Содержание

1	Термодинамическая система. Микроскопические и макроскопические параметры. Уравнение состояния (термическое и калорическое). Равновесные и неравновесные состояния и процессы	4
	1.1 Термодинамическая система	4
	1.2 Микроскопические и макроскопические параметры	4
	1.3 Уравнение состояния (термическое и калорическое)	4
	1.4 Равновесные и неравновесные состояния и процессы	4
2	Идеальный газ. Уравнение состояния идеального газа. Идеально-газовое определение температуры. Связь давления и температуры идеального газа с кинетической энергией	
	v	4
	2.1 Идеальный газ	4
	2.3 Идеально-газовое определение температуры	4
	2.4 Связь давления и температуры идеального газа с кинетической энергией его молекул	4
3	Работа, внутренняя энергия, теплота. Первое начало термодинамики. Внутренняя энер-	
		5
	3.1 Работа, внутренняя энергия, теплота	5
	3.2 Первое начало термодинамики	5
	3.3 Внутренняя энергия идеального газа	5
4	Теплоёмкость. Теплоёмкости при постоянном объёме и давлении. Связь между c_V и c_P	
	для идеального газа (соотношение Майера)	5
	4.1 Теплоёмкость	5
	4.2 Теплоёмкости при постоянном объёме и давлении	5
	4.3 Связь между c_V и c_P для идеального газа (соотношение Майера)	5
5	Политропический и адиабатический процессы. Уравнение адиабаты и политропы иде-	_
	ального газа. Скорость звука в газах	5
	5.1 Политропический и адиабатический процессы	5
	5.3 Скорость звука в газах	6
_		
6	Тепловые машины. Цикл Карно. КПД машины Карно. Теоремы Карно. Холодильная машина и тепловой насос. Коэффициенты эффективности идеальной холодильной ма-	
	шины и идеального теплового насоса	6
	6.1 Тепловые машины	6
	6.2 Цикл Карно	6
	6.3 КПД машины Карно	6
	6.4 Теоремы Карно	6
	6.5 Холодильная машина и тепловой насос	7
	6.6 Коэффициенты эффективности идеальной холодильной машины и идеального теплового	
	насоса	7
7	Второе начало термодинамики. Энтропия (термодинамическое определение). Неравен-	
	ство Клаузиуса. Энтропия идеального газа	7
	7.1 Второе начало термодинамики	7
	7.2 Энтропия (термодинамическое определение)	7
	7.3 Неравенство Клаузиуса	7
	7.4 Энтропия идеального газа	7
8	Обратимые и необратимые процессы. Закон возрастания энтропии. Неравновесное рас-	7
	ширение газа в пустоту 8.1 Обратимые и необратимые процессы	7
	8.2 Закон возрастания энтропии	8
	8.3 Heparhorechoe paciiiupehue rasa r nyctoty	8

9	Непрерывность интеграла как функции верхнего предела. Существование первооб-	
	разной для непрерывной на отрезке функции. Формула Ньютона-Лейбница. Формулы	0
	замены переменных в интеграле и интегрирования по частям	8
	9.1 Непрерывность интеграла как функции верхнего предела	8 8
	9.3 Формула Ньютона-Лейбница	8
	9.4 Формулы замены переменных в интеграле и интегрирования по частям	9
	э. 4 Формулы замены переменных в интеграле и интегрирования по частям	Э
	Мера декартова произведения двух конечно измеримых множеств. Выражение меры множества под графиком интегрируемой функции через интеграл. Площадь круга. Выражение объема тела вращения и длины кривой через интегралы. Связь интегри-	
	руемости по Риману и интегрируемости по Лебегу. Интегрируемость по Риману непре-	Λ
	рывной на отрезке функции	9
	10.1 Мера декартова произведения двух конечно измеримых множеств	9
		10
	- · · · · · · · · · · · · · · · · · · ·	10
		11
		11
	Total Interprepagation in Triangle Independent new orposite quinting in the triangle in the tr	
11	Теорема Б. Леви о монотонной сходимости. Теорема Лебега об ограниченной сходимо-	
		11
		12
	11.2 Теорема Лебега об ограниченной сходимости	12
12	Несобственный интеграл. Связь сходимости несобственного интеграла и интегрируе-	
	мости функции по Лебегу. Критерий Коши. Признаки Дирихле и Абеля сходимости	
	несобственных интегралов	12
	<u>.</u>	12
		13
	12.3 Критерий Коши	
	12.4 Признаки Дирихле и Абеля сходимости несобственных интегралов	13
13	Связь поточечной и равномерной сходимостей для функциональной последовательности. Критерий Коши равномерной сходимости функциональной последовательности. Обобщенный признак сравнения для функциональных рядов. Признак Вейерштрасса равномерной сходимости функционального ряда. Признаки Дирихле и Лейбница равномерной сходимости функционального ряда. Признак Абеля равномерной сходимости функционального ряда. Непрерывность равномерного предела, непрерывных функций и суммы равномерно сходящегося функционального ряда с непрерывными слагаемыми. Почленное интегрирование функциональных последовательностей и рядов. Дифференцирование предельной функции и почленное дифференцирование функционального ряда	14
		14
		14
	13.3 Обобщенный признак сравнения для функциональных рядов	14
	13.4 Признак Вейерштрасса равномерной сходимости функционального ряда	14
		15
		15
	13.7 Непрерывность равномерного предела, непрерывных функций и суммы равномерно сходя-	
		15
		15
	13.9 Дифференцирование предельной функции и почленное дифференцирование функциональ-	16
	ного ряда	16
	Степенные ряды. Формула Коши-Адамара для радиуса сходимости. Теорема о круге сходимости степенного ряда. Первая теорема Абеля. Теорема о равномерной сходимости степенного ряда. Вторая теорема Абеля. Сохранение радиуса сходимости при почленном дифференцировании степенного ряда. Теоремы о почленном интегрировании и дифференцировании степенного ряда. Единственность разложения функции в	
	степенной ряд, ряд Тейлора. Достаточное условие аналитичности функции. Пример	

бесконечно дифференцируемой, но неаналитической функции. Представление экспо-				
ненты комплексного аргумента степенным рядом. Формулы Эйлера. Формула Тейлора				
с остаточным членом в интегральной форме. Представление степенной и логарифми-				
ческой функций степенными рядами	16			
14.1 Степенные ряды	16			
14.2 Формула Коши-Адамара для радиуса сходимости	17			
14.3 Теорема о круге сходимости степенного ряда	17			
14.4 Первая теорема Абеля	17			
14.5 Теорема о равномерной сходимости степенного ряда	17			
14.6 Вторая теорема Абеля	17			
14.7 Сохранение радиуса сходимости при почленном дифференцировании степенного ряда	18			
14.8 Теоремы о почленном интегрировании и дифференцировании степенного ряда	18			
14.9 Единственность разложения функции в степенной ряд, ряд Тейлора	18			
14.10Достаточное условие аналитичности функции	19			
14.11Пример бесконечно дифференцируемой, но неаналитической функции	19			
14.12Представление экспоненты комплексного аргумента степенным рядом	19			
14.13Формулы Эйлера	20			
14.14Формула Тейлора с остаточным членом в интегральной форме	20			
14.15Π редставление степенной и логарифмической функций степенными рядами	20			

1 Термодинамическая система. Микроскопические и макроскопические параметры. Уравнение состояния (термическое и калорическое). Равновесные и неравновесные состояния и процессы

1.1 Термодинамическая система

- **Опр** Система, термодинамическая система Совокупность рассматриваемых тел ...
- Опр Изолированная, закытая и открытая термодинамическая система Обмен ...

1.2 Микроскопические и макроскопические параметры

- **Утв** Существуют микроскопические и макроскопические состояния + их другие имена
- Опр Микроскопическое и макроскопическое состояния Состояние системы,
- Опр Микроскопические параметры Величины, характризующий макросостояние

1.3 Уравнение состояния (термическое и калорическое)

- Опр Уравнение состояния Состояние, отражающее для конкретного класса величин ...
- Опр Термодинамическое, калорическое уравнение состояния f(P, V, T) = 0, j(...)

1.4 Равновесные и неравновесные состояния и процессы

- **Опр** *Термодинамическое равновесие* Все макроскопические процессы прекращаются, ...
- Опр Основное (общее) начало термодинамики Предоставленная самой себе ...
- Опр І начало ТД Три условия на любую изолированную систему
- **Опр** *Неравновесное состояние* Предоставленная самой себе ...
- Опр Релаксация, время релаксации Переход из состояния, в котором система ...
- **Опр** *Траектория процесса* Состояния системы и переходы между ними
- **Опр** *Равновесный (квазистатический) процесс* По ходу процесса система ...
- **Опр** *Неравновесное состояние* На траектории процесса встречаются ...

2 Идеальный газ. Уравнение состояния идеального газа. Идеальногазовое определение температуры. Связь давления и температуры идеального газа с кинетической энергией его молекул

2.1 Идеальный газ

Опр Идеальный газ Газ, у которого взаимодействием молекул между собой можно ...

2.2 Уравнение состояния идеального газа

Закон Бойля – Мариотта

PV = const, const однозначно определяется количеством газа и степенью его "нагретости

Опр Газовая постоянная Определяется из тройной точки воды. Измеряется в ...

Опр Постоянная Больимана $k \frac{R}{N_A} = 6{,}022 \cdot 10^{23} \frac{1}{moles}$

Закон Уравнение состояния идеального газа Менделеева – Клапейрона

 $PV = \mu RT = NkT = \frac{m}{\mu}RT$

2.3 Идеально-газовое определение температуры

Отсюда можно определить температуру по идеально-газовой шкале $T=rac{PV}{\mu R}$

2.4 Связь давления и температуры идеального газа с кинетической энергией его молекул

В результате перехода от микрорассмотрения к макро, получим $P=\frac{1}{3}nvp=\cdots\Rightarrow U=N\frac{3}{2}kT$ Из полной кинетической энергии газа в воздухе $E=N\overline{\varepsilon}$ можно получить $\overline{\varepsilon}=\frac{3}{2}kT\Rightarrow P=nkT$

3 Работа, внутренняя энергия, теплота. Первое начало термодинамики. Внутренняя энергия идеального газа

3.1 Работа, внутренняя энергия, теплота

Опр Функция состояния Величина, принимающая определённое значение в каждом ...

 ${f O}$ пр ${\it Paboma}, {\it coвершённая} {\it cucmemoй} {\it u}$ над ней ${\it PdV}, {\it P} \in \{P_{in}, P_{out}\}$

Для квазистатического процесса $\delta A_{in} = -\delta A_{out}$.

Заметим, что работа не является функцией состояния

Опр Адиабатическая оболочка При любых изменениях температуры окружающих ...

Если система заключена в адиабатическую оболочку, то работа внешних сил не зависит от траектории процесса, а определяется только начальным и конечным состояниями системы: $A_{12} = U_2 - U_1, U -$ внутренняя энергия, функция состояния

Опр Количество теплоты Если система заключена в жёсткую ...

$$Q_{in} = U_2 - U_1 = -Q_{out}$$

Первое начало термодинамики

3.2 Первое начало термодинамики

Закон Первое начало термодинамики

3С9, записываемый как $\delta Q_{in} = dU + A_{in} \Rightarrow dU = \delta Q - PdV$

3.3 Внутренняя энергия идеального газа

Опр Внутренняя энергия ИГ Функция только температуры, так как определяется ...

$$dU = c_V dT, U = \int c_V dT = \nu N_A \overline{\varepsilon} = \frac{i}{2} \nu RT$$

4 Теплоёмкость. Теплоёмкости при постоянном объёме и давлении. Связь между c_V и c_P для идеального газа (соотношение Майера)

4.1 Теплоёмкость

Опр $Tenno\"{e}$ мкость $c=rac{\delta Q_{in}}{dT}$

4.2 Теплоёмкости при постоянном объёме и давлении

Для получения указанных формул, достаточно записать I начало ТД, выполнить преобразования и записать определение, не забыв, что H = U + PV есть энтальпия

4.3 Связь между c_V и c_P для идеального газа (соотношение Майера)

$$c_P dT = dU = d(U + PV) = (c_V + \nu R)dT \Rightarrow c_P = c_V + \nu R$$

5 Политропический и адиабатический процессы. Уравнение адиабаты и политропы идеального газа. Скорость звука в газах

5.1 Политропический и адиабатический процессы

Опр *Политропический процесс* Процесс, в котором теплоёмкость остаётся ...

Опр $A \partial u a \delta a m u v e c \kappa u \ddot{u}$ n p o u e c c Процесс, происходящий в теплоизолированной ...

5.2 Уравнение адиабаты и политропы идеального газа

Опр Показатель адиабаты, политропы $\gamma = \frac{c_P}{c_H}, n = \dots$

Из уравнения состояния ИГ можно вывести уравнение адиабатического и политропического процессов Существует четыре основных политропических процесса: адиабата, изохора, -бара, -терма. У каждого из них свои теплоёмкости, показатели политропы n и уравнения

5.3 Скорость звука в газах

Опр *Скорость звука* Фазовая скорость продольных волн в бесконечной ...

Скорость звука можно запросто вывести из соответствующего уравнения механики

Опр Адиабатическая скорость звука За время прохождения звука на ...

Адиабатическую скорость звука выражается через ту же конечную формулу, с использованием уравнения адиабаты и $\rho = \frac{P\mu}{BT}$

6 Тепловые машины. Цикл Карно. КПД машины Карно. Теоремы Карно. Холодильная машина и тепловой насос. Коэффициенты эффективности идеальной холодильной машины и идеального теплового насоса

6.1 Тепловые машины

Опр Тепловая машина Устройство, которое преобразует теплоту в работу или ...

6.2 Цикл Карно

Опр Машина Карно Тепловая машина, работающая по циклу Карно

Опр Цикл Карно Обратимый цикл из двух изотерм и адиабат

6.3 КПД машины Карно

Опр *КПД тепловой машины* Отношение работы, произведённой машиной за один цикл ...

6.4 Теоремы Карно

Тһ Первая теорема Карно

КПД любой тепловой машины, работающей между между двумя заданными термостатами, не может превышать КПД машины Карно, работающей между теми же резервуарами

- 1. от противного: пусть у необратимой машины КПД больше. Рассмотрим работу этих двух машин в разных направлениях на одних и тех же резервуарах
- 2. Подберём $Q_{+1}, Q_{+2}: Q_{+1} = Q_{+2}$. Тогда рассмотрим суммарные теплоты и работы за цикл (ведь две тепловые машины всё равно что одна многофункциональная)
- 3. Итого, получилось что единственным результатом цикла большой машины есть производство работы за счёт охлаждение холодильника, w со II началом ТД

Тһ Вторая теорема Карно

КПД любых идеальных машин, работающих по циклу Карно между двумя заданными термостатами, равны и не зависят от устройства машин и рабочего тела

Это следствие первой теоремы: надо применить её к двум конкретным машинам Карно и поменять их местами. Система двух неравенств эквивалентна равенстве. Независимость от параметров достигнута за счёт рассмотрения общего случая

Чтобы найти точное значение КПД машины Карно, работающей с телами с температурами T_1, T_2 , надо рассмотреть идеальный газ как рабочее тело, вспомнить определение цикла Карно, модифицированное уравнение адиабаты и работу на изотерме

6.5 Холодильная машина и тепловой насос

Опр Холодильный цикл Имеет в результате потребление работы через отбирание ...

Опр Холодильная машина Машина, работающая по холодильному циклу

Опр *Тепловой насос* Машина для передачи тепла к более нагретому телу от ...

6.6 Коэффициенты эффективности идеальной холодильной машины и идеального теплового насоса

Опр Эффективность холодильной машины Отношение тепла холодильника к работе ...

Чтобы найти эффективность идеальной холодильной машины, надо воспользоваться теоремами Карно. Аналогично для идеального теплового насоса

7 Второе начало термодинамики. Энтропия (термодинамическое определение). Неравенство Клаузиуса. Энтропия идеального газа

7.1 Второе начало термодинамики

Опр Машина Клаузиуса Машина, работающая по круговому циклу, в результате ...

Закон Второе начало термодинамики в формулировке Клаузиуса

Машина Клаузиуса невозможна

Опр Машина Томсона Машина, работающая по круговому циклу, в результате ...

Закон Второе начало термодинамики в формулировке Томсона (лорда Кельвина)

Машина Томсона невозможна

Тh Формулировки Клаузиуса и Томсона эквивалентны

⇐: производимую мТ работу можно целиком передать нагревателю, создав мК

 \Rightarrow : рассмотрим две машины между заданными термостатами: обыкновенную и мK. Результат одновременной работы этих двух машин есть мT

7.2 Энтропия (термодинамическое определение)

Опр Термодинамическая энтропия

Рассматривается произвольный обратимый круговой процесс, проходящий через фиксированные точки, рассматривается интеграл по циклу $\frac{\delta Q}{T}$ и путём преобразований (и, возможно, неравенства Клаузиуса) доказывается, что его величина не зависит от пути между точками

Тогда перед нами функция состояния по определению. Назовём её энтропией и будем обозначать как

7.3 Неравенство Клаузиуса

Утв Неравенство Клаузиуса

 $\oint \frac{\delta Q_i}{T_i} \le 0$

Иногда данное неравенство записывают в дискретной форме.

По второму началу термодинамики получим, что данный интеграл в обратимых процессах эквивалентен $-\delta S=0$ в силу того, что обратимыми являются лишь машины, работающие по циклу Карно, а для них данное равенство выполнено из выражения для КПД цикла Карно.

В случае неравновесного процесса, запишем его КПД и сравним с КПД цикла Карно. Тогда получим, что интеграл Клаузиуса процесса будет меньше, чем интеграл Клаузиуса цикла Карно, то есть ≤ 0

7.4 Энтропия идеального газа

Из I начала ТД и определения энтропии, получаем её выражение для ИГ

8 Обратимые и необратимые процессы. Закон возрастания энтропии. Неравновесное расширение газа в пустоту

8.1 Обратимые и необратимые процессы

Опр (Не)обратимые процессы Процесс (не)мб проведён в обратном направлении ...

8.2 Закон возрастания энтропии

Закон Неубывания энтропии

Для его доказательство достаточно рассмотреть круговой процесс с обратимой и нет частью, воспользоваться определением энтропии и неравенством Клаузиуса

Утв Постулат Гиббса

Энтропия максимальна в состоянии равновесия

8.3 Неравновесное расширение газа в пустоту

В теплоизолированной системе при расширении газа в вакуум по I началу ТД $\Delta Q=0$ в силу теплоизолированности A=0, потому что не над чем совершать работу, поэтому и $\Delta T=0$. Из выражения энтропии для ИГ $\Delta S=\nu R\ln\left(\frac{V_2}{V_1}\right)>0$. По-другому, возрастание энтропии можно объяснить необратимостью процесса в замкнутой системе

9 Непрерывность интеграла как функции верхнего предела. Существование первообразной для непрерывной на отрезке функции. Формула Ньютона-Лейбница. Формулы замены переменных в интеграле и интегрирования по частям

9.1 Непрерывность интеграла как функции верхнего предела

Утв *Обозначения для интеграла Лебега* Множество интегрирования, связь с обратным и множество нулевой меры

Лемма Если f интегрируем на отрезке, содержащим три точки, то её интеграл можно разбить на два Доказывается через интегрируемость функции на подмножестве и с помощью конечной аддитивности интеграла по множествам

Th *Непрерывность интеграла как функции верхнего предела* Если на числовом промежутке функция интегрируема, то её $F(x) = \int_a^x f(t)dt$ непрерывна на (a,b)

- 1. Зафиксируем произвольную точку отрезка и строго возрастающую последовательность с пределом в нашей точке
- 2. Воспользуемся определением $F(x_0)$ и непрерывностью интеграла по множествам, а также тем, что предел слева совпадает с обычным на внутренностях
- 3. Аналогичные рассуждения с убывающей последовательностью доказывают требуемую непрерывность (потому как и справа, и слева)

9.2 Существование первообразной для непрерывной на отрезке функции

Th Если функция интегрируема на отрезке и непрерывна его точке, то для её $F(x)\frac{d}{dx}:F'(x_0)=f(x_0)$, притом на концах отрезка речь идёт об односторонних производных

- 1. Зафиксируем произвольную точку отрезка справа B силу аддитивность интеграла имеем $F(x) F(x_0) = \int_{x_0}^x f(t)dt$
- 2. Применим интегральную теорему о среднем для $f(x), g(x) = 1 \ge 0$, получим отношение. Тогда устремив аргумент к нашей точке, получим определение производной справа
- 3. Аналогичные рассуждения дадут нам производную слева, аз значит, и доказываемую теорему

Из этой теоремы следует существование первообразной для непрерывной для отрезке функции, а также, совместно с теоремой о структуре первообразных, их отличие на константу

9.3 Формула Ньютона-Лейбница

Тh Формула Ньютона-Лейбница

Для доказательства достаточно расписать первообразную на множестве нулевой меры, на втором конце и взять разность

9.4 Формулы замены переменных в интеграле и интегрирования по частям

Th.1 Замена переменной в определённом интеграле

Если функция $x = \varphi([a,b])$ имеет непрерывную производную на отрезке [a,b], а f непрерывна на $\varphi([a,b])$, то справедливо равенство ...

- 1. В силу непрерывности f на $\varphi([a,b])$, для неё существует первообразная. Воспользуемся для неё формулой Ньютона-Лейбница
- 2. Продифференцируем первообразную и определим, для какой функции она таковой является. Применим формулу Ньютона-Лейбница уже для неё (обратное равенство) и получим требуемое

Тh.2 Интегрирование по частям

Если функции непрерывно дифференцируемы, то они могут быть проинтегрированы по частям

Для доказательства достаточно воспользоваться линейностью интеграла и формулой Ньютона-Лейбница

10 Мера декартова произведения двух конечно измеримых множеств. Выражение меры множества под графиком интегрируемой функции через интеграл. Площадь круга. Выражение объема тела вращения и длины кривой через интегралы. Связь интегрируемости по Риману и интегрируемости по Лебегу. Интегрируемость по Риману непрерывной на отрезке функции

10.1 Мера декартова произведения двух конечно измеримых множеств

Th Если два множества конечно измеримы в своих надмножествах, то их декартово произведение конечно измеримо в соотвествующем надмножестве с мерой, равной произведению мер

- 1. В тривиальном случае клеток равенство следует из определения
- 2. В случае, если конечно измеримые множества представимы в виде счетного дизъюнктного объединения клеток, разобьём их на эти клетки, а потом, в силу теоремы о перемножении абсолютно сходящихся рядов, получим требуемое
- 3. Покажем, что для любых конечно измеримых множеств мера их декартового произведения не превосходит произведения мер. Для этого зафиксируем $\forall \varepsilon > 0$ и счётные покрытия наших множеств клетками (они найдутся по определению верхней меры), притом разность мер покрытия и наших множеств не будет превосходить ε . Тогда распишем неравенство для верхней меры декартова произведения и, устремив $\varepsilon \to 0$, получим требуемое неравенство
- 4. Теперь покажем, что если существуют множества, сходящиеся по мере к нашим (с конечной верхней мерой), то их декартово произведение также будет сходиться к декартову произведению наших. Действительно, для этого надо расписать неравенство для верхней меры симметрической разности, используя предыдущий пункт и понять, что она стремится к нулю
- 5. В общем случае по определению конечно измеримого множества найдутся последовательности клеточных множеств, сходящиеся по мере к нашим. Тогда надо последовательно воспользоваться п.4 и п.1, а затем перейти к пределу

Из теоремы следует, тчо декартово произведение множества нулевой меры и произвольного имеет нулевую меру

10.2 Выражение меры множества под графиком интегрируемой функции через интеграл

Лемма Теорема о трёх последовательностях для конечно измеримых множеств

Если задано наше множество и существуют конечно измеримые последовательности миномажорант для него, которые в пределе имеют одинаковую меру, то наше множество измеримо и имеет ту же меру

Для доказательства нам потребуется перейти от верхней меры (заданной для всех, в том числе для неизвестного нашего множества) к клеточным множествам, для которых уже есть понятие предела по мере. Иначе наши рассуждения могли бы быть неприменимы

1. Рассмотрим верхнюю меру симметрической разность нашего и последовательности миноранты. Из неравенств будет следовать, что она стремится к нулю

- 2. Теперь рассмотрим симметрическую разность клеточных множеств A_{ik} , покрывающих A_k , и саму A_k . Применив неравенство треугольника, получим, что клеточные множества A_{ik} сходятся по мере к нашему
- 3. Аналогичные рассуждения для мажорант доказывают теорему

Тh О геометрическом смысле интеграла

Если область определения интегрируемой функции X измерима, то площадь под графиком функции в соотвествующем надмножестве конечно измерим с мерой равной интегралу лебега этой функции по X

- 1. В тривиальном случае СС функции можно разбить график на дизъюнктное объединение множеств и в силу счётной аддитивности интеграла Лебега получить требуемое утверждение
- 2. В общем случае обозначим интеграл как J и зафиксируем $\forall \varepsilon > 0$
- 3. Воспользуемся определением верхних интегралов и запишем две серии неравенств (для СС-функций и их интегралов)
- 4. При необходимости заменим значения миномажорант-СС-функций на множестве нулевой мере (чтобы доказываемое утверждение было справедливо для всего X)
- 5. На предыдущем шаге записываем меру площадей графиков функции под миномажорантами и приходим к очевидному двойному вложению
- 6. Так как в силу произвольности $\varepsilon > 0$ их площади стремятся к J , то в силу леммы, площадь под графиком измерима с мерой J

10.3 Площадь круга

Лемма Круг измерим с площадь πr^2

- 1. Напишем множество верхнего полукруга и после преобразований выразим y: $0 \le y \le \sqrt{r^2 x^2}$
- 2. По предыдущей теореме верхний полукруг измерим с интегралом в половину искомого (интеграл считается через замену). Аналогично для нижнего полукруга
- 3. Так как две части круга имеют нулевую меру пересечения, то по формуле включений-исключений, мера круга равна πr^2

10.4 Выражение объема тела вращения и длины кривой через интегралы

Опр *Тело вращения вокруг оси* Если на отрезке задана неотрицательная функция, то множество ... **Тh.1** Если неотрицательная функция измерима и ограничена, то тело вращения измеримо...

- 1. Зафиксируем супремум ограниченной функции, число $N \in \mathbb{N}$, на которое мы разобьём наш отрезок множествами X_k и измеримые конечно-ступенчатые функции-миномажаронты
- 2. Распишем объём тел вращения для миноранты в терминах декартова произведения площади круга на меру X_k с помощью определения интеграла для СС-функции
- 3. Запишем неравенства для полученных объёмов и устремим $N \to +\infty$
- 4. Аналогично распишем для мажоранты
- 5. В силу вложенности и стремления по мере в пределе получим объём тела вращения для нашей функции

Тһ.2 Вычисление длины кривой

Если кривая параметризована непрерывно дифференицируемой вектор-функцией, то её длина выражается формулой ...

Для доказательства достаточно рассмотреть переменную длину дуги, вспомнить теорему о производной переменной длины дуги и применить формулу Ньютона-Лейбница

10.5 Связь интегрируемости по Риману и интегрируемости по Лебегу

Опр Разбиение отрезка, отрезки разбиения Конечный набор точек

Опр Выборка Набор точек из отрезков разбиения

Опр *Интегральная сумма Римана* Сумма конечного числа слагаемых, зависит от функции, разбиения и выборки

Опр Мелкость разбиения Максимальный отрезок разбиения

Опр Интеграл Римана Предел интегральных сумм Римана

Заметим, что этот интеграл всегда конечен в силу работы на компакте (отрезке)

Опр Интегрируемая по Риману функция В интеграл Римана для этой функции на этом отрезке

Тh.1 Достаточное условие интегрируемости

Если функция непрерывна на компакте, то она интегрируема на нём

- 1. Так как для любого $C \in \mathbb{R}$ $L_{<}$ замкнуто (а значит, измеримо), то функция измерима на компакте
- 2. В силу теоремы Вейерштрасса функция ограничена на компакте некоторой константой
- 3. Так как константа интегрируема на компакте, то по признаку сравнения функция тоже интегрируема

Тh.2 Если функция интегрируема по Риману, то она интегрируема и по Лебегу и интегралы совпадают

- 1. Зафиксируем $\forall \varepsilon > 0$ и достаточно мелкое разбиение отрезка
- 2. Перепишем предельное неравенство в терминах инфимума и введём новые обозначения, чтобы ввести конечно-ступенчатую функцию
- 3. Тогда интеграл для минорант будет интегралом Римана функции (записанным в терминах инфимума). Поэтому нижний интеграл будет не меньше Риманова
- 4. Аналогично верхний интеграл не больше Риманова
- 5. Объединив все полученные неравенства в одну строку, получим равенство крайних интегралов и интеграл Лебега по определению

10.6 Интегрируемость по Риману непрерывной на отрезке функции

 ${\bf Th}$ Для непрерывной на отрезке функции fинтеграл Римана существует и совпадает с интегралом Лебега

- 1. Сначала надо воспользоваться теоремой Кантора, определением равномерной непрерывности
- 2. Затем зафиксировать разбиение и выборку, определить конечно-ступенчатую функцию
- 3. Вспомнить определение интеграла для СС функции и модуля непрерывности
- 4. По Th.1 f интегрируема по Лебегу, как и разность f и CC функции в силу линейности интеграла
- 5. Переходя к пределу при мелкости разбиения, получаем что интеграл Римана существует по определению, притом из рассуждений следует, что он совпадает с интегралом Лебега

11 Теорема Б. Леви о монотонной сходимости. Теорема Лебега об ограниченной сходимости

Отличие следующих теорем от непрерывности интеграла по множествам состоит в том, что теперь предельный переход выполняется для функций, а не множеств

11.1 Теорема Б. Леви о монотонной сходимости

Th Если последовательность измеримых функций $f_k \ge 0$ монотонна и сходится к f, то f измерима с интегралом, равным пределу интегралов f_k

- 1. Измеримость функции следует из леммы о поточечной сходимости, а интегрируемость в силу существования интеграла от неотрицательной измеримой функции (интеграл может быть бесконечным)
- 2. Рассмотрим случай конечного интеграла, предварительно выкинув множества нулевой меры, на котором он бесконечен
- 3. Зафиксируем $\forall \varepsilon > 0$ и рассмотрим множества X_k с (1ε) внутри
- 4. В силу монотонности функции, X_k будут монотонны по включению и покрывать всю область определения
- 5. Вспомним про непрерывность интеграл по множествам и определение предела
- 6. Затем распишем неравенства, устремим $\varepsilon \to 0$ и получим доказываемое соотношение
- 7. В случае бесконечного интеграла фиксируем $\forall C>0$ и миноранту, чей интеграл на том же множестве будет >C (она существует из определения нижнего интеграла) и выкинем множества нулевой меры, на которых миноранта больше f
- 8. Рассмотри измеримые функции $g_k = \min(f_k, g)$, которые в пределе равны миноранте (показывается через определения предела для f и минимума)
- 9. Как показано в конечном случае, предел для миноранты будет больше > C, а в силу неравенства, для f тоже. В силу произвольности C получаем необходимое равенство

11.2 Теорема Лебега об ограниченной сходимости

Th Если последовательность интегрируемых функций f_k , каждый член которой ограничен по модулю интегрируемой функцией φ почти всюду на X и поточечно сходится к f, то f интегрируема с интегралом, равным пределу интегралов f_k

- 1. Измеримость f следует из леммы о поточечной сходимости, а интегрируемость в силу предельного перехода и признака сравнения
- 2. Выкинем множества нулевой меры, на которых условие теоремы не выполняется
- 3. Зафиксируем $\forall \varepsilon > 0$ и рассмотрим множества X_k с $\varepsilon \varphi(x)$ внутри
- 4. X_k будут покрывать X (включение в одну сторону очевидно, а в другое надо рассмотреть два случая для $\varphi(x)$, расписать определение предела). Также X_k будут монотонны по включению
- 5. Распишем предел для $\int_{X_k} \varphi$ с помощью непрерывности и аддитивности интеграла по множествам
- 6. Теперь распишем неравенство для разности интегралов f и f_k , воспользовавшись неравенством треугольника, определением X_k и конечностью интеграла для φ
- 7. В итоге, устремив $\varepsilon \to 0$, завершим доказательство теоремы

12 Несобственный интеграл. Связь сходимости несобственного интеграла и интегрируемости функции по Лебегу. Критерий Коши. Признаки Дирихле и Абеля сходимости несобственных интегралов

12.1 Несобственный интеграл

- Опр Несобственный интеграл, особенность Односторонний предел интегрального конца
- Опр (Рас)ходящийся несобственный интеграл Если (не)существует конечный предел
- **Опр** *Собственный интеграл* Интеграл Лебега, который был до этого
- Опр Абсолютно сходящийся несобственный интеграл Аналогично рядам
- **Опр** (Сходящийся) несобственный интеграл с двумя особенностями Разбить на два интеграла с одной особеностью (и утверждать сходимость только в случае сходимости обоих интегралов)

12.2 Связь сходимости несобственного интеграла и интегрируемости функции по Лебегу

Th.1 Если f интегрируема по Лебегу, на любом открытом промежутке, она интегрируема на всём промежутке \Leftrightarrow соответсвующих несобственный интеграл сходится абсолютно

- $1. \Rightarrow$: согласно лемме об интегрируемости на подмножестве f интегрируема на любом открытом промежутке, как и её модуль (по эквивалентности)
- 2. Из аддитивности интеграла по множествам следует нестрогое возрастание функции $F(b^{'})=\int_{a}^{b^{'}}|f(x)|dx$
- 3. По теореме существует предел слева, поэтому несобственный интеграл сходится абсолютно
- 4. \Leftarrow : зафиксируем возрастающую последовательность $\{b_k\} \to b$
- 5. Определим индикаторную последовательность функций $f_k(x)$. Она сходится к f, что докажет измеримость f на всём интервале
- 6. Затем введём новую функциональную последовательность $g(x) = |f_k(x)|$. Она будет возрастать и в пределе равна |f(x)|, поэтому применима теорема о монотонной сходимости
- 7. Из неё следует интегрируемость |f(x)| на интервале, то есть и f

 ${f Th.2}$ Если f интегрируема в собственном смысле, то несобственный интеграл сходится и его значение равна интегралу Лебега на том же интервале

Доказательство состоит в применении теоремы о непрерывности интеграла как функции верхнего предела

12.3 Критерий Коши

Тһ Критерий Коши

Если на числовом промежутке f интегрируема по Лебегу на любом открытом промежутке, то несобственный интеграл этой функции сходится \Leftrightarrow выполняется условие Коши

- 1. Определим $F(t) = \int_a^t f(x) dx$. Несобственный интеграл с особенностью в верхнем конце будет сходиться, если у этой функции существует конечный предел при $t \to b-0$
- 2. Далее сведём задачу к KK существования предела функции и воспользуемся формулой Ньютона Лейбница

12.4 Признаки Дирихле и Абеля сходимости несобственных интегралов

Смотреть в рукописном конспекте

Связь поточечной и равномерной сходимостей для функциональной последовательности. Критерий Коши равномерной сходимости функциональной последовательности. Обобщенный признак сравнения для функциональных рядов. Признак Вейерштрасса равномерной сходимости функционального ряда. Признаки Дирихле и Лейбница равномерной сходимости функционального ряда. Признак Абеля равномерной сходимости функционального ряда. Непрерывность равномерного предела, непрерывных функций и суммы равномерно сходящегося функционального ряда с непрерывными слагаемыми. Почленное интегрирование функциональных последовательностей и рядов. Дифференцирование предельной функции и почленное дифференцирование функционального ряда

13.1 Связь поточечной и равномерной сходимостей для функциональной последовательности

Опр Поточечный предел функциональной последовательности Предел в привычном понимании

Опр *Равномерный предел функциональной последовательности* $N \in \mathbb{N}$ не зависит от аргумента

Из равномерной сходимости следует поточечная, но не наоборот

Опр *Равномерно ограниченная функциональная последовательность* $N \in \mathbb{N}$ не зависит от аргумента

13.2 Критерий Коши равномерной сходимости функциональной последовательности

Тһ Критерий Коши

Последовательность сходится равномерно \Leftrightarrow выполняется условие Коши

- ⇒: дважды применить определение равномерной сходимости и воспользоваться неравенством треугольника
- 2. \Leftarrow : требуется доказать равномерную сходимость из выполнения условия Коши числовой последовательности для любого фиксированного $x \in X$. В силу КК для числовой последовательности $\lim_{k \to \infty} f_k = f$
- 3. Далее надо в силу $\forall p \in \mathbb{N}$ устремить его к $+\infty$ и по теореме о предельном переходе в неравенствах получить определение равномерной сходимости

13.3 Обобщенный признак сравнения для функциональных рядов

Опр Поточечный предел функционального ряда Сходимость ряда в привычном понимании

Опр *Равномерный предел функционального ряда* Если последовательность его частичных сумм сходится равномерно на том же множестве

Опр *Остаток поточечно сходящегося функционального ряда* Разность суммы и частичной суммы ряда

Ть Обобщенный признак сравнения

Если каждый член нашего ряда по модулю не превосходит члена равномерно сходящегося на том же множестве ряда, то и наш ряд сходится равномерно

Доказательство состоит в двукратном применении КК

Из признака следует, что из равномерной абсолютной сходимости ряда следует равномерная сводимость ряда на том же множестве

13.4 Признак Вейерштрасса равномерной сходимости функционального ряда

 ${f Th}$ Признак Вейерштрасса

Если каждый член нашего ряда по модулю не превосходит члена сходящегося ряда, то наш ряд сходится равномерно на том же множестве

Доказательство состоит в применении обобщенного признака сравнения. Заметьте, что мы не требуем равномерной сходимости от ряда-мажоранты

13.5 Признаки Дирихле и Лейбница равномерной сходимости функционального ряда

Смотреть в рукописном конспекте

13.6 Признак Абеля равномерной сходимости функционального ряда

Смотреть в рукописном конспекте

13.7 Непрерывность равномерного предела, непрерывных функций и суммы равномерно сходящегося функционального ряда с непрерывными слагаемыми

Th.1 О непрерывности предельной функции

Если последовательность f_k непрерывных на множестве X функций сходится равномерно на множестве X, то f непрерывна на X

- 1. Зафиксируем $\forall \varepsilon > 0$ и $x_0 \in X$
- 2. Далее для доказательства достаточно дважды записать определения равномерной сходимости и один раз непрерывности функции $f_N(x)$ для нужных долей ε и воспользоваться неравенством треугольника

Th.2 О непрерывности суммы ряда

Если функциональный ряд u_k непрерывных на множестве X функций сходится равномерно на множестве X, то сумма ряда непрерывна на X

Доказательство состоит в применение Тh.1 последовательности частичных сумм ряда

13.8 Почленное интегрирование функциональных последовательностей и рядов

Тh.1 Об интегрировании предельной функции

Если последовательность f_k интегрируемых на конечно измеримом множестве X функций сходится равномерно на множестве X к интегрируемой функции f, то интеграл этой функции есть предел интегралов

- 1. Воспользуемся sup-критерием для $\varepsilon=1$. Тогда из неравенства следует интегрируемость f по признаку сравнения
- 2. Расписав супремум для разности интегралов в пределе получим 0, что завершает доказательство

Следствие Если последовательность непрерывных на компакте X функций f_k сходится равномерно к функции f, то интеграл этой функции есть предел интегралов

Непрерывность f следует из теоремы предыдущей темы, а интегрируемость из достаточного условия интегрируемости, что позволяет применить предыдущую теорему и доказать утверждение

Тh.2 Об почленном интегрировании ряда

Если функциональный ряд u_k непрерывных на компакте X функций сходится равномерно, то сумма интеграла есть интеграл суммы

Доказательство состоит в применение следствия из предыдущей теоремы к последовательности частичных сумм ряда с использованием линейности интеграла

13.9 Дифференцирование предельной функции и почленное дифференцирование функционального ряда

Тh.1 О дифференцировании предельной функции

Если последовательность f_k непрерывно дифференцируемых на отрезке [a,b] функций сходится хотя бы в одной точке x_0 , а последовательность производных $f_k^{'}$ сходится равномерно на [a,b], то последовательность f_k сходится равномерное на [a,b] к некоторой непрерывно дифференицируемой функции f, притом производная предела есть предел производных

- 1. Обозначим предельную функцию для $f_k^{'}$ за $\varphi(x)$, непрерывную по теореме, и предел $f_k(x_0)$ за A
- 2. Далее определим $f(x)=A+\int_{x_0}^x \varphi(t)dt$ и $f_k(x)=f_k(x_0)+\int_{x_0}^x f_k^{'}(t)dt$
- 3. Затем пара хитрых замечаний, работа с супремумом, использование sup-критерия
- 4. В итоге получаем равномерную сходимость f_k и требуемое равенство с учётом построения f(x)

Тh.2 О почленном дифференцировании ряда

Если функциональный ряд u_k непрерывно дифференцируемых на отрезке [a,b] функций сходится хотя бы в одной точке x_0 , а ряд производных u_k сходится равномерно на [a,b], то справделива формула почленного дифференицрования ряда, то есть производная суммы ряда есть сумма производных

Доказательство состоит в применение Тh.1 к последовательности частичных сумм ряда

14 Степенные ряды. Формула Коши-Адамара для радиуса сходимости. Теорема о круге сходимости степенного ряда. Первая теорема Абеля. Теорема о равномерной сходимости степенного ряда. Вторая теорема Абеля. Сохранение радиуса сходимости при почленном дифференцировании степенного ряда. Теоремы о почленном интегрировании и дифференцировании степенного ряда. Единственность разложения функции в степенной ряд, ряд Тейлора. Достаточное условие аналитичности функции. Пример бесконечно дифференцируемой, но неаналитической функции. Представление экспоненты комплексного аргумента степенным рядом. Формулы Эйлера. Формула Тейлора с остаточным членом в интегральной форме. Представление степенной и логарифмической функций степенными рядами

14.1 Степенные ряды

Опр *Предел последовательности комплексных чисел* Предел модуля разности равен нулю Заметим, что комплексный предел эквивалентен двум вещественным (для действительной и мнимой части)

Опр *Сходящийся комплексный ряд* Существует конечный предел последовательности частичных сумм этого ряда

Опр Абсолютно сходящийся комплексный ряд Сходится вещественный ряд модулей членов ряда И вновь сходимость комплексного ряда эквивалентна сходимости двух вещественных рядов

Опр *Равномерно сходящийся комплекснозначная функциональная последовательность* Вещественнозначная последовательность модулей разности предельной функции и элементов последовательности равномерно сходится к нулю на том же множестве

Опр *Равномерно сходящийся комплексный функциональный ряд* Последовательность частичных сумм этого ряда равномерно сходится к сумме этого ряда на том же множестве

Опр Cmenehhoù pad Если задана последовательность комплексных чисел и комплексное число, то ... Однако удобнее (и мы в дальнейшем будем так делать) работать с рядом без степенной разности, сделав замену комплексной переменной

14.2 Формула Коши-Адамара для радиуса сходимости

Опр *Радиус сходимости степенного ряда* Неотрицательное число (или бесконечность), определяемое формулой Коши-Адамара

Притом для этой формулы мы расширили операцию деления

14.3 Теорема о круге сходимости степенного ряда

Опр *Круг сходимости степенного ряда* Круг на комплексной плоскости с центром в $w_0(0)$ и радиусом равным радиусу сходимости

Если радиус сходимости бесконечен, то кругом сходимости считается вся комплексная плоскость

 \mathbf{Th} О круге сходимости

Степенной ряд абсолютно сходится внутри круга сходимости и расходится вне его

- 1. Зафиксируем произвольное комплексное число $z_0 \neq 0$, обозначим $q = \frac{z_0}{R}$ и исследуем сходимость с помощью обобщённого признака Коши
- 2. В тривиально случае $z_0 = 0$ ряд сходится абсолютно
- 3. В случае $0 < |z_0| < R$ в силу обобщённого признака Коши ряд сходится абсолютно
- 4. В случае $|z_0| > R$ в силу обобщённого признака Коши члены абсолютного ряда не стремятся к нулю, как и исходного ряда, а значит, он расходится по отрицанию необходимого условия

14.4 Первая теорема Абеля

Тh Первая теорема Абеля

Если степенной ряд сходится в точке z_0 , то он сходится абсолюто в любой точке по модулю меньшей Доказательство следует от противного в силу п.4 теоремы о круге сходимости

14.5 Теорема о равномерной сходимости степенного ряда

Тһ О равномерной сходимости степенного ряда

 $\forall r \in (0,R)$ ряд $\sum_{\mathbb{N}} {}_0 c_k z^k$ сходится равномерно в круге радиуса r

Доказывается через неравенство, применением теоремы о круге сходимости и по признаку Вейерштрасса равномерной сходимости комплексного ряда

- 1. Зафиксируем произвольное комплексное число $z_0 \neq 0$, обозначим $q = \frac{z_0}{R}$ и исследуем сходимость с помощью обобщённого признака Коши
- 2. В тривиально случае $z_0 = 0$ ряд сходится абсолютно
- 3. В случае $0 < |z_0| < R$ в силу обобщённого признака Коши ряд сходится абсолютно
- 4. В случае $|z_0| > R$ в силу обобщённого признака Коши члены абсолютного ряда не стремятся к нулю, как и исходного ряда, а значит, он расходится по отрицанию необходимого условия

14.6 Вторая теорема Абеля

Тh Вторая теорема Абеля

Если степенной ряд сходится в точке z_0 , то он сходится равномерно на отрезке $[0, z_0]$

- 1. Разобьём члены ряда на произведение членов произведения с помощью параметра $t \in [0,1]$
- 2. Первый ряд сходится по условию (а значит, по предыдущей теореме, ещё и равномерно)
- 3. Второй ряд равномерно ограничен на отрезке и монотонен по индексу
- 4. Поэтому два вещественных ряда сходятся равномерно на [0,1], как и исходный ряд на $[0,z_0]$

14.7 Сохранение радиуса сходимости при почленном дифференцировании степенного ряда

Th Радиусы сходимости степенных рядов, полученные формальным дифференцированием и интегрированием исходного, совпадают с его радиусом сходимости

- 1. Радиусы сходимости исходного и продифференцированного рядов совпадают в силу формулы Коши-Адамара
- 2. Также они сходятся или расходятся одновременно, потому как при z=0 это очевидно, а в противном случае они отличаются на ненулевую константу (как и их пределы)
- 3. Так как исходный ряд получается почленным дифференцированием интегрального, то и их радиусы сходимости совпадают

14.8 Теоремы о почленном интегрировании и дифференцировании степенного ряда

Тһ Об интегрировании и дифференцировании степенного ряда

Если вещественный степенной ряд имеет ненулевой радиус сходимости, то внутри интервала сходимости

- справедливы формулы почленного интегрирования
- функция ряда имеет производные любого порядка, получаемые почленным дифференцированием ряда
- коэффициенты степенного ряда однозначно определяются по обрывку формулы Тейлора
- 1. Для почленного интегрирования достаточно ввести новую переменную и воспользоваться теоремами о равномерной сходимости степенного ряда и о почленном интегрировании равномерно сходящегося функционального ряда
- 2. Для производных достаточно ввести новую переменную и воспользоваться теоремами о сохранении радиуса сходимости, о равномерной сходимости степенного ряда и о почленном дифференцировании функционального ряда
- 3. Проводя те же рассуждения по индукции, доказываем второе утверждение теоремы
- 4. Доказывается аналогично лемме первого семестра перед формулой Тейлора

14.9 Единственность разложения функции в степенной ряд, ряд Тейлора

Опр *Бесконечно дифференцируемая функция в точке* В этой точке существуют производные функции любого порядка

Опр Ряд Тейлора Ряд бесконечно дифференцруемой функции в точке с членами ...

Опр *Регулярная функция в точке z_0* Ряд Тейлора функции в точке z_0 сходится к функции в некоторой окрестности z_0

Из теоремы об интегрировании и дифференцировании степенного ряда следует, что если функция может быть представлена как сумма степенного ряда $\sum_{\mathbb{N}_0} a_k (z-z_0)^k$ с ненулевым радиусом сходимости, то этот ряд является рядом Тейлора функции в точке z_0 . В этом случае функция является регулярной в точке z_0

Опр *Остаточный член формулы Тейлора* Разность *п* раз дифференцируемой функции и формулы Тейлора

Непосредственно из определений следует, что функция является регулярной в точке $\Leftrightarrow \lim_{n\to\infty} r_n(x) = 0$. Притом для доказательства регулярности недостаточно показать ненулевой радиус сходимости функции, надо ещё проверить её остаток

14.10 Достаточное условие аналитичности функции

Тһ Достаточное условие регулярности

Если $\exists U_{\delta}(x_0)$, где функция бесконечно дифференцируема и последовательность её производных равномерно ограничена константой C>0, то функция регулярна в точке и $\forall x\in U_{\delta}(x_0)$ раскладывается в ряд Тейлора

- 1. Применим формулу Тейлора с остаточным членом в форме Лагранжа. Тогда остаточный член формулы Тейлора $\leq M \frac{\delta^{n+1}}{(n+1)!}$
- 2. Так как факториал растёт быстрее показательной (доказывается через принцип Архимеда, определение факториала, цепочку неравенств и предельный переход), то остаточный член стремится к нулю
- 3. Поэтому функция регулярна, потому как раскладывается в ряд Тейлора в x_0

14.11 Пример бесконечно дифференцируемой, но неаналитической функции

$$f(x) = \begin{cases} e^{-\frac{1}{x^2}}, & x \neq 0; \\ 0, & x = 0. \end{cases}$$

Ряд Тейлора этой бесконечно дифференцируемой в точке $x_0=0$ сходится не к функции f(x), а к некоторой другой функции, не совпадающей с f(x) в сколь угодно малой окрестности точки

$$\forall k \in \mathbb{N} \lim_{x \to 0} \frac{1}{x^k} e^{-\frac{1}{x^2}} = \lim_{t \to +\infty} t^{\frac{k}{2}} e^{-t} = 0$$

По индукции легко показать, что если $P_{3n}(t)$ – многочлен степени 3n от t, то

$$f^{(n)}(x) = \begin{cases} P_{3n}(\frac{1}{x})e^{-\frac{1}{x^2}}, & x \neq 0; \\ 0, & x = 0. \end{cases}$$

Следовательно, все коэффициенты ряда Тейлора функции f(x) в точке $x_0=0$ равны нулю. Поэтому сумма ряда Тейлора функции f(x) в точке x_0 равна нулю и не совпадает с функцией f(x) в сколь угодно малой окрестности точки x_0 . Таким образом, хотя функция и бесконечно дифференцируема, она не является регулярной в нуле

14.12 Представление экспоненты комплексного аргумента степенным рядом

Опр Ряд Маклорена Ряд Тейлора функции в нуле

Th.1 Ряды маклорена функций e^x , $\sin(x)$, $\cos(x)$, $\sinh(x)$, $\cosh(x)$ сходятся к этим функциям на всей числовой прямой

- 1. $\forall \delta > 0 \ \forall x \in U_{\delta}(0) \ e^x < e^{\delta}$, поэтому выполнено достаточное условие регулярности
- 2. Аналогично, используя ограниченность последовательности всех производных оставшихся функций доказываем их разложения

Тh.2 Для комплексной экспоненты её ряд Тейлора не отличается от вещественного

- 1. В силу предыдущей теоремы радиус сходимости степенного ряда-претендента сходится на всём \mathbb{C} , поэтому по теореме о круге сходимости он сходится абсолютно для любого $z \in \mathbb{C}$
- 2. Зафиксируем произвольное комплексное число в алгебраической форме и воспользуемся определением экспоненты комплексного числа, чтобы зафиксировать доказываемое равенство
- 3. Покажем, что функция-ряд-претендент обладает свойством экспоненты. Для этого воспользуемся теоремой о перемножении абсолютно сходящихся рядов, которая для комплексных рядов доказывается точно так же, как и для вещественных (только здесь надо использовать метод "диагоналей")
- 4. В результате преобразований получим сумму сумм, которую распределим по этим суммам, и применим формулу бинома Ньютона, завершив доказательство свойства
- 5. Далее рассмотрим функцию кандидат на чисто мнимом аргументе и путём разложения на чётную и нечётную суммы получим выражение для чисто мнимой экспоненты
- 6. В итоге, применив свойство экспоненты и убедившись, что функция работает на вещественных аргументах, получим разложение комплексной экспоненты в ряд Тейлора в силу единственности

14.13 Формулы Эйлера

Лемма Для любого $z \in \mathbb{C}$ справедливы формулы Эйлера Они используют новопостроенные комплексные функции и подравнивают комплексную тригонометрию к вещественной гиперболике

- 1. Для доказательства формулы гиперкомплексной экспоненты достаточно разделить сумм на чётную и нечётную, а затем воспользоваться $i^2 = -1$
- 2. Остальные формулы следуют из первой

14.14 Формула Тейлора с остаточным членом в интегральной форме

Тһ Формула Тейлора с остаточным членом в интегральной форме

Если функция в $U_{\delta}(x_0)$ имеет непрерывные производные по n+1 порядок, то для остаточного члена формулы Тейлора справедливо представление в интегральной форме: $r_n(x) = \frac{1}{n!} \int_{x_0}^x (x-t)^n f^{n+1}(t) dt \forall x \in U_{\delta}(x_0)$

- 1. При n=0 теорема справедлива в силу формулы Ньютона Лейбница
- 2. Пусть теорема справедлива для n=s-1. Тогда проинтегрируем r_{s-1} по частям
- 3. Затем, расписав r_s по определению, подставим проинтегрированное выражение и получим требуемое равенство
- 4. Таким образом, теорема доказана по индукции

14.15 Представление степенной и логарифмической функций степенными рядами

Th Ряд Маклорена степенной функции сходится к этой функции на интервале единичного радиуса

- 1. Зафиксируем $x \in (-1;1)$ и учитывая выражение для f^n распишем остаточный член в интегральной форме, походу дела вынося константы, вводя новые обозначения и переменные интегрирования
- 2. Затем воспользуемся ограниченностью x для оценки. Осталось показать, что $\lambda_n \to 0$
- 3. В тривиальных случаях x=0 и $\alpha=m\in\mathbb{N}_0, m< n$ утверждение очевидно
- 4. В общем случае найдём предел отношения и воспользуемся схожими рассуждениями с доказательством признака Даламбера (сравнение с геометрической прогрессией)

Заметим, что при $m \geq n$ ряд Маклорена совпадает с конечной суммой

Из доказанного и теоремы о почленном интегрировании степенного ряда при |x| < 1 (не забывая про замену индекса суммирования) получаем ряд Маклорена для логарифма. Данное разложение справедливо и при x=1. Действительно, данный ряд будет сходиться по признаку Лейбница. Следовательно, в силу второй теоремы Абеля этот ряд сходится равномерно на отрезке [0;1]. Согласно теореме о непрерывности суммы равномерно сходящегося функционального ряда частичные суммы этого ряда будет непрерывны на отрезке [0;1]. Поэтому существует требуемый предел