

Modelo Relacional

- Fue presentado por primera vez por Ted Codd, de IBM Research, en 1970 en un documento ya clásico (Codd 1970)
- Esta basado en la teoría de conjuntos y en la logica de predicados
- Fue adoptado rápidamente como el modelo más usado en bases de datos

¿Que es un Modelo?

Ejemplo del "Modelo Automóvil":

Características esenciales (imprescindibles)

- Vehículo autopropulsado
- Tiene cuatro ruedas
- Medio de transporte terrestre
- Se dirige mediante un volante
- Está destinado al transporte de personas

¿Que es un Modelo?

Entonces...

¿Esto, es un automóvil?

¿Y éstos?

¿Que es un Modelo?

Así, existen diferentes automóviles, fabricados por distintas empresas, en distintas épocas, y para diferentes propósitos:

- √ Iguales en cuanto a sus propiedades fundamentales
- ✓ PERO... con características "no esenciales" muy diferentes

ATENCION: El hecho de que una característica sea no esencial, no significa que no sea valiosa.

Comprende conceptos que pueden clasificarse en <u>tres categorías</u>:

Modelo Relacional Estructura Integridad Manipulación

Modelo Relacional

Modelo Relacional - Estructura

Refiere a la forma en la que se almacenan los datos

(Única estructura de datos del modelo)

Estructura

Toda base de datos relacional está formada por una colección de relaciones

"parecidas" o
"informalmente llamadas"

Tablas
(Archivos simples)

Tablas

Archivos simples

Archivos simples (terminología relativa a archivos)

Relación

Sin embargo, las relaciones tienen:

- Propiedades que las distinguen
- Utilizan términos propios

Relación (Gráficamente)

relación

Estructura: Relación

Se distinguen dos aspectos:

- Esquema de Relación o Intensión de una relación
- Relación propiamente dicha, Estado o Extensión de la relación

Estructura: <u>Esquema</u> de Relación / <u>Intensión</u> de una Relación

Un esquema de relación se compone de:

- Nombre
- Lista de atributos

atributos

Denotado:

$$R(A_1, A_2, A_3, ..., A_n)$$
 o bien $R=\{(A_1D_1), (A_2D_2), ..., (A_nD_n)\}$
 \uparrow
nombre grado = cantidad de

11

Estructura: <u>Esquema</u> de Relación / <u>Intensión</u> de una Relación

$$R(A_1, A_2, A_3, ..., A_n)$$

Cada A_i es el nombre del rol que desempeña el dominio D en el esquema de relación R

El dominio D de A_i , se denota $dom(A_i)$ Donde cada $dom(A_i)$ no son distintos necesariamente

Ejemplo de dominios:

dom(tel_alum)= Nros_tel_Argentina

Donde: Nros_tel_Argentina es un dominio previamente definido

Estructura: <u>Relación/Estado</u> de la Relación / <u>Extensión</u>

Una <u>relación</u> r del esquema de relación $R(A_1, A_2, A_3, ..., A_n)$ denotado por r(R) es un conjunto finito de transformaciones* $r = \{t_1, t_2, ..., t_m\}$

Donde:

- Cada tupla t; es una transformación de R en D
- D es la unión de todos los dominios de los atributos
- Por lo tanto, t[A;] debe estar en dom(A;) con 1≤i≤n para cada transformación t en r

Estructura: Relación/Estado de la Relación/Extensión

Donde:

- Cada t[A_i] es un elemento de dom(A_i) o bien un valor nulo
- El <u>i-ésimo valor de la tupla t</u> que corresponde al atributo A_i, se denota *t[A_i]*
- Entonces, cada tupla se considera como un conjunto de pares (atributo, valor)

$$t_i = \{(A_3, V_{i3}), (A_1, V_{i1}), (A_m, V_{im}), \ldots\}$$

Por lo tanto, puesto que ya vimos que $r = \{t_1, t_2, ..., t_m\}$ entonces r es un conjunto de conjuntos

Estructura: <u>Relación/Estado</u> de la Relación / <u>Extensión</u>

Una relación también puede definirse:

r(R) es una relación matemática de grado n sobre los dominios dom (A_1) , dom (A_2) , ..., dom (A_n)

Subconjunto del producto cartesiano de los dominios de R

 $r(R) \subseteq (dom(A_1) \times dom(A_2) \times ... \times dom(A_n))$

Estructura: <u>Relación/Estado</u> de la Relación / <u>Extensión</u>

r(R) c (dom(A1) x dom(A2)x ... x dom(An))

El producto cartesiano corresponde a todas las combinaciones posibles de los valores de los dominios subyacentes

El <u>estado actual</u> de la relación **r** refleja solamente las tuplas válidas que representan un estado específico del mundo real

Estructura: <u>Dominios</u>

Un dominio D es un conjunto de valores atómicos válidos

Un dominio, en general, tendrá:

- Nombre
- Tipo de datos
- Formato
- Información adicional (por ejemplo, unidad de medida)

Estructura: Dominios

Ejemplos:

- Nros. de teléfonos de Argentina
 - Def. lógica: Conjunto de nros. tel. válidos de xxx dígitos de Argentina.
 - o Tipo de dato/Formato: Cadena de caracteres de la forma (ddd)dddd, donde cada d representa a un dígito decimal, y los 3 primeros forman el código de área.
- Pesos_de pacientes
 - o Def. lógica: Pesos posibles de los pacientes de un médico pediatra, oscilan entre 0,500 y 60 (por ejemplo).
 - Tipo de dato/Formato: Número real entre 0,500 y 60.
 - Unidad de medida: Kilogramo
- o <u>Promedios de notas</u>: Valores posibles de los promedios de notas, cada uno será un valor real entre 0 y 10.
- Edades_de alumnos: Edades posibles de los alumnos de la facultad, oscilan entre 17 y 50 (por ejemplo).
- o <u>Estados_civiles_empleados</u>: Valores posibles para el estado civil de un empleado, a saber: soltero, casado, separado, viudo.
- Estados civiles alumnos: Valor posible para el estado civil de un alumno de una escuela primaria, a saber: soltero.

Estructura: Dominios

Complejidad del concepto de dominios:

- Definir el conjunto de todos los dominios posibles
- Definir las operaciones (unarias, binarias) válidas
- Para cada operación válida definida, identificar el dominio resultante

Estructura: Dominios

Ejemplos:

Sean los siguientes dominios, ambos enteros:

- Capacidad de personas de un aula
- Cantidad de alumnos

¿Sería "correcto" sumar elementos de ambos dominios? ¿Sería "correcto" comparar elementos de ambos dominios?

Sean los siguiente dominios definidos:

- Velocidad
- Tiempo

¿Es posible aplicar la operación "multiplicación" entre valores de ambos? ¿a qué dominio pertenece el resultado? (distancia)

Estructura: Características de las Relaciones

Características que se desprenden de la definición (ojo!!! no son exigencias, son consecuencias):

- Las tuplas de una relación no están ordenadas
- Los atributos de una tupla no están ordenados
- Cada valor en una tupla es un valor atómico
- No existen tuplas repetidas (de ahí se desprende que siempre existirá una clave primaria para toda relación)

Estructura: Características de las Relaciones

Analicemos esta estructura:

- ¿Corresponde a una relación? ¿ Por qué?
- ¿ Cómo debiéramos transformarla?

Nombre	Edad	Idioma	Nivel
Luis	18	Inglés	Bien
Ana	23	Inglés Francés	Bien Regular
Jaime	19	Alemán	Mal
Maria	42	Italiano	Bien

Modelo Relacional

Modelo Relacional

Integridad

Concepto Integridad:

Refiere a la correctitud de los datos

Las restricciones contribuyen a mantenerla

Integridad

Integridad

Las restricciones del modelo relacional son:

- 1. De dominio
- 2. De clave
- 3. De no nulo
- 4. De integridad de entidades
- 5. De integridad referencial

Relaciones individuales

Base de datos (Varias relaciones)

Integridad - Sobre relaciones individuales

Restricción de dominio

- Especifica que el valor de cada atributo A_{i.}
- Debe ser un valor atómico del dominio dom(A_i)

Integridad - Sobre relaciones individuales

Restricciones de clave

Una relación está definida como un conjunto de tuplas

No pueden existir tuplas repetidas

Siempre existirá un subconjunto de atributos **SC** que satisfacerá, en todo estado de la relación, para cualquier par de tuplas i j:

$$T_i[SC] \neq T_i[SC]$$
 superclave

Toda superclave especifica una restricción de unicidad

Integridad - Sobre relaciones individuales

Restricciones de nulo

Para cada atributo se puede especificar si permite o no valores nulos

Integridad - Restricciones aplicadas a bases de datos

Esquema de Base de Datos:

Un esquema de base de datos relacional S es:

• Un conjunto de esquemas de relaciones $S=\{R_1, R_2, ..., R_m\}$

Un conjunto de restricciones RI de integridad

Integridad - Restricciones aplicadas a bases de datos

Estado de una base de datos:

Un estado de base de datos relacional BD de S es un conjunto de estados de relaciones $BD = \{r_1, r_2, ..., r_m\}$ tal que:

- Cada r_i es un estado de R_i
- \circ Todo $\underline{r_i}$ satisface las restricciones de integridad especificadas en RI

Integridad - Restricciones aplicadas a bases de datos

Restricción de integridad de entidades

Ningún valor de <u>clave primaria</u> (CP) puede contener valores nulos

Integridad - Restricciones aplicadas a la bd

Restricción de Integridad Referencial

<u>Clave foránea</u> (R_1 y R_2 , no necesariamente distintas): Un conjunto de atributos **CF** del esquema de relación R_1 <u>es una clave foránea de R_1 si satisface:</u>

- Los atributos de CF tienen el mismo dominio que los atributos de la CP del esquema de relación R₂.
- 2. Todo valor de CF en una tupla t_{i:}
 - (a) ocurre como valor de CP en alguna tupla del estado actual de r₂ o bien
 - (b) es totalmente nulo.

R₁ → Relación Referenciante

 R_2 \Longrightarrow Relación Referenciada

Integridad: Ejercicio

- 1. Identifiquemos claves primarias y foráneas.
- 2. ¿Quién es la relación referenciada y la referenciante?
- 3. Evaluemos la Regla de Integridad Referencial. ¿Cumple 2.(a) o 2.(b)?
- 4. El atributo dep, ¿podría tener un valor nulo? ¿cumpliría las Reglas de Integridad?

5. ¿ Qué pasaría si el atributo dep para el empleado nro. 5, tuviese como valor "d2"?

Empleado				
nº_emp	dni	nombre	dirección	dep
1	20.450.120	Juan Pérez	Cuenca 20	d1
5	11.345.678	Ana Orts	Cuenca 20	d3

Departamento

cod_dep	descripción	
d1	Ventas	
d3	Contabilidad	

Modelo Relacional

Modelo Relacional EstructuraIntegridadManipulación

Operadores del algebra se pueden clasificar

Según la pertenencia a la teoría de conjuntos

- Tradicionales
- Especiales

Según la posibilidad de descomponerlos

- Primitivos
- Derivados

Según la <u>cantidad de</u> <u>argumentos</u>

- Unarios
- Binarios

Algebra Relacional (Básica)

Según la pertenencia a la teoría de conjuntos

Según la posibilidad de descomponerlos

Según la cantidad de argumentos

Tradicionales

- 1. Unión
- 2. Intersección
- 3. Diferencia
- 4. Producto Cartesiano

Especiales

- 1. Selección
- 2. Proyección
- 3. Join
- 4. División

Primitivos

- 1. Unión
- 2. Diferencia
- 3. Producto Cartesiano
- 4. Selección
- 5. Proyección

Derivados

- 1. Intersección
- 2. Join
- 3. División

<u>Unarios</u>

- 1.Selección
- 2. Proyección

Binarios

- 1.Unión
- 2.Diferencia
- 3.Producto
- Cartesiano
- 4.Intersección
- 5.Join
- 6. División

Todos los operadores satisfacen la PROPIEDAD DE CLAUSURA:

TODO OPERADOR DEL ÁLGEBRA

- Toma como argumento/s esquemas de relaciones y
 - Devuelve también un esquema de relación

Ninguna expresión del álgebra puede generar tuplas repetidas

Generar expresiones encadenadas o anidadas

Operadores del Algebra

Operador	Función	Notación
<u>Selección</u>	Genera otra relación cuyo esquema es el mismo de R y, en cuanto a la extensión, posee todas las tuplas de R que satisfacen la condición de selección	σ _{<condicion de="" selección=""></condicion>} (R)

Tomemos como ejemplo estas dos relaciones:

Al (Alumnos de Informática)

Dni	NyA	Loc	Carrera
12	Juan	Capital	LCC
80	Pedro	Rawson	LSI
27	Ana	Rawson	LCC

AG(Alumnos de G/GF/B)

Dni	NyA	Loc	Carrera
90	Lola	Zonda	LCG
27	Ana	Rawson	LB
81	Ana	Capital	LG
23	Jose	Capital	LCG

Analicemos la siguiente solicitud:

- o Alumnos de Informática que viven en Rawson.
 - ¿Cuál sería la expresion del algebra correspondiente?
 - ¿ Cuál sería el resultado?

Operador selección

Observaciones:

✓ La **<condición de selección>** es una **expresión booleana** que puede utilizar los operadores de comparación $\{<,>,=,\leq,\geq,\neq\}$. Estos operadores se aplican a atributos cuyos dominios son valores ordenados (numéricos, fechas, cadenas de caracteres). Un ejemplo de dominio no ordenado es COLOR={rojo, verde, amarillo}.

✓El operador selección es conmutativo:

$$\sigma_{\text{cond1}}$$
 (σ_{cond2} (R)) = σ_{cond2} (σ_{cond1} (R))

Ejemplo: ¿Qué obtiene esta expresión?

$$\sigma_{\text{cloc}=\text{"Rawson"}>}(\sigma_{\text{carrera}=\text{"LSI"}>}(AI)) = \sigma_{\text{cloc}=\text{"Rawson"}>}(\sigma_{\text{carrera}=\text{"LSI"}>}(AI))$$

- ✓ Siempre es posible reemplazar una cascada de selecciones en una sola:
- √ Las cláusulas pueden conectarse con operadores booleanos

$$\sigma_{\text{cond1}} (\sigma_{\text{cond2}} (R)) = \sigma_{\text{cond1}} \text{ and } \text{cond2} (R)$$

$$\underline{\text{Ejemplo}}: \sigma_{\text{correra="LSI"}} (\sigma_{\text{correra="LSI"}} (AI)) = \sigma_{\text{cloc="Rawson"}} \text{ and } \text{correra="LSI"} (AI))$$

Operador	Función	Notación
<u>Proyección</u>	Genera otro esquema de relación que contiene solamente los atributos de R especificados en la lista de atributos	π _{<lista atributos="" de=""></lista>} R

Observaciones:

✓ La cantidad de tuplas de la relación resultante será menor o igual a la cantidad de tuplas de la relación R.

✓El operador de proyección no es conmutativo.

Analicemos el siguiente solicitud:

- Obtener dni y nombre (y apellido) de todos los alumnos de Informática.
 - ¿ Cuál es la expresión del algebra correspondiente?
 - ¿ Cuál es el resultado?
- Obtener dni y el nombre (y apellido) de los alumnos de Informática que viven en Rawson.

Algunas consideraciones importantes:

Relaciones Unión Compatibles o Compatibles con la Unión

Dos relaciones, $R(A_1, A_2, ..., A_n)$ y $S(B_1, B_2, ..., B_n)$, serán unión compatibles si tienen el mismo tipo de tuplas. Es decir, si ambas tienen grado n y si dom (A_i) =dom (B_i) para $1 \le i \le n$.

Calificación de Atributos

Los atributos de una relación $R(A_1, A_2, ..., A_n)$ pueden ser calificados colocando el nombre de la relación, luego un punto y por último el nombre del atributo, por ejemplo, $R.A_2$.

Operador	Función	Notación
<u>Unión</u> *	Genera un esquema de relación que posee el mismo conjunto de atributos de R_1 y R_2 , e incluye las tuplas que pertenecen a R_1 o a R_2 o a ambas	R ₁ U R ₂

^{*} Los argumentos deben ser Unión Compatibles

Observaciones:

✓ La cantidad de tuplas de la relación resultante será menor o igual a la cantidad de tuplas de la relación R_1 + la cantidad de tuplas de R_2 .

✓El operador unión es conmutativo.

<u>Analicemos la siguiente solicitud:</u>

- Obtener todos los alumnos de la Facultad, asumiendo que son los alumnos de Informatica, de Geología, Geofísica y Biología.
 - ¿Cuál es la expresión del algebra correspondiente?

Operador	Función	Notación
Intersección*	Genera un esquema de relación que posee el mismo conjunto de atributos de R_1 y R_2 , e incluye las tuplas que pertenecen a R_1 y a R_2	$R_1 \cap R_2$

Observaciones:

✓El operador intersección es conmutativo.

Analicemos la siguiente solicitud:

- Obtener los datos de personas que son los alumnos de Informatica (**AI**) y tambien de alguna de las otras carreras (**AG**).
 - ¿Cuál es la expresión del algebra correspondiente?

Operador	Función	Notación
<u>Diferencia</u> *	Genera un esquema de relación que posee el mismo conjunto de atributos de R_1 y R_2 , e incluye las tuplas que pertenecen a R_1 y no pertenencen a R_2	R ₁ - R ₂

Observaciones:

✓El operador diferencia no es conmutativo.

Analicemos la siguiente solicitud:

- Obtener los datos de personas que son sólo alumnos de Informática (AI), es decir, no están inscriptos en alguna de las otras carreras (AG).
 - ¿Cuál es la expresión del álgebra correspondiente?

^{*} Los argumentos deben ser Unión Compatibles

Supongamos las siguientes tablas:

Materias:

CodMat -	NomMat -	Carrera -	Despliegue -
M1	Matematica	LCC	Α
M2	Ingles	LSI	A
M3	Programacion	LCC	S
M4	Bases de Datos	LSI	S

Alumnos:

Dni 🔻	NyA	→ Loc	*	Carrera	(*)
13	Juan	Capital		LCC	
80	Pedro	Rawson		LSI	
27	7 Ana	Rawson		LCC	

Operador	Función	Notación
<u>Producto</u> <u>Cartesiano</u>	Genera un esquema de relación que posee la unión de atributos de R ₁ y R ₂ , y como tuplas todas las combinaciones posibles de las tuplas de R ₁ y R ₂	R ₁ x R ₂

Observaciones:

✓El operador producto cartesiano es conmutativo.

Analicemos la siguiente expresión: ALUMNOS X MATERIAS

¿Qué resultado obtendríamos?

Operador	Función	Notación
<u>Producto</u> <u>Cartesiano</u>	Genera un esquema de relación que posee la unión de atributos de R ₁ y R ₂ , y como tuplas todas las combinaciones posibles de las tuplas de R ₁ y R ₂	R ₁ x R ₂

ALUMNOS X MATERIAS:

Dni 💌	NyA +	Loc →	alumnos.Carrera +	CodMat -	NomMat +	materias, Carrera +	Despliegue •
12	Juan	Capital	LCC	M1	Matematica	LCC	Α
12	Juan	Capital	LCC	M2	Ingles	LSI	A
12	Juan	Capital	LCC	M3	Programacion	LCC	S
12	Juan	Capital	LCC	M4	Bases de Datos	LSI	S
27	Ana	Rawson	LCC	M1	Matematica	LCC	Α
27	Ana	Rawson	LCC	M2	Ingles	LSI	A
27	Ana	Rawson	LCC	M3	Programacion	LCC	S
27	Ana	Rawson	LCC	M4	Bases de Datos	LSI	S
80	Pedro	Rawson	LSI	M1	Matematica	LCC	Α
80	Pedro	Rawson	LSI	M2	Ingles	LSI	A
80	Pedro	Rawson	LSI	M3	Programacion	LCC	S
80	Pedro	Rawson	LSI	M4	Bases de Datos	LSI	S

Atención: Ver los atributos calificados!

Operador	Función	Notación
<u>Join</u>	Genera un esquema de relación que posee la unión de atributos de R ₁ y R ₂ , (n+m), y como tuplas todas las combinaciones posibles de R ₁ y R ₂ que satisfacen la condición de reunión	$R_1 \bowtie_{< cond. de reunión>} R_2$ Donde: $R1(A_1, A_2,, A_n)$ $R2(B_1, B_2,, B_m)$

Observaciones:

✓ La condición es de la forma <cond> y <cond> y ...y <cond>. Donde cada <cond> tiene la forma Ai θ Bj. Ai y Bj pertenecen al mismo dominio y θ es un operador de comparación $\{=,<,>,\leq,\geq,\neq\}$. Un join con una condición general como ésta, se denomina θ Join.

✓En particular, cuando la condición utiliza el operador de comparación =, el join es llamado equijoin.

Operador	Función	Notación
<u>Natural</u> <u>Join</u>	Es equivalente a un equijoin con ciertas diferencias:	R ₁ * R ₂
	La condición de reunión es implícita, y es la igualdad sobre los atributos con idénticos nombres en ambas relaciones (R ₁ y R ₂). Además los atributos coincidentes son mostrados sólo una vez en la relación resultante.	

Comentarios:

- ✓El operador Natural Join es conmutativo.
- ✓R1 y R2 deben tener uno o más atributos en común.

Analicemos la siguiente solicitud:

- Obtener los datos personales de los alumnos junto a las materias que le corresponden segun la carrera en la que estan inscriptos:
 - Cual es la expresion del algebra correspondiente?
 - Observemos el resultado del producto cartesiano de ALUMNOS y MATERIAS!!!

Dni -	÷	NyA -	Loc +	alumnos.Carrera •	CodMat →	NomMat +	materias.Carrera -	Despliegue •
i	2	Juan	Capital	LCC	M1	Matematica	LCC	Α
1	2	Juan	Capital	LCC	M2	Ingles	LSI	A
1	2	Juan	Capital	LCC	M3	Programacion	LCC	S
1	2	Juan	Capital	LCC	M4	Bases de Datos	LSI	S
2	7	Ana	Rawson	LCC	M1	Matematica	LCC	Α
2	7	Ana	Rawson	LCC	M2	Ingles	LSI	A
2	7	Ana	Rawson	LCC	M3	Programacion	LCC	S
2	7	Ana	Rawson	LCC	M4	Bases de Datos	LSI	S
8	0	Pedro	Rawson	LSI	M1	Matematica	LCC	Α
8	0	Pedro	Rawson	LSI	M2	Ingles	LSI	A
8	0	Pedro	Rawson	LSI	M3	Programacion	LCC	S
8	0	Pedro	Rawson	LSI	M4	Bases de Datos	LSI	S

Operador	Función	Notación
Join Externo Derecho	Idem anterior pero además posee todas las tuplas de R2 que no tienen valores coincidentes en R1	$R_1 \bowtie_{} R_2$ Donde: $R1(A_1,A_2,,A_n)$ $R2(B_1,B_2,,B_m)$
Join Externo Izquierdo	Idem anterior pero además posee todas las tuplas de R1 que no tienen valores coincidentes en R2	$R_1 \Rightarrow_{\text{cond. de reunión}} R_2$ Donde: $R1(A_1, A_2,, A_n)$ $R2(B_1, B_2,, B_m)$
Join Externo Completo	Idem anterior pero además posee todas las tuplas de R1 que no tienen valores coincidentes en R2, y todas las tuplas de R2 que no tienen valores coincidentes en R1	R_1 <a <a="" href="cond.de"><a <a="" href="cond.de"><a <<="" <a="" href="cond.de" td="">

Operador	Función	Notación
<u>Division</u>	Genera una relación que posee como atributos, los de R1 que no están en R2 (digamos Z'). Y en cuanto a las tuplas, todos aquellos valores Z' que están combinados en R1 con todos los valores presentes en R2.	R ₁ ÷ R ₂ Donde: Si Z son atributos de R1 y S los de R1, entonces S <u>c</u> Z

Comentarios:

✓El operador División no es conmutativo.

Supongamos que tenemos una relacion CARRERAS que contiene todas las carreras de la Facultad

Analicemos la siguiente solicitud:

- Obtener los datos de los alumnos que están inscriptos en todas las carreras
- Obtener los datos de los alumnos que están inscriptos en todas las carreras del Deparrtamento de Informática
 - ¿Que expresión del Algebra resuleve el problema?

Observaciones:

R1		÷
A1	A2	А3
juan	С	m3
jose	C	m3
juan	C	m1
jose	S	m1
juan	S	m1

R2	
A2	A3
С	m1
С	m3
S	m1

c m1 c m3 s m1
c m1
2 1111
3 1111

R2
A2
C
S

Resi	ulta	do	
A 1			
juc	ın		
Resi	ulta	do	
A1	A	3	
uan	m	1	

R1		÷
A1	A2	А3
juan	C	m3
jose	C	m3
juan	C	m1
jose	S	m1
juan	S	m1

Algunos operadores presentados corresponden a <u>extensiones del algebra</u> básica, ellos son:

- 1. Join Externo Izquierdo
- 2. Join Externo Derecho
- 3. Join Externo Completo

Fundamentalmente en esta instancia trabajaremos con el conjunto de operadores básicos.

El standard SQL posee, entre otros, este tipo de operadores, y en ese contexto trabajaremos con ellos.

Prioridades de los operadores

Tienen prioridad las operaciones unarias sobre las binarias

Las expresiones del álgebra se evalúan de **izquierda a derecha**

Se pueden utilizar
paréntesis para alterar
el orden implícito de
las expresiones

Secuencias de operaciones y operador renombrar:

Es frecuente necesitar aplicar varios operadores uno tras otro

Anidar expresiones

Aplicar los operadores de a uno y crear resultados intermedios

Nombrar las relaciones intermedias

Secuencias de operaciones: Asignación

No sólo permite darle nombre a una relación sino también cambiar el nombre de sus atributos

Donde:

- R1 tiene atributos nombre1 y nombre 2
- nombre1 y nom_nuevo1 están definidos sobre el mismo dominio
- idem para nombre2 y nom_nuevo2

Operador renombrar

No sólo permite renombrar el nombre de la relación sino también el nombre de sus atributos

Donde:

- R es el nombre de la relación original
- S es el nuevo nombre de la relación
- B1, B2, ..., Bn son los nuevos nombres de los atributos. Si los atributos de R son (A1, A2, ..., An) en ese orden, entonces cada Ai se renombra como Bi

Diapositiva 65

- sa aparentemente de renombrar atributos
 - 1) se los debe mencionar a todos, de ùltima, se colocaran los mismos nombres (es decir, los viejos)
 - 2) no debe ser demasiado comun usarlo, porque permite atributos calificados

Silvina, 02-Sep-08

Modelo Relacional

- Estructura
- Integridad
- Manipulación

- Fin -

