

IDEAL DIODE CONTROLLER IN SOT363

Description

The DZDH0401DW is intended to drive a P-channel enhancement MOSFET configured as an ideal diode. The device operates as a differential amplifier and PMOS controller to minimize forward current losses when $V_{\text{IN}} > V_{\text{OUT}}$ and provide high isolation when $V_{\text{IN}} < V_{\text{OUT}}$. The circuit compares the voltage between IN and OUT. If the differential is greater than ~34mV (typ.) V_{BIAS} will fall and the PMOS will turn on, If the differential is less than ~34mV V_{BIAS} will rise and the PMOS will turn off, isolating IN from OUT.

Applications

- High Side Gate Driving PMOS
- High Side Disconnect Switch
- Battery Discharge Protection
- Emergency Lighting
- Active OR'ing Redundant Power Supplies

DZDHO401DW OUT OUT OUT OUT OUT OUT OUT Rei Ref Rbias

Typical Configuration

Features

- Max Input Voltage: 40V
- Peak Bias Current: -300mA
- Max Reverse Voltage Protection: 50V
- Totally Lead-Free & Fully RoHS Compliant (Notes 1 & 2)
- Halogen and Antimony Free. "Green" Device (Note 3)
- For automotive applications requiring specific change control (i.e. parts qualified to AEC-Q100/101/200, PPAP capable, and manufactured in IATF 16949 certified facilities), please <u>contact us</u> or your local Diodes representative.

https://www.diodes.com/quality/product-definitions/

Mechanical Data

- Case: SOT363
- Case Material: Molded Plastic, "Green" Molding Compound.
 UL Flammability Classification Rating 94V-0
- Moisture Sensitivity: Level 1 per J-STD-020
- Terminals: Finish—Matte Tin Finish. Solderable per MIL-STD-202, Method 208 ©3
- Weight: 0.006 grams (Approximate)

SOT363 Top View

Pinout

Ordering Information (Note 4)

Part Number	Marking	Reel Size (inches)	Tape Width (mm)	Quantity per Reel
DZDH0401DW-7	2M4	7	8	3,000

Notes:

- 1. No purposely added lead. Fully EU Directive 2002/95/EC (RoHS), 2011/65/EU (RoHS 2) & 2015/863/EU (RoHS 3) compliant.
- See https://www.diodes.com/quality/lead-free/ for more information about Diodes Incorporated's definitions of Halogen- and Antimony-free, "Green" and Lead-free.
- 3. Halogen- and Antimony-free "Green" products are defined as those which contain <900ppm bromine, <900ppm chlorine (<1500ppm total Br + Cl) and <1000ppm antimony compounds.
- 4. For packaging details, go to our website at https://www.diodes.com/design/support/packaging/diodes-packaging/.

Marking Information

2M4 = Product Type Marking Code YM = Date Code Marking Y = Year (ex: I = 2021) M = Month (ex: 3 = March)

Date Code Key

Year	2020	2021	2022	2023	2024	2025	2026	2027	2028	2029	2030	2031
Code	Н	ı	J	K	L	М	N	0	Р	R	S	Т
Month	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec

Absolute Maximum Ratings (@ TA = +25°C unless otherwise specified.)

Characteristic	Symbol	Value	Unit
DRAIN BIAS Voltage	V _{DRAIN-BIAS}	40	V
SOURCE DRAIN Voltage	V _{SOURCE-DRAIN}	50	V
BIAS Current	I _{BIAS}	-300	mA
DRAIN Current	I _{DRAIN}	300	mA

Thermal Characteristics – Total Device (@ T_A = +25°C unless otherwise specified.)

Characteristic	Symbol	Value	Unit
Power Dissipation (Note 5)	P_{D}	300	mW
Thermal Resistance, Junction to Ambient (Note 5)	$R_{ hetaJA}$	424	°C/W
Thermal Resistance, Junction to Case (Note 5)	$R_{ hetaJC}$	111	°C/W
Operating and Storage Temperature Range	T _J , T _{STG}	-65 to +150	°C

Note:

^{5.} For a device mounted on minimum recommended pad layout with 1oz copper that is on a single-sided 1.6mm FR4 PCB; the device is measured under still air conditions whilst operating in a steady-state.

Thermal Characteristics – Total Device

Fig.1 Derating Curve

Fig.2 Safe Operation Area

Fig.3 Transient Thermal Resistance

Electrical Characteristics (@ T_A = +25°C unless otherwise specified)

Characteristic	Symbol	Min	Тур	Max	Unit	Test Condition
DRAIN - BIAS Voltage	V _{DRAIN-BIAS}	40	78	_	٧	I _{DRAIN} =100μA
SOURCE – DRAIN Voltage	Vsource-drain	50	84	_	٧	I _{SOURCE} =100µA
DRAIN – REF Voltage	V _{DRAIN-REF}		588	_	mV	I _{DRAIN} =100μA
SOURCE Current	I _{SOURCE}	_	11.6	_	μA	V _{SOURCE-REF} =0.56V
REF-SOURCE Voltage	V _{REF-SOURCE}	_	-554	_	mV	I _{REF} =-10μA
Turn-Off Differential Voltage	V _T	5	34	80	mV	I _{DRAIN} =100μA; I _{SOURCE} =10μA
DEE SOUDCE Voltage (V	V	-250	-472	_	mV	V _{BIAS-SOURCE} =-5V; I _{BIAS} =-1μA
REF-SOURCE Voltage (V _{BIAS low})	V _{REF-SOURCE}	-300	-541	_	mV	V _{BIAS-SOURCE} =-5V; I _{BIAS} =-10μA
DEE SOUDCE Voltage (V	V	1	-601	-800	mV	V _{BIAS} -SOURCE=-0.5V; I _{BIAS} =-100μA
REF-SOURCE Voltage (V _{BIAS high})	V _{REF-SOURCE}	_	-663	-850	mV	V _{BIAS-SOURCE} =-0.5V; I _{BIAS} =-1mA

Typical Electrical Characteristics (@ T_A = +25°C unless otherwise specified.)

Fig.5 V_{CE(sat)} vs I_C

Typical Application Circuit/ Pin Out Details/ Functional Description

Pin	Name	Function
1	NC	No internal connection
2	REF	Reference current to set V _F
3	BIAS	Reference current to set V _{BE} and control Gate
4	SOURCE	V _{OUT} sense voltage
5	NC	No internal connection
6	DRAIN	V _{IN} sense voltage
n/a	Rref	This resistor sets the turn off speed of the FET. The lower the resistance, the more base drive to the transistor, the faster the transistor shorts out the gate to turn off the FET.
n/a	Rbias	This resistor sets the turn on speed of the FET. When the ideal diode circuit is turning on the PNP is held off by the diode and FET voltage drops. It is Rbias that pulls the gate low and turns on the FET.
n/a	Rbias : Rref	Ideal diode Turn-Off threshold voltage $V_T \alpha$ Rbias / Rref
n/a	Vref	Voltage across Rref

Typical Application Circuit

Functional Description (Refer to typical application circuit above)

Supply Connect:

As a +Input is applied, the body drain diode of Q1 becomes forward biased. U1 diode holds U1 transistor base at $V_{IN} - V_F$, and so V_{BE} is too low to turn on U1 transistor. As Q1 gate capacitance charges through Rbias, Q1 turns on and R_{DS} decreases causing V_{DS} to decrease and V_{BE} to increase until U1 transistor starts to conduct. This process continues until Q1 R_{DS} reaches its minimum value and U1 transistor V_{BE} cannot increase and I_C reaches its maximum. V_{GS} should be high enough at this point to ensure linear operation.

Rref and Rbias set the currents through U1 diode and U1 collector respectively so that V_{F(DIODE)} is greater than V_{BE(on)}.

Supply Disconnect:

As the +Input is removed, $V_{DS} < V_T$, Q1 is on and $V_{IN} = V_{OUT}$, causing V_{REF} to fall and U1 $V_{BE} > V_{BE(on)}$ so U1 transistor discharges Q1 gate capacitance and Q1 turns off causing V_{IN} to fall to 0V.

Quiescent Current and Isolation:

With a battery connected at Supply Out, there are two leakage paths back to the Supply In. One is straight through Q1 and the other is through U1_{emitter-anode}. The high reverse breakdown voltage of U1 diode provides a high isolation path. The Rref & Rbias currents bias U1 transistor on which keeps Q1 off. These resistors' values are chosen to minimize quiescent current operation of the circuit.

Typical Charging Conditions. (Ta=25°C Vbatt=14V switch closed,					
Isupply=3A)					
Parameter	Symbol	Тур	Unit		
Input Voltage	V_{IN}	14.1	V		
Input current	I _{IN}	3	Α		
Output Voltage	V _{OUT}	14	V		
Output Current	l _{out}	3.0	Α		
Diode Forward Voltage	V_F	0.6	V		
Diode forward Current	l _F	135	uA		
Reference Voltage	V_{REF}	13.4	V		
Reference Current	I _{REF}	136.6	uA		
Base Current	I _B	1.6	uA		
Emitter Current	Ι _Ε	12.1	uA		
Bias Voltage	V_{BIAS}	10.5	V		
Collector Current	I _C	10.5	uA		
Operating Current	I _{cc}	147	uA		

Typical Non-Charging Conditions. (Ta=25°C Vbatt=14V switch open,						
lsı	Isupply=3A)					
Parameter	Symbol	Тур	Unit			
Input Voltage	V _{IN}	-	uV			
Input current	I _{IN}	I	Α			
Output Voltage	V_{OUT}	14	V			
Output Current	l _{out}	I	Α			
Diode Forward Voltage	V_{F}	-	V			
Diode forward current	I _F	0	uA			
Reference Voltage	V_{REF}	13.3	V			
Reference Current	I _{REF}	133	uA			
Base Current	l _Β	133	uA			
Emitter Current	Ι _Ε	145	uA			
Bias Voltage	V_{BIAS}	13.94	V			
Bias Current	I _{BIAS}	13.94	uA			
Operating Current	Icc	147	uA			

Typical Application Circuit/ Pin Out Details/ Functional Description (continued)

Timing

Switching speed is affected by PMOS characteristics, Rbias, Rref, and operating voltage. Using the typical application circuit, we can see how modifying values can affect the timing in the simulations below

Typical Application Circuit/ Pin Out Details/ Functional Description (continued)

Typical Application Circuit/ Pin Out Details/ Functional Description (continued)

Ideal Diode Power Saving

The typical voltage drop across a standard diode rectifier means higher power dissipation and more heat to manage. This both wastes power and significantly drops the potential on low voltage rails.

Example:

A diode rectifier with a typical forward voltage $V_F = 0.55V$ carrying 3A current would dissipate 1.65W (I x V_F). Whereas with P-MOSFET such as the DMP4047LFDE that has an Rdson of $33m\Omega$, the power dissipation reduces to only 0.29W (I² x R).

Hence, very low R_{DS(on)} Power MOSFETs can replace the standard rectifiers and the DZDH0401DW controls the MOSFET as an ideal diode.

N+1 redundancy OR'ing controller

Critical systems require a fault-tolerant power supply that can be achieved by paralleling two or more PSUs into an (N+1) redundancy configuration.

During normal operation, usually all PSUs equally share the load for maximum reliability. If one of the PSUs is unplugged or fails, then the other PSUs fully support the load. To avoid the faulty PSU from affecting the common bus, an OR'ing rectifier blocks the reverse current flow into the faulty PSU. Likewise during hot-swapping, the OR'ing rectifiers isolate a PSU's discharged output capacitors from the common bus.

Package Outline Dimensions

Please see http://www.diodes.com/package-outlines.html for the latest version.

SOT363					
Dim	Min	Max	Тур		
A1	0.00	0.10	0.05		
A2	0.90	1.00	1.00		
b	0.10	0.30	0.25		
С	0.10	0.22	0.11		
D	1.80	2.20	2.15		
Е	2.00	2.20	2.10		
E1	1.15	1.35	1.30		
е	C).650 B	SC		
F	0.40	0.45	0.425		
L	0.25	0.40	0.30		
а	0°	8°			
All Dimensions in mm					

Suggested Pad Layout

Please see http://www.diodes.com/package-outlines.html for the latest version.

Dimensions	Value (in mm)
С	0.650
G	1.300
Х	0.420
Y	0.600
V1	2 500

IMPORTANT NOTICE

- 1. DIODES INCORPORATED AND ITS SUBSIDIARIES ("DIODES") MAKE NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARDS TO ANY INFORMATION CONTAINED IN THIS DOCUMENT, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION).
- 2. The Information contained herein is for informational purpose only and is provided only to illustrate the operation of Diodes products described herein and application examples. Diodes does not assume any liability arising out of the application or use of this document or any product described herein. This document is intended for skilled and technically trained engineering customers and users who design with Diodes products. Diodes products may be used to facilitate safety-related applications; however, in all instances customers and users are responsible for (a) selecting the appropriate Diodes products for their applications, (b) evaluating the suitability of the Diodes products for their intended applications, (c) ensuring their applications, which incorporate Diodes products, comply the applicable legal and regulatory requirements as well as safety and functional-safety related standards, and (d) ensuring they design with appropriate safeguards (including testing, validation, quality control techniques, redundancy, malfunction prevention, and appropriate treatment for aging degradation) to minimize the risks associated with their applications.
- 3. Diodes assumes no liability for any application-related information, support, assistance or feedback that may be provided by Diodes from time to time. Any customer or user of this document or products described herein will assume all risks and liabilities associated with such use, and will hold Diodes and all companies whose products are represented herein or on Diodes' websites, harmless against all damages and liabilities.
- 4. Products described herein may be covered by one or more United States, international or foreign patents and pending patent applications. Product names and markings noted herein may also be covered by one or more United States, international or foreign trademarks and trademark applications. Diodes does not convey any license under any of its intellectual property rights or the rights of any third parties (including third parties whose products and services may be described in this document or on Diodes' website) under this document.
- 5. Diodes products are provided subject to Diodes' Standard Terms and Conditions of Sale (https://www.diodes.com/about/company/terms-and-conditions/terms-and-conditions/terms-and-conditions-of-sales/) or other applicable terms. This document does not alter or expand the applicable warranties provided by Diodes. Diodes does not warrant or accept any liability whatsoever in respect of any products purchased through unauthorized sales channel.
- 6. Diodes products and technology may not be used for or incorporated into any products or systems whose manufacture, use or sale is prohibited under any applicable laws and regulations. Should customers or users use Diodes products in contravention of any applicable laws or regulations, or for any unintended or unauthorized application, customers and users will (a) be solely responsible for any damages, losses or penalties arising in connection therewith or as a result thereof, and (b) indemnify and hold Diodes and its representatives and agents harmless against any and all claims, damages, expenses, and attorney fees arising out of, directly or indirectly, any claim relating to any noncompliance with the applicable laws and regulations, as well as any unintended or unauthorized application.
- 7. While efforts have been made to ensure the information contained in this document is accurate, complete and current, it may contain technical inaccuracies, omissions and typographical errors. Diodes does not warrant that information contained in this document is error-free and Diodes is under no obligation to update or otherwise correct this information. Notwithstanding the foregoing, Diodes reserves the right to make modifications, enhancements, improvements, corrections or other changes without further notice to this document and any product described herein. This document is written in English but may be translated into multiple languages for reference. Only the English version of this document is the final and determinative format released by Diodes.
- 8. Any unauthorized copying, modification, distribution, transmission, display or other use of this document (or any portion hereof) is prohibited. Diodes assumes no responsibility for any losses incurred by the customers or users or any third parties arising from any such unauthorized use.

Copyright © 2021 Diodes Incorporated

www.diodes.com