Problems on Moles solved in Lecture and note clearly visible in Power Point Notes.

Problem 1. How many moles of iron represents in 25.0 g of iron?

Solution . Given-> Molar mass iron = 55.85 g/mol

Set up the calculation using a conversion factor between moles and grams.

Problem 2. What is the mass, in grams, of 4.6 mol MgCl2?

Solution. 4.6 mol MgCl₂ x
$$95.20 \text{ g MgCl}_2$$
 = 4.4 x 10^2 g MgCl_2

Problem 3. How many MgCl2 formula units are in 4.6 mol MgCl2?

Solution. 4.6 mol MgCl₂ x
$$\frac{6.022 \times 10^{23} \text{ formula units MgCl}_2}{1 \text{ mol of MgCl}_2} = 2.8 \times 10^{24} \text{ formula units MgCl}_2$$

Problem 4. How many oxygen molecules are present in 2.00 mol of oxygen molecules?

Solution. Conversion factor needed:
$$\underbrace{6.022 \times 10\ 23 \text{ molecules O}_2}_{1\ \text{mol O}_2}$$

Conversion sequence: moles $O_2 \rightarrow$ molecules O_2

Solution. 2.00 mol
$$O_2$$
 x $\frac{6.022 \times 10^{23} \text{ molecules } O_2}{1 \text{ mol } O_2}$ = 1.20 x 10^{24} molecules O_2

Problem 5. How many moles of benzene, C₆H₆, are present in 390.0 grams of benzene?

Solution. The molar mass of C₆H₆ is 78.12 g/mol.

Conversion sequence: grams $C_6H_6 \rightarrow \text{moles } C_6H_6$

390.0 g
$$C_6H_6$$
 x $\frac{1 \text{ mol } C_6H_6}{78.12 \text{ g } C_6H_6}$ = 5.000 mol C_6H_6

Problem 6. How many grams of (NH4)₃PO₄ are contained in 2.52 moles of (NH4)₃PO₄?

Solution. The molar mass of (NH4)₃PO₄ is 149.12 g/mol (Calculate from Periodic table).

2.52 mol (NH4)₃PO₄ x
$$\frac{1 \text{ mol } C_6H_6}{1 \text{ mol } (\text{NH4})_3\text{PO}_4}$$
 = 376 g (NH4)₃PO₄

Problem 7. 56.04 g of N_2 contains how many N_2 molecules?

Solution. Conversion sequence: $g N_2 \rightarrow moles N_2 \rightarrow molecules N_2$

56.04 g N₂ x
$$\frac{1 \text{ mol N}_2}{28.02 \text{ g N}_2}$$
 x $\frac{6.022 \times 10^{23} \text{ molecules N}_2}{1 \text{ mol N}_2}$ = 1.204 X 10²⁴ molecules N₂

EMPIRICAL FORMULA PROBLEM SOLVED IN LECTURE AND NOTES.

Problem 1. The analysis of a salt shows that it contains 56.58% potassium (K); 8.68% carbon (C); and 34.73% oxygen (O). Calculate the empirical formula for this substance.

Step 1 Express each element in grams. Assume 100 grams of compound.

Step 2 Convert the grams of each element to moles.

$$K \rightarrow 56.58 \text{ g K} \times 1 \text{ mol K} = 1.447 \text{ mol K}$$

39.10 g K

$$C \rightarrow 8.68 \text{ g C} \times \frac{1 \text{ mol C}}{12.01 \text{ g C}} = 0.723 \text{ mol C} \text{ smallest mol e}$$

$$O -> 34.73 \text{ g } O \times \underbrace{1 \text{ mol } O}_{16.00 \text{ g } O} = 2.171 \text{ mol } O$$

Step 3 Identify smallest mole Divide each number of moles by the smallest value.

$$K = 1.447 \text{ mol } / 0.723 \text{ mol } = 2$$

$$C = 0.723 \text{ mol} / 0.723 \text{ mol} = 1$$

$$O = 2.171 \text{ mol} / 0.723 \text{ mol} = 3$$

The simplest ratio of K:C:O is 2:1:3

Empirical formula K₂CO₃

Problem 2. The percent composition of a compound is 25.94% nitrogen (N), and 74.06% oxygen (O). Calculate the empirical formula for this substance.

smallest mole

Step 1 Express each element in grams. Assume 100 grams of compound.

$$O = 74.06 \% = 74.06 g$$

Step 2 Convert the grams of each element to moles.

$$N \rightarrow 25.94 \text{ g N} \times 1 \text{ mol N}$$
 = 1.852 mol N

O -> 74.06 g O x
$$\frac{1 \text{ mol O}}{16.00 \text{ g O}}$$
 = 4.629 mol O

Step 3 Identify smallest mole Divide each number of moles by the smallest value.

N = 1.852 mol / 1.852 mol = 1

 $O = 4.629 \text{ mol} / 1.852 \text{ mol} = 2.5 \rightarrow \text{This is not a ratio of whole numbers.}$

Step 4. To make it a whole number multiply both Nitrogen and Oxygen values by 2

 $N = 1 \times 2 = 2$

 $0 = 2.5 \times 2 = 5$

The simplest ratio of N:O is 2:5

Empirical formula N₂O₅

HOW TO CALCULATE MOLECULAR FORMULA FROM EMPIRICAL FORMULA WHEN MOLAR MASS OF THE COMPOUND IS GIVEN. THIS PROBLEM IS SOLVED IN LECTURE AND NOTES.

Number of empirical formula units (n) = molar mass or molecular formula mass

Empirical formula mass

Problem 1. What is the molecular formula of a compound which has an empirical formula of CH_2 and a molar mass of 126.2 g/ mol?

Calculate the mass of each CH2 unit

= 9

The molecular formula is (CH₂)₉ = C₉H₁₈