Séries entières

I. Série entière d'une variable complexe

I.1. Définition

Définition. Soit $(a_n)_{n\in\mathbb{N}}$ une suite complexe. On appelle **série entière** de coefficients (a_n) , la série de fonctions $\sum_{n=0}^{+\infty} f_n$, où, pour tout $n\in\mathbb{N}$ et tout $z\in\mathbb{C}$, $f_n(z)=a_nz^n$.

I.2. Rayon de convergence

Proposition I.1 (Lemme d'Abel). Soit (a_n) une suite complexe. S'il existe $z_0 \in \mathbb{C}^*$ tel que la suite $(a_n z_0^n)$ soit bornée, alors, pour tout $z \in \mathbb{C}$ tel que $|z| < |z_0|$, la série $\sum a_n z^n$ converge absolument.

Définition. Soit $(a_n) \in \mathbb{C}^{\mathbb{N}}$; soit $B = \{r \in \mathbb{R}_+ \mid la \ suite \ (a_n r^n) \ est \ bornée\}$. Si B est majoré, alors $\sup B$ est appelé le **rayon de convergence** de la série entière $\sum a_n z^n$; si B n'est pas majoré, on dit que ce rayon de convergence est $+\infty$.

Proposition I.2. Soit (a_n) une suite complexe; soit R le rayon de convergence de la série entière $\sum a_n z^n$. Soit enfin $z \in \mathbb{C}$.

- \triangleright Si |z| < R, alors la série $\sum a_n z^n$ converge absolument.
- \triangleright Si |z| > R, alors la série $\sum_{n=0}^{\infty} a_n z^n$ diverge grossièrement.

I.3. Détermination du rayon de convergence

Proposition I.3 (Règle de d'Alembert). Soit (a_n) une suite complexe. Si $a_n \neq 0$ à partir d'un certain rang, et si $|a_{n+1}/a_n|$ a une limite ℓ éventuellement infinie, alors le rayon de convergence de la série entière $\sum a_n z^n$ vaut $1/\ell$ (avec, par convention, $1/+\infty=0$ et $1/0=+\infty$).

En particulier, si Q est une fraction rationnelle, alors $\sum Q(n)z^n$ a pour rayon de convergence 1.

Proposition I.4. Soient (a_n) et (b_n) deux suites complexes; soient R_a et R_b les rayons de convergence respectifs des séries entières $\sum a_n z^n$ et $\sum b_n z^n$.

$$Si |a_n| = O(|b_n|), \ alors \ R_a \geqslant R_b; \ et \ donc, \ si \ a_n \sim b_n, \ alors \ R_a = R_b.$$

I.4. Opérations sur les séries entières

Proposition I.5. Soient (a_n) et (b_n) deux suites complexes; soient R_a et R_b les rayons de convergence respectifs, et A et B les fonctions sommes respectives, des séries entières $\sum a_n z^n$ et $\sum b_n z^n$. Alors:

- o pour $\lambda \in \mathbb{C}^*$, le rayon de convergence de la série entière $\sum (\lambda a_n) z^n$ est égal à R_a , et sa fonction somme est λA ;
- o le rayon de convergence R_1 de la série $\sum (a_n+b_n)z^n$ vérifie $R_1 \geqslant \min\{R_a,R_b\}$, avec égalité si $R_a \neq R_b$; et $\sum_{n=0}^{+\infty} (a_n+b_n)z^n = A(z)+B(z)$ pour tout z tel que $|z| < \min\{R_a,R_b\}$;
- o si l'on pose, pour tout $n \in \mathbb{N}$, $c_n = \sum_{k=0}^n a_k b_{n-k}$, alors le rayon de convergence R_2 de la série $\sum c_n z^n$ vérifie $R_2 \geqslant \min\{R_a, R_b\}$; et $\sum_{n=0}^{+\infty} c_n z^n = A(z)B(z)$ pour tout z tel que $|z| < \min\{R_a, R_b\}$.

I.5. Continuité de la somme

Dans la suite, on pose, pour tout $r \in \mathbb{R}_+^*$, $D(0,r) = \{z \in \mathbb{C} \mid |z| < r\}$ et $D'(0,r) = \{z \in \mathbb{C} \mid |z| \le r\}$.

Proposition I.6. Soit (a_n) une suite complexe. On suppose que la série entière $\sum a_n z^n$ a un rayon de convergence R strictement positif. Alors :

- \circ la série converge absolument sur le disque ouvert D(0,R), et normalement sur tout disque fermé D'(0,r) tel que r < R;
- \circ la fonction somme est continue sur le disque ouvert D(0,R);
- o si de plus $\sum |a_n|R^n$ converge, alors la série converge normalement sur le disque fermé D'(0,R), et sa somme y est continue.

II. Série entière d'une variable réelle

Soit (a_n) une suite complexe; soit R le rayon de convergence de la série entière $\sum a_n z^n$. D'après ce qui précède, la série entière **d'une variable réelle** $\sum a_n t^n$ converge absolument sur]-R, R[, et normalement donc uniformément sur tout $[-r, r] \subset]-R, R[$; sa somme est continue sur]-R, R[.

II.1. Continuité radiale

Théorème II.1 (Théorème d'Abel radial). Si la série entière $\sum a_n t^n$ a pour rayon de convergence $R \in \mathbb{R}_+^*$, et si $\sum a_n R^n$ converge, alors la fonction $t \longmapsto \sum_{n=0}^{+\infty} a_n t^n$ est continue sur [0, R], et donc $\sum_{n=0}^{+\infty} a_n t^n \xrightarrow[t \to R^-]{} \sum_{n=0}^{+\infty} a_n R^n$.

II.2. Primitivation

Proposition II.2. Soit $\sum a_n t^n$ une série entière de rayon de convergence R > 0, et de somme S. Alors, la série entière $\sum_{n\geqslant 0} a_n \frac{t^{n+1}}{n+1} = \sum_{p\geqslant 1} a_{p-1} \frac{t^p}{p}$ converge sur |-R,R[, et sa somme est la primitive de S qui s'annule en 0.

II.3. Dérivation

Proposition II.3. Soit (a_n) une suite complexe. Alors, les séries entières $\sum a_n z^n$ et $\sum na_n z^n$ ont le même rayon de convergence.

Proposition II.4. Soit (a_n) une suite complexe; on suppose que le rayon R de la série entière associée est strictement positif. Soit S la fonction somme sur]-R, R[. Alors, S est de classe C^1 sur]-R, R[, et

$$\forall t \in]-R, R[\quad S'(t) = \sum_{n \geqslant 1} n a_n t^{n-1} = \sum_{n \geqslant 0} (n+1) a_{n+1} t^n$$

De plus, la série entière définissant S' a aussi R pour rayon de convergence.

Théorème II.5. Soit (a_n) une suite complexe; on suppose que le rayon R de la série entière associée est strictement positif. Soit S la fonction somme $sur \]-R, R[$. Alors, S est de classe C^{∞} $sur \]-R, R[$, et, pour tout $p \geqslant 0$ et tout $t \in]-R, R[$,

$$S^{(p)}(t) = \sum_{n \geqslant p} n(n-1) \dots (n-p+1)t^{n-p} = \sum_{n=p}^{+\infty} \frac{n!}{(n-p)!} t^{n-p}$$
$$= \sum_{k \geqslant 0} (k+1)(k+2) \dots (k+p)t^k = \sum_{k=0}^{+\infty} \frac{(k+p)!}{k!} t^n$$

II.4. Unicité du développement en série entière

Proposition II.6. S'il existe r > 0 tel que $\forall t \in]-r, r[$ $f(t) = \sum_{n=0}^{+\infty} a_n t^n$ alors $f^{(p)}(0) = p! a_p$ pour tout $p \in \mathbb{N}$.

Corollaire II.7. Soient (a_n) et (b_n) deux suites complexes. S'il existe r > 0 tel que $\sum_{n=0}^{+\infty} a_n t^n = \sum_{n=0}^{+\infty} b_n t^n$ pour tout $t \in]-r, r[$, alors $a_n = b_n$ pour tout $n \in \mathbb{N}$.

Corollaire II.8. Si une fonction paire (respectivement impaire) est la somme d'une série entière sur un intervalle de la forme]-r,r[, alors cette série entière ne comporte que des termes de degré pair (respectivement impair).

III. Développement et sommation

III.1. Fonctions développables en série entière

Définition. Soit $f: I \subset \mathbb{R} \longrightarrow \mathbb{C}$; soit $t_0 \in I$. On dit que f est **développable** en série entière au voisinage de t_0 s'il existe une suite complexe (a_n) et $r \in \mathbb{R}_+^*$ tels que

$$\forall t \in]t_0 - r, t_0 + r[\quad f(t) = \sum_{n=0}^{+\infty} a_n (t - t_0)^n$$

Proposition III.1. Si une fonction f est développable en série entière au voisinage de t_0 , alors f est de classe C^{∞} sur ce voisinage, et la série entière est la série de Taylor de f en t_0 .

III.2. Exemples de développement

Proposition III.2. Soit $R \in \mathbb{C}(X)$ une fraction rationnelle, n'ayant pas 0 pour pôle. Alors, la fonction $z \longmapsto R(z)$ est développable en série entière au voisinage de 0, et le rayon de convergence de cette série est le plus petit des modules des pôles complexes de R.

III.3. Exemples de sommation

IV. Développements usuels

$$e^{t} = \sum_{n=0}^{+\infty} \frac{t^{n}}{n!}; \quad R = +\infty. \qquad \frac{1}{1-t} = \sum_{n=0}^{+\infty} t^{n}; \quad R = 1.$$

$$\ln(1+t) = \sum_{n=1}^{+\infty} \frac{(-1)^{n-1}t^{n}}{n}; \quad R = 1. \qquad \operatorname{Arctan} t = \sum_{n=0}^{+\infty} \frac{(-1)^{n}t^{2n+1}}{2n+1}; \quad R = 1.$$

$$\operatorname{ch} t = \sum_{n=0}^{+\infty} \frac{t^{2n}}{(2n)!} \quad \operatorname{et} \quad \operatorname{sh} t = \sum_{n=0}^{+\infty} \frac{t^{2n+1}}{(2n+1)!}; \quad R = +\infty.$$

$$\cos t = \sum_{n=0}^{+\infty} \frac{(-1)^{n}t^{2n}}{(2n)!} \quad \operatorname{et} \quad \sin t = \sum_{n=0}^{+\infty} \frac{(-1)^{n}t^{2n+1}}{(2n+1)!}; \quad R = +\infty.$$

$$(1+t)^{\alpha} = 1 + \sum_{n=0}^{+\infty} \frac{\alpha(\alpha-1)\cdots(\alpha-n+1)}{n!} t^{n}; \quad R = 1.$$