Decision tree is a non-linear non-parametric supervised machine learning algorithm. It uses greedy, top-down, recussive partitioning method. Decision tree is easy to understand I very intuitive. Let's see details of decision tree with an example dataset. We want to make a classifer which will predict in any given time I location can we still there.

We will pick the region with possible sking. And we will do that by a greedy recursive approach. This can be done by asking question.

Formally, given a parent region Rp, a feature index j, and a threshold tER, we obtain two child region Rp, & P2:

$$R_1 = \{ \times | X_j < t ; X \in \mathbb{R}_p \}$$
 | $t = 15$
 $P_2 = \{ \times | X_j > = t ; X \in \mathbb{R}_p \}$ | $R_p = \text{whole dataset}$

Which feature value of threshold needs to be selected?

> Depends on for which values loss decreases most.

Loss function:

Loss of parent region
$$P_p = \frac{|R_1|L|CP_1)+|P_2|L(P_2)}{|R_1|+|R_2|}$$

So we want to select feature & threshold that will maximize our decrease in loss:

(P1/L(P1) + (P2) 2 (P2)

There are couple of loss function that can be used:

- 1) Classification
- 2) Cross entropy
- 3) Gini

1) Classification:

Here, Pe = Propostion of example of class. c in region R. We will spit

$$R_p: 400 + / 100 -$$

Y

Split

 $R'_1: 300 + / 100 R'_2: 100 + / 0 -$

$$L(P_1) = 1 - \max_{e} (\hat{P}_e)$$

$$= 1 - \frac{3}{4}$$

$$= \frac{1}{4}$$

$$L(P_2) = 1 - \max_{e} (\hat{P}_e)$$

 $\hat{P}_{e}\{e=+\}=\frac{300}{400}=\frac{3}{4}$ $\hat{P}_{e}\{e=-\}=\frac{100}{200}=\frac{3}{4}$

In the first split the Pz region separate more regetive closes than the first split still our loss storys the same. So Classification coss isn't sensivitive enough to split.

2. Cross entropy Loss:

To make loss more sensitive eross entropy loss introduce.

To understand the difference between the two loss let's see the pieture bellow:

Cross-entropy loss gives a concave line so there will always be a reduction in parent loss point 1

shows the parent loss before the split and point 2 shows the loss after the split.

$$(1)$$
 - (2) = decrease in loss.

in the misclossification class point (1) & (2) merge together so there is no decrease in loss.

3. Gini °

Grini is the most common measure of impurity.

4. Mean Squared Coss:

For the regression problem squared boss is used.

Leguared =
$$\frac{\sum_{i \in R} (y_i - \hat{y})^2}{|R|}$$
where,
$$\hat{y} = \frac{\sum_{i \in R} y_i^2}{|R|}$$

5. Mean absolute 6055:-

Pegularization:-

Decision tree is very prune to overfitting. If we don't regularize it, each of the training example can be a separate region in the worst case. The ways of regularizing DTs are:

- · Minimum leaf size : Do not split R if 121 < 4 breshold.
 - · Maximum Depth: Don't split if Depth tree > thoushold
 - · Maximum Number of leaf: Don't split if leaf node > threshold.
- · Pruning: Grow the tree fully without using any max depth. Then remove some leaf node during validation set to reduce validation error.

Runtime:-

the training runtime of the tree is

O (nfd)

n> # trowing example

f > # input feature.

d > depth of the tree

During testing rundime is O(d)if the tree is balanced: $O(\log n)$