EVIDENCE FOR REDUCED SPECIFIC STAR FORMATION RATES IN THE CENTERS OF MASSIVE GALAXIES AT Z=4

ACCEPTED FOR PUBLICATION IN APJ, NOVEMBER 8, 2016 Preprint typeset using L^AT_EX style AASTeX6 v. 1.0

EVIDENCE FOR REDUCED SPECIFIC STAR FORMATION RATES IN THE CENTERS OF MASSIVE GALAXIES AT z=4

Intae Jung^{1,†}, Steven L. Finkelstein¹, Mimi Song², Mark Dickinson³, Avishai Dekel⁴, Henry C. Ferguson⁵, Adriano Fontana⁶, Anton M. Koekemoer⁵, Yu Lu⁷, Bahram Mobasher⁸, Casey Papovich⁹, Russell E. Ryan Jr.⁵, Brett Salmon⁵, and Amber N. Straughn²

¹Department of Astronomy, The University of Texas at Austin, Austin, TX 78712, USA
²Astrophysics Science Division, Goddard Space Flight Center, Code 665, Greenbelt, MD 20771, USA
³National Optical Astronomy Observatory, Tucson, AZ 85719, USA
⁴Center for Astrophysics and Planetary Science, Racah Institute of Physics, The Hebrew University, Jerusalem 91904, Israel
⁵Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218, USA
⁶INAF-Osservatorio Astronomico di Roma, via di Frascati 33, I-00040, Monte Porzio Catone, Italy
⁷The Observatories, The Carnegie Institution for Science, 813 Santa Barbara Street, Pasadena, CA 91101, USA
⁸Department of Physics and Astronomy, University of California, Riverside, CA 92521, USA
⁹George P. and Cynthia W. Mitchell Institute for Fundamental Physics and Astronomy, Department of Physics and Astronomy, Texas A&M University, College Station, TX 77843, USA

†itjung@astro.as.utexas.edu

CHARLIE BONFIELD ASTR 503/703 NOVEMBER 30TH, 2016

TERMINOLOGY/ACRONYMS

- "'spatially-resolved": refers to the ability of the observers to study spatially distinct regions of galaxies (inner vs. outer, radial bins more later!)
 - Authors use "integrated" in situations where this cannot be done.
- star formation rate (SFR): total mass of stars formed per year (M₀ yr⁻¹)
- > specific star formation rate (sSFR): star formation rate divided by galaxy stellar mass

Acronyms

- CANDELS: Hubble Space Telescope Cosmic Assembly Near-infrared Deep Extragalactic Legacy Survey
 - S-CANDELS: Spitzer-CANDELS
- ▶ GOODS: Great Observatories Origins Deep Survey
- IRAC: Infrared Array Camera

MOTIVATION

- ▶ The SFR density peaks close to $z\sim2$ and declines to the present-day.
- The physical mechanisms responsible for the evolution of the SFH of the universe remain a mystery, but it is thought that bulge formation is associated with the star-formation quenching process.
- Inside-out growth scenario: start small, grow outward
 - Net result: spatially extended star-formation
- Inside-out quenching scenario: quench star formation at center, actively form stars out at large distances from the center
- The quenching process has been well-observed in the nearby universe, but we still do not have a clear view on when star-formation reduction began in the earlier universe ($z\sim3$ and further back).
- > Spatially-resolved studies are necessary to disentangle composite phenomena that may contribute differently to galaxy evolution.

OBSERVATIONS

- Uses data from*:
 - CANDELS (in the southern field of GOODS)
 - ► HST (ERS, HUDF09, UDF12 surveys)
 - Bands: B₄₃₅, V₆₀₆, i₇₇₅, I₈₁₄, Z₈₅₀, Y₀₉₈, Y₁₀₅, J₁₂₅, JH₁₄₀, H₁₆₀
 - Spitzer Space Telescope IRAC (from S-CANDELS)
 - \blacktriangleright Bands: 3.6 and 4.5 μ m
- The IRAC fluxes are not actually used during spatially-resolved analysis because of a larger PSF, but the integrated fluxes are instead used to constrain the composite stellar populations of the galaxies in the study.

^{*}Audience members who are interested in the specifics of each survey are encouraged to peruse the corresponding papers cited in Jung et al. (2016).

GALAXY SAMPLE (SELECTION CRITERIA)

- First, use the effective radius (Reff) to characterize galaxy sizes.
- Next, preferentially select extended galaxies to allow for area binning.
- Result: 418 bright galaxies between z=3.5 and z=6.5 from catalog of ~8000 galaxies presented in Finkelstein et al. (2015).

GALAXY SAMPLE (SELECTION CRITERIA)

- Galaxies will naturally have smaller angular sizes at higher redshifts, therefore biasing the selection in favor of large values of R_{eff}.
- ▶ The influence of this bias is shown below.
- Authors state that this bias is ultimately unavoidable given the goal of the project and technical limitations.

SED FITTING METHODS

- Fit updated Bruzual-Charlot stellar population synthesis models to observed photometry.
- ▶ **IMF**: Salpeter (0.1 M_o to 100 M_o)
- Metallicity: Z=0.01 to Z=1.0
- Star-formation histories include exponential models with SFHs that increase, decrease, or stay the same in time.

- Add dust attenuation.
- Add nebular emission lines to the model spectra.
- Add attenuation due to neutral hydrogen in the interstellar medium.
- Ready to work!

SED FITTING METHODS

- Perform actual SED fitting using MCMC algorithm.
 - Most efficient way to explore multi-dimensional parameter space to determine posterior probability distribution function.
- Likelihood: $P(D|x) = \prod_{i=0}^{n_m} e^{-\chi^2/2}$, where:
 - 10,000 steps through parameter space are found to be sufficient.
 - Use medians from marginalized posterior distributions for physical properties.

 $\chi^2_{\rm tot} = \chi^2_{\rm res} + \chi^2_{\rm int}$

STAR FORMATION RATE

- Traditionally, star formation rates are calculated using SPS models and are therefore sensitive to model parameter selection.
- Here, the authors chose to do the following:

In truth, this still requires input from the SPS models in the form of the conversion factor.

ANALYSIS: GALAXIES AT Z~4 (WITH K-BAND DATA)

- In addition to the photometric data from HST/Spitzer, the authors had access to K-band data from two other surveys (HUGS, GOODS) for galaxies near z~4.
- Divide galaxies into central and outer regions.
 - ▶ Central: same as the K-band PSF size (physical radius: ~1.5 kpc)
- Compare sSFR in central/outer regions.

ANALYSIS: GALAXIES AT Z~4 (WITH K-BAND DATA)

- Prior to performing analysis, authors tested ability to recover sSFRs with mock images of simulated galaxies.
- Occasional outliers, but good agreement overall.

RESULTS: GALAXIES AT Z~4 (WITH K-BAND DATA)

ANALYSIS: GALAXIES AT Z~4-6

- Pixel-based stellar population synthesis modeling is the norm, but is difficult to do at high z.
- Authors used radial binning method dependent upon galaxy size (R_{eff}).
- Flux measurements are based on aperture photometry using SExtractor.
- Once fluxes have been computed, they are run through resolved SED fitting pipeline (discussed earlier).

RESULTS: GALAXIES AT Z~4-6

Authors fit a single power-law slope to the sSFR as a function of radius for each galaxy.

RESULTS: GALAXIES AT Z~4-6

CHECKING RESULTS: GALAXIES AT Z~4-6

- Earlier in the paper, the authors expressed concern about the following issues:
 - **Bias:** Galaxy sample favors bright/massive galaxies with large radii.
 - Mass uncertainty: Difficulty encountered constraining stellar mass without rest-frame optical data for z>4.

RESULTS: GALAXIES AT Z~4-6

SUMMARY

- Evidence for reduced star-formation in centers of massive galaxies between $z\sim3.5$ and $z\sim4.5$ (using sSFR ratios and power-law slope of the sSFRs).
- ▶ Galaxies at $z\sim5$ and $z\sim6$ are forming stars uniformly throughout, contrary to the findings for $z\sim4$ (power-law slope of the sSFRs).
- ▶ SFR and sSFR in central regions are lower for high central mass density galaxies at z~4 than similar galaxies at z~5 or z~6 (stacked radial density profiles).
- Authors warn that the interpretability of results may be difficult to ascertain due to selection bias and lack of optical-band data for z>4.
- Analysis does not shed any light on causation for observed phenomena.

APPENDIX FIGURE (INTEGRATED VS. RESOLVED)

REFERENCES

- **Bruzual, G., & Charlot, S.**, MNRAS 344, 1000 (2003).
- Finkelstein et al., ApJ 810, 71(2015).
- Jung et al., arXiv:1611.02713 (to appear in ApJ).
- **Kennicutt, R. C., Jr.**, ARA&A 36, 189 (1998).
- Madau, P. & Dickinson, M., ARA&A 52, 415 (2014).
- **Salmon et al.**, ApJ 799, 183 (2015).