操作系统

Operating system

孔维强 大连理工大学

内容纲要

8.4 分页的硬件支持

- 一、分页硬件基本结构
- 二、 TLB
- 三、支持TLB的分页硬件性能评估

一、分页硬件基本结构

・分页硬件的逻辑示意图

一、分页硬件基本结构

- ・页表通常存放在内存
 - 引入页表导致内存访问时间翻倍

访存速度因为引入页表而减半,不可接受 Solution: 引入页表项缓存 (TLB)

二、TLB

Translation Lookaside Buffer (TLB)

Page Number	Frame Number

Translation Lookaside Buffer

- 并行 (parallel) 查找所有键,对于地址 (A´, A´´)
 - 如果 A´在TLB中,则取出帧号
 - 否则在内存中的页表中取出帧号

二、TLB

·增加TLB缓存机制的页硬件逻辑示意图

三、支持TLB的分页硬件性能评估

包含TLB的访存效率分析

- TLB查找时间 = ε time unit
- 命中率 = α (在TLB中查找到页号的几率)
- Effective Access Time (EAT)
- 考虑 α = 80%, ϵ = 20ns, 内存访问时间为100ns
 - EAT = $0.80 \times 120 + 0.20 \times 220 = 140 \text{ns}$
- 考虑更现实的命中率 α = 99%, ε = 20ns
 - EAT = $0.99 \times 120 + 0.01 \times 220 = 122$ ns

本讲小结

- 分页的硬件支持

