Лекция 07.02.22

Note 1

b84aca6df42d4d74ad1fea51970c01d9

Пусть $\{(c3::W-линейное\ пространство,\ V\subset W.\}\}$ Тогда V называется $\{(c2::Линейным\ подпространством\}\}$, если $\{(c1::Res)\}$

- 1. $\forall v \in V, k \in \mathbb{R} \implies kv \in V$,
- 2. $\forall v_1, v_2 \in V \implies v_1 + v_2 \in V$.

Note 2

a2e780e4b5ff4b4199b594e34bf762c6

Выражение «V есть линейное подпространство в W» обозначают (сы:

$$V \triangleleft W$$

}}

Note 3

baa489a3d13c4978866a82630be13e73

Пусть W — линейное пространство, $V \triangleleft W$. Тогда $V = \{\{c1: rowe линейное пространство\}\}$.

Note 4

3c2988d9ae174eb4aa377f43ebd61f74

Является ли прямая проходящая через начало координат подпространством в \mathbb{R}^n ?

Да, поскольку любая линейная комбинация векторов на прямой тоже лежит на этой прямой.

Note 5

18b402a364da457aaaf95095b9113dcc

Пусть $W=\mathbb{R}^n, A\sim m\times n.$ Является ли множество

$$V = \{x \in W \mid Ax = 0\}$$

линейным подпространством?

Да, поскольку $\forall u,v\in V,\quad \alpha,\beta\in\mathbb{R}\quad A(\alpha u+\beta v)=0.$

Пусть $V \triangleleft \mathbb{R}^n$. Тогда всегда существует $A \in \mathbb{R}^{\{\!\{c2::m \times n\}\!\}}$ такая, что $\{\!\{c1::m\}\!\}$

$$V = \ker A$$
.

Note 7

eecf9dfacd2b41218565f8582275c53b

Пусть $V = \mathcal{L}(a_1, \dots, a_m) \triangleleft \mathbb{R}^n$. Как найти матрицу такую, что $\ker A = V$?

Строки матрицы A — (транспонированная) ФСР соответствующей СЛАУ.

Note 8

dcb727a8588c412db845188bf547fd9e

Пусть $W=\mathbb{R}^n,\quad a_1,a_2,\dots a_n\in W$. Является ли

$$\mathcal{L}(a_1, a_2, \dots a_n)$$

подпространством в W?

Да, является, поскольку любая линейная комбинация линейных комбинаций $a_1, a_2, \dots a_n$ тоже является их линейной комбинацией.

Note 9

d633780bbade46968c2bcb66d05be478

Пусть W — линейное пространство, $V_1, V_2 \triangleleft W$. Всегда ли

$$V_1 \cap V_2 \triangleleft W$$
?

Да, всегда.

Note 10

9c714ab9fa4b457f993438ef25421061

Пусть W — линейное пространство, $V_1, V_2 \triangleleft W$. Всегда ли

$$V_1 \cup V_2 \triangleleft W$$
?

Нет, не всегда.

Note 11

2b9216d113914ad98cbc81b055dc174b

Пусть W — линейное пространство, $V_1, V_2 \triangleleft W$. Тогда

$$\{(\operatorname{c2:} V_1 + V_2)\} \stackrel{\mathrm{def}}{=} \{(\operatorname{c1:} \{v_1 + v_2 \mid v_1 \in V_1, \quad v_2 \in V_2\}.)\}$$

Note 12

cd25e86c13c141be80e3673edfece8d2

Пусть W- линейное пространство, $V_1,V_2 \triangleleft W.$ Тогда $\dim(V_1+V_2) = \dim V_1 + \dim V_2 - \dim(V_1\cap V_2).$

Note 13

cf370041c6b4016a92ca63a4b3675eb

Пусть W — линейное пространство, $V_1, V_2 \triangleleft W$. Всегда ли

$$V_1 + V_2 \triangleleft W$$
?

Да, всегда.

Note 14

fe58542dc0ee4e48ab330cd68be1fd77

Пусть W — линейное пространство, $V \triangleleft W$ и e_1, e_2, \ldots, e_k — предвазис в V. Тогда в W существует базис вида предвазис вида предвази предваз

$$e_1, e_2, \ldots, e_k, e_{k+1}, \ldots, e_n$$
.

Note 15

7e41e14368b94d50be88c6e5b025c706

В чем основная идея доказательства теоремы о размерности суммы подпространств?

Дополнить базис в $V_1 \cap V_2$ до базисов в V_1 и V_2 соответственно и построить на их основе базис в $V_1 + V_2$.

Note 16

01ac0beb84404bed8a9f676002a2804c

Пусть $\{e_i\}$ — базис в $V_1 \cap V_2$, $\{e_i, f_j\}$ — базис в V_1 , $\{e_i, g_k\}$ — базис в V_2 . Как можно построить базис в $V_1 + V_2$?

Объединить их в одну систему $\{e_i, f_j, g_k\}$.

Note 17

d6aa3baccb104c5d857dad61f06b75e7

Пусть $\{e_i\}$ — базис в $V_1 \cap V_2$, $\{e_i, f_j\}$ — базис в V_1 , $\{e_i, g_k\}$ — базис в V_2 . Как показать, что $\{e_i, f_j, g_k\}$ — базис в $V_1 + V_2$?

Показать, что $\mathscr{L}(\{g_k\}) \cap V_1 = \{0\}.$

Note 18

28934bf74ae1452191c8e81b8cef0cf5

Пусть $\{e_i\}$ — базис в $V_1\cap V_2$, $\{e_i,f_j\}$ — базис в V_1 , $\{e_i,g_k\}$ — базис в V_2 . В чём ключевая идея доказательства того, что

$$\mathscr{L}(\{g_k\}) \cap V_1 = \{0\}?$$

Если $\sum_k \lambda_k g_k \in V_1$, то она принадлежит и $V_1 \cap V_2$.

Семинар 09.02.22

Note 1

3fd21160928849f8achc526a60229e49

Пусть e_1,e_2,\dots,e_n и e'_1,e'_2,\dots,e'_n — два базиса в линейном пространстве V. Тогда перехода от базиса e к базису e' называют патрицу C такую, что для любого $v\in V$, если

$$v = \lambda_1 e_1 + \lambda_2 e_2 + \dots + \lambda_n e_n,$$

 $v = \mu_1 e'_1 + \mu_2 e'_2 + \dots + \mu_n e'_n,$

то

$$C \begin{bmatrix} \mu_1 \\ \mu_2 \\ \vdots \\ \mu_n \end{bmatrix} = \begin{bmatrix} \lambda_1 \\ \lambda_2 \\ \vdots \\ \lambda_n \end{bmatrix}.$$

}}

Note 2

8fab27df46a451190278cbc1d38698f

 $\{\{e^{2a}\}\}$ Матрицу перехода от базиса e к базису $e'\}\}$ обычно обозначают $\{\{e^{1a}\}\}\}$

Note 3

c9e84965d5ea4157b50f6576e2cbddad

Пусть e_1, e_2, \ldots, e_n и e'_1, e'_2, \ldots, e'_n — два базиса в линейном пространстве. Как в явном виде задать матрицу $C_{e \to e'}$?

Столбцы $C_{e \to e'}$ — это координаты векторов e'_1, e'_2, \dots, e'_n в базисе e_1, e_2, \dots, e_n .

Лекция 14.02.22

Note 1

825he05che9f4850806682f4dh48f5e1

Пусть W- линейное пространство, $V_1,V_2 \triangleleft W$. «с²» Сумму V_1+V_2 » называют «с¹» прямой суммой, если «с²» $V_1\cap V_2=\{0\}$.

Note 2

90c98477312541878454fb9689685fc8

 $\{\{c2:\Pi$ рямая сумма подпространств V_1 и $V_2\}\}$ обозначается $\{\{c1:E\}\}$

$$V_1 \oplus V_2$$
.

Note 3

051dc5cc9d7d4722ac40423e92273c7a

Пусть V_1 и V_2 — два линейных подпространства. Тогда эквивалентны следующие утверждения:

- 1. $\{\{c1::V_1+V_2-прямая сумма;\}\}$
- 2. $\{(c2): \dim(V_1+V_2) = \dim V_1 + \dim V_2; \}\}$
- 3. $\{c3: Для \ любого \ a \in V_1 + V_2 \ разложение разложение <math>a$ в сумму $v_1 + v_2$, где $v_1 \in V_1, v_2 \in V_2$, единственно.

Note 4

fc93fb548c854d70af3f9cf3017866cb

В чем основная идея доказательства того, что если для любого $a\in V_1+V_2$ разложение разложение a в сумму v_1+v_2 , где $v_1\in V_1, v_2\in V_2$, единственно, то V_1+V_2 — прямая сумма?

Показать, что если
$$a=\mathop{v_1}\limits_{\in V_1}+\mathop{v_2}\limits_{\in V_2}\in V_1\cap V_2$$
, то $v_1=v_2=0$.

«((сз::Монотонность размерности подпространств))»

Пусть W — линейное пространство, $V \triangleleft W$. Тогда

- 1. $\{\{\text{cl:dim } V \leqslant \dim W,\}\}$
- 2. $\operatorname{dim} V = \operatorname{dim} W \iff V = W.$

Note 6

6b854ec7f5b4473a76276e0bff1e272

 $\{\{c3\}\}$ Отображение $f:V\to W\}\}$ называется $\{\{c2\}\}$ линейным отображением, $\{\}\}$ если $\{\{c1\}\}$

- 1. f(x+y) = f(x) + f(y), $\forall x, y \in V$,
- 2. $f(\lambda x) = \lambda f(x), \quad \forall \lambda \in \mathbb{R}, x \in V.$

Note 7

4008d3f9d2224ec38cb2e9b8a78aab64

Линейное отображение так же ещё называют (спринейным оператором.)

Note 8

df5862f6f1d4456cb943a7f07c8d8b68

Линейный оператор $f:V\to W$ называется (кл.: изоморфизмом линейных пространств); тогда и только тогда, когда (кл.: f — биекция.)

Note 9

d8bd78dfda034119ae049b476da96449

Линейные пространства V и W называются (сп.:изоморфными)) тогда и только тогда, когда ((с2-существует изоморфизм

$$f:V \to W$$
.

Note 10

2d4f456313e24261b688216f4b7f199e

Отношение $\{(c2)$ изоморфности $\}$ обозначается символом $\{(c1)\}$

 \simeq

Если $f:V \to W$ — изоморфизм, то $f^{-1}:W \to V$ ((c.s.— тоже изоморфизм.))

Note 12

b439505227ea4814b084a811815b59d3

Отношение изоморфности удовлетворяет аксиомам отношения (как-эквивалентности.)

Note 13

9fa02b16e5e74fcea192355d84b99109

Пусть V,W — конечномерные линейные пространства. Тогда

$$\{\text{c2::} V \simeq W\}\}\{\text{c3::} \iff \text{optimized in } V = \dim W.\}$$

Note 14

13b90eb2ff704cc69e067a3f047966c

Пусть $f:V\to W$ — линейный оператор. Тогда парицей линейного оператора f в паре базисов в V и W соответственног называют парицу A, переводящую координаты любого вектора $v\in V$ в координаты вектора $f(v)\in W$ в соответствующих базисах.

Note 15

74ef91d29ce940f8b894341a5836c812

Пусть $f:V \to W$ — линейный оператор. (Се:-Матрица оператора f в паре базисов e,\tilde{e} в пространствах V и W соответственно обозначается (Се:-

$$M_{e,\tilde{e}}(f)$$
.

Note 16

d8ecf4d0e7a546668528944588ba6060

«({c2:: Теорема о матрице линейного оператора);»

Пусть $f:V\to W$ — линейный оператор, $\{e_i\}_{i=1}^n$ — базис в V, $\{e_i\}_{j=1}^m$ — базис в W. Как в явном виде задать матрицу оператора f в этих базисах?

i-ый столбец — это координаты $f(e_i)$ в базисе $\{\tilde{e}_j\}$.

Note 17

1235d9dc6038426387ee1c7475309a4f

Как можно компактно перефразировать утверждение теоремы о матрице линейного оператора?

$$f(e) = \tilde{e}A.$$

Note 18

8e1ba2b68d414caeb7d229ba34833e8d

В чем ключевая идея доказательства теоремы о матрице линейного оператора?

$$f(e\lambda) = f(e)\lambda = \tilde{e}A\lambda$$

 $f(e\lambda) = f(e)\lambda = \tilde{e}A\lambda,$ где λ — координаты вектора из V в базисе e.

Note 19

b595ad9b198f46299eb5af10d49e413d

Композиция линейных операторов — тоже компинейный оператор.

Note 20

Матрица композиции линейных операторов есть (сля произведение матриц этих операторов.

Note 1

13db7f12a2a14ffca2f5a00107cd3a07

Пусть $f:V\to W$ — линейный оператор, A — матрица оператора f в базисах e и \tilde{e} соответственно. Как преобразуется матрица A при замене базисов $e\to e', \tilde{e}\to \tilde{e}'$?

$$A' = C_{\tilde{e} \to \tilde{e}'}^{-1} A C_{e \to e'}.$$

Note 2

015e02c15f134a53b50a24729fb6ac3d

Пусть $f:V\to V$ — линейный оператор, A — матрица оператора f в базисе e. Как преобразуется матрица A при замене базиса $e\to e'$?

$$A' = C_{e \to e'}^{-1} A C_{e \to e'}.$$

Note 3

e3c3292adefb4657a177843c8840476d

Пусть $f:V \to V$ — линейный оператор, A и A' — матрицы оператора f в двух базисах e и e' соответственно. Тогда $\det A' = \ker \det A$.

Note 4

79b8fed369c447dfb53f352258ed6940

Педа
 Определителем оператора $f:V\to V$) называется (ст.:
 оператора f в произвольном базисе.

Note 5

79b8fed369c447dfb53f352258ed6940

Рангом оператора $f:V \to V$)) называется (перанг матрицы оператора f в произвольном базисе.)

Note 6

d36be29fb7a342599a7f73709043bb1f

 $\{\{c2\}\}$ След матрицы $A\}\}$ обозначается $\{\{c1\}\}$ ${
m tr}$ $A.\}\}$

Пусть
$$A\in\{\{can}\mathbb{R}^{n imes n}\}$$
. Тогда $\{\{can}\operatorname{tr} A_{\}\}\stackrel{\mathrm{def}}{=}\{\{can}\sum_{i=1}^{n}a_{ii}\}\}$.

Note 8

e0b3b870a8444704a8569d15e3f761ed

Пусть $A, B \in \mathbb{R}^{n \times n}$. Тогда

$$\operatorname{tr}(BA) = \{\{\operatorname{cl}: \operatorname{tr}(AB).\}\}$$

Note 9

5e76656e4fc4920969acdfb57634355

((c2)-Следом оператора $f:V \to V$)) называется ((c1)-след матрицы оператора f в произвольном базисе.

Note 10

1da0c4fffac341f89821707b4a1b38a6

Пусть f:V o W — линейный оператор. Тогда

$$\{\{c2:: \ker f\}\} \stackrel{\text{def}}{=} \{\{c1:: f^{-1}(\{0\}).\}\}$$

Note 11

f8fe0ceb74f84386932c4100743fb775

Пусть f:V o W — линейный оператор. Тогда

$$\{\{c2:: \text{im } f\}\} \stackrel{\text{def}}{=} \{\{c1:: f(V).\}\}$$

Note 12

6a80e8376154f29h490e470ceac8hc3

Пусть $f:V \to W$ — линейный оператор. Можно ли утверждать, что всегда $\ker f \triangleleft V$?

Да, поскольку линейная комбинация нулей f — тоже нуль f.

Пусть $f:V \to W$ — линейный оператор. Можно ли утверждать, что всегда $\ker f \triangleleft W$?

Hет, $\ker f \triangleleft V$.

Note 14

a4bde4e9272d4bef89c915f6390ca148

Пусть $f:V \to W$ — линейный оператор. Можно ли утверждать, что всегда іт $f \triangleleft W$?

Да, поскольку $\forall f(u), f(v) \in \operatorname{im} f$

$$\alpha f(u) + \beta f(v) = f(\alpha u + \beta v) \in \text{im } f.$$

Note 15

7b17eb03a5e640f8bddefa0aaa6656c3

Пусть $f:V \to W$ — линейный оператор. Можно ли утверждать, что всегда іт $f \triangleleft V$?

Hет, im $f \triangleleft W$.

Note 16

5c7bf3d386eb4fa181cdb696fc0f9ab5

Пусть $f:V\to W$ — линейный оператор. Как связаны размерности $V,\ker f$ и $\operatorname{im} f$?

 $\dim \ker f + \dim \operatorname{im} f = \dim V.$

Note 17

b6ef54a20af44801aceb30b556b95011

Пусть $f:V \to W$ — линейный оператор. В чем основная идея доказательства следующей формулы?

 $\dim \ker f + \dim \operatorname{im} f = \dim V$

Дополнить базис в $\ker f$ до базиса в V и построить из них базис в $\operatorname{im} f$.

Note 18

26a0af100d5b4c459a74ba6384b7c554

Пусть $f:V \to W$ — линейный оператор,

- e_1, e_2, \dots, e_k базис в $\ker f$;
- $e_1, e_2, \ldots, e_k, e_{k+1}, \ldots, e_n$ базис в V.

Как выглядит базис в $\operatorname{im} f$?

$$f(e_{k+1}),\ldots,f(e_n).$$

Note 19

8a962591377f49c1a6b297a1efe008e9

Пусть $f:W \to W$ — линейный оператор. Тогда

$$\{\{\mathsf{c2}:: \mathsf{rk}\,f\}\} = \{\{\mathsf{c1}:: \dim \mathsf{im}\,f.\}\}$$

(в терминах размерностей)

Note 20

2acbea4466f54360bc19e2065a44fc95

Пусть $f:W \to W$ — линейный оператор. Как показать, что

$$\operatorname{rk} f = \dim \operatorname{im} f.$$

Показать, что в координатном выражении $\operatorname{im} f$ есть линейная оболочка столбцов матрицы оператора f.

Note 21

a85a7d7b1e3d47939cc717cb8da889ac

Пусть $f:W\to W$ — линейный оператор. (c1:Пространство $V\lhd W$) называется (c2:инвариантным относительно оператора f,)) если (c1:

$$f(V) \subset V$$
.

13

Примеры инвариантных подпространств в контексте произвольного оператора $f:W \to W.$

 $\ker f, \operatorname{im} f.$

Note 23

e64a247c0efb47f8be38d4ab4ef17b05

Пусть $f:W\to W$ — линейный оператор, e_1,\dots,e_n — пакой базис в W, что e_1,\dots,e_k (где $k\leqslant n$) — базис в инвариантном подпространстве $V\lhd W$.) Тогда подпространстве V примет вид

$$A = \{ \left[egin{array}{ll} T_{11} & T_{12} \ 0 & T_{22} \end{array}
ight], \}$$

где T_{11} — это $\{\{e^2\}\}$ матрица $f|_V$ в базисе $e_1,\ldots,e_k.\}$

Лекция 28.02.22

Note 1

9932dc2853764661928eedc8d44ddd74

Линейный оператор $f:W\to W$ называется (педеневырожденным,) если (пете $\det f\neq 0$.)

Note 2

e565e676da342fb8cdacf4d62de05e8

Пусть $f:V \to V$ — линейный оператор. Следующие 5 условий эквивалентны:

- 1. f невырождено; {{c1::
- 2. $\ker f = \{0\};$
- 3. im f = V;
- 4. $\operatorname{rk} f = \dim V$;
- 5. f биекция.

Note 3

8f9f5108ac8847299f21fd40619c6612

Пусть $f:W\to W$ — линейный оператор. Как доказать, что если f — невырожденный оператор, то f — биекция?

Показать, что если f задаётся матрицей A, то f^{-1} задаётся матрицей A^{-1} .

Note 4

0c8915aebdc24427ab211efa79c6e07a

Пусть $f:W\to W$ — линейный оператор. Как доказать, что если f — биекция, то f — невырожденный оператор.

$$\det(f \circ f^{-1}) = |E| \implies \det f \neq 0.$$

Пусть $\{(c): f: V \to V$ — линейный оператор. $\}$ Тогда $\{(c):$ число $\lambda \in \mathbb{C}\}$ называется $\{(c):$ собственным значением оператора f, $\{(c): \}$ если $\{(c): \}$

$$\exists v \in V \setminus \{0\} \quad f(v) = \lambda v.$$

}}

Note 6

f0b8dcb8a69748a0a51393ae495884b4

Пусть $\{(c): f: V \to V$ — линейный оператор. $\}$ Тогда $\{(c): Beктор v \in V \setminus \{0\}\}\}$ называется $\{(c): Cobc T Behhым Beктором оператора <math>f$, $\}$ если $\{(c): Cobc T Behhым Beктором оператора <math>f$

$$\exists \lambda \in \mathbb{C} \quad f(v) = \lambda v.$$

}}

Note 7

22a614bf26ea4db3ae297b5c647e651

«са Спектром оператора» называется «са множество собственных значений этого оператора.»

Note 8

1f331a6bd4c84dc4996f323fd40b5a22

 $\{\{cancellangeright cancellangeright conservation for the conservation of the conser$

Note 9

ff82c9b056384c19b0a176b637c3941

Пусть $\{(c3): f: V \to V -$ линейный оператор, $\lambda \in \mathbb{C}$. $\}$ Тогда λ является собственным значением f $\{(c2):$ тогда и только тогда, когда $\}$ $\{(c1):$

$$\det(f - \lambda E) = 0.$$

}}

Note 10

a96c7b61477946699a72e8a792c8bf75

Пусть $\{(c): f: V \to V - \text{линейный оператор.}\}$ Тогда $\{(c): y \text{рав-нение}\}$

$$\det(f - \lambda E) = 0$$

)) называется ((с.)-характеристическим уравнением оператора f.))

$$\det(f - \lambda E)$$

)) называется ((с.)-характеристическим многочленом оператора f .))

Note 12

76ac89d4ea7486080b6c2c8473946d9

Пусть $f:V \to V$ — линейный оператор. Почему

$$\det(f - \lambda E)$$

является многочленом переменной λ ?

Если A — матрица оператора f , то $|A-\lambda E|$ — многочлен переменной λ .

Note 13

5376672e8b21438896bc774aa4ac2275

Пусть

$$A = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix}.$$

Тогда

$$\text{(c2:} |A - \lambda E|\text{)} = \text{(c1:} |A| - \lambda \operatorname{tr} A + \lambda^2.\text{)}$$

Лекция 07.03.22

Note 1

0d6c679eb377462e90e8ac9bba29dd61

Пусть $f:W \to W$ — линейный оператор. ([c2::Характеристический многочлен оператора f[]) обозначается ([c1::

 χ_f .

Note 2

78106143b649485eb1c075b2388eb22e

Пусть $\{(ca): f: W \to W -$ линейный оператор и $V \triangleleft W$ инвариантно относительно f.

$$\{\{c2::\chi_{f|_V}\}\}$$
 — $\{\{c1::$ Делитель $\chi_f.\}\}$

Note 3

6deeef304fd8465bbff331e4241bde67

Пусть $f:W \to W$ — линейный оператор и $V \triangleleft W$ инвариантно относительно f. Тогда

$$\chi_{f|_V}$$
 — делитель χ_f .

В чем основная идея доказательства?

Показать, что χ_f — определитель соответствующей квазитреугольной матрицы оператора f.

Note 4

785c107694984499a5fd89afd052841c

Пусть $f:W\to W$ — линейный оператор, $\lambda\in\operatorname{spec} f$. Тогда пративножество всех собственных векторов f, отвечающих собственному значению λ , объединённое с нулём, называется пративном подпространством оператора f, отвечающим собственному значению λ .

Note 5

cdb0a7bde4e044e48a5a798a8052f163

Пусть $f:W\to W$ — линейный оператор, $\lambda\in\operatorname{spec} f$. (сы Собственное подпространство f, отвечающее собственному значению λ ,)) обозначается ((с2): $V_f(\lambda)$.))

Пусть $f:W\to W$ — линейный оператор, λ — собственное значение f. В кратком выражении

$$\{ (\text{c2::} V_f(\lambda)) \} \stackrel{\text{def}}{=} \{ \text{c1::} \ker(f - \lambda E). \}$$

Note 7

edf7cad1b7df422181105ad8bf31a210

Пусть $f:W\to W$ — линейный оператор, λ — собственное значение f. Всегда ли

$$V_f(\lambda) \triangleleft W$$
?

Да, всегда, потому что $V_f(\lambda) = \ker(f - \lambda E)$.

Note 8

de964305c22b4993819a8d5095504e53

Пусть $f:V \to V$ — линейный оператор, λ — собственное значение f. Подверенность $V_f(\lambda)$ называют (подверенного значения λ .)

Note 9

f6b8139d2f0e46d38a2dd075ff83b2f4

Пусть $f:V\to V$ — линейный оператор, λ — собственное значение f. Пострементрическая кратность собственного значения λ обозначается (ICL) $S_f(\lambda)$.

Note 10

eff6d05e42b34f078450044f6153939b

Пусть $f:V\to V$ — линейный оператор, λ — собственное значение f. (с.: Кратность λ как корня χ_f) называют (с.: алгебраической кратностью собственным значением λ .)

Note 11

856a933db82641cd87b0ee5f34647b1;

Пусть $f:V\to V$ — линейный оператор, λ — собственное значение f. Поставленное значения λ обозначается $\{c:m_f(\lambda), \beta\}$

Пусть $f:V \to V$ — линейный оператор, λ — собственное значение f. Тогда (кладия) $\leq m_f(\lambda)$.

Note 13

6b913f908a194114bee71fb9a7526282

Пусть $f:V\to V$ — линейный оператор, λ — собственное значение f. Тогда $S_f(\lambda)\leqslant m_f(\lambda)$. В чем основная идея доказательства?

 $V_f(\lambda)$ инвариантно относительно $f \implies \chi_f$ делится на $\chi_{f|_{V_f(\lambda)}}.$

Note 14

58579b404ae34478b736df96c853c6e6

Пусть $f:V \to V$ — линейный оператор, λ — собственное значение f, $\text{(с2:} \tilde{f}=f|_{V_f(\lambda)}.\text{()}$ Тогда

$$\{ (\mathrm{c3::} \chi_{\tilde{f}}(t)) \} = \{ (\mathrm{c1::} (\lambda - t)^{S_f(\lambda)}) \}$$

Note 15

8d63ff53045545709809018e1492b231

Пусть $f:V \to V$ — линейный оператор, λ — собственное значение $f,\ \ \tilde{f}=f|_{V_f(\lambda)}.$ Откуда следует, что

$$\chi_{\tilde{f}}(t) = (\lambda - t)^{S_f(\lambda)}$$
 ?

 $ilde{f}$ представляется матрицей λE порядка $\dim V_f(\lambda).$

Note 16

a3b9ba1c4e884a7bb1e3c4764f063d1f

 $\{(c2)\}$ Оператор $f:x\mapsto \lambda x$, где $\lambda\in\mathbb{R}_{n}\}$ называется $\{(c1)\}$ скалярным оператором. $\{(c1)\}$

Note 17

51a455604c9c4d7eadc3fe5ab0af6397

Пусть (сан $f:V \to V$ — линейный оператор.)) f называется (сан диагонализуемым оператором,)) если (сан существует базис в V, в котором матрица оператора f является диагональной.

}}

 $\{\{c\}: \mathcal{A}$ иагональная матрица с элементами a_1, a_2, \ldots, a_n на диагонали $\{\{c\}: \{c\}: \}$

$$\operatorname{diag}(a_1, a_2, \ldots, a_n).$$

Note 19

8066b576097a49fb9d5aa3c4580a27c5

Пусть $f:V\to V$ — линейный оператор. Если в базисе e_1,e_2,\ldots,e_n матрица оператора f равна $\mathrm{diag}(a_1,a_2,\ldots,a_n)$, то $\{c_2:e_1,e_2,\ldots,e_n\}$ — $\{c_4:c_5$ собственные векторы f_5

Note 20

19e6a7fb9c8e4f04a3711d479f2c628

Пусть $f:V\to V$ — линейный оператор. Если в базисе e_1,e_2,\ldots,e_n матрица оператора f равна $\mathrm{diag}(a_1,a_2,\ldots,a_n)$, то $\{(c_2,a_1,a_2,\ldots,a_n)\}$ — $\{(c_1,c_2,\ldots,a_n)\}$ — $\{(c_1,$

Note 21

1176411a2bf147348b94dd69b9bbad73

Пусть $\{(-4):f:V\to V$ — линейный оператор. $\}$ Тогда оператор f $\{(-2):$ Диагонализуем $\}$ $\{(-2):$ Тогда и только тогда, когда $\}$ $\{(-1):$ Для любого собственного значения λ

$$S_f(\lambda) = m_f(\lambda).$$

}}

Note 22

ca827a11abb047fda276763e1e593ef1

В чем основная идея доказательства критерия диагонализуемости оператора (необходимость)?

Покзать, что если f представляется матрицей $\mathrm{diag}(a_1,a_2,\ldots,a_n)$, то по определению

$$\chi_f(\lambda) = \prod_{i=1}^n (a_i - \lambda).$$

Пусть $f:V \to V$ — линейный оператор, каза $\lambda_1,\ldots,\lambda_n$ — различные собственные значения оператора f , каза

$$\forall j \quad v_j \in V_f(\lambda_j).$$

 \mathbb{R} Тогда ((спесистема векторов v_1,\dots,v_n линейно независима.

Note 24

2a1e5294e5c34d889ca747ab0b44fa0a

Пусть $f:V\to V$ — линейный оператор, $\lambda_1,\ldots,\lambda_n$ — различные собственные значения оператора f,

$$\forall j \quad v_j \in V_f(\lambda_j).$$

Тогда система векторов v_1, \ldots, v_n линейно независима. В чем основная идея доказательства?

Применяем f к произвольной равной нулю линейной комбинации, пока не получится СЛАУ с основной матрицей — определителем Вандермонда.

Note 25

cfe344113f4e40b2b27ecfee11beb647

В чем основная идея доказательства критерия диагонализуемости оператора (достаточность)?

Составить систему векторов из базисов в $V_f(\lambda_j)$ и показать, что она является базисом V.

Note 26

fbb72d710ce84fe6b5237ee1f15112a8

Почему система векторов, составленная в доказательстве критерия диагонализуемости оператора (достаточность), является порождающей?

Из условия $\dim V_f(\lambda_j)=m_f(\lambda_j)$, а значит система содержит $\deg \chi_f=\dim V$ элементов.

Почему система векторов, составленная в доказательстве критерия диагонализуемости оператора (достаточность), является линейно независимой?

Любая её линейная комбинация есть линейная комбинация системы векторов v_1, \ldots, v_n , где $v_j \in V_f(\lambda_j)$.

Note 28

435490ce764048d9a55b762d6175cf59

Если оператор $f:V \to V$ имеет $\dim V$ различных собственных значений, то $\{(c): f$ диагонализуем.(f): f

Note 29

8757ff57337847268575f5903d640f08

Как доказать, что если оператор $f:V\to V$ имеет $\dim V$ различных собственных значений, то f диагонализуем.

$$\forall \lambda \in \operatorname{spec} f \quad 1 \leqslant S_f(\lambda) \leqslant m_f(\lambda) = 1$$

$$\implies S_f(\lambda) = m_f(\lambda).$$

Note 30

b7cd455d24424dd0879b90d7cad89a6b

Пусть «сзапространство $V=V_1\oplus V_2$.» «сла Оператор

$$P: v_1 + v_2 \mapsto v_1, \quad V \to V$$

)) называется ((с2) оператором проектирования на V_1 параллельно V_2 .))

Note 31

522c1911d5d04c898b070c53537026b2

Пусть $V=V_1\oplus V_2$ и $P:V\to V$ — оператор проектирования на V_1 параллельно V_2 . Тогда

$$\operatorname{im} P = \{\{\operatorname{c1::} V_1.\}\}$$

Пусть $V=V_1\oplus V_2$ и $P:V\to V$ — оператор проектирования на V_1 параллельно V_2 . Тогда

$$\ker P = \{\{c_1: V_2.\}\}$$

Note 33

27181bd7474e4091aee4fa9dba20ae0i

Пусть $V=V_1\oplus V_2$ и $P:V\to V$ — оператор проектирования на V_1 параллельно V_2 . Тогда

$$\operatorname{spec} P = \{\{c1:: \{0, 1\}.\}\}$$

Note 34

448f428dbef544a9a7ad66228e473bea

Пусть $V=V_1\oplus V_2$ и $P:V\to V$ — оператор проектирования на V_1 параллельно V_2 . Тогда

$$m_P(0) = \{\{\text{cl}: \dim V_2.\}\}$$

Note 35

d4a2a9780d1a4e1db35238e91f3875b9

Пусть $V=V_1\oplus V_2$ и $P:V\to V$ — оператор проектирования на V_1 параллельно V_2 . Тогда

$$S_P(0) = \{\{c1:: \dim V_2.\}\}$$

Note 36

322376ccf5e4418bb64b5e8b886d8aac

Пусть $V=V_1\oplus V_2$ и $P:V\to V$ — оператор проектирования на V_1 параллельно V_2 . Тогда

$$m_P(1) = \{\{\text{cli}: \dim V_1.\}\}$$

Пусть $V=V_1\oplus V_2$ и $P:V\to V$ — оператор проектирования на V_1 параллельно V_2 . Тогда

$$S_P(1) = \{\{\operatorname{cli}: \dim V_1.\}\}$$

Лекция 14.03.22

Note 1

d32917879c284285842d17bbfc251d30

Пусть (каза $f:V\to V$ — линейный оператор, $v\in V,\,k\in\mathbb{N}$.) Вектор v называется (казакорневым вектором высоты k оператора f,)) если (казакуществует такое $\lambda\in\mathbb{C}$, что

$$(f - \lambda E)^k v = 0,$$

$$(f - \lambda E)^{k-1} v \neq 0.$$

Note 2

83d2e0cc0a894b54ac4d3604babf2d57

Корневой вектор высоты ($\{c2=1\}$) оператора f — это ($\{c1=c06ct$ венный вектор этого оператора.)

Note 3

9e3747b6754c4bad9076277f39c4e920

 λ из определения корневого вектора оператора f — это всегда (класобственное значение f .)

Note 4

a4093e0c9f55478ebd2eb2defda323d

Как показать, что λ из определения корневого вектора всегда является собственным значением?

Из определения $(f - \lambda E)^k v = 0 \implies \det(f - \lambda E) = 0.$

Note 5

999c7f68724546db81750f9e997d0a1b

Пусть $\{|e^{2i\pi}V-$ корневой вектор высоты $k\geqslant 2$ оператора f. $\|$ Тогда $\{|e^{2i\pi}(f-\lambda E)v\|\} \{|e^{2i\pi}Kophe$ вой вектор высоты k-1. $\|$

Note 6

264901faf0bb401e91105512f04f06dc

Пусть v — корневой вектор высоты $k\geqslant 2$ оператора f . Тогда $(f-\lambda E)v$ — корневой вектор высоты k-1 . В чем основная идея доказательства?

Из определения корневого вектора

$$(f - \lambda E)^{k-1} \cdot (f - \lambda E)v = 0$$

и аналогично с неравенством нулю для степени k-2.

Note 7

50c2388c1fa843dfa616f85d4cecfa2f

Система (козакорневых векторов разных высот, потвечающих (козакорному и тому же собственному значению оператора, по принейно независима.)

Note 8

de47eb56e219455a8497a97ad90b861d

Как доказать, что система корневых векторов разных высот, отвечающих одному и тому же собственному значению оператора, линейно независима.

Приравнять линейную комбинацию к нулю и домножать её на $(f-\lambda E)^{k_j-1}$ в порядке убывания высот k_j корневых векторов системы.

Note 9

187218f20c2b46ab9309b3385f2012f4

Пусть $f:V \to V$ — линейный оператор, применный оператор, примента и корневой вектор высоты k оператора f. Погда система примента и примента п

$$v, (f - \lambda E)v, (f - \lambda E)^2v, \dots, (f - \lambda E)^{k-1}v$$

} {{c1::Линейно независима.}}

Note 10

f77f36f44a0a4dbfb7fe6d8a6b58db75

Пусть v — корневой вектор высоты k оператора f. Тогда система

$$v, (f - \lambda E)v, (f - \lambda E)^2v, \dots, (f - \lambda E)^{k-1}v$$

линейно независима. В чем основная идея доказательства?

Показать, что это система корневых векторов разных высот, отвечающих одному и тому же собственному значению λ .

Note 11

3ab579b8e03a47ec865a43fc21bd39b7

Система ((са-корневых векторов,)) отвечающих ((са-разным собственным значениям оператора,)) ((са-линейно независима.))

Note 12

04c77a5799504d088141691461b44095

Пусть v — корневой вектор высоты k оператора f. Тогда (с2) $(f-\lambda E)^{k-1}v$)) — (с1) это собственный вектор оператора f.)

Note 13

59e9653333744cccaf670372a881ab06

Как доказать, что система корневых векторов, отвечающих разным собственным значениям оператора, линейно независима.

Домножить произвольную линейную комбинацию на

$$(f-\lambda_1 E)^{k_1-1} (f-\lambda_2 E)^{k_2} \cdots (f-\lambda_l E)^{k_l}$$

и получить равенство нулю первого коэффициента. Далее аналогично для остальных коэффициентов.

Note 14

5b16ae3e6ef643508aa2e1f086ffde5

Пусть $f:V\to V$ — линейный оператор, $\lambda\in\operatorname{spec} f$. (сан Множество всех корневых векторов, отвечающих собственному значению λ , объединённое с нулём, называется (сан корневым подпространством, отвечающим собственному значению λ .)

Note 15

2779025573314db7aa326077599c90b3

Пусть $f:V \to V$ — линейный оператор. (с.: Корневое подпространство, отвечающее собственному значению λ ,)) обозначается (с.: $K_f(\lambda)$.)

Пусть $f:V \to V$ — линейный оператор, $\lambda \in \operatorname{spec} f$. Всегда ли $K_f(\lambda) \triangleleft V$?

Да, всегда (тривиально следует из определения).

Note 17

3330d597cd547a385f694495c2dc291

Пусть $\{e^{3\pi}f:V o V$ — линейный оператор, $k\in\mathbb{N}.$ $\}$

$$\{\{c2::N_{f,k}(\lambda)\}\}\stackrel{\mathrm{def}}{=} \{\{c1::\ker(f-\lambda E)^k.\}\}$$

Note 18

42d32fc206824eafb2be52cb821ffaf

Пусть $f:V \to V$ — линейный оператор, $k \in \mathbb{N}$. Всегда ли $N_{f,k}(\lambda) \triangleleft V$?

Да, всегда (тривиально следует из определения).

Note 19

ba89f8d6240947edac91e39df44d92bc

Пусть $f:V \to V$ — линейный оператор, $\lambda \in \operatorname{spec} f$. Как $K_f(\lambda)$ выражается через $N_{f,k}(\lambda)$?

$$K_f(\lambda) = \bigcup_k N_{f,k}(\lambda)$$

Note 20

c11610dbf64143fbaeeb57dfc3d66af0

Пусть $f:V \to V$ — линейный оператор, $\lambda \in \operatorname{spec} f$. Тогда $\dim K_f(\lambda) = \{(\operatorname{cl}: m_f(\lambda))\}$.

Note 21

efee3536114a40d28eb925c540f796bf

Пусть $f:V\to V$ — линейный оператор, $\lambda\in\operatorname{spec} f$. Тогда $\dim K_f(\lambda)=m_f(\lambda)$. В чем основная идея доказательства? ТООО (?)

Пусть f:V o V — линейный оператор, «сва $\lambda_1,\ldots,\lambda_l$ — все различные собственные значения f. Тогда

$$\{\{c2:V\}\} = \{\{c1:K_f(\lambda_1) \oplus \cdots \oplus K_f(\lambda_l).\}\}$$

Note 23

Пусть $f:V\to V$ — линейный оператор, $\lambda_1,\ldots,\lambda_l$ — все различные собственные значения f. Тогда

$$V = K_f(\lambda_1) \oplus \cdots \oplus K_f(\lambda_l).$$

Какова общая структура доказательства?

Показать, что сумма $K_f(\lambda_i)$

- 1. является прямой, $2. \ \ \mbox{порождает все пространство } V.$

Note 24

Пусть $f:V\to V$ — линейный оператор, $\lambda_1,\ldots,\lambda_l$ — все различные собственные значения f. Тогда

$$V = K_f(\lambda_1) \oplus \cdots \oplus K_f(\lambda_l).$$

Почему сумма $K_f(\lambda_i)$ прямая?

Линейная комбинация векторов v_j из $K_f(\lambda_j)$ — это линяния комбинация корневых векторов, отвечающих разным собственным значениям.

Пусть $f:V \to V$ — линейный оператор, $\lambda_1,\dots,\lambda_l$ — все различные собственные значения f. Тогда

$$V = K_f(\lambda_1) \oplus \cdots \oplus K_f(\lambda_l).$$

Почему сумма $K_f(\lambda_i)$ порождает все V?

$$\sum_{j=1}^{l} \dim K_f(\lambda_j) = \sum_{j=1}^{l} m_f(\lambda_j)$$

Note 26

e23c324999e1436d8c6d50a246244d60

«са:Жорданова клетка» — это «са:квадратная матрица вида

$$\begin{bmatrix} \lambda & 1 & 0 & \cdots & 0 \\ 0 & \lambda & 1 & \cdots & 0 \\ 0 & 0 & \lambda & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & \lambda \end{bmatrix}.$$

Note 27

d354e3255a1a46e99261a422c4e41207

Жорданова клетка высоты q, соответствующая некоторому числу λ , обозначается (сыя

$$J_q(\lambda)$$
.

Note 28

49446743h36c41h2825ed009c2fe6cd6

«са Жорданова матрица» — это «са блочно-диагональная матрица, составленная из жордановых клеток.»

Note 29

c2e8392343e8487288fc8b5d700aeafa

Пусть $f:V\to V$ — линейный оператор. Тогда, если $\{(c1:B)$ некотором базисе в V матрица A оператора f имеет жорданов вид, $\|$ то A называют $\{(c2:B)$ жордановой нормальной формой оператора f, $\|$

Пусть $f:V\to V$ — линейный оператор. Тогда, если (ст. в некотором базисе в V матрица оператора f имеет жорданов вид,)) то этот базис называют (сел жордановым базисом оператора f.))

Note 31

617ac459f3846a1b581c79a9c044b7e

«([с2::Теорема о жордановой нормальной форме)]»

 \mathbb{C} имеем жорданову нормальную форму.

Note 32

d8f181b2d5004a47bd308a35849cddec

Пусть $f:V\to V$ — линейный оператор, $\lambda\in\operatorname{spec} f$. Как для k>0 соотносятся $N_{f,k}(\lambda)$ и $N_{f,k+1}(\lambda)$?

Для всех k меньше некоторого q

$$N_{f,k}(\lambda) \subsetneq N_{f,k+1}(\lambda),$$

а для всех $k\geqslant q$:

$$N_{f,k}(\lambda) = N_{f,k+1}(\lambda)$$

Note 33

414400f8f69b41b58c7d5b2930735317

Каков первый шаг в построении жордановой нормальной формы оператора $f:V\to V$?

Найти все собственные значения оператора f.

Note 34

a79be36515f64439b4db0f075099cbc3

Каков второй шаг в построении жордановой нормальной формы оператора $f: V \to V$?

Для каждого собственного значения λ найти все подпространства $N_{f,k}(\lambda)$.

Note 35

adf2c488db4640a1aba232fba8286d63

Каков третий шаг в построении жордановой нормальной формы оператора $f:V \to V$?

Построить жорданову лестницу в каждом из корневых подпространств f.

Note 36

2fe8afa7a09b49a1a7219ce868aaf67e

Каков заключительный шаг в построении жордановой нормальной формы оператора $f:V \to V$?

Объединить все построенные базисы в одну систему и построить матрицу f в полученном базисе.

Лекция 21.03.22

Note 1

61582b48320a46c3ad047eec84da3eb3

Пусть $A,A'\in\mathbb{C}^{[\text{[c3:}n\times n]]}$. Тогда матрицы A и A' называются $\{\text{[c2:}n\text{одобными},\}\}$ если $\{\text{[c1:}cy$ ществует невырожденная матрица T такая, что

$$A = T A' T^{-1}$$
.

}}

Note 2

6366e6bbaa1149eb8bba346a3cc38654

Отношение подобия матриц обозначается символом (са

 \sim

}}

Note 3

1ae63106d8d0480b82ef6f9e9b3d62bl

Подобие матриц является отношением (ст. эквивалентности.

Note 4

de 743729325e 43f 79f 35a7b8c 22d 5bb 2

Любая (са:квадратная матрица) подобна (са:своей жордановой нормальной форме.)

(следствие из {{с3::теоремы о жордановой форме}})

Note 5

82aa01fcbfb7476d84662ca5802dae5b

 $\{(c)\}$ Две квадратные матрицы подобны) $\{(c)\}$ тогда и только тогда, когда $\{(c)\}$ их жордановы формы совпадают с точностью до перестановки клеток. $\{(c)\}$

(следствие из $\{ (c4:: теоремы о жордановой форме) \})$

Note 6

198e1f3eef67411c89f83a35ade066d2

Пусть
$$A,\Lambda,T\in\mathbb{C}^{n imes n},\ A=T^{-1}\Lambda T,\ k\in\mathbb{N}.$$
 Тогда
$$A^k=\mathrm{deg}_{T}T^{-1}\Lambda^k T$$

Пусть
$$A\in\mathbb{C}^{n\times n},\;p\in\mathbb{C}[x],\;p(x)=\sum_{k=0}^na_kx^k.$$
 Тогда

$$p(A)\stackrel{\mathrm{def}}{=}{}_{\{\!\mid\! c1::\;}\sum_{k=0}^n a_kA^k,\quad$$
 где $A^0\stackrel{\mathrm{def}}{=}E_{\cdot,\!\mid\!
brace}$

Note 8

9cb3566c41d4eca89ef63e626740c4e

Пусть
$$A,T\in\mathbb{C}^{n\times n}$$
, $\det T\neq 0$, $p\in\mathbb{C}[x]$. Тогда

$$p(TAT^{-1}) = \{\{c1: T \ p(A) \ T^{-1}.\}\}$$

Note 9

ad579382cf8a42caabf0b8b6a5a4d76f

Пусть $f:D\subset\mathbb{C}\to\mathbb{C},\lambda\in D.$

$$f(\lambda E) \stackrel{\text{def}}{=} \{\{c1:: f(\lambda)E.\}\}$$

Note 10

be2002dbe01149aa91e229d1c991143e

Пусть $f:D\subset \mathbb{C} \to \mathbb{C}$,

$$A = \begin{bmatrix} A_{11} & 0 \\ 0 & A_{22} \end{bmatrix} \in \mathbb{C}^{n \times n}.$$

Тогда

$$f(A) \stackrel{\mathrm{def}}{=} \{ \{ case egin{bmatrix} f(A_{11}) & 0 \ 0 & f(A_{22}) \end{bmatrix} . \} \}$$

Note 11

55a3d16cf6744h39c1d1e21cah4e7f5

Пусть $f:D\subset \mathbb{C} \to \mathbb{C},\, \lambda\in D.$ Как определяют значение

$$f(J_k(\lambda))$$
?

Представляют $f(J_k(\lambda))$ как $f(\lambda E + \varepsilon)$ и далее используют разложение f в ряд Тейлора в точке λE .

Note 12

435657fd33d4705ae2de65b4bf5c682

Пусть $f:D\subset\mathbb{C}\to\mathbb{C},\ \lambda\in D.$ Для каких k и λ определено значение $f(J_k(\lambda))$?

Должен существовать многочлен $T_{\lambda,k}f$.

Note 13

3450a4591ff748ch856f4578h3cda3c2

Пусть $p\in\mathbb{C}[x],\;A\in\mathbb{C}^{n\times n}.$ (с) Многочлен p_0 называется аннулирующим многочленом для матрицы A_0 если (с):

$$p(A) = 0.$$

}}

Note 14

34b1edb015384033870e10717e8bbdb2

«{{с2:: Теорема Гамильтона-Кэли}}»

«СПР Характеристический многочлен квадратной матрицы является для неё аннулирующим.»

Note 15

07bbead6e007486e93d2daa598a265b6

В чем ключевая идея доказательства теоремы Гамильтона-Кэли?

Для любого корневого вектора x имеем $\chi_A(A)$ x=0.

Лекция 28.03.22

Note 1

c4787ae5340942d2a27db89ea5f9d4df

Пусть V — линейное пространство над $\mathbb R$. Билинейная форма f в V называется положительно определённой, если побого $v\in V$

$$f(v,v) \geqslant 0;$$
 $f(v,v) = 0 \iff v = 0.$

Note 2

18f442014f0e4614a642e429958b8931

Пусть V — линейное пространство над \mathbb{R} . «Скалярным произведением в V» называется «сп-симметричная положительно определённая билинейная форма в V.»

Note 3

cea78871e8124a29945d3540057c0c68

«с₂-Евклидовым пространством» называется «с₁-вещественное линейное пространство с заданным на нём скалярным произведением».

Note 4

79a607edba4945a4a562d9b1fd8f2ce9

Пусть V — евклидово пространство над $\mathbb R$. Скалярное произведение векторов $v,w\in V$ обозначается (ССС):

$$(v, w)$$
.

}}

Note 5

717ab493f110448bb867a49b37d29d83

Пусть V — евклидово пространство над $\mathbb{R},\ v\in V$. «следлиной вектора v» называется (следеличина $\sqrt{(v,v)}$.)

Note 6

7hc89a880fh244a78c3e204575ac9005

Пусть V — евклидово пространство над $\mathbb{R},\ v\in V$. {{e2-Длина вектора v}} обозначается {{e1-|v| или $||v||}.}}$

Длину вектора в еклидовом пространства так же ещё называют истенормой этого вектора. В таком случае чаще используется обозначение истепливание $\|v\|$.

Note 8

c0b109c4be9e4749ad794e9e38fffb2d

Пусть V — евклидово пространство над $\mathbb{R},\ v_0\in V,\ \text{(с.)}$ $r\in\mathbb{R}_+$). (с.) Сферой радиуса r с центром в точке v_0) называют (с.) множество

$$\{v \in V \mid ||v - v_0|| = r\}.$$

Note 9

19h61a41cf5f45109c79e7cc61f63740

Пусть V — евклидово пространство над \mathbb{R} , $v_0 \in V$, $r \in \mathbb{R}_+$. (Седе Сфера радиуса r с центром в точке v_0) обозначается (Селе

$$S_r(v_0)$$
.

Note 10

e63df21bb26d42269a7a5d45c6b828b8

Пусть V — евклидово пространство над $\mathbb{R},\ v_0\in V$, {{c3.}} $r\in\mathbb{R}_+$ }. {{c2.}}Шаром радиуса r с центром в точке v_0 } называют {{c1.}}множество

$$\{v \in V | \|v - v_0\| \leqslant r\}.$$

Note 11

d0d10cbbdb664b428b1f3284ff5321f9

Пусть V — евклидово пространство над $\mathbb{R},\ v_0\in V,\ r\in\mathbb{R}_+.$ Пода:Шар радиуса r с центром в точке v_0 обозначается подавания пространство над \mathbb{R}

$$B_r(v_0)$$
.

Пусть V — евклидово пространство над \mathbb{R} , $\{v, w \in V \setminus \{0\}$. $\{0\}$ Векторы v и w называются $\{v\}$ сонаправленными, $\{v\}$ если $\{v\}$

$$\exists \lambda > 0 \quad v = \lambda w.$$

}}

Note 13

0cfd3b2d9f17418eb0b8fd2dd36ef1d4

Пусть V — евклидово пространство над \mathbb{R} , $\{e^{2s}v,w\in V\setminus\{0\}$. $\{0\}$. $\{e^{2s}$ Углом между векторами v,w $\}$ называется $\{e^{1s}$ Угол $\varphi\in[0,\pi]$ такой, что

$$\cos \varphi = \frac{(v, w)}{\|v\| \cdot \|w\|}.$$

}}

Note 14

097fc51b1eab4a699e7110a38f0bd670

«педанитью Коши-Буняковского »

Пусть V — евклидово пространство над \mathbb{R} , (63:: $v,w\in V$.)) Тогда всегда (61:: $|(v,w)|\leqslant \|v\|\cdot\|w\|$.)

Note 15

570b086e7e1b48e3b3012778f4841d1e

В чем основная идея доказательства неравенства Коши-Буняковского?

Оценить дискриминант квадратного уравнения $\|v - \lambda w\|^2 = 0$ относительно неизвестной λ .

Note 16

96bb9d37dba3499d8890f7b3eb1f04d4

Пусть V- евклидово пространство над $\mathbb{R},\ v,w\in V$. Тогда $|(v,w)|=\|v\|\cdot\|w\|$

«{{c2::Hepaвeнство треугольника}}»

Пусть V — евклидово пространство над \mathbb{R} , (кеза $v,w\in V$.)) Тогда (кеза

$$||v + w|| \le ||v|| + ||w||$$
.

}}

Note 18

4759501bf4b84cf0acf58f945229396c

В чем основная идея доказательства неравенства треугольника?

Рассмотреть скалярное произведение

$$(v + w, v + w) = ||v + w||^2$$
.

Note 19

378eh0c9d81404c9cd8ca40925h9ce

Пусть V — евклидово пространство над $\mathbb{R},\ v,w\in V$. Тогда

$$||v+w|| = ||v|| + ||w|| \text{ (c2:: } \iff \text{)} \text{ (c1:: } v \uparrow \uparrow w \text{)}$$

Note 20

8238aebbcc724e708990b61d8a0e3603

Пусть V — евклидово пространство над $\mathbb{R},\ v,w\in V$. Векторы v и w называются постональными, если постои v если пос

Note 21

ce138d9eefe6445bbe72ecb3cafe43e8

Пусть V — евклидово пространство над $\mathbb R$. Система векторов в V называется (селортогональной, если (селеё векторы попарно ортогональны.)

Note 22

2dbaa8c8157c42e08de67ebd6cc42e47

Пусть V — евклидово пространство над \mathbb{R} , $\{e_i\}_{j=1}^n$ — ортогональная система векторов в V.) Тогда $\{e_i\}_{j=1}^n$ — линейно независима) $\{e_i\}$ $\{e_j\}$ динейно независима) $\{e_i\}$

Пусть V — евклидово пространство над \mathbb{R} , $\{e_j\}_{j=1}^n$ — ортогональная система ненулевых векторов в V. Как показать, что система $\{e_j\}$ линейно независима?

Умножить линейную комбинацию векторов $\{e_j\}$, равную нулю, на e_i для произвольного i и показать равентсво нулю i-ого коэффициента.

Note 24

b9cf4cdf374445c4bc8412c8ca72847c

Пусть V — евклидово пространство над \mathbb{R} , каза $v\in V$, $\{e_j\}_{j=1}^n$ — ортогональный базис в V.) Тогда координаты вектора v в базисе $\{e_j\}_{\mathbb{N}}$ имеют вид

$$v_j = \{(c_1 :: \frac{(v, e_j)}{\|e_j\|^2}.)\}$$

Note 25

5a4e71f923b84eb5b5f3e2b66ea26470

Пусть V — евклидово пространство над $\mathbb{R},\ v\in V,\ \{e_j\}_{j=1}^n$ — ортогональный базис в V. Как показать, что координаты вектора v в базисе $\{e_j\}$ имеют вид

$$v_j = \frac{(v, e_j)}{\|e_i\|^2}?$$

Вычислить (v,e_j) , разложив v по базису $\{e_j\}$.

Note 26

7ede17a5d2d049c690090d4850f4ef60

Пусть V — евклидово пространство над $\mathbb{R},\ \|e^{\otimes v}\in V,\ \{e_j\}_{j=1}^n$ — ортогональная линейно независима система в V.) Тогда $\|e^{\otimes v}\|$ Тогда

$$\frac{(v, e_j)}{\|e_i\|^2}$$

 $_{\mathbb{N}}$ называют $_{\mathbb{N}}$ коэффициентами Фурье вектора v в системе $\{e_{i}\}_{\mathbb{N}}$

Пусть V — евклидово пространство над $\mathbb R$. Система векторов $\{e_j\}_{j=1}^n$ в V называется попарно ортогональны и $\|e_j\|=1$ для всех j.

Note 1

18fcch0908e94a3hhfc768f249c233a4

Пример ортогональной системы в пространстве $C[0,2\pi]$ со скалярным произведением

$$(f,g) \stackrel{\mathrm{def}}{=} \int_0^{2\pi} fg.$$

 $1, \cos x, \sin x, \cos 2x, \sin 2x, \dots, \cos nx, \sin nx.$

Note 2

25230410b91d47619feafd9dd1e3909e

«((с3::Ортогонализация Грама-Шмидта))»

Пусть $(e^2 V - e$ вклидово пространство, e_1, \ldots, e_n — базис в пространстве V. Тогда $(e^1 B$ сегда существует ортогональный базис a_1, \ldots, a_n в V такой, что

$$a_j \in \mathcal{L}(e_1, \dots, e_j) \quad \forall j.$$

Note 3

89394003d65441209a81ec6be5c7f2df

В чем основная идея доказательства истинности теоремы об ортогонализации Грама-Шмидта?

Положить

$$a_1 = e_1,$$

 $a_2 = e_2 + \alpha_1 a_1,$
 $a_3 = e_3 + \beta_1 a_1 + \beta_2 a_2$

Note 4

067af76850ea49929f538a99ef2fb445

Пусть $\{\{e^3\}: W-e$ вклидово пространство, $V \triangleleft W.\}\}$ $\{\{e^1\}: M$ ножество

$$\left\{ w \in W \mid (v, w) = 0 \quad \forall v \in V \right\}$$

 ${}_{\parallel}$ называется {{c2::opтoгональным дополнением к $V.{}_{\parallel}$

Пусть W — евклидово пространство, $V \triangleleft W$. (с.: Ортогональное дополнение к пространству V) обозначается (с2:: V^{\perp} .)

Note 6

300460fc49ee4f3b915a92addaba5141

Пусть W — евклидово пространство, $V \triangleleft W$. Всегда ли $V^{\perp} \triangleleft W$?

Да, всегда.

Note 7

ab8d62b25a294edebe7a3735b84dab19

Пусть W — евклидово пространство, $V \triangleleft W$. Тогда

$$\dim V^{\perp} = \{\{\operatorname{cl}: \dim W - \dim V.\}\}$$

Note 8

70166548d05745278d7a8f9de584d211

Пусть W — евклидово пространство, $V \triangleleft W$. Тогда

$$V + V^{\perp} = (C_1 : V \oplus V^{\perp} = W_*)$$

Note 9

eee9a5f3a40047629e2192983ab08770

Пусть W- евклидово пространство, $V \triangleleft W.$ Как показать, что $W=V \oplus V^{\perp}?$

Выбрать ортогональный базис в V, дополнить его до ортогонального базиса в W и показать, что дополнение — базис в V^{\perp} .

Note 10

53d600a53a4f48a7b4d1e3a3822918f6

Пусть W — евклидово пространство, $V \triangleleft W$, e_1, \ldots, e_k — ортогональный базис в V, e_1, \ldots, e_n — ортогональный базис в W. Как показать, что e_{k+1}, \ldots, e_n — базис в V^\perp ?

Показать, что $\mathscr{L}(e_{k+1},\dots,e_n)$ и V^\perp равны как множества

Note 11

a9fc50cec2cc442d87f7f6a551043a18

Пусть W — евклидово пространство, $\{(c): V \triangleleft W, w \in W.\}$ Тогда $\{(c):$ проекция w на V параллельно $V^{\perp}\}$ называется $\{(c):$ проекцией вектора w на $V.\}$

Note 12

bcb91b5b6d4048febe0fd4e8da7302e9

Пусть W — евклидово пространство, $\{(c3), V \triangleleft W, w \in W.\}\}$ Тогда $\{(c1), poekция w \text{ на } V^\perp \text{ параллельно } V\}\}$ называется $\{(c2), poekция w \text{ на } V^\perp \text{ параллельно } V\}\}$

Note 13

4e448e8833f94547ad7848fd3466661

Пусть e_1,\dots,e_k — система векторов в евклидовом пространстве. (казаматрицей Грама системы e_1,\dots,e_k) называют (казаматрицу

 $[(e_i, e_j)] \sim k \times k.$

Note 14

bff6be501ed49109d5041f018ecab96

Пусть e_1,\ldots,e_k — система векторов в евклидовом пространстве. «Сем Матрица Грама системы e_1,\ldots,e_k » обозначается (Сем Матрица Грама системы e_1,\ldots,e_k) обозначается (Сем Матрица Сем Мат

$$G(e_1,\ldots,e_k).$$

Note 15

90d9812ff67d48d78cc56919ecac7303

Пусть e_1, \ldots, e_k — система векторов в евклидовом пространстве. Тогда $\det G(e_1, \ldots, e_k)$ (се не зависит) от (степорядка, в котором берутся вектора в системе.)

Пусть e_1, \ldots, e_k — система векторов в евклидовом пространстве. Тогда $\det G(e_1, \ldots, e_k)$ не зависит от порядка, в котором берутся вектора в системе. В чём ключевая идея доказательства?

Перестановка пары векторов в $\{e_j\}$ соответствует перестановке пары строк и пары столбцов в $G(e_1,\dots,e_k)$.

Note 17

f45df626ca1d4db1866e3f7aae0c6f2a

Пусть W — евклидово пространство, $w \in W$, e_1, \ldots, e_k — базис в $V \triangleleft W$. Как найти проекцию w_0 вектора w на V?

$$G(e_1, \dots, e_n) \cdot \begin{bmatrix} \alpha_1 \\ \vdots \\ \alpha_k \end{bmatrix} = \begin{bmatrix} (w, e_1) \\ \vdots \\ (w, e_k) \end{bmatrix},$$

$$w_0 = e\alpha.$$

Лекция 18.04.22

Note 1

b04c0920040847d0a5d99e72e1d5f32f

Пусть W — евклидово пространство, $V \triangleleft W, f \in W$. (с2: Расстоянием от точки f до пространства V)) называется ((с1: Величина

$$\min\left\{\|f-g\|\mid g\in V\right\}.$$

Note 2

3c3b40b9167c47199457c3614706c26e

Пусть W — евклидово пространство, $V \triangleleft W$, $f \in W$. (с1: Расстояние от точки f до подпространства V) обозначается (с2:

$$d(f, V)$$
.

Note 3

se4d6f8b3aae4e73806dfc7764e669e3

Пусть W — евклидово пространство, $V \triangleleft W, f \in W$, {{c3::

$$f = f_0 + f^{\perp}_{\in V}.$$

) Тогда

$$\{\{{\tt c2::}d(f,V)\}\} = \{\{{\tt c1::}\|f^\perp\|.\}\}$$

Note 4

d34143b5a6f347ebbd35b66500be29d0

Пусть W — евклидово пространство, $V \triangleleft W$, $f \in W$. В чем основная идея доказательства равенства $d(f,V) = ||f^{\perp}||$?

Представить f как $f^\perp + f_0$ и явно вычислить $\|f - g\|$ для $g \in V.$

Note 5

093b736f8d264f6d81ad0aee60603024

Пусть W — евклидово пространство, $V \triangleleft W$, $f \in W$. Тогда

$$\{ (c2::d(f,V) = 0) \} \{ (c3:: \iff) \} \{ (c1:: f \in V.) \}$$

Пусть W — евклидово пространство, $V \triangleleft W$, $f \in W$. Тогда

$$d(f, V) = 0 \iff f \in V.$$

В чём ключевая идея доказательства?

Перпендикуляр равен нулю \iff проекция равна f.

Note 7

c3802fe76b8740e28ef0bb2ce4d4aca0

Пусть W — евклидово пространство, $f,g\in W$. ((c2): Угол между векторами f и g() обозначается ((c1):

$$(\widehat{f,g}).$$

Note 8

d84678ac809d4c229902770a60fb6c11

Пусть W — евклидово пространство, $V \triangleleft W$, $f \in W$. ([c2::Углом между вектором f и подпространством V]) называется ([c1::Величина

$$\min_{g \in V} (\widehat{f, g}).$$

))

Note 9

75d1e7b4a26f4f578bdaf51afa099e0

Пусть W — евклидово пространство, $V \triangleleft W$, $f \in W$. (122) Угол между вектором f и подпространством V) обозначается (121)

$$(\widehat{f,V}).$$

}}

Note 10

.9d3715d268b4c07a6ec6013b8a60e50

Пусть W — евклидово пространство, $V \triangleleft W$, $f \in W$, {{case}

$$f = f_0 + f^{\perp}_{\in V}.$$

Тогда

$$\{(c2::(\widehat{f,V})\}\} = \{\{c1::(\widehat{f,f_0}).\}\}$$

Пусть W — евклидово пространство, $V \triangleleft W$, $f \in W$. В чем основная идея доказательства равенства $\widehat{(f,V)} = \widehat{(f,f_0)}$?

Сравнить для $g \in V$ величины $\cos(\widehat{f,g})$ и $\cos(\widehat{f,f_0}).$

Note 12

e0b0c8a4f09c400ea5decb5c86c75027

Пусть W — евклидово пространство, $V_1, V_2 \triangleleft W$. (с.::Угол между подпространствами V_1, V_2) обозначается (с.::

$$(\widehat{V_1,V_2}).$$

Note 13

fe6711839e2e4292aa55fdd4f80c6c80

Пусть W — евклидово пространство, $V_1, V_2 \triangleleft W$.

$$\widehat{\{(v_1, V_2)\}} \stackrel{\mathrm{def}}{=} \widehat{\{(v_1, v_2) \mid v_1 \in L_1, v_2 \in L_2\}} \,, \\ L_{1,2} := \widehat{\{(v_2 : V_{1,2} \cap (V_1 \cap V_2)^{\perp}.)\}}$$

Note 14

1b70f983a1ad42c5919ee83b15a479c3

Пусть V — евклидово пространство, $\{a_j\}_{j=1}^n\subset V$. (ег: Параллелепипедом, натянутым на систему векторов $\{a_j\}_{||}$ называется (ел: множество

$$\left\{ \sum_{i=1}^{n} k_{j} a_{j} \mid k_{j} \in [0,1] \quad \forall j \in [1:n] \right\}.$$

Note 15

3fa74674fa86420ab3f78529ea808264

Пусть V — евклидово пространство, $\{a_j\}_{j=1}^n\subset V$. «са Параллелепипед, натянутый на систему векторов $\{a_j\}_{\mathbb{N}}$ обозначается (са:

$$\Pi(a_1,\ldots,a_n).$$

Пусть V — евклидово пространство, $\{a_j\}_{j=1}^n \subset V$. (кезил-мерный объём параллелепипеда $\Pi(a_1,\ldots,a_n)$)) обозначается (кези

$$\operatorname{vol}_n \Pi(a_1, \ldots, a_n).$$

}}

Note 17

a7e0867fc1bc4ede8b8c8baf077decb8

Пусть V — евклидово пространство, {{c3:} $a_1 \in V$.}}

$$\{(c2:: vol_1 \Pi(a_1))\} \stackrel{\text{def}}{=} \{(c1:: ||a_1||.)\}$$

Note 18

27fc106d10454b36acb1d4fdb4d5ebc6

Пусть V — евклидово пространство, ([c3:: $\{a_j\}_{j=1}^n \subset V, n\geqslant 2$.))

$$\begin{array}{l} \text{(C2:: } \operatorname{vol}_n\Pi(a_1,\ldots,a_n)\text{()} \stackrel{\text{def}}{=} \\ \text{((C1:: } \operatorname{vol}_{n-1}\Pi(a_1,\ldots,a_{n-1})\cdot d(a_n,\mathscr{L}(a_1,\ldots,a_{n-1})).\text{()} \end{array}$$

Note 19

62dd58a35b6e41618c5f4c14ba96d7df

Пусть V — евклидово пространство, $\{a_j\}_{j=1}^n \subset V$. Тогда

$$\{(\operatorname{vol}_n\Pi(a_1,\ldots,a_n))^2\}=\{(\operatorname{det} G(a_1,\ldots,a_n))\}$$

Note 20

8803537671b2486285e407e1661e183c

Пусть V — евклидово пространство, $\{a_j\}_{j=1}^n \subset V$. Тогда

$$(\operatorname{vol}_n \Pi(a_1, \dots, a_n))^2 = \det G(a_1, \dots, a_n).$$

На каком методе основано доказательство?

Note 21

Пусть V — евклидово пространство, $\{a_j\}_{j=1}^n \subset V$. Тогда

$$(\text{vol}_n \Pi(a_1, \dots, a_n))^2 = \det G(a_1, \dots, a_n).$$

В чём основная идея доказательства (индукционный переход)?

Представить a_n как

$$\sum_{k=1}^{n-1} \lambda_k a_k + a^{\perp},$$

 $\sum_{k=1}^{n-1} \lambda_k a_k + a^\perp,$ где a^\perp — перпендикуляр из a_n на $\mathscr{L}(a_1,\dots,a_{n-1}).$

Note 22

Откуда следует корректность определения величины

$$\operatorname{vol}_n \Pi(a_1,\ldots,a_n)$$
?

Из теоремы о связи $\operatorname{vol}_n\Pi(a_1,\ldots,a_n)$ с матрицей Грама.

Note 23

8167d79d15c5496986c4ed42e064fa03

Пусть V — векторное пространство над $\mathbb C$. Чем определение скалярного произведения для векторных пространств над $\mathbb C$ отличается от определения для пространств над $\mathbb R$?

Линейность только по первому аргументу и

$$(v,w) = \overline{(w,v)}.$$

Note 24

«са::Унитарным/эрмитовым пространством» называется «с2::комплексное линейное пространство с заданным на нём скалярным произведением.

Пусть V — унитарное пространство, $v \in V$. Откуда следует, что $(v,v) \in \mathbb{R}?$

Из аксиом линейного пространства $(v,v)=\overline{(v,v)}.$

Note 26

id93df02453b469989ec31cb02334953

Пусть V — унитарное пространство, $u,v\in V,\;\lambda\in\mathbb{C}.$ Тогда

{{c2::}
$$(u,\lambda v)$$
}} = {{c1::} $\overline{\lambda}(u,v)$.}}

Note 27

3c66004b6eb3476f85bb3505bdce5da3

Пример определения скалярного произведения для \mathbb{C}^n .

$$(z,w) = \sum_{j} z_{j} \overline{w_{j}}.$$

Лекция 25.04.22

Note 1

dd4a52e4947c482987ee915067979415

Пусть $\{(C, S) \mid V - \text{линейное пространство над } \mathbb{C}.\}\}$ $\{(C, S) \mid V - \text{линейное пространства над } \mathbb{R},\}\}$ называется $\{(C, S) \mid V - \text{линейное пространства над } \mathbb{R},\}\}$

Note 2

fce4b5036a48493086a124057e1f048d

Пусть $\{(can V - линейное пространство над <math>\mathbb{C}.\}$ $\{(can O B e ue c T B - nehue V)\}$ обозначается $\{(can V_{\mathbb{R}}.)\}$

Note 3

1502c0b949d740cc9b70927038d34e79

Пусть V — линейное пространство над $\mathbb{C},\ f\in \mathrm{End}\,V.$ (с.: Рассмотрение f как оператора $V_{\mathbb{R}}\to V_{\mathbb{R}^{||}}$ называется (с.: овеществлением f.)

Note 4

8fd578e0ac514b2c826528aa165fb19a

Пусть V — линейное пространство над $\mathbb{C},\ f\in \mathrm{End}\,V.$ (се: Овеществление f) обозначается (се: $f_{\mathbb{R}}.$)

Note 5

76444b467049412d855fd6a8bb955fef

Пусть V — линейное пространство над $\mathbb C$, {cs: $\{e_j\}_{j=1}^n$ — базис в V.}} Тогда {c1: $\{e_j\} \cup \{ie_j\}$ } — {c2: базис в $V_\mathbb R$.}}

Note 6

8b1e99362cbc41f9ad58dce068e5a358

Пусть V — линейное пространство над $\mathbb C$. Тогда

$$\dim V_{\mathbb{R}} = \{\text{cl:} 2 \cdot \dim V.\}$$

Note 7

cc3fd18a829c481eb6a18fd4944621b

Пусть $f:V \to V$ — линейный оператор в комплексном пространстве, $\{e_j\}_{j=1}^n$ — базис в V.)) Тогда для базиса $\{e_j\}_{j=1}^n$

$$\{\tilde{e}_j\}_{j=1}^{2n} = \{e_1, \dots, e_n, ie_1, \dots, ie_n\}$$

 $\}$ пространства {{c5:: $V_{\mathbb{R}}}$ } имеем

$$\{(c2:M_{ ilde{e}}(f_{\mathbb{R}}))\}=\{(c1:|egin{array}{ccc} B&-C\ C&B \end{array}], \quad {
m rge}\ B+iC=M_e(f).\}$$

Note 8

cc938e458f944909a9c35a4d1dc9cea0

Пусть (са: V — линейное пространство над \mathbb{R} .)

$$\text{(c2::}V_{\mathbb{C}}\text{)}\overset{\mathrm{def}}{=}\text{(c1::}\left\{\left(u,v\right)\mid u,v\in V\right\}.\text{)}$$

Note 9

17bb526f78d4eceace2fdea3f410d63

Пусть V — линейное пространство над $\mathbb{R},\ (u,v)\in V_{\mathbb{C}}.$ Тогда

$$\{ (\mathbf{c2}:: i(u,v)) \} \stackrel{\mathrm{def}}{=} \{ (\mathbf{c1}:: (-v,u).) \}$$

Note 10

f3dbbf009e9b4e94972dfdbf0af435f6

Как запомнить правило умножения в пространстве $V_{\mathbb{C}}$?

"Представить" элемент $(u,v)\in V_{\mathbb C}$ как u+iv.

Note 11

389f838bfe634a94bbac20ddbd28d838

 $\{\{c2\}\}$ Пространство $V_{\mathbb{C}}\}\}$ называется $\{\{c1\}\}$ комплексификацией пространства $V_{-1}\}\}$

Note 12

d7b4cacadaa641759cab38db5ae47b15

Пусть $f:V\to W$ линейный оператор в евклидовых пространствах. Оператор $g:\{(c3),W\to V\}$ называется $\{(c2),c0\}$ жённым оператором к оператору f,((c1),c2)

$$(f(v), w) = (v, g(w)) \quad \forall v \in V, w \in W.$$

Пусть $f:V\to W$ линейный оператор в евклидовых пространствах. (се: Сопряжённый оператор к оператору f)) обозначается (се: f^* .)

Note 14

5b47c38358684d31a1d171bdc613fa5f

Пусть $f:V\to W$ линейный оператор в евклидовых пространствах. Как показать, что f^* линеен?

Показать, что $f^*(\lambda w) - \lambda f^*(w)$ ортогонален всем векторам в V. Аналогично для суммы.

Note 15

d9hfeeafc3314h3582a8263231d7301h

Пусть $f:V\to W$ линейный оператор в евклидовых пространствах. Как показать существование f^* ?

Явным образом найти его матрицу.

Note 16

d532583798 ec4 eafb0 bcec5c1 a718f50

Пусть $f:V \to W$ линейный оператор в евклидовых пространствах. Однозначно ли определён оператор f^* ?

Да, однозначно.

Note 17

49ba268bb22b4db9858de680fb15c62b

Пусть $f:V\to W$ линейный оператор в евклидовых пространствах, $\{e_i\}$ и $\{\tilde{e}_j\}$ — ортонормированные базисы в V и W, соответственно. $\|$ Тогда

$$\{\{c2:: M_{\tilde{e},e}(f^*)\}\} = \{\{c1:: (M_{e,\tilde{e}}(f))^T.\}\}$$

Пусть $f:V\to W$ линейный оператор в евклидовых пространствах, $\{e_i\}$ и $\{\tilde{e}_j\}$ — ортонормированные базисы в V и W, соответственно. Как показать, что

$$M_{\tilde{e},e}(f) = (M_{e,\tilde{e}}(f))^T$$
?

Вычислить коэффициенты Фурье $(e_i, f^*(\tilde{e}_j))$.

Note 19

fa653accdda24b31ab20506ac8538332

Пусть $f:V \to W$ линейный оператор в эрмитовых пространствах. Тогда

$$(f^*)^* = \{\{c1::f.\}\}$$

Note 20

cbcfd9ad889c446d8de6ca2776680205

Пусть $f_1, f_2: V \to W$ линейные операторы в эрмитовых пространствах, $\lambda, \mu \in \mathbb{R}$. Тогда

$$(\lambda f_1 + \mu f_2)^* = \{\{c1: \overline{\lambda} f_1^* + \overline{\mu} f_2^*.\}\}$$

Note 21

6e9f045a1c4e4808bfcbd69523e55ac3

Пусть $f_1, f_2: V \to W$ линейные операторы в эрмитовых пространствах. Тогда

$$(fg)^* = \{\{c1:: g^*f^*.\}\}$$

Note 22

1520bcac46ee4b76aefe766faef8769e

Пусть $f:V\to V$ линейный оператор в эрмитовом пространстве, v — собственный вектор операторов (с2::f и f^* ,)) отвечающий (с3::собственным значениям λ и μ) соответственно. Тогда (с1::

$$\mu = \overline{\lambda}$$
.

Лекция 16.05.22

Note 1

8954a1f946d54d49843hb75heba5c6a2

Пусть $f:V \to V$ — линейный оператор в эрмитовом пространстве. Тогда

$$\{\{c2:: \ker f^*\}\} = \{\{c1:: (\operatorname{im} f)^{\perp}\}\}.$$

Note 2

2b5bf9cde3b944f3829f6df51e0a5d46

Пусть $f:V \to V$ — линейный оператор в эрмитовом пространстве. Тогда

$$\{\{c2:: \operatorname{im} f^*\}\} = \{\{c1:: (\ker f)^{\perp}\}\}.$$

Note 3

82658444368d432c84797667377faa14

Пусть $f:V\to V$ — линейный оператор в эрмитовом пространстве. Тогда $\ker f^*=(\operatorname{im} f)^\perp$. В чём основная идея доказательства?

$$v \in \ker f^* \iff (v, f(w)) = 0 \quad \forall w.$$

Note 4

ac28c64b9e0843ee85ea8d67e40ff6d1

Пусть $f:V \to V$ — линейный оператор в эрмитовом пространстве. Тогда $\operatorname{im} f^* = (\ker f)^\perp$. В чём основная идея доказательства?

Следует из равенства $\ker(f^*)^* = (\operatorname{im} f^*)^{\perp}$.

Note 5

0b903e3801544d2a9284c6c06caa3e11

Пусть $f:V\to V$ — линейный оператор в эрмитовом пространстве, $V \triangleleft W$. Тогда, если предоставленно инвариантно относительно $\{c:V^\perp\}$ по предоставленно предоставленно предоставления пред

Пусть $f:V\to V$ — линейный оператор в эрмитовом пространстве, $V\lhd W$. Тогда, если V инвариантно относительно f, то V^\perp инвариантно относительно f^* . В чём основная идея доказательства?

$$(v, f^*(w)) = (f(v), w) = 0 \quad \forall w \in V^{\perp}.$$

Note 7

ch0fd56398174603h26c14a08091c430

Пусть $a,\lambda,\mu\in\mathbb{C},\ \lambda\neq\mu.$ Как из равенства $\lambda a=\mu a$ следует, что a=0?

$$\underbrace{(\lambda - \mu)}_{\neq 0} a = 0.$$

Note 8

98d95972a0746bb8ca3fe90ee7fafe6

Пусть $f:V \to V$ — линейный оператор в эрмитовом пространстве. Тогда

$$f^* = f \implies \operatorname{spec} f_{\text{{cl:}}} \subset \mathbb{R}.$$

Note 9

6eec0c089bb9471397a72db6e6ea7c4b

Пусть $f:V\to V$ — линейный оператор в эрмитовом пространстве. Тогда $f^*=f\Longrightarrow \operatorname{spec} f\subset \mathbb{R}$. В чём основная идея доказательства?

$$\forall \lambda \in \operatorname{spec} f \quad \lambda = \overline{\lambda}.$$

Note 10

01f37aa032dc4ae184b41741f1009cba

Пусть $f:V\to V$ — линейный оператор в эрмитовом пространстве, $f=f^*,\ x,y\in V$. Тогда если x и y — собственные векторы оператора f, отвечающие разным собственным значениям, то $x\perp y$. В чём основная идея доказательства?

Рассмотреть скалярное произведение

$$(f(x), y) = (x, f(y)).$$

Note 12

9cd8e8889d15407b9c8bc0d715fc7b96

«Пеза:Спектральная теорема для самосопряжённых операторов)»

Пусть $f:V\to V$ — линейный оператор в эрмитовом пространстве. Тогда если $\{(c2):f^*=f,\}\}$ то в пространстве V существует $\{(c1):$ ортонормированный базис из собственных векторов оператора $f.\}\}$

Note 13

7e1c25eb54d844309b458da40780c8f1

В чём основная идея доказательства спектральной теоремы для самосопряжённых операторов?

Для $\lambda\in\operatorname{spec} f$ имеем $V=V_f(\lambda)\oplus V_f(\lambda)^\perp$, но оба этих пространства инвариантны относительно f.

Note 14

4884039a91ca44c2a72e903879e0cb15

Почему в доказательстве спектральной теоремы для самосопряжённых операторов нам важно, что оба пространства в прямой сумме $V_f(\lambda) \oplus V_f(\lambda)^\perp = V$ инвариантны относительно f?

Из этого следует, что f представляется соответствующей квазидиагональной матрицей.

Пусть $f:V\to V$ — линейный оператор в эрмитовом пространстве, $f=f^*,\ \lambda\in\operatorname{spec} f.$ Почему пространство $V_f(\lambda)^\perp$ инвариантно относительно f?

 $V_f(\lambda)$ инвариантно относительно $f \implies V_f(\lambda)^\perp$ инвариантно относительно $f^*=f$.

Note 16

a3db890388d426ba9b6f47900bb8d01

Пусть $f:V\to V$ — линейный оператор в эрмитовом пространстве, $f=f^*$. Почему f не может не иметь действительных собственных значений?

Любой оператор имеет комплексные собственные значения, но из самосопряжённости следует, что эти значения действительны.

Note 17

ca9ea18afa5c40f8873a302849e8b0b

Пусть $f:V\to V$ — линейный оператор в (санэрмитовом пространстве.) Оператор f называется (санунитарным,)) если (сын

$$(f(v), f(w)) = (v, w) \quad \forall v, w \in V.$$

Note 18

7ba81b35301b4520996b24d87bc4fd09

Пусть $f:V \to V$ — линейный оператор в «свевклидовом пространстве.» Оператор f называется «свеортогональным,» если «све

$$(f(v), f(w)) = (v, w) \quad \forall v, w \in V.$$

Note 19

c7ddf42a012945c888c4d5178b28f2f0

Пусть $f:V \to V$ — унитарный оператор. Тогда помимо скалярного произведения f сохраняет (кладины и углы.)

Пусть $f:V\to V$ — унитарный оператор. Тогда помимо скалярного произведения f сохраняет длины и углы. В чём основная идея доказательства?

Длины и углы выражаются через скалярное произведение.

Note 21

89e9f8ff95e74665b47de711b04ebf2e

Пусть $f:V \to V$ — линейный оператор в (канэрмитовом пространстве.)) Тогда (кана f унитарнен)) тогда и только тогда, когда (кана f

$$f^* = f^{-1}$$
.

}}

 $(в терминах f^*)$

Note 22

41a4909e68244e2e9fd1312185a42e07

Пусть $f:V \to V$ — линейный оператор в (санэрмитовом пространстве.) Тогда ((санf унитарнен)) тогда и только тогда, когда ((сан

$$||v|| = ||f(v)|| \quad \forall v \in V.$$

}}

(в терминах норм)

Note 23

865b571c22cf4ed9bf1c3a80e8e88c8c

Пусть $f:V \to V$ — линейный оператор в эрмитовом пространстве. Тогда f унитарнен $\Longleftarrow \|v\| = \|f(v)\| \quad \forall v \in V$. В чём ключевая идея доказательства?

Рассмотреть $||a+b||^2$ и $||a+ib||^2$, получив сохранение отдельно вещественной и отдельно мнимой частей скалярного произведения.

Пусть $z \in \mathbb{C}$. Тогда $z + \overline{z} = \{\{c1: 2 \cdot \Re(z).\}\}$

Note 25

5e9e6d646883410db5ecf8c401d3026d

Пусть $z \in \mathbb{C}$. Тогда $z - \overline{z} = \{\{c1:: 2i \cdot \Im(z).\}\}$

Note 26

ech4d7e7be047b887fa8953465857ch

Пусть $f:V\to V$ — линейный оператор в (канэрмитовом пространстве.)) Тогда (кана f унитарнен)) тогда и только тогда, когда (кана f переводит любой ортонормированный базис в ортонормированный базис.))

(в терминах базисов)

Note 27

b4fdcc1c898f454cb1ca4e9fe9d18ef0

Пусть $f:V\to V$ — линейный оператор в эрмитовом пространстве. Тогда f унитарнен $\iff f$ переводит любой ортонормированный базис в ортонормированный базис. В чём ключевая идея доказательства?

Показать, что f сохраняет длины.

Note 28

55a699f79e064eb7bcbad7d49660f64b

Пусть $A \in \mathbb{C}^{\{\text{c3:}n \times n\}\}}$. Матрица A называется $\{\text{c2:}y$ нитарной} $\}$ если $\{\text{c1:}$

 $\overline{A}^{\perp} = A^{-1}$

Note 29

3ddc6bb6b47d44c6900bc4593cea65ba

Пусть $f:V\to V$ — линейный оператор в пространстве. Тогда пространстве унитарнен тогда и только тогда, когда просматрица f в ортонормированном базисе унитарна.

(в терминах матриц оператора)

Пусть $f:V\to V$ — линейный оператор в эрмитовом пространстве. Тогда f унитарнен тогда и только тогда, когда матрица f в ортонормированном базисе унитарна. В чём ключевая идея доказательства?

 $f^* = f^{-1} \iff$ равны и их матрицы.

Note 31

a749d29f6a92475aa3bac79533cb3df

Пусть $f:V \to V$ — унитарный оператор. Тогда $\forall \lambda \in \operatorname{spec} f$ имеем (клад | λ | = 1.)

Note 32

1977a9b870034e868dc7565fb5174779

Пусть $f:V\to V$ — унитарный оператор. Тогда $\forall \lambda\in\operatorname{spec} f$ имеем $|\lambda|=1$. В чём основная идея доказательства?

Для $v \in V_f(\lambda) \setminus \{0\}$ рассмотреть (f(v), f(v)).

Note 33

f3a34c6f96f24f3c91b5b5cb5b85386c

Пусть $f:W\to W$ — унитарный оператор, $V\lhd W$. Тогда если ((с4::V инвариантно относительно f,)) то ((с1:: V^\perp)) ((с3::инвариантно)) относительно ((с2::f.))

Note 34

fd57ae2625734c759ffb57bc00f69d8f

Пусть $f:W\to W$ — унитарный оператор, $V \triangleleft W.$ Тогда если V инвариантно относительно f, то и V^\perp инвариантно относительно f. В чём основная идея доказательства?

 V^{\perp} инвариантно относительно $f^*=f^{-1}.$

Note 35

05351f096d4a47cc90c2f500fbe4fe16

«((сза:Спектральная теорема для унитарных операторов))»

Пусть $f:V\to V$ — {{c2}} унитарный оператор.}} Тогда в пространстве V существует {{c1}} ортонормированный базис из собственных векторов оператора f.}}

В чём основная идея доказательства спектральной теоремы для унитарных операторов?

Для $\lambda\in\operatorname{spec} f$ имеем $V=V_f(\lambda)\oplus V_f(\lambda)^\perp$, но оба этих пространства инвариантны относительно f.

Note 37

e6h5642085f4ef7a716fh7a5422h363

В \mathbb{R}^2 любое ортогональное преобразование — есть либо ((c1:: поворот,)) либо ((c2:: отражение относительно прямой,))

Семинар 20.04.22

Note 1

laf2a0956e564d7a8dcff91122d2862c

В процессе ортогонализации Грама-Шмидта определитель Грама ((с1) не меняется.))

Note 2

edf320bb5941209a88b04057e3dbff

В процессе ортогонализации Грама-Шмидта определитель Грама не меняется. В чём ключевая идея доказательства?

Ортогонализация соответствует ЭПМ, не меняющим значение определителя.

Note 3

dd5abffedea24431af7beee39693bcb2

Пусть
$$V$$
 — эрмитово пространство, ((c2:: $\{e_j\}_{j=1}^n\subset V$.)) Тогда
$$\mathrm{sgn}\,|G(e_1,\dots,e_n)|\in ((c1::\{0,1\}\,.))$$

Note 4

db24bbf9fd7b489abaf22b6d4dc0998b

Пусть
$$V$$
 — эрмитово пространство, $\{e_j\}_{j=1}^n \subset V$. Тогда
$$\operatorname{sgn} |G(e_1,\dots,e_n)| \in \{0,1\}\,.$$

В чём ключевая идея доказательства?

Использовать связь с n-мерным объёмом.

Note 5

550eea6aa0654fe1bcff80057656cabf

Пусть V — эрмитово пространство, ((e4:: $\{e_j\}_{j=1}^n \subset V$.)) Тогда

$$|G(e_1,\ldots,e_n)|=0$$

)) {{c3::тогда и только тогда, когда}} {{c1::система } {e_j}} линейно зависима.}}

Пусть V — эрмитово пространство, $\{e_j\}_{j=1}^n \subset V$. Тогда

$$|G(e_1,\ldots,e_n)|=0$$

тогда и только тогда, когда система $\{e_j\}$ линейно зависима. В чём ключевая идея доказательства?

Использовать связь определителя Грама с n-мерным объёмом.

Note 7

00720dec33a24976930d32a68b35db90

Пусть V — эрмитово пространство, $\{e_j\}_{j=1}^n\subset V$. Тогда $\mathrm{vol}_n\,\Pi(e_1,\dots,e_n)$ (1622) 0) (1623) \Longleftrightarrow) (1614) $\{e_j\}$ линейно зависима.)

Note 8

52d0e0ee37124ceeb134e6261126d6b9

Пусть V — эрмитово пространство, $\{e_j\}_{j=1}^n \subset V$. Тогда $\mathrm{vol}_n\,\Pi(e_1,\dots,e_n)=0 \iff \{e_j\}\,$ линейно зависима.

В чём ключевая идея доказательства?

Какое-то из $d(e_j, \mathscr{L}(\ldots))$ из определения объёма равно нулю.

Note 9

c01adb60f10f465ea82f0eb8c910472

Пусть V — эрмитово пространство, (каза $\{e_j\}_{j=1}^n \subset V$.)) Тогда

$$|G(e_1,\ldots,e_n)|$$
 (162:: \leqslant)))(61:: $\prod_{j=1}^n \|e_j\|^2$.))

Пусть V — эрмитово пространство, $\{e_j\}_{j=1}^n \subset V$. Тогда

$$|G(e_1,\ldots,e_n)| \le \prod_{j=1}^n ||e_j||^2.$$

В чём ключевая идея доказательства?

Использовать связь с n-мерным объёмом.

Note 11

e3a8ea052f1b41b48d35050e054c8f59

Пусть V — эрмитово пространство, ((c5): $\{e_j\}_{j=1}^n \subset V$.)) Тогда

$$|G(e_1,\dots,e_n)|$$
 (c4:: $=$))(c3:: $\prod_{j=1}^n\|e_j\|^2$))(c2:: \iff))(с1:: $\begin{bmatrix}\{e_j\}\ e_j=0.\end{bmatrix}$

Note 12

cc78cd0e52934eaf89bbd0be8dd6df0c

Пусть V — эрмитово пространство, $\{e_j\}_{j=1}^n \subset V$. Тогда

$$|G(e_1,\ldots,e_n)|=\prod_{j=1}^n\|e_j\|^2\impliesegin{bmatrix}\{\{e_j\}\ ext{opтогональна},\ \exists j e_j=0. \end{bmatrix}$$

Какие два случая расстраиваются в доказательстве?

1. Все $e_j \neq 0$; 2. Существует $e_j = 0$.

Note 13

d2d2hc3022e14cf0h41d9881403f47he

Пусть V — эрмитово пространство, $\{e_j\}_{j=1}^n \subset V$. Тогда

$$|G(e_1,\ldots,e_n)|=\prod_{j=1}^n\|e_j\|^2\impliesegin{bmatrix}\{e_j\}\ ext{opтогональна},\ \exists j e_j=0. \end{bmatrix}$$

В чём ключевая идея доказательства (все $e_j \neq 0$)?

Использовать связь с n-мерным объёмом.

Семинар 27.04.22

Note 1

15065hh7284d464eh733caa7ce69f5c2

Пусть L_1,L_2 — векторные подпространства, $\{(cs:L_1\cap L_2=\{0\}.\}$ $\{(cs:L_1,L_2)\}\}=\{(cs:\widehat{(g,g_1)})\}$, где

g — «сыпроекция ненулевого вектора $x \in L_1$ на L_2 ,»

 g_1 — {{с2: проекция g на L_1 .}}

Note 2

6bc4328f156248a99ab740a54db23882

Пусть $f:V \to V$ — линейный оператор в эрмитовом пространстве. Тогда оператор ff^* (клисамосопряжён.)

Note 3

ee802fb93fc34532abc98ffcbb813a0a

Пусть $f:V \to V$ — линейный оператор в эрмитовом пространстве. Тогда оператор f^*f (какосопряжён.)

Note 4

2298652c987c4036be1f1244e0d2d16a

Пусть $f:V \to V$ — линейный оператор в эрмитовом пространстве, $\det f \neq 0$). Тогда $\det (f^{-1})^*$ | $\det (f^*)^{-1}$ | .

Note 5

f9e1ce5c80d84b1fa0d487d5057a623

Пусть $A=[a_{ij}]\in\mathbb{C}^{n\times m}$. Тогда

$$\overline{A} \stackrel{\mathrm{def}}{=} \{\{\mathrm{cl}:: \left[\overline{a_{ij}}\right].\}\}$$

Note 6

3ed5769b04134886b2dae82e3c375951

Пусть $f:V \to V$ — линейный оператор в эрмитовом пространстве, $\{e_j\}_{j=1}^n$ — {[cata-базис в V.]) Тогда

$$\{({\it c5}::M_e(f^*)\}=\{({\it c1}::\overline{G^{-1}A^TG},1)\}$$

где $A=\{(c2):M_e(f)\}$, $G=\{(c3):G(e_1,\ldots,e_n)\}$).

Пусть $f:V\to V$ — линейный оператор в эрмитовом пространстве, $\{e_j\}_{j=1}^n$ — базис в V. Тогда $M_e(f^*)=\overline{G^{-1}A^TG}$, где $A=M_e(f),\ G=G(e_1,\dots,e_n)$. В чём основная идея доказательства?

Использовать G как матрицу полуторалинейной формы.

Note 8

fa1bb01afd4c43bbb1e902fcdf3891a

Пусть $A \in \mathbb{C}^{n \times m}$, $B \in \mathbb{C}^{m \times l}$. Тогда

$$\overline{AB} = \{\{c1:: \overline{A} \ \overline{B}.\}\}$$

Note 9

4a0309bd276e44448efb76c62e0fbfcf

Пусть $f,g:V\to V$ — самосопряжённые операторы в эрмитовом пространстве. Тогда (сегоператор fg самосопряжён) (сего fg=gf.)

Note 10

3b50b418e4594bfeb03b83bb0f393857

Пусть $f,g:V\to V$ — самосопряжённые операторы в эрмитовом пространстве. Тогда оператор (самосопряжён.)

Note 11

480f285619264421ad7eebf15db6c3c5

Пусть $f,g:V\to V$ — самосопряжённые операторы в эрмитовом пространстве, $\lambda\in\mathbb{C}$. Тогда если $\{(c2)\overline{\lambda}=-\lambda,\}$ то оператор $\{(c3)\overline{\lambda}(fg-gf)\}$ $\{(c1)\overline{c}$ самосопряжён. $\}$

Лекция 23.05.22

Note 1

5a8ab0eed63d4e1cb7f6f69e11c2aabd

В \mathbb{R}^2 любое ортогональное преобразование f — есть либо поворот, либо отражение относительно прямой. Какие два случая рассматриваются в доказательстве?

1. spec $f \subset \mathbb{R}$, 2. spec $f \cap \mathbb{R} = \emptyset$.

Note 2

0fe0d9d75484cf1858bc7ea943f9e34

В \mathbb{R}^2 любое ортогональное преобразование f — есть либо поворот, либо отражение относительно прямой. В чём основная идея доказательства (случай spec $f \subset \mathbb{R}$)?

 $\operatorname{spec} f = \{\pm 1, \pm 1\}$, и во всех случаях получаем нужное преобразование.

Note 3

231ac7e677014b5c906070674ee0e438

В \mathbb{R}^2 любое ортогональное преобразование f — есть либо поворот, либо отражение относительно прямой. В чём основная идея доказательства (случай spec $f \cap \mathbb{R} = \emptyset$)?

Для $\lambda=\cos\varphi-i\sin\varphi\in\operatorname{spec} f$ и $e=a+bi\in V_f(\lambda)$ расписать

$$f(e) = \lambda e$$
.

Note 4

31d69048b8654670a45bed290ffb4052

Пусть $f:\{\{a\in\mathbb{R}^n o\mathbb{R}^n\}\}$ — линейный оператор, $\lambda\in\{\{a\in\mathbb{R}^n\}\}$ тогда если $\{\{a\in\mathbb{R}^n\}\}$ $\{b\in V_{f_\mathbb{C}}(\lambda)\setminus\{0\}\}$ (где $\{\{a\in\mathbb{R}^n\}\}$), то $\{\{a\in\mathbb{R}^n\}\}$ и b линейно независимы.

Note 5

a8555ff624e746ceae88a1597c9ebcf4

Пусть $f: \mathbb{R}^n \to \mathbb{R}^n$ — линейный оператор, $\lambda \in \operatorname{spec} f \setminus \mathbb{R}$. Тогда если $a+ib \in V_{f_{\mathbb{C}}}(\lambda) \setminus \{0\}$ (где $a,b \in \mathbb{R}^n$), то a и b линейно независимы. В чём ключевая идея доказательства?

От обратного и тогда $f(a)=\lambda a$, что невозможно, поскольку $a,f(a)\in\mathbb{R}^n.$

Note 6

678857a6b6514b7e87cade6a771f4c53

 $\{\{c2:: Maтрица поворота на угол <math>\varphi\}\}$ имеет вид: $\{\{c1:: Arganise : Argani$

$$\begin{bmatrix} \cos \varphi & -\sin \varphi \\ \sin \varphi & \cos \varphi \end{bmatrix}.$$

Note 7

398eb33a3cd34a718118f2be8f7095a

Пусть $\varphi\in\mathbb{R}$ — произвольный угол. (казаматрица поворота на угол φ) обозначается (каза R_{φ} .))

Note 8

87e8bdb8fccb4fd9ac6ce183b1724513

«с1::Матрица вида

$$\operatorname{diag}(R_{\varphi_1},\ldots,R_{\varphi_k},\pm 1,\ldots,\pm 1).$$

(с точностью до порядка клеток) называется (сажаноническим видом матрицы ортогонального оператора.)

Note 9

951f954d7fc94632bfd90e091d13396e

В \mathbb{R}^n для любого ортогонального оператора существует (стеротонормированный базис, в котором матрица оператора имеет канонический вид.)

Note 10

e8a3805f9a3f4bae8dd14745c6603d37

В \mathbb{R}^n для любого ортогонального оператора существует ортонормированный базис, в котором матрица оператора имеет канонический вид. В чём ключевая идея доказательства?

Выбрать собственное значение, построить отвечающий ему блок и далее "по индукции" для сужения на ортогональное дополнение.

Пусть f — ортогональный оператор, a+bi — его собственный вектор. Тогда a и b (конортогональны и имеют равную длину.)

Note 12

5b4055b476de4754a0eab034334b564d

Пусть f — ортогональный оператор, a+bi — его собственный вектор. Тогда a и b ортогональны и имеют равную длину. В чём ключевая идея доказательства?

Выразить (a, b) и (a, a) через значения f(a) и f(b) и составить СЛАУ.

Note 13

ebbc584e56104a56ab20c37cb3f7603

Пусть f — ортогональный оператор, a+bi — его собственный вектор. Тогда a и b ортогональны и имеют равную длину. Относительно каких переменных составляется СЛАУ в доказательстве?

Относительно (a, b) и (a, a) - (b, b)

Note 14

91344cb034d9420b9a63807b59bc1cbi

Отображение $q:\{\{c1:\mathbb{R}^n o \mathbb{R}\}\}$ вида

$$q(x) = \{ \{ c \geq i, j \mid a_{ij} \cdot x_i x_j, \quad a_{ij} \in \mathbb{R}. \} \}$$

называется $\{(\mathbf{G}_{n})$ квадратичной формой в \mathbb{R}^{n} . $\}$

Note 15

9f5070390cb64df59f3c3a3edb21964d

Пусть $q:x\mapsto \sum a_{ij}\cdot x_ix_j$ — квадратичная форма в \mathbb{R}^n . Для удобства полагают, что (клага $a_{ij}=a_{ji}$.)

Матрицей квадратичной формы $x\mapsto \sum a_{ij}\cdot x_ix_j$ в \mathbb{R}^n называется (кламатрица

$$[a_{ij}] \sim n \times n.$$

Note 17

20dec1b0cdf4cfb824cfb96603e87c6

Пусть q — квадратичная форма в \mathbb{R}^n , A — матрица q. Тогда

$$A^T = \{\{c1::A.\}\}$$

Note 18

f47b5351d6cc4c4792454ba3ae253b45

Пусть q — квадратичная форма в \mathbb{R}^n , A — матрица q. Как q(x) выражается через произведение матриц?

$$q(x) = x^T A x.$$

Note 19

80787c73077441aa88a40c590206c15e

Пусть q — квадратичная форма в \mathbb{R}^n , A — матрица q. Как q(x) выражается через евклидово скалярное произведение в \mathbb{R}^n ?

$$q(x) = (Ax, x)$$

Note 20

78fd5f73a8bd4fe2bd9715e0dfc63f3

Пусть $q:x\mapsto x^TAx$ — квадратичная форма в \mathbb{R}^n . Форма q называется положительно определённой, весли (ст. $\forall x$

$$q(x) \geqslant 0$$
 и $q(x) = 0 \iff x = 0$.

Пусть $q:x\mapsto x^TAx$ — квадратичная форма в \mathbb{R}^n . Тогда всегда пременных x=By, что

$$q(By) = \sum_{i=1}^{\operatorname{rk} A} \mu_i y_i^2.$$

Note 22

5efae3fe5ee64edabaa2a50d91d8714

Пусть $q:x\mapsto x^TAx$ — квадратичная форма в \mathbb{R}^n . Тогда всегда существует такая замена переменных x=By, что

$$q(By) = \sum_{i=1}^{\operatorname{rk} A} \mu_i y_i^2.$$

В чём ключевая идея доказательства (без использования спектральной теоремы)?

Элементарными преобразованиями строк и столбцов привести матрицу q к диагональному виду.

Note 23

2b6bd1f239a0448cb62e2d9e6ba8e5a7

Пусть $q:x\mapsto x^TAx$ — квадратичная форма в \mathbb{R}^n . «спПредставление q(x) в виде

$$q(By) = \sum_{i=1}^{\operatorname{rk} A} \mu_i y_i^2.$$

 $\|$ называется (селканоническим видом квадратичной формы $q.\|$

Note 24

d28a23h8889943d4h3ffc14e52ch4e21

Пусть $q:x\mapsto x^TAx$ — квадратичная форма в \mathbb{R}^n . («сіл Число положительных коэффициентов в каноническом виде q)) называется («сал положительным индексом инерции q.))

Пусть $q:x\mapsto x^TAx$ — квадратичная форма в \mathbb{R}^n . Положительный индекс инерции q_0 обычно обозначается петел.

Note 26

45d2e04c6dc0495c8c53da1a9a52fa03

Пусть $q:x\mapsto x^TAx$ — квадратичная форма в \mathbb{R}^n . «са Отрицательный индекс инерции q» обычно обозначается «са ν .

Note 27

ccfa3006b8dd4d76a4d29b6bd06efa0e

Пусть $q:x\mapsto x^TAx$ — квадратичная форма в \mathbb{R}^n . (сл. Число отрицательных коэффициентов в каноническом виде q)) называется (сг. отрицательным индексом инерции q.))

Note 28

e0192c4d7f9b4c8da63ea34e5b91d7b

Пусть $q:x\mapsto x^TAx$ — квадратичная форма в \mathbb{R}^n . (св. Положительные и отрицательные индексы инерции q)) (св. замены переменных, приводящей q к каноническому виду.)

Note 29

7c4f4a41668546169076f4a02bb73f41

Пусть $q:x\mapsto x^TAx$ — квадратичная форма в \mathbb{R}^n . Тогда ((c2)) — это ((c1)) максимальная размерность подпространства, на котором форма q положительно определена.)

(в терминах положительной определённости)

Note 30

24dea29600d54b75b2530902cfa4a5af

Пусть $q:x\mapsto x^TAx$ — квадратичная форма в \mathbb{R}^n . Тогда $\{p\}$ — это $\{p\}$ максимальная размерность подпространства, на котором форма q отрицательно определена.

(в терминах положительной определённости)

Пусть q — квадратичная форма в \mathbb{R}^n . Тогда π — это максимальная размерность подпространства, на котором форма q положительно определена. В чём ключевая идея доказательства?

Выбрать базис e, в котором

$$q(e\lambda) = \lambda^T \begin{bmatrix} E_{\pi} & \\ & -E_{\nu} \\ & 0 \end{bmatrix} \lambda.$$

Note 32

a2d2be95e6543ff9f5642410cda1fc7

Пусть q — квадратичная форма в \mathbb{R}^n . Почему мы знаем, что существует базис e, в котором

$$q(e\lambda) = \lambda^T \begin{bmatrix} E_{\pi} & \\ & -E_{\nu} & \\ & & 0 \end{bmatrix} \lambda.$$

Диагональный вид существует из спектральной теоремы. Остаётся нормировать и переставить базисные векторы.

Note 33

2002e141fa3345999d474a7c75a27h69

Пусть q — квадратичная форма в \mathbb{R}^n , e — базис такой, что

$$q(e\lambda) = \lambda^T \begin{bmatrix} E_{\pi} & \\ & -E_{\nu} & \\ & & 0 \end{bmatrix} \lambda.$$

Что можно сказать про $L = \mathscr{L}(e_1, \dots, e_\pi)$?

q положительно определена на L.

Пусть q — квадратичная форма в \mathbb{R}^n , e — базис такой, что

$$q(e\lambda) = \lambda^T \begin{bmatrix} E_{\pi} & \\ & -E_{\nu} & \\ & & 0 \end{bmatrix} \lambda.$$

Что можно сказать про $L = \mathscr{L}(e_{\pi+1}, \dots, e_{\pi+\nu})$?

q отрицательно определена на L.

Note 35

456d6973756f4ab9bfbfd28f53e7a060

Пусть q — квадратичная форма в \mathbb{R}^n , e — базис такой, что

$$q(e\lambda) = \lambda^T \begin{bmatrix} E_{\pi} & \\ & -E_{\nu} & \\ & & 0 \end{bmatrix} \lambda.$$

Тогда если {{c2::}} q положительно определена на G,}} то {{c1::}} $\dim G \leqslant \pi.$

Note 36

93b97c5f8fa2484e9cd48faeac9b577e

Пусть q — квадратичная форма в \mathbb{R}^n , e — базис такой, что

$$q(e\lambda) = \lambda^T \begin{bmatrix} E_{\pi} & \\ & -E_{\nu} \\ & 0 \end{bmatrix} \lambda.$$

Тогда если q положительно определена на G, то $\dim G \leqslant \pi$. В чём ключевая идея доказательства?

В G не может лежать векторов из $\mathscr{L}(e_{\pi+1},\ldots,e_n)$.

Note 37

5fc4db6c932e4c5bac06afaafb2e8a68

Пусть q — квадратичная форма в \mathbb{R}^n . Почему π и ν корректно определены?

Следует из связи значений π и ν с размерностями подпространств, на которых q положительно/отрицательно определена.

Note 38

7b6d8cfbb8e499e8552699c8f4d0bf8

Пусть $q: x \mapsto x^T A x$ — квадратичная форма в \mathbb{R}^n , $i \in [1:n]$.

$$\{ \{ \mathbf{c2} :: \Delta_i \} \} \stackrel{\mathrm{def}}{=} \{ \{ \mathbf{c1} :: M_{1 \cdots i}^{1 \cdots i}(A). \} \}$$

Note 39

70b0c89b87844a56bfbafcab882e879b

Пусть $q:x\mapsto x^TAx$ — квадратичная форма в \mathbb{R}^n . Тогда $\{x\in \mathbb{R}^n\}$ положительно определена $\{x\in \mathbb{R}^n\}$

$$\forall j \quad \Delta_j > 0.$$

 ${\tt w}{\{{\tt c3::}{\tt Критерий}}\}{\{{\tt c4::}{\tt Сильвестра}\}}{\tt w}$

Note 40

6 fc 3ef 1864d 246d 2a 2ee 658a 1f 0902fc

В чём основная идея доказательства критерия Сильвестра для квадратичных форм?

Элементарными преобразованиями, не меняющими значений угловых миноров, привести матрицу формы к диагональному виду.

Note 41

b67b00fb8e7741c2bde46724543c741d

К чему применяются элементарные преобразования в доказательстве критерия Сильвестра для квадратичных форм: к строкам или к столбцам?

И к строкам, и к столбцам одновременно.

Какие элементарные преобразования применяются к матрице квадратичной формы в доказательстве критерия Сильвестра?

Прибавление к одной строке другой строки, умноженной на число. Для столбцов то же, но зеркально.

Note 43

e57ba62b118492b8faabc390f478fce

Почему в доказательства критерия Сильвестра для квадратичных форм (необходимость) можно считать, что все λ_i в полученном диагональном виде отличны от нуля?

Первое
$$\lambda_i = 0 \implies \Delta_i = 0$$
.

Note 44

8629aff0d2a945f2bb5ae5fbb13440e6

Почему в доказательства критерия Сильвестра для квадратичных форм (достаточность) можно считать, что все λ_i в полученном диагональном виде отличны от нуля?

От обратного и тогда $\exists x \neq 0 : q(x) = 0.$

Note 45

75e17707e4e446ed9ca2db4710251d36

Пусть $q:x\mapsto x^TAx$ — квадратичная форма в \mathbb{R}^n . Тогда всегда ((c4: существует)) такая ((c3: ортогональная замена x=By,)) что ((c1:

$$q(By) = \sum_{i=1}^{\mathrm{rk}\,A} \lambda_i y_i^2,$$

}} где $\{\lambda_j\}$ {{c2::} = spec A}}.

Пусть $q: x \mapsto x^T A x$ — квадратичная форма в \mathbb{R}^n . Тогда всегда существует такая ортогональная замена x=By, что

$$q(By) = \sum_{i=1}^{\operatorname{rk} A} \lambda_i y_i^2,$$

где $\{\lambda_i\} = \operatorname{spec} A$. В чём ключевая идея доказательства?

Спектральная теорема для самосопряжённых операторов.

Note 47

27069c1e2308471e94c9d33659f5c2c0

Пусть $A\in\mathbb{R}^{n\times n}$ (се::симметрична.)) Тогда по (се::спектральной теореме для самосопряжённых операторов)) A ((се: диагонализуема.))

Note 48

092c2617bcad4d609ecc2818ad32ac07

Пусть $A \in \mathbb{R}^{n \times n}$ симметрична. Почему A самосопряжена?

$$A^* = \overline{A^T}.$$

Note 49

31b3b048ada040338acc82b240da632d

Пусть $A \in \mathbb{R}^{n \times n}$ симметрична. Тогда по спектральной теореме для самосопряжённых операторов

$$A = C\Lambda C^{-1}.$$

Что можно сказать про матрицу C?

Она ортогональна.

Пусть $A \in \mathbb{R}^{n \times n}$ симметрична. Тогда по спектральной теореме для самосопряжённых операторов

$$A = C\Lambda C^{-1}.$$

Почему матрица C ортогональна?

C — матрица перехода от ортонормированного базиса к ортонормированному.

Note 51

c71cb32466464fd1b45a573370778a8

Пусть $A \in \{\{c4:\mathbb{R}^{n \times n}\}\}$ $\{\{c3:\mathbf{optorohanbha}\}\}$. Тогда $\{\{c2:A^{-1}\}\}=\{\{c4:A^T\}\}$.

Note 52

b68e5c8fd9d34bb59b547f8004aabf07

Пусть $A \in \mathbb{R}^{n \times n}$ симметрична. Тогда по спектральной теореме для самосопряжённых операторов

$$A = C\Lambda C^{-1}.$$

Почему Λ не может иметь комплексных значений на диагонали?

A самосопряжена $\Longrightarrow \operatorname{spec} A \subset \mathbb{R}$.

Семинар 18.05.22

Note 1

6887df7065f4a8ah54f2dh4f3a0d40h

Пусть $q:x\mapsto x^TAx$ — квадратичная форма в \mathbb{R}^n . Тогда если

$$\forall j \leqslant \operatorname{rk} A \quad \Delta_j \neq 0,$$

 \parallel то q приводится к каноническому виду

$$q(By) = \sum_{i=1}^{\operatorname{rk} A} \lambda_i y_i^2, \quad$$
 где (кла $\lambda_k = rac{\Delta_k}{\Delta_{k-1}}$.))

«{{с3::формула Якоби}}»

Note 2

lf977e40188141d2a3865d203cba08d5

В чём основная идея доказательства формулы Якоби для квадратичных форм?

Элементарными преобразованиями, не меняющими значений угловых миноров, привести матрицу формы к диагональному виду.

Note 3

52494560052c4c2ca0b504c059601cdd

Пусть $q:x\mapsto x^TAx$ — квадратичная форма в \mathbb{R}^n . (сы Величина $\pi-\nu$) называется (сы сигнатурой q.))

Note 4

0fbf18cec5d54ec6823be4c8821294e1

Пусть $q:x\mapsto x^TAx$ — квадратичная форма в \mathbb{R}^n . (622) Сигнатура q)) обычно обозначается (613) σ .))

Семинар 25.05.22

Note 1

3388e39da8554cabbe1722fa7348f91b

Пусть $\{(c4::M-\text{конечное множество,})\}$ $\{(c5::f:M\to M.)\}$ Тогда $\{(c3::f:\text{инъективно})\}$ $\{(c2::f:\text{сюрьективно.})\}$

Note 2

77d2404fa034f7c938eb2f12061ab6f

 $\{\{can}$ Группа обратимых элементов $\}$ кольца K обозначается $\{can\}$ K^* .