#### In [1]:

#Importing Libraries
import pandas as pd
import numpy as np

## In [2]:

# Loading Data
data\_df = pd.read\_csv('C:/Users/DELL/Desktop/AI ML \_ SCM/Assignment 2/Assignment2\_Dataset.c

#### In [3]:

# Checking if loaded data is correct or not
data\_df.head()

### Out[3]:

|   | S.No | District   | Number of<br>Positive<br>Cases | Positivity<br>Rate | Total Achievement towards<br>1st Dose of Covishield and<br>Covaxin | Achievement towards<br>2nd Dosage<br>Covishield 18+ |
|---|------|------------|--------------------------------|--------------------|--------------------------------------------------------------------|-----------------------------------------------------|
| 0 | 1    | Ariyalur   | 16                             | 1.6                | 196727                                                             | 6169                                                |
| 1 | 2    | Chennai    | 183                            | 8.0                | 2542245                                                            | 89809                                               |
| 2 | 3    | Coimbatore | 205                            | 1.8                | 1170289                                                            | 19173                                               |
| 3 | 4    | Cuddalore  | 57                             | 1.3                | 612752                                                             | 6333                                                |
| 4 | 5    | Dharmapuri | 21                             | 1.1                | 446398                                                             | 4172                                                |

#### In [43]:

# removing column number of positive cases from x axis
x=data\_df.drop(["District","Number of Positive Cases","Positivity Rate"],axis=1).values
y=data\_df['Number of Positive Cases'].values

#### In [44]:

```
print(x)
1
           196727
                      6169]
        2 2542245
                     89809]
 [
        3 1170289
                     19173]
 4
           612752
                      6333]
        5
           446398
                      4172]
        6
           324812
                      8830]
        7
           697172
                      3814]
 8
           336941
                      2982]
        9
           298154
                      2478]
 10
           573879
                     19062]
       11
           306036
                     13602]
       12
           593762
                     14321]
           740458
 13
                     10588]
       14
           214557
                      5517]
       15
           210928
                      4452]
       16
           575070
                     13487]
       17
           402618
                     15358]
       18
           263807
                      4106]
       19
           263975
                      3366]
       20
           757730
                     13380]
       21
           390138
                     11124]
       22
           619647
                     11976]
                     12471]
       23
           310232
                     29945]
       24
           789546
       25
           365717
                      8459]
       26
           712324
                      8504]
       27
           479825
                     11228]
 29
           358852
                      6480]
       30
           396416
                      5905]
       31
           455226
                      3222]
 32
           262771
                      9034]]
In [45]:
print(y)
               57
                                        25
                                                 20
                                                         14
                                                             48
                                                                 50
                                                                      36
[ 16 183 205
                   21
                        8 152
                               24
                                    31
                                            13
                                                     14
                                                                          25
     79
          21
              95
                    5
                       52
                          15
                               76
                                    58
                                        39
                                            27
                                                43
                                                      6]
In [56]:
# Splitting Data
from sklearn.model selection import train test split
x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.8,random_state=0)
In [57]:
# Training the Model
from sklearn.linear_model import LinearRegression
ml=LinearRegression()
ml.fit(x_train,y_train)
Out[57]:
LinearRegression()
```

#### In [58]:

```
# Prediction Model and Printing
y_pred=ml.predict(x_test)
print(y_pred)
```

```
12.25016519 104.81442514
                            53.86368367
                                           25.81770859
                                                         88.52637723
84.33147265
              56.39401299
                            32.89594385
                                           68.20038641
                                                         19.48957693
28.7703103
              36.64017963
                            53.34576348
                                           59.13066512
                                                         73.88795611
57.68152783 -161.91484295
                            85.61834381
                                           54.50351347
                                                         42.92220239
              93.36011674
72.61616238
                            57.68526558
                                           14.14186315
                                                         50.54786354]
```

#### In [59]:

```
# Predicting value of positive cases using model
ml.predict([[1,196727,6169]])
# Predicted model --> 22.
# According to data --> 16.
```

#### Out[59]:

array([22.08287011])

#### In [60]:

```
# Evaluating the model using R2 value
from sklearn.metrics import r2_score
r2_score(y_test,y_pred)
# Conclusion no correlation between data and parameters
```

#### Out[60]:

-1.8750765503305127

### In [62]:

```
import matplotlib.pyplot as plt
plt.figure(figsize=(15,10))
plt.scatter(y_test,y_pred)
plt.xlabel('Actual')
plt.ylabel('Predicted')
plt.title('Actual vs. Predicted')
```

### Out[62]:

Text(0.5, 1.0, 'Actual vs. Predicted')



## In [63]:

pred\_y\_df=pd.DataFrame({'Actual Value':y\_test,'Predicted Value':y\_pred, 'Difference': y\_test
pred\_y\_df[0:31]

## Out[63]:

|    | Actual Value | Predicted Value | Difference |
|----|--------------|-----------------|------------|
| 0  | 205          | 12.250165       | 192.749835 |
| 1  | 43           | 104.814425      | -61.814425 |
| 2  | 14           | 53.863684       | -39.863684 |
| 3  | 13           | 25.817709       | -12.817709 |
| 4  | 39           | 88.526377       | -49.526377 |
| 5  | 76           | 84.331473       | -8.331473  |
| 6  | 5            | 56.394013       | -51.394013 |
| 7  | 20           | 32.895944       | -12.895944 |
| 8  | 25           | 68.200386       | -43.200386 |
| 9  | 52           | 19.489577       | 32.510423  |
| 10 | 8            | 28.770310       | -20.770310 |
| 11 | 36           | 36.640180       | -0.640180  |
| 12 | 31           | 53.345763       | -22.345763 |
| 13 | 48           | 59.130665       | -11.130665 |
| 14 | 15           | 73.887956       | -58.887956 |
| 15 | 21           | 57.681528       | -36.681528 |
| 16 | 183          | -161.914843     | 344.914843 |
| 17 | 6            | 85.618344       | -79.618344 |
| 18 | 152          | 54.503513       | 97.496487  |
| 19 | 21           | 42.922202       | -21.922202 |
| 20 | 20           | 72.616162       | -52.616162 |
| 21 | 27           | 93.360117       | -66.360117 |
| 22 | 79           | 57.685266       | 21.314734  |
| 23 | 25           | 14.141863       | 10.858137  |
| 24 | 24           | 50.547864       | -26.547864 |

# In [ ]: