Double Integrals MATH 375 Numerical Analysis

J. Robert Buchanan

Department of Mathematics

Fall 2013

Objectives

Now that we have discussed several methods for approximating definite integrals of the form

$$\int_{a}^{b} f(x) \, dx$$

we turn our attention to double integrals of the form

$$\iint_R f(x,y)\,dA.$$

In this lesson we will discuss quadrature methods which can be applied to the case when

- $R = \{(x, y) | a \le x \le b, c \le y \le d\}$, and
- $R = \{(x, y) | a \le x \le b, c(x) \le y \le d(x)\}.$

Objectives

Now that we have discussed several methods for approximating definite integrals of the form

$$\int_{a}^{b} f(x) \, dx$$

we turn our attention to double integrals of the form

$$\iint_{R} f(x,y) \, dA.$$

In this lesson we will discuss quadrature methods which can be applied to the case when

- $R = \{(x, y) | a \le x \le b, c \le y \le d\}$, and
- $R = \{(x, y) \mid a < x < b, c(x) < y < d(x)\}.$

Generalizations to polar coordinates and to triple integrals can also be made.

Integrating Over a Rectangular Region (1 of 2)

Suppose
$$R = \{(x, y) | a \le x \le b, c \le y \le d\}$$
, then

$$\iint_{R} f(x,y) dA = \int_{a}^{b} \int_{c}^{d} f(x,y) dy dx = \int_{a}^{b} \left[\int_{c}^{d} f(x,y) dy \right] dx.$$

Integrating Over a Rectangular Region (1 of 2)

Suppose $R = \{(x, y) | a \le x \le b, c \le y \le d\}$, then

$$\iint_{R} f(x,y) dA = \int_{a}^{b} \int_{c}^{d} f(x,y) dy dx = \int_{a}^{b} \left[\int_{c}^{d} f(x,y) dy \right] dx.$$

Let m be an even integer and apply the Composite Simpson's rule to the "inner" integral.

Integrating Over a Rectangular Region (2 of 2)

$$\int_{c}^{d} f(x, y) dy$$

$$= \frac{k}{3} \left[f(x, y_{0}) + 2 \sum_{j=1}^{m/2-1} f(x, y_{2j}) + 4 \sum_{j=1}^{m/2} f(x, y_{2j-1}) + f(x, y_{m}) \right]$$

$$- \frac{(d-c)}{180} k^{4} \frac{\partial^{4} f}{\partial y^{4}}(x, \mu)$$

where

$$k = \frac{d-c}{m}$$

 $y_j = c+jk$ for $j = 0, 1, ..., m$
 $\mu \in [c, d]$

Outer Integration (1 of 2)

Now integrate with respect to x.

$$\int_{a}^{b} \int_{c}^{d} f(x, y) \, dy \, dx$$

$$= \int_{a}^{b} \frac{k}{3} \left[f(x, y_{0}) + 2 \sum_{j=1}^{m/2-1} f(x, y_{2j}) + 4 \sum_{j=1}^{m/2} f(x, y_{2j-1}) + f(x, y_{m}) \right]$$

$$- \int_{a}^{b} \frac{(d-c)}{180} k^{4} \frac{\partial^{4} f}{\partial y^{4}}(x, \mu) \, dx$$

Outer Integration (2 of 2)

$$\int_{a}^{b} \int_{c}^{d} f(x, y) \, dy \, dx$$

$$= \frac{k}{3} \left[\int_{a}^{b} f(x, y_{0}) \, dx + 2 \sum_{j=1}^{m/2-1} \int_{a}^{b} f(x, y_{2j}) \, dx + 4 \sum_{j=1}^{m/2} \int_{a}^{b} f(x, y_{2j-1}) \, dx + \int_{a}^{b} f(x, y_{m}) \, dx \right]$$

$$- \frac{(d-c)}{180} k^{4} \int_{a}^{b} \frac{\partial^{4} f}{\partial y^{4}}(x, \mu) \, dx$$

Outer Integration (2 of 2)

$$\int_{a}^{b} \int_{c}^{d} f(x, y) \, dy \, dx$$

$$= \frac{k}{3} \left[\int_{a}^{b} f(x, y_{0}) \, dx + 2 \sum_{j=1}^{m/2-1} \int_{a}^{b} f(x, y_{2j}) \, dx + 4 \sum_{j=1}^{m/2} \int_{a}^{b} f(x, y_{2j-1}) \, dx + \int_{a}^{b} f(x, y_{m}) \, dx \right]$$

$$- \frac{(d-c)}{180} k^{4} \int_{a}^{b} \frac{\partial^{4} f}{\partial y^{4}} (x, \mu) \, dx$$

Fix a value of j and apply the Composite Simpson's rule to the integral $\int_{a}^{b} f(x, y_j) dx$.

Integration with Fixed *j*

If *n* is an even integer and

$$h = \frac{b-a}{n}$$

$$x_i = a+ih \text{ for } i = 0, 1, ..., n$$

$$\xi_j \in [a, b]$$

then

$$\int_{a}^{b} f(x, y_{j}) dx$$

$$= \frac{h}{3} \left[f(x_{0}, y_{j}) + 2 \sum_{i=1}^{n/2-1} f(x_{2i}, y_{j}) + 4 \sum_{i=1}^{n/2} f(x_{2i-1}, y_{j}) + f(x_{n}, y_{j}) \right]$$

$$- \frac{(b-a)}{180} h^{4} \frac{\partial^{4} f}{\partial x^{4}} (\xi_{j}, y_{j})$$

Quadrature Formula

$$\int_{a}^{b} \int_{c}^{d} f(x,y) \, dy \, dx$$

$$\approx \frac{hk}{9} \left[\left(f(x_{0}, y_{0}) + 2 \sum_{i=1}^{n/2-1} f(x_{2i}, y_{0}) + 4 \sum_{i=1}^{n/2} f(x_{2i-1}, y_{0}) + f(x_{n}, y_{0}) \right) + 2 \sum_{i=1}^{n/2-1} f(x_{0}, y_{2j}) + 2 \sum_{i=1}^{n/2-1} \sum_{i=1}^{n/2-1} f(x_{2i}, y_{2j}) + 4 \sum_{j=1}^{n/2-1} \sum_{i=1}^{n/2} f(x_{2i}, y_{2j-1}) + 4 \sum_{j=1}^{n/2-1} \sum_{i=1}^{n/2} f(x_{2i-1}, y_{n}) + 4 \sum_{j=1}^{n/2-1} \sum_{i=1}^{n/2} f(x_{2i-1}, y_{n}) + 4 \sum_{j=1}^{n/2-1} \int_{i=1}^{n/2} f(x_{2i-1}, y_{n}) + f(x_{n}, y_{n}) \right)$$

Error

The error term for the double integral Composite Simpson's rule quadrature formula takes the form of

$$E(f) = -\frac{(d-c)(b-a)}{180} \left[h^4 \frac{\partial^4 f}{\partial x^4}(\overline{\xi}, \overline{\mu}) + k^4 \frac{\partial^4 f}{\partial y^4}(\hat{\xi}, \hat{\mu}) \right]$$

Example (1 of 2)

Let m = 4 and n = 6 and use the Composite Simpson's rule to approximate the double integral:

$$\int_0^{\pi/4} \int_{-\pi/3}^0 (2y \sin x + \cos^2 x) \, dy \, dx = \frac{\pi}{72} \left[6 + \pi (4\sqrt{2} - 5) \right] \approx 0.35184$$

Example (2 of 2)

$$\int_0^{\pi/4} \int_{-\pi/3}^0 (2y \sin x + \cos^2 x) \, dy \, dx \approx 0.351846$$

Absolute error:

$$\left|\frac{\pi}{72}\left[6+\pi(4\sqrt{2}-5)\right]-0.351846\right|\approx 6.36354\times 10^{-6}$$

Error bound:

$$\leq \max_{(\overline{\xi},\overline{\mu}),(\hat{\xi},\hat{\mu})\in R} \left| -\frac{(d-c)(b-a)}{180} \left[h^4 \frac{\partial^4 f}{\partial x^4} (\overline{\xi},\overline{\mu}) + k^4 \frac{\partial^4 f}{\partial y^4} (\hat{\xi},\hat{\mu}) \right] \right|$$

$$= \frac{(\pi/3)(\pi/4)}{180} \left(\frac{\pi}{24} \right)^4 \max_{(\overline{\xi},\overline{\mu}),(\hat{\xi},\hat{\mu})\in R} \left| 8(\cos^2 x - \sin^2 x) + 2y \sin x \right|$$

$$= \frac{\pi^6}{716636160} 8 \approx 1.07322 \times 10^{-5}$$

Double Integrals with Gaussian Quadrature

We may also use Gaussian quadrature formulas to approximate double integrals.

Consider the double integral:

$$\int_{a}^{b} \int_{c}^{d} f(x, y) \, dy \, dx$$

$$= \int_{a}^{b} \int_{-1}^{1} f\left(x, \frac{(d-c)u + c + d}{2}\right) \frac{d-c}{2} \, du \, dx$$

$$= \int_{-1}^{1} \int_{-1}^{1} \left[f\left(\frac{(b-a)v + a + b}{2}, \frac{(d-c)u + c + d}{2}\right) \frac{(b-a)(d-c)}{4} \right] \, du \, dv$$

Gaussian Quadrature Formula

For the sake of convenience we will use the same precision, n, for each stage of the integration.

$$\int_{a}^{b} \int_{c}^{d} f(x,y) \, dy \, dx$$

$$\approx \frac{(b-a)(d-c)}{4} .$$

$$\sum_{i=1}^{n} \sum_{j=1}^{n} c_{n,i} c_{n,j} f\left(\frac{(b-a)r_{n,i}+a+b}{2}, \frac{(d-c)r_{n,j}+c+d}{2}\right)$$

Example

Using the double integral form of Gaussian quadrature with n = 4 we may approximate

$$\int_0^{\pi/4} \int_{-\pi/3}^0 (2y \sin x + \cos^2 x) \, dy \, dx \approx 0.35184$$

Absolute error:

$$\left| \frac{\pi}{72} \left[6 + \pi (4\sqrt{2} - 5) \right] - 0.35184 \right| \approx 5.94305 \times 10^{-9}$$

Integrating Over Non-rectangular Regions

Consider the double integral

$$\iint_{R} f(x,y) dA = \int_{a}^{b} \int_{c(x)}^{d(x)} f(x,y) dy dx.$$

Suppose we use the Composite Simpson's rule to approximate the "inner" integral.

Integrating Over Non-rectangular Regions

Consider the double integral

$$\iint_{R} f(x,y) dA = \int_{a}^{b} \int_{c(x)}^{d(x)} f(x,y) dy dx.$$

Suppose we use the Composite Simpson's rule to approximate the "inner" integral.

$$\int_{c(x)}^{d(x)} f(x, y) \, dy$$

$$\approx \frac{k(x)}{3} \left[f(x, c(x)) + 2 \sum_{j=1}^{m/2-1} f(x, c(x) + 2jk(x)) + 4 \sum_{j=1}^{m/2} f(x, c(x) + (2j-1)k(x)) + f(x, d(x)) \right]$$

where *m* is an even integer and $k(x) = \frac{d(x) - c(x)}{m}$.

Simplification (1 of 2)

To make the notation of the next step simpler we will make the following change to the notation.

$$F(x) = \frac{k(x)}{3} \left[f(x, c(x)) + 2 \sum_{j=1}^{m/2-1} f(x, c(x) + 2jk(x)) + 4 \sum_{j=1}^{m/2} f(x, c(x) + (2j-1)k(x)) + f(x, d(x)) \right]$$

Simplification (2 of 2)

This implies

$$\int_{c(x)}^{d(x)} f(x, y) dy$$

$$\approx \frac{k(x)}{3} \left[f(x, c(x)) + 2 \sum_{j=1}^{m/2-1} f(x, c(x) + 2jk(x)) + 4 \sum_{j=1}^{m/2} f(x, c(x) + (2j-1)k(x)) + f(x, d(x)) \right]$$

$$= F(x)$$

Simplification (2 of 2)

This implies

$$\int_{c(x)}^{d(x)} f(x, y) \, dy$$

$$\approx \frac{k(x)}{3} \left[f(x, c(x)) + 2 \sum_{j=1}^{m/2-1} f(x, c(x) + 2jk(x)) + 4 \sum_{j=1}^{m/2} f(x, c(x) + (2j-1)k(x)) + f(x, d(x)) \right]$$

$$= F(x)$$

Now we may approximate the outer integral.

Outer Integral

Now we choose n to be an even integer and apply the Composite Simpson's rule with $h = \frac{b-a}{n}$.

$$\int_{a}^{b} \int_{c(x)}^{d(x)} f(x, y) \, dy \, dx$$

$$\approx \int_{a}^{b} \frac{k(x)}{3} \left[f(x, c(x)) + 2 \sum_{j=1}^{m/2-1} f(x, c(x) + 2jk(x)) + 4 \sum_{j=1}^{m/2} f(x, c(x) + (2j-1)k(x)) + f(x, d(x)) \right] dx$$

$$= \int_{a}^{b} F(x) \, dx$$

$$\approx \frac{h}{3} \left[F(a) + 2 \sum_{j=1}^{m/2-1} F(a+2jh) + 4 \sum_{j=1}^{m/2} F(a+(2j-1)h) + F(b) \right]$$

Example (1 of 2)

Consider the double integral,

$$\int_0^1 \int_x^{2x} (x^2 + y^3) \, dy \, dx = 1$$

- Using the composite Simpson's rule with n = m find the smallest values of n and m required to estimate the double integral to within 10^{-4} of its actual value.
- Estimate the double integral.

Example (2 of 2)

Since we have no formula for the error term in this case we will use the composite Simpson's rule with n = m = 2, 4, ... until successive approximations differ by less than 10^{-4} .

n = m	Estimate
2	1.03125
4	1.00195
6	1.00039
8	1.00012
10	1.00005

Gaussian Quadrature for General Regions (1 of 2)

Consider the double integral:

$$\int_{a}^{b} \int_{c(x)}^{d(x)} f(x, y) \, dy \, dx$$

We can apply Gaussian quadrature to the "inner" integral.

Gaussian Quadrature for General Regions (1 of 2)

Consider the double integral:

$$\int_{a}^{b} \int_{c(x)}^{d(x)} f(x, y) \, dy \, dx$$

We can apply Gaussian quadrature to the "inner" integral.

$$\int_{c(x)}^{d(x)} f(x,y) \, dy$$

$$= \int_{-1}^{1} f\left(x, \frac{(d(x) - c(x))u + c(x) + d(x)}{2}\right) \frac{d(x) - c(x)}{2} \, du$$

$$\approx \frac{d(x) - c(x)}{2} \sum_{i=1}^{n} c_{n,i} f\left(x, \frac{(d(x) - c(x))r_{n,j} + c(x) + d(x)}{2}\right)$$

Gaussian Quadrature for General Regions (2 of 2)

Therefore

$$\int_{a}^{b} \int_{c(x)}^{d(x)} f(x,y) \, dy \, dx$$

$$\approx \int_{a}^{b} \left[\frac{d(x) - c(x)}{2} \sum_{j=1}^{n} c_{n,j} f\left(x, \frac{(d(x) - c(x))r_{n,j} + c(x) + d(x)}{2}\right) \right]$$

Now we apply Guassian quadrature to the remaining integral.

Algorithm

INPUT a, b; positive integers m, n.

STEP 1 Set
$$h_1 = (b-a)/2$$
; $h_2 = (b+a)/2$; $J = 0$.

STEP 2 For
$$i = 1, 2, ..., m$$
 do STEPS 3–5.

STEP 3 Set
$$JX = 0$$
; $x = h_1 r_{m,j} + h_2$; $d = d(x)$; $c = c(x)$; $k_1 = (d_1 - c_1)/2$; $k_2 = (d_1 + c_1)/2$.

STEP 4 For
$$j = 1, 2, ..., n$$
 set $y = k_1 r_{n,j} + k_2$; $Q = f(x, y)$; $JX = JX + c_{n,j}Q$.

STEP 5 Set
$$J = J + c_{m,i}k_1JX$$
.

STEP 6 Set
$$J = h_1 J$$
; OUTPUT J .

Example (1 of 2)

Use Gaussian quadrature with n=4 to approximate the double integral

Example (2 of 2)

$$\int_{1}^{e} \int_{x}^{x^{2}} \ln(x \, y) \, dy \, dx \approx 6.36185$$

Absolute error:

$$\left| \int_{1}^{e} \int_{x}^{x^{2}} \ln(x \, y) \, dy \, dx - 6.36185 \right| \approx 5.95798 \times 10^{-6}$$

Homework

- Read Section 4.8.
- Exercises: 1ab, 5ab