Санкт-Петербургский политехнический университет Петра Великого Институт компьютерных наук и технологий Кафедра компьютерных систем и программных технологий

Отчет по лабораторной работе №4

по дисциплине «Схемотехника операционных устройств» Синтез конечных автоматов

> Работу выполнил: Ильин В.П. Группа: 35300901/10005 Преподаватель: Киселев И.О.

Санкт-Петербург 2023

Содержание

1	Цели работы	2
2	Исходные данные	2
3	Ход работы 3.1 Структурный синтез КА	5
4	Вывод	8

1. Цели работы

- Закрепление навыков структурного синтеза конечных автоматов;
- Закрепление знаний о характеристиках и режимах работы триггеров основных типов;
- Получение практических навыков тестирования и управления КА;
- Получение навыков ввода прокта в графическом редакторе пакета QP, тестирования и отладки проекта и анализа временных характеристик KA;
- Знакомство с редактором KA пакета QP и анализ результатов синтеза;
- Получение навыков отладки цифровых устройств класса КА на физической модели: конфигурирование ПЛИС и экспериментальная проверка работы КА при использовании лабораторного стенда.

2. Исходные данные

Вариант исходного задания – 8. Тип триггера – ЈК.

$(x_2, x_1)^t$	r^t			
	0	1	2	3
0.0	2	Н	0	1
0.1	Н	Н	Н	Н
1 0	3	0	Н	2
1 1	Н	2	3	1

Таблица 2.1: Таблица переходов

r^t	0	1	2	3	
$(y_2, y_1)^t$	01	10	10	01	

Таблица 2.2: Таблица выходов

3. Ход работы

3.1. Структурный синтез КА

При помощи таблицы 2.1 составим граф переходов.

Рис. 3.1: Граф переходов синтезируемого автомата

Всего автомат имеет 4 различных состояния, значит, минимальное необходиоме число триггеров $m=\log_2 4=2$. Воспользовавшись экономичным кодированием внутренних состояний, получим необходимые коды:

r^t	0	1	2	3
$(Q_2,Q_1)^t$	00	01	11	10

Таблица 3.1: Коды состояний автомата

Воспользовавшись таблицами 2.1 и 3.1 получим закодированную таблицу переходов синтезируемого КА:

$(x_2, x_1)^t$	$(Q_2,Q_1)^t$				
(x_2, x_1)	00	01	11	10	
0.0	11	Н	00	01	
0.1	Н	Н	Н	Н	
1 0	10	00	Н	11	
1 1	Н	11	10	01	

Таблица 3.2: Таблица переходов

Используя таблицу истинности для ЈК-триггера, построим таблицу управления триггером:

$(x_2, x_1)^t$	$(Q_2,Q_1)^t$	$(Q_2, Q_1)^{t+1}$	J_2	K_2	J_1	K_1
00	00	11	1	Н	1	Н
00	01	Н	Н	Н	Н	Н
00	11	00	Н	1	Н	1
00	10	01	Н	1	1	Н
01	00	Н	Н	Н	Н	Н
01	01	Н	Н	Н	Н	Н
01	11	Н	Н	Н	Н	Н
01	10	Н	Н	Н	Н	Н
10	00	10	1	Н	0	Н
10	01	00	0	Н	Н	1
10	11	Н	Н	Н	Н	Н
10	10	11	Н	0	1	Н
11	00	Н	Н	Н	Н	Н
11	01	11	1	Н	Н	0
11	11	10	Н	0	Н	1
11	10	01	Н	1	1	Н

Таблица 3.3: Таблица функций возбуждения триггеров

Произведем минимизацию полученных функций при помощи карт Карно:

Также составим таблицу для выходных сигналов, как функций состояния автоматов, и проведем минимизацию.

$Q_2, Q_1)$	(y_2,y_1)
0 0	0.1
0.1	1 0
1 1	1 0
1 0	0.1

$$y_1 = \overline{Q}_1, \ y_2 = Q_2 \overline{Q}_1 + \overline{Q}_2 Q_1 = \overline{\overline{Q_2} \overline{Q}_1} \cdot \overline{\overline{Q}_2 Q_1}$$

3.2. Исследование синтезированного автомата

Введем схему синтезированного автомата в Quartus Prime.

Рис. 3.2: Синтезированная схема

Рис. 3.3: Technology Map Viewer

Flow Status	Successful - Sun Apr 16 19:07:18 2023
Quartus Prime Version	18.1.0 Build 625 09/12/2018 SJ Lite Edition
Revision Name	lab4
Top-level Entity Name	lab4
Family	Cyclone IV E
Device	EP4CE6E22C8
Timing Models	Final
Total logic elements	3 / 6,272 (< 1 %)
Total registers	2
Total pins	8 / 92 (9 %)
Total virtual pins	0
Total memory bits	0 / 276,480 (0 %)
Embedded Multiplier 9-bit elements	0/30(0%)
Total PLLs	0/2(0%)

Рис. 3.4: Аппаратные затраты

Рис. 3.5: Моделирование работы

Сравнение выходных результатов для ${\bf Q}$ и ${\bf Y}$ подтверждает правильность работы устройства.

3.3. Синтез конечного автомата средствами Quartus Prime

Теперь создадим автомат при помощи встроенных средств среды Quartus.

Рис. 3.6: Настройки создания автомата

Рис. 3.7: Синтезированная схема

Flow Status	Successful - Sun Apr 16 21:06:18 2023
Quartus Prime Version	18.1.0 Build 625 09/12/2018 SJ Lite Edition
Revision Name	lab4_2
Top-level Entity Name	lab4_2
Family	Cyclone IV E
Device	EP4CE6E22C8
Timing Models	Final
Total logic elements	3 / 6,272 (< 1 %)
Total registers	2
Total pins	6 / 92 (7 %)
Total virtual pins	0
Total memory bits	0 / 276,480 (0 %)
Embedded Multiplier 9-bit elements	0 / 30 (0 %)
Total PLLs	0/2(0%)

Рис. 3.8: Отчет о компиляции

Рис. 3.9: State Machine Viewer

4. Вывод

В ходе работы были закреплены знания характеристик и режимов работы триггеров. Были получены навыки структурного синтеза, тестирования и управления конечными автоматами. Конечный автомат на основе заданных данных был синтезирован вручную, а также при помощи встроенных средств Quartus Prime. Автомат, полученный вручную работает медленее и содержит большее число элементов, чем созданный автоматически. Помимо оптимизаций, производимых Quartus это также связано с тем, что для тестирования «ручной» автомат выводил промежуточные значения.