Séries numériques

1 – Généralités

Définition 1 On appelle série de terme général U_n la suite (S_n) des sommes partielles

 $S_n = U_0 + ... + U_n$. On la note ΣU_n

REMARQUE 1 Les premiers termes de la série sont les $S_0 = U_0$, $S_1 = U_0 + U_1$, $S_2 = U_0 + U_1 + U_2$, $S_3 = U_0 + U_1 + U_2 + U_3$, etc.

REMARQUE 2 la série peut être définie sur $\mathbb N$ ou à partir d'un rang n_0

EXEMPLE 1 La série de terme général $\frac{1}{n}$ est la suite (S_n) des sommes $S_n = U_1 + ... + U_n = 1 + \frac{1}{2} + ... + \frac{1}{n}$ Cette série est définie à partir du rang 1, elle est définie sur \mathbb{N}^* .

Définition 2 On dit que la série de terme général U_n est **convergente** si la suite (S_n) est convergente. Dans ce cas, $S = \sum_{k=n_0}^{+\infty} U_n$ est appelée **somme** de la série. Dans le cas contraire, on dit qu'elle est **divergente**.

Propriété 3 Pour qu'une série converge il faut au moins que son terme général tende vers 0

PREUVE Si $\sum U_n$ converge vers S alors (S_n) converge vers S et (S_{n+1}) aussi. La différence : $S_{n+1} - S_n$ est égale à U_n et tend vers 0.

EXEMPLE 2: La série $\sum \cos \frac{1}{n}$ diverge car $\lim_{n \to +\infty} \cos \frac{1}{n} = 1 \neq 0$.

REMARQUE 3 lorsque le terme général ne tend pas vers 0, on dit que la série diverge grossièrement.

2 – Séries géométriques

Définition 4 On appelle séries géométriques les séries de terme général $U_n = q^n$. Le terme q se nomme la raison de la série.

EXEMPLE 1 La série de terme général $U_n = \frac{1}{2^n}$

lorsque q = 1 alors $S_n = (n+1)$ donc la suite (S_n) diverge.

lorsque q=-1 alors S_n prend alternativement les valeurs 1 et 0 donc (S_n) diverge.

lorsque |q| > 1 alors (q^n) diverge donc (S_n) diverge. En effet : $S_n = \frac{1 - q^{n+1}}{1 - q}$ d'après le cours sur les suites géométriques.

lorsque |q| < 1 alors q^n tend vers 0 donc S_n tend vers $S = \frac{1}{1-q}$

Récapitulons

Propriété 5 Une série géométrique de raison q ne converge que si |q| < 1, sa somme est dans ce cas $S = \frac{1}{1-q}$

EXEMPLE 2 La série de terme général $U_n=\frac{1}{2^n}$ converge car $q=\frac{1}{2}$ vérifie |q|<1. Sa somme est $S=\frac{1}{1-\frac{1}{2}}=2$. Ce qui signifie que $1+\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+\ldots=2$

3 – Critères pour les séries à termes positifs

3-1 Généralités

Définition 6 On parle de série à termes positifs lorsque pour tout $n \in \mathbb{N}$ on a $U_n \geq 0$

REMARQUE 1 la définition reste valable si $U_n \geq 0$ à partir d'un certain rang n_0

Dans ce cas la suite des sommes partielles (S_n) est croissante. En effet : pour tout $n \in \mathbb{N}$, on a : $S_{n+1} - S_n = U_{n+1} \ge 0$. Donc il suffit de montrer que (S_n) est majorée pour que (S_n) converge.

Propriété 7 Si $U_n \leq V_n$ et si $\sum V_n$ converge alors $\sum U_n$ converge aussi Si $U_n \leq V_n$ et si $\sum U_n$ diverge alors $\sum V_n$ diverge aussi

PREUVE Soit $\sum V_n$ une série convergente à termes positifs alors (T_n) définie par $T_n = V_0 + ... + V_n$ converge donc (T_n) est majorée. Il existe M tel que pour tout $n \in \mathbb{N}$, $T_n \leq M$. Or $U_n \leq V_n$ donc $S_n \leq T_n \leq M$. Finalement (S_n) est croissante et majorée, elle converge.

Soit $\sum U_n$ une série divergente à termes positifs alors (S_n) définie par $S_n = U_0 + ... + U_n$ diverge or (S_n) est croissante donc (S_n) n'est pas majorée. De plus $U_n \leq V_n$ donc $S_n \leq T_n$ donc (T_n) n'est pas majorée, elle diverge.

EXEMPLE 1 : la série de terme général $\frac{1}{3^n+n}$ converge car $\frac{1}{3^n+n} \le \frac{1}{3^n}$ et $\frac{1}{3^n}$ est le terme général d'une série géométrique convergente.

Propriété 8 Règle de D'Alembert si $\lim_{n \longrightarrow +\infty} \left| \frac{U_{n+1}}{U_n} \right| = L < 1$ alors la série $\sum U_n$ converge si $\lim_{n \longrightarrow +\infty} \left| \frac{U_{n+1}}{U_n} \right| = L > 1$ alors la série $\sum U_n$ diverge

PREUVE admis en BTS

EXEMPLE 2 Soit $\sum \frac{1}{n!}$, on a : $\frac{U_{n+1}}{U_n} = \frac{n!}{(n+1)!} = \frac{1}{n+1}$ donc $\lim_{n \to +\infty} \left| \frac{U_{n+1}}{U_n} \right| = 0 < 1$ cette série converge.

REMARQUE 2 cette règle permet de prévoir la convergence mais ne donne pas la valeur de la somme.

REMARQUE 3 cette règle ne permet pas de conclure lorsque $\lim_{n \longrightarrow +\infty} \left| \frac{U_{n+1}}{U_n} \right| = 1$

3-2 Séries de Riemann

Définition 9 On appelle séries de Riemann les séries de terme général $\frac{1}{n^{\alpha}}$

EXEMPLE 3
$$\sum \frac{1}{n^2}$$
 ici $\alpha = 2$, $\sum \frac{1}{\sqrt{n}}$ ici $\alpha = \frac{1}{2}$.

Propriété 10 la série de terme général $\frac{1}{n^{\alpha}}$ converge lorsque $\alpha > 1$, diverge lorsque $\alpha \le 1$

EXEMPLE 4
$$\sum \frac{1}{n^2}$$
 ici $\alpha = 2$ elle converge, $\sum \frac{1}{\sqrt{n}}$ ici $\alpha = \frac{1}{2}$ elle diverge, $\sum \frac{1}{n}$ ici $\alpha = 1$ elle diverge.

REMARQUE 1 là encore, on sait si la série converge (ou non) mais on ne connaît pas la valeur de la somme.

PREUVE On encadre l'aire sur la courbe de la fonction $x \mapsto \frac{1}{x^{\alpha}}$ où α est un nombre positif. Dans la cas contraire la série diverge grossièrement car son terme général ne tend pas vers zéro. On a :

$$\frac{1}{2^{\alpha}} \times 1 \le \int_{1}^{2} \frac{dx}{x^{\alpha}} \le \frac{1}{1^{\alpha}} \times 1$$

$$\frac{1}{3^{\alpha}} \times 1 \le \int_{2}^{3} \frac{dx}{x^{\alpha}} \le \frac{1}{2^{\alpha}} \times 1$$

$$\frac{1}{4^{\alpha}} \times 1 \le \int_{3}^{4} \frac{dx}{x^{\alpha}} \le \frac{1}{3^{\alpha}} \times 1$$

$$\frac{1}{n^{\alpha}} \times 1 \le \int_{n-1}^{n} \frac{dx}{x^{\alpha}} \le \frac{1}{(n-1)^{\alpha}} \times 1$$

En effectuant la somme, on obtient : $S_n = 1 + \sum_{k=1}^n U_k \le 1 + \int_1^n \frac{dx}{x^{\alpha}}$

$$\diamondsuit \text{ pour } \alpha > 1, \text{ on a}: S_n \leq 1 + \left[\frac{-1}{(\alpha-1)x^{\alpha-1}}\right]_1^n \text{ donc } S_n \leq 1 + \frac{1}{(\alpha-1)}\left(1 - \frac{1}{x^{\alpha-1}}\right) \leq 1 + \frac{1}{(\alpha-1)}\left(1 - \frac{1}{x^{\alpha-1}}\right)$$

donc (S_n) est majorée or elle est croissante donc elle converge.

 \Diamond pour $\alpha = 1$ on a de la même façon : $\int_1^{n+1} \frac{dx}{x} \leq S_n$ donc $\ell n(n+1) \leq S_n$ donc $\lim_{n \to +\infty} S_n = +\infty$ la suite (S_n) diverge.

 \diamondsuit enfin pour $\alpha < 1$, on a : $\int_{1}^{n+1} \frac{dx}{x^{\alpha}} \le S_n$ donc $\frac{1}{(\alpha - 1)} (1 - 0) \le S_n$ donc $\lim_{n \to +\infty} S_n = +\infty$ la suite (S_n) diverge.

Propriété 11 Règle du
$$n^{\alpha}$$
 s'il existe $\alpha > 1$ tel que $\lim_{n \longrightarrow +\infty} n^{\alpha}U_n = L \in \mathbb{R}$ alors $\sum U_n$ converge. s'il existe $\alpha \le 1$ tel que $\lim_{n \longrightarrow +\infty} n^{\alpha}U_n > 0$ alors $\sum U_n$ diverge.

PREUVE admis en BTS

EXEMPLE 5 La série de terme général
$$\frac{1}{n^2 - 3n + 5}$$
 converge car $\lim_{n \to +\infty} n^2 U_n = 1 \in \mathbb{R}$ ici $\alpha = 2 > 1$

EXEMPLE 6 La série de terme général
$$\frac{1}{5n+\sqrt{n}}$$
 diverge car $\lim_{n \to +\infty} nU_n = \frac{1}{5} > 0$ ici $\alpha = \frac{1}{2}$