Quelques notions d'optimisation de fonctions

Franck Corset

R2.09 - Méthodes numériques pour la SAÉ 1256

Sommaire

- Rappels sur les fonctions réelles
- Fonctions à deux variables
- Optimisation de fonctions à 2 variables
- Cas particulier : Programmation linéaire
- Exemple pour la SAÉ
- Rendu du projet

Continuité

On suppose que f est une fonction réelle définie sur \mathbb{R} .

Définition : Continuité en un point x₀

On dit que f est continue en x_0 ssi

$$\lim_{x\to x_0} f(x) = f(x_0)$$

Définition : Continuité sur IR

On dit que f est continue sur \mathbb{R} ssi f est continue en tout point.

On note $\mathcal{C}^0({\rm I\!R})$, l'ensemble des fonctions continues sur ${\rm I\!R}.$

Dérivabilité

On suppose que f est une fonction réelle continue sur \mathbb{R} .

Définition : Dérivabilité en un point x_0

On dit que f est dérivable en x_0 ssi

$$\lim_{x\to x_0}\frac{f(x)-f(x_0)}{x-x_0}$$

existe et est finie. On note $f'(x_0)$ cette limite, qui est appelée nombre dérivée de f en x_0 .

Définition : Dérivabilité sur IR

On dit que f est dérivable sur \mathbb{R} ssi f est dérivable en tout point.

On note $\mathcal{C}^1(\mathbb{R})$, l'ensemble des fonctions dérivables sur \mathbb{R} et dont la dérivée est continue. Plus généralement, on note \mathcal{C}^k , l'ensemble des fonctions k fois dérivables et dont ses k dérivées successives sont continues.

Optimisation d'une fonction de classe $\mathcal{C}^1(\mathbb{R})$

Théorème

Soit f une fonction de classe $\mathcal{C}^1(\mathbb{R})$. Si f admet un optimum en x^* alors $f'(x^*)=0$. x^* s'appelle un point critique.

Attention

La réciproque est fausse : Le fait que la dérivée s'annule n'est qu'une condition nécessaire et non suffisante pour que f admette un optimum local !

Exemple

La fonction $f(x) = x^3$ a sa dérivée $f'(x) = 3x^2$ qui s'annule en x = 0 mais n'admet pas d'optimum en x = 0.

Optimisation d'une fonction de classe $\mathcal{C}^2(\mathbb{R})$

Théorème

Soit f une fonction de classe $C^2(\mathbb{R})$. Si $f'(x^*) = 0$ et $f''(x^*) \neq 0$ alors

- Si $f''(x^*) > 0$ alors f admet un minimum local en x^* .
- Si $f''(x^*) < 0$ alors f admet un maximum local en x^* .

Exemple

Soit $f(x) = x^3 - 6x^2 + 9x + 4$. On a

$$f'(x) = 3x^2 - 12x + 9 = 3(x^2 - 4x + 3) = 3(x - 1)(x - 3).$$

1 et 3 sont deux points critiques.

On calcule la dérivée seconde : f''(x) = 6x - 12.

- f''(1) = -6 < 0 et donc f admet un maximum local en x = 1 et f(1) = 8.
- f''(3) = 6 > 0 et donc f admet un minimum local en x = 3 et f(3) = 4.

Optimisation de $f(x) = x^3 - 6x^2 + 9x + 4$

Fonctions à deux variables

On suppose que la fonction $f: \mathbb{R}^2 \mapsto \mathbb{R}$ est une fonction $\mathcal{C}^{\infty}(\mathbb{R}^2)$.

Exemple

Soit
$$f(x, y) = x^2 + y^2$$
.

Courbes de niveau d'une fonction à deux variables

Exemple

Soit $f(x,y) = x^2 + y^2$. La courbe de niveau k est la courbe telle que f(x,y) = k.

Dérivées partielles

On suppose que f est \mathcal{C}^{∞} .

Définition

- On appelle dérivée partielle de f par rapport à x, notée $\frac{\partial f}{\partial x}(x,y)$, la dérivée de la fonction $f_v(x)$, i.e. en considérant cette fonction que comme une fonction de x (y est donc considéré comme une constante).
- On appelle dérivée partielle de f par rapport à y, notée $\frac{\partial f}{\partial y}(x,y)$, la dérivée de la fonction $f_x(y)$, i.e. en considérant cette fonction que comme une fonction de y (x est donc considéré comme une constante).

Exemple

Soit
$$f(x, y) = x^2 + y^2$$
. On a

$$\bullet \ \frac{\partial f}{\partial y}(x,y) = 2y$$

Exemples de dérivées partielles

Exemple 2

Soit
$$f(x,y) = 2x^2y^3 + x^3y^2 + 3xy^2 + y$$
. On a

Exemple 3

Soit
$$f(x,y) = \cos(x+2y) + xe^y$$
. On a

•
$$\frac{\partial f}{\partial y}(x,y) = -2\sin(x+2y) + xe^y$$

Gradient d'une fonction de classe \mathcal{C}^{∞}

Définition

On appelle gradient de f, notée $\nabla f(x,y)$, le vecteur de \mathbb{R}^2 , défini comme suit:

$$\nabla f(x,y) = \left(\frac{\partial f}{\partial x}(x,y), \frac{\partial f}{\partial y}(x,y)\right)$$

Exemple

Soit $f(x,y) = x^2 + y^2$, le gradient de f au point (x,y) est

$$\nabla f(x,y) = (2x,2y)$$

À retenir

- Le vecteur gradient indique en chaque point la direction de plus grande pente.
- Le vecteur gradient est en tout point orthogonal aux lignes de niveau.

Gradient de $f(x, y) = x^2 + y^2$ au point $(1, 1) : \nabla f(1, 1) = (2x, 2y) = (2, 2)$

Condition Nécessaire pour un optimum local

Soit f une fonction de classe C^1 .

Théorème

Si f admet un extremum local en (x^*, y^*) alors le gradient de f en ce point est nul :

$$\nabla f(x^{\star},y^{\star})=0$$

Attention

La réciproque est fausse : comme pour les fonctions à une variable, le fait que le gradient soit nul en un point n'est qu'une condition nécessaire et non suffisante pour que f admette un extremum local en ce point !

Étude de
$$f(x,y) = 2x^2y - xy^2 - 6xy$$
:
 $\nabla f(x,y) = (4xy - y^2 - 6y, 2x^2 - 2xy - 6x)$

Dérivées partielles d'ordre 2

Définition

Soit f une fonction de classe C^2 . On définit les dérivées partielles d'ordre 2 de f comme suit :

$$\frac{\partial^2 f}{\partial x^2} = \frac{\partial}{\partial x} \left(\frac{\partial f}{\partial x} \right)$$
$$\frac{\partial^2 f}{\partial x \partial y} = \frac{\partial}{\partial x} \left(\frac{\partial f}{\partial y} \right)$$
$$\frac{\partial^2 f}{\partial y \partial x} = \frac{\partial}{\partial y} \left(\frac{\partial f}{\partial x} \right)$$
$$\frac{\partial^2 f}{\partial y^2} = \frac{\partial}{\partial y} \left(\frac{\partial f}{\partial y} \right)$$

Théorème

Si f est de classe C^2 alors

$$\frac{\partial^2 f}{\partial x \partial y} = \frac{\partial^2 f}{\partial y \partial x}$$

Matrice hessienne

Définition

Soit f une fonction de classe C^2 . La matrice hessienne au point (x, y) est

$$H(x,y) = \begin{pmatrix} \frac{\partial^2 f}{\partial x^2}(x,y) & \frac{\partial^2 f}{\partial x \partial y}(x,y) \\ \frac{\partial^2 f}{\partial x \partial y}(x,y) & \frac{\partial^2 f}{\partial y^2}(x,y) \end{pmatrix}$$

Remarque

Si f est de classe \mathcal{C}^2 alors la matrice hessienne est une matrice symétrique :

$$H = {}^{t}H$$

Exemple de matrice hessienne

Exemple 2

Soit
$$f(x,y) = 2x^2y^3 + x^3y^2 + 3xy^2 + y$$
. On a

$$\bullet \ \frac{\partial f}{\partial y}(x,y) = 6x^2y^2 + 2x^3y + 6xy + 1$$

La matrice hessienne vaut

$$H(x,y) = \begin{pmatrix} 4y^3 + 6xy^2 & 12xy^2 + 6x^2y + 6y \\ 12xy^2 + 6x^2y + 6y & 12x^2y + 2x^3 + 6x \end{pmatrix}$$

Condition Suffisante pour un optimum local

Théorème

Soit (x^*, y^*) , un point critique (i.e. $\nabla f(x^*, y^*) = 0$). En notant

$$H(x^{\star}, y^{\star}) = \begin{pmatrix} r & s \\ s & t \end{pmatrix}$$

- Si $rt s^2 > 0$ et r < 0 alors la fonction f admet un maximum local en (x^*, y^*) .
- Si $rt s^2 > 0$ et r > 0 alors la fonction f admet un minimum local en (x^*, y^*) .
- Si $rt s^2 < 0$ alors f admet un point selle.
- Si $rt s^2 = 0$ alors on ne peut rien conclure.

Condition Suffisante pour un optimum local

Exemple

Soit $f(x,y) = x^2 + y^2$. Le gradient est $\nabla f(x,y) = (2x,2y)$ et s'annule en (0,0) (un seul point critique). La matrice hessienne vaut :

$$H(x,y) = \begin{pmatrix} 2 & 0 \\ 0 & 2 \end{pmatrix}$$

On a $rt - s^2 = 4 > 0$ et r = 2 > 0 et donc f admet un minimum local en (0,0).

Étude de
$$f(x, y) = 2x^2y - xy^2 - 6xy$$
:
 $\nabla f(x, y) = (4xy - y^2 - 6y, 2x^2 - 2xy - 6x)$

La matrice hessienne est

$$H(x,y) = \begin{pmatrix} 4y & 4x - 2y - 6 \\ 4x - 2y - 6 & -2x \end{pmatrix}$$

et donc en (0,0), on a

$$H(0,0) = \begin{pmatrix} 0 & -6 \\ -6 & 0 \end{pmatrix}$$

On a $rt - s^2 = -36 < 0$ et donc (0,0) est un point selle.

Optimisation sous contrainte

- En théorie, on utilise le lagrangien...
- En pratique, on peut utiliser la fonction optim du logiciel R.

Cas particulier : Fonction linéaire sous contraintes linéaires

Un producteur produit 2 types de yaourts à la fraise A et B à partir de fraise, de lait et de sucre. Chaque yaourt doit respecter les proportions suivantes de matières premières :

	Α	В
Fraise	2	1
Lait	1	2
Sucre	0	1

On dispose de 800 Kg de Fraises, 700 Kg de Lait et 300 Kg de sucre. La vente de 1 Kg de yaourts A et B rapporte respectivement $4 \le$ et $5 \le$. L'objectif est d'optimiser le profit.

Programmation linéaire : Modélisation

- On note x_A et x_B les quantités de yaourts.
- On veut maximiser la fonction objective $4x_A + 5x_B$.
- Les contraintes sont
 - $2x_A + x_B \le 800$
 - $x_A + 2x_B \le 700$
 - $x_B \le 300$
 - $x_A \ge 0$ et $x_B \ge 0$

Programmation linéaire : Résolution

- Résolution graphique : On représente le domaine des contraintes dans \mathbb{R}^2 puis on représente la fonction objective en la déplacant pour la maximiser.
- Algorithme du simplex (vu en BUT3) : Ajout de variables d'écarts

Programmation linéaire : Résolution graphique

Pour votre SAÉ

- Partie modélisation : Définir la fonction à optimiser ainsi que les variables (au moins 2)
- Partie modélisation : Définir les contraintes sur les variables
- Partie Résolution : résolution de votre problème (partie mathématiques + implémentation informatique)
- Utiliser des libraries R selon votre problème par exemple : ompr, boot, ...

Rendu du projet

- Rendre deux fichiers (un pdf à partir de Rmarkdown + le .Rmd) sous le format SAE1256_numeroGroupe.pdf
- Mettre les noms des étudiants du groupe dans le rapport.
- Il faudra présenter votre problème ainsi que la modélisation de celui-ci.
- Un peu de maths dans votre rapport et donc un peu de LaTeX.
- Utiliser le logiciel R pour résoudre votre problème.
- Interpréter les résultats, critiquer votre méthode, donner des perspectives à votre travail.
- A déposer sur chamilo (SAE1256), travaux (Méthodes numériques) et à rendre avant le vendredi 31 mai 2024.