Feedback — Chapter 1 Quiz : Functions

You submitted this exam on Sun 20 Jan 2013 4:24 PM EST. You got a score of 8.00 out of 10.00.

The following is an *exam* and counts toward your final evaluation for this class. Please answer the ten (10) problems below. You may *not* use a calculator, or any other assistance, including software, textbooks, or notes. You may *not* collaborate with others or post your solutions on a discussion board. Use your head, some paper, and a writing utensil. Good luck!

Question 1

What is the domain of the function $f(x) = \sqrt{\ln x}$?

Your Answer		Score	Explanation
$_{\odot}$ $[1,\infty)$	✓	1.00	
Total		1.00 / 1.00	

Question 2

Which of the following is the Taylor series of $\ln \frac{1}{1-x}$ about x=0 up to and including the terms of order three?

Your Answer		Score	Explanation
$ \ln \frac{1}{1-x} = x + \frac{1}{2} x^2 + \frac{1}{3} x^3 + O(x^4) $	✓	1.00	

Total	1.00 /
	1.00

Question 3

Using your knowledge of Taylor series, find the sixth derivative $f^{(6)}(0)$ of $f(x)=e^{-x^2}$ evaluated at x=0.

Your Answer		Score	Explanation
	✓	1.00	
Total		1.00 / 1.00	

Question 4

Recall that the Taylor series for rctan is

$$\arctan x = \sum_{k=0}^{\infty} (-1)^k \frac{x^{2k+1}}{2k+1}$$

for |x| < 1. Using this, compute $\lim_{x o 0} rac{\arctan x}{x^3 + 7x}$.

Your Answer		Score	Explanation
$\odot \frac{1}{7}$	✓	1.00	
Total		1.00 / 1.00	

Question 5

$$\lim_{x o +\infty} 2x \sin rac{1}{2x} =$$
Your Answer Score Explanation

 $oldsymbol{\circ} +\infty$ X 0.00

Total 0.00 / 1.00

Question 6

Determine which value is approximated by

$$\sqrt{2}e - e^2 + rac{2\sqrt{2}e^3}{3} - e^4 + rac{4\sqrt{2}e^5}{5} + ext{H.O.T.}$$

Your Answer		Score	Explanation
$_{ extstyle \odot} \ln(1+\sqrt{2}e)$	✓	1.00	
Total		1.00 / 1.00	

Question 7

Which of the following expressions describes the sum

$$-x + \frac{\sqrt{2}}{4} x^2 - \frac{\sqrt{3}}{9} x^3 + \frac{2}{16} x^4 + \text{H.O.T.}$$

Choose all that apply.

Your Answer	Score	Explanation
	✓ 0.00	
	. 0.00	

Question 8

Use the geometric series to evaluate the sum

$$\sum_{k=0}^{\infty} \frac{x^k}{2^k}$$

Don't forget to indicate what restrictions there are on x...

Your Answer	Score	Explanation
$\odot \sum_{k=0}^{\infty} rac{x^k}{2^k} = rac{2}{2-x} ^{on} x < 2$	√ 1.00	

2/9/13

Total

1.00 / 1.00

Question 9

Which of the following is the Taylor series expansion about $x=1\,\mathrm{of}$

$$x^3 - 3x^2 + 2x - 5$$

	Score	Explanation
X	0.00	
	0.00 / 1.00	
	X	X 0.00

Question 10

Exactly two of the statements below are correct. Select the two correct statements.

Your Answer Score	Explanation
$\ \ \ \ \ \ \ \ \ \ \ \ \ $	
$\boxed{\hspace{0.5cm}}\sqrt{16x^4-2}$ is in $O(x^2)$ as $x o +\infty$. $lacksquare$ 0.50	
$_{\square}e^{x^2}$ is in $O(x^2)$ as $x o +\infty$. $lacksquare$ 0.00	
$_{\square} 3x^4-14$ is in $O(x^2)$ as $x o +\infty$. $igspace 0.00$	
$_{\square}7x^3$ is in $O(x^4)$ as $x o 0$.	
$\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	
$oldsymbol{\mathbb{Z}} \ln(1+x+x^2)$ is in $O(x^n)$ for all $n\geq 1$ our $oldsymbol{\checkmark}$ 0.50	

as $x o +\infty$.	
Total	1.00 /
	1.00