

The Sprint Al Training for AfRican Medical Imaging

Knowledge Translation

SPARK ACADEMY

In Deep Learning and Medical Imaging

22nd February - 9th August 2025

Train for Change, from Science to Practice

AFRICAI

CAMERA

Demogratizing

2025 PROGRAM GUIDE

Program Platform: https://event.fourwaves.com/spark

Program Overview: The *Sprint AI* Training for African Medical Imaging *K*nowledge Translation (SPARK) program is designed to train a new generation of African artificial intelligence (AI) experts in medical imaging who can train others. The program is in partnership with the <u>African Imaging Network for Artificial Intelligence in Biomedical Imaging (AFRICAI)</u>, a Special Interest Group of the <u>Medical Image Computing and Computational Intervention (MICCAI)</u> Society, and hosted locally, by the <u>Medical Artificial Intelligence (MAI)</u> <u>Lab</u>, Lagos, Nigeria. We use a case-based learning approach and collective intelligence from various related fields (radiology, medical physics, computer science, neurology/neurosurgery, and oncology) to rapidly turn AI knowledge into action.

The SPARK Academy has trained and empowered 300 African researchers to address health inequities by providing training in cutting-edge AI innovations for medical imaging. This **free**, case-based, hands-on training brings together experts in medical imaging and AI to guide passionate learners in creating home-grown solutions for medical imaging diagnostics. Participants engage in seminars on imaging, image processing, and deep learning, culminating in the development of AI models for a specific need. For the past two years, SPARK has participated in the MICCAI Brain Tumor Segmentation (BraTS) Challenge, with learners developing top-performing models for automated tumour segmentation. This Year's program welcomes a new generation of researchers from Africa, Southeast Asia, and other underserved regions around the world to build their technical capacity, foster innovation, and strengthen collaborative networks that will create a sustainable impact in African healthcare through AI.

For more details on the program's vision, mission, and approach, see the program platform.

Objectives

The main objectives of SPARK Academy are:

- 1. Instill knowledge of machine learning (ML) and deep learning (DL) applications in medical imaging.
- 2. Teach skills in designing, implementing, and evaluating ML and DL architectures for medical segmentation.
- 3. Provide proficiency in transferable research skills, including study design, execution, and dissemination, with a focus on academic writing, publications, and science communication.
- 4. Create a collaborative ecosystem for effective interdisciplinary research in the development of innovative medical solutions.
- 5. Engage with the global AI imaging community to contribute to open-science initiatives.

Program Format:

- All training activities will be delivered through the <u>SPARK Academy Fourwaves program platform</u>.
 O Review the platform overview and how to use the platform and the Live APP, <u>Here</u>.
- Program guides and tutorial materials are provided on Github and Fourwaves.
- The official programming platform is Kaggle.
- Fourwaves, Kaggle and GitHub require personal logins and single access and cannot be shared.

Program Structure:

- Training is completed in 3 blocks (see below)
- Training is completed as a team, not as an individual.
 - Each candidate is enrolled as part of a team (see team composition in the program guide folder)
 - The foundation block is self-paced and is intended to be completed individually with mandatory mid-week team meetings.
 - All tutorial assignments, including during the foundation block, are completed as a team.
 - Each candidate participates in the hackathon and MICCAI BraTS Challenge as a team.
 - Teams comprise of 1 site director, 2-3 team coordinators, 1 team lead, and 10-12 team members.
 - To foster cross-regional and cross-discipline collaborations, some teams may include members from outside the country and at least 2 clinicians.
 - Team roles and assignments are in the <u>Team Composition</u> documentation in the program guide folder.

Program Expectations and Code of Conduct:

- 1. All participants are expected to be active team players.
- 2. All participants are expected to participate in all program activities including live lectures and tutorials.
- 3. All participants are expected to participate in completing all reading and lecture materials, assignments, milestones and deliverables.
- 4. All participants are expected to attend and participate in the hackathon, daily.

- 5. All participants of the SPARK Academy are expected to behave professionally and responsibly towards everyone both in-person and online during all formal and informal activities, regardless of location.
- 6. All participants are expected to review and understand the SPARK Academy code of conduct appended below, as well as on the SPARK program platform.

Program Contact information:

- General program information is in the **FAQ section** of the program platform.
- General program inquiry: SPARK Academy Team at spark@mailab.io
- For project-specific inquiries, including questions related to team assignments, hackathon projects, or team BraTS projects, contact your team supervisor.
- Follow SPARK Academy social channels for program updates; Twitter (CAMERA and MAI Lab) and LinkedIn.

Program Blocks (TTU):

Sprint Al Training for African Medical Imaging Knowledge Translation

1. Teach: Ten-weeks Virtual Foundation Course. (February 22nd to May 3rd, 2025)

<u>Learn the basics.</u> Engage our self-paced online learning platform with *mandatory midweek meetings and live weekend tutorials on Saturdays* and discover fundamentals in imaging and computational science relevant to building advanced Al applications for medical imaging in ten weeks.

2. Try: One Week Hybrid Africa-BraTS BrainHack 2025 (May 12th to May 16th, 2025)

<u>Charge your creative adrenaline</u>. Join six regional participants for a <u>one-week (M-F) hybrid hackathon</u> where we deconstruct and reconstruct top AI glioma diagnostic methods as well as engage in daily seminars, networking opportunities, and team-building capstone projects.

3. Use: Six-week BraTS Practicum (May 24th to August 9th, 2025)

GO for the win. Apply skills gained and create winning AI models for the MICCAI BraTS challenge. There are opportunities to win a monetary prize as the top African winning model and as the top-ranked method from around the world.

Tutorials and Assignment Submissions

- Each team submits <u>one</u> assignment/tutorial exercise/Capstone project or BraTS practicum exercises through the Team's leader.
- Submissions are pushed to Github (New in 2025).
- No late submission will be considered or reviewed (submission deadline: Every Friday at 11:59 pm East Africa Time).

Attendance

Attendance will be strictly monitored for both weekend tutorials and midweek meetings. If you need to be absent, please send a leave request via email, copying both the Team Captain and the Coordinator.

Participation and engagement will be tracked for all sessions, with contributions noted during discussions, labs, and group activities. This includes asking questions, contributing to discussions, collaborating with peers, and completing assigned tasks.

Requirements for graduation and receiving a certificate, or inclusion in any SPARK-related awards.

- 1. Minimum attendance of 70% in the foundational course, hackathon, and practicum.
- 2. Submission of your team's BraTS Africa Lighthouse Challenge Model and solutions.
- 3. Submission of your team's BraTS Africa short paper.
- 4. Submission of your team's GitHub code to the SPARK2025 CAMERA page.
- 5. Submission of your team's camera-ready paper for <u>arXiv</u>.

6. Creation of a <u>Hugging Face Space</u> for your method, including BraTS evaluation results and your clinical team member's evaluation.

Program Schedule

- Each block is outlined below.
- All tutorials and live events including hackathons are in *East Africa Time*
- To complete each course or attend live training events, log into your Fourwaves account to access the program

SPARK TIMELINE: ROAD TO 2025 MICCAI BRATS CHALLENGE

SPARK 2025 FOUNDATIONAL COURSE CURRICULUM February 22nd to May 3rd, 2025

Weekend Tutorial	Clinical & Imaging Primers & Concepts	Computing Basics	Weekend Tutorial
Week 1 February 22	Imaging Physics Mid-Week Presentation Introduction to medical imaging I. Overview of X-Ray, CT and US a. Anatomy of the X-ray tube b. Properties of X-rays c. Introduction to CT d. Principles of Ultrasound imaging e. Advantages of US imaging	Introduction to Python	i. Installing Python and setting up the environment (on VS code), ii. Getting started with GitHub and how to push their code iii. Creating and manipulating variables iv. Working with Lists and Dictionaries v. List comprehension exercises
Week 2 March 1	Imaging Physics Mid-Week Presentation 1. Introduction to medical imaging II: Overview of MRI, and PET a. Production of MR Signal	Python Basics and Introduction to NumPy	Lab/hands-on/assignment content: i. Write conditions ii. Basic loop exercises iii. Basic NumPy operations (min, max,etc)

	T	T	Ι.	
	b. Relaxation times	Introduction to NumPy	iv.	Array slicing and indexing
	c. MR pulses	 NumPy Arrays, Array Operations 	v.	2d NumPy indexing
	paises	(addition, subtraction,	vi.	Creating and calling functions
	d. Spin Echo (SE) techniques	multiplication, etc.)	vii.	Create more functions and
	e. Special MR techniques			combine them e.g SNR and CNR
	f. MR artefacts	Introduction to Object-Oriented Programming (OOP-1)	viii.	Redo previous assignments with
		What is OOP?		functions
		 Principles of OOP: Encapsulation, 		
		Inheritance, Polymorphism,		
		Abstraction		
		Functions in Python		
		 Function Definition, Function 		
		Calling, Functions with Arguments,		
		Return Statements		
		 Array slicing, reshaping, and 		
		indexing etc.		
Week 3	Imaging Physics Mid-Week	Introduction to Object-Oriented Programming	_	ands-on/assignment content:
March 8	Presentation	(OOP-2)	i.	Create a Python class for
	Introduction to medical imaging	Python Classes and Object		medical patients (name, age,
	ii: How are images produced in	 Creating Classes and Objects, 		diagnosis) and a method to
	MRI, US, X-ray, CT, and PET	Instance vs Class Variables, Object		display patient details
	X-ray production	Manipulation	ii.	Create a class for medical
	Principles of CT image	Inheritance basics		appointments and include a
		 Inheriting from parent classes, 		method to schedule an
	production			
	production	Method Overriding		appointment

	production of PET imagesMaruf		
Week 4 March 15	Imaging Physics Mid-Week Presentation Introduction to data visualization in healthcare and medical imaging Significance of Data Visualization in HC (epidemiology) and MI Ken	 [20%] Introduction to Data Visualization Introduction to Matplotlib. Plotting techniques: Bar charts, Histograms, Scatter Plots, Line Plots Customizing plots Adding titles, labels, legends, axis formatting Creating clear visual reports Best practices for creating insightful visualizations [60%] Week 1-4 review and mini-capstone [20%] Overview of Machine Learning: types and applications in healthcare. Machine Learning Task: Classification, regression, synthesis, cluster, etc. Machine learning types: Supervised, unsupervised, and reinforcement learning Machine learning vs deep learning 	Lab/hands-on/assignment content: i. Basic visualisation with Matplotlib ii. Customising plots for clarity iii. Implement a full Python program (medical chatbot) they should utilize functions and classes and what they have learned so far.
Week 5 March22		Introduction to Machine Learning Concepts	Lab/hands-on/assignment content:

		 Introduction of Supervised Learning: Linear and Logistic Regression: Theory of Linear Regression Unsupervised Learning: Overview of K-moons and biographical clustering 	i. ii.	Load a .npy file and display basic information like mean, median, and missing values Calculate and visualize the
		 means and hierarchical clustering Implementation of Machine Learning Methods 	iii.	distribution of a dataset of patient ages Split a dataset into training and
		 Preparing numerical data for ML: data splitting, normalization, and feature selection. Linear regression implementation Clustering implementation Model Evaluation Metrics: Crossvalidation, Confusion Matrix, Precision, Recall, F1 Score After-school: Classification Models: Overview of KNN, Decision Trees, Random Forests, Naive Bayes, SVM Ensemble methods: gradient Boosting and XGBoost. 	iv. v.	testing sets In a single script using the same dataset, Implement and evaluate the performance of Linear Regression using accuracy, precision, recall, and F1-score. Write a report summarizing the entire process from data cleaning to model evaluation, including which models worked best for the task and why.
Week 6 March 29	Imaging Physics Mid-Week Presentation Basic Neuroanatomy and Imaging Planes • Brain Anatomy Relevant to	Medical data manipulation and preprocessing	i.	Load medical images and visualize them
	Glioma Imaging	DICOMS and NIFTI (Pydicom,	ii.	Preprocess medical images and visualize the transformations

	 MRI Brain anatomy, 	SimpleITK/ITK, Nibabel,	iii.	Augment medical images to
		Neurodebain)	<i>'''</i> .	increase dataset size
	including cortical and	, ,		
	subcortical structures,	 Medical image (pre-)processing 	iv.	Write a data loader with
	ventricles, brainstem,	- Normalization		PyTorch
	and cerebellum.	- Rescaling		
	 MR Imaging Planes (Axial, 	- Reshaping		
	Coronal, Sagittal)	- Registration		
	 Introduction to MR 	- Skull striping		
	imaging planes: axial,	 Data augmentation in medical 		
	coronal, and sagittal	imaging: its meaning, when, and		
	slices.	how to apply them		
		 Feature extraction and 		
		representation		
		 Data-loader in PyTorch 		
Week 7		Convolutional Neural networks	Lab/h	ands-on/assignment content:
April 5		 Overview of biological vs artificial Neural 		
		networks	i.	Implementing a convolutional
		 Basics of Neural Network 		layer
		 Neural Network Layers 	ii.	Implementing pooling layers in a
		 Activation Functions: ReLU, 		CNN.
		Sigmoid, and Softmax	iii.	Build a complete CNN with
		 Loss functions: MSE e.t.c 		convolutional, pooling, and fully
		 Optimizers 		connected layers.
		 Gradient Descent 	iv.	Build a simple CNN model to
		Pooling layers		classify medical images (e.g., X-
		 HRegularization: Dropout, Batch 		rays, MRIs)
		Normalization, L2		. 4,5,

		 Convolutional Neural Networks Basic Concepts: Convolution, feature maps, Activation function II, Pooling II (Max Pooling, Average Pooling, and Global Pooling), Fully Connected Layers, filters. Forward and backward propagation Parameters vs Hyperparameters (batch size, learning rate, optimizers, etc) Introduction to PyTorch Pytorch tensors and Autograd After-school: Other deep learning frameworks: TensorFlow, Caffe, and Keras 		
Week 8 April 12	Imaging Physics Mid-Week Presentation MR Imaging Sequences and Protocols for Glioma	 U-Net for segmentation Introduction to U-Net architecture Basic Medical Image Segmentation with U-Net Steps to train a U-Net Data preprocessing, Data Augmentation, Data loader, model initialization (Convolutional layers, filters, activations, loss function) 	i.	Train a simple Unet to segment MRI scans (code guided for full implementation) Evaluate the model and visualize the results Saving the trained models

The role of gadolinium contrast in glioma imaging, including tumour characterization, blood-brain barrier disruption, and grading. Week 9 April 19 Neurosurgery Mid-Week Presentation Preoperative Planning and Diagnosis and Staging Imaging for Surgical Planning Imaging to assess tumour margins, proximity to eloquent brain areas (motor, speech), and surgical resection feasibility. Staging with Advanced Imaging Whole-brain imaging and functional mapping using techniques like fMRI and DTI to assess tumour spread and functional preservation.	 Training Best Practices: Cross-validation, Leave-one-out Training Loops, Epochs, and Learning Rate Schedulers Saving and Loading Models: Model checkpoints, saving and restoring models After-school: Exploring architectures like U-Net for medical imaging segmentation Examples of Using Pre-trained Models Fine-tuning pre-trained models (e.g., ResNet, VGG) for medical imaging Generative model Overview and applications of Autoencoders (VAEs) and Generative Adversarial Networks (GANs) Vision Transformers Introduction to Vision Transformers Introduction about SwinUNetr 	Lab/hands-on/assignment content: i. Employ GAN to train an Unet and segment MRI scans (code guided for full implementation) ii. Employ SwinUNetr to segment MRI scans (code guided for full implementation)
---	---	---

Week 10	Advanced Deep Learning Techniques	Lab/h	nands-on/assignment content:
April 20	• Overview	i.	Reading assignment
	 Fine-tuning, PEFT, Meta-Learning, knowledge distillation and Transfer Learning and their application in medical imaging Emerging Trends in Medical AI (Advanced Architectures) Introduction, review and evaluation of SOTAs: nnUNet, Transformers, SWIN UNetR, and Diffusion models for medical image sogmentation 	ii.	Implement either Meta-learning or knowledge distillation to any clinical application (optional)
	image segmentation		

Every Week starts with a virtual 2-3 hours tutorial on Saturday (1 hr 30 minutes lecture and 15 minute Q&A) **After school (Optional but Important)**: Participants are encouraged to explore the additional materials at their leisure to deepen their understanding.

SPARK 2025 HACKATHON COURSE CURRICULUM May 12th to May 16th, 2024, East African Time (EAT)

	Monday	Tuesday	Wednesday	Thursday	Friday
7:30 am Morning Coffee					
8:00 – 9:00 am AM Seminar	Intro to BraTS	Neuropathology of Gliomas	Imaging Physics – MRI of Gliomas	State of AI in Brain Tumor	Bioinformatics & Radiomics of early detection
	Intro to Africa-BraTS Challenge				
9:00 – 11:00 am DeCode	Evolution of Medical Imaging - (MRI, PET, DTI, Imaging guiding surgery in gliomas)	Code Hack	Neurosurgery of Gliomas Code Hack	Code Hack	Code Hack
	Intro to BraTs SSA 2025 Dataset				
11:00-12:00 pm Lunch Break					
12:00 – 2:00 pm Ubuntu	Live Coding with BraTS 2024 Authors	Team Exercise, Recode	Team Exercise, Recode	Team Exercise, Recode	Team Exercise, Recode

2:00 - 2:30 pm Afternoon Tea	Team Photos				
2:30 – 3:30 pm PM Seminar	Image processing and analysis of Brain Tumors	Neuroradiology of Gliomas	Team Exercise, Recode	Big Data, FAIR & Open Science	Capstone Project Presentations
3:30 – 4:30 pm Umoja	Team Exercise, Recode	Imaging Brain Tumors in Africa	Low-cost Clinical Deployment	How to Write MICCAI Papers	
4:30 pm Plenary		,			Closing Plenary
5:30 pm					Team Photos Group Dinner

All live events are in East Africa Time

The 3rd SPARK BraTS-Africa BrainHack Code Hack & Team Exercise Tasks

Instructions:

- 1. Use the Code Hack Session to run your chosen model's code on Compute Canada and produce results that are similar to the reported model's performance.
- 2. Use the **Team Exercise Session** to work on the Capstone Project presentation or to continue to hack your code (i.e., the Code Hack Session).
- 3. Capstone Project Presentation: 5-minute presentation of the team's model implementation, performance and lesson learned.

Daily Activities:

Day	Code Hack Task and Team Exercise
Monday	Project planning and data acquisition Review Model's method paper: Each team will be provided with papers and GitHub repositories (for Unet, UNnetr, nnUnet, SwinUnetr, and GAN) to review each paper and code and choose a model to use. Review the model's code in Kaggle Deliverables: 1-page Report Submit a summary of the model paper outlining: Motivation for your model selection Model Details: Name, Architecture (figure or table) Identify model deficiencies & outline strategies to address them. Start Preparing your 5-Minute Capstone Presentation (See details on day 5) Submit Mid-program evaluation

Tuesday	 Data Exploration and Preprocessing Download Data set from Cancer archive and TCIA (2021) Perform exploratory data analysis Preprocess data for and design data loader for model training Transfer code from Github repo tho kaggle Start training model Deliverables: 1-page Report Outline any challenges faced in implementing the model Continue working on your 5-Minute Capstone Presentation (See details on day 5)
Wednesday	 Model Selection and Training Continue training your chosen model on 2024 BraTS data Implement ways to improve the model Deliverables: 1-page Report Report preliminary results from model training Report model performance with the implementation of new strategies Outline any challenges faced in implementing the model Continue working on your 5-Minute Capstone Presentation (See details on day 5)
Thursday	 Model Training, Validation and Evaluation Continue training your chosen model on 2024 BraTS data Compare your results with the model's reported (published) results Deliverables: 1-page Report Update results from model training Update Identified model deficiencies & outline strategies to address them. Continue working on your 5-Minute Capstone Presentation (See details on day 5)
Friday	Model Evaluation and Optimization

- Finalize any remaining model training evaluation
- Add updated results to the 5-Minute Capstone Presentation

Deliverables:

Capstone Presentation

- 5-Minutes no more than 8 slides
- Present a summary of:
 - The motivation for choosing the model includes the advantages of the method
 - o The model architecture
 - Outline any observed or suspected model deficiencies
 - o Results: performance of the model and if performance was replicated
 - Challenges faced in implementing the model
 - o Introduce the proposed BraTS 2025 Challenge model

SPARK 2025 PRACTICUM COURSE CURRICULUM May 24th to August 9th, 2024

Weekend Tutorial	Medical Imaging Project Design??	Design Labs / Deliverables
Week 1 May 24	 Perform exploratory data analysis. Preprocess data for deep learning (DL) model training. Modify Pytorch data loader Data augmentation* Model Selection and Training I Overview of Different Model Types: U-Net, V-Net, nnUnet, SwinUNetr, and other segmentation models. Criteria for Model Selection: Accuracy, interpretability, computational efficiency, and medical relevance. Comparing Models: Pros and cons of different segmentation models. Select a model for BraTS 2025 	i. Review the BraTS 2025 dataset and its features (multimodal MRI scans with tumour segmentation masks) ii. Preprocess the data to ensure that the model receives the correct input format (e.g., resizing images, normalizing pixel values). iii. Review three (3) example data loaders using different approaches iv. Provide tips on designing data loaders v. Split the data into training, validation, and test sets. vi. Show sample data automation pipelines. vii. Access code snippets of each model (U-Net, Attention U-Net, V-Net, nnUnet, SwinUNetr as many as possible) using PyTorch viii. Compare training times, memory consumption, and inference speeds on the 2025 BraTs dataset.
	Charles Delahunt (GH Labs) *Optional	Deliverables: A report summarizing the criteria used (including literature review) for model selection and results from model comparison.
Week 2 May 31	Model Selection and Training II • Setting Up the Training Environment	Possible Lab/hands-on/assignment content: I. Initialize and configure the chosen model for training.

	Train selected BraTS 2025 model	 II. Set up data loading for the BraTS dataset. III. Use evaluation metrics (Dice, IoU) to assess model performance on the test set. IV. Train the model for a predefined number of epochs and observe training/validation performance. V. Monitor the training process using validation loss VI. Save model checkpoints after each epoch Deliverables: Visualize model predictions (overlaid on MRI scans) and compare them with ground truth masks.
Week 3 June 7	 Al Project Design Defining the Project Scope Identifying the Problem, Defining the Objective, Understanding the Data Project design using SMART Goals Data Acquisition and Preprocessing Choosing the Right Algorithms Selecting ML/DL Algorithms for the Problem (e.g., CNN, Transfer Learning, etc.) Model Evaluation and Iteration Hyperparameter Tuning, Model Performance Metrics (Accuracy, Recall, F1-Score) 	 Deliverables: Write a concise abstract summarizing your research on the application of your chosen model for brain tumour segmentation in SSA. It should include the following an introduction, the problem statement, methods, results, and conclusions. Note: Must be between 250 and 300 words. The best team abstract wins a gift card. Write the introduction section of your research paper, including context, literature review, research gap, problem statement, aim, and objective. Note: A minimum of 1 page is required. Using Canva or PPTX design a graphical representation of your model architecture.
Week 4 June 14	Model Training Continues Scientific Writing • Introduction to Scientific Writing	Deliverables: i. Read and summarize a scientific paper related to AI in healthcare (e.g., deep learning for medical imaging)

	 Structure of Scientific Papers (Abstract, Introduction, Methods, Results, Discussion) Writing the Introduction Importance of Context, Literature Review, and Problem Statement Writing the Methodology Section Experiment Design, Data Collection and Preprocessing, Model Development Writing the Results and Discussion Presenting Results with Visualizations and Interpretation and Discussing Challenges Conclusion and Future Work Summarising Findings, and Future Directions Model Training Continues 	 ii. Write the Methodology section of your project report detailing the experiment design, data collection, preprocessing, and model development. Note: A minimum of 1/2 page is required. iii. Write the Results and Discussion section based on your model's performance, challenges, and insights. Create visualizations to present your results. Note: A minimum of 1/2 page is required. iv. Write the Conclusion and Future Work section of your project, highlighting findings and future research directions
Week 5 June 28	 Training Cont.: Hyperparameter Tuning and Validation Continue training model and modifying hyperparameters Fine-tune DL model to optimize performance Revise Manuscript Draft 	Possible lab/hands-on/assignment content: I. Implement hyperparameter tuning. II. Consider fine-tuning your model or implementing a pretrained model for brain tumour segmentation III. Apply regularization techniques to improve model generalization. Deliverables: Report the impact of fine-tuning on model performance. Revise the manuscript and update the methodology, results,
	Model Training Continues	and discussion sections
Week 6 July 05	Week 5 Training Continues	Deliverables: • Revise the manuscript and update the methodology, results, and discussion sections

	Model Training Continues	
Week 7 July 12	Training Cont.: Model Evaluation and Optimization Identify model deficiencies & outline strategies to address them. Optimize the model and the training process based on the strategies outlined above. Submit Draft of MICCAI paper¹ Model Training Continues	 Deliverables: Error Analysis: Identifying common misclassifications and areas where the model underperforms. Visual Inspection: Examining segmentation results to spot patterns in errors. Develop a plan to address identified deficiencies, including data augmentation, model architecture adjustments, and regularization techniques. Implementing Identified Strategies: Applying the outlined strategies to improve model performance. Use plots and images to illustrate model performance. Finalize the manuscript, ensuring it meets MICCAI submission guidelines. Prepare and submit the draft for review
Week 8 July 19	Training Cont.: Model Evaluation and Optimization Optimize the model and the training process. Revise Manuscript Draft Model Training Continues	Revise the draft manuscript and update the methodology, results, and discussion sections based on feedback from reviewers
Week 9 July 26	Model Publication and Reporting ■ Revise Manuscript Draft	Deliverables:

¹ Reporting method & results on training and validation data. The only difference with the final paper submission should be the inclusion of the testing results in the camera-ready submission

	Short paper submission deadline: July 31st	 Submit the MICCAI Short paper to the MICCAI Submission site. Group Presentation of MICCAI paper
	Model Training Ends	
Week 10 August 2	Model Containerization and Test Evaluation • ML-Cube Containerization: BraTS • BraTS Hugging Face Space—Mandatory Containerized algorithm submission deadline: August 15th	 Possible Lab/hands-on/assignment content: I. Install MLCube and its dependencies (Docker, Singularity). II. Define the MLCube configuration for the brain tumour segmentation model. III. Run the MLCube container on a local machine and a cloud environment. IV. Deploy the trained brain tumour segmentation model on Hugging Face Spaces. V. Share the model with the community and gather feedback.
Week 11 August 9	After SPARK, What's Next? Career Paths in Medical Imaging and AI Importance of AI in Healthcare Clinical Roles Radiologist Radiologic Technologist Technical Roles Medical Imaging Scientist AI Research Scientist AI Research Scientist Data Science and Engineering Roles Data Scientist Machine Learning Engineer Healthcare IT and Informatics Roles Health Informatics Specialist Clinical Data Analyst	Possible Lab/hands-on/assignment content: I. Report the final performance metrics of the model, including Dice Similarity Coefficient and Intersection over Union. II. Create visualizations to illustrate the segmentation performance on test data. III. Interpret the results and discuss their significance. IV. Revise the short paper submission manuscript and update the methodology, results, and discussion sections and include test results and conclusions V. Complete end of Program Evaluation VI. Summit camera-ready 10-page manuscript on or before September 17th, 2025

Emerging Roles
 AI Ethicist
 AI Product Manager

Introduce COMPASS, OYFM, AFRICAI, and the MICCAI Rise

Each week starts with a 2-3 hr virtual weekend tutorial on Saturday (1 hr 30 min overview & 45 min Q&A / review of exercises).

Code of Conduct

SPARK Academy is dedicated to providing a harassment-free experience and safe environment for all, regardless of race, cultural affiliations, gender, nationality, beliefs, age, or disability. Indecent imagery is not appropriate at any of the Academy's events including virtual and in-person events.

All attendees, speakers, and volunteers are expected to comply with this code of conduct and violations of its standards may result in sanctions or expulsion from participating in events, at the discretion of the Academy Team. Upholding the standards of behaviour is mandatory to maintain SPARK's integrity and create a positive environment.

Expected behavior

All attendees, speakers, and volunteers at SPARK events must:

- 1. Behave professionally and responsibly towards each other, both in-person and online, during all formal and informal social activities, regardless of location.
- 2. Respect each other and avoid making judgments based on race, gender, nationality, beliefs, age, or disability.
- 3. Refrain from any forms of harassment, bullying, or discrimination towards fellow participants.
- 4. Adhere to the guidelines and instructions given by SPARK organizers and staff during events.
- 5. Maintain confidentiality of any sensitive information shared during events.
- 6. Avoid engaging in any illegal or unethical behaviour.

Unexpected behaviour

- 1. Behaving in a manner that is disruptive or disrespectful towards other participants, staff, or the event itself.
- 2. Using language that is inappropriate, disrespectful, or offensive towards other participants, staff, or the event itself. 3. Engaging in any illegal or unethical behaviour, such as theft, plagiarism, vandalism, or fraud.
- 4. Disobeying or ignoring the guidelines and instructions given by SPARK organizers and staff during the event.

- 5. Engaging in any behaviour that may pose a threat to the safety or security of other participants, staff, or the event itself. 6. intentionally causing damage to the event venue, equipment, or other property.
- 7. Engaging in any form of inappropriate or unwanted physical contact towards other participants or staff.
- 8. Violating the confidentiality of any sensitive information shared during the event.
- 9. Using SPARK events or platforms for personal or commercial gain without prior authorization from the organizers.

Recording Policy: Online events may be recorded or live streamed, but only with the express written permission from SPARK Academy and the authors/owners of the content. Any unauthorized recordings will violate ethical and legal standards.

Reporting Process: To report any concerns regarding the violation of the aforementioned guidelines, please email the SPARK Academy organizers at spark@mailab.io.