## Pairwise sequence alignments & BLAST

### Goals

#### Goals

- Basics of alignments
- DotPlots
- Scoring alignments
- Global vs local alignments
- Approximate alignment searches
- E values



## The point of sequence alignment

- If you have two or more sequences, you may want to know
  - How similar are they? (A quantitative measure)
  - Which residues correspond to each other?
  - Is there a pattern to the conservation/variability of the sequences?
  - What are the evolutionary relationships of these sequences?

```
String A = a b c d e
String B = a c d e f
```

A (good) alignment would be:

## Many alignments are possible, we want to find the best

```
g c t g a a c g
g t a t a a t c
```

Bad:

## Many alignments are possible, we want to find the best

```
g c t g a a c g
c t a t a a t c
```

Better?

```
g c t g a - a - c g
- - c t - a t a a t c
```

## Many alignments are possible, we want to find the best

```
g c t g a a c g
c t a t a a t c
```

Better?

To decide which alignment is best we need

- A way to examine all possible alignments
- A way to compute a score that gives the quality of the alignment

DotPlot - An easy to build representation of the relationship between two sequences.

Option 1 – use the same sequences.

|   | N | Ε | Α | L | D | Ε | G | R | Α | S | S | Ε | Т | Υ | S | 0 | N |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Ν | N |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   | Ν |
| Ε |   | Ε |   |   |   | Е |   |   |   |   |   | Е |   |   |   |   |   |
| Α |   |   | Α |   |   |   |   |   | Α |   |   |   |   |   |   |   |   |
| L |   |   |   | Ш |   |   |   |   |   |   |   |   |   |   |   |   |   |
| D |   |   |   |   | D |   |   |   |   |   |   |   |   |   |   |   |   |
| Ε |   | E |   |   |   | E |   |   |   |   | E |   |   |   |   |   |   |
| G |   |   |   |   |   |   | G |   |   |   |   |   |   |   |   |   |   |
| R |   |   |   |   |   |   |   | R |   |   |   |   |   |   |   |   |   |
| Α |   |   | Α |   |   |   |   |   | Α |   |   |   |   |   |   |   |   |
| S |   |   |   |   |   |   |   |   |   | S | S |   |   |   | S |   |   |
| S |   |   |   |   |   |   |   |   |   | S | S |   |   |   | S |   |   |
| Ε |   | Ε |   |   |   | Ε |   |   |   |   |   | Ε |   |   |   |   |   |
| Т |   |   |   |   |   |   |   |   |   |   |   |   | Т |   |   |   |   |
| Υ |   |   |   |   |   |   |   |   |   |   |   |   |   | Υ |   |   |   |
| S |   |   |   |   |   |   |   |   |   | S | S |   |   |   | S |   |   |
| 0 |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   | 0 |   |
| Ν | N |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   | N |

DotPlot - An easy to build representation of the relationship between two sequences.

Option 1 – use the same sequences.

|   | N | Ε | Α | L   | D | Ε | G | R | Α | S | S | Ε | Т | Υ | S | 0 | N |
|---|---|---|---|-----|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Ν | N |   |   |     |   |   |   |   |   |   |   |   |   |   |   |   | Ν |
| Ε |   | Е |   |     |   | Ε |   |   |   |   |   | Ε |   |   |   |   |   |
| Α |   |   | Α |     |   |   |   |   | Α |   |   |   |   |   |   |   |   |
| L |   |   |   | لــ |   |   |   |   |   |   |   |   |   |   |   |   |   |
| D |   |   |   |     | D |   |   |   |   |   |   |   |   |   |   |   |   |
| Ε |   | E |   |     |   | Ε |   |   |   |   | E |   |   |   |   |   |   |
| G |   |   |   |     |   |   | G |   |   |   |   |   |   |   |   |   |   |
| R |   |   |   |     |   |   |   | R |   |   |   |   |   |   |   |   |   |
| Α |   |   | Α |     |   |   |   |   | Α |   |   |   |   |   |   |   |   |
| S |   |   |   |     |   |   |   |   |   | S | S |   |   |   | S |   |   |
| S |   |   |   |     |   |   |   |   |   | S | S |   |   |   | S |   |   |
| Ε |   | Ε |   |     |   | Ε |   |   |   |   |   | Ε |   |   |   |   |   |
| Т |   |   |   |     |   |   |   |   |   |   |   |   | Т |   |   |   |   |
| Υ |   |   |   |     |   |   |   |   |   |   |   |   |   | Υ |   |   |   |
| S |   |   |   |     |   |   |   |   |   | S | S |   |   |   | S |   |   |
| 0 |   |   |   |     |   |   |   |   |   |   |   |   |   |   |   | 0 |   |
| Ν | N |   |   |     |   |   |   |   |   |   |   |   |   |   |   |   | N |

# Comparing the same sequence is good for finding repeats

NEALNEALNEAL

VS.

NEALNEALNEAL

# Comparing the same sequence is good for finding repeats

|   | N | Ε | Α | L | N | Ε | Α | L | N | E | Α | L |
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| N | N |   |   |   | N |   |   |   | N |   |   |   |
| Е |   | Е |   |   |   | Е |   |   |   | Е |   |   |
| Α |   |   | Α |   |   |   | Α |   |   |   | Α |   |
| L |   |   |   | L |   |   |   | L |   |   |   | L |
| N | N |   |   |   | N |   |   |   | N |   |   |   |
| Ε |   | Е |   |   |   | Е |   |   |   | Е |   |   |
| Α |   |   | Α |   |   |   | Α |   |   |   | Α |   |
| L |   |   |   | L |   |   |   | L |   |   |   | L |
| N | N |   |   |   | N |   |   |   | N |   |   |   |
| Ε |   | Е |   |   |   | Е |   |   |   | Е |   |   |
| Α |   |   | Α |   |   |   | Α |   |   |   | Α |   |
| L |   |   |   | L |   |   |   | L |   |   |   | L |

## A smaller repeat

BARBARAMCLINTOCK

VS.

BARBARAMCLINTOCK

## A smaller repeat

|   | В | Α | R | В | Α | R | Α | M | С | L | I | N | Т | 0 | С | K |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| В | В |   |   | В |   |   |   |   |   |   |   |   |   |   |   |   |
| Α |   | Α |   |   | Α |   | Α |   |   |   |   |   |   |   |   |   |
| R |   |   | R |   |   | R |   |   |   |   |   |   |   |   |   |   |
| В | В |   |   | В |   |   |   |   |   |   |   |   |   |   |   |   |
| Α |   | Α |   |   | Α |   | Α |   |   |   |   |   |   |   |   |   |
| R |   |   | R |   |   | R |   |   |   |   |   |   |   |   |   |   |
| Α |   | Α |   |   | Α |   | Α |   |   |   |   |   |   |   |   |   |
| M |   |   |   |   |   |   |   | М |   |   |   |   |   |   |   |   |
| С |   |   |   |   |   |   |   |   | C |   |   |   |   |   | С |   |
| L |   |   |   |   |   |   |   |   |   | ш |   |   |   |   |   |   |
| 1 |   |   |   |   |   |   |   |   |   |   | _ |   |   |   |   |   |
| N |   |   |   |   |   |   |   |   |   |   |   | Ζ |   |   |   |   |
| Т |   |   |   |   |   |   |   |   |   |   |   |   | Т |   |   |   |
| 0 |   |   |   |   |   |   |   |   |   |   |   |   |   | 0 |   |   |
| С |   |   |   |   |   |   |   |   | С |   |   |   |   |   | С |   |
| K |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   | K |

Deletion

NEALDEGRASSETYSON

VS.

NEALTYSON

|   | Ν | Ε | Α | L | D | Ε | G | R | Α | S | S | Ε | Т | Υ | S | 0 | N |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Ν | N |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   | N |
| Ε |   | Ε |   |   |   | Ε |   |   |   |   |   | Ε |   |   |   |   |   |
| Α |   |   | Α |   |   |   |   |   | Α |   |   |   |   |   |   |   |   |
| L |   |   |   | L |   |   |   |   |   |   |   |   |   |   |   |   |   |
| Т |   |   |   |   |   |   |   |   |   |   |   |   | Т |   |   |   |   |
| Υ |   |   |   |   |   |   |   |   |   |   |   |   |   | Υ |   |   |   |
| S |   |   |   |   |   |   |   |   |   | S | S |   |   |   | S |   |   |
| 0 |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   | 0 |   |
| N | N |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   | N |

#### INSERTION/DELETION

|   | N | Ε | Α | L    | D | Ε | G | R | Α | S | S | Ε | Т | Υ | S | 0 | N |
|---|---|---|---|------|---|---|---|---|---|---|---|---|---|---|---|---|---|
| N | N |   |   |      |   |   |   |   |   |   |   |   |   |   |   |   | N |
| Ε |   | Ε |   |      |   | Ε |   |   |   |   |   | Ε |   |   |   |   |   |
| Α |   |   | Α |      |   |   |   |   | Α |   |   |   |   |   |   |   |   |
| L |   |   |   | لـــ |   |   |   |   |   |   |   |   |   |   |   |   |   |
| Т |   |   |   |      |   |   |   |   |   |   |   |   | ۲ |   |   |   |   |
| Υ |   |   |   |      |   |   |   |   |   |   |   |   |   | Υ |   |   |   |
| S |   |   |   |      |   |   |   |   |   | S | S |   |   |   | S |   |   |
| 0 |   |   |   |      |   |   |   |   |   |   |   |   |   |   |   | 0 |   |
| N | N |   |   |      |   |   |   |   |   |   |   |   |   |   |   |   | N |

**Inversion** 

NEALDEGRASSETYSON

#### **INVERSION**

|   | N | Ε | Α | L | D | Ε | G | R | Α | S | S | Е | Т | Υ | S | 0 | N |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| N | N |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   | N |
| Ε |   | Ε |   |   |   | Ε |   |   |   |   |   | Е |   |   |   |   |   |
| Α |   |   | Α |   |   |   |   |   | Α |   |   |   |   |   |   |   |   |
| L |   |   |   | L |   |   |   |   |   |   |   |   |   |   |   |   |   |
| Ε |   | Ε |   |   |   | Ε |   |   |   |   |   | Ε |   |   |   |   |   |
| S |   |   |   |   |   |   |   |   |   | S | S |   |   |   | S |   |   |
| S |   |   |   |   |   |   |   |   |   | S | S |   |   |   | S |   |   |
| Α |   |   | Α |   |   |   |   |   | Α |   |   |   |   |   |   |   |   |
| R |   |   |   |   |   |   |   | R |   |   |   |   |   |   |   |   |   |
| G |   |   |   |   |   |   | G |   |   |   |   |   |   |   |   |   |   |
| Ε |   | Ε |   |   |   | Ε |   |   |   |   |   | Ε |   |   |   |   |   |
| D |   |   |   |   | D |   |   |   |   |   |   |   |   |   |   |   |   |
| Т |   |   |   |   |   |   |   |   |   |   |   |   | Т |   |   |   |   |
| Υ |   |   |   |   |   |   |   |   |   |   |   |   |   | Υ |   |   |   |
| S |   |   |   |   |   |   |   |   |   | S | S |   |   |   | S |   |   |
| 0 |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   | 0 |   |
| Ν | N |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   | N |

### Practical Example



Two substrains of E. coli showing various patterns of genome evolution.

Can be used for whole genomes or genes

(Provided by SynMap software: https://genomevolution.org/ CoGe/SynMap.pl)

# How is a dotplot relevant to sequence alignment?

- A dotplot explains the main algorithm for comparing sequences
- By constructing a plot and always moving from the upper left to the lower right, a score can be built for every path
- The path with the best score is the best alignment

## Scoring sequence similarity

- A simple scheme
  - +1 for a match
  - -1 for a mismatch

```
+ 4
- 1
Total Score: 3
```

## Scoring based on Biology

- Nucleotides are not mutated randomly
- Transition mutations are more common
  - Purine (A/G) to purine (A/G)
  - Pyrimidine (C/T) to pyrimidine (C/T)
- Transversion mutations are less common
- Can build a scoring scheme to reflect this:
  - Residue is the same = +1
  - Residue undergoes transition = 0
  - Residue undergoes transversion = -1

## Scoring Based on Biology

- Amino Acids are not mutated at random either
- Those of similar physicochemical types are more likely to replace each other
- Instead of guessing what these rates might be, can measure empirically

## Scoring Based on Biology

- Margaret Dayhoff (1978)
  - Collected statistics on protein substitution frequencies
  - Built the first set of protein substitution matrices
  - Point accepted mutation (PAM) matrices
  - PAM1



### PAM1

|       |   | Ala  | Arg  | Asn  | Asp  | Cys            | Gln  | Glu  | Gly  | His  | Ile  | Leu  | Lys  | Met  | Phe  | Pro  | Ser  | Thr  | Trp  | Tyr  | Val  |
|-------|---|------|------|------|------|----------------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|
|       |   | A    | R    | N    | D    | <sup>2</sup> c | Q    | E    | Ğ    | H    | I    | L    | K    | М    | F    | P    | S    | T    | w    | Y    | v    |
| Ala A | Α | 9867 | 2    | 9    | 10   | 3              | 8    | 17   | 21   | 2    | 6    | 4    | 2    | 6    | 2    | 22   | 35   | 32   | 0    | 2    | 18   |
| Arg 1 |   | 1    | 9913 | 1    | 0    | 1              | 10   | 0    | 0    | 10   | 3    | 1    | 19   | 4    | 1    | 4    | 6    | 1    | 8    | 0    | 1    |
| Asn 1 |   | 4    | 1    | 9822 | 36   | 0              | 4    | 6    | 6    | 21   | 3    | 1    | 13   | 0    | 1    | 2    | 20   | 9    | 1    | 4    | 1    |
| Asp 1 | D | 6    | 0    | 42   | 9859 | 0              | 6    | 53   | 6    | 4    | 1    | 0    | 3    | 0    | 0    | 1    | 5    | 3    | 0    | 0    | 1    |
| Cys   |   | 1    | 1    | 0    | 0    | 9973           | 0    | 0    | 0    | 1    | 1    | 0    | 0    | 0    | 0    | 1    | 5    | 1    | 0    | 3    | 2    |
| Gln ( |   | 3    | 9    | 4    | 5    | 0              | 9876 | 27   | 1    | 23   | 1    | 3    | 6    | 4    | 0    | 6    | 2    | 2    | 0    | 0    | 1    |
| Glu 1 | B | 10   | 0    | 7    | 56   | 0              | 35   | 9865 | 4    | 2    | 3    | 1    | 4    | 1    | 0    | 3    | 4    | 2    | 0    | 1    | 2    |
| Gly ( | G | 21   | 1    | 12   | 11   | 1              | 3    | 7    | 9935 | 1    | 0    | 1    | 2    | 1    | 1    | 3    | 21   | 3    | 0    | 0    | 5    |
| His 1 | H | 1    | 8    | 18   | 3    | 1              | 20   | 1    | 0    | 9912 | 0    | 1    | 1    | 0    | 2    | 3    | 1    | 1    | 1    | 4    | 1    |
| Ile : | Ι | 2    | 2    | 3    | 1    | 2              | 1    | 2    | 0    | 0    | 9872 | 9    | 2    | 12   | 7    | 0    | 1    | 7    | 0    | 1    | 33   |
| Leu l | L | 3    | 1    | 3    | 0    | 0              | 6    | 1    | 1    | 4    | 22   | 9947 | 2    | 45   | 13   | 3    | 1    | 3    | 4    | 2    | 15   |
| Lys 1 | K | 2    | 37   | 25   | 6    | 0              | 12   | 7    | 2    | 2    | 4    | 1    | 9926 | 20   | 0    | 3    | 8    | 11   | 0    | 1    | 1    |
| Met 1 |   | 1    | 1    | 0    | 0    | 0              | 2    | 0    | 0    | 0    | 5    | 8    | 4    | 9874 | 1    | 0    | 1    | 2    | 0    | 0    | 4    |
| Phe 1 | F | 1    | 1    | 1    | 0    | 0              | 0    | 0    | 1    | 2    | 8    | 6    | 0    | 4    | 9946 | 0    | 2    | 1    | 3    | 28   | 0    |
| Pro 1 | P | 13   | 5    | 2    | 1    | 1              | 8    | 3    | 2    | 5    | 1    | 2    | 2    | 1    | 1    | 9926 | 12   | 4    | 0    | 0    | 2    |
| Ser S | S | 28   | 11   | 34   | 7    | 11             | 4    | 6    | 16   | 2    | 2    | 1    | 7    | 4    | 3    | 17   | 9840 | 38   | 5    | 2    | 2    |
| Thr ! | T | 22   | 2    | 13   | 4    | 1              | 3    | 2    | 2    | 1    | 11   | 2    | 8    | 6    | 1    | 5    | 32   | 9871 | 0    | 2    | 9    |
| Trp V | W | 0    | 2    | 0    | 0    | 0              | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 1    | 0    | 1    | 0    | 9976 | 1    | 0    |
| Tyr Y |   | 1    | 0    | 3    | 0    | 3              | 0    | 1    | 0    | 4    | 1    | 1    | 0    | 0    | 21   | 0    | 1    | 1    | 2    | 9945 | 1    |
| Val V |   | 13   | 2    | 1    | 1    | 3              | 2    | 2    | 3    | 3    | 57   | 11   | 1    | 17   | 1    | 3    | 2    | 10   | 0    | 2    | 9901 |

## Scoring Based on Biology

- PAM1 only works well for 1% substitutions
- The substitutions compound over time and become more likely...
- PAM30, PAM70
- PAMn
  - N = the number of mutations per 100 amino acids

#### **PAM70**

```
# Entries for the PAM70 matrix at a scale of ln(2)/2.0.
    Α
        R
                                                     K
                                                         М
                                                        -3
                                                                                   -5
                                                                              -9
                                                                          -4
                                                                                            -4
                                                        -5
                                                                 -3
                                                                                   -3
                                                                                       -5
                                                     0
                                                                           0
                                                                                             5
                                           -5
                                                           -10
                                                                                             5
        -6
                                                                 -4
                              -9
                                                                          -5
       -5
                -9
                                  -6
                                      -5
                                              -10
                                                    -9
                                                        -9
                                                                                   -2
                                                                                            -8
                                                                 -5
                                           -4
                                                                          -3
        0
                                  -4
                                           -5
                                                                                   -8
       -5
                                  -2
                                                                          -3
                                                                 -3
                                                                                   -6
                                                                                                -5
   -1
                                           -4
                                                                                       -4
        -6
                         -4
                                   6
                                      -6
                                           -6
                                                    -5
                                                        -6
                                                                 -3
                                                                          -3
                                                                                   -9
                          2
                                  -6
                                                    -3
                                                        -6
                                                                 -2
                                                                                             0
         0
                         -5
                                  -6
                                                    -4
                                                                 -5
                                                              0
                                                                      -4
                                                                                            -4
                    -10
                                  -7
                -8
                         -3
                                                    -5
                                                         2
                                                                 -5
                                                                      -6
                                                                          -4
                                                                               -4
                                                                                            -6
         2
                                  -5
                                           -4
                                               -5
                                                     6
                                                         0
                                                             -9
                                                                              -7
                                                                                   -7
                                                                                                -5
             0
                                                                 -4
                                                                          -1
                                                                                       -6
                                                                                            -1
       -2
                                  -6
                                                2
                                                     0
                                                        10
                                                                 -5
                                                                     -3
                                                                          -2
                                                                              -8
                                                                                   -7
                                                                                            -6
                                               -1
                                                    -9
                                                        -2
                                                                 -7
       -7
            -6
                              -9
                                  -7
                                            0
                                                                          -6
                                                                              -2
                                                                                       -5
                         -9
                                                                      -4
               -10
                                       -4
                                                                                            -7
                                                                                                -1
                                                                                                     -9
       -2
                                           -5
                                               -5
                                                    -4
                                                        -5
                                                                          -2
                                                                              -9
                                                                                   -9
                                                                                       -3
                                                                                                -5
                                                                                            -4
                                      -3
                                               -6
                                                                       5
                                                                           2
                                                                              -3
                                                                                   -5
                                                                                       -3
                                                                                                -5
                                   0
                                           -4
                                                                  0
                                                                                             0
S
                                                        -2
                                                             -6
                                                                 -2
                                                                           6
                                                                              -8
                                                                                   -4
   -9
                                      -5
                                                        -8
                                                             -2
                                                                 -9
                                                                     -3
                                                                          -8
                                                                              13
                                                                                   -3
                                                                                      -10
                                           -9
                                                                 -9
                                                                     -5
                                                                              -3
                                                                                       -5
                                  -9
                                                              4
                                                                          -4
                                                                                    9
                                           -4
                                               -4
                                            3
                                                    -6
                                                                 -3
                                                                     -3
                                                                          -1
                                                                                   -5
                                                                                            -5
                                                             -7
                                               -6
                                                    -1
                                                        -6
                                                                       0
                                                                                       -5
                                                                                             5
                                                                                                -5
                                           -4
                                                                 -4
                              -5
                                  -7
                                                    -5
                                                         2
                                                                 -5
                                                                     -5
                                                                                            -5
                                                        -3
                                                                     -2
                                                             -9
                                                                 -2
                                                                          -3
```

### PAM70

|              | A R | . N | <b>J</b> [ | ) ( | . ( | Q E | <u> </u> | G H | 1 I | l   | _   | ( [ | M F | : [ | 9   | 5 T | ٠ ، | N Y | <i>(</i> \ | / E | } J | Z   | . X | ( ; | *   |
|--------------|-----|-----|------------|-----|-----|-----|----------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|------------|-----|-----|-----|-----|-----|-----|
| A            | 5   | -4  | -2         | -1  | -4  | -2  | -1       | 0   | -4  | -2  | -4  | -4  | -3  | -6  | 0   | 1   | 1   | -9  | -5         | -1  | -1  | -3  | -1  | -1  | -11 |
| R            | -4  | 8   | -3         | -6  | -5  | 0   | -5       | -6  | 0   | -3  | -6  | 2   | -2  | -7  | -2  | -1  | -4  | 0   | -7         | -5  | -4  | -5  | -2  | -1  | -11 |
| N            | -2  | -3  | 6          | 3   | -7  | -1  | 0        | -1  | 1   | -3  | -5  | 0   | -5  | -6  | -3  | 1   | 0   | -6  | -3         | -5  | 5   | -4  | -1  | -1  | -11 |
| D            | -1  | -6  | 3          | 6   | -9  | 0   | 3        | -1  | -1  | -5  | -8  | -2  | -7  | -10 | -4  | -1  | -2  | -10 | -7         | -5  | 5   | -7  | 2   | -1  | -11 |
| С            | -4  | -5  | -7         | -9  | 9   | -9  | -9       | -6  | -5  | -4  | -10 | -9  | -9  | -8  | -5  | -1  | -5  | -11 | -2         | -4  | -8  | -7  | -9  | -1  | -11 |
| Q            | -2  | 0   | -1         | 0   | -9  | 7   | 2        | -4  | 2   | -5  | -3  | -1  | -2  | -9  | -1  | -3  | -3  | -8  | -8         | -4  | -1  | -3  | 5   | -1  | -11 |
| E            | -1  | -5  | 0          | 3   | -9  | 2   | 6        | -2  | -2  | -4  | -6  | -2  | -4  | -9  | -3  | -2  | -3  | -11 | -6         | -4  | 2   | -5  | 5   | -1  | -11 |
| G            | 0   | -6  | -1         | -1  | -6  | -4  | -2       | 6   | -6  | -6  | -7  | -5  | -6  | -7  | -3  | 0   | -3  | -10 | -9         | -3  | -1  | -7  | -3  | -1  | -11 |
| H            | -4  | 0   | 1          | -1  | -5  | 2   | -2       | -6  | 8   | -6  | -4  | -3  | -6  | -4  | -2  | -3  | -4  | -5  | -1         | -4  | 0   | -4  | 1   | -1  | -11 |
| I            | -2  | -3  | -3         | -5  | -4  | -5  | -4       | -6  | -6  | 7   | 1   | -4  | 1   | 0   | -5  | -4  | -1  | -9  | -4         | 3   | -4  | 4   | -4  | -1  | -11 |
| L            | -4  | -6  | -5         | -8  | -10 | -3  | -6       | -7  | -4  | 1   | 6   | -5  | 2   | -1  | -5  | -6  | -4  | -4  | -4         | 0   | -6  | 5   | -4  | -1  | -11 |
| K            | -4  | 2   | 0          | -2  | -9  | -1  | -2       | -5  | -3  | -4  | -5  | 6   | 0   | -9  | -4  | -2  | -1  | -7  | -7         | -6  | -1  | -5  | -2  | -1  | -11 |
| M            | -3  | -2  | -5         | -7  | -9  | -2  | -4       | -6  | -6  | 1   | 2   | 0   | 10  | -2  | -5  | -3  | -2  | -8  | -7         | 0   | -6  | 2   | -3  | -1  | -11 |
| F            | -6  | -7  | -6         | -10 | -8  | -9  | -9       | -7  | -4  | 0   | -1  | -9  | -2  | 8   | -7  | -4  | -6  | -2  | 4          | -5  | -7  | -1  | -9  | -1  | -11 |
| P            | 0   | -2  | -3         | -4  | -5  | -1  | -3       | -3  | -2  | -5  | -5  | -4  | -5  | -7  | 7   | 0   | -2  | -9  | -9         | -3  | -4  | -5  | -2  | -1  | -11 |
| S            | 1   | -1  | 1          | -1  | -1  | -3  | -2       | 0   | -3  | -4  | -6  | -2  | -3  | -4  | 0   | 5   | 2   | -3  | -5         | -3  | 0   | -5  | -2  | -1  | -11 |
| T            | 1   | -4  | 0          | -2  | -5  | -3  | -3       | -3  | -4  | -1  | -4  | -1  | -2  | -6  | -2  | 2   | 6   | -8  | -4         | -1  | -1  | -3  | -3  | -1  | -11 |
| W            | -9  | 0   | -6         | -10 | -11 | -8  | -11      | -10 | -5  | -9  | -4  | -7  | -8  | -2  | -9  | -3  | -8  | 13  | -3         | -10 | -7  | -5  | -10 | -1  | -11 |
| Y            | -5  | -7  | -3         | -7  | -2  | -8  | -6       | -9  | -1  | -4  | -4  | -7  | -7  | 4   | -9  | -5  | -4  | -3  | 9          | -5  | -4  | -4  | -7  | -1  | -11 |
| V            | -1  | -5  | -5         | -5  | -4  | -4  | -4       | -3  | -4  | 3   | 0   | -6  | 0   | -5  | -3  | -3  | -1  | -10 | -5         | 6   | -5  | 1   | -4  | -1  | -11 |
| В            | -1  | -4  | 5          | 5   | -8  | -1  | 2        | -1  | 0   | -4  | -6  | -1  | -6  | -7  | -4  | 0   | -1  | -7  | -4         | -5  | 5   | -5  | 1   | -1  | -11 |
| J            | -3  | -5  | -4         | -7  | -7  | -3  | -5       | -7  | -4  | 4   | 5   | -5  | 2   | -1  | -5  | -5  | -3  | -5  | -4         | 1   | -5  | 5   | -4  | -1  | -11 |
| $\mathbf{Z}$ | -1  | -2  | -1         | 2   | -9  | 5   | 5        | -3  | 1   | -4  | -4  | -2  | -3  | -9  | -2  | -2  | -3  | -10 | -7         | -4  | 1   | -4  | 5   | -1  | -11 |
| X            | -1  | -1  | -1         | -1  | -1  | -1  | -1       | -1  | -1  | -1  | -1  | -1  | -1  | -1  | -1  | -1  | -1  | -1  | -1         | -1  | -1  | -1  | -1  | -1  | -11 |
| *            | -11 | -11 | -11        | -11 | -11 | -11 | -11      | -11 | -11 | -11 | -11 | -11 | -11 | -11 | -11 | -11 | -11 | -11 | -11        | -11 | -11 | -11 | -11 | -11 | 1   |

#### **BLOSUM**

- BLOSUM (BLOck SUbstitution Matrix) -Henikoff and Henikoff
- A new substitution matrix, preferred today
- Much better for more divergent species (constructed using divergent species alignments)
- BLOSUM62 is the matrix used by default in most recent alignment applications such as BLAST.

### BLOSUM62

|   | A R | N  | D  | C  | : 0 | E  | G  | Н  | 1  | L  | K  | Ν  | 1 F | Р  | S  | Т  | ٧  | / Y | V  | В  | Z  | Х  | *  |    |
|---|-----|----|----|----|-----|----|----|----|----|----|----|----|-----|----|----|----|----|-----|----|----|----|----|----|----|
| A | 4   | -1 | -2 | -2 | 0   | -1 | -1 | 0  | -2 | -1 | -1 | -1 | -1  | -2 | -1 | 1  | 0  | -3  | -2 | 0  | -2 | -1 | 0  | -4 |
| R | -1  | 5  | 0  | -2 | -3  | 1  | 0  | -2 | 0  | -3 | -2 | 2  | -1  | -3 | -2 | -1 | -1 | -3  | -2 | -3 | -1 | 0  | -1 | -4 |
| N | -2  | 0  | 6  | 1  | -3  | 0  | 0  | 0  | 1  | -3 | -3 | 0  | -2  | -3 | -2 | 1  | 0  | -4  | -2 | -3 | 3  | 0  | -1 | -4 |
| D | -2  | -2 | 1  | 6  | -3  | 0  | 2  | -1 | -1 | -3 | -4 | -1 | -3  | -3 | -1 | 0  | -1 | -4  | -3 | -3 | 4  | 1  | -1 | -4 |
| С | 0   | -3 | -3 | -3 | 9   | -3 | -4 | -3 | -3 | -1 | -1 | -3 | -1  | -2 | -3 | -1 | -1 | -2  | -2 | -1 | -3 | -3 | -2 | -4 |
| Q | -1  | 1  | 0  | 0  | -3  | 5  | 2  | -2 | 0  | -3 | -2 | 1  | 0   | -3 | -1 | 0  | -1 | -2  | -1 | -2 | 0  | 3  | -1 | -4 |
| E | -1  | 0  | 0  | 2  | -4  | 2  | 5  | -2 | 0  | -3 | -3 | 1  | -2  | -3 | -1 | 0  | -1 | -3  | -2 | -2 | 1  | 4  | -1 | -4 |
| G | 0   | -2 | 0  | -1 | -3  | -2 | -2 | 6  | -2 | -4 | -4 | -2 | -3  | -3 | -2 | 0  | -2 | -2  | -3 | -3 | -1 | -2 | -1 | -4 |
| H | -2  | 0  | 1  | -1 | -3  | 0  | 0  | -2 | 8  | -3 | -3 | -1 | -2  | -1 | -2 | -1 | -2 | -2  | 2  | -3 | 0  | 0  | -1 | -4 |
| I | -1  | -3 | -3 | -3 | -1  | -3 | -3 | -4 | -3 | 4  | 2  | -3 | 1   | 0  | -3 | -2 | -1 | -3  | -1 | 3  | -3 | -3 | -1 | -4 |
| L | -1  | -2 | -3 | -4 | -1  | -2 | -3 | -4 | -3 | 2  | 4  | -2 | 2   | 0  | -3 | -2 | -1 | -2  | -1 | 1  | -4 | -3 | -1 | -4 |
| K | -1  | 2  | 0  | -1 | -3  | 1  | 1  | -2 | -1 | -3 | -2 | 5  | -1  | -3 | -1 | 0  | -1 | -3  | -2 | -2 | 0  | 1  | -1 | -4 |
| M | -1  | -1 | -2 | -3 | -1  | 0  | -2 | -3 | -2 | 1  | 2  | -1 | 5   | 0  | -2 | -1 | -1 | -1  | -1 | 1  | -3 | -1 | -1 | -4 |
| F | -2  | -3 | -3 | -3 | -2  | -3 | -3 | -3 | -1 | 0  | 0  | -3 | 0   | 6  | -4 | -2 | -2 | 1   | 3  | -1 | -3 | -3 | -1 | -4 |
| P | -1  | -2 | -2 | -1 | -3  | -1 | -1 | -2 | -2 | -3 | -3 | -1 | -2  | -4 | 7  | -1 | -1 | -4  | -3 | -2 | -2 | -1 | -2 | -4 |
| S | 1   | -1 | 1  | 0  | -1  | 0  | 0  | 0  | -1 | -2 | -2 | 0  | -1  | -2 | -1 | 4  | 1  | -3  | -2 | -2 | 0  | 0  | 0  | -4 |
| T | 0   | -1 | 0  | -1 | -1  | -1 | -1 | -2 | -2 | -1 | -1 | -1 | -1  | -2 | -1 | 1  | 5  | -2  | -2 | 0  | -1 | -1 | 0  | -4 |
| W | -3  | -3 | -4 | -4 | -2  | -2 | -3 | -2 | -2 | -3 | -2 | -3 | -1  | 1  | -4 | -3 | -2 | 11  | 2  | -3 | -4 | -3 | -2 | -4 |
| Y | -2  | -2 | -2 | -3 | -2  | -1 | -2 | -3 | 2  | -1 | -1 | -2 | -1  | 3  | -3 | -2 | -2 | 2   | 7  | -1 | -3 | -2 | -1 | -4 |
| V | 0   | -3 | -3 | -3 | -1  | -2 | -2 | -3 | -3 | 3  | 1  | -2 | 1   | -1 | -2 | -2 | 0  | -3  | -1 | 4  | -3 | -2 | -1 | -4 |
| В | -2  | -1 | 3  | 4  | -3  | 0  | 1  | -1 | 0  | -3 | -4 | 0  | -3  | -3 | -2 | 0  | -1 | -4  | -3 | -3 | 4  | 1  | -1 | -4 |
| Z | -1  | 0  | 0  | 1  | -3  | 3  | 4  | -2 | 0  | -3 | -3 | 1  | -1  | -3 | -1 | 0  | -1 | -3  | -2 | -2 | 1  | 4  | -1 | -4 |
| Х | 0   | -1 | -1 | -1 | -2  | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1  | -1 | -2 | 0  | 0  | -2  | -1 | -1 | -1 | -1 | -1 | -4 |
| * | -4  | -4 | -4 | -4 | -4  | -4 | -4 | -4 | -4 | -4 | -4 | -4 | -4  | -4 | -4 | -4 | -4 | -4  | -4 | -4 | -4 | -4 | -4 | 1  |

## Scoring Gaps

- What about gaps?
- Usually, a gap opening is more of a penalty than a gap extension
- Why? A single mutational even may insert more than one base.

- Commonly used is the affine gap penalty:
  - Gap opening penalty of 11
  - Gap extension penalty of 1 for each additional residue

### Scoring Wrap Up

- Now we have good a way to score a particular alignment
  - 1. Score substitutions appropriately reflecting biology
  - 2. Score gaps appropriately reflecting biology
- But how to generate all the possible alignments?

### Needleman and Wunsch

- Dynamic programming algorithm - method by which a larger problem may be solved by first solving smaller, partial versions of the problem
- Basically uses the dotplot concept, traces all paths, and looks for best scoring path
- Needleman and Wunsch
  - Guaranteed to find the optimal global alignment
  - Many alignments may give the same score
  - Extremely computationally intensive and slow



Global alignment:

$$A A G C$$
 $A - G C$ 

### Global vs Local

- Needleman Wunsch is a global alignment algorithm
- Requires the entirety of both sequences to be examined and scored
- Local alignment became an obvious next needed step
  - Some proteins only share regions of homology
  - Comparing a short sequence (gene) to a very large sequence (genome)

```
Global FTFTALILLAVAV
F--TAL-LLA-AV

Local FTFTALILL-AVAV
--FTAL-LLAAV--
```

### Smith and Waterman

1981

- Proposed a variation of Needleman and Wunsch to create local alignments
- Arbitrary-length segments of each sequence can be aligned
- No penalty for the unaligned portions of the sequences at the ends
- Still fairly time consuming



## Approximate Methods

- Need more speed!
- Approximate methods have been developed that are
  - Great at detecting close relationships
  - Inferior to exact methods for picking up distant relationships
  - Approximate! (IE no guarantee that the optimal match is found)
- Start with "words"
  - Called k-tuples
  - Use these words to quickly find perfect matches
  - Then use the more slow dotplot methods to grow the matches
- BLAST works this way

<u>Heuristic</u> – any that employs a practical methodology not guaranteed to be optimal or perfect, but sufficient for the immediate goals

#### **BLAST**

- Basic Local Alignment Search Tool
- Altschul, et al 1990
- Has been cited over 61,000 times
- The most highly cited scientfic paper in the entire decade of the 1990s

J. Mol. Biol. (1990) 215, 403-410

#### Basic Local Alignment Search Tool

Stephen F. Altschul<sup>1</sup>, Warren Gish<sup>1</sup>, Webb Miller<sup>2</sup> Eugene W. Myers<sup>3</sup> and David J. Lipman<sup>1</sup>

#### **BLAST**

- Compares a QUERY sequence to a DATABASE of sequences (also called SUBJECT sequences)
- nucleotide or protein sequences
- Calculates statistical significance
- Available as an online web server, for example, at NCBI (<a href="http://blast.ncbi.nlm.nih.gov/Blast.cgi">http://blast.ncbi.nlm.nih.gov/Blast.cgi</a>)

#### **Web BLAST**







## **BLAST** programs

| Program | Query                                  | Database                               |
|---------|----------------------------------------|----------------------------------------|
| blastp  | protein                                | protein                                |
| blastn  | nucleotide                             | nucleotide                             |
| blastx  | nucleotide<br>translated to<br>protein | protein                                |
| tblastn | protein                                | nucleotide<br>translated to<br>protein |
| tblastx | nucleotide<br>translated to<br>protein | nucleotide<br>translated to<br>protein |

Why would we want to use translated nucleotides?

#### **BLAST**

 Also available as a command line tool (guess which one we'll be using???)



From
Lesk
"Introduction to
Bioinformatics"
3<sup>rd</sup> Edition

#### **BLAST**

High-scoring segment pairs (HSP)

 A query and a match sequence can have more than one HSP





## Significance of Alignments

- Now we can find the best scoring alignment (or at least approximately if using BLAST)
- But is it significant in the statistical sense?
  - What is the likelihood that you are observing true biological similarity (evolution) vs random chance?
- <u>E (expect) value</u> = the number of hits one can "expect" to see by chance when searching a database of a particular size
- Takes into account the size of the database but not the number of queries (beware of multiple testing!)
- Lower = more biologically meaningful

## E values

| E Value | How many random alignments just as good? |
|---------|------------------------------------------|
| 1       | 1 in 1                                   |
| .2      | 1 in 5                                   |
| 1e-5    | 1 in 100,000                             |
| 1e-9    | 1 in 1,000,000,000                       |
| 0       | 0%                                       |

### Review

- Dotplots
- Scoring alignments
- Needleman and Wunsch
- Smith and Waterman
- BLAST
- E values