CSci 127: Introduction to Computer Science

hunter.cuny.edu/csci

Announcements

 Due to internet outages in the North Building, some deadlines have been postponed.
 See Blackboard for details.

Announcements

- Due to internet outages in the North Building, some deadlines have been postponed.
 See Blackboard for details.
- No paper handouts today:
 We're experimenting today with electronic lecture slips.

Announcements

- Due to internet outages in the North Building, some deadlines have been postponed.
 See Blackboard for details.
- No paper handouts today:
 We're experimenting today with electronic lecture slips.
- We end each lecture with a survey of computing research and tech in NYC.

Today: Prof. Sakas, computational linguistics.

From lecture slips & recitation sections.

Where is the final? When are we taking it?

From lecture slips & recitation sections.

Where is the final? When are we taking it?
 Wednesday, 20 December, 9-11am, 118 North.

- Where is the final? When are we taking it?
 Wednesday, 20 December, 9-11am, 118 North.
- Can we do more on colors, images, numpy & matplotlib?

- Where is the final? When are we taking it?
 Wednesday, 20 December, 9-11am, 118 North.
- Can we do more on colors, images, numpy & matplotlib?
 Yes, we will in Labs 4, 6-9 & Lectures 6-9.
 Today, we'll focus on decisions, and logical expressions & circuits.

- Where is the final? When are we taking it?
 Wednesday, 20 December, 9-11am, 118 North.
- Can we do more on colors, images, numpy & matplotlib?
 Yes, we will in Labs 4, 6-9 & Lectures 6-9.
 Today, we'll focus on decisions, and logical expressions & circuits.
- What is pseudocode? Why do we use it?

- Where is the final? When are we taking it?
 Wednesday, 20 December, 9-11am, 118 North.
- Can we do more on colors, images, numpy & matplotlib?
 Yes, we will in Labs 4, 6-9 & Lectures 6-9.
 Today, we'll focus on decisions, and logical expressions & circuits.
- What is pseudocode? Why do we use it? Pseudocode is the "informal high-level description of the operating principle of a computer program or other algorithm."

- Where is the final? When are we taking it?
 Wednesday, 20 December, 9-11am, 118 North.
- Can we do more on colors, images, numpy & matplotlib?
 Yes, we will in Labs 4, 6-9 & Lectures 6-9.
 Today, we'll focus on decisions, and logical expressions & circuits.
- What is pseudocode? Why do we use it? Pseudocode is the "informal high-level description of the operating principle of a computer program or other algorithm." We use it to write down the ideas, before getting deep into the details.

- Where is the final? When are we taking it?
 Wednesday, 20 December, 9-11am, 118 North.
- Can we do more on colors, images, numpy & matplotlib?
 Yes, we will in Labs 4, 6-9 & Lectures 6-9.
 Today, we'll focus on decisions, and logical expressions & circuits.
- What is pseudocode? Why do we use it?
 Pseudocode is the "informal high-level description of the operating principle of a computer program or other algorithm."
 We use it to write down the ideas, before getting deep into the details.
- What was that % symbol? Why is that math?

- Where is the final? When are we taking it?
 Wednesday, 20 December, 9-11am, 118 North.
- Can we do more on colors, images, numpy & matplotlib?
 Yes, we will in Labs 4, 6-9 & Lectures 6-9.
 Today, we'll focus on decisions, and logical expressions & circuits.
- What is pseudocode? Why do we use it?
 Pseudocode is the "informal high-level description of the operating principle of a computer program or other algorithm."
 We use it to write down the ideas, before getting deep into the details.
- What was that % symbol? Why is that math? It's the symbol for remainder (or modulus).

- Where is the final? When are we taking it?
 Wednesday, 20 December, 9-11am, 118 North.
- Can we do more on colors, images, numpy & matplotlib?
 Yes, we will in Labs 4, 6-9 & Lectures 6-9.
 Today, we'll focus on decisions, and logical expressions & circuits.
- What is pseudocode? Why do we use it?
 Pseudocode is the "informal high-level description of the operating principle of a computer program or other algorithm."
 We use it to write down the ideas, before getting deep into the details.
- What was that % symbol? Why is that math?
 It's the symbol for remainder (or modulus). Ex: 11 % 5 is 1.

- Where is the final? When are we taking it?
 Wednesday, 20 December, 9-11am, 118 North.
- Can we do more on colors, images, numpy & matplotlib?
 Yes, we will in Labs 4, 6-9 & Lectures 6-9.
 Today, we'll focus on decisions, and logical expressions & circuits.
- What is pseudocode? Why do we use it?
 Pseudocode is the "informal high-level description of the operating principle of a computer program or other algorithm."
 We use it to write down the ideas, before getting deep into the details.
- What was that % symbol? Why is that math?
 It's the symbol for remainder (or modulus). Ex: 11 % 5 is 1.
- What are types of variables?

- Where is the final? When are we taking it?
 Wednesday, 20 December, 9-11am, 118 North.
- Can we do more on colors, images, numpy & matplotlib?
 Yes, we will in Labs 4, 6-9 & Lectures 6-9.
 Today, we'll focus on decisions, and logical expressions & circuits.
- What is pseudocode? Why do we use it?
 Pseudocode is the "informal high-level description of the operating principle of a computer program or other algorithm."
 We use it to write down the ideas, before getting deep into the details.
- What was that % symbol? Why is that math?
 It's the symbol for remainder (or modulus). Ex: 11 % 5 is 1.
- What are types of variables?
 Different kinds of information takes different amounts of space.
 Types we have seen so far: int, float, str and objects (e.g. turtles).

- Where is the final? When are we taking it?
 Wednesday, 20 December, 9-11am, 118 North.
- Can we do more on colors, images, numpy & matplotlib?
 Yes, we will in Labs 4, 6-9 & Lectures 6-9.
 Today, we'll focus on decisions, and logical expressions & circuits.
- What is pseudocode? Why do we use it?
 Pseudocode is the "informal high-level description of the operating principle of a computer program or other algorithm."
 We use it to write down the ideas, before getting deep into the details.
- What was that % symbol? Why is that math?
 It's the symbol for remainder (or modulus). Ex: 11 % 5 is 1.
- What are types of variables?
 Different kinds of information takes different amounts of space.
 Types we have seen so far: int, float, str and objects (e.g. turtles).
- How can I tell strings from variables?

- Where is the final? When are we taking it?
 Wednesday, 20 December, 9-11am, 118 North.
- Can we do more on colors, images, numpy & matplotlib?
 Yes, we will in Labs 4, 6-9 & Lectures 6-9.
 Today, we'll focus on decisions, and logical expressions & circuits.
- What is pseudocode? Why do we use it?
 Pseudocode is the "informal high-level description of the operating principle of a computer program or other algorithm."
 We use it to write down the ideas, before getting deep into the details.
- What was that % symbol? Why is that math?
 It's the symbol for remainder (or modulus). Ex: 11 % 5 is 1.
- What are types of variables?
 Different kinds of information takes different amounts of space.
 Types we have seen so far: int, float, str and objects (e.g. turtles).
- How can I tell strings from variables?
 Strings are surrounded by quotes (either single or double).

- Where is the final? When are we taking it?
 Wednesday, 20 December, 9-11am, 118 North.
- Can we do more on colors, images, numpy & matplotlib?
 Yes, we will in Labs 4, 6-9 & Lectures 6-9.
 Today, we'll focus on decisions, and logical expressions & circuits.
- What is pseudocode? Why do we use it?
 Pseudocode is the "informal high-level description of the operating principle of a computer program or other algorithm."
 We use it to write down the ideas, before getting deep into the details.
- What was that % symbol? Why is that math?
 It's the symbol for remainder (or modulus). Ex: 11 % 5 is 1.
- What are types of variables?
 Different kinds of information takes different amounts of space.
 Types we have seen so far: int, float, str and objects (e.g. turtles).
- How can I tell strings from variables?
 Strings are surrounded by quotes (either single or double).
 Variables names (identifiers) for memory locations are not.

- Where is the final? When are we taking it?
 Wednesday, 20 December, 9-11am, 118 North.
- Can we do more on colors, images, numpy & matplotlib?
 Yes, we will in Labs 4, 6-9 & Lectures 6-9.
 Today, we'll focus on decisions, and logical expressions & circuits.
- What is pseudocode? Why do we use it?
 Pseudocode is the "informal high-level description of the operating principle of a computer program or other algorithm."
 We use it to write down the ideas, before getting deep into the details.
- What was that % symbol? Why is that math?
 It's the symbol for remainder (or modulus). Ex: 11 % 5 is 1.
- What are types of variables?
 Different kinds of information takes different amounts of space.
 Types we have seen so far: int, float, str and objects (e.g. turtles).
- How can I tell strings from variables?
 Strings are surrounded by quotes (either single or double).
 Variables names (identifiers) for memory locations are not. Ex: 'num' vs. num.

Today's Topics

- Recap: Indexing, Slicing, & Decisions
- Logical Expressions
- Circuits

```
motto = "Mihi cura futuri"
print(motto[2:4])
print(motto[2:4].upper())
```

5 / 25

```
motto = "Mihi cura futuri"
print(motto[2:4])
print(motto[2:4].upper())
```


5 / 25

```
motto = "Mihi cura futuri"
print(motto[2:4])
print(motto[2:4].upper())
```

М	i	h	i		С	u	r	а		f	u	t	u	r	i
0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15

```
motto = "Mihi cura futuri"
print(motto[2:4])
print(motto[2:4].upper())
```

М	i	h	i		С	u	r	а		f	u	t	u	r	i
0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15

```
motto = "Mihi cura futuri"
print(motto[2:4])
print(motto[2:4].upper())
```

М	i	h	i		С	u	r	а		f	u	t	u	r	i
0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15

Output:

hi

6 / 25

```
motto = "Mihi cura futuri"
print(motto[2:4])
print(motto[2:4].upper())
```

М	i	h	i		С	u	r	а		f	u	t	u	r	i
0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15

Output:

hi

ΗI

```
ER = "The future belongs to those who believe in the beauty of their dreams."
print(ER.upper()[2], ER[13], ER[2], "a", ER[15], ER[14], "r R.")
```

ER = "The future belongs to those who believe in the beauty of their dreams." print(ER.upper()[2], ER[13], ER[2], "a", ER[15], ER[14], "r R.")

																	S
0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17

 $ER = "The future belongs to those who believe in the beauty of their dreams." \\ print(ER.upper()[2], ER[13], ER[2], "a", ER[15], ER[14], "r R.")$

T	h	е		f	u	t	u	r	e		b	e	- 1	0	n	g	s
0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17

ER = "The future belongs to those who believe in the beauty of their dreams."
print(ER.upper()[2], ER[13], ER[2], "a", ER[15], ER[14], "r R.")

T	h	е		f	u	t	u	r	е		b	e		0	n	g	s
0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17

ER = "The future belongs to those who believe in the beauty of their dreams." print(ER.upper()[2], ER[13], ER[2], "a", ER[15], ER[14], "r R.")

Т	h	е		f	u	t	u	r	е		b	е	ı	0	n	g	S
0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17

ER = "The future belongs to those who believe in the beauty of their dreams." print(ER.upper()[2], ER[13], ER[2], "a", ER[15], ER[14], "r R.")

Т	h	е		f	u	t	u	r	е		b	е			0	n	g	S
0	1	2	3	4	5	6	7	8	9	10	11	12	1:	3	14	15	16	17

T	h	е		f	u	t	u	r	е		b	е			0	n	g	S
0	1	2	3	4	5	6	7	8	9	10	11	12	1	3	14	15	16	17

Output:

Т	h	е		f	u	t	u	r	е		b	е			0	n	g	S
0	1	2	3	4	5	6	7	8	9	10	11	12	1	3	14	15	16	17

Output:

Eleanor R.

In Pairs or Triples...

Let's start with types & decisions:

```
#What are the types:
v1 = 2017
y2 = "2018"
print(type(v1))
print(type("y1"))
print(type(2017))
print(type("2017"))
print(type(y2))
print(type(y1/4.0))
x = int(y2) - y1
if x < 0:
    print(y2)
else:
```

```
cents = 432
dollars = cents // 100
change = cents % 100
if dollars > 0:
    print('$'+str(dollars))
if change > 0:
    quarters = change // 25
    pennies = change % 25
    print(quarters, "quarters")
    print("and", pennies, "pennies")
```

print(y1)

Python Tutor

```
#What are the types:
y1 = 2017
y2 = "2018"
print(type(y1))
print(type(2017))
print(type(2017))
print(type(2017))
print(type(y2))
print(type(y1/4.0))

x = int(y2) - y1
if x < 0:
    print(y2)
else:
    print(y1)
```

Decisions

Fig: Operation of if...elif...else statement

(programiz)

Side Note: Reading Flow Charts

(xkcd/518)

In Pairs or Triples

Predict what the code will do:

```
oriain = "Indian Ocean"
winds = 100
if (winds > 74):
    print("Major storm, called a ", end="")
    if origin == "Indian Ocean" or origin == "South Pacific":
        print("cyclone.")
    elif origin == "North Pacific":
        print("typhoon.")
    else:
        print("hurricane.")
visibility = 0.2
winds = 40
conditions = "blowing snow"
if (winds > 35) and (visibility < 0.25) and \setminus
      (conditions == "blowing snow" or conditions == "heavy snow"):
    print("Blizzard!")
```

Python Tutor

```
origin - 'Indian Ocean'
winds - 180
'indian' (Major storm, called a ", end-")
'if crigin - 'Indian Ocean' or origin - 'South Pacific':
'if origin - 'Indian Ocean' or origin - 'South Pacific':
'slif origin - 'North Pacific':
'print('Myshopen.')
'sle
'sprint('Myshopen.')
'visibility - 0.2
'winds - 0.3
'visibility - 0.2
'vinds - 10.3
'if (winds - 15) own (visibility - 0.25) owd \
'if (winds - 15) own (visibility - 0.25) owd \
'if (winds - 15) own (visibility - 0.25) owd \
'if (winds - 15) own (visibility - 0.25) owd \
'if (winds - 15) own (visibility - 0.25) owd \
'if (winds - 15) own (visibility - 0.25) owd \
'if (winds - 15) own (visibility - 0.25) owd \
'if (winds - 15) own (visibility - 0.25) owd \
'if (winds - 15) own (visibility - 0.25) owd \
'if (winds - 15) own (visibility - 0.25) owd \
'if (winds - 15) own (visibility - 0.25) owd \
'if (winds - 15) own (visibility - 0.25) owd \
'if (winds - 15) own (visibility - 0.25) owd \
'if (winds - 15) own (visibility - 0.25) owd \
'if (winds - 15) own (visibility - 0.25) owd \
'if (winds - 15) own (visibility - 0.25) owd \
'if (winds - 15) own (visibility - 0.25) owd \
'if (winds - 15) own (visibility - 0.25) owd \
'if (winds - 15) own (visibility - 0.25) owd \
'if (winds - 15) own (visibility - 0.25) owd \
'if (winds - 15) own (visibility - 0.25) owd \
'if (winds - 15) own (visibility - 0.25) owd \
'if (winds - 15) own (winds - 15)
```

(Demo with pythonTutor)

Logical Operators

and

in1		in2	returns:
False	and	False	False
False	and	True	False
True	and	False	False
True	and	True	True

Logical Operators

and

in1		in2	returns:
False	and	False	False
False	and	True	False
True	and	False	False
True	and	True	True

or

in1		in2	returns:
False	or	False	False
False	or	True	True
True	or	False	True
True	or	True	True

Logical Operators

and

in1		in2	returns:
False	and	False	False
False	and	True	False
True	and	False	False
True	and	True	True
or			
in1		in2	returns:
False	or	False	False
False	or	True	True
True	or	False	True
True	or	True	True

not

	in1	returns:
not	False	True
not	True	False

Circuit Demo

 $({\sf Demo\ with\ neuroproductions})$

In Pairs or Triples

Predict when these expressions are true:

• in1 or not in1:

• not(in1 or in2):

• (in1 and in2) and in3:

(If you finish above, try: tinyurl.com/y8le89kv.)

Circuit Demo

(Demo with neuroproductions)

Recap

- Decisions
- Logical Expressions
- Circuits

Lecture Slips

• On-line lecture slips: tinyurl.com/y8le89kv

CS Survey Talk

Prof. William Sakas

Department of Computer Science Hunter College & the Graduate Center Computational Linguistics

Writing Boards

• Turn in writing boards as you leave...