Recuperação de Física do 1º bimestre 3ª série – eletrostática.

Questão 01

O líquido no interior de uma célula e o fluido em seu exterior podem apresentar diferenças em sua composição química. Esta diferença na composição pode gerar uma diferença de potencial elétrico denominado potencial de membrana. A diferença de potencial entre o interior e o exterior de uma célula é representada pelo gráfico a seguir.

Com base no gráfico é CORRETO afirmar.

a) Um íon positivo no exterior da célula, próximo a membrana celular, sente uma força eletrostática mantendo-o no meio externo da célula.
b) O líquido no interior da célula possui os mesmos constituintes do fluido no exterior da célula.
C) Que o módulo do vetor campo elétrico é 80 N/c.
d) Que o módulo do vetor campo elétrico é 80 kN/C.
e) Um íon positivo no interior da célula, próximo a membrana celular, sente uma força eletrostática direcionando-o ao meio externo da célula.

Num experimento realizado no laboratório de eletricidade, os alunos dispunham de duas esferas condutoras iguais, A, inicialmente neutra, e B, com uma carga +Q, apoiadas em suportes isolantes e separadas por uma distância muito maior que o raio das mesmas, de modo que a força eletrostática entre elas pudesse ser desprezada. Foram realizados os seguintes procedimentos:

- (1) As esferas foram colocadas em contato e, em seguida, dispostas em suas posições iniciais.
- (2) Sem alterar a disposição das esferas, a esfera B foi momentaneamente aterrada e, em seguida, a ligação com a terra foi desfeita.

Podemos afirmar que:

- I. As duas esferas condutoras terminaram o procedimento (1) com cargas de mesmo sinal e mesmo valor absoluto.
- II. A transferência de carga entre as esferas, durante o procedimento (1), cessou quando a carga da esfera A aumentou para +Q/2, devido à transferência da carga -Q /2 da esfera A para a esfera B.
- III. No procedimento (2), quando a esfera B foi aterrada, elétrons com carga total igual a –Q/2 migraram da terra para a esfera B, deixando-a neutra.
- IV. Quando a ligação com a terra foi removida no procedimento (2), a força eletrostática entre as esferas voltou a ser desprezível, por conta da distância entre as mesmas.

Assinale a alternativa correta

a) Somente as afirmativas I e IV estão corretas.
b) Somente as afirmativas I, II e III estão corretas.
c) Somente as afirmativas II e III estão corretas.
d) Todas as afirmativas estão corretas.
e) Somente as afirmativas I e III estão corretas.

Uma esfera condutora A de carga Q_A = 3,0 x 10⁻⁶ C , isolada, encontra-se distante de outra esfera condutora B, descarregada (eletricamente neutra), também isolada, cujo volume é oito vezes maior que o volume da esfera A.

Um longo fio condutor é então usado para ligar a esfera A na esfera B e inicia-se assim uma transferência de carga elétrica.

O fio só é retirado depois de estabelecido o equilíbrio eletrostático.

Admita que no processo ocorreu conservação da carga elétrica total e que o fio condutor não acumule carga alguma. Qual a carga final, respectivamente, das esferas A e B?

- a) 3,3 x 10⁻⁷ C e 2,7 x 10⁻⁶ C
- b) 2,7 x 10⁻⁶ C e 3,3 x 10⁻⁷ C
- c) 1,5 x 10⁻⁶ C e 1,5 x 10⁻⁶ C
- d) 2,0 x 10⁻⁶ C e 1,0 x 10⁻⁶ C.
- e) 1,0 x 10⁻⁶ C e 2,0 x 10⁻⁶.

Considere duas cargas puntiformes q_1 e q_2 separadas por 30 cm. Qual o módulo do campo elétrico resultante que essas cargas produzem no ponto A?

Considere que a carga q_2 encontra-se a 5 cm do ponto A e que os valores de q_1 e q_2 sejam respectivamente 6,25 nC e 12,5 nC, e a constante eletrostática no vácuo k_0 = 9,0.10⁹ N.m² / C²

a) 4,50. 10 ⁴ N/C		
b) 9,41.10 ⁴ N/C		
c) 4,41. 10 ⁴ N/C		
d) 4,59. 10 ⁴ N/C		
e) 0,25. 10 ⁴ N/C		

Questão 05

No sistema internacional das unidades "S.I." também conhecido como sistema "MKSA", a unidade da carga elétrica é dada por:

a) A ² /s	
b) A/s ²	
c) A ² .s ²	
d) A/s	
e) A.s	

Num experimento realizado em sala de aula, duas pequenas esferas metálicas idênticas são conectadas por fios isolantes e penduradas em um suporte, conforme indicado na figura a seguir. As esferas estavam inicialmente na situação A da figura a seguir. Em seguida, o professor transfere certa quantidade de carga para uma das esferas. Os alunos observam que após a transferência de carga, as esferas ficam em equilíbrio, conforme indicado na situação B da figura a seguir. Finalmente, o professor transfere certa quantidade de carga para a outra esfera e elas ficam em equilíbrio, conforme ilustrado na situação C da figura a seguir:

Destes experimentos é possível concluir que:

- I. Na situação B, a esfera eletrizada induz uma separação de cargas na outra esfera fazendo com que elas se atraiam. II. Na situação B, a esfera eletrizada atrai a outra esfera porque ela já estava eletrizada com carga de sinal oposto.
- III. A situação C indica que as duas esferas foram eletrizadas com cargas de mesmo sinal.

Assinale a alternativa correta:

a) Somente a afirmativa III está correta.
b) Somente a afirmativa I está correta.
c) Somente as afirmativas I e III estão corretas.
d) Somente as afirmativas II e III estão corretas.
e) Somente a afirmativa II está correta.

Questão 07

Uma pequenina esfera vazada, no ar, com carga elétrica igual a 1 μ C e massa 10 g , é perpassada por um aro semicircular isolante, de extremidades A e B, situado num plano vertical. Uma partícula carregada eletricamente com carga igual a 4 μ C é fixada por meio de um suporte isolante, no centro C do aro, que tem raio R igual a 60 cm, conforme ilustra a figura abaixo.

Despreze quaisquer forças dissipativas e considere a aceleração da gravidade constante. Ao abandonar a esfera, a partir do repouso, na extremidade A, pode-se afirmar que a intensidade da reação normal, em newtons, exercida pelo aro sobre ela no ponto mais baixo (ponto D) de sua trajetória é igual a

a) 0,50		
b) 0,60		
c) 0,20		
(a) 0,40		

Analise as proposições a respeito da eletrostática.

- I. A intensidade das interações elétricas de uma partícula depende de sua carga elétrica, que pode ser positiva, negativa ou neutra.
- II. O potencial elétrico é uma grandeza escalar, enquanto o campo elétrico é uma grandeza vetorial.
- III. O campo elétrico no interior de um condutor carregado que atingiu o equilíbrio eletrostático é nulo, enquanto o potencial elétrico tem um valor constante.
- IV. As superfícies equipotenciais são perpendiculares às linhas de força em cada ponto do campo elétrico.

Assinale a alternativa correta.

(a)	Somente as afirmativas I e II são verdadeiras.
(b)	Somente as afirmativas I, III e IV são verdadeiras.
(c)	Somente as afirmativas II, III e IV são verdadeiras.
(d)	Todas as afirmativas são verdadeiras.
(e)	Somente as afirmativas II e IV são verdadeiras.

Questão 09

No fim do século XVIII o francês Charles Augustin de Coulomb formulou a Lei da Força Elétrica, conhecida como Lei de Coulomb:

A intensidade da força de interação entre duas cargas elétricas, q₁ e q₂, puntiformes é proporcional ao produto das cargas e inversamente proporcional ao quadrado da distância r entre elas.

Matematicamente a formulação segue a seguinte expressão:

$$F = \frac{1}{4\pi \in_0} \frac{|q_1|.|q_2|}{r^2}$$

A constante \in_0 é a permissividade do vácuo, cuja unidade, no Sistema Internacional de Unidades, é dada por:

a) [C]/([N].[m] ²)	
b) [N].[m] ² /[C]	
© c) [N].[m] ² /[C] ²	
d) [C] ² /([N].[m] ²)	

Observe a figura a seguir

A figura acima mostra uma região de vácuo onde uma partícula puntiforme, de carga elétrica positiva q_1 e massa m, está sendo lançada com velocidade v_o em sentido ao centro de um núcleo atômico fixo de carga q_2 .

Sendo k_o a constante eletrostática no vácuo e sabendo que a partícula q_1 está muito longe do núcleo, qual será a distância mínima de aproximação, x, entre as cargas?

b)
$$\sqrt{\frac{\frac{k_o q_1 q_2}{2}}{mv}}_{o}$$

$$\begin{array}{c} \bigcirc \text{c)} \ \ \frac{2k_oq_1q_2}{2} \\ v \\ o \end{array}$$

$$\begin{array}{c} \bullet \\ \bullet \\ \frac{k_o q_1 q_2}{2} \\ o \end{array}$$