

# Introdução ao uso do aplicativo *Gnuplot*

Autor: Prof. Mauricio Galo

# **SUMÁRIO**

| SUMÁRIO                                                                   | j  |
|---------------------------------------------------------------------------|----|
| 1. APRESENTAÇÃO / CARACTERÍSTICAS / APLICAÇÕES                            | 1  |
| Ambiente de trabalho                                                      | 4  |
| 2. COMANDOS BÁSICOS PARA VISUALIZAÇÃO DE FUNÇÕES                          | 5  |
| Ativação da grade (grid)                                                  | 6  |
| Modificação do domínio de funções                                         | 7  |
| Visualização de múltiplas funções                                         | 7  |
| 3. MODIFICAÇÃO DE ATRIBUTOS                                               | 8  |
| Cor, tipos de pontos e linhas                                             | 8  |
| Mudança dos atributos com cor de fundo, fonte, etc.                       | 11 |
| 4. DEFINIÇÃO DE FUNÇÕES PELO USUÁRIO                                      | 11 |
| 5. LEITURA E VISUALIZAÇÃO DE DADOS A PARTIR DE ARQUIVOS / TEXTO / LEGENDA | 14 |
| Inserção de título e texto nos eixos x e y                                | 16 |
| Modificação do espaçamento da grade                                       | 17 |
| Modificação da legenda                                                    | 18 |
| Criação de scripts em arquivo                                             | 19 |
| 6. OPERADOR TERNÁRIO                                                      | 20 |
| 7. Superfícies                                                            | 22 |
| 8. TÓPICOS ADICIONAIS                                                     | 26 |
| Representação de ângulos em graus e radianos                              | 26 |
| Comando de pausa                                                          | 27 |
| Troca de variáveis                                                        | 27 |
| AGRADECIMENTO                                                             | 29 |
| RIRI IOCRAFIA                                                             | 20 |

# 1. APRESENTAÇÃO / CARACTERÍSTICAS / APLICAÇÕES

O aplicativo *gnuplot* é destinado à visualização de gráficos e superfícies, úteis em aplicações científicas nas áreas de física, matemática, estatística, engenharias (cartográfica, mecânica, elétrica, ...), etc. Este aplicativo é de domínio público e tem versões para uma série de sistemas operacionais, entre os quais pode-se citar os seguintes: Windows, Unix, Linux, DOS, etc. Para a obtenção do aplicativo nas diversas plataformas, com exemplos de aplicações, manuais, informações detalhadas, etc são sugeridos os seguintes endereços eletrônicos:

- ♦ http://www.gnuplot.info/
- ♦ http://www.usf.uni-osnabrueck.de/~breiter/tools/gnuplot/index.en.html
- ♦ http://www.cs.uni.edu/Help/gnuplot/ (manual/tutorial)
- ♦ http://www.duke.edu/~hpgavin/gnuplot.html (manual/tutorial)
- ♦ http://www.prudente.unesp.br/dcartog/galo/gnuplot

Na sequência são apresentados alguns exemplos de gráficos gerados utilizando este aplicativo, para que o leitor tenha uma idéia do seu potencial de uso.



Figura 1.1 - Exemplo de um gráfico mostrando três curvas.



Figura 1.2 - Gráficos de funções com barra de erros (arquivo de demonstração que acompanha o aplicativo).



Figura 1.3 - Gráfico de consumo de energia com dados armazenados e lidos em arquivo.



Figura 1.4 - Gráfico mostrando os resíduos lidos a partir de arquivos.



Figura 1.5 - Distribuição  $\chi^2$ .



Figura 1.6 - Exemplo do gráfico de uma superfície.



Figura 1.7 - Exemplo de uma projeção cartográfica feita usando o aplicativo *gnuplot*. (Projeção Sanson-Flamsteed)

Por meio dos sete exemplos anteriores tem-se uma idéia do potencial de aplicação deste programa. Neste material pretende-se apresentar uma introdução ao uso deste aplicativo, no qual serão mostrados alguns exemplos mais usuais.

#### Ambiente de trabalho

A Figura 1.8 mostra a tela principal do aplicativo *gnuplot* na qual são mostradas as principais funções. Esta tela é aberta no momento que o aplicativo é ativado, tanto usando o ícone:



localizado na área de trabalho, quanto o arquivo wgnuplot.exe.



Figura 1.8 - Tela do aplicativo gnuplot.

A maneira mais simples de trabalhar com o aplicativo gnuplot é por meio da própria linha de comando, mostrada na janela da Figura 1.8, como ocorre em aplicativos como MatLab, **IDL**, etc. No entanto, esta não é a única possibilidade de trabalho. Uma alternativa é escrever os comandos em um arquivo script do tipo ASCII, e depois carregar esse arquivo usando a opção load 'arquivo'. Uma terceira possibilidade é através da criação de um arquivo em bat, no qual o aplicativo e o arquivo script são ativados simultaneamente, sem a necessidade de executar o programa wgnuplot.exe. Uma quarta possibilidade é o uso de bibliotecas em C, o que permite ativar o aplicativo diretamente a partir de um programa escrito em linguagem C. informações Mais sobre esta quarta opção podem ser obtidas endereço http://ndevilla.free.fr/gnuplot/.

# 2. COMANDOS BÁSICOS PARA VISUALIZAÇÃO DE FUNÇÕES

O comando utilizado para fazer a visualização de funções no plano cartesiano bidimensional se chama plot. Dentre as funções predefinidas disponíveis tem-se:

| Função | Operação              | Sintaxe  |
|--------|-----------------------|----------|
| abs    | Valor absoluto        | abs(x)   |
| sqrt   | Raiz quadrada         | sqrt(x)  |
| exp    | Exponencial           | exp(x)   |
| log    | Logaritmo (base e)    | log(x)   |
| log10  | Logaritmo (base 10)   | log10(x) |
| sin    | Seno de um ângulo     | sin(x)   |
| cos    | Coseno de um ângulo   | cos(x)   |
| tan    | Tangente de um ângulo | tan(x)   |
| asin   | Arco seno             | asin(x)  |
| acos   | Arco coseno           | acos(x)  |
| atan   | Arco tangente         | atan(x)  |

Na Figura 2.1 são apresentados dois exemplos mostrando as funções seno e logaritmo. À esquerda é mostrado o comando utilizado e a direita o resultado.



Figura 2.1 – Funções seno e logaritmo.

# Ativação da grade (grid)

A ativação da grade (ou *grid*) pode ser feita usando o comando *set grid*, antes do comando *plot*, como mostra o exemplo da Figura 2.2. Para ver a sintaxe completa do comando *grid*, e de todos os demais, ative o comando de ajuda através de *help grid*.



Figura 2.2 – Ativação do grid.

Para desativar a opção grid pode-se utilizar o comando set nogrid

Como sugestão de exercícios, faça a visualização dos gráficos das seguintes funções algébricas.

$$y = 5x^{2} - 2x - 50 y = e^{\left(-\frac{x}{5}\right)} y = \operatorname{sen}(x)$$

$$y = \left| \operatorname{sen}\left(\frac{x}{2}\right) \operatorname{cos}(x) \right| y = \sqrt{\left| \operatorname{sen}\left(\frac{x}{2}\right) \operatorname{cos}(x) \right|}$$

$$y = \log\left(\sqrt{\left| \operatorname{sen}\left(\frac{x}{2}\right) \operatorname{cos}(x) \right|} y = 2 \operatorname{cos} x + \operatorname{sen}(2x) + \frac{\operatorname{sen}(4x)}{2} y = \log\left(\operatorname{arctan}\left(x \frac{\operatorname{pi}}{4}\right)\right)$$

Em caso de dúvida quando à sintaxe de alguma função pré-definida, ative a opção functions da barra de tarefas (Figura 2.3).



Figura 2.3 – Funções pré-definidas no aplicativo gnuplot.

#### Modificação do domínio de funções

Nas funções mostradas na Figura 2.1 e 2.2 pode-se notar que os domínios são iguais. Na verdade como o domínio não foi definido o valor utilizado é o *default*. A modificação do domínio das funções pode ser feita utilizando o comando *set xrange*, como mostra o exemplo abaixo.



Figura 2.4 – Modificação do domínio.

De modo análogo pode-se definir o intervalo para as coordenadas y e z (caso 3D). Nestes casos os comandos são *set yrange* e *set zrange*, respectivamente.

# Visualização de múltiplas funções

Nos gráficos anteriores fez-se a visualização de uma função por vez. Pode-se também fazer a visualização de mais de uma função ao mesmo tempo. Para isto pode-se usar ',\' como terminador de linha e definir a função desejada na linha seguinte. Outra possibilidade é usar a

opção *rep* (de *replot*) a cada função adicional, como mostrado no exemplo da Figura 2.5, onde são apresentadas três funções simultaneamente.



Figura 2.5 – Visualização de múltiplas funções.

Para mais detalhes sobre o comando replot ative help replot.

# 3. MODIFICAÇÃO DE ATRIBUTOS

Nesta seção são apresentados comandos que possibilitam mudar alguns atributos dos gráficos construídos com o *gnuplot*.

#### Cor, tipos de pontos e linhas

O *gnuplot* permite que os gráficos sejam desenhados em diversas cores. No caso da representação de curvas usando pontos podem-se utilizar diferentes formatos (cruz, círculo, triângulo, etc). Para visualizar as cores, bem como o formato das entidades pontuais basta ativar, na linha de comando, a palavra *test*, como mostrado abaixo:

Na Figura 3.1 são apresentadas as cores disponíveis, bem como os tipos de representação para pontos.



Figura 3.1 – Tipos de pontos e cores disponíveis no *gnuplot*.

É importante ressaltar que diferenças nas cores podem ocorrer dependendo do *hardware* utilizado.

Em todos os gráficos apresentados nas seções anteriores as funções foram representadas por linhas contínuas. Como exemplos de outros modos de representação tem-se: pontos, impulsos, linhas, etc. No caso de utilizar estes elementos deve-se usar a opção with seguida do tipo desejado. Como exemplo, pode-se citar:

```
gnuplot > plot \sin(x/2) with points
gnuplot > plot \sin(x/2) with lines
gnuplot > plot \sin(x/2) with linespoints
gnuplot > plot \sin(x/2) with dots
gnuplot > plot \sin(x/2) with impulses
```

A definição da cor pode ser feita incluindo o número correspondente à cor, de acordo com a tabela de cores mostrada na Figura 3.1. Supondo que se deseja associar os elementos points, lines, linespoints, dots, e impulses, respectivamente às cores azul (3), azul marinho (5), vermelho (1), preto (8) e cinza escuro (9), deve-se escrever:

```
gnuplot > plot \sin(x/2) with points 3
gnuplot > plot \sin(x/2) with lines 5
gnuplot > plot \sin(x/2) with linespoints 1
gnuplot > plot \sin(x/2) with dots 8
gnuplot > plot \sin(x/2) with impulses 9
```

Para o caso de entidades pontuais pode-se definir o tipo do ponto, utilizando o número correspondente, como mostrado na Figura 3.1. Assim, para visualizar a função seno(x/2), no intervalo [0:pi/2], na cor verde (10) e com asteriscos (6), juntamente com a função coseno(4x), na cor azul (3) e com impulsos pode-se escrever:



Figura 3.2 – Representação de múltiplas funções, com mudança de cor e uso de pontos e impulsos.

Para verificar outros tipos de estilos de dados ativar a opção *Style* e depois *Data Style*, a partir da barra de tarefas (Figura 3.3).



Figura 3.3 – Opções de estilos disponíveis.

#### Mudança dos atributos como cor de fundo, fonte, etc.

Uma vez que os gráficos são mostrados tem-se a opção de modificar o tamanho da janela de visualização, como se faz em qualquer janela do Windows. Modificado o tamanho, ou outro atributo qualquer da janela, pode-se salvar esta configuração ao clicar com o botão direito sobre o gráfico, escolhendo a opção update wgnuplot.ini. Assim, as próximas janelas abertas terão a aparência da última configuração salva.

Além de modificar o tamanho da janela, ao clicar como o botão direito do mouse sobre o gráfico tem-se as opções mostradas na Figura 3.4



Figura 3.4 – Mudanças de atributo da tela gráfica apresentada pelo aplicativo.

#### 4. DEFINIÇÃO DE FUNÇÕES PELO USUÁRIO

Nas seções anteriores mostrou-se como se constrói gráficos usando funções predefinidas. A partir destas funções predefinidas pode-se definir uma infinidade de outras funções. Na seqüência são apresentadas algumas maneiras diferentes de mostrar a função

$$y = sen\left(\frac{x}{2}\right)$$
,

no intervalo  $[-2\pi:2\pi]$ .



Figura 4.1 – Exemplo de visualização de uma única função, usando diferentes opções.

Como pode ser observado, são várias as opções que podem ser utilizadas para representar uma única função. As opções 3, 4 e 5, em especial, são interessantes para se escrever funções mais genéricas, no qual algumas constantes podem ser modificadas no momento em que é utilizado o comando plot.

Considerando as seguintes funções:

$$y_1 = f_1(x) = 180$$

$$y_2 = f_2(x) = 13x - 200$$

$$y_3 = f_3(x) = 4 - 2x^2 - 3x$$

$$y_4 = f_4(x) = 0.5x^3 - 34x + 2x^2 - 22$$

e a tarefa de visualizá-las simultaneamente no domínio [-10:10], uma primeira opção seria definir as quatro funções separadamente. Neste caso pode-se escrever o seguinte *script*:



Figura 4.2 – Visualização simultânea de quatro polinômios.

Uma opção mais geral para visualizar os polinômios mostrados na Figura 4.2 seria escrever um único polinômio de grau 3, genérico, da seguinte forma:

$$y = f(x) = a + bx + cx^{2} + dx^{3}$$
,

onde a, b c e d são constantes. Deste modo apenas uma função precisa ser definida e o seguinte script pode ser utilizado:

```
gnuplot > reset
gnuplot > set xrange [-10:10]
gnuplot > f(x,a,b,c,d)=a+b*x+c*x**2+d*x**3
gnuplot > plot f(x,180,0,0,0)
gnuplot > rep f(x,-200,13,0,0)
gnuplot > rep f(x,4,-3,-2,0)
gnuplot > rep f(x,-22,-34,2,0.5)
```

Figura 4.3 – Visualização simultânea de quatro polinômios, usando uma única função.

Como pode-se observar no exemplo anterior, apenas uma função é definida, sendo os coeficientes modificados de acordo com a função desejada, no momento em que é utilizado o comando plot (ou rep, no caso de múltiplas funções).

# 5. LEITURA E VISUALIZAÇÃO DE DADOS A PARTIR DE ARQUIVOS / TEXTO / LEGENDA

Até este ponto, as funções foram definidas de modo algébrico e não se fez a visualização de dados lidos em arquivo. Como exemplo, considerar que se dispõe de um arquivo ASCII (com nome desniv.txt), no qual se tem armazenado as altitudes (em metros) de 10 pontos de uma linha de nivelamento. Além das altitudes têm-se, para cada um dos pontos, informações de temperatura e pressão, úteis na realização de correções nas altitudes. A Figura 5.1 mostra o arquivo montado com estas informações.

```
Arquivo desniv.txt
 Coluna 1 > Número do ponto
 Coluna 2 > Altitude (m)
 Coluna 3 > Temperatura (graus celsios)
# Coluna 4 > Pressão mmHq
10
        420.100
                    22.5
                             745
20
        422.430
                    23.7
                             732
        428.701
                    22.8
                             720
30
        426.482
                    23.3
40
                             729
50
        421.320
                    23.6
                             732
60
        419.240
                    22.4
                             749
                    22.1
        415.400
70
                             735
80
        417.804
                    22.0
                             729
90
        422.500
                    23.4
                             740
100
        427.306
                    23.0
                             737
```

Figura 5.1 – Exemplo de um arquivo de dados.

Considerando que este arquivo esteja no diretório em que se está trabalhando, para visualizar o gráfico "Número do ponto x Altitude", basta especificar o arquivo, conforme ilustrado na Figura 5.2.



Figura 5.2 – Visualização de dados lidos em arquivo.

Pode-se notar que, automaticamente, as colunas 1 e 2 são mostradas. Pode-se também explicitar as colunas que se quer utilizar, usando a opção *using*. Os exemplos a seguir mostram duas das maneiras de reproduzir o gráfico anterior:

```
gnuplot > reset
gnuplot > plot "desniv.txt" using 1:2
ou

gnuplot > reset
gnuplot > plot "desniv.txt" using ($1): ($2)
```

Caso o usuário queira representar os dados usando impulsos, linhas, etc, ou ainda mudar a cor, pode-se usar a opção with (ver seção 3) na mesma linha, como mostram os exemplos da Figura 5.3.



Figura 5.3 – Visualização de dados lidos em arquivo, com mudança de atributos.

A princípio, o uso de <u>plot "..." using 1:2</u> e <u>plot "..." using (\$1): (\$2)</u> não faz diferença. Realmente, isso ocorre se a intenção for apenas visualizar a coluna 1 "contra" a coluna 2. No entanto, o uso de \$, antes do número da coluna (\$2 por exemplo), permite que se interprete \$2 como uma variável. Um exemplo do uso de "\$coluna" seria na visualização do

desnível de cada um dos pontos do arquivo anterior, em relação ao ponto 10, que possui altitude igual a 420,100m. Deste modo, para calcular o desnível em relação a este ponto basta usar

```
gnuplot > reset gnuplot > plot "desniv.txt" using ($1): ($2-420.100) with lines 3 6
```

Usando as informações e a sintaxe vista nos exemplos anteriores, tente representar na abscissa e ordenada dos gráficos os seguintes elementos:

| Abscissa        | Ordenada                                                   |  |  |  |  |
|-----------------|------------------------------------------------------------|--|--|--|--|
| Número do ponto | Temperatura (graus celsios)                                |  |  |  |  |
| Número do ponto | Pressão atmosférica                                        |  |  |  |  |
| Número do ponto | Diferença de pressão em relação à média*                   |  |  |  |  |
| Numero do ponto | Temperatura (graus celsios) e                              |  |  |  |  |
|                 | Diferença em relação à temperatura do primeiro ponto.      |  |  |  |  |
| Numara da nanta | Temperatura em °F e                                        |  |  |  |  |
| Numero do ponto | Diferença em relação à temperatura do primeiro ponto (°F). |  |  |  |  |

<sup>\*</sup> O valor médio deve ser calculado fora do aplicativo

Como se pôde perceber, é fácil modificar as variáveis que se quer representar na abscissa e ordenada. Além disso, pode-se fazer operações usando colunas, como mostram os exemplos:

```
using ($1):($2 +$3)
using ($1):($2 +3*($3))
using ($2):($5)/100
```

Para mais detalhes sobre as opções do comando using utilize a ajuda (help using).

#### Inserção de título e texto nos eixos x e y

Para a inserção de título e rótulo na abscissa e ordenada, os seguintes comandos podem ser utilizados:

```
set title "texto que corresponde ao título"
set xlabel "texto corresponde à abscissa"
set ylabel "texto corresponde à ordenada"
```

O exemplo da Figura 5.4 mostra o uso destes três comandos.

```
gnuplot > reset
gnuplot > set grid
gnuplot > set xrange [0:25]
gnuplot > set title "Função Parabólica \n Teste 1"
gnuplot > set xlabel "X - Tempo (s)"
gnuplot > set ylabel "Y - Aceleração (m/s2)"
gnuplot > f(x)=0.1*x**2-5*x+20
gnuplot > plot f(x) with lines 8
```



Figura 5.4 – Inserção de título e rótulos na abscissa e ordenada.

# Modificação do espaçamento da grade

No exemplo anterior mostrou-se como se faz a inserção do título e dos rótulos nos eixos x e y. Pode-se notar que a separação do *grid* (grade) não foi definida. Caso seja necessário faze-lo, pode-se usar as opções *set xtics* e *set ytics*. Considerando que os incrementos desejáveis em x e y sejam respectivamente ix e iy, a seguinte sintaxe pode ser utilizada:

```
set xtics ix
set ytics iy
```

Além desta possibilidade pode-se, ainda, dividir os intervalos com *tics* menores, usando as opções set mxtics e set mytics.

Os exemplos da Figura 5.5 ilustram o uso de alguns destes comandos. No segundo gráfico, as setas (>>>) são sobrepostas ao desenho apenas para mostrar a posição dos *tics* menores.

```
gnuplot > reset
gnuplot > set grid
gnuplot > set xtics 2
gnuplot > set ytics 5
gnuplot > set xrange [0:25]
gnuplot > set title "função parabólica \n teste 1"
gnuplot > set xlabel "x - tempo (s)"
gnuplot > set ylabel "y - aceleração (m/s2)"
gnuplot > f(x)=0.1*x**2-5*x+20
gnuplot > plot f(x) with lines 8
```





Figura 5.5 – Uso dos comandos xtics e mxtics.

#### Modificação da legenda

Em todos os exemplos vistos anteriormente, não se fez a modificação do conteúdo e nem da posição da legenda. Para modificar o texto da legenda pode-se usar a opção t seguido do texto a ser escrito, na mesma linha em que se usa o comando plot (ou rep) como mostra o exemplo da Figura 5.6. Para não ser incluído nenhum texto na legenda basta usar t "".

```
gnuplot > reset
gnuplot > set grid
gnuplot > set xtics 2
gnuplot > set mxtics 2
gnuplot > set mytics 40
gnuplot > set mytics 2
gnuplot > set xrange [0:25]
gnuplot > set title "Função Parabólica \n Teste 1"
gnuplot > set xlabel "X - Tempo (s)"
gnuplot > set ylabel "Y- Aceleração (m/s2)"
gnuplot > f(x,a,b,c)=a+b*x+c*x**2
gnuplot > plot f(x,120,-5,0.1) t"função 1" with points 3 5
gnuplot > rep f(x,80,+10,-0.15) t"função 2" with lines 8
```



Figura 5.6 – Modificação do texto da legenda usando t "...".

Nos exemplos anteriores, a posição da legenda foi sempre no canto superior direito. Para modificar a localização da legenda pode-se utilizar o comando *set key*. Na seqüência, são apresentados quatro exemplos da utilização deste comando, cada um considerando uma posição:

```
set key left bottom(Canto inferior esquerdo)set key right bottom(Canto inferior direito)set key left top(Canto superior esquerdo)set key right top(Canto superior direito)
```

Para outras opções de configuração da legenda consulte help key.

#### Criação de scripts em arquivo

À medida que novas funções e opções de processamento vão sendo incorporadas no *script*, seu tamanho aumenta e uma alternativa mais prática de trabalho é escrever o *script* em arquivo, para depois "carregar" no aplicativo.

Considerando que o *script* apresentado na página anterior foi salvo no diretório *c:\teste* com o nome *curva.gnu*<sup>1</sup>, o roteiro indicado na Figura 5.7 pode ser utilizado para carregar este arquivo:



Figura 5.7 – Como carregar um arquivo script.

#### 6. OPERADOR TERNÁRIO

Um operador disponível no aplicativo *gnuplot*, importante em várias situações, é o operador ternário. Normalmente este operador é utilizado quando se deseja, por exemplo, trabalhar com duas ou mais funções, dependendo de alguma condição pré-determinada.

A sintaxe deste operador é a seguinte:

<sup>&</sup>lt;sup>1</sup> Não existe uma extensão obrigatória, sendo utilizada a extensão **.gnu** apenas por conveniência. Acrescente uma última linha a este arquivo contendo o seguinte comando: 'pause -1 "Continua?" '. Deste modo o programa mostra o resultado e espera que o usuário feche e janela gráfica.

Ao ser avaliada a "Expressão E", se ela for verdadeira a opção A é considerada e caso contrário, a opção B passa a ser válida.

#### Exemplo de aplicação

Deseja-se visualizar um gráfico, cujo domínio é [0:10], composto por duas funções, de acordo com as condições mostradas abaixo:

$$H(x) = \begin{cases} f(x) = 2x - 60 & se \\ g(x) = -x^2 - 2x - 2 \end{cases} se \quad \begin{aligned} 4 \le x \le 7 \\ caso \quad contrário \end{aligned}$$

Na Figura 6.1 está ilustrado um exemplo do uso o operador ternário, para a função anterior.



Figura 6.1 - Exemplo de uso do operador ternário.

O próximo exemplo do uso do operador ternário mostra uma situação na qual se tem uma função F(x), composta por três outras funções:

$$F(x) = \begin{cases} f_1(x) = \frac{x}{2} - 0.5 & x < 0.5 \\ f_2(x) = \log(x) & \text{se} \quad 0.5 \le x \le 1.0 \\ f_3(x) = \sqrt{\frac{x^3}{2}} & 1.0 < x \le 2.0 \end{cases}$$

Neste caso deve-se usar mais de uma condição. A função F(X) será igual à função  $f_1(x)$ , ou seja,  $F(x)=f_1(x)$ , se x<0,5. Assim, para  $x\ge0,5$  as outras condições devem ser testadas. Deste modo a função  $f_1(x)$  deverá ser ignorada para o caso em que  $x\ge0,5$ . Isto pode ser feito usando o "0/0" (ou 1/0), como mostra o exemplo da Figura 6.2.



Figura 6.2 - Exemplo de uso do operador ternário, no qual são utilizadas três funções. Na parte superior são mostradas as três funções em todo o domínio.

Observe que ao usar uma indeterminação do tipo 0/0 ou 1/0 no operador ternário, o aplicativo simplesmente ignora, deixando de traçar a função.

# 7. SUPERFÍCIES

A visualização de superfícies é análoga à visualização de curvas planas. Neste caso o comando básico é *splot*. Na Figura 7.1 é mostrada uma superfície dada pela função  $f(x,y) = log\left(\sqrt{x^2 + y^2}\right).$ 

```
reset set grid set format z "%4.2f" f(x,y) = \log(\operatorname{sqrt}(x*x + y*y)) splot f(x,y)
```

Figura 7.1 - Exemplo da visualização de uma superfície na forma f(x,y).

No próximo, ilustrado na Figura 7.2, exemplo pode-se ver outra superfície, onde são utilizados outros comandos, como por exemplo:

```
set xlabelUsado para escrever no gráfico o rótulo no eixo x (análogo para y<br/>e z)set zticsUsado para modificar o espaçamento das coordenadas em z<br/>(análogo para x y y)set formatUsado para escrever valores numéricos com formato predefinido.set titleUsado para mostrar o títuloset hidden3DUsado no modo 3D para "esconder" o que fica "atrás" da superfície
```



Figura 7.2 - Exemplos para a visualização de uma superfície na forma f(x,y).

A mesma superfície é mostrada na Figura 7.3, sendo incluídas algumas curvas de nível, através do comando set contour.



Figura 7.3 - Superfície com as curvas de nível.

A opção set cntrparam permite definir, por exemplo, qual o desnível entre as curvas sucessivas, dentre outros elementos, como se pode ver ao ativar help cntrparam.

As superfícies mostradas anteriormente são definidas por meio de funções algébricas. Outra possibilidade é através de um conjunto de coordenadas 3D, armazenadas em um arquivo ASCII, e que determinam uma superfície. Na Figura 7.4 é mostrado um conjunto de pontos, armazenados no arquivo *pontos3d.dat*. Este arquivo é composto por três colunas, contendo respectivamente as coordenadas X, Y, e Z.

| # Conjunto de | ponto | s 3d       | > continuação | 0  |     |
|---------------|-------|------------|---------------|----|-----|
| # Coluna 1 x  |       |            | 30            | 70 | 152 |
| # Coluna 2 y  |       |            | 30            | 90 | 174 |
| # Coluna 3 z  |       |            | 50            | 10 | 200 |
| #             |       |            | 50            | 30 | 153 |
| 10            | 10    | 100        | 50            | 50 | 128 |
| 10            | 30    | 150        | 50            | 70 | 203 |
| 10            | 50    | 150        | 50            | 90 | 142 |
| 10            | 70    | 130        | 70            | 10 | 173 |
| 10            | 90    | 170        | 70            | 30 | 157 |
| 20            | 10    | 100        | 70            | 50 | 142 |
| 20            | 30    | 150        | 70            | 70 | 201 |
| 20            | 50    | 120        | 70            | 90 | 210 |
| 20            | 70    | 093        | 90            | 10 | 173 |
| 20            | 90    | 135        | 90            | 30 | 216 |
| 30            | 10    | 099        | 90            | 50 | 142 |
| 30            | 30    | 189        | 90            | 70 | 152 |
| 30            | 50    | 138        | 90            | 90 | 132 |
|               |       | continua > |               |    |     |

Figura 7.4 - Arquivo de dados (pontos3d.dat) composto por um conjunto de pontos 3D. O caractere "#" no início da linha indica que a linha é um comentário.

A Figura 7.5, a seguir, apresenta um *scrip* que permite gerar a superficie definida pelos pontos presentes no arquivo *pontos3d.dat*.

```
Exemplo de Visualização de Pontos no espaço 3D
 Mauricio Galo / UNESP / Dep. de Cartografia
# Aplicativo: gnuplot
# Comandos preliminares: grid, tics, rótulos e título
reset
set grid
set xtics 20
set ytics 20
set ztics 50
          "Exemplo de uma superfície gerada com Gnuplot\n\
set title
(Dados lidos em arquivo)"
set xlabel "X"
set ylabel "Y"
set zlabel "Z(m)"
# Comandos específicos para visualização 3D
set hidden3d
set view 40,30,1,1
set data style points
set dgrid3d 30,30,2
splot 'pontos3d.dat' using ($1):($2):($3) t"" with lines 5
pause -1 "Fecha?"
# Curvas de nível
set contour base
set cntrparam levels incremental 50,15,300
set dgrid3d 30,30,2
splot 'pontos3d.dat' using ($1):($2):($3) t"" with lines 5
pause -1 "Fecha?"
```

Figura 7.5 - Exemplo de *script* que faz a visualização de um arquivo de pontos e gera a superfície.

A Figura 7.6 mostra as superficies geradas ao ser executado o *scrip* apresentado na Figura 7.5, que utiliza como dados de entrada os pontos da Figura 7.4.



Figura 7.6 - Superficies geradas a partir de uma nuvem de pontos 3D.

# 8. TÓPICOS ADICIONAIS

# Representação de ângulos em graus ou radianos

Por default, o modo de representação dos ângulos é em radianos e para modificar esse modo de representação pode-se usar o comando set angles. As opções são as seguintes:

set angles degrees set angles radians

#### Comando de pausa

Este comando é normalmente usado em um arquivo *script* no qual é apresentada uma seqüência de gráficos, devendo-se colocar uma pausa antes do segundo gráfico, do terceiro, e assim sucessivamente. Como exemplo de uso pode-se considerada a sintaxe:

#### Troca de variáveis

Geralmente, ao escrever funções, as variáveis utilizadas são x, y e z. No entanto, os nomes podem ser modificados usando o comando set dummy. Como exemplos de uso tem-se:

```
set dummy lat
set dummy h
set dummy lat, lon
set dummy h,s
```

Na sequência é apresentado um gráfico (Figura 8.1), no qual são usados os comandos *dummy*, *angles* e *pause*. Considerando que se tem um ponto numa altitude geométrica **h** sobre um elipsóide de semi-eixo maior **a** (a=6378,160 km) e excentricidade **e** (e= 0.08182), deseja-se obter o gráfico da função que fornece o raio de um paralelo em função da latitude. A equação que permite o cálculo do raio do paralelo para uma latitude φ, é dada por:

$$r_{\phi} = \left(N + h\right)\!\cos\phi$$
 onde  $N = a\!\left(\!1 - e^2 \, sen^2 \, \phi\right)^{\!-1/2}$  .

Considerando que a latitude varia de 0 a  $\pi/2$  e que h seja 450m, o *script* que cria os gráficos desejados, pode ser escrito da seguinte maneira:

```
Cálculo do raio do paralelo
#
# M. Galo, UNESP, Dep. de Cartografia
reset
set grid
set time
set angles radians
set dummy lat
set xlabel "Latitude em radianos"
set ylabel "Raio do paralelo em km"
a = 6378.160
e=0.08182
set xrange [0:pi/2]
N(lat)=a*(1 - e*e*sin(lat)*sin(lat))**(-0.5)
raio(lat,alt) = ( N(lat) + alt )*cos(lat)
plot raio(lat, 0.450) t"Raio para h=450m"
pause -1 "Fecha?"
reset
set grid
set time
set angles degrees
set dummy lat
set xlabel "Latitude em graus"
set ylabel "Raio do paralelo em km"
a=6378.160
e=0.08182
set xrange [0:90]
N(lat)=a*(1 - e*e*sin(lat)*sin(lat))**(-0.5)
raio(lat,alt)=( N(lat) + alt )*cos(lat)
plot raio(lat, 0.450) t"Raio para h=450m"
pause -1 "Fecha?"
  7000
                       Raio para h=450m
                                       6000
  6000
                                      ₹ 5000
 € 5000
  4000
                                       4000
                                      星 3000
 par
                                      울 2000
 를 2000
  1000
                                       1000
                   0.8
                                            10
                                                      40
               Latitude em radianos
                                                    Latitude em graus
  Sat Aug 09 18:25:20 2003
                                      Sat Aug 09 18:25:52 2003
```

Figura 8.1 – Exemplo do uso dos comandos dummy, angle e pause.

#### AGRADECIMENTO

O autor agradece à Prof. Maria de Lourdes Bueno Trindade Galo pelas sugestões apresentadas.

#### **BIBLIOGRAFIA**

- COLLEGE OF NATURAL SCIENCES. **Introduction to GnuPlot**. Disponível em <a href="http://www.cs.uni.edu/Help/gnuplot/">http://www.cs.uni.edu/Help/gnuplot/</a>>. Acesso em: 09 agosto 2003.
- GALO, Mauricio. **Instruções iniciais para uso do GNUPLOT**. Disponível em: <a href="http://www.prudente.unesp.br/dcartog/galo/gnuplot">http://www.prudente.unesp.br/dcartog/galo/gnuplot</a>>. Acesso em: 09 agosto 2003.
- GAVIN, Henri. **GNUPLOT A Brief Manual and Tutorial**. Disponível em: <a href="http://www.duke.edu/~hpgavin/gnuplot.html">http://www.duke.edu/~hpgavin/gnuplot.html</a>>. Acesso em: 09 agosto 2003.
- Gnuplot central. Disponível em: <a href="http://www.gnuplot.info/">http://www.gnuplot.info/</a>>. Acesso em: 09 agosto 2003.
- LIAW, Andy; CRAWFORD, Dick. **Gnuplot 3.5 User's Guide**. November, 1994. 18pp. (Disponível no endereço: < http://www.vislab.usyd.edu.au/users/manuals/>)
- REITER, Bernhard. **Gnuplot Scientific Plotting**. Disponível em: <a href="http://www.usf.uni-osnabrueck.de/~breiter/tools/gnuplot/index.en.html">http://www.usf.uni-osnabrueck.de/~breiter/tools/gnuplot/index.en.html</a>>. Acesso em: 09 agosto 2003.