LA E χ 02

isagila

Собрано 10.06.2023 в 21:12

Содержание

1.	Лин	ейная алгебра	3
	1.1.	Евклидово пространство: определение, неравенство Коши-Буняковского. Нормированное евклидово	
		пространство.	3
	1.2.	Ортонормированный базис, ортогонализация базиса. Матрица Грама	3
	1.3.	Ортогональность вектора подпространству. Ортогональное дополнение. Теорема Пифагора	4
	1.4.	Задача о перпендикуляре	5
	1.5.	Линейный оператор: определение, основные свойства.	5
	1.6.	Обратный оператор. Взаимно-однозначный оператор. Ядро и образ оператора. Теорема о размерностях.	5
	1.7.	Матрица линейного оператора. Преобразование матрицы при переходе к новому базису.	7
	1.8.	Собственные числа и собственные векторы оператора. Теоремы о диагональной матрице оператора	7
	1.9.	Сопряженный и самосопряженный операторы в вещественном евклидовом пространстве: определения,	
		основные свойства. Свойства собственных чисел и собственных векторов самосопряженного оператора.	9
	1.10.	Структура образа самосопряженного оператора. Проектор. Спектральное разложение оператора	10
	1.11.	Ортогональная матрица и ортогональный оператор. Поворот плоскости и пространства как ортогональное	
		преобразование.	11
	1.12.	Билинейные формы: определения, свойства. Матрица билинейной формы.	11
		Квадратичная форма: определения, приведение к каноническому виду.	12
	1.14.	Знакоопределенность квадратичной формы: необходимые и достаточные. условия. Критерий Сильвестра.	12
2.		оференциальные уравнения	13
	2.1.	Обыкновенное дифференциальное уравнение (ДУ): задача о радиоактивном распаде и задача о падении	10
		тела. Определение ДУ, решения ДУ и их геометрический смысл. Задача Коши.	13
	2.2.	Уравнение с разделяющимися переменными	13
	2.3.	Однородное уравнение.	13
	2.4.	Уравнение в полных дифференциалах.	13
	2.5.	Линейное уравнение первого порядка. Метод Лагранжа.	14
	2.6.	Теорема существования и единственности решения задачи Коши. Особые решения	14
	2.7.	Уравнения <i>п</i> -ого порядка, допускающие понижение порядка	15
	2.8.	Линейные однородные дифференциальные уравнения (ЛОДУ) : определения, решение ЛОДУ $_2$ с посто-	1 1
		янными коэффициентами для случая различных вещественных корней характеристического уравнения.	15
	2.9.	Решение $\Pi O \Pi V_2$ с постоянными коэффициентами для случая вещественных кратных корней характери-	10
		стического уравнения.	16
		Решение $\Pi O \Pi Y_2$ с постоянными коэффициентами для случая комплексных корней характеристического	10
		уравнения.	16
		Свойства решений ЛОДУ ₂ : линейная независимость решений, определитель Вронского. Теоремы 1,2.	17
		Свойства решений ЛОДУ ₂ : линейная комбинация решений, линейная зависимость решений. Определитель	10
		Вронского. Теоремы о вронскиане.	18
		Свойства решений ЛОДУ ₂ : линейная комбинация решений, линейная зависимость решений. Теорема о	10
		структуре общего решения $\Pi O \Pi V_2$. Фундаментальная система решений (определение)	19
		Структура решении $\Pi \Pi \Delta S_2$: теоремы о структуре общего решения и решении ΔS с суммой правых частей. Структура решения $\Pi O \Delta S_n$: линейная независимость решений, нахождение фундаментальной системы	18
		решений по корням характеристического уравнения	20
		Решение ЛНУ ₂ с постоянными коэффициентами: специальная правая часть, поиск частного решения	20
		методом неопределенных коэффициентов	20
		Решение ЛНУ $_2$: метод вариации произвольных постоянных (Лагранжа)	$\frac{20}{22}$
		Системы дифференциальных уравнений: определения, решение методом исключения.	$\frac{22}{22}$
		Системы дифференциальных уравнений: определения, решение методом исключения. Системы дифференциальных уравнений: определения, решение матричным методом в случае различных	44
		вещественных собственных чисел	24
		Теория устойчивости: определение устойчивости по Ляпунову, фазовая плоскость, траектории ДУ.	-1
		Примеры устойчивого и неустойчивого решения	24

1. Линейная алгебра

1.1. Евклидово пространство: определение, неравенство Коши-Буняковского. Нормированное евклидово пространство.

Def 1.1.1. Скалярным произведением называется функция двух элементов линейного пространства $x, y \in L^n$ обозначаемая $(x, y) \to \mathbb{R}$, для которой выполнены аксиомы: $\forall x, y \in L^n, \lambda \in \mathbb{C}$

- 1. (x,y) = (y,x)
- 2. $(\lambda x, y) = \lambda(x, y)$
- 3. $(x_1 + x_2, y) = (x_1, y) + (x_2, y)$
- 4. $(x,x) \ge 0$, $(x,x) = 0 \implies x = 0$

Def 1.1.2. Линейное пространство с введенным скалярным произведением называется евклидовым пространством E^n .

3амечание 1.1.3. Если $L=C_{[a;b]},$ то скалярное произведение обычно определяется как $(f,g)=\int_a^b f(x)g(x)\mathrm{d}x$

Теорема 1.1.4. Неравенство Коши-Буняковского

$$(x,y)^2 \leqslant (x,x)(y,y)$$

Доказательство. Рассмотрим скалярное произведение:

$$(\lambda x - y, \lambda x - y) \ge 0$$
$$(\lambda x - y, \lambda x - y) = \lambda^{2}(x, x) - 2\lambda(x, y) + (y, y) \ge 0$$

Полученное выражение можно рассмотреть как квадратное уравнение относительно λ . Т.к. оно неотрицательно $\forall \lambda$, то его дискриминант будет ≤ 0 . Таким образом

$$4\lambda^{2}(x,y)^{2} - 4\lambda^{2}(x,x)(y,y) \leq 0$$
$$(x,y)^{2} - (x,x)(y,y) \leq 0$$
$$(x,y)^{2} \leq (x,x)(y,y)$$

Def 1.1.5. Нормой называется функция одного элемента линейного пространства $x \in L^n$, обозначаемая ||x|| и определяемая аксиомами: $\forall x, y \in L^n, \lambda \in \mathbb{C}$:

- 1. $\|\lambda x\| = \lambda \|x\|$
- 2. $||x + y|| \le ||x|| + ||y||$
- 3. $||x|| \ge 0$, $||x|| = 0 \implies x = 0$

Def 1.1.6. Евклидово пространство называется нормированным, если в нем определена норма.

Замечание 1.1.7. Чаще всего норма определяется как $||x|| = \sqrt{(x,x)}$.

1.2. Ортонормированный базис, ортогонализация базиса. Матрица Грама.

Def 1.2.1. Углом между двумя элементами Евклидова пространства называется

$$\cos \angle(x,y) = \frac{(x,y)}{\|x\| \cdot \|y\|}$$

Def 1.2.2. Для элемента Евклидова пространства ортогональны, если их скалярное произведение равно нулю.

$$x \perp y \iff (x, y) = 0$$

Теорема 1.2.3. Во всяком E^n можно выделить ортонормированный базис размера n.

Доказательство. Пусть у нас есть базис $B = \{\beta_1, \dots, \beta_n\}$. Ортогонализируем его, полученный базис обозначим $\mathcal{E}' = \{\mathbf{e}'_1, \dots, \mathbf{e}'_n\}$. Этот базис можно нормировать и получить искомый ортонормированный базис $\mathcal{E} = \{\mathbf{e}_1, \dots, \mathbf{e}_n\}$.

Процесс ортогонализации Грама-Шмидта:

Будем добавлять векторы в базис $\mathcal E$ из базиса B по-одному:

База: начнем с одного произвольного вектора β_1 . Тогда $e_1' = \beta_1$.

Переход: пусть у нас уже выделен набор из k-1 ортогональных векторов $\{e'_1, \ldots, e'_{k-1}\}$ и в него требуется добавить вектор β_k .

Будем искать \mathfrak{e}'_k в виде

$$\mathbf{e}'_k = \beta_k + \lambda_1 \mathbf{e}'_{k-1} + \lambda_2 \mathbf{e}'_{k-2} + \ldots + \lambda_{k-1} \mathbf{e}'_1$$

Чтобы \mathfrak{e}'_k был ортогонален остальным векторам уже построенной системы, необходимо, чтобы скалярные произведение \mathfrak{e}'_k с остальными векторами системы равнялись нулю. Рассмотрим на примере \mathfrak{e}'_1 :

$$(e'_k, e'_1) = (\beta_k, e'_1) + \lambda_1(e'_{k-1}, e'_1) + \ldots + \lambda_{k-1}(e'_1, e'_1) = 0$$

Учитывая то, что построенная система ортогональна, то $(e'_i, e'_j) = 0$ (i, j < k). Значит выражение выше упрощается и остается:

$$(\beta_k, \mathbf{e}_1') + \lambda_{k-1}(\mathbf{e}_1', \mathbf{e}_1') = 0$$
$$\lambda_{k-1} = -\frac{(\beta_k, \mathbf{e}_1')}{(\mathbf{e}_1', \mathbf{e}_1')}$$

Аналогично можно получить оставшиеся коэффициенты λ_i . Тогда добавляемый в систему вектор \mathfrak{e}'_k будет иметь вид:

$$\mathbf{e}'_k = \beta_k - \frac{(\beta_k, \mathbf{e}'_{k-1})}{(\mathbf{e}'_{k-1}, \mathbf{e}'_{k-1})} \cdot \mathbf{e}'_{k-1} - \dots - \frac{(\beta_k, \mathbf{e}'_1)}{(\mathbf{e}'_1, \mathbf{e}'_1)} \cdot \mathbf{e}'_1$$

Def 1.2.4. Матрицей Грама называется матрица составленная из скалярных произведений

$$\begin{pmatrix} (\mathbb{e}_1, \mathbb{e}_1) & \dots & (\mathbb{e}_k, \mathbb{e}_1) \\ \vdots & \ddots & \vdots \\ (\mathbb{e}_1, \mathbb{e}_k) & \dots & (\mathbb{e}_k, \mathbb{e}_k) \end{pmatrix}$$

Замечание 1.2.5. В ортогональном базисе матрица Грама диагональная, а в ортонормированном — единичная.

1.3. Ортогональность вектора подпространству. Ортогональное дополнение. Теорема Пифагора.

Def 1.3.1. Пусть дано Евклидово пространство E^n . Элемент $h \in E^n$ называется ортогональным (перпендикулярным) подпространству $G \subset E^n$, если $\forall x \in G : h \perp x$.

Следствие 1.3.2. Выделим в подпространстве G базис $\mathcal{E} = \{e_1, \dots, e_k\}$. Если $h \perp e_i \forall e_i \in \mathcal{E}$, то $h \perp G$.

Доказательство. Любой элемент $x \in G$ можно представить в виде $x = \sum_{i=1}^k \lambda_i \mathbf{e}_i$. Рассмотрим скалярное произведение (h,x). По свойствам линейности разложим его на $\sum_{i=1}^k \lambda_i (h,\mathbf{e}_i)$. Т.к. h ортогонален каждому из базисных векторов, то полученная сумма будет равна нулю, значит h ортогонален любому $x \in G$.

Def 1.3.3. Пусть дано Евклидово пространство E^n . Ортогональным дополнением F к подпространству $G \subset E^n$ называется совокупность векторов $h \perp G$.

Замечание 1.3.4. Из определения 1.3.1 следует, что F также является подпространством E^n .

Теорема 1.3.5. Евклидово пространство E^n является прямой суммой подпространства $F \subset E^n$ и его ортогонального $G = F^{\perp}$.

$$E^n = F \oplus F^{\perp}$$

Доказательство. В Евклидовом пространстве E^n выделим базис, после чего разложим произвольный элемент пространства $x \in E^n$ по этому базису:

$$\mathcal{E} = \underbrace{\{\underline{\mathbf{e}}_1, \dots, \underline{\mathbf{e}}_k, \underline{\mathbf{e}}_{k+1}, \dots \underline{\mathbf{e}}_n\}}_{\text{Basinc } G}$$

$$x = \underbrace{x_1\underline{\mathbf{e}}_1 + \dots + x_k\underline{\mathbf{e}}_k}_{\overline{x}} + \underbrace{x_{k+1}\underline{\mathbf{e}}_{k+1} + \dots + x_n\underline{\mathbf{e}}_n}_{\hat{x}} = \overline{x} + \hat{x}$$

TODO: Дальше в конспекте что-то непонятное

TODO: Теорема Пифагора?

1.4. Задача о перпендикуляре.

1.5. Линейный оператор: определение, основные свойства.

Def 1.5.1. Пусть V^n, W^m линейные пространства. Отображение $\mathcal{A}: V^n \to W^m$, которое $\forall x \in V^n$ сопоставляет $y \in W^m$ называется линейным оператором при выполнении следующих условий: $\forall x_1, x_2 \in V^n, \lambda \in \mathbb{C}$:

- 1. $A(x_1 + x_2) = Ax_1 + Ax_2$
- 2. $\mathcal{A}(\lambda x_1) = \lambda(\mathcal{A}x_1)$

3амечание 1.5.2. y = Ax означает, что y порождается применением оператора A

Обозначим некоторые базовые свойства линейных операторов. Пусть $\mathcal{A}, \mathcal{B} \colon V^n \to W^m$ это линейные операторы, тогда определены:

- 1. Cymma (A + B)x = Ax + Bx
- 2. Умножение на число $(\lambda A)x = \lambda (Ax)$
- 3. Нулевой оператор $\Theta x = 0, \forall x \in V^n$
- 4. Противоположный оператор $-\mathcal{A} = (-1) \cdot \mathcal{A}$

Далее рассмотрим операторы $\mathcal{A}, \mathcal{B}, \mathcal{C} \colon V^n \to V^n$ действующие в одном линейном пространстве. Для таких операторов определена композиция (произведение) $(\mathcal{A} \cdot \mathcal{B})x = \mathcal{A}(\mathcal{B}x)$. В общем случае она не коммутативна $\mathcal{A} \cdot \mathcal{B} \neq \mathcal{B} \cdot \mathcal{A}$.

Свойства композиции операторов:

- 1. $\lambda(\mathcal{A} \cdot \mathcal{B}) = (\lambda \mathcal{A}) \cdot \mathcal{B}$
- 2. $(A + B) \cdot C = A \cdot C + B \cdot C$
- 3. $A \cdot (B + C) = A \cdot B + A \cdot C$
- 4. $\mathcal{A} \cdot (\mathcal{B} \cdot C) = (\mathcal{A} \cdot \mathcal{B}) \cdot \mathcal{C}$

Def 1.5.3. Композиция оператора самим с собой n раз называется n-ой степенью оператора: $\mathcal{A}^n = \underbrace{A \cdot \ldots \cdot A}$

Для степени оператора справедливо равенство $\mathcal{A}^{n+m} = \mathcal{A}^n \cdot \mathcal{A}^m$

1.6. Обратный оператор. Взаимно-однозначный оператор. Ядро и образ оператора. Теорема о размерностях.

Def 1.6.1. Оператор $I: V^n \to V^n$ называется тождественным оператором, если $Ix = x, \forall x \in V^n$.

Def 1.6.2. Пусть даны операторы $\mathcal{A}, \mathcal{B}: V^n \to V^n$. Оператор \mathcal{B} называется обратным для оператора \mathcal{A} , если их композиция равна тождественному оператору.

$$\mathcal{B} = \mathcal{A}^{-1} \iff \mathcal{A} \cdot \mathcal{B} = \mathcal{B} \cdot \mathcal{A} = I$$

Def 1.6.3. Оператор $A: V^n \to V^n$ называется взаимно-однозначным, если разным $x \in V^n$ сопоставляются разные $y \in V^n$.

$$x \neq y \implies \mathcal{A}x \neq \mathcal{A}y \quad \forall x, y \in V^n$$

Lm 1.6.4. Если оператор $\mathcal{A}: V^n \to V^n$ взаимно-однозначный, то $\mathcal{A}x = 0 \implies x = 0$.

Доказательство. От противного

$$\exists x = x_1 - x_2 \neq 0 \implies x_1 \neq x_2$$

$$\mathcal{A}x = \mathcal{A}(x_1 - x_2) = \mathcal{A}x_1 - \mathcal{A}x_2 = 0 \implies \mathcal{A}x_1 = \mathcal{A}x_2$$

Это невозможно, т.к. ${\cal A}$ взаимно-однозначный.

Теорема 1.6.5. Взаимно-однозначный оператор переводит линейно-независимый набор в линейно-независимый набор.

Доказательство. Пусть дан взаимно-однозначный оператор $\mathcal{A}\colon V^n\to V^n$ и линейно-независимый набор $\{x_1,\ldots,x_n\}$. Построим набор образов $\{\mathcal{A}x_1,\ldots,\mathcal{A}x_n\}$. Составим его нулевую линейную комбинацию, после чего воспользуемся линейностью оператора:

$$\lambda_1 \mathcal{A} x_1 + \ldots + \lambda_n \mathcal{A} x_n = 0$$
$$\mathcal{A} \Big(\lambda_1 x_1 + \ldots + \lambda_n x_n \Big) = 0$$

По 1.6.4 получаем, что $\lambda_1 x_1 + \ldots + \lambda_n x_n = 0$. Т.к. набор $\{x_1, \ldots, x_n\}$ линейно независим, то $\forall \lambda_i = 0$

Следствие 1.6.6. Взаимно-однозначный оператор переводит базис в базис.

Теорема 1.6.7. Оператор $\mathcal{A}: V^n \to V^n$ взаимно-однозначный $\iff \exists \mathcal{A}^{-1}$.

 \mathcal{A} оказательство. \Longrightarrow Пусть $x \xrightarrow{\mathcal{A}} y$. Рассмотрим оператор \mathcal{B} такой, что $y \xrightarrow{\mathcal{B}} x$. Т.к. \mathcal{A} взаимно-однозначный, то $\mathcal{A} \cdot \mathcal{B} = I$.

⇐ От противного

$$\exists x_1 \neq x_2, \mathcal{A}x_1 = \mathcal{A}x_2 = x$$

$$x_1 = \mathcal{A}^{-1}\mathcal{A}x_1 = \mathcal{A}^{-1}x$$

$$x_2 = \mathcal{A}^{-1}\mathcal{A}x_2 = \mathcal{A}^{-1}x$$

$$x_1 \neq x_2 \implies \mathcal{A}^{-1}x \neq \mathcal{A}^{-1}x$$

Получили противоречие.

Def 1.6.8. Пусть дан линейный оператор $\mathcal{A}: V^n \to W^m$. Множество $\ker \mathcal{A} = \{x \in V^n \mid \mathcal{A}x = 0\}$ называется ядром оператора \mathcal{A} .

 $\underline{\mathbf{Lm}}$ 1.6.9. Оператор $\mathcal{A}: V^n \to V^n$ взаимно-однозначный $\Longrightarrow \operatorname{Ker} \mathcal{A} = \{0\}.$

Доказательство. От противного, пусть $x \neq 0 \in \text{Ker } \mathcal{A}$. Тогда по 1.6.4 \mathcal{A} 0 = 0, но в то же время $\mathcal{A}x = 0, x \neq 0$. Нарушается взаимно-однозначность.

Def 1.6.10. Пусть дан линейный оператор $\mathcal{A}: V^n \to W^m$. Множество $\operatorname{Im} \mathcal{A} = \{y \in W^m \mid \exists x \in V^n \colon y = \mathcal{A}x\}$ называется образом оператора \mathcal{A} .

Теорема 1.6.11. Пусть дан оператор $\mathcal{A}: V^n \to V^n$. Тогда

$$\dim \operatorname{Ker} \mathcal{A} + \dim \operatorname{Im} \mathcal{A} = n$$

 \mathcal{A} оказательство. Т.к. $\operatorname{Ker} \mathcal{A}$ и $\operatorname{Im} \mathcal{A}$ это подпространства V^n , то $\exists W \subset V^n \mid W \oplus \operatorname{Ker} A = V^n$. Тогда $\dim W + \dim \operatorname{Ker} A = n$. Требуется доказать, что $\dim W = \dim \operatorname{Im} \mathcal{A}$.

Сначала покажем, что $\mathcal{A} \colon W \to \operatorname{Im} \mathcal{A}$ взаимно-однозначный. От противного:

$$\exists x_1 \neq x_2 \in W \colon \mathcal{A}x_1 = \mathcal{A}x_2$$

$$\mathcal{A}x_1 = \mathcal{A}x_2 \implies \mathcal{A}(x_1 - x_2) = 0 \implies (x_1 - x_2) \in \operatorname{Ker} \mathcal{A}$$

$$x_1, x_2 \in W \implies (x_1 - x_2) \in W$$

Ho это невозможно, т.к. $W \oplus \operatorname{Ker} A = V^n \implies W \cap \operatorname{Ker} A = \emptyset$.

В Іт \mathcal{A} выделим базис $\{y_1, \dots, y_k\}$. Т.к. \mathcal{A} взаимно-однозначный, то выделенный базис порождается линейнонезависимым набором (см. 1.6.5) $\{x_1, \dots, x_k\}, x_i \in W$. Значит dim $W \geqslant$ dim Im \mathcal{A} .

Предположим, что $\dim W > \dim \operatorname{Im} \mathcal{A}$. Обозначим $\dim W = p$, дополним систему $\{x_1, \dots, x_k\}$ до p линейнонезависимых векторов. Т.к. оператор $\mathcal{A} \colon W \to \operatorname{Im} \mathcal{A}$ взаимно-однозначный, то он должен перевести полученную линейно-независимую систему в линейно-независимую . Однако это невозможно, т.к. $\operatorname{Im} \mathcal{A}$ имеет базис меньшей размерности.

Замечание 1.6.12. Можно доказать, что

$$\begin{cases} V_1 \subset V^n \\ V_2 \subset V^n \\ \dim V_1 + \dim V_2 = n \end{cases} \implies \exists \mathcal{A} \colon V^n \to V^n, \operatorname{Ker} \mathcal{A} = V_1, \operatorname{Im} \mathcal{A} = V_2$$

Def 1.6.13. Рангом оператора $\mathcal{A} \colon V^n \to V^n$ называется размерность его образа:

$$\operatorname{rang} \mathcal{A} = \dim \operatorname{Im} \mathcal{A}$$

Пусть $\mathcal{A},\mathcal{B}\colon V^n\to V^n$. Рассмотрим некоторые свойства ранга линейного оператора:

- 1. Если оператор \mathcal{A} взаимно-однозначный, то rang $\mathcal{A} = n$ (это следствие из 1.6.11).
- 2. $\operatorname{rang}(A \cdot B) \leqslant \operatorname{rang} A, \operatorname{rang}(A \cdot B) \leqslant \operatorname{rang} B$
- 3. $\operatorname{rang}(\mathcal{A} \cdot \mathcal{B}) = \operatorname{rang} \mathcal{A} + \operatorname{rang} \mathcal{B} \dim V$

1.7. Матрица линейного оператора. Преобразование матрицы при переходе к новому базису.

Пусть дан оператор $\mathcal{A}: V^n \to V^n$ и $x, y \in V^n$, $\mathcal{A}x = y$.

Выделим в V^n базис, разложим x по этому базису. После чего применим к нему оператор \mathcal{A} :

$$\mathcal{E} = \{\mathbf{e}_1, \dots, \mathbf{e}_n\}$$
$$x = x_1 \mathbf{e}_1 + \dots + x_n \mathbf{e}_n$$
$$y = x_1 \mathcal{A} \mathbf{e}_1 + \dots + x_n \mathcal{A} \mathbf{e}_n$$

Далее применим оператор к каждому из базисных векторов:

$$\mathcal{A}e_i = a_{1,i}e_1 + \dots + a_{n,i}e_n$$

$$y = x_1 \Big(a_{1,1}e_1 + \dots + a_{n,1}e_n \Big) + \dots + x_n \Big(a_{1,n}e_1 + \dots + a_{n,n}e_n \Big)$$

$$y = e_1 \Big(x_1 a_{1,1} + \dots + x_n a_{1,n} \Big) + \dots + e_n \Big(x_1 a_{n,1} + \dots + x_n a_{n,n} \Big)$$

Заметим, что y также можно разложить по базису. Составим СЛАУ и запишем её в матричном виде:

$$\begin{cases} x_1 a_{1,1} + \ldots + x_n a_{1,n} = y_1 \\ \vdots & \ddots & \vdots \\ x_n a_{n,1} + \ldots + x_n a_{n,n} = y_n \end{cases} \iff AX = Y$$

Def 1.7.1. Матрицей оператора \mathcal{A} в данном базисе называется матрица составленная из столбцов-коэффициентов разложения образов базисных векторов по этому же базису.

Замечание 1.7.2. Если $A^{-1} = A^T$, то матрица оператора называется ортогональной.

ТООО: Переход к новому базису

1.8. Собственные числа и собственные векторы оператора. Теоремы о диагональной матрице оператора.

Def 1.8.1. Пусть дан оператор $A: V^n \to V^n$ с матрицей A в некотором базисе $\mathcal{E} = \{e_i\}_{i=1}^n$. Тогда многочлен

$$\det(A - \lambda E)$$

относительно $\lambda \in \mathbb{R}$ называется характеристическим многочленом.

Def 1.8.2. Пусть дан оператор $A: V^n \to V^n$. Подпространство $U \subseteq V^n$ называется *инвариантным*, если

$$\forall x \in U : \mathcal{A}x \in U$$

Def 1.8.3. Пусть дан оператор $\mathcal{A} \colon V^n \to V^n$ с матрицей A в некотором базисе $\mathcal{E} = \{ e_i \}_{i=1}^n$. $x \neq 0 \in V^n$ называется собственным вектором для оператора \mathcal{A} , если

$$\exists \lambda \in \mathbb{C} \colon \mathcal{A}x = \lambda x$$

Тогда λ называется собственным числом (собственным значением) оператора \mathcal{A} .

Теорема 1.8.4. Собственные числа оператора являются корнями характеристического многочлена $\det(A - \lambda E)$.

Доказательство. \Longrightarrow Пусть λ – собственное число, тогда

$$\exists x \neq 0 \in V^n \mid \mathcal{A}x = \lambda x$$

$$\mathcal{A}x = \lambda x \implies Ax = (\lambda E)x \implies (A - \lambda E)x = 0$$

Теперь рассмотрим оператор $\mathcal{B}\colon V^n\to V^n, \mathcal{B}=\mathcal{A}-\lambda I$:

$$(A - \lambda E)x = 0 \implies \mathcal{B}x = 0$$

$$x \neq 0 \in \operatorname{Ker} \mathcal{B} \implies \dim \operatorname{Ker} \mathcal{B} > 0$$

$$\left\{ \dim \operatorname{Ker} \mathcal{B} + \dim \operatorname{Im} \mathcal{B} = n \text{ (1.6.11)} \right\} \implies \dim \operatorname{Im} \mathcal{B} < n$$

$$\dim \operatorname{Im} \mathcal{B} < n \implies \operatorname{rang} \mathcal{B} < n \implies \operatorname{rang} \mathcal{B} < n$$

$$\operatorname{rang} \mathcal{B} < n \implies \operatorname{rang} \mathcal{A} = \lambda E = 0$$

⇐ Аналогичные рассуждения, но в обратную сторону

$$\det(A - \lambda E) = 0 \implies \operatorname{rang}(A - \lambda E) < n \implies \operatorname{rang} B < n$$

$$\operatorname{rang} B < n \implies \operatorname{rang} B < n \implies \dim \operatorname{Im} B < n$$

$$\left\{ \dim \operatorname{Ker} B + \dim \operatorname{Im} B = n \ (1.6.11) \right\} \implies \dim \operatorname{Ker} B > 0$$

$$\dim \operatorname{Ker} B > 0 \implies \exists x \neq 0 : Bx = 0$$

$$Bx = 0 \implies (A - \lambda E)x = 0 \implies Ax = \lambda x$$

Def 1.8.5. Полученное в процессе доказательства 1.8.4 уравнение

$$(A - \lambda E)x = 0$$

называют характеристическим (вековым) уравнением.

Def 1.8.6. Базис, составленный из собственных векторов, называют собственным базисом.

Теорема 1.8.7. Матрица оператора в собственном базисе диагональна.

Доказательство. Матрица оператора в некотором базисе это коэффициенты разложения образов базисных векторов по этому же базису. Рассмотрим первый базисный вектор:

$$\begin{cases} \mathcal{A}\mathbf{e}_1 = a_{1,1}\mathbf{e}_1 + \dots + a_{n,1}\mathbf{e}_n \\ \mathcal{A}\mathbf{e}_1 = \lambda_1\mathbf{e}_1 \end{cases} \implies \begin{cases} a_{1,1} = \lambda_1, \\ a_{i,1} = 0 \ \forall i \neq 1 \end{cases}$$

Аналогично можно рассмотреть все оставшиеся базисные векторы. Таким образом матрица оператора в базисе из собственных векторов будет иметь вид

$$A = \begin{pmatrix} \lambda_1 & 0 & \dots & 0 \\ 0 & \lambda_2 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & \lambda_n \end{pmatrix}$$

Следствие 1.8.8. Если у оператора $\mathcal{A}\colon V^n\to V^n$ есть n различных собственных чисел, то существует базис, в котором матрица этого оператора диагональна.

Доказательство. Т.к. все собственные числа различны, то соответствующие им n собственных векторов будут линейно независимы (см. 1.8.9). Составим из них базис, по только что доказанной теореме 1.8.7 матрица оператора \mathcal{A} в этом базисе будет диагональной.

Теорема 1.8.9. Пусть дан оператор $\mathcal{A}: V^n \to V^n$, у которого m различных собственных чисел $\lambda_1, \dots, \lambda_m$. Тогда система из собственных векторов $\mathfrak{e}_1, \dots, \mathfrak{e}_m$, соответствующих этим собственным числам, линейно-независима.

Доказательство. По индукции.

База: $m=1, \{e_1\}$ линейно-независима, т.к. e_1 ненулевой по определению.

Переход: Пусть $\{e_1, \dots, e_k\}$ линейно-независима, покажем, что система $\{e_1, \dots, e_k, e_{k+1}\}$ также линейно-независима. Составим её нулевую линейную комбинацию, а потом применим к ней оператор:

$$\mathcal{A}\left(c_1\mathbf{e}_1 + \dots + c_{k+1}\mathbf{e}_{k+1}\right) = 0$$

$$c_1\mathcal{A}\mathbf{e}_1 + \dots + c_{k+1}\mathcal{A}\mathbf{e}_{k+1} = 0$$

$$c_1\lambda_1 + \dots + c_{k+1}\lambda_{k+1} = 0$$

ТООО: В конспекте что-то непонятное дальше

1.9. Сопряженный и самосопряженный операторы в вещественном евклидовом пространстве: определения, основные свойства. Свойства собственных чисел и собственных векторов самосопряженного оператора.

Def 1.9.1. Рассмотрим оператор $\mathcal{A}: E_{\mathbb{R}}^n \to E_{\mathbb{R}}^n$. Оператор \mathcal{A}^* называется сопряженным оператором для \mathcal{A} , если

$$(\mathcal{A}x, y) = (x, \mathcal{A}^*y)$$

Def 1.9.2. Альтернативное определение: оператор \mathcal{A}^* называется сопряженным оператором для \mathcal{A} , если в любом ортонормированном базисе $A^* = A^T$.

Теорема 1.9.3. Равносильность определений 1.9.1 и 1.9.2 сопряженного оператора.

Доказательство. Выберем произвольный ортонормированный базис \mathcal{E} . В нем векторам x и y соответствуют координатные столбцы X и Y.

Скалярное произведение $\mathcal{A}x, y$ можно записать в виде $(AX)^TY$, т.к. мы работает в ортонормированном базисе. Преобразуем это выражение:

$$(AX)^T Y = X^T A^T Y = X^T A^* Y \implies (x, \mathcal{A}^* y)$$

Некоторые базовые свойства сопряженного оператора:

- 1. $I^* = I$: (Ix, y) = (x, y) = (x, Iy)
- 2. $(A + B)^* = A^* + B^*$
- 3. $(\lambda A)^* = \overline{\lambda} A^*$
- 4. $(A^*)^* = A$
- 5. $(\mathcal{A} \cdot \mathcal{B})^* = \mathcal{B}^* \cdot \mathcal{A}^*$
- 6. Для любого оператора существует единственный сопряженный оператор.

Def 1.9.4. Самосопряженный оператор это оператор, который равен своему сопряженному.

$$\mathcal{A} = \mathcal{A}^*$$

 ${\it Cnedcmeue} \ 1.9.5. \ {\it Matpuqa} \ {\it camoconpяженного} \ {\it onepatopa} \ {\it cummetpuqeckas}: \ {\it A} = {\it A}^T = {\it A}^*$

Далее рассмотрим некоторые свойства самосопряженного оператора.

<u>Lm</u> 1.9.6. Собственные числа самосопряженного оператора всегда вещественные.

Доказательство. Пусть \mathcal{A} — самосопряженный оператор. Рассмотрим собственное число λ и собственный вектор x, соответствующий ему:

$$(\mathcal{A}x, x) \in \mathbb{R}$$
$$(\mathcal{A}x, x) = (\lambda x, x) = \lambda ||x||^{2}$$
$$\begin{cases} \lambda ||x||^{2} \in \mathbb{R} \\ ||x||^{2} \in \mathbb{R} \end{cases} \implies \lambda \in \mathbb{R}$$

 $\underline{\mathbf{Lm}}$ 1.9.7. Собственные векторы самосопряженного оператора, соответствующие различным собственным числам, ортогональны.

Доказательство. Пусть \mathcal{A} — самосопряженный оператор. Рассмотрим два собственных числа $\lambda_1 \neq \lambda_2$ и собственные векторы x_1, x_2 , соответствующий им:

$$\begin{cases} (\mathcal{A}x_1, x_2) = (x_1, \mathcal{A}x_2) \\ (\mathcal{A}x_1, x_2) = \lambda_1(x_1, x_2) \\ (x_1, \mathcal{A}x_2) = \lambda_2(x_1, x_2) \end{cases} \implies \lambda_1(x_1, x_2) = \lambda_2(x_1, x_2) \implies (\lambda_1 - \lambda_2)(x_1, x_2) = 0$$

Т.к. $\lambda_1 \neq \lambda_2$, то первая скобка не может равняться нулю, значит $(x_1, x_2) = 0 \implies x_1 \bot x_2$.

 $\underline{\text{Lm}}$ 1.9.8. У самосопряженного оператора n собственных векторов, образующих ортонормированный базис.

Замечание 1.9.9. Если \mathcal{A} и \mathcal{B} это самосопряженные операторы, то $\mathcal{A} \cdot \mathcal{B}$ не обязательно самосопряженный оператор. Чтобы $\mathcal{A} \cdot \mathcal{B} = (\mathcal{A} \cdot \mathcal{B})^*$ необходимо, чтобы \mathcal{A} и \mathcal{B} коммутировали.

<u>Lm</u> 1.9.10. Пусть дан самосопряженный оператор $\mathcal{A} \colon V^n \to V^n$, а e_f — его собственный вектор. Тогда подпространство $V_1 = \{x \in V^n \mid x \perp e\}$ инвариантно относительно оператора \mathcal{A} и его размерность равна n-1.

Доказательство. Собственный вектор e это линейная оболочка некоторого e_f , т.е. это подпространство V_n . Если $x \in V_1$, то $x \perp e_f \implies x \perp e$, таким образом V_1 это ортогональное дополнение e.

 $\dim \mathfrak{e} = 1$, т.к. это линейная оболочка одного вектора \mathfrak{e}_f . Значит $\dim V_1 = n-1$.

Теперь докажем, что это пространство инвариантно:

$$x \perp \mathbf{e} \implies (x, \mathbf{e}) = 0$$
$$(\mathcal{A}x, \mathbf{e}) = (x, \mathcal{A}\mathbf{e}) = (x, \lambda\mathbf{e}) = \lambda(x, \mathbf{e}) = 0 \implies \mathcal{A}x \perp \mathbf{e}$$

Таким образом $Ax \in V_1$ по определению V_1 .

Теорема 1.9.11. У любого самосопряженного оператора есть ортонормированный базис, состоящий из собственных векторов.

Доказательство. Возьмем одно произвольное собственное число λ , ему будет соответствовать собственный вектор e_1 , который мы и возьмем в базис. Далее пользуясь 1.9.10 рассмотрим подпространство V_1 , причем e_1 будет ему ортогонален. Проделаем с этим подпространством аналогичную операцию.

Повторим это n раз, после чего нормируем все полученные векторы \implies получим ортонормированный базис.

ТООО: Теорема выше немного отдает бредом, возможно стоило лучше вести конспект

1.10. Структура образа самосопряженного оператора. Проектор. Спектральное разложение оператора.

Теорема 1.10.1. Образ самосопряженного оператора ${\cal A}$ имеет вид

$$\operatorname{Im} \mathcal{A} = \left\{ \sum_{i=1}^{n} \lambda_{i}(x, \mathbf{e}_{i}) \mathbf{e}_{i} \right\}$$

где $\mathcal{E} = \{\mathbf{e}_i\}_{i=1}^n$ это ортонормированный базис, λ_i — собственные числа оператора \mathcal{A} .

Доказательство.

$$\mathcal{A}x = y = \\ y_1 e_1 + \ldots + y_n e_n = \\ (y, e_1) e_1 + \ldots + (y, e_n) e_n = \\ (\mathcal{A}x, e_1) e_1 + \ldots + (\mathcal{A}x, e_n) e_n = \\ (x, \mathcal{A}e_1) e_1 + \ldots + (x, \mathcal{A}e_n) e_n = \\ (x, \lambda_1 e_1) e_1 + \ldots + (x, \lambda_n e_n) e_n = \\ \lambda_1(x, e_1) e_1 + \ldots + \lambda_n(x, e_n) e_n = \\ \sum_{i=1}^n \lambda_i(x, e_i) e_i$$

торо: Конспект не очень в этом моменте

Замечание 1.10.2. (x, e_i) это проекция вектора x на собственный вектор.

$$P_i(x) = (x, e_i)e_i$$

называется проектором на одномерное пространство, порожденное собственным вектором.

Замечание 1.10.4. Проектор является самосопряженным оператором.

Def 1.10.5. Спектральным разложением оператора называется представление его в виде линейной комбинации проекторов

$$\mathcal{A} = \sum_{i=1}^{n} \lambda_i P_i$$

Корректность такого представления следует из 1.10.1 и 1.10.3.

1.11. Ортогональная матрица и ортогональный оператор. Поворот плоскости и пространства как ортогональное преобразование.

Def 1.11.1. Оператор \mathcal{A} называется ортогональным, если

$$(\mathcal{A}x, \mathcal{A}y) = (x, y)$$

Def 1.11.2. Альтернативное определение: \mathcal{A} называется ортогональным, если его матрица ортогональна:

$$A^{-1} = A^T$$

Замечание 1.11.3. Ортогональный оператор сохраняет скалярное произведение, т.е. не меняет норму элементов. Таким образом к ортогональным преобразованиям можно отнести параллельный перенос, поворот и осевую симметрию.

Некоторые примеры ортогональных преобразований:

- 1. Поворот на угол α : $A = \begin{pmatrix} \cos \alpha & \sin \alpha \\ -\sin \alpha & \cos \alpha \end{pmatrix}$
- 2. Осевая симметрия относительно Ox: $A = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$

Матрицы выше составлены из базисных векторов $e_i \bot e_j$, $\|e_i\| = 1$.

ТООО: Еще что-нибудь?

1.12. Билинейные формы: определения, свойства. Матрица билинейной формы.

Def 1.12.1. Функция $\mathscr{B}: V^n \to \mathbb{R}$ обозначаемая $\mathscr{B}(u,v)$ $(u,v \in V^n)$ называется билинейной формой, если выполняются следующие требования: $\forall u,w,v \in V^n, \lambda \in \mathbb{R}$:

- 1. $\mathscr{B}(u+w,v) = \mathscr{B}(u,v) + \mathscr{B}(w,v)$
- 2. $\mathscr{B}(u, v + w) = \mathscr{B}(u, v) + \mathscr{B}(u, w)$
- 3. $\mathscr{B}(\lambda u, v) = \lambda \mathscr{B}(u, v)$
- 4. $\mathscr{B}(u, \lambda v) = \lambda \mathscr{B}(u, v)$

Def 1.12.2. Если к каждой паре базисных векторов применить билинейную форму, то полученные числа можно использовать как коэффициенты матрицы. Это матрица будет называться матрицей билинейной формы **в данном базисе**.

Таким образом матрица B билинейной формы \mathscr{B} в базисе $\mathcal{E} = \{e\}_{i=1}^n$ имеет вид:

$$\begin{pmatrix} \mathscr{B}(\mathfrak{e}_1,\mathfrak{e}_1) & \dots & \mathscr{B}(\mathfrak{e}_1,\mathfrak{e}_n) \\ \vdots & \ddots & \vdots \\ \mathscr{B}(\mathfrak{e}_n,\mathfrak{e}_1) & \dots & \mathscr{B}(\mathfrak{e}_n,\mathfrak{e}_n) \end{pmatrix}$$

- ${f Def~1.12.3.}$ Билинейная форма ${\mathscr B}$ называется симметричной, если ${\mathscr B}(u,v)={\mathscr B}(v,u).$
- **Def 1.12.4.** Билинейная форма \mathscr{B} называется кососимметричной (антисимметричной), если $\mathscr{B}(u,v) = -\mathscr{B}(v,u)$.

3амечание 1.12.5. Применение билинейной формы \mathscr{B} к элементам u и v можно отождествлять с умножением матриц в виде $u^T B v$.

Тогда можно говорить о ранге билинейной формы и о её преобразовании при смене базиса.

 $\underline{\operatorname{Lm}}$ 1.12.6. Ранг билинейной формы это инвариант относительно смены базиса T.

Доказательство. $B_{\mathbf{e}'} = T_{\mathbf{e}' \to \mathbf{e}} B_{\mathbf{e}} T_{\mathbf{e} \to \mathbf{e}'}$

Т.к. матрица $T_{{\bf e}' \to {\bf e}}$ невырождена, то rang $B_{{\bf e}'} = {\rm rang} \, B_{{\bf e}}$

Def 1.12.7. Если ранг билинейной формы $\mathscr{B}\colon V^n \to \mathbb{R}$ равен n, то такая билинейная форма называется невырожденной.

- 1.13. Квадратичная форма: определения, приведение к каноническому виду.
- 1.14. Знакоопределенность квадратичной формы: необходимые и достаточные. условия. Критерий Сильвестра.

2. Дифференциальные уравнения

- 2.1. Обыкновенное дифференциальное уравнение (ДУ): задача о радиоактивном распаде и задача о падении тела. Определение ДУ, решения ДУ и их геометрический смысл. Задача Коши.
- 2.2. Уравнение с разделяющимися переменными.

Def 2.2.1. Уравнение вида

$$m(x)N(y)dx + M(x)n(y)dy = 0$$

называется уравнением с разделяющимися переменными.

Для решения таких уравнений необходимо разделить обе части на M(x)N(y), перенести одно из слагаемых в правую часть, после чего проинтегрировать обе части.

$$m(x)N(y)dx + M(x)n(y)dy = 0$$
$$\frac{m(x)}{M(x)}dx + \frac{n(y)}{N(y)}dy = 0$$
$$\int \frac{m(x)}{M(x)}dx = -\int \frac{n(y)}{N(y)}dy$$

Замечание 2.2.2. В случае, если M(x) = 0 или N(y) = 0, то уравнение решается непосредственным интегрированием.

Замечание 2.2.3. Решения вида x = const, y = const не всегда получаемы из общего решения.

2.3. Однородное уравнение.

Def 2.3.1. Функция f(x,y) называется однородной m-ого измерения $(m \geqslant 0)$, если $f(\lambda x, \lambda y) = \lambda^m f(x,y)$.

Def 2.3.2. Дифференциальное уравнение P(x,y)dx + Q(x,y)dy = 0 называется *однородным*, если P(x,y) и Q(x,y) однородные функции одного измерения m.

Однородные уравнения решаются заменой $t = \frac{y}{x}$. Покажем, откуда появляется подобная замена. Преобразуем функции P(x,y) и Q(x,y):

$$\begin{split} P(x,y) &= P\left(x \cdot 1, x \cdot \frac{y}{x}\right) = x^m P\left(1, \frac{y}{x}\right) \\ Q(x,y) &= Q\left(x \cdot 1, x \cdot \frac{y}{x}\right) = x^m Q\left(1, \frac{y}{x}\right) \end{split}$$

Вернемся к исходному уравнению:

$$P(x,y)dx + Q(x,y)dy = 0 \mid : dx$$

$$y' = -\frac{P(1, y/x)}{Q(1, y/x)} = f\left(1, \frac{y}{x}\right)$$

$$\frac{y}{x} = t \implies \begin{cases} f(1, y/x) = \tilde{f}(t) \\ y = xt, \ y'_x = t + xt' \end{cases}$$

$$t + xt' = \tilde{f}(t)$$

$$x \cdot \frac{dt}{dx} = \tilde{f}(t) - t$$

$$\frac{dt}{\tilde{f}(t) - t} = \frac{dx}{x}$$

Таким образом исходное однородное уравнение сводится к уравнению с разделяющими переменными. Замечание 2.3.3. Случай $\tilde{f}(t) - t = 0$ нужно рассмотреть отдельно.

2.4. Уравнение в полных дифференциалах.

Def 2.4.1. Дифференциальное уравнение P(x,y)dx + Q(x,y)dy = 0 называется уравнением в полных дифференциалах, если

$$\exists z(x,y) : dz = P(x,y)dx + Q(x,y)dy$$

Критерием того, что данное уравнение является уравнением в полных дифференциалах может служить равенство

$$\frac{\partial P}{\partial x} = \frac{\partial Q}{\partial y}$$

Решение уравнений в полных дифференциалах сводится к поиску функции z(x,y), удовлетворяющей условиям. Про то, как найти такую функцию можно прочитать в конспекте по матанализу в разделе про интегралы, независящие от пути. После того, как такая функция будет найдена, решить ДУ не составит проблем:

$$P(x,y)dx + Q(x,y)dy = 0$$
$$dz = 0$$
$$z = C$$

TODO: Интегрирующий множитель

2.5. Линейное уравнение первого порядка. Метод Лагранжа.

Def 2.5.1. Линейным однородным уравнением первого порядка ($\Pi O \Pi Y_1$) называется уравнение вида

$$y' + p(x)y = 0$$

ЛОДУ₁ является уравнением с разделяющими переменными, поэтому оно решается следующим образом:

$$y' + p(x)y = 0$$
$$\frac{dy}{dx} = -p(x)y$$
$$\frac{dy}{y} = -p(x)dx$$
$$\overline{y} = C \cdot \underbrace{e^{-\int p(x)dx}}_{y_1}$$

Замечание 2.5.2. При решении данного уравнения мы поделили на $y \neq 0$. Заметим, что y = 0 также является решением ЛОДУ₁, однако оно получаемо из общего решения при C = 0.

Def 2.5.3. Линейным неоднородным уравнением первого порядка (ЛНДУ₁) называется уравнение вида

$$y' + p(x)y = q(x), \quad q(x) \neq 0$$

Метод Лагранжа (метод вариации произвольной постоянной) для решения ЛНДУ₁:

- 1. Найдем частное решение y_1 соответствующего однородного уравнения.
- 2. Будем искать решение ЛНДУ $_1$ в виде $y(x) = y_1(x) \cdot C(x)$. Преобразуем ДУ в соответствии с этой заменой

$$y' + p(x)y = q(x)$$

$$y'_{1}(x)C(x) + y_{1}(x)C'(x) + p(x)y_{1}(x)C(x) = q(x)$$

$$y_{1}(x)C'(x) + C(x)\underbrace{\left(y'_{1}(x) + p(x)y_{1}(x)\right)}_{=0} = q(x)$$

$$y_{1}(x)C'(x) = q(x)$$

$$C(x) = \int \frac{q(x)}{y_{1}(x)} dx + C$$

3. Подставим найденную функцию C(x) в $y(x) = y_1(x) \cdot C(x)$.

TODO: Уравнение Бернулли, Клеро, Риккати и пр.

2.6. Теорема существования и единственности решения задачи Коши. Особые решения.

Теорема 2.6.1. О существовании и единственности решения задачи Коши.

Пусть дана задача Коши

$$\begin{cases} y' = g(x, y) \\ y_0 = y(x_0) \end{cases}$$

и $u(M_0)$ – окрестность точки $M_0(x_0, y_0)$. Тогда, если g непрерывна в $u(M_0)$, а g'_y — ограничена, то существует единственное решение задачи Коши.

Def 2.6.2. Особым решением ДУ называется решение, в каждой точке которого нарушается единственность.

Замечание 2.6.3. Геометрически особое решение это интегральная кривая, через каждую точку которой проходит другая интегральная кривая.

Def 2.6.4. Точка $M(x,y) \in D$ (где D - область заполненная интегральными кривыми) называется обыкновенной, если через неё проходит ровно одна интегральная кривая.

Def 2.6.5. Точка, не являющаяся обыкновенной, называется особой. Через неё может проходить несколько интегральных кривых, либо не проходить ни одной.

<u>Lm</u> 2.6.6. Если ДУ задано в дифференциалах P dx + Q dy = 0, то условие особой точки имеет вид P = 0 или Q = 0.

Доказательство. ДУ в дифференциалах можно разрешить относительно каждой из переменных:

$$y' = -\frac{P}{Q} = g_1(x, y)$$
$$x' = -\frac{Q}{P} = g_2(x, y)$$

Далее можно применить теорему 2.6.1 о единственности к каждому из полученных уравнений. Непрерывность g_1, g_2 нарушается при Q = 0 и P = 0 соответственно. Это и будет условием особой точки.

TODO: Перечитать неплохо было бы... а то мутновато как-то

2.7. Уравнения *n*-ого порядка, допускающие понижение порядка.

К уравнениям, допускающим понижение порядка относятся:

- 1. Непосредственно интегрируемые уравнения вида $y^{(n)}(x) = f(x)$. Они решаются интегрированием обоих частей n раз.
- 2. Уравнения не содержащие y(x) в явном виде. Они решаются заменой z(x) = y'(x), z'(x) = y''(x).

Замечание 2.7.1. В общем случае производится замена самой младшей из присутствующих производных.

- 3. Уравнения не содержащие x в явном виде. Они решаются заменой z(y)=y'(x), тогда $y''(x)=z_y'y_x'=z'(y)\cdot z(y)$
- **2.8.** Линейные однородные дифференциальные уравнения (ЛОДУ) : определения, решение ЛОДУ $_2$ с постоянными коэффициентами для случая различных вещественных корней характеристического уравнения.
 - **Def 2.8.1.** Линейным дифференциальным уравнением n-ого порядка (ЛДУ $_n$) называется

$$a_0(x)y^{(n)}(x) + a_1(x)y^{(n-1)}(x) + \ldots + a_n(x)y(x) = f(x), \quad a_0(x) \neq 0$$

Def 2.8.2. Разрешенным ЛДУ $_n$ называется

$$y^{(n)}(x) + b_1(x)y^{(n-1)}(x) + \ldots + b_n(x)y(x) = f(x)$$

Def 2.8.3. Если в ЛДУ $_n$ $\forall i\colon a_i(x)=p_i\in\mathbb{R},$ то такое ЛДУ $_n$ называется ЛДУ $_n$ с постоянными коэффициентами. Оно имеет вид

$$y^{(n)}(x) + p_1 y^{(n-1)}(x) + \ldots + p_n y(x) = f(x)$$

Def 2.8.4. Линейным однородным дифференциальным уравнение n-ого порядка называется ЛДУ $_n$ вида

$$a_0(x)y^{(n)}(x) + a_1(x)y^{(n-1)}(x) + \ldots + a_n(x)y(x) = 0,$$

Def 2.8.5. Линейным неоднородным дифференциальным уравнение n-ого порядка называется ЛДУ $_n$ вида

$$a_0(x)y^{(n)}(x) + a_1(x)y^{(n-1)}(x) + \ldots + a_n(x)y(x) = f(x), \quad f(x) \neq 0$$

Рассмотрим ЛОДУ $_2$ вида y'' + py' + qy = 0. Любой паре $(p,q) \in \mathbb{R}^2$ можно поставить в соответствие квадратное уравнение $k^2 + pk + q = 0$. По т. Виета $p = -(k_1 + k_2), q = k_1k_2$, где k_1, k_2 это корни уравнения. Подставим полученные выражения в исходное ДУ:

Сначала найдем частное решение соответствующего $\Pi O \Pi Y_1$: $\overline{y} = c_2 e^{k_2 x}, y_1 = e^{k_2 x}$. Далее будем варьировать постоянную c_2 , тогда $y(x) = C_2(x)e^{k_2 x}$. Подставим это в исходное ΠY :

$$C'_2(x)e^{k_2x} + C_2(x) \cdot k_2 \cdot e^{k_2x} - k_2 \cdot C_2(x)e^{k_2x} = c_1e^{k_1x}$$

 $C'_2(x)e^{k_2x} = c_1e^{k_1x}$

В итоге получаем уравнение

$$C_2'(x) = c_1 e^{(k_1 - k_2)x} \tag{\bigstar}$$

Проанализируем это уравнение. Всего будет рассмотрено 3 случая: один в этом параграфе, остальные — в двух последующих.

 (\bigstar) случай І: $k_1 \neq k_2, k_1, k_2 \in \mathbb{R}$

В заданных ограничениях имеем

$$C_2'(x) = c_1 e^{(k_1 - k_2)x}$$

$$C_2(x) = \frac{c_1}{k_1 - k_2} e^{(k_1 - k_2)x} + \tilde{c_2}$$

$$y(x) = C_2(x)y_1(x) = \underbrace{\frac{c_1}{k_1 - k_2}}_{\tilde{c_1}} e^{k_1 x} + \tilde{c_2} e^{k_2 x}$$

$$y(x) = \tilde{c_1} e^{k_1 x} + \tilde{c_2} e^{k_2 x}$$

- **2.9.** Решение $\Pi O \Pi V_2$ с постоянными коэффициентами для случая вещественных кратных корней характеристического уравнения.
 - (★) случай II: $k_1 = k_2, k_1, k_2 \in \mathbb{R}$

Пусть $k_1 = k_2 = k$, тогда получаем:

$$C_2'(x) = c_1 e^{(k_1 - k_2)x}$$

$$C_2(x) = c_1 x + c_2$$

$$y(x) = C_2(x)y_1(x) = (c_1 x + c_2)e^{kx}$$

$$y(x) = c_1 x \cdot e^{kx} + c_2 e^{kx}$$

- **2.10.** Решение $\Pi O \Pi V_2$ с постоянными коэффициентами для случая комплексных корней характеристического уравнения.
 - (\bigstar) случай III: $k_{1,2} = \alpha + \beta i, k_{1,2} \in \mathbb{C}$

В заданных ограничениях получаем

$$C_2'(x) = c_1 e^{(k_1 - k_2)x}$$

$$C_2(x) = \frac{c_1}{k_1 - k_2} e^{(k_1 - k_2)x} + \tilde{c_2}$$

$$y(x) = C_2(x)y_1(x) = \underbrace{\frac{c_1}{k_1 - k_2}}_{\tilde{c_1}} e^{k_1 x} + \tilde{c_2} e^{k_2 x}$$

$$y(x) = \tilde{c_1} e^{k_1 x} + \tilde{c_2} e^{k_2 x}$$

$$y(x) = \tilde{c_1} e^{\alpha x} e^{\beta i x} + \tilde{c_2} e^{\alpha x} e^{-\beta i x}$$

Далее используем формулу $e^{i\varphi} = \cos \varphi + i \sin \varphi$:

$$y(x) = e^{\alpha x} \left(\tilde{c_1} \left(\cos(\beta x) + i \sin(\beta x) \right) + \tilde{c_2} \left(\cos(\beta x) - i \sin(\beta x) \right) \right)$$
$$y(x) = e^{\alpha x} \left(\cos(\beta x) \underbrace{\left(\tilde{c_1} + \tilde{c_2} \right)}_{\widehat{c_1}} + i \sin(\beta x) \underbrace{\left(\tilde{c_1} - \tilde{c_2} \right)}_{\widehat{c_2}} \right)$$
$$y(x) = e^{\alpha x} \left(\hat{c_1} \cos(\beta x) + \hat{c_2} i \sin(\beta x) \right)$$

ТООО: Конспект не очень хороший в этом моменте, возможно что-то неправильно

<u>Lm</u> **2.10.1.** Если y(x) = u(x) + iv(x) это решение ЛОДУ₂, то y(x) = u(x) + v(x) также являются решением ЛОДУ₂.

Доказательство. Рассмотрим функцию y(x) = u(x) + v(x):

$$\begin{cases} y(x) = u(x) + v(x) \\ y'(x) = u'(x) + v'(x) \\ y''(x) = u''(x) + v''(x) \end{cases}$$
$$y''(x) + py'(x) + qy(x) = u''(x) + v''(x) + pu'(x) + pv'(x) + u(x) + qu(x) + qv(x) = 0$$
$$\left(u''(x) + pu'(x) + qu(x)\right) + \left(v''(x) + pv'(x) + qv(x)\right) = 0$$

Это равенство верно, т.к. u(x) и v(x) решения ЛОДУ₂.

Значит, по 2.10.1 общее решение (★) в третьем случае будет иметь вид

$$y(x) = e^{\alpha x} \Big(\widehat{c_1} \cos(\beta x) + \widehat{c_2} \sin(\beta x) \Big)$$

2.11. Свойства решений $\Pi O \Pi V_2$: линейная независимость решений, определитель Вронского. Теоремы 1,2.

Рассмотрим множество Ω непрерывных функций с непрерывными производными 20го порядка. Определим линейный дифференциальный оператор $\mathcal{L}[y] = y'' + py' + q \to f(x)$.

Def 2.11.1. Будем называть функции y_1, \dots, y_n линейно-независимыми на отрезке [a; b], если

$$\sum_{i=1}^{n} c_i y_i = 0 \implies \forall c_i = 0$$

Def 2.11.2. Определитель Вронского (вронскиан) W это определитель, составленный из n функций и всех их производных вплоть до (n-1)-ого порядка. Он имеет вид:

$$\mathcal{W} = \begin{vmatrix} y_1 & \dots & y_n \\ \vdots & \ddots & \vdots \\ y_1^{(n-1)} & \dots & y_n^{(n-1)} \end{vmatrix}$$

 $\underline{\operatorname{Lm}}$ 2.11.3. Если два решения ЛОДУ₂ линейно-зависимы на [a;b], то их вронскиан на [a;b] равен нулю.

Доказательство.

$$\mathcal{W} = \begin{vmatrix} y_1 & y_2 \\ y'_1 & y'_2 \end{vmatrix} = \begin{vmatrix} \lambda y_2 & y_2 \\ \lambda y'_2 & y'_2 \end{vmatrix} = \lambda \begin{vmatrix} y_2 & y_2 \\ y'_2 & y'_2 \end{vmatrix} = 0$$

<u>Lm</u> 2.11.4. Если два решения $\Pi O \Pi Y_2$ линейно-независимы на [a;b], то их вронскиан на [a;b] не равен нулю.

$$\left. \begin{array}{l}
 \mathcal{L}[y_1] = 0 \\
 \mathcal{L}[y_2] = 0 \\
 y_1 \neq \lambda y_2
 \end{array} \right\} \implies \mathcal{W} \neq 0$$

Доказательство. От противного

$$\exists \mathcal{W} = 0 = \begin{vmatrix} y_1 & y_2 \\ y_1' & y_2' \end{vmatrix} = y_1 y_2' - y_1' y_2 \mid : y_1^2 \neq 0$$

$$\frac{y_1 y_2' - y_1' y_2}{y_1^2} = 0$$

$$\left(\frac{y_2}{y_1} \right)' = 0$$

$$\frac{y_2}{y_1} = const$$

$$y_1 = \lambda y_2$$

Получили противоречие.

Теорема 2.11.5. Линейная зависимость/независимость функций определяется равенством их вронскиана нулю.

Доказательство. Следствие из 2.11.3 и 2.11.4.

3амечание 2.11.6. Для проверки набора функций на линейную зависимость/независимость лучше использовать именно вронскиан, а не непосредственное определение линейной зависимости функций на отрезке.

Теорема 2.11.7. Рассмотрим функции на отрезке [a;b]. Если на этом отрезке найдется точка, в которой вронскиан равен нулю, вронскиан будет равен нулю на всем отрезке. Дуально, если найдется точка, в которой вронскиан не равен нулю, то он будет не равен нулю на всем отрезке.

$$\exists x_0 \in [a; b] \mid W(x_0) = W_0 \neq 0 \implies \forall x \in [a, b] \colon W(x) \neq 0$$

 $\exists x_0 \in [a; b] \mid W(x_0) = W_0 = 0 \implies \forall x \in [a, b] \colon W(x) = 0$

Доказательство. Пусть y_1 и y_2 это решения ДУ, тогда

$$\begin{cases} y_2'' + py_2' + qy_2 = 0 \cdot y_1y_1'' + py_1' + qy_1 = 0 \mid \cdot y_2 - y_1y_2'' - y_2y_1'' + p(y_1y_2' - y_1'y_2) = 0 \end{cases}$$

Заметим, что выражение в левой скобке это W', а во правой — W:

$$\mathcal{W} = y_1 y_2' - y_1' y_2$$

$$\mathcal{W}' = (y_1 y_2' - y_1' y_2)' = y_1' y_2' + y_1 y_2'' - y_1'' y_2 - y_1' y_2' = y_1 y_2'' - y_1'' y_2$$

Подставим это в полученное ранее уравнение:

$$(y_1y_2'' - y_2y_1'') + p(y_1y_2' - y_1'y_2) = 0$$

$$\mathcal{W}' + p\mathcal{W} = 0$$

$$\mathcal{W} = c_1e^{-\int pdx}$$

$$\mathcal{W}(x_0) = c_1e^{-\int_{x_0}^{x_0} pdx} = c_1 = \mathcal{W}_0$$

$$\mathcal{W}(x) = c_1e^{-\int_{x_0}^{x} pdx} = \mathcal{W}_0e^{-\int_{x_0}^{x} pdx}$$

Таким образом, если $W_0 = 0$, то W(x) = 0 на всем отрезке [a;b]. Дуально, если $W_0 \neq 0$, то т.к. второй множитель всегда больше нуля (это экспонента) $W(x) \neq 0$.

TODO: Откуда такие границы в интегралах?

Замечание 2.11.8. Таким образом, чтобы узнать равен ли вронскиан нулю на отрезке, достаточно узнать его значение в одной произвольной точке этого отрезка.

2.12. Свойства решений $\Pi O \Pi V_2$: линейная комбинация решений, линейная зависимость решений. Определитель Вронского. Теоремы о вронскиане.

<u>Lm</u> **2.12.1.** Линейная комбинация решений $\Pi O \Pi V_2$ также является решением.

$$\mathcal{L}[y_1] = 0
\mathcal{L}[y_2] = 0 \qquad \begin{cases}
\mathcal{L}[y_1 + y_2] = 0 \\
\mathcal{L}[\lambda y_1] = 0 \ (\forall \lambda \in \mathbb{R})
\end{cases}$$

Доказательство. Рассмотрим на примере $y = y_1 + y_2$. Подставим в исходное ДУ, раскроем и сгруппируем

$$y'' + py' + qy = 0$$
$$(y_1 + y_2)'' + p(y_1 + y_2)' + q(y_1 + y_2) = 0$$
$$(y_1'' + py_1' + qy_1) + (y_2'' + py_2' + qy_2) = 0$$

Это верно, т.к. y_1 и y_2 это решения исходного ДУ. Случай $y=\lambda y_1$ рассматривает аналогично.

Следствие 2.12.2. Множество решений ЛОДУ образует линейное пространство.

Теорема 2.12.3. О существовании и единственности решения ЛОДУ₂.

$$y'' = g(x, y, y') = f(x) - py' - qy$$

Если $g, g'_u, g'_{u'}$ непрерывны в области $D \ni (x_0, y_0)$, то задача Коши

$$\begin{cases} \mathcal{L}[y] = f(x) \\ y_0 = y(x_0) \\ y'_0 = y'(x_0) \end{cases}$$

имеет единственное решение.

Доказательство. (Без доказательства)

2.13. Свойства решений $\Pi O \Pi V_2$: линейная комбинация решений, линейная зависимость решений. Теорема о структуре общего решения $\Pi O \Pi V_2$. Фундаментальная система решений (определение).

Теорема 2.13.1. О структуре общего решения $\Pi O \Pi Y_2$.

Если $\mathcal{L}[y_1] = 0$, $\mathcal{L}[y_2] = 0$ и y_1, y_2 линейно независимы, то $\overline{y} = c_1 y_1 + c_2 y_2$ – общее решение ЛОДУ₂.

Доказательство. Начнем с того, что $\overline{y} = c_1 y_1 + c_2 y_2$ это решение как линейная комбинация решений (см. 2.12.1). Рассмотрим точку (x_0, y_0) в рамках задачи Коши:

$$\begin{cases} \mathcal{L}[y] = 0 \\ y_0 = y(x_0) \\ y_0' = y'(x_0) \end{cases} \iff \begin{cases} c_1 y_1(x_0) + c_2 y_2(x_0) = y_0 \\ c_1 y_1'(x_0) + c_2 y_2'(x_0) = y_0' \end{cases} \iff \begin{pmatrix} y_1 & y_2 \\ y_1' & y_2' \end{pmatrix} \begin{pmatrix} c_1 \\ c_2 \end{pmatrix} = \begin{pmatrix} y_0 \\ y_0' \end{pmatrix}$$

ТООО: Глянуть переходы выше, в конспекте противоречиво написано

По т. Крамера решение полученной СЛАУ будет единственным только в том случае, если определитель главной матрицы не равен нулю. Это выполняется, т.к. этот определитель это вронскиан, который не равен нулю, т.к. решения линейно-независимы.

Def 2.13.2. Фундаментальная система решений (Φ CP) ЛОДУ $_n$ это максимальный (по включению) набор линейно независимых решений ДУ.

2.14. Свойства решений $\Pi H \Pi Y_2$: теоремы о структуре общего решения и решении ΠY с суммой правых частей.

Теорема 2.14.1. Общее решение ЛНДУ $_2$ представимо в виде суммы общего решения соответствующего ЛОДУ $_2$ и некоторого частного решения ЛНДУ $_2$.

$$y'' + py' + qy = f(x)$$
$$y = \overline{y} + y^*$$
$$\mathcal{L}[\overline{y}] = 0, \mathcal{L}[y^*] = f(x)$$

Доказательство. Сначала покажем, что y будет являться решением ДУ:

$$\mathcal{L}[y] = \mathcal{L}[\overline{y}] + \mathcal{L}[y^*] = 0 + f(x) = f(x)$$

Показать, что это решение будет являться общим можно аналогично 2.13.1.

<u>Lm</u> **2.14.2.** Если правая часть ЛНДУ $_2$ представлена суммой $f_1(x) + f_2(x)$, то частное решение этого ЛНДУ $_2$ будет суммой двух частных решений ЛНДУ $_2$, в которых правая часть является каждым из слагаемых.

$$y'' + py' + qy = f_1(x) + f_2(x)$$
$$\mathcal{L}[y_1^*] = f_1(x), \mathcal{L}[y_2^*] = f_2(x)$$
$$y^* = y_1^* + y_2^*$$

Доказательство.

$$\mathcal{L}[y^*] = \mathcal{L}[y_1^*] + \mathcal{L}[y_2^*] = f_1(x) + f_2(x)$$

2.15. Структура решения $\Pi O \Pi V_n$: линейная независимость решений, нахождение фундаментальной системы решений по корням характеристического уравнения.

Замечание 2.15.1. О существовании и единственности решения задачи Коши.

Пусть

$$y^{(n)} = g(x, y, y', \dots, y^{(n-1)})$$

при этом y, y', g непрерывны и ограничены в области

$$|x - x_0| < h_0,$$

 $|y - y_0| < h_1,$
 \dots
 $|y^{(n-1)} - y_0^{(n-1)}| < h_n,$

где $(x_0, y_0, \dots, y_0^{(n-1)})$ это начальные условия. Тогда существует единственное решение задачи Коши.

TODO: Разве не все частные производные по $y, y', \dots, y^{(n-1)}$ должны бы непрерывны?

По аналогии с $\Pi O \Pi Y_2$ для $\Pi O \Pi Y_n$ можно составить характеристическое уравнение:

$$\mathcal{L}[y] = y^{(n)}(x) + p_1 y^{(n-1)}(x) + \dots + p_{n-1} y' + p_n y = 0 \quad p_i \in \mathbb{R}$$

$$\mathcal{L}[e^{kx}] = k^n e^{kx} + p_1 \cdot k^{n-1} e^{kx} + \dots + p_n e^{kx} = 0 \mid : e^{kx} \neq 0$$

$$k^n + p_1 k^{n-1} + \dots + p_n = 0$$

Далее аналогично рассмотрим некоторые случаи:

- 1. Набору $k_1, \ldots, k_m \in \mathbb{R}$ различных вещественных корней соответствует набор частных линейно-независимых решений однородного уравнения $y_1 = e^{k_1 x}, \ldots, y_m = e^{k_m x}$.
- 2. Набору $k_1=k_2=\ldots=k_m=k\in\mathbb{R}$ повторяющихся вещественных корней соответствует набор частных линейно-независимых решений однородного уравнения $y_1=e^{kx},y_2=xe^{kx},\ldots,y_m=x^{m-1}e^{kx}$.
- 3. Каждой уникальной паре вида $k = \alpha + i\beta$ соответствует пара частных линейно-независимых решений однородного уравнения $y_1 = e^{\alpha x} \cos \beta x$ и $y_2 = e^{\alpha x} \sin \beta x$.
- 4. Каждой паре кратности m вида $k=\alpha+i\beta$ соответствует m пар частных линейно-независимых решений однородного уравнения вида

3амечание 2.15.2. Общим решением ЛОДУ $_n$ будет линейная оболочка набора частных решений, соответствующих корням характеристического уравнения.

Def 2.15.3. Вронскианом ДУ называется вронскиан его ФСР.

Замечание 2.15.4. Все доказанные свойства вронскиана распространяются и на бОльшую размерность.

TODO: Ударение меня победило

2.16. Решение ЛНУ $_2$ с постоянными коэффициентами: специальная правая часть, поиск частного решения методом неопределенных коэффициентов.

$$f(x) = e^{\alpha x} (P_n(x) \cos \beta x + Q_m(x) \sin \beta x)$$

где α, β, n, m некоторые коэффициенты.

Поиск частного решения методом неопределенных коэффициентов

 $\underline{\text{Идея}}$: пусть в $\Pi H \square Y_n$ правая часть является специальной. Можно предположить, что она была получена $\underline{\text{диф}}$ ференцированием функции со схожей структурой, поэтому будем искать частное решение $\Pi H \square Y_n$ в виде

$$y^* = x^r e^{\alpha x} (U_l(x) \cos \beta x + W_l(x) \sin \beta x), \ l = max(n, m)$$

Алгоритм:

- 1. Составляем и решаем характеристическое уравнение.
- 2. Извлекаем из СПЧ коэффициенты α, β, n, m .
- 3. Считаем r количество совпадений корней характеристического уравнения с $\alpha \pm i\beta$. Совпадение комплексной пары считаем один раз.
- 4. Составляем y^* с неопределенными коэффициентами: полиномы U, W степени l = max(n, m).
- 5. Подставляем y^* в уравнение, находим неопределенные коэффициенты.

Пример #01:

$$y'' - 3y' + 2y = 2e^{3x}$$

$$k^2 - 3k + 2 = 0$$

$$k_1 = 1, k_2 = 2$$

$$2e^{3x} \implies \alpha = 3, \beta = 0, n = 0, m = 0$$

Число $\alpha + i\beta$ не совпадает с корнями характеристического уравнения, поэтому будем искать частное решение в виде $y^* = Ae^{3x}$:

$$(Ae^{3x})'' - 3(Ae^{3x})' + 2(Ae^{3x}) = 2e^{3x}$$
$$9Ae^{3x} - 9Ae^{3x} + 2Ae^{3x} = 2e^{3x} \mid : e^{3x}$$
$$9A - 9A + 2A = 2$$
$$A = 1$$

Итого: частное решение будет равно $y^* = e^{3x}$

Пример #02:

$$y'' - 3y' + 2y = e^x$$

$$k^2 - 3k + 2 = 0$$

$$k_1 = 1, k_2 = 2$$

$$e^x \implies \alpha = 1, \beta = 0, n = 0, m = 0$$

Корень характеристического уравнения k_1 совпал с числом $\alpha + i\beta$, поэтому будем искать частное решение в виде $y^* = Axe^x$:

$$(Axe^{x})'' - 3(Axe^{x})' + 2(Axe^{x}) = e^{x}$$

$$e^{x}(2A + Ax) - 3e^{x}(A + Ax) + 2Axe^{3x} = 2e^{3x} \mid : e^{x}$$

$$2A + Ax - 3A - 3Ax + 2Ax = 2$$

$$A = -2$$

Итого: частное решение будет равно $y^* = -2e^x$

Замечание 2.16.2. Почему необходимо умножать на x^r ? Если этого не делать, то полученное уравнение с неопределенными коэффициентами не будет иметь решений. Это происходит в тех случаях, когда выбранное частное решение совпадает с общим решением (именно поэтому мы смотрим на корни характеристического уравнения, потому что общее решение формируется на их основе). В этих случаях нарушается структура общего решения $\Pi H \Pi V_n$.

2.17. Решение $\Pi H Y_2$: метод вариации произвольных постоянных (Лагранжа).

Метод универсален для правой части любого вида и даже для $\mathcal{L}[y] = f(x)$ с непостоянными коэффициентами. Рассмотрим на примере:

$$y'' - 3y' + 2y = 2e^{3x}$$

$$k^{2} - 3k + 2 = 0$$

$$k_{1} = 1, k_{2} = 2$$

$$\overline{y} = c_{1} \underbrace{e^{x}}_{y_{1}} + c_{2} \underbrace{e^{2x}}_{y_{2}}$$

Будем искать y(x) в виде $y(x) = C_1(x)y_1 + C_2(x)y_2(x)$. Пусть $C_1(x) = g(x) + c_1$, $C_2(x) = h(x) + c_2$, тогда:

$$y(x) = (g(x) + c_1)y_1 + (h(x) + c_2)y_2$$
$$y(x) = \underbrace{c_1y_1 + c_2y_2}_{y} + \underbrace{g(x)y_1 + h(x)y_2}_{y^*}$$

В нашем примере получаем, что $y^* = g(x)e^x + h(x)e^{2x}$. Заметим, что функции g(x) и h(x) можно представить по-разному. Подберем их так, чтобы выполнялось равенство

$$C_1'(x)y_1 + C_2'(x)y_2 = 0 (\Delta)$$

Вычислим производные y'(x) и y''(x):

$$y(x) = y(x) = C_1(x)y_1 + C_2(x)y_2(x)$$

$$y'(x) = \underbrace{C'_1(x)y_1 + C'_2(x)y_2}_{\blacktriangle \to 0} + C_1(x)y'_1 + C_2(x)y'_2$$

$$y''(x) = C'_1(x)y'_1 + C_1(x)y''_1 + C'_2(x)y'_2 + C_2(x)y''_2$$

Вернемся к исходному ДУ и подставим в него все полученные равенства:

Суммы во втором и четвертом столбцах обнуляются, т.к. если вынести из них $C_1(x)$ и $C_2(x)$ соответственно, то в скобках останется ЛОДУ $_2$, а y_1, y_2 — его корни.

Таким образом мы получили второе условие для системы (первое условие это (\blacktriangle)) для нахождения $C_1(x)$ и $C_2(x)$. Искомая система будет иметь вид:

$$\begin{cases} C'_1(x)y_1 + C'_2(x)y_2 = 0 \\ C'_1(x)y'_1 + C'_2(x)y'_2 = f(x) \end{cases} \iff \begin{pmatrix} y_1 & y_2 \\ y'_1 & y'_2 \end{pmatrix} \begin{pmatrix} C'_1(x) \\ C'_2(x) \end{pmatrix} = \begin{pmatrix} 0 \\ f(x) \end{pmatrix}$$

Подведем итог и обобщим алгоритм решения $\Pi H \Pi Y_n$:

- 1. Решаем соответствующее $\Pi O \Pi Y_n$, получаем набор корней y_1, \dots, y_n .
- 2. Составляем СЛАУ следующего вида:

$$\begin{pmatrix} y_1 & \dots & y_n \\ \vdots & \ddots & \vdots \\ y_1^{(n-1)} & \dots & y_n^{(n-1)} \end{pmatrix} \begin{pmatrix} C_1'(x) \\ \vdots \\ C_n'(x) \end{pmatrix} = \begin{pmatrix} 0 \\ \vdots \\ f(x) \end{pmatrix}$$

- 3. Решаем её и находим производные варьируемых функций. Интегрируем их (не забывая про константу).
- 4. Общее решение ЛНДУ_n будет иметь вид $y = C_1(x)y_1 + \ldots + C_n(x)y_n$

2.18. Системы дифференциальных уравнений: определения, решение методом исключения.

Def 2.18.1. Пусть y_1, \dots, y_n — функции от x, дифференцируемые m раз. Тогда система

$$\begin{cases} f_1(x, y_1, \dots, y_n, y_1', \dots, y_n', \dots, y_1^{(m-1)}, \dots, y_n^{(m-1)}) = 0 \\ \dots \\ f_n(\dots) = 0 \end{cases}$$

называется системой дифференциальных уравнений (СДУ).

Def 2.18.2. СДУ называется *нормальной*, если все её уравнения разрешены относительно старшей производной и при этом правые части не содержат производных.

Def 2.18.3. Нормальная СДУ называется автономной, если функции в правой части каждого из её уравнений не зависят явно от x.

Замечание 2.18.4. С помощью введения новых переменных ДУ $y^{(n)} = f(x, y, y', \dots, y^{(n-1)})$ можно свести к системе ДУ следующего вида

$$\begin{cases} y = y_1 \\ y' = y_2 \\ \dots \\ y^{(n-1)} = y_n \\ y^{(n)} = f(x, y_1, \dots, y_n) \end{cases}$$

где y_1, \ldots, y_n — новые переменные.

Def 2.18.5. Порядком системы называется сумма порядков старших производных каждого из уравнений системы. Порядок системы равен порядку ДУ, соответствующего ей.

Решение СДУ методом исключения:

Пусть дана следующая СДУ:

$$\begin{cases} \frac{dy_1}{dx} = f_1(x, y_1, \dots, y_n) \\ \frac{dy_2}{dx} = f_2(x, y_1, \dots, y_n) \\ \dots, \\ \frac{dy_2}{dx} = f_n(x, y_1, \dots, y_n) \end{cases}$$

Обозначим $f_1(x, y_1, \dots, y_n) = F_1(x, y_1, \dots, y_n)$. Дифференцируем первое уравнение по x, получим:

$$\frac{\mathrm{d}^2 y_1}{\mathrm{d}x^2} = \frac{\partial f_1}{\partial x} + \frac{\partial f_1}{\partial y_1} \cdot \underbrace{\frac{\mathrm{d}y_1}{\mathrm{d}x}}_{f_1} + \dots + \underbrace{\frac{\partial f_1}{\partial y_n}}_{f_n} \cdot \underbrace{\frac{\mathrm{d}y_n}{\mathrm{d}x}}_{f_n} = F_2(x, y_1, \dots, y_n)$$

Полученное выражение можно продифференцировать еще раз. Подставляя производные из изначального СДУ можно получить аналогичные функции вплоть до $F_n(x, y_1, \ldots, y_n)$. Итого получится следующая система:

$$\begin{cases} \frac{\mathrm{d}y_1}{\mathrm{d}x} = F_1(x, y_1, \dots, y_n) \\ \frac{\mathrm{d}^2 y_1}{\mathrm{d}x^2} = F_2(x, y_1, \dots, y_n) \\ \dots, \\ \frac{\mathrm{d}^n y_2}{\mathrm{d}x^n} = F_n(x, y_1, \dots, y_n) \end{cases}$$

Как видно из 2.18.4 полученный вид системы свидетельствует о том, что её можно свести к равносильному ДУ $\varphi(x, y_1, \dots, y_1^{(n)})$.

Пример:

$$\begin{cases} y' = y + 5x \\ x' = -y - 3x \end{cases} \iff \begin{cases} y'' = y' + 5x' \\ x' = -y - 3x \end{cases} \iff \begin{cases} y'' = y' + 5(-y - 3x) \\ x' = -y - 3x \end{cases} \iff \begin{cases} y'' = y' - 5y + 15x \\ x' = -y - 3x \end{cases}$$

Выразим x из первого уравнения изначальной системы и подставим его в первое уравнение полученной системы:

$$\begin{cases} y' = y + 5x \implies x = \frac{1}{5}(y' - y) \\ y'' = y' - 5y + 15x \end{cases} \implies y'' = y' - 5y + 3y' - 3y \implies y'' - 4y' + 8y = 0$$

Из полученного ЛОДУ $_2$ можно найти y, после чего подставить его в СДУ и найти x.

Замечание 2.18.6. Линейная СДУ сводится к ЛОДУ, т.к. дифференцирование и исключение линейны. Аналогично СДУ с постоянными коэффициентами сводится к ДУ с постоянными коэффициентами.

2.19. Системы дифференциальных уравнений: определения, решение матричным методом в случае различных вещественных собственных чисел.

Обозначим $(y_1, \ldots, y_n) = Y$ — вектор неизвестных, $\{a_{i,j}\} = A$ — коэффициенты, $(y'_1, \ldots, y'_n) = Y'$ — вектор производных.

Тогда СДУ можно записать в матричном виде как Y' = AY. Пусть A это матрица линейного оператора \mathcal{A} . Для этого оператора можно найти собственные числа и соответствующие им собственные векторы.

Обозначим собственные числа $\lambda_1, \ldots, \lambda_n$, а $\Gamma_1, \ldots, \Gamma_n$ — соответствующие им собственные векторы.

Можно убедиться, что $Y_i = \Gamma_i e^{\lambda_i x}$ будет являться решением СДУ:

$$\begin{cases} Y_i' = \Gamma_i \lambda_i e^{\lambda_i x} = \lambda_i (\Gamma_i e^{\lambda_i x}) \\ \mathcal{A} Y_i = \mathcal{A} (\Gamma_i e^{\lambda_i x}) = \lambda_i (\Gamma_i e^{\lambda_i x}) \end{cases} \implies Y_i' = \mathcal{A} Y_i$$

Пусть все собственные числа различные и вещественные, тогда $\forall \lambda_i \colon Y_i = \Gamma_i e^{\lambda_i x}$ это решение, причем $\forall i \neq j \colon Y_i$ и Y_j линейно-независимы. Общее решение СДУ можно записать в виде:

$$\overline{Y} = c_1 Y_1 + \ldots + c_n Y_n$$

Пример:

$$\begin{cases} x' = x + y \\ y' = 8x + 3y \end{cases} \iff Y' = \begin{pmatrix} 1 & 1 \\ 8 & 3 \end{pmatrix} Y \iff \begin{cases} \lambda_1 = -1 \implies \Gamma_1 = \begin{pmatrix} -1 \\ 2 \end{pmatrix} \\ \lambda_2 = 5 \implies \Gamma_2 = \begin{pmatrix} 1 \\ 4 \end{pmatrix} \end{cases}$$
$$\begin{cases} Y_1 = \Gamma_1 e^{\lambda_1 t} \\ Y_2 = \Gamma_2 e^{\lambda_2 t} \end{cases} \iff \begin{cases} \overline{x}(t) = c_1 \cdot (-1) \cdot e^{-t} + c_2 \cdot 1 \cdot e^{5t} \\ \overline{y}(t) = c_1 \cdot 2 \cdot e^{-t} + c_2 \cdot 4 \cdot e^{5t} \end{cases}$$

2.20. Теория устойчивости: определение устойчивости по Ляпунову, фазовая плоскость, траектории ДУ. Примеры устойчивого и неустойчивого решения