Job No.: Apiti Shed - 1 Address: 101 Table Flat Rd, Apiti, New Zealand Date: 11/22/2023 Latitude: -39.948308 Longitude: 175.912963 Elevation: 558 m

General Input

Roof Live Load	0.25 KPa	Roof Dead Load	0.25 KPa	Roof Live Point Load	1.1 Kn
Snow Zone	N1	Ground Snow Load	0.74 KPa	Roof Snow Load	0.5 KPa
Earthquake Zone	3	Subsoil Category	D	Exposure Zone	В
Importance Level	1	Ultimate wind & Earthquake ARI	100 Years	Max Height	6.2 m
Wind Region	NZ2	Terrain Category	2.0	Design Wind Speed	45.14 m/s
Wind Pressure	1.22 KPa	Lee Zone	NO	Ultimate Snow ARI	50 Years
Wind Category	Very High	Earthquake ARI	100		

Note: Wind lateral loads are governing over Earthquake loads, So only wind loads are considered in calculations

Pressure Coefficients and Pressues

Shed Type = Gable Enclosed

For roof Cp, i = -0.3

For roof CP,e from 0 m To 6.20 m Cpe = -0.9 pe = -0.99 KPa pnet = -0.99 KPa

For roof CP,e from 6.20 m To 12.40 m Cpe = -0.5 pe = -0.55 KPa pnet = -0.55 KPa

For wall Windward Cp, i = -0.3 side Wall Cp, i = -0.3

For wall Windward and Leeward $\,$ CP,e $\,$ from 0 m $\,$ To 28.8 m $\,$ Cpe = 0.7 $\,$ pe = 0.77 KPa $\,$ pnet = 1.14 KPa

For side wall CP,e from 0 m To 6.20 m Cpe = pe = -0.72 KPa pnet = -0.72 KPa

Maximum Upward pressure used in roof member Design = 0.99 KPa

Maximum Downward pressure used in roof member Design = 0.59 KPa

Maximum Wall pressure used in Design = 1.14 KPa

Maximum Racking pressure used in Design = 1.1 KPa

Design Summary

Rafter Design Internal

Internal Rafter Load Width = 4800 mm Internal Rafter Span = 14850 mm Try Rafter 2x610x45 LVL11

Moisture Condition = Dry (Moisture in timber is less than 16% and timber does not remain in continuous wet

First Page

condition after installation)

K1 Short term = 1 K1 Medium term = 0.8 K1 Long term = 0.6 K4 = 1 K5 = 1 K8 Downward = 1.00

K8 Upward =1.00 S1 Downward =11.05 S1 Upward =11.05

Shear Capacity of timber = 5 MPa Bending Capacity of timber = 38 MPa NZS3603 Amt 4, table 2.3

Capacity Checks

M _{1.35D}	44.66 Kn-m	Capacity	90.18 Kn-m	Passing Percentage	201.93 %
M1.2D+1.5L 1.2D+Sn 1.2D+WnDn	117.76 Kn-m	Capacity	120.24 Kn-m	Passing Percentage	102.11 %
$M_{0.9D\text{-W}nUp}$	-101.22 Kn-m	Capacity	-150.28 Kn-m	Passing Percentage	148.47 %
V _{1.35D}	12.03 Kn	Capacity	88.28 Kn	Passing Percentage	733.83 %
V _{1.2D+1.5L} 1.2D+Sn 1.2D+WnDn	31.72 Kn	Capacity	117.7 Kn	Passing Percentage	371.06 %
$ m V_{0.9D ext{-}WnUp}$	-27.26 Kn	Capacity	-147.14 Kn	Passing Percentage	539.77 %

Deflections

Modulus of Elasticity = 9900 MPa NZS3603 Amt 4, Table 2.3

k2 for Long Term Loads = 2

Deflection under Dead and Live Load = 50.69 mm Limit by Woolcock et al, 1999 Span/240 = 62.50 mm Deflection under Dead and Service Wind = 74.625 mm Limit by Woolcock et al, 1999 Span/100 = 150.00 mm

Reactions

Maximum downward = 31.72 kn Maximum upward = -27.26 kn

Rafter to Pole Connection check

Bolt Size = M16 Number of Bolts = 3

Calculations as per NZS 3603:1993 Amend 2005 clause 4.4

Joint Group for Rafters =J2 Joint Group for Pole = J5

Minimum Bolt edge, end and spacing for Load perpendicular to grains = 76.25 mm

Factor of Safety = 0.7

For Perpendicular to grain loading

K11 = 12.6 fpj = 22.7 Mpa for Rafter with effective thickness = 90 mm

For Parallel to grain loading

K11 = 2.0 fcj = 36.1 Mpa for Pole with effective thickness = 100 mm

Second page

Capacity under short term loads = 68.64 Kn > -27.26 Kn

Intermediate Design Sides

Intermediate Spacing = 2500 mm Intermediate Span = 5651 mm Try Intermediate 2x300x50 SG8 Dry

Moisture Condition = Dry (Moisture in timber is less than 16% and timber does not remain in continuous wet condition after installation)

K1 Short term = 1 K4 = 1 K5 = 1 K8 Downward = 0.94

K8 Upward = 1.00 S1 Downward = 13.93 S1 Upward = 1.10

Shear Capacity of timber = 3 MPa Bending Capacity of timber = 14 MPa NZS3603 Amt 4, table 2.3

Capacity Checks

$M_{Wind+Snow}$	5.69 Kn-m	Capacity	16.8 Kn-m	Passing Percentage	295.25 %
$ m V_{0.9D-WnUp}$	4.03 Kn-m	Capacity	48.24 Kn-m	Passing Percentage	1197.02 %

Deflections

Modulus of Elasticity = 5400 MPa NZS3603 Amt 4, Table 2.3

Deflection under Snow and Service Wind = 51.38 mm Limit by Woolcock et al, 1999 Span/100 = 56.51 mm

Reactions

Maximum = 4.03 kn

Girt Design Front and Back

Girt's Spacing = 600 mm Girt's Span = 4800 mm Try Girt 190x45 SG8

Moisture Condition = Dry (Moisture in timber is less than 16% and timber does not remain in continuous wet condition after installation)

K1 Short term = 1 K4 = 1 K5 = 1 K8 Downward = 0.98

K8 Upward =0.36 S1 Downward =12.23 S1 Upward =28.24

Shear Capacity of timber = 3 MPa Bending Capacity of timber = 14 MPa NZS3603 Amt 4, table 2.3

Capacity Checks

$M_{Wind+Snow}$	1.97 Kn-m	Capacity	1.11 Kn-m	Passing Percentage	56.35 %
$ m V_{0.9D ext{-}WnUp}$	1.64 Kn-m	Capacity	13.75 Kn-m	Passing Percentage	838.41 %

Deflections

Modulus of Elasticity = 6700 MPa NZS3603 Amt 4, Table 2.3

Deflection under Snow and Service Wind = 39.47 mm Limit by Woolcock et al, 1999 Span/100 = 48.00 mmSag during installation = 39.74 mm

Reactions

Maximum = 1.64 kn

Girt Design Sides

Girt's Spacing = 1300 mm

Girt's Span = 2500 mm

Try Girt 190x45 SG8

Moisture Condition = Dry (Moisture in timber is less than 16% and timber does not remain in continuous wet condition after installation)

K1 Short term = 1 K4 = 1K5 = 1K8 Downward =0.98

S1 Upward = 20.38 K8 Upward = 0.65S1 Downward = 12.23

Shear Capacity of timber = 3 MPa Bending Capacity of timber = 14 MPa NZS3603 Amt 4, table 2.3

Capacity Checks

$M_{Wind+Snow}$	1.16 Kn-m	Capacity	1.98 Kn-m	Passing Percentage	170.69 %
$ m V_{0.9D-WnUp}$	1.85 Kn-m	Capacity	13.75 Kn-m	Passing Percentage	743.24 %

Deflections

Modulus of Elasticity = 6700 MPa NZS3603 Amt 4, Table 2.3

Deflection under Snow and Service Wind = 6.29 mmLimit by Woolcock et al. 1999 Span/100 = 25.00 mmSag during installation = 2.92 mm

Reactions

Maximum = 1.85 kn

Middle Pole Design

Geometry

275 SED H5 (Minimum 300 dia. at Floor Level) Height 5100 mm Dry Use Area 64885 mm2 As

48663.8671875 mm2

335197731 mm4

Ix		Zx	2331810 mm3
Iy	335197731 mm4	Zx	2331810 mm3

Lateral Restraint 5100 mm c/c

Loads

Total Area over Pole = 36 m^2

Dead	9.00 Kn	Live	9.00 Kn
Wind Down	21.24 Kn	Snow	18.00 Kn
Moment wind	37.96 Kn-m	Moment snow	5.49 Kn-m
Phi	0.8	K8	0.78
K1 snow	0.8	K1 Dead	0.6
K 1 wind	1		

Material

Peeling	Steaming	Normal	Dry Use
fb =	36.3 MPa	$f_S =$	2.96 MPa
fc =	18 MPa	$\mathbf{fp} =$	7.2 MPa
ft =	22 MPa	E =	9257 MPa

Capacities

PhiNex Wind	729.27 Kn	PhiMnx Wind	52.85 Kn-m	PhiVnx Wind	115.24 Kn
PhiNcx Dead	437.56 Kn	PhiMnx Dead	31.71 Kn-m	PhiVnx Dead	69.14 Kn
PhiNcx Snow	583.42 Kn	PhiMnx Snow	42.28 Kn-m	PhiVnx Snow	92.19 Kn

Checks

(Mx/PhiMnx)+(N/phiNcx) = 0.77 < 1 OK

 $(Mx/PhiMnx)^2 + (N/phiNcx) = 0.57 < 1 \text{ OK}$

Deflection at top under service lateral loads = 54.35 mm < 51.00 mm

Drained Lateral Strength of Middle pile in cohesionless soils Free Head short pile

Assumed Soil Properties

 $Kp = \frac{(1+\sin(30))}{(1-\sin(30))}$

Gamma	18 Kn/m3	Friction angle	30 deg	Cohesion	0 Kn/m3
K0 =	$(1-\sin(30))/(1+\sin(30))$				

Geometry For Middle Bay Pole

L= 2250 mm Pile embedment length

f1 = 4650 mm Distance at which the shear force is applied

f2 = 0 mm Distance of top soil at rest pressure

Loads

Moment Wind =	37.96 Kn-m	Moment Snow =	Kn-m
Shear Wind =	8.16 Kn	Shear Snow =	5.49 Kn

Pile Properties

Safety Factory 0.55

Hu = 14.71 Kn Ultimate Lateral Strength of the Pile, Short pile

Mu = 40.60 Kn-m Ultimate Moment Capacity of Pile

Checks

Applied Forces/Capacities = 0.93 < 1 OK

Uplift Check

Density of Concrete = 24 Kn/m³

Density of Timber Pole = 5 Kn/m3

Due to cast in place pile, the surface interaction between soil and pile will be rough thus angle of friction between both is taken equal to soil angle of internal friction

Ks (Lateral Earth Pressure Coefficient) for cast into place concrete piles = 1.5

Formula to calculate Skin Friction = Safecty factor (0.55) x Density of Soil(18) x Height of Pile(2250) x Ks(1.5) x 0.5 x tan(30) x Pi x Dia of Pile(0.6) x Height of Pile(2250)

Skin Friction = 40.89 Kn

Weight of Pile + Pile Skin Friction = 44.82 Kn

Uplift on one Pile = 27.54 Kn

Uplift is ok