Machine Learning for Sustainable Development Goal 2: Zero Hunger

1. Introduction

Project Objective: To use machine learning to predict crop yields based on weather patterns, soil health, and crop management practices. This aims to support SDG 2 by increasing agricultural productivity and contributing to food security in rural communities.

Motivation: Accurate crop yield predictions can empower farmers to optimize resources, plan better, and increase productivity. With machine learning, we aim to create a predictive tool that guides farmers in managing their crops effectively, ultimately reducing hunger.

2. Data Collection

Data Source: NOAA Weather Data API and historical crop management data (simulated for demonstration).

Dataset Description:

- **Features**: Temperature, humidity, precipitation, wind speed, soil moisture, and other weather indicators.
- **Size**: 772 rows by 23 columns (after data cleaning).
- **Target Variable**: Crop Yield (simulated).

3. Exploratory Data Analysis (EDA)

Summary Statistics: Calculated mean, median, and distribution for each weather feature.

Visualizations:

- **Correlation Heatmap**: To analyze relationships between weather variables.
- **Line Plots**: For observing daily temperature and humidity trends over time.
- **Scatter Plot**: Yield vs. temperature and humidity to visualize yield trends.

Insights: Identified temperature and humidity as key factors influencing yield, with additional impact from precipitation.

4. Data Preprocessing

- **Handling Missing Values**: Dropped columns with more than 70% missing data; used median imputation for other missing values.
- **Feature Engineering**: Created daily averages for temperature, humidity, and other relevant weather metrics.
- **Feature Scaling**: Standardized features to ensure uniform model input.

5. Machine Learning Model Selection

Model Choices:

- **Linear Regression**: For baseline yield prediction.
- **Random Forest Regressor**: To capture non-linear relationships and feature importance.
- **Gradient Boosting**: For high accuracy on yield prediction.

Why Scikit-Learn: Easy implementation, a variety of algorithms, and effective regression metrics.

Evaluation Metrics: **Mean Absolute Error (MAE)** and **Root Mean Squared Error (RMSE)**, chosen to quantify prediction accuracy and penalize large deviations.

6. Model Implementation

Data Splitting: Split dataset into 80% training and 20% testing sets using train_test_split from Scikit-Learn.

Code Example:

from sklearn.ensemble import RandomForestRegressor

from sklearn.model_selection import train_test_split

from sklearn.metrics import mean_absolute_error, mean_squared_error

import numpy as np

Splitting the data

```
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
# Training the model
model = RandomForestRegressor(random_state=42)
model.fit(X_train, y_train)

# Making predictions and evaluating
y_pred = model.predict(X_test)
mae = mean_absolute_error(y_test, y_pred)
rmse = np.sqrt(mean_squared_error(y_test, y_pred))

print("MAE:", mae)
print("RMSE:", rmse)
```

7. Results and Evaluation

Model Performance:

- **Random Forest** achieved an MAE of X units and an RMSE of Y units, indicating good prediction accuracy.
- **Feature Importance**: Temperature and humidity were the most influential features in predicting crop yield.

Visualization: Scatter plot of actual vs. predicted yields to analyze prediction accuracy.

8. Conclusion and Future Work

Key Takeaways: Machine learning models provide a reliable method for predicting crop yields based on weather conditions. This project shows potential for real-world implementation to aid farmers in resource optimization.

Future Improvements:

- Integrate real-time data for continuous predictions.
- Expand model to include soil health metrics for better accuracy.

• Implement the model on a mobile platform for farmer accessibility.

9. References

- NOAA Weather Data API
- Scikit-Learn Documentation