

Supervised Learning of Neural Random-Access Machines with Differential Evolution

Valerio Belli

April 3, 2018

Università degli Studi di Perugia

Neural Random-Access Machines

What is?

It is a machine introduced in [Kurach et al., 2015] based on a neural network which is capable of manipulating pointers and dereferencing them through a "logical" circuit. Its objective is to solve a task on which it has been trained creating and executing that circuit.

1

Registers only version

Registers

Introduction

Let $N=\{1,\ldots,I-1\}$, where I is an integer constant, the integers set over the NRAM should work. Since the training in [Kurach et al., 2015] is made through a gradient descent algorithm, the NRAM does not work directly over N but over stochastically independent probability distributions, defined as $p\in\mathbb{R}^I$ satisfying $0\leq p_i\leq 1$ and $\sum_{i=0}^{I-1}p_i=1$.

Modules

Controller

Registers

Modules'

The modules (or gates) are components through which the controller, connecting them, manipulates values and pointers. In the NRAM exist three types of modules, defined as follows:

$$m_i \in N \text{ (Constant modules)}$$
 (1)

$$m_i: p \to p \text{ (Unary modules)}$$
 (2)

$$m_i: p \times p \to p \text{ (Binary modules)}$$
 (3)

Each of them take as input, except the constant modules, and emit probability distributions.

Controller

Registers

Registers

The registers are a set of memory cells, where each of them contains a probability distribution. Hence, in other words, every register play the role of a random variable.

Controller

Controller

Registers

Controller

The controller is a neural network (MLP or LSTM) whose objective is to emit a circuit configuration through which the registers values are manipulated. To do this the controller takes as input the $\mathcal{P}(r_i=0)$ of each register.

Timestep execution

Memory augmented version

Controller

Registers

Memory

Read & Write modules

Circuit example

Artificial Neural Network

Description

Perceptron

Multi Layer Perceptron (MLP)

Differential Evolution

Description

Differential Evolution variants

Mutation variants

Crossover variants

DENN (Differential Evolution for Neural Network)

Implementation and results

Implementation

Results

References

