Exercises: Surfaces

Problem 1. Consider the sphere $(x-1)^2 + (y-2)^2 + z^2 = 6$.

- 1. Give a normal vector of the sphere at point $(2, 2 + \sqrt{2}, \sqrt{3})$.
- 2. Give the equation of the tangent plane at point $(2, 2 + \sqrt{2}, \sqrt{3})$.

Solution:

1. Define $f(x, y, z) = (x - 1)^2 + (y - 2)^2 + z^2 - 6$. Its gradient is

$$\nabla f(x, y, z) = \left[\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z} \right]$$
$$= \left[2(x - 1), 2(y - 2), 2z \right].$$

Hence, $\nabla f(2, 2 + \sqrt{2}, \sqrt{3}) = [2, 2\sqrt{2}, 2\sqrt{3}]$ is a normal vector at point $(2, 2 + \sqrt{2}, \sqrt{3})$.

2. At this stage, you should be able to write out the equation of the plane directly (by resorting to dot product):

$$2(x-2) + 2\sqrt{2}(y-2-\sqrt{2}) + 2\sqrt{3}(z-\sqrt{3}) = 0.$$

Problem 2. As before, consider the sphere $(x-1)^2 + (y-2)^2 + z^2 = 6$.

- 1. Let C_1 be the curve on the sphere satisfying x = 2. Give a tangent vector \mathbf{v}_1 of C_1 at point $(2, 2 + \sqrt{2}, \sqrt{3})$.
- 2. Let C_2 be the curve on the sphere satisfying $y = 2 + \sqrt{2}$. Give a tangent vector \mathbf{v}_2 of C_2 at point $(2, 2 + \sqrt{2}, \sqrt{3})$.
- 3. Compute $v_1 \times v_2$.

Solution:

1. Let C'_1 be the part of C_1 satisfying $z \ge 0$. Let us write C'_1 into its parametric form r(t) = [x(t), y(t), z(t)].

$$\begin{array}{rcl} x(t) & = & 2 \\ y(t) & = & t \\ z(t) & = & \sqrt{5 - (t - 2)^2}. \end{array}$$

Hence, $\mathbf{r}'(t) = [0, 1, \frac{2-t}{\sqrt{5-(t-2)^2}}]$. Point $(2, 2+\sqrt{2}, \sqrt{3})$ is given by $t = 2+\sqrt{2}$. Hence, a tangent vector is $\mathbf{r}'(2+\sqrt{2}) = [0, 1, -\sqrt{2/3}]$.

2. Let C_2' be the part of C_2 satisfying $z \ge 0$. Let us write C_2' into its parametric form r(t) = [x(t), y(t), z(t)].

$$x(t) = t$$

$$y(t) = 2 + \sqrt{2}$$

$$z(t) = \sqrt{4 - (t-1)^2}$$

1

Hence, $\mathbf{r}'(t) = [1, 0, \frac{1-t}{\sqrt{4-(t-1)^2}}]$. Point $(2, 2+\sqrt{2}, \sqrt{3})$ is given by t=2. Hence, a tangent vector is $\mathbf{r}'(2+\sqrt{2}) = [1, 0, -\sqrt{1/3}]$.

3.

$$[0,1,-\sqrt{2/3}]\times[1,0,-\sqrt{1/3}] \quad = \quad [-\sqrt{1/3},-\sqrt{2/3},-1].$$

By the geometric property of cross product, this is another normal vector to the sphere at $(2, 2 + \sqrt{2}, \sqrt{3})$.

Problem 3. Sphere $(x-1)^2 + (y-2)^2 + z^2 = 6$ can also be represented in the parametric form:

$$x(u,v) = 1 + \sqrt{6}\cos(u)$$

$$y(u,v) = 2 + \sqrt{6}\sin(u)\cos(v)$$

$$z(u,v) = \sqrt{6}\sin(u)\sin(v)$$

By fixing v to the value satisfying $\cos(v) = \sqrt{2/5}$ and $\sin(v) = \sqrt{3/5}$, from the above we get a curve C on the sphere that passes point $(2, 2 + \sqrt{2}, \sqrt{3})$. Give a tangent vector of C at the point.

Solution: C has the parametric form r(u) = [x(u), y(u), z(u)] where:

$$x(u) = 1 + \sqrt{6}\cos(u)$$

$$y(u) = 2 + \sqrt{6}\frac{\sqrt{2}}{\sqrt{5}}\sin(u) = 2 + \frac{\sqrt{12}}{\sqrt{5}}\sin(u)$$

$$z(u) = \sqrt{6}\frac{\sqrt{3}}{\sqrt{5}}\sin(v) = \frac{\sqrt{18}}{\sqrt{5}}\sin(u)$$

Hence, $\mathbf{r}'(u) = [-\sqrt{6}\sin(u), \frac{\sqrt{12}}{\sqrt{5}}\cos(u), \frac{\sqrt{18}}{\sqrt{5}}\cos(u)].$

For point p, we know

$$1 + \sqrt{6}\cos(u) = 2$$
$$2 + \frac{\sqrt{12}}{\sqrt{5}}\sin(u) = 2 + \sqrt{2}$$

giving $\cos(u) = \sqrt{1/6}$ and $\sin(u) = \sqrt{5/6}$. Hence, at p, a tangent vector is

$$r'(u) = [-\sqrt{6}\sin(u), \frac{\sqrt{12}}{\sqrt{5}}\cos(u), \frac{\sqrt{18}}{\sqrt{5}}\cos(u)]$$

$$= [-\sqrt{6}\frac{\sqrt{5}}{\sqrt{6}}, \frac{\sqrt{12}}{\sqrt{5}}\frac{\sqrt{1}}{\sqrt{6}}, \frac{\sqrt{18}}{\sqrt{5}}\frac{\sqrt{1}}{\sqrt{6}}]$$

$$= [-\sqrt{5}, \sqrt{2/5}, \sqrt{3/5}].$$

Problem 4. This problem is designed to show you how to use gradient to compute the normal vector of a tangle line in 2d space. Consider the circle $(x-1)^2 + (y-2)^2 = 5$. Give a vector whose direction is perpendicular to the tangent line of the circle at point (2,4).

Solution: Define $f(x,y) = (x-1)^2 + (y-2)^2 - 5$. The circle satisfies f(x,y) = 0.

Let us represent the circle in its parametric form r(t) = [x(t), y(t)]. As we will see, we do need to worry about how to formulate x(t) and y(t) at all. It must hold that

$$f(x(t), y(t)) = 0$$

Taking the derivative of both sides with respect to t gives

$$\frac{\partial f}{\partial x}\frac{dx}{dt} + \frac{\partial f}{\partial y}\frac{dy}{dt} = 0 \Rightarrow$$

$$\left[\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}\right] \cdot \left[\frac{dx}{dt}, \frac{dy}{dt}\right] = 0 \Rightarrow$$

$$\nabla f(x, y) \cdot [x'(t), y'(t)] = 0.$$

Note that [x'(t), y'(t)] is a tangent vector of the point p(x, y) on the circle given by t. Hence, as long as $\nabla f(x, y)$ and [x'(t), y'(t)] are not $\mathbf{0}$, $\nabla f(x, y)$ is a vector normal to the tangent vector.

In our problem, $\nabla f(x,y) = [2(x-1),2(y-2)]$. Hence, $\nabla f(2,4) = [2,4]$ is a solution.