Introduction to Linear Algebra

Kwanho Park and Kishan Sawant

Table of Contents

- Brief intro to MRC
- Mathematical description
- Vectors
- Norm & Products
- Matrix & Operators
- Vector space
- Linear span & Null space
- Orthonormal bases

Table of Contents

- Linear systems
- Determinants
- Eigenvalues & Eigenvectors
- Diagonalization
- Applications
- References

Brief intro to MRC

1	frames		\	
2	Matrices, vector norms, eigenvectors and eigenvalues			
3	Matrix Decomposition (SVD)			
4	Singular Value Decomposition Applications			Linear Algebra
5	Jacobians			
6	Ordinary Differential Equations I			
7	Ordinary Differential Equations II		/	
8th	Midterm (NO lecture)			
9	Basics of probability)	
10	Bayesian reasoning			Bayesian Statistics
11	Random variables	_	J	
12	Joint random variables + covariance]	
13	TBD			Markov Process
14	recap			

SS 2022 MRC

Mathematical description

It starts from definitions and is ended by definitions

- R: set of real number
- Rⁿ: set of n dimensional real number
- X: A → B: mapping (morphism) X from A to B

Vectors

• n tuple of point = n dim'l vector $p \in \mathbb{R}^n$

Vectors

 Then, why not mathematical object with magnitude and direction?

Vectors

 Then, why not mathematical object with magnitude and direction?

What is "magnitude"?

Norm & Inner product

What is "magnitude" of following star?

Area?

The number of vertices?

The number of edges?

Degree of concavity?

Norm & Products

- Norm defines "magnitude" of vector
- Typical definition is Euclidean length (L2 norm)

Norm & Products

- Inner product $<,>: \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}$
- <A,B>: project A into B or vice versa

Norm & Products

- Cross product $x : \mathbb{R}^3 \times \mathbb{R}^3 \to \mathbb{R}^3$
- B x A : generate new vector C

C is normal to both A and B Size of C is square area Only for 3d vector

Matrix & Operators

 A matrix is a table of numbers, it can represent abstract idea (isomorphism).

Linear transform, groups, tensors, etc.

Matrix & Operators

 A matrix is a table of numbers, it can represent abstract idea (isomorphism).

Linear transform, groups, tensors, etc.

Matrix & Operators

- Commuteness: [A,B] = AB BA ≠ 0, In general, matrix multiplication is not commute
- Transpose : A^T, Flip the matrix over the diagonal axis.
- Trace: Tr(A), Sum of diagonal elements
- Invertible : Let Ax = b, then $x = A^{-1}b$

Not every matrices are invertible! \rightarrow only square and non singular matrices are invertible.

Vector space

The world of vectors

Vector space

- Vector space is closed under the vector addition and scalar multiplication.
- The vector space over field F where F is set of scalars satisfying axioms for field defined by (X, Y, Z are vectors and a, b are scalars)

```
Commuteness: X + Y = Y + X

Accordativity: (Y + Y) + Z = Y + (Y + Z) \cdot \alpha(bY) = A
```

Associativity: (X + Y) + Z = X + (Y + Z), a(bX) = (ab)XDistributivity: a(X + Y) = aX + aY, (a + b)X = aX + bX

Identity: 0 + X = X, aX = X when a = 1

Inverse : X + (-X) = 0

Linear span & Null space

Column space : vector space where it is linearly combined (or spanned) by column vectors.

Row space : vector space where it is linearly combined (or spanned) by row vectors.

Null space : subspace of \mathbb{R}^n which satisfies Ax = 0 rank(T) + null(T) = dim(T)

Orthonormal bases

Orthogonality: linearly independent → <p,
 q> = 0

• Normal : < p, p > = 1

 Basis: set of vectors which can describes every element in vector space V

Orthonormal bases

Linear systems

$$\mathbf{A}\mathbf{x} = \mathbf{b}$$

- 'b' is linear combination of columns of A or independent co-efficients of equation of lines
- Linear dependency:
 - set of n-vectors $\{a_1, \ldots, a_k\}$ (with $k \ge 1$) are linearly dependent if,
 - $\beta_1 a_1 + \cdots + \beta_k a_k = 0$, with at least one non-zero β_k
- Note: If columns of A are linearly independent then Ax = 0 implies x = 0
- Rank of a matrix: maximum number of linearly independent rows or columns

Linear systems

$$\mathbf{A}\mathbf{x} = \mathbf{b}$$

- Over-constrained system:
 - Rank of A > dimension of b
 - No solution! But 'x' can be found which minimizes the norm, ||Ax-b||, using pseudo inverse, i.e., (A^TA)-¹A^T

- Under-constrained system:
 - Rank of of A < dimension of b
 - It allows infinitely many solutions

Linear systems

$$\mathbf{A}\mathbf{x} = \mathbf{b}$$

- Invertible matrix:
 - If A is a square matrix os size nxn and of rank 'n' (full-rank) then it is invertible
 - It is also called as non-singular matrix, i.e., a matrix with non-zero determinant

- How to find rank of a matrix ??
 - Perform Gaussian elimination to reduce the matrix to row-echelon form
 - Number of non-zero rows → Rank

Determinants

- Determinants are defined for square matrices and det(A) is a real number
- If matrix A is reduced to B after Gaussian elimination, then the determinant of A can be determined by,

$$det(A) = (-1)^r \frac{\text{(product of the diagonal entries of } B)}{\text{(product of the scaling factors)}}$$

- Determinants for 2D and 3D matrices
- A square matrix is invertible if it has a nonzero determinant

Determinants

- Applications:
 - The absolute value of det(A) is the volume or area spanned by the columns A
 - Calculate Eigenvalues by solving $det(\mathbf{A}-\lambda \mathbf{I}) = 0$
- Note: In matrix-vector multiplication, Ax streches the volume of imaginary sphere with radius vector 'x' by a factor of |det(A)|
 - The directions of the strech is determined by its eigenvalues and eigenvectors

Eigenvalues & Eigenvectors

- An eigenvector of A is a nonzero vector 'x' such that Ax = λx, for some scalar real number 'λ', which is termed as an eigenvalue
- Intuition: An eigenvector in the vector space of A, only gets transformed by magnitude
- Note: Eigenvalue can be zero, but not the eigenvector

Eigenvalues & Eigenvectors

- How to find eigenvalue and eigenvector?
 - Solve $det(\mathbf{A} \lambda \mathbf{I}) = 0$ to find all eigenvalues (λ)
 - Substitute them in $\mathbf{A}x = \lambda x$ to find the respective eigenvectors
- Note: Single eigenvalue can have multiple eigenvectors associated with it!

Matrix decomposition

- Why do we need matrix decompositions?
 - Computational efficiency
 - To extract underlying pattern in the matrix
- Different types:
 - LU decomposition
 - QR decomposition
 - Singular Value Decomposition (SVD)
 - Cholesky decomposition
 - Eigendecomposition
 - and many more ...

Diagonalization (eigendecomposition)

- An n × n matrix A is diagonalizable if and only if A has n linearly independent eigenvectors.
- $A = C B C^{-1}$,
 - where B is a diagonal matrix with
 eigenvalues as its diagonal elements and
 C is a matrix having corresponding
 eigenvectors as its columns
- Note: If A is a symmetric matrix then the eigenvectors are orthogonal to each other

Diagonalization

- Significance?
 - Many matrix operations requires finding powers of a matrix
 - $A^n = C B^n C^{-1}$

• PCA:

- Useful for pattern recognition and dimensionality reduction
- Eg: Given a set of data po of a matrix A, find the dire spread of data points
- Considering the 'n' points are given in 3D space, A
 will be of size '3xn'

- PCA:
- Covariance matrix:
 - Formula: $\begin{bmatrix} var(x) & cov(x,y) & cov(x,z) \\ cov(x,y) & var(y) & cov(y,z) \\ cov(x,z) & cov(y,z) & var(z) \end{bmatrix}$
 - Sample variance: $var(x) = \frac{\sum_{1}^{n} (x_i \overline{x})^2}{n-1}$
 - Sample covariance: $cov(x, y) = \frac{\sum_{1}^{n}(x_i x_i)(y_i y_i)}{n-1}$

PCA:

- Step 1: Subtract mean of all rows from every row of the matrix
- Step 2: find covariance matrix
 - For given sample points in A, this can be found by, $cov(A) = (AA^T)/(n-1)$
- Step 3: Find the eigenvector corresponding to the highest eigenvalue, which represents the direction of maximum spread of the data
- Why is it so? What does other eigenvectors signify?

Navigation

Robot control

- Computer vision
 - Image processing
 - PCA (dimensionality reduction and pose estimation)
 - Object recognition
 - Image transformation
 - Camera calibration
 - many more ..

References:

- https://course-repos.math.gatech.edu/ math1553/slides/allslides-web.pdf
- http://ais.informatik.uni-freiburg.de/teaching/ ss11/robotics/slides/02-linear-algebra.ppt.pdf
- https://www.cuemath.com/algebra/covariancematrix/

Suggested Readings

- (Intro) Contemporary Linear Algebra written by Howard Anton & Robert C. Busby
- (Regular) Linear Algebra written by Hoffman & Kunz
- Introduction to Linear Algebra written by Gilbert Strang
- Lecture series on Linear Algebra by Professor Gilbert Strang (available on youtube)