

Capstone Project: Spinnaker

Identifying and Predicting Tradable Signals

Team B1

Carmen Cheung, Haiyuan Zhang, Linh To, Song Lin, Zichen Wang

Agenda

Introduction

Background | EDA | Hypotheses

Background Information

Who?

Analytical team of a FOF manager

What?

Define and identify tradable signals based on past performance to provide insight that supplements and aids in deciding investment strategies

How?

Build and evaluate models targeting the 20 assets in the dataset

Dataset Overview

Three Datasets	Columns	Description
US Sector Inst ETF	ReportDate	Weekly data from 2006 to 2017
Investments made/redeemed by institutional investors in Exchange Traded Funds.	AssetClass	Name of portfolio
US Sector Inst MF	Flow	How much money (\$M) is coming in or out
Investments made/redeemed by institutional investors in Institutional Mutual Fund.	AssetsEnd	Assets at the end of the week (\$M)
US Sector Retail MF	FlowPct	Flow/Assets beginning of the week * 100%
Investments made/redeemed by individual investors in their portfolios.	PortfolioChangePct	Percent change in overall portfolio during week

Recap of Exploratory Data Analysis

An observed dive around Oct 2008 and upsurge around April 2016 across all industries \rightarrow potentially due to systematic factors that impact the whole market

Recap of Exploratory Data Analysis

Example Industry: **Technology**

3. Flow **Trend**

- ETF and Inst MF have similar trends
- Retail MF trend shrunk after 2012

4. AssetEnd **Trend**

- ETF and Inst MF have similar trends
- Retail MF experience higher fluctuations

Retail MF

Inst MF

Years (2006 - 2017)

Hypotheses for Predicting a Tradeable Signal

Smoothing the Trend

Using moving average to smooth the trend can help indicate future patterns.

Effect of the Market

Removing systematic market factors using the S&P 500 as a proxy could indicate which industries are performing better or worse relative to the market

Time Series Models

Time-series models are expected to perform the best since the order of the data matters in predicting future values

Best Model per Industry Varies

Each industry may have unique inherent features that can be explained better with different models according to each model's strength.

Target Variable Label Generation

01

02

Rolling Average of "AssetEnd"

Method:

Measure the industry's future performance based on the assetend variable

Label:

Percent change based on rolling average of asset/ Rolling average

Economic Meaning:

Measuring the overall risk of the portfolio

Removing Effect of the Market

Method:

Use CAPM model to get excess return related to idiosyncratic risk as the measure of future performance

Label:

Percent change of future rolling average for future excess return

OR

T-test result for future excess return

Economic Meaning:

Measuring the idiosyncratic risk

Breakdown of Balance in Classification Labels

MODELS

Logistic Regression | VAR | SARIMAX | LSTM | DES

Overview of Model Design

Recap of Initial Models

Logistic Regression

VAR

ARIMA

- The underlying implication is to flatten out the values and measure the AUC by taking a threshold
- In our model we created a new column called "Rolling average" for "Asset Ends" and used the same method of MA15 to create trading signals

- Vector auto regression
- Each variable is a linear function of past lags of itself and past lags of the other variables
- VAR performed the best with Large Cap Growth and Small Cap Blend for Retail dataset with an MSE of 254 and 771, but not with other asset classes

- Autoregressive integrated moving average
- ARIMA model works well on most asset classes in three dataset except Large_Cap_Growth and Small_Cap_Growth in Retail dataset
- Has good MSE but doesn't account for relationship between independent variables

MSE on VAR Model

Results of VAR and ARIMA

MSE on ARIMA Model

→		Etf	Institutional	Retail
	model_Utilities	2.965695e+06	3.270422e+06	1.362161e+07
	model_Commodities/Materials	1.689366e+06	2.048223e+06	2.331048e+08
	model_Consumer Goods	1.902484e+07	1.902484e+07	1.169006e+05
	model_Energy	4.155100e+07	9.000894e+07	7.182761e+06
	model_Financials	1.814615e+07	2.029748e+07	8.775202e+08
	model_Health Care/Biotech	4.758217e+07	5.656915e+07	2.954015e+08
	model_Industrials	1.225051e+07	1.225051e+07	5.308930e+08
	model_Large Cap Blend	1.170641e+09	4.386867e+09	6.536446e+07
	model_Large Cap Growth	1.906099e+07	8.711199e+08	4.528610e+02
	model_Telecom	1.317453e+05	1.317453e+05	4.137518e+07
	model_Mid Cap Blend	2.636198e+07	4.618157e+07	1.797201e+07
	model_Technology	1.123849e+07	1.359662e+07	1.309856e+08
	model_Small Cap Value	8.424452e+06	3.668705e+07	3.710688e+08
	model_Small Cap Growth	1.306339e+06	2.939469e+07	4.454934e+07
	model_Large Cap Value	2.156147e+08	6.807123e+08	1.843846e+06
	model_Real Estate	1.242387e+07	2.215344e+08	6.224666e+07
	model_Mid Cap Value	7.153766e+07	2.762401e+08	6.177286e+03
	model_Mid Cap Growth	3.179709e+06	1.965512e+08	2.975884e+03
	model_Small Cap Blend	7.030059e+07	1.096481e+08	3.739333e+02

Model1

- Train Test split: 80%-20%
- Independent variables:
 - Flow
 - FlowPct
 - PortfolioChangePct
- Target variable:
 - AssetsEnd
- Optimizer: Adam
- Metrics: mean absolute error

Results

- Training mean absolute error: 15310.3779
- Validation mean absolute error: 48351.1367

LSTM

Caveats:

- LSTM need large scale of data for training
- For a single asset class, we only have 463 observations as training set

Model2

- Train Test split: 80%-20%
- Independent variables:
 - Flow
 - FlowPct
 - PortfolioChangePct
- Target variable:
 - Labels
- Optimizer: Rmsprop
- Metrics: accuracy

Results

- Model not efficiently learning
- When making predictions, the outcomes are all null values

Selecting Best Models

Advantages and Disadvantages of Each Model

Logistic Regression

VAR

ARIMA

SARIMAX

LSTM

DES

Pro:

Easy to understand and implement

Con:

The model doesn't account for time-series data and could only be used for classification problem Pro:

The estimate is flexible and less demanding in information and time

Con:

Has lower accuracy than SARIMAX and DES Pro:

High accuracy time-series model

Con:

Can only use 1 independent variable to predict and doesn't account for the interactions between variables

Pro:

Extension of ARIMA that explicitly supports univariate time series data with a seasonal component

Con:

Has lower accuracy than Pure ARIMA model because we are adding extra independent variables

Pro:

Relative insensitivity to gap length

Con:

Needs a large dataset to be able to work, hard to explain algorithm Pro:

Good at capturing the overall trend of a time series

Con:

Not accurate for predicting single observation

Model Setup

Target Variable

AssetEnd

Train-Test split: 80%-20%

Independent Variables

Feature Engineering

Flow

FlowPct

PortfolioChangePct

Feature Engineering

We performed feature engineering to generate additional features for the model. These features are derived from the given dataset itself. These features also highlight some common trends that helps the model to predict better:

- M16: Moving Average 16 M16 uses a window of 16 weeks and calculates the values based on the past 16 moving average of the AssetsEnd.
- **M50**: Moving Average 50 M50 uses a window of 50 weeks and calculates the values based on the past 50 moving average of the AssetsEnd.

——Model Tuning

Trend Elements

There are three trend elements that require configuration.

They are the same as the ARIMA model; specifically:

p: Trend autoregression order.

d: Trend difference order.

q: Trend moving average order. 0

Seasonal Elements

There are four seasonal elements that are not part of ARIMA that must be configured; they are:

P: Seasonal autoregressive order.

D: Seasonal difference order.

Q: Seasonal moving average order. 2

m: The number of time steps for a single seasonal period.

——Trading Signal

A crossover occurs when a short moving average crosses a long moving average.

In stock trading, this meeting point can be used as a potential indicator to buy or sell an asset.

- When the short term moving average crosses above the long term moving average, this indicates a buy signal.
- When the short term moving average crosses below the long term moving average, it may be a good moment to sell.

^{*} Reference:

——Function Building **Asset Class Dataset Target** The 19 asset classes ETF we have Institutional **AssetsEnd** Financials, Energy, Retail **Industrials... Function**

Prediction for AssetsEnd

SARIMAX

——Function Building

ETF - Technology Asset Class : AUC Score: 0.6911

MSE Metric

——Combined Results

SARIMAX Model predicts AssetsEnd well for almost all asset class in three dataset except the Large Cap Growth class in institutional dataset

AUC Metric

——Combined Results

SARIMAX Model predicts tradeable signal well for almost all asset class in three dataset except the Utilities, Commodities/Materials and Telecom class

——Conclusion

- SARIMAX model did well with prediction of 116 week for all three datasets, but it does not capturing the Large Cap Blend industry that well compared with other industries we have.
- The model did well at predicting the "buy" signals than "sell" signals. The accuracy or AUC score of this method varies between different asset classes, but works the best for retail dataset compared with ETF and Institutional dataset, with an average of 60% accuracy
- When making actual investment decisions, one should consider whether the seasonal factor is significant enough to action, and we can always change the parameter to fit different prediction interval or situations. But the model only counts as a reference before making final investment decisions.

——Business Interpretation

We found 5 trading signals for the I would like to check the trading future weeks. signals in the ETF portfolio for the Let's take this as a reference and next 10 weeks. discuss with finance team for next Should I buy or sell it? steps Let's run the function with target class and ETF dataset Period 2 **Period 1 Great!** The historic signal accuracy for this model is around 70%, it might be a good start for trading

Time Series Data

Randomness

Trend

Seasonality

Cycle

$$F_{t} = \alpha A_{t-1} + (1-\alpha)FIT_{t-1}$$

$$T_{t} = \beta (F_{t} - F_{t-1}) + (1-\beta)(T_{t-1})$$

$$FIT_{t+k-1} = F_{t} + kT_{t}$$

FIT: Forecast including trend
α: Base smoothing constant
β: Trend smoothing constant
k: Number of periods to
forecast in the future

A: Actual observation

DES is good at capturing the trend of time series data and make prediction by past data.

——Example: Financials

AssetClass:	Financial
Target Series:	AssetEnd

	ReportDate	AssetsEnd
1737	2006-01-04	501.334569
1738	2006-01-11	492.598808
1739	2006-01-18	493.687562
1740	2006-01-25	496.072619
1741	2006-02-01	502.318241
	•••	
2311	2017-01-04	64676.472421
2312	2017-01-11	65014.491385
2313	2017-01-18	63604.582397
2314	2017-01-25	63997.173726
2315	2017-02-01	64378.816729

1. Data preprocessing ——Example: Financials

	ReportDate	AssetsEnd			month	year	AssetsEnd			month	year	d€
1737	2006-01-04	501.334569		0	1	2006	495.923389		0	1	2006	478
1738	2006-01-11	492.598808		1	2	2006	929.448375		1	2	2006	912
1739	2006-01-18	493.687562		2	3	2006	2608.001460		2	3	2006	2914
1740	2006-01-25	496.072619	3	3	4	2006	2619.976664		3	4	2006	2776
1741	2006-02-01	502.318241	Monthly average	4	5	2006	3024.714756	De-seasonalize	4	5	2006	3173
						•••						
2311	2017-01-04	64676.472421	129 130	129	10	2016	48797.631463		129	10	2016	48254
2312	2017-01-11	65014.491385		11	2016	55658.004831		130	11	2016	52505	
2313	2017-01-18	63604.582397		131	12	2016	62735.054322		131	12	2016	55918
2314	2017-01-25	63997.173726		132	1	2017	64323.179982		132	1	2017	62089.
2315	2017-02-01	64378.816729		133	2	2017	64378.816729		133	2	2017	63196.
579 ro	ws × 2 columns	3		134 ro	ws × 3 o	columns	3			ws × 3 c		

Double Exponential Smoothing (DES) Forecast ——Example: Financials

Capture the trend of the original time series

2. Train and predict

- Train-Test split: 80%-20%
- Burn-in period of 10 months
- α: Base Smoothing Constant (Try 0-1.0 with 0.05 step)

--Example: Financials

- β: Trend Smoothing Constant (Try 0-1.0 with 0.05 step)
- Evaluation metric: MSE
- Find the best combination of α and β by grid search

- Test MSE: 23931604.92(4892^2)
- DES is only good with capturing the smooth trend of one period after the train set

3. Extrapolate the method to the entire time series

——Example: Financials

4. Identify tradable signals

AssetsEnd	act_signal	prediction	pre_signal
3522.955867	Sell	3582.850000	Buy
3284.826647	Sell	3702.646531	Sell
3173.225080	Sell	3646.744123	Sell
3086.179979	Buy	3639.685322	Sell
3576.932134	Buy	3618.643203	Buy
3970.014798	Sell	3855.575593	Buy
3621.189334	Sell	4088.782423	Buy
3412.667455	Sell	4173.705374	Buy
3222.398201	Buy	4177.198997	Sell
4752.533635	Buy	4118.206820	Buy
5298.463066	Sell	4372.558293	Buy

- Standing at this month, we can get the prediction of next month.
- If we see the prediction of next month (3702.65 in this case) is higher than this month, we identify that we should "buy" this month.
- If lower, we should "sell".
- If the same, we should "hold" (rarely the case).
- The same with "actual signal".

5. Evaluation

- Accuracy: 56.10%
- Sensitivity: 85.53%
 - How many of the "buy" signals were correctly identified

——Example: Financials

- Specificity: 8.51%
 - How many of the "sell" signals were correctly identified
- Precision: 60.19%
 - How many predictive "buy" signals were correct

6. Different intervals

ignal3	pre_si	prediction	act_signal3	AssetsEnd
Sell		3702.646531	Buy	3284.826647
NaN		3646.744123	NaN	3173.225080
NaN		3639.685322	NaN	3086.179979
Buy		3618.643203	Sell	3576.932134
NaN		3855.575593	NaN	3970.014798
NaN		4088.782423	NaN	3621.189334
Buy		4173.705374	Buy	3412.667455
NaN		4177.198997	NaN	3222.398201
NaN		4118.206820	NaN	4752.533635
Buy		4372.558293	Buy	5298.463066
NaN		4677.027404	NaN	4542.328511

——Example: Financials

- Since DES is better at capturing the trend, if we enlarge the interval to identify the signals, we could get better results
- For every three months, identify one signal
- Three months interval accuracy: 63.41%
- Six months interval accuracy: 90%

——Function Building

Double Exponential Smoothing (DES) Forecast ——Function Building

Function outputs

date

——Function Building

Double Exponential Smoothing (DES) Forecast ——Function Building

- MSE between prediction and original time series:
 35348994.52
- One month interval:

Accuracy: 56.10%

o AUC score: 0.47

Three months interval:

Accuracy: 73.17%

O AUC score: 0.51

• Six months interval:

Accuracy: 90.00%

• AUC score: 0.75

One month interval	
True Positive: 65	False Negative: 11
False Positive: 43	True Negative: 4
Three months interval	
Three month	s interval
Three month True Positive: 29	s interval False Negative: 3

Six months interval	
True Positive: 16	False Negative: 0
False Positive: 2	True Negative: 2

AssetsEnd MSE ——Combined results

Utilities

1.758965e+06

2.211257e+06 5.931096e+06

- 0.600

- 0.500

- 0.475

-0.450

Double Exponential Smoothing (DES) Forecast ——Combined results

Three months AUC

Utilities

0.551932

0.551932 0.567460

——Combined results **Six months AUC**

Double Exponential Smoothing (DES) Forecast ——Conclusion

- Double Exponential smoothing may not do well with prediction of a single month's value, but it's good at capturing the overall trend. So it could be used for identifying tradable signals of longer period.
- The accuracy or AUC score of this method varies between different asset classes, because they all have different trend during the 10 years between 2006 to 2017.
- Since most of the asset classes have an upward trend between 2006 to 2017, the model we have now do much better at predicting the "buy" signals than "sell" signals.
- When making actual investment decisions, one should consider whether the fluctuation is significant enough to action. In other words, whether the potential profit is worth the risk.

Conclusion

Findings | Interpretation | Limitations

Interpretations Of Best Models

SARIMAX has performed well in various industries, and to a certain extent can be used as a guide for medium-term transactions

DES performed well for medium term transactions with three months interval, but overall is better for long-term trend prediction

Findings

 Out of VAR, ARIMA, logistic regression, Double Exponential Smoothing and SARIMAX:

Double Exponential Smoothing provides the best consistent AUC overall

- However, since we are running models for 60 sets(3 datasets for ETF, institutional and retail × 20 asset classes for each), when comparing between Double Exponential Smooth and SARIMAX, SARIMAX provides a larger AUC on certain asset classes
- In the future, we suggest to use SARIMAX when investing on different asset classes, and use DES for investing overall.

Limitations and Improvements

Limitations

The amount of information in the data and the size of the dataset is small, so that the transaction information of the market itself is difficult to support long-term forecasts.

Improvements

- Introduce external information such as interest rates
 - Separate analysis of systematic risk and idiosyncratic risk using risk exposure analysis models
 - Suggestions for creating label to measure idiosyncratic risk: Percent change of future rolling average for future excess return OR T-test result for future excess return

Thank you for listening

Any Questions?