

Ecosistema Hadoop

Máster en Data Science y Big Data

Jorge López-Malla Matute

jlmalla@geoblink.com

Presentación

- Jorge López-Malla Matute
- Puesto actual:
 - Senior Data Engineer en Geoblink
- Experiencia docente:
 - Profesor en diversos Masters de Big Data durante los últimos 6 años
 - Profesor de Tecnologías Masivas en ICAI
- Años trabajados en Big Data: 9 años

Índice

Contenido

- 1. Componentes
 - Apache Hive
 - Apache HBase

Componentes

Apache Hive

Hive-Introducción

- · En el inicio Map & Reduce sólo estaba enfocado al desarrollo
- Con el tiempo más casos de uso se fueron desarrollando y se vio la necesidad de lenguajes de scripting
- El primer proyecto de Hadoop en scripting fue Apache Pig (2008)
- Los usuarios tenían que seguir aprendiendo otro lenguaje
- No podía conectarse con otros servicios externos con facilidad como lo hubiera hecho el SQL

Hive-Introducción

- En 2010 Facebook libera un proyecto que convierte sentencias SQL en trabajos de Map&Reduce
- Se libera Apache Hive y se extiende su uso
- Al ser un intérprete de SQL permite que herramientas que ya usaban SQL pudieran procesar cantidades masivas de datos
- Hive además permite la compartición de tablas de datos entre distintos procesos de una manera sencilla
- Los proyectos posteriores de procesamiento distribuido toman Hive como referencia

Hive- Arquitectura

Hive-Funcionamiento

- · **Hive** interpreta sentencias SQL en un motor de procesamiento distribuido
- Hive necesita de una base de datos de metadatos
- En ella se guardan los metadatos de las tablas
- Las tablas tienen que almacenarse en un almacenamiento compatible con el motor de procesamiento
- · **Hive** interpreta la secuencia y la convierte en trabajo distribuido más eficiente

11

Hive- Funcionamiento

Origen, Destino, Fecha, Pasajeros NYC, SFO, 20200101, 120 SFO, LAX, 20200101, 55 NYC, BOS, 20200203, 100 MAD, BCN, 20200301, 120

NYC,SFO,20200203,110 NYC,MAD,20200301,200 NYC,BCN,20200301,220 BOS,LAS,20200308,115 MAD,NYC,20200308,215

LAS,MAD,20200601,55 BCN,NYC,20200605,60 LAS,SFO,20200607,110 BCN,MAD,20200705,100 BOS,NYC,20200708,108 Mapl
Entrada:
Vuelos en csv
Proceso:
Partir la línea por ,
Salida:
clave: origen y destino
valor:

Reducel
Entrada:
((Origen, Destino), 1)
Proceso:
Sumar los l's.
Salida
clave: (Origen,Destino)
valor: contador de
vuelos

Map2
Entrada:
((Origen,Destino),cont ador)
Proceso:
Filtrar los vuelos con destino Boston
Salida
clave:
(Origen,Destino)
valor: contador

Reduce2
Entrada:
((Origen,Destino),cont
ador)
Proceso:
Ninguno
Salida
clave:Origen
valor: contador

Map3
Entrada:
(Origen, contador)
Proceso:
Ninguno
Salida
clave: null
valor: (Origen, contador)

Reduce3
Entrada:
(null,
(Origen,contador))
Proceso:
Seleccionar el Origen
con mayor numero de
vuelos
Salida
clave: Origen
valor: contador
maximo

Hive-Funcionamiento

Origen, Destino, Fecha, Pasajeros NYC,SFO,20200101,120 SFO,LAX,20200101,55 NYC,BOS,20200203,100 MAD,BCN,20200301,120 NYC,SFO,20200203,110 NYC,MAD,20200301,200 NYC,BCN,20200301,220 BOS,LAS,20200308,115 MAD,NYC,20200308,215 LAS,MAD,20200601,55 BCN,NYC,20200605,60 LAS,SFO,20200607,110 BCN,MAD,20200705,100 BOS,NYC,20200708,108

Hive- Funcionamiento

Hive- Funcionamiento

SELECT
origen, MAX(pasajeros) as
pasajeros
FROM
(SELECT
 origen, COUNT(1) as pasajeros
 FROM vuelos vuelos
WHERE destino = "BOS"
GROUP BY origen);

Mapl Entrada: tabla vuelos en csv Proceso: filtrar los vuelos con destino BOS Salida: clave: origen valor: 1

Reducel
Entrada:
(Origen, [1's])
Proceso:
Sumar los 1's
Salida
clave: Origen
valor: contador

Map2
Entrada:
(Origen, contador)
Proceso:
Ninguno
Salida
clave: Null
valor: (Origen,
contador)

Reduce2
Entrada:
(Null,[(Origen, contador)])
Proceso:
Obtener el máximo
Salida
clave:Origen
valor:

Hive-Introducción

- · La solución de **Hive** da la solución óptima mirando el planificador
- El planificador de queries no entiende de datos ni de escalabilidad
- Puede hacer algún tipo de optimización usando el almacenamiento
- ¿Y si los vuelos con destino a Boston suman tanto como para llenar la partición más grande de nuestro sistema?
- Se podría solucionar con tablas intermedias

Apache Hbase

HBase - Introducción

- Map & Reduce procesa grandes cantidades de datos en un tiempo aceptable
- Hive nos proporciona un lenguaje SQL
- Si juntamos las dos tecnologías, ¿tendríamos una Base de Datos relacional con todas ventajas del Big Data?
- · La respuesta es NO
- Juntando una tecnología de cómputo que admita cantidades masivas de datos y un proyecto que nos permita hacer SQL NO nos permite hacer queries en tiempo online "sólo" facilita el procesamiento

HBase - Introducción

- A raíz de las nuevas formas de almacenar se empiezan a pensar nuevas formas de consultar esa información
- El principal problema que pretende resolver es el acceso aleatorio a unos datos concretos
- Para ello usa HDFS como sistema de ficheros subyacente y una estrategia
 Columnar
- Con ello se consigue un acceso "rápido" a datos aleatorios en colecciones masivas de información
- Posteriormente nacen tecnologías de almacenamiento basadas en su misma filosofía supliendo algunas de sus carencias (Apache Cassandra)

HBase - Introducción

- A raíz de las nuevas formas de almacenar se empiezan a pensar nuevas formas de consultar esa información
- El principal problema que pretende resolver es el acceso aleatorio a unos datos concretos
- Para ello usa HDFS como sistema de ficheros subyacente y una estrategia
 Columnar
- Con ello se consigue un acceso "rápido" a datos aleatorios en colecciones masivas de información
- Posteriormente nacen tecnologías de almacenamiento basadas en su misma filosofía supliendo algunas de sus carencias (Apache Cassandra)

20

HBase - Terminología

- Hbase tiene la siguiente terminología:
 - **Table**: Conjunto de **rows**
 - Row: Conjunto de datos agrupados en columnas. Se compone de una rowKey y varias column families
 - RowKey: Column de una row que hace única a la misma.
 - ColumnFamily: Serie de Columns de una row. Su estrucutra no se tiene que compartir entre distintas rows de una misma table

Client-1

hbase create table
'electric_company_cups_regiones',
'region_data', 'tarificacion_data'

Row	Region_data	Tarificacion_data	timestamp

Client-1

hbase put
electric_company_cups_regiones
'0001_mun', 'region_data:valor_region'
'Colmenar Viejo'

Row	Region_data	Tarificacion_data	timestamp

Client-1

hbase put
electric_company_cups_regiones
'0001_mun', 'region_data:valor_region'
'Colmenar Viejo'

Davis	Region_data	Tarificacio n_data	timestamp
Row	valor_region		
0001_mun	Colmenar Viejo		1631952266000

Client-1

hbase put
electric_company_cups_regiones
'0001_mun', 'Tarificacion_data':'valle
10.34'

Da	Region_data	Tarificacio	timestamp
Row	valor_region	n_data	
0001_mun	Colmenar Viejo		1631952266000
0001_mun		10.34	1631952400000

Client-1

hbase put
electric_company_cups_regiones
'0001_mun', 'Tarificacion_data:pico'
'11.34'

Row	Region_data	Tarificacion_data		timestama
	valor_region	valle	pico	timestamp
0001_mun	Colmenar Viejo			1631952266 000
0001_mun		10.34		1631952400 000
0001_mun			11.34	1631952500 000

Client-1

hbase put
electric_company_cups_regiones
'0002_mun', region_data:valor_region
'Alcalá'

Row	Region_data	Tarificacion_data		timostama
	valor_region	valle	pico	timestamp
0001_mun	Colmenar Viejo			1631952266 000
0001_mun		10.34		1631952400 000
0001_mun			11.34	1631952500 000
0002_mun	Acalá			1631952600 000

Client-1

hbase put
electric_company_cups_regiones
'0002_mun', region_data:valor_region
'Alcalá'

Row	Region_data	Tarificacion_data		timostama
	valor_region	valle	pico	timestamp
0001_mun	Colmenar Viejo			1631952266 000
0001_mun		10.34		1631952400 000
0001_mun			11.34	1631952500 000
0002_mun	Acalá			1631952600 000

Client-1

hbase get
electric_company_cups_regiones,
'0002_mun'

COLUMN CELL

region_data : valor_region timestamp=1631952266000, value='Colmenar Viejo' Tarificacion_data:pico

timestamp=1631952500000, value=11.34

Tarificacion_data:valle

timestamp=1631954000000, value=100.34

Hadoop

47

Client-1

hbase scan
electric_company_cups_regiones

Client-1

hbase scan
electric_company_cups_regiones

Client-1

hbase scan electric_company_cups_regiones

Client-1

hbase scan
electric_company_cups_regiones

Client-1

hbase scan electric company cups regiones

> ROW COLUMN+CELL '0001-municipio'

region data : valor region timestamp=1631952266000, value='Colmenar Viejo'

'0001-municipio'

Tarificacion data:pico

timestamp=1631952500000, value=11.34

'0001-municipio'

Tarificacion data: valle

timestamp=1631954000000, value=100.34

'0002-municipio'

region data : valor region timestamp=1631952600000,

value='Alcalá'

HBase - Introducción

- A raíz de las nuevas formas de almacenar se empiezan a pensar nuevas formas de consultar esa información
- El principal problema que pretende resolver es el acceso aleatorio a unos datos concretos
- Para ello usa HDFS como sistema de ficheros subyacente y una estrategia
 Columnar
- Con ello se consigue un acceso "rápido" a datos aleatorios en colecciones masivas de información
- Posteriormente nacen tecnologías de almacenamiento basadas en su misma filosofía supliendo algunas de sus carencias (Apache Cassandra)

© 2022 Afi Escuela. Todos los derechos reservados.