

de Gioia Domenico

«Identification of Brain Tumor and Extracting its' Features through Processing of MRI» (10.1109/ICITR51448.2020.9310800)

Metodologia generale

Dataset

- 3064 immagini MRI T1-contrast-enhanced
- Classi di tumori presenti: meningioma, glioma, pituitario
- Risoluzione: 512x512 pixel
- Label delineate da radiologi

Pre-processing

Sharpening

Filtro mediano Filtro gaussiano Regolazione del contrasto

sharpening

gaussian filter

median filter

contrast adjustment

Skull-stripping

Thresholding

Rimozione oggetti piccoli

Riempimento buchi

Erosione

skull thresholding remove small objects filling holes erosion brain

Segmentazione del tumore

Thresholding

Erosione

Componente principale

Dilatazione

Riempimento buchi

Contrast =
$$\sum_{i=0}^{N-1} \sum_{j=0}^{N-1} (i-j)^2 P(i,j)$$

$$\text{Correlation} = \frac{\sum_{i=0}^{N-1} \sum_{j=0}^{N-1} (i - \mu_i) (j - \mu_j) P(i, j)}{\sigma_i \sigma_j}$$

Homogeneity =
$$\sum_{i=0}^{N-1} \sum_{j=0}^{N-1} \frac{P(i,j)}{1 + |i-j|}$$

$$\text{Entropy} = -\sum_{i=0}^{N-1} \sum_{j=0}^{N-1} P(i,j) \log(P(i,j))$$

Energy =
$$\sum_{i=0}^{N-1} \sum_{j=0}^{N-1} P(i, j)^2$$

Estrazione delle feature

Img	Jaccard	Dice	BFScore	Acceptable
	0.7886	0.8818	0.8260	Yes
	0.5619	0.7195	0.5615	Yes
	0.6195	0.7650	0.5361	Yes
	0.7572	0.8618	0.6095	Yes
	0.3454	0.5134	0.1791	Yes
	0.7266	0.8416	0.8004	Yes
	0.0000	0.0000	0.0000	No
	0.6800	0.8095	0.7793	Yes
	0.0650	0.1220	0.0000	-
0	0.8932	0.9435	0.9845	Yes
	0.9242	0.9606	0.9903	Yes
2	0.9462	0.9723	0.9844	Yes
	0.9542	0.9765	0.9916	Yes
	0.9355	0.9666	1.0000	Yes
5	0.9016	0.9482	0.9723	Yes
6	0.0000	0.0000	0.0000	No
7	0.6802	0.8097	0.7019	Yes
8	0.8602	0.9248	0.9712	Yes
9	0.5430	0.7038	0.6974	Yes
0	0.6126	0.7598	0.4462	Yes
1	0.8047	0.8918	0.7617	Yes
2	0.9025	0.9487	0.9123	Yes
3	0.9268	0.9620	1.0000	Yes
24	0.7231	0.8393	0.7198	Yes
25	0.6040	0.7531	0.6449	Yes

Table 1. Valori di confronto delle metriche tramite metodo di sogliatura fissa. Table 2. Valori di confronto delle metriche tramite metodo di sogliatura Otsu.

Conclusioni e sviluppi futuri

- Buona accuratezza nella rilevazione dei tumori celebrali
- Strumento di supporto alle decisioni mediche
- Espansione del dataset di test
- Classificazione delle lesioni celebrali
- Integrazione di deep learning per segmentazione avanzata