Local Sense 客户端通信协议 v0.9

版本说明

版本	描述	修改人	时间
V0.1	初始版本	beck	2015.04.23
V0.2	电子围栏增加区域信息,增加通知参数	beck	2015.05.07
V0.3	补充 webservice 的细节,将实时数据改为 websocket。	beck	2015.05.10
V0.4	Websocket 增加心跳包,实时位置数据加上时间戳,增加实时数据示例	beck	2015.5.14
V0.5	Websocket 新增电量、距离信息数据,数据更新通知增加组信息 变化,报警数据类型新增两类型	sky	2015.6.19
V0.6	电量推送协议类型为 localSensePush-protocol	sky	20150624
V0.7	联合脉思开发,新增扩展数据帧协议	sky	20150728
V0.8	电子围栏状态推送、控制启停、	Sky	20150729
V0.9	推送距离信息中新增时间戳字段,告警增加低电量告警		20150817

目录

1.	通信流	ī程	4
		系统框图	
	1.2	服务器与客户端之间的通信	4
2.	实时数	7据	5
	2.1	标签实时信息	5
	2.2	报警信息	6
	2.3	电量信息	7
	2.4	扩展数据信息(客户定制)	7
	2.5	扩展报警信息	. 8

1. 通信流程

1.1 系统框图

采用 C/S 结构,一个服务器同时和多个客户端交互。客户端的形态可以是 PC 软件,移动端软件。

1.2 服务器与客户端之间的通信

1) 实时数据:位置信息、状态变化等数据,采用 websocket 协议交互:在服务器上启动相关服务,根据 websocket 协议对客户端进行数据推送。

2. 实时数据

websocket服务端的服务名称: localsense_distribute_server,采用非安全模式,端口号: 9001。应用数据格式如下。采用网络字节序。

子协议为: localSensePush-protocol的实时数据

2.1 标签实时信息

	CRO	C16 校验区			
帧头	帧类型	标签个数(N)	标签信息	CRC16 校 验	帧尾
2B	1B	1B	N*21B	2B	2B

				标签信息	(21B)				
标签ID	X 坐 标	Y 坐 标	Z 坐 标	定位指示/楼层指示 (已废弃,该位预 留)	电量	休眠标志 /充电标 志	时 间 戳	地点编号	楼层编号
2B	4B	4B	2B	1B	1B	1B	4B	1B	1B

- 1、 **帧头** 2 字节, 固定值: 0xCC5F
- 2、 **帧类型** 1 字节, 固定值: 0x01
- 3、标签个数(N)1字节,该帧中标签信息的总数目 N
- 4、标签信息每个标签 21 字节
 - 1) 标签 ID, 2 字节, 标签的编号。
 - 2) X 坐标、Y 坐标各 4 字节, Z 坐标 2 字节, 标签在地图中的坐标, 单位 cm。
 - 3) 定位指示/楼层指示,(已废弃)

定位指示(高 4 位):标签解算结果,0:存在性;1:1D 定位结果;2:2D 定位结果;3:3D 定位结果,-1:未指示。

楼层指示(低4位):1~15 楼层索引

- 4) 电量百分比 0: 0%, 1: 20%, 2: 40%, 3: 60%, 4: 80%, 5: 100%
- 5) 休眠标志/充电标志:

休眠标志(高 4 位): 0 没休眠 1 休眠

充电标志(低4位):0没充电1充电

6) 时间戳,从0时0分0秒经历的毫秒数

- 7) 地点编号, 1 字节, 标签所在的地点编号, 例如定位结果在 4 栋, 地点编号为 4, 最大支持 256 个地点
- 8) 楼层编号, 1字节, 标签所在的楼层编号, 最大支持 256 层
- 5、CRC16校验不包含帧头帧尾
- 6、 **帧尾 2** 字节, 固定值: 0xAABB

示例:

帧头	类型	一个 标签	标签 ID(17)	X 坐标 (1002cm)	Y 坐标 (5100cm)	Z 坐标 (1500cm)	2D 定 位/3 楼	电量 (20%)	不休 眠、 充电	时间 (1:00)
0xCC5F	0x01	0x01	0x0011	0x000003EA	0x000013EC	0x05DC	0x23	0x01	0x01	0x0036ee80
保留	CRC16 校验	帧尾								
0x0000		0xAABB								

2.2 报警信息

		CRC16 校					
帧头	帧类型	报警类型	关联 ID	报警时 间	报警 信息	CRC16 校验	帧尾
2B	1B	1B	2B	8B	120B	2B	2В

- 1、 帧头 2 字节, 固定值: 0xCC5F
- 2、 **帧类型 1** 字节, 固定值: 0x03
- 3、**报警类型**1字节,0x01 电子围栏报警 0x02 表示 SOS 报警 0x03 表示剪断报警 0x04 表示消失报警 0x05 电子围栏报警消除,0x06 剪断报警消除 0x07 表示低电量报警
- 4、 关联 ID 关联的标签 ID,指示谁触发了报警
- 5、报警时间 自 1970-01-01 经过的毫秒数
- 6、报警信息警情描述, GB2312 编码
- 7、CRC16 校验 不包含帧头帧尾
- 8、**帧尾**2字节,固定值: 0xAABB

示例:

帧头	类型	电子围 栏报警	关联的 标签为 17	报警时间 (2015-05-14 11:26:39.604)	报警信息	CRC16 校验	帧尾
0xCC5F	0x03	0x01	0x0011	1431573999604	进入区 域报 警,电 子围栏 名称: 禁区1		OxAABB

2.3 电量信息

			6 校验区		
帧头	帧类型	标签数量	电量信息	CRC16 校验	帧尾
2B	1B	1B	N*4B	2B	2В

标签 ID	电量状态	充电状态
2B	1B	1B

- 1、 **帧头** 2 字节, 固定值: 0xcc5f
- 2、**帧类型**1字节,固定值: 0x05
- 3、标签数量:1字节
- 4、标签 ID 2 字节 标签的编号
- 5、 电量状态 1 字节: 0: 0%, 1: 20%, 2: 40%, 3: 60%, 4: 80%, 5: 100%
- 6、充电状态1字:0没充电1充电
- 7、CRC16 校验 不包含帧头帧尾
- 8、**帧尾**2字节,固定值: 0xAABB

2.4 扩展数据信息(客户定制)

				CRC16 校验区			
帧头	帧类型	标签 ID	有效数据长度 (N)	扩展数据信息	时间戳	CRC16 校验	帧尾

2B 1B 2B 2B NB 8B 2B 2B

- 1、 **帧头** 2 字节, 固定值: 0xCC5f
- 2、 **帧类型 1** 字节, 固定值: 0x08
- 3、标签 ID 2 字节
- 4、 有效数据长度(N) 2 字节,指扩展数据信息长度
- 5、 扩展数据信息 N 字节 指有效数据内容
- 6、时间戳 8 字节 自 1970-01-01 经过的毫秒数
- 7、CRC16 校验 不包含帧头帧尾
- 8、**帧尾 2** 字节,固定值: 0xAABB

2.5 扩展报警信息

该报警信息电子围栏告警更详细。

		CRC16 校验区							
帧头	帧类 型	报警类型	关联 ID	报警时间	附加信息	CRC16 校 验	帧尾		
2B	1B	1B	2B	8B	120	2B	2B		

附加信息(<mark>仅围栏有效</mark>)2015-10-09					
围栏 ID	当前位置		边信息	顶点信息	
围栏标识	x 位置	Y位置	边名称	顶点名称	离顶点距离
8B	4B	4B	30B	30B	4B

- 1、 **帧头** 2 字节, 固定值: 0xCC5F
- 2、 **帧类型** 1 字节, 固定值: 0x09

- 3、**报警类型**1字节,0x01电子围栏报警0x02表示SOS报警0x03表示剪断报警0x04表示消失报警,0x07表示低电量报警(非电子围栏报警附加信息不可用)
- 4、 关联 ID 关联的标签 ID,指示谁触发了报警
- 5、**报警时间** 自 1970-01-01 经过的毫秒数
- 6、附加信息 120 字节,仅当报警类型为 0x01 时,前 32 字节有效,其他内容预留,对其他报警类型数据内容预留。当报警类型为 0x01 时,格式如上所示: 8 字节围栏 ID 标识,8 字节当前标签位置(X, Y 坐标值,各占 4 字节,单位: cm),30 字节闯入围栏边界的边名称(GBK 编码),30 字节闯入围栏边界的边顶点名称(GBK 编码),4 字节当前位置距边顶点的距离。其他预留。
- 7、CRC16 校验 不包含帧头帧尾
- 8、**帧尾**2字节,固定值: 0xAABB

附录:

1. CRC16 校验(C语言代码):

```
// crc check function
static const unsigned char aucCRCHi[] =
 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0, 0x80, 0x41,
 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40,
 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0, 0x80, 0x41,
 0x00, 0xC1, 0x81, 0x40, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41,
 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0, 0x80, 0x41,
 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40,
 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40,
 0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40,
 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0, 0x80, 0x41,
 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40,
 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0, 0x80, 0x41,
 0x00, 0xC1, 0x81, 0x40, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41,
 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0, 0x80, 0x41,
 0x00, 0xC1, 0x81, 0x40, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41,
 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41,
 0x00, 0xC1, 0x81, 0x40, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41,
 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0, 0x80, 0x41,
 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40,
 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0, 0x80, 0x41,
 0x00, 0xC1, 0x81, 0x40, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41,
 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0, 0x80, 0x41,
 0x00, 0xC1, 0x81, 0x40
```

```
{
  0x00, 0xC0, 0xC1, 0x01, 0xC3, 0x03, 0x02, 0xC2, 0xC6, 0x06, 0x07, 0xC7,
  0x05, 0xC5, 0xC4, 0x04, 0xCC, 0x0C, 0x0D, 0xCD, 0x0F, 0xCF, 0xCE, 0x0E,
  0x0A, 0xCA, 0xCB, 0x0B, 0xC9, 0x09, 0x08, 0xC8, 0xD8, 0x18, 0x19, 0xD9,
  0x1B, 0xDB, 0xDA, 0x1A, 0x1E, 0xDE, 0xDF, 0x1F, 0xDD, 0x1D, 0x1C, 0xDC,
  0x14, 0xD4, 0xD5, 0x15, 0xD7, 0x17, 0x16, 0xD6, 0xD2, 0x12, 0x13, 0xD3,
  0x11, 0xD1, 0xD0, 0x10, 0xF0, 0x30, 0x31, 0xF1, 0x33, 0xF3, 0xF2, 0x32,
  0x36, 0xF6, 0xF7, 0x37, 0xF5, 0x35, 0x34, 0xF4, 0x3C, 0xFC, 0xFD, 0x3D,
  0xFF, 0x3F, 0x3E, 0xFE, 0xFA, 0x3A, 0x3B, 0xFB, 0x39, 0xF9, 0xF8, 0x38,
  0x28, 0xE8, 0xE9, 0x29, 0xEB, 0x2B, 0x2A, 0xEA, 0xEE, 0x2E, 0x2F, 0xEF,
  0x2D, 0xED, 0xEC, 0x2C, 0xE4, 0x24, 0x25, 0xE5, 0x27, 0xE7, 0xE6, 0x26,
  0x22, 0xE2, 0xE3, 0x23, 0xE1, 0x21, 0x20, 0xE0, 0xA0, 0x60, 0x61, 0xA1,
  0x63, 0xA3, 0xA2, 0x62, 0x66, 0xA6, 0xA7, 0x67, 0xA5, 0x65, 0x64, 0xA4,
  0x6C, 0xAC, 0xAD, 0x6D, 0xAF, 0x6F, 0x6E, 0xAE, 0xAA, 0x6A, 0x6B, 0xAB,
  0x69, 0xA9, 0xA8, 0x68, 0x78, 0xB8, 0xB9, 0x79, 0xBB, 0x7B, 0x7A, 0xBA,
  0xBE, 0x7E, 0x7F, 0xBF, 0x7D, 0xBD, 0xBC, 0x7C, 0xB4, 0x74, 0x75, 0xB5,
  0x77, 0xB7, 0xB6, 0x76, 0x72, 0xB2, 0xB3, 0x73, 0xB1, 0x71, 0x70, 0xB0,
  0x50, 0x90, 0x91, 0x51, 0x93, 0x53, 0x52, 0x92, 0x96, 0x56, 0x57, 0x97,
  0x55, 0x95, 0x94, 0x54, 0x9C, 0x5C, 0x5D, 0x9D, 0x5F, 0x9F, 0x9E, 0x5E,
  0x5A, 0x9A, 0x9B, 0x5B, 0x99, 0x59, 0x58, 0x98, 0x88, 0x48, 0x49, 0x89,
  0x4B, 0x8B, 0x8A, 0x4A, 0x4E, 0x8E, 0x8F, 0x4F, 0x8D, 0x4D, 0x4C, 0x8C,
  0x44, 0x84, 0x85, 0x45, 0x87, 0x47, 0x46, 0x86, 0x82, 0x42, 0x43, 0x83,
  0x41, 0x81, 0x80, 0x40
};
unsigned short crc16Check(unsigned char *frame, unsigned char len )
  unsigned char ucCRCHi = 0xFF;
  unsigned char ucCRCLo = 0xFF;
  unsigned short iIndex;
  while( len-- )
      iIndex = ucCRCLo ^ ( *frame );
```

static const unsigned char aucCRCLo[] =

```
ucCRCLo = ( unsigned char )( ucCRCHi ^ aucCRCHi[iIndex] );
ucCRCHi = aucCRCLo[iIndex];
frame++;
}
return (unsigned short)( (unsigned short)ucCRCHi << 8 | ucCRCLo );
}</pre>
```