7-9 Monday – 309-GD2

Xử lý ảnh INT3404 1

Giảng viên: TS. Nguyễn Thị Ngọc Diệp

Email: ngocdiep@vnu.edu.vn

Slide & code: https://github.com/chupibk/INT3404_1

Week 7 recall: Fourier transform

the value of each point F(u, v) is obtained by multiplying the spatial image with the corresponding base function and summing the result.

Final project registration

Reg	ıctr	コナルへ	nn t	<u> ^rm</u>
NCK	ıstı	auc	יו ווע	\cup \cup \cup \cup \cup

• https://forms.gle/Qpp1hbX9QPG875gT8

Homework 2 review

Delayed to next week ☺

Lịch trình

n Nội dung	Yêu cầu đối với sinh viên
1 Giới thiệu môn học Làm quen với OpenCV + Python	Cài đặt môi trường: Python 3, OpenCV 3, Numpy, Jupyter Notebook
Phép toán điểm (Point operations) – Điều chỉnh độ tương phản – Ghép ảnh	Làm bài tập 1: điều chỉnh gamma tìm contrast hợp lý
3 Histogram - Histogram equalization - Phân loại ảnh dùng so sánh histogram	Thực hành ở nhà
4 Phép lọc trong không gian điểm ảnh (linear processing filtering) - làm mịn, làm sắc ảnh	Thực hành ở nhà Tìm hiểu thêm các phép lọc
5 Tim cạnh (edge detection)	Thực hành ở nhà
6 Các phép toán hình thái (Erosion, Dilation, Opening, Closing) - tìm biển số	Làm bài tập 2: tìm barcode
7 Chuyển đổi không gian - miền tần số (Fourier) <mark>- Hough transform</mark>	Thực hành ở nhà
Phân vùng (segmentation) - depth estimation - threshold-based - watershed/grabcut	Đăng ký thực hiện bài tập lớn
9 Mô hình màu Chuyển đổi giữa các mô hình màu	Làm bài tập 3: Chuyển đổi mô hình màu và thực hiện phân vùng
 Mô hình nhiễu -Giảm nhiễu -Khôi phục ảnh -Giảm nhiễu chu kỳ Ước lượng hàm Degration -Hàm lọc ngược, hàm lọc Wiener 	Thực hành ở nhà
11 Template matching – Image Matching	Làm bài tập 4: puzzle
12 Nén ảnh	Thực hành ở nhà
13 Hướng dẫn thực hiện đồ án môn học	Trình bày đồ án môn học
14 Hướng dẫn thực hiện đồ án môn học	Trình bày đồ án môn học
15 Tổng kết cuối kỳ	Ôn tập
Xử lý anh - INT3404 1 - Diep	ong - 2019 UET.VNU 11

Hough transform

Hough transform

- Robust method to find a shape in an image
- Shape can be described in parametric form
- A voting scheme is used to determine the correct parameters

Example: Line fitting

• Many objects characterized by presence of straight lines

Difficulty of line fitting

- Extra edge points (clutter), multiple models
 - Which points go with which line, if any?
- Only some parts of each line detected, and some parts are missing:
 - How to find a line that bridges missing evidence?
- Noise in measured edge points, orientations:
 - How to detect true underlying parameters

Voting

- It is not feasible to check all combinations of features by fitting a model to each possible subset
- Voting is a general technique where we let the features vote for all models that are compatible with it
 - Cycle through features, cast votes for model parameters
 - Look for model parameters that receive a lot of votes
- Noise & clutter features with cast votes too, but typically their votes should be inconsistent with the majority of "good" features

Fitting lines with Hough transform

- Given points that belong to a line, what is the line?
- How many lines are there?
- Which points belong to which lines?
- Hough transform is a voting technique that can be used to answer all of these questions
- Main idea:
 - 1. Record vote for each possible line on which each edge point lies
 - 2. Look for lines that get many votes

Line planes

a b
FIGURE 10.28
(a) xy-plane.
(b) Parameter space.

What if the line approaches the vertical or horizontal direction? (i.e., infinity slope)

Polar representation for lines

rho: perpendicular distance from line to origin

theta: angle the perpendicular makes with the x-axis

Normal presentation of a line:

$$x\cos\theta + y\sin\theta = \rho$$

→ Point in image space is now sinusoid segment in Hough space

Basic Hough transform algorithm

- Initialize H[d, θ]=0
 For each *edge* point in E(x, y) in the image for θ = 0 to 180 // some quantization; why not 2pi?
 d = xcosθ + ysinθ // maybe negative
 H[d, θ] += 1
 Find the value(s) of (d, θ) where H[d, θ] is maximum
- 4. The detected line in the image is given by $d = x\cos\theta + y\sin\theta$

Extensions of Hough algorithm

Extension 1: Use the image gradient

- 1. same
- 2. for each edge point I[x,y] in the image

$$\theta = \text{gradient at } (x,y)$$

 $d = x \cos \theta - y \sin \theta$

$$H[d, \theta] += 1$$

- 3. same
- 4. same

$$\theta = \tan^{-1}\left(\frac{\partial f}{\partial y} / \frac{\partial f}{\partial x}\right)$$

Extensions

Extension 1: Use the image gradient

- 1. same
- 2. for each edge point I[x,y] in the image

compute unique (d, θ) based on image gradient at (x,y)

$$H[d, \theta] += 1$$

- 3. same
- 4. same

(Reduces degrees of freedom)

Extension 2

- give more votes for stronger edges (use magnitude of gradient)

Extension 3

- change the sampling of (d, θ) to give more/less resolution

Extension 4

 The same procedure can be used with circles, squares, or any other shape...

Hough transform for circles

· Circle: center (a,b) and radius r

$$(x_i - a)^2 + (y_i - b)^2 = r^2$$

· For a fixed radius r, unknown gradient direction

Hough transform for circles

Equation of Circle:

$$(x_i - a)^2 + (y_i - b)^2 = r^2$$

If radius is not known: 3D Hough Space! Use Accumulator array A(a,b,r)

Hough transform for circles

```
For every edge pixel (x,y):

For each possible radius value r:

For each possible gradient direction \theta:

// or use estimated gradient at (x,y)

a = x - r \cos(\theta) // column

b = y + r \sin(\theta) // row

H[a,b,r] += 1

end

end
```

Example: Detecting circles with Hough

Note: a different Hough transform (with a separate accumulator) was used for each circle radius

Example: iris detection

radius)

Voting: practical tips

- Minimize irrelevant tokens first
- Choose a good grid/discretization

Too fine	?	Too
		coarse

- Vote for neighbors, also (smoothing in accumulator array)
- Use direction of edge to reduce parameters by 1
- To read back which points voted for "winning" peaks, keep tags on the votes

Hough transform: pros and cons

- Pros:
 - All points are processed independently, so can cope with occlusion, gaps
 - Some robustness to noise: noise points unlikely to contribute consistently to any single bin
 - can detect multiple instances of a model in a single pass
- Cons:
 - Complexity of search time increases exponentially with the number of model parameters
 - Non-target shapes can produce spurious peaks in parameter space
 - Quantization: can be tricky to pick a good grid size

Generalized Hough Transform

- Detect any arbitrary shape
 - Requires specification of the exact shape of the object
 - Define a model shape by its boundary points and a reference point
- Compute centroid
- For each edge compute its distance to centroid

$$r = \begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} x - x_0 \\ y - y_0 \end{bmatrix}$$

- Find edge orientation (gradient angle)
- Construct a table of angles and r values

Generalized Hough algorithm

• As homework ©

Threshold-based Segmentation

Thresholding based segmentation

- Goal: to identify an object based on uniform intensity
- Use the histogram to compute the best threshold that can separate the object intensity

Thresholding principles

- Basic image segmentation technique
- Assumes following conditions:
 - Scene contains uniformly illuminated, flat surfaces
 - Image is set of approximately uniform regions
- Goal:
 - Set one or more thresholds which split intensity range into intervals
 - → define intensity classes
- Result:
 - · Objects labelled by classifying pixel intensities into classes
 - → Objects separated from background

Thresholding example

• Set N-1 thresholds T_k , $k=1,\ldots,N-1$, $N\geq 2$, so that pixel f(x, y) is classified into class n if

$$T_{n-1} \le f(x,y) < T_n, \quad n=1,\ldots,N$$

• By definition, $T_0 = 0$ and $T_N = G_{max} + 1 = 256$

Illustration of 4-level thresholding. $T_0 = 0$ and $T_4 = 256$. First level is background.

Thresholding example

original image

bilevel thresholding

trilevel thresholding

- Single threshold: N = 2
 - bilevel (binary) thresholding, or binarisation
 - considered in this course
- Multilevel thresholding: N > 2
 - case N = 3 often called trilevel

Histogram profiles

- Desirable histogram shape
 - bimodal with distinct modes and valley between modes
 - minimum of valley separates classes
- Undesirable histogram shapes
 - . mode at limit of intensity range
 - ⇒ modelling the histogram difficult
 - mode not distinct
 - ⇒ setting good threshold not easy
 - unimodal
 - ⇒ thresholding difficult but still possible

Good and bad histograms

- Several thresholds are acceptable
 - near valley (G) in histogram
- Bad thresholds have different effects
 - . too low threshold (L) tends to split lines
 - too high threshold (H) tends to merge lines

Maximum separation

- Proposed by N.Otsu (Japan), 1978
- Consider a candidate threshold t
 - t defines two classes of grayvalues
- Define measure of separation of classes
 - distance between classes as function of t
- Find optimal threshold t_{opt} that maximises separation

Adaptive thresholding

Mean and variance of **total** normalised histogram P(i):

$$\mu = \sum_{i=0}^{G_{max}} iP(i)$$
 $\sigma^2 = \sum_{i=0}^{G_{max}} (i - \mu)^2 P(i)$

Threshold t splits P(i) into two classes C_1 , C_2 with

$$\mu_1(t) = \frac{1}{q_1(t)} \sum_{i=0}^{t} i P(i) \qquad \sigma_1^2(t) = \frac{1}{q_1(t)} \sum_{i=0}^{t} [i - \mu_1(t)]^2 P(i)$$

$$\mu_2(t) = \frac{1}{q_2(t)} \sum_{i=t+1}^{G_{max}} iP(i) \quad \sigma_2^2(t) = \frac{1}{q_2(t)} \sum_{i=t+1}^{G_{max}} [i - \mu_2(t)]^2 P(i)$$

$$q_1(t) = \sum_{i=0}^{t} P(i)$$
 $q_2(t) = \sum_{i=t+1}^{G_{max}} P(i)$ $q_1(t) + q_2(t) = 1$

Two types of variance

- Total variance σ^2 has two components
 - within-class variance for given t
 - ⇒ weighted sum of two class variances
 - between-class variance for given t
 - ⇒ distance between classes
- Within-class variance is

$$\sigma_W^2(t) = q_1(t)\sigma_1^2(t) + q_2(t)\sigma_2^2(t)$$

- \Rightarrow note that $\mu = q_1(t)\mu_1(t) + q_2(t)\mu_2(t)$
- Between-class variance is the rest of σ^2

$$\sigma_B^2(t) = \sigma^2 - \sigma_W^2(t)$$

$$= q_1(t)q_2(t) [\mu_1(t) - \mu_2(t)]^2$$

$$= q_1(t) [1 - q_1(t)] [\mu_1(t) - \mu_2(t)]^2$$

Threshold selection via optimization

- Optimal threshold t_{opt} best separates the two classes
- $\sigma_W^2(t) + \sigma_B^2(t)$ is constant two equivalent options

 - minimise $\sigma_W^2(t)$ as overlap of classes maximise $\sigma_B^2(t)$ as distance between classes
- ⇒ Use second option

Otsu threshold selection algorithm

$$q_{1}(t+1) = q_{1}(t) + P(t+1) \quad \text{with} \quad q_{1}(0) = P(0)$$

$$\mu_{1}(t+1) = \frac{q_{1}(t)\mu_{1}(t) + (t+1)P(t+1)}{q_{1}(t+1)} \quad \text{with} \quad \mu_{1}(0) = 0 \quad (2)$$

$$\mu_{2}(t+1) = \frac{\mu - q_{1}(t+1)\mu_{1}(t+1)}{1 - q_{1}(t+1)}$$

- **①** Compute image histogram P(i), calculate μ and σ
- ② For each $0 < t < G_{max}$
 - recursively compute $q_1(t)$, $\mu_1(t)$ and $\mu_2(t)$ by eq.(2)
 - calculate $\sigma_B^2(t)$ by eq.(1)
- **3** Select threshold as $t_{opt} = \arg \max_{t} \sigma_{R}^{2}(t)$

Properties

Advantages

- · general: no specific histogram shape assumed
- · works well, stable
- extension to multilevel thresholding possible
- \Rightarrow for N thresholds and $M = G_{max} + 1$ grey levels, maximum search in array of M^N size

Drawbacks

- assumes that $\sigma_{B}^{2}(t)$ is unimodal: not always true
- $\sigma_B^2(t)$ is often flat, false maxima may occur
- tends to artificially enlarge small classes
- small classes may be merged and missed

Gaussian mixture modeling of Histograms

- Assume histogram P(i) is mixture of two Gaussian distributions
- Fit this model to P(i), estimate parameters of model
- Find optimal threshold analytically as valley in model function

Algorithm: as homework!

Properties of Gaussian Mixture approach

Advantages

- reasonably general histogram model
- when model is valid, minimises classification error probability
- may work for small-size classes

Drawbacks

- many histograms are not Gaussian mixtures
- ⇒ greyvalues are finite and non-negative
- ⇒ peak close to intenisity limit do not fit Gaussian
- extension to multithresholding practically impossible
- needs irrealistic simplification of model
- difficult to detect near and flat modes of histogram

Examples

- Gaussian algorithm sets lower thresholds in both cases
 - ⇒ fits object contours better than Otsu

Otsu vs Gaussian approach

- Otsu algorithm sets threshold T = 158 in valley
 - ⇒ lines are well-separated
- Gaussian algorithm sets slightly high threshold T = 199
 - ⇒ some lines touch

Gaussian gives poor results

image

histogram

Otsu T = 159

159 Gauss T = 20

- Otsu algorithm finds small class of pixels (dark discs)
- Gaussian algorithm tries to separate two high peaks formed by background
- ⇒ Selects noisy valley because true class is
 - too small
 - too far away

Issues with Thresholding

- Histogram based thresholding is very effective
- Even with low noise, if one class is much smaller than the other, we might still be in trouble
- Remember also that both these images have the same histogram:

Graph-based segmentation

Images as graphs

- Fully-connected graph
 - node for every pixel
 - link between every pair of pixels, p,q
 - similarity \mathbf{w}_{ij} for each link

Source: Seitz

Segmentation by graph cuts

- Break Graph into Segments
 - Delete links that cross between segments
 - Easiest to break links that have low cost (low similarity)
 - similar pixels should be in the same segments
 - dissimilar pixels should be in different segments

Cuts in a graph

- Link Cut
 - · set of links whose removal makes a graph disconnected
 - cost of a cut:

$$cut(A,B) = \sum_{p \in A, q \in B} c_{p,q}$$

One idea: Find minimum cut

- gives you a segmentation
- · fast algorithms exist for doing this

Source: Seitz

But min cut is not always the best cut...

Normalized cut

Normalized Cut

- · a cut penalizes large segments
- fix by normalizing for size of segments

$$Ncut(A, B) = \frac{cut(A, B)}{volume(A)} + \frac{cut(A, B)}{volume(B)}$$

• volume(A) = sum of costs of all edges that touch A

Source: Seitz

Normalized cut examples

Details: http://www.cs.berkeley.edu/~malik/papers/SM-ncut.pdf

Many other segmentation algorithm

- Mean-shift
- K-mean
- Watershed
- MRFs with graph cut
- Grabcuts
- Soft segmentation
- ...

