

IRFD1Z0, IRFD1Z1, IRFD1Z2, IRFD1Z3

0.4A and 0.5A, 60V and 100V, 2.4 and 3.2 Ohm, N-Channel Power MOSFETs

July 1998

Features

- 0.4A and 0.5A, 60V and 100V
- $r_{DS(ON)} = 2.4\Omega$ and 3.2Ω
- · SOA is Power Dissipation Limited
- · Nanosecond Switching Speeds
- Linear Transfer Characteristics
- · High Input Impedance
- Majority Carrier Device
- Related Literature
 - TB334 "Guidelines for Soldering Surface Mount Components to PC Boards"

Ordering Information

PART NUMBER	PACKAGE	BRAND		
IRFD1Z0	HEXDIP	IRFD1Z0		
IRFD1Z1	HEXDIP	IRFD1Z1		
IRFD1Z2	HEXDIP	IRFD1Z2		
IRFD1Z3	HEXDIP	IRFD1Z3		

NOTE: When ordering, use the entire part number.

Description

These are N-Channel enhancement mode silicon gate power field effect transistors designed for applications such as switching regulators, switching converters, motor drivers, relay drivers, and drivers for high power bipolar switching transistors requiring high speed and low gate drive power. They can be operated directly from integrated circuits.

Formerly developmental type TA17451.

Symbol

Packaging

HEXDIP

IRFD1Z0, IRFD1Z1, IRFD1Z2, IRFD1Z3

Absolute Maximum Ratings T_C = 25°C, Unless Otherwise Specified IRFD1Z1 IRFD1Z3 IRFD1Z2 **UNITS** Drain to Source (Note 1).....V_{DS} 100 60 100 60 Drain to Gate Voltage ($R_{GS} = 20k\Omega$) (Note 1) V_{DGR} 100 60 60 ٧ 100 Continuous Drain Current.....I_D 0.5 0.5 0.4 0.4 4.0 4.0 3.2 3.2 Α Gate to Source VoltageV_{GS} ±20 ±20 ±20 ±20 1.0 1.0 1.0 1.0 W 800.0 800.0 0.008 800.0 W/oC Operating and Storage Temperature T_{J.} T_{STG} οС -55 to 150 -55 to 150 -55 to 150 -55 to 150 Maximum Temperature for Soldering Leads at 0.063in (1.6mm) from Case for 10s T_L οС 300 300 300 300 οС Package Body for 10s, See Techbrief 334 T_{pkq} 260 260 260 260

CAUTION: Stresses above those listed in "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.

NOTE:

1. $T_J = 25^{\circ}C$ to $125^{\circ}C$.

Electrical Specifications $T_C = 25^{\circ}C$, Unless Otherwise Specified

PARAMETER	SYMBOL	TEST CONDITIONS		TYP	MAX	UNITS
Drain to Source Breakdown Voltage IRFD1Z0, IRFD1Z2	BV _{DSS}	$I_D = 250\mu\text{A}, V_{GS} = 0\text{V (See Figure 9)}$		-	-	V
IRFD1Z1, IRFD1Z3	1		60	-	-	V
Gate Threshold Voltage	V _{GS(TH)}	$V_{GS} = V_{DS}, I_D = 250 \mu A$	2.0	-	4.0	V
Zero Gate Voltage Drain Current	I _{DSS}	V _{DS} = Rated BV _{DSS} , V _{GS} = 0V		-	25	μА
		$V_{DS} = 0.8 \text{ x Rated BV}_{DSS}, V_{GS} = 0V,$ $T_{C} = 125^{\circ}C$		-	250	μА
On-State Drain Current (Note 2) IRFD1Z0, IRFD1Z1	I _{D(ON)}	$V_{DS} > I_{D(ON)} \times r_{DS(ON)MAX}, V_{GS} = 10V$ (See Figure 6)		_	-	А
IRFD1Z2, IRFD1Z3	1			-	-	Α
Gate to Source Leakage Current	I _{GSS}	V _{GS} = ±20V	-	-	±100	nA
Drain to Source On Resistance (Note 2) IRFD1Z0, IRFD1Z1	r _{DS(ON)}	I _D = 0.25A, V _{GS} = 10V (See Figures 7, 8)		2.2	2.4	Ω
IRFD1Z2, IRFD1Z3	1			2.8	3.2	Ω
Forward Transconductance (Note 2)	9fs	$V_{DS} > I_{D(ON)} \times r_{DS(ON)MAX}, I_D = 0.25A$	0.25	0.35	-	S
Turn-On Delay Time	t _d (ON)	$\begin{split} &V_{DD}\cong 0.5 \text{ x Rated BV}_{DSS}, \ I_D=0.25\text{A}, \\ &R_G=50\Omega \ (\text{Figures 14, 15, 16}) \\ &R_L=198\Omega \ \text{for BV}_{DSS}=100\text{V} \\ &R_L=118\Omega \ \text{for BV}_{DSS}=60\text{V} \\ &\text{MOSFET Switching Times are Essentially Independent of Operating Temperature} \end{split}$		10	20	ns
Rise Time	t _r			15	25	ns
Turn-Off Delay Time	t _d (OFF)			15	25	ns
Fall Time	t _f			10	20	ns
Total Gate Charge (Gate to Source + Gate to Drain)	Q _{g(TOT)}	V_{GS} = 10V, I_D = 1.2A, V_{DS} = 0.8 x Rated BV _{DSS} (Figures 13, 16, 17) Gate Charge is Essentially		2.0	3.0	nC
Gate to Source Charge	Q _{gs}	Independent of Operating Temperature	-	1.0	-	nC
Gate to Drain "Miller" Charge	Q _{gd}		-	1.0	-	nC
Input Capacitance	C _{ISS}	V _{GS} = 0V, V _{DS} = 25V, f = 1MHz	-	50	-	pF
Output Capacitance	C _{OSS}	(Figure 10)		20	-	pF
Reverse Transfer Capacitance	C _{RSS}	1	-	5	-	pF

Electrical Specifications $T_C = 25^{\circ}C$, Unless Otherwise Specified (Continued)

PARAMETER	SYMBOL	TEST CONDITIONS		MIN	TYP	MAX	UNITS
Internal Drain Inductance	L _D	Measured From The Drain Lead, 2mm (0.08in) From Package to Center of Die	Modified MOSFET Symbol Showing the Internal Devices Inductances	-	4.0	-	nΗ
Internal Source Inductance	L _S	Measured From The Source Lead, 2mm (0.08in) From Header to Source Bonding Pad	G C ELS	-	6.0	-	nH
Thermal Resistance Junction to Ambient	$R_{ heta JA}$	Free Air Operation		-	-	120	°C/W

Source to Drain Diode Specifications

PARAMETER	SYMBOL	TEST CONDITIONS		MIN	TYP	MAX	UNITS
Continuous Source to Drain Current IRFD1Z0, IRFD1Z1	I _{SD}	Modified MOSFET Symbol Showing the Integral Reverse	<u> </u>	-	-	0.5	А
IRFD1Z2, IRFD1Z3		P-N Junction Diode		-	-	0.4	Α
Pulse Source to Drain Current IRFD1Z0, IRFD1Z1	I _{SDM}		G OFFICE OFFI	-	-	4.0	А
IRFD1Z2, IRFD1Z3			l	-	-	3.2	Α
Source to Drain Diode Voltage (Note 2) IRFD1Z0, IRFD1Z1	V _{SD}	$T_A = 25^{\circ}C$, $I_{SD} = 0.5A$, $V_{GS} = 0V$		-	-	1.4	V
IRFD1Z2, IRFD1Z3		$T_A = 25^{\circ}C$, $I_{SD} = 0.4A$, $V_{GS} = 0V$		-	-	1.3	V
Reverse Recovery Time	t _{rr}	$T_J = 150^{\circ}C$, $I_{SD} = 0.5A$, $dI_{SD}/dt = 100A/\mu s$		-	100	-	ns
Reverse Recovery Charge	Q _{RR}	$T_J = 150^{\circ}C$, $I_{SD} = 0.5A$, $dI_{SD}/dt = 100A/\mu s$			0.2	-	μС

NOTES:

- 2. Pulse test: pulse width $\leq 300\mu s$, duty cycle $\leq 2\%$.
- 3. Repetitive rating: pulse width limited by maximum junction temperature.

Typical Performance Curves Unless Otherwise Specified

FIGURE 1. NORMALIZED POWER DISSIPATION vs
AMBIENT TEMPERATURE

FIGURE 2. MAXIMUM CONTINUOUS DRAIN CURRENT vs AMBIENT TEMPERATURE

Typical Performance Curves Unless Otherwise Specified (Continued)

FIGURE 3. FORWARD BIAS SAFE OPERATING AREA

FIGURE 4. OUTPUT CHARACTERISTICS

FIGURE 5. SATURATION CHARACTERISTICS

FIGURE 6. TRANSFER CHARACTERISTICS

NOTE: Heating effect of 2µs pulse is minimal.

FIGURE 8. NORMALIZED DRAIN TO SOURCE ON RESISTANCE vs JUNCTION TEMPERATURE

FIGURE 7. DRAIN TO SOURCE ON RESISTANCE vs GATE VOLTAGE AND DRAIN CURRENT

Typical Performance Curves Unless Otherwise Specified (Continued)

FIGURE 9. NORMALIZED DRAIN TO SOURCE BREAKDOWN VOLTAGE vs JUNCTION TEMPERATURE

FIGURE 10. CAPACITANCE vs DRAIN TO SOURCE VOLTAGE

FIGURE 11. TRANSCONDUCTANCE vs DRAIN CURRENT

FIGURE 12. SOURCE TO DRAIN DIODE VOLTAGE

FIGURE 13. GATE TO SOURCE VOLTAGE vs GATE VOLTAGE

Test Circuits and Waveforms

FIGURE 14. SWITCHING TIME TEST CIRCUIT

FIGURE 15. RESISTIVE SWITCHING WAVEFORMS

FIGURE 16. GATE CHARGE TEST CIRCUIT

FIGURE 17. GATE CHARGE WAVEFORMS