

Universidad Simón Bolívar Departamento de Matemáticas Puras y Aplicadas Abril - Julio, 2008

Duración: 1 hora, 50 minutos.

Carnet:		

Nombre: _____

Sección:

MA-1112 — Primer Parcial, Martes 20-05-2008. (30%) —

Justifique todas sus respuestas. Examen Tipo 81B

- 1. (12 ptos.) Calcule
 - a) (4 ptos.)

$$\int_{-1}^{2} (|x^2 - 2x| + x^3) dx$$

Solución:

 $x^2 - 2x = x(x-2)$, utilizando que

$$|x^2 - 2x| = \begin{cases} x^2 - 2x & \text{si } x \in [-1, 0] \\ 2x - x^2 & \text{si } x \in (0, 2] \end{cases}$$

podemos reescribir la integral como

$$\int_{-1}^{2} (|x^{2} - 2x| + x^{3}) dx = \int_{-1}^{0} (x^{2} - 2x + x^{3}) dx + \int_{0}^{2} (x^{3} - x^{2} + 2x) dx$$

$$= \left[\frac{x^{3}}{3} - x^{2} + \frac{x^{4}}{4} \right]_{-1}^{0} + \left[\frac{x^{4}}{4} - \frac{x^{3}}{3} + x^{2} \right]_{0}^{2}$$

$$= 0 - \left(-\frac{1}{3} - 1 + \frac{1}{4} \right) + \left(-\frac{8}{3} + 4 + 4 \right) = -\frac{7}{3} + 9 - \frac{1}{4}$$

$$= \frac{77}{12}.$$

b) (4 ptos.)

$$\int \frac{1+x-x^2}{(1-x^2)^{3/2}} dx$$

Solución:

$$\int \frac{1+x-x^2}{(1-x^2)^{3/2}} dx = \int \frac{1-x^2}{(1-x^2)^{3/2}} dx + \int \frac{x}{(1-x^2)^{3/2}} dx$$
$$= \int \frac{1-x^2}{(1-x^2) \cdot (1-x^2)^{1/2}} dx - \frac{1}{2} \int \frac{-2x}{(1-x^2)^{3/2}} dx.$$

MA-1112

Sea $u = 1 - x^2$, asi du = -2xdx. Luego,

$$\int \frac{1+x-x^2}{(1-x^2)^{3/2}} dx = \int \frac{1}{\sqrt{1-x^2}} dx - \frac{1}{2} \int \frac{du}{(u)^{3/2}}$$

$$= \arcsin(x) - \frac{1}{2} \int u^{-3/2} du = \arcsin(x) - \frac{1}{2} \frac{u^{-\frac{3}{2}} + 1}{-\frac{3}{2} + 1} + C$$

$$= \arcsin(x) + \frac{1}{\sqrt{u}} + C = \arcsin(x) + \frac{1}{\sqrt{1-x^2}} + C.$$

c) (4 ptos.)

$$\int_0^{\pi/4} \sqrt[4]{\tan^3(x)} \sec^2(x) dx$$

Solución:

Se realiza el cambio de variable $u=\tan(x)$, luego $du=\sec^2(x)dx$. Además, u=0 cuando x=0 y u=1 cuando $x=\pi/4$. Entonces,

$$\int_0^{\pi/4} \sqrt[4]{\tan^3(x)} \sec^2(x) dx = \int_0^1 \sqrt[4]{u^3} du = \int_0^1 u^{3/4} du$$

$$= \left[\frac{u^{7/4}}{7/4} \right]_0^1 = \frac{4}{7} \left[\sqrt[4]{u^7} \right]_0^1$$

$$= \frac{4}{7} \cdot (1 - 0) = \frac{4}{7}.$$

2. (6 ptos.) Determine el área de la región limitada por las curvas $y=x^2+2x$ y y=-x+4, en [-5,1].

Solución:

DPTO. DE MATEMATICAS

MA-1112

Resolviendo el sistema $\left\{ egin{array}{l} y=x^2+2x \\ y=4-x \end{array}
ight.$, obtenemos $x_1=-4$ y $x_2=1$. Entonces, el área de la región que se muestra en la figura anterior es

$$A = \int_{-5}^{-4} \left[(x^2 + 2x) - (4 - x) \right] dx + \int_{-4}^{1} \left[(4 - x) - (x^2 + 2x) \right] dx$$

$$= \int_{-5}^{-4} \left[x^2 + 3x - 4 \right] dx + \int_{-4}^{1} \left[-x^2 - 3x + 4 \right] dx = \left[\frac{x^3}{3} + \frac{3x^2}{2} - 4x \right]_{-5}^{-4} + \left[\frac{-x^3}{3} - \frac{3x^2}{2} + 4x \right]_{-4}^{1}$$

$$= \left(\frac{-64}{3} + 24 + 16 \right) - \left(\frac{-125}{3} + \frac{75}{2} + 20 \right) + \left(\frac{-1}{3} - \frac{3}{2} + 4 \right) - \left(\frac{64}{3} - 24 - 16 \right)$$

$$= -1 - 39 + 64 = 24.$$

3. (6 ptos.) Utilice la Propiedad de Comparación para integrales definidas para demostrar que:

$$\frac{-8}{11} \le \int_{10}^{18} \frac{\cos(x)}{\sqrt{21+x^2}} dx \le \frac{8}{11}$$

Solución:

La funcion $f(x) = \frac{\cos(x)}{\sqrt{21+x^2}}$ es continua en el intervalo [10,18], además, f(x) alcanza su valor minimo y maximo en [10,18]. Luego, $11 = \sqrt{121} = \sqrt{21+10^2} \le \sqrt{21+x^2} \le \sqrt{21+18^2} = \sqrt{345} < 19 \left(\Rightarrow \frac{1}{\sqrt{21+x^2}} \le \frac{1}{11} \right)$ y dado que $-1 \le \cos(x) \le 1$; tenemos que,

$$\frac{\cos(x)}{\sqrt{21+x^2}} \le \frac{1}{11}.$$

Si tomamos $M=\frac{1}{11}$, se cumple que $M\geq Maxf(x)$ para todo $x\in[10,18]$. Utilizando la Propiedad de Acotación, obtenemos que

$$\int_{10}^{18} \frac{\cos(x)}{\sqrt{21+x^2}} dx \le M \cdot (18-10).$$

Es decir,

$$\int_{10}^{18} \frac{\cos(x)}{\sqrt{21+x^2}} dx \le \frac{1}{11} \cdot 8 = \frac{8}{11}.$$

4. (6 ptos.) Dada $f(x)=2+\sin(x)$ en $[-\pi,2\pi]$, calcule la suma de Riemann empleando la particion $P=\left\{0,\pi,\frac{3\pi}{2},2\pi\right\}$ y tomando como $\overline{x_i}$, al punto medio de $[x_{i-1},x_i]$ (i=1,2,3). Solución:

Claramente,

i	$\overline{x_i}$	$f(\overline{x_i})$	Δx_i
1	$\frac{\pi}{2}$	$2 + \operatorname{sen}(\pi/2) = 3$	π
2	$\frac{5\pi}{4}$	$2 + \sin(5\pi/4) = 2 - \frac{\sqrt{2}}{2}$	$\pi/2$
3	$\frac{7\pi}{4}$	$sen(7\pi/4) = 2 - \frac{\sqrt{2}}{2}$	$\pi/2$

Asi,

$$R_p = \sum_{i=1}^{3} f(\overline{x_i}) \Delta x_i = 3\pi + \left(2 - \frac{\sqrt{2}}{2}\right) \frac{\pi}{2} + \left(2 - \frac{\sqrt{2}}{2}\right) \frac{\pi}{2} = \left(5 - \frac{\sqrt{2}}{2}\right) \pi.$$