Name: Kubayer _Ahmed Kidhan Laskar, Roll: 200710007062 branch: Computer Science & Engineering, Semester: 3rd Date: 30/10/2021

CIE -1

1) Soln ! Crivons

Total no, of black balls = 6

Ret Let 3 E = event of drawing 5 balls (Bred , 2 black)

0 0. S = 10

$$0^{\circ} \quad P(\underline{E}) = \frac{6c_{3} \times 4c_{2}}{20} = \frac{6\times5\times4}{3\times4\times2} \times \frac{4\times3}{3\times4\times2}$$

$$= \frac{10\times5\times4}{2\times4\times2} \times \frac{10\times4\times2\times2}{3\times4\times2\times2}$$

$$= \frac{10\times5\times4}{2\times4\times2\times2} \times \frac{10\times4\times2\times2}{3\times4\times2\times2}$$

$$= \frac{5\times4\times2\times2}{3\times4\times2\times2}$$

$$= \frac{5\times4\times2\times2}{3\times4\times2\times2}$$

$$= \frac{10}{20\times2\times2\times2}$$

$$= \frac{10}{20\times2\times2\times2}$$

$$= \frac{10}{20\times2\times2\times2}$$

$$E(x) = \sum_{i \neq i} x_{i \neq i}$$

$$=\frac{1}{2}+\frac{1}{2}+\frac{3}{8}+2\cdot\frac{1}{8}+5\cdot\frac{1}{16}\cdot\frac{1}{2}+6\cdot\frac{1}{32}$$

$$= \frac{16+16+12+8+5+6}{32}$$

$$= \frac{32 + 20 + 11}{32}$$

$$= \frac{52+11}{32}$$

$$=\frac{63}{32}$$

W = event that the selected person is a woman

Or = event the the selected person has grey hair.

To find: P(M/G)

Nows

$$P(M) = \frac{1}{a} = 0.5$$
 [; there are equal no. of men and women]
 $P(W) = \frac{1}{a} = 0.5$ [D]

And, given, P(G/M) = Probability a reselected man hos grey hair

$$P(M/C_{0}) = \frac{P(M) \cdot P(C_{0}/M)}{P(M) \cdot P(C_{0}/M) + P(M) \cdot P(C_{0}/M)}$$

$$=\frac{0.05}{0.0525}$$

4) (i) Sol" Csiven 3

Mean = 6 =
$$n_{\phi}$$

Mean =
$$6 = n \beta$$

$$\frac{1}{2} = \frac{1}{2} = \frac{1}$$

$$\frac{\eta \rho q}{\eta \rho} = \frac{9}{6} = \frac{3}{2}$$

$$0 \circ q \text{ cannot be greates than 1}$$

$$= 9 = \frac{3}{2} \quad 71 \quad \boxed{0 \circ \text{ Given statement is false}}$$

4. (ii) Solver, mean = 3 =
$$\sqrt{np}$$

4. (ii) Solver, mean = 3 = \sqrt{np}

4. variance = $2 = \sqrt{npq}$

0. \sqrt{npq}

0. \sqrt{npq}
 \sqrt{npq}
 \sqrt{npq}
 \sqrt{npq}

$$9 = \frac{1}{2}$$

liding oge 33 on mps we get

5> Sol 2

		-				
Class	Midvalues	freg.	c.f.	$u = \frac{10}{10}$	Ju fu	fu ²
70-80	75	12	12	-3	-36	108
80 -90	85	18	36	- a	- 36	72
90 -100	95	35	65	- 4	- 35	35
100-110	105	42	207	6	6	0
110 -120	115	50	157	1	50	50
120 - 130	125	45	202	2	90	180
130-140	135	20	222	3	60	180
140-150	145	8	230	4	3 2	128
		230			= 125	=753

Now, Mean
$$(\bar{n}) = a + h \cdot \frac{2fu}{N}$$

$$= 205 + 20 \times \frac{230}{230}$$

$$= 205 + \frac{235}{23}$$

$$= 205 + 5.4$$
 0°
 $= 110.4$

o The greatest forego lies in the class 110-120, 00 Model clas - 110-120

o° o
$$f_m = 50$$
 so f_{2}

$$f_{1} = 42$$

$$f_{2} = 45$$

$$l = 110$$

$$h = 10$$

$$0^{\circ} \text{ Mode, } M_{\circ} = l + \frac{f_{m} - f_{1}}{2f_{m} - f_{1} - f_{2}} \times h$$

$$= 110 + \frac{50 - 42}{100 - 42 - 45} \times 10$$

$$= 110 + \frac{80}{13} + 10$$

$$= 110 + \frac{80}{13}$$

dvow, Standard dovation (a) = h / = \fu \subseteq \fu \subseteq \fu \subseteq \left(\frac{1}{N} \subseteq \fu \fu \subseteq \left(\frac{1}{N} \subseteq \fu \fu \fu \sigma \right)^2 $= 20\sqrt{\frac{.753}{230} - \frac{.725}{230}}$ $= 10\sqrt{3^2-0^3}$

$$\Rightarrow 6 = 20\sqrt{2.9}$$
$$= 20 \times 1.7$$

o', Coeff. of dispersion =
$$\frac{6}{100} = \frac{17}{110.4} = 0.154$$

$$= \frac{-5.8}{17}$$