Problemas geométricos que arrancan de la teoría clásica de funciones

Celia de Frutos Palacios

21 de abril de 2018

Ejemplos

En esta sección vamos a estudiar el comportamiento de algunas series de potencias en el borde de su disco de convergencia.

- 1. $\sum_{n=0}^{\infty} z^n, |z| < 1$, diverge en todo punto tal que |z| = 1; 2. $\sum_{n=1}^{\infty} \frac{z^n}{n}, |z| < 1$, diverge en z = 1 y converge en el resto de punto tales que |z| = 1; 3. $\sum_{n=1}^{\infty} \frac{z^n}{n^2}, |z| < 1$, converge absoluta y uniformemente en |z| = 1. 4. 4. La serie lagunar: $\sum_{n=1}^{\infty} z^{2^n}, |z| < 1$,

Para el primer ejemplo, es fácil ver que $1-z^{n+1}=(1-z)(1+z+z^2+\cdots+z^n)$ así que

$$1 + z + \dots + z^n = \frac{1 - z^{n+1}}{1 - z}. (1.1)$$

Si |z| < 1 entonces lím $z^n = 0$ y la serie converge a

$$\sum_{n=0}^{\infty} z^n = \frac{1}{1-z}$$

Si |z| > 1 entonces lím $z^n = \infty$ y la serie diverge. Pero, ¿qué pasa cuando |z| = 1? La serie de potencias $\sum_{n=0}^{\infty} z^n$ diverge en todos los puntos del radio de convergencia pues $|z^n|$ no tiende a 0 cuando $n \to \infty$.

Sin embargo, $\sum_{n=0}^{\infty} z^n$ puede ser extendida a la función globalmente analítica $\frac{1}{1-z}$ en $\mathbb{C} \setminus \{1\}$ gracias a una cantidad finita de prolongaciones analíticas.

Tomemos a un punto cualquiera de $\mathbb{C} \setminus \{1\}$ y conectémoslo al origen 0 mediante la curva de Jordan $\gamma \subset \mathbb{C} \setminus \{1\}$. Fijemos un punto z_1 en γ que cumpla |z| < 1. $\sum_{n=0}^{\infty} z^n$ puede ser extendida analíticamente en z_1 de la siguiente forma:

$$\frac{1}{1-z} = \sum_{n=0}^{\infty} \frac{1}{(1-z_1)^{n+1}} (z-z_1)^n, |z-z_1| < |1-z_1|.$$

De nuevo, tomemos z_2 en γ tal que $|z-z_1|<|1-z_1|$ y $|z|\geq 1$. Podemos extender la serie de potencias a z_2

$$\frac{1}{1-z} = \sum_{n=0}^{\infty} \frac{1}{(1-z_2)^{n+1}} (z-z_2)^n, |z-z_2| < |1-z_2|.$$

Después de un número finito de iteraciones, alcanzaremos el punto a y tendremos

$$\frac{1}{1-z} = \sum_{n=0}^{\infty} \frac{1}{(1-a)^{n+1}} (z-a)^n, |z-a| < |1-a|.$$

Así, decimos que hemos obtenido la prolongación analítica de $\sum_{n=0}^{\infty} z^n$ que pasa por la curva γ . De hecho, está extensión no depende la curva de Jordan que tomemos. En efecto, sea $\alpha \subset \mathbb{C} \setminus \{1\}$ otra curva de Jordan que conecta a con 0 y extendamos analíticamente $\sum_{n=0}^{\infty} z^n$ a través de α hasta el punto a. Por la propiedad de unicidad, obtendremos la misma serie que en el caso anterior. Por lo tanto, $\frac{1}{1-z}$ está bien definida en $\mathbb{C} \setminus \{1\}$

Segundo ejemplo. $\sum_{n=1}^{\infty} \frac{z^n}{n}$, |z| < 1, diverge en z = 1 y converge en el resto de punto tales que |z| = 1; Vamos a aplicar el criterio de Dirichlet que dice lo siguiente: si $\{a_n\}$ son números reales y $\{b_n\}$ son números complejos tales que:

- 1. $a_1 \geq a_2 \geq \dots$
- 2. $\lim_{n\to\infty} a_n = 0$
- 3. Existe M > 0 tal que $\sum_{n=1}^{N} b_n \leq M$ para todo $N \in \mathbb{N}$ entonces $\sum_{n=1}^{N} a_n b_n$ converge.

En nuestro caso vamos a tomar $a_n = \frac{1}{n}, b_n = z^n$. Las dos primeras condiciones se cumplen, veamos la tercera:

$$\left| \sum_{n=1}^{N} z^n \right| = \left| \frac{z - z^{N+1}}{1 - z} \right| \le \frac{2}{|1 - z|}, \text{ si } z \ne 1, \text{ para todo } N \in \mathbb{N}.$$

Esto muestra que la tercera condición se satisface para todo $z \neq 1$ en el disco unidad. Por lo tanto, la serie converge para todo z tal que $|z| \leq 1, z \neq 1$ y diverge para |z| > 1.

El tercer ejemplo es fácil ver que converge absoluta y uniformemente en |z|=1 dado que $\sum_{n=1}^{\infty} \left|\frac{z^n}{n^2}\right| \leq \sum_{n=1}^{\infty} \left|\frac{1}{n^2}\right| < \infty$.

Teorema de Fatou y Teorema de Carathéodory

2.1. Integral de Poisson y Teorema de Fatou

2.1.1. La Integral de Poisson

Definición 2.1.1. Se llama núcleo de Poisson a la función P definida por

$$P:(r,t)\in[0,1)\times\mathbb{R}\mapsto P_r(t)=\sum_{n=-\infty}^{\infty}r^{|n|}e^{int}.$$
(2.1)

Podemos considerar el núcleo de Poisson como una función de dos variables r y t o como una familia de funciones de t que dependen de r.

Dados $z = re^{i\theta}$, con $r \in [0,1)$ y $\theta \in \mathbb{R}$ se tiene que

$$P_r(\theta - t) = \text{Re}\left[\frac{e^{it} + z}{e^{it} - z}\right] = \frac{1 - r^2}{1 - 2r\cos(\theta - t) + r^2}$$
 (2.2)

para todo $t \in \mathbb{R}$. En efecto:

$$P_r(t) = \sum_{n=-\infty}^{\infty} r^{|n|} e^{int} = 1 + \sum_{n=1}^{\infty} r^n e^{int} + \sum_{n=1}^{\infty} r^n e^{-int} = 1 + \sum_{n=1}^{\infty} r^n (e^{int} + e^{-int}) = 1 + \sum_{n=1}^{\infty} r^n 2 \operatorname{Re}(e^{int}) = \operatorname{Re}\left[1 + 2 \sum_{n=1}^{\infty} (re^{it})^n\right] = \operatorname{Re}\left[1 + 2 \frac{re^{it}}{1 - re^{it}}\right] = \operatorname{Re}\left[\frac{1 + re^{it}}{1 - re^{it}}\right].$$

Por otra parte

$$\operatorname{Re}\left[\frac{1+re^{it}}{1-re^{it}}\right] = \operatorname{Re}\left[\frac{(1+re^{it})(1-re^{it})}{\left|1-re^{it}\right|^{2}}\right] = \frac{1-r^{2}}{1-2r\cos t + r^{2}}.$$

Propiedades del núcleo de Poisson:

$$\frac{1}{2\pi} \int_{-\pi}^{\pi} P_r(t)dt = 1, \forall r \in [0, 1).$$
(2.3)

$$P_r(t) > 0, \forall r \in [0, 1), t \in \mathbb{R} \tag{2.4}$$

$$P_r(t) = P_r(-t), \forall r \in [0, 1), t \in \mathbb{R}$$

$$(2.5)$$

$$P_r(t) < P_r(\delta), 0 < \delta < |t| < \pi \tag{2.6}$$

$$\lim_{r \to 1} P_r(\delta) = 0, \forall \delta \in (0, \pi]$$
(2.7)

Definición 2.1.2. Se llama integral de Poisson de una función $f \in L^1(e^{it})$ a la función F dada por

$$F: z = re^{i\theta} \in \mathbb{D} \mapsto F(re^{i\theta}) = \frac{1}{2\pi} \int_{-\pi}^{\pi} P_r(\theta - t) f(e^{it}) dt.$$

Algunas veces nos convendrá referirnos a ella como F = P[f].

Además si f lleva $\partial \mathbb{D}$ en los reales, 2.2 nos muestra que

$$P[f] = \operatorname{Re}\left[\frac{1}{2} \int_{-\pi}^{\pi} \frac{e^{it} + z}{e^{it} - z} f(t) dt\right].$$

2.1.2. Teorema de Fatou

Para demostrar el Teorema de Fatou nos vamos a basar en unos resultados clásicos del libro [chap. 11] rudin.

Teorema 2.1.1. Si $f \in L^1(\partial \mathbb{D})$ y F = P[f], entonces

$$\lim_{r \to 1} F(re^{i\theta}) = f(e^{i\theta})$$

Teorema 2.1.2. Sean $f \in C(\partial \mathbb{D}), F = P[f]$ y

$$u(re^{i\theta}) = \begin{cases} f(re^{i\theta}) & si \ r = 1\\ F(re^{i\theta}) & si \ 0 \le r < 1 \end{cases}$$

Entonces u es una función continua en el disco cerrado $\overline{\mathbb{D}}$ que es armónica en \mathbb{D} .

Teorema 2.1.3 (Teorema de Fatou). Para toda función $f \in \mathcal{H}^{\infty}(\mathbb{D})$, existe una función $f^* \in L^{\infty}(\partial \mathbb{D})$ definida por

$$f^*(e^{it}) = \lim_{r \to 1} f(re^{it}) \tag{2.8}$$

en casi todo punto.

Se tiene la igualdad $||f||_{\infty} = ||f^*||_{\infty}$. Para todo $z \in U$, la fórmula integral de Cauchy

$$f(z) = \frac{1}{2\pi i} \int_{\gamma} \frac{f^*(\xi)}{\xi - z} d\xi \tag{2.9}$$

se satisface, donde γ es el círculo unidad positivamente orientado: $\gamma(t)=e^{it}, 0\leq t\leq 2\pi$.

Las funciones $f^* \in L^{\infty}(\partial \mathbb{D})$ que se obtienen mediante este procedimiento son precisamente aquellas que cumplen la siguiente relación

$$\frac{1}{2\pi i} \int_{-\pi}^{\pi} f^*(e^{it}) e^{-int} dt = 0, n = -1, -2, \dots$$
(2.10)

Demostración. La existencia de f^* se sigue de los teoremas 2.1.1 y 2.1.2.

Por 2.8, tenemos que $||f^*||_{\infty} \le ||f||_{\infty}$.

Si $z \in U$ y |z| < r < 1, tomemos $\gamma_r(t) = re^{it}, 0 \le t \le 2\pi$. Entonces,

$$f(z) = \frac{1}{2\pi i} \int_{\gamma_{-}} \frac{f(\xi)}{\xi - z} d\xi = \frac{r}{2\pi} \int_{-\pi}^{\pi} \frac{f(re^{it})}{re^{it} - z} e^{it} dt$$

Sea $\{r_n\}$ una sucesión tal que $r_n \to 1$. Por el teorema de la convergencia dominada de Lebesgue tenemos

$$f(z) = \frac{1}{2\pi} \int_{-\pi}^{\pi} \frac{f^*(e^{it})}{1 - ze^{-it}} dt$$
 (2.11)

Por lo que ya hemos probado 2.9. Por el teorema de Cauchy, se sigue que

$$\int_{\gamma_{-}} f(\xi)\xi^{n} d\xi = 0, n = 0, 1, \dots$$

Tomando de nuevo una sucesión $\{r_n\}$ que tienda a 1, el teorema de la convergencia dominada garantiza que f^* cumple 2.10. Además, podemos convertir 2.11 en una integral de Poisson, si $z = re^{i\theta}$,

$$f(z) = \frac{1}{2\pi} \int_{-\pi}^{\pi} f^*(e^{it}) \sum_{n=0}^{\infty} r^n e^{in(\theta-t)} dt = \frac{1}{2\pi} \int_{-\pi}^{\pi} f^*(e^{it}) \sum_{n=-\infty}^{\infty} r^{|n|} e^{in(\theta-t)} dt =$$
$$= \frac{1}{2\pi} \int_{-\pi}^{\pi} P_r(\theta-t) f^*(e^{it}) dt$$

De esto concluimos que $||f||_{\infty} \leq ||f^*||_{\infty}$, así que ambas normas coinciden.

2.2. Teorema de Carathéodory

Definición 2.2.1. Aplicación conforme Sean U y $V \subset \mathbb{C}^n$. Una aplicación $f: U \to V$ se llama conforme en un punto $u \in U$ si preserva la orientación y los ángulos entre curvas que pasan por u.

Proposición 2.2.0.1. Sea $U \subset \mathbb{C}$. Una aplicación $f: U \to \mathbb{C}$ es conforme en U si y solo si $f \in \mathcal{H}(U)$ y $f'(z) \neq 0 \forall z \in U$.

Demostración. (\Leftarrow) Supongamos que f(z) es una función holomorfa en U tal que $f'(z) \neq 0$ para $z \in U$ y consideremos $f: z \to w = f(z)$. Sea $\gamma: [a,b] \to U$ una curva suave. Consideremos $\lambda = (f \circ \gamma)(t)$. Por la regla de la cadena, λ es continuamente diferenciable y como $f'(\gamma(t)) \neq 0$, tenemos

$$\lambda'(t) = f'(\gamma(t))\gamma'(t). \tag{2.12}$$

Por lo tanto, λ es una curva suave en el plano w.

Sean $\gamma_1, \gamma_2 : [a, b] \to U$ curvas suaves tales que $c = \gamma_1(a) = \gamma_2(a)$. Definimos el ángulo θ entre γ_1 y γ_2 en c como el argumento de $\frac{\gamma_2'(a)}{\gamma_1'(a)}$. Como el argumento es aditivo para la multiplicación de funciones, tenemos que

$$\arg \lambda'_1(a) = \arg f'(c) + \arg \gamma'_1(a)$$

$$\arg \lambda'_2(a) = \arg f'(c) + \arg \gamma'_2(a)$$

y entonces

$$\arg \frac{\lambda_2'(a)}{\lambda_1'(a)} = \arg \lambda_2'(a) - \arg \lambda_1'(a) = \arg \gamma_2'(a) - \arg \gamma_1'(a) = \arg \frac{\gamma_2'(a)}{\gamma_1'(a)}.$$

Así, el ángulo entre las curvas λ_1 y λ_2 en $d=\lambda_1(a)=\lambda_2(a)$ es igual al ángulo θ entre las curvas γ_1 y γ_2 en c.

 (\Rightarrow) Supongamos que f es conforme. Fijamos z un punto arbitrario de U, y elegimos $\varepsilon > 0$ tal que $D(z,\varepsilon) \subset U$. Consideremos la familia de curvas suaves $\gamma_{\theta}(t) = z + te^{i\theta}, 0 \le t \le \varepsilon, \theta \in \mathbb{R}$. Nótese que el ángulo entre γ_0 y γ_{θ} en z es θ .

Tomemos $\lambda_{\theta} = (f \circ \gamma_{\theta})(t)$ una familia de curvas. Como f es conforme, el ángulo entre λ_0 y λ_{θ} en f(z) es θ . Como f es conforme, el ángulo entre λ_0 y λ_{θ} , es decir, el argumento de $\frac{\lambda'_{\theta}(0)}{\lambda'_{0}(0)}$ es igual a θ . Si escribimos el argumento de $\lambda'_{0}(0)$ como α , el argumento de $\lambda'_{\theta}(0)$ será $\alpha + \theta$ y, por tanto,

$$e^{-i(\theta+\alpha)}\lambda_{\theta}'(0) = |\lambda_{\theta}'(0)| > 0.$$
 (2.13)

??, nos dice que

$$\lambda_{\theta}'(0) = u_x \cos \theta + u_y \sin \theta + i(v_x \cos \theta + v_y \sin \theta) =$$

= $(u_x + iv_x) \cos \theta + (u_y + iv_y) \sin \theta = f_x \cos \theta + f_y \sin \theta,$

por la identidad de Euler,

$$2\lambda'_{\theta}(0) = (f_x - if_y)e^{i\theta} + (f_x + if_y)e^{-i\theta}.$$

Entonces por 2.13,

$$(f_x - if_y)e^{-i\alpha} + (f_x + if_y)e^{-2i\theta - i\alpha} = 2|\lambda'_{\theta}(0)|.$$

Derivando en ambos lados con respecto a θ , obtenemos

$$-2i(f_x + if_y)e^{-2i\theta - i\alpha} = \frac{2d}{d\theta} |\lambda'_{\theta}(0)|.$$

Como θ es una variable real y la parte de la derecha de la igualdad solo toma valores reales, concluimos que

$$f_x + if_y = 0$$

por lo que

$$u_x + v_y + i(v_x + u_y) = 0.$$

Como vemos, u(x,y) y v(x,y) satisfacen las ecuaciones de Cauchy-Riemann en U. Luego f(z) = u(x,y) + iv(x,y) es holomorfa en $z = x + iy \in U$. Falta ver que $f(z) \neq 0, z \in U$.

Teorema 2.2.1 (Teorema de Carathéodory). Sea φ una aplicación conforme del disco unidad $\overline{\mathbb{D}}$ en un dominio de Jordan Ω . Entonces φ tiene una extensión continua al disco cerrado $\overline{\mathbb{D}}$, y la extensión es inyectiva de $\overline{\mathbb{D}}$ en $\overline{\Omega}$.

Demostración. Vamos a suponer que Ω está acotado. Fijemos $\zeta \in \partial \mathbb{D}$. Primero vamos a probar que φ tiene una extensión continua en ζ . Sea $0 < \delta < 1$,

$$D(\zeta, \delta) = \{z : |z - \zeta| < \delta\}$$

y tomemos $\gamma_{\delta} = \mathbb{D} \cap \partial D(\zeta, \delta)$. Entonces $\varphi(\gamma_{\delta})$ es una curva de Jordan de longitud

$$L(\delta) = \int_{\gamma_{\delta}} |\varphi'(z)| \, ds$$

Por la desigualdad de Cauchy-Schwarz, tenemos

$$L^{2}(\delta) \leq \pi \delta \int_{\gamma_{\delta}} |\varphi'(z)|^{2} ds$$

entonces para $\rho < 1$

$$\int_{0}^{\rho} \frac{L^{2}(\delta)}{\delta} d\delta \leq \pi \int \int_{\mathbb{D} \cap D(\zeta, \rho)} |\varphi'(z)|^{2} dx dy = \pi \operatorname{Area}(\varphi(\mathbb{D} \cap D(\zeta, \rho))) < \infty$$

Entonces, existe una sucesión $\{\delta_n\} \downarrow 0$ tal que $L(\delta_n) \to 0$. Cuando $L(\delta_n) < \infty$, la curva $\varphi(\gamma_{\delta_n})$ tiene extremos $\alpha_n, \beta_n \in \overline{\Omega}$ y ambos puntos deben estar en $\Gamma = \partial \Omega$. De hecho, si

 $\alpha_n \in \Omega$, entonces algún punto cerca de α_n tiene dos preimágenes distintas en \mathbb{D} y esto es imposible pues φ es inyectiva. Además,

$$|\alpha_n - \beta_n| < L(\delta_n) \to 0 \tag{2.14}$$

Sea σ_n el subarco cerrado de Γ que tiene extremos α_n y β_n y con un diámetro menor. Entonces 2.14 implica que diam $(\sigma_n) \to 0$ porque Γ es homeomorfa al círculo. Por el teorema de la curva de Jordan, $\sigma_n \cup \varphi(\gamma_{\delta_n})$ divide al plano en dos regiones, y una de ellas, llamémosla U_n es acotada. Entonces $U_n \subset \Omega$ ya que $\mathbb{C}^* \setminus \overline{\Omega}$ es conexo por arcos. Como

$$\operatorname{diam}(\partial U_n) = \operatorname{diam}(\sigma_n \cup \varphi(\gamma_{\delta_n})) \to 0$$
, concluimos que $\operatorname{diam}(U_n) \to 0$. (2.15)

Tomamos $D_n = \mathbb{D} \cup \{z : |z - \zeta| < \delta_n\}$. Sabemos que para n suficientemente grande, $\varphi(D_n) = U_n$. Si no, por conexión tendríamos que $\varphi(\mathbb{D} \setminus \overline{D_n}) = U_n$ y

$$diam(U_n) \ge diam(\varphi(B(0, 1/2))) > 0$$

que contradice con 2.15. Entonces diam $(\varphi(D_n)) \to 0$ y $\bigcap \overline{\varphi(D_n)}$ es un solo punto pues $\varphi(D_{n+1}) \subset \varphi(D_n)$. Esto significa que φ tiene una extensión continua en $\mathbb{D} \cap \{\zeta\}$. La extensión a todos estos puntos define una aplicación continua en $\overline{\mathbb{D}}$.

Denotemos ahora por φ a la extensión $\varphi: \overline{\mathbb{D}} \to \overline{\Omega}$. Como $\varphi(\mathbb{D}) = \Omega$, φ lleva $\overline{\mathbb{D}}$ en $\overline{\Omega}$. Para probar que φ es inyectiva, supongamos que $\varphi(\zeta_1) = \varphi(\zeta_2), \zeta_1 \neq \zeta_2$. El argumento utilizado para mostrar que $\alpha_n \in \Gamma$, también prueba que $\varphi(\partial \mathbb{D}) = \Gamma$, así que podemos suponer que $\zeta_j \in \partial \mathbb{D}, j = 1, 2$. La curva de Jordan

$$\{\varphi(r\zeta_1) : 0 < r < 1\} \cup \{\varphi(r\zeta_2) : 0 < r < 1\}$$

acota al dominio $W \subset \Omega$, luego $\varphi^{-1}(W)$ es una de las dos componentes de

$$\mathbb{D} \setminus (\{r\zeta_1 : 0 \le r \le 1\} \cup \{r\zeta_2 : 0 \le r \le 1\})$$

Pero como $\varphi(\partial \mathbb{D}) \subset \Gamma$,

$$\varphi(\partial \mathbb{D} \cap \partial \varphi^{-1}(W)) \subset \partial W \cap \partial \Omega = \{\varphi(\zeta_1)\}\$$

y φ es constante en un arco de $\partial \mathbb{D}$. Se tiene que φ es constante, por el principio de reflexión de Schwarz, y esta contradicción prueba que $\varphi(\zeta_1) \neq \varphi(\zeta_2)$.

El resultado que presentamos a continuación es un recíproco parcial del teorema de Carathéodory. Muestra que la inyectividad en el borde del dominio se traslada al interior, en condiciones adecuadas.

Teorema 2.2.2. Sea Γ una curva simple, cerrada y suave con interior Ω . Sea $f \in \mathcal{H}(\Gamma \cup \Omega)$ una aplicación inyectiva en Γ . Entonces f es holomorfa e inyectiva en Ω .

Demostración. La aplicación w=f(z) lleva Γ en un camino simple, cerrado y suave Γ' . Sea w_0 un punto arbitrario que no esté en Γ' . Entonces, si llamamos Γ_+ al camino positivamente orientado,

$$n = \frac{1}{2\pi i} \int_{\Gamma_+} \frac{f'(z)}{f(z) - w_0} dz = \frac{1}{2\pi i} \int_{\Gamma'} \frac{dw}{w - w_0}.$$

Ahora la última integral es cero si w_0 está fuera de Γ' y es ± 1 si w_0 está dentro de Γ' . Sin embargo, n no puede ser negativo pues la primera integral nos da el número de ceros de $f(z) - w_0$ dentro de Γ Entonces, n = 1 si w_0 está dentro de Γ' .

Esto prueba que $f(z) = w_0$ tiene una sola solución si w_0 está dentro de Γ' , que f(z) es holomorfa e inyectiva en Ω y lleva Ω en Ω' (el interior de Γ') y que la dirección positiva de Γ' se corresponde con la dirección positiva de Γ .

Productos infinitos

Definición 3.0.1. Sea $\{u_n\}$ (n=1,2,...) una sucesión de números complejos. Su producto infinito se define como el límite de los productos parciales $u_1u_2\cdots u_N$ cuando N tiende a infinito:

$$\prod_{n=1}^{\infty} u_n = \lim_{N \to \infty} \prod_{n=1}^{N} u_n.$$

Además, decimos que el producto converge cuando el límite existe y no es cero. En otro caso, se dice que el producto diverge.

Proposición 3.0.0.1. Sea $\{u_n\}$ (n=1,2,...) una sucesión de números complejos no nulos. Decimos que producto infinito

$$\prod_{n=1}^{\infty} u_n$$

converge absolutamente si lím $u_n = 1$ y si la serie

$$\sum_{n=1}^{\infty} \log u_n$$

converge absolutamente, es decir, $\sum_{n=1}^{\infty} |\log u_n|$ converge.

Demostración. Si n es suficientemente grande, entonces u_n puede escribirse como $u_n = 1 - \alpha_n$, donde $|\alpha_n| < 1$, y entonces podemos definir $\log u_n$ como $\log (1 - \alpha_n)$. Por hipótesis, se sigue que la serie

$$\sum_{n=1}^{\infty} \log u_n = \sum_{n=1}^{\infty} \log (1 - \alpha_n)$$

converge. Así que las sumas parciales

$$\sum_{n=1}^{N} \log u_n$$

tienen límite. Como la función exponencial es continua, podemos exponenciar las sumas parciales y vemos que

$$\prod_{n=1}^{\infty} u_n = \lim_{N \to \infty} \prod_{n=1}^{N} u_n$$

existe.

Lema 3.0.1. Sea $\{\alpha_n\}$ una sucesión de números complejos tales que $\alpha_n \neq 1$ para todo n. Supongamos que

$$\sum_{n=1}^{\infty} |\alpha_n|$$

converge. Entonces

$$\prod_{n=1}^{\infty} (1 - \alpha_n)$$

converge absolutamente.

Demostración. Para una cantidad finita n, tenemos que $|\alpha_n| < \frac{1}{2}$, así que $\log(1 - \alpha_n)$ está definido por la serie usual, y para alguna constante C, tenemos

$$\left|\log\left(1-\alpha_n\right)\right| \le C\left|\alpha_n\right|.$$

Por tanto, el producto converge absolutamente por definición y utilizando la hipótesis de que $\sum_{n=1}^{\infty} |\alpha_n|$ converge.

3.1. Productos de Blaschke

Proposición 3.1.0.1. Sea $\{\alpha_n\}$ una sucesión en el disco unidad tal que $\alpha_n \neq 0 \,\forall n \,y \,$ $\sum_{n=1}^{\infty} (1-|\alpha_n|)$ converge. Entonces el producto

$$f(z) = \prod_{n=1}^{\infty} \frac{\alpha_n - z}{1 - \overline{\alpha_n} z} \frac{|\alpha_n|}{\alpha_n}$$

converge uniformemente para $|z| \le r < 1$ y define una función holomorfa en el disco unidad que tiene los mismos ceros que α_n . Además $|f(z)| \le 1$.

Demostración. Sea

$$b_n(z) = \frac{\alpha_n - z}{1 - \overline{\alpha_n} z} \frac{|\alpha_n|}{\alpha_n}.$$

Por el lema 3.0.1, sabemos que $\prod_{n=1}^{\infty} b_n$ converge uniformemente si $\sum_{n=1}^{\infty} |1 - b_n|$ converge.

$$|1 - b_n(z)| = \left| 1 + \frac{z - \alpha_n}{1 - \overline{\alpha_n} z} \frac{|\alpha_n|}{\alpha_n} \right| = \left| \frac{(1 - \overline{\alpha_n} z)\alpha_n + (z - \alpha_n) |\alpha_n|}{(1 - \overline{\alpha_n} z)\alpha_n} \right| =$$

$$= \left| \frac{(1 - |\alpha_n|)(\alpha_n + |\alpha_n| z)}{(1 - \overline{\alpha_n} z)\alpha_n} \right| \le \frac{1 + |z|}{1 - |z|} (1 - |\alpha_n|).$$

Entonces,

$$\sum_{n=1}^{\infty} |1 - b_n(z)| \le \frac{1 + |z|}{1 - |z|} \sum_{n=1}^{\infty} (1 - |\alpha_n|) \le \frac{1 + r}{1 - r} \sum_{n=1}^{\infty} (1 - |\alpha_n|)$$

converge uniformemente. Por lo que $\prod_{n=1}^{\infty} b_n$ converge uniformemente para $|z| \leq r < 1$. Falta ver que f(z) define una función holomorfa en el disco unidad que tiene los mismos corres que a_n $y_n |f(z)| \leq 1$

ceros que α_n y $|f(z)| \le 1$. Sea $B(z) = \prod_{n=1}^{\infty} b_n$ el producto infinito y $B_n(z) = \prod_{k=1}^n b_k$ el producto parcial,

$$\left| \frac{B(0)}{B_n(0)} \right| \le \frac{1}{2\pi} \int_0^{2\pi} \left| \frac{B(e^{i\theta})}{B_n(e^{i\theta})} \right| d\theta = \frac{1}{2\pi} \int_0^{2\pi} \left| B(e^{i\theta}) \right| d\theta$$

Tomando $n \to \infty$, obtenemos

$$\frac{1}{2\pi} \int_0^{2\pi} \left| B(e^{i\theta}) \right| d\theta = 1,$$

y, por consiguiente, $|B(e^{i\theta})| = 1$ en casi todo punto. Es decir, |f(z)| = 1 en $\partial \mathbb{D}$.

Representación geométrica de la integral de Poisson

18CAPÍTULO 4.	REPRESENTACIÓN GEOMÉTRICA DE LA INTEGRAL DE POISSON

Apéndice A

Notación

 $\mathcal{H}(U)$: espacio de las funciones holomorfas en U.

 $\mathcal{H}^{\infty}(U)$: espacio de las funciones holomorfas y acotadas en U.

 $\mathbb{D} \colon \mathrm{disco}$ unidad.

 $\overline{\mathbb{D}}$: disco unidad cerrado.

 $\partial \mathbb{D}$: borde del disco unidad.

 $L^{\infty}(U)$: espacio de funciones medibles en U, esencialmente acotadas.