Perspectives on Functions

Tyler Holden and Parker Glynn-Adey

June 15, 2021

Definition

A function f(x) is an assignment of a real number x to some other unique real number.

•
$$f(x) = x^2$$

Definition: The *domain* of a function is the largest set on which the function is defined. The *range* of a function is the set of all points which are witnessed by the function.

Example Question: Find the domain and range of the function $f(x) = \frac{1}{\sqrt{1-x^2}}$.

Solution: In the denominator we have a square root whose argument cannot be negative, so $1-x^2\geq 0$. Solving this gives $-1\leq x\leq 1$. This is the only restriction, so the domain is [-1,1]. For the range, note that every term of the function is non-negative, and it can never be zero, so f(x)>0 for any value of x. The function is smallest when the denominator is largest, which occurs when x=0, so the minimum of f is f(0)=1. As x gets closer to 0, the denominator becomes arbitrarily small, meaning that f gets arbitrarily big, thus the range is $[1,\infty)$.

Definition

Given two sets A and B, a function is a map $f: A \to B$ such that $f(a) \in B$ for all $a \in A$. In this case, A is said to be the *domain*, while B is said to be the *codomain*.

Let $A = \{0, 1, 2\}$ and $B = \{a, b, c, d\}$, and define the function by the following map:

▶ Define $f:[0,1] \to \mathbb{R}$ by $f(x) = x^2$

Definition: A function $f: A \to B$ is said to be *injective* if whenever f(x) = f(y) then x = y.

Example Question: Suppose that $f: B \to C$ and $g: A \to B$ are functions such that $f \circ g: A \to C$ is injective. Show that g is injective.

Solution: We are told that $f \circ g$ is injective, which means that if f(g(x)) = f(g(y)) then x = y. We want to show that if g(x) = g(y) then x = y. So suppose g(x) = g(y), and apply f to both sides, so that f(g(x)) = f(g(y)). But since $f \circ g$ is injective, it must be the case that x = y.

Definition(s)

Definition: The *cartesian product* of two sets A and B is the set $A \times B = \{(a, b) : a \in A, b \in B\}.$

Definition: A binary relation on the sets A and B is a subset $R \subseteq A \times B$.

Definition: A function $f: A \rightarrow B$ is a binary relation R on the sets A and B such that

- 1. if $(x, y), (x, z) \in R$ then y = z. Here A is the domain and B is the codomain;
- 2. for every $x \in A$ there exists a $y \in B$ such that $(x, y) \in R$.
- For example, on the set $\{0,1,2\} \times \{a,b,c,d,e\}$ we can define a function via the relation $R = \{(0,c),(1,b),(2,c)\}$. We often write this as f(0) = c, f(1) = b, f(2) = c.
- ▶ Define a function on $[0,1] \times \mathbb{R}$ by $R = \{(x,x^2) : x \in [0,1]\}$, often written $f(x) = x^2$.

Definition: A function $f: B \to C$ is said to be *monic* if whenever $g_1, g_2: A \to B$ satisfy $f \circ g_1 = f \circ g_2$ then $g_1 = g_2$.

Example Question: Show that a function is injective if and only if it is monic.

Solution: Suppose that f is a monomorphism, and that $b_1, b_2 \in B$ satisfy $f(b_1) = f(b_2)$. Define the constant functions $g_i : B \to B$ be the constant function $g_i(x) = b_i$. Now $f(g_1(x)) = f(b_1) = f(b_2) = f(g_2(x))$ for all $x \in B$, so by assumption $g_1(x) = g_2(x)$ for all $x \in B$, which in turn shows that $b_1 = b_2$.

Conversely, suppose that f is injective. Injective functions are left-invertible, so choose one such inverse $h: C \to B$ such that $h \circ f = \mathrm{id}_B$. Let $g_1, g_2: A \to B$ be any to functions such that $f \circ g_1 = f \circ g_2$, and post-compose by h to get

$$h \circ (f \circ g_1) = (h \circ f) \circ g_1 = \mathrm{id}_B \circ g_1 = g_1$$

= $h \circ (f \circ g_2)$ by assumption
= $(h \circ f) \circ g_2 = \mathrm{id}_B \circ g_2 = g_2$.

This shows that $g_1 = g_2$, allowing us to conclude that f is a monomorphism as required.