18.781 PROBLEM SET 1

JOHN WANG

1. Problem 1

Problem 1.1. Let a > 0 and b be integers. Show that there is an integer k such that b + ka > 0.

Solution Let us examine the set $S = \{b + ka | b + ka > 0; a, b \in \mathbb{Z}; a > 0\}$. This set is nonempty because if $b \geq 0$, then we can simply take k = 1 and b + ka > 0. Otherwise, if b < 0, then there exists some k such that b + ka > 0. This is because b = qa + r < (q + 1)a for some $q \in \mathbb{Z}$ and $0 \leq r < a$. Thus, simply take k = q + 1 and we see that b + ka > 0. Thus, the set S is nonempty and one can use the well ordering principle to select the smallest element from the set. This shows the existence of an integer k for which k + ka > 0. k = 1

2. Problem 2

Problem 2.1. Let a and b be positive integers whose gcd is 1. Find the largest positive integer n(a,b) which is not a non-negative integer linear combination of a and b.

Solution Let us examine the sets $S = \{ax + by | 0 \le x < b; y \ge 0\}$ and $U = \{ax + by | ax + by > 0; 0 \le x < b; y < 0\}$. One can see that the set S contains all the integers which can be expressed as a non-negative linear combination of a and b. Also, the set U spans the positive integers which can be expressed as negative linear combinations of a and b. It is clear that the largest positive integer n which cannot be expressed as a non-negative integer linear combination of a and b is the maximum element in U.

Therefore, we must first show that U is nonempty and invoke the well ordering principle to select the maximum. First, we can assume without loss of generality that a > b because (a, b) = 1. Then, we can simply choose y = -1 and we see that $ax - b \in U$. Since $0 \le x < b$, we see that $x \ge 1$ which means that ax - b > 0 and is therefore in U. Because the set is nonempty, we can select its maximum.

In fact, the maximum is when x = b - 1 and y = -1 because both $x, y \in \mathbb{Z}$. Therefore, we see that the maximum positive integer which cannot be represented as a non-negative linear combination of a and b is:

$$a(b-1) + b(-1) = a(b-1) - b$$

$$= ab - a - b$$
(2.1)

Therefore, we have found that n = ab - a - b. \square

3. Problem 3

Problem 3.1. Let a > 1 be a positive integer and m, n be natural numbers. Show that $a^m - 1|a^n - 1$ if and only if m|n.

Solution First we shall assume m|n and show that $a^m - 1|a^n - 1$. Since m|n, we see that n = dm for some $d \in \mathbb{Z}$. Therefore, we have $a^n - 1 = a^{md} - 1$. Moreover, we can factor $a^{md} - 1$ into the following:

$$(3.1) a^{md} - 1 = a^{md} - 1 + (a^{m(d-1)} - a^{m(d-1)} + \ldots + a^m - a^m)$$

$$= (a^m - 1)(a^{m(d-1)} + a^{m(d-2)} + \dots + a^m + 1)$$

But this implies that $a^m - 1$ is a factor of $a^{md} - 1$ and therefore that $a^m - 1 | a^{md} - 1 = a^n - 1$.

Now we shall assume $a^m - 1|a^n - 1$ and prove that m|n. First, we note that if $a^m - 1|a^n - 1$, then $a^m - 1|a^n - 1 - (a^m - 1)$. Therefore, we see that:

$$(3.3) a^m - 1 | a^n - a^m$$

(3.4)
$$a^m - 1 \mid a^m (a^{n-m} - 1)$$

2 JOHN WANG

Since we assumed that a > 1, we see that $(a^m - 1, a^m) = 1$. Therefore, we know that $a^m - 1 \nmid a^m$ so we can write:

$$(3.5) a^m - 1 | a^{n-m} - 1$$

$$(3.6) a^m - 1 | a^{n-m} - 1 - (a^m - 1)$$

$$(3.7) a^m - 1 \mid a^{n-m} - a^m$$

$$(3.8) a^m - 1 | a^m (a^{n-2m} - 1)$$

By the same argument as above that $(a^m-1,a^m)=1$, we see that $a^m-1|a^{n-2m}-1$. If we iterative this argument, we see that this will eventually terminate because the exponent is strictly decreasing. Therefore, there will be some $d \in \mathbb{N}$ at which we terminate and for which $a^m-1|a^{n-dm}-1$. But we see that this terminates exactly when n-dm=m. Therefore, we see that n=m(d+1) for some d>0. Thus, we see that m|n. \square

Problem 3.2. Show that $(a^m - 1, a^n - 1) = a^{(m,n)} - 1$.

Solution We will use the same proof structure as above. We know that (a,b) = (a,b-a) if b > a. We assume WLOG that n > m so that $(a^m - 1, a^n - 1) = (a^m - 1, a^n - a^m)$. This means we have:

$$(3.9) (am - 1, an - 1) = (am - 1, am(an-m - 1))$$

$$(3.10) = (a^m - 1, a^{n-m} - 1)$$

By the same argument as before, namely that since a > 1, then $(a^m - 1, a^m) = 1$ so that $a^m - 1 \nmid a^m$. Iterating this process is simply the Euclidean algorithm on the exponents, which means that we will eventually reach $a^{(m,n)} - 1$. \square

4. Problem 4

Problem 4.1. Use the Euclidean algorithm to find an integer solution (x_0, y_0) to 89x + 43y = 1. Then use your solution to describe all possible integer solutions systematically.

Solution The Euclidean algorithm will be used in the table below:

Quotient	Divisor	Vector	
	89	1	0
2	43	0	1
14	3	1	-2
	1	-14	29

Table 1. Euclidean Algorithm for 89x + 43y = 1

Thus, we can use $x_0 = -14$ and $y_0 = 29$ to obtain (89)(-14) + (43)(29) = 1. Moreover, every integer solution can be described by subtracting x_0 and y_0 from 89 and 43 respectively. This shows that x = 43a + 29 and y = -89a - 60 will describe all integer solutions to 89x + 43y = 1. This is because when we substitute x and y into the equation, we obtain 89(43a + 29) + 43(-89a - 60) = (89)(29) - (43)(60) = 1 which is what we wanted. \square

5. Problem 5

Problem 5.1. Let 1 < a < b be integers. Show that the number of divisions steps involved in the Euclidean algorithm to compute the gcd of a and b is at most a universal constant times $\log(a)$.

Solution Let us start the algorithm with $a = a_0$ and $b = b_0$. The next step of the algorithm will use the integers $a_1 < b_1$ and so on until termination at the n + 1st step. We shall show that $a_{i+1} \le pa_i$ for some constant p < 1 for all $i \in \{1, ..., n\}$. To show this, we choose $p = \frac{a-1}{a}$. On the first step, since $a = a_0$, we see that $a_1 \le pa_0 = (a-1)$. This is because a is strictly decreasing in the Euclidean algorithm because r < a. Moreover, $a_{i+1} \le pa_i$ for all $i \in \{1, ..., n\}$ because a_i is strictly decreasing. This means the largest value of a_i for any i is a, and the smallest decrement occurs from a to a - 1. Since this can only possibly occur on the first step, and since $a_{i+1}/a_i \le (a-1)/a = p$ for all greater i, we see that $a_{i+1} \le pa_i$.

We know the algorithm terminates, so let us say that the value of the smaller number in the second to last step is d. Since we have shown that $a_{i+1} \leq pa_i$, we know that $d \leq p^n a$. Taking logarithms of both sides, and noting that p < 1, we see that $\log_p(d/a) \geq n$. Since d < a by the strictly decreasing nature of the algorithm, we see that $n \leq \log_p(d/a) < \log_p(a) = \log(a)/\log(p) = c\log(a)$. Therefore, we have found that $n < c\log(a)$. \square

6. Problem 6

Problem 6.1. Using the math software gp/PARI, tabulate the number of primes less than x for $x = 10000, 20000, \ldots, 100000$. Also tabulate the number of primes less than x and of the form 4k + 1 and the number of the form 4k + 3 and also $x/\log(x)$.

Solution The gp/PARI code for this exercise is given below:

```
for(i=1, 10,
   p = 0;
   p4k3 = 0;
    p4k1 = 0;
    forprime(x=1, i*10000,
        p ++;
        if((x\%4) == 3, p4k3 ++, p4k1 ++);
    ):
    xlogx = round(i*10000/log(i*10000));
    print("x=", i*10000);
    print("Primes: ", p);
    print("4k+1 Primes: ", p4k1);
    print("4k+3 Primes: ", p4k3);
   print("x/log(x): ", xlogx);
    print(" ");
)
```

The output shows that the number of primes of the form 4k + 1 and 4k + 3 seem to generally be very close together. For x = 10000, the 4k + 1 primes have a count of 610 while the 4k + 3 primes have 619. This trend continues for all x that were tested. Moreover, the total number of primes is equal to the sum of the primes of the form 4k + 1 and the form 4k + 3. Moreover, $x/\log(x)$ comes close to the total number of primes but gets further off as x grows larger. \square

7. Problem 7

Problem 7.1. A board has squares numbered 1 through n. Two players A and B play the following game: A starts, putting a token on some square a_1 . Then B puts a token on some square b_1 , which is not allowed to divide a_1 . Then A follows with a_2 , such that $a_2 \nmid a_1$ and $a_2 \nmid b_1$, and so on (at any stage, the number of the square selected must not divide any of the previous ones). The last person to put down a token wins. Try playing this game for n = 10, 12, 24. Who wins? Prove your observation for general n.

Solution We will show that the first player will always win. It is clear that for n small, this holds. It holds trivially for n=1,2,3,4. Now let us prove this fact for general n. First, we note that this game is finite and must terminate. This means that either player A or B must win. Let us assume by contradiction that player B wins. Then he holds some winning strategy on the numbers from $\{1,2,\ldots,n\}\setminus\{k \text{ and k's divisiors}\}$ for any $k\in\{1,\ldots,n\}$. But this means that player A can start out by cancelling 1, and when player B moves, he will leave a board of the form $\{1,2,\ldots,n\}\setminus\{k \text{ and k's divisiors}\}$. We already know there exists a winning strategy on this board, since player B had one. This means that Player A will win, which is a contradiction. This proves that Player A will always win for any n. \square

8. Problem 8

Lemma 8.1. If N is of the form 4k + 3 for $k \ge 1$, then one of its prime factors must also have the form 4k + 3.

Proof. We shall proceed by induction. For k = 1, we find that 4k + 1 = 7 is a prime, so clearly it has a prime factor of the form 4k + 3. Using this as a base case, let us assume that we have shown the assumption true for $k = 1, \ldots, n - 1$. We must now show that N = 4n + 3 has a prime factor of the form 4k + 3.

First, if N is prime, then the proof is complete. Otherwise, we can factor N into components. Since N = 4n + 3, we can have any of the following factorizations:

```
(8.2) 	 N = (4a+1)(4b+1) = 4(4ab+1a+1b)+1
```

$$(8.3) N = (4a+1)(4b+3) = 4(4ab+3a+1b)+3$$

$$(8.4) N = (4a+3)(4b+3) = 4(4ab+3a+3b+2)+1$$

4 JOHN WANG

This follows firstly because N = 4n + 3 is odd, so its two factors must also be odd. Moreover, the only odd numbers possible are of the form 4k + 1 or 4k + 3. Now, we see that cases 1 and 3 are impossible because they are both of the form 4k + 1. Thus, the second case is the only possibility for factoring N. In this case, we see that q = (4b + 3) is a factor of N. By the inductive hypothesis, q < N so that q has a prime factor of the form 4k + 3. Thus, we have shown that N has a prime factor of the form 4k + 3.

Problem 8.1. Show that there are infinitely many primes of the form 4k + 3.

Solution Suppose there are a finite number of primes of the form 4k+3, denoted by p_1, \ldots, p_n . Then we can construct a number $d=4(p_1\ldots p_n)-1=4(p_1\ldots p_n-1)+3$ which cannot be a prime because it is larger than any p_i and is of the form 4k+3. From our lemma, we see that d must have a prime factor of the form 4k+3. However, this prime factor cannot be one of p_1, \ldots, p_n because $d=qp_i-1$ for some $q\in\mathbb{Z}$. Therefore, p_i does not divide evenly into d for all $i\in\{1,\ldots,n\}$. Thus, it must be some other prime of the form 4k+3, which is a contradiction. \square