Control y Sistemas

Trabajo práctico: Implementación del filtro de Kalman

Resuelva los siguientes ejercicios en MATLAB.

1) Suspensión activa

Un sistema de suspensión activa se puede modelar como,

donde x_1 es la posición de la rueda en el eje Z, x_2 es la velocidad de la rueda en Z, x_3 es la posición del chasis en Z, x_4 es la velocidad del chasis en Z y x_5 es la fuerza

del actuador en Z. d es la perturbación del sistema, la posición de la superficie del terreno.

Description	Parameter	Value [unit]
Quarter car chassis mass	m_c	401 [kg]
Wheel mass	m_w	48 [kg]
Suspension damping coefficient	d_s	2200 [N/m]
Suspension spring coefficient	c_s	23000 [N/m]
Wheel spring coefficient	c_w	250000 [N/m]
Actuator time constant	τ	0.001 [s]

Se considera el caso de solo tener acceso a la medición del desplazamiento, por lo que agregaremos algo de ruido *w* a esta medición.

La perturbación de la superficie de la carretera se puede representar como un proceso estocástico gaussiano con media cero y covarianza $\,Q_d\,$. La perturbación de mendición es también un proceso estocástico gaussiano con media cero y covarianza $\,R\,$.

- 1. Implemente un filtro de Kalman discreto para estimar la salidad del modelo.
- 2. A partir de la especificación de un sensor, podemos determinar la covarianza $R=10^{-4}$.
- 3. Empiece a probar con una $Q_d=10^{-4}$. Notará de las simulaciones que el estimador no funciona perfectamente. Una forma de aumentar la precisión es jugar con el valor de Q_d .
- 4. Utlice los archivos provistos en Active_suspension_kalman_design.zip para resolver el ejercicio.

1) Sistema de transmisión

Considere el siguiente sistema de transmisión de un automovil:

El sistema está descripto por las siguientes ecuaciones en espacio de estados:

$$egin{bmatrix} \dot{x}_1 \ \dot{x}_2 \ \dot{x}_3 \end{bmatrix} = egin{bmatrix} -rac{d_s}{J_f i^2} & rac{d_s}{J_f i} & -rac{c_s}{J_f i} \ rac{d_s}{J_c i} & -rac{d_s}{J_c} & rac{c_s}{J_c} \ rac{1}{i} & -1 & 0 \end{bmatrix} egin{bmatrix} x_1 \ x_2 \ x_3 \end{bmatrix} + egin{bmatrix} rac{1}{J_f} \ 0 \ 0 \end{bmatrix} u + egin{bmatrix} 0 \ -rac{1}{J_c} \ 0 \end{bmatrix} d \ y = egin{bmatrix} 0 & 1 & 0 \end{bmatrix} egin{bmatrix} x_1 \ x_2 \ x_2 \end{bmatrix} + egin{bmatrix} 0 \ 0 \end{bmatrix} u \ \end{bmatrix} u + egin{bmatrix} 0 \ -rac{1}{J_c} \ 0 \end{bmatrix} d \ \end{bmatrix}$$

donde x_1 es la velocidad angular del motor, x_2 es la velocidad angular en las ruedas, x_3 es el torque en el eje de transmisión (driveshafts), Δu es la señal de entrada, el torque del motor, y Δd_1 es la perturbación, las variaciones en la superficie de la calzada.

Los parámetros del modelo son:

Description	Parameter	Value [unit]
Chassis inertia	J_c	6250 [kgm ²]
Engine flywheel inertia	J_f	0.625 [kgm ²]
Driveshaft damping coefficient	d_s	1000 [Nms/rad]
Driveshaft spring coefficient	c_s	75000 [Nm/rad]
Gear ratio	i	57 [-]

- 1. El sensor de salida del sistema es un encoder en la rueda. Su error de medición es de 2 grados. Determine el valor de la matriz de covarianza R.
- 2. Determine el valor de la matriz de covarianza Q considerando que se tiene una confianza alta en que el modelo matemático refleja el comportamiento del modelo físico.
- 3. Determine los valores a priori de los estados y de la matriz de covarianza P según su criterio.
- 4. Simule la dinámica del modelo para obtener estados y salida verdaderos.
- 5. Implemente un filtro de Kalman discreto para estimar la salidad del modelo.