1

Digital Signal Processing

Suraj kumar AI21BTECH11029

\sim					
	α	ΝΤΠ	ГС	NΤ	TS
v	•	N	IГ	IN	10

1	Software Installation	1
2	Digital Filter	1
3	Difference Equation	2
4	Z-transform	2
5	Impulse Response	4
6	DFT	7
7	FFT	8
8	Exercises	13

Abstract—This manual provides a simple introduction to digital signal processing.

1 Software Installation

Run the following commands

sudo apt-get update sudo apt-get install libffi-dev libsndfile1 python3 -scipy python3-numpy python3-matplotlib sudo pip install cffi pysoundfile

2 Digital Filter

2.1 Download the sound file from

wget https://github.com/kumarsuraj151/ EE3900/blob/master/codes/2_digital%20 filter/Sound_Noise.way

2.2 You will find a spectrogram at https: //academo.org/demos/spectrum-analyzer. Upload the sound file that you downloaded in Problem 2.1 in the spectrogram and play. Observe the spectrogram. What do you find? Solution: There are a lot of yellow lines between 440 Hz to 5.1 KHz. These represent the

- synthesizer key tones. Also, the key strokes are audible along with background noise.
- 2.3 Write the python code for removal of out of band noise and execute the code.

Solution:

```
import soundfile as sf
from scipy import signal
#read .wav file
input signal,fs = sf.read('Sound Noise.wav'
#sampling frequency of Input signal
sampl freq=fs
#order of the filter
order=4
#cutoff frquency 4kHz
cutoff freq=4000.0
#digital frequency
Wn=2*cutoff freq/sampl freq
# b and a are numerator and
   denominator polynomials respectively
b, a = signal.butter(order, Wn, 'low')
#filter the input signal with butterworth filter
output signal = signal.filtfilt(b, a,
   input signal)
#output signal = signal.lfilter(b, a,input
#write the output signal into .wav file
sf.write('Sound_With_ReducedNoise.wav',
   output signal, fs)
```

2.4 The output of the python script Problem in 2.3 is the audio file Sound With ReducedNoise.wav. Play the file in the spectrogram in Problem 2.2. What do you observe?

Solution: The key strokes as well as background noise is subdued in the audio. Also, the signal is blank for frequencies above 5.1 kHz.

3 DIFFERENCE EQUATION

3.1 Let

$$x(n) = \left\{ 1, 2, 3, 4, 2, 1 \right\} \tag{3.1}$$

Sketch x(n).

3.2 Let

$$y(n) + \frac{1}{2}y(n-1) = x(n) + x(n-2),$$

$$y(n) = 0, n < 0 \quad (3.2)$$

Sketch y(n).

Solution: The following code yields Fig. .

wget https://raw.githubusercontent.com/ kumarsuraj151/EE3900/master/codes/3 _diffrence%20equation/xnyn.py

Fig. 3.2

3.3 Repeat the above exercise using c

4 Z-TRANSFORM

4.1 The Z-transform of x(n) is defined as

$$X(z) = \mathcal{Z}\{x(n)\} = \sum_{n=-\infty}^{\infty} x(n)z^{-n}$$
 (4.1)

Show that

$$Z{x(n-1)} = z^{-1}X(z)$$
 (4.2)

and find

$$\mathcal{Z}\{x(n-k)\}\tag{4.3}$$

Solution: From (4.1),

$$Z\{x(n-k)\} = \sum_{n=-\infty}^{\infty} x(n-1)z^{-n}$$

$$= \sum_{n=-\infty}^{\infty} x(n)z^{-n-1} = z^{-1} \sum_{n=-\infty}^{\infty} x(n)z^{-n}$$
(4.4)
$$(4.5)$$

resulting in (4.2). Similarly, it can be shown that

$$Z\{x(n-k)\} = z^{-k}X(z)$$
 (4.6)

4.2 Obtain X(z) for x(n) defined in problem (3.1). **Solution:**

$$Z(x(n)) = \sum_{n=-\infty}^{\infty} x(n)z^{-n}$$

$$= x(0)z^{0} + x(1)z^{-1} + x(2)z^{-2} + x(3)z^{-3} +$$

$$(4.8)$$

$$x(4)z^{-4} + x(5)z^{-5}$$

$$= 1 + 2z^{-1} + 3z^{-2} + 4z^{-3} + 2z^{-4} + z^{-5}$$

$$(4.9)$$

4.3 Find

$$H(z) = \frac{Y(z)}{X(z)}$$
 (4.10)

from (3.2) assuming that the Z-transform is a linear operation.

Solution: Applying (4.6) in (3.2),

$$Y(z) + \frac{1}{2}z^{-1}Y(z) = X(z) + z^{-2}X(z)$$
 (4.11)

$$\implies \frac{Y(z)}{X(z)} = \frac{1 + z^{-2}}{1 + \frac{1}{2}z^{-1}} \tag{4.12}$$

4.4 Find the Z transform of

$$\delta(n) = \begin{cases} 1 & n = 0 \\ 0 & \text{otherwise} \end{cases}$$
 (4.13)

and show that the Z-transform of

$$u(n) = \begin{cases} 1 & n \ge 0 \\ 0 & \text{otherwise} \end{cases}$$
 (4.14)

is

$$U(z) = \frac{1}{1 - z^{-1}}, \quad |z| > 1$$
 (4.15)

Solution: It is easy to show that

$$\delta(n) \stackrel{\mathcal{Z}}{\rightleftharpoons} 1 \tag{4.16}$$

and from (4.14),

$$U(z) = \sum_{n=0}^{\infty} z^{-n}$$
 (4.17)

$$=\frac{1}{1-z^{-1}}, \quad |z| > 1 \tag{4.18}$$

using the fomula for the sum of an infinite geometric progression.

4.5 Show that

$$a^{n}u(n) \stackrel{\mathcal{Z}}{\rightleftharpoons} \frac{1}{1 - az^{-1}} \quad |z| > |a| \tag{4.19}$$

Solution:

$$Z(a^{n}u(n)) = \sum_{n=-\infty}^{\infty} a^{n}u(n)z^{-n}$$
 (4.20)

$$=\sum_{n=0}^{\infty} a^n z^{-n}$$
 (4.21)

$$=\frac{1}{1-az^{-1}}, \quad |az^{-1}| < 1 \quad (4.22)$$

$$= \frac{1}{1 - az^{-1}}, \quad |a| < |z| \tag{4.23}$$

using the fomula for the sum of an infinite geometric progression.

4.6 Let

$$H(e^{j\omega}) = H(z = e^{j\omega}).$$
 (4.24)

Plot $|H(e^{j\omega})|$. Comment. $H(e^{j\omega})$ is known as the *Discret Time Fourier Transform* (DTFT) of h(n).

Solution: The following code plots Fig. 4.6.

wget https://raw.githubusercontent.com/ kumarsuraj151/EE3900/master/codes/4_Z %20transform/dtft.py

Fig. 4.6: $|H(e^{j\omega})|$

$$H\left(e^{j\omega}\right) = \frac{1 + e^{-2j\omega}}{1 + \frac{e^{-j\omega}}{2}}\tag{4.25}$$

$$\Rightarrow \left| H\left(e^{j\omega}\right) \right| = \frac{\left| 1 + e^{-2j\omega} \right|}{\left| 1 + \frac{e^{-j\omega}}{2} \right|}$$

$$= \frac{\left| 1 + e^{2j\omega} \right|}{\left| e^{2j\omega} + \frac{e^{j\omega}}{2} \right|}$$

$$(4.26)$$

$$= \frac{\frac{1}{|1 + \cos 2\omega + j \sin 2\omega|}}{\left|e^{j\omega} + \frac{1}{2}\right|}$$
(4.28)

$$=\frac{\left|4\cos^2(\omega)+4j\sin(\omega)\cos(\omega)\right|}{\left|2e^{j\omega}+1\right|}$$
(4.29)

$$= \frac{|4\cos(\omega)||\cos(\omega) + j\sin(\omega)|}{|2\cos(\omega) + 1 + 2j\sin(\omega)|}$$
(4.30)

$$\therefore \left| H\left(e^{j\omega}\right) \right| = \frac{|4\cos(\omega)|}{\sqrt{5 + 4\cos(\omega)}} \tag{4.31}$$

The period of $|\cos(\omega)|$ is π . The period of $5 + 4\cos(\omega)$ is 2π . Hence $|H(e^{J\omega})|$ is periodic with period π .(The LCM of the period of $|\cos(\omega)|$ and $5 + 4\cos(\omega)$ is π) The graph of $|H(e^{J\omega})|$ is symmetric with respect to y-axis. It is continuous over ω . The following code plots Fig. 4.6.

4.7 Express h(n) in terms of $H(e^{j\omega})$.

Solution:

$$H(e^{j\omega}) = \sum_{k=-\infty}^{\infty} h(k)e^{-j\omega k}$$
 (4.32)

and

$$h(n) = \frac{1}{2\pi} \int_{-\pi}^{\pi} H(e^{j\omega}) e^{j\omega n} d\omega \qquad (4.33)$$

Now,

$$\frac{1}{2\pi} \int_{-\pi}^{\pi} H(e^{j\omega}) e^{j\omega n} d\omega \tag{4.34}$$

$$=\frac{1}{2\pi}\int_{-\pi}^{\pi}\sum_{k=-\infty}^{\infty}h(k)e^{-j\omega k}e^{j\omega n}d\omega \quad (4.35)$$

$$=\frac{1}{2\pi}\sum_{k=-\infty}^{\infty}h(k)\int_{-\pi}^{\pi}e^{j\omega(n-k)}d\omega \qquad (4.36)$$

$$= \frac{1}{2\pi} \sum_{k=-\infty}^{\infty} h(k) \int_{-\pi}^{\pi} \cos w(n-k) d\omega$$
 (4.37)

$$+ \int_{-\pi}^{\pi} \sin w (n-k) d\omega$$

$$= \frac{1}{2\pi} \sum_{k=-\infty}^{\infty} h(k) \int_{-\pi}^{\pi} \cos w(n-k)$$
 (4.38)

$$= \frac{1}{2\pi} \sum_{k=-\infty}^{\infty} h(k) \frac{\sin w(n-k)}{n-k} \bigg|_{-\pi}^{\pi}$$
 (4.39)

$$= \frac{1}{2\pi} \sum_{k \neq n} h(n) \frac{\sin \pi (n-k)}{n-k} + \sum_{k=n} h(n) \frac{\sin \pi (n-k)}{n-k}$$
(4.40)

$$=\frac{0+2\pi h(n)}{2\pi}$$
 (4.41)

$$=h(n) \tag{4.42}$$

5 Impulse Response

5.1 Using long division, find

$$h(n), \quad n < 5 \tag{5.1}$$

for H(z) in (4.12).

Solution: H(z) is given by

$$H(z) = \frac{1 + z^{-2}}{1 + \frac{1}{2}z^{-1}} = \frac{2 + 2z^{-2}}{2 + z^{-1}}$$
 (5.2)

$$2z^{-1} - 4 (5.3)$$

$$z^{-1} + 2) 2z^{-2} + 2$$
 (5.4)

$$2z^{-2} + 4z^{-1} \tag{5.5}$$

$$\frac{-4z^{-1}+2}{(5.6)}$$

$$-4z^{-1} - 8 (5.7)$$

$$10 \qquad (5.8)$$

So,

$$H(z) = 2z^{-1} - 4 + \frac{10}{z^{-1} + 2}$$
 (5.9)

$$=2z^{-1}-4+\frac{5}{\frac{1}{2}z^{-1}+1}$$
 (5.10)

$$=2z^{-1}-4+5\sum_{n=0}^{\infty}\left(-\frac{z^{-1}}{2}\right)^{n}$$
 (5.11)

$$=1-\frac{1}{2}z^{-1}+\sum_{n=2}^{\infty}\left(-\frac{1}{2}\right)^{n}z^{-n} \qquad (5.12)$$

So,h(n) will be given by

$$h(n) = \begin{cases} 5 \times \left(-\frac{1}{2}\right)^n & n \ge 2\\ \left(-\frac{1}{2}\right)^n & 2 > n \ge 0\\ 0 & n < 0 \end{cases}$$
 (5.13)

5.2 Find an expression for h(n) using H(z), given that

$$h(n) \stackrel{\mathcal{Z}}{\rightleftharpoons} H(z) \tag{5.14}$$

and there is a one to one relationship between h(n) and H(z). h(n) is known as the *impulse response* of the system defined by (3.2).

Solution: From (4.12),

$$H(z) = \frac{1}{1 + \frac{1}{2}z^{-1}} + \frac{z^{-2}}{1 + \frac{1}{2}z^{-1}}$$
 (5.15)

$$\implies h(n) = \left(-\frac{1}{2}\right)^n u(n) + \left(-\frac{1}{2}\right)^{n-2} u(n-2)$$
(5.16)

using (4.19) and (4.6).

5.3 Sketch h(n). Is it bounded? Convergent? **Solution:** The following code plots Fig. 5.3.

wget https://raw.githubusercontent.com/ kumarsuraj151/EE3900/master/codes/5 impluse%20responce/hn.py

Yes, it is bounded and Convergent

5.4 Convergent? Justify using the ratio test. **Solution:** We can say a given real sequence

 $\{x_n\}$ is convergent if

$$\lim_{n \to \infty} \left| \frac{x_{n+1}}{x_n} \right| < 1 \tag{5.17}$$

This is known as Ratio test.

Fig. 5.3: h(n) as the inverse of H(z)

In this case the limit will become,

$$\lim_{n \to \infty} \left| \frac{h(n+1)}{h(n)} \right| = \lim_{n \to \infty} \left| \frac{5\left(\frac{-1}{2}\right)^{n+1}}{5\left(\frac{-1}{2}\right)^n} \right|$$

$$= \lim_{n \to \infty} \left| \frac{-1}{2} \right|$$

$$= \frac{1}{2}$$
(5.18)

As $\frac{1}{2} < 1$, from root test we can say that h(n) is convergent.

5.5 The system with h(n) is defined to be stable if

$$\sum_{n=-\infty}^{\infty} h(n) < \infty \tag{5.21}$$

Is the system defined by (3.2) stable for the impulse response in (5.14)?

Solution:

$$\sum_{n=-\infty}^{\infty} h(n) = \sum_{n=-\infty}^{\infty} \left(-\frac{1}{2}\right)^n u(n) + \sum_{n=-\infty}^{\infty} \left(-\frac{1}{2}\right)^{n-2} u(n-2)$$

$$= \sum_{n=0}^{\infty} \left(-\frac{1}{2}\right)^n + \sum_{n=2}^{\infty} \left(-\frac{1}{2}\right)^{n-2}$$

$$= \sum_{n=0}^{\infty} \left(-\frac{1}{2}\right)^n + \sum_{n=2}^{\infty} \left(-\frac{1}{2}\right)^{n-2}$$

$$= \frac{2}{3} + \frac{2}{3} = \frac{4}{3}$$
(5.24)

hence the system defined by (3.2) is stable for the impulse response in (5.14)?

5.6 Verify the above result using python code **Solution:** the above result can be verify using

following code

wget https://raw.githubusercontent.com/ kumarsuraj151/EE3900/master/codes/5 impluse%20responce/hndef.py

5.7 Compute and sketch h(n) using

$$h(n) + \frac{1}{2}h(n-1) = \delta(n) + \delta(n-2),$$
 (5.25)

This is the definition of h(n).

Solution: The following code plots Fig. 5.7. Note that this is the same as Fig. 5.3.

wget https://raw.githubusercontent.com/ kumarsuraj151/EE3900/master/codes/5 impluse%20responce/hndef.py

Fig. 5.7: h(n) from the definition

5.8 Compute

$$y(n) = x(n) * h(n) = \sum_{n = -\infty}^{\infty} x(k)h(n - k)$$
 (5.26)

Comment. The operation in (5.26) is known as *convolution*.

Solution: The following code plots Fig. 5.8. Note that this is the same as y(n) in Fig. 3.2.

wget https://raw.githubusercontent.com/ kumarsuraj151/EE3900/master/codes/5 impluse%20responce/ynconv.py

5.9 Express the above convolution using a Teoplitz matrix.

Fig. 5.8: y(n) from the definition of convolution

Solution: From (5.26), we express y(n) as

$$y(n) = \sum_{k=-\infty}^{\infty} x(k) h(n-k)$$
 (5.27)

To understand how we can use a Toeplitz matrix

$$y(0) = x(0) h(0) (5.28)$$

$$y(1) = x(0)h(1) + x(1)h(0)$$
 (5.29)

$$y(2) = x(0)h(2) + x(1)h(1) + x(2)h(0)$$
(5.30)

•

The same thing can be written as,

$$y(0) = \begin{pmatrix} h(0) & 0 & 0 & . & . & .0 \end{pmatrix} \begin{pmatrix} x(0) \\ x(1) \\ x(2) \\ . \\ . \\ x(5) \end{pmatrix}$$
 (5.31)

$$y(1) = \begin{pmatrix} h(1) & h(0) & 0 & 0 & . & . & .0 \end{pmatrix} \begin{pmatrix} x(0) \\ x(1) \\ x(2) \\ . \\ x(5) \end{pmatrix}$$
(5.32)

$$y(2) = \begin{pmatrix} h(2) & h(1) & h(0) & 0 & . & .0 \end{pmatrix} \begin{pmatrix} x(0) \\ x(1) \\ x(2) \\ . \\ . \\ x(5) \end{pmatrix}$$
(5.33)

.

Using Toeplitz matrix of h(n) we can simplify it as,

$$y(n) = \begin{pmatrix} h(0) & 0 & 0 & \dots & 0 \\ h(1) & h(0) & 0 & \dots & 0 \\ h(2) & h(1) & h(0) & \dots & 0 \\ & & & & & \\ 0 & 0 & 0 & \dots & h(m-1) \end{pmatrix} \begin{pmatrix} x(0) \\ x(1) \\ x(2) \\ \vdots \\ x(5) \end{pmatrix}$$
(5.34)

$$x(n) = \begin{pmatrix} 1\\2\\3\\4\\2\\1 \end{pmatrix}$$
 (5.35)

And from (5.13) we will take some values of n,

$$..h(n) = \begin{pmatrix} 1\\ -0.5\\ 1.25\\ \cdot\\ \cdot\\ \cdot \end{pmatrix}$$
 (5.36)

Now using (5.34),

$$y(n) = x(n) * h(n)$$

$$= \begin{pmatrix} 1 & 0 & 0 & \dots & 0 \\ -0.5 & 1 & 0 & \dots & 0 \\ 1.25 & -0.5 & 1 & \dots & 0 \\ & & & & & \\ 0 & 0 & 0 & \dots & & \\ \end{pmatrix} \begin{pmatrix} x(0) \\ x(1) \\ x(2) \\ \vdots \\ x(5) \end{pmatrix}$$

$$(5.38)$$

$$= \begin{pmatrix} 1\\1.5\\3.25\\ \cdot\\ \cdot\\ \cdot\\ \cdot \end{pmatrix}$$
 (5.39)

The above equation (5.39) is the convolution of x(n) and h(n)

5.10 Show that

$$y(n) = \sum_{k=-\infty}^{\infty} x(n-k)h(k)$$
 (5.40)

Solution: Substitute k := n - k in (5.26), we will get

$$y(n) = \sum_{k=-\infty}^{\infty} x(k)h(n-k)$$
 (5.41)

$$=\sum_{n-k=-\infty}^{\infty}x(n-k)h(k)$$
 (5.42)

$$=\sum_{k=-\infty}^{\infty}x(n-k)h(k)$$
 (5.43)

6 DFT

6.1 Compute

$$X(k) \stackrel{\triangle}{=} \sum_{n=0}^{N-1} x(n)e^{-j2\pi kn/N}, \quad k = 0, 1, \dots, N-1$$
(6.1)

and H(k) using h(n).

Solution: Downlode the python code for questions 6.1

wget https://raw.githubusercontent.com/ kumarsuraj151/EE3900/master/codes/6 _dft%20and%20fft/6_1.py

6.2 Compute

$$Y(k) = X(k)H(k) \tag{6.2}$$

Fig. 6.1: Plot of real part of Discrete Fourier Transforms of x(n) and h(n)

Solution: download the python code for questions 6.2

wget https://raw.githubusercontent.com/ kumarsuraj151/EE3900/master/codes/6 dft%20**and**%20fft/6 2.py

Fig. 6.2: Y(k) as the product of X(k) and H(k)

6.3 Compute

$$y(n) = \frac{1}{N} \sum_{k=0}^{N-1} Y(k) \cdot e^{j2\pi kn/N}, \quad n = 0, 1, \dots, N-1$$
(6.3)

Solution: The following code plots Fig. 5.8. Note that this is the same as y(n) in Fig. 3.2.

wget https://raw.githubusercontent.com/ kumarsuraj151/EE3900/master/codes/6 _dft%20**and**%20fft/yndft.py

Fig. 6.3: y(n) from the DFT

6.4 Repeat the previous exercise by computing X(k), H(k) and y(n) through FFT and IFFT. **Solution:**

wget https://raw.githubusercontent.com/ kumarsuraj151/EE3900/master/codes/6 dft%20**and**%20fft/yn ifft.py

Fig. 6.4: The plot of y(n) using IFFT

7 FFT

1. The DFT of x(n) is given by

$$X(k) \triangleq \sum_{n=0}^{N-1} x(n)e^{-j2\pi kn/N}, \quad k = 0, 1, \dots, N-1$$
(7.1)

2. Let

$$W_N = e^{-j2\pi/N} \tag{7.2}$$

Then the N-point DFT matrix is defined as

$$\vec{F}_N = [W_N^{mn}], \quad 0 \le m, n \le N - 1$$
 (7.3)

where W_N^{mn} are the elements of \vec{F}_N .

3. Let

$$\vec{I}_4 = (\vec{e}_4^1 \quad \vec{e}_4^2 \quad \vec{e}_4^3 \quad \vec{e}_4^4) \tag{7.4}$$

be the 4×4 identity matrix. Then the 4 point *DFT permutation matrix* is defined as

$$\vec{P}_4 = (\vec{e}_4^1 \quad \vec{e}_4^3 \quad \vec{e}_4^2 \quad \vec{e}_4^4) \tag{7.5}$$

4. The 4 point DFT diagonal matrix is defined as

$$\vec{D}_4 = diag \begin{pmatrix} W_8^0 & W_8^1 & W_8^2 & W_8^3 \end{pmatrix}$$
 (7.6)

5. Show that

$$W_N^2 = W_{N/2} (7.7)$$

Solution: Given

$$W_N = e^{-j2\pi/N} \tag{7.8}$$

$$W_N^2 = e^{2(-j2\pi/N)} (7.9)$$

$$=e^{-j2\pi/(N/2)} (7.10)$$

$$=W_{N/2}$$
 (7.11)

6. Show that

$$\vec{F}_4 = \begin{bmatrix} \vec{I}_2 & \vec{D}_2 \\ \vec{I}_2 & -\vec{D}_2 \end{bmatrix} \begin{bmatrix} \vec{F}_2 & 0 \\ 0 & \vec{F}_2 \end{bmatrix} \vec{P}_4$$
 (7.12)

Solution: \vec{I}_2 is 2×2 identity matrix

$$\begin{bmatrix} \vec{I}_2 & \vec{D}_2 \\ \vec{I}_2 & -\vec{D}_2 \end{bmatrix} \begin{bmatrix} \vec{F}_2 & 0 \\ 0 & \vec{F}_2 \end{bmatrix} = \begin{bmatrix} \vec{F}_2 & \vec{D}_2 \vec{F}_2 \\ \vec{F}_2 & -\vec{D}_2 \vec{F}_2 \end{bmatrix}$$
(7.13)

Given

$$\vec{F}_2 = \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix} \tag{7.14}$$

$$\vec{D}_2 = diag(1, W_4) = \begin{bmatrix} 1 & 0 \\ 0 & -j \end{bmatrix}$$
 (7.15)

$$\vec{P}_4 = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \tag{7.16}$$

$$\vec{F}_4 = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & -j & -1 & j \\ 1 & -1 & 1 & -1 \\ 1 & j & -1 & -j \end{bmatrix}$$
(7.17)

$$\begin{bmatrix} \vec{F}_2 & \vec{D}_2 \vec{F}_2 \\ \vec{F}_2 & -\vec{D}_2 \vec{F}_2 \end{bmatrix} = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & -1 & -j & j \\ 1 & 1 & -1 & -1 \\ 1 & -1 & j & -j \end{bmatrix}$$
(7.18)

$$= \begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & -1 & -j & j \\ 1 & 1 & -1 & -1 \\ 1 & -1 & j & -j \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$
(7.19)

$$= \begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & -j & -1 & j \\ 1 & -1 & 1 & -1 \\ 1 & j & -1 & -j \end{bmatrix}$$
 (7.20)

which is same as \vec{F}_4 .

$$\therefore \vec{F}_4 = \begin{bmatrix} \vec{I}_2 & \vec{D}_2 \\ \vec{I}_2 & -\vec{D}_2 \end{bmatrix} \tag{7.21}$$

7. Show that

$$\vec{F}_{N} = \begin{bmatrix} \vec{I}_{N/2} & \vec{D}_{N/2} \\ \vec{I}_{N/2} & -\vec{D}_{N/2} \end{bmatrix} \begin{bmatrix} \vec{F}_{N/2} & 0 \\ 0 & \vec{F}_{N/2} \end{bmatrix} \vec{P}_{N} \quad (7.22)$$

Solution:

$$\begin{bmatrix} \vec{I}_{N/2} & \vec{D}_{N/2} \\ \vec{I}_{N/2} & -\vec{D}_{N/2} \end{bmatrix} \begin{bmatrix} \vec{F}_{N/2} & 0 \\ 0 & \vec{F}_{N/2} \end{bmatrix}$$
(7.23)

(7.24)

$$= \begin{bmatrix} \vec{F}_{N/2} & \vec{D}_{N/2} \vec{F}_{N/2} \\ \vec{F}_{N/2} & -\vec{D}_{N/2} \vec{F}_{N/2} \end{bmatrix}$$
 (7.25)

Now

$$\vec{D}_{N/2}\vec{F}_{N/2} \qquad (7.26)$$

$$= \begin{bmatrix} W_N^0 & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & W_N^{N/2-1} \end{bmatrix} \begin{bmatrix} W_{N/2}^0 & \cdots & W_{N/2}^0 \\ \vdots & \ddots & \vdots \\ W_{N/2}^0 & \cdots & W_{N/2}^{(N/2-1)^2} \end{bmatrix} \qquad (7.27)$$

$$= \begin{bmatrix} W_N^0 W_{N/2}^0 & \cdots & W_N^0 W_{N/2}^0 \\ \vdots & \ddots & \vdots \\ W_N^{N/2-1} W_{N/2}^0 & \cdots & W_N^{N/2-1} W_{N/2}^{(N/2-1)^2} \end{bmatrix}$$
(7.28)

Thus

$$\left(\vec{D}_{N/2}\vec{F}_{N/2}\right)_{ii} = W_N^i W_{N/2}^{ij} \tag{7.29}$$

$$= W_N^i W_N^{2ij} (7.30)$$

$$= W_N^i W_N^{2ij}$$
 (7.30)
= $W_N^{i(2j+1)}$ (7.31)

where i, j = 0, ..., N/2 - 1

Therefore, $\vec{D}_{N/2}\vec{F}_{N/2}$ forms the first N/2 rows of the odd-indexed columns of \vec{F}_N

$$W_N^{(i+N/2)(2j+1)} = \exp\left(-J\frac{2\pi}{N}(2j+1)\left(i+\frac{N}{2}\right)\right)$$

$$= \exp\left(-J\left(\frac{2\pi}{N}(2j+1)i+(2j+1)\pi\right)\right)$$

$$= -\exp\left(-J\frac{2\pi}{N}(2j+1)i\right)$$

$$= -W_N^{i(2j+1)}$$

$$= -W_N^{i(2j+1)}$$

$$(7.35)$$

Thus, the remaining N/2 rows will be the negatives of the first N/2 rows

$$\left(\vec{F}_{N/2}\right)_{ij} = W_{N/2}^{ij}$$
 (7.36)

$$=W_N^{i(2j)} (7.37)$$

where i, j = 0, ..., N/2 - 1

Therefore, $\vec{F}_{N/2}$ forms the first N/2 rows of the even-indexed columns of \vec{F}_N

$$W_N^{(i+N/2)(2j)} = \exp\left(-j\frac{2\pi}{N}(2j)\left(i + \frac{N}{2}\right)\right)$$
(7.38)
= $\exp\left(-j\left(\frac{2\pi}{N}(2j)i + (2j)\pi\right)\right)$
= $\exp\left(-j\frac{2\pi}{N}(2j)i\right)$ (7.39)
= $W_N^{(i2j)}$ (7.40)
= $W_N^{(i2j)}$ (7.41)

Thus, the remaining N/2 rows will be the same as the first N/2 rows

Therefore

$$\begin{bmatrix} \vec{F}_{N/2} & \vec{D}_{N/2} \vec{F}_{N/2} \\ \vec{F}_{N/2} & -\vec{D}_{N/2} \vec{F}_{N/2} \end{bmatrix} = \vec{F}_N \vec{P}_N$$
 (7.42)

where

$$\vec{P}_N = \begin{pmatrix} \vec{e}_N^1 & \vec{e}_N^3 & \cdots & \vec{e}_N^{N-1} & \vec{e}_N^2 & \vec{e}_N^4 & \cdots & \vec{e}_N^N \end{pmatrix}$$
(7.43)

Hence

$$\begin{bmatrix} \vec{F}_{N/2} & \vec{D}_{N/2}\vec{F}_{N/2} \\ \vec{F}_{N/2} & -\vec{D}_{N/2}\vec{F}_{N/2} \end{bmatrix} \vec{P}_N = \vec{F}_N \vec{P}_N^2 = \vec{F}_N$$
(7.44)

$$\vec{F}_{N} = \begin{bmatrix} \vec{I}_{N/2} & \vec{D}_{N/2} \\ \vec{I}_{N/2} & -\vec{D}_{N/2} \end{bmatrix} \begin{bmatrix} \vec{F}_{N/2} & 0 \\ 0 & \vec{F}_{N/2} \end{bmatrix} \vec{P}_{N}$$
(7.45)

for even N

8. Find

$$\vec{P}_4 \vec{x} \tag{7.46}$$

Solution: From (7.16),

$$\vec{P}_4 = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \tag{7.47}$$

$$\vec{x} = \begin{pmatrix} 1 \\ 2 \\ 3 \\ 4 \\ 2 \\ 1 \end{pmatrix} \tag{7.48}$$

After proper zero padding of \vec{P}_4 ,

$$\vec{P}_4 = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \tag{7.49}$$

$$\vec{P}_4 \vec{x} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{pmatrix} 1 \\ 2 \\ 3 \\ 4 \end{pmatrix}$$
 (7.50)

$$= \begin{pmatrix} 1\\3\\2\\4 \end{pmatrix} \tag{7.51}$$

9. Show that

$$\vec{X} = \vec{F}_N \vec{x} \tag{7.52}$$

where \vec{x}, \vec{X} are the vector representations of x(n), X(k) respectively.

Solution: Given \vec{x}, \vec{X} are the vector representations of x(n), X(k) respectively.

$$\vec{x} = \begin{bmatrix} x(0) \\ x(1) \\ \vdots \\ x(N-1) \end{bmatrix}$$
 (7.53)

$$\vec{X} = \begin{bmatrix} X(0) \\ X(1) \\ \vdots \\ X(N-1) \end{bmatrix}$$
 (7.54)

$$\vec{F}_{N} = \begin{bmatrix} 1 & 1 & 1 & \cdots & 1 \\ 1 & W_{N} & W_{N}^{2} & \cdots & W_{N}^{(N-1)} \\ 1 & W_{N}^{2} & W_{N}^{4} & \cdots & W_{N}^{2(N-1)} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & W_{N}^{N-1} & W_{N}^{2(N-1)} & \cdots & W_{N}^{(N-1)(N-1)} \end{bmatrix}$$

$$(7.55)$$

As

$$X(k) = \sum_{n=0}^{N-1} x(n)e^{-j2\pi kn/N}$$
 (7.56)

Upon linear transformation over k,

$$\begin{bmatrix} X(0) \\ X(1) \\ \vdots \\ X(N-1) \end{bmatrix} = \begin{bmatrix} 1 & 1 & 1 & \cdots & 1 \\ 1 & W_N & W_N^2 & \cdots & W_N^{(N-1)} \\ 1 & W_N^2 & W_N^4 & \cdots & W_N^{2(N-1)} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & W_N^{N-1} & W_N^{2(N-1)} & \cdots & W_N^{(N-1)(N-1)} \end{bmatrix} \begin{bmatrix} x(0) \\ x(1) \\ x(2) \\ x(3) \\ x(4) \\ x(5) \\ x(7.57) \\ \vdots & \vec{X} = \vec{F}_N \vec{x} \end{bmatrix}$$

$$\therefore \vec{X} = \vec{F}_N \vec{x}$$
 (7.58)

10. Derive the following Step-by-step visualisation of 8-point FFTs into 4-point FFTs and so on

$$\begin{bmatrix} X(0) \\ X(1) \\ X(2) \\ X(3) \end{bmatrix} = \begin{bmatrix} X_1(0) \\ X_1(1) \\ X_1(2) \\ X_1(3) \end{bmatrix} + \begin{bmatrix} W_8^0 & 0 & 0 & 0 \\ 0 & W_8^1 & 0 & 0 \\ 0 & 0 & W_8^2 & 0 \\ 0 & 0 & 0 & W_8^3 \end{bmatrix} \begin{bmatrix} X_2(0) \\ X_2(1) \\ X_2(2) \\ X_2(3) \end{bmatrix}$$
(7.59)

$$\begin{bmatrix} X(4) \\ X(5) \\ X(6) \\ X(7) \end{bmatrix} = \begin{bmatrix} X_1(0) \\ X_1(1) \\ X_1(2) \\ X_1(3) \end{bmatrix} - \begin{bmatrix} W_8^0 & 0 & 0 & 0 \\ 0 & W_8^1 & 0 & 0 \\ 0 & 0 & W_8^2 & 0 \\ 0 & 0 & 0 & W_8^3 \end{bmatrix} \begin{bmatrix} X_2(0) \\ X_2(1) \\ X_2(2) \\ X_2(3) \end{bmatrix}$$
 (7.60)

4-point FFTs into 2-point FFTs

$$\begin{bmatrix} X_1(0) \\ X_1(1) \end{bmatrix} = \begin{bmatrix} X_3(0) \\ X_3(1) \end{bmatrix} + \begin{bmatrix} W_4^0 & 0 \\ 0 & W_4^1 \end{bmatrix} \begin{bmatrix} X_4(0) \\ X_4(1) \end{bmatrix}$$
 (7.61)

$$\begin{bmatrix} X_1(2) \\ X_1(3) \end{bmatrix} = \begin{bmatrix} X_3(0) \\ X_3(1) \end{bmatrix} - \begin{bmatrix} W_4^0 & 0 \\ 0 & W_4^1 \end{bmatrix} \begin{bmatrix} X_4(0) \\ X_4(1) \end{bmatrix}$$
 (7.62)

$$\begin{bmatrix} X_2(0) \\ X_2(1) \end{bmatrix} = \begin{bmatrix} X_5(0) \\ X_5(1) \end{bmatrix} + \begin{bmatrix} W_4^0 & 0 \\ 0 & W_4^1 \end{bmatrix} \begin{bmatrix} X_6(0) \\ X_6(1) \end{bmatrix}$$
 (7.63)

$$\begin{bmatrix} X_2(2) \\ X_2(3) \end{bmatrix} = \begin{bmatrix} X_5(0) \\ X_5(1) \end{bmatrix} - \begin{bmatrix} W_4^0 & 0 \\ 0 & W_4^1 \end{bmatrix} \begin{bmatrix} X_6(0) \\ X_6(1) \end{bmatrix}$$
 (7.64)

$$P_{8} \begin{bmatrix} x(0) \\ x(1) \\ x(2) \\ x(3) \\ x(4) \\ x(5) \\ x(6) \\ x(7) \end{bmatrix} = \begin{bmatrix} x(0) \\ x(2) \\ x(4) \\ x(6) \\ x(1) \\ x(3) \\ x(5) \\ x(7) \end{bmatrix}$$
 (7.65)

$$P_{4} \begin{bmatrix} x(0) \\ x(2) \\ x(4) \\ x(6) \end{bmatrix} = \begin{bmatrix} x(0) \\ x(4) \\ x(2) \\ x(6) \end{bmatrix}$$
 (7.66)

$$P_{4} \begin{bmatrix} x(1) \\ x(3) \\ x(5) \\ x(7) \end{bmatrix} = \begin{bmatrix} x(1) \\ x(5) \\ x(3) \\ x(7) \end{bmatrix}$$
 (7.67)

Therefore,

$$\begin{bmatrix} X_3(0) \\ X_3(1) \end{bmatrix} = F_2 \begin{bmatrix} x(0) \\ x(4) \end{bmatrix}$$
 (7.68)

$$\begin{bmatrix} X_4(0) \\ X_4(1) \end{bmatrix} = F_2 \begin{bmatrix} x(2) \\ x(6) \end{bmatrix}$$
 (7.69)

$$\begin{bmatrix} X_6(0) \\ X_6(1) \end{bmatrix} = F_2 \begin{bmatrix} x(3) \\ x(7) \end{bmatrix}$$
 (7.71)

Solution: We write out the values of performing an 8-point FFT on \vec{x} as follows.

$$X(k) = \sum_{n=0}^{7} x(n)e^{-\frac{1^{2kn\pi}}{8}}$$
 (7.72)

$$= \sum_{n=0}^{3} \left(x(2n)e^{-\frac{12kn\pi}{4}} + e^{-\frac{12k\pi}{8}}x(2n+1)e^{-\frac{12kn\pi}{4}} \right)$$

(7.73)

$$= X_1(k) + e^{-\frac{12k\pi}{4}} X_2(k) \tag{7.74}$$

where \vec{X}_1 is the 4-point FFT of the evennumbered terms and \vec{X}_2 is the 4-point FFT of the odd numbered terms. Noticing that for $k \ge 4$,

$$X_1(k) = X_1(k-4) (7.75)$$

$$e^{-\frac{j2k\pi}{8}} = -e^{-\frac{j2(k-4)\pi}{8}} \tag{7.76}$$

we can now write out X(k) in matrix form as in (7.59) and (7.60). We also need to solve the two 4-point FFT terms so formed.

$$X_1(k) = \sum_{n=0}^{3} x_1(n)e^{-\frac{j2kn\pi}{8}}$$
 (7.77)

$$= \sum_{n=0}^{1} \left(x_1(2n)e^{-\frac{12kn\pi}{4}} + e^{-\frac{12k\pi}{8}} x_2(2n+1)e^{-\frac{12kn\pi}{4}} \right)$$

(7.78)

$$= X_3(k) + e^{-\frac{12k\pi}{4}} X_4(k) \tag{7.79}$$

using $x_1(n) = x(2n)$ and $x_2(n) = x(2n+1)$. Thus we can write the 2-point FFTs

$$\begin{bmatrix} X_3(0) \\ X_3(1) \end{bmatrix} = F_2 \begin{bmatrix} x(0) \\ x(4) \end{bmatrix}$$
 (7.80)

$$\begin{bmatrix} X_4(0) \\ X_4(1) \end{bmatrix} = F_2 \begin{bmatrix} x(2) \\ x(6) \end{bmatrix}$$
 (7.81)

Using a similar idea for the terms X_2 ,

$$\begin{bmatrix} X_5(0) \\ X_5(1) \end{bmatrix} = F_2 \begin{bmatrix} x(1) \\ x(5) \end{bmatrix}$$
 (7.82)

$$\begin{bmatrix} X_6(0) \\ X_6(1) \end{bmatrix} = F_2 \begin{bmatrix} x(3) \\ x(7) \end{bmatrix}$$
 (7.83)

But observe that,

$$\vec{P}_8 \vec{x} = \begin{pmatrix} \vec{x}_1 \\ \vec{x}_2 \end{pmatrix} \tag{7.84}$$

$$\vec{P}_4 \vec{x}_1 = \begin{pmatrix} \vec{x}_3 \\ \vec{x}_4 \end{pmatrix} \tag{7.85}$$

$$\vec{P}_4 \vec{x}_2 = \begin{pmatrix} \vec{x}_5 \\ \vec{x}_6 \end{pmatrix} \tag{7.86}$$

where we define $x_3(k) = x(4k)$, $x_4(k) = x(4k + 2)$, $x_5(k) = x(4k + 1)$, and $x_6(k) = x(4k + 3)$ for k = 0, 1.

11. For

$$\vec{x} = \begin{pmatrix} 1\\2\\3\\4\\2\\1 \end{pmatrix} \tag{7.87}$$

compte the DFT using (7.52)

Solution:

Formula is the solution:
$$\vec{F}_{6} = \begin{bmatrix} 1 & 1 & 1 & 1 & 1 & 1 \\ 1 & e^{-j\pi/3} & e^{-j2\pi/3} & e^{-j\pi} & e^{-j4\pi/3} & e^{-j5\pi/3} \\ 1 & e^{-j2\pi/3} & e^{-j4\pi/3} & e^{-j2\pi} & e^{-j8\pi/3} & e^{-j10\pi/3} \\ 1 & e^{-j\pi} & e^{-j2\pi} & e^{-j3\pi} & e^{-j4\pi} & e^{-j5\pi} \\ 1 & e^{-j4\pi/3} & e^{-j8\pi/3} & e^{-j4\pi} & e^{-j16\pi/3} & e^{-j20\pi/3} \\ 1 & e^{-j5\pi/3} & e^{-j10\pi/3} & e^{-j5\pi} & e^{-j20\pi/3} & e^{-j25\pi/3} \end{bmatrix}$$

$$(7.88)$$

Using (7.87),

$$\vec{X} = \vec{F}_6 \vec{x} \tag{7.89}$$

$$\vec{X} = \begin{bmatrix} 1 & 1 & 1 & 1 & 1 & 1 \\ 1 & e^{-j\pi/3} & e^{-j2\pi/3} & e^{-j\pi} & e^{-j4\pi/3} & e^{-j5\pi/3} \\ 1 & e^{-j2\pi/3} & e^{-j4\pi/3} & e^{-j2\pi} & e^{-j8\pi/3} & e^{-j10\pi/3} \\ 1 & e^{-j\pi} & e^{-j2\pi} & e^{-j3\pi} & e^{-j4\pi} & e^{-j5\pi} \\ 1 & e^{-j4\pi/3} & e^{-j8\pi/3} & e^{-j4\pi} & e^{-j16\pi/3} & e^{-j20\pi/3} \\ 1 & e^{-j5\pi/3} & e^{-j10\pi/3} & e^{-j5\pi} & e^{-j20\pi/3} & e^{-j25\pi/3} \end{bmatrix} \begin{pmatrix} 1 \\ 2 \\ 3 \\ 4 \\ 2 \\ 1 \end{pmatrix}$$

$$(7.90)$$

$$= \begin{bmatrix} 13 \\ -4 - \sqrt{3}j \\ 1 \\ -1 \\ 1 \\ -4 + \sqrt{3}j \end{bmatrix}$$
 (7.91)

zero padding \vec{x} .

Solution: \vec{x} after padding is

$$\begin{pmatrix}
1 \\
2 \\
3 \\
4 \\
2 \\
1 \\
0 \\
0
\end{pmatrix}$$
(7.92)

Using (7.12),

$$\vec{F}_8 = \begin{bmatrix} \vec{I}_4 & \vec{D}_4 \\ \vec{I}_4 & -\vec{D}_4 \end{bmatrix} \begin{bmatrix} \vec{F}_4 & 0 \\ 0 & \vec{F}_4 \end{bmatrix} \vec{P}_8$$
 (7.93)

$$\vec{F}_4 = \begin{bmatrix} \vec{I}_2 & \vec{D}_2 \\ \vec{I}_2 & -\vec{D}_2 \end{bmatrix} \begin{bmatrix} \vec{F}_2 & 0 \\ 0 & \vec{F}_2 \end{bmatrix} \vec{P}_4 \tag{7.94}$$

$$\vec{F}_{2} = \begin{bmatrix} \vec{I}_{1} & \vec{D}_{1} \\ \vec{I}_{1} & -\vec{D}_{1} \end{bmatrix} \begin{bmatrix} \vec{F}_{1} & 0 \\ 0 & \vec{F}_{1} \end{bmatrix} \vec{P}_{2}$$
 (7.95)

$$\vec{F_1} = [1] \tag{7.96}$$

Calculating $\vec{F_2}$,

$$\vec{F}_2 = \begin{bmatrix} \vec{F}_1 & \vec{D_1 F_1} \\ \vec{F}_1 & -\vec{D_1 F_1} \end{bmatrix} \vec{P}_2$$
 (7.97)

$$= \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix} \tag{7.98}$$

Calculating \vec{F}_4 ,

$$\vec{D}_2 = diag(1, W_4) = \begin{bmatrix} 1 & 0 \\ 0 & -j \end{bmatrix}$$
 (7.99)

$$\overrightarrow{D_2F_2} = \begin{bmatrix} 1 & 0 \\ 0 & -i \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix} \quad (7.100)$$

$$= \begin{bmatrix} 1 & 1 \\ -j & j \end{bmatrix} \quad (7.101)$$

$$\vec{F_4} = \begin{bmatrix} \vec{F_2} & \vec{D_2F_2} \\ \vec{F_2} & -\vec{D_2F_2} \end{bmatrix} \vec{P_4} \quad (7.102)$$

$$\vec{F_4} = \begin{bmatrix} 1 & 0 & 1 & 1 \\ 0 & 1 & -j & j \\ 1 & 0 & -1 & -1 \\ 0 & 1 & j & -j \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$
 (7.103)

$$= \begin{bmatrix} 1 & 1 & 0 & 1 \\ 0 & -j & 1 & j \\ 1 & -1 & 0 & j \\ 0 & j & 1 & -j \end{bmatrix}$$
 (7.104)

12. Repeat the above exercise using the FFT after

Calculating \vec{F}_8 ,

$$\vec{D_4} = diag(1, W_8, W_8^2, W_8^3)$$

$$(7.105)$$

$$= \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & \frac{1-j}{\sqrt{2}} & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & \frac{-1-j}{\sqrt{2}} \end{bmatrix}$$

$$(7.106)$$

$$D_{4}\vec{F}_{4} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & \frac{1-j}{\sqrt{2}} & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & \frac{-1-j}{\sqrt{2}} \end{bmatrix} \begin{bmatrix} 1 & 1 & 0 & 1 \\ 0 & -j & 1 & j \\ 1 & -1 & 0 & j \\ 0 & j & 1 & -j \end{bmatrix}$$

$$(7.107)$$

$$\begin{bmatrix} 1 & 1 & 0 & 1 \\ 0 & \frac{-1-j}{2} & \frac{1-j}{2} & \frac{1+j}{2} \end{bmatrix}$$

$$= \begin{bmatrix} 1 & 1 & 0 & 1\\ 0 & \frac{-1-j}{\sqrt{2}} & \frac{1-j}{\sqrt{2}} & \frac{1+j}{\sqrt{2}}\\ -1 & 1 & 0 & -j\\ 0 & \frac{1-j}{\sqrt{2}} & \frac{-1-j}{\sqrt{2}} & \frac{-1+j}{\sqrt{2}} \end{bmatrix}$$
(7.108)

 $F_8 = A\vec{B}P_8$ where

$$\vec{A} = A\vec{B}P_{8} \text{ where}$$

$$\vec{A} = \begin{bmatrix} 1 & 0 & 0 & 0 & 1 & 0 & 0 & 0\\ 0 & 1 & 0 & 0 & 0 & \frac{-1-j}{\sqrt{2}} & \frac{1-j}{\sqrt{2}} & \frac{1+j}{\sqrt{2}}\\ 0 & 0 & 1 & 0 & -1 & 1 & 0 & -j\\ 0 & 0 & 0 & 1 & 0 & \frac{1-j}{\sqrt{2}} & \frac{-1-j}{\sqrt{2}} & \frac{-1+j}{\sqrt{2}}\\ 1 & 0 & 0 & 0 & -1 & 0 & 0 & 0\\ 0 & 1 & 0 & 0 & 0 & \frac{1+j}{\sqrt{2}} & \frac{-1+j}{\sqrt{2}} & \frac{-1-j}{\sqrt{2}}\\ 0 & 0 & 1 & 0 & 1 & -1 & 0 & j\\ 0 & 0 & 0 & 1 & 0 & \frac{-1+j}{\sqrt{2}} & \frac{1+j}{\sqrt{2}} & \frac{1-j}{\sqrt{2}} \end{bmatrix}$$

$$(7.109)$$

$$\vec{B} = \begin{bmatrix} 1 & 1 & 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & -j & 1 & j & 0 & 0 & 0 & 0 \\ 1 & -1 & 0 & j & 0 & 0 & 0 & 0 \\ 0 & j & 1 & -j & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & -1 & -1 & 0 & -1 \\ 0 & 0 & 0 & 0 & 0 & j & -1 & j \\ 0 & 0 & 0 & 0 & 0 & -j & -1 & j \end{bmatrix}$$

$$(7.110)$$

And $\vec{P_8}$ is a permutation matrix.

$$\vec{F_8} = \begin{bmatrix} 13 \\ -3.12 - 6.53j \\ j \\ 1.12 - 0.53j \\ -1 \\ 1.12 + 0.53j \\ -j \\ -3.12 + 6.5355 \end{bmatrix}$$
 (7.111)

13. Write a C program to compute the 8-point FFT. **Solution:** Downlode the C code

Fig. 13

8 Exercises

Answer the following questions by looking at the python code in Problem 2.3.

8.1 The command

in Problem 2.3 is executed through the following difference equation

$$\sum_{m=0}^{M} a(m) y(n-m) = \sum_{k=0}^{N} b(k) x(n-k) \quad (8.1)$$

where the input signal is x(n) and the output signal is y(n) with initial values all 0. Replace

signal.filtfilt with your own routine and verify. **Solution:** On taking the *Z*-transform on both sides of the difference equation

$$\sum_{m=0}^{M} a(m) z^{-m} Y(z) = \sum_{k=0}^{N} b(k) z^{-k} X(z)$$
 (8.2)

$$\implies H(z) = \frac{Y(z)}{X(z)} = \frac{\sum_{k=0}^{N} b(k) z^{-k}}{\sum_{m=0}^{M} a(m) z^{-m}}$$
 (8.3)

For obtaining the discrete Fourier transform, put $z = J^{\frac{2\pi i}{I}}$ where I is the length of the input signal and $i = 0, 1, \dots, I - 1$

Download the following Python code that does the above

wget https://github.com/karthik6281/Signal-Processing/tree/main/Assignment1/codes/8 _1.c

Run the code by executing

- 8.2 Repeat all the exercises in the previous sections for the above *a* and *b*.
- 8.3 What is the sampling frequency of the input signal?

Solution: Sampling frequency(fs)=44.1kHZ.

- 8.4 What is type, order and cutoff-frequency of the above butterworth filter
 - **Solution:** The given butterworth filter is low pass with order=2 and cutoff-frequency=4kHz.
- 8.5 Modifying the code with different input parameters and to get the best possible output.