# CSE304 – Design & Analysis of Algorithm

Single Source Shortest Path (Dijkstra's Algorithm)

### Shortest Path Problems

### What is shortest path ?

shortest length between two vertices for an unweighted graph:

smallest cost between two vertices for a weighted

graph:

(B)

210



### Shortest Path Problems

- How can we find the shortest route between two points on a map?
- Model the problem as a graph problem:
  - Road map is a weighted graph:

```
vertices = cities
edges = road segments between cities
edge weights = road distances
```

Goal: find a shortest path between two vertices (cities)

### **Shortest Path Problems**

#### **Input:**

- Directed graph G = (V, E)
- Weight function w : E → R
- Weight of path  $p = \langle v_0, v_1, \dots, v_k | 1 \rangle$

$$w(p) = \sum_{i=1}^{k} w(v_{i-1}, v_i)$$
Shortest-path weight from u to v:



 $\delta(u, v) = \min_{v \in V} w(p) : u_{p} v \text{ if there exists a path from } u \text{ to } v$ otherwise

Shortest path u to v is any path p such that  $w(p) = \delta(u, v)$ 

### Variants of Shortest Paths

#### Single-source shortest path

-  $G = (V, E) \Rightarrow$  find a shortest path from a given source vertex s to each vertex  $v \in V$ 

#### Single-destination shortest path

- Find a shortest path to a given destination vertex t from each vertex v
- Reverse the direction of each edge ⇒ single-source

#### Single-pair shortest path

- Find a shortest path from u to v for given vertices u and v
- Solve the single-source problem

#### All-pairs shortest-paths

Find a shortest path from u to v for every pair of vertices u and v

### Optimal Substructure of Shortest Paths

#### Given:

- A weighted, directed graph G = (V, E)
- A weight function w:  $E \rightarrow R$ ,



- A shortest path  $p = \langle v_1, v_2, \dots, v_k | \text{ from } v_1 \text{ to } v_k | v_i$
- A subpath of p:  $p_{ij} = \langle v_i, v_{i+1}, \ldots, v_j \mathbb{I}, \text{ with } 1 \leq i \leq j \leq k$

Then:  $p_{ij}$  is a shortest path from  $v_i$  to  $v_j$ 

Proof: 
$$p = v_1^{p_{1i}} \quad v_i^{p_{ij}} \quad v_j^{p_{jk}} \quad v_k$$

$$w(p) = w(p_{1i}) + w(p_{ij}) + w(p_{jk})$$

Assume  $\exists p_{ij}'$  from  $v_i$  to  $v_j$  with  $w(p_{ij}') < w(p_{ij})$ 

$$\Rightarrow$$
 w(p') = w(p<sub>1i</sub>) + w(p<sub>ii</sub>') + w(p<sub>ik</sub>) < w(p) contradiction!

# Shortest-Path Representation

#### For each vertex $v \in V$ :

- $d[v] = \delta(s, v)$ : a **shortest-path estimate** 
  - Initially, d[v]=∞
  - Reduces as algorithms progress
- $\forall \pi[v] = \mathbf{predecessor}$  of v on a shortest path from s
  - If no predecessor,  $\pi[v] = NIL$
  - $\ \square$   $\pi$  induces a tree—shortest-path tree
- Shortest paths & shortest path trees are not unique



### Initialization

### Alg.: INITIALIZE-SINGLE-SOURCE(V, s)

- **1.** for each  $v \in V$
- **2. do** d[v] ← ∞
- 3.  $\pi[v] \leftarrow NIL$
- 4.  $d[s] \leftarrow 0$

 All the shortest-paths algorithms start with INITIALIZE-SINGLE-SOURCE

### Relaxation

 Relaxing an edge (u, v) = testing whether we can improve the shortest path to v found so far by going through u

If d[v] > d[u] + w(u, v)we can improve the shortest path to v $\Rightarrow$  update d[v] and  $\pi[v]$ 



# RELAX(u, v, w)

```
1. if d[v] > d[u] + w(u, v)

2. then d[v] \leftarrow d[u] + w(u, v)

3. \pi[v] \leftarrow u
```

- All the single-source shortest-paths algorithms
  - start by calling INIT-SINGLE-SOURCE
  - then relax edges
- The algorithms differ in the order and how many times they relax each edge

### Dijkstra's Algorithm

- Single-source shortest path problem:
  - No negative-weight edges: w(u, v) > 0 ∀ (u, v) ∈ E
- Maintains two sets of vertices:
  - S = vertices whose final shortest-path weights have already been determined
  - -Q = vertices in V S: min-priority queue
    - Keys in Q are estimates of shortest-path weights (d[v])
- Repeatedly select a vertex u ∈ V S, with the minimum shortest-path estimate d[v]

# Dijkstra (G, w, s)

- 1. INITIALIZE-SINGLE-SOURCE(V, s)
- 2. S ← ∅
- 3.  $Q \leftarrow V[G]$
- 4. while  $Q \neq \emptyset$
- 5.  $do u \leftarrow EXTRACT-MIN(Q)$
- 6.  $S \leftarrow S \cup \{u\}$
- 7. **for** each vertex  $v \in Adj[u]$
- 8. do RELAX(u, v, w)



# Example







### Dijkstra's Pseudo Code

Graph G, weight function w, root s

```
DIJKSTRA(G, w, s)
   1 for each v \in V
   2 \operatorname{do} d[v] \leftarrow \infty
  3 \ d[s] \leftarrow 0
  4 S \leftarrow \emptyset \triangleright \text{Set of discovered nodes}
  5 \ Q \leftarrow V
   6 while Q \neq \emptyset
              \mathbf{do} \ u \leftarrow \text{Extract-Min}(Q)
                   S \leftarrow S \cup \{u\}
                  for each v \in Adj[u]
                                                                                   relaxing
                          do if d[v] > d[u] + w(u, v)
                                                                                  edges
                                   then d[v] \leftarrow d[u] + w(u, v)
```

# Dijkstra (G, w, s)

1. INITIALIZE-SINGLE-SOURCE(V, s)  $\leftarrow \Theta(V)$ 2. S ← ∅ 3.  $Q \leftarrow V[G] \leftarrow O(V)$  build min-heap while  $Q \neq \emptyset \leftarrow$  Executed O(V) times do u ← EXTRACT-MIN(Q) ← O(lqV) 5.  $S \leftarrow S \cup \{u\}$ 6. 7. **for** each vertex  $v \in Adi[u]$ 8. do RELAX(u, v, w)  $\leftarrow$  O(E) times; O(lgV) Running time: O(VlgV + ElgV) = O(ElgV)

# Dijkstra's Running Time

- Extract-Min executed |V| time
- Decrease-Key executed |E| time
- Time =  $|V| T_{\text{Extract-Min}} + |E| T_{\text{Decrease-Key}}$
- *T* depends on different Q implementations

| Q              | T(Extract<br>-Min)    | T(Decrease-<br>Key)   | Total            |
|----------------|-----------------------|-----------------------|------------------|
| array          | <i>O</i> ( <i>V</i> ) | <i>O</i> (1)          | O(V 2)           |
| binary heap    | O(lg V)               | O(lg V)               | O(E lg V)        |
| Fibonacci heap | O(lg V)               | <i>O</i> (1) (amort.) | $O(V \lg V + E)$ |

### Question

- Prove that, if there exists negative edge, dijkstra's shortest path algorithm may fail to find the shortest path
- Print the shortest path for dijkstra's algorithm
- How many shortest paths are there from source to destination?
- Suppose you are given a graph where each edge represents the path cost and each vertex has also a cost which represents that, if you select a path using this node, the cost will be added with the path cost. How can it be solved using Dijkstra's algorithm?

# Question

How to solve ACM534 – Frogger?