Exercise sheet 2

Numerical Analysis 2022

1 PS.2 (inner product is backwards stable)

Consider

$$f, \tilde{f}: \mathbb{R}^2 \times \mathbb{R}^2 \to \mathbb{R}, \qquad f(x,y) = \langle x, y \rangle, \qquad \tilde{f}(x,y) = \bigoplus_{k=1}^2 (x_k \odot y_k).$$

- a) Verify that \tilde{f} is partially backwards stable when considered as the map $\tilde{f}: \mathbb{R}^4 \to \mathbb{R}$, and recall that $x_k \odot y_k$ means $\mathrm{fl}(x_k) \odot \mathrm{fl}(y_k)$.
- b) What is the partial conditioning of $f: \mathbb{R}^4_+ \to \mathbb{R}$, where $\mathbb{R}_+ = (0, \infty)$.

2 PS.2 (p-q-formula)

Consider the p-q-formula:

$$f(x) = x^2 - 2px + q,$$
 $x_{1/2} = p \pm \sqrt{p^2 - q}$ (1)

a) Explain why myPQnaive does not pass the tests below.

Vieta's formula yields

$$x^{2} - 2px + q = (x - x_{1})(x - x_{2})$$
 \Rightarrow $x_{1} \cdot x_{2} = q, \quad x_{1} + x_{2} = 2p$

b) Write a function myPQ according to Vieta's formula. Check the testset to illustrate improvement upon myPQnaive.

3 PS.2 (two variance formulas)

If bad conditioned computations are not avoidable, then put them at the beginning, NOT at the end.

The sample variance of data $x_1, \ldots, x_n \in \mathbb{R}$ is

$$Var(x_1, \dots, x_n) = \frac{1}{n-1} \sum_{k=1}^n (x_k - \bar{x})^2, \qquad \bar{x} = \frac{1}{n} \sum_{k=1}^n x_k$$
 (2)

This formula coincides with

$$Var(x_1, \dots, x_n) = \frac{1}{n-1} \sum_{k=1}^{n} (x_k^2 - 2x_k \bar{x} + \bar{x}^2)$$
(3)

$$= \frac{1}{n-1} \left(\sum_{k=1}^{n} x_k^2 - 2n\bar{x}^2 + n\bar{x}^2 \right) \tag{4}$$

$$= \frac{1}{n-1} \left(\sum_{k=1}^{n} x_k^2 - n\bar{x}^2 \right) \tag{5}$$

$$= \frac{1}{n-1} \left(\sum_{k=1}^{n} x_k^2 - \frac{1}{n} \left(\sum_{k=1}^{n} x_k \right)^2 \right)$$
 (6)

For small variances, the first formula is more stable than the second.

First formula:

$$Var(x_1, \dots, x_n) = \frac{1}{n-1} \sum_{k=1}^n (x_k - \bar{x})^2, \qquad \bar{x} = \frac{1}{n} \sum_{k=1}^n x_k$$
 (7)

a) Implement the first formula for the sample variance.

Second formula:

$$Var(x_1, \dots, x_n) = \frac{1}{n-1} \left(\sum_{k=1}^n x_k^2 - \frac{1}{n} \left(\sum_{k=1}^n x_k \right)^2 \right)$$
 (8)

b) Implement the second formula for the sample variance.

The mean of the data

$$x_1 = 10,000,000.0 (9)$$

$$x_2 = 10,000,000.1 (10)$$

$$x_3 = 10,000,000.2 \tag{11}$$

is $\bar{x} = x_2$ and the variance is

$$Var(x_1, x_2, x_3) = 2(0.1)^2/2 = 0.01.$$
 (12)

c) Decide which formula provides the more accurate result.

4 PS.2 (cancelations)

Consider the following functions

$$f_1(x) = x^3 - 6ax^2 + 12a^2x - 8a^3 = (x - 2a)^3, \qquad a = \frac{1}{2} \cdot 10^7 - 1 = 4999999$$

$$f_2(x) = \frac{1}{x - \sqrt{x^2 - 1}}$$

$$f_3(x) = 1 - \sqrt{1 - x^2}$$

$$f_4(x) = x^9 - 18x^8 + 144x^7 - 672x^6 + 2016x^5 - 4032x^4 + 5376x^3 - 4608x^2 + 2304x - 512 = (x - 2)^9$$

$$f_5(x) = \frac{1}{1 + 2x} - \frac{1 - x}{1 + x}.$$

- a) Determine $\kappa_{f_1}(10^7)$. Which of the two versions in julia provides the more accurate value of $f_1(10^7)$?
- b) Evaluate f_2 at $x=10^7$ in julia. Reformulate f_2 to avoid cancelations and evaluate in julia again.
- c) Determine $\lim_{x\to 0} \kappa_{f_3}(x)$. Reformulate f_3 to avoid cancelations when evaluating in julia at $x=10^{-8}$.
- d) Plot both versions of f_4 in julia in the interval [1.925, 2.075].
- e) Determine $\lim_{x\to 0} \kappa_{f_5}(0)$. Plot f_5 in julia in the interval $[-5\cdot 10^{-8}, 5\cdot 10^{-8}]$. Reformulate f_5 and obtain a more accurate plot.