

CLAIM AMENDMENTS

Please amend the claims as described below. In accordance with 37 CFR §1.121, a complete listing of all claims in the application is provided below. Notably, the status of each claim is indicated in the parenthetical expression adjacent to the claim number.

Claims 1 - 20 (**canceled**).

- 1 21. (NEW): A semiconductor manufacturing device comprising,
2 a vacuum device;
3 a mechanical drive part, wherein the mechanical drive part is capable of being
4 moved in the vacuum device while holding a substrate;
5 a discharge port to introduce inert gas into the vacuum device;
6 a flow rate control part, coupled to the discharge port, to control a rate of flow of the
7 inert gas into the vacuum device; and
8 an inspection processing part capable of inspecting the substrate when the substrate
9 is disposed in the vacuum device.

- 1 22. (NEW): The semiconductor manufacturing device of claim 21 wherein the
2 mechanical drive part is located between the discharge port and a vacuum exhaust port in
3 the vacuum device.

- 1 23. (NEW): The semiconductor manufacturing device of claim 21 wherein the
2 mechanical drive part is adapted to translate, rotate or tilt the substrate.

1 24. (NEW): The semiconductor manufacturing device of claim 21 further including a
2 flow rate controller to control the flow of inert gas into the vacuum device.

1 25. (NEW): The semiconductor manufacturing device of claim 24 wherein the
2 mechanical drive part, while holding the substrate within the vacuum device, is capable of
3 moving the substrate, relative to the inspection processing part, to permit sequential
4 inspection of a plurality of regions of the substrate by the inspection processing part.

1 26. (NEW): A semiconductor manufacturing device comprising,
2 a vacuum device;
3 a mechanical drive part that is moved in the vacuum device while holding a
4 substrate;
5 a discharge port to introduce an inert gas into the vacuum device;
6 a flow rate control part to control the inert gas that is discharged into the vacuum
7 device from the discharge port at a constant flow rate; and
8 a vacuum pump connected to the vacuum device wherein:
9 the total evacuation rate of the vacuum pump connected to the
10 vacuum device is more than 300 Liters per second and less than 5,000 Liters
11 per second;
12 the degree of vacuum within the vacuum device is higher than
13 133×10^{-7} kilo Pascals and lower than 133×10^{-4} kilo Pascals; and
14 the flow rate of the inert gas is more than 0.5 cm^3 per minute and less
15 than 20 cm^3 per minute.

1 27. (**NEW**): The semiconductor manufacturing device of claim 26 wherein the
2 mechanical drive part is located between the discharge port and a vacuum exhaust port in
3 the vacuum device.

1 28. (**NEW**): The semiconductor manufacturing device of claim 26 wherein the
2 mechanical drive part is adapted to translate, rotate or tilt the substrate.

1 29. (**NEW**): The semiconductor manufacturing device of claim 26 further including a
2 flow rate controller to control the flow of inert gas into the vacuum device.

1 30. (**NEW**): A semiconductor manufacturing device comprising:
2 a vacuum chamber;
3 a mechanical driver disposed in the vacuum chamber, wherein the mechanical driver
4 is adapted to (i) hold a semiconductor substrate and (ii) translate, rotate or tilt the
5 semiconductor substrate;
6 a discharge port that introduces an inert gas into the vacuum chamber; and
7 a flow rate controller, coupled to the discharge port, to control the flow of the inert
8 gas through the discharge port.

1 31. (**NEW**): The semiconductor manufacturing device of claim 30 wherein the flow
2 rate controller provides a constant rate of rate of the inert gas into the vacuum chamber.

1 32. (NEW): The semiconductor manufacturing device of claim 30 wherein the
2 discharge port is positioned in the vicinity of the semiconductor substrate when the
3 semiconductor substrate is located in the vacuum chamber during inspection.

1 33. (NEW): The semiconductor manufacturing device of claim 30 further including
2 an exhaust port in the vacuum chamber.

1 34. (NEW): The semiconductor manufacturing device of claim 34 wherein the
2 mechanical driver is positioned between the discharge port and the exhaust port.

1 35. (NEW): The semiconductor manufacturing device of claim 30 further including
2 an inspection processing part which is capable of inspecting the semiconductor substrate
3 when the semiconductor substrate is disposed in the vacuum chamber.

1 36. (NEW): The semiconductor manufacturing device of claim 35 wherein the
2 mechanical driver, while holding the semiconductor substrate in the vacuum chamber, is
3 capable of moving the semiconductor substrate, relative to an inspection processing part,
4 to permit sequential inspection of a plurality of regions of the semiconductor substrate by
5 the inspection processing part.

1 37. (NEW): A semiconductor manufacturing device comprising:
2 a vacuum chamber;
3 an inspection part disposed in the vacuum chamber;

4 a mechanical driver disposed in the vacuum chamber, wherein the mechanical driver
5 is capable of holding a semiconductor substrate in the vacuum chamber;
6 a discharge port that introduces an inert gas into the vacuum chamber; and
7 a flow rate controller, coupled to the discharge port, to control the flow of inert gas
8 through the discharge port.

1 38. (NEW): The semiconductor manufacturing device of claim 37 wherein the
2 mechanical driver is adapted to translate, rotate or tilt the semiconductor substrate.

1 39. (NEW): The semiconductor manufacturing device of claim 37 wherein the
2 mechanical driver, while holding the semiconductor substrate in the vacuum chamber, is
3 capable of moving the semiconductor substrate, relative to an inspection part, to permit
4 sequential inspection of a plurality of regions of the semiconductor substrate by the
5 inspection part.

1 40. (NEW): The semiconductor manufacturing device of claim 37 wherein the flow
2 rate controller provides a constant rate of rate of the inert gas into the vacuum chamber.

1 41. (NEW): The semiconductor manufacturing device of claim 37 wherein the
2 discharge port is positioned in the vicinity of the semiconductor substrate when the
3 semiconductor substrate is located in the vacuum chamber during inspection.

1 42. (NEW): The semiconductor manufacturing device of claim 37 further including
2 an exhaust port in the vacuum chamber.

1 43. (NEW): The semiconductor manufacturing device of claim 42 wherein the
2 mechanical driver is positioned between the discharge port and the exhaust port.

1 44. (NEW): The semiconductor manufacturing device of claim 42 further including a
2 vacuum pump connect to the exhaust port.

1 45. (NEW): The semiconductor manufacturing device of claim 44 wherein the
2 vacuum pump includes an evacuation rate of between 300 liters per second and 5,000
3 liters per second.

1 46. (NEW): The semiconductor manufacturing device of claim 44 wherein the flow
2 rate controller controls the flow of inert gas through the discharge port to be above 0.5 cm³
3 per minute.

1 47. (NEW): The semiconductor manufacturing device of claim 44 wherein the flow
2 rate controller controls the flow of inert gas through the discharge port to be below about 20
3 cm³ per minute.

1 48. (NEW): The semiconductor manufacturing device of claim 44 wherein the
2 vacuum is above about 133 x 10⁻⁷ kiloPascals and below about 133 x 10⁻⁴ kiloPascals.