数季电路与逻辑设计

Digital circuit and logic design

● 第三章 集成门电路与触发器

主讲教师 于俊清

■提纲

数字集成电路的分类

半导体器件的开关特性

门电路

触发器

■门电路

简单逻辑门电路

TTL集成逻辑门电路

典型TTL与非门

常用的集成TTL门电路

两种特殊的门电路

CMOS集成逻辑门电路

MOS晶体管的静态开关特性

CMOS集成门电路

正逻辑和负逻辑

正逻辑和负逻辑

前面介绍各种逻辑门电路时,约定用高电平表示逻辑1、低电平表示逻辑0

事实上,既可以规定用高电平表示逻辑1、低电平表示逻辑0,也可以规定用高电平表示逻辑0,低电平表示逻辑1

正逻辑

用高电平表示逻辑1,低电平表示逻辑0

负逻辑

用高电平表示逻辑0,低电平表示逻辑1

不同的规定可使同一电路具有不 同的逻辑功能

对于同一电路,可以采用正逻辑,也可以采用负逻辑

正逻辑与负逻辑的规定不涉及逻辑电路本身的结构与性能好坏

关 系

假定某逻辑门电路的输入、输出电平关系如下表所示。按正逻辑与负逻辑的规定,电路的逻辑功能分别如何?

输入输出电平关系

输	λ	输 出
А	В	F
	4	
	Н	
Н	L	L
Н	Н	Н

表1输入输出电平关系

输入		输出
А	В	F
L	L	_L
L	Н	L
H/	٦.	
Æ	H	Н

表2 正逻辑真值表

输入		输出
Α	В	F
0	0	0
0	1_	0
1	0	0
1	1	1

表3负逻辑真值表

输入		输出
Α	В	F
1	1	1
1	0	1
0	1	1
0	0	0

与门

或门

由真值表可知,电路是一个正逻辑的"与"门,负逻辑的"或"门

正逻辑"与门"等价于负逻辑"或门"

证明

假定一个正逻辑与门的输出为F,输入为A和B,则有

$$F = A \cdot B$$

根据反演律,可得

$$\overline{F} = \overline{A \cdot B} = \overline{A} + \overline{B}$$

由此可见,若将一个逻辑门的输出和所有输入都反相,则正逻辑变为负逻辑

据此,可将正逻辑门转换为负逻辑门

数季电路与逻辑设计

Digital circuit and logic design

● 谢谢,祝学习快乐!

主讲教师 于俊清

