IIC1253 Matemáticas Discretas

Sasha Kozachinskiy

DCC UC

01.09.2025

Hoy...

Teoría de conjuntos: principio de axiomática, notación {}, paradoja de Russell, regularidad.

▶ Una teoría (de primer orden) – todas las matemáticas.

- ▶ Una teoría (de primer orden) todas las matemáticas.
- todas teoremas consecuencias.

- ▶ Una teoría (de primer orden) todas las matemáticas.
- todas teoremas consecuencias.
- Zermelo, Frenkel;

- ▶ Una teoría (de primer orden) todas las matemáticas.
- ▶ todas teoremas consecuencias.
- Zermelo, Frenkel;
- todos objetos son conjuntos.

- ▶ Una teoría (de primer orden) todas las matemáticas.
- todas teoremas consecuencias.
- Zermelo, Frenkel;
- todos objetos son conjuntos.

Nociones indefinibles:

- ▶ Una teoría (de primer orden) todas las matemáticas.
- todas teoremas consecuencias.
- Zermelo, Frenkel;
- todos objetos son conjuntos.

Nociones indefinibles:

Conjunto

 $Predicado \in (ser elemento)$

Conjunto vacío

Axioma (de conjunto vació)

Existe un conjunto sin elementos.

Axioma (de conjunto vació)

- Existe un conjunto sin elementos.
- ► ∃a 46 7(6Ea)

Conjunto vacío

Axioma (de conjunto vació)

- Existe un conjunto sin elementos.

Axioma (de extensionalidad)

Si dos conjuntos tienen los mismos elementos, entonces son iguales.

Conjunto vacío

Axioma (de conjunto vació)

- Existe un conjunto sin elementos.

Axioma (de extensionalidad)

Si dos conjuntos tienen los mismos elementos, entonces son iguales.

Corolario

El conjunto vacío es único.

Nuevos conjuntos

Axioma (de emparejamiento)
$$C = \{\alpha, \beta\}$$
 , $\{\alpha\}$

► Sean a, b dos conjuntos. Entonces, existe un conjunto c cuyos elementos son exactamente a, b.

Nuevos conjuntos

Axioma (de emparejamiento)

► Sean a, b dos conjuntos. Entonces, existe un conjunto c cuyos elementos son exactamente a, b.

Nuevos conjuntos

Axioma (de emparejamiento)

Sean a, b dos conjuntos. Entonces, existe un conjunto c cuyos elementos son exactamente a, b.

Teorema

Para cualquier k conjuntos a_1, \ldots, a_k existe un conjunto b cuyos

elementos son exactamente
$$a_1, ..., a_k$$
.

$$\begin{cases}
a_1, a_2, ..., a_k
\end{cases}$$

$$\forall x_1 \forall x_2 -.. \forall x_k
\end{cases}$$

$$\begin{cases}
\forall x_1 \forall x_2 \cdot... \forall x_k \in \{0\} \leftarrow \{0\} \land x_k \in \{0\} \land x_k \in \{0\} \leftarrow \{0\} \land x_k \in \{0\} \leftarrow \{0\} \land x_k \in \{0\} \leftarrow \{0\} \land x_k \in \{0\} \land x_k \in \{0\} \land x_k \in \{0\} \land x_k \in \{0\} \leftarrow \{0\} \land x_k \in \{0\} \land x_k$$

Elementos y subconjuntos

Definición

► Un conjunto a es un subconjunto de un conjunto b si todos los elementos de a son elementos de b;

Elementos y subconjuntos

Definición

Un conjunto a es un subconjunto de un conjunto b si todos los elementos de a son elementos de b;

Elementos y subconjuntos

Definición

- Un conjunto a es un subconjunto de un conjunto b si todos los elementos de a son elementos de b;
- ► $a \subseteq b = \forall x \ (x \in a) \rightarrow (x \in b)$.

Proposición

 $\varnothing \subseteq$ a para cualquier conjunto a.

$$\forall \times (\times \in \emptyset) \rightarrow (\times \in \alpha)$$

Lista los elementos y los subconjuntos:

► Ø; Flementos: hoe had Subfonjuntos: \$

Lista los elementos y los subconjuntos:

► Ø;

Lista los elementos y los subconjuntos:

```
Element
► Ø:
                                           3a,63
                                                              Subconj
                                                             {o, l}, b,
                                                         9a3, 8B3
\blacktriangleright \{x\};
                    Esamenos: 6, 843=8
                  5 w8 (onjuntos: {6, 5, 8, 3}), {43, 15, 43}
\blacktriangleright \{\emptyset, \{\emptyset\}\}.
```

4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶

▶ $a \notin b$, $a \not\subseteq b$

 $ightharpoonup a \notin b$, $a \not\subseteq b$

ightharpoonup a
otin b, $a \not\subseteq b$

$$ightharpoonup a \notin b$$
, $a \not\subseteq b$

▶
$$a \in b$$
, $a \nsubseteq b$

▶
$$a \notin b$$
, $a \subseteq b$

►
$$a \notin b$$
, $a \nsubseteq b$
 $\alpha = \{ \emptyset \}$ $\beta = \emptyset$
► $a \in b$, $a \nsubseteq b$
• $a \notin b$, $a \subseteq b$
• $a \notin b$, $a \subseteq b$
• $a \in b$, $a \subseteq b$

Subconjuntos e igualdad

Ejemplo $\{x, x\} = \{x\}.$

Proposición

Sean a, b dos conjuntos. Entonces a = b si y sólo si $a \subseteq b$ y $b \subseteq a$.

Reformulación de axioma de xextonsionaliada

Paradoja de Russel B(a,2) (-> 7 B(a,a) 7]2 (Va (a \ 2) () 7 (a \ \ a)) Teorema (Russell) No existe un conjunto r tal que sus elementos son exactamente todos los conjuntos a tal que $a \notin a$. Demostración. Asumimos que 2 asi-existe a e ? (T (a ea)

Paradoja de Russel

Teorema (Russell)

No existe un conjunto r tal que sus elementos son exactamente todos los conjuntos a tal que $a \notin a$.

► En teoría de conjuntos *informal* (1870-1900, Cantor) eso había considerado como una paradoja.

Paradoja de Russel

Teorema (Russell)

No existe un conjunto r tal que sus elementos son exactamente todos los conjuntos a tal que a \notin a.

- ► En teoría de conjuntos *informal* (1870-1900, Cantor) eso había considerado como una paradoja.
- ► En teoría formal: no se puede juntar conjuntos según cualquier propiedad.

▶ No queremos tener $x \in x$ (círculo vicioso);

- No queremos tener $x \in x$ (círculo vicioso);
- ▶ Igual, no queremos cadenas $x_1 = x_k \in ... \in x_2 \in x_1$.

- ▶ No queremos tener $x \in x$ (círculo vicioso);
- ▶ Igual, no queremos cadenas $x_1 = x_k \in ... \in x_2 \in x_1$.
- Mas encima, tomar un elemento de un conjunto se puede hacer solo finito número de veces, a partir de cualquier conjunto.

- No queremos tener $x \in X$ (círculo vicioso);
- Igual, no queremos cadenas $x_1 = x_k \in ... \in x_2 \in x_1$.
- Mas encima, tomar un elemento de un conjunto se puede hacer solo finito número de veces, a partir de cualquier conjunto. x=[6] x=[4, [6], [5]]

Axioma (de regularidad)

Cada conjunto $x \neq \emptyset$ tiene un elemento que no tiene elementos en

común con x.

Corolario

No existe conjunto x tal qué $x \in x$.

Demostación Asuminos, que existe x t. 9 XEX. a= {x} ayxtimen lun llomento en común - x =

Corolarios de regularidad

Corolario AR

No existe un conjunto universo u tal que todos los conjuntos son

sus elementos.

7] u (\forall x \times \text{E} \text{U}) Dem. u así & satisface 4E4 D Cerafazio de T.R. ~= { a [a &a }

Corolarios de regularidad

Corolario

No existe un conjunto universo u tal que todos los conjuntos son sus elementos.

Un conjunto b se llama singleton si $b = \{a\}$ para algún conjunto a.

Corolario

No existe un conjunto de todos los singletones.

iGracias!