Fundamentals of Operational Research Tutorial 5 School of Mathematics The University of Edinburgh Year 2022/2023

1. Use branch-and-bound to solve the following problem:

Max.
$$5x_1 + 2x_2$$

s.t. $3x_1 + x_2 \le 12$,
 $x_1 + x_2 \le 5$,
 $x_1, x_2 \in \mathbb{Z}^+$.

2. Consider the problem

Max.
$$3x_1 + 2x_2$$

s.t. $x_1 + 2x_2 \le 7$,
 $5x_1 + 2x_2 \le 10$,
 $x_1, x_2 \in \mathbb{Z}^+$.

The optimal solution to the linear relaxation is $\tilde{x} = \left(\frac{3}{4}, \frac{25}{8}\right)$. Find Gomory cuts that cut off this point.

3. For the game having the following payoff table, determine the optimal strategy for each player.

Strategy		Player 2		
		1	2	3
Player 1	1	-3	1	2
	2	1	2	1
	3	1	0	-2

4. Find a saddle point for the following game using the minimax criterion to find the best strategy for each player.

Strategy		Player 2		
		1	2	3
Player 1	1	1	-1	1
	2	-2	0	3
	3	3	1	2

5. For the game having the following payoff table, use the graphical solution method to determine the value of the game and the optimal mixed strategies.

Strategy		Player 2		
		1	2	3
	1	4	3	1
Player 1	2	0	1	2