Prof. Dr. S. Decker, Prof. Dr. M. Jarke

Dr. B. Heitmann, PD Dr. R. Klamma, C. Samsel

Datenbanken und Informationssysteme (Sommersemester 2017)

Übung 6

Abgabe bis 13. Juni 10:00 Uhr. Zu spät eingereichte Übungen werden nicht berücksichtigt.

Bitte reichen Sie Ihre Lösung in Dreiergruppen ein. Die Lösung zu diesem Übungsblatt wird in den Übungen am 13. und 14. Juni vorgestellt. Bitte beachten Sie auch die aktuellen Ankündigungen im L²P-Lernraum zur Vorlesung. "*" bezeichnet Bonusaufgaben.

Aufgabe 6.1 (Armstrong-Kalkül)

(3* Punkte)

Sei Armstrong Axiom A_7 die Akkumulation: Falls $\alpha \to \beta \gamma$ und $\gamma \to \delta \epsilon$ gilt, so gilt auch $\alpha \to \beta \gamma \delta$.

Zeigen Sie die Korrektheit von A_7 mithilfe der Axiome A_1 bis A_6 .

Hinweis: Für die folgenden Aufgaben können sie A_7 als gegeben annehmen.

Aufgabe 6.2 (Funktionale Abhängigkeiten)

(5 Punkte)

a) Gegeben sei die Relation r:

A	В	\mathbf{C}	D	\mathbf{E}	\mathbf{F}
a_1	b_1	c_8	d_7	e_4	f_9
a_2	b_2	c_1	d_1	e_1	$ f_1 $
a_3	b_5	c_3	d_2	e_1	$ f_2 $
a_4	b_3	c_4	d_2	e_2	$ f_3 $
a_1	b_1	c_8	d_7	e_4	f_9
a_5	b_6	c_2	d_4	e_5	f_7
a_6	b_7	c_5	d_3	e_6	f_4
a_7	b_4	c_6	d_2	e_2	$ f_3 $
a_8	b_8	c_2	d_5	e_7	f_7
a_9	b_9	c_7	d_6	e_8	f_5

Geben Sie für die folgenden funktionalen Abhängigkeiten jeweils an, ob diese für r gelten und begründen Sie Ihre Entscheidung.

- (1) $AE \rightarrow C$
- (2) $DE \rightarrow BF$

- (3) $C \rightarrow DE$
- (4) $ACF \rightarrow BDE$
- b) Über der Attributmenge $\{A, B, C, D, E, I, K, L\}$ sei die folgende Menge funktionaler Abhängigkeiten gegeben:

$$A = \{ A \rightarrow CL, \\ B \rightarrow C, \\ E \rightarrow IK, \\ E \rightarrow BD, \\ K \rightarrow A \}$$

Geben Sie jeweils an, ob sich die folgenden funktionalen Abhängigkeiten aus A ableiten lassen und begründen Sie Ihre Entscheidung.

- (1) $K \rightarrow E$
- (2) $CE \rightarrow B$
- (3) $AEL \rightarrow BCIK$

Aufgabe 6.3 (Funktionale Abhängigkeiten)

(5 Punkte)

Das Relationenschema R besitze die Attribute $\{A, B, C, P, Q, R, X, Y, Z\}$. Ferner gelten folgende funktionalen Abhängigkeiten:

$$A \rightarrow R$$
 (1)

$$ABC \rightarrow Q$$
 (2)

$$PQ \rightarrow CZ$$
 (3)

$$PR \rightarrow Y$$
 (4)

$$X \rightarrow AP$$
 (5)

- a) Berechnen Sie für das Attribut X die Attributhülle und geben Sie Ihre Zwischenschritte mit Begründung an.
- b) Identifizieren Sie alle Schlüsselkandidaten von R und zeigen Sie, dass es sich um Schlüsselkandidaten handelt. Hierzu müssen Sie für eine Attributmenge M zwei Eigenschaften nachweisen:
 - (1) M ist Superschlüssel (d.h. alle Attribute sind funktional abhängig von M) und
 - (2) M ist minimal.

Zeigen Sie auch, dass es keine weiteren Kandidaten gibt.

Betrachten Sie die Relationenschemata $R_x = (X, F_x)$ mit $x \in \{a, b, c, d, e\}$ über der Attributmenge $X = \{A, B, C, D, E, F, G, H\}$ und den jeweiligen funktionalen Abhängigkeiten:

- a) $F_a = \{BDGF \to ACEH, H \to F\}$
- b) $F_b = \{ADH \rightarrow BCEGF\}$
- c) $F_c = \{CDEG \rightarrow F, F \rightarrow H, H \rightarrow A, A \rightarrow B\}$
- d) $F_d = \{E \to AF, G \to B, F \to CDH\}$

Bestimmen Sie für jede Relationen R_x mit $x \in \{a, b, c, d\}$ alle Normalformen in denen sie vorliegt. Begründen Sie Ihre Antworten! Wandeln Sie alle Relationenschemata, die in 1NF oder 2NF vorliegen, in Relationenschemata in 3NF um.

Aufgabe 6.5 (Dekompositionsalgorithmus)

(10 Punkte)

Sei
$$R = (\{A, B, C, D, E, G, H, I\}, F)$$
 mit $F = \{A \rightarrow C, B \rightarrow A, DE \rightarrow I, CI \rightarrow GH, EI \rightarrow AB, DB \rightarrow C\}$

- a) Zeigen Sie anhand eines Gegenbeispiels, dass R nicht in BCNF vorliegt.
- b) Führen Sie mit Hilfe des Dekompositionsalgorithmus eine BCNF Zerlegung von R durch.
- c) Zeigen Sie, dass das Ergebnis in BCNF vorliegt und entscheiden Sie mit Begründung ob das Ergebnis abhängigskeitserhaltend ist.