

ORDINARY REDUCER FACTORIZATION

Why

Let $(A \in \mathbb{R}^{m \times m}, b \in \mathbb{R}^m)$ be an ordinarily reducible linear system with orindary reducer sequence (L_1, \ldots, L_{m-1}) . If $U = L_{m-1} \cdots L_2 L_1 A$, then

$$A = (L_{m-1} \cdots L_2 L_1)^{-1} U$$

is a factorization of U.

Inverting $L_{m-1} \cdots L_2 L_1$

Of course, assuming invertibility of the L_i ,

$$(L_{m-1}\cdots L_2L_1)^{-1}=L_1^{-1}L_2^{-1}\cdots L_{m-1}^{-1}.$$

So we are interested in the inverse of L_i for $i \leq m-1$.

Proposition 1. L_i^{-1} is L_i with the subdiagonal entries negated.

Proposition 2. $L_k^{-1}L_{k+1}^{-1}$ is the unit lower-triangular matrix with the entries of both L_k^{-1} and L_{k+1}^{-1} in their usual places.

Factorization perspective

Since the matrix L_k has the form

$$L_{k} = \begin{bmatrix} 1 & & & & & \\ & \ddots & & & & \\ & & 1 & & & \\ & & -\ell_{k+1,k} & 1 & & \\ & & \vdots & & \ddots & \\ & & -\ell_{mk} & & 1 & \end{bmatrix}$$

where ℓ_{ij} are the row multipliers (see Ordinary Reducer Sequence), and immediate consequence Proposition 1 and Proposition 2 is that

$$L = L_1^{-1} L_2^{-1} \cdots L_{m-1}^{-1} = \begin{bmatrix} 1 \\ \ell_{21} & 1 \\ \ell_{31} & \ell_{32} & 1 \\ \vdots & \vdots & \ddots & \ddots \\ \ell_{m1} & \ell_{m2} & \cdots & \ell_{m,m-1} & 1 \end{bmatrix}$$

In other words, we have A = LU where L is unit lower triangular and U is upper triangular. So we have factorized A in terms of a lower and upper triangular matrix.

