

Wyższa Szkoła Oficerska Sił Powietrznych

Katedra Nauk Ogólnokształcących

Laboratorium elektroniki								
Grupa nr C9D	Data wykonania ćwiczenia							
Zespół w składzie	12.04.2010, 26.04.2010							
1. Jakub Kurpas	Ćwiczenie prowadził							
2. Łukasz Kusek	ppłk rez. Bogdan Makarewicz							
3. Karol Mazur	Ocena							
	Podpis							
Sprawozdanie ćwiczenia nr 2	I .							
Temat ćwiczenia: Badanie tranzystorów bipolarnych								

Spis treści

1	Opi	s ćwicz	zenia	2
2	Wy	znacza	nie charakterystyk statycznych badanego tranzystora	2
	2.1	Układ	WE	2
		2.1.1	Schemat układu pomiarowego	2
		2.1.2	Charakterystyka wejściowa	3
		2.1.3	Charakterystyka wyjściowa parametryzowana prądowo	4
		2.1.4	Charakterystyka przejściowa prądowo-prądowa	5
		2.1.5	Współczynnik wzmocnienia prądowego	6
	2.2	Układ	WB	7
		2.2.1	Schemat układu pomiarowego	7
		2.2.2	Charakterystyka wyjściowa parametryzowana prądowo	7
		2.2.3	Charakterystyka przejściowa prądowo-prądowa	8
		2.2.4	Współczynnik wzmocnienia prądowego	9
9	Wn	ioski		O

1 Opis ćwiczenia

Celem ćwiczenia jest zapozananie się z właściwościami tranzystorów bipolarnych. Poznanie procesu ich badania oraz opracowanie otrzymanych charakterystyk pozwoli nam potwierdzić czy założenia teoretyczne pokrywają się z praktycznymi wnioskami.

Tranzystorem nazywamy element elektroniczny trójelektrodowy umożliwiający wzmacnianie sygnału wejściowego. Rozróżniamy trzy układy pracy tranzystora: wspólna baza, wspólny emiter, wspólny kolektor. Będziemy badać charakterystyki dla dwóch pierwszych układów.

2 Wyznaczanie charakterystyk statycznych badanego tranzystora

Typ badanego tranzystora: BC 413 $\,$

2.1 Układ WE

Schemat tranzystora w układzie WE

2.1.1 Schemat układu pomiarowego

Schemat układu pomiarowego tranzystora w układzie WE

2.1.2 Charakterystyka wejściowa

Charakterystyka wejściowa opisuje zależność natężenia prądu wejściowego I_{We} w funkcji napięcia wejściowego U_{We} przy stałym napięciu wyjściowym U_{Wy} , czyli

$$I_{We} = f(U_{We})$$
 $U_{Wy} = const$

W układzie WE będzie to zależność

$$I_B = f(U_{BE})$$
 $U_{CE} = const$

U_{BE}		V	0	0,1	0,3	0,4	0,45	0,5	0,55	0,6	0,65
$U_{CE} = 8V$	I_B	μA	0	0	0	0,1	0, 1	0, 2	0,6	2,1	9,6
$U_{CE} = 12V$	I_B	μA	0	0	0	0,1	0,1	0, 2	0,6	2,5	11,7

Tabela pomiarów

Charakterystyka wejściowa $I_B = f(U_{BE})$ $U_{CE} = const$

2.1.3 Charakterystyka wyjściowa parametryzowana prądowo

Charakterystyka wyjściowa parametryzowana prądowo opisuje zależność natężenia prądu wyjściowego I_{Wy} w funkcji napięcia wyjściowego U_{Wy} przy stałym natężeniu prądu wejściowego I_{We} , czyli

$$I_{Wy} = f(U_{Wy})$$
 $U_{We} = const$

W układzie WE będzie to zależność

$$I_C = f(U_{CE})$$
 $I_B = const$

U_{CE}		V	0	0, 1	0, 2	0, 5	1	2	3	5	10
$I_B = 8\mu A$	I_C	mA	0	0,495	0,890	0,915	0,920	0,930	0,938	0,952	0,970
$I_B = 10\mu A$	I_C	mA	0	0,679	1,213	1, 244	1,253	1, 251	1,262	1,284	1,328

Tabela pomiarów

Charakterystyka wyjściowa parametryzowana prądowo $I_C = f(U_{CE})$ $I_B = const$

Charakterystyka wyjściowa parametryzowana prądowo $I_C = f(U_{CE})$ $I_B = const$

2.1.4 Charakterystyka przejściowa prądowo-prądowa

Charakterystyka przejściowa prądowo-prądowa opisuje zależność natężenia prądu wyjściowego I_{Wy} w funkcji natężenia prądu wejściowego I_{We} przy stałym napięciu wyjściowym U_{Wy} , czyli

$$I_{Wy} = f(I_{We})$$
 $U_{Wy} = const$

W układzie WE będzie to zależność

$$I_C = f(I_B)$$
 $U_{CE} = const$

I_B		μA	0	4	8	12	14	16	20	24	30
$U_{CE} = 8V$	I_C	mA	0	0,367	0,975	1,676	2,069	2,460	3, 295	4, 165	5, 565
$U_{CE} = 12V$	I_C	mA	0	0,380	1,021	1,778	2,173	2,608	3,490	4,392	5,800

Tabela pomiarów

Charakterystyka przejściowa prądowo-prądowa $I_C = f(I_B)$ $U_{CE} = const$

2.1.5 Współczynnik wzmocnienia prądowego

Na podstawie danych pomiarowych wyznaczyliśmy, korzystając z metody najmniejszych kwadratów, współczynnik wzmocnienia prądowego prądu bazy (współczynnik wzmocnienia prądowego tranzystora w układzie WE)

• dla pomiaru przy $U_{CE}=12V$

$$\beta = 177,266 \pm 6,219 (3,508\%)$$

• dla pomiaru przy $U_{CE} = 8V$

$$\beta = 168,697 \pm 6,154 (3,648\%)$$

2.2 Układ WB

Schemat tranzystora w układzie WB

2.2.1 Schemat układu pomiarowego

Schemat układu pomiarowego tranzystora w układzie WB

2.2.2 Charakterystyka wyjściowa parametryzowana prądowo

Charakterystyka wyjściowa parametryzowana prądowo opisuje zależność natężenia prądu wyjściowego I_{Wy} w funkcji napięcia wyjściowego U_{Wy} przy stałym natężeniu prądu wejściowego I_{We} , czyli

$$I_{Wy} = f(U_{Wy})$$
 $U_{We} = const$

W układzie WB będzie to zależność

$$I_C = f(U_{CB})$$
 $I_E = const$

U_{CB}		V	0	0,4	0,6	1	2	3	5	10
$I_E = 1mA$	I_C	mA	0,97	0,98	0,97	0,97	0,97	0,98	0,97	1
$I_E = 2mA$	I_C	mA	1,97	1,96	1,97	1,97	1,98	1,90	1,99	2

Tabela pomiarów

Charakterystyka wyjściowa parametryzowana prądowo $I_C = f(U_{CB})$ $I_E = const$

2.2.3 Charakterystyka przejściowa prądowo-prądowa

Charakterystyka przejściowa prądowo-prądowa opisuje zależność natężenia prądu wyjściowego I_{Wy} w funkcji natężenia prądu wejściowego I_{We} przy stałym napięciu wyjściowym U_{Wy} , czyli

$$I_{Wy} = f(I_{We})$$
 $U_{Wy} = const$

W układzie WB będzie to zależność

$$I_C = f(I_E)$$
 $U_{CB} = const$

I_E		mA	1	2	3	4	5	6	8	10
$U_{CB} = 8V$	I_C	mA	0,995	1,981	2,930	3,973	4,970	5,968	7,942	9,943
$U_{CB} = 12V$	I_C	mA	0,992	1,983	2,975	3,973	4,974	5,963	7,956	9,958

Tabela pomiarów

Charakterystyka przejściowa prądowo-prądowa $I_C \ = \ f(I_E) \qquad U_{CB} = const$

2.2.4 Współczynnik wzmocnienia prądowego

Na podstawie danych pomiarowych wyznaczyliśmy, korzystając z metody najmniejszych kwadratów, współczynnik wzmocnienia prądowego prądu emitera (współczynnik wzmocnienia prądowego tranzystora w układzie WB)

• dla pomiaru przy $U_{CB} = 12V$

$$\alpha = 0,99471 \pm 0,0004204 (0,04227\%)$$

• dla pomiaru przy $U_{CB} = 8V$

$$\alpha = 0,993812 \pm 0,000314 (0,03159\%)$$

3 Wnioski

W oparciu o uzyskane dane stwierdzamy, że spodziewane wyniki pokrywają się z praktycznymi obserwacjami. Wpływ na otrzymane wyniki miały temperatura złącza i zakres błędu miernika, powodujące akceptowalne, nieznaczne odchylenia.