ENGG1003 - Tuesday Week 7

File I/O
More Pointers

Brenton Schulz

University of Newcastle

April 8, 2019

Che C Documentation

- Linux systems have a program called "man"
 - ► Short for "manual"
- It is used to display a wide variety of documentation called "man pages"
- To install it type this in the terminal:

```
sudo apt update
sudo apt install man
```

- and press y (or <enter>) when prompted to confirm installation
- Afterwards, C documentation can be accessed by typing man <topic>

Che C Documentation

For example, all library functions have a man page you can read by typing:

```
man <function name>
```

- eg, try:
 - man fopen
 - man printf
 - man sin
 - man string
 - etc..

File I/O

- ► A stream is kept in a variable of type FILE *
 - ► Read as "pointer to FILE" or "FILE-star"
- ► Three already exist in your C programs:
 - stdin
 - st.dout.
 - stderr
- Additional streams are declared like other variables, eg:

```
1 FILE *input, *output;
```


Correction: String Initialisation

► This is totally fine:

```
char string[] = "initial value";
```

- The compiler copies the string literal into string[]
- The length is automatically calculated
 - You may specify a length longer than necessary:

```
char string[1024] = "initial value";
```

Correction: String Initialisation

► This is totally fine:

```
char string[] = "initial value";
```

- ➤ The compiler copies the string literal into string[]
- The length is automatically calculated
 - You may specify a length longer than necessary:

```
char string[1024] = "initial value";
```

► A constant string is created with:

```
char *str = "some string";
```

We will study this pointer syntax later

File I/O - Quick Review

- ▶ Before a file can be accessed you must open it with the fopen() function
- In order to open files you need two pieces of information:
 - The file's name
 - ► The data direction (mode)
 - Reading
 - Writing
 - Both

File I/O

fopen()'s function prototype is:

```
1 FILE *fopen(const char *name, const char *mode);
```

- const char *name is a string holding the file's name
- const char *mode is a string describing the desired data direction
- Both of these can be passed as variable strings or hard-coded

File I/O

- ► The *mode argument can be one of the following:
 - "r" (reading)
 - "r+" (reading and writing)
 - ► "w" (writing)
 - "w+" (reading and writing, file truncated)
 - "a" (appending)
 - "a+" (reading and appending)
- Read <u>documentation</u> for details
- ▶ fopen() example:

```
1 FILE *input;
2 input = fopen("data.txt", "r");
```

fopen() Errors

- ► The return value of fopen() is NULL on error
- ► Check it! Attempting to access a NULL stream will result in a segmentation fault!

```
1 FILE *input;
2 input = fopen("data", "r");
3 if(input == NULL) {
4   perror("fopen()");
5   return;
6 }
```

perror() prints a user-friendly error message

File I/O

- Once opened, a file can be accessed with:
 - fscanf()
 - fprintf()
- These functions behave just like scanf() and printf() except they take an extra argument:

```
int fscanf(FILE *stream, const char *format,
...);
```

- ► The first argument is a FILE *
- ► The rest is identical to printf() and scanf()

File I/O - Position Indicators

- Concept: bytes in files have an address known as a position indicator
- ► The address is the number of bytes, starting at zero, from the start of the file
- Unless otherwise controlled, files are only read from and written to sequentially
- The position indicator automatically increments when a byte is read or written

File I/O - Position Indicators

- Some useful functions:
 - ▶ ftell() Returns the position indicator
 - fseek() Sets the position indicator
 - feof() Returns TRUE if the position indicator is at the end of the file
- For example, to process data until the end of file is reached:

```
1 FILE *stream;
2 // open file etc
3 while(!feof(stream)) {
4    // Read from file
5    // Do stuff
6 }
```

Write a C program which opens a file, test.txt, and prints its contents to stdout, reading and writing one character at a time.

Write a C program which opens a file, test.txt, and prints its contents to stdout, reading and writing one character at a time.

Declare FILE *input;

Write a C program which opens a file, test.txt, and prints its contents to stdout, reading and writing one character at a time.

- Declare FILE *input;
- Use fopen() to open it for reading

Write a C program which opens a file, test.txt, and prints its contents to stdout, reading and writing one character at a time.

- Declare FILE *input;
- Use fopen() to open it for reading
- Write a loop which reads and writes characters until the whole file has been read
 - Read with: fscanf(input, "%c", &c);
 - ► Write with: fprintf("%c", c);

Write a C program which opens a file, input.txt, then reads and prints each character to the console on a new line, indicating the position indicator's value *after* reading each character.

Write a C program which copies a file, input.txt, into a new file, output.txt. While copying, the program should count how many spaces there are in the input and print the final count to the terminal before exiting.

Write a C program which opens a file, input.txt, and counts the number of times the string "the" appears.

The program should include a function, isThe(), which tests if a string is equal to "the" or not.

Pointers

- A pointer is the memory address of a variable or an array's first element
- Pointers can be stored in variables of type "pointer to data type"
 - Declaration syntax:
 data_type * variable_name;
 - ▶ eg: int *p;
- Pointers also implicitly exist when using arrays
- All pointers are the same size
 - ► The memory address of a char is the same size as the memory address of a double

Pointers - Why?

- In ENGG1003:
 - Passing a pointer to a function lets the function modify the variable
 - This lets functions "return" more than one value (ie: modify multiple variables given as pointer arguments)
 - String functions mostly accept char *'s
 - Help you understand computer memory organisation
 - Pointers are the only way to send "large" amounts of data to a function

Pointers - Why?

- ► Beyond ENGG1003:
 - Pointer "casting" can be used to interpret one variable as a different type in a specific way
 - eg: break a 32 bit int into two 16 bit chunks for transmission on an SPI bus
 - Interpreting "file header" data chunks as complex data structures
 - Pointers are required for dynamic memory allocation
 - For getting large amounts of RAM after a program has begun executing
 - Pointers are required to build advanced memory structures such as trees and linked lists

Pointer Terminology

▶ A pointer is *declared* with the syntax:

```
1 datatype *pointerName;
```

► A pointer is *allocated* with the syntax:

```
pointerName = &variable;
```

A pointer is dereferenced with the syntax:

```
1 *pointerName = 12;
```

► This allocates 12 to the variable pointerName is pointing to

Pointer Declaration

- If you need to store a pointer in a variable it is declared
- Examples:

```
int *p; // Pointer to an integar
char c, *a; // char c and pointer-to-char a
char * str = "string" // Pointer to string
```

Explicit declaration like this is mostly beyond FNGG1003

Pointer Allocation

➤ A pointer is "created" by using the & operator before a variable name:

```
int k, \star x;

k = \&x; // k holds the address of x
```

Array names are implicitly pointers to the array start:

```
char string[] = "Hello";
char *p = string; // Pointer to an array
```

Pointer Dereferencing

- This is the conceptually tricky one:
 - If p is a pointer to x, then *p makes it "appear" as x

```
int *p, x;
p = &x;
*p = 12; // Makes x 12
```

- Be careful: the function of the * character is context dependent!
 - It could multiply
 - It could declare a pointer type
 - it could dereference a pointer

Pointer Dereferencing

- This is the conceptually tricky one:
 - If p is a pointer to x, then *p makes it "appear" as x

```
int *p, x;
p = &x;
*p = 12; // Makes x 12
```

- ▶ Be careful: the function of the * character is context dependent!
 - lt could multiply
 - ► It could declare a pointer type
 - it could dereference a pointer
- ► The example above is just a toy, lets do a function example...

Pointers and Functions

➤ A pointer function argument is listed like a pointer declaration:

```
void f(int *x); // Pointer to int argument
```

- Aside: This is often just read as "int star"
- ► Inside the function the thing x points to can be modified or accessed with *x:

```
void f(int *x) {
   y = 2 + *x;
   *x = 2 * (*x); // This syntax is painful
   // ()'s for clarity
```

Pointer Example

(Toy example) What will this code print?

```
#include <stdio.h>

int main() {
   int x = 5; *p;
   p = &x;
   x++;
   printf("%d\n", *p);
   *p++;
   printf("%d\n", x);
   return 0;
}
```