NOTAS SOBRE ALGORITMO AKS - ANÁLISIS DE LA CONDICIÓN SUFICIENTE -

Lema

See a < n, mcd(a,n) = 1, $n \in primo (ii)$ $(X+a)^{n} = (X^{n} + a) \pmod{n}$

Ej 1 a=1 n=3el sesto de $(x+1)^3-(x^3+1)$ es $0 \implies 3$ es primo

el resto de $(x+3)^{5}(x^{5}+3)$ as $0 \Rightarrow 5$ es primo

Mejoce

 $(X+\alpha)^n = (X^n + \alpha) \pmod{X^n - 1}$ and anillo de Describer modules n

 $E_{jourle 3}$ a=3 n=5 $(x+3)^5 = x^5+3 \pmod{x^4-1}$

Perto de dividir el resto de $(x+3)^5:(x^4-1)$ por 5 es ignel al resto de dividir el resto de $(x^5+3):(x^4-1)$ por 5

(Tembién podomos decir que el verto de dividir el vesto de $\sqrt{(x+3)^5-(x^5+3)}$: (x^4-1) pot 5 es 0

Pava (r) tomamos el manor r tel que $Or(n) > log_2^2 n$. Or(n) es el ordon de n módulo- r y represente el manor k tel que $n = 1 \pmod{n}$. Ejamplo-

^{*} Pero alganos números com prestos cumplem esto. Sin embergohaciendo la preba de da mejoca para unos cuantes números re garratiza la prinalicada

Force a examinamor un rougo de anteror [1, $2\sqrt{r}\log_2 n$) Si en todos los casos se cumple la conquencia, n es primo.

* How are nejoca: on larger de \sqrt{r} , lacer $\sqrt{q(r)}$ Q(r) es el rémoro de enteros positivos marcres or ignales que <math>r, y coprimes con r (on mod as 1)

Ej. Q(q)=6

Estadio de Totient que n tales que n es coprimo con estas $P(n) = n \prod_{P \mid n} \left(1 - \frac{1}{P}\right)$

Pope les distintes primes que divide a nEj. $\varphi(18)=18\cdot \left(1-\frac{1}{2}\right)\left(1-\frac{1}{3}\right)=6$

Se calculara totient (r)