COMP 345 Week 4

Haotao Lai (Eric)
h_lai@encs.concordia.ca
http://laihaotao.me/ta

Graph

How can we represent a graph

How to traverse a graph

There are a lot of ways to do it, the most common two is DFS and BFS.

You are not restricted in this two ways, during your demo!!!

Take DFS as an Example

Recursion

Recursion (continue)

```
DFS-VISIT(G, u)
   time = time + 1
                                /\!\!/ white vertex u has just been discovered
   u.d = time
   u.color = GRAY
   for each v \in G.Adj[u]
                               # explore edge (u, v)
       if v.color == WHITE
            v.\pi = u
            DFS-VISIT(G, \nu)
   u.color = BLACK
                                // blacken u; it is finished
   time = time + 1
10 u.f = time
```

Loop

```
dfs(G, v)
                                             // G is the graph, v is the vertex you want to begin
        Set visited
                                             // visited keep tacking the vertices haven been discovered
        Stack stack
                                             // simulate the resursion
                                             // try to discover the graph begins with v
        stack.push(v)
        while stack is no empty
                                             // when you finish searching
            Stack s
            tmp = stack.pop()
10
            visited.add(tmp)
12
            for all vertex in G.Adj[tmp]
                                             // check all adjacent vertices
13
                if tmp is not in visited
                    s.push(tmp)
15
            while s is not empty
                                             // keep the order
17
                stack.push(s.pop())
```

Let's do an example

Example 1 Undirected Graph

Example 2 Directed Graph

