

relay magic

AE CAN DO

FOREWORD

Relay Magic is one of a series of pocket books prepared by the Industrial Products Division of Automatic Electric. The booklets are designed to provide useful engineering information in a handy form. Others include Relay Terms, Basic Circuits, Conversion Factors, and Tables & Formulae.

We recommend that the information in this book be used only as a guide to determine the availability of a circuit and its components. Remember, even the best and most time-proven circuit may fail because of the wrong choice of equipment. For this reason we make no attempt to define specific electrical parameters or component values.

table of contents

AE CAN DO

	Pages
BINARY	CIRCUITS
Binary re	adout. Fig. 21
Decimal-t	o-binary conversion, Fig. 2220
Binary to	decimal conversion, Fig. 2321
Addition	of binary numbers. Fig. 2422.23
Four-bit s	hift register. Fig. 25
"Carry" t	o second register. Fig. 26
Four-bit n	nemory device. Fig. 27
	AY CIRCUITS AE's Series OCS ''stepper'')
Binary re	adout. Fig. 21
Pulse div	lding (5 to 1). Fig. 9
	TRAPS! (For the engineer who doesn't like d his week-ends at home.)
Trap #1:	Stopping a self-interrupted rotary switch by releasing a relay. Fig. 3338
Trap #2:	Synchronizing self-interrupted rotary stepping switches. Fig. 34
Trap #3:	Switching a relay's coll circuit with a Form C contact. Fig. 35
Trap #4:	Operating a relay with a pulse from a Form D. Fig. 3639
Trap #5:	Pulse-stretching with one relay. Fig. 3740
Trap #6:	Use of a diode as a spark-suppressor on a self-interrupted rotary stepping switch.

Pagas
"CODEL" RELAY CIRCUITS
Four-bit shift register, Fig. 25
Four-bit memory device. Fig. 2726-27
COUNTING CIRCUITS
Counting chain, one relay per step. Fig. 2 8
Bi-directional decade. Fig. 17
Di directorial decado. Fig. 17
DATA CIRCUITS
Four-bit shift register. Fig. 25
Four-bit memory device. Fig. 27
DIGITAL CALENDAR
With 48-month cycle and decimal readout.
Fig. 32
DIGITAL CLOCK
With 24-hour decimal readout, Fig. 3134-35
FINDING CIRCUIT
Random or "jump" finder. Fig. 4 9
FORCED RELEASE OF RELAY
Usual method of operating, holding, and releasing
INFORMATION TRANSFER
Counting chain, one relay per step. Fig. 2 8
Bi-directional decade, Fig. 17

TABLE OF CONTENTS continued

Pages	
MARKING CIRCUIT	
Direction of phase marker. Fig. 5	
OPERATING, HOLDING & RELEASING A RELAY	
Fig. 19	
PULSING TRICKS	
Pulse divider—two relays. Fig. 6	
Pulse divider—three relays. Fig. 7	
Pulse divider (5 to 1). Fig. 9	
Pulse multiplier (code sending), Fig. 10	4
Pulse shortener. Fig. 11	
Variable-pulse generator. Fig. 12	
Pulse doubler (2 from 1). Fig. 13	
Pulse stretcher (gas-tube), Fig. 1414	
Pulse stretcher (2 relays). Figs. 15 and 16 14	
Pulse stretcher (1 relay; BEWARE! Fig. 3740	
RELAY CIRCUIT	
Usual method of operating, holding, and releasing	
a double-wound relay. Fig. 1918	
SALES REPRESENTATIVESInside back cover	
SCANNING CIRCUIT	
Rotary stepping switch circuit for scanning a large number of points. Fig. 28	

Pages
SELECTION CIRCUITS
Cross-point relay matrix. Fig. 1816-17
1-out-of-100 points. Fig. 3032-33
CTERRING CHITCH AIRCLUTA
STEPPING SWITCH CIRCUITS
Synchronization of multiple number of rotary stepping switches. Fig. 8
Rotary stepping switch circuit using a diode for reduction of electrical noise, Fig. 2018
Decimal-to-binary conversion. Fig. 2220
Rotary stepping switch circuit for scanning a large number of points. Fig. 28
Circuit to continuously cycle through a series of rotary stepping switches. Fig. 2930-31
Remote selection of 1-out-of-100 points. Fig. 30
Stopping a self-interrupted rotary stepping switch by releasing a relay; BEWARE! Fig. 33
Synchronizing self-interrupted rotary stepping switches; BEWARE! Fig. 34
Rotary stepping switch circuit using a diode as a spark suppressor; BEWAREI Fig. 3840
SYMBOLS AND DRAWING PRACTICE
Symbols, abbreviations, and drawing practices as used in this volume. Fig. 16-7
VARIABLE-OPERATE DELAY
Zener-stabilized slow-operate relay circuit. Fig. 3 8

Fig. 1. Symbols, abbreviations and drawing practices.

Fig. 2. Counting chain, one relay per step.

Fig. 4. Random or "jump" finder,

Fig. 6. Pulse divider (2-relay).

Fig. 7. Pulse divider (3-relay).

Fig. 9. 30-point OCS Relay used as a 5-to-1 divider.

Fig. 10. Code sender or pulse multiplier. (Characteristics of "B" control the pulse frequency and % make.)

Fig. 11. Pulse shortener.

Fig. 12. Simple variable-pulse generator.

Fig. 13. Pulse doubler. (Relay "B" is slow to operate and slow to release.)

TYPE 80 R.S.S.

PLUS

TYPE 80 R.S.S. MINUS

0

- 2

ARM "MINUS" CARRY

Fig. 14. Gas-tube pulse stretcher

Fig. 15. Pulse stretcher (2-relay).

Fig. 16. Pulse stretcher (2-relay).

Fig. 18. Relay matrix, 4 x 4 full cross program.

À

7.

Fig. 19. Usual method of operating, holding and releasing double-wound relay.

Fig. 20. Rotary stepping switch circuit with diode for reduction of electrical noise.

rearranged for proper load distribution.

Fig. 21. AE's 32-point OCS Relay used as a binary readout. (Shown in position 32).

Fig. 22. Decimal-to-binary conversion.

Fig. 23. Binary-to-decimal conversion.

Fig. 24. Addition of numbers in binary form.

"IN" CARRY	AUGEND	ADDEND	SUM	"OUT" CARRY
NO ₹	0	0	0	NO
' NO	1	0	ı	NO
NO.4	0	!	1	NO
NO .	ı	1	(1) 0	YES
YES	0	0	1	NO
YES		0	(1) 0	YES
YES	0		(1) 0	YES
YES	1	1	(1) 1	YES

Fig. 33. Trap #1. Stopping a self-interrupted rotary stepping switch by releasing a relay.

Fig. 35. Trap #3. Switching a relay's coll circuit with a Form C contract.

Fig. 34. Trap #2. Synchronizing self-interrupted rotary stepping switches.

Fig. 36. Trap #4. Operating a relay with a pulse from a Form D.

Fig. 28. Trap #6. Use of a diode as a spark-suppressor on a self interrupted rotary stepping switch.

Automatic Electric, pioneer in the use of relays and switches for industry, has the experience, manufacturing facilities, and research staff to solve your knottiest control problem. We specialize in the hermetic sealing of relays and switches, as well as in the design, circuitry and assembly of industrial control "packages" and systems. Our representative and facilities are at your command.

Salesmen

ATLANTA, GA.
BURLINGAME, CALIF.
(San Francisco Suburb)
CLEVELAND, OHIO
DALLAS, TEXAS
DAYTON, OHIO
DETROIT, MICH.
HAVERFORD, PA.
(Philadelphia Suburb)
KANSAS CITY, MO.

LEXINGTON, MASS.

*LOS ANGELES, CALIF.
MINNEAPOLIS, MINN.
*NEW YORK, N. Y.
*NORTHLAKE, ILL.
(Chicago Suburb)
ROCHESTER, N. Y.
ST. LOUIS, MO.
SPRINGFIELD, VA.

District Office

Check the Yellow pages of your telephone directory under "Relays", to get in touch with our representative in your area. Address all Home Office inquiries to: Director, Control Equipment Sales.

AUTOMATIC ELECTRIC

GENERAL TELEPHONE & ELECTRONICS GT&E

Distributors in U.S. and Possessions

AUTOMATIC ELECTRIC SALES CORPORATION

Northlake, Illinois • 562-7100 Chicago Telephone: EStebrook 9-4300

In Canada: Automatic Electric Sales (Canada) Ltd., 185 Bartley Drive, Toronto 16, Ontario

Circular 1012-B

40M 3-65 Merit

Printed in U.S.A.