The Dolo Modeling Framework

James Graham 1 , Spencer Lyon 1 , Pablo Winant 2 , and Anastasia Zhutova 3

¹New York University

²Bank of England

³Paris School of Economics

June 28, 2017

Introduction

- Dolo is a toolkit for describing, solving, and simulating economic models
- Supported by IMF, Bank of England, and QuantEcon
- Two main components:
 - 1 Dolang: Symbolic manipulation, equation compiler 1
 - 2 Dolo: Modeling language, solution algorithms ²
- Borrows ideas from similar software: Dynare, CompEcon, RECS, ...
- Novel contributions or extensions:
 - Model API: flexible/extensible model description
 - Solution algorithms: global, non-linear, OBC, multiple algorithms (easy comparisons)
 - Platform: 100% free and open source, scalable and performant, reproducibility (jupyter notebooks/docker), leverage community written numerical tools

¹Main Dolang authors: Spencer & Pablo

²Main Dolo authors: James, Spencer, Pablo, & Anastasia

Main selling points

- Serious development
 - Version control (git)
 - Continuous integration (automatic test execution)
 - Free/open source languages
- Flexible modeling language
 - OLG with many generations
 - RBC with catastrophic events
 - NK with ZLB
- Separate model description from solution
 - Focus on specifying model
 - Apply generic implementations of algorithms
- Technology stack
 - Julia makes rapid prototyping easy with respectable performance
 - Allows for incremental optimization of algorithm performance
 - Facilitates sharing and reproducibility

Dolang 1: symbolic manipulations

```
julia> time_shift(:(a(0) + p * b(1)), 2)
:(a(2) + p * b(3))
julia> csubs(:(a + b), Dict(:b => :(c/a), :c => :(2a)))
:(a + (2a) / a)
julia> Dolang.latex(steady_state(:(a(0) + p * b(1)/a(1))))
"a+\\frac{p b}{a}"
```


Dolang 2: Function compiler

```
ff = FunctionFactory(
    [:((1-\delta)*k(-1) + i(0)), :(1-(c(1)/c(0))^{(-\gamma)*\beta*R)],
    [(:k, -1), (:i, 0), (:c, 0), (:c, 1)], [:\gamma, :\delta, :\beta, :R]
myfunc = eval(make_function(ff))[1];
julia> myfunc([0.4, 0.1, 0.35, 0.4], [2.0, 0.1, 0.95, 1.02])
2-element Array{Float64,1}:
0.46
 0.258109
julia > myfunc(Der{1}, [0.4, 0.1, 0.35, 0.4], [2.0, 0.1, 0.95, 1.02])
2×4 Array{Float64,2}:
0.9 1.0 0.0 0.0
0.0 0.0 -4.27462 3.74029
julia > myfunc(Der{4}, [0.4, 0.1, 0.35, 0.4], [2.0, 0.1, 0.95, 1.02])
2-element Array{Dict{NTuple{4,Int64},Float64},1}:
 Dict{NTuple{4,Int64},Float64}()
 Dict((3, 3, 3, 4)=>-9.83217,(3, 3, 3, 3)=>-6.15761,(3, 3, 4, 4)=>-407.678,(3,
```

Model formulation

- Symbol groups: states, controls, parameters, values, ...
- Equations:
 - Transition, arbitrage, value, reward
 - Rules for which symbol groups can appear at which times
 - Structure allows us to write model-agnostic algorithms
- Calibration: parameter values and initial values for variables
- Exogenous process: IID, AR1, MarkovChain, products of previous
- Other features (all optional)
 - Complementarities state-dependent bounds on controls
 - Domain for state variables
 - Type of grid on domain Cartesian, Smolyak, (pseudo-)random

Example 1 – RBC Model with AR1 productivity

```
symbols:
1
      exogenous: [e_z] # shortname `m`
    states: [z, k] # shortname `s`
      controls: [n, i] # shortname `x`
  definitions:
                        # re-usable definitions (recursively defined)
      y: exp(z)*k^alpha*n^(1-alpha)
   c: y - i
    rk: alpha*y/k
     w: (1-alpha)*y/n
   equations:
10
      arbitrage:
                        \# f(m, s, x, m(1), s(1), x(1))
11
          - chi*n^eta*c^sigma - w
                                              | 0.1 <= n <= 1.0
12
          -1 - beta*(c/c(1))^(sigma)*(1-delta+rk(1)) | 0.01 <= i <= inf
13
                           \# s = q(m(-1), s(-1), x(-1), m)
  transition:
14
         -z = rho*z(-1) + ez
15
       - k = (1-delta)*k(-1) + i(-1)
16
   exogenous: !Normal # specify process for exogenous e z
17
       Sigma: [[sig_z^2]]
18
    calibration:
                           # parameter values and defaults for variables
19
20
                           # domain for state variables
   domain:
21
22
   z: [-sig_z, sig_z]
      k: [k*0.5, k*1.5]
23
                           # Type of grid over domain
24
   options:
  grid: !Cartesian
25
```

orders: [20, 50]

26

- Generalized Discretized Process: three things
 - \bigcirc time t nodes m_i
 - 2 time t+1 integration nodes m_{ij} and
- No restriction that m_{i1j} relate to m_{i2j}
- Special cases
 - Markov Chain: $m_{ij} = \{m_i\}$, p_{ij} from transition matrix
 - Quadrature: $N m_{ij}$ for each m_i
 - Unstructured: $N_i m_{ij}$ for m_i
 - Bounded: m_{ij} never outside domain of m

- Generalized Discretized Process: three things
 - 1 time t nodes m_i
 - 2 time t+1 integration nodes m_{ij} and
 - \odot associated probabilities p_{ij}
- No restriction that m_{i1j} relate to m_{i2j}
- Special cases
 - Markov Chain: $m_{ij} = \{m_i\}$, p_{ij} from transition matrix
 - Quadrature: N m_{ij} for each m_i
 - Unstructured: N_i m_{ij} for m_i
 - Bounded: m_{ij} never outside domain of m_i

- Generalized Discretized Process: three things
 - 1 time t nodes m_i
 - 2 time t+1 integration nodes m_{ij} and
 - \odot associated probabilities p_{ij}
- No restriction that m_{i_1j} relate to m_{i_2j}
- Special cases
 - Markov Chain: $m_{ij} = \{m_i\}$, p_{ij} from transition matrix
 - Quadrature: N m_{ij} for each m_i
 - Unstructured: N_i m_{ij} for m_i
 - Bounded: m_{ij} never outside domain of m_i

- Generalized Discretized Process: three things
 - 1 time t nodes m_i
 - 2 time t+1 integration nodes m_{ij} and
 - \odot associated probabilities p_{ij}
- No restriction that m_{i1j} relate to m_{i2j}
- Special cases
 - Markov Chain: $m_{ij} = \{m_i\}$, p_{ij} from transition matrix
 - Quadrature: $N m_{ij}$ for each m_i
 - Unstructured: N_i m_{ij} for m_i
 - Bounded: m_{ij} never outside domain of m_i

- Generalized Discretized Process: three things
 - $\mathbf{0}$ time t nodes m_i
 - 2 time t+1 integration nodes m_{ij} and
 - 3 associated probabilities pij
- No restriction that m_{i_1j} relate to m_{i_2j}
- Special cases
 - Markov Chain: $m_{ij} = \{m_i\}$, p_{ij} from transition matrix
 - Quadrature: $N m_{ij}$ for each m_i
 - Unstructured: N_i m_{ij} for m_i
 - Bounded: m_{ij} never outside domain of m_i

- Reference implementation of multiple algorithms
- Available algorithms for each model determined by specification
 - Dynamic Programming formulation:
 - Symbols needed: exogenous, state, control, reward, value
 - Equations needed: transition, felicity, value
 - Algorithms: VFI (Howard improvements)
 - Euler equation methods:
 - Symbols needed: exogenous, state, control
 - Equations needed: transition, arbitrage
 - Algorithms: perturbation, time iteration, improved time iteration, GSSA
 - Explicit expectation and response function:
 - Symbols needed: exogenous, state, control, expectations
 - Equations needed: transition, arbitrage, direct_response
 - Algorithms: direct time iteration, PEA
- Not performance optimized but goal is better than most hand-written code
- Julia makes incremental optimizations easy

- Reference implementation of multiple algorithms
- Available algorithms for each model determined by specification
 - Dynamic Programming formulation:
 - Symbols needed: exogenous, state, control, reward, value
 - Equations needed: transition, felicity, value
 - Algorithms: VFI (Howard improvements)
 - Euler equation methods:
 - Symbols needed: exogenous, state, control
 - Equations needed: transition, arbitrage
 - Algorithms: perturbation, time iteration, improved time iteration, GSSA
 - Explicit expectation and response function:
 - Symbols needed: exogenous, state, control, expectations
 - Equations needed: transition, arbitrage, direct_response
 - Algorithms: direct time iteration, PEA
- Not performance optimized but goal is better than most hand-written code
- Julia makes incremental optimizations easy

- Reference implementation of multiple algorithms
- Available algorithms for each model determined by specification
 - Dynamic Programming formulation:
 - Symbols needed: exogenous, state, control, reward, value
 - Equations needed: transition, felicity, value
 - Algorithms: VFI (Howard improvements)
 - Euler equation methods:
 - Symbols needed: exogenous, state, control
 - Equations needed: transition, arbitrage
 - Algorithms: perturbation, time iteration, improved time iteration, GSSA
 - Explicit expectation and response function:
 - Symbols needed: exogenous, state, control, expectations
 - Equations needed: transition, arbitrage, direct_response
 - Algorithms: direct time iteration, PEA
- Not performance optimized but goal is better than most hand-written code
- Julia makes incremental optimizations easy

- Reference implementation of multiple algorithms
- Available algorithms for each model determined by specification
 - Dynamic Programming formulation:
 - Symbols needed: exogenous, state, control, reward, value
 - Equations needed: transition, felicity, value
 - Algorithms: VFI (Howard improvements)
 - Euler equation methods:
 - Symbols needed: exogenous, state, control
 - Equations needed: transition, arbitrage
 - Algorithms: perturbation, time iteration, improved time iteration, GSSA
 - Explicit expectation and response function:
 - Symbols needed: exogenous, state, control, expectations
 - Equations needed: transition, arbitrage, direct_response
 - Algorithms: direct time iteration, PEA
- Not performance optimized but goal is better than most hand-written code
- Julia makes incremental optimizations easy

Example 2 – Algorithms and Discretized Processes

```
model = yaml_import(joinpath())
    Dolo.pkg_path, "examples", "models", "rbc_dtcc_ar1.yaml"
));
julia> dp = Dolo.discretize(Dolo.MarkovChain, model.exogenous);
julia> @time ti_res = time_iteration(model, dp, verbose=false);
  0.137005 seconds (1.11 M allocations: 71.930 MiB, 25.26% gc time)
julia> @time tid_res = time_iteration(model, dp,
    solver=Dict(:type => :direct), verbose=false
):
  0.027999 seconds (176.50 k allocations: 10.970 MiB, 35.58% gc time)
julia > ti_res.dr(2, [0.01]) # return (n, i) given [i z] and [k]
2-element Array{Float64,1}:
 0.532983
0.236385
```


Example 2 – Algorithms and Discretized Processes

```
model = yaml_import(joinpath())
    Dolo.pkg_path, "examples", "models", "rbc_dtcc_ar1.yaml"
));
julia> dp = Dolo.discretize(Dolo.DiscretizedProcess, model.exogenous);
julia> @time ti_res = time_iteration(model, dp, verbose=false);
  0.871311 seconds (5.90 M allocations: 296.545 MiB, 15.12% gc time)
julia> @time tid_res = time_iteration(model, dp,
    solver=Dict(:type => :direct), verbose=false
):
  0.145959 seconds (941.11 k allocations: 47.970 MiB, 13.53% gc time)
julia> ti_res.dr([0.0], [0.01]) # return (n, i) given [z] and [k]
2-element Array{Float64,1}:
 0.532908
0.236353
```


Example 2 – Algorithms and Discretized Processes

Reproducibility

- Collection of example models in dolo_models
- Jupyter notebook
 - text + latex + code + output + figures in one file
 - Easy to share, great for computational appendix to paper
- Docker:
 - Containers with pre-configured software + data
 - Others download exact environment and press run
 - Same environment on laptop or at scale in cloud
 - One line to open jupyter with example models and libraries:
 docker run -t -i -p8888:8888 albop/donolab
 - Then open browser (e.g. Google Chrome) to localhost:8888

