

Adaptive Fine-Grained Sketch-Based Image Retrieval

Ayan Kumar Bhunia¹, Aneeshan Sain^{1,2}, Parth Hiren Shah*, Animesh Gupta*, Pinaki Nath Chowdhury^{1,2}, Tao Xiang^{1,2}, Yi-Zhe Song^{1,2}

¹SketchX, CVSSP, University of Surrey, UK; ²iFlyTek-Surrey Joint Research Centre on Artificial Intelligence; *Intern at SketchX

Overview:

- The recent focus in Fine-Grained Sketch-Based Image Retrieval, has been shifted to generalize, a model to new categories without any new training data.
- However, a trained retrieval model faces issues in real-world applications:
- New categories with no sketch photo pairs.
- Different drawing styles of different.
- Model Agnostic Meta Learning is a suitable option; and quite realistic
 as it leverages only a few examples to quickly adapt to new
 categories and drawing styles.
- A major issue in here is to solve heavy computation which occurs due to second order gradients.
- Also, optimal margin value in triplet loss varies for different categories.
- Can we learn the margin value on the fly for different categories?

- We therefore extend meta learning research even further towards practicality and human-likeness.
- We solved the heavy computation problem by only doing inner loop update on the final joint-feature embedding layer.
- We introduce the learning to learn concept, and used meta learning to learn the margin value used in the triplet loss on the fly.

Please visit https://ayankumarbhunia.github.io for more.

Proposed Model:

Objectives:

- o Quickly adapt the model to new categories and different drawing styles.
- Meta learn the margin value.
- o Reduce domain gap between sketch and photo images.

• Training Methods:

- Feature Extractor F:
- Train a feature extractor which uses a Siamese network with spatial attention.
- Meta Learning Head M:
- Features are passed to a fully connected layer, followed by a I2 normalization to embed the photo and sketch images into a shared embedding space.

$$L_T = \frac{1}{N} \sum_{i=1}^{N} max\{0, \mu + \beta_i^+ - \beta_i^-\}.$$

$$L_D = t \cdot \log(\mathbf{D}(\mathbf{F}(I))) + (1 - t) \cdot \log(1 - \mathbf{D}(\mathbf{F}(I)))$$

$$L_{C} = \mathtt{Cross_Entropy}(\mathbf{c_l}, \mathtt{softmax}(\mathbf{C}(\mathbf{F}(I))))$$

$$L_{ud} = \max\{0, \beta'^{+} - \beta'^{-} + \mu'\}.$$

$$L_{s} = \frac{1}{2} \left(1 - \frac{\langle \mathbf{G}(\mathbf{F}(I)), S_{w} \rangle}{\|\mathbf{G}(\mathbf{F}(I))\|_{2} \cdot \|S_{w}\|_{2}}\right)$$

• Three regularizers to handle fine grained SBIR:

- Minimize sketch-photo domain gap
- We used a discriminator to predict the domain of the input in the intermediate latent space.
- Discriminative intermediate latent space
- We used a classification loss to discriminate different categories and a triplet loss if there exists only 1 category for intra sample discrimination.
- Transfer of semantic knowledge to unseen categories
- Semantic decoder head over F to reconstruct embedding representation of the category label with respect to either sketch or photo.

Experiments & Results:

- Dataset: Sketchy^[1] and QMUL-Shoe-V2^[2]
- Evaluated against a few designed baselines on 4 setups to judge a model's adaptability, its generalizing potential and impact of meta-learn margin value. Further details in paper.

Datasets	Baseline		Fine-Tuning		Generalisation [36]		Proposed (k=5)			
Datasets	Acc@1	Acc@5	Acc@1	Acc@5	Acc@1	Acc@5	Acc@1	Acc@5	GAP_{B}	$\overline{\mathrm{GAP_G}}$
Sketchy (Category Level)	18.4%	37.3%	18.5%	37.5%	22.7%	42.1%	28.1%	51.8%	9.7^{\uparrow}	$5.4\uparrow$
Shoe-V2 (User Level)	33.7%	70.2%	33.8%	70.2%	33.8%	70.4%	38.3%	76.6%	$4.6\uparrow$	$4.5\uparrow$
	_	_	_		<u>_</u>					

Quantitative evaluation showing average classification accuracy.

		Sketchy	(Category)) Shoe-V	2 (User)			Sketchy	(Category)	Shoe-V	2 (User)
		Acc@1	Acc@5	Acc@1	Acc@5]		Acc@1	Acc@5	Acc@1	Acc@5
	Our Baseline	18.4%	37.3%	33.7%	70.2%	es	k=1	18.4%	37.3%	33.7%	70.2%
	Our Baseline $+$ Reg.	19.2%	39.6%	33.9%	71.3%	ਤੋਂ Fine-Tuning	k=5	18.5%	37.5%	33.8%	70.2%
	Upper-Bound	29.8%	53.7%	_	_	, joa	k=10	18.6%	37.5%	_	_
	$\overline{\text{Triplet-SN}}[\overline{60}]$	$\bar{1}5.3\ \%$	$\bar{34.0\%}^{-}$	$\overline{28.5\%}^-$	$\overline{}6\overline{7}.\overline{3}\%$	16	$\bar{k}=\bar{1}$	19.5%	38.7%	$\bar{3}\bar{4}.2\bar{\%}^{-}$	70.7%
ΤA	Triplet-HOLEF [53]	16.7%	35.9%	31.4%	69.1%	▼ MAML [20]	k=5	22.8%	42.3%	35.5%	74.6%
Q,	Triplet-RL [7]	4.7%	7.8%	34.1%	70.2%	peg	k=10	26.4%	48.9%	_	_
01	Mixed-Jigsaw [36]	16.7%	34.3%	33.5%	71.4%	M sign MAMI [10]	$\bar{k}=\bar{1}$	$\overline{19.1\%}^-$	_ <u>3</u> 8.2%	$\bar{3}\bar{3}.8\bar{\%}^{-}$	$\overline{}6\overline{9}.\overline{6}\%$
	StyleMeUp [46]	19.6%	39.7%	36.4%	81.8%	m sign-MAML [19]	k=5	20.5%	39.6%	34.1%	70.8%
A	$ \overline{\text{CC-DG}}$ $[\overline{36}]$ $\overline{}$	$\bar{2}\bar{2}.7\%^{-1}$	$\overline{42.1\%}^{-}$	33.8%	$\overline{70.4\%}$	tio	$\bar{k}=\bar{1}$	$\overline{19.7\%}^-$	_ <u>38</u> .9%	$\bar{3}\bar{4}.5\bar{\%}^{-}$	70.9%
Ω I	Distill(non-MAML) [36]	18.9%	38.1%	33.9%	70.9%	aptap ANIL [41]	k=5	23.2%	42.8%	35.7%	75.3%
\mathbb{R}_{-}	$\overline{\text{CVAE-Regress}}$ [57]	2.4%	$^{-}$ $^{-}$ $^{-}$ $^{-}$ $^{-}$ $^{-}$	1.8%	$\bar{3.1\%}^{-}$	daj	k=10	26.9%	48.3%	_	_
-SBIR	Sem-Pyc [16]	4.9%	17.3%	2.1%	4.7%	A	$\bar{k}=\bar{1}$	21.8%	$\overline{42.5\%}^{-}$	$\bar{3}\bar{4}.9\%^{-}$	
S-S	Doodle2Search [14]	14.8%	34.5%	28.1%	66.9%	Our	k=5	28.1%	51.8%	38.3%	
SZ	SAKE [33]	6.4%	20.3%	3.6%	5.7%	Ours	k=10	32.7%	53.5%	_	_

Quantitative evaluation showing average classification accuracy on 4 different competitors.

L_D	L_S	L_C	Sketchy Category Level	L_D	L_{ud}	Shoe-V2 User Level
√	√	√	28.1%	√	√	38.3%
×	\checkmark	\checkmark	26.3%	×	\checkmark	37.1%
×	×	\checkmark	23.7%	×	×	35.8%
×	×	×	16.5%	-	-	_

Ablative study judging design choice

40
Acc@1
35
30

Ablative study varying adaptation steps and feature dimension

Ablation on predicted margin value

Ablative study on single model with k individual models

