Curso: Engenharia Civil

DISCIPLINA: Estruturas de Concreto Armado II

Victor Machado da Silva, MSc victor.silva@ibmec.edu.br

Pré-dimensionamento de estruturas de edifícios

Introdução

O pré-dimensionamento dos elementos estruturais é necessário para que se possa calcular o peso próprio da estrutura, que é a primeira parcela considerada no cálculo das ações

O conhecimento das dimensões permite determinar os vãos equivalentes e as rigidezes, necessários no cálculo das ligações entre os elementos

O processo de pré-dimensionamento constitui de estimativas e é cíclico, ou seja, caso as dimensões previamente definidas não sejam satisfatórias, deve-se adotar dimensões superiores até se atingir o correto dimensionamento de todos os elementos estruturais

A espessura das lajes pode ser obtida com a expressão

$$h = d + \frac{\phi}{2} + c$$

onde:

- $d \rightarrow$ altura útil da laje
- $\phi \rightarrow$ diâmetro das barras
- $c \rightarrow$ cobrimento nominal da armadura

Cobrimento da armadura

O cobrimento nominal da armadura, c, é o cobrimento mínimo (c_{min}), acrescido de uma tolerância de execução (Δc)

$$c = c_{min} + \Delta c$$

O projeto e a execução devem considerar esse valor do cobrimento nominal para assegurar que o cobrimento mínimo seja respeitado ao longo de todo o elemento

Nas obras usuais, adota-se $\Delta c \geq 10mm$. Quando houver um controle rigoroso da qualidade da execução, sendo devidamente explicitado nos documentos de projeto, pode-se adotar $\Delta c = 5mm$.

O valor do cobrimento depende da classe de agressividade do ambiente, como por exemplo as indicadas abaixo

Classe de agressividade ambiental	Agressividade	Classificação geral do tipo de ambiente para efeito de projeto	Risco de deterioração da estrutura	
	Fraca	Rural	Insignificante	
		Submersa	Pequeno	
II	Moderada	Urbana ^{a,b}	Pequeno	
III	Forte	Marinha ^a	Grande	
		Industria la,b	Grande	
IV	Muito forte	Industrial ^{a,c}	Elevado	
		Respingos de maré		

^a Pode-se admitir um microclima com uma classe de agressividade mais branda (uma classe acima) para ambientes internos secos (salas, dormitórios, banheiros, cozinhas e áreas de serviço de apartamentos residenciais e conjuntos comerciais ou ambientes com concreto revestido com argamassa e pintura).

^c Ambientes quimicamente agressivos, tanques industriais, galvanoplastia, branqueamento em indústrias de celulose e papel, armazéns de fertilizantes, indústrias químicas.

^b Pode-se admitir uma classe de agressividade mais branda (uma classe acima) em obras em regiões de clima seco, com umidade média relativa do ar menor ou igual a 65 %, partes da estrutura protegidas de chuva em ambientes predominantemente secos ou regiões onde raramente chove.

Para $\Delta c = 10mm$, recomendam-se os seguintes cobrimentos:

Tipo de	Componente ou	Classe de agressividade ambiental				
estrutura	elemento		II	III	IV c	
Concreto armado	Laje ^b	20	25	35	45	
	Viga/pilar	25	30	40	50	
	Elementos estruturais em contato com o solo d	30		40	50	
Concreto protendido ^a	Laje	25	30	40	50	
	Viga/pilar	30	35	45	55	

^a Cobrimento nominal da bainha ou dos fios, cabos e cordoalhas. O cobrimento da armadura passiva deve respeitar os cobrimentos para concreto armado.

^a No trecho dos pilares em contato com o solo junto aos elementos de fundação, a armadura deve ter cobrimento nominal ≥ 45 mm.

^b Para a face superior de lajes e vigas que serão revestidas com argamassa de contrapiso, com revestimentos finais secos tipo carpete e madeira, com argamassa de revestimento e acabamento, como pisos de elevado desempenho, pisos cerâmicos, pisos asfálticos e outros, as exigências desta Tabela podem ser substituídas pelas de 7.4.7.5, respeitado um cobrimento nominal ≥ 15 mm.

^a Nas superfícies expostas a ambientes agressivos, como reservatórios, estações de tratamento de água e esgoto, condutos de esgoto, canaletas de efluentes e outras obras em ambientes química e intensamente agressivos, devem ser atendidos os cobrimentos da classe de agressividade IV.

Altura útil da laje

Para lajes com bordas apoiadas ou engastadas, a altura útil pode ser estimada por meio de

$$d_{est} = (2.5 - 0.1n) \times l^*/100$$

- $l^* \le \begin{cases} l_x \\ 0.7l_y \end{cases}$
- $n \rightarrow$ número de bordas engastadas
- $l_x \rightarrow \text{menor vão}$
- $l_y \rightarrow \text{maior vão}$

Espessura mínima da laje

A NBR6118 especifica que as lajes maciças devem respeitar as seguintes espessuras mínimas:

- 7cm para cobertura não em balanço;
- 8cm para lajes de piso não em balanço;
- 10cm para lajes em balanço;
- 10cm para lajes que suportem veículos de peso total menor ou igual a 30kN;
- 12cm para lajes que suportem veículos de peso total maior que 30kN;
- 15cm para lajes com protensão apoiadas em vigas, com o mínimo de l/42 para lajes de piso biapoiadas e l/50 para lajes de piso contínuas;
- 16cm para lajes lisas e 14cm para lajes-cogumelo, fora do capitel.

Pré-dimensionamento das vigas

Uma estimativa grosseira para a altura das vigas é dada por:

- Tramos internos: $d_{est} = l_0/12$
- Tramos externos ou vigas biapoiadas: $d_{est} = l_0/10$
- Balanços: $d_{est} = l_0/5$

Num tabuleiro de edifício, não é recomendável utilizar muitos valores diferentes para altura das vigas, de modo a facilitar e otimizar os trabalhos de cimbramento. Usualmente, adotam-se, no máximo, duas alturas diferentes. Tal procedimento pode, eventualmente, gerar a necessidade de armadura dupla em alguns trechos das vigas

Pré-dimensionamento das vigas

Para armadura longitudinal em uma única camada, a relação entre a altura total e a altura útil é dada pela expressão

$$h = d + c + \phi_t + \frac{\phi_l}{2}$$

onde:

- $c \rightarrow cobrimento$
- $\phi_t \rightarrow \text{diâmetro dos estribos}$
- $\phi_l \rightarrow$ diâmetro das barras longitudinais

Inicia-se o pré-dimensionamento dos pilares estimando-se sua carga, por exemplo, através do processo das áreas de influência

Este processo consiste em dividir a área total do pavimento em áreas de influência, relativas a cada pilar e, a partir daí, estimar a carga que eles irão absorver

A área de influência de cada pilar pode ser obtida dividindo-se as distâncias entre seus eixos em intervalos que variam entre 0,45l e 0,55l, dependendo da posição do pilar na estrutura, conforme o seguinte critério:

- $0.45l \rightarrow \text{pilar}$ de extremidade e de canto, na direção da sua menor dimensão;
- $0.55l \rightarrow \text{complementos dos vãos do caso anterior}$;
- $0.50l \rightarrow \text{pilar}$ de extremidade e de canto, na direção da sua maior dimensão.

No caso de edifícios com balanço, considera-se a área do balanço acrescida das respectivas áreas das lajes adjacentes, tomando-se, na direção do balanço, largura igual a 0,50l, sendo l o vão adjacente ao balanço

Convém salientar que quanto maior for a uniformidade no alinhamento dos pilares e na distribuição dos vãos e das cargas, maior será a precisão dos resultados obtidos

Após avaliar a força nos pilares pelo processo das áreas de influência, é determinado o coeficiente de majoração da força normal (α) que leva em conta as excentricidades da carga, sendo considerados os valores:

- $\alpha = 1.3 \rightarrow \text{pilares internos ou de extremidade, na direção da maior dimensão;}$
- $\alpha = 1.5 \rightarrow \text{pilares de extremidade, na direção da menor dimensão;}$
- $\alpha = 1.8 \rightarrow \text{pilares de canto}$.

A seção abaixo do primeiro andar-tipo é estimada, então, considerando-se compressão simples com carga q_d majorada pelo coeficiente α , utilizando-se a seguinte expressão:

$$A_c = \frac{\alpha \times q_d \times A \times (n + 0.7)}{f_{ck} + 0.01 \times (69.2 - f_{ck})}$$

onde:

- $\alpha \rightarrow$ coeficientes que leva em conta as excentricidades da carga
- $A \rightarrow \text{área de influência do pilar } (m^2)$
- $n \rightarrow$ número de pavimentos-tipo
- $(n + 0.7) \rightarrow$ número que estima a cobertura com carga de 70% do pavimento tipo
- $f_{ck} \rightarrow \text{resistência característica do concreto } (kN/m^2)$

A existência de caixa d'água superior, casa de máquina e outros equipamentos não pode ser ignorada no pré-dimensionamento dos pilares, devendo-se estimar os carregamentos gerando por eles, os quais devem ser considerados nos pilares que os sustentam

Para as seções dos pilares inferiores, o procedimento é semelhante, devendo ser estimadas as cargas totais que pilares suportam

www.ibmec.br

@ibmec

