Traces of tensor product categories

Michael Reeks University of Ottawa

joint with Christopher Leonard (Virginia)

October 20, 2018

Categorification

Add higher structure to an object by changing sets to categories and functions to functors.

Categorification

Add higher structure to an object by changing sets to categories and functions to functors.

E.g.: $\mathsf{Vect}_\mathbb{C}$ is categorification of \mathbb{N} . The map (dim) is a decategorification.

$$\mathsf{Vect}_\mathbb{C} \to \mathbb{N}$$

$$\mathbb{C}^n\mapsto n$$

Categorification

Add higher structure to an object by changing sets to categories and functions to functors.

E.g.: $\mathsf{Vect}_\mathbb{C}$ is categorification of \mathbb{N} . The map (dim) is a decategorification.

$$\mathsf{Vect}_\mathbb{C} o \mathbb{N}$$
 $\mathbb{C}^n \mapsto n$

$$\operatorname{\mathsf{gVect}}_\mathbb{C} o \mathbb{N}[q,q^{-1}] \ V \mapsto \sum_{k \in \mathbb{Z}} q^k \operatorname{\mathsf{dim}}(V_k)$$

is a decategorification.

Decategorification: Grothendieck group

Most common decategorification functor: Grothendieck group K_0 .

Decategorification: Grothendieck group

Most common decategorification functor: Grothendieck group K_0 .

Definition

 $K_0(\mathcal{C})$ is the abelian group generated by $\{[M]|M\in \mathrm{Ob}(\mathcal{C})/\cong\}$, subject to the relation:

$$\exists$$
 s.e.s. $0 \to L \to M \to N \to 0$

$$\Rightarrow [L] + [N] = [M]$$

Decategorification: Grothendieck group

Most common decategorification functor: Grothendieck group K_0 .

Definition

 $K_0(\mathcal{C})$ is the abelian group generated by $\{[M]|M\in \mathrm{Ob}(\mathcal{C})/\cong\}$, subject to the relation:

$$\exists \text{ s.e.s. } 0 \to L \to M \to N \to 0$$
$$\Rightarrow [L] + [N] = [M]$$

$$egin{aligned} \mathcal{K}_0ig(\mathsf{Vect}_\mathbb{C}ig)&\cong\mathbb{Z} \ \\ \mathcal{K}_0ig(\mathsf{gVect}_\mathbb{C}ig)&\cong\mathbb{Z}[q,q^{-1}] \end{aligned}$$

The trace (or zeroth Hochschild homology) of a \mathbb{C} -linear additive category \mathcal{C} :

$$\mathsf{Tr}(\mathcal{C}) := \big(\oplus_{x \in \mathsf{ob}(\mathcal{C})} \mathsf{End}_{\mathcal{C}}(x) \big) \middle/ \mathsf{Span} \{ \mathit{fg} - \mathit{gf} \},$$

where f and g run through all pairs of morphisms $f: x \to y$ and $g: y \to x$ with $x, y \in \mathsf{Ob}(\mathcal{C})$.

The trace (or zeroth Hochschild homology) of a \mathbb{C} -linear additive category \mathcal{C} :

$$\mathsf{Tr}(\mathcal{C}) := \big(\oplus_{\mathsf{x} \in \mathsf{ob}(\mathcal{C})} \mathsf{End}_{\mathcal{C}}(\mathsf{x}) \big) \middle/ \mathsf{Span} \{ \mathit{fg} - \mathit{gf} \},$$

where f and g run through all pairs of morphisms $f: x \to y$ and $g: y \to x$ with $x, y \in \mathsf{Ob}(\mathcal{C})$.

If $\mathcal C$ is equipped with a tensor product, say $\mathcal C$ is monoidal.

The trace (or zeroth Hochschild homology) of a \mathbb{C} -linear additive category \mathcal{C} :

$$\mathsf{Tr}(\mathcal{C}) := \big(\oplus_{\mathsf{x} \in \mathsf{ob}(\mathcal{C})} \mathsf{End}_{\mathcal{C}}(\mathsf{x}) \big) \middle/ \mathsf{Span} \{ \mathit{fg} - \mathit{gf} \},$$

where f and g run through all pairs of morphisms $f: x \to y$ and $g: y \to x$ with $x, y \in \mathsf{Ob}(\mathcal{C})$.

If $\mathcal C$ is equipped with a tensor product, say $\mathcal C$ is monoidal. $\mathcal C$ monoidal \Rightarrow Span $\{fg-gf\}$ is ideal.

The trace (or zeroth Hochschild homology) of a \mathbb{C} -linear additive category \mathcal{C} :

$$\mathsf{Tr}(\mathcal{C}) := \big(\oplus_{x \in \mathsf{ob}(\mathcal{C})} \mathsf{End}_{\mathcal{C}}(x) \big) \middle/ \mathsf{Span} \{ \mathit{fg} - \mathit{gf} \},$$

where f and g run through all pairs of morphisms $f: x \to y$ and $g: y \to x$ with $x, y \in \mathsf{Ob}(\mathcal{C})$.

If $\mathcal C$ is equipped with a tensor product, say $\mathcal C$ is monoidal. $\mathcal C$ monoidal \Rightarrow Span $\{fg-gf\}$ is ideal. \Rightarrow Tr $(\mathcal C)$ as an algebra.

Relationship between K_0 and Tr

Grothendieck group is often contained in trace, but rarely isomorphic.

Relationship between K_0 and Tr

Grothendieck group is often contained in trace, but rarely isomorphic.

Have a Chern character map

$$\mathcal{K}_0(\mathcal{C}) \longrightarrow \mathsf{Tr}(\mathcal{C})$$
 $[A] \longmapsto [1_A]$

which is often injective.

Relationship between K_0 and Tr

Grothendieck group is often contained in trace, but rarely isomorphic.

Have a Chern character map

$$\mathcal{K}_0(\mathcal{C}) \longrightarrow \mathsf{Tr}(\mathcal{C})$$
 $[A] \longmapsto [1_A]$

which is often injective.

Additional advantage: trace is invariant under taking Karoubi envelope.

Example: categorified quantum groups

[Khovanov-Lauda] and [Rouquier] independently constructed categories $\boldsymbol{U}(\mathfrak{g})$ such that

$$\mathcal{K}_0(\mathbf{U}(\mathfrak{g}))\cong\dot{\mathcal{U}}_q(\mathfrak{g})$$

where $\dot{\mathcal{U}}_q(\mathfrak{g})$ - idempotent form of quantum group associated to $\mathfrak{g}.$

Example: categorified quantum groups

[Khovanov-Lauda] and [Rouquier] independently constructed categories $\boldsymbol{U}(\mathfrak{g})$ such that

$$\mathcal{K}_0(\mathbf{U}(\mathfrak{g}))\cong\dot{\mathcal{U}}_q(\mathfrak{g})$$

where $\dot{\mathcal{U}}_q(\mathfrak{g})$ - idempotent form of quantum group associated to $\mathfrak{g}.$

Morphisms given by KL diagrams:

modulo relations of the quiver Hecke algebra.

Diagrammatic realization of trace

To see trace in diagrams: draw on an annulus.

Diagrammatic realization of trace

To see trace in diagrams: draw on an annulus.

Denote by brackets an element's image in trace, e.g.

Trace of categorified quantum groups

[Beliakov-Habiro-Lauda-Webster]: for $\mathfrak g$ simply laced,

$$\mathsf{Tr}(\mathsf{U}(\mathfrak{g}))\cong\dot{\mathcal{U}}(\mathfrak{g}[t]).$$

 $\dot{\mathcal{U}}(\mathfrak{g}[t])$ - idempotent form of current algebra.

$$(\mathsf{E}_i \otimes t^r) 1_{\lambda} \longmapsto \left[egin{matrix} \lambda \\ r \\ i \end{matrix} \right], \qquad (\mathsf{F}_j \otimes t^s) 1_{\lambda} \longmapsto \left[egin{matrix} \lambda \\ s \\ j \end{matrix} \right].$$

Categorifying modules

Irreducible
$$U_q(\mathfrak{g})-modules \longleftrightarrow \mathsf{Cyclotomic}$$
 quotient $V(\lambda) \longleftrightarrow \mathsf{K}_0 \longleftrightarrow \mathsf{U}^\lambda$
$$\langle i,\lambda \rangle \hspace{-0.5cm} \bullet \hspace{0.5cm} \cdots \hspace{0.5cm} = 0$$

Categorifying modules

Irreducible
$$U_q(\mathfrak{g})$$
-modules \longleftrightarrow Cyclotomic quotient $V(\lambda)$ K_0 \mathbf{U}^{λ} \bigvee_i \cdots $=0$

[BHLW] $\mathfrak g$ simply laced:

$$\mathsf{Tr}(\mathbf{U}^{\lambda}) = W(\lambda)$$
 (local Weyl module for $\mathcal{U}(\mathfrak{g}[t])$.

Deformed cyclotomic quotient $\mapsto \mathbb{W}(\lambda)$ (global Weyl module)

Categorifying tensor products

Let $\underline{\lambda} = (\lambda_1, \dots, \lambda_n)$ be a sequence of dominant weights.

[Webster] Constructed categories $\mathcal{T}(\underline{\lambda})$ such that

$$K_0(\mathcal{T}(\underline{\lambda})) = V(\underline{\lambda}) = V(\lambda_1) \otimes \ldots \otimes V(\lambda_n)$$

Categorifying tensor products

Let $\underline{\lambda} = (\lambda_1, \dots, \lambda_n)$ be a sequence of dominant weights.

[Webster] Constructed categories $\mathcal{T}(\underline{\lambda})$ such that

$$K_0(\mathcal{T}(\underline{\lambda})) = V(\underline{\lambda}) = V(\lambda_1) \otimes \ldots \otimes V(\lambda_n)$$

Can be used to prove nondegeneracy of categorified quantum groups for symmetrizable root data.

Stendhal diagrams

Morphisms in \mathcal{T} are given by *Stendhal diagrams*.

Red strands labeled by dominant weights.

Goal

We aim to prove:

Theorem

For g simply laced, there is an algebra isomorphism

$$\mathsf{Tr}(\mathcal{T}(\underline{\lambda})) \longrightarrow W(\underline{\lambda}) = W(\lambda_1) \otimes \ldots \otimes W(\lambda_n)$$

Goal

We aim to prove:

Theorem

For g simply laced, there is an algebra isomorphism

$$\mathsf{Tr}(\mathcal{T}(\underline{\lambda})) \longrightarrow W(\underline{\lambda}) = W(\lambda_1) \otimes \ldots \otimes W(\lambda_n)$$

Goal

We aim to prove:

Theorem

For g simply laced, there is an algebra isomorphism

$$\operatorname{Tr}(\mathcal{T}(\underline{\lambda})) \longrightarrow W(\underline{\lambda}) = W(\lambda_1) \otimes \ldots \otimes W(\lambda_n)$$

The trace of a deformed version is isomorphic to $\mathbb{W}(\underline{\lambda})$.

Constructing the map

Lemma

The map $W(\underline{\lambda}) \to \mathsf{Tr}(\mathcal{T}(\underline{\lambda}))$

is an algebra homomorphism (ρ is the isomorphism from BHLW).

Surjectivity

We show that $Tr(\mathcal{T}(\underline{\lambda}))$ is spanned by Stendhal diagrams with no red-black crossings:

These are clearly in the image of the map.

Injectivity

How can we tell that the trace is not smaller than expected?

Injectivity

How can we tell that the trace is not smaller than expected?

[Webster] gets around this in the case of categorified quantum groups by studying deformations of spectra of dots.

Upper semicontinuity under deformation:

 \dim at "special point" \geq \dim at generic point

Injectivity

How can we tell that the trace is not smaller than expected?

[Webster] gets around this in the case of categorified quantum groups by studying deformations of spectra of dots. Upper semicontinuity under deformation:

 \dim at "special point" \geq \dim at generic point

Deform category so that special point is the trace, and generic point has a known dimension.

Selected references

- [Beliakov-Habiro-Lauda-Webster] Current algebras and categorified quantum groups. 2014.
- [Khovanov-Lauda] A diagrammatic approach to categorification of quantum groups I-III. 2008.
- [Rouquier] Quiver Hecke algebras and 2-Lie algebras. 2011
- [Webster] Knot invariants and higher representation theory. 2013
- [Webster] *Unfurling Khovanov-Lauda-Rouquier algebras.* 2016