

REMEDIAL INVESTIGATION/FEASIBILITY STUDY BADGER ARMY AMMUNITION PLANT BARABOO, WISCONSIN

FINAL FEASIBILITY STUDY DATA ITEM A009

VOLUME II OF III TABLES AND FIGURES

CONTRACT DAAA15-91-D-0008 U.S. ARMY ENVIRONMENTAL CENTER ABERDEEN PROVING GROUND, MARYLAND

> Unlimited Distribution Approved for Public Release

> > **AUGUST 1994**

19950522 102

VOLUME II OF III TABLES AND FIGURES

Accession For	2.500
ETIS GRA&I	र्ख 🐇
DATE TAB	
Unamnounced .	
Justification	······································
The state of the s	
By	
Distribution/ A	
Availability C	odos
Evenil and	or
Dist Special	
01	400000000000000000000000000000000000000
! []	

LIST OF TABLES

<u>Table</u>	s Title
ES-1	Summary of Contamination Assessment Through Remedial Alternatives Screening
ES-2	Comparative Summary of Alternatives
ES-3	Recommended Alternatives Summary
1-1	Summary of Eleven Waste Management Area
1-2	Development of Clean-up Levels
1-3	Criteria for Evaluation of Alternatives
2-1	Checklist of Waste Management Area Environmental Settings and Features
2-2	Potential Location-Specific Applicable or Relevant and Appropriate Requirements
2-3	Potential Chemical-Specific Applicable or Relevant and Appropriate Requirements
2-4	Chemical-Specific Standards and Guidance for Groundwater and Surface Water
2-5	Potential Action-Specific Applicable or Relevant and Appropriate Requirements
3-1	Human Health Contaminants of Concern - Propellant Burning Ground Soils
3-2	Clean-up Standards - Propellant Burning Ground Soil
3-3	Groundwater Summary - Propellant Burning Ground
3-4	Ecological Contaminants of Concern - Propellant Burning Ground
3-5	Summary of Risk Evaluation for Terrestrial Receptors - Propellant Burning Ground
3-6	Remediation Goals - Propellant Burning Ground

LIST OF TABLES

<u>Table</u>	es Title
3-7	Remediation Goals - Propellant Burning Ground Subsurface Soils
3-8	Remediation Goals - Propellant Burning Ground Groundwater
3-9	General Response Actions and Potential Remedial Technologies - Propellant Burning Ground Soils
3-10	Remedial Technology Screening - Propellant Burning Ground Soils
3-11	Remedial Technologies Retained for Remedial Alternatives Development Propellant - Burning Ground Soils
3-12	General Response Actions and Potential Remedial Technologies - Propellant Burning Ground Groundwater
3-13	Remedial Technology Screening - Propellant Burning Ground Groundwater
3-14	Remedial Technologies Retained for Remedial Alternatives Development - Propellant Burning Ground Groundwater
3-15	Identification of Remedial Alternatives - Propellant Burning Ground Soils
3-16	Development of Remedial Alternatives - Propellant Burning Ground Surface Soils
3-17	Development of Remedial Alternatives - Propellant Burning Ground Subsurface Soils
3-18	Development of Remedial Alternatives - Propellant Burning Ground Waste Pits
3-19	Screening of Remedial Alternatives - Propellant Burning Ground Surface Soils
3-20	Summary of Remedial Alternatives Screening - Propellant Burning Ground Surface Soils

LIST OF TABLES

(Continued)

<u>Table</u>	s Title
3-21	Screening of Remedial Alternatives - Propellant Burning Ground Subsurface Soils
3-22	Summary of Remedial Alternatives Screening - Propellant Burning Ground Subsurface Soils
3-23	Screening of Remedial Alternatives - Propellant Burning Ground Waste Pits
3-24	Summary of Remedial Alternatives Screening - Propellant Burning Ground Waste Pits
3-25	Identification of Remedial Alternatives - Propellant Burning Ground Groundwater
3-26	Development of Remedial Alternatives - Propellant Burning Ground Groundwater
3-27	Screening of Remedial Alternatives - Propellant Burning Ground Groundwater
3-28	Summary of Remedial Alternatives Screening - Propellant Burning Ground Groundwater
3-29	Summary of Contamination Assessment through Remedial Alternatives Screening - Propellant Burning Ground
4-1	Human Health Contaminants of Concern - Deterrent Burning Ground
4-2	Clean-up Standards - Deterrent Burning Ground
4-3	Comparison of Groundwater to Standards - Deterrent Burning Ground
4-4	Remediation Goals - Deterrent Burning Ground
4-5	Remediation Goals - Deterrent Burning Ground Groundwater

LIST OF TABLES

(Continued)

Table	es Title
4-6	General Response Actions and Potential Remedial Technologies - Deterrent Burning Ground Soils
4-7	Remedial Technology Screening - Deterrent Burning Ground Soils
4-8	Remedial Technologies Retained for Remedial Alternatives Development - Deterrent Burning Ground Soils
4-9	General Response Actions and Potential Remedial Technologies - Deterrent Burning Ground Groundwater
4-10	Remedial Technology Screening - Deterrent Burning Ground Groundwater
4-11	Remedial Technologies Retained for Remedial Alternatives Development - Deterrent Burning Ground Groundwater
4-12	Identification of Remedial Alternatives - Deterrent Burning Ground Soils
4-13	Development of Remedial Alternatives - Deterrent Burning Ground Soils
4-14	Screening of Remedial Alternatives - Deterrent Burning Ground Soils
4-15	Summary of Remedial Alternatives Screening - Deterrent Burning Ground Soils
4-16	Identification of Remedial Alternatives - Deterrent Burning Ground Groundwater
4-17	Development of Remedial Alternatives - Deterrent Burning Ground Groundwater
4-18	Screening of Remedial Alternatives - Deterrent Burning Ground Groundwater
4-19	Summary of Remedial Alternatives Screening - Deterrent Burning Ground Groundwater

LIST OF TABLES

<u>Table</u>	s Title
4-20	Summary of Contamination Assessment through Remedial Alternatives Screening - Deterrent Burning Ground
5-1	Summary of Frequency and Maximum Detected Concentrations - Surface Soil and Sediment - Nitroglycerine Pond and Rocket Paste Area
5-2	Summary of Chemical Data Surface Water - Nitroglycerine Pond and Rocket Paste Area
5-3	Human Health Chemicals of Concern - Nitroglycerine Pond
5-4	Human Health Chemicals of Concern - Rocket Paste Area
5-5	Clean-up Standards - Nitroglycerine Pond and Rocket Paste Area
5-6	Groundwater Summary - Nitroglycerine Pond and Rocket Past Area
5-7	Ecological Contaminants of Concern - Nitroglycerine Pond
5-8	Ecological Contaminants of Concern - Rocket Paste Area
5-9	Summary of Risk Evaluation for Aquatic Receptors - Nitroglycerine Pond
5-10	Summary of Rick Evaluation for Terrestrial Receptors - Nitroglycerine Pond
5-11	Summary of Risk Evaluation for Aquatic Receptors - Rocket Paste Area
5-12	Summary of Risk Evaluation for Terrestrial Receptors - Rocket Paste Area
5-13	Remediation Goals - Surface Soil, Sediment, and Surface Water - Nitroglycerine Pond
5-14	Remediation Goals - Surface Soil, Sediment, and Surface Water - Rocket Paste Area

LIST OF TABLES

(Continued)

Table	S Title
5-15	General Response Actions and Potential Remedial Technologies - Surface Soil and Sediment - Nitroglycerine Pond and Rocket Paste Area
5-16	Remedial Technology Screening - Surface Soil and Sediment - Nitroglycerine Pond and Rocket Paste Area
5-17	Remedial Technologies Retained for Remedial Alternatives Development for Soi and Sediment - Nitroglycerine Pond and Rocket Paste Area
5-18	General Response Actions and Potential Remedial Technologies for Surface Water - Nitroglycerine Pond and Rocket Paste Area
5-19	Remedial Technology Screening - Surface Water - Nitroglycerine Pond and Rocket Paste Area
5-20	Remedial Technologies Retained for Remedial Alternative Development - Surface Water - Nitroglycerine Pond and Rocket Paste Area
5-21	Identification of Remedial Alternatives - Surface Soil and Sediment - Nitroglycerine Pond and Rocket Paste Area
5-22	Development of Remedial Alternatives - Soil and Sediment - Nitroglycerine Pond and Rocket Paste Area
5-23	Identification of Remedial Alternatives - Surface Water - Nitroglycerine Pond and Rocket Paste Area
5-24	Development of Remedial Alternatives - Surface Water - Nitroglycerine Pond and Rocket Paste Area
5-25	Screening of Remedial Alternatives - Surface Soil and Sediment - Nitroglycerine Pond and Rocket Paste Area

LIST OF TABLES

(Continued)

<u>Table</u>	S Title
5-26	Summary of Remedial Alternatives Screening - Surface Soil and Sediment - Nitroglycerine Pond and Rocket Paste Area
5-27	Screening of Remedial Alternatives - Surface Water - Nitroglycerine Pond and Rocket Paste Area
5-28	Summary of Remedial Alternatives Screening - Surface Water - Nitroglycerine Pond and Rocket Paste Area
5-29	Summary of Contamination Assessment through Remedial Alternatives Screening - Nitroglycerine Pond and Rocket Paste Area
6-1	Human Health Contaminants of Concern - Final Creek, Settling Ponds, and Spoils Disposal Area
6-2	Clean-up Standards - Final Creek and Settling Ponds
6-3	Clean-up Standards - Spoils Disposal Area
6-4	Ecological Contaminants of Concern - Final Creek, Settling Ponds and Spoils Disposal Area Soil
6-5	Summary of Risk Evaluation for Terrestrial Receptors - Final Creek, Settling Ponds and Spoils Disposal Area Soil
6-6	Soil Remediation Goals - Final Creek and Settling Ponds
6-7	Soil Remediation Goals - Spoils Disposal Area Soil
6-8	General Response Actions and Potential Remedial Technologies - Final Creek and Settling Ponds and Spoils Disposal Area Soil
6-9	Remedial Technology Screening - Final Creek, Settling Ponds and Spoils Disposal Area Soil

LIST OF TABLES

<u>Table</u>	S Title
6-10	Remedial Technologies Retained Remedial Alternatives Development - Final Creek, Settling Ponds and Spoils Disposal Area Soil
6-11	Identification of Remedial Alternatives - Final Creek, Settling Ponds and Spoils Disposal Area Soil
6-12	Development of Remedial Alternatives - Settling Ponds and Spoils Disposal Area
6-13	Screening of Remedial Alternatives - Settling Ponds and Spoils Disposal Area
6-14	Summary of Remedial Alternatives Screening - Settling Ponds and Spoils Disposal Area Soil
6-15	Summary of Contaminant Assessment through Remedial Alternatives Screening - Settling Ponds and Spoils Disposal Area
7-1	Groundwater Summary - Southern Off-Post Area
7-2	General Response Actions and Potential Remedial Technologies - Southern Off-Post Area
7-3	Remedial Technology Screening - Southern Off-Post Area Groundwater
7-4	Remedial Technologies Retained for Remedial Alternatives Development - Southern Off-Post Area Groundwater
7-5	Identification of Remedial Alternatives - Southern Off-Post Area Groundwater
7-6	Development of Remedial Alternatives - Southern Off-Post Area
7-7	Screening of Remedial Alternatives - Southern Off-Post Area Groundwater
7-8	Summary of Remedial Alternatives Screening - Southern Off-Post Area Groundwater

LIST OF TABLES

(Continued)

Table	es <u>Title</u>
7-9	Summary of Contamination Assessment Through Remedial Alternatives Screening
8-1	Summary of Alternatives Retained for Detailed Evaluation - Soil and Sediment
8-2	Summary of Remedial Alternatives Retained for Detailed Evaluation - Surface Water
8-3	Summary of Remedial Alternatives Retained for Detailed Evaluation - Groundwater
9-1	Cost Summary Table - Alternative PBG-SS1: Minimal Action
9-2	Detailed Analysis - Alternative PBG-SS1
9-3	Cost Summary Table - Alternative PBG-SS2: Soil Cover
9-4	Detailed Analysis - Alternative PBG-SS2:
9-5	Cost Summary Table - Alternative PBG-SS6: In-Situ S/S and Soil Cover
9-6	Detailed Analysis - Alternative PBG-SS6:
9-7	Comparative Summary of Alternatives - Propellant Burning Ground Surface Soil
9-8	Cost Summary Table - Alternative PBG-SB1: Minimal Action
9-9	Detailed Analysis - Alternative PBG-SB1:
9-10	Cost Summary Table - Alternative PBG-SB2: Capping
9-11	Detailed Analysis - Alternative PBG-SB2:
9-12	Cost Summary Table - Alternative PBG-SB3: Off-Site Landfill

LIST OF TABLES

Table	es Title
9-13	Detailed Analysis - Alternative PBG-SB3
9-14	Comparative Summary of Subsurface Soil Alternatives
9-15	Cost Summary Table - Alternative PBG-WP1: Minimal Action
9-16	Detailed Analysis - Alternative PBG-WP1
9-17	Cost Summary Table - Alternative PBG-WP4: On-Site Incineration and Capping
9-18	Detailed Analysis - Alternative PBG-WP4
9-19	Cost Summary Table - Alternative PBG-WP5: Composting and Capping Cost
9-20	Detailed Analysis - Alternative PBG-WP5
9-21	Cost Summary Table - Alternative PBG-WP7: In-Situ Vacuum Extraction, Composting, and Capping
9-22	Alternative PBG-WP7: Detailed Analysis
9-23	Cost Summary Table - Alternative PBG-WP8: In-situ Treatment
9-24	Detailed Analysis - Alternative PBG-WP8: Propellant Burning Ground Waste Pits
9-25	Cost Summary Table - Alternative PBG-WP10: On-Site Incineration
9-26	Detailed Analysis - Alternative PBG-W10
9-27	Cost Summary Table - Alternative PBG-WP11: In-Situ Vacuum Extraction, Soil Washing, and Composting
9-28	Detailed Analysis - Alternative PBG-WP11

LIST OF TABLES

(Continued)

Table:	s Title
9-29	Comparative Summary of Remedial Alternatives - Propellant Burning Ground Groundwater
9-30	Groundwater Monitoring Program - Propellant Burning Ground Groundwater
9-31	Cost Summary Table - Alternative PBG-GW1: Minimal Action
9-32	Detailed Analysis - Alternative PBG-GW1
9-33	Treatment Facility Influent Concentrations and Surface Water Discharge Limits - Propellant Burning Ground Groundwater
9-34	Estimated Aquifer Cleanup Times for Major Organic Contaminants - Propellant Burning Ground Groundwater
9-35	Groundwater Treatment System Sampling and Analysis Program
9-36	Cost Summary Table - Alternative PBG-GW2: IRM and Carbon Adsorption
9-37	Detailed Analysis - Alternative PBG-GW2
9-38	Cost Summary Table - Alternative PBG-GW4: IRM and Air Stripping - Carbon Adsorption
9-39	Detailed Analysis - Alternative PBG-GW4
9-40	Cost Summary Table - Alternative PBG-GW5: IRM and Resin Adsorption
9-41	Detailed Analysis - Alternative PBG-GW5
9-42	Cost Summary Table - Alternative PBG-GW7: IRM and UV Reduction - Carbon Adsorption
9-43	Detailed Analysis - Alternative PBG-GW7

LIST OF TABLES

<u>Table</u>	s <u>Title</u>
9-44	Comparative Summary of Groundwater Alternatives
10-1	Groundwater Monitoring Program - Deterrent Burning Ground Groundwater Alternative DBG-GW1
10-2	Cost Summary Table - Alternative DBG-SB1: Minimal Action
10-3	Detailed Analysis - Alternative DBG-SB1:
10-4	Cost Summary Table - Alternative DBG-SB2: Capping
10-5	Detailed Analysis - Alternative DBG-SB2
10-6	Cost Summary Table - Alternative DBG-SB4: Soil Washing
10-7	Detailed Analysis - Alternative DBG-SB4
10-8	Cost Summary Table - Alternative DBG-SB7: On-Site Incineration
10-9	Detailed Analysis - Alternative DBG-SB7
10-10	Cost Summary Table - Alternative DBG-SB8: On-Site Composting
10-11	Detailed Analysis - Alternative DBG-SB8
10-12	Comparative Summary of Remedial Alternatives - Deterrent Burning Ground Subsurface Soil
10-13	Cost Summary Table - Alternative DBG-GW1: Minimal Action
10-14	Detailed Analysis - Alternative DBG-GW1: Minimal Action
10-15	Cost Summary Table - Alternative DBG-GW2: Groundwater Extraction Transporting Treatment

LIST OF TABLES

(Continued)

<u>Table</u>	S Title
10-16	Detailed Analysis - Alternative DBG-GW2
10-17	Cost Summary Table - Alternative DBG-GW4: Groundwater Extraction, Transportation, Treatment
10-18	Detailed Analysis - Alternative DBG-GW4
10-19	Cost Summary Table - Alternative DBG-GW5: Groundwater Extraction, Transportation, Treatment
10-20	Detailed Analysis - Alternative DBG-GW5
10-21	Cost Summary Table - Alternative DBG-GW6: Groundwater Extraction, Transportation, Treatment
10-22	Detailed Analysis - Alternative DBG-GW6
10-23	Comparative Summary of Remedial Alternatives - Deterrent Burning Ground Groundwater
11-1	Groundwater Monitoring Program - Nitroglycerine Pond/Rocket Paste Area - Surface Soil and Sediment Alternative NG/RPA-SS1
11-2	Cost Summary Table - Alternative NG/RPA-SS1: Minimal Action
11-3	Detailed Analysis - Alternative NG/RPA-SS1:
11-4	Cost Summary Table - Alternative NG/RPA-SS2: Soil Cover
11-5	Detailed Analysis - Alternative NG/RPA-SS2:
11-6	Cost Summary Table - Alternative NG/RPA-SS3: Stabilization/Solidification with On-Site Disposal

LIST OF TABLES

<u>Table</u>	s Title
11-7	Detailed Analysis - Alternative NG/RPA-SS3:
11-8	Cost Summary Table - Alternative NG/RPA-SS4: Off-Site Disposal
11-9	Detailed Analysis - Alternative NG/RPA-SS4:
11-10	Cost Summary Table - Alternative NG/RPA-SS5: In-Situ Stabilization/ Solidification with Soil Cover
11-11	Detailed Analysis - Alternative NG/RPA-SS5:
11-12	Comparative Summary of Remedial Alternatives - Nitroglycerine Pond and Rocket Paste Area Surface Soil/Sediment
11-13	Cost Summary Table - Alternative NG/RPA-SW1: Minimal Action
11-14	Detailed Analysis - Alternative NG/RPA-SW1:
11-15	Cost Summary Table - Alternative NG/RPA-SW2: Surface Water Treatment by Precipitation/Microfiltration
11-16	Detailed Analysis - Alternative NG/RPA-SW2:
11-17	Cost Summary Table - Alternative NG/RPA-SW3: Surface Water Treatment by Ion Exchange
11-18	Detailed Analysis - Alternative NG/RPA-SW3:
11-19	Comparative Summary of Remedial Alternatives - Nitroglycerine Pond/Rocket Paste Area Surface Water
12-1	Groundwater Monitoring Program - Final Creek, Settling Ponds and Spoils Disposal Area

LIST OF TABLES

(Continued)

<u>Table</u>	es <u>Title</u>
12-2	Cost Summary Table - Alternative SSP-SS1: Minimal Action
12-3	Detailed Analysis - Alternative SSP-SS1:
12-4	Cost Summary Table - Alternative SSP-SS3: Soil Cover
12-5	Detailed Analysis - Alternative SSP-SS3:
12-6	Cost Summary Table - Alternative SSP-SS7: Modified In-Situ Solidification and Soil Cover
12-7	Detailed Analysis - Alternative SSP-SS7:
12-8	Comparative Summary of Remedial Alternatives - Final Creek, Settling Ponds and Spoils Disposal Area Surface Soil
13-1	Groundwater Monitoring Program - Southern Off-Post Area
13-2	Cost Summary Table - Alternative SOPA-GW1: Minimal Action
13-3	Detailed Analysis - Alternative SOPA-GW1
13-4	Treatment Facility Influent Concentrations and Surface Water Discharge Limits - Groundwater Extraction Scenario 1
13-5	Treatment Facility Influent Concentrations and Surface Water Discharge Limits - Groundwater Extraction Scenario 2
13-6	Treatment Facility Influent Concentrations and Surface Water Discharge Limits - Groundwater Extraction Scenario 3
13-7	Groundwater Treatment System - Sampling and Analysis Program

LIST OF TABLES

Table	Title
13-8	Cost Summary - Alternative SOPA-GW2: Air Stripping - with Groundwater Extraction Scenario 1
13-9	Cost Summary - Alternative SOPA-GW2: Air Stripping - with Groundwater Extraction Scenario 2
13-10	Cost Summary - Alternative SOPA-GW2: Air Stripping - with Groundwater Extraction Scenario 3
13-11	Detailed Analysis - Alternative SOPA-GW2
13-12	Cost Summary Table - Alternative SOPA-GW3: Carbon Adsorption with Groundwater Extraction Scenario 1
13-13	Cost Summary Table - Alternative SOPA-GW3: Carbon Adsorption with Groundwater Extraction Scenario 2
3-14	Cost Summary Table - Alternative SOPA-GW3: Carbon Adsorption with Groundwater Extraction Scenario 3
3-15	Detailed Analysis - Alternative SOPA-GW3
3-16	Comparative Summary of Groundwater Alternatives

LIST OF FIGURES

Figur	res Title
1-1	Site Location Map
1-2	Location of 11 Priority Sites
1-3	Bedrock Surface Contour Plan
1-4	Regional Water Table Contour Plan
1-5	Remedial Alternative Evaluation Criteria
3-1	Site Plan - Propellant Burning Ground
3-2	Location and Orientation of Geologic Cross Sections - Propellant Burning Ground
3-3	Geologic Cross Section A-A' - Propellant Burning Ground
3-4	Geologic Cross Section B-B' - Propellant Burning Ground
3-5	Geologic Cross Section C-C' - Propellant Burning Ground
3-6	Monitoring Well Locations - Propellant Burning Ground
3-7	Interpretive Water Table Contour Plan - Propellant Burning Ground
3-8	Distribution of 24DNT, C6H6, and NNDPA in Surface Soils at the Racetrack - Propellant Burning Ground
3-9	Interpretive PB Distribution in Surface Soils at the Racetrack Area - Propellant Burning Ground
3-10	Interpretive PB Distribution in Surface Soils at the Contaminated Waste Area - Propellant Burning Ground
3-11	Interpretive TCLP PB Distribution in Surface Soils at the Racetrack Area - Propellant Burning Ground

LIST OF FIGURES

Figur	es Title
3-12	Interpretive TCLP PB Distribution in Surface Soils in the Contaminated Waste Area - Propellant Burning Ground
3-13	Subsurface Exploration Locations - Propellant Burning Ground
3-14	Interpretive C6H6 Concentrations in Subsurface Soils - Propellant Burning Ground Waste Pits
3-15	Interpretive TRCLE Concentrations in Subsurface Soils - Propellant Burning Ground Waste Pits
3-16	Interpretive Total DNT Concentrations in Subsurface Soils - Propellant Burning Ground Waste Pits
3-17	Summary of Selected VOC Groundwater Data - Propellant Burning Ground
3-18	Orientation of Contaminant Plume Cross Section A-A' - Propellant Burning Ground
3-19	Contaminant Plume Cross Section - CCL4 - Propellant Burning Ground
3-20	Contaminant Plume Cross Section - TRCLE - Propellant Burning Ground
3-21	Interpretive Plan View of CCL4 Plume - Propellant Burning Ground
3-22	Interpretive Plan View of TRCLE Plume - Propellant Burning Ground
3-23	26DNT and NNDPA Detected in Groundwater - Propellant Burning Ground
4-1	Site Location Plan and Soil Boring and Monitoring Well Locations - Deterrent Burning Ground and Existing Landfill
4-2	Chronological Evolution of the Deterrent Burning Ground

LIST OF FIGURES

(Continued)

Figure	es Title
4-3	Location and Orientation of Geologic Cross-Sections - Deterrent Burning Ground and Existing Landfill
4-4	Geologic Cross-Section A-A' - Deterrent Burning Ground and Existing Landfill
4-5	Geologic Cross-Section B-B' - Deterrent Burning Ground and Existing Landfill
4-6	Elevated Aquifer Contour Plan - Deterrent Burning Ground and Existing Landfil
4-7	Regional Water Table Contour Plan - Deterrent Burning Ground and Existing Landfill
4-8	Total C6H6 Concentrations in Subsurface Soils - Deterrent Burning Ground Waste Pits
4-9	Total DNTs Concentrations in Subsurface Soils - Deterrent Burning Ground Waste Pits
4-10	NNDPA Concentrations in Subsurface Soils - Deterrent Burning Ground Waste Pits
5-1	Site location Plan and Sample Locations - Nitroglycerine Pond and Rocket Paste Area
5-2	Monitoring Well Locations - Nitroglycerine Pond and Rocket Paste Area
5-3	Water Table Contour Plan - Nitroglycerine Pond and Rocket Paste Area
5-4	NNDPA Concentrations in Surface Soil - Nitroglycerine Pond and Rocket Paste Area
5-5	NG Concentrations in Surface Soil - Nitroglycerine Pond and Rocket Paste Area

LIST OF FIGURES

Figure	es Title
5-6	Total DNT Concentrations in Surface Soil - Nitroglycerine Pond and Rocket Paste Area
5-7	Total PB Concentrations in Surface Soil - Nitroglycerine Pond and Rocket Paste Area
5-8	TCLP PB Concentrations in Surface Soil - Nitroglycerine Pond and Rocket Paste Area
6-1	Site Plan - Settling Ponds and Spoils Disposal Areas
6-2	Location and Orientation of Geologic Cross-Section A-A' - Propellant Burning Ground
6-3	Geologic Cross Section A-A' - Settling Ponds and Spoils Disposal Area
6-4	Surface and Subsurface Exploration Locations - Settling Ponds and Spoils Disposal Areas
6-5	Summary of Selected Contaminants in Surface Soils at the Settling Ponds and Spoils Disposal Areas
7-1	Site Location Plan and Monitoring Well Locations - Southern Off-Post Area
7-2	Location and Orientation of Geologic Cross-Sections - Southern Off-Post Area
7-3	Geologic Cross-Section O-O' - Southern Off-Post Area
7-4	Geologic Cross-Section P-P' - Southern Off-Post Area
7-5	Geologic Cross-Section Q-Q' - Southern Off-Post Area
7-6	Interpretive Water Table Contour Plan - Southern Off-Post Area

LIST OF FIGURES

<u>Figur</u>	es Title
7-7	Groundwater VOC Distribution - Southern Off-Post Area
9-1	Minimal Action Alternative Surface Soils - Propellant Burning Ground
9-2	Plan View Soil Cover Alternative - Propellant Burning Ground
9-3	Typical Soil Cover Cross Section Soil Cover Alternative - Propellant Burning Ground
9-4	Plan View Modified In-Situ Stabilization/Solidification and Soil Cover Alternative - Propellant Burning Ground
9-5	Typical Cross Section In-Situ Stabilization/Solidification and Soil Cover Alternative - Propellant Burning Ground
9-6	Plan View Capping Alternative - Propellant Burning Ground
9-7	Typical Cross Section Capping Alternative - Propellant Burning Ground
9-8	Plan View Off-Site Landfill Alternative - Propellant Burning Ground
9-9	Typical Cross Section On-Site Incineration and Capping Alternative - Propellant Burning Ground
9-10	On-Site Incineration and Capping Alternative - Propellant Burning Ground
9-11	TIS-20 Process Flow Schematic On-Site Incineration and Capping Alternative - Propellant Burning Ground
9-12	Composting System Flow Diagram - Propellant Burning Ground
9-13	Composting and Capping Alternative - Propellant Burning Ground
9-13	Composting and Capping Alternative - Propellant Burning Ground

LIST OF FIGURES (Continued)

Figure	es Title
9-14	In-Situ Vacuum Extraction System In-Situ Vacuum Extraction, Composting, and Capping Alternative - Propellant Burning Ground
9-15	Typical Cross Section - Soil Flushing In-Situ Treatment Alternative, Propellant Burning Ground
9-16	Typical Cross Section - Chemical-Biological In-Situ Treatment Alternative - Propellant Burning Ground
9-17	Plan View Soil Flushing in Situ Treatment Alternative - Propellant Burning Ground
9-18	Slurry Wall S.M.W. Techniques In-Situ Treatment Alternative - Propellant Burning Ground
9-19	Cone Barrier System Design In-Situ Treatment Alternative - Propellant Burning Ground
9-20	Typical Cross Section On-Site Incineration Alternative - Propellant Burning Ground
9-21	Plan View On-Site Incineration Alternative - Propellant Burning Ground
9-22	Diaphragm Wall Construction On-Site Incineration Alternative - Propellant Burning Ground
9-23	Flow Chart In-Situ Vacuum Extraction, Soil Washing, and Composting - Propellant Burning Ground
9-24	Plan View In-Situ Vacuum Extraction, Soil Washing, and Composting - Propellant Burning Ground
9-25	Soil Washing Flow Diagram In-Situ Vacuum Extraction, Soil Washing, and Composting - Propellant Burning Ground

LIST OF FIGURES

(Continued)

Figur	es Title
9-26	Groundwater Monitoring Well Locations for Minimal Action Alternatives
9-27	Site Layout for Groundwater Extraction, Treatment, and Discharge - Propellant Burning Ground
9-28	Flow Diagram IRM and Carbon Adsorption Alternative - Propellant Burning Ground
9-29	Flow Diagram IRM and Air Stripping - Carbon Adsorption - Propellant Burning Ground
9-30	Flow Diagram IRM and Resin Adsorption - Propellant Burning Ground
9-31	Flow Diagram IRM and UV Reduction - Carbon Adsorption Alternative - Propellant Burning Ground
10-1	Minimal Action Alternative - Deterrent Burning Ground
10-2	Capping Alternative - Deterrent Burning Ground
10-3	Soil Washing Alternative - Deterrent Burning Ground
10-4	Flow Diagram Soil Washing Alternative - Deterrent Burning Ground
10-5	On-Site Incineration Alternative - Deterrent Burning Ground
10-6	Composting and Cover Alternative - Deterrent Burning Ground
10-7	Monitoring and Extraction Well Locations - Deterrent Burning Ground and Existing Landfill
11-1	Site Fencing for Soil/Sediment Minimal Action - Nitroglycerine Pond and Rocket Paste Area

LIST OF FIGURES

Figure	es Title
11-2	Site Layout for Soil/Sediment Remediation Alternatives - Nitroglycerine Pond and Rocket Paste Area
11-3	Existing Ditch Cross-Sections (TYP.) - Nitroglycerine Pond and Rocket Paste Area
11-4	Ponds Cross-Section (TYP.) - Nitroglycerine Pond and Rocket Paste Area
11-5	Ditch Soil Cover Cross-Section (TYP.) - Nitroglycerine Pond and Rocket Paste Area
11-6	Ponds Soil Cover Cross-Section (TYP.) - Nitroglycerine Pond and Rocket Paste Area
11-7	Ditch Excavation Cross-Section (TYP.) - Nitroglycerine Pond and Rocket Paste Area
11-8	Ponds Excavation Cross-Section (TYP.) - Nitroglycerine Pond and Rocket Paste Area
11-9	Ditch Backfill Cross-Section (TYP.) - Nitroglycerine Pond and Rocket Paste Area
11-10	Ponds Backfill Cross-Section (TYP.) - Nitroglycerine Pond and Rocket Paste Area
11-11	Site Fencing for Surface Water Minimal Action - Nitroglycerine Pond and Rocket Paste Area
11-12	Site Layout for Surface Water Treatment - Nitroglycerine Pond and Rocket Paste Area
11-13	In-Situ Solidification/Stabilization Cross Sections - Nitroglycerine Pond and Rocket Paste Area

LIST OF FIGURES

<u>Figure</u>	es Title
11-14	Plan In-Situ Solidification/Stabilization Operations - Nitroglycerine Pond and Rocket Paste Area
11-15	Section In-Situ Solidification/Stabilization Operations - Nitroglycerine Pond and Rocket Paste Area
12-1	Minimal Action Alternative - Settling Ponds and Spoils Disposal Areas
12-2	Capping Alternative - Settling Ponds and Spoils Disposal Areas
12-3	Typical Cap Cross Section - Settling Ponds and Spoils Disposal Area
12-4	Modified In-Situ S/S with Soil Cover Alternative - Settling Ponds and Spoils Disposal Areas
12-5	Typical Modified In-Situ Stabilization with Cover Cross Section - Settling Ponds, and Spoils Disposal Area
13-1	Minimal Action Alternative Sampling Locations - Southern Off-Post Area
13-2	Site Layout for Groundwater Extraction, Treatment, and Discharge Groundwater Extraction Scenario 1 - Southern Off-Post Area
13-3	Site Layout for Groundwater Extraction, Treatment, and Discharge Groundwater Extraction Scenario 2 - Southern Off-Post Area
13-4	Site Layout for Groundwater Extraction, Treatment, and Discharge Groundwater Extraction Scenario 3 - Southern Off-Post Area
13-5	Flow Diagram Air Stripping - Groundwater Extraction Scenario 1 - Southern Off-Post Area
13-6	Flow Diagram Air Stripping - Groundwater Extraction Scenario 2 - Southern Off-Post Area

LIST OF FIGURES

<u>Figure</u>	es <u>Title</u>
13-7	Flow Diagram Air Stripping - Groundwater Extraction Scenario 3 - Southern Of Post Area
13-8	Carbon Adsorption - Groundwater Extraction Scenario 1 - Southern Off-Post Area
13-9	Carbon Adsorption - Groundwater Extraction Scenario 2 - Southern Off-Post Area
13-10	Carbon Adsorption - Groundwater Extraction Scenario 3 - Southern Off-Post Area

TABLE ES-1 SUMMARY OF CONTAMINATION ASSESSMENT THROUGH REMEDIAL ALTERNATIVES SCREENING PROPELLANT BURNING GROUND

	CONTAMINATED MEDIA AT THE PROPELLANT BURNING GROUND		
RI/FS COMPONENT	SURFACE SOIL	SUBSURFACE SOIL	GROUNDWATER
Identification of Contaminants of Concern	VOCsSVOCsExplosivesInorganics	VOCsSVOCsExplosivesInorganics	VOCsSVOCsExplosivesInorganics
Risk Assessment Results	 24DNT, CPAH, AS and PB are a threat to humans. AS, CR, PB, SE, and ZN are a threat to groundwater. PB, CU, HG, SE, and ZN are a threat to terrestrial receptors. 	 24DNT, 26DNT, CPAH, C6H6, AS, and PB are a threat to humans. 24DNT, 26DNT, TRCLE, AS, CR, PB, SE, and ZN are a threat to groundwater. 	 CCL4, NIT, 26DNT, CHCL3, TRCLE, and HG exceed WESs. CR, PB, 111TCE, and CD exceed WPALs. BE exceeds the interim WPAL and NNDPA exceeds the interim WES. MN and SO4 exceed public welfare standards. NA exceeds the reporting level.
Remedial Action Objectives	 Prevent unacceptable concentrations of 24DNT, CPAH, AS, and PB from becoming available to humans. Prevent unacceptable concentrations of CU, HG, PB, SE, and ZN from becoming available to ecological receptors. Prevent AS, CR, PB, SE, and ZN from degrading groundwater quality. Prevent unacceptable concentrations of DNTs in WP-2 and WP-3 from becoming available to human or ecological receptors. 	 Prevent unacceptable concentrations of 24DNT, 26DNT, CPAH, C6H6, AS, and PB from becoming available to humans. Prevent 24DNT, 26DNT, TRCLE, AS, CR, PB, SE, and ZN from degrading groundwater quality. 	 Prevent further migration of contaminated groundwater. Reduce CCL4, 26DNT, CHCL3, TRCLE, 111TCE, CR, PB, CD, and HG to interim WPALs. Reduce BE and NNDPA to interim WPALs. Reduce MN and SO4 to public welfare standards.

TABLE ES-1 SUMMARY OF CONTAMINATION ASSESSMENT THROUGH REMEDIAL ALTERNATIVES SCREENING PROPELLANT BURNING GROUND

	CONTAMINATED MEDIA AT THE PROPELLANT BURNING GROUND			
RI/FS COMPONENT	SURFACE SOIL	SUBSURFACE SOIL	GROUNDWATER	
Remedial Technologies Retained After Screening	Soil Cover Off-Site Landfill Stabilization/Solidification Soil Washing In Situ Stabilization/ Solidification	1949 Pit and Old Landfill: Capping Off-Site Landfill Waste Pits: Capping Off-Site Landfill Slurry Wall Soil Washing On- and Off-Site Incineration In Situ Vacuum Extraction In Situ Stabilization/ Solidification Soil Flushing Chemical-Biological Bioventing Composting	Groundwater Extraction Wells UV/Oxidation Air Stripping UV/Reduction Carbon Adsorption Resin Adsorption In-Situ Biological Surface Water Discharge	
Remedial Alternatives Developed	Minimal Action Soil Cover Off-Site Landfill Stabilization/Solidification and Soil Cover Soil Washing Modified In Situ Stabilization/Solidification and Soil Cover	 1949 Pit and Old Landfill: Minimal Action Capping Off-Site Landfill Waste Pits: Minimal Action Capping Off-Site Landfill and Capping On-Site Incineration and Capping Off-Site Incineration and Capping In-Situ Vacuum Extraction, Composting, and Capping In Situ Treatment In Situ Vacuum Extraction and Bioventing On-Site Incineration In Situ Vacuum Extraction, Soil Washing, and Composting In Situ Stabilization/Solidification and Soil Cover 	 Minimal Action Existing Conditions IRM and UV/Oxidation, Ai Stripping IRM and Air Stripping, Carbon Adsorption, Discharge IRM and Resin Adsorption In-Situ Biological IRM and UV/Reduction, Carbon Adsorption 	

TABLE ES-1 SUMMARY OF CONTAMINATION ASSESSMENT THROUGH REMEDIAL ALTERNATIVES SCREENING PROPELLANT BURNING GROUND

FEASIBILITY STUDY BADGER ARMY AMMUNITION PLANT

	CONTAMINATED MEDIA AT THE PROPELLANT BURNING GROUND			
RI/FS COMPONENT	SURFACE SOIL	SUBSURFACE SOIL	GROUNDWATER	
Remedial Alternatives Retained After Screening	Minimal Action Soil Cover Modified In Situ Stabilization/Solidification and Soil Cover	1949 Pit and Old Landfill: Minimal Action Capping Off-Site Landfill Waste Pits: Minimal Action On-Site Incineration and Capping Composting and Capping In Situ Vacuum Extraction, Composting, and Capping In Situ Treatment On-Site Incineration In Situ Vacuum Extraction, Soil Washing, and Composting, and Composting	 Minimal Action IRM and Carbon Adsorption IRM and Air Stripping, Carbon Adsorption IRM and Resin Adsorption IRM and UV/Reduction, Carbon Adsorption 	

Notes:

IRM = Interim Remedial Measure SVOCs = semivolatile organic compound

UV = ultraviolet

VOCs = volatile organic compound

Full compound names are identified in the USAEC Chemical Code List located behind the Glossary of Acronyms.

TABLE ES-1 SUMMARY OF CONTAMINATION ASSESSMENT THROUGH REMEDIAL ALTERNATIVES SCREENING DETERRENT BURNING GROUND

	CONTAMINATED MEDIA AT DETERRENT BURNING GROUND			
RI/FS COMPONENT	SUBSURFACE SOIL	GROUNDWATER		
Identification of Contaminants of Concern	VOCsSVOCsExplosivesInorganics	VOCsSVOCsInorganicsExplosives		
Risk Assessment Results	 24DNT, 26DNT, NNDPA, and AS are a threat to humans. 24DNT, 26DNT, AS, and CR are a potential threat to groundwater. No ecological risk 	 26DNT, 112TCE, CR, HG, and NIT exceed MCLs or WESs. CD, PB, and BA exceed WPALs MN and SO4 exceed SDWA standards. BE and NNDPA exceed interim WPALs. No ecological risk. 		
Remedial Action Objectives	 Prevent concentrations of 24DNT, 26DNT, NNDPA, and AS which exceed clean-up standards for protection of human health from becoming available, either through incidental ingestion or inhalation to potential human receptors. Prevent concentrations of 24DNT, 26DNT, AS, and CR which exceed cleanup standards for protection of groundwater from degrading groundwater quality. 	 Prevent further contamination of elevated groundwater system. Prevent exposure to concentrations of 26DNT, 112TCE, NIT, BA, CD, PB, CR, and HG exceeding their respective WPALs. Prevent exposure of BE and NNDPA exceeding respective interim WPALs Prevent exposure of MN and SO4 at levels exceeding SDWA levels. 		
Remedial Technologies Retained After Screening	 Soil Cover Capping Off-Site Landfill On-site Incineration Off-Site Incineration Composting Soil Washing 	 Groundwater Extraction Wells UV/Oxidation Air Stripping Carbon Adsorption Resin Adsorption UV/Reduction Discharge to Surface Water 		

TABLE ES-1 SUMMARY OF CONTAMINATION ASSESSMENT THROUGH REMEDIAL ALTERNATIVES SCREENING DETERRENT BURNING GROUND

	CONTAMINATED MEDIA AT DETERRENT BURNING GROUND			
RI/FS COMPONENT	SUBSURFACE SOIL	GROUNDWATER		
Remedial Alternatives Developed	 Minimal Action Capping Off-Site Landfill Soil Washing Off-Site Incineration Off-Site Incineration, Soil Washing On-Site Incineration Composting, Soil Cover 	 Minimal Action Groundwater Extraction, IRM and Carbon Adsorption Groundwater Extraction, IRM and UV/Oxidation-Discharge Groundwater Extraction, IRM and Air Stripping-Carbon Adsorption, Discharge Groundwater Extraction, IRM and Resin Adsorption, Discharge Groundwater Extraction, IRM and UV/Reduction - Carbon Adsorption, Discharge 		
Remedial Alternatives Retained After Screening	 Minimal Action Capping Soil Washing On-Site Incineration Composting 	 Minimal Action Groundwater Extraction, IRM and Carbon Adsorption Groundwater Extraction, IRM and Air Stripping, Carbon Adsorption, Discharge Groundwater Extraction, IRM and Resin Adsorption, Discharge Groundwater Extraction, IRM and UV/Reduction - Carbon Adsorption, Discharge 		

TABLE ES-1 SUMMARY OF CONTAMINATION ASSESSMENT THROUGH REMEDIAL ALTERNATIVES SCREENING NITROGLYCERINE POND/ROCKET PASTE AREA

	CONTAMINATED MEDIA AT NITROGLYCERINE POND/ROCKET PASTE AREA		/ROCKET PASTE AREA
RI/FS COMPONENT	SURFACE SOIL	SEDIMENT	SURFACE WATER
Identification of Contaminants of Concern	SVOCs Inorganics	SVOCs Inorganics	Inorganics
Risk Assessment Results	 PB, 24DNT, 26DNT, CPAH, and NNDPA are a threat to humans. PB, NG, HG, CR, NNDPA, 26DNT, and 24DNT all exceed acceptable ecological risk levels. PB, CR, and 24DNT all exceed acceptable groundwater risk levels. 	 CR, HG, PB all exceed acceptable ecological risk levels. PB also a threat to humans. CR and PB exceed acceptable groundwater risk levels. Levels of SVOCs do not pose an unacceptable health 	AL, HG, CR, CU, FE, MN, PB, and ZN all exceed acceptable ecological risk standards.
Remedial Action Objectives	Prevent migration of contaminated soil by erosion.	risk. • Prevent migration of contaminated sediment into drainageways downgradient of ponds.	Reduce AL, HG, MN, PB, CR, CU, FE, and ZN concentrations to levels resulting in acceptable risk for aquatic and semiaquatic receptors.
	Reduce exposure to PB, 24DNT, 26DNT, CPAH, and NNDPA concentra- tion to acceptable risk levels for humans.	Prevent contaminants in sediment from contaminating surface water in ponds.	
	Reduce exposure to concentrations of PB, CR, HG, NG, 24DNT, 26DNT and NNDPA to acceptable risk levels for terrestrial organisms.	Reduce exposure of concentrations of CR, HG, and PB in sediments at the Nitroglycerine Pond to levels resulting in acceptable risk for aquatic and semiaquatic receptors.	

TABLE ES-1 SUMMARY OF CONTAMINATION ASSESSMENT THROUGH REMEDIAL ALTERNATIVES SCREENING NITROGLYCERINE POND/ROCKET PASTE AREA

	CONTAMINATED MEDIA AT NITROGLYCERINE POND/ROCKET PASTE AREA		
RI/FS COMPONENT	SURFACE SOIL	SEDIMENT	SURFACE WATER
Remedial Action Objectives	Reduce exposure to PB, CR, and 24DNT to acceptable levels for groundwater.	Reduce exposure to PB concentration in Rocket Paste Pond to acceptable risk level for humans.	
-		Reduce exposure to CR and PB to acceptable levels for groundwater.	
Remedial	Soil Cover	Soil Cover	Precipitation
Technologies Retained After	Off-Site Landfill	On-Site Disposal	Ion Exchange
Screening	On-Site Disposal	Off-Site Landfill	Microfiltration
	Solidification/ Stabilization	Solidification/ Stabilization	Return water to surface water
	In-Situ Solidification/ Stabilization	In-Situ Solidification/ Stabilization	
Remedial Alternatives	Minimal Action	Minimal Action	Minimal Action
Developed	Soil Cover	Soil Cover	Precipitation/ Microfiltration
	Excavation/Solidifi- cation/On-Site Disposal	Excavation/Solidifi- cation/On-Site Disposal	Ion Exchange
	Excavation/Off-site Disposal	Excavation/Off-site Disposal	
	In-situ Solidification/ Stabilization	In-Situ Solidification/ Stabilization	

TABLE ES-1 SUMMARY OF CONTAMINATION ASSESSMENT THROUGH REMEDIAL ALTERNATIVES SCREENING NITROGLYCERINE POND/ROCKET PASTE AREA

FEASIBILITY STUDY BADGER ARMY AMMUNITION PLANT

	CONTAMINATED MEDIA AT NITROGLYCERINE POND/ROCKET PASTE AREA		
RI/FS COMPONENT	SURFACE SOIL	SEDIMENT	SURFACE WATER
Remedial Alternatives	Minimal Action	Minimal Action	Minimal Action
Retained After Screening	Soil Cover	Soil Cover	Precipitation/ Microfiltration
-	Excavation/ Solidification/On-Site Disposal	Excavation/Solidificati on/ On-Site Disposal	Ion Exchange
		Excavation/Off-site	
	Excavation/Off-site Disposal	Disposal	
	In-situ solidification/ stabilization	In-situ solidification/ stabilization	

Note:

Full compound names are identified in the USAEC Chemical Code list located behind the glossary of acronyms.

TABLE ES-1 SUMMARY OF CONTAMINATION ASSESSMENT THROUGH REMEDIAL ALTERNATIVES SCREENING SETTLING PONDS AND SPOILS DISPOSAL AREA

	CONTAMINATED SOIL AT THE SETTLING PONDS AND SPOILS DISPOSAL AREA
RI/FS COMPONENT	Surface Soils
Identification of Contaminants of Concern	SVOCs Inorganics
Risk Assessment Results	 24DNT, 26DNT, CPAH, PB, and ZN exceed human health and/or protection of groundwater criteria (as developed from proposed Chapter NR 720). AL, DPA, DEP, NG, PB, SN, and ZN exceed acceptable ecological risk standards.
Remedial Action Objectives	 Prevent migration of contaminated soil by soil erosion. Prevent the exposure of terrestrial receptors to surface soil at Final Creek and the Settling Ponds containing concentrations of PB (excluding Settling Pond 3) and SN that pose unacceptable risk. Prevent the exposure to terrestrial receptors to surface soil containing concentrations of DEP (at Settling Ponds 1, 2, and 3) and DPA (at Final Creek and Settling Pond 1) that pose unacceptable risk. Prevent the exposure of terrestrial receptors to surface soil at Settling Pond 4 containing concentrations of AL that pose unacceptable risk. Prevent the exposure of terrestrial receptors to surface soil at the Spoils Disposal Sites containing concentrations of ZN and PB that pose unacceptable risk. Prevent the exposure of terrestrial receptors to surface soil at Spoils Disposal Site 1 containing concentrations of DPA and NG that pose unacceptable risk. Prevent the exposure of human receptors to soil at Final Creek and the Settling Ponds containing concentrations of 24DNT, 26DNT, and CPAH that pose unacceptable risk. Prevent the exposure of human receptors to soil at the Spoils Disposal Sites containing concentrations of 24DNT that pose unacceptable risks. Prevent concentrations of 24DNT and PB in soil at Final Creek and the Settling Ponds which exceed cleanup standards for protection of groundwater (developed from the proposed Chapter NR 720) from degrading groundwater (developed from the proposed Chapter NR 720) from degrading groundwater (developed from the proposed Chapter NR 720) from degrading groundwater quality in excess of WPALs.
Remedial Technologies Retained After Screening	 Soil Cover Capping Off-Site Landfill Ex-Situ Stabilization/Solidification In-Situ Stabilization/Solidification Soil Washing

TABLE ES-1 SUMMARY OF CONTAMINATION ASSESSMENT THROUGH REMEDIAL ALTERNATIVES SCREENING SETTLING PONDS AND SPOILS DISPOSAL AREA

	CONTAMINATED SOIL AT THE SETTLING PONDS AND SPOILS DISPOSAL AREA
RI/FS COMPONENT	SURFACE SOILS
Remedial Alternatives Developed	 Minimal Action Soil Cover Capping Off-Site Landfill Soil Washing Ex-situ Stabilization/Solidification Modified In-Situ Stabilization/Solidification, Soil Cover Ex-situ Stabilization/Solidification, Off-Site Landfill
Remedial Alternatives Retained After Screening	Minimal Action Capping Modified In Situ Stabilization/Solidification, Soil Cover

TABLE ES-1 SUMMARY OF CONTAMINATION ASSESSMENT THROUGH REMEDIAL ALTERNATIVES SCREENING SOUTHERN OFF-POST AREA

FEASIBILITY STUDY BADGER ARMY AMMUNITION PLANT

	Contaminated Media at the Southern Off-Post Area
RI/FS Component	Groundwater
Identification of Contaminants of Concern	VOCs Inorganics
Risk Assessment Results	 CCL4 exceeds MCL, WES, and WPAL CHCL3, CD, PB, and TRCLE exceed WPALs but are below MCL and WES MN exceeds secondary drinking water standards, and public welfare standards
Remedial Action Objective	 Prevent concentrations of CCL4, CHCL3, TRCLE, CD, MN, and PB in groundwater which exceed WPALs from becoming available to potential human receptors
Remedial Technologies Retained After Screening	 Groundwater monitoring Institutional controls Groundwater extraction wells Airstripping Carbon adsorption Surface Water Discharge
Remedial Alternatives Developed	Minimal Action Airstripping Carbon adsorption
Remedial Alternatives Retained After Screening	Minimal ActionAirstrippingCarbon adsorption

Notes:

WES = Wisconsin Enforcement Standard
WPAL = Wisconsin Preventative Action Limit

Full compound names are identified in the USAEC Chemical Code list located behind the glossary of acronyms.

TABLE ES-2 COMPARATIVE SUMMARY OF ALTERNATIVES PROPELLANT BURNING GROUND SURFACE SOIL

ALTERNATIVE	OVERALL PROTECTION	COMPLANCE WITH ARARS	EFFECTIVENESS: LONG-TERM	REDUCTION IN TOXICITY, MOBILITY, AND VOLUME	EFFECTIVENESS: SHORT-TERM	IMPLEMENTABILITY	CosT
Alternative PBG-SS1: Minimal Action	Reduces potential for human exposure to contaminated soil. Not protective of ecological receptors or groundwater.	No chemical-specific ARARs. Although this alternative could meet the intent of the proposed Chapter NR 720 standards for protection of human health, it would not meet the intent of the proposed standards for groundwater.	If managed properly, residual risk to human receptors would be minor. No reduction in residual risk to ecological receptors or threat of groundwater contamination.	Contamination is not treated or destroyed; no reduction of toxicity, mobility, or volume of contaminants.	No adverse community or environmental impacts during implementation.	No implementability concerns.	Total Present Worth: \$277,000 Capital Cost: \$108,000 Annual O&M: \$11,000 (30 yrs)
Alternative PBG-SS2: Soil Cover	Achieves remedial action objectives for protection of human health and ecological receptors. Not protective of groundwater.	No chemical-specific ARARs. Although this alternative could meet the intent of the proposed Chapter NR 720 standards for protection of human health, it would not meet the intent of the proposed standards for protection of groundwater.	If managed properly, residual risk to human and ecological receptors would be negligible. No reduction in threat of groundwater contamination.	No reduction of toxicity, mobility, or volume of contaminants. However, mobilizing influences (e.g., soil erosion) would be reduced.	No adverse impacts to the community and only minimal impact (if general health and safety practices are followed) to workers during implementation. Minor impact to the environment.	No implementability concerns. Soil covers are easily constructed and maintained.	Total Present Worth: \$1,985,000 Capital Cost: \$1,385,000 Annual O&M: \$39,000 (30 yrs)
Modified Alternative PBG-SS6: In Situ S/S and Soil Cover	Achieves remedial action objectives for protection of human health, groundwater, and ecological receptors.	No chemical-specific ARARs. This alternative could meet the intent of the proposed Chapter NR 720 standards for protection of hurnan health and groundwater.	Residual risk to human and ecological receptors would be negligible and the threat of groundwater contamination would be removed.	No reduction of toxicity. Potential mobility would be reduced by S/S. Volume would increase by up to 50 percent.	No adverse impacts to the community and only minimal impact (if general health and safety practices are followed) to workers during implementation. Minor impact to the environment.	Significant implementability concerns. In situ S/S of surface soils is a developing technology and extensive treatability testing is required.	Total Present Worth: \$7,337,000 Capital Cost: \$6,860,000 Annual O&M: \$31,000 (30 yrs)

TABLE ES-2 COMPARATIVE SUMMARY OF SUBSURFACE SOIL ALTERNATIVES PROPELLANT BURNING GROUND SUBSURFACE SOIL

ALTERNATIVE	OVERALL PROTECTION	COMPLANCE WITH ARARS	EFFECTIVENESS: LONG-TERM	REDUCTION IN TOXICITY, MOBILITY, AND VOLUME	EFFECTIVENESS: SHORT-TERM	IMPLEMENTABILITY	Cost
Alternative PBG-SB1: Minimal Action	Reduces potential for human exposure to contaminated soil. Not protective of groundwater.	No chemical-specific ARARs. This alternative would not meet the intent of the proposed Chapter NR 720 standards for protection of human health and groundwater.	If managed properly, residual risk to human receptors would be minor. No reduction in the threat of groundwater contamination.	Contamination is not treated or destroyed; no reduction of toxicity, mobility, or volume of contaminants.	No adverse community or environmental impacts during implementation.	No implementability concerns.	Total Present Worth: \$118,000 Capital Cost: \$10,000 Annual O&M: \$7,000 (30 yrs)
Alternative PBG-SB2: Capping	High potential for achleving remedial action objectives for protection of human health and groundwater.	No chemical-specific ARARs. This alternative could meet the intent of the proposed Chapter NR 720 standards for protection of human health and groundwater.	If managed properly, residual risk to human receptors and the threat of groundwater contamination would be negligible.	No reduction of toxicity, mobility, or volume of contaminants. However, mobilizing influences (e.g., inflitration of precipitation) would be reduced.	No adverse impacts to the community and only minimal (if general health and safety practices are followed) to workers during implementation.	No implementability concerns. RCRA caps are easily constructed and maintained.	Total Present Worth: \$1,360,000 Capital Cost: \$1,252,000 Annual O&M: \$7,000 (30 yrs)
Alternative PBG-SB3: Off-Site Landfil	Achieves remedial action objectives for protection of human health and groundwater.	No chemical-specific ARARs. This alternative would comply with pathway-specific numeric standards derived from the proposed Chapter NR 720.	No residual risk at Landfill 1 and the 1949 Pit. If managed properly, residual risk at receiving off-site landfill would be negligible.	S/S may occur at the offsite landfill prior to disposal. S/S would not reduce toxicity but would reduce potential mobility. Volume would increase by up to 50 percent.	No adverse impacts to the community and only minimal (if general health and safety practices are followed) to workers during implementation.	No implementability concerns. Excavation and disposal in an off-site landfill would be easily implemented.	Total Present Worth: \$2,843,000 Capital Cost: \$2,843,000 Annual O&M:

TABLE ES-2 COMPARATIVE SUMMARY OF REMEDIAL ALTERNATIVES PROPELLANT BURNING GROUND WASTE PITS

ALTERNATIVE	OVERALL PROTECTION	COMPLANCE WITH ARARS	EFFECTIVENESS: LONG-TERM	REDUCTION IN TOXICITY, MOBILITY, AND VOLUME	EFECTIVENESS: SHORT-TERM	IMPEMENTABILITY	COST
Alternative PBG-WP1: Minimal Action	Reduces potential for human exposure to contaminated soil. Not protective of groundwater.	No chemical-specific ARARs. This alternative would not meet the intent of the proposed Chapter NR 720 standards for protection of human health and groundwater.	If managed properly, residual risk to human receptors wold be minor. No reduction in the threat of groundwater contamination.	Contamination is not treated or destroyed; no reduction of toxicity, mobility, or volume of contaminants.	No adverse community or environmental impacts during implementation.	No implementability concerns.	Total Present Worth: \$118,000 Capital Cost: \$10,000 Annual O&M: \$7,000 (30 yrs)
Alternative PBG-WP4: On-Site Incineration and Capping	Achieves remedial action objectives for protection of human health. Large quantity of contaminants would remain in waste pit soils. Caps would not provide total containment needed to protect groundwater.	No chemical-specific ARARs. This atternative could meet the intent of the proposed Chapter NR 720 standards for protec- tion of human health but not groundwater.	Residual risk to human receptors would be negligible but the large quantity of contaminants and the inherent mobility of VOCs would pose a significant long-term threat to groundwater quality.	Incinerator destruction and removal efficiency would be at least 99.9999 percent. Caps would limit natural mobilizing influences on remaining contami- nants.	Because the incinerator would be operating in a isolated location, risks associated with emissions are expected to be minor. Reactive risk associated with excavating/handling DNT-contaminated soil.	No implementability concerns. Incineration is a proven technology for explosive-contaminated soil. Caps are easily constructed and maintained.	Total Present Worth: \$6,793,000 Capital Cost: \$6,685,000 Closure O&M: \$7,000/yr (30 yrs)
Alternative PBG-WP5; Composting and Capping	Achieves remedial action objective for protection of human health. Large quantity of contaminants would remain in waste pit soils. Caps would not provide total containment needed to protect groundwater.	No chemical-specific ARARs. This alternative could meet the intent of the proposed Chapter NR 720 standards for protec- tion of human health but not groundwater.	Residual risk to human receptors would be negligible but the large quantity of contaminants and the inherent mobility of VOCs would pose a significant long-term threat to groundwater quality.	Bacterial mutagenicity and aquatic toxicity reduced by 88 to 98 percent. Caps would limit natural mobilizing influences on remaining contaminants.	Remote location of composting site would provide for adequate dispersal of odors and airborne contaminants. Reactive risk associated with excavating/handling DNT-contaminated soil.	Minor implement- ability concerns. While general tech- nical feasibility of composting has been demonstrated at similar sites, treat- ability studies would be required prior to full-scale design and construction.	Total Present Worth: \$5,360,000 Capital Cost: \$4,219,000 Composting O&M: \$1,085,000 1 yr Closure O&M: \$7,000/yr (30 yrs)

TABLE ES-2 COMPARATIVE SUMMARY OF REMEDIAL ALTERNATIVES PROPELLANT BURNING GROUND WASTE PITS

Cost	Total Present Worth: \$5,585,000 Capital Cost: \$4,444,000 Composting O&M: \$1,085,000/ 1 yr Closure O&M: \$7,000/yr (30 yrs)	Soil Flushing Total Present Worth: \$15,320,000 Capital Cost: \$12,691,000 O&M: \$349,000/yr (11 yrs) Chemical- Biological Total Present Worth: \$24,274,000 Capital Cost: \$11,987,000 O&M: \$10,754,000/yr (16 months)
IMPLEMENTABILITY	Minor implement-ability concerns. While general technical feasibility of in situ vacuum extraction and composting has been demonstrated, treatability studies would be required prior to full-scale design and construction.	Potentially significant implementability concerns. In situ soil flushing and chemical-biological have not been applied to explosive-contaminated soil or to remediation of any site at this scale. Extensive treatability testing is required.
EFFECTIVENESS: SHORT-TERM	Remote location of composting site would provide for adequate dispersal of odors. Reactive risk associated with excavating/handling DNT-contaminated soil.	Soil Flushing Because there would be no excavation of contarninated soil and treatment would occur in the IRM facility, overall risk would be minimal. Chemical-Biological VOCs would be contained during soil mixing. Reactive risk associated with mixing DNT-contaminated soil may be exacerbated by addition of hydrogen peroxide.
REDUCTION IN TOXICITY, MOBILITY, AND VOLUME	VOC removal efficiencies of up to 99 percent are possible with in situ vacuum extraction. Composting reduces bacterial mutagenicity and aquatic toxicity by 88 to 98 percent.	Soil Flushing Existing IRM facility would achieve removal efficiency greater than 99 percent. Off-site destruction of contaminants in spent carbon. Chemical-Biological Chemical oxidation and biodegradation would result in complete contaminant degradation.
EFFECTIVENESS: LONG-TERM	Residual risk to human receptors would be negligible. Large quantities of contaminants would pose a significant long-term threat to groundwater quality. However, removal of VOCs could result in reduced threat to groundwater quality.	No residual risk.
COMPLIANCE WITH ARARS	No chemical-specific ARARS. This alternative could possibly meet either numeric standards or per- formance standards for protection of human health and groundwater per the proposed Chapter NR 720 standards.	No chemical-specific ARARs. This alternative would comply with pathway-specific numeric standards derived from the proposed Chapter NR 720.
OVERALL PROTECTION	Achieves remedial action objective for protection of human health. Although a large quantity of contaminants would remain in waste pit soils, in situ vacuum extraction would have removed the more mobile VOCs. Caps may provide total containment of remaining SVOCs and protect	Achieves remedial action objectives for protection of human health and groundwater.
ALTERNATIVE	Alternative PBG-WP7: In Situ Vacuum Extraction, Composting, and Capping	Alternative PBG-WP8:

COMPARATIVE SUMMARY OF REMEDIAL ALTERNATIVES PROPELLANT BURNING GROUND WASTE PITS TABLE ES-2

BADGER ARMY AMMUNITION PLANT FEASIBILITY STUDY

COST	Total Present Worth: \$49,582,000 Capital Cost: \$20,941,000 Annual O&M: \$21,307,000 (1.5 yrs)	Total Present Worth: \$38,309,000 Capital Cost: \$35,006,000 Annual O&M: \$1,052,000 (3.5 yrs)
IMPLEMENTABILITY	No implementability concerns. Diaphragm wall technology has been demonstrated in large-scale civil projects. Incineration is a proven technology for explosive-contaminated soil.	Minor implementability concerns. While general technical feasibility of insitu vacuum extraction, soil washing, and composting has been demonstrated. Treatability studies would be required prior to full-scale design and construction.
EFECTIVENESS: SHORT-TERM	Because the incinerator would be operating in an isolated location, risks associated with emissions are expected to be minor. Reactive risk associated with excavating/handling DNT-contaminated soil.	Remote location of composting site would provide for adequate dispersal of odors. Reactive risk associated with excavating/handling DNT-contaminated soil.
REDUCTION IN TOXICITY, MOBILITY, AND VOLUME	Incinerator destruction and removal efficiency would be at least 99.9999 percent.	VOC removal efficiencies of up to 99 percent are possible with in situ vacuum extraction. Soil washing is capable of volume reductions of approximately 90 percent. Composting reduces bacterial mutagenicity and aquatic toxicity by 88 to 98 percent.
EFECTIVENESS: LONG-TERM	No residual risk.	No residual risk
COMPLANCE WITH ARARS	No chemical-specific ARARs for soil. However, destroying soil contaminants would eliminate generation of leachate. This alternative would comply with pathway-specific numeric standards derived from the proposed Chapter NR	No chemical-specific ARARs. This alternative would comply with pathway-specific numeric standards derived from the proposed Chapter NR 720.
OVERALL PROTECTION	Achieves remedial action objectives for protection of human health and groundwater.	Achieves remedial action objectives for protection of human health and groundwater.
ALTERNATIVE	Alternative PBG- WP10: On-Site Incineration	Alternative PBG- WP11: In Situ Vacuum Extraction, Soil Washing, and Composting

Notes:

 Applicable or Relevant and Appropriate Requirements
 Interim Remedial Measures
 volatile organic compounds ARARs IRM VOCs

TABLE ES-2 COMPARATIVE SUMMARY OF GROUNDWATER ALTERNATIVES PROPELLANT BURNING GROUND GROUNDWATER

ALTERNATIVE	OVERALL PROTECTION	COMPLANCE WITH ARARS	EFFECTIVENESS: LONG-TERM	REDUCTION IN TOXICITY, MOBILITY, AND VOLUME	EFFECTIVENESS: SHORT-TERM	IMPLEMENTABILITY	Cost
Alternative PBG-GW1: Minimal Action	Not protective of human health. Groundwater contaminant concentrations may increase and plume's areal extent would expand.	Would not achieve WPALs. Location- specific and action- specific APARs do not apply.	Not applicable because remedial action objectives are not achieved.	Contamination is not treated or destroyed; no reduction of toxicity, mobility, or volume of contaminants.	No adverse community or environmental impacts during implementation	No implementability concerns.	Total Present Worth: \$7,442,000 Capital Cost: \$10,000 Annual O&M:
Alternative PBG-GW2: IRM and Carbon Adsorption	Achieves remedial action objectives for human receptors downgradient of the Contaminated Waste Area.	Would achieve WPALs in aquifer downgradient of source control wells. Capable of achieving WPDES permit limits.	Residual risk would be minimal downgradient of source control wells. Inherent residual risk unless source is remediated.	Removal efficiency greater than 99%. Approximately 360,000 lbs of spent carbon generated annually. Off-site destruction of contaminants.	No adverse impacts to community. Potentially adverse impacts to environment during construction of extraction system.	No implementability concerns. Technologies have been proven full-scale. No problems expected permitting discharge.	Total Present Worth: \$35,040,000 Capital Cost: \$6,569,000 Annual O&M: \$1,485,000
Alternative PBG-GW4: IRM and Air Stripping - Carbon Adsorption	Achieves remedial action objectives for human receptors downgradient of the Contaminated Waste Area.	Would achieve WPALs in aquifer downgradient of source control wells. Capable of achieving WPDES and air permits limits.	Residual risk would be minimal downgradient of source control wells. Inherent residual risk unless source is remediated.	Removal efficiency greater than 99%. Approximately 186,000 lbs of spent carbon generated annually. Off-site destruction of contaminants.	No adverse impacts to community. Potentially adverse impacts to environment during construction of extraction system.	No implementability concerns. Technologies have been proven full-scale. No problems expected permitting discharge or air emissions.	Total Present Worth: \$35,563,000 Capital Cost: \$7,303,000 Annual O&M: \$1,474,000
Alternative PBG-GW5: IRM and Resin Adsorption	Achieves remedial action objectives for human receptors downgradient of the Contaminated Waste Area.	Would achieve WPALs in aquifer downgradient of source control wells. Capable of achieving WPDES permit limits.	Residual risk would be minimal downgradient of source control wells. Inherent residual risk unless source is remediated.	Removal efficiency greater than 99%. Approximately 350 lbs of organic phase and 120,000 lbs of spent carbon generated annually. Off-site destruction of contaminants.	No adverse impacts to community. Potentially adverse impacts to environment during construction of extraction system.	Significant implementability concerns. Resin technology has not been proven full-scale and extensive treatability testing would be required. No problems expected permitting discharge.	Total Present Worth: \$35,564,000 Capital Cost: \$9,047,000 Annual O&M: \$1,383,000
Alternative PBG-GW7: IRM and UV Reduction - Carbon Adsorption	Achieves remedial action objectives for human receptors downgradient of the Contaminated Waste Area.	Would achieve WPALs in aquifer downgradient of source control wells. Capable of achieving WPDES permit limits.	Residual risk would be minimal downgradient of source control wells. Inherent residual risk unless source is remediated.	Destruction and removal efficiency greater than 99%. Approximately 120,000 lbs of spent carbon generated annually. On-site and offsite destruction of contaminants.	No adverse impacts to community. Potentially adverse impacts to environment during construction of extraction system.	Minor implement- ability concerns. Treatability studies required to adapt UV reduction to the wastestream. No problems expected permitting discharge.	Total Present Worth: \$40,069,000 Capital Cost: \$8,446,000 Annual O&M: \$2,056,000

TABLE ES-2 COMPARATIVE SUMMARY OF REMEDIAL ALTERNATIVES DETERRENT BURNING GROUND SUBSURFACE SOIL

ALTERNATIVE	OVERALL PROTECTION	COMPLIANCE WITH ARARS	EFFECTIVENESS: LONG-TERM	REDUCTION IN TOXICITY, MOBILITY, AND VOLUME	EFFECTIVENESS: SHORT-TERM	IMPLEMENTABILITY	Cost
Alternative DBG-SB1: Minimal Action	Protective of human health, however, contaminated subsurface soils will remain on site and pose a risk to construction workers doing intrusive work and groundwater.	No action would be taken at the site, therefore location- and action-specific ARARs would not apply. Proposed Chapter NR 720 clean-up standards would not be met.	Would be capable of protecting human health through institutional controls.	Contamination is not treated or destroyed; no reduction in toxicity, mobility, or volume.	No implementation, therefore no adverse community or environmental impacts during implementation.	No implementability concerns.	Total Present Worth: \$118,000 Capital Costs: \$10,000 Annual O&M Costs:
Alternative DBG-SB2: Capping	Protective of human health and ground-water; however, subsurface soils will remain on site and pose a risk if the integrity of the cap is violated.	This alternative could meet the intent of NR 720 clean-up standards. Location-specific ARARs for landfills would apply. Action-specific ARARs would be addressed.	Would be capable of protecting human health through institutional controls. Would be capable of protecting groundwater.	Contamination is not treated or destroyed; no reduction in toxicity, mobility, or volume.	Fugitive dust from construction site could result in risk to the community.	Landfill contractor must use employees who have current OSHA site worker protection training.	Total Present Worth: \$642,000 Capital Costs: \$534,000 Annual O&M Costs: \$108,000
Alternative DBG-SB4: Soil Washing	Protective of human health because soils will be excavated and treated to below RGs.	Location-specific ARARs for landfills would apply. Action- specific ARARs would be addressed. Proposed Chapter NR 720 clean-up standards would be met.	Would be capable of maintaining protection of human health and groundwater because contaminants are removed and permanently treated.	24DNT would be treated onsite. Residuals generated from treatment would be appropriately disposed of offsite.	Fugitive dust from construction site could result in risk to the community. Exposing contaminated soils increases risk to site workers.	Excavation contractor must use employees who have current OSHA Site Worker Protection training. Soil washing vendors have limited availability. Treatability testing required before implementation.	Total Present Worth: \$4,993,000 Capital Costs: \$4,885,000 Annual O&M Costs:

TABLE ES-2 COMPARATIVE SUMMARY OF REMEDIAL ALTERNATIVES DETERRENT BURNING GROUND SUBSURFACE SOIL

ALTERNATIVE	OVERALL PROTECTION	COMPLIANCE WITH ARARS	EFFECTIVENESS: LONG-TERM	REDUCTION IN TOXICITY, MOBILITY, AND VOLUME	EFFECTIVENESS: SHORT-TERM	IMPLEMENTABILITY	Cost
Alternative DBG-SB7: On-Site Incineration	Protective of human health because soils will be excavated and treated to below RGs.	Location-specific ARARs for landfills would apply. Action- specific ARARs would be addressed. Proposed Chapter NR 720 clean-up standards would be met.	Would be capable of maintaining protection of human health and groundwater because contaminants are removed and permanently treated.	24DNT would be treated on- base. Residuals generated from treatment would be appropriately disposed of off- site.	Fugitive dust from construction site could result in risk to the community. Exposing contaminated soils increases risk to site workers. Transportation of contaminated soils across the base for treatment increases risk.	Excavation contractor must use employees who have current OSHA Site Worker Protection training. Will only be implemented if onsite incineration is implemented at the Propellant Burning Ground.	Total Present Worth: \$6,553,000 Capital Costs: \$6,445,000 Annual O&M Costs: \$108,000
Alternative DBG-SB8: Composting	Protective of human health because soils will be excavated and treated to below RGs.	Location-specific ARARs for landfills would apply. Action- specific ARARs would be addressed. Pro- posed Chapter NR 720 soil clean-up standards would be met.	Would be capable of maintaining protection of human health and groundwater because contaminants are removed and permanently treated.	24DNT would be treated onsite. No residuals resulting from treatment.	Fugitive dust from construction site could result in risk to the community. Exposing contaminated soils increases risk to site workers.	Excavation contractor must use employees who have current OSHA Site Worker Protection training.	Total Present Worth: \$4,461,000 Capital Costs: \$3,330,000 Annual O&M Costs:

TABLE ES-2 COMPARATIVE SUMMARY OF REMEDIAL ALTERNATIVES DETERRENT BURNING GROUND GROUNDWATER

ALTERNATIVE	OVERALL PROTECTION	COMPLIANCE WITH ARARS	EFFECTIVENESS: LONG-TERM	REDUCTION IN TOXICITY, MOBILITY, AND VOLUME	EFFECTIVENESS: SHORT-TERM	IMPLEMENTABILITY	Cost
Alternative DBG-GW1: Minimal Action	Possibly protective of human health because institutional controls will prohibit the use of this aquifer as a drinking water source and groundwater monitoring would ensure no contamination has migrated to the regional aquifer. Contaminant concentrations would not be reduced to safe levels until the source area is identified and remediated.	Would not meet chemical- specific ARARs, unless source areas are located and remediated. Location- and action-specific ARARs do not apply.	This alternative would not meet RGs, however residual risk to human health is low.	Contamination is not treated or destroyed; no reduction of toxicity, mobility or volume of contamination.	No adverse impacts to community or environment during implementation.	No implementability concerns.	Total Present Worth: \$845,000 Capital Costs: \$10,000 Annual Costs: \$835,000
Alternative DBG-GW2: IRM and Carbon Adsorption	Possibly protective of human health because contaminant migration of contaminated groundwater to the regional aquifer would be reduced. Contaminant concentrations would not be reduced to safe levels until the source area is identified and remediated.	Would not meet chemical- specific ARARs unless source area is identified and remediated. Location- specific ARARs do not apply. Action-specific ARARs would be attained.	This alternative would not meet RGs, however residual risk to human health is low.	Contaminants are destroyed; reduction of toxicity. Extraction system reduces mobility. Unless source area remediated, no reduction of volume.	Potential for adverse impacts to community or environment when transporting contaminated groundwater.	Significant technical difficulties associated with extraction of groundwater from the elevated aquifer.	Total Present Worth: \$2,008,000 Capital Costs: \$1,239,000 Annual Costs: \$769,000

TABLE ES-2 COMPARATIVE SUMMARY OF REMEDIAL ALTERNATIVES DETERRENT BURNING GROUND GROUNDWATER

ÂLTERNATIVE	OVERALL PROTECTION	COMPLIANCE WITH ARARS	EFFECTIVENESS: LONG-TERM	REDUCTION IN TOXICITY, MOBILITY, AND VOLUME	EFFECTIVENESS: SHORT-TERM	IMPLEMENTABILITY	Cost
Alternative DBG-GW4: IRM and Air Stripping- Carbon Adsorption	Possibly protective of human health because contaminant migration of contaminated groundwater to the regional aquifer would be reduced. Contaminant concentrations would not be reduced to safe levels until the source area is identified and remediated.	Would not meet chemical- specific ARARs unless source area is identified and remediated. Location- specific ARARs do not apply. Action-specific ARARs would be attained.	This alternative would not meet RGs, however residual risk to human health is low.	Contaminants are destroyed; reduction of toxicity. Extraction system reduces mobility. Unless source area remediated, no reduction of volume.	Potential for adverse impacts to community or environment when transporting contaminated groundwater.	Significant technical difficulties associated with extraction of groundwater from the elevated aquifer.	Total Present Worth: Worth: \$2,008,000 Capital Costs: \$1,239,000 Annual Costs: \$7759,000
Alternative DBG-GW5: IRM and Resin Adsorption	Possibly protective of human health because contaminant migration of contaminated groundwater to the regional aquifer would be reduced. Contaminant concentrations would not be reduced to safe levels until the source area is identified and remediated.	Would not meet chemical- specific ARARs unless source area is identified and remediated. Location- specific ARARs do not apply. Action-specific ARARs would be attained.	This alternative would not meet RGs, however residual risk to human health is low.	Contaminants are destroyed; reduction of toxicity. Extraction system reduces mobility. Unless source area remediated, no reduction of volume.	Potential for adverse impacts to community or environment when transporting contaminated groundwater.	Significant technical difficulties associated with extraction of groundwater from the elevated aquifer.	Total Present Worth: \$2,008,000 Capital Costs: \$1,239,000 Annual O&M Costs: \$769,000

TABLE ES-2 COMPARATIVE SUMMARY OF REMEDIAL ALTERNATIVES DETERRENT BURNING GROUND GROUNDWATER

destroyed; reduction of	Contaminants are destroyed; reduction of	This alternative would not Contaminants are meet RGs, however destroyed; reduction of	Would not meet chemical- This alternative would not Specific ARARs unless meet RGs, however destroyed; reduction of
toxicity. Extraction system reduces mobility. Unless source area remediated no	toxicity. Extraction system reduces mobility. Unless source area remediated no	residual risk to human toxicity. Extraction system reduces mobility. Unless source area remediated no	source area is identified residual risk to human toxicity. Extraction system and remediated. Location- health is low. reduces mobility. Unless specific ARARs do not
reduction of volume.		reduction of volume.	apply. Action-specific
groundwater.	groun		ARARs would be attained.
			peor
ot .		ical- This alternative would not meet RGs, however residual risk to human tion- health is low.	Would not meet chemical- This alternative would not specific ARARs unless source area is identified and remediated. Location-specific ARARs do not apply. Action-specific ARARs would be attained.
	This alternative wou meet RGs, however residual risk to hum health is low.	tion- T tion- h	Would not meet chemical- specific ARARs unless source area is identified and remediated. Location- specific ARARs do not apply. Action-specific ARARs would be attained.
Possibly protective of human health because specific ARARs unless contaminated groundwater to the regional aquifer would be reduced. Contaminant concentrations would not be reduced to safe levels until the source area is identified	of use tion of mdwater iffer reduced the	Possibly protective of human health because contaminant migration contaminated groundy to the regional aquifer would be reduced. Contaminant concentrations would not be reduced to safe levels until the source area is identified.	

TABLE ES-2 COMPARATIVE SUMMARY OF REMEDIAL ALTERNATIVES NITROGLYCERINE POND/ROCKET PASTE AREA SURFACE SOIL/SEDIMENT

ALTERNATIVE	OVERALL PROTECTION	COMPLIANCE WITH ARARS	EFFECTIVENESS: LONG-TERM	REDUCTION OF MOBILITY, TOXICITY, AND VOLUME	EFFECTIVENESS: SHORT-TERM	IMPLEMENTABILITY	Cost
NG/RPA-SS1: Minimal Action	Reduces risks to humans and some ecological receptors (e.g., deer) by restricting access to the NG/RPA area. Does not meet groundwater quality requirements of NR 720.	Would not meet chemical-specific ARARs. Location- and action-specific ARARs do not apply.	Not applicable because remedial action objectives are not achieved.	Contamination is not treated or destroyed; no reduction of toxicity, mobility or volume of contaminants.	Minimal impact to community or workers during implementation.	Very easily implemented.	Total Present Worth: \$2,425,000 Capital Cost: \$719,000 Annual O&M:
NG/RPA-SS2: Soil Cover	Meets remedial action objectives by reducing exposure risks to human and ecological receptors by reducing exposure to surface soil/sediment. Does not meet groundwater quality requirements of NR 720.	Would not meet chemical-specific ARARs. Location- specific ARARs for wetlands apply. Action-specific ARARs would be attained.	if properly maintained, will effectively prevent exposure of human and ecological receptors. Does not provide long-term protection of groundwater.	Contamination is not treated or destroyed; no reduction of toxicity, mobility or volume of contaminants.	Using dust depression techniques and general health and safety practices would result in minimal risks to workers. Minimal impact on community during implementation. Impact on waterfowl at the NG Pond during	Cover system easily installed.	Total Present Worth: \$2,995,000 Capital Cost: \$1,243,000 Annual O&M: \$114,000
NG/RPA-SS3: Excavation/ Solidification/On-site Disposal	Eliminates exposure risks to human and ecological receptors at the NG/RPA by removing contaminated surface soil/sediment. Contaminated soil/sediment would, though, remain at BAAP. Groundwater quality requirements of NR 720 are met.	Would meet chemical- specific ARARs. Location-specific ARARs would apply. Action-specific ARARs would be attained.	Would be capable of maintaining protection at the NG/RPA because the contaminated soil would have been removed. Effective at the on-site disposal location as long as the location remains secure.	No reduction in toxicity. Stabilization/solidification would greatly reduce mobility. Volume of soil would increase by 20-30% (though not increasing actional amount of contamination).	Same as for NG/RPA-SS2 except excavation of contamination would increase risks to workers.	Excavation easily performed. Stabilization/solidification technology easily implemented.	Total Present Worth: \$12,910,000 Capital Cost: \$12,910,000 Annual O&M: \$0

COMPARATIVE SUMMARY OF REMEDIAL ALTERNATIVES NITROGLYCERINE POND/ROCKET PASTE AREA SURFACE SOIL/SEDIMENT TABLE ES-2

BADGER ARMY AMMUNITION PLANT FEASIBILITY STUDY

ALTERNATIVE	OVERALL PROTECTION	COMPLIANCE WITH ARARS	EFFECTIVENESS: LONG-TERM	REDUCTION OF MOBILITY, TOXICITY, AND VOLUME	EFFECTIVENESS: SHORT-TERM	IMPLEMENTABILITY	COST
NG/RPA-SS4: Excavation/Off-site Disposal	Eliminates exposure risks to human and ecological receptors at the NG/RPA by removing contaminated surface soil/sediment. Groundwater quality requirements of NR 720 are met.	Would meet chemical- specific ARARs. Location-specific ARARs would apply. Action-specific ARARs would be attained.	Would be capable of maintaining protection at the NG/RPA because the contaminated soil would have been removed. Effective at the off-site disposal facility as long as the facility is maintained.	No reduction in toxicity or volume. Mobility would be greatly reduced as contaminated surface soil/sediment would be placed in a permitted offsite disposal facility.	Same as for NG/RPA-SS2 except excavation of contamination would increase risks to workers.	Excavation easily performed. Transportation and offsite disposal easily implemented.	Total Present Worth: \$34,743,000 Capital Cost: \$34,743,000 Annual O&M: \$0
NG/RPA-SS5: In- Situ Solidification/ Soil Cover	Achieves remedial action objectives for human and ecological receptors. Groundwater requirements of NR 720 are met.	Would meet chemical- specific ARARs. Location-specific ARARs would apply, action-specific ARARs would be met.	Would be capable of maintaining protection of NG/RPA as long as treated soil/sediment and the soil cover remain intact.	No reduction in toxicity. Stabilization/solidification would greatly reduce mobility. Volume of soil would increase by 20% to 30% (though not increasing actual amount of contamination.	Same as for NG/RPA-SS2.	Stabilization/solidification technology easily implemented. Cover system easily installed.	Total Present Worth: \$9,398,000 Capital Cost: \$7,184,000 Annual O&M:

Notes:

Remediation GoalApplicable or Relevant and Appropriate Requirements RG ARARs

COMPARATIVE SUMMARY OF REMEDIAL ALTERNATIVES NITROGLYCERINE POND/ROCKET PASTE AREA SURFACE WATER TABLE ES-2

BADGER ARMY AMMUNITION PLANT FEASIBILITY STUDY

ALTERNATIVE	OVERALL PROTECTION	COMPLIANCE WITH ARARS	EFFECTIVENESS: LONG-TERM	REDUCTION OF MOBILITY, TOXICITY, AND VOLUME	EFFECTIVENESS: SHORT-TERM	IMPLEMENTABILITY	Cost
NG/RPA-SW1: Minimal Action	Reduces risks to some ecological receptors (e.g., deer) by restricting access to the ponds.	Would not meet chemical-specific ARARs. Location- and action-specific ARARs do not apply.	Not applicable because remedial action objectives are not achieved.	Contamination is not treated or destroyed; no reduction of toxicity, mobility or volume of contaminants.	Minimal impact to community or workers during implementation.	Easily implementable.	Total Present Worth: \$349,000 Capital Cost: \$138,000 Annual O&M: \$13,000
NG/RPA-SW2: Precipitation/ Microfiltration	Meets remedial action objectives by reducing risks to ecological receptors by reducing metals concentrations in the surface water to RGs (except for HG whose RG may not be met with currently available technology).	Chemical-specific ARARs (i.e., RGs) would be met (except for possibly HG). Wetland protection ARARs would be met. Action- specific ARARs would be attained.	Would be capable of maintaining protection as long as future runoff would not carry contamination into the NG Pond.	Toxicity and volume would not be reduced. Metals would be concentrated into a residual sludge. Mobility would be reduced by disposal of residual sludge at a licensed off-site disposal facility.	Minimal impact to the community during implementation. Minimal risk to workers if proper health and safety procedures are followed. Water quality may be adversely affected by chemicals used during precipitation.	No implementability concerns. Processes can be adapted to treat a wide variety of waste streams.	Total Present Worth: \$843,000 Capital Cost: \$843,000 Annual O&M: \$0
NG/RPA-SW3: lon Exchange	Would reduce risks to human and ecological receptors, but may not reduce metals concentrations to RGs.	Chemical-specific ARARs (i.e., RGs) would not be met. Wetland protection ARARs would be met. Action- specific ARARs would be attained.	Not applicable because remedial action objectives may not be achieved.	Toxicity or volume would not be reduced. Metals would concentrated into filters and metal sheets. Mobility of metals in spent filters would be reduced by disposal of spent filters at a licensed off-site disposal facility. Metal sheets would not require special disposal.	Minimal impact to the community during implementation. Minimal risk to workers if proper health and safety procedures are followed.	Significant implementability concerns. Process is subject to breakthrough and leakage of metals.	Total Present Worth: \$843,000 Capital Cost: \$843,000 Annual O&M: \$0

Notes:

RG ARARs

Remediation GoalApplicable or Relevant and Appropriate Requirements

W0069460T.ES/25

TABLE ES-2 COMPARATIVE SUMMARY OF REMEDIAL ALTERNATIVES FINAL CREEK, SETTLING PONDS AND SPOILS DISPOSAL AREA SOIL

ALTERNATIVE	OVERALL PROTECTION	COMPLIANCE WITH ARARS	EFFECTIVENESS: LONG-TERM	REDUCTION IN TOXICITY, MOBILITY, AND VOLUME	EFFECTIVENESS: SHORT-TERM	IMPLEMENTABILITY	Cost
Alternative SSP-SS1: Minimal Action	Somewhat protective of human health. Does not reduce risk to environmental receptors.	Does not meet proposed Chapter NR 720 require- ments. Location-specific ARARs do not apply. Action-specific ARARs would be met.	Remedial action objectives are not achieved.	Contamination is not treated or destroyed; no reduction in toxicity, mobility, or volume.	No adverse community or environmental impacts.	No implementability concerns.	Total Present Worth: \$2,859,000 Capital Costs: \$10,000 Annual O&M: \$2,849,000
Alternative SSP-SS3: Capping	Protective of human and environmental receptors.	Meets groundwater protection requirements of proposed Chapter NR 720. Location-specific ARARs for wetlands may apply. Action-specific ARARs would be addressed.	Untreated soil would remain on site, although remedial action objectives would be met.	Contamination is not treated or destroyed; no reduction in toxicity, or volume. Potential contaminant mobility is significantly reduced.	No adverse impacts to the community. The cap may disrupt the habitat of burrowing animals during implementation.	Easily implemented. A soil borrow study must be done on each source.	Total Present Worth: \$33,797,000 Capital Costs: \$30,784,000 Annual O&M: \$3,013,000
Alternative SSP-SS7: Modified in Situ Stabilization/ Solidification and Soil Cover	Achieves remedial action objectives for protection of human health and the environment.	Meets groundwater protection requirements of proposed Chapter NR 720. Location-specific ARARs for wetlands may apply. Action-specific ARARs would be addressed.	Provided the soil cover remains intact, there would be negligible residual risk to human and ecological receptors.	There is not reduction in toxicity or volume of contaminants. Treatment residuals are resistant to leaching and erosion.	No adverse impacts to the community. Rototilling and placing the soil cover may disrupt the habitat of burrowing animals during implementation.	Technology and equipment is available from a limited number of vendors.	Total Present Worth: \$67,492,000 Capital Costs: \$64,479,000 Annual O&M: \$3,013,000

TABLE ES-2 COMPARATIVE SUMMARY OF GROUNDWATER ALTERNATIVES SOUTHERN OFF-POST AREA GROUNDWATER

γ Cosτ	Total Present Worth: \$2,889,000 Capital Cost: \$50,000 Annual O&M: \$184,000	## GES 1 Total Present Worth: \$20,215,000 Capital Cost: \$6,378,000 Annual O&M: \$729,000 GES 2 Total Present Worth: \$11,155,000 Annual O&M: \$1,138,000 Capital Cost: \$1,138,000 Capital Cost: \$1,38,000 Capital Cost: \$1,384,000 Capital Cost: \$21,364,000 Annual O&M: \$1,905,000 Annual O&M: \$1,905,000 Annual O&M: \$1,905,000 Annual O&M: \$1,905,000
IMPLEMENTABILITY	No implementability concerns	No treatment-related implementability concerns. Technologies have been proven full-scale. No problems expected permitting discharge or air emissions. It is assumed that property easements can be easily obtained.
EFFECTIVENESS: SHORT-TERM	No adverse community or environmental impacts during implementation	No adverse impacts to community. Potentially adverse impacts to environment during construction of extraction system.
REDUCTION IN TOXICITY, MOBILITY, AND VOLUME	Contamination is not treated or destroyed; no reduction of toxicity, mobility, or volume of contaminants.	Removal efficiency greater than 99%. Approximately 24,000 lbs, 48,000 lbs, and 96,000 lbs of spent carbon would be generated every 10 years for groundwater extraction Scenarios 1, 2, and 3, respectively.
EFFECTIVENESS: LONG-TERM	Interception of the contaminant plume at the southern base boundary would result in eventual decreases in contaminant concentrations and residual risk downgradient (i.e., Southern Off-Post Area) of BAAP.	This alternative would be implemented to comply with WPALs and secondary drinking water standards. The standards were developed to minimize risk. Also, the contaminant plume would be intercepted at the base boundary; therefore, the magnitude of the residual risk would be minimal.
COMPLIANCE WITH ARARS	WPALs would be achieved in approximately 66 years (estimated using USEPA batch flushing model) after implementation of the BAAP control wells. Locationspecific and actionspecific ARARs do not apply.	WPALs would be achieved in approximately 61, 34, or 17 years for Scenarios 1, 2, and 3, respectively (estimated using USEPA batch flushing model) after implementation of BAAP control wells. Capable of achieving WPDES and air permit limits.
OVERALL PROTECTION	Achieves remedial action objectives.	Achieves remedial action objectives.
ALTERNATIVE	Alternative SOPA-GW1: Minimal Action	Alternative SOPA-GW2: Air Stripping

COMPARATIVE SUMMARY OF GROUNDWATER ALTERNATIVES SOUTHERN OFF-POST AREA GROUNDWATER TABLE ES-2

BADGER ARMY AMMUNITION PLANT FEASIBILITY STUDY

	OVERALL PROTECTION Achieves remedial	COMPLIANCE WITH ARARS	EFFECTIVENESS: LONG-TERM	REDUCTION IN TOXICITY, MOBILITY, AND VOLUME	EFFECTIVENESS: SHORT-TERM	IMPLEMENTABILITY	Cost
2 2	action objectives.	wrALS would be achieved in approximately 61, 34, or 17 years for	ins atternative would be implemented to comply with WPALs and secondary	Hemoval efficiency greater than 99%. Approximately 120,000 lbs, 240,000 lbs, and 480,000 lbs of spent	No adverse impacts to community. Potentially adverse impacts to environ-	No treatment-related implementability concerns. Technologies have been	GES 1 Total Present Worth: \$22.079.000 Capital Cost:
		Scenarios 1, 2, and 3, respectively (estimated using USEPA batch	drinking water standards. The standards were developed to minimize risk.	carbon would be generated annually for groundwater extraction Scenarios 1, 2, and 3, respectively. Off-site	ment during construction of extraction system.	proven full-scale. No problems expected permitting discharge.	\$6,477,000 Annual O&M: \$822,000
		flushing model) after implementation of BAAP control wells. Capable of	Also, the contaminant plume would be intercepted at the base boundary; therefore,	destruction of contaminants.		It is assumed that property easements can be easily obtained.	GES 2 Total Present Worth: \$33,119,000 Capital Cost:
		achieving WPDES permit limits.	the magnitude of the residual risk would be minimal.				\$11,501,000 Annual O&M: \$1,335,000
						·	GES 3 Total Present Worth: \$48,167,000 Capital Cost:
							\$22,192,000 Annual O&M: \$2,304,000

Notes:

Applicable or Relevant and Appropriate Requirements Groundwater extraction Scenario 1 Groundwater extraction Scenario 2 Groundwater extraction Scenario 3 Wisconsin Preventative Action Limits Wisconsin Pollution Discharge Elimination System ARARs GES1 GES2 GES3 WPALS

TABLE ES-3 RECOMMENDED ALTERNATIVES SUMMARY

Waste Management Area	RECOMMENDED ALTERNATIVE
Propellant Burning Ground Groundwater	IRM and Air Stripping-Carbon Adsorption
Propellant Burning Ground Waste Pits	In Situ Vapor Extraction, Soil Washing, and Composting
Propellant Burning Ground Subsurface Soil	Capping
Propellant Burning Ground Surface Soil	Modified In Situ Solidification/Stabilization
Deterrent Burning Ground Groundwater	Minimal Action
Deterrent Burning Ground Subsurface Soil	Soil Washing
Nitroglycerine Pond/Rocket Paste Area Surface Soil	In Situ Solidification/Stabilization
Nitroglycerine Pond/Rocket Paste Area Surface Water	Precipitation/Microfiltration
Settling Ponds/Spoils Disposal Area Soil	In Situ Solidification/Stabilization
Off-Post Area South of BAAP	Minimal Action

TABLE 1-1 SUMMARY OF ELEVEN WASTE MANAGEMENT AREAS

Waste Management Area	REQUIRES REMEDIAL ACTION	REMEDIAL ACTION NOT RECOMMENDED
Propellant Burning Ground	. X	
Deterrent Burning Ground	x	
Rocket Paste Area	X	
Nitroglycerine Pond	X	•
Settling Ponds and Spoils Disposal Area	X	
Existing Landfill		Χ .
Ballistics Pond		X
Oleum Plant and Pond		X
New Acid Area		X
Old Acid Area		X
Old Fuel Oil Tank		X

TABLE 1-2 DEVELOPMENT OF CLEAN-UP LEVELS

FEASIBILITYSTUDY BADGER ARMY AMMUNITION PLANT

EXPOSURE PARAMETERS

EQUATIONS

Concentration Soil	S	See below	mg/kg	Calculated	CS-Curcinogenic =	TR x BW x AT x 365 days/year
Ingestion Rate	R	100	mg/day	NR 720		EFxEDx((SFoxCFoxIR) + (SFixIhRxPM10xCFj))
Inhalation Rate	IhR	24	m ³ /day	NR 720		
Target Risk Level	Ħ	1E-06		NR 720	CS-Noncarcinogenic =	THIX BW x AT x 365 days/year
Target Hazard Index	THI	1		NR 720		ED x \mathbb{H}^{x} ((1/R/D _o x \mathbb{G}^{x} IR) + (1/R/D _i x \mathbb{H}^{x} PM10 x \mathbb{G}^{i}))
Body Weight	BW	70	kg	NR 720		
Conversion Factor - oral	CF _o	1000001	kg/mg			
Exposure Duration	ED	25	years	NR 720		
Exposure Frequency	田	245	days/year	NR 720		
Averaging Time						
Cancer	AT .	70	years	NR 720		
Noncancer	AT	25	years	NR 720		
PM ₁₀ Concentration	PM10	1.4	ug/m³	NR 720		
Conversion Factor - inhal.	Ą.	1E-09	kg/ug		Note:	
					For noncarcinogenic effects: AT = EF x 365 days/year	AT = EF x 365 days/year
Source of Cancer Slope Factors and Reference Doses is IRIS, 1994 and HEAST, 1993 (including	nd Reference Dose	s is IRIS, 1994 and HI	AST, 1993 (incl	uding	SF _i = Cancer Slope Factor - Inhalation	- Inhalation
July and November updates).					SF _o = Cancer Slope Factor - Oral	- Oral
					RFD _i = Reference Dose - Inhalation	Inhalation
					Den - Deference Dece - Oral	in-C

TABLE 1-2
DEVELOPMENT OF CLEAN-UP LEVELS

FEASIBILITYSTUDY BADGER ARMY AMMUNITION PLANT

PRELIMINARY REMEDIATION GOAL

					B	හ
COMPOUND	°.	KD°	, V	Rm	Cardinogenic	Noncarcinogenic
	(mg/kg-day) - 1	(mg/kg-day)	(mg/kg-day) ⁻¹	(mg/kg-day)	(mg/kg)	(mg/kg)
scenaph thene	£	6.00E-02	Ę	£		62580
acenaph fhylene	£	4.00E-02	£	Q		41720
anthracene	Ð	3.00E-01	Ą	Q.		312900
arsenic	1.75E+00	3.00E-04	1.51E+01	£	1.62	312.9
barium	g	7.00E-02	£	1.00E-04		59100
benzene	2.90E-02	2	2.90E-02	£	100.35	
benzo(g,h,i)perylene	Ð	4.00E-02	Ę	S	•	41720
beryllium	4.30E+00	5.00E-03	8.40E+00	Ę	19'0	5215
carbon tetrachloride	1.30E-01	7.00E-04	5.30E-02	Ð	22.43	730.1
carcinogenic PAHs	7.3E+00	£	£	Ę	0.40	
chloroform	6.10E-03	1.00E-02	8.10E-02	Ę	458.24	10430
chromium (hexavalent)	£	5.00E-03	4.10E+01	Ę	211.95	5215
chromium (trivalent)	£	1.00E+00	QX	£		1043000
copper	£	3.70E-02	Q	£		38591
diethylphthalate	£	8.00E-01	S	Ę		834400
ethane, 1,1,1-trichloro	Q	9.00E-02	£	£		93870
ethane, 1,1,2-trichloro	5.70E-02	4.00E-03	5.70E-02	£	51.06	4172
fluctanthene	2	4.00E-02	Q.	Ę		41720
fluorene	£	4.00E-02	Ð	Ž		41720
manganese (food)	Ę	1.40E-01	Q	1.00E-04		99293
manganese (water)	2	5.00E-03	£	1.00E-04		5128
mercury	2	3.00E-04	£	8.60E-05		312
methylene chloride	7.50E-03	6.00E-02	1.60E-03	9.00E-01	389.05	62570
naphthalene	£	4.00E-02	Ę	£	******	41720
nickel	Ð	2.00E-02	£	S		20860
nitrite	£	1.00E-01	£	Q		104300
nitrosodimethylamine, N-	5.10E+01	£	5.10E+01	S	90.0	
n – ni trosodiphenylamine	4.90E-03	Ð	£	Ð	595.92	
phenanthrene	<u>S</u>	4.00E-02	£	Ð		41720
phthalate, his(2-ethylhexyl)	1.40E-02	2.00E-02	Ð	£	208.57	20860
phthalate, di -n -butyl	Ð	1.00E-01	Ę	S		104300
phthalate, dinoctyl	2	2.00E-02	£	£		20860
pyrene	Q	3.00E-02	£	Q		31290
sclenium	Q	5.00E-03	Ð	Ð		. 5215
tin	Ð	6.00E-01	Q	S		625800
toluene	Q.	2.00E-01	S	1.00E-01		208432
toluene, 2,4 -dinitro	6.80E-01	2.00E-03	S	Q	4.29	2086
toluene, 2,6 -dinitro	6.80E-01	1.00E-03	£	Q Q	4.29	1043
trichloroethene	1.10E-02	Q	6.00E-03	Q Q	264.97	
vznadium	£	7.00E-03	£	Q		7301
rylene, mixture	£	2.00E+00	£	£		2086000
zinc	£	3.00F-01	Š	5		210000

TABLE 1-3 CRITERIA FOR EVALUATION OF ALTERNATIVES

FEASIBILITY STUDY BADGER ARMY AMMUNITION PLANT

CRITERIA	DESCRIPTION
Overall protection of human health and environment	Describes how each alternative satisfies the remedial action objectives; protects human health and environment.
Compliance with ARARs	Describes how the alternative complies with ARARs, or if a waiver is required and how it is justified.
Long-term effectiveness and permanence	Evaluates the effectiveness in protecting human health and environment after response objectives have been met.
Reduction of toxicity, mobility, or volume through treatment	Evaluates the anticipated performance of the specific treatment technologies.
Short-term effectiveness	Examines the effectiveness of alternatives in protecting human health and environment during the construction and implementation period until response objectives are met.
Implementability	Assesses the technical and administrative feasibility of alternatives and the availability of required resources.
Cost	Evaluates the capital, operation and maintenance costs of each alternative.
State acceptance*	Evaluates the technical and administrative issues and concerns the state may have.
Community Acceptance*	Evaluates the issues and concerns the public may have.

Notes:

* This criterion will be addressed once comments on the Final Feasibility Study have been received.

ARARs = Applicable or Relevant and Appropriate Requirements

FIGURE 1-1 SITE LOCATION MAP FEASIBILITY STUDY BADGER ARMY AMMUNITION PLANT

Source: Modified from Tsai, et.al., 1988.

-ABB Environmental Services, Inc.-

FIGURE 1-5
REMEDIAL ALTERNATIVE EVALUATION CRITERIA
FEASIBILITY STUDY
BADGER ARMY AMMUNITION PLANT

ABB Environmental Services, Inc.

TABLE 2-1 CHECKLIST OF WASTE MANAGEMENT AREA ENVIRONMENTAL SETTING AND FEATURES

FEASIBILITY STUDY BADGER ARMY AMMUNITION PLANT

Waste Management Area	WETLANDS	Surface Water	SURFACE IMPOUNDMENT	LANDFILL	ABOVEGROUND STORAGE TANK
Propellant Burning Ground				х	X (propane)
Deterrent Burning Ground				X	
Existing Landfill		·		Х	
Settling Ponds and Spoils Disposal Area	X	х	х	х	
Ballistics Pond	X	Х			
Oleum Plant and Pond	Х	Х			
Nitroglycerine Pond	Х	Х			
Rocket Paste Area	Х	х			
Old Acid Area					X (acids)
New Acid Area			х		X (acids)
Old Fuel Oil Tank					X (fuel)

Note:

The landfill at the Propellant Burning Ground is known as Landfill 1, and is considered a separate SWMU within the PBG Waste Management Area.

TABLE 2-2 POTENTIAL LOCATION-SPECIFIC APPLICABLE OR RELEVANT AND APPROPRIATE REQUIREMENTS

SITE	POTENTIAL ARARS/CITATION
Settling Ponds	WETLANDS
and Spoils Disposal Area	CAA, PSD Requirements; (40 CFR, Part 52.21)
	Clean Water Act (CWA), Dredge or Fill Requirements; (Section 404), 40 CFR 230
	U.S. Army Corps of Engineers Permit Program Regulations; (33 CFR Parts 320-330)
	Fish and Wildlife Coordination Act; (40 CFR 302(g))
	National Environmental Policy Act (NEPA) - Protection of Wetlands Exec. Order No. 11990; (40 CFR Part 6)
	WDNR, Water Quality Standards for Wetlands (WAC, Chapter NR 103)
	WDNR, City and Village Shoreland-Wetland Protection Program (WAC, Chapter NR 117)
	WDNR, Hazardous Waste Storage, Treatment, and Disposal Facility Standards (WAC, NR 630)
	SURFACE WATER
•	WDNR, Water Quality Standards for Wisconsin Waters (WAC, Chapter NR 102)
	WDNR, Water Quality Standards for Wisconsin Waters; Uses and Designated Standards (WAC, Chapter NR 104)
	WDNR, Shoreline Management Program (WAC, Chapter 115)
	WDNR, Wisconsin Statutes Annotated, Chapter 30, Dredge and Fill Requirements
	City of Baraboo Floodplain Zoning Code (Subchapter II)
	LANDFILL PCRA Subport N. Landfiller (40 CER Section 004 200)
	RCRA, Subpart N, Landfills; (40 CFR Section 264.300)

TABLE 2-2 POTENTIAL LOCATION-SPECIFIC APPLICABLE OR RELEVANT AND APPROPRIATE REQUIREMENTS

SITE	POTENTIAL ARARS/CITATION
Oleum Plant and	<u>WETLANDS</u>
Pond	CWA, Dredge or Fill Requirements; (Section 404), 40 CFR 230
	U.S. Army Corps of Engineers Permit Program Regulations; (33 CFR Parts 320-330)
	Fish and Wildlife Coordination Act; (40 CFR 302(g))
	NEPA - Protection of Wetlands Executive Order Number 11990; (40 CFR Part 6)
	WDNR, Water Quality Standards for Wetlands (WAC, Chapter NR 103)
	WDNR, City and Village Shoreland-Wetland Protection Program (WAC, Chapter NR 117)
	WDNR, Hazardous Waste Storage, Treatment, and Disposal Facility Standards (WAC, NR 630)
	SURFACE WATER
	WDNR, Water Quality Standards for Wisconsin Waters (WAC, Chapter NR 102)
	WDNR, Water Quality Standards for Wisconsin Waters; Uses and Designated Standards (WAC, Chapter NR 104)
. •	WDNR, Shoreline Management Program (WAC, Chapter 115)
	WDNR, Wisconsin Statutes Annotated, Chapter 30, Dredge and Fill Requirements
	City of Baraboo Floodplain Zoning Code (Subchapter II)
	<u>AIR</u>
	CAA, PSD Requirements; (40 CFR, Part 52.21)

TABLE 2-2 POTENTIAL LOCATION-SPECIFIC APPLICABLE OR RELEVANT AND APPROPRIATE REQUIREMENTS

SITE	POTENTIAL ARARS/CITATION
Rocket Paste	WETLANDS
Area	CWA, Dredge or Fill Requirements; (Section 404), 40 CFR 230
	U.S. Army Corps of Engineers Permit Program Regulations; (33 CFR Parts 320-330)
	Fish and Wildlife Coordination Act; (40 CFR 302(g))
	NEPA - Protection of Wetlands Exec. Order No. 11990; (40 CFR Part 6)
	WDNR, Water Quality Standards for Wetlands (WAC, Chapter NR 103)
	WDNR, City and Village Shoreland-Wetland Protection Program (WAC, Chapter NR 117)
	WDNR, Hazardous Waste Storage, Treatment, and Disposal Facility Standards (WAC, NR 630)
	SURFACE WATER
	WDNR, Water Quality Standards for Wisconsin Waters (WAC, Chapter NR 102)
	WDNR, Water Quality Standards for Wisconsin Waters; Uses and Designated Standards (WAC, Chapter NR 104)
	WDNR, Shoreline Management Program (WAC, Chapter 115)
	WDNR, Wisconsin Statutes Annotated, Chapter 30, Dredge and Fill Requirements
	City of Baraboo Floodplain Zoning Code (Subchapter II)
	AIR
	CAA, PSD Requirements; (40 CFR, Part 52.21)
Old Acid Area	AIR
	CAA, PSD Requirements; (40 CFR, Part 52.21)

TABLE 2-3 POTENTIAL CHEMICAL-SPECIFIC APPLICABLE OR RELEVANT AND APPROPRIATE REQUIREMENTS

SITE MEDIA	REQUIREMENT/CITATION
Federal Criteria, Advisories, and Guidance	Clean Water Act (CWA), Ambient Water Quality Criteria (AWQC); (40 CFR Part 131 Quality Criteria for Water, 1986)
	SDWA, National Secondary Drinking Water Standards (SMCLs); (40 CFR Part 143)
	EPA Reference Doses (RfDs)
	EPA Reference Concentrations (RfCs)
	EPA Human Health Assessment Cancer Slope Factors (CSFs)
	EPA Office of Drinking Water, Health Advisories
	EPA Health Assessment Documents, Acceptable Intake - Chronic (AIC) and Subchronic (AIS)
	EPA, Office of Water Guidance, Water-Related Fate of 129 Priority Pollutants (1979)
SURFACE WATER	
Federal Regulatory Requirements	CWA, National Pollutant Discharge Elimination System (NPDES); (40 CFR Part 122, 125)
·	CWA, Ambient Water Quality Criteria (AWQC); (40 CFR Part 131 Quality Criteria for Water, 1986)
State Regulatory	WDNR, Water Quality Standards for Wisconsin Waters (WAC, Chapter 102.14)
Requirements	WDNR, Water Quality Criteria for Toxic Substances (WAC, Chapter 105)
	WDNR, Procedures for Calculating Water-quality-based Effluent Limitations for Toxic and Organoleptic Substances Discharged to Surface Water (WAC, Chapter NR 106)
	WDNR, Pollutant Discharge Elimination System Standards for Uncategorized Point Sources (WAC, Chapter 220.20)

TABLE 2-4 CHEMICAL-SPECIFIC STANDARDS AND GUIDANCE FOR GROUNDWATER AND SURFACE WATER

	Susanica.	Caper Designation Water Apr			CWA WATER QUALITY CRITERIA (b)	UTY CRITERIA (b)			
	5	(SDWA) (a)	(a)	FOR PROTECTION	FOR PROTECTION OF HUMAN HEALTH	FOR PROTECTION OF AQUATIC LIFE	OF AQUATIC LIFE	WI PUBLIC HEALTH GROUNDWATER QUALITY STANDARDS (C)	(TER QUALITY
CHEMICAL	CHEMICAL NAME	MCL (<i>y</i> g/L)	MCLG (Vg/L)	WATER AND FISH CONSUMPTION (µg/L)	FISH CONSUMPTION ONLY (µg/L)	FRESHWATER ACUTE/CHRONIC . (pg/L)	MARINE ACUTE/CHRONIC (J/g/L)	ENFORCEMENT STANDARDS (µg/L)	PAL (úgit)
AL	aluminum	50-200 (1)	•	(2)	(2)	(2)	(2)		1
ALK	alkalinity	•	•	•	•	- /20,000 ppm	-/-		
AS	arsenic	50 (3)	•	0.0022	0.0175	-/-	-/-	50	r2
вгенр	bis(2-ethylhexyl) phthalate	•	•	15,000	50,000	400/300 (4)	400/360 (4)	ĸ	0.3
ВА	barium	2,000	2,000	1,000	1	- -	-/-	2,000	400
BE	beryllium	4	4	0.0037	0.0641	130/5.3 (4)	-/-	•	
CeHe	benzene	5	0	0.66	40	5,300/- (5)	5,100/700 (5)	S)	0.5
ర	calcium	•	•	•		-/-	-/-	,	•
CCL4	carbon tetrachloride	5	0	0.4	6.94	35,200/- (5)	50,000/- (5)	ហ	0.5
CO	cadmium	5	5	10	f	3.9/1.1 (8)	43/9.3	5	0.5
CHCL3	chloroform	100 (6)	0	0.19	15.7	28,900/1,240(5)	-/-	9	0.6
U	chloride	250,000 (1)	•	•	•	860,000/230,000	-/-	250,000 (1)	125,000 (1)
8	chromium (total)	100	100	•	•	-/-	-/-	100	0
3	copper	TT	1300	1300	•	18/12 (7)	2.9/-	1300	130
24DNT	2,4-dinitrotoluene	•	•	0.11	9.1	330/230 (5)	-/-	0.05	0.005
26DNT	2,6-dinitrotoluene	1		f	•	-/-	-/-	0.05	0.005
#	iron	300 (1)	1	300	4	-/1,000	-/-	300 (1)	150 (1)

CHEMICAL-SPECIFIC STANDARDS AND GUIDANCE FOR GROUNDWATER AND SURFACE WATER TABLE 2-4

BADGER ARMY AMMUNITIONS PLANT FEASIBILITY STUDY

		:	,		CWA WATER QUALITY CRITERIA (b)	LITY CRITERIA (b)			
	CHEMICAL	SAFE DRINKING WATER ACT (SDWA) (a)	VATER ACT (a)	FOR PROTECTION	FOR PROTECTION OF HUMAN HEALTH	FOR PROTECTION OF AQUATIC LIFE	X AQUATIC LIFE	WI PUBLIC HEALTH GROUNDWATER QUALITY STANDARDS (C)	ATER QUALITY
CHEMICAL	CHEMICAL NAME	MCL (vg/L)	MCLG (vg/L)	WATER AND FISH CONSUMPTION (UGAL)	FISH CONSUMPTION ONLY (µg/L)	FRESHWATER ACUTE/CHRONIC (UR/L)	MARINE ACUTE/CHRONIC (vg/L)	ENFORCEMENT STANDARDS (µg/L)	PAL (#g/L)
111TCE	1,1,1- trichloroethane	200	200	18400	1,030,000	-/-	31,200/- (5)	200	40
112TCE	1,1,2- trichloroethane	5	ဧ	0.6	41.8	-/9,400 (5)	+	9.0	90:0
TDS	total dissolved solids	500,000 (1)(11)		•	•	-/-	<i>-</i> -	,	1
TRCLE	trichloroethylene	5	0	2.7	80.7	45,000/21,900 (5)	2,000/- (5)	ស	0.5
ZN	Zinc	5000 (1)	•	ı	1	120/110 (8)	95/86 (8)	5,000 (1)	2,500 (1)

Sources:

- U.S. Environmental Protection Agency (EPA), 1993. "Drinking Water Regulations and Health Advisories." Office of Water, Washington, D.C. May 1993. Wisconsin Administrative Code, Chapter NR 140.10, Tables 1 and 2. **a**

Notes:

- **ENGARG**
- Secondary drinking water standards, suggested level
 Criteria are pH dependent. Refer to 53FR33178.

 MCL for arsenic currently under review.

 MCL for arsenic currently under review.

 Insufficient data to develop criteria. Value presented is the lowest observed effect level. Standard indicated is proposed value for total trihalomethanes (i.e., chloroform, dibromochloromethane, bromodichloromethane, and bromoform).

 No MCL has been set for sodium. However, a reporting level of 20,000 µg/l has been established. Monitoring is required and data is reported to health officials to protect individuals on restricted sodium diet. E

 - Hardness dependent criteria (100 mg/l CaCO₃ used). Standard indicated is for total nitrite/nitrate. Treatment technique requirement in effect. Action level for lead is 15 µg/L; for copper, <u>666</u>
- <u>E</u>
- The Preventative Action Limit for total dissolved solids (TDS) is 200,000 µg/l above an established background concentration (NR 140.20, Table 3); there is no Enforcement Standard for TDS.

EPA, 1991. "Water Quality Criteria Summary"; Office of Science and Technology, Health and Ecological Criteria Division, Ecological Risk Assessment Branch, Human Risk Assessment Branch; Washington, D.C. May 1, 1991. **@**

Acronyms:

CWA Clean Water Act
EPA United States Environmental Protection Agency
MCL Maximum Contaminant Level
MCLG_ Maximum Contaminant level Goal

MCL Maximum Contaminant Level
MCLG Maximum Contaminant level Goal
TT Treatment technique
µg/L micrograms per liter, equivalent to parts per billion
mg/L miligrams per liter, equivalent to parts per million
PAL Preventative Action Limit

SDWA Safe Water Drinking Act TDS Total Dissolved Solids WDNR Wisconsin Department o

Wisconsin Department of Natural Resources

	POTENTIAL ACTION-SPECIFIC ARA	POTENTIAL ACTION-SPECIFIC ARARS COMMON TO A VARIETY OF REMEDIAL ALTERNATIVES	NATIVES
OTHER RESPONSE ACTIVITIES	CITATION	Requirements	CONSIDERATIONS
	RCRA, Releases from Solid Waste Management Units; (Subpart F, 264.90-264.109)	The scope of the regulation encompasses: groundwater protection standards; concentration limits; point of compliance; compliance period; requirements for groundwater monitoring, detection monitoring, and compliance monitoring; and the corrective action program. Provides guidelines for the remediation of solid waste management units including: establishes specific groundwater monitoring requirements, sets MCLs as level of compliance for upper aquifer, and establishes requirements of the corrective action program.	Applicable to remedial alternatives that involve the closure and post-closure of SWMUs because BAAP holds a RCRA Part B Permit.
	RCRA, Hazardous Waste Permit Program; (40 CFR Part 270)	Establishes provisions covering basic USEPA permitting requirements.	RCRA permitting requirements need to be determined on a case-by-case basis, working with all involved regulatory agencies. However, any activity involving the treatment or containment of hazardous waste is subject to these permitting requirements.
Hazardous Waste Transportation	DOT Rule for Transportation of Hazardous Materials (49 CFR Parts 107, 171.1-172.558)	Outlines procedures for the packaging, labeling, manifesting, and transportation of hazardous materials.	This regulation will be applicable to any company contracted to transport hazardous wastes from the site.

	POTENTIAL ACTION-SPECIFIC ARA	IFIC ARARS COMMON TO A VARIETY OF REMEDIAL ALTERNATIVES	NATIVES
OTHER RESPONSE ACTIVITIES	CITATION	REQUIREMENTS	CONSIDERATIONS
	WDNR, Wisconsin Particulate and Sulfur Emissions Rules, Control of Particulate Emissions (WAC, Chapter NR 415)	This rule requires that precautions be taken to prevent particulate matter from becoming airborne. Particulate emission limits for certain processes are specified, and a default value of 0.4 lbs of particulate matter per 1,000 lbs of gas is established for any process not listed in Section 415.05. Particulate emission limits for fuel-burning equipment and incinerators are established.	Potential applicable requirements for offsite TSD units. Potential relevant and appropriate requirements for on-site TSD units.
	WDNR, Organic Compound Emission Rules (WAC, Chapter NR 419)	The rule states that no more than 5.7 liters of any liquid volatile organic compound (VOC) waste or any liquid, semisolid, or solid material containing more than 5.7 liters of any VOC may not be disposed of in one day's time from a facility in a manner which would permit evaporation into the ambient air during ozone season. The quantity of VOCs that evaporate into the ambient air during the ozone season must not exceed 15% (by weight) or 5.7 liters in any one day, whichever is larger.	Potential applicable requirements for offsite TSD units. Potential relevant and appropriate requirements for on-site TSD units.
	WDNR, Wisconsin Carbon, Lead, and Nitrogen Emission Rules (WAC, Chapters 426-428)	These rules establish emission rules for carbon, lead, and nitrogen.	Potential applicable requirements for offsite TSD units. Potential relevant and appropriate requirements for on-site TSD units.

TERNATIVES	CONSIDERATIONS	y Same as above	en Same as above.
POTENTIAL ACTION-SPECIFIC ARARS COMMON TO A VARIETY OF REMEDIAL ALTERNATIVES	REQUIREMENTS	Primary and secondary ambient air quality standards for sulfur oxides, suspended particulated, carbon monoxide, ozone, nitrogen dioxide, lead, and particulate matter are established in this rule. The primary air standard provides protection for the public health with a margin of safety. The secondary air standard is the level of air quality that may be necessary to protect public welfare from unknown or anticipated adverse effects.	This rule requires that precautions be taken to prevent particulate matter from becoming airborne. Particulate emission limits for certain processes are specified, and a default value of 0.4 lbs of particulate matter per 1,000 lbs of gas is established for any process not listed in Section 415.05. Particulate emission limits for fuelburning equipment and incinerators are established.
POTENTIAL ACTION-SPECIFIC ARA	CITATION	WDNR, General and Portable Sources Air Pollution Control Rules; Ambient Air Quality Standards (WAC, Chapter NR 404)	WDNR, Wisconsin Particulate and Sulfur Emissions Rules, Control of Particulate Emissions (WAC, Chapter NR 415)
	OTHER RESPONSE ACTIVITIES		

	POTENTIAL ACTION-SPECIFIC ARA	FIC ARARS COMMON TO A VARIETY OF REMEDIAL ALTERNATIVES	NATIVES
OTHER RESPONSE ACTIVITIES	CITATION	REQUIREMENTS	CONSIDERATIONS
Land Disposal	RCRA, Land Disposal Restrictions (LDRs); (40 CFR Part 268)	Land disposal of RCRA hazardous wastes without prior treatment is prohibited. Waste at specific sites must be evaluated as to whether it meets the definition of one of the specified restricted wastes and the remedial action must constitute "placement" for the land disposal restrictions to be considered applicable. For each hazardous waste, the LDRs specify that the waste must be treated either by a treatment technology or to a concentration level prior to disposal in a RCRA Subtitle C permitted facility.	Under the LDRs, treatment standards have been established for all <u>listed</u> wastes. If it is determined that hazardous wastes at BAAP are subject to LDRs, these requirements will be potential relevant and appropriate requirements for on-site disposal, and applicable requirements for off-site disposal.
	RCRA, Identification and Listing of Hazardous Waste; (40 CFR Part 261, 261.1-261.33)	Defines those solid wastes which are subject to regulation as hazardous wastes under 40 CFR Parts 262-265.	Applicability of RCRA regulations to wastes found at the site is dependent on the solid waste meeting one of the following criteria: a. Generated through a RCRA-listed source process. b. RCRA-listed waste from nonspecific source. c. Characteristically hazardous due to ignitability, corrositivity, reactivity, or toxicity.
Worker Protection	Occupational Health and Safety Act (OSHA), Health and Safety Standards; (29 CFR Part 1926)	This regulation specifies the type of safety training, equipment, and procedures to be followed during site investigation and remediation.	All phases of the remedial response project at BAAP should be executed in compliance with this regulation.

	POTENTIAL ACTIC	M-SPECIFIC ARARS FOR SOIL	POTENTIAL ACTION-SPECIFIC ARARS FOR SOIL TREATMENT AND DISPOSAL TECHNOLOGIES	
TECHNOLOGY	DESCRIPTION	CITATION	REQUIREMENTS	CONSIDERATIONS
Containment by Capping	Low-permeability cover is constructed over the site to provide a barrier to water infiltration and/or prevent direct contact and ingestion hazards associated with contaminated soil surfaces.	RCRA, 40 CFR 264.117(c)	Restrict post-closure use of property as necessary to prevent damage to the cover.	Because capping would not include placement of hazardous waste into another unit, this requirement is a potential applicable ARAR. Where "placement" occurs, the requirement is potentially relevant and appropriate.
		WDNR, Hazardous Waste Disposal Landfill Cap Standards; Chapter 660.15.	Specification for a final cover for hazardous waste landfills or surface impoundments which have operated without an operating license are established in this chapter.	These requirements are potential relevant and appropriate requirements for a capping system.
Excavation and Disposal in On-Site Landfill	Excavate and dispose of solls which are not regulated by RCRA LDRs in a secure on-site landfill constructed for that purpose.	RCRA, Landfills; (Subpart N, 264.300-261.339)	This regulation details the design, operation, monitoring, inspection, recordkeeping, closure, and permit requirements for a RCRA landfill.	For on-site disposal, these regulations are relevant and appropriate in order ensure adequate long-term land-based management of hazardous materials. For containment-oriented alternatives, the construction of caps using RCRA design and performance standards criteria may be warranted.

	POTENTIAL ACTIO	N-SPECIFIC ARARS FOR SOIL	POTENTIAL ACTION-SPECIFIC ARARS FOR SOIL TREATMENT AND DISPOSAL TECHNOLOGIES	
TECHNOLOGY	DESCRIPTION	CITATION	REQUIREMENTS	CONSIDERATIONS
		Chapter NR 665; Wisconsin Hazardous Waste Incinerator Standards	This chapter establishes requirements and standards for incinerators that burn hazardous wastes. Requirements for design of the incinerator are outlined in Section NR 640.06.	The substantive requirements of this rule are potentially relevant and appropriate for on-site incineration of RCRA-regulated wastes.
		Also, see requirements liste	see requirements listed under "Excavation" and "Air Emissions".	
Excavation and Treatment by Off-site Incineration	Excavate and treat soil by an incinerator which thermally destroys organics in a direct-fired treatment unit.	RCRA, Incinerators; (Subpart O, 264.340-264.599)	This regulation specifies the performance standards, operating requirements and monitoring, inspection, and closure guidelines of any incinerator burning hazardous waste.	These requirements are potential applicable or relevant and appropriate requirements for offsite incineration of RCRA-regulated wastes.
		Chapter NR 665; Wisconsin Hazardous Waste Incinerator Standards	This chapter establishes requirements and standards for incinerators that burn hazardous wastes. Requirements for design of the incinerator are outlined in Section NR 640.06.	The substantive requirements of this rule are potentially applicable or relevant and appropriate requirements for off-site incineration of RCRA-regulated wastes.
		See requirements listed unc	See requirements listed under "Excavation", "Air Emissions", and "Hazardous Waste Transportation"	irdous Waste Transportation"

	POTENTIAL ACTIC	POTENTIAL ACTION-SPECIFIC ARARS FOR SOIL TREATMENT AND DISPOSAL TECHNOLOGIES	
TECHNOLOGY	DESCRIPTION	CITATION REQUIREMENTS CONSIDERATIONS	ONS
Excavation and Treatment by Soil Washing	Excavate and mix soils with an aqueous-based washing solution in a series of high-energy mobile washing units. Organics and inorganics can be separated from soils with this system. Washing solution is recycled.	See requirements listed under "Excavation", "Hazardous Waste Transportation", and "Air Emissions".	"sions"
Excavation and Treatment by Soil Vitrification	Soils are excavated and heated to temperatures exceeding 2,000° C. Organic and nitrate chemical components are destroyed, the remaining contaminants are immobilized into a geologically stable glass material, and the overall volume of the waste is reduced.	See requirements listed under "Excavation", "Hazardous Waste Transportation", and "Air Emissions".	sions".
Excavation and Treatment by Biodegradation/ Composting	Soils contaminated by organics are excavated and treated with engineered (rather than naturally occurring) biological decomposition under controlled conditions.	See requirements listed under "Excavation", "Hazardous Waste Transportation", and "Air Emissions".	ssions".

	CONSIDERATIONS			
POTENTIAL ACTION-SPECIFIC ARARS FOR SOIL TREATMENT AND DISPOSAL TECHNOLOGIES	REQUIREMENTS	requirements under "Air Emissions".	requirements under "Air Emissions"	requirements under "Air Emissions".
ON-SPECIFIC ARARS F	CITATION	See requirements u	See requirements u	See requirements u
POTENTIAL ACT	DESCRIPTION	A settling agent is placed with contaminated soil to form a monolithic product in which contaminants are entrapped by the solidified mass.	Air, nutrients, and moisture (as needed) are injected into a contaminated soil zone to enhance the indigenous microbe environment and increase the biodegradation rate of organic contaminants.	Soils contaminated by organics are treated in place with engineered (rather than naturally occurring) biological decomposition under controlled conditions.
	TECHNOLOGY	In-Situ Stabilization/ Solidification	In-Situ Bioventing	In-Situ Biodegradation/ Composting

	ACTION-SPECIFIC AR	RARS FOR WATER TREATMENT AND DISPOSAL TECHNOLOGIES	ND DISPOSAL TECHNOLOGIES	
TECHNOLOGY	DESCRIPTION	CITATION	REQUIREMENTS	CONSIDERATIONS
Containment with Slurry Wall	Emplacement of a low permeability barrier to restrict groundwater migration. Should include a cover system to reduce infiltration.	RCRA - Land Disposal Restriction (40 CFR Part 268)	See requirements under "Land Disposal Restrictions".	Excavation of soil for construction of slurry wall may trigger LDRs. Materials subject to LDRs must therefore be placed in another unit.
Collection of Water into Groundwater Extraction Wells	Installation of several strategically located pumping wells to collect contaminated groundwater for treatment.	WDNR, Wisconsin Well Construction Standards, (WAC, Chapter NR 112)	This rule establishes standards and approvals for well construction. Any withdrawal well or combination of wells withdrawing more than 70 gpm or more is subject to this rule.	Any remedial alternative considered during the FS which proposes pumping of groundwater at a rate of greater than or equal to 70 gpm will consider this rule as a possible ARAR.
Treatment with UV/ Oxidation	Oxidize organic contaminants in extracted groundwater through simultaneous application of UV light and ozone or hydrogen peroxide.	See requirements under "Air Emissions".	nissions".	
Treatment with Air Stripping	Reduce concentration of volatile organics through intimate contact of extracted groundwater with air. Water descends a packed column while air forced up the column to promote mass transfer of organics from aqueous to gaseous phase.	See requirements under "Air Emissions".	nissions".	
-			MARKET TO THE PARTY OF THE PART	

	ACTION-SPECIFIC AR	RARS FOR WATER TREATMENT AND DISPOSAL TECHNOLOGIES	ED DISPOSAL TECHNOLOGIES	
TECHNOLOGY	DESCRIPTION	CITATION	Requirements	CONSIDERATIONS
Discharge into Offsite Water Treatment Facility	Off-site disposal of extracted groundwater to a POTW. Groundwater would require transport by means of a force main and/or gravity feed sewer or by truck to the POTW.	CWA, National Pretreatment Standards; (40 CFR Part 403)	This regulation sets pretreatment standards for the introduction of pollutants from nondomestic sources into POTWs. These regulations are designed to control pollutants which pass through, cause interference, or are otherwise incompatible with treatment processes at a POTW.	If treated groundwater is discharged to a POTW, the discharge must meet all discharge limitations imposed by the POTW.
		Also, see requirements listed under "Transportation".	nder "Transportation".	
Discharge by Groundwater Reinjection	Groundwater is reinjected using a series of wells and pumps. Can be used to enhance plume removal and accelerate remediation.	SDWA - Underground Injection Control Regulations; (40 CFR Parts 144, 146, 147, 1000)	These regulations outline minimum program and performance standards for underground injection programs.	State regulations prohibit discharge of water by reinjection wells.
		WDNR, Wisconsin Well Construction Standards, (WAC, Chapter NR 112)	In addition to establishing standards and approvals for well construction, this regulation prohibits the use of injection wells of any sort.	Because the state requirement is an enforceable requirement and more stringent than the federal requirements, it takes precedence of the federal requirement for remedies using reinjection wells.

TABLE 3-1 HUMAN HEALTH CONTAMINANTS OF CONCERN PROPELLANT BURNING GROUND SOILS

	Exposure Poin	T CONCENTRATION
COMPOUND OF POTENTIAL CONCERN	SURFACE SOIL (µg/g)	SUBSURFACE SOIL (µg/g)
24DNT	10.7	58.9
26DNT	1	2
2MNAP	0.452	18.2
ANAPNE	-	16.9
ANAPYL	-	1.04
ANTRC	- .	12.4
AS	9.45	18.8
B2EHP	6.2	6.2
BAANTR	0.204	8.9
BAPYR	-	3.55
BBFANT	· -	3.91
BGHIPY	-	2.57
BKFANT	-	3.36
C6H6	0.42	9.09
CHRY	3.68	8.28
CR	49.8	40.4
CU	344	327.19
DBAHA	-	0.661
DBZFUR	• •	5.8
DEP	6.2	6.2
DNBP	6.35	6.2
FANT	0.2	6.2
FLRENE	<u>.</u>	18.4
HG	0.334	-
ICDPYR	•	4.52
MEC6H5	<u>-</u>	1.04
NAP	-	6.2
Ni ·	27.3	-
NIT	-	35
NNDPA	30.8	12
PB	2700	1200
PHANTR	1.32	12
PYR	0.168	6.2
SE	0.618	1.77

TABLE 3-2 CLEAN-UP STANDARDS PROPELLANT BURNING GROUND SOILS

	Surfa	CE SOIL	Subsuri	ACE SOIL
COMPOUND	PROTECTION OF GROUNDWATER ¹ (mg/kg)	PROTECTION OF HUMAN HEALTH ² (mg/kg)	PROTECTION OF GROUNDWATER ¹ (mg/kg)	PROTECTION OF HUMAN HEALTH (mg/kg)
<u>Organics</u>				
24DNT	55	4.29	0.00002	4.29
26DNT	270	4.29	0.0002	4.29
2MNAP	NPAL	NHD	NPAL	NHD
ANAPNE	-	-	NPAL	62,580
ANAPYL	-	-	NPAL	41,720
ANTRC	-	-	NPAL	312,900
B2EHP	790,000	208.57	NI	208.57
CPAH ³	NPAL	0.40	NPAL	0.40
BGHIPY	-	-	NPAL	41,720
C6H6	3,400	100.35	NI ·	100.35
DBZFUR	-		NPAL	NHD
DEP	NPAL	834,400	NPAL	834,400
DNBP	NPAL	NHD	NPAL	NHD
FANT	NPAL	41,720	NPAL	41,270
FLRENE	<u>-</u>	-	NPAL	41,270
MEC6H5	-	-	NI	208,537
NAP	-	-	NI	41,720
NNDPA	NI	595.92	NI	595.92
PHANTR	NPAL	41,720	NPAL	41,720
PYR	NPAL	31,290	NPAL	31,290
TRCLE	•- •	-	0.037	264.97
TXYLEN	-		NI NI	>1,000,000
<u>Metals</u>		·	141	<i>></i> 1,000,000
AS	0.080	1.6	0.068	1.6
CR	31.49	211.95	1.666	
CU		38,591	1.000	211.95 38,591

Table 3-3 Groundwater Summary Propellant Burning Ground

(wg/L) (wg/L) 59.3 2.52 1.46 0.839
2.52
0.839
24.1
0.348
1.86
2.8
0.483
2,400
4.93
4.58
2.83
11.2
2,090
140
0.955
5.54
1.5
0.329

TABLE 3-4 ECOLOGICAL CONTAMINANTS OF CONCERN PROPELLANT BURNING GROUND

FEASIBILITY STUDY BADGER ARMY AMMUNITION PLANT

COMPOUND	FREQUENCY	EXPOSURE POINT CONCENTRATIONA
Surface Soil		
24DNT	16:114	10.7
2MNAP	2:13	0.452
AS	83:108	9.45
B2EHP	1:13	6.2
BAANTR	1:13	0.204
C6H6	8:114	0.42
CHRY	1:13	3.68
CR	108:108	49.8
CU	108:108	344
DEP	7:13	6.2
DNBP	4:13	6.35
FANT	2:13	0.2
HG	31:108	0.334
NI	108:108	27.3
NNDPA	3:13	30.8
PB	108:108	2,700
PHANTR	3:13	1.32
PYR	1:13	0.168
SE .	10:108	0.618
ZN	108:108	1,040

Note:

Full compound names are identified in the USAEC Chemical Code List located behind the Glossary of Acronyms

^A 95th percentile or maximum; units in micrograms per gram.

PROPELLANT BURNING GROUND SURFACE SOIL REMEDIATION GOALS TABLE 3-6

BADGER ARMY AMMUNITION PLANT FEASIBILITY STUDY

REMEDIATION GOAL (mg/kg)	4.29	0.401	16²	25 ²	0.38^{2}	302	0.70^{2}	81.3 ²
PROTECTION OF ECOLOGICAL RECEPTORS (mg/kg)	NR RN	N R	NR RN	0.015	0.03	0.0054	0.00045	2.5
PROTECTION OF HUMAN HEALTH (mg/kg)	4.29	0.40	1.6	38,591	312.5	200	5,215	312,900
PROTECTION OF GROUNDWATER SOIL TARGET CONCENTRATION (mg/kg)	55	, .	0.080	."	NLD	6.345	0.0064	92.6
MAXIMUM BACKGROUND CONCENTRATION (mg/kg)	ı		16	25	0.38	30	0.70	81.3
MAXIMUM DETECTED CONCENTRATION (mg/kg)	53.3	3.88	64	2,700	7.7	3,300	2.03	5,200
DETECTION LIMIT (mg/kg)	1.0	ı	0.1	9.0	0.02	0.1	0.2	0.2
COMPOUND	24DNT	СРАН	AS	റാ	HG	PB	SE	ZN

Notes:

miligrams per kilogram Negligible risk to ecological receptors. No leaching data for modeling.

N_D

Background concentration; which is greater than NR 720 concentrations and/or ecological risk concentration. Carcinogenic PAHs; consisting of BAANTR and CHRY. Protective of human health per NR 720 Rule.

Full compound names are identified in the USAEC Chemical Code List located behind the Glossary of Acronyms

TABLE 3-8 REMEDIATION GOALS PROPELLANT BURNING GROUND GROUNDWATER

FEASIBILITY STUDY BADGER ARMY AMMUNITION PLANT

COMPOUND	MAXIMUM CONCENTRATION DETECTED (µg/L)	REMEDIATION GOAL (µg/L)	RATIONALE
CCL4	108	0.5	WPAL
CHCL3	83.5	0.6	WPAL
111TCE	59.3	40	WPAL
TRCLE	117	0.5	WPAL
26DNT	1.46	0.005	WPAL
NNDPA	25	0.7	Interim WPAL
BE	0.582	0.4	. Interim WPAL
CR	46.6	10	WPAL
CD	3.61	0.5	WPAL
HG	4.31	0.2	WPAL
MN	1,700	25	WPAL ¹
PB	13.6	1.5	WPAL
SO4	637,000	125,000	WPAL ¹

Notes:

Public welfare standards.

 μ g/L = micrograms per liter

WPAL = Wisconsin Preventive Action Limit

Full compound names are identified in the USAEC Chemical Code List located behind the Glossary of Acronyms

TABLE 3-9 GENERAL RESPONSE ACTIONS AND POTENTIAL REMEDIAL TECHNOLOGIES PROPELLANT BURNING GROUND SOILS

FEASIBILITY STUDY **BADGER ARMY AMMUNITION PLANT**

GENERAL RESPONSE		
Action	SOIL TECHNOLOGY	DESCRIPTION
Excavation/Treatment (cont.)	Anaerobic Thermal Process	Soil is excavated and treated by a mobile unit which volatilizes/desorbs VOCs/SVOCs from the soil and condenses them into a liquid stream.
	Soil Washing	Soil is excavated and mixed with an aqueous- based washing solution in a series of high- energy mobile washing units. VOCs/SVOCs and metals can be separated from soil with this system. Washing solution is recycled.
	Composting	Soil is excavated and mixed with amendment (cow manure, straw, and vegetable wastes) to prepare for composting. The mixture is placed in windrows and composted for several weeks. Final compost is backfilled into the excavated area.
In Situ Treatment	Soil Vapor Extraction	A vacuum is applied to vadose zone wells at the site to extract vapor from voids in the subsurface soil. The vapor is collected and either treated or released to the atmosphere.
	Stabilization/Solidification	Water and cement additives are mixed in place with contaminated soil to form a granular or monolithic product in which contaminants are entrapped by the solidified material.
	Soil Flushing	Aqueous-based washing solution is applied at the ground surface. Contaminants are removed from soil particles and held in the liquid phase as the solution infiltrates the soil. Solution containing the contaminants is removed through extraction wells after reaching the water table.
	Chemical-Biological	Chemical oxidants and nutrients are mixed into the soil to facilitate chemical and biological degradation of VOCs/SVOCs
	Bioventing	Air, nutrients, and moisture (as needed) are injected into a contaminated soil zone to enhance the indigenous microbe environment and increase the biodegradation rate of VOCs/SVOCs.

Notes:

Resource Conservation and Recovery Act semivolatile organic compounds volatile organic compounds

RCRA SVOC VOC

TABLE 3-10 REMEDIAL TECHNOLOGY SCREENING PROPELLANT BURNING GROUND SOILS

REMEDIAL TECHNOLOGY	Advantages	DISADVANTAGES	SCREENING STATUS	Comments
On-Site Landfill	No secondary wastes produced. Contaminants may be relocated to a more stable, contained, lower exposure potential environment. No transportation of waste over public roads.	Would not reduce toxicity, or volume of contaminants. RCRA Land Disposal Restrictions may limit wastes eligible for disposal. Siting a landfill over an aquifer used as a drinking water source would be difficult. Long-term monitoring and maintenance would be required. Long-term liability associated with landfilled waste.	Eliminated	Obtaining regulatory approval of a landfill at BAAP would be difficult because of site geology (i.e., sandy soils) overlying an aquifer used as a drinking water source.
Off-Site Landfill	Widely used and easily implemented technology. No wastes/treatment residuals remaining on site. Contaminants may be relocated to a more stable, contained, lower exposure potential environment. Relatively little mobilization effort and cost. Experienced excavation contractors available.	Would not reduce toxicity or volume of contaminants. RCRA Land Disposal Restrictions may limit wastes eligible for disposal. Limited landfill capacity nationwide. Transportation and landfilling costs may be expensive. Long-term liability associated with landfilled wastes.	Retained	Could be used for direct disposal of soils or as an option for disposal of treatment residuals.
On-site Incineration	Destruction and removal efficiencies greater than 99.99%, thus reducing volume of contaminants. Technology is reliable and has been demonstrated for treating organics at full-scale. Widely used for treatment of organics wastes. Mobile units are available.	Treatment of volatile metals (e.g., lead) collected by air pollution control equipment potentially required. Treatment of inorganics remaining in soil potentially required. Incineration of RCRA waste would require trial burns in order to receive permits to operate.	Retained	Capable of treating VOCs and SVOCs, both of which are present in waste pits at the PBG.
Off-Site Incineration	Destruction and removal efficiencies greater than 99.99%, thus reducing volume of contaminants. Technology is reliable and has been demonstrated for treating VOCs/SVOCs at full-scale. Widely used for treatment of VOC/SVOC wastes. Experienced vendors are available.	Treatment of metals remaining in soil potentially required. Limited capacity at RCRA-permitted incinerators. High cost associated with transportation and incineration of wastes.	Retained	Capable of treating VOCs and SVOCs, both of which are present in waste pits at the PBG. May be cost-effective for treating small volumes of soil.

TABLE 3-10 REMEDIAL TECHNOLOGY SCREENING PROPELLANT BURNING GROUND SOILS

REMEDIAL TECHNOLOGY	Advantages	DISADVANTAGES	SCREENING STATUS	COMMENTS
Soil Washing	Demonstrated at full-scale for removal of metals from soil. Wide application to varied waste groups. Mobile units are available.	 Difficulty in treating complex waste mixtures. Potentially hazardous chemicals may be brought on site to be used in process. Potential difficulty in removing washing solution from treated soil. Limited effectiveness for treating soil with high humic content and high fine-grained clay fraction. 	Retained	Capable of treating metals contamination which is present in surface soil at the PBG, or SVOC contamination which is present in water pits at PBG.
Composting	Demonstrated at full-scale for treatment of explosives-contaminated soil. Widely used technology for organic wastes and does not require specialized operating personnel. Minimal operating cost. No side streams of waste generated. Operating equipment easily available. Treated soil can be used for backfilling.	Treatability studies may be necessary for site-specific wastes. Large quantity of soil amendment required.	Retained	Capable of treating explosives-contaminated soil which is present in waste pits at the PBG.
In Situ Vacuum Extraction	Reduces mobility, toxicity, and volume of contaminants if vapors are collected and treated. Effective for extraction of VOCs from unsaturated soil. Demonstrated capability for extracting up to 2,000 lbs of VOCs per day. Not subject to RCRA Land Disposal Restrictions. Extraction equipment is off-the-shelf. Experienced vendors are readily available.	Vapors generally require treatment prior to discharge to the atmosphere. Contaminants with low vapor pressure, such as DNTs, cannot be effectively removed. Extensive soil and air monitoring required, including soil borings. Treatment of metals remaining in soil potentially required. Not effective for treating soil with a high moisture content.	Retained	Capable of extracting VOCs from contaminated subsurface soils, which are present in waste pits at the PBG.
In Situ Stabilization/ Solidification	Technology has been demonstrated at full-scale for treating metals and VOCs/SVOCs. Reduces mobility of metals and VOCs/SVOCs. Not subject to RCRA Land Disposal Restrictions.	High concentrations of VOCs/SVOCs may interfere with the setting agent. Reagent/waste ratios are difficult to control. Volume of contaminated media increased. Verification of treatment can be difficult.	Retained	Capable of treating metals contamination which is present in surface soil at the PBG, or SVOC contamination which is present in waste pits at the PBG.

TABLE 3-11 REMEDIAL TECHNOLOGIES RETAINED FOR REMEDIAL ALTERNATIVES DEVELOPMENT PROPELLANT BURNING GROUND SOILS

IN SITU TREATMENT	Vacuum Extraction Stabilization/Solidification Soil Flushing Chemical-Biological Bioventing
EXCAVATION/THEATMENT SS ORGANICS	On-Site Incineration Off-Site Incineration Composting
EXCAVATION INCHEAMICS	Stabilization/Solidification Soil Washing
EXCAVATION/DISPOSAL.	Off-Site Landfill
CONTAINMENT	Soil Cover Capping Slurry Wall
MINIMAL ACTION	Institutional Controls/ Education Programs/ Site Fencing

TABLE 3-12 GENERAL RESPONSE ACTIONS AND POTENTIAL REMEDIAL TECHNOLOGIES PROPELLANT BURNING GROUND GROUNDWATER

FEASIBILITY STUDY BADGER ARMY AMMUNITION PLANT

GENERAL RESPONSE ACTION	GROUNDWATER TECHNOLOGY	DESCRIPTION
In Situ Treatment	In Situ Biological	Introduce nutrients and oxygen or methane into the groundwater using a matrix of extraction wells and recirculation techniques.
Discharge	Off-Site Water Treatment Facility	Off-site disposal of extracted groundwater to a POTW. Groundwater would require transport by means of a force main and/or gravity feed sewer or by truck to the POTW.
	Groundwater Reinjection	Reinject treated groundwater using a series of wells and pumps. Can be used to enhance plume removal and accelerate remediation.
	Discharge to Surface Water	Discharge treated groundwater directly to nearby surface water body. Transport groundwater by means of force or gravity main.

Notes: POTW UV VOCs SVOCs

Publicly Owned Treatment Works
 ultraviolet
 Volatile Organic Compounds
 Semivolatile Organic Compounds

TABLE 3-13 REMEDIAL TECHNOLOGY SCREENING PROPELLANT BURNING GROUND GROUNDWATER

REMEDIAL TECHNOLOGY	Advantages	DISADVANTAGES	SCREENING STATUS	COMMENTS
Air Stripping	Treatment would reduce the volume of contaminants in groundwater. Air Stripping is a proven and reliable technology for treatment of VOCs.	Off-gases produced during remediation may require collection/ treatment/disposal. Treatment is not effective for compounds with low volatility. Pretreatment for the removal of inorganics required to prevent fouling of air-stripper system. Post-treatment by carbon adsorption may be required to meet discharge limits.	Retained	Retained for treatment of VOCs in PBG groundwater.
Carbon Adsorption	Treatment effectively removes organic material from groundwater by sorption. Technology is reliable and has been demonstrated for treating VOCs/SVOCs at full-scale. Carbon adsorption could be implemented as a polishing step after air stripping to meet discharge requirements.	Suspended solids may require removal prior to treatment to avoid clogging carbon bed. Spent carbon from the adsorption process would require disposal or regeneration.	Retained	Retained for treatment of VOCs/ SVOCs in PBG groundwater.
Resin Adsorption	Treatment would reduce the volume of chemicals in groundwater. Removes VOCs/SVOCs and metals from the wastewater stream. Capable of treating high flows.	Process concentrates contaminants within the resin column, necessitating regeneration or disposal of the resin. Reliability of this technology has not been demonstrated, particularly for groundwater treatment.	Retained	Retained for treatment of VOCs/ SVOCs in PBG groundwater.
In situ Biological Treatment	Treatment would reduce volume, toxicity, and mobility of chemicals present in groundwater. Contaminants are degraded to nontoxic compounds. No air emissions or secondary waste streams are produced. Recirculation equipment is off-the-shelf.	Significant time and expense for laboratory degradation studies and field demonstrations. Chlorinated VOCs/SVOCs (e.g., CCL4) can be difficult to treat. Parameters (e.g., temperature, pH, nutrients, and oxygen) for optimal microorganism growth can be difficult to maintain. Injection wells are susceptible to plugging by chemical precipitation of nutrients.	Retained	Retained for in situ treatment of VOCs/ SVOCs.
Off-Site Water Treatment Facility	If sewer connection is nearby, this can be a relatively inexpensive discharge option.	Approval by POTW, community and WDNR may be difficult	Eliminated	Discharge to surface water is the preferred option.

TABLE 3-14 REMEDIAL TECHNOLOGIES RETAINED FOR REMEDIAL ALTERNATIVES DEVELOPMENT PROPELLANT BURNING GROUND GROUNDWATER

FEASIBILITY STUDY BADGER ARMY AMMUNITION PLANT

MINIMAL ACTION ¹	COLLECTION & TREATMENT ¹	In-situ Treatment ¹	DISCHARGE
Institutional Controls/ Education Programs	Groundwater Extraction Wells UV/Oxidation UV/Reduction Air Stripping Carbon Adsorption Resin Adsorption	Biological	Surface Water

Notes:

 1 Groundwater monitoring would be used in conjunction with these technologies. UV = Ultraviolet

FEASIBILITY STUDY BADGER ARMY AMMUNITION PLANT

Remedial Action Objectives:

- (1) Prevent concentrations of 24DNT, CPAH, AS, and PB in surface soil which exceed cleanup standards for protection of human health (developed and/or obtained from the proposed Chapter NR 720) from becoming available, either through incidental ingestion of soil or inhalation of particulates, to potential human receptors.
- (2) Prevent concentrations of CU, HG, PB, SE, and ZN in surface soil that pose an unacceptable risk from becoming available, either through incidental ingestion or consumption of contaminated prey, to potential ecological receptors.
- (3) Prevent concentrations of AS, PB, SE, and ZN in surface soil which exceed clean-up standards for protection of groundwater (developed from the proposed Chapter NR 720) from degrading groundwater quality in excess of WPALs.
- (4) Prevent concentrations of DNTs in surface soil in WP-2 and WP-3 which exceed clean-up standards for protection of human health and groundwater (developed from the proposed Chapter NR 720) and/or pose an unacceptable risk to potential ecological receptors from becoming available to potential receptors or degrading groundwater quality.

ALTERNATIVE	DESCRIPTION OF KEY COMPONENTS
PBG-SS1: Minimal Action	 Surround areas with fencing and post warning signs.
	 Institutional Controls. Implement zoning and deed restrictions to limit use of land within and around the site.
	Education programs.
	 Groundwater monitoring. Perform water quality analyses to monitor contaminant migration and assess future environmental impacts.
	Five-year site reviews.

ALTERNATIVE	DESCRIPTION OF KEY COMPONENTS
PBG-SS4: Stabilization/Solidification and Soil Cover	Mobilize stabilization/solidification equipment to site.
	Excavate contaminated soil.
	Confirmatory sampling to ensure wastes have been removed.
	 Transport and stockpile wastes at treatment area.
	Stabilize/solidify contaminated soil.
	 Backfill excavations with treatment residuals and cover with soil.
	 Post-closure plan development to monitor, maintain, and inspect site.
	 Institutional Controls. Implement zoning and deed restrictions to protect the soil cover from invasive activities.
	Groundwater monitoring.
	Five-year site reviews.
PBG-SS5: Soil Washing	Mobilize soil washing equipment to site.
	Excavate contaminated soil.
	 Confirmatory sampling to ensure wastes have been removed.
	 Transport and stockpile wastes at treatment area.
	Wash contaminated soil.
	 Transport secondary wastestreams (i.e., fines) off-site for treatment.
	Backfill excavations with washed (i.e., clean) soil.

TABLE 3-17 DEVELOPMENT OF REMEDIAL ALTERNATIVES PROPELLANT BURNING GROUND SUBSURFACE SOILS

FEASIBILITY STUDY BADGER ARMY AMMUNITION PLANT

REMEDIAL ACTION OBJECTIVES:

- (1) Prevent concentrations of 24DNT, 26DNT, CPAH, C6H6, AS, and PB in Landfill 1 and the 1949 Pit which exceed clean-up standards for protection of human health (developed and/or obtained from the proposed Chapter NR 720) from becoming available, either through incidental ingestion of soil or inhalation of particulates, to potential human receptors.
- (2) Prevent concentrations of 24DNT, 26DNT, TRCLE, AS, CR, PB, SE, and ZN in Landfill 1 and the 1949 pit which exceed clean-up standards for protection of groundwater (developed from the proposed Chapter NR 720) from degrading groundwater quality in excess of WPALs.

ALTERNATIVE	DESCRIPTION OF KEY COMPONENTS
PBG-SB1: Minimal Action	 Institutional controls. Implement zoning and deed restrictions to prohibit invasive activities into Landfill 1 and the 1949 Pit.
	Education programs.
	 Groundwater monitoring. Perform water quality analyses to monitor contaminant migration and assess future environmental impacts.
	Five-year site reviews.
PBG-SB2: Capping	 Install RCRA caps to reduce leaching of contaminants to groundwater
	 Surface water management to minimize erosion of cover system.
	 Post-closure plan development to monitor, maintain, and inspect site.
	 Institutional Controls. Implement zoning and deed restrictions to protect the caps from invasive activities.
	Groundwater monitoring.
	Five-year site review.
PBG-SB3: Off-Site Landfill	Excavate contaminated soil from Landfill 1 and the 1949 Pit.
	 Confirmatory sampling to confirm wastes have been removed.
	Backfill excavation with clean fill.
	 Sample and analyze excavated soil to confirm it meets landfill acceptance criteria.
	Transport soil to off-site landfill.

Notes:

Full compound names are identified in the USAEC Chemical Code List located behind the Glossary of Acronyms.

ALTERNATIVE	D
ALTERNATIVE	DESCRIPTION OF KEY COMPONENTS
PBG-WP3: Off-Site Landfill and Capping	 Excavate WP-1 to approximately 30 feet bgs and WP-2 and WP-3 to approximately 15 feet bgs.¹
	Backfill excavations with clean fill.
	Sample and analyze excavated soil to confirm it meets landfill acceptance criteria.
	Transport soil to off-site landfill.
	Install RCRA caps to reduce leaching of unexcavated contaminants to groundwater.
	Post-closure plan development to monitor, maintain, and inspect site.
	Institutional Controls. Implement zoning and deed restrictions to protect the caps from invasive activities.
	Groundwater monitoring.
	Five-year site reviews.
PBG-WP4: On-site Incineration and Capping	Mobilize incinerator to site.
	 Excavate WP-1 to approximately 30 feet bgs and WP-2 and WP-3 to approximately 15 feet bgs¹.
	Transport and stockpile wastes at treatment area.
	Incinerate soil.
	Transport secondary waste streams off site for treatment.
	Backfill excavations with treatment residuals.
	Install RCRA caps to reduce leaching of unexcavated contaminants to groundwater.
	 Post-closure plan development to monitor, maintain, and inspect site.

ALTERNATIVE	DESCRIPTION OF KEY COMPONENTS
PBG-WP6: Off-site Incineration and Capping	 Excavate WP-1 to approximately 30 feet bgs and WP-2 and WP-3 to approximately 15 feet bgs.¹
	Backfill excavation with clean fill.
	Sample and analyze soil for incinerator- required parameters.
	Transport soil to off-site incinerator.
	Install RCRA caps to reduce potential risks associated with the leaching of unexcavated contaminants to groundwater.
	 Post-closure plan development to monitor, maintain, and inspect site.
	Institutional Controls. Implement zoning and deed restrictions to protect the caps from invasive activities.
	Groundwater monitoring.
	Five-year site reviews.
PBG-WP7: In Situ Vacuum Extraction, Composting, and Capping	Conduct tests to determine vapor concentrations and soil permeability to vapor flow.
	Mobilize vacuum extraction equipment to the site.
	Install vacuum extraction wells.
	Extract volatile organics from soil.
	Transport secondary waste streams off site for treatment.
	Construct composting facility.
	 Excavate WP-1 approximately 30 feet bgs and WP-2 and WP-3 to approximately 15 feet bgs¹.
•	Transport and stockpile untreated soil.
	Screen soil to remove rocks.

ALTERNATIVE	DESCRIPTION OF KEY COMPONENTS
PBG-WP8: In Situ Treatment (continued)	Soil Flushing
	 Install extraction wells within the confines of the slurry and grout barrier.
	Mobilize soil flushing equipment to the site.
	Irrigate waste pit soils with a continuous flow of flushing solution and pump resultant leachate from beneath the waste pits.
	Treat extracted leachate at a groundwater treatment plant.
	Confirmatory sampling from soil borings to ensure wastes have been removed.
	Chemical-Biological
	 Mobilize deep soil mixing equipment to the site.
	 Mix chemical oxidants into the soil using deep soil mixing equipment.
	 Mix nutrients into the soil using deep soil mixing equipment.
	 Continue mixing cycle until contaminant degradation is completed.
	 Confirmatory sampling from soil borings to ensure wastes have been destroyed.

ALTERNATIVE	DESCRIPTION OF KEY COMPONENTS
PGB-WP11: In Situ Vacuum Extraction, Soil Washing, and Composting	 Conduct tests to determine vapor concentrations and soil permeability to vapor flow.
	Mobilize vacuum extraction equipment to the site.
	Install vacuum extraction wells.
	Extract volatile organics from soil.
	Transport secondary waste streams off site for treatment.
	 Construct retaining walls around waste pits to a depth of approximately 120 feet bgs.
	Mobilize soil washing equipment to site.
	Construct composting facility.
	 Excavate waste pits within confines of retaining walls.
	 Confirmatory sampling to ensure wastes have been removed.
	Transport and stockpile wastes at soil washing treatment area.
	Wash contaminated soil.
	Backfill excavations with washed (i.e., clean) soil.
	Transport secondary wastestreams (i.e., fines) to composting facility.
	 Add amendment (i.e., cow manure, straw, and vegetable wastes) to fines and blend together.
	 Place amended fines in windrows on asphalt pad in enclosure for composting.
	 Periodically turn the amended fines for temperature, humidity, and oxygen control. Add moisture as needed.
	 Backfill excavations with finished compost material.

TABLE 3-19 SCREENING OF REMEDIAL ALTERNATIVES PROPELLANT BURNING GROUND SURFACE SOILS

FEASIBILITY STUDY BADGER ARMY AMMUNITION PLANT

<u>Alternative PBG-SS1: Minimal Action:</u> This alternative consists of institutional controls, educational programs, groundwater monitoring, and five-year site reviews. Fencing and warning signs would surround those areas identified as posing a risk to human health.

EFFECTIVENESS	IMPLEMENTABILITY	Cost
Advantages	Advantages	Advantages
 Public access to affected areas would be restricted. 	Would be easy to implement because no soil remediation is required.	Short-term cost for administration of institutional controls, educational programs, and
 Low potential for exposure to contaminants during implementation. 	Services and material for fencing are readily available.	groundwater monitoring and maintenance is relatively low.
 Institutional controls would reduce the potential for future land development. 		
 Educational programs would increase public awareness about contamination. 		
Disadvantages	<u>Disadvantages</u>	<u>Disadvantages</u>
 Would not reduce mobility, toxicity, or volume of contaminants. 	Long-term monitoring and maintenance would be required.	Future remedial actions may be more costly because contaminants would continue to
 Does not achieve remedial action objectives. 		migrate and contaminate greater volumes of soil.
		Long-term liability associated with waste.

<u>CONCLUSION</u>: The minimal action alternative is <u>retained</u> as a baseline for comparison with the remaining alternatives for surface soils at the Propellant Burning Ground.

TABLE 3-19 SCREENING OF REMEDIAL ALTERNATIVES PROPELLANT BURNING GROUND SURFACE SOILS

FEASIBILITY STUDY BADGER ARMY AMMUNITION PLANT

Alternative PBG-SS3: Off-Site Landfill: This alternative consists of excavating contaminated surface soil, backfilling excavations with clean fill, and transporting the contaminated soil off site for disposal in a landfill.

EFFECTIVENESS	IMPLEMENTABILITY	Cost
Advantages	Advantages	<u>Advantages</u>
 Achieves remedial action objectives. Disposal of contaminants in a secure landfill. No significant short-term or long-term threat to human health and the environment. 	 Long-term monitoring and maintenance provided by host landfill. Surface soils are easily and rapidly removed with conventional grading equipment. Excavation and transportation services are readily available. 	No long-term costs associated with inspection, monitoring, and maintenance.
 Disadvantages Would not reduce the toxicity or volume of contaminants. Without adequate health and safety practices, soil excavation could result in significant exposure of site workers to soil contaminants. 	 Disadvantages Contaminated soil may fail TCLP analysis for PB, thus invoking RCRA Land Disposal Restrictions. Contaminated soil which fails TCLP analysis for PB would be rejected by landfill unless it is first treated. At least 60,000 YD³ would be transported for disposal. 	 Disadvantages Long-term liability associated with landfilled wastes. High capital cost compared to containment and treatment alternatives.
	 Capacity at RCRA-permitted landfills may be limited. 	

<u>CONCLUSION</u>: This alternative includes transporting at least 60,000 YD³ of soil to an off-site landfill. Considering that landfill capacity may be limited (particularly RCRA-permitted landfills) and the cost for transportation and disposal is prohibitively high, this alternative is **eliminated** from further consideration.

TABLE 3-19 SCREENING OF REMEDIAL ALTERNATIVES PROPELLANT BURNING GROUND SURFACE SOILS

FEASIBILITY STUDY BADGER ARMY AMMUNITION PLANT

<u>Alternative PBG-SS5: Soil Washing</u>: This alternative consists of excavating contaminated soil, washing contaminated soil, and backfilling the excavations with the treated soil.

EFFECTIVENESS	IMPLEMENTABILITY	Cost
Advantages	Advantages	Advantages
 Achieves remedial response objectives. Effective for coarse-grained soil. Reduces the volume of contaminated soil. Off-site treatment of contaminated wastestream would reduce mobility of contaminants. No long-term threat to human health and the environment. 	 Soil washing is a proven, reliable technology for treating metals-contaminated soil. Soil washing services are readily available. No long-term monitoring and maintenance provisions. Surface soils are easily and rapidly removed with conventional excavation equipment. 	 No long-term costs associated with inspection, monitoring, and maintenance. No long-term liability. Low capital cost compared to the disposal alternative.
Disadvantages	Disadvantages	Disadvantages
 Would not reduce toxicity or mass of contaminants. Without adequate health and safety practices, soil excavation, and treatment could result in significant exposure of site workers to soil contaminants. 	 Contaminants may be difficult to remove from fine-grained soils such as loess. The secondary wastestream may be a significant percentage of the original volume if the soil is primarily composed of fine-grained soils. Fine soil particles are difficult to remove from the washing solution. 	Costs of treating the secondary waste stream could significantly increase overall cost.

<u>CONCLUSION</u>: Because the surface soil at the Propellant Burning Ground is topsoil and loess, soil washing may not result in significant volume reduction of contaminated soil. Therefore, this alternative is <u>eliminated</u> from further consideration.

TABLE 3-20 SUMMARY OF REMEDIAL ALTERNATIVES SCREENING PROPELLANT BURNING GROUND SURFACE SOILS

ALTERNATIVE		STATUS	
Alternative PBG-SS1:	Minimal Action	Retained for detailed analysis.	
Alternative PBG-SS2:	Soil Cover	Retained for detailed analysis.	
Alternative PBG-SS3:	Off-Site Landfill	Eliminated from further consideration.	
Alternative PBG-SS4:	Stabilization/Solidification and Soil Cover	Eliminated from further consideration.	
Alternative PBG-SS5:	Soil Washing	Eliminated from further consideration.	
Alternative PBG-SS6:	Modified In Situ Stabilization/Solidification and Soil Cover	Retained for detailed analysis.	

TABLE 3-21 SCREENING OF REMEDIAL ALTERNATIVES PROPELLANT BURNING GROUND SUBSURFACE SOILS

FEASIBILITY STUDY BADGER ARMY AMMUNITION PLANT

<u>Alternative PBG-SB2: Capping</u>: This alternative consists of constructing multilayered caps over Landfill 1 and the 1949 Pit to prevent incidental soil ingestion and/or inhalation and to reduce infiltration. This alternative also includes institutional controls, groundwater monitoring, and five-year site reviews.

EFFECTIVENESS ADVANTAGES	IMPLEMENTABILITY ADVANTAGES	COST ADVANTAGES
Advantages	Advantages	Advantages
 Potential for achieving remedial action objectives for protection of human health and groundwater. Caps and institutional controls would reduce potential for exposure to contaminated soil in Landfill 1 and the 1949 Pit. Caps would reduce leaching of metals from contaminated zone (i.e., 0 to 15 feet bgs) into groundwater. Low potential for exposure to contaminants during 	 Would be easy to implement. Caps would require minimal maintenance for the short term. Equipment, supplies, and vendors are readily available. 	Low capital cost compared to the disposal alternative.
implementation. Disadvantages	Disadvantages	Disadvantages
Would not reduce toxicity or volume of contaminants.	Would require long-term monitoring and maintenance provisions.	Long-term costs associated with inspection, monitoring, and maintenance.
Caps may only be protective for the short term.		Long-term liability associated with waste.

<u>CONCLUSION</u>: Because this alternative has potential for achieving the remedial action objectives for protection of human health and groundwater, and would be easily implemented, it is <u>retained</u> for detailed analysis.

TABLE 3-22 SUMMARY OF REMEDIAL ALTERNATIVES SCREENING PROPELLANT BURNING GROUND SUBSURFACE SOILS

ALTERNATIVE	STATUS
Alternative PBG-SB1: Minimal Action	Retained for detailed analysis.
Alternative PBG-SB2: Capping	Retained for detailed analysis.
Alternative PBG-SB3: Off-Site Landfill	Retained for detailed analysis.

FEASIBILITY STUDY BADGER ARMY AMMUNITION PLANT

<u>Alternative PBG-WP2: Capping</u>: This alternative consists of constructing multilayered caps to prevent incidental soil ingestion and/or inhalation and to reduce infiltration. This alternative also includes institutional controls, groundwater monitoring, and five-year site reviews.

EFFECTIVENESS	IMPLEMENTABILITY	Cost
Advantages	Advantages	Advantages
 Potential for achieving remedial action objectives for protection of human health. Caps and institutional controls 	 Would be easy to implement. Caps would require minimal maintenance for the short-term. 	Low capital cost compared to disposal and treatment alternatives.
would reduce potential for exposure to contaminated surface soils at WP-2 and WP-3.	 Equipment, supplies, and vendors readily available. 	·
 Low potential for exposure to contaminants during implementation. 		
 Caps would reduce leaching of contaminants to groundwater. 		
<u>Disadvantages</u>	<u>Disadvantages</u>	<u>Disadvantages</u>
Fails to achieve remedial action objective for protection of groundwater because VOCs would migrate laterally outside the caps by volatilization and into	 Would require long-term monitoring and maintenance provisions. Potential that caps may have to be 	 Long-term costs associated with inspection, monitoring, and maintenance. Long-term liability associated with
groundwater by infiltrating precipitation.	removed in the future if source removal becomes necessary.	waste.
 Would not reduce toxicity or volume of contaminants. 		
Caps may only be protective for the short term.		

<u>CONCLUSION</u>: Because this alternative is not expected to achieve remedial action objectives and does not reduce contaminant toxicity or volume, it is <u>eliminated</u> from further consideration.

FEASIBILITY STUDY BADGER ARMY AMMUNITION PLANT

Alternative PBG-WP4: On-Site Incineration and Capping: This alternative consists of excavating severely contaminated soil to a depth of approximately 30 feet below ground surface in WP-1 and approximately 15 feet below the bottom of WP-2 and WP-3, treating the soil by on-site incineration, backfilling the excavations with treated soil, and capping the sites. This alternative also includes institutional controls, groundwater monitoring, and five-year site reviews.

Effectiveness	IMPLEMENTABILITY	Cost
Advantages	<u>Advantages</u>	Advantages
 Achieves remedial action objectives for protection of human health. Remediation of upper 30 (15) feet of contaminated soil would eliminate incidental soil ingestion and inhalation hazards. Soil remediation and caps would reduce contaminant mobility, toxicity, volume, and leaching of contaminants to groundwater. 	 On-site incineration is a proven, reliable technology for treatment of organic contaminants. On-site incineration services readily available. Caps would require minimal maintenance for the short-term. 	• None
<u>Disadvantages</u>	<u>Disadvantages</u>	<u>Disadvantages</u>
 Potentially fails remedial action objective for protection of groundwater because VOCs in unexcavated soil may migrate laterally outside the caps by volatilization and into groundwater by infiltrating precipitation. 	 Contaminated soil is expected to be RCRA-characteristic hazardous waste and trial burns would be required for an on-site incinerator. Secondary wastestreams are generated. 	 Long-term costs associated with inspection, monitoring, and maintenance. Long-term liability associated with unexcavated wastes.
 Caps may only be protective for the short term. 	Sheet piling or a 2:1 slope would be required to maintain an open pit during excavation.	·
 Without adequate health and safety practices, soil excavation and treatment could result in significant exposure of site workers to soil contaminants. 	Would require long-term monitoring and maintenance provisions.	

<u>CONCLUSION</u>: Because this alternative is protective of human health and reduces contaminant mobility, toxicity, and volume, it is <u>retained</u> for detailed analysis.

FEASIBILITY STUDY BADGER ARMY AMMUNITION PLANT

Alternative PBG-WP6: Off-Site Incineration and Capping: This alternative consists of excavating severely contaminated soil to a depth of approximately 30 feet below ground surface in WP-1 and approximately 15 feet below the bottoms of WP-2 and WP-3, backfilling excavations with clean fill, capping the sites, and transporting the contaminated soil to an off-site incinerator. This alternative also includes institutional controls, groundwater monitoring, and five-year site reviews.

monitoring, and five-year site reviews.		
EFFECTIVENESS	IMPLEMENTABILITY	Соѕт
Advantages	Advantages	Advantages
 Achieves remedial action objectives for protection of human health. 	Off-site incineration is a proven, reliable technology for treatment of organic contaminants.	• None.
 Remediation of upper 30 (15) feet of contaminated soil would eliminate incidental soil ingestion and inhalation hazards. 	Excavation, transportation, and off-site incineration services are readily available.	
 Soil remediation and caps would reduce contaminant mobility, toxicity, and volume and the potential risks associated with the leaching of contaminants to groundwater. 	Caps would require minimal maintenance for the short-term.	
<u>Disadvantages</u>	<u>Disadvantages</u>	<u>Disadvantages</u>
 Potentially fails remedial action objective for protection of groundwater because VOCs in unexcavated soil may migrate laterally outside the caps by volatilization and into groundwater by infiltrating precipitation. 	 Soil remediation may be prolonged because of limited capacity at RCRA-permitted incinerators. Sheet piling or a 2:1 slope would be required to maintain an open pit during excavation. 	 High unit cost for off-site incineration (i.e., \$1,000-\$2,000 per ton) Long-term costs associated with inspection, monitoring, and maintenance. Long-term liability associated
 Caps may only be protective for the short term. 	Would require long-term monitoring and maintenance provisions.	with unexcavated wastes.
 Without adequate health and safety practices, soil excavation could result in significant exposure of site workers to soil contaminants. 		

<u>CONCLUSION</u>: Because of limited capacity at RCRA-permitted incinerators and the high cost for transportation and offsite incineration, this alternative is <u>eliminated</u> from further consideration.

FEASIBILITY STUDY BADGER ARMY AMMUNITION PLANT

Alternative PBG-WP8: In Situ Treatment: This alternative consists of constructing a slurry and/or grout barrier completely enclosing the waste pits and either: (1) installing extraction wells within the perimeter of the slurry and/or grout barrier, applying flushing solutions at the ground surface to flush contaminants from soil, and collecting and treating leachate containing the flushed contaminants or (2) treating the soil in situ with chemical-biological.

Effectiveness	IMPLEMENTABILITY	Cost
Advantages	Advantages	Advantages
 Potential for achieving remedial action objectives for protection of human health and groundwater. Would reduce the mobility, toxicity, and volume of contaminants after collection and treatment. Long-term leaching of contaminants to groundwater may be eliminated. Slurry and grout barrier would contain mobilized contaminants. Low potential for exposure to contaminants during 	 Not subject to RCRA Land Disposal Restrictions. Slurry and grout barrier construction services are readily available. Leachate from soil flushing could be treated at a BAAP groundwater treatment plant. Cover system construction not required. No long-term monitoring and maintenance provisions. 	 Low capital cost compared to excavate-and-treat alternatives. No long-term costs associated with inspection, monitoring, and maintenance. Minimize long-term liability.
implementation. Disadvantages Potential for groundwater contamination if the slurry and grout barrier fails to contain leachate.	Disadvantages Soil flushing not proven with DNT-contaminated soil. Chemical-biological not proven with DNT-contaminated soil. Extensive modeling and testing required to ensure containment and collection of mobilized contaminants. Extensive treatability studies to select best treatment method. Confirmatory subsurface soil sampling required to verify removal/destruction of contaminants.	Disadvantages Indefinite treatment costs. Potentially significant treatability study costs. Potentially high confirmatory sampling costs.

<u>CONCLUSION</u>: Because this alternative has potential for achieving remedial action objectives for protection of human health and groundwater without excavation of contaminated soil, and includes treatment of contaminated soil, it is **retained** for detailed analysis.

FEASIBILITY STUDY BADGER ARMY AMMUNITION PLANT

<u>Alternative PBG-WP10: On-Site Incineration</u>: This alternative consists of excavating contaminated soil to the limit of soil contamination (i.e., approximately 100 feet below ground surface in WP-1 and an undetermined depth in WP-2 and WP-3), treating the soil by on-site incineration, and backfilling the excavations with treated soil.

EFFECTIVENESS	IMPLEMENTABILITY	Соѕт
Advantages	<u>Advantages</u>	<u>Advantages</u>
 Achieves remedial action objectives for protection of human health and groundwater. 	Retaining wall technologies have been demonstrated for excavations of similar depth.	No long-term costs associated with inspection, monitoring, and maintenance.
Would reduce the mobility, toxicity, and volume of contaminants.	On-site incineration is a proven, reliable technology for treatment of organic contaminants.	Minimizes long-term liability.
 Long-term leaching of contaminants would be eliminated. 	On-site incineration services readily available.	
	Cover system construction not required.	
,	No long-term monitoring and maintenance provisions.	
<u>Disadvantages</u>	<u>Disadvantages</u>	<u>Disadvantages</u>
 Without adequate health and safety practices, soil excavation, and treatment could result in significant exposure of site workers to soil contaminants. 	 Extensive geotechnical investigations of site conditions would be required for retaining wall design. 	High capital cost compared to all other alternatives.
	 Contaminated soil is expected to be RCRA-characteristic hazardous waste and trial burns would be required for an on-site incinerator. 	
	 Secondary wastestreams are generated. 	

<u>CONCLUSION</u>: Because this alternative achieves remedial action objectives and includes permanent treatment of contaminated soil, it is <u>retained</u> for detailed analysis.

FEASIBILITY STUDY BADGER ARMY AMMUNITION PLANT

Alternative PBG-WP12: In Situ Stabilization/Solidification and Soil Cover: This alternative consists of in situ stabilization/solidification to the limit of soil contamination (i.e., approximately 100 feet below ground surface in WP-1 and an undetermined depth in WP-2 and WP-3) using specialized deep mixing auger assemblies. This alternative also includes a soil cover, institutional controls, groundwater monitoring, and five-year site reviews.

Effectiveness	IMPLEMENTABILITY	Cost
Advantages	Advantages	Advantages
 Achieves remedial action objective for protection of human health. Contaminants in the treatment residuals are unavailable to human receptors. 	 Not subject to RCRA Land Disposal Restrictions. Contaminated soil is within design depth capability of deep mixing equipment. 	Low capital cost compared to excavate-and-treat alternatives
 Potential for achieving remedial action objective for protection of groundwater. 		
Contaminants in the treatment residuals are potentially isolated from infiltrating precipitation.		
Would reduce the potential mobility of contaminants.		
 Low potential for exposure to contaminants during implementation. 		

TABLE 3-24 SUMMARY OF REMEDIAL ALTERNATIVES SCREENING PROPELLANT BURNING GROUND WASTE PITS

FEASIBILITY STUDY BADGER ARMY AMMUNITION PLANT

ALTI	ERNATIVE	STATUS
Alternative PBG-WP1:	Minimal Action	Retained for detailed analysis.
Alternative PBG-WP2:	Capping	Eliminated from further consideration.
Alternative PBG-WP3:	Off-Site Landfill and Capping	Eliminated from further consideration.
Alternative PBG-WP4:	On-Site Incineration and Capping	Retained for detailed analysis.
Alternative PBG-WP5:	Composting and Capping	Retained for detailed analysis.
Alternative PBG-WP6:	Off-Site Incineration and Capping	Eliminated from further consideration.
Alternative PBG-WP7:	In Situ Vacuum Extraction, Composting, and Capping	Retained for detailed analysis.
Alternative PBG-WP8:	In Situ Treatment	Retained for detailed analysis.
Alternative PBG-WP9:	In Situ Vacuum Extraction and Bioventing	Eliminated from further consideration.
Alternative PBG-WP10:	On-Site Incineration	Retained for detailed analysis.
Alternative PBG-WP11:	In Situ Vacuum Extraction, Soil Washing, and Composting	Retained for detailed analysis.
Alternative PBG-WP12:	In Situ Stabilization/ Solidification and Soil Cover	Eliminated from further consideration.

TABLE 3-26 DEVELOPMENT OF REMEDIAL ALTERNATIVES PROPELLANT BURNING GROUND GROUNDWATER

FEASIBILITY STUDY BADGER ARMY AMMUNITION PLANT

Remedial Action Objective:

- (1) Prevent further migration of contaminated groundwater.
- (2) Reduce the concentrations of CCL4, 26DNT, CHCL3, TRCLE, 111TCE, CR, PB, CD, and HG to their respective WPALs.
- (3) Reduce the concentrations of BE and NNDPA to their respective interim WPALs.
- (4) Reduce the concentrations of MN and SO4 to a level at or below the public welfare standards.

ALTERNATIVE	DESCRIPTION OF KEY COMPONENTS
PBG-GW1: Minimal Action	 Institutional Controls. Implement zoning and deed restrictions to prohibit use of groundwater within and around the site. Education programs. Groundwater Monitoring. Perform water quality analyses to monitor contaminant migration and assess future environmental impacts. Five-year site reviews.
PBG-GW2: IRM and Carbon Adsorption	Install groundwater extraction system.
	Construct carbon adsorption treatment facility.
	Groundwater extracted and treated in the IRM facility and the new facility.
	Treated water discharged to Lake Wisconsin.
	Effluent monitored as required by WDNR permit requirements.
	Groundwater monitoring. Water quality analyses performed to monitor progress cleanup.
	Periodic reviews.
PBG-GW3: IRM and UV/Oxidation - Air Stripping	 Install groundwater extraction system. Construct UV/oxidation - air stripping treatment facility.
	Extract groundwater and treat in the IRM facility and the new facility.
	 Discharge treated water to Lake Wisconsin. Monitor effluent as required by WDNR permit requirements.
	 Groundwater monitoring. Perform water quality analyses to monitor cleanup progress. Five-year site reviews.

TABLE 3-26 DEVELOPMENT OF REMEDIAL ALTERNATIVES PROPELLANT BURNING GROUND GROUNDWATER

FEASIBILITY STUDY BADGER ARMY AMMUNITION PLANT

ALTERNATIVE	DESCRIPTION OF KEY COMPONENTS
PBG-GW7: IRM and UV/Reduction - Carbon Adsorption	Install groundwater extraction system.
	Construct UV/reduction - carbon adsorption treatment facility.
	Extract groundwater and treat in the IRM facility and the new facility.
	Discharge treated water to Lake Wisconsin.
	Monitor effluent as required by WDNR permit requirements.
	Groundwater monitoring. Perform water quality analyses to monitor cleanup progress.
	Five-year site reviews.

Notes:

UV = ultraviolet

WDNR = Wisconsin Department of Natural Resources

WES = Wisconsin Enforcement Standard

IRM = Interim Remedial Measure

WPAL = Wisconsin Preventive Action Limits

Full compound names are identified in the USAEC Chemical Code List located behind the Glossary of Acronyms.

FEASIBILITY STUDY BADGER ARMY AMMUNITION PLANT

Alternative PBG-GW2: IRM and Carbon Adsorption: This alternative consists of continued operation of the IRM facility and construction and operation of a carbon adsorption treatment facility. This alternative includes groundwater extraction, treatment, effluent monitoring, discharge to Lake Wisconsin, groundwater monitoring, and periodic reviews.

EFFECTIVENESS	IMPLEMENTABILITY	Соѕт
Advantages	Advantages	Advantages
Achieves remedial action objectives.Extraction system would capture	Performance of carbon adsorption is well documented.	Potentially low capital cost.
the PBG plume.	Treatability studies not required.	
 Reduces the mobility of groundwater contaminants. Off-site thermal reactivation of spent 	Carbon adsorption system components are easy to install and relatively simple to operate.	
carbon destroys contaminants.	If the source of groundwater contamination is removed, long-term (i.e., the period after remedial action objectives for groundwater have been attained) monitoring and maintenance provisions would not be required.	
<u>Disadvantages</u>	<u>Disadvantages</u>	<u>Disadvantages</u>
 Produces a large volume of treatment residuals which must be transported and treated off site. 	Spent carbon from the process requires off-site treatment.	Significant short-term (i.e., during groundwater remediation) costs associated with monitoring program for groundwater quality and treatment facility discharge.
		 Potentially high operating cost associated with purchase of new carbon for every change-out.

<u>CONCLUSION</u>: Because carbon adsorption is a demonstrated technology and it is easily implemented, this alternative is <u>retained</u> for detailed analysis.

FEASIBILITY STUDY BADGER ARMY AMMUNITION PLANT

Alternative PBG-GW4: IRM and Air Stripping - Carbon Adsorption: This alternative consists of continued operation of the IRM facility and construction and operation of an air stripping - carbon adsorption facility. This alternative includes groundwater extraction, treatment, effluent monitoring, discharge to Lake Wisconsin, groundwater monitoring, and five-year site reviews.

Effectiveness	IMPLEMENTABILITY	Cost
Advantages	<u>Advantages</u>	Advantages
 Achieves remedial action objectives. 	Performance of air stripper and carbon adsorption units is well documented.	Capital and operation and maintenance costs are comparable to other water treatment processes.
 Extraction system would capture the PBG plume. 	Experienced vendors are available to provide equipment and services.	
 Reduces the mobility of groundwater contaminants. 	Systems can accommodate a range of flow rates.	
 Air stripping is efficient for treatment of principal groundwater contaminants. 		
 Carbon adsorption has the capability of removing contaminants that pass through air stripper. 	·	
<u>Disadvantages</u>	<u>Disadvantages</u>	<u>Disadvantages</u>
Treatment residuals must be transported and treated off-site.	May require pretreatment for suspended solids, carbonate/ bicarbonates, and/or metals to prevent fouling of air stripper packing and/or carbon.	Significant short-term (i.e., during groundwater remediation) costs associated with monitoring program for groundwater quality and treatment facility discharge.
	Treatment (e.g., vapor-phase carbon) may be required for air stripper emissions.	
	Spent carbon from the process requires off-site treatment.	

<u>CONCLUSION</u>: Because this alternative achieves remedial action objectives and includes efficient treatment of groundwater contaminants, it is <u>retained</u> for detailed analysis.

FEASIBILITY STUDY BADGER ARMY AMMUNITION PLANT

<u>Alternative PBG-GW6: In Situ Biological</u>: This alternative consists of in situ biological treatment, groundwater monitoring, and five-year site reviews.

EFFECTIVENESS	IMPLEMENTABILITY	Cost
Advantages	Advantages	Advantages
 Potential for achieving remedial action objectives. 	No secondary waste streams or air emissions.	Capital and operation and maintenance costs could be
 Reduces the mobility, toxicity, and volume of contaminants. 	Off-the-shelf equipment simplifies implementation.	significantly less than those for conventional pump and treat technologies.
 Limited potential for exposure to contaminants during implementation. 	Aquifer underlying the PBG is homogeneous and has high permeability, physical conditions which favor this alternative.	
Disadvantages	<u>Disadvantages</u>	<u>Disadvantages</u>
 Chlorinated organics, especially CCL4, are resistant to biodegradation, and microorganisms indigenous to 	Demonstrated performance for full- scale treatment of chlorinated organics is limited.	Significant costs associated with laboratory testing and field demonstrations.
aquifer may not be capable of degrading PBG groundwater contaminants.	 Degradation studies are necessary to determine nutrient, oxygen or methane requirements. 	
 Recirculation system would not contain plume and groundwater contamination would continue to migrate off site during treatment. 	 Extensive testing is required to determine suitability of aquifer for supporting remediation by biodegradation. 	

<u>CONCLUSION</u>: Because in situ biological treatment is not a demonstrated technology for remediation of PBG groundwater contaminants, and groundwater contamination would continue to migrate off site during remediation, this alternative is <u>eliminated</u> from further consideration.

TABLE 3-28 SUMMARY OF REMEDIAL ALTERNATIVES SCREENING PROPELLANT BURNING GROUND GROUNDWATER

FEASIBILITY STUDY BADGER ARMY AMMUNITION PLANT

	ALTERNATIVE	Status
Alternative PBG-GW1: Mir	nimal Action	Retained for detailed analysis.
Alternative PBG-GW2: IRM	M and Carbon Adsorption	Retained for detailed analysis.
Alternative PBG-GW3: IRM	M and UV/Oxidation-Air Stripping	Eliminated from further consideration.
	M and Air Stripping-Carbon sorption	Retained for detailed analysis.
Alternative PBG-GW5: IRM	M and Resin Adsorption	Retained for detailed analysis.
Alternative PBG-GW6: In S	Situ Biological	Eliminated from further consideration.
Alternative PBG-GW7: IRM	M and UV/Reduction-Carbon sorption	Retained for detailed analysis.

Notes:

UV = Ultraviolet

Table 3-29 SUMMARY OF CONTAMINATION ASSESSMENT THROUGH REMEDIAL ALTERNATIVES SCREENING PROPELLANT BURNING GROUND

FEASIBILITY STUDY BADGER ARMY AMMUNITION PLANT

	CONTAMINATED MEDIA AT THE PROPELLANT BURNING GROUND			
RI/FS COMPONENT	SURFACE SOIL	SUBSURFACE SOIL	GROUNDWATER	
Remedial Technologies Retained After Screening	Soil Cover Off-Site Landfill Stabilization/Solidification Soil Washing In Situ Stabilization/ Solidification	1949 Pit and Old Landfill: Capping Off-Site Landfill Waste Pits: Capping Off-Site Landfill Slurry Wall Soil Washing On- and Off-Site Incineration In Situ Vacuum Extraction In Situ Stabilization/ Solidification Soil Flushing Chemical-Biological Bioventing Composting	Groundwater Extraction Wells UV/Oxidation Air Stripping UV/Reduction Carbon Adsorption Resin Adsorption In-Situ Biological Surface Water Discharge	
Remedial Alternatives Developed	 Minimal Action Soil Cover Off-Site Landfill Stabilization/Solidification and Soil Cover Soil Washing Modified In Situ Stabilization/Solidification and Soil Cover 	1949 Pit and Old Landfill: Minimal Action Capping Off-Site Landfill Waste Pits: Minimal Action Capping Off-Site Landfill and Capping Off-Site Landfill and Capping On-Site Incineration and Capping Off-Site Incineration and Capping In-Situ Vacuum Extraction, Composting, and Capping In Situ Treatment In Situ Vacuum Extraction and Bioventing On-Site Incineration In Situ Vacuum Extraction, Soil Washing, and Composting In Situ Vacuum Extraction, Soil Washing, and Composting In Situ Stabilization/Solidification and Soil Cover	 Minimal Action Existing Conditions IRM and UV/Oxidation, Air Stripping IRM and Air Stripping, Carbon Adsorption, Discharge IRM and Resin Adsorption In-Situ Biological IRM and UV/Reduction, Carbon Adsorption 	

NOTE:

1. SEE REMEDIAL INVESTIGATION REPORT FOR CHEMICAL DATA SUMMARY (ABB-ES, 1993a). FIGURE 3-14
INTERPRETIVE C6H6 CONCENTRATIONS IN
SUBSURFACE SOILS
PROPELLANT BURNING GROUND WASTE PITS
FEASIBILITY STUDY
BADGER ARMY AMMUNITION PLANT

-ABB Environmental Services, Inc.-

NOTE:

1. SEE REMEDIAL INVESTIGATION REPORT FOR CHEMICAL DATA SUMMARY (ABB-ES, 1993a). FIGURE 3-15
INTERPRETIVE TRCLE CONCENTRATIONS IN
SUBSURFACE SOILS
PROPELLANT BURNING GROUND WASTE PITS
FEASIBILITY STUDY
BADGER ARMY AMMUNITION PLANT

TOTAL DNTs CONCENTRATION > 100,000 ppm 10,000 to 100,000 ppm 1,000 to 10,000 ppm ND to 1,000 ppm

NOTE:

1. SEE REMEDIAL INVESTIGATION REPORT FOR CHEMICAL DATA SUMMARY (ABB-ES, 1993a). FIGURE 3-16
INTERPRETIVE TOTAL DNT CONCENTRATIONS
IN SUBSURFACE SOILS
PROPELLANT BURNING GROUND WASTE PITS
FEASIBILITY STUDY
BADGER ARMY AMMUNITION PLANT

-ABB Environmental Services, Inc.

TABLE 4-1 HUMAN HEALTH CONTAMINANTS OF CONCERN DETERRENT BURNING GROUND

FEASIBILITY STUDY BADGER ARMY AMMUNITION PLANT

COMPOUND	Exposure Point Concentration \(\rh\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
24DNT	37,000
26DNT	1,400
3NT	6.9
AS	7.88
B2EHP	4.35
C6H6	5.25
CR	13.2
DNBP	62
FANT	0.139
MEC6H5	0.138
NI	10.2
NIT	18.7
NNDPA	2,200
PHANTR	0.183
PYR	0.144
SO4	5.19
TXYLEN	0.001
ZN	26.7

Notes:

Exposure point concentration is the maximum detected concentration. $\mu g/g$ = micrograms per gram, equivalent to parts per million (ppm)

TABLE 4-2 CLEAN-UP STANDARDS DETERRENT BURNING GROUND SOILS

FEASIBILITY STUDY BADGER ARMY AMMUNITION PLANT

COMPOUND	PROTECTION OF GROUNDWATER ¹ (mg/kg)	PROTECTION OF HUMAN HEALTH ² (mg/kg)
Organics		
24DNT	0.00002	4.29
26DNT	0.0002	4.29
3NT	-	NHD
13DMB	-	NHD
B2EHP	NI	208.57
C6H6	NI	100.35
DEP	NPAL	834,400
DNBP	NPAL	NHD
FANT	-	41,270
MEC6H5	NI	208,537
NNDPA	NI	595.92
PHANTR		41,720
PYR	-	31,290
TXYLEN	NI	> 1,000,000
Metals		
AS	0.068	1.6
CR	1.666	211.95
NI		-
ZN	80.800	312,900

Notes:

NPAL = No Wisconsin Preventive Action Limit (unable to calculate soil concentration that is protective of groundwater).

NHD = No human toxicity data.
NI = No impact on groundwater.

Not a human health contaminant of concern.

Protective of groundwater per the Proposed Chapter NR 720.

Protective of Human Health per the Proposed Chapter NR 720.

TABLE 4-3
COMPARISON OF GROUNDWATER TO STANDARDS
UNITS: \(\mu g/L\)
DETERRENT BURNING GROUND

				/MGS	SDWA (1)	WI GROUNDWATE	WI GROUNDWATER STANDARDS (2)
COMPOUND OF POTENTIAL CONCERN	PHEQUENCY OF DETECTION (C)	MAXIMUM DETECTED CONCENTRATION	MINIMUM DETECTED CONCENTRATION	MCL	MCLG	ន	PAL
111TCE	8:80	12.1	3.07	200	200	200	40
112TCE	5:8	2.31	0.365	r.	m	9.0	90.0
26DNT	2:80	2.17	1.29	•	i	0.05	0.005
ВА	56:56	760	13.7	2,000	2,000	2,000	400
BE	10:80	1.14	0.362	4	•	4(d)	0.4(d)
00	1:80	3.23		ഗ	מו	r.	0.5
ರ	80:80	000'69	1,450	250,000(a)		250,000(e)	125,000(e)
CR	38:80	140	4.98	100	100	100	10
70	25:80	77.2	4.7	E	1,300	1,300	130
НG	1:81	4.25		8	81	2	0.2
MN	21:56	480	7.85	50(a)	•	50(e)	25(e)
NA	38:56	33,000	2,890	20,000(b)	•	ı	•
LIN	80:80	16,000	130	10,000	10,000	10,000	2,000
NNDPA	3:80	16.7	1.02			7	0.7
РВ	4:80	8.61	5.94	Þ	0	15	1.5
Z	8:80	24.4	9.45	100	100		
SE	2:80	5.01	4.03	20	20	50	10
SO4	80:80	630,000	9,500	250,000(a)	•	250,000(e)	125,000(e)

COMPARISON OF GROUNDWATER TO STANDARDS DETERRENT BURNING GROUND UNITS: µg/L TABLE 4-3

BADGER ARMY AMMUNITION PLANT FEASIBILITY STUDY

WI GROUNDWATER STANDARDS (2) ES PAL		5.000(e)	
A (1)	•	•	
SDWA (1)	•	5,000(a)	
MINIMUM DETECTED CONCENTRATION	4.14	20.8	
MAXIMUM DETECTED CONCENTRATION	19.1	3,900	
Frequency OF Detection (c)	13:56	21:80	
COMPOUND OF POTENTIAL CONCERN	>	ZN	

Sources:

Ξ

U.S. Environmental Protection Agency (USEPA), 1991, "Fact Sheet: National Primary Drinking Water Standards." Office of Water, Washington, D.C., August 1991; USEPA, 1991, "Fact Sheet: National Secondary Drinking Water Standards," Office of Water, Washington, D.C., September 1991; and USEPA, 1990, "National Primary and Secondary Drinking Water Regulations; Synthetic Organic Chemicals and Inorganic Chemicals, Final Rule," 57FR31776, July 17, 1992 (see Subsection 3.6 for details).
Wisconsin Administrative Code, Chapter NR 140.10, Table 1 (see Subsection 3.6 for details).

Notes:

<u>a</u>

(a)			II	micrograms per liter
(a)	d and data is reported to health officials to protect	4	II	Safe Drinking Water Act
3			II	Maximum Contaminant Level
9	compound was	MCLG =	н	Maximum Contaminant Level Goal
Ī	es analyzed for that compound.		11	Wisconsin
g) (g	interim state Unlinking Water Standard		11	Enforcement Standard
(e)	on of public welfare (usually aesthetic concerns) rather than for protection	PAL	11	Preventive Action Limit
	of numan health		11	Treatment technique requirement in effect
				Copper action level - 1300 µg/L
Full com	Full compound names are identified in the HSAFC Chemical Code List touted the sale and the sale			Lead action level - 15 μ g/L

REMEDIATION GOALS
DETERRENT BURNING GROUND TABLE 4-4

BADGER ARMY AMMUNITION PLANT FEASIBILITY STUDY

DETECTION LIMIT (mg/kg)	MAXIMUM DETECTED CONCENTRATION (mg/kg)	MAXIMUM BACKGROUND CONCENTRATION (mg/kg)	PROTECTION OF GROUNDWATER SOIL TARGET CONCENTRATION (mg/kg)	PROTECTION OF HUMAN HEALTH (mg/kg)	PROTECTION OF ECOLOGICAL RECEPTORS (mg/kg)	REMEDIATION GOAL (mg/kg)
-	37,000	•	.084	4.29	,	1.0
0	1,400	ŀ	890.368	4.29	,	4.29 ²
0.1	5,200	ı	Ē	595.92	ı	595.92
0.1	7.88	. <2.5	0.224	1.6	,	2.53
0.7	13.2	10.4	1.24	211.95	ı	10.4³

Notes:

milligrams per kilogram No impact on groundwater. mg/kg

Detection limit Protective of human health per NR 720 Rule. Background concentration; which is greater than NR 720 concentration for protection of groundwater.

TABLE 4-5 REMEDIATION GOALS DETERRENT BURNING GROUND GROUNDWATER

FEASIBILITY STUDY BADGER ARMY AMMUNITION PLANT

COMPOUND	MAXIMUM CONCENTRATION DETECTED (µg/L)	REMEDIATION GOAL (µg/L)	RATIONALE
26DNT	2.17	0.005	WPAL
112TCE	2.31	0.6	WPAL
ВА	760	400	WPAL
BE	1.14	0.4	interim WPAL
CD	3.23	0.5	WPAL
CR	140	10	WPAL
HG	4.25	0.2	WPAL
MN	480	25	WPAL ¹
NIT	16,000	2,000	WPAL
NNDPA	16.7	0.7	interim WPAL
PB	8.61	1.5	WPAL
SO4	630,000	125,000	WPAL ¹

Notes:

WPAL = Wisconsin Preventive Action Limit

 μ g/L = micrograms per liter 1 = Public Welfare Standards

TABLE 4-6 GENERAL RESPONSE ACTIONS AND POTENTIAL REMEDIAL TECHNOLOGIES DETERRENT BURNING GROUND SOILS

GENERAL RESPONSE ACTION	SOIL TECHNOLOGY	DESCRIPTION	
No Action	None	No action. Site monitoring.	
Minimal Action	Institutional Controls/ Education Programs	Zoning and deed restrictions on potentially contaminated areas. Educate public concerning site hazards.	
Containment	Soil Cover	A layer of native soil is placed over the site. The thickness of the layer is sufficient to prevent direct contact and ingestion hazards associated with contaminated surface soil.	
	Capping	Low-permeability cover (e.g., clay and soil; asphalt; clay and synthetic membrane covered with soil) is constructed over the site to provide a barrier to water infiltration and/or to prevent direct contact and ingestion hazards associated with contact of contaminated surface soil.	
Excavation/Disposal	On-Site Landfill	Soil not regulated by RCRA Land Disposal Restrictions is excavated and disposed of in secure on-site landfill constructed for that purpose.	
	Off-Site Landfill	Soil not regulated by RCRA Land Disposal Restrictions is excavated, transported, and disposed of in a secure, existing landfill.	
Soil Excavation/Treatment	On-Site Incineration	Soil is excavated and treated with a mobile incinerator which thermally destroys VOCs/SVOCs in a direct-fired treatment unit.	
	Off-Site Incineration	Soil is excavated and transported to a licensed incinerator which thermally destroys VOCs/SVOCs in a direct-fired treatment unit.	
	Solvent Extraction	Soil is excavated and mixed with a chemical solvent in a batch mixer. Soil settles out and solvent/contaminant is decanted off. The contaminant is then separated from the solvent to produce an effluent stream of concentrated contaminant.	

TABLE 4-6 GENERAL RESPONSE ACTIONS AND POTENTIAL REMEDIAL TECHNOLOGIES DETERRENT BURNING GROUND SOILS

GENERAL RESPONSE ACTION	SOIL TECHNOLOGY	DESCRIPTION
Soil Excavation/Treatment cont.	Stabilization/Solidification	Soil is excavated and mixed with a setting agent (e.g., cement, fly ash, lime) which entraps contaminants in a solid, low-permeability mass.
	Anaerobic Thermal Process	Soil is excavated and treated by a mobile unit which uses high temperatures in an anaerobic environment to desorb VOCs/SVOCs from the soil. The contaminants are condensed into a liquid waste stream.
	Soil Washing	Soil is excavated and mixed with an aqueous- based washing solution in a series of high- energy mobile washing units. VOCs/SVOCs and metals can be separated from soil. Washing solution is recycled.
	Vitrification Thermal Process	Soil is excavated and treated in a reactor which heats soil to its melting point then allows it to cool into solid, glass-like structure. Organics are either trapped in the matrix, destroyed, or volatilized.
	Composting	Soil is excavated and treated by biological degradation. Studies show treatment of DNTs to 30 mg/kg.
In Situ Treatment	Stabilization/Solidification	A solidifying agent is added in place to contaminated soil to form a monolithic product in which contaminants are entrapped within a solidified mass.
	Vitrification	High voltage current is passed through the contaminated zone until complete meltdown of soils has occurred. The high temperatures generated during meltdown pyrolyze and eventually combust organic constituents.

TABLE 4-6 GENERAL RESPONSE ACTIONS AND POTENTIAL REMEDIAL TECHNOLOGIES DETERRENT BURNING GROUND SOILS

FEASIBILITY STUDY BADGER ARMY AMMUNITION PLANT

GENERAL RESPONSE ACTION	, SOIL TECHNOLOGY	DESCRIPTION
In Situ Treatment cont.	Soil Flushing	Aqueous-based washing solution is applied at the ground surface. Contaminants are removed from soil particles and held in the liquid phase as the solution infiltrates the soil. Solution containing the contaminants is removed through extraction wells after reaching the water table.

Note:

RCRA = Resource Conservation and Recovery Act

SVOC = semivolatile organic compound VOC = volatile organic compound

REMEDIAL TECHNOLOGY	Advantages	DISADVANTAGES	SCREENING STATUS	COMMENTS
No Action	 Easily implemented. No costs would be incurred with this option other than for monitoring. 	 Does not reduce exposure potential for human or environmental receptors. Would not reduce mobility, toxicity, or volume of contaminants. 	Eliminated	Not protective of human health or the environment.
Institutional Controls/ Education Programs	 Reduces exposure potential for human and some environmental receptors. Easily implemented. Low potential for exposure to contaminants during implementation. Minimal impact to environment during implementation. 	 Would not reduce mobility, toxicity, or volume of contaminants. Long-term monitoring and maintenance would be required. Long-term liability associated with waste. 	Retained	Institutional controls would reduce the potential for direct contact and ingestion by humans.
Soil Cover	 Reduces exposure potential for human receptors. Not subject to RCRA Land Disposal Restrictions. Easily implemented. 	 Would not reduce mobility, toxicity, or volume of contaminants. Uncertain design life. Long-term monitoring and maintenance would be required. Long-term liability associated with waste. 	Retained	Soil cover would reduce direct contact and ingestion by human receptors.

REMEDIAL TECHNOLOGY	Advantages	DISADVANTAGES	SCREENING STATUS	Comments
Capping	 Reduces exposure potential for human receptors. No secondary wastes produced. Commonly used method for remediation. 	 Would not reduce mobility, toxicity, or volume of contaminants. Uncertain design life. Provides no advantage over a soil cover. Long-term monitoring and maintenance would be required. Long-term liability associated with waste. 	Retained	Cap would reduce the potential for direct contact and ingestion by human receptors and reduce leaching of contaminants from subsurface soil to groundwater.
On-Site Landfill	 No secondary wastes produced. Contaminants may be relocated to a more stable, contained, lower exposure potential environment. No transportation of waste over public roads. 	 Would not reduce toxicity, or volume of contaminants. RCRA Land Disposal Restrictions may limit wastes eligible for disposal. Long-term monitoring and maintenance would be required. Long-term liability associated with landfilled waste. 	Eliminated	Obtaining regulatory approval for a special waste landfill at BAAP would likely be difficult due to proximity to regional aquifer used as a drinking water source.

REMEDIAL TECHNOLOGY	Advantages	DISADVANTAGES	SCREENING STATUS	COMMENTS
Off-Site Landfill	 Widely used and easily implemented technology. No wastes/treatment residuals remaining on site. Contaminants may be relocated to a more stable, contained, lower exposure potential environment. Relatively little mobilization effort and cost. Experienced excavation contractors available. 	 Would not reduce toxicity or volume of contaminants. RCRA Land Disposal Restrictions may limit wastes eligible for disposal. Limited landfill capacity nationwide. Transportation and landfilling costs may be expensive. Long-term liability associated with landfilled wastes. 	Retained	Could be used for direct disposal of soils or as an option for disposal of treatment residuals.
On-site Incineration	 Destruction and removal efficiencies of greater than 99.99%, thus reducing volume of contaminants. Widely used and demonstrated for treating organics at full-scale. Mobile units are available. 	 Treatment of volatile metals collected by air pollution equipment may be required. Trial burns would be required to receive permits to operate. 	Retained	Capable of treating SVOCs including DNTs in the soil at the DBG.
Off-Site Incineration	 Destruction and removal efficiencies of greater than 99.99%, thus reducing volume of contaminants. Widely used and demonstrated for treating VOCs/SVOCs at full-scale. No long-term monitoring or maintenance required. Experienced vendors are available. 	 Treatment of metals remaining in soil may be required. Limited capacity at RCRA-permitted incinerators. High cost associated with transportation and incineration of wastes. 	Retained	Capable of treating SVOCs including DNTs in the soil at the DBG. May be cost effective for treating small volumes of soil.

REMEDIAL TECHNOLOGY	Advantages	DISADVANTAGES	SCREENING STATUS	COMMENTS
Solvent Extraction	 Contaminants are transferred into a manageable liquid waste stream. Capability for treating soils contaminated with VOCs/SVOCs and metals. Demonstrated full-scale performance for removal of organics from sludge. 	 Would not reduce mobility, toxicity, or volume of contaminants. Concentrated contaminant waste stream requires further treatment. Limited operating experience with BAAP-specific contaminated soils. Depending on process, residual extraction solvent may remain in soil and would require treatment. Treatability studies required to determine potential for treating DNT-contaminated soil. 	Eliminated	Solvent extraction has been demonstrated primarily on sludges; there is very little experience with contaminated soils. This technology would not offer significant advantages over other proven technologies.
Stabilization/ Solidification	 Reduces mobility of metals. Technology is relatively simple and easily implemented. Technology is reliable and has been demonstrated at full-scale for treating inorganics. Experienced vendors are available. 	 Would not reduce toxicity or volume of contaminants. Volume of contaminated media potentially increased by 20-30%. Pre-treatment for organics potentially required. Long-term performance for treatment of VOC/SVOC wastes not demonstrated. Treatability studies would be required. 	Eliminated	Technology not demonstrated for VOC/SVOC wastes.

REMEDIAL TECHNOLOGY	Advantages	DISADVANTAGES	SCREENING STATUS	COMMENTS
Anaerobic Thermal Process	Contaminants are transferred into a manageable liquid waste stream.	Would not reduce mobility, toxicity, or volume of contaminants. Concentrated contaminant	Eliminated	ATP technology not applicable to explosive contaminated soll.
	May not require an incinerator permit to operate.	waste stream requires further treatment.		
	Demonstrated full-scale performance for removal of organics from soil.	Treatment of metals remaining in soil may be required.		
		Treatment of volatile metals collected by air pollution control equipment potentially required.		
		Limited number of transportable units available.		
		Treatability studies would be required.		

REMEDIAL TECHNOLOGY	Advantages	DISADVANTAGES	SCREENING STATUS	COMMENTS
Soil Washing	 Wide application to varied waste groups. Demonstrated at full-scale for removal of organics from soil. Mobile units are available. 	 Potentially hazardous chemicals may be brought on site to be used in process. Concentrated contaminant waste stream requires further treatment. Potential difficulty in removing washing solution from treated soil. Limited effectiveness for treating soil with high humic content and high fine-grained clay fraction. Treatability studies would be required to determine potential for treating DNT-contaminated soil. 	Retained	Capable of treating soil contaminated with VOCs/SVOCs.

REMEDIAL TECHNOLOGY	Advantages	DISADVANTAGES	SCREENING STATUS	Comments
Vitrification	Reduces mobility, toxicity, and volume of contaminants.	Treatment may be required to destroy volatile organics in the vapor phase.	Eliminated	Technology not demonstrated at full-scale level for
	Effective for VOCs/SVOCs and metals.	Vitrified soil would require disposal.		treatment of DNT contaminated soils.
		Would not be effective on soils with high moisture content.		
		Process is very energy intensive.		
		Not demonstrated at the full-scale level for treating DNTs.		
		Mobile units not available.		
		Treatability studies would be required to determine potential for treating DNT- contaminated soil.		
Composting	Reduces mobility, toxicity, and volume of contaminants.	Treatability studies would be required.	Retained	Technology demonstrated for DNTs.
	Recent full-scale operations show successful DNT treatment.	5 to 7 acres would be required to implement.		

REMEDIAL TECHNOLOGY	Advantages	DISADVANTAGES	SCREENING STATUS	COMMENTS
In Situ Stabilization/ Solidification	 Reduces mobility of contaminants. Technology has been demonstrated at pilot-scale for treating metals and VOCs/SVOCs. Not subject to RCRA Land 	 Volume of contaminated media increased. High concentrations of VOC/SVOC contaminants may interfere with the setting agent. Reagent/waste ratios are 	Eliminated	Technology not fully proven for the treatment of VOCs/SVOCs
	Disposal Restrictions.	difficult to control. Not demonstrated at full-scale.		
		Long-term performance for treatment of VOC/SVOC wastes not demonstrated.		
		Long-term monitoring of the groundwater will be required.		
		Treatability studies would be required.		

FEASIBILITY STUDY BADGER ARMY AMMUNITION PLANT

REMEDIAL TECHNOLOGY	ADVANTAGES	DISADVANTAGES	SCREENING STATUS	COMMENTS
In Situ Vitrification	 Reduces mobility, toxicity, and volume of contaminants. Effective for VOCs/SVOCs and metals. Not subject to RCRA Land Disposal Restrictions. 	Treatment may be required to destroy volatile organics in the vapor phase. Would not be effective on soils with high moisture content. Process is very energy intensive. Vendors not currently available. Long-term groundwater monitoring would be required. Treatability studies would be required. Not demonstrated at the full-scale level for hazardous wastes.	Eliminated	Technology not demonstrated at full-scale level for treatment of explosives.
Soil Flushing	 Effective for removal of VOCs from permeable soils. Full-scale units are available. Not subject to RCRA Land Disposal Restrictions. 	 Difficulty in treating complex waste mixtures. Potential for uncontrolled migration of contaminants to groundwater. Limited effectiveness for treating soil with high humic content and high fine-grained clay fraction. Treatability studies would be required. 	Eliminated	Should not be used where groundwater remediation is not planned. Would result in spreading contamination into a previously uncontaminated media (i.e., groundwater).

Notes:

DBG = Deterrent Burning Ground

DNT = Dinitrotoluene

VOC = volatile organic compound

RCRA = Resource Conservation and Recovery Act

BAAP = Badger Army Ammunition Plant SVOC = semivolatile organic compound

TABLE 4-8 REMEDIAL TECHNOLOGIES RETAINED FOR REMEDIAL ALTERNATIVES DEVELOPMENT DETERRENT BURNING GROUND SOILS

MINIMAL ACTION	CONTAINMENT	EXCAVATION/DISPOSAL	SOIL EXCAVATION AND TREATMENT
Institutional Controls/ Education Programs	Soil Cover Capping	. Off-site Landfill	On-Site Incineration Off-Site Incineration Composting Soil Washing

TABLE 4-9 GENERAL RESPONSE ACTIONS AND POTENTIAL REMEDIAL TECHNOLOGIES DETERRENT BURNING GROUND GROUNDWATER

GENERAL RESPONSE ACTION	GROUNDWATER TECHNOLOGY	DESCRIPTION
No Action	Groundwater Monitoring	Perform water quality analyses to monitor contaminant migration and assess future environmental impacts.
Minimal Action	Institutional Controls/ Education Programs	Restrictions on use of contaminated groundwater. Educate public concerning site hazards.
Containment	Slurry Wall	Placement of a low-permeability barrier to restrict groundwater migration. Should include a cover system to reduce infiltration.
Collection	Groundwater Extraction Wells	Installation of several strategically located pumping wells to collect contaminated groundwater for treatment.
Treatment	UV/Oxidation	Oxidize VOC/SVOC contaminants in extracted groundwater through simultaneous application of UV light and ozone or hydrogen peroxide.
	Air Stripping	Reduce concentrations of VOCs through intimate contact of extracted groundwater with air. Water descends a packed column while air is forced up the column to promote mass transfer of organics from aqueous to gaseous phase.
	Carbon Adsorption	Reduce concentrations of aqueous or gaseous phase VOCs/SVOCs through adsorption onto granular activated carbon. May be used as a polishing step for treatments such as air stripping to further reduce VOC/SVOC concentrations in groundwater or to capture VOCs/SVOCs in air stripper emissions. Process produces a concentrated waste stream requiring further treatment.
	Resin Adsorption	Contaminants are transferred from the dissolved state to the surface of the resin. Resin can be regenerated by removing the contaminants with steam or solvent. Process produces a concentrated waste stream requiring further treatment.
	UV/Reduction	Reduce chlorinated compounds in extracted groundwater through simultaneous application of UV light and a proprietary liquid catalyst.

continued

TABLE 4-9 GENERAL RESPONSE ACTIONS AND POTENTIAL REMEDIAL TECHNOLOGIES DETERRENT BURNING GROUND GROUNDWATER

FEASIBILITY STUDY BADGER ARMY AMMUNITION PLANT

GENERAL RESPONSE ACTION	GROUNDWATER TECHNOLOGY	DESCRIPTION
In Situ Treatment	In Situ Biological	Introduce nutrients and oxygen or methane into the groundwater using a matrix of extraction wells and recirculation techniques.
Discharge	Off-Site Water Treatment Facility	Off-site disposal of extracted groundwater to a POTW. Groundwater would require transport by means of a force main and/or gravity feed sewer or by truck to the POTW.
	Groundwater Reinjection	Reinject treated groundwater using a series of wells and pumps. Can be used to enhance plume removal and accelerate remediation.
	Discharge to Surface Water	Discharge treated groundwater directly to nearby surface water body. Transport groundwater by means of force or gravity main.

Notes:

POTW

= Publicly Owned Treatment Works

UV = ultraviolet

VOCs

= volatile organic compounds

SVOCs = semivolatile organic compounds

REMEDIAL TECHNOLOGY	ADVANTAGES	DISADVANTAGES	SCREENING STATUS	COMMENTS
Groundwater Monitoring	Monitors short- and long- term effectiveness of remedial technologies when used during and after remediation.	 Does not reduce exposure potential for human receptors. Would not reduce mobility, toxicity, or volume of contaminants when used alone. 	Retained	Not protective of human health. Required component of groundwater remediation.
Institutional Controls/ Educational Programs	 Reduces exposure potential for human receptors. Easily implemented. 	 Would not reduce mobility, toxicity, or volume of contaminants. May require future groundwater treatment. 	Retained	Protective of human health and easily implemented.
Slurry Wall	May reduce mobility of contaminants present in groundwater.	 Current construction methods/equipment are limited to a depth of 200 feet below ground surface. Containment would not reduce the toxicity or volume of contaminants in groundwater. Contaminants may degrade slurry wall material. Difficult to implement in the aquifer at the DBG without impacting the regional aquifer. 	Eliminated	Not particularly effective or implementable at the DBG because of the locally perched aquifer.
Groundwater Extraction Wells	Groundwater extraction systems have been successfully implemented.	Wells must be strategically located so that cones of depression intersect and capture all contaminated groundwater, without impacting the regional aquifer.	Retained	Groundwater extraction wells required for pump and treat alternatives.

REMEDIAL TECHNOLOGY	Advantages	DISADVANTAGES	SCREENING STATUS	COMMENTS
UV/Oxidation	 Treatment provides permanent on-site destruction of VOCs/SVOCs into carbon dioxide and water, or nontoxic intermediates. No air emissions or sludge is produced during the treatment process. Destruction of VOCs and DNTs proven during full-scale operation. 	Treatability study should be performed prior to full-scale design to determine operating parameters and pretreatment requirements necessary to optimize operating efficiency.	Retained	Retained for treatment of VOCs/SVOCs in DBG groundwater.
Air Stripping	 Treatment would reduce the volume of contaminants in groundwater. Air Stripping is a proven and reliable technology for treatment of VOCs. 	 Off-gases produced during remediation may require collection/treatment/ disposal. Treatment is not effective for compounds with low volatility. Pretreatment for the removal of inorganics required to prevent fouling of air-stripper system. Post-treatment by carbon adsorption may be required to meet discharge limits. 	Retained	Retained for treatment of VOCs in DBG groundwater.

REMEDIAL TECHNOLOGY	Advantages	DISADVANTAGES	SCREENING STATUS	COMMENTS
Carbon Adsorption	 Treatment effectively removes organic material from groundwater by sorption. Technology is reliable and has been demonstrated for treating VOCs/SVOCs at full-scale. Carbon adsorption could be implemented as a polishing step after air stripping to meet discharge 	 Suspended solids may require removal prior to treatment to avoid clogging carbon bed. Spent carbon from the adsorption process would require disposal or regeneration. 	Retained	Retained for treatment of organics in DBG groundwater.
Resin Adsorption	 requirements. Treatment would reduce the volume of chemicals in groundwater. Removes metals and VOCs/SVOCs from the waste water stream. Capable of treating high flows. 	 Process concentrates contaminants within the resin column, necessitating regeneration or disposal of the resin. Reliability of this technology has not been demonstrated, particularly for groundwater treatment. 	Retained	Retained for treatment of VOCs/SVOCs in DBG groundwater.
UV/Reduction	 Treatment provides permanent on-site destruction of chlorinated compounds. No air emissions or sludge is produced during the treatment process. 	 Only partial destruction of DNTs. Treatability study should be required prior to full-scale design to determine operating parameters and pre-treatment requirements. No full-scale units in operation. 	Retained	Retained for treatment of chlorinated compounds in DBG groundwater.

REMEDIAL TECHNOLOGY	Advantages	DISADVANTAGES	SCREENING STATUS	COMMENTS
In situ Biological Treatment	Treatment would reduce volume, mobility, and toxicity, of contaminants present in groundwater. No air emissions or secondary waste streams are produced. Recirculation equipment is off-the-shelf.	 Significant time and expense for laboratory degradation studies and field demonstrations. DNTs and chlorinated VOCs/SVOCs can be difficult to treat. Parameters (e.g., temperature, pH, nutrients, and oxygen) for optimal microorganism growth can be difficult to maintain. Poor migration of microorganisms in the elevated aquifer. Injection wells are susceptible to plugging by chemical precipitation of nutrients. 	Eliminated	Not likely to effectively treat contaminants in the DBG groundwater (especially DNT and metals).
Off-Site Water Treatment Facility	If sewer connection is nearby, this can be a relatively inexpensive discharge option.	Approval by POTW, community, and WDNR may be difficult.	Eliminated	Discharge to surface water is the preferred option.
Groundwater Reinjection	Groundwater not meeting clean-up standards may be reinjected upgradient for further treatment via pump- and-treat technology.	Infiltration of treated groundwater could affect the migration of contaminants. Reinjection of water into the plume's path may alter the extraction system's ability to collect contaminated groundwater.	Eliminated	Discharge to surface water is the preferred option.

continued

TABLE 4-10 REMEDIAL TECHNOLOGY SCREENING DETERRENT BURNING GROUND GROUNDWATER

FEASIBILITY STUDY BADGER ARMY AMMUNITION PLANT

REMEDIAL TECHNOLOGY	Advantages	DISADVANTAGES	SCREENING STATUS	COMMENTS
Discharge to Surface Water	Construction of a discharge pipe to Lake Wisconsin would be easily implemented.	Discharge water must meet applicable discharge standards developed by WDNR.	Retained	IRM facility currently discharges to Lake Wisconsin, therefore, obtaining regulatory approval is not expected to be difficult.

Notes:

DNT = Dinitrotoluene

IRM = Interim Remedial Measure
DBG = Deterrent Burning Ground
VOCs = Volatile organic compounds

WDNR = Wisconsin Department of Natural Resources

UV = Ultraviolet

POTW = Publicly Owned Treatment Works

TABLE 4-11 REMEDIAL TECHNOLOGIES RETAINED FOR REMEDIAL ALTERNATIVES DEVELOPMENT DETERRENT BURNING GROUND GROUNDWATER

FEASIBILITY STUDY BADGER ARMY AMMUNITION PLANT

MINIMAL ACTION	Collection & Treatment	Discharge ¹
Institutional Controls/Education Programs	Groundwater Extraction Wells UV/Oxidation Air Stripping Carbon Adsorption Resin Adsorption UV/Reduction	Surface Water

Notes:

Groundwater monitoring would be used in conjunction with these technologies.

UV = ultraviolet

TABLE 4-12
IDENTIFICATION OF REMEDIAL ALTERNATIVES
DETERRENT BURNING GROUND SOILS

ALTERNATIVES	MINIMAL	SOIL COVER	CAPPING	OFF-SITE LANDFILL	SOIL	ON-SITE INCINERATION	OFF-SITE INCINERATION	COMPOSTING
Subsurface Soils								
DBG-SB1	×							
DBG-SB2			×					
DBG-SB3				×				
DBG-SB4				-	×			
DBG-SB5							×	
DBG-SB6					×		×	
DBG-SB7						×		
DBG-SB8		×						×

Note:

Identified technology is a component of alternative.

TABLE 4-13 DEVELOPMENT OF REMEDIAL ALTERNATIVES DETERRENT BURNING GROUND SOILS

FEASIBILITY STUDY BADGER ARMY AMMUNITION PLANT

Remedial Action Objectives:

- (1) Prevent concentrations of 24DNT, 26DNT, NNDPA, and AS in subsurface soil which exceed clean-up standards for protection of human health from becoming available through incidental ingestion or inhalation to potential human receptors.
- (2) Prevent concentrations of 24DNT, 26DNT, AS, and CR which exceed clean-up standards for protection of groundwater from degrading groundwater quality.

ALTERNATIVE	DESCRIPTION OF KEY COMPONENTS
DBG-SB1: Minimal Action	Post warning signs.
DDG-ODT. William Action	Institutional Controls. Implement zoning and deed restrictions to prohibit excavation and use of groundwater within and around the site.
	Education programs.
	Groundwater Monitoring. Perform water quality analyses to monitor contaminant migration and assess future environmental impacts.
	Five-year site reviews.
DBG-SB2: Capping	Install RCRA cap to reduce leaching of contaminants to groundwater and to prevent direct contact or incidental ingestion by ecological or human receptors.
	Surface water management to minimize erosion of cover system.
	Post-closure plan development to monitor, maintain, and inspect site.
	 Institutional Controls. Implement zoning and deed restrictions to protect RCRA cap from invasive activities.
	Groundwater monitoring.
	Five-year site reviews.
DBG-SB3: Off-Site Landfill	Obtain appropriate permit(s).
	Excavate contaminated soil.
	Confirmatory sampling to ensure wastes have been removed.
	Backfill excavation with clean fill.
	Sample and analyze soil to ensure it meets landfill acceptable criteria.
	Transport soil to off-site landfill.

TABLE 4-13 DEVELOPMENT OF REMEDIAL ALTERNATIVES DETERRENT BURNING GROUND SOILS

ALTERNATIVE	DESCRIPTION OF KEY COMPONENTS
DBG-SB4: Soil Washing	Obtain appropriate permit(s).
	Mobilize soil washing equipment to site.
	Excavate contaminated soil.
·	Confirmatory sampling to ensure wastes have been removed.
	Stockpile wastes at treatment area.
	Wash contaminated soil.
	Transport secondary waste streams off site for treatment.
	Backfill excavations with treated soil.
DBG-SB5: Off-Site Incineration	Obtain appropriate permit(s).
	Excavate contaminated soils.
	Confirmatory sampling to confirm wastes have been removed.
	Sample and analyze soil for incinerator-required parameters.
	Backfill excavations with clean fill.
	Transport soil to off-site incinerator
DBG-SB6: Off-Site Incineration, Soil Washing	Obtain appropriate permit(s).
•	Mobilize soil washing equipment to site.
	Excavate "hot spot" soils.
	Confirmatory sampling to confirm "hot spots" have been removed.
	Sample and analyze soil for incinerator-required parameters.
	Transport "hot spot" soil to off-site incinerator.
	Excavate remaining contaminated soil.
	Confirmatory sampling to confirm wastes have been removed.

TABLE 4-13 DEVELOPMENT OF REMEDIAL ALTERNATIVES DETERRENT BURNING GROUND SOILS

FEASIBILITY STUDY BADGER ARMY AMMUNITION PLANT

ALTERNATIVE	DESCRIPTION OF KEY COMPONENTS
DBG-SB6: Off-Site Incineration, Soil Washing (continued)	Transport and stockpile wastes at treatment area.
	Wash contaminated soil.
	Transport secondary waste streams off site for treatment.
	Backfill excavations with treated soil and clean fill.
DBG-SB7: On-Site Incineration	Obtain appropriate permit(s).
	Mobilize incinerator to site.
	Excavate contaminated soils.
	Confirmatory sampling to confirm wastes have been removed.
	Transport and stockpile wastes at treatment area.
	Incinerate soil.
	Transport secondary waste streams off site for treatment.
	Backfill excavations with treated soil and clean fill.
DBG-SB8: Composting, Soil Cover	Obtain appropriate permit(s).
-	Mobilize equipment to site.
	Excavate contaminated soils.
	 Confirmatory sampling to confirm wastes have been removed.
	Transport and stockpile wastes at treatment area.
·	Blend and screen excavated soil.
	Arrange soil into windrows and add amendment.
·	Backfill excavations with treated soils and clean fill.
	Cover with soil layer.

Notes:

Full compound names are identified in the USAEC Chemical Code List located behind the glossary of acronyms.

VOC = volatile organic compound SVOC = semivolatile organic compound ATP = Anaerobic Thermal Processing

FEASIBILITY STUDY BADGER ARMY AMMUNITION PLANT

<u>Alternative DBG-SB1: Minimal Action:</u> This alternative consists of institutional controls, educational programs, groundwater monitoring, and five-year site reviews. Fencing and warning signs would surround those areas identified as posing a risk to public health.

EFFECTIVENESS	IMPLEMENTABILITY	Cost
Advantages	<u>Advantages</u>	Advantages
 Public access to affected areas would be restricted. Low potential for exposure to contaminants during implementation. 	 Would be easy to implement because no remedial actions are required. Services and material readily available. 	Cost includes administration of institutional controls, educational programs, and groundwater monitoring and maintenance.
 Institutional controls would reduce the potential for inappropriate future land use. 		
 Educational programs would increase public awareness about contamination. 		
<u>Disadvantages</u>	<u>Disadvantages</u>	<u>Disadvantages</u>
 Would not reduce mobility, toxicity, or volume of contaminants. 	Not consistent with SARA's preference for treatment. Long-term monitoring and	Remedial actions, if required in the future, may be more costly if contamination migrates. Long term liability acceptated with
	maintenance would be required.	 Long-term liability associated with waste.

<u>CONCLUSION</u>: The minimal action alternative is <u>retained</u> as a baseline for comparison with the remaining alternatives at the Deterrent Burning Ground.

FEASIBILITY STUDY BADGER ARMY AMMUNITION PLANT

<u>Alternative DBG-SB2: Capping</u>: This alternative consists of a RCRA cap to prevent direct contact and incidental ingestion of contaminated subsurface soil by human receptors and to reduce the potential for contaminants leaching to groundwater. This alternative also includes groundwater monitoring and five-year site reviews.

EFFECTIVENESS	IMPLEMENTABILITY	Соѕт
Advantages	Advantages	<u>Advantages</u>
 RCRA cap would reduce potential for direct contact or incidental ingestion of contaminants by receptors. 	 Would be easy to implement. RCRA cap would require minimal maintenance for the short term. 	RCRA cap costs are relatively low compared to the treatment and disposal alternatives.
 RCRA cap would be effective in reducing contact with contaminated soil by ecological receptors. 	Equipment and supplies readily available.	
 RCRA cap would reduce leaching of metals into groundwater. 		
 Low potential for exposure to contaminants during implementation. 		
<u>Disadvantages</u>	<u>Disadvantages</u>	<u>Disadvantages</u>
 Would not reduce the mobility, toxicity, or volume of contaminants. 	Would require long-term monitoring and maintenance.	 Long-term liability associated with waste.
RCRA caps may only be protective for the short term.		Long-term costs associated with inspection, monitoring, and maintenance.

<u>CONCLUSION</u>: Because this alternative has potential for achieving the remedial action objectives for protection of human health and groundwater and would be easily implemented, it is <u>retained</u> for detailed analysis.

FEASIBILITY STUDY BADGER ARMY AMMUNITION PLANT

<u>Alternative DBG-SB3: Off-Site Landfill:</u> This alternative consists of excavating contaminated soil, backfilling excavations with clean fill, and transporting the contaminated soil off site for disposal in a landfill.

EFFECTIVENESS	IMPLEMENTABILITY	Cost
Advantages	Advantages	<u>Advantages</u>
 Achieves remedial action objectives. Disposal of contaminants in a secure landfill. No significant short-term or long-term threat to human health and the environment. 	 Long-term monitoring and maintenance provided by host landfill. Surface soils are easily and rapidly removed with conventional grading equipment. Excavation, transportation, and landfilling services are readily available. No post-remediation monitoring or maintenance program required. 	No long-term costs associated with operation and maintenance of monitoring systems.
<u>Disadvantages</u>	<u>Disadvantages</u>	<u>Disadvantages</u>
 Would not reduce the toxicity or volume of contaminants. Excavation would increase the dermal contact risk for on-site workers. 	 Contaminated soil may fail TCLP analysis for DNT, thus invoking RCRA Land Disposal Restrictions. Contaminated soil which fails TCLP analysis for DNT would be rejected by landfill unless it is first treated. Excavation would be required and clean backfill would be necessary. 	 High cost for disposal in a RCRA-permitted landfill. High cost for transportation of contaminated soil. Long-term liability associated with landfilled wastes.

<u>CONCLUSION</u>: The volume of soil to be disposed is approximately 5,700 yd³. Due to high cost and comparable on-site treatments available (if on-site incineration is used at PBG), this alternative has been <u>eliminated</u> from further consideration.

FEASIBILITY STUDY BADGER ARMY AMMUNITION PLANT

Alternative DBG-SB4: Soil Washing: This alternative consists of excavating and washing contaminated soil and backfilling the excavations with the treated soil.

EFFECTIVENESS	IMPLEMENTABILITY	Cost
Advantages	Advantages	Advantages
 May achieve remedial action objectives. Reduces the volume of contaminated soil. Off-site treatment of contaminated waste stream would reduce contaminant mobility. Eliminates long-term threat to human health and the environment. 	 Soil washing a proven, reliable technology for treating varied waste groups. Soil washing services are readily available. No long-term monitoring and maintenance requirements. Surface soils are easily and rapidly removed with conventional grading equipment. 	 No long-term operation and maintenance costs. No long-term liability. Unit costs are lower than other treatment alternatives.
<u>Disadvantages</u>	<u>Disadvantages</u>	<u>Disadvantages</u>
 Potential for direct human contact with contaminated soil during soil washing. Treatability study required to determine effectiveness. 	 Contaminants may be difficult to remove from fine-grained soils. Depending on the soil gradation, the secondary waste stream may be a significant percentage of the original volume. Fine soil particles are difficult to remove from the washing solution. RCRA permits may be difficult to obtain if required. Not effective without the use of surfactants, which may be difficult to remove from treated 	Treating the secondary waste stream could significantly increase overall cost.

<u>CONCLUSION</u>: Because of its versatility in treating VOCs/SVOCs and metals alike, soil washing is <u>retained</u> for further evaluation.

FEASIBILITY STUDY BADGER ARMY AMMUNITION PLANT

<u>Alternative DBG-SB5: Off-Site Incineration</u>: This alternative consists of excavating contaminated soil and transporting it to an off-site incinerator.

Effectiveness	IMPLEMENTABILITY	Cost
Advantages	<u>Advantages</u>	Advantages
 Achieves remedial action objectives. 	Incineration is a proven, reliable technology for the treatment of explosives-contaminated soils.	No long-term costs associated with operation and maintenance of monitoring systems.
 Incineration would reduce the mobility, toxicity, and volume of contaminants in the soil. No significant short-term or long-term threat to human health and the environment. 	Treatability studies would not be required because incineration is a well-proven technology for DNT-contaminated soils.	
 Incineration has been historically chosen as the technology used for treating DNT-contaminated soils. 		
<u>Disadvantages</u>	<u>Disadvantages</u>	<u>Disadvantages</u>
 Excavated soils would increase the dermal contact risk to on-site workers. 	 Excavation would be required; clean backfill would be necessary. 	Costs of treatment and transportation is considerably greater than other alternatives.
No more effective at meeting remedial objectives than DBG-SS4 or DBG-SS8.		

<u>CONCLUSION</u>: Although this alternative is a very effective treatment alternative for DNT-contaminated soils, it is not cost-effective compared to other treatment technologies and is therefore <u>eliminated</u> from further consideration.

TABLE 4-14 SCREENING OF REMEDIAL ALTERNATIVES DETERRENT BURNING GROUND SOILS

FEASIBILITY STUDY BADGER ARMY AMMUNITION PLANT

<u>Alternative DBG-SB6: Off-Site Incineration, Soil Washing</u>: This alternative consists of excavating grossly contaminated soil and transporting the soil to an off-site incinerator; and excavating and washing the remaining contaminated soil.

EFFECTIVENESS	IMPLEMENTABILITY	Cost
Advantages	Advantages	Advantages
 May achieve remedial action objectives. Soil remediation would reduce contaminant mobility, toxicity, and volume. Eliminates long-term threat to human health and the environment. 	 Off-site incineration is a proven, reliable technology for treatment of VOCs/SVOCs. Excavation, transportation, off-site incineration services, and soil washing services and materials readily available. Soil washing more likely to be effective on lower levels of contaminants. No long-term monitoring and maintenance requirements. 	 No long-term monitoring and maintenance costs to be incurred. No long-term liability. Cost for transportation of contaminated soil is approximately \$60/yd³. contaminants.
<u>Disadvantages</u>	<u>Disadvantages</u>	<u>Disadvantages</u>
 Excavated soil would increase the dermal contact risk to on-site workers. No more effective than DBG-SS4. 	 Treatability tests would need to be performed for soil washing technology. Surfactants must be used with soil washing and may be difficult to remove. Excavation of "hot spots" requires clean backfill material. 	 Costs higher than soil washing alone. Treating soil washing secondary waste stream could significantly increase overall cost.

<u>CONCLUSION</u>: This alternative is no more effective than other treatment alternatives, but the cost may be substantially higher; therefore it is <u>eliminated</u> from further consideration.

TABLE 4-14 SCREENING OF REMEDIAL ALTERNATIVES DETERRENT BURNING GROUND SOILS

FEASIBILITY STUDY BADGER ARMY AMMUNITION PLANT

Alternative DBG-SB7: On-Site Incineration: This alternative consists of excavating contaminated soil, treating the soil by on-site incineration, and backfilling the excavations with treated soil.

EFFECTIVENESS	IMPLEMENTABILITY	Cost
Advantages - Achieves remedial action objectives.	Advantages On-site incineration is a proven,	Advantages No long-term monitoring
 Soil remediation would reduce contaminant mobility, toxicity, and volume of contaminants Destruction efficiency potential of 99.99%. 	reliable technology for treatment of VOCs/SVOCs. On-site incineration services readily available. Backfilling with treated soil, therefore very little, if any, clean backfill is necessary	 requirements. No transportation costs to be incurred. Costs are less than for off-site incineration.
<u>Disadvantages</u>	<u>Disadvantages</u>	<u>Disadvantages</u>
 Fly ash that does not pass the TCLP test requires RCRA disposal. Air emission controls are necessary and permits are required. 	 Contaminated soil is expected to be RCRA characteristic hazardous waste and trial burns would be required for an on-site incinerator. Sophisticated monitoring instrumentation is required to control the combustion process. 	 Disposal of fly ash may be required. Mobilization of mobile units is expensive; \$600,000 to \$1.2 million.
	Permitting is required.	

<u>CONCLUSION</u>: Incineration has been historically chosen for treatment of DNT-contaminated soils, and implementability and cost comparisons between on-site and off-site incineration for the quantity of soil to be remediated at this site allows this alternative to be <u>retained</u> for detailed analysis.

TABLE 4-14 SCREENING OF REMEDIAL ALTERNATIVES DETERRENT BURNING GROUND SOILS

FEASIBILITY STUDY BADGER ARMY AMMUNITION PLANT

Alternative DBG-SB8: Composting, Soil Cover: This alternative consists of excavating contaminated soil, treating the soil on site by biodegradation, backfilling excavations with treated soil, and providing a soil cover over treated soils.

EFFECTIVENESS	IMPLEMENTABILITY	Cost
Advantages	Advantages	Advantages
 May achieve remedial action objectives. Remediation of contaminated soil would eliminate direct contact and incidental ingestion hazards. Would reduce toxicity, mobility, and volume of contaminants. 	Composting is a demonstrated technology for low concentrations of DNTs.	No costs associated with this technology for secondary treatment.
<u>Disadvantages</u>	<u>Disadvantages</u>	
Treatment only demonstrated to 30 mg/kg.	No full-scale operations.Treatability studies would be required.	

<u>CONCLUSION</u>: Because this alternative has potential for achieving remedial action objectives and includes treatment of contaminated soil, it is <u>retained</u> for detailed analysis.

Notes:

RCRA = Resource Conservation and Recovery Act TCLP = Toxicity Characteristic Leaching Procedure

DNT = Dinitrotoluene

SARA = Superfund Amendments and Reauthorization Act

TABLE 4-15 SUMMARY OF REMEDIAL ALTERNATIVES SCREENING DETERRENT BURNING GROUND SOILS

1	ALTERNATIVE	STATUS
Alternative DBG-SB1:	Minimal Action	Retained for detailed analysis.
Alternative DBG-SB2:	Capping	Retained for detailed analysis.
Alternative DBG-SB3:	Off-site Landfill	Eliminated from detailed analysis.
Alternative DBG-SB4:	Soil Washing	Retained for detailed analysis.
Alternative DBG-SB5:	Off-site Incineration	Eliminated from detailed analysis.
Alternative DBG-SB6:	Off-site Incineration, Soil Washing	Eliminated from detailed analysis.
Alternative DBG-SB7:	On-Site Incineration	Retained for detailed analysis.
Alternative DBG-SB8:	Composting, Soil Cover	Retained for detailed analysis.

IDENTIFICATION OF REMEDIAL ALTERNATIVES
DETERRENT BURNING GROUND GROUNDWATER **TABLE 4-16**

BADGER ARMY AMMUNITION PLANT FEASIBILITY STUDY

				ACTION	NOI			
ALTERNATIVES	MINIMAL ACTION	GROUNDWATER EXTRACTION WELLS	UV/OXIDATION	AIR	CARBON	RESIN	UV/REDUCTION	DISCHARGE TO SURFACE WATER
DBG-GW1	×							
DBG-GW2		×		×	×			×
DBG-GW3		×	×	×	×			×
DBG-GW4		×		×	×			×
DBG-GW5		×		×	×	×		×
DBG-GW6				×	×		×	×

Note:

Identified technology is a component of alternative Ultraviolet

FEASIBILITY STUDY BADGER ARMY AMMUNITION PLANT

Remedial Action Objectives:

- (1) Prevent further contamination of the elevated groundwater system.
- (2) Prevent exposure to concentrations of 26DNT, 112TCE, NIT, BA, CD, PB, CR, and HG exceeding their respective WPALs.
- (3) Prevent exposure to concentrations of BE and NNDPA above interim WPALs of 0.40 μ g/L and 0.70 μ g/L, respectively.
- (4) Prevent exposure to concentrations of MN and SO4 exceeding secondary drinking water standards.

	ALTERNATIVE	DESCRIPTION OF KEY COMPONENTS
DBG-GW1:	Minimal Action	Institutional Controls. Implement zoning and deed restrictions to prohibit use of groundwater within and around the site.
		Education programs.
		 Groundwater Monitoring. Perform water quality analyses to monitor contaminant migration and asses future environmental impacts.
		Five-year site reviews.
	Groundwater Extraction, IRM and Carbon Adsorption, Discharge to Lake Wisconsin	IRM treatment facility.
	Adsorption, Discharge to Lake Wisconsin	Install groundwater extraction system.
		Groundwater extracted, transported to the PBG and treat using the existing IRM facility and a new carbon adsorption facility.
		Treated water discharged to Lake Wisconsin.
		Effluent monitored as required by WDNR permit requirements.
		Groundwater monitoring. Water quality analyses performed to monitor the progress of the cleanup.
		Periodic reviews.
	Groundwater Extraction, IRM and UV/Oxidation, Discharge to Lake Wisconsin	Install groundwater extraction system.
		 Extract groundwater and treat using IRM facility and new UV/oxidation facility.
		Discharge treated water to Lake Wisconsin.
	·	 Monitor effluent as required by WDNR permit requirements.
		Groundwater monitoring. Perform water quality analyses to monitor the progress of the cleanup.
		Five-year site reviews.

FEASIBILITY STUDY **BADGER ARMY AMMUNITION PLANT**

ALTERNATIVE	DESCRIPTION OF KEY COMPONENTS
DBG-GW4: Groundwater Extraction, IRM and Air Stripping-Carbon Adsorption, Discharge to Lake Wisconsin	Install groundwater extraction system.
• •	Extract groundwater, transport to PBG treatment facility, and treat using the existing IRM facility and air stripping in series with carbon adsorption.
	Discharge treated water to Lake Wisconsin.
	Monitor effluent as required by WDNR permit requirements.
	Groundwater monitoring. Perform water quality analyses to monitor the progress of the cleanup. The war alternations.
DDC CWG. Owner but a Figure 1 DM 1 D 1	Five-year site reviews.
DBG-GW5: Groundwater Extraction, IRM and Resin Adsorption, Discharge to Lake Wisconsin	Install groundwater extraction system.
	Extract groundwater, transport to PBG treatment facility, and treat using the IRM facility and a new resin adsorption facility.
	Discharge treated water to Lake Wisconsin.
	Monitor effluent as required by WDNR permit requirements.
	Groundwater monitoring. Perform water quality analyses to monitor the progress of the cleanup.
	Five-year site reviews.
DBG-GW6: IRM and UV/Reduction, Carbon Adsorption	Install groundwater extraction system.
	Extract groundwater, transport to PBG, and treat using the IRM facility and a new UV/reduction carbon adsorption facility.
	Discharge treated water to Lake Wisconsin.
	Monitor effluent as required by WDNR permit requirements.
	Groundwater monitoring.
	Five-year site reviews.

Notes:

UV

ultraviolet

WDNR

Wisconsin Department of Natural Resources

IRM **WES** = Interim Remedial Measure

= Wisconsin Enforcement Standard

PBG

= Propellant Burning Ground

FEASIBILITY STUDY BADGER ARMY AMMUNITION PLANT

<u>Alternative DBG-GW1: Minimal Action</u>: This alternative consists of institutional controls, educational programs, groundwater monitoring, and five-year site reviews.

EFFECTIVENESS	IMPLEMENTABILITY	Соэт
Advantages	Advantages	Advantages
 Achieves remedial action objectives. Institutional controls would reduce the potential for future groundwater use. Educational program would increase public awareness about contaminated groundwater. Site would be monitored for chemical migration. 	 Would be easy to implement because no remedial actions are required. Services and material readily available. 	Minimal cost for administration of institutional controls, and educational programs.
<u>Disadvantages</u>	<u>Disadvantages</u>	<u>Disadvantages</u>
 Would not reduce mobility, toxicity, or volume of chemicals in groundwater. Would not reduce the potential for off-site impacts due to chemicals in groundwater. 	 Not consistent with SARA's preference for treatment. Long-term monitoring and maintenance provisions would be required. May require future groundwater remediation. Future remedial actions may be more difficult to implement if horizontal and vertical extent of contaminated groundwater increase. 	Long-term costs associated with operation and maintenance of monitoring systems.

<u>CONCLUSION</u>: The minimal action alternative is <u>retained</u> as a baseline for comparison with the remaining alternatives for groundwater at the Deterrent Burning Ground.

FEASIBILITY STUDY BADGER ARMY AMMUNITION PLANT

Alternative DBG-GW2: IRM and Carbon Adsorption: This alternative consists of the continued use of the IRM treatment facility for groundwater remediation. The IRM treatment system includes treatment using carbon adsorption in series with air stripping, effluent monitoring, discharge to Lake Wisconsin, groundwater monitoring, and periodic reviews. A groundwater extraction system and transporting groundwater to the IRM facility are also included in this alternative.

EFFECTIVENESS	IMPLEMENTABILITY	Cost
Advantages	<u>Advantages</u>	Advantages
 Air stripping has the capability of removing contaminants that pass through carbon. 	IRM treatment system is fully operational and is meeting WDNR permit requirements.	Capital and operation and maintenance costs comparable to other water treatment processes.
 Carbon adsorption is a proven technology for treating DNTs. 	Contracts for operation and maintenance of the IRM system are in place.	·
	Performance of carbon adsorption is well documented.	,
<u>Disadvantages</u>	<u>Disadvantages</u>	<u>Disadvantages</u>
 Does not achieve all remedial action objectives. 	Spent carbon from the process requires regeneration.	Costs associated with monitoring program for groundwater and treatment facility discharge.
 Extraction system may be intermittent. The elevated aquifer may be pumped dry, allowed to recharge, and pumped dry again. 	 Construction of extraction system is difficult due to low flows and thin aquifer. 	treatment lacinty discharge.
	Upgrading IRM system may require expansion of IRM treatment building.	·
·	New carbon facility required.	

<u>CONCLUSION</u>: Because this alternative includes efficient treatment of groundwater contaminants, this alternative is <u>retained</u> for detailed analysis.

FEASIBILITY STUDY BADGER ARMY AMMUNITION PLANT

<u>Alternative DBG-GW3: Groundwater Extraction, IRM and UV/Oxidation, Discharge</u>: This alternative consists of groundwater extraction, trucking water to treatment facility at the PBG, treatment using IRM and UV/oxidation, effluent monitoring, discharge to Lake Wisconsin, groundwater monitoring, and five-year site reviews.

EFFECTIVENESS	IMPLEMENTABILITY	Cost
Advantages	Advantages	Advantages
 UV/oxidation provides permanent on-site destruction of organics into carbon dioxide and water, or nontoxic intermediates. UV/oxidation unit produces no air emissions or sludge. 	 Performance of UV/oxidation units is well documented. Systems can accommodate a range of flow rates. Experienced vendors are available to perform bench- and/or pilot-scale tests, provide equipment, and related services. If the source of groundwater contamination is removed, long-term monitoring and maintenance provisions would not be required. 	 Capital and operation and maintenance costs comparable to other water treatment processes. No long-term operation and maintenance costs if source is removed. If groundwater is combined with groundwater from the PBG and treated in the same facility, there would be no repeat construction costs.
Disadvantages	<u>Disadvantages</u>	<u>Disadvantages</u>
 Unless the source is removed, will not achieve all remedial action objectives. 	May require pretreatment for suspended solids, carbonate/ bicarbonates, and/or metals.	Costs associated with monitoring program for groundwater and treatment facility discharge.
 High suspended solids, total dissolved solids, carbonates/ bicarbonates, or metals (e.g., iron and manganese) may require pretreatment to maintain overall effectiveness. 	 Construction of extraction system would be difficult due to low flows and a thin aquifer. Ozone generator, if used for UV/oxidation, is susceptible to failure without rigorous attention to 	
 Extraction system may operate intermittently. The elevated aquifer may be pumped dry, allowed to recharge, pumped dry again, etc. 	operating parameters and mainte- nance. New UV/oxidation facility required.	

<u>CONCLUSION</u>: Because UV/oxidation was <u>eliminated</u> from detailed analysis for groundwater remediation at the PBG, it is eliminated from the detailed analysis at DBG as well. Costs would not be comparable if a separate treatment facility had to be constructed instead of combining waste streams.

FEASIBILITY STUDY BADGER ARMY AMMUNITION PLANT

Alternative DBG-GW4: Groundwater Extraction, IRM and Air Stripping - Carbon Adsorption, Discharge: This alternative consists of groundwater extraction, trucking groundwater to the treatment facility of the PBG, treatment using IRM and air stripping and carbon adsorption, effluent monitoring, discharge to Lake Wisconsin, groundwater monitoring, and five-year site reviews.

Effectiveness	IMPLEMENTABILITY	Cost
Advantages	Advantages	Advantages
 Air stripping is efficient for treatment of principal groundwater contaminants. 	 Performance of air stripper and carbon adsorption units is well documented. 	Capital and operation and maintenance costs comparable to other water treatment processes.
 Carbon adsorption has the capability of removing contaminants that pass through the air stripper. 	 Experienced vendors are available to provide equipment and services. Systems can accommodate a range of flow rates. If the source of groundwater contamination is removed, long-term monitoring and maintenance provisions would not be required. 	 Provided the source of groundwater contamination is removed, no long-term operation and maintenance costs. If groundwater is combined with groundwater from the PBG and treated in the same facility, there would be no repeat construction costs.
<u>Disadvantages</u>	<u>Disadvantages</u>	<u>Disadvantages</u>
 Does not achieve all remedial action objectives. No significant reduction in mobility volume or toxicity of groundwater contaminants because no definite source of contamination has been 	 May require pretreatment for suspended solids, carbonate/ bicarbonates, and/or metals to prevent fouling of air stripper packing and/or carbon. Construction of extraction system 	Costs associated with monitoring program for groundwater and treatment facility discharge.
identified.	would be difficult due to low flows and a thin aquifer.	
 Extraction system may operate intermittently. The elevated aquifer may be pumped dry, allowed to recharge, pumped dry, etc. 	 Treatment (e.g., vapor-phase carbon) may be required for air stripper emissions. 	
	 Spent carbon from the process would require regeneration. 	:

<u>CONCLUSION</u>: Because this includes efficient treatment of groundwater contaminants, it is <u>retained</u> for detailed analysis.

FEASIBILITY STUDY BADGER ARMY AMMUNITION PLANT

<u>Alternative DBG-GW5: Groundwater Extraction, IRM and Resin Adsorption, Discharge</u>: This alternative consists of groundwater extraction, trucking groundwater to the treatment facility at the PBG, treatment using IRM and resin adsorption, effluent monitoring, discharge to Lake Wisconsin, groundwater monitoring, and five-year site reviews.

EFFECTIVENESS	IMPLEMENTABILITY	Cost
<u>Advantages</u>	<u>Advantages</u>	Advantages
Resin adsorbents can be tailored to enhance selectivity for removal of a specific class of compounds (e.g., VOCs).	 Systems are capable of treating high flow rates. If the source of groundwater contamination is removed, long-term monitoring and maintenance provisions would not be required. Treatment is simplified with the use of only one treatment technology (i.e., resin adsorption) for all groundwater contaminants. Resin can be regenerated without removing it from its column. 	 If groundwater is combined with groundwater from the PBG and treated in the same facility, there would be no repeat construction costs. Capital and operation and maintenance costs comparable to other water treatment processes.
	Experienced vendors are available to provide equipment and services.	
<u>Disadvantages</u>	<u>Disadvantages</u>	<u>Disadvantages</u>
 Does not achieve all remedial action objectives. No significant reduction in 	Demonstrated performance for treating contaminated groundwater with resin adsorption is limited.	Costs associated with monitoring program for groundwater and treatment facility discharge.
mobility, volume, or toxicity of groundwater contaminants because a definite source of contamination has not been identified. • Extraction system may operate	 Construction of extraction system would be difficult due to low flows and a thin aquifer. May require pretreatment for suspended solids, carbonate/bicarbonates, and/or 	The use of specialized resins can significantly increase capital and/or operation and maintenance (replacement) costs.
intermittently. The elevated aquifer may be pumped dry, allowed to recharge, pumped dry, etc.	metals to prevent fouling of resin. • Spent resin from the process	
	would require regeneration.	

<u>CONCLUSION</u>: Because this alternative includes efficient treatment of groundwater contaminants, it is <u>retained</u> for detailed analysis.

FEASIBILITY STUDY BADGER ARMY AMMUNITION PLANT

<u>Alternative DBG-GW6:</u> <u>Groundwater Extraction, IRM and UV/Reduction - Carbon Adsorption, Discharge</u>: This alternative consists of groundwater extraction, trucking to the treatment facility at the PBG, treatment using IRM and UV/reduction - carbon adsorption, effluent monitoring, discharge to Lake Wisconsin, groundwater monitoring, five-year site reviews.

EFFECTIVENESS	IMPLEMENTABILITY	Cost
Advantages	Advantages	Advantages
 UV/reduction unit produces no air emissions or sludge. 	Systems can accommodate a range of flow rates.	Capital and operation and maintenance costs comparable to other water treatment processes.
 UV/reduction provides permanent destruction of chlorinated compounds. 	If the source of groundwater contamination is removed, long- term monitoring and maintenance provisions would not be required.	
 Carbon adsorption proven treatment for DNTs. 	·	
<u>Disadvantages</u>	<u>Disadvantages</u>	<u>Disadvantages</u>
 Does not achieve all remedial action objectives. 	May require pretreatment for suspended solids, carbonate/ bicarbonates, and/or metals.	Costs associated with monitoring program for groundwater and treatment facility discharge.
 No significant reduction in mobility, volume, or toxicity of groundwater contaminants because a definite source of contamination has not been identified. 	 Construction of extraction system would be difficult due to low flows and a thin aquifer. New UV/reduction facility required. 	
 Extraction system may operate intermittently. The elevated aquifer may be pumped dry, allowed to recharge, pumped dry, etc. 		

<u>CONCLUSION</u>: Because UV/reduction - carbon adsorption includes efficient treatment of groundwater contaminants, it was <u>retained</u> for detailed analysis.

Notes:

DBG = Deterrent Burning Ground

26DNT = 26Dinitrotoluene

IRM = Interim Remedial Measure
PBG = Propellant Burning Ground

SARA = Superfund Amendments and Reauthorization Act

UV = ultraviolet

VOC = volatile organic compound

WDNR = Wisconsin Department of Natural Resources

WES = Wisconsin Enforcement Standard

TABLE 4-19 SUMMARY OF REMEDIAL ALTERNATIVES SCREENING DETERRENT BURNING GROUND GROUNDWATER

FEASIBILITY STUDY BADGER ARMY AMMUNITION PLANT

	ALTERNATIVE	STATUS
Alternative DBG-GW1:	Minimal Action	Retained for detailed analysis.
Alternative DBG-GW2:	Groundwater Extraction, IRM and Carbon Adsorption	Retained for detailed analysis.
Alternative DBG-GW3:	Groundwater Extraction, IRM and UV/oxidation-Discharge	Eliminated from further consideration.
Alternative DBG-GW4:	Groundwater Extraction, IRM and Air Stripping-Carbon Adsorption, Discharge	Retained for detailed analysis.
Alternative DBG-GW5:	Groundwater Extraction, IRM and Resin Adsorption, Discharge	Retained for detailed analysis.
Alternative DBG-GW6:	Groundwater Extraction, IRM and UV/reduction - Carbon Adsorption	Retained for detailed analysis.

Note:

UV = ultraviolet

TABLE 4-20 SUMMARY OF CONTAMINATION ASSESSMENT THROUGH REMEDIAL ALTERNATIVES SCREENING DETERRENT BURNING GROUND

	CONTAMINATED MEDIA AT DE	ETERRENT BURNING GROUND
RI/FS COMPONENT	SUBSURFACE SOIL	GROUNDWATER
Identification of Contaminants of Concern	VOCsSVOCsExplosivesInorganics	VOCsSVOCsInorganicsExplosives
Risk Assessment Results	 24DNT, 26DNT, NNDPA, and AS are a threat to humans. 24DNT, 26DNT, AS, and CR are a potential threat to groundwater. No ecological risk 	 26DNT, 112TCE, CR, HG, and NIT exceed MCLs or WESs. CD, PB, and BA exceed WPALs MN and SO4 exceed SDWA standards. BE and NNDPA exceed interim WPALs. No ecological risk.
Remedial Action Objectives	 Prevent concentrations of 24DNT, 26DNT, NNDPA, and AS which exceed clean-up standards for protection of human health from becoming available, either through incidental ingestion or inhalation to potential human receptors. Prevent concentrations of 24DNT, 26DNT, AS, and CR which exceed cleanup standards for protection of groundwater from degrading groundwater quality. 	 Prevent further contamination of elevated groundwater system. Prevent exposure to concentrations of 26DNT, 112TCE, NIT, BA, CD, PB, CR, and HG exceeding their respective WPALs. Prevent exposure of BE and NNDPA exceeding respective interim WPALs Prevent exposure of MN and SO4 at levels exceeding SDWA levels.
Remedial Technologies Retained After Screening	 Soil Cover Capping Off-Site Landfill On-site Incineration Off-Site Incineration Composting Soil Washing 	 Groundwater Extraction Wells UV/Oxidation Air Stripping Carbon Adsorption Resin Adsorption UV/Reduction Discharge to Surface Water

TABLE 4-20 SUMMARY OF CONTAMINATION ASSESSMENT THROUGH REMEDIAL ALTERNATIVES SCREENING DETERRENT BURNING GROUND

	CONTAMINATED MEDIA AT	DETERRENT BURNING GROUND
RI/FS COMPONENT	SUBSURFACE SOIL	GROUNDWATER
Remedial Alternatives Developed	 Minimal Action Capping Off-Site Landfill Soil Washing Off-Site Incineration Off-Site Incineration, Soil Washing On-Site Incineration Composting, Soil Cover 	 Minimal Action Groundwater Extraction, IRM and Carbon Adsorption Groundwater Extraction, IRM and UV/Oxidation-Discharge Groundwater Extraction, IRM and Air Stripping-Carbon Adsorption, Discharge Groundwater Extraction, IRM and Resin Adsorption, Discharge Groundwater Extraction, IRM and UV/Reduction - Carbon Adsorption, Discharge
Remedial Alternatives Retained After Screening	 Minimal Action Capping Soil Washing On-Site Incineration Composting 	 Minimal Action Groundwater Extraction, IRM and Carbon Adsorption Groundwater Extraction, IRM and Air Stripping, Carbon Adsorption, Discharge Groundwater Extraction, IRM and Resin Adsorption, Discharge Groundwater Extraction, IRM and UV/Reduction - Carbon Adsorption, Discharge

NOTE: SEE RI REPORT FOR CHEMICAL DATA SUMMARY (ABB-ES, 1993a).

FIGURE 4-8
TOTAL C6H6 CONCENTRATIONS IN
SUBSURFACE SOILS
DETERRENT BURNING GROUND WASTE PITS
FEASIBILITY STUDY
BADGER ARMY AMMUNITION PLANT

-ABB Environmental Services, Inc.

NOTE: SEE RI REPORT FOR CHEMICAL DATA SUMMARY (ABB-ES, 1993a).

FIGURE 4-9
TOTAL DNTs CONCENTRATION IN SUBSURFACE SOILS
DETERRENT BURNING GROUND WASTE PITS
FEASIBILITY STUDY
BADGER ARMY AMMUNITION PLANT

-ABB Environmental Services, Inc.

NOTE: SEE RI REPORT FOR CHEMICAL DATA SUMMARY (ABB-ES, 1993a).

FIGURE 4-10
NNDPA CONCENTRATIONS IN
SUBSURFACE SOILS
DETERRENT BURNING GROUND WASTE PITS
FEASIBILITY STUDY
BADGER ARMY AMMUNITION PLANT

-ABB Environmental Services, Inc.

TABLE 5-1 SUMMARY OF FREQUENCY AND MAXIMUM DETECTED CONCENTRATIONS SURFACE SOIL AND SEDIMENT NITROGLYCERINE POND AND ROCKET PASTE AREA

				SURFA	SURFACE SOIL						SEDIMENT	
	NG F	NG Pond	RP POND	QN.	W. RPA	PA	ш	E. RPA	NG POND	ONC	RP	RP Pond
COMPOUND	FREQUENCY OF 2 SAMPLES	Max. Conc. (µg/g)	FREQUENCY OF 2 SAMPLES	Max. Conc. (µg/g)	FREQUENCY OF 26 SAMPLES	MAX. CONC. (µg/g)	FREQUENCY OF 38 SAMPLES	MAX. Conc. (µg/g)	FREQUENCY OF 8 SAMPLES	MAX. Conc. (µg/g)	FREQUENCY OF 2 SAMPLES	MAX. CONC. (µg/g)
SVOCs							*					
123PDA	¥		0	•	-	19.000S	0	,	ΝΑ	•	0	•
24DNT	¥.	•	0		0	•	12	810.000	Ϋ́		0	ı
26DNT	¥	,	0	•	0	ı	9	32.500	ΑΝ	•	0	,
В2ЕНР	¥.	•	0		-	1.610	-	1.560	NA		0	•
BAANTR	¥		. 0		-	0.173		0.666	NA	•	0	
BBFANT	Š		0		0	•	7	2.130	N		0	•
BGHIPY	¥	•	0	•	0	,	-	1.910	Ą	•	0	
CHRY	A A		0		ო	0.189	ĸ	1.00	Ā	•	0	•
DEP	¥.		0	•	19	49.800	4	6.200 GT	¥		-	2.460
FANT	A V		0	•	O	0.179	=	1.120	Ā		0	
NG	8	15.800	0		19	48.500	23	1500.000	0		-	1.760
NNDMEA	A A		0	ı	-	0.040	9	0.302	Ā		0	•
NNDNPA	A A		0	ı	0		ĸ	0.230	Ā		0	ı
NNDPA	N A	•	0	,	ដ	81.000	36	10,000.000	¥ ¥		N	4.980
PHANTR	N A		0	•	۲	0.129	7	0.279	Ā		0	,
PYR	N A		0	1	ო	0.223	Ŋ	0.932	A A		0	•

SUMMARY OF FREQUENCY AND MAXIMUM DETECTED CONCENTRATIONS NITROGLYCERINE POND AND ROCKET PASTE AREA SURFACE SOIL AND SEDIMENT TABLE 5-1

BADGER ARMY AMMUNITION PLANT FEASIBILITY STUDY

				SURFA	SURFACE SOIL					9	SEDIMENT	
	NG Pond	OND	RP POND	QNO	W. RPA	PA	ij	E. RPA	ang Pond	QNO,	RP	RP POND
COMPOUND	FREQUENCY OF 2 SAMPLES	MAX. Conc. (µg/g)	FREQUENCY OF 2 SAMPLES	MAX. CONG. (µg/g)	FREQUENCY OF 26 SAMPLES	MAX. Conc. (µg/g)	FREQUENCY OF 38 SAMPLES	MAX. Conc. (#g/g)	FREQUENCY OF 8 SAMPLES	MAX. Conc. (µg/g)	FREGUENCY OF 2 SAMPLES	MAX. CONC. (µg/g)
Metals												
S.	61	39.500	8	17.400	56	66.500	38	109.000	œ	40.500	8	45.700
HG	,	2.400	0	•	8	0.069	15	0.716	œ	. 20.000	8	0.157
PB	8	10,000.000	N	3500.00	56	1400.00	38	2,200.000	©	410.000	8	2,600.000
Anions												
F	N A	•	2	4.150	2.5	8.540	38	120.00	N	•	ο.	2.220
804	NA A	•	Ø	10.200	۷	17.100	80	22.900	Y Y	•	8	210.00
Indicator Parameter												
NH3	2	17.700	NA	-	NA	•	N A		6 0	72.500	A	

Notes:

Rocket Paste Area RPA = S SVOCs = I NA = I

results based on internal standards Semivolatile Organic Compounds

Not analyzed

Greater than the reported value

micrograms per gram; equivalent to parts per million (ppm)

Full compound names are identified in the USAEC Chemical Code list located behind the glossary of acronyms.

W0069460T.5/5

TABLE 5-2 SUMMARY OF CHEMICAL DATA SURFACE WATER NITROGLYCERINE POND AND ROCKET PASTE AREA

FEASIBILITY STUDY BADGER ARMY AMMUNITION PLANT

	ROCKET P	ASTE POND	Nitroglyo	ERINE POND
COMPOUND	RPW-91-01 (μg/L)	RPW-91-02 (µg/L)	NPW-91-01 (μg/L)	NPW-91-02 (µg/L)
SVOCs				
N2KJEL	2,600	3,800	1,800	3,100
NH3N2	33.8	63.4	63.4	147
Metals		,		
AL	5,410	31,400	3,020	2,140
AS	8.6	15.0	5.43	4.98
ВА	121	290	47.3	63.1
BE	· -	2.17	-	-
CA	30,800	38,200	11,700	15,200
CR	-	59.5	-	-
CU	21.3	79.1	-	-
FE	7,980	31,700	3,970	2,920
HG	-	-	0.325	0.324
K	43,000	44,000	12,800	15,000
MG	14,900	20,900	5,340	5,880
MN	152	503	81.7	207
NA	1,190	2,000	7,790	8,320
РВ	910	3,100	41.2	45.9
V	22.3	57.1	8.37	6.62
ZN	34.9	151	-	-

Notes:

 μ g/L = micrograms per liter

TABLE 5-3 **HUMAN HEALTH CHEMICALS OF CONCERN** NITROGLYCERINE POND

FEASIBILITY STUDY **BADGER ARMY AMMUNITION PLANT**

		EXPOSURE POINT CONCENTRA	ATION ¹
CHEMICAL OF CONCERN	SURFACE SOIL (µg/g)	Pond Sediment (µg/g)	SURFACE WATER (mg/L)
AL	,		3.02
AS			0.00543
ВА			0.0631
CL	· 	·	1.93
CR	39.5	40.5	
HG	2.40	20.0	0.000325
MN			0.207
NG	15.8		
NH3	17.7	72.5	
NH3N2			0.147
PB	10,000	410	0.0459
SO4	 .		4.47
V			0.00837

Notes:

 μ g/g = micrograms per gram; equivalent to parts per million (ppm)

mg/L = milligram per liter

^{-- =} Not identified as a compound of concern

1 Exposure point concentration is the maximum detected concentration

TABLE 5-4 HUMAN HEALTH CHEMICALS OF CONCERN ROCKET PASTE AREA

FEASIBILITY STUDY BADGER ARMY AMMUNITION PLANT

	Ехро	SURE POINT CONCENTRATION1	
CHEMICAL OF CONCERN	Surface Soil (µg/g)	Pond Sediment (µg/g)	SURFACE WATER (mg/L)
24DNT	810		
26DNT	32.5		
BAANTR	0.666		
BBFANT	2.13		
BGHIPY	1.91		
CHRY	1		
DEP	49.8	2.46	
FANT	1.12		
NG	1,500	1.76	
NNDMEA	0.302		
NNDNPA	0.23		
NNDPA	10,000	4.98	
PHANTR	0.279		
PYR	0.932		
AL		 .	3.14
AS			0.015
ВА		 '	0.29
BE	-		0.00219
CL			2.73
CR	109	45.7	0.0595
CU			0.0791
⊣G	0.716	0.157	
MN			0.503
NH3N2			0.0634
NI		·	0.0407
VIT	120	2.22	0.0105
PB	3,500	2,600	3.1
SO4	22.9	210	35
/			0.0571
ZN			0.151

Notes:

^{-- =} Not identified as a compound of concern

¹ Exposure point concentration is the maximum detected concentration

 $[\]mu g/g$ = micrograms per gram; equivalent to parts per million (ppm)

mg/L = milligrams per liter

TABLE 5-5 CLEAN-UP STANDARDS NITROGLYCERINE POND AND ROCKET PASTE AREA

FEASIBILITY STUDY BADGER ARMY AMMUNITION PLANT

	Surfa	CE SOIL	SEDII	MENTS
COMPOUND	PROTECTION OF GROUNDWATER ¹ (mg/kg)	PROTECTION OF HUMAN HEALTH ² (mg/kg)	PROTECTION OF GROUNDWATER ¹ (mg/kg)	PROTECTION OF HUMAN HEALTH ² (mg/kg)
Organics				
24DNT	9.253	4.29		
26DNT	242.144	4.29		
CPAH ³	NPAL	0.40	-	-
BGHIPY	-	41720	•	-
DEP	NPAL	834,400	NPAL	834,400
FANT	NPAL	41,720	-	-
NG	NPAL	NHD	NPAL	NHD
NNDMEA	NPAL	0.06	NPAL	_
NNDNPA	NPAL	NHD	NPAL	-
NNDPA	NI	595.92	NI	595.92
PHANTR	NPAL	41,720	-	-
PYR	NPAL	31,290	-	-
Metals				
CR	2.517	211.95	9.82	211.95
HG	NLD	312.5	-	312.5
PB	3.854	500	15.03	500

Notes:

NPAL = No Wisconsin Preventive Action Limit (unable to calculate soil concentration that is protective of groundwater).

NHD = No human toxicity data.

NI = No impact on groundwater.

NLD = No leaching data for modeling.

mg/kg = milligrams per kflogram.

= Not a human health contaminant of concern.

¹Protective of groundwater per the proposed Chapter NR 720.

²Protective of human health per the proposed Chapter NR 720.

³Carcinogenic PAHs; consisting of BAANTR, BBFANT, and CHRY in surface soil.

TABLE 5-6
GROUNDWATER SUMMARY
NITROGLYCERINE POND AND ROCKET PASTE AREA

COMPOUND OF	FREQUENCY	MAXIMUM DETECTED	MINIMUM DETECTED	SDWA (1)	(E) X	WI GROU STAND	WI GROUNDWATER STANDARDS (2)	CALCULATED
CONCERN	DETECTION	CONCENTRATION (µg/L)	CONCENTRATION (µg/L)	MCL (µg/L)	MCLG (vg/L)	ES (#g/L)	PAL (øg/L)	(3) (µg/L)
ВА	9:9	110	24.4	2,000	2,000	2,000	400	ı
CD	2:42	3.41	3.29	ည	rc	rc	0.5	•
CHCL3	5:42	1.51	0.543	•	•	•	9.0	•
	48:48	89,000	3,200	250,000(a)	•	250,000	125,000	•
CR	19:42	11.9	4.71	100	100	100	10	•
CO	4:10	17.4	4.69	F	1,300	1,300	130	•
Y.	16:18	000'66	2,350	20,000(b)	1	•	•	•
HN	48:48	11,000	810	10,000	10,000	10,000	2,000	•
PB	4:42	17	7.46	E	0	15	1.5	•
SO4	48:48	150,000	10,000	250,000(a)	•	•		•
TRCLE	1:42	0.531	•	ß	0	ß	0.5	ı

NITROGLYCERINE POND AND ROCKET PASTE AREA GROUNDWATER SUMMARY TABLE 5-6

BADGER ARMY AMMUNITION PLANT FEASIBILITY STUDY

CALCULATED CONCENTRATION (3) (µg/L)	260	7,300
WI GROUNDWATER (CSTANDARDS (2) CC (Mg/L)	1	2,500
WI GROU STANDA ES (Mg/L)		2,000
(1) MCLG (vg/L)	•	
SDWA (1) MCL N (#g/L) (4	•	5,000(a)
MINIMUM DETECTED CONCENTRATION (ug/L)	5.25	26.1
MAXIMUM DETECTED CONCENTRATION (µg/L)	17.8	197
FREQUENCY MA OF DETECTION	5:6	4:10
COMPOUND OF POTENTIAL CONCERN	>	ZN

Sources:

U.S. Environmental Protection Agency (USEPA), 1991, "Fact Sheet: National Primary Drinking Water Standards." Office of Water, Washington, D.C., August 1991, "Fact Sheet: National Secondary Drinking Water Standards." Office of Water, Washington, D.C., September 1991, and USEPA, 1990, "National Primary and Secondary Drinking Water Regulations; Synthetic Organic Chemicals and Inorganic Chemicals, Final Rule," 57FR31776, July 17, 1992 (see Subsection 3.6 for details).
Wisconsin Administrative Code, Chapter NR 140.10, Table 1 (see Subsection 3.6 for details).
Calculated to be protective at risk of 10° or HI of 1 (see Subsection 4.5 for details).

ଉଡ

Notes:

Secondary drinking water standard, suggested level. Reporting level. Monitoring is required and data is reported to health officials to protect individuals on restricted sodium diet. <u>B</u>

milligrams per liter MOCL MOCL MI WI WI PAL TT

Safe Drinking Water Act Maximum Contaminant Level

Maximum Contaminant Level Goal

Wisconsin

Preventive Action Limit **Enforcement Standard**

Treatment technique requirement in effect Copper action level = 0.015 μ g/L, Lead action level = 0.015 μ g/L,

TABLE 5-7 ECOLOGICAL CONTAMINANTS OF CONCERN NITROGLYCERINE POND

FEASIBILITY STUDY BADGER ARMY AMMUNITION PLANT

COMPOUND	FREQUENCY	EXPOSURE POINT CONCENTRATION ^A
Surface Soil		
HG	1:2	2.4
NG	2:2	15.8
NH3	2:2	17.7
PB	2:2	10,000
Surface Water		
AL	2:2	3,020
AS	2:2	5.43
BA ·	2:2	63.1
CL	2:2	1,930
FE	2:2	3,970
HG	2:2	0.325
MN	2:2	207
NH3N2	2:2	147
РВ	2:2	45.9
SO4	2:2	4,470
v .	2:2	8.37
Sediment		
CR	8:8	40.5
HG	8:8	20
NH3	8:8	72.5
РВ	8:8	410

Notes:

^{^ 95}th percentile or maximum; units in μ g/g (surface soil and sediment) and μ g/L (surface water).

TABLE 5-8^A ECOLOGICAL CONTAMINANTS OF CONCERN ROCKET PASTE AREA

Compound	FREQUENCY	EXPOSURE POINT CONCENTRATION ^B
Surface Soil ^C		
24DNT	12:72	810
26DNT	10:72	32.5
BAANTR	4:72	0.666
CHRY	8:72	1
CR	66:66	109
DEP	37:72	49.8
FANT	20:72	1.12
HG	17:66	0.716
NG	42:66	1,500
NIT	65:66	120
NNDMEA	7:22	0.302
NNDNPA	5:72	0.23
NNDPA	58:72	10,000
РВ	66:66	3,500
PHANTR	14:72	0.279
PYR	8:72	0.932
SO4	17:66	22.9
Surface Water ^D		
AL	2:2	31,400
AS	2:2	15
ВА	2:2	290
BE	1:2	2.17
CL	2:2	2,730
CR	1:2	59.5
CU	2:2	79.1
-E	2:2	31,700
MN	2:2	503

TABLE 5-8^A ECOLOGICAL CONTAMINANTS OF CONCERN ROCKET PASTE AREA

FEASIBILITY STUDY BADGER ARMY AMMUNITION PLANT

Compound	FREQUENCY	EXPOSURE POINT CONCENTRATION ⁸
NH3N2	2:2	63.4
NI	1:2	40.7
NIT	1:2	10.5
РВ	2:2	3,100
SO4	2:2	35,000
٧	2:2	57.1
ZN	2:2	151
<u>Sediment</u> ^E		
CR	2	45.7
DEP	1	2.46
NG	1	1.76
NIT	2	2.22
NNDPA	2	4.98
РВ	2	2,500
SO4	2	210

Notes:

Full compound names are identified in the USAEC Chemical Code list located behind the glossary of acronyms.

[^] Constituents selected based on criteria presented in Tables Q-16 and Q-17 and discussed in Section 5.0 of the Final RI Report (ABB-ES, 1993a).

⁸ 95th percentile or maximum; units in μ g/g (surface soil) and μ g/t (surface water).

^c Assessment of surface soil contamination (0 to 2 feet) was performed using samples from RPS-91-03 through RPS-91-68.

^D Assessment of surface water contamination was performed using samples from RPW-91-01 and RPW-91-02.

^E Assessment of sediment contamination was performed using samples from RPS-91-01 and RPS-91-02.

TABLE 5-9 SUMMARY OF RISK EVALUATION FOR AQUATIC RECEPTORS NITROGLYCERINE POND

FEASIBILITY STUDY BADGER ARMY AMMUNITION PLANT

COMPOUND	EXPOSURE POINT CONCENTRATION ^A	RTV ⁸	HAZARD QUOTIENT ^C
Surface Water ^D			
AL	3,020	248	4
AS	5.43	153	0.035
ВА	63.1	1,360	0.046
CL	1,930	230,000	0.02
FE	31,700	1,000	31.7
HG	0.325	0.012	27
MN	207	100	2.1
NH3N2	147	2,100	0.07
PB	45.9	3.2	14
SO4	4,470	1,060,000	0.0042
V	8.37	200	0.042
<u>Sediments</u> ^E			
CR	40.5	100	0.41
HG	20	0.1	200
NH3	72.5	75	0.97
PB	410	50	8.2

Notes:

Full compound names are identified in the USAEC Chemical Code list located behind the glossary of acronyms.

A Analytical results presented in Tables Q-19 and Q-20 and summarized in Table 8-18 of the Final RI Report (ABB-ES, 1993a).

^B Reference Toxicity Value (RTV) derived from available quality criteria and effects threshold levels as presented in Table Q-3 of the Final RI Report (ABB-ES, 1993a).

^c Calculated by dividing the exposure point concentration by the RTV; values in excess of 1.0E+00 indicate that the protective RTV was exceeded by environmental concentrations.

D Units are μ g/L.

^E Units are μ g/g.

TABLE 5-10 SUMMARY OF RISK EVALUATION FOR TERRESTRIAL RECEPTORS NITROGLYCERINE POND

FEASIBILITY STUDY BADGER ARMY AMMUNITION PLANT

	HAZARD	INDICES ^A
RECEPTOR	Acute Risk ⁸	CHRONIC RISK ^c
Short-tailed shrew	1.9E+04	3.8E+05
Eastern meadowlark	4.3E+02	4.8E+02
Garter snake	9.3E+02	7.4E+03
Red fox	1.7E+01	1.3E+00
Red-tailed hawk	5.0E+01	2.3E+00

Notes:

^A Sum of the individual Hazard Quotients for each surface soil contaminant of concern; each HQ calculated by dividing the estimated exposure dosage by the Reference Toxicity Value (RTV).

^B Based on comparison with acute RTVs.

^c Based on comparison with chronic RTVs.

TABLE 5-11 SUMMARY OF RISK EVALUATION FOR AQUATIC RECEPTORS ROCKET PASTE AREA

FEASIBILITY STUDY BADGER ARMY AMMUNITION PLANT

COMPOUND	EXPOSURE POINT CONCENTRATION ^A	RTV ^e	HAZARD QUOTIENT ^C
Surface Water			
AL	31,400	748	41.9
AS	15	153	0.098
BA	. 290	1,360	0.21
BE	2.17	5.3	0.41
CL	2,730	230,000	0.029
CR	59.5	9.74	6.1
CU	79.1	2.27	35
FE	31,700	1,000	32
MN	503	100	5
NH3N2	63.4	2,100	0.03
NI	40.7	66.13	0.62
NIT	10.5	5,000	0.0021
РВ	3,100	3.2	970
SO4	35,000	1,060,000	0.033
V	57.1	200	0.29
ZN	151	49.59	3
Sediment			
CR	45.7	100	.46
NIT	2.22	54.5	.004
РВ	2,600	50	52
SO4	210	-	-
DEP	2.46	-	-
NNDPA	4.98	-	-
NG	1.75	-	-

Notes:

Full compound names are identified in the USAEC Chemical Code list located behind the glossary of acronyms.

[^] Analytical results presented in Tables Q-17 and summarized in Table 8-19 of the Final RI Report (ABB-ES, 1993a).

^B Reference Toxicity Value (RTV) derived from available quality criteria and effects threshold levels as presented in Table Q-3 of the Final RI Report (ABB-ES, 1993a).

^c Calculated by dividing the exposure point concentration by the RTV; values in excess of 1.0E+00 indicate that the protective RTV was exceeded by environmental concentrations.

TABLE 5-12 SUMMARY OF RISK EVALUATION FOR TERRESTRIAL RECEPTORS ROCKET PASTE AREA

FEASIBILITY STUDY BADGER ARMY AMMUNITION PLANT

	HAZARD	INDICES ^A
RECEPTOR	Acute Risk ⁸	CHRONIC RISK ^C
Short-tailed shrew	6.6E+03	1.3E+05
Eastern meadowlark	1.5E+02	4.4E+02
Garter snake	3.3E+02	6.5E+03
Red fox	1.9E+01	1.4E+02
Red-tailed hawk	2.9E+01	3.0E+02

Notes:

[^] Sum of the individual Hazard Quotients for each surface soil contaminant of concern; each HQ calculated by dividing the estimated exposure dosage by the Reference Toxicity Value (RTV).

^B Based on comparison with acute RTVs.

^c Based on comparison with chronic RTVs.

SURFACE SOIL, SEDIMENT, AND SURFACE WATER NITROGLYCERINE POND REMEDIATION GOALS **TABLE 5-13**

BADGER ARMY AMMUNITION PLANT FEASIBILITY STUDY

N RATIONALE	Background	Background	Ecological Risk	Background	Background	Background	Ecological Risk	Ecological Risk	Ecological Risk	Ecological Risk	Ecological Risk
REMEDIATION	30	0.38	3.6	159	0.38	201	748	1,000	0.012	20	3.2
ACCEPTABLE NR 720 BASED CONC. FOR HUMAN HEALTH®	500	312.5	1	211.95	312.5	200	AN	Ą	A A	AN	NA V
ACCEPTABLE NR 720 BASED CONC. FOR GROUNDWATER*	3.854	NLD	NPAL	9.82		15.03	ΑN	Ą	N A	NA	ΑΝ
ACCEPTABLE RISK-BASED CONCENTRATION ³	0.0089	0.05	3.6	22	0.1	23	748	1,000	0.012	20	3.2
ACCEPTABLE ARAR BASED CONCENTRATION ²	1,000	•	•	NA	NA	NA	NA	NA	Ϋ́	NA A	NA
MAXIMUM BACKGROUND CONCENTRATION	30	0.38	•	159	0.38	201	NA	Ν	Ϋ́	Ϋ́	NA
MAXIMUM CONCENTRATION DETECTED	10,000	2.4	15.8	40.5	20	410	3,020	3,970	0.325	207	45.9
COMPOUND	PB	뜆	NG	8	몆	В	AL	世	£	Z	BB
MEDIA	Surface Soil (mg/kg)			Sediment (mg/kg)			Surface Water (µg/L)				

Notes:

Maximum background concentrations are the high end of the range of either the BAAP or the regional background concentration presented in the Final RI Report, whichever is greatest (ABB-ES, 1993a). Only compound with ARAR-based concentration is PB. ARAR for PB is Interim Guidance on Establishing Soil Lead Cleanup Levels at Superfund Sites. OSWER Directive #9355.4-02, September 1989.

Acceptable risk-based concentration is result of ecological risk evaluation for terrestrial receptors.

Acceptable concentration based on protection of human health from proposed Chapter NR 720. Acceptable concentration based on protection of groundwater from proposed Chapter NR 720.

Background soil concentration was used because background sediment concentrations are not available.

Not applicable

No Wisconsin Preventive Action Limit (unable to calculate soil concentration that is protective of groundwater. No leaching data for modeling NPAL Z Z

Not a human health contaminant of concern

mg/kg

milligrams per kilogram micrograms per liter Full compound names are identified in the USAEC Chemical Code list located behind the glossary of acronyms.

SURFACE SOIL, SEDIMENT, AND SURFACE WATER REMEDIATION GOALS ROCKET PASTE AREA **TABLE 5-14**

BADGER ARMY AMMUNITIONS PLANT FEASIBILITY STUDY

RATIONALE	Human Health	Human Health	Human Health	Ecological Risk	Background	Background	Background	Ecological Risk	Background	Ecological Risk	Ecological Risk	Ecological Risk	Ecological Risk	Ecological Risk	Ecological Risk	Ecological Risk
REMEDIATION GOAL	4.29	4.29	0.40	5.4	30	100	0.38	3.6	201	748	1	12	1,000	20	3.2	110
ACCEPTABLE NR 720 BASED CONC. FOR HUMAN HEALTH	4.29	4.29	0.40	595.92	200	211.95	312.5	OHN	500	NA	NA	NA	NA	NA	NA	NA
ACCEPTABLE NR 720 BASED CONC. FOR GROUNDWATER*	9.253	242.144	NPAL	Z	3.854	2.517		NPAL	15.03	NA	A	NA	NA	NA A	NA	NA
ACCEPTABLE RISK-BASED CONCENTRATION ³	4.3	4.3	Ϋ́ Ϋ́	5.4	0.0053	==	0.03	3.6	23	748	=	12	1,000	20	3.2	110
ACCEPTABLE ARAR-BASED CONCENTRATION ²	•	•	•	•	1,000	•	•	•	1,000	NA	NA	NA	NA	AN	A	NA
MAXIMUM BACKGROUND CONCENTRATION1	•	•	•	•	30	100	0.38	•	2018	NA	NA	N	N A	N	N A	NA V
MAXIMUM CONCENTRATION DETECTED	810	32.5	3.80	10,000	3,500	109	0.7	1,500	2,600	31,400	59.5	79.1	31,700	503	3,100	151
COMPOUND	24DNT	26DNT	СРАН	NNDPA	PB	Б	면	NG	PB	AL	e E	3	11	N	PB	ZN
MEDIA	Surface Soil (mg/kg)								Sediment (mg/kg)	Surface Water (µg/L)						

Notes:

1 Maximum background concentrations are the high end of the range of either the BAAP or the regional background concentration presented in the Final RI Report, whichever is greatest (ABB-ES, 1993a). ² Only compound with ARAR-based concentration is PB. ARAR for PB is Interim Guidance on Establishing Soil Lead Cleanup Levels at Superfund Sites. OSWER Directive #9355.4-02, September 1989.

3 Acceptable risk-based concentration is result of ecological risk evaluation for terrestrial receptors.

Acceptable concentration based on protection of groundwater standards from proposed Chapter NR 720. ⁵ Acceptable concentration based on protection of human health from proposed Chapter NR 720.

Background soil concentration was used because background soil concentrations are not available.

No leaching data for modeling ٦

No Wisconsin Preventive Action Limit (unable to calculate soil concentration that is protective of groundwater) NPAL

Negligible risk

£ Z

No impact on groundwater milligrams per kilogram

micrograms per liter mg/kg

Full compound names are identified in the USAEC Chemical Code list located behind the glossary of acronyms.

TABLE 5-15 GENERAL RESPONSE ACTIONS AND POTENTIAL REMEDIAL TECHNOLOGIES SURFACE SOIL AND SEDIMENT NITROGLYCERINE POND AND ROCKET PASTE AREA

ACTION	SOIL TECHNOLOGY	DESCRIPTION No cotion City manifesting			
No Action	None	No action. Site monitoring.			
Minimal Action	Institutional Controls/ Education Programs/ Site Fencing	Zoning and deed restrictions are put in place on potentially contaminated areas. The public is educated concerning site hazards. A physical barrier is constructed to restrict site access.			
	Soil Cover	A layer of native soil is placed over the site that is sufficiently thick to prevent direct contact and ingestion hazards associated with contaminated surface soil.			
Containment	Capping (e.g. clay and soil, asphalt, clay and synthetic membrane covered with soil)	A low-permeability cover is constructed over the site to prevent direct contact and ingestion hazards associated with contact of contaminated surface soil.			
Excavation/Disposal	On-Site Landfill	Soil not regulated by RCRA Land Disposal Restrictions is excavated and disposed of in a secure on-site landfill constructed for that purpose			
	Off-Site Landfill	Soil not regulated by RCRA Land Disposal Restrictions is excavated, transported and disposed of in a secure, existing off-site landfill.			
	On-Site Disposal	Soil is disposed at a soil disposal area on site after appropriate treatment.			
Soil Excavation/Treatment	On-Site Incineration	Soil is excavated and treated by a mobile incinerator which thermally destroys VOCs/SVOCs in a direct-fired treatment unit.			
	Off-Site Incineration	Soil is excavated and transported to a licensed incinerator which thermally destroys VOCs/SVOCs in a direct-fired treatment unit.			
	Solvent Extraction	Soil is excavated and mixed with a chemical solvent in a batch mixer. Soil settles out and solvent/contaminant is decanted off. The contaminant is then separated from the solvent to produce an effluent stream of concentrated contaminant.			
	Stabilization/Solidification	Soil is excavated and mixed with a setting agent (e.g., cement, fly ash, lime) which entraps contaminants in a granular or monolithic product with a low leaching potential.			
	Anaerobic Thermal Process	Soil is excavated and treated by a mobile unit which uses high temperatures in an anaerobic environment to desorb VOCs/SVOCs from the soil The contaminants are condensed into a liquid waste stream.			

TABLE 5-15 GENERAL RESPONSE ACTIONS AND POTENTIAL REMEDIAL TECHNOLOGIES SURFACE SOIL AND SEDIMENT NITROGLYCERINE POND AND ROCKET PASTE AREA

FEASIBILITY STUDY BADGER ARMY AMMUNITION PLANT

GENERAL RESPONSE ACTION	SOIL TECHNOLOGY	DESCRIPTION
Soil Excavation/ Treatment (cont.)	Soil Washing	Soil is excavated and mixed with an aqueous-based washing solution in a series of high-energy mobile washing units. VOCs/SVOCs and metals can be separated from soil with this system. Washing solution is recycled.
	Vitrification Thermal Process	Soil is excavated and treated in a reactor which heats soil to its melting point, then allows it to cool into a solid, glass-like structure. VOCs/SVOCs are either trapped in the matrix, destroyed, or volatilized.
In Situ Treatment	Stabilization/Solidification	A solidifying agent is added in place to contaminated soil to form a monolithic product in which contaminants are entrapped within a granular or monolithic product with a low leaching potential.
	Vitrification	High voltage current is passed through the contaminated zone until complete meltdown of soils has occurred. The high temperatures generated during meltdown pyrolyze and eventually combust VOCs/SVOCs constituents.
	Soil Flushing	Aqueous-based washing solution is applied at the ground surface. Contaminants are removed from soil particles and held in the liquid phase as the solution infiltrates the soil. Solution containing the contaminants is removed through extraction wells after reaching the water table.
	Bioventing	Air, nutrients, and moisture (as needed) are injected into contaminated soil to enhance the indigenous microbe environment and increase the biodegradation rate of VOCs/SVOCs.

Note:

RCRA = Resource Conservation and Recovery Act

SVOCs = Semivolatile Organic Compounds VOCs = Volatile Organic Compounds

REMEDIAL TECHNOLOGY	Advantages	DISADVANTAGES	SCREENING STATUS	COMMENTS
No Action	Easily implemented. No costs would be incurred with this option other than for monitoring.	Does not reduce exposure potential for human or environmental receptors or protect groundwater. Would not reduce mobility, toxicity, or volume of contaminants.	Eliminated	Not protective of human health or the environment.
Institutional Controls/ Education Programs/ Site Fencing	 Reduces exposure potential for human and some environmental receptors. Easily implemented. Low potential for exposure to contaminants during implementation. Minimal impact to environment during implementation. 	 Would not reduce mobility, toxicity, or volume of contaminants. Long-term monitoring and maintenance would be required. Long-term liability associated with waste. Does not achieve remedial action objectives. 	Retained	Physical barriers would reduce the potential for direct contact and ingestion by human and some environmental receptors.

REMEDIAL TECHNOLOGY	Advantages	DISADVANTAGES	SCREENING STATUS	COMMENTS
Soil Cover	 Reduces exposure potential for human and environmental receptors. Not subject to RCRA Land Disposal Restrictions. Easily implemented. 	 Would not reduce toxicity or volume of contaminants. Would not reduce mobility of contaminants resulting from infiltration of precipitation. Uncertain design life. Long-term monitoring and maintenance would be required. Long-term liability associated with waste. Does not achieve remedial action objectives. Soil cover would interfere with the existing drainage system. 	Retained	Soil cover would reduce direct contact and ingestion hazards associated with exposure to contaminated surface soil and sediment.
Capping	 Reduces exposure potential for human and environmental receptors. No secondary wastes produced. Commonly used method for remediation of large contiguous areas. 	 Would not reduce mobility, toxicity, or volume of contaminants. Uncertain design life. Long-term monitoring and maintenance would be required. Long-term liability associated with waste. Cap would interfere with the existing drainage system. 	Eliminated	Doesn't effectively limit infiltration of precipitation in the non-contiguous Rocket Paste Area ditches.

REMEDIAL TECHNOLOGY	ADVANTAGES	DISADVANTAGES	SCREENING STATUS	COMMENTS
On-Site Landfill	No secondary wastes produced. Contaminants may be relocated to a more stable, contained, lower exposure potential environment. No transportation of waste over public roads.	Would not reduce toxicity, or volume of contaminants. RCRA Land Disposal Restrictions may limit wastes eligible for disposal. Siting a landfill over an aquifer used as a drinking water source would be difficult. Long-term monitoring and maintenance would be required. Long-term liability associated with landfilled waste.	Eliminated	Obtaining regulatory approval of a landfill at BAAP would be difficult because of site geology (i.e., sandy soils) overlying an aquifer used as a drinking water source.
Off-Site Landfill	 Widely used and easily implemented technology. No wastes/treatment residuals remaining on site. Contaminants may be relocated to a more stable, contained, lower exposure potential environment. Relatively little mobilization effort and cost. Experienced excavation contractors available. 	 Would not reduce toxicity or volume of contaminants. RCRA Land Disposal Restrictions may limit wastes eligible for disposal. Limited landfill capacity nationwide. Transportation and landfilling costs may be expensive. Long-term liability associated with landfilled wastes. 	Retained	Could be used for direct disposal of soils/sediments or as an option for disposal of treatment residuals.

REMEDIAL TECHNOLOGY	ADVANTAGES	DISADVANTAGES	SCREENING STATUS	COMMENTS
On-site Incineration	Destruction and removal efficiencies of greater than 99.99%, thus reducing volume of contaminants.	Treatment of metals collected by air pollution control equipment may be required.	Eliminated	Not applicable for soils with high concentrations of metals because metals are not
	 Technology is reliable and has been demonstrated for treating VOCs/SVOCs in wastes at full scale. Widely used for treatment of VOCs/SVOCs in wastes. 	 Treatment of metals remaining in soil/sediment potentially required. Incineration of RCRA waste would require trial burns in order to receive permits to operate. 	destroyed.	destroyed.
Off-Site Incineration	Destruction and removal efficiencies of greater than 99.99%, thus reducing volume of contaminants. Widely used for treatment of VOCs/SVOCs in wastes. No long-term monitoring or maintenance required.	Treatment of metals remaining in soil may be required. Limited capacity at RCRA-permitted incinerators. High cost associated with transportation and incineration of wastes.	Eliminated	Not applicable for soils with high concentrations of metals because metals are not destroyed.

REMEDIAL TECHNOLOGY	Advantages	DISADVANTAGES	SCREENING STATUS	COMMENTS
Solvent Extraction	Capable of treating soils/sediments contaminated with VOCs/SVOCs. Demonstrated full-scale performance for removal of VOCs/SVOCs from sludge. Contaminants are transferred into a manageable liquid waste stream.	Would not reduce mobility, toxicity or volume of contaminants. Concentrated contaminant waste stream requires further treatment. Depending on process, residual extraction solvent may remain in soil and would require treatment. Limited operating experience with BAAP-specific contaminated soils. Treatability studies required. Treatment of metals remaining in soil may be required.	Eliminated	Not proven effective for treatment of contaminated soil and would not offer any particular advantage over other proven technologies.
Stabilization/ Solidification	 Reduces mobility of metals. Technology is reliable and has been demonstrated at full-scale for treating metals in soils/sediment. Technology is relatively simple and easily implemented. Experienced vendors are available. 	 Would not reduce toxicity or volume of contaminants. Volume of contaminated media potentially increased by 20-30%. Long-term performance for treatment of VOCs/SVOCs wastes not demonstrated. Pre-treatment for organics potentially required. 	Retained	Capable of treating the metals contamination present in site surface soils and sediments.

REMEDIAL TECHNOLOGY	Advantages	DISADVANTAGES	SCREENING STATUS	COMMENTS
Anaerobic Thermal Process	Demonstrated full-scale performance for removal of VOCs/SVOCs from soils/sediment. Contaminants are transferred into a manageable liquid waste stream. May not require an incinerator permit to operate.	Would not reduce mobility, toxicity, or volume of contaminants. Treatment of metals collected by air pollution control equipment potentially required. Treatment of metals remaining in soil may be required. Concentrated contaminant waste stream requires further treatment. Limited number of transportable units available. Treatability studies would be required.	Eliminated	Not effective for treating soils with a high metals content.

REMEDIAL TECHNOLOGY	ADVANTAGES	DISADVANTAGES	SCREENING STATUS	Comments
Soil Washing	Demonstrated at full-scale for removal of metals from soils/sediment. Wide application to varied waste groups. Mobile units are available.	 Potentially hazardous chemicals may be brought on site to be used in process. Difficulty in treating complex waste mixtures. Concentrated contaminant waste stream requires further treatment. Potential difficulty in removing washing solution from treated soil. Limited effectiveness for treating soils/sediment with high humic content and high fine-grained clay fraction. Treatability studies would be required. 	Eliminated	Not effective for treating surface soils/ sediment with high humic content.

REMEDIAL TECHNOLOGY	Advantages	DISADVANTAGES	SCREENING STATUS	COMMENTS
Vitrification	Reduces mobility, toxicity, and volume of contaminants. Effective for organics and inorganics.	 Treatment may be required to destroy VOCs/SVOCs in the vapor phase. Vitrified soil would require disposal. Would not be effective on soils with high moisture content. Process is very energy intensive. Not demonstrated at the full-scale level for hazardous wastes. Mobile units not available. Treatability studies would be required. 	Eliminated	Technology not demonstrated at full-scale level for treatment of hazardous wastes.
In Situ Stabilization/ Solidification	 Reduces mobility of metals. Technology has been demonstrated at pilot-scale for treating metals. Not subject to RCRA Land Disposal Restrictions. 	 Volume of contaminated media increased. Reagent/waste ratios are difficult to control. Not demonstrated at full-scale. Verification of treatment can be difficult. Treatability studies would be required. 	Retained	Potentially effective for treating metals in surface soils and sediments.

FEASIBILITY STUDY BADGER ARMY AMMUNITION PLANT

REMEDIAL TECHNOLOGY	ADVANTAGES	DISADVANTAGES	SCREENING STATUS	COMMENTS
Soil Flushing	 Used in conjunction with groundwater treatment. Effective for removal of VOCs from permeable soils. Full-scale units are available. Not subject to RCRA Land Disposal Restrictions. 	Difficulty in treating complex waste mixtures. Potential for uncontrolled migration of contaminants to groundwater. Limited effectiveness for treating soil with high humic content and high fine-grained clay fraction.	Eliminated	Should not be used where groundwater remediation is not planned. Would result in spreading contamination into a previously uncontaminated media (i.e., groundwater).
Bioventing	 Demonstrated at pilot-scale for treating hydrocarbons in soil Reduces toxicity and volume of VOCs/SVOCs. No secondary waste streams. Not subject to RCRA Land Disposal Restrictions. 	 Significant time and expense for laboratory degradation studies and field demonstrations. Injected air may mobilize VOCs in the vadose zone. Strict operating controls are required to maintain optimal biodegradation environment. 	Eliminated	Not effective for treating soils/ sediments with a high metals content.

Notes:

BAAP = Badger Army Ammunition Plant

RCRA = Resource Conservation and Recovery Act

VOCs = volatile organic compounds SVOCs = semivolatile organic compounds

TABLE 5-17 REMEDIAL TECHNOLOGIES RETAINED FOR REMEDIAL ALTERNATIVES DEVELOPMENT SOIL AND SEDIMENT NITROGLYCERINE POND AND ROCKET PASTE AREA

GENERAL RESPONSE ACTION	SOIL TECHNOLOGY
Minimal Action	Institutional Controls/Education Programs/Site Fencing
Containment	Soil cover
Excavation/Disposal	Off-site landfill
Excavation/Treatment	Stabilization/Solidification In Situ Stabilization/Solidification

TABLE 5-18 GENERAL RESPONSE ACTIONS AND POTENTIAL REMEDIAL TECHNOLOGIES SURFACE WATER NITROGLYCERINE POND AND ROCKET PASTE AREA

FEASIBILITY STUDY BADGER ARMY AMMUNITION PLANT

GENERAL RESPONSE ACTION	SURFACE WATER TECHNOLOGY	DESCRIPTION
No Action	None	No Action. May include water quality analysis to monitor contaminant levels and assess future environmental impacts.
Minimal Action	Institutional Controls/Education Programs/Site Fencing	Zoning and deed restrictions are put in place on potentially contaminated areas. The public is educated concerning site hazards. A physical barrier is constructed to restrict site access.
Treatment	Ion Exchange	Metal ions are removed from solution by exchanging ions electrostatically attached to a solid resin material for dissolved ions in solution. Regeneration of the exhausted resin would produce a concentrated waste stream requiring further treatment.
	Precipitation	Chemical precipitation involves the formation of a solid phase, usually particulate matter, suspended in a liquid phase containing the pollutant to be removed. Process generates a sludge requiring collection/treatment/disposal.
	Adsorptive Filtration	Metals are collected by attachment to a thin layer of ferrihydrite (iron oxide) that has been immobilized on the surface of sand grains.
	Microfiltration	Metals are filtered out of the water by high-grade filters; usually used as a polishing step.
Disposal	Groundwater Reinjection	Reinject treated surface water not meeting NPDES discharge limits into groundwater on site.
	Discharge to Surface Water	Discharge of treated surface water, meeting NPDES discharge limits, into surrounding surface water.
	Return to Nitroglycerine Pond	After treatment, water would be returned to the Nitroglycerine Pond.

Note:

NPDES =

National Pollutant Discharge Elimination System

TABLE 5-19 REMEDIAL TECHNOLOGY SCREENING SURFACE WATER NITROGLYCERINE POND AND ROCKET PASTE AREA

REMEDIAL TECHNOLOGY	ADVANTAGES	DISADVANTAGES	SCREENING STATUS	COMMENTS
No Action	Easily implemented. No costs would be incurred with this option other than for monitoring.	Does not reduce exposure potential for human or environmental receptors. Would not reduce mobility, toxicity, or volume of contaminants.	Eliminated	Not protective of human health or the environment.
Institutional Controls/ Education Programs/Site Fencing	 Reduces exposure potential for human and some environmental receptors. Easily implemented. Low potential for exposure to contaminants during implementation. Minimal impact to environment during implementation. 	 Would not reduce mobility, toxicity, or volume of contaminants. Long-term monitoring and maintenance would be required. Long-term liability associated with waste. 	Retained	Physical barriers would reduce the potential for direct contact and ingestion by human and some environmental receptors.
Ion Exchange	 Effectively treats metals. Demonstrated past performance. Several experienced vendors available. O&M costs potentially low. Effective as a polishing step in metals treatment. 	 Does not reduce the toxicity or volume of contaminants, only concentrates them. Concentrated contaminant waste stream requires further treatment. May require treatability investigations. May not be able to treat to levels prescribed in the remedial goals. 	Retained	Potentially effective for treating metals in the surface water.

TABLE 5-19 REMEDIAL TECHNOLOGY SCREENING SURFACE WATER NITROGLYCERINE POND AND ROCKET PASTE AREA

REMEDIAL TECHNOLOGY	ADVANTAGES	DISADVANTAGES	SCREENING STATUS	COMMENTS
Precipitation	 Metal concentrations can be reduced to 0.01-0.5 ppm. Mobile units, which are simple to use, are readily available. Well demonstrated. Costs are comparable to other technologies. 	 Heavy metal sludge requires further treatment/disposal. Relatively long detention times required. Requires a strictly controlled environment. 	Retained	Capable of treating metals in surface water.
Adsorptive Filtration	Able to reduce metal concentrations as a polishing step after a conventional treatment process.	 Requires backwashing regeneration. Relatively new technology. Cannot be used alone because of the high concentrations in the surface water. 	Eliminated	Not demonstrated at full-scale.
Microfiltration	Effective as polishing step	Expended filters require disposal	Retained	Effective as polishing step.
Groundwater Reinjection	Can be done nearby the source of contaminated surface water.	May introduce unaccept- able levels of contami- nants to groundwater.	Eliminated	Not applicable for discharge of treated surface water.
Discharge to Surface Water	Is done on site. Low cost as compared with off-site disposal.	 Permit is required for discharge. More stringent cleanup levels would apply. 	Retained	More stringent cleanup levels.

TABLE 5-19 REMEDIAL TECHNOLOGY SCREENING SURFACE WATER NITROGLYCERINE POND AND ROCKET PASTE AREA

REMEDIAL TECHNOLOGY	Advantages	DISADVANTAGES	SCREENING STATUS	COMMENTS
Return to Pond	Minimal transport of treated surface water.	Very large temporary storage tank required.	Eliminated	Temporary storage of treated surface water does not add any additional protection to humans or the environment.

TABLE 5-20 REMEDIAL TECHNOLOGIES RETAINED FOR REMEDIAL ALTERNATIVES DEVELOPMENT SURFACE WATER NITROGLYCERINE POND AND ROCKET PASTE AREA

GENERAL RESPONSE ACTION	SURFACE WATER TECHNOLOGY
Minimal Action	Institutional Controls/Education Programs/Site Fencing
Treatment	Ion ExchangePrecipitationMicrofiltration
Discharge	Discharge to surface water

TABLE 5-21 IDENTIFICATION OF REMEDIAL ALTERNATIVES SURFACE SOIL AND SEDIMENT NITROGLYCERINE POND AND ROCKET PASTE AREA

	MINIMAL ACTION	Soil Cover	On-SITE DISPOSAL	OFF-SITE LANDFILL	STABILIZATION/ SOLIDIFICATION	IN SITU STABILIZATION/ SOLIDIFICATION
NG/RPA-SS1	Х					
NG/RPA-SS2		Х				
NG/RPA-SS3		Х	X		X	
NG/RPA-SS4				X		
NG/RPA-SS5		X				X

TABLE 5-22 DEVELOPMENT OF REMEDIAL ALTERNATIVES SOIL AND SEDIMENT NITROGLYCERINE POND AND ROCKET PASTE AREA

Remedial Action Object	tive:				
	Prevent migration of contaminated surface soil and sediment, and prevent contaminants in sediment from contaminating surface water in ponds.				
(2) Prevent hu	Prevent human exposure to surface soil and sediment having PB, CR, HG, 24DNT, 26DNT, and CPAH levels that exceed background.				
(3) Prevent ex	Prevent exposure to terrestrial, aquatic, and semiaquatic receptors to surface soil and sediment having levels of CR, HG, PB, NG, and NNDPA that pose unacceptable risk.				
	ntamination of groundwater from Chapter NR 720.	CR and	PB in the surface soil and/or sediment as required by		
	ALTERNATIVE		DESCRIPTION OF KEY COMPONENTS		
NG/RPA-SS1: Minima	al Action	•	Surround areas with fencing and post warning signs.		
		•	Institutional controls. Implement zoning and deed restrictions.		
		•	Education programs.		
		•	Annual site inspection, groundwater monitoring, and five-year site reviews.		
NG/RPA-SS2: Soil Co	over	•	Soil cover placed over Rocket Paste Area ditches and pond sediment (2-feet fill, 3 inches topsoil).		
		•	Erosion control fabric placed in Main Ditch. All ditches hydroseeded.		
		•	Drainage culvert installed in Rocket Paste Pond to maintain drainage integrity.		
· · · · · · · · · · · · · · · · · · ·		•	Post-closure maintenance, groundwater monitoring, and five-year site reviews.		

TABLE 5-22 DEVELOPMENT OF REMEDIAL ALTERNATIVES SOIL AND SEDIMENT NITROGLYCERINE POND AND ROCKET PASTE AREA

	ALTERNATIVE	DESCRIPTION OF KEY COMPONENTS
NG/RPA-SS3:	Excavation/Solidification/On-Site Disposal	Treatability testing.
	,	 Surface soil/sediment excavation (2-foot depth) in ditches and ponds.
		Dewater sediment.
		 On-site stabilization/solidification at staging area.
		 On-site disposal of treated surface soil/sediment, at the stabilized soil pile located at the PBG race track area.
		Additional cover required at PBG.
		 Backfill excavations with fill and topsoil.
NG/RPA-SS4:	Excavation/Off-Site Disposal	 Surface soil/sediment excavation (2-foot depth) in ditches and ponds.
		Sediment dewatering.
		Off-site disposal of excavated surface soil/sediment.
	·	 Backfill excavations with fill and topsoil.
NG/RPA-SS5:	In Situ Stabilization/Solidification	Treatability testing.
		 Stabilize/solidify contaminated surface soil and sediment in situ.
		Soil cover over treated soil/sediment.
		 Post-closure maintenance, groundwater monitoring, and five-year site reviews.

TABLE 5-23 IDENTIFICATION OF REMEDIAL ALTERNATIVES SURFACE WATER NITROGLYCERINE POND AND ROCKET PASTE AREA

	MINIMAL ACTION	ION EXCHANGE	PRECIPITATION	MICROFILTRATION	DISCHARGE TO SURFACE WATER
NG/RPA-SW1	Х				
NG/RPA-SW2			X	X	X
NG/RPA-SW3		Х			Х

TABLE 5-24 DEVELOPMENT OF REMEDIAL ALTERNATIVES SURFACE WATER NITROGLYCERINE POND AND ROCKET PASTE AREA

FEASIBILITY STUDY BADGER ARMY AMMUNITION PLANT

Remedial Actio	n Objective:		
(1)	Reduce the concentrations of AL, FE, HG, MN, and PB in surface water at the Nitroglycerine Pond to levels that result in acceptable risk for aquatic and semi-aquatic receptors. Reduce the concentrations of AL, CR, CU, FE, MN, PB, and ZN in surface water at the Rocket Paste Pond to levels that result in acceptable risk for aquatic and semi-aquatic receptors.		
	ALTERNATIVE		DESCRIPTION OF KEY COMPONENTS
NG/RPA-SW1:	Minimal Action		Surround areas with fencing and post warning signs.
			Institutional controls. Implement zoning and deed restrictions.
		•	Education programs.
			Annual site inspection, surface water monitoring, and five-year site reviews.
NG/RPA-SW2:	Precipitation/Microfiltration	•	Treatability testing.
			Treat water using a mobile precipitation system in series with a microfiltration polishing system.
		•	Discharge treated water to surface water.
NG/RPA-SW3:	Ion Exchange	•	Treatability testing.
		•	Treat water using mobile ion exchange system.
		•	Discharge treated water to surface water.

Note:

Full compounds names are identified in the USAEC Chemical Code list located behind the glossary of acronyms.

TABLE 5-25 SCREENING OF REMEDIAL ALTERNATIVES SURFACE SOIL AND SEDIMENT NITROGLYCERINE POND AND ROCKET PASTE AREA

FEASIBILITY STUDY BADGER ARMY AMMUNITION PLANT

<u>Alternative NG/RPA-SS1: Minimal Action:</u> This alternative consists of institutional controls, educational programs, groundwater monitoring, and five-year site reviews. Fencing and warning signs would enclose those areas identified as posing a risk to public health.

as posing a risk to public nealth.			
EFFECTIVENESS	IMPLEMENTABILITY	Cost	
Advantages	Advantages	Advantages	
 Public access to affected areas would be restricted. 	Would be easy to implement because no soil remediation is required.	Short-term cost for administration of institutional controls, educational programs, and	
 Low potential for exposure to contaminants during implementation. 	Services and material for fencing are readily available.	groundwater monitoring and maintenance is relatively low.	
 Institutional controls would reduce the potential for future land development. 			
 Educational programs would increase public awareness about contamination. 			
Disadvantages	<u>Disadvantages</u>	<u>Disadvantages</u>	
 Would not reduce mobility, toxicity, or volume of contaminants. 	Long-term monitoring and maintenance would be required.	Future remedial actions may be more costly.	
Does not achieve remedial action objectives.	·	Long-term liability associated with waste.	

<u>CONCLUSION</u>: The minimal action alternative is <u>retained</u> so as to be used as a baseline for comparison with the remaining remedial alternatives for surface soil and sediment at the Nitroglycerine Pond and Rocket Paste Area.

FEASIBILITY STUDY BADGER ARMY AMMUNITION PLANT

Alternative NG/RPA-SS2: Soil Cover: This alternative consists of placing a soil cover over the ditches and dewatered ponds to prevent direct contact and incidental ingestion of contaminated surface soil and sediment by ecological and/or public receptors. This alternative also includes five-year site reviews.

EFFECTIVENESS	ÎMPLEMENTABILITY	Cost
Advantages Soil cover would isolate contaminated soil from potential human and ecological receptors.	Advantages • Would be easy to implement. • Soil cover would require minimal maintenance for the long-term. • Equipment and material readily available.	Advantages Inexpensive alternative for achieving human health and ecological remedial action objectives.
 Disadvantages Would not reduce the toxicity or volume of contaminants. Does not achieve groundwater remedial action objective. 	Disadvantages Would require long-term monitoring and maintenance provisions.	Disadvantages Long-term liability associated with waste.

<u>CONCLUSION</u>: Because this alternative achieves human health and ecological remedial action objectives and would be easily implemented, it is <u>retained</u> for detailed analysis.

FEASIBILITY STUDY BADGER ARMY AMMUNITION PLANT

<u>Alternative NG/RPA-SS3: Excavation/Solidification/On-Site Disposal</u>: This alternative consists of excavating contaminated surface soil and sediments, treating using stabilization/solidification and transporting the contaminated soil for on-site disposal at the Propellant Burning Ground.

EFFECTIVENESS	IMPLEMENTABILITY	Cost
Advantages	Advantages	<u>Advantages</u>
 Achieves remedial action objectives. 	Surface soils/sediment are easily removed with conventional excavation equipment.	Less expensive than off-site disposal.
 No significant long-term threat to human health and the environment. 	Excavation, treatment, and transportation services are readily available.	
Reduces mobility of the contaminants.	Stabilization/solidification is a proven, reliable technology for treating metals in soil and sediment.	
Disadvantages	<u>Disadvantages</u>	<u>Disadvantages</u>
 Would not reduce the toxicity of contaminants. 	Approximately 100,000 yd³ would be transported for disposal.	Long-term maintenance costs associated with stored wastes.
 Volume of contaminated soil/ sediment will increase by 20-30% during treatment. 	Treatability study required to determine the optimal mixture of reagents.	
 Potential for direct human contact with contaminated soil/sediment during treatment. 		

CONCLUSION: This alternative is **retained** for detailed analysis.

FEASIBILITY STUDY BADGER ARMY AMMUNITION PLANT

<u>Alternative NG/RPA-SS4: Excavation/Off-Site Disposal</u>: This alternative consists of excavating contaminated surface soil and sediment and transporting for disposal at a RCRA permitted facility.

Effectiveness	IMPLEMENTABILITY	Соѕт
Advantages	Advantages	Advantages
 Achieves remedial action objectives. 	Surface soils and sediment are easily removed using conventional excavation	None.
 No significant long-term threat to human health and the environment. 	equipment. Transportation services readily available.	
 Would reduce mobility by placing in a secure landfill. 	avallable.	
<u>Disadvantages</u>	<u>Disadvantages</u>	<u>Disadvantages</u>
 Would not reduce toxicity or volume of contaminants. 	Approximately 73,000 yd ³ would be transported for off-site disposal.	Most expensive alternative.
 Potential for direct human contact with contaminated soil/sediment during excavation. 	May exceed landfill capacity.	

<u>CONCLUSION</u>: This alternative is <u>retained</u> for detailed analysis.

FEASIBILITY STUDY BADGER ARMY AMMUNITION PLANT

<u>Alternative NG/RPA-SS5: In Situ Stabilization/Solidification</u>: This alternative consists of treating contaminated soil in situ by stabilization/solidification. This alternative also includes groundwater monitoring and five-year site reviews.

EFFECTIVENESS	IMPLEMENTABILITY	Cost
Advantages Effectively achieves remedial action objectives because contaminants in the treatment residuals are unavailable to receptors. In situ Stabilization/Solidification reduces the mobility of contaminants.	 Advantages Not subject to RCRA Land Disposal Restrictions. Surface soils/sediments are well within depth capability of in situ stabilization/solidification. 	Advantages • Least costly of the three alternatives which meet remedial action objectives.
 No significant long-term threat to human health and the environment. 		
<u>Disadvantages</u>	<u>Disadvantages</u>	<u>Disadvantages</u>
Would not reduce toxicity of contaminants.	 Would require long-term monitor- ing and maintenance provisions. 	 Long-term costs associated with operation and maintenance of site after treatment.
Volume of contaminated soil increased by 20-30%.	 Treatability study required to determine the optimal mixture of reagents. 	
 Potential for direct human contact with contaminated soil/sediment during treatment. 	Reagent/waste ratios can be difficult to control and monitor during the in situ process.	

CONCLUSION: This alternative is retained for detailed analysis.

Notes:

BAAP = Badger Army Ammunition Plant

PB = Lead

RCRA = Resource Conservation and Recovery Act
TCLP = Toxicity Characteristic Leaching Procedure

TABLE 5-26 SUMMARY OF REMEDIAL ALTERNATIVES SCREENING SURFACE SOIL AND SEDIMENT NITROGLYCERINE POND AND ROCKET PASTE AREA

ALT	ERNATIVE	STATUS	
Alternative NG/RPA-SS1:	Minimal Action	Retained for detailed analysis.	
Alternative NG/RPA-SS2:	Soil Cover	Retained for detailed analysis.	
Alternative NG/RPA-SS3:	Excavation/Solidification/On- Site Disposal	Retained for detailed analysis.	
Alternative NG/RPA-SS4:	Excavation/Off-Site Disposal	Retained for detailed analysis.	
Alternative NG/RPA-SS5:	In Situ Stabilization/ Solidification	Retained for detailed analysis.	

TABLE 5-27 SCREENING OF REMEDIAL ALTERNATIVES SURFACE WATER NITROGLYCERINE POND AND ROCKET PASTE AREA

FEASIBILITY STUDY BADGER ARMY AMMUNITION PLANT

<u>Alternative NG/RPA-SW1: Minimal Action</u>: This alternative consists of institutional controls, educational programs, groundwater monitoring, and five-year site reviews.

Effectiveness	IMPLEMENTABILITY	Cost
Advantages	Advantages	Advantages
 Institutional controls would reduce the potential for future surface water use. 	Would be easy to implement because no remedial actions are required.	Minimal cost for administration of institutional controls, and educational programs.
 Educational program would increase public awareness about contaminated surface water. 	Services and material readily available.	·
Disadvantages	<u>Disadvantages</u>	<u>Disadvantages</u>
 Does not achieve remedial objectives. 	Long-term monitoring and maintenance provisions would be required.	Future remedial actions may be more costly due to continuing chemical migration.
 Would not reduce mobility, toxicity, or volume of chemicals in the surface water. 	May require future surface water remediation.	Long-term costs associated with operation and maintenance of monitoring systems.
 Would not reduce the potential for surface water migration. 		

<u>CONCLUSION</u>: The minimal action alternative is <u>retained</u> as a baseline for comparison with the remaining alternatives for surface water at the Nitroglycerine Pond and Rocket Paste Area.

Note:

SARA = Superfund Amendments and Reauthorization Act

TABLE 5-27 SCREENING OF REMEDIAL ALTERNATIVES SURFACE WATER NITROGLYCERINE POND AND ROCKET PASTE AREA

FEASIBILITY STUDY BADGER ARMY AMMUNITION PLANT

<u>Alternative NG/RPA-SW2: Precipitation/Microfiltration</u>: This alternative consists of surface water treatment using precipitation in conjunction with microfiltration followed by discharging treated water back to surface water.

EFFECTIVENESS	IMPLEMENTABILITY	Cost
Advantages	<u>Advantages</u>	Advantages
 Generally, precipitation can remove heavy metals to levels in the range of 0.1 to 0.5 ppm. Microfiltration would then be used as a polishing step to attain RGs. Reduces waste volume from a large quantity of contaminated water to a smaller volume of concentrated sludge. Effective for a wide variety of concentrations. 	 Mobile treatment facilities available. Well demonstrated technologies, commonly used for removal of heavy metals in industrial and municipal wastestreams, as well as wastestreams from hazardous waste sites. Several experienced vendors are available. 	Operating and maintenance costs potentially low.
<u>Disadvantages</u>	<u>Disadvantages</u>	<u>Disadvantages</u>
 Does not reduce toxicity of heavy metals. Potential worker safety hazards associated with operating the treatment system. 	 Some organic compounds, as well as cyanide and other ions, can complex with metals and inhibit the precipitation process. Resulting sludge/filters must be dewatered and treated and/or disposed. May require treatability investigations. 	High capital costs.

<u>CONCLUSION</u>: This alternative achieves the remedial action alternatives, and is therefore <u>retained</u> for detailed analysis.

TABLE 5-27 SCREENING OF REMEDIAL ALTERNATIVES SURFACE WATER NITROGLYCERINE POND AND ROCKET PASTE AREA

FEASIBILITY STUDY BADGER ARMY AMMUNITION PLANT

<u>Alternative NG/RPA-SW3: Ion Exchange</u>: This alternative consists of surface water treatment using ion exchange technology followed by discharging treated water back to surface water.

EFFECTIVENESS	IMPLEMENTABILITY	Cost
Advantages	Advantages	Advantages
Ion exchange effective in reducing metals contamination in water	Mobile treatment facilities available.	Operating and monitoring costs potentially low.
 Resulting treated water typically is of good quality. 	Well demonstrated technology.	
e. geed quanty.	Several vendors available.	
<u>Disadvantages</u>	<u>Disadvantages</u>	<u>Disadvantages</u>
 Does not reduce toxicity of heavy metals. 	Resulting non-regenerative sludge requires disposal.	High capital costs.
 Resin requires disposal or regeneration. 	May require treatability investigation.	
 Potential worker safety hazards working with the untreated water. 		
May not be able to achieve levels prescribed by remediation goals.		

CONCLUSION: This alternative achieves remedial action alternatives and is therefore retained for detailed analysis.

TABLE 5-28 SUMMARY OF REMEDIAL ALTERNATIVES SCREENING SURFACE WATER NITROGLYCERINE POND AND ROCKET PASTE AREA

ALTERNATIVE	STATUS
NG/RPA-SW1: Minimal Action	Retained for Detailed Analysis
NG/RPA-SW2: Precipitation/Microfiltration	Retained for Detailed Analysis
NG/RPA-SW3: Ion Exchange	Retained for Detailed Analysis

TABLE 5-29 SUMMARY OF CONTAMINATION ASSESSMENT THROUGH REMEDIAL ALTERNATIVES SCREENING NITROGLYCERINE POND/ROCKET PASTE AREA

	CONTAMINATED ME	DIA AT NITROGLYCERINE POND	/ROCKET PASTE AREA
RI/FS COMPONENT	SURFACE SOIL	SEDIMENT	SURFACE WATER
Identification of Contaminants of Concern	SVOCs Inorganics	SVOCsInorganics	Inorganics
Risk Assessment Results	 PB, 24DNT, 26DNT, CPAH, and NNDPA are a threat to humans. PB, NG, HG, CR, NNDPA, 26DNT, and 24DNT all exceed acceptable ecological risk levels. PB, CR, and 24DNT all exceed acceptable groundwater risk levels. 	 CR, HG, PB all exceed acceptable ecological risk levels. PB also a threat to humans. CR and PB exceed acceptable groundwater risk levels. Levels of SVOCs do not pose an unacceptable health risk. 	AL, HG, CR, CU, FE, MN, PB, and ZN all exceed acceptable ecological risk standards.
Remedial Action Objectives	 Prevent migration of contaminated soil by erosion. Reduce exposure to PB, 24DNT, 26DNT, CPAH, and NNDPA concentration to acceptable risk levels for humans. Reduce exposure to concentrations of PB, CR, HG, NG, 24DNT, 26DNT and NNDPA to acceptable risk levels for terrestrial organisms. 	 Prevent migration of contaminated sediment into drainageways downgradient of ponds. Prevent contaminants in sediment from contaminating surface water in ponds. Reduce exposure of concentrations of CR, HG, and PB in sediments at the Nitroglycerine Pond to levels resulting in acceptable risk for aquatic and semiaquatic receptors. 	Reduce AL, HG, MN, PB, CR, CU, FE, and ZN concentrations to levels resulting in acceptable risk for aquatic and semiaquatic receptors.

TABLE 5-29 SUMMARY OF CONTAMINATION ASSESSMENT THROUGH REMEDIAL ALTERNATIVES SCREENING NITROGLYCERINE POND/ROCKET PASTE AREA

	CONTAMINATED MED	NA AT NITROGLYCERINE POND	ROCKET PASTE AREA
RI/FS COMPONENT	Surface Soil	SEDIMENT	SURFACE WATER
Remedial Action Objectives	Reduce exposure to PB, CR, and 24DNT to acceptable levels for groundwater.	 Reduce exposure to PB concentration in Rocket Paste Pond to acceptable risk level for humans. Reduce exposure to CR and PB to acceptable levels for groundwater. 	
Remedial Technologies	Soil Cover	Soil Cover	Precipitation
Retained After Screening	Off-Site Landfill	On-Site Disposal	Ion Exchange
Corcerning	On-Site Disposal	Off-Site Landfill	Microfiltration
	Solidification/ Stabilization	Solidification/ Stabilization	Return water to surface water
	In-Situ Solidification/ Stabilization	In-Situ Solidification/ Stabilization	
Remedial Alternatives	Minimal Action	Minimal Action	Minimal Action
Developed	Soil Cover	Soil Cover	Precipitation/ Microfiltration
	Excavation/Solidifi- cation/On-Site Disposal	Excavation/Solidifi- cation/On-Site Disposal	Ion Exchange
	Excavation/Off-site Disposal	Excavation/Off-site Disposal	
	In-situ Solidification/ Stabilization	In-Situ Solidification/ Stabilization	

TABLE 5-29 SUMMARY OF CONTAMINATION ASSESSMENT THROUGH REMEDIAL ALTERNATIVES SCREENING NITROGLYCERINE POND/ROCKET PASTE AREA

FEASIBILITY STUDY BADGER ARMY AMMUNITION PLANT

	CONTAMINATED M	EDIA AT NITROGLYCERINE POND	/ROCKET PASTE AREA
RI/FS COMPONENT	SURFACE SOIL	SEDIMENT	SURFACE WATER
Remedial Alternatives	Minimal Action	Minimal Action	Minimal Action
Retained After Screening	Soil Cover	Soil Cover	Precipitation/ Microfiltration
Ü	 Excavation/ Solidification/On-Site Disposal 	Excavation/Solidificati on/ On-Site Disposal	Ion Exchange
		Excavation/Off-site	
	Excavation/Off-site Disposal	Disposal	
	,	 In-situ solidification/ 	
	 In-situ solidification/ stabilization 	stabilization	

Note:

Full compound names are identified in the USAEC Chemical Code list located behind the glossary of acronyms.

TABLE 6-1 HUMAN HEALTH CONTAMINANTS OF CONCERN FINAL CREEK, SETTLING PONDS AND SPOILS DISPOSAL AREA

						ш	XPOSURE F	EXPOSURE POINT CONCENTRATION* - Ward	ENTRATION	(a/br/) - •					
	FINAL	PINAL CREEK OUTFLOW	FINAL CREEK	38	SETTLING Pond 1	SEI	SETTLING POND 2	SETTLING POND 3	SETTLING Pond 3	SETTLING Pond 4	SPOILS DISPOSAL AREA 1	SPOILS DISPOSAL AREA 2	SPOILS DISPOSAL AREA 3	SPORS DISPOSAL AREA 4	SPOILS DISPOSAL AREA 6
COMPOUND OF	SUR.	SUB.	SUR.	SUR.	SUB.	SUR.	Sue.	SUR.	SuB.	SUR.	SUR.	.ES	Sur.	SUR.	SUR.
24DNT	1	1	9	172	17.1	7.6	0.04	2.6	0.057	1	12	1.3	1.1	0.7	-
26DNT	ı	1	40	26	ı	_		1.5	:	1	-	ı	ı	1	
ZNNDPA	ı	ı	2	0.97	1	_	:	ı	ı	1	1	1	1	1	
AL	ı	1	•	1	-		1	1	1	000'09	1	ı		ı	
ANAPYL	0.166	1		1	1	-	1	t	ı		1	1	1	1	
вгенр	1.02	1		1	1	:	-	l	1	1	0.35		1	0.32	
BAANTR	0.185	1	1	1	ı	1	1	ı	1	l	İ		1	1	
BBFANT	0.723	1	1	1		-	ı	ı	-	1	1	1	1		
вдніру	0.618	I	l	1	-	-	1	I	1		ı	ı	1	1	
BKFANT	0.635	ı	ı	ı	-		1	1		ı	-	-	ı	I	ı
BR	ı	1	ı	1	1	1	1	l	-	I	12	4	1	1	16
CH2CL2	1	ı	1	ı	1	-	-	I	-	•	0.034	0.024	0.025	0.038	0.026
CHRY	0.264	1	1	1	•	-	-	ı	-	•	ı	ţ	I	1	,
CL	1	-	1	1		-	1	1	-	ı	19	23	17	13	18
DEP	1	ı	0.13	460	1,340	135	1	44	-	1	-	1	1		
DNOP	ı	ı	26	14	1	0.74	ı	17.4		-	51	5.8	. 4	4.4	6.5
DNDP	ı	ı	1	ı	ŀ	:	ı	1	-	-	8.6	:		0.63	0.2
DPA	1	1	15	10	*	1.5	ì	2.8	1	1	24	3.2	2.2	1.1	2.4
FANT	0.407	-	1		ı	1	1	t	. 1	ļ		1	ı	1	ı

FINAL CREEK, SETTLING PONDS AND SPOILS DISPOSAL AREA HUMAN HEALTH CONTAMINANTS OF CONCERN TABLE 6-1

BADGER ARMY AMMUNITION PLANT FEASIBILITY STUDY

		Ī					POSURE P	EXPOSURE POINT CONCENTRATION* - 144/41	ENTRATION	(0/8 /1) - •					
	FINAL	FINAL CREEK OUTFLOW	FINAL CREEK	SE Po	SETTUNG POND 1	SETT	SETTLING POND 2	SETTLING POND 3	LINO D.3	SETTLING POND 4	SPOILS DISPOSAL AREA 1	SPOILS DISPOSAL AREA 2	SPOILS DISPOSAL AREA 3	SPOILS DISPOSAL AREA 4	SPOILS DISPOSAL AREA 5
CONCERN	S.M.	SUB.	Sur.	SUR.	SUB.	Sur.	SUB.	SUR.	SUB.	SUR.	S	9	ğ	į	G
HG	0.505		•	1	1	1	1	-	-	ı		1	1	100	100
NC	ı	1	740	60,000		780	1	061	0.17	1,038	11,000	8,000	3.800	3.000	11.000
NG	'	1	1	1	-		ı	1	1	ı	19	1	1	,	
NH3	ı	ı	1,800	740	ı	840	ı	520		096	1	1	1		
TIN	3.53	3.76	11	13	1	43	1	4.9		10	16	10	22	12	8
PB	1	1	40	8	1	250	ı	,	,	300	349	373	29	1 22	5 5
PHANTR	0.173	-	•	1	1	1	1	,	:		1		1	3	70.
PYR	0.487	•	:		ı	1			1			1		1	
SN	ı	-	63	24	ı	53	4.7	72	3.9	12	3.68	4.04	5.8	1 64	1 94
SO4	18.2	35.8	260	2,500	,	49	20.2	36	15.2	400	146	130	75	139	88
ZN	-			1	1	•	1	-	ı	,	212	748	251	204	306

Notes:

* Exposure point concentration is the maximum concentration detected
Subsurface data available only for Final Creek Outflow, Settling Pond 1, Settling Pond 2, and Settling Pond 3.
-- = not identified as compound of concern

µg/g = micrograms per gram; equivalent to parts per million (ppm) Sur. = Surface Sub. = Subsurface

TABLE 6-2 CLEAN-UP STANDARDS FINAL CREEK AND SETTLING PONDS

FEASIBILITY STUDY BADGER ARMY AMMUNITIONS PLANT

	Sc	DILS
Compound	PROTECTION OF GROUNDWATER ¹ (mg/kg)	PROTECTION OF HUMAN HEALTH ² (mg/kg)
<u>Organics</u>		
24DNT	0.0033	4.29
26DNT	47.763	4.29
2NNDPA	-	NHD
ANAPYL	-	41.720
B2EHP	420,000	208.57
BGHIPY	-	41,720
DEP	-	834,400
DNOP	-	20,860
DPA	-	NHD
FANT	-	41,720
NC	-	NHD
PHANTR	-	41,720
PYR	-	31,290
CPAH ³	-	0.4
<u>Metals</u>		
AL	-	NHD
РВ	0.688	500
SN	-	625,800
HG	NLD	312.5

Notes:

NHD = no human toxicity data

NLD = no leachate data for modeling

⁻ not a human health contaminant of concern

1 Protective of groundwater per proposed Chapter NR 720.

2 Protective of human health per proposed Chapter NR 720.

³Carcinogenic PAHs; consisting of BAANTR, BBFANT, BKFANT, and CHRY.

TABLE 6-3 CLEAN-UP STANDARDS SPOILS DISPOSAL AREA

FEASIBILITY STUDY **BADGER ARMY AMMUNITIONS PLANT**

	Sc	DILS
Compound	PROTECTION OF GROUNDWATER ¹ (mg/kg)	PROTECTION OF HUMAN HEALTH ² (mg/kg)
Organics		
24DNT	0.0092	4.29
26DNT	134.012	4.29
B2EHP	NI	208.57
CH2CL2	-	389.05
DNOP	-	20,860
DNBP	-	20,860
DPA	-	NHD
NC	_	NHD
NG	-	NHD
<u>Metals</u>		
РВ	1.948	500
SN	-	625,800
ZN	156	312,900

Notes:

NHD = no human toxicity data

NI = no impact on groundwater

⁼ not a human health contaminant of concern

¹Protective of groundwater per proposed Chapter NR 720. ²Protective of human health per proposed Chapter NR 720.

TABLE 6-4 ECOLOGICAL CONTAMINANTS OF CONCERN FINAL CREEK, SETTLING PONDS, AND SPOILS DISPOSAL AREA SOIL

			Ð	EXPOSURE POINT CONCENTRATION* - 409/61	NT CONCEN	TRATION."	(8/0)			
COMPOUND OF CONCERN	FINAL CREEK	SETTLING POND 1	SETTLING POND 2	SETTLING POND 3	SETTLING POND 4	SPOILS DISPOSAL AREA 1	SPOILS DISPOSAL AREA 2	SPOILS DISPOSAL AREA 3	SPOILS DISPOSAL AREA 4	SPOILS DISPOSAL AREA 6
24DNT	9	172	7.6	2.6		12	1.3	1:1	0.7	
26DNT	40	26	1	1.5	-	1	1	ı	1	
ZNNDPA	2	0.97	-			•	1	ı	1	1
AL	and the second s	1	-	-	000'09	ı		1	1	1
В2ЕНР	1	ı	1	1	-	0.35	deser.	1	0.32	1
BR	1	1	•	+	-	12	4	1	1	91
CH2CL2	ŧ	-	-	1	-	0.034	0.024	0.025	0.038	0.026
ر. در	ŧ	1	ı	-	ı	19	23	17	13	85
DEP	0.13	460	135	44	I		1	I		
DNBP	26	14	0.74	17.4	1	51	5.8	4	4.4	6.5
DNOP	1	•	1		1	8.6	l	ı	0.63	0.2
DPA	15	10	1.5	2.8	0.36	24	3.2	2.2	1.1	2.4
NC	740	60,000	280	190	1,038	11,000	8,000	3,800	3,000	11,000
NG	1	-	1	1		19	-	ı	1	i.
NH3	1,800	740	840	520	096	-	ı		1	1
TIN	11	13	43	4.9	10	16	10	22	12	18
ЬВ	40	180	250	ŀ	300	349	373	29	120	102

FINAL CREEK, SETTLING PONDS, AND SPOILS DISPOSAL AREA SOIL **ECOLOGICAL CONTAMINANTS OF CONCERN** TABLE 6-4

BADGER ARMY AMMUNITION PLANT FEASIBILITY STUDY

	SPOILS DISPOSAL AREA 6	1.94	38	306
	SPOILS DISPOSAL AREA 4	1.64	139	204
	SPOILS DISPOSAL AREA 3	5.8	75	251
(6)	SPORS DISPOSAL AREA 2	4.04	130	748
RATION* W	SPOILS DISPOSAL AREA 1	3.68	146	212
EXPOSURE POINT CONCENTRATION* - March	SETTLING POND 4	14	400	ı
OSURE POIN	SETTLING POND 3	72	36	1
Exp	SETTLING POND 2	53	64	
	SETTLING POND 1	52	2,500	1
	FINAL CREEK	63	260	
	COMPOUND OF CONCERN	SN	SO4	ZN

Notes:

* Exposure point concentration is the maximum concentration detected
Subsurface data available only for Final Greek Outflow, Settling Pond 1, Settling Pond 2, and Settling Pond 3.

— = not identified as compound of concern

µg/g = micrograms per gram; equivalent to parts per million (ppm)
Sur. = Surface
Subsurface

TABLE 6-5 SUMMARY OF RISK EVALUATION FOR TERRESTRIAL RECEPTORS FINAL CREEK, SETTLING PONDS, AND SPOILS DISPOSAL AREA SOIL

	Hazard II	NDICES ^A
RECEPTOR	ACUTE RISK ^B	CHRONIC RISK ^C
Final Creek Area		
Short-tailed shrew	8.0E+01	2.6E+03
Eastern meadowlark	2.0E+00	2.8E+00
Garter snake	3.9E+00	5.1E+01
Red fox	5.1E-1	2.2E-1
Red-tailed hawk	5.5E-01	2.4E-02
Settling Pond 1 Area		
Short-tailed shrew	3.5E+02	7.8E+03
Eastern meadowlark	8.3E+00	2.4E+01
Garter snake	1.7E+01	3.9E+02
Red fox	2.3E+00	3.8E+00
Red-tailed hawk	2.0E+00	7.5E-01
Settling Pond 2 Area		
Short-tailed shrew	4.7E+02	1.0E+04
Eastern meadowlark	1.1E+01	3.2E+01
Garter snake	2.4E+01	5.1E+-01
Red fox	6.6E-01	8.5E-01
Red-tailed hawk	1.9E+00	2.6E-01
Settling Pond 3 Area		
Short-tailed shrew	6.8E+01	2.5E+03
Eastern meadowlark	1.7E+00	6.4E+00
Garter snake	3.4E+00	1.3E+02
Red fox	2.0E-01	3.5E+00
Red-tailed hawk	5.5E-01	2.7E-01
Settling Pond 4 Area		
Short-tailed shrew	6.7E+02	1.4E+04
Eastern meadowlark	2.0E+01	1.0E+02
Garter snake	3.3E+01	6.8E+02
Red fox	3.5E+00	5.6E+00
Red-tailed hawk	1.1E+01	4.6E+00
Spoils Disposal Site 1 Area		
Short-tailed shrew	6.6E+02	1.3E+04
Eastern meadowlark	1.5E+01	4.3E+01
Garter snake	3.3E+01	6.63+02
Red fox	1.7E+00	2.5E-01
Red-tailed hawk	5.5E+00	3.3E-01
Spoils Disposal 2 Area		2.22 2.
Short-tailed shrew	7.2E+02	1.4E+04
Eastern meadowlark	1.7E+01	3.4E+01
Garter snake	3.6E+01	4.9E+02
	0.0 <u>=</u> 101	T.UL UL

TABLE 6-5
SUMMARY OF RISK EVALUATION FOR TERRESTRIAL RECEPTORS
FINAL CREEK, SETTLING PONDS, AND SPOILS DISPOSAL AREA SOIL

FEASIBILITY STUDY BADGER ARMY AMMUNITION PLANT

	HAZARD INDICES ^A					
RECEPTOR	ACUTE RISK ^B	CHRONIC RISK ^C				
Red fox	3.1E+00	2.3E-01				
Red-tailed hawk	1.1E+01	3.5E-01				
Spoils Disposal 3 Area						
Short-tailed shrew	1.3E+2	2.6E+03				
Eastern meadowlark	3.3E+00	5.7E+00				
Garter snake	6.7E+00	7.9E+01				
Red fox	8.7E-01	7.2E-02				
Red-tailed hawk	3.2E+00	7.7E-02				
Spoils Disposal 4 Area						
Short-tailed shrew	2.3E+02	4.6E+03				
Eastern meadowlark	5.5E+00	1.5E+01				
Garter snake	1.2E+01	2.3E+02				
Red fox	1.1E+00	1.2E-01				
Red-tailed hawk	3.8E+00	1.7E-01				
Spoils Disposal 5 Area						
Short-tailed shrew	2.0E+02	3.9E+03				
Eastern meadowlark	4.9E+00	1.4E+01				
Garter snake	1.0E+01	1.9E+02				
Red fox	1.4E+00	1.4E-01				
Red-tailed hawk	5.2E+00	2.1E-01				

Notes:

Sum of the individual Hazard Quotients (HQs) for each surface soil contaminant of concern; each HQ calculated by dividing the estimated exposure dosage by the Reference Toxicity Value (RTV). Hazard Quotients are presented in Appendix R of the Final RI Report, Tables R-33 through R-52.

Based on comparison to acute RTVs.

^c Based on comparison to chronic RTVs.

TABLE 6-6
SOIL REMEDIATION GOALS
FINAL CREEK AND SETTLING PONDS

COMPOUND (Organics	24DNT	26DNT	2NNDPA	ANAPYL	В2ЕНР	CPAH ⁵	ВСНІРУ	DEP	DNOP	DPA	FANT	NC	PHANTR	PYR
(1) DETECTION LIMIT (mg/kg)		2.5	2.0	0.05	0.033	0.48	ı	0.18	0.24	0.23	0.05	0.032	20.00	0.032	0.083
(2) MAXIMUM DETECTED CONCENTRATION (mg/kg)		172	40	8	1.66	1.02	1.81	0.618	1,340	26	15	0.407	000'09	0.173	0.487
(3) MAXIMUM BACKGROUND CONCENTRATION (mg/kg)		,		ı		,	ı	ı	ı	,	ı	1	•	1	ı
(4) PROTECTION OF GROUNDWATER SOIL TARGET CONCENTRATION (mg/kg)		0.0033	47.763	•	•	420,000	•		•	1	ı	•	•	•	,
(5) PROTECTION OF HUMAN HEALTH (mg/kg)		4.29	4.29	NHD	41.720	208.57	0.4	41,720	834,400	20,860	NHD	41,720	NHD	41,720	31,290
(6) PROTECTION OF ECOLOGICAL RECEPTORS (mg/kg)		N R	N.	N.	N R	N.	N R	Z Z	20	N R	3.5	N R	N H	ď	N.
(7) REMEDIATION GOAL (mg/kg)		2.5	4.29 ²	ı	¥.	¥ V	0.4 ²	A V	203	Ϋ́	3.53	A	ı	¥ V	X Y

FINAL CREEK AND SETTLING PONDS SOIL REMEDIATION GOALS TABLE 6-6

BADGER ARMY AMMUNITION PLANT FEASIBILITY STUDY

COMPOUND	(1) DETECTION LIMIT (mg/kg)	(2) MAXIMUM DETECTED CONCENTRATION (mg/kg)	(3) MAXIMUM BACKGROUND CONCENTRATION (mg/kg)	(4) PROTECTION OF GROUNDWATER SOIL TARGET CONCENTRATION (mg/kg)	(5) PROTECTION OF HUMAN HEALTH (mg/kg)	(6) PROTECTION OF ECOLOGICAL RECEPTORS (mg/kg)	(7) REMEDIATION GOAL (mg/kg)
Organics							
Metals					. *		
AL	5.0	60,000	50,000	•	NHD	19	50,0004
ЭH	0.1	0.505	0.38	NLD	312.5	X.	Ą
ЬВ	0.434	300	30	0.688	200	0.0013	304
SN		77	10	•	625,800	0.011	104

Notes:

milligrams per kilogram Negligible risk to ecological receptors.

Not applicable; protective concentrations are greater than maximum detected concentration. No human toxicity data.

No leaching data for modeling.

mg/kg NR NA NHD NLD

= No leaching data for modeling.
Detection limit
Protective of human health per NR 720 Rule.
Protective of ecological receptors.

Background concentration; which is greater than NR 720 concentration for protection of groundwater and/or ecological risk concentration. Carcinogenic PAHs; consisting of BAANTR, BBFANT, BKFANT, and CHRY.

TABLE 6-7
SOIL REMEDIATION GOALS
SPOILS DISPOSAL AREAS

FEASIBILITY STUDY
BADGER ARMY AMMUNITION PLANT

(7) REMEDIATION GOAL (mg/kg)		2.51	Ą Z	N A	ĄZ	Ϋ́	,	3.52	ı	3.6 ²	
(6) PROTECTION OF ECOLOGICAL RECEPTORS (mg/kg)		Œ Z	Z.	N.	N N	Z.	Z.	3.5	S.	3.6	
(5) PROTECTION OF HUMAN HEALTH (mg/kg)		4.29	4.29	208.57	389.05	20,860					
(4) PROTECTION OF GROUNDWATER SOIL TARGET CONCENTRATION (mg/kg)		0.0092	134.012	Z							
(3) MAXIMUM BACKGROUND CONCENTRATION (mg/kg)		1	•		•	,	ı	,	1	ı	
(2) MAXIMUM DETECTED CONCENTRATION (mg/kg)		12	-	0.35	0.038	51	8.6	24	11,000	19	
(1) DETECTION LIMIT (mg/kg)		2.5	2.0	0.48	0.005	0.23	1.3	0.05	50.00	0.51	
COMPOUND	Organics	24DNT	26DNT	В2ЕНР	CH2CL2	DNOP	DNBP	DPA	N _C	5	

SOIL REMEDIATION GOALS SPOILS DISPOSAL AREAS TABLE 6-7

BADGER ARMY AMMUNITION PLANT FEASIBILITY STUDY

(7) REMEDIATION GOAL (mg/kg)			303	¥ Z	81.3³
(6) PROTECTION OF ECOLOGICAL RECEPTORS (mg/kg)			0.0053-0.0089	Ŋ	2.5-4.2
(5) PROTECTION OF HUMAN HEALTH (mg/kg)			200	625,800	312,900
(4) PROTECTION OF GROUNDWATER SOIL TARGET CONCENTRATION (mg/kg)			1,948		156
(3) MAXIMUM BACKGROUND CONCENTRATION (mg/kg)			30	10	81.3
(2) MAXIMUM DETECTED CONCENTRATION (mg/kg)			373	5.8	748
(1) DETECTION LIMIT (mg/kg)			0.434	20.0	2.34
COMPOUND	Organics	Metals	PB	Z	NZ

Notes:

mg/kg NI NR NHD NA

milligrams per kilogram
No impact on groundwater
Negligible risk to ecological receptors
No human toxicity data
Not applicable; protective concentrations are greater than maximum detected concentration

Detection limit

Protective of ecological receptors Background concentration; which is greater than NR 720 concentration for protection of groundwater and/or ecological risk concentration

TABLE 6-8 GENERAL RESPONSE ACTIONS AND POTENTIAL REMEDIAL TECHNOLOGIES FINAL CREEK, SETTLING PONDS, AND SPOILS DISPOSAL AREA SOIL

GENERAL RESPONSE ACTION	SOIL TECHNOLOGY	DESCRIPTION
No Action	None (No Action)	No action. Site monitoring.
Minimal Action	Institutional Controls/ Education Programs/ Site Fencing	Zoning and deed restrictions on potentially contaminated areas. Educate public concerning site hazards. Erect physical barriers to site access.
Containment	Soil Cover	A layer of native soil is placed over the site that is sufficiently thick to prevent direct contact and ingestion hazards associated with contaminated surface soil.
	Capping	Low-permeability cover (e.g., clay and soil; asphalt; clay and synthetic membrane covered with soil) is constructed over the site to provide a barrier to water infiltration and/or to prevent direct contact and ingestion hazards associated with contact of contaminated surface soil.
Excavation/Disposal	On-Site Landfill	Soil not regulated by RCRA Land Disposal Restrictions is excavated and disposed of in a secure on-site landfill constructed for that purpose.
	Off-Site Landfill	Soil not regulated by RCRA Land Disposal Restrictions is excavated, transported, and disposed of in a secure, existing landfill.
Soil Excavation/Treatment	On-Site Incineration	Soil is excavated and treated with a mobile incinerator which thermally destroys VOCs/SVOCs in a direct fired treatment unit.
	Off-Site Incineration	Soil is excavated and transported to a licensed incinerator which thermally destroys VOCs/SVOCs in a direct-fired treatment unit.
	Solvent Extraction	Soil is excavated and mixed with a chemical solvent in a batch mixer. Soil settles out and solvent/contaminant is decanted off. The contaminant is then separated from the solvent to produce an effluent stream of concentrated contaminant.

TABLE 6-8 GENERAL RESPONSE ACTIONS AND POTENTIAL REMEDIAL TECHNOLOGIES FINAL CREEK, SETTLING PONDS, AND SPOILS DISPOSAL AREA SOIL

GENERAL RESPONSE ACTION	SOIL TECHNOLOGY	DESCRIPTION
Soil Excavation/Treatment (cont.)	Ex-situ Stabilization/Solidification	Soil is excavated and mixed with a setting agent (e.g., cement, fly ash, lime) to form a monolithic or granular product in which contaminants are entrapped by the solidified mass.
	Anaerobic Thermal Process	Soil is excavated and treated by a mobile unit which uses high temperatures in an anaerobic environment to desorb VOCs/SVOCs from the soil. The contaminants are condensed into a liquid waste stream.
	Biodegradation/Composting	Soil is excavated and bulking agents (e.g., wood chips) are added; the piles are periodically turned over to facilitate aerobic and anaerobic decomposition of VOCs/SVOCs.
	Soil Washing	Soil is excavated and mixed with an aqueous-based washing solution in a series of high-energy mobile washing units. VOCs/SVOCs and metals can be separated from soil. Washing solution is recycled.
	Vitrification Thermal Process	Soil is excavated and treated in a reactor which heats soil to its melting point, then allows it to cool into solid, glass-like structure. VOCs/SVOCs are either trapped in the matrix, destroyed, or volatilized.
In Situ Treatment	In-situ Stabilization/Solidification	A setting agent is added in place to contaminated soil to form a monolithic or granular product in which contaminants are entrapped within a solidified mass.
	Vitrification	High voltage current is passed through the contaminated zone until complete meltdown of soils has occurred. The high temperatures generated during meltdown pyrolyze and eventually combust VOCs/SVOCs.

TABLE 6-8 GENERAL RESPONSE ACTIONS AND POTENTIAL REMEDIAL TECHNOLOGIES FINAL CREEK, SETTLING PONDS, AND SPOILS DISPOSAL AREA SOIL

FEASIBILITY STUDY BADGER ARMY AMMUNITION PLANT

GENERAL RESPONSE ACTION	SOIL TECHNOLOGY	DESCRIPTION
	Soil Flushing	Aqueous-based washing solution is applied at the ground surface. Contaminants are removed from soil particles and held in the liquid phase as the solution infiltrates the soil. Solution containing the contaminants is removed through extraction wells after reaching the water table.

Notes:

RCRA = Resource Conservation and Recovery Act

REMEDIAL TECHNOLOGY	ADVANTAGES	DISADVANTAGES	SCREENING STATUS	Comments
No Action	Easily implemented. No costs would be incurred with this option other than for monitoring.	Does not reduce exposure potential for human or environmental receptors. Would not reduce mobility, toxicity, or volume of contaminants.	Eliminated	Not protective of human health or the environment.
Institutional Controls/ Education Programs	 Reduces exposure potential for human receptors. Easily implemented. Low potential for exposure to contaminants during implementation. Minimal impact to environment during 	Would not reduce mobility, toxicity, or volume of contaminants. Long-term monitoring and maintenance would be required. Long-term liability associated	Retained	Would reduce the potential for direct contact and ingestion by human receptors.

REMEDIAL TECHNOLOGY	Advantages	DISADVANTAGES	SCREENING STATUS	COMMENTS
Soil Cover	 Reduces exposure potential for human and environmental receptors. Not subject to RCRA Land Disposal Restrictions. Easily implemented. Cover soil can be selected and grading designed to reduce infiltration of surface water through contaminated soil. 	Would not reduce mobility, toxicity, or volume of contaminants. Would not reduce mobility of contaminants resulting from infiltration of precipitation, and would not be protective of groundwater. Uncertain design life. Long-term monitoring and maintenance would be required. Long-term liability associated with waste.	Retained	Soil cover would reduce direct contact and ingestion hazards associated with exposure to surface soil, and could reduce infiltration water.

REMEDIAL TECHNOLOGY	ADVANTAGES	DISADVANTAGES	SCREENING STATUS	COMMENTS
Capping	Reduces exposure potential for human and environmental receptors.	Would not reduce toxicity, or volume of contaminants.	Retained	Cap would meet remediation goals.
	 No secondary wastes produced. Commonly used method for 	Complete containment of contaminants not provided.		
	remediation. • Significantly	Uncertain design life.		
	reduces potential for contaminant mobility.	Long-term moni- toring and maintenance would be required.		
		Long-term liabil- ity associated with waste.		

REMEDIAL TECHNOLOGY	Advantages	DISADVANTAGES	SCREENING STATUS	Comments
On-Site Landfill	No secondary wastes produced. Contaminants may be relocated to a more stable, contained, lower exposure potential environment. No transportation of waste over public roads. Experienced excavation contractors available.	Would not reduce toxicity, or volume of contaminants. RCRA Land Disposal Restrictions may limit wastes eligible for disposal. Long-term monitoring and maintenance would be required. Long-term liability associated with landfilled waste.	Eliminated	Obtaining regulatory approval for a special waste landfill at BAAP would likely be difficult due to site geology (i.e., sandy soils) overlying an aquifer used as a drinking water source.

REMEDIAL TECHNOLOGY	Advantages	DISADVANTAGES	SCREENING STATUS	Comments
Off-Site Landfill	 Widely used and easily implemented technology. No wastes/treatment residuals remaining on site. Contaminants may be relocated to a more stable, contained, lower exposure potential environment. Relatively little mobilization effort and cost. Experienced excavation contractors available. 	Would not reduce toxicity or volume of contaminants. RCRA Land Disposal Restrictions may limit wastes eligible for disposal. Limited landfill capacity nationwide. Transportation and landfilling costs may be expensive. Long-term liability associated with landfilled wastes.	Retained	Could be used for direct disposal of soils or as an option for disposal of treatment residuals.
On-Site Incineration	Destruction and removal efficiencies of greater than 99.99% for organics, thus reducing volume of contaminants. Widely used and demonstrated for treating organics at full-scale. Mobile units are available.	 Treatment of metals collected by air pollution equipment may be required. Trial burns would be required to receive permits to operate. Treatment of metals remaining in the soil may be required. 	Eliminated	Not capable of treating metals.

REMEDIAL TECHNOLOGY	Advantages	DISADVANTAGES	SCREENING STATUS	Comments
Off-Site Incineration	Destruction and removal efficiencies of greater than 99.99%, thus reducing volume of contaminants. Widely used and demonstrated for treating organics at full-scale. No long-term monitoring or maintenance required. Experienced vendors are available.	Treatment of metals remaining in soil may be required. Limited capacity at RCRA-permitted incinerators. High cost associated with transportation and incineration of wastes.	Eliminated	Not capable of treating metals.

REMEDIAL TECHNOLOGY	Advantages	DISADVANTAGES	SCREENING STATUS	Comments
Solvent Extraction	Contaminants are transferred into a manageable liquid waste stream. Capability for treating soils contaminated with VOCs/SVOCs and metals. Demonstrated full-scale performance for removal of VOCs/SVOCs from sludge.	Would not reduce mobility, toxicity, or volume of contaminants. Concentrated contaminant waste stream requires further treatment. Limited operating experience with BAAP-specific contaminated soils. Depending on process, residual extraction solvent may remain in soil and would require treatment. Treatability studies required to determine potential for treating soil contaminated with inorganics (especially metals).	Eliminated	Solvent extraction has been demonstrated primarily on sludges; there is very little experience with contaminated soils. This technology would not offer significant advantage over other proven technologies.

REMEDIAL TECHNOLOGY	Advantages	DISADVANTAGES	SCREENING STATUS	COMMENTS
Ex-situ Stabilization/ Solidification	 Reduces mobility of contaminants. Technology is relatively simple and easily implemented. Technology is reliable and has been demonstrated at full-scale for treating VOCs/SVOCs and metals. Experienced vendors are available. 	Would not reduce toxicity or volume of contaminants. Volume of contaminated media potentially increased by 20-30%. Pre-treatment for VOCs/SVOCs potentially required. Treatment is potentially reversible and, therefore, long-term performance not demonstrated. Treatability studies would be required. High concentrations of VOCs/SVOCs may interfere with the setting agent.	Retained	Technology demonstrated for treatment of metals.

REMEDIAL TECHNOLOGY	Advantages	DISADVANTAGES	SCREENING STATUS	COMMENTS
Anaerobic Thermal Process	Contaminants are transferred into a manageable liquid waste stream. May not require an incinerator permit to operate. Demonstrated full-scale performance for removal of VOCs/SVOCs from soil.	Concentrated contaminant waste stream requires further treatment. Treatment of metals remaining in soil required. Treatment of metals collected by air pollution control equipment potentially required. Limited number of transportable units available. Treatability studies would be required.	Eliminated	Not capable of effectively treating soil contaminated with metals.

REMEDIAL TECHNOLOGY	Advantages	DISADVANTAGES	SCREENING STATUS	COMMENTS
Biodegradation/ Composting	Would reduce mobility, toxicity, and volume of contaminants.	Treatment of leachate may be required. Metals are not	Eliminated	Not applicable to metals applications.
	Demonstrated per- formance for treating nitrocellulose contaminated sediment during treatability and field studies at BAAP.	effectively treated by biodegradation.		
	Composting materials are readily available.			
	Widely used for treatment of petroleum wastes and sludge from municipal sewage treatment plants.			

REMEDIAL TECHNOLOGY	Advantages	DISADVANTAGES	SCREENING STATUS	COMMENTS
Soil Washing	 Wide application to varied waste groups. Demonstrated at full-scale for removal of VOCs/SVOCs and metals from soil. Mobile units are available. 	 Potentially hazardous chemicals may be brought on site to be used in process. Concentrated contaminant waste stream requires further treatment. Potential difficulty in removing washing solution from treated soil. Limited effectiveness for treating soil with high humic content and high fine-grained clay fraction. Treatability studies would be required to determine potential for treating soils contaminated with metals. 	Retained	Capable of treating soil contaminated with both VOCs/SVOCs and metals.

REMEDIAL TECHNOLOGY	ADVANTAGES	DISADVANTAGES	SCREENING STATUS	COMMENTS
Vitrification	Reduces mobility, toxicity, and volume of VOCs/SVOCs. Reduces mobility of metals. Effective for VOCs/SVOCs and metals.	Treatment may be required to destroy VOCs in the vapor phase. Vitrified soil would require disposal. Would not be effective on soils with high moisture content. Process is very energy intensive. Not demonstrated at the full-scale level for hazardous wastes. Mobile units not available.	Eliminated	Technology not demonstrated at full-scale level for treatment of explosives.

REMEDIAL TECHNOLOGY	ADVANTAGES	DISADVANTAGES	SCREENING STATUS	COMMENTS
In Situ Stabilization/ Solidification	 Reduces mobility of contaminants. Technology has been demonstrated at pilot-scale for treating VOCs/SVOCs and metals. Not subject to RCRA Land Disposal Restrictions. Technology is relatively simple and easily implemented. Experienced vendors are available. 	 Would not reduce toxicity, or volume of contaminants. Treatment is potentially reversible; long-term performance not demonstrated. Volume of contaminated media increased by 20-30%. High concentrations of VOCs/SVOCs may interfere with the setting agent. Reagent/waste ratios are difficult to control. Not demonstrated at full-scale. Long-term monitoring of the groundwater would be required. Treatability studies would be required. 	Retained	Technology has been demonstrated at pilot-scale for treatment of metals.

REMEDIAL TECHNOLOGY	ADVANTAGES	DISADVANTAGES	SCREENING STATUS	COMMENTS
In Situ Vitrification	Reduces mobility, toxicity, and volume of contaminants. Effective for VOCs/SVOCs and metals. Not subject to RCRA Land Disposal Restrictions.	Treatment may be required to destroy VOCs in the vapor phase. Would not be effective on solls with high moisture content. Process is very energy intensive. Vendors not currently available. Long-term groundwater monitoring would be required. Treatability studies would be required. Not demonstrated at the full-scale level for hazardous wastes.	Eliminated	Technology not demonstrated at full-scale level for treatment of explosives.

FEASIBILITY STUDY BADGER ARMY AMMUNITION PLANT

REMEDIAL TECHNOLOGY	Advantages	DISADVANTAGES	SCREENING STATUS	COMMENTS
Soil Flushing	Effective for removal of VOCs from permeable soils. Full-scale units are available. Not subject to RCRA Land Disposal Restrictions.	Difficulty in treating complex waste mixtures. Potential for uncontrolled migration of contaminants to groundwater. Limited effectiveness for treating soil with high humic content and high finegrained clay fraction. Treatability studies would be required.	Eliminated	Should not be considered at a site where groundwater remediation is not planned. Would result in spreading contamination into a previously uncontaminated media (i.e., groundwater).

Notes:

BAAP = Badger Army Ammunition Plant

RCRA = Resource Conservation and Recovery Act

SVOC = Semivolatile Organic Compound VOC = Volatile Organic Compound

TABLE 6-10 REMEDIAL TECHNOLOGIES RETAINED FOR REMEDIAL ALTERNATIVES DEVELOPMENT FINAL CREEK, SETTLING PONDS, AND SPOILS DISPOSAL AREA SOIL

MINIMAL ACTION	CONTAINMENT	Excavation/ Disposal	SOIL EXCAVATION/TREATMENT	In Situ Treatment
 Institutional Controls/Education Programs 	Soil Cover Capping	Off-site Landfill	Ex-situ Stabilization/ SolidificationSoil Washing	In-situ Stabiliza- tion/Solidifi- cation

IDENTIFICATION OF REMEDIAL ALTERNATIVES FINAL CREEK, SETTLING PONDS, AND SPOILS DISPOSAL AREA SOIL TABLE 6-11

FEASIBILITY STUDY BADGER ARMY AMMUNITION PLANT

					Action		
ALTERNATIVES	MINIMAL ACTION	SOIL COVER	CAPPING	OFF-SITE LANDFILL	SOIL WASHING	EX-SITU STABILIZATION/ SOLIDIFICATION	IN SITU STABILIZATION/ SOI IDJEICATION
Surface Soils							
SSP-SS1	×						
SSP-SS2		×					
SSP-SS3			×				
SSP-SS4				×			
SSP-SS5					×		
SSP-SS6					•	×	
SSP-SS7		×				<	>
SSP-SS8				×		>	<

Note:

Identified technology is a component of alternative.

FEASIBILITY STUDY BADGER ARMY AMMUNITION PLANT

Remedial Action Objectives:

- Prevent migration of contaminated soil by soil erosion.
- 2) Prevent the exposure of terrestrial receptors to surface soil at Final Creek and the Settling Ponds containing concentrations of PB (excluding Settling Pond 3) and SN that pose unacceptable risk.
- 3) Prevent the exposure to terrestrial receptors to surface soil containing concentrations of DEP (at Settling Ponds 1, 2, and 3) and DPA (at Final Creek and Settling Pond 1) that pose unacceptable risk.
- 4) Prevent the exposure of terrestrial receptors to surface soil at Settling Pond 4 containing concentrations of AL that pose unacceptable risk.
- 5) Prevent the exposure of terrestrial receptors to surface soil at the Spoils Disposal Sites containing concentrations of ZN and PB that pose unacceptable risk.
- 6) Prevent the exposure of terrestrial receptors to surface soil at Spoils Disposal Site 1 containing concentrations of DPA and NG that pose unacceptable risk.
- 7) Prevent the exposure of human receptors to soil at Final Creek and the Settling Ponds containing concentrations of 24DNT, 26DNT, and CPAH that pose unacceptable risk.
- Prevent the exposure of human receptors to soil at the Spoils Disposal Sites containing concentrations of 24DNT that pose unacceptable risks.
- 9) Prevent concentrations of 24DNT and PB in soil at Final Creek and the Settling Ponds which exceed cleanup standards for protection of groundwater (developed from the proposed Chapter NR 720) from degrading groundwater quality in excess of WPALs.
- 10) Prevent concentrations of 24DNT, PB, and ZN in soil at the Spoils Disposal sites which exceed cleanup standards for protection of groundwater (developed from the proposed Chapter NR 720) from degrading groundwater quality in excess of WPALs.

ALTERNATIVE	DESCRIPTION OF KEY COMPONENTS
SSP-SS1: Minimal Action	Institutional Controls. Implement zoning and deed restrictions to restrict or prohibit future residential use of the site.
	Education programs.
	Five-year site reviews.
SSP-SS2: Soil Cover	Installation of a 2-foot minimum soil cover plus subgrade fill for grading purposes to prevent direct contact or incidental ingestion by ecological or human receptors.
	Surface water management to minimize erosion of cover system.
	Post-closure plan development to monitor, maintain, and inspect site.

ALTERNATIVE	DESCRIPTION OF KEY COMPONENTS
SSP-SS2: Soil Cover (continued)	Institutional controls. Implement zoning and deed restrictions to protect the soil cover from invasive activities.
	Five-year site reviews.
SSP-SS3: Capping	Very low permeability components of caps (i.e., geomembrane and clay) significantly reduce leaching of contaminants to groundwater.
	Surface water management to minimize erosion of cover system.
	Post-closure plan development to monitor, maintain, and inspect site.
	Institutional controls. Implement zoning and deed restrictions to protect the caps from invasive activities.
	Five year site review.
SSP-SS4: Off-Site Landfill	Excavate contaminated soil.
	Confirmatory sampling to confirm wastes have been removed.
	Backfill excavation with clean fill.
	Sample and analyze excavated soil to establish that it meets landfill acceptable criteria.
	Transport soil to off-site landfill.

	ALTERNATIVE	DESCRIPTION OF KEY COMPONENTS
SSP-SS5:	Soil Washing	Mobilize soil washing equipment to site.
		Excavate contaminated soil.
		Confirmatory sampling to confirm wastes have been removed.
		Transport and stockpile wastes at treatment area.
		Wash contaminated soil.
		Transport secondary waste streams off site for treatment.
		Backfill excavations with treated soil.
SSP-SS6:	Ex-situ Stabilization/Solidification, Soil Cover	Excavate contaminated soils.
		Confirmatory sampling to confirm wastes have been removed.
		Transport and stockpile wastes at treatment area.
		Stabilize/solidify soil.
		Transport treated soil mass back to excavations.
		 Backfill excavations with treated soil mass, and place soil cover, plus subgrade fill for grading purposes.
SSP-SS7:	Modified In-Situ Stabilization/ Solidification, Soil Cover	Mobilize in-situ stabilization equipment to the site.
		Excavate contaminated subsurface soils (Settling Pond 1) and stockpile on site.
		 Backfill excavation with clean cover soil plus additional fill for grading purposes.
		Stabilize/solidify contaminated surface soil in-situ.
		Spread excavated contaminated soil over treated surface soil.
		Stabilize/solidify excavated contaminated soil using in-situ equipment.
		Confirmatory sampling to ensure contaminated soil has been stabilized.
		 Cover treated area with clean cover soil plus additional fill for grading purposes.
		Post-closure plan development to monitor, maintain, and inspect site.
		Five-year site reviews.

		ALTERNATIVE	DESCRIPTION OF KEY COMPONENTS
	SSP-SS8:	Ex-situ Stabilization/Solidification, Off-site Landfill	Excavate contaminated soils.
			Confirmatory sampling to confirm wastes have been removed.
			Backfill excavation with clean fill.
			Transport and stockpile wastes at treatment area.
			Stabilize/Solidify soil.
_			Transport stabilized soil to off-site landfill.

FEASIBILITY STUDY BADGER ARMY AMMUNITION PLANT

<u>Alternative SSP-SS1: Minimal Action</u>: This alternative consists of institutional controls, educational programs, and five-year site reviews.

Effectiveness	IMPLEMENTABILITY	Cost
Advantages	Advantages	Advantages
 Low potential for exposure to contaminants during implementation. 	Would be easy to implement because no remedial actions are required.	Cost includes administration of institutional controls, educational programs, and groundwater monitoring and maintenance.
 Institutional controls would restrict or prohibit future residential use of the site. 	Services and material readily available.	
 Educational programs would increase public awareness about contamination. 		
Disadvantages	<u>Disadvantages</u>	<u>Disadvantages</u>
 Would not reduce mobility, toxicity, or volume of contaminants. 	Not consistent with SARA's preference for treatment.	Remedial actions, if required, may be more costly in the future if contamination migrates.
Does not achieve remedial action objectives.	Long-term monitoring and maintenance would be required.	Long-term liability associated with waste.

<u>CONCLUSION</u>: The minimal action alternative is <u>retained</u> as a baseline for comparison with the remaining alternatives at the Settling Ponds and Spoils Disposal Areas.

Note:

SARA = Superfund Amendments and Reauthorization Act

FEASIBILITY STUDY BADGER ARMY AMMUNITION PLANT

<u>Alternative SSP-SS2: Soil Cover</u>: This alternative consists of a soil cover to prevent direct contact and incidental ingestion of contaminated surface soil by ecological and human receptors. This alternative includes five-year site reviews.

EFFECTIVENESS	IMPLEMENTABILITY	Cost
Advantages	Advantages	Advantages
 Soil cover would be effective in reducing contact with contami- nated soil by ecological and human receptors. 	Would be easy to implement.Soil cover would require minimal maintenance.	Soil cover costs are relatively low per unit.
 Not subject to RCRA Land Disposal Restrictions. 	Equipment and supplies readily available.	
 Cover soil may be selected (by reducing fines content), and surface graded to reduce leaching of contaminants to groundwater. 		
<u>Disadvantages</u>	Disadvantages	<u>Disadvantages</u>
 Fails to meet remedial action objectives for protection of groundwater. 	Would require long-term monitoring and maintenance.	Long-term liability associated with waste.
 Would not reduce the mobility, toxicity, or volume of contaminants. 	 May require future soil treatment. Approximately 1,000,000 yd³ of fill would be required. 	Long-term costs associated with operation and maintenance of cover.
Soil cover may only be protective for the short term if not properly maintained.		

<u>CONCLUSION</u>: Because this alternative does not meet the remedial action objectives developed in accordance with proposed chapter NR 720, it is <u>eliminated</u> from further consideration.

Note:

RCRA = Resource Conservation and Recovery Act

FEASIBILITY STUDY BADGER ARMY AMMUNITION PLANT

Alternative SSP-SS3: Capping: This alternative consists of a low hydraulic conductivity cap to prevent direct contact and incidental ingestion of contaminated surface soil by ecological receptors and to significantly reduce infiltration of surface water through waste and subsequent leaching to groundwater. This alternative includes five-year site reviews.

EFFECTIVENESS	IMPLEMENTABILITY	Cost
<u>Advantages</u>	<u>Advantages</u>	Advantages
 Potential for achieving remedial action objectives. Low potential for exposure to contaminants during implementation. Capping would be effective in reducing contact with contaminated soil by ecological receptors. Capping would minimize significantly reduce of contaminants to groundwater. Not subject to RCRA Land Disposal Restrictions. 	 Would be easy to implement. Capping would require minimal maintenance. Equipment, supplies, and vendors are readily available. 	Capping costs are relatively low per unit.
<u>Disadvantages</u>	<u>Disadvantages</u>	<u>Disadvantages</u>
 Would not reduce the toxicity, or volume of contaminants. 	Would require long-term monitoring and maintenance.	Long-term liability associated with waste.
 Capping cover may only be protective for the short term if not properly maintained. RCRA caps may only be protective for the short term. 	 May require future soil treatment. Approximately 1,800,000 yd³ of fill are required. Several borrow sources must be used to obtain suitable soil. A borrow study must be performed on each source. 	Long-term costs associated with operation and maintenance of cover.

<u>CONCLUSION</u>: Because this alternative reduces direct contact, would be easily implemented and potentially achieves remedial action objectives, it is <u>retained</u> for detailed analysis.

Note: RCRA = Resource Conservation and Recovery Act

FEASIBILITY STUDY BADGER ARMY AMMUNITION PLANT

Alternative SSP-SS4: Off-Site Landfill: This alternative consists of excavating contaminated soil, backfilling excavations with clean fill, and transporting the contaminated soil off site for disposal in a secure landfill.

EFFECTIVENESS	IMPLEMENTABILITY	Cost
Advantages	Advantages	<u>Advantages</u>
 Achieves remedial action objectives. Disposal of contaminants in a secure landfill. Eliminates threat to ecological and human receptors at site. 	 Long-term monitoring and maintenance provided by host landfill. Surface and shallow subsurface soils are easily removed with conventional grading/excavation equipment. Excavation and transportation services are available. No post-remediation monitoring or maintenance program required. 	No long-term costs associated with operation and maintenance of monitoring systems.
<u>Disadvantages</u>	Disadvantages	Disadvantages
 Would not reduce the toxicity, or volume of contaminants. Excavation would increase the dermal contact risk for on-site workers. 	 Contaminated soil may fail TCLP analysis for SN, PB, thus invoking RCRA Land Disposal Restrictions. Contaminated soil which fails TCLP analysis for NC, PB would be rejected by landfill unless it is first treated. Approximately 490,000 yd³ would be transported for disposal. Capacity at RCRA-permitted landfills may be limited. 	 With a volume of 490,000 yd³, the transportation and landfilling cost for this alternative would be quite expensive. Long-term liability associated with landfilled wastes.

<u>CONCLUSION</u>: Approximately 490,000 yd³ are to be remediated at the Settling Ponds and Spoils Disposal Area. Considering that landfill capacity may be limited and the cost for transportation and disposal is very high, this alternative is <u>eliminated</u> from further evaluation.

Notes:

RCRA = Resource Conservation and Recovery Act
TCLP = Toxicity Characteristic Leachate Procedure

PB = Lead SN = Tin

TABLE 6-13 SCREENING OF REMEDIAL ALTERNATIVES SETTLING PONDS SOIL

FEASIBILITY STUDY BADGER ARMY AMMUNITION PLANT

<u>Alternative SSP-SS5: Soil Washing</u>: This alternative consists of excavating contaminated soil, washing contaminated soil, and backfilling the excavations with the treated soil.

EFFECTIVENESS	IMPLEMENTABILITY	Cost
Advantages	Advantages .	Advantages
 Achieves remedial action objectives. 	Soil washing is a proven, reliable technology for treating varied waste groups, including metals.	No post-remediation operation and maintenance costs.
 Reduces the volume of contaminated soil. 	Soil washing services are available.	No long-term liability.
 Threat to ecological receptors is eliminated. 	No post-remediation monitoring and maintenance provisions.	,
Off-site treatment of contaminated wastestream would reduce mobility of contaminants.	Surface soils are easily and rapidly removed with conventional excavation/grading equipment.	
<u>Disadvantages</u>	<u>Disadvantages</u>	<u>Disadvantages</u>
 Would not reduce toxicity or volume of contaminant of concern. 	Contaminants may be difficult to remove from fine-grained soils.	Costs of treating the secondary waste stream could significantly increase overall cost.
 Potential for direct human contact with contaminated soil during soil washing. 	Depending on the soil gradation, the secondary waste stream may be a significant percentage of the original volume.	Costs to excavate approximately 490,000 yd³ are high.
 Limited effectiveness for soils with high humic content and high fine grained fraction. 	Fine soil particles are difficult to remove from the washing solution.	
	Treatability study required to determine effectiveness.	

<u>CONCLUSION</u>: Because the surface soil at the Settling Ponds and Spoils Disposal Area is topsoil and loess, soil washing may not result in significant contaminant volume reduction. Therefore, this alternative is <u>eliminated</u> from further consideration.

FEASIBILITY STUDY BADGER ARMY AMMUNITION PLANT

<u>Alternative SSP-SS6: Ex situ Stabilization/Solidification</u>: This alternative consists of excavating contaminated soil, solidifying it, backfilling it on site, and covering it. Five-year site reviews are included.

Effectiveness	IMPLEMENTABILITY	Cost
Advantages	Advantages	Advantages
 Achieves remedial action objectives because contaminants in the treated soil are unavailable to receptors and would not leach into groundwater. Reduces the mobility of contaminants and reduces ingestion risk to ecological receptors. No significant long-term threat to human health or the environment. 	 Stabilization/Solidification is a proven, reliable technology for the treatment of PB- and SN-contaminated soils. Vendors are readily available. Surface and shallow subsurface soils are easily removed with conventional excavation equipment. 	 No transportation and disposal costs. Soil cover costs are low.
<u>Disadvantages</u>	<u>Disadvantages</u>	<u>Disadvantages</u>
Excavated soils would increase the dermal contact risk to on-site workers. Would not reduce to vicinity of	Backfilling areas of excavated surface soil would be difficult if treatment residuals consist of large monolithic blocks.	 Post-remediation costs associated with inspection, monitoring, and maintenance. Costs to excavate approximately
 Would not reduce toxicity of contaminants. 	Confirmatory testing of the final product may be required to	490,000 yd ³ are high.
 Volume of contaminated soil increases by 20-30% 	confirm that treated soil meets the treatment standards.	 If landfilling or further treatment is required, costs will increase significantly.
 Treatment is potentially reversible and landfilling or further treatment required. 	 Treatability studies would be required to determine reagent mixture. 	

<u>CONCLUSION</u>: Although solidification is an effective method of treatment for PB- and SN-contaminated soils, this alternative has no advantage over in situ treatment and, because it is actually more costly (with excavation costs), is <u>eliminated</u> from detailed analysis.

Notes:

PB = Lead SN = Tin

FEASIBILITY STUDY BADGER ARMY AMMUNITION PLANT

<u>Alternative SSP-SS7: Modified In Situ Stabilization/Solidification and Soil Cover</u>: This alternative consists of in situ stabilization of contaminated soils and 2 foot minimum soil cover. This alternative would also include five-year site reviews.

rev	reviews.				
	EFFECTIVENESS	IMPLEMENTABILITY	Соѕт		
<u>Ad</u>	vantages Achieves remedial action	Advantages Stabilization/Solidification is a	Advantages No transportation and disposal		
•	objectives because contaminants in the soil are unavailable to receptors and would not leach into groundwater.	 Stabilization/Solidification is a proven technology for treatment of PB- and SN-contaminated soils. Vendors are readily available. 	 No transportation and disposal costs. Soil cover costs are low. Lower capital costs as compared 		
•	Remediation of contaminated soil and soil cover would reduce mobility and eliminate direct contact and incidental soil ingestion hazards by ecological receptors.	Shallow subsurface soils are easily removed with conventional excavation equipment.	to ex-situ stabilization.		
	In situ treatment provides low potential for direct human contact with contaminants during the remediation process.	-			
Dis	<u>advantages</u>	<u>Disadvantages</u>	<u>Disadvantages</u>		
•	Would not reduce toxicity of contaminants in the solidified mass.	Confirmatory sampling of the final product may be required to ensure that the solidified mass meets treatment standards.	 Post-remediation costs. Long-term liability associated with unexcavated wastes. 		
•	Treatment is potentially reversible and landfilling or further treatment required.	Would require long-term monitoring and maintenance.	If landfilling or further treatment is required, costs will significantly increase.		
•	Volume of contaminated soil increased by 20-30%.	 Treatability study would be required to determine the optimal mixture of reagents. 			
•	Excavated soils would increase the dermal risk to on-site workers.	Backfilling areas of excavated surface soil would be difficult if treated soil consists of monolithic blocks.			
		 Would require excavation, stockpiling and ex situ treatment of approximately 232,000 yd³ of shallow subsurface soil. 			

<u>CONCLUSION</u>: This alternative is <u>retained</u> for detailed analysis because stabilization/solidification is a proven technology for the treatment of SN-PB-contaminated soil. In addition, in situ treatment has cost and disposal advantages over ex situ treatment.

Notes:

FEASIBILITY STUDY BADGER ARMY AMMUNITION PLANT

Alternative SSP-SS8: Ex-Situ Stabilization/Solidification, Off-site Landfill: This alternative consists of excavating contaminated soil, solidifying the soil, transporting the treated soil to an off-site landfill, and backfilling the excavations with clean fill.

Effectiveness	IMPLEMENTABILITY	Cost
Advantages	Advantages	Advantages
 Achieves remedial action objectives. Remediation of contaminated soil would reduce mobility, and eliminate direct contact of contaminants by ecological receptors. 	 Stabilization/Solidification is a proven technology for the treatment of PB-and SN-contaminated soil. Surface and shallow subsurface soils are easily removed with conventional excavation equipment. 	No post-remediation monitoring and maintenance costs.
<u>Disadvantages</u>	Vendors are readily available. Disadvantages	Disadvantages Costs are for approximately 490,000 yd³.
 Volume of contaminated soil increases by 20-30%. Would not reduce the toxicity or volume of the contaminants. Excavation would increase the dermal contact risk for on-site workers. 	 Land disposal requirements may be invoked. Treatability studies would be required to determine the optimal mixture of reagents. Confirmatory sampling would be required to confirm treated soil meets treatment standards. 	 High costs for disposal in a RCRA-permitted landfill. High cost for transportation. Long-term liability associated with landfilled wastes.

<u>CONCLUSION</u>: There is no cost advantage for this technology over in situ treatment and it is therefore <u>eliminated</u> from further consideration.

Notes:

RCRA = Resource Conservation and Recovery Act

PB = Lead SN = Tin

TABLE 6-14 SUMMARY OF REMEDIAL ALTERNATIVES SCREENING SETTLING PONDS AND SPOILS DISPOSAL AREA SOIL

А	LTERNATIVE	STATUS
Alternative SSP-SS1:	Minimal Action	Retained for detailed analysis.
Alternative SSP-SS2:	Soil Cover	Eliminated from detailed analysis.
Alternative SSP-SS3:	Capping	Retained for detailed analysis.
Alternative SSP-SS4:	Off-site Landfill	Eliminated from detailed analysis.
Alternative SSP-SS5:	Soil Washing	Eliminated from detailed analysis.
Alternative SSP-SS6:	Ex-Situ Stabilization/ Solidification, Soil Cover	Eliminated from detailed analysis.
Alternative SSP-SS7:	In Situ Stabilization/ Solidification, Soil Cover	Retained for detailed analysis.
Alternative SSP-SS8:	Ex-Situ Stabilization/ Solidification, Off-site Landfill	Eliminated from detailed analysis.

TABLE 6-15

SUMMARY OF CONTAMINATION ASSESSMENT THROUGH REMEDIAL ALTERNATIVES SCREENING SETTLING PONDS AND SPOILS DISPOSAL AREA

	CONTAMINATED SOIL AT THE SETTLING PONDS AND SPOILS DISPOSAL AREA
RI/FS COMPONENT	SURFACE SOILS
Identification of Contaminants of Concern	• SVOCs • Inorganics
Risk Assessment Results	 24DNT, 26DNT, CPAH, PB, and ZN exceed human health and/or protection of groundwater criteria (as developed from proposed Chapter NR 720). AL, DPA, DEP, NG, PB, SN, and ZN exceed acceptable ecological risk standards.
Remedial Action Objectives	 Prevent migration of contaminated soil by soil erosion. Prevent the exposure of terrestrial receptors to surface soil at Final Creek and the Settling Ponds containing concentrations of PB (excluding Settling Pond 3) and SN that pose unacceptable risk. Prevent the exposure to terrestrial receptors to surface soil containing concentrations of DEP (at Settling Ponds 1, 2, and 3) and DPA (at Final Creek and Settling Pond 1) that pose unacceptable risk. Prevent the exposure of terrestrial receptors to surface soil at Settling Pond 4 containing concentrations of AL that pose unacceptable risk. Prevent the exposure of terrestrial receptors to surface soil at the Spoils Disposal Sites containing concentrations of ZN and PB that pose unacceptable risk. Prevent the exposure of terrestrial receptors to surface soil at Spoils Disposal Site 1 containing concentrations of DPA and NG that pose unacceptable risk. Prevent the exposure of human receptors to soil at Final Creek and the Settling Ponds containing concentrations of 24DNT, 26DNT, and CPAH that pose unacceptable risk. Prevent the exposure of human receptors to soil at the Spoils Disposal Sites containing concentrations of 24DNT that pose unacceptable risks. Prevent concentrations of 24DNT and PB in soil at Final Creek and the Settling Ponds which exceed cleanup standards for protection of groundwater (developed from the proposed Chapter NR 720) from degrading groundwater quality in excess of WPALs. Prevent concentrations of 24DNT, PB, and ZN in soil at the Spoils Disposal sites which exceed cleanup standards for protection of groundwater (developed from the proposed Chapter NR 720) from degrading groundwater quality in excess of WPALs.
Remedial Technologies Retained After Screening	 Soil Cover Capping Off-Site Landfill Ex-Situ Stabilization/Solidification In-Situ Stabilization/Solidification Soil Washing

SOUTHERN OFF-POST AREA GROUNDWATER SUMMARY TABLE 7-1

BADGER ARMY AMMUNITION PLANT FEASIBILITY STUDY

COMPOUNDS OF	FREQUENCY	MAXIMUM DETECTED	MINIMUM DETECTED	SDWA (1)	3	WI GROU	WI GROUNDWATER STANDARDS (2)	CALCULATED
POTENTIAL	OF DETECTION	CONCENTRATION (ug/L)	CONCENTRATION (\(\rho\gamma\rho/L\)	MCL (µg/L)	MCLG (#g/L)	ES (µg/L)	PAL (#g/L)	CONCENTRATION (3)
ВА	2:2	24.8	24.3	2,000	2,000	2,000	400	
CCL4	8:52	10.8	1.68	S	0	S	0.5	
8	1:42	2.78	•	2	2	S	0.5	•
CHCL3	6:52	1.31	0.433	•	1	9	9.0	•
占	42:42	49,000	3,100	250,000(a)	1	•	ı	•
S	16:42	14.5	4.61	100	100	100	10	ı
ΨN	2:2	54.1	29.7	50(a)	ı	50(c)	25(c)	•
NA	2:5	27,000	25,000	20,000(b)	Ī		· ′ ı	ı
FN	42:42	27,000	1,300	10,000	10,000	10,000	2,000	
PB	1:42	5.6	•	F	0	. 51	5.	ı
SO ₄	42:42	64,000	18,000	250,000(a)	Í	250,000(c)	125,000(c)	ı
TRCLE	2:52	0.425	0.287	2	0	, LO	0.5	1

Sources:

Ξ	U.S. Environmental Protection Agency (USEPA), 1991, "Fact Sheet: National Primary Drinking Water Standards." Office of Water, Washington, D.C., August	(0)
	1991; USEPA, 1991, "Fact Sheet: National Secondary Drinking Water Standards," Office of Water, Washington, D.C., September 1991; and USEPA, 1990, "National	ng/L
	Primary and Secondary Drinking Water Regulations; Synthetic Organic Chemicals	SDWA
	and Inorganic Chemicals, Final Rule," 57FR31776, July 17, 1992.	MCL
િ	Wisconsin Administrative Code, Chapter NR 140.10, Table 1.	MCLG
(3)	Calculated to be protective at risk of 10-8 or HI of 1.	₹
		ES
Notes:		PAL
		F

Secondary drinking water standard, suggested level.
Reporting level. Monitoring is required and data is reported to health officials to protect individuals on restricted sodium diet. <u>a</u> <u>0</u>

Values for protection of public welfare (usually aesthetic concerns) rather than for protection of public health. Treatment technique requirement in effect Maximum Contaminant Level Goal Copper action level = 1,300 µg/L Maximum Contaminant Level Lead action level = $15 \mu g/L$ Safe Drinking Water Act Preventive Action Limit **Enforcement Standard** micrograms per liter Wisconsin

> Full compound names are identified in the USAEC Chemical Code list located behind the glossary of acronyms.

TABLE 7-2 GENERAL RESPONSE ACTIONS AND POTENTIAL REMEDIAL TECHNOLOGIES SOUTHERN OFF-POST AREA GROUNDWATER

GENERAL RESPONSE ACTION	GROUNDWATER TECHNOLOGY	DESCRIPTION
No Action	Groundwater Monitoring	Perform water quality analyses to monitor contaminant migration and assess future environmental impacts.
Minimal Action	Institutional Controls/ Education Programs	Restrictions on use of contaminated groundwater. Educate public concerning site hazards.
Containment	Slurry Wall	Emplacement of a low-permeability barrier to restrict groundwater migration. Should include a cover system to reduce infiltration.
Collection	Groundwater Extraction Wells	Installation of several strategically located pumping wells to collect contaminated groundwater for treatment.
Treatment	UV/Oxidation	Oxidize VOCs in extracted groundwater through simultaneous application of UV light and ozone or hydrogen peroxide.
	UV/Reduction	Chemically reduce VOCs in extracted groundwater through simultaneous application of UV light and a proprietary liquid catalyst.
·	Air Stripping	Reduce concentrations of VOCs through intimate contact of extracted groundwater with air. Water descends a packed column while air is forced up the column to promote mass transfer of organics from aqueous to gaseous phase.
	Carbon Adsorption	Reduce concentrations of aqueous or gaseous phase VOCs through adsorption onto granular activated carbon. May be used as a polishing step for treatments such as air stripping to further reduce VOC concentrations in groundwater or to capture VOCs in air stripper emissions. Process produces a concentrated waste stream requiring further treatment.

TABLE 7-2 GENERAL RESPONSE ACTIONS AND POTENTIAL REMEDIAL TECHNOLOGIES SOUTHERN OFF-POST AREA GROUNDWATER

FEASIBILITY STUDY BADGER ARMY AMMUNITION PLANT

GENERAL RESPONSE ACTION	GROUNDWATER TECHNOLOGY	DESCRIPTION
	Resin Adsorption	Contaminants are transferred from the dissolved state to the surface of the resin. Resin can be regenerated by removing the contaminants with steam or solvent. Process produces a concentrated waste stream requiring further treatment.
In Situ Treatment	In Situ Biological	Introduce nutrients and oxygen or methane into the groundwater using a matrix of extraction wells and recirculation techniques.
Discharge	Off-Site Water Treatment Facility	Off-site disposal of extracted groundwater to a POTW. Groundwater would require transport by means of a force main and/or gravity feed sewer or by truck to the POTW.
	Groundwater Reinjection	Reinject treated groundwater using a series of wells and pumps. Can be used to enhance plume removal and accelerate remediation.
	Discharge to Surface Water	Discharge treated groundwater directly to nearby surface water body. Transport groundwater by means of force or gravity main.

Notes:

POTW = Publicly Owned Treatment Works

UV = ultraviolet

VOCs = volatile organic compounds

TABLE 7-3 REMEDIAL TECHNOLOGY SCREENING SOUTHERN OFF-POST AREA GROUNDWATER

REMEDIAL TECHNOLOGY	ADVANTAGES	DISADVANTAGES	SCREENING STATUS	Comments
Groundwater Monitoring	Monitors short- and long-term effectiveness of remedial technologies when used during and after remediation.	Would not reduce mobility, toxicity, or volume of contaminants when used alone.	Retained	Required component of groundwater remediation.
Institutional Controls/ Educational Programs	Reduces exposure potential for human receptors. Easily implemented.	Would not reduce mobility, toxicity, or volume of contaminants. May require future groundwater treatment.	Retained	Partially protective of human health and is easily implemented.
Slurry Wall	May reduce mobility of contaminants present in groundwater. Would reduce potential for off-site impact from contaminants present in groundwater.	Current construction methods/equipment are limited to a depth of 200 feet below ground surface. Containment would not reduce the toxicity or volume of contaminants in groundwater. Contaminants may degrade slurry wall material.	Eliminated	Current construction methods/equipment incapable of constructing a slurry wall to a depth of 250 feet, as would be required at the Southern Off-Post Area.
Groundwater Extraction Wells	Groundwater extraction systems have been successfully implemented in similar hydrogeologic conditions.	Wells must be strategically located so that cones of depression intersect and capture all contaminated groundwater.	Retained	Groundwater extraction wells required for pump and treat alternatives.
UV/Reduction	Treatment provides permanent onsite destruction of organics into carbon dioxide and water, or nontoxic intermediates. No air emissions or sludge is produced during the treatment process. Destruction of saturated chlorinated VOCs proven during pilot-scale operation.	Reliability of this technology has not been demonstrated. Treatability study should be performed prior to full-scale design to determine operating parameters and pretreatment requirements necessary to optimize operating efficiency.	Eliminated	Significant treatment costs associated with operation.

TABLE 7-3 REMEDIAL TECHNOLOGY SCREENING SOUTHERN OFF-POST AREA GROUNDWATER

REMEDIAL TECHNOLOGY	Advantages	Disadvantages	SCREENING STATUS	COMMENTS
UV/Oxidation	Treatment provides permanent onsite destruction of organics into carbon dioxide and water, or nontoxic intermediates. No air emissions or sludge is produced during the treatment process. Destruction of VOCs proven during full-scale operation.	Difficulty in treating saturated chlorinated VOCs, such as CCL4. Treatability study should be performed prior to full-scale design to determine operating parameters and pretreatment requirements necessary to optimize operating efficiency.	Eliminated	Not an energy- efficient technology for treatment of saturated VOCs (e.g. CCL4 and CHCL3)
Air Stripping	Treatment would reduce the volume of contaminants in groundwater. Air Stripping is a proven and reliable technology for treatment of VOCs.	Off-gases produced during remediation may require collection/treatment/disposal. Treatment is not effective for compounds with low volatility. Pretreatment for the removal of inorganics required to prevent fouling of air-stripper system. Post-treatment by carbon adsorption may be required to meet discharge limits.	Retained	Retained for treatment of VOCs in Southern Off-Post Area groundwater.
Carbon Adsorption	Treatment effectively removes organic material from groundwater by sorption. Technology is reliable and has been demonstrated for treating VOCs/SVOCs at full-scale. Carbon adsorption could be implemented as a polishing step after air stripping to meet discharge requirements.	Suspended solids may require removal prior to treatment to avoid clogging carbon bed. Spent carbon from the adsorption process would require disposal or regeneration.	Retained	Retained for treatment of VOCs in Southern Off-Post Area groundwater.
Resin Adsorption	Treatment would reduce the volume of chemicals in groundwater. Removes VOCs/SVOCs and metals from the wastewater stream. Capable of treating high flows.	Process concentrates contaminants within the resin column, necessitating regeneration or disposal of the resin. Reliability of this technology has not been demonstrated, particularly for groundwater treatment.	Eliminated	Potentially significant treatability study costs. Full scale systems have not been constructed.

TABLE 7-3 REMEDIAL TECHNOLOGY SCREENING SOUTHERN OFF-POST AREA GROUNDWATER

FEASIBILITY STUDY BADGER ARMY AMMUNITION PLANT

REMEDIAL TECHNOLOGY	Advantages	DISADVANTAGES	SCREENING STATUS	COMMENTS
In situ Biological Treatment	Treatment would reduce volume, toxicity, and mobility of chemicals present in groundwater. Contaminants are degraded to non-toxic compounds. No air emissions or secondary waste streams are produced. Recirculation equipment is off-the-shelf.	Significant time and expense for laboratory degradation studies and field demonstrations. Chlorinated VOCs/SVOCs (e.g., CCL4) can be difficult to treat. Parameters (e.g., temperature, pH, nutrients, and oxygen) for optimal microorganism growth can be difficult to maintain. Injection wells are susceptible to plugging by chemical precipitation of nutrients.	Eliminated	Not a demonstrated technology for remediation of Southern Off-Post Area contaminants.
Off-Site Water Treatment Facility	If sewer connection is nearby, this can be a relatively inexpensive discharge option.	Approval by POTW, community, and WDNR may be difficult.	Eliminated	Discharge to surface water is the preferred option.
Groundwater Reinjection	Groundwater not meeting remedial goals may be reinjected upgradient for further treatment via pump-and- treat technology.	Infiltration of treated groundwater could affect the migration of contaminants: Reinjection of water into the plume's path may alter the extraction system's ability to collect contaminated groundwater. Mixing treated water with untreated groundwater in a reinjection well may cause metal precipitation.	Eliminated	Discharge to surface water is the preferred option.
Discharge to Surface Water	Wisconsin River is in close proximity to the southern boundary of the Southern Off-Post Area.	Discharge water must meet applicable discharge standards developed by WDNR.	Retained	IRM facility currently discharges to Lake Wisconsin, therefore, obtaining regulatory approval is not expected to be difficult.
RM = Interim IW = megav BG = Propel	er Army Ammunition Plant Natt lant Burning Ground ly owned treatment works	SVOCs = semivolat TSCA = Toxic Sub UV = ultraviolet VOCs = volatile or	ille organic com ostances Contro t ganic compoun	nd Recovery Act pounds Act

Full compound names are identified in the USAEC Chemical Code List located behind the Glossary of Acronyms.

TABLE 7-4 REMEDIAL TECHNOLOGIES RETAINED FOR REMEDIAL ALTERNATIVES DEVELOPMENT SOUTHERN OFF-POST AREA GROUNDWATER

FEASIBILITY STUDY BADGER ARMY AMMUNITION PLANT

MINIMAL ACTION ¹	COLLECTION & TREATMENT	In-situ Treatment ¹	DISCHARGE
Institutional Controls/ Education Programs	Groundwater Extraction Wells Air Stripping Carbon Adsorption	None	Surface Water

Notes:

¹Groundwater monitoring would be used in conjunction with these technologies. UV = Ultraviolet

TABLE 7-5 IDENTIFICATION OF REMEDIAL ALTERNATIVES SOUTHERN OFF-POST AREA GROUNDWATER

FEASIBILITY STUDY BADGER ARMY AMMUNITION PLANT

	Action				
ALTERNATIVES	MINIMAL ACTION	GROUNDWATER EXTRACTION WELLS	AIR STRIPPING	CARBON ADSORPTION	DISCHARGE TO SURFACE WATER
SOPA-GW1	Х				
SOPA-GW2		X	x		x
SOPA-GW3		X	2	X	X

Note:

X = Identified technology is a component of alternative.

TABLE 7-6 DEVELOPMENT OF REMEDIAL ALTERNATIVES SOUTHERN OFF-POST AREA GROUNDWATER

FEASIBILITY STUDY **BADGER ARMY AMMUNITION PLANT**

Remedial Action Objective:

(1) Prevent concentrations of CCL4, CHCL3, TRCLE, CD, MN, and PB in groundwater, which exceed

WPALs, from becoming available to potential human receptors.			
ALTERNATIVE	DESCRIPTION OF KEY COMPONENTS		
SOPA-GW1: Minimal Action	 Institutional controls. Implement zoning and deed restrictions to prohibit use of groundwater within and around the site. Education programs. 		
	Groundwater monitoring. Perform water quality analyses to monitor contaminant migration and assess future environmental impacts.		
	Five-year site reviews.		
SOPA-GW2: Air Stripping	 Install groundwater extraction system. 		
	Construct air stripping treatment facility.		
·	 Extract groundwater and treat in the new facility. 		
	 Discharge treated water to the Wisconsin River. 		
	 Monitor effluent as required by WDNR permit requirements. 		
	Groundwater monitoring. Perform water quality analyses to monitor cleanup progress.		
	Five-year site reviews.		
SOPA-GW3: Carbon Adsorption	 Install groundwater extraction system. 		
	 Construct carbon adsorption treatment facility. 		
	 Extract groundwater and treat in the new facility. 		
	 Discharge treated water to the Wisconsin River. 		
	 Monitor effluent as required by WDNR permit requirements. 		
	 Groundwater monitoring. Perform water quality analyses to monitor cleanup progress. 		
	Five-year site reviews.		

Notes:

WDNR

Wisconsin Department of Natural Resources Wisconsin Preventative Action Limit

WPAL

Full compound names are identified in the USAEC Chemical Code List located behind the Glossary of Acronyms.

TABLE 7-7 SCREENING OF REMEDIAL ALTERNATIVES SOUTHERN OFF-POST AREA GROUNDWATER

FEASIBILITY STUDY BADGER ARMY AMMUNITION PLANT

<u>Alternative SOPA-GW1: Minimal Action</u>: This alternative consists of institutional controls, educational programs, groundwater monitoring, and five-year site reviews.

EFFECTIVENESS	IMPLEMENTABILITY	Cost
Advantages Achieves remedial action objectives. Institutional controls would reduce the potential for future groundwater use. Educational program would	Advantages Would be easy to implement because no remedial actions are required. Services and material readily available.	Advantages Minimal cost for administration of institutional controls and educational programs. Allows funds to be directed toward the more effective source treatment at the Propellant
 increase public awareness about contaminated groundwater. Site water quality would be monitored to assess the affect of implementing Propellant Burning Ground groundwater remediation. 	Future groundwater remediation not necessary as long as Propellant Burning Ground remediation prevents further contaminant migration to off-post area.	Burning Ground.
<u>Disadvantages</u>	<u>Disadvantages</u>	<u>Disadvantages</u>
 Would not reduce mobility, toxicity, or volume of chemicals in groundwater. 	 Long-term monitoring and maintenance provisions would be required. 	 Long-term costs associated with operation and maintenance of monitoring systems.

<u>CONCLUSION</u>: The minimal action alternative is <u>retained</u> because this alternative is able to comply with the remedial objectives at the Southern Off-Post Area.

TABLE 7-7 SCREENING OF REMEDIAL ALTERNATIVES SOUTHERN OFF-POST AREA GROUNDWATER

FEASIBILITY STUDY BADGER ARMY AMMUNITION PLANT

<u>Alternative SOPA-GW2: Air Stripping</u>: This alternative consists of construction and operation of an air stripping treatment facility. This alternative includes groundwater extraction, treatment, effluent monitoring, discharge to the Wisconsin River, groundwater monitoring, and five-year site reviews.

Effectiveness	IMPLEMENTABILITY	Cost
Advantages	<u>Advantages</u>	Advantages
 Achieves remedial action objectives. 	Successful performance of air stripper units is well documented.	Capital and operation and maintenance costs are comparable to other water treatment processes.
 Extraction system would capture the SOPA plume. 	Experienced vendors are available to provide equipment and services.	to other water treatment processes.
 Reduces the mobility of groundwater contaminants. 	Systems can accommodate a range of flow rates.	
 Air stripping is efficient for treatment of principal groundwater contaminants. 		
<u>Disadvantages</u>	<u>Disadvantages</u>	<u>Disadvantages</u>
Treatment residuals must be transported and treated off-site.	May require pretreatment for suspended solids, carbonate/ bicarbonates, and/or metals to prevent fouling of air stripper packing.	 Significant short-term (i.e., during groundwater remediation) costs associated with monitoring program for groundwater quality and treatment facility discharge.
	Treatment (e.g., vapor-phase carbon) may be required for air stripper emissions.	
	 Spent carbon from the process requires off-site treatment. 	

<u>CONCLUSION</u>: Because this alternative achieves remedial action objectives and includes efficient treatment of groundwater contaminants, it is <u>retained</u> for detailed analysis.

TABLE 7-7 SCREENING OF REMEDIAL ALTERNATIVES SOUTHERN OFF-POST AREA GROUNDWATER

FEASIBILITY STUDY BADGER ARMY AMMUNITION PLANT

<u>Alternative SOPA-GW3: Carbon Adsorption</u>: This alternative consists of construction and operation of a carbon adsorption treatment facility. This alternative includes groundwater extraction, treatment, effluent monitoring, discharge to the Wisconsin River, groundwater monitoring, and five-year site reviews.

EFFECTIVENESS	IMPLEMENTABILITY	Соѕт
AdvantagesAchieves remedial action objectives.Extraction system would capture	Advantages Successful performance of carbon adsorption is well documented.	Advantages Potentially low capital cost.
 Reduces the mobility of groundwater contaminants. Off-site thermal reactivation of spent carbon destroys contaminants. 	Treatability studies not required. Carbon adsorption system components are easy to install and relatively simple to operate.	
Disadvantages Produces a large volume of treatment residuals which must be transported and treated off site.	Disadvantages Spent carbon from the process requires off-site treatment.	Disadvantages Significant short-term (i.e., during groundwater remediation) costs associated with monitoring program for groundwater quality and treatment facility discharge. Potentially high operating cost associated with purchase of new carbon for every change-out.

<u>CONCLUSION</u>: Because carbon adsorption achieves remedial action objectives and is a demonstrated technology, this alternative is <u>retained</u> for detailed analysis.

Notes:

SOPA = Southern Off-Post Area VOC = volatile organic compound

TABLE 7-8 SUMMARY OF REMEDIAL ALTERNATIVES SCREENING SOUTHERN OFF-POST AREA GROUNDWATER

FEASIBILITY STUDY BADGER ARMY AMMUNITION PLANT

	ALTERNATIVE	STATUS
Alternative SOPA-GW1:	Minimal Action	Retained for detailed analysis.
Alternative SOPA-GW2:	Air Stripping	Retained for detailed analysis.
Alternative SOPA-GW3:	Carbon Adsorption	Retained for detailed analysis.

Note:

SOPA = Southern Off-Post Area

TABLE 7-9 SUMMARY OF CONTAMINATION ASSESSMENT THROUGH REMEDIAL ALTERNATIVES SCREENING SOUTHERN OFF-POST AREA

FEASIBILITY STUDY BADGER ARMY AMMUNITION PLANT

	Contaminated Media at the Southern Off-Post Area		
RI/FS Component	Groundwater		
Identification of Contaminants of Concern	VOCs Inorganics		
Risk Assessment Results	 CCL4 exceeds MCL, WES, and WPAL CHCL3, CD, PB, and TRCLE exceed WPALs but are below MCL and WES MN exceeds secondary drinking water standards, and public welfare standards 		
Remedial Action Objective	Prevent concentrations of CCL4, CHCL3, TRCLE, CD, MN, and PB in groundwater which exceed WPALs from becoming available to potential human receptors		
Remedial Technologies Retained After Screening	 Groundwater monitoring Institutional controls Groundwater extraction wells Airstripping Carbon adsorption Surface Water Discharge 		
Remedial Alternatives Developed	Minimal Action Airstripping Carbon adsorption		
Remedial Alternatives Retained After Screening	Minimal Action Airstripping Carbon adsorption		

Notes:

WES = Wisconsin Enforcement Standard
WPAL = Wisconsin Preventative Action Limit

Full compound names are identified in the USAEC Chemical Code list located behind the glossary of acronyms.

TABLE 8-1 SUMMARY OF REMEDIAL ALTERNATIVES RETAINED FOR DETAILED EVALUATION SOIL AND SEDIMENT

FEASIBILITY STUDY BADGER ARMY AMMUNITION PLANT

RETAINED ALTERNATIVE	PROPELLANT BURNING GROUND	DETERRENT BURNING GROUND	NITROGLYCERINE POND/ROCKET PASTE AREA	SETTLING PONDS AND SPOILS DISPOSAL AREA	
Minimal Action	1	1	√	· /	
Soil Cover	1		√		
Capping	J			1	
On-Site Incineration and Capping	1				
On-Site Incineration	1	1			
Soil Washing		1			
Stabilization/Solidification with On-Site Disposal			✓		
In Situ Vacuum Extraction, Soil Washing, Stabilization/Solidification and Soil and Composting	1		1	1	
Off-Site Landfill	1	·	√		
Composting and Capping	1	J			
In Situ Vacuum Extraction, Composting, and Capping	1				
In Situ Treatment	1				
In Situ Vacuum Extraction, Soil Washing, and Composting	1				

Note:

✓ = Alternative has been retained for detailed evaluation - See report Sections 9.0, 10.0, 11.0, 12.0, and 13.0.

TABLE 8-2 SUMMARY OF REMEDIAL ALTERNATIVES RETAINED FOR DETAILED EVALUATION SURFACE WATER

FEASIBILITY STUDY BADGER ARMY AMMUNITION PLANT

RETAINED ALTERNATIVE	NITROGLYCERINE POND/ROCKET PASTE AREA
Minimal Action	/
Precipitation/Microfiltration	/
Ion Exchange	1

Note:

✓ = Alternative has been retained for detailed evaluation - See report Section 11.0.

TABLE 8-3 SUMMARY OF REMEDIAL ALTERNATIVES RETAINED FOR DETAILED EVALUATION GROUNDWATER

FEASIBILITY STUDY BADGER ARMY AMMUNITION PLANT

RETAINED ALTERNATIVE	PROPELLANT BURNING GROUND	DETERRENT BURNING GROUND	OFF-POST AREA
Minimal Action	1	1	1
Groundwater Extraction, Carbon Adsorption, Discharge	•	1	•
Groundwater Extraction, Air Stripping, Discharge			✓
Groundwater Extraction, Air Stripping - Carbon Adsorption, Discharge	1	1	
Groundwater Extraction, Resin Adsorption, Discharge	1	1	
Groundwater Extraction, UV Reduction-Carbon Adsorption, Discharge	1	1	

Note:

Alternative has been retained for detailed evaluation - See report Sections 9.0 and 10.0.

TABLE 9-1 COST SUMMARY TABLE ALTERNATIVE PBG-SS1: MINIMAL ACTION

FEASIBILITY STUDY PROPELLANT BURNING GROUND BADGER ARMY AMMUNITION PLANT

ITEM	TO	TAL C	OST
		MALO	OOI
IRECT COST OF MINIMAL ACTION			
Institutional controls		\$	10,000
Fencing & warning signs			74,00
TOTAL DIRECT COST OF MINIMAL ACTION		\$	84,000
IDIRECT COST OF MINIMAL ACTION			
Health and Safety @ 5% of Total Direct Cost		\$	4,00
Legal, Administration, Permitting @ 5% of Total Direct Cost		Ψ	4,000
Engineering @ 10% of Total Direct Cost			8,000
Services During Construction @ 10% of Total Direct Cost			8,000
TOTAL INDIRECT COST OF MINIMAL ACTION		\$	24,000
TOTAL CAPITAL (DIRECT + INDIRECT) COST		\$	108,000
ADEDATING AND MAINTENANCE COSTS			
PPERATING AND MAINTENANCE COSTS Total Annual Operating and Maintenance Costs		\$	11,000
Total Almual Operating and Maintenance Costs		Ψ	11,000
TOTAL PRESENT WORTH OF O&M COSTS (5% FOR 30 YEARS)		\$	169,000
			•
TOTAL COST OF MINIMAL ACTION		5	277,000
		¥	£11,000

EVALUATION CRITERIA	ALTERNATIVE PBG-SS1 MINIMAL ACTION
Overall Protection of Human Health	h and the Environment
Human Health Protection	Minimal action does not eliminate or reduce potential risk posed by the soils at the Propellant Burning Ground. This alternative focuses on reducing contaminant exposure by restricting site access.
Environmental Protection	Minimal action does not eliminate or reduce environmental risk posed by the surface soil at the Propellant Burning Ground.
Compliance with ARARs	
Chemical-specific	Chemical-specific ARARs have not been promulgated for contaminated soil; however, TBC soil clean-up standards for protection of human health and groundwater have been derived from the proposed Wisconsin Chapter NR 720, Wisconsin Administrative Code, and are being applied to BAAP soil remediation. Because soil contaminants would not be removed or destroyed, this alternative would not comply with pathway-specific numeric standards derived from the proposed Chapter NR 720. However, fencing used in this alternative could be designed to achieve a performance standard which would meet the intent of the proposed Chapter NR 720 clean-up standards for protection of human health.
Location-specific	RCRA, Standards for Owners and Operators of Hazardous Waste Treatment, Storage, and Disposal Facilities (40 CFR - Part 264) may apply. If applicable, a program which incorporates the standards would be implemented.
	RCRA, Releases from Solid Waste Management Units (Subpart F, 264.90-264.109) may apply for post-closure monitoring of the site. This alternative would include continued groundwater monitoring at the Propellant Burning Ground.
	Wisconsin Hazardous Waste Management and Facility Regulations are essentially equivalent to federal RCRA regulations and as such, the degree of ARARs compliance with standards established by Wisconsin hazardous waste regulations can be inferred from the degree of ARARs compliance with RCRA.
Action-specific	Federal OSHA requirements to protect worker health and safety would be followed during the site work.

Evaluation Criteria	ALTERNATIVE PBG-SS1 MINIMAL ACTION	
Other Criteria, Advisories, and Guidances	It is presumed that relevant criteria, advisories, and guidances would be considered prior to implementation of this alternative.	
Long-term Effectiveness and Permane	псе	
Magnitude of Residual Risk	Under the minimal action alternative, contaminant levels in the soil would not significantly decrease over time. Groundwater quality would continue to be threatened and post-remediation invasive activities could result in significant exposure events.	
Adequacy and Reliability of Controls	If managed properly, the combination of controls (i.e., fencing, signs, deed restrictions) should effectively limit public access and use of the site.	
Reduction of Toxicity, Mobility, and Vo	olume	
Treatment Process Used and Materials Treated	Not Applicable. No treatment is used in this alternative.	
Amount Destroyed or Treated	No contamination is treated or destroyed.	
Degree of Expected Reductions of Toxicity, Mobility, and Volume	Minimal action does not remove or treat contaminants; no reduction of toxicity, mobility, or volume.	
Degree to Which Treatment is Irreversible	Not Applicable. No treatment used.	
Type and Quantity of Residuals Remaining After Treatment	Not Applicable. No treatment used.	
Short-term Effectiveness		
Protection of Community During Remedial Action	Because this alternative provides only minimal actions (i.e., installation of fencing and signs), threats to the community are unlikely to be encountered during implementation.	
Protection of Workers During Remedial Action	This alternative provides only minimal action and therefore, threats to site-worker health are unlikely to be encountered during implementation. Workers should follow safe working practices.	
Environmental Impacts	There would be no environmental impacts during implementation because there is only minimal action associated with this alternative.	
Time Until Remedial Action Objectives Are Achieved	Unknown. All the remedial action objectives may never be achieved with minimal action.	

EVALUATION CRITERIA	ALTERNATIVE PBG-SS1 MINIMAL ACTION
Implementability	
Ability to Construct and Operate the Technology	Installing fencing and posting warning signs at the Propellant Burning Ground are simple construction tasks.
Reliability of the Technology	If fencing is adequately maintained it should be effective in limiting site access.
Ease of Undertaking Additional Remedial Actions, if Necessary	Minimal action would not limit or interfere with the ability to perform future remedial actions.
Ability to Monitor Effectiveness of Remedy	The groundwater monitoring program would adequately monitor contaminant migration.
Ability to Obtain Approvals and Coordinate with Other Agencies	Coordination with appropriate Army officials, WDNR, and the City of Baraboo would be required if these controls are applied. Coordination with Sauk County would be required to implement and maintain a public education program.
Availability of Off-site Treatment, Storage, and Disposal Services and Capacity	Not Applicable.
Availability of Necessary Equipment and Specialists	Local contractors and necessary materials are readily available to erect fencing and warning signs, as well as conduct educational programs.
Availability of Technology	Not Applicable. No technology used.
Costs	
Capital Cost	\$108,000
Present Worth of Operation and Maintenance Cost	\$169,000
Net Present Worth Cost	\$277,000

TABLE 9-3 COST SUMMARY TABLE ALTERNATIVE PBG-SS2: SOIL COVER

FEASIBILITY STUDY PROPELLANT BURNING GROUND BADGER ARMY AMMUNITION PLANT

ITEM	TOTAL	COST
DIRECT COST OF SOIL COVER		
Site preparation and mob/demob	\$	235,000
Contaminated soil delineation	. •	147,000
Soil cover		667,000
Surface water management		6,000
Institutional controls		10,000
		,
TOTAL DIRECT COST OF SOIL COVER	\$	1,065,000
INDIRECT COST OF SOIL COVER		
Health and Safety @ 5% of Total Direct Cost	\$	53,000
Legal, Administration, Permitting @ 5% of Total Direct Cost		53,000
Engineering @ 10% of Total Direct Cost		107,000
Services During Construction @ 10% of Total Direct Cost		107,000
TOTAL INDIRECT COST OF SOIL COVER	\$	320,000
TOTAL CAPITAL (DIRECT + INDIRECT) COST	\$	1,385,000
OPERATING AND MAINTENANCE COSTS		
Total Annual Post Closure Maintenance Costs	\$	39,000
Total Allindair Ost Glosule Maintenance Gosts	Ψ	39,000
TOTAL PRESENT WORTH OF O&M COSTS (5% FOR 30 YEARS)	5	600,000

\$ 1,985,000

TOTAL COST OF SOIL COVER

EVALUATION CRITERIA	ALTERNATIVE PBG-SS2 SOIL COVER
Overall Protection of Human Health	and the Environment
Human Health Protection	Achieves remedial action objective for protection of human health. The soil cover and institutional controls would reduce the potential for human exposure to surface soil with contaminant concentrations greater than remediation goals.
Environmental Protection	Achieves the remedial action objective for terrestrial organisms. The soil cover would reduce the potential for ecological exposure to surface soil with contaminant concentrations greater than remediation goals. The soil cover would not significantly reduce leachate generation and the resultant threat of degrading groundwater quality.
Compliance with ARARs	
Chemical-specific	Chemical-specific ARARs have not been promulgated for contaminated soil; however, TBC soil clean-up standards for protection of human health and groundwater have been derived from the proposed Wisconsin Chapter NR 720, Wisconsin Administrative Code, and are being applied to BAAP soil remediation. Because soil contaminants would not be removed or destroyed, this alternative would not comply with pathway-specific numeric standards derived from the proposed Chapter NR 720. However, the soil cover used in this alternative could be designed to achieve a performance standard which would meet the intent of the proposed Chapter NR 720 clean-up standards for protection of human health.
Location-specific	RCRA, Standards for Owners and Operators of Hazardous Waste Treatment, Storage, and Disposal Facilities (40 CFR - Part 264) may apply. If applicable, a program which incorporates the standards would be implemented. RCRA, Releases from Solid Waste Management Units (Subpart F, 264.90-264.109) may apply for post-closure monitoring of the site. This alternative would include continued groundwater monitoring at the Propellant Burning Ground. Wisconsin Hazardous Waste Management and Facility
	Regulations are essentially equivalent to federal RCRA regulations and as such, the degree of ARARs compliance with standards established by Wisconsin hazardous waste regulations can be inferred from the degree of ARARs compliance with RCRA.

EVALUATION CRITERIA	ALTERNATIVE PBG-SS2 SOIL COVER
Action-specific	Federal OSHA requirements to protect worker health and safety would be followed during site work.
	Fugitive particulate emissions generated during site work are substantively subject to Wisconsin Particulate and Sulfur Emission Rules (WAC, Chapter NR 415) and General and Portable Sources Air Pollution Control Rules; Ambient Air Quality Standards (WAC, Chapter NR 404). It is assumed that dust suppression techniques and other preventative measures would ensure compliance with particulate emission standards. WDNR's Air Management Program will be contacted.
Other Criteria, Advisories, and Guidances	It is presumed that relevant criteria, advisories, and guidances would be considered prior to implementation of this alternative.
Long-term Effectiveness and Permane	nce
Magnitude of Residual Risk	Provided the soil covers remain intact, residual risk to human and ecological receptors would be negligible. However, post-remediation invasive activities through the soil covers could result in significant exposure events. Because this alternative would not be designed to reduce leachate generation, it would not provide long-term protection of groundwater quality.
Adequacy and Reliability of Controls	Institutional controls would protect the soil covers from invasive activities and restrict residential or public use of the site. Visual inspections would be conducted annually to ensure the integrity of the soil covers. Long-term groundwater monitoring would detect soil contaminants leaching into groundwater.
Reduction of Toxicity, Mobility, and Vo	lume
Treatment Process Used and Materials Treated	No treatment of contaminated soils would occur.
Amount Destroyed or Treated	No treatment of contaminated soils would occur.
Degree of Expected Reductions of Toxicity, Mobility, and Volume	No reduction in the toxicity, mobility, or volume of contaminants. However, natural mobilizing influences such as soil erosion would be reduced.
Degree to Which Treatment is Irreversible	No treatment of contaminated soils would occur.

EVALUATION CRITERIA	ALTERNATIVE PBG-SS2 SOIL COVER	
Type and Quantity of Residuals Remaining After Treatment	No treatment of contaminated soils would occur.	
Short-term Effectiveness		
Protection of Community During Remedial Action	No risks to the community would be expected during implementation. There are no residences close enough to the site to be affected by noise or dust.	
Protection of Workers During Remedial Action	With the use of dust suppression techniques and adherence to general health and safety practices, there would be minimal risk to workers.	
Environmental Impacts	The Racetrack Area and the Contaminated Waste Area are not considered critical wildlife habitats and the impact to the ecological community is expected to be minor.	
Time Until Remedial Action Objectives Are Achieved	The remedial action objective for protection of groundwater would not be achieved. An estimated two three months would be required to achieve the remedial action objectives for protection of human health and ecological receptors.	
Implementability		
Ability to Construct and Operate the Technology	Cover construction can be accomplished using standard construction procedures and conventional earth-moving equipment. Cover repairs would be easily implemented.	
Reliability of the Technology	Soil cover is a proven technology for isolating potential receptors from contaminated soil. Institutional controls, annual visual inspections, and soil cover repair (if necessary) would ensure that the integrity of the soil cover is maintained.	
Ease of Undertaking Additional Remedial Actions, if Necessary	The soil cover would increase the scope of any future removal actions. If future remedial actions included capping the site to prevent infiltration of precipitation, ca could easily be constructed over the soil covers.	
Ability to Monitor Effectiveness of Remedy	Annual visual inspections would be sufficient for monitoring soil cover effectiveness.	
Ability to Obtain Approvals and Coordinate with Other Agencies	The integrity of the remedial design would have to be demonstrated to federal and state regulators. Other special permits (e.g., wetland permit) would not be necessary.	

EVALUATION CRITERIA	ALTERNATIVE PBG-SS2 SOIL COVER
Availability of Off-site Treatment, Storage, and Disposal Services and Capacity	Contaminated soil would not be transported off site.
Availability of Necessary Equipment and Specialists	Obtaining sufficient common borrow soil (i.e., 55,000 cubic yards) and topsoil (i.e., 16,000 cubic yards) in the immediate vicinity of BAAP should not be difficult. Materials may be available within 30 miles of BAAP.
Availability of Technology	A large excavation contracting company could provide the equipment and expertise for constructing soil covers.
Costs	
Capital Cost	\$1,385,000
Present Worth of Operation and Maintenance Cost	\$600,000
Net Present Worth Cost	\$1,985,000

TABLE 9-5 COST SUMMARY TABLE ALTERNATIVE PBG-SS6: IN SITU S/S AND SOIL COVER

FEASIBILITY STUDY PROPELLANT BURNING GROUND BADGER ARMY AMMUNITION PLANT

ITEM	I V I AL	COST
DIRECT COST OF IN SITU S/S AND SOIL COVER		
Bench & pilot scale testing	\$	78,00
Site preparation and mob/demob		540,00
Contaminated soil delineation		294,00
In-situ stabilization/solidification inside racetrack and at contaminated waste area		2,137,00
Excavation and placement of soil from outside racetrack		120,00
Stabilization/solidification of soil from outside racetrack with in-situ equipment		1,505,000
Confirmatory analysis		80,00
Soil cover		516,000
Surface water management		6,000
TOTAL DIRECT COST OF IN SITU S/S AND SOIL COVER	\$	5,276,000
NDIRECT COST OF IN SITU S/S AND SOIL COVER		
Health and Safety @ 5% of Total Direct Cost	\$	264,000
Legal, Administration, Permitting @ 5% of Total Direct Cost		264,000
Engineering @ 10% of Total Direct Cost		528,000
Services During Construction @ 10% of Total Direct Cost		528,000
TOTAL INDIRECT COST OF IN SITU S/S AND SOIL COVER	\$	1,584,000
TOTAL CAPITAL (DIRECT + INDIRECT) COST	\$	6,860,000
PERATING AND MAINTENANCE COSTS		
Total Annual Post Closure Maintenance Costs	\$	31,000
TOTAL PRESENT WORTH OF O&M COSTS (5% FOR 30 YEARS)	\$	477,000
•		
TOTAL COST OF IN SITU S/S AND SOIL COVER	\$	7,337,000

and the Environment Achieves remedial action objective for protection of human health. Modified in situ S/S, the soil cover, and institutional controls would reduce the potential for human exposure to contaminant concentrations greater than remediation goals. Stabilized/solidified mass would resist erosion and overland
health. Modified in situ S/S, the soil cover, and institutional controls would reduce the potential for human exposure to contaminant concentrations greater than remediation goals.
migration of contaminants.
Achieves the remedial action objectives for terrestrial organisms and protection of groundwater. Modified in situ S/S and the soil cover would reduce the potential for organism exposure to surface soil with contaminant concentrations greater than remediation goals. Modified in situ S/S would reduce leachate generation such that groundwater is protected.
Chemical-specific ARARs have not been promulgated for contaminated soil; however, TBC soil clean-up standards for protection of human health and groundwater have been derived from the proposed Wisconsin Chapter NR 720, Wisconsin Administrative Code, and are being applied to BAAP soil remediation. Because soil contaminants would not be removed or destroyed, this alternative would not comply with pathway-specific numeric standards derived from the proposed Chapter NR 720. However, the modified in situ S/S and soil cover used in this alternative could be designed to achieve a performance standard which would meet the intent of the proposed Chapter NR 720 clean-up standards for protection of human health and groundwater.
RCRA, Standards for Owners and Operators of Hazardous Waste Treatment, Storage, and Disposal Facilities (40 CFR - Part 264) may apply. If applicable, a program which incorporates the standards would be implemented. RCRA, Releases from Solid Waste Management Units (Subpart F, 264.90-264.109) may apply for post-closure monitoring of the site. This alternative would include continued groundwater monitoring at the Propellant Burning Ground. Wisconsin Hazardous Waste Management and Facility Regulations are essentially equivalent to federal RCRA regulations and as such, the degree of ARARs compliance with standards established by Wisconsin hazardous waste

EVALUATION CRITERIA	ALTERNATIVE PBG-SS6 MODIFIED IN SITU S/S AND SOIL COVER
Action-specific	RCRA, Land Disposal Restrictions (LDRs); (40 CFR Part 268) may apply to PB-contaminated soil if it exceeds the TCLP threshold for characteristically hazardous waste. If classified as hazardous, and PB-contaminated soil is excavated, the "characteristic" would have to be removed from the soil prior to disposal or placement on site.
	Federal OSHA requirements to protect worker health and safety would be followed during the site work.
	Fugitive particulate emissions generated during site work are substantively subject to Wisconsin Particulate and Sulfur Emission Rules (WAC, Chapter NR 415) and General and Portable Sources Air Pollution Control Rules; Ambient Air Quality Standards (WAC, Chapter NR 404). It is assumed that dust suppression techniques and other preventative measures would ensure compliance with particulate emission standards. WDNR's Air Management Program will be contacted.
Other Criteria, Advisories, and Guidances	It is presumed that relevant criteria, advisories, and guidances would be considered prior to implementation of this alternative.
Long-term Effectiveness and Perm	anence
Magnitude of Residual Risk	Provided the stabilized/solidified treatment residuals and the soil covers remain intact, residual risk to human and ecological receptors would be negligible. In the event construction-related invasive activities occur, or burrowing animals penetrate the soil cover, the chemical and physical properties of the treatment residuals would significantly reduce exposure potential via receptor ingestion and/or inhalation of particulates. Because the treatment residuals would be resistant to degradation processes, they would provide long-term protection of groundwater.
Adequacy and Reliability of Controls	Institutional controls would protect the soil covers from invasive activities and restrict residential or public use of the site. Visual inspections would be conducted annually to ensure the integrity of the soil covers. Long-term groundwater monitoring would detect soil contaminants leaching into groundwater.
Reduction of Toxicity, Mobility, and	d Volume
Treatment Process Used and Materials Treated	S/S would be used to chemically and physically bind soil contaminants into a stabilized/solidified matrix.

EVALUATION CRITERIA	ALTERNATIVE PBG-SS6 MODIFIED IN SITU S/S AND SOIL COVER
Amount Destroyed or Treated	An estimated 27,400 cubic yards of surface soil would be treated by in situ S/S inside the Racetrack and at the Contaminated Waste Area. An estimated 18,600 cubic yards of contaminated surface and shallow subsurface soil would be removed from the Burning Pads Area and the Burning Plates Area and treated using in situ S/S equipment inside the Racetrack. Excavation of the Refuse Pits is estimated to result in another 700 cubic yards of contaminated subsurface soil which will undergo treatment inside the Racetrack. Consequently, a total of approximately 46,700 cubic yards of soil would be treated.
Degree of Expected Reductions of Toxicity, Mobility, and Volume	No reduction in contaminant toxicity. Treatment residuals would be resistant to leaching and erosion, preventing the migration of contaminants overland or into groundwater. The volume of contaminated soil would actually increase by up to 50 percent.
Degree to Which Treatment is Irreversible	Treatment is potentially reversible. However, proper maintenance of the soil cover would prevent weathering of the treatment residuals and the release of contaminants.
Type and Quantity of Residuals Remaining After Treatment	Treatment residuals would be a granular or monolithic matrix with entrapped contaminants. The residuals would be buried under a 2.5-foot layer of common borrow and topsoil. Assuming excavation and/or the addition of stabilizing/solidifying agents results in a swell factor of 50 percent, 70,050 cubic yards of residuals would remain on site.
Short-term Effectiveness	
Protection of Community During Remedial Action	No risks to the community would be expected during implementation. There are no residences close enough to the site to be affected by noise or dust.
Protection of Workers During Remedial Action	With the use of dust suppression techniques and adherence to general health and safety practices, there would be minimal risk to workers.
Environmental Impacts	The Racetrack Area and the Contaminated Waste Area are not considered critical wildlife habitats and the impact to the ecological community is expected to be minor.
Time Until Remedial Action Objectives Are Achieved	An estimated five months are required for treatability studies and another three to four months would be required to achieve the remedial action objectives.

EVALUATION CRITERIA	ALTERNATIVE PBG-SS6 MODIFIED IN SITU S/S AND SOIL COVER
Implementability	
Ability to Construct and Operate the Technology	Specialized in situ S/S methods have been developed by adapting road construction equipment for that purpose (LaRose, 1993). The even ground surface at the site would be amenable to the use of the equipment. Cover construction can be accomplished using standard construction procedures and conventional earth-moving equipment. Cover repairs would be easily implemented.
Reliability of the Technology	The success of in situ S/S is highly dependent on site- and waste-characteristics. Extensive treatability testing is required. Soil cover is a proven technology for isolating potential receptors from contaminated soil. Annual visual inspections and soil cover repair (if necessary) would ensure that the integrity of the treatment residuals and the soil cover is maintained.
Ease of Undertaking Additional Remedial Actions, if Necessary	Depending upon the physical properties (i.e., granular or monolith) of the treatment residuals, S/S may make future removal actions impractical. If future remedial actions included capping the site to prevent infiltration of precipitation, caps could be constructed over the soil covers.
Ability to Monitor Effectiveness of Remedy	Annual visual inspections would be sufficient for monitoring soil cover effectiveness.
Ability to Obtain Approvals and Coordinate with Other Agencies	The integrity of the remedial design would have to be demonstrated to federal and state regulators. Other special permits (e.g., wetland permit) would not be necessary.
Availability of Off-site Treatment, Storage, and Disposal Services and Capacity	Contaminated soil or treatment residuals would not be transported off site.
Availability of Necessary Equipment and Specialists	Specially-adapted in situ S/S equipment is available from a limited number of vendors. Obtaining sufficient common borrow soil (i.e., 47,700 cubic yards) and topsoil (i.e., 10,300 cubic yards) in the immediate vicinity of BAAP should not be difficult. Materials may be available within 30 miles of BAAP.
Availability of Technology	The technology and expertise for in situ S/S is available from a limited number of vendors. A large excavation contracting company could provide the equipment and expertise for constructing soil covers.

EVALUATION CRITERIA	ALTERNATIVE PBG-SS6 Modified In SITU S/S AND SOIL COVER
Costs	
Capital Cost	\$6,860,000
Present Worth of Operation and Maintenance Cost	\$477,000
Net Present Worth Cost	\$7,337,000

TABLE 9-7 COMPARATIVE SUMMARY OF ALTERNATIVES PROPELLANT BURNING GROUND SURFACE SOIL

FEASIBILITY STUDY BADGER ARMY AMMUNITION PLANT

ALTERNATIVE	OVERALL PROTECTION	COMPLANCE WITH ARARS	EFFECTIVENESS: LONG-TERM	REDUCTION IN TOXICITY, MOBILITY, AND VOLUME	EFFECTIVENESS: SHORT-TERM	MPLEMENTABILITY	COST
Alternative PBG-SS1: Minimal Action	Reduces potential for human exposure to contaminated soil. Not protective of ecological receptors or groundwater.	No chemical-specific ARARs. Although this alternative could meet the intent of the proposed Chapter NR 720 standards for protection of human health, it would not meet the intent of the proposed standards for protection of	If managed properly, residual risk to human receptors would be minor. No reduction in residual risk to ecological receptors or threat of groundwater contamination.	Contamination is not treated or destroyed; no reduction of toxicity, mobility, or volume of contaminants.	No adverse community or environmental impacts during implementation.	No implementability concerns.	Total Present Worth: \$277,000 Capital Cost: \$108,000 Annual O&M: \$11,000 (30 yrs)
Alternative PBG-SS2: Soil Cover	Achieves remedial action objectives for protection of human health and ecological receptors. Not protective of groundwater.	No chemical-specific ARARs. Although this alternative could meet the intent of the proposed Chapter NR 720 standards for protection of human health, it would not meet the intent of the proposed standards for protection of	If managed properly, residual risk to human and ecological receptors would be negligible. No reduction in threat of groundwater contamination.	No reduction of toxicity, mobility, or volume of contaminants. However, mobilizing influences (e.g., soil erosion) would be reduced.	No adverse impacts to the community and only minimal impact (if general health and safety practices are followed) to workers during implementation. Minor impact to the environment.	No implementability concerns. Soil covers are easily constructed and maintained.	Total Present Worth: \$1,985,000 Capital Cost: \$1,385,000 Annual O&M: \$39,000 (30 yrs)
Modified Alternative PBG-SS6: In Situ S/S and Soil Cover	Achieves remedial action objectives for protection of human health, groundwater, and ecological receptors.	No chemical-specific ARARs. This alternative could meet the intent of the proposed Chapter NR 720 standards for protection of human health and groundwater.	Residual risk to human and ecological receptors would be negligible and the threat of groundwater contamination would be removed.	No reduction of toxicity. Potential mobility would be reduced by S/S. Volume would increase by up to 50 percent.	No adverse impacts to the community and only minimal impact (if general health and safety practices are followed) to workers during implementation. Minor impact to the environment.	Significant implementability concerns. In situ S/S of surface soils is a developing technology and extensive treatability testing is required.	Total Present Worth: \$7,337,000 Capital Cost: \$6,860,000 Annual O&M: \$31,000 (30 yrs)

/A/006/

Notes:

TABLE 9-8 COST SUMMARY TABLE ALTERNATIVE PBG-SB1: MINIMAL ACTION

FEASIBILITY STUDY PROPELLANT BURNING GROUND BADGER ARMY AMMUNITION PLANT

ITEM	OTAL C	OST
DIRECT COST OF MINIMAL ACTION		
Institutional controls	\$	10,000
	•	10,000
TOTAL DIRECT COST OF MINIMAL ACTION	\$	10,000
INDIRECT COST OF MINIMAL ACTION		
Health and Safety @ 0% of Total Direct Cost	\$	0
Legal, Administration, Permitting @ 0% of Total Direct Cost		0
Engineering @ 0% of Total Direct Cost		0
Services During Construction @ 0% of Total Direct Cost		0
TOTAL INDIRECT COST OF MINIMAL ACTION	\$	0
TOTAL CAPITAL (DIRECT + INDIRECT) COST	\$	10,000
OPERATING AND MAINTENANCE COSTS		
Total Annual Operating and Maintenance Costs	\$	7,000
TOTAL PRESENT WORTH OF O&M COSTS (5% FOR 30 YEARS)	S	400.000
TOTAL TRESERT WORTH OF OUR COSTS (5% FOR SU TEARS)	•	108,000
TOTAL COST OF MINIMAL ACTION	\$	118,000
		İ

EVALUATION CRITERIA	ALTERNATIVE PBG-SB1 MINIMAL ACTION
Overall Protection of Human Health and the Environment	
Human Health Protection	Minimal action does not eliminate or reduce potential risk posed by the subsurface soils at the Propellant Burning Ground. This alternative focuses on reducing contaminant exposure by restricting site access through the use of institutional controls.
Environmental Protection	Although there is no ecological risk associated with subsurface soils at the Propellant Burning Ground, there is a threat of groundwater contamination. Minimal action does not eliminate or reduce the threat of groundwater contamination.
Compliance with ARARs	
Chemical-specific	Chemical-specific ARARs have not been promulgated for contaminated soil; however, TBC soil clean-up standards for protection of human health and groundwater have been derived from the proposed Wisconsin Chapter NR 720, Wisconsin Administrative Code, and are being applied to BAAP soil remediation. Because soil contaminants would not be removed or destroyed, this alternative would not comply with pathway-specific numeric standards derived from the proposed Chapter NR 720. No remedial actions designed to achieve a performance standard which would meet the intent of the proposed Chapter NR 720 clean-up standards for protection of human health or groundwater would be implemented.
Location-specific	RCRA, Standards for Owners and Operators of Hazardous Waste Treatment, Storage, and Disposal Facilities (40 CFR - Part 264) may apply. If applicable, a program which incorporates the standards would be implemented. RCRA, Releases from Solid Waste Management Units (Subpart F, 264.90-264.109) may apply for post-closure monitoring of the site. This alternative would include continued groundwater monitoring at the Propellant Burning Ground.
	Wisconsin Hazardous Waste Management and Facility Regulations are essentially equivalent to federal RCRA regulations and as such, the degree of ARARs compliance with standards established by Wisconsin hazardous waste regulations can be inferred from the degree of ARARs compliance with RCRA.

EVALUATION CRITERIA	ALTERNATIVE PBG-SB1 MINIMAL ACTION		
Action-specific	Federal OSHA requirements to protect worker health and safety would be followed during the site work.		
Other Criteria, Advisories, and Guidances	It is presumed that relevant criteria, advisories, and guidances would be considered prior to implementation of this alternative.		
Long-term Effectiveness and Permane	nce		
Magnitude of Residual Risk	Under the minimal action alternative, contaminant levels in the soil would not decrease significantly over time. Groundwater quality would continue to be threatened and invasive activities could result in significant exposure events.		
Adequacy and Reliability of Controls	If managed properly, the combination of controls and educational programs should effectively limit public access and use of the site.		
Reduction of Toxicity, Mobility, and Vo	olume		
Treatment Process Used and Materials Treated	Not applicable. No treatment is used in this alternative.		
Amount Destroyed or Treated	There would be no contaminants destroyed or treated.		
Degree of Expected Reductions of Toxicity, Mobility, and Volume	Minimal action does not employ removal or treatment processes to address soil contamination; no reduction in toxicity, mobility, or volume of contaminated subsurface soils would be achieved.		
Degree to Which Treatment is Irreversible	Not Applicable. No treatment is used with this alternative.		
Type and Quantity of Residuals Remaining After Treatment	Not Applicable. No treatment is used with this alternative.		
Short-term Effectiveness			
Protection of Community During Remedial Action	Because this alternative does not involve construction, threats to the community are unlikely to be encountered during implementation.		
Protection of Workers During Remedial Action	This alternative does not involve any construction activities and therefore no site workers would be affected during implementation.		
Environmental Impacts	No impacts to the environment should be encountered during implementation.		

EVALUATION CRITERIA	ALTERNATIVE PBG-SB1 MINIMAL ACTION
Time Until Remedial Action Objectives Are Achieved	Unknown. All the remedial action objectives may never be achieved with minimal action.
Implementability	
Ability to Construct and Operate the Technology	Not Applicable. No construction is necessary with this alternative.
Reliability of the Technology	Not Applicable. No technology is used with this alternative.
Ease of Undertaking Additional Remedial Actions, if Necessary	Minimal action would not limit or interfere with the ability to perform future remedial actions.
Ability to Monitor Effectiveness of Remedy	The groundwater monitoring program would adequately monitor contaminant migration.
Ability to Obtain Approvals and Coordinate with Other Agencies	Coordination with the Army, WDNR, and the City of Baraboo would be required if these controls are applied. Coordination with Sauk County would be required to implement and maintain a public education program.
Availability of Off-site Treatment, Storage, and Disposal Services and Capacity	Not Applicable.
Availability of Necessary Equipment and Specialists	Local contractors are readily available to conduct education programs.
Availability of Technology	Not Applicable. No technology used.
Costs	
Capital Cost	\$10,000
Present Worth of Operation and Maintenance Cost	\$108,000
Net Present Worth Cost	\$118,000

TABLE 9-10 COST SUMMARY TABLE ALTERNATIVE PBG-SB2: CAPPING

FEASIBILITY STUDY PROPELLANT BURNING GROUND BADGER ARMY AMMUNITION PLANT

ITEM	TOTAL C	OST
DIRECT COST OF CAPPING		
Site preparation and mob/demob	\$	198,000
Roadway improvement		22,000
Contaminated soil delineation		80,000
Cap construction		654,000
Institutional controls		10,000
TOTAL DIRECT COST OF CAPPING	\$	964,000
INDIRECT COST OF CAPPING		
Health and Safety @ 5% of Total Direct Cost	\$	48,000
Legal, Administration, Permitting @ 5% of Total Direct Cost		48,000
Engineering @ 10% of Total Direct Cost		96,000
Services During Construction @ 10% of Total Direct Cost		96,000
TOTAL INDIRECT COST OF CAPPING	\$	288,000
TOTAL CAPITAL (DIRECT + INDIRECT) COST	\$	1,252,000
OPERATING AND MAINTENANCE COSTS Total Annual Operating and Maintenance Costs	\$	7,000
TOTAL PRESENT WORTH OF O&M COSTS (5% FOR 30 YEARS)	S	108,000

TOTAL COST OF CAPPING	\$	1,360,000

EVALUATION CRITERIA	ALTERNATIVE PBG-SB2 CAPPING
Overall Protection of Human Health	and the Environment
Human Health Protection	Achieves remedial action objective for protection of human health. The RCRA cap and institutional controls would reduce the potential for human exposure to subsurface soil with contaminant concentrations greater than remediation goals.
Environmental Protection	No ecological risk associated with contaminated subsurface soil. The RCRA caps would reduce leachate generation such that groundwater is protected.
Compliance with ARARs	
Chemical-specific	Chemical-specific ARARs have not been promulgated for contaminated soil; however, TBC soil clean-up standards for protection of human health and groundwater have been derived from the proposed Wisconsin Chapter NR 720, Wisconsin Administrative Code, and are being applied to BAAP soil remediation. Because soil contaminants would not be removed or destroyed, this alternative would not comply with pathway-specific numeric standards derived from the proposed Chapter NR 720. However, the RCRA caps used in this alternative could be designed to achieve a performance standard which would meet the intent of the proposed Chapter NR 720 clean-up standards for protection of human health and groundwater.
Location-specific	RCRA, Standards for Owners and Operators of Hazardous Waste Treatment, Storage, and Disposal Facilities (40 CFR - Part 264) may apply. If applicable, a program which incorporates the standards would be implemented. RCRA, Releases from Solid Waste Management Units (Subpart F, 264.90-264.109) may apply for post-closure monitoring of the site. This alternative would include continued groundwater monitoring at the Propellant Burning Ground. Wisconsin Hazardous Waste Management and Facility Regulations are essentially equivalent to federal RCRA regulations and as such, the degree of ARARs compliance with standards established by Wisconsin hazardous waste regulations can be inferred from the degree of ARARs compliance with RCRA.

EVALUATION CRITERIA	ALTERNATIVE PBG-SB2 CAPPING
Action-specific	Federal OSHA requirements to protect worker health and safety would be followed during the site work.
	Fugitive particulate emissions generated during site work are substantively subject to Wisconsin Particulate and Sulfur Emission Rules (WAC, Chapter NR 415) and General and Portable Sources Air Pollution Control Rules; Ambient Air Quality Standards (WAC, Chapter NR 404). It is assumed that dust suppression techniques and other preventative measures would ensure compliance with particulate emission standards. WDNR's Air Management Program will be contacted.
Other Criteria, Advisories, and Guidances	It is presumed that relevant criteria, advisories, and guidances would be considered prior to implementation of this alternative.
Long-term Effectiveness and Permane	nce
Magnitude of Residual Risk	Provided the RCRA caps remain intact, residual risk to human receptors and the threat of groundwater contamination would be negligible. Post-remediation invasive activities through the caps could result in significant exposure events and cause leachate generation and associated degradation of groundwater quality.
Adequacy and Reliability of Controls	Institutional controls would protect the caps from invasive activities and restrict residential or public use of the site. Visual inspections would be conducted annually to ensure the integrity of the caps. Long-term groundwater monitoring would detect soil contaminants leaching into groundwater.
Reduction of Toxicity, Mobility, and Vo	lume
Treatment Process Used and Materials Treated	No treatment of contaminated soils would occur.
Amount Destroyed or Treated	No treatment of contaminated soils would occur.
Degree of Expected Reductions of Toxicity, Mobility, and Volume	No reduction in the toxicity, mobility, or volume of contaminants. However, natural mobilizing influences such as infiltration of precipitation and associated leachate generation would be reduced.
Degree to Which Treatment is Irreversible	No treatment of contaminated soils would occur.

EVALUATION CRITERIA	ALTERNATIVE PBG-SB2 CAPPING
Type and Quantity of Residuals Remaining After Treatment	No treatment of contaminated soils would occur.
Short-term Effectiveness	
Protection of Community During Remedial Action	No risks to the community would be expected during implementation. There are no residences close enough to the site to be affected by noise or dust.
Protection of Workers During Remedial Action	With the use of dust suppression techniques and adherence to general health and safety practices, there would be minimal risk to workers.
Environmental Impacts	The 1949 Pit and Landfill 1 are not considered critical wildlife habitats and the impact to the ecological community is expected to be minor.
Time Until Remedial Action Objectives Are Achieved	An estimated two to three months would be required to achieve the remedial action objectives.
Implementability	
Ability to Construct and Operate the Technology	RCRA cap construction can be accomplished using standard construction procedures and conventional earthmoving equipment. Cap repairs would be easily implemented.
Reliability of the Technology	Capping is a proven technology for reducing leachate generation and is generally the prescribed method for landfill closure.
Ease of Undertaking Additional Remedial Actions, if Necessary	Capping would increase the scope of any future removal actions.
Ability to Monitor Effectiveness of Remedy	Annual visual inspections and groundwater monitoring would be sufficient for monitoring cap effectiveness.
Ability to Obtain Approvals and Coordinate with Other Agencies	The integrity of the remedial design would have to be demonstrated to federal and state regulators. Other special permits (e.g., wetland permit) would not be necessary.
Availability of Off-site Treatment, Storage, and Disposal Services and Capacity	Contaminated soil would not be transported off site.

EVALUATION CRITERIA	ALTERNATIVE PBG-SB2 CAPPING
Availability of Necessary Equipment and Specialists	Obtaining sufficient quantities of clay, sand, common borrow soil, and topsoil in the immediate vicinity of BAAP should not be difficult. Materials may be available within 30 miles of BAAP.
Availability of Technology	A large excavation contracting company with experience in landfill construction/closure could provide the equipment and expertise for constructing the caps.
Costs	
Capital Cost	\$1,252,000
Present Worth of Operation and Maintenance Cost	\$108,000
Present Worth Cost	\$1,360,000

TABLE 9-12 COST SUMMARY TABLE ALTERNATIVE PBG-SB3: OFF-SITE LANDFILL

FEASIBILITY STUDY PROPELLANT BURNING GROUND BADGER ARMY AMMUNITION PLANT

ITEM	TOTAL COST
DIDECT COOT OF OFF CITE LANDEILL	
DIRECT COST OF OFF-SITE LANDFILL Site preparation and mob/demob	\$ 208,000
Roadway improvement	22,000
Delineation of soil contamination	116,000
Excavation, transportation, disposal, and backfill	1,841,000
Excavation, transportation, disposal, and backlin	1,041,000
TOTAL DIRECT COST OF OFF-SITE LANDFILL	\$ 2,187,000
INDIRECT COST OF OFF-SITE LANDFILL	
Health and Safety @ 5% of Total Direct Cost	\$ 109,000
Legal, Administration, Permitting @ 5% of Total Direct Cost	109,000
Engineering @ 10% of Total Direct Cost	219,000
Services During Construction @ 10% of Total Direct Cost	219,000
TOTAL INDIRECT COST OF OFF-SITE LANDFILL	\$ 656,000
TOTAL CAPITAL (DIRECT + INDIRECT) COST	\$ 2,843,000
DPERATING AND MAINTENANCE COSTS	•
Total Annual Operating and Maintenance Costs	\$ 0
TOTAL PRESENT WORTH OF O&M COSTS (5% FOR 30 YEARS)	\$ 0
TOTAL COST OF OFF-SITE LANDFILL	\$ 2,843,000
	:

EVALUATION CRITERIA	ALTERNATIVE PBG-SB3 OFF-SITE LANDFILL
Overall Protection of Human Healt	h and the Environment
Human Health Protection	Achieves remedial action objective for protection of human health. Soil removal would eliminate the potential for human exposure to contaminant concentrations greater than remediation goals.
Environmental Protection	No ecological risks associated with contaminated subsurface soil. Achieves the remedial action objective for protection of groundwater. Soil removal would eliminate leachate generation and the associated threat of groundwater contamination.
Compliance with ARARs	
Chemical-specific	Chemical-specific ARARs have not been promulgated for contaminated soil; however, TBC soil clean-up standards for protection of human health and groundwater have been derived from the proposed Wisconsin Chapter NR 720, Wisconsin Administrative Code, and are being applied to BAAP soil remediation. Because soil contaminants would be removed from Landfill 1 and the 1949 Pit, this alternative would comply with pathway-specific numeric standards derived from the proposed Chapter NR 720.
Location-specific	No location-specific ARARS.

EVALUATION CRITERIA	ALTERNATIVE PBG-SB3 OFF-SITE LANDFILL
Action-specific	Federal OSHA requirements to protect worker health and safety would be followed during the site work.
	Fugitive particulate emissions generated during site work are substantively subject to Wisconsin Particulate and Sulfur Emission Rules (WAC, Chapter NR 415) and General and Portable Sources Air Pollution Control Rules; Ambient Air Quality Standards (WAC, Chapter NR 404). It is assumed that dust suppression techniques and other preventative measures would ensure compliance with particulate emission standards. WDNR's Air Management Program will be contacted.
	The following action-specific ARARs would apply to the contaminated soil transporter and the receiving off-site landfill:
	DOT Rule for Transportation of Hazardous Materials; (49 CFR Parts 107, 171.1-172.558)
	Standards Applicable to Transporter of Hazardous Waste, RCRA Section 3003; (40 CFR 170-179)
	RCRA, Land Disposal Restrictions (LDRs); (40 CFR Part 268). May apply to PB-contaminated soil if it exceeds the TCLP threshold for characteristically hazardous waste. If classified as hazardous, and PB-contaminated soil is excavated, the "characteristic" would have to be removed from the soil prior to disposal.
	RCRA, Standards for Owners and Operators of Hazardous Waste Treatment, Storage, and Disposal Facilities; (40 CFR - Part 264) or WAC Chapter NR 600 and WAC Chapter NR 660
Other Criteria, Advisories, and Guidances	It is presumed that relevant criteria, advisories, and guidances would be considered prior to implementation of this alternative.

EVALUATION CRITERIA	ALTERNATIVE PBG-SB3 OFF-SITE LANDFILL
Long-term Effectiveness and Permane	псе
Magnitude of Residual Risk	No residual risk at Landfill 1 and the 1949 Pit because the contaminated soil would be removed.
Adequacy and Reliability of Controls	The off-site landfill must be properly managed to ensure contaminants are isolated from potential receptors and that groundwater quality is not threatened.
Reduction of Toxicity, Mobility, and Vo	olume
Treatment Process Used and Materials Treated	Treatment of contaminated soil may occur at the receiving off-site landfill. If treatment occurred, the landfill operator would likely treat the soil by S/S prior to disposal.
Amount Destroyed or Treated	Approximately 2,650 cubic yards of contaminated soil would be removed from the 1949 Pit and 1,400 cubic yards from Landfill 1. Assuming the landfill operator treated all of the soil by S/S, a total of 4,050 cubic yards (not accounting for swell) of soil would be treated.
Degree of Expected Reductions of Toxicity, Mobility, and Volume	No reduction in contaminant toxicity. If treated by S/S, the landfilled soil would be resistant to leaching, preventing the migration of contaminants into groundwater. Additionally, the landfill would be designed to contain and isolate the soil from environmental media and receptors. The volume of contaminated soil would actually increase by up to 50 percent.
Degree to Which Treatment is Irreversible	Treatment is potentially reversible. However, proper operation of the receiving landfill would prevent weathering of solidified material and the release of contaminants.
Type and Quantity of Residuals Remaining After Treatment	No treatment residuals would be present in the 1949 Pit or Landfill 1. Treatment residuals at the receiving landfill would likely consist of monolithic blocks of solidified material. Assuming excavation and the addition of stabilizing/solidifying agents results in a swell factor of 50 percent, 6,075 cubic yards of treatment residuals would be landfilled.
Short-term Effectiveness	
Protection of Community During Remedial Action	No risks to the community would be expected during implementation. There are no residences close enough to the site to be affected by noise or dust.

EVALUATION CRITERIA	ALTERNATIVE PBG-SB3 OFF-SITE LANDFILL
Protection of Workers During Remedial Action	With the use of dust suppression techniques and adherence to general health and safety practices, there would be minimal risk to workers.
Environmental Impacts	The 1949 Pit and Landfill 1 are not considered critical wildlife habitats and the impact to the ecological community is expected to be minor.
Time Until Remedial Action Objectives Are Achieved	An estimated two to three months would be required to achieve the remedial action objectives.
Implementability	
Ability to Construct and Operate the Technology	Soil removal can be accomplished using standard excavation procedures and conventional earth-moving equipment. RCRA-permitted off-site landfills in the region do not presently experience operating difficulties.
Reliability of the Technology	Off-site landfill is a demonstrated technology for disposal of hazardous waste.
Ease of Undertaking Additional Remedial Actions, if Necessary	Future remedial actions, including soil removal or capping, could be easily implemented.
Ability to Monitor Effectiveness of Remedy	No monitoring would be required at the 1949 Pit or Landfill 1. In accordance with their operating permit, the receiving landfill would provide long-term monitoring for releases from their facility.
Ability to Obtain Approvals and Coordinate with Other Agencies	Special permits (e.g, wetland permit) would not be necessary and obtaining approval for soil removal should not be difficult.
Availability of Off-site Treatment, Storage, and Disposal Services and Capacity	An off-site landfill with sufficient capacity and permitted for treatment and disposal of hazardous waste is located 108 miles from BAAP (i.e., Menomonee Falls, WI).
Availability of Necessary Equipment and Specialists	Local excavation and transportation contractors can provide the necessary equipment and expertise for soil removal and transport to the off-site landfill. The off-site landfill would provide S/S services.
Availability of Technology	S/S and disposal services would be available at the receiving landfill.

EVALUATION CRITERIA	ALTERNATIVE PBG-SB3 OFF-SITE LANDFILL
Costs	
Capital Cost	\$2,843,000
Present Worth of Operation and Maintenance Cost	\$0
Net Present Worth Cost	\$2,843,000

TABLE 9-14 COMPARATIVE SUMMARY OF SUBSURFACE SOIL ALTERNATIVES PROPELLANT BURNING GROUND SUBSURFACE SOIL

FEASIBILITY STUDY BADGER ARMY AMMUNITION PLANT

ALTERNATIVE	OVERALL PROTECTION	COMPLIANCE WITH ARARS	EFFECTIVENESS: LONG-TERM	REDUCTION IN TOXICITY, MOBILITY, AND VOLUME	EFFECTIVENESS: SHORT-TERM	IMPLEMENTABILITY	Cost
Alternative PBG-SB1: Minimal Action	Reduces potential for human exposure to contaminated soil. Not protective of groundwater.	No chemical-specific ARARs. This alternative would not meet the intent of the proposed Chapter NR 720 standards for protection of human health and groundwater.	If managed properly, residual risk to human receptors would be minor. No reduction in the threat of ground-water contamination.	Contamination is not treated or destroyed; no reduction of toxicity, mobility, or volume of contaminants.	No adverse community or environmental impacts during implementation.	No implementability concerns.	Total Present Worth: \$118,000 Capital Cost: \$10,000 Annual O&M: \$7,000 (30 yrs)
Alternative PBG-SB2: Capping	High potential for achieving remedial action objectives for protection of human health and groundwater.	No chemical-specific ARARs. This alternative could meet the intent of the proposed Chapter NR 720 standards for protection of human health and groundwater.	If managed properly, residual risk to human receptors and the threat of groundwater contamination would be negligible.	No reduction of toxicity, mobility, or volume of contaminants. However, mobilizing influences (e.g., infiltration of precipitation) would be reduced.	No adverse impacts to the community and only minimal (if general health and safety practices are followed) to workers during implementation.	No implementability concerns. RCRA caps are easily constructed and maintained.	Total Present Worth: \$1,360,000 Capital Cost: \$1,252,000 Annual O&M: \$7,000 (30 yrs)
Alternative PBG-SB3: Off-Site Landfill	Achieves remedial action objectives for protection of human health and groundwater.	No chemical-specific ARARs. This alternative would comply with pathway-specific numeric standards derived from the proposed Chapter NR 720.	No residual risk at Landfill 1 and the 1949 Pit. If managed properly, residual risk at receiving off-site landfill would be negligible.	S/S may occur at the offsite landfill prior to disposal. S/S would not reduce toxicity but would reduce potential mobility. Volume would increase by up to 50 percent.	No adverse impacts to the community and only minimal (if general health and safety practices are followed) to workers during implementation.	No implementability concerns. Excavation and disposal in an off-site landfill would be easily implemented.	Total Present Vorti: \$2,843,000 Capital Cost: \$2,843,000 Annual O&M:

Notes:

TABLE 9-15 COST SUMMARY TABLE ALTERNATIVE PBG-WP1: MINIMAL ACTION

FEASIBILITY STUDY PROPELLANT BURNING GROUND BADGER ARMY AMMUNITION PLANT

IRECT COST OF MINIMAL ACTION Institutional controls \$ 10,00 TOTAL DIRECT COST OF MINIMAL ACTION \$ 10,00 IDIRECT COST OF MINIMAL ACTION \$ 10,000 Health and Safety @ 0% of Total Direct Cost \$ (a) Legal, Administration, Permitting @ 0% of Total Direct Cost \$ (a) Engineering @ 0% of Total Direct Cost \$ (a) Services During Construction @ 0% of Total Direct Cost \$ (a) TOTAL INDIRECT COST OF MINIMAL ACTION \$ (a) TOTAL CAPITAL (DIRECT + INDIRECT) COST \$ 10,000 PERATING AND MAINTENANCE COSTS Total Annual Operating and Maintenance Costs \$ 6,000 TOTAL PRESENT WORTH OF O&M COSTS (5% FOR 30 YEARS) \$ 92,000	ITEM	TOTAL CO)ST
Institutional controls \$ 10,00 TOTAL DIRECT COST OF MINIMAL ACTION Health and Safety @ 0% of Total Direct Cost \$ 10,000 Legal, Administration, Permitting @ 0% of Total Direct Cost \$ 10,000 Engineering @ 0% of Total Direct Cost \$ 10,000 Services During Construction @ 0% of Total Direct Cost \$ 10,000 TOTAL INDIRECT COST OF MINIMAL ACTION \$ 10,000 TOTAL CAPITAL (DIRECT + INDIRECT) COST \$ 10,000 PERATING AND MAINTENANCE COSTS Total Annual Operating and Maintenance Costs \$ 6,000 TOTAL PRESENT WORTH OF O&M COSTS (5% FOR 30 YEARS) \$ 92,000			o.π.25
TOTAL DIRECT COST OF MINIMAL ACTION Health and Safety @ 0% of Total Direct Cost Legal, Administration, Permitting @ 0% of Total Direct Cost Engineering @ 0% of Total Direct Cost Services During Construction @ 0% of Total Direct Cost TOTAL INDIRECT COST OF MINIMAL ACTION TOTAL CAPITAL (DIRECT + INDIRECT) COST TOTAL CAPITAL (DIRECT + INDIRECT) COST Total Annual Operating and Maintenance Costs \$ 6,00 TOTAL PRESENT WORTH OF O&M COSTS (5% FOR 30 YEARS) \$ 92,000	DIRECT COST OF MINIMAL ACTION		
Health and Safety @ 0% of Total Direct Cost \$ (Legal, Administration, Permitting @ 0% of Total Direct Cost Engineering @ 0% of Total Direct Cost (Services During Construction @ 0% of Total Direct Cost (TOTAL INDIRECT COST OF MINIMAL ACTION \$ (DIRECT + INDIRECT) COST \$ 10,000 PERATING AND MAINTENANCE COSTS Total Annual Operating and Maintenance Costs \$ 6,000 TOTAL PRESENT WORTH OF O&M COSTS (5% FOR 30 YEARS) \$ 92,000 PERATING AND MAINTENANCE COSTS \$ 10,000 PERATING AND MAINTENANCE PERATING AND MAINTENANCE PERATING AND MAINTENANCE PERATING AND MAINTENANCE PERATING AND PERAT	Institutional controls	\$	10,000
Health and Safety @ 0% of Total Direct Cost \$ (Legal, Administration, Permitting @ 0% of Total Direct Cost Engineering @ 0% of Total Direct Cost (Services During Construction @ 0% of Total Direct Cost (TOTAL INDIRECT COST OF MINIMAL ACTION \$ (DIRECT + INDIRECT) COST \$ 10,000 PERATING AND MAINTENANCE COSTS Total Annual Operating and Maintenance Costs \$ 6,000 TOTAL PRESENT WORTH OF O&M COSTS (5% FOR 30 YEARS) \$ 92,000 PERATING AND MAINTENANCE COSTS \$ 10,000 PERATING AND MAINTENANCE PERATING AND MAINTENANCE PERATING AND MAINTENANCE PERATING AND MAINTENANCE PERATING AND PERAT			
Health and Safety @ 0% of Total Direct Cost Legal, Administration, Permitting @ 0% of Total Direct Cost Engineering @ 0% of Total Direct Cost Services During Construction @ 0% of Total Direct Cost TOTAL INDIRECT COST OF MINIMAL ACTION TOTAL CAPITAL (DIRECT + INDIRECT) COST TOTAL CAPITAL (DIRECT + INDIRECT) COST Total Annual Operating and Maintenance Costs \$ 6,00 TOTAL PRESENT WORTH OF O&M COSTS (5% FOR 30 YEARS) \$ 92,000	TOTAL DIRECT COST OF MINIMAL ACTION	\$	10,000
Health and Safety @ 0% of Total Direct Cost Legal, Administration, Permitting @ 0% of Total Direct Cost Engineering @ 0% of Total Direct Cost Services During Construction @ 0% of Total Direct Cost TOTAL INDIRECT COST OF MINIMAL ACTION TOTAL CAPITAL (DIRECT + INDIRECT) COST TOTAL CAPITAL (DIRECT + INDIRECT) COST Total Annual Operating and Maintenance Costs \$ 6,00 TOTAL PRESENT WORTH OF O&M COSTS (5% FOR 30 YEARS) \$ 92,000			
Health and Safety @ 0% of Total Direct Cost Legal, Administration, Permitting @ 0% of Total Direct Cost Engineering @ 0% of Total Direct Cost Services During Construction @ 0% of Total Direct Cost TOTAL INDIRECT COST OF MINIMAL ACTION TOTAL CAPITAL (DIRECT + INDIRECT) COST TOTAL CAPITAL (DIRECT + INDIRECT) COST Total Annual Operating and Maintenance Costs \$ 6,00 TOTAL PRESENT WORTH OF O&M COSTS (5% FOR 30 YEARS) \$ 92,000	INDIRECT COST OF MINIMAL ACTION		
Engineering @ 0% of Total Direct Cost Services During Construction @ 0% of Total Direct Cost TOTAL INDIRECT COST OF MINIMAL ACTION **TOTAL CAPITAL (DIRECT + INDIRECT) COST		\$	0
Services During Construction @ 0% of Total Direct Cost TOTAL INDIRECT COST OF MINIMAL ACTION TOTAL CAPITAL (DIRECT + INDIRECT) COST \$ 10,000 PERATING AND MAINTENANCE COSTS Total Annual Operating and Maintenance Costs \$ 6,000 TOTAL PRESENT WORTH OF O&M COSTS (5% FOR 30 YEARS) \$ 92,000	Legal, Administration, Permitting @ 0% of Total Direct Cost		0
TOTAL INDIRECT COST OF MINIMAL ACTION TOTAL CAPITAL (DIRECT + INDIRECT) COST \$ 10,000 PERATING AND MAINTENANCE COSTS Total Annual Operating and Maintenance Costs \$ 6,000 TOTAL PRESENT WORTH OF O&M COSTS (5% FOR 30 YEARS) \$ 92,000			0
TOTAL CAPITAL (DIRECT + INDIRECT) COST \$ 10,000 PERATING AND MAINTENANCE COSTS Total Annual Operating and Maintenance Costs \$ 6,000 TOTAL PRESENT WORTH OF O&M COSTS (5% FOR 30 YEARS) \$ 92,000	Services During Construction @ 0% of Total Direct Cost		0
PERATING AND MAINTENANCE COSTS Total Annual Operating and Maintenance Costs \$ 6,000 TOTAL PRESENT WORTH OF O&M COSTS (5% FOR 30 YEARS) \$ 92,000	TOTAL INDIRECT COST OF MINIMAL ACTION	\$	0
PERATING AND MAINTENANCE COSTS Total Annual Operating and Maintenance Costs \$ 6,000 TOTAL PRESENT WORTH OF O&M COSTS (5% FOR 30 YEARS) \$ 92,000			
PERATING AND MAINTENANCE COSTS Total Annual Operating and Maintenance Costs \$ 6,000 TOTAL PRESENT WORTH OF O&M COSTS (5% FOR 30 YEARS) \$ 92,000	TOTAL CAPITAL (DIRECT + INDIRECT) COST	¢	10.000
Total Annual Operating and Maintenance Costs \$ 6,000 TOTAL PRESENT WORTH OF O&M COSTS (5% FOR 30 YEARS) \$ 92,000	TOTAL GALTIAL (BINEOT & INBINEOT) COOT	Ψ	10,000
Total Annual Operating and Maintenance Costs \$ 6,000 TOTAL PRESENT WORTH OF O&M COSTS (5% FOR 30 YEARS) \$ 92,000	ODED ATIMO AND MAINTENANCE COSTS		
TOTAL PRESENT WORTH OF O&M COSTS (5% FOR 30 YEARS) \$ 92,000		¢	6 000
	Total Annual Operating and Maintenance Costs	Φ	6,000
TOTAL COST FOR MINIMAL ACTION \$ 102,000	TOTAL PRESENT WORTH OF O&M COSTS (5% FOR 30 YEARS)	\$	92,000
TOTAL COST FOR MINIMAL ACTION \$ 102,00			
TOTAL COST FOR MINIMAL ACTION \$ 102,000			
TOTAL COST FOR MINIMAL ACTION \$ 102,00			
TOTAL COST FOR MINIMAL ACTION \$ 102,000			
TOTAL COST FOR MINIMAL ACTION \$ 102,000			
TOTAL COST FOR MINIMAL ACTION \$ 102.00			
TOTAL COST FOR MINIMAL ACTION \$ 102,000			
TOTAL COST FOR MINIMAL ACTION \$ 102.00			
	TOTAL COST FOR MINIMAL ACTION	\$	102,000

EVALUATION CRITERIA	ALTERNATIVE PBG-WP1 MINIMAL ACTION
Overall Protection of Human Health	and the Environment
Human Health Protection	Minimal action does not eliminate or reduce potential risk posed by the waste pit soils at the Propellant Burning Ground. This alternative focuses on reducing contaminant exposure by restricting site access through the use of institutional controls.
Environmental Protection	Although there is no ecological risk associated with subsurface soils at the Waste Pits, there is a threat of groundwater contamination. Minimal action does not eliminate or reduce the threat of groundwater contamination.
Compliance with ARARs	
Chemical-specific	Chemical-specific ARARs have not been promulgated for contaminated soil; however, TBC soil clean-up standards for protection of human health and groundwater have been derived from the proposed Wisconsin Chapter NR 720, Wisconsin Administrative Code, and are being applied to BAAP soil remediation. Because soil contaminants would not be removed or destroyed, this alternative would not comply with pathway-specific numeric standards derived from the proposed Chapter NR 720. No remedial actions designed to achieve a performance standard which would meet the intent of the proposed Chapter NR 720 clean-up standards for protection of human health or groundwater would be implemented.
Location-specific	RCRA, Standards for Owners and Operators of Hazardous Waste Treatment, Storage, and Disposal Facilities (40 CFR - Part 264) may apply. If applicable, a program which incorporates the standards would be implemented. RCRA, Releases from Solid Waste Management Units
	(Subpart F, 264.90-264.109) may apply for post-closure monitoring of the site. This alternative would include continued groundwater monitoring at the Propellant Burning Ground.
	Wisconsin Hazardous Waste Management and Facility Regulations are essentially equivalent to federal RCRA regulations and as such, the degree of ARARs compliance with standards established by Wisconsin hazardous waste regulations can be inferred from the degree of ARARs compliance with RCRA.

EVALUATION CRITERIA	ALTERNATIVE PBG-WP1 MINIMAL ACTION
Action-specific	Federal OSHA requirements to protect worker health and safety would be followed during the site work.
Other Criteria, Advisories, and Guidances	It is presumed that relevant criteria, advisories, and guidances would be considered prior to implementation of this alternative.
Long-term Effectiveness and Permane	nce
Magnitude of Residual Risk	Under the minimal action alternative, contaminant levels in the soil would not significantly decrease over time.
Adequacy and Reliability of Controls	If managed properly, the combination of controls (i.e., zoning and deed restrictions) should effectively limit the use of the site.
Reduction of Toxicity, Mobility, and Vo	olume
Treatment Process Used and Materials Treated	Not Applicable. No treatment is used in this alternative.
Amount Destroyed or Treated	No contamination is treated or destroyed.
Degree of Expected Reductions of Toxicity, Mobility, and Volume	No reduction of toxicity, mobility, or volume.
Degree to Which Treatment is Irreversible	Not Applicable. No treatment used.
Type and Quantity of Residuals Remaining After Treatment	Not Applicable. No treatment used.
Short-term Effectiveness	
Protection of Community During Remedial Action	Because this alternative provides only a minimal response action (i.e., zoning and deed restrictions), threats to the community would not be encountered during implementation.
Protection of Workers During Remedial Action	This alternative provides only a minimal response action which does not require any construction. However site workers involved in the groundwater monitoring program should follow safe working practices.
Environmental Impacts	There would be no environmental impacts during implementation.
Time Until Remedial Action Objectives Are Achieved	Unknown. All remedial action objectives may never be achieved with minimal action.

EVALUATION CRITERIA	ALTERNATIVE PBG-WP1 MINIMAL ACTION	
Implementability		
Ability to Construct and Operate the Technology	Not Applicable. No construction is associated with this alternative.	
Reliability of the Technology	Not Applicable. No technology is used with this alternative.	
Ease of Undertaking Additional Remedial Actions, if Necessary	Minimal action would not limit or interfere with the ability to perform future remedial actions.	
Ability to Monitor Effectiveness of Remedy	The groundwater monitoring program would adequately monitor contaminant migration.	
Ability to Obtain Approvals and Coordinate with Other Agencies	Coordination with appropriate Army officials, WDNR, and the City of Baraboo would be required if these controls are applied. Coordination with Sauk County would be required to implement and maintain a public education program.	
Availability of Off-site Treatment, Storage, and Disposal Services and Capacity	Not Applicable.	
Availability of Necessary Equipment and Specialists	Local contractors are readily available to conduct educational programs.	
Availability of Technology	Not Applicable. No technology used.	
Costs		
Capital Cost	\$10,000	
Present Worth of Operation and Maintenance Cost	\$108,000	
Net Present Worth Cost	\$118,000	

TABLE 9-17 COST SUMMARY TABLE ALTERNATIVE PBG-WP4: ON-SITE INCINERATION AND CAPPING

FEASIBILITY STUDY PROPELLANT BURNING GROUND BADGER ARMY AMMUNITION PLANT

ITEM	OTAL C	OST
DIDECT COST OF ON SITE INCINEDATION AND CARRING		
DIRECT COST OF ON-SITE INCINERATION AND CAPPING Site preparation and mob/demob	\$	2,415,000
Contaminated soil delineation	Ψ	138,000
Excavate, blend, and screen contaminated soil		401,000
Backfill soil		209,000
Incineration		1,832,000
Cap construction		138,000
Institutional controls		10,000
		,
TOTAL DIRECT COST OF ON-SITE INCINERATION AND CAPPING	\$	5,143,000
		r
INDIRECT COST OF ON-SITE INCINERATION AND CAPPING		
Health and Safety @ 5% of Total Direct Cost	\$	257,000
Legal, Administration, Permitting @ 5% of Total Direct Cost	Ψ,	257,000 257,000
Engineering @ 10% of Total Direct Cost		514,000
Services During Construction @ 10% of Total Direct Cost		514,000
		0.1,000
TOTAL INDIRECT COST OF ON-SITE INCINERATION AND CAPPING	\$	1,542,000
TOTAL CARITAL (DIRECT - INDIRECT) COOT		
TOTAL CAPITAL (DIRECT + INDIRECT) COST	\$	6,685,000
OPERATING AND MAINTENANCE COSTS		
Total Annual Post Closure Maintenance Costs	\$	7,000
TOTAL PRESENT WORTH OF O&M COSTS (5% FOR 30 YEARS)	\$	108,000
TOTAL COST OF ON -SITE INCINERATION AND CAPPING	ø	£ 700 000
TOTAL GOOT OF ON #SITE INCINERATION AND CAPPING	\$	6,793,000

EVALUATION CRITERIA	ALTERNATIVE PBG-WP4 On-SITE INCINERATION AND CAPPING
Overall Protection of Human Healt	h and the Environment
Human Health Protection	Achieves remedial action objective for protection of human health. Incineration of severely contaminated soil, the RCRA caps, and institutional controls would eliminate the potential for human exposure to waste pit soil with contaminant concentrations greater than remediation goals.
Environmental Protection	No ecological risks associated with contaminated waste pit soil. Although the waste pit caps would be designed to prevent infiltration of precipitation, a large quantity of contaminants would remain close to the groundwater table in waste pit soils and would continue to present a threat to groundwater quality. VOCs could migrate out from under the caps via volatilization and lateral transport of vapors. Ensuing precipitation could then transport the VOCs to the groundwater table.
Compliance with ARARs	
Chemical-specific	Chemical-specific ARARs have not been promulgated for contaminated soil; however, TBC soil clean-up standards for protection of human health and groundwater have been derived from the proposed Wisconsin Chapter NR 720, Wisconsin Administrative Code, and are being applied to BAAP soil remediation. Although excavation and treatment of severely contaminated soil would achieve pathway-specific numeric standards for protection of human health and groundwater, the unexcavated soil would not comply with pathway-specific numeric standards. The RCRA caps used in this alternative could be designed to achieve a performance standard for SVOC-contaminated soil which would meet the intent of the proposed Chapter NR 720 clean-up standards for protection of groundwater; however, the RCRA caps could not be designed to achieve a performance standard for unexcavated VOC-contaminated soil.
Location-specific	The following location-specific ARARs may apply to contaminants remaining on site:
	RCRA, Standards for Owners and Operators of Hazardous Waste Treatment, Storage, and Disposal Facilities; (40 CFR - Part 264) or WAC Chapter NR 600
	RCRA, Releases from Solid Waste Management Units (Subpart F, 264.90-264.109) may apply for post-closure monitoring of the site. This alternative would include continued groundwater monitoring at the Propellant Burning Ground.

EVALUATION CRITERIA	ALTERNATIVE PBG-WP4 On-SITE INCINERATION AND CAPPING
	Wisconsin Hazardous Waste Management and Facility Regulations are essentially equivalent to federal RCRA regulations and as such, the degree of ARARs compliance with standards established by Wisconsin hazardous waste regulations can be inferred from the degree of ARARs compliance with RCRA.
Action-specific	RCRA, Land Disposal Restrictions (LDRs); (40 CFR Part 268) may apply to C6H6 waste disposed of in the waste pits. The C6H6 waste has been identified as a listed hazardous waste from non-specific sources (i.e., F005), per 40 CFR Part 261.31. As such, C6H6-contaminated soil may be subject to LDRs and, if excavated, must be treated so that it no longer "contains" C6H6 or treated to a concentration level prior to disposal in a RCRA Subtitle C permitted facility. In addition, 24DNT-contaminated soil in the waste pits would be characteristically hazardous if it exceeds the TCLP threshold for 24DNT waste. If classified as hazardous, and 24DNT-contaminated soil is excavated, the "characteristic" would have to be removed from the soil prior to disposal or placement on site.
	It is presumed that on-site incineration would comply with all RCRA requirements for hazardous waste incinerators (40 CFR Subpart O), and all applicable Clean Air Act requirements (40 CFR 50, 52, 60, and 61).
	Federal OSHA requirements to protect worker health and safety would be followed during any site work.
	Fugitive particulate emissions generated during site work are substantively subject to Wisconsin Particulate and Sulfur Emission Rules (WAC, Chapter NR 415) and General and Portable Sources Air Pollution Control Rules; Ambient Air Quality Standards (WAC, Chapter NR 404). It is assumed that dust suppression techniques and other preventative measures would ensure compliance with particulate emission standards. WDNR's Air Management Program will be contacted.
Other Criteria, Advisories, and Guidances	It is presumed that relevant criteria, advisories, and guidances would be considered prior to implementation of this alternative.

EVALUATION CRITERIA	ALTERNATIVE PBG-WP4 On-SITE INCINERATION AND CAPPING
Long-term Effectiveness and Permane	ence
Magnitude of Residual Risk	Because the severely contaminated soil would be excavated and incinerated, residual risk to human receptors would be negligible. Although the caps would limit natural mobilizing influences (i.e., infiltrating precipitation) on contaminants remaining in waste pit soils, the large quantity of contaminants and the inherent mobility of VOCs in the unsaturated zone would pose a long-term threat to groundwater quality.
Adequacy and Reliability of Controls	Institutional controls would protect the caps from invasive activities and restrict residential or public use of the site. Visual inspections would be conducted annually to ensure the integrity of the caps. Long-term groundwater monitoring would detect soil contaminants leaching into groundwater.
Reduction of Toxicity, Mobility, and Vo	olume
Treatment Process Used and Materials Treated	On-site incineration would destroy waste pit soil contaminants via thermal oxidation.
Amount Destroyed or Treated	Approximately 3,750 cubic yards of contaminated soil would be incinerated (approximately 1,250 cubic yards per pit). Assuming an average DNT (primary waste pit contaminant) concentration of 20,000 mg/kg, approximately 55,500 pounds of DNTs would be destroyed. Accounting for a small quantity of VOCs in waste pit soils, a total of approximately 56,000 pounds of waste pit contaminants would be destroyed.
Degree of Expected Reductions of Toxicity, Mobility, and Volume	The incinerator would be permitted and operated to achieve a destruction and removal efficiency of at least 99.9999 percent. The toxicity, mobility, and volume of the remaining waste pit contaminants would not be reduced but natural mobilizing influences (i.e., infiltrating precipitation) would be limited by the caps.
Degree to Which Treatment is Irreversible	Contaminants in the excavated soil would be destroyed by incineration. Remaining waste pit contaminants would not be treated.

EVALUATION CRITERIA	ALTERNATIVE PBG-WP4 On-SITE INCINERATION AND CAPPING
Type and Quantity of Residuals Remaining After Treatment	Bottom ash (i.e., treated soil), fly ash, and wastewater would be generated during incineration. Treated soil would be backfilled into the excavations. Fly ash, approximately 10 percent (i.e., 375 cubic yards) of the total volume treated, would transported to an off-site landfill for disposal. Wastewater would be treated on site with auxiliary equipment.
Short-term Effectiveness	
Protection of Community During Remedial Action	Although the incinerator would destroy and remove 99.9999 percent of the contaminants in the feed material per the operating permit, air emissions could contain traces of contaminants. However, the incinerator would be operating in a isolated portion of BAAP (i.e., Contaminated Waste Area) and no residences or active BAAP facilities are present within a mile of the site. Modeling of emission dispersal, as is normally conducted prior to permitting incinerators, is expected to indicate that the risk to human receptors downwind of the incinerator is minor.
Protection of Workers During Remedial Action	Air monitoring would be conducted at the site during excavation and incineration activities. Not only is there ingestion/inhalation risk associated with VOC- and DNT-contaminated soil but there is a reactive (i.e., DNT concentrations greater than 10 percent) risk. Special precautions may be required during excavation to prevent an explosive reaction. OSHA and other health and safety requirements which limit worker exposure to inhalation hazards would be enforced. If activities resulted in unacceptable levels of air contaminants, operations would be modified to protect workers.
Environmental Impacts	The Contaminated Waste Area is not considered a critical wildlife habitat and the impact to the ecological community during soil excavation and cap construction is expected to be minor. Potential impacts to ecological receptors from incinerator emissions are difficult to estimate but concentrations and the associated risk in the vicinity of the incinerator are expected to be low.

EVALUATION CRITERIA	ALTERNATIVE PBG-WP4 On-SITE INCINERATION AND CAPPING
Time Until Remedial Action Objectives Are Achieved	It is doubtful that the remedial action objective for protection of groundwater would be achieved. An estimated 9 to 12 months would be required for trial burns and permitting and another 9 to 12 months would be required for trial burns and permitting and another 9 to 12 months would be required to achieve the remedial action objective for protection of human health.
Implementability	
Ability to Construct and Operate the Technology	Transportable incinerators are available which can be mobilized to the site and operated using contractor-furnished personnel. Cap construction can be accomplished using standard construction procedures and conventional earth-moving equipment. Cap repairs would be easily implemented.
Reliability of the Technology	Incineration is the most effective and proven method for destruction of explosive-contaminated soil. Capping is a proven technology for reducing infiltration of precipitation and the resultant formation of leachate in contaminated soil. Annual visual inspections and cap repair (if necessary) would ensure that the integrity of the caps is maintained.
Ease of Undertaking Additional Remedial Actions, if Necessary	The caps would increase the scope of any future soil excavation and/or treatment. The caps would have to be dismantled if soil removal or in situ soil treatment methods were implemented.
Ability to Monitor Effectiveness of Remedy	Groundwater monitoring will determine cap effectiveness for preventing groundwater contamination.
Ability to Obtain Approvals and Coordinate with Other Agencies	The process for permitting an incinerator could be long and difficult. Extensive modeling of incinerator emissions may be required to show that potential receptors are not at risk. The integrity of cap design would have to be demonstrated to federal and state regulators. Other special permits (e.g., wetland permit) would not be necessary.
Availability of Off-site Treatment, Storage, and Disposal Services and Capacity	Fly ash (approximately 375 cubic yards) would be transported off site for disposal. An off-site landfill permitted for treatment and disposal of hazardous waste is located 108 miles from BAAP (i.e., Menomonee Falls, WI).

EVALUATION CRITERIA	ALTERNATIVE PBG-WP4 On-SITE INCINERATION AND CAPPING
Availability of Necessary Equipment and Specialists	Several vendors capable of providing incineration equipment and trained personnel are available. Obtaining sufficient clay, sand, common borrow soil, and topsoil in the vicinity of BAAP for cap construction should not be difficult.
Availability of Technology	Incineration equipment previously used for treatment of explosive-contaminated soil is available. A large excavation contracting company could provide the equipment and the expertise for constructing the caps.
Costs	
Capital Cost	\$6,685,000
Present Worth of Operation and Maintenance Cost	\$108,000
Net Present Worth Cost	\$6,793,000

TABLE 9-19 COST SUMMARY TABLE ALTERNATIVE PBG-WP5: COMPOSTING AND CAPPING

FEASIBILITY STUDY PROPELLANT BURNING GROUND BADGER ARMY AMMUNITION PLANT

Site preparation and mob/demob Contaminated soil delineation Excavate, blend, and screen contaminated soil Backfill soil Composting Cap construction Institutional controls	5	30,000 719,000 138,000 401,000 209,000 1,600,000
Treatability testing Site preparation and mob/demob Contaminated soil delineation Excavate, blend, and screen contaminated soil Backfill soil Composting Cap construction Institutional controls	\$	719,000 138,000 401,000 209,000 1,600,000
Site preparation and mob/demob Contaminated soil delineation Excavate, blend, and screen contaminated soil Backfill soil Composting Cap construction Institutional controls	5	719,000 138,000 401,000 209,000 1,600,000
Contaminated soil delineation Excavate, blend, and screen contaminated soil Backfill soil Composting Cap construction Institutional controls		138,000 401,000 209,000 1,600,000
Excavate, blend, and screen contaminated soil Backfill soil Composting Cap construction Institutional controls		401,000 209,000 1,600,000
Backfill soil Composting Cap construction Institutional controls		209,000 1,600,000
Composting Cap construction Institutional controls		1,600,000
Cap construction Institutional controls		
Institutional controls		400 004
		138,00
TOTAL DIDECT COST OF COMPOSTING AND CARRING		10,000
TOTAL DIRECT COST OF COMPOSTING AND CAPPING	B	3,245,000
NDIRECT COST OF COMPOSTING AND CAPPING		
Health and Safety @ 5% of Total Direct Cost	5	162,000
Legal, Administration, Permitting @ 5% of Total Direct Cost		162,000
Engineering @ 10% of Total Direct Cost		325,00
Services During Construction @ 10% of Total Direct Cost		325,00
TOTAL INDIRECT COST OF COMPOSTING AND CAPPING	5	974,00
TOTAL CAPITAL (DIRECT + INDIRECT) COST	\$	4,219,000
PERATING AND MAINTENANCE COSTS		
O&M of Composting System for 1 Year	5	1,085,000
TOTAL PRESENT WORTH OF COMPOSTING COSTS (5% FOR 1 YEAR)	•	1,033,000
Total Annual Post Closure Maintenance Costs	•	7,000
TOTAL PRESENT WORTH OF ANNUAL POST CLOSURE MAINTENANCE COSTS (5% FOR 30 YEARS)	6	108,000
TOTAL PRESENT WORTH OF O&M COSTS	,	1,141,000
TOTAL COST OF COMPOSTING AND CARBING		E gen on
TOTAL COST OF COMPOSTING AND CAPPING \$	•	5,360,000

EVALUATION CRITERIA	ALTERNATIVE PBG-WP5 COMPOSTING AND CAPPING
Overall Protection of Human Hea	Ith and the Environment
Human Health Protection	Achieves remedial action objective for protection of human health. Composting of severely contaminated soil, the RCRA caps, and institutional controls would eliminate the potential for human exposure to waste pit soil with contaminant concentrations greater than remediation goals.
Environmental Protection	No ecological risks associated with contaminated waste pit soil. Although the waste pit caps would be designed to prevent infiltration of precipitation, a large quantity of contaminants would remain close to the groundwater table in waste pit soil and would continue to present a threat to groundwater quality. VOCs could migrate out from under the caps via volatilization and lateral transport of vapors. Ensuing precipitation could then transport the VOCs to the groundwater table.
Compliance with ARARs	
Chemical-specific	Chemical-specific ARARs have not been promulgated for contaminated soil; however, TBC soil clean-up standards for protection of human health and groundwater have been derived from the proposed Wisconsin Chapter NR 720, Wisconsin Administrative Code, and are being applied to BAAP soil remediation. Although excavation and treatment of severely contaminated soil would achieve pathway-specific numeric standards for protection of human health and groundwater, the unexcavated soil would not comply with pathway-specific numeric standards. The RCRA caps used in this alternative could be designed to achieve a performance standard for unexcavated SVOC-contaminated soil which would meet the intent of the proposed Chapter NR 720 clean-up standards for protection of groundwater, however, the RCRA caps could not be designed to achieve a performance standard for unexcavated VOC-contaminated soil.

EVALUATION CRITERIA	ALTERNATIVE PBG-WP5 COMPOSTING AND CAPPING
Location-specific	The following location-specific ARARs may apply to contaminants remaining on site:
	RCRA, Standards for Owners and Operators of Hazardous Waste Treatment, Storage, and Disposal Facilities; (40 CFR - Part 264) or WAC Chapter NR 600
	RCRA, Releases from Solid Waste Management Units (Subpart F, 264.90-264.109) may apply for post-closure monitoring of the site. This alternative would include continued groundwater monitoring at the Propellant Burning Ground.
	Wisconsin Hazardous Waste Management and Facility Regulations are essentially equivalent to federal RCRA regulations and as such, the degree of ARARs compliance with standards established by Wisconsin hazardous waste regulations can be inferred from the degree of ARARs compliance with RCRA.
Action-specific	RCRA, Land Disposal Restrictions (LDRs); (40 CFR Part 268) may apply to C6H6 waste disposed of in the waste pits. The C6H6 waste has been identified as a listed hazardous waste from non-specific sources (i.e., F005), per 40 CFR Part 261.31. As such, C6H6-contaminated soil may be subject to LDRs and, if excavated, must be treated so that it no longer "contains" C6H6 or treated to a concentration level prior to disposal in a RCRA Subtitle C permitted facility. In addition, 24DNT-contaminated soil in the waste pits would be characteristically hazardous if it exceeds the TCLP threshold for 24DNT waste. If classified as hazardous, and 24DNT-contaminated soil is excavated, the "characteristic" would have to be removed from the soil prior to disposal or placement on site.
	General RCRA requirements pertaining to permitted Hazardous Waste TSD units would apply to the composting facility.
	Federal OSHA requirements to protect worker health and safety would be followed during any site work.

EVALUATION CRITERIA	ALTERNATIVE PBG-WP5 COMPOSTING AND CAPPING
	Fugitive particulate emissions generated during site work are substantively subject to Wisconsin Particulate and Sulfur Emission Rules (WAC, Chapter NR 415) and General and Portable Sources Air Pollution Control Rules; Ambient Air Quality Standards (WAC, Chapter NR 404). It is assumed that dust suppression techniques and other preventative measures would ensure compliance with particulate emission standards. WDNR's Air Management Program will be contacted.
Other Criteria, Advisories, and Guidances	It is presumed that relevant criteria, advisories, and guidances would be considered prior to implementation of this alternative.
Long-term Effectiveness and Perma	nence
Magnitude of Residual Risk	Because the severely contaminated soil would be excavated and composted, residual risk to human receptors would be negligible. Although the caps would limit natural mobilizing influences (i.e., infiltrating precipitation) on contaminants remaining in waste pit soils, the large quantity of contaminants and the inherent mobility of VOCs in the unsaturated zone would pose a long-term threat to groundwater quality.
Adequacy and Reliability of Controls	Institutional controls would protect the caps from invasive activities and restrict residential or public use of the site. Visual inspections would be conducted annually to ensure the integrity of the caps. Long-term groundwater monitoring would detect soil contaminants leaching into groundwater.
Reduction of Toxicity, Mobility, and	Volume
Treatment Process Used and Materials Treated	The treatment process utilizes native microorganisms and agricultural waste amendments to biodegrade waste pit soil contaminants.
Amount Destroyed or Treated	Approximately 3,750 cubic yards of contaminated soil would be composted (approximately 1,250 cubic yards per pit). Assuming an average DNT (primary waste pit contaminant) concentration of 20,000 mg/kg, approximately 55,500 pounds of DNTs would be destroyed. The amount of VOC destruction by composting is not expected to be significant.

EVALUATION CRITERIA	ALTERNATIVE PBG-WP5 COMPOSTING AND CAPPING
Degree of Expected Reductions of Toxicity, Mobility, and Volume	Field demonstrations indicate that composting reduces the toxicity of explosives-contaminated soil, as measured by bacterial mutagenicity and aquatic toxicity, by 88 to 98 percent (R.F. Weston, Inc., 1991). The degree of VOC destruction is unknown but TRCLE destruction is expected to be less than that of explosives. Residual material is nutrient-rich compost. No other wastestreams are generated in this process. The toxicity, mobility, and volume of the remaining waste pit contaminants would not be reduced but natural mobilizing influences (i.e., infiltrating precipitation) would be limited by the caps.
Degree to Which Treatment is Irreversible	Contaminants in the excavated soil would be destroyed by composting. Remaining waste pit contaminants would not be treated.
Short-term Effectiveness	
Protection of Community During Remedial Action	The composting facility would be operating in an isolated portion of BAAP (i.e., Contaminated Waste Area) and no residences or active BAAP facilities are present within a mile of the site. The distance is expected to provide adequate dispersal of any odors and airborne contaminants.
Protection of Workers During Remedial Action	Air monitoring would be conducted at the site during excavation and composting activities. Not only is there ingestion/inhalation risk associated with VOC- and DNT-contaminated soil but there is a reactive (i.e., DNT concentrations greater than 10 percent) risk. Special precautions may be required during excavation to prevent an explosive reaction. OSHA and other health and safety requirements which limit worker exposure to inhalation hazards would be enforced. If activities resulted in unacceptable levels of air contaminants, operations would be modified to protect workers.
Environmental Impacts	The Contaminated Waste Area is not considered a critical wildlife habitat and the impact to the ecological community during soil excavation and cap construction is expected to be minor. Potential impacts to ecological receptors from composting are expected to be minimal.
Time Until Remedial Action Objectives Are Achieved	It is doubtful that the remedial action objective for protection of groundwater would be achieved. An estimated 2 months would be required for treatability testing and another 12 months would be required to achieve the remedial action objective for protection of human health.

EVALUATION CRITERIA	ALTERNATIVE PBG-WP5 COMPOSTING AND CAPPING	
Implementability		
Ability to Construct and Operate the Technology	Construction of the composting facility poses no unusual design or construction problems. Operation does not require unusual skills or knowledge and is commonly practiced for agricultural wastes. Cap construction can be accomplished using standard construction procedures and conventional earth-moving equipment. Cap repairs would be easily implemented.	
Reliability of the Technology	The general technical feasibility of composting explosives-contaminated soil has been successfully demonstrated at other U.S. Army sites. The feasibility of composting VOC-contaminated soil has not been demonstrated. VOC removal would likely occur via volatilization during the composting process, resulting in an uncontrolled release to the atmosphere. Site-specific treatability investigations would be necessary to confirm composting feasibility at BAAP prior to full-scale design and construction. Capping is a proven technology for reducing infiltration of precipitation and the formation of leachate in contaminated soil. Annual visual inspections and cap repair (if necessary) would ensure that the integrity of the caps is maintained.	
Ease of Undertaking Additional Remedial Actions, if Necessary	The caps would increase the scope of any future soil excavation and/or treatment. The caps would have to be dismantled if soil removal or in situ soil treatment methods were implemented.	
Ability to Monitor Effectiveness of Remedy	Groundwater monitoring will determine cap effectiveness for preventing groundwater contamination.	
Ability to Obtain Approvals and Coordinate with Other Agencies	Administratively, composting of explosives-contaminated soil is generally supported by USEPA as a potentially viable and cost-effective technology. Composting has been identified as the selected alternative in the USEPA Record of Decision at UMDA. However, obtaining approvals from regulatory agencies for composting VOC-contaminated soil is expected to be difficult. The integrity of cap design would have to be demonstrated to federal and state regulators. Other special permits (e.g., wetland permit) would not be necessary.	
Availability of Off-site Treatment, Storage, and Disposal Services and Capacity	Off-site Treatment, Storage, and Disposal facility and services are not required for this alternative since treatment residuals would be backfilled into the waste pits.	

EVALUATION CRITERIA	ALTERNATIVE PBG-WP5 COMPOSTING AND CAPPING
Availability of Necessary Equipment and Specialists	Although composting is a well-developed technology that is used extensively throughout the country, composting explosives-contaminated soil is a new application of the process. Contractors with expertise in this application are not currently available. However, considerable contractor experience will be acquired at UMDA, which is currently undergoing remediation. Availability of equipment would not be a limitation.
	Obtaining sufficient clay, sand, common borrow soil, and topsoil in the vicinity of BAAP for cap construction should not be difficult.
Availability of Technology	Composting is not a complex process which requires sophisticated equipment. A large construction contracting company could provide the equipment and training to construct and operate the composting facility and to construct the caps.
Costs	
Capital Cost	\$4,219,000
Present Worth of Operation and Maintenance Cost	\$1,141,000
Net Present Worth Cost	\$5,360,000

TABLE 9-21 COST SUMMARY TABLE

ALTERNATIVE PBG-WP7: IN-SITU VACUUM EXTRACTION, COMPOSTING, AND CAPPING

FEASIBILITY STUDY PROPELLANT BURNING GROUND BADGER ARMY AMMUNITION PLANT

		COST
DIRECT COST OF IN-SITU VACUUM EXTRACTION, COMPOSTING, AND CAPPING Treatability testing	\$	90,00
Contaminated soil delineation	Ψ	138,00
Site preparation and mob/demob		719,00
In-situ vacuum extraction system construction		103,00
In-situ vacuum extraction system operation		20,00
Excavate, blend, and screen contaminated soil		401,00
Backfill		209,00
Composting		1,600,00
Cap construction		138,00
TOTAL DIRECT COST OF IN-SITU VACUUM EXTRACTION, COMPOSTING, AND CAPPING	\$	3,418,00
NDIRECT COST OF IN-SITU VACUUM EXTRACTION, COMPOSTING, AND CAPPING		
Health and Safety @ 5% of Total Direct Cost	\$	171,00
Legal, Administration, Permitting @ 5% of Total Direct Cost		171,00
Engineering @ 10% of Total Direct Cost		342,00
Services During Construction @ 10% of Total Direct Cost		342,00
TOTAL DIRECT COST OF IN-SITU VACUUM EXTRACTION, COMPOSTING, AND CAPPING	\$	1,026,00
TOTAL CAPITAL (DIRECT + INDIRECT) COST	\$	4,444,00
PERATING AND MAINTENANCE COSTS		
O&M of Composting System for 1 Year	\$	1,085,00
TOTAL PRESENT WORTH OF COMPOSTING COSTS (5% FOR 1 YEAR)	\$	1,033,00
Total Annual Operating and Maintenance Costs	\$	7,00
TOTAL PRESENT WORTH OF ANNUAL POST CLOSURE MAINTENANCE COSTS (5% FOR 30 YEARS)	\$	108,00
TOTAL PRESENT WORTH OF O&M COSTS	\$	1,141,00
TOTAL COST OF IN-SITU VACUUM EXTRACTION,	\$	5,585,00

EVALUATION CRITERIA	ALTERNATIVE PBG-WP7 In SITU VACUUM EXTRACTION, COMPOSTING, AND CAPPING
Overall Protection of Human Hea	Ith and the Environment
Human Health Protection	Achieves remedial action objective for protection of human health. In situ vacuum extraction, composting of severely contaminated soil, the RCRA caps, and institutional controls would eliminate the potential for human exposure to waste pit soil with contaminant concentrations greater than remediation goals.
Environmental Protection	No ecological risks associated with contaminated waste pit soil. The large quantity of contaminants remaining close to the groundwater table in waste pit soil may present a threat to groundwater quality. However, VOCs, which are the more mobile soil contaminants, would have been removed by in situ vacuum extraction and would no longer threaten groundwater quality. Consequently, the alternative has potential for achieving the remedial action objective for protection of groundwater.
Compliance with ARARs	
Chemical-specific	Chemical-specific ARARs have not been promulgated for contaminated soil; however, TBC soil clean-up standards for protection of human health and groundwater have been derived from the proposed Wisconsin Chapter NR 720, Wisconsin Administrative Code, and are being applied to BAAP soil remediation. Excavation and treatment of severely contaminated soil would achieve the pathway-specific numeric standards for protection of human health and groundwater. Although in situ vacuum extraction used in this alternative could be designed to achieve pathway-specific numeric standards for unexcavated VOC-contaminated soil, pathway-specific numeric standards for the unexcavated SVOC-contaminated soil would not be achieved. However, the RCRA caps used in this alternative could be designed to achieve a performance standard for the unexcavated SVOC-contaminated soil which would meet the intent of the proposed Chapter NR 720 clean-up standards for protection of groundwater. Consequently, this alternative could possibly meet either the pathway-specific numeric standards derived from the proposed Chapter NR 720 or performance standards designed to meet the intent of the proposed Chapter NR 720.

EVALUATION CRITERIA	ALTERNATIVE PBG-WP7 IN SITU VACUUM EXTRACTION, COMPOSTING, AND CAPPING
Location-specific	The following location-specific ARARs may apply to contaminants remaining on site:
	RCRA, Standards for Owners and Operators of Hazardous Waste Treatment, Storage, and Disposal Facilities; (40 CFR - Part 264) or WAC Chapter NR 600
	RCRA, Releases from Solid Waste Management Units (Subpart F, 264.90-264.109) may apply for post-closure monitoring of the site. This alternative would include continued groundwater monitoring at the Propellant Burning Ground.
	Wisconsin Hazardous Waste Management and Facility Regulations are essentially equivalent to federal RCRA regulations and as such, the degree of ARARs compliance with standards established by Wisconsin hazardous waste regulations can be inferred from the degree of ARARs compliance with RCRA.
Action-specific	RCRA, Land Disposal Restrictions (LDRs); (40 CFR Part 268) may apply to C6H6 waste disposed of in the waste pits. The C6H6 waste has been identified as a listed hazardous waste from non-specific sources (i.e., F005), per 40 CFR Part 261.31. As such, C6H6-contaminated soil may be subject to LDRs and, if excavated, must be treated so that it no longer "contains" C6H6 or treated to a concentration level prior to disposal in a RCRA Subtitle C permitted facility. In addition, 24DNT-contaminated soil in the waste pits would be characteristically hazardous if it exceeds the TCLP threshold for 24DNT waste. If classified as hazardous, and 24DNT-contaminated soil is excavated, the "characteristic" would have to be removed from the soil prior to disposal or placement on site.
	General RCRA requirements pertaining to permitted Hazardous Waste TSD units would apply to the composting facility.
	Federal OSHA requirements to protect worker health and safety would be followed during any site work.

EVALUATION CRITERIA	ALTERNATIVE PBG-WP7 In SITU VACUUM EXTRACTION, COMPOSTING, AND CAPPING
	Fugitive particulate emissions generated during site work are substantively subject to Wisconsin Particulate and Sulfur Emission Rules (WAC, Chapter NR 415) and General and Portable Sources Air Pollution Control Rules; Ambient Air Quality Standards (WAC, Chapter NR 404). It is assumed that dust suppression techniques and other preventative measures would ensure compliance with particulate emission standards. WDNR's Air Management Program will be contacted.
Other Criteria, Advisories, and Guidances	It is presumed that relevant criteria, advisories, and guidances would be considered prior to implementation of this alternative.
Long-term Effectiveness and Perma	nence
Magnitude of Residual Risk	Because the severely contaminated soil would be excavated and composted, residual risk to human receptors would be negligible. Although the caps would limit natural mobilizing influences (i.e., infiltrating precipitation) on contaminants remaining in waste pit soils, the large quantity of SVOCs could pose a long-term threat to groundwater quality. However, SVOCs are not as mobile as VOCs in the unsaturated zone and are less of a threat to groundwater quality.
Adequacy and Reliability of Controls	Institutional controls would protect the caps from invasive activities and restrict residential or public use of the site. Visual inspections would be conducted annually to ensure the integrity of the caps. Long-term groundwater monitoring would detect soil contaminants leaching into groundwater.
Reduction of Toxicity, Mobility, and	Volume
Treatment Process Used and Materials Treated	In situ vacuum extraction utilizes screened wells installed through the contaminated soil and a blower system connected to the wells to pull a vacuum on subsurface soil for VOC removal. The VOCs would be removed from the resultant vapor stream with activated carbon. The spent carbon would likely be thermally reactivated off site and the VOCs destroyed. Composting would utilize native microorganisms and agricultural waste amendments to biodegrade SVOCs in excavated soil.

EVALUATION CRITERIA	ALTERNATIVE PBG-WP7 IN SITU VACUUM EXTRACTION, COMPOSTING, AND CAPPING
Amount Destroyed or Treated	RI data indicates that a relatively small quantity of VOCs are present in waste pit soil. It is assumed that the total mass of VOCs ranges from 100 to 1,000 pounds. Approximately 3,750 cubic yards of contaminated soil would be excavated and composted (approximately 1,250 cubic yards per pit). Assuming an average DNT (primary waste pit contaminant) concentration of 20,000 mg/kg, approximately 55,500 pounds of DNTs would be destroyed. Consequently, a total of approximately 56,000 pounds of waste pit contaminants would be destroyed.
Degree of Expected Reductions of Toxicity, Mobility, and Volume	VOC removal efficiencies of up to 99 percent are possible with in situ vacuum extraction. Off-site thermal reactivation of the spent carbon would destroy the VOCs. Field demonstrations indicate that composting reduces the toxicity of explosives-contaminated soil, as measured by bacterial mutagenicity and aquatic toxicity, by 88 to 98 percent (R.F. Weston, Inc., 1992). Residual material is nutrient-rich compost. No other wastestreams are generated in this process. The toxicity, mobility, and volume of the remaining waste pit contaminants would not be reduced but natural mobilizing influences (i.e., infiltrating precipitation) would be limited by the caps.
Degree to Which Treatment is Irreversible	VOCs in the spent carbon and SVOCs in the excavated soil would be destroyed by thermal reactivation and composting, respectively. Remaining waste pit contaminants would not be treated.
Short-term Effectiveness	
Protection of Community During Remedial Action	In situ vacuum extraction would remove VOCs that would otherwise volatilize into the atmosphere during composting. The composting facility would be operating in an isolated portion of BAAP (i.e., Contaminated Waste Area) and no residences or active BAAP facilities are present within a mile of the site. The distance is expected to provide adequate dispersal of any odors.

EVALUATION CRITERIA	ALTERNATIVE PBG-WP7 IN SITU VACUUM EXTRACTION, COMPOSTING, AND CAPPING
Protection of Workers During Remedial Action	In situ vacuum extraction would remove VOCs that would otherwise volatilize into the atmosphere during excavation and composting and potentially affect site workers. However, there is an ingestion/inhalation risk associated with DNT-contaminated soil and a reactive (i.e., DNT concentrations greater than 10 percent) risk. Special precautions may be required during excavation to prevent an explosive reaction. Air monitoring would be conducted at the site during excavation and composting activities. OSHA and other health and safety requirements which limit worker exposure to inhalation hazards would be enforced. If activities resulted in unacceptable levels of air contaminants, operations would be modified to protect workers.
Environmental Impacts	The Contaminated Waste Area is not considered a critical wildlife habitat and the impact to the ecological community during soil excavation and cap construction is expected to be minor. Potential impacts to ecological receptors from composting are expected to be minimal.
Time Until Remedial Action Objectives Are Achieved	An estimated 2 months would be required for treatability testing and another 18 months would be required to achieve the remedial action objectives. In situ vacuum extraction could be implemented concurrent with composting treatability testing, potentially shortening the overall remediation schedule.
Implementability	
Ability to Construct and Operate the Technology	Construction of the vacuum extraction system would utilize commonly-used well construction materials and vendor-supplied skid-mounted blower/treatment system assemblies. Careful monitoring of vadose zone monitoring wells would be required to operate the vacuum extraction system at maximum efficiency. Construction of the composting facility poses no unusual design or construction problems. Operation does not require unusual skills or knowledge and is commonly practiced for agricultural wastes. Cap construction can be accomplished using standard construction procedures and conventional earth-moving equipment. Cap repairs would be easily implemented.

EVALUATION CRITERIA	ALTERNATIVE PBG-WP7 In SITU VACUUM EXTRACTION, COMPOSTING, AND CAPPING
Reliability of the Technology	In situ vacuum extraction is a well-demonstrated technology for remediation of VOC-contaminated soil. The general technical feasibility of composting explosives-contaminated soil has been successfully demonstrated at other U.S. Army sites. Site-specific treatability investigations would be necessary to confirm composting feasibility at BAAP prior to full-scale design and construction. Capping is a proven technology for reducing infiltration of precipitation and the formation of leachate in contaminated soil. Annual visual inspections and cap repair (if necessary) would ensure that the integrity of the caps is maintained.
Ease of Undertaking Additional Remedial Actions, if Necessary	The caps would increase the scope of any future soil excavation and/or treatment. The caps would have to be dismantled if soil removal or further in situ soil treatment methods were implemented.
Ability to Monitor Effectiveness of Remedy	Groundwater monitoring will determine cap effectiveness for preventing groundwater contamination.
Ability to Obtain Approvals and Coordinate with Other Agencies	In situ vacuum extraction has gained wide administrative support which is reflected in the large number of Records of Decision which include it as the preferred remedial technology at CERCLA sites. Administratively, composting of explosives-contaminated soil is generally supported by USEPA as a potentially viable and cost-effective technology. Composting has been identified as the selected alternative in the USEPA Record of Decision at UMDA. The integrity of cap design would have to be demonstrated to federal and state regulators. Other special permits (e.g., wetland permit) would not be necessary.
Availability of Off-site Treatment, Storage, and Disposal Services and Capacity	Off-site treatment of spent carbon would be required but the estimated quantity of spent carbon (i.e., 3,600 pounds) is not significant.

EVALUATION CRITERIA	ALTERNATIVE PBG-WP7 In SITU VACUUM EXTRACTION, COMPOSTING, AND CAPPING
Availability of Necessary Equipment and Specialists	Several contractors familiar with in situ vacuum extraction design and construction are available. Although composting is a well-developed technology that is used extensively throughout the country, composting explosives-contaminated soil is a new application of the process. Contractors with expertise in this application are not currently available. However, considerable contractor experience will be acquired at UMDA, which is currently undergoing remediation. Availability of equipment would not be a limitation. Obtaining sufficient clay, sand, common borrow soil, and topsoil in the vicinity of BAAP for cap construction should not be difficult.
Availability of Technology	A wide range of in situ vacuum extraction equipment is available from several sources. Vacuum extraction wells could be installed using material provided by local suppliers. Composting is not a complex process which requires sophisticated equipment. A large construction contracting company could provide the equipment and training to construct and operate the composting facility and to construct the caps.
Costs	
Capital Cost	\$4,444,000
Present Worth of Operation and Maintenance Cost	\$1,141,000
Net Present Worth Cost	\$5,585,000

TABLE 9-23 COST SUMMARY TABLE ALTERNATIVE PBG-WP8: IN-SITU TREATMENT

FEASIBILITY STUDY PROPELLANT BURNING GROUND BADGER ARMY AMMUNITION PLANT

ITEM		TOTA		net.
IIEM				
		SOIL		CHEMICAL,
		FLUSHING	t	BIOLOGICA
DIRECT COST OF IN-SITU TREATMENT				
Treatability testing	\$	528,000	\$	528,000
Site preparation and mob/demob		347,000		347,000
Contaminated soil delineation		365,000		365,000
Barrier system construction		7,928,000		7,928,000
Infiltration basin construction		295,000		
Water table extraction well installation		247,000		
Confirmatory sampling		53,000		53,000
Addition of iron sulfate and hydrogen peroxide, pH adjustment, and				(O&M)
addition of nutrients				
TOTAL DIRECT COST OF IN-SITU TREATMENT	\$	9,763,000	\$	9,221,000
NDIRECT COST OF IN-SITU TREATMENT	•	400 000		404.00
Health and Safety @ 5% of Total Direct Cost	\$	488,000	\$	461,000
Legal, Administration, Permitting @ 5% of Total Direct Cost		488,000		461,000
Engineering @ 10% of Total Direct Cost		976,000		922,000
Services During Construction @ 10% of Total Direct Cost		976,000		922,000
TOTAL INDIRECT COST OF IN-SITU TREATMENT	\$	2,928,000	\$	2,766,000
TOTAL CAPITAL (DIRECT + INDIRECT) COST	\$	12,691,000	\$	11,987,000
PERATING AND MAINTENANCE COSTS		•		
Total Annual Operating and Maintenance Costs Starting 2 Years After Beginning of Project	\$	349,000	\$	10,754,000
TOTAL PRESENT WORTH OF O&M COSTS (5% FOR 11 YEARS)	\$	2,629,000		
TOTAL PRESENT WORTH OF O&M COSTS (5% FOR 16 MONTHS)	<u> </u>	_,,,	\$	12,287,000
TOTAL COST OF IN-SITU TREATMENT - SOIL FLUSHING	\$	15,320,000		
TOTAL COST OF IN-SITU TREATMENT - CHEMICAL/BIOLOGICAL			5	24,274,000
		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	*******	

EVALUATION CRITERIA	ALTERNATIVE PBG-WP8 In SITU TREATMENT	
Overall Protection of Human Health and the Environment		
Human Health Protection	Achieves the remedial action objective for protection of human health. The entire volume of contaminated soil in the waste pits would be treated until remediation goals are attained. Treatment residuals from soil flushing would be destroyed off site. Chemical-biological would degrade contaminants in situ, with end products of carbon dioxide and water.	
Environmental Protection	No ecological risks associated with contaminated waste pit soil. Achieves the remedial action objective for protection of groundwater. Treating the entire volume of contaminated soil to meet remediation goals would eliminate leachate generation and protect groundwater.	
Compliance with ARARs		
Chemical-specific	Chemical-specific ARARs have not been promulgated for contaminated soil; however, TBC soil clean-up standards for protection of human health and groundwater have been derived from the proposed Wisconsin Chapter NR 720, Wisconsin Administrative Code, and are being applied to BAAP soil remediation. Because the entire volume of contaminated soil in the waste pits would be treated to meet remediation goals, this alternative would comply with pathway-specific numeric standards derived from the proposed Chapter NR 720.	
Location-specific	No location-specific ARARs.	
Action-specific	Federal OSHA requirements to protect worker health and safety would be followed during any site work. Fugitive particulate emissions generated during site work are substantively subject to Wisconsin Particulate and Sulfur Emission Rules (WAC, Chapter NR 415) and General and Portable Sources Air Pollution Control Rules; Ambient Air Quality Standards (WAC, Chapter NR 404). It is assumed that dust suppression techniques and other preventative measures would ensure compliance with particulate emission standards. WDNR's Air Management Program will be contacted. For soil flushing, discharge of treated water to the Wisconsin River would require a WPDES permit. The existing WPDES permit for the IRM facility could be modified to account for increases in contaminant concentrations in the IRM facility influent.	
Other Criteria, Advisories, and Guidances	It is presumed that relevant criteria, advisories, and guidances would be considered prior to implementation of this alternative.	

EVALUATION CRITERIA	ALTERNATIVE PBG-WP8 IN SITU TREATMENT		
Long-term Effectiveness and	Long-term Effectiveness and Permanence		
Magnitude of Residual Risk	Assuming all contaminated waste pit soil was treated to meet remediation goals, there would be no residual risk.		
Adequacy and Reliability of Controls	The barrier system would be designed to contain all leachate generated during in situ treatment. Removal or destruction of all waste pit soil contaminants eliminates the need for long-term monitoring or maintenance activities.		
Reduction of Toxicity, Mobility	y, and Volume		
Treatment Process Used and Materials Treated	Soil Flushing: Flushing solution (e.g., water) would be infiltrated into waste pit soil to remove soil contaminants. The flushing solution and entrained contaminants would be extracted from the bottom of the barrier system and treated with carbon adsorption and air stripping at the existing IRM facility. Chemical-Biological: Chemicals would be added and mixed into waste pit soil using deep soil mixing equipment. Chemical oxidation using iron sulfate and hydrogen peroxide would degrade waste pit soil contaminants into a readily biodegradable form. Nutrients added to the soil would stimulate the growth of indigenous populations of microorganisms to complete contaminant		
	degradation.		
Amount Destroyed or Treated	Assuming an average DNT (primary waste pit contaminant) concentration of 5,000 mg/kg, approximately 290,700 pounds (96,900 pounds per pit) of DNTs would be flushed from waste pit soil or degraded in situ. Accounting for a small quantity of VOCs in waste pit soils, a total of approximately 292,000 pounds of contaminants would be treated.		
Degree of Expected Reductions of Toxicity, Mobility, and Volume	Soil Flushing: Assuming the spent carbon from the IRM facility was either incinerated or thermally reactivated, waste pit contaminants would be destroyed.		
	<u>Chemical-Biological</u> : All waste pit contaminants would ultimately be degraded into carbon dioxide and water.		
Degree to Which Treatment is Irreversible	Contaminants would be destroyed by thermal treatment or chemical-biological degradation.		

EVALUATION CRITERIA	ALTERNATIVE PBG-WP8 IN SITU TREATMENT
Type and Quantity of Residuals Remaining After Treatment	Soil Flushing: Assuming replacement of spent carbon in the IRM facility carbon adsorption system occurred every six weeks (20,000 lbs per episode), and approximately 186 weeks were required to achieve remediation goals in each waste pit, a total of 1,860,000 lbs (i.e., 20,000 lbs every six weeks over a period of 558 weeks) of spent carbon would be generated. If spent carbon was either incinerated or thermally reactivated, there would be no treatment residuals.
	<u>Chemical-Biological</u> : Treatment residuals from chemical-biological degradation would be environmentally benign products (i.e., carbon dioxide and water).
Short-term Effectiveness	
Protection of Community During Remedial Action	The barrier system would prevent an uncontrolled release of contaminants into surrounding subsurface soil (i.e., through lateral transport) and into the regional groundwater system.
	Soil Flushing: Because treatment of waste pit soil contaminants would occur in the IRM facility, with little possibility for the release of emissions, the community would not be at risk during remediation.
	<u>Chemical-Biological</u> : VOCs which may be mobilized during soil mixing, and migrate toward ground surface, would be contained by a surface foaming agent, grout layer, and/or a containment shroud on the deep soil mixing equipment. The process is not expected to produce any emissions which would present a threat to the community.

EVALUATION CRITERIA	ALTERNATIVE PBG-WP8 IN SITU TREATMENT
Protection of Workers During Remedial Action	Construction of the proposed barrier system would include invasive activities through DNT-contaminated soil. Not only is there ingestion/inhalation risk associated with VOC- and DNT-contaminated soil but there is a reactive (i.e., DNT concentrations greater than 10 percent) risk. Special precautions may be required during invasive activities to prevent an explosive reaction. Soil Flushing: Air monitoring would be conducted at the site during construction of the soil flushing systems. OSHA and other health and safety requirements which limit worker exposure to inhalation hazards would be enforced. If activities resulted in unacceptable levels of air contaminants, operations would be modified to protect
	Chemical-Biological: Subsequent to construction of the proposed barrier system, there would be additional invasive activities through DNT-contaminated soil. As described above, there is both an ingestion/inhalation risk and a reactive risk associated with DNT-contaminated soil. Furthermore, the potential reactive risk may be enhanced by mixing hydrogen peroxide solution into DNT-contaminated soil, as would occur during the second phase of treatment. Hydrogen peroxide addition would not only supply oxygen to the subsurface but it would generate an exothermic reaction. Special precautions may be required during hydrogen peroxide addition and soil mixing to prevent an explosive reaction. Air monitoring would be conducted at the site during soil mixing. OSHA and other health and safety requirements which limit worker exposure to inhalation hazards would be enforced. If activities resulted in unacceptable levels of air contaminants, operations would be modified to protect workers.
Environmental Impacts	Because the Contaminated Waste Area is not considered a critical wildlife habitat and the area affected by remedial activities is small, the impact to the ecological community during construction is expected to be minor.

EVALUATION CRITERIA	ALTERNATIVE PBG-WP8 IN SITU TREATMENT
Time Until Remedial Action Objectives Are Achieved	An estimated 12 months is required for treatability testing and another six to 12 months is required to complete the barrier system.
	Soil Flushing: At a maximum in situ soil flushing rate of 250 gpm, an estimated 1,300 days are required to achieve remediation goals in each waste pit. Therefore, including treatability testing and barrier system construction, approximately 12 to 13 years would be required to achieve the remedial action objectives for all three pits.
	Chemical-Biological: An estimated 16 months would be required to complete the four treatment phases of chemical-biological degradation. Therefore, including treatability testing and barrier system construction, approximately 3 to 4 years would be required to achieve the remedial action objectives for all three pits.
Implementability	
Ability to Construct and Operate the Technology	Civil projects which have included excavation of watertight vertical shafts have utilized designs similar to the proposed barrier system design. Other than concerns associated with drilling through potentially reactive soil (i.e., DNT concentrations greater than 10 percent), no obstacles to barrier system construction are anticipated.
	Soil Flushing: Construction of the in situ soil flushing system only requires installation of an infiltration gallery and extraction well at each of the waste pits, and piping between the waste pits and existing systems (i.e., BAAP Well No.5 and the influent pipe to the IRM facility). Operation of the flushing system or IRM facility is not anticipated to pose any difficulties.
	Chemical-Biological: Because chemical addition is accomplished with the use of deep soil mixing equipment, no construction beyond barrier system construction is required. The proposed deep soil mixing equipment (i.e., MecTool®) has never been used at depths greater than 50 feet below ground surface. Although the contractor indicates that extending the depth capability of the equipment to 100 feet below ground surface could be easily implemented, operational concerns with the equipment remain.

EVALUATION CRITERIA	ALTERNATIVE PBG-WP8 IN SITU TREATMENT
Reliability of the Technology	Vertical slurry and grout barriers are demonstrated technologies for containing contaminated groundwater. However, the reliability of the barrier technologies in a "can" barrier system design has not been fully demonstrated. Reliability of the "can" design would have to be demonstrated during treatability tests.
	Soil Flushing: In situ soil flushing technology has been demonstrated at hydrocarbon-contaminated sites with a shallow groundwater table. Soil flushing has not been demonstrated for treatment of explosive-contaminated soil and has not been applied to remediation of any hazardous waste site at this scale (i.e., a 90-foot column of contaminated soil in the unsaturated zone). Although the geology is ideal for a soil flushing operation, the reliability of the technology for this application is uncertain and extensive bench- and pilot-scale treatability testing is required.
	Chemical-Biological: Chemical-biological treatment of PAH-contaminated soil has been demonstrated at pilot-scale. The pilot tests consisted of chemical pretreatment and co-treatment in conjunction with biological treatment of contaminated soil in a landfarming application. Chemical-biological has not been demonstrated for treatment of explosive-contaminated soil and has not been combined with deep soil mixing for treatment of subsurface soil at any hazardous waste site. Although process parameters can theoretically be controlled by the addition of chemicals to maintain optimal chemical and biological degradation environments, the reliability of the technology for this application is uncertain and extensive bench- and pilot-scale treatability testing is required.
Ease of Undertaking Additional Remedial Actions, if Necessary	Assuming all of the contaminants were flushed from waste pit soils or chemically-biologically degraded, there would be no need for additional remedial actions. If soil remediation goals were not achieved by soil flushing or chemical-biological, caps could be constructed over the waste pits to prevent infiltration of precipitation. The caps and the barrier system would ensure that mobilization of the remaining contaminants to groundwater would be prevented.
Ability to Monitor Effectiveness of Remedy	Confirmation sampling from borings installed through the thickness of the treated soil zone would determine if remediation goals have been achieved.

EVALUATION CRITERIA	ALTERNATIVE PBG-WP8 IN SITU TREATMENT
Ability to Obtain Approvals and Coordinate with Other Agencies	Soil Flushing: Although in situ soil flushing has been selected as the preferred remedial technology for a few CERCLA sites, it is not widely accepted by regulatory agencies because its application is generally limited to sites containing permeable soils contaminated with potentially soluble compounds.
	A WPDES permit would be required for discharge of treated water to Lake Wisconsin. It is assumed that the carbon incineration/ reactivation facility would have the necessary permits for treatment of hazardous waste.
	Chemical-Biological: Although chemical-biological is an emerging technology which holds considerable promise for treating a wide variety of organic wastes, it has not been developed to the level where it can be compared to demonstrated technologies based on implementability and cost. Additional field demonstrations are required to obtain regulatory support. No special federal or state permits would be required at BAAP.
Availability of Off-site Treatment, Storage, and Disposal Services and Capacity	Soil Flushing: Spent carbon from the existing IRM facility is shipped to Pittsburgh, PA for reactivation. Sufficient capacity is available at that facility. If spent carbon contains DNTs over 5 percent by weight (i.e., exceeding criteria for the acceptance of spent carbon at a reactivation facility) it would then have to be shipped to an incinerator. Incinerators with sufficient capacity are available in the midwestern United States.
	Chemical-Biological: Other than a small quantity of treatment residuals from treatment of VOCs potentially captured during deep soil mixing, no contaminated materials would be shipped off site.

EVALUATION CRITERIA	ALTERNATIVE PBG-WP8 IN SITU TREATMENT
Availability of Necessary Equipment and Specialists	Barrier system construction equipment and expertise is available but is currently in high demand. Considerable lead time may be required for procuring services.
	Soil Flushing: Equipment for constructing the in situ soil flushing system (i.e., infiltration galleries, extraction wells, and piping) is available locally. Expertise for this application would have to be developed during bench- and pilot-scale testing.
,	Chemical-Biological: Equipment and specialists for designing and implementing chemical-biological would apparently be limited to a joint venture of the Institute of Gas Technology (IGT) and Millgard Environmental Corporation (MEC). IGT would be the designer of chemical-biological treatment while MEC has the equipment to deliver the treatment chemicals to the waste pit soil. Although IGT would be able to provide testing and design services on relatively short notice, availability of deep soil mixing equipment from MEC would be dependent on their own project schedule.
Availability of Technology	Barrier system technology is available.
	Soil Flushing: Use of in situ soil flushing has been primarily limited to flushing petroleum hydrocarbon products from soils at sites characterized by a shallow groundwater table. Technology for flushing explosive compounds from soils with a deep groundwater table is currently not available.
·	<u>Chemical-Biological</u> : Although the technology for chemical-biological is available, it has not been developed for remediation of subsurface soil. It is anticipated that only IGT and MEC could provide the technology for waste pit soil remediation.
Costs	
Capital Cost	Soil Flushing: \$12,691,000 Chemical-Biological: \$11,987,000
Present Worth of Operation and Maintenance Cost	Soil Flushing: \$2,629,000 Chemical-Biological: \$12,287,000
Net Present Worth Cost	Soil Flushing: \$15,320,000 Chemical-Biological: \$24,274,000

TABLE 9-25 COST SUMMARY TABLE ALTERNATIVE PBG-WP10: ON-SITE INCINERATION

FEASIBILITY STUDY PROPELLANT BURNING GROUND BADGER ARMY AMMUNITION PLANT

ITEM)TAL (COST
DIRECT COST OF ON-SITE INCINERATION		
Site preparation and mob/demob	\$	5,244,000
Contaminated soil delineation	Ψ	365,000
Diaphragm slurry wall construction		10,500,000
Excavation of contaminated soil		(O&M)
Incineration		(O&M)
Backfill		(O&M)
		(,
TOTAL DIRECT COST OF ON-SITE INCINERATION		40400000
TOTAL DIRECT COST OF UN-SITE INCINERATION	\$	16,109,000
·		
INDIRECT COST OF ON-SITE INCINERATION		
Health and Safety @ 5% of Total Direct Cost	\$	805,000
Legal, Administration, Permitting @ 5% of Total Direct Cost		805,000
Engineering @ 10% of Total Direct Cost		1,611,000
Services During Construction @ 10% of Total Direct Cost		1,611,000
TOTAL INDIRECT COST OF ON-SITE INCINERATION	\$	4,832,000
TOTAL CAPITAL (DIRECT + INDIRECT) COST	\$	20,941,000
OPERATING AND MAINTENANCE COSTS		
Total Annual Operating and Maintenance Costs Starting 1 Year After Beginning of Project	\$	21,307,000
TOTAL PRESENT WORTH OF O&M COSTS (5% FOR 1.5 YEARS)	\$	00 644 000
TOTAL TALGERT WORTH OF GAM COSTS (5 % FOR 1.5 FEARS)	Ψ.	28,641,000
TOTAL COST OF ON-SITE INCINERATION	\$	49,582,000

EVALUATION CRITERIA	ALTERNATIVE PBG-WP10 On-SITE INCINERATION
Overall Protection of Human Health	and the Environment
Human Health Protection	Achieves the remedial action objective for protection of human health. The entire volume of contaminated soil in the waste pits would be removed and incinerated. Any residual contamination in treated soil backfilled into the excavations would meet remediation goals.
Environmental Protection	No ecological risks associated with contaminated waste pit soil. Achieves the remedial action objective for protection of groundwater. Treating the entire volume of contaminated soil to meet remediation goals would eliminate leachate generation and protect groundwater.
Compliance with ARARs	
Chemical-specific	Chemical-specific ARARs have not been promulgated for contaminated soil; however, TBC soil clean-up standards for protection of human health and groundwater have been derived from the proposed Wisconsin Chapter NR 720, Wisconsin Administrative Code, and are being applied to BAAP soil remediation. Because the entire volume of contaminated soil in the waste pits would be removed and treated to meet remediation goals, this alternative would comply with pathway-specific numeric standards derived from the proposed Chapter NR 720.
Location-specific	No location-specific ARARs.
Action-specific	RCRA, Land Disposal Restrictions (LDRs); (40 CFR Part 268) may apply to C6H6 waste disposed of in the waste pits. The C6H6 waste has been identified as a listed hazardous waste from non-specific sources (i.e., F005), per 40 CFR Part 261.31. As such, C6H6-contaminated soil may be subject to LDRs and, if excavated, must be treated so that it no longer "contains" C6H6 or treated to a concentration level prior to disposal in a RCRA Subtitle C permitted facility. In addition, 24DNT-contaminated soil in the waste pits would be characteristically hazardous if it exceeds the TCLP threshold for 24DNT waste. If classified as hazardous, and 24DNT-contaminated soil is excavated, the "characteristic" would have to be removed from the soil prior to disposal or placement on site.
	Federal OSHA requirements to protect worker health and safety would be followed during any site work.

EVALUATION CRITERIA	ALTERNATIVE PBG-WP10 On-SITE INCINERATION
	Fugitive particulate emissions generated during site work are substantively subject to Wisconsin Particulate and Sulfur Emission Rules (WAC, Chapter NR 415) and General and Portable Sources Air Pollution Control Rules; Ambient Air Quality Standards (WAC, Chapter NR 404). It is assumed that dust suppression techniques and other preventative measures would ensure compliance with particulate emission standards. WDNR's Air Management Program will be contacted.
	It is presumed that on-site incineration would comply with all RCRA requirements for hazardous waste incinerators (40 CFR Subpart O), and all applicable Clean Air Act requirements (40 CFR 50, 52, 60, and 61).
	Wisconsin Hazardous Waste Management and Facility Regulations are essentially equivalent to federal RCRA regulations and as such, the degree of ARARs compliance with standards established by Wisconsin hazardous waste regulations can be inferred from the degree of ARARs compliance with RCRA.
Other Criteria, Advisories, and Guidances	It is presumed that relevant criteria, advisories, and guidances would be considered prior to implementation of this alternative.
Long-term Effectiveness and Permane	nce
Magnitude of Residual Risk	Assuming all contaminated waste pit soil was excavated and incinerated to meet remediation goals, there would be no residual risk.
Adequacy and Reliability of Controls	Destruction of all waste pit soil contaminants eliminates the need for long-term monitoring or maintenance activities.
Reduction of Toxicity, Mobility, and Vo	lume
Treatment Process Used and Materials Treated	On-site incineration would destroy waste pit soil contaminants via thermal oxidation.
Amount Destroyed or Treated	Approximately 73,200 cubic yards of contaminated soil would be incinerated (approximately 24,400 cubic yards per pit). Assuming an average DNT (primary waste pit contaminant) concentration of 5,000 mg/kg, approximately 290,700 pounds of DNTs would be destroyed. Accounting for a small quantity of VOCs in waste pit soils, a total of approximately 292,000 pounds of waste pit contaminants would be destroyed.

EVALUATION CRITERIA	ALTERNATIVE PBG-WP10 On-SITE INCINERATION
Degree of Expected Reductions of Toxicity, Mobility, and Volume	The incinerator would be permitted and operated to achieve a destruction and removal efficiency of at least 99.9999 percent.
Degree to Which Treatment is Irreversible	Contaminants in the excavated soil would be destroyed by incineration.
Type and Quantity of Residuals Remaining After Treatment	Bottom ash (i.e., treated soil), fly ash, and wastewater would be generated during incineration. Treated soil would be backfilled into the excavations. Fly ash, approximately 10 percent (i.e., 7,320 cubic yards) of the total volume treated, would transported to an off-site landfill for disposal. Wastewater would be treated on site with auxiliary equipment.
Short-term Effectiveness	
Protection of Community During Remedial Action	Although the incinerator would destroy and remove 99.9999 percent of contaminants in the feed material per the operating permit, air emissions could contain traces of contaminants. However, the incinerator would be operating in a isolated portion of BAAP (i.e., Contaminated Waste Area) and no residences or active BAAP facilities are present within a mile of the site. Modeling of emission dispersal, as is normally conducted prior to permitting incinerators, is expected to indicate that the risk to human receptors downwind of the incinerator is minor.
Protection of Workers During Remedial Action	Air monitoring would be conducted at the site during excavation and incineration activities. Not only is there ingestion/inhalation risk associated with VOC- and DNT-contaminated soil but there is a reactive (i.e., DNT concentrations greater than 10 percent) risk. Special precautions may be required during excavation to prevent an explosive reaction. OSHA and other health and safety requirements which limit worker exposure to inhalation hazards would be enforced. If site activities resulted in unacceptable levels of air contaminants, operations would be modified to protect workers.
Environmental Impacts	The Contaminated Waste Area is not considered a critical wildlife habitat and the impact to the ecological community during soil excavation and cap construction is expected to be minor. Potential impacts to ecological receptors from incinerator emissions are difficult to estimate but concentrations and the associated risk in the vicinity of the incinerator are expected to be low.

EVALUATION CRITERIA	ALTERNATIVE PBG-WP10 On-SITE INCINERATION	
Time Until Remedial Action Objectives Are Achieved	An estimated 9 to 12 months would be required for trial burns and permitting and another 12 to 16 months would be required to achieve the remedial action objectives.	
Implementability		
Ability to Construct and Operate the Technology	Construction of cylindrical diaphragm walls has been previously conducted at large-scale civil projects. Transportable incinerators are available which can be mobilized to the site and operated using contractor-furnished personnel.	
Reliability of the Technology	Diaphragm wall technology is a demonstrated technology in the retaining wall construction industry. Incineration is the most effective and proven method for destruction of explosive-contaminated soil (Remedial Technology Handbook Appendix A).	
Ease of Undertaking Additional Remedial Actions, if Necessary	Assuming all contaminated waste pit soil was excavated and incinerated, there would be no need for additional remedial actions.	
Ability to Monitor Effectiveness of Remedy	Sampling and analysis of treated soil prior to backfilling the excavations would determine the effectiveness of incineration.	
Ability to Obtain Approvals and Coordinate with Other Agencies	The process for permitting an incinerator could be long and difficult. Extensive modeling of incinerator emissions may be required to show that potential receptors are not at risk. Other special permits (e.g., wetland permit) would not be necessary.	
Availability of Off-site Treatment, Storage, and Disposal Services and Capacity	Fly ash (approximately 7,320 cubic yards) would be transported off site for disposal. An off-site landfill permitted for treatment and disposal of hazardous waste is located 108 miles from BAAP (i.e., Menomonee Falls, WI).	
Availability of Necessary Equipment and Specialists	Diaphragm wall equipment and expertise is available but is currently in high demand. Considerable lead time is required for procuring diaphragm wall services. Several vendors capable of providing incineration equipment and trained personnel are available.	
Availability of Technology	Diaphragm wall technology is available. Incineration equipment previously used for treatment of explosive-contaminated soil is available.	

EVALUATION CRITERIA	ALTERNATIVE PBG-WP10 On-SITE INCINERATION
Costs	
Capital Cost	\$20,941,000
Present Worth of Operation and Maintenance Cost	\$28,641,000
Net Present Worth Cost	\$49,582,000

TABLE 9-27 COST SUMMARY TABLE

ALTERNATIVE PBG-WP11: IN-SITU VACUUM EXTRACTION, SOIL WASHING, AND COMPOSTING

FEASIBILITY STUDY PROPELLANT BURNING GROUND BADGER ARMY AMMUNITION PLANT

ITEM TOTA	VL (COST
DIDECT COOT OF IN CITE VACUUM EVED ACTION COM WASHING AND COMPOSTING		
DIRECT COST OF IN-SITU VACUUM EXTRACTION, SOIL WASHING, AND COMPOSTING	_	400.00
Treatability testing	\$	126,000
Contaminated soil delineation		365,000
Site preparation and mob/demob		2,331,000
In-situ vacuum extraction system construction		103,000
In-situ vacuum extraction system operation		20,00
Diaphragm slurry wall construction		10,500,00
Excavation of contaminated soil		2,018,00
Soil washing		9,414,00
Composting		1,636,00
Backfill		415,000
TOTAL DIRECT COST OF IN-SITU VACUUM EXTRACTION,	\$	26,928,000
SOIL WASHING, AND COMPOSTING		
NDIRECT COST OF IN-SITU VACUUM EXTRACTION, SOIL WASHING, AND COMPOSTING		
Health and Safety @ 5% of Total Direct Cost	<u> </u>	1,346,00
Legal, Administration, Permitting @ 5% of Total Direct Cost	Ψ	1,346,00
Engineering @ 10% of Total Direct Cost		2,693,00
Services During Construction @ 10% of Total Direct Cost		2,693,00
Gervices During Construction @ 10% of rotal Direct Cost		2,093,000
	\$	8,078,000
SOIL WASHING, AND COMPOSTING		
TOTAL CAPITAL (DIRECT + INDIRECT) COST	\$	35,006,000
PPERATING AND MAINTENANCE COSTS		
Total Composting Operating and Maintenance Costs	\$	1,052,000
	•	
TOTAL PRESENT WORTH OF COMPOSTING O&M COSTS (5% FOR 3.5 YEARS)	\$	3,303,00
TOTAL COST OF IN-SITU VACUUM EXTRACTION,	\$	38,309,00
SOIL WASHING, AND COMPOSTING		
	2000000	

EVALUATION CRITERIA	ALTERNATIVE PBG-WP11 IN SITU VACUUM EXTRACTION, SOIL WASHING, AND COMPOSTING	
Overall Protection of Human Health and the Environment		
Human Health Protection	Achieves the remedial action objective for protection of human health. The entire volume of contaminated soil in the waste pits would be removed and treated. Any residual contamination in treated soil backfilled into the excavations would meet remediation goals.	
Environmental Protection	No ecological risks associated with contaminated waste pit soil. Achieves the remedial action objective for protection of groundwater. Treating the entire volume of contaminated soil to meet remediation goals would eliminate leachate generation and protect groundwater.	
Compliance with ARARs		
Chemical-specific	Chemical-specific ARARs have not been promulgated for contaminated soil; however, TBC soil clean-up standards for protection of human health and groundwater have been derived from the proposed Wisconsin Chapter NR 720, Wisconsin Administrative Code, and are being applied to BAAP soil remediation. Because the entire volume of contaminated soil in the waste pits would be removed and treated to meet remediation goals, this alternative would comply with pathway-specific numeric standards derived from the proposed Chapter NR 720.	
Location-specific	No location-specific ARARs.	
Action-specific	RCRA, Land Disposal Restrictions (LDRs); (40 CFR Part 268) may apply to C6H6 waste disposed of in the waste pits. The C6H6 waste has been identified as a listed hazardous waste from non-specific sources (i.e., F005), per 40 CFR Part 261.31. As such, C6H6-contaminated soil may be subject to LDRs and, if excavated, must be treated so that it no longer "contains" C6H6 or treated to a concentration level prior to disposal in a RCRA Subtitle C permitted facility. In addition, 24DNT-contaminated soil in the waste pits would be characteristically hazardous if it exceeds the TCLP threshold for 24DNT waste. If classified as hazardous, and 24DNT-contaminated soil is excavated, the "characteristic" would have to be removed from the soil prior to disposal or placement on site.	
	Federal OSHA requirements to protect worker health and safety would be followed during any site work.	

EVALUATION CRITERIA	ALTERNATIVE PBG-WP11 In SITU VACUUM EXTRACTION, SOIL WASHING, AND COMPOSTING
	Fugitive particulate emissions generated during site work are substantively subject to Wisconsin Particulate and Sulfur Emission Rules (WAC, Chapter NR 415) and General and Portable Sources Air Pollution Control Rules; Ambient Air Quality Standards (WAC, Chapter NR 404). It is assumed that dust suppression techniques and other preventative measures would ensure compliance with particulate emission standards. WDNR's Air Management Program will be contacted.
	It is presumed that on-site incineration would comply with all RCRA requirements for hazardous waste incinerators (40 CFR Subpart O), and all applicable Clean Air Act requirements (40 CFR 50, 52, 60, and 61).
	Wisconsin Hazardous Waste Management and Facility Regulations are essentially equivalent to federal RCRA regulations and as such, the degree of ARARs compliance with standards established by Wisconsin hazardous waste regulations can be inferred from the degree of ARARs compliance with RCRA.
Other Criteria, Advisories, and Guidances	It is presumed that relevant criteria, advisories, and guidances would be considered prior to implementation of this alternative.
Long-term Effectiveness and Perman	nence
Magnitude of Residual Risk	Assuming all contaminated waste pit soil was excavated and treated to meet remediation goals, there would be no residual risk.
Adequacy and Reliability of Controls	Destruction of all waste pit soil contaminants eliminates the need for long-term monitoring or maintenance activities.

EVALUATION CRITERIA	ALTERNATIVE PBG-WP11 In SITU VACUUM EXTRACTION, SOIL WASHING, AND COMPOSTING
Reduction of Toxicity, Mobility, as	nd Volume
Treatment Process Used and Materials Treated	In situ vacuum extraction utilizes screened wells installed through the contaminated soil and a blower system connected to the wells to pull a vacuum on subsurface soil for VOC removal. The VOCs would be removed from the resultant vapor stream with activated carbon. The spent carbon would likely be thermally reactivated off site and the VOCs destroyed. Soil washing would include separating soil fractions using mechanical screening techniques and hydrocyclones, returning clean oversized soils to the excavations, treating coarse-grained sands in air flotation tanks, returning the clean sand to the excavations, and directing the fine-grained material and the contaminated froth from the air flotation tanks to a sludge management subsystem where it is eventually dewatered to produce a 50-60 percent solids filter cake. The filter cake from soil washing would be treated by composting. Composting would utilize native microorganisms and agricultural waste amendments to biodegrade contaminants in the filter cake.
Amount Destroyed or Treated	Approximately 73,200 cubic yards of contaminated soil would be treated (approximately 24,400 cubic yards per pit). Assuming an average DNT (primary waste pit contaminant) concentration of 5,000 mg/kg, approximately 290,700 pounds of DNTs would be destroyed. Accounting for a small quantity of VOCs in waste pit soils, a total of approximately 292,000 pounds of waste pit contaminants would be destroyed.
Degree of Expected Reductions of Toxicity, Mobility, and Volume	VOC removal efficiencies of up to 99 percent are possible with in situ vacuum extraction. Off-site thermal reactivation of the spent carbon would destroy the VOCs. Soil washing is capable of volume reductions of approximately 90 percent. All coarse-grained sands and larger soil fractions would be returned to the excavations after soil washing. Field demonstrations indicate that composting reduces the toxicity of explosives-contaminated soil, as measured by bacterial mutagenicity and aquatic toxicity, by 88 to 98 percent (R.F. Weston, Inc., 1991). Residual material is nutrient-rich compost. No other wastestreams are generated in this process.
Degree to Which Treatment is Irreversible	VOCs in the spent carbon and SVOCs in the excavated soil would be destroyed by thermal reactivation and composting, respectively.

EVALUATION CRITERIA	ALTERNATIVE PBG-WP11 IN SITU VACUUM EXTRACTION, SOIL WASHING, AND COMPOSTING	
Short-term Effectiveness		
Protection of Community During Remedial Action	In situ vacuum extraction would remove VOCs that would otherwise volatilize into the atmosphere during excavation and soil washing. The soil washing and composting facilities would be operating in an isolated portion of BAAP (i.e., Contaminated Waste Area) and no residences or active BAAP facilities are present within a mile of the site. The distance is expected to provide adequate dispersal of any odors from composting.	
Protection of Workers During Remedial Action	In situ vacuum extraction would remove VOCs that would otherwise volatilize into the atmosphere during excavation and soil washing, and potentially affect site workers. However, there is an ingestion/inhalation risk associated with DNT-contaminated soil and a reactive (i.e., DNT concentrations greater than 10 percent) risk. Special precautions may be required during excavation to prevent an explosive reaction. Air monitoring would be conducted at the site during excavation and composting activities. OSHA and other health and safety requirements which limit worker exposure to inhalation hazards would be enforced. If activities resulted in unacceptable levels of air contaminants, operations would be modified to protect workers.	
Environmental Impacts	The Contaminated Waste Area is not considered a critical wildlife habitat and the impact to the ecological community during soil excavation is expected to be minor. Potential impacts to ecological receptors from soil washing and composting are expected to be minimal.	
Time Until Remedial Action Objectives Are Achieved	An estimated 6 months would be required for treatability testing and another 3 years would be required to achieve the remedial action objectives. This estimate assumes in situ vacuum extraction would be implemented concurrent with soil washing and compositing treatability testing.	

EVALUATION CRITERIA	ALTERNATIVE PBG-WP11 In SITU VACUUM EXTRACTION, SOIL WASHING, AND COMPOSTING	
Implementability		
Ability to Construct and Operate the Technology	Construction of the vacuum extraction system would utilize commonly-used well construction materials and vendor-supplied skid-mounted blower/treatment system assemblies. Careful monitoring of vadose zone monitoring wells would be required to operate the vacuum extraction system at maximum efficiency. Soil washing treatment plants are typically composed of system modules installed on engineered skids. The modules are equipped with quick disconnects and flexible hosing for easy assembly/disassembly. The plant would be operated using contractor-furnished personnel. Construction of the composting facility poses no unusual design or construction problems. Operation does not require unusual skills or knowledge and is commonly practiced for agricultural wastes.	
Reliability of the Technology	In situ vacuum extraction is a well-demonstrated technology for remediation of VOC-contaminated soil. Soil washing is also a well-demonstrated technology but its operational experience is primarily limited to soil and sludge remediation in Europe. Consequently, it is considered an innovative technology in the U.S. However, soil washing was recently used to successfully remediate a Superfund site in New Jersey, where sandy soils had been contaminated with metals. The general technical feasibility of composting explosives-contaminated soil has been successfully demonstrated at other U.S. Army sites. Site-specific treatability investigations would be necessary to confirm soil washing and composting feasibility at BAAP prior to full-scale design and construction.	
Ease of Undertaking Additional Remedial Actions, if Necessary	Assuming all contaminated waste pit soil was excavated and treated, there would be no need for additional remedial actions.	
Ability to Monitor Effectiveness of Remedy	Sampling and analysis of treated soil prior to backfilling the excavations would determine the effectiveness of soil washing and composting.	

EVALUATION CRITERIA	ALTERNATIVE PBG-WP11 In SITU VACUUM EXTRACTION, SOIL WASHING, AND COMPOSTING
Ability to Obtain Approvals and Coordinate with Other Agencies	In situ vacuum extraction has gained wide administrative support which is reflected in the large number of Records of Decision which include it as the preferred remedial technology at CERCLA sites. Although soil washing is relatively new in the U.S., USEPA's preference for proven innovative remedial technologies over controversial conventional technologies (e.g., incineration) would ensure easy approval. Administratively, composting of explosives-contaminated soil is generally supported by USEPA as a potentially viable and cost-effective technology. Composting has been identified as the selected alternative in the USEPA Record of Decision at UMDA. Other special permits (e.g., wetland permit) would not be necessary.
Availability of Off-site Treatment, Storage, and Disposal Services and Capacity	Off-site treatment of spent carbon from in situ vacuum extraction would be required but the estimated quantity of spent carbon (i.e., 3,600 pounds) is relatively insignificant. An unknown quantity of wastewater treatment residuals from soil washing would also require off-site treatment. However, the wastewater flows would not be substantial and the resulting quantity of treatment residuals should also be insignificant.
Availability of Necessary Equipment and Specialists	Several contractors familiar with in situ vacuum extraction design and construction are available. Only a few soil washing contractors are currently available in the U.S., however, based on the demonstrated success of soil washing, the number of soil washing contractors should increase considerably in the next few years. Although composting is a well-developed technology that is used extensively throughout the country, composting explosives-contaminated soil is a new application of the process. Contractors with expertise in this application are not currently available. However, considerable contractor experience will be acquired at UMDA, which is currently undergoing remediation. Availability of equipment would not be a limitation for any of the technologies.

EVALUATION CRITERIA	ALTERNATIVE PBG-WP11 IN SITU VACUUM EXTRACTION, SOIL WASHING, AND COMPOSTING
Availability of Technology	A wide range of in situ vacuum extraction equipment is available from several sources. Vacuum extraction wells could be installed using equipment and material provided by local contractors. Soil washing is not a technology which requires highly specialized equipment. Most of the components consist of modified wastewater treatment equipment. Composting is also not a complex process which requires sophisticated equipment. A large construction contracting company could provide the equipment and training to construct and operate the composting facility.
Costs	
Capital Cost	\$35,006,000
Present Worth of Operation and Maintenance Cost	\$3,303,000
Net Present Worth Cost	\$38,309,000

TABLE 9-29 COMPARATIVE SUMMARY OF REMEDIAL ALTERNATIVES PROPELLANT BURNING GROUND WASTE PITS

ALTERNATIVE	OVERALL PROTECTION	COMPLIANCE WITH ARARS	EFFECTIVENESS: LONG-TERM	REDUCTION IN TOXICITY, MOBILITY, AND VOLUME	EFFECTIVENESS: SHORT-TERM	IMPLEMENTABILITY	Cost
Alternative PBG-WP1: Minimal Action	Reduces potential for human exposure to contaminated soil. Not protective of groundwater.	No chemical-specific ARARs. This alternative would not meet the intent of the proposed Chapter NR 720 standards for protection of human health and groundwater.	If managed properly, residual risk to human receptors wold be minor. No reduction in the threat of groundwater contamination.	Contamination is not treated or destroyed; no reduction of toxicity, mobility, or volume of contaminants.	No adverse community or environmental impacts during implementation.	No implementability concerns.	Total Present Worth: \$118,000 Capital Cost: \$10,000 Annual O&M: \$7,000 (30 yrs)
Alternative PBG-WP4: On-Site Incineration and Capping	Achieves remedial action objectives for protection of human health. Large quantity of contaminants would remain in waste pit soils. Caps would not provide total containment needed to protect groundwater.	No chemical-specific ARARs. This alternative could meet the intent of the proposed Chapter NR 720 standards for protec- tion of human health but not groundwater.	Residual risk to human receptors would be negligible but the large quantity of contaminants and the inherent mobility of VOCs would pose a significant long-term threat to groundwater quality.	Incinerator destruction and removal efficiency would be at least 99.9999 percent. Caps would limit natural mobilizing influences on remaining contaminants.	Because the incinerator would be operating in a isolated location, risks associated with emissions are expected to be minor. Reactive risk associated with excavating/handling DNT-contaminated soil.	No implementability concerns. Incineration is a proven technology for explosive-contaminated soil. Caps are easily constructed and maintained.	Total Present Worth: \$6,793,000 Capital Cost: \$6,685,000 Closure O&M: \$7,000/yr (30 yrs)
Alternative PBG-WP5: Composting and Capping	Achieves remedial action objective for protection of human health. Large quantity of contaminants would remain in waste pit soils. Caps would not provide total containment needed to protect groundwater.	No chemical-specific ARARs. This alternative could meet the intent of the proposed Chapter NR 720 standards for protec- tion of human health but not groundwater.	Residual risk to human receptors would be negligible but the large quantity of contaminants and the inherent mobility of VOCs would pose a significant long-term threat to groundwater quality.	Bacterial mutagenicity and aquatic toxicity reduced by 88 to 98 percent. Caps would limit natural mobilizing influences on remaining contaminants.	Remote location of composting site would provide for adequate dispersal of odors and airborne contaminants. Reactive risk associated with excavating/handling DNT-contaminated soil.	Minor implement- ability concerns. While general tech- nical feasibility of composting has been demonstrated at similar sites, treat- at similar sites, treat- be required prior to full-scale design and construction.	Total Present Worth: \$5,360,000 Capital Cost: \$4,219,000 Composting O&M: \$1,085,000 1 vr Closure O&M: \$7,000/yr

TABLE 9-29 COMPARATIVE SUMMARY OF REMEDIAL ALTERNATIVES PROPELLANT BURNING GROUND WASTE PITS

ALTERNATIVE	OVERALL PROTECTION	COMPLANCE WITH ARARS	EFFECTIVENESS; LONG-TERM	REDUCTION IN TOXICITY, MOBILITY, AND VOLUME	EFFECTIVENESS: SHORT-TERM	IMPLEMENTABIUTY	COST
Alternative PBG-WP7: In Situ Vacuum Extraction, Composting, and Capping	Achieves remedial action objective for protection of human health. Although a large quantity of contaminants would remain in waste pit soils, in situ vacuum extraction would have removed the more mobile VOCs. Caps may provide total containment of remaining SVOCs and protect groundwater.	No chemical-specific ARARs. This alternative could possibly meet either numeric standards or per- formance standards for protection of human health and groundwater per the proposed Chapter NR 720 standards.	Residual risk to human receptors would be negligible. Large quantities of contaminants would pose a significant long-term threat to groundwater quality. However, removal of VOCs could result in reduced threat to groundwater quality.	VOC removal efficiencies of up to 99 percent are possible with in situ vacuum extraction. Composting reduces bacterial mutagenicity and aquatic toxicity by 88 to 98 percent.	Remote location of composting site would provide for adequate dispersal of odors. Reactive risk associated with excavating/handling DNT-contaminated soil.	Minor implement- ability concerns. While general tech- nical feasibility of in situ vacuum extrac- tion and composting has been demon- strated, treatability studies would be required prior to full- scale design and construction.	Total Present Worth: \$5,585,000 Capital Cost: \$4,444,000 Composting O&M: \$1,085,000/ 1 yr Closure O&M: \$7,000/yr (30 yrs)
Alternative PBG-WP8:	Achieves remedial action objectives for protection of human health and groundwater.	No chemical-specific ARARs. This alternative would comply with pathway-specific numeric standards derived from the proposed Chapter NR 720.	No residual risk.	Soil Flushing Existing IRM facility would achieve removal efficiency greater than 99 percent. Off-site destruction of contaminants in spent carbon. Chemical-Biological Chemical oxidation and biodegradation would result in complete contaminant degradation.	Soil Flushing Because there would Because there would be no excavation of contaminated soil and treatment would occur in the IRM facility, overall risk would be minimal. Chemical-Biological VOCs would be contained during soil mixing. Reactive risk associated with mixing DNT-contaminated soil may be exacerbated by addition of hydrogen peroxide.	Potentially significant implementability concerns. In situ concerns, in situ soil flushing and chemical-biological have not been applied to explosive-contaminated soil or to remediation of any site at this scale. Extensive treatability testing is required.	Soil Flushing Total Present Worth: \$15,320,000 Capital Cost: \$12,691,000 O&M: \$349,000/yr (11 yrs) Chemical- Biological Total Present Worth: \$24,274,000 Capital Cost: \$11,987,000 O&M: \$10,754,000/yr yr (16 months)

COMPARATIVE SUMMARY OF REMEDIAL ALTERNATIVES PROPELLANT BURNING GROUND WASTE PITS **TABLE 9-29**

FEASIBILITY STUDY BADGER ARMY AMMUNITION PLANT

ALTERNATIVE	OVERALL PROTECTION	COMPLANCE WITH ARARS	EFFECTIVENESS: LONG-TERM	REDUCTION IN TOXICITY, MOBILITY, AND VOLUME	EFFECTIVENESS: SHORT-TERM	IMPLEMENTABILITY	COST
A CONTRACTOR OF THE CONTRACTOR	Achieves remedial action objectives for protection of human health and groundwater.	No chemical-specific ARARs for soil. However, destroying soil contaminants would eliminate generation of leachate. This alternative would comply with pathway-specific numeric standards derived from the proposed Chapter NR 720.	No residual risk.	Incinerator destruction and removal efficiency would be at least 99.9999 percent.	Because the incinerator would be operating in an isolated location, risks associated with emissions are expected to be minor. Reactive risk associated with excavating/handling DNT-contaminated soil.	No implementability concerns. Diaphragm wall technology has been demonstrated in large-scale civil projects. Incineration is a proven technology for explosive-contaminated soil.	Total Present Worth: \$49,582,000 Capital Cost: \$20,941,000 Annual O&M: \$21,307,000 (1.5 yrs)
	Achieves remedial action objectives for protection of human health and groundwater.	No chemical-specific ARARs. This alternative would comply with pathway-specific numeric standards derived from the proposed Chapter NR 720.	No residual risk	VOC removal efficiencies of up to 99 percent are possible with in situ vacuum extraction. Soil washing is capable of volume reductions of approximately 90 percent. Composting reduces bacterial mutagenicity and aquatic toxicity by 88 to 98 percent.	Remote location of composting site would provide for adequate dispersal of odors. Reactive risk associated with excavating/ handling DNT-contaminated soil.	Minor implement- ability concerns. While general technical feasibility of insitu vacuum extraction, soil washing, and com- posting has been demonstrated. Treatability studies would be required prior to full-scale design and construction.	Total Present Worth: \$38,309,000 Capital Cost: \$35,006,000 Annual O&M: \$1,052,000 (3.5 yrs)

Notes:

Applicable or Relevant and Appropriate Requirements Interim Remedial Measures volatile organic compounds ARARS IRM VOCs

TABLE 9-30 GROUNDWATER MONITORING PROGRAM PROPELLANT BURNING GROUND GROUNDWATER

FEASIBILITY STUDY BADGER ARMY AMMUNITION PLANT

GROUNDWATER MONITORING LC	CATIONS (58)	
PBN 8201 A, B, C	PBN 8202 A, B, C	LON 8903 A,B
PBN 8203 A, B, C	PBN 8204 A, B, C	PBN 9112 C,D
PBN 8205 A, B, C	PBM 8506	BGM 9102
PBN 8501 A	PBN 8502 A	LOM 9102
PBN 8503 A	PBN 8504 A	PBN 8903 B
PBM 8906	PBN 8901 B, C, D	PBN 9106 C, D
PBN 8902 B, C	PBN 8903 C	BGM 9101
PBN 8904 B, C	PBN 8910 A, B, C, D	BGM 9103
PBN 8912 A, B	LON 8902 A, B	PBM 8204

Note:

Not included in this list are the nine monitoring wells recently installed by the U.S. Army Corps of Engineers along the eastern edge of the groundwater contaminant plume. These nine wells, as yet unnumbered, are included in the groundwater monitoring program.

QUARTERLY	Annually
pH	VOCs, SVOCs, and Metals (filtered) ¹
Specific Conductance	
Nitrate Nitrogen	
Carbon Tetrachloride	
Chloroform	
Trichloroethylene	
1,1,1-Trichloroethylene	

Notes:

VOCs, SVOCs, and metals as described in Modification of Conditional Plan Approval of In-Field Conditions Report (WDNR, 1992).

TABLE 9-31 COST SUMMARY TABLE ALTERNATIVE PBG-GW1: MINIMAL ACTION

FEASIBILITY STUDY PROPELLANT BURNING GROUND BADGER ARMY AMMUNITION PLANT

ITEM	TOTAL	COST
DIRECT COST OF MINIMAL ACTION		
Institutional controls	\$	10,000
	Ψ	10,000
TOTAL DIRECT COST OF MINIMAL ACTION	\$	10,000
NDIRECT COST OF MINIMAL ACTION		
Health and Safety @ 0% of Total Direct Cost	\$,
Legal, Administration, Permitting @ 0% of Total Direct Cost	Ą	(
Engineering @ 0% of Total Direct Cost		(
Services During Construction @ 0% of Total Direct Cost		C
TOTAL INDIRECT COST OF MINIMAL ACTION	\$	0
TOTAL CARITAL (BIRDER LANGUE CO. C.		
TOTAL CAPITAL (DIRECT + INDIRECT) COST	\$	10,000
PERATING AND MAINTENANCE COSTS		
Total cost replacement wells	\$	22,000
Total present worth of replacement wells	\$	17,000
in year 16, 32, 48 @ 5%		
Total Americal Operations and Maintenance Octo		
Total Annual Operating and Maintenance Costs	\$	387,000
Total present worth of annual O&M costs (5% for 65 years)	. \$	7 415 000
Total property worth of annual oath costs (078 for 65 years)	. Ф	7,415,000
TOTAL PRESENT WORTH OF O&M COSTS	s	7,432,000
	0.2000	
TOTAL COST CO. C		
TOTAL COST FOR GW-1 MINIMAL ACTION	\$	7,442,000

TABLE 9-32 DETAILED ANALYSIS - ALTERNATIVE PBG-GW1 PROPELLANT BURNING GROUND GROUNDWATER

EVALUATION CRITERIA	ALTERNATIVE PBG-GW1 - MINIMAL ACTION	
Overall Protection of Human He	ealth and the Environment	
Human Health Protection	Under a minimal action scenario, the public would continue to be potentially exposed to contaminated drinking water. Even with the benefit of the existing IRM treatment system, chemical concentrations within the contaminant plume would likely increase, and the plume's areal extent could expand.	
Environmental Protection	Ecological receptors are not at risk because there are no direct routes of exposure to aquatic or terrestrial biota; therefore, the alternative is protective of the environment.	
Compliance with ARARs		
Chemical-specific	Would not meet chemical-specific ARARs for groundwater beneath the source area until the source area is removed or treated in place. Until that time the groundwater below it will continue to be contaminated and not meet chemical-specific ARARs. Concentrations of contaminants in groundwater downgradient of the source area may be attenuated by chemical and/or biological degradation, but attainment of chemical-specific ARARs is not certain.	
Location-specific	Location-specific ARARs pertaining to wetlands and surface water do not apply to this alternative.	
Action-specific	Action-specific ARARs do not apply to this alternative because no action would be taken.	
Long-term Effectiveness and Permanence		
Magnitude of Residual Risk	Currently, groundwater in the area does not meet remediation goals. The residual risk may eventually decrease to an acceptable level by chemical and/or biological degradation but not before chemical concentrations within the contaminant plume increase or before the plume migrates further downgradient.	
Adequacy and Reliability of Controls	Not Applicable. No controls would be used in this alternative.	

TABLE 9-32 DETAILED ANALYSIS - ALTERNATIVE PBG-GW1 PROPELLANT BURNING GROUND GROUNDWATER

EVALUATION CRITERIA	ALTERNATIVE PBG-GW1 - MINIMAL ACTION
Reduction of Toxicity, Mobility,	or Volume through Treatment
Treatment Process Used and Materials Treated	Not Applicable. No treatment is used in this alternative.
Amount Destroyed or Treated	No contamination is destroyed or treated.
Degree of Expected Reductions of Toxicity, Mobility, or Volume through Treatment	No reduction of toxicity, mobility, or volume through treatment because treatment is not used.
Degree to Which Treatment is Irreversible	No treatment is used.
Type and Quantity of Residuals Remaining After Treatment	No treatment is used.
Short-term Effectiveness	
Protection of Community during Remedial Action	No adverse or beneficial impact to the community would occur because no remedial actions would be implemented.
Worker Protection during Remedial Action	No adverse worker impacts because no remedial actions would be implemented.
Environmental Impacts	No direct or indirect short-term adverse ecological effects would occur because no remedial actions would be implemented.
Time until Remedial Action Objectives are Achieved	Unknown. Remedial action would not occur; however, the aquifer could cleanse itself over many years.

TABLE 9-32 DETAILED ANALYSIS - ALTERNATIVE PBG-GW1 PROPELLANT BURNING GROUND GROUNDWATER

FEASIBILITY STUDY BADGER ARMY AMMUNITION PLANT

EVALUATION CRITERIA	ALTERNATIVE PBG-GW1 - MINIMAL ACTION
Implementability	
Ability to Construct and Operate the Technology	No construction would occur.
Reliability of Technology	No technologies would be used.
Ease of Undertaking Additional Remedial Action, if Necessary	No action would not limit or interfere with the ability to perform future remedial actions.
Ability to Monitor Effectiveness of Remedy	Monitoring program can be implemented using existing monitoring wells.
Ability to Obtain Approvals and Coordinate with other Agencies	No permits would be required.
Availability of Off-site Treatment, Storage, and Disposal Services and Capacity	Not required.
Availability of Necessary Equipment and Specialists	No equipment would be required.
Availability of Technology	No technologies would be used.
Cost	
Capital Cost	\$10,000
Present Worth of Operation and Maintenance Cost	\$7,432,000
Net Present Worth Cost	\$7,442,000

Notes:

ARARs = Applicable or Relevant and Appropriate Requirements

RG = Remediation Goal

TABLE 9-33 TREATMENT FACILITY INFLUENT CONCENTRATIONS AND SURFACE WATER DISCHARGE LIMITS PROPELLANT BURNING GROUND GROUNDWATER

FEASIBILITY STUDY REPORT BADGER ARMY AMMUNITION PLANT

COMPOUND	MAXIMUM CONCENTRATION DETECTED ¹ (μg/ℓ)	ASSUMED CONCENTRATIONS IN INFLUENT FROM PROPOSED BOUNDARY CONTROL WELLS ² (µg/l)	ASSUMED CONCENTRATIONS IN INFLUENT FROM PROPOSED SOURCE CONTROL WELLS ³ (µg/1)	ESTIMATED SURFACE WATER DISCHARGE LIMIT ⁴ (µg/2)
CCL4	108	19.2	2.0	<1
CHCL3	83.5	4.82	3.0	<1
TRCLE	117	19.4	18.0	<1
26DNT	1.46	2.53	9.6	< 0.05
NNDPA	25	NA	NA	<1
BE	0.582	NA	NA	
HG	4.31	NA	NA	
MN	1,700	NA	NA	
SO4	637,000	NA	NA	
C6H6 ⁵	ND	<1	<1	<0.2
111TCE ⁵	59.3	1.48	1.0	<1
24DNT ⁵	ND	3.81	11.5	< 0.05
1,2DCLE ⁵	ND	1.0	<1	<1

Notes:

- Maximum concentration detected in monitoring wells.
- Actual average concentrations in existing IRM facility influent, November 1992 (Olin, 1992).
- Actual concentrations in existing IRM facility source control well, November 1992 (Olin, 1992).
- Estimated discharge limits assume 99% removal of organic contaminants is required.
- Compound was not identified in the RI Report (ABB-ES, 1993) as representing an unacceptable risk but has been detected or is suspected to be in the existing IRM facility influent.
- NA = Not analyzed
- ND = Not detected
- -- = No estimated discharge limit for inorganic compounds

TABLE 9-34 ESTIMATED AQUIFER CLEANUP TIMES FOR MAJOR ORGANIC CONTAMINANTS PROPELLANT BURNING GROUND GROUNDWATER

FEASIBILITY STUDY REPORT BADGER ARMY AMMUNITION PLANT

COMPOUND	PRELIMINARY REMEDIATION GOAL (\(\rho g/\ell\)	CLEANUP TIME (YEARS)	
		foc = 0.001	foc = 0.0001
CCL4	5	72	23.4
CHCL3	6	41.4	18
TRCLE	5	77.4	23.4
24DNT	0.05	55.8	23.4
26DNT	0.05	86.4	28.8

Notes:

 $\mu g/\ell = Micrograms per liter$

foc = Organic carbon fraction in the aquifer

TABLE 9-35 GROUNDWATER TREATMENT SYSTEM SAMPLING AND ANALYSIS PROGRAM

COMPOUND	USEPA METHOD
C6H6	624
CCL4	624
CHCL3	624
1,2DCLE	624
111TCE	624
TRCLE	624
24DNT	625
26DNT	625
NNDPA	625
BE	200.7
HG	245.1
MN	200.7
SO4	375.4

TABLE 9-36 COST SUMMARY TABLE ALTERNATIVE PBG-GW2: IRM AND CARBON ADSORPTION

FEASIBILITY STUDY PROPELLANT BURNING GROUND BADGER ARMY AMMUNITION PLANT

		2007
ITEM	TOTAL (JUST
DIRECT COST OF IRM AND CARBON ADSORPTION		
Site preparation and mob/demob	\$	402,000
Extraction system construction		2,855,000
Carbon adsorption treatment facility construction		579,000
Process equipment		1,177,000
Effluent pipe modification		12,000
IRM facility modification		28,000
TOTAL DIRECT COST OF IRM AND CARBON ADSORPTION	\$	5,053,000
INDIRECT COST OF IRM AND CARBON ADSORPTION		
Health and Safety @ 5% of Total Direct Cost	\$	253,000
Legal, Administration, Permitting @ 5% of Total Direct Cost		253,000
Engineering @ 10% of Total Direct Cost		505,000
Services During Construction @ 10% of Total Direct Cost		505,000
TOTAL INDIRECT COST OF IRM AND CARBON ADSORPTION	\$	1,516,000
TOTAL CAPITAL (DIRECT + INDIRECT) COST	\$	6,569,000
OPERATING AND MAINTENANCE COSTS		
Total cost replacement wells	\$	22,000
Total present worth of replacement wells	\$	17,000
in year 16, 32, 48 @ 5%	•	17,000
Total Annual Operating and Maintenance Costs	\$	1,485,000
Total present worth of annual O&M costs (5% for 65 years)	\$	28,454,000
TOTAL PRESENT WORTH OF O&M COSTS	\$	28,471,000
		<u>.</u>
TOTAL COST FOR IRM AND CARBON ADSORPTION	\$	35,040,000

EVALUATION CRITERIA	ALTERNATIVE PBG-GW2 IRM AND CARBON ADSORPTION
Overall Protection of Human Health	and the Environment
Human Health Protection	Achieves remedial action objectives for human receptors downgradient of the source area (i.e., Contaminated Waste Area). This alternative would both prevent migration of contaminated groundwater off BAAP and reduce contaminant concentrations in groundwater downgradient of the source area to acceptable levels. Remedial action objectives for groundwater beneath the source area would not be achieved until the source is removed or treated in situ.
Environmental Protection	No ecological risks associated with contaminated groundwater.
Compliance with ARARs	
Chemical-specific	The WPAL (WAC Chapter NR 140.10, Table 1) for CCL4, CHCL3, TRCLE, 111TCE, 24DNT, 26DNT, CR, PB, CD, and HG would be achieved in the aquifer downgradient of the source control wells. The interim WPAL for BE and NNDPA would be achieved in the aquifer downgradient of the source control wells. Secondary drinking water standards for MN and SO4 would be achieved in the aquifer downgradient of the source control wells. This alternative would not meet chemical-specific ARARs for groundwater beneath the source area until the source is removed or treated in situ. A WPDES (WAC Chapter NR 205) permit issued for discharge of treated groundwater to the Wisconsin River will specify individual discharge limits for each of the groundwater contaminants. It is presumed that this alternative is capable of achieving those limits.
Location-specific	No location-specific ARARs.
Action-specific	Fugitive particulate emissions generated during site work are substantively subject to Wisconsin Particulate and Sulfur Emission Rules (WAC, Chapter NR 415) and General and Portable Sources Air Pollution Control Rules; Ambient Air Quality Standards (WAC, Chapter NR 404). It is assumed that dust suppression techniques and other preventative measures would ensure compliance with particulate emission standards.
Other Criteria, Advisories, and Guidances	It is presumed that relevant criteria, advisories, and guidances would be implemented prior to implementing this alternative.

EVALUATION CRITERIA	ALTERNATIVE PBG-GW2 IRM AND CARBON ADSORPTION
Long-term Effectiveness and Permane	псе
Magnitude of Residual Risk	This alternative would be implemented to comply with WPALs and secondary drinking water standards. The standards were developed to minimize risk; therefore, the magnitude of the residual risk would be minimal. However, groundwater treatment is not a permanent solution because it would continue indefinitely unless the source is removed. Therefore, there may be an inherent residual risk unless the source is remediated.
Adequacy and Reliability of Controls	After remedial action objectives have been achieved downgradient of the source control wells, continued operation of the source control wells (assuming the source has not been removed) and groundwater monitoring would ensure the aquifer is not recontaminated. If the source has been removed, long-term monitoring after achieving remedial action objectives for groundwater would not be required.
Reduction of Toxicity, Mobility, and Vo	lume
Treatment Process Used and Materials Treated	Carbon adsorption in the new treatment facility (i.e., carbon adsorption treatment facility) would be used to remove CCL4, CHCL3, TRCLE, 111TCE, 24DNT, 26DNT, and NNDPA from groundwater. Aqueous-phase carbon followed by air stripper polish would be used in the IRM facility. Thermal reactivation of spent carbon would destroy adsorbed contaminants.
	Treatment of BE, CR, PB, CD, HG, MN, and SO4 is not expected to be necessary in order to meet surface water discharge limits.
Amount Destroyed or Treated	During the first year of operation, approximately 430 lbs of organic contaminants would be adsorbed in the carbon adsorption systems at the new facility and the IRM facility and destroyed during thermal reactivation. The mass of contaminants adsorbed and destroyed annually would decrease with each ensuing year because of decreasing contaminant concentrations that result from aquifer flushing.
Degree of Expected Reductions of Toxicity, Mobility, and Volume	The WPDES permit issued for discharge of treated groundwater is expected to require a treatment system removal efficiency of at least 99 percent. Groundwater contaminants adsorbed to the spent carbon would be destroyed during thermal reactivation.

EVALUATION CRITERIA	ALTERNATIVE PBG-GW2 IRM AND CARBON ADSORPTION
Degree to Which Treatment is Irreversible	Groundwater contaminants would be destroyed during thermal reactivation of the spent carbon.
Type and Quantity of Residuals Remaining After Treatment	Approximately 240,000 lbs of spent carbon in the new facility and approximately 120,000 lbs of spent carbon in the IRM facility would be generated every year (Rogers, 1993). Therefore, a total of approximately 360,000 lbs of spent carbon would be generated annually. Assuming complete destruction of contaminants in the spent carbon during thermal reactivation, no residuals would remain.
Short-term Effectiveness	
Protection of Community During Remedial Action	No risks to the community would be expected during implementation. There are no residences close enough to the site to be affected by noise or dust generated during construction of the new treatment facility.
Protection of Workers During Remedial Action	With the use of dust suppression techniques and adherence to general health and safety practices during construction, there would be minimal risk to workers.
Environmental Impacts	Adverse impacts to the environment may occur during construction of extraction wells and influent pipelines, particularly in the vicinity of the boundary control wells. Construction in the vicinity of the boundary control wells may require clearing trees which may adversely impact wildlife habitat.
Time Until Remedial Action Objectives Are Achieved	An estimated 41 to 86 years is required to achieve all the remedial action objectives for groundwater downgradient of the source area. Time required for cleanup of groundwater beneath the source area is dependent on remediation of the source area itself.
Implementability	
Ability to Construct and Operate the Technology	Construction of the new facility (i.e., carbon adsorption treatment facility) and modification of the IRM facility would not be difficult. Carbon adsorption system operating practices would include replacing carbon at breakthrough or before DNT loading on the carbon exceeds five percent DNTs by weight. The DNT loading limit is enforced by the thermal reactivation facility. However, operation of the existing IRM facility has shown that breakthrough occurs well before the DNT loading limit is exceeded.

EVALUATION CRITERIA	ALTERNATIVE PBG-GW2 IRM AND CARBON ADSORPTION
Reliability of the Technology	Carbon adsorption is a proven technology for removing organic contaminants from groundwater. The existing IRM facility (and associated carbon adsorption system) has been successfully operated for more than three years treating Propellant Burning Ground groundwater. Monitoring for contaminant breakthrough between the carbon vessels would ensure that WPDES discharge limits are not exceeded.
Ease of Undertaking Additional Remedial Action, if Necessary	This alternative would not preclude or hinder activities conducted during soil remediation at the Contaminated Waste Area.
Ability to Monitor Effectiveness of Remedy	The effectiveness of the treatment system would be monitored by analysis of samples collected bi-weekly from treatment systems influent and effluent. Aquifer cleanup can be monitored via the groundwater monitoring program.
Ability to Obtain Approvals and Coordinate with Other Agencies	Obtaining a WPDES permit for the discharge of treated groundwater to the Wisconsin River is not expected to be difficult. The existing IRM facility currently operates under a WPDES permit. Other special permits (e.g., wetland permit) would not be necessary.
Availability of Off-site Treatment, Storage, and Disposal Services and Capacity	Facilities which have sufficient capacity for the reactivation of spent carbon are available.
Availability of Necessary Equipment and Specialists	Carbon adsorption equipment and expertise is available from several vendors.
Availability of Technology	Carbon adsorption technology for the treatment of groundwater contaminated with chlorinated compounds and explosives is available.
Costs	
Capital Cost	\$6,569,000
Present Worth of Operation and Maintenance Cost	\$28,471,000
Net Present Worth Cost	\$35,040,000

TABLE 9-38 COST SUMMARY TABLE ALTERNATIVE PBG-GW4: IRM AND AIR STRIPPING-CARBON ADSORPTION

FEASIBILITY STUDY PROPELLANT BURNING GROUND BADGER ARMY AMMUNITION PLANT

ITEM	TOTAL	net.
ar-m	TOTAL	,031
DIRECT COST OF IRM AND AIR STRIPPING—CARBON ADSORPTION		
Site preparation and mob/demob	\$	402,000
Extraction system construction	,	2,855,000
Air stripping—carbon adsorption treatment facility construction		749,000
Process equipment		1,571,000
Effluent pipe modification		12,000
IRM facility modification		28,000
TOTAL DIRECT COST OF IRM AND AIR STRIPPING—CARBON ADSORPTION	S	5,617,000
	<u> </u>	 ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
INDIRECT COST OF IRM AND AIR STRIPPING—CARBON ADSORPTION		
Health and Safety @ 5% of Total Direct Cost	\$	281,000
Legal, Administration, Permitting @ 5% of Total Direct Cost	*	281,000
Engineering @ 10% of Total Direct Cost		562,000
Services During Construction @ 10% of Total Direct Cost		562,000
		ŕ
TOTAL INDIRECT COST OF IRM AND AIR STRIPPING-CARBON ADSORPTION	\$	1,686,000
TOTAL CAPITAL (DIRECT + INDIRECT) COST	\$	7,303,000
OPERATING AND MAINTENANCE COSTS		
Total cost replacement wells	\$	22,000
Total present worth of replacement wells	\$	17,000
in year 16, 32, 48 @ 5%		
Total Annual Operating and Maintenance Costs	\$	1,474,000
Total present worth of annual O&M costs (5% for 65 years)	\$	28,243,000
TOTAL PRESENT WORTH OF O&M COSTS	\$	28,260,000
TOTAL COST FOR IRM AND AIR STRIPPING—CARBON ADSORPTION	\$	35 ,563,000

EVALUATION CRITERIA	ALTERNATIVE PBG-GW4 IRM AND AIR STRIPPING - CARBON ADSORPTION
Overall Protection of Hum	an Health and the Environment
Human Health Protection	Achieves remedial action objectives for human receptors downgradient of the source area (i.e., Contaminated Waste Area). This alternative would both prevent migration of contaminated groundwater off BAAP and reduce contaminant concentrations in groundwater downgradient of the source area to acceptable levels. Remedial action objectives for groundwater beneath the source area would not be achieved until the source is removed or treated in situ.
Environmental Protection	No ecological risks associated with contaminated groundwater.
Compliance with ARARs	
Chemical-specific	The WPAL (WAC Chapter NR 140.10, Table 1) for CCL4, CHCL3, TRCLE, 111TCE, 24DNT, 26DNT, CR, PB, CD, and HG would be achieved in the aquifer downgradient of the source control wells. The interim WPAL for BE and NNDPA would be achieved in the aquifer downgradient of the source control wells. Secondary drinking water standards for MN and SO4 would be achieved in the aquifer downgradient of the source control wells. This alternative would not meet chemical-specific ARARs for groundwater beneath the source area until the source is removed or treated in situ. A WPDES (WAC Chapter NR 205) permit issued for discharge of treated groundwater to the Wisconsin River will specify individual discharge limits for each of the groundwater contaminants. It is presumed that this alternative is capable of achieving those limits.
Location-specific	No location-specific ARARs.
Action-specific	Fugitive particulate emissions generated during site work are substantively subject to Wisconsin Particulate and Sulfur Emission Rules (WAC, Chapter NR 415) and General and Portable Sources Air Pollution Control Rules; Ambient Air Quality Standards (WAC, Chapter NR 404). It is assumed that dust suppression techniques and other preventative measures would ensure compliance with particulate emission standards.
	Air emissions from the air strippers would be limited per a permit issued in accordance with WAC Chapter NR 406. An emission limit for each potential air contaminant is identified in WAC Chapter NR 445. In addition, WAC Chapter NR 419 identifies a daily limit for total VOCs emitted from a facility. It is presumed that emission treatment systems associated with the air strippers would meet emission limits.
Other Criteria, Advisories, and Guidances	It is presumed that relevant criteria, advisories, and guidances would be implemented prior to implementing this alternative.

EVALUATION CRITERIA	ALTERNATIVE PBG-GW4 IRM AND AIR STRIPPING - CARBON ADSORPTION
Long-term Effectiveness ar	nd Permanence
Magnitude of Residual Risk	This alternative would be implemented to comply with WPALs and secondary drinking water standards. The standards were developed to minimize risk; therefore, the magnitude of the residual risk would be minimal. However, groundwater treatment would not be a permanent solution because it would continue indefinitely unless the source is removed. Therefore, there may be an inherent residual risk unless the source is remediated.
Adequacy and Reliability of Controls	After remedial action objectives have been achieved downgradient of the source control wells, continued operation of the source control wells (assuming the source has not been removed) and groundwater monitoring would ensure the aquifer is not recontaminated. If the source has been removed, long-term monitoring after achieving remedial action objectives for groundwater would not be required.
Reduction of Toxicity, Mob	ility, and Volume
Treatment Process Used and Materials Treated	Air strippers and vapor-phase carbon in the new treatment facility (i.e., air stripping - carbon adsorption treatment facility) would be used for primary treatment of CCL4, CHCL3, TRCLE, and 111TCE. Aqueous-phase carbon in the new facility would be used for polishing CCL4, CHCL3, TRCLE, and 111TCE and removal of 24DNT, 26DNT, and NNDPA. Aqueous-phase carbon followed by air stripper polish would be used in the IRM facility. Thermal reactivation of spent carbon would destroy adsorbed contaminants. Treatment of BE, CR, PB, CD, HG, MN, and SO4 is not expected to be
	necessary in order to meet surface water discharge limits.
Amount Destroyed or Treated	During the first year of operation, approximately 430 lbs of organic contaminants would be adsorbed in the carbon adsorption systems (i.e., vapor-phase and aqueous-phase systems) at the new facility and the IRM facility and destroyed during thermal reactivation. The mass of contaminants adsorbed and destroyed annually would decrease with each ensuing year because of decreasing contaminant concentrations that result from aquifer flushing.
Degree of Expected Reductions of Toxicity, Mobility, and Volume	The WPDES permit issued for discharge of treated groundwater is expected to require a treatment system removal efficiency of at least 99 percent. Groundwater contaminants adsorbed to the spent carbon would be destroyed during thermal reactivation.
Degree to Which Treatment is Irreversible	Groundwater contaminants would be destroyed during thermal reactivation of spent carbon.

EVALUATION CRITERIA	ALTERNATIVE PBG-GW4 IRM AND AIR STRIPPING - CARBON ADSORPTION
Type and Quantity of Residuals Remaining After Treatment	Approximately 6,000 lbs of spent vapor-phase carbon and 60,000 lbs of spent aqueous-phase carbon would be generated in the new facility every year. Approximately 120,000 pounds of spent aqueous-phase carbon would be generated in the IRM facility every year. Therefore, a total of approximately 186,000 lbs of spent carbon would be generated annually. Assuming complete destruction of contaminants in the spent carbon during thermal reactivation, no residuals would remain.
Short-term Effectiveness	
Protection of Community During Remedial Action	No risks to the community would be expected during implementation. There are no residences close enough to the site to be affected by noise or dust generated during construction of the new treatment facility.
	Contaminants in air stripper emissions would be treated with vapor- phase carbon. Trace quantities may be released into the atmosphere but would be well within safe limits.
Protection of Workers During Remedial Action	With the use of dust suppression techniques and adherence to general health and safety practices during construction, there would be minimal risk to workers.
Environmental Impacts	Adverse impacts to the environment may occur during construction of extraction wells and influent pipelines, particularly in the vicinity of the boundary control wells. Construction in the vicinity of the boundary control wells may require clearing trees which may adversely impact wildlife habitat.
Time Until Remedial Action Objectives Are Achieved	An estimated 41 to 86 years is required to achieve all the remedial action objectives for groundwater downgradient of the source area. Time required for cleanup of groundwater beneath the source area is dependent on remediation of the source area itself.
Implementability	
Ability to Construct and Operate the Technology	Construction of the new facility and modification of the IRM facility would not be difficult. Carbon adsorption (i.e., vapor-phase and aqueous-phase) system operating practices would include replacing carbon at breakthrough or before DNT loading on the carbon exceeds five percent DNTs by weight. The DNT loading limit is enforced by the thermal reactivation facility. However, operation of the existing IRM facility has shown that breakthrough occurs well before the DNT loading limit is exceeded.

EVALUATION CRITERIA	ALTERNATIVE PBG-GW4 IRM AND AIR STRIPPING - CARBON ADSORPTION
Reliability of the Technology	Air stripping and carbon adsorption are proven technologies for removing organic contaminants from groundwater. The aqueous-phase carbon adsorption system and the air stripper system in the existing IRM facility have been successfully operated for more than three years treating Propellant Burning Ground groundwater. Reversing the systems, as would be done in the new facility, would only make treatment more efficient (i.e., lower carbon usage). Monitoring for contaminant breakthrough between the carbon vessels would ensure that WPDES discharge limits are not exceeded.
Ease of Undertaking Additional Remedial Action, if Necessary	This alternative would not preclude or hinder activities conducted during soil remediation at the Contaminated Waste Area.
Ability to Monitor Effectiveness of Remedy	The effectiveness of the treatment system would be monitored by analysis of samples collected bi-weekly from treatment systems influent and effluent. Aquifer cleanup can be monitored via the groundwater monitoring program.
Ability to Obtain Approvals and Coordinate with Other Agencies	Obtaining a WPDES permit for the discharge of treated groundwater to the Wisconsin River is not expected to be difficult. The existing IRM facility currently operates under a WPDES permit. Sampling and analysis of air stripper emissions may have to be conducted prior to receiving an air permit. Other special permits (e.g., wetland permit) would not be necessary.
Availability of Off-site Treatment, Storage, and Disposal Services and Capacity	Facilities which have sufficient capacity for the reactivation of spent carbon are available.
Availability of Necessary Equipment and Specialists	Air stripping and carbon adsorption equipment and expertise is available from several vendors.
Availability of Technology	Air stripping and carbon adsorption technology for the treatment of groundwater contaminated with chlorinated compounds and explosives is available.
Costs	
Capital Cost	\$7,303,000
Present Worth of Operation and Maintenance Cost	\$28,260,000
Net Present Worth Cost	\$35,563,000

TABLE 9-40 COST SUMMARY TABLE ALTERNATIVE PBG-GW5: IRM AND RESIN ADSORPTION

FEASIBILITY STUDY PROPELLANT BURNING GROUND BADGER ARMY AMMUNITION PLANT

ITEM	TOTAL	COST
		7
DIRECT COST OF IRM AND RESIN ADSORPTION		
Site preparation and mob/demob	\$	402,000
Extraction system construction		2,855,000
Resin adsorption treatment facility construction		545,000
Process equipment		3,069,000
Effluent pipe modification		12,000
IRM facility modification		28,000
Treatability testing		48,000
TOTAL DIRECT COST OF IRM AND RESIN ADSORPTION	\$	6,959,000
IDIRECT COST OF IRM AND RESIN ADSORPTION		
Health and Safety @ 5% of Total Direct Cost	\$	348,000
Legal, Administration, Permitting @ 5% of Total Direct Cost	*	348,000
Engineering @ 10% of Total Direct Cost		696,000
Services During Construction @ 10% of Total Direct Cost		696,000
		000,000
TOTAL INDIRECT COST OF IRM AND RESIN ADSORPTION	\$	2,088,000
TOTAL CAPITAL (DIRECT + INDIRECT) COST	\$	9,047,000
PERATING AND MAINTENANCE COSTS		
Total cost replacement wells	.	00.000
rotal cost replacement wells	\$	22,000
Total present worth of replacement wells	\$	17 000
in year 16, 32, 48 @ 5%	Ψ	17,000
11 year 10, 52, 40 @ 070		
Total Annual Operating and Maintenance Costs	\$	1,383,000
	Ψ	1,000,000
Total present worth of annual O&M costs (5% for 65 years)	\$	26,500,000
Total present worth of annual O&M costs (5% for 65 years)	\$	26,500,000
Total present worth of annual O&M costs (5% for 65 years) TOTAL PRESENT WORTH OF O&M COSTS	•	26,500,000 26,517,000
	•	
	•	
	\$	

EVALUATION CRITERIA	ALTERNATIVE PBG-GW5 IRM AND RESIN ADSORPTION
Overall Protection of Human Health a	and the Environment
Human Health Protection	Achieves remedial action objectives for human receptors downgradient of the source area (i.e., Contaminated Waste Area). This alternative would both prevent migration of contaminated groundwater off BAAP and reduce contaminant concentrations in groundwater downgradient of the source area to acceptable levels. Remedial action objectives for groundwater beneath the source area would not be achieved until the source is removed or treated in situ.
Environmental Protection	No ecological risks associated with contaminated groundwater.
Compliance with ARARs	
Chemical-specific	The WPAL (WAC Chapter NR 140.10, Table 1) for CCL4, CHCL3, TRCLE, 111TCE, 24DNT, 26DNT, CR, PB, CD, and HG would be achieved in the aquifer downgradient of the source control wells. The interim WPAL for BE and NNDPA would be achieved in the aquifer downgradient of the source control wells. Secondary drinking water standards for MN and SO4 would be achieved in the aquifer downgradient of the source control wells. This alternative would not meet chemical-specific ARARs for groundwater beneath the source area until the source is removed or treated in situ. A WPDES (WAC Chapter NR 205) permit issued for discharge of treated groundwater to the Wisconsin River will specify individual discharge limits for each of the groundwater contaminants. It is presumed that this
I again and iti	alternative is capable of achieving those limits.
Location-specific Action-specific	Fugitive particulate emissions generated during site work are substantively subject to Wisconsin Particulate and Sulfur Emission Rules (WAC, Chapter NR 415) and General and Portable Sources Air Pollution Control Rules; Ambient Air Quality Standards (WAC, Chapter NR 404). It is assumed that dust suppression techniques and other preventative measures would ensure compliance with particulate emission standards.
Other Criteria, Advisories, and Guidances	It is presumed that relevant criteria, advisories, and guidances would be implemented prior to implementing this alternative.

EVALUATION CRITERIA	ALTERNATIVE PBG-GW5 IRM AND RESIN ADSORPTION
Long-term Effectiveness and Perman	ence
Magnitude of Residual Risk	Extracted groundwater would be treated to comply with WPALs and secondary drinking water standards. The standards were developed to minimize risk; therefore, the magnitude of the residual risk would be minimal. However, groundwater treatment would not be a permanent solution because it would continue indefinitely unless the source is removed. Therefore, there may be an inherent residual risk unless the source is remediated.
Adequacy and Reliability of Controls	After remedial action objectives have been achieved downgradient of the source control wells, continued operation of the source control wells (assuming the source has not been removed) and groundwater monitoring would ensure the aquifer is not recontaminated. If the source has been removed, long-term monitoring after achieving remedial action objectives for groundwater would not be required.
Reduction of Toxicity, Mobility, and V	olume
Treatment Process Used and Materials Treated	Resin adsorption in the new treatment facility (i.e., resin adsorption treatment facility) would be used to remove CCL4, CHCL3, TRCLE, 111TCE, 24DNT, 26DNT, and NNDPA. Aqueous-phase carbon followed by air stripper polish would be used in the IRM facility. Contaminants in the concentrated organic phase generated during in situ resin regeneration would be destroyed in an incinerator. Thermal reactivation of spent carbon from the IRM facility would destroy adsorbed contaminants. Treatment of BE, CR, PB, CD, HG, MN, and SO4 is not expected to be necessary in order to meet surface water
	discharge limits.
Amount Destroyed or Treated	During the first year of operation, approximately 430 lbs of organic contaminants would be adsorbed in the resin adsorption system at the new facility and in the carbon adsorption system at the IRM facility and destroyed by incineration and thermal reactivation. The mass of contaminants adsorbed and destroyed annually would decrease with each ensuing year because of decreasing contaminant concentrations that result from aquifer flushing.

EVALUATION CRITERIA	ALTERNATIVE PBG-GW5 IRM AND RESIN ADSORPTION
Degree of Expected Reductions of Toxicity, Mobility, and Volume	The WPDES permit issued for discharge of treated groundwater is expected to require a treatment system removal efficiency of at least 99 percent. Groundwater contaminants adsorbed to the spent carbon would be destroyed during thermal reactivation.
Degree to Which Treatment is Irreversible	Groundwater contaminants would be destroyed by incineration (organic phase) and thermal reactivation (spent carbon).
Type and Quantity of Residuals Remaining After Treatment	Approximately 350 lbs of concentrated organic phase would be generated in the new facility every year. Approximately 120,000 pounds of spent aqueous-phase carbon would be generated in the IRM facility every year. Assuming complete destruction of the organic phase during incineration and complete destruction of adsorbed contaminants in spent carbon during thermal reactivation, no residuals would remain.
Short-term Effectiveness	
Protection of Community During Remedial Action	No risks to the community would be expected during implementation. There are no residences close enough to the site to be affected by noise or dust generated during construction of the new treatment facility.
Protection of Workers During Remedial Action	With the use of dust suppression techniques and adherence to general health and safety practices during construction, there would be minimal risk to workers.
Environmental Impacts	Adverse impacts to the environment may occur during construction of extraction wells and influent pipelines, particularly in the vicinity of the boundary control wells. Construction in the vicinity of the boundary control wells may require clearing trees which may adversely impact wildlife habitat.
Time Until Remedial Action Objectives Are Achieved	An estimated 41 to 86 years is required to achieve all the remedial action objectives for groundwater downgradient of the source area. Time required for cleanup of groundwater beneath the source area is dependent on remediation of the source area itself.

EVALUATION CRITERIA	ALTERNATIVE PBG-GW5 IRM AND RESIN ADSORPTION
Implementability	
Ability to Construct and Operate the Technology	Construction of the new facility and modification of the IRM facility would not be difficult. Resin adsorption system operating practices would include regenerating resin at breakthrough. Resin regeneration requires forcing steam through the spent resin bed and separating the organic phase from the aqueous phase in the condensate. Consequently, auxiliary systems associated with the resin adsorption system are extensive. IRM facility carbon adsorption system operating practices would include replacing carbon at breakthrough or before DNT loading on the carbon exceeds five percent DNTs by weight. The DNT loading limit is enforced by the thermal reactivation facility. However, operation of the existing IRM facility has shown that breakthrough occurs well before the DNT loading limit is exceeded.
Reliability of the Technology	Resin adsorption is not a proven technology for removing chlorinated compounds and explosives from groundwater. Resin technology applied to treatment of water contaminated with chlorinated compounds is being developed but has not been implemented at full scale. Treatability testing conducted to date indicates that hydrochloric acid is generated during steam regeneration of resin contaminated with adsorbed chlorinated compounds (Lynch, 1993). Hydrochloric acid may accelerate treatment system corrosion. Also, it is not known whether 24DNT will condense into the concentrated organic phase during resin regeneration. These and other concerns would be evaluated during extensive treatability testing.
	The IRM facility has proven to be effective for treatment of Propellant Burning Ground groundwater. Monitoring for contaminant breakthrough between the resin vessels (new facility) and carbon vessels (IRM facility) would ensure that WPDES discharge limits are not exceeded.
Ease of Undertaking Additional Remedial Action, if Necessary	This alternative would not preclude or hinder activities conducted during soil remediation at the Contaminated Waste Area.
Ability to Monitor Effectiveness of Remedy	The effectiveness of the treatment system would be monitored by analysis of samples collected bi-weekly from treatment systems influent and effluent. Aquifer cleanup can be monitored via the groundwater monitoring program.

EVALUATION CRITERIA	ALTERNATIVE PBG-GW5 IRM AND RESIN ADSORPTION
Ability to Obtain Approvals and Coordinate with Other Agencies	Obtaining a WPDES permit for the discharge of treated groundwater to the Wisconsin River is not expected to be difficult. The existing IRM facility currently operates under a WPDES permit. Other special permits (e.g., wetland permit) would not be necessary.
Availability of Off-site Treatment, Storage, and Disposal Services and Capacity	Facilities which have sufficient capacity for incineration of concentrated organic phase and reactivation of spent carbon are available.
Availability of Necessary Equipment and Specialists	Availability of resin adsorption equipment manufacturers and specialists versed in system design and operation is limited.
Availability of Technology	Resin adsorption technology for the treatment of chlorinated compounds is being developed. Information concerning resin treatment of explosives is unavailable.
Costs	
Capital Cost	\$9,047,000
Present Worth of Operation and Maintenance Cost	\$26,517,000
Net Present Worth Cost	\$35,564,000

TABLE 9-42 COST SUMMARY TABLE ALTERNATIVE PBG-GW7: IRM AND UV REDUCTION-CARBON ADSORPTION

FEASIBILITY STUDY PROPELLANT BURNING GROUND BADGER ARMY AMMUNITION PLANT

ITEM	OTAL (COST
DIRECT COST OF IRM AND UV REDUCTION—CARBON ADSORPTION		
Site preparation and mob/demob	\$	402,00
Extraction system construction		2,855,00
UV reduction—carbon adsorption treatment facility construction		719,00
Process equipment		2,474,00
Effluent pipe modification		12,00
IRM facility modification		28,00
Treatability testing		6,00
TOTAL DIRECT COST OF IRM AND UV REDUCTION—CARBON ADSORPTION	\$	6,496,00
NDIRECT COST OF IRM AND UV REDUCTION—CARBON ADSORPTION		
Health and Safety @ 5% of Total Direct Cost	\$	325,00
Legal, Administration, Permitting @ 5% of Total Direct Cost		325,00
Engineering @ 10% of Total Direct Cost		650,00
Services During Construction @ 10% of Total Direct Cost		650,00
TOTAL INDIRECT COST OF IRM AND UV REDUCTION—CARBON ADSORPTION	\$	1,950,00
TOTAL CAPITAL (DIRECT + INDIRECT) COST	\$	8,446,000
PERATING AND MAINTENANCE COSTS		
Total cost replacement wells	\$	22,00
Total present worth of replacement wells	\$	17,00
in year 16, 32, 48 @ 5%		
Total Annual Operating and Maintenance Costs	\$	2,056,00
Total present worth of annual O&M costs (5% for 65 years)	\$	31,606,00
TOTAL PRESENT WORTH OF O&M COSTS	\$	31,623,00
TOTAL COST FOR IRM AND UV REDUCTION—CARBON ADSORPTION	•	40,069,00

EVALUATION CRITERIA	ALTERNATIVE PBG-GW7 IRM AND UV REDUCTION - CARBON ADSORPTION
Overall Protection of Human Health	n and the Environment
Human Health Protection	Achieves remedial action objectives for human receptors downgradient of the source area (i.e., Contaminated Waste Area). This alternative would both prevent migration of contaminated groundwater off BAAP and reduce contaminant concentrations in groundwater downgradient of the source area to acceptable levels. Remedial action objectives for groundwater beneath the source area would not be achieved until the source is removed or treated in situ.
Environmental Protection	No ecological risks associated with contaminated groundwater.
Compliance with ARARs	
Chemical-specific	The WPAL (WAC Chapter NR 140.10, Table 1) for CCL4, CHCL3, TRCLE, 111TCE, 24DNT, 26DNT, CR, PB, CD, and HG would be achieved in the aquifer downgradient of the source control wells. The interim WPAL for BE and NNDPA would be achieved in the aquifer downgradient of the source control wells. Secondary drinking water standards for MN and SO4 would be achieved in the aquifer downgradient of the source control wells. This alternative would not meet chemical-specific ARARs for groundwater beneath the source area until the source is removed or treated in situ. A WPDES (WAC Chapter NR 205) permit issued for discharge of treated groundwater to the Wisconsin River will specify individual discharge limits for each of the groundwater contaminants. It is presumed that this alternative is capable of achieving those limits.
Location-specific	No location-specific ARARs.
Action-specific	Fugitive particulate emissions generated during site work are substantively subject to Wisconsin Particulate and Sulfur Emission Rules (WAC, Chapter NR 415) and General and Portable Sources Air Pollution Control Rules; Ambient Air Quality Standards (WAC, Chapter NR 404). It is assumed that dust suppression techniques and other preventative measures would ensure compliance with particulate emission standards.
Other Criteria, Advisories, and Guidances	It is presumed that relevant criteria, advisories, and guidances would be implemented prior to implementing this alternative.

EVALUATION CRITERIA	ALTERNATIVE PBG-GW7 IRM AND UV REDUCTION - CARBON ADSORPTION
Long-term Effectiveness and Perma	nence
Magnitude of Residual Risk	Extracted groundwater would be treated to comply with WPALs and secondary drinking water standards. The standards were developed to minimize risk; therefore, the magnitude of the residual risk would be minimal. However, groundwater treatment would not be a permanent solution because it would continue indefinitely unless the source is removed. Therefore, there may be an inherent residual risk unless the source is remediated.
Adequacy and Reliability of Controls	After remedial action objectives have been achieved downgradient of the source control wells, continued operation of the source control wells (assuming the source has not been removed) and groundwater monitoring would ensure the aquifer is not recontaminated. If the source has been removed, long-term monitoring after achieving remedial action objectives for groundwater would not be required.
Reduction of Toxicity, Mobility, and	Volume
Treatment Process Used and Materials Treated	reduction - carbon adsorption treatment facility) would be used for total destruction of CCL4, CHCL3, TRCLE, and 111TCE. Partial destruction of 24DNT, 26DNT, and NNDPA would occur in the UV reduction system and polishing would occur in the carbon adsorption system. Aqueous-phase carbon followed by air stripper polish would be used in the IRM facility. Thermal reactivation of spent carbon from the IRM facility would destroy adsorbed contaminants.
i.	Treatment of BE, CR, PB, CD, HG, MN, and SO4 is not expected to be necessary in order to meet surface water discharge limits.
Amount Destroyed or Treated	During the first year of operation, approximately 430 lbs of organic contaminants would be destroyed by UV reduction at the new facility and adsorbed in the carbon adsorption systems at the new facility and the IRM facility. Contaminants adsorbed to spent carbon would be destroyed during thermal reactivation. The mass of contaminants destroyed annually would decrease with each ensuing year because of decreasing contaminant concentrations that result from aquifer flushing.

EVALUATION CRITERIA	ALTERNATIVE PBG-GW7 IRM AND UV REDUCTION - CARBON ADSORPTION
Degree of Expected Reductions of Toxicity, Mobility, and Volume	The WPDES permit issued for discharge of treated groundwater is expected to require a treatment system removal efficiency of at least 99 percent. Groundwater contaminants adsorbed to the spent carbon would be destroyed during thermal reactivation.
Degree to Which Treatment is Irreversible	Groundwater contaminants would be destroyed by on-site UV reduction and off-site thermal reactivation of spent carbon.
Type and Quantity of Residuals Remaining After Treatment	Approximately 60,000 lbs of spent carbon would be generated in the new facility after 50 years of treatment. Approximately 120,000 pounds of spent aqueous-phase carbon would be generated in the IRM facility every year. Assuming complete destruction of contaminants by UV reduction and thermal regeneration of spent carbon, no residuals would remain.
Short-term Effectiveness	
Protection of Community During Remedial Action	No risks to the community would be expected during implementation. There are no residences close enough to the site to be affected by noise or dust generated during construction of the new treatment facility.
Protection of Workers During Remedial Action	With the use of dust suppression techniques and adherence to general health and safety practices during construction, there would be minimal risk to workers.
	The chemical additive used during UV reduction has actually been approved by the Food and Drug Administration as a food additive and so would not present a hazard to treatment plant operators.
Environmental Impacts	Adverse impacts to the environment may occur during construction of extraction wells and influent pipelines, particularly in the vicinity of the boundary control wells. Construction in the vicinity of the boundary control wells may require clearing trees which may adversely impact wildlife habitat.
Time Until Remedial Action Objectives Are Achieved	An estimated 41 to 86 years is required to achieve all the remedial action objectives for groundwater downgradient of the source area. Time required for cleanup of groundwater beneath the source area is dependent on remediation of the source area itself.

EVALUATION CRITERIA	ALTERNATIVE PBG-GW7 IRM AND UV REDUCTION - CARBON ADSORPTION
Implementability	
Ability to Construct and Operate the Technology	Construction of the new facility and modification of the IRM facility would not be difficult. UV reduction operating practices would include filling the additive storage tank every 10 days and replacement of UV lamps every four months. Carbon adsorption system operating practices in the IRM facility would include replacing carbon at breakthrough or before DNT loading on the carbon exceeds five percent DNTs by weight. The DNT loading limit is enforced by the thermal reactivation facility. However, operation of the existing IRM facility has shown that breakthrough occurs well before the DNT loading limit is exceeded. It is expected that DNT loading on carbon in the new facility would exceed 5 percent after 50 years of operation. Consequently, the spent carbon would be blended with another material and incinerated.
Reliability of the Technology	Results from bench- and pilot-scale testing of UV reduction indicate that it has significant potential for treatment of water contaminated with chlorinated compounds. Considerable treatability study work may be required to adapt the technology to treat a particular wastestream (Woeller, 1993). The first full-scale UV reduction groundwater treatment facility is currently under construction at Kennedy Space Center, FL (Nolan, 1993). The IRM facility has proven to be effective for treatment of Propellant Burning Ground groundwater. Monitoring for contaminant breakthrough between the carbon vessels at the new facility and the IRM facility would ensure that WPDES discharge limits are not exceeded.
Ease of Undertaking Additional Remedial Action, if Necessary	This alternative would not preclude or hinder activities conducted during soil remediation at the Contaminated Waste Area.
Ability to Monitor Effectiveness of Remedy	The effectiveness of the treatment system would be monitored by analysis of samples collected bi-weekly from treatment systems influent and effluent. Aquifer cleanup can be monitored via the groundwater monitoring program.
Ability to Obtain Approvals and Coordinate with Other Agencies	Obtaining a WPDES permit for the discharge of treated groundwater to Lake Wisconsin is not expected to be difficult. The existing IRM facility currently operates under a WPDES permit. Other special permits (e.g., wetland permit) would not be necessary.

EVALUATION CRITERIA	ALTERNATIVE PBG-GW7 IRM AND UV REDUCTION - CARBON ADSORPTION
Availability of Off-site Treatment, Storage, and Disposal Services and Capacity	Facilities which have sufficient capacity for reactivation or incineration of spent carbon are available.
Availability of Necessary Equipment and Specialists	Availability of UV reduction equipment manufacturers and specialists versed in system design and operation is limited.
Availability of Technology	UV reduction technology for the treatment of chlorinated compounds has been developed.
Costs	
Capital Cost	\$8,446,000
Present Worth of Operation and Maintenance Cost	\$31,623,000
Net Present Worth Cost	\$40,069,000

TABLE 9-44 COMPARATIVE SUMMARY OF GROUNDWATER ALTERNATIVES PROPELLANT BURNING GROUND GROUNDWATER

ALTERNATIVE	OVERALL PROTECTION	COMPLANCE WITH ARARS	EFFECTIVENESS: LONG-TERM	REDUCTION IN TOXICITY, MOBILITY, AND VOLUME	EFFECTIVENESS: SHORT-TERM	IMPLEMENTABILITY	Cost
Alternative PBG-GW1: Minimal Action	Not protective of human health. Groundwater contaminant concentrations may increase and plume's areal extent would expand.	Would not achieve WPALs. Location- specific and action- specific ARARs do not apply.	Not applicable because remedial action objectives are not achieved.	Contamination is not treated or destroyed; no reduction of toxicity, mobility, or volume of contaminants.	No adverse community or environmental impacts during implementation	No implementability concerns.	Total Present Worth: \$7,442,000 Capital Cost: \$10,000 Annual O&M: \$387,000
Alternative PBG-GW2: IRM and Carbon Adsorption	Achieves remedial action objectives for human receptors downgradient of the Contaminated Waste Area.	Would achieve WPALs in aquifer downgradient of source control wells. Capable of achieving WPDES permit limits.	Residual risk would be minimal downgradient of source control wells. Inherent residual risk unless source is remediated.	Removal efficiency greater than 99%. Approximately 360,000 lbs of spent carbon generated annually. Off-site destruction of contaminants.	No adverse impacts to community. Potentially adverse impacts to environment during construction of extraction system.	No implementability concerns. Technologies have been proven full-scale. No problems expected permitting discharge.	Total Present Worth: \$35,040,000 Capital Cost: \$6,569,000 Annual O&M: \$1,485,000
Alternative PBG-GW4: IRM and Air Stripping - Carbon Adsorption	Achieves remedial action objectives for human receptors downgradient of the Contaminated Waste Area.	Would achieve WPALs in aquifer downgradient of source control wells. Capable of achieving WPDES and air permits limits.	Residual risk would be minimal downgradient of source control wells. Inherent residual risk unless source is remediated.	Removal efficiency greater than 99%. Approximately 186,000 lbs of spent carbon generated annually. Off-site destruction of contaminants.	No adverse impacts to community. Potentially adverse impacts to environment during construction of extraction system.	No implementability concerns. Technologies have been proven full-scale. No problems expected permitting discharge or air emissions.	Total Present Worth: \$35,563,000 Capital Cost: \$7,303,000 Annual O&M: \$1,474,000
Alternative PBG-GW5: IRM and Resin Adsorption	Achieves remedial action objectives for human receptors downgradient of the Contaminated Waste Area.	Would achieve WPALs in aquifer downgradient of source control wells. Capable of achieving WPDES permit limits.	Residual risk would be minimal downgradient of source control wells. Inherent residual risk unless source is remediated.	Removal efficiency greater than 99%. Approximately 350 lbs of organic phase and 120,000 lbs of spent carbon generated annually. Off-site destruction of contaminants.	No adverse impacts to community. Potentially adverse impacts to environment during construction of extraction system.	Significant implementability concerns. Resin technology has not been proven fullscale and extensive treatability testing would be required. No problems expected permitting discharge.	Total Present Worth: \$35,564,000 Capital Cost: \$9,047,000 Annual O&M: \$1,383,000
Alternative PBG-GW7: IRM and UV Reduction - Carbon Adsorption	Achieves remedial action objectives for human receptors downgradient of the Contaminated Waste Area.	Would achieve WPALs in aquifer downgradient of source control wells. Capable of achieving WPDES permit limits.	Residual risk would be minimal downgradient of source control wells. Inherent residual risk unless source is remediated.	Destruction and removal efficiency greater than 99%. Approximately 120,000 lbs of spent carbon generated annually. On-site and offsite destruction of contaminants.	No adverse impacts to community. Potentially adverse impacts to environment during construction of extraction system.	Minor implement- ability concerns. Treatability studies required to adapt UV reduction to the wastestream. No problems expected permitting discharge.	Total Present Worth: \$40,069,000 Capital Cost: \$8,446,000 Annual O&M: \$2,056,000

FIGURE 9-3
TYPICAL SOIL COVER CROSS SECTION
SOIL COVER ALTERNATIVE
PROPELLANT BURNING GROUND
FEASIBILITY STUDY
BADGER ARMY AMMUNITION PLANT

-ABB Environmental Services, Inc.

NOT TO SCALE

FIGURE 9-5
TYPICAL CROSS SECTION
IN SITU STABILIZATION/SOLIDIFICATION AND SOIL COVER ALTERNATIVE
PROPELLANT BURNING GROUND
FEASIBILITY STUDY
BADGER ARMY AMMUNITION PLANT

ABB Environmental Services, Inc.

NOT TO SCALE

NOTES:

FML = FLEXIBLE MEMBRANE LINER

NOT TO SCALE

FIGURE 9-7
TYPICAL CROSS SECTION
CAPPING ALTERNATIVE
PROPELLANT BURNING GROUND
FEASIBILITY STUDY
BADGER ARMY AMMUNITION PLANT

—ABB Environmental Services, Inc.

FIGURE 9-8
PLAN VIEW
OFF-SITE LANDFILL ALTERNATIVE
PROPELLANT BURNING GROUND
FEASIBILITY STUDY
BADGER ARMY AMMUNITION PLANT

-ABB Environmental Services, Inc.-

FIGURE 9-11
TIS-20 PROCESS FLOW SCHEMATIC
ON-SITE INCINERATION AND CAPPING ALTERNATIVE
PROPELLANT BURNING GROUND
FEASIBILITY STUDY
BADGER ARMY AMMUNITION PLANT

-ABB Environmental Services, Inc.

SOURCE: JOHNSON, N.P. AND COSMOS, M.G., 1989.

WATER TABLE IS APPROXIMATELY 110 FEET BELOW GROUND SURFACE

NOTE:

BAAP - BADGER ARMY AMMUNITION PLANT

FIGURE 9-15
TYPICAL CROSS SECTION-SOIL FLUSHING
IN SITU TREATMENT ALTERNATIVE
PROPELLANT BURNING GROUND
FEASIBILITY STUDY
BADGER ARMY AMMUNITION PLANT

NOT TO SCALE

—ABB Environmental Services, Inc.-

TECHNICAL DATA (TYPICAL VALUES)

Wall Thickness: 20" to 36" by design Maximum Wall Depth: Greater than 200 feet Permeability (K): Approaching 10-8 cm/sec

Strength: 50 to 3,000 psi depending on subsurface conditions Acceptable Soil Conditions: Clay to gravel and cobbles Production Rate: 1,000 to 1,500 ft² per 8-hour shift

FIGURE 9-18
SLURRY WALL S.M.W. TECHNIQUES
IN SITU TREATMENT ALTERNATIVE
PROPELLANT BURNING GROUND
FEASIBILITY STUDY
BADGER ARMY AMMUNITION PLANT

Not To Scale

Source: S.M.W. Seiko, Inc.

- ABB Environmental Services, Inc.

APPROXIMATE SCALE IN FEET 200 Source: Modified from Tsai, et.al., 1988.

FEASIBILITY STUDY BADGER ARMY AMMUNITION PLANT

-ABB Environmental Services, Inc.-

NOT TO SCALE

SOURCE: Nicholson Construction of America.

DIAPHRAGM WALL CONSTRUCTION
ON-SITE INCINERATION ALTERNATIVE
PROPELLANT BURNING GROUND
FEASIBILITY STUDY
BADGER ARMY AMMUNITION PLANT

-ABB Environmental Services, Inc.-

9407035D(b) 2

FIGURE 9-26
GROUNDWATER MONITORING WELL
LOCATIONS FOR MINIMAL ACTION ALTERNATIVES
BADGER ARMY AMMUNITION PLANT

—ABB Environmental Services, Inc.

1 PBN-8201A.B.C. 2 PBN-8202A.B.C. 3 PBN-8203A.B.C. 4 PBN-8201A.B.C. 5 PBN-8301B.C.D. 5 PBN-8301B.C.D. 6 PBN-8301B.C.D. 6 PBN-8304B.C. 7 PBN-8304B.C. 7 PBN-8304B.C. 7 PBN-8304B.C. 7 PBN-8304B.C. 8 PBN-8304B.C. 8 PBN-8304B.C. 8 PBN-8304B.C. 9 PBN-8

WELL

MAP

CRNII	DETERRENT BURNING GROUND	NITROGLY	ROCKET PASTE AREA! NITROGLYCERINE POND
MAP	WELL	MAP	WELL
ន	DBM-8202	35	S1124
7	DBN-8904A,B	ន	S1118
ន	DBN-8201B,C	\$	S1150
	S1122	33	RPM-8901
8	DBM-8905	8	RPM-9101
		37	S1125
		88	S1119
		8	NPM-8901
		4	RPM-8902

MAP	WELL	CODE	WELL
24	S1101	58	S1152A,B
	S1133	83	SPN-8902A,B,C
	SPN-8901C		SPN-9102
22	S1102	8	SPN-9103D
	S1103		SPN-8903B,C
	S1149		S1147
98	S1104	3	S1148
	S1105		SPN-9104D
	S1106		SPN-8904B,C
23	S1107		
	S1108		
	SPN-8905A B		

Existing Landfill No. 1 Part Par
--

SCALE IN FEET

FIGURE 9-28
FLOW DIAGRAM
IRM AND CARBON ADSORPTION ALTERNATIVE
PROPELLANT BURNING GROUND
FEASIBILITY STUDY
BADGER ARMY AMMUNITION PLANT

ABB Environmental Services, Inc.

--ABB Environmental Services, Inc.

9407035D(v)

TABLE 10-1 GROUNDWATER MONITORING PROGRAM DETERRENT BURNING GROUND GROUNDWATER ALTERNATIVE DBG-GW1

FEASIBILITY STUDY BADGER ARMY AMMUNITION PLANT

GROUNDWATER MONITORING LOCATIONS

DBN 8904 A, B

DBN 8201 B, C

S 1122

DBM 8905

DBM-82-02¹

ANALYTICAL PARAMETERS AND MONITORING FREQUENCY

QUARTERLY

ANNUALLY

рΗ

VOCs, SVOCs, and Metals (filtered)²

Specific Conductance

Sulfate

Nitrate Nitrogen

Chromium (filtered)

Notes:

¹ Recommended additional monitoring well.

VOCs, SVOCs, and metals as described in Modification of Conditional Plan Approval of In-Field Conditions Report (WDNR, 1992).

TABLE 10-2 COST SUMMARY TABLE ALTERNATIVE DBG-SB1: MINIMAL ACTION

FEASIBILITY STUDY DETERRENT BURNING GROUND BADGER ARMY AMMUNITION PLANT

ITEM	TOTAL	COST
IRECT COST		
Institutional controls	\$	10,00
TOTAL DIRECT COST	\$	10,00
		<u></u>
IDIRECT COST		
Health and Safety @ 5% of Total Direct Cost	\$	
Legal, Administration, Permitting @ 5% of Total Direct Cost		
Engineering @ 10% of Total Direct Cost		
Services During Construction @ 10% of Total Direct Cost		
TOTAL INDIRECT COST	\$	
- TOTAL INDINECT COST	<u> </u>	
TOTAL CAPITAL (DIRECT + INDIRECT) COST	\$	10,00
		•
PERATING AND MAINTENANCE COSTS		
Total Annual Operating and Maintenance Costs	\$	7,00
TOTAL PROCESS WORTH OF A SU ACCORDANCE POR ACCORDAN		
TOTAL PRESENT WORTH OF O&M COSTS (5% FOR 30 YEARS)	\$	108,00
TOTAL COST FOR SB-1 MINIMAL ACTION	\$	118,00

EVALUATION CRITERIA	ALTERNATIVE DBG-SB1 MINIMAL ACTION
Overall Protection of Human Health	and the Environment
Human Health Protection	Minimal action controls potential risk posed by the soils at the Deterrent Burning Ground. This alternative focuses on reducing contaminant exposure by restricting site access through the use of institutional controls.
Environmental Protection	There is no environmental risk associated with subsurface soils at the Deterrent Burning Ground.
Compliance with ARARs	
Chemical-specific	There are no promulgated chemical-specific ARARs for soil. The minimal action alternative would not meet RGs for Deterrent Burning Ground soils.
Location-specific	Location-specific ARARs do not apply to this alternative because no action would be taken.
Action-specific	General RCRA requirements pertaining to permitted Hazardous Waste TSD Units would be satisfied by the minimal action alternative.
	Federal OSHA requirements to protect worker health and safety would be followed during the site work.
	Wisconsin Hazardous Waste Management and Facility Regulations are essentially equivalent to federal RCRA regulations and as such, the degree of ARARs compliance with standards established by Wisconsin hazardous waste regulations can be inferred from the degree of ARARs compliance with RCRA.
Long-term Effectiveness and Perman	ience
Magnitude of Residual Risk	Under the minimal action alternative, contaminant levels in the soil are not expected to decrease significantly over time.
Adequacy and Reliability of Controls	If managed properly, institutional controls effectively limit public access and use of the site.
Reduction of Toxicity, Mobility, and \	Volume
Treatment Process Used and Materials Treated	Minimal action does not employ removal or treatment processes to address soil contamination at the Deterrent Burning Ground.
Amount Destroyed or Treated	There would be no contaminants destroyed or treated.
	•

EVALUATION CRITERIA	ALTERNATIVE DBG-SB1 MINIMAL ACTION
Degree of Expected Reductions of Toxicity, Mobility, and Volume	Minimal action does not employ removal or treatment processes to address soil contamination at the Deterrent Burning Ground. Therefore, no reduction in toxicity, mobility, or volume of contaminated soils would be achieved.
Degree to Which Treatment is Irreversible	Not Applicable. No treatment is employed with this alternative.
Type and Quantity of Residuals Remaining After Treatment	Not Applicable. No treatment is employed with this alternative.
Short-term Effectiveness	
Protection of Community During Remedial Action	Because this alternative provides only a minimal response action (i.e., zoning and deed restrictions), threats to the community are unlikely to be encountered during implementation.
Protection of Workers During Remedial Action	This alternative provides only a minimal response action which does not require any construction. However site workers involved in the groundwater monitoring program should follow safe working practices.
Environmental Impacts	No impacts to the environment should be encountered during implementation.
Time Until Remedial Action Objectives Are Achieved	Unknown. Remedial action objectives may never be achieved with minimal action.
Implementability	
Ability to Construct and Operate the Technology	Not Applicable. No construction is involved with this alternative.
Reliability of the Technology	Not Applicable. No technology is used with this alternative.
Ease of Undertaking Additional Remedial Actions, if Necessary	Minimal action would not limit or interfere with the ability to perform future remedial actions.
Ability to Monitor Effectiveness of Remedy	The proposed groundwater monitoring program would adequately monitor contaminant migration.
Ability to Obtain Approvals and Coordinate with Other Agencies	Coordination with appropriate Army officials, WDNR, and the City of Baraboo would be required if these controls are applied. Coordination with Sauk County would be required to implement and maintain a public education program.

EVALUATION CRITERIA	ALTERNATIVE DBG-SB1 MINIMAL ACTION
Availability of Off-site Treatment, Storage, and Disposal Services and Capacity	Not Applicable.
vailability of Necessary Equipment and pecialists	Local contractors are readily available to conduct educational programs.
vailability of Technology	Not Applicable. No technology used.
osts	pproduct. No technology used.
apital Cost	\$10,000 for institutional controls.
resent Worth of Operation and aintenance Cost	\$108,000
et Present Worth Cost	\$118,000

TABLE 10-4 COST SUMMARY TABLE ALTERNATIVE DBG-SB2: CAPPING

FEASIBILITY STUDY DETERRENT BURNING GROUND BADGER ARMY AMMUNITION PLANT

	•	157,000
RECT COST OF CAPPING Site preparation and mob/demob	\$	80,000
Contaminated soil delineation		163,000
Cap construction		10,000
Institutional controls		,
	\$	410,000
TOTAL DIRECT COST OF CAPPING		
IDIRECT COST OF CAPPING	\$	21,000
Health and Safety @ 5% of Total Direct Cost		21,000
Legal Administration, Permitting @ 5% of Total Direct Cost		41,000
Engineering @ 10% of Total Direct Cost		41,000
Services During Construction @ 10% of Total Direct Cost		
TOTAL INDIRECT COST OF CAPPING	\$	124,000
TOTAL INDIRECT COST OF GALLING		
TOTAL CAPITAL (DIRECT + INDIRECT) COST	\$	534,000
THE AND MAINTENANCE COSTS		
DPERATING AND MAINTENANCE COSTS Total Annual Operating and Maintenance Costs	\$	7,00
		108,00
TOTAL PRESENT WORTH OF O&M COSTS (5% FOR 30 YEARS)	\$	100,00

EVALUATION CRITERIA	ALTERNATIVE DBG-SB2 CAPPING
Overall Protection of Human Health	and the Environment
Human Health Protection	Achieves remedial action objective for protection of human health. The RCRA cap and institutional controls would reduce the potential for human exposure to subsurface soil with contaminant concentrations greater than remediation goals.
Environmental Protection	No ecological risk associated with contaminated subsurface soil. The RCRA caps would reduce leachate generation such that groundwater is protected.
Compliance with ARARs	
Chemical-specific	Chemical-specific ARARs have not been promulgated for contaminated soil; however, TBC soil clean-up standards for protection of human health and groundwater have been derived from the proposed Wisconsin Chapter NR 720, Wisconsin Administrative Code, and are being applied to BAAP soil remediation. Because soil contaminants would not be removed or destroyed, this alternative would not comply with pathway-specific numeric standards derived from the proposed Chapter NR 720. However, the RCRA caps used in this alternative could be designed to achieve a performance standard which would meet the intent of the proposed Chapter NR 720 clean-up standards for protection of human health and groundwater.
Location-specific	RCRA, Standards for Owners and Operators of Hazardous Waste Treatment, Storage, and Disposal Facilities (40 CFR - Part 264) may apply. If applicable, a program which incorporates the standards would be implemented. RCRA, Releases from Solid Waste Management Units (Subpart F, 264.90-264.109) may apply for post-closure monitoring of the site. This alternative would include continued groundwater monitoring at the Deterrent Burning Ground. Wisconsin Hazardous Waste Management and Facility Regulations are essentially equivalent to federal RCRA regulations and as such, the degree of ARARs compliance with standards established by Wisconsin hazardous waste regulations can be inferred from the degree of ARARs compliance with RCRA.

EVALUATION CRITERIA	ALTERNATIVE DBG-SB2 CAPPING
Action-specific	Federal OSHA requirements to protect worker health and safety would be followed during the site work.
,	Fugitive particulate emissions generated during site work are substantively subject to Wisconsin Particulate and Sulfur Emission Rules (WAC, Chapter NR 415) and General and Portable Sources Air Pollution Control Rules; Ambient Air Quality Standards (WAC, Chapter NR 404). It is assumed that dust suppression techniques and other preventative measures would ensure compliance with particulate emission standards.
Other Criteria, Advisories, and Guidances	It is presumed that relevant criteria, advisories, and guidances would be considered prior to implementation of this alternative.
Long-term Effectiveness and Permane	nce
Magnitude of Residual Risk	Provided the RCRA caps remain intact, residual risk to human receptors and the threat of groundwater contamination would be negligible. Post-remediation invasive activities through the caps could result in significant exposure events and cause leachate generation and associated degradation of groundwater quality.
Adequacy and Reliability of Controls	Institutional controls would protect the caps from invasive activities and restrict residential or public use of the site. Visual inspections would be conducted annually to ensure the integrity of the caps. Long-term groundwater monitoring would detect soil contaminants leaching into groundwater.
Reduction of Toxicity, Mobility, and Vo	lume
Treatment Process Used and Materials Treated	No treatment of contaminated soils would occur.
Amount Destroyed or Treated	No treatment of contaminated soils would occur.
Degree of Expected Reductions of Toxicity, Mobility, and Volume	No reduction in the toxicity, mobility, or volume of contaminants. However, natural mobilizing influences such as infiltration of precipitation and associated leachate generation would be reduced.
Degree to Which Treatment is Irreversible	No treatment of contaminated soils would occur.
Type and Quantity of Residuals Remaining After Treatment	No treatment of contaminated soils would occur.

EVALUATION CRITERIA	ALTERNATIVE DBG-SB2 CAPPING
Short-term Effectiveness	
Protection of Community During Remedial Action	No risks to the community would be expected during implementation. There are no residences close enough to the site to be affected by noise or dust.
Protection of Workers During Remedial Action	With the use of dust suppression techniques and adherence to general health and safety practices, there would be minimal risk to workers.
Environmental Impacts	The burning pits at the Deterrent Burning Ground are not considered critical wildlife habitats and the impact to the ecological community is expected to be minor.
Time Until Remedial Action Objectives Are Achieved	An estimated two to three months would be required to achieve the remedial action objectives.
Implementability	
Ability to Construct and Operate the Technology	RCRA cap construction can be accomplished using standard construction procedures and conventional earthmoving equipment. Cap repairs would be easily implemented.
Reliability of the Technology	Capping is a proven technology for reducing leachate generation and is generally the prescribed method for landfill closure.
Ease of Undertaking Additional Remedial Actions, if Necessary	Capping would increase the scope of any future removal actions.
Ability to Monitor Effectiveness of Remedy	Annual visual inspections and groundwater monitoring would be sufficient for monitoring cap effectiveness.
Ability to Obtain Approvals and Coordinate with Other Agencies	The integrity of the remedial design would have to be demonstrated to federal and state regulators. Other special permits (e.g., wetland permit) would not be necessary.
Availability of Off-site Treatment, Storage, and Disposal Services and Capacity	Contaminated soil would not be transported off site.
Availability of Necessary Equipment and Specialists	Obtaining sufficient quantities of clay, sand, common borrow soil, and topsoil in the immediate vicinity of BAAP should not be difficult. Materials may be available within 30 miles of BAAP.

EVALUATION CRITERIA	ALTERNATIVE DBG-SB2 CAPPING	
Availability of Technology	A large excavation contracting company with experience in landfill construction/closure could provide the equipment and expertise for constructing the caps.	
Costs		
Capital Cost	\$534,000	
Present Worth of Operation and Maintenance Cost	\$108,000	
Present Worth Cost	\$642,000	

TABLE 10-6 COST SUMMARY TABLE ALTERNATIVE DBG-SB4: SOIL WASHING

FEASIBILITY STUDY DETERRENT BURNING GROUND BADGER ARMY AMMUNITION PLANT

ITEM	TOTAL COST
DIRECT COST	
Treatability testing	\$ 30,000
Site Preparation and mob/demob	379,000
Contaminated soil delineation	130,000
Soil excavation	122,000
Soil washing	2,931,000
Backfill	165,000
TOTAL DIRECT COST	\$ 3,757,000
TOTAL BINLOT GOOT	\$ 3,757,000
INDIRECT COST	
Health and Safety @ 5% of Total Direct Cost	\$ 188,000
Legal, Administration, Permitting @ 5% of Total Direct Cost	188,000
Engineering @ 10% of Total Direct Cost	376,000
Services During Construction @ 10% of Total Direct Cost	376,000
TOTAL INDIRECT COST	\$ 1,128,000
TOTAL CAPITAL (DIRECT + INDIRECT) COST	\$ 4,885,000
OPERATING AND MAINTENANCE COSTS	
Total Annual Operating and Maintenance Costs	\$ 7,000
	, ,,,,,,
TOTAL PRESENT WORTH OF O&M COSTS (5% FOR 30 YEARS)	\$ 108,000
TOTAL COOT FOR OR 1 2011 WINDSHIP	
TOTAL COST FOR SB-4 SOIL WASHING	\$ 4,993,000
	*

EVALUATION CRITERIA	ALTERNATIVE DBG-SB4 SOIL WASHING
Overall Protection of Human Health and the Environment	
Human Health Protection	Under the soil washing alternative, contaminated soils are removed and treated. Therefore, this alternative achieves remedial action objectives for subsurface soils at the Deterrent Burning Ground.
Environmental Protection	There is no environmental risk associated with subsurface soils at the Deterrent Burning Ground.
Compliance with ARARs	
Chemical-specific	There are no promulgated chemical-specific ARARs for soil; however, TBC soil clean-up standards for protection of human health and groundwater have been derived from the proposed Wisconsin Chapter NR 720, Wisconsin Administrative Code, and are being applied to BAAP soils remediation. The soil washing alternative would meet RGs for Deterrent Burning Ground soils.
Location-specific	There are no location-specific ARARs.
Action-specific	RCRA requirements pertaining to permitted Hazardous Waste TSD units would be addressed in the soil washing alternative. Any RCRA permits required would be obtained.
	DOT and RCRA requirements pertaining to transportation of hazardous waste would by addressed by this alternative.
	General WDNR and NAAQS requirements pertaining to the control of air emissions would be addressed by this alternative.
	CAA-NAAQS, RCRA and WDNR requirements pertaining to excavation would be addressed by this alternative.
	General RCRA requirements pertaining to land disposal would be addressed in the soil washing alternative.
	Federal OSHA requirements to protect worker health and safety would be followed during any site work.
	Wisconsin Hazardous Waste Management and Facility Regulations are essentially equivalent to federal RCRA regulations and as such, the degree of ARARs compliance with standards established by Wisconsin hazardous waste regulations can be inferred from the degree of ARARs compliance with RCRA.

EVALUATION CRITERIA	ALTERNATIVE DBG-SB4 SOIL WASHING
	RCRA, Land Disposal Restrictions (LDRs); (40 CFR Part 268) may apply to C6H6 waste disposed of in the waste pits. The C6H6 waste has been identified as a listed hazardous waste from non-specific sources (i.e., F005), per 40 CFR Part 261.31. As such, C6H6-contaminated soil may be subject to LDRs and, if excavated, must be treated so that it no longer "contains" C6H6 or treated to a concentration level prior to disposal in a RCRA Subtitle C permitted facility. In addition, 24DNT-contaminated soil in the waste pits would be characteristically hazardous if it exceeds the TCLP threshold for 24DNT waste. If classified as hazardous, and 24DNT-contaminated soil is excavated, the "characteristic" would have to be removed from the soil prior to disposal or placement on site.
Long-term Effectiveness and Permanence	
Magnitude of Residual Risk	Under the soil washing alternative, contaminated soils are excavated and treated on-site. Treatment residuals will be transported off-site or to the PBG. Only soils meeting RGs will be put back in the hole. Therefore, residual risk to construction workers doing intrusive work would be eliminated after treatment and there would no longer be leaching potential.
Adequacy and Reliability of Controls	Soil washing would permanently reduce contaminant concentrations to below RGs. The potential for exposure and leaching would be eliminated.
Reduction of Toxicity, Mobility, and	V olume
Treatment Process Used and Materials Treated	Soil washing would be used to reduce concentrations of 24DNT in subsurface soils to below those considered protective of human health.
Amount Destroyed or Treated	It is estimated that 5,700 cubic yards of contaminated soil would be excavated and treated. Maximum 24DNT concentration is 37,000 mg/kg. Concentrations will be reduced to below 4.29 mg/kg. Contaminants are more tightly bound to the fine-grained soil fraction which is converted to a sludge, producing approximately 500 cubic yards of dry solids filter cake to be disposed of off-site or sent to the Propellant Burning Ground for composting.

EVALUATION CRITERIA	ALTERNATIVE DBG-SB4 SOIL WASHING
Degree of Expected Reductions of Toxicity, Mobility, and Volume	Toxicity of the contaminant would not be reduced, but the contaminated residuals would be removed from the site. The residuals would be treated off-site, therefore, the mobility of the contaminant through the soil matrix would be reduced. The volume of contaminated soil would be reduced from 5,700 cubic yards to 500 cubic yards of filter cake.
Degree to Which Treatment is Irreversible	Soil washing treatment separates the contaminant from the soil matrix, therefore treatment is permanent.
Type and Quantity of Residuals Remaining After Treatment	Filter cake contaminated with 24DNT would be a residual of the soil washing process. The filter cake would be treated in an off-site incinerator. The make-up water used in the soil washing process is recycled throughout treatment, but requires disposal after treatment.
Short-term Effectiveness	
Protection of Community During Remedial Action	There would be no threats to the community during remedial action.
Protection of Workers During Remedial Action	Construction workers excavating soil are at risk of soil ingestion. Workers would follow safe working practices.
Environmental Impacts	The soil washing treatment facility calls for containment and treatment of any run-off from the site. Therefore, no impacts to the environment should be encountered during implementation.
Time Until Remedial Action Objectives Are Achieved	Treatability tests are expected to take 8 to 10 weeks to conduct. Site preparation and mobilization, excavation of soils, and construction of the treatment facility is expected to take 2 to 3 months. Treatment of the contaminated soil is expected to be complete in 6 to 8 weeks. Disposal, backfilling of treated soils, and overall site cleanup could take an additional month.
Implementability	
Ability to Construct and Operate the Technology	Prior to implementing the technology, bench-scale and pilot-scale treatability tests to determine the feasibility of soil washing as well as to confirm process parameters. The availability of vendors to perform soil washing is limited. Construction and operation of the facility is done by the vendor.

EVALUATION CRITERIA	ALTERNATIVE DBG-SB4 SOIL WASHING
Reliability of the Technology	Unknown. Until bench-scale tests can be done on a representative sample, it is unclear whether soil washing is a feasible alternative.
Ease of Undertaking Additional Remedial Actions, if Necessary	Soil washing would not limit or interfere with the ability to perform future remedial actions.
Ability to Monitor Effectiveness of Remedy	A mobile laboratory would be available on-site with a colorimetric spectrophotometer capable of analyzing for 24DNT in treated soils.
Ability to Obtain Approvals and Coordinate with Other Agencies	It is assumed that the agencies will work cooperatively with BAAP in obtaining the necessary permits.
Availability of Off-site Treatment, Storage, and Disposal Services and Capacity	The contaminated filter cake would require off-site disposal. There could be approximately 500 cubic yards of residuals and these could be treated in an off-site incinerator.
Availability of Necessary Equipment and Specialists	The availability of vendors to perform soil washing is limited.
Availability of Technology	The availability of vendors to perform soil washing is limited.
Costs	
Capital Cost	\$4,885,000
Present Worth of Operation and Maintenance Cost	\$108,000
Net Present Worth Cost	\$4,993,000

TABLE 10-8 COST SUMMARY TABLE ALTERNATIVE DBG-SB7: ON-SITE INCINERATION

FEASIBILITY STUDY DETERRENT BURNING GROUND BADGER ARMY AMMUNITION PLANT

ITEM	TOTAL	COST
DIRECT COST		
Site Preparation and mob/demob	\$	2,007,000
Contaminated soil delineation		130,000
Excavate contaminated soil		220,000
Backfill soil		167,000
Incineration		2,433,000
TOTAL DIRECT COST	_	
TOTAL DIRECT COST	<u> </u>	4,957,000
NDIRECT COST		
Health and Safety @ 5% of Total Direct Cost	\$	248,000
Legal, Administration, Permitting @ 5% of Total Direct Cost	•	248,000
Engineering @ 10% of Total Direct Cost		496,000
Services During Construction @ 10% of Total Direct Cost		496,000
		,
TOTAL INDIRECT COST	\$	1,488,000
TOTAL CAPITAL (DIRECT + INDIRECT) COST	\$	6,445,000
OPERATING AND MAINTENANCE COSTS		
Total Annual Post Closure Maintenance Costs	\$	7,000
TOTAL PRESENT WORTH OF O&M COSTS (5% FOR 30 YEARS)	S.	100.000
TOTALT RESERVE WORTH OF COMM COSTS (3 % FOR 30 TEARS)	· · · · · · · · · · · · · · · · · · ·	108,000
TOTAL COST FOR SB-7 ON-SITE INCINERATION	\$	6,559,000

EVALUATION CRITERIA	ALTERNATIVE DBG-SB7 On-SITE INCINERATION	
Overall Protection of Human Health and the Environment		
Human Health Protection	Under the on-site incineration alternative, contaminated soils are removed and treated. Therefore, this alternative achieves remedial action objectives for subsurface soils at the Deterrent Burning Ground.	
Environmental Protection	There is no environmental risk associated with subsurface soils at the Deterrent Burning Ground.	
Compliance with ARARs		
Chemical-specific	There are no promulgated chemical-specific ARARs for soil; however, TBC soil clean-up standards for protection of human health and groundwater have been derived from the proposed Wisconsin Chapter NR 720, Wisconsin Administrative Code, and are being applied to BAAP soil remediation. The on-site incineration alternative would meet RGs for Deterrent Burning Ground soils.	
Location-specific	There are no location-specific ARARs.	
Action-specific	Fugitive particulate emissions generated during site work are substantively subject to Wisconsin Particulate and Sulfur Emission Rules (WAC, Chapter NR 415) and general and Portable Sources Air Pollution Control Rules; Ambient Air Quality Standards (WAC, Chapter NR 404). It is assumed that dust suppression techniques and other preventative measures would ensure compliance with particulate emission standards.	
	It is presumed that on-site incineration would comply with all RCRA requirements for hazardous waste incinerators (40 CFR Subpart O), and all applicable Clean Air Act requirements (40 CFR 50, 52, 60, and 61). Any additional RCRA permits would be obtained as necessary.	

TABLE 10-9 DETAILED ANALYSIS - ALTERNATIVE DBG-SB7 DETERRENT BURNING GROUND SUBSURFACE SOIL

EVALUATION CRITERIA	ALTERNATIVE DBG-SB7 On-SITE INCINERATION
	RCRA, Land Disposal Restrictions (LDRs); (40 CFR Part 268) may apply to C6H6 waste disposed of in the waste pits. The C6H6 waste has been identified as a listed hazardous waste from non-specific sources (i.e., F005), per 40 CFR Part 261.31. As such, C6H6-contaminated soil may be subject to LDRs and, if excavated, must be treated so that it no longer "contains" C6H6 or treated to a concentration level prior to disposal in a RCRA Subtitle C permitted facility. In addition, 24DNT-contaminated soil in the waste pits would be characteristically hazardous if it exceeds the TCLP threshold for 24DNT waste. If classified as hazardous, and 24DNT-contaminated soil is excavated, the "characteristic" would have to be removed from the soil prior to disposal or placement on site.
Long-term Effectiveness and Perman	епсе
Magnitude of Residual Risk	Under the on-site incineration alternative, contaminated soils are excavated and treated at the Propellant Burning Ground. Fly ash from the incinerator will be transported off-site. Only soils meeting RGs will be used as clean backfill. Therefore, residual risk to future construction workers doing intrusive work would be eliminated after treatment as well as potential for leaching.
Adequacy and Reliability of Controls	On-site incineration of the soil would permanently reduce contaminant concentrations to below RGs. The potential would no longer exist for intrusive work or leaching to groundwater.
Reduction of Toxicity, Mobility, and V	olume
Treatment Process Used and Materials Treated	On-site incineration would be used to thermally destroy 24DNT contaminants in subsurface soils.
Amount Destroyed or Treated	It is estimated that 5,700 cubic yards of contaminated soil would be excavated and treated by incineration. Concentrations of 24DNT in the soil will be reduced to below 4.29 mg/kg.
Degree of Expected Reductions of Toxicity, Mobility, and Volume	Incineration thermally destroys the contaminant in the soil matrix, therefore toxicity would be reduced. Clean soil would be returned to the excavation, therefore the mobility of the contaminant through the soil would be reduced. The volume of contaminated soil would be reduced from 5,700 cubic yards to 1,140 cubic yards of fly ash containing inorganics.

TABLE 10-9 DETAILED ANALYSIS - ALTERNATIVE DBG-SB7 DETERRENT BURNING GROUND SUBSURFACE SOIL

EVALUATION CRITERIA	ALTERNATIVE DBG-SB7 On-SITE INCINERATION
Degree to Which Treatment is Irreversible	Incineration thermally destroys the contaminant in the soil, therefore treatment is permanent.
Type and Quantity of Residuals Remaining After Treatment	Approximately 1,140 cubic yards of fly ash containing inorganic materials would be a residual of the incineration process and would require off-site disposal.
Short-term Effectiveness	
Protection of Community During Remedial Action	Although the incinerator would destroy and remove 99.9 percent of contaminants in the feed material per the operating permit, air emissions could contain traces of contaminants. However, the incinerator would be operating in a isolated portion of BAAP (i.e., Contaminated Waste Area) and no residences or active BAAP facilities are present within a mile of the site. Modeling of emission dispersal, as is normally conducted prior to permitting incinerators, is expected to indicate that the risk to human receptors downwind of the incinerator is minor.
Protection of Workers During Remedial Action	Air monitoring would be conducted at the site during excavation and incineration activities. OSHA and other health and safety requirements which limit worker exposure to inhalation hazards would be enforced. If site activities resulted in unacceptable levels of air contaminants, operations would be modified to protect workers.
Environmental Impacts	The waste pit area is not considered a critical wildlife habitat and the impact to the ecological community during soil excavation and backfill is expected to be minor. Potential impacts to ecological receptors from incinerator emissions are difficult to estimate but concentrations and the associated risk in the vicinity of the incinerator are expected to be low.
Time Until Remedial Action Objectives Are Achieved	Site preparation, excavation and transportation of soils, and mobilization of the treatment facility is expected to take 2 to 3 months. Treatment of soils from the Deterrent Burning Ground is expected to be complete in 6 to 8 weeks. Disposal, backfilling of treated soils, and overall site cleanup could take an additional month.
Implementability	
Ability to Construct and Operate the Technology	Permanent facility construction is not included with this alternative. The incinerator is a mobile, skid-mounted treatment unit. Vendors are available to operate their units.

TABLE 10-9 DETAILED ANALYSIS - ALTERNATIVE DBG-SB7 DETERRENT BURNING GROUND SUBSURFACE SOIL

EVALUATION CRITERIA	ALTERNATIVE DBG-SB7 On-SITE INCINERATION
Reliability of the Technology	Incineration is the most effective and proven method for destruction of explosive contaminated soil (Keehan, Myler, and Sisk, 1990).
Ease of Undertaking Remedial Actions, if Necessary	Incineration would not limit or interfere with the ability to perform future remedial actions.
Ability to Monitor Effectiveness of Remedy	A mobile laboratory would be available on-site with a colorimetric spectrophotometer capable of analyzing for residual 24DNT in soils.
Ability to Obtain Approvals and Coordinate with Other Agencies	The process for permitting an incinerator would be long and difficult. Extensive modeling of incinerator emissions may be required to show that potential receptors are not at risk.
Availability of Off-site Treatment, Storage, and Disposal Services and Capacity	Approximately 1,140 cubic yards of fly ash would require offsite disposal. A hazardous waste landfill is located 108 miles away.
Availability of Necessary Equipment and Specialists	On-site incineration services are readily available.
Availability of Technology	On-site incineration services are readily available.
Costs	
Capital Cost	\$6,445,000
Present Worth of Operation and Maintenance Cost	\$108,000
Net Present Worth Cost	\$6,553,000

TABLE 10-10 COST SUMMARY TABLE ALTERNATIVE DBG-SB8: ON-SITE COMPOSTING

FEASIBILITY STUDY DETERRENT BURNING GROUND BADGER ARMY AMMUNITION PLANT

	TOTAL COST
DIRECT COST	
Site Preparation and mob/demob	\$ 536,000
Contaminated soil delineation	130,000
Excavate contaminated soil	235,000
Backfill soil	163,000
Composting	1,498,000
TOTAL DIRECT COST	\$ 2,562,000
INDIRECT COST	
Health and Safety @ 5% of Total Direct Cost	\$ 128,000
Legal, Administration, Permitting @ 5% of Total Direct Cost	128,000
Engineering @ 10% of Total Direct Cost	256,000
Services During Construction @ 10% of Total Direct Cost	256,000
TOTAL INDIRECT COST	\$ 768,000
TOTAL CAPITAL (DIRECT + INDIRECT) COST	\$ 3,330,000
OPERATING AND MAINTENANCE COSTS	
Annual O&M of Composting System	\$ 542,000
Total Present worth of O&M Costs (5% for two years)	1,008,000
Total annual post closure maintenance costs	\$8,000
T. 15	\$123,000
Total Present worth of O&M Costs (5% for thirty years)	

TABLE 10-11 DETAILED ANALYSIS - ALTERNATIVE DBG-SB8 DETERRENT BURNING GROUND SUBSURFACE SOIL

EVALUATION CRITERIA	ALTERNATIVE DBG-SB8 COMPOSTING
Overall Protection of I	luman Health and the Environment
Human Health Protection	Provides protection of human health by reducing DNT concentrations in the finished compost to below RG concentrations that are based on protective risk levels.
Environmental Protection	Provides protection of the environment by achieving RG concentrations in the finished compost.
Compliance with ARAI	Rs
Chemical-specific	There are no promulgated chemical-specific ARARs for soil; however, TBC soil clean-up standards for protection of human health and groundwater have been derived from the Wisconsin Chapter NR 720, Wisconsin Administrative Code, and are being applied to BAAP soil remediation. The composting alternative is expected to meet RGs for Deterrent Burning Ground soils.
Location-specific	
Action-specific	General RCRA requirements pertaining to permitted Hazardous Waste TSD units would be addressed by the composting alternative.
	General WDNR and NAAQS requirements pertaining to the control of air emissions would be addressed by this alternative.
	CAA-NAAQS, RCRA and WDNR requirements pertaining to excavation would be addressed by this alternative.
	General RCRA requirements pertaining to land disposal would be addressed in the composting alternative.
	Federal OSHA requirements to protect worker health and safety would be followed during any site work.
	Wisconsin Hazardous Waste Management and Facility Regulations are essentially equivalent to federal RCRA regulations and as such, the degree of ARARs compliance with standards established by Wisconsin hazardous waste regulations can be inferred from the degree of ARARs compliance with RCRA.
	RCRA, Land Disposal Restrictions (LDRs); (40 CFR Part 268) may apply to C6H6 waste disposed of in the waste pits. The C6H6 waste has been identified as a listed hazardous waste from non-specific sources (i.e., F005), per 40 CFR Part 261.31. As such, C6H6-contaminated soil may be subject to LDRs and, if excavated, must be treated so that it no longer "contains" C6H6 or treated to a concentration level prior to disposal in a RCRA Subtitle C permitted facility. In addition, 24DNT-contaminated soil in the waste pits would be characteristically hazardous if it exceeds the TCLP threshold for 24DNT waste. If classified as hazardous, and 24DNT-contaminated soil is excavated, the "characteristic" would have to be removed from the soil prior to disposal or placement on site.

TABLE 10-11 DETAILED ANALYSIS - ALTERNATIVE DBG-SB8 DETERRENT BURNING GROUND SUBSURFACE SOIL

EVALUATION CRITERIA	ALTERNATIVE DBG-SB8 COMPOSTING
Long-term Effectivenes	s and Permanence
Magnitude of Residual Risk	Effectiveness is expected to be long-term since contaminant concentrations are reduced to levels that protect human health and environment.
Adequacy and Reliability of Controls	Since the final compost does not contain constituents that pose a risk to human health and environment and contains native microorganisms, the treated soil would not require long-term management and controls.
Reduction of Toxicity,	Mobility, and Volume
Treatment Process Used and Materials Treated	The treatment process utilizes native microorganisms and agricultural waste amendments that are not toxic to human health and environment.
Amount Destroyed or Treated	The contaminant of concern (DNT) is destroyed in excess of 95% and achieves RG concentrations.
Degree of Expected Reductions of Toxicity, Mobility, and Volume	Composting reduces soil toxicity as measured by bacterial mutagenicity and aquatic toxicity by 88 to 98%. Residual material is nutrient-rich compost (which may imply greater volume of nitrates). No other waste streams are generated in this process.
Short-term Effectivenes	38
Protection of Community During Remedial Action	The remote location of the composting site in a secured military facility would prevent unauthorized public access to the site.
	The distance of the BAAP property boundary from the composting site would provide adequate dispersal of any odors and any airborne contaminants.
Protection of Workers During Remedial Action	Protection of workers during operation will be accomplished with personal protective gear, safety procedures and process monitoring to be specified in the Health and Safety Plan for the remedial action.
Environmental Impacts	No protected species or sensitive land areas are expected to be affected during remediation.
	Land areas disturbed to implement composting operation would be restored following project completion.
Time Until Remedial Action Objectives Are Achieved	Composting operation can be completed within approximately two years.

TABLE 10-11 DETAILED ANALYSIS - ALTERNATIVE DBG-SB8 DETERRENT BURNING GROUND SUBSURFACE SOIL

EVALUATION CRITERIA	ALTERNATIVE DBG-SB8 COMPOSTING
Implementability	1
Ability to Construct and Operate the Technology	Construction of the composting facility poses no unusual design or construction problems. Operation does not require unusual skills or knowledge and is commonly practiced for agricultural wastes.
Reliability of the Technology	The general technical feasibility of composting explosives-contaminated soil have been successfully demonstrated at a similar U.S.Army site.
	Site specific treatability investigations will be necessary to confirm feasibility at BAAP prior to full scale design and construction.
Ability to Monitor Effectiveness of Remedy	Effectiveness of the composting process will be monitored with sampling and analysis of the compost on a regular basis until RGs are achieved.
Ability to Obtain Approvals and Coordinate with Other	Administratively, composting of explosives-contaminated soil is generally supported by EPA as a potentially viable and cost-effective technology.
Agencies	This technology has been identified as one of the selected alternatives in the Record of Decision by EPA at a similar U.S.Army site.
	Obtaining permits and approvals of regulatory agencies for this alternative is not expected to pose a major administrative difficulty.
Availability of Off-site Treatment, Storage, and Disposal Services and Capacity	Off-site Treatment, Storage, and Disposal facility and services are not required for this alternative since treatment residuals will be backfilled into the waste pits.
Availability of Necessary Equipment and Specialists	Composting is a well developed technology used extensively throughout the country.
and Specialists	Availability of equipment is not a limitation.
Costs	
Capital Cost	\$3,330,000
Present Worth of Operation and Maintenance Cost	\$1,131,000
Net Present Worth Cost	\$4,461,000

TABLE 10-12 COMPARATIVE SUMMARY OF REMEDIAL ALTERNATIVES DETERRENT BURNING GROUND SUBSURFACE SOIL

ALTERNATIVE	OVERALL PROTECTION	COMPLIANCE WITH ARARS	EFFECTIVENESS: LONG-TERM	REDUCTION IN TOXICITY, MOBILITY, AND VOLUME	EFFECTIVENESS: SHORT-TERM	IMPLEMENTABILITY	Cost
Alternative DBG-SB1: Minimal Action	Protective of human health, however, contaminated subsurface soils will remain on site and pose a risk to construction workers doing intrusive work and groundwater.	No action would be taken at the site, therefore location- and action-specific ARARs would not apply. Proposed Chapter NR 720 clean-up standards would not be met.	Would be capable of protecting human health through institutional controls.	Contamination is not treated or destroyed; no reduction in toxicity, mobility, or volume.	No implementation, therefore no adverse community or environmental impacts during implementation.	No implementability concerns.	Total Present Worth: \$118,000 Capital Costs: \$10,000 Annual O&M Costs: \$108,000
Alternative DBG-SB2: Capping	Protective of human health and ground-water; however, subsurface soils will remain on site and pose a risk if the integrity of the cap is violated.	This alternative could meet the intent of NR 720 clean-up standards. Location-specific ARARs for landfills would apply. Action-specific ARARs would be addressed.	Would be capable of protecting human health through institutional controls. Would be capable of protecting groundwater.	Contamination is not treated or destroyed; no reduction in toxicity, mobility, or volume.	Fugitive dust from construction site could result in risk to the community.	Landfill contractor must use employees who have current OSHA site worker protection training.	Total Present Worth: \$642,000 Capital Costs: \$534,000 Annual O&M Costs:
Alternative DBG-SB4:	Protective of human health because soils will be excavated and treated to below RGs.	Location-specific ARARs for landfills would apply. Action- specific ARARs would be addressed. Proposed Chapter NR 720 clean-up standards would be met.	Would be capable of maintaining protection of human health and groundwater because contaminants are removed and permanently treated.	24DNT would be treated onsite. Residuals generated from treatment would be appropriately disposed of offsite.	Fugitive dust from construction site could result in risk to the community. Exposing contaminated soils increases risk to site workers.	Excavation contractor must use employees who have current OSHA Site Worker Protection training. Soil washing vendors have limited availability. Treatability testing required before implementation.	Total Present Worth: \$4,993,000 Capital Costs: \$4,885,000 Annual O&M Costs: \$108,000

TABLE 10-12 COMPARATIVE SUMMARY OF REMEDIAL ALTERNATIVES DETERRENT BURNING GROUND SUBSURFACE SOIL

ALTERNATIVE	OVERALL PROTECTION	COMPLIANCE WITH ARARS	EFFECTIVENESS: LONG-TERM	REDUCTION IN TOXICITY, MOBILITY, AND VOLUME	EFFECTIVENESS; SHORT-TERM	IMPLEMENTABILITY	Cost
Alternative DBG-SB7: On-Site Incineration	Protective of human health because soils will be excavated and treated to below RGs.	Location-specific ARARs for landfills would apply. Action- specific ARARs would be addressed. Proposed Chapter NR 720 clean-up standards would be met.	Would be capable of maintaining protection of human health and groundwater because contaminants are removed and permanently treated.	24DNT would be treated on- base. Residuals generated from treatment would be appropriately disposed of off- site.	Fugitive dust from construction site could result in risk to the community. Exposing contaminated soils increases risk to site workers. Transportation of contaminated soils across the base for treatment increases risk.	Excavation contractor must use employees who have current OSHA Site Worker Protection training. Will only be implemented if onsite incineration is implemented at the Propellant Burning Ground.	Total Present Worth: \$6,553,000 Capital Costs: \$6,445,000 Annual O&M Costs: \$108,000
Alternative DBG-SB8:	Protective of human health because soils will be excavated and treated to below RGs.	Location-specific ARARs for landfills would apply. Action- specific ARARs would be addressed. Pro- posed Chapter NR 720 soil clean-up standards would be met.	Would be capable of maintaining protection of human health and groundwater because contaminants are removed and permanently treated.	24DNT would be treated onsite. No residuals resulting from treatment.	Fugitive dust from construction site could result in risk to the community. Exposing contaminated soils increases risk to site workers.	Excavation contractor must use employees who have current OSHA Site Worker Protection training.	Total Present Worth: \$4,461,000 Capital Costs: \$3,330,000 Annual O&M Costs: \$1,131,000

TABLE 10-13 COST SUMMARY TABLE ALTERNATIVE DBG-GW1: MINIMAL ACTION

FEASIBILITY STUDY DETERRENT BURNING GROUND BADGER ARMY AMMUNITION PLANT

ITEM	TOTAL C	OST
RECT COST	·	
Institutional controls	\$	10,00
TOTAL DIRECT COST	S	10,00
DIRECT COST		
Health and Safety @ 5% of Total Direct Cost	\$	
Legal, Administration, Permitting @ 5% of Total Direct Cost		
Engineering @ 10% of Total Direct Cost		
Services During Construction @ 10% of Total Direct Cost		
TOTAL INDIRECT COST	\$	
TOTAL CAPITAL (DIRECT + INDIRECT) COST	•	10.0
TOTAL CAPITAL (DIRECT + INDIRECT) COST	\$	10,00
	\$	10,00
TOTAL CAPITAL (DIRECT + INDIRECT) COST PERATING AND MAINTENANCE COSTS	\$	10,00
	\$	
PERATING AND MAINTENANCE COSTS Total cost replacement wells	\$	11,0
PERATING AND MAINTENANCE COSTS Total cost replacement wells Total present worth of replacement wells		11,0
PERATING AND MAINTENANCE COSTS Total cost replacement wells	\$	11,0
PERATING AND MAINTENANCE COSTS Total cost replacement wells Total present worth of replacement wells in year 16 @ 5%	\$	11,0 5,0
PERATING AND MAINTENANCE COSTS Total cost replacement wells Total present worth of replacement wells	\$ \$	11,0 5,0
PERATING AND MAINTENANCE COSTS Total cost replacement wells Total present worth of replacement wells in year 16 @ 5%	\$ \$	11,0 5,0 54,0
Total cost replacement wells Total present worth of replacement wells in year 16 @ 5% Total Annual Operating and Maintenance Costs Total present worth of annual O&M costs (5% for 30 years)	\$ \$	11,0 5,0 54,0 830,0
PERATING AND MAINTENANCE COSTS Total cost replacement wells Total present worth of replacement wells in year 16 @ 5% Total Annual Operating and Maintenance Costs	\$ \$ \$	11,0 5,0 54,0 830,0
PERATING AND MAINTENANCE COSTS Total cost replacement wells Total present worth of replacement wells in year 16 @ 5% Total Annual Operating and Maintenance Costs Total present worth of annual O&M costs (5% for 30 years)	\$ \$ \$	11,0 5,0 54,0 830,0
PERATING AND MAINTENANCE COSTS Total cost replacement wells Total present worth of replacement wells in year 16 @ 5% Total Annual Operating and Maintenance Costs Total present worth of annual O&M costs (5% for 30 years)	\$ \$ \$	11,0 5,0 54,0 830,0
PERATING AND MAINTENANCE COSTS Total cost replacement wells Total present worth of replacement wells in year 16 @ 5% Total Annual Operating and Maintenance Costs Total present worth of annual O&M costs (5% for 30 years)	\$ \$ \$	

TABLE 10-14 DETAILED ANALYSIS - ALTERNATIVE DBG-GW1 (MINIMAL ACTION)

EVALUATION CRITERIA	ALTERNATIVE DBG-GW1 - MINIMAL ACTION
Overall Protection of Human Hea	Ith and the Environment
Human Health Protection	Under existing conditions, there is limited potential for public exposure to contaminated groundwater. Hydrogeologic analyses suggest groundwater flow within the vicinity of the site contaminants largely remains on-post before migrating to the Wisconsin River south of BAAP.
Environmental Protection	There are no risks to environmental receptors.
Compliance with ARARs	
Chemical-specific	Would not meet chemical-specific ARARs for on-post groundwater. Removal of source wastes may decrease levels of contaminants in groundwater.
Location-specific	Location-specific ARARs pertaining to wetlands and surface water do not apply to this alternative.
Action-specific	Action-specific ARARs do not apply to this alternative because no action would be taken.
Long-term Effectiveness and Pern	nanence
Magnitude of Residual Risk	Currently, on-post groundwater does not meet RGs. However, residual risk is low because of limited potential public exposure to elevated groundwater system. The residual risk may eventually decrease by chemical and/or biological degradation.
Adequacy and Reliability of Controls	Not Applicable. No controls would be used in this alternative.
Reduction of Toxicity, Mobility, or	Volume through Treatment
Treatment Process Used and Materials Treated	Not Applicable. No treatment is used in this alternative.
Amount Destroyed or Treated	No contamination is destroyed or treated.
Degree of Expected Reductions of Toxicity, Mobility, or Volume through Treatment	No reduction of toxicity, mobility, or volume through treatment because treatment is not used.
Degree to Which Treatment is Irreversible	No treatment is used.
Type and Quantity of Residuals Remaining After Treatment	No treatment is used.
Short-term Effectiveness	
Protection of Community during Remedial Action	No adverse or beneficial impact to the community would occur because no remedial actions would be implemented.
Worker Protection during Remedial Action	No adverse worker impacts because no remedial actions would be implemented.
Environmental Impacts	No direct or indirect short-term adverse ecological effects would occur because no remedial actions would be implemented.

TABLE 10-14 **DETAILED ANALYSIS - ALTERNATIVE DBG-GW1 (MINIMAL ACTION)**

FEASIBILITY STUDY BADGER ARMY AMMUNITION PLANT

EVALUATION CRITERIA	ALTERNATIVE DBG-GW1 - MINIMAL ACTION
Time until Remedial Action Objectives are Achieved	Unknown. Remedial action would not occur; however, the aquifer could cleanse itself over many years.
Implementability	
Ability to Construct and Operate the Technology	No construction would occur.
Reliability of Technology	No technologies would be used.
Ease of Undertaking Additional Remedial Action, if Necessary	No action would not limit or interfere with the ability to perform future remedial actions.
Ability to Monitor Effectiveness of Remedy	Monitoring program can be implemented using existing monitoring wells.
Ability to Obtain Approvals and Coordinate with other Agencies	No permits would be required. Coordination with state and local officials is required to implement institutional controls.
Availability of Off-site Treatment, Storage, and Disposal Services and Capacity	Not required.
Availability of Necessary Equipment and Specialists	No equipment would be required.
Availability of Technology	No technologies would be used.
Cost	
Capital Cost	\$10,000
Present Worth of Operation and Maintenance Cost	\$835,000
Net Present Worth Cost	\$845,000

Notes:

Applicable or Relevant and Appropriate Requirements Remediation Goal ARARs =

RG

TABLE 10-15 COST SUMMARY TABLE ALTERNATIVE DBG-GW2: GROUNDWATER EXTRACTION, TRANSPORTATION, TREATMENT

FEASIBILITY STUDY DETERRENT BURNING GROUND BADGER ARMY AMMUNITION PLANT

ITEM	TOTAL	COST
IRECT COST		
Site preparation and mob/demob	\$	200,000
Extraction well system	·	753,00
TOTAL DIRECT COST	Š	953,000
IDIRECT COST		
Health and Safety @ 5% of Total Direct Cost	\$	48,000
Legal, Administration, Permitting @ 5% of Total Direct Cost	•	48,00
Engineering @ 10% of Total Direct Cost		95,000
Services During Construction @ 10% of Total Direct Cost		95,000
TOTAL INDIRECT COST	\$	286,000
TOTAL CAPITAL (DIRECT + INDIRECT) COST	\$	1,239,000
PERATING AND MAINTENANCE COSTS		
Total Annual Operating and Maintenance Costs	\$	50,000
TOTAL PRESENT WORTH OF O&M COSTS (5% FOR 30 YEARS)	\$	769,000
TOTAL COST FOR GW-2 GROUNDWATER EXTRACTION,	•	3 008 000
TRANSPORTATION, TREATMENT	•	2,008,000

EVALUATION CRITERIA	ALTERNATIVE DBG-GW2 IRM AND CARBON ADSORPTION
Overall Protection of Human Health a	and the Environment
Human Health Protection	This alternative will not achieve all remedial action objectives. Extraction of contaminated groundwater would result in reduced exposure to some contaminants. However, until the source area is satisfactorily identified and remediated, groundwater in the elevated aquifer will potentially be recontaminated and the potential for future exposure to contaminated groundwater still exists. Given the hydrological characteristics of the elevated aquifer, it is unlikely to be used as a drinking water source. Nonetheless, this aquifer merges with the regional aquifer which may be used as a drinking water source.
Environmental Protection	There is no environmental risk associated with groundwater at the Deterrent Burning Ground.
Compliance with ARARs	
Chemical-specific	Uncertain whether chemical-specific ARARs would be met with this alternative. Source area for contamination of Deterrent Burning Groundwater has not been identified. Until source area has been identified and treated it is likely it will continue to contaminate groundwater beneath the site.
Location-specific	No location-specific ARARs.
Action-specific	Fugitive particulate emissions generated during site work are substantively subject to Wisconsin Particulate and Sulfur Emission Rules (WAC, Chapter NR 415) and General and Portable Sources Air Pollution Control Rules; Ambient Air Quality Standards (WAC, Chapter NR 404). It is assumed that dust suppression techniques and other preventative measures would ensure compliance with particulate emission standards.

EVALUATION CRITERIA	ALTERNATIVE DBG-GW2 IRM AND CARBON ADSORPTION	
Long-term Effectiveness and Permanence		
Magnitude of Residual Risk	This alternative would be implemented to comply with NR 720, WESs and secondary drinking water standards. The standards were developed to minimize risk; therefore, the magnitude of the residual risk attributed to treated groundwater would be minimal. Treatment of groundwater is not a permanent solution because it would continue indefinitely unless the source is removed. There may be an inherent residual risk unless the source is identified and remediated. However, residual risk is low because of limited potential public exposure to elevated groundwater system.	
Adequacy and Reliability of Controls	The effectiveness of the groundwater extraction system is limited due to the hydrogeology of the elevated aquifer. Unless the source is identified and remediated, the groundwater extraction system, the treatment system, and the groundwater monitoring program will continue indefinitely.	
Reduction of Toxicity, Mobility, and Volum	ne e	
Treatment Process Used and Materials Treated	Carbon adsorption would be used to reduce 26DNT and 112TCE from the groundwater. Thermal reactivation of spent carbon would destroy the contaminants.	
Amount Destroyed or Treated	It is unknown how much of each compound will be treated over a 30-year period. Until the source area can be identified and remediated, it may continue to contaminate the aquifer.	
Degree of Expected Reductions of Toxicity, Mobility, and Volume	The proposed extraction system would reduce the mobility of contaminants in the groundwater at the Deterrent Burning Ground. The toxicity of the groundwater is substantially reduced by removing the contaminants in the carbon and thermally destroying them during reactivation. The volume of contaminants will not be substantially reduced unless the source area can be identified and remediated.	
Degree to Which Treatment is Irreversible	Contaminants would be destroyed during thermal reactivation of the spent carbon.	
Type and Quantity of Residuals Remaining After Treatment	Assuming complete destruction of contaminants in the spent carbon during thermal reactivation, no residuals would remain.	

EVALUATION CRITERIA	ALTERNATIVE DBG-GW2 IRM AND CARBON ADSORPTION
Short-term Effectiveness	
Protection of Community During Remedial Action	No risks to the community would be expected during implementation. There are no residences close enough by to be affected by noise or dust generated by installation of extraction wells and associated piping. Potential threats to the community exist in the transportation of groundwater to the treatment facility at the Propellant Burning Ground.
Protection of Workers During Remedial Action	Threats to site worker health are minimal during well and pipe installation, however workers should follow safe working practices and wear protective clothing.
Environmental Impacts	Great care must be taken when constructing the extraction wells to avoid transferring contaminants from the elevated aquifer to the regional aquifer. Although minimal, there exist opportunities for adverse impacts to the environment during the transportation of groundwater to the treatment facility at the Propellant Burning Ground.
Time Until Remedial Action Objectives Are Achieved	Until the source area can be identified and treated, the time until RGs can be reached is uncertain.
Implementability	
Ability to Construct and Operate the Technology	The installation of extraction wells is a complicated construction task. The IRM upgrade and new groundwater treatment facility are implemented with the groundwater alternatives for the Propellant Burning Ground.
Reliability of the Technology	The thinness of the elevated aquifer is not likely to provide the cone of influence needed to draw the contaminants to the extraction well. Carbon adsorption is a proven method for removing organic contaminants from groundwater. The existing IRM facility (and associated carbon adsorption system) has been successfully operated for more than three years treating Propellant Burning Ground groundwater and is expected to be reliable treatment for Deterrent Burning Ground groundwater.
Ease of Undertaking Additional Remedial Actions, if Necessary	This alternative would not preclude or hinder additional remedial actions. The groundwater extraction system would not interfere with soil remediation. The groundwater treatment facility would be located away from the site and would not interfere with soil remediation.
Ability to Monitor Effectiveness of Remedy	Groundwater quality can be monitored using existing wells. The effectiveness of the treatment system will be monitored through the sampling program established with the Propellant Burning Ground alternative in Subsection 9.4.2.1.

EVALUATION CRITERIA	ALTERNATIVE DBG-GW2 IRM AND CARBON ADSORPTION
Ability to Obtain Approvals and Coordinate with Other Agencies	No special approvals are anticipated.
Availability of Off-site Treatment, Storage, and Disposal Services and Capacity	Facilities which have sufficient capacity for the reactivation of spent carbon are available.
Availability of Necessary Equipment and Specialists	Local contractors and materials are available to perform installation and maintenance functions. Contractors are also readily available to provide groundwater transportation services from the Deterrent Burning Ground to the groundwater treatment facility at the Propellant Burning Ground. Carbon adsorption equipment and expertise is available from several vendors.
Availability of Technology	These technologies are readily available. More than one vendor would be able to provide a competitive bid.
Costs	
Capital Cost	\$1,239,000
Present Worth of Operation and Maintenance Cost	\$769,000
Net Present Worth Cost	\$2,008,000

TABLE 10-17 COST SUMMARY TABLE ALTERNATIVE DBG-GW4: GROUNDWATER EXTRACTION, TRANSPORTATION, TREATMENT

FEASIBILITY STUDY DETERRENT BURNING GROUND BADGER ARMY AMMUNITION PLANT

ITEM	TOTAL	COST
PIRECT COST		
Site preparation and mob/demob	\$	200,000
Extraction well system		753,000
TOTAL DIRECT COST	\$	953,000
NDIRECT COST		
Health and Safety @ 5% of Total Direct Cost	\$	48,000
Legal, Administration, Permitting @ 5% of Total Direct Cost		48,000
Engineering @ 10% of Total Direct Cost		95,000
Services During Construction @ 10% of Total Direct Cost		95,000
TOTAL INDIRECT COST	\$	286,000
TOTAL CAPITAL (DIRECT + INDIRECT) COST	\$	1,239,000
PERATING AND MAINTENANCE COSTS		,
Total Annual Operating and Maintenance Costs	\$	50,000
TOTAL PRESENT WORTH OF O&M COSTS (5% FOR 30 YEARS)	\$	769,000
TOTAL COST FOR GW-4 GROUNDWATER EXTRACTION.	•	2002000
TRANSPORTATION, TREATMENT	•	2,008,000

EVALUATION CRITERIA	ALTERNATIVE DBG-GW4 IRM AND AIR STRIPPING - CARBON ADSORPTION
Overall Protection of Huma	n Health and the Environment
Human Health Protection	This alternative will not achieve all remedial action objectives. Extraction of contaminated groundwater would result in reduced exposure to some contaminants. However, until the source area is satisfactorily identified and remediated, groundwater in the elevated aquifer will potentially be recontaminated and the potential for future exposure to contaminated groundwater still exists. Given the hydrological characteristics of the elevated aquifer, it is unlikely to be used as a drinking water source. Nonetheless, this aquifer merges with the regional aquifer which may be used as a drinking water source.
Environmental Protection	There is no environmental risk associated with groundwater at the Deterrent Burning Ground.
Compliance with ARARs	
Chemical-specific	Uncertain whether chemical-specific ARARs would be met with this alternative. Source area for contamination of Deterrent Burning Groundwater has not been identified. Until source area has been identified and treated it is likely it will continue to contaminate groundwater beneath the site.
Location-specific	No location-specific ARARs.
Action-specific	Fugitive particulate emissions generated during site work are substantively subject to Wisconsin Particulate and Sulfur Emission Rules (WAC, Chapter NR 415) and General and Portable Sources Air Pollution Control Rules; Ambient Air Quality Standards (WAC, Chapter NR 404). It is assumed that dust suppression techniques and other preventative measures would ensure compliance with particulate emission standards.
	Air emissions from the air strippers would be limited per a permit issued in accordance with WAC Chapter NR 445. In addition, WAC Chapter NR 419 identifies a daily limit for total VOCs emitted from a facility. It is presumed that emission treatment systems associated with the air strippers would keep the facility in compliance.

EVALUATION CRITERIA	ALTERNATIVE DBG-GW4 IRM AND AIR STRIPPING - CARBON ADSORPTION	
Long-term Effectiveness and Permanence		
Magnitude of Residual Risk	This alternative would be implemented to comply with NR 270, WESs and secondary drinking water standards. The standards were developed to minimize risk; therefore, the magnitude of the residual risk attributed to treated groundwater would be minimal. Treatment of groundwater is not a permanent solution because it would continue indefinitely unless the source is removed. There may be an inherent residual risk unless the source is identified and remediated. However, residual risk is low because of limited potential public exposure to elevated groundwater system.	
Adequacy and Reliability of Controls	The effectiveness of the groundwater extraction system is limited due to the hydrogeology of the elevated aquifer. Unless the source is identified and remediated, the groundwater extraction system, the treatment system, and the groundwater monitoring program will continue indefinitely.	
Reduction of Toxicity, Mobili	ty, and Volume	
Treatment Process Used and Materials Treated	Air strippers with vapor-phase carbon and aqueous-phase carbon would be used to reduce 112TCE and 26DNT, respectively. Thermal reactivation of spent carbon would destroy the contaminants.	
Amount Destroyed or Treated	It is unknown how much of each compound will be treated over a 30-year period. Until the source area can be identified and treated, it may continue to contaminate the aquifer.	
Degree of Expected Reductions of Toxicity, Mobility, and Volume	The proposed extraction system would reduce the mobility of contaminants in the groundwater at the Deterrent Burning Ground. The toxicity of the groundwater is substantially reduced by removing the contaminants in the air stripper and the carbon and by thermally destroying them during carbon reactivation. The volume of contaminants will not be substantially reduced unless the source area can be identified and remediated.	
Degree to Which Treatment is Irreversible	Contaminants are destroyed during carbon reactivation for both vapor and aqueous phase carbons.	
Type and Quantity of Residuals Remaining After Treatment	Assuming complete destruction of contaminants in the spent carbon during thermal reactivation, no residuals would remain.	

EVALUATION CRITERIA	ALTERNATIVE DBG-GW4 IRM AND AIR STRIPPING - CARBON ADSORPTION
Short-term Effectiveness	
Protection of Community During Remedial Action	No risks to the community would be expected during implementation. There are no residences close enough by to be affected by noise or dust generated by installation of extraction wells and associated piping. Potential threats to the community exist in the transportation of groundwater to the treatment facility at the Propellant Burning Ground.
Protection of Workers During Remedial Action	Threats to site worker health are minimal during well and pipe installation, however workers should follow safe working practices and wear protective clothing.
Environmental Impacts	Great care must be taken when constructing the extraction wells to avoid transferring contaminants from the elevated aquifer to the regional aquifer. Although minimal, there exist opportunities for adverse impacts to the environment during the transportation of groundwater to the treatment facility at the Propellant Burning Ground.
Time Until Remedial Action Objectives Are Achieved	Until the source area can be identified and treated, the time until RGs can be reached is uncertain.
Implementability	
Ability to Construct and Operate the Technology	The installation of extraction wells is a complicated construction task. The IRM upgrade and new groundwater treatment facility are implemented with the groundwater alternatives for the Propellant Burning Ground.
Reliability of the Technology	The thinness of the elevated aquifer is not likely to provide the cone of influence needed to draw the contaminants to the extraction well. Air stripping and carbon adsorption are proven technologies for treating organics in groundwater and off-gases and are anticipated to perform reliably in treating Deterrent Burning Ground groundwater.
Ease of Undertaking Additional Remedial Actions, if Necessary	This alternative would not preclude or hinder additional remedial actions. The extraction system would not interfere with soil remediation. The groundwater treatment system would be located away from the site and would not interfere with soil remediation.
Ability to Monitor Effectiveness of Remedy	Groundwater quality can be monitored using existing wells. The effectiveness of the treatment system will be monitored through the sampling program established with the Propellant Burning Ground alternative in Subsection 9.4.3.1.
Ability to Obtain Approvals and Coordinate with Other Agencies	Sampling and analysis of air stripper emissions may have to be conducted prior to receiving an air permit.

EVALUATION CRITERIA	ALTERNATIVE DBG-GW4 IRM AND AIR STRIPPING - CARBON ADSORPTION
Availability of Off-site Treatment, Storage, and Disposal Services and Capacity	Facilities which have sufficient capacity for the reactivation of spent carbon are available.
Availability of Necessary Equipment and Specialists	Local contractors and materials are available to perform installation and maintenance functions. Contractors are also readily available to provide groundwater transportation services from the Deterrent Burning Ground to the groundwater treatment facility at the Propellant Burning Ground. Carbon adsorption and air stripping equipment and expertise is available from several vendors.
Availability of Technology	These technologies are readily available. More than one vendor would be able to provide a competitive bid.
Costs	
Capital Cost	\$1,239,000
Present Worth of Operation and Maintenance Cost	\$769,000
Net Present Worth Cost	\$2,008,000

TABLE 10-19 COST SUMMARY TABLE ALTERNATIVE DBG-GW5: GROUNDWATER EXTRACTION, TRANSPORTATION, TREATMENT

FEASIBILITY STUDY DETERRENT BURNING GROUND BADGER ARMY AMMUNITION PLANT

ITEM	TOTAL	COST
DIRECT COST		
Site preparation and mob/demob	\$	200,000
Extraction well system		753,000
TOTAL DIRECT COST	\$	953,000
INDIRECT COST		
Health and Safety @ 5% of Total Direct Cost	\$	48,000
Legal, Administration, Permitting @ 5% of Total Direct Cost		48,000
Engineering @ 10% of Total Direct Cost		95,000
Services During Construction @ 10% of Total Direct Cost		95,000
TOTAL INDIRECT COST	\$	286,000
TOTAL CAPITAL (DIRECT + INDIRECT) COST	\$	1,239,000
OPERATING AND MAINTENANCE COSTS		
Total Annual Operating and Maintenance Costs	\$	50,000
TOTAL PRESENT WORTH OF O&M COSTS (5% FOR 30 YEARS)	\$	769,000
TOTAL COST FOR GW-5 GROUNDWATER EXTRACTION, TRANSPORTATION, TREATMENT	\$	2,008,000

EVALUATION CRITERIA	ALTERNATIVE DBG-GW5 IRM AND RESIN ADSORPTION	
Overall Protection of Human Health and the Environment		
Human Health Protection	This alternative will not achieve all remedial action objectives. Extraction of contaminated groundwater would result in reduced exposure to some contaminants. However, until the source area is satisfactorily identified and remediated, groundwater in the elevated aquifer will potentially be recontaminated and the potential for future exposure to contaminated groundwater still exists. Given the hydrological characteristics of the elevated aquifer, it is unlikely to be used as a drinking water source. Nonetheless, this aquifer merges with the regional aquifer which may be used as a drinking water source.	
Environmental Protection	There is no environmental risk associated with groundwater at the Deterrent Burning Ground.	
Compliance with ARARs		
Chemical-specific	Uncertain whether chemical-specific ARARs would be met with this alternative. Source area for contamination of Deterrent Burning Groundwater has not been identified. Until source area has been identified and treated it is likely it will continue to contaminate groundwater beneath the site.	
Location-specific	No location-specific ARARs.	
Action-specific	Fugitive particulate emissions generated during site work are substantively subject to Wisconsin Particulate and Sulfur Emission Rules (WAC, Chapter NR 415) and General and Portable Sources Air Pollution Control Rules; Ambient Air Quality Standards (WAC, Chapter NR 404). It is assumed that dust suppression techniques and other preventative measures would ensure compliance with particulate emission standards.	

EVALUATION CRITERIA	ALTERNATIVE DBG-GW5 IRM AND RESIN ADSORPTION
Long-term Effectiveness and Permanence	
Magnitude of Residual Risk	This alternative would be implemented to comply with NR 720, WESs, and secondary drinking water standards. The standards were developed to minimize risk; therefore, the magnitude of the residual risk attributed to treated groundwater would be minimal. Treatment of groundwater is not a permanent solution because it would continue indefinitely unless the source is removed. There may be an inherent residual risk unless the source is identified and remediated. However, residual risk is low because of limited potential public exposure to elevated groundwater system.
Adequacy and Reliability of Controls	The effectiveness of the groundwater extraction system is limited due to the hydrogeology of the elevated aquifer. Unless the source is identified and remediated, the groundwater extraction system, the treatment system, and the groundwater monitoring program will continue indefinitely.
Reduction of Toxicity, Mobility, and Volum	ie –
Treatment Process Used and Materials Treated	Resin adsorption would be used in the new groundwater treatment facility to reduce 112TCE and 26DNT. The IRM facility would continue to use carbon adsorption followed by air stripping polish. Contaminants in the concentrated organic phase generated during in situ resin regeneration would be destroyed in an incinerator. Thermal reactivation of spent carbon from the IRM facility would also destroy contaminants.
Amount Destroyed or Treated	It is unknown how much of each compound will be treated over a 30-year period. Until the source area can be identified and treated, it may continue to contaminate the aquifer.
Degree of Expected Reductions of Toxicity, Mobility, and Volume	The proposed extraction system would reduce the mobility of contaminants in the groundwater at the Deterrent Burning Ground. The toxicity of the groundwater is substantially reduced by transferring the contaminants to the resin. The concentrated contaminants from resin bed regeneration would be destroyed in an incinerator. The volume of contaminants will not be substantially reduced unless the source area can be identified and remediated.
Degree to Which Treatment is Irreversible	Contaminants are destroyed after regeneration of the resin bed by incineration and by thermal reactivation of the spent carbon.

EVALUATION CRITERIA	ALTERNATIVE DBG-GW5 IRM AND RESIN ADSORPTION
Type and Quantity of Residuals Remaining After Treatment	Assuming complete destruction of the organic phase during incineration and complete destruction of adsorbed contaminants in spent carbon during thermal reactivation, no residuals would remain.
Short-term Effectiveness	
Protection of Community During Remedial Action	No risks to the community would be expected during implementation. There are no residences close enough by to be affected by noise or dust generated by installation of extraction wells and associated piping. Potential threats to the community exist in the transportation of groundwater to the treatment facility at the Propellant Burning Ground.
Protection of Workers During Remedial Action	Threats to site worker health are minimal during well and pipe installation, however workers should follow safe working practices and wear protective clothing.
Environmental Impacts	Great care must be taken when constructing the extraction wells to avoid transferring contaminants from the elevated aquifer to the regional aquifer. Although minimal, there exist opportunities for adverse impacts to the environment during the transportation of groundwater to the treatment facility at the Propellant Burning Ground.
Time Until Remedial Action Objectives Are Achieved	Until the source area can be identified and treated, the time until RGs can be reached is uncertain.
Implementability	
Ability to Construct and Operate the Technology	The installation of extraction wells is a complicated construction task. The IRM upgrade and new groundwater treatment facility implemented with the groundwater alternatives for the Propellant Burning Ground.
Reliability of the Technology	The thinness of the elevated aquifer is not likely to provide the cone of influence needed to draw the contaminants to the extraction well. Resin adsorption is not a proven technology for removing chlorinated compounds and explosives from groundwater. Resin technology applied to treatment of water contaminated with chlorinated compounds is being developed but has not been implemented at full scale. The carbon adsorption system in the IRM has proven to be effective on groundwater from the Propellant Burning Ground and is anticipated to perform reliably in treating Deterrent Burning Ground groundwater.

EVALUATION CRITERIA	ALTERNATIVE DBG-GW5 IRM AND RESIN ADSORPTION
Ease of Undertaking Additional Remedial Actions, if Necessary	This alternative would not preclude or hinder additional remedial actions. The extraction system would not interfere with soil remediation. The groundwater treatment system would be located away from the site and would not interfere with soil remediation.
Ability to Monitor Effectiveness of Remedy	Groundwater quality can be monitored using existing wells. The effectiveness of the treatment system will be monitored through the sampling program established with the Propellant Burning Ground alternative in Subsection 9 8.4.4.1.
Ability to Obtain Approvals and Coordinate with Other Agencies	No special approvals are anticipated.
Availability of Off-site Treatment, Storage, and Disposal Services and Capacity	Facilities which have sufficient capacity for incineration of concentrated organic phase and reactivation of spent carbon are available.
Availability of Necessary Equipment and Specialists	Local contractors and materials are available to perform installation and maintenance functions. Contractors are also readily available to provide groundwater transportation services from the Deterrent Burning Ground to the groundwater treatment facility at the Propellant Burning Ground. Availability of resin adsorption equipment manufacturers and specialists versed in system design and operation is limited.
Availability of Technology	Resin adsorption technology for the treatment of chlorinated compounds is being developed. Information concerning treatment of explosives is unavailable.
Costs	
Capital Cost	\$1,239,000
Present Worth of Operation and Maintenance Cost	\$769,000
Net Present Worth Cost	\$2,008,000

TABLE 10-21 COST SUMMARY TABLE ALTERNATIVE DBG-GW6: GROUNDWATER EXTRACTION, TRANSPORTATION, TREATMENT

FEASIBILITY STUDY DETERRENT BURNING GROUND BADGER ARMY AMMUNITION PLANT

	e e	
ITEM	TOTAL	COST
DIRECT COST		
Site preparation and mob/demob	\$	200,000
Extraction well system	•	753,000
TOTAL DIRECT COST	\$	953,000
INDIRECT COST	***************************************	
Health and Safety @ 5% of Total Direct Cost	\$	48,000
Legal, Administration, Permitting @ 5% of Total Direct Cost	•	48,000
Engineering @ 10% of Total Direct Cost		95,000
Services During Construction @ 10% of Total Direct Cost		95,000
TOTAL INDIRECT COST		286,000
. O'AL MONES, COC.	<u></u>	
TOTAL CAPITAL (DIRECT + INDIRECT) COST	\$	1,239,000
·	•	
OPERATING AND MAINTENANCE COSTS		
Total Annual Operating and Maintenance Costs	\$	50,000
TOTAL PRESENT WORTH OF O&M COSTS (5% FOR 30 YEARS)	\$	769,000
		*
	-	
TOTAL COST FOR GW-6 GROUNDWATER EXTRACTION, TRANSPORTATION, TREATMENT	5	2,008,000

EVALUATION CRITERIA	ALTERNATIVE DBG-GW6 IRM AND UV/REDUCTION
Overall Protection of Human Health a	and the Environment
Human Health Protection	This alternative will not achieve all remedial action objectives. Extraction of contaminated groundwater would result in reduced exposure to some contaminants. However, until the source area is satisfactorily identified and remediated, groundwater in the elevated aquifer will potentially be recontaminated and the potential for future exposure to contaminated groundwater still exists. Given the hydrological characteristics of the elevated aquifer, it is unlikely to be used as a drinking water source. Nonetheless, this aquifer merges with the regional aquifer which may be used as a drinking water source.
Environmental Protection	There is no environmental risk associated with groundwater at the Deterrent Burning Ground.
Compliance with ARARs	
Chemical-specific	Uncertain whether chemical-specific ARARs would be met with this alternative. Source area for contamination of Deterrent Burning Groundwater has not been identified. Until source area has been identified and treated it is likely it will continue to contaminate groundwater beneath the site.
Location-specific	No location-specific ARARs.
Action-specific	Fugitive particulate emissions generated during site work are substantively subject to Wisconsin Particulate and Sulfur Emission Rules (WAC, Chapter NR 415) and General and Portable Sources Air Pollution Control Rules; Ambient Air Quality Standards (WAC, Chapter NR 404). It is assumed that dust suppression techniques and other preventative measures would ensure compliance with particulate emission standards.

EVALUATION CRITERIA	ALTERNATIVE DBG-GW6 IRM AND UV/REDUCTION
Long-term Effectiveness and Permanence	
Magnitude of Residual Risk	This alternative would be implemented to comply with WESs and secondary drinking water standards. The standards were developed to minimize risk; therefore, the magnitude of the residual risk attributed to treated groundwater would be minimal. Treatment of groundwater is not a permanent solution because it would continue indefinitely unless the source is removed. There may be an inherent residual risk unless the source is identified and remediated. However, residual risk is low because of limited potential public exposure to elevated groundwater system.
Adequacy and Reliability of Controls	The effectiveness of the groundwater extraction system is limited due to the hydrogeology of the elevated aquifer. Unless the source is identified and remediated, the groundwater extraction system, the treatment system, and the groundwater monitoring program will continue indefinitely.
Reduction of Toxicity, Mobility, and Volum	ie
Treatment Process Used and Materials Treated	UV/reduction would be used for destruction of 112TCE and partial destruction of 26DNT in the new treatment facility. Polishing would occur in the carbon adsorption system. Aqueous-phase carbon followed by air stripper polish would be used in the IRM facility. Thermal reactivation of spent carbon from the IRM facility would destroy adsorbed contaminants.
Amount Destroyed or Treated	It is unknown how much of each compound will be treated over a 30-year period. Until the source area can be identified and treated, it may continue to contaminate the aquifer.
Degree of Expected Reductions of Toxicity, Mobility, and Volume	The proposed extraction system would reduce the mobility of contaminants in the groundwater at the Deterrent Burning Ground. The toxicity of the groundwater is substantially reduced by destroying the contaminants with UV light. The volume of contaminants will not be substantially reduced unless the source area can be identified and remediated.
Degree to Which Treatment is Irreversible	Contaminants are destroyed during UV/reduction and by off- site thermal reactivation of spent carbon.
Type and Quantity of Residuals Remaining After Treatment	Contaminants would be destroyed in the UV/reduction process and by thermal reactivation of the spent carbon, therefore no residuals would remain.

EVALUATION CRITERIA	ALTERNATIVE DBG-GW6 IRM AND UV/REDUCTION
Short-term Effectiveness	
Protection of Community During Remedial Action	No risks to the community would be expected during implementation. There are no residences close enough by to be affected by noise or dust generated by installation of extraction wells and associated piping. Potential threats to the community exist in the transportation of groundwater to the treatment facility at the Propellant Burning Ground.
Protection of Workers During Remedial Action	Threats to site worker health are minimal during well and pipe installation, however workers should follow safe working practices and wear protective clothing.
	Chemicals used during UV reduction have been approved by the Food and Drug Administration as a food additive and would not present a hazard to treatment plant operators.
Environmental Impacts	Great care must be taken when constructing the extraction wells to avoid transferring contaminants from the elevated aquifer to the regional aquifer. Although minimal, there exist opportunities for adverse impacts to the environment during the transportation of groundwater to the treatment facility at the Propellant Burning Ground.
Time Until Remedial Action Objectives Are Achieved	Until the source area can be identified and treated, the time until RGs can be reached is uncertain.
Implementability	
Ability to Construct and Operate the Technology	The installation of extraction wells is a complicated construction task. The IRM upgrade and new groundwater treatment facility implemented with the groundwater alternatives for the Propellant Burning Ground.
Reliability of the Technology	The thinness of the elevated aquifer is not likely to provide the cone of influence needed to draw the contaminants to the extraction well. UV/reduction is a relatively new technology for treating organics in groundwater. Results from bench- and pilot-scale testing of UV reduction indicate that it has significant potential for treatment of water contaminated with chlorinated compounds. The IRM facility has proven to be effective on groundwater from the Propellant Burning Ground and is anticipated to perform reliably in treating Deterrent Burning Ground groundwater.

EVALUATION CRITERIA	ALTERNATIVE DBG-GW6 IRM AND UV/REDUCTION
Ease of Undertaking Additional Remedial Actions, if Necessary	This alternative would not preclude or hinder additional remedial actions. The extraction system would not interfere with soil remediation. The groundwater treatment system would be located away from the site and would not interfere with soil remediation.
Ability to Monitor Effectiveness of Remedy	Groundwater quality can be monitored using existing wells. The effectiveness of the treatment system will be monitored through the sampling program established with the Propellant Burning Ground alternative in Subsection 9.4.5.1.
Ability to Obtain Approvals and Coordinate with Other Agencies	No special approvals are anticipated.
Availability of Off-site Treatment, Storage, and Disposal Services and Capacity	Facilities which have sufficient capacity for reactivation of spent carbon are available
Availability of Necessary Equipment and Specialists	Local contractors and materials are available to perform installation and maintenance functions. Contractors are also readily available to provide groundwater transportation services from the Deterrent Burning Ground to the groundwater treatment facility at the Propellant Burning Ground. Availability of UV reduction equipment manufacturers and specialists versed in system design and operation is limited
Availability of Technology	UV reduction technology for the treatment of chlorinated compounds has been developed.
Costs	
Capital Cost	\$1,239,000
Present Worth of Operation and Maintenance Cost	\$769,000
Net Present Worth Cost	\$2,008,000

TABLE 10-23 COMPARATIVE SUMMARY OF REMEDIAL ALTERNATIVES DETERRENT BURNING GROUND GROUNDWATER

ALTERNATIVE	OVERALL PROTECTION	COMPLANCE WITH ARARS	EFFECTIVENESS: LONG-TEHM	REDUCTION IN TOXICITY, MOBILITY, AND VOLUME	EFFECTIVENESS: SHORT-TERM	IMPLEMENTABILITY	Cost
Alternative DBG-GW1: Minimal Action	Possibly protective of human health because institutional controls will prohibit the use of this aquifer as a drinking water source and groundwater monitoring would ensure no contamination has migrated to the regional aquifer. Contaminant concentrations would not be reduced to safe levels until the source area is identified and remediated.	Would not meet chemical- specific ARARs, unless source areas are located and remediated. Location- and action-specific ARARs do not apply.	This alternative would not meet RGs, however residual risk to human health is low.	Contamination is not treated or destroyed; no reduction of toxicity, mobility or volume of contamination.	No adverse impacts to community or environment during implementation.	No implementability concerns.	Total Present Worth: \$645,000 Capital Costs: \$10,000 Annual O&M Costs:
Alternative DBG-GW2: IRM and Carbon Adsorption	Possibly protective of human health because contaminant migration of contaminated groundwater to the regional aquifer would be reduced. Contaminant concentrations would not be reduced to safe levels until the source area is identified and remediated.	Would not meet chemical- specific ARARs unless source area is identified and remediated. Location- specific ARARs do not apply. Action-specific ARARs would be attained.	This alternative would not meet RGs, however residual risk to human health is low.	Contaminants are destroyed; reduction of toxicity. Extraction system reduces mobility. Unless source area remediated, no reduction of volume.	Potential for adverse impacts to community or environment when transporting contaminated groundwater.	Significant technical difficulties associated with extraction of groundwater from the elevated aquifer.	Total Present Worth: \$2,008,000 Capital Costs: \$1,239,000 Annual O&M Costs: \$7769,000

TABLE 10-23 COMPARATIVE SUMMARY OF REMEDIAL ALTERNATIVES DETERRENT BURNING GROUND GROUNDWATER

BLITY COST	thnical Total Present Worth: \$2,008,000 rom Capital Gosts: \$1,239,000 Annual O&M Costs: \$769,000	hnical Total Present Worth: \$2,008,000 om Quifer. Capital Costs: \$1,239,000 Annual O&M Costs: \$769,000
IMPLEMENTABLITY	Significant technical difficulties associated with extraction of groundwater from the elevated aquifer.	Significant technical difficulties associated with extraction of groundwater from the elevated aquifer.
EFFECTIVENESS: SHORT-TERM	Potential for adverse impacts to community or environment when transporting contaminated groundwater.	Potential for adverse impacts to community or environment when transporting contaminated groundwater.
REDUCTION IN TOXICITY, MOBILITY, AND VOLUME	Contaminants are destroyed; reduction of toxicity. Extraction system reduces mobility. Unless source area remediated, no reduction of volume.	Contaminants are destroyed; reduction of toxicity. Extraction system reduces mobility. Unless source area remediated, no reduction of volume.
EFFECTIVENESS: LONG-TERM	This alternative would not meet RGs, however residual risk to human health is low.	This alternative would not meet RGs, however residual risk to human health is low.
COMPLIANCE WITH ARARS	Would not meet chemical- specific ARARs unless source area is identified and remediated. Location- specific ARARs do not apply. Action-specific ARARs would be attained.	Would not meet chemical- specific ARARs unless source area is identified and remediated. Location- specific ARARs do not apply. Action-specific ARARs would be attained.
OVERALL PROTECTION	Possibly protective of human health because contaminant migration of contaminated groundwater to the regional aquifer would be reduced. Contaminant concentrations would not be reduced to safe levels until the source area is identified and remediated.	Possibly protective of human health because contaminant migration of contaminated groundwater to the regional aquifer would be reduced. Contaminant concentrations would not be reduced to safe levels until the source area is identified and remediated.
ALTERNATIVE	Alternative DBG-GW4: IRM and Air Stripping- Carbon Adsorption	Alternative DBG-GW5: IRM and Resin Adsorption

TABLE 10-23 COMPARATIVE SUMMARY OF REMEDIAL ALTERNATIVES DETERRENT BURNING GROUND GROUNDWATER

Cost	Total Present Worth: \$2,008,000 Capital Costs: \$1,239,000 Annual O&KM Costs:
MPLEMENTABILITY	Significant technical difficulties associated with extraction of groundwater from the elevated aquifer.
EFFECTIVENESS: SHORT-TERM	Potential for adverse impacts to community or environment when transporting contaminated groundwater.
REDUCTION IN TOXICITY, MOBILITY, AND VOLUME	Contaminants are destroyed; reduction of toxicity. Extraction system reduces mobility. Unless source area remediated, no reduction of volume.
EFFECTIVENESS: LONG-TERM	This alternative would not meet RGs, however residual risk to human health is low.
COMPLIANCE WITH ARARS	Would not meet chemical- specific ARARs unless source area is identified and remediated. Location- specific ARARs do not apply. Action-specific ARARs would be attained.
OVERALL PROTECTION	Possibly protective of human health because contaminant migration of contaminated groundwater to the regional aquifer would be reduced. Contaminant concentrations would not be reduced to safe levels until the source area is identified and remediated.
ALTERNATIVE	Alternative DBG-GW6: IRM and UV/Reduction, Carbon Adsorption

9407035D(b)

TABLE 11-1 GROUNDWATER MONITORING PROGRAM NITROGLYCERINE POND/ROCKET PASTE AREA SURFACE SOIL AND SEDIMENT ALTERNATIVE NG/RPA-SS1

FEASIBILITY STUDY BADGER ARMY AMMUNITION PLANT

GROUNDWATER MONITORING LOCATIONS	
S 1124	
S 1118	
S 1150	
RPM 8901	
RPM 9101	•
S 1125	
S 1119	
NPM 8901	
RPM 8902	

ANALYTICAL PARAMETERS AND MONITORING FREQUENCY	
Quarterly	Annually
pH	VOCs, SVOCs, and Metals (filtered) ¹
Specific Conductance	
Nitrate Nitrogen	

Notes:

VOCs, SVOCs, and metals as described in Modification of Conditional Plan Approval of In-Field Conditions Report (WDNR, 1992).

TABLE 11-2 COST SUMMARY TABLE ALTERNATIVE NP/RPA-SS1: MINIMAL ACTION

FEASIBILITY STUDY NITROGLYCERINE POND/ROCKET PASTE AREA BADGER ARMY AMMUNITION PLANT

Institutional controls Fence & Signs TOTAL DIRECT COST	\$	10,000 543,000
Fence & Signs	\$	
TOTAL DIRECT COST		
TOTAL DIRECT COST		
	S	553,000
NDIRECT COST		
Health and Safety @ 5% of Total Direct Cost	\$	28,000
Legal, Administration, Permitting @ 5% of Total Direct Cost		28,000
Engineering @ 10% of Total Direct Cost		55,000
Services During Construction, QA/QC, Documentation @ 10% of Total Direct Cost		55,000
TOTAL INDIRECT COST	\$	166,000
TOTAL CAPITAL (DIRECT + INDIRECT) COST	\$	719,000
PERATING AND MAINTENANCE COSTS		
Total Annual Operating and Maintenance Costs (Including Groundwater Monitoring)	\$	111,000
TOTAL PRESENT WORTH OF O&M COSTS (5% FOR 30 YEARS)	\$	1,706,000
TOTAL COST FOR SS-1 MINIMAL ACTION	•	2.425.000
	4	2,425,000

EVALUATION CRITERIA	NG/RPA-SS1 MINIMAL ACTION	
Overall Protection of Human Health and to	he Environment	
Human Health Protection	Minimal action would reduce contaminant exposure risks to human receptors by restricting site access.	
Environmental Protection	Minimal action eliminates or reduces potential risk to ecological receptors that cannot pass the constructed fence boundary (e.g., deer). The minimal action alternative does not reduce potential risk to ecological receptors such as birds and shrews. Groundwater protection requirements of NR 720 are not met.	
Compliance with ARARs		
Chemical-specific	RGs are based on chemical-specific ARARs. The minimal action alternative would not meet interim PB cleanup levels or RGs for NG/RPA surface soil and sediment. Does not meet requirements of NR 720.	
Location-specific	Wetlands protection ARARs do not apply to this alternative because no action would be taken.	
Action-specific	RCRA hazardous waste units ARARs would be met. Post- closure groundwater monitoring would meet RCRA Releases from SWMU's ARAR.	
Long-term Effectiveness and Permanence		
Magnitude of Residual Risk	Under the minimal action alternative, the remaining risk to human receptors would be minimal as long as the fence remains intact. Risk to ecological receptors unaffected by the site fence (e.g., birds, shrews) would remain the same.	
Adequacy and Reliability of Controls	If managed properly, the combination of controls (i.e., zoning and deed restrictions, fencing and warning signs) would effectively limit the use of the site by human and many ecological receptors.	
Reduction of Toxicity, Mobility, and Volum	ne	
Treatment Process Used and Materials Treated	None.	
Amount Destroyed or Treated	None.	
Degree of Expected Reductions of Toxicity, Mobility, and Volume	Minimal action does not employ removal or treatment processes to address soil contamination at the site.	

BADGER ARMY AMMUNITION PLANT		
EVALUATION CRITERIA	NG/RPA-SS1 MINIMAL ACTION	
Degree to Which Treatment is Irreversible	Not Applicable.	
Type and Quantity of Residuals Remaining After Treatment	Not Applicable.	
Short-term Effectiveness		
Protection of Community During Remedial Action	Because this alternative provides only a minimal response action (i.e., installation of fencing and signs), threats to the community are unlikely to be encountered during implementation.	
Protection of Workers During Remedial Action	Threats to site-worker health are very unlikely to be encountered during implementation of this alternative. Workers should follow safe working practices.	
Environmental Impacts	No environmental impacts are expected during implementation.	
Time Until Remedial Action Objectives Are Achieved.	Minimal action does not achieve the remedial response objectives.	
Implementability		
Ability to Construct and Operate the Technology	Installing fencing and posting warning signs at the Nitroglycerine Pond and Rocket Paste Area are easily implemented construction tasks.	
Reliability of the Technology	If fencing is adequately maintained it should be effective in limiting site access by human and many ecological receptors.	
Ease of Undertaking Additional Remedial Actions, if Necessary	Minimal action would not limit or interfere with the ability to perform future remedial actions.	
Ability to Monitor Effectiveness of Remedy	Annual visual inspections would be sufficient for monitoring minimal action effectiveness.	
Ability to Obtain Approvals and Coordinate with Other Agencies	Coordination with appropriate Army officials, WDNR, and the City of Baraboo would be required if these controls are applied. Coordination with Sauk County would be required to implement and maintain a public education program.	
Availability of Off-site Treatment, Storage, and Disposal Services and Capacity	Not Applicable.	

EVALUATION CRITERIA	NG/RPA-SS1 MINIMAL ACTION
Availability of Necessary Equipment and Specialists	Local contractors and necessary materials are readily available to construct fencing and warning signs as well as to conduct educational programs.
Availability of Technology	Very available.
Costs	
Capital Cost	\$719,000
Present Worth of Operation and Maintenance Cost	\$1,706,000
Net Present Worth Cost	\$2,425,000

TABLE 11-4 COST SUMMARY TABLE ALTERNATIVE NP/RPA-SS2: SOIL COVER

FEASIBILITY STUDY NITROGLYCERINE POND/ROCKET PASTE AREA BADGER ARMY AMMUNITION PLANT

NDIRECT COST Health and Safety @ 5% of Total Direct Cost \$ 48,000 Legal, Administration, Permitting @ 5% of Total Direct Cost \$ 48,000 Engineering @ 10% of Total Direct Cost \$ 96,000 Services During Construction, QA/QC, Documentation @ 10% of Total Direct Cost \$ 96,000 TOTAL INDIRECT COST \$ 288,000 TOTAL CAPITAL (DIRECT + INDIRECT) COST \$ 1,243,000 OPERATING AND MAINTENANCE COSTS Total Annual Operating and Maintenance Costs (Including Groundwater Monitoring) \$ 114,000			
Site Preparation and Mob/Demob Soil Cover Placement Rocket Paste Road Culvert TOTAL DIRECT COST * 955,000 **NDIRECT COST** Health and Safety @ 5% of Total Direct Cost Legal, Administration, Permitting @ 5% of Total Direct Cost Services During Construction, QA/QC, Documentation @ 10% of Total Direct Cost Services During Construction, QA/QC, Documentation @ 10% of Total Direct Cost * 288,000 **TOTAL INDIRECT COST** TOTAL CAPITAL (DIRECT + INDIRECT) COST** * 1,243,000 **DPERATING AND MAINTENANCE COSTS** Total Annual Operating and Maintenance Costs (Including Groundwater Monitoring) * 114,000 **TOTAL PRESENT WORTH OF O&M COSTS (5% FOR 30 YEARS) * 1,752,000	ITEM	TOTAL (COST
Site Preparation and Mob/Demob Soil Cover Placement Rocket Paste Road Culvert TOTAL DIRECT COST * 955,000 **NDIRECT COST** Health and Safety @ 5% of Total Direct Cost Legal, Administration, Permitting @ 5% of Total Direct Cost Services During Construction, QA/QC, Documentation @ 10% of Total Direct Cost Services During Construction, QA/QC, Documentation @ 10% of Total Direct Cost * 288,000 **TOTAL INDIRECT COST** TOTAL CAPITAL (DIRECT + INDIRECT) COST** * 1,243,000 **DPERATING AND MAINTENANCE COSTS** Total Annual Operating and Maintenance Costs (Including Groundwater Monitoring) * 114,000 **TOTAL PRESENT WORTH OF O&M COSTS (5% FOR 30 YEARS) * 1,752,000			
Soil Cover Placement Rocket Paste Road Culvert TOTAL DIRECT COST ***955,000 **NDIRECT COST** Health and Safety @ 5% of Total Direct Cost Legal, Administration, Permitting @ 5% of Total Direct Cost Engineering @ 10% of Total Direct Cost Services During Construction, QA/QC, Documentation @ 10% of Total Direct Cost 96,000 **TOTAL INDIRECT COST** **TOTAL INDIRECT COST** TOTAL CAPITAL (DIRECT + INDIRECT) COST** **TOTAL CAPITAL (DIRECT + INDIRECT) COST** Total Annual Operating and Maintenance Costs (Including Groundwater Monitoring) **TOTAL PRESENT WORTH OF O&M COSTS (5% FOR 30 YEARS) **1,752,000		¢	246.000
Rocket Paste Road Culvert 30,000 TOTAL DIRECT COST \$ 955,000 NDIRECT COST Health and Safety @ 5% of Total Direct Cost \$ 48,000 Legal, Administration, Permitting @ 5% of Total Direct Cost \$ 96,000 Services During Construction, QA/QC, Documentation @ 10% of Total Direct Cost 96,000 TOTAL INDIRECT COST \$ 288,000 TOTAL CAPITAL (DIRECT + INDIRECT) COST \$ 1,243,000 DEFERATING AND MAINTENANCE COSTS Total Annual Operating and Maintenance Costs (Including Groundwater Monitoring) \$ 114,000 TOTAL PRESENT WORTH OF O&M COSTS (5% FOR 30 YEARS) \$ 1,752,000	•	Ψ	
TOTAL DIRECT COST Health and Safety @ 5% of Total Direct Cost Legal, Administration, Permitting @ 5% of Total Direct Cost Engineering @ 10% of Total Direct Cost Services During Construction, QA/QC, Documentation @ 10% of Total Direct Cost TOTAL INDIRECT COST \$ 288,000 TOTAL CAPITAL (DIRECT + INDIRECT) COST \$ 1,243,000 DEFERATING AND MAINTENANCE COSTS Total Annual Operating and Maintenance Costs (Including Groundwater Monitoring) TOTAL PRESENT WORTH OF O&M COSTS (5% FOR 30 YEARS) \$ 1,752,000			
NDIRECT COST Health and Safety @ 5% of Total Direct Cost \$48,00 Legal, Administration, Permitting @ 5% of Total Direct Cost 48,00 Engineering @ 10% of Total Direct Cost 96,00 Services During Construction, QA/QC, Documentation @ 10% of Total Direct Cost 96,00 TOTAL INDIRECT COST \$288,00 TOTAL INDIRECT COST \$1,243,00 TOTAL CAPITAL (DIRECT + INDIRECT) COST \$1,243,00 TOTAL CAPITAL (DIRECT + INDIRECT) COST \$1,243,00 TOTAL Annual Operating and Maintenance Costs (Including Groundwater Monitoring) \$114,00 TOTAL PRESENT WORTH OF O&M COSTS (5% FOR 30 YEARS) \$1,752,00 TOTAL PRESENT WORTH OF O&M COSTS (5% FOR 30 YEARS) \$1,752,00 TOTAL PRESENT WORTH OF O&M COSTS (5% FOR 30 YEARS) \$1,752,00 TOTAL PRESENT WORTH OF O&M COSTS (5% FOR 30 YEARS)	Nochet Paste Noad Culveit		00,000
NDIRECT COST Health and Safety @ 5% of Total Direct Cost \$48,00 Legal, Administration, Permitting @ 5% of Total Direct Cost 48,00 Engineering @ 10% of Total Direct Cost 96,00 Services During Construction, QA/QC, Documentation @ 10% of Total Direct Cost 96,00 TOTAL INDIRECT COST \$288,00 TOTAL INDIRECT COST \$1,243,00 TOTAL CAPITAL (DIRECT + INDIRECT) COST \$1,243,00 TOTAL CAPITAL (DIRECT + INDIRECT) COST \$1,243,00 TOTAL Annual Operating and Maintenance Costs (Including Groundwater Monitoring) \$114,00 TOTAL PRESENT WORTH OF O&M COSTS (5% FOR 30 YEARS) \$1,752,00 TOTAL PRESENT WORTH OF O&M COSTS (5% FOR 30 YEARS) \$1,752,00 TOTAL PRESENT WORTH OF O&M COSTS (5% FOR 30 YEARS) \$1,752,00 TOTAL PRESENT WORTH OF O&M COSTS (5% FOR 30 YEARS)			
Health and Safety @ 5% of Total Direct Cost Legal, Administration, Permitting @ 5% of Total Direct Cost Engineering @ 10% of Total Direct Cost Services During Construction, QA/QC, Documentation @ 10% of Total Direct Cost 96,00 TOTAL INDIRECT COST \$ 288,000 TOTAL CAPITAL (DIRECT + INDIRECT) COST \$ 1,243,000 DEFRATING AND MAINTENANCE COSTS Total Annual Operating and Maintenance Costs (Including Groundwater Monitoring) \$ 114,000 TOTAL PRESENT WORTH OF O&M COSTS (5% FOR 30 YEARS) \$ 1,752,000	TOTAL DIRECT COST	\$	955,000
Legal, Administration, Permitting @ 5% of Total Direct Cost Engineering @ 10% of Total Direct Cost Services During Construction, QA/QC, Documentation @ 10% of Total Direct Cost 96,00 TOTAL INDIRECT COST \$ 288,000 TOTAL CAPITAL (DIRECT + INDIRECT) COST \$ 1,243,000 DEFRATING AND MAINTENANCE COSTS Total Annual Operating and Maintenance Costs (Including Groundwater Monitoring) TOTAL PRESENT WORTH OF O&M COSTS (5% FOR 30 YEARS) \$ 1,752,000	INDIRECT COST		
Engineering @ 10% of Total Direct Cost Services During Construction, QA/QC, Documentation @ 10% of Total Direct Cost 96,00 TOTAL INDIRECT COST \$ 288,000 TOTAL CAPITAL (DIRECT + INDIRECT) COST \$ 1,243,000 DPERATING AND MAINTENANCE COSTS Total Annual Operating and Maintenance Costs (Including Groundwater Monitoring) TOTAL PRESENT WORTH OF O&M COSTS (5% FOR 30 YEARS) \$ 1,752,000	Health and Safety @ 5% of Total Direct Cost	\$	48,000
Services During Construction, QA/QC, Documentation @ 10% of Total Direct Cost 96,00 TOTAL INDIRECT COST \$ 288,000 TOTAL CAPITAL (DIRECT + INDIRECT) COST \$ 1,243,000 DPERATING AND MAINTENANCE COSTS Total Annual Operating and Maintenance Costs (Including Groundwater Monitoring) \$ 114,000 TOTAL PRESENT WORTH OF O&M COSTS (5% FOR 30 YEARS) \$ 1,752,000	Legal, Administration, Permitting @ 5% of Total Direct Cost		48,000
TOTAL INDIRECT COST \$ 288,000 TOTAL CAPITAL (DIRECT + INDIRECT) COST \$ 1,243,000 DPERATING AND MAINTENANCE COSTS Total Annual Operating and Maintenance Costs (Including Groundwater Monitoring) \$ 114,000 TOTAL PRESENT WORTH OF O&M COSTS (5% FOR 30 YEARS) \$ 1,752,000	Engineering @ 10% of Total Direct Cost		96,000
TOTAL CAPITAL (DIRECT + INDIRECT) COST \$ 1,243,000 OPERATING AND MAINTENANCE COSTS Total Annual Operating and Maintenance Costs (Including Groundwater Monitoring) \$ 114,000 TOTAL PRESENT WORTH OF O&M COSTS (5% FOR 30 YEARS) \$ 1,752,000	Services During Construction, QA/QC, Documentation @ 10% of Total Direct Cost		96,000
TOTAL CAPITAL (DIRECT + INDIRECT) COST \$ 1,243,000 OPERATING AND MAINTENANCE COSTS Total Annual Operating and Maintenance Costs (Including Groundwater Monitoring) \$ 114,000 TOTAL PRESENT WORTH OF O&M COSTS (5% FOR 30 YEARS) \$ 1,752,000	TOTAL INDIRECT COST	S	288 000
DPERATING AND MAINTENANCE COSTS Total Annual Operating and Maintenance Costs (Including Groundwater Monitoring) \$ 114,000 TOTAL PRESENT WORTH OF O&M COSTS (5% FOR 30 YEARS) \$ 1,752,000			
Total Annual Operating and Maintenance Costs (Including Groundwater Monitoring) \$ 114,000 TOTAL PRESENT WORTH OF O&M COSTS (5% FOR 30 YEARS) \$ 1,752,000	TOTAL CAPITAL (DIRECT + INDIRECT) COST	\$	1,243,000
TOTAL PRESENT WORTH OF O&M COSTS (5% FOR 30 YEARS) \$ 1,752,000	OPERATING AND MAINTENANCE COSTS		
	Total Annual Operating and Maintenance Costs (Including Groundwater Monitoring)	\$	114,000
TOTAL COST FOR SS-2 SOIL COVER \$ 2,995,000	TOTAL PRESENT WORTH OF O&M COSTS (5% FOR 30 YEARS)	\$	1,752,000
TOTAL COST FOR SS-2 SOIL COVER \$ 2,995,000			
TOTAL COST FOR SS-2 SOIL COVER \$ 2,995,000			
101AL COS1 FOR 33-2 SOIL GOVER 3 2,993,000	TOTAL COST FOR CO. A POR COVER	•	D 00E 000
	TOTAL DOST FOR GOTE OUTER	J	4,000,000

EVALUATION CRITERIA	NG/RPA-SS2 SOIL COVER
Overall Protection of Human Health and the	Environment
Human Health Protection	Achieves remedial action objective for human receptors. The soil cover would reduce the potential for human exposure to surface soil and sediment concentrations of lead greater than background. There is no significant risk to human health from other compounds.
Environmental Protection	Achieves the remedial action objective for terrestrial organisms. The soil cover would reduce direct exposure routes for aquatic or terrestrial biota to surface soil/sediment contaminants above RGs which are determined by the ecological receptor risk. Groundwater protection requirements of NR 720 are not met.
Compliance with ARARs	
Chemical-specific	Meets the Interim Guidance on Establishing Soil Lead Cleanup Levels at Superfund Sites. Does not meet requirements of NR 720.
Location-specific	Wetlands protection ARARs would be met for remediation of the ponds because no practicable alternative less harmful to the wetlands is available to meet RGs. The USFWS, NMFS, and other related agencies must be consulted before modifying the ponds. A permit may be required from the U.S. Army Corps of Engineers.
Action-specific	RCRA hazardous waste units ARARs would be met. Post-closure groundwater monitoring would meet RCRA Releases from SWMU's ARAR.
	Fugitive particulate emissions generated during site work are substantively subject to Wisconsin Particulate and Sulfur Emission Rules and General and Portable Sources Air Pollution Control Rules; Ambient Air Quality Standards (WAC, Chapter NR 404). Dust suppression techniques and other preventative measures used where necessary would ensure compliance with particulate emission standards.
	RCRA Standards for Owners and Operators of Hazardous Waste Treatment, Storage, and Disposal Facilities (40 CFR - Part 264) may apply. If applicable, a program which incorporates the standards would be implemented.
Other Criteria, Advisories, and Guidances	None.

EVALUATION CRITERIA	NG/RPA-SS2 SOIL COVER
Long-term Effectiveness and Permanence	
Magnitude of Residual Risk	Provided the soil covers remain intact, residual risk to human and ecological receptors would be negligible. RI data indicates that metals in NG/RPA surface soil/sediment are not mobile (ABB-ES, 1993a); consequently, there is no expected threat of groundwater contamination from leaching. A threat to groundwater quality exists because the requirements of NR 720 are not met.
Adequacy and Reliability of Controls	Visual inspections would be conducted annually to ensure the integrity of the soil covers. Long-term groundwater monitoring would detect contaminants leaching into groundwater.
Reduction of Toxicity, Mobility, and Volume	
Treatment Process Used and Materials Treated	None.
Amount Destroyed or Treated	None.
Degree of Expected Reductions of Toxicity, Mobility, and Volume	No reduction in the toxicity, mobility, or volume of contaminants. However, natural mobilizing influences such as soil erosion would be reduced.
Degree to Which Treatment is Irreversible	Not applicable.
Type and Quantity of Residuals Remaining After Treatment	Not applicable.
Short-term Effectiveness	
Protection of Community During Remedial Action	No risks to the community would be expected during implementation.
Protection of Workers During Remedial Action	With the use of dust suppression techniques and adherence to general health and safety practices, there would be minimal risk to workers as no excavation of contaminated material would occur.
Environmental Impacts	The Rocket Paste Area is not considered critical wildlife habitat. Waterfowl using the Nitroglycerine Pond would be disturbed by implementation of the alternative.
Time Until Remedial Action Objectives Are Achieved	An estimated 10 to 12 months would be required to achieve the remedial action objectives from the start of remediation (because the surface water must be removed and treated prior to placement of the soil cover on the sediment).

EVALUATION CRITERIA	NG/RPA-SS2 SOIL COVER	
Implementability		
Ability to Construct and Operate the Technology	Cover construction can be accomplished using standard construction procedures and conventional earth-moving equipment. Cover repairs would be easily implementable.	
Reliability of the Technology	Soil cover is a proven technology for isolating potential receptors from contaminated soil. Annual visual inspections and soil cover repair (if necessary) would ensure that the integrity of the soil cover is maintained.	
Ease of Undertaking Additional Remedial Actions, if Necessary	The soil cover would increase the scope of any future removal actions requiring access to the contaminated soil/sediment. Capping, though, could be easily constructed over the soil cover.	
Ability to Monitor Effectiveness of Remedy	Annual visual inspections would be sufficient for monitoring soil cover effectiveness.	
Ability to Obtain Approvals and Coordinate with Other Agencies	The integrity of the remedial design would have to be demonstrated to federal and state regulators. A wetland permit may be required from the U.S. Army Corps of Engineers for remediation at the Nitroglycerine Pond, overflow, and Rocket Paste Ponds.	
Availability of Off-site Treatment, Storage, and Disposal Services and Capacity	Not applicable.	
Availability of Necessary Equipment and Specialists	Obtaining sufficient common borrow soil and vegetative soil in the immediate vicinity of BAAP should not be difficult; materials may be available within 30 miles of BAAP. A large excavation contracting company could easily provide the equipment and expertise for constructing soil covers.	
Availability of Technology	Several vendors would be available to provide the technology involved in installing a soil cover.	
Costs		
Capital Cost	\$1,243,000	
Present Worth of Operation and Maintenance Cost	\$1,752,000	
Net Present Worth Cost	\$2,995,000	

TABLE 11-6 COST SUMMARY TABLE ALTERNATIVE NP/RPA-SS3: STABILIZATION/SOLIDIFICATION WITH ON-SITE DISPOSAL

FEASIBILITY STUDY NITROGLYCERINE POND/ROCKET PASTE AREA BADGER ARMY AMMUNITION PLANT

Treatability Testing Site Preparation and Mob/Demob Contaminated Soil Delineation Sediment Removal Excavate Surface Soil Backfill Soil Stabilization/Solidification Confirmation Sampling Load Soil/Sediment into Treatment Equipment Load/Haul Treated Soil/Sediment to Race Track and Spread Rocket Paste Road Culvert Additional Cover Required at PBG TOTAL DIRECT COST Health and Safety @ 5% of Total Direct Cost Legal, Administration, Permitting @ 5% of Total Direct Cost Services During Construction, QA/QC, Documentation @ 10% of Total Direct Cost TOTAL INDIRECT COST TOTAL INDIRECT COST TOTAL CAPITAL (DIRECT + INDIRECT) COST PERATING AND MAINTENANCE COSTS Total Annual Operating and Maintenance Costs (Long—term performance monitoring included with PBG)	\$ \$	96,00 588,00 123,00 335,00 676,00 743,00 6,090,00 219,00 425,00 30,00 516,00
Site Preparation and Mob/Demob Contaminated Soil Delineation Sediment Removal Excavate Surface Soil Backfill Soil Stabilization/Solidification Confirmation Sampling Load Soil/Sediment into Treatment Equipment Load/Haul Treated Soil/Sediment to Race Track and Spread Rocket Paste Road Culvert Additional Cover Required at PBG TOTAL DIRECT COST Health and Safety @ 5% of Total Direct Cost Legal, Administration, Permitting @ 5% of Total Direct Cost Engineering @ 10% of Total Direct Cost Services During Construction, QA/QC, Documentation @ 10% of Total Direct Cost TOTAL INDIRECT COST TOTAL INDIRECT COST PERATING AND MAINTENANCE COSTS Total Annual Operating and Maintenance Costs	\$	588,00 123,00 335,00 676,00 743,00 6,090,00 219,00 89,00 425,00 30,00 516,00
Contaminated Soil Delineation Sediment Removal Excavate Surface Soil Backfill Soil Stabilization/Solidification Confirmation Sampling Load Soil/Sediment into Treatment Equipment Load/Haul Treated Soil/Sediment to Race Track and Spread Rocket Paste Road Culvert Additional Cover Required at PBG TOTAL DIRECT COST Health and Safety @ 5% of Total Direct Cost Legal, Administration, Permitting @ 5% of Total Direct Cost Engineering @ 10% of Total Direct Cost Services During Construction, QA/QC, Documentation @ 10% of Total Direct Cost TOTAL INDIRECT COST TOTAL CAPITAL (DIRECT + INDIRECT) COST PERATING AND MAINTENANCE COSTS Total Annual Operating and Maintenance Costs		123,00 335,00 676,00 743,00 6,090,00 219,00 89,00 425,00 30,00 516,00
Sediment Removal Excavate Surface Soil Backfill Soil Stabilization/Solidification Confirmation Sampling Load Soil/Sediment into Treatment Equipment Load/Haul Treated Soil/Sediment to Race Track and Spread Rocket Paste Road Culvert Additional Cover Required at PBG TOTAL DIRECT COST Health and Safety @ 5% of Total Direct Cost Legal, Administration, Permitting @ 5% of Total Direct Cost Engineering @ 10% of Total Direct Cost Services During Construction, QA/QC, Documentation @ 10% of Total Direct Cost TOTAL INDIRECT COST TOTAL INDIRECT COST PERATING AND MAINTENANCE COSTS Total Annual Operating and Maintenance Costs		335,00 676,00 743,00 6,090,00 219,00 89,00 425,00 30,00 516,00
Excavate Surface Soil Backfill Soil Stabilization/Solidification Confirmation Sampling Load Soil/Sediment into Treatment Equipment Load/Haul Treated Soil/Sediment to Race Track and Spread Rocket Paste Road Culvert Additional Cover Required at PBG TOTAL DIRECT COST Health and Safety @ 5% of Total Direct Cost Legal, Administration, Permitting @ 5% of Total Direct Cost Engineering @ 10% of Total Direct Cost Services During Construction, QA/QC, Documentation @ 10% of Total Direct Cost TOTAL INDIRECT COST TOTAL CAPITAL (DIRECT + INDIRECT) COST PERATING AND MAINTENANCE COSTS Total Annual Operating and Maintenance Costs		676,00 743,00 6,090,00 219,00 89,00 425,00 30,00 516,00 9,930,00
Backfill Soil Stabilization/Solidification Confirmation Sampling Load Soil/Sediment into Treatment Equipment Load/Haul Treated Soil/Sediment to Race Track and Spread Rocket Paste Road Culvert Additional Cover Required at PBG TOTAL DIRECT COST Health and Safety @ 5% of Total Direct Cost Legal, Administration, Permitting @ 5% of Total Direct Cost Engineering @ 10% of Total Direct Cost Services During Construction, QA/QC, Documentation @ 10% of Total Direct Cost TOTAL INDIRECT COST TOTAL INDIRECT COST PERATING AND MAINTENANCE COSTS Total Annual Operating and Maintenance Costs		743,00 6,090,00 219,00 89,00 425,00 30,00 516,00 9,930,00
Stabilization/Solidification Confirmation Sampling Load Soil/Sediment into Treatment Equipment Load/Haul Treated Soil/Sediment to Race Track and Spread Rocket Paste Road Culvert Additional Cover Required at PBG TOTAL DIRECT COST Health and Safety @ 5% of Total Direct Cost Legal, Administration, Permitting @ 5% of Total Direct Cost Engineering @ 10% of Total Direct Cost Services During Construction, QA/QC, Documentation @ 10% of Total Direct Cost TOTAL INDIRECT COST TOTAL INDIRECT COST PERATING AND MAINTENANCE COSTS Total Annual Operating and Maintenance Costs		6,090,00 219,00 89,00 425,00 30,00 516,00 9,930,00
Confirmation Sampling Load Soil/Sediment into Treatment Equipment Load/Haul Treated Soil/Sediment to Race Track and Spread Rocket Paste Road Culvert Additional Cover Required at PBG TOTAL DIRECT COST Health and Safety @ 5% of Total Direct Cost Legal, Administration, Permitting @ 5% of Total Direct Cost Engineering @ 10% of Total Direct Cost Services During Construction, QA/QC, Documentation @ 10% of Total Direct Cost TOTAL INDIRECT COST TOTAL CAPITAL (DIRECT + INDIRECT) COST PERATING AND MAINTENANCE COSTS Total Annual Operating and Maintenance Costs		219,00 89,00 425,00 30,00 516,00 9,930,00
Load Soil/Sediment into Treatment Equipment Load/Haul Treated Soil/Sediment to Race Track and Spread Rocket Paste Road Culvert Additional Cover Required at PBG TOTAL DIRECT COST Health and Safety @ 5% of Total Direct Cost Legal, Administration, Permitting @ 5% of Total Direct Cost Engineering @ 10% of Total Direct Cost Services During Construction, QA/QC, Documentation @ 10% of Total Direct Cost TOTAL INDIRECT COST TOTAL CAPITAL (DIRECT + INDIRECT) COST PERATING AND MAINTENANCE COSTS Total Annual Operating and Maintenance Costs		89,00 425,00 30,00 516,00 9,930,0 0
Load/Haul Treated Soil/Sediment to Race Track and Spread Rocket Paste Road Culvert Additional Cover Required at PBG TOTAL DIRECT COST Health and Safety @ 5% of Total Direct Cost Legal, Administration, Permitting @ 5% of Total Direct Cost Engineering @ 10% of Total Direct Cost Services During Construction, QA/QC, Documentation @ 10% of Total Direct Cost TOTAL INDIRECT COST TOTAL CAPITAL (DIRECT + INDIRECT) COST PERATING AND MAINTENANCE COSTS Total Annual Operating and Maintenance Costs		425,00 30,00 516,00 9,930,00 497,00
Rocket Paste Road Culvert Additional Cover Required at PBG TOTAL DIRECT COST Health and Safety @ 5% of Total Direct Cost Legal, Administration, Permitting @ 5% of Total Direct Cost Engineering @ 10% of Total Direct Cost Services During Construction, QA/QC, Documentation @ 10% of Total Direct Cost TOTAL INDIRECT COST TOTAL CAPITAL (DIRECT + INDIRECT) COST PERATING AND MAINTENANCE COSTS Total Annual Operating and Maintenance Costs		30,00 516,00 9,930,00 497,00
Additional Cover Required at PBG TOTAL DIRECT COST Health and Safety @ 5% of Total Direct Cost Legal, Administration, Permitting @ 5% of Total Direct Cost Engineering @ 10% of Total Direct Cost Services During Construction, QA/QC, Documentation @ 10% of Total Direct Cost TOTAL INDIRECT COST TOTAL CAPITAL (DIRECT + INDIRECT) COST PERATING AND MAINTENANCE COSTS Total Annual Operating and Maintenance Costs		9,930,00 497,00
TOTAL DIRECT COST Health and Safety @ 5% of Total Direct Cost Legal, Administration, Permitting @ 5% of Total Direct Cost Engineering @ 10% of Total Direct Cost Services During Construction, QA/QC, Documentation @ 10% of Total Direct Cost TOTAL INDIRECT COST TOTAL CAPITAL (DIRECT + INDIRECT) COST PERATING AND MAINTENANCE COSTS Total Annual Operating and Maintenance Costs		9,930,00 497,00
Health and Safety @ 5% of Total Direct Cost Legal, Administration, Permitting @ 5% of Total Direct Cost Engineering @ 10% of Total Direct Cost Services During Construction, QA/QC, Documentation @ 10% of Total Direct Cost TOTAL INDIRECT COST TOTAL CAPITAL (DIRECT + INDIRECT) COST PERATING AND MAINTENANCE COSTS Total Annual Operating and Maintenance Costs		497,00
Health and Safety @ 5% of Total Direct Cost Legal, Administration, Permitting @ 5% of Total Direct Cost Engineering @ 10% of Total Direct Cost Services During Construction, QA/QC, Documentation @ 10% of Total Direct Cost TOTAL INDIRECT COST TOTAL CAPITAL (DIRECT + INDIRECT) COST PERATING AND MAINTENANCE COSTS Total Annual Operating and Maintenance Costs	\$	-
Health and Safety @ 5% of Total Direct Cost Legal, Administration, Permitting @ 5% of Total Direct Cost Engineering @ 10% of Total Direct Cost Services During Construction, QA/QC, Documentation @ 10% of Total Direct Cost TOTAL INDIRECT COST TOTAL CAPITAL (DIRECT + INDIRECT) COST PERATING AND MAINTENANCE COSTS Total Annual Operating and Maintenance Costs	\$	-
Engineering @ 10% of Total Direct Cost Services During Construction, QA/QC, Documentation @ 10% of Total Direct Cost TOTAL INDIRECT COST TOTAL CAPITAL (DIRECT + INDIRECT) COST PERATING AND MAINTENANCE COSTS Total Annual Operating and Maintenance Costs	·	-
Services During Construction, QA/QC, Documentation @ 10% of Total Direct Cost TOTAL INDIRECT COST TOTAL CAPITAL (DIRECT + INDIRECT) COST PERATING AND MAINTENANCE COSTS Total Annual Operating and Maintenance Costs		497,00
TOTAL INDIRECT COST TOTAL CAPITAL (DIRECT + INDIRECT) COST PERATING AND MAINTENANCE COSTS Total Annual Operating and Maintenance Costs		993,00
TOTAL CAPITAL (DIRECT + INDIRECT) COST PERATING AND MAINTENANCE COSTS Total Annual Operating and Maintenance Costs		993,00
PERATING AND MAINTENANCE COSTS Total Annual Operating and Maintenance Costs	\$	2,980,00
Total Annual Operating and Maintenance Costs	\$	12,910,00
· · · · · · · · · · · · · · · · · · ·		
(Long-term performance monitoring included with PBG)	\$	
TOTAL PRESENT WORTH OF O&M COSTS (5% FOR 30 YEARS)	\$	
TOTAL COST FOR SS-3 STABILIZATION/SOLIDIFICATION WITH ON-SITE DISPOSAL		

EVALUATION CRITERIA	NG/RPA-SS3 Excavation/S-S/On-site Disposal
Overall Protection of Human Health and	d the Environment
Human Health Protection	Achieves remedial action objective for human receptors. Contaminated soil is removed from NG/RPA.
Environmental Protection	Achieves the remedial action objective for terrestrial organisms. Contaminated soil is removed from NG/RPA. Excavation and treatment would reduce direct exposure routes for aquatic or terrestrial biota to surface soil/sediment contaminants above RGs which are determined by ecological receptor risk. Would protect groundwater quality consistent with NR 720.
Compliance with ARARs	
Chemical-specific	Meets the Interim Guidance on Establishing Soil Lead Cleanup Levels at Superfund Sites.
Location-specific	Wetlands protection ARARs would be met for remediation of the ponds because no practicable alternative less harmful to the wetlands is available to meet RGs. The USFWS, NMFS, and other related agencies must be consulted before modifying the ponds. A permit may be required from the U.S. Army Corps of Engineers.
Action-specific	RCRA hazardous waste units ARARs would be met.
	Because soils would undergo placement, RCRA Land Disposal Regulations (LDRs) may apply.
	Confirmatory sampling after treatment would assist in determining LDR compliance.
	Fugitive particulate emissions generated during site work are substantively subject to Wisconsin Particulate and Sulfur Emission Rules and General and Portable Sources Air Pollution Control Rules; Ambient Air Quality Standards (WAC, Chapter NR 404). Dust suppression techniques and other preventative measures used where necessary would ensure compliance with particulate emission standards.
	RCRA, Standards for Owners and Operators of Hazardous Waste Treatment, Storage, and Disposal Facilities (40 CFR - Part 264) may apply. If applicable, a program which incorporates the standards would be implemented.

EVALUATION CRITERIA	NG/RPA-SS3 Excavation/S-S/On-site Disposal
Other Criteria, Advisories, and Guidances	None.
Long-term Effectiveness and Permanence	
Magnitude of Residual Risk	Excavation is expected to remove a majority of surface soil/sediment contamination; contamination delineation sampling would ensure removal of all contamination. Residual risk to human, ecological receptors, and groundwater at the NG/RPA would be negligible.
	Provided the treated soil/sediment and the on-site disposal cover remains intact, residual risk to human and ecological receptors from the treated soil/sediment would be negligible. Metals would not likely leach from the treated soil/sediment. Consequently, the threat of groundwater contamination from leaching is virtually eliminated.
Adequacy and Reliability of Controls	Visual inspections would be conducted annually to ensure the integrity of the cover for the buried solidified material. Long-term groundwater sampling and analysis at the disposal area would allow monitoring of groundwater quality.
Reduction of Toxicity, Mobility, and Volume	e e e e e e e e e e e e e e e e e e e
Treatment Process Used and Materials Treated	Stabilization/solidification treatment would be used to chemically and physically bind the surface soil and sediment contaminants into a granular or monolithic product with a low leaching potential.
Amount Destroyed or Treated	An estimated 73,000 cubic yards of excavated surface soil/sediment would be treated.
Degree of Expected Reductions of Toxicity, Mobility, and Volume	No reduction in toxicity is expected. Mobility would be greatly reduced as the contaminants would be stabilized and solidified in the treated product. The volume of treated soil/sediment can be expected to have increased by about 20 to 30 percent because of the additives, though the actual amount of contamination would not increase.
Degree to Which Treatment is Irreversible	Proper maintenance would prevent weathering of the cover and treatment residuals and the subsequent release of contaminants.
Type and Quantity of Residuals Remaining After Treatment Treatment residuals would consist of pelletized/grar disposed of at PBG. Assuming the volume of the cincreased by 30 percent during treatment, approximately cubic yards of residuals would be disposed of at the of the Propellant Burning Ground.	

EVALUATION CRITERIA	NG/RPA-SS3 EXCAVATION/S-S/ON-SITE DISPOSAL
Short-term Effectiveness	
Protection of Community During Remedial Action	No risks to the community would be expected during implementation.
Protection of Workers During Remedial Action	With the use of dust suppression techniques and adherence to general health and safety practices, there would be minimal risk to workers. As excavation of contaminated surface soil/sediment occurs, proper health monitoring would be implemented and decontamination procedures followed.
Environmental Impacts	The Rocket Paste Area is not considered critical wildlife habitat. Waterfowl using the Nitroglycerine Pond would be disturbed during implementation of the alternative.
Time Until Remedial Action Objectives Are Achieved	An estimated 5 to 6 months would be required to achieve the remedial action objectives from the start of remediation (because the surface water must be removed and treated prior to remediating pond sediments).
Implementability	
Ability to Construct and Operate the Technology	Excavation and backfilling can be accomplished using standard construction procedures and conventional earthmoving equipment. Stabilization/solidification is a relatively simple, easily implemented technology.
Reliability of the Technology	Stabilization/solidification is a proven technology for isolating potential receptors from contaminated soil. It has been demonstrated full-scale at numerous sites. S/S treatment is highly dependent on site and waste characteristics. Extensive treatability testing would be required.
Ease of Undertaking Additional Remedial Actions, if Necessary	If necessary, the treated material could be removed from the on-site disposal site and placed in a different location or re-treated, though this would involve a significant level of effort because of the large quantities involved. Capping, though, could be easily constructed over the treated material.
Ability to Monitor Effectiveness of Remedy	The contamination would be removed from the NG/RPA. Annual visual inspections of the on-site disposal location for the treated material would be sufficient for monitoring the effectiveness.
Ability to Obtain Approvals and Coordinate with Other Agencies	The integrity of the remedial design would have to be demonstrated to federal and state regulators. A wetland permit may be required from the U.S. Army Corps of Engineers.
	If soils are determined to be characteristically hazardous (per RCRA), a RCRA permit may be needed prior to treatment.

Evaluation Criteria	NG/RPA-SS3 Excavation/S-S/On-site Disposal
Availability of Off-site Treatment, Storage, and Disposal Services and Capacity	Not applicable.
Availability of Necessary Equipment and Specialists	Obtaining sufficient common borrow soil and vegetative soil in the immediate vicinity of BAAP should not be difficult; materials may be available within 30 miles of BAAP. A large excavation contracting company could easily provide the equipment and expertise for conducting excavation and backfilling.
Availability of Technology	Several vendors would be available to provide the technology involved for excavation, stabilization/ solidification, and on-site disposal.
Costs	
Capital Cost	\$12,910,000
Present Worth of Operation and Maintenance Cost	\$0
Net Present Worth Cost	\$12,910,000

TABLE 11-8 COST SUMMARY TABLE ALTERNATIVE NP/RPA-SS4: OFF-SITE DISPOSAL

FEASIBILITY STUDY NITROGLYCERINE POND/ROCKET PASTE AREA BADGER ARMY AMMUNITION PLANT

ITEM	TOTAL	COST
DIRECT COST		
Site Preparation and Mob/Demob	\$	527,000
Contaminated Soil Delineation	·	123,000
Sediment Removal		447,000
Excavate Surface Soil		651,000
Backfill Soil		877,000
Off-site Disposal		24,070,000
Rocket Paste Road Culvert		30,000
TOTAL DIRECT COST		06 705 000
TOTAL DIRECT COST	3	26,725,000
NDIRECT COST		
Health and Safety @ 5% of Total Direct Cost	\$.,,
Legal, Administration, Permitting @ 5% of Total Direct Cost		1,336,000
Engineering @ 10% of Total Direct Cost		2,673,000
Services During Construction, QA/QC, Documentation @ 10% of Total Direct Cost		2,673,000
TOTAL INDIRECT COST	\$	8,018,000
TOTAL CAPITAL (DIRECT + INDIRECT) COST	\$	34,743,000
OPERATING AND MAINTENANCE COSTS		
Total Annual Operating and Maintenance Costs	\$. 0
Total / timedi opoleting and maintonance occio	•	
TOTAL PRESENT WORTH OF O&M COSTS (5% FOR 30 YEARS)	S	0
· · · · · · · · · · · · · · · · · · ·		
TOTAL COST FOR \$S-4 OFF-SITE DISPOSAL	9	34,743,000

Evaluation Criteria	NG/RPA-SS4 Excavation/OFF-site Disposal
Overall Protection of Human Health and	I the Environment
Human Health Protection	Achieves remedial action objective for human receptors.
Environmental Protection	Achieves the remedial action objective for terrestrial organisms. Excavation and off-site disposal would eliminate direct exposure routes for aquatic or terrestrial biota to surface soil/sediment contaminants above RGs which have been determined by ecological receptor risk. Groundwater quality requirements of NR 720 would be met.
Compliance with ARARs	
Chemical-specific	Meets the Interim Guidance on Establishing Soil Lead Cleanup Levels at Superfund Sites.
Location-specific	Wetlands protection ARARs would be met for remediation of the ponds because no practicable alternative less harmful to the wetlands is available to meet the RGs. The USFWS, NMFS, and other related agencies must be consulted before modifying the ponds. A permit may be required from the U.S. Army Corps of Engineers.
Action-specific	RCRA hazardous waste units ARARs would be met.
	Fugitive particulate emissions generated during site work are substantively subject to Wisconsin Particulate and Sulfur Emission Rules and General and Portable Sources Air Pollution Control Rules; Ambient Air Quality Standards (WAC, Chapter NR 404). Dust suppression techniques and other preventative measures used where necessary would ensure compliance with particulate emission standards.
	RCRA Standards for Owners and Operators of Hazardous Waste Treatment, Storage, and Disposal Facilities (40 CFR - Part 264) may apply. If applicable, a program which incorporates the standards would be implemented.
·	Excavated soil/sediment would be tested for TCLP to determine its status as a hazardous or non-hazardous waste.
	Transportation of excavated soil/sediment would be performed in accordance with RCRA waste piles, transportation, disposal facility standards, landfill, manifest, and LDR ARARs.
Other Criteria, Advisories, and Guidances	None.

EVALUATION CRITERIA	NG/RPA-SS4 EXCAVATION/OFF-SITE DISPOSAL
Long-term Effectiveness and Permanence	***************************************
Magnitude of Residual Risk	Excavation would be expected to remove surface soil/sediment contamination; contamination delineation sampling would ensure removal of all contamination. Residual risk to human and ecological receptors at the NG/RPA would be negligible. Groundwater quality requirements of NR 720 would be met. Residual risk to human and ecological receptors from the soil/sediment would be negligible at a licensed off-site disposal facility.
Adequacy and Reliability of Controls	None required.
Reduction of Toxicity, Mobility, and Volume	
Treatment Process Used and Materials Treated	Treatment is not a principal element of this alternative; however, soil exhibiting the toxicity characteristics would be stabilized at the TSDF.
Amount Destroyed or Treated	Uncertain, depending on TCLP results.
Degree of Expected Reductions of Toxicity, Mobility, and Volume	No reduction in toxicity is expected. Mobility would be greatly reduced as the contaminants will be placed in a permitted off-site disposal facility. The volume of sediments may be increased if absorbent material is added prior to transportation.
Degree to Which Treatment is Irreversible	Not applicable.
Type and Quantity of Residuals Remaining After Treatment	Not applicable.
Short-term Effectiveness	
Protection of Community During Remedial Action	No risks to the community would be expected during excavation. There is a minimal risk to the public during the transportation of the contaminated surface soil/sediment over public roadways to the off-site disposal facility.
Protection of Workers During Remedial Action	With the use of dust suppression techniques and adherence to general health and safety practices, there would be minimal risk to workers. As excavation of contaminated surface soil/sediment occurs, proper health monitoring would be implemented and proper decontamination procedures followed.
Environmental Impacts	The Rocket Paste Area is not considered critical wildlife habitat. Waterfowl using the Nitroglycerine Pond would be disturbed during implementation of the alternative.

EVALUATION CRITERIA	NG/RPA-SS4 Excavation/OFF-SITE DISPOSAL
Time Until Remedial Action Objectives Are Achieved	An estimated 10 to 12 months would be required to achieve the remedial action objectives from the start of remediation (because the surface water must be removed and treated prior to remediating pond sediments).
Implementability	
Ability to Construct and Operate the Technology	Excavation and backfilling can be accomplished using standard construction procedures and conventional earth-moving equipment. Transportation and off-site disposal is easily implemented.
Reliability of the Technology	Off-site disposal at a permitted facility is a reliable, proven method for disposing contaminated wastes.
Ease of Undertaking Remedial Actions, if Necessary	If further remediation is deemed necessary, the backfill soil cover will require removal.
Ability to Monitor Effectiveness of Remedy	The contamination would be removed from the NG/RPA. Long-term monitoring and maintenance provided by the off-site landfill facility.
Ability to Obtain Approvals and Coordinate with Other Agencies	The integrity of the remedial design would have to be demonstrated to federal and state regulators. A wetland permit may be required from the U.S. Army Corps of Engineers for remediation at the Nitroglycerine Pond. RCRA hazardous waste permit potentially required.
Availability of Off-site Treatment, Storage, and Disposal Services and Capacity	Off-Site disposal capacity available.
Availability of Necessary Equipment and Specialists	Obtaining sufficient common borrow soil and topsoil in the immediate vicinity of BAAP should not be difficult; materials may be available within 30 miles of BAAP. A large excavation contracting company could easily provide the equipment and expertise for conducting excavation and backfilling.
Availability of Technology	Several vendors would be available to provide the technology involved for excavation and off-site disposal.
Costs	
Capital Cost	\$34,743,000
Present Worth of Operation and Maintenance Cost	\$0
Net Present Worth Cost	\$34,743,000

TABLE 11–10 COST SUMMARY TABLE ALTERNATIVE NP/RPA-SS5: IN-SITU STABILIZATION/SOLIDIFICATION WITH SOIL COVER

FEASIBILITY STUDY NITROGLYCERINE POND/ROCKET PASTE AREA BADGER ARMY AMMUNITION PLANT

ITEM	OTAL (COST
DIRECT COST		
Treatability Testing	\$	96,000
Site Preparation and Mob/Demob		516,000
Contaminated Soil Delineation		123,000
Rocket Paste Road Culvert		30,000
Stabilization/Solidification		3,255,000
Confirmation Sampling		219,000
Soil Cover Construction		1,287,000
TOTAL DIRECT COST	ş	5,526,000
INDIRECT COST		
Health and Safety @ 5% of Total Direct Cost	\$	276,000
Legal, Administration, Permitting @ 5% of Total Direct Cost	•	276,000
Engineering @ 10% of Total Direct Cost		553,000
Services During Construction, QA/QC, Documentation @ 10% of Total Direct Cost		553,000
TOTAL INDIRECT COST	\$	1,658,000
TOTAL CAPITAL (DIRECT + INDIRECT) COST	\$	7,184,000
OPERATING AND MAINTENANCE COSTS Total Annual Operating and Maintenance Costs (Including Groundwater Monitoring)	\$	144,000
TOTAL PRESENT WORTH OF O&M COSTS (5% FOR 30 YEARS)	\$	2,214,000
TOTAL COST FOR SS-5 IN-SITU STABILIZATION/SOLIDIFICATION WITH SOIL COVER	\$	9,398,000

EVALUATION CRITERIA	NG/RPA-SS5 In-Situ/S-S/Soil Cover
Overall Protection of Human Health and	the Environment
Human Health Protection	Achieves remedial action objective for human receptors.
Environmental Protection	Achieves the remedial action objective for terrestrial organisms. Treatment and cover would reduce direct exposure routes for aquatic or terrestrial biota to surface soil/sediment contaminants above RGs which are determined by ecological receptor risk. Would protect groundwater quality consistent with NR 720.
Compliance with ARARs	
Chemical-specific	Meets the Interim Guidance on Establishing Soil Lead Cleanup Levels at Superfund Sites.
Location-specific	Wetlands protection ARARs would be met for remediation of the ponds because no practicable alternative less harmful to the wetlands is available to meet RGs. The USFWS, NMFS, and other related agencies must be consulted before modifying the ponds. A permit may be required from the U.S. Army Corps of Engineers.
Action-specific	RCRA hazardous waste units ARARs would be met. Post-closure groundwater monitoring would meet RCRA Releases from SWMU's ARAR.
	Fugitive particulate emissions generated during site work are substantively subject to Wisconsin Particulate and Sulfur Emission Rules and General and Portable Sources Air Pollution Control Rules; Ambient Air Quality Standards (WAC, Chapter NR 404). Dust suppression techniques and other preventative measures used where necessary would ensure compliance with particulate emission standards.
	RCRA, Standards for Owners and Operators of Hazardous Waste Treatment, Storage, and Disposal Facilities (40 CFR - Part 264) may apply. If applicable, a program which incorporates the standards would be implemented.
Other Criteria, Advisories, and Guidances	None.

EVALUATION CRITERIA	NG/RPA-SS5 In-Situ/S-S/Soil Cover
Long-term Effectiveness and Permanence	
Magnitude of Residual Risk	Contamination delineation sampling would determine the extent of treatment. Backfilling with a soil cover would greatly reduce potential human and ecological receptor exposure to the treated soil/sediment. Residual risk to human and ecological receptors at the NG/RPA would be negligible. RI data indicates that metals in NG/RPA soil/sediment are not mobile (ABB-ES, 1993a). Consequently, there is no expected threat of groundwater contamination from leaching of any remaining contamination.
	Provided the treated soil/sediment and the on-site disposal cover remain intact, residual risk to human and ecological receptors from the treated soil/sediment would be negligible. Metals would not likely leach from the treated soil/sediment. Consequently, the threat of groundwater contamination from leaching is virtually eliminated.
Adequacy and Reliability of Controls	Visual inspections would be conducted annually to ensure the integrity of the cover for the buried solidified material. Long-term groundwater monitoring at the NG/RPA area would detect soil contaminants leaching into groundwater.
Reduction of Toxicity, Mobility, and Volume	
Treatment Process Used and Materials Treated	Stabilization/solidification treatment would be used to chemically and physically bind the surface soil and sediment contaminants into a granular or monolithic product with a low leaching potential.
Amount Destroyed or Treated	An estimated 73,000 cubic yards of surface soil/sediment would be treated.
Degree of Expected Reductions of Toxicity, Mobility, and Volume	No reduction in toxicity is expected. Mobility would be greatly reduced as the contaminants would be stabilized and solidified in the treated mass. The volume of treated soil/sediment can be expected to have increased by about 20 to 30 percent because of the additives, though the actual amount of contamination would not increase. The backfilled soil cover will reduce potential for human and ecological contact with the treated soil/sediment.
Degree to Which Treatment is Irreversible	Treatment is potentially reversible, however, proper cover maintenance would prevent weathering of the treatment residuals and the subsequent release of contaminants.
Type and Quantity of Residuals Remaining After Treatment	Treatment residuals would consist of pelletized/granular material over the area of the ditches. Assuming the volume of the contaminated soil increased by 30 percent during treatment, approximately 95,000 cubic yards of contaminated soil would be treated in place.

EVALUATION CRITERIA	NG/RPA-SS5 In-SITU/S-S/SOIL COVER
Short-term Effectiveness	
Protection of Community During Remedial Action	No risks to the community would be expected during implementation.
Protection of Workers During Remedial Action	With the use of dust suppression techniques and adherence to general health and safety practices, there would be minimal risk to workers. As treatment of contaminated surface soil/sediment occurs, proper health monitoring would be implemented and decontamination procedures followed.
Environmental Impacts	The Rocket Paste Area is not considered critical wildlife habitat. Waterfowl using the Nitroglycerine Pond would be disturbed during implementation of the alternative.
Time Until Remedial Action Objectives Are Achieved	An estimated 4 to 6 months would be required to achieve the remedial action objectives from the start of remediation (because the surface water must be removed and treated prior to remediating pond sediments).
Implementability	
Ability to Construct and Operate the Technology	A soil cover can be accomplished using standard construction procedures and conventional earth-moving equipment. Stabilization/solidification is a relatively simple, easily implemented technology.
Reliability of the Technology	Stabilization/solidification is a proven technology for isolating potential receptors from contaminated soil. It has been demonstrated full-scale at numerous sites. However, success of S/S treatment is highly dependent on site and waste characteristics. Extensive treatability testing would be required.
Ease of Undertaking Additional Remedial Actions, if Necessary	If necessary, the treated material could be excavated and placed in a different location or re-treated, though this would involve a significant level of effort because of the large quantities involved.
Ability to Monitor Effectiveness of Remedy	Annual visual inspections of the soil cover over the treated material would be sufficient for monitoring the effectiveness.
Ability to Obtain Approvals and Coordinate with Other Agencies	The integrity of the remedial design would have to be demonstrated to federal and state regulators. A wetland permit may be required from the U.S. Army Corps of Engineers for remediation of the nitroglycerine, overflow, and Rocket Paste Ponds.
Availability of Off-site Treatment, Storage, and Disposal Services and Capacity	Not applicable.

EVALUATION CRITERIA	NG/RPA-SS5 In-Situ/S-S/Soil Cover	
Availability of Necessary Equipment and Specialists	Obtaining sufficient common borrow soil and vegetative soil in the immediate vicinity of BAAP should not be difficult; materials may be available within 30 miles of BAAP. A large excavation contracting company could easily provide the equipment and expertise for conducting excavation and backfilling.	
Availability of Technology	Several vendors would be available to provide the technology involved for in situ stabilization.	
Costs		
Capital Cost	\$7,184,000	
Present Worth of Operation and Maintenance Cost	\$2,214,000	
Net Present Worth Cost	\$9,398,000	

TABLE 11-12 COMPARATIVE SUMMARY OF REMEDIAL ALTERNATIVES NITROGLYCERINE POND/ROCKET PASTE AREA SURFACE SOIL/SEDIMENT

ALTERNATIVE	OVERALL PROTECTION	COMPLIANCE WITH ARARS	EFFECTIVENESS: LONG-TERM	REDUCTION OF MOBILITY, TOXICITY, AND VOLUME	EFFECTIVENESS: SHORT-TERM	IMPLEMENTABILITY	Cost
NG/RPA-SS1: Minimal Action	Reduces risks to humans and some ecological receptors (e.g., deer) by restricting access to the NG/RPA area. Does not meet groundwater quality requirements of NR 720.	Would not meet chemical-specific ARARs. Location- and action-specific ARARs do not apply.	Not applicable because remedial action objectives are not achieved.	Contamination is not teated or destroyed; no reduction of toxicity, mobility or volume of contaminants.	Minimal impact to community or workers during implementation.	Very easily implemented.	Total Present Worth: \$2,425,000 Capital Cost: \$719,000 Annual O&M:
NG/RPA-SS2: Soil Cover	Meets remedial action objectives by reducing exposure risks to human and ecological receptors by reducing exposure to surface soil/sediment. Does not meet groundwater quality requirements of NR 720.	Would not meet chemical-specific ARARS. Location- specific ARARS for wetlands apply. Action-specific ARARS would be attained.	If properly maintained, will effectively prevent exposure of human and ecological receptors. Does not provide long-term protection of groundwater.	Contamination is not treated or destroyed; no reduction of toxicity, mobility or volume of contaminants.	Using dust depression techniques and general health and safety practices would result in minimal risks to workers. Minimal impact on community during implementation. Impact on waterfowl at the NG Pond during implementation.	Cover system easily installed.	Total Present Worth: \$2,995,000 Capital Cost: \$1,243,000 Annual O&M: \$114,000
NG/RPA-SS3: Excavation/ Solidification/ On-site Disposal	Eliminates exposure risks to human and ecological receptors at the NG/RPA by removing contaminated surface soil/sediment. Contaminated soil/sediment would, though, remain at BAAP. Groundwater quality requirements of NR 720 are met.	Would meet chemical-specific ARARs. Location- specific ARARs would apply. Action- specific ARARs would be attained.	Would be capable of maintaining protection at the NG/RPA because the contaminated soil would have been removed. Effective at the on-site disposal location as long as the location remains secure.	No reduction in toxicity. Stabilization/solidification would greatly reduce mobility. Volume of soil would increase by 20-30% (though not increasing actional amount of contamination).	Same as for NG/RPA-SS2 except excavation of contamination would increase risks to workers.	Excavation easily performed. Stabilization/solidification technology easily implemented.	Total Present Worth: \$12,910,000 Capital Cost: \$12,910,000 Annual O&M: \$0

COMPARATIVE SUMMARY OF REMEDIAL ALTERNATIVES NITROGLYCERINE POND/ROCKET PASTE AREA SURFACE SOIL/SEDIMENT **TABLE 11-12**

BADGER ARMY AMMUNITION PLANT FEASIBILITY STUDY

ALTERNATIVE	OVERALL PROTECTION	COMPLIANCE WITH ARARS	EFFECTIVENESS: LONG-TERM	REDUCTION OF MOBILITY, TOXICITY, AND VOLUME	EFFECTIVENESS: SHORT-TERM	IMPLEMENTABILITY	Cost
NG/RPA-SS4: Excavation/Off-site Disposal	Eliminates exposure risks to human and ecological receptors at the NG/RPA by removing contaminated surface soil/sediment. Groundwater quality requirements of NR 720 are met.	Would meet chemical-specific ARARs. Location- specific ARARs would apply. Action- specific ARARs would be attained.	Would be capable of maintaining protection at the NG/RPA because the contaminated soil would have been removed. Effective at the off-site disposal facility is maintained.	No reduction in toxicity or volume. Mobility would be greatly reduced as contaminated surface soil/sediment would be placed in a permitted off-site disposal facility.	Same as for NG/RPA-SS2 except excavation of contamination would increase risks to workers.	Excavation easily performed. Transportation and off-site disposal easily implemented.	Total Present Worth: \$34,743,000 Capital Cost: \$34,743,000 Annual O&M:
NG/RPA-SS6: In- Stu Solidification/ Soil Cover	Achieves remedial action objectives for human and ecological receptors. Groundwater requirements of NR 720 are met.	Would meet chemical-specific ARARs. Location-specific ARARs would apply, action-specific ARARs would be met.	Would be capable of maintaining protection of NG/RPA as long as treated soil/sediment and the soil cover remain intact.	No reduction in toxicity. Stabilization/solidification would greatly reduce mobility. Volume of soil would increase by 20% to 30% (though not increasing actual amount of contamination.	Same as for NG/RPA-SS2.	Stabilization/solidification technology easily implemented. Cover system easily installed.	Total Present Worth: \$9,398,000 Capital Cost: \$7,184,000 Annual O&M:

Notes:

RG ARARs

Remediation Goal Applicable or Relevant and Appropriate Requirements

TABLE 11-13 COST SUMMARY TABLE ALTERNATIVE NP/RPA-SW1: MINIMAL ACTION

FEASIBILITY STUDY NITROGLYCERINE POND/ROCKET PASTE AREA BADGER ARMY AMMUNITION AREA

DIRECT COST Institutional Controls \$ 10,000 Fencing & Warning Signs \$ 96,000 **TOTAL DIRECT COST \$ 106,000 **NDIRECT COST \$ 1,000 Legal, Administration, Permitting @ 5% of Total Direct Cost 5,000 Engineering @ 10% of Total Direct Cost 11,000 Services During Construction, QA/QC, Documentation @ 10% of Total Direct Cost 11,000 **TOTAL INDIRECT COST \$ 32,000 **TOTAL INDIRECT COST \$ 138,000 **TOTAL CAPITAL (DIRECT + INDIRECT) COST \$ 138,000 **DPERATING AND MAINTENANCE COSTS \$ 13,000 **Total Present Worth of Annual O&M Costs (5% for Thirty Years) 200,000 Annual Groundwater Sampling — First four years 3,000 **TOTAL PRESENT WORTH OF O&M COSTS \$ 211,000			
Institutional Controls Fencing & Warning Signs TOTAL DIRECT COST \$ 106,000 NDIRECT COST	ITEM	OTAL C	OST
Institutional Controls Fencing & Warning Signs TOTAL DIRECT COST \$ 106,000 NDIRECT COST	DIDECT COOT		
Fencing & Warning Signs 96,000 TOTAL DIRECT COST \$ 106,000 NDIRECT COST Health and Safety @ 5% of Total Direct Cost \$ 5,000 Legal, Administration, Permitting @ 5% of Total Direct Cost \$ 5,000 Engineering @ 10% of Total Direct Cost \$ 11,000 Services During Construction, QA/QC, Documentation @ 10% of Total Direct Cost \$ 11,000 TOTAL INDIRECT COST \$ 32,000 TOTAL CAPITAL (DIRECT + INDIRECT) COST \$ 138,000 DPERATING AND MAINTENANCE COSTS Total Annual Operating and Maintenance Costs \$ 13,000 Total Present Worth of Annual O&M Costs (5% for Thirty Years) \$ 200,000 Annual Groundwater Sampling — First four years \$ 3,000 Total Present Worth of Annual GW Sampling (5% for Four Years) 11,000		\$	10.000
TOTAL DIRECT COST Health and Safety @ 5% of Total Direct Cost \$ 5,000 Legal, Administration, Permitting @ 5% of Total Direct Cost 5,000 Engineering @ 10% of Total Direct Cost 11,000 Services During Construction, QA/QC, Documentation @ 10% of Total Direct Cost 11,000 TOTAL INDIRECT COST \$ 32,000 TOTAL CAPITAL (DIRECT + INDIRECT) COST \$ 138,000 DPERATING AND MAINTENANCE COSTS		Ψ	· ·
NDIRECT COST Health and Safety @ 5% of Total Direct Cost \$5,000 Legal, Administration, Permitting @ 5% of Total Direct Cost 5,000 Engineering @ 10% of Total Direct Cost 11,000 Services During Construction, QA/QC, Documentation @ 10% of Total Direct Cost 11,000 TOTAL INDIRECT COST \$32,000 TOTAL CAPITAL (DIRECT + INDIRECT) COST \$138,000 OPERATING AND MAINTENANCE COSTS Total Annual Operating and Maintenance Costs \$13,000 Total Present Worth of Annual O&M Costs (5% for Thirty Years) 200,000 Annual Groundwater Sampling — First four years 3,000 Total Present Worth of Annual GW Sampling (5% for Four Years) 11,000	r enoing & warning digits		
NDIRECT COST Health and Safety @ 5% of Total Direct Cost \$5,000 Legal, Administration, Permitting @ 5% of Total Direct Cost 5,000 Engineering @ 10% of Total Direct Cost 11,000 Services During Construction, QA/QC, Documentation @ 10% of Total Direct Cost 11,000 TOTAL INDIRECT COST \$32,000 TOTAL CAPITAL (DIRECT + INDIRECT) COST \$138,000 OPERATING AND MAINTENANCE COSTS Total Annual Operating and Maintenance Costs \$13,000 Total Present Worth of Annual O&M Costs (5% for Thirty Years) 200,000 Annual Groundwater Sampling — First four years 3,000 Total Present Worth of Annual GW Sampling (5% for Four Years) 11,000			
Health and Safety @ 5% of Total Direct Cost Legal, Administration, Permitting @ 5% of Total Direct Cost Engineering @ 10% of Total Direct Cost Services During Construction, QA/QC, Documentation @ 10% of Total Direct Cost TOTAL INDIRECT COST \$ 32,000 TOTAL CAPITAL (DIRECT + INDIRECT) COST \$ 138,000 DEFINITION OF Annual Operating and Maintenance Costs Total Annual Operating and Maintenance Costs Fotal Present Worth of Annual O&M Costs (5% for Thirty Years) Annual Groundwater Sampling — First four years Total Present Worth of Annual GW Sampling (5% for Four Years) 11,000 11,000	TOTAL DIRECT COST	<u> </u>	106,000
Health and Safety @ 5% of Total Direct Cost Legal, Administration, Permitting @ 5% of Total Direct Cost Engineering @ 10% of Total Direct Cost Engineering @ 10% of Total Direct Cost Services During Construction, QA/QC, Documentation @ 10% of Total Direct Cost 11,000 TOTAL INDIRECT COST \$ 32,000 TOTAL CAPITAL (DIRECT + INDIRECT) COST \$ 138,000 DPERATING AND MAINTENANCE COSTS Total Annual Operating and Maintenance Costs \$ 13,000 Total Present Worth of Annual O&M Costs (5% for Thirty Years) Annual Groundwater Sampling — First four years Total Present Worth of Annual GW Sampling (5% for Four Years) 11,000			
Legal, Administration, Permitting @ 5% of Total Direct Cost Engineering @ 10% of Total Direct Cost Services During Construction, QA/QC, Documentation @ 10% of Total Direct Cost 11,000 TOTAL INDIRECT COST \$ 32,000 TOTAL CAPITAL (DIRECT + INDIRECT) COST \$ 138,000 DEFINATING AND MAINTENANCE COSTS Total Annual Operating and Maintenance Costs \$ 13,000 Total Present Worth of Annual O&M Costs (5% for Thirty Years) Annual Groundwater Sampling — First four years 7 1000 Total Present Worth of Annual GW Sampling (5% for Four Years) 11,000	INDIRECT COST		
Engineering @ 10% of Total Direct Cost Services During Construction, QA/QC, Documentation @ 10% of Total Direct Cost 11,000 TOTAL INDIRECT COST \$ 32,000 TOTAL CAPITAL (DIRECT + INDIRECT) COST \$ 138,000 DPERATING AND MAINTENANCE COSTS Total Annual Operating and Maintenance Costs \$ 13,000 Total Present Worth of Annual O&M Costs (5% for Thirty Years) Annual Groundwater Sampling — First four years Total Present Worth of Annual GW Sampling (5% for Four Years) 11,000	• -	\$. 1
Services During Construction, QA/QC, Documentation @ 10% of Total Direct Cost TOTAL INDIRECT COST \$ 32,000 TOTAL CAPITAL (DIRECT + INDIRECT) COST \$ 138,000 DPERATING AND MAINTENANCE COSTS Total Annual Operating and Maintenance Costs \$ 13,000 Total Present Worth of Annual O&M Costs (5% for Thirty Years) Annual Groundwater Sampling — First four years 3,000 Total Present Worth of Annual GW Sampling (5% for Four Years) 11,000			i
TOTAL CAPITAL (DIRECT + INDIRECT) COST \$ 138,000 DEPERATING AND MAINTENANCE COSTS Total Annual Operating and Maintenance Costs \$ 13,000 Total Present Worth of Annual O&M Costs (5% for Thirty Years) 200,000 Annual Groundwater Sampling — First four years 3,000 Total Present Worth of Annual GW Sampling (5% for Four Years) 11,000			
TOTAL CAPITAL (DIRECT + INDIRECT) COST DPERATING AND MAINTENANCE COSTS Total Annual Operating and Maintenance Costs \$ 13,000 Total Present Worth of Annual O&M Costs (5% for Thirty Years) 200,000 Annual Groundwater Sampling — First four years 3,000 Total Present Worth of Annual GW Sampling (5% for Four Years) 11,000	Services During Construction, QA/QC, Documentation @ 10% of Total Direct Cost		11,000
DPERATING AND MAINTENANCE COSTS Total Annual Operating and Maintenance Costs \$ 13,000 Total Present Worth of Annual O&M Costs (5% for Thirty Years) 200,000 Annual Groundwater Sampling — First four years 3,000 Total Present Worth of Annual GW Sampling (5% for Four Years) 11,000	TOTAL INDIRECT COST	\$	32,000
DPERATING AND MAINTENANCE COSTS Total Annual Operating and Maintenance Costs \$ 13,000 Total Present Worth of Annual O&M Costs (5% for Thirty Years) 200,000 Annual Groundwater Sampling — First four years 3,000 Total Present Worth of Annual GW Sampling (5% for Four Years) 11,000			
DPERATING AND MAINTENANCE COSTS Total Annual Operating and Maintenance Costs \$ 13,000 Total Present Worth of Annual O&M Costs (5% for Thirty Years) 200,000 Annual Groundwater Sampling — First four years 3,000 Total Present Worth of Annual GW Sampling (5% for Four Years) 11,000			
DPERATING AND MAINTENANCE COSTS Total Annual Operating and Maintenance Costs \$ 13,000 Total Present Worth of Annual O&M Costs (5% for Thirty Years) 200,000 Annual Groundwater Sampling — First four years 3,000 Total Present Worth of Annual GW Sampling (5% for Four Years) 11,000	TOTAL CAPITAL (DIRECT + INDIRECT) COST	\$	138 000
Total Annual Operating and Maintenance Costs \$ 13,000 Total Present Worth of Annual O&M Costs (5% for Thirty Years) 200,000 Annual Groundwater Sampling — First four years 3,000 Total Present Worth of Annual GW Sampling (5% for Four Years) 11,000	TOTAL ON TIAL (BILLOT) TOTAL (BILLOT)	•	100,000
Total Annual Operating and Maintenance Costs \$ 13,000 Total Present Worth of Annual O&M Costs (5% for Thirty Years) 200,000 Annual Groundwater Sampling — First four years 3,000 Total Present Worth of Annual GW Sampling (5% for Four Years) 11,000			
Total Annual Operating and Maintenance Costs \$ 13,000 Total Present Worth of Annual O&M Costs (5% for Thirty Years) 200,000 Annual Groundwater Sampling — First four years 3,000 Total Present Worth of Annual GW Sampling (5% for Four Years) 11,000	ODED ATING AND MAINTENANCE COSTS		
Total Present Worth of Annual O&M Costs (5% for Thirty Years) Annual Groundwater Sampling – First four years 3,000 Total Present Worth of Annual GW Sampling (5% for Four Years) 11,000		•	13,000
Annual Groundwater Sampling - First four years 3,000 Total Present Worth of Annual GW Sampling (5% for Four Years) 11,000	Total Allindal Operating and Maintenance Oosts	Ψ	10,000
Total Present Worth of Annual GW Sampling (5% for Four Years) 11,000	Total Present Worth of Annual O&M Costs (5% for Thirty Years)		200,000
Total Present Worth of Annual GW Sampling (5% for Four Years) 11,000			
	Annual Groundwater Sampling — First four years		3,000
	Total Present Worth of Annual GW Sampling (5% for Four Years)		11,000
TOTAL PRESENT WORTH OF O&M COSTS \$ 211,000			
	TOTAL PRESENT WORTH OF O&M COSTS	\$	211,000
· ·			
TOTAL COST FOR SW-1 MINIMAL ACTION \$ 349,000	TOTAL COST FOR SW-1 MINIMAL ACTION	\$	349,000

TABLE 11-14 DETAILED ANALYSIS - ALTERNATIVE NG/RPA-SW1 NITROGLYCERINE POND/ROCKET PASTE AREA SURFACE WATER

EVALUATION CRITERIA	NG/RPA-SW1 MINIMAL ACTION
Overall Protection of Human Health and th	e Environment
Human Health Protection	There are no unacceptable excess human health risks posed by chemicals in surface water at the NG/RPA ponds.
Environmental Protection	Minimal action does not eliminate or reduce potential risk to several ecological receptors posed by the surface water at the Nitroglycerine, Overflow, and Rocket Paste Ponds.
Compliance with ARARs	
Chemical-specific	RGs are based on chemical-specific ARARs. The minimal action alternative does not meet the RGs for ecological receptors.
Location-specific	Wetlands protection ARARs do not apply to this alternative because no action would be taken.
Action-specific	RCRA hazardous waste units ARARs would be met. Post-closure groundwater monitoring would meet RCRA Releases from SWMU's ARAR.
Long-term Effectiveness and Permanence	
Magnitude of Residual Risk	Minimal action eliminates or reduces potential risk to ecological receptors that cannot pass the constructed fence boundary (e.g., deer). The minimal action alternative does not reduce potential risk to ecological receptors such as birds and shrews.
Adequacy and Reliability of Controls	Fencing would limit surface water access to many ecological receptors.
Reduction of Toxicity, Mobility, and Volume	9
Treatment Process Used and Materials Treated	None.
Amount Destroyed or Treated	None.
Degree of Expected Reductions of Toxicity, Mobility, and Volume	Minimal action does not employ removal or treatment processes to address surface water contamination at the site.
Degree to Which Treatment is Irreversible	Not Applicable.
Type and Quantity of Residuals Remaining After Treatment	Not Applicable.
Short-term Effectiveness	
Protection of Community During Remedial Action	Because this alternative provides only a minimal response action (i.e., installation of fencing and signs), threats to the community are unlikely to be encountered during implementation.

TABLE 11-14 DETAILED ANALYSIS - ALTERNATIVE NG/RPA-SW1 NITROGLYCERINE POND/ROCKET PASTE AREA SURFACE WATER

EVALUATION CRITERIA	NG/RPA-SW1 MINIMAL ACTION
Protection of Workers During Remedial Action	Threats to site-worker health are very unlikely to be encountered during implementation of this alternative. Workers should follow safe working practices.
Environmental Impacts	No environmental impacts are expected during implementation.
Time Until Remedial Action Objectives Are Achieved	Minimal action does not achieve the remedial response objectives.
Implementability	
Ability to Construct and Operate the Technology	Installing fencing and posting warning signs at the Nitroglycerine, Overflow, and Rocket Paste Ponds are easily implemented construction tasks.
Reliability of the Technology	If fencing is adequately maintained it should be effective in limiting surface water access by human and some ecological receptors.
Ease of Undertaking Additional Remedial Actions, if Necessary	Minimal action would not limit or interfere with the ability to perform future remedial actions.
Ability to Monitor Effectiveness of Remedy	Annual visual inspections would be sufficient for monitoring minimal action effectiveness.
Ability to Obtain Approvals and Coordinate with Other Agencies	Coordination with appropriate Army officials, WDNR, and the City of Baraboo would be required if these controls are applied. Coordination with Sauk County would be required to implement and maintain a public education program.
Availability of Off-site Treatment, Storage, and Disposal Services and Capacity	Not Applicable.
Availability of Necessary Equipment and Specialists	Local contractors and necessary materials are readily available to construct fencing and warning signs as well as conduct educational programs.
Availability of Technology	Not Applicable.
Costs	
Capital Cost	\$138,000
Present Worth of Operation and Maintenance Cost	\$211,000
Net Present Worth Cost	\$349,000

TABLE 11-15

COST SUMMARY TABLE

ALTERNATIVE NP/RPA-SW2: SURFACE WATER TREATMENT BY PRECIPITATION/MICROFILTRATION

FEASIBILITY STUDY NITROGLYCERINE POND/ROCKET PASTE AREA BADGER ARMY AMMUNITION AREA

ITEM	***************************************	
DIRECT COST		
Treatability Study	\$	12,000
Site Preparation and Mob/Demob		188,000
Bypass Pumping		57,000
Pumping to Treatment Facility		51,000
Water Treatment by Precipitation		314,000
Confirmation Sampling		25,000
Discharge to Main Ditch		2,000
TOTAL DIRECT COST	5	649,000
NDIRECT COST		
Health and Safety @ 5% of Total Direct Cost	\$	32,000
Legal, Administration, Permitting @ 5% of Total Direct Cost		32,00
Engineering @ 10% of Total Direct Cost		65,00
Services During Construction, QA/QC, Documentation @ 10% of Total Direct Cost		65,000
		,
TOTAL INDIRECT COST	ş	194,000
TOTAL INDIRECT COST TOTAL CAPITAL (DIRECT + INDIRECT) COST	\$	194,000
TOTAL CAPITAL (DIRECT + INDIRECT) COST OPERATING AND MAINTENANCE COSTS	_	194,000
TOTAL CAPITAL (DIRECT + INDIRECT) COST	_	194,000 843,000
TOTAL CAPITAL (DIRECT + INDIRECT) COST PERATING AND MAINTENANCE COSTS	\$	194,000 843,000
TOTAL CAPITAL (DIRECT + INDIRECT) COST PERATING AND MAINTENANCE COSTS Total Annual Operating and Maintenance Costs	\$	194,000 843,000
TOTAL CAPITAL (DIRECT + INDIRECT) COST PPERATING AND MAINTENANCE COSTS Total Annual Operating and Maintenance Costs TOTAL PRESENT WORTH OF O&M COSTS (5% FOR 30 YEARS) TOTAL COST FOR SW-2 SURFACE WATER TREATMENT BY PRECIPITATION/	\$	194,000 843,000
TOTAL CAPITAL (DIRECT + INDIRECT) COST OPERATING AND MAINTENANCE COSTS Total Annual Operating and Maintenance Costs TOTAL PRESENT WORTH OF O&M COSTS (5% FOR 30 YEARS)	\$	

TABLE 11-16 DETAILED ANALYSIS - ALTERNATIVE NG/RPA-SW2 NITROGLYCERINE POND/ROCKET PASTE AREA SURFACE WATER

EVALUATION CRITERIA	NG/RPA-SW2 PRECIPITATION/MICROFILTRATION
Overall Protection of Human Health and the	e Environment
Human Health Protection	There are no unacceptable excess health risks posed by chemical in surface water at the NG/RPA ponds.
Environmental Protection	Achieves remedial action objectives for aquatic and semi-aquatic receptors except for the possible nonattainment of the RG for HG.
Compliance with ARARs	
Chemical-specific	No chemical-specific ARARs available for Nitroglycerine Pond surface water. RGs are based on ecological risk.
Location-specific	Wetlands protection ARARs would be met for remediation of the ponds because no practicable alternative less harmful to the wetlands is available to meet the RGs. The USFWS, NMFS, and other related agencies must be consulted before modifying the ponds. A permit may be required from the U.S. Army Corps of Engineers.
Action-specific	RCRA hazardous waste units ARARs would be met. Post-closure groundwater monitoring would meet RCRA Releases from SWMU's ARAR.
	RCRA, Standards for Owners and Operators of Hazardous Waste Treatment, Storage, and Disposal Facilities (40 CFR - Part 264) ma apply. If applicable, a program which incorporates the standards would be implemented.
Other Criteria, Advisories, and Guidances	None.
Long-term Effectiveness and Permanence	
Magnitude of Residual Risk	Surface water would be treated to comply with RGs. If HG concentrations in treated water discharged to the Main Ditch exceeds the RG, it is expected to contribute a very small residual risk to environmental receptors.
Adequacy and Reliability of Controls	Treatment would be expected to remove the majority of surface water contaminants. A treatability study would ensure that remediation goals are met.
	Handling and disposal of the metals-contaminated sludge must be properly managed to ensure protection of human and ecological receptors.
Reduction of Toxicity, Mobility, and Volume	
Treatment Process Used and Materials Treated	Precipitation followed by microfiltration would be used to remove metals that exceed RGs.
Amount Destroyed or Treated	Approximately 5 million gallons of surface water would be treated.

TABLE 11-16 DETAILED ANALYSIS - ALTERNATIVE NG/RPA-SW2 NITROGLYCERINE POND/ROCKET PASTE AREA SURFACE WATER

EVALUATION CRITERIA	NG/RPA-SW2 PRECIPITATION/MICROFILTRATION
Degree of Expected Reductions of Toxicity, Mobility, and Volume	The mobility of metals is reduced by treating the surface water and containing the metals in sludge which would be properly disposed off-site. Toxicity and volume of the metals would not be reduced.
Degree to Which Treatment is Irreversible	Metals precipitation is potentially reversible if the metals leach in the off-site disposal location.
Type and Quantity of Residuals Remaining After Treatment	Sludge will remain as a result of metals precipitation from surface water. The quantity of sludge will vary depending on the type of process used, as determined during treatability testing. Worst case estimate is 10 tons of sludge.
Short-term Effectiveness	
Protection of Community During Remedial Action	No risks to the community would be expected during implementation.
Protection of Workers During Remedial Action	Adherence to general health and safety practices would insure minimal risk to workers.
Environmental Impacts	The Rocket Paste Area is not considered critical wildlife habitat. Waterfowl using the Nitroglycerine Pond would be disturbed during implementation of the alternative.
Time Until Remedial Action Objectives Are Achieved	An estimated 3 to 4 months would be required to achieve the remedial action objectives from the start of remediation.
Implementability	
Ability to Construct and Operate the Technology	Operation of a precipitation and microfiltration system is relatively routine.
Reliability of the Technology	Precipitation and microfiltration are proven, widely used processes for removing metals from water. The processes can be adapted to treat a wide variety of waste streams by changing operating parameters.
Ease of Undertaking Additional Remedial Actions, if Necessary	Additional remediation would not be limited by this technology.
Ability to Monitor Effectiveness of Remedy	Effluent would be tested periodically during treatment.
Ability to Obtain Approvals and Coordinate with Other Agencies	The integrity of the remedial design would have to be demonstrated to federal and state regulators. A wetland permit may be required from the U.S. Army Corps of Engineers. RCRA hazardous waste permit potentially required.
Availability of Off-site Treatment, Storage, and Disposal Services and Capacity	Adequate off-site disposal capacity is available for the residual sludge from the treatment process.

TABLE 11-16 DETAILED ANALYSIS - ALTERNATIVE NG/RPA-SW2 NITROGLYCERINE POND/ROCKET PASTE AREA SURFACE WATER

EVALUATION CRITERIA	NG/RPA-SW2 PRECIPITATION/MICROFILTRATION
Availability of Necessary Equipment and Specialists	Precipitation and microfiltration equipment are readily available. Several vendors would be able to provide the necessary services.
Availability of Technology	Precipitation and microfiltration are readily available technologies.
Costs	
Capital Cost	\$843,000
Present Worth of Operation and Maintenance Cost	\$0
Net Present Worth Cost	\$843,000

TABLE 11-17 COST SUMMARY TABLE ALTERNATIVE NP/RPA-SW3: SURFACE WATER TREATMENT BY ION EXCHANGE

FEASIBILITY STUDY NITROGLYCERINE POND/ROCKET PASTE AREA BADGER ARMY AMMUNITION AREA

ITEM	TOTAL C	OST
DIDECT COST		
Translation Structure	•	40.000
Treatability Study	\$	12,000
Site Preparation and Mob/Demob		188,000
Bypass Pumping		57,000
Pumping to Treatment Facility		51,000 314,000
Water Treatment by Ion Exchange Confirmation Sampling		25,000
Discharge to Main Ditch		2,000
Discharge to Main Diton		2,000
TOTAL DIRECT COST	\$	649,000
INDIRECT COST		
Health and Safety @ 5% of Total Direct Cost	\$	32,000
Legal, Administration, Permitting @ 5% of Total Direct Cost		32,000
Engineering @ 10% of Total Direct Cost		65,000
Services During Construction, QA/QC, Documentation @ 10% of Total Direct Cost		65,000
TOTAL INDIRECT COST	S	194,000
TOTAL CAPITAL (DIRECT + INDIRECT) COST	\$	843,000
OPERATING AND MAINTENANCE COSTS		
Total Annual Operating and Maintenance Costs	\$	0
TOTAL PRESENT WORTH OF O&M COSTS (5% FOR 30 YEARS)	S	0
TOTAL COST FOR SW-3 SURFACE WATER TREATMENT BY ION EXCHANGE	\$	843,000
	•	•
		ŀ

TABLE 11-18 DETAILED ANALYSIS - ALTERNATIVE NG/RPA-SW3 NITROGLYCERINE POND/ROCKET PASTE AREA SURFACE WATER

EVALUATION CRITERIA	NG/RPA-SW3 ION EXCHANGE
Overall Protection of Human Health and the	Environment
Human Health Protection	There are no unacceptable excess human health risks posed by chemicals in surface water at the NG/RPA ponds.
Environmental Protection	Would not achieve remedial action objectives for aquatic and semi- aquatic receptors because of unanticipated breakthrough or leakage of metals through the ion exchange system.
Compliance with ARARs	
Chemical-specific	No chemical-specific ARARs available for Nitroglycerine Pond surface water.
Location-specific	Wetlands protection ARARs would be met for remediation of the ponds because no practicable alternative less harmful to the wetlands is available to meet RGs. The USFWS, NMFS, and other related agencies must be consulted before modifying the ponds. A permit may be required from the U.S. Army Corps of Engineers.
Action-specific	RCRA hazardous waste units ARARs would be met. Post-closure groundwater monitoring would meet RCRA Releases from SWMU's ARAR.
	RCRA, Standards for Owners and Operators of Hazardous Waste Treatment, Storage, and Disposal Facilities (40 CFR - Part 264) may apply. If applicable, a program which incorporates the standards would be implemented.
Other Criteria, Advisories, and Guidances	None.
Long-term Effectiveness and Permanence	
Magnitude of Residual Risk	Treated surface water may not attain RGs for metals. Residual risk to environmental receptors, although reduced, could be significant.
Adequacy and Reliability of Controls	Treatment would be expected to remove the majority of surface water contaminants. A treatability study would ensure that remediation goals are met.
	Handling and disposal of spent filters must be properly managed to ensure protection of human and ecological receptors.
Reduction of Toxicity, Mobility, and Volume	
Treatment Process Used and Materials Treated	Ion exchange would be used to remove metals that exceed RGs.
Amount Destroyed or Treated	Approximately 5 million gallons of surface water would be treated.

TABLE 11-18 DETAILED ANALYSIS - ALTERNATIVE NG/RPA-SW3 NITROGLYCERINE POND/ROCKET PASTE AREA SURFACE WATER

EVALUATION CRITERIA	NG/RPA-SW3 ION EXCHANGE
Degree of Expected Reductions of Toxicity, Mobility, and Volume	The mobility of metals is reduced by treating the surface water and containing the metals in filter media and metal sheets, which would then be properly disposed off-site. Toxicity and volume of the metals would not be reduced.
Degree to Which Treatment is Irreversible	Capturing metals in filter media is potentially reversible if the metals leach in the off-site disposal location. Metals would not be expected to leach from metal sheets.
Type and Quantity of Residuals Remaining After Treatment	Spent filters and metal sheets will remain as a result of filtration and ion exchange. The volume of plated metal for off-site disposal is expected to be small.
Short-term Effectiveness	
Protection of Community During Remedial Action	No risks to the community would be expected during implementation.
Protection of Workers During Remedial Action	Adherence to general health and safety practices would ensure minimal risk to workers.
Environmental Impacts	The Rocket Paste Area is not considered critical wildlife habitat. Waterfowl using the Nitroglycerine Pond would be disturbed during implementation of the alternative.
Time Until Remedial Action Objectives Are Achieved	An estimated 3 to 4 months would be required to achieve the remedial action objectives from the start of remediation.
Implementability	
Ability to Construct and Operate the Technology	Operation of an ion exchange system is relatively routine.
Reliability of the Technology	Ion exchange is a proven, widely used method for removing metals from water. Ion exchange resins must be tailored for treating particular waste streams.
Ease of Undertaking Additional Remedial Actions, if Necessary	Additional remedial actions would not be limited by this technology.
Ability to Monitor Effectiveness of Remedy	Effluent would be tested periodically during treatment.
Ability to Obtain Approvals and Coordinate with Other Agencies	The integrity of the remedial design would have to be demonstrated to federal and state regulators. A wetland permit may be required from the U.S. Army Corps of Engineers. RCRA hazardous waste permit potentially required.
Availability of Off-site Treatment, Storage, and Disposal Services and Capacity	Adequate off-site disposal capacity is available for the spent filters and metal sheets from the treatment process.

TABLE 11-18 DETAILED ANALYSIS - ALTERNATIVE NG/RPA-SW3 NITROGLYCERINE POND/ROCKET PASTE AREA SURFACE WATER

EVALUATION CRITERIA	NG/RPA-SW3 ION EXCHANGE
Availability of Necessary Equipment and Specialists	Ion exchange equipment is readily available. Several vendors would be able to provide the necessary services.
Availability of Technology	Ion exchange is a readily available technology.
Costs	
Capital Cost	\$843,000
Present Worth of Operation and Maintenance Cost	\$0
Net Present Worth Cost	\$843,000

COMPARATIVE SUMMARY OF REMEDIAL ALTERNATIVES NITROGLYCERINE POND/ROCKET PASTE AREA SURFACE WATER TABLE 11-19

BADGER ARMY AMMUNITION PLANT FEASIBILITY STUDY

ALTERNATIVE	OVERALL PROTECTION	COMPLIANCE WITH ARARS	EFFECTIVENESS: LONG-TERM	REDUCTION OF MOBILITY, TOXICITY, AND VOLUME	EFFECTIVENESS: SHORT-TERM	İMPLEMENTABILITY	Cost
NG/RPA-SW1: Minimal Action	Reduces risks to some ecological receptors (e.g., deer) by restricting access to the ponds.	Would not meet chemical-specific ARARs. Location- and action-specific ARARs do not apply.	Not applicable because remedial action objectives are not achieved.	Contamination is not treated or destroyed; no reduction of toxicity, mobility or volume of contaminants.	Minimal impact to community or workers during implementation.	Easily implementable.	Total Present Worth: \$349,000 Capital Cost: \$138,000 Annual O&M: \$13,000
NG/RPA-SW2: Precipitation/ Microfiltration	Meets remedial action objectives by reducing risks to ecological receptors by reducing metals concentrations in the surface water to RGs (except for HG whose RG may not be met with currently available technology).	Chemical-specific ARARs (i.e., RGs) would be met (except for possibly HG). Wetland protection ARARs would be met. Action- specific ARARs would be attained.	Would be capable of maintaining protection as long as future runoff would not carry contamination into the NG Pond.	Toxicity and volume would not be reduced. Metals would be concentrated into a residual sludge. Mobility would be reduced by disposal of residual sludge at a licensed off-site disposal facility.	Minimal impact to the community during implementation. Minimal risk to workers if proper health and safety procedures are followed. Water quality may be adversely affected by chemicals used during precipitation.	No implementability concerns. Processes can be adapted to treat a wide variety of waste streams.	Total Present Worth: \$843,000 Capital Cost: \$843,000 Annual O&M: \$0
NG/RPA-SW3: ion Exchange	Would reduce risks to human and ecological receptors, but may not reduce metals concentrations to RGs.	Chemical-specific ARARs (i.e., RGs) would not be met. Wetland protection ARARs would be met. Action- specific ARARs would be attained.	Not applicable because remedial action objectives may not be achieved.	Toxicity or volume would not be reduced. Metals would concentrated into filters and metal sheets. Mobility of metals in spent filters would be reduced by disposal of spent filters at a licensed off-site disposal facility. Metal sheets would not require special disposal.	Minimal impact to the community during implementation. Minimal risk to workers if proper health and safety procedures are followed.	Significant implementability concerns. Process is subject to breakthrough and leakage of metals.	Total Present Worth: \$843,000 Capital Cost: \$843,000 Annual O&M: \$0

Notes:

RG ARARs

Remediation Goal Applicable or Relevant and Appropriate Requirements

FIGURE 11-1
SITE FENCING FOR
SOIL/SEDIMENT MINIMAL ACTION
NITROGLYCERINE POND AND
ROCKET PASTE AREA
FEASIBILITY STUDY
BADGER ARMY AMMUNITION PLANT

SCALE IN FEET 0 1200 2400

-ABB Environmental Services, Inc.-

E AND W. ROCKET PASTE AREA DITCHES

FIGURE 11-3
EXISTING DITCH CROSS SECTIONS (TYP.)
NITROGLYCERINE POND
AND ROCKET PASTE AREA
FEASIBILITY STUDY
BADGER ARMY AMMUNITION PLANT

-ABB Environmental Services, Inc.

SCALE IN FEET
0 3 6

ROCKET PASTE POND AND OVERFLOW POND

FIGURE 11-4
PONDS CROSS SECTION (TYP.)
NITROGLYCERINE POND
AND ROCKET PASTE AREA
FEASIBILITY STUDY
BADGER ARMY AMMUNITION PLANT

—ABB Environmental Services, Inc.

NOT TO SCALE

E AND W. ROCKET PASTE AREA DITCHES

MAIN DITCH

FIGURE 11-5
DITCH SOIL COVER CROSS SECTION (TYP.)
NITROGLYCERINE POND
AND ROCKET PASTE AREA
FEASIBILITY STUDY
BADGER ARMY AMMUNITION PLANT

-ABB Environmental Services, Inc.-

ROCKET PASTE POND

FIGURE 11-6
PONDS SOIL COVER CROSS SECTION (TYP.)
NITROGLYCERINE POND
AND ROCKET PASTE AREA
FEASIBILITY STUDY
BADGER ARMY AMMUNITION PLANT

-ABB Environmental Services, Inc.

9407005D(c) 3

NOT TO SCALE

ROCKET PASTE POND AND OVERFLOW POND

FIGURE 11-8
PONDS EXCAVATION CROSS SECTION (TYP.)
NITROGLYCERINE POND
AND ROCKET PASTE AREA
FEASIBILITY STUDY
BADGER ARMY AMMUNITION PLANT

NOT TO SCALE

-ABB Environmental Services, Inc.-

E AND W. ROCKET PASTE AREA DITCHES

FIGURE 11-9
DITCH BACKFILL CROSS SECTION (TYP.)
NITROGLYCERINE POND
AND ROCKET PASTE AREA
FEASIBILITY STUDY
BADGER ARMY AMMUNITION PLANT

–ABB Environmental Services, Inc.-

SCALE IN FEET

FIGURE 11-11
SITE FENCING FOR
SURFACE WATER MINIMAL ACTION
NITROGLYCERINE POND AND
ROCKET PASTE AREA
FEASIBILITY STUDY
BADGER ARMY AMMUNITION PLANT

0 1200 2400

-ABB Environmental Services, Inc.-

FIGURE 11-12
SITE LAYOUT FOR SURFACE WATER TREATMENT
NITROGLYCERINE POND AND
ROCKET PASTE AREA
FEASIBILITY STUDY
BADGER ARMY AMMUNITION PLANT

-ABB Environmental Services, Inc.-

FIGURE 11-14
PLAN IN-SITU SOLIDIFICATION/STABILIZATION OPERATIONS
NITROGLYCERINE POND AND ROCKET PASTE AREA
FEASIBILITY STUDY
BADGER ARMY AMMUNITION PLANT

—— ABB Environmental Services, Inc.

TABLE 12-1 GROUNDWATER MONITORING PROGRAM FINAL CREEK, SETTLING PONDS, AND SPOILS DISPOSAL AREA

FEASIBILITY STUDY REPORT BADGER ARMY AMMUNITION PLANT

Groundwater Monitoring Locations

S 1101	S 1152 A
S 1102	S 1152 B
S 1103	SPN 8901 C
S 1104	SPN 8902 A, B & C
S 1105	SPN 8903 B & C
S 1106	SPN 8904 B & C
S 1107	SPN 8905 A & B
S 1108	SPN 9102 D
S 1133	SPN 9103 D
S 1147	SPN 9104 D
S 1148	S 1149

Analytical Parameters and Monitoring Frequency

Quarterly

Annually

VOCs, SVOCs, and Metals (Filtered)¹

pH Specific Conductance Nitrate Nitrogen Carbon Tetrachloride Trichloroethylene Chloroform

Chlorofori Benzene

Chromium (filtered)

Notes:

VOCs, SVOCs, and Metals as described by WDNR (WDNR, 1992).

TABLE 12-2 COST SUMMARY TABLE ALTERNATIVE SP-SS1: MINIMAL ACTION

FEASIBILITY STUDY SETTLING PONDS BADGER ARMY AMMUNITION PLANT

ITEM TOTAL COST DIRECT COST MINIMAL ACTION Institutional controls \$ 10,000 TOTAL DIRECT COST MINIMAL ACTION \$ 10,000 NDIRECT COST MINIMAL ACTION Health and Safety @ 5% of Total Direct Cost \$ 0 Legal, Administration, Permitting @ 5% of Total Direct Cost 0 Engineering @ 10% of Total Direct Cost 0 Services During Construction @ 10% of Total Direct Cost 0 TOTAL INDIRECT COST MINIMAL ACTION \$ 0
Institutional controls \$ 10,000 TOTAL DIRECT COST MINIMAL ACTION \$ 10,000 NDIRECT COST MINIMAL ACTION Health and Safety @ 5% of Total Direct Cost \$ 0 Legal, Administration, Permitting @ 5% of Total Direct Cost 0 Engineering @ 10% of Total Direct Cost 0 Services During Construction @ 10% of Total Direct Cost 0
Institutional controls \$ 10,000 TOTAL DIRECT COST MINIMAL ACTION \$ 10,000 NDIRECT COST MINIMAL ACTION Health and Safety @ 5% of Total Direct Cost \$ 0 Legal, Administration, Permitting @ 5% of Total Direct Cost 0 Engineering @ 10% of Total Direct Cost 0 Services During Construction @ 10% of Total Direct Cost 0
NDIRECT COST MINIMAL ACTION Health and Safety @ 5% of Total Direct Cost \$ 0 Legal, Administration, Permitting @ 5% of Total Direct Cost 0 Engineering @ 10% of Total Direct Cost 0 Services During Construction @ 10% of Total Direct Cost 0
NDIRECT COST MINIMAL ACTION Health and Safety @ 5% of Total Direct Cost \$ 0 Legal, Administration, Permitting @ 5% of Total Direct Cost 0 Engineering @ 10% of Total Direct Cost 0 Services During Construction @ 10% of Total Direct Cost 0
NDIRECT COST MINIMAL ACTION Health and Safety @ 5% of Total Direct Cost \$ 0 Legal, Administration, Permitting @ 5% of Total Direct Cost 0 Engineering @ 10% of Total Direct Cost 0 Services During Construction @ 10% of Total Direct Cost 0
Health and Safety @ 5% of Total Direct Cost \$ 0 Legal, Administration, Permitting @ 5% of Total Direct Cost 0 Engineering @ 10% of Total Direct Cost 0 Services During Construction @ 10% of Total Direct Cost 0
Health and Safety @ 5% of Total Direct Cost \$ 0 Legal, Administration, Permitting @ 5% of Total Direct Cost 0 Engineering @ 10% of Total Direct Cost 0 Services During Construction @ 10% of Total Direct Cost 0
Health and Safety @ 5% of Total Direct Cost \$ 0 Legal, Administration, Permitting @ 5% of Total Direct Cost 0 Engineering @ 10% of Total Direct Cost 0 Services During Construction @ 10% of Total Direct Cost 0
Legal, Administration, Permitting @ 5% of Total Direct Cost0Engineering @ 10% of Total Direct Cost0Services During Construction @ 10% of Total Direct Cost0
Engineering @ 10% of Total Direct Cost 0 Services During Construction @ 10% of Total Direct Cost 0
TOTAL INDIRECT COST MINIMAL ACTION \$ 0
TOTAL INDIRECT COST MINIMAL ACTION \$ 0
TOTAL CAPITAL (DIRECT + INDIRECT) COST \$ 10,000
DPERATING AND MAINTENANCE COSTS
Total Cost Replacement Wells \$ 11,000
· · · · · · · · · · · · · · · · · · ·
Total Present Worth of Replacement Wells in Year 16 @ 5% \$ 5,000
Total Annual Operating and Maintenance Costs \$ 185,000
Total Present Worth of O&M Costs (5% for 30 Years) \$ 2,844,000
Total Present Worth of O&M Costs (5% for 30 Years) \$ 2,844,000
TOTAL PRESENT WORTH OF O&M COSTS \$ 2,849,000
TOTAL COST FOR SS-1 MINIMAL ACTION \$ 2,859,000
FUTAL COT TO TO TO TO TO TO TO TO TO TO TO TO T

EVALUATION CRITERIA	ALTERNATIVE SSP-SS1 MINIMAL ACTION
Overall Protection of Human Healtl	h and the Environment
Human Health Protection	Minimal Action would reduce potential exposure risks to human receptors by restricting site access.
Environmental Protection	Minimal action does not eliminate or reduce potential risk posed by the soils at Final Creek, Settling Ponds and Spoils Disposal Area.
Compliance with ARARs	
Chemical-specific	There are no promulgated chemical-specific ARARs for soil. However, TBC soil clean-up standards for protection of human health and groundwater have been derived from the proposed Wisconsin Chapter NR 720, Wisconsin Administrative Code, and are being applied to BAAP soil remediation. Because soil contaminants would not be treated, removed, or destroyed, this alternative would not comply with pathway-specific numeric standards derived from the proposed Chapter NR 720.
Location-specific	RCRA, Standards for Owners and Operators of Hazardous Waste Treatment, Storage, and Disposal Facilities (40 CFR - Part 264) may apply. If applicable, a program which incorporates the standards would be implemented. RCRA, Releases from Solid Waste Management Units (Subpart F, 264.90-264.109) may apply for post-closure monitoring of the site. This alternative would include continued groundwater monitoring. Wetlands Protection ARARs do not apply to this alternative because no action would be taken.
Action-specific	RCRA hazardous waste units ARARs would be met. Post closure groundwater monitoring would meet RCRA releases from SWMUs ARAR. Federal OSHA requirements to protect worker health and safety would be followed during the site work. Wisconsin Hazardous Waste Management and Facility Regulations are essentially equivalent to federal RCRA regulations and as such, the degree of ARARs compliance with standards established by Wisconsin hazardous waste regulations can be inferred from the degree of ARARs compliance with RCRA.

EVALUATION CRITERIA	ALTERNATIVE SSP-SS1 MINIMAL ACTION
Long-term Effectiveness and Permane	nce
Magnitude of Residual Risk	Under the minimal action alternative, contaminant levels in the soil are not expected to decrease significantly over time. Groundwater quality would continue to be threatened.
Adequacy and Reliability of Controls	There are no physical controls proposed in this alternative. The proposed institutional controls would adequately perform their intended purpose of restriction.
Reduction of Toxicity, Mobility, and Vo	olume
Treatment Process Used and Materials Treated	Not Applicable. No treatment is used in this alternative.
Amount Destroyed or Treated	No contamination is treated or destroyed.
Degree of Expected Reductions of Toxicity, Mobility, and Volume	Minimal action does not employ removal or treatment processes to address soil contamination; no reduction of toxicity, mobility, or volume.
Degree to Which Treatment is Irreversible	Not Applicable. No treatment used.
Type and Quantity of Residuals Remaining After Treatment	Not Applicable. No treatment used.
Short-term Effectiveness	
Protection of Community During Remedial Action	Because this alternative provides no response action, threats to the community are unlikely to be encountered during implementation.
Protection of Workers During Remedial Action	No construction is required with this alternative. However, site workers involved in the groundwater monitoring program should follow safe working practices.
Environmental Impacts	There would be no environmental impacts during implementation.
Time Until Remedial Action Objectives Are Achieved	Remedial action objectives would not be achieved with minimal action.
Implementability	
Ability to Construct and Operate the Technology	Not Applicable. No construction is involved with this alternative.
Reliability of the Technology	Not Applicable. No technology is used with this alternative.

EVALUATION CRITERIA	ALTERNATIVE SSP-SS1 MINIMAL ACTION
Ease of Undertaking Additional Remedial Actions, if Necessary	Minimal action would not limit or interfere with the ability to perform future remedial actions.
Ability to Monitor Effectiveness of Remedy	The proposed groundwater monitoring program would adequately monitor contaminant migration.
Ability to Obtain Approvals and Coordinate with Other Agencies	Coordination with appropriate Army officials, WDNR, and the City of Baraboo would be required if these controls are applied. Coordination with Sauk County would be required to implement and maintain a public education program.
Availability of Off-site Treatment, Storage, and Disposal Services and Capacity	Not Applicable. No technology, treatment, or construction is involved.
Availability of Necessary Equipment and Specialists	Local contractors are readily available to conduct educational programs and perform groundwater monitoring.
Availability of Technology	Not Applicable. No technology used.
Costs	
Capital Cost	\$10,000
Present Worth of Operation and Maintenance Cost	\$2,849,000
Net Present Worth Cost	\$2,859,000

TABLE 12-4 COST SUMMARY TABLE ALTERNATIVE SP-SS3: CAPPING

FEASIBILITY STUDY SETTLING PONDS BADGER ARMY AMMUNITION PLANT

ITEM	AL	COST
DIRECT COST CARRING		
DIRECT COST CAPPING Site preparation and mob/demob	\$	903,000
Contaminated soil delineation	Ψ	111,000
Cap		22,543,000
Surface water management		123,000
Canade water management		120,000
TOTAL DIRECT COST CAPPING	•	22 690 000
TOTAL DIRECT COST CAFFING	•	23,680,000
INDIRECT COST CAPPING		
Health and Safety @ 5% of Total Direct Cost	\$	1,184,000
Legal, Administration, Permitting @ 5% of Total Direct Cost		1,184,000
Engineering @ 10% of Total Direct Cost		2,368,000
Services During Construction @ 10% of Total Direct Cost		2,368,000
TOTAL INDIRECT COST CAPPING	\$	7,104,000
	200000000	
TOTAL CAPITAL (DIRECT + INDIRECT) COST	\$	30,784,000
OPERATING AND MAINTENANCE COSTS		
Total Annual Operating and Maintenance Costs	\$	196,000
TOTAL PRESENT WORTH OF O&M COSTS (5% FOR 30 YEARS)	\$	3,013,000
TOTAL COST FOR SS-3 CAPPING	\$	33,797,000
		1

ALTERNATIVE SSP-SS3 CAPPING		
d the Environment		
Achieves remedial action objectives for human receptors. The cap and institutional controls would significantly reduce the potential of physical contact with contaminated soil and significantly reduce precipitation infiltration through waste area soil to groundwater.		
Would meet environmental-based response objectives. Cap would significantly reduce leachate generation such that groundwater is protected. Degree of adverse impact by placing cover soil over local mammal habitat is uncertain.		
Compliance with ARARs		
Chemical-specific ARARs have not been promulgated for contaminated soil; however, TBC soil clean-up standards for protection of human health and groundwater have been derived from the proposed Wisconsin Chapter NR 720, Wisconsin Administrative Code, and are being applied to BAAP soil remediation. Because soil contaminants would not be removed or destroyed, this alternative would not comply with pathway-specific numeric standards derived from the proposed Chapter NR 720. However, the caps used in this alternative could be designed to achieve a performance standard which would meet the intent of the proposed Chapter NR 720 clean-up standards for protection of human health and groundwater.		
RCRA, Standards for Owners and Operators of Hazardous Waste Treatment, Storage, and Disposal Facilities (40 CFR - Part 264) may apply. If applicable, a program which incorporates the standards would be implemented. RCRA, Releases from Solid Waste Management Units (Subpart F, 264.90-264.109) may apply for post-closure monitoring of the site. This alternative would include continued groundwater monitoring. Location-specific ARARs pertaining to wetlands, surface water, and landfills may apply to components of this alternative. Permits would		

EVALUATION CRITERIA	ALTERNATIVE SSP-SS3 CAPPING
Action-specific	General RCRA requirements pertaining to permitted Hazardous Waste TSD Units would be addressed by the capping alternative.
	Dust suppression techniques and other preventive measures would ensure compliance with both state and federal particulate emission standards. Also, fugitive particulate emissions during site work should not exceed exempt-source thresholds under Wisconsin Air Pollution Control Rules.
	Federal OSHA requirements to protect worker health and safety would be followed during the site work.
	Wisconsin Hazardous Waste Management and Facility Regulations are essentially equivalent to federal RCRA regulations and as such, the degree of ARARs compliance with standards established by Wisconsin hazardous waste regulations can be inferred from the degree of ARARs compliance with RCRA.
Long-term Effectiveness and Permanence	
Magnitude of Residual Risk	Contaminated material would remain untreated at the site after capping operations are complete; however, potential risks to humans via migration of contaminants to groundwater and to humans and ecological receptors via direct contact is greatly reduced.
Adequacy and Reliability of Controls	Long-term management to maintain cap would be necessary. Capping, if properly maintained, is a reliable control. Institutional controls would protect the caps from invasive activities and restrict residential or public use of the site. Visual inspections would be conducted annually to ensure the integrity of the caps. Long-term groundwater monitoring would detect soil contaminants leaching into groundwater.
Reduction of Toxicity, Mobility, and Volume	
Treatment Process Used and Materials Treated	Alternative SSP-SS3 does not involve treatment of contaminated soils.
Amount Destroyed or Treated	Contaminants would not be destroyed or treated.
Degree of Expected Reductions of Toxicity, Mobility, and Volume	Toxicity and volume of soil contaminants would not be affected by capping. Contaminant mobility through soil via precipitation infiltration would be greatly reduced.
Degree to Which Treatment is Irreversible	Not Applicable. No treatment is used with this alternative.
Type and Quantity of Residuals Remaining After Treatment	Not Applicable. No treatment is used with this alternative.

EVALUATION CRITERIA	ALTERNATIVE SSP-SS3 CAPPING
Short-term Effectiveness	
Protection of Community During Remedial Action	No risks to the community would be expected during implementation. There are no residences close enough to the site to be affected by noise or dust.
Protection of Workers During Remedial Action	With the use of dust suppression techniques and adherence to general health and safety practices, there would be minimal risk to workers as no excavation of contaminated soil would occur.
Environmental Impacts	The cap may destroy a portion of the burrowing animal habitat. Appropriate erosion control measures would be employed during implementation to limit environmental impacts.
Time Until Remedial Action Objectives Are Achieved	Implementation should be complete within approximately 6 months.
Implementability	
Ability to Construct and Operate the Technology	Cap construction can be accomplished using standard construction procedures and conventional earth-moving equipment. Cap repairs would be easily implemented.
Reliability of the Technology	Capping is a proven technology for significantly reducing infiltration of precipitation and migration of soil contaminants via leaching. Visual inspections and cap repair, if necessary, would ensure that the integrity of the cap is maintained.
Ease of Undertaking Additional Remedial Actions, if Necessary	The cap would increase the scope of potential future soil excavation and/or treatment. The cap would need to be dismantled if soil removal or in situ soil treatment methods were implemented.
Ability to Monitor Effectiveness of Remedy	Annual visual cap inspections and groundwater monitoring would determine cap effectiveness for significantly reducing groundwater contamination.
Ability to Obtain Approvals and Coordinate with Other Agencies	The integrity of the remedial design would have to be demonstrated to federal and state regulators. A wetlands permit from the U.S. Corps of Engineers may be required. Permits and approvals would be obtained during design and before construction.
Availability of Off-site Treatment, Storage, and Disposal Services and Capacity	Contaminated soil or treatment residuals would not be transported off-site.
Availability of Necessary Equipment and Specialists	Cap materials and contractors with health and safety training are readily available for the construction of the cover system.
Availability of Technology	Not Applicable. No technology used.

EVALUATION CRITERIA	ALTERNATIVE SSP-SS3 CAPPING
Costs	
Capital Cost	\$ 30,784,000
Present Worth of Operation and Maintenance Cost	\$ 3,013,000
Net Present Worth Cost	\$ 33,797,000

TABLE 12-6 COST SUMMARY TABLE ALTERNATIVE SP-SS7: MODIFIED IN-SITU SOLIDIFICATION AND SOIL COVER

FEASIBILITY STUDY SETTLING PONDS BADGER ARMY AMMUNITION PLANT

ITEM	TOTAL	COST
DIRECT COST MODIFIED IN-SITU SOLIDIFICATION AND SOIL COVER		
Treatability testing	\$	78,000
Site preparation and mob/demob		3,099,000
Contaminated soil delineation		221,000
In-situ stabilization/solidification		14,081,000
Stabilization/solidification		24,351,000
Cover soil		7,646,000
Surface water management		123,000
TOTAL DIRECT COST MODIFIED IN-SITU SOLIDIFICATION AND SOIL COVE	R \$	49,599,000
	•••	
INDIRECT COST MODIFIED IN-SITU SOLIDIFICATION AND SOIL COVER		
Health and Safety @ 5% of Total Direct Cost	\$	2,480,000
Legal, Administration, Permitting @ 5% of Total Direct Cost	•	2,480,000
Engineering @ 10% of Total Direct Cost		4,960,000
Services During Construction @ 10% of Total Direct Cost		4,960,000
·		
TOTAL INDIRECT COST MODIFIED IN-SITU SOLIDIFICATION	\$	14,880,000
AND SOIL COVER		
TOTAL CARITAL (DIRECT : INDIRECT) COOT		
TOTAL CAPITAL (DIRECT + INDIRECT) COST	\$	64,479,000
OPERATING AND MAINTENANCE COSTS		
<u> </u>		
Total Annual Operating and Maintenance Costs	\$	196,000
	·	111,
TOTAL PRESENT WORTH OF O&M COSTS (5% FOR 30 YEARS)	\$	3,013,000
TOTAL COST FOR SS-7 MODIFIED IN-SITU SOLIDIFICATION	\$	67,492,000
AND SOIL COVER		

EVALUATION CRITERIA	ALTERNATIVE SSP-SS7 Modified In SITU S/S AND SOIL COVER	
Overall Protection of Human Health and the Environment		
Human Health Protection	Achieves remedial action objective for protection of human health. Modified in situ S/S, the soil cover, and institutional controls would reduce the potential for human exposure to contaminant concentrations greater than remediation goals. Stabilized/solidified mass would resist erosion and overland migration of contaminants.	
Environmental Protection	Achieves the remedial action objectives for terrestrial organisms and protection of groundwater. Modified in situ S/S and the soil cover would reduce the potential for organism exposure to surface soil with contaminant concentrations greater than remediation goals. Modified in situ S/S would significantly reduce leachate generation such that groundwater is protected.	
Compliance with ARARs		
Chemical-specific	Chemical-specific ARARs have not been promulgated for contaminated soil; however, TBC soil clean-up standards for protection of human health and groundwater have been derived from the proposed Wisconsin Chapter NR 720, Wisconsin Administrative Code, and are being applied to BAAP soil remediation. Because soil contaminants would not be removed or destroyed, this alternative would not comply with pathway-specific numeric standards derived from the proposed Chapter NR 720. However, the modified in situ S/S and soil cover used in this alternative could be designed to achieve a performance standard which would meet the intent of the proposed Chapter NR 720 clean-up standards for protection of human health and groundwater.	
Location-specific	RCRA, Standards for Owners and Operators of Hazardous Waste Treatment, Storage, and Disposal Facilities (40 CFR - Part 264) may apply. If applicable, a program which incorporates the standards would be implemented. RCRA, Releases from Solid Waste Management Units (Subpart F, 264.90-264.109) may apply for post-closure monitoring of the site. This alternative would include continued groundwater monitoring at the Settling Ponds/Spoils Disposal Area. Wisconsin Hazardous Waste Management and Facility Regulations are essentially equivalent to federal RCRA regulations and as such, the degree of ARARs compliance with standards established by Wisconsin hazardous waste regulations can be inferred from the degree of ARARs compliance with RCRA.	

EVALUATION CRITERIA	ALTERNATIVE SSP-SS7 MODIFIED IN SITU S/S AND SOIL COVER
Action-specific	Federal OSHA requirements to protect worker health and safety would be followed during the site work.
	Fugitive particulate emissions generated during site work are substantively subject to Wisconsin Particulate and Sulfur Emission Rules (WAC, Chapter NR 415) and General and Portable Sources Air Pollution Control Rules; Ambient Air Quality Standards (WAC, Chapter NR 404). It is assumed that dust suppression techniques and other preventative measures would ensure compliance with particulate emission standards.
Other Criteria, Advisories, and Guidances	It is presumed that relevant criteria, advisories, and guidances would be considered prior to implementation of this alternative.
Long-term Effectiveness and Permanence	
Magnitude of Residual Risk	Provided the stabilized/solidified treatment residuals and the soil covers remain intact, residual risk to human and ecological receptors would be negligible. In the event construction-related invasive activities occur, or burrowing animals penetrate the soil cover, the chemical and physical properties of the treatment residuals would significantly reduce exposure potential via receptor ingestion and/or inhalation of particulates. Because the treatment residuals would be resistant to degradation processes, they would provide long-term protection of groundwater.
Adequacy and Reliability of Controls	Institutional controls would protect the soil covers from invasive activities and restrict residential or public use of the site. Visual inspections would be conducted annually to ensure the integrity of the soil covers. Long-term groundwater monitoring would detect soil contaminants leaching into groundwater.
Reduction of Toxicity, Mobility, and Volume	
Treatment Process Used and Materials Treated	S/S would be used to chemically and physically bind soil contaminants into a stabilized/solidified matrix.
Amount Destroyed or Treated	It is estimated that approximately 490,000 cubic yards of contaminated soil would be treated at the Settling Ponds, Spoils Disposal Area, and Final Creek.
Degree of Expected Reductions of Toxicity, Mobility, and Volume	No reduction in contaminant toxicity. Treatment residuals would be resistant to leaching and erosion, preventing the migration of contaminants overland or into groundwater. The volume of contaminated soil would actually increase by up to 50 percent.
Degree to Which Treatment is Irreversible	Treatment is potentially reversible. However, proper maintenance of the soil cover would prevent weathering of the treatment residuals and the release of contaminants.

EVALUATION CRITERIA	ALTERNATIVE SSP-SS7 MODIFIED IN SITU S/S AND SOIL COVER
Type and Quantity of Residuals Remaining After Treatment	Treatment residuals would be a granular or monolithic matrix with entrapped contaminants. The residuals would be buried under a minimum of 2 feet of common borrow and topsoil. Assuming excavation and/or the addition of stabilizing/solidifying agents results in a swell factor of 30 percent, 637,000 cubic yards of residuals would remain on site.
Short-term Effectiveness	
Protection of Community During Remedial Action	No risks to the community would be expected during implementation. There are no residences close enough to the site to be affected by noise or dust.
Protection of Workers During Remedial Action	With the use of dust suppression techniques and adherence to general health and safety practices, there would be minimal risk to workers.
Environmental Impacts	The modified in situ S/S alternative may destroy a portion of the burrowing animal habitat by rototilling and placing a 2 foot minimum cover. Appropriate erosion control measures would be employed during implementation to limit environmental impacts.
Time Until Remedial Action Objectives Are Achieved	Treatability testing could potentially take 8-10 weeks. Treatment and cover could take 6 to 10 months.
Implementability	
Ability to Construct and Operate the Technology	Specialized in situ S/S methods have been developed by adapting road construction equipment for that purpose (LaRose, 1993). The even ground surface at the site would be amenable to the use of the equipment. Cover construction can be accomplished using standard construction procedures and conventional earth-moving equipment. Cover repairs would be easily implemented.
Reliability of the Technology	The success of in situ S/S is highly dependent on site- and waste-characteristics. Extensive treatability testing is required. Soil cover is a proven technology for isolating potential receptors from contaminated soil. Annual visual inspections and soil cover repair (if necessary) would ensure that the integrity of the treatment residuals and the soil cover is maintained.
Ease of Undertaking Remedial Actions, if Necessary	Depending upon the physical properties (i.e., granular or monolith) of the treatment residuals, S/S may make future removal actions impractical. If future remedial actions included capping the site to prevent infiltration of precipitation, caps could be constructed over the soil covers.
Ability to Monitor Effectiveness of Remedy	Annual visual inspections would be sufficient for monitoring soil cover effectiveness.

TABLE 13-1 GROUNDWATER MONITORING PROGRAM SOUTHERN OFF-POST AREA

FEASIBILITY STUDY BADGER ARMY AMMUNITION PLANT

GROUNDWATER MONITORING WELL L	OCATIONS (24) ¹
SWN 9101 B, C, & D	SWN 9102 C & D
SWN 9103 B, C, D, & E	SWN 9104 C & D
PBN 9101 C	PBM 9001 D
PBM 9002 D	PBN 9102 B & C
PBM 9003 D	PBN 9301 B & C
PBN 9004 B & D	SWN 9105 B, C, & D
PRIVATE WELL LOCATIONS (3)2	
Premo	
Schaeffer	
Graf	

Notes:

¹VOCs, SVOCs, and Metals (filtered) monitored quarterly as described in Modification of Conditional Plan Approval of In-Field Conditions Report (WDNR, 1992).

²VOCs, Metals (unfiltered), and Indicator Parameters Monitored Quarterly as Described in In-Field Conditions Report Approval (WDNR, 1987)

TABLE 13-2 COST SUMMARY TABLE ALTERNATIVE SOPA-GW1: MINIMAL ACTION

ITEM	TO	TAL COST
DIRECT COST OF MINIMAL ACTION		
Education plan preparation	\$	50,000
Education plant proparation	. •	00,000
TOTAL DIRECT COST OF MINIMAL ACTION	\$	50,000
NDIRECT COST OF MINIMAL ACTION		
Health and Safety @ 0% of Total Direct Cost	\$	(
Legal, Administration, Permitting @ 0% of Total Direct Cost		(
Engineering @ 0% of Total Direct Cost		. 0
Services During Construction @ 0% of Total Direct Cost		O
TOTAL INDIRECT COST OF MINIMAL ACTION	Š	0
	<u> </u>	
TOTAL CAPITAL (DIRECT + INDIRECT) COST	\$	50,000
OPERATING AND MAINTENANCE COSTS		
Total cost replacement wells	\$	22,000
Total present worth of replacement wells	\$	10,000
in year 16 @ 5%	Ψ	10,000
,		
Total Annual Operating and Maintenance Costs	\$	184,000
T. I. I	•	
Total present worth of annual O&M costs (5% for 30 years)	\$	2,829,000
TOTAL PRESENT WORTH OF O&M COSTS	\$	2,839,000
TOTAL COST FOR GW-1 MINIMAL ACTION	\$	2,889,000
	•	

TABLE 13-3 DETAILED ANALYSIS - ALTERNATIVE SOPA-GW1 SOUTHERN OFF-POST AREA

EVALUATION CRITERIA	ALTERNATIVE SOPA-GW1 - MINIMAL ACTION
Overall Protection of Human He	alth and the Environment
Human Health Protection	Under a minimal action scenario, the public would continue to be potentially exposed to contaminated drinking water. However, this alternative would achieve the remedial action objective by reducing existing human receptor (i.e., farm worker) exposure to contaminated groundwater. Groundwater monitoring would detect changes in contaminant distribution potentially affecting public and/or private wells. Changes in contaminant distribution would be mitigated by actions implemented per the Off-Post Contingency Plan.
Environmental Protection	Groundwater contaminants are not expected to bioaccumulate in irrigated crops; therefore, there is no threat to the environment.
Compliance with ARARs	
Chemical-specific	WPALs would be achieved in approximately 66 years (estimated using USEPA batch flushing model) after implementation of the BAAP Control Wells.
Location-specific	Location-specific ARARs do not apply to this alternative.
Action-specific	Action-specific ARARs do not apply to this alternative because no action would be taken.
Long-term Effectiveness and Pe	rmanence
Magnitude of Residual Risk	Interception of the contaminant plume at the southern BAAP boundary would result in eventual decreases in contaminant concentrations and residual risk downgradient (i.e., Southern Off-Post Area) of BAAP.
Adequacy and Reliability of Controls	Not Applicable. No controls would be used in this alternative.
Reduction of Toxicity, Mobility,	or Volume through Treatment
Treatment Process Used and Materials Treated	Not Applicable. No treatment is used in this alternative.
Amount Destroyed or Treated	No contamination is destroyed or treated.
Degree of Expected Reductions of Toxicity, Mobility, or Volume through Treatment	No reduction of toxicity, mobility, or volume through treatment because treatment is not used.
Degree to Which Treatment is Irreversible	No treatment is used.
Type and Quantity of Residuals Remaining After Treatment	No treatment is used.
Short-term Effectiveness	
Protection of Community during Remedial Action	No adverse or beneficial impact to the community would occur because no remedial actions would be implemented.
Worker Protection during Remedial Action	No adverse worker impacts because no remedial actions would be implemented.

TABLE 13-3 DETAILED ANALYSIS - ALTERNATIVE SOPA-GW1 SOUTHERN OFF-POST AREA

FEASIBILITY STUDY BADGER ARMY AMMUNITION PLANT

EVALUATION CRITERIA	ALTERNATIVE SOPA-GW1 - MINIMAL ACTION
Environmental Impacts	No direct or indirect short-term adverse ecological effects would occur because no remedial actions would be implemented.
Time until Remedial Action Objectives are Achieved	The remedial action objectives would be achieved with the implementation of the institutional controls. The aquifer would remain contaminated until natural attenuation and degradation processes reduce contaminant concentrations.
Implementability	
Ability to Construct and Operate the Technology	No construction would occur.
Reliability of Technology	No technologies would be used.
Ease of Undertaking Additional Remedial Action, if Necessary	Minimal action would not limit or interfere with the ability to perform future remedial actions.
Ability to Monitor Effectiveness of Remedy	Monitoring program can be implemented using existing monitoring wells.
Ability to Obtain Approvals and Coordinate with other Agencies	No permits would be required.
Availability of Off-site Treatment, Storage, and Disposal Services and Capacity	Not required.
Availability of Necessary Equipment and Specialists	No equipment would be required.
Availability of Technology	No technologies would be used.
Cost	
Capital Cost	\$50,000
Present Worth of Operation and Maintenance Cost	\$2,839,000
Net Present Worth Cost	\$2,889,000

Notes:

Applicable or Relevant and Appropriate Requirements Preliminary Remediation Goal ARARs =

PRG =

TABLE 13-4 TREATMENT FACILITY INFLUENT CONCENTRATIONS AND SURFACE WATER DISCHARGE LIMITS GROUNDWATER EXTRACTION SCENARIO 1 SOUTHERN OFF-POST AREA

FEASIBILITY STUDY REPORT BADGER ARMY AMMUNITION PLANT

COMPOUND	MAXIMUM CONCENTRATION DETECTED (µg/l)	Assumed Concentrations in Influent From Proposed Control Wells ² (µg/2)	ESTIMATED SURFACE WATER DISCHARGE LIMIT ³ (µg/1)
OPCW-1 thro	ugh OPCW-6		,
CCL4	97.0	10.0	<1
CHCL3	8.25	2.0	<1
TRCLE	2.44	1.0	, <1

Notes:

Maximum concentration detected in the Final RI Report (ABB-ES, 1993a) base boundary monitoring wells.

² Approximate concentrations calculated from base boundary monitoring well concentrations.

Estimated discharge limits assume 99% removal of organic contaminants is required.

TABLE 13-5 TREATMENT FACILITY INFLUENT CONCENTRATIONS AND SURFACE WATER DISCHARGE LIMITS GROUNDWATER EXTRACTION SCENARIO 2 SOUTHERN OFF-POST AREA

FEASIBILITY STUDY REPORT BADGER ARMY AMMUNITION PLANT

COMPOUND	Maximum Concentration Detected' (µg/ℓ)	Assumed Concentrations in Influent From Proposed Control Wells ² (µg/ℓ)	ESTIMATED SURFACE WATER DISCHARGE LIMIT ³ (µg/1)
OPCW-1 thro	ugh OPCW-6		
CCL4	10.8	5.0	<1
CHCL3	1.31	1.0	<1
TRCLE	0.425	1.0	<1
OPCW-7 thro	ugh OPCW-12		
CCL4	97.0	10.0	<1
CHCL3	8.25	2.0	<1
TRCLE	2.44	1.0	<1

Notes:

Maximum concentrations detected in the Final RI Report (ABB-ES, 1993a) in upgradient monitoring wells prior to the next row of extraction wells.

² Approximate concentrations calculated from base boundary monitoring well concentrations.

Estimated discharge limits assume 99% removal of organic contaminants is required.

TABLE 13-6 TREATMENT FACILITY INFLUENT CONCENTRATIONS AND SURFACE WATER DISCHARGE LIMITS GROUNDWATER EXTRACTION SCENARIO 3 SOUTHERN OFF-POST AREA

FEASIBILITY STUDY REPORT BADGER ARMY AMMUNITION PLANT

COMPOUND	Maximum Concentration Detected' (µg/ℓ)	Assumed Concentrations in Influent From Proposed Control Wells ² (µg/2)	ESTIMATED SURFACE WATER DISCHARGE LIMIT ³ (µg/2)
OPCW-1 thro	ugh OPCW-6		
CCL4	3.53	2.0	<1
CHCL3	0.594	1.0	<1
TRCLE	ND	1.0	<1
OPCW-7 thro	ugh OPCW-12		
CCL4	10.8	6.0	<1
CHCL3	1.31	1.0	<1
TRCLE	0.425	1.0	<1
OPCW-13 thr	ough OPCW-18		
CCL4	10.8	5.0	<1
CHCL3	1.31	1.0	<1
TRCLE	0.425	1.0	<1
OPCW-19 thr	ough OPCW-24		
CCL4	97.0	10.0	<1
CHCL3	8.25	2.0	<1
TRCLE	2.44	1.0	<1

Notes:

ND = Not detected

Maximum concentrations detected in the Final RI Report (ABB-ES, 1993a) in upgradient monitoring wells at or prior to the next row of extraction wells.

Approximate concentrations calculated from base boundary monitoring well concentrations.

Estimated discharge limits assume 99% removal of organic contaminants is required.

TABLE 13-7 GROUNDWATER TREATMENT SYSTEM SAMPLING AND ANALYSIS PROGRAM

COMPOUND	USEPA METHOD
CCL4	8240
CHCL3	8240
TRCLE	8240
CD	6010
PB	7421
MN	6010

TABLE 13-8 COST SUMMARY TABLE

ALTERNATIVE SOPA-GW2: AIR STRIPPING - WITH GROUNDWATER EXTRACTION SCENARIO 1

Electrical & Instrumentation Gravity Discharge Education Plan Preparation TOTAL DIRECT COST OF AIR STRIPPING WITH GWE SCENARIO 1 Health and Safety @ 5% of Total Direct Cost Legal, Administration, Permitting @ 5% of Total Direct Cost Engineering @ 10% of Total Direct Cost Services During Construction @ 10% of Total Direct Cost TOTAL INDIRECT COST OF AIR STRIPPING WITH GWE SCENARIO 1 TOTAL INDIRECT COST OF AIR STRIPPING WITH GWE SCENARIO 1 TOTAL CAPITAL (DIRECT + INDIRECT) COST Total Annual Operating and Maintenance Costs \$ 729,00			
Site Preparation and Mob/Demob Groundwater Extraction Pumps & Piping Treatment Plant Building Treatment Plant Building Treatment Plant Process Equipment Electrical & Instrumentation Gravity Discharge Education Plan Preparation TOTAL DIRECT COST OF AIR STRIPPING WITH GWE SCENARIO 1 Health and Safety @ 5% of Total Direct Cost Legal, Administration, Permitting @ 5% of Total Direct Cost Engineering @ 10% of Total Direct Cost Services During Construction @ 10% of Total Direct Cost TOTAL INDIRECT COST OF AIR STRIPPING WITH GWE SCENARIO 1 TOTAL INDIRECT COST OF AIR STRIPPING WITH GWE SCENARIO 1 TOTAL INDIRECT COST OF AIR STRIPPING WITH GWE SCENARIO 1 TOTAL INDIRECT COST OF AIR STRIPPING WITH GWE SCENARIO 1 TOTAL INDIRECT COST OF AIR STRIPPING WITH GWE SCENARIO 1 TOTAL INDIRECT COST OF AIR STRIPPING WITH GWE SCENARIO 1 TOTAL CAPITAL (DIRECT + INDIRECT) COST TOTAL CAPITAL (DIRECT + INDIRECT) COST Total Annual Operating and Maintenance Costs \$ 729,00	ITEM	тот	AL COST
Site Preparation and Mob/Demob Groundwater Extraction Pumps & Piping Treatment Plant Building Treatment Plant Building Treatment Plant Process Equipment Electrical & Instrumentation Gravity Discharge Education Plan Preparation TOTAL DIRECT COST OF AIR STRIPPING WITH GWE SCENARIO 1 Health and Safety @ 5% of Total Direct Cost Legal, Administration, Permitting @ 5% of Total Direct Cost Engineering @ 10% of Total Direct Cost Services During Construction @ 10% of Total Direct Cost TOTAL INDIRECT COST OF AIR STRIPPING WITH GWE SCENARIO 1 TOTAL INDIRECT COST OF AIR STRIPPING WITH GWE SCENARIO 1 TOTAL INDIRECT COST OF AIR STRIPPING WITH GWE SCENARIO 1 TOTAL INDIRECT COST OF AIR STRIPPING WITH GWE SCENARIO 1 TOTAL INDIRECT COST OF AIR STRIPPING WITH GWE SCENARIO 1 TOTAL INDIRECT COST OF AIR STRIPPING WITH GWE SCENARIO 1 TOTAL CAPITAL (DIRECT + INDIRECT) COST TOTAL CAPITAL (DIRECT + INDIRECT) COST Total Annual Operating and Maintenance Costs \$ 729,00			
Groundwater Extraction Pumps & Piping Treatment Plant Building Treatment Plant Process Equipment Electrical & Instrumentation Gravity Discharge Education Plan Preparation TOTAL DIRECT COST OF AIR STRIPPING WITH GWE SCENARIO 1 Health and Safety @ 5% of Total Direct Cost Legal, Administration, Permitting @ 5% of Total Direct Cost Engineering @ 10% of Total Direct Cost Services During Construction @ 10% of Total Direct Cost TOTAL INDIRECT COST OF AIR STRIPPING WITH GWE SCENARIO 1 TOTAL INDIRECT COST OF AIR STRIPPING WITH GROUNDWATER EXTRACTION SCENARIO 1 Health and Safety @ 5% of Total Direct Cost Legal, Administration, Permitting @ 5% of Total Direct Cost Engineering @ 10% of Total Direct Cost Services During Construction @ 10% of Total Direct Cost TOTAL INDIRECT COST OF AIR STRIPPING WITH GWE SCENARIO 1 TOTAL CAPITAL (DIRECT + INDIRECT) COST \$ 6,378,006 DPERATING AND MAINTENANCE COSTS Total Annual Operating and Maintenance Costs \$ 729,00			
Treatment Plant Building Treatment Plant Process Equipment Electrical & Instrumentation Gravity Discharge Education Plan Preparation TOTAL DIRECT COST OF AIR STRIPPING WITH GWE SCENARIO 1 Health and Safety @ 5% of Total Direct Cost Legal, Administration, Permitting @ 5% of Total Direct Cost Engineering @ 10% of Total Direct Cost Services During Construction @ 10% of Total Direct Cost TOTAL INDIRECT COST OF AIR STRIPPING WITH GWE SCENARIO 1 TOTAL INDIRECT COST OF AIR STRIPPING WITH GROUNDWATER EXTRACTION SCENARIO 1 TOTAL INDIRECT COST OF AIR STRIPPING WITH GWE SCENARIO 1 TOTAL INDIRECT COST OF AIR STRIPPING WITH GWE SCENARIO 1 TOTAL CAPITAL (DIRECT + INDIRECT) COST TOTAL CAPITAL (DIRECT + INDIRECT) COST Total Annual Operating and Maintenance Costs \$ 729,00	·	\$.	•
Treatment Plant Process Equipment Electrical & Instrumentation Gravity Discharge Education Plan Preparation TOTAL DIRECT COST OF AIR STRIPPING WITH GWE SCENARIO 1 Health and Safety @ 5% of Total Direct Cost Legal, Administration, Permitting @ 5% of Total Direct Cost Engineering @ 10% of Total Direct Cost Services During Construction @ 10% of Total Direct Cost TOTAL INDIRECT COST OF AIR STRIPPING WITH GWE SCENARIO 1 TOTAL INDIRECT COST OF AIR STRIPPING WITH GWE SCENARIO 1 TOTAL CAPITAL (DIRECT + INDIRECT) COST TOTAL CAPITAL (DIRECT + INDIRECT) COST Total Annual Operating and Maintenance Costs \$ 729,00	· · · ·		
Electrical & Instrumentation Gravity Discharge Education Plan Preparation TOTAL DIRECT COST OF AIR STRIPPING WITH GWE SCENARIO 1 Health and Safety @ 5% of Total Direct Cost Legal, Administration, Permitting @ 5% of Total Direct Cost Engineering @ 10% of Total Direct Cost Services During Construction @ 10% of Total Direct Cost TOTAL INDIRECT COST OF AIR STRIPPING WITH GWE SCENARIO 1 TOTAL INDIRECT COST OF AIR STRIPPING WITH GWE SCENARIO 1 TOTAL CAPITAL (DIRECT + INDIRECT) COST Total Annual Operating and Maintenance Costs \$ 729,00			· ·
Gravity Discharge Education Plan Preparation TOTAL DIRECT COST OF AIR STRIPPING WITH GWE SCENARIO 1 **NDIRECT COST OF AIR STRIPPING WITH GROUNDWATER EXTRACTION SCENARIO 1 Health and Safety @ 5% of Total Direct Cost Legal, Administration, Permitting @ 5% of Total Direct Cost Engineering @ 10% of Total Direct Cost Services During Construction @ 10% of Total Direct Cost TOTAL INDIRECT COST OF AIR STRIPPING WITH GWE SCENARIO 1 **TOTAL CAPITAL (DIRECT + INDIRECT) COST **TOTAL CAPITAL (DIRECT + INDIRECT) COST **TOTAL Annual Operating and Maintenance Costs **Total Annual Operating and Maintenance Costs **Total Annual Operating and Maintenance Costs **Total Annual Operating and Maintenance Costs **Total Annual Operating and Maintenance Costs **Total Annual Operating and Maintenance Costs **Total Annual Operating and Maintenance Costs **Total Annual Operating and Maintenance Costs **Total Annual Operating and Maintenance Costs **Total Annual Operating Stripping With Gwe Scenario 1** **Total Annual Operating and Maintenance Costs **Total Annual Operating Stripping With Gwe Scenario 1** **Total Annual Operating Stripping With Gwe Scenario 1** **Total Annual Operating Stripping With Gwe Scenario 1** **Total Annual Operating Stripping With Gwe Scenario 1** **Total Annual Operating Stripping With Gwe Scenario 1** **Total Annual Operating Stripping With Gwe Scenario 1** **Total Annual Operating Stripping With Gwe Scenario 1** **Total Annual Operating Stripping With Gwe Scenario 1** **Total Annual Operating Stripping With Gwe Scenario 1** **Total Annual Operating Stripping With Gwe Scenario 1** **Total Annual Operating Stripping With Gwe Scenario 1** **Total Annual Operating Stripping With Gwe Scenario 1** **Total Annual Operating Stripping With Gwe Scenario 1** **Total Annual Operating Stripping With Gwe Scenario 1** **Total Annual Operating Stripping With Gwe Scenario 1** **Total Annual Operating Stripping With Gwe Scenario 1** **Total Annual Operating Stripping With Gwe Scenario 1** **Tota	···		618,000
Education Plan Preparation 50,00 TOTAL DIRECT COST OF AIR STRIPPING WITH GWE SCENARIO 1 \$4,906,00 NDIRECT COST OF AIR STRIPPING WITH GROUNDWATER EXTRACTION SCENARIO 1 Health and Safety @ 5% of Total Direct Cost \$245,00 Legal, Administration, Permitting @ 5% of Total Direct Cost 245,00 Engineering @ 10% of Total Direct Cost 491,00 Services During Construction @ 10% of Total Direct Cost 491,00 TOTAL INDIRECT COST OF AIR STRIPPING WITH GWE SCENARIO 1 \$1,472,000 TOTAL CAPITAL (DIRECT + INDIRECT) COST \$6,378,000 DPERATING AND MAINTENANCE COSTS Total Annual Operating and Maintenance Costs \$729,000			
TOTAL DIRECT COST OF AIR STRIPPING WITH GWE SCENARIO 1 NDIRECT COST OF AIR STRIPPING WITH GROUNDWATER EXTRACTION SCENARIO 1 Health and Safety @ 5% of Total Direct Cost \$ 245,00 Legal, Administration, Permitting @ 5% of Total Direct Cost \$ 491,00 Services During Construction @ 10% of Total Direct Cost \$ 491,00 TOTAL INDIRECT COST OF AIR STRIPPING WITH GWE SCENARIO 1 TOTAL CAPITAL (DIRECT + INDIRECT) COST \$ 6,378,000 DEFRATING AND MAINTENANCE COSTS Total Annual Operating and Maintenance Costs \$ 729,000			346,000
NDIRECT COST OF AIR STRIPPING WITH GROUNDWATER EXTRACTION SCENARIO 1 Health and Safety @ 5% of Total Direct Cost \$ 245,00 Legal, Administration, Permitting @ 5% of Total Direct Cost 245,00 Engineering @ 10% of Total Direct Cost 491,00 Services During Construction @ 10% of Total Direct Cost 491,00 TOTAL INDIRECT COST OF AIR STRIPPING WITH GWE SCENARIO 1 \$ 1,472,000 TOTAL CAPITAL (DIRECT + INDIRECT) COST \$ 6,378,000 DPERATING AND MAINTENANCE COSTS Total Annual Operating and Maintenance Costs \$ 729,000	Education Plan Preparation		50,000
Health and Safety @ 5% of Total Direct Cost Legal, Administration, Permitting @ 5% of Total Direct Cost Engineering @ 10% of Total Direct Cost Services During Construction @ 10% of Total Direct Cost TOTAL INDIRECT COST OF AIR STRIPPING WITH GWE SCENARIO 1 TOTAL CAPITAL (DIRECT + INDIRECT) COST \$ 6,378,000 DPERATING AND MAINTENANCE COSTS Total Annual Operating and Maintenance Costs \$ 729,000	TOTAL DIRECT COST OF AIR STRIPPING WITH GWE SCENARIO 1	\$	4,906,000
Health and Safety @ 5% of Total Direct Cost Legal, Administration, Permitting @ 5% of Total Direct Cost Engineering @ 10% of Total Direct Cost Services During Construction @ 10% of Total Direct Cost TOTAL INDIRECT COST OF AIR STRIPPING WITH GWE SCENARIO 1 TOTAL CAPITAL (DIRECT + INDIRECT) COST \$ 6,378,000 DPERATING AND MAINTENANCE COSTS Total Annual Operating and Maintenance Costs \$ 729,000	INDIRECT COST OF AIR STRIPPING WITH GROUNDWATER EXTRACTION SCENARIO 1		
Engineering @ 10% of Total Direct Cost Services During Construction @ 10% of Total Direct Cost TOTAL INDIRECT COST OF AIR STRIPPING WITH GWE SCENARIO 1 TOTAL CAPITAL (DIRECT + INDIRECT) COST \$ 6,378,000 DPERATING AND MAINTENANCE COSTS Total Annual Operating and Maintenance Costs \$ 729,000			245,000
Engineering @ 10% of Total Direct Cost Services During Construction @ 10% of Total Direct Cost TOTAL INDIRECT COST OF AIR STRIPPING WITH GWE SCENARIO 1 TOTAL CAPITAL (DIRECT + INDIRECT) COST \$ 6,378,000 DPERATING AND MAINTENANCE COSTS Total Annual Operating and Maintenance Costs \$ 729,000	Legal, Administration, Permitting @ 5% of Total Direct Cost		245,000
Services During Construction @ 10% of Total Direct Cost 491,00 TOTAL INDIRECT COST OF AIR STRIPPING WITH GWE SCENARIO 1 \$ 1,472,000 TOTAL CAPITAL (DIRECT + INDIRECT) COST \$ 6,378,000 DPERATING AND MAINTENANCE COSTS Total Annual Operating and Maintenance Costs \$ 729,000			491,000
TOTAL CAPITAL (DIRECT + INDIRECT) COST \$ 6,378,000 DPERATING AND MAINTENANCE COSTS Total Annual Operating and Maintenance Costs \$ 729,000			491,000
TOTAL CAPITAL (DIRECT + INDIRECT) COST \$ 6,378,000 DPERATING AND MAINTENANCE COSTS Total Annual Operating and Maintenance Costs \$ 729,000	TOTAL INDIRECT COST OF AIR STRIPPING WITH GWE SCENARIO 1	\$	1.472.000
DPERATING AND MAINTENANCE COSTS Total Annual Operating and Maintenance Costs \$ 729,000			
Total Annual Operating and Maintenance Costs \$ 729,00	TOTAL CAPITAL (DIRECT + INDIRECT) COST	\$	6,378,000
	OPERATING AND MAINTENANCE COSTS		
	Total Annual Operating and Maintenance Costs	¢	729 000
TOTAL PRESENT WORTH OF O&M COSTS \$ 13,837,00	Total Allitual Operating and Maintenance Costs	Ψ	729,000
	TOTAL PRESENT WORTH OF O&M COSTS	\$	13,837,000
TOTAL COST OF AIR STRIPPING WITH \$ 20,215,000	TOTAL COST OF AIR STRIPPING WITH	\$	20,215,000
GROUNDWATER EXTRACTION SCENARIO 1			

TABLE 13-9 COST SUMMARY TABLE ALTERNATIVE SOPA-GW2: AIR STRIPPING - WITH GROUNDWATER EXTRACTION SCENARIO 2

ITEM	TC	TAL COST
DIRECT COST OF AIR STRIPPING WITH GROUNDWATER EXTRACTION SCENARIO	9	
Site Preparation and Mob/Demob	<u> </u>	480,00
Groundwater Extraction Pumps & Piping	•	3,863,00
Treatment Plant Building		671,00
Treatment Plant Process Equipment		1,236,00
Electrical & Instrumentation		1,611,00
Gravity Discharge		670,00
Education Plan Preparation		50,00
TOTAL DIRECT COST OF AIR STRIPPING WITH GWE SCENARIO 2	\$	8,581,00
NDIRECT COST OF AIR STRIPPING WITH GROUNDWATER EXTRACTION SCENARIO	<u>) 2</u>	
Health and Safety @ 5% of Total Direct Cost	\$	429,00
Legal, Administration, Permitting @ 5% of Total Direct Cost		429,00
Engineering @ 10% of Total Direct Cost		858,0
Services During Construction @ 10% of Total Direct Cost		858,0
TOTAL INDIRECT COST OF AIR STRIPPING WITH GWE SCENARIO 2	\$	2,574,00
TOTAL CAPITAL (DIRECT + INDIRECT) COST	\$	11,155,00
PERATING AND MAINTENANCE COSTS		
Total Annual Operating and Maintenance Costs	\$	1,138,0
TOTAL PRESENT WORTH OF O&M COSTS	\$	18,428,00
		1
TOTAL COST FOR SOPA—GW2: AIR STRIPPING WITH GROUNDWATER	\$	29,589,00
TOTAL COST FOR SOPA-GW2: AIR STRIPPING WITH GROUNDWATER EXTRACTION SCENARIO 2	\$	29,583,00

TABLE 13-10 COST SUMMARY TABLE

ALTERNATIVE SOPA-GW2: AIR STRIPPING - WITH GROUNDWATER EXTRACTION SCENARIO 3

ITEM	TC	TAL COST
DIRECT COST OF AIR STRIPPING WITH GROUNDWATER EXTRACTION SCENARIO	Q	
Site Preparation and Mob/Demob	<u>.</u> \$	578,00
Groundwater Extraction Pumps & Piping	Ψ	8,150,00
Treatment Plant Building		999,00
Treatment Plant Process Equipment		2,382,00
Electrical & Instrumentation		3,419,00
Gravity Discharge		856,00
Education Plan Preparation		50,00
TOTAL DIRECT COST OF AIR STRIPPING WITH GWE SCENARIO 3	\$	16,434,00
NDIRECT COST OF AIR STRIPPING WITH GROUNDWATER EXTRACTION SCENARION	О 3	
Health and Safety @ 5% of Total Direct Cost	\$	822,00
Legal, Administration, Permitting @ 5% of Total Direct Cost		822,00
Engineering @ 10% of Total Direct Cost		1,643,00
Services During Construction @ 10% of Total Direct Cost		1,643,00
TOTAL INDIRECT COST OF AIR STRIPPING WITH GWE SCENARIO 3	\$	4,930,00
TOTAL CAPITAL (DIRECT + INDIRECT) COST	\$	21,364,00
PERATING AND MAINTENANCE COSTS		
Total Annual Operating and Maintenance Costs	\$	1,905,00
TOTAL PRESENT WORTH OF O&M COSTS	\$	21,477,00
TOTAL COST FOR SOPA-GW2: AIR STRIPPING WITH GROUNDWATER	_	
EXTRACTION SCENARIO 3	•	42,841,00

EVALUATION CRITERIA	ALTERNATIVE SOPA-GW2 AIR STRIPPING	
Overall Protection of Human Health and the Environment		
Human Health Protection	Achieves remedial action objectives. This alternative would prevent further migration of contaminated groundwater and reduce contaminant concentrations in groundwater to acceptable levels.	
Environmental Protection	No ecological risks associated with contaminated groundwater.	
Compliance with ARARs		
Chemical-specific	The WPAL (WAC Chapter NR 140.10, Table 1) for CCL4, CHCL3, TRCLE, CD, and PB would eventually be achieved in the aquifer. Secondary drinking water standards for MN would eventually be achieved in the aquifer. Each of the three groundwater extraction scenarios would require different periods of time to comply with the WPALs in the aquifer. A WPDES (WAC Chapter NR 205) permit issued for discharge of treated groundwater to the Wisconsin River will specify individual discharge limits for each of the groundwater contaminants. It is presumed that	
•	this alternative is capable of achieving those limits.	
Location-specific	Construction of the effluent discharge pipe would impact the shoreline of the Wisconsin River, and would require permitting through Wisconsin Shoreline Management Program.	
Action-specific	Fugitive particulate emissions generated during site work are substantively subject to Wisconsin Particulate and Sulfur Emission Rules (WAC, Chapter NR 415) and General and Portable Sources Air Pollution Control Rules; Ambient Air Quality Standards (WAC, Chapter NR 404). It is assumed that dust suppression techniques and other preventative measures would ensure compliance with particulate emission standards.	
	Air emissions from the air stripper(s) would be limited per a permit issued in accordance with WAC Chapter NR 406. An emission limit for each potential air contaminant is identified in WAC Chapter NR 445. In addition, WAC Chapter NR 419 identifies a daily limit for total VOCs emitted from a facility. It is presumed that emission treatment systems associated with the air strippers would meet emission limits.	
Other Criteria, Advisories, and Guidances	It is presumed that relevant criteria, advisories, and guidances would be implemented prior to implementing this alternative.	

Evaluation Criteria	ALTERNATIVE SOPA-GW2 AIR STRIPPING	
Long-term Effectiveness and Permanence		
Magnitude of Residual Risk	This alternative would be implemented to comply with WPALs and secondary drinking water standards. The standards were developed to minimize risk; therefore, the magnitude of the residual risk would be minimal. Because the source of the Southern Off-Post Area contaminant plume will be intercepted at the base boundary, this alternative would result in eventual decreases in contaminant concentrations.	
Adequacy and Reliability of Controls	Because the source of the Off-Post Area contamination would be removed, long-term monitoring after achieving contaminant concentrations below the WPALs would not be required.	
Reduction of Toxicity, Mobility, and Volume		
Treatment Process Used and Materials Treated	Air stripper(s) in the new treatment facility (i.e., air stripping treatment facility) would be used for primary treatment of CCL4, CHCL3, and TRCLE. Thermal reactivation of spent vapor-phase carbon would destroy adsorbed contaminants. Treatment of PB, CD, and MN is not expected to be necessary in order	
	to meet surface water discharge limits.	
Amount Destroyed or Treated	Groundwater Extraction Scenario 1. During the first year of operation, approximately 53 pounds of organic contaminants would be adsorbed by vapor-phase carbon and destroyed by thermal regeneration. Contaminant travel time from the base boundary to extraction well group OPCW-1 through OPCW-6 (see Figure 13-2) would be approximately 14 years. During this interim duration of time contaminant concentrations would be expected to increase and level off at these extraction wells. For the remaining period of groundwater extraction, contaminant concentrations would decrease as uncontaminated groundwater flushes the aquifer.	

EVALUATION CRITERIA	ALTERNATIVE SOPA-GW2 AIR STRIPPING
	Groundwater Extraction Scenario 2. During the first year of operation, approximately 158 pounds of organic contaminants would be adsorbed by vapor-phase carbon and destroyed by thermal regeneration. Contaminant travel time from the base boundary to extraction well group OPCW-7 through OPCW-12 (see Figure 13-3) would be approximately 8 years. Contaminant travel time from extraction well group OPCW-7 through OPCW-12 to well group OPCW-1 through OPCW-6 would be approximately 6 years. During this interim, contaminant concentrations would be expected to increase and level off at these extraction wells. For the remaining period of groundwater extraction, contaminant concentrations would decrease as uncontaminated groundwater flushes the aquifer.
	Groundwater Extraction Scenario 3. During the first year of operation, approximately 425 pounds of organic contaminants would be adsorbed by vapor-phase carbon and destroyed by thermal regeneration. Contaminant travel times from the base to extraction well group OPCW-19 through OPCW-24, from well group OPCW-19 through OPCW-24 to well group OPCW-7 through OPCW-12, from well group OPCW-12, from well group OPCW-18, and from wells OPCW-12 to well group OPCW-13 through OPCW-18, and from wells OPCW-13 through OPCW-18 to well group OPCW-1 through OPCW-6, would be approximately 3.5, 4.5, 3, and 3 years, respectively. During this interim, contaminant concentrations would be expected to increase and level off at these extraction wells. For the remaining period of groundwater extraction, contaminant concentrations would decrease as uncontaminated groundwater flushes the aquifer.
Degree of Expected Reductions of Toxicity, Mobility, and Volume	The WPDES permit issued for discharge of treated groundwater is expected to require a treatment system removal efficiency of at least 99 percent. Groundwater contaminants adsorbed to the spent carbon would be destroyed during thermal reactivation.
Degree to Which Treatment is Irreversible	Groundwater contaminants would be destroyed during thermal reactivation of spent carbon.
Type and Quantity of Residuals Remaining After Treatment	Approximately 24,000, 90,000, and 96,000 lbs of spent vapor-phase carbon for groundwater extraction Scenarios 1, 2, and 3, respectively, would be generated in the new facility every 10 years. Assuming complete destruction of contaminants in the spent carbon during thermal reactivation, no residuals would remain.

EVALUATION CRITERIA	ALTERNATIVE SOPA-GW2 AIR STRIPPING	
Short-term Effectiveness		
Protection of Community During Remedial Action	Implementation of the groundwater extraction and treatment alternative would not result in any significant short-term adverse impacts to the public.	
	Contaminants in air stripper emissions would be treated with vapor- phase carbon. Trace quantities may be released into the atmosphere but would be well within safe limits.	
Protection of Workers During Remedial Action	During construction, adherence to general health and safety practices would minimize risk to workers.	
Environmental Impacts	Adverse impacts to the environment may occur during construction of extraction wells and influent and effluent pipelines. Some trees may have to be removed for implementation of this alternative.	
Time Until Remedial Action Objectives Are Achieved	Remedial objectives would be achieved at the onset of implementation of the institutional controls portion of this alternative. After extraction and treatment implementation, an estimated 61, 34, and 17 years for groundwater extraction Scenarios 1, 2, and 3, respectively, would be required to achieve WPALs in the Southern Off-Post Area contaminant plume. An estimated 2 years for design and construction should be added to the above cleanup times.	
Implementability		
Ability to Construct and Operate the Technology	Construction of the new facility would not be difficult. Air stripping operating practices would include adjustment and monitoring of water and airflow rates, as well as possible acid treatments to prevent scaling buildup. Carbon adsorption (i.e., vapor-phase) system operating practices would include replacing carbon at breakthrough.	
Reliability of the Technology	Air stripping and vapor-phase carbon adsorption are proven technologies for removing organic contaminants from groundwater. The aqueous-phase carbon adsorption system and the air stripper system in the existing IRM facility have successfully operated for more than three years treating Propellant Burning Ground groundwater.	
Ease of Undertaking Additional Remedial Action, if Necessary	This alternative would not preclude or hinder any future remedial activities conducted on the Southern Off-Post Area contaminant plume, if necessary.	
Ability to Monitor Effectiveness of Remedy	The effectiveness of the treatment system would be monitored by analysis of samples collected bi-weekly from treatment systems influent and effluent. Aquifer cleanup can be monitored via the groundwater monitoring program.	

EVALUATION CRITERIA	ALTERNATIVE SOPA-GW2 AIR STRIPPING
Ability to Obtain Approvals and Coordinate with Other Agencies	Obtaining a WPDES permit for the discharge of treated groundwater to the Wisconsin River is not expected to be difficult. The existing IRM facility currently operates under a WPDES permit. Sampling and analysis of air stripper emissions may have to be conducted prior to receiving an air permit. Permitting under the Wisconsin Shoreline Management Program would be required for effluent discharge pipe construction. It is assumed that affected property owners will be cooperative during negotiations for easements.
Availability of Off-site Treatment, Storage, and Disposal Services and Capacity	Facilities which have sufficient capacity for reactivation of spent carbon are available.
Availability of Necessary Equipment and Specialists	Air stripping and vapor-phase carbon adsorption equipment and expertise is available from several vendors.
Availability of Technology	Air stripping and vapor-phase carbon adsorption technology for the treatment of groundwater contaminated with chlorinated compounds is available.
Costs	
Capital Cost	
Air Stripping - Groundwater Extraction Scenario 1	\$6,378,000
Air Stripping - Groundwater Extraction Scenario 2	\$11,155,000
Air Stripping - Groundwater Extraction Scenario 3	21,364,000
Present Worth of Operation and Maintenance Cost	•
Air Stripping - Groundwater Extraction Scenario 1	\$13,837,000
Air Stripping - Groundwater Extraction Scenario 2	\$18,428,000
Air Stripping - Groundwater Extraction Scenario 3	\$21,477,000

EVALUATION CRITERIA	ALTERNATIVE SOPA-GW2 AIR STRIPPING
Net Present Worth Cost	
Air Stripping - Groundwater Extraction Scenario 1	\$20,215,000
<u>Air Stripping - Groundwater Extraction</u> <u>Scenario 2</u>	\$29,583,000
Air Stripping - Groundwater Extraction Scenario 3	\$42,841,000

TABLE 13-12 COST SUMMARY TABLE ALTERNATIVE SOPA-GW3: CARBON ADSORPTION WITH GROUNDWATER EXTRACTION SCENARIO 1

ITEM	то	TAL COST
DIRECT COST OF CARBON ADSORPTION WITH GROUNDWATER EXTRACTION SCENA	ARIO	1
Site Preparation and Mob/Demob	\$	399,000
Groundwater Extraction Pumps & Piping	•	2,042,000
Treatment Plant Building		412,000
Treatment Plant Process Equipment		726,000
Electrical & Instrumentation		1,008,000
Gravity Discharge		346,000
Education Plan Preparation		50,000
TOTAL DIRECT COST OF CARBON ADSORPTION WITH GWE SCENARIO 1	5	4,983,000
INDIRECT COST OF CARBON ADSORPTION WITH GROUNDWATER EXTRACTION SCE	NAR	IO 1
Health and Safety @ 5% of Total Direct Cost	\$	249,000
Legal, Administration, Permitting @ 5% of Total Direct Cost		249,000
Engineering @ 10% of Total Direct Cost		498,000
Services During Construction @ 10% of Total Direct Cost		498,000
TOTAL INDIRECT COST OF CARBON ADSORPTION WITH GWE SCENARIO 1	\$	1,494,000
TOTAL CAPITAL (DIRECT + INDIRECT) COST	\$	6,477,000
OPERATING AND MAINTENANCE COSTS		
Total Annual Operating and Maintenance Costs	\$	822,000
TOTAL PRESENT WORTH OF O&M COSTS	\$	15,602,000
TOTAL COST OF CARBON ADSORPTION WITH GROUNDWATER EXTRACTION SCENARIO 1	\$	22,079,000
wisweisenian anno 1101 Collection		

TABLE 13-13 COST SUMMARY TABLE ALTERNATIVE SOPA-GW3: CARBON ADSORPTION WITH GROUNDWATER EXTRACTION SCENARIO 2

ITEM	TC	TAL COST
DIRECT COST OF CARBON ADSORPTION WITH GROUNDWATER EXTRACTION SCE	NARIO	2
Site Preparation and Mob/Demob	\$	480,00
Groundwater Extraction Pumps & Piping		3,863,00
Treatment Plant Building		724,00
Treatment Plant Process Equipment		1,458,00
Electrical & Instrumentation		1,602,00
Gravity Discharge		670,00
Education Plan Preparation		50,00
TOTAL DIRECT COST OF CARBON ADSORPTION WITH GWE SCENARIO 2	\$	8,847,00
NAME OF A PART O		
NDIRECT COST OF CARBON ADSORPTION WITH GROUNDWATER EXTRACTION SO		
Health and Safety @ 5% of Total Direct Cost	\$	442,00
Legal, Administration, Permitting @ 5% of Total Direct Cost		442,00
Engineering @ 10% of Total Direct Cost		885,00
Services During Construction @ 10% of Total Direct Cost		885,00
TOTAL INDIRECT COST OF CARBON ADSORPTION WITH GWE SCENARIO 2	\$	2,654,00
		•
TOTAL CAPITAL (DIRECT + INDIRECT) COST	\$	11,501,000
OPERATING AND MAINTENANCE COSTS		
Total Annual Operating and Maintenance Costs	\$	1,335,00
Total Allitual Operating and Maintenance Oosts	Ψ	1,333,000
TOTAL PRESENT WORTH OF O&M COSTS	S	21,618,000
TOTAL COST FOR SOPA-GWS: CARBON ADSORPTION WITH	\$	33,119,00
GROUNDWATER EXTRACTION SCENARIO 2		•

TABLE 13-14 COST SUMMARY TABLE ALTERNATIVE SOPA-GW3: CARBON ADSORPTION WITH GROUNDWATER EXTRACTION SCENARIO 3

ITEM	ТО	TAL COST
DIRECT COST OF CARBON ADSORPTION WITH GROUNDWATER EXTRACTION SCEI	NARIO	<u>3</u>
Site Preparation and Mob/Demob	\$	578,00
Groundwater Extraction Pumps & Piping		8,150,00
Treatment Plant Building		1,283,00
Treatment Plant Process Equipment		2,742,00
Electrical & Instrumentation		3,411,00
Gravity Discharge		856,00
Education Plan Preparation		50,00
TOTAL DIRECT COST OF CARBON ADSORPTION WITH GWE SCENARIO 3	\$	17,070,00
NDIRECT COST OF CARBON ADSORPTION WITH GROUNDWATER EXTRACTION SC	ENAR	<u>10 3</u>
Health and Safety @ 5% of Total Direct Cost	\$	854,00
Legal, Administration, Permitting @ 5% of Total Direct Cost		854,00
Engineering @ 10% of Total Direct Cost		1,707,00
Services During Construction @ 10% of Total Direct Cost		1,707,00
TOTAL INDIRECT COST OF CARBON ADSORPTION WITH GWE SCENARIO 3	\$	5,122,00
TOTAL CAPITAL (DIRECT + INDIRECT) COST	\$	22,192,000
OPERATING AND MAINTENANCE COSTS		
Total Annual Operating and Maintenance Costs	\$	2,304,000
TOTAL PRESENT WORTH OF O&M COSTS	\$	25,975,000
TOTAL COST FOR SOPA-GW3: CARBON ADSORPTION WITH	\$	48,167,000
GROUNDWATER EXTRACTION SCENARIO 3		

EVALUATION CRITERIA	ALTERNATIVE SOPA-GW3 CARBON ADSORPTION	
Overall Protection of Human Health and the Environment		
Human Health Protection	Achieves remedial action objectives. This alternative would prevent further migration of contaminated groundwater and reduce contaminant concentrations in groundwater to acceptable levels.	
Environmental Protection	No ecological risks associated with contaminated groundwater.	
Compliance with ARARs		
Chemical-specific	The WPAL (WAC Chapter NR 140.10, Table 1) for CCL4, CHCL3, TRCLE, CD, and PB would eventually be achieved in the aquifer. Secondary drinking water standards for MN would eventually be achieved in the aquifer. Each of the three groundwater extraction scenarios would require different periods of time to comply with the WPALs in the aquifer.	
	A WPDES (WAC Chapter NR 205) permit issued for discharge of treated groundwater to the Wisconsin River will specify individual discharge limits for each of the groundwater contaminants. It is presumed that this alternative is capable of achieving those limits.	
Location-specific	Construction of the effluent discharge pipe would impact the shoreline of the Wisconsin River, and would require permitting through Wisconsin Shoreline Management Program (NR 115).	
Action-specific	Fugitive particulate emissions generated during site work are substantively subject to Wisconsin Particulate and Sulfur Emission Rules (WAC, Chapter NR 415) and General and Portable Sources Air Pollution Control Rules; Ambient Air Quality Standards (WAC, Chapter NR 404). It is assumed that dust suppression techniques and other preventative measures would ensure compliance with particulate emission standards.	
Other Criteria, Advisories, and Guidances	It is presumed that relevant criteria, advisories, and guidances would be implemented prior to implementing this alternative.	
Long-term Effectiveness and Permanen	ce	
Magnitude of Residual Risk	This alternative would be implemented to comply with WPALs and secondary drinking water standards. The standards were developed to minimize risk; therefore, the magnitude of the residual risk would be minimal. Because the source of the Southern Off-Post Area contaminant plume will be intercepted at the base boundary, this alternative would result in eventual decreases in contaminant concentrations.	

EVALUATION CRITERIA	ALTERNATIVE SOPA-GW3 CARBON ADSORPTION
Adequacy and Reliability of Controls	Because the source of the Off-Post Area contamination would be removed, long-term monitoring after achieving contaminant concentrations below the WPALs for groundwater would not be required.
Reduction of Toxicity, Mobility, and Volume	те
Treatment Process Used and Materials Treated	Carbon Adsorption in the new treatment facility (i.e., carbon adsorption treatment facility) would be used for primary treatment of CCL4, CHCL3, and TRCLE. Thermal reactivation of spent aqueous-phase carbon would destroy adsorbed contaminants.
	Treatment of PB, CD, and MN is not expected to be necessary in order to meet surface water discharge limits.
Amount Destroyed or Treated	Groundwater Extraction Scenario 1. During the first year of operation, approximately 53 pounds of organic contaminants would be adsorbed by aqueous-phase carbon and destroyed by thermal regeneration. Contaminant travel time from the base boundary to extraction well group OPCW-1 through OPCW-6 (see Figure 13-2) would be approximately 14 years. During this interim, contaminant concentrations would be expected to increase and level off at these extraction wells. For the remaining period of groundwater extraction, contaminant concentrations would decrease as uncontaminated groundwater flushes the aquifer.
	Groundwater Extraction Scenario 2. During the first year of operation, approximately 158 pounds of organic contaminants would be adsorbed by aqueous-phase carbon and destroyed by thermal regeneration. Contaminant travel time from the base boundary to extraction well group OPCW-7 through OPCW-12 (see Figure 13-3) would be approximately 8 years. Contaminant travel time from extraction well group OPCW-7 through OPCW-12 to well group OPCW-1 through OPCW-6 would be approximately 6 years. During this interim, contaminant concentrations would be expected to increase and level off at these extraction wells. For the remaining period of groundwater extraction, contaminant concentrations would decrease as uncontaminated groundwater flushes the aquifer.

EVALUATION CRITERIA	ALTERNATIVE SOPA-GW3 CARBON ADSORPTION
	Groundwater Extraction Scenario 3. During the first year of operation, approximately 425 pounds of organic contaminants would be adsorbed by aqueous-phase carbon and destroyed by thermal regeneration. Contaminant travel times from the base to extraction well group OPCW-19 through OPCW-24, from well group OPCW-19 through OPCW-24 to well group OPCW-7 through OPCW-12, from well group OPCW-7 through OPCW-12 to OPCW-13 through OPCW-18, and from well group OPCW-13 through OPCW-18 to well group OPCW-1 through OPCW-6, would be approximately 3.5, 4.5, 3, and 3 years, respectively. During this interim, contaminant concentrations would be expected to increase and level off at these extraction wells. For the remaining period of groundwater extraction, contaminant concentrations would decrease as uncontaminated groundwater flushes the aquifer.
Degree of Expected Reductions of Toxicity, Mobility, and Volume	The WPDES permit issued for discharge of treated groundwater is expected to require a treatment system removal efficiency of at least 99 percent. Groundwater contaminants adsorbed to the spent carbon would be destroyed during thermal reactivation.
Degree to Which Treatment is Irreversible	Groundwater contaminants would be destroyed during thermal reactivation of spent carbon.
Type and Quantity of Residuals Remaining After Treatment	Approximately 120,000, 240,000, and 480,000 lbs of spent aqueous-phase carbon for groundwater extraction Scenarios 1, 2, and 3, respectively, would be generated in the new facility every year. Assuming complete destruction of contaminants in the spent carbon during thermal reactivation, no residuals would remain.

EVALUATION CRITERIA	ALTERNATIVE SOPA-GW3 CARBON ADSORPTION	
Short-term Effectiveness		
Protection of Community During Remedial Action	Implementation of the groundwater extraction and treatment alternative would not result in any significant short term adverse impacts to the public.	
Protection of Workers During Remedial Action	During construction, adherence to general health and safety practices would minimize risk to workers.	
Environmental Impacts	Adverse impacts to the environment may occur during construction of extraction wells and influent and effluent pipelines. Some trees may have to be removed for implementation of this alternative.	
Time Until Remedial Action Objectives Are Achieved	Remedial objectives would be achieved at the onset of implementation of the institutional controls portion of this alternative. After extraction and treatment implementation, an estimated 61, 34, and 17 years for groundwater extraction Scenarios 1, 2, and 3, respectively, would be required to achieve WPALs in the Southern Off-Post Area contaminant plume. An estimated 2 years for design and construction should be added to the above cleanup times.	
Implementability		
Ability to Construct and Operate the Technology	Construction of the new facility would not be difficult. Carbon adsorption (i.e., aqueous-phase) system operating practices would include replacing carbon at breakthrough in the lead vessel.	
Reliability of the Technology	Carbon adsorption is a proven technology for removing organic contaminants from groundwater. The existing IRM facility (and associated carbon adsorption system) has been successfully operated for more than three years treating Propellant Burning Ground groundwater. Monitoring for contaminant breakthrough between the carbon vessels would ensure that WPDES discharge limits are not exceeded.	
Ease of Undertaking Additional Remedial Action, if Necessary	This alternative would not preclude or hinder any future remedial activities conducted on the Southern Off-Post Area contaminant plume, if necessary.	
Ability to Monitor Effectiveness of Remedy The effectiveness of the treatment system would be monitored analysis of samples collected bi-weekly from treatment system and effluent. Aquifer cleanup can be monitored via the ground monitoring program.		

EVALUATION CRITERIA	ALTERNATIVE SOPA-GW3 CARBON ADSORPTION
Ability to Obtain Approvals and Coordinate with Other Agencies	Obtaining a WPDES permit for the discharge of treated groundwater to the Wisconsin River is not expected to be difficult. The existing IRM facility currently operates under a WPDES permit. Permitting under Wisconsin Shoreline Management Program would be required for effluent discharge pipe construction. Other special permits (e.g., wetland permit) would not be necessary. It is assumed that affected property owners will be cooperative during negotiations for easements.
Availability of Off-site Treatment, Storage, and Disposal Services and Capacity	Facilities which have sufficient capacity for reactivation of spent carbon are available.
Availability of Necessary Equipment and Specialists	Carbon adsorption equipment and expertise is available from several vendors.
Availability of Technology	Carbon adsorption technology for the treatment of groundwater contaminated with chlorinated compounds is available.
Costs	
Capital Cost	
Air Stripping - Groundwater Extraction Scenario 1	\$6,447,000
Air Stripping - Groundwater Extraction Scenario 2	\$11,501,000
Air Stripping - Groundwater Extraction Scenario 3	22,192,000
Present Worth of Operation and Maintenance Cost	
Air Stripping - Groundwater Extraction Scenario 1	\$15,602,000
Air Stripping - Groundwater Extraction Scenario 2	\$21,618,000
Air Stripping - Groundwater Extraction Scenario 3	\$25,975,000

(continued)

TABLE 13-15 DETAILED ANALYSIS - ALTERNATIVE SOPA-GW3 SOUTHERN OFF-POST AREA GROUNDWATER

EVALUATION CRITERIA	ALTERNATIVE SOPA-GW3 CARBON ADSORPTION
Net Present Worth Cost	
Air Stripping - Groundwater Extraction Scenario 1	\$22,079,000
Air Stripping - Groundwater Extraction Scenario 2	\$33,119,000
Air Stripping - Groundwater Extraction Scenario 3	\$48,167,000

TABLE 13-16 COMPARATIVE SUMMARY OF GROUNDWATER ALTERNATIVES SOUTHERN OFF-POST AREA GROUNDWATER

Cost	Total Present Worth: \$2.889,000 Capital Cost: \$50,000 Annual O&M: \$184,000	GES 1 Total Present Worth: \$20,215,000 Capital Cost: \$6,378,000 Annual O&M: \$729,000 GES 2 Total Present Worth: \$29,583,000 Capital Cost: \$11,155,000 Annual O&M: \$1,138,000 GES 3 Total Present Worth: \$21,364,000 Annual O&M: \$1,905,000 Annual O&M:
IMPLEMENTABILITY	No implementability concerns.	No treatment-related implementability concerns. Technologies have been proven full-scale. No problems expected permitting discharge or air emissions. It is assumed that property easements can be easily obtained.
EFFECTIVENESS: SHORT-TERM	No adverse community or environmental impacts during implementation	No adverse impacts to community. Potentially adverse impacts to environment during construction of extraction system.
REDUCTION IN TOXICITY, MOBILITY, AND VOLUME	Contamination is not treated or destroyed; no reduction of toxicity, mobility, or volume of contaminants.	Removal efficiency greater than 99%. Approximately 24,000 lbs, 48,000 lbs, and 96,000 lbs of spent carbon would be generated every 10 years for groundwater extraction Scenarios 1, 2, and 3, respectively.
EFFECTIVENESS: LONG-TERM	Interception of the contaminant plume at the southern base boundary would result in eventual decreases in contaminant concentrations and residual risk downgradient (i.e., Southern Off-Post Area) of BAAP.	This alternative would be implemented to comply with WPALs and secondary drinking water standards. The standards were developed to minimize risk. Also, the contaminant plume would be intercepted at the base boundary; therefore, the magnitude of the residual risk would be minimal.
COMPLIANCE WITH ARARS	WPALs would be achieved in approximately 66 years (estimated using USEPA batch flushing model) after implementation of the BAAP control wells. Locationspecific and actionspecific APARS do not apply.	WPALs would be achieved in approximately 61, 34, or 17 years for Scenarios 1, 2, and 3, respectively (estimated using USEA batch flushing model) after implementation of BAAP control wells. Capable of achieving WPDES and air permit limits.
OVERALL PROTECTION	Achieves remedial action objectives.	Achieves remedial action objectives.
ALTERNATIVE	Alternative SOPA-GW1: Minimal Action	Alternative SOPA-GW2: Air Stripping

COMPARATIVE SUMMARY OF GROUNDWATER ALTERNATIVES SOUTHERN OFF-POST AREA GROUNDWATER TABLE 13-16

BADGER ARMY AMMUNITION PLANT FEASIBILITY STUDY

ALTERNATIVE	OVERALL PROTECTION	COMPLIANCE WITH ARARS	EFFECTIVENESS: LONG-TERM	REDUCTION IN TOXICITY, MOBILITY, AND VOLUME	EFFECTIVENESS: SHORT-TERM	IMPLEMENTABILITY	Cost
Alternative SOPA-GW3:	Achieves remedial action objectives.	WPALs would be achieved in	This alternative would be implemented to	Removal efficiency greater than 99%. Approximately	No adverse impacts to community.	No treatment-related implementability	GES 1 Total Present Worth:
Carbon Adsorption		approximately 61, 34, or 17 years for	comply with WPALs and secondary	120,000 lbs, 240,000 lbs, and 480,000 lbs of spent	Potentially adverse impacts to environ-	concerns. Techno- logies have been	\$22,079,000 Capital Cost:
		Scenarios 1, 2, and 3, respectively	drinking water standards. The	carbon would be generated annually for groundwater	ment during construction of	proven full-scale. No problems expected	\$6,477,000 Annual O&M:
		(estimated using USEPA batch	standards were devel- oped to minimize risk.	extraction Scenarios 1, 2, and 3, respectively. Off-site	extraction system.	permitting discharge.	\$822,000
		flushing model)	Also, the contaminant	destruction of contaminants.		It is assumed that	GES 2
		after implementation of BAAP control	plume would be inter- cepted at the base			property easements	Total Present Worth:
		wells. Capable of	boundary; therefore,			obtained.	Capital Cost:
		achieving WPDES	the magnitude of the				\$11,501,000
		permit limits.	residual risk would be				Annual O&M:
-			minimal.				\$1,335,000
							GES 3
							Total Present Worth:
							S48,167,000 Capital Cost:
							\$22,192,000
					•		Annual O&M: \$2,304,000

Notes:

Applicable or Relevant and Appropriate Requirements Groundwater extraction Scenario 1 ARARs GES1 GES2 GES3 WPALs

Groundwater extraction Scenario 2
Groundwater extraction Scenario 3
Wisconsin Preventative Action Limits
Wisconsin Pollution Discharge Elimination System

FIGURE 13-5
FLOW DIAGRAM
AIR STRIPPING - GROUNDWATER
EXTRACTION SCENARIO 1
SOUTHERN OFF-POST AREA
FEASIBILITY STUDY
BADGER ARMY AMMUNITION PLANT

——ABB Environmental Services, Inc.

FIGURE 13-6
FLOW DIAGRAM
AIR STRIPPING - GROUNDWATER
EXTRACTION SCENARIO 2
SOUTHERN OFF-POST AREA
FEASIBILITY STUDY
BADGER ARMY AMMUNITION PLANT
ABB Environmental Services, Inc.

9407005D(f) 3

