Financial Econometrics Econ 40357 Spurious Regression Problem Testing for Unit Roots Brooks pp. 334-351

N.C. Mark

University of Notre Dame and NBER

September 6, 2020

Review: Random Walk with Drift

$$y_t = \mu + y_{t-1} + \sigma \epsilon_t \tag{1}$$

$$E_t(y_{t+1} - y_t) = \mu \tag{2}$$

$$E_t y_{t+k} = k\mu + y_t \tag{3}$$

$$E_t(y_{t+k} - y_t = k\mu \tag{4}$$

- (1) is statement of the model
- (2) is the one-step ahead forecasted change
- (3) is the k-step ahead forecasted value
- (4) is the k-step ahead forecasted change.

Nested model: Driftless random walk ($\mu = 0$).

Random Walk with Drift

Repeated backward substitution gives stochastic trend representation

$$y_{t} = \mu + \underbrace{y_{t-1}}_{y_{t-1} = \mu + y_{t-2} + \epsilon_{t-1}} + \epsilon_{t}$$

$$= \mu + \mu + \underbrace{y_{t-2}}_{y_{t-2} = \mu + y_{t-3} + \epsilon_{t-2}} + \epsilon_{t} + \epsilon_{t-1}$$

$$= \mu + \mu + \mu + y_{t-3} + \epsilon_{t} + \epsilon_{t-1} + \epsilon_{t-2}$$

$$\vdots$$

$$y_{t} = y_{0} + t\mu + (\epsilon_{t} + \epsilon_{t-1} + \dots + \epsilon_{1})$$

- y₀ looks like constant in regression with trend. But y₀ is not a constant. It is the realization of a random variable. Hence, the term stochastic trend.
- It is wrong to try to regress the random walk on a time trend to induce stationarity.
- Original Efficient Markets hypothesis based on this idea. Today's price "reflects all publically available information."

The Spurious Regression Problem

- The spurious regression problem illustrates why it is important to make sure your data are stationary.
- Two independent, driftless random walk processes, $\{y_t\}$ and $\{x_t\}$

$$y_t = y_{t-1} + \sigma_y \epsilon_{t,y}$$

 $x_t = x_{t-1} + \sigma_x \epsilon_{t,x}$

where $e_{t,y}$ and $e_{t,x}$ each are i.i.d. Importantly, note that they are independent of each other. This means y_t is independent of x_t . (e.g., y_t is price of Tesla stock. x_t is the number of ants in a particular ant hill in the Xinjiang province of China.

Regress y_t on x_t,

$$y_t = \beta_0 + \beta_1 x_t + v_t$$

Use the usual (standard) t-ratio to test if $\beta_1=0$. The spurious regression problem is, the test will always reject the null that $\beta_1=0$.

Illustrate

```
'Generate two independent random walks series e1 = nrnd series e2 = nrnd smpl @first @first series sto1 = 0 series sto2 = 0 smpl @first+1 @last series sto1 = sto1(-1) + e1 series sto2 = sto2(-1) + e2 series y = sto1 series x = sto2 equation eq01.ls y c x
```


Dependent Variable: Y Method: Least Squares Date: 09/22/19 Time: 11:20 Sample: 2 250 Included observations: 249

Variable	Coefficient	Std. Error	t-Statistic	Prob.
C X	2.403193 -0.174393	0.229460 0.032858	10.47324 -5.307453	0.0000 0.0000
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.102370 0.098736 3.110182 2389.289 -634.8473 28.16905 0.000000	Mean dependent var S.D. dependent var Akaike info criterion Schwarz criterion Hannan-Quinn criter. Durbin-Watson stat		3.026763 3.276120 5.115240 5.143492 5.126612 0.102545

Explanation for Spurious Regression Problem

- The standard t- ratio is $\hat{\beta}$ divided by its standard error. In 'deviation from mean' form, the standard error is computed as $\frac{\hat{\sigma}_{Y}^{2}}{\sum_{l=1}^{T}\hat{X}_{l}^{2}}$.
- Recall: x_t has a unit root.
 - What is happening to $\sum_{t=1}^{T} \tilde{x}_{t}^{2}$ as T gets large?
 - What happens to the standard error as T gets large?
 - What happens to t-ratio as T gets large?

Dickey-Fuller Tests for Unit Root

- Econometricians developed many procedures to test for unit root.
 - The DF (Dickey-Fuller) and ADF (Augmented Dickey-Fuller) tests are examples of such tests.
 - The ADF test is straightforward and easy to implement
- Why can't we just run an AR(1) on the time series and test if the autocorrelation coefficient is 1 or less than 1?
- Because! Take the AR(1) (ignore the constant)

$$y_t = \rho y_{t-1} + \sigma \epsilon_t \tag{5}$$

where $\epsilon_t \stackrel{iid}{\sim} N(0,1)$. Remember, in regression, we try to estimate the slope? In this case, it is

$$\rho = \frac{Cov\left(y_{t}, y_{t-1}\right)}{Var\left(y_{t-1}\right)}$$

but if y_t has a unit root (is not stationary), the denominator is infinity.

The DF (Dickey-Fuller) test

• Following the example above, subtract y_{t-1} from both sides of (5),

$$y_t - y_{t-1} = \rho y_{t-1} - y_{t-1} + \epsilon_t$$

$$\Delta y_t = (\rho - 1) y_{t-1} + \sigma \epsilon_t$$
(6)

• The Dickey-Fuller (DF) test: Regress Δy_t on y_{t-1} . Tests the null hypothesis that the slope coefficient is 0 (i.e., $\rho = 1$).

 $y_t = \rho y_{t-1} + \epsilon_t$

- The null hypothesis is there is a unit root. If you reject the null, then you conclude that the series is stationary.
- The t-ratio distribution is not (asymptotically) normal. It was worked out by Dickey and Fuller. Eviews calculates the critical values for us.

The ADF (Augmented Dickey-Fuller) test

• The ADF test augments (6) to allow for additional dynamics in Δy_t .

$$\Delta y_{t} = \underbrace{\alpha + \beta t}_{\text{time trend}} + \gamma y_{t-1} + \underbrace{\left(\delta_{1} \Delta y_{t-1} + \dots + \delta_{p} \Delta y_{t-p}\right)}_{**} + \sigma \varepsilon_{t}$$
 (7)

The term **, containing lagged differences of y_t is to control for possible serial correlation in Δy_t . It is like guarding against omitted variables bias.

- γ is the key parameter of interest. $\gamma=0$, means there is a unit root. $\gamma<0$ means the series is stationary.
- ullet eta=0 under the null hypothesis means the series is a random walk with drift.
- β ≠ 0 under the alternative hypothesis means the deviation from a deterministic time trend is a stationary AR(p) process.
- The null hypothesis is the series has a unit root.

ADF test in Eviews

'Data' is driftless random walk

Test the level

^{*}MacKinnon (1996) one-sided p-values.

Test the first difference

