Sample Exam 2 Questions Physics 101, Fall 2016

- A 2 kg block is moving to the right at 2 m/s, and a 5 kgblock is moving to the left at $1 \,\mathrm{m/s}$. What is the total momentum \vec{p} of both blocks together?
 - A) $1 \text{ kg m/s} \leftarrow$ **B)** $1 \text{ kg m/s} \rightarrow$
 - C) $9 \text{ kg m/s} \leftarrow$ **D)** $9 \text{ kg m/s} \rightarrow$

- **2.** A 1 kg ball is moving with velocity $\vec{v}_i = (-3\hat{x} 3\hat{y}) \,\mathrm{m/s}$ before it hits a vertical wall. Right after the collision, the ball's velocity is $\vec{v}_f =$ $(1\hat{x} - 3\hat{y}) \,\text{m/s}.$
- (a) What is the change in the ball's momentum $\Delta \vec{p}$? A) $4\hat{x} \log m/s$ B) $-4\hat{x} \log m/s$
 - C) $4\hat{x} 3\hat{y} \, \text{kg m/s}$ D) $-4\hat{x} + 6\hat{y} \, \text{kg m/s}$
 - E) Other (explain)

(b) What is the impulse \vec{J} of the wall on the ball?

A $2 \,\mathrm{kg}$ block is moving at $2 \,\mathrm{m/s}$ when it collides with a $3 \,\mathrm{kg}$ 3 block at rest. The collision is maximally inelastic. How fast is the 3 kg block moving after the collision? **A)** 0 m/s **B)** 0.8 m/s **C)** 1.3 m/s **D)** 1.6 m/s **E)** 2 m/s

3kg

- \mathbf{F}) 3 m/s

- - **A)** 1 m **B)** 2 m **C)** 3 m **D)** 4 m **E)** 5 m

- $\boxed{3}$ $\boxed{5.}$ This block has a center of mass at the location marked with the dot. Which is
 - A) The block feels a counterclockwise torque and will end up on its short end
 - B) The block feels a clockwise torque and will end up on its long end
 - C) The block feels no torque and remains balanced in that position

- The figure shows three forces applied to a door. Which force exerts the largest torque around the dot (the pivot)?
 - **A)** 5N **B)** 10N **C)** 15 N
 - D) Two or more exert the same torque. (Explain.)

- 7. The figure shows a $2\,\mathrm{m}$ long rod which is attached to the wall by a hinge. The rod has a weight of $5\,\mathrm{N}$ which pulls downward at the center of the rod. The hinge exerts a downward force H, and a finger exerts an $8\,\mathrm{N}$ force upward between the other two forces, as shown. The rod is in equilibrium.
- $\boxed{3}$ (a) What is the magnitude of the force H?

(b) How far away is the finger from the hinge? (Note: the figure is not drawn to scale.)

8. A sphere with moment of inertia $I=0.3\,\mathrm{kg\cdot m^2}$ spins around its axis, so that it goes around once every 3.0 s. Other than the spinning, the sphere is stationary. (No, you don't need the radius of the sphere.)

3 (a) What is the sphere's angular velocity ω ?

A) 0.33 rad/s B) 2.1 rad/s C) 3.0 rad/s D) 19 rad/s

- **9.** A 4kg disk with radius 0.5 m starts at rest, and then a constant torque is applied for 3s, causing it to accelerate at $\alpha=1.2\,\mathrm{rad/s^2}$. The moment of inertia of the disk is $I=0.5\,\mathrm{kg}\,\mathrm{m^2}$.
- 3 (a) How many times does the disk go around during those 3s? Give your answer in either radians or revolutions (but indicate which!)

(b) What is the torque on the disk?

- $10.\ \, {\rm A~2\,kg}$ ball bounces off a wall. Before the collision it is moving at $2\,{\rm m/s}$ to the right; after, $1\,{\rm m/s}$ to the left.
- 3 (a) ____ The impulse \vec{J} of the wall on the ball (which is equal to the change in the ball's momentum) is
 - A) $6 \text{ N} \cdot \text{s}$ to the left B) $2 \text{ N} \cdot \text{s}$ to the left
 - C) $2N \cdot s$ to the right D) $6N \cdot s$ to the right

- 11. A 1 kg block A moves at 8 m/s to the right towards a stationary 1 kg block B.
- (a) What is the total momentum of both blocks?

- (b) Before the collision, the system's center of mass is $\overline{\mathbf{A})}$ stationary

 - B) moving to the right at $4 \,\mathrm{m/s}$
 - C) moving to the right at 8 m/s
- (c) _____ If the two blocks collide and the collision is maximally inelastic, what are the final speeds of the two blocks?

	Velocity of A	Velocity of B
A)	8 m/s ←	$0\mathrm{m/s}$
B)	8 m/s ←	$8\mathrm{m/s} \rightarrow$
C)	4 m/s ←	$4\mathrm{m/s} \rightarrow$
D)	$0\mathrm{m/s}$	$8\mathrm{m/s} \rightarrow$
E)	$4\mathrm{m/s} \rightarrow$	$4\mathrm{m/s} \rightarrow$
F)	$8\mathrm{m/s} \rightarrow$	$8\mathrm{m/s} \rightarrow$

- 12. You are using a wrench and trying to loosen a rusty nut, using the same applied force F in four different configurations (as shown).
- (a) The torque in B is ... the torque in A. $\overline{\bf A}$ greater than $\overline{\bf B}$ equal to $\overline{\bf C}$ less than
- (b) The torque in C is ... the torque in A. $\overline{\bf A}$ greater than $\overline{\bf B}$ equal to $\overline{\bf C}$ less than
- (c) _____ The torque in D is \dots the torque in A. A) greater than B) equal to C) less than

- 13. Three forces act on a block as shown.
- $\boxed{2}$ (a) $\boxed{\frac{}{\text{force B contributes}}}$ If the pivot is at the star at the center of the block, the
 - A) a clockwise torque
 - ${f B})$ a counterclockwise torque
 - C) no torque

|2|

- (b) ____ If the pivot is at the dot in the bottom-left corner, the force B contributes
 - A) a clockwise torque
 - B) a counterclockwise torque
 - C) no torque
- +3 (c) Extra credit: Explain why this block cannot be in equilibrium, if the three forces point in the directions shown, no matter what the magnitudes of the forces are.

Three masses sit on a number line as shown. At what point on the number line does their center of mass lie?

A) 4 cm B) 5 cm C) 6 cm D) 7 cm

- 15. A 4m long rod of uniform density and mass m is attached to a wall by a hinge, and to the ceiling by a rope with tension T which is attached 1m from the right end of the rod. The rod is in equilibrium.
- (a) Draw the three forces acting on the rod, at the points where the forces are acting. Call the hinge's force H. All forces are vertical. (The dotted lines are a meter apart.)

[3] (b) $\frac{1}{\mathbf{A}}$ The tension T in the rope is \mathbf{B}) $\frac{1}{2}mg$ \mathbf{B}) $\frac{2}{3}mg$ \mathbf{C}) $\frac{3}{4}mg$ \mathbf{D}) mg \mathbf{E}) $\frac{4}{3}mg$

3 16. The Earth spins around its axis once a day (86,400 s). The Earth's radius is $R = 6.4 \times 10^6$ m. What is the Earth's angular velocity ω ?

3 17. ____ The figure shows two fans; both fans have the same mass and radius. Which one has the greater moment of inertia *I*?

- **18.** A wheel $(I = \frac{1}{2}MR^2)$ with radius $R = 0.1\,\mathrm{m}$ and a mass of $2\,\mathrm{kg}$ is rolling along a street at $5\,\mathrm{m/s}$.
- (a) What is the angular velocity ω of the wheel?

