

# Introduction to the Knight's Tour Problem

The Knight's Tour is a mathematical puzzle involving a knight on a chessboard.

The goal is for the knight to visit every square on the N×N chessboard exactly once without repeating any square.

It is typically posed on an N×N board (e.g., the classic 8x8 chessboard), but it can be solved on boards of any size.





### Overview of the Problem

Objective: The Knight's Tour problem requires the knight to visit every square on an N×N chessboard exactly once.

The Knight's Tour is a classic example of a pathfinding problem and can be solved using backtracking.

Backtracking is particularly useful here as it allows exploring possible paths while discarding those that lead to dead ends.





### **Historical Background**

#### Ancient Origins

The problem dates back to the 9th century in India and Persia, initially as a chess strategy exercise.

#### Medieval Popularity

Spread through Asia and Europe, becoming a common intellectual puzzle among scholars and nobility.

#### Euler's Contributions (18th Century)

Mathematician Leonhard Euler formally studied the Knight's Tour, introducing concepts of "closed tours" and laying the groundwork for graph theory.

#### Modern Significance

Now a classic example in computer science, demonstrating backtracking, recursion, and combinatorial optimization in AI, robotics, and pathfinding.







### **Defining the Knight's Tour Problem**

Understanding the Knight's movement and the specific rules governing the Knight's Tour is essential for solving this intriguing chess problem.



### **Knight's Movement**

#### **Knight's Unique Movement:**

- · The knight moves in an "L" shape:
- Two squares in one direction (vertically or horizontally)
- · and then one square perpendicular, or
- One square in one direction and then two squares perpendicular.

#### **Key Characteristics**

- Jumping Ability: Unlike other chess pieces, the knight can jump over other pieces, moving directly to its destination.
- Eight Possible Moves: From any position, a knight can typically make up to eight moves
- Restricted Mobility: The knight's movement is limited to specific squares, impacting its accessibility across the board.





### **Approaches:**

Brute-Force Approach: Explore all possible knight moves until a valid path is found.

**Backtracking Algorithm:** Recursive method that explores paths and backtracks when a dead-end is reached.

Warnsdorff's Rule (Heuristic Approach): Prioritize moves to squares with fewer onward moves, improving path efficiency.

**Backtracking with Warnsdorff's Rule**: Combines backtracking with Warnsdorff's heuristic to optimize the solution.

**Dynamic Programming (Alternative Method):** Used in variations where overlapping subproblems can be stored and reused.

**Graph Theory Approach**: Framed as a Hamiltonian path problem where each square is a node, and Prezi nove is an edge.



### **Backtracking**

an algorithmic technique for solving problems by incrementally building solutions and abandoning partial solutions when they are found to be invalid.



### Backtracking

- · Backtracking is a problem-solving algorithmic technique used to find solutions to problems by exploring all possible options and undoing choices when they lead to dead ends.
- · It is a refinement of brute-force search that involves building solutions step by step and backtracking when a solution path is found to be invalid.

#### How Backtracking Works:

- · Recursive Nature: Backtracking typically involves a recursive approach where each step tries to build upon the previous step. If the current path does not lead to a solution, the algorithm backtracks to the previous state and tries another path.
- · Pruning Invalid Paths: The main idea is to stop pursuing certain branches of a decision tree when they are found to be unpromising or invalid, thereby saving computational time.

#### **Backtracking in the Knight's Tour**

· In the Knight's Tour problem, backtracking allows us to explore potential moves for the knight and abandon paths that do not lead to a solution (i.e., paths where the knight cannot visit all squares).







### **Algorithm**



#### Check if All Squares are Visited:

· If yes, print the solution.

#### **Recursive Exploration:**

- · If not all squares are visited:
  - · Try Next Move:
    - Add one of the next possible moves to the solution vector.
    - Recursively check if this move leads to a solution (choose one of the 8 possible knight moves).
  - · Backtrack if Invalid:
    - If the current move doesn't lead to a solution, remove it from the solution vector and try another move.
  - · Return False if No Move Works:
    - If no alternative moves are valid, return false (indicating no solution from the current path).

#### **Base Case:**

 If recursion returns false, backtrack and explore previous moves. If no solution exists, display "No solution exists".





Key code snippets demonstrating the core components of the backtracking algorithm for problem-solving.



#### Code:

#### **Checking Valid Moves:**

```
def isValid(x, y, board):
  return 0 <= x < N and 0 <= y < N
and board[x][y] == -1</pre>
```

#### Initialization and Starting the Knight's Tour:

```
def solveKT():
   board = [[-1 for _ in range(N)] for _ in range(N)]
   xMove = [2, 1, -1, -2, -2, -1, 1, 2]
   yMove = [1, 2, 2, 1, -1, -2, -2, -1]
   board[0][0] = 0

if not solveKTUtil(0, 0, 1, board, xMove, yMove):
    print("Solution does not exist")
   else:
    printSolution(board)
Prezi
```

#### **Recursive Backtracking Function:**

```
def solveKTUtil(x, y, movei, board, xMove, yMove):
    if movei == N * N:
        return True
    for i in range(8):
        next_x = x + xMove[i]
        next_y = y + yMove[i]
        if isValid(next_x, next_y, board):
            board[next_x][next_y] = movei
            if solveKTUtil(next_x, next_y, movei + 1, board,
            xMove, yMove):
            return True
            board[next_x][next_y] = -1 # Backtracking
            return False
```

| 0  | 59 | 38 | 33 | 30 | 17 | 8  | 63 |
|----|----|----|----|----|----|----|----|
| 37 | 34 | 31 | 60 | 9  | 62 | 29 | 16 |
| 58 | 1  | 36 | 39 | 32 | 27 | 18 | 7  |
| 35 | 48 | 41 | 26 | 61 | 10 | 15 | 28 |
| 42 | 57 | 2  | 49 | 40 | 23 | 6  | 19 |
| 47 | 50 | 45 | 54 | 25 | 20 | 11 | 14 |
| 56 | 43 | 52 | 3  | 22 | 13 | 24 | 5  |
| 51 | 46 | 55 | 44 | 53 | 4  | 21 | 12 |

The path followed by Knight to cover all the cells



### **Performance and Limitations**



#### Time Complexity:

There are N2 Cells and for each, we have a maximum of 8 possible moves to choose from, so the worst running time is O(8N^2).

Auxiliary Space: O(N2)

**Efficiency**: Works well for smaller problem sizes or problems with many constraints that help prune invalid paths early.





**High Computational Cost**: The exponential time complexity makes backtracking impractical for large chessboards, leading to long processing times.

**Inefficiency in Larger Searches**: With no inherent optimization, backtracking explores many dead-end paths, resulting in redundant calculations.

**Memory Usage**: Recursive calls in backtracking can lead to high memory consumption, especially for larger values of N



### **Applications**

- · Testing and Benchmarking Algorithms
- · AI and Game Development
- · Robotic Path Planning
- · Network Traversal and Graph Theory
- Computer Graphics and Image Processing
- · Puzzle and Maze Design



## Challenges of the Knight's Tour on Larger Chess Boards

#### **Exponential Growth:**

As the size of the chessboard increases (e.g., 16x16, 32x32), the number of possible paths grows exponentially. For an N×N board, there can be up to O(8^N^2) possible moves, making exhaustive search highly impractical.

#### **Backtracking Limitations:**

- Computational Time: The backtracking approach involves exploring all possible moves, which is manageable for smaller boards but becomes excessively time-consuming on larger boards due to the sheer number of recursive calls.
- Memory Usage: Recursive backtracking on larger boards consumes a significant amount of memory.
   Each call adds to the call stack, which can lead to stack overflow on very large boards.

#### Increased Dead-Ends:

Path Complexity: As board size grows, the knight is more likely to encounter paths that do not cover all squares, leading to increased dead-ends and repeated backtracking. This creates inefficient paths and longer search times.



### **Alternative Solutions:**

Heuristics: Techniques like Warnsdorff's Rule can prioritize moves, reducing unnecessary backtracking.

Heuristic Search Algorithms: Algorithms such as genetic algorithms or simulated annealing can offer faster, though not guaranteed, solutions for larger boards.

Approximation Methods: For very large boards, approximate solutions may be more feasible than exhaustive backtracking, especially when perfect coverage isn't essential.





### Conclusion

- The Knight's Tour problem using backtracking showcases an elegant but computationally expensive solution for small to moderate-sized boards (up to 8x8).
- While backtracking explores all possible moves, its exponential time complexity makes it impractical for larger boards.
- Optimizations like Warnsdorff's Rule can improve efficiency, but for very large boards, alternative methods such as heuristic algorithms may be required.
- Despite these challenges, the Knight's Tour remains a valuable problem in AI, robotics, and optimization, highlighting the importance of backtracking and the need for optimization in real-world applications.





