

CS 329P: Practical Machine Learning (2021 Fall)

5. Model Combination

Qingqing Huang, Mu Li, Alex Smola

https://c.d2l.ai/stanford-cs329p

So far...

- Data
- ML Models for different types of data
- Good models perform well on unseen data
 - Model specific metrics VS business metrics
 - Generalization error depends on model / data complexity
 - TODAY: Methods for reducing generalization error

CS 329P: Practical Machine Learning (2021 Fall)

5.1 Bias & Variance

Qingqing Huang, Mu Li, Alex Smola

https://c.d2l.ai/stanford-cs329p

Bias & Variance

- Sample data $D = \{(x_1, y_1), ..., (x_n, y_n)\}$ from $y = f(x) + \varepsilon$
- . Learn \hat{f}_D from data D by minimizing MSE: $\min_{\hat{f}_D} \sum_{(x_i,y_i) \in D} (y_i \hat{f}_D(x_i))^2$
- We want \hat{f}_D generalizes well to an unseen data point (x,y).

Bias-Variance Decomposition

- Learn \hat{f}_D from dataset D sampled from $y = f(x) + \varepsilon$
- Evaluate generalization error $(y \hat{f}_D(x))^2$ on a new data point (x, y)

$$\begin{split} \mathbf{E}_D \left[(y - \hat{f}_D(x))^2 \right] &= \mathbf{E}_D \left[\left((f - \mathbf{E}_D[\hat{f}_D]) - (\hat{f}_D - \mathbf{E}_D[\hat{f}_D]) + \varepsilon \right)^2 \right] \\ &= (f - \mathbf{E}_D[\hat{f}_D])^2 + \mathbf{E}_D \left[(\hat{f}_D - \mathbf{E}_D[\hat{f}_D]))^2 \right] + \varepsilon^2 \\ &= \mathbf{Bias}[\hat{f}_D]^2 + \mathbf{Var}[\hat{f}_D] + \varepsilon^2 \end{split}$$

Bias-Variance Tradeoff

$$E_D\left[(y - \hat{f}_D(x))^2\right] = \text{Bias}[\hat{f}_D]^2 + \text{Var}[\hat{f}_D] + \epsilon^2$$

Reduce Bias & Variance

Improve data

$$E_D\left[(y - \hat{f}_D(x))^2\right] = \text{Bias}[\hat{f}_D]^2 + \text{Var}[\hat{f}_D] + \epsilon^2$$

- Reduce bias
 - A more complex model
 - e.g. increase #layers, #hidden units of MLP
 - Boosting
 - Stacking

- Reduce variance Reduce σ^2
 - A simpler model
 - e.g. regularization
- Bagging
- Stacking

Ensemble learning: train and combine multiple models to improve predictive performance