Лабораторна робота № 3 Підсилювачі сигналів на біполярних транзисторах

1. Для заданого типу транзистора визначити гранично допустимі значення струму та напруги колектора [Detail report] Наприклад, для BCW32 $I_{K max} = 0.1 A$; $U_{K max} = 30 B$.

Обрати струми і напругу колектора меншими від гранично допустимих Наприклад: $I_{K0} = 30 \text{ мA}$ $U_{K0} = 12 \text{ B}.$

2. Збираємо схему для побудов характеристик транзистора

Командою [DC Sweep] На прохідній характеристиці [$I_c(Q1)$ від V1] курсором (з кроком 0.01В) обираємо струм у 30 мА і визначаємо відповідну напруг на базі ($U_{b0} = 0.745$ В) та крутість в цій робочій точці S = 0.64 А/В.

За вхідною характеристикою [$I_b(Q1)$ або I(V1) від V1] визначаємо струм бази у цій робочій точці та вхідний опір: $I_{b0} = 97$ мкА, $R_{bx} = 450$ Ом (обернене до dy/dx)

Виставивши напругу на базі $U_{\text{БЕ0}} = 0.745~\text{B}$ визначаємо величину вихідного опору транзистора за вихідною характеристикою [$I_c(Q1)$ або I(V2) від V2] при напрузі на колекторі $U_{\text{KE0}} = 12~\text{B}$. Вона виявляється рівною $R_i = 4630~\text{Ом}$ (обернене до dy/dx)

3. Гранична межа можливого коефіцієнта підсилення $k_{u rp} = S R_i = 3000$. Задаємось коефіцієнтом підсилення меншим від $k_{u rp}$. Наприклад, $\mathbf{k_u} = \mathbf{300}$. Визначаємо R_K , при якому це буде

$$k = S \frac{R_K R_i}{R_K + R_i}$$
 \rightarrow $R_K = R_i \frac{k}{k_{IP} - k} = 4630 \frac{300}{3000 - 300} = 514 \text{ OM}$

4. Збираємо схему підсилювача

Напруга живлення по колектору $E_{\mathit{KE}} \!=\! U_{\mathit{KE}0} \!+\! I_{\mathit{KE}0} R_{\mathit{K}} \!=\! 12\, B \!+\! 0,\! 03\, A \!\cdot\! 514\, O\!_{\mathit{M}} \!=\! 27,\! 5\, B$

Використовуючи вимірювальний прилад, можна перевірити величину напруги на колекторі та струм в колі колектора. Вони мають бути близькими до заданих вище $U_{\rm K0} = 12~{\rm B}~{\rm Ta}~{\rm I}_{\rm K0} = 30~{\rm mA}$

У коло бази крім джерела живлення $U_{\text{БЕ0}} = 0.745$ В вводиться джерело змінного сигналу достатньо малої величини $U_{\text{Бm}} = 0.01$ В з частотою порядку кількох кілогерців.

5. Використовуючи вимірювальний прилад — вольтметр змінної напруги — вимірюємо амплітуду напруги на колекторі. Вона має бути близької до заданої

$$U_{KEm} = k_u \cdot U_{EEm} = 300 \cdot 0,01 = 3 B$$

Використовуючи команду AC Analysis можна виміряти AЧХ підсилювача. В команді AC Analysis встановлюють: 1Hz - 10GHz - Decade - 10 - Linear для точки у схемі 3 (Output V(3)). Курсором можна виміряти підсилення на середніх частотах та верхню граничну частоту, де підсилення зменшується в <math>0,71 разів.

Як видно, верхня гранична частота дуже висока і простягається за 100 МГц. З неї можна було б визначити вихідну ємність нашого транзистора

$$C_{\scriptscriptstyle K} = \frac{1}{2\pi.f_{\scriptscriptstyle B}.R_{\scriptscriptstyle K}}$$
 порядку кількох пікофарад.

6. У підсилювачі у п.4 змінна напруга сигналу подається безпосередньо на базу транзистора. Щоб «відгородити» режим транзистора від джерела сигналу, між ними розміщується розділова ємність $C_{\rm E}$.

Опір $R_{\rm b}$, через який підводиться струм бази, має бути сумірним з вхідним опором транзистора $R_{\rm bx}$ = 450 Ом. Нехай $R_{\rm b}$ = 1 кОм.

Треба врахувати спад напруги на ньому, так що тепер

$$U_{\text{БЕ0}} = U_{\text{БЕ00}} + I_{\text{Б0}} R_{\text{Б}} = 0,745 + 97 \cdot 10^{-6} \cdot 10^{3} = 0,845 \text{B}$$
 Загальний вхідний опір тепер $R_{\text{Б}}' = R_{\text{Б}} \parallel R_{\text{Bx}} = 310 \text{ Om}.$

Ємність $C_{\text{Б}}$ визначатиме нижню граничну частоту підсилювача. Нехай вона буде $f_{\text{H}} = 100~\Gamma$ ц.

$$\omega_{H} = \frac{1}{R_{K}^{\dagger}C_{B}} \longrightarrow C_{B} = \frac{1}{2\pi f_{H}R_{K}^{\dagger}} = \frac{1}{6,28.100.310} = 5,13.10^{-6} = 5,13 \text{ MK}\Phi.$$

АЧХ підсилювача буде тепер мати такий вигляд

7. Дослідження нелінійного режиму підсилювача.

При надто великій напрузі вхідного сигналу транзистор переходить у нелінійний режим з причини запирання транзистора при надто низькій напруги на базі ($I_{\rm E0}=0$) або насичення при надто низькій напрузі на колекторі ($U_{\rm KE0}=0.2-0.3$ В), коли струм $I_{\rm K0}$ такий великий, що уся напруга $E_{\rm K}$ спадає на опорі $R_{\rm K}$). При цьому коефіцієнт підсилення зменшується.

$U_{\mathtt{BEm}}$	$U_{ ext{KEm}}$	k
0.001	0.288	288
0.01	2.87	287
0.03	8.14	271
0.05	10.3	206
0.06	10.9	187
0.07	11.4	163
0.10	12.3	123
0.15	12.9	86

Нелінійність розпочинається вже при U_{BEm} =0.04 - 0.05 B, де коефіцієнт підсилення починає спадати. Графік напруги на колекторі зазнає при таких U_{BEm} помітного обмеження зверху і знизу.

Обмеження зверху настає, коли транзистор закривається, і напруга на колекторі наближається до $E_{\rm K}$, а знизу — коли він відкритий до насичення.

(Зверніть увагу на те, щоб у закритому стані напруга на колекторі не перевищувала максимально допустиму напругу U_{Kmax})

У такому режимі з'являються вищі гармоніки. Їх можна спостерігати та вимірювати командою Fourier Analysis.

Крок (у Герцах) та кількість вимірюваних точок треба визначити так, щоб умістився увесь спектр (тут $100~\Gamma$ ц та 2000 точок, тобто ширина спектру буде $200~\kappa$ Гц – для 4 -5 гармонік).

Вимірявши амплітуди гармонік, можна підрахувати клір-фактор:

I - 13; II - 4; III - 1; IV - 2
$$k_f = \frac{\sqrt{A_2^2 + A_3^2 + A_4^2 + \dots}}{A_1} = \frac{\sqrt{16 + 1 + 4}}{13} = 0.35 = 35\%$$

Література

- 1. С.М. Левитський. «Основи радіоелектроніки». ВПЦ «Київський Університет»,2007.
- 2. І.І. Бех, С.М. Левитський. Фізичні основи комп'ютерної електроніки». Карат, 2010.

Рекомендовані транзистори: