DS 10 : énoncé

Les calculatrices ne sont pas autorisées.

 \mathbb{R} est le corps des réels, n un entier naturel donné, $n \geq 2$.

 \mathcal{M}_n désigne l'algèbre des matrices carrées d'ordre n à coefficients réels, et \mathcal{GL}_n le groupe des matrices carrées d'ordre n inversibles. On note I_n la matrice unité de \mathcal{M}_n . Pour $i, j \in \{1, ..., n\}$, on définit l'élément $E_{i,j}$ de \mathcal{M}_n comme étant la matrice dont tous les éléments sont nuls sauf celui de la i-ième ligne et j-ième colonne valant 1. On appelle matrice de transvection toute matrice de type $I_n + \lambda E_{ij}$, $\lambda \in \mathbb{R}$, $i \neq j$.

Partie I

- 1. **a.** Calculer les produits $E_{i,j}E_{h,k}$ pour $i, j, h, k \in \{1, ..., n\}$.
 - **b.** Que peut-on dire de la famille $(E_{i,j})_{1 \leqslant i,j \leqslant n}$?
 - **c.** Soit $\lambda \in \mathbb{R}$ et $i, j \in \{1, ..., n\}$, $i \neq j$; calcular $\det(I_n + \lambda E_{i,j})$.
 - **d.** Soient $\lambda, \mu \in \mathbb{R}, i, j, h, k \in \{1, ..., n\}$, avec $i \neq j, h \neq k, j \neq h$. Calculer $(I_n + \lambda E_{i,j})(I_n + \mu E_{h,k})$. En déduire l'inverse de $I_n + \lambda E_{i,j}$.
- 2. Soit $A \in \mathcal{M}_n$.
 - **a.** Montrer que l'addition à une ligne de A d'un vecteur proportionnel à une autre ligne peut se faire en multipliant A à gauche par une matrice de transvection.
 - **b.** Etablir un résultat analogue sur les colonnes.
- 3. Soit $A \in \mathcal{M}_n$ une matrice de coefficients $a_{i,j}$. On suppose de plus que la première ligne de A ou sa première colonne possède un élément non nul.
 - Montrer qu'il existe deux matrices P et Q de \mathcal{M}_n , produits de matrices de transvection, telles que la matrice B = PAQ soit une matrice de coefficients $b_{i,j}$ telle que $b_{1,1} = 1$ et $b_{i,1} = b_{1,i} = 0$ pour $2 \le i \le n$.
 - Indication: On pourra envisager successivement les cas suivants: i) $a_{1,1} = 1$; ii) $\exists i > 1, a_{i,1} \neq 0$ ou $a_{1,i} \neq 0$; iii) $a_{1,1} \neq 1$ et $\forall i > 1, a_{1,i} = a_{i,1} = 0$.
- 4. Soit $A \in \mathcal{M}_n$ une matrice dont le rang r est supposé strictement positif. Montrer qu'il existe deux matrices P et Q de \mathcal{M}_n , produits de matrices de transvection, telles que la matrice B = PAQ soit une matrice diagonale de coefficients $b_{i,j}$ telle que

- i) $b_{i,i} = 1 \text{ si } 1 \leq i < r$;
- ii) $b_{i,i} = 0$ si $r < i \le n$;
- iii) $b_{r,r} = d$ avec d = 1 si r < n et $d = \det(A)$ si r = n.

Indication: Faire une démonstration par récurrence en commençant par le cas où n=2.

- 5. Montrer que le groupe des matrices carrées d'ordre n de déterminant égal à 1 est engendré par les matrices de transvection.
- 6. On suppose dans cette question seulement que $n \ge 3$.

Soit f une application de \mathcal{M}_n dans \mathbb{R} telle que :

- i) $\forall A, B \in \mathcal{M}_n$, f(AB) = f(A)f(B);
- ii) Pour toute matrice diagonale A, f(A) est égal au produit des coefficients diagonaux de A.
- **a.** Montrer que tout matrice $I_n + aE_{\alpha,\beta}$, $\alpha \neq \beta$, peut s'écrire sous la forme : $I_n + aE_{\alpha,\beta} = (I_n + \lambda E_{i,j})(I_n + \mu E_{h,k})(I_n + \lambda E_{i,j})^{-1}(I_n + \mu E_{h,k})^{-1}$, expression dans laquelle on précisera les valeurs de λ, μ, i, j, h, k , avec $i \neq j, h \neq k$.
- **b.** Calculer f(A) si A est une matrice de transvection.
- c. Calculer f(A) si A est un élément quelconque de \mathcal{M}_n .

Partie II

- Si $M \in \mathcal{M}_n$, on note Tr(M) la trace de la matrice M.
 - 1. Vérifier que $M \mapsto \text{Tr}(M)$ est une forme linéaire sur \mathcal{M}_n , telle que $\forall A, B \in \mathcal{M}_n, \text{Tr}(AB) = \text{Tr}(BA)$.
 - 2. Soit σ une forme linéaire sur \mathcal{M}_n telle que : $\forall A, B \in \mathcal{M}_n, \sigma(AB) = \sigma(BA)$.
 - **a.** Soient $i, j \in \{1, ..., n\}, i \neq j$, calculer $\sigma(E_{i,j})$.
 - **b.** Comparer $\sigma(E_{i,i})$ et $\sigma(E_{j,j})$ pour $i, j \in \{1, ..., n\}$.
 - **c.** En déduire que : $\exists \lambda \in \mathbb{R}, \ \forall M \in \mathcal{M}_n, \ \sigma(M) = \lambda \operatorname{Tr}(M)$.
 - 3. Soit \mathcal{T} le sous-espace vectoriel de \mathcal{M}_n engendré par les matrices de la forme AB-BA, $A,B\in\mathcal{M}_n$, et soit $\mathcal{H}=\{\lambda I_n \ / \ \lambda\in\mathbb{R}\}$. Montrer que dim $\mathcal{T}=n^2-1$. En déduire que $\mathcal{M}_n=\mathcal{T}\oplus\mathcal{H}$.
 - 4. Pour $i, j \in \{1, ..., n\}$, on pose $F_{i,j} = I_n + E_{i,j}$. Calculer pour $i, j, h, k \in \{1, ..., n\}$, $h \neq k$, le produit matriciel $F_{h,k}^{-1} F_{i,j} F_{h,k}$.
 - 5. Soit θ une forme linéaire sur \mathcal{M}_n telle que

 $\forall A \in \mathcal{M}_n, \forall B \in \mathcal{GL}_n, \theta(AB) = \theta(BA).$

Démontrer que : $\exists \lambda \in \mathbb{R}, \forall M \in \mathcal{M}_n, \theta(M) = \lambda \operatorname{Tr}(M)$.

Partie III

Soit E un \mathbb{R} -espace vectoriel de dimension finie égale à $n,\,n\geqslant 2$.

 E^* désigne le dual de E.

 (e_1,\ldots,e_n) désigne une base de E et (e_1^*,\ldots,e_n^*) la base duale associée.

 $\mathcal{L}(E)$ désigne l'algèbre des endomorphismes de E, $\mathcal{GL}(E)$ le groupe des automorphismes de E, Id désigne l'endomorphisme identité de E.

On appelle automorphisme d'algèbre de $\mathcal{L}(E)$ toute application A, linéaire et bijective de $\mathcal{L}(E)$ dans $\mathcal{L}(E)$, qui de plus vérifie : $\forall u, v \in \mathcal{L}(E), A(u \circ v) = A(u) \circ A(v)$.

On note Aut(E) l'ensemble des automorphismes d'algèbre de $\mathcal{L}(E)$; Aut(E) est un groupe pour la composition des applications.

Soit $g \in \mathcal{GL}(E)$, on définit l'application A_g de $\mathcal{L}(E)$ dans lui-même par :

$$\forall u \in \mathcal{L}(E), \ A_g(u) = g \circ u \circ g^{-1}.$$

 A_q s'appelle l'automorphisme intérieur défini par g.

- 1. **a.** Montrer que Aut(E) est bien un groupe.
 - **b.** Montrer que l'application $\chi: g \mapsto A_g$ est un homomorphisme de groupes de $\mathcal{GL}(E)$ vers $\mathcal{A}ut(E)$. Cette application χ est-elle injective?
- 2. a. Soit $g \in \mathcal{L}(E)$ tel que : $\forall x \in E, (x, g(x))$ est une famille liée.

Démontrer que : $\exists \lambda \in \mathbb{R}, \ g = \lambda \operatorname{Id}.$

- **b.** En déduire le noyau du morphisme χ .
- 3. Pour $(\varphi, x) \in E^* \times E$, on définit une application $u_{\varphi,x}$ de E dans lui-même par : $\forall y \in E, \ u_{\varphi,x}(y) = \varphi(y)x$.
 - a. Montrer que $u_{\varphi,x}$ est un endomorphisme de E. Préciser son image et son noyau.
 - **b.** À quelle condition nécessaire et suffisante sur (φ, x) , $u_{\varphi,x}$ est-il un projecteur non nul?
- 4. Dans la suite, pour $i, j \in \{1, ..., n\}$, on notera $u_{i,j}$ l'application $u_{e_i^*, e_i}$.
 - **a.** Pour $i, j, h, k \in \{1, ..., n\}$, calculer $u_{i,j} \circ u_{h,k}$.
 - **b.** Que peut-on dire de la famille $(u_{i,j})_{1 \leq i,j \leq n}$?
- 5. Soit \mathcal{P} l'ensemble des projecteurs non nuls de E.
 - a. Démontrer que la relation \leq définie sur \mathcal{P} par :

$$\forall p, q \in \mathcal{P}, \ (p \leqslant q) \iff (p = p \circ q = q \circ p)$$

est une relation d'ordre sur \mathcal{P} . Est-ce une relation d'ordre totale?

b. On appelle élément minimal de \mathcal{P} pour la relation \leq tout élément $p \in \mathcal{P}$ tel que : $\forall q \in \mathcal{P}, q \leq p \Rightarrow q = p$.

Etablir l'équivalence des énoncés suivants :

- i) p est un projecteur de rang 1.
- ii) p est un projecteur minimal de \mathcal{P} pour la relation \leq .
- iii) $\exists (\varphi, x) \in E^* \times E$ tel que $p = u_{\varphi,x}$ et $\varphi(x) = 1$.

- 6. Soit A un automorphisme de l'algèbre $\mathcal{L}(E)$.
 - **a.** Que peut-on dire de A(p) si $p \in \mathcal{P}$?
 - **b.** Que peut-on dire de A(p) si p est un élément minimal de \mathcal{P} ?
 - **c.** En déduire qu'il existe une famille $(\varepsilon_1, ..., \varepsilon_n)$ de vecteurs de E, et une famille $(\varphi_1, ..., \varphi_n)$ de formes linéaires sur E, telles que :
 - i) $\forall i \in \{1, ..., n\}, \varphi_i(\varepsilon_i) = 1$ et ii) $\forall i \in \{1, ..., n\}, A(u_{i,i}) = u_{\varphi_i, \varepsilon_i}.$
 - **d.** Montrer que, pour tout $i, j \in \{1, ..., n\}, \varphi_i(\varepsilon_j) = \delta_{i,j}$.
 - **e.** En déduire que $(\varepsilon_1, ..., \varepsilon_n)$ est une base de E et que $(\varphi_1, ..., \varphi_n)$ est sa base duale.
- 7. Soient $i, j \in \{1, ..., n\}$.
 - **a.** Pour $k \in \{1, ..., n\}, k \neq j$, calculer $A(u_{i,j}) \circ u_{\varphi_k, \varepsilon_k}$. En déduire le rang et le noyau de $A(u_{i,j})$.
 - **b.** Calculer $A(u_{i,j}) \circ A(u_{j,i})$. En déduire l'image de $A(u_{i,j})$.
 - c. Montrer qu'il existe un réel non nul $\lambda_{i,j}$ tel que $A(u_{i,j}) = \lambda_{i,j} u_{\varphi_i,\varepsilon_i}$.
- 8. **a.** Montrer que pour $i, j, k \in \{1, ..., n\}, \lambda_{i,j}\lambda_{j,k} = \lambda_{i,k}$.
 - **b.** En déduire : $\forall i, j \in \{1, ..., n\}, \lambda_{i,j} = \frac{\lambda_{i,1}}{\lambda_{j,1}}$.
- 9. **a.** Montrer qu'il existe une base $(\alpha_1, ..., \alpha_n)$ de E, dont la base duale est notée $(\alpha_1^*, ..., \alpha_n^*)$, telle que : $\forall i, j \in \{1, ..., n\}, \ A(u_{i,j}) = u_{\alpha_j^*, \alpha_i}$.
 - **b.** En déduire qu'il existe un élément $g \in \mathcal{GL}(E)$ tel que :

$$\forall i, j \in \{1, ..., n\}, \ A(u_{i,j}) = g \circ u_{i,j} \circ g^{-1}.$$

- c. Conclure.
- 10. Quelles sont toutes les formes linéaires φ sur $\mathcal{L}(E)$ telles que, pour tout automorphisme A d'algèbre de $\mathcal{L}(E)$, on ait : $\forall u \in \mathcal{L}(E)$, $\varphi(A(u)) = \varphi(u)$?