Вопрос 21. Момент импульса частицы и момент силы относительно некоторой точки. Уравнение моментов.

Момент импульса частицы A относительно точки O называют векторное произведение (вектор \vec{L}) радиус-вектора частицы \vec{r} на её импульс \vec{p} :

$$\vec{L} = [\vec{r}, \vec{p}]$$

\vec{L} – аксиальный вектор

Направление вектора \vec{L} определяется по правилу буравчика: если рукоятку винта вращать от радиус-вектора \vec{r} к импульсу \vec{p} по наименьшему углу, то поступательное движение винта укажет направление момента импульса \vec{L}

Модуль вектора $ec{L}$ равен:

$$\left| \vec{L} \right| = \left| \vec{r} \right| \left| \vec{p} \right| \sin(\vec{r}, \vec{p}) = lp$$

Уравнение моментов:

$$\frac{d\vec{L}}{dt} = \left[\frac{d\vec{r}}{dt}, \vec{p}\right] + \left[\vec{r}, \frac{d\vec{p}}{dt}\right]$$

Т.к. точка О неподвижна, то $\frac{d\vec{r}}{dt} = \vec{\vartheta}$ частицы, т.е. совпадает по направлению с вектором \vec{p} , поэтому $\left[\frac{d\vec{r}}{dt}, \vec{p}\right] = 0$.

Т.к. $\frac{d\vec{p}}{dt}=\vec{F}$, где \vec{F} – результирующая сил, действующих на частицу, то:

$$\frac{d\vec{L}}{dt} = [\vec{r}, \vec{F}]$$

Величина $[\vec{r},\vec{F}]$ – момент силы \vec{F} относительно точки О. Обозначим её как \vec{M} :

$$\frac{d\vec{L}}{dt} = \vec{M}$$

Имеем, что $\dot{\vec{L}}=\vec{M}$

Производная по времени от момента импульса \vec{L} частицы(скорость приращения) относительно некоторой точки О выбранной системы отсчёта равна моменту \vec{M} равнодействующей силы \vec{F} относительно той же точки О.

Свойства момента сил \overrightarrow{M} :

1) \overrightarrow{M} не изменится, если точка приложения силы \overrightarrow{F} перенести в любую другую точку, расположенную на оси действия силы.

Момент равнодействующей двух или нескольких сил относительно некоторого начала равен геометрической сумме моментов сил относительно

того же начала:

Если
$$\vec{F}=\overrightarrow{F_1}+\overrightarrow{F_2}$$
, то $\left[\vec{r},\vec{F}\right]=\left[\vec{r},\overrightarrow{F_1}\right]+\left[\vec{r},\overrightarrow{F_2}\right]$