Sequential Circuit Design: Part 1

- Design of memory elements
 - Static latches
 - Pseudo-static latches
 - Dynamic latches
- Timing parameters
- Two-phase clocking
- Clocked inverters

Krish Chakrabarty

Krish Chakrabarty

Sequencing

- Combinational logic
 - output depends on current inputs
- Sequential logic
 - output depends on current and previous inputs
 - Requires separating previous, current, future
 - Called *state* or *tokens*
 - Ex: FSM, pipeline

Krish Chakrabarty

Sequencing Cont.

- If tokens moved through pipeline at constant speed, no sequencing elements would be necessary
- Ex: fiber-optic cable
 - Light pulses (tokens) are sent down cable
 - Next pulse sent before first reaches end of cable
 - No need for hardware to separate pulses
 - But dispersion sets min time between pulses
- This is called wave pipelining in circuits
- In most circuits, dispersion is high
 - Delay fast tokens so they don't catch slow ones.

Krish Chakrabarty

Sequencing Overhead

- Use flip-flops to delay fast tokens so they move through exactly one stage each cycle.
- Inevitably adds some delay to the slow tokens
- Makes circuit slower than just the logic delay
 - Called sequencing overhead
- Some people call this clocking overhead
 - But it applies to asynchronous circuits too
 - Inevitable side effect of maintaining sequence

Krish Chakrabarty

5

Sequencing Elements

- Latch: Level sensitive
 - a.k.a. transparent latch, D latch
- Flip-flop: edge triggered
 - A.k.a. master-slave flip-flop, D flip-flop, D register
- Timing Diagrams
 - Transparent
 - Opaque
 - Edge-trigger

Krish Chakrabarty

Krish Chakrabarty

- Pass Transistor Latch
- Pros
 - + Tiny
 - + Low clock load
- Cons
 - V_t drop
 - nonrestoring
 - backdriving
 - output noise sensitivity
 - dynamic
 - diffusion input

Used in 1970's

Krish Chakrabarty

.

Latch Design

- Transmission gate
 - + No V_t drop
 - Requires inverted clock

Krish Chakrabarty

- Inverting buffer
 - + Restoring
 - + No backdriving
 - + Fixes either
 - Output noise sensitivity
 - Or diffusion input
 - Inverted output

Krish Chakrabarty

1

Latch Design

- Buffered input
 - + Fixes diffusion input
 - + Noninverting

Krish Chakrabarty

- Buffered output
 - + No backdriving

- Widely used in standard cells
 - + Very robust (most important)
 - Rather large
 - Rather slow (1.5 2 FO4 delays)
 - High clock loading

Krish Chakrabarty

13

Latch Design

- Tristate feedback
 - + Static
 - Backdriving risk

• Static latches are now essential

Krish Chakrabarty

- Datapath latch
 - + Smaller, faster
 - unbuffered input

Krish Chakrabarty

14

Design of Memory Elements

Positive edge-triggered D flip-flop Why use inverters on outputs?

Skew Problem: $\overline{\Phi}$ may be delayed with respect to Φ (both may be 1 at the same time)

This is what happens-

Krish Chakrabarty

Flip-Flop Design

• Flip-flop is built as pair of back-to-back latches

Krish Chakrabarty

19

Enable

- Enable: ignore clock when en = 0
 - Mux: increase latch D-Q delay
 - Clock Gating: increase en setup time, skew

Krish Chakrabarty

Reset

- Force output low when reset asserted
- Synchronous vs. asynchronous

Krish Chakrabarty

2

Set / Reset

- Set forces output high when enabled
- Flip-flop with asynchronous set and reset

Krish Chakrabarty

Dynamic Latches

- So far, all latches have been static-store state when clock is stopped but power is maintained
- Dynamic latches reduce transistor count
- Eliminate feedback inverter and transmission gate
- Latch value stored on the capacitance of the input (gate capacitance)

Krish Chakrabarty

2

Dynamic Latch and Flip-Flop

Dynamic D latch

Dynamic negative edge-triggered D flip-flop

- Difficult to ensure reliable operation
- Similar to DRAM
- Refresh cycles are required

Krish Chakrabarty

Two-Phase Clocking

- Inverting a single clock can lead to skew problems
- Employ two non-overlapping clocks for master and slave sections of a flip-flop
- Also, use two phases for alternating pipeline stages

Krish Chakrabarty

2

Two-Phase Clocking

Krish Chakrabarty

Krish Chakrabarty

33

Krish Chakrabarty