主要内容

- 2.1 谓词和量词
- 2.2 谓词公式及其赋值
- 2.3 谓词公式的等价与范式
- 2.4 谓词公式的蕴涵
- 2.5 谓词逻辑的推理方法

1. 定义

设A和B是以D为论域的谓词公式,如果在任一解释下, 当公式A取值真时,公式B也取值真,则称A(永真)蕴涵B, 记为A⇒B。

A⇒B当且仅当A→B是永真式。

2. 谓词蕴涵式

(1) 对已有的命题基本蕴涵式,利用永真式代入规则,形成谓词基本蕴涵式。

例如:
$$P \wedge (P \rightarrow Q) \Rightarrow Q$$
 假言推理 $A(x) \wedge (A(x) \rightarrow B(x)) \Rightarrow B(x)$

(2)全称指定规则(Universal Specification) US规则

$$(\forall x)G(x) \Rightarrow G(y)$$
 自由变元

$$(\forall x)G(x) \Rightarrow G(c)$$
 — 任意常量

证明: 在某解释下($\forall x$)G(x)取值1时,则对任何个体 $y \in D$,G(y)在 这个解释下也取值1。根据定义,($\forall x$) $G(x) \Rightarrow G(y)$ 。

同理,因为常量 $c \in D$, G(c) 在这个解释下也取值**1**。因此 $(\forall x)G(x) \Rightarrow G(c)$ 。

(3) 存在指定规则(Existential Specification) ES规则

$$(\exists x)G(x) \Rightarrow G(c)$$

特定常量

(4) 全称推广规则(Universal Generalization) UG规则

$$G(y) \Rightarrow (\forall x)G(x)$$

(5) 存在推广规则(Existential Generalization) EG规则

$$G(c) \Rightarrow (\exists x) G(x)$$

$$G(y) \Rightarrow (\exists x)G(x)$$

- (6) 设P(x)和Q(x)是论域D上的谓词公式,下述蕴涵式成立。 (量词的分配形式)
- $\sqrt{1}$ $(\forall x) P(x) \lor (\forall x) Q(x) \Rightarrow (\forall x) (P(x) \lor Q(x))$
- $\sqrt{2}$ ($\exists x$) ($P(x) \land Q(x)$) \Rightarrow ($\exists x$) $P(x) \land$ ($\exists x$) Q(x)
- $\sqrt{4}$ ($\exists x$) $P(x) \rightarrow (\forall x) Q(x) \Rightarrow (\forall x) (P(x) \rightarrow Q(x))$

举例说明:

① $(\forall x) P(x) \lor (\forall x) Q(x) \Rightarrow (\forall x) (P(x) \lor Q(x))$.

设个体域D: 某班的学生。

P(x): x是高才生;

Q(x): x是运动健将。

则 $(\forall x) P(x) \lor (\forall x) Q(x)$ 表示: "该班的所有学生是高才生或该班的所有学生是运动健将";

(∀x)(P(x) ∨ Q(x))表示: "该班的所有学生是高才生或是运动健将"。

显然,前者可推出后者,但反之则不然。

 $(\exists x) (G(x) \land H(x)) \Rightarrow (\exists x) G(x) \land (\exists x) H(x)$

设个体域D: 某班的学生。

P(x): x是高才生;

Q(x): x是运动健将。

则 $(\exists x)(P(x) \land Q(x))$ 表示: "该班的一些学生既是高才生又是运动健将";

 $(\exists x) P(x) \land (\exists x) Q(x) 表示:$ "该班的一些学生是高才生且该班的一些学生是运动健将"。

显然,前者可推出后者,但反之则不然。

④ (
$$\exists x$$
) $P(x) \rightarrow (\forall x)$ $Q(x) \Rightarrow (\forall x)$ $(P(x) \rightarrow Q(x))$ 证明1:

($\exists x$) $P(x) \rightarrow (\forall x)$ $Q(x)$
 $\Leftrightarrow \sim (\exists x) P(x) \vee (\forall x) Q(x)$
 $\Leftrightarrow (\forall x) \sim P(x) \vee (\forall x) Q(x)$

$$\Rightarrow$$
 $(\forall x)$ $(\sim P(x) \lor Q(x))$

$$\Leftrightarrow (\forall x) (P(x) \rightarrow Q(x))$$

 $(4) (\exists x) P(x) \rightarrow (\forall x) Q(x) \Rightarrow (\forall x) (P(x) \rightarrow Q(x))$

证明2: (按定义证明)

设($\exists x$) $P(x) \rightarrow (\forall x) Q(x)$ 在某个解释下面取值为1, 分二种情况:

1) $(\exists x) P(x)=1$ 必有 $(\forall x) Q(x)=1$,即对 $\forall x \in D$, Q(x)=1。所以对 $\forall x \in D$, 无论P(x)=1 (=0),都有 $P(x) \rightarrow Q(x)$ 的值为1,

即 $(\forall x)$ $(P(x) \rightarrow Q(x))$ 在此解释下面取值为1;

2) $(\exists x) P(x)=0$, 即对 $\forall x \in D$, P(x)=0。 所以对 $\forall x \in D$, 无论Q(x)=1 (或=0), 都有 $P(x) \rightarrow Q(x)$ 的值 为1, 即 $(\forall x)$ ($P(x) \rightarrow Q(x)$)在此解释下面取值为1;

(7) 设P(x,y)是论域D上的谓词公式,则有双量词间的逻辑关系如下:

- $(1) (\forall x) (\forall y) P(x, y) \Rightarrow (\exists y) (\forall x) P(x, y)$
- $(2) (\forall y) (\forall x) P(x, y) \Rightarrow (\exists x) (\forall y) P(x, y)$
- $(\exists y) (\forall x) P(x, y) \Rightarrow (\forall x) (\exists y) P(x, y)$
- $(\exists x) (\forall y) P(x, y) \Rightarrow (\forall y) (\exists x) P(x, y)$
- $(\forall x) (\exists y) P(x, y) \Rightarrow (\exists y) (\exists x) P(x, y)$
- $(7) (\forall x) (\forall y) P(x, y) \Rightarrow (\exists x) (\exists y) P(x, y)$

上述结论的量词关系可用如下图表示:

例14 证明下面蕴涵关系成立

$$(\exists x)[P(x) \to \neg Q(x)] \land (\forall x)P(x) \Rightarrow \neg(\forall x)Q(x)$$

• 证明: $(\exists x)[P(x) \rightarrow \neg Q(x)] \land (\forall x)P(x)$

$$\Leftrightarrow (\exists x)[\neg P(x) \lor \neg Q(x)] \land (\forall x)P(x)$$

 $\Leftrightarrow ((\exists x)[\neg P(x)] \lor (\exists x)[\neg Q(x)]) \land (\forall x)P(x)$ 量词分配律

$$\Leftrightarrow (\neg(\forall x)P(x) \lor \neg(\forall x)Q(x)) \land (\forall x)P(x)$$

量词否定

$$\Leftrightarrow \neg(\forall x)Q(x) \land (\forall x)P(x)$$

 $\Rightarrow \neg (\forall x) Q(x)$

分配律、矛盾律

蕴涵律

简化法则

作业

✓习题二

13 (3) (4)

主要内容

- 2.1 谓词和量词
- 2.2 谓词公式及其赋值
- 2.3 谓词公式的等价与范式
- 2.4 谓词公式的蕴涵
- 2.5 谓词逻辑的推理方法

1. 推理规则

- (1) P规则: 前提引用规则。
- (2) T规则:中间结果引用规则。
- (3) CP规则:如果要推导形如A⇒B→C的公式,则把B作为附加前提,与A一起推导出C。

- (4)量词的四条重要的推理规则:
 - ✓ US (Universal Specification 全称指定规则):

$$(\forall x) G(x) \Rightarrow G(y)$$

(1)

$$(\forall x) G(x) \Rightarrow G(c)$$

(2)

✓ ES(Existential Specification 存在指定规则):

$$(\exists x) G(x) \Rightarrow G(c)$$

(3)

✓ UG (Universal Generalization 全称推广规则):

$$G(y) \Rightarrow (\forall x) G(x)$$

4

✓ EG(Existential Generalization 存在推广规则):

$$G(c) \Rightarrow (\exists x) G(x)$$

(5)

$$G(y) \Rightarrow (\exists x) G(x)$$

(6)

1) US规则的正确使用

$$(\forall x) G(x) \Rightarrow G(y)$$

1

$$(\forall x) G(x) \Rightarrow G(c)$$

2

①,②成立的条件是:

- 1) x是G(x)中自由出现的客体变量。
- 2) 当G(x)中出现量词和变元时,需限制 y 为不在G(x)中约束 出现过的客体变元。
- 3) 在②式中, c为任意的不在G(x)中出现过的客体常量。

例15 设实数集中,语句"不存在最大的实数"可符号化为: $(\forall x)(\exists y)G(x,y),$ 其中: G(x,y): y>x。

下述推导:

(1). $(\forall x) (\exists y) G(x, y)$ P

(2). $(\exists y) G(y, y)$ US, (1)

错误的结论

✓ 正确地推导为:

(1). $(\forall x) (\exists y) G(x, y)$ P

(2). $(\exists y) G(z, y)$ US, (1)

2) ES规则的正确使用

$$(\exists x) G(x) \Rightarrow G(c)$$
 3

- ③成立的条件是:
- 1) x是G(x)中自由出现的个体变量。
- 2) 在G(x)中,变元x的每一次自由出现都用相同的个体常量c 代入。
- 3) c是使G(x)为真的特定的个体常量。
- 4) c为不在G(x)中出现过的个体常量。
- 5) G(x)中除x以外,若还有其它自由出现的个体变量时,则必须用函数符号来取代。

例15(续)在上例中,接着第(2)步进行如下推导:

$$(1). (\forall x) (\exists y) G(x, y)$$

P

$$(2). (\exists y) G(z, y)$$

US, (1)

ES, (2)

(此时f(z)是随自由变元z的变化而变化)

下述推导则是错误的:

(1). $(\forall x) (\exists y) G(x, y)$

P

错误的,因为对任意的 实数z,c>z不一定成立

(2).
$$(\exists y) G(z, y)$$

US, (1)

ES, (2)

3) UG规则的正确使用

$$G(y) \Rightarrow (\forall x) G(x)$$
 4

- ④成立的条件和限制是:
- 1) y是G(y)中自由出现的个体变量。且y取遍整个个体域时,都有G(y)为真。
- 2) 取代y的x不能在G(y)中约束出现。

接上例,如下推导:

$$(1). (\exists y) G(x, y)$$

P

(2).
$$(\forall y) (\exists y) G(y, y) (y > y)$$
 UG, (1)

结论(2)是错误的。

正确的推导为:

$$(1). (\exists y) G(x, y)$$

(2).
$$(\forall x) (\exists y) G(x, y)$$

UG, (1)

设在实数域中, $\diamondsuit G(x): x>0$,则下述推导:

$$(2). (\forall x) G(x)$$

UG, (1)

此时结论(2)是错误的。

4) EG规则的正确使用

该规则有两种形式:

$$G(c) \Rightarrow (\exists x) G(x)$$

(5)

$$G(y) \Rightarrow (\exists x) G(x)$$

6

- ⑤,⑥成立的条件和限制是:
- 1) c是使G(c)为真的特定的个体常量。
- 2) y在G(y)中自由出现,且y取个体域中任何值,G均为真。
- 3) 取代c的x不能在G(c)中出现过。
- 4) 取代y的x不在G(y)中约束出现过。

例如:下述推导

(1) G(x, c)

P

 $(2) \quad (\exists x) G(x, x)$

EG, (1)

结论是错误的(x>x)

例16 G(x, y): xy=0, 其中: x, y为实数。

则句子: "存在一个y, 使得对任何x, 都有xy=0"

可符号化为: (∃y)(∀x)G(x, y)。

下面推导是否正确?

- (1) $(\exists y) (\forall x) G(x, y)$ P
- (2) $(\forall x) G(x, c)$ ES, (1)
- (3) $(\exists x) (\forall x) G(x, x)$ EG, (2)
- $(4) \quad (\forall x) G(x, x)$

因为从(2)到(3) — 的推论是错误的

T, (3), E

- 2. 推理方法
 - (1) 直接证明法
 - (2) CP规则推理法
 - (3) 反证法

例17 证明苏格拉底论证有效。

证明:设MAN(x): x是人; MORTAL(x): x是要死的; s: 苏格拉底。

 $(∀x)[MAN(x) \rightarrow MORTAL(x)] \land MAN(s) \Rightarrow MORTAL(s)$ 采用**直接法**证明其有效性:

- ① $(\forall x)[MAN(x) \rightarrow MORTAL(x)]$
- ② $MAN(s) \rightarrow MORTAL(s)$ US ①
- ④ *MORTAL(s)* T ②③ 假言推理

例18 证明($\forall x$)[P(x) $\lor Q(x)$] \Rightarrow ($\forall x$)P(x) \lor ($\exists x$)Q(x) 。

证明:采用CP规则演绎法

蕴含式变形: $(\forall x)[P(x)\lor Q(x)] \Rightarrow \sim (\forall x)P(x) \rightarrow (\exists x)Q(x)$

- ① $\sim (\forall x) P(x)$
- ② $(\exists x) \sim P(x)$
- $\textcircled{4} (\forall x)[P(x) \lor Q(x)]$
- $\bigcirc P(c) \lor Q(c)$
- $\bigcirc Q(c)$
- \bigcirc $(\exists x)Q(x)$

P (附加前提)

T, 1, E

ES, 2

Р

US, 4

T, 3 5 I

EG, 6

CP, ① ⑦

推导过程中, 既要使用US, 又要使用ES消 去量词,总是 先使用ES规则, 再使用US规则

消去量词。

作业

✓习题二

16(1)(2)

17