

Energy Reconstruction withCALIFA

Tobias Jenegger

CALIFA Calorimeter

Funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under Germany's Excellence Strategy – EXC-2094 – 390783311, BMBF 05P19W0FN1, 05P21W0FN1 and the FAIR Phase-0 program

TUM Members: Roman Gernhäuser,Lukas Ponnath,Philipp Klenze,Tobias Jenegger

CALIFA Detector @ R³B

CALorimeter for the In Flight detection of y-rays and light charged p**A**rticles

Requirements:

- -high dynamic range: 100 keV γ-rays – 700 AMeV charged particles
- -high efficiency
- -high granularity → Doppler correction
- -particle identification

Over 2500 crystal channels!

Observables

Standard Cluster Algorithm

User defines shape and size of cluster:

(and set energy threshold for single crystals)

Sort the hit list according to their energy

30. MeV

22. MeV

10. MeV

5. MeV

3. MeV

2.5 MeV

0.7 MeV

- 1. create cluster centered around first hit
- 2. loop over all hits in list
 - → if hit inside cluster add it and remove it from the list
- 3. Do this procedure until list is empty

Summary Clustering Methods

Invariant Slot Attention Model

Starting with energy and position information (no time):

iter 7800 , loss 0.020807367

Parameters I tuned:

Learning rate: 1e-4 to 1e-5

hidden dim: 16 - 32

query_dim: 10 - 16 - 32 - 64

Invariant Slot Attention Model – also with time info

- → Dimension of mask: → same as before! 10 x 3 x 27 x 112
- → Dimension of evt_histogram_array : 10 x 2 x 27 x 112

```
Lr = 5e-5
```

```
#observables: time & energy
```

```
self.gru = torch.nn.GRUCell(self.query_dim, self.query_dim)

kwargs = {'out_channels': hidden_dim,'kernel_size': 5, 'padding':2 }
#cnn_layers = [torch.nn.Conv2d(1,**kwargs)] old cnn, with one input channel, energy
cnn_layers = [torch.nn.Conv2d(2,**kwargs)] #now also with time info

for i in range(num conv layers-1):
```

Loss function does not converge!

slot_and_tspn_onenotebook from Lukas Heinrich

https://gist.github.com/lukasheinrich/31d06bc4918e52d7ae3663a197b90d71


```
class AttModel(torch.nn.Module):
   def init (self):
        super(). init ()
        self.latent dim = 32
       # self.encoder = TSPNEncoder(n slots = 6)
       # self.encoder = SlotAttentionEncoder(n slots = 6)
       self.encoder = AddNoiseEncoder(n slots = 6)
        self.decoder = torch.nn.Sequential(
            torch.nn.Linear(self.latent dim, 128),
            torch.nn.ReLU(),
            torch.nn.Linear(128,256),
            torch.nn.ReLU(),
            torch.nn.Linear(256,NBINS*NBINS),
            torch.nn.Unflatten(-1,(NBINS,NBINS))
   def forward(self, data):
       Nbatch, * = data.shape
        positions, queries = self.encoder(data)
        decoded = self.decoder(positions).exp()/2.
        reco = decoded.sum(dim = 1)
        return reco, queries, decoded
```


Transformer model

Transformer model – further parameters

Batchsize = 64
Feature number = 32
n_epochs = 10
Loss_rate = 2e-4
Loss function = nn.BCELoss()

How do the energy spectra look like?

Standard Cluster vs True Clusters

How to clusterize hits from output of transformer model:

- 1) Take the upper triangular matrix tri[hitnr x hitnr]
- 2) set "merge cut". If tri[i,j] > "merge_cut" → hits belong to same cluster
- 3) do this for all combinations and merge them appropriately

Why energy spectra so bad while loss function seems to decrease?

Most entries in model output tensor ~0.5. This diminishes the loss BCELoss function!

How to improve?

 Include some cut condition in the forward part of the transformer model

```
#out_ret_val = torch.where(ret_val > 0.7, torch.FloatTensor(1,requires_grad=True), torch.FloatTensor(0,requires_grad=True))
```

- → discontinuity of loss function → no learning!
- Use linear net instead of cosine similarity

No improvements!

Agglomerative Model + Transformer Model

Idea:

- 1. Use first agglomerative method to cluster
- 2. Select events where we have too many clusters (false negative)

3. Feed the clusters to the transformer model (calculating cm of clusters)

Transformer Model

Tobias Jenegger 13

Reconstruction with transformer model (after application of agglomerative model)

Cutting edge: model give output in range [0,1]. Cutting edge is threshold: If cutting edge > pairwise cluster output → clusters do not belong together If cutting edge < pairwise cluster output → clusters belong together

No improvement in reconstruction,

High cutting edge \rightarrow = single clusters

Low cutting edge → too many

clusters are merged

14 Tobias Jenegger

Single Feed Forward NN

Since transformer method not successful, start with basic model:

```
Def init:
self.linear = torch.nn.Linear(8,64)
self.activation = torch.nn.ReLU()
```

self.linear_back = torch.nn.Linear(64,1)

. . .

Def forward:

```
output_tensor = self.linear(output_tensor)
output_tensor = self.activation(output_tensor)
output_tensor = self.linear_back(output_tensor)
output_tensor = torch.sigmoid(output_tensor)
output_tensor = torch.squeeze(output_tensor)
```


Reconstruction with feed forward (after application of agglomerative model)

Same as in transformer model. However cutting edge has to be set really low...

No improvement in reconstruction!

Thank you!

CALIFA @ Technical University of Munich (TUM)

Roman Gernhäuser, Lukas Ponnath, Philipp Klenze, Tobias Jenegger

