Real Analysis (MA101), Tutorial Sheet-I

- 1. Let $x_0 \in \mathbb{R}$ and $x_0 \ge 0$. If $x_0 < \epsilon$ for every positive real number ϵ , show that $x_0 = 0$
- 2. Let S be a non empty bounded above subset of \mathbb{R} . If α and β are supremum of S, show that $\alpha = \beta$
- 3. Prove that $\sqrt{2}$ is not a rational number and hence deduce that $\sqrt{2} + \sqrt{3}$ cannot be rational.
- 4. Show that if x and y are any two numbers of bounded set of real numbers S_1 and S_2 , respectively, then prove that the set S whose elements are of the form x+y is also bounded and $\sup S_1 + \sup S_2 = \sup S$, $\inf S_1 + \inf S_2 = \inf S$.
- 5. Prove that the set S whose elements are of the form $\frac{1}{p} + \frac{1}{q}$, where p and q are positive integers, is a bounded set for which inf S = 0, sup S = 2.
- 6. Find the supremum of the set $X = \{\pi 1, \pi \frac{1}{2}, \pi \frac{1}{3}...\}$.
- 7. Let E be a non-empty bounded above subset of \mathbb{R} . If $\alpha \in \mathbb{R}$ is an upper bound of E and $\alpha \in E$, show that α is the l.u.b of E.
- 8. Suppose that α and β are any two real numbers satisfying $\alpha < \beta$. Show that there exists $n \in \mathbb{N}$ such that $\alpha < \alpha + \frac{1}{n} < \beta$.
 - Similarly, show that for any two real numbers s and t satisfying s < t, there exists $n \in \mathbb{N}$ such that $s < t \frac{1}{n} < t$.
- 9. Let A be a non-empty bounded below subset of \mathbb{R} and $\alpha \in \mathbb{R}$ is an lower bound of A and $\alpha \in A$. Suppose for every $n \in \mathbb{N}$, there exists $a_n \in A$ such that $a_n < \alpha + \frac{1}{n}$. show that α is the infimum of A.
- 10. If S_1 and S_2 are two bounded sets of real numbers. Prove that the bounds of the set $S_1 \cup S_2$ are $\max\{\sup S_1, \sup S_2\}$ and $\min\{\inf S_1, \inf S_2\}$.
- 11. Let $\{p_n\}$ be a sequence of rationals such that $p_1 < p_2 < p_3 < \dots$ and $p_n \to 0$ as $n \to \infty$. Let $A = \bigcup_{i=1}^{\infty} (p_i, p_{i+1})$. What is $\sup A$ and $\inf A$?
- 12. Let $A = \{x \in \mathbb{R} | 3x^2 + 8x 3 < 0\}$. Find sup and inf of A.
- 13. Let S and T are non-empty subsets of \mathbb{R} , such that $s \in S$, $t \in T \Rightarrow s \leq t$. Prove that $\sup S \leq \inf T$.
- 14. Find sup and inf of A.
 - (a) $A = \{\frac{1}{m} + \frac{1}{n} : m, n \in \mathbb{N}.$
 - (b) $A = \{ \frac{n + (-1)^n}{n} : n \in \mathbb{N} \}.$
 - (c) $A = \{x \in \mathbb{R} | \sin 1/x = 0\}.$
 - (d) $\{n^{(-1)^n} : n \in \mathbb{N}\}.$
 - (e) $\bigcap_{n=1}^{\infty} \left[\frac{-1}{n}, 1 + \frac{1}{n} \right]$.
 - (f) $\{1 \frac{1}{3^n} : n \in \mathbb{N}\}.$

- (g) $\{\cos(\frac{n\pi}{3}) : n \in \mathbb{N}\}.$
- (h) $\{\frac{1}{n}: n \in \mathbb{N} \text{ and } n \text{ is prime } \}.$
- (i) $\{1 (-1)^n/n : n \in N\}.$
- (j) $\{\frac{1}{n} \frac{1}{m} : m, n \in N\}$
- 15. Let $A_n = \{x \in \mathbb{R} | x \leq -\frac{1}{n} \text{ or } x \geq \frac{1}{n}\}, n \in N \ A = \bigcup_{i=1}^{\infty} A_n, B = \bigcap_{i=1}^{\infty} B_n$. Find sup and inf of A and B if exist.
- 16. Show that if m, n are rational numbers then m + n and mn are rational numbers.
- 17. If x > -1, then show that $(1+x)^n \ge 1 + nx$ for all $n \in \mathbb{N}$.
- 18. Give an example of a set which is
 - (a) bounded above but not bounded below,
 - (b) bounded below but not bounded above,
 - (c) bounded (above as well as below),
 - (d) neither bounded above nor bounded below.
- 19. Show that supremum of a set (if it exists) is unique.
- 20. Let S and T be nonempty bounded subsets of \mathbb{R} .
 - (i) Prove that if $S \subseteq T$, then $\inf T \leq \inf S \leq \sup S \leq \sup T$
 - (ii) Prove that $\sup(S \cup T) = \max\{\sup S, \sup T\}.$
- 21. If y > 0, show that there exists $n \in N$ such that $\frac{1}{2^n} < y$.
- 22. Let $x_0 \in \mathbb{R}$ and $x_0 > 0$. If $x_0 < \in$ for every positive real number \in , show that $x_0 = 0$.
- 23. Let S be a non empty bounded above subset of \mathbb{R} . If α and β are supremums of S, show that $\alpha = \beta$.
- 24. If S_1 and S_2 are two bounded sets of real numbers. Prove that the bounds of the set $S_1 \cup S_2$ are $\max\{\sup S_1, \sup S_2\}$ and $\min\{\inf S_1, \inf S_2\}$.
- 25. If x and y are members of bounded sets A and B of real numbers, prove that bounds of the set C of numbers $\frac{y}{x}$ are the $\frac{supB}{supA}$ and $\frac{infB}{infA}$, provided $\inf A \neq 0$ and $\sup A \neq 0$ and the members of A and B are all positive.