Untitled

Análisis Exploratorio

La base de datos cuenta con 330 observaciones y 54 variables

```
datos %>% count(estado_vital_5anos) %>% kable(align = 'cc')
```

estado_vital_5anos	n
0	260
1	70

Observamos que el numero de observaciones por muerte de cáncer de mama es bajo en comparación al numero de censuras es de 260.

```
stats::chisq.test(datos$estado_vital_5anos, datos$afiliacion)
```

Pearson's Chi-squared test with Yates' continuity correction

data: datos $$estado_vital_5anos$ and datos\$afiliacion X-squared = 5.6388, df = 1, p-value = 0.01757

Call: survfit(formula = Surv(tiempo_supervivencia_dias, estado_vital_5anos) ~
 1, data = datos, type = "kaplan-meier")

time	n.risk	n.event	survival	std.err	lower	95% CI	upper	95% CI
91	330	1	0.997	0.00303		0.991		1.000
154	329	1	0.994	0.00427		0.986		1.000
320	328	1	0.991	0.00522		0.981		1.000
327	327	1	0.988	0.00602		0.976		1.000
332	326	1	0.985	0.00672		0.972		0.998
335	325	1	0.982	0.00735		0.968		0.996
357	324	1	0.979	0.00793		0.963		0.994
359	323	1	0.976	0.00847		0.959		0.992
365	322	1	0.973	0.00897		0.955		0.990
396	321	1	0.970	0.00944		0.951		0.988
400	320	1	0.967	0.00988		0.947		0.986
434	319	1	0.964	0.01030		0.944		0.984
463	318	1	0.961	0.01071		0.940		0.982
484	317	1	0.958	0.01110		0.936		0.980
503	316	1	0.955	0.01147		0.932		0.977
541	315	1	0.952	0.01182		0.929		0.975
578	314	1	0.948	0.01217		0.925		0.973
588	313	1	0.945	0.01250		0.921		0.970
595	312	1	0.942	0.01282		0.918		0.968
608	311	1	0.939	0.01313		0.914		0.965
622	310	1	0.936	0.01344		0.910		0.963
632	309	2	0.930	0.01402		0.903		0.958
646	307	1	0.927	0.01430		0.900		0.956
648	306	1	0.924	0.01457		0.896		0.953
727	305	1	0.921	0.01483		0.893		0.951
742	304	1	0.918	0.01509		0.889		0.948
750	303	1	0.915	0.01534		0.886		0.946
753	302	1	0.912	0.01559		0.882		0.943
781	301	1	0.909	0.01583		0.879		0.941
787	300	1	0.906	0.01606		0.875		0.938
799	299	1	0.903	0.01629		0.872		0.936
806	298	1	0.900	0.01651		0.868		0.933
837	297	1	0.897	0.01673		0.865		0.930
858	296	1	0.894	0.01695		0.861		0.928
913	295	1	0.891	0.01716		0.858		0.925
947	294	1	0.888	0.01737		0.854		0.923
974	293	1	0.885	0.01757		0.851		0.920
977	292	1		0.01777		0.848		0.917
986	291	1		0.01797		0.844		0.915

```
996
        290
                        0.876 0.01816
                                               0.841
                                                             0.912
                   1
        289
                                                             0.909
1018
                   1
                        0.873 0.01835
                                               0.837
1101
        288
                   1
                        0.870 0.01853
                                               0.834
                                                             0.907
        287
                   1
                        0.867 0.01871
                                                             0.904
1181
                                               0.831
                   1
                        0.864 0.01889
1265
        286
                                               0.827
                                                             0.901
1271
        285
                   1
                        0.861 0.01907
                                               0.824
                                                             0.899
1275
        284
                   1
                        0.858 0.01924
                                               0.821
                                                             0.896
1320
        283
                   1
                        0.855 0.01941
                                               0.817
                                                             0.893
1323
        282
                        0.852 0.01957
                   1
                                               0.814
                                                             0.891
1335
        281
                   1
                        0.848 0.01974
                                               0.811
                                                             0.888
                        0.845 0.01990
1357
        280
                   1
                                               0.807
                                                             0.885
        279
                   1
                        0.842 0.02006
1377
                                               0.804
                                                             0.883
1395
        278
                   1
                        0.839 0.02021
                                               0.801
                                                             0.880
                        0.836 0.02036
1412
        277
                   1
                                               0.797
                                                             0.877
1436
        276
                   1
                        0.833 0.02052
                                               0.794
                                                             0.875
1448
        275
                   1
                        0.830 0.02066
                                               0.791
                                                             0.872
1449
        274
                   1
                        0.827 0.02081
                                               0.787
                                                             0.869
1480
        273
                   1
                        0.824 0.02095
                                               0.784
                                                             0.866
1514
        272
                   1
                        0.821 0.02109
                                                             0.864
                                               0.781
1562
        271
                   1
                        0.818 0.02123
                                               0.778
                                                             0.861
1663
        270
                   1
                        0.815 0.02137
                                               0.774
                                                             0.858
                        0.812 0.02150
1677
        269
                   1
                                               0.771
                                                             0.855
1722
        267
                   1
                        0.809 0.02164
                                               0.768
                                                             0.853
1754
        264
                        0.806 0.02177
                   1
                                               0.764
                                                             0.850
1758
        263
                   1
                        0.803 0.02190
                                               0.761
                                                             0.847
                   1
                        0.800 0.02203
1767
        262
                                               0.758
                                                             0.844
1770
        261
                   1
                        0.797 0.02216
                                               0.755
                                                             0.841
1815
        259
                   1
                        0.794 0.02229
                                               0.751
                                                             0.839
        258
                        0.791 0.02241
1819
                   1
                                               0.748
                                                             0.836
1822
        257
                        0.788 0.02253
                                               0.745
                                                             0.833
```

Call:

```
coxph(formula = Surv(tiempo_supervivencia_dias, estado_vital_5anos) ~
  edad + eur + nam + afr + afiliacion, data = datos)
```

```
coef exp(coef) se(coef) z p
edad 9.086e-03 1.009e+00 9.675e-03 0.939 0.3477
eur -1.575e+05 0.000e+00 2.610e+05 -0.603 0.5462
nam -1.575e+05 0.000e+00 2.610e+05 -0.603 0.5462
```

afr -1.575e+05 0.000e+00 2.610e+05 -0.603 0.5462 afiliacion1 5.254e-01 1.691e+00 2.579e-01 2.037 0.0417

Likelihood ratio test=15.18 on 5 df, p=0.009615 n= 323, number of events= 69 (7 observations deleted due to missingness)