I CLAIM:

- A cutting tool comprising:
- a body comprising sintered cemented carbide, cermet or ceramic; and
- a hard and wear resistant coating on at least functional parts of the body, said
- 4 coating comprising a structure of one or more refractory layers of which at least one
- blayer comprises an alumina layer having a thickness of 0.5-25 μ m, and consisting
- 6 essentially of single phase α-alumina textured in the [300]-direction with a texture
- 7 coefficient larger than 1.5, the texture coefficient being defined as:

$$TC(hkl) = \frac{I(hkl)}{I_0(hkl)} \left\{ \frac{1}{n} \sum \frac{I(hkl)}{I_0(hkl)} \right\}^{-1}$$

- 8 where
- 9 I(hkl) = measured intensity of the (hkl) reflection,
- 10 Io(hkl) = standard intensity of the ASTM standard,
- powder pattern diffraction data, card number 43-1484,
- n = number of reflections used in the calculation
- 13 (hkl) reflections used are: (012), (104), (110),
- 14 (113), (024), (116) and (300).
 - 1 2. The cutting tool according to claim 1, wherein the alumina layer has
- 2 a thickness of 1-10 μ m.

1

2

1 2

- The cutting tool according to claim 1, wherein the texture coefficient
 is larger than 3.
- The cutting tool according to claim 1, wherein the texture coefficient
 is larger than 5.
- The cutting tool according to claim 1, wherein the α-alumina layer
 contains 0.01-10 percent by weight of residues of a texture modifying agent.
 - The cutting tool according to claim 5, wherein the α-alumina layer contains 0.01-5 percent by weight of residues of a texture modifying agent.
 - The cutting tool according to claim 5, wherein the α-alumina layer
 contains less than 1 percent by weight of residues of a texture modifying agent.
- 8. The cutting tool according to claim 1, further comprising at least one
 layer having a thickness of 0.1-10 μm, comprising a nitride, carbide, carbonitride,
 oxycarbide and/or oxycarbonitride of the metal titanium (TiC_XN_yO_z)and that said
- 4 layer is in contact with the α -alumina layer.
- 1 9. The cutting tool according to claim 8, wherein the at least one layer 2 has a thickness of 0.5-5 μ m.

13

during growth of the α -alumina layer.

	institute Docker No. 024445-014
1	10. The cutting tool according to claim 8, wherein the outer layer is α -
2	alumina.
1	11. The cutting tool according to claim 1, wherein the outer layer is TiN.
1	12. The cutting tool according to claim 1, the surface of the coated
2	cutting tool is smoothened by means of a brushing operation.
1	13. A method of producing a coated cutting tool comprising at least one
2	layer of textured α -alumina, the method comprising:
3	introducing a tool surface to be coated into a reactive atmosphere comprising
4	H ₂ and/or Ar;
5	providing the reactive atmosphere with a concentration of oxidizing species
6	below 5 ppm;
7	initiating nucleation of the α -alumina layer on the surface by first introducing
8	HC1 and CO ₂ gasses into the atmosphere, than introducing AlCl ₃ gas into the
9	atmosphere;
10	maintaining a temperature of 950-1050°C during nucleation of the α-alumina
11	layer; and
12	introducing a catalyst and a tayture modifying agent into the atmosphere
12	introducing a catalyst and a texture modifying agent into the atmosphere

- The method according to claim 13, wherein the oxidizing species
 comprises water vapor, the catalyst comprises H₂S, and the texture modifying agent
 comprises ZrCL.
- 1 15. The method according to claim 13, wherein 0.05-10 percent by 2 volume of the texture modifying agent is introduced.
- 16. The method according to claim 13, wherein 0.2-5 percent by volume
 of the texture modifying agent is introduced.
- The method according to claim 13, wherein 0.5-2 percent by volume
 of the texture modifying agent is introduced.
- 1 18. A method according to claim 14, wherein the addition of the texture
 2 modifying agent to the reaction gas mixture is 0.05-10 percent by volume of the
 3 total reaction gas mixture.
- The method according to claim 18, wherein the addition of the texture
 modifying agent is 0.2-5 percent by volume of the total reaction gas mixture.
- 1 20. The method according to claim 18, wherein the addition of the texture 2 modifying agent is 0.5-2 percent by volume of the total reaction gas mixture.