### ID3 Algorithm & Entropy

- There are many algorithms to construct Decision Trees, but one of the best is called as **ID3 Algorithm**.
- ID3 Stands for **Iterative Dichotomiser** 3 and it was developed by Quinlan, the selection of partitioning was made on the basis of the information gain/entropy reduction.
- Shannon Entropy: It measure the amount of uncertainty or randomness in data and is denoted by H(S) for a finite set S.

H (S) = 
$$\sum_{x \in X} p(x) \log_2 \left(\frac{1}{P(x)}\right)$$

- Intuitively, it tells us about the **predictability of a certain event**.
- Consider a bag that is filled with red balls, the entropy of such an event (drawing a red ball) can be predicted perfectly since the bag has all red balls, i.e. event has no randomness and hence it's entropy is zero.
- Lower values of entropy imply less uncertainty while higher values imply high uncertainty.

### Shannon Entropy

- In general, Shannon entropy indicates the "amount of information in a variable" intuitively it gives amount of amount of storage (i.e., number of bits) required to store the variable.
- The easiest way to measure the information is in bits or bytes. The basic unit of information is bit and it represents two possible states.
- If the base of the logarithm is e, the entropy is measured in nats.

• Think what is more intuitive to use to compute entropy: log base 2 or natural logarithm.

### ID3 Algorithm

- For predicting the class, algorithm starts from the root node.
- To get the root node, it **compares the values of root attribute** with the record (real dataset) attribute and, based on the comparison, follows the branch and jumps to the next node.
- At next node, the algorithm again compares the attribute value with the other sub-nodes and move further.
- The process continues until it reaches the leaf node of the tree.



### Information Gain

- <u>Information Gain:</u> It measures the <u>relative change in entropy</u> with respect to the independent variables and it is also called as <u>Kullback-Leibler divergence denoted by IG(S, A)</u> for a set S.
- It indicates the effective change in entropy after deciding on a particular attribute A.

$$IG(S,A) = H(S) - H(S,A)$$

$$IG(S, A) = H(S) - \sum_{i=1}^{n} p(x) * H(x)$$

- The IG(S, A) is the information gain by applying feature A; H(S) is the Entropy of the entire set, and H(S,A) calculates the Entropy after applying the feature A, where P(x) is the probability of event x.
- Choose the DT that gives highest value of information gain.

# Measures of Impurity for Evaluating Splits in Decision Trees.

• An impurity is a heuristic for selecting the splitting criterion that "best" separates a given dataset S of class labeled training tuples into individual classes.

- If S were split into smaller partitions according to the outcome of the splitting criterion, ideally each partition would be pure.
- More the impurity (more the heterogeneity in the dataset), more the entropy, more the expected amount of information that would be needed to classify a new amount of information that would be needed to classify a new pattern.

### **Pruning the Tree**

- Pruning is a process of deleting the unnecessary nodes from a tree to get the optimal decision tree.
- A too-large tree increases the risk of overfitting, and a small tree may not capture all the important features of the dataset.

#### • Two main groups:

- o Prepruning: Growing of the tree is stopped before it reaches the point where it perfectly classifies the training data.
- o Postpruning: The tree is allowed to grow to perfectly classify the training examples, and then post-prune is done.
- The second approach of post-pruning overfit trees has been found to be more successful in practice because it is not easy to precisely estimate when to stop growing the tree.
- **Pruning Techniques:** Cost Complexity Pruning & Reduced Error Pruning.

### The ID3 Decision Tree

### The ID3 Decision Tree

| Outlook  | Temperature | Humidity | Windy | PlayTennis |
|----------|-------------|----------|-------|------------|
| Sunny    | Hot         | High     | False | No         |
| Sunny    | Hot         | High     | True  | No         |
| Overcast | Hot         | High     | False | Yes        |
| Rainy    | Mild        | High     | False | Yes        |
| Rainy    | Cool        | Normal   | False | Yes        |
| Rainy    | Cool        | Normal   | True  | No         |
| Overcast | Cool        | Normal   | True  | Yes        |
| Sunny    | Mild        | High     | False | No         |
| Sunny    | Cool        | Normal   | False | Yes        |
| Rainy    | Mild        | Normal   | False | Yes        |
| Sunny    | Mild        | Normal   | True  | Yes        |
| Overcast | Mild        | High     | True  | Yes        |
| Overcast | Hot         | Normal   | False | Yes        |
| Rainy    | Mild        | High     | True  | No         |

| Outlook | Temperature | Humidity | Windy | Play Tennis |
|---------|-------------|----------|-------|-------------|
| Sunny   | Hot         | Normal   | True  | ?           |

| Day | Outlook  | Temperature | Humidity | Wind   | Play Golf |
|-----|----------|-------------|----------|--------|-----------|
| D1  | Sunny    | Hot         | High     | Weak   | No        |
| D2  | Sunny    | Hot         | High     | Strong | No        |
| D3  | Overcast | Hot         | High     | Weak   | Yes       |
| D4  | Rain     | Mild        | High     | Weak   | Yes       |
| D5  | Rain     | Cool        | Normal   | Weak   | Yes       |
| D6  | Rain     | Cool        | Normal   | Strong | No        |
| D7  | Overcast | Cool        | Normal   | Strong | Yes       |
| D8  | Sunny    | Mild        | High     | Weak   | No        |
| D9  | Sunny    | Cool        | Normal   | Weak   | Yes       |
| D10 | Rain     | Mild        | Normal   | Weak   | Yes       |
| D11 | Sunny    | Mild        | Normal   | Strong | Yes       |
| D12 | Overcast | Mild        | High     | Strong | Yes       |
| D13 | Overcast | Hot         | Normal   | Weak   | Yes       |
| D14 | Rain     | Mild        | High     | Strong | No        |

- Calculate H(S), the Entropy of the current state.
- In total there are 5 No's and 9 Yes's for total 14 outcomes.

Entropy(S) = 
$$\sum_{x \in Y} p(x) \log_2 \left( \frac{1}{P(x)} \right)$$
 Gini Index = 1- [(p+)^2 + (p-)^2] = 1- [(9/14)2 + (5/14)2] = 0.4592

Entropy(S) = 
$$-(\frac{9}{14}) \log_2(\frac{9}{14}) - (\frac{5}{14}) \log_2(\frac{5}{14}) = 0.940$$

- Entropy is 0 means that all members belong to the same class, and if it 1 it indicates that half of them belong to class '0', and other half belong to class '1', which is a perfect random case.
- Here it's 0.94 means the distribution is fairly random.
- Choose the attribute that gives us highest possible Information Gain

$$IG(S, A) = H(S) - \sum_{i=1}^{n} p(x) * H(x)$$

- Lets start with "Wind".
- In total there we have 8 places where wind is weak and 6 places where wind is strong for total 14 outcomes.

$$P(Sweak) = Number of weak/ Total = 8/14$$

$$P(Sstrong) = Number of strong/total = 6/14$$

$$Entropy(Sweak) = -\left(\frac{6}{8}\right) \log_2\left(\frac{6}{8}\right) - \left(\frac{2}{8}\right) \log_2\left(\frac{2}{8}\right) = 0.811$$

$$Entropy(Sstrong) = -\left(\frac{3}{6}\right) \log_2\left(\frac{3}{6}\right) - \left(\frac{3}{6}\right) \log_2\left(\frac{3}{6}\right) = 1$$

$$IG(S, Wind) = H(S) - P(Sweak)*H(Sweak) - P(Sstrong)*H(Sstrong)$$

$$IG(S, Wind) = H(S) - P(Sweak)*H(Sweak) - P(Sstrong)*H(Sstrong)$$
  
= 0.940 -  $(\frac{8}{14})$  (0.811) -  $(\frac{6}{14})$  (1) = 0.048

• In similar way, we will calculate information gain for all other features

• IG(S, Outlook) has the highest information gain of 0.246, hence Outlook attribute is chosen as the root node.

- There are three possible values of Outlook: Sunny, Overcast, and Rain.
- Overcast node already ended up having leaf node 'Yes', we have two subtrees to compute: Sunny and Rain.

$$H(Ssunny) = -\left(\frac{3}{5}\right) \log_2\left(\frac{3}{5}\right) - \left(\frac{2}{5}\right) \log_2\left(\frac{2}{5}\right) = 0.97$$

$$IG(Ssunny, Humidity) = 0.96$$

$$IG(Ssunny, Temperature) = 0.57$$

$$IG(Ssunny, Wind) = 0.019$$

- IG(Ssunny, Humidity) has the highest information gain of 0.96, hence Humidity attribute is chosen.
- Repeat the process



#### **Detailed Calculations**

#### Categorical values - high, normal

```
H(Sunny, Humidity=high) = -0 - (3/3)*log(3/3) = 0
H(Sunny, Humidity=normal) = -(2/2)*log(2/2)-0 = 0
Average Entropy Information for Humidity –
```

```
I(Sunny, Humidity) = p(Sunny, high)*H(Sunny, Humidity=high) + p(Sunny, normal)*H(Sunny, Humidity=normal) = <math>(3/5)*0 + (2/5)*0 = 0 Information Gain = H(Sunny) - I(Sunny, Humidity) = 0.971 - 0 = 0.971
```

#### Categorical values - hot, mild, cool

```
H(Sunny, Temperature=hot) = -0-(2/2)*log(2/2) = 0
H(Sunny, Temperature=cool) = -(1)*log(1)-0=0
H(Sunny, Temperature=mild) = -(1/2)*log(1/2)-(1/2)*log(1/2) = 1
Average Entropy Information for Temperature –
```

I(Sunny, Temperature) = p(Sunny, hot)\*H(Sunny, Temperature=hot) + p(Sunny, mild)\*H(Sunny, Temperature=mild) + p(Sunny, cool)\*H(Sunny, Temperature=cool) = (2/5)\*0 + (1/5)\*0 + (2/5)\*1 = 0.4 Information Gain = H(Sunny) - I(Sunny, Temperature) = 0.971 - 0.4 = 0.571

#### Categorical values - weak, strong

```
H(Sunny, Wind=weak) = -(1/3)*log(1/3)-(2/3)*log(2/3) = 0.918
H(Sunny, Wind=strong) = -(1/2)*log(1/2)-(1/2)*log(1/2) = 1
Average Entropy Information for Wind –
```

```
I(Sunny, Wind) = p(Sunny, weak)*H(Sunny, Wind=weak) + p(Sunny, strong)*H(Sunny, Wind=strong) \\ = (3/5)*0.918 + (2/5)*1 = 0.9508 Information Gain = H(Sunny) - I(Sunny, Wind) = 0.971 - 0.9508 = 0.0202
```





Partially learned decision tree: the training examples are sorted to corresponding descendant nodes

### The CART Decision Tree

Gini gain (S, outlook)= 0.4592 - 0.342 = 0.117

Gini gain (S, temperature) = 0.4592 - 0.4405 = 0.0185

Gini gain (S, Humidity) = 0.0916

Gini gain (S, wind) = 0.0304

### The CART Decision Tree

| Outlook  | Temperature | Humidity | Windy | PlayTennis |
|----------|-------------|----------|-------|------------|
| Sunny    | Hot         | High     | False | No         |
| Sunny    | Hot         | High     | True  | No         |
| Overcast | Hot         | High     | False | Yes        |
| Rainy    | Mild        | High     | False | Yes        |
| Rainy    | Cool        | Normal   | False | Yes        |
| Rainy    | Cool        | Normal   | True  | No         |
| Overcast | Cool        | Normal   | True  | Yes        |
| Sunny    | Mild        | High     | False | No         |
| Sunny    | Cool        | Normal   | False | Yes        |
| Rainy    | Mild        | Normal   | False | Yes        |
| Sunny    | Mild        | Normal   | True  | Yes        |
| Overcast | Mild        | High     | True  | Yes        |
| Overcast | Hot         | Normal   | False | Yes        |
| Rainy    | Mild        | High     | True  | No         |

| Outlook | Temperature | Humidity | Windy | Play Tennis |
|---------|-------------|----------|-------|-------------|
| Sunny   | Hot         | Normal   | True  | ?           |

|         |          | play |   |    |   |       |    |
|---------|----------|------|---|----|---|-------|----|
|         |          | yes  |   | no |   | total |    |
|         | sunny    |      | 3 |    | 2 |       | 5  |
| Outlook | overcast |      | 4 |    | 0 |       | 4  |
|         | rainy    |      | 2 |    | 3 |       | 5  |
|         |          |      |   |    |   |       | 14 |

| Attribute | Rule           | Error | Total Error |
|-----------|----------------|-------|-------------|
|           | Sunny - No     | 2/5   |             |
| Outlook   | Overcast - Yes | 0/4   | 4/14        |
|           | Rainy → Yes    | 2/5   |             |
| Attribute | Rule           | Error | Total Error |
|           | Hot → No / Yes | 2/4   |             |
| Temp      | Mild→ Yes      | 2/6   | 5/14        |
|           | Cool→ Yes      | 1/4   |             |
| Attribute | Rule           | Error | Total Error |
|           | High → No      | 3/7   |             |
| Humidity  | Normal → Yes   | 1/7   | 4/14        |

| Attribute | Rule            | Error | Total Error |
|-----------|-----------------|-------|-------------|
|           | True - No / Yes | 3/6   |             |
| Windy     | False → No      | 2/8   | 5/14        |

• Choose the one which has minimum error, in case there is a tie then choose the one that gives zero error for one of the category.

Therefore, outlook is selected as root node



| Attribute | Rule          | Error | Total Error |
|-----------|---------------|-------|-------------|
|           | Hot→ No       | 0/2   |             |
| Temp      | Mild → No/Yes | 1/2   | 1/5         |
|           | Cool→ Yes     | 0/1   |             |
| Attribute | Rule          | Error | Total Error |
|           | High → No     | 0/3   |             |
| Humidity  | Normal→Yes    | 0/2   | 0/5         |
| Attribute | Rule          | Error | Total Error |
|           | True → No/Yes | 1/3   |             |
| Windy     | False → No    | 1/2   | 2/5         |

Select Humidity



| Household $s^{(i)}$ | Income (\$ thousands) x <sub>1</sub> | Lawn Size (thousands ft²) $x_2$  | Ownership of a lawn tractor y |
|---------------------|--------------------------------------|----------------------------------|-------------------------------|
| 1                   | 60                                   | 18.4                             | Owner                         |
| 2                   | 75                                   | 19.6                             | Nonowner                      |
| 3                   | 85.5                                 | 16.8                             | Owner                         |
| 4                   | 52.8                                 | 20.8                             | Nonowner                      |
| 5                   | 64.8                                 | 21.6                             | Owner                         |
| 6                   | 64.8                                 | 17.2                             | Nonowner                      |
| 7                   | 61.5                                 | 20.8                             | Owner                         |
| 8                   | 43.2                                 | 20.4                             | Nonowner                      |
| 9                   | 87                                   | 23.6                             | Owner                         |
| 10                  | 84                                   | 17.6                             | Nonowner                      |
| 11                  | 110.1                                | 19.2                             | Owner                         |
| 12                  | 49.2                                 | 17.6                             | Nonowner                      |
| 13                  | 108                                  | 17.6                             | Owner                         |
| 14                  | 59.2                                 | 16                               | Nonowner                      |
| 15                  | 82.8                                 | 22.4                             | Owner                         |
| 16                  | 66                                   | 18.4                             | Nonowner                      |
| 17                  | 69                                   | 20                               | Owner                         |
| 18                  | 47.4                                 | 16.4                             | Nonowner                      |
| 19                  | 93                                   | 20.8                             | Owner                         |
| 20                  | 33                                   | 18.8                             | Nonowner                      |
| 21                  | 51                                   | 22                               | Owner                         |
| 21                  | 51                                   | 14                               | Nonowner                      |
| 23                  | 81                                   | 20                               | Owner                         |
| 24                  | 63                                   | 14.8                             | Nonowner                      |
| Random              | Sample of Households in a city v     | with respect to ownership of a l | awn tractor                   |



Tree stumps after first split



Scatter plot after first split





Tree stumps after first three splits

Scatter plot after first three splits

• If the partitioning is continued till all the branches hit leaf nodes, each rectangle will have data points from just one of the two classes

### Impact of Outlier

- Decision tree works on an "**if-then**" concept that makes the model to ask specific questions to the data. If the condition is satisfied then it gives a defined output.
- Outliers will have a considerable effect only if it is present in a continuous (numerical) column.
- Impact of outliers in predictor variables (continuous variable)
- Impact of outliers in target variables (continuous variable)
- For categorical variables, if there are few rare occurrences of a particular class then we can consider them as anomalies or class imbalance and treat them accordingly.

| Person Id | Salary        | Occupation |
|-----------|---------------|------------|
| 1.        | Rs. 80,000    | Doctor     |
| 2.        | Rs. 55,000    | Engineer   |
| 3.        | Rs. 18,000    | Teacher    |
| 4.        | Rs. 25,000    | Teacher    |
| 5.        | <b>Rs. 10</b> | Teacher    |
| 6.        | Rs. 1,20,000  | Doctor     |
| 7.        | Rs. 65,000    | Engineer   |
| 8.        | Rs. 75,000    | Doctor     |
| 9.        | Rs. 72,000    | Engineer   |



• This decision tree can predict the occupation of person 5 and person 6 without any error despite them being a part of outliers. Therefore, we can say that an outlier in predictor variables cannot affect the predictive ability of the model in most of the time.



• Salary of engineers and doctors is not correct; thus, if the outliers are present in target variables then there might be some impact (but not necessarily).