# 132. Palindrome Partitioning II



## Precompute palindrome substrings

```
is_palindrome = [[False] * n for _ in range(n)]

for i in range(n):
    is_palindrome[i][i] = True

for i in range(n - 1):
    is_palindrome[i][i + 1] = (s[i] == s[i + 1])

for length in range(3, n + 1):
    for i in range(n - length + 1):
        j = i + length - 1
        is_palindrome[i][j] = (s[i] == s[j]) and is_palindrome[i + 1][j - 1]
```

## Goal of This Loop

We're filling in a 2D table <code>is\_palindrome[i][j]</code> such that:

is\_palindrome[i][j] == True if s[i..j] is a palindrome.

To do this efficiently, we build palindromes of increasing length, reusing results of smaller ones.

- Step-by-Step Recap
- Step 1: Length-1 substrings (every character)

```
for i in range(n):
is_palindrome[i][i] = True
```

- "a", "b", "c", ... are all palindromes.
- ♦ Step 2: Length-2 substrings

132. Palindrome Partitioning II

```
for i in range(n - 1):
is_palindrome[i][i + 1] = (s[i] == s[i + 1])
```

• "aa", "bb", etc.

#### ♦ Step 3: Length-3 and above

Now for substrings of **length** ≥ 3, we check this condition:

```
s[i] == s[j] and is_palindrome[i + 1][j - 1]
```

#### Why?

To be a palindrome:

- The first and last characters sij and sij must be equal.
- And the inner substring s[i+1.j-1] must also be a palindrome (which we already computed!).

## Loop Explanation

```
for length in range(3, n + 1): # length = 3 to n

for i in range(n - length + 1): # valid start indices

j = i + length - 1 # compute end index

is_palindrome[i][j] = (s[i] == s[j]) and is_palindrome[i + 1][j - 1]
```

## 

We will build palindromes like this:

| Length | i | j | s[i:j+1] | is_palindrome[i+1]<br>[j-1] | s[i]==s[j]      | is_palindrome[i]<br>[j] |
|--------|---|---|----------|-----------------------------|-----------------|-------------------------|
| 3      | 0 | 2 | "aba"    | is_palindrome[1]<br>[1] = T | a == a <b>√</b> | True                    |
| 3      | 1 | 3 | "bab"    | is_palindrome[2]<br>[2] = T | b == b <b>√</b> | True                    |
| 3      | 2 | 4 | "aba"    | is_palindrome[3]<br>[3] = T | a == a <b>√</b> | True                    |
| 4      | 0 | 3 | "abab"   | is_palindrome[1]<br>[2] = F | a ≠ b <b>X</b>  | False                   |
| 4      | 1 | 4 | "baba"   | is_palindrome[2]<br>[3] = F | b ≠ a <b>X</b>  | False                   |
| 5      | 0 | 4 | "ababa"  | is_palindrome[1]<br>[3] = T | a == a <b>√</b> | True                    |

132. Palindrome Partitioning II

## ★ Visualization of the Recursion

A substring s[i..j] is a palindrome iff:

- s[i] == s[j] 🗸
- and s[i+1.j-1] is a palindrome √ (we already checked it earlier when length was smaller)

We build from length  $1 \rightarrow$  length n, which guarantees inner substrings are already computed.

## Why We Do It?

Because checking each substring on the fly (s[i:j+1] == s[i:j+1][::-1]) is o(n) per check. So in a nested loop, that would be  $o(n^3)$  total. This reduces palindrome check to o(1).

132. Palindrome Partitioning II