Syntax and Semantics Exam

Benjamin Bennetzen Student ID: 20204861 Computer Science, 4th semester

June 5, 2022

1 Exercise

1.1

Accepted words: 10, 01. Rejected words: 1, 0.

1.2

 $(01)^*|(10)^*$

1.3

2 Exercise

2.1

$$S\Rightarrow b$$

 $S\Rightarrow aSS\Rightarrow abS\Rightarrow abb$
 $S\Rightarrow aSS\Rightarrow aaSSS\Rightarrow aabSS\Rightarrow aabbS\Rightarrow aabbb$

2.2

2.3

3 Exercise

For context-free languages the following holds. For any word w, where $|w| \ge p$ the following conditions will be satisfied.

- for all $i \ge 0, uvxyz \in L$
- |vy| > 0
- $|vxy| \le p$

We assume that L' is context-free and choose the word $a^p b^{p+1} c^{p+2}$ which is in L' and is clearly longer than p.

4 Exercise

4.1

$$\frac{\overline{0 \rightarrow 0}}{\underline{10 \rightarrow 2}} \begin{array}{l} \text{by rule 0} \\ k = 2^{|0|} + 0, \text{ by rule 3} \\ \underline{110 \rightarrow 6} \end{array}$$
 $k = 2^{|10|} + 2, \text{ by rule 3}$

4.2

First we create the base cases for $\underline{1}$, $\underline{2}$, and $\underline{3}$.

$$[r_0]$$
 $\underline{\underline{0} \to 0}$, $[r_1]$ $\underline{\underline{1} \to 1}$, $[r_2]$ $\underline{\underline{1} \to 2}$ (1)

Now for the rest.

$$[r_3] \quad \frac{w \to k'}{0w \to k} \quad k = k' \tag{2}$$

$$[r_4] \quad \frac{w \to k'}{\underline{1}w \to k} \quad k = 3^{|w|} + k' \tag{3}$$

$$[r_5] \quad \frac{w \to k'}{2w \to k} \quad k = 2 \cdot 3^{|w|} + k' \tag{4}$$

5 Exercise

3, 6, 5