МатАн. Подготовка к экзамену

Студент группы 2305 Александр Макурин 11 января 2022

11 Предел и непрерывность сложной функции.

Функция f(x) является непрерывной в точке x_0 , если соблюдается любое из:

- 1. $\lim_{x \to x_0} f(x) = f(x_0)$
- 2. $\forall \varepsilon > 0 \Rightarrow \exists \delta > 0 : \forall x \in U_{\delta}(x_0), f(x) \in U_{\varepsilon}(f(x_0))$
- 3. $\{x_n\}$: $\lim_{n \to \infty} x_n = x_0 \implies \lim_{n \to \infty} \{f(x_n)\} = f(x_0)$

Предел сложной функции f(x) в точке x_0 , при $x_0 = \varphi(t_0)$, если функция $f(x_0)$ непрерывна в точке x_0 :

$$\lim_{t \to t_0} f(\varphi(t)) = f(\lim_{t \to t_0} \varphi(t))$$

12 Односторонняя непрерывность и точки разрыва.

Функция f(x) является непрерывной в точке x_0 слева, если $\lim_{x \to x_0 - 0} f(x) = f(x_0)$.

Функция f(x) является непрерывной в точке x_0 справа, если $\lim_{x \to x_0 + 0} f(x) = f(x_0)$.

Точка x_0 называется точкой разрыва первого рода, если соблюдается любое из:

1.
$$\nexists f(x)$$
, $\lim_{x \to x_0 \pm 0} f(x) \neq \infty$

$$2. \lim_{x \to x_0 - 0} f(x) = a \neq \infty$$

$$\lim_{x \to x_0 + 0} f(x) = b \neq \infty$$

 $a \neq b$

Точка x_0 называется точкой разрыва второго рода, если любой из односторонних пределов функции равен ∞ или \nexists .

13 Свойства функций непрерывных на отрезке. Теорема

Вейерштрасса. Теорема Коши о промежуточном значении

Функция f(x) является непрерывной на [a,b] если она непрерывна в $\forall x_0 \in [a,b]$.

Пусть f(x) и g(x) непрерывны на [a,b]. Тогда:

- 1. $f(x) \pm g(x)$ непрерывна
- 2. $f(x) \cdot g(x)$ непрерывна
- 3. $\frac{f(x)}{g(x)}$ непрерывна, если $\forall x \in [a,b] \ g(x) \neq 0$

Док-во (3):

Пусть f(x) и g(x) - непрерывны в $x_0,x_0\in[a,b]\Rightarrow\lim_{x\to x_0}f(x)=f(x_0),\lim_{x\to x_0}g(x)=g(x_0).$ Тогда:

$$\lim_{x\to x_0}\frac{f(x)}{g(x)}=\frac{\lim_{x\to x_0}f(x)}{\lim_{x\to x_0}g(x)}=\frac{f(x_0)}{g(x_0)}\Rightarrow \frac{f(x)}{g(x)} \text{ непрерывна, ч.т.д.}$$

Теорема Вейерштрасса. Если f(x) непрерывна и ограничена на отрезке [a,b], то она достигает на нём $\sup_{[a,b]} f(x)$ и $\inf_{[a,b]} f(x)$.

Теорема Коши. Если f(x) непрерывна на отрезке $[a,b],\ f(a)=A,\ f(b)=B,\ C\in [A,B]$ или $C\in [B,A],$ то $f(\xi)=C,\ \xi\in [a,b].$

- 14 Обратные функции. Свойства непрерывности для обратных функций.
- 15 Элементарные функции и их основные свойства.
- 16 Замечательные пределы.
- 17 Производная функции и ее свойства.
- 18 Дифференциал функции и его свойства.
- 19 Производная сложной функции.
- 20 Производная обратной функции.
- 21 Производные и дифференциалы высших порядков.
- 22 Теоремы о среднем.
- 23 Формула Тейлора с остатком в форме Пеано.

Пусть $\exists f$, f определена на $U(x_0), \exists f^{(n)}(x_0).$ $f^{(0)}(x) = f(x).$

$$f(x) = \sum_{k=0}^{n} \frac{f^{(k)}(x_0)}{k!} (x - x_0)^k + r_n(f, x)$$

$$P_n(x) = \sum_{k=0}^n rac{f^{(k)}(x_0)}{k!} (x-x_0)^k$$
 - многочлен Тейлора.

$$\overline{o}((x-x_0)^n)$$
 - остаток в форме Пеано. $\overline{o}(f(x)), x \to x_0 \Longleftrightarrow \lim_{x \to x_0} \frac{\overline{o}(f(x))}{f(x)} = 0$

Формула Тейлора с остатком в форме Пеано:

$$f(x) = \sum_{k=0}^{n} \frac{f^{(k)}(x_0)}{k!} (x - x_0)^k + \overline{o}((x - x_0)^n), x \to x_0$$

Док-во:

$$\overline{o}((x-x_0)^n) = f(x) - \sum_{k=0}^n \frac{f^{(k)}(x_0)}{k!} (x-x_0)^k \Rightarrow \lim_{x \to x_0} \left(\frac{f(x) - \sum_{k=0}^n \frac{f^{(k)}(x_0)}{k!} (x-x_0)^k}{(x-x_0)^n} \right) = 0 - \text{док-ть}$$

По правилу Лопиталя:

$$\lim_{x \to x_0} \left(\frac{f^{(n-1)}(x) - f^{(n-1)}(x_0) - f^{(n)}(x_0)(x - x_0)}{n!(x - x_0)} \right) =$$

Пусть $\Delta x = x - x_0$. Тогда:

$$=\frac{1}{n!}\lim_{\Delta x\to 0}\left(\frac{f^{(n-1)}(x_0+\Delta x)-f^{(n-1)}(x_0)}{\Delta x}-f^{(n)}(x_0)\right)=\frac{1}{n!}\left(f^{(n)}(x_0)-f^{(n)}(x_0)\right)=0, \text{ ч.т.д.}$$

- 24 Формула Тейлора с остатком в форме Лагранжа.
- 25 Правило Лопиталя.
- 26 Монотонность и экстремумы функции.
- 27 Выпуклость и точки перегиба.
- 28 Асимптоты.
- 29 Построение графиков функций с полным исследованием.