补充:遗传公式

复习根遗传公式: 设 n 方阵 A 特征根为 $\lambda(A) = \{\lambda_1, \dots, \lambda_n\}$, 则 f(A) 的特根为

$$\lambda[f(A)] = \{f(\lambda_1), \dots, f(\lambda_n)\}$$

其中
$$f(A) = c_0 I + c_1 A + \cdots + c_k A^k$$

$$f(x) = c_0 + c_1 x + \dots + c_k x^k$$
 为任一多项式(或解析函数)

特别推论: (记住)

(1) 平移公式: $A \pm cI$ 的根为 $\lambda(A \pm cI) = \{\lambda_1 \pm c, \dots, \lambda_n \pm c\}$

(2) 倍法公式:
$$kA$$
 的根为 $\lambda(kA) = \{k\lambda_1, \dots, k\lambda_n\}, \lambda(-A) = \{-\lambda_1, \dots, -\lambda_n\}$

(3) 幂公式:
$$A^p$$
 根公式为 $\lambda(A^p) = \{\lambda_1^p, \dots, \lambda_n^p\}, p = 0,1,2,\dots$

.....

遗传定理: A 的特向 $X_1 \cdots X_n$ 也是 f(A) 的特向

其中 f(x) 为任一多项式(或解析函数)

引理 1(遗传公式): 若 $A = A_{n \times n}$ 有特向: $AX_1 = \lambda_1 X_1, \cdots$, $AX_n = \lambda_n X_n$

则
$$f(A)$$
 也有特向: $f(A)X_1 = f(\lambda_1)X_1, \cdots, f(A)X_n = f(\lambda_n)X_n$

其中 f(x) 为任一多项式(或解析函数)

Pf. 证法 1: 设 $AX_1 = \lambda_1 X_1$, 其中 λ_1 为特根, X_1 为特向

必有
$$A^k X_1 = \lambda_1^k X_1$$
, $k = 0, 1, 2, \dots$, 任取多项式 $f(x) = c_0 + c_1 x + \dots + c_k x^k$

则有
$$f(A)X_1 = (c_0I + c_1A + \cdots + c_kA^k)X_1 = (c_0 + c_1\lambda_1 + \cdots + c_k\lambda_1^k)X_1$$

即有
$$f(A)X_1 = f(\lambda_1)X_1$$

同理
$$f(A)X_2 = f(\lambda_2)X_2, \dots, f(A)X_n = f(\lambda_n)X_n$$
 证毕

使
$$P^{-1}AP = D = \begin{pmatrix} \lambda_1 & 0 \\ & \ddots & \\ 0 & \lambda_n \end{pmatrix}$$
 (对角形), $\lambda(A) = \{\lambda_1, \dots, \lambda_n\}$

其中 $P = (X_1 \cdot \dots \cdot X_n)$ 可逆,P 的列 $X_1 \cdot \dots \cdot X_n$ 都是 A 的特向:

$$\oint AX_1 = \lambda_1 X_1, \dots, AX_n = \lambda_n X_n$$

利用公式
$$\mathbf{P}^{-1}f(\mathbf{A})\mathbf{P} = f(\mathbf{P}^{-1}\mathbf{A}\mathbf{P})$$

$$\Longrightarrow \mathbf{P}^{-1}f(\mathbf{A})\mathbf{P} = f(\mathbf{D}) = \begin{pmatrix} f(\lambda_1) & & \\ & \ddots & \\ & & f(\lambda_n) \end{pmatrix}$$
 (对角形),

 $\implies f(A) \stackrel{\text{fd}}{\Rightarrow} \lambda[f(A)] = \{f(\lambda_1), \dots, f(\lambda_n)\}$

且, P 的列 $X_1 \cdots X_n$ 都是 f(A) 的特向:

根据引理1,可得

遗传定理: A的特向 $X_1 \cdots X_n$ 也是f(A)的特向

其中 f(x) 为任一多项式

即,f(A)继承了A的全体特征向量 X_1 ······ X_n

备注: 若 A 可逆 (A^{-1} 存在),可取解析函数 $f(x) = x^{-1}$ 可写 $f(A) = A^{-1}$

遊公式: 若 A 可逆, A^{-1} 的根为 $\lambda(A^{-1}) = \{\lambda_1^{-1}, \dots, \lambda_n^{-1}\} = \{\frac{1}{\lambda_i}, \dots, \frac{1}{\lambda_n}\}$

且
$$A$$
与 A^{-1} 有相同特向 X_1, \dots, X_n !

备注: 可写解析函数 $f(x) = \mathbf{c}_0 + c_1 x + \dots + c_k x^k + \dots = \sum_{k=0}^{\infty} c_k x^k$ 幂级数

可写
$$f(A) = c_0 I + c_1 A + \dots + c_k A^k + \dots = \sum_{k=0}^{\infty} c_k A^k$$
 叫 A 幂级数

推广的根与特向遗传公式:

备注: 设n方阵A特根为 $\{\lambda_1, \dots, \lambda_n\}$,特向为 X_1, \dots, X_n

则
$$f(A)$$
 特根为 $\{f(\lambda_1), \dots, f(\lambda_n)\}$ 且有特向 X_1, \dots, X_n

其中
$$f(x) = \mathbf{c}_0 + c_1 x + \dots + c_k x^k + \dots = \sum_{k=0}^{\infty} c_k x^k$$
 为任一解析函数

$$f(A) = c_0 I + c_1 A + \dots + c_k A^k + \dots = \sum_{k=0}^{\infty} c_k A^k$$

特别例子: 令指数函数 $f(x) = e^x$ 展开后

$$f(x) = e^x = \sum \frac{x^k}{k!} = 1 + x + \frac{x^2}{2} + \frac{x^3}{3!} + \dots + \frac{x^k}{k!} + \dots$$

可写
$$f(A) = e^A = \sum \frac{A^k}{k!} = I + A + \frac{A^2}{2} + \frac{A^3}{3!} + \dots + \frac{A^k}{k!} + \dots$$

注意: e^A 对任一方阵 A 都有如上定义

备注 e^A 根与特向公式:

设方阵 A 特根为 $\lambda(A) = \{\lambda_1, \dots, \lambda_n\}$ 特向为 X_1, \dots, X_n

则
$$e^A$$
 特根为 $\lambda(e^A) = \{e^{\lambda_1}, \dots, e^{\lambda_n}\}$ 且有相同特向 X_1, \dots, X_n

.....

常见遗传法: (记住)

(1) 平移法: $A igli A \pm cI$ 有相同特向 $X_1, \dots, X_n!!!$

且
$$A \pm cI$$
 的根为 $\lambda(A \pm cI) = \{\lambda_1 \pm c, \dots, \lambda_n \pm c\}$

(2) 倍法: $A \ni kA$ 有相同特向 X_1, \dots, X_n

特别,A与-A有相同特向

(3) 幂法 : $A in A^p$ 有相同特向, $p = 0,1,2,\cdots$

复习秩1阵公式: 秩1方阵 $A = A_{n\times n}$ 必有秩1分解 $A = \alpha\beta$,

其中 α 可取A中任一非0列!

且有迹公式: $\beta \alpha = tr(A)$, 且 $\lambda(A) = \{tr(A), 0, \dots, 0\}$

定理: 秩 1 方阵 $\mathbf{A} = \mathbf{A}_{n \times n}$ 全体根为 $\lambda(A) = \{ \operatorname{tr}(A), 0, \dots, 0 \}$, $\lambda_1 = \operatorname{tr}(\mathbf{A})$, $\lambda_2 = \dots = \lambda_n = 0$

备注: 若方阵 $\mathbf{A} = \mathbf{A}_{n \times n}$ 为秩 1 (比例阵), 必有**秩** 1 分解 $\mathbf{A} = \boldsymbol{\alpha}_{n \times 1} \boldsymbol{\beta}_{1 \times n}$,

记为
$$\mathbf{A} = \alpha \boldsymbol{\beta}$$
, 其中 $\alpha = \alpha_{n \times 1}$ 为1列, $\boldsymbol{\beta} = \boldsymbol{\beta}_{1 \times n}$ 为1行

则
$$\alpha = \alpha_{n \times 1}$$
 是 $\lambda_1 = \operatorname{tr}(\mathbf{A})$ 的特征向量.

证: $: \mathbf{A} = \alpha \beta$ 为秩 1 分解, $: \beta \alpha = \operatorname{tr}(\mathbf{A})$

则 $\mathbf{A}\alpha = (\alpha\beta)\alpha = \alpha(\beta\alpha) = \alpha \operatorname{tr}(\mathbf{A}) = \operatorname{tr}(\mathbf{A})\alpha$, $\therefore \alpha$ 是特根 $\lambda = \operatorname{tr}(\mathbf{A})$ 的特征向量.

备注: 秩 1 方阵 A 必有高低分解 $A = \alpha \beta$,且 α 可取 A 中任一非 0 列!

定理: 秩1方阵 $\mathbf{A} = \mathbf{A}_{n \times n}$ 中任一非零列 α 都是 $\lambda_{l} = \operatorname{tr}(\mathbf{A})$ 的特征向量!

引理 1: 方程 βX = 0 的非 0 解 X 都是 ₹A = αβ 的特征向量(属于 0 根)

 \Rightarrow **A** $X = (\alpha \beta)X = \alpha(\beta X) = \vec{0} = 0X$,故 X 是特征向量(属于 0 根)

备注: 设秩 1 方阵 $\mathbf{A} = \alpha \boldsymbol{\beta}$, $\boldsymbol{\Diamond} \boldsymbol{\beta} = (b_1, \dots b_n) \neq 0$, 则 $\boldsymbol{\beta} \boldsymbol{X} = \vec{0}$

必有n-1个无关特解 Y_1, \dots, Y_{n-1}

证明: : 齐次**方程** $\beta X = 0$ 系数阵 $\beta = (b_1, \dots b_n) \neq 0$ 的秩: $rank(\beta) = 1$

故 $\beta X = \vec{0}$ 必有 $n - rank(\beta) = n - 1$ 个无关特解 Y_1, \dots, Y_{n-1} (基本解)

定理: 秩 1 方阵 $\mathbf{A} = \mathbf{\alpha}\mathbf{\beta}$ 的 0 根 $\lambda_2 = 0$ 恰有 n-1 个无关特征向量 Y_1, \dots, Y_{n-1}

其中 Y_1, \dots, Y_{n-1} 满足方程 $\beta X = b_1 x_1 + \dots + b_n x_n = 0$, $\beta = (b_1, \dots b_n)$

备注(观察法): 秩 1 方阵 $\mathbf{A} = \alpha \beta \Leftrightarrow \beta = (b_1, \dots b_n)$

观察方程 $b_1x_1+\cdots+b_nx_n=0$

可写出n-1无关特解 Y_1, \dots, Y_{n-1} (可以互正交 $Y_1 \perp \dots \perp Y_{n-1}$)

小结: 秩1阵有分解 $\mathbf{A} = \alpha \mathbf{\beta}$, α 可取 \mathbf{A} 任一非 0 列, \diamondsuit $\mathbf{\beta} = (b_1, \dots b_n)$

则 $\lambda(A) = \{ \operatorname{tr}(A), 0, \dots, 0 \}$, 且 α 是 $\lambda_1 = \operatorname{tr}(\mathbf{A})$ 的特征向量;

且 $b_1 x_1 + \dots + b_n x_n = 0$ ($\beta X = 0$)的 n - 1无关特解 Y_1, \dots, Y_{n-1}

(可互正交 $Y_1 \perp \cdots \perp Y_{n-1}$)都是 0 根 $\lambda = 0$ 的 n-1 个特向

备注(2 种情况): 设**秩 1 方阵 A** = $\mathbf{A}_{n\times n}$ 全体根为 $\lambda(A) = \{ \operatorname{tr}(A), 0, \dots, 0 \}$, $\lambda = \operatorname{tr}(\mathbf{A})$

Case1. 设秩 1 方阵 $\mathbf{A} = \mathbf{A}_{n \times n} \perp \lambda_1 = \operatorname{tr}(\mathbf{A}) \neq 0$,且有分解 $\mathbf{A} = \alpha \beta$,令 $\beta = (b_1, \dots b_n)$

 α 可取**A**中任一非 0 列!

则 \mathbf{A} 恰有 n 个无关特征向量: $\boldsymbol{\alpha}$, Y_1, \dots, Y_{n-1}

其中
$$Y_1, \dots, Y_{n-1}$$
 是 $b_1x_1 + \dots + b_nx_n = 0$ 无关特解(基本解)

Case2. 设秩 1 方阵 $\mathbf{A} = \mathbf{A}_{n \times n} \perp \lambda_1 = \text{tr}(\mathbf{A}) = 0$,其中 $\lambda(A) = \{\text{tr}(A), 0, \dots, 0\} = \{0, 0, \dots, 0\}$

$$(\lambda_1 = \lambda_2 = \cdots = \lambda_n = 0 \ \text{hn} \ \underline{\mathbf{m}} \ \mathbf{0} \ \mathbf{k})$$

$$\Leftrightarrow \mathbf{A} = \alpha \boldsymbol{\beta}, \quad \boldsymbol{\beta} = (b_1, \dots b_n)$$

则 \mathbf{A} 只有 n-1 个无关特征向量: Y_1, \dots, Y_{n-1}

其中
$$Y_1, \dots, Y_{n-1}$$
是 $b_1x_1 + \dots + b_nx_n = 0$ 无关特解(基本解)

即 α 也是**方程** $\beta X=0$ 一个特解($\beta \alpha=0$),故 α , Y_1,\cdots,Y_{n-1} 线性相关!

备注: 利用以上结论与平移法: $A 与 A \pm cI$ 有相同特向 X_1, \dots, X_n 可得

一些方阵特征向量观察法

注: 在一些文献里记号" $A \pm c$ "表示 $A \pm cI$,例如(A-2)(A-1)表示(A-2I)(A-I)

例 用平移法与"秩 1 公式"求根 $\lambda(A)$,写出几个特向 X_1, \cdots, X_n (无关)

$$(1)A = \begin{pmatrix} 3 & 1 \\ 2 & 2 \end{pmatrix}, (2)A = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 2 & 0 \\ 0 & 1 & 1 \end{pmatrix}, \quad (3)A = \begin{pmatrix} 4 & 6 & 0 \\ -3 & -5 & 0 \\ -3 & -6 & 1 \end{pmatrix}, (4)A = \begin{pmatrix} 7 & 4 & -1 \\ 4 & 7 & -1 \\ -4 & -4 & 4 \end{pmatrix}$$

$$(5)\mathbf{A} = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$$

解:
$$(1)A = \begin{pmatrix} 3 & 1 \\ 2 & 2 \end{pmatrix} \Rightarrow A - 1 = \begin{pmatrix} 2 & 1 \\ 2 & 1 \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \end{pmatrix} (2, 1) = \alpha \beta$$
 为秩 $\mathbf{1}$ ⇒必有特向 $\begin{pmatrix} 1 \\ 1 \end{pmatrix}$

观察方程
$$\beta X = 0$$
 即 $2x_1 + 1x_2 = 0$ 可得另一个特向 $\begin{pmatrix} 1 \\ -2 \end{pmatrix}$ 或 $\begin{pmatrix} -1 \\ 2 \end{pmatrix}$ (不唯一)

$$\mathbb{E} \lambda(A-1) = \{tr(A-1), 0\} = \{3, 0\} \Rightarrow \lambda(A) = \{4, 1\}$$

因为A-1 与A有相同**特向,故**A有 2 个**特向** $\begin{pmatrix} 1 \\ 1 \end{pmatrix}$, $\begin{pmatrix} 1 \\ -2 \end{pmatrix}$ (不唯一)

备注:
$$A = \begin{pmatrix} 3 & 1 \\ 2 & 2 \end{pmatrix}$$
为非正规阵,有 2 个**特向** $\begin{pmatrix} 1 \\ 1 \end{pmatrix}$, $\begin{pmatrix} 1 \\ -2 \end{pmatrix}$ (非正交)

令可逆阵
$$P = \begin{pmatrix} 1 & 1 \\ 1 & -2 \end{pmatrix}$$
,则有 $P^{-1}AP = D = \begin{pmatrix} 4 & 0 \\ 0 & 1 \end{pmatrix}$

必有特向
$$\alpha = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$$

观察
$$\beta X = 0$$
 即 $0x_1 + 1x_2 + 0x_3 = 0$ 可得 2 个特向 $\begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$, $\begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$ (不唯一)

$$\mathbb{E} \lambda(A-1) = \{tr(A-1), 0, 0\} = \{1, 0, 0\} \Rightarrow \lambda(A) = \{2, 1, 1\}$$

且
$$A-1$$
 与 A 有相同**特向,故** A 有 3 个**特向** $\begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$, $\begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$, $\begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$ (不唯一)

分别属于特征根 {2,1,1}

解:
$$(3)A = \begin{pmatrix} 4 & 6 & 0 \\ -3 & -5 & 0 \\ -3 & -6 & 1 \end{pmatrix}$$
, $A-1 = \begin{pmatrix} 3 & 6 & 0 \\ -3 & -6 & 0 \\ -3 & -6 & 0 \end{pmatrix} = \begin{pmatrix} 3 \\ -3 \\ 3 \end{pmatrix} (1, 2, 0) = \alpha\beta$ 为秩 $\mathbf{1} \Rightarrow$

必有 1 个特向
$$\begin{pmatrix} 1\\-1\\-1 \end{pmatrix}$$

观察
$$\beta X = 0$$
 即 $1x_1 + 2x_2 + 0x_3 = 0$ 可得 2 个特向 $\begin{pmatrix} 2 \\ -1 \\ 0 \end{pmatrix}$, $\begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$ (不唯一)

$$\mathbb{E} \lambda(A-1) = \{tr(A-1), 0, 0\} = \{-3, 0, 0\} \Rightarrow \lambda(A) = \{-2, 1, 1\}$$

且
$$A-1$$
与 A 有相同**特向,故** A 有 3 个**特向** $\begin{pmatrix} 1 \\ -1 \\ -1 \end{pmatrix}$, $\begin{pmatrix} -2 \\ 1 \\ 0 \end{pmatrix}$, $\begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$ (不唯一)

分别属于特征根 {-2,1,1}

解:
$$(4)A = \begin{pmatrix} 7 & 4 & -1 \\ 4 & 7 & -1 \\ -4 & -4 & 4 \end{pmatrix} \Rightarrow A - 3I = \begin{pmatrix} 4 & 4 & -1 \\ 4 & 4 & -1 \\ -4 & -4 & 1 \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \\ -1 \end{pmatrix} (4, 4, -1) = \alpha \beta * 1$$

$$\Rightarrow \text{ 必有 1 } \uparrow \text{ 特 } \cap \begin{pmatrix} 1 \\ 1 \\ -1 \end{pmatrix}$$

观察
$$\beta X = 0$$
 即 $4x_1 + 4x_2 - 1x_3 = 0$ 可得 2 个特向 $\begin{pmatrix} 1 \\ 0 \\ 4 \end{pmatrix}$, $\begin{pmatrix} 0 \\ 1 \\ 4 \end{pmatrix}$ (不唯一)

$$\mathbb{E} \lambda(A-3) = \{tr(A-1),0,0\} = \{9,0,0\} \Rightarrow \lambda(A) = \{12,3,3\}$$

且
$$A$$
有 3 个特向 $\begin{pmatrix} 1\\1\\-1 \end{pmatrix}$, $\begin{pmatrix} 1\\0\\4 \end{pmatrix}$, $\begin{pmatrix} 0\\1\\4 \end{pmatrix}$ (不唯一)

分别属于根 {12,3,3}

解: (5)**A** =
$$\begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$$
 \Rightarrow $A - i = \begin{pmatrix} i & -1 \\ 1 & i \end{pmatrix} = \begin{pmatrix} i \\ 1 \end{pmatrix}$ (1, i) = $\alpha\beta$ 为秩 **1** \Rightarrow 必有特向 $\begin{pmatrix} i \\ 1 \end{pmatrix}$

观察方程 β
$$X = 0$$
 即 $1x_1 + ix_2 = 0$ 可得另一个特向 $\binom{1}{i}$ 或 $\binom{-i}{1}$ (不唯一)

$$\mathbb{H} \lambda(A-i) = \{tr(A-i), 0\} = \{2i, 0\} \Rightarrow \lambda(A) = \{i, -i\}$$

且
$$A$$
有 2 个**特向** $\begin{pmatrix} i \\ 1 \end{pmatrix}$, $\begin{pmatrix} 1 \\ i \end{pmatrix}$ (不唯一)

备注:
$$\mathbf{A} = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$$
为正规阵(优阵),故有 2 个正交**特向** $\begin{pmatrix} i \\ 1 \end{pmatrix}$, $\begin{pmatrix} 1 \\ i \end{pmatrix}$, $\lambda(A) = \{i, -i\}$

可令优阵
$$Q = \frac{1}{\sqrt{2}} \begin{pmatrix} i & 1 \\ 1 & i \end{pmatrix}$$
, 得正规分解 $Q^H A Q = D = \begin{pmatrix} i & 0 \\ 0 & -i \end{pmatrix}$

例
$$A = \begin{pmatrix} 3 & 1 \\ -1 & 1 \end{pmatrix}$$
, $A - 2 = \begin{pmatrix} 1 & 1 \\ -1 & -1 \end{pmatrix} = \begin{pmatrix} 1 \\ -1 \end{pmatrix} (1, 1) = \alpha \beta$ 为秩 1, 且 $\lambda_1 = \operatorname{tr}(\mathbf{A} - 2) = 0$

根据备注 Case2 可知,只要观察
$$1x_1 + 1x_2 = 0$$
,故 A 只有一个特向 $\begin{pmatrix} 1 \\ -1 \end{pmatrix}$

例 用平移法求特向 X_1, \dots, X_n 且求可逆阵 P 使 $P^{-1}AP$ 为对角形

必有特向
$$\begin{pmatrix} -1\\1\\1\\1 \end{pmatrix}$$
, 且 $1x_1 - 1x_2 - 1x_3 - 1x_4 = 0$ 有特解 $\begin{pmatrix} 1\\-1\\1\\1 \end{pmatrix}$, $\begin{pmatrix} 1\\1\\-1\\1 \end{pmatrix}$ 不唯一

$$\mathbb{E} \lambda(A-2) = \{tr(A-2), 0, 0, 0\} = \{-4, 0, 0, 0\} \Rightarrow \lambda(A) = \{-2, 2, 2, 2\}$$

可知
$$A$$
有 4 个特向 $\begin{pmatrix} -1\\1\\1\\1\end{pmatrix}$, $\begin{pmatrix} 1\\-1\\1\\1\end{pmatrix}$, $\begin{pmatrix} 1\\1\\-1\\1\end{pmatrix}$, $\Leftrightarrow P = \begin{pmatrix} -1 & 1 & 1 & 1\\1 & -1 & 1 & 1\\1 & 1 & -1 & 1\\1 & 1 & 1 & -1 \end{pmatrix}$ 可逆

则有
$$P^{-1}AP = D = \begin{pmatrix} -2 & & & \\ & 2 & & \\ & & 2 & \\ & & & 2 \end{pmatrix}$$

备注: 本题
$$A$$
 为 hermite 阵(正规),可取优阵 $Q = \frac{1}{2} \begin{pmatrix} -1 & 1 & 1 & 1 \\ 1 & -1 & 1 & 1 \\ 1 & 1 & -1 & 1 \\ 1 & 1 & 1 & -1 \end{pmatrix}$ 不唯一

使得
$$Q^{-1}AQ = D = \begin{pmatrix} -2 & & & \\ & 2 & & \\ & & 2 & \\ & & & 2 \end{pmatrix}$$

$$\mathbb{E} \lambda(A-1) = \{tr(A-1), 0, 0, 0\} = \{-4, 0, 0, 0\} \Rightarrow \lambda(A) = \{-3, 1, 1, 1\}$$

$$A-1 必有特向 \begin{pmatrix} -1 \\ 1 \\ 1 \\ -1 \end{pmatrix}, \quad \exists \ 1x_1 - 1x_2 - 1x_3 + 1x_4 = 0 \ \textbf{有特解} \begin{pmatrix} 1 \\ 1 \\ 1 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ -1 \\ 1 \\ -1 \end{pmatrix}, \begin{pmatrix} 1 \\ 1 \\ -1 \\ -1 \end{pmatrix}$$
不唯一

可知
$$A$$
 有 4 个特向 $\begin{pmatrix} -1\\1\\1\\-1\end{pmatrix},\begin{pmatrix} 1\\1\\1\\-1\end{pmatrix},\begin{pmatrix} 1\\1\\-1\\-1\end{pmatrix}$, \Leftrightarrow $P=\begin{pmatrix} -1&1&1&1\\1&1&-1&1\\1&1&1&-1\\-1&1&-1&-1\end{pmatrix}$ 可逆

则
$$P^{-1}AP = D = \begin{pmatrix} -3 & & & \\ & 1 & & \\ & & 1 & \\ & & & 1 \end{pmatrix}$$

使得
$$Q^{-1}AQ = D = \begin{pmatrix} -3 & & & \\ & 1 & & \\ & & 1 & \\ & & & 1 \end{pmatrix}$$

解: (3)
$$A = \begin{pmatrix} -1 & -3 & 3 & -3 \\ -3 & -1 & -3 & 3 \\ 3 & -3 & -1 & -3 \\ -3 & 3 & -3 & -1 \end{pmatrix}$$
, $A + 4 = \begin{pmatrix} 3 & -3 & 3 & -3 \\ -3 & 3 & -3 & 3 \\ 3 & -3 & 3 & -3 \\ -3 & 3 & -3 & 3 \end{pmatrix} = \begin{pmatrix} 3 \\ -3 \\ 3 \\ -3 \end{pmatrix} (1, -1, 1, -1)$ 秩 1

$$\mathbb{H} \lambda(A+4) = \{tr(A+4), 0, 0, 0\} = \{12, 0, 0, 0\} \Rightarrow \lambda(A) = \{8, -4, -4, -4\}$$

$$A+4 必有特向 \begin{pmatrix} 1\\-1\\1\\-1 \end{pmatrix}, \quad \mathbb{E} 1x_1-1x_2+1x_3-1x_4=0$$
 有特解 $\begin{pmatrix} 1\\1\\1\\1 \end{pmatrix}, \begin{pmatrix} 1\\-1\\-1\\1 \end{pmatrix}, \begin{pmatrix} 1\\1\\-1\\-1 \end{pmatrix}$ 不唯一

则
$$P^{-1}AP = D = \begin{pmatrix} 8 & & & \\ & -4 & & \\ & & -4 & \\ & & & -4 \end{pmatrix}$$

使
$$Q^{-1}AQ = D = \begin{pmatrix} 8 & & & \\ & -4 & & \\ & & -4 & \\ & & & -4 \end{pmatrix}$$

备注: **镜面阵**
$$A = I - \frac{2\alpha\alpha^H}{|\alpha|^2}$$
, $\alpha = (a_1, \dots, a_n)^T \neq 0$, 其中 $|\alpha|^2 = \alpha^H \alpha$

或令镜面阵
$$A = I - 2\varepsilon\varepsilon^H$$
, $(\varepsilon = \frac{\alpha}{|\alpha|}, \varepsilon^H \varepsilon = |\varepsilon|^2 = 1)$ 满足

1.
$$A^{H} = A$$
(hermite阵), $A^{2} = I$, 即 $A^{-1} = A$,且 $A^{-1} = A = A^{H}$, A 为优阵

2.
$$\lambda(A) = \{-1, 1, 1, \dots, 1\}$$
,行列式 $\det(A) = -1$

补充定理: 镜面阵
$$A = I - \frac{2\alpha\alpha^H}{|\alpha|^2}$$
 恰有 n 个无关特征向量 α , Y_1, \dots, Y_{n-1}

使
$$A\alpha = -\alpha$$
,且 $AY_1 = Y_1, \cdots, AY_{n-1} = Y_{n-1}$

其中
$$Y_1, \dots, Y_{n-1}$$
为方程 $\alpha^H X = 0$ 的 $n-1$ 无关特解(可互正交)

$$(Y_1, \dots, Y_{n-1}$$
为 $\lambda = 1$ 的 $n-1$ 个特向)

证明: 因为 $A-I=-\frac{2}{|\alpha|^2}\alpha\alpha^H$ 为秩 1 阵,故 α 为 A-I 的特征向量,

且
$$\alpha^H X = 0$$
的 $n-1$ 无关特解 Y_1, \dots, Y_{n-1} 也是 $A-I$ 的特征向量

故,
$$A = I - \frac{2\alpha\alpha^H}{|\alpha|^2}$$
恰有 n 个特征向量 α , Y_1, \dots, Y_{n-1}

验证可知:
$$Alpha=-lpha$$
, $AY_1=Y_1,\cdots,AY_{n-1}=Y_{n-1}$

(自己验证: 由
$$\alpha^H Y_1 = 0$$
可知 $AY_1 = Y_1$)

备注: 由内积可知 $\alpha^H X = (X, \alpha) = 0$ 特解 Y_1, \dots, Y_{n-1} 都与向量 α 正交!

即
$$\alpha \perp Y_1, \cdots, \alpha \perp Y_{n-1}$$
,且 $AY_1 = Y_1, \cdots, AY_{n-1} = Y_{n-1}$

结论: **镜面阵** $A = I - \frac{2\alpha\alpha^H}{|\alpha|^2}$ 恰有 n-1 个特向 Y_1, \dots, Y_{n-1} 都位于

与特向 α 正交的"超平面 $\alpha^H X = 0$ "上.

.....

例**: 求 3-循环阵
$$A = [a_0, a_1, a_2] = \begin{pmatrix} a_0 & a_1 & a_2 \\ a_2 & a_0 & a_1 \\ a_1 & a_2 & a_0 \end{pmatrix}$$
的 3 个正交特征向量

解 令基阵Ω=(
$$\mathbf{e}_3$$
, \mathbf{e}_1 , \mathbf{e}_2) = $\begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{pmatrix}$, 可知Ω³ = $\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$ = \mathbf{I}

可知特根 $\lambda(\Omega) = \{\lambda, \lambda, \lambda, \lambda\}$ 就是 $\lambda^3 = 1$ 的 3 个根(复平面上单位圆周的 3 等分点),

满足
$$\lambda_1^3 = \lambda_2^3 = \lambda_3^3 = 1$$

可记 $\lambda_j = e^{i\frac{2j\pi}{3}} = \cos\frac{2j\pi}{3} + i\sin\frac{2j\pi}{3}, j = 1, 2, 3$,特别 $\lambda_3 = 1$,且 $\lambda_j = \lambda_1^j$

$$\diamondsuit X_{j} = \begin{pmatrix} \lambda_{j} \\ \lambda_{j}^{2} \\ \lambda_{j}^{3} \end{pmatrix}$$
可知 $\Omega X_{j} = \Omega \begin{pmatrix} \lambda_{j} \\ \lambda_{j}^{2} \\ \lambda_{j}^{3} \end{pmatrix} = \begin{pmatrix} \lambda_{j}^{2} \\ \lambda_{j}^{3} \\ \lambda_{j} \end{pmatrix} = \lambda_{j} \begin{pmatrix} \lambda_{j} \\ \lambda_{j}^{2} \\ 1 \end{pmatrix} = \lambda_{j} \begin{pmatrix} \lambda_{j} \\ \lambda_{j}^{2} \\ \lambda_{j}^{3} \end{pmatrix} = \lambda_{j} X_{j}$

即 X_i 就是 Ω 的特向(属于根 λ_i),故 Ω 恰有3个特征向量 X_1,X_2,X_3

可知
$$X_1 \perp X_2 \perp X_3$$
 (互正交),且 $|X_1| = \cdots = |X_3| = \sqrt{3}$

注: $X_1 \perp X_2 \perp X_3$ 的一个简单证明是用已知定理"正规阵不同根的特征向量互正交",因为基阵 Ω 恰有 3 个不同根 $\lambda_1,\lambda_2,\lambda_3$,故它的 3 个特向互正交 $X_1 \perp X_2 \perp X_3$

令忧阵
$$Q = (q_1, q_2, q_3) = (\frac{X_1}{|X_1|}, \frac{X_2}{|X_2|}, \frac{X_3}{|X_3|}) = \frac{1}{\sqrt{3}} \begin{pmatrix} \lambda_1 & \lambda_2 & \lambda_3 \\ \lambda_1^2 & \lambda_2^2 & \lambda_3^2 \\ \lambda_1^3 & \lambda_2^3 & \lambda_3^3 \end{pmatrix}$$
 (傅里叶优阵)

可得分解:
$$Q^{-1}\Omega Q = D = \begin{pmatrix} \lambda_1 & 0 \\ \lambda_2 & \\ 0 & \lambda_3 \end{pmatrix}$$
, 其中 $\Omega = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{pmatrix}$

由于特征向量可相差非0倍数,也可改写优阵Q如下

$$Q = \frac{1}{\sqrt{3}} \begin{pmatrix} 1 & 1 & 1 \\ \lambda_1 & \lambda_2 & \lambda_3 \\ \lambda_1^2 & \lambda_2^2 & \lambda_3^2 \end{pmatrix}$$
 使得
$$Q^{-1}\Omega Q = D = \begin{pmatrix} \lambda_1 & 0 \\ \lambda_2 & \\ 0 & \lambda_3 \end{pmatrix}$$

可知
$$\Omega = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{pmatrix}$$
有 3 个特征向量 $\begin{pmatrix} 1 \\ \lambda_1 \\ \lambda_1^2 \end{pmatrix}$, $\begin{pmatrix} 1 \\ \lambda_2 \\ \lambda_2^2 \end{pmatrix}$, $\begin{pmatrix} 1 \\ \lambda_3 \\ \lambda_3^2 \end{pmatrix}$ 或 $\begin{pmatrix} \lambda_1 \\ \lambda_1^2 \\ \lambda_1^3 \end{pmatrix}$, $\begin{pmatrix} \lambda_2 \\ \lambda_2^2 \\ \lambda_2^3 \end{pmatrix}$, $\begin{pmatrix} \lambda_3 \\ \lambda_3^2 \\ \lambda_3^3 \end{pmatrix}$

可写 3-循环阵
$$A = [a_0, a_1, a_2] = \begin{pmatrix} a_0 & a_1 & a_2 \\ a_2 & a_0 & a_1 \\ a_1 & a_2 & a_0 \end{pmatrix} = a_0 \mathbf{I} + a_1 \Omega + a_2 \Omega^2 = f(\Omega)$$

其中 $f(x) = a_0 + a_1 x + a_2 x^2$, 根据遗传公式可知

循环阵
$$A = \begin{pmatrix} a_0 & a_1 & a_2 \\ a_2 & a_0 & a_1 \\ a_1 & a_2 & a_0 \end{pmatrix}$$
也有特征向量 $\begin{pmatrix} 1 \\ \lambda_1 \\ \lambda_1^2 \end{pmatrix}$, $\begin{pmatrix} 1 \\ \lambda_2 \\ \lambda_2^2 \end{pmatrix}$, $\begin{pmatrix} 1 \\ \lambda_3 \\ \lambda_3^2 \end{pmatrix}$ 或 $\begin{pmatrix} \lambda_1 \\ \lambda_1^2 \\ \lambda_1^3 \end{pmatrix}$, $\begin{pmatrix} \lambda_2 \\ \lambda_2^2 \\ \lambda_2^3 \end{pmatrix}$, $\begin{pmatrix} \lambda_3 \\ \lambda_3^2 \\ \lambda_3^3 \end{pmatrix}$

.....

复习单阵定义: $A = A_{n \times n}$ 为单阵,即有可逆 P使

$$P^{-1}AP = \mathbf{D} = \begin{pmatrix} \lambda_1 & 0 \\ & \ddots & \\ 0 & \lambda_n \end{pmatrix}$$
 (对角形), $\lambda(A) = \{\lambda_1, \dots, \lambda_n\}$

复习单阵谱公式: 若 $A = A_{n \times n}$ 单阵, 互异根为 $\lambda_1, \dots, \lambda_k$, 则有谱公式

$$A = \lambda_1 G_1 + \lambda_2 G_2 + \cdots + \lambda_k G_k ,$$

其中
$$f(x) = \mathbf{c}_0 + c_1 x + \dots + c_k x^k$$
 为任一多项式

备注(习题): 若 $A = A_{n \times n}$ 单阵,互异根为 $\lambda_1, \dots, \lambda_k$,则 $(A - \lambda_i I)(A - \lambda_i I) \dots (A - \lambda_k I) = 0$

证明: 令多项式 $f(x) = (x - \lambda_1)(x - \lambda_2) \cdots (x - \lambda_k)$

则有
$$f(\lambda_1) = f(\lambda_2) = \cdots = f(\lambda_k) = 0$$
,且 $f(A) = (A - \lambda_i I)(A - \lambda_i I) \cdots \cdots (A - \lambda_k I)$

代入谱公式: $f(A) = f(\lambda_1)G_1 + \cdots + f(\lambda_k)G_k$, 可知

$$f(A) = 0G_1 + 0G_2 + \dots + 0G_k = 0$$

即
$$(A-\lambda_1 I)(A-\lambda_2 I)\cdots\cdots(A-\lambda_k I)=0$$
 证毕

.....

补充引理: 若 $(A-\lambda I)P=0$,则P中非0列都是 λ 的特向

证明: $(A - \lambda_i I)P = 0 \Leftrightarrow AP = \lambda_i P$, $\diamondsuit P = (X_1, \dots, X_n) - --$ 按列分块

则
$$A(X_1, \dots, X_n) = \lambda_1(X_1, \dots, X_n) \Rightarrow AX_1 = \lambda_1 X_1, \dots, AX_n = \lambda_1 X_n$$
 证毕

备注 1: 若 $(A-\lambda_I)(A-\lambda_I)=0$,则

 $(A-\lambda_I)$ 中非 0 列都是 λ 的特向, $(A-\lambda_I)$ 中非 0 列都是 λ , 的特向

证明: 因为 $(A-\lambda,I)(A-\lambda,I) = (A-\lambda,I)(A-\lambda,I)$ 可交换.

备注 2: 若 $(A-\lambda_I)(A-\lambda_I)(A-\lambda_I)=0$,则

 $(A-\lambda_2 I)(A-\lambda_3 I)$ 中非 0 列都是 λ 的特向,

 $(A-\lambda_I)(A-\lambda_I)$ 中非 0 列都是 λ_2 的特向,

 $(A-\lambda_I)(A-\lambda_I)$ 中非 0 列都是 λ_I 的特向.

证: 因为 $(A-\lambda_1)(A-\lambda_2)(A-\lambda_2)=(A-\lambda_2)(A-\lambda_3)(A-\lambda_1)=(A-\lambda_3)(A-\lambda_1)(A-\lambda_2)$ 可交换

备注 3: 若 $(A-\lambda I)^2=0$,则 $(A-\lambda I)$ 中非 0 列都是 λ 的特向

特别, 若 $A^2 = 0$, 则A中非0列都是 $\lambda = 0$ 的特向

特别,幂等阵 $A^2 = A$,A中非0列都是 $\lambda_1 = 1$ 的特向

例如
$$A = \begin{pmatrix} 1 & 1 \\ -1 & -1 \end{pmatrix}$$
, $A^2 = \begin{pmatrix} 1 & 1 \\ -1 & -1 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ -1 & -1 \end{pmatrix} = 0$,

则
$$A$$
 中非 0 列 $\begin{pmatrix} 1 \\ -1 \end{pmatrix}$ 是 $\lambda_1 = 0$ 的特向

再例如,
$$A = \begin{pmatrix} 1 & 0 \\ -1 & 0 \end{pmatrix}$$
, $A^2 = \begin{pmatrix} 1 & 0 \\ -1 & 0 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ -1 & 0 \end{pmatrix} = A$ 幂等

则
$$A$$
 中非 0 列 $\begin{pmatrix} 1 \\ -1 \end{pmatrix}$ 是是 $\lambda_1 = 1$ 的特向

.....

利用上面备注 1,2,3 可观测求出下面例子中的特征向量

例.
$$A = \begin{pmatrix} 3 & 1 \\ 2 & 2 \end{pmatrix}$$
, 可知 $\lambda(A) = \{1, 4\}$, 由 Cayley 公式可得 $(A-1)(A-4) = 0$

且
$$A-4=\mathbf{A}=\begin{pmatrix} -1 & 1\\ 2 & -2 \end{pmatrix}$$
, $A-1=\mathbf{A}=\begin{pmatrix} 2 & 1\\ 2 & 1 \end{pmatrix}$, 可知

$$A$$
有 2 **个特向** $\begin{pmatrix} 1 \\ -2 \end{pmatrix}$, $\begin{pmatrix} 1 \\ 1 \end{pmatrix}$ (分别属于 $\lambda_1 = 1$, $\lambda_2 = 4$) 不唯一

例
$$\mathbf{A} = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$$
, $\lambda(\mathbf{A}) = \{i, -i\}$, 由 Cayley 公式可得 $(A-i)(A+i) = 0$

且
$$\mathbf{A} + i = \begin{pmatrix} i & -1 \\ 1 & i \end{pmatrix}, \mathbf{A} - i = \begin{pmatrix} -i & -1 \\ 1 & -i \end{pmatrix}, 可知$$

$$A$$
有 2 个**特向** $\binom{i}{1}$, $\binom{1}{i}$ (分别属于 $\lambda_1 = i$, $\lambda_2 = -i$)不唯一

例:
$$A = \begin{pmatrix} 4 & 6 & 0 \\ -3 & -5 & 0 \\ -3 & -6 & 1 \end{pmatrix}$$
, $\lambda(A) = \{-2, 1, 1\}$

$$(A-I)(A+2I) = \begin{pmatrix} 3 & 6 & 0 \\ -3 & -6 & 0 \\ -3 & -6 & 0 \end{pmatrix} \begin{pmatrix} 6 & 6 & 0 \\ -3 & -3 & 0 \\ -3 & -6 & 3 \end{pmatrix} = 0$$

观察
$$(A-I)$$
, $(A+2I)$ 中各列,可知有 3 个特向 $\begin{pmatrix} 1 \\ -1 \\ -1 \end{pmatrix}$, $\begin{pmatrix} 2 \\ -1 \\ -1 \end{pmatrix}$, $\begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$ 不唯一

分别属于特根-2, 1, 1

例:
$$A = \begin{pmatrix} 2 & 0 & 0 \\ 1 & 1 & 1 \\ 1 & -1 & 3 \end{pmatrix}$$
可知 $\lambda(A) = \{2, 2, 2\}$

$$\therefore (A-2I)^2 = \begin{pmatrix} 0 & 0 & 0 \\ 1 & -1 & 1 \\ 1 & -1 & 1 \end{pmatrix} \begin{pmatrix} 0 & 0 & 0 \\ 1 & -1 & 1 \\ 1 & -1 & 1 \end{pmatrix} = 0,$$

可知
$$A-2=\begin{pmatrix} 0 & 0 & 0 \\ 1 & -1 & 1 \\ 1 & -1 & 1 \end{pmatrix}$$
中的列 $\begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix}$ 是特征根 2 的一个特征向量

例 $A = \begin{pmatrix} -1 & i & 0 \\ -i & 0 & -i \\ 0 & i & -1 \end{pmatrix}$ hermit 正规阵, 用**备注 1,2,3 求出 3 个特征向量**

解 用平移法可知 $\lambda(A) = \{1, -2, -1\} \Rightarrow \det(\lambda I - A) = (\lambda - 1)(\lambda + 1)(\lambda + 2)$

有 3 个不同特征根: $\lambda_1 = 1, \lambda_2 = -1, \lambda_3 = -2.$

Cayley 公式
$$\Rightarrow (A-1)(A+1)(A+2)=0$$

分别计算(A+1)(A+2), (A-1)(A+2), (A-1)(A+1)的**第1列**, 可知

 $\lambda_1 = 1, \lambda_2 = -1, \lambda_3 = -2$ 的3个特征向量如下

$$p_1 = \begin{pmatrix} 1 \\ -2i \\ 1 \end{pmatrix}, p_2 = \begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix}, p_3 = \begin{pmatrix} 1 \\ i \\ 1 \end{pmatrix} (互相正交)$$

可令优阵
$$Q = \begin{pmatrix} \begin{pmatrix} 1 \\ -2i \\ 1 \end{pmatrix} & \begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix} & \begin{pmatrix} 1 \\ i \\ 1 \end{pmatrix} \\ \sqrt{2} & \sqrt{3} \end{pmatrix}$$
, 使得 $Q^{-1}AQ = D = \begin{pmatrix} 1 \\ & -1 \\ & & -2 \end{pmatrix}$

.....

备注:其它特向观察法

引理:若方阵 \mathbf{A} 中各行元素之和为常数a,则x=a是一个特根,对应的特向为

(利用转置公式可知:各列元素之和为常数a时x=a**也是一个特根**)

i.e. $\mathbf{AX} = \mathbf{A}(1,1,\dots,1)^T = (a,a,\dots,a)^T = a(1,1,\dots,1)^T = a\mathbf{X}$.

例: n 阶全 1 方阵 A ,其各行元素之和为常数 n ,则 $\lambda_1 = n$ 是一个特根,其特向为全 1 向量 $X = (1,1,\cdots,1)^T$

例: $\mathbf{A} = \begin{pmatrix} 3 & 1 \\ 2 & 2 \end{pmatrix}$ 的各行元素的和为4,则 $\lambda_1 = 4$ 为一特根,其特向为 $\frac{\mathbf{c}}{2}$ 1 向量

$$\begin{pmatrix} 1 \\ 1 \end{pmatrix}$$
; 另一个根为 $\lambda_2 = 5 - 4 = 1$,特向为 $\begin{pmatrix} 1 \\ -2 \end{pmatrix}$.

补充习题: 用平移法求根 $\lambda(A)$,用观察法写出几个无关的特征向量

注: 记号" $A \pm c$ "表示 $A \pm cI$,例如(A-2)(A-1)表示(A-2I)(A-I)

(1)
$$\mathbf{A} = \begin{pmatrix} 4 & 2 \\ 3 & 3 \end{pmatrix}$$
, (2) $\mathbf{A} = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$, (3) $\mathbf{A} = \begin{pmatrix} 0 & i \\ -i & 0 \end{pmatrix}$

$$(4) A = \begin{pmatrix} -3 & 4 & 2 \\ -2 & 3 & 1 \\ -2 & 2 & 2 \end{pmatrix}, A - 1 = ? , (5) A = \begin{pmatrix} 1 & 2 & -1 \\ 0 & 3 & -1 \\ 0 & 2 & 0 \end{pmatrix}, A - 1 = ?$$

$$(6) A = \begin{pmatrix} 3 & 1 & -1 \\ -2 & 0 & 2 \\ -1 & -1 & 3 \end{pmatrix}, \quad A - 2 = ? \quad (7) \quad A = \begin{pmatrix} 2 & 0 & 0 \\ 1 & 2 & -1 \\ 1 & 0 & 1 \end{pmatrix}, A - 2 = ?$$

(8)
$$A = \begin{pmatrix} 0 & c & c \\ c & 0 & c \\ c & c & 0 \end{pmatrix}$$
, c为复数 (9) $A = \begin{pmatrix} -1 & -1 & -1 \\ -2 & 0 & -1 \\ 6 & 3 & 4 \end{pmatrix}$

......