

CSE 473 Pattern Recognition

- Typical Applications
 - Speech Recognition
 - Motion Estimation in Video Coding
 - Data Base Image Retrieval
 - Written Word Recognition
 - Bioinformatics

The Goal:

- Given a set of reference patterns known as TEMPLATES,
- find the best match for unknown pattern
- each class represented by a single typical pattern.
- requires an appropriate "measure" to quantify similarity or matching.

- The cost "measure":
 - <u>deviations</u> between the template and the test pattern.

- The cost "measure":
 - <u>deviations</u> between the template and the test pattern.
 - For example:
 - The word beauty may have been read as beeauty or beuty, etc., due to errors.
 - The same person may speak the same word differently.

Template Matching Methods

- Optimal path searching techniques
- Correlation
- Deformable models

 Representation: Represent the template by a sequence of measurement vectors or string patterns

Template: $\underline{r}(1), \underline{r}(2), ..., \underline{r}(I)$

Test pattern: $\underline{t}(1), \underline{t}(2), ..., \underline{t}(J)$

Template:
$$\underline{r}(1), \underline{r}(2), ..., \underline{r}(I)$$

Test pattern:
$$\underline{t}(1), \underline{t}(2), ..., \underline{t}(J)$$

- In general $I \neq J$
- We need to find an appropriate distance measure between test and reference patterns.

- Form a grid with I points (template) in horizontal and J points (test) in vertical
- Each point (i,j) of the grid measures the distance between $\underline{r}(i)$ and $\underline{t}(j)$

- Path: A path through the grid, from an initial node (i_0, j_0) to a final one (i_f, j_f) , is an ordered set of nodes $(i_0, j_0), (i_1, j_1), (i_2, j_2) \dots (i_k, j_k) \dots (i_f, j_f)$

– Path: A path is complete path if:

$$(i_0, j_0) = (0, 0), (i_1, j_1), (i_2, j_2), \dots, (i_f, j_f) = (I, J)$$

Each path is associated with a cost

$$D = \sum_{k=0}^{K-1} d(i_k, j_k)$$

where K is the number of nodes across the path

- Let the cost up to node (i_k, j_k) be $D(i_k, j_k)$
- By convention
 - -D(0,0)=0
 - -d(0,0)=0

The equation

$$D = \sum_{k=0}^{K-1} d(i_k, j_k)$$

assumes that each node has been associated with some cost

The equation

$$D = \sum_{k=0}^{K-1} d(i_k, j_k)$$

assumes that each node has been associated with some cost

- However, each transition (i_{k-1}, j_{k-1}) to (i_k, j_k) may also associate with a cost
- The new equation is:

$$D = \sum_{k} d(i_{k}, j_{k}|i_{k-1}, j_{k-1})$$

$$D = \sum_{k} d(i_{k}, j_{k}|i_{k-1}, j_{k-1})$$

- Search for the path with the optimal cost $D_{opt.}$
- The matching cost between template \underline{r} and test pattern \underline{t} is $D_{opt.}$
- Costly operation
- Needs efficient computation

Optimal path:

$$(i_0, j_0) \xrightarrow{opt} (i_f, j_f)$$

Optimal path:

$$(i_0, j_0) \xrightarrow{opt} (i_f, j_f)$$

• Let (i,j) be an intermediate node, i.e.

$$(i_0, j_0) \rightarrow \dots \rightarrow (i, j) \rightarrow \dots \rightarrow (i_f, j_f)$$

Optimal path:

$$(i_0, j_0) \xrightarrow{opt} (i_f, j_f)$$

• Let (i,j) be an intermediate node, i.e.

$$(i_0, j_0) \rightarrow \dots \rightarrow (i, j) \rightarrow \dots \rightarrow (i_f, j_f)$$

Then, write the optimal path through (i, j)

$$(i_0,j_0) {\displaystyle \mathop {igwap >} \limits_{(i,j)}^{opt}} (i_f,j_f)$$

Bellman's Principle:

$$(i_0, j_0) \xrightarrow{opt} (i_f, j_f)$$
 can be obtained as

$$(i_0, j_0) \xrightarrow{opt} (i, j) \oplus (i, j) \xrightarrow{opt} (i_f, j_f)$$

• meaning: The overall optimal path from (i_0,j_0) to (i_p,j_p) through (i,j) is the concatenation of the optimal paths from (i_0,j_0) to (i,j) and from (i,j) to (i_p,j_p)

Bellman's Principle:

$$(i_0, j_0) \xrightarrow{opt} (i_f, j_f) \Leftrightarrow (i_0, j_0) \xrightarrow{opt} (i, j) \oplus (i, j) \xrightarrow{opt} (i_f, j_f)$$

• Let $D_{opt.}(i_{k-1},j_{k-1})$ is the optimal path to reach (i_{k-1},j_{k-1}) from (i_0,j_0) , then Bellman's principle is stated as:

$$D_{opt}(i_k, j_k) = opt\{D_{opt}(i_{k-1}, j_{k-1}) + d(i_k, j_k \mid i_{k-1}, j_{k-1})\}$$

$$D_{opt}(i_k, j_k) = opt\{D_{opt}(i_{k-1}, j_{k-1}) + d(i_k, j_k \mid i_{k-1}, j_{k-1})\}$$

- We don't need to search the whole space to find the optimal path
- Global and local constraints may be imposed to reduce the search space

$$D_{opt}(i_k, j_k) = opt\{D_{opt}(i_{k-1}, j_{k-1}) + d(i_k, j_k \mid i_{k-1}, j_{k-1})\}$$

- We don't need to search the whole space to find the optimal path
- Global and local constraints may be imposed to reduce the search space

Application of TM in Text Matching: The Edit Distance

- The Edit distance
 - It is used for matching written words.
 Applications:
 - Automatic Editing
 - Text Retrieval

Application of TM in Text Matching: The Edit Distance

- The Edit distance
 - It is used for matching written words.
 Applications:
 - Automatic Editing
 - Text Retrieval
 - The measure to be adopted for matching, must take into account:
 - Wrongly identified symbols
 e.g. "befuty" instead of "beauty"
 - Insertion errors, e.g. "bearuty"
 - Deletion errors, e.g. "beuty"

• Edit distance: Minimal total number of changes, *C*, insertions *I* and deletions *R*, required to change pattern *A* into pattern *B*,

$$D(A,B) = \min_{j} [C(j) + I(j) + R(j)]$$

where j runs over All possible variations of symbols, in order to convert $A \longrightarrow B$

<u>Edit distance</u>: <u>Minimal</u> total number of changes, *C*, insertions *I* and deletions *R*, required to change pattern *A* into pattern *B*,

$$D(A,B) = \min_{j} [C(j) + I(j) + R(j)]$$

where j runs over All possible variations of symbols, in order to convert $A \longrightarrow B$

• Example: many ways to change beuty to beauty

- The optimal path search algorithm can be used, provided we know
 - Initial conditions
 - Search space
 - Allowable transitions
 - Distance measure

- Cost D(0,0) = 0,
- Complete path is searched
- Allowable predecessors and costs:

$$- (i-1, j-1) \to (i, j)$$

$$d(i, j | i-1, j-1) = \begin{cases} 0, & \text{if } t(i) = r(j) \\ 1, & t(i) \neq r(j) \end{cases}$$

- Horizontal
$$d(i, j|i-1, j) = 1$$

- Vertical
$$d(i, j|i, j-1) = 1$$

$$i-1, j$$

$$i-1, j-1$$

$$i, j-1$$

• Examples:

• Examples:

- The Algorithm
 - D(0,0)=0
 - For i=1, to I
 - D(i,0)=D(i-1,0)+1
 - END $\{FOR\}$
 - For j=1 to J
 - D(0,j)=D(0,j-1)+1
 - $END{FOR}$
 - For i=1 to I
 - For j=1, to J
 - $-C_1 = D(i-1,j-1) + d(i,j \mid i-1,j-1)$
 - $C_2 = D(i-1,j)+1$
 - $C_3 = D(i,j-1)+1$
 - $-D(i,j)=min(C_1,C_2,C_3)$
 - *END* {*FOR*}
 - END $\{FOR\}$
 - -D(A,B)=D(I,J)

Application of TM in Speech Recognition

- A number of variations
 - Speaker Independent Speech Recognition
 - Speaker Dependent Speech Recognition
 - Continuous Speech Recognition
 - Isolated word recognition (IWR)

Application of TM in IWR

• The goal:

- Given a number of known spoken words in a data base (reference patterns)
- find the best match of an unknown spoken word (test pattern).

Procedure:

compare the test word against reference words

Application of TM in IWR

• The procedure:

- Express the test and each of the reference patterns as sequences of feature vectors, $\underline{r}(i)$, $\underline{t}(j)$.
- To this end, divide each of the speech segments in a number of successive frames.

- The procedure:
 - Sample a speech segment from a microphone:

• The procedure:

 each frame is represented by a vector of 512 samples

$$\underline{r}(i) = \begin{bmatrix} x_i(0) \\ x_i(1) \\ \dots \\ x_i(512) \end{bmatrix}, i = 1, \dots, I \qquad \underline{t}(j) = \begin{bmatrix} x_j(0) \\ x_j(1) \\ \dots \\ x_j(512) \end{bmatrix}, j = 1, \dots, J$$

convert them to DFT

$$DFT(\underline{r}(i)) = DFT(\begin{bmatrix} x_i(0) \\ x_i(1) \\ \dots \\ x_i(512) \end{bmatrix}) = \begin{bmatrix} X_i(0) \\ X_i(1) \\ \dots \\ X_i(512) \end{bmatrix}$$

$$DFT(\underline{t}(j)) = DFT(\begin{bmatrix} x_i(0) \\ x_i(1) \\ \dots \\ x_i(512) \end{bmatrix}) = \begin{bmatrix} X_i(0) \\ X_i(1) \\ \dots \\ X_i(512) \end{bmatrix}$$

convert them to DFT

• For each frame compute a feature vector. For example, the DFT coefficients and use, say, ℓ of those:

$$\underline{r}(i) = \begin{bmatrix} X_i(0) \\ X_i(1) \\ \dots \\ X_i(\ell-1) \end{bmatrix}, i = 1, \dots, I \quad \underline{t}(j) = \begin{bmatrix} X_j(0) \\ X_j(1) \\ \dots \\ X_j(\ell-1) \end{bmatrix}, j = 1, \dots, J$$

• For each frame compute a feature vector. For example, the DFT coefficients and use, say, ℓ of those:

$$\underline{r}(i) = \begin{bmatrix} X_i(0) \\ X_i(1) \\ \dots \\ X_i(\ell-1) \end{bmatrix}, i = 1, \dots, I \quad \underline{t}(j) = \begin{bmatrix} X_j(0) \\ X_j(1) \\ \dots \\ X_j(\ell-1) \end{bmatrix}, j = 1, \dots, J$$

• Choose a cost function associated with each node across a path, e.g., the Euclidean distance

$$\left\|\underline{r}(i_k) - \underline{t}(j_k)\right\| = d(i_k, j_k)$$

• For each frame compute a feature vector. For example, the DFT coefficients and use, say, ℓ of those:

$$\underline{r}(i) = \begin{bmatrix} X_i(0) \\ X_i(1) \\ \dots \\ X_i(\ell-1) \end{bmatrix}, i = 1, \dots, I \quad \underline{t}(j) = \begin{bmatrix} X_j(0) \\ X_j(1) \\ \dots \\ X_j(\ell-1) \end{bmatrix}, j = 1, \dots, J$$

 Choose a cost function associated with each node across a path, e.g., the Euclidean distance

$$\left\|\underline{r}(i_k) - \underline{t}(j_k)\right\| = d(i_k, j_k)$$

- find the optimal path in the grid
- Match the test pattern to the reference pattern associated with the optimal path

- Prior to performing the math one has to choose:
 - end point constraints
 - global constraints
 - local constraints
 - distance

- Prior to performing the math one has to choose:
 - The global constraints: Defining the region of space within which the search for the optimal path will be performed.

• The local constraints: monotonic path

$$i_{k-1} \le i_k$$
 and $j_{k-1} \le j_k$

• The local constraints: monotonic path

$$i_{k-1} \le i_k$$
 and $j_{k-1} \le j_k$

• Non-monotonic path

• The local constraints: Defining the type of transitions allowed between the nodes of the grid.

Itakura local constraints

• The local constraints: Defining the type of transitions allowed between the nodes of the grid.

Sakoe and Chiba local constraints

- cost function:
 - Euclidean distance
 - only node distance

$$d(i_k, j_k | i_{k-1}, j_{k-1}) = d(i_k, j_k)$$

$$= \left\| \underline{r}(i_k) - \underline{t}(j_k) \right\|$$