

Modelos com Múltiplos Produtos

Prof. Rafael Henrique Palma Lima

Descrição do Problema

Problema de Dimensionamento de Lotes com Múltiplos Produtos

Características do problema

- Considera produtos diferentes quem compartilham os mesmos recursos de produção
- A demanda é especificada por produto e por período
- Cada tipo de produto consome uma taxa diferente de recursos
- Os custos de setup e manutenção de estoque também dependem do produto

	Demandas dos Produtos		
Período	Produto 1	Produto 2	Produto 3
1	185	95	85
2	250	120	0
3	0	200	70
4	120	150	0
5	150	140	105
6	200	0	120
7	0	150	0
8	0	200	100
Rec / unid	0,2	0,4	0,5
Custo Setup	500	400	300
Custo Estoque	2	3	3
Est. Inicial	300	100	50
Est. Final	300	200	200

Modelagem do Problema

Índices

t = 1, ..., T períodos j = 1, ..., J produtos

Parâmetros

 d_{tj} demanda no período t para o item j

 S_j custo de setup (preparação) do produto j

 H_j custo unitário de manutenção de estoque do produto j

 $I_{0,j}$ e $I_{F,j}$ estoques inicial e final r_j recursos consumidos para produzir uma unidade do produto j R_t recursos disponíveis no período t M número grande

Demandas dos Produtos

Período	Produto 1	Produto 2	Produto 3	Recursos
1	185	95	85	160
2	250	120	0	160
3	0	200	70	190
4	120	150	0	170
5	150	140	105	150
6	200	0	120	200
7	0	150	0	200
8	0	200	100	220

Rec / unid	0,2	0,4	0,5
Custo Setup	500	400	300
Custo Estoque	2	3	3
Est. Inicial	300	100	50
Est. Final	300	200	200

Variáveis de Decisão

 y_{tj} indica se há setup no período t para o produto j

 x_{tj} quantidade produzida do produto

j no período *t*

 I_{tj} estoque do produto j ao final do

período t

	Demandas dos Produtos		
Período	Produto 1	Produto 2	Produto 3
1	185	95	85
2	250	120	0
3	0	200	70
4	120	150	0
5	150	140	105
6	200	0	120
7	0	150	0
8	0	200	100

Setup $(y_{t,1})$	Produção ($x_{t,1}$)	Estoque ($I_{t,1}$)
$y_{1,1}$	$x_{1,1}$	$I_{1,1}$
$y_{2,1}$	$x_{2,1}$	$I_{2,1}$
$y_{3,1}$	$x_{3,1}$	$I_{3,1}$
:	:	•
$y_{T,1}$	$x_{T,1}$	$I_{T,1}$

V 1,1	1,1	1,1
Setup $(y_{t,1})$	Produção ($x_{t,1}$)	Estoque ($I_{t,1}$)
$y_{1,2}$	$x_{1,2}$	$I_{1,2}$
$y_{2,2}$	$x_{2,2}$	$I_{2,2}$
$y_{3,2}$	$x_{3,2}$	$I_{3,2}$
:	:	
$y_{T,2}$	$x_{T,2}$	$I_{T,2}$

	Setup ($y_{t,1}$)	Produção ($x_{t,1}$)	Estoque ($I_{t,1}$)
	$y_{1,3}$	$x_{1,3}$	$I_{1,3}$
	$y_{2,3}$	$x_{2,3}$	$I_{2,3}$
1	$y_{3,3}$	$x_{3,3}$	$I_{3,3}$
	:	:	:
	$y_{T.3}$	$x_{T.3}$	$I_{T.3}$

Produto 1

Produto 2

Produto 3

Modelo Completo do Problema

Objetivo:
$$\min Z = \sum_{t=1}^T \sum_{j=1}^J \left(y_{tj} S_j + I_{tj} H_j \right)$$
 Minimiza o custo total da solução Sujeito a: $x_{tj} + I_{t-1,j} - d_{tj} = I_{tj}$, $\forall t,j$ Balanço de estoque em cada período/produto
$$\sum_{j=1}^J r_j x_{tj} \leq R_t, \qquad \forall t$$
 Restrição de capacidade por período
$$x_{tj} \leq M y_{tj}, \qquad \forall t,j \qquad \text{Só há produção quando há setup}$$
 Solution $I_{T,j} = I_{F,j}$, $\forall t,j \qquad \text{Solution of the produção quando há setup}$ Variáveis x_{tj} e
$$I_{tj} \text{ inteiras} \text{ (poderiam ser não negativas)}$$
 $y_{tj} \in \{0;1\}, \forall t,j \qquad \text{Variáveis } y_{tj} \text{ binárias}$

Modelagem do Problema

Função Objetivo

$$\min Z = \sum_{t=1}^{T} \sum_{j=1}^{J} \left(y_{tj} S_j + I_{tj} H_j \right)$$

$$= y_{1,1} S_1 + I_{1,1} H_1 + y_{1,2} S_2 + I_{1,2} H_2 + y_{1,3} S_3 + I_{1,3} H_3$$

$$+ y_{2,1} S_1 + I_{2,1} H_1 + y_{2,2} S_2 + I_{2,2} H_2 + y_{2,3} S_3 + I_{2,3} H_3$$

$$+ y_{3,1} S_1 + I_{3,1} H_1 + y_{3,2} S_2 + I_{3,2} H_2 + y_{3,3} S_3 + I_{3,3} H_3$$

$$\vdots$$

$$+ y_{T,1} S_1 + I_{T,1} H_1 + y_{T,2} S_2 + I_{T,2} H_2 + y_{T,3} S_3 + I_{T,3} H_3$$
Para $t = T$

Restrições de Balanço de Estoque

Modelagem do Problema

Restrições de Capacidade e Produção com Setup

$$\sum_{j=1}^{J} r_j x_{tj} \leq R_t, \qquad \forall t \Longrightarrow \begin{cases} \text{Para } t = 1 \\ r_1 x_{1,1} + r_2 x_{1,2} + r_3 x_{1,3} \leq R_1 \\ \text{Para } t = 2 \\ r_1 x_{2,1} + r_2 x_{2,2} + r_3 x_{2,3} \leq R_2 \end{cases}$$