Задача коммивояжера Метод полного перебора и алгоритм имитации отжига

А.А. Ахметова С.Э. Марцинович

МГТУ им. Н.Э. Баумана

30 июня 2020 г.

Формулировка индивидуального задания

Дан набор вершин и набор ребер, их соединяющих. Каждое ребро является направленным и характеризуется весом — положительным числом — стоимостью движения из его начала в конец. Для любой пары вершин существует два ребра, их соединяющих (в прямом и обратном направлении). Требуется найти маршрут минимальной стоимости, проходящий через все вершины ровно по одному разу и возвращающийся в первую вершину.

Необходимо выполнить следующее:

- Решить задачу «полным перебором», прокладывая все возможные пути (не заходя дважды в одну и ту же вершину).
- 2 Решить задачу с помощью алгоритма имитации отжига.

Суть задачи

Задача коммивояжёра (англ. Travelling salesman problem) заключается в поиске самого выгодного маршрута, проходящего через указанные города хотя бы по одному разу с последующим возвратом в исходный город.

В условиях задачи указываются критерий выгодности маршрута и соответствующие матрицы расстояний, стоимости и тому подобного.

Обзор методов решения

Простейшими методами решения задачи коммивояжера являются:

- полный перебор;
- случайный перебор;
- жадные алгоритмы:
 - метод ближайшего соседа;
 - метод включения ближайшего города;
 - метод самого дешёвого включения;
- метод минимального остовного дерева;
- метод имитации отжига.

Метод полного перебора

При генерации перестановок использовалась рекурсивная функция. 0 - стартовая вершина по умолчанию.

Перестановки:

перестановки.				
1	2	3		
1	3	2		
2	1	3		
2	3	1		
3	1	2		
3	2	1		

Потенциальные пути:					
0	1	2	3	0	
0	1	3	2	0	
0	2	1	3	0	
0	2	3	1	0	
0	3	1	2	0	
0	3	2	1	0	

Из всех полученных путей выбираем путь с минимальной длиной.

Ответ : 0 1 3 2 0

Алгоритм имитации отжига

Алгоритм имитации отжига (*англ*. Simulated annealing) основывается на имитации физического процесса, который происходит при кристаллизации вещества, в том числе при отжиге металлов.

Вычисление вероятности

$$P = e^{\left(-\frac{\Delta E}{T}\right)}$$

Алгоритм имитации отжига не гарантирует нахождения минимума функции, однако преимуществом метода является то, что он вытаскивает ее из локальных минимумов.

Блок-схема алгоритма имитации отжига

Рассматривается тест, состоящий из 4 городов, которые необходимо обойти.

Исходные данные					
4					
0	1	4	6		
1	0	5	2		
4	5	0	3		
6	2	3	0		

	Маршрут	Длина пути	Относительная	Время, с
			погрешность, %	
Вывод	1 3 4 2 1	10	0,0	0,0005
перебором				
Вывод	12431	10	0,0	0,0094
методом				
имитации				
отжига				

В тесте содержится 11 городов — это максимальное количество городов, которое может быть обработано методом полного перебора.

	Средняя длина	Относительная	Время, с
	пути	погрешность, %	
Полный перебор	0,0150	0,0	5,4337
Алгоритм	0,0318	112,0	0,0010
имитации			
отжига при			
coolingRate=0.9			
Алгоритм	0,0182	21,3	0,0094
имитации			
отжига при			
coolingRate=0.99			
Алгоритм	0,0152	1,2	0,1211
имитации			
отжига при			
coolingRate=0.999			

Рассматриваются 29 городов Баварии и длины дорог между ними.

Выводы

- Изучены и реализованы метод полного перебора и метод имитации отжига для задачи коммивояжера.
- Проведено сравнение работы этих алгоритмов на одних и тех же тестах.
- Установлены преимущества и недостатки каждого из методов.