Quiz2 -- Linear Regression and Classification Trees

Due Oct 14 at 11:59pm

Points 50

Questions 24

Available Oct 2 at 11:59pm - Oct 31 at 11:59pm

Time Limit None

Allowed Attempts Unlimited

Instructions

Dear students,

Answer all questions. You can consult other students. You can take your time until the due date. You have unlimited attempts.

All questions in this quiz are open book. You may work or discuss in groups.

Cheers,

:)

Jagan

This quiz was locked Oct 31 at 11:59pm.

Attempt History

	Attempt	Time	Score
KEPT	Attempt 42	9 minutes	50 out of 50
LATEST	Attempt 42	9 minutes	50 out of 50
	Attempt 41	250 minutes	40 out of 50 *
	Attempt 40	less than 1 minute	2 out of 50 *
	Attempt 39	3 minutes	2 out of 50 *
	Attempt 38	3 minutes	0 out of 50 *
	Attempt 37	less than 1 minute	2 out of 50 *
	Attempt 36	less than 1 minute	0 out of 50 *
	Attempt 35	less than 1 minute	0 out of 50 *

Attempt	Time	Score
Attempt 34	less than 1 minute	0 out of 50 *
Attempt 33	less than 1 minute	0 out of 50 *
Attempt 32	less than 1 minute	0 out of 50 *
Attempt 31	less than 1 minute	0 out of 50 *
Attempt 30	less than 1 minute	0 out of 50 *
Attempt 29	less than 1 minute	0 out of 50 *
Attempt 28	less than 1 minute	0 out of 50 *
Attempt 27	less than 1 minute	0 out of 50 *
Attempt 26	less than 1 minute	0 out of 50 *
Attempt 25	less than 1 minute	0 out of 50 *
Attempt 24	less than 1 minute	0 out of 50 *
Attempt 23	less than 1 minute	0 out of 50 *
Attempt 22	less than 1 minute	0 out of 50 *
Attempt 21	less than 1 minute	0 out of 50 *
Attempt 20	less than 1 minute	0 out of 50 *
Attempt 19	less than 1 minute	0 out of 50 *
Attempt 18	less than 1 minute	0 out of 50 *
Attempt 17	less than 1 minute	0 out of 50 *
Attempt 16	less than 1 minute	0 out of 50 *
Attempt 15	less than 1 minute	0 out of 50 *
Attempt 14	less than 1 minute	0 out of 50 *
Attempt 13	less than 1 minute	0 out of 50 *
Attempt 12	less than 1 minute	0 out of 50 *
Attempt 11	less than 1 minute	0 out of 50 *
Attempt 10	less than 1 minute	0 out of 50 *
Attempt 9	1 minute	5 out of 50 *
Attempt 8	less than 1 minute	4 out of 50 *
Attempt 7	less than 1 minute	3 out of 50 *

Attempt	Time	Score
Attempt 6	less than 1 minute	2 out of 50 *
Attempt 5	less than 1 minute	2 out of 50 *
Attempt 4	less than 1 minute	1 out of 50 *
Attempt 3	1 minute	1 out of 50 *
Attempt 2	5 minutes	1 out of 50 *
Attempt 1	150 minutes	26 out of 50 *

^{*} Some questions not yet graded

Score for this attempt: **50** out of 50

Submitted Oct 7 at 9:48am This attempt took 9 minutes.

	Question 1	1 / 1 pts
	Dimensionality reduction helps to eliminate irrelevant attributes possible noise.	or reduce
Correct!	True	
	False	

	Question 2	1 / 1 pts
	If a branch separates all records into a single class, then the pulow.	rity is very
	○ True	
Correct!	False	

	Question 3	1 / 1 pts
	Bias toward selecting an attribute at a node of the decision tree happen if the attribute has many branches.	may
Correct!	True	
	○ False	
	Question 4	1 / 1 pts
	Jaccard coefficient ignores 00 combinations since it is meant to skewness when 00 combinations are common and irrelevant.	eliminate
Correct!	True	
	○ False	
٠		
	Question 5	1 / 1 pts
	For non-linear relationships, correlations can give correct result	S.
	O True	
Correct!	False	

Question 6 1 / 1 pts

	Higher level aggregations may have more variations than lower level aggregations.		
	O True		
Correct!	False		
	Question 7 1 / 1 pts		
	Linear Regression cannot not be applied on every dataset.		
Correct!	True		
	○ False		
	Question 8 1 / 1 pts		
	Discretized values in a decision tree may be combined into a single branch if order is not preserved.		
	O True		
Correct!	False		
	Question 9 1 / 1 pts		
	XOR function mappings can easily be classified by decision trees.		

	Question 12	2 / 2 pts
	Decision trees use a find the best tree.	approach which often is unable to
Correct!	greedy	
orrect Answei	rs greedy local optima	
,		
	Question 13	2 / 2 pts
	A continuous attribute ra index values is	nge may be split at the point where the GINI
Correct!	least	
orrect Answei	least least lowest smallest small minimum	

2 / 2 pts
of the difference
Y value.

Correct!	predicted	
orrect Answers	predicted estimated	
	Question 15	? pts
	= GINI measure before splitting - GINI measure after splitting.	
Correct!	Gain	
orrect Answers	gain	
_		
	Question 16 2 / 2	? pts
	The process of data before calculating correlations the best way to get good correlations.	is
Correct!	standardizing	
orrect Answers	standardizing	
	Question 17 2 / 2	2 pts
	BoxPlots are centric to median	

Answer 1:

median

Question 18

2 / 2 pts

Standardization transformation is centric to Mean

Answer 1:

Correct!

Mean

Question 19

2 / 2 pts

The Mean of the transformed data after standardization becomes 0:

Answer 1:

Correct!

0

Question 20

2 / 2 pts

The standard deviation of the new transformed data after standardization is 1 :

Answer 1:

Correct!

1

Question 21 2 / 2 pts

	Outliers are values outside the range between Q1 - 1.5 * IQR and this Q3 + 1.5 * IQR :		
	Answer 1:		
Correct!	Q3 + 1.5 * IQR		
	Question 22	2.5 / 2.5 pts	
	Is this statement true? When outliers are importate to change the current minimum and maximum fo	·	
	O False		
Correct!	True		
	Question 23	2.5 / 2.5 pts	
	Is this statement true? When outliers are not sign to change the maximum and minimum by subtra- from minimum and maximum to get the new min	cting outlier end points	
Correct!	True		
	○ False		
		40/40 4	
	Question 24	10 / 10 pts	
	Read this article and provide your summary of th	ne article:	

https://statisticsbyjim.com/regression/interpret-r-squared-regression/

Also discuss your understanding of the equation:

$$R^2 = SSR/SST = 1 - SSE/SST$$

(Note: All of you will get full points for this question for answering. Do bit worry about quality. The purpose is: the paper gives you a new perspective of how to look at things.)

Your Answer:

R-squared is a goodness-of-fit measure for linear regression models, which helps to indicate the percentage of variance in the dependent variable that the independent variables explain collectively. It measures the strength of the relationship between your model and the dependent variable on a 0-100% scale, where 0% represents a model that does not explain any of the variation in the response variable around its mean and 100% represents a model that explains all the variation in the response variable around its mean.

Linear regression identifies the equation that produces the smallest difference between all the observed values and their fitted values, and a regression model fits the data well if the differences between the observations and the predicted values are small and unbiased.

Residual plots can expose a biased model by displaying problematic patterns in the residuals. If your model is biased, you cannot trust the results.

R-squared evaluates the scatter of the data points around the fitted regression line. For the same data set, higher R-squared values represent smaller differences between the observed data and the fitted values.

R-squared is the percentage of the dependent variable variation that a linear model explains.

Usually, the larger the R2, the better the regression model fits your observations.

When a regression model accounts for more of the variance, the data points are closer to the regression line. Please note that r-squared does

not indicate if a regression model provides an adequate fit to your data. A good model can have a low R2 value, and a biased model can have a high R2 value!

Regression models with low R-squared values can be perfectly good models for several reasons as some fields of study have an inherently greater amount of unexplainable variation. In these areas, your R2 values are bound to be lower. For example, studies that try to explain human behavior generally have R2 values less than 50%. People are just harder to predict than things like physical processes.

When the regression line consistently under and over-predicts the data along the curve, there is bias, which generally occurs when your linear model is underspecified. To produce random residuals, try adding terms to the model or fitting a nonlinear model.

A variety of other circumstances can artificially inflate your R2, but to get the full picture, you must consider R2 values in combination with residual plots, other statistics, and in-depth knowledge of the subject area.

*R2 = SSR/SST = 1 - SSE/SST

R-squared equals the sum of squares regression divided by the sum of squares total, which is also equal to the sum of squares error divided by the sum of squares total.

Basically, we are saying that we can determine r-squared by using either the mean of the response variable or the observed data points interchangeably with the sum of squared differences between individual data points and the mean of the response variable.

Quiz Score: 50 out of 50