STATE-ACTION BALANCING IN CAUSAL INFERENCE

Qiming Du

joint work with Gérard Biau, François Petit and Raphël Porcher

Laboratoire de Probabilités, Statistique et Modélisation - UMR 8001 Sorbonne Université

(Please visit https://mgimm.github.io/presentation for additional information.)

January 13, 2022 Online

What we will talk about?

- Basic concepts of Causal Inference
 - Policy evaluation.
 - Unconfoundedness and Markov structure.
- Static Causal Inference
 - Inverse Probability Weighting (IPW) estimator (classical estimators).
 - Static balancing (our methods).
 - Doubly robust estimators.
- Dynamic Causal Inference
 - Measure flows in the change of policy.
 - Dynamical recursive balancing.

Notation and conventions

- $\xi(dx)$ (measure), f (test function), $\xi(f) = \int f(x)\xi(dx)$.
- M(x, dy) (transition kernel), $M(f)(\cdot) = \int M(x, dy) f(y)$, and $\mu M(dy) = \int \mu(dx) M(x, dy)$.
- A finite measure is given identified by the values tested on all the bounded measurable test function $\xi(f)$.
- A transition kernel is a state-indexed family of measure.
- For any random variables *X* and *Y*, there exists a Markov transition kernel *M* that connects their distributions.

Conceptual example: Covid and Vaccination

Step 1: Static Causal Inference without personalized treatment

Question: To vaccinate or not?

Model: Potential Outcomes framework (Rubin, 1974):

- *X*: Population covariate (age, sex, blood-type, etc).
- $A \in \{0, 1\}$: Action assignment indicator (1:vaccinated vs. 0:not-vaccinated)
- (Y(0), Y(1)): Effects associated to vaccination (e.g., Infection, side-effects, etc).

Goal: Estimate the average potential outcomes $\mathbb{E}[Y(1)]$ and/or $\mathbb{E}[Y(0)]$.

⇔ Policy evaluation (Everyone vaccinates (or not)).

How to collect data?

Dataset: $\mathfrak{D}_n = \{(X^{(i)}, A^{(i)}, Y^{(i)}(A^{(i)})) : 1 \le i \le n\}.$

- Randomized study: Assume $A \perp (Y(0), Y(1))$.
- Observational study (unconfoundedness): Assume $A \perp (Y(0), Y(1))$ given X.

In both cases, we have

$$\mathbb{E}\left[Y(A)\frac{\mathbf{1}_{\{A=1\}}}{\mathbb{P}(A=1\mid X)}\right] = \mathbb{E}\left[\mathbb{E}\left[Y(A)\frac{\mathbf{1}_{\{A=1\}}}{\mathbb{P}(A=1\mid X)}\mid X\right]\right] = \mathbb{E}\left[Y(1)\right].$$

Inverse Probability Weghting (IPW) estimator:

IPWE =
$$\frac{1}{n} \sum_{i=1}^{n} Y^{(i)}(A^{(i)}) \frac{\mathbf{1}_{\{A^{(i)}=1\}}}{\hat{\mathbb{P}}(A=1 \mid X=X^{(i)})}.$$

The nuisance estimator $\hat{\mathbb{P}}(A = 1 \mid X = X^{(i)})$ is estimated through a separated supervised learning (classification) problem.

Alternative approach: G-computation

Denote by $\mu_1(\cdot) = \mathbb{E}[Y(1) \mid X = \cdot]$, then

$$\mathbb{E}\left[\mu_1(X)\right] = \mathbb{E}\left[Y(1)\right].$$

G-computation estimator

GE =
$$\frac{1}{n} \sum_{i=1}^{n} \hat{\mu}_1(X^{(i)}),$$

where the nuisance estimator $\hat{\mu}_1$ can also be obtained by a separate supervised learning problem.

Can we combine these two ideas? yes! Doubly robust estimator:

DRE =
$$\frac{1}{n} \sum_{i=1}^{n} (Y^{(i)}(A^{(i)}) - \hat{\mu}_1(X^{(i)})) \frac{\mathbf{1}_{\{A^{(i)}=1\}}}{\hat{\mathbb{P}}(A=1 \mid X=X^{(i)})} + \frac{1}{n} \sum_{i=1}^{n} \hat{\mu}_1(X^{(i)}).$$

Why interesting?

- Faster convergence rate (product of the two nuisance estimators).
- Semiparametric efficiency (optimal asymptotic variance over all parametric models) at optimal rate $(\mathcal{O}_{\mathbb{P}}(1/\sqrt{n}))$.

What can we improve? The IPW part!

A closer look at IPW

Q: Why it works?

A: It balances two subpopulations, i.e.,

$$X$$
 and $X(1)$ (people vaccinated),

through re-weighting. The associated weight function is

$$\eta(\cdot) = \frac{\mathbb{E}[A]}{\mathbb{P}(A=1 \mid X=\cdot)}.$$

Re-weighting transformation:

$$\Psi_{\eta}(\xi): \xi \mapsto \xi(\eta \times \cdot)$$

We have

$$\Psi_{\eta}(\xi_1) = \xi,$$

where ξ_1 (resp. ξ) is the probability measure of X(1) (resp. X).

Reformulation of IPWE

We have

IPWE =
$$\frac{1}{n} \sum_{i=1}^{n} Y^{(i)}(A^{(i)}) \frac{\mathbf{1}_{\{A^{(i)}=1\}}}{\hat{\mathbb{P}}(A=1 \mid X=X^{(i)})}$$

= $\frac{1}{N_1} \sum_{i=1}^{N_1} \hat{\eta}(X(1)^{(i)}) Y^{(i)}(1),$

where $\hat{\eta}(X(1)^{(i)}) = \frac{N_1/n}{\hat{\mathbb{P}}(A=1\mid X=\cdot)}$, which is an empirical version of η .

Natural idea to improve IPW/get rid of the inverse manipulation:

Directly estimate the weight function that corrects the difference between two measures!

Are we able to generalize this simple idea to more general cases (e.g., with more complex policy/action assignment)? Yes!

General policy evaluation

Step 2: Policy evaluation with personalized treatment.

Different people receive different treatment.

Policy is now modeled by a transition kernel $\pi(x, da)$ from state space to action space.

- Sampling policy $\pi(x, da)$: policy that generates the data set \mathfrak{D}_n .
- Target policy $\mathring{\pi}(x, da)$: The policy to be evaluated.

Case 1: Finite-valued action (e.g., whether to vaccinate, Moderna or Pfizer?).

No need to change framework. For example, one may replace all the A=1 by $A=\mathring{A}^{(i)}$ where $A^{(i)} \sim \mathring{\pi}(X^{(i)},\cdot)$ will do the work.

Case 2: General cases (e.g., continuous-valued policy)

State-Action Markov reformulation.

Markov structure of causal dynamics

- State space: X
- Action space: A
- State-action space: $X^{\dagger} = X \times A$.
- $\pi^{\natural} = id_{\mathfrak{X}} \times \pi$.
- State-action variable: $X^{\natural} = (X, A)$.
- Goal: estimate $\mathcal{V}^{\mathring{\pi}} = \mathbb{E}[\mathring{Y}] = \mathbb{E}[r(\mathring{Z})]$.

Figure: Markov structure of static causal model

When $\#A < \infty$, the dynamic is equivalent to the potential outcomes framework with unconfoundedness assumption.

Covariate shifts?

Denote by ξ the population distribution (X) of sampling policy. Denote by $\mathring{\xi}$ the population distribution (\mathring{X}) of target policy. It is possible that $\xi \neq \mathring{\xi}$.

What are we balancing?

The (empirical) state-action distribution of X^{\natural} and \mathring{X}^{\natural} , denoted respectively by

$$\xi^{\pi^{\natural}} (\xi_n^{\pi^{\natural}})$$
 and $\mathring{\xi}^{\mathring{\pi}^{\natural}} (\mathring{\xi}_m^{\mathring{\pi}^{\natural}}).$

What are we collecting?

- State-action variables under sampling policy: $\{(X^{(i)}, A^{(i)}) : 1 \le i \le n\}$
- State variables of target policy: $\{\mathring{X}^{(i)}: 1 \leq i \leq m\}$.
- Causal effects under sampling policy: $\{r(Z^{(i)}): 1 \le i \le n\}$.

Estimators

Direct estimator:

$$\hat{\mathcal{V}}_{\scriptscriptstyle \mathrm{DE}}^{\mathring{\pi}} = \frac{1}{n} \sum_{i=1}^{n} \hat{\eta}^{\natural}(X^{\natural(i)}) r(Z^{(i)}),$$

Doubly robust estimator:

$$\hat{\mathcal{V}}_{\text{DRE}}^{\mathring{\pi}} = \frac{1}{n} \sum_{i=1}^{n} \hat{\eta}^{\natural}(X^{\natural(i)})(r(Z^{(i)}) - \hat{r}^{\natural(i)}(X^{\natural(i)})) + \frac{1}{m} \sum_{j=1}^{m} \mathring{\pi}^{\natural}(\hat{r}^{\natural(j)})(\mathring{X}^{(j)}),$$

where $\hat{\eta}^{\natural}$ is the estimated weight function $\mathring{\eta}^{\natural}$ that corrects the difference between the two state-action distributions, i.e., $\Psi_{\mathring{\eta}^{\natural}}(\xi^{\pi^{\natural}}) = \mathring{\xi}^{\mathring{\pi}^{\natural}}; \hat{r}^{\natural(j)}$ is the estimated conditional expectation function $\mathbb{E}\left[r(Z) \mid X^{\natural} = \cdot\right]$ (or simply $r^{\natural} = M(r)$) by a separated regression.

How?

Generalized IPW (through density ratio estimation, see, e.g., Sugiyama et al. (2012)). Idea: Constructing an artificial 0-1 classification problem and solve it to construct weight function estimator.

or

Balancing!

Teaser of balancing

Direct estimator and worst-case-error interpretation

Idea: $r(Z^{(i)})$ can be regarded as a noisy version of $r^{\natural}(X^{\natural(i)})$. Hence, one considers to minimize the worst-case-error, i.e.,

$$\hat{H} = \underset{\eta^{\natural} \in H}{\operatorname{arg \, min}} \sup_{\gamma \in \Gamma} \left| \Psi_{\eta^{\natural}}(\xi_n^{\pi^{\natural}})(\gamma) - \mathring{\xi}_{mN}^{\mathring{\pi}^{\natural}}(\gamma) \right|,$$

It is well-known that that sup-term is called Integral Probability Metric.

$$\hat{H} = \underset{\eta^{\natural} \in H}{\operatorname{arg\,min}} \ \left(\operatorname{IPM}_{\Gamma} \left(\Psi_{\eta^{\natural}}(\xi_{n}^{\pi^{\natural}}), \dot{\xi}_{mN}^{\dot{\pi}^{\natural}} \right)^{2} + \lambda \left\| \eta^{\natural} \right\|_{L^{2}(\xi_{n}^{\pi^{\natural}})}^{2} \right),$$

(conditional Bias-Variance decomposition)

In this case, we may choose $H=L^2(\xi^{\pi^{\natural}})$ or λU with U the unit ball of $L^2(\xi^{\pi^{\natural}})$. Well-specification: $r^{\natural} \in \Gamma$.

Balancing for the DE

- OT balancing without L^2 penalty: (Reygner and Touboul, 2020).
- MMD balancing with/without L^2 penalty: (Kallus, 2020).
- OT balancing with L^2 penalty: new.
- Neural Network balancing with/without L^2 penalty: new.
- ...

Theorem (Informal)

When well-specified, the error of the DE is controlled by the sampling complexity (i.e., $IPM_{\Gamma}(\Psi_{\mathring{\eta}^{\natural}}(\xi_{n}^{\pi^{\natural}}), \Psi_{\mathring{\eta}^{\natural}}(\xi^{\pi^{\natural}})) + IPM_{\Gamma}(\mathring{\xi}_{mN}^{\mathring{\pi}^{\natural}}, \mathring{\xi}^{\mathring{\pi}^{\natural}}))$ of the chosen IPM.

However, there is in general no reason that $\hat{\eta}^{\sharp}$ will converge to the ideal weight function $\mathring{\eta}^{\sharp}$ in an L^2 sense, which is required by the DRE.

Why L^2 convergence matters?

Denote by $\mathcal{V}^{\dot{\pi}}_{_{\text{ODRE}}}$ the oracle version of the DRE, namely, by replacing the nuisance estimatros $\hat{\eta}^{\natural}$ and \hat{r}^{\natural} by their oracle/ideal counterparts $\mathring{\eta}^{\natural}$ and r^{\natural} .

Theorem (Informal)

Under mild assumptions, we have

$$\left|\mathcal{V}_{\scriptscriptstyle{\mathrm{ODRE}}}^{\mathring{\pi}}-\hat{\mathcal{V}}_{\scriptscriptstyle{\mathrm{DRE}}}^{\mathring{\pi}}\right|\leq C\left\|\hat{\eta}^{\natural}-\mathring{\eta}^{\natural}\right\|_{L^{2}(\xi_{n}^{\pi^{\natural}})}\left\|\hat{r}^{\natural}-r^{\natural}\right\|_{L^{2}(\xi_{n}^{\pi^{\natural}})}+o_{\mathbb{P}}\left(\sqrt{\frac{n+m}{nm}}\right).$$

In addition, when no covariate shifts are involved, $\mathcal{V}_{\scriptscriptstyle ODRE}^{\mathring{\pi}}$ achieves semiparametric efficiency.

To understand the L^2 behavior of the weight function estimation, we need a little bit maths...

Riesz representable measure space

• Source measure: $\xi^{\pi^{\natural}}$.

• Target measure: $\mathring{\xi}^{\mathring{\pi}^{\natural}}$.

• Riesz representable measure space: $\Xi(\xi^{\pi^{\natural}}) := \{ \Psi_{\eta^{\natural}}(\xi^{\pi^{\natural}}) : \eta^{\natural} \in L^{2}(\xi^{\pi^{\natural}}) \}$

Proposition

Let ξ be a positive finite measure on \mathfrak{X} . Denote by U the unit ball in $L^2(\xi)$. We have the following isometric isomorphism between the metric spaces $L^2(\xi)$ and $\Xi(\xi)$:

$$(L^{2}(\xi), \|\cdot - \cdot\|_{L^{2}(\xi)}) \xrightarrow{\frac{\Psi \cdot (\xi)}{\frac{d\cdot}{d\xi}}} (\Xi(\xi), \mathrm{IPM}_{U}(\cdot, \cdot))$$

Heuristic:

On a compact state-action space, what if we use a RELU network to approximate the L^2 unit ball?

One step further

Q: Do we really need an isometry in order to have an L^2 convergence?

A: Not really!

Notation: $\partial H = \{ \eta - \eta' : \eta, \eta' \in H \}.$

Lemma

If $\mathring{\eta}^{\natural} \in H$ and there exists $\alpha > 0$ and $\beta > 0$ such that $\alpha(\partial H) \cap \beta U \subset \Gamma$, then we have almost surely

$$\forall \hat{\eta}^{\natural} \in \hat{H}, \quad \left\| \hat{\eta}^{\natural} - \mathring{\eta}^{\natural} \right\|_{L^{2}(\xi_{n}^{\pi^{\natural}})} \leq \frac{2}{\min(\alpha, \beta)} \left(\text{IPM}_{\Gamma} \left(\Psi_{\mathring{\eta}^{\natural}}(\xi^{\pi^{\natural}}), \Psi_{\mathring{\eta}^{\natural}}(\xi_{n}^{\pi^{\natural}}) \right) + \text{IPM}_{\Gamma} \left(\mathring{\xi}^{\mathring{\pi}^{\natural}}, \mathring{\xi}^{\mathring{\pi}^{\natural}}_{mN} \right) \right).$$

The construction can be regarded as a dual version (in a Fenchel sense) of Chernozhukov et al. (2020).

Take home message:

when Γ is rich enough (that contains at least $\alpha(\partial H) \cap \beta U$), the L^2 -error of weight function estimation is controlled by the sampling complexity of the chosen IPM. The error analysis of the DRE is therefore transparent.

Practical considerations

Pipeline:

- 1 Fix *H* to ensure that $\mathring{\eta}^{\natural} \in H$.
- 2 Construct Γ such that $\alpha(\partial H) \cap \beta U$ (when H is rich enough, it is in general only to ensure that $\Gamma = H \cap \beta U$, i.e., to implement an L^2 -regularization)
- 3 Solve the adversarial optimization, i.e., arg min max-optimization.
- H: Intersection of RKHS ball and L^2 -ball; Γ : RKHS ball. (quadratic programming: explicitly solvable/ gradient descend based method)
- H: RELU/Groupsort network + L^2 regularization; Γ : RELU/Groupsort network (with nodes number doubled at each layer) + L^2 regularization.
- (possible) H: Intersection of Lipschitz ball, L^2 -ball, and relative entropy reguralization (Sinkhorn); Γ : Lipschitz ball with relative entropy reguralization . (gradient descend based method)
- ..

No conservation of mass:

One may use it for tuning, or consider implementing an additional regularization.

Comparison between the DE and the DRE

DE:

- Requires that $r^{\natural} \in \Gamma$.
- Allows to optimized in $H = L^2(\xi^{\pi^{\natural}})$, i.e., *n*-value optimization.
- The error of the DE is controlled by the sampling complexity of the chosen IPM.

DRE:

- Requires that $\mathring{\eta}^{\natural} \in H$.
- Requires to model properly the candidate space *H*.
- The L^2 -error of the weight function estimation is controlled by the sampling complexity of the chosen IPM.

Q: When the optimal (parametric) rate is achieved, the DRE is always better than the DE? A: No, their asymptotic variances are not comparable in general (see, e.g., Kallus and Uehara (2020)).

Dynamical Causal Inference

Step 3: Reinforcement Learning/Dynamical Treatment Regimes

We consider the 3-vaccination and their causal effects estimation. Causal dynamics:

Figure: Markov structure of causal dynamics

Goal: Estimate

$$\mathcal{V}^{\mathring{\pi}} = \mathbb{E}\left[\sum_{t=0}^{T} r_t(\mathring{X}_{t+1})\right],$$

Models

What do we collect?

- State-Action trajectories under sampling policy π (a sequence of Markov kernels): $\{(Z_t^{(i)}, A_t^{(i)}; 0 \le t \le T) : 1 \le i \le n\}.$
- Target initial state covariates: $\{\mathring{Z}_0^{(i)}: 1 \leq i \leq m\}$.
- Observed causal effects at each time step: $\{r_t(Z_{t+1}^{(i)}): 0 \le t \le T, 1 \le i \le n\}$.

Identification of Markov Structure?

One may simply take $X_t^{(i)} = Z_t^{(i)}$. or

One may consider $X_t^{(i)} = (Z_s^{(i)}; 0 \le s \le t)$. or even $X_t^{(i)} = ((Z_s^{(i)}; 0 \le s \le t), (A_s^{(i)}; 0 \le s \le t - 1))$.

Less fluctuation vs. higher dimension (harder to estimate).

For simplicity, we choose $X_t^{(i)} = Z_t^{(i)}$.

Double semigroup structure

If we let respectively

$$M_t^{\pi} = \pi_{t-1}^{\natural} \circ M_t \quad \text{and} \quad M_t^{\pi^{\natural}} = M_t \circ \pi_t^{\natural},$$

one gets a double partial semigroup structure:

Figure: Double semigroups in causal dynamics

We consider two partial semigroups defined respectively by

$$\forall s > t$$
, $M_{t,s}^{\pi} = M_{t+1}^{\pi} \circ \cdots \circ M_{s}^{\pi}$, with $M_{t,t}^{\pi} = \mathrm{id}_{\chi_{t}}$,

and

$$\forall s > t, \quad M_{t,s}^{\pi^{\natural}} = M_{t+1}^{\pi^{\natural}} \circ \cdots \circ M_s^{\pi^{\natural}}, \quad \text{with} \quad M_{t,t}^{\pi^{\natural}} = \mathrm{id}_{\chi_t^{\natural}}.$$

State/State-action terminal measures

Considering the initial distributions $\xi_0^{\pi} = \xi_0$ and $\xi_0^{\pi^{\natural}} = \xi_0 \circ \pi_0^{\natural}$, we define the terminal measures ξ_t^{π} and $\xi_t^{\pi^{\natural}}$ respectively by

$$\xi_t^{\pi} = \xi_0^{\pi} M_{0,t}^{\pi}$$
 and $\xi_t^{\pi^{\natural}} = \xi_0^{\pi^{\natural}} M_{0,t}^{\pi^{\natural}}$.

The objective re-writes

$$\mathcal{V}^{\hat{\pi}} = \sum_{t=0}^{T} \mathring{\xi}_{t+1}^{\hat{\pi}}(r_t) = \sum_{t=0}^{T} \mathring{\xi}_{t}^{\hat{\pi}^{\natural}}(r_t^{\natural}).$$

Measure flows in the change of policy

Figure: Measure flows in the change of policy

What are these weight functions?

$$\forall 1 \leq t \leq T, \ \forall x_t^{\natural} = (x_t, a_t) \in \mathcal{X}_t^{\natural}, \quad \mathring{e}_t^{\natural}(x_t^{\natural}) = \frac{\mathrm{d}\mathring{\pi}_t(x_t, \cdot)}{\mathrm{d}\pi_t(x_t, \cdot)}(a_t).$$

For t = 0, we let, taking into account the covariate shifts,

$$\forall x_0^{\natural} = (x_0, a_0) \in \mathcal{X}_0^{\natural}, \quad \mathring{e}_0^{\natural}(x_0^{\natural}) = \frac{\mathrm{d} \check{\xi}_0}{\mathrm{d} \xi_0}(x_0) \frac{\mathrm{d} \mathring{\pi}_0(x_0, \cdot)}{\mathrm{d} \pi_0(x_0, \cdot)}(a_0).$$

Measure flows in the change of policy

Proposition

Under mild assumptions, the weight functions $\mathring{\eta}_t$ and $\mathring{\eta}_t^{\natural}$ are well-defined respectively in $L^1(\mathfrak{X}_t)$ and $L^1(\mathfrak{X}_t^{\natural})$. In addition, for any $0 \le t \le T$, we have

$$\mathring{\eta}_t^{\natural}(\cdot) = \mathbb{E}\left[\prod_{s=0}^t \mathring{e}_s^{\natural}(X_s^{\natural}) \mid X_t^{\natural} = \cdot\right] \quad and \quad \mathring{\eta}_{t+1}(\cdot) = \mathbb{E}\left[\mathring{\eta}_t^{\natural}(X_t^{\natural}) \mid X_{t+1} = \cdot\right].$$

So, possible to implement balancing? In a smart way, yes!

Recursive balancing strategy

- Initial balancing: Compare $\xi_n^{\pi^{\natural}}$ with $\mathring{\xi}_{0,mN}^{\mathring{\pi}^{\natural}}$ to get the estimation of $\{\hat{\eta}_0^{\natural}(X_0^{(i)}): 1 \leq i \leq n\}.$
- Weight smoothing: After getting $\{\hat{\eta}_t^{\natural}(X_t^{\natural(i)}): 1 \leq i \leq n\}$ for $t \geq 0$, we run a separate regression (or do nothing, i.e., let $\hat{\eta}_{t+1}(X_{t+1}^{(i)}) = \hat{\eta}_t^{\natural}(X_t^{\natural(i)})$) to get $\{\hat{\eta}_{t+1}(X_{t+1}^{(i)}): 1 \leq i \leq n\}$.
- Update balancing: Once we have $\{\hat{\eta}_{t+1}(X_{t+1}^{(i)}): 1 \leq i \leq n\}$, we compare $\xi_{t+1,n}^{\pi^{\natural}}$ with $\mathring{\xi}_{t+1,mN}^{\dot{\pi}^{\natural}}$ to get the estimation $\{\hat{\eta}_{t+1}^{\natural}(X_{t+1}^{\natural(i)}): 1 \leq i \leq n\}$.

Now that we have estimated the weight functions, what about the actual estimators?

Estimators

Direct estimator:

$$\hat{\mathcal{V}}_{\scriptscriptstyle DE}^{\mathring{\pi}} = \sum_{t=0}^{T} \Psi_{\hat{\eta}_{t+1}}(\xi_{t+1,n}^{\pi})(r_t) = \frac{1}{n} \sum_{i=1}^{n} \sum_{t=0}^{T} \hat{\eta}_{t+1}^{(i)}(X_{t+1}^{(i)})r_t(X_{t+1}^{(i)}).$$

Doubly robust estimator:

$$\hat{\mathcal{V}}_{\scriptscriptstyle \mathrm{DRE}}^{\mathring{\pi}} = \frac{1}{n} \sum_{i=1}^{n} \sum_{t=0}^{T} \left(\hat{\eta}_{t}^{\natural}(X_{t}^{\natural(i)}) \left(r_{t}(X_{t+1}^{(i)}) - \hat{r}_{t}^{\natural(i)}(X_{t}^{\natural(i)}) \right) + \hat{\eta}_{t-1}^{\natural}(X_{t-1}^{\natural(i)}) \mathring{\pi}_{t}^{\natural}(\hat{r}_{t}^{\natural(i)})(X_{t}^{(i)}) \right),$$

Sampling complexity of IPM:

$$\forall t \geq 1, \quad \sigma_t^{\text{\tiny{IPM}}}(n) = \text{IPM}_{\Gamma_t} \left(\Psi_{\mathring{\eta}_{+}^{\sharp}}^{\text{\tiny{\dagger}}}(\xi_{t,n}^{\pi^{\sharp}}), \Psi_{\mathring{\eta}_{+}^{\sharp}}^{\text{\tiny{\dagger}}}(\xi_t^{\pi^{\sharp}}) \right).$$

With a slight abuse of notation, we omit m and N at time 0, i.e.,

$$\sigma_0^{\text{\tiny PM}}(n) = \sigma_0^{\text{\tiny PM}}(n, m, N) = \text{IPM}_{\Gamma_0}\left(\Psi_{\mathring{\eta}_0^{\natural}}(\xi_{0,n}^{\pi^{\natural}}), \Psi_{\mathring{\eta}_0^{\natural}}(\xi_0^{\pi^{\natural}})\right) + \text{IPM}_{\Gamma_0}\left(\mathring{\xi}_0^{\mathring{\pi}^{\natural}}, \mathring{\xi}_{0,mN}^{\mathring{\pi}^{\natural}}\right).$$

Direct estimator

Well-specifiedness:

We say that the causal dynamics are well-specified by a sequence of collections of test functions $\Gamma = (\Gamma_t; 0 \le t \le T)$ if

$$\forall 0 \le t \le T, \quad r_t^{\natural} = M_{t+1}(r_t) \in \Gamma_t,$$

and

$$\forall 1 \leq t \leq T, \ \forall \gamma_t \in \Gamma_t, \quad M_t^{\mathring{\pi}^{\natural}}(\gamma_t) \in \Gamma_{t-1}.$$

Theorem (Informal)

Under mild assumptions, if the causal dynamics are well-specified by $\Gamma = (\Gamma_t; 0 \le t \le T)$, then we have

$$\left|\hat{\mathcal{V}}_{\scriptscriptstyle DE}^{\mathring{\pi}} - \mathcal{V}^{\mathring{\pi}}\right| \leq C \left(\sum_{t=0}^{T} (T-t+1) \left(\sigma_t^{\scriptscriptstyle \mathrm{IPM}}(n) + \frac{1}{\sqrt{N}}\right)\right),\,$$

where C > 0 is a constant that is independent to n, m, N and T.

Doubly robust estimator

For the error term given by weight smoothing, we denote

$$\sigma_t^{\text{ws}}(n) = \|\hat{\eta}_{t+1} - \mathring{\eta}_{t+1}\|_{L^2(\xi_{t+1,n}^{\pi})}.$$

we denote the error of the additional regression of the average reward function r^{\natural} by

$$\forall 0 \leq t \leq T, \quad \sigma_t^{\text{\tiny REG}}(n) = \left\| \hat{r}_t^{\natural} - r_t^{\natural} \right\|_{L^2(\xi_t^{\pi^{\natural}})}.$$

Theorem (Informal)

It the weight functions are well specified in H_t and if the implemented balancing satisfies

$$\forall 0 \le t \le T$$
, $\exists \alpha_t, \beta_t > 0$, $\alpha_t(\partial H_t) \cap \beta_t U_t \subset \Gamma_t$,

then we have

$$\left| \hat{\mathcal{V}}_{\text{DRE}}^{\mathring{\pi}} - \mathcal{V}^{\mathring{\pi}} \right| \leq C \left(\sum_{t=0}^{T} (T - t + 1) \left(\sigma_{t}^{\text{IPM}}(n) + \frac{1}{\sqrt{N}} + \sigma_{t}^{\text{WS}}(n) \right) \sigma_{t}^{\text{REG}}(n) \right)$$

where C > 0 is a constant that is independent from n, m, N, and T.

Conclusion

Our contributions:

- New state-action Markov reformulation of causal dynamics, that is capable of dealing with general action spaces and covariate shifts.
- New theoretical framework for balancing method through Riesz representable measure space arguments (connection between existing methods and inspiration of new methods).
- Recursive balancing strategy, with transparent error analysis for the DE and the DRE.

Perspectives:

- Sinkhorn balancing?
- Connection with the Feynman-Kac formalism/Sequential Monte Carlo (e.g., how to efficiently interact with the environment with the collected offline data).

Thank you for your attention!

References

- Chernozhukov, V., Newey, W., Singh, R., and Syrgkanis, V. (2020). Adversarial estimation of riesz representers. arXiv e-prints.
- Kallus, N. (2020). Generalized optimal matching methods for causal inference. *Journal of Machine Learning Research*, 21(62):1–54.
- Kallus, N. and Uehara, M. (2020). Double reinforcement learning for efficient off-policy evaluation in markov decision processes. *Journal of Machine Learning Research*, 21(167):1–63.
- Reygner, J. and Touboul, A. (2020). Reweighting samples under covariate shift using a wasserstein distance criterion.
- Rubin, D. (1974). Estimating causal effects of treatments in randomized and nonrandomized studies. *Journal of Educational Psychology*, 66:688–701.
- Sugiyama, M., Suzuki, T., and Kanamori, T. (2012). Density ratio estimation in machine learning. Cambridge University Press.