Modern Solution: Shared Libraries

Static libraries have the following disadvantages:

- Duplication in the stored executables (every function needs libc)
- Duplication in the running executables
- Minor bug fixes of system libraries require each application to explicitly relink
 - Rebuild everything with glibc?
 - https://security.googleblog.com/2016/02/cve-2015-7547-glibc-geta ddrinfo-stack.html

Modern solution: Shared Libraries

- Object files that contain code and data that are loaded and linked into an application dynamically, at either load-time or run-time
- Also called: dynamic link libraries, DLLs, .so files

Shared Libraries (cont.)

- Dynamic linking can occur when executable is first loaded and run (load-time linking).
 - Common case for Linux, handled automatically by the dynamic linker (ld-linux.so).
 - Standard C library (libc.so) usually dynamically linked.
- Dynamic linking can also occur after program has begun (run-time linking).
 - In Linux, this is done by calls to the dlopen() interface.
 - Distributing software.
 - High-performance web servers.
 - Runtime library interpositioning.
- Shared library routines can be shared by multiple processes.
 - More on this when we learn about virtual memory

What dynamic libraries are required?

- .interp section
 - Specifies the dynamic linker to use (i.e., ld-linux.so)
- .dynamic section
 - Specifies the names, etc of the dynamic libraries to use
 - Follow an example of prog

```
(NEEDED) Shared library: [libm.so.6]
```

- Where are the libraries found?
 - Use "1dd" to find out:

```
unix> ldd prog
  linux-vdso.so.1 => (0x00007ffcf2998000)
  libc.so.6 => /lib/x86_64-linux-gnu/libc.so.6 (0x00007f99ad927000)
  /lib64/ld-linux-x86-64.so.2 (0x00007f99adcef000)
```

Dynamic Library Example

Dynamic Linking at Load-time

Dynamic Linking at Run-time

```
#include <stdio.h>
#include <stdlib.h>
#include <dlfcn.h>
int x[2] = \{1, 2\};
int y[2] = \{3, 4\};
int z[2];
int main(int argc, char** argv)
   void *handle:
   void (*addvec)(int *, int *, int *, int);
    char *error;
    /* Dynamically load the shared library that contains addvec() */
    handle = dlopen("./libvector.so", RTLD LAZY);
    if (!handle) {
        fprintf(stderr, "%s\n", dlerror());
       exit(1);
                                                                 d11.c
```

Dynamic Linking at Run-time (cont)

```
. . .
/* Get a pointer to the addvec() function we just loaded */
addvec = dlsym(handle, "addvec");
if ((error = dlerror()) != NULL) {
    fprintf(stderr, "%s\n", error);
    exit(1);
/* Now we can call addvec() just like any other function */
addvec(x, y, z, 2);
printf("z = [%d %d] \n", z[0], z[1]);
/* Unload the shared library */
if (dlclose(handle) < 0) {</pre>
    fprintf(stderr, "%s\n", dlerror());
    exit(1);
return 0;
                                                         d11.
```

Dynamic Linking at Run-time

Case Study: Library Interpositioning

- Documented in Section 7.13 of book
- Library interpositioning : powerful linking technique that allows programmers to intercept calls to arbitrary functions
- Interpositioning can occur at:
 - Compile time: When the source code is compiled
 - Link time: When the relocatable object files are statically linked to form an executable object file
 - Load/run time: When an executable object file is loaded into memory, dynamically linked, and then executed.

Some Interpositioning Applications

Security

- Confinement (sandboxing)
- Behind the scenes encryption

Debugging

- In 2014, two Facebook engineers debugged a treacherous 1-year old bug in their iPhone app using interpositioning
- Code in the SPDY networking stack was writing to the wrong location
- Solved by intercepting calls to Posix write functions (write, writev, pwrite)

Source: Facebook engineering blog post at:

https://code.facebook.com/posts/313033472212144/debugging-file-corruption-on-ios/

Some Interpositioning Applications (cont)

Monitoring and Profiling

- Count number of calls to functions
- Characterize call sites and arguments to functions
- Malloc tracing
 - Detecting memory leaks
 - Generating address traces

Error Checking

- C Programming Lab used customized versions of malloc/free to do careful error checking
- Other labs (malloc, shell, proxy) also use interpositioning to enhance checking capabilities

Example program

```
#include <stdio.h>
#include <malloc.h>
#include <stdlib.h>
int main (int argc,
         char *arqv[])
  int i;
  for (i = 1; i < argc; i++) {
    void *p =
          malloc(atoi(argv[i]));
    free(p);
  return(0);
                             int.c
```

- Goal: trace the addresses and sizes of the allocated and freed blocks, without breaking the program, and without modifying the source code.
- Three solutions: interpose on the library malloc and free functions at compile time, link time, and load/run time.

Compile-time Interpositioning

```
#ifdef COMPILETIME
#include <stdio.h>
#include <malloc.h>
/* malloc wrapper function */
void *mymalloc(size t size)
    void *ptr = malloc(size);
    printf("malloc(%d)=%p\n", (int)size, ptr);
    return ptr;
/* free wrapper function */
void myfree(void *ptr)
    free (ptr);
    printf("free(%p)\n", ptr);
endif
                                                    mvmalloc.
```

Compile-time Interpositioning

```
#define malloc(size) mymalloc(size)
#define free(ptr) myfree(ptr)
void *mymalloc(size t size);
void myfree(void *ptr);
                                                           malloc.h
linux> make intc
gcc -Wall -DCOMPILETIME -c mymalloc.c
qcc -Wall -I. -o intc int.c mymalloc.o
linux> make runc
./intc 10 100 1000
                               Search for <malloc.h> leads to
malloc(10) = 0 \times 1 ba 70 \times 0
                               /usr/include/malloc.h
free (0x1ba7010)
malloc(100) = 0x1ba7030
free (0x1ba7030)
malloc(1000) = 0x1ba70a0
                             Search for <malloc.h> leads to
free (0x1ba70a0)
linux>
```

Link-time Interpositioning

```
#ifdef LINKTIME
#include <stdio.h>
void * real malloc(size t size);
void real free(void *ptr);
/* malloc wrapper function */
void * wrap malloc(size t size)
   void *ptr = real malloc(size); /* Call libc malloc */
   printf("malloc(%d) = p\n", (int)size, ptr);
   return ptr;
/* free wrapper function */
void wrap free(void *ptr)
    real free(ptr); /* Call libc free */
   printf("free(%p)\n", ptr);
endif
                                                   mvmalloc.
```

Link-time Interpositioning

```
linux> make intl
gcc -Wall -DLINKTIME -c mymalloc.c
gcc -Wall -c int.c
gcc -Wall -Wl,--wrap, malloc -Wl,--wrap, free -o intl \
   int.o mymalloc.o
linux> make runl
./intl 10 100 1000
malloc(10) = 0x91a010
free(0x91a010)
. . .
```

- The "-₩1" flag passes argument to linker, replacing each comma with a space.
- The "--wrap, malloc" arg instructs linker to resolve references in a special way:
 - Refs to malloc should be resolved as wrap malloc
 - Refs to real malloc should be resolved as malloc

Load/Run-time Interpositioning

```
#ifdef RUNTIME
                                           Interpositioning
#define GNU SOURCE
#include <stdio.h>
#include <stdlib.h>
                            Observe that DON'T have
#include <dlfcn.h>
                            #include <malloc.h>
/* malloc wrapper function */
void *malloc(size t size)
   void *(*mallocp)(size t size);
    char *error;
   mallocp = dlsym(RTLD NEXT, "malloc"); /* Get addr of libc malloc */
    if ((error = dlerror()) != NULL) {
        fputs(error, stderr);
       exit(1);
    char *ptr = mallocp(size); /* Call libc malloc */
   printf("malloc(%d) = %p\n", (int)size, ptr);
    return ptr;
                                                            mymalloc.c
```

Load/Run-time Interpositioning

```
/* free wrapper function */
void free(void *ptr)
   void (*freep) (void *) = NULL;
    char *error;
    if (!ptr)
        return;
    freep = dlsym(RTLD_NEXT, "free"); /* Get address of libc free */
    if ((error = dlerror()) != NULL) {
        fputs(error, stderr);
        exit(1);
    freep(ptr); /* Call libc free */
   printf("free(%p)\n", ptr);
#endif
```

Load/Run-time Interpositioning

```
linux> make intr
gcc -Wall -DRUNTIME -shared -fpic -o mymalloc.so mymalloc.c -ldl
gcc -Wall -o intr int.c
linux> make runr
(LD_PRELOAD="./mymalloc.so" ./ntr 10 100 1000)
malloc(10) = 0x91a010
free(0x91a010)
. . .
linux>
Search for <malloc.h> leads to
/usr/include/malloc.h
linux>
```

- The LD_PRELOAD environment variable tells the dynamic linker to resolve unresolved refs (e.g., to malloc) by looking in mymalloc.so first.
- Type into (some) shells as:

```
(env LD PRELOAD=./mymalloc.so ./intr 10 100 1000)
```

Interpositioning Recap

Compile Time

- Apparent calls to malloc/free get macro-expanded into calls to mymalloc/myfree
- Simple approach. Must have access to source & recompile

Link Time

Use linker trick to have special name resolutions

```
malloc → wrap malloc
```

" __real_malloc → malloc

Load/Run Time

- Implement custom version of malloc/free that use dynamic linking to load library malloc/free under different names
- Can use with ANY dynamically linked binary

```
(env LD_PRELOAD=./mymalloc.so gcc -c int.c)
```