Supplementary Information

Tree height and hydraulic traits shape growth responses across droughts in a temperate broadleaf forest

Ian R. McGregor, Ryan Helcoski, Norbert Kunert, Alan J. Tepley, Erika B. Gonzalez-Akre, Valentine Herrmann, Joseph Zailaa, Atticus E.L. Stovall, Norman A. Bourg, William J. McShea, Neil Pederson, Lawren Sack, Kristina J. Anderson-Teixeira

List of Tables

1	Table S1: Species-specific bark thickness regression equations	3
2	Table S2: Species-specific height regression equations	4
3	Table S3: Palmer drought severity index (PDSI) by month for focal droughts. Rank refers to	5
4	Table S4. Single-variable tests of hypothesized drivers of drought resistance, where Rt_{ARIMA} is	
	used as the response variable. Models including each variable were compared to corresponding	
	null models. Delta AICc is the AICc of the null model minus that of the model including the	
	variable (thus, Delta AIC $c > 1$ indicates that the variable significantly improves the model).	
	Variable abbreviations are as in Table 2	6
5	Table S5. Summary of top full models for each drought instance, where Rt_{ARIMA} is used as	
	the response variable. Models are ranked by AICc, and we show all models whose AICc value	
	falls within 1.0 (Delta AICc<1) of the best model (bold)	7
List	of Figures	
LISU	of Figures	
1	Figure S1: Map of ForestGEO plot showing TWI and location of cored trees	9
2	Figure S2: Time series of Palmer Drought Severity Index (PDSI) for the 2.5 years prior to	
	each focal drought	10
3	Figure S3: Height by canopy position across the three focal droughts and in the year of	
	measurement (2018)	11
4	Figure S4: Comparison of Rt and ARIMA results, with residuals, for each drought scenario .	12

While there were several R-packages we used for a specific purpose in our methods, numerous packages were immensely helpful for this research behind the scenes. As in all of science, this study is a representation of the work done by both the authors of this paper as well as countless others. While acknowledging everyone is impossible, we want to at least give thanks to those who made this work possible.

R-packages not already cited in the main manuscript include the following, listed alphabetically by corresponding package name:

Table S1: Species-specific bark thickness regression equations

Species	Equations	\$R^{2}\$
Carya cordiformis	ln[B]=-1.56+0.416*ln[DBH]	0.226
Carya glabra	$\ln[B] = -0.393 + 0.268 * \ln[DBH]$	0.040
Carya ovalis	$\ln[B] = -2.18 + 0.651 * \ln[DBH]$	0.389
Carya tomentosa	$\ln[B] = -0.477 + 0.301 \cdot \ln[DBH]$	0.297
Fagus grandifolia	$\ln[B]=1*\ln[DBH]$	
Fraxinus americana	$\ln[B] = 0.418 + 0.268 \ln[DBH]$	0.256
Juglans nigra	$\ln[B] = 0.346 + 0.279 \ln[DBH]$	0.246
Liriodendron tulipifera	$\ln[B] = -1.14 + 0.463 * \ln[DBH]$	0.545
Quercus alba	$\ln[B] = -2.09 + 0.637 \ln[DBH]$	0.603
Quercus prinus	$\ln[B] = -1.31 + 0.528 \ln[DBH]$	0.577
Quercus rubra	ln[B] = -0.593 + 0.292*ln[DBH]	0.087

Table S2: Species-specific height regression equations

Species	Equations	\$R^{2}\$
Carya cordiformis	ln[H] = 0.332 + 0.808*ln[DBH]	0.874
Carya glabra	$\ln[H] = 0.685 + 0.691 * \ln[DBH]$	0.841
Carya ovalis	$\ln[H] = 0.533 + 0.741 \ln[DBH]$	0.924
Carya tomentosa	$\ln[H] = 0.726 + 0.713 \ln[DBH]$	0.897
Fagus grandifolia	$\ln[H] = 0.708 + 0.662 * \ln[DBH]$	0.857
Liriodendron tulipifera	ln[H] = 1.33 + 0.52*ln[DBH]	0.771
Quercus alba	ln[H] = 0.74 + 0.645*ln[DBH]	0.719
Quercus prinus	ln[H] = 0.41 + 0.757*ln[DBH]	0.886
Quercus rubra	$\ln[H] = 1.00 + 0.574 \ln[DBH]$	0.755
all	$\ln[H] = 0.839 + 0.642 * \ln[DBH]$	0.857

Table S3: Palmer drought severity index (PDSI) by month for focal droughts. Rank refers to

vear	month	PDSI	rank
ycar	111011011	1 D D 1	Tank
focal di	$\operatorname{roughts}$		
1966	May	-2.98	2
	June	2	
	July	-4.08	2
	August	-4.82	1
1977	May	-2.96	3
	June	-3.28	3
	July	-3.61	3
	August	-3.68	3
1999	May	-3.63	1
	June	-4.21	1
	July	-4.53	1
	August	-4.64	2
other			
1991	May	-1.79	10
	June	-2.10	10
	July	-2.17	10
	August	-3.06	4

Table S4. Single-variable tests of hypothesized drivers of drought resistance, where Rt_{ARIMA} is used as the response variable. Models including each variable were compared to corresponding null models. Delta AICc is the AICc of the null model minus that of the model including the variable (thus, Delta AICc > 1 indicates that the variable significantly improves the model). Variable abbreviations are as in Table 2.

			all droughts		1966		1977		1999	
variable	category	null model variables	dAICc	coefficients	dAICc	coefficients	dAICc	coefficients	$\overline{\mathrm{dAICc}}$	coefficients
Species traits										
xylem porosity	R	ln[H]*ln[TWI]+crown position (+year)	-5.29	0.0430	0.81	0.1500	2.77**	-0.177	2.51**	0.159
	D/SR		-	0.0000	-	0.0000	-	0.000	-	0.000
PLA	,	ln[H]*ln[TWI]+crown position (+year)	-5.06	-0.0120	10.34**	-0.0240	-0.91	-0.009	-1.69	-0.005
LMA		ln[H]*ln[TWI]+crown position (+year)	-12.72	0.0003	-2.05	-0.0005	-0.57	-0.003	-1.9	0.001
π_{tlp}		ln[H]*ln[TWI]+crown position (+year)	-2.54	-0.1530	-1.92	-0.0650	-0.28	-0.201	-0.16	-0.190
\dot{WD}		ln[H]*ln[TWI]+crown position (+year)	-3.94	-0.0390	-0.2	-0.2970	-1.69	-0.133	0.74	0.313

* $\Delta AICc > 1$: variable qualified for inclusion in full model

Table S5. Summary of top full models for each drought instance, where Rt_{ARIMA} is used as the response variable. Models are ranked by AICc, and we show all models whose AICc value falls within 1.0 (Delta AICc<1) of the best model (bold).

							crown position						
drought	dAICc	\mathbb{R}^2	Intercept	ln[H]	ln[TWI]	ln[H]*ln[TWI]	D	С	I	S	PLA	π_{tlp}	
all	0.00	0.09	1.132	-0.296	-0.494	0.136	-0.015	0	-0.012	0.013	-0.012	-	
1966	0.00	0.23	1.844	-0.193	-0.165	0.040	0.005	0	0.011	0.058	-0.024	-	
1977	0.00	0.18	1.731	-0.384	-0.870	0.241	-0.069	0	0.016	0.103	-	-0.201	
1999	0.63 0.00	0.18 0.20	2.326 1.128	-0.382 -0.175	-0.867 -0.330	0.240 0.087	-0.071 0.012	0 0	0.014 -0.034	0.098 -0.048	-0.009 -	- -0.188	-

Allaire, JJ, Yihui Xie, Jonathan McPherson, Javier Luraschi, Kevin Ushey, Aron Atkins, Hadley Wickham, Joe Cheng, Winston Chang, and Richard Iannone. 2020. *Rmarkdown: Dynamic Documents for R.* https://CRAN.R-project.org/package=rmarkdown.

R Core Team. 2020. R: A Language and Environment for Statistical Computing. Vienna, Austria: R Foundation for Statistical Computing. https://www.R-project.org/.

Wickham, Hadley. 2019. Stringr: Simple, Consistent Wrappers for Common String Operations. https://CRAN.R-project.org/package=stringr.

Xie, Yihui. 2020. Knitr: A General-Purpose Package for Dynamic Report Generation in R. https://CRAN.R-project.org/package=knitr.

Figure S1: Map of ForestGEO plot showing TWI and location of cored trees

Figure S2: Time series of Palmer Drought Severity Index (PDSI) for the 2.5 years prior to each focal drought

Figure S3: Height by canopy position across the three focal droughts and in the year of measurement (2018)

Figure S4: Comparison of Rt and ARIMA results, with residuals, for each drought scenario