



# Processing tables with Python

Till Korten

With materials from

Marcelo L. Zoccoler, Robert Haase, Pol – TU Dresden



### Pandas is very useful for processing 2D tables



- Typical use-case:
  - Data from a colleague (i.e. an excel file)
  - Output from a software that was saved to disk (i.e. a csv file)
  - Use pandas

conda install pandas



### Loading a pandas table from a csv file



```
import pandas as pd

df_csv = pd.read_csv('../../data/blobs_statistics.csv')
df_csv
```

|   |   | Area | Mean    | Circ. | AR     | Round | Solidity |
|---|---|------|---------|-------|--------|-------|----------|
| 0 | 1 | 2610 | 96.920  | 0.773 | 1.289  | 0.776 | 1.0      |
| 1 | 2 | 2100 | 90.114  | 0.660 | 2.333  | 0.429 | 1.0      |
| 2 | 3 | 27   | 110.222 | 0.108 | 27.000 | 0.037 | 1.0      |

Display just the first 3 rows of a table:

Display just the last 3 rows of a table:

### Creating pandas tables from Python data



from a nupy array

```
import numpy as np

data = np.random.random((4,3))
column_header = ['area',
'minor_axis', 'major_axis']

pd.DataFrame(data,
columns=column_header)
```

|   | area     | minor_axis | major_axis |
|---|----------|------------|------------|
| 0 | 0.425681 | 0.135821   | 0.017084   |
| 1 | 0.036739 | 0.120840   | 0.925127   |
| 2 | 0.506095 | 0.453657   | 0.690560   |
| 3 | 0.748323 | 0.174359   | 0.603710   |

from a dictionary

```
measurements = {
  "labels": [1, 2, 3],
  "area": [45, 23, 68],
  "minor_axis": [2, 4, 4],
  "major_axis": [3, 4, 5],
}

pd.DataFrame(measurements)
```

|   | labels | area | minor_axis | major_axis |
|---|--------|------|------------|------------|
| 0 | 1      | 45   | 2          | 3          |
| 1 | 2      | 23   | 4          | 4          |
| 2 | 3      | 68   | 4          | 5          |
|   |        |      |            |            |

# Saving pandas tables to disk



df.to\_csv("output.csv")



### 





|   | City        | Country | Population | Area_km2 |   | City        |
|---|-------------|---------|------------|----------|---|-------------|
| 0 | Tokyo       | Japan   | 13515271   | 2191     | 0 | Tokyo       |
| 1 | Delhi       | India   | 16753235   | 1484     | 1 | Delhi       |
| 2 | Shanghai    | China   | 24183000   | 6341     | 2 | Shanghai    |
| 3 | Sao Paulo   | Brazil  | 12252023   | 1521     | 3 | Sao Paulo   |
| 4 | Mexico City | Mexico  | 9209944    | 1485     | 4 | Mexico City |

# Select multiple columns with a list of column names



cities[ ('City', 'Country'] ]

|   | City        | Country | Population | Area_km2 |   | City        | Country |
|---|-------------|---------|------------|----------|---|-------------|---------|
| 0 | Tokyo       | Japan   | 13515271   | 2191     | 0 | Tokyo       | Japan   |
| 1 | Delhi       | India   | 16753235   | 1484     | 1 | Delhi       | India   |
| 2 | Shanghai    | China   | 24183000   | 6341     | 2 | Shanghai    | China   |
| 3 | Sao Paulo   | Brazil  | 12252023   | 1521     | 3 | Sao Paulo   | Brazil  |
| 4 | Mexico City | Mexico  | 9209944    | 1485     | 4 | Mexico City | Mexico  |

Note the double brackets

# Select table rows through the **loc** object



data\_frame.loc[ 0, ['City', 'Country']]

|   | City        | Country | Population | Area_km2 |
|---|-------------|---------|------------|----------|
| 0 | Tokyo       | Japan   | 13515271   | 2191     |
| 1 | Delhi       | India   | 16753235   | 1484     |
| 2 | Shanghai    | China   | 24183000   | 6341     |
| 3 | Sao Paulo   | Brazil  | 12252023   | 1521     |
| 4 | Mexico City | Mexico  | 9209944    | 1485     |

|   | City  | Country |
|---|-------|---------|
| 0 | Tokyo | Japan   |
|   |       |         |
|   |       |         |
|   |       |         |
|   |       |         |



### Select individual cells



|   | City        | Country | Population | Area_km2 |
|---|-------------|---------|------------|----------|
| 0 | Tokyo       | Japan   | 13515271   | 2191     |
| 1 | Delhi       | India   | 16753235   | 1484     |
| 2 | Shanghai    | China   | 24183000   | 6341     |
| 3 | Sao Paulo   | Brazil  | 12252023   | 1521     |
| 4 | Mexico City | Mexico  | 9209944    | 1485     |

data\_frame['City'][0]
'Tokyo'

### Selecting rows that fulfill criteria



• Select cities with an area of more than 2000 km<sup>2</sup>

|   | City        | Country | Population | Area_km2 | cities["area"] > 2000       |
|---|-------------|---------|------------|----------|-----------------------------|
| 0 | Tokyo       | Japan   | 13515271   | 2191     | 0 True                      |
| 1 | Delhi       | India   | 16753235   | 1484     | 1 False                     |
| 2 | Shanghai    | China   | 24183000   | 6341     | 2 True<br>3 False           |
| 3 | Sao Paulo   | Brazil  | 12252023   | 1521     | 4 False                     |
| 4 | Mexico City | Mexico  | 9209944    | 1485     | Name: Area_km2, dtype: bool |
|   |             |         |            |          |                             |

cities[ cities["area"] > 2000 ]

|   | City     | Country | Population | Area_km2 |
|---|----------|---------|------------|----------|
| 0 | Tokyo    | Japan   | 13515271   | 2191     |
| 2 | Shanghai | China   | 24183000   | 6341     |



# Combining similar tables



If tables have the same columns

pd.concat([countries1, countries2])

| countries1 |         |            | co | untries2 |            |
|------------|---------|------------|----|----------|------------|
|            | Country | Population |    | Country  | Population |
| 0          | Japan   | 127202192  | 0  | Brazil   | 209489323  |
| 1          | India   | 1352642280 | 1  | Mexico   | 126190788  |
| 2          | China   | 1427647786 |    |          |            |

|   | Country | Population |
|---|---------|------------|
| 0 | Japan   | 127202192  |
| 1 | India   | 1352642280 |
| 2 | China   | 1427647786 |
| 0 | Brazil  | 209489323  |
| 1 | Mexico  | 126190788  |

### Keep information about the data source



Add a column to each table before concatenating them

= 26

countries1['Survey ID'] countries2['Survey ID']

|   | Country | Population | Survey ID |   | Country | Population | Survey ID |
|---|---------|------------|-----------|---|---------|------------|-----------|
| 0 | Japan   | 127202192  | 26        | 0 | Brazil  | 209489323  | 73        |
| 1 | India   | 1352642280 | 26        | 1 | Mexico  | 126190788  | 73        |
| 2 | China   | 1427647786 | 26        |   |         |            |           |

pd.concat([countries1, countries2])

|   | Country | Population | Survey ID |
|---|---------|------------|-----------|
| 0 | Japan   | 127202192  | 26        |
| 1 | India   | 1352642280 | 26        |
| 2 | China   | 1427647786 | 26        |
| 0 | Brazil  | 209489323  | 73        |
| 1 | Mexico  | 126190788  | 73        |

### Handling NaN values



- Usually indicate missing data
- Can cause errors when handling the data
- The easiest is to drop them using the ".dropna" method
- Drops any row containing a NaN value

data\_no\_nan = data.dropna(how="any")

### Always work with tidy-data



• Each variable is a column.

data\_frame.melt()

100

- Each observation is a row.
- Each type of observation has its own separate data frame.

### Not tidy:

|   |           | Before    | After     |           |  |
|---|-----------|-----------|-----------|-----------|--|
|   | channel_1 | channel_2 | channel_1 | channel_2 |  |
| 0 | 13.250000 | 21.000000 | 15.137984 | 42.022776 |  |
| 1 | 44.954545 | 24.318182 | 43.328836 | 48.661610 |  |
| 2 | 13.590909 | 18.772727 | 11.685995 | 37.926184 |  |
| 3 | 85.032258 | 19.741935 | 86.031461 | 40.396353 |  |

|    | variable_0 | variable_1 | value     |
|----|------------|------------|-----------|
| 0  | Before     | channel_1  | 13.250000 |
| 1  | Before     | channel_1  | 44.954545 |
| 2  | Before     | channel_1  | 13.590909 |
| 3  | Before     | channel_1  | 85.032258 |
| 4  | Before     | channel_1  | 10.731707 |
|    |            |            |           |
| 99 | After      | channel_2  | 73.286439 |

channel\_2

After

Tidy:



145.900739

### **Exercises**



- The jupyter notebook "Tabular\_Data.ipynb" contains many examples implementing what we discussed in this lesson
- At the end of the notebook, you will find three exercises:
  - Exercise 1 selecting clumns
  - Exercise 2 removing NaN
  - Exercise 3 groupby