Міністерство освіти і науки України Національний технічний університет України «Київський політехнічний інститут імені Ігоря Сікорського" Факультет інформатики та обчислювальної техніки

Кафедра інформатики та програмної інженерії

Звіт

з лабораторної роботи № 2 з дисципліни «Алгоритми та структури даних-1. Основи алгоритмізації» «Дослідження алгоритмів розгалуження» Варіант 7

Виконав студент ІП-15, Гуменюк Олександр Володимирович

(шифр, прізвище, ім'я, по батькові)

Перевірив _____

(прізвище, ім'я, по батькові)

Лабораторна робота 2

Дослідження алгоритмів розгалуження

Мета – дослідити подання керувальної дії чергування у вигляді умовної та альтернативної форм та набути практичних навичок їх використання під час складання програмних специфікацій. Індивідуальне завдання

Варіант 7

7. Задані дійсні числа x, y. Визначити, чи належить точка з координатами (x, y) заштрихованій частині площини:

Постановка задачі

Знаходимо відстань між точкою та початком координат r (радіус), та визначаємо чи $r \le 1$. Знаходимо полярний кут а. Визначаємо чи належить цей кут заштрихованим секторам площі. Використовуємо альтернативну форму оператора вибору.

Результатом розв'язку ϵ визначення чи належить дана точка заштрихованій частині площини.

Побудова математичної моделі

Таблиця імен змінних

Змінна	Tun	Ім'я	Призначення

Дана координата х точки	Дійсне	Х	Початкові дані
Дана координата у точки	Дійсне	у	Початкові дані
Відстань від початку координат до точки (радіальна координата)	Дійсне	r	Проміжні дані
Полярний кут	Дійсне, $0 < a <= 2\pi$	a	Проміжні дані
Чи належить дана точка заштрихованій частині площини	Логічне	result	Результат

Спочатку потрібно впевнитися, що наша точка знаходиться в одиничному колі. Для цього знаходимо радіує відстань від початку координат до точки за формулою $r = \operatorname{sqrt}(y^*y+x^*x)$. Використовуємо функції $\operatorname{sqrt}()$ для знаходження квадратного кореня виразу. Якщо, r <= 1, то наша точка знаходиться всередині кола. Потім, знаходимо полярний кут а за формулою $a = \operatorname{arctg}(y/x)$. Використовуємо функцію $\operatorname{arctg}()$ для знаходження кута а за його тангенсом. Визначаємо чи належить кут а заштрихованим секторам площі, а саме проміжкам: $[1/4\pi;1/2\pi]$ або $(3/4\pi;\pi)$ або $(5/4\pi;3/2\pi)$ або $[7/4\pi;2\pi]$. Квадратні

дужки означають включно, а круглі - не включно. Якщо полярний кут дорівнює 0, то вважаємо його кутом 2π .

Розв'язання

Програмні специфікації запишемо у псевдокоді та графічній формі у вигляді блок-схеми.

Крок 1. Визначимо основні дії.

Крок 2. Деталізуємо знаходження значення відстані г.

Крок 3. Визначимо чи г менше або дорівнює одиниці.

Крок 4. Деталізуємо знаходження кута а.

Крок 5. Визначимо чи а належить заштрихованим секторам кола.

Псевдокод

Крок 1 Крок 2.

початок початок

ввід х, у

обчислення значення r r := sqrt (y*y+x*x)

порівняння г порівняння г

обчислення значення а обчислення значення а

порівняння а порівняння а

виведення result виведення result

кінець кінець

```
Крок 3.
                                                   Крок 4.
початок
                                                    початок
       ввід х, у
                                                           ввід х, у
       r := \operatorname{sqrt} (y^*y + x^*x)
                                                           r := \operatorname{sqrt} (y * y + x * x)
       якщо r <= 1
                                                           якщо r <= 1
              T0
                                                                  T0
                      обчислення
                                                                          a := arctg(y/x)
                      значення а
                                                                         порівняння а
                      порівняння а
                                                                  інакше
              інакше
                                                                         result := false;
                      result := false;
                                                           виведення result
       виведення result
                                                    кінець
кінець
Крок 5.
початок
       ввід х, у
       r := sqrt (y*y+x*x)
       якщо r <= 1
              T0
                      a := arctg(y/x)
                      якщо (1/4\pi \le a\&\&a \le 1/2\pi) \parallel (3/4\pi \le a\&\&a \le \pi) \parallel
                      (5/4\pi < a\&\&a < 3/2\pi) \parallel (7/4\pi < = a\&\&a < = 2\pi)
                             T0
                                     result := true
                             інакше
                                     result := false
```

інакше

result := false

виведення result

кінець

Блок-схема

Крок 1.

Крок 2.

Крок 5.

Тестування

Блок	Дія
	Початок
1	Ввід $x = 0.75$, $y = 1$
2	r = sqrt (1*1+0.75*0.75) = sqrt(1.5625)
	= 1.25
3	$1.25 \le 1 \rightarrow \text{false}$
4	result = false
5	Виведення false
	Кінець

Блок	Дія
	Початок
1	Ввід $x = 0.55$, $y = 0.34$
2	r = sqrt (0.55*0.55+0.34*0.34) =
	sqrt(0.4181) = 0.6466
3	$0.6466 \le 1 \rightarrow \text{true}$
4	a = arctg(0.34/0.55) = 0.5404
5	Кут а (0.5404) не належить ні
6	одному з проміжків result = false

7	Виведення false
	Кінець

Висновки

Протягом другої лабораторної роботи я дослідив подання керувальної дії чергування у вигляді умовної та альтернативної форм та набув практичних навичок їх використання під час складання програмних специфікацій. В результаті виконання лабораторної роботи я отримав алгоритм для визначення чи належить довільна точка до заданих секторів площини.