Lezione 28-11 Def: Se bea definiano

b

(x).dx = -) fix).dx e anche

Cicx)=2x=f. G é un'alta prinitiva. Se esiste una primitiva ne esistono infinite. O Diniti de la	
Je esiste una primitiva ne esistono infinite.	
Oss: Due primitive de una femzione of differiscono	
sempre per una costante additiva.	
din: Se Fe G sono primitive d'l, allera F= f, G= f	
(F-G)=F-G=g=0	
Fe a som continue e definte su un intervallo, allora	
F-G è una costànte, cio è F-G+K KelR	

Def: L'insieur d'Ente le primiti	ve d'una funzione f	
si dice intégrale indéfinité di f	e s. india con	
J Cx)·dx		
senza estremi di integratione		
None una funcione singula, bonsi	una Pamiata La Suntioni	
Sfcn.dx = {F: F'=}		
Es: \(\frac{2}{2} \times dx = \left\{ \times^2 \tau k : \left\{ \text{R}}\right\}		

$\int \cos x \cdot dx = \sin x + k$	
$\int_{Sin \times dx} z - \omega_{S} x + k$	
$\int \frac{1}{1+x^2} \cdot dx = \arctan x + k$	
$\int \frac{1}{x} \cdot dx = \log x + x $	
In fath se x > 0 d log x > 1	
Se $\times e_0 \Rightarrow \frac{d}{dx} _{oy} _{\times} _{= -1} _{oq} (-x) = \frac{1}{x}$	
$\mathcal{A}_{\mathcal{X}}$ $\mathcal{A}_{\mathcal{X}}$ $\mathcal{A}_{\mathcal{X}}$ $\mathcal{A}_{\mathcal{X}}$ $\mathcal{A}_{\mathcal{X}}$ $\mathcal{A}_{\mathcal{X}}$	

Fisso Xo E I arbitrario e co	alcolo il rapporto incrementale
olitinx:	-Cx) Fcxs)
F(x)-F(x) 1 / (
$X-X_{o}$ $X-X_{o}$ X_{o}	2(L). dt - \ g(t). dt - =
= - () g(t), Jt +) g(t	1 × 2/2 = - (2/2). dE
X-X3 () fler 3 () fle	$\frac{1}{x-x} = \frac{1}{x-x} \int \beta(t) dt$
	Media integrale di g sull'intervallo
	de estremi Xo ex.

Cicx)= \left\left\left\tau\tau\tau\tau\tau\tau\tau\tau\tau\ta
β
$\int_{\alpha} g(t) \cdot dt = G(\beta) - G(\alpha) = [G(\alpha)]_{\alpha}^{\beta}$
α
ΝΙ (
Notazione I aux J = a(B) - a(a)
Es: Sx.dx. Una primitiva di fassex e
$C(x) = \frac{x^2}{2}$
$\frac{1}{2}$

Allora Ge derivabile e $G(x) = g(\beta(x)) \cdot \beta'(x) - g(\alpha(x)) \cdot \alpha'(x)$ Caso particulare: BCX)=X, QCX)= Q costante $G(x) = g(x) \cdot 1 - g(x) \cdot O = g(x)$

Esemplo: Gcx) = le enctan C. d	
Psa sisi Can (bal (a)	
L) Emp. G. (CX) = E. exician C. o	
X ²	
	Pariamo
Calcolore Cicx	g(t)=ebarotant
	$\beta(x) = \sin x$
	$d(x) = X^2$
C(cx) = P(B(x)).B'(x)-P(d(x)). d'(x)=	
= esinx arctan (sinx)·cosx-exarc	
= E . arcian is. h x 1. cos x - E . arc	tun(X)2X

Fg=Sf-g-dx+SFg!.dx		
$\Rightarrow \int_{g} g \cdot dx = F \cdot g - \int_{g} F g \cdot dx$		
	JCX= sin x, qcx)=x	
Es: Sx.sinx.dx		
	Fcx1=-cosx g'cx)=1	
F.g. SF-g'. 6x		
$= - \times \cdot \cos \times - \left(-\cos \times \cdot \cdot \cdot \cdot \cdot \cdot \cdot \times = - \times \cdot \cos x \right)$	x + (6)x.dx =	
-X·Cosx+sinx+k		

