smartNIV Sensor-Patch Schnittstellen Spezifikation

Version 2.0
Dokument-Tags smartNIV

Content Spezifikation des Kommunikationprotokolls zwischen der

smartNIV software und dem Sensor-Patch Controller-PCB

ZUSTÄNDIGKEIT	1			
	Name	Funktion		
	msg DAVID GmbH	Implementierung SmartN	IIV Software	
	Eugen Koch Implementierung Controller-PCB		ler-PCB	
ÄNDERUNGEN				
	Author	Änderung	Datum	Version
	Dmitrij Drandarov	Initial	27. Januar 2021	1.0
	Yang Wang	Protocol for new patch	07. March 2022	2.0

SMART NIV INTERFACE SPECIFICATION

SENSOR-PATCH SCHNITTSTELLEN SPEZIFIKATION

Sensor-Patch

CONTENT

1	Ziel de	es Dokuments3							
2		rung3							
3 Schnittstellen Konfiguration									
4		Frame 3							
5		le							
	5.1	Test Übertragung							
		5.1.1 Befehl-Argumente							
		5.1.2 Antwort							
	5.2	LED an-/Ausschalten							
		5.2.1 Befehl-Argumente							
		5.2.2 Antwort							
	5.3	Sensordaten einmalig abfragen							
		5.3.1 Befehl-Argumente							
		5.3.2 Antwort							
	5.4	Sensordaten kontinuierlich abfragen5							
		5.4.1 Befehl-Argumente5							
		5.4.2 Antwort							
	5.5	Sensor-Offset automatisch setzen							
		5.5.1 Befehl-Argumente							
		5.5.2 Antwort							
	5.6	SensorDaten Kontinuierlich abfragen Stoppen5							
		5.6.1 Befehl-Argumente							
		5.6.2 Antwort							
6	Beispi	el6							
	6.1	Anfrage6							
	6.2	Antwort6							
Α	Glossa	ary							

SMART NIV INTERFACE SPECIFICATION

SENSOR-PATCH SCHNITTSTELLEN SPEZIFIKATION

Sensor-Patch

1 ZIEL DES DOKUMENTS

Das Ziel des Dokuments ist es eine einheitliche und klare Spezifikation für die Kontrolle und das Abfragen des Sensor-Patches zu definieren.

2 EINLEITUNG

Die Kommunikation zwischen den beiden Geräten findet über eine serielle Schnittstelle statt. Jede Nachricht wird von einem Frame ummantelt, der einen Header mit dem Start-Byte und der Identifikation des Befehls und einen Footer mit dem End-Byte beinhaltet. Auf Checksummen wurde verzichtet, um die hochfrequente Kommunikation möglichst performant zu halten.

3 SCHNITTSTELLEN KONFIGURATION

Die serielle Schnittstelle nutzt folgende Einstellungen:

Data bits: 8Stop bits: 1Flow control: -Parity: 1

• Baud rate: 230400

4 FRAME

Jede Nachricht ist in einem Frame beinhaltet. Der Header beinhaltet den Start-Byte und die Identifikation des Befehls. Der Footer enthält das End-Byte. Für Daten, die mehrere Bytes spannen benutzen wir **Big Endian**.

Byte #	Name	Länge (Bytes)			
Header					
0	Start-Byte (0x81)	1			
1	Befehl-Byte	1			
Payload					
2n+1	Befehl-Argumente / Antwort	N			
Footer	Footer				
n+2	End-Byte (0x7E)	1			

Datentyp	Bedeutung
Uint8	Einzelne Bytes sollen als unsigned 8-bit Integer interpretiert werden.
Uint16	Zwei zusammenhängende Bytes sollen als Big Endian unsigned 16-bit Integer interpretiert werden.
Uint32	Vier zusammenhängende Bytes sollen als Big Endian unsigned 32-bit Integer interpretiert werden.
ASCII	Einzelne Bytes sollen als ASCII Charaktere interpretiert werden.

SMART NIV INTERFACE SPECIFICATION

SENSOR-PATCH SCHNITTSTELLEN SPEZIFIKATION

Sensor-Patch

5 BEFEHLE

Jeder Befehl besitzt ein Befehl-Byte, das im Header des Frames der Anfrage und der Antwort beinhaltet werden muss. Der Befehl-Inhalt und die Antwort sind folgend in zwei Tabellen aufgeteilt. Zudem wird die Anzahl der Sensoren die Variable "n" benutzt.

5.1 TEST ÜBERTRAGUNG

Es wird eine Testübertragung von der Hardware angefragt. Die Hardware antwortet mit einer ASCII Nachricht.

• Befehl-Byte: 0x01

5.1.1 BEFEHL-ARGUMENTE

-

5.1.2 ANTWORT

Byte #	Byte-Format	Name	Тур	Länge (Bytes)
04	0x54 0x65 0x73 0x74 0x00	Test\0 (ASCII)	ASCII	5

5.2 LED AN-/AUSSCHALTEN

Es wird die LED, die auf dem Controller-PCB angebracht ist, an- oder ausgeschaltet.

• Befehl-Byte: 0x02

5.2.1 BEFEHL-ARGUMENTE

Byte #	Byte-Format	Name	Тур	Länge (Bytes)
0	0x00 / 0x01	LED aus / LED an	uint8	1

5.2.2 ANTWORT

-

5.3 SENSORDATEN EINMALIG ABFRAGEN

Fragt mit den angegebenen Parametern einmalig Sensorwerte ab.

• Befehl-Byte: 0x03

5.3.1 BEFEHL-ARGUMENTE

Byte #	Byte-Format	Name	Тур	Länge (Bytes)
0	0x00 - 0x05	x_min	uint8	1
1	0x00 - 0x05	x_max	uint8	1
2	0x00 - 0x05	y_min	uint8	1
3	0x00 - 0x05	y_max	uint8	1
45	0x0000 – 0xFFFF	delay_switch (Big endian)	uint16	2

SMART NIV INTERFACE SPECIFICATION

smartNIV

Sensor-Patch

SENSOR-PATCH SCHNITTSTELLEN SPEZIFIKATION

67 0x0000 – 0xFFFF	delay_meas (Big endian)	uint16	2
--------------------	-------------------------	--------	---

5.3.2 ANTWORT

Byte #	Byte-Format	Name	Тур	Länge (Bytes)
03	0x0000000 – 0xFFFFFFF	Timestamp (Big endian)	Uint32	4
4(4+n*2)	0x0000 – 0xFFFF	Sensor Werte (Big endian)	uint16	n*2

5.4 SENSORDATEN KONTINUIERLICH ABFRAGEN

Fragt mit den übergebenen Parametern kontinuierlich Sensorwerte ab.

Befehl-Byte: 0x04

5.4.1 BEFEHL-ARGUMENTE

Byte #	Byte-Format	Name	Тур	Länge (Bytes)
0	0x00 - 0x05	x_min	uint8	1
1	0x00 - 0x05	x_max	uint8	1
2	0x00 - 0x05	y_min	uint8	1
3	0x00 - 0x05	y_max	uint8	1
45	0x0000 – 0xFFFF	delay_switch (Big endian)	uint16	2
67	0x0000 – 0xFFFF	delay_meas (Big endian)	uint16	2

5.4.2 ANTWORT

Byte #	Byte-Format	Name	Тур	Länge (Bytes)
03	0x00000000 – 0xFFFFFFF	Timestamp (Big endian)	Uint32	4
4(4+n*2)	0x0000 – 0xFFFF	Sensor Werte (Big endian)	uint16	n*2

5.5 SENSOR-OFFSET AUTOMATISCH SETZEN

Offset-Werte, wie sie zum Zeitpunkt der Messung sind, werden als Rückgabe-Wert zurückgegeben. Gibt den Spannungszustand des Patches zurück. Und gibt auch die Werte, also die Differenz an, die notwendig war, um die Spannung auf 0 zu setzen. D.h. danach sind sie 0. Wenn man also direkt danach nochmal messen würde, wäre das Ergebnis 36 mal 0.

• Befehl-Byte: 0x05

5.5.1 BEFEHL-ARGUMENTE

-

5.5.2 ANTWORT

-

5.6 SENSORDATEN KONTINUIERLICH ABFRAGEN STOPPEN

Stoppt die kontinuierliche Rückgabe von Sensorwerten.

SMART NIV INTERFACE SPECIFICATION

smartNIV

SENSOR-PATCH SCHNITTSTELLEN SPEZIFIKATION

Sensor-Patch

• Befehl-Byte: 0x08

5.6.1 BEFEHL-ARGUMENTE

-

5.6.2 ANTWORT

-

6 BEISPIEL

Im Folgenden wir ein Beispiel für die erwartete Kommunikation beim Ausführen von Befehl "Sensordaten einmalig abfragen" (0x03) gezeigt.

Legende:

• Frame: 0x81 0x01:

Nachrichten-Inhalt: 0x30 0x01

6.1 ANFRAGE

Anfrage (Parameter):

- xmin = 0
- xmax = 3
- ymin = 0
- ymax = 3
- delay_swtich = 300
- delay_meas = 10

Anfrage (Hex):

0x81 0x03 0x00 0x03 0x00 0x03 0x01 0x2c 0x00 0x0A 0x7E

6.2 ANTWORT

Antwort gekürzt (Parameter):

1482 / 2076 / .. / 1446

Anfrage gekürzt (Hex):

• 0x81 0x03 0xCA 0x05 0xC1 0x08 .. 0x6A 0x05 0x7E

Version 1.0 smartNIV Draft

SMART NIV INTERFACE SPECIFICATION

smartNIV

Sensor-Patch

SENSOR-PATCH SCHNITTSTELLEN SPEZIFIKATION

A GLOSSARY

Begriff	Beschreibung
x_min	Die untere Grenze der Range der Sensoren, die auf der x-Achse gemessen werden.
x_max	Die obere Grenze der Range der Sensoren, die auf der x-Achse gemessen werden.
y_min	Die untere Grenze der Range der Sensoren, die auf der y-Achse gemessen werden.
y_max	Die obere Grenze der Range der Sensoren, die auf der y-Achse gemessen werden.
delay_switch	Wartet x Mikrosekunden zwischen den einzelnen Sensormessungen.
delay_meas	Wartet x Millisekunden zwischenzwei Gesamtmessungen (alle Sensoren).