Amendments to the Claims:

This listing of claims will replace all prior versions, and listings, of claims in the application:

Listing of Claims:

- 1. (canceled)
- 2. (canceled)
- 3. (currently amended) A polymer for a chemically amplified negative photoresist[[,]] comprising up to four monomer units and which is represented the formula:

wherein each of the up to four monomer units present is different from the other monomer units present;

 R_1 is H or CH₃;

 R_2 and R_4 are each independently selected from $(R)_{\alpha}(CH_2)_{\beta}R'$ and $(R)_{\alpha}[(CH_2)_{\gamma}O]_{\delta}R'$, wherein, R is CO, CO₂, O, OCO, or OCO₂, R' is O, CO₂, or OCO₂, α is 0 or 1, β is 0 to 5, γ is 1 or 2, and δ is 1 to 5, but if R and R' are both O, then β is not 0;

R₃ is represented by one of the formula formulae:

wherein R_6 , which combines an acetal compound and a vinyl compound, is a C_1 - C_5 saturated alkyl, a C_1 - C_5 ether, or a C_1 - C_5 carbonyl; R_7 to R_{11} are each independently selected

from H, C_1 - C_5 saturated alkyls, C_1 - C_5 ethers, C_1 - C_5 carbonyl groups, C_1 - C_5 alcohol groups; and m is a number ranging from 1-5; and

R₅ is represented by formula:

wherein R_{12} and R_{13} are each independently selected from H and OH, and * represents the bonding site at which the R_4 group is bonded;

 R_{14} and R_{16} are each independently selected from a single bond, $(R)_{\alpha}(CH_2)_{\beta}R'$ and $(R)_{\alpha}[(CH_2)_{\gamma} O]_{\delta}R'$, wherein R is CO, CO₂, O, OCO, or OCO₂, R' is O, CO₂, or OCO₂, α is 0 or 1, β is 0 to 5, γ is 1 or 2, and δ is 1 to 5, but if R and R' are both O, then β is not 0;

R₁₅ is a hydroxyl group;

R₁₇ is a carboxyl group;

a, b, c, and d represent mole ratios of each monomer, a has a value of 0-0.5, b has a value of 0-0.9, c has a value of 0-0.3, and d has a value of 0-0.3, provided that a+b+c+d=1; and

n represents the degree of polymerization of each polymer, and has a value of at least 2.

4. (original) The polymer for a chemically amplified negative photoresist according to claim 3 wherein:

 R_1 is H;

R₂ is CO₂;

R₃ is

R₄ is CO₂;

R₅ is

R₁₄ is CO₂CH₂CH₂,

R₁₅ is OH,

R₁₆ is a single bond, and

R₁₇ is COOH.

- 5. (canceled)
- 6. (canceled)
- 7. (canceled)
- 8. (canceled)
- 9. (currently amended) A chemically amplified negative photoresist composition comprising;

a photoacid generator; and

a polymer comprising up to four monomer units of the formula:

wherein each of the up to four monomer units present is different from the other monomer units present;

 R_1 is H or CH₃;

 R_2 and R_4 are each independently selected from $(R)_{\alpha}(CH_2)_{\beta}R'$ and $(R)_{\alpha}[(CH_2)_{\gamma}O]_{\delta}R'$, wherein, R is CO, CO₂, O, OCO, or OCO₂, R' is O, CO₂, or OCO₂, α is 0 or 1, β is 0 to 5, γ is 1 or 2, and δ is 1 to 5, but if R and R' are both O, then β is not 0;

R₃ is represented by one of the formula formulae:

$$-R_{6} \xrightarrow{R_{7}} OR_{8} \qquad -R_{6} \xrightarrow{R_{7}} OR_{10} \qquad -R_{6} \xrightarrow{Q} OR_{11} \qquad -R_{6} \xrightarrow{Q} O$$

wherein R_6 , which combines an acetal compound and a vinyl compound, is a C_1 - C_5 saturated alkyl, a C_1 - C_5 ether, or a C_1 - C_5 carbonyl; R_7 to R_{11} are each independently selected from H, C_1 - C_5 saturated alkyls, C_1 - C_5 ethers, C_1 - C_5 carbonyl groups, and C_1 - C_5 alcohol groups; and m is a number ranging from 1-5; and

 R_5 is represented by the formula:

wherein R₁₂ and R₁₃ are each independently H or OH; and

* represents the bonding site at which the R₄ group is bonded;

 R_{14} and R_{16} are each independently selected from a single bond, $(R)_{\alpha}(CH_2)_{\beta}R'$ and $(R)_{\alpha}[(CH_2)_{\gamma} O]_{\delta}R'$, wherein R is CO, CO₂, O, OCO, or OCO₂, R' is O, CO₂, or OCO₂, α is 0 or 1, β is 0 to 5, γ is 1 or 2, and δ is 1 to 5, but if R and R' are both O, then β is not 0;

R₁₅ is a hydroxyl group;

R₁₇ is a carboxyl group;

a, b, c, and d represent the mole ratios of each monomer, wherein a has a value of 0-0.5, b has a value of 0-0.9, c has a value of 0-0.3, and d has a value of 0-0.3, provided that a+b+c+d=1; and

n represents the degree of polymerization of each polymer, and has a value of at least 2.

10. (original) The chemically amplified negative photoresist composition according to claim 9 wherein

R₁ is H;

R₂ is CO₂;

 R_3 is

R₄ is CO₂;

R₅ is

R₁₄ is CO₂CH₂CH₂,

 R_{15} is OH, R_{16} is a single bond, and R_{17} is COOH.

11. (original) The chemically amplified negative photoresist composition according to claim 9 wherein the photoresist composition comprises 10 to 20 wt.% of said polymer and 0.1 to 1.0 wt.% of said photoacid generator.