

SÍLABO ANALISIS ESTRUCTURAL I

ÁREA CURRICULAR: TECNOLOGÍA

I. DATOS GENERALES

1.1 Departamento Académico : Ingeniería y Arquitectura

1.2 Semestre Académico : 2019-l1.3 Código de la asignatura : 09027107040

1.4Ciclo: VII1.5Créditos: 041.6Horas semanales totales: 10

1.6.1 Horas lectivas (Total, Teoría, Práctica): 5 (T=3, P=2, L=0))

1.6.2 Horas de trabajo independiente : 5

1.7 Condición del Curso : Obligatorio

1.8 Requisito(s) : 09026606040 Resistencia de Materiales II

1.9 Docente : Dr. Ing. Armando Navarro Peña.

II. SUMILLA

El curso es de naturaleza teórica – práctica. Permite al estudiante conocer los principios de la relación entre el análisis y el diseño de estructuras. Comprender los criterios de comportamiento y contar con las bases de los criterios de estructuración. Conocer los desplazamientos de los diferentes tipos de estructuras, como respuesta a solicitaciones de diversos tipos. Conocer los métodos manuales y computacionales de análisis estructural. El curso se desarrolla mediante las siguientes unidades de aprendizaje: I. Idealización y hiperestaticidad de

estructuras. II. Cálculo de deformaciones en estructuras isostáticas. III. Método de fuerzas o de flexibilidades. IV. Métodos clásicos y matriciales de análisis estructural.

III. COMPETENCIAS Y SUS COMPONENTESCOMPRENDIDOS EN LA ASIGNATURA

3.1 Competencias

- Analiza el comportamiento de los diferentes sistemas estructurales.
- Aplica los métodos energéticos para obtener la respuesta .de las estructuras sometidas a cargas estáticas.
- Resuelve sistemas hiperestáticos mediante el método de flexibilidad aplicable al diseño de estructuras en general.
- Resuelve sistemas hiperestáticos mediante el método de rigidez aplicable al diseño de estructuras en general.

3.2 Componentes

Capacidades

- Elabora una metodología para modelar estructuras, apoyos y cargas.
- Aplica teorías energéticas para el cálculo de deformaciones en estructuras isostáticas.
- Efectúa el análisis estructural de estructuras hiperestáticas.
- Aplica los métodos clásicos para efectuar el análisis de estructuras hiperestáticas.

Contenidos actitudinales

- Aplica soluciones mediante técnicas de investigación en situaciones y problemas en el campo de la ingeniería estructural.
- Aplica teorías energéticas para calcular deflexiones en estructuras isostáticas
- Aplica el método de la fuerza para solucionar estructuras hiperestáticas
- Aplica los métodos clásicos y matriciales para resolver estructuras hiperestáticas.

IV. PROGRAMACIÓN DE CONTENIDOS

UNIDAD I : IDEALIZACIÓN E HIPERESTATICIDAD DE ESTRUCTURAS

CAPACIDAD: Elabora una metodología para modelar estructuras, apoyos y cargas.

	CONTENIDOS CONCEPTUALES	CONTENIDOS PROCEDIMENTALES	ACTIVIDAD DE APRENDIZAJE	HORAS		
SEMANA				L	T.I.	
1	Primera sesión: Criterios fundamentales sobre estructuración, proceso: Idealización, análisis, evaluación, diseño, modelaje de estructuras, modelo de condiciones de apoyo. Segunda sesión: Idealización de apoyos y cargas, tipos de cargas, metrado de cargas	 Define los criterios fundamentales sobre estructuración. Proceso: Idealización, análisis, evaluación, diseño, modelaje de estructuras, modelo de condiciones de apoyo. Idealiza apoyos y cargas, tipos de cargas, metrado de cargas. 	Lectivas(L): Introducción al tema - 1 h Desarrollo del tema - 2 h Ejercicios en aula - 2 h De trabajo Independiente (T.I): Resolución tareas - 1 h Trabajo de investigación - 2 h Trabajo grupal: 2 h	- 5	5	
2	Primera sesión: Evaluación de los grados de hiperestaticidad, hiperestaticidad externa, interna y total en marcos, armaduras y estructuras compuestas. Segunda sesión: La estabilidad estructural como requisito indispensable, estabilidad global y local de las estructuras, aplicación en el cálculo de reacciones	 Evalúa los grados de hiperestaticidad, hiperestaticidad externa, interna y total en pórticos, armaduras y estructuras compuestas. Determina la estabilidad estructural como requisito indispensable en la estabilidad global y local de las estructuras. Aplicación en el cálculo de reacciones. 	Lectivas(L): Introducción al tema - 1 h Desarrollo del tema - 2 h Ejercicios en aula - 2 h De trabajo Independiente (T.I): Resolución tareas - 1 h Trabajo de investigación - 2 h Trabajo grupal: 2 h	5	5	
3	Primera sesión: Deflexiones, generalidades y características en función de los materiales y tipos de estructuras, cálculo de deflexiones por conceptos de energía deformación. Segunda sesión: Principios de la energía y teoremas de Castigliano, aplicaciones, Los teoremas de Betti y Maxwell, aplicaciones.	 Analiza las deflexiones, generalidades y características en función de los materiales y tipos de estructuras. Analiza los efectos de esfuerzos flectores, de cortante y de torsión. Analiza los efectos de esfuerzos flectores, de cortante y de torsión. Calcula deflexiones por conceptos de energía deformación. 	Lectivas(L): Introducción al tema - 1 h Desarrollo del tema - 2 h Ejercicios en aula - 2 h De trabajo Independiente (T.I): Resolución tareas - 1 h Trabajo de investigación - 2 h Trabajo grupal: 2 h	5	5	
4	Primera sesión: Método de fuerza unidad, fundamentos y aplicaciones. Segunda sesión: Primera práctica calificada	- Analiza el método de fuerza unidad. Fundamentos y aplicaciones.	Lectivas(L): Introducción al tema - 1 h Desarrollo del tema - 2 h Ejercicios en aula - 2 h De trabajo Independiente (T.I): Resolución tareas - 1 h Trabajo de investigación - 2 h Trabajo grupal: 2 h	- 5	5	

UNIDAD II: CÁLCULO DE DEFORMACIONES EN ESTRUCTURAS ISOSTÁTICAS

CAPACIDAD: Aplica teorías energéticas para el cálculo de deformaciones en estructuras isostáticas.

SEMAN	CONTENIDOS CONCEDTUALES	CONTENIDOS PROCEDIMENTALES	ACTIVIDAD DE APRENDIZAJE	HORAS	
Α	CONTENIDOS CONCEPTUALES			L	T.I
	Primera sesión: Efectos de esfuerzos flectores, de cortante y de torsión.	- Analiza los efectos de esfuerzos flectores, de cortante y de torsión.	Lectivas(L): Introducción al tema - 1 h Desarrollo del tema - 2 h Ejercicios en aula - 2 h		
5	Segunda sesión: Procedimiento de Vereschaguin. Aplicaciones	- Aplica el procedimiento de Vereschaguin.	 <u>De trabajo Independiente (T.I):</u> Resolución tareas - 1 h Trabajo de investigación – 2 h Trabajo grupal: 2 h 	5	5
6	Primera sesión: Método de fuerza unidad en estructuras híper estáticas. Aplicación en estructuras de un grado de libertad. Segunda sesión: Estructuras híperestáticas de varios grados de libertad. Aplicaciones especiales, error de montaje, incremento de temperatura	 Aplica el método de fuerza unidad en estructuras hiperestáticas. Aplica en estructuras de un grado de libertad. Aplica el método fuerza unidad en estructuras hiperestáticas de varios grados de libertad. Aplica a casos especiales, como errores de montaje, incrementos de temperatura. 	Lectivas(L): Introducción al tema - 1 h Desarrollo del tema - 2 h Ejercicios en aula - 2 h De trabajo Independiente (T.I): Resolución tareas - 1 h Trabajo de investigación - 2 h Trabajo grupal: 2 h	- 5	5
7	Primera sesión: Aplicaciones en estructuras compuestas Segunda sesión: Segunda práctica calificada	- Evalúa los grados de hiperestaticidad, hiperestaticidad externa, interna y total en pórticos, armaduras y estructuras compuestas.	Lectivas(L): Introducción al tema - 1 h Desarrollo del tema - 2 h Ejercicios en aula - 2 h De trabajo Independiente (T.I): Resolución tareas - 1 h Trabajo de investigación - 2 h Trabajo grupal: 2 h	- 5	5

UNIDAD III: MÉTODO DE FUERZAS O DE FLEXIBILIDADES

CAPACIDAD: Efectúa el análisis estructural de estructuras hiperestáticas.

SEMANA	CONTENIDOS CONCEPTUALES	CONTENIDOS PROCEDIMENTALES	ACTIVIDAD DE APRENDIZAJE	HC L	RAS T.I.
9	Primera sesión: Método de giro deflexión, fundamentos, ecuaciones fundamentales, aplicación en estructuras aporticadas no desplazables. Segunda sesión: Método de giro deflexión, aplicación en estructuras aporticadas desplazables	 Analiza el método de giro deflexión, fundamentos y ecuaciones fundamentales. Aplica el método de giro deflexión a estructuras aporticadas no desplazables. Aplica el método de giro deflexión a estructuras aporticadas desplazables. 	Lectivas(L): Introducción al tema - 1 h Desarrollo del tema - 2 h Ejercicios en aula - 2 h	5	
			De trabajo Independiente (T.I): Resolución tareas - 1 h Trabajo de investigación – 2 h Trabajo grupal: 2 h		5
10	Primera sesión: Método de giro deflexión, aplicación en estructuras aporticadas con elementos inclinados. Segunda sesión: Método de Cross, factores de distribución y de transporte	 Aplica el método de giro deflexión a estructuras aporticadas con elementos Inclinados Analiza el método de Cross, fundamentos y aplicaciones. 	Lectivas(L): Introducción al tema - 1 h Desarrollo del tema - 2 h Ejercicios en aula - 2 h De trabajo Independiente (T.I): Resolución tareas - 1 h Trabajo de investigación - 2 h Trabajo grupal: 2 h	- 5	5
11	Primera sesión: Método de Cross, aplicación a pórticos, simplificaciones casos de borde rotulado. Segunda sesión: Tercera práctica calificada	- Aplica el método de Cross simplificado a estructuras aporticadas.	Lectivas(L): Introducción al tema - 1 h Desarrollo del tema - 2 h Ejercicios en aula - 2 h De trabajo Independiente (T.I): Resolución tareas - 1 h Trabajo de investigación - 2 h Trabajo grupal: 2 h	- 5	5
12	Primera sesión: Método de Cross en pórticos. Consideraciones sobre simetría y antisimetria Segunda sesión: Método de Cross pórticos desplazables c/ elementos inclinados.	 Aplica el método de Cross simplificado a estructuras aporticadas simétricas. Aplica el método de Cross pórticos desplazables con elementos inclinados 	Lectivas(L): Introducción al tema - 1 h Desarrollo del tema - 2 h Ejercicios en aula - 2 h De trabajo Independiente (T.I): Resolución tareas - 1 h Trabajo de investigación - 2 h Trabajo grupal: 2 h	- 5	5

UNIDAD IV: MÉTODOS CLÁSICOS Y MATRICIALES DE ANÁLISIS ESTRUCTURAL

CAPACIDAD: Aplica los métodos clásicos para efectuar el análisis de estructuras hiperestáticas.

SEMANA	CONTENIDOS CONCEPTUALES	CONTENIDOS PROCEDIMENTALES	ACTIVIDAD DE APRENDIZAJE	HC	RAS
13	Primera sesión: Introducción a los métodos matriciales, grados de libertad cinemática, coeficientes de rigidez, aplicación del método de rigidez en pórticos. Segunda sesión: Cálculo de grados de libertad de las estructuras	 Analiza los métodos matriciales, grados de libertad. Aplica el método de rigidez en pórticos. Analiza los grados de libertad de las estructuras. 	Lectivas(L): Introducción al tema - 1 h Desarrollo del tema - 2 h Ejercicios en aula - 2 h De trabajo Independiente (T.I): Resolución tareas - 1 h Trabajo de investigación - 2 h Trabajo grupal: 2 h	5	T.I.
14	Primera sesión: El método de rigidez en pórticos, ensamble de la matriz de rigidez del vector de cargas, cálculo de desplazamientos y fuerzas de extremo de barra Segunda sesión: Cuarta práctica calificada	- Aplica el método de rigidez, ensamble de la matriz de rigidez.	Lectivas(L): Introducción al tema - 1 h Desarrollo del tema - 2 h Ejercicios en aula - 2 h De trabajo Independiente (T.I): Resolución tareas - 1 h Trabajo de investigación - 2 h Trabajo grupal: 2 h	5	5
15	Primera sesión: Aplicación del método de rigidez en armaduras planas Segunda sesión: Cálculo de desplazamientos y fuerzas de extremo de barra en armaduras	- Aplica el método de rigidez en armaduras planas.	Lectivas(L): Introducción al tema - 1 h Desarrollo del tema - 2 h Ejercicios en aula - 2 h De trabajo Independiente (T.I): Resolución tareas - 1 h Trabajo de investigación - 2 h Trabajo grupal: 2 h	- 5	5
16	Examen Final		1	1	.1
17	Entrega de promedios finales y acta del curso.				

ESTRATEGIAS METODOLÓGICAS

- Método Expositivo Interactivo. Disertación docente, exposición del estudiante.
- Método de Discusión Guiada. Conducción del grupo para abordar situaciones y llegar a conclusiones y recomendaciones.
- Método de Demostración Ejecución. El docente ejecuta para demostrar cómo y con que se hace y el estudiante ejecuta, para demostrar que aprendió.

VI. RECURSOS DIDÁCTICOS

Equipos: computadora, ecran, proyector de multimedia.

Materiales: Separatas, pizarra, plumones.

VII. EVALUACIÓN DEL APRENDIZAJE

El promedio final de la asignatura se obtiene mediante la fórmula siguiente:

PF= 0.30*PE+0.30*EP+0.40*EF PE= (P1+P2+P3+P4)/4

Donde:

PF = Promedio final.

PE = Promedio de evaluaciones.

P1,...P4 = Prácticas calificadas

EP=Examen Parcial

EF=Examen Final

VIII. FUENTES DE ICONSULTA.

8.1 Bibliográficas

- Arbulu, B. (2005). Calculo de Estructuras Hiperestáticas Lima Perú: Dpto. Estructuras UNI.
- Hibbeler, R.. C. (2010). Análisis Estructural. Octava edición. Editorial: Pearson Educación de México.
- West. H.(2009). Análisis de Estructuras. Wiley and Sons. New York.
- Laibe, J. (2008). Análisis Estructural. México: Editorial McGraw-Hill.

- Withe, R, Gergey, P. y Sexsmith. R. (2005). Ingeniería estructural- estructuras estáticamente
- indeterminadas. México: Editorial LIMUSA.
- Norris y Wilbur (2007). Análisis Elemental de Estructuras. México: Editorial McGraw-Hill.

IX APORTE DE LA ASIGNATURA AL LOGRO DE RESULTADOS

El aporte del curso al logro de los resultados (Outcomes), para la Escuela Profesional de: Ingeniería Civil, se establece en la tabla siguiente:

	K = clave R = relacionado Recuadro vacío = no aplica	
(a)	Aplicar conocimientos de matemáticas, ciencia, tecnología e ingeniería	K
(b)	Diseñar y conducir experimentos, así como analizar e interpretar los datos obtenidos	K
(c)	Diseñar sistemas, componentes o procesos de acuerdo a las necesidades requeridas y restricciones económicas, ambientales, sociales, políticas, éticas, de salubridad y seguridad.	K
(d)	Trabajar adecuadamente en un equipo multidisciplinario.	
(e)	Identificar, formular y resolver problemas de ingeniería	K
(f)	Comprensión de lo que es la responsabilidad ética y profesional.	
(g)	Comunicarse, con su entorno, en forma efectiva.	
(h)	Entender el impacto que tienen las soluciones de la ingeniería civil, dentro de un contexto global, económico, ambiental y social.	
(i)	Aprender a aprender, actualizándose y capacitándose a lo largo de su vida.	
(j)	Tener conocimiento de los principales problemas contemporáneos de la carrera de ingeniería civil	
(k)	Usar técnicas y herramientas modernas necesarias en la práctica de la ingeniería civil y ramas afines	K

