

Airflow Data pipelines

Ismael Cabral

About me, Ismael Cabral

- Background: Msc Sustainable tech / Data Science
- 6 years as Data Scientist / Machine Learning Engineer
- Now: Machine Learning Engineer at Xebia Data
- Currently working on the second edition of "Data Pipelines with Apache Airflow"

About **YOU**

- Background?
- What do you think Airflow does?
- Plans to apply Airflow?
- How many DAGs have you written?

Program

Day 1

- What is Airflow?
- Installation
- Your First DAG
- Scheduling
- Context & Templating
- Branching & TriggerRules
- Sensors

Day 2

- Scheduling & Backfilling
- DAG configuration
- Variables, Xcoms & Connections
- Finish Capstone Project

Learning Goals

- Learn fundamental concepts: DAGs, Operators, Hooks
- Know your way around the Airflow UI
- Know a little about how Airflow works internally
- Be able to **debug** errors

Airflow The big picture

What is Apache Airflow?

- Open-source platform for creating, scheduling and monitoring workflows
- Started at AirBnB in 2015
- Now used by 200+ companies (ING, LinkedIn, Paypal, HBO, ...)
- Contributions from 600+ developers
- Licensed under the Apache License 2.0, for free use and distribution.

Scenario: We are working on a weather forecast data pipeline for a new app

Requirements:

- Run daily
- One geographical location

Good news! The forecast app is scaling

Requirements:

- Run hourly
- 100 geographical locations

How do you keep track of?

- Schedule over different timezones
- The status of your pipeline
- Tasks failed
- Manage changes / failure
- Insightful Logging
- Overall Performance

Airflow is the orchestrator of your data pipelines

Airflow Scheduler coordinates that your tasks are "played" when they are needed

Airflow lets you write instructions in Python. So you have the right instruments to perform your tasks

Airflow UI gives an overview of what is going good and bad in the "playbook"

The organized **logs** stream brings clarity on the history of the runs

- Airflow is not a (data) processing framework (such as Spark).
- Implementing highly dynamic / changing pipelines.
- Airflow focusses on orchestration and monitoring
- Not for streaming data solutions

Directed Acyclic Graph

AKA: Nodes with directed flow and no loops

Operators

They define and execute tasks within workflows

Action Operators

BashOperator: Executes a bash command or script.

PythonOperator: Runs a Python function as a task.

EmailOperator: Sends an email notification.

Transfer Operators

FileTransferOperator: Transfers files between different locations or systems.

SQLTransferOperator: Transfers data between databases using SQL queries. **S3ToRedshiftOperator**: Loads data from Amazon S3 into Amazon Redshift.

Sensor Operators

HttpSensor: Polls an HTTP endpoint until it returns a successful response.

S3KeySensor: Waits for a specific key or file to be available in Amazon S3.

TimeSensor: Pauses the workflow until a specific time or time interval is

reached.

Airflow Installation

Fork Repo: https://github.com/godatadriven/airflow_workspace

Select:

Code > ... > + New with options ...

Select:

4-core > Create codespace

VS Code Web environment.

- This will be your workspace for the rest of this training
- In the terminal (ctrl + `) check you have more than 4GB of allocated memory:

```
docker run --rm "debian:bullseye-slim" bash -c
'numfmt --to iec $(echo $(($(getconf _PHYS_PAGES))
* $(getconf PAGE_SIZE))))
```

 (ONLY RUN ONCE) You need to run database migrations and create the first user account. It is all defined in the docker compose file so just run:

```
docker compose up airflow-init
```

Now you can start all services:

```
docker compose up

http://0.0.0.0:8080

Airflow
UI
```



```
airflow-init_1 | Upgrades done airflow-init_1 | Admin user airflow created airflow-init_1 | 2.6.1 start_airflow-init_1 exited with code \theta
```

outputs

Capstone Project:

You are a rocket scientist for a day (or two)!

Airflow UI

Walkthrough

Localhost:8080/

- List all the DAG's in the Airflow Instance
 - Tags
 - Schedule
 - Run information
 - Delete
 - Pause/ Unpause Dags

DAG View

Grid View

The state of your DAG runs

- Wide view of all the Runs
- If you see all green, you stop worrying
- If you see yellow / red you can go deeper to review what happened

Graph view

Logical Sequence of your DAG

- You can see how tasks depend on each other
- What kind of operators do we have by color filling
- Status of each task by color edge
- Verify task dependencies are correct

Landing times

Measures Schedule time vs Realized time

- Overall view of your system performance
- Identify periods in time when there was a task failure
- See how task duration is improving (or degrading) over time
- Identify when new tasks have been added

Gant view

Detailed task duration times

- Bar size tells you how long a task takes to complete
- Helps you to identify bottlenecks in your pipeline
- Overlapping bars, means that the tasks are running in parallel

Code view

- Displays the code of the data pipeline
- Make sure that the latest code is running

Coding a DAG

A Dag in Python

- Create file called hello_world.py in dags/
- Write the hello_world.py code
- Wait 1-5 mins to pick up the new file
- By default new DAGs are paused

The DAG looks like this:

There are many ways to create a DAG


```
from airflow.models import DAG
from airflow.operators.bash import BashOperator
from airflow.operators.python import PythonOperator
import pendulum
dag = DAG(
 dag id="hello world",
 start date = pendulum.today('UTC'),
 schedule="@daily",
hello = BashOperator(
 task id="hello",
 bash command="echo 'hello",
 dag=dag
def hello world():
 print("world")
world = PythonOperator(
 task id="world",
 python callable = hello world,
 dag=dag
hello >> world
```

```
from airflow.models import DAG
from airflow.operators.bash import BashOperator
from airflow.operators.python import PythonOperator
import pendulum
def hello world():
  print("world")
with DAG(
 dag id="hello world",
 start date = pendulum.today('UTC'),
  schedule="@daily",
        hello = BashOperator(
                 task id="hello",
                  bash command="echo 'hello'"
        world = Python Operator(
                 task id="world",
                 python callable= hello world
         hello >> world
```

```
from airflow.models import DAG
from airflow.decorators import task
from airflow.operators.bash import BashOperator
from airflow.operators.python import PythonOperator
import pendulum
with DAG(
 dag id="hello world",
 start date = pendulum.today('UTC'),
  schedule="@daily",
        hello = BashOperator(
                  task id="hello",
                  bash command="echo 'hello'"
         @task
         def world():
          print("world")
         hello >> world()
```


Changes in start_date

- Airflow does no cope with well with start_date changes. It holds on to the first start_date you give it.
- Ways to work around it:
 - Change the DAG name, this registers as a new DAG in Airflow
 - Manually backfill the missing DAG runs with "airflow backfill -s [start date] -e [end date] [DAG]"

- Airflow also does not cope nicely with changing schedule
- It will take the new schedule, starting from the last DAG run
- With the new hourly interval, several DAG runs will be executed because the last run was at midnight

Task Dependencies

Common way to set dependencies

One to many

```
start = EmptyOperator(task_id="start", dag=dag)
tasks = [EmptyOperator(task_id=f"task{i}",
dag=dag) for i in range(5)]
start >> tasks
```


Chaining tasks

```
t1 = EmptyOperator(task_id="task1", dag=dag)
t2 = EmptyOperator(task_id="task2", dag=dag)
t3 = EmptyOperator(task_id="task3", dag=dag)
t4 = EmptyOperator(task_id="task4", dag=dag)
t5 = EmptyOperator(task_id="task5", dag=dag)
t6 = EmptyOperator(task_id="task6", dag=dag)
[t1, t2] >> t3 >> t4
t3 >> t5 >> t6
```


Exercise 1

Create a structure DAG for our launch?

- You can use the EmptyOperator
- from airflow.operators.empty import EmptyOperator

Time Scheduling

Schedule intervals

```
dag = DAG(
    dag_id="demo",
    start_date=datetime.datetime(2019, 1, 1),
    schedule="@daily",
)
```


Schedule execution

Airflow starts execution at the *END* of an interval!

Schedule aliases

Alias	Meaning	Equivalent cron
None	No schedule, only for manual triggering	
@once	Run only once	
@hourly	00:00 of each hour	0 * * * *
@daily	00:00:00 of each day	00***
@weekly	00:00:00 every Sunday	00 * * 0
@monthly	00:00:00 of the first day of each month	001 * *
@yearly	00:00:00 on every January 1 st	0011*

Cron vs timedelta

 We can set schedule intervals with cron, datetime.timedelta() and dateutil.relativedelta.relativedelta():

Cron	Equivalent timedelta/relativedelta
0 * * * *	<pre>datetime.timedelta(hours=1)</pre>
00 * * *	<pre>datetime.timedelta(days=1)</pre>
0 0 * * 0	datetime.timedelta(weeks=1)
0 0 1 * *	<pre>dateutil.relativedelta(months=1)</pre>
0 0 1 1 *	dateutil.relativedelta(years=1)

Timedelta does not know >=months.

Are you good in **cron**?

If you are not, you can always make use of crontab.guru

Exercise 2

From the previous exercise:

- Try creating the following schedule intervals:
 - a) At 13:45 every Mon/Wed/Fri
 - b) Every 3 days
- Starting 90 days ago
- When to use **cron** or **timedelta**?

Airflow Context

The Airflow "context"

- Airflow provides information about the execution in the Airflow task "context".
- This includes:
 - The (previous/next) execution_date of the DAG run
 - String formatted execution dates
 - The DAG object
 - Additional variables passed into the context (e.g. templates_dict)

What's in the context?

def print_context(**context):
 pprint(context)

```
{'END DATE': '2018-01-01',
 'conf': <module 'airflow.configuration' from '/opt/conda/lib/python3.6/site-packages/airflow/configuration.py'>,
 'dag': <DAG: templated task dag>,
 'dag run': None,
 'ds': '2018-01-01',
 'ds nodash': '20180101',
 'end date': '2018-01-01',
 'execution date': <Pendulum [2018-01-01T00:00:00+00:00]>,
 'inlets': [],
 'latest date': '2018-01-01',
 'macros': <module 'airflow.macros' from '/opt/conda/lib/python3.6/site-packages/airflow/macros/ init .py'>,
 'next ds': '2018-01-02',
 'next execution date': datetime.datetime(2018, 1, 2, 0, 0, tzinfo=<TimezoneInfo [UTC, GMT, +00:00:00, STD]>),
 'outlets': [],
 'params': {},
 'prev ds': '2017-12-31',
 'prev execution date': datetime.datetime(2017, 12, 31, 0, 0, tzinfo=<TimezoneInfo [UTC, GMT, +00:00:00, STD]>),
 'run id': None,
 'tables': None,
 'task': <Task(PythonOperator): demo templating>,
 'task instance': <TaskInstance: templated task dag.demo templating 2018-01-01T00:00:00+00:00 [None]>,
 'task instance key str': 'templated task dag demo templating 20180101',
 'templates dict': None,
 'test mode': True,
 'ti': <TaskInstance: templated task dag.demo templating 2018-01-01T00:00:00+00:00 [None]>,
 'tomorrow ds': '2018-01-02',
 'tomorrow ds nodash': '20180102',
 'ts': '2018-01-01T00:00:00+00:00',
 'ts nodash': '20180101T000000+0000',
 'var': {'json': None, 'value': None},
 'yesterday ds': '2017-12-31',
 'yesterday ds nodash': '20171231'
```


PythonOperator vs all other operators

- In all operators, arguments are templated strings
- The PythonOperator takes code, which is therefore templated differently

```
print_exec_date = BashOperator(
    task_id="demo_templating",
    bash_command="echo {{ execution_date }}"
)
```

```
def _print_exec_date():
    print("{{ execution_date }}")

def _print_exec_date(**context):
    print(context["execution_date"])

print_exec_date = PythonOperator(
    task_id="demo_templating",
    python_callable=_print_exec_date,
)
This does not work
```


python_callable vs templates_dict

- Python callable takes code
- The values in templates_dict are templated strings

```
def _print_exec_date(**context):
    print(context["templates_dict"]["execution_date"])

print_exec_date = PythonOperator(
    task_id="demo_templating",
    python_callable=_print_exec_date,
    provide_context=True,
    templates_dict={
        "execution_date": "{{ execution_date }}"
    },
)
```


Exercise 3

Let's familiarize with the context

- Echo the following messages with the bash operator:
 - "[task] is running in the [dag] pipeline"
- Print the following messages with the python operator:
 - "This script was executed at [date]"
 - "Three days after execution is [date]"
 - "This script run date is [date]"

Poll for a certain condition to be True


```
from airflow.contrib.sensors.ftp_sensor import FTPSensor

wait_for_data = FTPSensor(
    task_id="wait_for_data",
    path="foobar.json",
    ftp_conn_id="bob_ftp",
)
```


Implement your own condition PythonSensor

```
from datetime import datetime
from airflow.sensors.python import PythonSensor
def _time_for_coffee():
    """I drink coffee between 6 and 12"""
    if 6 < datetime.now().hour < 12:</pre>
        return True
    else:
        return False
time for coffee = PythonSensor(
    task_id="time_for_coffee",
    python callable= time for coffee,
    mode="reschedule",
```


The sensor deadlock

- Always set mode="reschedule"
- Airflow queues tasks in slots
- The (default!) "poke" mode holds the slot while waiting for the next poke
- With (default) parallelism 32, and 32 sensors, your system has no more free slots to do actual work
- Therefore set mode="reschedule". This releases the slot and claims a new one for every Sensor poke.

Airflow Metastore XComs, Variables & Connections

Storing data in the metastore

Most tables are internal to Airflow

- Users can store information in:
 - Connections
 - Variables
 - XComs

IF you want to sneak around:

```
docker ps
docker exec -it <db-postgres name> /bin/bash
psql -Uairflow
SELECT * FROM information_schema.tables;
SELECT * FROM xcom;
```


Connections

- Connection credentials can be stored in the Airflow database
- Configures a Fernet key for encryption in the configuration
 - https://airflow.apache.org/docs/stable/howto/secure-connections.html

Let's Define two connections

Will be useful for later

Airflow Postgres DB

The Space Devs API

This connection will allow us to connect to the Airflow Internal Postgres DB

Will allow us to make calls to the Rocket launches API

Hooks

- Used to interact with (external) systems/service
 - Usually created behind the scenes by the respective operators
 - Abstract away logic of interacting with systems
 - Handles authentication, caching, pagination, etc.

- Some examples
 - **S3Hook** Upload/download files to/from S3
 - SSHHook Upload/download files over SFTP
 - SparkSubmitHook Send jobs to Spark cluster

Hooks - Example

```
from airflow.hooks.postgres_hook
hook = PostgresHook(
   postgres_conn_id="land_registry"
)
hook.get_records(
   "SELECT * FROM land_registry_price_paid_uk "
   "LIMIT 10"
)
```


Variables

Can be used as "global" variables

Stored as key-value pairs

```
from airflow.models import Variable
Variable.get("myvar", deserialize_json=True, default_var=dict())
Variable.set("myvar", value, serialize_json=True)
```

Also accessible in templating:

```
"{{ var.json.myvar }}"
"{{ var.value.myvar }}"
```


Variables - Example

```
import airflow.utils.dates
from airflow.models import DAG, Variable
from airflow.operators.python operator import PythonOperator
dag = DAG(
    dag_id="example_variable",
    start_date=airflow.utils.dates.days_ago(3),
    schedule=None,
def email users():
    users = Variable.get("list_of_users", deservalize_json=True)
    for user in users:
        . . .
email_users = PythonOperator(task_id="email_users",
python callable= email users, dag=dag)
```


XComs (aka Cross-Communication)

- Useful when you want to share data between tasks
- XComs are meant for sharing (small) pieces of information
 - No max size enforced right now
 - Possibly coming in Airflow 2.1
 - SQLite: BLOB type (max 2GB)
 - PostgreSQL: BYTEA type (max 1GB)
 - MySQL: BLOB type (max 64KB)
- XComs for task-to-task communication, Variables for "global"
- Note: does not work between instances of the same task! (e.g. when using reschedulable sensors)

XComs

Xcoms - Example

```
import random
              import airflow.utils.dates
              from airflow.models import DAG
              from airflow.operators.python import PythonOperator
              def push(task instance, ** ):
                  teammembers = ["Bob", "John", "Alice"]
                  result = random.choice(teammembers)
                  task instance.xcom_push(key="person_to_email", value=result) ← XCom via
                return result
 XCom via —
                                                                                     explicit push
return value
              def pull(task instance, **):
                  result_by_key = task_instance.xcom_pull(task_ids="push", key="person_to_email")
                  result by return value = task instance.xcom pull(task ids="push")
                  print(f"Email {result by return value}")
                  print(f"Email {result by key}")
              with DAG(dag id="example xcom", start date=airflow.utils.dates.days ago(3), schedule="@daily"):
                    push = PythonOperator(task_id="push", python_callable=_push, provide_context=True)
                    pull = PythonOperator(task id="pull", python callable= pull, provide context=True)
                    push >> pull
```


Xcoms – Default Behavior

The BaseOperator holds an argument do_xcom_push (default True)

 If do_xcom_push and a value is returned, it is automatically pushed into the XCom table

 If no key is supplied during push/pull, a default key with value "return_key" is set

Capstone Project!

We start launching rockets

As a Rocket Scientist your manager asked you to have a good overview of the days a rocket launch has been made. And get insights about the launches.

You can get the full instructions in the Capstone Project file in the <u>sharepoint folder</u>.

Branching & Trigger rules

PythonOperator vs all other operators

 Sometimes you'd like to execute some tasks based on a specific condition

Examples:

- Running tasks on certain days of the week
- Running a different set of tasks after a specific date (e.g. to account for a schema change)

The PythonBranchOperator

- Branches on a certain condition
 - Accepts a callable, which when called should return the name of downstream task(s) to run
 - Other tasks are automatically skipped

 Note that tasks should be a (direct) downstream dependency of the branch task

The PythonBranchOperator

```
def _get_weekday(execution_date, **context):
    return execution_date.strftime("%a") # "Mon"

branching = BranchPythonOperator(
    task_id="branching",
    python_callable=_get_weekday,
)

days = ["Mon", "Tue", "Wed", "Thu", "Fri", "Sat", "Sun"]
for day in days:
    branching >> DummyOperator(task_id=day)
```


Continuing after a branch

- Typically, execution after a branch is continued after a (dummy) join task
- This allows downstream tasks to be 'unaware' of the branch
- However, naively adding a join does not work. Any idea why?

Trigger rules

- Trigger rules determine when a task is executed
 - Defined using the trigger_rule Operator argument
 - Default rule is all_success (all upstream tasks must have completed successfully)

TriggerRule.ALL_SUCCESS	(Default) all parents have succeeded.
TriggerRule.ALL_FAILED	All parents are in a failed or upstream_failed state.
TriggerRule.ALL_DONE	All parents are done with their execution.
TriggerRule.ONE_FAILED	Fires as soon as at least one parent has failed, it does not wait for all parents to be done.
TriggerRule.ONE_SUCCESS	Fires as soon as at least one parent succeeds, it does not wait for all parents to be done.
TriggerRule.DUMMY	Dependencies are just for show, trigger at will.

Fixing the join

• Changing the trigger rule is enough:

```
join = EmptyOperator(
   task_id="join",
   trigger_rule="none_failed"
)
```

 Ensures join will run if none of the upstream tasks fail

Backfilling

Backfilling

Backfilling is the concept of (re-)running Airflow tasks back in time.

- For example:
 - You created a daily job and want to run it 1 year back.
 - A task failed due to a missing file. You placed the file manually and now you want to re-run the task.
 - You changed code in a DAG and want to re-run specific tasks with the changed code.

Backfilling

- As mentioned before: Airflow doesn't like to re-run task before the start_date.
- Backfilling is possible via:
 - 1. Run docker compose ps and find the name of the scheduler
 - 2. Get into the scheduler via:
 docker exec -it <scheduler name> /bin/bash
 - 3. Run:
 airflow dags backfill -s 2023-04-01 -e 2023-04-30 <dag_name>

Clear Tasks

- You can clear one or many task depending on selection criteria.
 - Only the ones that failed
 - Task in the Future
 - Upstream Downstream
 - All
- Airflow will rerun those tasks

Designing tasks for backfilling

- Tasks should be atomic and idempotent
- Atomic
 - Tasks either succeed fully or not at all (no partial result)
- Idempotent
 - Re-running a task gives the same result
 - (Assuming other circumstances have not changed)

Dataset

Data-aware DAG triggers

Some DAG's are really looooooong Can we do something better?

Maybe we can break them in smaller chunks

But then how do you trigger one after another?

How do make your DAGs data-aware?

Let's focus on a use case.

Team A: Fetch for External sources

Team B: Produces a Report

Meet the Dataset...

```
source.py
1 from airflow import DAG, Dataset
2 from airflow.operators.empty import EmptyOperator
4 from datetime import timedelta
5 import pendulum
7 intermediate_dataset = Dataset(
       "s3://my-bucket/intermediate_dataset.csv" URI
11 \text{ dag} = DAG(
       dag_id="dataset_etl_pipeline",
       start_date=pendulum.today("UTC").add(days=-10),
       schedule=timedelta(seconds=10), # every 5 minutes
18 fetch = EmptyOperator(task id="fetch", dag=dag)
19 remove outliers = EmptyOperator(task id="remove outliers", dag=dag)
20 update_db = EmptyOperator(
       task_id="update_db",
       dag=dag,
       outlets=[intermediate_dataset]
26 fetch >> remove outliers >> update dω
```


New feature in Airflow ≥ 2.4

schedule replaces schedule_interval providing more flexibility on DAG trigger

```
Consumer.py
1 from airflow import DAG, Dataset
   from airflow.operators.empty import EmptyOperator
   import pendulum
    intermediate dataset = Dataset(
        "s3://my-bucket/intermediate_dataset.csv"
                                                                    You can list multiple files.
10 \text{ dag} = DAG(
                                                                    Will be triggered when all
       dag_id="dataset_produce_report",
                                                                    files are updated
       start_date=pendulum.today("UTC").add(day
       schedule=[intermediate_dataset],
       catchup=False,
15 )
17 get_cleaned_data = EmptyOperator(task_id="get_cleaned_data", dag=dag)
   produce_report = EmptyOperator(task_id="produce_report", dag=dag)
   get_cleaned_data >> produce_report
```


A Dataset change becomes a trigger!

Dataset quirks...

- Airflow doesn't verify the data has been changed. It only verifies if the source DAG has executed correctly.
- Dataset URI acts as a Link / tag to create triggers.
- If two tasks update the same dataset, the Consumer DAG triggers after the first task completes.
- Schedules cannot be combined (datasets and cron expressions).
- Airflow only monitors datasets within DAGs, not external modifications, or DAGs on External Instances.

But wait a minute, that DAG didnt modify any file

Exercise: The Dataset

- Modify two of your previous DAG's to be a consumer and a producer.
- The producer DAG should trigger every 10 seconds
- The consumer DAG should trigger each time the producer DAG finish a run.
- Tip: Don't worry too much about actually storing/changing any data

Let us know what you think!

