CE QU'IL FAUT RETENIR DU PREMIER COURS

- Probas, Stats Utoles partout.
- Probabilités fréquentistes, Variables aléatoires
- On doit faire une étude analytique pour résondre les problèmes "probabilistes"
- _ La somme des probabilités = 1
 - _ Es pérance Mathématique
 - _ Variance
 - _ Ecart-type
 - _ Variables Aléatoires Indépendantes
 - Indépendance de doux évenements.

Probabilie Conditionnelle: Parolo (6) = 1/6 Prob (pain) = 1/9 PA(B) = P(ANB), 4B 1/2 = 6x7=3 En d'autres termes: $P(B/A) = \frac{P(A \cap B)}{P(B)}$ Si $(B_n)_{n \in \mathbb{T}}$ est une partition de A On a: TP(A) = \(\sum_{n \in T} \) (\(\text{Permule de i} \)

NET et pour tout KEI

EXEMPLE: FORMULE DE BAYES

S 2 3 4 5 6 7 8 9 10 11 12

P(S)
$$\frac{1}{36}$$
 $\frac{2}{36}$ $\frac{3}{36}$ $\frac{4}{36}$ $\frac{5}{36}$ $\frac{6}{36}$ $\frac{5}{36}$ $\frac{4}{36}$ $\frac{3}{36}$ $\frac{2}{36}$ $\frac{1}{36}$

Soit $A = \{4, 7, 6, 7, 8, 9\}$
 $B_1 = \{4, 5\}$ $B_2 = \{6, 7\}$ $B_3 = \{8, 9\}$
 $P(B_1 | A)$? $P(B_2 | A)$? $P(B_3 | A)$?

 $P(B_3 | A)$? $P(B_1) + P(A | B_2) \cdot P(B_2) + P(A | B_3) \cdot P(B_3)$
 $= \frac{11/36}{\frac{7}{36} + \frac{11}{36}} = \frac{11}{27}$
 $P(B_3 | A) = \frac{7}{29}$

Exercice:

Une wrone contient deux pièces de monnaie. Une honnête et une biaisée qui donne face avec une probabilité 1/3. On en extrait une, on la lance et on obtient face. Quelle est la probabilité pour qu'il s'apisse de la pièce honvête?

P(face) = P(face/honriete). P(honriete) + P (face / biaisée) . Il (biaisée) = 1 2 + 1 3 2 = 1 1 = -5 P(honnite/face) = P(face/honnite). P(honnite) - 1 × 1 = 3 = 3 = 5 Par la formule P (honnète (face) = P (face/honnète). P (honnète)

Par la formule P (honnète) + P (face/honnète) + P (face/honnè CE QU'IL FAUT RETENIR Pans le cas d'une Partetion On applique la formule des Probabolilés Totales la formula de Bayes