Learning Causality

Sargur N. Srihari
University at Buffalo, The State University of New York
USA

Plan of Discussion

- Bayesian Networks
- Causal Models
- Learning Causal Models

BN and Complexity of Prob Distributions

For n variables with k states for each variable

Full Distribution requires kⁿ-1 parameters

• with n=6, k=5 need 15,624 parameters

R = Height Rela-	L = Shape of Loop	A = Shape of	C = Height of	B = Baseline of h	S = Shape of t	1
tionship of t to h	of h	Arch of h	Cross on t staff	D = Baseline of n	B = Shape of t	
$r^0 = t$ shorter than h	$l^0 = \text{retraced}$	a^0 = rounded	$c^0 = upper half of$	$b^0 = \text{slanting up}$	$s^0 = \text{tented}$	
		arch	staff	ward		
$r^1 = t$ even with h	$l^1 = $ curved right side	$a^1 = pointed$	$c^1 = lower half of$	b^1 = slanting	$s^1 = \text{single stroke}$	
	and straight left side		staff	downward		
$r^2 = t$ taller than h	l^2 = curved left side	a^2 =no set pat-	c^2 = above staff	b^2 = baseline even	$s^2 = looped$	
	and straight right side	tern				(An 47101)
$r^3 = \text{no set pattern}$	l^3 = both sides		$c^3 = \text{no fixed pat-}$	$b^3 = \text{no set pattern}$	$s^3 = closed$	the the
	curved		tern			
	l^4 = no fixed pattern				s^4 = mixture of	
					shapes	

- BN Provides a factorization of joint distribution
 - Nodes are variables, edges are influences

$$P(\mathbf{x}) = P(x_4)P(x_6 \mid x_4)P(x_2 \mid x_6)P(x_3 \mid x_2)P(x_1 \mid x_2, x_6)P(x_5 \mid x_1, x_2)$$

$$\theta$$
: $4+(3*24)+(2*125)=326$ parameters

Organized as Six CPTs, e.g.

P	(X_5)	$ X_{i} $	X_2
_	()	* * <i>[</i>	, <i>]]</i>

	X ₅ = 0	X ₅ = 1	X ₅ = 2	X ₅ = 3
$X_1 = 0, X_2 = 0$	0.50	0	0	0.50
$X_1 = 0, X_2 = 1$	0	1.00	0	0
$X_1 = 0, X_2 = 2$	0.18	0.36	0.27	0.18
$X_1 = 0, X_2 = 3$	0.27	0.40	0.30	0.03
$X_1 = 0, X_2 = 4$	0.22	0.45	0.28	0.05
$X_1 = 1, X_2 = 0$	0.43	0	0.28	0.29
$X_1 = 1, X_2 = 1$	NaN	NaN	NaN	NaN
$X_1 = 1, X_2 = 2$	0.39	0.06	0.33	0.22
$X_1 = 1, X_2 = 3$	0.33	0.17	0.33	0.17
$X_1 = 1, X_2 = 4$	0.42	0.11	0.29	0.18

Learning Problems

Parameters

- When structure is specified by an expert
 - Experts cannot usually specify parameters
- Data sets can change over time
- Need to learn parameters when structure is learnt

Structure

- Cannot be easily determined by experts
- Variables and Structure may change with new data sets

Learning Parameters of BN

- Parameters define local interactions
- Straight-forward since local CPDs

Max Likelihood Estimate

 $P(x_5|x_1,x_2)$

Bayesiar	n Estimate
with Diric	chlet Prior

	<i>X</i> ₅ = 0	X ₅ = 1	<i>X</i> ₅ = 2	<i>X</i> ₅ = 3
$X_1 = 0, X_2 = 0$	0.50	0	0	0.50
$X_1 = 0, X_2 = 1$	0	1.00	0	0
$X_1 = 0, X_2 = 2$	0.18	0.36	0.27	0.18
$X_1 = 0, X_2 = 3$	0.27	0.40	0.30	0.03
$X_1 = 0, X_2 = 4$	0.22	0.45	0.28	0.05
$X_1 = 1, X_2 = 0$	0.43	0	0.28	0.29
$X_1 = 1, X_2 = 1$	NaN	NaN	NaN	NaN
$X_1 = 1, X_2 = 2$	0.39	0.06	0.33	0.22
$X_1 = 1, X_2 = 3$	0.33	0.17	0.33	0.17
$X_1 = 1, X_2 = 4$	0.42	0.11	0.29	0.18

			<i>X</i> ₅ = 2	
$X_1 = 0, X_2 = 0$	0.29	0.14	0.29	0.29
$X_1 = 0, X_2 = 1$	0.25	0.25	0.25	0.25
$X_1 = 0, X_2 = 2$	0.25	0.38	0.25	0.12
$X_1 = 0, X_2 = 3$	0.22	0.41	0.29 0.29 0.25 0.25 0.25 0.12 0.31 0.06 0.25 0.07 0.29 0.29 0.25 0.25 0.47 0.11 0.33 0.11 0.29 0.20	
$X_1 = 0, X_2 = 4$	0.16	0.52	0.25	0.29 0.25 0.12 0.06 0.07 0.29 0.25 0.11 0.11
$X_1 = 1, X_2 = 0$	0.29	0.14	0.29	0.29
$X_1 = 1, X_2 = 1$	0.25	0.25	0.25	0.25
$X_1 = 1, X_2 = 2$	0.37	0.05	0.47	0.11
$X_1 = 1, X_2 = 3$	0.33	0.22	0.33	0.11
$X_1 = 1, X_2 = 4$	0.38	0.13	0.29	0.20

Dirichlet Prior

Prior
$$\boldsymbol{\theta} \sim \text{Dirichlet}(\alpha_1, ..., \alpha_k) \ \alpha_1 = ... = \alpha_k = 1$$

Likelihood
$$O = \{o_1, ..., o_k\} \sim \text{Multinomial}(\theta_1, ..., \theta_k)$$

Posterior
$$\boldsymbol{\theta}|O \sim \text{Dirichlet}(\alpha_1', ..., \alpha_k')$$

$$\alpha_i' = \alpha_i + o_i$$
, for $i = 1, ..., k$

BN Structure Learning

1. Local: Deviance from Independence Tests

$$d_{\chi^2}(\mathcal{D}) = \sum_{x_i, x_j} \frac{\left(M[x_i, x_j] - M \cdot \hat{P}(x_i) \cdot \hat{P}(x_j)\right)^2}{M \cdot \hat{P}(x_i) \cdot \hat{P}(x_j)} \qquad d_f(\mathcal{D}) = \frac{1}{M} \sum_{x_i, x_j} M[x_i, x_j] \log \frac{M[x_i, x_j]}{M[x_i] M[x_j]}$$

1. Rule for accepting/rejecting hypothesis of independence

$$R_{d,t}(\mathcal{D}) = \begin{cases} \text{Accept } d(\mathcal{D}) \leq t \\ \text{Reject } d(\mathcal{D}) > t \end{cases}$$
 False Rejection probability due to choice of t is its p-value

- 2. Global: Structure Scoring
 - Goodness of Network

Independence Tests

- 1. For variables x_i , x_i in data set \mathcal{D} of M samples
 - 1. Pearson's Chi-squared (χ^2) statistic

$$d_{\chi^2}(\mathcal{D}) = \sum_{x_i, x_j} \frac{\left(M[x_i, x_j] - M \cdot \hat{P}(x_i) \cdot \hat{P}(x_j)\right)^2}{M \cdot \hat{P}(x_i) \cdot \hat{P}(x_j)}$$
 Sum over all values of x_i and x_j

- Independence $\rightarrow d_X(\mathcal{D})=0$, larger value when Joint M[x,y] and expected counts (under independence assumption) differ
- 2. Mutual Information (K-L divergence) between joint and product of marginals

$$d_{I}(\mathcal{D}) = \frac{1}{M} \sum_{x_{i}, x_{j}} M[x_{i}, x_{j}] \log \frac{M[x_{i}, x_{j}]}{M[x_{i}]M[x_{j}]}$$

- Independence $\rightarrow d_I(\mathcal{D})=0$, otherwise a positive value
- 2. Decision rule

$$R_{d,t}(\mathcal{D}) = \begin{cases} \text{Accept } d(\mathcal{D}) \leq t \\ \text{Reject } d(\mathcal{D}) > t \end{cases}$$
 False Rejection probability due to choice of t is its p-value

Structure Scoring

1. Log-likelihood Score for *G* with *n* variables

$$score_L(\mathcal{G}:\mathcal{D}) = \sum_{\mathcal{D}} \sum_{i=1}^n \log \hat{P}(x_i \mid pax_i)$$
 Sum over all data and variables x_i

2. Bayesian Score

$$score_B(G : D) = \log p(D | G) + \log p(G)$$

- 3. Bayes Information Criterion
 - With Dirichlet prior over graphs

$$score_{BIC}(\mathcal{G}:D) = l(\hat{\theta}_G:D) - \frac{\log M}{2}Dim(\mathcal{G})$$

BN Structure Learning Algorithms

Constraint-based

- Find structure that best explains determined dependencies
- Sensitive to errors in testing individual dependencies
 - Koller and Friedman, 2009

Score-based

- Search the space of networks to find high-scoring structure
- Since space is super-exponential, need heuristics
 - K2 algorithm((Cooper & Herskovits, 1992)
 - Optimized Branch and Bound (deCampos, Zheng and Ji, 2009)

Bayesian Model Averaging

- Prediction over all structures
- May not have closed form, Limitation of X^2
 - Peters, Danzing and Scholkopf, 2011

Causal Models

Causality:

- Relation between an <u>event</u> (the <u>cause</u>) and a second event (the <u>effect</u>), where the second is understood to be a consequence of the first
- Examples
 - Rain causes mud, Smoking causes cancer, Altitude lowers temperature

Causal BNs

- A and B are causally independent;
- C, D, E, and F are causally dependent on A and B;
- A and B are direct causes of C;
- A and B are indirect causes of D, E and F;
- If C is prevented from changing with A and B, then A and B will no longer cause changes in D, E and F

BN is not necessarily Causal

- BN is only an efficient representation of a joint distribution in terms of conditional distributions
- Several different BNs can represent the same distribution

 – equivalence class

Causality in Philosophy

- Dream of philosophers
 - Democritus 460-370BC, father of modern science
 - "I would rather discover one causal law than gain the kingdom of Persia"
- Indian philosophy
 - Karma in Sanatana Dharma
 - A person's actions causes certain effects in current and future life either positively or negatively

Causality in Medicine

- Medical treatment
 - Possible effects of a medicine
 - Right treatment saves lives
- Vitamin D and Arthritis
 - Correlation versus Causation
 - Need for Randomized Correlation Test

Determining Causal Relationships

- Best way: Randomized controlled experiments
 - May be too difficult or immoral to perform
- Want to rely on "observational" data to infer causal relationships
- Current statistical methods are good at determining correlation
 - Correlation hints at causality

Relationships between events

Common Causes for A and B, which do not cause each other

Correlation is a broader concept than causation

Examples of Causal Model

- Statement `Smoking causes cancer' implies an asymmetric relationship:
 - Smoking leads to lung cancer, but
 - Lung cancer will not cause smoking
- Arrow indicates such causal relationship
- No arrow between smoking and `Other causes of lung cancer'
 - Means: no direct causal relationship between them

Probabilistic Causality

- Deterministic causation
 - If A causes B, then A must always be followed by B.
 - War does not cause deaths, nor does smoking cause cancer.
- Probabilistic causation
 - A probabilistically causes B if A's occurrence increases the probability of B
 - Smoking causes cancer
 - Reflects either imperfect knowledge of a deterministic system or system under study is inherently probabilistic, such as quantum mechanics

Inference with Causal Networks

1. Probabilistic Queries

Similar to other PGMs

2. Intervention Queries

Ideal with no other effect

- If patient takes this medication what are chances of getting well $P(H|do(M=m^{l}))$
 - Where H=Health. Which is different from $P(H|m^1)$
 - » Patients taking meds on their own are healthier

3. Contra-factual Queries

 Would the accident have happened if driver was not drunk?

CAUSAL STRUCTURE LEARNING

Statistical Modeling of Cause-Effect

Data: National Climate Data Center (546 stations)

Additive Noise Model

- 1. Test if variables x and y are independent
- 2. If not test if $y = f(x) + \varepsilon$ is consistent with data
 - Where f is obtained by regression
 - If residuals $\varepsilon = y f(x)$ are independent of x then accept $y = f(x) + \varepsilon$. If not reject it.
- 3. Similarly test for $x = g(y) + \varepsilon$
- 4. If both accepted/rejected then need more complex relationship

Additive Noise Model:

Example

$$y = f(x) + \varepsilon$$

Residuals More Independent p=0.0026

Backward Model

$$x = g(y) + \varepsilon$$

Residuals Less Independent

$$p=5 \times 10^{-12}$$

Admit altitude → temperature

Justifying additive noise model

- Algorithmic Information Theory
 - Also called Kolmogorov Complexity
- True causal description has a shorter description

Forward and Inverse Problems

Kinematics of a robot arm

Forward problem: Inverse kinematics: two solutions: Find end effector position Elbow-up and elbow-down given joint angles Has a unique solution

- Forward problems correspond to causality in a physical system have a unique solution e.g., symptoms caused by disease
- If forward problem is a many-to-one mapping, inverse has multiple solutions

Regression Problems

Forward problem data set

Red curve is result of fitting a two-layer neural network by minimizing sum-of-squared ²error

Corresponding inverse problem by reversing x and t

Very poor fit to data:
GMMs used here

A Causal BN Structure Learning Algorithm*

- Construct PDAG by removing edges from complete undirected graph
- Use X² test to sort dependencies
- Orient most dependent edge using additive noise model
- Apply causal forward propagation to orient other undirected edges
- Repeat until all edges are oriented

Comparison of Algorithms

Greedy

B & B

Causal

Data			Algorithm			
Data Set	Type of Data	No. of Vars.	Ind.Vars. (No Edges)	Greedy Algo. [11]	B & B Algo. [10]	Causal Algo.
Set 1	Cursive	9	25994	25329	25642	25228
Set 1	Handprint	9	8059	7898	7301	7094
Set 2	Cursive	12	5316	5142	5139	5008
Set 2	Handprint	12	7825	7004	6976	6956

Some Relevant Papers

Greedy Algorithm

 M. Puri, S. N. Srihari, Y. Tang, "Bayesian Network Structure Learning and Inference Methods for Handwriting," *ICDAR* 2013

Causal Algorithm

Zhen and Srihari, Learning Causal Networks, 2014

PGMs:

 Srihari, Probabilistic Graphical Models, Encyclopedia of Social Networks, Springer 2014

BN Inference:

 M. Puri, S. N. Srihari, L. Hanson, "Probabilistic Modeling of Children's Handwriting," DRR 2014