

Bridging Research Endeavour in Computer and Mathematical Sciences

For more information, please visit http://www.icms2015.org

Organized by

FACULTY OF COMPUTER & MATHEMATICAL SCIENCES UITM KEDAH

Jointly organized by

: RESEARCH & INDUSTRIAL LINKAGES

4th - 5th November 2015

Langkawi Island, MALAYSIA

PRE-CONFERENCE WORKSHOP
"INTRODUCTION TO R AND DATA VISUALIZATION"

Ciprian Alexandru

R-omania Team | www.r-project.ro

Presentation

□ The R platform provides a powerful and comprehensive platform for visualizing data, understanding and evaluating statistical models, and effectively communicating research results to both technical and nontechnical audiences. This 2 days workshop will provide <u>practical review</u> of R's major graphing capabilities; including base functionality and new capabilities provided by the lattice and ggplot2 packages.

Date & Location

- □ Date: 2 3 November 2015
- □ Time: 9 am 5 pm
- Venue: Melur 1, Langkawi Lagoon, Langkawi Island, MALAYSIA

Who should attend?

- R is widely used within the academia especially in the fields of computational biology, applied science, quantitative finance and business intelligence. R is capable of solving challenging problems and among the strengths of R are its powerful built-in tools for inferential statistics, its compact modeling syntax, and its data visualization capabilities. In addition, R's open source nature and its extensibility via add-on "packages" has allowed it to keep up with the leading edge in academic research. This workshop on R and Data Visualization is suitable and relevant for:
- Lecturers, Researchers, Engineers, Students, Industry Professionals and Scientists of any discipline who wish to explore R. Prior experience with R is not required. Interested to join??? Please register here.

Speakers

Antoniade-Ciprian Alexandru is an Associate Professor at the Ecological University of Bucharest and the dean of the Faculty of Economics. He is also attached with the National Institute of Statistics, Bucharest as an expert trainer in data analyst using R environment. Dr Alexandru is one of the six members of the R-omania team, a team that promotes R projects for statistical computing by providing a free and open source software environment for data analysis and graphics. The team acts as a user community for development of R projects among individuals, institutions, commercial entities and non-profit organizations. Dr Alexandru participated in various research projects, workshops, and, national and international conferences. His research works were published in various international databases. Currently, he is working on a project that implements the use of R as a tool for analyzing the evolution of indices on the stock market.

Nicoleta Caragea is an Associate Professor at the Faculty of Economics, Ecological University of Bucharest and a senior expert at the National Institute of Statistics, Her teaching activity is focused mainly in the field of statistics, through courses and seminars and master degree programs (statistics, economic statistics, social statistics, economic and financial analysis). Dr Caragea participated as a national expert in various projects, workshops and conferences organized by EUROSTAT, OECD, WHO, World Bank and UNICEF-UIS. She is one of the other six members of the R-omania team, a team that promotes R projects for statistical computing by providing a free and open source software environment for data analysis and graphics. She also acted as a consultant in projects in Europe. Her latest work was as a technical assistance to a consultancy work in Turkey.

Course Outline 1/2

- Introduction to R Statistical Software
 - The beginning of R
 - R Introducing the R Console
 - R Installation, Packages, CRAN, Components
 - Graphical User Interfaces: R Console, R Studio, R Commander, R resources and online community
- Databases
 - Data manipulation
 - Queries
 - Using SQL within R
 - Data aggregation
 - Matching

Course Outline 2/2

- Data Visualization & Graphics Environments
 - Base graphics (Scatterplot, Box-and-whiskers plot, Histogram)
 - Lattice
 - ggplot2
 - Interactive graphics in R
 - Reproducibility
- □ Regression Analysis with R
 - Linear regression models
 - OLS-ordinary least squares method for estimating the unknown parameters in a linear regression model
 - Interpreting the regression coefficients
 - Extensions to generalized linear models. Logistic regression
 - Parameter estimates maximum likelihood method
 - Definition of the odds and odds ratio
 - Evaluating goodness of fit

Data Visualization & Graphics Environments

- Base graphics (Scatterplot, Box-and-whiskers plot, Histogram)
- Lattice
- □ ggplot2
- □ Interactive graphics in R
- □ Reproducibility

Before we start

Producing Data Exploratory population Data Analysis 3 Probability Inference http://frewin.weebly.com/ap-statistics-unit-1.html

Source:

exploratory graphs ~ final graphs

Base graphics

- density plots (histograms and kernel density plots)
- dot plots
- bar charts (simple, stacked, grouped)
- line charts
- pie charts (simple, annotated, 3D)
- boxplots (simple, notched, violin plots, bagplots)
- scatter plots (simple, with fit lines, scatterplot matrices, high density plots, and 3D plots)

Base graphics – quick example

12

- □ plot()
- □ abline()
- □ text()

```
> plot(mtcars$wt, mtcars$mpg)
```

- > abline(lm(mtcars\$mpg~mtcars\$wt))
- > title("Regression of MPG per Weight")
- > boxplot(mtcars\$wt, col = "blue")

Saving Graphs

Function	Output to
pdf("mygraph.pdf")	pdf file
win.metafile("mygraph.wmf")	windows metafile
png("mygraph.png")	png file
<pre>ipeg("mygraph.jpg")</pre>	jpeg file
bmp("mygraph.bmp")	bmp file
postscript("mygraph.ps")	postscript file

dev.off() - closing the device

Set or Query Graphical Parameters

- par(tag = value, tag = value, ...)
- most used tags:
 - bg, fg
 - cex, cex.axis, cex.lab, cex.main, cex.sub
 - col, col.axis, col.lab, col.main, col.sub,
 - mar
 - mfrow, mfcol

```
> par("col.lab")
"black"
> par("col.lab" = "red")
> save_gpar <- par()
> save(save_gpar, "my_gpar.RData")
> rm(save_gpar)
> load("my_gpar.RData")
> par(save_gpar)
> par(save_gpar)
> par("col.lab")
"red"
```

Text and Symbol Size

tag	description
cex	number indicating the amount by which plotting text and symbols should be scaled relative to the default. 1=default, 1.5 is 50% larger, 0.5 is 50% smaller, etc.
cex.axis	magnification of axis annotation relative to cex
cex.lab	magnification of x and y labels relative to cex
cex.main	magnification of titles relative to cex
cex.sub	magnification of subtitles relative to cex

Plotting Symbols

16

- \Box pch = option
- □ symbols 21 25:
 - border color (col=)
 - fill color (bg=)

17

```
□ Ity = option
```

Line Types: Ity=

□ Iwd: line width (default 1)

Colors

□ col=1, col="white", col="#FFFFFF"

tag	description
col	Default plotting color. Some functions (e.g. lines) accept a vector of values that are recycled.
col.axis	color for axis annotation
col.lab	color for x and y labels
col.main	color for titles
col.sub	color for subtitles
fg	plot foreground color (axes, boxes - also sets col= to same)
bg	plot background color

Fonts

- Map your font mapping
- windowsFonts(A=windowsFont("Arial Black"))
- text(4,4,family="A","Hello World from Arial Black")

tag	description
font	Integer specifying font to use for text. 1=plain, 2=bold, 3=italic, 4=bold italic, 5=symbol
font.axis	font for axis annotation
font.lab	font for x and y labels
font.main	font for titles
font.sub	font for subtitles
ps	font point size (roughly 1/72 inch) text size=ps*cex
family	font family for drawing text. Standard values are "serif", "sans", "mono", "symbol". Mapping is device dependent.

Histograms – default parameters

hist(mtcars\$mpg)

Histograms – custom parameters

hist(mtcars\$mpg, breaks=12, col="blue")

histograms and a normal curve

kernel density plots

24

```
> den <- density(mtcars$mpg)</pre>
```

> plot(den)

> polygon(d, col="blue", border="black")

density.default(x = mtcars\$mpg)

kernel density – comparing groups – {sm} package

```
# Compare MPG distributions for cars with
# 4,6, or 8 cylinders
install.packages("sm")
library(sm)
# create value labels
cyl.f <- factor(mtcars$cyl, levels = c(4,6,8),
                labels = paste(c(4, 6, 8), "cylinder"))
# labels = c("4 cylinder", "6 cylinder", "8 cylinder"))
# plot densities
sm.density.compare(mtcars$mpq, mtcars$cyl, xlab = "Miles Per Gallon")
title(main = "MPG Distribution by Car Cylinders")
# add legend via mouse click
colfill <- c(2:(2+length(levels(cyl.f))))</pre>
legend(locator(1), levels(cvl.f), fill=colfill)
```

MPG Distribution by Car Cylinders 4 cylinder 6 cylinder 8 cylinder 5 10 15 20 25 30 35 40 Miles Per Gallon

Source: http://www.statmethods.net/graphs/density.html

dot plots - dotchart(x, labels=)

26

Gas Milage for Car Models


```
27
```


Source: http://www.statmethods.net/graphs/density.html

bar charts

28

bar charts

29

```
> counts <- table(mtcars$gear)
> par(mfrow=c(1,2))
> barplot(counts, main="Car Distribution", xlab="Number of Gears")
> barplot(counts, main="Car Distribution", horiz=TRUE, names.arg=c("3 Gears", "4 Gears", "5 Gears"))
```


stacked bar plot vs. grouped bar plot

30

Car Distribution by Gears and VS

Car Distribution by Gears and VS

Source: http://www.statmethods.net/graphs/bar.html

line charts – without points

```
> x <- y <- 1:5
> par(pch=22, col="darkblue")
> par(mfrow=c(2,4))
> types = c("p","l","o","b","c","s","S","h")
> for(i in 1:length(types)){
        heading = paste("type=", types[i])
        plot(x, y, type="n", main=heading)
        lines(x, y, type=types[i])
}
```

type	description
р	points
I	lines
0	overplotted points and lines
b, c	points (empty if "c") joined by lines
s, S	stair steps
h	histogram-like vertical lines
n	does not produce any points or lines

Source: http://www.statmethods.net/graphs/line.html

line charts – with points

```
> x <- y <- 1:5
> par(pch=22, col="darkblue")
> par(mfrow=c(2,4))
> types = c("p","l","o","b","c","s","S","h")
> for(i in 1:length(types)) {
        heading = paste("type=", types[i])
        plot(x, y, type="n", main=heading)
        lines(x, y, type=types[i])
}
```


pie charts

```
> slices <- c(10, 12, 4, 16, 8)
> lbls <- c("US", "UK", "Australia", "Germany", "France")</pre>
> par(mfrow=c(1,3))
                                                                            Pie Chart of Countries
                                                                                                      Pie Chart of Countries
> pie(slices, labels = lbls, main="Pie Chart of Countries")
                                                                                                                              Pie Chart of Countries
> lblsp <- paste(lbls,
                                                                                                                               UK
                                                                                                                 US 20 20%
       paste(round(slices/sum(slices)*100),"%", sep=""))
                                                                        Australia -
                                                                                               Australia 8 8%
> pie(slices, labels = lblsp, col=rainbow(length(lblsp)),
                                                                                                                  France 16 16%
       main="Pie Chart of Countries")
                                                                                                                           Germany
                                                                                                  Germany 32 32%
# 3D Pie Chart
> install.packages("plotrix")
> library(plotrix)
> pie3D(slices, labels=lbls, explode=0.1,
      main="Pie Chart of Countries ")
```

boxplots

34

6 cyl

8 cyl

Violin Plots of Miles Per Gallon

4 cyl

5

9

bagplot

37

Source: http://www.statmethods.net/graphs/boxplot.html

scatter plots

38

Scatterplot Example

scatter plots + fit lines

- > par(mfrow=c(1,2))
- > plot(mtcars\$wt, mtcars\$mpg, main="Scatterplot Example", xlab="Car Weight ", ylab="Miles Per Gallon ", pch=19)
- > abline(lm(mtcars\$mpg~mtcars\$wt), col="red")
- > lines(lowess(mtcars\$wt, mtcars\$mpg), col="blue")

scatterplot() - {car} package


```
> pairs(~mpg+disp+drat+wt,data=mtcars,
    main="Simple Scatterplot Matrix")
```

Simple Scatterplot Matrix

scatterplot matrices – {car} package

42

- > library(car)

Three Cylinder Options

high density scatterplots - {hexbin} package

43

```
> install.packages("hexbin")
> library(hexbin)
> x <- rnorm(1000)
> y <- rnorm(1000)
> bin <- hexbin(x, y, xbins=50)
> plot(bin, main="Hexagonal Binning")
```

Hexagonal Binning

Source: http://www.statmethods.net/graphs/scatterplot.html

```
> install.packages("scatterplot3d")
> attach(mtcars)
> s3d <-scatterplot3d(wt,disp,mpg, pch=16, highlight.3d=TRUE,
         type="h", main="3D Scatterplot")
                                                                               3D Scatterplot
> fit <- lm(mpg ~ wt+disp)</pre>
> s3d$plane3d(fit)
                                                32
                                                8
                                                22
                                           mpg
                                                8
                                                Ŕ
                                                9
                                                                        wt
```

- > install.packages("scatterplot3d")
- > library(scatterplot3d); par(mfrow=c(1,2))
- > scatterplot3d(mtcars\$wt, mtcars\$disp, mtcars\$mpg, main="3D Scatterplot")
- > scatterplot3d(mtcars\$wt, mtcars\$disp, mtcars\$mpg, pch=16, highlight.3d=TRUE, type="h", main="3D Scatterplot")

Data Visualization & Graphics Environments

- Base graphics (Scatterplot, Box-and-whiskers plot, Histogram)
- Lattice
- □ ggplot2
- □ Interactive graphics in R
- □ Reproducibility

- written by Deepayan Sarkar
- improve on base R graphics
- provide better defaults
- enhance the ability to easily display multivariate relationships
- graph_type(formula, data=)

! complex functions require well understanding

Image source: http://businesslife.ba.com /News-and-Blogs/Chris-Barez-Brown/How-tohave-a-great-idea.html

Lattice - graph type

- ~x display numeric variable x only
- □ y~x | A*B display the relationship between numeric variables y and x separately for every combination of factor A and B levels

	graph_type	description	formula examples
	barchart	bar chart	x~A or A~x
	bwplot	boxplot	x~A or A~x
\	cloud	3D scatterplot	z~x*y A
	contourplot	3D contour plot	z~x*y
	densityplot	kernal density plot	~x A*B
	dotplot	dotplot	~x A
	histogram	histogram	~x
	levelplot	3D level plot	z∼y*x
	parallel	parallel coordinates plot	data frame
	splom	scatterplot matrix	data frame
	stripplot	strip plots	A~x or x~A
	xyplot	scatterplot	y~x A
	wireframe	3D wireframe graph	z~y*x

- > install.packages("scatterplot3d")
- > library(scatterplot3d); par(mfrow=c(1,2))
- > scatterplot3d(mtcars\$wt, mtcars\$disp, mtcars\$mpg, main="3D Scatterplot")
- > scatterplot3d(mtcars\$wt, mtcars\$disp, mtcars\$mpg, pch=16, highlight.3d=TRUE, type="h", main="3D Scatterplot")

Source: http://www.statmethods.net/advgraphs/trellis.html

kernel density plots by factor level

51

Density Plot by Number of Cylinders


```
52
```

Density Plot by Numer of Cylinders

bwplot()

53

Mileage by Cylinders and Gears


```
> xyplot(mpg~wt|cyl.f*gear.f,
    main = "Scatterplots by Cylinders and Gears",
    ylab = "Miles per Gallon", xlab = "Car Weight")
```

Scatterplots by Cylinders and Gears

cloud()

55

```
> cloud(mpg~wt*qsec|cyl.f,
    main = "3D Scatterplot by Cylinders")
```

3D Scatterplot by Cylinders

dotplot()

56

Dotplot Plot by Number of Gears and Cylinders


```
> splom(mtcars[c(1,3,4,5,6)],
    main = "MTCARS Data")
```

MTCARS Data


```
> attach(mtcars)
> hp <- cut(hp,3)
> xyplot(mpg ~ wt|hp, scales = list(cex=.8, col="red"),
       xlab = "Weight", ylab = "Miles per Gallon",
                                                                                     MGP vs Weight by Horse Power
       main = "MGP vs Weight by Horse Power")
                                                                        (51.7.146)
                                                                                                     (146,241)
                                                                                                                                  (241.335)
                                                           35
                                                           30
                                                       Miles per Gallon
                                                           15
                                                                                                                    00
                                                           10
                                                                                                      Weight
```

Data Visualization & Graphics Environments

- □ Base graphics (Scatterplot, Box-and-whiskers plot, Histogram)
- Lattice
- □ ggplot2
- □ Interactive graphics in R
- □ Reproducibility

- created by Hadley Wickham
- represent both univariate and multivariate numerical and categorical data
- grouping can be represented by color, symbol, size, and transparency
- qplot(x, y, data=, color=, shape=, size=, alpha=, geom=, method=, formula=, facets=, xlim=, ylim= xlab=, ylab=, main=, sub=)

Customizing ggplot2 Graphs

Customizing ggplot2 Graphs

62

White background and black grid lines
> p + theme bw()

Scatterplots of MPG vs. Horsepower

> library(ggplot2)

"5gears"))

Kernel density plots

64

```
> mtcars$am <- factor(mtcars$am, levels = c(0, 1), labels = c("Automatic", "Manual"))</pre>
> mtcars$cyl <- factor(mtcars$cyl, levels = c(4, 6, 8), labels = c("4cyl", "6cyl", "8cyl"))
                                                                              Distribution of Gas Milage
                                                         0.12 -
> gplot(mpg, data=mtcars, geom="density",
      fill=gear, alpha=I(.5),
      main = "Distribution of Gas Milage",
                                                         0.09 -
      xlab = "Miles Per Gallon",
                                                       Density
      vlab = "Density")
                                                                                                                         3gears
                                                                                                                         4gears
                                                                                                                         5gears
                                                         0.03
                                                         0.00 -
                                                             10
                                                                        15
                                                                                                         30
                                                                                   Miles Per Gallon
```

> mtcars\$gear <- factor(mtcars\$gear, levels = c(3,4,5), labels = c("3gears", "4gears",

Scatterplot

```
> qplot(hp, mpg, data = mtcars, shape = am, color = am,
facets = gear~cyl, size = I(3),
xlab = "Horsepower", ylab = "Miles per Gallon")
```


Regressions

```
> qplot(wt, mpg, data = mtcars, geom = c("point", "smooth"),
    method = "lm", formula = y~x, color = cyl,
    main = "Regression of MPG on Weight",
    xlab = "Weight", ylab = "Miles per Gallon")
```


Boxplot

```
> qplot(gear, mpg, data = mtcars, geom = c("boxplot", "jitter"),
    fill = gear, main = "Mileage by Gear Number",
    xlab = "", ylab = "Miles per Gallon")
```


Data Visualization & Graphics Environments

- □ Base graphics (Scatterplot, Box-and-whiskers plot, Histogram)
- Lattice
- □ ggplot2
- □ Interactive graphics in R
- □ Reproducibility

Interactive graphics in R

69

□ hrsrrr

Data Visualization & Graphics Environments

- □ Base graphics (Scatterplot, Box-and-whiskers plot, Histogram)
- Lattice
- □ ggplot2
- □ Interactive graphics in R
- Reproducibility

□ <u>Presentation</u> from KeyNote speaker

Graphics – useful links

- □ GAR Google Analytics Data [http://www.r-bloggers.com/query-your-google-analytics-data-with-the-gar-package/]
- Create interactive Powerpoint slides [http://www.r-bloggers.com/programmatically-create-interactive-powerpoint-slides-with-r/]
- How to Change the Reference Map in Choroplethr [http://www.r-bloggers.com/how-to-change-the-reference-map-in-choroplethr/]
- □ Plotting regression curves with confidence intervals for LM, GLM and GLMM in R [http://www.r-bloggers.com/plotting-regression-curves-with-confidence-intervals-for-lm-glm-and-glmm-in-r/]

Ciprian Alexandru alexcipro@yahoo.com