Ej. 1	Ej. 2	Ej. 3	Ej. 4	Nota

Recuperatorio Segundo Parcial - 13/12/2023

Métodos Computacionales 2023

Nombre:		
Apellido:		
_		
Cantidad	de hoias:	

Nota: Es indispensable contar con dos ejercicios marcados como B o B- para aprobar el parcial.

Ejercicio 1. Supongamos que una empresa de servidores web quiere comprar nuevos servidores para reemplazar los obsoletos y tiene dos opciones para elegir.

Hay un modelo estándar que cuesta 400 dólares, utiliza 300 W de potencia, ocupa dos estantes de un rack de servidores y puede manejar 1000 visitas/minuto.

También existe un modelo de última generación, que cuesta 1600 dólares, usa 500W de potencia, pero ocupa solo un estante y puede manejar 2000 visitas/minuto. Con un presupuesto de 36.800 dólares, 44 estantes de espacio para servidores y 12.200W de potencia,

Se quiere maximizar la cantidad de visitas que pueden realizarse cada minuto.

- 1. Formular el problema de decidir cuantas unidades de cada producto fabricar para esta semana.
- 2. Plantear el problema de la forma canónica.
- 3. Resolver el problema con el método gráfico

Ejercicio 2. Encontrar el punto mas cercano a y en el subespacio W generado por $\{v_1, v_2\}$

$$y = \begin{bmatrix} 1 \\ 6 \\ 0 \\ 2 \end{bmatrix}, v_1 = \begin{bmatrix} 3 \\ 1 \\ 0 \\ 1 \end{bmatrix}, v_2 = \begin{bmatrix} 1 \\ -1 \\ 1 \\ -2 \end{bmatrix}$$

Ejercicio 3. Indicar Verdadero o Falso:

- 1. Si el vector \mathbf{x} (distinto de 0) es ortogonal a cada vector del subespacio W, entonces \mathbf{x} pertence al complemento ortogonal de W.
- 2. La proyección ortogonal de un vector \mathbf{y} sobre el vector \mathbf{v} es la misma que la proyección ortogonal de \mathbf{y} sobre $c\mathbf{v}$, con c un escalar distinto de 0.
- 3. Si el vector \mathbf{y} pertenece al subespacio W, entonces la proyección ortogonal de \mathbf{y} sobre W es el mismo vector \mathbf{y} .
- 4. Para todo vector \mathbf{y} y todo subespacio W, el vector $\mathbf{z} = \mathbf{y} \operatorname{proy}_W \mathbf{y}$ es ortogonal a W.

Ejercicio 4. Sea
$$W = \text{Gen}\{\mathbf{v_1}, \mathbf{v_2}\}$$
 donde $v_1 = \begin{bmatrix} 3 \\ 6 \\ 0 \end{bmatrix}$ y $v_2 = \begin{bmatrix} 1 \\ 2 \\ 2 \end{bmatrix}$. Construir una base ortonormal para W .