Розрахунково-графічна робота «Елементи математичного аналізу».

Завдання 2.1 Знайти границі функцій.

1.
$$\lim_{x \to \infty} \frac{3x^3 + 3x^2 - 4}{\sqrt{9x^6 + 4x}}$$
, $\lim_{x \to 2} \left(\frac{1}{x - 2} - \frac{4}{4 - x^2} \right)$, $\lim_{x \to 1} \frac{x^3 - x^2 - x}{x^3 + x^2 - x - 1}$, $\lim_{x \to 0} \frac{\sqrt{x + 4} - 2}{x}$, $\lim_{x \to 0} \frac{1 - \cos 6x}{5x^2}$, $\lim_{x \to 0} \frac{e^{3x} - 1}{tg5x}$, $\lim_{x \to 0} \frac{5^x - 5^{2x}}{3x}$, $\lim_{x \to +\infty} x \left[\ln(x + 2) - \ln x \right]$, $\lim_{x \to \infty} \left(\frac{x + 8}{x - 2} \right)^x$, $\lim_{x \to \infty} \left(\sqrt{x^2 + 3x} - \sqrt{x^2 + 2x} \right)$.

2.
$$\lim_{x \to \infty} \left(\frac{2x^2 - 3x}{x + 1} - 2x \right)$$
, $\lim_{x \to 1} \frac{x^2 + 3x + 2}{x^3 + 1}$, $\lim_{x \to 0} \frac{\operatorname{tg} x - \sin x}{x^3}$, $\lim_{x \to 2} \frac{\sqrt{x - 1} - 1}{x - 2}$, $\lim_{x \to 1} (2 - x)^{\frac{x + 1}{3x - 3}}$, $\lim_{x \to \infty} \left(\frac{x + 1}{x - 3} \right)^{2x}$, $\lim_{x \to 0} \frac{\sin 2x}{\ln(1 + 3x)}$, $\lim_{x \to 0} (1 + \sin x)^{\cos x}$, $\lim_{x \to \infty} x \left[\ln x - \ln(x + 1) \right]$, $\lim_{x \to \infty} \left(\sqrt{x^2 + 2} - \sqrt{x^2 - 1} \right)$.

3.
$$\lim_{x \to \infty} \left(\frac{\sqrt{x^8 + 3x + 4}}{3x^4 - 2} \right), \lim_{x \to 2} \frac{x^2 - 6x + 8}{x^2 - 8x + 12}, \lim_{x \to 1} \frac{\sqrt{5 - x} - 2}{x^2 - 1}, \lim_{x \to 0} \frac{\sin 2x + \sin x}{3\sin 2x},$$
$$\lim_{x \to 0} \frac{\ln(1 + 2x)}{\sin 3x}, \lim_{x \to +\infty} \left(x \cdot \ln \frac{2x + 3}{2x + 1} \right), \lim_{x \to 2} \left(x - 1 \right)^{\frac{3x}{x - 2}}, \lim_{x \to \infty} \left(\frac{x^2 + 2x}{x + 3} - x \right),$$
$$\lim_{x \to \infty} \left(\frac{3x - 2}{3x - 4} \right)^{1 - x}, \lim_{x \to \infty} \left(\sqrt{x^2 + 2x} - \sqrt{x^2 + x - 2} \right).$$

4.
$$\lim_{x\to 0} \left(\frac{\sqrt{x^2+4}-2}{3x^2}\right)$$
, $\lim_{x\to \infty} \frac{2x+1}{\sqrt{x^2-8}+x}$, $\lim_{x\to 0} \frac{e^{\sin 5x}}{\ln(1+2x)}$, $\lim_{x\to 0} \frac{\sin 4x - \sin 2x}{3x}$, $\lim_{x\to 0} \frac{x^2-5x+6}{x^3-2x^2}$, $\lim_{x\to +\infty} (2x+1) \ln \frac{x}{x+1}$, $\lim_{x\to \infty} \left(\sqrt{x^2+4x-2}-\sqrt{x^2-4}\right)$, $\lim_{x\to -1} (2+x)^{\frac{x}{3x+3}}$, $\lim_{x\to 0} \frac{\ln(1-x^2)}{\arctan(2x+2)}$, $\lim_{x\to \infty} \left(\frac{x+3}{x-2}\right)^x$.

5.
$$\lim_{x \to \infty} \frac{2x+1}{\sqrt{x^2-8}+x}, \lim_{x \to 2} \frac{x^2-5x+6}{x^3-2x^2}, \lim_{x \to +\infty} (2x+1) \Big[\ln 3x - \ln (3x+1) \Big], \lim_{x \to 0} \frac{6^x-1}{4x},$$

$$\lim_{x \to 0} \frac{\sqrt{x^2+4}-2}{3x^2}, \lim_{x \to 0} \frac{\sin 4x - \sin 2x}{3x}, \lim_{x \to 0} \frac{e^{\sin 5x}-1}{\ln (1+2x)}, \lim_{x \to -1} (2+x)^{\frac{x}{3x+3}},$$

$$\lim_{x \to \infty} \Big(\sqrt{x^2+4x} - \sqrt{x^2+3x+1} \Big), \lim_{x \to \infty} \Big(\frac{x+3}{x-2} \Big)^x.$$

6.
$$\lim_{x \to \infty} \frac{3x^2 - 2x + 1}{\sqrt{4x^4 + 5x^3}}, \lim_{x \to 2} \frac{x^2 - x - 2}{x^2 + 2x - 8}, \lim_{x \to 2} (3 - x)^{\frac{2x}{x - 2}}, \lim_{x \to 2} \frac{\sqrt{2x} - x}{x - 2}, \lim_{x \to 0} \frac{\operatorname{tg}^2(x/3)}{2x^2},$$
$$\lim_{x \to \infty} \left(\frac{2x}{2x + 1}\right)^x, \lim_{x \to 3} \left(\frac{1}{x - 3} - \frac{6}{x^2 - 9}\right), \lim_{x \to +\infty} x \left[\ln(x - 2) - \ln x\right], \lim_{x \to 0} (\cos x)^{\operatorname{ctg}^2 x},$$
$$\lim_{x \to \infty} \left(\sqrt{x^2 + 1} - \sqrt{x^2 - 1}\right).$$

7.
$$\lim_{x \to \infty} \frac{5x^4 + x + 3}{x^4 - 12x + 1}, \lim_{x \to 1} \frac{x^3 - 6x^2 + 11x - 6}{x^2 - 3x + 2}, \lim_{x \to \infty} \left(\sqrt{2x^2 + 3x} - \sqrt{2x^2 + x + 1}\right),$$

$$\lim_{x \to 0} \frac{\sqrt{x^2 + 16} - 4}{2x^2}, \lim_{x \to 0} \frac{1 - \cos 4x}{3x^2}, \lim_{x \to -2} (3 + x)^{\frac{3x}{x + 2}}, \lim_{x \to 0} \frac{\sqrt[5]{32x^5 - x^8}}{e^{5x} - 1},$$

$$\lim_{x \to +\infty} (x - 1) \left[\ln(2x + 1) - \ln x\right], \lim_{x \to 0} \frac{e^{\sqrt{x}} - 1}{3x}, \lim_{x \to \infty} \left(\frac{3x + 1}{3x}\right)^{2x}.$$

8.
$$\lim_{x \to \infty} \frac{2x+1}{\sqrt{9x^2-x+3}}$$
, $\lim_{x \to 0} \frac{4^x-1}{5x}$, $\lim_{x \to \infty} \left(\frac{2x-1}{2x+1}\right)^{x+1}$, $\lim_{x \to 0} \frac{\sqrt{x^2+4}-2}{6x^2}$, $\lim_{x \to 0} \frac{1-\cos 5x}{1-\cos 3x}$, $\lim_{x \to -1} (2+x)^{\frac{x-1}{x+1}}$, $\lim_{x \to \infty} \left(\sqrt{3x^2+2x-1}-\sqrt{3x^2+x+2}\right)$, $\lim_{x \to +\infty} x \left[\ln x - \ln(4x-3)\right]$, $\lim_{x \to 0} \frac{2\arctan 3x}{\ln(1-2x)}$, $\lim_{x \to 2} \frac{x^2+2x-8}{x^3-8}$.

9.
$$\lim_{x \to \infty} \frac{2x^4 - 3x^2}{3x^4 + 1}, \lim_{x \to 0} \frac{e^x - 1}{5x}, \lim_{x \to \infty} \left(\sqrt{5x^2 - x + 2} - \sqrt{5x^2 + 2x - 1}\right), \lim_{x \to 0} \frac{\sqrt{x^2 + 4} - 2}{5x^2},$$
$$\lim_{x \to \infty} \left(\frac{x - 1}{x + 1}\right)^{3x}, \lim_{x \to 1} (2 - x)^{\frac{3x + 2}{x - 1}}, \lim_{x \to 0} \frac{e^{\sin 3x} - 1}{2x}, \lim_{x \to 3} \frac{x^2 - 5x + 6}{x^2 - 9},$$
$$\lim_{x \to +\infty} (x + 2) \left[\ln(x + 1) - \ln x\right], \lim_{x \to 0} \frac{\sin 3x + \sin 5x}{x}.$$

10.
$$\lim_{x\to 0} \frac{7^x - 1}{4x}$$
, $\lim_{x\to 1} \frac{x^2 + 5x - 6}{x^3 - x}$, $\lim_{x\to \infty} \left(\sqrt{x^2 + 5x - 2} - \sqrt{x^2 + 3x}\right)$, $\lim_{x\to 3} \frac{\sqrt{x - 2} - 1}{x - 3}$, $\lim_{x\to 3} \frac{1 - \cos 3x}{\operatorname{tg}^2 2x}$, $\lim_{x\to -3} (4 + x)^{\frac{x-2}{x+3}}$, $\lim_{x\to \infty} \frac{\sqrt{4x^2 + 3x - 2}}{x + 5}$, $\lim_{x\to \infty} \left(\frac{x - 1}{x + 3}\right)^{2x+1}$, $\lim_{x\to 0} \frac{\arcsin 2x}{e^{3x} - 1}$, $\lim_{x\to +\infty} (3x + 1) \left[\ln(x - 1) - \ln(x + 2)\right]$.

11.
$$\lim_{x \to \infty} \left(\frac{x^3 + 3x^2}{x^2 + 1} - x \right)$$
, $\lim_{x \to 2} \frac{x^2 - 7x + 10}{x^2 - 8x + 12}$, $\lim_{x \to \infty} \left(\sqrt{x^2 + 4} - \sqrt{x^2 + x} \right)$, $\lim_{x \to 0} \frac{8^x - 1}{5x}$, $\lim_{x \to 0} \frac{\cos 4x - \cos 2x}{x^2}$, $\lim_{x \to 1} \frac{2x - 2}{\sqrt{2 - x} - 1}$, $\lim_{x \to 0} (1 + x)^{\frac{3x + 2}{x}}$, $\lim_{x \to 0} \frac{e^{4x} - 1}{\ln(1 + 3x)}$, $\lim_{x \to \infty} (2x - 1) \left[\ln(x - 1) - \ln(x + 1) \right]$, $\lim_{x \to \infty} \left(\frac{3x + 1}{3x - 2} \right)^{-4x}$.

12.
$$\lim_{x \to \infty} \frac{\sqrt{x^2 + 1}}{2x + 5}, \lim_{x \to 0} \frac{6^x - 1}{4x}, \lim_{x \to \infty} \left(\sqrt{4x^2 - x} - \sqrt{4x^2 + 2x + 5}\right), \lim_{x \to 1} \frac{\sqrt{5 - x} - 2}{3x - 3},$$

$$\lim_{x \to 0} \frac{\cos 2x - 1}{x \sin x}, \lim_{x \to 1} \left(\frac{1}{1 - x^3} - \frac{1}{x - 1}\right), \lim_{x \to 1} \left(2 - x\right)^{\frac{3x + 4}{x - 1}}, \lim_{x \to 0} \frac{\arctan 3x}{e^{7x} - 1},$$

$$\lim_{x \to +\infty} (3x + 2) \left[\ln(2x) - \ln(2x - 1)\right], \lim_{x \to \infty} \left(\frac{2x - 4}{2x - 1}\right)^{3x}.$$

13.
$$\lim_{x \to \infty} \frac{x^{3} + 2x^{2} + 4}{4x^{3} + 3x^{2} + 1}, \quad \lim_{x \to 0} \frac{9^{x} - 1}{5x}, \quad \lim_{x \to \infty} \left(\sqrt{x^{2} + 5} - \sqrt{x^{2} - 1}\right), \quad \lim_{x \to 0} \frac{\sqrt[4]{16x^{4} - x^{8}}}{e^{8x} - 1},$$

$$\lim_{x \to 2} \frac{\sqrt{6 - x} - 2}{2x - 4}, \quad \lim_{x \to 0} \left(x + 1\right)^{\frac{2x - 3}{x}}, \quad \lim_{x \to -5} \frac{x^{2} + 4x - 5}{x^{2} + 5x}, \quad \lim_{x \to +\infty} (3x + 1) \left[\ln(4x) - \ln(4x + 1)\right],$$

$$\lim_{x \to 0} \frac{\sin 7x - \sin 2x}{\sin x}, \quad \lim_{x \to \infty} \left(\frac{x^{2} + 2}{x^{2} + 1}\right)^{x^{2}}.$$

15.
$$\lim_{x \to \infty} \frac{x^4 + 5x^3 + 7}{2x^5 + 3x^4 + 1}, \quad \lim_{x \to 0} \frac{\sin 3x + \sin 5x}{2x}, \quad \lim_{x \to \infty} \left(\sqrt{x^2 + 7x - 1} - \sqrt{x^2 + 3x - 2}\right),$$

$$\lim_{x \to 3} \frac{2x - 6}{\sqrt{x - 1} - 1}, \quad \lim_{x \to \infty} \frac{3^x - 1}{8x}, \quad \lim_{x \to 0} \frac{e^{5x} - 1}{4x}, \quad \lim_{x \to \infty} \left(\frac{x + 2}{x + 1}\right)^{2x - 1}, \quad \lim_{x \to +\infty} x \left[\ln(3x + 5) - \ln 3x\right],$$

$$\lim_{x \to \frac{\pi}{2}} \left(\operatorname{tg} x - \frac{1}{\cos x}\right), \quad \lim_{x \to 2} \frac{x^3 - 3x - 2}{x^2 - x - 2}.$$

16.
$$\lim_{x \to \infty} \frac{6x^3 - 3x + 1}{2x^5 + 3x^4 + 1}$$
, $\lim_{x \to -1} \frac{x^3 - 3x + 4}{x^3 + 1}$, $\lim_{x \to +\infty} x^2 \Big[\ln(x - 3) - \ln x \Big]$, $\lim_{x \to 1} \frac{x^2 - 1}{\sqrt{5 - x} - 2}$, $\lim_{x \to 0} \frac{1 - \cos x}{3\sin^2 2x}$; $\lim_{x \to \infty} \Big(\frac{3x - 1}{3x + 2} \Big)^{x - 3}$, $\lim_{x \to 0} \frac{e^{x^2} - 1}{3x^2}$, $\lim_{x \to 0} \frac{\ln(1 - 3x)}{5x}$, $\lim_{x \to -2} \frac{\arctan(x + 2)}{4 - x^2}$, $\lim_{x \to \infty} \Big(x - \sqrt{x^2 - 2x} \Big)$.

17.
$$\lim_{x \to \infty} \frac{5x+1}{2x+\sqrt[3]{x}}, \quad \lim_{x \to -2} \frac{x^2-3x-10}{x^3+x^2-2x}, \quad \lim_{x \to +\infty} (x-3) \Big[\ln 5x - \ln (4x+3) \Big], \quad \lim_{x \to 0} \frac{\operatorname{tg} 10x}{\sin^2 2x},$$

$$\lim_{x \to 1} \frac{\sqrt{10-x}-3}{2x-2}, \quad \lim_{x \to \frac{\pi}{2}} (1+\cos x)^{-\frac{1}{\cos x}}, \quad \lim_{x \to 0} \frac{e^{4x}-1}{\sin 3x} \quad , \quad \lim_{x \to 0} \frac{\arcsin \sqrt[3]{x^4}}{x-\sqrt[3]{x}},$$

$$\lim_{x \to \infty} \left(\frac{2x-1}{2x+1} \right)^{x+3}, \quad \lim_{x \to \infty} \left(\sqrt{x+5} - \sqrt{x} \right).$$

18.
$$\lim_{x \to \infty} \frac{(x+1)^2 (3-7x)^2}{(2x-1)^4}, \quad \lim_{x \to 1} \frac{x^2 + x - 2}{x^2 + 5x - 6}, \quad \lim_{x \to +\infty} (x+1) \Big[\ln(2x-1) - \ln x \Big],$$

$$\lim_{x \to 0} \frac{6x}{\sqrt{x+4} - 2}, \quad \lim_{x \to 0} \frac{7^x - 1}{3x}, \quad \lim_{x \to 0} \frac{1 - \cos 2x}{3\sin^2 x}, \quad \lim_{x \to \infty} \left(\frac{x}{x+1}\right)^{5x}, \quad \lim_{x \to 0} (1 + \operatorname{tg} x)^{\frac{2}{\sin x}},$$

$$\lim_{x \to 0} \frac{e^{\sin 2x} - 1}{\arctan 3x}, \quad \lim_{x \to \infty} \left(x - \sqrt{x^2 + 3}\right).$$

19.
$$\lim_{x \to \infty} \frac{\sqrt{x^2 + 14} + x}{3x + 5}, \qquad \lim_{x \to 5} \frac{x^2 - 4x - 5}{x^3 - 3x^2 - 50}, \qquad \lim_{x \to +\infty} x \Big[\ln(3x + 2) - \ln x \Big],$$

$$\lim_{x \to 0} \frac{\sin x}{\sin 6x - \sin 7x}, \quad \lim_{x \to 64} \frac{\sqrt{x} - 8}{4 - \sqrt[3]{x}}, \quad \lim_{x \to 0} \frac{\ln(1 - 2x^2)}{5x}, \quad \lim_{x \to 0} \frac{x^3 + 2x^2}{\sin^2(x/4)}, \quad \lim_{x \to 0} \frac{e^{2x^2} - 1}{1 - \cos x},$$

$$\lim_{x \to 0} \frac{(x + 5)^{x-1}}{\sin^2(x/4)}, \quad \lim_{x \to 0} \frac{(x + 5)^{x-1}}{\sin^2(x/4)}, \quad \lim_{x \to 0} \frac{e^{2x^2} - 1}{\sin^2(x/4)}, \quad \lim_{x \to 0} \frac{e^{2x} - 1}{\sin^$$

$$\lim_{x\to\infty} \left(\frac{x+5}{x+2}\right)^{x-1}, \ \lim_{x\to\infty} \left(\sqrt{x^2+5}-\sqrt{x^2-1}\right).$$

$$20. \lim_{x \to \infty} \frac{(x+5)^2 x}{5x^3 + 2}, \lim_{x \to 2} \left(\frac{1}{x+2} - \frac{4}{4-x^2} \right), \lim_{x \to +\infty} x \left[\ln x^2 - \ln(x-1) \right], \lim_{x \to 1} \frac{\sqrt{x} - 1}{x\sqrt{x} - 1}, \\ \lim_{x \to 0} \frac{1 - \sqrt{1-x}}{\sin 4x}, \lim_{x \to 0} \frac{\ln(1+6x)}{\sin 4x}, \lim_{x \to 0} \frac{9^x - 1}{3x}, \lim_{x \to 0} \frac{e^{\sin 3x} - 1}{\arcsin 2x}, \lim_{x \to \infty} \left(\frac{x-5}{x+3} \right)^{2x-1}, \\ \lim_{x \to \infty} \left(x - \sqrt{x^2 + 4x} \right).$$

21.
$$\lim_{x \to \infty} \frac{2x^3 + x^2 - 5}{x^3 + x - 2}, \quad \lim_{x \to 2} \frac{x^3 - 3x - 2}{x^3 - 8}, \quad \lim_{x \to +\infty} (x - 1) \Big[\ln(4x - 1) - \ln x \Big],$$

$$\lim_{x \to 3} \frac{x - \sqrt{3x}}{x - 3}, \quad \lim_{x \to 0} \frac{1 - \cos 5x}{\sin 3x}, \quad \lim_{x \to 0} \frac{e^{\sin 6x} - 1}{2x}, \quad \lim_{x \to 0} \frac{\ln(x + 1)}{tgx}, \quad \lim_{x \to 1} (2 - x)^{\frac{3}{x - 1}},$$

$$\lim_{x \to \infty} \left(\frac{2x - 3}{2x + 1} \right)^{3x}, \quad \lim_{x \to \infty} \left(\sqrt{x^2 + 8} - x \right).$$

22.
$$\lim_{x \to \infty} \frac{\sqrt[3]{8x^3 + 2}}{4x + 1}, \quad \lim_{x \to -4} \frac{x^2 + x - 12}{x^2 + 4x}, \quad \lim_{x \to +\infty} (6x - 1) \left[\ln x - \ln(x - 2) \right], \quad \lim_{x \to 0} \frac{e^{3x} - e^x}{\sin 2x},$$

$$\lim_{x \to 16} \frac{\sqrt[4]{x} - 2}{\sqrt{x} - 4}, \quad \lim_{x \to 0} \frac{\sin 5x}{\operatorname{tg} 2x}, \quad \lim_{x \to 0} (1 + x)^{\frac{1 - 3x}{4x}}, \quad \lim_{x \to 0} \frac{6x}{2^x - 1}, \quad \lim_{x \to \infty} \left(\frac{x - 3}{x + 1} \right)^{x - 1},$$

$$\lim_{x \to \infty} \left(\sqrt{x + 6\sqrt{x}} - \sqrt{x} \right).$$

23.
$$\lim_{x \to \infty} \frac{x - 2x^2 + 5x^4}{2 + 3x^2 + x^4}, \quad \lim_{x \to -3} \frac{x^2 - 2x - 15}{x^2 + 3x}, \quad \lim_{x \to 0} \frac{a^x - 1}{3x}, \quad a > 0, \ a \neq 1, \quad \lim_{x \to 0} \frac{\ln(1 - 5x)}{6x},$$

$$\lim_{x \to 0} \frac{1 - \cos 4x}{3\sin^2 2x}, \quad \lim_{x \to -1} \frac{x^3 + 1}{\arcsin(x + 1)}, \quad \lim_{x \to 0} \frac{3 - \sqrt{x + 9}}{2x^2 + x}, \quad \lim_{x \to +\infty} (x + 4) \left[\ln x - \ln(2x - 3)\right],$$

$$\lim_{x \to \infty} \left(\frac{x + 4}{x + 1}\right)^{2x}, \quad \lim_{x \to \infty} \left(\sqrt{x^2 + 8x} - x\right).$$

24.
$$\lim_{x \to \infty} \frac{x^4 + 5x^3 + 2}{\sqrt{4x^8 + 2x^2 + 4}}, \quad \lim_{x \to 4} \frac{x^2 - 2x - 8}{x^3 - 16x}, \quad \lim_{x \to 2} \frac{\sqrt[3]{x - 6} + 2}{x^3 + 8}, \quad \lim_{x \to \infty} \frac{\ln(1 + 3x)}{\sin 2x},$$

$$\lim_{x \to 0} \frac{1 - \cos 6x}{3 \lg^2 x}, \quad \lim_{x \to 1} \frac{\sin \pi x}{e^{x - 1} - 1}, \quad \lim_{x \to 3} (4 - x)^{\frac{2}{x - 3}}, \quad \lim_{x \to +\infty} x \left[\ln(5x - 3) - \ln x\right],$$

$$\lim_{x \to \infty} \left(\frac{5x - 1}{5x}\right)^{2x + 1}, \quad \lim_{x \to \infty} \left(\sqrt{x^2 + 3} - \sqrt{x^2 - 3}\right).$$

25.
$$\lim_{x \to \infty} \frac{2x^3 + 4x + 1}{3x^3 + 2x - 1}, \quad \lim_{x \to 0} \frac{4x^2 - 3x}{2x^2 - 9x}, \quad \lim_{x \to +\infty} (x + 2) \left[\ln x - \ln(6x - 1) \right], \quad \lim_{x \to 0} \frac{\sin^2 2x}{e^{x^2} - 1},$$

$$\lim_{x \to 0} \frac{\cos 5x - \cos 3x}{1 - \cos x}, \quad \lim_{x \to \infty} \left(\sqrt{x^2 + 5} - \sqrt{x^2 - 5} \right), \quad \lim_{x \to +\infty} \left(\frac{x}{x + 3} \right)^{2x}, \quad \lim_{x \to 0} \frac{\ln(1 + 2x)}{3^x - 1},$$

$$\lim_{x \to 2} \frac{\sqrt{x + 1} - \sqrt{3}}{2x^2}, \lim_{x \to -1} (2 + x)^{\frac{3}{x + 1}}.$$

26.
$$\lim_{x \to \infty} \frac{4x^2 + x + 1}{\sqrt{x^4 - x + 2}}, \quad \lim_{x \to 4} \frac{\sqrt{1 + 2x} - 3}{\sqrt{x} - 2}, \quad \lim_{x \to +\infty} \left(\sqrt{x^2 + 3} - \sqrt{x^2 - 5}\right), \quad \lim_{x \to -1} \frac{x^2 - 2x - 3}{x^3 + 1},$$

$$\lim_{x \to -2} \left(3 + x\right)^{\frac{5}{x + 2}}, \quad \lim_{x \to 0} \frac{\arcsin 2x}{\sin 3x + \sin 7x}, \quad \lim_{x \to 1} \frac{e^{x - 1} - 1}{2x - 2}, \quad \lim_{x \to +\infty} x \left[\ln(x + 1) - \ln(3x + 2)\right],$$

$$\lim_{x \to 0} \frac{\ln(1 - 3x)}{\tan 4x}, \quad \lim_{x \to \infty} \left(\frac{2x + 3}{2x}\right)^{x - 1}.$$

Завдання 2.2 Дослідити функцію на неперервність, визначити характер її точок розриву.

1.
$$y = \frac{-6}{(x+3)^2}$$
; $y = e^{\frac{x}{x+2}}$; $y = \arctan \frac{1}{x-2}$; $y = \begin{cases} x+4, & x<-1, \\ x^2+2, & -1 \le x \le 1, \\ 2x, & x>1. \end{cases}$

2.
$$y = \frac{3}{(x+1)^3}$$
; $y = 2^{\frac{2x}{3-x}}$; $y = \frac{x^2 - 9}{x - 3}$; $y = \begin{cases} x + 2, & x \le -1, \\ x^2 + 1, & -1 < x \le 1, \\ 3 - x, & x > 1. \end{cases}$

3.
$$y = \frac{5}{(x-2)^4}$$
; $y = 3^{\frac{1}{2x+1}}$; $y = \arctan \frac{2}{x} + 3$; $y = \begin{cases} -x, & x \le 0, \\ -(x-1)^2, & 0 \le x \le 2, \\ x-3, & x > 2. \end{cases}$

4.
$$y = \frac{2}{x-1}$$
; $y = e^{\frac{x+1}{x-2}}$; $y = \frac{x^2-4}{x+2}$; $y = \begin{cases} \cos x, & x \le 0, \\ x^2+1, & 0 < x \le 1, \\ x, & x > 1. \end{cases}$

5.
$$y = \frac{-2}{(x-3)^2}$$
; $y = 4^{\frac{2x}{x-1}}$; $y = \frac{x^2 - 3x + 2}{x-1}$; $y = \begin{cases} -x, & x \le 0, \\ x^2, & 0 < x \le 2, \\ x+1, & x > 2. \end{cases}$

6.
$$y = \frac{3}{(x-3)^3}$$
; $y = 5^{\frac{2x+1}{x-3}}$; $y = \operatorname{arcctg} \frac{2}{x-1}$; $y = \begin{cases} -x, & x \le 0, \\ \sin x, & 0 < x \le \pi, \\ x-2, & x > \pi. \end{cases}$

7.
$$y = \frac{4}{(x+1)^5}$$
; $y = 2^{\frac{1}{2x+2}}$; $y = \frac{x^2 + x - 6}{x+2}$; $y = \begin{cases} -(x+1), & x \le 0, \\ (x-1)^2, & 0 < x \le 1, \\ x-1, & x > 1. \end{cases}$

8.
$$y = \frac{-3}{(x+5)^2}$$
; $y = 3^{\frac{1}{2-2x}}$; $y = \arctan \frac{3}{x+1}$; $y = \begin{cases} -x^2, & x \le 0, \\ tgx, & 0 < x \le \pi/4, \\ 2, & x > \pi/4. \end{cases}$

9.
$$y = \frac{-2}{x-4}$$
; $y = e^{\frac{1}{6-3x}}$; $y = \frac{x^2 + 3x - 4}{x+4}$; $y = \begin{cases} -2x, & x \le 0, \\ \sqrt{x}, & 0 < x \le 4, \\ 1, & x > 4. \end{cases}$

10.
$$y = \frac{-3}{(x+3)^3}$$
; $y = 6^{\frac{4+x}{3-x}}$; $y = \frac{x^3 - 1}{x - 1} + 2$; $y = \begin{cases} -2x, & x \le 0, \\ \sqrt{x}, & 0 < x \le 4, \\ 1, & x > 4. \end{cases}$

11.
$$y = \frac{1}{(x-5)^4}$$
; $y = 2^{\frac{1}{4-2x}}$; $y = \arccos \frac{2}{x-2}$; $y = \begin{cases} \sin x, & x \le 0, \\ 0.5x, & 0 < x \le 2, \\ 3, & x > 2. \end{cases}$

12.
$$y = \frac{2}{(x-4)^5}$$
; $y = 5^{\frac{1+2x}{1-x}}$; $y = \frac{x^2 - 2x - 8}{x+2}$; $y = \begin{cases} x^2, & x \le 1, \\ -2x + 3, & 1 < x \le 2, \\ 1, & x > 2. \end{cases}$

13.
$$y = \frac{4}{x+2}$$
; $y = 4^{\frac{1}{3-3x}}$; $y = \frac{x^3 - 1}{x-1}$; $y = \begin{cases} x^2 + 1, & x \le 1, \\ 2x, & 1 < x \le 3, \\ x + 2, & x > 3. \end{cases}$

14.
$$y = \frac{-1}{(x-4)^2}$$
; $y = 3^{\frac{3x}{2-x}}$; $y = \arctan \frac{3}{x+2}$; $y = \begin{cases} -x, & x \le -1, \\ 2-x^2, & -1 < x \le 1, \\ x-1, & x > 1. \end{cases}$

15.
$$y = \frac{3}{(x+4)^3}$$
; $y = e^{\frac{1+2x}{3-x}}$; $y = \frac{x^2 + 2x - 3}{x+3}$; $y = \begin{cases} x - 3, & x \le 0, \\ x + 1, & 0 < x \le 4, \\ 3 + \sqrt{x}, & x > 4. \end{cases}$

16.
$$y = \frac{-6}{(x+1)^4}$$
; $y = 2^{\frac{1+x}{x-3}}$; $y = \frac{x^3+8}{x+2}$; $y = \begin{cases} \sqrt{1-x}, & x \le 0, \\ 0, & 0 < x \le 2, \\ x-2, & x > 2. \end{cases}$

17.
$$y = \frac{5}{(x-1)^5}$$
; $y = 7^{\frac{1-x}{x-2}}$; $y = \frac{x^2 + 3x - 4}{x+4}$; $y = \begin{cases} 2x^2, & x \le 0, \\ x, & 0 < x \le 1, \\ 2, & x > 1. \end{cases}$

18.
$$y = \frac{2+x}{(x-6)^2}$$
; $y = 9^{\frac{1+2x}{1-x}}$; $y = \frac{x^3+1}{x+1}$; $y = \begin{cases} \sin x, & x < 0, \\ x, & 0 \le x \le 2, \\ 0, & x > 2. \end{cases}$

19.
$$y = \frac{6+x}{(x-3)^2}$$
; $y = e^{\frac{1}{8-4x}}$; $y = \frac{x^2+3x-10}{x-2}$; $y = \begin{cases} x-1, & x \le 0, \\ x^2, & 0 < x \le 2, \\ 2x, & x > 2. \end{cases}$

20.
$$y = \frac{7}{(x+1)^3}$$
; $y = 4^{\frac{1}{2x+2}}$; $y = \arccos \frac{1}{x} + \frac{\pi}{2}$; $y = \begin{cases} \cos x, & x \le \pi/2, \\ 0, & \pi/2 < x \le \pi/3, \\ x, & x > \pi. \end{cases}$

21.
$$y = \frac{4-x}{(x+5)^2}$$
; $y = 7^{\frac{4x}{x+1}}$; $y = \frac{x^3-8}{x-2}$; $y = \begin{cases} 0, & x \le 0, \\ tg x, & 0 < x < \pi/2, \\ x, & x \ge \pi/2. \end{cases}$

22.
$$y = \frac{3}{(x+6)^3}$$
; $y = 10^{\frac{4-x}{x+2}}$; $y = \frac{x^2 - x - 12}{x+3}$; $y = \begin{cases} 3x+1, & x < 0, \\ x^2 + 1, & 0 \le x < 1, \\ 0, & x \ge 1. \end{cases}$

23.
$$y = \frac{-7 + x}{(x - 2)^4}$$
; $y = 9^{\frac{1 + 3x}{x - 3}}$; $y = \arctan \frac{2}{1 - x}$; $y = \begin{cases} -x, & x \le 0, \\ x^2, & 0 < x \le 2, \\ x + 1, & x > 2. \end{cases}$

24.
$$y = \frac{6}{(x-4)^5}$$
; $y = 3^{\frac{5-x}{1-x}}$; $y = \frac{x^3 - x}{x-1}$; $y = \begin{cases} 2, & x \le -\pi/4, \\ \lg x, & -\pi/4 < x < 0, \\ 3x, & x \ge 0. \end{cases}$

25.
$$y = \frac{-2 - x}{(x+1)^2}$$
; $y = 6^{\frac{1}{2x+2}}$; $y = \frac{x^2 - 3x + 2}{x-2}$; $y = \begin{cases} 0, & x < -2, \\ \sqrt{x+2}, & -2 \le x < 2, \\ x+1, & x \ge 2. \end{cases}$

26.
$$y = \frac{3x+3}{x-2}$$
; $y = 2^{\frac{2x}{3-3x}}$; $y = \arccos \frac{2}{x+3}$; $y = \begin{cases} -0.5x, & x < -2, \\ x^2 + 1, & 0 \le x < 1, \\ 2, & x \ge 1. \end{cases}$

Завдання 2.3 Знайти похідні функцій.

1.
$$y = 3xe^{-3x^2} + 2$$
; $y = \frac{5x}{\sin 3x + 2}$; $y = \frac{\sqrt{x^2 + 1}}{x + 1}$; $y = \ln(x + \sqrt{x^2 + 1})$; $y = 2xe^{\sin 5x}$; $y = \sin(\ln(1 + e^{\sqrt{x}}))$; $y = \arctan^3 5x$; $y = \cos^4(1 + \sqrt{x})$; $y = x^{\tan x}$; $x \sin 2y + y^2 = 4$.

2.
$$y = (4 - x^2)e^{\sqrt{x}} + \pi$$
; $y = \frac{1 - 3x^2}{\cos 5x + 4}$; $y = \frac{\sqrt[3]{1 - 3x^2}}{5x + 4}$; $y = \ln(x + \frac{1}{x + 4})$; $y = (3 + x^5) \cdot e^{\sin x}$; $y = \arctan\left(\ln(\frac{1}{\sqrt{x}} + x)\right)$; $y = \arcsin^4(1 - x)$; $y = \sin^3(e^x + 3)$; $y = (\lg x)^{\sqrt{x}}$; $\cos(x + y) = \sqrt[3]{y}$.

3.
$$y = x^2 2^{-x} + 5$$
; $y = \frac{7x}{\sin 5x + 2}$; $y = \frac{\sqrt{1 - x}}{x^2 + 3}$; $y = \ln(3x - \sqrt{1 - x})$; $y = 3x \cdot e^{\cos 4x}$; $y = \sin \ln(1 - 3^{x^2})$; $y = \arcsin^5 3x$; $y = \sin^8(1 + \sqrt[3]{x})$; $y = x^{\sin x}$; $x \sin 2y = y^3$.

4.
$$y = 5x^{3} \cdot 3^{2-x} + 4$$
; $y = \frac{3-x}{\sin 2x - 4}$; $y = \frac{\sqrt{1-2x^{3}}}{4-x}$; $y = \ln(\sqrt[3]{1-x^{2}} + 3)$; $y = x^{2}e^{-\cos 3x}$; $y = \ln\sin(4+e^{-x})$; $y = \arctan(5(1-3x); y = x^{\cos(1-x)}; y = \cos^{3}(1-e^{3x}); y = x \operatorname{tg}(xy) - e^{-y} = 0$.

5.
$$y = (1-4x)e^{-x^3} + \ln 2;$$
 $y = \frac{\arcsin(1-5x^2)}{1-x};$ $y = (1-x^2) \cdot 2^{\cos(1+x)};$ $y = \sin \ln(\sqrt{x} + \frac{1}{\sqrt{x}});$ $y = \frac{x^3 + 2}{\sqrt{x - x^2}};$ $y = \ln \frac{1}{x^2 + \sqrt{x + 3}};$ $y = \arccos^3 7x;$ $y = \sin^5(e^x + x);$ $y = (x + 7)^{\cos x};$ $\cos(x + y) + \frac{x}{y} = 3.$

6.
$$y = (x+4)e^{1-x^2} + \sqrt{2}$$
; $y = \frac{3x+1}{\arcsin(1-x)}$; $y = \frac{\sqrt{1-x^2}}{3-x^3}$; $y = \ln\frac{1}{x+\sqrt{1-x}}$; $y = (3+x^2) \cdot e^{\arccos 2x}$; $y = \arctan\left(\ln(e^{\frac{1}{x}}+5)\right)$; $y = \sin^3(1-e^{2x})$; $y = (x+\sin x)^x$; $y = \cos(1-y) + \frac{x^3}{y} = 10$.

- 7. $y = (x-1)\arccos x + \ln 2$; $y = \frac{\cos(1-x)+5}{x^4}$; $y = \frac{\sqrt{x^5+4}}{3x+2}$; $y = x^3 e^{\arctan 3x}$; $y = \ln(x^2 \sqrt[3]{1-x})$; $y = \ln \arctan (\frac{5}{\sqrt{x}})$; $y = \sin^8 3x$; $y = \ln^7 (9x) e^{-x}$; $y = x^{\ln(1-e^x)}$; $y^3 e^{xy} + \cos x = 3$.
- 8. $y = x^2 4^{1-x^2} + \pi$; $y = \frac{1+3x^2}{1+3\cos 5x}$; $y = \frac{5-x}{\sqrt{1-3x^3}}$; $y = x^3 e^{\arctan 3x}$; $y = \ln(\sqrt[3]{5-x} + x^2)$; $y = \cos \operatorname{tg}(\sqrt{x} x^2)$; $y = \arcsin^5(1 + \frac{1}{\sqrt{x}})$; $y = \arctan^3(1-x)$; $y = (1-x)^{\cos 3x}$; y = (1-x)
- 9. $y = x^4 e^{1-\sqrt{x}} + 4$; $y = \frac{\sqrt[3]{x^2}}{(1+x)^3}$; $y = \frac{\cos(1-5x)}{4+x^2}$; $y = \ln(\sqrt[3]{4+x^2}+1)$; $y = x^5 2^{tgx}$; $y = \arccos(\ln(e^{-x}+x))$; $y = \arctan(1-x)$; $y = (\arcsin x)^{-x^2}$; $y = \sin^8(1+2^{\sqrt{x}})$; $y\sqrt{x} + \cos(3x+y) = 4$.
- 10. $y = 3x \cdot e^{-3+2x^3} + 2$; $y = \frac{5x}{\sin 3x + 2}$; $y = \frac{\sqrt{x^2 + 1}}{x + 1}$; $y = \ln(x + \sqrt{x^2 + 1})$; $y = 2xe^{\sin 5x}$; $y = \sin \ln(1 + e^{\sqrt{x}})$; $y = \arctan 35x$; $y = \cos^4(1 + \sqrt{x})$; $y = x^{\tan 3x}$; $x \sin 2y + y^2 = 4$.
- 11. $y = 3x^{5}4^{-7x}$; $y = \frac{\arctan(5-x)}{1+x^{4}}$; $y = \frac{1-3x}{\sqrt[5]{(2x+4)^{3}}}$; $y = \ln(x+e^{-x^{3}})$; $y = 2^{\ln 3x}(1-3x^{2})$; $y = \arctan(\ln(e^{2x}-4))$; $y = \arcsin^{3}(1-\frac{1}{x})$; $y = \cos^{6}(1-x)$; $y = \sin^{3}(1-\frac{1}{x})$; $y = \cos^{6}(1-x)$; $y = \sin^{3}(1-\frac{1}{x})$; $y = \cos^{6}(1-x)$; $y = \cos^{6}(1-x)$;

12.
$$y = 2x^{5}e^{1-7x}$$
; $y = \frac{1-7x^{2}}{\arccos 3x+4}$; $y = \frac{\sqrt{3-4x^{2}}}{1-5x}$; $y = \ln \frac{1}{4+\sqrt[3]{4+2x}}$; $y = 5^{\cos 4x}(1+4x^{3})$; $y = \cos^{3}(4+e^{\sqrt{x}})$; $y = x^{6} \cdot 2^{\log x}$; $y = \operatorname{arcctg}\left(\ln(1+4e^{4x-5})\right)$; $y = (\sqrt{x})^{\sin(1-x)}$; $y = \ln(x+y) + x^{2}$.

13.
$$y = 4^{3-x}(1-7x^3) + e^2$$
; $y = \frac{2x+7}{\cos(5-x^2)}$; $y = \frac{\sqrt[7]{2x-x^3}}{x-7}$; $y = \ln(x^3 + \frac{1}{\sqrt{x}})$; $y = (4x-7)e^{\sin(1-x)}$; $y = \arcsin\ln(2^{\sqrt{1-x}} + 4)$; $y = \operatorname{tg}^7(1-3x^2)$; $y = \sin^5(1-e^{-x})$; $y = x^{\arctan 5x}$; $y = \sqrt{x^2 + y^2} + \ln\frac{x}{y} = e^2$.

14.
$$y = (1-3x) \cdot 4^{2x} + 7$$
; $y = \frac{3+2x}{\sin(1-x)}$; $y = \frac{\sqrt[3]{4-5x}}{x^3+4}$; $y = x^2 e^{\sin(1-2x)}$; $y = \ln(\sqrt[4]{1-x} + 4x)$; $y = \arccos^2(1+3x)$; $y = tg \ln(1-e^{x^2})$; $y = \arctan 3(3^{\sqrt{x}} + x)$; $y = (4-7x^3)^{\ln x}$; $\cos(x+y^2) + xy = 3$.

15.
$$y = (x-1)^2 e^{x^3} + 7$$
; $y = \frac{\arcsin 5x + 3}{1 - 7x^3}$; $y = \frac{1 + \sqrt[3]{x - x^2}}{1 + 4x^3}$; $y = \ln(\frac{1}{x + 4} + \sqrt{x})$; $y = 3^{\sin 8x}(4 + 7x^4)$; $y = \cos^5(x^2 - 7x)$; $y = \ln^7(e^{\sqrt[3]{x}} + x)$; $y = \ln \arctan(\sqrt[3]{x} + x)$; $y = (\sqrt{x} + 1)^{2x^2 + 3}$; $\arcsin(x + y) = \frac{y}{x}$.

16.
$$y = (\sqrt{x} + 3)e^{x^2} + 7$$
; $y = \frac{(3x - 4)^2}{\sqrt{x} + 7}$; $y = \frac{1 + \sqrt[3]{x - x^2}}{1 + 4x^3}$; $y = \ln(\sqrt[5]{1 - x^3 + 2})$; $y = x^3 3^{\arctan 5x}$; $y = \arcsin \ln(e^{\sqrt{x}} + 3x)$; $y = \operatorname{arcctg}^6(5 - 3x)$; $y = \sin^6(e^{\sqrt[3]{x}} + x)$; $y = (\arcsin x)^{\sqrt{x}}$; $xy + \ln(x + 5y) = 3$.

17.
$$y = 2x^{3}4^{1-x^{8}};$$
 $y = \frac{\arctan(5x-3x^{3})}{\sqrt{x}+4};$ $y = \frac{5-3x^{2}}{\sqrt{3}x^{3}+4};$ $y = x^{5}2^{\ln(1-9x)};$ $y = \ln(x+3^{-\sqrt{x}+4});$ $y = \arccos\left(\ln\left(e^{-\sqrt{x^{2}+4}}\right)\right);$ $y = \sin^{7}(3-8x);$ $y = \arcsin^{4}(1+x^{2});$ $y = (5\operatorname{tg} x)^{1-\sqrt{x}};$ $\cos(x^{2}-y) + \frac{3x+1}{y} = 4.$

18.
$$y = \sqrt[3]{x^2} e^{1-3x^3}$$
; $y = \frac{x-7x^2}{\sqrt{x^2-4x}}$; $y = \frac{\sin(3x-4x^2)}{5+x^3}$; $y = \operatorname{tg}^7(3-7x)$; $y = \ln\left(\sqrt[3]{1-2x^2}+1\right)$; $y = x^4 2^{\arcsin\sqrt{x}}$; $y = \arctan\left(\ln\left(e^{\sqrt[3]{x^2-x}}+3\right)\right)$; $y = \sin^4(e^{-x^3}+x^2)$; $y = (\arccos x)^{\sqrt[3]{x}}$; $\ln(x^2+y) + \frac{y}{x^2} = 3$.

19.
$$y = (2 - 7x^2) \cdot 3^{-3x} + \sqrt{2}$$
; $y = \frac{1 - 5x}{\cos(3 - 2x^3)}$; $y = \frac{1 - 4x^4}{\sqrt[3]{5 - x}}$; $y = (1 - 4x^2)^{\sqrt{x}}$; $y = \ln(3x - \sqrt[3]{x^2})$; $y = (3x - 4)e^{\sin 4x}$; $y = \arccos^5(1 - 4x^2)$; $y = \arctan^4(e^{5x} + 3)$; $y = \tan(5^{\sqrt{x}} + 4)$; $\cos(x^3 - y) + \frac{y}{x} = 1$.

20.
$$y = (1+7x) \cdot e^{3x+x^2} + 7$$
; $y = \frac{\arcsin(1-7x)}{\sqrt{1-x^2}}$; $y = \frac{\sqrt{x+4}}{x^5+4x^3}$; $7 = \ln\left(x+\sqrt[3]{1-x}\right)$; $y = \left(4-x^3\right) \cdot 3^{\sin(1-3x)}$; $y = \ln\left(\sqrt[3]{x} - \frac{4}{x}\right)$; $y = \arctan^2 3x$; $y = \sin^3\left(e^{-\sqrt{x}} - \frac{1}{\sqrt{x}}\right)$; $y = (\cos x)^{1-\sqrt{x}}$; $\ln(x^3-y^3) = x$.

21.
$$y = (1 - x^2) \cdot 2^{1 - \sqrt{x}} + 4;$$
 $y = \frac{1 - 7x}{1 - 2\sin x};$ $y = \frac{\sqrt[3]{1 - x^2}}{3 - 4x};$ $y = x^4 e^{\cos 5x};$ $y = \ln(\sqrt[3]{1 - 4x} + x);$ $y = \sin \arctan(\sqrt[3]{x} + 4);$ $y = \arctan(\sqrt[3]{x} + 4);$ $y =$

22.
$$y = (5-3x)3^{x^2} + 7$$
; $y = \frac{\sin(5x-x^2)}{1-x}$; $y = \frac{5x+4}{\sqrt[3]{x}+4x}$; $y = \cos^3(e^{\sqrt{x}}+4)$; $y = \ln\left(5x - \sqrt[3]{x^2 - 7x}\right)$; $y = \ln\sin(5 - e^{-\sqrt{x}})$; $y = x^5 e^{\arctan x}$; $y = \arccos^7(1-5x)$; $y = \left(\sqrt{x}\right)^{\ln x}$; $\frac{x}{y^2} + \arctan x = 1$.

23.
$$y = 5xe^{x^3+4} + \pi$$
; $y = \frac{\arctan(5-x)}{x^2+4}$; $y = \frac{15+x^3}{\sqrt{x-7x^2}}$; $y = \ln\frac{x}{1-\sqrt[3]{x}}$; $y = \arccos\left(\ln\left(7-\sqrt[3]{x}\right)\right)$; $y = x^4 2^{\cos\sqrt{x}}$; $y = \arctan(5-x)$; $y =$

24.
$$y = (1 - x^{3})e^{5x} + 7$$
; $y = \frac{\operatorname{tg}(1 - 3x)}{x^{3} + 4}$; $y = \frac{\cos\sqrt{x} + 4}{\sqrt[3]{x} + x}$; $y = \sin^{7}(1 - x^{2})$; $y = x^{7}7^{\arcsin 5x}$; $y = \ln\frac{x}{\sqrt[6]{1 + 5x} - x}$; $y = \ln \cos(x - \frac{1}{\sqrt[3]{x}})$; $y = \ln^{4}(1 + e^{5x})$; $y = \left(\arctan\left(1 - \sqrt{x}\right)\right)^{x}$; $x^{3}e^{x + y} - y = 4$.

25.
$$y = (5x - 4)e^{\frac{1}{\sqrt{x}} + 3}$$
; $y = \frac{(2x + 4)^5}{\sqrt[4]{x^3}}$; $y = \frac{5 + 4x^3}{\text{tg}(1 - 7x)}$; $y = x^3 5^{\cos(1 - x)}$; $y = \ln(\sqrt[3]{1 - x^2} - x)$; $y = \arcsin\ln\left(e^{1 - 5x} - \frac{1}{x}\right)$; $y = \cos^7(e^{\sqrt{x}} + 3x)$; $y = \sin^9(1 + 3^{\sqrt{x}})$; $y = [\cos(1 - x)]^x$; $\sqrt{y}x - \sin(5y - x) = 0$.

26.
$$y = (3 + 2x^2) \cdot e^{\sqrt{3-x}} + 4$$
; $y = \frac{4-5x}{\cos 3x - 7}$; $y = \frac{\sqrt[3]{4-7x}}{3x^2 + 7}$; $y = (4-x^3)e^{\sin(2+4x)}$; $y = \ln\left(5x - \frac{1}{1-x}\right)$; $y = \sin\ln(1-2^{5x})$; $y = \arcsin^3(2+3x)$; $y = \sin^4(e^{3x} - 1)$; $y = (\tan^3(2+3x))$; $y = \sin^4(e^{3x} - 1)$; $y = (\tan^3(2+3x))$; $y = \sin^4(e^{3x} - 1)$; $y = (\tan^3(2+3x))$; $y = \sin^4(e^{3x} - 1)$; $y = (\tan^3(2+3x))$; $y = \sin^4(e^{3x} - 1)$; $y = (\tan^3(2+3x))$

Завдання 2.4 Провести повне дослідження функцій і накреслити їх графіки.

1.
$$y = \frac{x+1}{x^3}$$
; $y = xe^{-x} + 1$.

2.
$$y = \frac{x^2}{x-1}$$
; $y = (2+x)e^x - 1$.

3.
$$y = \frac{x^3}{x^3 - 2}$$
; $y = (x - 1)e^{-2x} + 2$.

4.
$$y = \frac{-x}{x^3 - 1}$$
; $y = (3x - 1)e^{2x} - 3$.

5.
$$y = \left(\frac{2x+3}{x-1}\right)^2$$
; $y = (2x+1)e^{2x} + 1$.

6.
$$y = \frac{3x^3}{x^3 + 6}$$
; $y = 2xe^x - 1$.

7.
$$y = \frac{x^2 + 1}{2x + 3}$$
; $y = (3 - x)e^{-x} + 3$.

8.
$$y = \frac{x^3}{x^2 + 2x + 3}$$
; $y = (3x + 1)e^{-x} + 2$.

9.
$$y = \frac{16}{x^2(x-4)}$$
; $y = (1-x)e^{-x} + 1$.

10.
$$y = \frac{x^2 + 1}{x - 1}$$
; $y = (2x + 1)e^x - 1$.

11.
$$y = \frac{x^4}{x^3 - 1}$$
; $y = (1 - 3x)e^{2x} + 2$.

12.
$$y = \frac{x^3}{x^2 + 1}$$
; $y = 3xe^{-x} + 1$.

13.
$$y = \frac{-x^2}{(x-2)^2}$$
; $y = (5x-2)e^{-x} + 3$.

14.
$$y = \frac{x}{x^3 - 2}$$
; $y = (2x - 1)e^{2x} + 3$.

15.
$$y = \frac{4x^3}{x^3 - 1}$$
; $y = (4 - 2x)e^x - 2$.

16.
$$y = \frac{x^2 - 4x + 3}{x^2 - 2x}$$
; $y = (x + 3)e^{-2x} + 1$.

17.
$$y = \frac{x+3}{x^3}$$
; $y = -xe^x + 2$.

18.
$$y = \frac{4x^3 + 5}{x}$$
; $y = (2x + 5)e^{2x} + 1$.

19.
$$y = \frac{x^2}{x^3 + 1}$$
; $y = (1 - x)e^x + 1$.

20.
$$y = \frac{x^3}{2(x-1)^2}$$
; $y = (x+1)e^{-x} + 3$.

21.
$$y = \frac{x}{2 - x^3}$$
; $y = (2x + 3)e^x + 2$.

22.
$$y = \frac{x}{x^2 - 4}$$
; $y = (x - 3)e^{-2x} + 4$.

23.
$$y = \frac{4x^3}{x^3 - 1}$$
; $y = 2xe^{-x} - 1$.

24.
$$y = \frac{2-4x^2}{1-4x^2}$$
; $y = (2x-1)e^{-x} - 2$.

25.
$$y = \frac{x^2 - 2x + 2}{x - 1}$$
; $y = (x - 2)e^{2x} - 3$.

26.
$$y = \frac{-x}{x^3 + 3}$$
; $y = (2x - 3)e^{-3x} + 1$.