CBS-miRSeq v.1.0 User Manual

Color and base-space comprehensive profiling for microRNA

sequencing

Date: 24/01/2017

Unit of Immunology and Functional Genomics Centro Cardiologico Monzino IRCCS, Milan, Italy Rupesh K. Kesharwani, Email: bioinforupesh2009.au@gmail.com

CONTENTS

1.	Overview of the CBS-miRSeq	<u>.3</u>
2.	Quick Start Virtual Machine.	6
3.	Local Installation.	.6
4.	Requirements.	<u>.7</u>
5.	Input reference genome and annotation files1	10
6.	Guidelines to run the CBS-miRSeq	14
7.	Results	1
8.	Completion Status/Error diagnostics	<u> </u>
9.	Availability3	<u> 86</u>
10.	Requested Citation. 36	<u>5</u>
	Contact information	
12.	Abbreviation36	<u></u>
13.	Acknowledgment	<u>7</u>
14.	<u>Reference</u> 37	7

1. Overview of CBS-miRSeq

MiRNAs play important regulatory role in many biological processes in the cell including proliferation and differentiation, apoptosis, brain development, heart development [1] and are involved in a variety of diseases, such as tumor [2], cardiovascular disease [3], chronic lymphocytic leukemia, and viral infections [4, 5]. The development of Next Generation Sequencing (NGS) platforms allowed researchers to characterize small RNA profiles in several tissues with higher speed, accuracy and resolution than other techniques. Hence, a number of online and local tools were developed to analyze small RNA-Seq data, but inaccurate processing, lacking of optimal parameterization and comprehensiveness, outdated reference genome and annotations, uploading and input format issues limit their use.

Our goal was to extend the findings of the previous studies and developments; therefore, we proposed a fully customized bioinformatics pipeline (Color and Base-Space microRNA-Seq - CBS-miRSeq) (**Fig. 1**) for the seamless processing of miRNA-Seq data for both color-space (csfasta) and base-space (fastq) short reads generated by SOLiD and Illumina sequencers, respectively. The pipeline is based on *bash*, *perl* and *R* scripts, which accomplish reads pre-processing, quality assessment, filtering, adapter trimming, mapping, identification of miRNA variants (isomiRs), discovery of novel miRNAs, differential analysis, miRNA:mRNA target prediction, functional analysis (Ontology and Pathways analysis) and summarization of the results.

The workflow helps researchers to use different modules flexibly, for datasets spanning from a few to hundreds of samples. Results and outputs in html, pdf, and csv formats enable easy visual inspection and understanding for further investigations.

The pipeline can be run sequentially on a single machine or parallel in a cluster/server/cloud systems.

Features of CBS-miRSeq

- ✓ Fully customized and flexible (modularity); it is useful to control the outputs from every analysis step or to start analysis at different points of the pipeline.
- ✓ CBS-miRSeq supports different formats of raw data input, such as color-space and basespace.

- ✓ CBS-miRSeq supports almost every reference species and annotations; optionally the pipeline allows user to download the newest release versions of reference genome and annotations from Ensembl and miRBase databases.
- ✓ Option to identify differentially expressed (DE) miRNAs by two statistical methods and/or obtain results at the intersection of both methods.
- ✓ Exploration of the distribution of Ensembl biotypes (tRNA, rRNA, snoRNA, miRNAs, protein coding genes) and visualization through bar and pie charts.
- ✓ Identification of isomiRs (RNA editing events) and complete visualization.
- ✓ Implementation of two miRNA gene target prediction algorithms to obtain the most consistent results at the intersection.
- ✓ Prediction of novel miRNAs and summarization of unique features.
- ✓ Functional annotation analysis for target genes of DE miRNAs as well as of novel miRNAs predicted by the pipeline.
- ✓ Generation of mapping and pre-processed statistical reports of short-reads (quality control, read length, adapter trimming, mapping statistics).
- ✓ Complete visual analysis of results and production of interactive html, pdf/postscript, and csv tables for further investigation.

The CBS-miRSeq is a powerful bioinformatics pipeline that researcher can use to perform comprehensive profiling for miRNA-Sequencing data and gain biological insight.

Fig. 1: Overview of the CBS-miRSeq pipeline. Each box presents one module of the pipeline, with the name of the tools integrated and required in a module highlighted in blue. (A) Module 1 performs preprocessing, quality control qualification, mapping, and quantification of raw reads. (B) Module 2 carries out differential expression analysis and isomiR detection. (C) Module 3 accomplishes identification of novel miRNA candidates, target gene prediction, and functional enrichment analysis of predicted targets.

2. Quick Start Virtual Machine

Along with full local installation of CBS-miRSeq, we also provide a Virtual Machine (VM) image to allow users to quickly test the workflow or run a small number of samples without need of an environment for parallelization. The VM image comes with pre-installed software and packages required by the CBS-miRSeq. The VM version can be run on a Windows, Mac, or Linux machine with at least 4GB of RAM and 200GB of free disk space.

To use CBS-miRSeq from an image, the user needs to follow these steps:

- 1. Download and install the free tool VirtualBox, which will allow user to run the VM image: https://www.virtualbox.org/
- 2. Download the CBS-miRSeq VM image (Ubuntu_16.10_CBS-miRSeq.1.0.ova; size 5.44 GB):

https://drive.google.com/file/d/0ByG63sGTZ4JTSEVOSIhOVIE1UGs/view?usp=sharing

- 3. Import the image using Virtual box. For more help to import an image file please refer to https://youtu.be/Vu64isQS56Y
- 4. Once the ova file is imported, the user can use it pressing the start button.
- 5. Please login with the account **cbsmirseq**, using as password **cbsmirseq**.
- 6. Download the CBS-miRSeq pipeline (size: 231 KB) and copy it in the Desktop for easy access.

https://drive.google.com/file/d/0ByG63sGTZ4JTWI8tdkdSMThZN0E/view?usp=sharing

7. Download the sample dataset (size: 204 MB) to test the workability of the pipeline. https://drive.google.com/file/d/0ByG63sGTZ4JTUHkxQlJmanV3VW8/view?usp=sharing

Note: One may use this Virtual machine to run real miRNA-Seq datasets, but this requires updating annotation and reference genome as required by species under study. In addition, user may need to increase the available memory (RAM and disk space).

Note: The pipeline has been successfully tested under Ubuntu v16.10, CentOS v7.1.1503 (Core) and CentOS v5.7 (Final).

3. Local Installation

The CBS-miRSeq needs No installation, however pipeline requires prerequisite dependencies

(software/tools) that need to be previously install. Before running any module of the pipeline,

user need to add all executable tool with absolute path to: ~/.profile or ~/.bashrc.

We provide some utility scripts (CBS-miRSeq-SystemPackagesInstall.v1.0.sh, Install.CBS-

miRSeq.dependencies.v1.0.sh, and CBS-miRSeq.Required.Packages.R) that would help user to

install dependencies (please refer to READ_ME for more detail). Optionally, user may install it

manually and set executable into the \$PATH.

For example:

export PATH=\$PATH:/path/to/installed_directory

Or usually

export PATH=\$PATH:~/bin

User can look at the available paths by typing:

echo \$PATH

Important note: Analyses are launched from within the directory of CBS-miRSeq (working

directory).

4. Requirements

Following below, the instructions to correctly install pre-requisite software packages/tools, along

with links to download them.

8

Required bioinformatics tools

Tool/Software	Function	Source for downloading							
bowtie ≤ v 1.0.0 Mapping (short read alignment) http://sourceforge.net/projects/bowtie-bio/files/bowtie/1.0.0/bowtie-1.0.0-linux-x86_64.zip/download									
Note: miRDeep2 also	required bowtie alig	ner but you don't need to install it again while installing mirdeep2 dependencies.							
miRDeep2 ≥ v 2.0.0.5 and its dependencies	Novel miRNA discoveries	https://www.mdc-berlin.de/43969303/en/research/research_teams/systems_biology_of_gene_regulatory_elements/projects/miRDeep/mirdeep2_0_0_7.zip							
R and Bioconductor ≥ v 3	DE statistical and functional analysis	http://www.r-project.org/ http://www.bioconductor.org/install/							
whatever and whenever install manually. "RColorBrewer", "Bioch	er module needed d nstaller","edgeR","D nmePA","GO.db","bi	onductor itself. Required packages will install automatically via CBS-miRSeq.Required.Packages.R luring analyses (but make sure you are connected to the internet). However, required packages can be DESeq2", "gplots", "VennDiagram", "plotrix", "ReportingTools", "hwriter", "lattice", "S4Vectors", "clusterProfiler", omaRt", "DOSE", "networkD3", "igraph", "magrittr", "stringi", "KEGGprofile", "pathview", "plyr", "gridExtra", "grid SFilter"							
Cutadapt ≥ 1.3	Trimming 3' adapter	https://cutadapt.googlecode.com/files/cutadapt-1.3.tar.gz							
Bfast ≥ 0.6.5a Only for solid2fastq conversion purpose and resultant used for first Quality Control (QC) http://sourceforge.net/projects/bfast/									
FastQC ≥ v0.10.1	QC and preprocessing of short reads	http://www.bioinformatics.babraham.ac.uk/projects/fastqc/fastqc_v0.10.1.zip							

FastX ≥ v 0.0.13	Quality trimming	http://hannonlab.cshl.edu/fastx_toolkit/fastx_toolkit_0.0.13_binaries_Linux_2.6_amd64.tar.bz2
1 4317 = 7 0.0.10	and	http://riamoniab.com.com/rastx_toolkit_dotx_toolkit_co.c.10_binancs_tinax_2.o_amdo4.tar.bzz
	preprocessing of	
	short reads	
featureCounts ≥ v	Quantification of	http://sourceforge.net/projects/subread/files/subread-1.4.6-p1/subread-1.4.6-p1-Linux-
1.4.6	digital gene	x86 64.tar.gz/download
	expression	
RNAhybrid ≥ v 2.1.1	Prediction of	http://bibiserv.techfak.uni-bielefeld.de/spool/download/bibiserv_1435230880_978/RNAhybrid-2.1.1-
_	miRNA target	<u>src.tar.gz</u>
	gene	
miRanda ≥ v 3.3a	Prediction of	http://cbio.mskcc.org/microrna_data/miRanda-aug2010.tar.gz
	miRNA target	
	gene	
samtools ≥ v 0.1.1	Utilities for post-	http://sourceforge.net/projects/samtools/files/latest/download
	alignment	
bedtols ≥ v 2.22	Utilities for	https://github.com/arq5x/bedtools2/releases/download/v2.22.1/bedtools-2.22.1.tar.gz
	genomic	
	features (co-	
	ordinates)	
SAMStat ≥ v 1.5.1	Utilities for	http://sourceforge.net/projects/samstat/files/samstat-1.5.1.tar.gz/download
	displaying	
	summary	
	statistics of	
	mapped-	
	unmapped	
	reads	

Note: Xcode and Xquartz are required for Mac users.

5. Input Reference Genome and Annotation files

The CBS-miRSeq analysis requires a local file of the following (genome and other reference) annotations.

- 1) **Reference genome:** The CBS-miRSeq currently retrieves the genome automatically for 4 major species (Human, Mouse, Rat, and Zebrafish). Module 1a requires a version release and chromosomal assembly as input to fetch the reference genome fasta directly from the Ensembl genome browser. Alternatively, for other species user may download it manually.
- 2) **Annotation files:** The CBS-miRSeq also requires annotation files prior to analysis. We provide a utility module (*CBS-miRSeq.Annotations.Retrieval.v1.0.sh*) that helps to fetch the required annotations. Optionally, user can download it manually.
 - *a*) **miRBase annotation:** To quantify digital gene expression of known miRNAs and conduct differential analysis, the pipeline requires miRBase references:
 - 1. miRNA GFF3 file;
 - 2. mature miRNA sequences in FASTA and a closely related mature miRNA fasta;
 - 3. precursor miRNA sequences in FASTA;
 - **b**) **Ensembl annotation:** To quantify other Ensembl biotypes, the pipeline requires a genomic features (.gtf) file.
 - *c*) **RNACentral features:** In order to predict true novel miRNAs, the pipeline needs a ncRNAs features (.bed) file from the database RNAcentral.

Note: Please make sure that you have downloaded a right release of the miRBase, Ensembl annotation including genome, and RNAcentral features. Please visit miRBase site (http://www.mirbase.org/ftp.shtml) for more information about release and relation with other databases.

For example: Relation of version release of the miRBase, Ensembl and RNAcentral databases.

```
mmu == miRbase v21 == GenBank Assembly:GCA_000001635.2(mmu10) == Ensembl release v69(38.69) == RNAcentral 1.0/2.0 has == miRbase v21 == GenBank Assembly:GCA_000001405.15(hg38) == Ensembl release v78(38) == RNAcentral 1.0/2.0 dre == miRbase v21 == GenBank Assembly:GCA_000002035.2(Zv9) == Ensembl release v79(9) == RNAcentral 1.0/2.0 rno == miRbase v21 == GenBank Assembly:GCA_000001895.3(Rnor_5.0) == Ensembl release v79(5.0) == RNAcentral 1.0/2.0 WARNING: The CBS-miRSeq pipeline TAKES NO GUARANTEE FOR THE RIGHT RELATION BETWEEN ONE DATABASE TO ANOTHER.
```

3) **3' UTR:** To predict target gene for DE miRNAs or any miRNA of interest, user has to download their target 3' UTR. Details are illustrated in the following **Fig. 2**.

Fig. 2: The snapshot represents step to retrieve 3'UTR Fasta, required by the CBS-miRSeq module3.

Sources for the retrieval of above required files

References	Source
Species reference genome	http://www.ensembl.org/info/data/ftp/index.html
miRBase GFF3 file	http://www.mirbase.org/ftp.shtml (e.g. hsa.gff3)
miRBase precursor miRNA	ftp://mirbase.org/pub/mirbase/CURRENT/hairpin.fa.gz
fasta sequences	
miRBase mature miRNA fasta	ftp://mirbase.org/pub/mirbase/CURRENT/mature.fa.gz
sequences	
Ensembl transcripts (GTF file)	http://www.ensembl.org/info/data/ftp/index.html
RNACentral features (BED	ftp://ftp.ebi.ac.uk/pub/databases/RNAcentral/releases/3.0/geno
file)	me_coordinates/
3' UTR	http://www.ensembl.org/biomart/martview

Manually downloaded files can be prepared as:

- a) Reference genome: The downloaded genome must be in split fasta files and zipped.
- 1. Change the directory

```
cd /.../..path_where_ref_genome_has_been_downloaded
```

2. Unzip and concatenate into single genome fasta using:

```
gunzip *.gz
cat *.fa> name_of_genome_file.fa
```

b) miRBase files: Fasta files (precursor and mature fasta sequences) contain all species; here we advised to run following commands in order to prepare input for the pipeline.

1. Change the directory

```
cd /.../..path_where_miRBase_has_been_downloaded
```

2. Unzip

```
gunzip *.gz
```

3. Change the directory

cd CBS-miRSeq.v1.0/Utilities

```
perl extract_miRNAs.pl /../hairpin.fa sps > /../sps.mirbase_precursor.fa
perl extract_miRNAs.pl /../mature.fa sps > /../sps.mirbase_mature.fa
perl extract_miRNAs.pl /../mature.fa rel > /../rel.mirbase_mature.fa
```

Note1: Where sps is a three-letter code of the species under study (human=has; Mouse=mmu; Zebrafish=dre and Rat=nro).

Note2: script extract_miRNAs.pl is part of miRDeep2.

- c) Ensembl annotation:
- 1. Change the directory

```
cd /.../..path_where_Ensemble_gtf_has_been_downloaded
```

2. Unzip

```
gunzip *.gz
```

- d) RNAcentral annotation:
- 1. Change directory

```
cd /.../..path_where_RNAcentral_bed_has_been_downloaded
```

2. Unzip

gunzip *.gz

e) 3' UTR preparation: the header should be like:

>2|ENSDARG00000022303|hig1

e.g. In general

>chr|ENSEMBLEGene ID|Associated Gene Name

OR

> Chromosome Name | ENSEMBLEGene ID

Customized/Genome UTR can be fetch from Ensembl biomart as shown in Fig. 2:

Go to http://www.ensembl.org/biomart/martview

- 1) Choose "Ensembl Genes"
- 2) Choose "Species"
- 3) Click on "Attributes"
- 4) Select "Sequences"
- 5) Click "3'UTR"
- 6) In Header Information, first Uncheck "Ensembl gene ID and Ensembl Transcript ID", then check the boxes sequentially (i) Chromosome Name, (ii) Ensembl gene ID (iii) Associated gene name.
- 7) Click on "Filters", Region and then select chromosomes
- 8) Under "Gene" tab (## Optional step)
- 9) Paste your target gene ids under "Input external references ID list".
- i.e. Ensemble gene ids or Associate Gene symbol(s). (## Optional step)
- 10) Click on "Results"
- 11) Make sure it is set as FASTA
- 12) Check "Unique results only" and press "Go" and export as fasta text.

##When downloading is done, use the utility script *CBS-miRSeq.Prepare.UTR.v1.0.sh* to prepare the format required by the pipeline OR hit the following commands into your terminal:

1. Change the directory

```
cd /.../..path_where_UTR_fasta_has_been_downloaded gunzip mart_export.txt.gz
```

2. Paste as it is

```
oldsymbol{3}_{oldsymbol{\circ}} perl -ane 'print "$F[0]\n";' sps.UTR_fa_clean.fa > sps.UTR_fa_clean.fa
```

4. If you have Ensembl + Gene symbol together

```
## >1|ENSDARG00987654321|Genesymbol
sed -i -e 's/|ENSDARG[[:digit:]]\{11\}$/&&/g' sps.UTR_fa_clean.fa
```

Note: Where sps is a three-letter code of the speciesunder study (human=has; Mouse=mmu; Zebrafish=dre and Rat=nro).

6. Guidelines to run the CBS-miRSeq

CBS-miRSeq allows running the pipeline in several ways. Customized features of each module may be launched one by one individually, which enables user to control the results in each analysis step. Depending on the necessity, user can deploy each sub-module. To focus on information in detail, command line arguments will let user know about inputs and parameters regarding execution of the modules.

6.1 Running Module 1

Aims: Downloading the reference genome, Building the index for mapping, Reads QC, Trimming of the 3' adapter, Mapping and Quantification of the features (miRNAs and Ensembl biotypes).

This Module is a wrapper for Module 1a and Module 1b. Navigate and open the configuration file (Input_Info/Module1_Input.txt) to fill the required input to run the pipeline.

```
$: cd..
$: bash ./CBS-miRSeq.module1.sh Input Info/Module1 Input.txt
```

Module 1a analysis description: Built the bowtie index of the reference genome based on format of the input reads (color-space/base-space).

Note: No restrictions regarding the reference organism, user may provide any reference genome. However, this module allow researcher to fetch a few model organism's genome such as Human, Mouse, Rat and Zebrafish (for more detail, please refer to READ_ME file into the CBS-miRSeq package).

Module 1b analysis description: QC of the Reads, Trim the 3' adapter, Mapping, Quantification of the features (miRNAs and Ensembl biotypes) and summarization of datasets.

Configuration file of Module1_Input.txt

Inputs	Files/Directories/Type	Description
DIR_REF_GENOME	/path/to/dir	# Directory or path where reference
		genome index has to build and/or genome
		fasta already existed.
SPS	A String	# Name of analysis species (3 letter code;
		i.e. hsa)
INDEX_COLOR	A String	# Yes (In case of color-space reads from
		SOLiD) or No (in case of fastq reads from
		Illumina)
ENS_RELEASE	A numeric value	#Ensembl genome release (two digit
		integer i.e. 82)
ENS_AssemblyGRCh	A numeric value	# Ensembl chromosomal assembly (such
		as 38 or 36.67 based on assembly)
DIR_INPUT_READS	/path/to/reads	# A directory where all reads are (csfasta
DIK_INTOT_KEADS	/path/to/reads	and qual or fastq)
		and quar or rustq)
Note: Please make sure all inp	out reads (csfasta and qual or fastq) are loc	eated in the same directory
NumberOfSamples	A numeric value	# Number of total sample
MIR_ANNOTATION	/path/to/sps.gff3	# miRBase gff3 file of species
ENS_ ANNOTATION	/path/to/sps.gtf	# Ensembl gtf file
MY ADADTED	A == ===== ("220201020212112212" /	# A., . d.,
MY_ADAPTER	A sequence ("330201030313112312" / "ATCTCGTATGCCGTCTTCTGCTTG")	# An adapter sequence (can be color-space
	Arcicolaroccolericiocito)	or base-space sequence)
OUTPUT_DIR	/path/to/output	# A directory or path where results are
_		produced

6.2 Running Module 2

Aims: Differential expression analysis (DEA), Identification of Ensembl biotype, and Detection of iso-miRs.

Note: Please make sure that groups (along with their replicates) of the expression matrix are set in the right order of interest for proper comparison, i.e. Control x Treatment.

WARNING!! Output directory cannot be different than Module 1.

This script is a wrapper for Module 2a and Module 2b. Navigate and open the configuration file (Input_Info/Module2_Input.txt) to fill the required input to run the pipeline.

Module 2a analysis description: Conducts differential expression between two experimental conditions and detection of Ensembl biotypes in each sample.

Module2a analysis description: Prediction of isomiR in each sample.

Configuration file of Module2_Input.txt

Inputs	Files/Directories/Type	Description/Type
OUTPUT_DIR	/path/to/output	# A directory or path where results are
		produced
		Note: Directory should be the same as
		for Module 1
MIR_ANNOTATION	/path/to/sps.gff3	# miRBase gff3 file of species
ALL_SPS_MATURE_FASTA	/path/to/All.sps.mature_v21.fa	# FASTA of miRBase of all sps
MIR_MATURE_FASTA	/path/to/sps.mature.fa	# miRBase sps mature fasta file
SPS	A String	# Name of species under study (3 letter
		code; i.e. hsa)
conditionA	A String	# Name of the Condition/group A (for
		example: Control)
startCol_grpA	A numeric value	# First Group start column of condition
		A from miRNA expression matrix
		obtained from Module 1.
		Tip: always control condition start from
		"2"
conditionB	A String	# Name of the Condition/group B (for
		example: Treatment)
startCol_grpB	A numeric value	# Number of Start column of condition
g-1-		B from miRNA expression matrix
		obtained from Module 1.
		Tip: The value depends on your second
		condition and its sample size; e.g. "5"
		for 3×3 samples.
		Note: DEA uses condition 1 as
		reference.
		Thus, DEA will be represented as log2
		(group2 [B]/group1 [A]).
LowCountsfeaturesFilterByCP	"yes" or " no"	# Pre-filter: Filter low/unexpressed tags
M		before analysis (yes or no; [default
		Nothing])
CutoffLowCountsfeaturesFilter	A numeric value like "1"	# Filtration cutoff either used for
		FilterByCPMCounts or for raw counts
		filtering if FilterByCPMCounts is set to
RemoveInconsistentFeatures	"yes" or " no"	no # Remove outliers from the matrix
Kemoveinconsistenti eatures	yes or no	before performing DEA [yes or no;
		default Nothing/Optional]
ThresholdToRemoveInconsisten	A numeric value "1.5"	# Tags less than this threshold will be
tFeatures	A numeric value 1.3	kept (applied for both edgeR and
tr catures		kept (applied for both edgerk and

		DESeq2)
performIndependentFilter	"yes" or " no" [default no]	# Independent filtering if yes, applied to
		both analysis methods
plotType	"pdf" or " eps"	# Plotting type should be pdf or
		postscript (ps) file [default Nothing]
pval_Cutoff	A numeric value (0.05)	# P-value cutoff for plotting [default
		Nothing]
padj_Cutoff	A numeric value (0.1)	# FDR cutoff for plotting [default
		Nothing]
log2FC_Cutoff	A numeric value (1)	# Log2Fold changes cutoff for plotting
		[default Nothing]

6.3 Running Module 3

Aims: Discovery of Novel miRNA candidates, Prediction of target genes of DE miRNAs, Gene enrichment, Pathway analysis of known and novel miRNAs.

WARNING!! Output directory cannot be different than Module 1 and 2.

This script is a wrapper for Module 3a and Module 3b. Navigate and open the configuration file (Input_Info/Module3_Input.txt) to fill the required input to run the pipeline.

\$: bash ./CBS-miRSeq.module3.sh Input_Info/Module3_Input.txt

Module 3a analysis description: Prediction of novel miRNAs in each sample.

Module 3b analysis description: Prediction of target genes, Gene enrichment, Pathway analysis of known and novel miRNAs.

Configuration file of Module3_Input.txt

Inputs	Files/Directories/Type	Description/Type
OUTPUT_DIR	/path/to/output	# A directory or path where
		results are written
		Note: Directory should be the
		same as for Module 1
MIR_ANNOTATION	/path/to/sps.gff3	# miRBase gff3 file of species
RNAC_ANNOTATION	/path/to/sps.bed	# RNAcentral bed file
MIR_MATURE_FASTA	/path/to/sps.mature.fa	# miRBase sps mature fasta file
REL_MATURE_FASTA	/path/to/rel.mature.fa	# miRBase related sps mature
		fasta file
PRE_FASTA	/path/to/sps.hairpin.fa	# miRBase sps precursor fasta

		file		
SPS	A String	# Name of species under study (3 letter code; i.e. hsa)		
SPECIES_NAME	A String	# Name of species under study (full name; i.e. Human, Zebrafish, Mouse, Rat)		
INPUT_QUERY_FASTA	/path/to/DE/DE.mature.fa	# A File where DE_mature.fa is located, probably in "/DE/DE_mature.fa" or any fasta that user wish to predict targets of		
TARGET_UTR_FASTA	/path/to/sps.3UTR.fa	# A 3' UTR fasta; can be fetch from Ensembl Biomart		
HYBRIDIZATION_THRESHOLD	A negative value	# A negative value is required for the prediction of miRNA- mRNA hybrid (i.e10)		
entrezID	"NO" or "YES"	# Based on header of UTR fasta: (YES = in case of entrezID; NO = in case of Gene symbol)		
ID_Type	ID should be one of: SYMBOL/REFSEQ/ENSEMBL (## case sensitive)	## ID of UTR fasta from the header		
targetHub	"small" (recommended) or "big" or "FullNetwork" ## case sensitive	## gene:miRNA network hub to plot		
pathways	"reactome" or "kegg"	# Pathways analysis of target genes of miRNAs		
internet	"yes" or "no" (no==internet in case not accessible) ## case sensitive	# To download recent path from KEGG pathways database		
plotType	"pdf" or "eps" ## case sensitive	# Plot the results in pdf or ps format		
Ontology	"DO" (DO = Disease Ontology; only for human samples) or "ANY" (i.e. BP, MF, CC)	# Gene Ontology analysis		
OrgDb	"org.Hs.eg.db" for Human "org.Mm.eg.db" for Mouse "org.Dr.eg.db" for Zebrafish "org.Rn.eg.db" for Rat	# Annotation package (Genome wide annotation) for organism under study		
pvalueCutoff	A numeric value (0.05)	# The minimum P-value for enriched GO and Pathways		
qvalueCutoff	A numeric value (0.1)	# The minimum adjusted P- value for enriched GO and Pathways		

7. Results

The CBS-miRSeq pipeline generates tables and plots of results at each step for visual analysis and further investigations.

7.1 Output Structure

The output directory of CBS-miRSeq results is structured in the following manner:

Output Structure of Module 1

```
Output_dir/Index/
sps.genome_v38.84.fa
sps.genome_v38.84.fa.fai
*.ebwt
before_qc/
    sample_fastqc.zip
after_qc/
    sample.cln_fastqc.zip #(in case base-space reads)
    sample _T_F3.csfasta_fastqc.zip #(in case color-space reads)
clean reads/
    sample.cln.fastq.zip #(in case base-space reads)
    sample_T_F3.csfasta #(in case color-space reads)
    sample_T_F3_QV.csfasta " "
discarded reads/
         #(NULL; in case base-space reads)
    sample_U_F3.csfasta #(in case color-space reads)
    sample U F3 QV.csfasta ""
trim reads/
     sample.cln.fastq.zip #(in case base-space reads)
    sample_T_F3.csfasta.fastq #(in case color-space reads)
reads_mapped/
    sample.sam
    sample.sorted.bam
    sample.sorted.bam.bai
visualization_summary/
     summary.stats.xls
    sample.samstat.html
log_files/
    all.map.log
     all.trim.log
     fastq_reads.log #(in case base-space reads)
```

Visual Output from Module 1

Fig. 3: A summary report of each miRNA-Seq library generated by Module 1 of CBS-miRSeq. (A) Summary statistics of miRNA sequencing data for each library. (B) Illustration of mapping statistics and read length distribution in a sample: Representation of the most mapped reads within typical length of a mature miRNA (21-23 nt).

Output Structure of Module 2

```
isomiRs/
    sample.*.html
    sample.*.txt
quantification/
    sps.ensembl.report.txt
    sps.miRBase.report.txt
DE/
    sps_Deseq2_results.csv
    sps_DESeq2_analysis_plots.pdf (OR *.eps; a postscript plots)
    sps_edgeR_results.csv
    sps _edgeR_analysis_plots.pdf (OR *.eps; a postscript plots)
    hsa_merged.edgeR.DESeq2.csv
    sps_miR.Intersect.merged.statPvalue0.05.csv
    sps_comparison_plots.pdf
    Ensembl_biotypes_pie_bar.pdf
    RelativeExpressionCounts.pdf (word clouds of mean relative expression)
    DE_mature.fa
    DE miR.txt
    sps\_CBS\text{-}miRSeq.pipeline.DESeq2vsEdgeR.Rdata
     HTMLRports/
                     CBS-miRseq.Analysis.with.DESeq2.html
                     CBS-miRSeq.Analysis.with.edgeR.html
```

Visual Output from Module 2

Fig. 4: An example of output produced by Module 2 of CBS-miRSeq. (A) Exploratory analysis (Box and PCA plots) of the samples. (B) P-value distribution of differential expression analysis. (C) Volcano plots of differentially expressed miRNAs based on statistical cutoff. (D) Heatmap of most differentially expressed miRNAs based on adjusted P-values.

Ensembl biotypes for sample SRR433866_WT1

Ensembl biotypes for sample SRR433866_WT1

Fig. 5: Pie and bar plots representing the distribution of detected transcripts in a sample.

A

В

Fig. 6: A representative HTML report generated by the CBS-miRSeq Module 2. (A) an interactive HTML report generated by DESeq2 analysis. It contains miRNA IDs, log2FC, P-values and FDR values along with boxplot of expression distributions and miRBase hyperlink to each miRNAs. **(B)** The output of the analysis performed with edgeR contains for each miRNA a hyperlink to miRBase, boxplot of the expression in two conditions, logFC, and FDR.

Ran	k ID	Class	More details	TOTAL	G .	5p +	3р	5p		3р		Oth	er
				Des	Asc	Des	Asc	Des	Asc	Des	Asc	Des	Asc
1	hsa-mir-21	mir	View reads/details	1,942,	046	1,935	5,374	1,931	,174		4,200		6,672
2	hsa-mir-31	mir	View reads/details	1,128,	901	1,128	3,708	1,063	, 983	6	4,725		193
3	hsa-mir-24-2	mir	View reads/details	973,	499	973	3,053	12	,002	96	1,051		446
4	hsa-mir-141	mir	View reads/details	468,	855	468	3,582	1	,593	46	6,989		273
5	hsa-mir-27a	mir	View reads/details	441,	763	441	1,233	17	,659	43	3,574		530
6	hsa-mir-24-1	mir	View reads/details	333,	140	332	2,914		748	33	2,166		226
7	hsa-let-7f-2	mir	View reads/details	305,	672	305	,136	305	,018	-	118	Ī	536

Fig. 7: An example of isomiRs detected in a sample predicted by Module 2 of the CBS-miRSeq pipeline.

Output Structure of Module 3

```
Novel_miR/
          novel.miRNA.counts.matrix.txt
          sample.*.sorted.csv.bed
          Sample/
                results.*.html
                results.*.csv
                (other files generated by miRDeep2)
                pdfs*/
                (Secondary structure of novel miRNAs)
miR_Target/
            sps_PathwaysEnrichment_Plots.pdf
            sps_GOenrich_Plots_DO001.pdf (OR *.eps; Post script files)
            sps_miR.mRNA_3d.network.html
            sps _Ontology_GOenriched.txt
            sps_Pathways_GOenriched.txt
            miranda_miR_Target_sps.tab
            miranda\_miR\_Target\_str\_sps.txt
            RNAhybrid miR Target sps.tab
            RNAhybrid_miR_Target_str_sps.txt
            intersect.genes.uniq.pair.txt (shared targets of both prediction algorithms)
```

Visual Output from Module 3

Fig. 8: An example of Disease ontology (DO) enrichment analysis of predicted DE targets, generated by the CBS-miRSeq Module 3.

Fig. 9: An example of enrichment map of DO terms, generated by Module 3 of the pipeline.

Fig. 10: An example of KEGG pathways related to one category of enriched genes, produced by the Module 3b of the CBS-miRSeq pipeline.

Survey of miRDeep2 performance for score cut-offs -10 to 10									
	novel miRNAs								
miRDeep2 score	predicted by miRDeep2	estimated false positives	estimated true positives						
10	29	9 ± 3	$20 \pm 3 \ (70 \pm 9\%)$						
9	32	9 ± 3	23 ± 3 (71 ± 9%)						
8	35	10 ± 3	25 ± 3 (72 ± 9%)						
7	39	10 ± 3	29 ± 3 (73 ± 9%)						
6	47	11 ± 4	$36 \pm 4 \ (76 \pm 8\%)$						
5	53	12 ± 4	41 ± 4 (77 ± 7%)						
4	74	18 ± 4	56 ± 4 (76 ± 6%)						
3	114	46 ± 7	68 ± 7 (60 ± 6%)						
2	146	65 ± 8	81 ± 8 (56 ± 5%)						
1	188	83 ± 9	105 ± 9 (56 ± 5%)						
0	353	193 ± 14	160 ± 14 (45 ± 4%)						

A

B

novel miRNAs predicted by miRDeep2

provisional id	miRDeep2 score	estimated probability that the miRNA candidate is a true positive	rfam alert	read	read	read	read	significant randfold p-value	miRBase miRNA		UCSC browser		consensus mature sequence	consensus star sequence	совмяни ресситот меревае
chr21_171151	2.8e+5	0.70 ± 0.09		560247	559611	555	\$1				blat	blast	gagaacuuugaaggoogaagu	ggugcagaucuugguggu	ggugcagaucuuggugguaguagcaaauauucaaacgagaacuuugaaggccgaagu
chr21_171433	5.4e+4	0.70 ± 0.09		106119	104670	0	1449				blat	blast	acggcccuggcggagcgc	geccegeeggggueggece	 EcccedecEEEEncEEcccacEEcccnEEcEEEEccn
chr21_171626	5.4e+4	0.70 ± 0.09		106119	104670	0	1449				blat	blast	acggcccuggcggagcgc	gccccgccggggucggccc	gecoegegggueggeccaeggecouggeggagege
chr21_171093	5.4e+4	0.70 ± 0.09		106119	104670	0	1449				blat	blast	acggcccuggcggagcgc	gccccgccggggucggccc	gccccgccggggucggcccacggcccuggcggagcgc
chr21_171261	1.2e+4	0.70 ± 0.09		24319	12196	12018	105				blat	blast	caggocogagocgocugga	gagggacggccgggggca	caggoocgagoogcouggauaccgcagouaggaauaauggaauaggaccgcgguucuauuuuguugguuuucggaacugaggccaugauuaagagggacggccgggggga
chr13_58455	9.1e+2	0.70 ± 0.09	rRNA	1784	1764	0	20			mmu-miR-6904-3p	blat	blast	ucugaucucggaagcuaagcag	guuaguacuuggauggga	ucugaucucggaagcuaagcaggguugggccugguuaguacuuggauggga
chr21_171709	5.3e+2	0.70 ± 0.09		1045	577	346	122			mmu-miR-6936-3p	blat	blast	gggcgcgcgcgcgggcuggacga	cccccgccccaccccgcgc	gggcgcgccgcggguggacgaggcgccgccccccacgcccggggcaccccccucgcgggcccuccccgccccaccccgcgc

Fig. 11: An example of novel miRNA candidates predicted by miRDeep2, integrated into Module 3 of the CBS-miRSeq pipeline. (A) The table contains the number of predicted miRNAs ordered by the mirDeep2 score (red color line), *i.e.* the probability of true positive novel miRNAs. (B) The table highlights novel miRNAs predicted along with score, expression counts, hyperlink to UCSC and NCBI, and sequences of the mature miRNAs (3p, 5p) and precursors.

Fig. 12: An example of the secondary structure and sequence read depth of a representative novel miRNA predicted by miRDeep2.

```
target: 12|ENSG00000133703|KRAS
length: 1387
miRNA: hsa-miR-29b-1-5p
length: 24
mfe: -28.8 kcal/mol
p-value: 0.044391
position
          804
target 5'
                          UGUACC
                                        U 3'
            UGAACC UCAUGUG
                                 AACCAGC
            AUUUGG GGUAUAC
                                 UUGGUCG
                                          5'
       3' AG
miRNA
Performing Scan: hsa-miR-29b-1-5p vs 12|ENSG00000133703|KRAS
Forward:Score: 150 Q:3 to 23 R:3078 to 3101 Align Len (20)
Query:
             agATTTGGTGGTATACTTTGGTcg 5'
                  1:11:::1:11:11111:1
                                                      В
Ref:
          5' tcTGAATTGCTATGTGAAACTAca 3'
Energy:
         -25.700001 kCal/Mol
```

Fig. 13: An example of a predicted target in a test dataset. (A) A miRNA:mRNA hybridization structure predicted by RNAhybrid along with the lowest thermodynamics energy and P-value. (B) A miRNA:mRNA hybrid structure predicted by miRanda along with its lowest energy threshold. KRAS is a well-known target of tumor suppressor miRNAs such as miR-96 and miR-29 family. The results at intersection of both algorism are further considered for gene enrichment analyses.

8. Status/Error diagnostics

Each module of the CBS-miRSeq generates a log file within current script directory of CBS-miRSeq. The user can look at the corresponding log.txt for details about errors and bugs.

9. Availability

The pipeline is freely downloadable (http://www.labmedinfo.org/resources/software/CBS-miRSeq) with no restrictions. The tool is released under the terms of the GNU General Public License (GPL) version 3.0.

10. Requested Citation

Kesharwani RK et al. (2017) **CBS-miRSeq: a comprehensive tool for accurate and extensive analyses of microRNA-sequencing data.** *BMC Genomics*.

11. Contact information

For any query or feedback, feel free to contact Dr. Rupesh K. Kesharwani (bioinforupesh2009.au@gmail.com).

12. Abbreviation

sps = Name of the species/organism (usually 3 letter code used such as : has, dre, mmuetc)

rel = Name related species/organism (usually 3 letter code used such as : has, dre, mmuetc)

DE = Differentially expressed

DEA = differential expression analysis

dir = Directory

13. Acknowledgments

This work has been supported by institutional funds of Centro Cardiologico Monzino, Milano, Italy (to Dr. Gualtiero I. Colombo, project supervisor). Authors thank the Department of Electrical, Computer and Biomedical Engineering, Università degli Studi di Pavia, Italy for providing the virtual machine in order to test workability of pipeline.

14. References

- 1. Rougvie AE: Control of developmental timing in animals. *Nature Reviews Genetics* 2001, 2(9):690-701.
- 2. Esquela-Kerscher A, Slack FJ: Oncomirs microRNAs with a role in cancer. *Nature reviews Cancer* 2006, 6(4):259-269.
- 3. Urbich C, Kuehbacher A, Dimmeler S: Role of microRNAs in vascular diseases, inflammation, and angiogenesis. *Cardiovasc Res* 2008, 79(4):581-588.
- 4. Mraz M, Pospisilova S: MicroRNAs in chronic lymphocytic leukemia: from causality to associations and back. *Expert Review of Hematology* 2012, 5(6):579-581.
- 5. Soifer HS, Rossi JJ, Saetrom P: MicroRNAs in disease and potential therapeutic applications. *Molecular Therapy* 2007, 15(12):2070-2079.

Declarations: Integrated miRSpring scripts come with CBS-miRSeq are not a part of the pipeline; however, it has been adopted to perform analyses only. Please cite all tools and software while using the pipeline.