Índice.

1.	Lenguaje DML		2
		Clasificación de los Lenguajes de Manipulación de Datos	
2.	Herramientas gráficas de edición de datos		4

1. Lenguaje DML.

El **Lenguaje de Manipulación de Datos** (DML) es el lenguaje de los sistemas gestores de bases de datos que permite las tareas de consulta y manipulación de los datos guardados en las bases de datos del sistema gestor de bases de datos.

Las sentencias del Lenguaje de Manipulación de Datos (DML) son las siguientes:

- SELECT → extrae información de la Base de Datos, bien sea de una o de varias tablas.
- INSERT → agregar uno (o varios) registro(s) en alguna tabla de la Base de Datos.
- DELETE → elimina uno (o varios) registro(s) de alguna tabla de la Base de Datos.
- UPDATE → modifica uno (o varios) registro(s) de alguna tabla de la Base de Datos.

Cualquier ejecución de un comando de un SGBD se denomina **CONSULTA**, término que deriva del anglosajón QUERY, que puede ser entendido como 'consulta de información', como una orden; es decir, las QUERY o CONSULTAS no sólo incluyen SELECT, sino también cualquier sentencia del tipo UPDATE, INSERT, DELETE, CREATE, DROP,..., entendidas todas ellas como peticiones al SGBD para realizar una operación determinada.

1.1. Clasificación de los Lenguajes de Manipulación de Datos.

Los **Lenguajes de Manipulación de Datos** (DML) se pueden clasificar en dos grandes grupos:

- Lenguajes de Consulta Procedimentales → el usuario proporciona las instrucciones necesarias para realizar las operaciones (o procedimientos) en la Base de Datos para obtener (o calcular) el resultado fina → Álgebra Relacional.
- Lenguajes de Consulta No Procedimentales o declarativo → el usuario sólo describe la información que desea obtener, sin necesidad de especificar los pasos a realizar (procedimiento) para obtener el resultado final → Cálculo Relacional

```
Profesores(<u>cod-p</u>, nomb, categoria, facultad)
Asignaturas(<u>cod-a</u>, nombre, creditos)
Matricula(<u>cod-e</u>, <u>cod-a</u>, grupo, calificación)
Programación (<u>cod-a</u>, <u>cod-p</u>, <u>cod-s</u>, <u>grupo</u>, horario, aula)
Estudiante(cod-e, nombre, sexo, programa, promedio)
```

□ Encontrar estudiantes con promedio mayor 4

```
\sigma_{\text{promedio}>4} (Estudiante) {e | e \in Estudiante \land e.promedio > 4}
```

□ Encontrar nombres de profesores de Ingeniería que sean titulares o asociados

```
\pi nombre (\sigma_{\text{facultad='ingenier}(a" and categor}(a IN ("titular", "asociado")}(Profesor))
```

{p | p∈ Profesor ∧ p.facultad="ingenieria" ∧ p.categoría = ("titular" ∨ "asociado")}

2. Herramientas gráficas de edición de datos.

Hay un gran número de herramientas gráficas que sirven para la edición de datos, que se pueden clasificar, por ejemplo, en las siguientes:

- Incorporadas en el software de gestión de la Base de Datos → ej. entorno gráfico de Access.
- Paquetes que se añaden al sistema gestor de la Base de Datos → phpMyAdmin de MySQL.
- Software de terceros → programas por los que hay que pagar por una licencia → Azure.
- Aplicaciones portables → software que no requiere instalar nada en el equipo y que todo lo que necesita para su ejecución lo tiene disponible en la propia aplicación.
- Aplicaciones en la web → software instalado en un servidor Web que ofrece una serie de servicios por la Web.

