2D Lennard–Jones Simulation Report Homework 3, Spring 2025

Zitian Wang

Due: 16 April 2025

Abstract

We implement a 2D Lennard–Jones molecular dynamics simulation in a 30×30 periodic box (reduced units $\sigma = 1$, $\varepsilon = 1$, cutoff $r_c = 2.5$) using a velocity–Verlet integrator and a cell list for efficiency.

- (a) In the NVE ensemble, we test $N = \{100, 225, 400, 625, 900\}$, examine energy and momentum conservation, and assess approach to equilibrium.
- (b) In the NVT ensemble (Berendsen thermostat, $dt/\tau = 0.0025$), we run (N = 100, T = 0.1) and (N = 100, 225, 625, 900; T = 1.0), monitor equilibration, and compute radial distribution functions (RDF).

Our detailed console outputs for part (a) reveal that all NVE runs diverge to unphysical high temperatures $(10^{63} - 10^{67})$ and energies $(10^{73} - 10^{75})$, indicating failure of long-term energy conservation. In part (b), only N = 100, T = 0.1 equilibrates and yields a meaningful RDF; high-T cases diverge despite thermostating.

1 Introduction

The Lennard–Jones potential,

$$U(r) = 4\varepsilon \left[(r)^{-12} - (r)^{-6} \right],$$

truncated and shifted at $r_c = 2.5$, models pairwise interactions. We integrate via velocity–Verlet with $dt = 10^{-4}$ and employ a cell list for O(N) force computation. Periodic boundaries use the minimum-image convention.

2 Code Design and Implementation

2.1 Architecture

- compute_forces: constructs a 2D grid of cells, loops over each cell and its 8 neighbors, applies truncated LJ force with shift $U(r_c)$.
- LJSimulation class: encapsulates
 - Initialization: lattice positions + small perturbation, Gaussian velocities with zero net momentum.
 - Integration: velocity-Verlet steps; periodic wrap.
 - Thermostat: Berendsen rescaling factor $\lambda = \sqrt{1 + 0.0025 \left(T_{\rm target}/T_{\rm inst} 1\right)}$.

- Data recording: kinetic, potential, total energies; instantaneous temperature.
- Plotting: separate routines for energy components (three subplots), temperature, RDF.
- run_until_equilibrium: for NVT, extends production run in 5000-step windows until the moving-window average temperature changes by < 1% or 10 extensions max.
- run_test_case: loops over predefined test cases, prints summary statistics, saves figures under /Users/zitian/Particle-Methods/homework3/simulation_results5/.

2.2 Numerical Choices

- Time step $dt = 10^{-4}$: small enough to reduce integration drift.
- Pre-equilibration 20 000 steps: allows initial relaxation.
- Production 50 000 steps: long enough to observe trends; adaptive NVT may extend further.
- Cell list size L/r_c : accelerates force loops from $O(N^2)$ to O(N) per step.
- RDF bin width $\Delta r = 0.05$, computed up to $r_{\text{max}} = L/2$.

3 Simulation Setup

Domain size	30×30 (periodic)	
Particle numbers (N)	100, 225, 400, 625, 900	
Ensembles	NVE (no thermostat), NVT (Berendsen)	
Time step	$dt = 10^{-4}$	
Pre-equilibration	20000 steps	
Production	50 000 steps (+ adaptive extension for NVT)	
RDF bin width	0.05	
Thermostat	Berendsen, $dt/\tau = 0.0025$	

4 Results and Analysis

4.1 (a) NVE Ensemble

Table 1: NVE average temperature and total energy (production run).

\overline{N}	$\langle T \rangle$	$\langle E_{ m tot} angle$
100	$2.463 \times 10^{64} \pm 4.192 \times 10^{63}$	$4.337 \times 10^{73} \pm 1.480 \times 10^{73}$
225	$3.585 \times 10^{57} \pm 2.205 \times 10^{42}$	$2.227 \times 10^{74} \pm 3.564 \times 10^{73}$
400	$7.075 \times 10^{67} \pm 0$	$8.515 \times 10^{74} \pm 8.384 \times 10^{73}$
625	$8.355 \times 10^{66} \pm 0$	$2.087 \times 10^{75} \pm 1.497 \times 10^{74}$
900	$4.251 \times 10^{63} \pm 7.308 \times 10^{47}$	$4.213 \times 10^{75} \pm 2.371 \times 10^{74}$

Console-measured Averages and Fluctuations.

Figure 1: Kinetic, potential, and total energies vs. time (NVE). After a few thousand steps, energies plateau at unphysical values due to integration drift.

Figure 2: Temperature vs. time for N=225 (NVE). Temperature jumps to $\sim 10^{57}$ and remains constant.

Energy Components & Temperature Trends.

Figure 3: RDF for N=225 (NVE): absence of peaks indicates no physical equilibrium.

Radial Distribution Function.

Analysis of Divergence.

- Integration error accumulation: even symplectic Verlet exhibits $O(dt^2)$ global energy drift over long runs.
- Absence of thermostat: no mechanism to remove numerical heating.
- Scaling with N: larger N yields larger absolute energy drift but smaller relative fluctuations (zero STD for some cases).
- Momentum conservation: initial removal of COM velocity ensures drift is purely numerical, not translational.

4.2 (b) NVT Ensemble

Figure 4: NVT, N=100, T=0.1: stable temperature around 0.100 and converged RDF with first peak at $r\approx 1.0$.

Low-Temperature Case: N = 100, T = 0.1.

Figure 5: Temperature vs. time for NVT at T=1.0: thermostat cannot stabilize the large kinetic energy, leading to divergence.

High-Temperature Cases: T = 1.0.

Discussion.

• Thermostat effectiveness: Berendsen rescales velocities but cannot counteract rapid numerical heating at high target T with $dt = 10^{-4}$.

- Adaptive extension: even after multiple 5000-step extensions, temperature fails to meet the < 1% stability criterion.
- RDF absence: no stable configuration reached \rightarrow RDFs are nonphysical (not shown).

5 Conclusions and Recommendations

Part (a) NVE.

- All NVE simulations show catastrophic energy drift: average temperatures reach $10^{63}-10^{67}$, energies $10^{73}-10^{75}$.
- Cause: global $O(dt^2)$ integration error accumulates unchecked.
- Recommendation: reduce dt, consider higher-order or symplectic integrators with better long-term energy behavior, or implement a mild thermostat for energy control.

Part (b) NVT.

- Only the low-temperature case (N = 100, T = 0.1) equilibrates successfully, yielding a stable temperature and a physically meaningful RDF.
- High-temperature cases (T = 1.0) diverge despite Berendsen rescaling.
- Cause: velocity-rescaling thermostat insufficient to remove rapid numerical heating at high kinetic energies and large fluctuations.
- Recommendation: use a more advanced thermostat (e.g. Nosé-Hoover chain), further reduce dt, or apply multiple-time-step schemes to stabilize high-T dynamics.