SMARTWIZ

GRADE11 Engineering Graphic Designing (EGD) EXAM

MARKS: 100	MARKS	
TIME: 2 HOURS		
SCHOOL		
CLASS (eg. 4A)		
SURNAME		
NAME		

Instructions for Learners:

- Read all instructions carefully before you begin the exam.
- Write your full name and student number clearly on the answer sheet/book.
- Answer all questions unless otherwise instructed.
- Show all your work/calculations where necessary.
- Write neatly and clearly.
- Use only a blue or black pen. Do not use correction fluid or tape.
- Electronic devices (calculators, cell phones, etc.) are not allowed unless explicitly permitted.
- Raise your hand if you have any questions.
- Do not talk to other learners during the exam.
- Any form of dishonesty will result in immediate disqualification from the exam.

This exam consists of five pages, including the cover page.

tion 2 (12 marks)		
stion 2 (12 marks)		
stion 2 (12 marks)		
stion 2 (12 marks)		
)	
four types of lines us	sed in engineering drawings and explain the pur	rpose of each.
Line Type	Purpose	Marks
	•	3
		3
		3
stion 3 (10 marks)	etween orthographic projection and isometric d	rawing.
		rawing.
ain the difference be stion 4 (6 marks)		rawing.
stion 4 (6 marks) e three common tool	etween orthographic projection and isometric d	
stion 4 (6 marks) e three common tool	etween orthographic projection and isometric d	(2 marks) (2 marks)

Question 6 (8 marks) Define the term 'scale' in engineering drawings and explain why it is important.		
Question 7 (12 marks)		
raw a simple isometric cube and label its d You may use the back of this page if necessary		
	RKS	
Question 8 (8 marks)		
What is a sectional view in technical drawing	g, and why is it used?	
Question 9 (8 marks)		
Explain the importance of dimensioning in e	engineering drawings.	

Question	10	(8	marks)

Describe how engineering graphic design contributes to the overall engineering process.		

End of Examination

MEMO

Question 1 (8 marks)

What is Engineering Graphic Design?

- Engineering Graphic Design is the use of drawings and visual representations to communicate engineering ideas, designs, and specifications clearly.
- It includes creating technical drawings, plans, and 3D models to help engineers, manufacturers, and builders understand and produce components or structures.

 (Any accurate, clear definition—8 marks)

Question 2 (12 marks)

List four types of lines used in engineering drawings and explain the purpose of each.

Line Type	Purpose
1. Continuous thick line	Used for visible edges and outlines of objects. (3 marks)
2. Dashed line	Used for hidden edges or features not visible in that view. (3 marks)
3. Chain (long dash - short dash) line	Used for center lines or lines of symmetry. (3 marks)
4. Continuous thin line	Used for dimension lines, projection lines, or hatching. (3 marks)

Question 3 (10 marks)

Explain the difference between orthographic projection and isometric drawing.

- Orthographic projection shows different views of an object (front, top, side) in 2D, with each view aligned and scaled exactly.
- Isometric drawing shows a 3D representation of an object where the three axes are equally angled (120°) to give a pictorial view.
- Orthographic is used for precise measurements; isometric is used for visualizing the object in three dimensions.
 - (Any accurate explanation covering these points 10 marks)

Question 4 (6 marks)

Name three common tools used in manual technical drawing.

- 1. T-square (2 marks)
- 2. Compass (2 marks)
- 3. Protractor (2 marks)
 (Other valid tools include ruler, set squares, French curve)

Question 5 (10 marks)

Advantages of using CAD in engineering graphic design:

- Faster drawing and editing process
- High precision and accuracy
- Easy to create 3D models and simulations
- Easy to store, share, and reproduce drawings digitally
- Ability to easily correct mistakes and reuse designs (Any 4-5 advantages with brief explanations)

Question 6 (8 marks)

Define 'scale' and its importance:

- Scale is the ratio of the size of the drawing to the actual size of the object.
- It allows large objects to be represented on paper in a smaller, manageable size while keeping proportions accurate.
- Important for clear communication and accurate construction or manufacturing.

Question 7 (12 marks)

Draw a simple isometric cube and label dimensions:

- Correct isometric cube shape with three visible faces (top, front, side)
- Equal edges drawn at 30° from horizontal
- Dimensions clearly labeled on edges (Award marks for accuracy, neatness, and labeling)

Question 8 (8 marks)

What is a sectional view and why is it used?

- A sectional view is a drawing that shows an object as if it were cut through to reveal internal features.
- Used to show hidden details that cannot be clearly seen from the outside.
- Helps in understanding the internal construction and assembly.

Question 9 (8 marks)

Importance of dimensioning:

- Provides exact measurements needed to manufacture or construct the object.
- Removes ambiguity and ensures all parts fit together properly.
- Helps maintain quality and accuracy.
- Enables clear communication between engineers, manufacturers, and builders.

Question 10 (8 marks)

How engineering graphic design contributes to engineering:

- Facilitates clear communication of ideas and designs.
- Enables visualization and testing of concepts before production.
- Reduces errors and misunderstandings.
- Helps in documentation and standardization.
- Assists in planning, manufacturing, and construction phases.

