1. Take an input n. Print the triangular pattern shown below using the value of n. (Output samples are shown below)

n = 1	n = 2	n = 3	n = 4	n = 5
*	*	*	*	*
	**	* *	* *	**
	*	***	* * *	* * *
		**	***	***
		*	* * *	****
			* *	***
			*	***
				**
				*

[Observe and compare the values of n with corresponding outputs to understand the pattern.]

2. Take an input n. Print a diamond pattern using the value of n. (Output samples are shown below)

n = 1	n = 2	n = 3	n = 4	n = 5
*	* * * *	* * * * * * *	*	*
		*	* * * * *	* * * * * * * * *

[Observe and compare the values of n with corresponding outputs to understand the pattern.]

3. Print the first 100 fibonacci numbers.

To know more about fibonacci series:

https://www.mathsisfun.com/numbers/fibonacci-sequence.html

First 10 numbers: 0, 1, 1, 2, 3, 5, 8, 13, 21, 34 ...

4. Solve the following problem:

Given an integer num, repeatedly add all its digits until the result has only one digit, and return it.

Example 1:

```
Input: num = 38
Output: 2
Explanation: The process is
38 --> 3 + 8 --> 11
11 --> 1 + 1 --> 2
Since 2 has only one digit, return it.
```

Example 2:

```
Input: num = 0
Output: 0
```