Homework 9 Abstract Algebra Math 320 Stephen Giang

Problem 1: Let $f(x), g(x) \in F[x]$, not both zero. Prove that if there exist $u(x), v(x) \in F[x]$ such that $f(x)u(x) + g(x)v(x) = 1_F$, then f(x) and g(x) are relatively prime.

By Theorem 4.8, $f(x)u(x) + g(x)v(x) = d(x) = 1_F$, such that d(x) = gcd(f(x), g(x)). Because $d(x) = gcd(f(x), g(x)) = 1_F$, by definition of relatively prime, f(x) and g(x) are relatively prime. **Problem 2:** List all associates of $x^2 + x + 1$ in $\mathbb{Z}_5[x]$.

All associates of $f(x) = x^2 + x + 1$ can be written as cf(x) for $c \in \mathbb{Z}_5$.

$$1(x^2 + x + 1) = x^2 + x + 1$$

$$2(x^{2} + x + 1) = 2x^{2} + 2x + 2$$
$$3(x^{2} + x + 1) = 3x^{2} + 3x + 3$$

$$3(x^2 + x + 1) = 3x^2 + 3x + 3$$

$$4(x^2 + x + 1) = 4x^2 + 4x + 4$$

Problem 3: Show that $x - 1_F$ divides $a_n x^n + ... + a_2 x^2 + a_1 x + a_0 \in F[x]$ if and only if $a_n + a_{n-1} + ... + a_2 + a_1 + a_0 = 0_F$.

$$(=>)$$
. Let $f(x) = a_n x^n + ... + a_2 x^2 + a_1 x + a_0 \in F[x]$ such that $x - 1_F$ divides $f(x)$

Because $x - 1_F$ divides f(x), 1_F is a root of f(x), such that

$$f(1_F) = a_n + a_{n-1} + \dots + a_2 + a_1 + a_0 = 0_F$$

$$(<=)$$
. Let $a_n + a_{n-1} + ... + a_2 + a_1 + a_0 = 0_F$.

Thus there exists $f(x) \in F[x]$, with $f(x) = a_n x^n + ... + a_2 x^2 + a_1 x + a_0$, such $f(1_F) = 0_F$. Because $f(1_F) = 0_F$, 1_F is a root, meaning that $x - 1_F$ divides f(x)

Problem 4: We say that $a \in F$ is a multiple root of $f(x) \in F[x]$ if $(x - a)^k$ is a factor of f(x) for some $k \ge 2$

(a) Prove that $a \in \mathbb{R}$ is a multiple root of $f(x) \in \mathbb{R}[x]$ if and only if a is a root of both f(x) and f'(x), where f'(x) is the derivative of f(x). You may assume that the Product Rule is true

(=>). Let $a \in \mathbb{R}$ be a multiple root of $f(x) \in \mathbb{R}[x]$.

So $\exists u(x) \in \mathbb{R}[x]$, such that $f(x) = u(x)(x-a)^k$, with $k \geq 2$. Notice that:

$$f'(x) = u(x)(k(x-a)^{k-1}) + u'(x)(x-a)^k, \text{ with } (k-1) \ge 1$$
$$= (x-a)\left[u(x)(k(x-a)^{k-2}) + u'(x)(x-a)^{k-1}\right]$$

Because (x-a) is a factor of both f(x) and f'(x), a is a root of both f(x) and f'(x)

(<=) Let a be a root of both f(x) and f'(x).

Thus $\exists u(x) \in \mathbb{R}[x]$, such that $f(x) = u(x)(x-a)^k$.

If (k < 1), then a would not be a root of f(x).

If (k = 1), then $f'(x) = u(x) + u'(x)(x - a)^k$, meaning a would not be a root of f'(x). If (k > 1), then $f'(x) = (x - a) \left[u(x)(k(x - a)^{k-2}) + u'(x)(x - a)^{k-1} \right]$.

Thus k > 1, or $k \ge 2$, to have a be a root of both f(x) and f'(x). And because $k \ge 2$, a is a multiple root of f(x)

(b) If $f(x) \in \mathbb{R}[x]$ and f(x) is relatively prime to f'(x), prove that f(x) has no multiple roots in \mathbb{R} .

So we can prove this by proving the contraposition.

If f(x) has multiple roots in \mathbb{R} , then $f(x) \in \mathbb{R}[x]$ and f(x) is not relatively prime to f'(x)

Solution 4b. By part (a), if f(x) has multiple roots in \mathbb{R} , then f(x) and f'(x) share a root a, thus sharing a factor x - a. Thus f(x) is not relatively prime to f'(x)

Problem 5: Determine if the following polynomials are irreducible:

(a)
$$x^3 - 9$$
 in $\mathbb{Z}_{11}[x]$

We can use the Rational Roots Theorem, and see if it contains any roots, $\pm 1, \pm 9$. Let $f(x) = x^3 - 9 \in \mathbb{Z}_{11}[x]$

$$f(1) = -8$$
 $f(-1) = -10$
 $f(9) = 720 = 5$ $f(-9) = -738 = 1$

Because the degree of f(x) is 3, then its factors must be of degree 1 and 2, meaning that its factors will contain its root, but because there does not exist a root in $\mathbb{Z}_{11}[x]$, (a) is irreducible.

(b)
$$x^4 + x^2 + 2$$
 in $\mathbb{Z}_3[x]$

We can use the Rational Roots Theorem, and see if it contains any roots, $\pm 1, \pm 2$. Let $f(x) = x^4 + x^2 + 2 \in \mathbb{Z}_3[x]$

$$f(1) = f(-1) = 4 = 1$$

 $f(2) = f(-2) = 22 = 1$

Because there does not exist a root, the only factors of f(x) have to be of degree 2, such that for $a, b, c, d \in \mathbb{Z}_3[x]$

$$f(x) = x^4 + x^2 + 2 = (x^2 + ax + b)(x^2 + cx + d)$$

= $x^4 + (a + c)x^3 + (ac + b + d)x^2 + (bc + ad)x + bd$

Now we just need to solve for a, b, c, d

$$a + c = 0 \tag{1}$$

$$ac + b + d = 1 \tag{2}$$

$$bc + ad = 0 (3)$$

$$bd = 2 (4)$$

Now we can see that c = -a from (1), and b = 2, d = 1 or b = 1, d = 2, such that b + d = 3 = 0 from (4). Now by evaluating, we can see in (2), $a^2 = -1 = 2$. Because there does not exist an $a \in \mathbb{Z}_3$, such that $a^2 = 2$, there does not exist any factors of f(x). Proving that f(x) is irreducible.