HW_2

Question 1

```
w <- rexp(100,rate=1/2)
plot.ts(w)</pre>
```


The autocorrelation are nearly always within the confidence interval, with one or two points of lag being the exception from example to example.

Question 2

```
set.seed(1)
x <- w <- rnorm(100)
w <- rexp(100,rate=1/2)
for (t in 2:100) x[t] <- 0.8 * x[t - 1] + w[t]
plot.ts(x, type = "1")</pre>
```


acf(x)

Series x

The above graph shows that values from 0 lag to about 16 lag are statistically significant as they are outside the confidence interval. The exponetial white noise shows more significant as they are outside the confidence interval.

Question 3

```
x <- rnorm(100, mean=0, sd=1)
x <- w <- rnorm(1000)
for (t in 2:1000) x[t] <- .5*w[t - 1] + w[t]
plot.ts(x)</pre>
```



```
x <- rnorm(100, mean=0, sd=1)
x <- w <- rnorm(1000)
for (t in 2:1000) x[t] <- 2*w[t - 1] + w[t]
plot.ts(x)</pre>
```


From the two time series plots above we can see that they can be distinguished by the x-axis becoming larger due to the multiplication of 4 to the w[t-1] part of the equation.

Question 4

```
nhtemp
```

```
## Time Series:
## Start = 1912
##
  End = 1971
##
  Frequency = 1
##
                                 47.9 49.8 50.9 49.3 51.9 50.8 49.6 49.3 50.6
    [1] 49.9 52.3 49.4 51.1 49.4
   [15] 48.4 50.7
                       50.6
                            51.5
                                 52.8
                                      51.8 51.1 49.8 50.2 50.4 51.6 51.8 50.9
                  51.0 50.6 51.7 51.5 52.1 51.3 51.0 54.0 51.4 52.7 53.1 54.6
                  50.9 52.6 50.2 52.6 51.6 51.9 50.5 50.9 51.7 51.4 51.7 50.8
   [43] 52.0 52.0
  [57] 51.9 51.8 51.9 53.0
```

```
library(xts)
```

```
## Loading required package: zoo

## Warning: package 'zoo' was built under R version 3.3.2

##
## Attaching package: 'zoo'

## The following objects are masked from 'package:base':
##
## as.Date, as.Date.numeric

nhtemp_xts <- as.xts(nhtemp)
plot.ts(nhtemp_xts)</pre>
```


acf(nhtemp_xts)

Series nhtemp_xts


```
nhtemp.ma0 <- arima(nhtemp_xts, order = c(0, 0, 0))
nhtemp.ma1 <- arima(nhtemp_xts, order = c(0, 0, 1))
nhtemp.ma2 <- arima(nhtemp_xts, order = c(0, 0, 2))
nhtemp.ma3 <- arima(nhtemp_xts, order = c(0, 0, 3))
nhtemp.ar1 <- arima(nhtemp_xts, order = c(1, 0, 0))
nhtemp.ar2 <- arima(nhtemp_xts, order = c(2, 0, 0))
nhtemp.ar3 <- arima(nhtemp_xts, order = c(3, 0, 0))
AIC(nhtemp.ma0)</pre>
```

```
## [1] 201.5305
```

```
AIC(nhtemp.ma1)
```

```
## [1] 199.5833
```

```
AIC(nhtemp.ma2)
```

```
## [1] 196.7438
```

```
## [1] 195.5167

AIC(nhtemp.ar1)

## [1] 197.0144

AIC(nhtemp.ar2)

## [1] 192.9438

AIC(nhtemp.ar3)

## [1] 194.3166

acf(resid(nhtemp.ma0))
```

Series resid(nhtemp.ma0)

acf(resid(nhtemp.ma1))

Series resid(nhtemp.ma1)

acf(resid(nhtemp.ma2))

Series resid(nhtemp.ma2)

acf(resid(nhtemp.ma3))

Series resid(nhtemp.ma3)

acf(resid(nhtemp.arl))

Series resid(nhtemp.ar1)

acf(resid(nhtemp.ar2))

Series resid(nhtemp.ar2)

acf(resid(nhtemp.ar3))

Series resid(nhtemp.ar3)

As we see above that the model with the best fit above is white noise.