Data viz for scientists How a picture tells a 1000s words

21st october 2021 IPOP-UP bioinformatics meetings Alix Silvert (They/them)

Graphs are cool!

- Eyeball the data
- Summarize data or results
- Reinforce a point
- Beautiful and attention grabbing

What am I using?

- R and ggplot2
 - Easy to use, hard to mess up too bad
- Datasets included in ggplot2 (when I can)
 - Iris
 - Diamonds

Readability

Basic quality

What we're aiming at

- Labeled axis
- Readable text
- Efficient use of space (legend)
- Visible colors
- Not the "default" look

It takes some work

```
p <- ggplot(iris, aes(x = Petal.Length, y = Petal.Width, color = Species))</pre>
p <- p + geom point()</pre>
q <- ggplot(iris, aes(x = Petal.Length, y = Petal.Width, color = Species))</pre>
 q <- q + geom point()</pre>
q <- q + theme_bw()</pre>
q \leftarrow q + x \lim(c(0,7.1)) + y \lim(c(0,2.6))
q <- q + xlab("Petal length (cm)") + ylab("Petal width (cm)")</pre>
q <- q + scale_color_brewer(name = "Species", palette = "Dark2")</pre>
 q \leftarrow q + theme(
   axis.text = element text(size = 16),
   axis.title = element text(size = 20),
   legend.text = element_text(size = 16),
   legend.title = element_text(size = 16),
   legend.justification = c(1, 0),
   legend.position = c(0.95, 0.05),
   legend.box.background = element_rect(colour = "black")
```

Keep it simple!

- One graph, one idea
- If you need more, make several graphs
- NO 3D!
- (Dimensionality reduction is it's own subject)

Where will this figure be?

- How are the colors going to show?
- Is the size adapted ?
- Will the text be readable?

 What format of output is best?

Image formats

Vectorial

- Bunch of formulas
- No compression
- Friendly to post-R improvements

Raster

- Bunch of pixels
- Compression algorithm

Vectorial modification

.svg format / inkscape

- Select every dot of a single color
- Modify your text
- Resize without lost

Readability in short

- Labeled axis and legend
- Clear color differences
- Appropriate font and font size

- One idea per graph
- Plot your graph for your output
- Use vectorial format when possible

The Dark Side of dataviz

Dark side?

- Graph is clear, but misleading
- Exploiting a bias in thinking
- Playing on a hidden assumption

it is not always done on purpose

An innocent example

What do the whiskers represent?

An innocent example

The upper whisker extends from the hinge to the largest value no further than 1.5 * IQR from the hinge (where IQR is the inter-quartile range, or distance between the first and third quartiles). The lower whisker extends from the hinge to the smallest value at most 1.5 * IQR of the hinge. Data beyond the end of the whiskers are called "outlying" points and are plotted individually.

Did you know it? Would you have checked?

Also: wrong type of graph

Colors have meaning (GTEx)

What tissue are related?
Which one is "Whole Blood"

Colors have meaning (GTEx)

Distorted/misleading color scale

Areas and angles are hard to read

Areas and angles are hard to read

There's literally a game about that

Truncated axis

Inverted axis

Non-linear axis (left one is log2)

Inverted axis, or distorted axis

- Avoid it as much as possible
- Plot the modified variable when needed (i.e. log2(RPKM + 1))
- Choose your variable so that what goes up and down is intuitive

In conclusion

- Be sure your graph is understandable
 - Even if people don't listen to you
- Be careful not to mislead the reader
 - It's easier than you think
- https://www.r-graph-gallery.com/

We are looking for speakers

If you want to communicate on methods or a bioinformatic related subject, contact me: alix.silvert@u-paris.fr

