorname{arctg} x)' = \frac{1}{(\operatorname{tg} y)'} = \frac{1}{\frac{1}{\cos^2 y}}.$$

При $y \in \left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$ имеем:

$$\frac{1}{\cos^2 y} = 1 + tg^2 y = 1 + x^2.$$

Следовательно

$$\cot x = \frac{1}{1+x^2}.$$

4). Рассмотрим функцию

$$y = \operatorname{arcctg} x, \ x \in (-\infty, +\infty),$$

обратную к функции

$$x = \operatorname{ctg} y, \ y \in (0, \pi).$$

Так как производная

$$x' = (\operatorname{ctg} y)' = -\frac{1}{\sin^2 y} \neq 0$$

для любого $y \in (0, \pi)$, то условия теоремы 2.3.2 выполнены.

Поэтому

$$(\operatorname{arcctg} x)' = \frac{1}{(\operatorname{ctg} y)'} = \frac{1}{-\frac{1}{\sin^2 y}} = -\frac{1}{\frac{1}{\sin^2 y}}.$$

При $y \in (0, \pi)$ имеем:

$$\frac{1}{\sin^2 y} = 1 + \operatorname{ctg}^2 y = 1 + x^2.$$

Следовательно

$$\boxed{(\operatorname{arcctg} x)' = -\frac{1}{1+x^2}}.$$

Замечание 2.3.6. • Сравнивая производные функций $y = \arcsin x$ и

 $y = \arccos x$:

$$(\arcsin x)' = \frac{1}{\sqrt{1-x^2}},$$

И

$$(\arccos x)' = -\frac{1}{\sqrt{1-x^2}},$$

мы видим, что

$$(\arcsin x)' = -(\arccos x)'.$$

Это равенство можно получить иначе.

Для любого $x \in [-1,1]$ имеет место равенство:

$$\arcsin x + \arccos x = \frac{\pi}{2}.$$

Полагая $x \neq \pm 1$ и дифференцируя это равенство, получим

$$(\arcsin x)' + (\arccos x)' = 0,$$

откуда следует, что

$$(\arcsin x)' = -(\arccos x)'.$$

• Аналогично, сравнивая производные функций $y = \arctan x$ и $y = \arctg x$:

$$(\operatorname{arctg} x)' = \frac{1}{1+x^2},$$

И

$$(\operatorname{arcctg} x)' = -\frac{1}{1+x^2},$$

мы видим, что

$$(\operatorname{arctg} x)' = -(\operatorname{arcctg} x)'.$$

Это равенство тоже можно получить иначе.

Для любого $x \in (-\infty, +\infty)$ имеет место равенство:

$$\boxed{\arctan x + \arctan x = \frac{\pi}{2}}.$$

Дифференцируя это равенство, получим

$$(\operatorname{arctg} x)' + (\operatorname{arcctg} x)' = 0,$$

откуда и следует, что

$$\boxed{(\operatorname{arctg} x)' = -(\operatorname{arcctg} x)'}.$$

Пример 2.3.7. Вычислим еще раз производную логарифмической функции $y = \log_a x$, $x \in (0, +\infty)$, рассматривая эту функцию как обратную к функции $x = a^y$.

По формуле дифференцирования обратной функции имеем:

$$(\log_a x)' = \frac{1}{(a^y)'} = \frac{1}{a^y \ln a} = \frac{1}{x \ln a},$$

т.е., как и ранее,

$$(\log_a x)' = \frac{1}{x \ln a}.$$

2.3.2 Производная сложной функции.

Пусть функция $z=\varphi(x)$ определена в окрестности $U_{\varepsilon}(x_0)$ точки x_0 , а функция y=f(z) определена в окрестности $U_{\delta}(z_0)$ точки $z_0=\varphi(x_0)$, причем

$$\varphi(U_{\varepsilon}(x_0)) \subseteq U_{\delta}(z_0).$$

Тогда в окрестности $U_{\varepsilon}(x_0)$ точки x_0 определена сложная функция

$$y = f(\varphi(x)) = F(x).$$

Теорема 2.3.8. *Если*

- 1). Функция $z = \varphi(x)$ имеет производную $\varphi'(x_0)$ в точке x_0 ;
- 2). Функция y = f(z) имеет производную $f'(z_0)$ в точке $z_0 = \varphi(x_0)$,

то сложная функция

$$y = f(\varphi(x)) = F(x)$$

имеет производную $F'(x_0)$ точки x_0 , причем имеет место равенство

$$F'(x_0) = f'(z_0) \cdot \varphi'(x_0),$$

или

$$\boxed{\frac{dy}{dx} = \frac{dy}{dz} \cdot \frac{dz}{dx}},$$

где производные вычисляются в соответствующих точках.

Доказательство. Зададим приращение $\Delta x \neq 0$ так, чтобы

$$x_0 + \Delta x \in U_{\varepsilon}(x_0)$$
.

Так как функция $z = \varphi(x)$ имеет производную $\varphi'(x_0)$ в точке x_0 , то она непрерывна в точке x_0 . Следовательно, функция $z = \varphi(x)$ непрерывна в точке x_0 . Поэтому

$$\Delta x \to 0 \Rightarrow \Delta z \to 0$$

где

$$\Delta z = \varphi(x_0 + \Delta x) - \varphi(x_0).$$

Далее, так как функция y = f(z) имеет производную $f'(z_0)$ в точке $z_0 = \varphi(x_0)$, то она непрерывна в точке z_0 . Следовательно, функция y = f(x) непрерывна в точке z_0 . Поэтому

$$\Delta z \to 0 \Rightarrow \Delta y \to 0$$

где

$$\Delta y = f(z_0 + \Delta z) - f(z_0).$$

С другой стороны, функция y = f(z) дифференцируема в точке z_0 , т.е. ее приращение Δy представимо в виде

$$\Delta y = f'(z_0) \cdot \Delta z + \alpha(\Delta z) \cdot \Delta z, \qquad (2.3.2)$$

где

$$\lim_{\Delta z \to 0} \alpha(\Delta z) = 0.$$

Так как мы предполагали, что $\Delta x \neq 0$, то функция $\alpha(\Delta z)$ не определена при $\Delta z = 0$. Доопределим эту функцию в нуле равенством

$$\alpha(0) = 0.$$

Разделим обе части равенства (2.3.2) на Δx :

$$\frac{\Delta y}{\Delta x} = f'(z_0) \cdot \frac{\Delta z}{\Delta x} + \alpha(\Delta z) \cdot \frac{\Delta z}{\Delta x}.$$

Так существует предел правой части этого равенства при $\Delta x \to 0$:

$$\lim_{\Delta x \to 0} \left[f'(z_0) \cdot \frac{\Delta z}{\Delta x} + \alpha(\Delta z) \cdot \frac{\Delta z}{\Delta x} \right] = f'(z_0) \lim_{\Delta x \to 0} \frac{\Delta z}{\Delta x} + \lim_{\Delta x \to 0} \left[\alpha(\Delta z) \cdot \frac{\Delta z}{\Delta x} \right] =$$

$$= f'(z_0) \varphi'(x_0) + \lim_{\Delta x \to 0} \alpha(\Delta z) \cdot \lim_{\Delta x \to 0} \frac{\Delta z}{\Delta x} = f'(z_0) \varphi'(x_0) + \lim_{\Delta z \to 0} \alpha(\Delta z) \cdot \varphi'(x_0) =$$

$$= f'(z_0) \varphi'(x_0),$$

то существует

$$\lim_{\Delta x \to 0} \frac{\Delta y}{\Delta x} = F'(x_0)$$

и имеет место равенство

$$F'(x_0) = f'(z_0) \cdot \varphi'(x_0)$$

Замечание 2.3.9. Инвариантность первого дифференциала.

• Если функция y = f(z) дифференцируема в точке z_0 и z — независимая переменная, то дифференциал этой функции имеет вид

$$dy = f'(z_0)dz$$

• Пусть теперь функция y=f(z) дифференцируема в точке z_0 , а функция $z=\varphi(x)$ дифференцируема в точке x_0 . Тогда дифференциал этой функции равен

$$dz = \varphi'(x_0)dx.$$

Следовательно, сложная функция y = F(x) дифференцируема в точке x_0 и ее дифференциал имеет вид

$$dy = F'(x_0)dx = f'(z_0)\varphi'(x_0)dx = f'(z_0)dz,$$

т.е. и в этом случае

$$dy = f'(z_0)dz.$$

Таким образом, вид первого дифференциала функции y = f(z)

$$dy = f'(z_0)dz.$$

обладает свойством инвариантности (независимости) от условия, является ли переменная z независимой переменной, или z является функцией, т.е. зависимой переменной.

Примеры 2.3.10. 1° Рассмотрим функцию

$$y = x^{\alpha}, x \in (0, +\infty),$$

где $\alpha \neq 0$ — произвольная постоянная.

Так как

$$x^{\alpha} = e^{\alpha \ln x},$$

то

$$(x^{\alpha})' = (e^{\alpha \ln x})' = e^{\alpha \ln x} (\alpha \ln x)' = e^{\alpha \ln x} \cdot \alpha \cdot \frac{1}{x} = \alpha \cdot x^{\alpha} \cdot \frac{1}{x} = \alpha x^{\alpha - 1}.$$

Таким образом,

$$(x^{\alpha})' = \alpha x^{\alpha - 1}.$$

В частности,

$$\sqrt{(\sqrt{x})' - (x^{\frac{1}{2}})' - \frac{1}{2}x^{-\frac{1}{2}} = \frac{1}{2\sqrt{x}}}$$

Аналогично,

$$\left[\left(\frac{1}{x} \right)' = (x^{-1})' = -1 \cdot x^{-2} = -\frac{1}{x^2} \right]$$

2° Рассмотрим функцию

$$y = \sqrt{x^2 + a}, \quad x^2 + a > 0.$$

$$(\sqrt{x^2 + a})' = \frac{1}{2\sqrt{x^2 + a}}(x^2 + a)' = \frac{1}{2\sqrt{x^2 + a}} \cdot 2x = \frac{x}{\sqrt{x^2 + a}}.$$

Следовательно,

$$\boxed{(\sqrt{x^2+a})' = \frac{x}{\sqrt{x^2+a}}}.$$

3° Рассмотрим функцию

$$y = \ln |x|, x \in (-\infty, 0) \cup (0, +\infty).$$

Если x > 0, то |x| = x. Поэтому в этом случае

$$(\ln|x|)' = (\ln x)' = \frac{1}{x}.$$

Если x < 0, то |x| = -x. Поэтому в этом случае

$$(\ln|x|)' = (\ln(-x))' = \frac{1}{-x}(-x)' = \frac{1}{-x}(-1) = \frac{1}{x}.$$

Таким образом,

$$\boxed{(\ln|x|)' = \frac{1}{x}}.$$

4° Рассмотрим функцию

$$\left| y = \frac{1}{2a} \ln \left| \frac{x - a}{x + a} \right| \right|, \ x \neq \pm a, \ a \neq 0.$$

$$\left(\frac{1}{2a} \ln \left| \frac{x - a}{x + a} \right| \right)' = \frac{1}{2a} \cdot \frac{1}{\frac{x - a}{x + a}} \cdot \left(\frac{x - a}{x + a} \right)' =$$

$$= \frac{1}{2a} \cdot \frac{x + a}{x - a} \cdot \frac{(x - a)'(x + a) - (x - a)(x + a)'}{(x + a)^2} =$$

$$= \frac{1}{2a} \cdot \frac{1}{x - a} \cdot \frac{(x + a) - (x - a)}{x + a} = \frac{1}{2a} \cdot \frac{1}{x - a} \cdot \frac{2a}{x + a} = \frac{1}{x^2 - a^2}.$$

Следовательно.

$$\left[\left(\frac{1}{2a} \ln \left| \frac{x-a}{x+a} \right| \right)' = \frac{1}{x^2 - a^2} \right].$$

5° Рассмотрим функцию

$$\boxed{y=\ln|x+\sqrt{x^2+a}|}, \quad a\neq 0.$$

$$(\ln|x+\sqrt{x^2+a}|)'=\frac{1}{x+\sqrt{x^2+a}}\cdot(x+\sqrt{x^2+a})'=$$

$$=\frac{1}{x+\sqrt{x^2+a}}\cdot\left(1+\frac{x}{\sqrt{x^2+a}}\right)=\frac{1}{x+\sqrt{x^2+a}}\cdot\frac{x+\sqrt{x^2+a}}{\sqrt{x^2+a}}=\frac{1}{\sqrt{x^2+a}}.$$
 Следовательно,

2.4 Логарифмическая производная функции. Производная функции, заданной параметрически. Производная функции, заданной неявно.

2.4.1 Логарифмическая производная функции.

Во многих примерах бывает удобно не непосредственно дифференцировать функцию, а предварительно рассмотреть ее логарифм:

$$y = f(x) \Rightarrow \ln y = \ln f(x) \Rightarrow (\ln y)' = (\ln f(x))'.$$

Определение 2.4.1. Выражение

$$(\ln y)' = \frac{y'}{y}$$

называется логарифмической производной функции y=f(x).

Поясним применение логарифмической производной функции на примерах.

Примеры 2.4.2. 1). Рассмотрим функцию

$$y = x^x$$
.

Найдем производную этой функции, используя логарифмирование.

$$ln y = x ln x.$$

Тогда

$$(\ln y)' = (x \ln x)'.$$

Следовательно,

$$\frac{y'}{y} = (x)' \cdot \ln x + x \cdot (\ln x)',$$

т.е.

$$\frac{y'}{y} = \ln x + x \cdot \frac{1}{x} = \ln x + 1.$$

Откуда

$$y' = y(\ln x + 1) = x^x(\ln x + 1).$$

Таким образом,

$$(x^x)' = x^x(\ln x + 1).$$

2). Рассмотрим более общую показательно-степенную функцию

$$y = u(x)^{v(x)},$$

где функции u(x) и v(x) дифференцируемы в рассматриваемой области, причем u(x)>0.

Найдем производную и этой функции, используя логарифмирование.

$$ln y = v(x) ln u(x).$$

Тогда

$$(\ln y)' = [v(x) \ln u(x)]'.$$

Следовательно,

$$\frac{y'}{y} = (v(x))' \cdot \ln u(x) + v(x) \cdot (\ln u(x))',$$

т.е.

$$\frac{y'}{y} = v'(x) \ln u(x) + v(x) \cdot \frac{u'(x)}{u(x)}.$$

Откуда

$$y' = y \left[v'(x) \ln u(x) + v(x) \cdot \frac{u'(x)}{u(x)} \right].$$

Таким образом,

$$[u(x)^{v(x)}]' = u(x)^{v(x)} \left[v'(x) \ln u(x) + v(x) \cdot \frac{u'(x)}{u(x)} \right],$$

или

$$[u(x)^{v(x)}]' = [u(x)^{v(x)} \ln u(x)]v'(x) + [v(x)u(x)^{v(x)-1}]u'(x).$$

Заметим, что в соответствии с полученной формулой, производная функции $u(x)^{v(x)}$ равна сумме производных двух слагаемых:

• Первое равно производной показательной функции

$$u^{v(x)},$$

где основание рассматривается как постоянная:

$$(u^{v(x)})' = [u^{v(x)} \ln u] \cdot v'(x);$$

• Второе равно производной степенной функции

$$[u(x)]^v$$
,

где показатель степени рассматривается как постоянная:

$$([u(x)]^v)' = v[u(x)]^{v-1} \cdot u'(x).$$

3). Рассмотрим функцию

$$y = \sqrt[3]{\frac{x(x^2+1)}{(x^2-1)^2(x^3+\sin^2 x)^2}}$$

Ясно, что нахождение производной этой функции достаточно трудоемкая задача. В то же время, используя логарифмическое дифференцирование. мы последовательно имеем:

$$\ln y = \ln \left[\sqrt[3]{\frac{x(x^2+1)}{(x^2-1)^2(x^3+\sin^2 x)^2}} \right] = \frac{1}{3} \ln \left[\frac{x(x^2+1)}{(x^2-1)^2(x^3+\sin^2 x)^2} \right] =$$

$$= \frac{1}{3} \left\{ \ln[x(x^2+1)] - \ln[(x^2-1)^2(x^3+\sin^2 x)^2] \right\} =$$

$$= \frac{1}{3} \left\{ \ln x + \ln(x^2+1) - 2\ln[(x^2-1) - 2\ln(x^3+\sin^2 x)) \right\}.$$

Следовательно,

$$(\ln y)' = \frac{y'}{y} = \left(\frac{1}{3}\left\{\ln x + \ln(x^2 + 1) - 2\ln[(x^2 - 1) - 2\ln(x^3 + \sin^2 x)]\right\}\right)' =$$

$$= \frac{1}{3}\left\{\frac{1}{x} + \frac{2x}{x^2 + 1} - 2\frac{2x}{x^2 - 1} - 2\frac{3x^2 + 2\sin x\cos x}{x^3 + \sin^2 x}\right\} =$$

$$= \frac{1}{3}\left\{\frac{1}{x} + \frac{2x}{x^2 + 1} - \frac{4x}{x^2 - 1} - \frac{6x^2 + 2\sin 2x}{x^3 + \sin^2 x}\right\}.$$

Следовательно,

$$\left(\sqrt[3]{\frac{x(x^2+1)}{(x^2-1)^2(x^3+\sin^2x)^2}}\right)' =$$

$$= \frac{1}{3}\sqrt[3]{\frac{x(x^2+1)}{(x^2-1)^2(x^3+\sin^2x)^2}} \left\{ \frac{1}{x} + \frac{2x}{x^2+1} - \frac{4x}{x^2-1} - \frac{6x^2+2\sin2x}{x^3+\sin^2x} \right\}.$$

2.4.2 Производная функции, заданной параметрически.

В зависимости от правила, устанавливающего зависимость между множествами значений величин х и у, различают несколько способов задания функции. Некоторые из способов задания функции мы уже рассматривали. Однако, в некоторых случаях удобно описывать функциональную зависимость множеством пар значений (x;y), которые вычисляются для каждого значения параметра t из некоторого промежутка $[\alpha, \beta]$:

$$\begin{cases} x = \varphi(t) \\ y = \psi(t), \end{cases} \quad t \in [\alpha, \beta]. \tag{2.4.1}$$

Например, формулы

$$\begin{cases} x = 3\cos t \\ y = 3\sin t, \end{cases} \quad t \in [0, 2\pi].$$

задают окружность с центром в начале координат радиуса 3.

Определение 2.4.3. Задание функции формулами (2.4.1) называется параметрическим заданием функции, а соответствующая функция называется заданной параметрически.

Замечание 2.4.4. Предположим, что функция $x = \varphi(t)$ обратима и обратная функция имеет вид:

$$t = \varphi^{-1}(x) = \theta(x).$$

Тогда имеем:

$$y = \psi(t) = \psi(\theta(x)) = f(x),$$

то есть мы получаем функцию

$$y = f(x)$$
.

Теорема 2.4.5. Если функция y = f(x) задана параметрически уравнениями

$$\begin{cases} x = \varphi(t) \\ y = \psi(t), \end{cases} \quad t \in [\alpha, \beta].$$

где функции $\varphi(t)$ и $\psi(t)$ дифференцируемы в точке $t_0 \in (\alpha, \beta)$, причем $\varphi'(t_0) \neq 0$, то функция y = f(x) тоже дифференцируема точке $x_0 = \varphi(t_0)$ и имеет место равенство

$$y'_x = f'(x_0) = \frac{y'_t}{x'_t} = \frac{\psi'(t_0)}{\varphi'(t_0)}.$$

Доказательство. Так как $\varphi'(t_0) \neq 0$, то функция $x = \varphi(t)$ обратима в некоторой окрестности точки t_0 . Пусть обратная функция имеет вид:

$$t = \varphi^{-1}(x) = \theta(x).$$

Тогда имеем:

$$y = \psi(t) = \psi(\theta(x)) = f(x),$$

то есть мы получаем функцию

$$y = f(x)$$

как суперпозицию функций $t=\theta(x)$ и $y=\psi(t)$ (как сложную функцию). Следовательно,

$$y' = f'(x_0) = \psi'(t_0) \cdot \theta'(x_0) = \psi'(t_0) \cdot \frac{1}{\varphi'(t_0)} = \frac{\psi'(t_0)}{\varphi'(t_0)},$$

как как производная обратной функции находится по формуле

$$\theta'(x_0) = [\varphi^{-1}(x)]'_{x=x_0} = \frac{1}{\varphi'(t_0)}.$$

Пример 2.4.6. Пусть функция y = f(x) задана параметрически уравнениями

$$\begin{cases} x = a(t - \sin t) \\ y = a(1 - \cos t), \end{cases} \quad t \in (-\infty, \infty).$$

Найдем производную y'_x .

$$y'_x = f'(x) = \frac{a \sin t}{a(1 - \cos t)} = \frac{\sin t}{1 - \cos t} = \operatorname{ctg} \frac{t}{2},$$

т.е.

$$y_x' = \operatorname{ctg} \frac{t}{2}.$$

2.4.3 Производная функции, заданной неявно.

Предположим, что значения двух переменных x и y связаны между собой уравнением, которое, если все его слагаемые перенести в левую часть равенства, в общем случае имеет вид

$$F(x,y) = 0. (2.4.2)$$

Если для каждого значения x из некоторого множества (промежутка) X существует одно и только одно значение y, то говорят, что равенство (2.4.2) определяет однозначную функцию

$$y = f(x),$$

для которой имеет место тождественное равенство

$$F(x, f(x)) = 0$$

для любого $x \in X$.

Пример 2.4.7. Рассмотрим уравнение

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} - 1 = 0 (2.4.3)$$

где $a>0,\ b>0,\ x\in[-a,a]$ и $y\in[0,+\infty)$. График этого уравнения, т.е. множество точек, удовлетворяющих этому равенству при заданных

значениях переменных x и y, представляет собой верхнюю часть эллипса с полуосями a и b соответственно.

Решая уравнение (2.4.3) относительно y, получим:

$$y = \frac{b}{a}\sqrt{a^2 - x^2}.$$

Подставляя это выражение в равенство (2.4.3), получаем тождественное равенство

$$\frac{x^2}{a^2} + \frac{\left(\frac{b}{a}\sqrt{a^2 - x^2}\right)^2}{b^2} - 1 = 0$$

В этом примере функцию y = f(x), заданную неявно уравнением (2.4.3), нам удалось выразить аналитически (т.е. явно).

Пример 2.4.8. Рассмотрим уравнение

$$y - x - \varepsilon \sin y = 0 \tag{2.4.4}$$

где $\varepsilon \in (0,1), y \in (-\infty, +\infty).$

Так как можно выразить явно переменную x через y:

$$x = y - \varepsilon \sin y = g(y),$$

И

$$x' = g'(y) = 1 - \varepsilon \cos y,$$

ТО

$$g'(y) > 0$$

для любого $y \in (-\infty, +\infty)$, и потому функция x = g(y) монотонно возрастает. Следовательно, она обратима и потому существует обратная функция

$$y = g^{-1}(x) = f(x)$$

которую мы можем рассматривать как функцию, заданную неявно уравнением (2.4.4).

Однако в этом примере функцию y = f(x), заданную неявно уравнением (2.4.4), нам удается выразить аналитически (т.е. явно).

Замечание 2.4.9. Пусть равенство

$$F(x,y) = 0$$

определяет неявно функцию

$$y = f(x),$$

которая дифференцируема в некоторой точке или на некотором множестве. Тогда дифференцируя тождественное равенство

$$F(x, y(x)) = 0,$$

мы получим уравнение для нахождения производной

$$y' = f'(x).$$

Следует обратить внимание. что для нахождения производной функции y = f(x), на не обязательно явное выражение зависимости y от x.

Рассмотрим примеры нахождения функций, заданных неявно.

Примеры 2.4.10. 1). Найдем производную функции y=y(x), заданную неявно уравнением

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} - 1 = 0,$$

не выражая явно y через x. Дифференцируя равенство, получим

$$\frac{2x}{a^2} + \frac{2yy'}{b^2} = 0,$$

ИЛИ

$$\frac{2x}{a^2} + \frac{2y}{b^2}y' = 0.$$

Следовательно,

$$y' = -\frac{b^2x}{a^2y}.$$

2). Найдем уравнение касательной к окружности, заданной уравнением

$$x^2 + y^2 = 25$$

в точке $M_0(3,4)$.

Равенство

$$x^2 + y^2 = 25 \Rightarrow x^2 + y^2 - 25 = 0$$

задает функцию

$$y = y(x)$$

неявно. Дифференцируя это равенство, имеем:

$$2x + 2yy' = 0.$$

Следовательно,

$$y' = -\frac{x}{y}.$$

так как $x_0 = 3, \ y_0 = 4,$ поэтому

$$y'(x_0) = y'(3) = -\frac{3}{4}.$$

Таким образом, уравнение касательной к окружности

$$x^2 + y^2 = 25$$

в точке $M_0(3,4)$ имеет вид:

$$y = -\frac{3}{4}(x-3) + 4,$$

т.е.

$$3x + 4y - 25 = 0.$$

2.4.4 Гиперболические функции и их производные.

Напомним определение гиперболических функций.

• Гиперболический синус

$$y = \sinh x = \frac{e^x - e^{-x}}{2}, \ D(y) = \mathbb{R};$$

• Гиперболический косинус

$$y = \operatorname{ch} x = \frac{e^x + e^{-x}}{2}, \ D(y) = \mathbb{R};$$

• Гиперболический тангенс

$$y = \operatorname{th} x = \frac{\operatorname{sh} x}{\operatorname{ch} x} = \frac{e^x - e^{-x}}{e^x + e^{-x}}, \ D(y) = \mathbb{R};$$

• Гиперболический котангенс

$$y = \operatorname{cth} x = \frac{\operatorname{ch} x}{\operatorname{sh} x} = \frac{e^x + e^{-x}}{e^x - e^{-x}}, \ D(y) = \{x \in \mathbb{R} \colon x \neq 0\}.$$

Замечание 2.4.11. Имеют место следующее равенство:

$$\operatorname{ch}^2 x - \operatorname{sh}^2 x = 1.$$

Найдем производные гиперболических функций.

• $(\operatorname{sh} x)' = \left(\frac{e^x - e^{-x}}{2}\right)' = \frac{e^x + e^{-x}}{2} = \operatorname{ch} x.$

 $(\operatorname{ch} x)' = \left(\frac{e^x + e^{-x}}{2}\right)' = \frac{e^x - e^{-x}}{2} = \operatorname{sh} x.$

 $(\operatorname{th} x)' = \left(\frac{\operatorname{sh} x}{\operatorname{ch} x}\right)' = \frac{(\operatorname{sh} x)' \operatorname{ch} x - \operatorname{sh} x (\operatorname{ch} x)'}{\operatorname{ch}^2 x} = \frac{\operatorname{ch}^2 x - \operatorname{sh}^2 x}{\operatorname{ch}^2 x} = \frac{1}{\operatorname{ch}^2 x}.$

 $(\operatorname{cth} x)' = \left(\frac{\operatorname{ch} x}{\operatorname{sh} x}\right)' = \frac{(\operatorname{ch} x)' \operatorname{sh} x - \operatorname{ch} x (\operatorname{sh} x)'}{\operatorname{sh}^2 x} = \frac{\operatorname{sh}^2 x - \operatorname{ch}^2 x}{\operatorname{sh}^2 x} = -\frac{1}{\operatorname{sh}^2 x}.$

2.4.5 Использование дифференциала в приближенных вычислениях.

Пусть функция y=f(x) определена в некоторой окрестности $U_{\varepsilon}(x_0)$ точки x_0 и дифференцируема в точке x_0 . Рассмотрим такое приращение Δx что точка $x_0+\Delta x$ тоже принадлежит рассматриваемой окрестности:

$$x_0 + \Delta x \in U_{\varepsilon}(x_0).$$

Тогда, по определению, ее приращение Δy представимо в виде:

$$\Delta y = f(x_0 + \Delta x) - f(x_0) = f'(x_0)\Delta x + \alpha(\Delta x)\Delta x,$$

где $\alpha(\Delta x) \to 0$ при $\Delta x \to 0$,т.е.

$$\Delta y = f(x_0 + \Delta x) - f(x_0) = f'(x_0)\Delta x + o(\Delta x) = dy + o(\Delta x).$$

Поэтому в приближенных вычислениях можно считать, что

$$\Delta y \approx dy$$
,

т.е.

$$f(x_0 + \Delta x) - f(x_0) \approx f'(x_0) \Delta x.$$

Следовательно,

$$f(x_0 + \Delta x) \approx f(x_0) + f'(x_0)\Delta x$$
.

Замечание 2.4.12. Заметим, что относительная погрешность этого приближенного равенства

$$\frac{\Delta y - dy}{\Delta x} = \frac{\Delta y - f'(x_0)\Delta x}{\Delta x} = \alpha(\Delta x)$$

будет бесконечно малой при $\Delta x \to 0$.

Рассмотрим применение этой формулы для конкретных функций.

Примеры 2.4.13. 1). Рассмотрим функцию

$$y = \sqrt[n]{1+x}, \ n \ge 2.$$

Производная этой функции имеет вид:

$$y' = (\sqrt[n]{1+x})' = [(1+x)^{\frac{1}{n}}]' = \frac{1}{n}(1+x)^{\frac{1-n}{n}} = \frac{1}{n\sqrt[n]{(1+x)^{n-1}}}.$$

Полагая $x_0 = 0$, имеем:

$$x = x_0 + \Delta x = \Delta x, \ f(x_0) = 1$$

И

$$f'(x_0) = \frac{1}{n},$$

и поэтому приближенное равенство имеет следующий вид

$$\sqrt[n]{1+\Delta x} \approx 1 + \frac{\Delta x}{n},$$

или

$$(1 + \Delta x)^{\frac{1}{n}} \approx 1 + \frac{\Delta x}{n}.$$

Например,

$$\sqrt{1,02} = \sqrt{1+0,02} \approx 1 + \frac{0,02}{2} = 1,01.$$

2). Рассмотрим функцию

$$y = \sqrt[n]{x}, \ n \ge 2.$$

Производная этой функции имеет вид:

$$y' = (\sqrt[n]{x})' = [(x)^{\frac{1}{n}}]' = \frac{1}{n} x^{\frac{1-n}{n}} = \frac{1}{n\sqrt[n]{x^{n-1}}} = \frac{1}{nx^{\frac{n-1}{n}}}.$$

Поэтому приближенное равенство имеет следующий вид

$$\sqrt[n]{x + \Delta x} \approx \sqrt[n]{x} + \frac{\Delta x}{nx^{\frac{n-1}{n}}},$$

или

$$(x + \Delta x)^{\frac{1}{n}} \approx x^{\frac{1}{n}} + \frac{\Delta x}{nx^{\frac{n-1}{n}}}.$$

3). Рассмотрим функцию

$$y = \sin x$$
.

Так как производная этой функции

$$y' = (\sin x)' = \cos x$$

то полагая $x_0 = 0$, имеем:

$$x = x_0 + \Delta x = \Delta x$$
, $f(x_0) = \sin 0 = 0$

И

$$f'(x_0) = \cos 0 = 1,$$

то приближенное равенство имеет следующий вид

$$\sin \Delta x \approx \Delta x.$$

4). Рассмотрим функцию

$$y = e^x$$
.

Так как производная этой функции

$$y' = (e^x)' = e^x,$$

то полагая $x_0 = 0$, имеем:

$$x = x_0 + \Delta x = \Delta x$$
, $f(x_0) = e^0 = 1$

И

$$f'(x_0) = e^0 = 1,$$

то приближенное равенство имеет следующий вид

$$e^{\Delta x} \approx 1 + \Delta x$$
.

4). Наконец, рассмотрим функцию

$$y = \ln(1+x).$$

Так как производная этой функции

$$y' = [\ln(1+x)]' = \frac{1}{1+x},$$

то полагая $x_0 = 0$, имеем:

$$x = x_0 + \Delta x = \Delta x$$
, $f(x_0) = \ln 1 = 0$

И

$$f'(x_0) = 1,$$

то приближенное равенство имеет следующий вид

$$\ln(1 + \Delta x) \approx \Delta x.$$

2.5 Производные и дифференциалы высших порядков.

2.5.1 Определение производных и дифференциалов высших порядков.

Пусть функция y = f(x) определена и непрерывна на интервале (a, b). Если функция y = f(x) дифференцируема на интервале (a, b), то ее производная также представляет собой функцию на интервале (a, b):

$$y' = f'(x), \quad x \in (a, b).$$

Обозначим

$$y_1 = f'(x) = f_1(x), x \in (a, b).$$

Если функция $y_1 = f_1(x)$ дифференцируема на интервале (a,b) (или в некоторой точке $x_0 \in (a,b)$), то ее производная называется второй производной функции y = f(x) или производной второго порядка и обозначается f''(x) (или $f''(x_0)$):

$$y'' = (y')' = (f_1(x))' = f_1'(x) = f''(x)$$
.

Обозначим

$$y_2 = f''(x) = f_2(x), x \in (a, b).$$

Если функция $y_2 = f_2(x)$ дифференцируема на интервале (a,b) (или в некоторой точке $x_1 \in (a,b)$), то ее производная называется третьей производной функции y = f(x) или производной третьего порядка и обозначается f'''(x) (или $f'''(x_1)$):

$$y''' = (y'')' = (f_2(x))' = f_2'(x) = f'''(x).$$

Аналогично определяются производные четвертого, пятого и т.д. функции y = f(x).

Замечание 2.5.1. Ясно, что обозначение производных высших порядков должно быть корректным и рациональным. Поэтому применяют следующее обозначение:

$$f''(x) = f^{(2)}(x), \quad f'''(x) = f^{(3)}(x), \quad f^{(4)}(x), \dots$$

Определение 2.5.2. Производной п-го порядка функции

$$y = y(x) = f(x)$$

называется

$$y^{(n)}(x) = [y^{(n-1)}(x)]', n \ge 1,$$

т.е. производная ее (n-1)-й производной.

Определение 2.5.3. Если функция y = f(x) имеет производную n-го порядка на множестве D, то она называется n раз дифференцируемой на множестве D.

Определение 2.5.4. Пусть функция y = f(x) имеет производную 2-го порядка порядка в точке x_0 . Дифференциалом второго порядка функция y = f(x) в точке x_0 называется дифференциал ее дифференциала:

$$d^2y = d(dy).$$

Аналогично, если функция y = f(x) имеет производную n-го порядка в точке x_0 , то дифференциалом n-го порядка функция y = f(x) в точке x_0 называется дифференциал ее (n-1)-го дифференциала:

$$d^n y = d(d^{n-1}y).$$

Замечание 2.5.5. Так как

$$dy = f'(x)dx$$

и x — независимая переменная, то $dx = \Delta x$ — постоянная, и потому

$$d^{2}y = d(f'(x)dx) = d(f'(x))dx = (f''(x)dx)dx = f''(x)dx^{2}.$$

Аналогично,

$$d^3y = d(f''(x)dx^2) = d(f''(x))dx^2 = (f'''(x)dx)dx^2 = f'''(x)dx^3.$$

Наконец,

$$d^n y = f^{(n)}(x) dx^n.$$

Замечание 2.5.6. для дифференциалов высших порядков нарушается свойство инвариантности формы дифференциала. Действительно, если

$$y = f(x) = f(\varphi(t)),$$

то

$$d^{2}y = d(f'(x)dx) = d(f'(x))dx + f'(x)d(dx) = (f''(x)dx)dx + f'(x)d^{2}x = f''(x)dx^{2} + f'(x)d^{2}x,$$

и слагаемое $|f'(x)d^2x|$ в общем случае не равно нулю.

2.5.2 Примеры нахождения производных высших порядков.

Пример 2.5.7. Рассмотрим функцию

$$y = x^n$$
, $n \in \mathbb{N}$.

Тогда

$$y' = nx^{n-1},$$

$$y'' = n(n-1)x^{n-2},$$

$$y^{(k)} = n(n-1)(n-2)\cdots(n-k+1)x^{n-k}, \quad 3 \le k < n$$

 $y^{(n)} = n(n-1)(n-2)\dots 1 = n!$

Продолжая дифференцировать, получим:

$$y^{(n+1)} = 0,$$

$$y^{(n+2)} = 0,$$

$$y^{(n+k)} = 0,$$

для любого $k \in \mathbb{N}$

Пример 2.5.8. Рассмотрим функцию

$$y = x^{\alpha}, \quad n \in \mathbb{R}.$$

Тогда

$$y' = \alpha x^{\alpha - 1},$$

$$y'' = \alpha(\alpha - 1)x^{\alpha - 2},$$

.....

$$y^{(n)} = \alpha(\alpha - 1)(\alpha - 2) \dots (\alpha - n + 1)x^{\alpha - n}.$$

Пример 2.5.9. Рассмотрим функцию

$$y = a^x, \quad a > 0, a \neq 1.$$

Тогда

$$y' = a^x \ln a,$$

$$y'' = a^x \ln a \ln a = a^x \ln^2 a,$$

.....

$$y^{(n)} = a^x \ln^n a.$$

Пример 2.5.10. Рассмотрим функцию

$$y = e^x$$
.

Тогда

$$y' = e^x,$$

$$y'' = e^x,$$

.....

$$y^{(n)} = e^x$$

Пример 2.5.11. Рассмотрим функцию

$$y = \sin x$$

Тогда

Пример 2.5.12. Рассмотрим функцию

$$y = \cos x$$

Тогда

Пример 2.5.13. Рассмотрим функцию

$$y = \frac{1}{x}$$

Тогда

Пример 2.5.14. Рассмотрим функцию

$$y = \frac{1}{ax + b}.$$

Тогда

$$y' = ((ax+b)^{-1})' = (-1)(ax+b)^{-2}a = (-1)\frac{a}{(ax+b)^{2}},$$

$$y'' = [(-1)a(ax+b)^{-2}]' = (-1)(-2)a^{2}(ax+b)^{-3} = (-1)(-2)\frac{a^{2}}{(ax+b)^{3}} = \frac{(-1)^{2}2!a^{2}}{(ax+b)^{2+1}}.$$

$$y^{(n)} = \frac{(-1)^{n}n!a^{n}}{(ax+b)^{n+1}}.$$

Пример 2.5.15. Рассмотрим функцию

$$y = \frac{cx+d}{ax+b}.$$

Сначала проведем преобразования:

$$y = \frac{cx+d}{ax+b} = \frac{\frac{c}{a}(ax+b) - \frac{bc}{a} + d}{ax+b} = \frac{c}{a} + \frac{ad-bc}{a} \frac{1}{ax+b}.$$

Тогда

$$y' = (-1)\frac{ad - bc}{a} \frac{a}{(ax+b)^2} = (-1)\frac{ad - bc}{(ax+b)^2}$$
$$y'' = \frac{(-1)^2 2! a(ad - bc)}{(ax+b)^3}$$
$$\dots$$
$$y^{(n)} = \frac{(-1)^n n! a^{n-1} (ad - bc)}{(ax+b)^{n+1}}$$

2.5.3 Арифметические операции над производными высших порядков.

Замечание 2.5.16. Пусть функции u(x) и v(x) имеют производные n-го порядка в окрестности $U_{\varepsilon}(x_0)$ точки x_0 (или в точке x_0). Тогда

• Функция u(x) + v(x) имеет производную n-го порядка в окрестности $U_{\varepsilon}(x_0)$ точки x_0 (или в точке x_0) и имеет место равенство:

$$[[u(x) + v(x)]^{(n)} = [u(x)]^{(n)} + [v(x)]^{(n)}].$$

• Функция u(x) - v(x) имеет производную n-го порядка в окрестности $U_{\varepsilon}(x_0)$ точки x_0 (или в точке x_0) и имеет место равенство:

$$[u(x) - v(x)]^{(n)} = [u(x)]^{(n)} - [v(x)]^{(n)}.$$

• Для любого c функция cu(x) имеет производную n-го порядка в окрестности $U_{\varepsilon}(x_0)$ точки x_0 (или в точке x_0) и имеет место равенство:

$$[cu(x)]^{(n)} = c[u(x)]^{(n)}$$

Рассмотрим теперь n-кратное дифференцирование произведения двух функций.

Теорема 2.5.17. (Формула Лейбница) Пусть функции u(x) и v(x) имеют производные n-го порядка в окрестности $U_{\varepsilon}(x_0)$ точки x_0 (или в точке x_0). Тогда произведение $u(x) \cdot v(x)$ этих функций имеет производную n-го порядка в окрестности $U_{\varepsilon}(x_0)$ точки x_0 (или в точке x_0) и имеет место равенство:

$$\left[[u(x)v(x)]^{(n)} = \sum_{k=0}^{n} C_n^k [u(x)]^{(n-k)} [v(x)]^{(k)} \right], \tag{2.5.1}$$

где биномиальные коэффициенты вычисляются по формуле

$$C_n^k = \frac{n!}{k!(n-k)!}.$$

Доказательство. Перепишем, для простоты, доказываемую формулу (2.5.1) в виде

$$uv)^{(n)} = \sum_{k=0}^{n} C_n^k u^{(n-k)} v^{(k)}, \qquad (2.5.2)$$

и докажем ее методом математической индукции.

Шаг 1. Проверим, что при

$$n = 1$$

формула (2.5.2) верна.

Действительно, так как

$$C_1^0 = C_1^1 = 1,$$

то

$$uv)^{(1)} = \sum_{k=0}^{1} C_1^k u^{(1-k)} v^{(k)} = C_1^0 u'v + C_1^1 uv' = u'v + uv' = (uv)'.$$

Шаг 2. Допустим, что при

$$n = m$$

формула (2.5.2) верна, т.е. имеет место равенство

$$uv)^{(m)} = \sum_{k=0}^{m} C_m^k u^{(m-k)} v^{(k)}, \qquad (2.5.3)$$

Шаг 3. Докажем, что при

$$n = m + 1$$

формула (2.5.2) тоже верна, т.е. имеет место равенство

$$(uv)^{(m+1)} = \sum_{k=0}^{m+1} C_{m+1}^k u^{(m+1-k)} v^{(k)}, \qquad (2.5.4)$$

Действительно,

$$(uv)^{(m+1)} = [(uv)^{(m)}]' = |\mathbf{B} \text{ силу формулы } (2.5.4)| = \left(\sum_{k=0}^m C_m^k u^{(m-k)} v^{(k)}\right)' =$$

$$= |\mathbf{производная} \text{ суммы равна сумме производных}| =$$

$$= \sum_{k=0}^m C_m^k [u^{(m-k)} v^{(k)}]' = \sum_{k=0}^m C_m^k \left\{ [u^{(m-k)}]' v^{(k)} + u^{(m-k)} [v^{(k)}]' \right\} =$$

$$= \sum_{k=0}^m C_m^k \left\{ u^{(m+1-k)} v^{(k)} + u^{(m-k)} v^{(k+1)} \right\} =$$

$$= \sum_{k=0}^m C_m^k u^{(m+1-k)} v^{(k)} + \sum_{k=0}^m C_m^k u^{(m-k)} v^{(k+1)} =$$

$$= C_m^0 u^{(m+1)} v^{(0)} + C_m^1 u^{(m+1-1)} v^{(1)} + C_m^2 u^{(m+1-2)} v^{(2)} + \dots + C_m^m u^{(m+1-m)} v^{(m)} + C_m^0 u^{(m)} v^{(1)} + C_m^1 u^{(m-1)} v^{(1+1)} + C_m^2 u^{(m-2)} v^{(2+1)} + \dots + C_m^m u^{(m-m)} v^{(m+1)} = C_m^0 u^{(m+1)} v^{(0)} + C_m^0 u^{(0)} v^{(0)} + C_m^0 u^{(0)} v^{(0)} + C_m^0 u^{(0)} v^{(0)} + C_m^0 u^{(0)} v^{(0)} + C_m^$$

$$+C_m^1 u^{(m)} v^{(1)} + C_m^2 u^{(m-1)} v^{(2)} + C_m^3 u^{(m-2)} v^{(3)} + \dots + C_m^m u^{(1)} v^{(m)} +$$

$$+C_m^0 u^{(m)} v^{(1)} + C_m^1 u^{(m-1)} v^{(2)} + C_m^2 u^{(m-2)} v^{(3)} + \dots + C_m^{m-1} u^{(1)} v^{(m)} +$$

$$+C_m^m u^{(0)} v^{(m+1)} =$$

$$= C_m^0 u^{(m+1)} v^{(0)} + (C_m^1 + C_m^0) u^{(m)} v^{(1)} + (C_m^2 + C_m^1) u^{(m-1)} v^{(2)} +$$

$$+(C_m^3+C_m^2)u^{(m-2)}v^{(3)}+\ldots+(C_m^m+C_m^{m-1})u^{(1)}v^{(m)}+C_m^mu^{(0)}v^{(m+1)}= \\ & \begin{array}{c} \operatorname{Paccmotpum\ cymmy}:\ C_m^k+C_m^{k-1}:\\ C_m^k+C_m^{k-1}=\frac{m!}{k!(m-k)!}+\frac{m!}{(k-1)!(m+1-k)!}=\\ & =\frac{m!(m+1-k+k)}{(k-1)!(m-k)!}=\frac{m!}{k!(m+1)!}=C_{m+1}^k.\\ \text{Следовательно}:\\ \hline C_m^k+C_m^{k-1}=C_{m+1}^k,\\ \hline \text{Поэтомy}:\\ & = \\ & \begin{array}{c} C_m^1+C_m^0=C_{m+1}^1,\\ C_m^2+C_m^1=C_{m+1}^2,\\ C_m^3+C_m^2=C_{m+1}^3,\\ \ldots\ldots\ldots\ldots\ldots\\ C_m^m+C_m^{m-1}=C_{m+1}^m,\\ \hline \text{Кроме\ toro}:\\ \hline C_m^0=C_{m+1}^0=1\\ C_m^m=C_{m+1}^{m+1}=1.\\ \hline \text{Следовательнo}:\\ & =C_{m+1}^0u^{(m+1)}v^{(0)}+C_{m+1}^1u^{(m)}v^{(1)}+C_{m+1}^2u^{(m-1)}v^{(2)}+\\ +C_{m+1}^3u^{(m-2)}v^{(3)}+\ldots+C_{m+1}^mu^{(1)}v^{(m)}+C_{m+1}^{m+1}u^{(0)}v^{(m+1)}=\\ & =\sum_{k=0}^{m+1}C_{m+1}^ku^{(m+1-k)}v^{(k)}. \end{array}$$

Таким образом, формула (2.5.4) верна, и потому формула (2.5.1) верна для любого натурального $n \in \mathbb{N}$.

Теорема доказана.

Пример 2.5.18. Найдем производную (50)-го порядка функции

$$y = x^2 \cdot \cos(ax).$$

Обозначим

$$u(x) = x^2$$
, $v(x) = \cos(ax)$

Вычислим последовательно производные этих функций.

$$u'=2x$$

$$u'' = 2,$$

 $u^{(3)} = u^{(4)} = \dots = u^{(50)} = 0.$

Далее,

Поэтому

$$y^{(50)} = (uv)^{(50)} = \sum_{k=0}^{50} C_{50}^k u^{(50-k)} v^{(k)} =$$

$$= C_{50}^{48} u^{(50-48)} v^{(48)} + C_{50}^{49} u^{(50-49)} v^{(49)} + C_{50}^{50} u^{(50-50)} v^{(50)} =$$

Заметим, что все остальные слагаемые содержат производные функции u(x) порядка $m \geq 3$ и потому равны нулю.

$$= C_{50}^{48} u^{(2)} v^{(48)} + C_{50}^{49} u^{(1)} v^{(49)} + C_{50}^{50} u^{(0)} v^{(50)} =$$

$$= \begin{vmatrix} C_{50}^{48} = \frac{50!}{48! \cdot 2!} = \frac{49 \cdot 50}{1 \cdot 2} = 49 \cdot 25 = 1225 \\ C_{50}^{49} = \frac{50!}{49! \cdot 1!} = 50 \\ C_{50}^{50} = 1 \end{vmatrix} =$$

$$= 1225 u^{(2)} v^{(48)} + 50 u^{(1)} v^{(49)} + u^{(0)} v^{(50)} =$$

$$\begin{vmatrix} u^{(2)} = u'' = 2, \\ u^{(1)} = u' = 2x, \\ u^{(0)} = u = x^2, \\ v^{(48)} = a^{48} \cos\left(ax + \frac{\pi}{2} \cdot 48\right) = a^{48} \cos\left(ax + 24\pi\right) = a^{48} \cos(ax) \\ v^{(49)} = a^{49} \cos\left(ax + \frac{\pi}{2} \cdot 49\right) = a^{49} \cos\left(ax + 24\pi + \frac{\pi}{2}\right) = -a^{49} \sin(ax) \\ v^{(50)} = a^{50} \cos\left(ax + \frac{\pi}{2} \cdot 50\right) = a^{50} \cos\left(ax + 24\pi + \pi\right) = -a^{50} \cos(ax) \\ = 1225 \cdot 2 \cdot a^{48} \cos(ax) + 50 \cdot 2x[-a^{49} \sin(ax)] + x^2 \cdot [-a^{50} \cos(ax)] = \\ = 2450 \cdot a^{48} \cos(ax) - 100 \cdot a^{49} x \sin(ax) - a^{50} x^2 \cos(ax) = \\ = a^{48} (2450 - a^2 x^2) \cos(ax) - 100 \cdot a^{49} x \sin(ax).$$

2.6 Основные теоремы дифференциального исчисления.

2.6.1 Возрастание и убывание функции в точке.

Определение 2.6.1. Функция y = f(x) называется возрастающей в точке $x_0 \in D(f)$, если существует такая δ -окрестность точки $x_0 \in D(f)$

$$U_{\delta}(x_0) = (x_0 - \delta, x_0 + \delta) \subset D(f),$$

ОТР

• Для любого $x \in (x_0 - \delta, x_0)$ выполняется неравенство

$$f(x) < f(x_0);$$

• Для любого $x \in (x_0, x_0 + \delta)$ выполняется неравенство

$$f(x_0) < f(x)$$

Определение 2.6.2. Функция y = f(x) называется убывающей в точке $x_0 \in D(f)$, если существует такая δ -окрестность точки $x_0 \in D(f)$

$$U_{\delta}(x_0) = (x_0 - \delta, x_0 + \delta) \subset D(f),$$

что

• Для любого $x \in (x_0 - \delta, x_0)$ выполняется неравенство

$$f(x) > f(x_0);$$

• Для любого $x \in (x_0, x_0 + \delta)$ выполняется неравенство

$$f(x_0) > f(x)$$

Замечание 2.6.3. • Если функция y = f(x) строго возрастает в окрестности $U_{\delta}(x_0)$, то она является возрастающей в точке $x_0 \in D(f)$. Обратное утверждение неверно.

• Если функция y = f(x) строго убывает в окрестности $U_{\delta}(x_0)$, то она является убывающей в точке $x_0 \in D(f)$.

Обратное утверждение тоже неверно.

Теорема 2.6.4. (О возрастании функции в точке) Если функция y = f(x)

- 1). Дифференцируема в точке x_0 ,
- 2). $f'(x_0) > 0$,

то функция f(x) возрастает в точке x_0 .

Доказательство. По определению производной функции y=f(x) в точке $x_0,$

$$f'(x_0) = \lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0}.$$

Так как $f'(x_0) > 0$, то существует такое $\delta > 0$, что для любого $x \in U_{\delta}(x_0) = (x_0 - \delta, x_0 + \delta), \quad x \neq x_0$ выполняется неравенство:

$$\frac{f(x) - f(x_0)}{x - x_0} > 0.$$

Поэтому, если $x \in (x_0 - \delta, x_0)$, то

$$x - x_0 < 0 \Rightarrow f(x) - f(x_0) < 0 \Rightarrow f(x) < f(x_0)$$

Если же $x \in (x_0, x_0 + \delta)$, то

$$x - x_0 > 0 \Rightarrow f(x) - f(x_0) > 0 \Rightarrow f(x) > f(x_0)$$

Следовательно, функция f(x) возрастает в точке x_0 .

Теорема 2.6.5. (О убывании функции в точке) Если функция y = f(x)

- 1). Дифференцируема в точке x_0 ,
- 2). $f'(x_0) < 0$,

то функция f(x) убывает в точке x_0 .

Доказательство. По определению производной функции y = f(x) в точке x_0 ,

$$f'(x_0) = \lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0}.$$

Так как $f'(x_0) < 0$, то существует такое $\delta > 0$, что для любого $x \in U_{\delta}(x_0) = (x_0 - \delta, x_0 + \delta), \quad x \neq x_0$ выполняется неравенство:

$$\frac{f(x) - f(x_0)}{x - x_0} < 0.$$

Поэтому, если $x \in (x_0 - \delta, x_0)$, то

$$x - x_0 < 0 \Rightarrow f(x) - f(x_0) > 0 \Rightarrow f(x) > f(x_0).$$

Если же $x \in (x_0, x_0 + \delta)$, то

$$x - x_0 > 0 \Rightarrow f(x) - f(x_0) < 0 \Rightarrow f(x) < f(x_0).$$

Следовательно, функция f(x) убывает в точке x_0 .

2.6.2 Локальный максимум и локальный минимум функции. Теорема Ферма.

Определение 2.6.6. Говорят, что функция y = f(x) имеет в точке $x_0 \in D(f)$ локальный максимум, если существует такая δ -окрестность точки x_0 :

$$U_{\delta}(x_0) = (x_0 - \delta, x_0 + \delta) \subset D(f),$$

что для любого $x \in U_{\delta}(x_0)$ выполняется неравенство

$$f(x) \le f(x_0),$$

т.е. в окрестности $U_{\delta}(x_0)$ значение функции y=f(x) в точке x_0 является наибольшим.

Говорят, что функция y = f(x) имеет в точке x_0 строгий локальный максимум, если для любого $x \in (x_0 - \delta, x_0) \cup (x_0, x_0 + \delta)$ выполняется неравенство

$$f(x) < f(x_0) .$$

Определение 2.6.7. Говорят, что функция y = f(x) имеет в точке $x_0 \in D(f)$ локальный минимум, если существует такая δ -окрестность

$$U_{\delta}(x_0) = (x_0 - \delta, x_0 + \delta) \subset D(f),$$

что для любого $x \in U_{\delta}(x_0)$ выполняется неравенство

$$f(x) \ge f(x_0),$$

т.е. в окрестности $U_{\delta}(x_0)$ значение функции y=f(x) в точке $x_0\in D(f)$ является наименьшим.

Говорят, что функция y=f(x) имеет в точке x_0 строгий локальный минимум, если для любого $x \in (x_0-\delta,x_0) \cup (x_0,x_0+\delta)$ выполняется неравенство

$$f(x) > f(x_0).$$

Определение 2.6.8. Локальный максимум и локальный минимум функции y = f(x) объединяются общим названием локальный экстремум.

Замечание 2.6.9. рассмотрим необходимое условие существования локального экстремума.

Теорема 2.6.10. (Теорема Ферма.) Если функция y = f(x) дифференцируема в точке $x_0 \in D(f)$ и имеет в этой точке локальный экстремум, то производная функции в этой точке равна нулю:

$$f'(x_0) = 0.$$

Доказательство. Пусть функция y = f(x) дифференцируема в точке x_0 и имеет в этой точке локальный максимум. Для производной $f'(x_0)$ возможен один и только один из случаев:

$$f'(x_0) > 0$$
, $f'(x_0) < 0$ или $f'(x_0) = 0$.

Рассмотрим каждый из этих случаем в отдельности.

1). Пусть $f'(x_0) > 0$. Тогда по теореме 2.6.4, функция f(x) возрастает в точке x_0 . Следовательно, существует такая δ -окрестность

$$U_{\delta}(x_0) = (x_0 - \delta, x_0 + \delta),$$

что для любого $x \in (x_0 - \delta, x_0)$ выполняется неравенство

$$f(x) < f(x_0),$$

а для любого $x \in (x_0, x_0 + \delta)$ выполняется неравенство

$$f(x_0) < f(x)$$

Второе из этих неравенств противоречит условию максимальности значения $f(x_0)$.

Таким образом, этот случай невозможен.

2). Пусть $f'(x_0) < 0$. Тогда по теореме 2.6.5, функция f(x) убывает в точке x_0 . Следовательно, существует такая δ -окрестность

$$U_{\delta}(x_0) = (x_0 - \delta, x_0 + \delta),$$

что для любого $x \in (x_0 - \delta, x_0)$ выполняется неравенство

$$f(x) > f(x_0),$$

а для любого $x \in (x_0, x_0 + \delta)$ выполняется неравенство

$$|f(x_0) > f(x)|.$$

Первое из этих неравенств противоречит условию максимальности значения $f(x_0)$.

Таким образом, и этот случай невозможен.

3). Остался один из возможных случаев

$$f'(x_0) = 0.$$

Отметим, что случай локального минимума рассматривается аналогично.

Замечание 2.6.11. Геометрический смысл теоремы Ферма заключается в том, что если функция y = f(x) дифференцируема в точке x_0 локального экстремума, то касательная к графику функции в точке $M_0(x_0, f(x_0))$ параллельна оси Ox.

Замечание 2.6.12. Условие теоремы Ферма является необходимым условием локального экстремума. но не является достаточным условием.

Пример 2.6.13. Рассмотрим функцию

$$y = x^3$$
.

Производная

$$y' = 3x^2$$

этой функции в точке $x_0 = 0$ равна нулю:

$$f'(x_0) = 3 \cdot 0 = 0,$$

однако точка $x_0 = 0$ не является точкой локального экстремума функции f(x).

Замечание 2.6.14. В условии теоремы Ферма существенно, что точка x_0 — внутренняя точка интервала $(x_0 - \delta, x_0 + \delta)$.

Если бы точка экстремума x_0 была крайней точкой отрезка [a,b], то производная в этой точке не обязана равняться нулю.

Пример 2.6.15. Рассмотрим функцию

$$f(x) = e^x$$

на отрезке [0,1].

Точка $x_0 = 1$ — точка максимума функции f(x) на этом отрезке, но производная f'(x) в этой точке не равна нулю:

$$f'(1) = e^x|_{x=1} = e \neq 0.$$

2.6.3 Теорема Дарбу.

Для функции, непрерывной на отрезке, имеет место теорема о промежуточном значении. Аналогом этой теоремы для дифференцируемой функции является теорема Дарбу.

Теорема 2.6.16. (Теорема Дарбу) Если функция f(x) дифференцируема на отрезке [a,b], то производная f'(x) принимает все значения между f'(a) и f'(b).

Доказательство. 1). Предположим сначала, что производная f'(x) принимает на концах отрезка [a,b] значения разных знаков. Без ограничения общности, считаем что

$$f'(a) > 0$$
 и $f'(b) < 0$.

Так как функция f(x) дифференцируема на отрезке [a, b], то она непрерывна на отрезке [a, b]. Поэтому, по второй теореме Вейерштрасса, она принимает свое наибольшее значение в некоторой точке $c \in [a, b]$.

Для точки c возможен один и только один из случаев:

$$c=a, \quad c=b$$
 или $c\in (a,b)$.

Рассмотрим каждый из этих случаем в отдельности.

1.1). Пусть c=a. Так как f'(a)>0, то функция f(x) возрастает в точке a и потому для точек x, лежащих вблизи точки a справа (x>a), выполняется неравенство

$$f(c) = f(a) < f(x),$$

что противоречит нашему предположению, что в точке c функция f(x) принимает наибольшее значение.

Таким образом, этот случай невозможен.

1.2). Пусть $\lfloor c=b \rfloor$. Так как f'(b)<0, то функция f(x) убывает в точке b и потому для точек x, лежащих вблизи точке b слева (x< b), выполняется неравенство

$$f(x) > f(b) = f(c),$$

что опять противоречит нашему предположению, что в точке c функция f(x) принимает наибольшее значение.

Таким образом, и этот случай невозможен.

1.3). Остался один из возможных случаев

$$c \in (a,b)$$
,

т.е. точка x=c — точка локального экстремума. Тогда по теореме Ферма

$$f'(c) = 0.$$

2). Рассмотрим теперь общий случай. Пусть производная f'(x) принимает на концах отрезка [a,b] значения f'(a) и f'(b), причем, без ограничения общности, считаем что

$$f'(a) > f'(b).$$

Пусть число C лежит между f'(a) и f'(b), т.е. имеет место неравенство

$$f'(a) > C > f'(b)$$

Рассмотрим функцию

$$\varphi(x) = f(x) - Cx.$$

Функция $\varphi(x)$ дифференцируема на отрезке [a,b] и

$$\varphi'(x) = f'(x) - C.$$

Кроме того,

$$\varphi'(a) = f'(a) - C > 0,$$

$$\varphi'(b) = f'(b) - C < 0,$$

и потому, по доказанному выше, существует точка $c \in (a,b)$ такая, что

$$\varphi'(c) = 0.$$

Но тогда

$$f'(c) - C = 0 \Rightarrow f'(c) = C$$

Таким образом, производная f'(x) принимает все значения между f'(a) и f'(b).

Замечание 2.6.17. Теорема Дарбу напоминает теорему Больцано-Коши о промежуточном значении для непрерывных на отрезке [a,b] функции. Однако она не является следствием теоремы Больцано-Коши, так как производная f'(x) непрерывной на отрезке [a,b] функции может не быть непрерывной.

Пример 2.6.18. Рассмотрим функцию

$$y = |x|$$

на отрезке [-1,1]. Эта функция непрерывна на [-1,1], в то время как производная разрывна в точке x=0, в которой производная не существует.

2.6.4 Теорема Ролля.

Теорема 2.6.19. (Теорема Ролля.) Пусть функция y = f(x) удовлетворяет условиям:

- 1). Определена и непрерывна на отрезке [a,b];
- 2). Дифференцируема в интервале (a,b);
- 3). На концах отрезка [a,b] функция f(x) принимает равные значения:

$$f(a) = f(b).$$

Тогда существует точка $c \in (a,b)$ такая, что

$$f'(c) = 0.$$

Доказательство. Функция f(x) определена и непрерывна на отрезке [a,b]. Следовательно, по второй теореме Вейерштрасса функция f(x) принимает на отрезке [a,b] свое наибольшее значение

$$M = \max_{[a,b]} f(x) = f(x_1)$$

и свое наименьшее значение

$$m = \min_{[a,b]} f(x) = f(x_2),$$

где $x_1, x_2 \in [a, b]$, т.е. оба значения M и m достигаются. При этом.

$$m \le f(x) \le M$$

для любого $x \in [a, b]$.

Возможны два различных случая.

1. M=m.

Тогда для любого $x \in [a,b]$ имеет место равенство

$$f(x) = M$$
,

т.е. функция f(x) постоянна на отрезке [a,b] и потому

$$f'(x) = 0$$

для любого $x \in (a,b)$ и в качестве точки c можно взять любую точку интервала (a,b).

 $2. \quad \boxed{M > m}$

Так как

$$f(x_1) = M$$

$$f(x_2) = m,$$

то так как f(a) = f(b), по крайней одна из этих точек x_1 или x_2 — внутренняя точка интервала (a,b).

2.1.) Если x_1 — внутренняя точка интервала (a, b), то обозначим

$$c = x_1$$
.

2.2.) Если $x_1 = a$ или $x_1 = b$, то так как

$$f(a) = f(b),$$

то x_2 — внутренняя точка интервала (a,b). Обозначим

$$c=x_2$$
.

Таким образом, точка c — точка локального экстремума. Поэтому, по теореме Ферма

$$f'(c) = 0.$$

Замечание 2.6.20. Геометрический смысл теоремы Ролля означает, что если

$$f(a) = f(b),$$

то на графике функции найдется точка M(c,f(c)), касательная в которой параллельна оси Ox.

Замечание 2.6.21. Все условия теоремы Ролля существенны. Отсутствие хотя бы одного из них приводит к противоположному результату.

Пример 2.6.22. Рассмотрим функцию

$$y = x - [x] = \{x\},\$$

т.е. дробную часто x на отрезке [0,1]. Эта функция

- 1). Определена на отрезке [0,1], но разрывна в точке x=1, т.е. первое условие теоремы Ролля не выполняется;
- 2). Дифференцируема в интервале (0,1) и производная равна

$$f'(x) = 1$$

3). На концах отрезка [0,1] функция f(x) принимает равные значения:

$$f(0) = f(1) = 0.$$

Однако не существует точки $c \in (0,1)$ такой, что

$$f'(c) = 0.$$

Пример 2.6.23. Рассмотрим функцию

$$f(x) = \begin{cases} x, & \text{если } 0 \le x \le \frac{1}{2} \\ 1 - x, & \text{если } \frac{1}{2} \le x \le 1. \end{cases}$$

на отрезке [0,1]. Эта функция

- 1). Определена и непрерывна на отрезке [0, 1];
- 2). Дифференцируема в интервале $\left(0,\frac{1}{2}\right)$ и в интервале $\left(\frac{1}{2},1\right)$, а в точке $x=\frac{1}{2}$ производная не существует, т.е. второе условие теоремы Ролля не выполняется. При этом

$$f'(x) = \begin{cases} 1, & \text{если } 0 < x < \frac{1}{2} \\ -1, & \text{если } \frac{1}{2} < x < 1. \end{cases}$$

3). На концах отрезка [0,1] функция f(x) принимает равные значения:

$$f(0) = f(1) = 0.$$

Однако и для этой функции не существует точки $c \in (0,1)$ такой, что

$$f'(c) = 0.$$

Пример 2.6.24. Рассмотрим функцию

$$y = x$$

на отрезке [0,1]. Эта функция

- 1). Определена и непрерывна на отрезке [0, 1];
- 2). Дифференцируема в интервале (0,1) и производная равна

$$f'(x) = 1.$$

3). На концах отрезка [0,1] функция f(x) принимает разные значения:

$$f(0) = 0, \quad f(1) = 1.$$

Следовательно, третье условие теоремы Ролля не выполняется.

И для этой функции не существует точки $c \in (0,1)$ такой, что

$$f'(c) = 0.$$

Замечание 2.6.25. (Физический смысл теоремы Ролля.)

Пусть функция f(t) описывает положение (координату) материальной точки на прямой в момент времени t, т.е.

$$s = f(t)$$

уравнение движения материальной точки, где $t \in [a,b]$. В начальный момент времени t=a точка имеет координату f(a). Далее она движется со скоростью f'(t) и в момент времени t=b возвращается в точку с координатой f(a) (f(a)=f(b)). Ясно, что для возвращения в некоторый момент времени материальная точка должна остановиться (прежде чем повернуть назад). Т.е. в некоторый момент времени t=c скорость должна быть равной нулю:

$$f'(c) = 0.$$

2.7 Теорема Лагранжа. Формула Коши. Следствия.

2.7.1 Теорема Лагранжа. Формула конечных приращений.

Теорема 2.7.1. (Теорема Лагранжа.) Пусть функция y = f(x) удовлетворяет условиям:

- 1). Определена u непрерывна на отрезке [a,b];
- 2). Дифференцируема в интервале (a,b);

Тогда существует точка $c \in (a,b)$ такая, что справедлива формула

$$\left| \frac{f(b) - f(a)}{b - a} = f'(c) \right|,$$

uлu

$$f(b) - f(a) = f'(c)(b - a).$$

Доказательство. Рассмотрим вспомогательную функцию

$$F(x) = f(x) - f(a) - \frac{f(b) - f(a)}{b - a}(x - a).$$

Проверим, что для этой функции выполняются условия теоремы Ролля.

- (1). Функция F(x), как и функция y=f(x), определена и непрерывна на отрезке [a,b].
- (2). Функция F(x) дифференцируема в интервале (a, b), причем

$$F'(x) = f'(x) - \frac{f(b) - f(a)}{b - a}.$$

(3). Вычислим значения функции F(x) на концах отрезка [a, b]:

$$F(a) = f(a) - f(a) - \frac{f(b) - f(a)}{b - a}(a - a) = 0,$$

$$F(b) = f(b) - f(a) - \frac{f(b) - f(a)}{b - a}(b - a) = f(b) - f(a) - [f(b) - f(a)] = 0.$$

Следовательно,

$$F(a) = F(b) = 0,$$

т.е. для функции F(x) и третье условие теоремы Ролля выполнено.

Таким образом, по теореме Ролля существует точка $c \in (a, b)$ такая, что

$$F'(c) = 0,$$

откуда

$$F'(c) = f'(c) - \frac{f(b) - f(a)}{b - a} = 0.$$

Следовательно,

$$\boxed{\frac{f(b) - f(a)}{b - a} = f'(c)},$$

или

$$f(b) - f(a) = f'(c)(b - a).$$

Замечание 2.7.2. (Геометрический смысл теоремы Лагранжа.)

Рассмотрим график функции y = f(x), определенную и непрерывную на отрезке [a,b] и дифференцируемая в каждой точке интервала (a,b). Обозначим через точку A левую, а через B — правую точки графика:

Проведем через точки A и B хорду графика прямую (AB). Угловой коэффициент этой прямой вычисляется по формуле:

$$k = \operatorname{tg} \alpha = \frac{f(b) - f(a)}{b - a},$$

где α — величина угла, образованного прямой (AB) с положительным направлением оси (Ox).

Теорема Лагранжа утверждает, что на дуге (AB) графика функции f(x) существует такая точка M(c, f(c)), что касательная к графику в точке M(c, f(c)), угловой коэффициент которой равен f'(c):

$$k_1 = f'(c),$$

параллельна прямой (AB), т.е.

$$\frac{f(b) - f(a)}{b - a} = k = k_1 = f'(c)$$
.

Замечание 2.7.3. Если к условия теоремы Лагранжа добавить третье условие теоремы Ролля

$$f(a) = f(b),$$

то получим, что

$$f'(c) = \frac{f(b) - f(a)}{b - a} = 0$$
.

Таким образом, теорема Ролля является частным случаем теоремы Лагранжа. Но следует обратить внимание, что доказательство теоремы Лагранжа использует теорему Ролля.

Замечание 2.7.4. Так как имеет место равенство

$$\frac{f(b) - f(a)}{b - a} = \frac{f(a) - f(b)}{a - b},$$

то формула Лагранжа остается справедливой и в случае, когда

$$a > b$$
.

Замечание 2.7.5. (Формула конечных приращений.) Пусть функция y = f(x) удовлетворяет условиям теоремы Лагранжа на отрезке [a,b]. Рассмотрим произвольную точку $x_0 \in [a,b]$ и такое приращение Δx , чтобы точка $x_0 + \Delta x$ тоже принадлежала отрезку [a,b]. т.е.

$$x_0 + \Delta x \in [a, b].$$

Очевидно, что функция y=f(x) удовлетворяет условиям теоремы Лагранжа и на отрезке $[x_0,x_0+\Delta x]$, если $\Delta x>0$, или отрезке $[x_0+\Delta x,x_0]$, если $\Delta x<0$. Тогда по теореме Лагранжа существует точка $c\in(x_0,x_0+\Delta x)$ (или $c\in(x_0+\Delta x,x_0)$) такая, что имеет место равенство

$$\frac{f(x_0 + \Delta x) - f(x_0)}{\Delta x} = f'(c),$$

или

$$f(x_0 + \Delta x) - f(x_0) = f'(c)\Delta x.$$

Параметрическое уравнение отрезка $[x_0, x_0 + \Delta x]$ (или отрезка $[x_0 + \Delta x, x_0]$) имеет вид

$$x = x_0 + t \cdot \Delta x, \quad t \in [0, 1].$$

Точка c лежит на отрезке $[x_0, x_0 + \Delta x]$ (или на отрезке $[x_0 + \Delta x, x_0]$), поэтому существует такое число $\theta \in (0, 1)$, что

$$c = x_0 + \theta \cdot \Delta x$$
.

Поэтому формула Лагранжа примет вид:

$$f(x_0 + \Delta x) - f(x_0) = f'(x_0 + \theta \cdot \Delta x) \Delta x, \quad 0 < \theta < 1.$$

Но

$$f(x_0 + \Delta x) - f(x_0) = \Delta y = \Delta f(x_0).$$

Следовательно,

$$\Delta f(x_0) = f'(x_0 + \theta \cdot \Delta x) \Delta x, \quad 0 < \theta < 1.$$

Эта формула, в отличие от приближенной формулы

$$\Delta y = \Delta f(x_0) \approx f'(x_0) \Delta x = dy(x_0),$$

представляет собой точное равенство, в котором слева стоит приращение функции в точке x_0 , отвечающее приращению аргумента Δx , а справа значение дифференциала не в точке x_0 , а в "сдвинутой" точке

$$c = x_0 + \theta \cdot \Delta x$$
, $0 < \theta < 1$.

Замечание 2.7.6. Физический смысл теоремы Лагранжа.

Пусть y = f(x) — уравнение движения материальной точки, где функция удовлетворяет условия теоремы Лагранжа на отрезке [a,b]. Тогда по теореме Лагранжа существует момент времени $c \in (a,b)$ такой. что:

$$\frac{f(b) - f(a)}{b - a} = f'(c).$$

Величина

$$\frac{f(b) - f(a)}{b - a}$$

равна средней скорости движения материальной точки за промежуток времени от a до b.

Теорема Лагранжа показывает, что существует момент времени x=c, в которой мгновенная скорость совпадает со средней скоростью на временном отрезке [a, b].

2.7.2 Формула Коши

Теорема 2.7.7. (Теорема Коши.) Пусть функции y = f(x) и y = g(x) удовлетворяют условиям:

- 1). Определены u непрерывны на отрезке [a,b];
- 2). Дифференцируемы в интервале (a,b);
- 3). $g'(x) \neq 0$ на (a,b).

Тогда существует точка $c \in (a,b)$ такая, что справедлива формула

$$\frac{f(b) - f(a)}{g(b) - g(a)} = \frac{f'(c)}{g'(c)}.$$

Доказательство. 1. Покажем вначале, что

$$g(b) - g(a) \neq 0.$$

Действительно, если

$$g(b) = g(a),$$

то функция g(x) удовлетворяет теореме Ролля. Следовательно, существует точка $t \in (a,b)$ такая, что

$$g'(t) = 0$$

что противоречит условию 3).

Итак, $g(b) - g(a) \neq 0$.

2. Рассмотрим вспомогательную функцию

$$F(x) = f(x) - f(a) - \frac{f(b) - f(a)}{g(b) - g(a)} [g(x) - g(a)].$$

Покажем, что эта функция удовлетворяет условиям теоремы Ролля. Действительно,

- (1). Функция F(x) определена и непрерывна на отрезке [a,b];
- (2). Функция F(x) дифференцируема в интервале (a,b). Производная F'(x) имеет вид:

$$F'(x) = f'(x) - \frac{f(b) - f(a)}{g(b) - g(a)}g'(x);$$

(3). Вычислим значения F(a) и F(b):

$$F(a) = f(a) - f(a) - \frac{f(b) - f(a)}{g(b) - g(a)}[g(a) - g(a)] = 0,$$

$$F(b) = f(b) - f(a) - \frac{f(b) - f(a)}{g(b) - g(a)} [g(b) - g(a)] = 0.$$

Поэтому,

$$F(b) = F(a) = 0.$$

Следовательно существует точка $c \in (a, b)$ такая, что

$$F'(c) = 0.$$

Таким образом,

$$F'(c) = f'(c) - \frac{f(b) - f(a)}{g(b) - g(a)}g'(c) = 0.$$

Отсюда

$$\frac{f(b) - f(a)}{g(b) - g(a)} = \frac{f'(c)}{g'(c)}.$$

2.7.3 Некоторые следствия теоремы Лагранжа.

4.7.3.1. Постоянство функции на интервале.

Теорема 2.7.8. Если функция y = f(x) дифференцируема на интервале (a,b), u

$$f'(x) = 0$$

в любой точке $x \in (a,b)$, то функция f(x) постоянна на интервале (a,b).

Доказательство. Пусть $x_0 \in (a,b)$ —-фиксированная точка интервала.

Рассмотрим произвольную точку $x \in (a, b)$. Так как функция y = f(x) непрерывна и дифференцируема на интервале (a, b), то она непрерывна и дифференцируема на отрезке $[x_0, x] \subset (a, b)$ (или на отрезке $[x, x_0] \subset (a, b)$).

Тогда на отрезке $[x_0, x]$ (или на отрезке $[x, x_0]$) функция f(x) удовлетворяет теореме Лагранжа. Поэтому существует точка $c \in (x_0, x)$ (или $c \in (x, x_0)$), что

$$f(x) - f(x_0) = f'(c)(x - x_0).$$

Так как

$$f'(x) = 0$$

в любой точке $x \in (a, b)$ и $c \in (a, b)$, то

$$f'(c) = 0,$$

и потому

$$f(x) - f(x_0) = f'(c)(x - x_0) = 0,$$

откуда

$$f(x) = f(x_0) = const$$

для любой точки $x \in (a, b)$.

4.7.3.2. Условие монотонности функции на интервале.

Теорема 2.7.9. Для того, чтобы функция y = f(x), дифференцируемая на интервале (a,b), была неубывающей на интервале (a,b), необходимо и достаточно, чтобы

$$f'(x) \ge 0$$

в любой точке $x \in (a,b)$.

Доказательство. **Необходимость.** Пусть функция y = f(x), дифференцируемая на интервале (a, b), является неубывающей на интервале (a, b). Тогда f(x) не может убывать ни в одной точке $x \in (a, b)$. Поэтому f'(x) не может быть отрицательной ни в одной точке $x \in (a, b)$. Следовательно

$$f'(x) \ge 0$$

в любой точке $x \in (a, b)$.

Достаточность. Пусть

в любой точке $x \in (a, b)$.

Пусть $x_1, x_2 \in (a, b)$ — произвольные точки интервала (a, b), такие, что $x_1 < x_2$. Тогда на отрезке $[x_1, x_2] \subset (a, b)$ функция f(x) удовлетворяет теореме Лагранжа. Поэтому существует точка $c \in (x_1, x_2)$ такая, что

$$f(x_2) - f(x_1) = f'(c)(x_2 - x_1).$$

Так как $x_2 > x_1$, то $x_2 - x_1 > 0$. Кроме того, $f'(c) \ge 0$. Поэтому

$$f(x_2) \ge f(x_1).$$

Следовательно, функция f(x) является неубывающей на интервале (a,b).

Аналогично доказываются следующие теорема.

Теорема 2.7.10. Для того, чтобы функция y = f(x), дифференцируемая на интервале (a,b), была невозрастающей на интервале (a,b), необходимо и достаточно, чтобы

$$f'(x) \le 0$$

в любой точке $x \in (a,b)$.

Теорема 2.7.11. Для того, чтобы функция y = f(x), дифференцируемая на интервале (a,b), была возрастающей на интервале (a,b), достаточно, чтобы

$$f'(x) > 0$$

в любой точке $x \in (a,b)$.

Теорема 2.7.12. Для того, чтобы функция y = f(x), дифференцируемая на интервале (a,b), была убывающей на интервале (a,b), достаточно, чтобы

в любой точке $x \in (a,b)$.

4.7.3.3. Отсутствие у производной разрывов I рода.

Теорема 2.7.13. Пусть функция y = f(x) удовлетворяет условиям:

- 1). Определена и непрерывна на отрезке $[x_0, x_0 + \delta], \ \delta > 0;$
- 2). Имеет конечную производную f'(x) в интервале $(x_0, x_0 + \delta)$;
- 3). Существует производная справа $f'(x_0 + 0)$;
- 4). Существует предел справа

$$\lim_{x \to x_0 + 0} f'(x) = k.$$

Тогда

$$f'(x_0 + 0) = k = \lim_{x \to x_0 + 0} f'(x),$$

m.e. производная f'(x) непрерывна в точке x_0 справа.

Доказательство. Рассмотрим такое приращение $\Delta x>0$ такое, чтобы точка $x_0+\Delta x\in [x_0,x_0+\delta].$ Ясно, что

$$0 < \Delta x < \delta$$
.

На отрезке $[x_0, x_0 + \delta]$ функция f(x) удовлетворяет теореме Лагранжа. Поэтому существует такое $\theta \in (0, 1)$, что выполняется равенство

$$f(x_0 + \Delta x) - f(x_0) = f'(x_0 + \theta \Delta x) \Delta x$$

или

$$\frac{f(x_0 + \Delta x) - f(x_0)}{\Delta x} = f'(x_0 + \theta \Delta x). \tag{2.7.1}$$

Легко видеть, что

$$x_0 < x_0 + \theta \Delta x < x_0 + \Delta x$$

Поэтому,

$$\Delta x \to +0 \Rightarrow x_0 + \Delta x \to x_0 + 0 \Rightarrow x_0 + \theta \Delta x \to x_0 + 0.$$

В силу условия 4), существует предел правой части равенства (2.7.1)

$$\lim_{\Delta x \to +0} f'(x_0 + \theta \Delta x) = k.$$

Следовательно, существует и предел левой части равенства (2.7.1)

$$\lim_{\Delta x \to +0} \frac{f(x_0 + \Delta x) - f(x_0)}{\Delta x} = f'(x_0 + 0)$$

и выполняется равенство

$$f'(x_0 + 0) = k = \lim_{x \to x_0 + 0} f'(x),$$

т.е. производная f'(x) непрерывна в точке x_0 справа.

Аналогично доказывается следующая теорема.

Теорема 2.7.14. Пусть функция y = f(x) удовлетворяет условиям:

- 1). Определена и непрерывна на отрезке $[x_0 \delta, x_0], \ \delta > 0;$
- 2). Имеет конечную производную f'(x) в интервале $(x_0 \delta, x_0)$;
- 3). Существует производная слева $f'(x_0 0)$;
- 4). Существует предел слева

$$\lim_{x \to x_0 - 0} f'(x) = k_1.$$

Тогда

$$f'(x_0 - 0) = k_1 = \lim_{x \to x_0 - 0} f'(x),$$

 $m.e.\ производная\ f'(x)\ непрерывна в точке\ x_0\ слева.$

Следствие 2.7.15. Если функция y = f(x) всюду на интервале (a,b) имеет конечную производную f'(x), то f'(x) не может иметь на интервале (a,b) разрывы первого рода.

Доказательство. Рассмотрим произвольную точку $x_0 \in (a, b)$. Возможны следующие случаи:

1). Предел f'(x) в точке x_0 справа бесконечен:

$$\lim_{x \to x_0 + 0} f'(x) = \infty,$$

или не существует. Тогда точка x_0 — точка разрыва производной f'(x) второго рода.

2). Предел f'(x) в точке x_0 слева бесконечен:

$$\lim_{x \to x_0 - 0} f'(x) = \infty$$

или не существует. Тогда и в этом случае точка x_0 — точка разрыва производной f'(x) второго рода.

3). Пределы f'(x) в точке x_0 справа и слева конечны:

$$\lim_{x \to x_0 + 0} f'(x) = k$$

И

$$\lim_{x \to x_0 - 0} f'(x) = k_1.$$

Тогда, в силу локальных свойств функций, имеющих предел имеем:

$$f'(x_0 + 0) = k = \lim_{x \to x_0 + -0} f'(x)$$

И

$$f'(x_0 - 0) = k_1 = \lim_{x \to x_0 + 0} f'(x),$$

т.е. производная f'(x) непрерывна в точке x_0 и слева и справа, и потому непрерывна.

Таким образом, f'(x) не может иметь на интервале (a,b) разрывы первого рода.

Пример 2.7.16. Рассмотрим на отрезке [-1,1] функцию

$$f(x) = \begin{cases} x^2 \cos \frac{1}{x}, & \text{если } x \neq 0, \\ 0, & \text{если } x = 0. \end{cases}$$

При $x \neq 0$ функция f(x) дифференцируема и

$$f'(x) = 2x \cos \frac{1}{x} + x^2 \left(-\sin \frac{1}{x}\right) \left(-\frac{1}{x^2}\right) = 2x \cos \frac{1}{x} + \sin \frac{1}{x}.$$

Если x=0, то

$$f'(0) = \lim_{\Delta x \to 0} \frac{f(0 + \Delta x) - f(0)}{\Delta x} = \lim_{\Delta x \to 0} \frac{(\Delta x)^2 \cos \frac{1}{\Delta x}}{\Delta x} = \lim_{\Delta x \to 0} \Delta \Delta x \cos \frac{1}{\Delta x} = 0.$$

Поэтому функция f(x) в каждой точке $x \in [-1,1]$ имеет конечную производную. Однако пределы

$$\lim_{x \to +0} f'(x) = \lim_{x \to +0} 2x \cos \frac{1}{x} + \lim_{x \to +0} \sin \frac{1}{x}.$$

И

$$\lim_{x \to -0} f'(x) = \lim_{x \to -0} 2x \cos \frac{1}{x} + \lim_{x \to -0} \sin \frac{1}{x}.$$

не существуют, так как

$$\lim_{x \to \pm 0} 2x \cos \frac{1}{x} = 0$$

а пределы

$$\lim_{x \to \pm 0} \sin \frac{1}{x}$$

не существуют.

4.7.3.4. Вывод некоторых неравенств.

Пример 2.7.17. Докажем неравенство

$$|\sin x_2 - \sin x_1| \le |x_2 - x_1|$$

для любых $x_1, x_2 \in \mathbb{R}$.

Без ограничения общности, считаем что $x_1 < x_2$. (Для $x_1 = x_2$ неравенство превращается в очевидное равенство.)

Функция $y = \sin x$ на отрезке $[x_1, x_2]$ удовлетворяет теореме Лагранжа. Поэтому существует точка $c \in (x_2, x_2)$, такая, что выполняется равенство:

$$\sin x_2 - \sin x_1 = \cos c \cdot (x_2 - x_1).$$

Поэтому

$$|\sin x_2 - \sin x_1| = |\cos c \cdot (x_2 - x_1)| = |\cos c||x_2 - x_1| \le |x_2 - x_1|.$$

Пример 2.7.18. Докажем неравенство

$$|\operatorname{arctg} x_2 - \operatorname{arctg} x_1| \le |x_2 - x_1|$$

для любых $x_1, x_2 \in \mathbb{R}$.

Без ограничения общности, как и в предыдущем примере, считаем что $x_1 < x_2$. (Для $x_1 = x_2$ неравенство превращается в очевидное равенство.)

Функция $y=\arctan x$ на отрезке $[x_1,x_2]$ удовлетворяет теореме Лагранжа. Поэтому существует точка $c\in (x_2,x_2)$, такая, что выполняется равенство:

$$\arctan x_2 - \arctan x_1 = \frac{1}{1+c^2} \cdot (x_2 - x_1).$$

Поэтому

$$|\operatorname{arctg} x_2 - \operatorname{arctg} x_1| = \left| \frac{1}{1 + c^2} \cdot (x_2 - x_1) \right| = \frac{1}{1 + c^2} |x_2 - x_1| \le |x_2 - x_1|.$$

2.8 Раскрытие неопределенностей. Правило Лопиталя.

Рассмотрим отношение двух функций

$$\frac{f(x)}{g(x)}$$
,

полагая, что функции f(x) и g(x) определены, непрерывны и дифференцируемы в некоторой окрестности $U_{\delta}(a)$ точки a, исключая, быть может самой точки a.

Может случится, что при $x \to a$ обе функции одновременно стремятся либо к нулю:

$$\begin{cases} \lim_{x \to a} f(x) = 0, \\ \lim_{x \to a} g(x) = 0, \end{cases}$$

то есть одновременно являются бесконечно малыми при $x \to a$, либо обе функции стремятся одновременно к бесконечности:

$$\begin{cases} \lim_{x \to a} f(x) = \infty, \\ \lim_{x \to a} g(x) = \infty, \end{cases}$$

то есть одновременно являются бесконечно большими при $x \to a$.

Тогда говорят, что в точке a имеет место неопределенность вида

$$\frac{0}{0}$$
 или $\frac{\infty}{\infty}$.

В этом случае, используя производные f'(x) и g'(x), формулируется правило нахождения предела

$$\lim_{x \to a} \frac{f(x)}{g(x)},$$

которое называется правилом раскрытия неопределенностей или правилом Лопиталя.

2.8.1 Неопределенность вида $\frac{0}{0}$.

Теорема 2.8.1. Пусть функции f(x) и g(x)

- 1). Определены на отрезке [a,b];
- 2).

$$\begin{cases} \lim_{x \to a+0} f(x) = 0, \\ \lim_{x \to a+0} g(x) = 0, \end{cases}$$

3). Существуют конечные производные f'(a) и g'(a) в точке a, причем $g'(a) \neq 0$.

Тогда существует предел

$$\lim_{x \to a+0} \frac{f(x)}{g(x)} = \frac{f'(a)}{g'(a)}.$$
 (2.8.1)

Доказательство. Так как существуют конечные производные f'(a) и g'(a) в точке a, то функции f(x) и g(x) непрерывны в точке x=a справа, причем

$$\begin{cases} f(a) = \lim_{x \to a+0} f(x) = 0, \\ g(a) = \lim_{x \to a+0} g(x) = 0. \end{cases}$$

Производная $g'(a) \neq 0$. Поэтому, либо g'(a) > 0, и тогда функция g(x) возрастает в точке x = a, либо g'(a) < 0, и тогда функция g(x) убывает в точке x = a. Поэтому для точек, достаточно близких к точке a справа,

функция g(x) отлична от нуля. Следовательно, для таких x>a определено отношение

$$\frac{f(x)}{g(x)}$$
.

Тогда имеет соотношение:

$$\frac{f(x)}{g(x)} = \frac{f(x) - f(a)}{g(x) - g(a)} = \frac{\frac{f(x) - f(a)}{x - a}}{\frac{g(x) - g(a)}{x - a}}.$$

Переходя к пределу при $x \to a + 0$, получим:

$$\lim_{x \to a+0} \frac{f(x)}{g(x)} = \frac{\lim_{x \to a+0} \frac{f(x) - f(a)}{x - a}}{\lim_{x \to a+0} \frac{g(x) - g(a)}{x - a}} = \frac{f'(a)}{g'(a)}.$$

Теорема доказана.

Пример 2.8.2. Найдем предел

$$\lim_{x \to 0+0} \frac{e^x - e^{-x}}{\ln(e-x) + x - 1}.$$

Обозначим

$$\begin{cases} f(x) = e^x - e^{-x}, \\ g(x) = \ln(e - x) + x - 1, \end{cases}$$

где $x \in [0,1]$. Ясно, что

$$\begin{cases} \lim_{x \to 0+0} f(x) = 0, \\ \lim_{x \to 0+0} g(x) = 0, \end{cases}$$

Следовательно, мы имеем дело с неопределенностью вида

$$\lim_{x \to 0+0} \frac{f(x)}{g(x)} = \left| \frac{0}{0} \right|.$$

Вычисляя производные, получаем:

$$\begin{cases} f'(x) = e^x + e^{-x}, \\ g'(x) = -\frac{1}{e - x} + 1, \end{cases} \Rightarrow \begin{cases} f'(0) = 2, \\ g'(0) = -\frac{1}{e} + 1 = \frac{e - 1}{e} \neq 0. \end{cases}$$

Применяя теорему 2.8.1, получаем:

$$\lim_{x \to 0+0} \frac{e^x - e^{-x}}{\ln(e-x) + x - 1} = \frac{2}{e-1} = \frac{2e}{e-1}.$$

Теорема 2.8.3. Пусть функции f(x) и g(x)

- 1). Определены на полуинтервале (a, b];
- 2).

$$\begin{cases} \lim_{x \to a+0} f(x) = 0, \\ \lim_{x \to a+0} g(x) = 0, \end{cases}$$

- 3). Существуют конечные производные f'(x) и g'(x) на (a,b], причем $g'(x) \neq 0$.
- 4). Существуют конечны или бесконечный предел

$$\lim_{x \to a+0} \frac{f'(x)}{g'(x)} = K.$$

Тогда существует предел

$$\lim_{x \to a+0} \frac{f(x)}{g(x)} = \lim_{x \to a+0} \frac{f'(x)}{g'(x)} = K. \tag{2.8.2}$$

Доказательство. Доопределим функции f(x) и g(x) в точке x=a, полагая

$$\begin{cases} f(a) = 0, \\ g(a) = 0. \end{cases}$$

Тогда функции f(x) и g(x) окажутся непрерывными на отрезке [a,b]. Следовательно, функции f(x) и g(x) удовлетворяют теореме Коши на отрезке [a,b], а потому и на любом отрезке е [a,x], где $x\in(a,b]$. Поэтому существует такая точка $c\in(x,b)$, что имеет место равенство

$$\frac{f(x)}{g(x)} = \frac{f(x) - f(a)}{g(x) - g(a)} = \frac{f'(c)}{g'(c)}, \quad a < c < x.$$

Так как из $x \to a+0$ следует, что $c \to a+0$, то переходя к пределу при $x \to a+0$, имеем

$$\lim_{x \to a+0} \frac{f(x)}{g(x)} = \lim_{x \to a+0} \frac{f'(c)}{g'(c)} = K.$$

Пример 2.8.4. Найдем предел

$$\lim_{x \to 0+0} \frac{\operatorname{tg} x - x}{x - \sin x},$$

где $x \in (0, 1]$.

Обозначим

$$\begin{cases} f(x) = \operatorname{tg} x - x, \\ g(x) = x - \sin x. \end{cases}$$

Ясно, что

$$\begin{cases} \lim_{x \to 0+0} f(x) = 0, \\ \lim_{x \to 0+0} g(x) = 0, \end{cases}$$

Следовательно, мы опять имеем дело с неопределенностью вида

$$\lim_{x \to 0+0} \frac{f(x)}{g(x)} = \left| \frac{0}{0} \right|.$$

Вычисляя производные, получаем:

$$\begin{cases} f'(x) = \frac{1}{\cos^2 x} - 1, \\ g'(x) = 1 - \cos x, \end{cases}$$

Поэтому существует предел

$$\lim_{x \to 0+0} \frac{f'(x)}{g'(x)} = \lim_{x \to 0+0} \frac{\frac{1}{\cos^2 x} - 1}{1 - \cos x} = \lim_{x \to 0+0} \frac{1 - \cos^2 x}{\cos^2 x (1 - \cos x)} = \lim_{x \to 0+0} \frac{1 + \cos x}{\cos^2 x} = 2.$$

Применяя теорему 2.8.3, получаем:

$$\lim_{x \to 0+0} \frac{\operatorname{tg} x - x}{x - \sin x} = \lim_{x \to 0+0} \frac{f(x)}{g(x)} = \lim_{x \to 0+0} \frac{f'(x)}{g'(x)} = 2$$

Замечание 2.8.5. Если производные f'(x) и g'(x) также удовлетворяют условия теоремы 2.8.1 или теоремы 2.8.3,то правило Лопиталя можно применять повторно, переходя ко вторым производным, третьим и т.д.

Пример 2.8.6. Найдем предел

$$\lim_{x \to 0+0} \frac{x - \sin x}{x^3} = \left| \frac{0}{0} \right| = \lim_{x \to 0+0} \frac{1 - \cos x}{3x^2} = \left| \frac{0}{0} \right| = \lim_{x \to 0+0} \frac{\sin x}{6x} = \left| \frac{0}{0} \right| = \lim_{x \to 0+0} \frac{\cos x}{6} = \frac{1}{6}.$$

Пример 2.8.7. Найдем предел

$$\lim_{x \to 0+0} \frac{x^4}{x^2 + 2\cos x - 2} = \left| \frac{0}{0} \right| = \lim_{x \to 0+0} \frac{4x^3}{2x - 2\sin x} = \left| \frac{0}{0} \right| =$$

$$= \lim_{x \to 0+0} \frac{12x^2}{2(1 - \cos x)} = \left| \frac{0}{0} \right| = \lim_{x \to 0+0} \frac{12x}{\sin x} = 12.$$

Замечание 2.8.8. Правило Лопиталя имеет место и тогда, когда

$$a = \pm \infty$$
.

Имеет место следующая теорема.

Теорема 2.8.9. Пусть функции f(x) и g(x)

- 1). Определены на луче $[c, +\infty)$, где c > 0 ;
- 2).

$$\begin{cases} \lim_{x \to +\infty} f(x) = 0, \\ \lim_{x \to +\infty} g(x) = 0, \end{cases}$$

- 3). Существуют конечные производные f'(x) и g'(x) на $[c, +\infty)$, причем $g'(x) \neq 0$.
- 4). Существуют конечны или бесконечный предел

$$\lim_{x \to +\infty} \frac{f'(x)}{g'(x)} = K.$$

Тогда существует предел

$$\lim_{x \to +\infty} \frac{f(x)}{g(x)} = \lim_{x \to +\infty} \frac{f'(x)}{g'(x)} = K. \tag{2.8.3}$$

Доказательство. Рассмотрим следующую замену переменной:

$$x = \frac{1}{t}.$$

Тогда

$$t = \frac{1}{x}$$

И

$$x \to +\infty \Leftrightarrow t \to +0.$$

Следовательно

$$x \in [c, +\infty) \Leftrightarrow t \in \left(0, \frac{1}{c}\right].$$

Тогда функции

$$f_1(t) = f\left(\frac{1}{t}\right)$$
 и $g_1(t) = g\left(\frac{1}{t}\right)$

удовлетворяют условиям теоремы 2.8.3. Действительно, функции $f_1(t)$ и $g_1(t)$

- (1). Определены на полуинтервале $\left(0,\frac{1}{c}\right]$, как композиции непрерывных функций;
- (2).

$$\begin{cases} \lim_{t \to +0} f_1(t) = \lim_{t \to +0} f\left(\frac{1}{t}\right) = 0, \\ \lim_{t \to +0} g_1(t) = \lim_{t \to +0} g\left(\frac{1}{t}\right) = 0; \end{cases}$$

(3). Существуют конечные производные $f_1'(t)$ и $g_1'(t)$ на $\left(0, \frac{1}{c}\right]$:

$$f_1'(t) = \left[f\left(\frac{1}{t}\right) \right]_t' = f'\left(\frac{1}{t}\right) \left(-\frac{1}{t^2}\right),$$

$$g_1'(t) = \left[g\left(\frac{1}{t}\right)\right]_t' = g'\left(\frac{1}{t}\right)\left(-\frac{1}{t^2}\right),$$

причем $g_1'(t) \neq 0$.

(4). Существуют конечны или бесконечный предел

$$\lim_{t \to +0} \frac{f_1'(t)}{g_1'(t)} = \lim_{t \to +0} \frac{f'\left(\frac{1}{t}\right)\left(-\frac{1}{t^2}\right)}{g'\left(\frac{1}{t}\right)\left(-\frac{1}{t^2}\right)} = \lim_{t \to +0} \frac{f'\left(\frac{1}{t}\right)}{g'\left(\frac{1}{t}\right)} = K.$$

Тогда по теореме 2.8.3 существует предел

$$\lim_{t \to +0} \frac{f_1(t)}{g_1(t)} = \lim_{t \to +0} \frac{f_1'(t)}{g_1'(t)} = K. \tag{2.8.4}$$

Возвращаясь к переменной x, получаем

$$\lim_{x \to +\infty} \frac{f(x)}{g(x)} = \lim_{x \to +\infty} \frac{f'(x)}{g'(x)} = K.$$

Пример 2.8.10. Найдем предел

$$\lim_{x \to +\infty} \frac{\pi - 2 \arctan x}{\ln \left(1 + \frac{1}{x}\right)} = \left| \frac{0}{0} \right| = \lim_{x \to +\infty} \frac{-\frac{2}{1 + x^2}}{\frac{1}{1 + \frac{1}{x}} \left(-\frac{1}{x^2}\right)} = \lim_{x \to +\infty} \frac{2x^2}{1 + x^2} \frac{x + 1}{x} = 2.$$

2.8.2 Неопределенность вида $\frac{\infty}{\infty}$.

Теорема 2.8.11. Пусть функции f(x) и g(x)

- 1). Определены на полуинтервале (a, b];
- 2).

$$\begin{cases} \lim_{x \to a+0} f(x) = +\infty, \\ \lim_{x \to a+0} g(x) = +\infty, \end{cases}$$

- 3). Существуют конечные производные f'(x) и g'(x) на (a,b], причем $g'(x) \neq 0$.
- 4). Существуют конечны или бесконечный предел

$$\lim_{x \to a+0} \frac{f'(x)}{g'(x)} = K.$$

Тогда существует предел

$$\lim_{x \to a+0} \frac{f(x)}{g(x)} = \lim_{x \to a+0} \frac{f'(x)}{g'(x)} = K. \tag{2.8.5}$$

Замечание 2.8.12. Условие 2) теоремы 2.8.11 можно заменить на

$$\begin{cases} \lim_{x \to a+0} f(x) = \infty, \\ \lim_{x \to a+0} g(x) = \infty, \end{cases}$$

или

$$\left\{ \begin{array}{l} \lim\limits_{x\to a+0} f(x) = -\infty, \\ \lim\limits_{x\to a+0} g(x) = -\infty. \end{array} \right.$$

Теорема 2.8.13. Пусть функции f(x) и g(x)

- 1). Определены на луче $[c,+\infty)$, где c>0 ;
- 2).

$$\begin{cases} \lim_{x \to +\infty} f(x) = +\infty, \\ \lim_{x \to +\infty} g(x) = +\infty, \end{cases}$$

- 3). Существуют конечные производные f'(x) и g'(x) на $[c, +\infty)$, причем $g'(x) \neq 0$.
- 4). Существуют конечный или бесконечный предел

$$\lim_{x \to +\infty} \frac{f'(x)}{g'(x)} = K.$$

Тогда существует предел

$$\lim_{x \to +\infty} \frac{f(x)}{g(x)} = \lim_{x \to +\infty} \frac{f'(x)}{g'(x)} = K. \tag{2.8.6}$$

Замечание 2.8.14. Условие 2) теоремы 2.8.13 можно заменить на

$$\begin{cases} \lim_{x \to +\infty} f(x) = \infty, \\ \lim_{x \to +\infty} g(x) = \infty, \end{cases}$$

или

$$\begin{cases} \lim_{x \to +\infty} f(x) = -\infty, \\ \lim_{x \to +\infty} g(x) = -\infty, \end{cases}$$

или аналогичными условиями.

Пример 2.8.15. Для положительного $\mu > 0$ найдем предел

$$\lim_{x \to +\infty} \frac{\ln x}{x^{\mu}} = \left| \frac{\infty}{\infty} \right| = \lim_{x \to +\infty} \frac{\frac{1}{x}}{\mu x^{\mu - 1}} =$$

$$= \lim_{x \to +\infty} \frac{1}{\mu x^{\mu}} = 0.$$

Замечание 2.8.16. Нельзя утверждать, что если существует предел

$$\lim_{x \to +\infty} \frac{f(x)}{g(x)},$$

то существует и предел

$$\lim_{x \to +\infty} \frac{f'(x)}{g'(x)}.$$

Пример 2.8.17. Рассмотрим предел

$$\lim_{x \to +\infty} \frac{x + \sin x}{x} = \left| \frac{\infty}{\infty} \right| = \lim_{x \to +\infty} \left(1 + \frac{\sin x}{x} \right) = 1$$

С другой стороны, предел

$$\lim_{x \to +\infty} \frac{(x + \sin x)'}{(x)'} = \lim_{x \to +\infty} (1 + \cos x)$$

не существует.

2.8.3 Другие виды неопределенности.

В этом параграфе мы изучим другие виды неопределенности, которые сводятся к рассмотренным выше.

4.8.3.1. Неопределенность вида $0 \cdot \infty$.

Пусть функции f(x) и g(x) определены непрерывны и дифференцируемы на полуинтервале (a,b] и

$$\begin{cases} \lim_{x \to a+0} f(x) = 0, \\ \lim_{x \to a+0} g(x) = +\infty. \end{cases}$$

Тогда произведение этих функция $f(x) \cdot g(x)$ может быть представлено в виде:

$$f(x) \cdot g(x) = \frac{f(x)}{\frac{1}{g(x)}} = \frac{g(x)}{\frac{1}{f(x)}}.$$

Таким образом, мы имеем следующее "условное" равенство:

$$|0 \cdot \infty| = \left| \frac{0}{0} \right| = \left| \frac{\infty}{\infty} \right|.$$

Пример 2.8.18. Найдем предел

$$\lim_{x \to +0} [x^n \cdot \ln x] = |0 \cdot \infty| = \lim_{x \to +0} \frac{\ln x}{x^{-n}} = \left| \frac{\infty}{\infty} \right| = \lim_{x \to +0} \frac{1}{-nx^{-n}} = -\lim_{x \to +0} \frac{x^n}{n} = 0.$$

4.8.3.2. Неопределенность вида $\infty - \infty$.

Пусть функции f(x) и g(x) определены непрерывны и дифференцируемы на полуинтервале (a,b] и

$$\begin{cases} \lim_{x \to a+0} f(x) = +\infty, \\ \lim_{x \to a+0} g(x) = +\infty. \end{cases}$$

Тогда разность этих функция f(x) - g(x) может быть представлено в виде:

$$f(x) - g(x) = \frac{1}{\frac{1}{f(x)}} - \frac{1}{\frac{1}{g(x)}} = \frac{\frac{1}{g(x)} - \frac{1}{f(x)}}{\frac{1}{f(x)} \frac{1}{g(x)}}.$$

Таким образом, мы имеем следующее "условное" равенство:

$$\left|\infty - \infty\right| = \left|\frac{0}{0}\right|.$$

Пример 2.8.19. Найдем предел

$$\lim_{x \to +0} \left(\frac{1}{x^2} - \operatorname{ctg}^2 x \right) = |\infty - \infty| = \lim_{x \to +0} \left(\frac{1}{x^2} - \frac{\cos^2 x}{\sin^2 x} \right) = \lim_{x \to +0} \frac{\sin^2 x - x^2 \cos^2 x}{x^2 \sin^2 x} = \left| \frac{0}{0} \right| = \lim_{x \to +\infty} \left(\frac{1}{x^2} - \frac{\cos^2 x}{\sin^2 x} \right) = \lim_{x \to +\infty} \left(\frac{1}{x^2} - \frac{\cos^2 x}{\sin^2 x} \right) = \lim_{x \to +\infty} \left(\frac{1}{x^2} - \frac{\cos^2 x}{\sin^2 x} \right) = \lim_{x \to +\infty} \left(\frac{1}{x^2} - \frac{\cos^2 x}{\sin^2 x} \right) = \lim_{x \to +\infty} \left(\frac{1}{x^2} - \frac{\cos^2 x}{\sin^2 x} \right) = \lim_{x \to +\infty} \left(\frac{1}{x^2} - \frac{\cos^2 x}{\sin^2 x} \right) = \lim_{x \to +\infty} \left(\frac{1}{x^2} - \frac{\cos^2 x}{\sin^2 x} \right) = \lim_{x \to +\infty} \left(\frac{1}{x^2} - \frac{\cos^2 x}{\sin^2 x} \right) = \lim_{x \to +\infty} \left(\frac{1}{x^2} - \frac{\cos^2 x}{\sin^2 x} \right) = \lim_{x \to +\infty} \left(\frac{1}{x^2} - \frac{\cos^2 x}{\sin^2 x} \right) = \lim_{x \to +\infty} \left(\frac{1}{x^2} - \frac{\cos^2 x}{\sin^2 x} \right) = \lim_{x \to +\infty} \left(\frac{1}{x^2} - \frac{\cos^2 x}{\sin^2 x} \right) = \lim_{x \to +\infty} \left(\frac{1}{x^2} - \frac{\cos^2 x}{\sin^2 x} \right) = \lim_{x \to +\infty} \left(\frac{1}{x^2} - \frac{\cos^2 x}{\sin^2 x} \right) = \lim_{x \to +\infty} \left(\frac{1}{x^2} - \frac{\cos^2 x}{\sin^2 x} \right) = \lim_{x \to +\infty} \left(\frac{1}{x^2} - \frac{\cos^2 x}{\sin^2 x} \right) = \lim_{x \to +\infty} \left(\frac{1}{x^2} - \frac{\cos^2 x}{\sin^2 x} \right) = \lim_{x \to +\infty} \left(\frac{1}{x^2} - \frac{\cos^2 x}{\sin^2 x} \right) = \lim_{x \to +\infty} \left(\frac{1}{x^2} - \frac{\cos^2 x}{\sin^2 x} \right) = \lim_{x \to +\infty} \left(\frac{1}{x^2} - \frac{\cos^2 x}{\sin^2 x} \right) = \lim_{x \to +\infty} \left(\frac{1}{x^2} - \frac{\cos^2 x}{\sin^2 x} \right) = \lim_{x \to +\infty} \left(\frac{1}{x^2} - \frac{\cos^2 x}{\sin^2 x} \right) = \lim_{x \to +\infty} \left(\frac{1}{x^2} - \frac{\cos^2 x}{\sin^2 x} \right) = \lim_{x \to +\infty} \left(\frac{1}{x^2} - \frac{\cos^2 x}{\sin^2 x} \right) = \lim_{x \to +\infty} \left(\frac{1}{x^2} - \frac{\cos^2 x}{\sin^2 x} \right) = \lim_{x \to +\infty} \left(\frac{1}{x^2} - \frac{\cos^2 x}{\sin^2 x} \right) = \lim_{x \to +\infty} \left(\frac{1}{x^2} - \frac{\cos^2 x}{\sin^2 x} \right) = \lim_{x \to +\infty} \left(\frac{1}{x^2} - \frac{\cos^2 x}{\sin^2 x} \right) = \lim_{x \to +\infty} \left(\frac{1}{x^2} - \frac{\cos^2 x}{\sin^2 x} \right) = \lim_{x \to +\infty} \left(\frac{1}{x^2} - \frac{\cos^2 x}{\sin^2 x} \right) = \lim_{x \to +\infty} \left(\frac{1}{x^2} - \frac{\cos^2 x}{\sin^2 x} \right) = \lim_{x \to +\infty} \left(\frac{1}{x^2} - \frac{\cos^2 x}{\sin^2 x} \right) = \lim_{x \to +\infty} \left(\frac{1}{x^2} - \frac{\cos^2 x}{\sin^2 x} \right) = \lim_{x \to +\infty} \left(\frac{1}{x^2} - \frac{\cos^2 x}{\sin^2 x} \right) = \lim_{x \to +\infty} \left(\frac{1}{x^2} - \frac{\cos^2 x}{\sin^2 x} \right) = \lim_{x \to +\infty} \left(\frac{1}{x^2} - \frac{\cos^2 x}{\sin^2 x} \right) = \lim_{x \to +\infty} \left(\frac{1}{x^2} - \frac{\cos^2 x}{\sin^2 x} \right) = \lim_{x \to +\infty} \left(\frac{1}{x^2} - \frac{\cos^2 x}{\sin^2 x} \right) = \lim_{x \to +\infty} \left(\frac{1}{x^2} - \frac{\cos^2 x}{\sin^2 x} \right) = \lim_{x \to +\infty} \left(\frac{1}{x^2} - \frac{\cos^2 x}{\sin^2 x} \right) = \lim_{x$$

$$=\lim_{x\to +0}\frac{(\sin x-x\cos x)(\sin x+x\cos x)}{x^2\sin^2 x}=\lim_{x\to +0}\frac{\sin x-x\cos x}{x\sin^2 x}\cdot\lim_{x\to +0}\frac{\sin x+x\cos x}{x}.$$

Вычислим каждый из пределов, стоящих в правой части последнего равенства.

$$\lim_{x \to +0} \frac{\sin x + x \cos x}{x} = \lim_{x \to +0} \left(\frac{\sin x}{x} + \cos x \right) = 2.$$

Далее,

$$\lim_{x\to +0}\frac{\sin x-x\cos x}{x\sin^2 x}=\left|\frac{0}{0}\right|=\lim_{x\to +0}\frac{\cos x-\cos x+x\sin x}{\sin^2 x+x\cdot 2\sin x\cos x}=\lim_{x\to +0}\frac{x\sin x}{\sin x(\sin x+2x\cos x)}=$$

$$= \lim_{x \to +0} \frac{x}{\sin x + 2x \cos x} = \left| \frac{0}{0} \right| = \lim_{x \to +0} \frac{1}{\cos x + 2 \cos x - 2x \sin x} = \frac{1}{3}.$$

Следовательно,

$$\lim_{x \to +0} \left(\frac{1}{x^2} - \operatorname{ctg}^2 x \right) = \frac{2}{3}.$$

4.8.3.3. Неопределенности вида ∞^0 , 0^0 и 1^∞ .

Неопределенности вида ∞^0 , 0^0 и 1^∞ можно раскрыть с помощью правила Лопиталя, предварительно прологарифмировав выражение.

1). Пусть функции f(x) и g(x) определены, непрерывны и дифференцируемы на полуинтервале (a,b] и

$$\begin{cases} \lim_{x \to a+0} f(x) = +\infty, \\ \lim_{x \to a+0} g(x) = 0. \end{cases}$$

Тогда выражение

$$f(x)^{g(x)}$$

представляет собой неопределенность вида $|\infty^0|$. Логарифмируя это выражение, получаем:

$$\ln f(x)^{g(x)} = g(x) \ln f(x).$$

Так как

$$\begin{cases} \lim_{x \to a+0} \ln f(x) = +\infty, \\ \lim_{x \to a+0} g(x) = 0, \end{cases}$$

то неопределенность вида $|\infty^0|$ сводится к неопределенности вида $|0\cdot\infty|$.

2). Пусть функции f(x) и g(x) определены, непрерывны и дифференцируемы на полуинтервале (a,b] и

$$\begin{cases} \lim_{x \to a+0} f(x) = 0, \\ \lim_{x \to a+0} g(x) = 0. \end{cases}$$

Тогда выражение

$$f(x)^{g(x)}$$

представляет собой неопределенность вида $|0^0|$. Логарифмируя это выражение, получаем:

$$\ln f(x)^{g(x)} = g(x) \ln f(x).$$

Так как

$$\begin{cases} \lim_{x \to a+0} \ln f(x) = -\infty, \\ \lim_{x \to a+0} g(x) = 0, \end{cases}$$

то неопределенность вида $|0^0|$ также сводится к неопределенности вида $|0\cdot\infty|.$

3). Пусть функции f(x) и g(x) определены, непрерывны и дифференцируемы на полуинтервале (a,b] и

$$\begin{cases} \lim_{x \to a+0} f(x) = 1, \\ \lim_{x \to a+0} g(x) = +\infty. \end{cases}$$

Тогда выражение

$$f(x)^{g(x)}$$

представляет собой неопределенность вида $|1^{\infty}|$. Логарифмируя это выражение, получаем:

$$\ln f(x)^{g(x)} = g(x) \ln f(x).$$

Так как

$$\begin{cases} \lim_{x \to a+0} \ln f(x) = 0, \\ \lim_{x \to a+0} g(x) = \infty, \end{cases}$$

то неопределенность вида $|1^{\infty}|$ также сводится к неопределенности вида $|0\cdot\infty|.$

Пример 2.8.20. Найдем предел функции

$$y = \left\lceil \frac{\sin x}{x} \right\rceil \frac{1}{1 - \cos x}$$

при $x \to +0$:

$$\lim_{x \to +0} \left[\frac{\sin x}{x} \right] \frac{1}{1 - \cos x} .$$

Так как

$$\begin{cases} \lim_{x \to +0} \ln f(x) = \lim_{x \to +0} \frac{\sin x}{x} = 1, \\ \lim_{x \to +0} g(x) = \lim_{x \to +0} \frac{1}{1 - \cos x} = +\infty, \end{cases}$$

Этот предел представляет собой неопределенность вида $|1^{\infty}|$. Логарифмируя это выражение, получаем:

$$\ln y = \ln \left[\frac{\sin x}{x} \right]^{\frac{1}{1 - \cos x}} = \frac{1}{1 - \cos x} \ln \frac{\sin x}{x} = \frac{\ln \frac{\sin x}{x}}{1 - \cos x}.$$

Следовательно,

$$\lim_{x \to +0} \ln y = \lim_{x \to +0} \frac{\ln \frac{\sin x}{x}}{1 - \cos x} = \left| \frac{0}{0} \right| = \lim_{x \to +0} \frac{\left[\ln \frac{\sin x}{x} \right]'}{(1 - \cos x)'} = \lim_{x \to +0} \frac{\left[\ln \sin x - \ln x \right]'}{(1 - \cos x)'} =$$

$$= \lim_{x \to +0} \frac{\frac{\cos x}{\sin x} - \frac{1}{x}}{\sin x} = \lim_{x \to +0} \frac{x \cos x - \sin x}{x \sin^2 x} = \left| \frac{0}{0} \right| = \lim_{x \to +0} \frac{\cos x - x \sin x - \cos x}{\sin^2 x + 2x \sin x \cos x} =$$

$$= \lim_{x \to +0} \frac{-x \sin x}{\sin x (\sin x + 2x \cos x)} = -\lim_{x \to +0} \frac{x}{\sin x + 2x \cos x} =$$

$$= -\lim_{x \to +0} \frac{1}{\frac{\sin x}{x} + 2 \cos x} = -\frac{1}{3}.$$

Наконец,

$$\lim_{x \to +0} y = \lim_{x \to +0} \left[\frac{\sin x}{x} \right]^{\frac{1}{1 - \cos x}} = e^{-\frac{1}{3}} = \frac{1}{\sqrt[3]{e}}.$$

2.9 Формула Тейлора.

2.9.1 Формула Тейлора для многочлена.

Рассмотрим целый многочлен степени n

$$P(x) = a_0 + a_1 x + a_2 x^2 + \dots + a_n x^n.$$

Рассмотрим производные $P^{(k)}(x), \quad k = \overline{1, n}$:

$$P'(x) = a_1 + 2a_2x + \dots + na_nx^{n-1},$$

$$P''(x) = 2a_2 + 2 \cdot 3 \cdot a_3x + \dots + n(n-1)a_nx^{n-2},$$

$$\dots \dots \dots$$

$$P^{(n)}(x) = n(n-1)\dots 1 \cdot a_n.$$

Полагая во всех этих формулах x=0, найдем выражения коэффициентов этого многочлена через значения этого многочлена и его производных при x=0:

$$a_0 = P(0),$$

$$a_1 = \frac{P'(0)}{1!},$$

$$a_2 = \frac{P''(0)}{2!},$$

$$\dots$$

$$a_n = \frac{P^{(n)}(0)}{n!}.$$

Подставляя эти значения коэффициентов в формулу многочлена, получим:

$$P(x) = P(0) + \frac{P'(0)}{1!}x + \frac{P''(0)}{2!}x^2 + \dots + \frac{P^{(n)}(0)}{n!}x^n.$$

Мы получили формулу Маклорена для многочлена P(x).

Можно было с самого начала рассматривать разложение многочлена P(x) по степеням $x-x_0$, где x_0 — некоторое постоянное значение:

$$P(x) = A_0 + A_1(x - x_0) + A_2(x - x_0)^2 + \dots + A_n(x - x_0)^n.$$

Полагая
$$x-x_0=t$$
, а $P(x)=P(t+x_0)=\mathbf{P}(t)$, получим
$$\mathbf{P}(t)=A_0+A_1t+A_2t^2+\ldots+A_nt^n.$$

Выше было доказано, что

$$A_0 = \mathbf{P}(0), \quad A_1 = \frac{\mathbf{P}'(0)}{1!}, \quad A_2 = \frac{\mathbf{P}''(0)}{2!}, \dots, A_n = \frac{\mathbf{P}''(0)}{n!}.$$

По определению $\mathbf{P}(t)$, имеем

$$\mathbf{P}(0) = P(x_0), \ \mathbf{P}'(0) = P'(x_0), \dots, \mathbf{P}^{(n)}(0) = P^{(n)}(x_0)$$

Следовательно

$$A_0 = P(x_0), \quad A_1 = \frac{P'(x_0)}{1!}, \quad A_2 = \frac{P''(x_0)}{2!}, \dots, A_n = \frac{P^{(n)}(x_0)}{n!}.$$

Подставив выражение для A_k в выражение для многочлена, получим

$$P(x) = P(x_0) + \frac{P'(x_0)}{1!}(x - x_0) + \frac{P''(x_0)}{2!}(x - x_0)^2 + \ldots + \frac{P^{(n)}(x_0)}{n!}(x - x_0)^n.$$

Полученная формула называется формулой Тейлора для многочлена.

Замечание 2.9.1. Если многочлен P(x) представлен в виде

$$P(x) = C_0 + \frac{C_1}{1!}(x - x_0) + \frac{C_2}{2!}(x - x_0)^2 + \dots + \frac{C_n}{n!}(x - x_0)^n,$$

ТО

$$P(x_0) = C_0, P'(x_0) = C_1, \dots, P^{(n)}(x_0) = C_n.$$

2.9.2 Разложение произвольной функции. Остаточный член в форме Пеано.

1). Пусть функция y=f(x) дифференцируема в точке x_0 и Δx некоторое приращение аргумента. Тогда соответствующее приращение функции представимо в виде:

$$\Delta y = f(x_0 + \Delta x) - f(x_0) = A\Delta x + \alpha(\Delta x)\Delta x = A\Delta x + o(\Delta x),$$

где

$$\Delta x = x - x_0,$$

$$y_0 = f(x_0),$$

$$A = f'(x_0).$$

Таким образом,

$$f(x) - f(x_0) = f'(x_0)(x - x_0) + o(x - x_0),$$

откуда

$$f(x) = f(x_0) + f'(x_0)(x - x_0) + o(x - x_0).$$

Обозначим:

$$P_1(x) = f(x_0) + f'(x_0)(x - x_0).$$

Тогда

$$f(x) = P_1(x) + o(x - x_0),$$
 (2.9.1)

причем

$$P_1(x_0) = y_0 = f(x_0)$$

И

$$P_1'(x_0) = A = f'(x_0).$$

2). Пусть теперь функция y = f(x) дифференцируема n раз в точке x_0 и $\Delta x = x - x_0$ некоторое приращение аргумента. Выясним, можно ли представить функцию f(x) в виде:

$$f(x) = P_n(x) + o((x - x_0)^n),$$
 (2.9.2)

где

$$P_n(x) = A_0 + A_1(x - x_0) + A_2(x - x_0)^2 + \ldots + A_n(x - x_0)^n,$$

причем

$$\begin{cases}
f(x_0) = A_0 = P_n(x_0), \\
f'(x_0) = P'_n(x_0), \\
\dots \\
f^{(n)}(x_0) = P_n^{(n)}(x_0).
\end{cases} (2.9.3)$$

Рассмотрим многочлен

$$P_n(x) = f(x_0) + \frac{f'(x_0)}{1!}(x - x_0) + \frac{f''(x_0)}{2!}(x - x_0)^2 + \dots + \frac{f^{(n)}(x_0)}{n!}(x - x_0)^n,$$

и покажем, что он удовлетворяет поставленной задаче.

Рассмотрим разность

$$r(x) = f(x) - P_n(x)$$
. (2.9.4)

Ясно, что функция r(x) n раз дифференцируема в точке x_0 . По построению многочлена $P_n(x)$, имеют место равенства:

$$\begin{cases} r(x_0) = 0, \\ r'(x_0) = 0, \\ r''(x_0) = 0, \\ \dots \\ r^{(n)}(x_0) = 0. \end{cases}$$
 (2.9.5)

Утверждение 2.9.2. Пусть функция r(x) n раз дифференцируема в точке x_0 и выполняются равенства:

$$\begin{cases} r(x_0) = 0, \\ r'(x_0) = 0, \\ r''(x_0) = 0, \\ \dots \\ r^{(n)}(x_0) = 0. \end{cases}$$
 (2.9.6)

Тогда

$$r(x) = o((x - x_0)^n),$$
 (2.9.7)

m.e.

$$\lim_{x \to x_0} \frac{r(x)}{(x - x_0)^n} = 0.$$

Доказательство. Докажем это утверждение методом математической индукции.

1). Проверим, что при n=1 утверждение верно.

Пусть функция r(x) дифференцируема в точке x_0 и выполняются равенства:

$$\begin{cases} r(x_0) = 0, \\ r'(x_0) = 0. \end{cases}$$
 (2.9.8)

Тогда

$$\lim_{x \to x_0} \frac{r(x)}{x - x_0} = \lim_{x \to x_0} \frac{r(x) - r(x_0)}{x - x_0} = r'(x_0) = 0.$$

Следовательно,

$$r(x) = o(x - x_0)$$
. (2.9.9)

2). Предположим, что при n=k утверждение верно, т.е. если функция r(x) k раз дифференцируема в точке x_0 и выполняются равенства:

$$\begin{cases} r(x_0) = 0, \\ r'(x_0) = 0, \\ \dots \\ r^{(k)}(x_0) = 0. \end{cases}$$
 (2.9.10)

TO

$$r(x) = o((x - x_0)^k),$$
 (2.9.11)

т.е.

$$\lim_{x \to x_0} \frac{r(x)}{(x - x_0)^k} = 0.$$

3).Докажем, что при n=k+1 утверждение тоже верно, т.е. если функция r(x) (k+1) раз дифференцируема в точке x_0 и выполняются равенства:

$$\begin{cases}
 r(x_0) = 0, \\
 r'(x_0) = 0, \\
 \dots \\
 r^{(k)}(x_0) = 0 \\
 r^{(k+1)}(x_0) = 0.
\end{cases}$$
(2.9.12)

TO

$$r(x) = o((x - x_0)^{k+1}),$$
 (2.9.13)

т.е.

$$\lim_{x \to x_0} \frac{r(x)}{(x - x_0)^{k+1}} = 0.$$

Рассмотрим функцию

$$r_1(x) = r'(x).$$

Эта функция $r_1(x)$ k раз дифференцируема в точке x_0 и, в силу (2.9.12), выполняются равенства:

$$\begin{cases}
 r_1(x_0) = 0, \\
 r'_1(x_0) = 0, \\
 \vdots \\
 r_1^{(k)}(x_0) = 0.
\end{cases} (2.9.14)$$

Поэтому, в силу предположения пункта 2),

$$r_1(x) = o((x - x_0)^k),$$
 (2.9.15)

т.е.

$$\lim_{x \to x_0} \frac{r_1(x)}{(x - x_0)^k} = \lim_{x \to x_0} \frac{r'(x)}{(x - x_0)^k} = 0.$$
 (2.9.16)

Функция r(x) на отрезке $[x_0, x]$ (или на отрезке $[x, x_0]$) удовлетворяет теореме Лагранжа. Поэтому существует такая точка $c \in [x_0, x]$ (или $c \in [x, x_0]$), что

$$r(x) = r(x) - r(x_0) = r'(c)(x - x_0).$$

Тогда имеем:

$$\lim_{x \to x_0} \frac{r(x)}{(x - x_0)^{k+1}} = \lim_{x \to x_0} \frac{r(x) - r(x_0)}{(x - x_0)^{k+1}} = \lim_{x \to x_0} \frac{r'(x)}{(x - x_0)^k} =$$

$$= \lim_{x \to x_0} \frac{r'(c)(x - x_0)}{(x - x_0)^{k+1}} = \lim_{x \to x_0} \frac{r'(c)}{(x - x_0)^k} = \lim_{x \to x_0} \frac{r'(c)}{(c - x_0)^k} \frac{(c - x_0)^k}{(x - x_0)^k} = 0,$$

так как из $x \to x_0$ следует, что $c \to x_0$, и потому, в силу (2.9.16),

$$\lim_{c \to x_0} \frac{r'(c)}{(c - x_0)^k} = 0,$$

в то время как

$$\left| \frac{(c-x_0)^k}{(x-x_0)^k} \right| = \left| \frac{c-x_0}{x-x_0} \right|^k \le 1$$

Поэтому,

$$r(x) = o((x - x_0)^{k+1})$$
 (2.9.17)

Таким образом, мы доказали что если функция r(x) n раз дифференцируема в точке x_0 и выполняются равенства (2.9.6), то

$$r(x) = o((x - x_0)^n)$$
. (2.9.18)

Возвращаясь к функции

$$r(x) = f(x) - P_n(x),$$

мы видим. что она удовлетворяет условия утверждения 2.9.2. Поэтому

$$r(x) = f(x) - P_n(x) = o((x - x_0)^n),$$

Откуда

$$f(x) = P_n(x) + o((x - x_0)^n)$$
 (2.9.19)

Определение 2.9.3. Формула

$$f(x) = P_n(x) + o((x - x_0)^n)$$

$$= f(x_0) + \frac{f'(x_0)}{1!}(x - x_0) + \frac{f''(x_0)}{2!}(x - x_0)^2 + \dots + \frac{f^{(n)}(x_0)}{n!}(x - x_0)^n + o((x - x_0)^n)$$

называется формулой Тейлора функции f(x) с остаточным членом

$$r(x) = o((x - x_0)^n)$$

в форме Пеано.

Замечание 2.9.4. • Так как

$$f(x) = P_n(x) + r(x)$$

И

$$r(x) = o((x - x_0)^n),$$

то говорят, что многочлен $P_n(x)$ дает приближение функции f(x) с точностью $(x-x_0)^n$.

• Если

$$f(x) = A_0 + A_1(x - x_0) + A_2(x - x_0)^2 + \ldots + A_n(x - x_0)^n + o((x - x_0)^n)$$

другое представление функции f(x), То обязательно выполняются равенства

$$\begin{cases} A_0 = f(x_0), \\ A_1 = \frac{f'(x_0)}{1!}, \\ \dots \\ A_n = \frac{f^{(n)}(x_0)}{n!}, \end{cases}$$

т.е. представление функции f(x) по формуле Тейлора однозначно.

• Так как

$$r(x) = o((x - x_0)^n),$$

то этот остаточный член можно представить в виде

$$r(x) = \frac{\alpha(x)}{n!} (x - x_0)^n,$$

где

$$\lim_{x \to x_0} \alpha(x) = 0.$$

Подставляя это выражение в формулу Тейлора, получаем

$$f(x) = f(x_0) + \frac{f'(x_0)}{1!}(x - x_0) + \frac{f''(x_0)}{2!}(x - x_0)^2 + \ldots + \frac{f^{(n)}(x_0) + \alpha(x)}{n!}(x - x_0)^n.$$

• Полагая в формуле Тейлора

$$x - x_0 = \Delta x$$

получаем

$$f(x) = f(x_0) + \frac{f'(x_0)}{1!} \Delta x + \frac{f''(x_0)}{2!} (\Delta x)^2 + \dots + \frac{f^{(n)}(x_0)}{n!} (\Delta x)^n + o((\Delta x)^n).$$

• Используя выражения для дифференциалов высших порядков, получаем

$$\Delta f(x_0) = \frac{1}{1!} df(x_0) + \frac{1}{2!} d^2 f(x_0) + \ldots + \frac{1}{n!} d^n f(x_0) + o((\Delta x)^n).$$

ullet Если в формуле Тейлора для функции f(x) точка $x_0=0$, то получаем

$$f(x) = f(0) + \frac{f'(0)}{1!}x + \frac{f''(0)}{2!}x^2 + \dots + \frac{f^{(n)}(0)}{n!}x^n + o(x^n)$$

Эта формула называется формулой Маклорена.

2.9.3 Примеры разложения элементарных функций по формуле Тейлора.

Рассмотрим примеры разложения элементарных функций по формуле Тейлора.

Пример 2.9.5. Рассмотрим функцию

$$y = e^x$$

и разложим ее по формуле по формуле Маклорена, т.е. при $x_0=0$.

Так как

$$f^{(k)}(x) = (e^x)^{(k)} = e^x, \quad k = 1, 2, \dots,$$

ТО

$$\begin{cases} f(0) = e^{0} = 1, \\ f'(0) = e^{0} = 1, \\ \dots \\ f^{(n)}(0) = e^{0} = 1. \end{cases}$$

Поэтому

$$e^x = 1 + \frac{x}{1!} + \frac{x^2}{2!} + \dots + \frac{x^n}{n!} + o(x^n)$$

Пример 2.9.6. Рассмотрим функцию

$$f(x) = \sin x$$

и разложим ее по формуле по формуле Маклорена, т.е. при $x_0=0$. Так как

$$f^{(k)}(x) = (\sin x)^{(k)} = \sin\left(x + \frac{\pi k}{2}\right), \quad k = 1, 2, \dots,$$

то при k = 2m, $m = 1, 2, \dots$ имеем:

$$f^{(2m)}(0) = \sin\left(\frac{2\pi m}{2}\right) = \sin(\pi m) = 0,$$

а при k = 2m - 1, $m = 1, 2, \dots$ имеем:

$$f^{(2m-1)}(0) = \sin\left(\frac{\pi(2m-1)}{2}\right) = \sin\left(\pi m - \frac{\pi}{2}\right) = -\sin\left(\frac{\pi}{2} - \pi m\right) =$$
$$= -\cos(\pi m) = -(-1)^m = (-1)^{m-1}.$$

Поэтому, полагая n=2m-1, получим

$$\sin x = x - \frac{x^3}{3!} + \frac{x^5}{5!} + \dots + (-1)^{m-1} \frac{x^{2m-1}}{(2m-1)!} + o(x^{2m-1}).$$

Так как

$$f^{(2m)}(0) = 0,$$

то эту формулу можно уточнить:

$$\sin x = x - \frac{x^3}{3!} + \frac{x^5}{5!} + \dots + (-1)^{m-1} \frac{x^{2m-1}}{(2m-1)!} + o(x^{2m}).$$

Пример 2.9.7. Рассмотрим функцию

$$f(x) = \cos x$$

и разложим ее по формуле по формуле Маклорена, т.е. при $x_0=0$. Так как

$$f^{(k)}(x) = (\cos x)^{(k)} = \cos\left(x + \frac{\pi k}{2}\right), \quad k = 1, 2, \dots,$$

то при $k = 2m, \quad m = 1, 2, \dots$ имеем:

$$f^{(2m)}(0) = \cos\left(\frac{2\pi m}{2}\right) = \cos(\pi m) = (-1)^m,$$

а при k = 2m - 1, $m = 1, 2, \dots$ имеем:

$$f^{(2m-1)}(0) = \cos\left(\frac{\pi(2m-1)}{2}\right) = \cos\left(\pi m - \frac{\pi}{2}\right) = \cos\left(\frac{\pi}{2} - \pi m\right) =$$

$$=\sin(\pi m)=0.$$

Поэтому, полагая n = 2m, получим

$$\cos x = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} + \dots + (-1)^m \frac{x^{2m}}{(2m)!} + o(x^{2m}).$$

Так как

$$f^{(2m+1)}(0) = 0,$$

то эту формулу можно уточнить:

$$\cos x = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} + \dots + (-1)^m \frac{x^{2m}}{(2m)!} + o(x^{2m+1})$$

Пример 2.9.8. Рассмотрим функцию

$$f(x) = (1+x)^{\mu}, \quad \mu \neq 0, \quad \mu \notin \mathbb{N}.$$

и разложим ее по формуле по формуле Маклорена, т.е. при $x_0=0$. Так как

$$f^{(k)}(x) = ((1+x)^{\mu})^{(k)} = \mu(\mu-1)\cdots(\mu-k+1)(1+x)^{\mu-k}, \quad k=1,2,\ldots,$$

ТО

$$\begin{cases}
f(0) = 1, \\
f'(0) = \mu, \\
f''(0) = \mu(\mu - 1), \\
\dots \\
f^{(n)}(0) = \mu(\mu - 1) \cdots (\mu - n + 1).
\end{cases}$$

Поэтому

$$(1+x)^{\mu} = 1 + \mu x + \frac{\mu(\mu-1)}{2!}x^2 + \frac{\mu(\mu-1)(\mu-2)}{3!}x^3 + \dots +$$

$$+\frac{\mu(\mu-1)\cdots(\mu-n+1)}{n!}x^n+o(x^n).$$

Рассмотрим несколько частных случаев при n=2.

1). Пусть
$$\mu = -1$$
. Тогда

$$f(x) = \frac{1}{1+x}.$$

Так как

$$\begin{cases} f(0) = 1, \\ f'(0) = -1, \\ f''(0) = -1(-1 - 1) = 2, \end{cases}$$

ТО

$$\frac{1}{1+x} = 1 - x + \frac{2}{2!}x^2 + o(x^2),$$

т.е.

$$\boxed{\frac{1}{1+x} = 1 - x + x^2 + o(x^2)}.$$

2). Пусть
$$\mu = \frac{1}{2}$$
. Тогда

$$f(x) = \sqrt{1+x}$$

Так как

$$\begin{cases} f(0) = 1, \\ f'(0) = \frac{1}{2}, \\ f''(0) = \frac{1}{2} \left(\frac{1}{2} - 1\right) = -\frac{1}{4}, \end{cases}$$

ТО

$$\sqrt{1+x} = 1 + \frac{1}{2}x - \frac{\frac{1}{4}}{2!}x^2 + o(x^2),$$

т.е.

$$\sqrt{1+x} = 1 + \frac{1}{2}x - \frac{1}{8}x^2 + o(x^2)$$

3). Пусть
$$\boxed{\mu=-\frac{1}{2}}$$
. Тогда

$$f(x) = \frac{1}{\sqrt{1+x}}.$$

$$\begin{cases} f(0) = 1, \\ f'(0) = -\frac{1}{2}, \\ f''(0) = -\frac{1}{2} \left(-\frac{1}{2} - 1 \right) = \frac{3}{4}, \end{cases}$$

TO

$$\frac{1}{\sqrt{1+x}} = 1 - \frac{1}{2}x + -\frac{\frac{3}{4}}{2!}x^2 + o(x^2),$$

т.е.

$$\boxed{\frac{1}{\sqrt{1+x}} = 1 - \frac{1}{2}x + \frac{3}{8}x^2 + o(x^2)}.$$

Пример 2.9.9. Рассмотрим функцию

$$f(x) = \ln(1+x)$$

и разложим ее по формуле по формуле Маклорена, т.е. при $x_0=0$.

Так как

$$f'(x) = \frac{1}{1+x}$$

И

$$\left(\frac{1}{1+x}\right)^{(k)} = \frac{(-1)^k k!}{(1+x)^{k+1}}.$$

ТО

$$f^{(k)}(x) = \left(\frac{1}{1+x}\right)^{(k-1)} = \frac{(-1)^{k-1}(k-1)!}{(1+x)^k}, \quad k = 1, 2, \dots$$

Поэтому

$$\begin{cases}
f(0) = \ln 1 = 0, \\
f'(0) = 1, \\
f''(0) = -1, \\
f'''(0) = 2, \\
\dots \\
f^{(n)}(0) = (-1)^{n-1}(n-1)!.
\end{cases}$$

Поэтому

$$\ln(1+x) = x - \frac{1}{2!}x^2 + \frac{2}{3!}x^3 + \dots + \frac{(-1)^{n-1}(n-1)!}{n!}x^n + o(x^n)$$

или

2.9.4 Другие формы остаточного члена.

Рассмотрим другие формы остаточного члена разложения функции f(x) по формуле Тейлора.

Будем предполагать, что функция f(x) е первые n производных

$$f'(x), f''(x), \ldots, f^{(n)}(x)$$

определены и непрерывны на отрезке $[x_0, x_0 + \delta]$, а в интервале $(x_0, x_0 + \delta)$, $\delta > 0$ существует и конечна n + 1-я производная $f^{n+1}(x)$.

Рассмотрим остаточный член разложения функции f(x) по формуле Тейлора

$$r_n(x) = f(x) - f(x_0) - \frac{f'(x_0)}{1!}(x - x_0) - \frac{f''(x_0)}{2!}(x - x_0)^2 - \dots - \frac{f^{(n)}(x_0)}{n!}(x - x_0)^n$$

Фиксируем теперь любое значение $x \in [x_0, x_0 + \delta]$ и на отрезке $[x_0, x]$ рассмотрим новую функцию

$$\varphi(z) = f(x) - f(z) - \frac{f'(z)}{1!}(x-z) - \frac{f''(z)}{2!}(x-z)^2 - \dots - \frac{f^{(n)}(z)}{n!}(x-z)^n.$$

(Функция $\varphi(z)$ отличается от $r_n(x)$ заменой x_0 на z. При этом точка x фиксирована).

Функция $\varphi(z)$ определена и непрерывна на отрезке $[x_0,x]$, причем

$$\varphi(x_0) = r_n(x)$$

И

$$\varphi(x) = 0$$

Кроме того, в интервале (x_0, x) существует конечная производная

$$\varphi'(z) = -f'(z) - \left[\frac{f''(z)}{1!} (x - z) - \frac{f'(z)}{1!} \right] -$$

$$-\left[\frac{f'''(z)}{2!}(x-z)^2 - \frac{f''(z)}{1!}(x-z)\right] -$$

$$-\left[\frac{f^{(4)}(z)}{3!}(x-z)^3 - \frac{f'''(z)}{2!}(x-z)^2\right] - \dots$$

$$-\left[\frac{f^{(n+1)}(z)}{n!}(x-z)^n - \frac{f^{(n)}(z)}{(n-1)!}(x-z)^{n-1}\right].$$

Следовательно,

$$\varphi'(z) = -\frac{f^{(n+1)}(z)}{n!}(x-z)^n.$$

Пусть теперь $[\psi(z)]$ — произвольная функция, определенная и непрерывная в отрезке $[x_0,x]$, и имеющая конечную не равную нулю производную $\psi'(z)$ в интервале (x_0,x) . Тогда к функциям $\varphi(z)$ и $\psi(z)$ применима теорема Коши. Т.е. существует такая точка $c \in (x_0,x)$, что выполняется равенство

$$\frac{\varphi(x) - \varphi(x_0)}{\psi(x) - \psi(x_0)} = \frac{\varphi'(c)}{\psi'(c)}.$$

Так как

$$\varphi(x_0) = r_n(x),$$
$$\varphi(x) = 0$$

И

$$\varphi'(c) = -\frac{f^{(n+1)}(c)}{n!}(x-c)^n.$$

то получаем, что

$$-r_n(x) = -\frac{\psi(x) - \psi(x_0)}{\psi'(c)} \frac{f^{(n+1)}(c)}{n!} (x - c)^n$$

и наконец

$$r_n(x) = \frac{\psi(x) - \psi(x_0)}{\psi'(c)} \frac{f^{(n+1)}(c)}{n!} (x - c)^n.$$

Подставляя в эту формулу любые удовлетворяющие условиям функции,мы получим различные формы остаточного члена формулы Тейлора.

1). Пусть $\psi(z) = (x-z)^p$, $p > 0, z \in [x_0, x]$. Найдем производную:

$$\psi'(z) = -p(x-z)^{p-1}.$$

Эта функция удовлетворяет необходимым требованиям. Кроме того

$$\psi(x) = (x - x)^p = 0$$

И

$$\psi(x_0) = (x - x_0)^p.$$

Поэтому подставляя эту функцию в формулу остаточного члена, получаем:

$$r_n(x) = \frac{-(x-x_0)^p}{-p(x-c)^{p-1}} \frac{f^{(n+1)}(c)}{n!} (x-c)^n,$$

ИЛИ

$$r_n(x) = \frac{f^{(n+1)}(c)}{n!p} (x-c)^{n+1-p} (x-x_0)^p.$$

Так как $c \in (x_0, x)$, о существует такое $\theta \in (0, 1)$, что

$$c = x_0 + \theta(x - x_0).$$

Поэтому

$$x - c = x - x_0 - \theta(x - x_0) = (1 - \theta)(x - x_0).$$

Таким образом

$$r_n(x) = \frac{f^{(n+1)}(x_0 + \theta(x - x_0))}{n!p} (1 - \theta)^{n+1-p} (x - x_0)^{n+1}.$$
 (2.9.20)

Выражение остаточного члена в виде (2.9.20) называется остаточным членом в форме Шлемильха-Роша.

2). Пусть
$$\psi(z) = (x-z)^{n+1}$$
, т.е. $p = n+1, z \in [x_0, x]$. В этом случае

$$r_n(x) = \frac{f^{(n+1)}(x_0 + \theta(x - x_0))}{n!(n+1)} (1 - \theta)^{n+1-(n+1)} (x - x_0)^{n+1},$$

т.е.

$$r_n(x) = \frac{f^{(n+1)}(x_0 + \theta(x - x_0))}{(n+1)!} (x - x_0)^{n+1} = \frac{f^{(n+1)}(c)}{(n+1)!} (x - x_0)^{n+1}.$$
(2.9.21)

Выражение остаточного члена в виде (2.9.21) называется остаточным членом в форме Лагранжа.

3). Пусть $\psi(z) = (x-z)$, т.е. $p=1, \ z \in [x_0,x]$. В этом случае

$$r_n(x) = \frac{f^{(n+1)}(x_0 + \theta(x - x_0))}{n! \cdot 1} (1 - \theta)^{n+1-1} (x - x_0)^{n+1},$$

т.е.

$$r_n(x) = \frac{f^{(n+1)}(x_0 + \theta(x - x_0))}{n!} (1 - \theta)^n (x - x_0)^{n+1}.$$
 (2.9.22)

Выражение остаточного члена в виде (2.9.22) называется остаточным членом в форме Komu.

2.9.5 Приближенные формулы.

Формула Тейлора используется для приближенного вычисления значений элементарных функций с заданной точностью. Рассмотрим например формулу Тейлора для функции f(x) с остаточным членом в форме Лагранжа, полагая для простоты $x_0=0$:

$$f(x) = f(0) + \frac{f'(0)}{1!}x + \frac{f''(0)}{2!}x^2 + \dots + \frac{f^{(n)}(0)}{n!}x^n + \frac{f^{(n+1)}(\theta x)}{(n+1)!}x^{n+1}.$$

Отбрасывая остаточный член, мы получаем приближенную формулу

$$f(x) \approx f(0) + \frac{f'(0)}{1!}x + \frac{f''(0)}{2!}x^2 + \dots + \frac{f^{(n)}(0)}{n!}x^n,$$

заменяющую функцию сложной природы целым многочленом.

Если n+1-я производная функции f(x) ограничена например на отрезке [0,x]:

$$|f^{(n+1)}(x)| \le M,$$

то погрешность приближенной формулы можно оценить:

$$\left| |r_n(x)| = \left| \frac{f^{(n+1)}(\theta x)}{(n+1)!} x^{n+1} \right| \le \frac{M|x|^{n+1}}{(n+1)!} \right|$$

Пример 2.9.10. Рассмотрим функцию

$$y = e^x$$

Приближенная формула имеет вид:

$$e^x \approx 1 + \frac{x}{1!} + \frac{x^2}{2!} + \dots + \frac{x^n}{n!}$$

Так как остаточный член здесь

$$r_n(x) = \frac{f^{(n+1)}(\theta x)}{(n+1)!} x^{n+1} = \frac{e^{\theta x}}{(n+1)!} x^{n+1},$$

то, например, для x > 0 погрешность будет составлять

$$r_n(x)| \le e^x \frac{x^{n+1}}{(n+1)!}.$$

В частности, для x = 1 имеем:

$$e^x \approx 1 + \frac{1}{1!} + \frac{1}{2!} + \ldots + \frac{1}{n!}$$

И

$$|r_n(x)| \le e \frac{1}{(n+1)!} < \frac{3}{(n+1)!}$$

Пример 2.9.11. Рассмотрим функцию

$$f(x) = \sin x.$$

Приближенная формула имеет вид:

$$\sin x \approx x - \frac{x^3}{3!} + \frac{x^5}{5!} + \dots + (-1)^{m-1} \frac{x^{2m-1}}{(2m-1)!}$$

Так как остаточный член здесь

$$r_{2m}(x) = \frac{f^{(2m+1)}(\theta x)}{(2m+1)!} x^{2m+1} = \frac{\sin\left(\theta x + \frac{\pi(2m+1)}{2}\right)}{(2m+1)!} x^{2m+1} = \frac{\sin\left(\theta x + \frac{\pi(2m+1)}{2}\right$$

$$= (-1)^m \cos(\theta x) \frac{x^{2m+1}}{(2m+1)!}$$

то погрешность оценивается легко:

$$|r_{2m}(x)| = \left| (-1)^m \cos(\theta x) \frac{x^{2m+1}}{(2m+1)!} \right| \le \frac{|x|^{2m+1}}{(2m+1)!}.$$

1). Если мы ограничимся одним слагаемым, т.е. довольствуемся приближенной формулой

$$\sin x \approx x$$

то погрешность будет

$$r_2(x)| \le \frac{x^3}{6}.$$

Поэтому, если точность вычислений требует, чтобы погрешность была меньше чем 0,001, то

$$\frac{x^3}{6} < 0,001.$$

Таким образом, в вычислениях достаточно брать

$$0 < x < 0.1817$$
.

2). Если мы ограничимся двумя слагаемыми, т.е. довольствуемся приближенной формулой

$$\left| \sin x \approx x - \frac{x^3}{6} \right|$$

то погрешность будет

$$|r_4(x)| \le \frac{x^5}{120}$$

Поэтому для той же точности вычислений меньше чем 0,001 необходимо, чтобы

$$\frac{x^5}{120} < 0,001.$$

Таким образом, в вычислениях достаточно брать

$$0 < x < 0.6544$$
.

2.10 Исследование поведения функции с помощью производной.

Прежде всего, напомним те утверждения, которые у нас были связаны с монотонностью функции.

2.10.1 Монотонность функции на интервале.

Теорема 2.10.1. Для того, чтобы функция y = f(x), дифференцируемая на интервале (a,b), была неубывающей на интервале (a,b), необходимо и достаточно, чтобы

$$f'(x) \ge 0$$

в любой точке $x \in (a,b)$.

Теорема 2.10.2. Для того, чтобы функция y = f(x), дифференцируемая на интервале (a,b), была невозрастающей на интервале (a,b), необходимо и достаточно, чтобы

$$f'(x) \le 0$$

в любой точке $x \in (a,b)$.

Теорема 2.10.3. Для того, чтобы функция y = f(x), дифференцируемая на интервале (a,b), была возрастающей на интервале (a,b), достаточно, чтобы

$$f'(x) > 0$$

в любой точке $x \in (a, b)$.

Теорема 2.10.4. Для того, чтобы функция y = f(x), дифференцируемая на интервале (a,b), была убывающей на интервале (a,b), достаточно, чтобы

$$f'(x) < 0$$

в любой точке $x \in (a,b)$.

2.10.2 Экстремумы функции.

Напомним некоторые необходимые определения.

Определение 2.10.5. • Говорят, что функция y = f(x) имеет в точке $x_0 \in D(f)$ локальный максимум, если существует такая δ -окрестность точки x_0 :

$$U_{\delta}(x_0) = (x_0 - \delta, x_0 + \delta) \subset D(f),$$

что для любого $x \in U_{\delta}(x_0)$ выполняется неравенство

$$f(x) \le f(x_0),$$

т.е. в окрестности $U_{\delta}(x_0)$ значение функции y=f(x) в точке x_0 является наибольшим.

• Говорят, что функция y = f(x) имеет в точке x_0 строгий локальный максимум, если для любого $x \in (x_0 - \delta, x_0) \cup (x_0, x_0 + \delta)$ выполняется неравенство

$$f(x) < f(x_0).$$

Определение 2.10.6. • Говорят, что функция y = f(x) имеет в точке $x_0 \in D(f)$ локальный минимум, если существует такая δ -окрестность

$$U_{\delta}(x_0) = (x_0 - \delta, x_0 + \delta) \subset D(f),$$

что для любого $x \in U_{\delta}(x_0)$ выполняется неравенство

$$f(x) \ge f(x_0),$$

т.е. в окрестности $U_{\delta}(x_0)$ значение функции y = f(x) в точке $x_0 \in D(f)$ является наименьшим.

• Говорят, что функция y = f(x) имеет в точке x_0 строгий локальный минимум, если для любого $x \in (x_0 - \delta, x_0) \cup (x_0, x_0 + \delta)$ выполняется неравенство

$$f(x) > f(x_0).$$

Определение 2.10.7. Локальные максимумы и локальные минимумы функции y = f(x) объединяются общим названием локальные экстремумы.

Как было доказано выше, необходимым условием существования локального экстремума является теорема Ферма.

Теорема 2.10.8. (Теорема Ферма.) Если функция y = f(x) дифференцируема в точке $x_0 \in D(f)$ и имеет в этой точке локальный экстремум, то производная функции в этой точке равна нулю:

$$f'(x_0) = 0.$$

Замечание 2.10.9. Еще раз отметим, что условие теоремы Ферма является лишь необходимым условием локального экстремума и не является достаточным условием.

Как показывает теорема Ферма, точки локального экстремума функции f(x) следует искать среди тех точек, в которых производная этой функции либо равна нулю, либо не существует.

В дальнейшем мы иногда будем опускать слово "локальный" при формулировке результатов, связанных с понятием экстремума.

Определение 2.10.10. Пусть функция f(x) определена и непрерывна на интервале (a,b).

- Точки интервала (a,b), в которых производная функции f(x) существует и равна нулю, называются *стационарными*.
- Точки интервала (a,b), в которых производная функции f(x) либо не существует, либо равна нулю, называются *критическими*.

Замечание 2.10.11. Очевидно, что точки экстремума следует искать среди критических точек. При этом не всякая критическая точка является точкой экстремума функции.

Замечание 2.10.12. Отметим, что если функция f(x) определена в δ -окрестности точки x_0

$$U_{\delta}(x_0) = (x_0 - \delta, x_0 + \delta)$$

И

- строго возрастает на промежутке $(x_0 \delta, x_0]$ и строго убывает на промежутке $[x_0, x_0 + \delta)$, то в точке x_0 выполняется условие строгого максимума функции f(x).
- строго убывает на промежутке $(x_0 \delta, x_0]$ и строго возрастает на промежутке $[x_0, x_0 + \delta)$, то в точке x_0 выполняется условие строгого минимума функции f(x).

Определение 2.10.13. Пусть функция g(x) определена в выколотой δ -окрестности точки x_0

$$(x_0 - \delta, x_0) \cup (x_0, x_0 + \delta).$$

И

- Если g(x) < 0 для все $x \in (x_0 \delta, x_0)$ и g(x) > 0 для всех $x \in (x_0, x_0 + \delta)$, то говорят, что при переходе через точку x_0 функция g(x) меняет знак с минуса на плюс (с на +).
- Если g(x) > 0 для все $x \in (x_0 \delta, x_0)$ и g(x) < 0 для всех $x \in (x_0, x_0 + \delta)$, то говорят, что при переходе через точку x_0 функция g(x) меняет знак с плюса на минуса (c + на -).

Теперь рассмотрим достаточные условия экстремума.

4.10.2.1. Первое достаточное условие экстремума.

Теорема 2.10.14. Пусть функция y = f(x)

1). Определена и непрерывна в в δ -окрестности точки x_0

$$U_{\delta}(x_0) = (x_0 - \delta, x_0 + \delta);$$

2). Дифференцируема в выколотой δ -окрестности точки x_0

$$(x_0 - \delta, x_0) \cup (x_0, x_0 + \delta);$$

- 3). При переходе через точку x_0 производная f'(x) меняет знак с плюса на минуса $(c + \mu a b)$, а именно:
 - f'(x) > 0 npu $x \in (x_0 \delta, x_0)$;
 - $f'(x) < 0 \ npu \ x \in (x_0, x_0 + \delta).$

Tогда точка x_0 — точка строгого локального максимума функции f(x).

Доказательство. 1. Пусть сначала $x \in (x_0 - \delta, x_0)$. На отрезке $[x, x_0]$ функция f(x) удовлетворяет условиям теоремы Лагранжа. Поэтому существует точка $c \in (x, x_0)$ такая, что

$$f(x_0) - f(x) = f'(c)(x_0 - x).$$

Так как для любого $x \in (x_0 - \delta, x_0)$ производная f'(x) > 0, то мы имеем:

$$\begin{cases} f'(c) > 0, \\ x_0 - x > 0 \end{cases} \implies f(x_0) - f(x) > 0 \Longrightarrow f(x_0) > f(x).$$

2. Пусть теперь $x \in (x_0, x_0 + \delta)$. На отрезке $[x_0, x]$ функция f(x) также удовлетворяет условиям теоремы Лагранжа. Поэтому существует точка $c_1 \in (x_0, x)$ такая, что

$$f(x) - f(x_0) = f'(c_1)(x - x_0).$$

Так как для любого $x \in (x_0, x_0 + \delta)$ производная f'(x) < 0, то мы имеем:

$$\begin{cases} f'(c_1) < 0, \\ x - x_0 > 0 \end{cases} \implies f(x) - f(x_0) < 0 \Longrightarrow f(x) < f(x_0).$$

3. Таким образом, для любого x, принадлежащего выколотой окрестности

$$(x_0 - \delta, x_0) \cup (x_0, x_0 + \delta)$$

имеет место неравенство:

$$f(x) < f(x_0).$$

Таким образом, точка x_0 — точка строгого локального максимума функции f(x).

Аналогично доказывается следующая теорема.

Теорема 2.10.15. Пусть функция y = f(x)

1). Определена и непрерывна в в δ -окрестности точки x_0

$$U_{\delta}(x_0) = (x_0 - \delta, x_0 + \delta);$$

2). Дифференцируема в выколотой δ -окрестности точки x_0

$$(x_0 - \delta, x_0) \cup (x_0, x_0 + \delta);$$

- 3). При переходе через точку x_0 производная f'(x) меняет знак с минуса на плюс ($c \mu a + \lambda$), а именно:
 - $f'(x) < 0 \ npu \ x \in (x_0 \delta, x_0);$
 - f'(x) > 0 $npu \ x \in (x_0, x_0 + \delta)$.

Tогда точка x_0 — точка строгого локального минимума функции f(x).

Пример 2.10.16. Рассмотрим функцию

$$f(x) = |x|, x \in (-1, 1)$$

Так как

- f'(x) = -1 < 0 при $x \in (-1, 0)$;
- f'(x) = 1 > 0 при $x \in (0, 1)$.

то точка x=0 — точка строгого локального минимума функции f(x).

Замечание 2.10.17. Следует обратить внимание. что условия теорем 2.10.14 и 2.10.15 являются достаточными условиями экстремума. В то же время существуют функции, производные которых при переходе через экстремальную точку не меняют знака.

Пример 2.10.18. Рассмотрим функцию

$$f(x) = \begin{cases} 2x^2 + x^2 \sin \frac{1}{x}, & \text{если } x \neq 0, \\ 0, & \text{если } x = 0. \end{cases}$$

Найдем производную функции f(x).

• Пусть сначала $x \neq 0$.

$$f'(x) = 4x + 2x\sin\frac{1}{x} + x^2\cos\frac{1}{x}\left(-\frac{1}{x^2}\right) = 4x + 2x\sin\frac{1}{x} - \cos\frac{1}{x}.$$

Пусть

$$x_n = \frac{1}{2\pi n}, \quad n \in \mathbb{Z}.$$

Тогда

$$\begin{cases} \sin\frac{1}{x_n} = \sin(2\pi n) = 0, \\ \cos\frac{1}{x_n} = \cos(2\pi n) = 1 \end{cases} \Rightarrow f'(x_n) = \frac{2}{\pi n} - 1 < 0, \quad n = \pm 1, \pm 2, \dots$$

Пусть теперь

$$x_n' = \frac{1}{\pi + 2\pi n}, \quad n \in \mathbb{Z}.$$

Тогда

$$\begin{cases} \sin\frac{1}{x'_n} = \sin(\pi + 2\pi n) = 0, \\ \cos\frac{1}{x'_n} = \cos(\pi + 2\pi n) = -1 \end{cases} \Rightarrow f'(x'_n) = \frac{4}{\pi + 2\pi n} + 1 > 0, \ n = \pm 1, \pm 2, \dots.$$

Таким образом, производная функции f(x) в достаточно близки к нулю точках как слева от нуля. так и справа от нуля принимает значения обоих знаков.

• Пусть теперь x = 0. Тогда

$$f'(0) = \lim_{x \to 0} \frac{f(x) - f(0)}{x - 0} = \lim_{x \to 0} \frac{2x^2 + x^2 \sin\frac{1}{x}}{x} = \lim_{x \to 0} \left(2x + x \sin\frac{1}{x}\right) = 0$$

• С другой стороны, для любого $x \neq 0$

$$\begin{cases} 2x^2 + x^2 \sin\frac{1}{x} \le 2x^2 + x^2 = 3x^2, \\ 2x^2 + x^2 \sin\frac{1}{x} \ge 2x^2 - x^2 = x^2, \end{cases}$$

т.е.

$$x^2 \le f(x) \le 3x^2.$$

Очевидно, это неравенство имеет место и для x = 0.

Таким образом, точка x = 0 — точка строгого локального минимума функции f(x).

4.10.2.2. Второе достаточное условие экстремума.

Теорема 2.10.19. Пусть функция y = f(x)

1). Определена и непрерывна в в δ -окрестности точки x_0

$$U_{\delta}(x_0) = (x_0 - \delta, x_0 + \delta);$$

2). Дважды дифференцируема в точке x_0 , причем

$$f'(x_0) = 0, \quad f''(x_0) \neq 0.$$

Доказательство. Так как $f''(x_0) < 0$, то функция f'(x) убывает в точке x_0 .

Кроме того, $f'(x_0) = 0$. Поэтому функция f'(x) при переходе через точку x_0 меняет знак с плюса на минус, т.е.

- f'(x) > 0 слева от точки x_0 и
- f'(x) < 0 справа от точки x_0 .

Поэтому по доказанной выше теореме 2.10.14 точка x_0 — точка строгого локального максимума функции f(x).

Аналогично доказывается следующая теорема.

Теорема 2.10.20. Пусть функция y = f(x)

1). Определена и непрерывна в в δ -окрестности точки x_0

$$U_{\delta}(x_0) = (x_0 - \delta, x_0 + \delta);$$

2). Дважды дифференцируема в точке x_0 , причем

$$f'(x_0) = 0, \quad f''(x_0) \neq 0.$$

 $Ecлu\ f''(x_0) > 0,\ mo\ x_0\ -$ точка строгого локального минимума функции f(x).

Пример 2.10.21. Рассмотрим функцию

$$f(x) = x^2, x \in (-1, 1)$$

Так как

- $f'(x) = 2x \Rightarrow f'(0) = 0$:
- $f''(x) = 2 \Rightarrow f''(0) = 2 > 0$.

Следовательно, точка x = 0 — точка строгого локального минимума функции f(x).

Замечание 2.10.22. Если для функции f(x)

$$f'(x_0) = 0$$
 и $f''(x_0) = 0$,

то в точке x_0 функция f(x) может как иметь экстремум, так и не иметь экстремума. Например,

- $f(x) = x^4 \Rightarrow f'(0) = 0$ и f''(0) = 0. Точка x = 0 точка строгого локального минимума функции f(x).;
- $f(x) = x^3 \Rightarrow f'(0) = 0$ и f''(0) = 0. Однако точка x = 0 не является точкой экстремума функции f(x).

4.10.2.3. Третье достаточное условие экстремума.

Теорема 2.10.23. Пусть функция y = f(x)

1). Определена и непрерывна в в δ -окрестности точки x_0

$$U_{\delta}(x_0) = (x_0 - \delta, x_0 + \delta);$$

- 2). (n+1)-раз дифференцируема на $U_{\delta}(x_0)$;
- 3). $f^{(n+1)}(x)$ непрерывна в точке x_0 ;
- *4).*

$$f'(x_0) = f''(x_0) = \dots = f^{(n)}(x_0) = 0$$

u

$$f^{(n+1)}(x_0) \neq 0.$$

- Если n нечетное число, то x_0 точка экстремума функции f(x). При этом, если $f^{(n+1)}(x_0) < 0$, то x_0 точка строгого локального максимума функции f(x), а если $f^{(n+1)}(x_0) > 0$, то x_0 точка строгого локального минимума функции f(x).
- Если же n четное число, то x_0 не является точкой экстремума функции f(x).

Доказательство. Разложим функцию f(x) по формуле Тейлора с остаточным членом в форме Лагранжа:

$$f(x) = f(x_0) + \frac{f'(x_0)}{1!}(x - x_0) + \frac{f''(x_0)}{2!}(x - x_0)^2 + \dots + \frac{f^{(n)}(x_0)}{n!}(x - x_0)^n + \dots$$

$$+\frac{f^{(n+1)}(c)}{(n+1)!}(x-x_0)^{n+1}$$
,

где $c \in (x, x_0)$, если $x \in (x_0 - \delta, x_0)$, или $c \in (x_0, x)$, если $x \in (x_0, x_0 + \delta)$. По условию 4) теоремы

$$f'(x_0) = f''(x_0) = \dots = f^{(n)}(x_0) = 0.$$

Поэтому получаем

$$f(x) = f(x_0) + \frac{f^{(n+1)}(c)}{(n+1)!}(x - x_0)^{n+1}$$

или

$$f(x) - f(x_0) = \frac{f^{(n+1)}(c)}{(n+1)!} (x - x_0)^{n+1}$$

 $\bullet\,$ Если n — нечетное число, то (n+1) — четное число. Далее, $f^{(n+1)}(x)$ непрерывна в точке $x_0.$ Поэтому, если

$$f^{(n+1)}(x_0) < 0,$$

о по свойству непрерывной функции, $f^{(n+1)}(x) < 0$ и в некоторой окрестности точки x_0 , т.е. существует такое $\delta_1 < \delta$, что для любого x, принадлежащего δ_1 окрестности точки x_0

$$U_{\delta_1}(x_0) = (x_0 - \delta_1, x_0 + \delta_1) \subset U_{\delta}(x_0)$$

выполняется неравенство

$$f^{(n+1)}(x) < 0,$$

в частности,

$$f^{(n+1)}(c) < 0.$$

Следовательно, для любого $x \in (x_0 - \delta_1, x_0) \cup (x_0, x_0 + \delta_1)$ имеем:

$$\begin{cases} f^{(n+1)}(c) < 0, \\ (x - x_0)^{n+1} > 0 \end{cases} \implies f(x) - f(x_0) < 0 \Longrightarrow f(x) < f(x_0).$$

Таким образом, точка x_0 — точка строгого локального максимума функции f(x).

Аналогично доказывается, что если

$$f^{(n+1)}(x_0) > 0,$$

то точка x_0 — точка строгого локального минимума функции f(x).

ullet Если же n — четное число, то (n+1) — нечетное число. Поэтому, если

$$f^{(n+1)}(x_0) < 0,$$

то рассуждая аналогично, получаем, что для любого x, принадлежащего δ_1 окрестности точки x_0

$$U_{\delta_1}(x_0) = (x_0 - \delta_1, x_0 + \delta_1) \subset U_{\delta}(x_0)$$

выполняется неравенство

$$f^{(n+1)}(x) < 0,$$

в частности,

$$f^{(n+1)}(c) < 0.$$

Тогда для любого $x \in (x_0 - \delta_1, x_0)$

$$\begin{cases} f^{(n+1)}(c) < 0, \\ (x - x_0)^{n+1} < 0 \implies f(x) - f(x_0) > 0 \Longrightarrow f(x) > f(x_0). \end{cases}$$

с другой стороны, для любого $x \in (x_0, x_0 + \delta_1)$

$$\begin{cases} f^{(n+1)}(c) < 0, \\ (x - x_0)^{n+1} > 0 \end{cases} \implies f(x) - f(x_0) < 0 \Longrightarrow f(x) < f(x_0).$$

Таким образом, точка x_0 не является экстремальной точкой функции f(x).

Случай

$$f^{(n+1)}(x_0) > 0,$$

рассматривается аналогично.

2.10.3 Наибольшее и наименьшее значения функции на отрезке.

1). Для функции f(x), непрерывной на отрезке [a,b], согласно второй теореме Вейерштрасса $\ref{eq:condition}$, на отрезке [a,b] найдутся такие точки x_0 и x_1 , в которых функция f(x) принимает наименьшее и наибольшее значения:

$$f(x_0) = \min_{[a,b]} f(x) = m$$

И

$$f(x_1) = \max_{[a,b]} f(x) = M.$$

- 2). В случае, когда непрерывная на отрезке [a,b] функция f(x) кусочно дифференцируема на [a,b] и имеет локальные экстремумы:
 - локальные максимумы в точках x_1, x_2, \dots, x_k ,
 - локальные минимумы в точках $\widetilde{x}_1, \widetilde{x}_2, \dots, \widetilde{x}_m,$

и не имеет других точек локального экстремума, то наибольшее значение функции f(x) на отрезке [a,b] равно наибольшему из чисел

$$f(a), f(x_1), f(x_2), \dots, f(x_k), f(b).$$

а наименьшее значение функции f(x) на отрезке [a,b] равно наименьшему из чисел

$$f(a), f(\widetilde{x}_1), f(\widetilde{x}_2), \dots, f(\widetilde{x}_m), f(b).$$

Таким образом,

$$m = \min\{f(a), f(x_1), f(x_2), \dots, f(x_k), f(b)\}\$$

 $M = \max\{f(a), f(\widetilde{x}_1), f(\widetilde{x}_2), \dots, f(\widetilde{x}_m), f(b)\}.$

Замечание 2.10.24. На практике, если нет необходимости в разделении точек локального экстремума на точки минимума и точки максимума, можно поступать следующим образом.

Пусть точки x_1, x_2, \ldots, x_n — критические точки функции f(x), среди которых, возможно имеются локальные экстремумы (максимумы или минимумы). Тогда

$$m = \min\{f(a), f(x_1), f(x_2), \dots, f(x_n), f(b)\}\$$

$$M = \max\{f(a), f(x_1), f(x_2), \dots, f(x_n), f(b)\}.$$

Пример 2.10.25. Найдем наибольшее и наименьшее значения функции

$$f(x) = (x-2)^2(x+1)^3$$

на отрезке [0,3].

Так как функция f(x) дифференцируема на отрезке [0,3], то критические точки — это нули производной.

Находим:

$$f'(x) = 2(x-2)(x+1)^3 + 3(x-2)^2(x+1)^2 = (x-2)(x+1)^2(2x+2+3x-6) =$$
$$= (x-2)(x+1)^2(5x-4).$$

Следовательно,

$$f'(x) = 0 \Leftrightarrow (x-2)(x+1)^2(5x-4) \Rightarrow \begin{bmatrix} x-2=0, \\ x+1=0 \\ 5x-4=0, \end{bmatrix} \Longrightarrow \begin{bmatrix} x=2, \\ x=-1 \\ x=\frac{4}{5}.$$

Вычисляем:

$$f(0) = (-2)^{2}(1)^{3} = 4,$$

$$f(-1) = (-1-2)^{2}(-1+1)^{3} = 0,$$

$$f\left(\frac{4}{5}\right) = \left(\frac{4}{5} - 2\right)^{2} \left(\frac{4}{5} + 1\right)^{3} = \left(-\frac{6}{5}\right)^{2} \left(\frac{9}{5}\right)^{3} = \frac{26244}{3125} = 8,39808$$

$$f(2) = (2-2)^{2}(2+1)^{3} = 0$$

$$f(3) = (3-2)^{2}(3+1)^{3} = 64.$$

Поэтому,

$$M = \max\{4; 0; 8, 398080; 0; 64\} = 64 = f(3);$$

$$m = \min\{4; 0; 8, 398080; 0; 64\} = 0 = f(-1) = f(2).$$

2.10.4 Выпуклость и вогнутость функции на отрезке.

4.10.4.1. Определение выпуклости функции на отрезке.

Определение 2.10.26. Непрерывная на отрезке [a,b] функция f(x) называется выпуклой вниз или просто выпуклой на отрезке [a,b], если для любых точек $x_1, x_2 \in [a,b]$ выполняется неравенство:

$$f\left(\frac{x_1+x_2}{2}\right) \le \frac{f(x_1)+f(x_2)}{2}$$

Дадим геометрическую интерпретацию понятия выпуклости. Пусть

$$M_1(x_1, f(x_1)), M_2(x_2, f(x_2))$$
 и $M_0(x_0, f(x_0))$

точки графика функции f(x), абсциссы которых равны

$$x_1, x_2$$
 и $x_0 = \frac{x_1 + x_2}{2}$.

Тогда ордината точки K — середины отрезка M_1M_2 равна

$$\frac{f(x_1) + f(x_2)}{2}$$

а абсцисса равна

$$x_0 = \frac{x_1 + x_2}{2}.$$

Соответствующая точка графика M_0 имеет ординату

$$f(x_0) = f\left(\frac{x_1 + x_2}{2}\right).$$

Условие выпуклости

$$f\left(\frac{x_1+x_2}{2}\right) \le \frac{f(x_1)+f(x_2)}{2},$$

означает, что для любых точек

$$M_1(x_1, f(x_1))$$
 и $M_2(x_2, f(x_2))$

графика функции f(x) середина K хорды M_1M_2 лежит или ниже соответствующей точки M_0 графика, или совпадает с точкой M_0 .

Определение 2.10.27. Непрерывная на отрезке [a,b] функция f(x) называется строго выпуклой вниз или строго выпуклой на отрезке [a,b], если для любых точек $x_1,x_2 \in [a,b], x_1 \neq x_2$, выполняется строгое неравенство:

$$f\left(\frac{x_1+x_2}{2}\right) < \frac{f(x_1)+f(x_2)}{2}.$$

4.10.4.2. Определение вогнутости функции на отрезке.

Определение 2.10.28. Непрерывная на отрезке [a,b] функция f(x) называется выпуклой вверх или вогнутой на отрезке [a,b], если для любых точек $x_1,x_2 \in [a,b]$ выполняется неравенство:

$$f\left(\frac{x_1+x_2}{2}\right) \ge \frac{f(x_1)+f(x_2)}{2}$$

Дадим геометрическую интерпретацию понятия вогнутости. Пусть, как и выше,

$$M_1(x_1, f(x_1)), M_2(x_2, f(x_2))$$
 и $M_0(x_0, f(x_0))$

точки графика функции f(x), абсциссы которых равны

$$x_1, x_2$$
 и $x_0 = \frac{x_1 + x_2}{2}$.

Тогда ордината точки K- середины отрезка M_1M_2 равна

$$\frac{f(x_1) + f(x_2)}{2}$$

а абсцисса равна

$$x_0 = \frac{x_1 + x_2}{2}.$$

Соответствующая точка графика M_0 имеет ординату

$$f(x_0) = f\left(\frac{x_1 + x_2}{2}\right).$$

Условие вогнутости

$$f\left(\frac{x_1+x_2}{2}\right) \ge \frac{f(x_1)+f(x_2)}{2},$$

означает, что для любых точек

$$M_1(x_1, f(x_1))$$
 и $M_2(x_2, f(x_2))$

графика функции f(x) середина K хорды M_1M_2 лежит или выше соответствующей точки M_0 графика, или совпадает с точкой M_0 .

Определение 2.10.29. Непрерывная на отрезке [a,b] функция f(x) называется строго выпуклой вверх или строго вогнутой на отрезке [a,b], если для любых точек $x_1, x_2 \in [a,b], x_1 \neq x_2$, выполняется строгое неравенство:

$$f\left(\frac{x_1+x_2}{2}\right) > \frac{f(x_1)+f(x_2)}{2}.$$

4.10.4.3. Достаточные условия выпуклости и вогнутости функции на отрезке.

Теорема 2.10.30. Пусть функция y = f(x)

- 1). Определена, непрерывна и дифференцируема на отрезке [a,b].
- 2). На интервале (a,b) существует вторая производная f''(x).

Тогда если для любого $x \in (a,b)$

- $f''(x) \ge 0$, то функция f(x) выпукла на [a, b];
- f''(x) > 0, то функция f(x) строго выпукла на [a,b];
- $f''(x) \le 0$, то функция f(x) вогнута на [a,b];
- f''(x) < 0, то функция f(x) строго вогнута на [a,b].

Доказательство. Ограничимся доказательством первого пункта теоремы, т.е. докажем, что если для любого $x \in (a, b)$

$$f''(x) > 0$$
,

то функция f(x) выпукла на [a,b].

Покажем, что для любых точек $x_1, x_2 \in [a, b]$ выполняется неравенство:

$$f\left(\frac{x_1+x_2}{2}\right) \le \frac{f(x_1)+f(x_2)}{2}.$$

Заметим, что для $x_1 = x_2$ то условие, очевидно, выполнено.

Поэтому, для определенности, пусть

$$x_1 < x_2$$
.

Обозначим

$$x_0 = \frac{x_1 + x_2}{x}, \ x_2 - x_1 = 2h.$$

Тогда

$$x_2 - x_0 = x_0 - x_1 = h,$$

откуда

$$x_1 = x_0 - h$$
, $x_2 = x_0 + h$.

• Применим к функции f(x) на отрезке $[x_1, x_0]$ формулу Тейлора с остаточным членом в форме Лагранжа при n=2 и $\Delta x=-h$:

$$f(x_1) = f(x_0 - h) = f(x_0) - f'(x_0)h + \frac{f''(c_1)}{2!}h^2$$
(2.10.1)

где $x_1 = x_0 - h < c_1 < x_0$.

• Аналогично, применим к функции f(x) на отрезке $[x_0, x_2]$ формулу Тейлора с остаточным членом в форме Лагранжа при n=2 и $\Delta x=h$:

$$f(x_2) = f(x_0 + h) = f(x_0) + f'(x_0)h + \frac{f''(c_2)}{2!}h^2$$
(2.10.2)

где $x_0 < c_2 < x_0 + h = x_2$.

Складывая равенства (2.10.1) и (2.10.1), получим:

$$f(x_1) + f(x_2) = 2f(x_0) + \frac{h^2}{2!}(f''(c_1) + f''(c_2)).$$

Так как $c_1, c_2 \in (a, b)$, то

$$f''(c_1) \ge 0$$

И

$$f''(c_2) > 0.$$

Поэтому

$$f(x_1) + f(x_2) \ge 2f(x_0),$$

т.е.

$$\frac{f(x_1) + f(x_2)}{2} \ge f(x_0).$$

Следовательно,

$$f\left(\frac{x_1+x_2}{2}\right) \le \frac{f(x_1)+f(x_2)}{2}$$

и потому функция f(x) выпукла на [a,b].

Замечание 2.10.31. Условие f''(x) > 0 не является необходимым условием строгой выпуклости функции f(x) на отрезке [a,b].

Пример 2.10.32. Рассмотрим функцию

$$f(x) = x^4, \ x \in [-1, 1]$$

Так как f''(0)=0, то условие f''(x)>0 нарушается. Однако функция f(x) строго выпукла на отрезке [-1,1].

2.10.5 Точки перегиба.

4.10.5.1. Определение точек перегиба. Необходимое условие перегиба.

Предположим, что функция f(x) определена на интервале (a,b), и график функции f(x) имеет определенное направление выпуклости на каждом из интервалов

$$(a, c)$$
 и (c, b) , $a < c < b$.

Кроме того. предположим, что в точке M(c, f(c)) существует касательная к графику функции f(x), возможно вертикальная.

Определение 2.10.33. Точка M(c, f(c)) графика функции f(x) называется точкой перегиба этого графика, если существует окрестность $U_{\delta}(c)$, в пределах которой слева и справа от точки c график функции f(x) имеет разные направления выпуклости.

Теорема 2.10.34. (Необходимое условие перегиба.) Если график функции f(x) имеет перегиб в точке M(c, f(c)) и в точке x = c функция f(x) имеет непрерывную производную второго порядка f''(c), то

$$f''(c) = 0.$$

Доказательство. Допустим, что $f''(c) \neq 0$.

- Если f''(c) > 00, то существует окрестность $U_{\delta_1}(c)$, в пределах которой f''(x) > 00. Тогда, в силу теоремы 2.10.30, функция f(x) выпукла как слева, так и справа от точки c, что противоречит условию перегиба.
- Если f''(c) < 00, то существует окрестность $U_{\delta_2}(c)$, в пределах которой f''(x) < 00. Тогда, в силу той же теоремы 2.10.30, функция f(x) вогнута как слева, так и справа от точки c, что также противоречит условию перегиба.

Таким образом, возможен только случай

$$f''(c) = 0.$$

Замечание 2.10.35. Как показывает доказанная теорема, для отыскания всех точек перегиба графика функции f(x), имеющей непрерывную вторую производную, нужно рассмотреть все корни уравнения

$$f''(x) = 0.$$

Замечание 2.10.36. Условие

$$f''() = 0.$$

не является достаточным условие перегиба графика функции f(x) в точке M(c, f(c)).

Пример 2.10.37. Рассмотрим функцию

$$f(x) = x^4$$
.

Для этой функции

$$f''(0) = 0,$$

но точка x=0 является точкой строго локального минимума, и потому точка M(0,0) не является точкой перегиба графика функции f(x).

4.10.5.2. Первое достаточное условие перегиба.

Теорема 2.10.38. Пусть функция y = f(x)

1). Имеет вторую производную f''(x) в некоторой δ -окрестности точки c

$$U_{\delta}(c) = (c - \delta, c + \delta);$$

2).

$$f''(c) = 0.$$

3). Вторая производная f''(x) меняет знаки при переходе через точку x=c, т.е. имеет разные знаки на интервалах $(c-\delta,c)$ и $(c,c+\delta)$.

Тогда точка M(c, f(c)) является точкой перегиба графика функции f(x).

Доказательство. Так как функция y=f(x) имеет вторую производную f''(x) в δ -окрестности точки c

$$U_{\delta}(c) = (c - \delta, c + \delta),$$

то существует конечная производная f'(x) в $U_{\delta}(c)$. Поэтому в точке M(c, f(c)) график функции f(x) имеет касательную.

Кроме того, на интервалах $(c-\delta,c)$ и $(c,c+\delta)$ вторая производная f''(x) имеет разные знаки. Таким образом, на этих интервалах график функции f(x) имеет разные направления выпуклости, т.е. точка M(c,f(c)) является точкой перегиба графика функции f(x).

Пример 2.10.39. Рассмотрим функцию

$$f(x) = x^3 - 3x^2 + 10.$$

Для этой функции

$$f'(x) = 3x^2 - 6x,$$

$$f''(x) = 6x - 6 = 6(x - 1).$$

Поэтому f''(1) = 0 Кроме того, при переходе через точку x = 1 вторая производная f''(x) меняет знак. Следовательно, точка M(1,8) является точкой перегиба графика функции f(x).

4.10.5.3. Второе достаточное условие перегиба.

Теорема 2.10.40. Пусть функция y = f(x)

1). Имеет непрерывную вторую производную f''(x) в некоторой δ -окрестности точки c

$$U_{\delta}(c) = (c - \delta, c + \delta);$$

2).

$$f''(c) = 0.$$

3). Существует конечная третья производная f'''(c) в точке x=c, причем

$$f'''(c) \neq 0.$$

Тогда точка M(c, f(c)) является точкой перегиба графика функции f(x).

Доказательство. Так как функция y=f(x) имеет непрерывную вторую производную f''(x) в δ -окрестности точки c

$$U_{\delta}(c) = (c - \delta, c + \delta),$$

то существует конечная производная f'(x) в $U_{\delta}(c)$. Поэтому в точке M(c, f(c)) график функции f(x) имеет касательную.

Кроме того, $f'''(c) \neq 0$. Поэтому либо f'''(c) > 0, либо f'''(c) < 0.

Допустим, что f'''(c) > 0. Тогда вторая производная f''(x) возрастает в точке c. Но

$$f''(c) = 0.$$

Поэтому при переходе через точку x=c вторая производная f''(x) меняет знак. Следовательно, точка M(c,f(c)) является точкой перегиба графика функции f(x).

Случай f'''(c) < 0 рассматривается аналогично.

Пример 2.10.41. Рассмотрим функцию

$$f(x) = x^3 + 3x^2 - 10.$$

Для этой функции

$$f'(x) = 3x^{2} + 6x,$$

$$f''(x) = 6x + 6.$$

$$f'''(x) = 6 \neq 0.$$

Следовательно, точка M(1,-6) является точкой перегиба графика функции f(x).

4.10.5.4. Третье достаточное условие перегиба.

Теорема 2.10.42. Пусть функция y = f(x)

1). Определена и непрерывна в в δ -окрестности точки c

$$U_{\delta}(c) = (c - \delta, c + \delta);$$

- 2). (n+1)-раз дифференцируема на $U_{\delta}(c)$;
- 3). $f^{(n+1)}(x)$ непрерывна в точке c;

4).
$$f''(c) = f'''(c) = \dots = f^{(n)}(c) = 0$$
$$u$$
$$f^{(n+1)}(c) \neq 0.$$

Тогда если n — четное число, то точка M(c, f(c)) является точкой перегиба графика функции f(x).

Доказательство. Так как функция f(x) дифференцируема в точке x = c, то в точке M(c, f(c)) график функции f(x) имеет касательную.

Покажем, что при переходе через точку x = c вторая производная f''(x) меняет знак.

Разложим функцию f''(x) по формуле Тейлора с остаточным членом в форме Лагранжа:

$$f''(x) = f''(c) + \frac{f'''(c)}{1!}(x-c) + \ldots + \frac{f^{(n)}(c)}{(n-2)!}(x-x_0)^{n-2} + \frac{f^{(n+1)}(\xi)}{(n-1)!}(x-c)^{n-1},$$

где $\xi \in (x,c)$, если $x \in (c-\delta,c)$, или $\xi \in (c,x)$, если $x \in (c,c+\delta)$. По условию 4) теоремы

$$f''(c) = f'''(c) = \dots = f^{(n)}(c) = 0.$$

Поэтому получаем

$$f''(x) = \frac{f^{(n+1)}(\xi)}{(n-1)!}(x-c)^{n-1}$$

Так как n — четное число, то (n-1) — нечетное число. Далее, $f^{(n+1)}(x)$ непрерывна в точке c. Поэтому, если

$$f^{(n+1)}(c) < 0,$$

о по свойству непрерывной функции, $f^{(n+1)}(x) < 0$ и в некоторой окрестности точки c, т.е. существует такое $\delta_1 < \delta$, что для любого x, принадлежащего δ_1 окрестности точки c

$$U_{\delta_1}(c) = (c - \delta_1, c + \delta_1) \subset U_{\delta}(c)$$

выполняется неравенство

$$f^{(n+1)}(x) < 0,$$

в частности,

$$f^{(n+1)}(\xi) < 0.$$

Однако $(x-c)^{n-1}$ при переходе через точку x=c меняет знак. Следовательно, при переходе через точку x=c вторая производная f''(x) меняет знак. Таким образом, точка M(c,f(c)) является точкой перегиба графика функции f(x).

Аналогично доказывается, что если

$$f^{(n+1)}(c) > 0,$$

то точка M(c, f(c)) тоже является точкой перегиба графика функции f(x).

Пример 2.10.43. Рассмотрим функцию

$$f(x) = (x - c)^{n+1}.$$

Для этой функции

$$f'(x) = (n+1)(x-c)^n,$$

 $f''(x) = (n+1)n(x-c)^{n-1} \Rightarrow f''(c) = 0.$
.....

$$f^{(n+1)}(x) = (n+1)! > 0 \Rightarrow f^{(n+1)}(c) \neq 0.$$

Следовательно, если n — четное число, то точка M(,0) является точкой перегиба графика функции f(x).