# Geometria de Distâncias

# Guilherme Philippi

#### 30 de abril de 2020

## Sumário

| 1 Geometria de Distâncias Euclidianas |     | ometria de Distâncias Euclidianas | 1 |
|---------------------------------------|-----|-----------------------------------|---|
|                                       | 1.1 | Como tudo Começou                 | 1 |
|                                       | 1.2 | O Problema Fundamental            | 3 |
| Referências                           |     |                                   | 4 |
| Δ                                     | Mé  | tricas                            | 5 |

## 1 Geometria de Distâncias Euclidianas

Apresenta-se nesta seção uma introdução a Geometria de Distâncias Euclidianas. O nome "Geometria de Distâncias" diz respeito ao conceito desta geometria basear-se em distâncias ao invés de pontos. A palavra "Euclidiana" é importante para caracterizar as arestas — elementos fundamentais associados as distâncias — como segmentos, sem restringir seus ângulos de incidência [1].

# 1.1 Como tudo Começou

Por volta de 300 AC, Euclides de Alexandria organizou o conhecimento de sua época acerca da Geometria em uma obra composta por treze volumes, onde construiu, a partir de um pequeno conjunto de axiomas fortemente baseado nos conceitos de pontos e linhas, a chamada Geometria Euclidiana [2]. Em contraponto a visão original de Euclides, os primeiros conceitos geométricos usando apenas distâncias costumam estar associados aos trabalhos de Heron de Alexandria (10 a 80 DC) [1], com o desenvolvimento de um teorema que leva seu nome, como segue:

**Teorema de Heron:** Sejam s o semiperímetro de um triângulo (se p é o perímetro,  $s = \frac{p}{2}$ ) e a, b e c os comprimentos dos três lados deste triangulo. Então, a área A do triângulo é

$$A = \sqrt{s(s-a)(s-b)(s-c)}.$$
 (Fórmula de Heron)

Pode-se dizer que esse foi o nascimento da Geometria de Distâncias (GD).

Algumas centenas de anos depois, em 1841, Arthur Cayley (1821 a 1895) generalizou a Fórmula de Heron através da construção de um determinante que calcula o conteúdo (volume n-dimensional) de um simplex<sup>1</sup> em qualquer dimensão [3]. Um século depois, em 1928, o matemático austríaco Karl Menger (1902 a 1985) re-organizou as ideias de Cayley e trabalhou em uma construção axiomática da geometria através de distâncias [4] — donde a alteração no nome do determinante de Cayley para como é conhecido hoje: "Determinante de Cayley-Menger".

**Definição:** Sejam  $A_0, A_1, \ldots, A_n$  n+1 pontos que definem os vértices de um n-simplex em um espaço euclidiano K-dimensional, onde  $n \le K$ , e seja  $d_{ij}$  a distância entre os vértices  $A_i$  e  $A_j$ , onde  $0 \le i < j \le n$ . Então, o conteúdo  $v_n$  desse n-simplex é

$$v_n^2 = \frac{(-1)^{n+1}}{(n!)^2 2^n} \begin{vmatrix} 0 & d_{01}^2 & d_{02}^2 & \dots & d_{0n}^2 & 1 \\ d_{01}^2 & 0 & d_{12}^2 & \dots & d_{1n}^2 & 1 \\ d_{02}^2 & d_{12}^2 & 0 & \dots & d_{2n}^2 & 1 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ d_{0n}^2 & d_{1n}^2 & d_{2n}^2 & \dots & 0 & 1 \\ 1 & 1 & 1 & \dots & 1 & 0 \end{vmatrix}.$$
 (Determinante de Cayley-Menger)

Mas foi só com Leonard Blumenthal (1901 a 1984) que, em 1953, o termo Geometria de Distâncias foi cunhado — com a publicação de seu livro "Theory and Applications of Distance Geometry" [5]. Blumenthal dedicou sua vida de trabalho para clarificar, organizar e traduzir as obras originais em alemão [1]. Ele acreditava que o problema mais importante nesta área era o "Problema de Subconjunto" (ou Subset Problem, originalmente), que consistia em encontrar condições necessárias e suficientes a fim de decidir quando uma matriz simétrica era, de fato, uma matriz de distâncias<sup>2</sup> [6]. Uma restrição desse problema à métrica euclidiana chama-se Problema de Matrizes de Distâncias Euclidianas (ou EDMP, do inglês Euclidean Distance Matrix Problem), como segue definida:

Problema de Matrizes de Distâncias Euclidianas: Determinar se, para uma dada matriz quadrada  $D_{n\times n} = (d_{ij})$ , existe um inteiro K e um conjunto  $\{p_1, \ldots, p_n\}$  de pontos em  $\mathbb{R}^K$  tal que  $d_{ij} = ||p_i - p_j||$  para todo  $i, j \leq n$ .

Condições necessárias e suficientes para que uma matriz seja, de fato, uma matriz de distância euclidiana são dados em [7]. Para isso, apresenta-se um teorema onde se utiliza o Determinante de Cayley-Menger na criação de duas condições afirmando que, afim de  $D_{n\times n}$  ser uma matriz de distâncias euclidianas, deve haver um K-simplex S de referência com conteúdo  $v_K \neq 0$  em  $\mathbb{R}^K$  e que todos os (K+1)-simplex e (K+2)-simplex contendo S como uma das faces devem estar contidos em  $\mathbb{R}^K$  [6].

Blumenthal percebeu a importância em se respeitar as restrições métricas estabelecidas pelas matrizes de distâncias.

 $<sup>^1</sup>$ Um simplex é uma generalização do conceito de triangulo a outras dimensões, i.e.: O  $\theta$ -simples é um ponto, 1-simplex é um segmento de reta, 2-simplex é um triangulo e o 3-simplex é um tetraedro.

<sup>&</sup>lt;sup>2</sup>Seja o par  $(\mathcal{X}, d)$  um espaço métrico (vide Apêndice A), onde  $\mathcal{X} = \{x_1, \dots, x_n\}$ . Uma matriz de distância sobre  $\mathcal{X}$  é uma matriz quadrada  $D_{n \times n} = (d_{uv})$  onde, para todo  $u, v \leq n$ , temos  $d_{uv} = d(x_u, x_v)$  [6].

Quando temos como dado um conjunto de distâncias entre pares de pontos, a geometria das distâncias pode dar uma dica para encontrar um conjunto de coordenadas correto para pontos no espaço Euclideano tridimensional, satisfazendo as restrições de distâncias dadas.

Pode-se dizer que resolver o Problema de Matrizes de Distâncias Euclidianas está intimamente relacionado com descobrir as coordenadas dos pontos que definem suas distâncias. Perceba que este é um problema inverso, onde o "problema direto" correspondente é calcular distâncias associadas a pares de pontos dados. Note que este estudo tem enorme aplicabilidade [6].

Adiante, em 1979, Yemini (atualmente professor emérito de Ciência da Computação na Universidade de Columbia) foi o primeiro a flexibilizar a definição do EDMP ao considerar um conjunto de distâncias esparso [8, 6] — i.e., que não se tem todas as distâncias dadas a priori. Com isso, introduziu-se o que se chamou de *Problema Posição - Localização*, onde deseja-se calcular a localização de todos os objetos imersos em um espaço geográfico [8].

Assim, foi possível re-formular o problema fundamental de Geometria de Distâncias, o qual pode ser caracterizado de forma mais moderna pela utilização da Teoria de Grafos [6].

## 1.2 O Problema Fundamental

Uma realização é uma função que mapeia um conjunto de vértices de um grafo G para um espaço euclidiano de alguma dimensão dada [1].

Problema de Geometria de Distâncias (DGP): Dados um grafo simples, ponderado e conectado G = (V, E, d) e um inteiro K > 0, encontre uma realização  $x: V \longrightarrow \mathbb{R}^K$  tal que:

$$\forall \{u, v\} \in E, \quad \|x(u) - x(v)\| = d(u, v). \tag{1}$$

Desde que uma realização seja encontrada, também dá-se a ela o nome de solução do DGP.

# Referências

- [1] Leo Liberti and Carlile Lavor. Euclidean Distance Geometry. Springer, 2017.
- [2] Irineu Bicudo et al. Os elementos. Unesp, 2009.
- [3] Arthur Cayley. A theorem in the geometry of position. Cambridge Mathematical Journal, 2:267–271, 1841.
- [4] Karl Menger. Untersuchungen über allgemeine metrik. *Mathematische Annalen*, 100(1):75–163, 1928.
- [5] Leonard M Blumenthal. Theory and applications of distance geometry. 1953.
- [6] Leo Liberti, Carlile Lavor, Nelson Maculan, and Antonio Mucherino. Euclidean distance geometry and applications. Society for Industrial and Applied Mathematics, 56(1):3–69, February 2014.
- [7] Manfred J Sippl and Harold A Scheraga. Cayley-menger coordinates. *Proceedings* of the National Academy of Sciences, 83(8):2283–2287, 1986.
- [8] Yechiam Yemini. Some theoretical aspects of position-location problems. In 20th Annual Symposium on Foundations of Computer Science (sfcs 1979), pages 1–8. IEEE, 1979.
- [9] Yechiam Yemini. The positioning problem-a draft of an intermediate summary. Technical report, UNIVERSITY OF SOUTHERN CALIFORNIA MARINA DEL REY INFORMATION SCIENCES INST, 1978.

## A Métricas

Como esse texto utiliza fortemente o conceito de distância, é necessário e bem vindo que se gaste algum espaço para uma construção formal dessa ideia. A noção de distância está relacionada com o conceito de *métrica*, como segue.

Seja  $\mathcal{X}$  um espaço vetorial K-dimensional sobre  $\mathbb{R}$ .  $M\acute{e}trica$  é uma função de dois argumentos que mapeia pares ordenados de elementos em  $\mathcal{X}$  para um número real não negativo. Precisamente, para todo x,y e  $z\in\mathcal{X}$ , uma função  $d(\cdot,\cdot):\mathcal{X}\times\mathcal{X}\longrightarrow\mathbf{R}$  é uma métrica se satisfaz os seguintes axiomas:

- 1. d(x,y) = 0 se, e somente se, x = y;
- 2. d(x,y) = d(y,x);
- 3.  $d(x,z) \le d(x,y) + d(y,z)$ ;
- 4.  $d(x,y) \ge 0$

Nesse trabalho, quando não é especificado qual métrica se está usando, fica implícita a utilização da *Métrica Euclidiana*, definida em função da *Norma Euclidiana*:

$$\forall x, y \in \mathcal{X}, d(x, y) = ||x - y||_2 = \sqrt{\langle x, y \rangle} = \sqrt{\sum_{i=1}^K (x_i - y_i)^2}.$$
 (Norma Euclidiana)

O par  $(\mathcal{X}, d)$  é chamado *espaço métrico*. A noção de métrica não depende de espaços vetoriais, donde pode ser facilmente generalizada fazendo  $\mathcal{X}$  um conjunto qualquer.