REPORT MACHINE LEARNING FOR SOFTWARE ENGINEERING

Enrico Ciarla - 0309950

Indice

- >Introduzione
 - ➤ Contesto / Problema / Obiettivo
- **≻**Progettazione
 - ➤ Creazione del Dataset / Labeling delle Classi / Accuratezza del Dataset
- ➤ Tecniche di Validazione
- >Walk Forward
- ➤ Caso Studio
- **≻**Feature Selection
- **≻**Cost Sensitivity
- ➤ Risultati e discussione
 - ➤ BookKeeper / ZooKeeper

Introduzione – Contesto (1/2)

- ➤Il costo dei bug nel software è stimato essere 59.5 miliardi/anno solo negli USA
- ➤II software viene scritto in diversi linguaggi di programmazione, da molteplici persone e su un lungo periodo di tempo per:
 - ➤ Fixare i bug
 - >Aggiungere nuove feature
 - ➤ Migliorare la qualità del codice

Introduzione – Contesto (2/2)

- ➤ Come prevenire i bug?
 - ➤ Usare tool di analisi statistica (e.g. sonarqube)
 - ➤ Monitorare il *technical debt*
- ➤ Come trovare i bug?
 - ➤ Test di unità per testare la corretta funzionalità
 - ➤ CI/CD per fare automaticamente build/test
 - >Code review per trovare bug e controllare la qualità del codice

Introduzione - Problema

- ➤II QA (Quality Assurance) è costoso...
- ➤ Dato un periodo limitato di tempo, come possiamo prioritizzare le nostre risorse di QA sugli elementi più rischiosi del nostro software?

Introduzione - Obiettivo

>Soluzione:

>Tecniche di Machine Learning (ML) per la prevenzione dei difetti

➤Step:

- 1. Scegliere il progetto di cui si vuole fare la predizione dei difetti
- 2. Ottenere i dati grezzi da Jira e Git
- 3. Creare un dataset con diverse metriche relative ad ogni release ed etichettare una classe come buggy oppure no
- 4. Pulire il dataset togliendo i dati non affidabili
- 5. Usare le tecniche di ML sul dataset per ottenere un predittore
- ➤ Caso studio sui progetti Apache BookKeeper e ZooKeeper

Progettazione – Creazione del Dataset (1/3)

➤ Sul repository Git per ogni classe in ogni release vengono calcolate le seguenti metriche:

Metrica	Descrizione
Size	LOC
LOC_touched	Somma su ogni revisione di LOC aggiunte+modificate+eliminate
NR	Numero di revisioni
NAuth	Numeri di autori
LOC_added	Somma su ogni revisione di LOC aggiunte
MAX_LOC_added	Il massimo di LOC aggiunte sulle revisioni
AVG_LOC_added	La media di LOC aggiunte
Churn	Somma sulle revisioni di LOC aggiunte-eliminate
MAX_Churn	Il massimo Churn sulle revisioni

Progettazione – Creazione del Dataset (2/3)

- ➤ Su Jira considerare i ticket ritornati dalla query:
 - ➤ Type == "Bug" AND (status == "Closed" OR status == "Resolved")

 AND Resolution == "Fixed"
- ➤ Jira mette a disposizione una entry dove segnare le versioni affette dal bug relativo al ticket (e.g. *Affected Versions*: 3.2, 3.3, 3.7)
- ➤ Andare quindi sul repository Git e ricercare il commit relativo al ticket in questione:
 - Le classi modificate in tale commit vengono segnate come difettose nelle release segnate nel campo *Affected Versions*

Progettazione – Creazione del Dataset (3/3)

- ▶Problema
 - ➤ Non sempre il campo *Affected Versions* è disponibile
- **≻**Soluzione
 - ➤ Utilizzare un metodo per fare il labeling delle *Affected Versions* quando il campo non è disponibile

Progettazione – Labeling delle Classi (1/4)

- Da Jira abbiamo le seguenti informazioni
 - > Data di creazione del ticket
 - > Data di chiusura del ticket (fix)
- Possiamo quindi andare su Git ed ottenere
 - Opening Version (versione successiva alla creazione del ticket)
 - Fixed Version (versione successiva al commit del fix)
- Come troviamo l'Injected Version?

Esempio di ciclo di vita di un difetto: Injected Version (IV), Opening Version (OV), Fixed Version (FV), Affected Versions (AV)

Progettazione – Labeling delle Classi (2/4)

- Non possiamo sapere quante versioni occorrono tra l'IV e l'OV
- > Proportion method
 - ➤Intuizione: se è ampio il tempo tra OV e FV, lo sarà anche quello tra IV e FV
 - >P = (FV-IV) / (FV-OV)
 - ▶Predicted IV = FV (FV-OV)*P
- ➤ Per calcolare P nel caso studio è stato usato l'approccio incremental
 - ➤ P viene calcolato come media dei bug fixati nelle versioni precedenti

Progettazione – Labeling delle Classi (3/4)

➤ Alla fine dei passaggi descritti dovremmo avere un dataset (file .csv) con le seguenti colonne:

- **□**Release
- **□**Class
- **□**Size
- □LOC_touched
- **□**Nauth
- □LOC_added

- □MAX_LOC_added
- □AVG_LOC_added
- □ Churn
- □MAX_Churn
- □Buggy (yes/no)

Progettazione – Labeling delle Classi (4/4)

release	class_name	size	LOC_touched	NR	NAut	h L	.OC_added	MAX_LOC_added	AVG_LOC_added cl	nurn	MAX_churn buggy
5	java/jmx/com/yahoo/zookeeper/jmx/server/ConnectionMXBean.			78	6	2	264	66	44	264	66 no
5	java/jmx/com/yahoo/zookeeper/jmx/server/DataTreeBean.java		35	84	6	2	356	89	59	356	89 no
5	java/jmx/com/yahoo/zookeeper/jmx/server/DataTreeMXBean.jav	<i>></i>	8 1	90	6	2	176	44	29	176	44 no
5	java/jmx/com/yahoo/zookeeper/jmx/server/ZooKeeperServerBe	2	59 4	02	6	2	380	95	63	380	95 no
5	java/jmx/com/yahoo/zookeeper/jmx/server/ZooKeeperServerMX	Þ	15 3	02	6	2	288	72	48	288	72 no
5	java/jmx/com/yahoo/zookeeper/jmx/server/quorum/FollowerBea	P		18	6	2	104	26	17	104	26 no
5	java/jmx/com/yahoo/zookeeper/jmx/server/quorum/FollowerMXE	>	3 1	10	6	2	96	24	16	96	24 no
5	java/jmx/com/yahoo/zookeeper/jmx/server/quorum/LeaderBean.			22	6	2	108	27	18	108	27 no
5	java/jmx/com/yahoo/zookeeper/jmx/server/quorum/LeaderElecti	¢		80	6	2	164	41	27	164	41 no
5	java/jmx/com/yahoo/zookeeper/jmx/server/quorum/LeaderElecti	•	5 1	42	6	2	128	32	21	128	32 no
5	java/jmx/com/yahoo/zookeeper/jmx/server/quorum/LeaderMXBe			10	6	2	96	24	16	96	24 no
5	java/jmx/com/yahoo/zookeeper/jmx/server/quorum/LocalPeerBe	!	19 2	02	6	2	184	46	30	184	46 no
5	java/jmx/com/yahoo/zookeeper/jmx/server/quorum/LocalPeerM			44	6	2	128	32	21	128	32 no
5	java/jmx/com/yahoo/zookeeper/jmx/server/quorum/QuorumBear	•	18 1	86	6	2	168	42	28	168	42 no
5	java/jmx/com/yahoo/zookeeper/jmx/server/quorum/QuorumMXB			38	6	2	124	31	20	124	31 no
5	java/jmx/com/yahoo/zookeeper/jmx/server/quorum/RemotePeer	ŀ		90	6	2	172	43	28	172	43 no
5	java/jmx/com/yahoo/zookeeper/jmx/server/quorum/RemotePeer	•	5 1	38	6	2	124	31	20	124	31 no
5	java/jmx/com/yahoo/zookeeper/jmx/server/quorum/ServerBean.	j•		60	6	2	144	36	24	144	36 no
5	java/jmx/com/yahoo/zookeeper/jmx/server/quorum/ServerMXBe	*	5 1	38	6	2	124	31	20	124	31 no
5	java/jmx/com/yahoo/zookeeper/server/ManagedZooKeeperServ	•	78 5	84	6	2	552	138	92	552	138 no
5	java/jmx/com/yahoo/zookeeper/server/ObservableDataTree.java	>	75 4	72	6	2	444	111	74	444	111 no
5	java/jmx/com/yahoo/zookeeper/server/ObservableNIOServerCn)	49 3	52	6	2	332	83	55	332	83 no
5	java/jmx/com/yahoo/zookeeper/server/ObservableZooKeeperSe	?	21 2	14	6	2	200	50	33	200	50 no
5	java/jmx/com/yahoo/zookeeper/server/ZooKeeperObserverNotif)	33 3	16	6	2	296	74	49	296	74 no
5	java/jmx/com/yahoo/zookeeper/server/quorum/ManagedQuorun	1	68 10	32	6	2	972	243	162	972	243 no
5	java/jmx/com/yahoo/zookeeper/server/quorum/ObservableFollo	<i>t</i>	46 3	24	6	2	304	76	50	304	76 no
5	java/jmx/com/yahoo/zookeeper/server/quorum/ObservableFollo	<i>></i>	22 2	32	6	2	212	53	35	212	
5	java/jmx/com/yahoo/zookeeper/server/quorum/ObservableLead	P	48 3	40	6	2	320	80	53	320	80 no
5	java/jmx/com/yahoo/zookeeper/server/quorum/ObservableLead	P	22 2	32	6	2	212	53	35	212	53 no

Progettazione – Accuratezza del dataset

- ➤Il classificatore è l'algoritmo che ci aiuterà a classificare la nostra classe come buggy oppure no
- ➤ Questo diventa più accurato più accurati sono i dati che gli diamo in pasto
- ➤Se in input gli diamo dati sbagliati, le sue previsioni saranno sbagliate
- ➤ Snoring: una classe è snoring quando è affetta solo da difetti che non sono ancora stati fixati (FN)
- ➤Per questo togliamo dal dataset la metà delle release più giovani, in quanto sono più probabilmente affette da snoring

Tecniche di Validazione

- ➤ Obiettivo: addestrare un classificatore con il nostro dataset in modo da poter predire le classi difettose
- ➤ Ma quale modello è più accurato in un determinato contesto?
- ➤ Possiamo usare una tecnica di validazione e vedere quale classificatore si comporta meglio in determinati casi
- ➤ Nel nostro caso abbiamo bisogno di una tecnica di validazione per le *time-series*, questo perché l'ordine dei dati conta
- ➤Infatti non sarebbe corretto usare difetti in release future per predire difetti in release passate
- ➤ Per esempio, per predire la release 10 vogliamo usare dati che cronologicamente vengano prima della release 10

ENRICO CIARLA

15

Walk Forward

- ➤II dataset viene diviso in *parti*.
- ➤ Una *parte* è la più piccola unità ottenibile che non può essere ulteriormente ordinata
- ➤ Ora le *parti* vengono ordinate cronologicamente, e ad ogni esecuzione tutti i dati che vengono prima della *parte* da predire vengono usati come *training set* e la *parte* da predire come *testing set*
- L'accuratezza del modello è calcolata come media sulle esecuzioni

Caso Studio

- ➤Per il caso studio sono state comparate le metriche di performance di tre classificatori:
 - **≻**RandomForest
 - **≻**NaiveBayes
 - >|bk
- >Utilizzando come tecnica di validazione Walk Forward
- ➤ Per migliorare le performance dei classificatori sono poi usate tecniche di *feature selection* e *cost sensitivity*

Feature Selection

- ➤ Sono tecniche che cercano di ridurre le colonne da dare in input al classificatore
- ➤Lo scopo è quello di cercare di ridurre il costo del learning e fornire una migliore qualità di dati
- Esistono due approcci principali: *filtro* e *wrapper*
- ➤ Per il caso studio è stato scelto l'approccio con il filtro
- Gli approcci a filtro sono indipendenti dal classificatore che viene usato
- La logica che viene usata è quella di selezionare feature che abbiano un'alta correlazione con la variabile che si predice e una bassa correlazione con le altre variabili
- ➤ Quindi si vuole massimizzare la correlazione con la variabile da predire e minimizzare la correlazione interna tra le varie feature

Cost Sensitivity

- > L'idea da cui parte questa tecnica è che non tutti gli errori sono uguali
- ➤ Nei normali classificatori viene predetto il caso positivo se la probabilità è maggiore del 50%, mentre viene predetto il negativo se la probabilità è minore del 50%
- ➤ Nel nostro caso farsi scappare una classe *buggy* e classificarla come *non buggy* (FN) e molto più costoso di classificare una classe *non buggy* come *buggy* (FP)
- ➤ Quindi vogliamo cambiare la percentuale del 50%; questo è quello che fa l'approccio di *thresholding*
- > Assegniamo un costo ad ogni tipo di errore

TP	FN	0	CFN
FP	TN	CFP	0

- ➤ La threshold è CFP/(CFN+CFP)
- ➤ Nel nostro caso consideriamo CFN = 10 * CFP

Risultati - BookKeeper

Risultati - Discussione - BookKeeper

> lbk

- > La tecnica di Cost Sensitivity non ha portato particolari migliorie alle metriche
- La tecnica Feature Selection ha portato un evidente miglioramento ai punti della distribuzione sopra la mediana, infatti in tutte le metriche la parte superiore della scatola è più alta
- ➤ Ricordiamo che Feature Selection riduce anche il costo del learning, quindi usarla in questo caso è sicuramente una scelta ottimale
- > Applicare Feature Selection + Cost Sensitivity da gli stessi effetti della sola Feature Selection

➤ Naive Bayes

- > Cost Sensitivity migliora sensibilmente la *precision*, mentre peggiora le altre metriche
- Feature Selection migliora *precision* e *recall*, mentre peggiora di poco *AUC* e *kappa*
- > Cost Sensitivity + Feature Selection migliorano molto la *precision*, ma peggiora le altre metriche
- > Anche in questo caso Feature Selection sembra un buon compromesso tenendo conto il costo di learning

> Random Forest

- Cost Sensitivity porta dei peggioramenti evidenti su recall e kappa e lascia sostanzialmente uguali precision e AUC
- Feature Selection non evidenzia nessuna migliora sulle metriche, tuttavia teniamo sempre in conto il costo del learning
- Cost Sensitivity + Feature Selection porta peggioramenti su recall e kappa mentre amplia la distribuzione della precision, anche nella parte bassa della distribuzione, quindi non è un miglioramento

Risultati - ZooKeeper

Risultati - Discussione - ZooKeeper

> lbk

- > Cost Sensitivity non ha alcun effetto sulle metriche
- > Feature Selection migliora di poco la *precision* e il costo del learning
- Cost Sensitivity + Feature Selection migliora ulteriormente la precision; in questo caso sembra essere la tecnica migliore

➤ Naive Bayes

- Cost Sensitivity peggiora le metriche
- Feature Selection migliora *precision* e *recall*, infatti le mediane sono più alte
- Cost Sensitivity + Feature Selection da più o meno gli stessi risultati della sola Feature Selection

> Random Forest

- Cost Sensitivity in questo caso aumenta di tanto la *precision*, infatti una mediana di circa 0,90 significa che la metà delle volte ha performato più di 0,90; tuttavia peggiora le altre metriche
- > Feature Selection migliora di poco la *precision*
- Cost Sensitivity + Feature Selection da gli stessi effetti della sola Cost Sensitivity, alzando ulteriormente la mediana sulla *precision*
- > Feature Selection sembra essere la tecnica che si comporta meglio in questo caso

Link sonarcloud

- ➤ Codice per la creazione del dataset:
 - <u>https://sonarcloud.io/project/overview?id=Metallord97_DatasetCre</u>
 ator
- ➤ Codice per fare la valutazione tramite Walk Forward:
 - <u>https://sonarcloud.io/project/overview?id=Metallord97_DatasetAnallyzer</u>