CB n°1 - Compléments d'algèbre linéaire - Sujet 1

1. On considère les matrices $A = \begin{pmatrix} -3 & 4 & 4 \\ 0 & 1 & 0 \\ -2 & 2 & 3 \end{pmatrix}$, et $B = \begin{pmatrix} -1 & -1 & 2 \\ -2 & 0 & 2 \\ -2 & -1 & 3 \end{pmatrix}$.

Déterminer la nature des endomorphismes de \mathbb{R}^3 canoniquement associés à A et B, ainsi que leurs éléments caractéristiques.

 $A^2 = I_3$ donc A est la matrice de la symétrie s par rapport à $\operatorname{Ker}(s - \operatorname{Id}_{\mathbb{R}^3}) = \operatorname{Vect}\{(1,1,0), (1,0,1)\}$

parallèlement à $Ker(s + Id_{\mathbb{R}^3}) = Vect\{(2, 0, 1)\}.$

 $B^2 = B$ donc B est la matrice de la projection p sur $Im(p) = Vect\{(1, 2, 2), (1, 0, 1)\}$ parallèlement à $Ker(p) = Vect\{(1, 1, 1)\}$.

- **2.** On considère les sous-espaces vectoriels de \mathbb{R}^3 suivants : $F = \{(x, y, z) \in \mathbb{R}^3, x y + z = 0\}, G = \{(x, y, z) \in \mathbb{R}^3, x 2y + z = 0 \text{ et } y = z\}$
 - **a.** Déterminer des bases de F et de G. $F = \text{Vect}\{(1, 1, 0), (-1, 0, 1)\},$ et $G = \text{Vect}\{(1, 1, 1)\}.$
 - **b.** Montrer que F et G sont supplémentaires dans \mathbb{R}^3 . On note $f_1 = (1, 1, 0), f_2 = (-1, 0, 1)$ et g = (1, 1, 1). La matrice $P = \begin{pmatrix} 1 & -1 & 1 \\ 1 & 0 & 1 \\ 0 & 1 & 1 \end{pmatrix}$ est inversible, d'inverse $P^{-1} = \begin{pmatrix} -1 & 2 & -1 \\ -1 & 1 & 0 \\ 1 & -1 & 1 \end{pmatrix}$.

On en déduit que la famille (f_1, f_2, g) est libre, de cardinal 3, c'est donc une base de \mathbb{R}^3 ; F et G sont supplémentaires.

c. Donner la matrice dans la base canonique de la projection sur F parallèlement à G.

$$A = P \operatorname{Mat}_{(f_1, f_2, g)}(p) P^{-1} = \begin{pmatrix} 1 & -1 & 1 \\ 1 & 0 & 1 \\ 0 & 1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} -1 & 2 & -1 \\ -1 & 1 & 0 \\ 1 & -1 & 1 \end{pmatrix} = \begin{pmatrix} 0 & 1 & -1 \\ -1 & 2 & -1 \\ -1 & 1 & 0 \end{pmatrix}$$

 $\operatorname{Sp\acute{e}}\operatorname{PT}\operatorname{B}$

CB n°1 - Compléments d'algèbre linéaire - Sujet 2

1. On considère la matrice $A = \begin{pmatrix} -1 & 2 & 2 \\ 0 & 1 & 0 \\ -1 & 1 & 2 \end{pmatrix}$, et $B = \begin{pmatrix} -1 & 2 & -2 \\ -2 & 3 & -2 \\ -2 & 2 & -1 \end{pmatrix}$.

Déterminer la nature des endomorphismes de \mathbb{R}^3 canoniquement associés à A et B, ainsi que leurs éléments caractéristiques.

 $A^2 = A$ donc A est la matrice de la projection p sur $Im(p) = Vect\{(1, 0, 1), (2, 1, 1)\}$ parallèle-

ment à $Ker(p) = Vect\{(2, 0, 1)\}.$

 $B^2 = I_3$ donc B est la matrice de la symétrie s par rapport à $Ker(s-Id_{\mathbb{R}^3}) = Vect\{(1,1,0),(0,1,1)\}$ parallèlement à $Ker(s+Id_{\mathbb{R}^3}) = Vect\{(1,1,1)\}$.

- **2.** On considère les sous-espaces vectoriels de \mathbb{R}^3 suivants : $F = \{(x, y, z) \in \mathbb{R}^3, x + 2y z = 0\}, G = \{(x, y, z) \in \mathbb{R}^3, x + y 2z = 0 \text{ et } x = y\}.$
 - **a.** Déterminer des bases de F et de G. $F = \text{Vect}\{(1,0,1),(0,1,2)\},$ et $G = \text{Vect}\{(1,1,1)\}.$
 - **b.** Montrer que F et G sont supplémentaires dans \mathbb{R}^3 . On note $f_1 = (1, 0, 1), f_2 = (0, 1, 2)$ et g = (1, 1, 1).

La matrice
$$P = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \\ 1 & 2 & 1 \end{pmatrix}$$
 est inversible, d'inverse $P^{-1} = \begin{pmatrix} \frac{1}{2} & -1 & \frac{1}{2} \\ -\frac{1}{2} & 0 & \frac{1}{2} \\ \frac{1}{2} & 1 & -\frac{1}{2} \end{pmatrix}$.

On en déduit que la famille (f_1, f_2, g) est libre, de cardinal 3, c'est donc une base de \mathbb{R}^3 ; F et G sont supplémentaires.

c. Donner la matrice dans la base canonique de la symétrie par rapport à F, parallèlement à G.

$$A = P \operatorname{Mat}_{(f_1, f_2, g)}(s) P^{-1} = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \\ 1 & 2 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{pmatrix} \begin{pmatrix} \frac{1}{2} & -1 & \frac{1}{2} \\ -\frac{1}{2} & 0 & \frac{1}{2} \\ \frac{1}{2} & 1 & -\frac{1}{2} \end{pmatrix} = \begin{pmatrix} 0 & -2 & 1 \\ -1 & -1 & 1 \\ -1 & -2 & 2 \end{pmatrix}$$

 $\operatorname{Sp\acute{e}}\operatorname{PT}\operatorname{B}$