Univerza *v Ljubljani* Fakulteta *za matematiko in fizik*o

Oddelek za fiziko Absorpcija žarkov γ in β

Poročilo pri fizikalnem praktikumu III

avtor: Kristofer Čepon Povšič

Asistentka: Jelena Vesić

December, 2022

Uvod

Poznamo 3 vrste razpada:

- α (helijeva jedra)
- β (elektron + antinevtrini, protoni + nevtrini)
- γ (fotoni)

Žarki γ iz radioaktivnega vira so približno monoenergijski, se v snovi absorpirajo in sipljejo. Tok sevanja ϕ_{γ} se pri prehodu skozi tanko rezino debeline dcx zmanjša za $d\phi_{\gamma} = -\mu\phi_{\gamma}dx$, kjer je μ ekstinkcijski (absorpcijski) koeficient. Prepuščeni tok pojema z večanjem debeline eksponentno:

$$\phi_{\gamma} = \phi_0 e^{-\mu x} = \phi_0 2^{-\frac{x}{l_{1/2}}} \tag{1}$$

kjer je $l_{1/2}=\frac{ln2}{u}$ in označuje razpolovno debelino.

Pri elektronu predpostavimo monoenergijski elektron z vstopno energijo W_p . Pri prehodu se sipljejo in izgubljajo energijo z ioniziranjem in vzbujanjem atomov. Z zmanjšanjem hitrosti elektrona se verjetnost za sipljanje povečuje. Snov ima debelino $R_0(W_\beta)$, kjer se elektron v njej popolnoma ustavi. Debelina je ponavadi podana v enotah t.i. površinske gostote $s=\rho x$, kjer je ρ gostota materiala. Doseg $R_0(W_\beta)$ je obratno sorazmeren z gostoto materiala ρ .

Elektroni pri sevanju β nimajo vsi enakih energij W_{β} , saj si energijsko razliko med končnim in začetnim $W_{\beta max}$ razdelijo z nevtrini. Pri debelinah $x \ll R_0(W_{\beta max})$ je odvisnost ϕ_0^{tot} približno eksponentna in enaka ϕ_{γ}

Naloga

- 1. Preveri, da izmerjena aktivnost sevanja pada s kvadratom razdalje
- 2. Izmeri sevanje ozadja
- 3. Izmeri odvisnost $\phi_0^{tot}(x)$ za sevanje β in $^{137}_{55}\mathrm{Cs}$ in določi doseg β za aluminij
- 4. Izmeri razpolovno debelino aluminija in svinca za žarke γ iz $^{137}_{55}\mathrm{Cs}$

Potrebščine

- $\bullet\,$ radioaktiven izvor $^{137}_{55}\mathrm{Cs}$ v svinčevem ohišju
- \bullet Geiger-Müllerjeva (GM) cev na stojalu in števec ST360
- \bullet škatla s ploščicami različnih površinskih gostot od $4.5\frac{mg}{cm^2}$ do $7435\frac{mg}{cm^2}$
- dodatne aluminijaste in svinčene ploščice različnih debelin

Navodilo

 $^{137}_{55}\mathrm{Cs}$ ima razpolovni čas 30.1 let, zato lahko privzamemo, da je aktivnost konstantna. Razpad poteka na dva načina, neposredno v osnovno stanje $^{137}_{56}\mathrm{Ba},$ po-

sredno preko vzbujenega stanja $^{137}_{56} \text{Ba}\cdot.$ Pri neposrednem (5.6% prehodov=dobimo β z $W_{\beta max}?1.176 MeV.$ Pri posrednem (94.4%) dobimo β z $W_{\beta max}=0.514 MeV$ in γ z $W_{\gamma max}=0.66 MeV.$ Sevanje zaznavamo z Geiger-Müllerjevo cevjo.

Napetost na GM cevi nastaavimo na 900V. Števec nam v nastavljenem času šteje razpade. Razpadi so slučajni pojav, zato večkratne meritve niso enake. Efektiven odmik je \sqrt{N} , če je N preštetih sunkov v GM cevi.

- 1. Izmerimo v najvišjem prekatu vsaj 1000 sunkov. To storim podobno še za druge oddaljenosti.
- 2. Odstanimo $^{137}_{\ 55}\mathrm{Ca}$ in 15 minut merimo razpade.
- 3. Vrnemo vir in dobimo čas za 1000 razpadov tako, da sta dva prekata pod virom in GM prosta. Merim aktivnost in vstavljam različne ovire različnih debelin.
- 4. Z aluminijastim ščitem ustavimo β sevanje. Z merjenjem aktivnosti za vsak material (ko vstavljamo ovire iz njega različnih debelin) lahko določimo $l_{1/2}$.

Rezultati

Sunki v odvisnosti od oddaljenosti in sevanje ozadja

Izmeril in izračunal sem sledeče vrednosti za čas t=20s zbiranja podatkov:

d[cm]	N	A[Bq]	\sqrt{A}^{-1}
0.01	1362.00	68.10	0.12
0.02	764.00	38.20	0.16
0.03	564.00	28.20	0.19
0.04	338.00	16.90	0.24
0.05	247.00	12.35	0.28
0.06	185.00	9.25	0.33
0.07	155.00	7.75	0.36
0.08	128.00	6.40	0.40
0.09	110.00	5.50	0.43
0.10	100.00	5.00	0.45

Naredim graf \sqrt{A}^{-1} v odvisnosti od razdalje:

Slika 1: Graf prikazuje aktivnost v odvisnosti od razdalje.

Izmerimo tudi sevanje ozadja in dobimo vrednost $A_B=331Bq\,$

Doseg sevanja β za aluminij

Z izmerjenimi podatki dobim sledeč graf:

Slika 2: Graf prikazuje doseg β sevanja za aluminij. Vidimo, da

Regresivna premica prečka ordinatno os pri $s=(1.6\pm0.1)\frac{kg}{m^2},$ kar je tudi doseg sevanja $\beta.$

Razpolovna debelina svinca za sevanje γ

Z izmerjenimi podatki dobim sledeč graf:

Slika 3: Graf prikazuje logaritemsko razmerje toka v odvisnosti od debeline plasti svinca

Iz enačbe izrazimo x:

$$\ln\left(\frac{\phi}{\phi_0}\right) = e^{-\mu x} \tag{2}$$

in iz grafa in naklonjenosti regresivne premice, ki predstavlja vrednost $\mu,$ dobimo sledečo vrednost razpolovne debeline svinca $l_{1/2}=(9.2\pm0.4)mm$