JEE EXPERT

ANSWER KEY & SOLUTIONS

Module Test - [MT - 01]

JEE ADV. Paper - 01

Batch: 12th (Zenith- 1820 - X01 & X02)

Date:[04.08.2019]

PLIVOIO A							
PHYSICS							
1	(C)	2	(A)	3	(B)		4 (B)
5	(B , C)	6	(B, C)	7	(A, B, C)	•	8 (A, C)
9	(A , C)	10	(\mathbf{A},\mathbf{B})	11	(B, C)		12 (C, D)
13	(7)	14	(4)	15	(3)		16 (2)
17	(5)	18	(3)				
CHEMISTRY							
19	(A)	20	(A)	21	(B)	22	(D)
23	(B, C)	24	(B , C)	25	$(\mathbf{B}, \mathbf{C}, \mathbf{D})$	26	$(\mathbf{B}, \mathbf{C}, \mathbf{D})$
27	(\mathbf{A}, \mathbf{B})	28	(C, D)	29	(B, C, D)	30	$(\mathbf{B}, \mathbf{B}, \mathbf{D})$
31	(4)	32	(8)	33	(4)	34	(6)
35	(4)	36	(2)				
MATHEMATICS							
37	(C)	38	(D)	39	(A)	40	(A)
41	(A, C)	42	(A, C)	43	(B, C)	44	(\mathbf{A},\mathbf{B})
45	(B , D)	46	(A)	47	(\mathbf{A},\mathbf{B})	48	(\mathbf{A},\mathbf{B})
49	(2)	50	(2)	51	(0)	52	(0)
53	(5)	54	(9)				
41 45 49	(A, C) (B, D) (2)	42 46 50	(D) (A, C) (A) (2)	39 43 47	(A) (B, C) (A, B)	44 48	(A, B) (A, B)

JEE EXPERT

SOLUTIONS

Module Test - [MT - 01]

JEE ADV. Paper - 01

Batch: 12th (Zenith- 1820 - X01 & X02)

Date:[04.08.2019]

PHYSICS

1. **(C)** Sol. Let segment OB = OC and arc BC is a circular arc with centre at origin. Since the shown closed path ABCA encloses no current, the path integral of magnetic field over this path is zero.

Hence
$$\int\limits_{A}^{B} \vec{B}.\overrightarrow{d\ell} + \int\limits_{B}^{C} \vec{B}.\overrightarrow{d\ell} + \int\limits_{C}^{A} \vec{B}.\overrightarrow{d\ell} = 0.$$

Because \vec{B} is perpendicular to segment AC at all point, therefore $\int\limits_{c}^{A} \vec{B}. \overrightarrow{d\ell} = 0.$

Hence
$$\int\limits_{A}^{B}\vec{B}.\overrightarrow{d\ell}=\int\limits_{C}^{B}\vec{B}.\overrightarrow{d\ell}=\frac{\mu_{o}I}{2\pi}\frac{OB(\theta)}{OB}=\frac{\mu_{o}I}{2\pi}tan^{-1}\frac{1}{2}$$

2. (A) Sol.
$$B_{p_1} = \frac{\mu_0 i}{4\pi\ell} \left[0 + \frac{1}{\sqrt{2}} \right] \times 2 + \frac{\mu_0 i}{4\pi\ell} \left[\frac{1}{\sqrt{2}} + \frac{1}{\sqrt{2}} \right]$$

$$\mathsf{B}_{\mathsf{p}_2} = \frac{\mu_0 \mathsf{i}}{4\mathsf{r}}$$

$$4\ell = \pi r \Rightarrow r = \frac{4\ell}{\pi}$$

$$B_{p_2} = \frac{\mu_0 i}{4 \left(\frac{4\ell}{\pi}\right)}$$

D? **(B) Sol.**
$$\frac{V_1}{V_2} = \frac{l_1}{l_2} = \frac{E'R_1/(R_1+r')}{E'R_2/(R_2+r')} = \frac{R_1(R_2+r')}{R_2(R_1+r')} \Rightarrow \frac{2}{3} = \frac{5(10+r')}{10(5+r')} \Rightarrow r' = 10\Omega$$

 $\frac{[\text{Module Test - 01}]}{\text{4.} \qquad \text{(B) Sol. C}_{\text{eq}} = 3/2 \text{ F}}$

Charge flow q =
$$C_{eq} \left(10 - \frac{15}{3} \right) = \frac{3}{2} \times 5 = 7.5 \ \mu C$$

SECTION-2

5. Sol. (B, C)

Applying Gauss theorem to volume containing cuboid indicated by ABCD $\frac{E}{k}A + \frac{0}{A} = \frac{q_{enc}}{\epsilon_n}$ or $q_{enc} = \frac{EA\epsilon_0}{A}$

Electrostatic energy stored in dielectric medium $=\frac{1}{2}k\epsilon_0\left(\frac{E}{k}\right)^2At=\frac{\epsilon_0E^2At}{2k}$

6. Sol. (B, C)

All elements are moving radially away with velocity K so.

Force = $d\theta$ kB

torque = $d\theta kBr$

torque on ring = $dQkBr = 2\pi\lambda Bkr^2$

$$\text{Arc} \qquad \text{AB} = \frac{\pi}{3} r = \frac{\pi m V}{3 q B} \qquad \qquad \text{Time} \quad \text{`t'} = \left(\frac{T}{2 \pi}\right) \cdot \left(\frac{\pi}{3}\right) = \frac{T}{6} = \frac{\pi m}{3 q B}$$

8. Sol. (A,C)

Solid neutral conducting sphere

Potential at center =
$$\frac{9 \times 10^9 \times 10^{-6}}{5} = 1.8 \text{ kV}$$

⇒ Potential at B = 1.8 kV

$$V_{At} B = V_{due to A} + V_{due to induced charges}$$

 $V_{due\ to\ induced\ charge} = 1.8\ kV - 2.25\ kV = -0.45\ kV$

$$2T=F=\frac{\lambda q}{2\pi\in_0^{}R}$$

- 11. (B), (C)
- 12. (C), (D)

SECTION - 3

13. Sol. (7)

$$\Rightarrow R_{eq} = \frac{3}{2}$$

$$i = \frac{30}{3/2} = 20 \text{ Amp.}$$

From figure current through B \rightarrow D branch = 5 Amp.

therefore current in bd is 15 A = n + 8.

$$=> n = 7$$

14. Sol. (4)

Assume positive and negative charge of density $\boldsymbol{\rho}$ in cavity. The electric field due to cylinder is

 $\frac{\rho r}{2\epsilon_0} \bigg(\text{where } r = \frac{R}{2} \bigg) \text{ and field due to spherical charge (-ve) is zero.}$

15. Sol. (3)

Resistance of cylinder R = $\int_{0}^{1} \frac{1}{\sigma} \frac{dx}{a} = \frac{2\sqrt{l}}{3a\sigma_0}$

$$I = \frac{E}{R}$$

Electric field =
$$\frac{J}{\sigma} = \frac{I}{a\sigma} = \frac{E\sqrt{x}}{Ra\sigma_0 l} = \frac{E(\sqrt{l})}{\frac{2\sqrt{l}}{3a\sigma_0}a\sigma_0 l} = \frac{3E}{2l}$$

16. Sol. (2)

Let at any time t charge flown through the plate B to plate A is q and instantaneous current is ℓ .

From loop theorem $\left(\frac{2q-Q_0}{2C}\right) + \ell R - \epsilon = 0$

$$\Rightarrow R \frac{dq}{dt} = \frac{-2q + 2\epsilon C + Q_0}{2C}$$

$$\Rightarrow \frac{dq}{2\epsilon C + Q_0 - 2q} = \frac{dt}{2RC}$$

Now for charge on plate A to be zero $q = Q_0$.

$$\label{eq:energy_equation} \text{Integrating } \int\limits_0^{Q_0} \frac{dq}{2\epsilon C + Q_0 - 2q} = \int\limits_0^t \frac{dt}{2RC}$$

$$= t = RC In \left[\frac{2\epsilon C + Q_0}{2\epsilon C - Q_0} \right]$$

Putting the value of C, Q_0 , ϵ and R We get t=2 seconds.

17. Sol. (5)

At terminal stage, torque applied on the smaller disc by the rope = mga current to the disc = $\frac{B\omega r^2}{2R}$ (where ω is terminal angular velocity)

Torque applied by magnetic field = $\frac{B^2 \omega r^4}{4R}$

So,
$$\frac{B^2 \omega r^4}{4R}$$
 = mga

 ω = 100 rad/sec

18. Sol. (3)

$$R_{Voltmeter} = 6$$
, $R_{ammeter} = 0.5$

$$R_{eq} = 10$$

$$I = \frac{30}{10} = 3A$$

Reading of voltmeter = $1 \times 3 = 3$ volt.