Leçon 13 : Transformations du plan. Frises et pavages

Prérequis

- Médiatrice
- Angle et longueur
- Polygones et polygones réguliers

Niveau : Collège (Cycle 4), Première, Terminale STD2A

Table des matières

1	Tra	nsformations du plan	
	1.1	Introduction	
	1.2	Symétrie axiale	
	1.3	Rotation	
	1.4	Symétrie centrale	
		Translation	
	1.6	Propriétés	
2			
	2.1	Définitions	
	2.2	Les isométries du plan dans les frises	
	2.3	Activité possible - Exploration avec GeoGebra	
3	Pav		
	3.1	Définitions et propriétés	
	3.2	Application - Activité Scratch	

1 Transformations du plan

1.1 Introduction

Une transformation t associe à une figure F du plan une autre figure F' du plan. On dit que F' est l'image de F par la transformation t, et F' est unique.

$$t: F \to t(F) = F'$$

1.2 Symétrie axiale

Définition : Le symétrique d'un point A par rapport à une droite (D) est le point M tel que (D) soit la médiatrice du segment [AM].

Deux figures sont symétriques par rapport à une droite si elles se superposent par pliage le long de cette droite. Cette droite est appelée l'axe de symétrie.

FIGURE 1 – Illustration de la symétrie axiale

1.3 Rotation

Définition : La rotation de centre O, d'angle α , dans un sens donné, du point M du plan est le point M' tel que le triangle OMM' soit isocèle en O et que l'angle $(\widehat{OM}, \widehat{OM'}) = \alpha$.

FIGURE 2 – Exemple de rotation de centre O, angle 130° (sens horaire)

1.4 Symétrie centrale

Définition : Soit un point M du plan. Son image M' par une symétrie centrale de centre O est tel que O est le milieu de [MM'].

Remarque : Une symétrie centrale équivaut à une rotation d'angle 180° autour du centre de symétrie.

1.5 Translation

Définition : Soient deux points A et B. La translation qui envoie A sur B à un point M est le point M' obtenu en glissant selon la direction de (AB), dans le sens de A vers B, et de longueur AB.

Notation : Représentée par une flèche \overrightarrow{AB} .

Figure 3 – Exemple de translation

1.6 Propriétés

- Les transformations conservent l'alignement, les distances, les angles, les aires, le parallélisme et l'orthogonalité.
- Une symétrie axiale, centrale ou une translation transforme une droite en une droite parallèle.

2 Frises

2.1 Définitions

Bande (ou ruban): Portion du plan comprise entre deux droites parallèles.

Frise : Une frise est un motif répété indéfiniment par translation le long d'une direction (en général parallèle aux deux droites délimitant la bande). On parle de *frise périodique*.

Motif élémentaire : Plus petite figure permettant de reconstituer toute la frise par application d'isométries.

Motif de base : Motif complet avant répétition par translation. Il peut être obtenu à partir du motif élémentaire par d'autres transformations (symétries, rotations...).

FIGURE 4 – Exemple de pavage avec un lutin

2.2 Les isométries du plan dans les frises

Outre la translation, une frise peut présenter d'autres symétries :

- Symétrie axiale horizontale (par rapport à l'axe médian de la bande)
- Symétrie axiale verticale (perpendiculaire à la direction de la frise)
- Symétrie centrale
- rotation de 180°

2.3 Activité possible - Exploration avec GeoGebra

Objectif : Explorer la diversité des frises en créant un motif et en lui appliquant diverses isométries.

FIGURE 5 – Exemple de frise créée avec GeoGebra

- 1. Créer un motif élémentaire.
- 2. Répéter ce motif par translation.
- 3. Ajouter selon les cas : une symétrie axiale verticale, une symétrie horizontale, une rotation d'ordre 2.

3 Pavages

3.1 Définitions et propriétés

Définition : Un pavage est une portion du plan où un motif de base se répète régulièrement par deux translations non parallèles (ex. $A \to B$ et $A \to C$).

Proposition: Les seuls pavages réguliers du plan sont par :

- triangles équilatéraux
- carrés
- hexagones réguliers

Propriété : Soit ABCD un parallélogramme. En appliquant des translations de $D \to A$ et $D \to C$, on obtient un pavage.

3.2 Application - Activité Scratch

Consigne : Programmer un pavage du plan en répétant un motif comme le lutin « stop ».

FIGURE 6 – Exemple de pavage avec un lutin