Introducción a la Informática

Profesor Francisco Alejandro Medina

Hardware y Software

 La Real Academia Española define al hardware como el conjunto de los componentes que conforman la parte material (física) de una computadora, a diferencia del software que refiere a los componentes lógicos (intangibles).

La tarjeta madre (Motherboard)

Es la tarjeta de circuitos impresos que sirve como medio de conexión entre: el microprocesador, circuitos electrónicos de soporte, ranuras para conectar parte o toda la RAM del sistema, la ROM y ranuras especiales (slots) que permiten la conexión de tarjetas adaptadoras adicionales.

http://es.wikipedia.org/wiki/Tarjeta madre

La tarjeta madre (Motherboard)

El microprocesador

 Es el microchip encargado de ejecutar las instrucciones y procesar los datos que son necesarios para todas las funciones del computador se puede decir que es el cerebro del computador.

COMPONENTES DEL PROCESADOR

- UNIDAD DE CONTROL es la encargada de supervisar la secuencia de las operaciones que se deben realizar para ejecutar una instrucción
- UNIDAD ARITMETICA Y LOGICA es la encargada de realizar todas las operaciones que transforman los datos en especial operaciones matemáticas como la suma la resta y lógicas como la negación y afirmación.

TIPOS DE PROCESADORES SEGÚN LA TECNOLOGÍA

CONTACTO

PINES

La RAM (memoria de acceso aleatorio)

 se trata de una memoria de semiconductor en la que se puede tanto leer como escribir información; es volátil, o sea que pierde su contenido al desconectar la energía eléctrica. http://es.wikipedia.org/wiki/Memoria RAM

SDRAM-PC-66

SDRAM-PC-100

MEMORIA PARA PC DE ESCRITORIO

✓ Dinámicas

Tipos y características comunes de las memorias				
Tipo de memoria	Nombre industrial	Velocidad máxima de transferencia	Bus en la parte delantera	
PC100 SDRAM	PC-100	800 MB/s	100 MHz	
PC133 SDRAM	PC-133	1060 MB/s	133 MHz	
DDR-333	PC-2700	2700 MB/s	166 MHz	
DDR-400	PC-3200	3200 MB/s	200 MHz	
DDR2-667	PC2-5300	5333 MB/s	667 MHz	
DDR3-1600	PC3-12800	12 800 MB/s	1600 MHz	
DDR2-800	PC2-6400	6400 MB/s	400 MHz	
DDR3-1333	PC3-10600	10 667 MB/s	1333 MHz	
DDR3-1866	PC3-14900	14 933 MB/s	1867 MHz	
DDR3-2133	PC3-17000	17 066 MB/s	2133 MHz	

MEMORIAS PARA PC PORTÁTILES

Nombre estándar	Reloj de <u>Bus</u>	Reloj de memoria	Datos transferidos por segundo	Nombre del módulo	Máxima capacidad de transferencia
DDR-200	100 MHz	100 MHz	200 Millones	PC-1600	1600 <u>MB/s</u> (1,6 <u>GB/s</u>)
DDR-266	133 MHz	133 MHz	266 Millones	PC-2100	2128 <u>MB/s</u> (2,1 <u>GB/s</u>)
DDR-333	166 MHz	166 MHz	333 Millones	PC-2700	2656 MB/s (2,6 GB/s)
DDR-400	200 MHz	200 MHz	400 Millones	PC-3200	3200 <u>MB/s</u> (3,2 <u>GB/s</u>)

SDRAM SODIMM — 144pin 67.6 mm GLOBAL 128MB SDRAM PC133 CL3 144-PIN SOCIMM Performance Quality Assisbility MEMORY Invertor Affarman 29 mm Key Features - 30mm x 87.6mm - 200 pins - 3.3V Voltage Key - Voltage Key - Worling

La ROM (memoria de sólo lectura)

es una memoria de semiconductor no destructible, es decir, que no se puede escribir sobre ella, y que conserva intacta la información almacenada, incluso en el caso de interrupción de corriente.

http://es.wikipedia.org/wiki/Memoria ROM

✓ Estáticas

+Har CD-	ovable Device d Drive ROM Drive	es		Item Specific Help
	work boot fro	om AMD Am79	C970A	Keys used to view or configure devices: (Enter> expands or collapses devices with a + or - (Ctr1+Enter> expands all (Shift + 1> enables or disables a device. (+> and (-> moves the device up or down. (n) May move removable device between Hard
				Disk or Removable Disk (d> Remove a device that is not installed.

La tarjeta gráfica o tarjeta de vídeo

 La tarjeta gráfica o tarjeta de vídeo es una tarjeta de circuito impreso encargada de transformar las señales eléctricas que llegan desde el microprocesador en información comprensible y representable por la pantalla del ordenador. http://es.wikipedia.org/wiki /Tarjeta gr%C3%A1fica

La tarjeta de sonido

es una <u>tarjeta de expansión</u> para <u>computadoras</u> que permite la entrada y salida de <u>audio</u> bajo el control de un programa informático.

La tarjeta de red

Es un dispositivo electrónico que permite a una DTE (Data Terminal Equipment) ordenador o impresora acceder a una red y compartir recursos entre dos o más equipos.

http://es.wikipedia.org/
wiki/Tarjeta de red

El disco duro (hard disk, HD),

Es el dispositivo encargado de almacenar información de forma persistente en un ordenador.

http://es.wikipedia.org/wiki/Disco_duro

PARTES INTERNAS DEL DISCO DURO

SUPERFICIE DEL DISCO

DICO DURO IDE DICO DURO SATA

□ VELOCIDAD DE LECTURA DISCOS DUROS

5400 -7200 -10000 - 15000 -20000- RPM

CORRE DE DATOS DE 7 HILOS /FILAMENTOS SATA

CORREA DE DATOS SATA (SERIAL ATA)

CORREA DE DATOS IDE

CONVERTIDOR - MOLEX A SATA

DISCOS DUROS EXTERNOS - USB

Las unidades de disco

 como la de CD o de disquetes, son los equipos que reproducen o graban información (datos, música, videos, imagenes, etc.) http://es.wikipedia.o rg/wiki/Unidad de d isco

Las unidades de disco

En <u>informática</u>, **unidad de disco** se refiere al dispositivo o aparato que realiza las operaciones de lectura y escritura de los <u>medios o soportes</u> <u>de almacenamiento</u> con forma de disco, más específicamente a las unidades de <u>disco duro</u>, <u>unidades de discos flexibles</u>(disquetes de 5¼" y de 3½"), <u>unidades de discos ópticos (CD, DVD, HD DVD</u> o <u>Blu-ray</u>) o unidades de <u>discos magneto-ópticos</u> (<u>discos Zip</u>, <u>discos Jaz</u>, <u>SuperDisk</u>).

No todos los discos son grabables:

Algunos solo permiten la lectura como el CD convencional.

Otros permiten una única escritura e infinidad de lecturas (WORM).

Otros limitan el número de lecturas y o escrituras: CD-R, DVD-R.

Otros permiten múltiples escrituras: <u>CD-RW</u>, <u>DVD-RW</u>.

Fuente de Energía / poder

 Las fuentes de energía convierten el voltaje de entrada de CA en voltaje de salida de CC. Las fuentes de energía suelen proporcionar voltajes de 3,3 V; 5 V y 12 V

FUENTES DE PODER

□ PARA CASE DESKTOP

4 PINES – 12V -DC CONECTOR 20/24 PINES

MOLEX-DC

□ AT

El monitor

es el dispositivo
 <u>periférico</u> de salida
 más importante de un
 ordenador; su función
 es la de representar la
 información con la que
 estamos.

http://es.wikipedia.org /wiki/Pantalla_de_ord enador

Resoluciones de pantalla			
Estándar de pantalla	Píxeles por línea (H x V)	Relación de aspecto	
CGA	320 x 200	16:10	
EGA	640 x 350	11:6	
VGA	640 x 480	4:3	
WVGA	854 x 480	16:9	
SVGA	800 x 600	4:3	
XGA	1024 x 768	4:3	
WXGA	1280 x 800	16:10	
SXGA	1280 x 1024	5:4	
SXGA+	1400 x 1050	4:3	
WSXGA	1600 x 1024	25:16	
UXGA	1600 x 1200	4:3	
HDTV	1920 x 1080	16:9	
WUXGA	1920 x 1200	16:10	
QXGA	2048 x 1536	4:3	
QSXGA	2560 x 2048	5:4	
WQUXGA	3840 x 2400	16:10	
HXGA	4096 x 3072	4:3	
WHXGA	5120 x 3200	8:5	
HSXGA	5120 x 4096	5:4	
WHSXGA	6400 x 4096	25:16	
HUXGA	6400 x 4800	4:3	
WHUXGA	7680 x 4800	8:5	

Ratón (Mouse)

 El Mouse o Ratón, es también un periférico de entrada, su función es apuntar con un cursor en forma de flecha, u otro, para seleccionar cualquier aplicación dentro del computador.

Teclado

El Teclado es un periférico de entrada y esta compuesto por teclas alfanuméricas que esta formado por las letras del alfabeto latino, números y algunos signos especiales. Las denominadas teclas direccionales o movimiento del cursor que se encuentran situadas en la parte inferior, hacia la derecha del teclado, están representadas por cuatro flechas que sirve para movilizar el cursor en el sentido que indica cada una de ellas sin borrar las letras o caracteres escritos y las teclas numéricas que es similar a las de una calculadora y se emplea principalmente, para introducir información numérica.

Otros Periféricos

 El hardware complementario son todos aquellos dispositivos adicionales, no esenciales que pueden ser:

- Escáner
- Cámara de vídeo digital,
 Webcam.
- Impresora
- Micrófono o parlante

Unidades de medida en Informática

 Bit es el acrónimo de Binary digit. (dígito binario). Un bit es un dígito del sistema de numeración binario. Mientras que en el sistema de numeración decimal se usan diez dígitos, en el binario se usan sólo dos dígitos, el 0 y el 1. Un bit o dígito binario puede representar uno de esos dos valores, 0 ó 1.

Se puede imaginar un bit, como una bombilla que puede estar en uno de los siguientes dos estados:

apagada o encendida

Unidades de medida en Informática

- Bit (b): unidad básica que representa un digito binario (0 ó 1)
- Byte (B): 8 bit
- Kilobyte (KB): 1024 Bytes
- Megabyte (MB): 1024 KiB
- Gigabyte (GB): 1024 MiB
- Terabyte (TB): 1024 GiB
- Petabyte (PB): 1024 TiB
- Exabyte (EB): 1024 PiB
- Zettabyte (ZB): 1024 EiB
- Yottabyte (YB): 1024 ZiB

El Código Ascii

El código ASCII (siglas en ingles para American Standard Code for Information Interchange, es decir Código Americano (Je! lease estadounidense...) Estándar para el intercambio de Información) (se pronuncia Aski).

Fue creado en 1963 por el Comité Estadounidense de Estándares o "ASA", este organismo cambio su nombre en 1969 por "Instituto Estadounidense de Estándares Nacionales" o "ANSI" como se lo conoce desde entonces.

TABLA ASCII ESTANDAR

					111	200	vw.opcionweb	.com							
Oct	Hex	Dec	Carácter	Oct	Hex	Dec	Carácter	Oct	Hex	Dec	Carácter	Oct	Hex	Dec	Carácter
0	00	0	NUL NULI	40	20	32		100	40	64	@	140	60	96	
1	01	1	SOH Start Of Heading	41	21	33	!	101	41	85	Α	141	61	97	а
2	02	2	STX Start of TeXt	42	22	34		102	42	66	В	142	62	98	b
3	03	3	ETX End of TeXt	43	23	35	#	103	43	67	С	143	63	99	С
4	04	4	EOT End of Transmission	44	24	36	\$	104	44	68	D	144	64	100	d
5	05	5	ENQ ENQuiry	45	25	37	%	105	45	69	E	145	65	101	е
6	06	6	ACK ACKnowledge	46	26	38	&	106	46	70	F	146	66	102	f
7	07	7	BEL BELI	47	27	39		107	47	71	G	147	67	103	g
10	08	8	BS BackSpace	50	28	40	(110	48	72	Н	150	68	104	h
11	09	9	TAB horizontal TAB	51	29	41)	111	49	73		151	69	105	ı
12	0A	10	LF new Line Feed	52	2A	42	*	112	4A	74	J	152	6A	106	j
13	08	11	VT Vertical Tab	53	28	43	+	113	4B	75	K	153	6B	107	k
14	0C	12	FF new page From Feed	54	2C	44	,	114	4C	76	L	154	6C	108	
15	0D	13	CR Carriage Return	55	2D	45		115	4D	77	M	155	6D	109	m
16	0E	14	SO Shift Out	56	2E	46	-	116	4E	78	N	156	6E	110	n
17	0F	15	SI Shift In	57	2F	47	1	117	4F	79	0	157	6F	111	0
20	10	16	DLE Data Link Escape	60	30	48	0	120	50	80	Р	160	70	112	р
21	11	17	DC1 Bevice Control 1	61	31	49	A 11	121	51	81	Q	161	71	113	q
22	12	18	DC2 Device Control 2	62	32	50	2	122	52	82	R	162	72	114	r
23	13	19	DC3 Device Control 3	63	33	51	3	123	53	83	S	163	73	115	S
24	14	20	DC4 Device Control 4	64	34	52	4	124	54	84	T	164	74	116	t
25	15	21	NAK negative acknowledge	65	35	53	5	125	55	85	U	165	75	117	u
26	16	22	SYN SYNchronous idle	66	36	54	6	126	56	86	V	166	76	118	v
27	17	23	ETB End of Transmission, Block	67	37	55	7	127	57	87	W	167	77	119	w
30	18	24	CAN CANcel	70	38	56	8	130	58	88	X	170	78	120	×
31	19	25	EM End of Medium	71	39	57	9	131	59	89	Y	171	79	121	у
32	1A	26	SUB SUBstitute	72	ЗА	58	:	132	5A	90	Z	172	7A	122	Z
33	18	27	ESC ESCape	73	3B	59	;	133	5B	91		173	7B	123	{
34	10	28	FS File Separator	74	30	60	<	134	5C	92	1	174	7C	124	
35	1D	29	GS Group Separator	75	3D	61	-	135	5D	93]	175	7D	125	}
36	1E	30	RS Record Separator	76	3E	62	>	136	5E	94	۸	176	7E	126	~
37	1F	31	US Unit Separator	77	3F	63	?	137	5F	95		177	7F	127	DELETE

Sistemas de Numeración

Binario	0 1	© carlospes.com
Octal	01234567	
Decimal	012345678	3 9
Hexadecimal	012345678	39ABCDEF

Sistema de numeración decimal

El sistema de numeración que utilizamos habitualmente es el **decimal**, que se compone de diez símbolos o dígitos (0, 1, 2, 3, 4, 5, 6, 7, 8 y 9) a los que otorga un valor **dependiendo de la posición** que ocupen en la cifra: unidades, decenas, centenas, millares, etc

Sistema de numeración decimal

El valor de cada dígito está asociado al de una potencia de base 10, número que coincide con la cantidad de símbolos o dígitos del sistema decimal, y un exponente igual a la posición que ocupa el dígito menos uno, contando desde la derecha.

En el sistema decimal el número **528**, por ejemplo, significa:

5 centenas + 2 decenas + 8 unidades, es decir:

 $5*10^2 + 2*10^1 + 8*10^0$ o, lo que es lo mismo:

$$500 + 20 + 8 = 528$$

Sistema de numeración decimal

En el caso de números con decimales, la situación es análoga aunque, en este caso, algunos exponentes de las potencias serán negativos, concretamente el de los dígitos colocados a la derecha del separador decimal. Por ejemplo, el número **8245,97** se calcularía como:

8 millares + 2 centenas + 4 decenas + 5 unidades + 9 décimos + 7 céntimos

$$8*10^3 + 2*10^2 + 4*10^1 + 5*10^0 + 9*10^{-1} + 7*10^{-2}$$
, es decir:

$$8000 + 200 + 40 + 5 + 0.9 + 0.07 = 8245.97$$

Sistema de numeración binario.

El sistema de numeración binario utiliza sólo dos dígitos, el cero (0) y el uno (1).

En una cifra binaria, cada dígito tiene distinto valor dependiendo de la posición que ocupe. El valor de cada posición es el de una potencia de **base 2**, elevada a un exponente igual a la posición del dígito menos uno. Se puede observar que, tal y como ocurría con el sistema decimal, la base de la potencia coincide con la cantidad de dígitos utilizados (2) para representar los números.

De acuerdo con estas reglas, el número binario **1011** tiene un valor que se calcula así:

$$1*2^3 + 0*2^2 + 1*2^1 + 1*2^0$$
, es decir:

$$8 + 0 + 2 + 1 = 11$$

y para expresar que ambas cifras describen la misma cantidad lo escribimos así:

$$1011_2 = 11_{10}$$

Sistema de numeración binario.

Conversión entre números decimales y binarios

Convertir un número decimal al sistema binario es muy sencillo: basta con realizar divisiones sucesivas por 2 y escribir los restos obtenidos en cada división en orden inverso al que han sido obtenidos.

Por ejemplo, para convertir al sistema binario el número **77**₁₀ haremos una serie de divisiones que arrojarán los restos siguientes:

77 : 2 = 38 Resto: **1**

38 : 2 = 19 Resto: **0**

19 : 2 = 9 Resto: **1**

9 : 2 = 4 Resto: **1**

4:2 = 2 Resto: 0

2:2 = 1 Resto: 0

1:2 = 0 Resto: 1

y, tomando los restos en orden inverso obtenemos la cifra binaria:

$$77_{10} = 1001101_2$$

Ejercicio 1:

Expresa, en código binario, los números decimales siguientes: 191, 25, 67, 99, 135, 276

El tamaño de las cifras binarias

La cantidad de dígitos necesarios para representar un número en el sistema binario es mayor que en el sistema decimal. En el ejemplo del párrafo anterior, para representar el número 77, que en el sistema decimal está compuesto tan sólo por dos dígitos, han hecho falta siete dígitos en binario.

Para representar números grandes harán falta muchos más dígitos. Por ejemplo, para representar números mayores de 255 se necesitarán más de ocho dígitos, porque $2^8 = 256$ y podemos afirmar, por tanto, que 255 es el número más grande que puede representarse con ocho dígitos.

Como regla general, con n dígitos binarios pueden representarse un máximo de 2^n , números. El número más grande que puede escribirse con n dígitos es una unidad menos, es decir, $2^n - 1$. Con cuatro bits, por ejemplo, pueden representarse un total de 16 números, porque $2^4 = 16$ y el mayor de dichos números es el 15, porque $2^4 - 1 = 15$.

Ejercicio 2:

Averigua cuántos números pueden representarse con 8, 10, 16 y 32 bits y cuál es el número más grande que puede escribirse en cada caso.

Ejercicio 3:

Dados dos números binarios: **01001000** y **01000100** ¿Cuál de ellos es el mayor? ¿Podrías compararlos sin necesidad de convertirlos al sistema decimal?

Conversión de binario a decimal

El proceso para convertir un número del sistema binario al decimal es aún más sencillo; basta con desarrollar el número, teniendo en cuenta el valor de cada dígito en su posición, que es el de una potencia de 2, cuyo exponente es 0 en el bit situado más a la derecha, y se incrementa en una unidad según vamos avanzando posiciones hacia la izquierda.

Por ejemplo, para convertir el número binario **1010011**₂ a decimal, lo desarrollamos teniendo en cuenta el valor de cada bit:

$$1*2^6 + 0*2^5 + 1*2^4 + 0*2^3 + 0*2^2 + 1*2^1 + 1*2^0 = 83$$

$$1010011_2 = 83_{10}$$

Ejercicio 4:

Expresa, en el sistema decimal, los siguientes números binarios: **110111, 111000, 010101, 101010, 1111110**

Conversión de un número decimal a octal

La conversión de un número decimal a octal se hace con la misma técnica que ya hemos utilizado en la conversión a binario, mediante divisiones sucesivas **por 8** y colocando los restos obtenidos **en orden inverso**. Por ejemplo, para escribir en octal el número decimal **122**₁₀ tendremos que hacer las siguientes divisiones:

122 : 8 = 15 Resto: **2**

15 : 8 = 1 Resto: **7**

1:8=0 Resto: 1

Tomando los restos obtenidos en orden inverso tendremos la cifra octal:

Ejercicio 5:

Convierte los siguientes números decimales en octales: 63_{10} , 513_{10} , 119_{10}

Conversión octal a decimal

La conversión de un número octal a decimal es igualmente sencilla, conociendo el peso de cada posición en una cifra octal. Por ejemplo, para convertir el número 237₈ a decimal basta con desarrollar el valor de cada dígito:

$$2*8^2 + 3*8^1 + 7*8^0 = 128 + 24 + 7 = 159_{10}$$

$$237_8 = 159_{10}$$

Ejercicio 6:

Convierte al sistema decimal los siguientes números octales:

45₈, 125₈, 625₈

Sistema de numeración hexadecimal

En el sistema **hexadecimal** los números se representan con dieciséis símbolos: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E y F. Se utilizan los caracteres A, B, C, D, E y F representando las cantidades decimales 10, 11, 12, 13, 14 y 15 respectivamente, porque no hay dígitos mayores que 9 en el sistema decimal. El valor de cada uno de estos símbolos depende, como es lógico, de su posición, que se calcula mediante potencias de base 16.

Calculemos, a modo de ejemplo, el valor del número hexadecimal 1A3F₁₆:

$$1A3F_{16} = 1*16^3 + A*16^2 + 3*16^1 + F*16^0$$

$$1A3F_{16} = 6719_{10}$$

Ejercicio 7:

Expresa en el sistema decimal las siguientes cifras hexadecimales:

Sistema de numeración hexadecimal

Ensayemos, utilizando la técnica habitual de divisiones sucesivas, la conversión de un número decimal a hexadecimal. Por ejemplo, para convertir a hexadecimal del número 1735_{10} será necesario hacer las siguientes divisiones:

1735 : 16 = 108 Resto: **7**

108 : 16 = 6 Resto: **C** es decir, **12**₁₀

6 : 16 = 0 Resto: **6**

De ahí que, tomando los restos en orden inverso, resolvemos el número en hexadecimal:

$$1735_{10} = 6C7_{16}$$

Ejercicio 8:

Convierte al sistema hexadecimal los siguientes números decimales: 3519_{10} , 1024_{10} , 4095_{10}

- Bit (b): unidad básica que representa un digito binario (0 ó 1)
- Byte (B): 8 bit
- Kilobyte (KB): 1024 Bytes
- Megabyte (MB): 1024 KiB
- Gigabyte (GB): 1024 MiB
- Terabyte (TB): 1024 GiB
- Petabyte (PB): 1024 TiB
- Exabyte (EB): 1024 PiB
- Zettabyte (ZB): 1024 EiB
- Yottabyte (YB): 1024 ZiB

