Device Modeling Report

COMPONENTS: OPERATIONAL AMPLIFIER (CMOS)

PART NUMBER: NJU7045

MANUFACTURER: NEW JAPAN RADIO

REMARK: OPERATIONAL AMPLIFIER (CMOS) WITH SHUTDOWN

Bee Technologies Inc.

Spice Model


```
*PART NUMBER: NJU7045
*MANUFACTURER: NEW JAPAN RADIO
*CMOS OPAMP WITH SHUTDOWN
*All Rights Reserved Copyright (c) Bee Technologies Inc. 2006
.SUBCKT NJU7045
                   IN- IN+ VSS OUT VDD SHDN
ESH1
             REF 0 VALUE
+ { IF(V(SHDN1)>V(VDD)*0.299,V(VDD)*0.305,V(VDD)*0.7) }
             EO SHDN1 100
RSH1
CSH1
             SHDN1 0 10p
RSH2
             REF 0 1G
ESH2
             EO 0 VALUE { IF(V(SHDN)>V(REF),V(VDD)*0.7,0) }
M1
     4 IN+ 3 3 PIX L=6E-6 W=25E-6
     6 7 3 3 PIX L=6E-6 W=22.8E-6
M2
RC1 4 VSS 4.833E3
RC2 6 VSS 4.833E3
C1
    4 6 2E-12
   VDD 8 50u
11
M3 10 IN+ 12 12 NIX L=6E-6 W=25E-6
M4 11 7 12 12 NIX L=6E-6 W=25E-6
RC3 10 VDD 4.833E3
RC4 11 VDD 4.833E3
C2 10 11 2E-12
  13 VSS 50u
EOS 7 IN- POLY(3) (21,98) (73,98) (61,0) 1E-3 0.05 0.05 1
IOS1 IN+ 98 1.5E-12
IOS2 IN- 98 1.5E-12
V1 VDD 90.9
D1
    3 9 DX
V2
   14 VSS 0.9
D2
   14 12 DX
S1
    3 8 82 98 SOPEN
S2 VDD 8 98 82 SCLOSE
S3
   12 13 82 98 SOPEN
S4
   13 VSS 98 82 SCLOSE
```

```
ECM1 20 98 POLY(2) (IN+,98) (IN-,98) 0 .5 .5
RCM1 20 21 700000
CCM1 20 21 100e-12
RCM2 21 98 14.3k
RPS1 70 0 1E6
RPS2 71 0 1E6
CPS1 VDD 70 1E-5
CPS2 VSS 71 1E-5
EPSY 98 72 POLY(2) (70,0) (0,71) 0 1 1
RPS3 72 73 1.59E6
CPS3 72 73 500E-12
RPS4 73 98 80
EREF 98 0 POLY(2) (VDD,0) (VSS,0) 0 .5 .5
GSY VDD VSS POLY(1) (VDD, VSS) 20E-6 10E-7
E1 81 98 (SHDN1, VSS) 1
R1 81 82 1E3
C3 82 98 0.98E-9
VN1 60 0 0
RN1 60 0 16.45E-3
HN 61 0 VN1 30
RN2 61 0 1
G2 98 30 POLY(2) (4,6) (10,11) 0 145u 145u
R2 30 98 5.066E6
CF OUT 30 24E-12
S5 30 98 98 82 SCLOSE
D3 30 31 DX
D4 32 30 DX
V3 VDD 31 1.37
V4 32 VSS 1.37
M5 OUT 46 VDD VDD POX L=1.5E-6 W=435u
M6 OUT 47 VSS VSS NOX L=1.5E-6 W=435u
EG1 VDD 48 POLY(1) (98,30) 0.78925 1
EG2 49 VSS POLY(1) (30,98) 0.78925 1
RG1 48 46 10E3
RG2 49 47 10E3
S6 46 VDD 98 82 SCLOSE
S7 47 VSS 98 82 SCLOSE
ROUT OUT 0 12.5MEG
COUT OUT 10 5000F
.model nix nmos (vto=0.75 kp=205.5u rd=1 rs=1 rg=1 rb=1
+ cqso=4e-9 cqdo=4e-9 cqbo=3.667e-6 cbs=10.5e-5 cbd=9.5e-7)
.model nox nmos (vto=0.75 kp=195u rd=.5 rs=.5 rg=1 rb=1
+ cgso=66.667e-12 cgdo=66.667e-12 cgbo=125e-9
```

```
+ cbs=2.34e-13 cbd=2.34e-13)
.model pix pmos (vto=-0.75 kp=205.5u rd=1 rs=1 rg=1 rb=1
+ cgso=4e-9 cgdo=4e-9 cgbo=76.667e-8 cbs=2.34e-12 cbd=20.534e-12)
.model pox pmos (vto=-0.75 kp=195u rd=.5 rs=.5 rg=1 rb=1
+ cgso=76.667e-9 cgdo=130.667e-10 cgbo=125e-9
+ cbs=2.34e-13 cbd=2.34e-13)
.MODEL SOPEN VSWITCH(VON=2.4,VOFF=0.8,RON=10,ROFF=1E9)
.MODEL SCLOSE VSWITCH(VON=-0.8,VOFF=-2.4,RON=10,ROFF=1E9)
.MODEL DX D(IS=1E-12)
.ENDS
*$
```

MOSFET MODEL

Pspice model	Model description
parameter	•
LEVEL	
L	Channel Length
W	Channel Width
KP	Transconductance
RS	Source Ohmic Resistance
RD	Ohmic Drain Resistance
VTO	Zero-bias Threshold Voltage
RDS	Drain-Source Shunt Resistance
TOX	Gate Oxide Thickness
CGSO	Zero-bias Gate-Source Capacitance
CGDO	Zero-bias Gate-Drain Capacitance
CBD	Zero-bias Bulk-Drain Junction Capacitance
MJ	Bulk Junction Grading Coefficient
PB	Bulk Junction Potential
FC	Bulk Junction Forward-bias Capacitance Coefficient
RG	Gate Ohmic Resistance
IS	Bulk Junction Saturation Current
N	Bulk Junction Emission Coefficient
RB	Bulk Series Resistance
PHI	Surface Inversion Potential
GAMMA	Body-effect Parameter
DELTA	Width effect on Threshold Voltage
ETA	Static Feedback on Threshold Voltage
THETA	Modility Modulation
KAPPA	Saturation Field Factor
VMAX	Maximum Drift Velocity of Carriers
XJ	Metallurgical Junction Depth
UO	Surface Mobility

Output Voltage Swing (V_{OH1})

Simulation result

Evaluation Circuit

R _L =10 kΩ to 2.5 V	Measurement	Simulation	%Error
V _{OH1 (min)} (V)	4.95	4.9970	-

All Rights Reserved Copyright (c) Bee Technologies Inc. 2006

Output Voltage Swing (V_{OL1})

Simulation result

Evaluation Circuit

Comparison Table

R _L =10 kΩ to 2.5 V	Measurement	Simulation	%Error
V _{OL1 (MAX)} (mV)	50	2.9879	-

Input Current

Simulation result

Evaluation Circuit

	Measurement	Simulation	% Error
I _b (pA)	1	1	0
I _{IO} (pA)	1	1	0

All Rights Reserved Copyright (c) Bee Technologies Inc. 2006

Input Offset Voltage

Simulation result

Evaluation Circuit

Comparison Table

	Measurement	Simulation	%Error
V _{os} (mV)	10	9.893	-1.07

Open loop Voltage Gain

Simulation result

Evaluation Circuit

	Measurement	Simulation	%Error
AV(dB)	90	89.993	-0.008
F0-db (MHz)	0.8	0.800354	0.044

All Rights Reserved Copyright (c) Bee Technologies Inc. 2006

Common-Mode Rejection Ratio

Simulation result

Evaluation Circuit

CMRR = AV/ACM

= 20* LOG(31597/(3.1633/0.1))

Comparison Table

	Measurement	Simulation	%Error
CMRR (dB)	60	59.99	-0.017

Slew Rate

Simulation result

Evaluation Circuit

Comparison Table

	Measurement	Simulation	%Error
SR (V/us)	0.8	0.798	-0.25

T_{OFF}/T_{ON} TIME

Simulation result

Evaluation Circuit

	Measurement	Simulation	%Error
T _{OFF} (us)	1	1.0159	1.590
T _{on} (us)	10	10.172	1.720

All Rights Reserved Copyright (c) Bee Technologies Inc. 2006

Leak Current

Simulation result

Evaluation Circuit

$$I_{LEAK} = \frac{V_{OUT} - 1/2V_{DD}}{R_{L}} = \frac{2.4802 - 2.5}{100K}$$

Comparison Table

	Measurement	Simulation	%Error
I _{LEAK (MAX)} (uA)	± 3	-0.2	-

Reference

Mute Level

Simulation result

Simulation result zoom up

Calculation Mute Level

Mute Level =
$$V_{OUT} / V_{IN}$$

= 20* LOG(6.1989u / 1)

Comparison Table

V _{IN} =1V _{PP} ,f=1kHz	Measurement	Simulation	%Error
MUTE	-100	-104.153	4.153

Evaluation Circuit

Reference

