MICHIGAN STATE

AFRE 802 Statistical Methods for Agricultural, Food, & Resource Economists

Course overview & introduction to statistics (WMS Ch. 1)
August 31, 2017

Nicole Mason Michigan State University Fall 2017

MICHIGAN STATE

GAME PLAN

- 1. Introductions
- 2. Syllabus & schedule
- 3. Intro to statistics (WMS Ch. 1)
 - a. What is it & why study it?
 - b. Summarizing data
 - c. Sample means, variances, and std. dev.
 - d. The empirical rule
- 4. (Time-permitting) Basic summary stats in Stata

Introductions

- Name
- · Country of origin
- Where you did your undergrad/MS & major
- · Grad program at MSU
- Current level of study (MS/PhD)
- Previous statistics/probability courses?
- Research interests

2

Syllabus

- Main topics:
 - · What is statistics and why study it?
 - Probability
 - · Random variables and their probability distributions
 - Sampling distributions and the Central Limit Theorem
 - Estimation
 - · Hypothesis testing
 - Ordinary least squares (OLS) / regression analysis
- Syllabus and quick tour of D2L

MICHIGAN STATE

What is statistics?

- "Statistics is about data. ... Statistics uses data to gain insight and draw conclusions." (Source: CalPoly)
- "The practice or science of collecting and analyzing [and interpreting] numerical data in large quantities, especially for the purpose of inferring proportions in a whole [population] from those in a representative sample." (Source: CalPoly)
- Also "effective communication and presentation of results relying on data" (Source: BU)

4

MICHIGAN STATI

Why study it?

- To learn how to transform data into information
- So that you can
 - Do good quantitative research
 - Produce a high quality thesis
 - Interpret and evaluate others' work
 - · Contribute to knowledge, public policy, etc.
 - ...and so that you are ready for AFRE 835!

MICHIGAN STATE

The objectives of statistics

- To make an inference about a population based on info in a sample from that population
- 2. To provide a **measure of the 'goodness'** of that inference
- So defining your population of interest is key. Examples from your research?

6

MICHIGAN STATE

Put another way, the point of statistics is:

- 1. To **summarize** huge quantities of **data**.
- 2. To make better decisions.
- 3. To answer important social questions
- 4. To recognize patterns
- 5. To **evaluate the effectiveness** of policies, programs, innovations, etc.
- 6. To be able to distinguish good statistical work from not so good

Charles Whelan, Naked Statistics (2013, p. 14)

MICHIGAN STATE UNIVERSITY

Summarizing data

- In order to make inferences, we need to characterize/summarize our data
- Say we have data from nearly 9,000 smallholder farm households in Zambia on their:
 - Area cultivated
 - · Education level of the HH head
- How might we summarize these data in a useful way so that we don't have to look at 9,000 individual data points?

8

Summarizing a set of measurements: **frequency table**

- Table showing the proportion or % of observations at each value (or range of values) in the dataset
- Stata: <tab varname>

Education level of the HH head (categorical)	Freq.	Percent	Cum.
None	1,030	11.66	11.66
Grade 1-4	1,739	19.69	31.34
Grade 5-7	3,271	37.03	68.37
Secondary	2,403	27.20	95.57
Post-secondary	391	4.43	100.00
Total	8,834	100.00	

10

Summarizing a set of measurements: relative frequency histogram

- Graph showing the proportion or % of observations at each value (or range of values)
- Stata: <histogram varname, percent>

Summarizing a set of measurements: relative frequency histogram 09 53.9 50 4 Percent 30 30.6 20 우 10 12 Total area cultivated (ha) Note: values falling on boundary are included in the bar for the upper category (e.g., 2.00 ha is in 11 the 2-4 ha bar)

Summarizing a set of measurements: **mean**, **median**, **mode**

• Definitions?

Sample mean: $\overline{y} = \frac{1}{N} \sum_{i=1}^{N} y_i$ Population mean: μ

- In Stata:
 - <summarize varname> (gives mean and other stats)

Variable	0bs	Mean	Std. Dev.	Min	Max
hect_cult	8834	2.305795	2.269354	0	20

12

13

Summarizing a set of measurements: mean, median, mode

- In Stata:
 - <summarize varname, detail> (gives mean, median, other percentiles, 4 smallest & 4 largest values, etc.)
 - . summarize hect_cult, detail

Total area cultivated (ha)

	Percentiles	Smallest		
1%	0	0		
5%	.25	0		
0%	.405	0	0bs	8834
5%	.81	0	Sum of Wgt.	8834
0%	1.75		Mean	2.305795
		Largest	Std. Dev.	2.269354
5%	2.875	19		
0%	5.12	19	Variance	5.149966
5%	6.5	19.105	Skewness	2.557384
9%	11.25	20	Kurtosis	12.86027

Summarizing a set of measurements: variance & standard deviation

· Measures of dispersion, variability

Summarizing a set of measurements: variance & standard deviation

Sample variance: $s^2 = \frac{1}{N-1} \sum_{i=1}^{N} (y_i - \overline{y})^2$

Population variance: σ^2

Sample standard deviation: $s = \sqrt{s^2}$

Population standard deviation: $\sigma = \sqrt{\sigma^2}$

Summarizing a set of measurements: variance & standard deviation

. summarize hect_cult, detail

Total area cultivated (ha)

	Percentiles	Smallest		
1%	0	Ø		
5%	.25	0		
10%	.405	0	0bs	8834
25%	.81	0	Sum of Wgt.	8834
50%	1.75		Mean	2.305795
		Largest	Std. Dev.	2.269354
75%	2.875	19		
90%	5.12	19	Variance	5.149966
95%	6.5	19.105	Skewness	2.557384
99%	11.25	20	Kurtosis	12.86027

16

EX) Sample mean, variance & std. dev.

Obs. #	Ha cultivated
1	2
2	0
3	2
4	1.1
5	2.5
6	0.5
7	5.5
8	1.1
9	7
10	1
N = 10	Sum = 22.7

Sample mean
$$\overline{y} = \frac{I}{N} \sum_{i=1}^{N} y_i =$$

Sample variance $s^{2} = \frac{I}{N-I} \sum_{i=1}^{N} (y_{i} - \overline{y})^{2}$

Sample std. dev.

The "empirical rule"

For a distribution that is <u>approximately</u> normal:

- •68% of obs. are w/in σ of μ
- •95% of obs. are w/in 2σ of μ
- •Almost all obs. are w/in 3σ of μ

EXAMPLE

Scores on the quantitative portion of the GRE in 2011 were approximately normally distributed and averaged 151 with a standard deviation of 9.

- a. Approximately what percentage of test-takers got scores between 142 and 160?
- b. An elite grad school only considers applicants with quantitative GRE scores in the top 2.5%. What minimum score would this be?

MICHIGAN STATE

(Time-permitting) Basic summary stats in Stata

 The syntax file (a.k.a. "do-file") and data file are available on D2L

MICHIGAN STATE UNIVERSITY

Homework:

- WMS Ch. 1
 - Populations: 1.1 (a-d; identify the population only)
 - Relative frequencies & histograms: 1.2 (a, c, d; feel free to use Excel, Stata, or other software for a), 1.6
 - Sample means, var., std. dev., empirical rule: 1.9, 1.11, 1.12, 1.21
- Due at the beginning of class on Thursday, Sep. 7

Next class: Introduction to probability (Part 1 of 2)

Reading for next class:

• WMS Ch. 2: 2.1 through 2.6

Application to look into for next class:

 What are permutations and combinations? Then pick one and find at least one example of how it it used in your field.