3.
$$2\frac{\partial^2 z}{\partial x^2} - 6\frac{\partial^2 z}{\partial x \partial y} + 3\frac{\partial^2 z}{\partial y^2} = 0$$

4.
$$t \frac{\partial^2 u}{\partial t^2} + 3 \frac{\partial^2 u}{\partial x \partial t} + x \frac{\partial^2 u}{\partial x^2} + 17 \frac{\partial u}{\partial x} = 0$$

Ans. Hyperbolic if $xt < \frac{9}{4}$, parabolic if xt =

$$5. \quad \frac{\partial^2 z}{\partial x^2} = \frac{\partial x}{\partial y}$$

(U.P., 11 Sei

$$6. \quad \frac{\partial^2 z}{\partial x^2} = \frac{\partial^2 z}{\partial y^2}$$

An

An

An

7.
$$\frac{\partial^2 z}{\partial x^2} + \frac{\partial^2 z}{\partial y^2} = 0$$

(U.P., II Semester, 2010)

OBJECTIVE TYPE QUESTIONS

Choose the correct alternative:

1. The complementary function of
$$(D^2 - 6DD' + 9D'^2) z = 0$$
 is

(i)
$$f_1(y+3x) + x f_2(y+3x)$$

(ii)
$$f_1(y-3x) + x f_2(y-3x)$$

(iii)
$$f_1(y+3x) + x f_2(y-3x)$$

(iv)
$$f_1(y+x) + x f_2(y+x)$$

2. The complementary function of
$$(D^2 - DD' - 6D'^2)z = 0$$
 is

(i)
$$f_1(y-3x)+f_2(y-2x)$$

$$(ii) f_1(y + 3x) + f_2(y - 2x)$$

(iii)
$$f_1(y+3x)-f_2(y-2x)$$

$$(iv) f_1 (y-3x) - f_2(y-2x)$$

3. The C.F. of
$$r = c^2 t$$
 is

(i)
$$f_1(y-cx) + f_2(y-cx)$$

(ii)
$$f_1(y-cx) + f_2(y+2x)$$

(iii)
$$f_1(y + cx) + f_2(y - cx)$$

(iv)
$$f_1(y - cx) - f_2(y - cx)$$

O ALQUAD CAMERA

4. The C. F. of
$$\frac{\partial^4 z}{\partial x^4} - \frac{\partial^4 z}{\partial y^4} = 0$$
 is

(i)
$$f_1(v-x) + f_2(v-x) + f_3(v-ix) + f_4(v-ix)$$

(ii) $f_1(v+x) - f_2(v-x) + f_3(v-ix)$

(ii)
$$f_1(v + x) - f_2(v - x) + f_3(v - ix) + f_4(v - ix)$$

(iii) $f_1(v - x) + f_2(v - x) + f_3(v + ix) + f_4(v - ix)$

(iii)
$$f_1(y-x) + f_2(y-x) + f_3(y+ix) + f_4(y-ix)$$

(iv) $f_1(y-cx) - f_2(y-cx) + f_3(y+ix) + f_4(y-ix)$

(iv)
$$f_1(y-cx) + f_3(y+ix) + f_4(y-ix)$$

5. The C. F. of $(D^3 - 6D^2D' + 11DD' - 6D'^3)z = 0$ is

(i)
$$f_1(y-x) + f_2(y+2x) + f_3(y-3x)$$

(ii) $f_1(y+x) + f_2(y+2x) + f_3(y-3x)$

(ii)
$$f_1(y + x) + f_2(y + 2x) + f_3(y - 3x)$$

(iii) $f_1(y - x) + f_3(y - 3x)$

(iii)
$$f_1(y-x) + f_2(y-2x) + f_3(y+3x)$$

(iv) $f_1(y+x) + f_2(y-2x) + f_3(y-3x)$

(iv)
$$f_1(y + x) + f_2(y - 2x) - f_3(y + 3x)$$

If the roots of the 15

6. If the roots of the A.E. are
$$m_1$$
, m_1 , m_2 then the C. F. is
$$(i) \ f_1(y + m_1 x) + x f_1(y + m_2) = 0$$

(i)
$$f_1(y + m_1 x) + x f_2(y + m_1 x) + f_3(y + m_2 x)$$

(ii) $f_1(y - m_1 x) + x f_2(y + m_1 x) + f_3(y + m_2 x)$

(ii)
$$f_1(y - m_1 x) + x f_2(y + m_1 x) + f_3(y + m_2 x)$$

(iii) $f_1(y + m_1 x) + x f_2(y + m_1 x) + f_3(y + m_2 x)$

(iii)
$$f_1(y + m_1x) + x f_2(y + m_1x) + f_3(y - m_2x)$$

(iv) $f_1(y + m_1x) + x f_2(y + m_1x) + f_3(y - m_2x)$

(iv)
$$f_1(y + m_1x) + x f_2(y + m_1x) - f_3(y + m_2x)$$

The solution of $D^4 = 0$:

7. The solution of
$$D^4z = 0$$
 is

(i)
$$z = f(y) + x f_2(y) - x^2 f_3(y) - x^3 f_4(y)$$

(ii)
$$z = f(y) - x f_2(y) + x^2 f_3(y) - x^3 f_4(y)$$

(iii)
$$z = f_1(y) + x f_2(y) + x^2 f_3(y) + x^3 f_4(y)$$

(iv)
$$z = f(y) + x f_2(y) + x^2 f_3(y) - x^3 f_4(y)$$

8. The complementary function of
$$\frac{\partial^3 z}{\partial x^3} - 3 \frac{\partial^3 z}{\partial^2 x \partial y} + 4 \frac{\partial^3 z}{\partial y^3} = e^{x + 2y}$$
 is

(i)
$$f_1(y-x) + f_2(y+x) + f_3(y+2x)$$

(ii)
$$f_1(y-x) + f_2(y+2x) + f_3(y+x)$$

(iii)
$$f_1(y+2x) + x f_2(y+2x) + f_3(y+x)$$

(iv)
$$f_1(y-x) + f_2(y+2x) + x f_3(y+2x)$$

9.
$$\frac{1}{D-2D}e^{2x+y}$$
 is equal to

(i)
$$2^{2x} \cdot y$$

$$(ii) \ \frac{1}{2} x e^{2x+y}$$

$$(iii) \quad \frac{1}{2}x^2e^{2x+y}$$

(iv)
$$xe^{2x}$$
 y

10. The rule for finding the P.I. of
$$f(D, D') z = F(x, y)$$
 is

(i)
$$\frac{1}{f(D,D')}F(x,y)$$

(ii)
$$\frac{1}{f(D,D')}F(x,y)$$

(iii)
$$\frac{1}{f(D,1)}F(x,y)$$

(iv)
$$\frac{1}{f(D,D')}F(x,m)$$

11. The rule for finding the P.I. of F (D, D') $z = e^{ax + by}$ is The $(i) \frac{e^{ax-by}}{F(a,b)}$ (1) (iii) $\frac{F(a,b)}{e^{ax+by}}$ $(iv) \frac{e^{ax+by}}{F(a^2,b^2)}$ (iii 12. The rule for finding the P.I. of $(D^2 + DD' + D'^2)$ $z = \sin(ax + by)$ is (i) $\frac{1}{(a^2, ab, b^2)} \sin(ax + by)$ (ii) $\frac{1}{(-a^2, -ab, b^2)} \sin(ax + by)$ (iii) $\frac{1}{(a,ab,b)}\sin(ax+by)$ (iv) $\frac{1}{(-a^2, -ab, -b^2)} \sin(ax + by)$ 13. P.I. of $(D^2 + DD' - 6D'^2) z = e^{2x + 3y}$ is Ans. (iv) 23. (i) $\frac{1}{x^2}e^{2x+3y}$ (ii) $\frac{1}{-44}e^{2x+3y}$ (iii) $+\frac{1}{44}e^{2x+3y}$ (iv) $\frac{1}{-8}e^{2x+3y}$ Ans. (ii) **14.** The P.I. of $(D^2 + 6DD' + D'^2) z = e^x$ is (iii) e^{x+y} 15. The P.I. of $(2D^2 - DD' + 4D'^2) z = \cos(2x + 3y)$ is (ii) $\frac{1}{-38}\cos(2x-3y)$ (i) $\frac{1}{38}\cos(2x-3y)$ (iii) $\frac{1}{-38}\cos(2x+3y)$ (iv) $\frac{1}{38}\cos(2x+3y)$ **16.** The *P.I.* of $(D^2 - DD' - 6D'^2)$ z = x + y is (i) $\frac{x^2y^2}{2}$ (ii) $\frac{x^2}{2}$ 17. The P.I. of $(D^2 - D'^2) z = x - y$ is (ii) $\frac{x^2y}{2}$ (iii) $\frac{xy^2}{2}$ (iv) x^2y (i) $\frac{x^3}{6} - \frac{x^2y}{2}$ (ii) $\frac{x^3}{6} + \frac{x^2y}{2}$ (iii) $\frac{x^3}{2} - \frac{x^2y}{6}$ $(iv) x^3 - x^2y$ **18.** The *P.I.* of $(D^2 - DD' - 6D'^2) z = xy$ is (i) $\frac{xy}{6} + \frac{x^4}{24}$ (ii) $\frac{xy^3}{6} + \frac{x^4}{24}$ (iii) $\frac{x^3y}{6} - \frac{x^4}{24}$ (iv) $\frac{x^3y}{6} + \frac{x^4}{24}$ Ans. (iv) The solution of $\frac{\partial^3 z}{\partial x^3} = 0$ is

(ii) $z = (1 + x + x^2) f(y)$

QUAD CAMERA $z = f_1(y) + x f_2(y) + x^2 f_3(y)$

24

(iii)
$$z = f_1(x) + yf_2(x) + y^2 f_3(x)$$

(iv)
$$z = (1 + y + y^2) f(x)$$

20. The solution of $\frac{\partial^2 z}{\partial x^2} - \frac{\partial^2 z}{\partial y^2} = 0$ is

(i)
$$z = f_1(y+x) + f_1(y-x)$$

(ii)
$$z = f_1(y+x) + f_2(y-x)$$

(iii)
$$z = f_2(y+x) + f_2(y-x)$$

(iv)
$$z = f(x^2 - y^2)$$

21. Particular integral of $(2D^2 - 3DD' + D'^2)z = e^{x+2y}$ is

(i)
$$xe^{x+2y}$$

(ii)
$$\frac{1}{2}e^{x+2y}$$

(iii)
$$-\frac{x}{2}e^{x+2y}$$

(ii)
$$\frac{1}{2}e^{x+2y}$$
 (iii) $-\frac{x}{2}e^{x+2y}$ (iv) $\frac{x^2}{2}e^{x+2y}$

22. Particular integral of $(D^2 - D'^2)z = \cos(x + y)$ is

$$(i) \ \frac{x}{2} \cos(x+y)$$

(ii)
$$x\sin(x+y)$$
 (iii) $x\cos(x+y)$ (iv) $\frac{x}{2}\sin(x+y)$

(iii)
$$x\cos(x+y)$$

$$(iv) \frac{x}{2} \sin(x+y)$$

23. The complementary function of $r - 7s + 6t = e^{x+y}$ is:

(i)
$$f_1(y-x) + f_2(y-6x)$$

(ii)
$$f_1(y+x) + f_2(y+6x)$$

(iii)
$$f_1(y+2x)+f_2(y-2x)$$

(iv)
$$f_1(y+3x)+f_2(y-4x)$$

(R.G.P.V Bhopal, II Semester Feb

24. $\frac{1}{f(D,D')}x^my^n =$

(i)
$$[f(D, D')]^{-1}x^my^n$$

(ii)
$$[f(D, D')]x^my^n$$

(iii)
$$[f(D, D')]x^m$$

(iv)
$$[f(D)]x^my^n$$

25. $\frac{1}{(D-mD)}F(x, y) =$

(i)
$$\int F(x, c - mx) dx$$

(ii)
$$\int F(c, c + mx) dx$$

(iii)
$$F(x, mx) dx$$

(iv)
$$\frac{d}{dx}F(x, mx-c)dx$$

Indicate True and false for the following equation The solution of the partial differential equation $(D^2 + DD' + 6D'^2)z = 0$ is

 $z = f_1(x) + f_2(x + y)$

The C.F. of $(D^2 - 3DD' - 4D'^2)$ z = 0 is

$$z = f_1(y+x) + f_2(y-x)$$

$$z = 0 \text{ is}$$

The solution of $(D^2 - 6DD' + 8D'^2) z = 0$ is

$$z = f_1 (y + 2x) + f_2(y + 4x)$$

$$z = f_1 (y + 2x) + f_2(y + 4x)$$

$$z = f_1 (D^2 - 5DD' - 6D'^2) z = 0 \text{ is}$$

28. The solution of
$$(D^2 - 6DD' + 8D')^2$$

$$z = f_1(y + 2x) + f_2(y + 4x)$$

$$z = f_1(y + 2x) + f_2(y + 4x)$$
29. The solution of the partial differential equation $(D^2 - 5DD' - 6D'^2)$ $z = 0$ is
$$z = f_1(y) + f_2(y + 2x) + f_3(y + 3x)$$

$$z = f_1(y) + f_2(y + 2x) + f_3(y + 2x)$$
30. The solution of the partial differential equation $(D^4 + 2D^2D'^2 + 4D'^4)$ $z = 0$ is
$$z = f_1(y + x) + x f_2(y + 2x)$$

$$z = f_1(y + x) + x f_2(y + 2x)$$

$$z = f_1(y + x) + x f_2(y + 2x)$$

$$z = f_1(y + x) + x f_2(y + 2x)$$

$$z = f_1(y + x) + x f_2(y + 2x)$$

 $= f(y + x) + x f_2(y + 2x)$

$$(y + x) + x f_2(y + 2x)$$

 $(p^3 - 3D^2D' + 4D'^3) z = 0$ is