IP infrastruktura

Realizace komunikace v LAN

Směrovací tabulka – IP stack

Při zpracování požadavku na komunikaci síťovou částí OS (L3) je potřeba rozhodnout o **jaký typ směrování** se jedná. **K dispozici je** z transportní vrstvy (L4) mimo jiné **IP adresa cíle** (dále IPd – destination). Síťová část OS (síťový IP stack) má k dispozici **informace ve směrovací tabulce.** Směrovací tabulka se vyvolá příkazem v prostředí **WIN** "route print" nebo v prostředích LNX i WIN příkazem " netstat –r".

Přímé směrování

Při výběru cesty se vždy postupuje od "konkrétního k obecnému". Jestliže je cíl v LAN, jedná se o přímé směrování. Vyplývá to z přiřazení IP adresy cíle k adrese místní sítě, jejíž je součástí. Potom stačí vytvořit rámec, který obsahuje fyzické adresy cíle a zdroje v místní síti a IP paket je takto přenesen přímo k cíli.

Nepřímé směrování

Jestliže je cíl v jiné síti, směruje se IP paket na výchozí bránu (output gateway – obvykle port směrovače/routeru). IP adresa brány je nastavena v rámci nastavení síťové části OS - IPstacku (L3 – viz. níže).

Ve směrovací tabulce se použije záznam s nespecifikovanou adresou (0.0.0.0) s významem " pro všechny ostatní sítě". Rámec v místní síti potom obsahuje jako cílovou fyzickou adresu port směrovače a tento nese IP paket. Následně jsou dále vytvářeny rámce s odpovídajícími fyzickými adresami dalších portů směrovačů v cestě. Různé rámce nesou stejný a neměnný IP paket. V cílové síti je vytvořen finální rámec s cílovou fyzickou adresou cílového KZ a zdrojovou posledního portu směrovače v cestě. Takto je doručen IP paket pomocí více rámců ke svému cíli nepřímo.

Nastavení síťové části OS, DHCP

Povinné položky jsou –

IP - adresa zařízení

NM - síťová maska

IP adresa výchozí brány – output gateway

IP adresa serveru DHCP(Dynamic Host Configuration Protocol)

IP adresa severu DNS (Domain Name Systém)

Nastavení vyvoláme řádkovými příkazy WIN: "ipconfig –all" LNX:"ifconfig".

```
C:\Users\Uživatel>ipconfig -all
Konfigurace protokolu IP systému Windows
  Název hostitele .
                       . . . . . . : comfor
  neznámý
                                       Ne
  WINS Proxy povoleno .
                                       Ne
  Prohledávací seznam přípon DNS.
Adaptér sítě Ethernet Připojení k místní síti:
  Přípona DNS podle připojení . . .
                                       Atheros AR8131 PCI-E Gigabit Ethernet Con
troller (NDIS 6.20)
Fyzická Adresa. .
                                       6C-F0-49-A8-66-58
  Ano
                                       Ano
                                          . . : fe80::29e7:9453:9b0c:b5ce%10(Pre
  Místní IPv6 adresa v rámci propojení
ferované)
                                      10.0.0.139(Preferované)
255.255.255.0
24. března 2013 12:04:55
25. března 2013 12:04:55
fe80::1%10
10.0.0.138
  Adresa IPv4
  Výchozí brána . . . . .
                                       10.0.0.138
242020425
  Server DHCP
   IAID DHCPv6
  DUID klienta DHCPv6. . . .
                                       00-01-00-01-13-FE-F1-FA-6C-F0-49-A8-66-58
                                    : 10.0.0.138
  Servery DNS .
  Rozhraní NetBios nad protokolem TCP/IP. . . . . . : Povoleno
```

Nastavení je možno provést manuálně (staticky). To se dnes používá pouze výjimečně. Většinou se používá dynamické nastavení pomocí DHCP nebo BootP (Bootstrap Protocol).

"Služební" protokol ARP

Na linkové vrstvě (L2) je potřeba vytvořit rámec. **Z vyšších vrstev jsou k dispozici pouze IP** adresy. IP logické adresy nemají v IPv4 žádnou vazbu na fyzické adresy. Proto je potřeba k IP adrese cíle v místní síti, najít odpovídající fyzickou adresu. Přiřazení zajišťuje protokol ARP (Adress Resolution Protocol) pomocí požadavku (request) a jeho vyřízení (reply).

ARP požadavek je šířen jako broadcast linkové vrstvy určený všem KZ v síti (předem není jasné, kde je hledané KZ). **Je to nejfrekventovanější protokol pracující na linkové vrstvě. Obsahuje položky s vyplněnou IP adresou cíle i zdroje a nevyplněnou odpovídající fyzickou adresou cíle a vyplněnou fyzickou adresou zdroje.** Broadcast musí analyzovat všechna KZ. To, které "najde" svoji IP adresu, vyplní fyzickou a odešle unicast rámec (všechny údaje má k dispozici v ARP požadavku) přímo dotazujícímu se formou ARP Reply.

Vazba mezi fyzickou a IP adresou se uloží do vyrovnávací paměti "arp cache", aby nebylo potřeba při přenosu dat se neustále dotazovat pomocí ARP (to by se toho moc nepřeneslo). **Záznam je dynamický a po cca 60 sekundách je při neaktivitě smazán**. Statické záznamy odpovídají pevným přiřazením.

Výpis arp cache získáte příkazem ve WIN i LNX: " arp –a".

```
C:\Users\Uživatel>arp -a
Rozhraní: 10.0.0.139
                                           fyzická adresa
00-15-99-30-f5
    nternetová adresa
                                                                                    dynamická
                                                                                    dynamická
                                           01-00-5e-00-00
                                                                                    statická
                        250
253
255
                                           01-00-5e-7f-ff-
Rozhraní: 192.168.83.1 -
   211 am. 192.100.03
internetová adresa
192.168.83.255
224.0.0.22
224.0.0.252
239.255.255.250
239.255.255.253
                                          fyzická adresa
ff-ff-ff-ff-ff
01-00-5e-00-00-16
                                           01-00-5e-00-00-fc
01-00-5e-7f-ff-fa
Rozhraní: 192.168.65.1 -
                                                0x13
                                           fyzická
    nternetová adresa
92.168.65.255
                                           ff-ff-ff-ff-ff-
01-00-5e-00-00-
01-00-5e-00-00-
                                                                                    statická
    224.0.0.22
224.0.0.252
239.255.255.
239.255.255.
                                                                                    statická
```

Existuje i reverzní (opačný) protokol RARP (Reverze ARP) pro získání IP adresy ke známé fyzické adrese. Není to běžný nástroj a používá se za součinnosti směrovačů.

Pozn.: Získání záznamu pomocí protokolu ARP je na L2 vrstvě. Nejde "zablokovat" a při zapnutém aktivním zařízení proběhne předání fyzické adresy vždy.