School of Engineering

Renewable Energy 1: Solar and Geothermal (EG501J)

Geothermal Energy:

General Overview of the Energy Mix

> **Jeff Gomes** September 2014

jefferson.gomes@abdn.ac.uk

Outline

- Energy Consumption
- Economics of Geothermal Energy
- Basics of a Power Plant
- Current Commercial Power Plants
- > Future Reactor Designs

(Hellisheiði Geothermal Power Station)

jefferson.gomes@abdn.ac.uk

www.apdp.ac.uk

Overview of the Energy Industries

Major Issues:

- Rising energy demand;
- Need to stabilise atmospheric CO₂ at 550ppm;
- Aging fleet of coal & nuclear plant;
- Concerns about storage of nuclear waste;
- Declining oil & gas reserves 30- 50 years;
- Only 70 years of uranium left;
- Reduce reliance on hydrocarbons.

Policy drivers:

- ➤ Low Carbon Society;
- Security of Supply;
- ➤ Fuel Poverty;

jefferson.gomes@abdn.ac.uk

	Production 2010	Historical Growth	Growth(%)
Oil	86M mbo/day	1M mbo/year	1.2
Coal	3.6B Toe	160M toe/year	4.4
Gas	3150B m ³	60B m³/year	1.9
e: Tonnes oil eq bo: million barr		1 toe = 11.63 MWh = 1 toe = 7.4 barrel of 1 barrel of oil = 159	oil equivalent (bo

				% change
56.0	55.9	54.5	55.5	-0.1
32.5	32.5	31.7	32.9	0.0
16.3	16.2	15.7	15.7	-0.5
7.2	7.1	7.0	7	-0.1
50.3	56.4	68.3	83.9	2.2
8.0	8.5	9.5	10.6	1.5
23.5	28.0	37.0	49.2	3.1
7.4	8.1	8.6	9.5	1.5
4.0	4.1	4.5	4.8	0.8
7.3	7.7	8.8	9.8	1.3
106.2	112.2	122.8	139.5	1.1
	32.5 16.3 7.2 50.3 8.0 23.5 7.4 4.0 7.3	32.5 32.5 16.3 16.2 7.2 7.1 50.3 56.4 8.0 8.5 23.5 28.0 7.4 8.1 4.0 4.1 7.3 7.7	32.5 32.5 31.7 16.3 16.2 15.7 7.2 7.1 7.0 50.3 56.4 68.3 8.0 8.5 9.5 23.5 28.0 37.0 7.4 8.1 8.6 4.0 4.1 4.5 7.3 7.7 8.8	32.5 32.5 31.7 32.9 16.3 16.2 15.7 15.7 7.2 7.1 7.0 7 50.3 56.4 68.3 83.9 8.0 8.5 9.5 10.6 23.5 28.0 37.0 49.2 7.4 8.1 8.6 9.5 4.0 4.1 4.5 4.8 7.3 7.7 8.8 9.8

Rank	Plant	Country	Capacity (MW _{el})	Aver. Annual Elect. Gen. (TWh)	Plant Type
1	3-Gorges Dam	China	22500	98.1	Hydro
2	Itaipu Dam	Brazil/Paraguay	14000	98.2	Hydro
3	Guri Dam	Venezuela	10235	53.41	Hydro
4	Tucurui Dam	Brazil	8370	21.4	Hydro
5	Kashiwaazaki-Kariwa NPP	Japan	8212	24.63	Nuclear
6	Grand Coulee Dam	USA	6809	21	Hydro
7	Longtan Dam	China	6426	18.7	Hydro
8	Bruce NPP	Canada	6272	36.25	Nuclear
9	Uljin NPP	South Korea	6157	44.81	Nuclear
10	Yeonggwang NPP	South Korea	6139	48.16	Nuclear

La	UNIVERSITY OF ABERDEEN			
Rank	Plant	Country	Capacity (MW _{el})	Plant Type
1	3-Gorges Dam	China	22500	Hydro
2	Kashiwaazaki-Kariwa NPP	Japan	8212	Nuclear
3	Taichung Power Plant	Taiwan	5780	Coal
4	Shoaiba Power Plant	Saudi Arabia	5600	Fuel Oil
5	Surgut-2 Power Plant	Russia	5597	Natural Gas
6	Eesti Power Plant	Estonia	1615	Oil Shale
7	Shatura Power Plant	Russia	1500	Peat
8	Alta Wind Energy Center	USA	1020	Wind (onshore)
9	Tilbury B Power Station	UK	750	Biofuel
10	Hellisheioi Power Station	Iceland	303	Geothermal
11	Sihwa Lake Tidal Power Station	South Korea	254	Tidal
12	Agua Calient Solar Project	USA	251	Solar
13	Agucadora Wave Farm	Portugal	2	Marine (wave)
				Wikipedia
jefferso	on.gomes@abdn.ac.uk			www.abdn.ac.uk

Why Geothermal (or why pursue a diverse energy matrix)??

- > To address **CLIMATE CHANGE** we must:
 - ✓ improve efficiency and;
 - ✓ reduce use of fossil fuel-based energy source.
- ➤ GHG emissions should be mitigated by the development of new cost-effective technologies:
 - ✓ Carbon Capture Storage and Transportation (CCST);
 - ✓ Nuclear → Management of nuclear waste storage;
 - ✓ Low-carbon energy sources (i.e., renewables);
 - ✓ Integrated Gasification Combined Cycle (IGCC):
 - Converting carbon-based fuels into syngas (gas-synthesis mainly H₂, CO);
 - Combined steam (e.g., Rankine) and gas (e.g., Brayton) cycles using advanced turbines with high thermal efficiency;
- ➤ Energy security: most countries do not have fossil-fuel resources to sustain their economies.

jefferson.gomes@abdn.ac.uk

How Power Plants Work?

- ➤ The vast majority of power plants are based on elements of the following workflow:
 - 1. Generate heat;
 - 2. Boil water;
 - 3. Produced steam is used to turn a (set of) turbine(s);
 - 4. Turbines are linked with generator to;
 - 5. Produce electricity.

> We saw that:

- Fossil fuels and nuclear: 1-5;
- Hydro and wind: based on momentum transfer + 4-5;
- Geothermal: undergrounded heated water + 2-5;
- Solar: (a) solar radiation + 2-5 or,
 (b) photovoltaic cells + 5.

jefferson.gomes@abdn.ac.uk

www.ahdn.ac.u

How Power Plants Work? (summary)

- Energy Source (coal, oil, NG, nuclear, etc) is 'burnt' generating heat in the;
- 2. Boiler. Heat is transferred into the water-steam cycle (3-4-9-3);
- 3. Steam (at high temperature and pressure) produced by the water vaporisation is driven towards a;
- 4. Steam turbine that promotes an isentropic expansion and produces work:
- 5. The <u>work</u> is transferred to a generator responsible to produce;
- Electricity that is linked to the power grid;
- After the expansion (in the turbine), steam (low temperature and pressure) is driven into the condenser (9), where it is transformed in water and returns to the Boiler (2);

 System 7-8-9 comprises condenser and cooling waste water.

jefferson.gomes@abdn.ac.uk

How Power Plants Work? (summary)

- 1. Energy Source (coal, oil, NG, nuclear, etc) is 'burnt' generating heat in the;
- Boiler. Heat is transferred into the watersteam cycle (3-4-9-3);
- Steam (at high temperature and pressure) produced by the water vaporisation is driven towards a;
- 4. Steam turbine that promotes an isentropic expansion and produces work;
- 5. The <u>work</u> is transferred to a generator responsible to produce;
- **6. Electricity** that is linked to the power grid;
- 7. After the expansion (in the turbine), steam (low temperature and pressure) is driven into the condenser (9), where it is transformed in water and returns to the Boiler (2):

jefferson.gomes@abdn.ac.uk

 System 7-8-9 comprises condenser and cooling waste water.

						Solar	Solar Power			
FUEL PHASE	Coal	Petroleum	Natural Gas	Nuclear	Hydro	Photovoltaic	Tower	Wind	Fusion	Geotherma
Extraction	Mining accident; Lung damage	Drilling-spills (off-shore)	Drilling	Mining accidents; Lung damage	Construction	Mining accidents			He, Li, H ₂ production	_
Refining	Refuse piles	Water pollution		Milling tails						
Fransportation	Collisions	Spills	Pipeline explosions							
Thermal	High efficiency	High efficiency	High efficiency	Low efficiency		High efficiency; Ecosystem change	Ecosystem change			
Air	Particulates, SO ₂ , NOx	SO ₂ , NOx		Radiation releases						
	Water	Water	Water	Water	Destroy prior	Water	Water		Tritium in	Brine in
Water	treatment chemicals	treatment chemicals	treatment chemicals	treatment chemicals	ecosystems	treatment chemicals	treatment chemicals		cooling water	
Aesthetic	Large plant	Large plant	Large plant	Large plant	Large plant	Poor large	Poor large	Large areas; Large towers;	Small area	
Aestrieuc	transmission lines	transmission lines	transmission lines	transmission lines	transmission lines	areas	areas	Noise		
Wastes	Ash; Slag	Ash		Spent fuel; Reprocessing waste storage		Spent cells		Irradiated structural material		
Special Problems	-					Construction accidents		Bird; Human injuries	Occupational radiation doses	
Major Accidents	Mining	Oil spills	Pipeline explosions	Reactor cooling and meltdown	Dam failure	Fire			Tritium release	

➤ The **GS** can be exploited at high temperature with efficiency of 50-70%:

- Cold water is injected into the permeable rock;
- Leading to the fracturing of the hot rocks and heat transferring to water;
- Heated water is diffused and recovered in production well;

•Hot water can be used for: space heating (52%); bathing & balneology (hot spring, medical etc – 30%); agriculture (greenhouse, fish farming, etc – 12%); industry (4%).

Source: Lund et al. (2011) Geothermics 40:159-180.

jefferson.gomes@abdn.ac.uk

www.abun.ac.u

Geothermal Sources: Indirect Use (Power Generation)

- Convert energy stored in hydrothermal fluids to electricity;
- Three main conversion technologies:
 - Dry-steam power plant;
 - Geothermal flash power plant;
 - Binary-cycle power plant
- Choice of technology depends on:
 - Source temperature and reservoir pressure (i.e., depth of the hot fluid reservoir);
 - State of the driving thermal: dry or wet steam, water-steam solution, brine (hot water);
 - Thermo-physical properties of the driving fluid.

jefferson.gomes@abdn.ac.uk

Geothermal Sources: Indirect Use (Power Generation) **Enhanced Geothermal Systems (EGS)** > Used in deep subsurface injection well production wel high temperature with $(150 \le T \le 200^{\circ}C);$ > Fractures are induced by caprock injection of cold water into deep wells (often with low permeability); > Heat is transferred from the rocks to the water that is diffused through the fractures and; Collected in production wells; > The hot fluid is then used as part of the previous power natural heat source technologies. Source: IPCC (2010) and http://energy.gov/eere/geothermal/how-enhanced-geothermal-system-works jefferson.gomes@abdn.ac.uk

Environmental Impact

> Atmospheric Emissions:

- NOx: small amounts mainly due to the combustion of H₂S;
- H₂S (hydrogen sulfide): from volcano gases, petroleum deposits, natural gas and geothermal fluids and need to be captured;
- SO₂: this compound is not directly released by geothermal power plants, but H₂S can react in the atmosphere and form SO₂;
- Particulate matter (PM): this involves liquid droplets and particles from smoke, dust and ashes. Water-cooled geothermal power plants do emit small quantities of PM from cooling towers as steam condensates;
- CO₂: Geothermal power plants emit small quantities. Some geothermal reservoir fluids contain varying amounts of non-condensable gases, including CO₂.

jefferson.gomes@abdn.ac.uk

www.abdn.ac.u

Environmental Impact

Plant Type	NO _x (kg/MWh)	SO ₂ (kg/MWh)	CO ₂ (kg/MWh)	PM
Coal-fired	1.95	4.71	993.82	1.01
Oil-fired	1.81	5.44	758.41	NA
Natural Gas-fired	1.34	0.10	549.75	0.06
Geothermal (flash)	0	0.16	27.21	0
Geothermal (binary & flash/binary)	0	0	0	Traces
Geothermal (geysers dry steam)	Traces	Traces	40.28	Traces

Source: Kagel et al. (2007) A Guide to Geothermal Energy and the Environment, http://www.geo-energy.org

jefferson.gomes@abdn.ac.uk

Environmental Impact

> Solid and Liquid Waste:

- ullet Arsenic is produced from the subsurface geothermal fluids as part of sludge and scales from the H_2S processing;
- Waste is produced from drilling activities, as drilling cuttings (mainly bentonites).
 Mud and cuttings are stored as 'sumps' for disposal.

> Land Use: (Tutorial)

- Properties of small sizes;
- Subsidence;
- Induced seismicity;
- · Land slides.

Water Quality (Tutorial)

- · Chemical for water & wastewater treatment;
- Cool brine.

jefferson.gomes@abdn.ac.uk

Summary

- Multiple energy sources: fossil-fuel, renewables, nuclear, etc;
- Demand and production of energy mix;
- ➤ Thermal and momentum energy sources;
- Current geothermal technologies;
- > Environmental impacts;
- > Drive for the future.

jefferson.gomes@abdn.ac.uk

www.ahdn.ac.i

Additional Reading

- BP Statistical Review of World Energy 2013: http://www.bp.com/content/dam/bp/pdf/statistical-review/statistical-review of world energy 2013.pdf
- Annual Energy Outlook 2014 with Projections to 2014 (DoE/EIA-0383): http://www.eia.gov/forecasts/aeo/pdf/0383(2014).pdf
- Annual Energy review 2011 (DoE/EIA-0384): http://www.eia.gov/totalenergy/data/annual/pdf/aer.pdf
- Energy for a Sustainable Future: Reports and Recommendations (2010), The Secretary-General's Advisory Group on Energy and Climate Change (AGECC):
 - $\underline{\text{http://www.un.org/wcm/webdav/site/climatechange/shared/Documents/AGECC\%20summary\%20re}\\ port\%5B1\%5D.pdf$
- The Future of Geothermal Energy: https://www1.eere.energy.gov/geothermal/pdfs/future_geo_energy.pdf
- R. DiPippo (2012) 'Geothermal Power Plants'; Butterworth Heinemann.
- H.K. Gupta (1980) 'Developments in Economic Geology 12. Geothermal Resources: An Energy Alternative'; Elsevier.
- H.C.H. Armstead (1983) 'Geothermal Energy: Its Past, Present and Future Contribution to the Energy Needs of Man'; E&FN Spon.
- E. Barbier (2002) 'Geothermal Energy Technology and Current Status: An Overview', Renewable & Sustainable Energy Reviews 6:3-65.
- S.J. Zarrouk & H. Moon (2014) 'Efficiency of Geothermal Power Plants: A Worldwide Review', Geothermics 51:142-153.
- L. Rybach (2003) 'Geothermal Energy: Sustainability and the Environment', Geothermics 32:463-470.
- H.N. Pollack, S.J. Hurter, J.R. Johnson (1993) 'Heat Flow from the Earth's Interior: Analysis of the Global Data Set', Reviews of Geophysics 31:267-280.

jefferson.gomes@abdn.ac.uk