Networks II: Market Design—Lecture 21 Information and Networked Behavior

ARPITA GHOSH

Dept. Of Information Science, Cornell University

Logistics

- Reminder: Midterm next class
 - April 18th, 2:55-4:10pm, Olin 155
 - (All details in previous lecture: Please revisit as necessary!)
- Details on logistics
 - Make sure to be there (in time)!
 - Arrive early to settle down
 - Please start filling up seats from middle outwards
 - Leave a seat's gap between each other
 - Academic integrity: No communication with neighbors
 - Sign-out sheet: At time of turning in your exam
 - Yes, this does mean exit is slowed down
 - Turn in **both** questions and answerbook

Recap: Information asymmetry and inefficient outcomes

- Exploring information asymmetry ('hidden information'):
 Model
 - Items of different qualities in market
 - Sellers informed, buyers uninformed
 - Buyers know that sellers know
- Consequence of information asymmetry: Two questions
- 1. What 'should' happen?
 - Identifying efficient outcome; achievability with complete information: Existence of market-clearing prices (April 9th)
- 2. What does happen with asymmetric information?
 - Reasoning about outcomes: Self-fulfilling expectations equilibria (SFEE) (April 11th)

Recap: Self-fulfilling expectations equilibria

- Outcome in market with sellers (rather than items) who make choices:
 - Prices buyers are willing to offer depends on which sellers sell
 - Which sellers are willing to sell depends on prices buyers are willing to offer!
- How to reason about 'what happens'?
- Self-fulfilling expectations equilibria: A belief about actions of agents that is 'self-consistent'
 - Expectation, or belief, about distribution induces exactly that distribution: A distribution of qualities (here h) such that if buyers 'expect' this distribution (here, fraction h of cars for sale that are good), offered (i.e., market-clearing) price induces that distribution of sellers in market (here, a fraction h of cars offered for sale will indeed be good)

Recap: Equilibrium outcomes

- h (fraction of cars on market that are good) is SFEE if there is a (market-clearing) price p* 'supporting' fraction h:
 - Sellers willing to sell at p^* , *i.e.*, with $v_s \le p^*$, are such that fraction h of cars for sale are good
 - Expected value of cars to buyers with 'distribution' h is no smaller than price:

$$h \cdot b_H + (1-h) \cdot b_L \geq \rho^*$$

- (Using \geq instead of =: SFEE *definition* must allow for $n \leq m$)
- To put it another way:
 - Buyers do not want to change decision (price offered) given sellers' decisions
 - No seller wants to change decision—either to sell or not sell—given buyers' decision

Recap: Identifying SFEE—an example

Recap and a question:

- Consider market with n buyers and m sellers, n > m
 - Seller values: $s_H = 10$, $s_L = 4$
 - Buyer values: $b_H = 12$, $b_L = 6$
 - Fraction of good car sellers in population $g = \frac{4}{5}$
- Which of the following is true?
 (Recall: h is fraction of cars for sale that are good)
 - $h = \frac{4}{5}$ is an SFEE
 - $h = \frac{3}{4}$ is an SFEE
 - Both $h = \frac{4}{5}$ and $h = \frac{3}{4}$ are SFEE
 - None of the above
- Why specify value of g?

Identifying SFEE: More on this example

- Example: Market with n buyers and m sellers, n > m
- Seller values: $s_H = 10$, $s_L = 4$
- Buyer values: $b_H = 12$, $b_L = 6$
- Fraction of good car sellers in population $g = \frac{4}{5}$
- How many distinct values of $h \in [0, 1]$ can be supported in a self-fulfilling expectations equilibrium (SFEE) in this market?
 - A One: There is a unique equilibrium at $h = \frac{4}{5}$
 - B Two
 - C Three
 - D Every value of $h \le g$ is an SFEE
 - E None of the above

Identifying SFEE: An example

Solving for equilibria in this market (arbitrary g):

- Question equivalent to: For what $h \in [0,1]$ can we find price p 'supporting' h?
- First: Recall we must have $h \leq g$
- Next: Sellers have identical valuations for (good) cars!
 - If p > 10, all good sellers want to sell (as also bad sellers): h = g
 - If 4 sellers do): h = 0
- So two candidates for h: g and 0 except: At p = 10, good sellers are *indifferent!*
 - n > m: So price $p = 12 \cdot h + 6 \cdot (1 h)$ (for market-clearing)
 - So h must be $\frac{2}{3}$ if p = 10

Identifying SFEE: An example

Solving for equilibria in this market:

- So three candidate values for equilibria: $h = g, h = 0, h = \frac{2}{3}$
- h = 0 is always an equilibrium
 - $p = b_L > s_L$: All bad sellers are willing to sell and no good sellers want to sell
- h = g is an equilibrium if and only if:

$$12g+6(1-g)\geq 10\Rightarrow g\geq \frac{2}{3}$$

- Finally: $h = \frac{2}{3}$ is also an equilibrium if and only if $g \ge \frac{2}{3}$
 - Unstable equilibrium: Contrast with h = 0, g

Equilibrium outcomes with asymmetric information

Recap of example: Values $s_H = 10, s_L = 4$; $b_H = 12, b_L = 6$

- For $g \ge \frac{2}{3}$: Two kinds of possible equilibria
 - (i) Low prices, bad cars
 - Buyers expect used cars to be bad: Unwilling to pay high prices
 - Sellers of good cars unwilling to sell at low prices
 - (ii) Higher prices, mix of cars
 - Buyers expect higher value cars on average
 - Prices are high enough to attract good cars
- If g < 2/3: h = 0 is (only) equilibrium (with p = 6)
 - No equilibrium possible with h = g:
 - Maximum price buyers are willing to pay is 6 + 6g
 - $\bullet~g<2/3,$ so maximum possible price 6+6g<10
 - Sellers value good cars at 10: No seller of a good car wants to sell

Equilibrium outcomes with asymmetric information: Inefficiency

- Trading good cars benefits both sellers and buyers: Buyer value v_b exceeds seller value v_s for both good and bad cars
- But market only trades bad cars in equilibrium
- Inefficiency—due to information asymmetry!

Information asymmetry and inefficiency

- Main takeaway so far: Information asymmetry can lead to inefficiency
 - Efficient outcome is full trade: All cars are traded
 - With symmetric information: Efficient outcome is realized
 - Information asymmetry: When g is low enough (g < 2/3), only bad cars are sold on market
- Asymmetric information, enough bad cars:
 - Good cars driven out of market, only bad cars sold
 - As a market designer: Not a very nice market!

Asymmetric versus incomplete information

- Suppose neither buyers nor sellers can distinguish car quality
- Quality of car traded is random: Let probability of car on market being good be h
- Suppose g < 2/3: Is h = g an equilibrium when both sides lack information about quality? ([A] Yes [B] No)
 - Expected value of a car to buyer: 12g + 6(1-g)
 - ullet Expected value of car to seller: 10g+4(1-g)
 - Trade at price p = 12g + 6(1 g): p is higher than all sellers' expected values from car, so all sellers are willing to sell!
- Inefficiency is **not** due to *incomplete* information (*i.e.*, uncertainty) alone: **Asymmetry** is source of inefficiency!

Asymmetric information: Market failure

- So far: Market is inefficient, but still realizes some positive gains from trade $(b_L s_L > 0)$
- Situation can get even worse: Enter the lemons!
- (The market for lemons, Akerlof 1970)
 - So far: Good cars $(b_H > s_H)$ and bad cars $(b_L > s_L)$
 - Introduce third kind of car: 'Lemons' $(b_0 = s_0 = 0)$
 - Distribution of qualities in population: p_H , p_L , p_0 ($p_H + p_L + p_0 = 1$; all probabilities positive)
 - What happens with asymmetric information?

Asymmetric information: Market failure

- Set up: Good cars, bad cars, and lemons
 - Values: $b_H > s_H$, $b_I > s_I$, $b_0 = s_0 = 0$
 - Distribution of qualities in population: p_H, p_L, p_0
- Reasoning about outcome with asymmetric information:
 - SFEE: Buyer belief about distribution of qualities that induces same distribution of sellers in market (with offered price)
 - Here: SFEE is distribution h_H , h_L , h_0
- Suppose $p_H = p_L = p_0 = 1/3$. Which of the following h cannot occur in equilibrium for any agent values?
 - A $h_H = h_L = h_0 = 1/3$
 - B $h_H = h_L = 1/2, h_0 = 0$
 - $h_H = 0, h_L = h_0 = 1/2$
 - D All of these could occur in equilibrium

Asymmetric information: Market failure

An example with specific buyer and seller values:

- Three types of cars: Good (G), bad (B), and 'lemons' (L)
 - Sellers' values: G at 10, B at 4, L at 0
 - Buyers' values: G at 12, B at 6, L at 0
 - Distribution: Equal fractions (1/3) of each type
- What is market outcome with symmetric information?
 - Complete information: 'All' cars are traded (Why?)
 - Incomplete information on both sides: Again, all cars are traded (Why?)
- What happens with asymmetric information?

The market for lemons

Equilibria: Belief about distribution of qualities in market

- (i) Belief: All cars on market
 - Expected value of a car to buyers is $\frac{1}{3}(12+6+0)=6$
 - Price p cannot be greater than 6 in equilibrium
 - \bullet $\, p < 10 \! :$ So sellers of good cars will not sell
 - All cars on market: Not equilibrium
- (ii) Belief: Only bad cars and lemons on market
 - Expected value of a car is $\frac{1}{2}(6+0) = 3 < 4$
 - So sellers of bad cars will not sell: Not equilibrium
- (iii) Belief: Only lemons on market
 - Value and price both 0: Equilibrium!
- Why only three candidates for equilibria?

Complete market failure: No gains from trade in market!

Information asymmetry: Adverse selection and market failure

- Information asymmetry with 'hidden information' leads to adverse selection:
 - Buyers cannot distinguish quality: Uniform price
 - 'Lower half' of market participates: Further drive down average quality, prices
- Uniform prices 'select' worst traders into market
- Market can completely unravel and collapse!

Information asymmetry: A richer example

- A richer example: Continuous distribution of item qualities
- Consider market for used cars with spectrum of qualities
 - ullet Sellers' values V_s uniformly distributed between 0 and 1
 - Buyer's value, if quality were discernible: $V_b = 1.5 V_s$
- With complete information: All cars would be sold
- Again: What happens with asymmetric information?
- SFEE is belief about distribution of quality: What are candidate distributions?
 - Threshold V_s^* with sellers in $[0, V_s^*]$ in market
 - Why?: If seller with value v_s is willing to sell at p, all sellers with values $v_s' < v_s$ are also willing to sell

Information asymmetry: A richer example

- Market for used cars with spectrum of qualities
 - ullet Sellers' values V_s uniformly distributed between 0 and 1
 - Buyer's value, if quality were discernible: $V_b = 1.5 V_s$
- What is equilibrium price p in this market with asymmetric information?
 - A p=1
 - B $p = \frac{1}{2}$
 - $C p = \frac{3}{4}$
 - $D p = \frac{2}{3}$
 - E None of the above

Information asymmetry: A richer example

- SFEE: Distribution of qualities in market can only be 'uniform below threshold'
 - Threshold V_s^* with sellers in $[0,V_s^*]$ in market: If seller with value v_s is willing to sell at p, all sellers with values $v_s' < v_s$ are also willing to sell
- ullet Solving for equilibrium threshold V_s^*
 - At p: Sellers with values $V_s \leq p$ will sell; rest don't
 - Expected value to buyers, given sellers who sell at p:

$$E[V_b|p] = 1.5E[V_s|p] = 1.5 * p/2 = 0.75p$$

• For equilibrium, $E[V_b|p] \ge p \Rightarrow 0.75p \ge p$: Only solution is p=0!