The ATLAS Radiation Dose Measurement System

Jochen Hartert

Graduiertenkolleg Seminar Freiburg, 15 October 2008

The ATLAS Experiment

Proton-proton collisisions at $\sqrt{s}=14\,\mathrm{TeV}$ and $\mathcal{L}=10^{34}\mathrm{cm}^{-2}\mathrm{s}^{-1}$

Motivation and Measured Quantities

- Why care about radiation dose levels?
 - Irradiation changes the performance of detectors and electronics!
- Measured quantities:
 - 1 Total lonizing Dose (TID)
 - Mainly due to photons, electrons and positrons
 - Measured in Gray (Gy), 1 Gy = 1 J/kg
 - Problem to MOS and bipolar devices
 - f 2 Non Ionizing Energy Loss (NIEL) / equivalent fluence $f (\Phi_{
 m eq})$
 - Hadrons cause displacement damage in silicon
 - ullet Expressed in 1 MeV neutron equivalent fluence (n/cm^2)
 - $\Phi_{\rm eq} = \kappa \Phi = \frac{\int D(E)\phi(E) dE}{D(E_{\rm n}=1\,{
 m MeV})}$
 - Thermal neutron fluence

Radiation Field in ATLAS

- Exposure of electronics to:
 - radiation from pp-collisions (mainly pions)
 - neutrons from interactions of hadrons with detector material
- After 10 years of LHC operation electronics irradiated up to:
 - Total Ionizing Dose: TID > 100 kGy
 - Non Ionizing Energy Loss $\Phi_{eq} > 10^{15} \ 1 \, \mathrm{MeVn/cm^{-2}}$
- Monitoring of radiation levels needed in order to:
 - cross check simulations
 - understand change in detector performance
 - and as independent measurement

Non Ionising Energy Loss in the ATLAS Inner Detector

FLUKA simulation by Ian Dawson

4 / 23

Radiation Field at SLHC

- Luminosity: $\mathcal{L}(\mathsf{SLHC}) \approx 10 \times \mathcal{L}(\mathsf{LHC})$
- Ionizing dose scales with luminosity: $TID(SLHC) \approx 10 \times TID(LHC)$
- Upgrade of ATLAS tracker to full silicon
 - ightarrow loss of moderating effect of the Transition Radiation Tracker
 - → NIEL not expected to scale with luminosity
 - \rightarrow as compensation introduce a 5 cm thick moderator

Non Ionising Energy Loss at the SLHC

lan Dawson

Total Ionizing Dose (TID) Measurement - RadFETs

- RadFET: Radiation Field Effect Transistor
- Electrons escape, holes are trapped in SiO₂-Si boundary.
- Higher negative gate voltage needed to open transitor.
- Measure gate voltage increase at given drain current. $\Delta V = a \times (TID)^b$
- Sensitivity depends on oxide thickness
- Three RadFETs used in ATLAS to cover large range of doses:
 - 0.01 Gy to 10 Gy: 1.6 μ m from CNRS LAAS, Toulouse, France
 - \bullet up to $10^4\,\mathrm{Gy}{:}\,\,0.25\,\mu\mathrm{m}$ from REM, Oxford, UK
 - up to 10^5 Gy: $0.13 \,\mu \text{m}$ from REM, Oxord, UK

Response curves of RadFETs in use

$0.25\,\mu\mathrm{m}$ REM RadFET up to $10^4\,\mathrm{Gy}$

Non Ionising Energy Loss (NIEL) Measurement (1)

First Method: Bulk damage in forward biased p-i-n diode

- NIEL causes bulk damage in silicon
- ⇒ reduced minority carrier lifetime in a p-i-n diode
- increase of resistance
- measure voltage change at given forward current

$$\Phi_{eq} = k \times (V - V_0)$$

p-i-n diodes used in ATLAS:

- 10⁸ to 10¹² n/cm²: CMRP from University of Wollongong, Australia
- 2 10¹² to 10¹⁵ n/cm²: OSRAM BPW34 Silicon PIN photodiode

Response curves of p-i-n diodes in use

The BPW34 diodes that are used in ATLAS were pre-irradiated with $3\times 10^{12}\,\text{n/cm}^2$

Non Ionising Energy Loss (NIEL) Measurement (2)

Second Method: Bulk damage in silicon

 \rightarrow Increase of leakage current (I_{leakage}) in reverse biased diode:

$$\Phi_{eq} = I_{\text{leakage}}/(\alpha V)$$
 (V: sensitive (depleted) Volume)

- 10^{11} to 10^{15} n/cm² higher fluences with higher voltage
 - Pad diode with guard ring structure on epitaxial silicon
 - $\bullet~25\,\mu\mathrm{m}$ thin \to fully depleted at voltages $<30\,\mathrm{V}$ also after irradiation

Thermal Neutron Fluence Measurements

- DMILL transistors are used in readout electronics in parts of the Inner Detector (SCT).
- Base current at fixed collector current sensitive to fast and thermal neutrons:

$$\frac{\Delta I_b}{I_c} = k_{eq} \Phi_{eq} + k_{th} \Phi_{th}$$

- k_{eq} and k_{th} known Φ_{eq} measured with diodes
 - \rightarrow determine Φ_{th}

Radiation Monitoring Sensor Boards

- Inner Detector: 14 Modules that contain:
 - 3 RadFETs for different dose ranges
 - 2 PIN diodes for low and high fluences
 - 1 Epitaxial (large fluence range)
 - 2 DMILL bipolar transistors
 - NTC temperature sensor
 - resistive pad for heating on the back side

- Outside the Inner Detector region: 48 modules
 - 1 high sensitivity PIN diode (CMRP)
 - 1 RadFET
 - NTC temperature sensor

Readout

- Usage of standard ATLAS components for straight forward integration:
 - ELMB: 64 adc channels, CAN bus communication
 - ELMB-DAC: current source, 16 channels
- Sensors are only biased during readout
- PVSS based detector control system (DCS)
- Integration in ATLAS DCS and data base archiving

ATLAS DETECTOR CONTROL **ATLAS** READY WARNING 8 READY <u>PIX</u> ок 🚊 READY SCT TRT READY ок 🙇 IDE READY w a LAR READY WA READY w g TIL MDT READY 8 READY w a TGC ок 👸 RPC READY BARREL B LAYER csc READY ок д DISKS BARREL ск 🖺 CIC READY ENDCAP A ENDCAP C EXT READY w g BARREL A TDQ READY ск 🚇 ENDCAP A ENDCAP C READY ок 🖴 LHC **EMBA** ок 🖴 READY FWD EMECA SAFETY READY WB EMECC HEC FCAL A HEC FCAL C LBA LBC EBA EBC BARREL A BARREL C ENDCAP C COOLING RPC SIDE A

ENVIRONMEN'

TGC SIDE A

Readout and Online Monitoring

Tests in Mixed Radiation Environment at CERN PS

- Mixed high energy particles in IRRAD6 environment at CERN PS.
- Two modules (Inner Detector style) are irradiated since mid May.
- Test of readout setup/procedure and calibration constants.

F. Ravotti, M. Glaser et. al

PIN diodes in Mixed Radiation Environment

- Secondary Emission Counter (SEC) counts number of protons
 - conversion factors to TID and NIEL from previous measurements
 - not useful for very small doses (unstable beam conditions)
- CMRP PIN diode also sensitive to low fluences (10⁹ 1 MeV neq/cm²).
- Good agreement between PIN diodes (20 % uncertainty).

RadFETs in Mixed Radiation Environment

High sensitivity RadFET (LAAS $1.6 \mu m$)

Medium sensitivity RadFET (REM 0.25 μ m)

- LAAS RadFET sensitive already at doses 10^{-2} Gy
- But: reduced response of LAAS in proton rich environment
 - \rightarrow recalibration for this special case

DMILL Transistors in Mixed Radiation Environment

thermal neutron fluence

- Directly measure degradation of DMILL transistor performance.
- Determine neutron fluence (using Φ_{eq} from PIN diode as input).
- Improvement of the readout timing to avoid "noise"

ATLAS Baseline Measurements

Summary

- Radiation monitoring important
 - to cross check simulations
 - determine the correlation between dose levels and luminosity
 - monitor electronics performance changes particularly in the inner detector
- The system in ATLAS allows online monitoring of radiation levels:
 - TID in SiO₂ from cGy up to 100 kGy
 - NIEL in Si from $10^8 \,\mathrm{neg/cm^{-2}}$ up to $10^{15} \,\mathrm{neg/cm^{-2}}$
 - thermal neutron fluence and degradation of DMILL bipolar transistors
- Integration in ATLAS Detector Control System
- Test and optimization in mixed radiation field at low dose rates

Backup

— IDE/RADMON/PST/Zm89/R23/Phi0/Actual/PIN1/adc1
 — ATLGCSIS:Magnet/CentralSolenoid.Current
 — IDE/RADMON/PST/Zm89/R23/Phi0/Calculated/T
 — ATLGCSIS:Magnet/BarrelToroid.Current