Ровно 207 лет назад, 19 октября 1812 года, Наполеон покинул Москву! :)

- 1. Известно, что A постоянная симметричная матрица, r вектор и $f(r) = r^T A r / r^T r$.
 - а) Найдите df.
 - б) Перепешите условие df = 0 в виде $Ar = const \cdot r$. Докажите, что в любом экстремуме функции f вектор r будет собственным вектором матрицы A.
- 2. Рассмотрим модель $y = X\beta + u$ с неслучайными регрессорами X, $\mathbb{E}(u) = 0$ и $\mathbb{V}\mathrm{ar}(u) = \sigma^2 I$.
 - а) Найдите $\mathbb{V}\mathrm{ar}(\hat{y}), \mathbb{V}\mathrm{ar}(y-\hat{y}), \mathbb{E}(y-\hat{y})$. Укажите размеры каждой найденной матрицы.

Есть дополнительная тестовая выборка, y^{new} , X^{new} , и для неё $y^{new} = X^{new}\beta + u^{new}$ с $\mathbb{E}(u^{new}) = 0$ и $\mathbb{V}\mathrm{ar}(u^{new}) = \sigma^2 I$ В тестовой выборке n^{new} наблюдений. Ошибки двух выборок некоррелированы, $\mathbb{C}\mathrm{ov}(u,u^{new}) = 0$. Прогнозы для тестовой выборки мы строим, используя старые оценки $\hat{\beta}$, то есть $\hat{y}^{new} = X^{new}\hat{\beta}$.

- б) Найдите \mathbb{V} ar (\hat{y}^{new}) , \mathbb{V} ar $(y^{new} \hat{y}^{new})$, $\mathbb{E}(y^{new} \hat{y}^{new})$. Укажите размеры каждой найденной матрицы.
- 3. В выборке всего 5 наблюдений. Исследователь Бонапарт оценивает парную регрессию $\hat{y}_i = \hat{\beta}_1 + \hat{\beta}_2 x_i$. Однако, истинная модель имеет вид $y_i = 1 + 2z_i + u_i$. Известно, что $u \sim \mathcal{N}(0; \sigma^2 \cdot I)$, $x^T = (1, 2, 3, 4, 5)$.
 - а) Найдите $\mathbb{E}(\hat{\beta})$, $\mathbb{V}\mathrm{ar}(\hat{\beta})$, $\mathbb{E}(RSS)$, если $z^T=(2,3,4,5,6)$.
 - б) Найдите $\mathbb{E}(\hat{\beta})$, $\mathbb{V}\mathrm{ar}(\hat{\beta})$, $\mathbb{E}(RSS)$, если $z^T=(5,4,3,2,1)$.
- 4. Грета Тунберг, Илон Маск и Джеки Чан выбрали ортогональный базис в 5-мерном пространстве, v_1, v_2, v_3, v_4, v_5 . Вектор v_1 это вектор из единичек.

Грета Тунберг построила регрессию y на v_1, v_2 и v_3 . Илон Маск построил регрессию того же вектора y на v_1, v_4, v_5 . Джеки Чан построил регрессию того же вектора y на все элементы базиса.

- а) Изобразите в 5-мерном пространстве остатки и прогнозы всех трёх регрессий.
- б) Как связаны между собой $RSS,\,ESS$ и TSS всех трёх регрессий?
- в) Как связаны между собой оценки коэффициентов всех трёх регрессий?
- 5. Рассмотрим модель $y_i=\beta_1+\beta_2x_i+u_i$ с неслучайным регрессором.
 - а) Максимально аккуратно сформулируйте теорему Гаусса-Маркова. С «если» и «то». С формальным пояснением к любому используемому статистическому термину.

Дополнительно известно, что $\beta_2 = 0$.

- б) Найдите $\mathbb{E}(R^2)$.
- в) Найдите $\mathbb{E}(R_{adj}^2)$.