Лабораторная работа №1

Введение в Mininet

Ланцова Яна Игоревна

Содержание

1	Цель работы	5
2	Выполнение лабораторной работы	6
3	Выводы	24

Список иллюстраций

2.1	Импорт конфигурации
2.2	Импорт конфигураций
2.3	Настройка сети
2.4	Настройка сети
2.5	Запуск mininet
2.6	Подключение к mininet через SSH
2.7	Активируем интерфейс и скачаем новую версию mininet 10
2.8	Настройка параметров XTerm
2.9	Настройка соединения X11 для суперпользователя
2.10	Установка программного обеспечения
2.11	Запуск XServer
2.12	Запуск XServer
2.13	Запуск XServer
	Работа XServer
2.15	Запуск Putty
2.16	Запуск Putty
2.17	Работа с Mininet с помощью командной строки
2.18	Работа с Mininet с помощью командной строки
2.19	Работа с Mininet с помощью командной строки
	Работа с Mininet с помощью командной строки
2.21	Работа с Mininet с помощью командной строки
2.22	Простейшая сеть
2.23	IP-адрес первого хоста
2.24	IP-адрес второго хоста
2.25	Эмуляция созданной сети
	Проверка ІР-адресов и соедининения
2.27	Настройка автоматического назначение ІР-адресов
2.28	Проверка ІР-адресов и соедининения
2.29	Сохраниние топологии

Список таблиц

1 Цель работы

Основной целью работы является развёртывание в системе виртуализации (например, в VirtualBox) mininet, знакомство с основными командами для работы с Mininet через командную строку и через графический интерфейс.

2 Выполнение лабораторной работы

Перейдем в репозиторий Mininet, скачаем актуальный релиз ovf-образа виртуальной машины. Запустим систему виртуализации и импортируем файл .ovf и укажем параметры импорта (рис. 2.1;2.2).

Рис. 2.1: Импорт конфигураций

Рис. 2.2: Импорт конфигураций

Перейдем в настройки системы виртуализации и уточним параметры настройки виртуальной машины. Для VirtualBox (однако, я была вынуждения перейти на VMware, посокльку не могла пропинговать адрес своей машины впоследствии) выберем импортированную виртуальную машину и перейдите в меню "Машина -> Настроить". Перейдем к опции «Система». Если внизу этого окна есть сообщение об обнаружении неправильных настроек, то, следуя рекомендациям, внесем исправления (изменим тип графического контроллера на рекомендуемый). В настройках сети первый адаптер должен иметь подключение типа NAT (рис. 2.3). Для второго адаптера укажите тип подключения host-only network adapter (виртуальный адаптер хоста), который в дальнейшем вы будете использовать для входа в образ виртуальной машины (рис. 2.4).

Рис. 2.3: Настройка сети

Рис. 2.4: Настройка сети

Посмотрим адрес машины с помощью ifconfig (рис. 2.5).

Рис. 2.5: Запуск mininet

Подключимся к виртуальной машине (из терминала хостовой машины). Настроем ssh-подсоединение по ключу к виртуальной машине. Вновь подключимся к виртуальной машине и убедимся, что подсоединение происходит успешно и без ввода пароля (рис. 2.6).

```
25 C:\Users\yalan\.ssh> ping 172.16.176.128

Обмен пакетами с 172.16.176.128: число байт-32 времяс!мс ТПL-64
Ответ от 172.16.176.128: число байт-32 времяс!мс ТПL-64
Ответ от 172.16.176.128: число байт-32 время-!мс ТПL-64

Статистика Ping для 172.16.176.128:

Пакетов: отправлено = 4, получено = 0
(0% потерь)
Приблизительное время приема-передачи в мс:
Минимальное = отвеск, Максимальное = 1 мсек, Среднее = 0 мсек
Р5 C:\Users\yalan\.ssh> ssh mininet@172.16.176.128
mininet@172.16.176.128's разѕмогд:
windet@172.16.176.128's разѕмогд:
windet@172.16.176.128's password:
windet@172.16.176.128's password:
# Documentation: https://help.ubuntu.com
* Management: https://landscape.canonical.com
* Support: https://ubuntu.com/advantage
Failed to connect to https://changelogs.ubuntu.com/meta-release-lts. Check your Internet connection or proxy settings
Last login: Mon Sep 8 86:19:86 2025 from 172.16.176.1

Last login: Mon Sep 8 86:19:86 2025 from 172.16.176.1

Lantinet@mininetwer: $ logout
Connection to 172.16.176.128 closed.
```

Рис. 2.6: Подключение к mininet через SSH

Активируем второй интерфейс для доступа к сети интернет (рис. 2.7). Поскольку я выполняла работу на VMware, у меня не получилось активировать интерфейс и подключиться к интернету с виртуальной машины, а следовательно установить mc и скачать новую версию mininet.

```
mininet@mininet-vm:"$ sudo dhclient eth1
Cannot find device "eth1"
mininet@mininet-vm:"$ nv "mininet "/mininet.orig
mininet@mininet-vm:"$ cd "
mininet@mininet-vm:"$ git clone https://github.com/mininet/mininet.git
Cloning into 'mininet'...
fatal: unable to access 'https://github.com/mininet/mininet.git/': Could not resolve host: github.co
m
mininet@mininet-vm:"$ _
```

Рис. 2.7: Активируем интерфейс и скачаем новую версию mininet

По умолчанию XTerm использует растровые шрифты малого кегля. Для увеличения размера шрифта и применения векторных шрифтов вместо растровых внесем изменения в файл /etc/X11/app-defaults/XTerm:

Рис. 2.8: Настройка параметров XTerm

При попытке запуска приложения из-под суперпользователя возникает ошибка: X11 connection rejected because of wrong authentication. Ошибка возникает из-за того, что X-соединение выполняется от имени пользователя mininet, а приложение запускается от имени пользователя root с использованием sudo. Для исправления этой ситуации необходимо заполнить файл полномочий /root/.Xauthority, используя утилиту xauth. Скопируем значение куки (MIT magic cookie)1 пользователя mininet в файл для пользователя root(рис. 2.9).

```
mininetemininet-vm:"$ cd "
mininetemininet-vm:"$ xauth list $DISPLAY
mininet-vm/unix:10 MIT-MAGIC-COOKIE-1 9cbb9eb5f5a6479154c1352dc848f339
mininetemininet-vm:"$ sudo -1
rootemininet-vm:"$ xauth list
xauth: file /root/.Xauthority does not exist
rootemininet-vm:"$ xauth add mininet-vm/unix:10 MIT-MAGIC-COOKIE-1 9cbb9eb5f5a6479154c1352dc848f339
xauth: file /root/.Xauthority does not exist
rootemininet-vm:"$ xauth list $DISPLAY
mininet-vm-vunix:10 MIT-MAGIC-COOKIE-1
9cbb9eb5f5a6479154c1352dc848f339
rootemininet-vm:"$ auth list $DISPLAY
mininet-vm-vunix:10 MIT-MAGIC-COOKIE-1
9cbb9eb5f5a6479154c1352dc848f339
rootemininet-vm:"$ logout
mininetemininet-vm:"$ _
```

Рис. 2.9: Настройка соединения X11 для суперпользователя

Для работы с Mininet из-под Windows необходимо установить putty и VcXsrv Windows X Server (рис. 2.10):

```
Mindows PowerShell
(() Κορποραμμα Μαϋκροςοφτ (Microsoft Corporation). Bce πραва защищены.

Ποπροδуйте новую кроссплатформенную оболочку PowerShell (https://aka.ms/pscore6)

PS C:\Windows\system32> choco install putty -y
Chocolatey v2.5.0

Installing the following packages:
putty
By installing, you accept licenses for the packages.
putty v8.83.0 already installed.
Use --force to reinstall, specify a version to install, or try upgrade.

Chocolatey installed 0/1 packages.
See the log for details (C:\ProgramData\chocolatey\logs\chocolatey.log).

Warnings:
- putty - putty v8.83.0 already installed.
Use --force to reinstall, specify a version to install, or try upgrade.
PS C:\Windows\system32> choco install vcxsrv
Chocolatey v2.5.0

Installing the following packages:
vcxsrv
Wy installing, you accept licenses for the packages.
vcxsrv v21.1.10 already installed.
Use --force to reinstall, specify a version to install, or try upgrade.
Chocolatey installed 0/1 packages.
See the log for details (C:\ProgramData\chocolatey\logs\chocolatey.log).

Warnings:
- vcxsrv v21.1.10 already installed.
Use --force to reinstall, specify a version to install, or try upgrade.

Chocolatey installed 0/1 packages.
See the log for details (C:\ProgramData\chocolatey\logs\chocolatey.log).

Warnings:
- vcxsrv - vcxsrv v21.1.10 already installed.
Use --force to reinstall, specify a version to install, or try upgrade.
```

Рис. 2.10: Установка программного обеспечения

Далее запустим Xlaunch и выберем следующие опции(рис. 2.11-2.13).

Рис. 2.11: Запуск XServer

Рис. 2.12: Запуск XServer

Рис. 2.13: Запуск XServer

Проверим, что XServer запустился через диспетчер задач (рис. 2.14):

Рис. 2.14: Работа XServer

Запустим Putty, введем адрес нашей машины и включим нужные опции (рис. 2.15, 2.16):

Рис. 2.15: Запуск Putty

Рис. 2.16: Запуск Putty

Для запуска минимальной топологии введем в командной строке (рис. 2.17): sudo mn. Эта команда запускает Mininet с минимальной топологией, состоящей из коммутатора, подключённого к двум хостам. Для отображения списка команд интерфейса командной строки Mininet и примеров их использования введем команду в интерфейсе командной строки Mininet: help

Рис. 2.17: Работа с Mininet с помощью командной строки

Для отображения доступных узлов введем: nodes (рис. 2.18). Вывод этой команды показывает, что есть два хоста (хост h1 и хост h2) и коммутатор (s1). Иногда бывает полезно отобразить связи между устройствами в Mininet, чтобы понять топологию. Введем команду net в интерфейсе командной строки Mininet, чтобы просмотреть доступные линки: net. Вывод этой команды показывает:

- Хост h1 подключён через свой сетевой интерфейс h1-eth0 к коммутатору на интерфейсе s1-eth1.
- Хост h2 подключён через свой сетевой интерфейс h2-eth0 к коммутатору на интерфейсе s1-eth2.
- Коммутатор s1:
 - имеет петлевой интерфейс lo.
 - подключается к h1-eth0 через интерфейс s1-eth1.
 - подключается к h2-eth0 через интерфейс s1-eth2.

```
mininet> nodes
available nodes are:
c0 h1 h2 s1
mininet> net
h1 h1-eth0:s1-eth1
h2 h2-eth0:s1-eth2
s1 lo: s1-eth1:h1-eth0 s1-eth2:h2-eth0
c0
```

Рис. 2.18: Работа с Mininet с помощью командной строки

Міпіпеt позволяет выполнять команды на конкретном устройстве. Чтобы выполнить команду для определенного узла, необходимо сначала указать устройство, а затем команду, например: h1 ifconfig (рис. 2.19). Эта запись выполняет команду ifconfig на хосте h1 и показывает интерфейсы хоста h1 — хост h1 имеет интерфейс h1-eth0, настроенный с IP-адресом 10.0.0.1, и другой интерфейс lo, настроенный с IP-адресом 127.0.0.1.

```
mininet> h1 ipconfig
bash: ipconfig: command not found
mininet> h1 ifconfig
h1-eth0: flags=4163<UP,BROADCAST,RUNNING,MULTICAST> mtu 1500
    inet 10.0.0.1 netmask 255.0.0.0 broadcast 10.255.255.255
    ether f2:39:f5:0d:84:ea txqueuelen 1000 (Ethernet)
    RX packets 0 bytes 0 (0.0 B)
    RX errors 0 dropped 0 overruns 0 frame 0
    TX packets 0 bytes 0 (0.0 B)
    TX errors 0 dropped 0 overruns 0 carrier 0 collisions 0

lo: flags=73<UP,LOOPBACK,RUNNING> mtu 65536
    inet 127.0.0.1 netmask 255.0.0.0
    loop txqueuelen 1000 (Local Loopback)
    RX packets 0 bytes 0 (0.0 B)
    RX errors 0 dropped 0 overruns 0 frame 0
    TX packets 0 bytes 0 (0.0 B)
    TX errors 0 dropped 0 overruns 0 frame 0
    TX packets 0 bytes 0 (0.0 B)
    TX errors 0 dropped 0 overruns 0 carrier 0 collisions 0
```

Рис. 2.19: Работа с Mininet с помощью командной строки

Посмотрим конфигурацию всех узлов (рис. 2.20).

```
mininet> h2 ifconfig
h2-eth0: flags=4163cUP,BROADCAST,RUNNING,MULTICAST> mtu 1500
inet 10.0.0.2 netmask 255.0.0.0 broadcast 10.255.255.255
ether 82:4b:37:24:15:af txqueuelen 1000 (Ethernet)
RX packets 0 bytes 0 (0.0 B)
RX errors 0 dropped 0 overruns 0 frame 0
TX packets 0 bytes 0 (0.0 B)
TX errors 0 dropped overruns 0 carrier 0 collisions 0

lo: flags=73cUP,LOOPBACK,RUNNING> mtu 65536
inet 127.0.0.1 netmask 255.0.0.0
loop txqueuelen 1000 (Local Loopback)
RX packets 0 bytes 0 (0.0 B)
RX errors 0 dropped 0 overruns 0 frame 0
TX packets 0 bytes 0 (0.0 B)
RX errors 0 dropped 0 overruns 0 carrier 0 collisions 0

mininet> s1 ifconfig
eth0: flags=4163cUP,BROADCAST,RUNNING,MULTICAST> mtu 1500
inet 172.16.176.128 netmask 255.255.255.0 broadcast 172.16.176.255
ether 00:00:29:6dice:cb txqueuelen 1000 (Ethernet)
RX packets 21073 bytes 2039266 (2.0 MB)
RX errors 0 dropped 0 overruns 0 frame 0
TX packets 42382 bytes 32706086 (32.7 MB)
TX errors 0 dropped overruns 0 frame 0

10: flags=73cUP,LOOPBACK,RUNNING> mtu 65536
inet 127.0.0.1 netmask 255.0.0.0
loop txqueuelen 1000 (Local Loopback)
RX packets 8448 bytes 30863377 (30.8 MB)
RX errors 0 dropped 0 overruns 0 frame 0
TX packets 8448 bytes 30863377 (30.8 MB)
RX errors 0 dropped 0 overruns 0 frame 0
TX packets 8448 bytes 30863377 (30.8 MB)
RX errors 0 dropped 0 overruns 0 frame 0
TX packets 8448 bytes 30863377 (30.8 MB)
RX errors 0 dropped 0 overruns 0 frame 0
TX packets 8448 bytes 30863377 (30.8 MB)
RX errors 0 dropped 0 overruns 0 frame 0
TX packets 9 bytes 0 (0.0 B)
RX errors 0 dropped 0 overruns 0 frame 0
TX packets 0 bytes 0 (0.0 B)
RX errors 0 dropped 0 overruns 0 carrier 0 collisions 0

s1-eth1: flags=4163cUP,BROADCAST,RUNNING,MULTICAST> mtu 1500
ether 9a:bc:ba:a6:b3:71 txqueuelen 1000 (Ethernet)
RX packets 0 bytes 0 (0.0 B)
RX errors 0 dropped 0 overruns 0 frame 0
TX packets 0 bytes 0 (0.0 B)
RX errors 0 dropped 0 overruns 0 frame 0
TX packets 0 bytes 0 (0.0 B)
RX errors 0 dropped 0 overruns 0 frame 0
TX packets 0 bytes 0 (0.0 B)
RX errors 0 dropped 0 overruns 0 frame
```

Рис. 2.20: Работа с Mininet с помощью командной строки

По умолчанию узлам h1 и h2 назначаются IP-адреса 10.0.0.1/8 и 10.0.0.2/8 соответственно. Чтобы проверить связь между ними, используем команду ping (рис. 2.21).

```
mininet> h1 ping 10.0.0.2
PING 10.0.0.2 (10.0.0.2) 56(84) bytes of data.
64 bytes from 10.0.0.2: icmp_seq=1 ttl=64 time=4.55 ms
64 bytes from 10.0.0.2: icmp_seq=2 ttl=64 time=0.252 ms
64 bytes from 10.0.0.2: icmp_seq=3 ttl=64 time=0.083 ms
64 bytes from 10.0.0.2: icmp_seq=4 ttl=64 time=0.091 ms
64 bytes from 10.0.0.2: icmp_seq=5 ttl=64 time=0.086 ms
64 bytes from 10.0.0.2: icmp_seq=5 ttl=64 time=0.185 ms
64 bytes from 10.0.0.2: icmp_seq=6 ttl=64 time=0.185 ms
64 bytes from 10.0.0.2: icmp_seq=7 ttl=64 time=0.117 ms
^C
--- 10.0.0.2 ping statistics ---
7 packets transmitted, 7 received, 0% packet loss, time 6112ms
rtt min/avg/max/mdev = 0.083/0.766/4.553/1.546 ms
```

Рис. 2.21: Работа с Mininet с помощью командной строки

В терминале виртуальной машины mininet запустим MiniEdit. Добавим два хоста и один коммутатор, соединим хосты с коммутатором (рис. 2.22):

Рис. 2.22: Простейшая сеть

Настроим IP-адрес на хостах h1 и h2. Для первого хоста укажем IP-адрес 10.0.0.1/8, а для хоста второго — 10.0.0.2/8(рис. 2.23, 2.24).

Рис. 2.23: ІР-адрес первого хоста

Рис. 2.24: ІР-адрес второго хоста

Запустим эмуляцию, нажав на кнопку Run (рис. 2.25):

Рис. 2.25: Эмуляция созданной сети

Откроем терминалы на обоих хостах и введем команду ifconfig, чтобы отобразить назначенные IP-адреса. Проверим соединение между хостами, введя в терминале хоста h1 команду ping 10.0.0.2 (рис. 2.26).

```
The street of t
```

Рис. 2.26: Проверка ІР-адресов и соедининения

Настроим автоматическое назначение IP-адресов. Для этого в MiniEdit нажмет Edit>Preferences. По умолчанию в поле базовые значения IP-адресов установлено 10.0.0.0/8. Изменим это значение на 15.0.0.0/8 (рис. 2.27).

Рис. 2.27: Настройка автоматического назначение ІР-адресов

Вновь запустим эмуляцию, откроем терминалы и введем команды ifconfig. Проверим соединение между хостами (рис. 2.28).

Рис. 2.28: Проверка ІР-адресов и соедининения

В домашнем каталоге виртуальной машины mininet создайте каталог для работы с проектами mininet: mkdir ~/work. Сохраним топологию в созданную папку, нажав на File>Save (рис. 2.29).

Рис. 2.29: Сохраниние топологии

После сохранения проекта поменяем права доступа к файлам в каталоге проекта.

3 Выводы

В результате выполнения данной лабораторной работы я развёрнула mininet в системе виртуализации VirtualBox, а также ознакомилась с основными командами для работы с Mininet через командную строку и через графический интерфейс.