BÀI TẬP CHII. MẬT MÃ CỔ ĐIỂN

- 2.1 Evaluate the following:
 - (a) 7503 mod 81
 - (b) $(-7503) \mod 81$
 - (c) 81 mod 7503
 - (d) $(-81) \mod 7503$.
- 2.2 Suppose that a, m > 0, and $a \not\equiv 0 \pmod{m}$. Prove that

$$(-a) \mod m = m - (a \mod m).$$

- 2.3 Prove that $a \mod m = b \mod m$ if and only if $a \equiv b \pmod m$.
- 2.4 Prove that $a \mod m = a \lfloor \frac{a}{m} \rfloor m$, where $\lfloor x \rfloor = \max\{y \in \mathbb{Z} : y \leq x\}$.
- 2.5 Use exhaustive key search to decrypt the following ciphertext, which was encrypted using a *Shift Cipher*:

BEEAKFYDJXUQYHYJIQRYHTYJIQFBQDUYJIIKFUHCQD.

- 2.6 If an encryption function e_K is identical to the decryption function d_K , then the key K is said to be an *involutory key*. Find all the involutory keys in the *Shift Cipher* over \mathbb{Z}_{26} .
- 2.7 Determine the number of keys in an Affine Cipher over \mathbb{Z}_m for m = 30,100 and 1225.
- 2.8 List all the invertible elements in \mathbb{Z}_m for m = 28, 33, and 35.
- 2.9 For $1 \le a \le 28$, determine $a^{-1} \mod 29$ by trial and error.
- 2.10 Suppose that K = (5,21) is a key in an Affine Cipher over \mathbb{Z}_{29} .
 - (a) Express the decryption function $d_K(y)$ in the form $d_K(y) = a'y + b'$, where $a', b' \in \mathbb{Z}_{29}$.
 - (b) Prove that $d_K(e_K(x)) = x$ for all $x \in \mathbb{Z}_{29}$.
- 2.11 (a) Suppose that K = (a, b) is a key in an Affine Cipher over \mathbb{Z}_n . Prove that K is an involutory key if and only if $a^{-1} \mod n = a$ and $b(a+1) \equiv 0 \pmod n$.
 - (b) Determine all the involutory keys in the Affine Cipher over \mathbb{Z}_{15} .
 - (c) Suppose that n = pq, where p and q are distinct odd primes. Prove that the number of involutory keys in the Affine Cipher over \mathbb{Z}_n is n + p + q + 1.
- 2.12 (a) Let p be prime. Prove that the number of 2×2 matrices that are invertible over \mathbb{Z}_p is $(p^2 1)(p^2 p)$.
 - HINT Since p is prime, \mathbb{Z}_p is a field. Use the fact that a matrix over a field is invertible if and only if its rows are linearly independent vectors (i.e., there does not exist a non-zero linear combination of the rows whose sum is the vector of all 0's).
 - (b) For p prime and $m \ge 2$ an integer, find a formula for the number of $m \times m$ matrices that are invertible over \mathbb{Z}_p .

- 2.13 For n = 6, 9, and 26, how many 2×2 matrices are there that are invertible over \mathbb{Z}_n ?
- 2.14 (a) Prove that $\det A \equiv \pm 1 \pmod{26}$ if A is a matrix over \mathbb{Z}_{26} such that $A = A^{-1}$.
 - (b) Use the formula given in Corollary 2.4 to determine the number of involutory keys in the *Hill Cipher* (over \mathbb{Z}_{26}) in the case m = 2.
- 2.15 Determine the inverses of the following matrices over \mathbb{Z}_{26} :

(a)
$$\begin{pmatrix} 2 & 5 \\ 9 & 5 \end{pmatrix}$$

(b)
$$\begin{pmatrix} 1 & 11 & 12 \\ 4 & 23 & 2 \\ 17 & 15 & 9 \end{pmatrix}$$

2.16 (a) Suppose that π is the following permutation of $\{1, \dots, 8\}$:

Compute the permutation π^{-1} .

(b) Decrypt the following ciphertext, for a *Permutation Cipher* with m = 8, which was encrypted using the key π :

TGEEMNELNNTDROEOAAHDOETCSHAEIRLM.

- 2.17 (a) Prove that a permutation π in the *Permutation Cipher* is an involutory key if and only if $\pi(i) = j$ implies $\pi(j) = i$, for all $i, j \in \{1, ..., m\}$.
 - (b) Determine the number of involutory keys in the *Permutation Cipher* for m = 2, 3, 4, 5, and 6.
- 2.18 Consider the following linear recurrence over \mathbb{Z}_2 of degree four:

$$z_{i+4} = (z_i + z_{i+1} + z_{i+2} + z_{i+3}) \mod 2,$$

 $i \ge 0$. For each of the 16 possible initialization vectors $(z_0, z_1, z_2, z_3) \in (\mathbb{Z}_2)^4$, determine the period of the resulting keystream.

2.19 Redo the preceding question, using the recurrence

$$z_{i+4} = (z_i + z_{i+3}) \mod 2$$
,

$$i \geq 0$$
.

2.20 Suppose we construct a keystream in a synchronous stream cipher using the following method. Let $K \in \mathcal{K}$ be the key, let \mathcal{L} be the keystream alphabet, and let Σ be a finite set of states. First, an initial state $\sigma_0 \in \Sigma$ is determined from K by some method. For all $i \geq 1$, the state σ_i is computed from the previous state σ_{i-1} according to the following rule:

$$\sigma_i = f(\sigma_{i-1}, K),$$

where $f: \Sigma \times \mathcal{K} \to \Sigma$. Also, for all $i \geq 1$, the keystream element z_i is computed using the following rule:

$$z_i = g(\sigma_i, K),$$

where $g: \Sigma \times \mathcal{K} \to \mathcal{L}$. Prove that any keystream produced by this method has period at most $|\Sigma|$.

2.21 Below are given four examples of ciphertext, one obtained from a *Substitution Cipher*, one from a *Vigenère Cipher*, one from an *Affine Cipher*, and one unspecified. In each case, the task is to determine the plaintext.

Give a clearly written description of the steps you followed to decrypt each ciphertext. This should include all statistical analysis and computations you performed.

The first two plaintexts were taken from *The Diary of Samuel Marchbanks*, by Robertson Davies, Clarke Irwin, 1947; the fourth was taken from *Lake Wobegon Days*, by Garrison Keillor, Viking Penguin, Inc., 1985.

(a) Substitution Cipher:

EMGLOSUDCGDNCUSWYSFHNSFCYKDPUMLWGYICOXYSIPJCK
QPKUGKMGOLICGINCGACKSNISACYKZSCKXECJCKSHYSXCG
OIDPKZCNKSHICGIWYGKKGKGOLDSILKGOIUSIGLEDSPWZU
GFZCCNDGYYSFUSZCNXEOJNCGYEOWEUPXEZGACGNFGLKNS
ACIGOIYCKXCJUCIUZCFZCCNDGYYSFEUEKUZCSOCFZCCNC
IACZEJNCSHFZEJZEGMXCYHCJUMGKUCY

HINT F decrypts to w.

(b) Vigenère Cipher:

KCCPKBGUFDPHQTYAVINRRTMVGRKDNBVFDETDGILTXRGUD DKOTFMBPVGEGLTGCKQRACQCWDNAWCRXIZAKFTLEWRPTYC QKYVXCHKFTPONCQQRHJVAJUWETMCMSPKQDYHJVDAHCTRL SVSKCGCZQQDZXGSFRLSWCWSJTBHAFSIASPRJAHKJRJUMV GKMITZHFPDISPZLVLGWTFPLKKEBDPGCEBSHCTJRWXBAFS PEZQNRWXCVYCGAONWDDKACKAWBBIKFTIOVKCGGHJVLNHI FFSQESVYCLACNVRWBBIREPBBVFEXOSCDYGZWPFDTKFQIY CWHJVLNHIQIBTKHJVNPIST

(c) Affine Cipher:

KQEREJEBCPPCJCRKIEACUZBKRVPKRBCIBQCARBJCVFCUP KRIOFKPACUZQEPBKRXPEIIEABDKPBCPFCDCCAFIEABDKP BCPFEQPKAZBKRHAIBKAPCCIBURCCDKDCCJCIDFUIXPAFF ERBICZDFKABICBBENEFCUPJCVKABPCYDCCDPKBCOCPERK IVKSCPICBRKIJPKABI (d) unspecified cipher:

BNVSNSIHQCEELSSKKYERIFJKXUMBGYKAMQLJTYAVFBKVT
DVBPVVRJYYLAOKYMPQSCGDLFSRLLPROYGESEBUUALRWXM
MASAZLGLEDFJBZAVVPXWICGJXASCBYEHOSNMULKCEAHTQ
OKMFLEBKFXLRRFDTZXCIWBJSICBGAWDVYDHAVFJXZIBKC
GJIWEAHTTOEWTUHKRQVVRGZBXYIREMMASCSPBNLHJMBLR
FFJELHWEYLWISTFVVYFJCMHYUYRUFSFMGESIGRLWALSWM
NUHSIMYYITCCQPZSICEHBCCMZFEGVJYOCDEMMPGHVAAUM
ELCMOEHVLTIPSUYILVGFLMVWDVYDBTHFRAYISYSGKVSUU
HYHGGCKTMBLRX

2.22 (a) Suppose that p_1, \ldots, p_n and q_1, \ldots, q_n are both probability distributions, and $p_1 \ge \cdots \ge p_n$. Let q'_1, \ldots, q'_n be any permutation of q_1, \ldots, q_n . Prove that the quantity

$$\sum_{i=1}^{n} p_i q_i'$$

is maximized when $q'_1 \ge \cdots \ge q'_n$.

- (b) Explain why the expression in Equation (2.1) is likely to be maximized when $g = k_i$.
- 2.23 Suppose we are told that the plaintext

breathtaking

yields the ciphertext

RUPOTENTOIFV

where the *Hill Cipher* is used (but *m* is not specified). Determine the encryption matrix.

2.24 An Affine-Hill Cipher is the following modification of a Hill Cipher: Let m be a positive integer, and define $\mathcal{P} = \mathcal{C} = (\mathbb{Z}_{26})^m$. In this cryptosystem, a key K consists of a pair (L,b), where L is an $m \times m$ invertible matrix over \mathbb{Z}_{26} , and $b \in (\mathbb{Z}_{26})^m$. For $x = (x_1, \ldots, x_m) \in \mathcal{P}$ and $K = (L,b) \in \mathcal{K}$, we compute $y = e_K(x) = (y_1, \ldots, y_m)$ by means of the formula y = xL + b. Hence, if

$$L = (\ell_{i,j})$$
 and $b = (b_1, \dots, b_m)$, then

$$(y_1,\ldots,y_m) = (x_1,\ldots,x_m) \begin{pmatrix} \ell_{1,1} & \ell_{1,2} & \ldots & \ell_{1,m} \\ \ell_{2,1} & \ell_{2,2} & \ldots & \ell_{2,m} \\ \vdots & \vdots & & \vdots \\ \ell_{m,1} & \ell_{m,2} & \ldots & \ell_{m,m} \end{pmatrix} + (b_1,\ldots,b_m).$$

Suppose Oscar has learned that the plaintext

adisplayedequation

is encrypted to give the ciphertext

DSRMSIOPLXLJBZULLM

and Oscar also knows that m = 3. Determine the key, showing all computations.

2.25 Here is how we might cryptanalyze the *Hill Cipher* using a ciphertext-only attack. Suppose that we know that m = 2. Break the ciphertext into blocks of length two letters (digrams). Each such digram is the encryption of a plaintext digram using the unknown encryption matrix. Pick out the most frequent ciphertext digram and assume it is the encryption of a common digram in the list following Table 2.1 (for example, TH or ST). For each such guess, proceed as in the known-plaintext attack, until the correct encryption matrix is found.

Here is a sample of ciphertext for you to decrypt using this method:

LMQETXYEAGTXCTUIEWNCTXLZEWUAISPZYVAPEWLMGQWYA XFTCJMSQCADAGTXLMDXNXSNPJQSYVAPRIQSMHNOCVAXFV 2.26 We describe a special case of a *Permutation Cipher*. Let m, n be positive integers. Write out the plaintext, by rows, in $m \times n$ rectangles. Then form the ciphertext by taking the columns of these rectangles. For example, if m = 3, n = 4, then we would encrypt the plaintext "cryptography" by forming the following rectangle:

The ciphertext would be "CTAROPYGHPRY."

- (a) Describe how Bob would decrypt a ciphertext string (given values for *m* and *n*).
- (b) Decrypt the following ciphertext, which was obtained by using this method of encryption:

MYAMRARUYIQTENCTORAHROYWDSOYEOUARRGDERNOGW

2.27 The purpose of this exercise is to prove the statement made in Section 2.2.5 that the $m \times m$ coefficient matrix is invertible. This is equivalent to saying that the rows of this matrix are linearly independent vectors over \mathbb{Z}_2 .

Suppose that the recurrence has the form

$$z_{m+i} = \sum_{j=0}^{m-1} c_j z_{i+j} \bmod 2,$$

where (z_1, \ldots, z_m) comprises the initialization vector. For $i \geq 1$, define

$$v_i=(z_i,\ldots,z_{i+m-1}).$$

Note that the coefficient matrix has the vectors v_1, \ldots, v_m as its rows, so our objective is to prove that these m vectors are linearly independent.

Prove the following assertions:

(a) For any $i \geq 1$,

$$v_{m+i} = \sum_{j=0}^{m-1} c_j v_{i+j} \mod 2.$$

(b) Choose h to be the minimum integer such that there exists a non-trivial linear combination of the vectors v_1, \ldots, v_h which sums to the vector $(0, \ldots, 0)$ modulo 2. Then

$$v_h = \sum_{j=0}^{h-2} \alpha_j v_{j+1} \mod 2,$$

and not all the α_j 's are zero. Observe that $h \leq m + 1$, since any m + 1 vectors in an m-dimensional vector space are dependent.

(c) Prove that the keystream must satisfy the recurrence

$$z_{h-1+i} = \sum_{j=0}^{h-2} \alpha_j z_{j+i} \mod 2$$

for any $i \ge 1$.

- (d) If $h \le m$, then the keystream satisfies a linear recurrence of degree less than m. Show that this is impossible, by considering the initialization vector $(0, \ldots, 0, 1)$. Hence, conclude that h = m + 1, and therefore the matrix must be invertible.
- 2.28 Decrypt the following ciphertext, obtained from the *Autokey Cipher*, by using exhaustive key search:

MALVVMAFBHBUQPTSOXALTGVWWRG

- 2.29 We describe a stream cipher that is a modification of the *Vigenère Cipher*. Given a keyword (K_1, \ldots, K_m) of length m, construct a keystream by the rule $z_i = K_i$ $(1 \le i \le m)$, $z_{i+m} = (z_i + 1) \mod 26$ $(i \ge 1)$. In other words, each time we use the keyword, we replace each letter by its successor modulo 26. For example, if *SUMMER* is the keyword, we use *SUMMER* to encrypt the first six letters, we use *TVNNFS* for the next six letters, and so on.
 - (a) Describe how you can use the concept of index of coincidence to first determine the length of the keyword, and then actually find the keyword.
 - (b) Test your method by cryptanalyzing the following ciphertext:

IYMYSILONRFNCQXQJEDSHBUIBCJUZBOLFQYSCHATPEQGQ
JEJNGNXZWHHGWFSUKULJQACZKKJOAAHGKEMTAFGMKVRDO
PXNEHEKZNKFSKIFRQVHHOVXINPHMRTJPYWQGJWPUUVKFP
OAWPMRKKQZWLQDYAZDRMLPBJKJOBWIWPSEPVVQMBCRYVC
RUZAAOUMBCHDAGDIEMSZFZHALIGKEMJJFPCIWKRMLMPIN
AYOFIREAOLDTHITDVRMSE

The plaintext was taken from *The Codebreakers*, by D. Kahn, Scribner, 1996.

2.30 We describe another stream cipher, which incorporates one of the ideas from the *Enigma* machime used by Germany in World War II. Suppose that π is a fixed permutation of \mathbb{Z}_{26} . The key is an element $K \in \mathbb{Z}_{26}$. For all integers $i \geq 1$, the keystream element $z_i \in \mathbb{Z}_{26}$ is defined according to the rule $z_i = (K + i - 1) \mod 26$. Encryption and decryption are performed using the permutations π and π^{-1} , respectively, as follows:

$$e_z(x) = \pi(x) + z \bmod 26$$

and

$$d_z(y) = \pi^{-1}(y - z \bmod 26),$$

where $z \in \mathbb{Z}_{26}$.

Suppose that π is the following permutation of \mathbb{Z}_{26} :