Problem 1

The DP mixture model

A simulated dataset consisting of n = 250 random draws from the mixture of normals 0.2N(-5,1) + 0.5N(0,1) + 0.3N(3.5,1) will be analyzed in this problem. We consider the location normal Dirichlet process mixture model

$$f(\cdot|G,\phi) = \int k_N(\cdot|\theta,\phi)dG(\theta), \quad G|\alpha,\mu,\tau^2 \sim DP(\alpha,G_0 = N(\mu,\tau^2))$$

where $k_N(\cdot|\theta,\phi)$ is the density function of a normal distribution with mean θ and variance ϕ . Hence, we are mixing over the location of the normal distribution. The hierarchical version of the model is given by

$$y_{i}|\theta_{i}, \phi \stackrel{ind}{\sim} k_{N}(y_{i}|\theta_{i}, \phi), \quad i = 1, \dots, n$$

$$\theta_{i}|G \stackrel{iid}{\sim} G, \quad i = 1, \dots, n$$

$$G|\alpha, \mu, \tau^{2} \sim DP(\alpha, G_{0} = N(\mu, \tau^{2}))$$

$$\alpha, \mu, \tau^{2}, \phi \sim p(\alpha)p(\mu)p(\tau^{2})p(\phi)$$

The priors on $\alpha, \mu, \tau^2, \phi$ are chosen for convenience in the sampling. We will discuss the actual choices in the next section.

Posterior inference is made by sampling from the marginal posterior $p(\boldsymbol{\theta}, \alpha, \mu, \tau^2, \phi | \mathbf{y})$, where $\boldsymbol{\theta} = (\theta_1, \dots, \theta_n)$ are the latent mixing parameters and $\mathbf{y} = (y_1, \dots, y_n)$ are the data. This marginal posterior is found by integrating out the infinite-dimensional parameter G from the full posterior distribution

$$p(\boldsymbol{\theta}, \alpha, \mu, \tau^2, \phi | \mathbf{y}) = \int p(G, \boldsymbol{\theta}, \alpha, \mu, \tau^2, \phi | \mathbf{y}) dG$$

or, rather, by noting that the full posterior may be factored, using Bayes' formula, into a product of the full conditional of G and the marginal posterior

$$p(G, \boldsymbol{\theta}, \alpha, \mu, \tau^2, \phi | \mathbf{y}) = p(G|\boldsymbol{\theta}, \alpha, \mu, \tau^2, \phi, \mathbf{y}) p(\boldsymbol{\theta}, \alpha, \mu, \tau^2, \phi | \mathbf{y}).$$

Full conditionals of the marginal posterior

To simulate from $p(\boldsymbol{\theta}, \alpha, \mu, \tau^2, \phi | \mathbf{y})$ we iteratively draw from the full conditionals of each parameter $\theta_1, \dots, \theta_n, \alpha, \mu, \tau^2, \phi$. The expressions for the conditional distributions are based on the Pólya urn representation. Before we present the distributions, we introduce some notation.

Since G is almost surely discrete there will be a clustering among the θ_i s and the Gibbs sampler we employ takes advantage of this fact. The following list describes the notation used throughout this section:

- · n^* denotes the number of distinct θ_i s
- $\theta_i^*, j = 1, \dots, n^*$ are the distinct θ_i s
- $\mathbf{w} = (w_1, \dots, w_n)$ is the vector that matches each θ_i to its corresponding θ_j^* , i.e., $w_i = j$ if and only if $\theta_i = \theta_j^*$
- n_j is the size of the jth cluster, $|\{i: w_i = j\}|, j = 1, \dots, n^*$

The vectors $(n^*, \mathbf{w}, \theta_1^*, \dots, \theta_{n^*}^*)$ and $(\theta_1, \dots, \theta_n)$ are equivalent. The former will simplify the calculations to follow.

For each θ_i , i = 1, ..., n, the full conditional $p(\theta_i | \{\theta_k : k \neq i\}, \alpha, \mu, \tau^2, \phi, \mathbf{y})$ is given by

$$\frac{\alpha q_0}{\alpha q_0 + \sum_{j=1}^{n^{*-}} n_j^- q_j} h(\theta_i | \mu, \tau^2, \phi, y_i) + \sum_{j=1}^{n^{*-}} \frac{n_j^- q_j}{\alpha q_0 + \sum_{j=1}^{n^{*-}} n_j^- q_j} \delta_{\theta_j^{*-}}(\theta_i)$$

$$= Ah(\theta_i | \mu, \tau^2, \phi, y_i) + \sum_{j=1}^{n^{*-}} B_j \delta_{\theta_j^{*-}}(\theta_i)$$

where

- $\cdot q_j = k_N(y_i|\theta_j^*,\phi),$
- $\cdot q_0 = \int k_N(y_i|\theta,\phi)g_0(\theta|\mu,\tau^2)d\theta,$
- $h(\theta_i|\mu,\tau^2,\phi,y_i) \propto k_N(y_i|\theta_i,\phi)q_0(\theta_i|\mu,\tau^2),$
- · g_0 is the density of $G_0 = N(\cdot | \mu, \tau^2)$, and
- · The superscript "-" denotes the appropriate change to n^{*-} , n_j^- , and θ_j^{*-} when omitting θ_i from their calculations.

We update $p(\theta_i | \{\theta_k : k \neq i\}, \alpha, \mu, \tau^2, \phi, \mathbf{y})$, for i = 1, ..., n, sequentially by drawing either (1) a new value from h with probability A, or (2) θ_j^* with probability B_j ($A+B_1+\cdots+B_{n^*-}=1$). With each update of θ_i we also update the clustering "parameters" n^* , θ_j^* , and n_j , for $j = 1, ..., n^*$ (\mathbf{w} is more or less for bookkeeping and isn't explicitly used in the sampling algorithm).

Note that to use the Gibbs sampler we require conjugacy with k_N and G_0 . Without conjugacy we would have to resort to other methods for updating θ_i , say an algorithm from Neal (2000).

The functional form of q_i is simply a normal density

$$q_j = (2\pi\phi)^{-1/2} \exp\left\{-\frac{1}{2\phi}(y_i - \theta_j^*)^2\right\}$$

We solve for q_0 by integrating out θ (which has a normal kernel) and re-arranging terms to simplify to a nice normal density

$$\begin{split} q_0 &= \int (2\pi\phi)^{-1/2} \exp\left\{-\frac{1}{2\phi}(y_i - \theta)^2\right\} (2\pi\tau^2)^{-1/2} \exp\left\{-\frac{1}{2\tau^2}(\theta - \mu)^2\right\} d\theta \\ &= (4\pi^2\phi\tau^2)^{-1/2} \int \exp\left\{-\frac{1}{2\phi}(y_i - \theta)^2 - \frac{1}{2\tau^2}(\theta - \mu)^2\right\} d\theta \\ &= (4\pi^2\phi\tau^2)^{-1/2} \int \exp\left\{-\frac{1}{2\phi\tau^2} \left[\tau^2 y_i^2 - 2y_i\tau^2\theta + \tau^2\theta^2 + \phi\mu^2 - 2\mu\phi\theta + \phi\theta^2\right]\right\} d\theta \\ &= (4\pi^2\phi\tau^2)^{-1/2} \int \exp\left\{-\frac{1}{2\phi\tau^2} \left[\theta^2(\phi + \tau^2) - 2\theta(\mu\phi + y_i\tau^2)\right] - \frac{\phi\mu^2 + \tau^2 y_i^2}{2\phi\tau^2}\right\} d\theta \\ &= (4\pi^2\phi\tau^2)^{-1/2} \exp\left\{-\frac{\phi\mu^2 + \tau^2 y_i^2}{2\phi\tau^2}\right\} \int \exp\left\{-\frac{\phi + \tau^2}{2\phi\tau^2} \left[\theta^2 - 2\theta\frac{\mu\phi + y_i\tau^2}{\phi + \tau^2}\right]\right\} d\theta \\ &= (4\pi^2\phi\tau^2)^{-1/2} \exp\left\{-\frac{\phi\mu^2 + \tau^2 y_i^2}{2\phi\tau^2}\right\} \int \exp\left\{-\frac{1}{2\sigma^*} \left[\theta^2 - 2\theta\mu^* + \mu^{*2} - \mu^{*2}\right]\right\} d\theta \\ &= (4\pi^2\phi\tau^2)^{-1/2} \exp\left\{-\frac{\phi\mu^2 + \tau^2 y_i^2}{2\phi\tau^2}\right\} (2\pi\sigma^*)^{1/2} \exp\left\{\frac{\mu^2}{2\sigma^*}\right\} \\ &= (2\pi\phi\tau^2)^{-1/2} \exp\left\{-\frac{\phi\mu^2 + \tau^2 y_i^2}{2\phi\tau^2}\right\} (2\pi\sigma^*)^{1/2} \exp\left\{\frac{\mu^2}{2\sigma^*}\right\} \\ &= (2\pi(\phi+\tau^2))^{-1/2} \exp\left\{-\frac{(\phi\mu^2 + \tau^2 y_i^2)(\phi + \tau^2) + (\mu\phi + y_i\tau^2)^2}{2\phi\tau^2(\phi + \tau^2)}\right\} \\ &= (2\pi(\phi+\tau^2))^{-1/2} \exp\left\{-\frac{(-\phi\mu^2 + \tau^2 y_i^2)(\phi + \tau^2) + (\mu\phi + y_i\tau^2)^2}{2\phi\tau^2(\phi + \tau^2)}\right\} \\ &= (2\pi(\phi+\tau^2))^{-1/2} \exp\left\{-\frac{(-\phi\mu^2 + \tau^2 y_i^2)(\phi + \tau^2) + (\mu\phi + y_i\tau^2)^2}{2\phi\tau^2(\phi + \tau^2)}\right\} \\ &= (2\pi(\phi+\tau^2))^{-1/2} \exp\left\{-\frac{(-\phi\mu^2 + \tau^2 y_i^2)(\phi + \tau^2) + (\mu\phi + y_i\tau^2)^2}{2\phi\tau^2(\phi + \tau^2)}\right\} \\ &= (2\pi(\phi+\tau^2))^{-1/2} \exp\left\{-\frac{(-\phi\mu^2 + \tau^2 y_i^2)(\phi + \tau^2) + (\mu\phi + y_i\tau^2)^2}{2\phi\tau^2(\phi + \tau^2)}\right\} \\ &= (2\pi(\phi+\tau^2))^{-1/2} \exp\left\{-\frac{(-\phi\mu^2 + \tau^2 y_i^2)(\phi + \tau^2) + (\mu\phi + y_i\tau^2)^2}{2\phi\tau^2(\phi + \tau^2)}\right\} \\ &= (2\pi(\phi+\tau^2))^{-1/2} \exp\left\{-\frac{(-\phi\mu^2 + \tau^2 y_i^2)(\phi + \tau^2) + (\mu\phi + y_i\tau^2)^2}{2\phi\tau^2(\phi + \tau^2)}\right\} \\ &= (2\pi(\phi+\tau^2))^{-1/2} \exp\left\{-\frac{(-\phi\mu^2 + \tau^2 y_i^2)(\phi + \tau^2) + (\mu\phi + y_i\tau^2)^2}{2\phi\tau^2(\phi + \tau^2)}\right\} \\ &= (2\pi(\phi+\tau^2))^{-1/2} \exp\left\{-\frac{(-\phi\mu^2 + \tau^2 y_i^2)(\phi + \tau^2) + (\mu\phi + y_i\tau^2)^2}{2\phi\tau^2(\phi + \tau^2)}\right\} \\ &= (2\pi(\phi+\tau^2))^{-1/2} \exp\left\{-\frac{(-\phi\mu^2 + \tau^2 y_i^2)(\phi + \tau^2) + (\mu\phi + y_i\tau^2)^2}{2\phi\tau^2(\phi + \tau^2)}\right\} \\ &= (2\pi(\phi+\tau^2))^{-1/2} \exp\left\{-\frac{(-\phi\mu^2 + \tau^2 y_i^2)(\phi + \tau^2) + (\mu\phi + y_i\tau^2)^2}{2\phi\tau^2(\phi + \tau^2)}\right\} \\ &= (2\pi(\phi+\tau^2))^{-1/2} \exp\left\{-\frac{(-\phi\mu^2 + \tau^2 y_i^2)(\phi + \tau^2) + (\mu\phi + y_i\tau^2)^2}{2\phi\tau^2(\phi + \tau^2)}\right\} \\ &= (2\pi(\phi+\tau^2))^{-1/2} \exp\left\{-\frac{(-\phi\mu^2 y_i} + (-\phi\mu^2 y_i)(\phi + \tau^2) + (\mu\phi + y_i\tau^2)^2}{2\phi\tau^2(\phi + \tau^2)}\right\}$$

And thus the bookkeeping was worth it. More importantly, note the conjugacy requirement for the integral to be tractable.

The density function $h(\theta_i|\cdot)$ has essentially already been derived when finding q_0 . After dropping all the non θ_i terms, we are left with the part from q_0 that was inside the integral. That is, h is a normal distribution with mean μ^* and variance σ^* given above. This completes the marginal posterior for θ_i .

References

Neal, R. M. (2000), "Markov chain sampling methods for Dirichlet process mixture models," *Journal of computational and graphical statistics*, 9, 249–265.