Paradigmas de programación

Francisco morales

Laboratorio Mesa

Documentación NetLogo

Introducción

Este documento presenta un análisis comparativo entre el método numérico para calcular

métricas clave en sistemas de colas y los resultados obtenidos a través de simulaciones de

cola realizadas en NetLogo. Se han evaluado específicamente el número promedio de clientes

en la cola Nq, el tiempo promedio de espera en la cola Tq, y el tiempo total promedio en el

sistema Ts bajo diferentes parámetros de tasa de arribo lambda y tasa de servicio miu. Este

estudio tiene como objetivo evaluar la precisión y aplicabilidad de ambos enfoques,

analizando las posibles discrepancias entre los resultados teóricos y simulados para ofrecer

una perspectiva sobre su efectividad en contextos de análisis de sistemas de colas.

A continuación, se describe la información necesaria preliminar de cada método.

Método analítico:

El procedimiento para obtener las variables: Nq, Ts, Tq por medio de cálculos convencionales

consiste en simplificar la fórmula para la variable Ns y luego usar estos valores Ns para los

cálculos subyacentes de las otras variables.

Se define la variable k como el tamaño de la cola. Se le asigna el valor 10 para todos los

cálculos.

1. La fórmula dada es:

Es decir:

$$\sum_{n=0}^{k} \left(\frac{\lambda}{\mu}\right)^{k} \left(\frac{-1+\left(\frac{\lambda}{\mu}\right)}{\left(\frac{\lambda}{\mu}\right)^{k+1}}\right) * n$$

2. La simplificación obtenida empleando Wólfram Alpha es:

$$\sum_{n=0}^{k} \frac{n\left(\frac{\lambda}{\mu}-1\right)\left(\frac{\lambda}{\mu}\right)^{k}}{\left(\frac{\lambda}{\mu}\right)^{k+1}-1} = \frac{k(k+1)(\lambda-\mu)\left(\frac{\lambda}{\mu}\right)^{k}}{2\lambda\left(\frac{\lambda}{\mu}\right)^{k}-2\mu}$$

Por medio de una simulación en NetLogo.

La simulación en NetLogo consiste en ingresar al simulador los valores para la tasa de arribo , el tiempo promedio de servicio (que hay que convertir a tasa), el tiempo máximo de ejecución y la cantidad de servidores. Las dos últimas variables (tiempo máximo de ejecución y cantidad de servidores) no están parametrizadas dentro de las fórmulas mostradas anteriormente, entonces se les asigna un valor constante de **100 ticks of max run time** y **un servidor** respectivamente.

Realización de operaciones y comparación de resultados entre los dos métodos.

Caso 1:

$$\lambda = \mu = 0.5$$

K = 10

Calculo convencional:

$$Ns = \frac{k(k+1)(\lambda-\mu)(\frac{\lambda}{\mu})^k}{2\lambda(\frac{\lambda}{\mu})^k - 2\mu} = \frac{10(10+1)(0.5-0.5)(1)^{10}}{2*0.5(1)^{10} - 2(0.5)} = \frac{0}{0} ind.$$

Debido a este resultado, no se pueden calcular de manera convencional las variables: Nq, Tq, Ts.

Simulación Netlogo.

Aunque no tengamos las resultados del cálculo analítico para realizar la comparación, obtendremos de igual forma los resultados por este medio.

Caso 1 = iguales	Average Queue Lenght	Average Time in Queue	Average Time in system
	2,019	4,488	6,407
	13,543	21,184	23,2
	5,421	10,262	12,04
	2,406	4,323	5,937
	1,306	2,419	3,92
	1,847	4,296	6,192
	4,953	12,073	14,363
	3,619	5,509	6,975
	0,645	1,61	3,361
	6,067	12,143	14,263
Promedio	4,1826	7,8307	9,6658

Caso 2

$$\lambda > \mu$$

$$\lambda = 0.8$$
; $\mu = 0.3$

Calculo convencional

$$Ns = \frac{k(k+1)(\lambda-\mu)\left(\frac{\lambda}{\mu}\right)^k}{2\lambda\left(\frac{\lambda}{\mu}\right)^k - 2\mu} = \frac{10(10+1)(0.8-0.3)\left(\frac{0.8}{0.3}\right)^{10}}{2*0.8\left(\frac{0.8}{0.3}\right)^{10} - 2(0.3)} = 34.37$$

$$Ts = Ns * \lambda$$
; $Ts = 34.37 * 0.8$; $Ts = 27.5$

$$Tq = Ts - \frac{1}{\mu}$$
; $Tq = 27.5 - \frac{1}{0.3}$; $Tq = 24.16$

$$Nq = \frac{Ts}{\lambda}$$
; $Nq = \frac{27.5}{0.8} = 34.4$

Simulación Netlogo.

\sim	_			
1,000	·) —	lambda	`	mili
1.450	/ –	เสบบบนส	_	1111111

J	Average Queue Lenght	Average Time in Queue	Average Time in system
	36,6	44,8	47,8
	35,4	40,3	43
	35,8	32,1	34,7
	19,9	26,3	28,4
	27	32	34,4
	24,9	30,8	32,8
	32	35,7	37,5
	22,9	34,4	36,9
	30,35	24,3	25,9
	23,6	24,2	26,7
	28,845	32,49	34,81

Comparación

Promedio

Netlogo	28,845	32,49	34,81
Analítico	34,4	24,16	27,5
Diferencia	5,555	8,33	7,31

Caso 3

 $\lambda < \mu$

 $\lambda = 0.3$; $\mu = 0.7$

$$Ns = \frac{k(k+1)(\lambda-\mu)\left(\frac{\lambda}{\mu}\right)^k}{2\lambda\left(\frac{\lambda}{\mu}\right)^k - 2\mu} = \frac{10(10+1)(0.3-0.7)\left(\frac{0.3}{0.7}\right)^{10}}{2*0.3\left(\frac{0.3}{0.7}\right)^{10} - 2(0.7)} = 6.57*10^{-3}$$

$$Ts = Ns * \lambda$$
; $Ts = 6.57 * 10^{-3} * 0.3$; $Ts = 0.00197$

$$Tq = Ts - \frac{1}{u}$$
; $Tq = 0.00197 - \frac{1}{0.7}$; $Tq = -1.42$

$$Nq = \frac{Ts}{\lambda}$$
; $Nq = \frac{0,00197}{0.3} = 0,00656$

Simulación NetLogo

Caso 3 = Lambda <miu

Average Queue Lenght	Average Time in Queue	Average Time in system
1,27	0,47	1,53
0,04	0,21	1,39
0,2	0,214	1,632
0,421	1,204	2,682
0,086	0,308	1,985
0,06	1,95	1,46
0,131	0,436	1,842

	0,058	0,217	1,55
	0,558	1,923	3,89
	0,249	0,956	2,538
Promedio	0,3073	0,7888	2,0499

Diferencia:

Netlogo	0,3073	0,7888	2,0499
Analítico	0,00656	-1,42	0,00197
Diferencia	0,30074	2,2088	2,04793

Conclusión:

No fue posible realizar comparaciones en el caso en donde lambda es igual a miu. Pues al emplear las fórmulas dadas, se obtiene una indeterminación. Cuando lambda es mayor a miu, se consiguen resultados en que se acercan bastante los extraídos de la simulaicón en Netlogo. Esto comportamiento se repite cuando miu es mayor a lambda, sin embargo, se obtiene un valor negativo para Average time in Queue en el análisis analítico y se desconoce la causa.