.

计算理论导论

习题三: 正则语言的特性

中国人民大学 信息学院 崔冠宇 2018202147

1. 1.4 (e)(g).

- (e) $\{w | w \text{ starts with an a and has at most one b},$
- (g) $\{w | w \text{ has even length and an odd number of a's} \}$.

解: 思路: 先设计识别两个语言的 DFA, 再利用笛卡尔积构造识别两个语言的交的 DFA。

(e) 识别"以 a 开头的字符串"的 DFA:

识别"至多含有一个 b"的字符串的 DFA:

二者的笛卡尔积(其中 (q_r,q_s) 从起始状态不可达,可以去掉):

(g) 识别"偶数长度的字符串"的 DFA:

识别"含有奇数个 a 的字符串"的 DFA

二者的笛卡尔积:

2. 1.13 Let F be the language of all strings over $\{0,1\}$ that do not contain a pair of 1s that are separated by an odd number of symbols. Give the state diagram of a DFA with five states that recognizes F. (You may find it helpful first to find a 4-state NFA for the complement of F.)

解: 思路: 先设计接受 \bar{F} 的 NFA,然后将其改造为 DFA,再通过交换接受状态与非接受状态得到结果。 (1) $\bar{F} = \{w | w$ 含有被奇数个符号分隔的一对1 $\}$,写成正则表达式为 (o+1)*1(o+1)((o+1)(o+1))*1(o+1)*。 设计识别 \bar{F} 语言的四状态 NFA = $(Q, \{0,1\}, \delta, 1, \{4\})$:

使用 **Theorem 1.39** 将其改造为等价的 DFA = $(Q' = \mathcal{P}(Q), \{0, 1\}, \delta', \{1\}, F')$,其中, $F' = \{\{4\}, \{1, 4\}, \{2, 4\}, \{3, 4\}, \{1, 2, 4\}, \{1, 3, 4\}, \{2, 3, 4\}, \{1, 2, 3, 4\}\}, \delta'$ 由下表给出:

	О	1
Ø	Ø	Ø
{1}	{1}	$\{1, 2\}$
{2}	{3}	{3}
{3}	{2}	$\{2,4\}$
{4}	{4}	{4}
$\{1, 2\}$	$\{1, 3\}$	$\{1, 2, 3\}$
{1,3}	$\{1, 2\}$	$\{1, 2, 4\}$
{1,4}	$\{1, 4\}$	$\{1, 2, 4\}$
$\{2, 3\}$	$\{2, 3\}$	$\{2, 3, 4\}$
$\{2,4\}$	$\{3, 4\}$	$\{3, 4\}$
${\{3,4\}}$	$\{2,4\}$	$\{2, 4\}$
$\{1, 2, 3\}$	$\{1, 2, 3\}$	$\{1, 2, 3, 4\}$
$\{1, 2, 4\}$	$\{1, 3, 4\}$	$\{1, 2, 3, 4\}$
$\{1, 3, 4\}$	$\{1, 2, 4\}$	$\{1, 2, 4\}$
$\{2, 3, 4\}$	$\{2, 3, 4\}$	$\{2, 3, 4\}$
$\{1, 2, 3, 4\}$	$\{1, 2, 3, 4\}$	$\{1, 2, 3, 4\}$

从起始状态开始遍历,将可达的状态标红。可见仅有 $\{1\}$, $\{1,2\}$, $\{1,3\}$, $\{1,2,3\}$, $\{1,2,4\}$, $\{1,3,4\}$, $\{1,2,3,4\}$ 七个状态可达。交换 DFA 的接受状态与非接受状态,可得接受 F 的 DFA = $(Q',\{0,1\},\delta',\{1\},Q'-F)$ 如下图所示:

这个 DFA 还不是五状态,考虑使用最小化的方法。

先求出状态之间的等价关系: $\{1,2,4\} \equiv \{1,3,4\} \equiv \{1,2,3,4\}$ 。

将这些状态合并为 q_r , 得到五状态 DFA:

3. 1.14

- **a.** Show that if M is a DFA that recognizes language B, swapping the accept and nonaccept states in M yields a new DFA recognizing the complement of B. Conclude that the class of regular languages is closed under complement.
- **b.** Show by giving an example that if M is an NFA that recognizes language C, swapping the accept and nonaccept states in M doesn't necessarily yield a new NFA that recognizes the complement of C. Is the class of languages recognized by NFAs closed under complement? Explain your answer.

解:

(a) 设 $M=(Q,\Sigma,\delta,q_0,F)$ 是识别 B 的 NFA,交换 M 的接受状态与非接受状态,得到 $\bar{M}=(Q,\Sigma,\delta,q_0,F'=Q-F), \ \ \text{下面证明} \ \bar{M} \ \ \text{接受} \ \bar{B}=\{w\in\Sigma^*|w\notin B\}.$

因为 M 接受 B,即对任意 w, $w \in B \leftrightarrow \delta^*(q_0, w) \in F$,即 $w \in \bar{B} \leftrightarrow \delta^*(q_0, w) \in Q - F$,因此 \bar{M} 识别语言 \bar{B} 。因此,对于任意正则语言 L,都能构造一台识别它的补语言 \bar{L} 的 DFA,即 \bar{L} 也是正则语言。或者说正则语言在补运算下封闭。

(b) 考虑如下识别"以1结尾的字符串"的 NFA A:

如果仅仅交换接受状态与非接受状态,得到下列 NFA A':

注意到 1, 11 等字符串也能被接受(自环)。由此说明,对于 NFA 不能通过简单地"交换接受状态与非接受状态"获得识别补语言的 NFA。

虽然有上面的"反例"存在,但是由于每一台 NFA 都存在与之等价的 DFA,因此 NFA 和 DFA 识别相同的语言类(正则语言),所以 NFA 识别的语言类在补操作下仍然封闭。

4. **1.15** Give a counterexample to show that the following construction fails to prove **Theorem 1.49**, the closure of the class of regular languages under the star operation. ¹

Let $N_1=(Q_1,\Sigma,\delta_1,q_1,F_1)$ recognize A_1 . Construct $N=(Q_1,\Sigma,\delta,q_1,F)$ as follows. N is supposed to recognize A_1^* .

- **a.** The states of N are the states of N_1 .
- **b.** The start state of N is the same as the start state of N_1 .
- **c.** $F = \{q_1\} \cup F_1$. The accept states F are the old accept states plus its start state.
- **d.** Define δ so that for any $q \in Q_1$ and any $a \in \Sigma_{\varepsilon}$,

$$\delta(q, a) = \begin{cases} \delta_1(q, a) & q \notin F_1 \text{ or } a \neq \varepsilon \\ \delta_1(q, a) \cup \{q_1\} & q \in F_1 \text{ and } a = \varepsilon. \end{cases}$$

(Suggestion: Show this construction graphically, as in **Figure 1.50**.)

解: 取
$$\Sigma = \{a,b\}$$
, $A_1 = \{a^n b | n \ge 0\}$, N_1 如下:

 $^{^{1}}$ In other words, you must present a finite automaton, N_{1} , for which the constructed automaton N does not recognize the star of N_{1} 's language.

按照上面的方法构造 N:

可见 N 接受了串 $\mathbf{a} \notin A_1^*$,与预期不符。

5. Find a minimal equivalent DFA for the following DFA, where A is the start state, C and F are accepting states:

	О	1
A	В	Α
В	C	D
C	F	E
D	E	Α
E	F	D
F	F	В

解: 思路: 利用课堂讲解的算法。

第 о 次迭代:

 $\equiv_Q = Q \times Q$ (仅写出"上三角"部分,即 (a,b),(b,a) 只写出其一,下同),即

 $\equiv_Q = \{(A, A), (A, B), (A, C), (A, D), (A, E), (A, F), (B, B), (B, C), (B, D), (B, E), (B, F), (C, C), (C, C$

 $(C, D), (C, E), (C, F), (D, D), (D, E), (D, F), (E, E), (E, F), (F, F)\}_{\circ}$

对每一个接受态 q_a , 删去所有 $(q,q_a)(q \notin F)$ 和 (q_a,q) , 可得

 $\equiv_{Q} = \{(A, A), (A, B), (A, D), (A, E), (B, B), (B, D), (B, E), (C, C), (C, F), (D, D), (D, E), (E, E), (F, F)\}_{\circ}$

之后的每次迭代,对 \equiv_Q 中的每一对状态 (p,q),考察二者是否等价,即 $\forall a \in \Sigma$,

都有 $(\delta(p,a),\delta(q,a)) \in \mathbb{Z}_Q$ 。等价则保留,不等价则删除。

第1次迭代:

$$\equiv_{Q} = \{(A,A),(A,D),(B,B),(B,E),(C,C),(C,F),(D,D),(E,E),(F,F)\}_{\circ}$$

第2次迭代:

 $\equiv_Q = \{(A,A),(A,D),(B,B),(B,E),(C,C),(C,F),(D,D),(E,E),(F,F)\}$,与上次相比没有变化,迭代结束。因此状态间非平凡的等价关系有: $A \equiv D, B \equiv E, C \equiv F$ 。

将等价的状态合并后的 δ 为:

画出此时的 DFA 的状态图:

6. **1.32** Let

$$\Sigma_3 = \left\{ \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}, \cdots, \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} \right\}$$

 Σ_3 contains all size 3 columns of 0s and 1s. A string of symbols in Σ_3 gives three rows of 0s and 1s. Consider each row to be a binary number and let

 $B = \{w \in \Sigma_3 | \text{ the bottom row of } w \text{ is the sum of the top two rows} \}.$

For example,

$$\begin{bmatrix} \begin{smallmatrix} 0 \\ 0 \\ 1 \end{bmatrix} \begin{bmatrix} \begin{smallmatrix} 1 \\ 0 \\ 0 \end{bmatrix} \begin{bmatrix} \begin{smallmatrix} 1 \\ 1 \\ 0 \end{bmatrix} \in B, \qquad \text{but} \qquad \begin{bmatrix} \begin{smallmatrix} 0 \\ 0 \\ 1 \end{bmatrix} \begin{bmatrix} \begin{smallmatrix} 1 \\ 0 \\ 1 \end{bmatrix} \notin B$$

Show that B is regular. (Hint: Working with $B^{\mathcal{R}}$ is easier. You may assume the result claimed in **Problem 1.31.**)

证明: 思路: 本题是证明"符合二进制加法的字符串"是正则语言。可以模仿计算机做加法的行为,设置一个保存进位的状态,再从 w^R 入手,从"低位"向"高位"验证正确性。

由于正则语言对字符串反转封闭,所以往证 $B^{\mathcal{R}}$ 是正则语言,尝试构造一台 $\mathsf{DFA}\,A = (Q, \Sigma_3, \delta, q_{a,0}, F)$ 识别 $B^{\mathcal{R}}$:

- $Q = \{q_{a,0}, q_{a,1}, q_r\}$,其中 $q_{a,0}$ 表示和正确,进位位为 0; $q_{a,1}$ 表示和正确,进位位为 1; q_r 表示和不正确。
- $F = \{q_{a,0}\}$
- $\delta: Q \times \Sigma_3 \to Q$ 参照二进制加法法则,如下表所示:

	$\begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$	$\begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$	$\begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}$	$\begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix}$	$\begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$	$\begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}$	$\begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}$	$\begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$
$q_{a,0}$	$q_{a,0}$	q_r	q_r	$q_{a,0}$	q_r	$q_{a,0}$	$q_{a,1}$	q_r
$q_{a,1}$	q_r	$q_{a,0}$	$q_{a,1}$	q_r	$q_{a,1}$	q_r	q_r	$q_{a,1}$
q_r	q_r							

画出 DFA 的图表示:

因此, $B^{\mathcal{R}}$ 可被 A 接受,于是 $B^{\mathcal{R}}$ 是正则语言。根据正则语言对于反转操作的封闭性, $B=(B^{\mathcal{R}})^{\mathcal{R}}$ 也是正则语言。 \square

7. **1.35** Let Σ_2 be the same as in **Problem 1.33**. Consider the top and bottom rows to be strings of 0s and 1s, and let

 $E = \{w \in \Sigma_2 | \text{ the bottom row of } w \text{ is the reverse of the top row of } w\}.$

Show that E is not regular.

证明: 思路: 用泵引理。

反证法,若E是正则语言,设p是由泵引理给出的泵长度。

取 $w = {0 \brack 1}^p {1 \brack 6}^p$,则根据泵引理的要求,w 可被写成 xyz 三部分,其中 |y| > 0 且 $|xy| \le p$ 。于是 y 只能具有 ${0 \brack 1}^p {1 \brack 6}^p$ 的形式,但是 $xyyz = {0 \brack 1}^{p+k} {1 \brack 6}^p \notin E$,矛盾。于是 E 不是正则语言。 \square

8. 【选做】1.38 An *all*-NFA M is a 5-tuple $(Q, \Sigma, \delta, q_0, F)$ that accepts $x \in \Sigma^*$ if every possible state that M could be in after reading input x is a state from F. Note, in contrast, that an ordinary NFA accepts a string if some state among these possible states is an accept state. Prove that all-NFAs recognize the class of regular languages.

解: 根据定义,每一台 DFA 都是特殊的 all-NFA,因此只需要证明任意 all-NFA 都能转化为等价的 DFA。这个转化过程类似于 **Theorem 1.39**,对于某 all-NFA $M=(Q,\Sigma,\delta,q_0,F)$,它的等价的 DFA 为 $A=(Q',\Sigma,\delta',\{q_0\},F')$,其中:

- $Q' = \mathcal{P}(Q)$;
- $\delta'(R, a) = \bigcup_{r \in R} E(\delta(r, a));$
- $F' = \{q \in Q' | q \subseteq F\}_{\circ}$

最后的 F' 的修改是为了保证读入串 x 后的所有状态都包含于 F。

9. 【选做】1.43 Let A be any language. Define DROP-OUT(A) to be the language containing all strings that can be obtained by removing one symbol from a string in A. Thus, $DROP\text{-}OUT(A) = \{xz | xyz \in A\}$

A where $x, z \in \Sigma^*, y \in \Sigma$ }. Show that the class of regular languages is closed under the *DROP-OUT* operation. Give both a proof by picture and a more formal proof by construction as in **Theorem 1.47**. **解:** 思路: 直接在原 DFA 的边上修改符号是错误的。考虑拷贝一台 DFA,在二者之间增加一些边来实现"跳过字符"。这里只给出形式化的证明。

任意给定正则语言 A,由定义,存在识别它的有限状态自动机 $M=(Q,\Sigma,\delta,q_0,F)$,构造一台 NFA $N=(Q\cup Q',\Sigma,\delta',q_0,F')$,其中 $Q'=\{q'|q\in Q\}$ 是原机器的状态的拷贝; δ' 如下所示:

$$\delta'(p,\alpha) = \begin{cases} \bigcup_{\beta \in \Sigma} \{ (\delta(\delta(q,\beta),\alpha))' \} \cup \{ \delta(q,\alpha) \}, & t = q \in Q \\ (\delta(q,\alpha))', & t = q' \in Q' \end{cases}$$

即每一个原状态 q 识别字符 α 时,给它增加一些指向它的所有后继状态 $\bigcup_{\beta \in \Sigma} \{\delta(q,\beta)\}$ 接受字符 α 的后继状态 $\bigcup_{\beta \in \Sigma} \{\delta(\delta(q,\beta),\alpha)\}$ 在复制状态集 Q' 中对应的状态 $\bigcup_{\beta \in \Sigma} \{(\delta(\delta(q,\beta),\alpha))'\}$ 。

正确性的证明:

设 $xyz \in A$, 其中 $x,z \in \Sigma^*, y \in \Sigma$, 于是在原自动机 M 上存在状态序列 q_0, q_1, q_2, q_a , 满足 $q_1 = \delta^*(q_0, x), q_2 = \delta(q_1, y), q_3 = \delta^*(q_2, z) \in F$ 。N 读取字符串 xz 时,有一条通路经过 q_0, q_1, q_3' ,因而 N 识别该串。反之亦然。