ANÁLISIS NUMÉRICO II — Práctico N°6 - 2025 Autovalores

- 1. Demuestre que si A es simétrica y $Av = \lambda v$, entonces $\hat{A} = A \lambda v v^T$ es simétrica y tiene los mismos autovalores de A salvo λ .
- 2. Implemente una función llamada autjacobi, que utilice el método de Jacobi para hallar los autovalores de una matriz simétrica A. La función debe tener como entrada A, una tolerancia ϵ y una cantidad máxima de iteraciones m (por defecto, $\epsilon = 10^{-10}$ y m = 500).
- 3. Implemente una función llamada dvsingulares que utilice la función del ejercicio 2 y la descomposición QR con permutación de columnas para obtener la descomposición en valores singulares de una matriz A. Debe retornar U, Σ y V.
- 4. Implemente la siguientes funciones para encontrar un autovalor ρ con su autovector q utilizando método de las potencias. Deben tener como entrada una matriz A, un vector inicial q^0 , una tolerancia ϵ y una cantidad máxima de iteraciones m (por defecto, $\epsilon = 10^{-10}$ y m = 500).
 - a) autpotenciasinf que utilice norma infinito.
 - b) autpotencias2 que utilice norma 2.
 - c) autrayleigh que utilice la iteración del cociente de Rayleigh.
- 5. **Dinámica Poblacional.** Sea n_i^t la cantidad de individuos en la faja etaria i al final del año t, s_i la porción de individuos de la faja i que pasan anualmente a la faja i+1 y f_i la tasa de fecundidad per cápita de la faja i. Entonces la dinámica de la población cumple con las siguientes ecuaciones:

$$n_1^{t+1} = f_1 n_1^t + \dots + f_p n_p^t$$

 $n_i^{t+1} = s_i n_{i-1}^t$ para $i = 2, \dots, p$.

De manera vectorial esta dinámica puede escribirse como $n^{t+1} = Ln^t$ donde L es llamada matriz de Leslie. Con el autovalor dominante λ_1 de esta matriz se obtiene que si $\lambda_1 < 1$ la población decrece exponencialmente, $\lambda_1 > 1$ la población crece exponencialmente y $\lambda_1 = 1$ la población es estable e igual al autovector asociado.

Determine el comportamiento de la población de esta especie:

edad	0-2	2-4	4-6	6-8	8-10	10 – 12	12 - 14
$\overline{f_i}$	0.0	0.2	0.9	0.9	0.9	0.8 0.6 0	0.3
s_i	0.3	0.7	0.9	0.9	0.9	0.6	0.0
n_i^0	10	2	8	5	12	0	1

6. Sea p un polinomio tal que $p(x) = x^n + a_{n-1}x^{n-1} + \ldots + a_1x + a_0$. Demuestre que las raíces de p son los autovalores de la matriz

$$A = \begin{bmatrix} -a_{n-1} & -a_{n-2} & \cdots & -a_1 & -a_0 \\ 1 & & & & \\ & & 1 & & & \\ & & & \ddots & & \\ & & & & 1 \end{bmatrix}.$$

7. **Implemente** una función llamada **autqr**, que ejecute el método de iteraciones QR para hallar los autovalores de $A \in \mathbb{C}^{n \times n}$. Debe tener como entrada una matriz A y una cantidad máxima de iteraciones m (por defecto m = 500).

1

- 8. Sea H Hessenberg superior tal que $H=Q^TAQ$. Demuestre que si A es simétrica entonces H es tridiagonal.
- 9. Implemente una función llamada fhess que retorne la forma de Hessenberg de una matriz. Debe tener como entrada una matriz $A \in \mathbb{R}^{n \times n}$ y un string met para usar un método: hholder para reflexiones de Householder o givens para rotaciones de Givens. La salida debe ser Q ortogonal y H Hessenberg superior tal que $H = Q^T A Q$.
- 10. **Implemente** una función llamada autqr_hess, que ejecute el método de iteraciones QR para hallar los autovalores de $A \in \mathbb{R}^{n \times n}$, comenzando con una reducción en su forma de Hessenberg y utilizando luego rotaciones de Givens. Debe tener como entrada una matriz A y una cantidad máxima de iteraciones m (por defecto m = 500).