Descrição Protocolo FPGA-Host

Julio Nunes Avelar

5 Junho de 2024

1 Introdução

No âmbito da validação de processadores em FPGAs, o desenvolvedor perde drasticamente a capacidade de analisar sinais internos e externos do processador durante a sua execução. Por este motivo, precisamos de um hardware externo ao processador com capacidade de ler e escrever informações na memória, enviar informações ao processador e controlar os principais sinais do mesmo. Além disso, este módulo precisa ser capaz de se comunicar com uma máquina Host para que os dados possam chegar ao programa de teste e/ou ao desenvolvedor que está testando. Por esse motivo, necessita-se do desenvolvimento de um protocolo onde a máquina Host consiga enviar comandos e informações ao hardware auxiliar e vice-versa.

2 Funcionalidades Necessárias

Para controlar o Core em teste na FPGA, é essencial ter domínio sobre seus sinais de entrada e saída, como os sinais de clock (CLK) e os dados do barramento de memória, entre outros. Para isso, o controlador precisa executar algumas funções específicas, que são:

- 1. Controlar o sinal de CLK.
- 2. Controlar o sinal de RESET.
- 3. Escrever na memória.
- 4. Ler da memória.
- 5. Controlar a prioridade de acesso à memória.
- 6. Realizar o controle de timeout de execução do Core.
- 7. Verificar o término da execução de um programa no Core.

3 Comandos - Instruções

3.1 Formatação

31:8	7:0
imediato	opcode

Tabela 1: Formatação da instrução

3.2 Opcodes

Descrição	Opcode	ACII opcode	Imediato	Segundo pacote
Enviar N pulsos de CLK	01000011	С		
Parar o CLK do Core	01010011	S		
Retomar o CLK do Core	01110010	r		
Resetar o Core	01010010	R		
Escrever na posição N de memoria	01010111	W		Y
Ler a posição N de memoria	01001100	L		
Carregar bits mais significativos no Acumulador	01010101	U		
Carregar bits menos significativos no acumulador	01101100	1		
Somar N ao acumulador	01000001	A		
Escrever Acumulador na posição N	01110111	W		
Escrever N na posição do acumulador	01110011	s		
Ler a posição do acumulador	01110010	r		
Setar timeout	01010100	T		
Setar tamanho da pagina de memoria	01010000	P		
Executar testes em memoria	01000101	E		
Obter o ID e verificar funcionamento do modulo	01110000	р		
Definir endereço N de termino de execução	01000100	D		
Definir o valor do Acumulador como	01100100	d		
endereço de termino	01100100	l u		
Escrever N posições a partir do acumulador	01100101	e		
Ler N posições a partir do acumulador	01100010	b		

Tabela 2: Listas de comandos suportados pelo protocolo

4 Implementação

4.1 Funcionamento

Para casos onde há comunicação Master-Slave, como no protocolo SPI, haverá uma linha de sinal denominada CAL (Callback). Esta linha será responsável por informar à máquina Host que o controlador possui alguma informação pronta ou que está pronto para a execução de um novo comando.

Caso 1 Apenas envio:

Master	Instrução
Slave	

Caso 2 Envio duplo:

Master	Instrução	Data
Slave		

Caso 3 Envio e recebimento:

Master	Instrução	
Slave		Data

4.2 Formas de comunicação

Nome	Velocidade
UART	$115200 \mathrm{bps}$
SPI	10MHz
PCIe	
USB	

Tabela 3: Formas de comunicação