Budapest University of Technology and Economics Department of Electron Devices

Technology of IT Devices

Lecture 7

Memory (Part 1) RAM memory

Memory

- Overview
- MOS transistor recap and its operation in more detail
- Random Access Memory (RAM)
 - Static RAM
 - Dynamic RAM
- Content Addressable Memory (CAM cells)
- Novel memory architectures
- Examples

Semiconductor memory – basic term

- M × N memory
 - M times N bit wide memory words. M is a power of two,
 N is a multiple of 8.
 - E.g.: 64k × 16 means a capacity of 1Mbit
- (Traditional) Types of Memory
 - ROM vs. RAM, read-only vs. Read/write memory
 - The names are confusing
 - EEPROMs are read/write memory, the information in NVRAM is preserved after the power supply voltage is switched off.
- Better classification:
 - Read-only vs. Read/write
 - Data storing time interval

Semiconductor Memory Classification

Typical Memory Architecture

Typical Memory Architecture

- Storing in a memory matrix
 - A single element of a matric stores one or more bit of information
 - We can activate a row by the **word line**, which is a part of the address generated by the row decoder.
 - The activated cells copy their content to the **bit line**
 - The other part of the address selects a single bit
- The sense amplifier is responsible for signal conditioning
 - It converts the low-level signal to a valid CMOS rail-to-rail signal
 - The transistors in the memory cells are very tiny (with the decrease of the cell size, the capacitance of the memory increases)
 - The input voltage on the sense amplifier is usually lower than 100mV, which has to be amplified

High capacity memory

- If the number of rows is large, they are divided into partitions with hierarchical access
- The user can see banks

Budapest University of Technology and Economics Department of Electron Devices

MOS transistor

in a detailed manner

Characteristics of MOS transistors

- In digital CMOS design a MOS transistor can be substituted with a 2-state switch
- Understanding the operation of memory cells requires greater understanding
- What we know so far?
 - The current flow between the drain and source can be controlled by the gate voltage

- If the gate-source voltage is low, there is no current
- If the gate-source voltage is higher than a certain value (V_T threshold voltage) the transistor conducts current
- This is enough knowledge for understanding the digital operation
- Now we have to know what the relationship is between the gate-source voltage and drain-source voltage

MOS transistor

- Important dimensions:
 - t_{ox}: oxide thickness (a few nm)
 - L: length of the channel (14nm a few μm)
 - W: width of the channel (20nm a few μm)

MOS transistor

While $V_{GS} < V_T$, the transistor has very low current (subthreshold current, leakage current)

If $V_{GS}>V_T$, the current is proportional to $(V_{GS}-V_T)^2$

- V_{GS} - V_{T} is usually denoted by V_{on}

The characteristic equation of MOS transistors

$$I_D = \frac{\epsilon_{ox} \, \mu_{eff}}{2t_{ox}} \frac{W}{L} (V_{GS} - V_T)^2 = \frac{\beta}{2} \frac{W}{L} (V_{GS} - V_T)^2$$

- Where
 - W is the width of the gate,
 - L is the length of the gate,
 - ε_{ox}/t_{ox} is the oxide capacitance per unit area,
 - $\mu_{\rm eff}$ is the mobility of the charge carriers in the channel,
 - V_{GS} is the gate-source voltage,
 - V_T is the threshold voltage of the device.
- Designers can only alter the value of W and L
- Wider transistors can conduct higher current
 - They have lower (channel) resistance

Budapest University of Technology and Economics Department of Electron Devices

Static RAM (SRAM)

Static RAM memory

- It consists of 6 transistors
- It has two complementary bit lines
 - It is a differential logic element

- Information is stored by two CMOS inverters in feedback.
- It is similar to SR latch, but the read/write is done through one transistor (not a complete (NAND) gate)
 - (In order to reduce the size of it)
- M3 and M4 transistors are called (access) transistors
- The operation of an SRAM cell seems simple (on the digital abstraction level), but it is more complicated

Read process of Static RAM – Step 1

- We assume that Q is logic 1
 - The bit-lines are precharged to the power supply voltage
- The transistor M3 has a minimal channel width
- The NMOS transistors in the inverters have a two times wider channel width (they are "stronger")
- At the beginning of the reading M3 and M1 conduct current, and the voltage level of \overline{Q} will increase

Read process of Static RAM – Step 2

•
$$V_{\bar{Q}} = V_{DD} \frac{R_{M1}}{R_{M1} + R_{M3}} < V_{COMP} = \frac{V_{DD}}{2}$$

- The change in voltage has to be lower than the threshold level of the gate, so that the content of the cell will remain unchanged
- The voltage level of the \overline{bit} line decreases to the half of the original value (around $100\text{-}200 \mathrm{mV}$ decreases is common) through the M3 and M1 transistors
- The sense amplifier can amplify it.

Write process of Static RAM

We assume the information in the memory cell is logic 1, and we have to write 0

- The operation of the M3 and M1 transistors is similar to the reading case
- M4 pulls the voltage level of Q below the threshold limit

•
$$V_Q = V_{DD} \frac{R_{M4}}{R_{M4} + R_{M6}} < V_{COMP} = \frac{V_{DD}}{2}$$

The current of M1 decreases, M5 conducts, and the flipflop flips

Multi-port SRAM 1.

As we saw in the previous slide, a one bit-line is enough for reading

- We can read from two cells using two bitlines
- In case of writing we need both bitlines
- Using "smart" timing we can read twice and write a bit in a cycle
- This is frequently used in CPU registers

- SRAM with dedicated read and write ports
 - It consists of 8 transistors

Budapest University of Technology and Economics Department of Electron Devices

Dynamic RAM (DRAM)

Dynamic RAM cell

- The information is stored in the C_S capacitor, which is connected to the bitline by the M1 transistor.
- C_S is typically 25-40fF (there are only ~100,000 electrons in the capacitor)

- The storage capacitors have a special 3D structure
 - Trench capacitance: a trench is etched in the Si. The walls are covered with oxide and filled with poli-Si.
 - Stack capacitance: several conducting layers are separated with thin oxide layers.

Implementations of storage capacitors (illustration)

b) DRAM elementary cell Capacitor DRAM cross section e) Trench = Capacitor

Source: http://www.sdram-technology.info/sdram-cross-section.html

DRAM write and read

Writing to DRAM

The word line is connected to VDD and the capacitor is charged to VDD or discharged to ground potential depending on the value of the bit-line

Reading from DRAM

- The bit-line is precharged to half of the power supply voltage
- When the word line is activated, the capacitor is connected to the bit line
- After charge sharing, the voltage change of the bit-line is:

The reading process is DESTRUCTIVE!

DRAM write and read

- The voltage change is ~20-50mV
- The sensing amplifier has to determine the logic value of the cell from such a tiny change. This is a very difficult task
- The charge sharing discharges/charges the capacitor to a value from which the original logic value can no longer be determined so the cell has to be rewritten after each readout.

Refreshing DRAM

- The information stored in a cell fades over time due to the leakage current of the capacitor
- Thus the cells of a DRAM need to be refreshed periodically typically every 2-4 ms.
- One line is refreshed at a time (it takes ca. 100-200 ns) (t_{RC})
 - Burst refresh: all the lines are refreshed in a run
 - **Distributed (hidden) refresh:** a counter stores the address of the most recently refreshed line and refreshing continues with the next line at every step.

 **REFRESH*

Embedded DRAM

- The single-transistor dynamic
 RAM requires special technology
- In SoC devices only CMOS components are available
- Instead of a storing capacitor we can use the parasitic capacitance of the M1 and M2 transistors

- They are used in high capacitance cache memory circuits with hidden refresh
 - (smaller than SRAM)

Budapest University of Technology and Economics Department of Electron Devices

CAM Content Addressable Memory

Content Addressable Memory

- It generates the address of the required information in a single clock cycle
 - It compares the content of the search data register to the parallel stored words
 - Only one will be activated from the matchlines, which gives the address back
- The generated address corresponds to the content which is stored in the ordinary memory (Hardware associative array)

CAM cell

- A static RAM cell and 4 additional transistors
 - 4 transistors constitute the match circuitry
 - 10 transistors per cell
- If the input bit does not coincide with that stored in the SRAM, the match line is pulled down
 - "Miss-current" exists
- When a miss occurs, the CPU retrieves the data from the main memory

Ternary CAM (TCAM)

Realizing "don't care"

- The TCAM cell is doubled
- "01" is assigned to logic 1, "10" means logic 0
- "00" is assigned to "don't care" state
- "11" is not used

Budapest University of Technology and Economics Department of Electron Devices

Newer memory technologies

Ferroelectric RAM (FRAM)
Magnetoresistive RAM (MRAM)

Ferroelectric RAM

- Ferroelectric material
 - The term is used in analogy to ferromagnetism
 - in which a material exhibits a permanent magnetic moment (so not an iron-based material)
 - **Ferroelectricity** is a property of certain materials that have a spontaneous electric polarization
 - It can be reversed by the application of an external electric field
 - lead zirconate titanate (PZT). (Pb[Zr_xTi_{1-x}]O₃)
 - It has two stable states, because the oxygen atom can move to the center of the molecule
 - The change in polarization causes charge movement (current)
 - The idea was first published in 1952

FERAM single cell

- It is similar to a DRAM cell, the storing dielectric material is the PTZ
- This is a capacitor with memory

FERAM reading

- The bitline has to be precharged
- We have to apply a pulse on the PL
- The voltage of the bitline changes (as in the case of DRAMs)
- The sense amplifier regenerates the signal
- The reading process is *destructive*

FERAM writing

- Activate the word-line
- A pulse applied on PL writes the information of the BL into the cell

Magnetoresistive RAM

- Data in MRAM is stored by magnetic storage elements
- The elements are formed from two ferromagnetic plates
 - Each of which can hold a magnetization
 - They are separated by a thin insulating layer.

One of the two plates is a permanent magnet set to a particular

polarity

 The other plate's magnetization can be changed to match that of an external field

 The resistance of MRAM depends on the direction of the magnetization

MRAM single cell

- Reading measuring the current of the activated cell (nondestructive)
 - BL has low voltage, SL is connected to ground
- Writing High voltage applied between the bitline and the wordline
 - The value of the stored bit depends on the direction of the applied voltage
 - BL=0V, SL=VDD or BL=VDD, SL=0V

Comparing FRAM and MRAM

Attribute	FRAM	MRAM
Technology	1 transistor – 1 ferroelectric capacitor (1T – 1FRC)	1 transistor – 1 magnetic tunnel junction (1T – MTJ)
Read	Destructive	Non-destructive
Read Cycle Time	90ns	35ns
Read Access Time	60ns	35 ns
Write Cycle Time	90ns	35ns
Write (CE)	60ns	35ns
Fatigue	Known wear-out mechanisms 10 ¹⁴ Read / Write	No wear-out. Infinite Read / Write
Imprint	Increases with temperature and decreasing operating voltage	No Imprint
High Temperature Data Retention	Degrades above 85°C	20 years at 125°C (continuous)
Manufacturing	Complex – O_2 ambient >650°C process, H_2 sensitivity.	Standard BEOL CMOS processing
Scalability	Need 3D structures at 65nm. Imprint becomes more of an issue.	Fully Scalable

- Imprint is the preferential polarization state from previous writes to that state
- Fatigue is the increase of minimum writing voltage due to loss of polarization after extensive cycling.

Budapest University of Technology and Economics Department of Electron Devices

RAM memory chips - Examples

Based on google search result.

IDT 7006S/L – Dual-port static RAM

- Two ports, 16k x 8 bit SRAM
 - Left and right ports, fully symmetrical
 - Allows simultaneous reads of the same memory location
- On-chip arbitration
- HW semaphore signaling
 - Concurrent accesses of different ports handled by the hardware
- Fully asynchronous operation

Waveform of Read Cycles⁽⁵⁾

Micron - MT46V64M8

- 512MBit, 64M x 8bit.
 - Power supply: 2.5V
 - DDR 400 Internal, pipelined double-data-rate
 - 4 banks
 - Programmable burst lengths: 2, 4 or 8
 - Auto refresh: 64ms (8192 clock cycles)
 - CL (CAS / READ latency) 2, 2.5, 3
 - Raw address: A0-A12 (8k), Column address: A0- A9, A11 (2k)
 - Bank address: BAO, BA1
- It is very complicated to use

DDR SDRAM example - Reading

LAPIS Semi, MR45V032A

 32k(4,096-Word 8-Bit) FeRAM (Ferroelectric Random Access Memory) SPI

- 4k× 8bit
- Power supply: 2.7-3.6V, (3.3V typical)
- Operating frequency: 15MHz
- Data retention: 10 years
- Read/write tolerance: 10¹²cycles/bit
- Communication:
 - SPI (Serial Peripheral Interface)

0x03 represents the READ command, and it is followed by the 16-bit starting address