Theory of concurrency

Lecture 6

Processes

Processes: Specifications

- A *specification* of a product is a description of the way it is intended to behave.
- For processes, the most relevant observation of behaviour is
 - the trace of events that occur up to a given moment in time.
- The special variable tr is used for an arbitrary trace of a process.

Processes: Specifications

- **X1.** The *owner* of a vending machine does not wish to make a loss by installing it.
- The number of chocolates dispensed must never exceed the number of coins inserted

$$NOLOSS = (\#(tr \upharpoonright \{choc\}) \leq \#(tr \upharpoonright \{coin\}))$$

- The abbreviation for the number of occurrences of the symbol *c* in *tr*:
 - $tr \downarrow c = \#(tr \cap \{c\})$

X2. The *customer* of a vending machine wants to ensure that it will not absorb further coins until it has dispensed the chocolate already paid for

$$FAIR1 = ((tr \downarrow coin) \le (tr \downarrow choc) + 1)$$

X3. The *manufacturer* of a simple vending machine must meet the requirements both of its owner and its customer

$$VMSPEC = NOLOSS \land FAIR1 = (0 \le ((tr \downarrow coin) - (tr \downarrow choc)) \le 1)$$

Processes: Specifications

X4. The complex vending machine is forbidden to accept three pennies in a row:

$$VMCFIX = (\neg < in1p > 3 \text{ in } tr)$$

X5. The specification of a mended machine

$$MENDVMC = (tr \in traces(VMC) \land VMCFIX)$$

X6. The specification of *VMS2*

$$0 \le ((tr \downarrow coin) - (tr \downarrow choc) \le 2$$

$$VMC = (in2p \rightarrow (large \rightarrow VMC \mid small \rightarrow out1p \rightarrow VMC)$$

 $\mid in1p \rightarrow (small \rightarrow VMC \mid in1p \rightarrow (large \rightarrow VMC \mid in1p \rightarrow STOP)))$
 $VMS2 = (coin \rightarrow VMCRED)$
 $VMCRED = \mu X \bullet (coin \rightarrow choc \rightarrow X \mid choc \rightarrow coin \rightarrow X)$

Processes: Specifications: Satisfaction

- P is a product which meets a specification S
 - P satisfies S
 - $P \operatorname{sat} S$
 - Every possible observation of the behaviour of *P* is described by *S*
 - $\forall tr \cdot tr \in traces(P) \Rightarrow S$.

Processes: Specifications: Satisfaction

- The specification *true*
 - places no constraints whatever on observations of a product
 - is satisfied by all products (even a broken product):
- L1. P sat true
- If a product satisfies two different specification, it also satisfies their conjunction:
- L2A. if P sat S and P sat T then P sat $(S \land T)$
- Generalisation to infinite conjunctions:
- L2. if $\forall n$ (P sat S(n)) then $P \text{ sat } (\forall n \cdot S(n))$ if P does not depend on n.
 - S(n) is a predicate containing the variable n
- The law for a weaker specification:
- L3. If P sat S and $S \Rightarrow T$ then P sat T
- P sat $(S \Rightarrow T)$ is an abbreviation for P sat S, $S \Rightarrow T$, P sat T if $S \Rightarrow T$

- Laws for mathematical reasoning to
 - ensure that a process P meets its specification S.
- Notation:
 - The specification S(tr) contains tr as a free variable.
- Any observation of the process *STOP* is an empty trace:

L4A.
$$STOP$$
 sat $(tr = <>)$

• Unfolding:

L4B. If
$$P$$
 sat $S(tr)$ then $(c \rightarrow P)$ sat $(tr = \Leftrightarrow V(tr_0 = c \land S(tr')))$

• For double prefixing:

L4C. If
$$P$$
 sat $S(tr)$ then $(c \rightarrow d \rightarrow P)$ sat $(tr \le < c, d > \lor (tr \ge < c, d > \land S(tr")))$

• For binary choice:

L4D. If P sat S(tr) and Q sat T(tr) then

$$(c \rightarrow P \mid d \rightarrow Q) \text{ sat } (tr = \Leftrightarrow V(tr_0 = c \land S(tr')) \lor (tr_0 = d \land T(tr')))$$

• The law for general choice generalises:

L4. If
$$\forall x : B \cdot (P(x) \text{ sat } S(tr, x))$$
 then $(x : B \rightarrow P(x)) \text{ sat } (tr = \langle \rangle \lor (tr_0 \in B \land S(tr', tr_0)))$

- The law for the after operator:
- **L5.** If P sat S(tr) and $s \in traces(P)$ then P / s sat $S(s^tr)$
 - If tr is a trace of (P / s), s^tr is a trace of P, and therefore must be described by any specification which P satisfies

• The law for recursively defined process:

L6. If
$$F(x)$$
 is guarded and $STOP$ sat S and $((X \text{ sat } S) \Rightarrow (F(X) \text{ sat } S))$
then $(\mu X \cdot F(X))$ sat S

- Consequence:
 - $F^n(STOP)$ sat S for all n.
- The proof by induction.
- $F^n(STOP)$ fully describes at least the first n steps of the behaviour of μX F(X)
 - since F is guarded.
- So each trace of μX F(X) is a trace of $F^n(STOP)$ for some n.
- This trace must therefore satisfy the same specification as $F^n(STOP)$, which is S.

```
VMSPEC = NOLOSS \land FAIR1 = (0 \le ((tr \downarrow coin) - (tr \downarrow choc)) \le 1)

VMS = (coin \rightarrow (choc \rightarrow VMS))
```

X1. Prove that *VMS* sat *VMSPEC*

```
1. STOP \text{ sat } tr = <> [L4A]

\Rightarrow 0 \le (tr \downarrow coin = tr \downarrow choc) \le 1 [since ( <> \downarrow coin) = ( <> \downarrow choc) = 0]
```

- The conclusion follows by an (implicit) appeal to L3.
- 2. Assume X sat $(0 \le ((tr \downarrow coin) (tr \downarrow choc)) \le 1)$, then

```
(coin \rightarrow choc \rightarrow X) sat [L4C]

(tr \leq \langle coin, choc \rangle) \lor (tr \geq \langle coin, choc \rangle) \land 0 \leq ((tr \downarrow coin) - (tr \downarrow choc)) \leq 1))

\Rightarrow 0 \leq ((tr \downarrow coin) - (tr \downarrow choc)) \leq 1

since

\langle coin = \langle coin \rangle \downarrow choc = \langle coin \rangle \downarrow choc = 0 and

\langle coin \rangle \downarrow coin = (\langle coin, choc \rangle \downarrow coin) = \langle coin, choc \rangle \downarrow choc = 1 and

\langle coin, choc \rangle \Rightarrow (tr \downarrow coin = tr) \downarrow coin + 1 \land tr \downarrow choc = tr) \downarrow choc + 1)
```

• The conclusion follows by appeal to L3 and L6.

- Specification satisfiability does not necessarily mean correctness:
 - STOP sat $0 \le (tr \downarrow coin tr \downarrow choc) \le 1$
 - $tr = \iff 0 \le (tr \downarrow coin tr \downarrow choc) \le 1$
 - by L3 and L4A
 - *STOP* will not serve as an adequate vending machine.
- STOP does not act wrong just because it does nothing at all.
- STOP satisfies every specification which is satisfiable by any process.
- Any process defined *solely* by prefixing, choice, and guarded recursions will never stop.
 - *VMS* will never stop.
- The only way to write a process that can stop is to include
 - explicitly the process *STOP*, or
 - the process $(x: B \to P(x))$ where B is the empty set.

Concurrency

Concurrency: Introduction

- · A process is defined by describing the whole range of its potential behaviour.
 - a choice between several different actions
 - actually *can be controlled* by the environment.
 - the customer of the vending machine may select which coin to insert.
- The environment of a process may be described as a process.
- The behaviour of a complete system composed
 - from the process together with its environment,
 - acting and interacting with each other as they evolve concurrently.
- The complete system is a process too:
 - its behaviour is defined in terms of the behaviour of its component processes.
- Forget the distinction between processes, environments, and systems
 - they are all processes with behaviour described and analysed in a homogeneous mode.

Concurrency: Interaction

- Process interactions may be regarded as
 - events that require simultaneous participation of both the processes involved.
 - For the time being, we will ignore all other types of events.
- The alphabets of the two processes are *the same*.
 - Each event must be a possible event in the *independent* behaviour of each process.
 - A chocolate can be extracted from a vending machine only when
 - its customer wants it and
 - the vending machine is prepared to give it.
- The process which behaves like the system composed of
 - processes P and Q interacting in lock-step synchronisation
 - $P \parallel Q$
 - *P* and *Q* are processes with the same alphabet.

Concurrency: Interaction

X1. A greedy customer of a vending machine.

```
GRCUST = (toffee \rightarrow GRCUST
\mid choc \rightarrow GRCUST
\mid coin \rightarrow choc \rightarrow GRCUST)
```

- This customer and the machine *VMCT*
 - the greed is frustrated
 - the vending machine does not allow goods to be extracted before payment
 - *VMCT* never gives a toffee
 - · the customer never wants one after he has paid

$$(GRCUST \parallel VMCT) = \mu X \bullet (coin \rightarrow choc \rightarrow X)$$

- A process which is a composition of two subprocesses
 - may be described as a simple single process without ||.

$$VMCL = in2p \rightarrow large \rightarrow VMC \mid in1p \rightarrow in1p \rightarrow (large \rightarrow VMC \mid in1p \rightarrow STOP)$$

Concurrency: Interaction

X2. A foolish customer wants a large biscuit no matter the coin inserted:

$$FOOLCUST = (in2p \rightarrow large \rightarrow FOOLCUST)$$

$$\mid in1p \rightarrow large \rightarrow FOOLCUST)$$

• The vending machine is not prepared to yield a large biscuit for only a small coin

$$(FOOLCUST \parallel VMC) = \mu X \bullet (in2p \rightarrow large \rightarrow X \mid in1p \rightarrow STOP)$$

- The STOP after the first in1p is known as deadlock.
 - Each component process is prepared to engage in some further action
 - but these actions are different.
 - Nothing further can happen
 - because the processes cannot agree on what the next action shall be.

Concurrency: Interaction: Laws

• The logical symmetry between a process and its environment:

L1.
$$P \parallel Q = Q \parallel P$$

• It does not matter in which order three processes are put together:

L2.
$$P \parallel (Q \parallel R) = (P \parallel Q) \parallel R$$

• A deadlocked process infects the whole system with deadlock:

L3A.
$$P \parallel STOP_{aP} = STOP_{aP}$$

• Composition with RUN_{aP} makes no difference:

L3B.
$$P \parallel RUN_{aP} = P$$

Concurrency: Interaction: Laws

• A pair of processes engage simultaneously in the same action:

L4A.
$$(c \to P) \parallel (c \to Q) = (c \to (P \parallel Q))$$

• Deadlock if process disagree on what the first action should be:

L4B.
$$(c \rightarrow P) \parallel (d \rightarrow Q) = STOP$$
 if $c \neq d$

• A system defined in terms of concurrency can be described without concurrency:

L4.
$$(x : A \to P(x)) \parallel (y : B \to Q(y)) = (z : (A \cap B) \to (P(z) \parallel Q(z)))$$

Concurrency: Interaction: Laws

X1. Let
$$P = (a \rightarrow b \rightarrow P \mid b \rightarrow P)$$
 and $Q = (a \rightarrow (b \rightarrow Q \mid a \rightarrow Q))$

Then

$$(P \parallel Q) =$$

$$= a \rightarrow ((b \rightarrow P) \parallel (b \rightarrow Q \mid a \rightarrow Q)) \text{ [by L4A]}$$

$$= a \rightarrow (b \rightarrow (P \parallel Q)) \text{ [by L4]}$$

$$= \mu X \cdot (a \rightarrow b \rightarrow X) \text{ [since the recursion is guarded]}$$

Concurrency: Interaction: Traces

• Each sequence of actions must be possible for both operands:

L1.
$$traces(P \parallel Q) = traces(P) \cap traces(Q)$$

• / s distributes through \parallel :

L2.
$$(P \parallel Q) / s = (P / s) \parallel (Q / s)$$

- Concurrency for processes with different alphabets
 - $\alpha P \neq \alpha Q$
 - Events in the alphabet of *P* but not in the alphabet of *Q* are of no concern to *Q*.
 - Such events may occur independently of Q whenever P engages in them.
 - Similarly for *Q*.
- The set of all events that are logically possible for the system:
 - $a(P \parallel Q) = aP \cup aQ$

```
X1. aNOISYVM = \{coin, choc, clink, clunk\},
```

- *clink* is the sound of a coin dropping into the moneybox
- *clunk* is the sound made on completion of a transaction.
- The noisy vending machine has run out of toffee

$$NOISYVM = (coin \rightarrow clink \rightarrow choc \rightarrow clunk \rightarrow NOISYVM)$$

- The customer of this machine definitely prefers toffee.
 - the *curse* is what he utters when he fails to get it.
- $aCUST = \{coin, choc, curse, toffee\}$

$$CUST = (coin \rightarrow (toffee \rightarrow CUST \mid curse \rightarrow choc \rightarrow CUST))$$

• The result of the concurrent activity:

```
(NOISYVM \parallel CUST) = \\ \mu \ X \bullet (coin \rightarrow (clink \rightarrow curse \rightarrow choc \rightarrow clunk \rightarrow X) \\ \mid curse \rightarrow clink \rightarrow choc \rightarrow clunk \rightarrow X))
```

- **X2.** A counter starts at the middle bottom square of the board, and may move within the board either up, down, left or right.
- $aP = \{up, down\} \text{ and } aQ = \{left, right\}$

$$P = (up \rightarrow down \rightarrow P) \qquad \qquad Q = (right \rightarrow left \rightarrow Q \mid left \rightarrow right \rightarrow Q)$$

- The behaviour of this counter is $P \parallel Q$.
 - $aP \cap aQ = \emptyset$
 - The movements of the counter are an arbitrary interleaving of actions from the process P with actions from the process Q.
- Such interleavings are very laborious to describe without concurrency.

- R_{ij} is the behaviour of the counter when situated in row i and column j of the board
 i ∈ {1, 2}, j ∈ {1, 2, 3}.
- $(P \parallel Q) = R_{12}$

$$\begin{split} R_{21} &= (down \to R_{11} \mid right \to R_{22}) \\ R_{11} &= (up \to R_{21} \mid right \to R_{12}) \\ R_{22} &= (down \to R_{12} \mid left \to R_{21} \mid right \to R_{23}) \\ R_{12} &= (up \to R_{22} \mid left \to R_{11} \mid right \to R_{13}) \\ R_{23} &= (down \to R_{13} \mid left \to R_{22}) \\ R_{13} &= (up \to R_{23} \mid left \to R_{12}) \end{split}$$

Concurrency: Concurrency: Laws

- The first three laws are similar to those for interaction:
- **L1,2.** ∥ is symmetric and associative

L3A.
$$P \parallel STOP_{aP} = STOP_{aP}$$

L3B.
$$P \parallel RUN_{aP} = P$$

- $a \in (aP aQ)$, $b \in (aQ aP)$ and $\{c, d\} \subseteq (aP \cap aQ)$.
- c and d require simultaneous participation of both P and Q:

L4A.
$$(c \rightarrow P) \parallel (c \rightarrow Q) = c \rightarrow (P \parallel Q)$$

L4B.
$$(c \rightarrow P) \parallel (d \rightarrow Q) = STOP \text{ if } c \neq d$$

• P engages alone in a, Q engages alone in b:

L5A.
$$(a \to P) \parallel (c \to Q) = a \to (P \parallel (c \to Q))$$

L5B.
$$(c \to P) \parallel (b \to Q) = b \to ((c \to P) \parallel Q)$$

L6.
$$(a \to P) \parallel (b \to Q) = a \to (P \parallel (b \to Q)) \mid b \to ((a \to P) \parallel Q))$$

Concurrency: Concurrency: Laws

• Generalisation with the general choice operator:

L7. Let
$$P = (x : A \rightarrow P(x))$$
 and $Q = (y : B \rightarrow Q(y))$
Then $(P \parallel Q) = (z : C \rightarrow P' \parallel Q')$, where
$$C = (A \cap B) \cup (A - \alpha Q) \cup (B - \alpha P),$$

$$P' = P(z) \qquad \text{if } z \in A,$$

$$P' = P \qquad \text{otherwise,}$$

$$Q' = Q(z) \qquad \text{if } z \in B,$$

$$Q' = Q \qquad \text{otherwise.}$$

• A process defined with concurrency can be redefined without concurrency.

Concurrency: Concurrency: Laws

X1. Let
$$aP = \{a, c\}$$
 and $aQ = \{b, c\}$

•
$$P = (a \rightarrow c \rightarrow P)$$
 and $Q = (c \rightarrow b \rightarrow Q)$

$$P \parallel Q = (a \to c \to P) \parallel (c \to b \to Q)$$
 [by definition]
= $a \to ((c \to P) \parallel (c \to b \to Q))$ [by L5A]
= $a \to c \to (P \parallel (b \to Q))$ [by L4A ...‡]

Also

$$P \parallel (b \to Q) = (a \to (c \to P) \parallel (b \to Q) \mid b \to (P \parallel Q))$$
 [by L6]

$$= (a \to b \to ((c \to P) \parallel Q) \mid b \to (P \parallel Q))$$
 [by L5B]

$$= (a \to b \to c \to (P \parallel (b \to Q)) \mid b \to a \to c \to (P \parallel (b \to Q)))$$
 [by ‡ above]

$$= \mu X \bullet (a \to b \to c \to X \mid b \to a \to c \to X)$$
 [since this is guarded]

Therefore

$$(P \parallel Q) = (a \rightarrow c \rightarrow \mu \ X \bullet (a \rightarrow b \rightarrow c \rightarrow X \mid b \rightarrow a \rightarrow c \rightarrow X))$$
 by ‡ above

Concurrency: Concurrency: Traces

- t is a trace of $(P \parallel Q)$.
 - $(t \land aP)$ is a trace of P
 - every event in t which belongs to αP is an event in the life of P
 - every event in t which does not belong to αP occurs without P.
 - $(t \land aQ)$ is a trace of Q
 - by a similar argument.
 - Every event in t must be in either aP or aQ.

L1. $traces(P \parallel Q) = \{t \mid (t \land aP) \in traces(P) \land (t \land aQ) \in traces(Q) \land t \in (aP \cup aQ)^*\}$

• Distribution of / s operator through concurrency:

L2.
$$(P \parallel Q) / s = (P / (s \land aP)) \parallel (Q / (s \land aQ))$$

- When aP = aQ then $s \wedge aP = s \wedge aQ = s$
 - the laws as for interaction:

L1.
$$traces(P \parallel Q) = traces(P) \cap traces(Q)$$

L2.
$$(P \parallel Q) / s = (P / s) \parallel (Q / s)$$

```
NOISYVM = (coin \rightarrow clink \rightarrow choc \rightarrow clunk \rightarrow NOISYVM)

CUST = (coin \rightarrow (toffee \rightarrow CUST \mid curse \rightarrow choc \rightarrow CUST))
```

Concurrency: Concurrency: Traces

```
X1. (See 2.3 X1.) \mu X \cdot (coin \rightarrow (clink \rightarrow curse \rightarrow choc \rightarrow clunk \rightarrow X) \\ t1 = \langle coin, click, curse \rangle \\ t1 \land aNOISYVM = \langle coin, click \rangle \\ t1 \land aCUST = \langle coin, curse \rangle \\ [is in traces(NOISYVM)] \\ [is in traces(CUST)]
```

- Therefore $t1 \in traces(NOISYVM \parallel CUST)$
- <coin, curse, $clink > \in traces(NOISYVM \parallel CUST)$
 - similar reasoning
- The *curse* and the *clink* may be recorded in either order.
 - They may even occur simultaneously
 - · no way of recording this.

Concurrency: Concurrency: Traces

- A trace of $(P \parallel Q)$ is a kind of interleaving of a trace of P with a trace of Q.
 - $aP \cap aQ = \{\}$
 - interleaving
 - aP = aQ
 - interaction

L3A. If $aP \cap aQ = \{\}$, then

$$traces(P \parallel Q) = \{s \mid \exists t : traces(P); u : traces(Q) \cdot s \ interleaves \ (t, u) \}$$

L3B. If aP = aQ then $traces(P \parallel Q) = traces(P) \cap traces(Q)$

Concurrency: Pictures

- A process *P* with alphabet {*a*, *b*, *c*}
 - lines labelled with a different events.
- A process Q with its alphabet $\{b, c, d\}$

- Concurrent process $(P \parallel Q)$ is a network in which
 - similarly labelled lines are connected
 - · lines labelled by events in the alphabet of only one process are left free.

Concurrency: Pictures

- A system constructed from three processes is still only a single process
 - therefore be pictured as a single box
 - information is lost

