doi:10.13506/j.cnki.jpr.2022.03.002

人参皂苷 Rg₁ 对 H₂ O₂ 诱导的 HaCaT 细胞氧化损伤保护作用研究

刘盈1,周满如1,周春2

(1.广州新华学院药学院,广东广州510520;2.南方医科大学药学院,广东广州510515)

摘要:目的 观察人参皂苷 Rg_1 对 H_2O_2 诱导的 HaCaT 细胞氧化损伤保护作用,并探讨其机制。方法 体外培养 HaCaT 细胞, H_2O_2 诱导细胞建立氧化应激损伤模型,分为空白组、 H_2O_2 损伤组、人参皂苷 Rg_1 保护组。细胞增殖与毒性检测试剂盒(CCK-8)检测细胞存活率,Hochest 染色法检测细胞凋亡情况,活性氧检测试剂盒测定细胞活性氧(ROS)水平,Hochest 被色法检测细胞调力情况,活性氧检测试剂盒测定细胞活性氧(ROS)水平,Hochest 被色法检测细胞调力情况,活性氧检测试剂盒测定细胞活性氧(ROS)水平,Hochest 被调用的中 caspase -3 caspase -6 caspase -8 CAPDH 蛋白表达。结果 H_2O_2 诱导 HaCaT 细胞半数抑制浓度为 $100~\mu g \cdot mL^{-1}$; $5H_2O_2$ 损伤组比较,5、10 和 $15~\mu g \cdot L^{-1}$ 人参皂苷 Rg_1 预处理后,HaCaT 细胞存活率明显升高(P<0.05),细胞核皱缩损伤状态明显改善,细胞凋亡数量显著减少。同时,人参皂苷 Rg_1 预处理可显著降低 HaCaT 细胞活性氧水平,下调凋亡相关标志蛋白一活化型 HaCaT 细胞活性氧水平。结论 人参皂苷 HaCaT 细胞氧化应激损伤具有一定的保护作用,其机制可能与增强细胞清除自由基能力及抑制凋亡相关。

关键词:人参皂苷 Rg₁;HaCaT 细胞;氧化应激损伤 中图分类号:R285.5 文献标识码:A 文章编号:2095-5375(2022)03-0145-005

Protective effect of ginsenoside Rg₁ on hydrogen peroxide induced HaCaT cell injury

LIU Ying¹, ZHOU Manru¹, ZHOU Chun²

(1.School of Pharmacy, Xinhua College of Guangzhou, Guangzhou 510520, China; 2.School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China)

Abstract: Objective To explore the protective effect of ginsenoside Rg_1 on hydrogen peroxide induced HaCaT cell injury and its mechanism. Methods Different concentration of H_2O_2 were used to establish oxidative stress injury model. HaCaT cell were divided into blank group, injury group and ginsenoside Rg_1 protection group. CCK-8 was used to detect cell survival rate, and Hochest staining was specific for cell apoptosis detection; reactive oxygen species (ROS) level was analyzed by using a detection kit, and Western blot was used to analyze the protein expressions of cleaved form caspase-3, caspase-6, caspase-8. Results The half-inhibition concentration (IC_{50}) for H_2O_2 -induced HaCaT damage was 100 μ g·mL⁻¹. Compared with model group, pretreatment with 5,10 and 15 mg·L⁻¹ ginsenoside Rg_1 significantly increased the survival rate of HaCaT cells, reduced nuclear shrinkage and ROS level, down-regulated the expression of cleaved caspase-3, caspase-6 and caspase-8, thus protected HaCaT cells from H_2O_2 -induced oxidative stress and apoptosis. Conclusion Ginsenoside Rg_1 has a protective effect on H_2O_2 -induced oxidative stress injury of HaCaT cells, and its mechanism may be related to the enhancement of cell to scavenge free radicals ability and inhibition of apoptosis.

Key words: Ginsenoside Rg1; HaCaT cells; Oxidative stress injury

人参皂苷 Rg₁作为人参皂苷中主要的活性成分 之一,不仅存在于人参的根中,在其非药用部位茎、 叶、花和果中也有较高的含量,具有抗氧化、抗炎、免

疫调节及促进血管生成等多种药理作用。陈羡人等^[1]研究表明,人参皂苷 Rg₁可通过提高体内抗氧化酶的活性,使血清和心肌丙二醛(MDA)水平明显

基金项目:中山大学新华学院校级科研项目(No.2018KYQN008)

作者简介:刘盈,女,讲师,研究方向:临床药理、药物质量控制与分析,E-mail:YingLiu@xhsysu.cn

通信作者:周春,男,博士研究生,副教授,研究方向:抗炎免疫药理,Tel:020-87215055,E-mail:87707725@qq.com

降低,从而有效缓解糖尿病大鼠体内的氧化应激反 应。容伟等[2] 研究表明, 人参皂苷 Rg, 可抑制 MAPK/NF-κB 信号通路,发挥对缺血后的脑组织的 保护作用。此外人参皂苷 Rg₁可通过抑制 Cyte 释 放、调控凋亡蛋白 Bax、Bcl-2 的表达发挥对高脂大 鼠心肌缺血再灌注损伤的保护作用[3],也可通过 PERK-eIF2、ATF4 信号通路保护神经元免受谷氨酸 诱导的内质网应激^[4]。但目前对于人参皂苷 Rg₁的 研究大多数集中在其对心、肾、肝、大脑等组织脏器 能量代谢紊乱上[5],而关于人参皂苷 Rg1对 HaCaT 细胞抗衰老的相关研究却甚少。本文以 100 μg·mL⁻¹ H₂O₂诱导 HaCaT 细胞建立氧化应激损伤 模型,探讨人参皂苷 Rg1对 H2O2诱导的 HaCaT 细胞 氧化应激损伤的保护作用及其可能机制,为今后人 参皂苷 Rg, 在延缓皮肤衰老的研究进程中提供理论 依据。

1 材料与方法

1.1 材料

1.1.1 细胞 人角质形成细胞(HaCaT cell)细胞株购自美国 ATCC 公司

1.1.2 药品与试剂 人参皂苷 Rg_1 (纯度 > 98%) (中国药品生物制品检定所); CCK-8 试剂盒(美国 Biosharp 公司); Hochest33342 试剂(美国 Sigma 公司); 30% H_2O_2 试剂(天津市大茂化学试剂厂); DMEM 培养基(美国 Gibco 公司); 10%胎牛血清(德国 PAN Biotech 公司); PBS 粉末(博士德生物);活性氧检测试剂盒(广州碧云天生物公司); 其余试剂均为国产分析纯。

1.1.3 主要仪器设备 旋转蒸发仪(上海市贝仑仪器设备有限公司);超净工作台(青岛海尔公司);5%CO₂培养箱(美国 Thermo 公司);-80 ℃低温冰箱(美国 Thermo 公司);酶荧光多功能检测仪(美国 Biotek 公司);细胞培养板(美国 Falon 公司);荧光显微镜(日本 Olympus 公司);冷冻干燥机(日本 EYELA 公司);离心机(Beckman Coulter 公司);蛋白印迹转膜槽(美国 Bio-rad Criterion);蛋白垂直电泳槽(赛默飞公司);蛋白电泳仪(赛默飞公司);FluorChem HD2 型化学发光凝胶成像仪(赛默飞公司)。

1.2 方法

1.2.1 HaCaT 细胞培养 取适量已活化的 HaCaT 细胞原液于含 10%精制小牛血清和青霉素、链霉素 各 100 μ g·mL⁻¹的 DMEM 培养基中,于细胞培养箱 (37 $^{\circ}$ C、5% CO₂)中培育。取生长对数期的 HaCaT

细胞,以 1×10^5 个/mL 密度的细胞悬液接种于 96 孔细胞板中,每孔 200 μL,常规培养(37 ℃,5% CO_2) 24 h,备用。

1.2.2 细胞损伤实验 将 HaCaT 细胞分为空白组和损伤组,每组设 5 个平行孔。损伤组以 1×10^5 个/mL 密度的细胞悬液接种于 96 孔细胞板中,每孔 200 μ L,空白组加入相同体积培养基,培养 24 h。采用 CCK-8 法筛选 H_2O_2 浓度的分组为 25、50、100、150、200 mmol·L⁻¹每组 5 个复孔。取出事先培养好的 HaCaT 细胞,将原培养基吸出后分别加入对应体积的 0.03% H_2O_2 溶液和 DMEM 培养基使每孔体积为 200 μ L,于 37 %、5% CO_2 培养箱内培养作用 2 h。换培养基继续培养 24 h,每孔分别加入 5 μ L CCK-8 试剂作用 3 h,充分染色后用酶标仪在 450 nm 波长下检测 OD 值。细胞存活率通过以下公式计算:存活率(%)=(OD 处理/OD 空白)×100%。

1.2.3 CCK-8 染色法测定细胞存活率 将 HaCaT 细胞分为空白组、损伤组与人参皂苷 Rg_1 保护组。空白组给予完全培养基,对照组加入 H_2O_2 溶液使体系终浓度为最佳损伤浓度;人参皂苷 Rg_1 保护组分为 3 个浓度计量组:5、10、15 mg·L⁻¹。先按浓度加入人参皂苷 Rg_1 预处理 2 h,再加入最佳浓度的 H_2O_2 溶液作用 2 h 进行氧化损伤。换培养基终止反应后再在 37 °C、5% CO_2 培养箱中培育 24 h,每孔分别加入 5 μ L CCK-8 试剂作用 3 h,充分染色后用酶标仪在 450 nm 波长下检测 OD 值。计算每孔中细胞存活率。

1.2.4 Hochest 染色观察细胞凋亡 将 HaCaT 细胞分为空白组、损伤组与人参皂苷 Rg_1 保护组(15 $mg \cdot L^{-1}$)。24 孔板中的细胞经预处理及培养后,使用 PBS 缓冲液反复清洗 3 次,加入 Hochest33342 荧光试剂,染色 30 min。使用光学显微镜观察 HaCaT 细胞形态变化及凋亡情况。

1.2.5 活性氧检测试剂盒(ROS Assay Kit)测定细胞 ROS 水平 将 HaCaT 细胞分为空白组、损伤组与人参皂苷 Rg_1 保护组,每组设 5 个平行孔,将 HaCaT 细胞接种到 6 孔细胞培养板中,每孔 5 mL,接种密度为每孔 1×10^5 个细胞,培养 24 h。 人参皂苷 Rg_1 保护组加入 5、10、15 mg· L^{-1} 的人参皂苷 Rg_1 保护组加入 5、10、15 mg· L^{-1} 的人参皂苷 Rg_1 保护组加入 5、10、15 mg· L^{-1} 的人参皂苷 Rg_1 保护组加入 5、100、15 mg· 100

光共聚焦显微镜下检测荧光强度,激发波长 488 nm,发射波长 525 nm。以各组细胞荧光强度代表 ROS 水平。

1.2.6 Western blot 检测增殖凋亡相关标志蛋白将 HaCaT 细胞分为空白组、损伤组与人参皂苷 Rg_1 保护组。每组设 5 个平行孔,将 HaCaT 细胞接种到 6 孔细胞培养板中,每孔 5 mL,接种密度为每孔 1×10^5 个细胞,培养 24 h。人参皂苷 Rg_1 保护组加入 5、10、15 mg · L^{-1} 的人参皂苷,每孔 250 μ L,空白组和损伤组补充相同体积的 DMEM 空白培养基,孵育 3 h。损伤组与人参皂苷 Rg_1 保护组加入损伤浓度的 H_2O_2 ,每孔 250 μ L,孵育 2 h,孵育结束后移除培养基,PBS 缓冲液清洗 2 次,结束后,提取细胞总蛋白,Western blot 检测 caspase—3、caspase—6、caspase—8、GAPDH 增殖凋亡相关标志蛋白的表达及磷酸化水平。

1.2.7 统计学分析 统计学分析均采用统计学分析软件 SPSS 15.0 进行分析。各组细胞存活率、ROS 水平和 SOD 活性均符合正态分布,以 $(\bar{x}\pm s)$ 表示,多组间样本均数比较采用单因素方差分析,组间两两比较采用 SNK-q 检验。以 P<0.05 为差异有统计学意义。

2 结果

2.1 H_2O_2 损伤后 HaCaT 细胞存活率 与空白组比较,25、50、100、150、200 $mmol \cdot L^{-1}$ 的 H_2O_2 损伤处理 HaCaT 细胞后,各组 HaCaT 细胞存活率均有下降(P<0.05)。在 H_2O_2 浓度为 100 $mmol \cdot L^{-1}$ 时,细胞损伤率达 50%左右,作为后续实验损伤组中 H_2O_2 的加入量(见图 1)。

图 1 不同浓度 H_2O_2 损伤后 HaCaT 细胞存活率

2.2 人参皂苷 Rg₁ 预处理后各组 HaCaT 细胞存活率 与空白组比较,H₂O₂损伤组 HaCaT 细胞存活率

明显降低,与 H_2O_2 损伤组比较,5、10、 $15 mg \cdot L^{-1}$ 的人参皂苷 Rg_1 保护组 HaCaT 细胞存活率明显升高, 10、 $15 mg \cdot L^{-1}$ 人参皂苷 Rg_1 保护组中 HaCaT 细胞存活率升高最为明显,具有统计学差异(P<0.05),表明人参皂苷 Rg_1 对 H_2O_2 氧化损伤后的 HaCaT 细胞增殖有一定的作用(见图 2)。

图 2 人参皂苷 Rg₁预处理后各组 HaCaT 细胞存活率

2.3 人参皂苷 Rg_1 预处理后各组 HaCaT 细胞凋亡情况 与空白组比较, H_2O_2 损伤组细胞呈亮蓝色, 出现细胞核皱缩, 染色质聚集的现象, 凋亡细胞数量明显增多, 与 H_2O_2 损伤组比较, 5、15 和 15 mg· L^{-1} 人参皂苷 Rg_1 保护组细胞凋亡数量明显减少, 表明人参皂苷 Rg_1 对氧化损伤后的 HaCaT 细胞凋亡有一定的抑制作用(见图 3)。

图 3 人参皂苷 Rg₁预处理后各组 HaCaT 细胞凋亡情况

- 2.4 人参皂苷 Rg_1 处理后各组 HaCaT 细胞 ROS 水平 与空白组比较, H_2O_2 损伤组细胞中 ROS 水平升高, 与 H_2O_2 损伤组比较, 5、15 和 15 mg · L^{-1} 人参皂苷 Rg_1 保护组细胞中 ROS 水平均有所降低, 表明人参皂苷 Rg_1 在一定程度上可降低细胞中 ROS 水平(见图 4)。
- 2.5 Western blot 检测增殖凋亡相关标志蛋白 与空白组比较, H_2O_2 损伤组细胞中 caspase-3、caspase-6、caspase-8 水平均有所升高,与 H_2O_2 损伤组比较,5、15 和 15 mg · L^{-1} 人参皂苷 Rg_1 保护组细胞中 caspase-3、caspase-6、caspase-8 水平均有所降低,表明人参皂苷 Rg_1 在一定程度上可降低细胞凋亡相关标志蛋白的表达(见图 5)。

图 4 人参皂苷 Rg₁处理后各组 HaCaT 细胞 ROS 水平

图 5 Western blot 检测增殖凋亡相关标志蛋白

3 讨论

ROS 被认为是造成机体氧化应激的主要原因,包括氧自由基和非自由基的含氧产物,如羟自由基 (-OH)、超氧阴离子 (O^{2-}) 、脂质过氧化物(ROO-、RO-与 ROOH) 及过氧化氢 (H_2O_2) 等^[6]。大量的 ROS 超出了机体清除能力,破坏了机体正常的氧化/还原平衡状态,造成蛋白质、脂质、核酸等生物大分子物质氧化损伤和功能紊乱,从而影响机体正常代谢。本研究发现,与 H_2O_2 损伤组比较,5、15 和 15 mg·L⁻¹的人参皂苷 Rg₁ 保护组中 HaCaT 细胞中 ROS 含量呈浓度依赖性降低,表明人参皂苷 Rg₁可通过抑制 ROS 产生和累积从而抑制细胞氧化应激损伤,提高细胞活力,维持正常细胞形态。

半胱氨酸天冬氨酸蛋白酶(caspase)是一类半胱 氨酸天冬氨酸特异性蛋白酶族,是执行细胞凋亡的关 键信号途径^[7]。在正常的细胞内,caspase 家族以非 酶活性前体存在,经由细胞内外多种促凋亡的信号激 活,进而介导凋亡。其可分为两大类,一类是起始触 发蛋白 caspase-2、caspase-8、caspase-9、caspase-10, 另一类是效应执行蛋白 caspase-3、caspase-6、caspase -7。起始触发 caspase 在外来蛋白信号的作用下被切 割激活,激活的起始 caspase 对效应执行 caspase 进行 切割并使之激活,被激活的效应执行 caspase 通过对 caspase 靶蛋白的水解,导致程序性细胞死亡[8]。 caspase-3 是凋亡最直接的执行者, caspase-8 位于 caspase-3的上游,构成级联激活^[9]。在本研究中,与 H₂O₂损伤组比较,5、15 和 15 mg·L⁻¹人参皂苷 Rg₁保 护组中, HaCaT细胞中 caspase-3、caspase-6、caspase-8蛋白水平均有所降低,表明人参皂苷 Rg,在一定程 度上可降低细胞凋亡相关标志蛋白的表达。此外, caspase-8 和 caspase-3 的水平变化一致,提示二者可 能存在级联反应, caspase-8 对 caspase-3 有一定程度 的激活作用。

本研究采用 $100~\mu g \cdot m L^{-1}$ 的 H_2O_2 诱导细胞,建立氧化应激损伤模型,发现人参皂苷 Rg_1 可显著提高 H_2O_2 诱导氧化损伤的 HaCaT 细胞存活率,缓解细胞核的损伤状态,减少凋亡细胞数量,同时有效降低 HaCaT 细胞内 ROS 水平, Western blot 检测结果显示人参皂苷 Rg_1 一定程度上可降低细胞凋亡相关标志蛋白 caspase-3 caspase-6 caspase-8 水平,综上所述,人参皂苷 Rg_1 对 H_2O_2 诱导的 HaCaT 细胞氧化应激损伤具有一定的保护作用,其机制可能与增强细胞清除自由基能力及抑制凋亡相关。

参考文献:

- [1] 陈羡人,高雅文,邓小梅.人参皂苷 Rg1 对糖尿病大鼠 肝损伤、氧化应激及肝组织 Toll 样受体 4 表达的影响 [J].中国临床药理学杂志,2020,36(2):146-149.
- [2] 容伟,熊静,伍新田,等.人参皂苷 Rg1 对缺血性脑卒中大鼠的保护作用及其机制研究[J].中国临床药理学杂志,2020,36(14):2021-2024.
- [3] 赵宏月,张东伟,庞琳琳,等.黄芪甲苷及人参皂苷 Rg1 对高脂大鼠心肌缺血再灌注损伤后心肌细胞凋亡的影响[J].辽宁中医杂志,2021,48(2):188-191.
- [4] GU Y, REN K, WANG L, et al. Rg1 in combination with mannitol protects neurons against glutamate-induced ER stress via the PERK-eIF2 α-ATF4 signaling pathway [J]. Life Sciences, 2020(263):118559.
- [5] 姜彤伟,田治宇,闻乃妍,等.人参皂苷干预重要脏器能量代谢紊乱的研究进展[J].中华中医药学刊,2021,39 (5):5-8.

(下转第152页)

4 讨论

蔗糖中存在的颗粒杂质粒径约为 80~300 nm 之间,这部分颗粒有可能激活补体系统,存在免疫应答风险造成用药安全隐患。为减少其中的纳米颗粒杂质,生产者可通过使用小孔径过滤器(例如 0.02 μm)过滤除去纳米颗粒杂质,也可改进生产工艺并制定相关的内控标准,对高风险给药途径用的蔗糖中纳米颗粒杂质进行合理控制。

参考文献:

- [1] DAOU C A Z, NATOUT M A, HADI NE. Biphasic anaphylaxis after exposure to the first dose of pfizer-biontech covid-19 mrna vaccine [J]. J Med Virol 2021, 93 (10): 6027-6029.
- [2] LEVEN T, VAN W T, VANDEBOTERMET M, et al. Tolerability of polysorbate 8o-containing COVID-19 vaccines in confirmed polyethylene glycol-allergic patients [J]. J Allergy Clin Immunol Prac, 2021, 9(12):4470-4472.
- [3] SELVARAJ G, KALIAMURTHI S, PESLHERBE G H, et al. Are the Allergic reactions of COVID – 19 vaccines caused by mRNA constructs or nanocarriers? Immunological Insights [J]. Interdiscip Sci, 2021, 13(2): 344–347.
- [4] SATISH K S, NATALIYA A, MICHEL A, et al. An industry perspective on the monitoring of subvisible particles as a quality attribute for protein therapeutics [J]. J Pharm Sci, 2010,99(8):3302-3321.
- [5] CHISHOLM C F, BEHNKE W, POKHILCHUK Y, et al.

- Subvisible particles in IVIg formulations activate complement in human serum sciencedirect [J]. J Pharm Sci, 2020, 109(1);558-565.
- [6] SZEBENI J, ALVING C R, MUGGIA F M. Complement activation by cremophor EL as a possible contributor to hypersensitivity to paclitaxel; an in vitro study [J]. J Natl Cancer Inst, 1998, 90(4):300-306.
- [7] DANIEL W, JASON K C, JURGEN K, et al. Nanoparticulate Impurities in Pharmaceutical—Grade Sugars and their Interference with Light Scattering—Based Analysis of Protein Formulations [J]. Pharm Res, 2015, 32(7):2419–2427.
- [8] 国家药典委员会.中华人民共和国药典 2020 年版(四部)[S].北京:中国医药科技出版社,2020:179-181.
- [9] CARPENTER J F, RANDOLPH T W, JISKOOT W, et al. Overlooking subvisible particles in therapeutic protein products: gaps that may compromise product quality [J]. J Pharm Sci, 2009, 98(4): 1201-1205.
- [10] SZEBENIT J, JISKOOT W. Handbook of nanobiomedical research: fundamentals, applications and recent developments[M]. New Jersey: World Scientific Publishing Co., 2014:45-73.
- [11] MOGHIMI S M, SIMBERG D, Complement activation turnover on surfaces of nanoparticles [J]. Nano Today, 2017,8(15):8-10.
- [12] SZEBENI J, STORM G, Complement activation as a bioequivalence issue relevant to the development of generic liposomes and other nanoparticulate drugs [J]. Biochem Biophys Res Commun, 2015, 468(3):490-497.

(上接第148页)

- [6] 张立秋,李成华,姜丽,等.衰老假说与活性氧研究[J]. 生理科学进展,2020,51(5):327-331.
- [7] VAN OPDENBOSCH N, LAMKANFI M Caspases in Cell Death, Inflammation, and Disease [J]. Immunity, 2019, 50
 (6):1352-1364.
- [8] RIEDL S J, SALVESEN G S. Caspase mechanisms [J]. Adv Exp Med Biol, 2008 (615):13-23.
- [9] KRUIDERING M, EVAN G I. Caspase 8 in apoptosis: the beginning of "the end"? [J]. IUBMB Life, 2000, 50 (2):85–90.