1

Matrix Theory (EE5609) Assignment 8

Shivangi Parashar MTech Artificial Intelligence AI20MTECH14012

Abstract—This finds the cordinates of foot of perpendicular using Singular Value Decomposition.

All the codes for the figure in this document can be found at

https://github.com/shivangi-975/EE5609-Matrix_Theory/blob/master/Assignment8/ Assignment 8.tex

1 Problem

Find the distance of the point $\begin{pmatrix} 2 \\ 3 \\ -5 \end{pmatrix}$ from the plane

$$\begin{pmatrix} 1 & 2 & -2 \end{pmatrix} \mathbf{x} = 9$$

2 Solution

First we find orthogonal vectors $\mathbf{m_1}$ and $\mathbf{m_2}$ to the given normal vector \mathbf{n} . Let, $\mathbf{m} = \begin{pmatrix} a \\ b \\ c \end{pmatrix}$, then

$$\mathbf{m}^{\mathbf{T}}\mathbf{n} = 0 \tag{2.0.1}$$

$$\implies (a \quad b \quad c) \begin{pmatrix} 1 \\ 2 \\ -2 \end{pmatrix} = 0 \tag{2.0.2}$$

$$\implies a + 2b - 2c = 0 \tag{2.0.3}$$

Putting a=1 and b=0 we get,

$$\mathbf{m_1} = \begin{pmatrix} 1\\0\\\frac{1}{2} \end{pmatrix} \tag{2.0.4}$$

Putting a=0 and b=1 we get,

$$\mathbf{m_2} = \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix} \tag{2.0.5}$$

Now we solve the equation,

$$\mathbf{M}\mathbf{x} = \mathbf{b} \tag{2.0.6}$$

Putting values in (2.0.6),

$$\begin{pmatrix} 1 & 0 \\ 0 & 1 \\ \frac{1}{2} & 1 \end{pmatrix} \mathbf{x} = \begin{pmatrix} 2 \\ 3 \\ -5 \end{pmatrix} \tag{2.0.7}$$

In order to solve (2.0.7), perform Singular Value Decomposition on \mathbf{M} as follows,

$$\mathbf{M} = \mathbf{USV}^T \tag{2.0.8}$$

Where the columns of V are the eigen vectors of M^TM , the columns of U are the eigen vectors of MM^T and S is diagonal matrix of singular value of eigenvalues of M^TM .

$$\mathbf{M}^T \mathbf{M} = \begin{pmatrix} \frac{5}{4} & \frac{1}{2} \\ \frac{1}{2} & 2 \end{pmatrix} \tag{2.0.9}$$

$$\mathbf{MM}^{T} = \begin{pmatrix} 1 & 0 & \frac{1}{2} \\ 0 & 1 & 1 \\ \frac{1}{2} & 1 & \frac{5}{4} \end{pmatrix}$$
 (2.0.10)

From (2.0.6) putting (2.0.8) we get,

$$\mathbf{USV}^T \mathbf{x} = \mathbf{b} \tag{2.0.11}$$

$$\implies \mathbf{x} = \mathbf{V}\mathbf{S}_{+}\mathbf{U}^{\mathrm{T}}\mathbf{b} \tag{2.0.12}$$

Where S_+ is Moore-Penrose Pseudo-Inverse of S.Now, calculating eigen value of $\mathbf{M}\mathbf{M}^T$,

$$\left|\mathbf{M}\mathbf{M}^T - \lambda \mathbf{I}\right| = 0 \tag{2.0.13}$$

$$\Longrightarrow \begin{pmatrix} 1 - \lambda & 0 & \frac{1}{2} \\ 0 & 1 - \lambda & 1 \\ \frac{1}{2} & 1 & \frac{5}{2} - \lambda \end{pmatrix} = 0 \qquad (2.0.14)$$

$$\Longrightarrow -4\lambda^3 + 13\lambda^2 - 9\lambda = 0 \qquad (2.0.15)$$

Hence eigen values of $\mathbf{M}\mathbf{M}^T$ are,

$$\lambda_1 = \frac{9}{4} \tag{2.0.16}$$

$$\lambda_2 = 1 \tag{2.0.17}$$

$$\lambda_3 = 0 \tag{2.0.18}$$

Hence the eigen vectors of $\mathbf{M}\mathbf{M}^T$ are,

$$\mathbf{u}_1 = \begin{pmatrix} \frac{2}{5} \\ \frac{1}{5} \\ 1 \end{pmatrix}, \mathbf{u}_2 = \begin{pmatrix} -2 \\ 1 \\ 0 \end{pmatrix}, \mathbf{u}_3 = \begin{pmatrix} -\frac{1}{2} \\ -1 \\ 1 \end{pmatrix}$$
 (2.0.19)

Normalizing the eigen vectors we get,

$$\mathbf{u}_{1} = \begin{pmatrix} \frac{2}{\sqrt{45}} \\ \frac{4}{\sqrt{45}} \\ \frac{5}{\sqrt{25}} \end{pmatrix}, \mathbf{u}_{2} = \begin{pmatrix} -\frac{2}{\sqrt{5}} \\ \frac{1}{\sqrt{5}} \\ 0 \end{pmatrix}, \mathbf{u}_{3} = \begin{pmatrix} -\frac{1}{3} \\ -\frac{2}{3} \\ \frac{2}{3} \end{pmatrix}$$
 (2.0.20)

Hence we obtain U of (2.0.8) as follows,

$$\begin{pmatrix} \frac{2}{\sqrt{45}} & -\frac{2}{\sqrt{5}} & -\frac{1}{3} \\ \frac{4}{\sqrt{45}} & \frac{1}{\sqrt{5}} & -\frac{2}{3} \\ \frac{5}{\sqrt{45}} & 0 & \frac{2}{3} \end{pmatrix}$$
 (2.0.21)

After computing the singular values from eigen values $\lambda_1, \lambda_2, \lambda_3$ we get **S** of (2.0.8) as follows,

$$\mathbf{S} = \begin{pmatrix} \frac{3}{2} & 0\\ 0 & 1\\ 0 & 0 \end{pmatrix} \tag{2.0.22}$$

Now, calculating eigen value of $\mathbf{M}^T\mathbf{M}$,

$$\left|\mathbf{M}^{T}\mathbf{M} - \lambda \mathbf{I}\right| = 0 \tag{2.0.23}$$

$$\implies \begin{pmatrix} \frac{5}{4} - \lambda & \frac{1}{2} \\ \frac{1}{2} & 2 - \lambda \end{pmatrix} = 0 \tag{2.0.24}$$

$$\implies \lambda^2 - \frac{13}{4}\lambda + \frac{9}{4} = 0 \tag{2.0.25}$$

Hence eigen values of $\mathbf{M}^T\mathbf{M}$ are,

$$\lambda_4 = \frac{9}{4} \tag{2.0.26}$$

$$\lambda_5 = 1 \tag{2.0.27}$$

Hence the eigen vectors of $\mathbf{M}^T \mathbf{M}$ are,

$$\mathbf{v}_1 = \begin{pmatrix} \frac{1}{2} \\ 1 \end{pmatrix}, \mathbf{v}_2 = \begin{pmatrix} -2 \\ 1 \end{pmatrix} \tag{2.0.28}$$

Normalizing the eigen vectors we get,

$$\mathbf{v}_1 = \begin{pmatrix} \frac{1}{\sqrt{5}} \\ \frac{2}{\sqrt{5}} \end{pmatrix}, \mathbf{v}_2 = \begin{pmatrix} -\frac{2}{\sqrt{5}} \\ \frac{1}{\sqrt{5}} \end{pmatrix}$$
 (2.0.29)

Hence we obtain V of (2.0.8) as follows,

$$\mathbf{V} = \begin{pmatrix} \frac{1}{\sqrt{5}} & -\frac{2}{\sqrt{5}} \\ \frac{2}{\sqrt{5}} & \frac{1}{\sqrt{5}} \end{pmatrix}$$
 (2.0.30)

From (2.0.8) we get the Singular Value Decomposition of \mathbf{M} ,

$$\mathbf{M} = \begin{pmatrix} \frac{2}{\sqrt{45}} & -\frac{2}{\sqrt{5}} & -\frac{1}{3} \\ \frac{4}{\sqrt{45}} & \frac{1}{\sqrt{5}} & \frac{-2}{3} \\ \frac{5}{\sqrt{45}} & 0 & \frac{2}{3} \end{pmatrix} \begin{pmatrix} \frac{3}{2} & 0 \\ 0 & 1 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} \frac{1}{\sqrt{5}} & -\frac{2}{\sqrt{5}} \\ \frac{2}{\sqrt{5}} & \frac{1}{\sqrt{5}} \end{pmatrix}^{T}$$

$$(2.0.31)$$

Moore-Penrose Pseudo inverse of S is given by,

$$\mathbf{S}_{+} = \begin{pmatrix} \frac{2}{3} & 0 & 0\\ 0 & 1 & 0 \end{pmatrix} \tag{2.0.32}$$

From (2.0.12) we get,

$$\mathbf{U}^{T}\mathbf{b} = \begin{pmatrix} -\frac{3\sqrt{5}}{5} \\ -\frac{\sqrt{5}}{5} \\ -6 \end{pmatrix}$$
 (2.0.33)

$$\mathbf{S}_{+}\mathbf{U}^{T}\mathbf{b} = \begin{pmatrix} -\frac{2\sqrt{5}}{5} \\ -\frac{\sqrt{5}}{5} \end{pmatrix}$$
 (2.0.34)

$$\mathbf{x} = \mathbf{V}\mathbf{S}_{+}\mathbf{U}^{T}\mathbf{b} = \begin{pmatrix} 0\\ -1 \end{pmatrix}$$
 (2.0.35)

Verifying the solution of (2.0.35) using,

$$\mathbf{M}^T \mathbf{M} \mathbf{x} = \mathbf{M}^T \mathbf{b} \tag{2.0.36}$$

Evaluating the R.H.S in (2.0.36) we get,

$$\mathbf{M}^T \mathbf{M} \mathbf{x} = \left(-\frac{1}{2}\right) \tag{2.0.37}$$

$$\implies \begin{pmatrix} \frac{5}{4} & \frac{1}{2} \\ \frac{1}{2} & 2 \end{pmatrix} \mathbf{x} = \begin{pmatrix} -\frac{1}{2} \\ -2 \end{pmatrix} \tag{2.0.38}$$

Solving the augmented matrix of (2.0.38) we get,

$$\begin{pmatrix} \frac{5}{4} & \frac{1}{2} & -\frac{1}{2} \\ \frac{1}{2} & 2 & -2 \end{pmatrix} \xrightarrow{R_1 = \frac{4}{5}R_1} \begin{pmatrix} 1 & \frac{2}{5} & \frac{-2}{5} \\ \frac{1}{2} & 2 & -2 \end{pmatrix}$$
 (2.0.39)

$$\stackrel{R_2 = R_2 - \frac{1}{2}R_2}{\longleftrightarrow} \begin{pmatrix} 1 & -\frac{2}{5} & -\frac{2}{5} \\ 0 & \frac{9}{5} & -\frac{9}{5} \end{pmatrix} \qquad (2.0.40)$$

$$\stackrel{R_2 = \frac{5}{9}R_2}{\longleftrightarrow} \begin{pmatrix} 1 & \frac{2}{5} & -\frac{2}{5} \\ 0 & 1 & -1 \end{pmatrix} \tag{2.0.41}$$

$$\stackrel{R_1=R_1-\frac{2}{5}R_2}{\longleftrightarrow} \begin{pmatrix} 1 & 0 & 0\\ 0 & 1 & -1 \end{pmatrix} \tag{2.0.42}$$

From equation (2.0.42), solution is given by,

$$\mathbf{x} = \begin{pmatrix} 0 \\ -1 \end{pmatrix} \tag{2.0.43}$$

Comparing results of \mathbf{x} from (2.0.35) and (2.0.43), we can say that the solution is verified.