Redes Complexas Aplicadas à Culinária Ciência de Redes

Viviane de Jesus Galvão

Laboratório Nacional de Computação Científica

Sumário

- Introdução
- 2 Experimentos Computacionais
- Resultados
- Conclusões
- Referências

Introdução

- Diferentes regiões do mundo possuem uma variedade de receitas tradicionais;
- É possível identificar características que particularizam as diferentes identidades culinárias?
 - Ingredientes mais utilizados;
 - Combinações de ingredientes mais usadas;
 - Modo de preparo mais comum;

Objetivos:

- Investigar a interseção entre as culturas gastronômicas de diversas regiões;
- Estudar as possíveis influências que a culinária de uma região exerce sobre outra;

Experimentos Computacionais

- Base de dados: What's Cooking? plataforma kaggle
 - 39774 receitas;
 - 20 cozinhas diferentes;
 - 6714 ingredientes;
- Ferramentas: Biblioteca de análise de redes complexas Networkx em Python, Gephi para parte gráfica;
- Metodologia:
 - Análise de rede bipartida;
 - Identificação de comunidades Algoritmo de Louvain;
 - Classificação dos vértice a partir de centralidade de grau;
 - Classificação de arestas a partir dos seus pesos;
 - Análise com restrição de ingredientes: seleção de ingredientes que estão presentes em 20% do total de receitas do país;

Experimentos Computacionais

País	Nº Receitas
Brasil	467
Rússia	489
Jamaica	526
Irlanda	667
Filipinas	755
Inglaterra	804
Marrocos	821
Vietnâ	825
Coreia	830
Espanha	989
Grécia	1175
Japão	1423
Tailândia	1539
EUA (Cajun-Crioulo)	1546
França	2646
China	2673
Índia	3003
EUA (Sul)	4320
México	6438
Itália	7838

Estrutura da Rede Bipartida

Contextualização dos métodos

- Rede Bipartida:
 - Centralidade de grau: os ingredientes centrais são os mais utilizados por todos os países;
 - Peso das arestas: seleção dos 10 ingredientes mais utilizados por cada país;
- Projeção sobre o conjunto dos ingredientes:
 - Centralidade de grau: ingredientes centrais são os mais combináveis;
 - Peso das arestas: pares de ingredientes mais utilizados;
 - Comunidades: Ingredientes mais similares de acordo as receitas em comum;
- Projeção sobre o conjunto dos países:
 - Peso das arestas: pares de países com mais ingredientes em comum;
 - Comunidades: países similares, segundo o número de ingredientes em comum;

Resultados

Análise com todos os ingredientes:

- Para cada país, foram selecionados os 10 ingredientes mais comuns nas receitas;
- Foram encontrados mais de 100 ingredientes mais utilizados por todos os países e mais de 2000 ingredientes menos utilizados;
- Foram encontrados mais de 5000 pares se ingredientes mais utilizados;
- Nenhum ingrediente pode ser classificado como mais combinável, uma vez que o grau máximo obtido foi de 6713 e o grau mínimo foi de 852;
- Foi possível distinguir os 10 pares de países que mais compartilham ingredientes;

Análise - Todos ingredientes

Países		Nº Ingredientes
Itália	México	1629
EUA (Sul)	Itália	1551
França	Itália	1538
EUA (Sul)	México	1524
França	EUA (Sul)	1290
França	México	1243
Itália	EUA (Cajun-Crioulo)	1180
EUA (Sul)	EUA (Cajun-Crioulo)	1142
México	EUA (Cajun-Crioulo)	1122
México	China	1061

Tabela: Países com maior número de ingredientes em comum - Todos os ingredientes

Análise - Todos ingredientes

Resultados

Análise com restrição de ingredientes

- Para a maioria dos países, o número de ingredientes mais utilizados foi reduzido em relação aos primeiros experimentos;
 - Exceto para China e Coreia;
- Foi possível distinguir os 10 ingredientes mais utilizados por todos os países, onde o sal é o mais utilizado;
- Foi possível selecionar os 10 ingredientes mais combináveis, onde o sal, a água e cebolas são os mais combináveis;
- Foram identificados os 10 pares de ingredientes mais utilizados, onde [cebola+sal] e [água+sal] são as combinações mais utilizadas;
- Foi possível distinguir 9 pares de países que mais compartilham ingredientes;

Pai	ises	Nº Ingredientes
China	Coreia	8
China	Tailândia	6
Filipinas	Coreia	5
Filipinas	Jamaica	5
Rússia	Inglaterra	5
Vietnã	Tailândia	5
Vietnã	Coreia	5
Jamaica	Coreia	5
Tailândia	Coreia	5

Tabela: Os 9 países com maior número de ingredientes em comum - Análise com limitação de ingredientes (20% de receitas)

Conclusões

- Nesse trabalho foi realizada a análise de uma rede bipartida de ingredientes e países;
- Foi possível caracterizar a culinária dos países de acordo um conjunto de ingredientes mais presente nas receitas;
- Além disso, obteve-se pares de países que mais compartilham ingredientes, bem como comunidades de países mais similares;
- Foi utilizada uma estratégia de limitação dos ingredientes, o que gerou resultados mais acurados

Trabalhos Futuros

- Como trabalhos futuros tem-se a intenção de analisar os conjuntos de ingredientes de cada país isolado;
- Extrair conjuntos de combinações mais utilizadas em cada país;
- Verificar similaridades entre as combinações típicas de cada cozinha;

Figura: Conjuntos de combinações mais utilizadas em cada país

Figura: Similaridades entre as combinações típicas de cada cozinha

Flavor network and the principles of food pairing, 2011.

Simas, Tiago and Ficek, Michal and Diaz-Guilera, Albert and Obrador, Pere and Rodriguez, Pablo R.

Food-bridging: a new network construction to unveil the principles of cooking, 2017.

- Holste, Hendrik Hannes and Nyayapati, Maya and Wong, Edward. What Cuisine?-A Machine Learning Strategy for Multi-label Classification of Food Recipes, 2015.
- Ahnert, Sebastian E.

 Network analysis and data mining in food science: the emergence of computational gastronomy, 2013.
 - Taste: 5 Future Technology Innovations from IBM.

Dúvidas?

