One Factor Experiments

- The different values of the factor are called the levels of the factor and cal also be called treatments.
- The objects upon which measurements are made are called experimental units
- The units assigned to a given treatment are called replicas.
- There are I samples, each from a different treatment.
- If particular treatments are chosen deliberately by the experimenter, rather than at random, then we say that it is a fixed effects model.
- We have I samples each from a different treatment.
- The treatment means are denoted μ_1, \ldots, m_I .
- The sample sizes are denoted J_1, \ldots, J_I . The total number in all samples combined is denoted N.
- The hypothesis that we wish to test is

$$H_0 = \mu_1 = \ldots = \mu_1$$

versus

 H_1 = two or more of the μ_i are different

- X_{ij} denotes the jth observation in the ith sample.
- The variation of the sample means around the sample grand mean is measured by a quantity called the treatment sum of squares (SSTr)

$$SSTr = \sum_{i=1}^{I} J_{i.} (\bar{X}_{i.} - \bar{X}_{..})^{2}$$
$$= \sum_{i=1}^{I} J_{i} \bar{X}_{i.}^{2} - N \bar{X}_{..}^{2}$$

 The measure of the variation in the individual sample points around their respective sample means is called the error sum of squares (SSE)

$$SSE = \sum_{i=1}^{I} \sum_{j=1}^{J_i} (X_{ij} - \bar{X}_i)^2$$
$$= \sum_{i=1}^{I} \sum_{j=1}^{J_i} X_{ij}^2 - \sum_{i=1}^{I} J_i \bar{X}_i^2$$

The standard one-way ANOVE hypothesis test is valid *under the following conditions*

- 1. The treatment population must be normal.
- 2. The treatment populations must all have the same variance, denoted σ^2 .
- The quantities I-1 and N-I are the degrees of freedom for SSTr and SSE, respectively.

$$MSTr = \frac{SSTr}{I-1}$$
 $MSE = \frac{SSE}{N-I}$

It follows that

$$\mu_{MSTr}=\sigma^2$$
 when H_0 is true $\mu_{MSTr}>\sigma^2$ when H_0 is false $\mu_{MSE}=\sigma^2$ whether or not H_0 is true

• When H_0 is true, MSTr and MSE have the same mean. Therefore, when H_0 is true, we would expect their quotient to be near 1. The quotient is in fact the test statistic. The test statistic for testing $\mu_0:\mu_1=\ldots=\mu_i$ is

$$F = \frac{MSTr}{MSE}$$

When, F tends to be near 1. When H_0 is false, MSTr is larger, and F is greater than 1.

The analysis of variance identity is

$$SST = SSTr + SSE$$

The actual equation is as follows:

$$SST = \sum_{i=1}^{I} \sum_{j=1}^{J_i} (X_{ij} - \bar{X}_{..})^2$$
$$= \sum_{i=1}^{I} \sum_{j=1}^{J_i} X_{ij}^2 - N\bar{X}^2$$

- Null hypothesis (H_0) assumed to be true. It is the "status quo" so we believe it unless there is sufficient evidence to reject it.
- Alternative hypothesis $(H_1 \text{ or } H_\alpha)$ hypothesis we want to establish, i.e. try to prove. It is "against current thinking or status" so strong evidence is needed to justify it is true.
- Decision rule (where α is the significant level):

$$p- {
m value} < \alpha \implies {
m reject} \ H_0$$
 $p- {
m value} > \alpha \implies {
m fail} \ {
m to} \ {
m reject} \ H_0$

 When equal numbers of units are assigned to each treatment, the design is said to be balanced.

Two Factor Experiments

- Notation for two-way ANOVA:
- I The number of levels of the row factor
- J The number of levels of the column factor
- $I \times J$ The number of treatment combinations
- X_{ijk} The sample value for the kth replicate corresponding to the treatment combination formed by the ith level of the row factor and ith level of the column factor.
- The two-way ANOVA model (μ is grand mean, α_i is the ith row effect, β_j is the jth column effect, and ϵ is the error).

$$X_{ijk} = \mu + \alpha_i + \beta_j + \gamma_{ij} + \epsilon_{ijk}$$

$$\alpha_i = \bar{\mu}_{i.} - \mu$$

$$\beta_j = \bar{\mu}_{.j} - \mu$$

$$\gamma_{ij} = \mu_{ij} - \bar{\mu}_{i} - \bar{\mu}_{j} + \mu$$

$$\epsilon_{ijk} = X_{ijk} - \mu_{ij}$$

 To test hypothesis for two-way ANOVA, test for the presence of interaction effects,

$$H_{0,AB}: \gamma_{11}=\gamma_{12}=\cdots=\gamma_{IJ}=0$$
 $H_{H,AB}:$ at least one of the γ_{ij} is nonzero

Hypothesis for the main effects are tested **only if** the additive model holds *i.e.*, we fail to reject $H_{0,AB}$ for the first hypothesis test. If interaction effects **does not exist**, continue to test the main effects. Test the main effects of the row factor (A),

$$H_{0,A}: \alpha_1 = \alpha_2 = \cdots = \alpha_I = 0$$

 $H_{1,A}$: at least one of the α_i is nonzero

The main effects of the column factor is the same.

Sum of Squares for Two-Way ANOVA

- Treatment sum of squares: SSTr (d.f. = I*J 1)
- Row sum of squares: $SSA = JK \sum_{i=1}^{I} \hat{\alpha}_i^2$ (d.f. = I 1)
- Column sum of squares: $SSB = IK \sum_{i=1}^{J} \hat{\beta}_i^2$ (d.f. = J 1)
- Interaction sum of squares: $SSAB = K \sum_{i=1}^{I} \sum_{j=1}^{J} \hat{\gamma}_{ij}^2$ (d.f. = (I 1)(J 1))
- Error sum of squares: SSE (d.f. = I*J(K-1))
- Total sum of squares: SST (d.f.= I*J*K-1)

There is a different statistic for each hypothesis

$$F_{AB}^* = \frac{MSAB}{MSE} \qquad F_A^* = \frac{MSA}{MSE} \qquad \frac{MSB}{MSE}$$

and

$$MSA = \frac{SSA}{I-1}$$
 $MSB = \frac{SSB}{J-1}$ $MSAB + \frac{SSAB}{(I-1)(J-1)}$

Steps for Analysis of Two-Way Experiments

For a set significance level α

- 1. Check (a) normality assumption and (b) equal variance assumption
- 2. Test if additive model holds:

$$P_{AB}^* < \alpha \rightarrow reject H_{0,AB} \rightarrow STOP$$

 $P_{AB}^* > \alpha \rightarrow fail\ to\ reject\ H_{0,AB} \rightarrow continue\ with\ step\ 3\ and\ 4$

3. Test for row effects: $P_A^* < \alpha \rightarrow reject H_{0,A}$

$$P_A^* > \alpha \rightarrow fail\ to\ reject\ H_{0,A}$$

4. Test for column effects: $P_B^* < \alpha \rightarrow reject H_{0,B}$

$$P_{\rm R}^* > \alpha \rightarrow fail\ to\ reject\ H_{\rm OR}$$

2^p Factorial Experiment

2^p factorial is a factorial experiment that has p factors each of which has 2
 levels – one level is designated "high" and the other is "low".

Hypothesis Testing Procedure for 2³ Factorial Experiments

- 1) Test for 3-way interaction (ABC)
 - ightharpoonup Reject $H_{0,ABC} o 3$ -way interaction is present o STOP
 - Fail to reject $H_{0.4BC} \rightarrow 3$ -way interaction absent \rightarrow continue to next step
- 2) Test for 2-way interactions (AB, AC, BC). For each of these,
 - ightharpoonup Reject $H_0 \to DO$ NOT test component main effect
 - \triangleright Fail to reject $H_0 \rightarrow$ component main effects can be tested
 - For example: AB interaction present → do not test A nor B main effects (may test C main effect as long as AC and BC interactions are both absent)
- 3) Test for main effects that are permitted by previous step

Bernoulli Distribution

The pmf is as follows

$$p(x) = P(X = x) = \begin{cases} p & x = 1\\ 1 - p & x = 0 \end{cases}$$

- Bernoulli's principle is as follows:
- X = 1 if the experiment results in "success"
- X=0 if the experiment results in "failure"
- Notation $X^*Benoulli(p)$

• With $X^{\tilde{}}Bernoulli(p)$, the mean and variance are as follows

$$\mu_x = p$$
$$\sigma_x^2 = p(1 - p)$$

Binomial Distribution

With n trials, and same probability success rate p, and X the number of successes in the n trials

$$p(x) = P(X = x) = \begin{cases} \binom{n}{x} p^x (1-p)^{n-x} & x = 0, 1, \dots, n \\ 0 & \text{otherwise} \end{cases}$$

where
$$\binom{n}{k} = \frac{n!}{k!(n-k)!}$$

• The mean and variance of a binomial random variable is

$$\mu_x = np$$

$$\sigma_x^2 = np(1-p)$$

ullet To estimate the success probability p we can computer the sample

$$\bar{p} = \frac{\text{number of successes}}{\text{number of trials}} = \frac{X}{n}$$

• The uncertainty of \bar{p}

$$\sigma_{\overline{p}} = \sqrt{Var(\overline{p})} \approx \sqrt{\frac{\overline{p}(1-\overline{p})}{n}}$$

Poisson Distribution

The Poisson distribution arises frequently in scientific work. One way to think of the Poisson distribution is as an approximation to the binomial distribution when n is large and p is small.

• with $\lambda = np$, and notation $X^{\tilde{}}Poisson(\lambda)$

$$p(x) = P(X = x) = \begin{cases} \frac{e^{-\lambda} \lambda^x}{x!} & x = 0, 1, \dots, n \\ 0 & \text{otherwise} \end{cases}$$

• The mean and variance are defined as follows

$$\mu_x = \lambda$$
 $\sigma_x^2 = \lambda$

The Normal Distribution

If a continuous random variable x with mean μ and variance σ^2 has the following probability density function

$$f(x) = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$

The notation is $X^{\tilde{}}N(\mu, \sigma^2)$

The standard unit equivalent

$$Z = \frac{X - \mu}{\sigma}$$

The Exponential Distribution

The notation is as follows $X^{\tilde{}}Exp(\lambda)$

$$f(x) = \begin{cases} \lambda e^{-\lambda x} & x = 0, 1, \dots, n \\ 0 & \text{otherwise} \end{cases}$$

• The CDF of $X^{\sim}exp(\lambda)$ is

$$F(x) = \begin{cases} 0 & x \le 0\\ 1 - e^{-\lambda x} & x > 0 \end{cases}$$

- The mean of $X^{\tilde{}}exp(\lambda)$ is $\mu_x=\frac{1}{\lambda}$ The variance of $X^{\tilde{}}exp(\lambda)$ is $\sigma_x^2=\frac{1}{\lambda^2}$
- The exponential distribution is sometimes used to model the waiting time to an event. If events follow a Poisson process with rate parameter λ , and if T represents the waiting time from any starting point until the next event, then $T^{\sim}exp(\lambda)$.
- The lack of memory property is as follows: If $T^{\sim}exp(\lambda)$, and t and s are positive number, then

$$P(T > t + s | T > s) = P(T > t)$$

$$s_i^2 = \sigma_i^2 = \frac{1}{J_i - 1} \sum_{i=1}^{J_i} (X_{ij} - \bar{X}_{i.})^2$$

Median time is

$$\frac{\ln 2}{\lambda}$$

Source of Variation	d.f.	SS	MS	\boldsymbol{F}	<i>p</i> -value
Treatment Combination	IJ-1	SSTr	MSTr	$F_{Tr}* = MSTr/MSE$	ртг
Row factor (A)	I-1	SSA	MSA	$F_A * = MSA/MSE$	p_A
Column factor (B)	J-1	SSB	MSB	$F_B* = MSB/MSE$	рв
Interaction (A*B)	(I-1)(J-1)	SSAB	MSAB	$F_{AB}* = MSAB/MSE$	p_{AB}
Error	N-IJ	SSE	MSE		
Total	N-1	SST			