Computational Photography

Instructor: Sanjeev J. Koppal

MWF 1145am-1235pm BEN 328

Acknowledgements

Some slides from
Narasimhan (Carnegie Mellon),
Zickler (Harvard),
Efros (Berkeley)
and others...

About me

Undergrad at the University of Southern California

Ph.D. at Carnegie Mellon (Robotics)

Post-doc at Harvard

Couple of years at Texas Instruments Imaging R&D

Course Format

Show Syllabus

Course Format

- One Midterm assignment 30 %
- One Final Exam 35 %
- Participation20 %
- Presentation (Paper, Project, Photographs) 15 %

Requirements

- Attendance and Participation
- Nice to have (but not necessary):
- access to a good camera
- access to a good machine with Matlab?
- access to textbooks
 (Robot Vision and Multiview Geometry)

A note on the Exams

- Take home
- High level
- Mostly checking if you understood the *basic* concepts

Other than the Exams

- Presentation
 - A group effort (find your group quickly or I will randomly assign)
 - Can range from presenting a random paper (least effort and learning) to a full project (most effort and learning)
 - ICCP: International Conference on Computational Photography 2016 deadline in Dec – If you do well we can submit a paper.

Presentations

- Teams of 2 or 3 are preferred
- Email me this or next week for initial discussion.
- Finalize by mid-semester when we have mid-semester practice presentations
- Give final presentation in December

New this Year!

3D Printing project

Combine Computer Vision Concepts with 3D printing

Completely Gradeless and Optional!

You will learn Solidworks

Participation

Participation

A question in this font and color

Example

What is your name?

Lesson X

Lessons like this will show up throughout the class.

The last slide will be as summary of the lessons.

Yes, I may mess up the Lesson numbers.

What is Computational Photography?

Lesson 1

Computational Photography involves

- computers and algorithms
- light/optics/sensors
- math

Why study Computational Photography?

Computational Photography over the week

Light

Light-sources are ubiquitous

Transport

Display

Light-sources have diversity

Light fixtures

Street lights

Lava lamps

Stained Glass

Neon signs

Searchlights

What is Light?

$$\nabla \cdot \mathbf{E} = \frac{\rho_{v}}{\varepsilon}$$
 (Gauss' Law)

$$\nabla \cdot \mathbf{H} = 0$$
 (Gauss' Law for Magnetism)

$$\nabla \times \mathbf{E} = -\mu \frac{\partial \mathbf{H}}{\partial t}$$
 (Faraday's Law)

$$\nabla \times \mathbf{H} = \mathbf{J} + \varepsilon \frac{\partial \mathbf{E}}{\partial t}$$
 (Ampere's Law)

What are these?

Maxwell's Equations

$$\nabla \cdot \mathbf{E} = \frac{\rho_{v}}{\varepsilon}$$
 (Gauss' Law)

$$\nabla \cdot \mathbf{H} = 0$$
 (Gauss' Law for Magnetism)

$$\nabla \times \mathbf{E} = -\mu \frac{\partial \mathbf{H}}{\partial t}$$
 (Faraday's Law)

$$\nabla \times \mathbf{H} = \mathbf{J} + \varepsilon \frac{\partial \mathbf{E}}{\partial t}$$
 (Ampere's Law)

Dual Nature of Light

Young's double slit experiment

Photon noise

What makes light sources different

Point source _

Point source

1/R^2

The inverse is true

What are the fall-offs for these?

What is a light-source?

Any light source is a set of rays

X1, Y1, Theta1, Phi1

X2, Y2, Theta2, Phi2,

•

•

Four dimensional definition (X,Y, Theta, Phi)

	· č.					4
overcast sky	uniform source	∞	∞	∞	∞	4
Cyberware TM		∞	∞	∞	0	3
scanner		∞	∞	0	∞	
fluorescent	linear source	∞	0	∞	∞	3
tube		0	∞	∞	∞	
sunlight	point source at infinity	∞	∞	0	0	2
	uniform distribution	∞	0	∞	0	2
	of rays in a plane	0	∞	0	∞	
louvered linear	fan of rays perpendicular	∞	0	0	∞	2
source (see text)	to a linear source	0	∞	∞	0	
small panel light	point source	0	0	∞	∞	2
sunlight through	parallel rays	∞	0	0	0	1
crack in doorway	in a plane	0	∞	0	0	
rotating spotlight	fan of rays	0	0	0	∞	1
		0	0	∞	0	
spotlight or laser	single ray	0	0	0	0	0

Langer and Zucker

Point source

Theta, Phi

Point Source

Constant, Constant, 360, 180

Sun

[0 infinity], [0 infinity], constant, constant

Four dimensional definition (X,Y, Theta, Phi)

overcast sky	uniform source	∞	∞	∞	∞	4
Cyberware TM		∞	∞	∞	0	3
scanner		∞	∞	0	∞	
fluorescent	linear source	∞	0	∞	∞	3
tube		0	∞	∞	∞	
sunlight	point source at infinity	∞	∞	0	0	2
	uniform distribution	∞	0	∞	0	2
	of rays in a plane	0	∞	0	∞	
louvered linear	fan of rays perpendicular	∞	0	0	∞	2
source (see text)	to a linear source	0	∞	∞	0]
small panel light	point source	0	0	∞	∞	2
sunlight through	parallel rays	∞	0	0	0	1
crack in doorway	in a plane	0	∞	0	0]
rotating spotlight	fan of rays	0	0	0	∞	1
		0	0	∞	0	
spotlight or laser	single ray	0	0	0	0	0

Why are there sixteen rows?

Lesson 2

Computational Photography uses models of light, most of which are geometric in nature.

Properties of Light

Properties of Light: Intensity

WW 2 Searchlights

WW 2 Searchlights

WW 2 Searchlights

How do we know when this intersection happens?

Lesson 3

Light can be a tool to find information

Intensity of Light in Photographs

Why is there dappled light?

The intensity of light in photographs is important

Reflections

Why does the moon reflection become a thick line?

Refractions

Fish eye lens

Fish eye

Fish eye lens

Fish eye hy is a fish eye lens called that?

Snell's window

Snell's window in imaging

"Water" camera

Underwater photography

Interreflections

Scattering

Haze De-hazed

More Complex Appearances

Hair

Marschner et al.

Other Properties of Light:

Color
Polarization
Coherence/Incoherence

Other Properties of Light: Color

Color

Color

What has changed?

UV Photographs

Thermal imagery

Multispectral imaging in remote sensing

Other Properties of Light: Polarization

Polarization

Polarization

Polarization

Polarization is everywhere

Other Properties of Light: Coherence

Other Properties of Light: Scale

Scale is Everything Geometry vs. Reflectance vs. Statistics vs. Sensor

Lesson 4

Various optical phenomenon

Reflection Caustics

Refraction Interreflections

Polarization Scattering

Diffraction Interference

Thank you

Lesson summary:

- 1. Comp. Photography involves algorithms, optics, models of light and theory.
- 2. There are many geometric models of different light sources.
- 3. Light can be used as a tool to find out scene information
- 4. Photographs show a tremendous number of light effects such as reflection, refraction, polarization, scattering, interference and others