CS311: Data Communication

Transmission of Analog Signals - I

Dr. Manas Khatua Assistant Professor Dept. of CSE IIT Jodhpur

E-mail: manaskhatua@iitj.ac.in

Analog Data – Analog Signal

 The Process is known as modulation, which involves manipulation of one or more of the parameters of the carrier that characterizes a analog signal.

 Frequency Translation: Translates the signal from one region of frequency domain to another region.

 Practical Size of Antenna: Modulation translates the baseband signal to higher frequency, which can be transmitted through a bandpass channel using an antenna of smaller size.

• Narrowbanding: Ratio between highest to lowest frequency becomes close to 1.

 Multiplexing: Modulation allows frequencydivision multiplexing.

Modulation Techniques

Amplitude Modulation

Modulation Using a Sinusoid Signal

Let the modulation waveform is given by

$$e_m(t) = E_m \cos(2\pi f_m t)$$

And the carrier signal is given by

$$e_c(t) = E_c \cos(2\pi f_c t + \emptyset_c)$$

Then the equation of the modulated signal is given by

$$s(t) = (E_c + E_m \cos 2\pi f_m t) \cos 2\pi f_c t$$

The Modulation Index, represented by m, is given by

$$m = \frac{E_{max} - E_{min}}{E_{max} + E_{min}} = E_m / E_c$$

Where

$$E_{max} = E_c + E_m, \qquad E_{min} = E_c - E_m$$

And $s(t) = E_c(1 + m\cos 2\pi f_m t)\cos 2\pi f_c t$,

The envelope of the modulated signal is represented by $1 + me_m(t)$ for m<1

Envelope of the signal $1 + me_m(t)$ for m < 1

Envelope of the signal for m = 1

Loss of information occurs when m > 1

Frequency Spectrum

- Three Components:
 - Carrier wave of amplitude E_c
 - Lower Sideband of amplitude $\frac{\mathrm{m}}{2}E_c$
 - Higher Sideband of amplitude $\frac{\mathrm{m}}{2}E_c$

Frequency Spectrum

Frequency Spectrum of the sinusoidal AM signal

$$s(t) = E_c \left[1 + m \cos 2\pi f_m t \right] \cos 2\pi f_c t$$

$$= E_c \cos 2\pi f_c t + m E_c \cos 2\pi f_m t \cos 2\pi f_c t$$

$$= E_c \cos 2\pi f_c t + \frac{m}{2} E_c \cos 2\pi (f_c - f_m) t$$

$$+ \frac{m}{2} E_c \cos 2\pi (f_c + f_m) t$$

There are three frequency components.

Frequency Spectrum

- **Example**: A carrier of 1 MHz with peak value of 10V is modulated by a 5 KHz sine wave amplitude 6V. Determine the modulation index and frequency spectrum.
- Answer: m = 6/10 = 0.6. The side frequencies are (1000 - 5) = 995 KHz and (1000 + 5) = 1005 KHz having amplitude of $0.6 \times 10/2 = 3V$

Modulation using Audio Signal

- Let the bandwidth of the modulating signal is B_m .
- The bandwidth of the modulated signal is $2B_m$.

Average power of the sinusoidal wave

Average power developed across a resistor R for the carrier signal

$$P_c = E_c^2/2R$$

For sideband frequencies $P_{SF} = (mE_c/2)^2/2R$ = $P_c m^2/4$

Total Power =
$$P_c(1 + 2(m^2/4)) = P_c(1 + m^2/2)$$

DSBSC and SSB Transmission

To minimize power for transmission, there are two other alternatives:

- ➤ Double-Sideband with Suppressed Carrier (DSBSC) Modulation
- ➤ Single Side Band (SSB) Modulation

DSBSC Modulation

 Double-Sideband with Suppressed Carrier (DSBSC) Modulation utilizes the transmitted power more efficiently than DSB AM.

SSB Modulation

 Single Side Band (SSB) Modulation not only conserves energy, it also reduces bandwidth.

Recovery of the Baseband Signal

- Let a baseband signal m(t) is translated out by multiplication with the carrier signal $CosW_ct$ to get $m(t)CosW_ct$, the modulated signal.
- By multiplying second time with the carrier we get $(m(t)CosW_ct)$ $CosW_ct$

$$= m(t)Cos^{2}W_{c}t = m(t)(\frac{1}{2} + \frac{1}{2}Cos2W_{c}t)$$
$$= \frac{m(t)}{2} + \frac{1}{2}m(t)Cos2W_{c}t$$

Recovery of the Baseband Signal

- The baseband signal reappears.
- The spectral components $2f_c f_m$ to $2f_c + f_m$ can be easily removed by a low-pass filter.
- This process is known as Synchronous
 Detection.

Recovery of the Baseband Signal

- The synchronous detection approach has the disadvantage that the carrier signal used in the second multiplication has to be precisely synchronous.
- A very simple circuit can accomplish the recovery of the baseband signal.

Superhetrodyne Approach

- The modulated signal received at the receiving end is greatly attenuated and mixed with noise.
- There may be other channels adjacent to it.
- The signal has to be amplified before detection.
- The noises to be removed by suitable filtering.
- Superhetrodyne approach is commonly used.

Superhetrodyne AM radio receiver

Superhetrodyne Approach

- It is used to improve adjacent channel selection.
- To provide necessary gain.
- To provide better S/N ratio.
- The commonly used technique of the popular AM receivers.

Angle Modulation

Thanks!