Impact of Renewable Energy on Emission Reductions

Trends, Benefits and Policy Recommendations

Presented by:

- Gemma Martinez
- Nguyen Hai Tuyen
- Trina Kohestani

June 21, 2024

Agenda

Introduction

Reduction of CO2 emissions in developed countries

H2

С

2000 2020

I

H1

H2

НЗ

С

Reduction of CO2 emissions in developed countries

НЗ

С

2000 2020

I

H1

H2

НЗ

С

Energy as the main driver of CO2 emissions

What are the trends in renewable energy and how does it contribute to the reduction of emissions?

Solar and wind energy are the **fastest-growing** types of renewable energy

Hypothesis 1

Generation intensity

Year-on-year growth rate

 $\frac{\textit{Electricity generated with R.E. (KWh)}}{\textit{Electricity Installed Capacity from R.E. (MW)}} \%$

 $\frac{\textit{Electricity generated Y1} - \textit{Electricity generated Y0}}{\textit{Electricity generated Y0}} \%$

Rapid acceleration of solar and wind energy generation

Rapid acceleration of solar and wind energy generation

Rapid acceleration of solar and wind energy generation

Growth rates of renewable energy generation

Growth rates of renewable energy generation

Comparison of generation intensity

Advantages over other renewables

Solar energy

- ✓ Abundant and versatile
- ✓ Low operational costs
- ✓ Environmental benefits
- ✓ Technological advancements

Wind energy

- ✓ High energy efficiency
- ✓ Low operational costs
- ✓ Environmental benefits
- ✓ Technological advancements

Solar and wind energy are the **fastest-growing** types of renewable energy

Policy Implications

- Countries with favorable weather conditions for solar and wind energy should focus
 on them as their top choices
- For other countries, it is advisable to choose other types of renewable energy
 sources as these have a higher generation intensity

Higher share of renewable energy generation is associated with lower carbon intensity levels, indicating a cleaner energy production

Hypothesis 2

Carbon intensity

Share of electricity generated with renewable energy

Carbon dioxide emissions (gCO2) *Unit of electricity generated (kwh)* Electricity generated with R.E. $\frac{\text{Electricity generated with R.E.}}{\text{Model}}$ Total Electricity Generated

Global carbon intensity and renewable energy generation share

Carbon Intensity

Share of renewable energy generation

H1

H2

Carbon Intensity

Global carbon intensity and renewable energy generation share

Carbon Intensity

Share of renewable energy generation

H1

H2

Share of renewable energy generation

Global carbon intensity and renewable energy generation share

Carbon Intensity

Share of renewable energy generation

Global carbon intensity and renewable energy generation share

- Correlation coefficient: -0.81
- p-value: < 0.001
- Strong inverse relationship
- Statistically significant

Variance of carbon intensity

- Dependent variable: Carbon Intensity
- Independent variable: Share of renewable energy generation

Measure	Value	Probability
R-squared	0.66	
F-Statistic	6739	< 0.001

66 % of the variance in **carbon intensity** can be explained by the share
of renewable energy generation

✓ The model is significant to explain carbon intensity levels

15 countries with the **lowest** carbon intensity

Indicator	Value
Carbon intensity	36.8
% Electricity generation from R.E.	92.4
Share of hydropower (%)	94.5
Share of solar (%)	0.5
Share of wind (%)	1.3
Share of biofuels (%)	0.9
Others (%)	0.3

15 countries with the **highest** carbon intensity

Indicator	Value
Carbon intensity	863.7
% Electricity generation from R.E.	8.3
Share of hydropower (%)	60.0
Share of solar (%)	23.4
Share of wind (%)	9.6
Share of biofuels (%)	6.2
Others (%)	< 0.1

Higher share of **renewable energy generation** is associated with **lower carbon intensity** levels, indicating a cleaner energy production

Policy Implications

- Promoting renewable energy sources can effectively reduce CO2 emission per energy unit produced
- Countries with water abundance should focus on hydropower in their renewable energy mix
- For other countries, **diversifying** their energy portfolio is a good strategy to **prevent over-reliance** on weather-dependent sources

Carbon footprint is determined by the level of economic development and the share of renewable energy

Hypothesis 3

Share of electricity consumed from renewable energy

 $\frac{\textit{Electricity consumed from R.E.}}{\textit{Total Electricity Consumed}} \%$

Carbon footprint and GDP per capita

- Correlation coefficient: 0.69
- p-value: < 0.001
- Strong positive relationship
- Statistically **significant**

Carbon footprint and renewable energy consumption

- Correlation coefficient: **-0.58**
- p-value: < 0.001
- Moderate inverse relationship
- Statistically **significant**

Variance of carbon footprint

- Dependent variable: Carbon footprint
- Independent variable: Share of renewable energy consumption & GDP per capita

Measure	Value	Probability
R-squared	0.609	
F-Statistic	2283	< 0.001

- **61** % of the variance in CO2 emissions per capita can be explained by the independent variables
- ✓ The model is significant to explain carbon footprint levels

Include industry share and energy intensity

Carbon footprint and industry share

- Correlation coefficient: 0.33
- p-value: < 0.001
- Slight positive relationship and statistically significant

- Carbon footprint and energy intensity
 - correlation coefficient: -0.003
 - p-value: **0.86**
- No relationship and statistically not significant
- It is correlated with other variables

Variance of carbon footprint

- H1 H2
- Dependent variable: Carbon footprint
- Independent variable: Share of renewable energy consumption, GDP per capita, industry share and energy intensity

Measure	Value	Probability
R-squared	0.711	
F-Statistic	2283	< 0.001

71 % of the variance in CO2 emissions per capita can be explained by the independent variables

✓ The model is significant to explain carbon footprint levels

Carbon footprint is determined by the level of economic development and the share of renewable energy consumption

Policy Implications

- Financial incentives to promote renewable energy consumption
- Incentivize industrial sector to adopt energy-efficient technologies and practices
- Support diversification of the economy to reduce reliance on high-carbon industries

Key takeaways

- Prioritize solar and wind energy if weather conditions are favorable
- Water-abundant countries should focus on hydropower, while others should diversify their energy portfolios
- Incentivize renewable energy sources and adopt measures to improve energy
 efficiency and diversify economies with a high industrial share

