INSTRUCCIONS:

- 1. Responeu amb claredat d'exposició les següents questions. Totes les respostes han de ser degudament justificades.
- 2. El temps per realitzar la prova no s'allagarà sota cap circumstància.
- 3. Primer llegiu totes i cadascuna de les preguntes. Comenceu responent i deixant en net totes aquelles de les que us trobeu més segurs.
- 4. Si teniu dubtes sobre la interpretació d'algun enunciat, demaneu a la persona que estigui a l'aula en tasques de supervisió.

PROBLEMES:

- 1. [4 punts] Fixem $p \in \mathbb{R}$. Donat $U \subset \mathbb{R}$, diem que $U \in \tau_p$ si i només si $p \notin U$ o $\mathbb{R} \setminus U$ és finit.
 - (a) [1 punt] Comprova que τ_p és una topologia en \mathbb{R} (es diu topologia de Fort).
 - (b) [0.5 punt] Siguin $A = \{2\}$ i B = (0, 1] subconjunts de \mathbb{R} . Calcula els seus interiors, clausures i fronteres en la topologia de Fort segons el valor de $p \in \mathbb{R}$.
 - (c) [0.5 punt] Defineix la propietat de Hausdorff en un espai topològic X i comprova si (\mathbb{R}, τ_p) la satisfà o no.
 - (d) [1 punt] Caracteritza els subconjunts tancats per aquesta topologia a \mathbb{R} i fes una llista de tots els subconjunts densos de (\mathbb{R}, τ_p) .
 - (e) [1 punt] Si $p \neq q \in \mathbb{R}$, comprova que $\tau_p \neq \tau_q$ però (\mathbb{R}, τ_p) i (\mathbb{R}, τ_q) són homeomorfs.
- 2. [2 punts] Sigui $f: X \to Y$ una aplicació entre espais topològics. Demostra els següents fets:
 - (a) L'aplicació f és tancada si i només si per tot $A \subset X$, $Cl(f(A)) \subset f(Cl(A))$.
 - (b) Si f és exhaustiva i tancada i $U \subset X$ és obert, aleshores $Fr(f(Cl(U))) \subset f(Cl(U)) \cap f(X \setminus U)$.
- 3. [2 punts] Sigui X un espai topològic. Definim la següent relació d'equivalència: $x \sim y$ si i només si $Cl(\{x\}) = Cl(\{y\})$. Sigui $p: X \to X / \sim l$ 'aplicació quocient. Prova els següents enunciats:
 - (a) Si $A \subset X$ és obert o tancat, aleshores $p^{-1}(p(A)) = A$.
 - (b) L'aplicació quocient és oberta i tancada.
- 4. [2 punts] Siguin τ_1 i τ_2 dues topologies en un mateix conjunt X. Considerem l'aplicació injectiva diagonal $i: X \hookrightarrow X \times X$, i(x) = (x, x). Si prenem la topologia producte $(X, \tau_1) \times (X, \tau_2)$ en $X \times X$, sigui $\tau \subset \mathcal{P}(X)$ la topologia en X definida per la inclusió i, és a dir, la topologia menys fina per la qual i és contínua. Demostra que:
 - (a) La topologia τ és més fina, és a dir, $\tau_i \subset \tau$ per i = 1, 2.
 - (b) El conjunt $\mathcal{B} = \{U_1 \cap U_2 | U_1 \in \tau_1, U_2 \in \tau_2\}$ és una base per la topologia τ .