Lost in Translation

9. (10 points) We want to make an RNN to translate English to Martian. We have a training set of pairs $(e^{(i)}, m^{(i)})$, where $e^{(i)}$ is a sequence of length $J^{(i)}$ of English words and $m^{(i)}$ is a sequence of length $K^{(i)}$ of Martian words. The sequences, even within a pair, do not need to be of the same length, i.e., $J^{(i)}$ need not equal $K^{(i)}$. We are considering two different strategies for turning this into a transduction or sequence-to-sequence learning problem for an RNN.

Method 1: Construct a training-sequence pair (x, y) from an example (e, m) by letting

$$x = (e_1, e_2, \dots, e_L, stop)$$

 $y = (m_1, m_2, \dots, m_L, stop)$

In Method 1, we assume that if the original e and m had different numbers of words, then the shorter sentence is padded with enough time-wasting words ("ummm" for English, "grlork" for Martian) so that they now have equal length, L. Any needed padding words are inserted at the end of $e^{(i)}$, and at the start of $m^{(i)}$.

Method 2: Construct a training-sequence pair (x, y) from an example (e, m) by letting

$$x = (e_1, e_2, \dots, e_J, stop, blank, \dots, blank)$$
$$y = (blank, \dots, blank, m_1, m_2, \dots, m_K, stop)$$

In Method 2, blanks are inserted at the end of e and start of m such that the length of x and y are now both J + K + 1.

(a)	Assume an element-wise loss function $L_{elt}(p, y)$ on predicted versus true Martian words.
	What is an appropriate sequence loss function for Method 1 ? Assume that the predicted
	sequence p has the same length as the target sequence q .

(b)	Assume an element-wise	loss function	$L_{elt}(p,y)$ of	on predicted	versus true	e Martian	words.
	What is an appropriate	sequence loss	function	for $Method$	2 ? Assur	ne the pr	edicted
	sequence p has the same	length as the	target seq	uence y .			

(c)	Which method is likely to need a higher dimensional state? Explain why.
(d)	Which method is better if English and Martian have very different word order? Explain why.
(e)	Martian linguist Grlymp thinks it is also important to pad the original English and Martian sentences with time-wasting word to be of the same length for Method 2 (i.e., so that $J=K$), but English linguist Chome Nimsky disagrees. Who is correct, and why?

Name: _____