Современная криптография на решётках

Курс "Криптография на решётках"

Елена Киршанова

Трудные задачи на решётках: SIS

Трудные задачи на решётках: SIS

ullet A задаёт решётку ранга m

$$\mathcal{L}_{q}^{\perp}(A) = \{ \mathbf{x} \in \mathbb{Z}^{m} : \mathbf{x}^{\mathsf{t}} A = 0 \bmod q \}$$

• SIS – γ -SVP для $\gamma = \frac{q^{n/m}}{B}$.

$$T(\mathsf{SIS}) = \exp\left(\mathsf{c} \frac{\lg q}{\mathsf{l}\sigma^2 B} \lg\left(\frac{n\lg q}{\mathsf{l}\sigma^2 B}\right) \cdot n\right)$$

• Криптографические хэш-функции, цифровые подписи

Трудные задачи на решётках: LWE

LWE есть BDD

• А задает решетку конструкции А

$$\mathcal{L}_q(A) = A\mathbb{Z}_q^n + q\mathbb{Z}^m$$

- $\dim(\mathcal{L}_q(A)) = m$ u $\det(\mathcal{L}_q(A)) = q^{m-n}$.
- As + e mod q вектор, на расстоянии $\Theta(\sqrt{m} lpha q)$ от $\mathcal{L}_q(A)$
- ullet (A,As+e) BDD задача для $\mathcal{L}_q(A)$ с $\gamma=rac{q^{1-n/m}}{lpha q}$
- PKE, IBE, ABE, NIKZ, гомоморфное шифрование

Алгебраические предположения трудности

- ullet Для хранения LWE выборки необходимо $\Omega(n^2 \log q)$ бит
- Умножение матрицы на вектор требует $O(n^2)$ операций в \mathbb{Z}_q

⇒ 'стандартное' LWE довольно медленно

Решение:

- 1. Алгебраические версии SIS/LWE
- 2. NTRU

Polynomial-LWE, SSTX'09

Пусть $f \in \mathbb{Z}[x]$ - унитарный неприводимый степени n, $q \geq 2, \alpha > 0$

$$a = \sum_{i} a_i x^i \in \mathbb{Z}[x]/f \longrightarrow (a_0, \dots, a_{n-1}) \in \mathbb{Z}^n$$

Задача поиска $Poly-LWE_f$:

- Выбрать $s \xleftarrow{\$} \mathbb{Z}_q[x]/f$
- Выбрать a_i 's $\stackrel{\$}{\leftarrow} \mathbb{Z}_q[x]/f$
- ullet Выбрать коэф-ты e_i из $D_{lpha q}$

По данным
$$(a_1, \ldots, a_m)$$
 и $(a_1 \cdot s + e_1, \ldots a_m \cdot s + e_m)$, найти s .

Polynomial-LWE, SSTX'09

Пусть $f \in \mathbb{Z}[x]$ - унитарный неприводимый степени n, $q \geq 2, \alpha > 0$

$$a = \sum_{i} a_i x^i \in \mathbb{Z}[x]/f \longrightarrow (a_0, \dots, a_{n-1}) \in \mathbb{Z}^n$$

Задача поиска $Poly-LWE_f$:

- Выбрать $s \stackrel{\$}{\leftarrow} \mathbb{Z}_q[x]/f$
- Выбрать a_i 's $\stackrel{\$}{\leftarrow} \mathbb{Z}_q[x]/f$
- ullet Выбрать коэф-ты e_i из $D_{lpha q}$

По данным (a_1, \dots, a_m) и $(a_1 \cdot s + e_1, \dots a_m \cdot s + e_m)$, найти s.

Polynomial-LWE, SSTX'09

Пусть $f \in \mathbb{Z}[x]$ - унитарный неприводимый степени n, $q \geq 2, \alpha > 0$

$$a = \sum_{i} a_i x^i \in \mathbb{Z}[x]/f \longrightarrow (a_0, \dots, a_{n-1}) \in \mathbb{Z}^n$$

Задача поиска $Poly-LWE_f$:

- Выбрать $s \xleftarrow{\$} \mathbb{Z}_q[x]/f$
- Выбрать a_i 's $\stackrel{\$}{\leftarrow} \mathbb{Z}_q[x]/f$
- ullet Выбрать коэф-ты e_i из $D_{lpha q}$

По данным (a_1, \ldots, a_m) и $(a_1 \cdot s + e_1, \ldots a_m \cdot s + e_m)$,

 $(a_1 \cdot s + e_1, \dots a_m \cdot s + e_m)$ найти s.

Одна пара (a_i,a_is+e_i) дает LWE выборку из n эл-тов Многочлены могут быть умножены за время $\widetilde{\mathcal{O}}(n)$

Ring-LWE для $f = x^{2^k} + 1$, LPR'10

Пусть $f=x^n+1$ - круговой степени $n=2^k$, $q\geq 2, \alpha>0$ Пусть $\omega_1,\ldots,\omega_n\in\mathbb{C}$ - корни f, V_f - матрица Вандермодна для ω_i 's

$$\sigma: \sum_{i} a_{i} x^{i} \in \mathbb{Z}[x]/f \longrightarrow (a(\omega_{0}), \dots, a(\omega_{n-1})) \in \mathbb{C}^{n}$$

Задача поиска $Ring-LWE_f$:

- Выбрать $s \stackrel{\$}{\leftarrow} \mathbb{Z}_q[x]/f$
- Выбрать a_i 's $\stackrel{\$}{\leftarrow} \mathbb{Z}_q[x]/f$
- ullet Выбрать $\sigma({m e_i})$'s из $D_{lpha q}$

Ring-LWE для $f = x^{2^k} + 1$, LPR'10

Пусть $f=x^n+1$ - круговой степени $n=2^k$, $q\geq 2, \alpha>0$

Пусть $\omega_1,\dots,\omega_n\in\mathbb{C}$ - корни f, V_f - матрица

Вандермодна для ω_i 's

$$\sigma: \sum a_i x^i \in \mathbb{Z}[x]/f \longrightarrow (a(\omega_0), \dots, a(\omega_{n-1})) \in \mathbb{C}^n$$

Задача поиска Ring-LWE $_f$:

- Выбрать $s \xleftarrow{\$} \mathbb{Z}_q[x]/f$
- Выбрать a_i 's $\stackrel{\$}{\leftarrow} \mathbb{Z}_q[x]/f$
- ullet Выбрать $\sigma({m e}_i)$'s из $D_{lpha q}$

Ring-LWE для $f = x^{2^k} + 1$, LPR'10

Пусть $f = x^n + 1$ - круговой степени $n = 2^k$, $q \ge 2$, $\alpha > 0$ Пусть $\omega_1,\ldots,\omega_n\in\mathbb{C}$ - корни f,V_f - матрица

Вандермодна для
$$\omega_i$$
's
$$\sigma: \sum a_i x^i \in \mathbb{Z}[x]/f \ \longrightarrow \ (a(\omega_0), \dots, a(\omega_{n-1})) \in \mathbb{C}^n$$

Задача поиска Ring-LWE
$$_f$$
:

- Выбрать $s \stackrel{\$}{\leftarrow} \mathbb{Z}_q[x]/f$
- Выбрать a_i 's $\stackrel{\$}{\leftarrow} \mathbb{Z}_a[x]/f$
- Выбрать $\sigma(e_i)$'s из $D_{\alpha q}$

n• Умножение за время $O(n \log q)$ ullet Poly-LWE и Ring-LWE связаны для f т.ч. V_f имеет малую операторную норму, [RSW'18]

 $m \cdot n$

NTRU, HPS'98

Пусть $q \geq 2, \, \Phi$ - многочлен степени n,

$$R_{\Phi} = \mathbb{Z}_q[x]/(\Phi)$$

Примеры $\Phi = x^n - 1$ или $\Phi = x^n + 1$ или $\Phi = x^p - x - 1$

Задача поиска NTRU:

- ullet Выбрать обратимый f в R_Φ с коэфф-ами из $\{-1,0,1\}$
- ullet Выбрать g с коэфф-ами из $\{-1,0,1\}$
- Вычислить $h=g/f\in R_\Phi$

По h, сложно отыскать 'малые' (f,g) т.ч. $h=g/f\in R_\Phi.$

NTRU, HPS'98

Пусть $q \geq 2, \, \Phi$ - многочлен степени n,

$$R_{\Phi} = \mathbb{Z}_q[x]/(\Phi)$$

Примеры $\Phi=x^n-1$ или $\Phi=x^n+1$ или $\Phi=x^p-x-1$

Задача поиска NTRU:

- ullet Выбрать обратимый f в R_Φ с коэфф-ами из $\{-1,0,1\}$
- ullet Выбрать g с коэфф-ами из $\{-1,0,1\}$
- Вычислить $h=g/f\in R_\Phi$

По h, сложно отыскать 'малые' (f,g) т.ч. $h=q/f\in R_{\Phi}$.

NTRU решётка:

$$\begin{bmatrix} \mathsf{Rot}(h) & q\mathbf{I} \\ \mathbf{I} & \mathbf{0} \end{bmatrix} \cdot \begin{bmatrix} \vec{f} \\ \vec{k} \end{bmatrix} = \begin{bmatrix} \vec{g} \\ \vec{f} \end{bmatrix}$$

• h задает решетку размерность 2n

$$\mathcal{L} = \left\{ \begin{bmatrix} \mathsf{Rot}(h) & q\mathbf{I} \\ \mathbf{I} & \mathbf{0} \end{bmatrix} \cdot R_{\Phi}^2 \right\}$$

ullet $(ec{g},ec{f})$ - короткий в ${\cal L}$

Сложность Poly/Ring LWE и NTRU

Пусть $q \geq 2, \, \Phi$ - многочлен степени n,

$$R_{\Phi} = \mathbb{Z}_q[x]/(\Phi)$$

Ring-/Poly-LWE

A задает модуль ранга m над R_Φ

NTRU

h

задает модуль ранга 2 над R_{Φ}

Для m>1, SVP в модуле ранга m над R_{Φ} не проще 'стандартной' SVP на произвольной решетке размерность $nm \; (\mathrm{poly}(n) \; \mathsf{ускорения} \; \mathsf{существуют})$:

Сложность Poly/Ring LWE и NTRU

Уточнения:

• SVP в любом модуле ранга-1 кругового поля R_{Φ} , может достичь $\gamma=2^{\widetilde{\mathcal{O}}(\sqrt{n})}$ за время $2^{\widetilde{\mathcal{O}}(\sqrt{n})}$ Biasse-Espitau-Fouque-Gélin-Kirchner'17 / Cramer-Ducas-Peikert-Regev'16/ Cramer-Ducas-Wesolowski'17

Сложность Poly/Ring LWE и NTRU

Уточнения:

- SVP в любом модуле ранга-1 кругового поля R_{Φ} , может достичь $\gamma=2^{\widetilde{\mathcal{O}}(\sqrt{n})}$ за время $2^{\widetilde{\mathcal{O}}(\sqrt{n})}$ Biasse-Espitau-Fouque-Gélin-Kirchner'17 / Cramer-Ducas-Peikert-Regev'16/ Cramer-Ducas-Wesolowski'17
- В задаче NTRU n-коротких векторов (ротации (f,g)). Этот факт позволяет для $(f,g) \leftarrow D^{2n}_{\alpha q}$ решить задачу NTRU с помощью β -BKZ with

$$\beta = \widetilde{\mathcal{O}}\left(\frac{n\lg(\alpha q)}{\lg^2 q}\right)$$

для достаточно больших q и lpha q. Сложность $\mathrm{poly}(n)$ для $q=2^{\widetilde{\mathcal{O}}(\sqrt{n})}.$

Процесс стандартизации NIST

- В декабре 2016 года NIST (National Institute of Standards and Technology) запустил процесс стандартизации¹ пост-кватовых примитивов: цифровой подписи и KEM (Key Encapsulation Mechanism).
- В ноябре 2017 было получено 87 кандидатов от академии и индустрии
- В стандарт вошли 3 схемы на решетках + одна подпись на хэш-функциях https://csrc.nist.gov/Projects/post-quantum-cryptography/selected-algorithms-2022

KEM	Подписи
Kyber (M-LWE)	Dilithium (M-LWE + M-SIS)
	Falcon (M-SIS)
	SPHINCS+ (hash-based)

Подробно см. https:

//nvlpubs.nist.gov/nistpubs/ir/2022/NIST.IR.8413-upd1.pdf

¹https://csrc.nist.gov/Projects/post-quantum-cryptography

Шифрование на решетках

Шифрование на решетках II

Грам-Шмидт базисы

Шифрование на решетках III

Шифрование сообщения m

Что если использовать разные решетки?

 \mathcal{L}

$$O \cdot \mathcal{L}, O \in \mathcal{O}_n(\mathbb{R})$$

Задача Изоморфизма Решеток (Lattice Isomorphism Problem)

По заданным базисам $B,B'\in\mathbb{R}^{n\times n}$, найти $O\in\mathcal{O}_n(\mathbb{R})$ и $U\in\mathrm{GL}_n(\mathbb{R})$, чтобы выполнялось:

$$B' = O \cdot B \cdot U.$$

- $\bullet \ \operatorname{Min}(\mathcal{L}(B')) = O \cdot \operatorname{Min}(\mathcal{L}(B))$
- На практике решается нахождение коротких векторов в $\mathcal{L}(B)$ и $\mathcal{L}(B')$ и нахождение изометрии между ними
- LIP лежит в основе подписи HAWK

Открытые вопросы

- 1. Улучшенные алгоритмы SVP для алгебраических решёток: алгебраический LLL (для алг. нормы), SVP, BKZ
- 2. Практический анализ LWE, NTRU
- 3. Анализ 'дуальной атаки' на LWE, NTRU
- 4. Улучшенная реализация просеивания
- 5. Эффективные конструкции на решетках: слепая подпись
- 6. Построение решеток из кодов: анализ качества решеток (кратчайшего вектора относительно определителя), построенных из различных кодов
- 7. Анализ качества решеток как кодов (актуально для квантовых кодов, исправляющих ошибки)
- 8. Криптоанализ задачи Lattice Isomorphism Problem (LIP): по двух решеткам $\mathcal{L}, \mathcal{L}' \subset \mathbb{R}^n$, найти ортонормальную матрицу O, т.ч. $\mathcal{L}' = O\mathcal{L}$.