

MACHINE LEARNING DAY 2

DEEP LEARNING

Session I: Introduction to DL

Isaac Ye, HPTC @ York University

Isaac@sharcnet.ca

Al / Deep Learning

Deep learning (DL) is a class of machine learning algorithms in which multiple layers of nonlinear processing units are used for feature extraction and transformation, with each successive layer taking the output from the previous layer as input.

Deep Neural Network (DNN)

"A family of parametric, non-linear and hierarchical representation learning functions, which are massively optimized with stochastic gradient descent to encode domain knowledge, i.e. domain invariances, stationarity." -- Efstratios Gavves

Example of a 3-layer Deep Neural Network (DNN)

http://cs231n.github.io/neural-networks-1/

Neural Network

http://cs231n.github.io/neural-networks-1/

Biological neuron

Mathematical model

DL: Training / Inference

https://devblogs.nvidia.com/inference-next-step-gpu-accelerated-deep-learning/

AlphaGo

Image classification

ImageNet Challenge

- 1,000 object classes (categories).
- Images:
 - 1.2 M train
 - 100k test.

https://www.image-net.org

Object detection

https://www.teslarati.com/teslas-full-self-driving-capability-arrive-3-months-definitely-6-months-says-musk/

Language Translation

http://didarc.com/en/news/deep-learning-mechanism

Image generation (Style transfer)

https://www.cv-foundation.org/openaccess/content_cvpr_2016/papers/Gatys_Image_Style_Transfer_CVPR_2016_paper.pdf

Image generation (Style2Paints)

https://github.com/Illyasviel/style2paints

Segmentation

Tumor segmentation

https://www.slideshare.net/xavigiro/medical-imaging-d3l3-2017-upc-deep-learning-for-computer-vision

Climate segmentation

Exascale Deep Learning for Climate Analytics, Thorsten K. https://arxiv.org/abs/1810.01993

What can we do with Al?

http://www.cognub.com/index.php/cognitive-platform/

Landscape of Science problems

	High Energy Physics		Biological and Environment		Basic Energy		Nuclear Physics	Fusion Energy	
	Astronomy	Cosmology	Particle Physics	Climate	Genomics	Light Sources	Materials	Heavy Ion Colliders	Plasma Physics
Classification	X		X	X	X	X	X	X	X
Regression	X	X	X	X	X	X	X	X	X
Clustering	X	X	X	X	X	X	X	X	X
Dimensionality Reduction				X				X	
Surrogate Models	X	X	X	X			X	X	X
Design of Experiments		X		X		X	X		X

Analytics

Simulations

Control

DL use cases and growth trends

Why now?

1) Data: large curated datasets

2) GPUs: linear algebra accelerators

https://devblogs.nvidia.com/nvidia-ibm-cloud-support-imagenet-large-scale-visual-recognition-challenge/

3) Algorithmic advances: optimizers, regularization, normalization ... etc.

DL frameworks

Caffe

TensorFlow

- The most widely used framework open-sourced by Google
- Replaced Google's DistBelief framework
- Runs on almost all architectures (CPU/GPU/TPU/etc)
- Define-and-Run type for neural networks
- Version 2.0 has Define-by-Run component(Eager execution)
- https://github.com/tensorflow/tensorflow/

name	version	build	python	arch
tensorflow_cpu	2.1.0		ср37	generic
tensorflow_cpu	2.1.0		ср36	generic
tensorflow_cpu	2.1.0		cp35	generic
tensorflow_estimator	2.1.0		py2.py3	generic
tensorflow_gpu	2.1.0		ср37	generic
tensorflow_gpu	2.1.0		ср36	generic
tensorflow_gpu	2.1.0		cp35	generic
tensorflow_tensorboard	1.5.1		py3	generic
tensorflow_tensorboard	1.5.1		py2	generic
[isaac@cedar1 ~]\$ ■				

PyTorch

- Rapidly growing in research community for deep learning framework developed by Facebook
- A Python adaptation of Torch
- Caffe2 has been merged to PyTorch
- Define-by-Run type for neural networks
- Ease of expression and use
- https://github.com/pytorch/pytorch

[isaac@cedar1 ~]\$ avail wheels "torch *"					
name	version	build	python	arch	
torch_cluster	1.4.5		ср37	generic	
torch_cluster	1.4.5		ср36	generic	
torch_cluster	1.4.5		cp35	generic	
torch_cpu	1.0.0		ср37	avx2	
torch_cpu	1.0.0		ср36	avx2	
torch_cpu	1.0.0		cp35	avx2	
torch_cpu	1.0.0		cp27	avx2	
torch_geometric	1.4.2		руЗ	generic	
torch_gpu	1.0.0		ср37	avx2	
torch_gpu	1.0.0		ср36	avx2	
torch_gpu	1.0.0		ср35	avx2	
torch_gpu	1.0.0		cp27	avx2	

Pros	Easy to use (Python support) Intuitive Dynamic graphs Research community prefers	Large community Heterogeneous architecture TF 2.0: Eager execution(Define-by-Run) Tensorboard (visualizing), Keras
Cons	Small community Less additional tools	Verbose Static graphs

DL frameworks trend

Cumulative GitHub stars by Al library (2015—2019)

Source: Github, 2019.

Cumulative GitHub stars by Al library, not including TensorFlow (2015—2019) Source: Github, 2019.

https://aiindex.org

DL framework outline

A. A. Awan, H. Subramoni, and Dhabaleswar K. Panda. "An In-depth Performance Characterization of CPU- and GPU-based DNN Training on Modern Architectures", In Proceedings of the Machine Learning on HPC Environments (MLHPC'17). ACM, New York, NY, USA, Article 8.

Lab 1: Working environment

We will use Google Colab for most of simple runs!

Lab 1: playing around Google Colab

- 1. Go to https://colab.research.google.com
- 2. Open a new Jupyter notebook
- 3. Check Runtime type (GPU/TPU) and settings
- 4. Editor (Code/text block)
- 5. Be careful of running order
- 6. Make sure where you can find your code

Lab 1: Code comparison(calculating gradient)

```
import numpy as np
     np.random.seed(0)
     N, D = 3, 4
     x = np.ones((N,D))
     y = 2*np.ones((N,D))
     z = 3*np.ones((N,D))
     print(x)
     print(y)
     print(z)
13
     a = x * y
     b = a + z
     c = np.sum(b)
     print(c)
     grad_c = 1.0
     grad_b = grad_c * np.ones((N,D))
     grad_a = grad_b.copy()
     grad_z = grad_b.copy()
     grad_x = grad_a*y
     grad y = grad a*x
     print(grad_x)
```

```
import torch
print(torch. version )
N, D = 3, 4
x = torch.ones(N,D, requires_grad=True)
y = 2*torch.ones(N,D)
z = 3*torch.ones(N,D)
print(x)
print(y)
print(z)
a = x*y
b = a+z
c = torch.sum(b)
print(c)
c.backward()
print(x.grad)
```

```
import numpy as np
import tensorflow as tf
print(tf.__version__)
N, D = 3, 4
x = tf.ones([N,D])
y = 2*tf.ones([N, D])
z = 3*tf.ones([N, D])
print(x)
print(y)
print(z)
with tf.GradientTape(persistent=True) as g:
  g.watch(x)
  a = x * y
 c = tf.reduce_sum(b)
grad x = g.gradient(b,x)
print(c)
print(grad_x)
```


Session break:

Please come back by 10:45 AM