Chang Ye

347-320-1201 | c.ye@nyu.edu | https://yooceii.github.io | github.com/yooceii

EDUCATION

New York University

Master of Science in Computer Science. 3.778/4.0

Dalhousie University

Joint Program in Computer Science. 3.44/4.3

Zhejiang University of Technology

Bachelor of Engineering in Software Engineering. 3.3/4.0. Ranking: 24/186

New York, NY
Aug. 2018 - May 2020
Halifax, NS, Canada
Aug. 2017 - April 2018
Hangzhou, ZJ, China
Aug. 2014 - Jun 2017

Research Interest

- Deep Reinforcement Learning for games, robotics and autonomous vehicles with a focus on generalization.
- Deep Reinforcement learning with prediction-based intrinsic rewards.

PUBLICATION (*=EQUAL CONTRIBUTION)

- C. Ye; A. Khalifa; P. Bontrager and J. Togelius. Rotation, Translation, and Cropping for Zero-Shot Generalization. *IEEE Conference on Games (CoG)*, 2020. (39.9% Acceptance Rate) [paper, code, presentation]
- C. Ye*; G. Mittal*; Y. ruksachatkun*; L. Cui*. SeqG(SC)AN: SeqGAN baseline for Grounded SCAN. DS-GA 1016 Final Project. [paper, code, Course Website]
- C. Ye and M. Heywood. Uniform Cost Search in Procedural Content Generation for Angry Bird Games. Honour Thesis. [paper, code]

Research Experience

Research Intern

Jan 2019 - Present

New York University, Game Innovation Lab, Supervisor: Julian Togelius

New York, NY

- Designed and executed the MAP-Elites algorithm to explore the generalization in policy space. Created t-SNE plots to visualize the search space.
- Implemented an RL algorithm that adopts data-augmentation techniques and showed that it improved generalization.
- Utilized an imitation learning algorithm to learn MCTS policies by training an embedding that maintains sequence information. Trained an RL agent that uses the embedding as an extra reward.

Projects

Curiosity-based reinforcement learning

July 2020 - Present

- Reimplemented the **random network distillation** algorithm in PyTorch and achieved state-of-the-art performance. The code is submitted to the Github repository, <u>CleanRL</u> which has around **300** stars on GitHub.
- · Designed a new curiosity reward based on the difference between RND's curiosity reward in 2 consecutive steps.

Policy-Dynamics Value function (PD-VF) extension, collaborated with PD-VF's author

Sep 2020 - Present

- Designed a transformer encoder that takes rewards, states and actions as input, and a feed-forward network decoder that takes states and actions as input and outputs rewards. Trained network by using the ℓ_2 error of predicted rewards and real rewards as the objective function.
- Performed an ablation study by training PPO agents conditioned on learned embeddings.

Representation learning for reinforcement learning

Feb 2020 - March 2020

- Designed an algorithm that learns a suitable representation while performing policy gradient by incorporating **SimCLR** structure into the standard A2C algorithm.
- \bullet Created an asynchronous version that learns representations simultaneously. Added more data augmentation options Human-face recognition and mosaic Jan 2016 May
 - Utilized histogram equalization in OpenCV to solve the low contrast problem that causes the face recognition algorithm unable to recognize the face features. The face recognition rate improved 30% by adopting that technique.
 - Took function from **Dlib** to extract face features and used these features to designed a module that can efficiently locate the multiple facial features on multiple faces and convert them to contours for Gaussian blur purpose.
 - Designed the whole backend pipeline, implemented in C++ under the Qt platform and ran backend unit tests. Built the system that is able to process up to 40 frames per sec with ignorable latency. The system achieved a 95% detection rate in the real-time video under a low-light environment.

Teaching

Course Assistant

New York University

New York, NY

- CS-GY 6943 AI for Game. Instructor: Julian Togelius (2020 Spring)
- ECE-GY 6143 Introduction to Machine Learning. Instructor: Anna choromanska (2019 Fall)

TECHNICAL SKILLS

Languages: Python, Java, C++, C, C#, Shell, SQL, Haskell, Matlab

Software & Tools: Pytorch, Tensorflow, OpenAI Gym, OpenAI Baseline, Numpy, Scipy, Git, LATEX, .Net, Vim, Tmux