SISSA conference 17.06.119.
Manaluisa Frau
-4d SU(N)=Gr-garge theory -coople with (2,2) 2d Grush with Gras global symmetry -e.g. 2d U(1) with scalar in found of sure
- given thisted superpotential $W = -(1)(2-\varphi)(\log \frac{2-\varphi}{1}-1)$ where $\Lambda_1^2 = 2\pi i t_2$ we find $2d$ eff-action by $\exp \frac{\partial W}{\partial z} = 1$ $\Rightarrow SW - curve$ $W(3x)(m+\frac{1}{2})(1-\frac{1^{\varphi}}{1^{2}}) + = \frac{q_1}{2n} - \frac{q_2}{2q}$
-matches twisted superpot from samfiel part function.
- In general case, defert in SU(N) - theory (5 representate by quiver (5) > (5) > (5) > (5) > (5) > (7) > (8) 2d U(5i) - gauge the tears
- FC CNp: monodromy coupled ad-ad agstons
randfied instanton params quantally gan. scales li

Tomáš Procházka
- alg. struct's in 2d cFT
W-symmetry Affine Yangian
free Lantra Minon transformation
Minon transformation
'
- W-algs - extensions of Virasoro
by higher spins
- Int. hie farchies of PDF (KLV/KP) ~> W-nlgs are "quantum" KP
~> W-nlas are "quantum" (C)
$-W_{3}-alg(Z_{3}mo(odch_{1}(Eov))$ $T(z)T(w) \sim \frac{c(z)}{(z-w)^{2}} + \frac{2T(-w)}{(z-w)^{2}} + \frac{\delta T}{z-w}$
$T(z)T(w) \sim \frac{c/2}{2T(z)} + \frac{2T(z)}{2T(z)}$
(6-w) (c-w) 2 7-w
$^{\prime\prime}+^{\prime}T(z)W(\infty)\sim$
1- 1 (2) W(w) ~ (1-1) W(z) W(w) ~ (2-w) of + nonlineary.
- Was - all spins
l .

Can	Cozgaz
	
	•