Want more revision exercises? Get MathsFit HSC Mathematics for \$2.95/topic

2016 12 The diagram shows points A(1, 0),

- **a** B(2, 4) and C(6, 1). The point D lies on BC such that $AD \perp BC$.
 - (i) Show that the equation of BC is 3x + 4y 22 = 0.
 - (ii) Find the length of AD.
 - (iii) Hence, or otherwise, find the area of $\triangle ABC$.

Using (2, 4) and $m = -\frac{3}{4}$:

$$y-4=-\frac{3}{4}(x-2)$$

$$4y - 16 = -3x + 6$$

3x + 4y - 22 = 0

State Mean: **1.89**

(ii) Using (1, 0) and
$$3x + 4y - 22 = 0$$
:

$$d = \left| \frac{3(1) + 4(0) - 22}{\sqrt{3^2 + 4^2}} \right|$$
$$= \left| \frac{-19}{5} \right|$$
$$= \frac{19}{5}$$

 \therefore the length of *AD* is $\frac{19}{5}$ units.

State Mean: 1.71

(iii) Length
$$BC = \sqrt{(6-2)^2 + (1-4)^2}$$

= $\sqrt{25}$
= 5
:: Area = $\frac{1}{2} \times 5 \times \frac{19}{5}$

∴ the area is $9\frac{1}{2}$ units².

State Mean: **1.70**

BOSTES: Notes from the Marking Centre

This information is released by BOSTES in late Term 1 2017.

^{*} These solutions have been provided by projectmaths and are not supplied or endorsed by BOSTES.