## COMPUTER SCIENCE E-20, SPRING 2014

### Homework Problems

Strong Induction, Induction Review, Propositional Logic Author: Tawheed Abdul-Raheem

1. Suppose you are given a real number x such that  $x + \frac{1}{x}$  is an integer. Use Strong Induction to show that  $x^n + \frac{1}{x^n}$  is an integer for all integers n.

**Proof:** We will prove by strong induction that  $x^n + \frac{1}{x^n}$  is an integer for all integers n

**Base case:** Lets assume that (n = 0) : P(0)

$$x^0 + \frac{1}{x^0}$$

The solution we get from above brings us back to our proposition where  $\boldsymbol{x}$  is a real number

**Basis step:** Lets assume that (n = 1) : P(1)

$$x^1 + \frac{1}{x^1}$$

**Inductive step:** Suppose that  $n \ge 1$  represents integers that can fit in  $x + \frac{1}{x}$  such x is a real number. We must show that P(n+1) also holds for this argument, namely n+1 otherwise the argument does not hold

**Conclusion:** Since adding 1 to n makes the number positive its fair to say that our argument holds for when P(n)is(n+1)

2. Prove using strong induction that any square can be subdivided into n smaller squares, where n > 5. For example, the large square below has been subdivided into 6 squares.

Hint: first show that any square subdivided into k squares can easily be subdivided into k+3 squares, then think how many base cases you need show are true (it is not just the case of n=6).



**Solution:** Each of the squares can be easily subdivided to n+3. When we we subdivided the square, we get additional 3 squares, adding that to the original square we have n+3 sub squares. Now we need to show that our squares can be subdivided in to the 7 and 8. We can subdivide our 7 and 8 easily with n+3

3. The Fibonacci numbers are defined by  $F_0 = 0, F_1 = 1, F_n = F_{n-1} + F_{n-2}$ . Prove using strong induction that for all  $n \geq 2$ :

$$F_n \ge \phi^{n-2}$$

where  $\phi$  is the constant  $\frac{1+\sqrt{5}}{2}$ . *Hint:* Verify and use the fact that  $\phi + 1 = \phi^2$ .

**Solution:** We will use mathematical induction to prove that for all integers  $n \geq 2$ , P(n) is true So first we show that P(0) and P(1) are true we let P(0) be  $F_0$  and P(1) be  $F_1$ 

Lets prove P(2)

$$F_2 \ge \phi^{n-2}$$

$$F_2 \ge \phi^0$$

$$1 \ge 1$$

Lets prove P(3)

$$F_3 \ge \phi^{n-2}$$

$$F_3 \ge \phi^{3-2}$$

$$2 \ge \frac{1 + \sqrt{5}}{2}$$

for all integer  $n \geq 2$ , if P(n) is true for all integers n from 2 then it must be true for P(n+1) Let this be our predicate that we are trying to prove for n+1

$$F_{n+1} = \phi^{n-1}$$

The above was derived from substituition.

At the end this is what we are trying to prove

$$F_n \ge \frac{\phi^{(n)}}{\phi + 1}$$

$$F_{n-1} \ge \frac{\phi^{(n-1)}}{\phi + 1}$$

By summing those two inequalities we get

$$F_n + F_{n-1} \ge \frac{\phi^{(n)}}{\phi + 1} + \frac{\phi^{(n-1)}}{\phi + 1}$$
$$F_{n+1} \ge \frac{(\phi^{n-1})(\phi + 1)}{\phi + 1}$$
$$F_{n+1} \ge \phi^{n-1}$$

We have successfully proved our theorem.

- 4. (a) Define the propositions p="You obey the speed limit" and the q="You are going to a wedding". Write the following sentences as compound propositions using p and q:
  - i. Failing to obey the speed limit implies that you are going to a wedding.
  - ii. You drive below the speed limit only if you are going to a wedding.
  - iii. You do not obey the speed limit unless you are going to a wedding.
  - iv. You drive above the speed limit whenever you are going to a wedding.

#### **Solution:**

p="You obey the speed limit"

q="You are going to a wedding"

- i.  $\neg p \rightarrow q$
- ii.  $p \leftrightarrow q$
- iii.  $p \leftrightarrow q$
- iv.  $q \to \neg p$
- (b) Define the propositions p="The home team wins," q="It is raining," r="There is an earthquake" Write the following sentences as compound propositions using p,q, and r:
  - i. Rain and earthquake are sufficient for the home team to win.
  - ii. Rain and earthquake are necessary but not sufficient for the home team to win.
  - iii. The home team wins only if it is not raining and there is no earthquake.
  - iv. If it is raining the home team will win unless there is an earth-quake.

#### **Solution:**

p="The home team wins,"

q="It is raining,"

r="There is an earthquake"

i. 
$$(q \wedge r) \to p$$

ii. 
$$p \to (q \land r)$$

iii. 
$$p \to \neg (q \wedge r)$$

iv. 
$$(q \land \neg r) \to p$$

5. Using a truth table, determine which of the following are equivalent to  $(p \land q) \rightarrow r$  and which are equivalent to  $(p \lor q) \rightarrow r$ :

(a) 
$$p \to (q \to r)$$

(b) 
$$q \to (p \to r)$$

(c) 
$$(p \to r) \land (q \to r)$$

(d) 
$$(p \to r) \lor (q \to r)$$

# Solution:

| $\mid p$ | q             | r | $p \wedge q$ | $p \lor q$ | $(p \land q) \to r$ | $\mid (p \vee q) \to r$ |
|----------|---------------|---|--------------|------------|---------------------|-------------------------|
| T        | T             | T | T            | T          | T                   | T                       |
| F        | $\mid T \mid$ | T | F            | T          | T                   | T                       |
| T        | F             | T | F            | T          | T                   | T                       |
| F        | F             | T | F            | F          | T                   | T                       |
| T        | T             | F | T            | T          | F                   | F                       |
| F        | T             | F | F            | T          | T                   | F                       |
| T        | F             | F | F            | T          | T                   | F                       |
| F        | F             | F | F            | F          | T                   | T                       |

| $q \rightarrow r$ | $p \to (q \to r)$ | $p \rightarrow r$ | $q \to (p \to r)$ | $(p \to r) \land (q \to r)$ | $ (p \to r) \lor (q \to r) $ |
|-------------------|-------------------|-------------------|-------------------|-----------------------------|------------------------------|
| T                 | T                 | T                 | T                 | T                           | T                            |
| T                 | T                 | T                 | T                 | T                           | T                            |
| T                 | T                 | T                 | T                 | T                           | T                            |
| T                 | T                 | T                 | T                 | T                           | T                            |
| F                 | F                 | F                 | F                 | F                           | F                            |
| F                 | T                 | T                 | T                 | F                           | T                            |
| T                 | T                 | F                 | T                 | F                           | T                            |
| T                 | T                 | T                 | T                 | T                           | T                            |

Equivalent to  $(p \wedge q) \to r$ 

(a) 
$$p \to (q \to r)$$

(b) 
$$q \to (p \to r)$$

(c) 
$$(p \to r) \lor (q \to r)$$

Equivalent to  $(p \lor q) \to r$ 

(a) 
$$(p \to r) \land (q \to r)$$