Final Practice

Linear Algebra MATH 2318 (Fall 2022)

- 1. Show that the set of polynomials in $\mathbb{P}_n(\mathbb{R})$ that satisfy p(0) = 0 is a subspace of $\mathbb{P}_n(\mathbb{R})$.
- 2. Show that the set $H = \left\{ \begin{bmatrix} a & b \\ c & d \end{bmatrix} \in M_{2\times 2} : c = b \right\}$ is a subspace of $M_{2\times 2}$.
- 3. Find a basis for Col(A), Null(A) and Row(A). What is rank A?

$$A = \begin{bmatrix} 1 & 1 & -1 & -2 \\ -1 & -2 & 1 & 3 \\ 2 & 3 & 1 & 4 \end{bmatrix}$$

- 4. Show that $B = \{1+x^2, x+x^2, 1+2x+x^2\}$ is a basis for \mathbb{P}_2 . Hint: Recall that $\dim(\mathbb{P}_2) = 3$ and note that B has three vectors.
- 5. Let \vec{v} be an eigenvector of $A \in M_{n \times n}$ with associated eigenvalue λ . Show that $k\vec{v}$, with k a nonzero scalar, is an eigenvector of A with associated eigenvalue λ .
- 6. Let \vec{v} be an eigenvector of $A \in M_{n \times n}$ with associated eigenvalue λ . Show that \vec{v} is also an eigenvector of A^2 and find the associated eigenvalue. *Hint*: Consider $A\vec{v} = \lambda \vec{v}$ and multiply by A.
- 7. Let $A = \begin{bmatrix} 6 & -3 & -3 \\ 0 & 3 & -1 \\ 0 & -1 & 3 \end{bmatrix}$.
 - a) Find the eigenvalues of A.
 - b) Find a basis for each eigenspace of A.
 - c) Is A diagonalizable? Explain. If it is, diagonalize it and find a formula for A^k .
- 8. Find the shortest distance from $\vec{x} = \begin{bmatrix} 1 \\ 0 \\ 7 \end{bmatrix}$ to the line spanned by $\vec{v} = \begin{bmatrix} 1 \\ -1 \\ 3 \end{bmatrix}$.
- 9. Let $\vec{u}_1 = \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}$, $\vec{u}_2 = \begin{bmatrix} 1 \\ 2 \\ -1 \end{bmatrix}$, $\vec{u}_3 = \begin{bmatrix} 1 \\ -1 \\ -1 \end{bmatrix}$.
 - a) Show that $\{\vec{u}_1, \vec{u}_2, \vec{u}_3\}$ is an orthogonal basis for \mathbb{R}^3 .
 - b) Write $\vec{v} = \begin{bmatrix} 3 \\ 1 \\ 2 \end{bmatrix}$ as a linear combination of $\vec{u}_1, \vec{u}_2, \vec{u}_3$.
- 10. Find the closest point to $\vec{v} = \begin{bmatrix} -1\\2\\3\\1 \end{bmatrix}$ in $H = \operatorname{Span} \left\{ \begin{bmatrix} 1\\1\\0\\2 \end{bmatrix} \right\}$. What is the shortest distance from \vec{v} to H?
- 11. Let $\{\vec{u}, \vec{v}\}$ be an orthogonal set of vectors in \mathbb{R}^n , and let $\vec{x} \in \text{Span}\{\vec{u}\}$ and $\vec{y} \in \text{Span}\{\vec{v}\}$. Prove that \vec{x} and \vec{y} are orthogonal.

- 12. For each of the following, determine if the statement is true or false. Provide a short reasoning (one or two sentences).
 - a) If A is singular, then A is not diagonalizable.
 - b) If A is invertible, then A is diagonalizable.
 - c) Let $A \in M_{n \times n}$. If dim(Null(A)) = 1, then A is not invertible.
 - d) Any linearly independent set is an orthogonal set.
 - e) Any orthogonal set of vectors is a linearly independent set.
 - f) Let $\{\vec{v}_1, \vec{v}_2, \dots, \vec{v}_p\}$ be an orthogonal set of vectors in \mathbb{R}^n , and let t_1, t_2, \dots, t_p be real numbers. The set $\{t_1\vec{v}_1, t_2\vec{v}_2, \dots, t_p\vec{v}_p\}$ is orthogonal.