Examen 1 Session 1

Lundi 8 novembre 2021 - 2h

Merci d'indiquer de manière bien lisible sur votre copie votre numéro de groupe d'analyse

Documents et calculatrices interdits, hormis une feuille A4 Recto-Verso manuscrite.

N.B.: La rédaction sera prise en compte dans la notation. Les exercices sont indépendants et peuvent être traités dans n'importe quel ordre. Il est toutefois préférable de conserver l'ordre proposé (difficulté croissante)

Exercice 1

- 1. Montrer que la fonction $f(x) = \frac{1}{1+x^2}$ est Lebesgue-intégrable sur \mathbb{R} et calculer son intégrale.
- 2. Montrer que la fonction $f(x) = \ln(x)$ est Lebesgue-intégrable sur [0,1] et calculer son intégrale.
- 3. Pour quelles valeurs de α la fonction $x \to \frac{1}{x^{\alpha}}$ est-elle Lebesgue-intégrable sur $[1, +\infty[$? Calculer son intégrale dans ce cas.
- 4. Enoncer le théorème de convergence dominée pour une suite de fonctions (f_n) .

 <u>Application</u>: pour $n \ge 0$ soit la suite $f_n(x) = \left(\cos(\frac{1}{x})\right)^n$. Calculer $\lim_{n \to +\infty} \int_0^1 f_n(x) dx$.

Exercice 2

Déterminer, si elle existe, la limite :

$$\lim_{n \to +\infty} \int_{1}^{+\infty} \frac{\sin\left(\frac{\pi}{2} + \frac{x}{n}\right)}{x^{2}} dx$$

Exercice 3

1. Montrer que pour tout $x \in]0,1[$,

$$\frac{\ln(x)}{1+x^2} = \sum_{n=0}^{+\infty} \ln(x)(-1)^n x^{2n}$$

- 2. Montrer que la fonction $x \to \frac{\ln(x)}{1+x^2}$ est Lebesgue intégrable sur [0,1].
- 3. Déterminer :

$$\int_0^1 \frac{\ln(x)}{1+x^2} \ dx$$

On mettra le résultat sous forme d'une série.

Exercice 4

Soit
$$f(x,y) = e^{-y} \sin(2xy)$$
 pour $(x,y) \in [0,1] \times [0,+\infty[$.

1. Montrer que f est Lebesgue intégrable sur $[0,1] \times [0,+\infty[$.

2. En déduire la valeur de $\int_0^{+\infty} \frac{1}{y} (\sin y)^2 e^{-y} dy$

Exercice 5

On pose, pour $x \in \mathbb{R}$:

$$F(x) = \int_0^{+\infty} \cos(xt) e^{-t^2} dt$$

- 1. Montrer que F est de classe C^1 sur \mathbb{R} .
- 2. Calculer F'(x) et montrer que F est solution de l'équation différentielle du premier ordre: $y' = -\frac{x}{2}y$
- 3. En déduire F.

Exercices facultatifs. NB : ces exercices sont plus difficiles et il n'est pas conseillé de commencer par ceux-ci.

Exercice 6

Soit $f \in L^1(0,1)$, on cherche dans cet exercice à calculer

$$\lim_{n \to +\infty} \int_0^1 n \ln(1 + \frac{|f(x)|^2}{n^2}) dx.$$

On pose $f_n(x) = n \ln(1 + \frac{|f(x)|^2}{n^2})$.

- 1. Rappeler pourquoi on a $|f(x)| < +\infty$ presque partout sur [0,1].
- 2. En déduire la limite simple presque partout de la suite (f_n) .
- 3. Montrer que pour tout $t \ge 0$ on a $\ln(1+t) \le 2\sqrt{t}$.
- 4. En déduire la limite demandée.

Exercice 7

Calculer

$$\sum_{n=0}^{\infty} \int_{0}^{\frac{\pi}{2}} (1 - \sqrt{\sin x})^{n} \cos x dx \quad et \quad \lim_{n \to +\infty} \int_{0}^{n} \left(\frac{\sin x}{x}\right)^{n} dx$$