Definition 1. The linear order $(L, <_L)$ is a countryman line provided that there is coutable many sublinear order $(C_n, <_{C_n})$ of $(L \times L, <_{L^2})$ such that $L \times L = \bigcup \{C_n \, ; \, n \in \omega \}$

Definition 2 (Shelah). A ω_1 -laddersystem is a ω_1 -sequence $\langle C_\alpha ; \alpha \in \omega_1 \rangle$ which define recursively as follows:

- 1. $C_0 = \emptyset$,
- 2. $C_{\alpha+1} = {\alpha},$
- 3. $C_{\alpha} = \{\beta_i \in \alpha ; i \in \omega\} \text{ with } \beta_i \nearrow \alpha.$

Now we note that for $\alpha \in \beta \in \omega_1$, we have $\alpha \in \cap (C_\beta \setminus \alpha) \in \beta$.

4. The maximal weight, $\rho_1: [\omega_1]^2 \to \omega$, given by,

$$\rho_1(\{\alpha,\beta\}) = \bigcup \{|\cap \{C_\beta,\alpha\}|, \rho_1(\alpha,\cap(C_\beta \setminus \alpha))\}.$$

Lemma 3. For $\alpha \in \omega_1$ define $\rho_1(\cdot, \alpha) \colon \alpha \to \omega_1 ; \beta \mapsto \rho(\{\alpha, \beta\})$. Then $\rho_1(\cdot, \alpha)$ is finite to one for arbitary $\alpha \in \omega_1$.

Lemma 4. For $\alpha \in \beta \in \omega_1$, we obtain that $\rho_1(\{\cdot, \alpha\}) = \rho_1(\{\cdot, \beta\})$.

Theorem 5. For $\alpha \in \beta \in \omega_1$, we define the follows:

$$\begin{split} &\Delta(\alpha,\beta) = \cap \{ \cup \{ \{ \xi \in \omega_1 \, ; \rho_1(\xi,\alpha) \neq \rho_1(\xi,\beta) \}, \{\alpha,\beta \} \} \}, \\ &\alpha <_{\rho_1} \beta \text{ provided that } \rho_1(\Delta(\alpha,\beta),\alpha)) \in \rho_1(\Delta(\alpha,\beta),\beta)), \\ &D_{\alpha\beta} = \{ \xi \in \alpha + 1 \, ; \rho_1(\xi,\alpha) \neq \rho_1(\xi,\beta) \}, \\ &n_{\alpha\beta} = \cup \{ \rho_1(\xi,\alpha), \rho_1(\xi,\beta) \, ; \xi \in D_{\alpha\beta} \}, \\ &F_{\alpha\beta} = \{ \xi \in \alpha + 1 \, ; \rho_1(\xi,\alpha) \leq n_{\alpha\beta} \wedge \rho_1(\xi,\beta) \leq n_{\alpha\beta} \}. \end{split}$$

Then we have the following properties:

- 1. every $D_{\alpha\beta}$ and $F_{\alpha\beta}$ are finite and $D_{\alpha\beta} \subset F_{\alpha\beta}$,
- 2. Let $\alpha, \beta, \gamma, \delta \in \omega_1$. If we assume the follows:
 - (a) $\Delta(\alpha, \beta) \in \alpha \in \beta$ and $\Delta(\gamma, \delta) \in \gamma \in \delta$,
 - (b) $|F_{\alpha\beta}| = |F_{\gamma\delta}|$,
 - (c) $n_{\alpha\beta} = n_{\gamma\delta}$
 - (d) $\rho_1(\cdot, \alpha)|_{F_{\alpha\beta}} \approx \rho_1(\cdot, \gamma)|_{F_{\gamma\delta}}$ and $\rho_1(\cdot, \beta)|_{F_{\alpha\beta}} \approx \rho_1(\cdot, \delta)|_{F_{\gamma\delta}}$

Then $\alpha <_{\rho_1} \gamma$ implies $\beta = \gamma$ or $\beta <_{\rho_1} \delta$.

Proof. We shall show that $\alpha <_{\rho_1} \gamma$ and $\beta \in \gamma$ implies $\beta <_{\rho_1} \delta$.

First we verify $\Delta(\alpha, \gamma) = \Delta(\beta, \delta)$. We distinguish two cases, according to whether $F_{\alpha\beta} = F_{\gamma\delta}$.

If $F_{\alpha\beta} = F_{\gamma\delta}$. To see (\leq) , it suffices to show that $\forall \xi \in \Delta(\alpha, \gamma) \ (\rho_1(\xi, \beta) = \rho_1(\xi, \delta) \land \xi \in \beta \land \xi \in \delta)$. To see $\forall \xi \in \Delta(\alpha, \gamma) \ (\rho_1(\xi, \beta) = \rho_1(\xi, \delta) \land \xi \in \beta \land \xi \in \delta)$, let $\xi \in \Delta(\alpha, \gamma)$. Note that we have $\rho_1(\xi, \alpha) = \rho_1(\xi, \gamma)$. Case 1. If we have

 $\rho_1(\xi,\alpha) = \rho_1(\xi,\beta)$ and $\rho_1(\xi,\delta) = \rho_1(\xi,\gamma)$, then we have $\rho_1(\xi,\beta) = \rho_1(\xi,\delta)$. Case 2. If we have $\rho_1(\xi,\alpha) \neq \rho_1(\xi,\beta)$ or $\rho_1(\xi,\delta) \neq \rho_1(\xi,\gamma)$, we have $\xi \in D_{\alpha\beta} \subset F_{\alpha\beta}$ or $\xi \in D_{\gamma\delta} \subset F_{\gamma\delta}$, so we obtain that $\xi \in F_{\alpha\beta} = F_{\gamma\delta}$. This shows that $\rho_1(\xi,\beta) = \rho_1(\xi,\delta)$. To see that $\Delta(\alpha,\gamma) \geq \Delta(\beta,\delta)$, it suffices to show that $\rho_1(\Delta(\alpha,\gamma),\beta) \neq \rho_1(\Delta(\alpha,\gamma),\delta)$. Note that we have $\rho_1(\Delta(\alpha,\gamma),\alpha) \neq \rho_1(\Delta(\alpha,\gamma),\gamma)$. Since we have the equality $\rho_1(\cdot,\alpha)|_{F_{\alpha\beta}} = \rho_1(\cdot,\gamma)|_{F_{\gamma\delta}}$, we have $\Delta(\alpha,\gamma) \notin F_{\alpha\beta} = F_{\gamma\delta}$, moreover, $\Delta(\alpha,\gamma) \notin D_{\alpha\beta} = D_{\gamma\delta}$. Hence we have $\rho_1(\Delta(\alpha,\gamma),\alpha) = \rho_1(\Delta(\alpha,\gamma),\beta)$ and $\rho_1(\Delta(\alpha,\gamma),\gamma) = \rho_1(\Delta(\alpha,\gamma),\delta)$, furthermore we have $\rho_1(\Delta(\alpha,\gamma),\beta) \neq \rho_1(\Delta(\alpha,\gamma),\delta)$.

If $F_{\alpha\beta} \neq F_{\gamma\delta}$. Let $\eta = \cap \{ \cup \{F_{\alpha\beta}, F_{\gamma\delta}\}, \cap \{F_{\alpha\beta}, F_{\gamma\delta}\} \}$, then we have $\eta \leq \alpha, \beta, \gamma, \delta$. Assume that $\eta \in F_{\alpha\beta} \setminus F_{\gamma\delta}$ (the other case being handled in the obvious dual manner). $\eta \in F_{\alpha\beta}$ assert that $\rho_1(\eta, \alpha) \leq n_{\alpha\beta}$ and $\rho_1(\eta, \beta) \leq n_{\alpha\beta}$. And $\eta \notin F_{\gamma\delta}$ assert that $n_{\gamma\delta} \in \rho_1(\eta, \gamma) = \rho_1(\eta, \delta)$, we have $\rho_1(\eta, \alpha) \in \rho_1(\eta, \gamma)$ and $\rho_1(\eta, \beta) \in \rho_1(\eta, \delta)$, moreover, $\Delta(\alpha, \gamma) \leq \eta$ and $\Delta(\beta, \delta) \leq \eta$. This shows that, we suffice to verify that $\cap \{\Delta(\alpha, \gamma), \eta\} = \cap \{\Delta(\beta, \delta), \eta\}$. Since we have $\rho_1(\cdot, \alpha)|_{\cap \{F_{\alpha\beta}, \eta\}} = \rho_1(\cdot, \gamma)|_{\cap \{F_{\gamma\delta}, \eta\}}$ and $\rho_1(\cdot, \beta)|_{\cap \{F_{\alpha\beta}, \eta\}} = \rho_1(\cdot, \delta)|_{\cap \{F_{\gamma\delta}, \eta\}}$, by the mimik the case of $F_{\alpha\beta} = F_{\gamma\delta}$, we can verify the equality. Therefore, we have $\Delta(\alpha, \gamma) = \Delta(\beta, \delta)$ in generally.

Finally we shall show that $\rho_1(\Delta(\beta,\delta),\beta) \in \rho_1(\Delta(\beta,\delta),\delta)$. Let $\xi = \Delta(\alpha,\gamma) = \Delta(\beta,\delta)$. Note that since $\alpha <_L \gamma$, $\rho_1(\xi,\alpha) \in \rho_1(\xi,\gamma)$ holds. We distinguish two cases, according to whether $F_{\alpha\beta} = F_{\gamma\delta}$, again. If $F_{\alpha\beta} = F_{\gamma\delta}$ holds. Since $\rho_1(\xi,\alpha) = \rho_1(\xi,\gamma)$ and $\rho_1(\xi,\beta) = \rho_1(\xi,\delta)$, we obtain the desired equality. If $F_{\alpha\beta} \neq F_{\gamma\delta}$. By letting η as we have seen above, we obtain $\xi \in \eta$ and $\cap \{F_{\alpha\beta}, \eta\} = \cap \{F_{\gamma\delta}, \eta\}$, we obtain that $\rho_1(\xi,\alpha) = \rho_1(\xi,\gamma)$ and $\rho_1(\xi,\beta) = \rho_1(\xi,\delta)$. Now we complet the proof.

This theorem assert that if there is an uncountable set A such that for every $\{\alpha,\beta\}\in [A]^2,\ \Delta(\alpha,\beta)\in \cap \{\alpha,\beta\}$. Then for $n\in\omega$ and $p,q\in {}^{<\omega}\omega$ by letting:

$$S_{p,q}^{n} = \left\{ \langle \alpha, \beta \rangle \in A \times A \, ; \, \begin{array}{c} \alpha \in \beta \wedge n_{\alpha\beta} = n \\ \wedge \rho_{1}(\cdot, \alpha)|_{F_{\alpha\beta}} \approx p \wedge \rho_{1}(\cdot, \beta)|_{F_{\alpha\beta}} \approx q \end{array} \right\}$$

be a liner set. Moreover, by letting $Q_{p,q}^n=\{\langle\beta,\alpha\rangle\,;\!\langle\alpha,\beta\rangle\in S_{p,q}^n\}$ and $P=\{\langle\alpha,\alpha\rangle\,;\alpha\in A\}$, then we obtain that

$$A \times A = \bigcup \{ \bigcup \{S_{p,q}^n, Q_{p,q}^n : p, q \in {}^{<\omega}\omega \land n \in \omega \}, P \}$$

Therefore, A is a Countryman line. To see that a Countryman line exists, we remain to show that an A exists.

Lemma 6 (Continued fraction). Define funcion $\mathcal{C} : {}^{<\omega}\omega \to \mathbb{R}$ which assgins to f the real:

$$-\frac{1}{f(0)+1+\frac{1}{f(1)+1+\frac{1}{f(2)+1+\frac{1}{f(2)+1+1}}}} \cdot \cdot \cdot + \frac{1}{f(|f|-1)+1}$$

and define $C: {}^{\omega}\omega \to \mathbb{R}$ which assgins to f the limit point for $\langle \mathcal{C}(f|_n); n \in \omega \rangle$. Then, $C: {}^{\leq \omega}\omega \to \mathbb{R}$ preseve the order. *Proof.* Since for positive reals a and c, we have $\frac{1}{a+c} < \frac{1}{a}$, $C: {}^{<\omega}\omega \to \mathbb{R}$ preseves order. To see the $C: {}^{\omega}\omega \to \mathbb{R}$ is a function. For $f \in {}^{\omega}\omega$, since $C(f|_n) \le C(f|_{n+1}) < 0$ for each $n \in \omega$, $C(f) \in \mathbb{R}$ and preseves order.

Lemma 7. There is an uncountable set $A \subset \omega_1$ such that for $\alpha, \beta \in A, \alpha \in \beta$ implies $\rho_1(\cdot, \alpha) \not\subset \rho_1(\cdot, \beta)$. Equivalently, $\forall \{\alpha, \beta\} \in [A]^2 \ \Delta(\alpha, \beta) \in \cap \{\alpha, \beta\}$.

Proof. Define $\varphi \colon \omega_1 \to {}^{\omega}\omega \colon \alpha \mapsto (f_{\alpha} \colon n \mapsto |\{\xi \in \alpha \colon \rho_1(\xi, \alpha) = n\}|)$. Then for $\alpha, \beta \in \omega_1$ if we have $\rho_1(\cdot, \alpha) \subset \rho_1(\cdot, \beta)$, we have $f_{\alpha} \leq f_{\beta}$ for pointwise and we have $f_{\alpha} < f_{\beta}$ if $\alpha \in \beta$.

For $\alpha \in \omega_1$ if there is an ordinal δ such that $\rho_1(\cdot, \alpha) \subset \rho_1(\cdot, \delta)$ and $\alpha \in \delta$ then, choose the δ_{α} such that the funtion $\rho_1(\cdot, \delta)$ is minimal among the subset relation. If such an ordinal δ_{α} exists choose a rational $q_{\alpha} \in \mathbb{Q}$ such that $(\mathcal{C} \circ \varphi)(\alpha) <_{\mathbb{R}} q_{\alpha} <_{\mathbb{R}} (\mathcal{C} \circ \varphi)(\delta_{\alpha})$. We distinguish two cases, according wherther such an α exists for uncounbtably many.

If such an α exists for uncountable many, Pigeonhole principle assert that there is a rational $q \in \mathbb{Q}$ such that $q = q_{\alpha}$ for uncountable many $\alpha \in \omega_1$ and let A be the set of such ordinals. To see that A is the desired set, suppose that there are $\langle \alpha, \beta \rangle \in \cap \{A \times A, \in\}$ such that $\rho_1(\cdot, \alpha) \subset \rho_1(\cdot, \beta)$ holds. By the minimality of δ_{α} asserts that $\rho_1(\cdot, \alpha) \subset \rho_1(\cdot, \delta_{\alpha}) \subset \rho_1(\cdot, \beta)$ and since $\alpha \in \delta_{\alpha}$. We obtain that $q_{\alpha} <_{\mathbb{R}} (\mathcal{C} \circ \varphi)(\delta_{\alpha}) \leq_{\mathbb{R}} (\mathcal{C} \circ \varphi)(\beta) <_{\mathbb{R}} q_{\beta}$, a contradiction.

If such an α exists for only countably many, let $\beta \in \omega_1$ such that for arbitrary $\alpha \in \omega_1$ with $\alpha \ni \beta$, α does not possess a δ_{α} . Define $A = \{\alpha \in \omega_1 : \alpha \ni \beta\}$ and to conclude that A is the desired set, let $\langle \alpha, \beta \rangle \in \cap \{A \times A, \in\}$ and we shall show that $\rho_1(\cdot, \alpha) \not\subset \rho_1(\cdot, \beta)$. This relation is immediate by that δ_{α} does not exist.