Data Preprocessing Phase

The goal of this stage is to prepare the data such that you can perform Inferential Stats. In short, you are making the data compatible for the Inferential Stats!

Reason:

- 1. Every AI engineer expects your data to be COMPLETE (no NANs Strictly)
- 2. Every Algo in the Inferential Stats expects your data to be completely NUMERIC.

Preprocessing Task (Goal: To make your data COMPLETE and NUMERIC)

- 1. Check and Handle the Missing Data
- 2. Check and Handle Categorical Data
- 3. Check and Handle Ordinal Data
- 4. Perform Data Standardization(optional)
- 1. Check and Handle the Missing Data

There are three perspectives to solve the missing data problem

- a. Use Stat Approach
- b. Use Domain Approach
- c. Use Hybrid Approach Some columns using stat while some using domain if you are aware.

Guidelines to Handling Missing Data (Stats Approach)

- a. Numerical Data(ND):
 - a. Continuous ND: Replace Missing Values (NaN) with the mean value of the column
 - b. Discrete ND: Replace Missing Values (NaN) with the median value of the column
- b. Non-Numerical Data:

Replace Missing Value with the Mode's first value

Irrespective of the type of the data column, replace Missing Data with the default value as specified by the domain.

real-estate industry in Mumbai India (MMRDA)

Whenever a builder builds a tower/skyscraper/building for residential purpose, it is mandatory to supply parking space to each flat owner depending on the type of the flat

2BHK ---- 1 Parking Space 3BHK ---- 2 Parking Space 4BHK and Above -- 3 parking Space

Dataset of Building in Mumbai Region

Parking -- NaN(Replace NaN with 1,2,3 depending on type of flat configuration(2BHK ,3BHK, 4BHK))

1	Read Dataset	data = pd.read_csv('datasample.csv')			
		<pre>data.info() <class 'pandas.core.frame.dataframe'=""> RangeIndex: 10 entries, 0 to 9 Data columns (total 4 columns): # Column Non-Null Count Dtype</class></pre>			
		0 Country 9 non-null object 1 Age 9 non-null float64 2 Salary 9 non-null float64 3 Purchased 10 non-null object dtypes: float64(2), object(2)			
2	How many NaNs in each column	memory usage: 448.0+ bytes data.isna().sum()			
		Country 1 Age 1 Salary 1 Purchased 0 dtype: int64			
	# Stat Approach	71			
	# Country Column Use mode				

```
# Age Column ---- Use mean
# Salary Column --- USe mean
                                                data['Country'].fillna(
Lets Handle missing value for country
                                                data['Country'].mode()[0] ,
column.
                                                inplace=True)
As country column is a categorical data, the
guideline suggest to:
replace NaN with the mode's first value
Lets Handle missing value for Salary column.
                                                data['Salary'].fillna(
                                                data['Salary'].mean() ,
As Salary column is a continuous ND data,
                                                inplace=True)
the guideline suggest to:
       replace NaN with the mean value
Lets Handle missing value for Age column. As
                                                data['Age'].fillna(
                                                data['Age'].median() , inplace=True)
Age column is a discrete ND data for
example purpose, the guideline suggest to
       replace NaN with the median value
                                                data.info()
                                                <class 'pandas.core.frame.DataFrame'>
                                                RangeIndex: 10 entries, 0 to 9
                                                Data columns (total 4 columns):
                                                              Non-Null Count Dtype
                                                # Column
                                                0 Country
                                                               10 non-null
                                                                              object
                                                               10 non-null
                                                                              float64
                                                    Age
                                                               10 non-null
                                                                              float64
                                                    Salary
                                                3 Purchased 10 non-null
                                                                              object
                                                dtypes: float64(2), object(2) memory usage: 448.0+ bytes
                                                data.isna().sum()
                                                Country
                                                            0
                                                            0
                                                Age
                                                Salary
                                                Purchased
                                                dtype: int64
```

Handling Categorical Data

Strategy:

Arrange the data in asc order ['India', 'US']

Replace data with 0 and 1 based on index loc of list

	Data	a			
		Country	Age	Salary	Purchased
	0	France	44.0	72000.000000	0
	1	Spain	27.0	48000.000000	1
	2	Germany	30.0	54000.000000	0
	3	Spain	38.0	61000.000000	0
	4	Germany	40.0	63777.777778	1
	5	France	35.0	58000.000000	1
	6	Spain	38.0	52000.000000	0
	7	France	48.0	79000.000000	1
	8	France	50.0	83000.000000	0
	9	France	37.0	67000.000000	1
1	list1 = ['India', 'US']				
	sorted(list1)				
	['India', 'US']				
	<pre>sorted(data['Purchased'].unique())</pre>				

	<pre>['No', 'Yes'] data['Purchased'].replace(['No','Yes'],[0,1] , inplace=True)</pre>
Change categorical columns to	
numberical	<pre>from sklearn.preprocessing import OneHotEncoder ohe = OneHotEncoder(sparse=False)</pre>
One Hot Encoding> Creates Dummy Variables	<pre>fCountry = ohe.fit_transform(features[:,0].reshape(- 1,1))</pre>
	fCountry
	array([[1., 0., 0.],