學號:B03705012 系級: 資管三 姓名:張晉華

1. 請簡明扼要地闡述你如何抽取模型的輸入特徵(feature)

答:

利用過去連續 9 小時的 PM2.5 資料,用 Gradient Descent 實作 linear regression Learn_rate 初始值為 0.1,若遇到 MSE 變大則降低 Learn_rate 一半 當兩次 MSE 相差不到 0.000001 時視為學習完成

2. 請作圖比較不同訓練資料量對於 PM2. 5 預測準確率的影響 答:

由圖可知訓練的資料量越多 MSE 會有下降的趨勢,但

3. 請比較不同複雜度的模型對於 PM2.5 預測準確率的影響 答:

使用 PM2.5 前 n 個小時的資料	MSE(per hour)
1	51. 834710872354385
2	50. 919401833046123
3	49. 633062069812148
4	45. 277861842148653
5	45. 051414136794023
6	45. 003486846379289
7	44. 043806373433981
8	44. 009725785595144
9	43. 920244207431281

使用越多的 PM2.5 資料精準度會提高。

4. 請討論正規化(regularization)對於 PM2.5 預測準確率的影響 答:

1ambda	MSE
0	43. 910866873632067
0.01	43. 910871948130549
0.1	43. 910917618616899
1.0	43. 911374323480374

10.0	43. 915941372115142
100.0	43. 961807908411487
1000.0	44. 420373830203843

使用正規化(regularization)對於 PM2.5 預測準確率在這個模型下看來沒有顯著的幫助

5. 在線性回歸問題中,假設有 N 筆訓練資料,每筆訓練資料的特徵(feature)為一向量 \mathbf{x}^n ,其標註(label)為一存量 \mathbf{y}^n ,模型參數為一向量 \mathbf{w} (此處忽略偏權值 b),則線性回歸的損失函數(loss function)為 $\sum_{n=1}^N (y^n - w \cdot x^n)^2$ 。若將所有訓練資料的特徵值以矩陣 $\mathbf{X} = [\mathbf{x}^1 \ \mathbf{x}^2 \ \cdots \ \mathbf{x}^N]$ 表示,所有訓練資料的標註以向量 $\mathbf{y} = [\mathbf{y}^1 \ \mathbf{y}^2 \ \cdots \ \mathbf{y}^N]^\mathsf{T}$ 表示,請以 \mathbf{X} 和 \mathbf{y} 表示可以最小化損失函數的向量 \mathbf{w} 。

答:

 $\min \sum_{n=1}^{N} (y^n - w \cdot x^n)^2$

- \Rightarrow min(y wX)²
- ⇒ 因為 X 是 linear independent
- \Rightarrow $w(XX^T) = yX^T$
- \Rightarrow w = $yX^{T}(XX^{T})^{-1}$