Unified Sample-Optimal Property Estimation in Near-Linear Time

Yi Hao and Alon Orlitsky

University of California San Diego {yih179, alon}@ucsd.edu

Discrete Distributions

- Discrete support set \mathcal{X}
 - $\{\text{heads, tails}\} = \{\text{h, t}\} \qquad \{\dots, -1, 0, 1, \dots\} = \mathbb{Z}$
- Distribution p over \mathcal{X} , probability p_x for $x \in \mathcal{X}$ $p_x \ge 0 \qquad \sum_{x \in \mathcal{X}} p_x = 1$ $p = (p_h, p_t) \qquad p_h = .6, \ p_t = .4$
- P collection of distributions
- $\mathcal{P}_{\mathcal{X}}$ all distributions over \mathcal{X}
- $\mathcal{P}_{\{h, t\}} = \{(p_h, p_t)\} = \{(.6, .4), (.4, .6), (.5, .5), (0, 1), \ldots\}$

Distribution Property (Functional)

- $f: \mathcal{P}_{\mathcal{X}} \to \mathbb{R}$
- Maps distribution to real value

Shannon entropy	H(p)	$\sum_x p_x \log \frac{1}{p_x}$		
Rényi entropy	$H_{\alpha}(p)$	$\frac{1}{1-\alpha}\log\left(\sum_x p_x^{\alpha}\right)$		
Support size	S(p)	$\sum_{x} \mathbb{1}_{p_x > 0}$		
Support coverage	$S_m(p)$	$\sum_{x} (1 - (1 - p_x)^m)$		
Expected $\#$ distinct symbols in m samples				
Distance to uniformity	$L_{ m uni}(p)$	$\sum_{x} \left p_x - \frac{1}{ \mathcal{X} } \right $		

Property Estimation

- Given: support set \mathcal{X} , property f
- Unknown: $p \in \mathcal{P}_{\mathcal{X}}$
- Estimate: f(p)

Entropy of English words

Given: $\mathcal{X} = \{\text{English words}\}, \text{ unknown: } p, \text{ estimate: } H(p)$ # species in habitat

Given: $\mathcal{X} = \{\text{bird species}\}, \text{ unknown: } p, \text{ estimate: } S(p)$

- How to estimate f(p) when p is unknown?
- Many applications:
 vocabulary and population estimation, database
 similarity, graphical model learning, neural spike
 trains, property testing . . .

Learn from Examples

ullet Observe n independent samples

$$X^n = X_1, \dots, X_n \sim p$$

- Estimate f(p)
- Estimator: $f^{\text{est}}: \mathcal{X}^n \to \mathbb{R}$
- Estimate for f(p): $f^{\text{est}}(X^n)$

Empirical Estimator

- $\bullet n \text{ samples} X^n$
- $p_x^{\text{emp}}(X^n) := (N_x: \# \text{ times } x \text{ appears in } X^n)/n$ • $\mathcal{X} = \{a, b, c\}$ $p = (p_a, p_b, p_c) = (.5, .3, .2)$ • $X^{10} = c, a, b, a, b, a, b, a, b, c$ • $p_a^{\text{emp}} = \frac{4}{10}$, $p_b^{\text{emp}} = \frac{4}{10}$, $p_c^{\text{emp}} = \frac{2}{10}$
- Maximum likelihood estimator (MLE): $p^{\text{ml}} = p^{\text{emp}}$

Empirical Plug-In Estimator

- $f^{\operatorname{emp}}(X^n) = f(p^{\operatorname{emp}}(X^n))$
- Advantages:

Plug-and-play: simple two steps
Universal and Intuitive: applies to all properties

Best-known, most-used property estimator

Sample Complexity

- Probably Approximately Correct (PAC)
- Allowed additive approximation error $\epsilon > 0$
- Allowed error probability $\delta > 0$
- $n_f(f^{\text{est}}, \varepsilon, \delta)$: number of samples f^{est} needs to approximate property f well:

$$|f^{\mathrm{est}}(X^n) - f(p)| \le \varepsilon$$

with probability $\geq 1 - \delta$, for all $p \in \mathcal{P}$

Empirical and Optimal Complexity

• \mathcal{P}_k all k-symbol distributions, $\varepsilon \gtrsim n^{-0.1}, \delta = 1/3$

Property	$n_f(f^{ m emp},arepsilon)$	$n_f(f^{ ext{opt}},arepsilon)$
Entropy	$k \cdot rac{1}{arepsilon}$	$\frac{k}{\log k} \cdot \frac{1}{arepsilon}$
Support coverage	m	$\frac{m}{\log m} \cdot \log \frac{1}{\varepsilon}$
Distance to uniform	$k \cdot rac{1}{arepsilon^2}$	$\frac{k}{\log k} \cdot \frac{1}{arepsilon^2}$
Support size	$k \cdot \log \frac{1}{\varepsilon}$	$\frac{k}{\log k} \cdot \log^2 \frac{1}{\varepsilon}$

- For support size, $\mathcal{P}_{\geq 1/k} := \{ p \mid p_x \geq 1/k, \forall x \in \mathcal{X} \}$
- Support size and coverage normalized by k and m
- The empirical plug-in is suboptimal

Piecewise Polynomials

• A function that is a (possibly different) polynomial on each of several sub-domains

• Extensively used in statistical inference tasks regression, density estimation, time series analysis

Additive Property Estimation

- Additive property $f(p) = \sum_x f_x(p_x)$ entropy, support size, distance to uniformity . . .
- Algorithm sketch
- Given X^n , compute its empirical distribution p^{emp}
- For each symbol x, use p_x^{emp} to identify the (1-1/n)-confidence interval I_x for p_x
- 3 Approximate f_x over I_x by a proper polynomial g_x
- \bullet Estimate $g_x(p_x)$ unbiasedly and sum up estimates
- Implicitly uses piecewise polynomials

Optimal (ε, δ) -Complexity

- For concreteness, entropy, other properties in paper
- Median trick: $\log(1/\delta)$ independent copies, take median to boost the confidence from 2/3 to $1-\delta$
- The median-trick complexity bound

$$n_f(f^{ ext{med}}, arepsilon, \delta) \lesssim \log rac{1}{\delta} \cdot rac{k}{arepsilon \log k} + \log rac{1}{\delta} \cdot rac{\log^2 k}{arepsilon^2}$$

Our estimator f^* achieves

$$n_f(f^*, \varepsilon, \delta) \lesssim \frac{k}{\varepsilon \log k} + \left(\log \frac{1}{\delta} \cdot \frac{1}{\varepsilon^2}\right)^{1.01}$$

• A nearly-matching lower bound with $1.01 \rightarrow 1$

Lipschitz Property Estimation

- $f(p) = \sum_x f_x(p_x)$ is L-Lipschitz

 All functions f_x have Lipschitz constants $\leq L$
- Optimal sub-linear complexity bound

$$n_f(f^{\text{opt}}, \varepsilon, 1/3) \lesssim L^2 \cdot \frac{k}{\varepsilon^2 \log k}$$

- Previously, such a generic bound was proved only for symmetric and a few non-symmetric properties
- The estimator is highly concentrated, yielding near-optimal differentially private estimators

Poisson-McDiarmid Inequality

- Poisson sampling Sample size $n \to N \sim \text{Poi}(n)$
- Independent symbol counts
- Bounded difference property For all m and x^m , changing, adding, or deleting one symbol in x^m changes $f(x^m)$ by at most c
- Inequality: Let $c_* = 8 \max\{c, n^{-1}\}$. $\forall \varepsilon > 0$,

$$\Pr\left(\left|f(X^N) - \mathbb{E}[f(X^N)]\right| > \varepsilon\right) \le 4 \exp\left(-\frac{2\varepsilon^2}{nc_*^2}\right)$$