Clase 29

IIC 1253

Prof. Pedro Bahamondes

Outline

Teorema de Fermat

Máximo común divisor

Inversos modulares

Epílogo

Objetivos de la clase

- Demostrar teorema de Fermat para números primos
- □ Comprender concepto de MCD
- □ Comprender el algoritmo extendido de Euclides
- □ Comprender el concepto de inverso modular

Aritmética modular

Teorema (Fermat)

Si p es un número primo, para cualquier entero a se cumple que $a^p \equiv_p a$.

Aritmética modular

Corolario (Fermat)

Si p es un número primo y a es un entero que no es múltiplo de p, entonces $a^{p-1} \equiv_p 1$.

Ejercicio

Demuestre el corolario.

Aritmética modular

Corolario (Fermat)

Si p es un número primo y a es un entero que no es múltiplo de p, entonces $a^{p-1} \equiv_p 1$.

Por el teorema anterior:

$$a^{p} \equiv_{p} a \Rightarrow p \mid a^{p} - a \Rightarrow a^{p} - a = k \cdot p \tag{1}$$

Notemos que $a \mid a^p - a$, y por lo tanto $a \mid k \cdot p$. Como p es primo y a no es múltiplo de p, necesariamente $a \mid k$. Dividiendo (1) por a:

$$a^{p-1}-1=\frac{k}{a}\cdot p$$
, con $\frac{k}{a}\in\mathbb{Z}$.

Por lo tanto:

$$p \mid a^{p-1} - 1 \Rightarrow 1 \equiv_p a^{p-1} \Rightarrow a^{p-1} \equiv_p 1$$

Outline

Teorema de Fermat

Máximo común divisor

Inversos modulares

Epílogo

Definición

Dados dos números a y b, su máximo común divisor, denotado como MCD(a,b), es el máximo natural n tal que n|a y n|b.

¿Cómo podemos calcularlo?

Teorema

Si $a, b \in \mathbb{Z} \setminus \{0\}$, entonces $MCD(a, b) = MCD(b, a \mod b)$.

Ejercicio

Demuestre el teorema.

Teorema

Si $a, b \in \mathbb{Z} \setminus \{0\}$, entonces $MCD(a, b) = MCD(b, a \mod b)$.

Demostraremos que un entero c divide a a y a b si y sólo si divide a b y a mod b. De esto se concluye el teorema.

Sabemos que $a = k \cdot b + a \mod b$ (1).

- (\Rightarrow) Suponemos que $c \mid a$ y $c \mid b$. Si despejamos $a \mod b$ desde (1), obtenemos que $a \mod b = a k \cdot b$, de donde se concluye que $c \mid a \mod b$.
- (\Leftarrow) Suponemos que $c \mid b$ y $c \mid a \mod b$. De (1) se concluye que $c \mid a$.

Entonces:

$$MCD(a,b) = \begin{cases} a & b = 0\\ MCD(b, a \mod b) & b > 0 \end{cases}$$

A este método recursivo lo llamamos Algoritmo de Euclides

Ejercicio

Calcule MCD(403, 156).

Algoritmo de Euclides

Entonces:

$$MCD(a,b) = \begin{cases} a & b=0\\ MCD(b, a \mod b) & b>0 \end{cases}$$

Ejercicio

Calcule MCD(403, 156).

$$MCD(403, 156) = MCD(156, 403 \mod 156) = MCD(156, 91)$$

= $MCD(91, 156 \mod 91) = MCD(91, 65)$
= $MCD(65, 91 \mod 65) = MCD(65, 26)$
= $MCD(26, 65 \mod 26) = MCD(26, 13)$
= $MCD(13, 26 \mod 13) = MCD(13, 0)$
= 13

Extenderemos este algoritmo para obtener más información sobre el MCD

Algoritmo extendido del MCD

Sea $a \ge b$.

1. Definimos una sucesión $\{r_i\}$ como:

$$r_0 = a$$
, $r_1 = b$, $r_{i+1} = r_{i-1} \mod r_i$

2. Definimos sucesiones $\{s_i\}$, $\{t_i\}$ tales que:

$$s_0 = 1, t_0 = 0$$
$$s_1 = 0, t_1 = 1$$
$$r_i = s_i \cdot a + t_i \cdot b$$

- 3. Calculamos estas sucesiones hasta un k tal que $r_k = 0$.
- 4. Entonces, $MCD(a, b) = r_{k-1} = s_{k-1} \cdot a + t_{k-1} \cdot b$.

¿Cómo deducimos s_i y t_i en el paso 2.?

Ejercicio (Propuesto ★)

Demuestre que

$$s_{i+1} = s_{i-1} - \left\lfloor \frac{r_{i-1}}{r_i} \right\rfloor \cdot s_i$$
$$t_{i+1} = t_{i-1} - \left\lfloor \frac{r_{i-1}}{r_i} \right\rfloor \cdot t_i$$

En la sucesión definimos que $r_{i+1} = r_{i-1} \mod r_i$. Escribimos r_{i-1} como división de r_i :

$$r_{i-1} = \left\lfloor \frac{r_{i-1}}{r_i} \right\rfloor \cdot r_i + r_{i-1} \mod r_i \tag{1}$$

$$r_{i-1} = \left\lfloor \frac{r_{i-1}}{r_i} \right\rfloor \cdot r_i + r_{i+1} \tag{2}$$

En la sucesión también definimos que $r_{i-1} = s_{i-1} \cdot a + t_{i-1} \cdot b$ (3). Reemplazamos (3) en la parte izquierda de (2) y despejamos r_{i+1} :

$$s_{i-1} \cdot a + t_{i-1} \cdot b = \left\lfloor \frac{r_{i-1}}{r_i} \right\rfloor \cdot r_i + r_{i+1}$$
$$r_{i+1} = s_{i-1} \cdot a + t_{i-1} \cdot b - \left\lfloor \frac{r_{i-1}}{r_i} \right\rfloor \cdot r_i$$

$$r_{i+1} = s_{i-1} \cdot a + t_{i-1} \cdot b - \left| \frac{r_{i-1}}{r_i} \right| \cdot r_i$$

Como $r_i = s_i \cdot a + t_i \cdot b$:

$$r_{i+1} = s_{i-1} \cdot a + t_{i-1} \cdot b - \left\lfloor \frac{r_{i-1}}{r_i} \right\rfloor \cdot \left(s_i \cdot a + t_i \cdot b \right)$$

$$r_{i+1} = \left(s_{i-1} - \left\lfloor \frac{r_{i-1}}{r_i} \right\rfloor \cdot s_i \right) \cdot a + \left(t_{i-1} - \left\lfloor \frac{r_{i-1}}{r_i} \right\rfloor \cdot t_i \right) \cdot b$$

Y como $r_{i+1} = s_{i+1} \cdot a + t_{i+1} \cdot b$:

$$s_{i+1} = s_{i-1} - \left\lfloor \frac{r_{i-1}}{r_i} \right\rfloor \cdot s_i \qquad \qquad t_{i+1} = t_{i-1} - \left\lfloor \frac{r_{i-1}}{r_i} \right\rfloor \cdot t_i$$

Algoritmo extendido del MCD

Sea a > b.

1. Definimos una sucesión $\{r_i\}$ como:

$$r_0 = a$$
, $r_1 = b$, $r_{i+1} = r_{i-1} \mod r_i$

2. Definimos sucesiones $\{s_i\}$, $\{t_i\}$ tales que:

$$\begin{split} s_0 &= 1, \quad t_0 = 0 \\ s_1 &= 0, \quad t_1 = 1 \\ s_{i+1} &= s_{i-1} - \left\lfloor \frac{r_{i-1}}{r_i} \right\rfloor \cdot s_i, \quad t_{i+1} = t_{i-1} - \left\lfloor \frac{r_{i-1}}{r_i} \right\rfloor \cdot t_i \end{split}$$

- 3. Calculamos estas sucesiones hasta un k tal que $r_k = 0$.
- 4. Entonces, $MCD(a, b) = r_{k-1} = s_{k-1} \cdot a + t_{k-1} \cdot b$.

Tenemos todo para calcular el MCD y los pesos que lo expresan como combinación lineal de *a* y *b*

Ejercicio

Dados a=8 y b=5, use el algoritmo para calcular MCD(a,b) y $s,t\in\mathbb{Z}$ tales que $MCD(a,b)=s\cdot a+t\cdot b$.

Usamos el algoritmo extendido sobre a = 8 y b = 5

i	ri	Si	t _i	combinación
0	8	1	0	$8 = 1 \cdot 8 + 0 \cdot 5$
1	5	0	1	$5 = 0 \cdot 8 + 1 \cdot 5$
2	8 mod 5	1 – [8/5] · 0	0 - [8/5] · 1	
	3	1	-1	$3 = 1 \cdot 8 - (-1) \cdot 5$
3	5 mod 3	0 – [5/3] · 1	$1 - \lfloor 5/3 \rfloor \cdot (-1)$	
	2	-1	2	$2 = (-1) \cdot 8 + 2 \cdot 5$
4	3 mod 2	$1 - \lfloor 3/2 \rfloor \cdot (-1)$	-1 - [3/2] · 2	
	1	2	-3	$1 = 2 \cdot 8 + (-3) \cdot 5$
5	2 mod 1	_	_	
	0	_	_	

Concluimos que $MCD(8,5) = 1 = 2 \cdot 8 + (-3) \cdot 5$, con s = 2 y t = -3.

Identidad de Bézout

El desarrollo algorítmico anterior muestra el siguiente resultado en acción

Identidad de Bézout

Para todo $a,b\in\mathbb{N}\setminus\{0\}$, existen $s,t\in\mathbb{Z}$ tales que

$$MCD(a, b) = sa + tb$$

Este es un resultado elemental en teoría de números

Outline

Teorema de Fermat

Máximo común divisor

Inversos modulares

Epílogo

Definición

b es inverso de a en módulo n si $a \cdot b \equiv_n 1$.

Podemos denotarlo como a^{-1} . Ojo: no es lo mismo que $\frac{1}{a}$.

Ejemplo

¿Cuál es el inverso de 5 en módulo 3?

¿Existe siempre inverso para todo a y módulo n?

Teorema

a tiene inverso en módulo n si y sólo si MCD(a, n) = 1.

Ejercicio

Demuestre el teorema.

Si MCD(a, n) = 1, decimos que a y n son primos relativos o coprimos

Teorema

a tiene inverso en módulo n si y sólo si MCD(a, n) = 1.

(⇒) Supongamos que a tiene inverso en módulo n, digamos b. Por demostrar: MCD(a, n) = 1.

Como b es el inverso de a en módulo n, se cumple que $a \cdot b \equiv_n 1$, y por lo tanto $(a \cdot b)$ mod n = 1. Entonces, tenemos que $a \cdot b = k \cdot n + 1$, y despejando 1 obtenemos que $1 = a \cdot b - k \cdot n$. Luego, necesariamente cualquier entero c tal que $c \mid a$ y $c \mid n$ debe cumplir que $c \mid 1$, por lo que la única posibilidad es que c sea 1, y por lo tanto necesariamente MCD(a, n) = 1.

Teorema

a tiene inverso en módulo n si y sólo si MCD(a, n) = 1.

 (\Leftarrow) Supongamos que MCD(a, n) = 1. Por demostrar: a tiene inverso en módulo n.

Si ejecutamos el algoritmo extendido del MCD obtenemos s, t tales que

$$1 = s \cdot a + t \cdot n$$

$$\Leftrightarrow \quad a \cdot s = (-t) \cdot n + 1$$

$$\Leftrightarrow \quad a \cdot s \mod n = 1$$

$$\Leftrightarrow \quad a \cdot s \equiv_n 1$$

Y entonces a tiene inverso en módulo n, específicamente s.

¡Podemos calcular el inverso con el algoritmo extendido! En tal caso, el coeficiente s que acompaña a a es su inverso

Outline

Teorema de Fermat

Máximo común divisor

Inversos modulares

Epílogo

Objetivos de la clase

- □ Demostrar teorema de Fermat para números primos
- □ Comprender concepto de MCD
- Comprender el algoritmo extendido de Euclides
- □ Comprender el concepto de inverso modular