

ISTA 421 + INFO 521 Introduction to Machine Learning

Lecture 5: Model Selection, CV, Regularization

Clayton T. Morrison

claytonm@email.arizona.edu Harvill 437A Phone 621-6609

Special Thanks to Rev. Dawson

6 September 2017

Next Topics

- Model Selection
 - Generalization and Overfitting
 - Method 1: Cross Validation
- Regularized Least Squares
- Probability Review
 - Definitions and Probability Calculus
 - Expectation
 - Continuous probability
 - Distributions
 - Likelihood

Linear Combination of *Basis Functions* (not just polynomials)

$$\mathbf{X} = \begin{bmatrix} h_1(x_1) & h_2(x_1) & \cdots & h_K(x_1) \\ h_1(x_2) & h_2(x_2) & \cdots & h_K(x_2) \\ \vdots & \vdots & \ddots & \vdots \\ h_1(x_N) & h_2(x_N) & \cdots & h_K(x_N) \end{bmatrix}$$

$$h_1(x) = 1$$

$$h_2(x) = x$$

$$h_3(x) = \sin\left(\frac{x-a}{b}\right)$$

$$f(x; \mathbf{w}) = w_0 + w_1 x + w_2 \sin\left(\frac{x-a}{b}\right).$$

Careful!! a and b must be constants

All parameters (as variables) must be *linearly* combined

Cross-Validation Randomly split your data into a set of k chunks "hold out" a chunk of the data set; train on everything but that chunk; Training Validation test with the chunk set Repeat this for all chunks Fold 1 All data What this does: Estimates the error Fold 2 Of a number of possible Models trained on data subsets Leave-one-out-CV (LOOCV) Fold K ... same thing, but chunk = 1 datum

Regularization

 Penalize large coefficient values: add magnitude of all of the weights (e.g., their sum) as part of the loss.

$$\begin{split} \sum_{i} w_{i}^{2} &= \mathbf{w}^{\top} \mathbf{w} \qquad \mathcal{L}' = \mathcal{L} + \lambda \mathbf{w}^{\top} \mathbf{w} \\ \mathcal{L}' &= \mathcal{L} + \lambda \mathbf{w}^{\top} \mathbf{w} \\ &= \frac{1}{N} \mathbf{w}^{\top} \mathbf{X}^{\top} \mathbf{X} \mathbf{w} - \frac{2}{N} \mathbf{w}^{\top} \mathbf{X}^{\top} \mathbf{t} + \lambda \mathbf{w}^{\top} \mathbf{w} \end{split}$$
Note: We've already removed in from \mathcal{L} because we'll be taking derivative with respect to \mathbf{w} .
$$\frac{\partial \mathcal{L}'}{\partial \mathbf{w}} &= \frac{2}{N} \mathbf{X}^{\top} \mathbf{X} \mathbf{w} - \frac{2}{N} \mathbf{X}^{\top} \mathbf{t} + 2\lambda \mathbf{w}$$

$$\frac{2}{N} \mathbf{X}^{\top} \mathbf{X} \mathbf{w} - \frac{2}{N} \mathbf{X}^{\top} \mathbf{t} + 2\lambda \mathbf{w} = 0$$

$$(\mathbf{X}^{\top} \mathbf{X} + N\lambda \mathbf{I}) \mathbf{w} &= \mathbf{X}^{\top} \mathbf{t}$$

$$\hat{\mathbf{w}} &= (\mathbf{X}^{\top} \mathbf{X} + N\lambda \mathbf{I})^{-1} \mathbf{X}^{\top} \mathbf{t}$$

Including a regularization term also ensures the inverse matrix is non-singular (which happens when X^TX has some columns that are colinear, or nearly so (leading to very large magnitude w values); near colinearity is not uncommon in real data).

Polynomial Coefficients

	λ = 0	λ = very small	$\lambda = 1$
	$\ln \lambda = -\infty$	$\ln \lambda = -18$	$\ln \lambda = 0$
$\overline{w_0^{\star}}$	0.35	0.35	0.13
w_1^\star	232.37	4.74	-0.05
w_2^\star	-5321.83	-0.77	-0.06
w_3^{\star}	48568.31	-31.97	-0.05
w_4^{\star}	-231639.30	-3.89	-0.03
w_5^{\star}	640042.26	55.28	-0.02
w_6^{\star}	-1061800.52	41.32	-0.01
w_7^{\star}	1042400.18	-45.95	-0.00
w_8^\star	-557682.99	-91.53	0.00
w_{9}^{\star}	125201.43	72.68	0.01

