A C^{κ} Surface in \mathbb{R}^3 is a set $M \in \mathbb{R}^3$ s.t. for even $p \in M$ there is a relativery open neighborhood V of p in M and a C^{κ} coordinate patch $\chi: U \stackrel{\text{der}}{=} \mathbb{R}^2 \stackrel{\text{onth}}{\longrightarrow} V \stackrel{\text{den}}{=} M$.

Convaligation Ck m-dimensional manifold in Rn

Let M be a C^k m-fold in \mathbb{R}^n , let $p \in M$, let $\chi: U \subseteq \mathbb{R}^m \longrightarrow V \subseteq M$ be a C^k coordinate patch. Let $u_s \in U$ with $\chi(u_s) = p$

Then $T_pM:=\{v\in\mathbb{R}^m: v: \text{ in } y \text{ in } y \text{ in } x' \in \mathbb{R}^m: x'$

The tangent bundle for M is $TM = \{(p,v) : p \in M, v \in T_pM\} \subseteq \mathbb{R}^{2n}$. TM is $\sim C^{r-1} 2m - fold in <math>\mathbb{R}^{2n}$

The first fundamental form, or nutric tensor, on M is the fn $p\mapsto I_p$ where for even p, I_p is the f_n on T_pMxT_pM defined by $I_p(X,Y)=\langle X,Y\rangle$.

Ip is an inner product on TpM

If $\chi: \mathcal{U} \stackrel{\text{pur}}{=} \mathbb{R}^m \longrightarrow \mathcal{V} \stackrel{\text{pur}}{=} \mathcal{M}$ is a C' patch in M, then we write χ_j for $\frac{\partial \chi}{\partial u^j}$ and $g_{i,j} = (\chi_i, \chi_j)$. for each $u \in U$, the vectors $\chi_i(u), \dots, \chi_m(u)$ form a basis for $T_{\chi(u)}M$

If $X, V \in T_{X(N)}M$ then $X = \sum_{i=1}^{m} X^{i} x_{i}(u_{i})$ and $Y = \sum_{i=1}^{m} Y^{i} X_{i}(u_{i})$

 $\langle x, y \rangle = \sum_{i} \sum_{j} \chi^{i} \gamma^{j} \langle x_{i} \omega_{i}, x_{j} \omega_{j} \rangle = \sum_{i,j} g_{i,j} (u, i) \chi^{i} \gamma^{j}$

Thus $(g_{i,j}(u_0))$ is the matrix of the inner product $I_{x(u_0)}$ on I_pM with

respect to the basis { X, (u.s), ..., xm (uo) }.

Hence (gi, i (no)) is symmetric & strictly positive definite.

In particular, it has an inverse.

We write g for det (gi,i) >0 And gkl for the Kl-th ontry of the inverse of (gi,i).

Now let m=2 and n=3

$$\int_{\text{emma 3.4}} (a) g = |\chi_1 \times \chi_2|^2$$

(b)
$$(g^{KL}) = \frac{1}{g} \begin{pmatrix} g_{22} & -3i_1 \\ -g_{21} & g_{11} \end{pmatrix}$$

$$(c) \sum_{k} g_{ik} g^{jk} = S_i^j$$

Pf

$$\begin{split} |\chi_{1} \times \chi_{2}|^{2} &= (|\chi_{1}||\chi_{2}||\sin \Theta)^{2} = |\chi_{1}|^{2}|\chi_{2}|^{2}(1-\cos^{2}\Theta) = |\chi_{1}|^{2}|\chi_{2}|^{2} - (|\chi_{1}||\chi_{2}||\cos \Theta)^{2} \\ &= |\chi_{1}|^{2}|\chi_{2}|^{2} - \langle\chi_{1}, \chi_{2}\rangle\langle\chi_{2}, \chi_{1}\rangle = |\chi_{1}|^{2}|\chi_{2}|^{2} - |\chi_{1}||\chi_{2}||\cos \Theta\rangle^{2} \end{split}$$

(b) and (c) are obvious.

