

INTEGRATION

Calculus & Analytical Geometry MATH-101

Instructor: Dr. Naila Amir (SEECS, NUST)

Techniques of Integration

- Substitution Rule
- Integration by Parts
- Integration of Rational
- Integration of Irrational Functions
- Trigonometric Substitution
- Trigonometric Integrals

Book: Thomas Calculus (11th Edition) by George B. Thomas, Maurice D. Weir, Joel R. Hass, Frank R. Giordano

• Chapter: 8

• Section: 8.4

Book: Calculus (5th Edition) by Swokowski, Olinick and Pence

Chapter: 9

•**Section:** 9.2

• In this section, we will see how to use trigonometric identities to integrate certain combinations of trigonometric functions. Sin ZCDS of dy

We start with powers of sine and cosine.

Example: Evaluate

$$\int \cos^3 x \ dx. \sqrt{$$

Solution:

• Simply substituting $u = \cos x$ isn't helpful, since then $du = -\sin x \, dx$.

ullet In order to integrate powers of cosine, we would need an extra $\sin x$ factor.

 \bullet Similarly, a power of *sine* would require an extra $\cos x$ factor.

• Thus, here we can separate one cosine factor and convert the remaining $\cos^2 x$ factor to an expression involving sine using the identity: $\sin^2 x + \cos^2 x = 1$, i.e.,

$$\cos^3 x = \cos^2 x \cdot \cos x = (1 - \sin^2 x) \cos x$$

Solution:

• We can then evaluate the integral by substituting $u = \sin x$ and $du = \cos x \, dx$.

$$\int \cos^3 x \, dx = \int \cos^2 x \cdot \cos x \, dx$$

$$= \int (1 - \sin^2 x) \cos x \, dx$$

$$= \int (1 - u^2) du = u - \frac{1}{3}u^3 + C$$

$$\Rightarrow \int \cos^3 x \, dx = \sin x - \frac{1}{3}\sin^3 x + C.$$

- In general, we try to write an integrand involving powers of sine and cosine in a form where we have only one sine factor. The remainder of the expression can be in terms of cosine.
- We could also try only one cosine factor. The remainder of the expression can be in terms of sine.

Example: Evaluate

$$\int \sin^5 x \cos^2 x \, dx.$$

Solution:

- We could convert $\cos^2 x$ to $1 \sin^2 x$. However, we would be left with an expression in terms of $\sin x$ with no extra $\cos x$ factor.
- Instead, we separate a single sine factor and rewrite the remaining $\sin^4 x$ factor in terms of $\cos x$. So, we have:

sin⁵
$$x \cos^2 x = (\sin^2 x)^2 \cos^2 x \sin x = (1 - \cos^2 x)^2 \cos^2 x \sin x$$
.

• Substituting $u = \cos x$, we have $du = -\sin x \, dx$. So,
$$\int \sin^5 x \cos^2 x \, dx = \int (1 - \cos^2 x)^2 \cos^2 x \sin x \, dx$$

$$= \int (1 - u^2)^2 u^2 \left(-\frac{du}{2} \right) = -\int (u^2 - 2u^4 + u^6) du = -\left(\frac{u^3}{3} - 2\frac{u^5}{5} + \frac{u^7}{7} \right) + C$$

$$\Rightarrow \int \sin^5 x \cos^2 x \, dx = -\frac{1}{3} \cos^3 x + \frac{2}{5} \cos^5 x - \frac{1}{7} \cos^7 x + C.$$

- In the preceding examples, an odd power of sine or cosine enabled us to separate a single factor and convert the remaining even power.
- If the integrand contains even powers of both sine and cosine, this strategy fails.
- In that case, we can take advantage of the following half-angle identities:

$$\sin^2 x = \frac{1}{2}(1 - \cos 2x)$$
 and $\cos^2 x = \frac{1}{2}(1 + \cos 2x)$.

Example: Evaluate

$$\int \sin^2 x \, dx. \ \sqrt{}$$

If we write $\sin^2 x = 1 - \cos^2 x$, the integral is not simple to evaluate. However, using the half-angle formula for $\sin^2 x$ we have:

$$\int \sin^2 x \, dx = \frac{1}{2} \int (1 - \cos 2x) dx = \frac{1}{2} \left(x - \frac{1}{2} \sin 2x \right) + C.$$

• To summarize, we list guidelines to follow when evaluating integrals of the form:

$$\int \sin^m x \cos^n x \, dx, \qquad \text{if } m \text{ is also } d$$
gers.

where $m \geq 0$ and $n \geq 0$ are integers.

• If the power of cosine is odd (n = 2k + 1), save one cosine factor and use $\cos^2 x = 1 - \sin^2 x$ to express the remaining factors in terms of sine as:

$$\int \sin^m x \cos^{2k+1} x \, dx = \int \sin^m x \, (\cos^2 x)^k \cos x \, dx = \int \sin^m x \, (1 - \sin^2 x)^k \cos x \, dx.$$

Then, substitute $u = \sin x$.

• If the power of sine is odd (m = 2k + 1), save one sine factor and Use $\sin^2 x = 1 - \cos^2 x$ to express the remaining factors in terms of cosine as:

$$\int \sin^{2k+1} x \cos^n x \, dx = \int (\sin^2 x)^k \cos^n x \sin x \, dx = \int (1 - \cos^2 x)^k \cos^n x \sin x \, dx. \quad (B)$$
Then, substitute $u = \cos x$.

- \odot Note that, if the powers of both sine and cosine are odd, either (A) or (B) can be used.
- If the powers of both sine and cosine are even, use the half-angle identities:

$$\sqrt{\sin^2 x = \frac{1}{2}(1 - \cos 2x)} \text{ and } \cos^2 x = \frac{1}{2}(1 + \cos 2x)$$

Sometimes, it is helpful to use the identity:

$$\sin x \cos x = \frac{1}{2} \sin 2 x.$$

• We can use a similar strategy to evaluate integrals of the form:

$$y = t a \sqrt{\lambda}$$

where $m \geq 0$ and $n \geq 0$ are integers.

As

$$\frac{d}{dx}(\tan x) = \sec^2 x,$$

we can separate a $\sec^2 x$ factor. Then, we convert the remaining (even) power of secant to an expression involving tangent using the identity $\sec^2 x = 1 + \tan^2 x$. di= secritary du

Alternately, as

$$\frac{d}{dx}(\sec x) = \sec x \tan x,$$

we can separate a $\sec x \tan x$ factor and convert the remaining (even) power of tangent to secant.

Example: Evaluate

Solution:

If we separate one $\sec^2 x$ factor, we can express the remaining $\sec^2 x$ factor in terms of tangent using the identity: $\sec^2 x = 1 + \tan^2 x$. Then, we can evaluate the integral by substituting $u = \tan x$ so that $du = \sec^2 x \, dx$. Thus,

$$\int \tan^6 x \sec^4 x \, dx = \int \tan^6 x \underbrace{\sec^2 x} \sec^2 x \, dx = \int \tan^6 x \underbrace{(1 + \tan^2 x)} \sec^2 x \, dx,$$

$$= \int u^6 (1 + u^2) \, du = \int (u^6 + u^8) \, du = \frac{u^7}{7} + \frac{u^9}{9} + C.$$

$$\Rightarrow \int \tan^6 x \sec^4 x \, dx = \frac{1}{7} \tan^7 x + \frac{1}{9} \tan^9 x + C.$$

Example: Evaluate

$$\int \tan^3 x \sec^7 x \, dx,$$

Solution:

If we separate one $\sec^2 x$ factor, we are left with a $\sec^5 x$ factor that can not be easily converted to tangent. However, if we separate a $\sec x \tan x$ factor, we can convert the remaining power of tangent to an expression involving only secant. Here we can use the identity: $\tan^2 x = 1 - \sec^2 x$. We can then evaluate the integral by substituting $u = \sec x$ so that $du = \sec x \tan x \, dx$. Thus,

$$\int \tan^3 x \sec^7 x \, dx = \int \tan^2 x \sec^6 x \left(\sec x \tan x\right) \, dx = \int \left(\sec^2 x - 1\right) \sec^6 x \left(\sec x \tan x\right) dx$$

$$= \int (u^2 - 1)u^6 \, du = \int (u^8 - u^6) \, du = \frac{u^9}{9} - \frac{u^7}{7} + C. \checkmark$$

$$\Rightarrow \int \tan^5 x \sec^7 x \, dx = \frac{1}{9} \sec^9 x - \frac{1}{7} \sec^7 x + C. \checkmark$$

• To summarize, we list guidelines to follow when evaluating integrals of the form:

$$\int \tan^m x \sec^n x \, dx,$$

where $m \geq 0$ and $n \geq 0$ are integers.

• If the power of secant is even $(n = 2k, k \ge 2)$ save $\sec^2 x$. Then, use $\sec^2 x = 1 + \tan^2 x$ to express the remaining factors in terms of $\tan x$ as:

$$\int \tan^m x \sec^{2k} x \, dx = \int \tan^m x \left(\sec^2 x \right)^{k-1} \sec^2 x \, dx = \int \tan^m x \left(1 + \tan^2 x \right)^{k-1} \sec^2 x \, dx$$
Then, substitute $u = \tan x$.

• If the power of tangent is odd (m = 2k + 1), save $\sec x \tan x$. Then, use $\tan^2 x = 1 - \sec^2 x$ to express the remaining factors in terms of $\sec x$ as:

$$\int \tan^{2k+1} x \sec^n x \, dx = \int (\tan^2 x)^k \sec^{n-1} x \sec x \tan x \, dx = \int (\sec^2 x - 1)^k \sec^{n-1} x \sec x \tan x \, dx$$
Then, substitute $u = \sec x$. $\sqrt{ }$

Other Integrals

 \odot If an even power of tangent appears with an <u>odd power of secant</u>, There is no standard method of evaluation. However, it is useful to express the integrand completely in terms of $\sec x$. We possibly use integration by parts.

- For other cases, we don't the guidelines are not as clear-cut. We may need to use:
 - Identities
 - Integration by parts
 - A little ingenuity
- Integrals of the form

can be found by similar methods.

Other Integrals

• Finally, if an integrand has one of the forms:

 $\cos mx \cos nx$, $\sin mx \sin nx$ or $\sin mx \cos nx$,

we use a product-to-sum formula to evaluate the given integral.

	Integral	Identity
a	$\int \sin mx \cos nx dx$	$\sin A \cos B = \frac{1}{2} [\sin(A - B) + \sin(A + B)] \checkmark$
b	$\int \sin mx \sin nx dx$	$\sin A \sin B = \frac{1}{2} [\cos(A - B) - \cos(A + B)]$
С	$\int \cos mx \cos nx dx$	$\cos A \cos B = \frac{1}{2} [\cos(A - B) + \cos(A + B)]$

Practice Questions

Book: Calculus (5th Edition) by Swokowski, Olinick and Pence

Chapter: 9

Exercise: 9.2
 Q # 1 to Q # 18, Q # 24 to Q # 30.

Riemann Sums & Definite Integrals

Book: Thomas Calculus (11th Edition) by George B. Thomas, Maurice D. Weir, Joel R. Hass, Frank R. Giordano

• Chapter: 5

• **Section:** 5.3, 5.4

Book: Calculus (5th Edition) by Swokowski, Olinick and Pence

• Chapter: 5

•Section: 5.4, 5.5, 5.6

Let us first consider the irregular shape shown below.

We can find an approximation by placing a grid of squares over it.

By counting squares,

$$A > 33 \text{ and } A < 60$$

i.e.
$$33 < A < 60$$

By taking a finer 'mesh' of squares we could obtain a better approximation for A.

We now study another way of approximating to A, using rectangles, in which A can be determined by a limit process.

(a, b)

The accompanying figure shows part of the curve y = f(x) from x = a to x = b.

We will find an expression for the area A bounded by the curve, the x —axis, and the lines x = a and x = b.

The interval [a, b] is divided into n sections of equal width, Δx .

The n rectangles are then drawn to approximate the area A under the curve.

Dashed lines represent the height of each rectangle.

The position of each line is given by an x —coordinate, x_n .

The first rectangle has height $f(x_1)$ and breadth Δx_1

Thus, the area of the first rectangle = $f(x_1)$. Δx_1

An approximation for the area under the curve, between x = a to x = b, can be found by summing the areas of the rectangles.

$$A \approx f(x_1).\Delta x_1 + f(x_2).\Delta x_2 + f(x_3).\Delta x_3 + f(x_4).\Delta x_4 + f(x_5).\Delta x_5 + f(x_6).\Delta x_6$$

Riemann Sum

Using the Greek letter Σ (sigma) to denote 'the sum of', we have

to denote 'the sum of', we have
$$A \approx \sum_{i=1}^{i=6} f(x_i) \cdot \Delta x_i.$$

$$A \approx \sum_{i=1}^{i=6} f(x_i) \cdot \Delta x_i.$$

More generally, for n number of rectangles, we have

$$A \approx \sum_{i=1}^{i=n} f(x_i).\Delta x_i = S.$$

This sum is called Riemann Sum for f(x) on the interval [a,b].

Riemann Sum

By increasing the number n rectangles, we decrease their width Δx , i.e., as $n \to \infty$, $\Delta x \to 0$.

So, we define:

$$A = \lim_{n \to \infty} \sum_{i=1}^{i=n} f(x_i) \Delta x_i.$$

provided the limit exists.

As the number of rectangles increased, the approximation of the area under the curve approaches a value.

Definite Integral

The definite integral from a to b, represented by:

$$\int_{a}^{b} f(x) dx$$

is the number to which all Riemann sums tend as the number of rectangles approaches infinity $(n \to \infty)$ and as the width of all rectangles tends to zero $(\Delta x \to 0)$:

$$\int_{a}^{b} f(x) dx = \lim_{n \to \infty} \sum_{i=1}^{n} f(x_i) \Delta x_i.$$

Note: The function f(x) must be continuous on the interval [a, b].

Definite Integral

Note: that the value of a definite integral is a *real number*, not a family of antiderivatives, as was the case for indefinite integrals.

Properties of the Definite Integral

1. Order of Integration:
$$\int_{b}^{a} f(x) dx = -\int_{a}^{b} f(x) dx$$

2. Zero Width Interval:
$$\int_a^a f(x) dx = 0$$

3. Constant Multiple:
$$\int_a^b kf(x) dx = \sqrt{k} \int_a^b f(x) dx$$

4. Sum and Difference:
$$\int_a^b (f(x) \pm g(x)) dx = \int_a^b f(x) dx \pm \int_a^b g(x) dx$$

$$\int_{a}^{b} f(x) dx + \int_{b}^{c} f(x) dx = \int_{a}^{c} f(x) dx$$

3. Common definition of the first section of the f

$$\min_{x \in A} f \cdot (b - a) \le \int_a^b f(x) \, dx \le \max_{x \in A} f \cdot (b - a)$$

7. Domination:
$$f(x) \ge g(x) \text{ on } [a, b] \Rightarrow \int_a^b f(x) \, dx \ge \int_a^b g(x) \, dx$$

$$f(x) \ge 0 \text{ on } [a, b] \Rightarrow \int_a^b f(x) \, dx \ge 0$$

Geometric Interpretations of the Properties of the Definite Integral

(a) Zero Width Interval:

$$\int_a^a f(x) \, dx = 0$$

(d) Additivity for definite integrals:

$$\int_a^b f(x) \, dx + \int_b^c f(x) \, dx = \int_a^c f(x) \, dx$$

(b) Constant Multiple: (k = 2)

$$\int_a^b kf(x) \, dx = k \int_a^b f(x) \, dx$$

(e) Max-Min Inequality:

$$\min f \cdot (b - a) \le \int_a^b f(x) \, dx$$

$$\le \max f \cdot (b - a)$$

(c) Sum: (areas add)

$$\int_{a}^{b} (f(x) + g(x)) dx = \int_{a}^{b} f(x) dx + \int_{a}^{b} g(x) dx$$

(f) Domination:

$$f(x) \ge g(x) \text{ on } [a, b]$$

$$\Rightarrow \int_a^b f(x) \, dx \ge \int_a^b g(x) \, dx$$

Using the Properties of the Definite Integral

Given:
$$\int_{1}^{3} f(x)dx = 6$$
 $\int_{3}^{7} f(x)dx = 9$ $\int_{1}^{3} g(x)dx = -4$

$$\int_{1}^{3} (3)f(x)dx = 3 \int_{1}^{3} f(x)dx = 3(6) = 18$$

$$\int_{1}^{3} (2f(x) - 4g(x))dx = 2\int_{1}^{3} f(x)dx - 4\int_{1}^{3} g(x)dx = 2(6) - 4(-4) = 28$$

$$\int_{1}^{7} f(x)dx = \int_{1}^{3} f(x)dx + \int_{3}^{7} f(x)dx = 6 + 9 = 15$$

$$\int_{3}^{1} f(x)dx = -\int_{1}^{3} f(x)dx = -6$$

The Fundamental Theorem of Calculus

If f(x) is continuous at every point in [a,b] and F(x) is any antiderivative of f(x) on [a,b], then

$$\int_{a}^{b} f(x)dx = F(b) - F(a).$$

Examples:

1.
$$\int_{1}^{5} |5x| dx = \frac{5x^2}{2} \Big|_{1}^{5} = \frac{5(5)^2}{2} - \frac{5(1)^2}{2} = \frac{125}{2} - \frac{5}{2} = \frac{120}{2} = \frac{60}{2}$$

$$2. \qquad \int_{\pi/6}^{2\pi/3} \sin x \, dx = -\cos x \Big|_{\pi/6}^{2\pi/3} = -\cos \left(\frac{2\pi}{3}\right) - \left[-\cos\left(\frac{\pi}{6}\right)\right] = -\left(\frac{-1}{2}\right) + \left(\frac{\sqrt{3}}{2}\right) = \frac{1+\sqrt{3}}{2} \approx 1.366$$