

Feature Discovery in Small-Sized Experiments in Early Drug Development

Steven Wallaert - Promotor: Prof. Dr. Ir. Olivier Thas

Context

- Pre-clinical pharmacological research
- Biomarker discovery
- (Multi-) Omics

Problem

- · Increasing popularity machine learning
- High hopes for better, more, easier discoveries

However

- High dimensionality: up to 10.000 and more features
- Extremely small sample sizes (10 to 50)

And

 Little is known about the performance of methods in these extreme situations

Therefore

Need for a neutral comparison study

Research questions

- How do 'traditional' hypothesis tests compare to 'modern' statistical methods in these situations?
- Which methods are better suited for different scenarios?
- What are limitations and weaknesses of the different methods?

Proposal of guidelines: "How (not) to"

Included methods

- · Welch's t-test with FDR control
- Welch's t-test with empirical Bayes based selection bias correction using Tweedie's formula
- Logistic regression with L1 regularization
- Random forests based RFE
- Support vector machine based RFE

Simulation study

- Variety of scenarios
 - Data generating mechanism
 - Sample size
 - Number of features
 - Number of predictive features
 - Degree of discriminativeness
- Estimands
 - Number of true/false detections
 - Chance of true/false detection
 - Discriminative ability:
 - AUC
 - (Bias)
 - (Variance)

Challenges

- · Selection of methods
- Computational demands
- · Integration of results and visualization

Example analysis