

Unicesumar – Centro Universitário de Maringá Pró-Reitoria Acadêmica

Curso: Engenharia de Software	Série: 3°	Turma: A	Turno: Noturno
Professor(a): EDUARDO PILLA			
Acadêmico(a):Vitor Ricardo Silva Barbosa		F	RA:1201076-2
Disciplina: SISTEMAS OPERACIONAIS			

GERÊNCIA DE PROCESSADORES QUESTIONÁRIO CAPÍTULO 8

3.bimestre AEP 01

1- O que é uma política de escalonamento de processo?

É uma política, composta por critérios estabelecidos, que define qual dos processos em estado de pronto será escolhido para usar o processador.

2- Quais as funções do escalonador e do dispatcher?

O escalonador é responsável por implementar os critérios da política de escalonamento.

O dispatcher é responsável pela troca de contexto dos processos, **o que ocorre** após o escalonador determinar qual processo deve fazer uso do processador.

3- Quais os principais critérios utilizados pela política de escalonamento?

Utilização do processador: na maioria dos sistemas é desejável que o processador passe maior parte do seu tempo ocupado.

Throughput: quanto maior o throughput, maior o número de tarefas executadas em função do tempo. A maximização do throughput é desejada na maioria dos sistemas.

Tempo de processador: é o tempo que um processo leva no estado de execução durante seu processamento.

Tempo de espera: é o tempo que um processo permanece na fila de pronto durante seu processamento, aguardando para ser executado. A redução do tempo de espera dos processos é desejada pela maioria das políticas de escalonamento.

Tempo de turnaround: é o tempo que um processo desde a sua criação até seu término, levando em consideração todo o tempo gasto na espera para alocação de memória, espera na fila de pronto, processamento na UCP e na fila de espera, como nas operações de E/S. As políticas de escalonamento buscam minimizar o tempo de turnaround.

Tempo de resposta: é o tempo decorrido entre uma requisição ao sistema ou à aplicação e o instante em que a resposta é exibida.

4 - Diferencie os tempos do processador, espera, turnaround e resposta.

Tempo de processador ou tempo de UCP: é o tempo que um processo leva no estado de execução durante seu processamento.

Tempo de espera: é o tempo total que um processo permanece na fila de pronto durante seu processamento, aguardando para ser executado.

Tempo de turnaround: é o tempo desde a criação de um processo até o seu término. Levando em consideração todo o tempo gasto na espera para alocação de memória, espera na fila de pronto (tempo de espera), processamento na UCP (tempo de processador) e na fila de espera, como nas operações de E/S.

Tempo de resposta: é o tempo decorrido entre uma requisição ao sistema ou à aplicação e o instante em que a resposta é exibida.

5 - Diferencie os escalonamentos preemptivos e não-preemptivos.

No tipo de escalonamento **não-preemptivo** quando um processo está em execução, nenhum evento externo pode ocasionar a perda do uso do processador. O processo somente sai do estado de execução caso termine seu processamento ou execute instruções do próprio código que ocasionem uma mudança para o estado de espera.

No escalonamento **preemptivo**, o sistema operacional pode interromper um processo em execução e passá-lo para o estado de pronto, com o objetivo de alocar outro processo na UCP.

6 - Qual a diferença entre os escalonamentos FIFO e circular?

No escalonamento **FIFO(First-in-First-out)** o processo que chegar primeiro ao estado de pronto é o selecionado para execução, o processo que passam para o estado de pronto entram no seu final e são escalonados quando chegam ao seu início.

Quando um processo vai para o estado de espera, o primeiro processo da fila de pronto é escalonado. O escalonamento **circular** é bastante parecido com o **FIFO**, porém quando um processo passa para o estado de execução existe um tempo-limite para o uso contínuo do processador denominado fatia de tempo.

7 - Descreva o escalonamento SJF e o escalonamento por prioridades.

No escalonamento **SJF** o algoritmo de escalonamento seleciona o processo que tiver o menor tempo de processador ainda por executar. Desta forma, o processo em estado de pronto que necessitar de menos tempo de UCP para terminar seu processamento é selecionado para execução.

O **escalonamento por prioridades** é um escalonamento do tipo *preemptivo* realizado com base em um valor associado a cada processo denominado prioridade de execução. O processo com maior prioridade no estado de pronto é sempre o escolhido para execução, e processos com valores iguais são escalonados seguindo o critério de *FIFO*. Neste processo o conceito de fatia de tempo não existe, consequentemente um processo em execução não pode sofrer preempção por tempo.

8- Qual a diferença entre preempção por tempo e preempção por prioridade?

A **preempção por tempo** visa interromper os processos baseados no menor tempo de processo, enquanto quando **baseado na prioridade** visa processar a fila através do nível de prioridade.

9 - O que é um mecanismo de escalonamento adaptativo?

Esta política busca ajustar dinamicamente qual é a ordem dos processos objetivando o balanceamento do uso do processador.

10- Que tipo de escalonamento aplicações de tempo real exigem?

Escalonamento por **prioridades**. Onde a prioridade maior será escalonada primeiro.

11- O escalonamento por múltiplas filas com realimentação favorece processos CPU-bound ou I/O-bound? Justifique.

Este tipo de escalonamento favorece processos I/O-bound. O processo de IO tem um tempo de espera curto e por isso podem subir para as filas com prioridade maior enquanto processos de CPU exigem mais cpu e podem ser intercaladas para favorecer o processo de IO.

12 - Considere que cinco processos sejam criados no instante de tempo 0 (P1, P2, P3, P4 e P5) e possuam as características descritas na tabela a seguir:

Processo	Tempo de UCP	Prioridade
P1	10	3
P2	14	4
P3	7	2
P4	20	5

Desenhe um diagrama ilustrando o escalonamento dos processos e seus respectivos tempos de turnaround, segundo as políticas especificadas a seguir. O tempo de troca de contexto deve ser desconsiderado.

FIFO

Processo	Tempo de UCP	Prioridade	Tempo
P1	10	3	10
P2	14	4	24
Р3	7	2	31
P4	20	5	51

SJF

Processo	Tempo de UCP	Prioridade	Tempo
P3	7	2	7
P1	10	3	17

P2	14	4	31
P4	20	5	51

Prioridade (número menor implica a prioridade maior)

Process o	Tempo de UCP	Prioridad e	Temp o
P3	7	2	7
P1	10	3	17
P2	14	4	31
P4	20	5	51

Circular com fatia de tempo igual a 2 u.t.

Processo	Tempo de UCP	Prioridade	Tempo
P1	10	3	2
P2	14	4	4
Р3	7	2	6
P4	20	5	8
P1	8	3	10
P2	12	4	12
P3	5	2	14
P4	18	5	16
P1	6	3	18
P2	10	4	20
P3	3	2	22

P4	16	5	24
P1	4	3	26
P2	8	4	28
Р3	1	2	30
P4	14	5	32
P1	2	3	34
P2	6	4	36
P3	-	2	37
P4	12	5	39
P1	-	3	41
P2	4	4	43
P3	-	2	-
P4	10	5	45
P2	2	4	47
P4	8	5	49
P2	-	4	51
P4	6	5	53
P4	4	5	55
P4	2	5	57
P4	0	5	59

Sendo assim os processos terminaram após os seguintes tempos:

Processo	Segundos

P1	41
P2	51
P3	37
P4	59

13 - Considere um sistema operacional com escalonamento por prioridades onde a avaliação do escalonamento é realizada em um intervalo mínimo de 5ms. Neste sistema, os processos A e B competem por uma única UCP. Desprezando os tempos de processamento relativo às funções do sistema operacional, a tabela a seguir fornece os estados dos processos A e B ao longo do tempo, medido em intervalos de 5ms (E= execução, P= pronto e W= espera). O processo A tem menor prioridade que o processo B.

a) Em que tempos A sofre alteração?

10,15,20,40,45,55,70,75,80,85,95,100.

b) em que tempos B sofre alteração?

0,5,10,15,25,30,35,40,45,50,60,65,70,75,85,90.

c) Refaça a tabela anterior supondo que o processo a é mais prioritário que o processo B.

	00-04	05-09	10-14	15-19	20-24	25-29	30-34	35-39	40-44	45-49
Processo A	E	E	W	W	P	E	E	E	W	W
Processo B	P	P	E	E	E	P	P	P	E	W

	50-54	55-59	60-64	65-69	70-74	75-79	80-84	85-89	90-94	95-99	100-105
Processo A	w	P	E	E	w	w	P	E	E	-	-
Processo B	P	E	P	P	E	E	w	w	P	E	E

14 - Como o valor do quantum pode afetar o grau de multiprogramação em um sistema operacional ?

Um valor de quantum grande pode prejudicar a multiprogramação, na medida em que a ocorrência de preempções por tempo é reduzida, favorecendo os processos CPU-bound e prejudicando os processos I/O-bound. Um valor de quantum pequeno ocasionaria um grande **overhead** (qualquer combinação de tempo de computação em excesso ou indireta de memória, bandwidth ou outros recursos necessários para executar uma tarefa específica) ao sistema devido a alta frequência de mudanças de contexto geradas pelas frequentes preempções por tempo.

15 - Considere um sistema operacional que implemente escalonamento circular com fatia de tempo igual a 10 u.t. Em um determinado instante de tempo, existem apenas três processos (P1,P2 e P3) na fila de pronto, e o tempo de UCP de cada processo é 18, 4 e 13 u.t., respectivamente. Qual o estado de cada processo no instante de tempo T, considerando a execução dos processos P1, P2 e P3, nesta ordem, e que nenhuma operação de E/S é realizada?

b) T= 11 u.t.

c) T=33 u.t.

16 - Considere um sistema operacional que implemente escalonamento circular com fatia de tempo igual a 10 u.t. Em um determinado instante de tempo, existem apenas três processos (P1,P2 e P3) na fila de pronto, e o tempo de UCP de cada processo é 14, 4 e 12 u.t., respectivamente. Qual o estado de cada processo no instante de tempo T, considerando a execução dos processos P1, P2

e P3, nesta ordem, e que apenas o processo P1 realiza operações de E/S? Cada operação de E/S é executada após 5 u.t. e consome 10 u.t.

d) T = 8 u.t.

e) T= 18 u.t.

f) T=28 u.t.

17 - Existem quatro processos (P1, P2, P3 e P4) na fila de pronto, com tempos de UCP estimados em 9, 6, 3 e 5, respectivamente. Em que ordem os processos devem ser executados para minimizar o tempo de turnaround dos processos ?

A melhor política para minimizar o tempo de turnaround seria utilizar o escalonamento SJF na sequência de execução P3, P4, P2 e P1.

18 - Considere a tabela a seguir onde:

Processo	Tempo de UCP	Prioridade
P1	40	4
P2	20	3
Р3	50	1
P4	30	3

Qual o tempo de turnaround médio dos processos, considerando o tempo de troca de contexto igual a 0 e a 5 u.t. para os seguintes escalonamentos:

- **a) FIFO:** P1=8 u.t., P2=12 u.t., P3=22 u.t., P4=28 u.t.
- **b) SJF:** P2=4 u.t., P4=10 u.t., P1=18 u.t., P3=28 u.t.
- **c)** Circular com fatia de tempo igual a **20 u.t:** P3=10 u.t., P4=20 u.t., P2=40 u.t., P1=60 u.t.
- **d) Prioridades:** P3=10 u.t., P4=16 u.t., P2=20 u.t., P1=28 u.t.