Statistics-based Rule Generation for Filipino Style and Grammar Checking

A Thesis Presented to the Faculty of the College of Computer Studies De La Salle University

In Partial Fulfillment of the Requirements for the Degree of Master of Science in Computer Science

by Oco, Nathaniel A.

Joel P. Ilao, PhD Faculty Adviser

Acknowledgment

I would like to acknowledge the following for being instrumental to the completion of this research:

- Thesis adviser Dr. Joel Ilao for guiding me in every step [of the way];
- Panel leader Dr. Rachel Edita Roxas who introduced me to the world of research and continuously provide opportunities for me to grow;
- Panel member Mr. Allan Borra for sharing his knowledge and time, and believing in person's capability to achieve higher heights;
- Friend Mr. Leif Romeritch Syliongka for all our idea-bouncing sessions (n.b., they generate novel and disruptive outputs) and for constantly reminding me that everything will turn out well;
- Friend Mr. Jason Wong whose programming skills can start a company, he will feed me and Leif one of these days; and
- Friends Mr. Alron Jan Lam and Mr. Ivan Paner who made me reaffirm my belief that there is "vacation" in research activities.

To all I failed to mention but should be in this list, thank you.

皆さん、

いろいろお世話になっています。

Partial results of this research have been published in the following:

- Nathaniel Oco, Joel Ilao, Rachel Edita Roxas, Leif Romeritch Syliongka. 2013. Measuring Language Similarity using Trigrams: Limitations of Language Identification. In Proceedings of the 3rd International Conference on Recent Trends in Information Technology (Chennai, India. July 25-27, 2013).
- Nathaniel Oco, Leif Romeritch Syliongka, Joel Ilao, Rachel Edita Roxas. 2013. Dice's Coefficient on Trigram Profiles as Metric for Language Similarity. In Proceedings of the 16th Oriental COCOSDA (Gurgaon, India. November 25-27, 2013). Published by IEEE Xplore. ISBN: 978-147992378-6. http://dx.doi.org/10.1109/ICSDA.2013.6709892
- Nathaniel Oco, Leif Romeritch Syliongka, Joel Ilao, and Rachel Edita Roxas. 2014a. N-gram based Language Identification and Rule-based Grammar Checking. In Proceedings of the 14th Philippine Computing Science Congress (Davao City, Philippines, March 06-08, 2014). Published by the Computing Society of the Philippines, pp 244-250.
- Nathaniel Oco, Raquel Sison-Buban, Leif Romeritch Syliongka, Rachel Edita Roxas, and Joel Ilao. 2014b. Ang Paggamit ng Trigram Ranking Bilang Panukat sa Pagkakahalintulad at Pagkakapangkat ng mga Wika/Trigram Ranking: Metric for Language Similarity and Clustering. Malay 26 (2), pp 53-68.

Abstract

Current research works in the area of corpus and computational linguistics are now data-driven. When dealing with data, there is a need to check sentences for variations and inconsistencies. Style and grammar checkers can be used for this purpose. However, recent technologies rely on manually developing rules, which is a time-consuming process and a herculean task. In this paper, a statisticsbased rule generation framework - that can be used to learn spelling variations, affix usage, and common mistakes made – is presented. As domain, this research is focused on the Filipino language, characterized as a language with high degree of inflection. Monolingual corpora, annotated documents, as well as a tagged data were collected. The monolingual corpus was modeled and machine learning was used to aid in detecting spelling variations; the tagged data was processed and data association was applied to determine affix usage; and a subset of the annotated documents was digitized and used as training data for a statistical machine translation engine to determine common mistakes made. A total of 396 variant pairs, 16 affix usage, and 22 phrase pairs were generated and transformed into rules. A subset of these linguistic phenomena was reported in the literature, an indication that the framework can be used to automate linguistic tasks. The proposed variant scoring matches the style proposed by Sentro ng Wikang Filipino (SWF) with 30% recall and matches the style proposed by the Komisyon sa Wikang (KWF) Filipino with 60% recall, an indication that the style proposed by KWF is more inclined with the variant scoring. As future work, a policy paper could be drafted in coordination with experts in language planning.

Keywords: grammar checking, rule-based, statistical, corpus-linguistics, computational linguistics, natural language processing

Table of Contents

Acknowledgment	
Abstract	
Table of Contents	iv
List of Tables	Vi
List of Figures	vii
List of Listings	viii
List of Equations	ix
1 Research Description	1
1.1 Overview of the Current State of Technology	1
1.2 Research Objectives	
1.2.1 General Objective	2
1.2.2 Specific Objectives	2
1.3 Scope and Limitations of the Research	2
1.4 Significance of the Research	
1.5 Research Methodology	
2 Review of Related Literature	
2.1 Corpus Collection, Building, and Analysis	
2.2 Style and Grammar Checking	
2.2.1 Parser-based	
2.2.2 Statistics-based	
2.2.3 Rule-based	
2.3 Rule-based Systems	
2.4 POS Tagging	
2.4.1 Structured Tagsets	
2.4.2 Tagalog POS Taggers	
2.5 Data Mining	
2.6 Summary	
3 Theoretical Framework	
3.1 Language Modeling	
3.2 Language Identification	
3.3 Similarity Measures	
3.4 Statistical Machine Translation.	
3.5 Types of Errors	
4 Statistics Based Rule Generation Framework	
4.1 Data Collection	
4.2 Extraction	
4.2.1 Language Modeling	
4.2.2 Feature Extraction	
4.2.3 Machine Learning	
4.2.4 Variant Scoring	
4.2.5 POS Tagging	
4.2.6 Data Association	
4.2.7 Encoding and Statistical Machine Translation	
4.3 Rule Generation	
4.3.1 Tagger Dictionary	
4.3.2 Rule File	
5 Results and Analyses	
5.1 Data Collection	
5.2 Language Modeling	26

5.4 Machine Learning 5.4.1 Classification 5.4.2 Attribute Evaluator 5.4.3 Character Differences Denoting a Spelling Variation 5.4.4 Attributing Features
 5.4.1 Classification
5.4.3 Character Differences Denoting a Spelling Variation.5.4.4 Attributing Features
5.4.4 Attributing Features
5.4.4 Attributing Features
5.5 Variant Scoring
5.6 Tagged Data
5.7 Data Association
5.8 Cleaning
5.9 Statistical Machine Translation
5.10 Rule Development
5.11 Comparison with Existing Literature
6 Conclusion
References
Appendix A. Email Communication
Appendix B. Word Unigram
Appendix C. Personal Vitae

List of Tables

Table 2-1. Positional tagset attributes	
Table 2-2. Summary of different corpus building projects	10
Table 2-3. Summary of different grammar checkers	11
Table 2-4. Summary of different rule-based systems	11
Table 2-5. Summary of different POS tagsets	
Table 2-6. Summary of different data mining research works	12
Table 3-1. Linguistic Phenomena (Zuraw, 2006)	15
Table 3-2. Linguistic phenomena (Sentro ng Wikang Filipino – Diliman, 2008)	15
Table 3-3. Quality issue types	16
Table 3-4. Quality issue types	17
Table 3-5. Quality issue types	18
Table 3-6. Quality issue types	19
Table 3-7. Quality issue types	
Table 4-1. Sample sentences from the parallel corpus	24
Table 5-1. Corpus size	
Table 5-2. Number of possible combinations with respect to <i>n</i>	
Table 5-3. Sample features	
Table 5-4. Word pairs that denote spelling variations	
Table 5-5. Sample feature set	
Table 5-6. Attributing features	
Table 5-7. Number of spelling variants per wdiff	
Table 5-8. Variant scoring results	
Table 5-9. Sample word pairs and their weighted score	
Table 5-10. Exceptions	
Table 5-11. Frequency count per tag	
Table 5-12. Frequency count for verbs	
Table 5-13. Top 11 based on frequency	
Table 5-14. Results for -um-	
Table 5-15. Results for na	
Table 5-16. Results for nag	
Table 5-17. Sample phrase table rules	
Table 5-18. Complete list of phrase pairs	40
Table 5-19. A comparison of different spelling variations in literature	
Table 5-20. Word pairs with [-s-]{+z+} character difference	
Table 5-21. Word pairs with [-p-]{+f+} character difference	
Table 5-22. Writing style proposed by SWF (Sentro ng Wikang Filipino – Diliman, 2008)	
Table 5-23. Writing style proposed by KWF(Komisyon sa Wikang Filipino, 2013)	
Table 5-24. A comparison of the –um- affix usage	
Table 5-25. A comparison of the na- affix usage	
Table 5-26. A comparison of the nag- affix usage	44

List of Figures

Figure 1-1. Research Methodology	4
Figure 3-1. Out-of-place measure	
Figure 4-1. Statistics-based rule generation framework	
Figure 5-1. Log scatter plot of the frequency count	
Figure 5-2. Log scatter plot of the frequency count	

List of Listings

Listing 4-1. Top 10 Tagalog word unigrams	22
Listing 4-2. Top 10 Tagalog trigrams	
Listing 4-3. Sample word declarations	
Listing 4-4. Sample word declarations	24
Listing 4-5. Sample rule	25
Listing 5-1. Top 10 resulting word unigrams	27
Listing 5-2. Confusion matrix for J48	
Listing 5-3. Confusion matrix for Naive Bayes	
Listing 5-4. Confusion matrix for multilayer perceptron	
Listing 5-5. Results for attribute selection	
Listing 5-6. Results for [-c-]{+k+} attribute selection	
Listing 5-7. Results for [-d-]{+r+} attribute selection	
Listing 5-8. Results for [-1-]{+r+} attribute selection	
Listing 5-9. Sample rule for spelling variations	
Listing 5-10. Sample rule for affix usage	
Listing 5-11. Sample rule for common mistakes	

List of Equations

Equation 3-1. Language identification as an argmax function	13
Equation 3-2. Dice's similarity coefficient	
Equation 3-3. Probability distribution of SMT	
Equation 3-4. SMT as an argmax function	
Equation 4-1. Modified weighted score	
Equation 5-1. Zipfian Model	

1 Research Description

This chapter discusses the overview of the current state of technology, the research objectives, scope and limitations of the research, significance of the research, research methodology, and research activities.

1.1 Overview of the Current State of Technology

Current technologies, both in natural language processing and in other areas of artificial intelligence, are now data-centric. Natural language processing and computational linguistics works both in and outside the country (Klein and Manning, 2003; Zuraw, 2006) require large amounts of documents. Research works in the Philippines include AutoCor (Dimalen and Roxas, 2007), Bantay-Wika (Ilao, Guevara, Llenaresas, Narvaez, and Peregrino, 2011), ICE-PHI (Bautista, Lising, and Dayag, 2004), PALITO (Dita et al., 2009; Roxas, Cheng, and Lim, 2009), and code-switching point detection (Oco and Roxas, 2012). AutoCor applied model-based language identification (LID) to categorize documents and build a corpus. It used large volumes of text, approximately 4,000 documents, as training data. On the other hand, Bantay-Wika is an example of culturomics; it tracked language change over time using approximately 61,000 tabloid articles as training data. ICE-PHI or the Philippine component of the International Corpus of English is a repository of collected documents and transcribed audio recordings. It contains at least one million words that were manually annotated. Another project, PALITO, is a repository of literary and religious texts, covering eight Philippine languages. Each language has approximately 250,000 words collected using manual means. Lastly, a system that can detect code-switching points in a sentence has been developed (Oco and Roxas, 2012). A combination of English and Tagalog Wikipedia articles covering at least 13 million words was used for language modeling.

Research works now rely heavily on collected and encoded data. In addition, text processing tools, e.g., code-switching point detection system (Oco, Wong, Ilao, Roxas, 2013a), POS tagger (Rabo and Cheng, 2006), require text inputs to be consistent, both in style and grammar, in order to function properly. In this regard, there is a need to ensure the quality of documents and text inputs, i.e., the style and grammar should be consistent. How can computers be used to perform quality assessment on data? Style and grammar checkers, programs that can perform grammar checking, can do this. Grammar refers to the scientific aspect of the study of language – focusing on syntax and morphology – while style refers to the matters that distinguish writing variations and consistencies (Lynch, 2008). Style and grammar checking can then be described as the process of (1) detecting if there is style and grammar variant or inconsistency in the sentence; (2) locating exactly where the variant or inconsistency is; (3) determining the type of variation or inconsistency; (4) notifying the user about it; and (5) suggesting ways to address it with possible linguistic explanations. Grammar checkers are often used in text editing but can also be used in optical character recognition, speech recognition, and machine translation (Alam, UzZaman, and Khan, 2006).

Approaches in grammar checking are categorized into three (Naber, 2003; Oco and Borra, 2011): (1) parser-based, (2) statistics-based, and (3) rule-based. In the country, several thesis and research projects worked on sentence analysis and grammar checking: (1) A semantic analyzer that has the capability to check syntax and semantic relationships in a Tagalog sentence has been developed (Ang, Cagalingan, Tan, and Tan, 2002); (2) a number of studies (Jasa, Palisoc, and Villa, 2007; Dimalen and Dimalen, 2007) on the other hand focused on developing parser-based Filipino grammar checker extensions for OpenOffice.Org Writer; and in a recent work, (3) the Tagalog component of LanguageTool – a rule-based style and grammar checker – was developed.

Parser-based checking utilizes parsers and parsing techniques, an input is accepted if parsing succeeds, and inconsistencies are detected if parsing or unification fails. This approach is grammar-dependent; a robust and complete grammar that covers all types of sentences is needed to ensure precision and recall. Complete grammars are hard to build and require expert knowledge. Parser-based Tagalog grammar checkers and sentence analyzers (Jasa et al., 2007; Dimalen and Dimalen, 2007; Ang et al., 2002) do not

perform well outside the coverage of the grammar. Parser-based grammar checkers often have low precision rates because of incomplete grammar. Input not covered by the grammar cannot be detected.

Statistics-based checking utilizes POS-annotated corpus. Probability scores are computed to determine the statistical percentage of a sentence occurring. If a sentence has a low probability score, there is a high chance that it contains inconsistencies. Statistics-based grammar checkers require a flexible corpus in which they were trained. However, an expert in the field (Mark Johnson, email, February 01, 2011) added that "it is difficult to tell where it is and how it should be fixed".

Rule-based grammar checkers (Naber, 2003; Oco and Borra, 2011), on the other hand, can pinpoint exactly where the inconsistencies are and offer suggestions on how to fix them. This approach is more feasible given limited resources. Rule-based checking utilizes a set of rules, manually built incrementally, which it matches against an input. It offers certain advantages compared to other types of grammar checkers; rules are easy to configure and can adjust to the user's needs. With rule-based grammar checking, "the patterns being captured are sentences with inconsistencies" (Oco and Borra, 2011). This makes rule-based grammar checkers dependent on the rules declared for error checking coverage.

Rule-based approaches normally involve manual construction of rules. It has been mentioned in a related study (Konchady, 2009) that rule-based systems suffer from low recall because if there are fewer rules, fewer errors are detected. There is a need to generate more rules to broaden the error-checking coverage. Current approaches rely on transforming reference grammar books and expert knowledge to machine-readable rules. This is time-consuming and most of the rules generated are not commonly committed by native speakers. There is a need to focus on areas with variation and the most common mistakes by analyzing written data. Analysis will yield statistical data, which can be transformed to rules.

This research aims to answer this question: how can computers be used to extract rules from training data? This can be addressed through the development of a statistical rule generation framework; areas with variations and common mistakes are learned, rules are generated faster, and error-checking coverage is broadened.

1.2 Research Objectives

This section discusses the general objective and the specific objectives of the research.

1.2.1 General Objective

To develop a statistical rule generation framework for a rule-based style and grammar checker for Filipino.

1.2.2 Specific Objectives

This research aims to:

- 1.2.2.1 collect monolingual and parallel corpora using manual and automatic means;
- 1.2.2.2 computationally represent, model, and extract the features of the domain language;
- 1.2.2.3 categorize different style and grammar errors;
- 1.2.2.4 determine areas with variations in the domain language and provide statistical measures;
- 1.2.2.5 determine common mistakes by analyzing parallel corpora;
- 1.2.2.6 generate the rules; and
- 1.2.2.7 evaluate the system using standard metrics.

1.3 Scope and Limitations of the Research

This research will focus on the variety of the Filipino language with grammatical properties identical to Tagalog. Monolingual corpora can be collected from Wikipedia XML dumps, RSS feeds, and other

sources. These can be used to model the language and determine areas with variations, e.g., spelling variation, affixation variation. Similarity measures (e.g., Dice's Coefficient, Out-of-Place measure) can be used both as a feature and to measure if enough data have been collected – increasing the size of the corpora does not significantly increase the similarity measure above a particular threshold (Oco, Ilao, Roxas, and Syliongka, 2013b). Available training data such as student submissions, especially those with marked errors and annotations by a faculty member from the Filipino department, can be used for the parallel corpus. Statistical machine translation concepts can be applied to learn the common mistakes made.

Sentences involving idiomatic expressions, interjections, sayings, and quotes will not be covered. Intraword code-switching involving phonetic reduplication will also not be covered. However, this research will include sentence types covered by the training data that will be used: declarative, interrogative, exclamatory, and imperative.

The domain language can be modeled in terms of the following: character n-gram, word n-gram, word position, and POS tags. Also, existing Filipino tagsets (Rabo and Cheng, 2006; Miguel and Roxas, 2007; Manguilimotan and Matsumoto, 2011; Oco and Borra, 2011; Oco and Roxas, 2012) can serve as basis for the new tagset. The tagset that will be developed will be used to increase the chances of identifying and classifying errors.

Aside from checking the literature, manual bootstrapping will be applied to categorize errors. This involves manual analysis of grammar books to determine which features will be extracted. This research will cover style and grammar errors, but will not cover fully semantic errors. Style and grammar errors are characterized as patterns where a word should be replaced or a group of words should be transposed.

LanguageTool, an existing rule-based style and grammar checker engine (Naber, 2003; Oco and Borra, 2011) can be utilized. It primarily requires rules stored in xml files to properly function. The research will focus on generating rules, more specifically, rule templates. The rules generated from this research can be added to LanguageTool.

The system will be evaluated in terms of standard metrics used in the literature (Jasa et al., 2007; Oco and Borra, 2011): precision, recall, and f-measure. Accuracy will also be used to measure the number of properly identified error-free sentences.

1.4 Significance of the Research

It has been stated in the literature (Jurafski and Martin, 2000) that it is important to show how language-related algorithms and techniques can be applied to important real-world problems: spelling checking, text document search, speech recognition, web-page processing, part-of-speech tagging, machine translation, spoken-language dialogue agents, and the like. This research aims to implement a rule-based style and grammar checker for Filipino based on a statistical rule generation framework.

Tagalog is the basis for the Filipino language, the official language of the Philippines. According to the latest NSO data (Roxas, Lim, and Cheng, 2009), there are 22,000,000 native speakers of Tagalog as of year 2000. This makes it the highest in the country, followed by Cebuano with 20,000,000 native speakers. Tagalog is very rich in morphology; Tagalog words are normally composed of root words and affixes (Ramos, 1971) and a language with "high degree of inflection" (Dimalen and Dimalen, 2007). This research could serve as basis for future researches with regard to the computational aspect (i.e., language technology) of the Filipino language.

The existence of style and grammar checkers are not only useful in text editing, but can also be applied in optical character recognition, speech recognition, and machine translation, as stated in literature (Alam et

al., 2006). The versatility of such tool makes it indispensable and one of the most widely used tools within natural language processing.

The development of a rule-generation framework will generate rules faster and could broaden error-checking coverage. False positives could also be avoided by just focusing on the common mistakes people make.

1.5 Research Methodology

The research methodology, shown in Figure 1-1, is divided into three: (1) data collection, (2) extraction, and (3) rule development. These methods are also tailored to include other development tasks.

Figure 1-1. Research Methodology

Data collection refers to the process of gathering documents. Related literature are also studied and analyzed. Extraction involves computationally representing the different data collected and extracting important features. Once areas with variations and common mistakes are identified, and converted into rules.

2 Review of Related Literature

This chapter gives a review of related literature. Topics involving corpus building and analysis, style and grammar checking, POS tagging, and data mining were studied.

2.1 Corpus Collection, Building, and Analysis

A corpus is a large collection of data. Corpus building, as the name suggests, is the process of building a corpus. In the country, corpus linguistics works, such as AutoCor (Dimalen and Roxas, 2007), Bantay-Wika (Ilao et al., 2011), ICE-PHI (Bautista et al., 2004), PALITO (Dita et al., 2009), and code-switching point detection (Oco and Roxas, 2012), used large amounts of data.

AutoCor is a system used for automatic corpus building. Web crawlers were used to mine the internet for documents and applied model-based language identification (LID) to categorize these documents. It initially used small volumes of text as training data and used bootstrapping in the language identification task; gradually increasing the training data with each identified document. The final corpus contains 4,000 documents. One of the problems identified is the low recall when closely-related languages are involved, which was addressed by modeling the unique words of the languages into character trigrams and using these instead.

Another project is Bantay-Wika, which is an example of culturomics. It tracked language change over time using approximately 61,000 tabloid articles as training data. One output of the Bantay-Wika project is the development of computational models that aided in tracking language change. Just like AutoCor, a web crawler was used to mine data from the web. However, there were certain dates that did not have any downloadable documents. The documents were processed, language features were extracted and, together with manual analysis, competing word forms were determined.

ICE-PHI or Philippine component of the International Corpus of English is a repository of collected documents and transcribed audio recordings. Unlike AutoCor and Bantay-Wika, the ICE-PHI project relied on human encoders and annotators. It contains at least one million manually-annotated words. The manual process exposed ICE-PHI to different human errors, e.g., unclosed tag (Davis Dimalen, email, 2011).

PALITO is a repository of literary and religious texts covering eight Philippine languages – Bikol, Cebuano, Hiligaynon, Ilocano, Kapampangan, Pangasinense, Tagaloy, and Waray. Just like ICE-PHI, human encoders were recruited or hired to come up with at least 250,000 words per language. News articles, short stories, and bible verses were manually encoded, and several informants were hired to verify the encoding. Its main objective is to allow researchers to manually annotate text documents and to allow an expert to verify these annotations.

A system (Oco and Roxas, 2012) that can detect code-switching (CS) points in a sentence was studied. Sentences from ICE-PHI were manually analyzed to describe the behavior of English-Tagalog CS. Just like AutoCor, character n-gram was used to perform LID. However, word n-gram was also utilized to address the problem of interlingual homographs, i.e., words that exist in more than one language. As training data for the language models, Wikipedia articles were used; ten million words from the English Wikipedia and three million words from the Tagalog Wikipedia.

Documentation efforts include the use of Linguist's Assistant (LA) to document Tagalog (Castilo, Go, Lam, Syson, Xu, Ong, and Beale, 2014). It is a computational tool, which requires manual analysis and encoding, to describe languages. It was noted that several complications in the Tagalog verb are not easily handled by the LA. Aside from this, LA was also used in translation and transforming corpora into rules (Allman, Beale, and Richard Denton, 2014).

It was noted that automatic collection (Dimalen and Roxas, 2007; Ilao et al., 2011) of text documents yield higher word count than using manual means (Bautista et al., 2004; Dita et al., 2009). Also, large amounts of data are freely available online (Oco and Roxas, 2012) and can be downloaded in machine-readable format. Finally, available tools (Beale et al., 2012) can aid in the manual aspects of corpus building and analysis.

2.2 Style and Grammar Checking

Grammar refers to the scientific aspect of the study of language – focusing on syntax and morphology – while style refers to the matters that distinguish writing variations and consistencies (Lynch, 2008). Style and grammar checkers, programs used for style and grammar checking, detect inconsistencies in an input (Naber, 2003). An expert in the field (Mark Johnson, email, February 01, 2011) added, that grammar checkers "should also propose a correction and tell exactly where the inconsistency is, and how it should be fixed". Style and grammar checking can then be described as the process of (1) detecting if there is style and grammar variation or inconsistency in the sentence; (2) locating exactly where the variant or inconsistency is; (3) determining the type of variation or inconsistency; (4) notifying the user about it; and (5) suggesting ways to address it with possible linguistic explanations.

Three types of grammar checkers have been enumerated in a related study (Naber, 2003) – parser-based checking, statistics-based checking, and rule-based checking.

2.2.1 Parser-based

Parser-based checking utilizes parsers and parsing techniques. A parse tree is developed and if parsing fails, it can be assumed that the sentence contains inconsistencies. This approach is grammar-dependent; a robust and complete grammar that covers all types of variations and inconsistencies is needed to ensure accuracy. In the country, several thesis and research projects worked on parser-based approaches: (1) A semantic analyzer that has the capability to check syntax and semantic relationships in a Tagalog sentence has been developed (Ang, Cagalingan, Tan, and Tan, 2002); (2) a number of studies (Jasa, Palisoc, and Villa, 2007; Dimalen and Dimalen, 2007) on the other hand focused on developing parser-based Filipino grammar checker extensions for OpenOffice.Org Writer; and in a recent work, (3) the Tagalog component of LanguageTool – a rule-based style and grammar checker – was developed. However, these systems do not perform well outside the coverage of the grammar. Parser-based grammar checkers often have low precision rates because of incomplete grammar.

2.2.2 Statistics-based

Statistics-based checking utilizes POS-annotated corpus. Probability scores are computed to determine the statistical percentage of a sentence occurring. High probability score can denote consistency and low probability scores can denote inconsistencies. Probabilistic context free grammar or PCFG (Klein & Manning, 2003) can be utilized. Statistic-based grammar checkers require a flexible corpus in which they were trained. Also, "it is difficult to tell where the inconsistency is and how it should be fixed" (Mark Johnson, email, February 01, 2011).

2.2.3 Rule-based

Rule-based checking utilizes a set of rules which it matches against an input. If a pattern matches a certain rule, a variant or inconsistency exists. Rule-based grammar checking offers certain advantages compare to other types of grammar checkers – parser-based grammar checkers and statistic-based grammar checkers. Parser-based grammar checkers require an extensively-written grammar to properly work while statistic-based grammar checkers require a flexible corpus in which they are trained. Rule-based grammar checkers can pinpoint exactly where the variants and inconsistencies are and offer suggestions on how to address them. Aside from building the rules incrementally, rules are easy to configure and can adjust to the user's needs.

Two types or rule-based grammar checkers were identified in a related study (Konchady, 2009). These are automatic-based system and manual-based system. Automatic rule-based systems have automatically generated rule sets that have "reasonable accuracy". Manual rule-based systems are grammar checkers whose rules were manually created. This method offers users with very "descriptive and appropriate suggestions to correct errors".

An advantage of manual-based system over an automatic-based system is as follows (Manu Konchady, email, May 08, 2011):

An automatic system will create rules based on statistics in a tagged corpus. However, the tagged corpus may not cover all possible instances of tag patterns and therefore, the automatic rules may not generate all possible language POS tag patterns.

An example of a rule-based grammar checker that uses manual-based rule creation is LanguageTool (Naber, 2003). LanguageTool (LT) is an open-source style and grammar checker. It is also a plugin for OpenOffice.org and LibreOffice. Currently, LanguageTool supports different languages to a certain degree. The system takes a text input and produces a list of style and grammar variations and inconsistencies, and suggestions as output. It needs two language resources: the tagger dictionary and the rule file. Each word in the input is assigned a POS tag based on the declarations in the tagger dictionary. The words or phrases are then checked against a pre-defined xml rule file for errors. The xml rule file identifies errors as "patterns of words, part-of-speech tags, and chunks" (Oco and Borra, 2011).

There are two drawbacks in LanguageTool. One of the drawbacks is the manual creation and maintenance of grammar rules. It is a "tedious" process to maintain several hundreds of rule files and different languages; each language requires a different set of rule files. The presence of a community, working together in collaboration to maintain and process large amount of extensive grammar rule files, simplifies this drawback. Another drawback identified is the low recall rate of LanguageTool, because of the large number of patterns to be covered, the available rules cannot detect all these (Manu Konchady, email, May 08, 2011).

Language Tool supports 29 languages. These include Chinese, French, and Esperanto. These languages have characteristics different from Filipino. Chinese does not have word segmentation so the language maintainer handling the Chinese component introduced a lot of skip elements in the rule file. This process involves skipping certain characters until a particular set of tokens is seen. French on the other hand has gender attributes. This means that the gender of the verb and the adjective should also agree with the gender of the noun. The language maintainer handling the French component introduced gender in the French tagset. Esperanto is a constructed international auxiliary language. It was developed at the end of the nineteenth century (Bergen, 2001) and contains vocabulary from Romance and Germanic languages, and phonology from Slavic languages. Just like French, Esperanto also has gender attributes. However, most terms are masculine by default.

One characteristic the Filipino language has that is not present in these languages is syllable reduplication and the embedded thematic roles in verbs. Filipino has a high degree of inflection (Dimalen and Roxas, 2007) and high variation index (Ilao et al., 2011).

As most of these language components follow manual-based rule generation – often deriving data from expert knowledge, learner corpora, or reference grammar books – this research will follow a semi-automatic rule generation approach using statistics. This framework has never been fully realized in the LanguageTool community.

2.3 Rule-based Systems

Rule generation is also applied in other areas of NLP, particularly in chatterbot, named entity recognition (NER), and machine translation.

Artificial Linguistic Internet Computer Entity (ALICE) is an example of a chatterbot (Schumaker and Chen, 2010). It uses rules stored in XML files to generate responses. These responses are normally manually populated. To date, several versions of ALICE, each with its own personality, have been developed. One research work (Chantawotrong, 2006) focused on automatically developing the rule file by constructing a conditional frequency distribution (CFD) of triggers and responses using a chat corpus as training data. This approach involves calculating which keyword triggered a particular response. The Natural Language Toolkit (website: http://nltk.org/) was used to calculate the CFD.

General Architecture for Text Engineering (GATE) is a framework and graphical development environment to deploy language engineering components (Cunningham, Maynard, Bontcheva, and Tablan, 2002). One use (Wang, Li, Bontcheva, Cunningham, and Wang, 2006) of Gate, in combination with support vector machines (SVM), is to automatically extract hierarchical relations from text. Plugins exist for machine learning in tools like Weka, Rasp, among others. This makes GATE useful for natural language processing tasks.

The Hybrid English-Filipino Machine Translation System (Roxas, Borra, Cheng, Lim, Ong, and Tan, 2008) is a DOST-funded project that combines both parser-based and rule-based machine translation approaches. The rule-based approach incorporates automatic extraction of templates using strict chunk alignment with splitting (SCAS) and common words filtering (CWF).

2.4 POS Tagging

Part-of-speech or POS is a lexical category that defines the function of words. The Tagalog POS is similar to the POS of the English language. Ten Tagalog parts of speech were identified in a study (Santos, 1939): pantukoy (article), pangngalan (noun), panghalip (pronoun), pandiwa (verb), pandiwari (participles), pang-uri (adjective), pang-abay (adverb), pang-ukol (preposition), pangatnig (conjunction), and pandamdam (interjection). An improvement was proposed (Ramos, 1971) and added pang-angkop (ligatures) in the list. Part-of-speech tagging or POST is the process of labeling words in a text or in a corpus with a particular POS (Miguel and Roxas, 2007). POS Tagging is essential in areas of translation, grammar checking, and language generation. The list of POS used to label words is called a tagset.

2.4.1 Structured Tagsets

To provide additional structure to a tagset, additional attributes can be added. An example in Filipino is the attribute *plurality*, which could either be *singular* or *plural* (e.g., *maganda* vs. *magaganda* /beautiful/). Structured tagsets can be categorized into two: positional tagsets and compact tagsets (Feldman and Hana, 2010). Positional tagsets are defined as a structured tagset composed of "tags coming from smaller atomic tagsets associated with a particular morpho-syntactic property", often encoded with one or more attributes. Table 2-1 shows an example set of attributes of the Russian tagset (Feldman and Hana, 2010). Compact tagsets are similar to positional tagsets. In a positional tagset, all tags have the same length, encoding all the attributes distinguished by the tagset. Attributes not applicable for a particular word have a N/A value. In a compact tagset, the N/A values are simply left out.

Table 2-1. Positional tagset attributes

POS	Abbr	Name	No. of values
1	p	Part of speech	12
2	S	SubPOS (Detailed POS)	42
3	g	Gender	4
4	у	Animacy	3
5	n	Number	3
6	c	Case	7
7	f	Possessor's gender	4
8	m	Possessor's number	2
9	e	Person	4
10	r	Reflexivity	2
11	t	Tense	4
12	b	Verbal aspect	3
13	d	Degree of comparison	3
14	a	Negation	2
15	v	Voice	2
16	i	Variant, Abbreviation	7

2.4.2 Tagalog POS Taggers

In the country, several compact tagsets and POS taggers have been developed. One study (Rabo and Cheng, 2006) proposed a tagset compatible with Tagalog. The tagset is composed of 59 tags covering 10 major POS Tags. Noun has 3 tags, pronoun has 9, determiner has 4, conjunction has 4, verb has 7, adjective 6, adverb 9, preposition 1, cardinal 1, and punctuation 5. These were modified (Miguel and Roxas, 2007) to include verb focus, ligatures, and several conjunction tags, to name a few. Unlike in the Russian tagset, interjections and digits are included. However, the Tagalog tagsets do not have the following attributes: gender, person, and tense.

2.5 Data Mining

Data mining provides "approaches for the identification and discovery of non-trivial patterns and models hidden in large collections of data" (Atzmueller, 2012). Studies in the Philippines that have used data mining approaches include the classification of disaster-related tweets (Lam, Paner, Macatangay, and Delos Santos, 2014), using data association to mine named entities in Philippine arts domain (Syliongka and Oco, 2014), and clustering of languages (Oco, Sison-Buban, Syliongka, Roxas, and Ilao, 2014b).

2.6 Summary

This section gives a summary of the related literature discussed. Table 2-2 shows a summary of different corpus building projects, Table 2-3 shows a summary of different grammar checkers, Table 2-4 shows a summary of different rule-based systems, and Table 2-5 shows a summary of different POS Taggers.

Table 2-2. Summary of different corpus building projects

System Drymess Demain Comps Deta Sing Method for Deta analysis						D 4 1 1
System	Purpose	Domain	Genre	Data Size	Method for	Data analysis
		language			collecting	
					data	
AutoCor	Corpus	English, Tagalog,	General	4,000	Automatic:	Computational
	Building	Cebuano, Bikol		documents	Web crawling	modeling
Bantay-	Language	Filipino	Tabloid	61,000	Automatic:	Computational
Wika	Trend			articles	Web crawling	modeling
	Analysis					
ICE-PHI	Repository	Philippine	General	One	Manual:	Manual
		English		million	transcription	annotation
				words	of video	
					recording and	
					encoding	
					collected text	
PALITO	Repository	Bikol, Cebuano,	Religious	250,000	Manual:	Manual
		Hiligaynon,	and	words per	Digitization of	annotation
		Ilocano,	Literary	language	bible verses,	
		Kapampangan,			news articles,	
		Pangasinense,			literary texts	
		Tagalog, Waray				
Code-	Text	English, Tagalog,	General	English:	Automatic:	Computational
switching	Processing	Taglish		ten million	Wikipedia	modeling
point	Trocessing	Tugiisii		words	XML dumps	modering
detection				110103	Zivii dunips	
detection				Tagalog:		
				three		
				million		
	1	1		words		

Table 2-3. Summary of different grammar checkers

System	Approach	Detect	Locate	Determine the cause	Notify the user	Feedback	Problem
PanPam	Parser- based	Parsing or unification fails	Identify where parsing or unification failed	Knowing which stage failed	Separate window	Canned Text	Limited grammar
FiSSAn	Parser- based	Parsing or unification fails	Identify where parsing or unification failed	Knowing which stage failed	Textbox	None	Limited grammar
Plug-in for OpenOffice	Parser- based	Parsing or unification fails	Identify where parsing or unification failed	Knowing which stage failed	Underline	Unknown	Limited grammar
LT	Rule- based	Pattern- matching	Identify which words matched the rules	The type is specified in the rule	Underline	Explanation and suggestions	Limited rules

Table 2-4. Summary of different rule-based systems

System	Purpose	Algorithm applied to generate rules
ALICE	Chatterbot	Conditional frequency distribution
GATE	Graphical development environment for text processing applications	Support vector machine
Hybrid English-Filipino Machine Translation System	Machine translation	Strict chunk alignment with splitting and common words filtering

Table 2-5. Summary of different POS tagsets

Tagset	Domain	Type	Unique Attributes
	Language		
Russian Positional	Russian	Positional	Has the following attributes: gender,
Tagset		Tagset	person, tense
Rabo Tagset	Tagalog	Compact	Has the following POS: interjections and
		Tagset	tense
Modified Rabo Tagset	Tagalog	Compact	Has the following POS: interjections and
		Tagset	tense

Table 2-6. Summary of different data mining research works

Data Mining Approach	g Approach Algorithm		Domain
Classification	Naive Bayes and SVM	Tweets	Disasters
Association	Association Rule Mining	Website Articles	Arts
Clustering	K-means Clustering	Trigram models	Religious and Literary

3 Theoretical Framework

This section discusses the theories and concepts that used in this research.

3.1 Language Modeling

A language model is a smaller representation of a language and is usually expressed in terms of character n-grams and their frequency count. A character n-gram is defined as an n-character slice of a word (Dimalen and Roxas, 2007). Deriving the formal definition of a longest common subsequence (Kondrak, 2005), the standard formulation for an n-gram is as follows: given a string $X = \{x_1...x_k\}$, character sequence $Z = \{z_1...z_n\}$ is an n-gram of X if there exist a strictly incrementing sequence $i_1...i_n$ of indices of X such that for all j = 1...n, $X_{i,j} = Z_j$.

For n of size one, it is called a unigram, size two is called a bigram, and size three is called a trigram. As an example, the list of trigrams that can be generated from the word "kumuha" (/got/) are $\{_ku,kum,umu,muh,uha,ha_\}$. An underscore signifies the beginning and end of a word and are part of the trigram. For $n \ge$ four, these are referred to by the value of n (e.g., 4-gram or four-gram). The number of possible combinations increases as n increases.

3.2 Language Identification

Language identification (LID) is the process of identifying which language a text input is in. It can enhance document mining tasks and is used in the areas of computational linguistics and corpus linguistics (Ilao et al., 2011; Dimalen and Roxas, 2007). LID can be mathematically described as the argmax function in Equation 3-1, where L is the identified language, X is the text input, Γ is the set of target languages, and S(X,L) is the similarity score of X with language L. The process of performing LID involves the following: (1) gathering volumes of text as training data through automatic or manual means, (2) creating language models using the data collected, (3) using similarity measures to determine which among the set of languages the input is in. The language that yields the highest similarity measure is identified as the language of the input.

$$\mathbf{L} = \frac{argmax}{L \in \Gamma} \; S(X,L)$$
 Equation 3-1. Language identification as an argmax function

In the field of computational linguistics, Yeong and Tan (2010) compared and analyzed 5 approaches to detect Malay and English words and phrases in a text document. These approaches are affixation information, vocabulary list, alphabet n-gram, grapheme n-gram, and syllable structure. Both affixation information approach and vocabulary list approach utilize dictionary look-ups. On the other hand, alphabet n-gram, grapheme n-gram, and syllable structure utilize language models to perform LID. It has been shown that dictionary look-up methods have lower accuracy rates than model-based methods.

Both model-based and dictionary-based approaches can be used in LID. Oco and Roxas (2012) utilized both to perform code-switching point detection. The concepts behind LID can also be used to perform other text processing and text categorization tasks.

3.3 Similarity Measures

The history of LID can be traced to similarity measures and edit distances, which compute how similar two strings are. String similarity metrics like the Normalized Levenshtein Distance (Levenshtein, 1965), Dice Similarity Coefficient (Dice, 1945; Oco, Syliongka, Ilao, and Roxas, 2013c), and Out-of-place measure (Cavnar and Trenkle, 1994) are often employed. The equation for Dice coefficient is shown in Equation 3-2, where *X* and *Y* represent distinct sets. On the other hand, as explained by Dimalen and Roxas (2007), the out-of-place measure (shown in Figure 3-1) determines how far an n-gram in the

trigram model of the input (i.e., Document Profile) is from its place in the language model (i.e., Category Profile).

Dice Coefficient = $2X \cap Y/X + Y$ Equation 3-2. Dice's similarity coefficient

Figure 3-1. Out-of-place measure

3.4 Statistical Machine Translation

Machine translation is the process of translating one language to another with the aid of computers. One of the approaches is through statistical methods, called statistical machine translation (SMT). It utilizes a bilingual corpora or a parallel corpus and learns patterns from it. Its goal is to find the probability that a string t is the translation of a given string s, and the alignment a between the two. The probability distribution is shown in Equation 3-3. Finding the best translation is defined in the argmax function in Equation 3-4. The best translation is the one that yields the highest probability.

$$P(a,t|s)$$
 Equation 3-3. Probability distribution of SMT

$$T = \frac{argmax}{t \in W} P(t|s)$$

Equation 3-4. SMT as an argmax function

Several translation models can be applied. One of them is expectation maximization (Dempster, Laird, and Rubin, 1977) or EM. Its goal is to find the maximum likelihood estimates of parameters in statistical models, where the model depends on unobserved latent variables. It is composed of a two-step iterative process: (1) compute expected counts for all word pairs, and (2) compute new maximum likelihood estimates from the expected counts.

3.5 Types of Errors

Several Filipino linguistic phenomena have been reported in the literature, which include spelling changes. These are shown in Table 3-1 and Table 3-2.

Table 3-1. Linguistic Phenomena (Zuraw, 2006)

Rule / Phenomenon	Examples
Intervocalic Tapping	Dumi > marumi
Vowel Height Alternations	Halo+in > haluin
Assimilation	Pang+butas = pambutas
Nasal Substitution	Pili > mamili
Syncope	Tingin+an = tignan
Partial Reduplication	Nag-pi-friendster
Infix location	Gumraduate vs. Grumaduate
Infix in vs. Prefix ni	Linuto vs. Niluto
Reduplication Location	Paglalagyan vs. Papaglagyan

Table 3-2. Linguistic phenomena (Sentro ng Wikang Filipino – Diliman, 2008)

Rule /	Examples	Variant	Wrong	Exception
Phenomenon	Examples	v ai iaiit	Wiong	Exception
Assimilation	Bukang-bibig	Bukambibig	None	Tanglaw
Assimilation	Sangla	Sanla	None	Singsing
	Barong-barong	Barumbarong		Mang-snatch
	Pang+paligo =	Darumbarong		Mang-snatch
Intervocalic	pampaligo	NT	TT' 1	T1 '
	Hiwaga raw	None	Hiwaga daw	Idaing
Tapping	Araw raw		Araw raw	Idemanda
	Na+dito > narito			Idiin
Vowel Height	Pinto+an = pintuan	None	None	Sinehan
Alternations	Babae > Kababaihan			Sira+an =
				siraan
Word	Ano-ano	None	Anu-ano	Haluhalo
Reduplication	Sari-sari		Sarisari	Salusalo
Syncope	Dakip+in = dakpin	None	None	None
Reduplication	Makauunawa	Makakaunawa	None	None
Location				
Partial	Magba-brown out	None	Magbra-brown out	Magsha-
Reduplication				shampoo
Spelling	Bituin	Bitwin	None	None
variation	Kabiyak	Kabyak		
	Kapuwa	Kapwa		
Dash	Taga-Cebu	None	Kay-sigla	Paloob
	Paki-average		Kay-bagal	Tagaluto
	Pa-Luneta			Makakaliwa
Verb plurality	Naggagandahan ang mga	None	Naggagandahan ang	None
, ero praranty	babae	Tione	babae	Trone
Noun plurality	Ang mga painting	Ang paintings	Ang mga paintings	None
Ligature Usage	Pinagmasdan ni Abdulla	None	Pinagmasdan ni	None
Ligature Osage	na lumalakad ang 211	Tione	Abdullang lumalakad ang	Tione
	pamilya		211ng pamilya	
Determiner	Lungsod Quezon	None	Lungsod ng Quezon	None
removal	Lungsou Quezon	TNUITE	Lungsou ng Quezon	None
	Vumain na launa	None	Vumain none trams	None
Ng vs. Nang	Kumain ng karne	None	Kumain nang karne	None
	Kumain nang maayos		Kumain ng maayos	

The International Tag Set (ITS) 2.0¹ implements a list of quality issue types. Lists are shown in Table 3-3, Table 3-4, Table 3-5, Table 3-6, and Table 3-7. The main purpose is to provide support for general and/or particularly common quality issues.

Table 3-3. Quality issue types

Value	Description	Examples
terminology	An incorrect term or a term from the wrong domain was used or terms are used inconsistently	The localization had Pen Drive when corporate terminology specified that USB Stick was to be used; The localization inconsistently used Start and Begin.
mistranslation	The content of the target mistranslates the content of the source	The English source reads "An ape succeeded in grasping a banana lying outside its cage with the help of a stick" but the Italian translation reads "l'ape riuscì a prendere la banana posta tuori dall sua gabbia aiutandosi con un bastone" ("A bee succeeded")
omission	Necessary text has been omitted from the localization or source	One or more segments found in the source that should have been translated are missing in the target
untranslated	Content that should have been translated was left untranslated	The source segment reads "The Professor said to Smith that he would hear from his lawyer" but the Hungarian localization reads "A professzor azt modta Smithnek, hogy he would hear from his lawyer."
addition	The translated text contains inappropriate additions	The translated text contains a note from the translator to himself to look up a term; the note should have been deleted but was not.

1 http://www.w3.org/TR/its20/

Table 3-4. Quality issue types

	Table 3-4. Quan	ity issue types
duplication	Content has been duplicated improperly	A section of the target text was inadvertently copied twice in a copy and paste operation.
inconsistency	The text is inconsistent with itself (NB: not for use with terminology inconsistency)	• The text states that an event happened in 1912 in one location but in another states that it happened in 1812.
grammar	The text contains a grammatical error (including errors of syntax and morphology)	The text reads "The guidelines says that users should use a static grounding strap."
legal	The text is legally problematic (e.g., it is specific to the wrong legal system)	 The localized text is intended for use in Thailand but includes U.S. regulatory notices. A text translated into German contains comparative advertising claims that are not allowed by German law
register	The text is written in the wrong linguistic register of uses slang or other language variants inappropriate to the text	A financia text translated into U.S. English refers to dollars as "bucks".

Table 3-5. Quality issue types

	1 able 3-3. Quality issue types			
locale-specific- content	The localization contains content that does not apply to the locale for which it was prepared	 A text translated for the Japanese market contains call center numbers in Texas and refers to special offers available only in the U.S. 		
locale-violation	Text violates norms for the intended locale	 A text localized into German has dates in YYYY-MM-DD format instead of in DD.MM.YYYY A translated text uses American-style foot and inch measurements instead of centimeters. 		
style	The text contains stylistic errors	Company style dictates that all individuals be referred to as Mr. or Ms. with a family name, but the text refers to "Jack Smith".		
characters	The text contains characters that are garbled or incorrect or that are not used in the language in which the content appears	 the text should have a but instead has a ¥ sign A text translated into German omits the umlauts over ü, ö, and ä A Japanese localization contains characters like ⋨ and ఊ (from Telugu) 		
misspelling	The text contains a misspelling	A German text misspells the word Zustellung as Zustellüng		

Table 3-6. Quality issue types

Table 5-0. Quanty issue types			
typographical	The text has typographical errors such as omitted/incorrect punctuation, incorrect capitalization, etc.	An English localization has the following sentence: The man whom, we saw, was in the Military and carried it's insignias	
formatting	The text is formatted incorrectly	 Warnings in the target text are supposed to be set in italic face, but instead appear in bold face Margins of the text are narrower than specified 	
inconsistent- entities	The source and target text contain different named entities (dates, times, place names, individual names, etc.)	 The name <i>Thaddeus Cahill</i> appears in an English source but is rendered as <i>Tamaš Cahill</i> in the Czech version The date February 9, 2007 appears in the source but the translated text has "2. September 2007." 	
numbers	Numbers are inconsistent between source and target	• The source text states that an object is 120 cm long, but the target text says it is 129 cm. long.	
markup	There is an issue related to markup or a mismatch in markup between source and target	 The source segment has five markup tags but the target has only two An opening tag in the localization is missing a closing tag 	

Table 3-7. Quality issue types

Table 5-7. Quality issue types			
whitespace	There is a mismatch in whitespace between source and target content	 A source segment starts with six space characters but the corresponding target segment has two non-breaking spaces at the start. 	
pattern-problem	The text fails to match a pattern that defines allowable content (or matches one that defines non-allowable content)	The quality checking tool disallows the regular expression pattern ['""][\.,] but the translated text contains A leading "expert", a political hack, claimed otherwise.	
internationalization	There is an error related to the internationalization of content	 A line of programming code has embedded language-specific strings A user interface element leaves no room for text expansion A form allows only for U.Sstyle postal addresses and expects five digit U.S. ZIP codes 	
length	There is a significant difference in source and target length	The translation of a segment is five times as long as the source	
other	Any issue that cannot be assigned to any values listed above.		
uncategorized	The issue has not been categorized	A new version of a tool returns information on an issue that has not been previously checked and that is not yet classified	

4 Statistics Based Rule Generation Framework

This chapter discusses the statistics-based rule generation framework, shown in Figure 4-1, in relation to the research methodology.

Figure 4-1. Statistics-based rule generation framework

4.1 Data Collection

Monolingual corpus from various sources and annotated documents are collected.

4.2 Extraction

The monolingual corpus undergoes language modeling to generate two language models: (1) a word unigram model and (2) a character trigram model. The word unigram model is then used in feature extraction to generate a feature set. The features undergo machine learning and the classifier output and the character trigram model, in tandem with variant scoring, is used to determine spelling variations. The corpus also undergoes POS tagging to generate tagged data. However, if a tagged data is already available, this step is skipped and affix usage is derived using data association. Lastly, student submissions are encoded into a parallel corpus and used as training data in a statistical machine translation (SMT) engine. This generates phrase table rules which are then used to describe common mistakes.

4.2.1 Language Modeling

Word unigram and character n-gram models of the corpus are generated using Apache Nutch² and the Stanford Research Institute Language Modeling toolkit³ (SRILM), respectively. Listing 4-1 shows sample word unigrams and Listing 4-2 shows sample character trigrams. The language models are in this form: <n-gram> <frequency>.

sa	2,028,377
<s></s>	1,782,928
	1,782,928
ng	1,626,249
,	1,577,049
ang	1,575,838
	1,568,330
mga	673,087
ay	545,496
ni	323,814

Listing 4-1. Top 10 Tagalog word unigrams

ng_ ang _na _sa sa_ _an _ma	7,675,177 4,575,086 3,083,907 2,643,366 2,388,606 2,027,396 1,975,713
_sa	, ,
sa_	
_an	2,027,396
_ma	1,975,713
_ng	1,842,424
_pa	1,811,321
an_	1,803,874

Listing 4-2. Top 10 Tagalog trigrams

4.2.2 Feature Extraction

Word pairs are taken from the language model and a computer program is used to extract the different features. Features considered for this research are the following: similarity measures, string length, character difference, character location and adjacent characters, and word frequency.

http://www.speech.sri.com/projects/srilm/

² https://nutch.apache.org/

4.2.3 Machine Learning

A subset of the feature set is annotated and machine learning is used to determine which features contribute to spelling variants. The Waikato Environment for Knowledge Analysis⁴ (WEKA) is used.

4.2.4 Variant Scoring

Part of the definition of a grammar checker is to also propose a suggestion. To determine which spelling variant represents the language model more, a scoring mechanism from a related literature (Oco, Syliongka, Ilao, and Roxas, 2014a) – weighted score (WS) – was taken and modified. The modified equation is shown in Equation 4-1. Half of the score is percent frequency (PF), which is taken from the frequency count of the word in percent (i.e., frequency count of the word divided by the sum of the frequency count of both variants). The other half – also in percent – is frequency count of the trigram (PT) involved with the character difference. Each variant is scored and the variant with the higher MWS is considered for suggestion.

$$MWS = PF * .5 + PT * .5$$

Equation 4-1. Modified weighted score

4.2.5 POS Tagging

Part-of-speech tagging (POS tagging or POST) is an entirely different problem and not within the scope of this research so this process is skipped and a tagged data from a different source (Manguilimotan and Matsumoto, 2011) – consisting of words from an excerpt about Jose Rizal – is instead used. Sample word declarations are shown in Listing 4-3. It follows this format: <surface form of the word / word> <root> cprefix> <infix> <suffix> <reduplication> <POS Tag>.

magiging	magiging	_	_	_	_	VB-COAF
kukuha	kuha	_	_	_	ku	VB-COAF
magiging	magiging	_	_	_	_	VB-COAF
gagawa	gawa	_	_	_	ga	VB-COAF
uuwi	uwi	_	_	_	u	VB-COAF
pupunta	punta	_	_	_	pu	VB-COAF
papasok	pasok	_	_	_	pa	VB-COAF
babalik	balik	_	_	_	ba	VB-COAF
lalabas	labas	_	_	_	la	VB-COAF

Listing 4-3. Sample word declarations

Also, analysis is only limited to the actor focus (AF) due to the low number of supporting literature on the area of parts-of-speech and foci.

4.2.6 Data Association

The tagged data are treated as transaction pairs and data association is used to infer relations. The support and confidence values are generated and, in tandem with manual analysis, threshold values are set to identify affix usage.

4.2.7 Encoding and Statistical Machine Translation

The student submissions are encoded to produce a parallel corpus. Table 4-1 shows ten sample sentence pairs. The source text refers to sentences with errors and the translated text refers to the correct form. SMT is used to learn common patterns.

⁴ http://www.cs.waikato.ac.nz/ml/weka/

Table 4-1. Sample sentences from the parallel corpus

Source Text	Translated Text	
nagging	Naging	
Napanalunan ni Court ang higit sa kalahating	Napanalunan ni Court ang higit sa kalahating	
kaganapan sa Grand Slam.	torneo sa Grand Slam.	
Nakuha rin ni Court and ikaunang ranggo noong	Nakuha rin ni Court and unang ranggo noong 1973.	
1973.		
rekord	record	
Nanalo siya sa higit sa 100 na larong singles. Nanalo siya nang higit sa 100 na larong sin		
labingisang	labing-isang	
kwarter faynals	quarter finals	
Noong sumunod na taon, natalo si Court sa huling	Noong sumunod na taon, natalo si Court sa huling	
laban niya kay Evonne Goolagong Cawley habang	laban niya kay Evonne Goolagong Cawley habang	
buntis sa una niyang anak na si Daniel,	buntis sa una niyang anak na si Daniel na	
ipinanganak noong Marso 1972	ipinanganak noong Marso 1972	
Isa si Court sa tatlong manlalaro na nakakamit ng	Isa si Court sa tatlong manlalaro na nagkamit ng	
"boxed set" na titulong Grand Slam.	"boxed set" na titulong Grand Slam.	
Siya rin ay natatangi sa pagkapanalo niya ng boxed	Natatangi rin siya dahil sa pagkapanalo niya ng	
set.	boxed set.	

4.3 Rule Generation

LanguageTool is a rule-based style and grammar checker engine. It uses two resources to work: (1) the tagger dictionary and the (2) rule file. It can run as an OpenOffice and LibreOffice extension or as a stand-alone program. Rules are generated as follows:

- spelling variants are taken from the results of the variant scoring;
- affix usage are taken from the support and confidence values; and
- common mistakes are taken from the phrase table rules.

4.3.1 Tagger Dictionary

The tagger dictionary is a text file that contains word declarations and their tag. Some examples are shown in Listing 4-4. The tagger dictionary follows this format: <token> <base form> <POS Tag>, where the base form is simply the token without the modifier linkers (i.e., "-ng" and "-g"). For this research, an earlier Tagalog tagger dictionary (Oco and Borra, 2011) was used and modified. It has a total of 7,849 entries.

Alemanyang Alfonso alikabok alila alimango alimura alin	Alemanya Alfonso alikabok alila alimango alimura alin	NPRO NPRO NCOM 2 NCOM 2 NCOM 1 NCOM 2 PINP NU S
alimura alin aling	alimura	NCOM 2 PINP NU S PINP NU S
aling	aling	PINP NU S

Listing 4-4. Sample word declarations

4.3.2 Rule File

The rules on the other hand are stored in an XML file, which contains the patterns to be matched. These patterns could be represented in terms of tokens, regular expressions, and/or POS tags. Listing 4-5 shows

a sample rule file. Each rule has three basic elements: (1) the pattern to be matched, (2) the message / suggestion, and (3) examples.

Listing 4-5. Sample rule

LanguageTool checks documents as follows:

- it separates an input into sentences and separates each sentence into tokens;
- tokens are given their tag using the declarations in the tagger dictionary;
- the tokens, together with their tag, are matched against the rule file;
- if a pattern matches, the user is notified and feedback with possible linguistic explanation or suggestion is provided.

5 Results and Analyses

This chapter discusses the results and analyses of the data collection, extraction, and rule development.

5.1 Data Collection

The following monolingual corpora were collected: (1) the PALITO corpus (Dita et al., 2009), (2) Tagalog Wikipedia (Oco and Roxas, 2012), and the (3) UP DSP Corpus (Ilao et al., 2011). The size of each corpus is shown in Table 5-1. It has been discussed in a related study (Oco et al., 2014a) that 290K words are enough to represent a language. However, to achieve the optimum representativeness, the largest corpus – UP DSP Corpus – was used for this research.

Table 5-1. Corpus size

Corpus	Number of Words
PALITO	290K
Tagalog Wikipedia	3M
UP DSP Corpus	31M

Aside from monolingual corpora, marked and annotated student submissions from the Filipino department of De La Salle University were also collected. These were submitted by students as part of the requirements in translation studies and contain translated English Wikipedia articles. They have been checked by their professor and most of the errors have corrections.

5.2 Language Modeling

The word unigram model contains a total of 666,217 unique unigrams. Figure 5-1 shows a log scatter plot of the top 10,000. The x-axis refers to the rank while the y-axis refers to the frequency count. It can be noticed that the language model follows a power law, similar to a Zipfian distribution; the frequency count of a trigram is inversely proportional to its rank. The equation for the model is shown in Equation 5-1, where r is the rank, n is the frequency count, a is a value between 5.0 and 7.0, and b is 1. The graph also follows the Pareto principle, where 80% of the trigrams are in the top 20%.

Figure 5-1. Log scatter plot of the frequency count

$$\log(r) = a - b \log(n)$$

Equation 5-1. Zipfian Model

Generating word pairs for all the unique trigrams and computing the Dice's coefficient and other features would be computationally expensive. A total of 221 billion instances would be generated. To address this issue, the language model was cleaned. The cleaning process is as follows:

- deleted unigrams with double quotes, commas, period, parenthesis, equal sign, digits, a capital letter, and unknown symbols;
- deleted unigrams beginning with a dash;
- deleted unigrams with less than 11 frequency counts;
- deleted unigrams with less than four characters.

The resulting language model, which is almost one tenth of the original, contains a total of 67,963 unique unigrams. Listing 5-1 shows the top 10 unigrams. The top 300 are shown in the appendix. It can be noticed that nouns and verbs are not present in the top 10.

hindi	231,660
isang	198,385
kung	166,616
niya	142,099
para	141,337
siya	139,178
nang	139,067
naman	129,414
lang	125,746
kanyang	121,829

Listing 5-1. Top 10 resulting word unigrams

For the character n-gram model, size three (i.e., trigrams) was used following LanguageTool (Naber, 2003) standards. Higher value of n would be computationally expensive and would cover a larger space, as seen in Table 5-2. Lower values, on the other hand, are not enough to represent the unique character sequences of a language, i.e., not enough to cover single-letter words (e.g., _y_). Trigrams offer a good combination of computational practicality and coverage. For this research, only the top 1,000 trigrams were used and those with low frequency counts were discarded, also following LanguageTool standards. Similar to a word unigram model, the trigram model also follows a power law and the Pareto principle, as shown in Figure 5-2.

Table 5-2. Number of possible combinations with respect to n

Size of <i>n</i>	Possible Combinations ⁵
1	27 ¹
2	28^{2}
3 and above	$28^2 \times 27^{n-2}$

_

 $^{^5}$ The Philippine alphabet has 27 letters: the basic 26 letters and $\tilde{n}.$

Figure 5-2. Log scatter plot of the frequency count

5.3 Feature Extraction

Based on the 67,963 unique unigrams, more than 2 billion instances can be generated for the feature set (i.e., the summation from 1 to 67,963). This would be computationally expensive for machine learning so thresholds were set when generating the features:

- word pairs with Dice's coefficient values is .85 and below are pruned .85 was set as threshold because ocular inspection reveals minimal spelling variants below the .85 mark; and
- word pairs whose edit distance is greater than one are pruned one was selected as most of the spelling changes reported in the literature involve single letters, both replacement and insertion/deletion.

Aside from Dice's coefficient and edit distance, other important features considered are: character difference (including indices and adjacent characters), frequency counts, and related values. To generate the character difference, wdiff⁶ was used. However, wdiff only takes down the word difference and not the character difference. To solve this issue, each word was treated as a sentence and each character was treated as a word. Table 5-3 shows sample features; word pairs are "aabutan" vs. "aabutin" and "aawatin" vs. "aawitin". The character enclosed in [--] is replaced by the character enclosed in {++}. Also, a char type C would denote a consonant while a char type V would denote a vowel. Including those pruned due to bug errors from wdiff, a total of 7,454 instances were generated.

_

⁶ https://www.gnu.org/software/wdiff/

Table 5-3. Sample features

Feature	Description	Example 1	Example 2
Word 1 (W1)	First word	aabutan	aawatin
Word 2 (W2)	Second word	aabutin	aawitin
W1 Length	String length	7	7
W2 Length		7	7
W1 space	Words with spaces	aabutan	aawatin
W2 space		aabutin	aawitin
Dice	Dice's coefficient	0.857143	0.857143
Edit	Edit Distance	1	1
Wdiff	Character difference	[-a-]{+i+}	[-a-]{+i+}
Wdiff Freq	Frequency count of the character difference	638	638
Wdiff Index	Index value of the character difference	6	4
Wdiff Position	Position in the word of thw wdiff: Start, Middle, Last	Middle	Middle
Char Left	Character on the left of the character difference	t	W
Char Right	Character on the right of the character difference	n	t
Char Left Type	Character type: Consonant (C) or Vowel (V)	С	С
Char Right Type		С	С
W1 Freq Frequency count of the word		120	13
W2 Freq		584	60
W1 n-gram	Trigram with the character difference in the middle	tan	wat
W2 n-gram		tin	wit

5.4 Machine Learning

The goal of machine learning is to determine the features that constitute a spelling variant.

5.4.1 Classification

The features discussed in the previous section were simplified by removing:

- Redundant features (e.g., W1, W2, W1 space, W2 space);
- Features with the same value/range for all entries (e.g., Dice, Edit); and
- Superfluous features (e.g. Wdiff Freq, W1 Freq).

A variety of classification techniques were then applied using the default setting. A total of 575 random instances were manually annotated (i.e., variant or not) for this purpose. Listing 5-2, Listing 5-3, and Listing 5-4 show the confusion matrix for J48, Naive Bayes, and multilayer perceptron, respectively. The results for J48 indicate that no definite set of features fully indicate a spelling variant while the results for Naive Bayes and multilayer perceptron indicate that the features used were appropriate in detecting spelling variations. Among the three, multilayer perceptron showed the most promising results.

```
=== Summary ===
                                                   460
Correctly Classified Instances
                                                                               80
Correctly Classified Instances
Incorrectly Classified Instances
                                                    115
                                                                               20
Kappa statistic
                                                        0.32
Mean absolute error
Root mean squared error
                                                        0.4
99.8054 %
Some relative squared error 99.9997 %
Coverage of cases (0.95 level) 100 %
Mean rel. region size (0.95 level) 100 %
Total Number of Instances 575
Relative absolute error
                                                     99.8054 %
=== Confusion Matrix ===
        b <-- classified as
        0 | a = not
0 | b = variant
  115
```

Listing 5-2. Confusion matrix for J48

```
=== Summary ===
                                             516
59
                                                                     89.7391 %
Correctly Classified Instances
Incorrectly Classified Instances
                                                                     10.2609 %
Kappa statistic
                                                0.6825
Mean absolute error
                                                0.1302
Root mean squared error
                                                 0.264
                                               40.6189 %
Relative absolute error
Root relative squared error 65.9877 % Coverage of cases (0.95 level) 99.8261 % Mean rel. region size (0.95 level) 65.7391 % Total Number of Instances 575
Total Number of Instances
                                               575
=== Confusion Matrix ===
       b <-- classified as
 429 \quad 31 \mid a = not
  28 87 | b = variant
```

Listing 5-3. Confusion matrix for Naive Bayes

```
=== Summary ===
Correctly Classified Instances
                                       571
                                                          99.3043 %
Incorrectly Classified Instances
                                         4
                                                          0.6957 %
Kappa statistic
                                         0.978
                                         0.0089
Mean absolute error
Root mean squared error
                                         0.0663
Relative absolute error
                                         2.7682 %
Root relative squared error
                                        16.565 %
Coverage of cases (0.95 level)
                                        99.8261 %
Mean rel. region size (0.95 level)
                                        50.5217 %
Total Number of Instances
                                       575
=== Confusion Matrix ===
       b
           <-- classified as
       0 |
 460
            a = not
   4 111 |
            b = variant
```

Listing 5-4. Confusion matrix for multilayer perceptron

5.4.2 Attribute Evaluator

Character differences that do not indicate any spelling variation (e.g., [-a-]{+i+}, aawitan vs. aawitin) were pruned; word pairs with these character differences – totaling 67,059 – were removed. Visual inspection was also applied to ensure that no spelling variants were removed. The attribute evaluator was then used to rank which features are important. The attribute evaluator uses supervised learning to determine the "merit" of each feature (i.e., how likely a particular feature contributes to the classification). It provides as output the "merit" of the different features in descending order. The first in the list is always rank 1. Listing 5-5 shows the results. Wdiff or character difference has been ranked as the most important feature followed by the location of the character difference and the adjacent characters. These refer to a character trigram (i.e., the previous character, the character difference, and the succeeding character), indicating that it can be used to represent a possible spelling variant.

```
=== Attribute Selection on all input data ===
Search Method:
     Attribute ranking.
Attribute Evaluator (supervised, Class (nominal): 9 Attribute):
     Correlation Ranking Filter
Ranked attributes:
 0.1973 1 Wdiff
 0.1882
         2 Wdiff Position
 0.1472
        6 Char Right Type
 0.1464 3 Char Left
 0.0979 5 Char Right
 0.0799 7 Check Freq
 0.0799
         8 Check Freq Inverted
 0.074
         4 Char Left Type
Selected attributes: 1,2,6,3,5,7,8,4 : 8
```

Listing 5-5. Results for attribute selection

5.4.3 Character Differences Denoting a Spelling Variation

Character differences with more than three word pairs that have been annotated as spelling variants were selected. Together with visual inspection of character differences with no annotated spelling variants, a total of nine distinct character differences that denote a spelling variation were identified. The results are shown in Table 5-4. Sample word pairs and the trigram of the character differences are also shown. The second and fourth columns refer to the first variant while the third and fifth columns refer to the second variant. A sample feature set is shown in Table 5-5. A subset of these matches those reported in the literature (Ilao et al., 2011; Sentro ng Wikang Filipino – Diliman, 2008). Certain spelling changes however, have not been reported in any literature (e.g., [-o-]{+w+}, dinadalao vs. dinadalaw).

Table 5-4. Word pairs that denote spelling variations

Wdiff	W1	W2	W1 Trigram	W2 Trigram
$[-c-]\{+k+\}$	acalain	akalain	aca	aka
[-o-]{+u+}	abogadong	abugadong	bog	bug
$[-d-]\{+r+\}$	nadagdagan	naragdagan	ada	ara
[-e-]{+i+}	aatakehin	aatakihin	keh	kih
$[-u-]\{+w+\}$	aauitin	aawitin	aui	awi
[-l-]{+r+}	albularyo	arbularyo	alb	arb
$[-i-]\{+y+\}$	baitang	baytang	ait	ayt
[-o-]{+w+}	dinadalao	dinadalaw	ao_	aw_
$[-b-]\{+v+\}$	automobil	automovil	obi	ovi

Table 5-5. Sample feature set

	Wdiff	Char		Char		Check	Check Freq
Wdiff	Position	Left	Type	Right	Type	Freq	Inverted
[-c-]{+k+}	Middle	a	V	S	С	1	0
$[-c-]\{+k+\}$	Middle	i	V	u	V	0	1
$[-c-]\{+k+\}$	Middle	1	С	a	V	1	0
[-o-]{+u+}	Middle	n	C	m	C	0	1
[-o-]{+u+}	Middle	n	C	m	C	1	0
[-o-]{+u+}	Middle	a	V	t	C	1	0
$[-d-]\{+r+\}$	Middle	a	V	a	V	0	1
$[-d-]\{+r+\}$	Middle	a	V	a	V	0	1
$[-d-]\{+r+\}$	Middle	a	V	a	V	0	1
$[-e-]\{+i+\}$	Middle	d	С	t	C	1	0
[-e-]{+i+}	Middle	n	С	b	С	0	1
[-e-]{+i+}	Middle	g	С	S	С	0	1
$[-u-]\{+w+\}$	Middle	a	V	i	V	1	0
$[-u-]\{+w+\}$	Middle	a	V	a	V	1	0
$[-u-]\{+w+\}$	Middle	a	V	t	С	1	0
[-l-]{+r+}	Middle	u	V	0	V	0	1
[-l-]{+r+}	Middle	u	V	0	V	0	1
[-l-]{+r+}	Middle	a	V	a	V	1	0
$[-i-]\{+y+\}$	Middle	r	С	a	V	0	1
$[-i-]\{+y+\}$	Middle	S	С	0	V	1	0
[-o-]{+w+}	Last	a	V	_	_	1	0
[-o-]{+w+}	Last	a	V		_	1	0
[-b-]{+v+}	Middle	O	V	e	V	0	1
[-b-]{+v+}	Middle	e	V	e	V	1	0

5.4.4 Attributing Features

To determine the specific trigrams and other attributing features per character difference, the attribute selector was used on each set of word pairs. Listing 5-6, Listing 5-7, and Listing 5-8 show the results for [-c-]{+k+}, [-d-]{+r+}, and [-l-]{+r+}, respectively. It has been noted that the results for [-l-]{+r+} have low rank values. This may indicate that no definite set of attributing features were found. Also, the following wdiff have unary classes (i.e., all instances in the training data are variant pairs) and ranked attributes cannot be generated:

- [-o-]{+u+}
- $[-e-]\{+i+\}$
- $[-i-]\{+y+\}$
- $[-u-]\{+w+\}$
- $[-o-]{+w+}$
- $[-b-]\{+v+\}$

```
=== Attribute Selection on all input data ===
Search Method:
     Attribute ranking.
Attribute Evaluator (supervised, Class (nominal): 8 Attribute):
      Correlation Ranking Filter
Ranked attributes:
        1 Wdiff Position
 0.639
       5 Char Right Type
0.472 4 Char Right
 0.259
       2 Char Left
 0.189 3 Char Left Type
 0.125 7 Check Freq Inverted
 0.125 6 Check Freq
Selected attributes: 1,5,4,2,3,7,6 : 7
```

Listing 5-6. Results for [-c-]{+k+} attribute selection

```
=== Attribute Selection on all input data ===
Search Method:
     Attribute ranking.
Attribute Evaluator (supervised, Class (nominal): 8 Attribute):
      Correlation Ranking Filter
Ranked attributes:
        5 Char Right Type
        1 Wdiff Position
0.777 4 Char Right
 0.696
       2 Char Left
 0.269 7 Check Freq Inverted
 0.269 6 Check Freq
 0.15
        3 Char Left Type
Selected attributes: 5,1,4,2,7,6,3:7
```

Listing 5-7. Results for [-d-]{+r+} attribute selection

```
=== Attribute Selection on all input data ===
Search Method:
     Attribute ranking.
Attribute Evaluator (supervised, Class (nominal): 8 Attribute):
      Correlation Ranking Filter
Ranked attributes:
 0.429
        5 Char Right Type
 0.27
        7 Check Freq Inverted
 0.27
        6 Check Freq
 0.258 4 Char Right
 0.228 3 Char Left Type
 0.186 2 Char Left
        1 Wdiff Position
Selected attributes: 5, 7, 6, 4, 3, 2, 1 : 7
```

Listing 5-8. Results for [-l-]{+r+} attribute selection

Together with manual analysis, a set of common features that attributes to a spelling variation were identified. These are shown in Table 5-6. However, no definite set of attributing features were determined for the following wdiff: [-o-]{+u+}, [-e-]{+i+}, and [-l-]{+r+}. This indicates that the character on the left and the character on the right almost vary per word pair and no definite set of character can be attributed to the character difference.

Table 5-6. Attributing features

Tuble & Willeling leaves es					
Wdiff	Position	Char Left	Char Right		
$[-c-]\{+k+\}$	Middle	Any	Any		
[-o-]{+u+}	No d	lefinite set of	features		
$[-d-]\{+r+\}$	Middle	Vowel	Vowel		
[-e-]{+i+}	No d	features			
$[-u-]\{+w+\}$	Middle	Any	'a', 'e', 'i'		
[-l-]{+r+}	No definite set of features				
$[-i-]\{+y+\}$	Middle	Consonant	'a', 'e', 'o'		
[-o-]{+w+}	Last	ʻa'			
$[-b-]\{+v+\}$	Middle	Vowel	Vowel		

By selecting word pairs with attributing features discussed in the previous table, a total of 396 out of 7,454 word pairs were identified as spelling variants. The breakdown is shown in Table 5-7. The wdiff [-c-]{+k+} has the highest number of spelling variants.

Table 5-7. Number of spelling variants per wdiff

Wdiff	Position
$[-c-]\{+k+\}$	180
$[-d-]\{+r+\}$	79
$[-u-]\{+w+\}$	68
$[-i-]\{+y+\}$	42
$[-o-]\{+w+\}$	20
$[-b-]\{+v+\}$	7

5.5 Variant Scoring

Variant scoring, the formula discussed in section 4.2.4, was applied next to determine which variant is a representative of the language model. Table 5-8 shows the results, which indicate that the second variant is more representative of the language model. Sample word pairs are shown in Table 5-9. However, there are exceptions, shown in Table 5-10. These are word pairs where the first variant has higher MWS than the second variant.

Table 5-8. Variant scoring results

Wdiff	Higher
$[-c-]\{+k+\}$	Variant 2
$[-d-]\{+r+\}$	Variant 2
$[-u-]\{+w+\}$	Variant 2
$[-i-]\{+y+\}$	Variant 2
[-o-]{+w+}	Variant 2
[-b-]{+v+}	Variant 2

Table 5-9. Sample word pairs and their weighted score

Tubic	5 7. Sample we	or a pairs and	their weighted	Beare
Wdiff	Word 1	W1 MWS	Word 2	W2 MWS
$[-b-]\{+v+\}$	debeloper	0.0116	developer	0.9884
$[-b-]\{+v+\}$	deliber	0.2708	deliver	0.7292
[-b-]{+v+}	gobernador	0.4951	governador	0.5049
$[-c-]\{+k+\}$	acsayahin	0.0598	aksayahin	0.4402
$[-c-]\{+k+\}$	alcalde	0.0083	alkalde	0.4917
$[-c-]\{+k+\}$	america	0.2749	amerika	0.7251
$[-d-]\{+r+\}$	dadaanan	0.3817	daraanan	0.6183
$[-d-]\{+r+\}$	dadagdagan	0.4649	daragdagan	0.5351
$[-d-]\{+r+\}$	dadamay	0.3916	daramay	0.6084
$[-i-]\{+y+\}$	estudianteng	0.0128	estudyanteng	0.4872
$[-i-]\{+y+\}$	estudio	0.2391	estudyo	0.2609
$[-i-]\{+y+\}$	gobierno	0.0018	gobyerno	0.4982
$[-o-]\{+w+\}$	dinadalao	0.1831	dinadalaw	0.8169
[-o-]{+w+}	dumadalao	0.1906	dumadalaw	0.8094
$[-o-]\{+w+\}$	dumalao	0.1714	dumalaw	0.8286
$[-u-]\{+w+\}$	aauitin	0.0833	aawitin	0.9167
[-u-]{+w+}	asauang	0.0572	asawang	0.9428
$[-u-]\{+w+\}$	bayauang	0.2500	bayawang	0.7500

Table 5-10. Exceptions

1 able 5-10. Exceptions					
Wdiff	Word 1	W1 MWS	Word 2	W2 MWS	Higher
$[-b-]\{+v+\}$	automobil	0.4521	automovil	0.0479	Variant 1
$[-c-]\{+k+\}$	agricultural	0.2755	agrikultural	0.2245	Variant 1
$[-c-]\{+k+\}$	director	0.5953	direktor	0.4047	Variant 1
$[-c-]\{+k+\}$	electoral	0.6115	elektoral	0.3885	Variant 1
$[-c-]\{+k+\}$	masaclolo	0.3250	masaklolo	0.1750	Variant 1
$[-c-]\{+k+\}$	political	0.5390	politikal	0.4610	Variant 1
$[-c-]\{+k+\}$	protocol	0.4661	protokol	0.0339	Variant 1
$[-c-]\{+k+\}$	sectoral	0.5115	sektoral	0.4885	Variant 1
$[-c-]\{+k+\}$	tatalicdan	0.2879	tatalikdan	0.2121	Variant 1
$[-d-]\{+r+\}$	dinadaan	0.5348	dinaraan	0.4652	Variant 1
$[-d-]\{+r+\}$	madaanan	0.5152	maraanan	0.4848	Variant 1
[-d-]{+r+}	madagdagan	0.5379	maragdagan	0.4621	Variant 1
[-d-]{+r+}	madamay	0.5021	maramay	0.4979	Variant 1
[-d-]{+r+}	madumihan	0.3030	marumihan	0.1970	Variant 1
[-d-]{+r+}	magdadagdag	0.5189	magdaragdag	0.4811	Variant 1
[-d-]{+r+}	makadagdag	0.5182	makaragdag	0.4818	Variant 1
[-d-]{+r+}	nadagdag	0.5475	naragdag	0.4525	Variant 1
[-d-]{+r+}	nadagdagan	0.5426	naragdagan	0.4574	Variant 1
[-d-]{+r+}	nadamay	0.5502	naramay	0.4498	Variant 1
$[-d-]\{+r+\}$	nagdudugtong	0.2903	nagdurugtong	0.2097	Variant 1
$[-i-]\{+y+\}$	dialogo	0.3065	dyalogo	0.1935	Variant 1
$[-i-]\{+y+\}$	familia	0.5283	familya	0.4717	Variant 1
[-i-]{+y+}	glorieta	0.7586	gloryeta	0.2414	Variant 1
[-i-]{+y+}	historia	0.8861	historya	0.1139	Variant 1
[-i-]{+y+}	kolehio	0.4167	kolehyo	0.0833	Variant 1
[-i-]{+y+}	malaria	0.8209	malarya	0.1791	Variant 1
[-i-]{+y+}	material	0.6772	materyal	0.3228	Variant 1
[-i-]{+y+}	memoria	0.5242	memorya	0.4758	Variant 1
[-i-]{+y+}	monasterio	0.3800	monasteryo	0.1200	Variant 1
[-i-]{+y+}	pianista	0.3289	pyanista	0.1711	Variant 1
[-i-]{+y+}	plegaria	0.6455	plegarya	0.3545	Variant 1
[-i-]{+y+}	tenienteng	0.2708	tenyenteng	0.2292	Variant 1

5.6 Tagged Data

The entire tagged data (Manguilimotan and Matsumoto, 2011) contains a total of 93,321 entries. Table 5-11 shows the frequency count per tag. For this research, the scope is only on verbs in the actor focus because of the high number of verb affixes (Schachter and Otanes, 1972) and because of the exclusivity (i.e., they only take one form of affix given one aspect) reported in literature (Endriga, 2011). Out of the 7,546 words tagged as verbs, only 3,470 contain affixes. The rest are root words (e.g., "sabi", "alam", "maging") and inflected words that were tagged as root words (e.g., "nagiging" was tagged as a root word).

Table 5-11. Frequency count per tag

Part-of-speech	Frequency
Conjunctions	16,113
Cardinal Marker	1,753
Determiner	8,779
Adjective	4,486
Lexical Marker	1,767
Noun	24,527
Pronoun	19,617
Adverb	7,354
Verbs	7,546
Others	1,379
Total	93,321

A total of 2,245 verbs (VB) in the actor focus, shown in Table 5-12, were used. The different aspects considered for this research are as follows:

- COAF contemplated (e.g., magsasayaw);
- IMAF imperfective (e.g. nag-aaral);
- INAF infinitive (e.g., magtungo); and
- PFAF perfective (e.g., nagtungo).

Table 5-12. Frequency count for verbs

Part-of-speech Tag	Frequency
VB-COAF	177
VB-IMAF	449
VB-INAF	783
VB-PFAF	836
Total	2,245

Emphasis is given on the following affixes: -um-, nag-, na-, and their counterparts in other aspects.

5.7 Data Association

The tokens together with the affixes were treated as transactions and Apriori, an algorithm for association rule mining, was applied. The top 11 is shown in Table 5-13. Only those with a confidence value of 1.0 were generated and those with lower confidence values were discarded. A confidence value of one is interpreted as the only affix used for that word (e.g. "dumating" instead of "nagdating") thus, exclusivity. The confidence value is defined as the frequency count of the affix and the lemma appearing together over the frequency count of the lemma.

Table 5-13. Top 11 based on frequency

No.	Lemma	Freq (Lemma)	Affix	Freq (Lemma and Affix)	Confidence
1	dating	44	_ um	44	1
2	mula	9	nag	9	1
3	tuto	7	na	7	1
4	taglay	7	nag RDPL	7	1
5	hiling	5	_ um	5	1
6	ubos	4	na	4	1
7	aksaya	4	nag	4	1
8	ako	4	nang	4	1
9	akong	4	nang	4	1
10	tugis	4	_ um _ RDPL	4	1
11	nais	4	nag RDPL	4	1

5.8 Cleaning

The presence of noise data can be noticed from the table. For instance, "nang-ako" should be "nangako". This prompted cleaning and pruning:

- manual inspection to remove noise data; and
- entries whose frequency count is below 3 were pruned.

The results for -um-, na-, and nag- are shown in Table 5-14, Table 5-15, and Table 5-16, respectively. This means that the words listed as taking the affix -um- do not take any other form of affix in that aspect and focus. However, there is no literature that supports the results for na- and nag-.

Table 5-14. Results for -um-

Lemma	Infinitive
dating	dumating
hiling	humiling
bagsak	bumagsak
sapi	sumapi
hinto	huminto
dalaw	dumalaw

Table 5-15. Results for na-

Lemma	Infinitive	Perfective	Imperfective	Contemplated
tuto	matuto	natuto	natututo	matututo
halal	mahalal	nahalal	nahahalal	mahahalal
mana	mamana	namana	namamana	mamamana
kulong	makulong	nakulong	nakukulong	makukulong
batid	mabatid	nabatid	nababatid	mababatid

Table 5-16. Results for nag-

Lemma	Infinitive	Perfective	Imperfective	Contemplated
mula	magmula	nagmula	nagmumula	magmumula
aksaya	mag-aksaya	nag-aksaya	nag-aaksaya	mag-aaksaya
pasya	magpasya	nagpasya	nagpapasya	magpapasya
tanong	magtanong	nagtanong	nagtatanong	magtatanong
hiwalay	maghiwalay	naghiwalay	naghihiwalay	maghihiwalay

5.9 Statistical Machine Translation

Approximately a total of 20 annotated documents were encoded and the corpus contains 100 lines. However, a third of the sentences do not contain any correction. These sentences refer to the usage of the lexical marker "ay". These were removed and the parallel corpus was cleaned using the following Moses scripts:

- tokenizer.perl inserts spaces between words and punctuations; and
- clear-corpus-n.perl very long sentences, and empty sentences.

The resulting parallel corpus contains a total of 62 lines. The phrase table rules were then generated using the default setting with up to a trigram language model. A sample is shown in Table 5-17. The phrase table scores refer to the following:

- inverse phrase translation probability f(fle)
- inverse lexical weighting lex(fle)
- direct phrase translation probability f(elf)
- direct lexical weighting lex(elf)

Table 5-17. Sample phrase table rules

Marked	Correction	Phrase Table Scores	Alignment
kwarter faynals	quarter finals	1111	0-0 1-1
kwarter	quarter	1111	0-0
labingisang	labing-isang	1111	0-0

Together with manual analysis, phrase pairs that denote mistakes were identified. The entire list is shown in Table 5-18.

Table 5-18. Complete list of phrase pairs

Marked	Correction
computer	kompyuter
meroon	mayroon
binabalas	binabalasa
faynals	finals
ganun	ganon
green-houses	greenhouses
i-aalok	aalukin
kwarter	quarter
labingisang	labing-isang
meron	mayroong
meroong	may
meroong	mayroong
nagging	naging
pagaaral	pag-aaral
pagdedeal	pagdi-deal
pagkaibhan	pagkakaiba
palatuntunin	alituntunin
rekord	record
spesipikong	ispesipikong
standard	istandard
tradisiyonal	tradisyonal
Sa katapusan	Nang lumaon

5.10 Rule Development

For spelling variants, regular expressions (regex) were used to declare the pattern and regex replace was used for the suggestion. Variants that have a different variant scoring were declared as exceptions and the annotated data were used as examples. Listing 5-9 show an example rule. The pattern reflects the attributing values reported in Table 5-6 and the exception reflects those reported in Table 5-10.

Listing 5-9. Sample rule for spelling variations

For affix usage, the words were declared in the pattern together with the affix mag- and nag-. Regex replace was used for the suggestion, transforming the token into its –um- form. The data available was used as examples. Listing 5-10 show an example rule. The words in Table 5-14 are declared in the pattern.

Listing 5-10. Sample rule for affix usage

For common mistakes, the words/phrases were declared in the pattern and the correct form was declared in the suggestion. The entries in the phrase table rules were declared as examples. Listing 5-11 show an example rule. The words declared in the first column of Table 5-18 are declared in the pattern while the words declared in the second column are declared in the suggestion.

Listing 5-11. Sample rule for common mistakes

In total, 6 new rules for spelling variations, 1 new rule for affix usage, and 22 new rules for common mistakes were generated. Except for affix usage, all rules were generated using a template. The LanguageTool community would benefit from the statistics based rule generation framework through faster rule generation and wider error checking coverage.

5.11 Comparison with Existing Literature

Several variations have been reported. Table 5-19 shows a table of comparison between the results of this research and those reported in literature. This research covered more single-letter spelling variations than any literature. Two character differences were not reported in this research due to low number of instances. These are [-s-]{+z+} and [-f-]{+p+}. The word pairs are shown in Table 5-20 and Table 5-21, respectively. It can be noticed for [-s-]{+z+} character difference that variant 1 is more dominant in terms of frequency. For [-f-]{+p+} character difference, the variant 2 is more dominant in terms of frequency. Also, [-u-]{+w+}, [-l-]{+r+}, and [-o-]{+w+} spelling variations in Tagalog were not covered in literature. However, one study (Ilao, Santos, and Guevara, 2012) identified [-o-]{+w+} as a spelling variation in Cebuano/Visayan. Linguistic phenomena involving more than one letter replacement or insertion were not covered in this research: assimilation (e.g., sangla vs. sanla), syncope (e.g., dakipin vs. dakpin), affix reduplication (e.g., makakaunawa vs. makauunawa), code-switching (e.g., nagpi-friendster vs. nagfrie-friendster) and other spelling variations (e.g., puwede vs. pwede).

Table 5-19. A comparison of different spelling variations in literature

Results	(Ilao et al., 2011)	(Zuraw, 2006)
$[-c-]{+k+}$	$[-c-]\{+k+\}$	N/A
[-o-]{+u+}	[-o-]{+u+}	[-o-]{+u+}
[-d-]{+r+}	N/A	[-d-]{+r+}
$[-e-]{+i+}$	$[-e-]\{+i+\}$	$[-e-]{+i+}$
$[-u-]\{+w+\}$	N/A	N/A
[-l-]{+r+}	N/A	N/A
$[-i-]\{+y+\}$	$[-i-]\{+y+\}$	N/A
[-o-]{+w+}	N/A	N/A
$[-b-]\{+v+\}$	$[-b-]\{+v+\}$	N/A
N/A (5 instances)	$[-s-]\{+z+\}$	N/A
N/A (7 instances)	[-f-]{+p+}	N/A

Table 5-20. Word pairs with [-s-]{+z+} character difference

Word 1	Frequency	Word 2	Frequency
arsobispo	109	arzobispo	22
magasin	345	magazin	16
mansanas	297	manzanas	30
mestiso	110	mestizo	21
postiso	31	postizo	21

Table 5-21. Word pairs with [-p-]{+f+} character difference

1 4 5 1 6 1 7 7 6 1	a pairs with	p j(111) character anierence		
Word 1	Frequency	Word 2	Frequency	
definisyon	12	depinisyon	89	
kafatid	86	kapatid	12,005	
profeta	36	propeta	487	
referendum	27	reperendum	47	
referensiya	18	reperensiya	31	
reforma	25	reporma	983	
transformasyon	26	transpormasyon	77	

A comparison with existing style is shown in Table 5-22 and in Table 5-23. The words were taken from the examples in the guides. The proposed variant scoring matches the style proposed by Sentro ng Wikang Filipino (SWF) with 100% precision, 30% recall, and 30% accuracy, and matches the style proposed by the Komisyon sa Wikang (KWF) Filipino with 100% precision, 60% recall, and 60% accuracy. This is an indication that the style proposed by KWF is more inclined with the variant scoring. One variant pair is found in both styles: "politika" vs. "pulitika". SWF deems "politika" as correct while KWF deems "pulitika" is correct. A close look at the style proposed by KWF (Komisyon sa Wikang Filipino), reveals the use of "eskandalo", "espesyal", and "estilo" to signify that the words originated from Spanish.

Table 5-22. Writing style proposed by SWF (Sentro ng Wikang Filipino – Diliman, 2008)

Correct	Frequency	Incorrect	Frequency	Higher MWS
ano-ano	546	anu-ano	1,282	Variant 2
sino-sino	91	sinu-sino	490	Variant 2
halo-halo	48	halu-halo	44	Variant 2
salo-salo	42	salu-salo	154	Variant 2
estilo	1,127	istilo	316	Variant 2
estasyon	117	istasyon	864	Variant 2
estudyante	3,173	istudyante	56	Variant 1
estadistika	65	istadistika	26	Variant 2
espiritu	757	ispiritu	61	Variant 1
espesyal	1,095	ispesyal	27	Variant 1
estrikto	0	istrikto	92	Variant 2
eskandalo	346	iskandalo	586	Variant 2
politika	627	pulitika	5,547	Variant 2
opisina	2,132	upisina	65	Variant 1
kombinasyon	99	kumbinasyon	186	Variant 2
tradisyonal	448	tradisyunal	356	Variant 1
kompleto	34	kumpleto	633	Variant 2
kompanya	1,867	kumpanya	4,447	Variant 2
kontrata	2,332	kuntrata	0	Variant 1
komersiyal	97	kumersiyal	0	Variant 2

Table 5-23. Writing style proposed by KWF(Komisyon sa Wikang Filipino, 2013)

Correct	Frequency	Incorrect	Frequency	Higher MWS
iskandalo	586	eskandalo	346	Variant 1
istasyon	864	estasyon	117	Variant 1
istilo	316	estilo	1,127	Variant 1
minudo	0	menudo	19	Variant 2
nigatibo	0	negatibo	282	Variant 2
kuryente	2,155	koryente	207	Variant 2
dunasyon	0	donasyon	496	Variant 2
kumpanya	4,447	kompanya	1,867	Variant 1
sumbrero	144	sombrero	155	Variant 1
pulitika	5,547	politika	627	Variant 1

The results of the data association were also compared with an existing literature (Endriga, 2011). Table 5-24, Table 5-25, and Table 5-26 show a comparison:

- Four out of six words that take the –um- affix to focus the actor were also reported in the literature while one was reported to focus the theme;
- Two out of five words that take the na- affix to focus the theme were reported in the literature; and
- Three out of five words that take the nag- affix were reported in the literature.

Table 5-24. A comparison of the -um- affix usage

Results	(Endriga, 2011)
bagsak	bagsak (theme e.g., bumagsak)
dalaw	dalaw
dating	dating
hiling	hiling (non-volitional agent)
hinto	hinto (non-volitional agent)
sapi	N/A

Table 5-25. A comparison of the na- affix usage

Lemma	(Endriga, 2011)	
tuto	N/A	
halal	halal (theme e.g., "nahalal")	
mana	N/A	
kulong	kulong (theme e.g., "nakulong")	
batid	N/A	

Table 5-26. A comparison of the nag- affix usage

Lemma	(Endriga, 2011)
mula	mula
aksaya	N/A
pasya	N/A
tanong	tanong
hiwalay	hiwalay (dual-reciprocal)

6 Conclusion

A statistics-based rule generation framework for Filipino style and grammar checking has been presented in this paper. Monolingual corpora, annotated documents, as well as a tagged data were collected. The monolingual corpus was modeled and machine learning was used to aid in detecting spelling variations. A scoring mechanism was proposed to determine which variant represents the language model more. The tagged data was processed and data association was applied to determine affix usage. Lastly, a subset of the annotated documents was digitized and used as training data for a statistical machine translation engine to determine common mistakes made. A total of 396 variant pairs, 16 affix usage, and 22 phrase pairs were generated and transformed into rules. For spelling variations, the spelling with the lower score is declared in the pattern while the spelling with the higher score is declared in the suggestion; for affix usage, other forms of affixes were declared in the pattern while the affix with high confidence value was declared in the suggestion; and lastly for common mistakes, the token was declared in the pattern while the correction is declared in the suggestion. A subset of these linguistic phenomena was reported in the literature, an indication that the framework can be used to automate linguistic tasks. The proposed variant scoring matches the style proposed by Sentro ng Wikang Filipino (SWF) with 30% recall and matches the style proposed by the Komisyon sa Wikang (KWF) Filipino with 60% recall, an indication that the style proposed by KWF is more inclined with the variant scoring. Also, with the use of the framework, certain linguistic phenomena not covered by existing literature were generated such as the u vs. w spelling change (e.g., aauitan vs. aawitan). This highlights the potential corpus-based analyses have in language policy and planning. As future work, a policy paper could be drafted in coordination with experts in language planning. Additionally, SMT can be used with more data and a stemmer be developed as aid in producing the tagged data.

References

- Alam, M. J., Naushad UzZaman and Mumit Khan. (2006). N-gram Based Statistical Grammar Checker for Bangla and English Pages. <u>Proceedings of the 9th International Conference on Computer and Information Technology</u>.
- Allman, T., Stephen Beale, and Richard Denton. (2014). Toward an Optimal Multilingual Natural Language Generator: Deep Source Analysis and Shallow Target Analysis. <u>Proceedings of the 10th National Natural Language Processing Research Symposium</u>.
- Ang, M., Sonny G. Cagalingan, Paulo Justin U. Tan, and Reagan C. Tan. (2002). <u>FiSSAn: Filipino Sentence Syntax and Semantic Analyzer</u>. Undergraduate Thesis. De La Salle University, Manila.
- Atzmueller. M. (2012). Data Mining. Chap. 5 in <u>Applied Natural Language Processing: Identification</u>, <u>Investigation and Resolution</u>. Hershey, PA: IGI Global.
- Bautista, M.L.S., Loy V. Lising, and Danilo T. Dayag. (2004). <u>ICE-Philippines Lexical Corpus CD-ROM</u>. London: International Corpus of English.
- Bergen, B. (2001). Nativization Processes in L1 Esperanto. Journal of Child Language, 28: 575-595.
- Castilo, M.A., Matthew Phillip Go, Alron Jan Lam, Oliver Brian Syson, Peigen Xu, Ethel Ong, and Stephen Beale. (2014). Building a Simple Linguist's Assistant for Tagalog. <u>Proceedings of the 10th National Natural Language Processing Research Symposium</u>.
- Cavnar, W. and John M. Trenkle. (1994). N-Gram-Based Text Categorization. <u>Proceedings of the 3rd Annual Symposium on Document Analysis and Information Retrieval</u>.
- Cunningham, H., Diana Maynard, Kalina Bontcheva, Valentin Tablan. (2002). GATE: an Architecture for Development of Robust HLT Applications. <u>Proceedings of the 40th Annual Meeting of the Association for Computational Linguistics</u>.
- Dempster, A., Nan Laird, and Donald Rubin. (1977). Maximum Likelihood from Incomplete Data via the EM Algorithm. <u>Journal of the Royal Statistical Society</u>, 39(1): 1–38.
- Dice, L.R. (1945). Measures of the Amount of Ecologic Association between Species. <u>Ecology</u>, 26(3): 297-302.
- Dimalen, D.M. and Editha D. Dimalen. (2007). An OpenOffice Spelling and Grammar Checker Add-in Using an Open Source External Engine as Resource Manager and Parser. <u>Proceedings of the 4th National Natural Language Processing Research Symposium</u>.
- Dimalen, D.M. and Rachel Edita O. Roxas. (2007). AutoCor: A Query Based Automatic Acquisition of Corpora of Closely-related Languages. <u>Proceedings of the 21st Pacific Asia Conference on Language</u>, Information, and Computation.
- Dita, S., Rachel Edita O. Roxas, and Paul Inventado. (2009). Building online corpora of Philippine languages. <u>Proceedings of the 23rd Pacific Asia Conference on Language, Information and Computation</u>.
- Endriga, D.A. (2011). Refining the Agent. Proceedings of the 11th Philippine Linguistics Congress.
- Feldman, A. and Jirka Hana. (2010). A positional tagset for Russian. In: <u>Proceedings of the 7th International Conference on Language Resources and Evaluation, European Language Resources Association</u>.
- Ilao, J., Rowena Cristina L. Guevara, Virgilio D. Llenaresas, Eilene Antoinette G. Narvaez, Jovy M. Peregrino. (2011). Bantay-Wika: towards a better understanding of the dynamics of Filipino culture and linguistic change. Proceedings of the 9th Workshop on Asian Language Resources Collocated with IJCNLP 2011.
- Ilao, J., Timothy Israel D. Santos, and Rowena Cristina L. Guevara. (2012). Komparatibong Analisis ng Aktuwal na Gamit ng Wika at mga Piling Pamantayan sa Gramatika at Ortograpiya sa Filipino, Sebwano-Bisaya at Ilokano: Lapit Batay sa Korpus / Comparative analysis of actual language usage and selected grammar and orthographical rules for Filipino, Cebuano-Visayan and Ilokano: a Corpusbased Approach. Daluyan: Journal ng Wikang Filipino,
- Klein, D. and Chris Manning. (2003). Accurate unlexicalized parsing. <u>Proceedings of the 41st Meeting of the Association for Computational Linguistics</u>.

- Komisyon sa Wikang Filipino. (2013). Binagong Gabay sa Ortograpiya ng Wikang Filipino.
- Konchady, M. (2009). <u>Detecting Grammatical Errors in Text using a Ngram-based Ruleset</u>. Retrieved from: http://emustru.sourceforge.net/detecting_grammatical_errors.pdf
- Kondrak, G. (2005). N-gram similarity and distance. <u>Proceedings of the 12th International Conference on String Processing and Information Retrieval</u>.
- Jasa, M., Justin O. Palisoc, and Martee M. Villa. (2007). <u>Panuring Pampanitikan (PanPam): A Sentence Syntax and Semantic Based Grammar Checker for Filipino</u>. Undergraduate Thesis. De La Salle University, Manila.
- Lam, A.J., Ivan Paner, Jules Matthew Macatangay, and Duke Danielle Delos Santos. (2014). Classifying Typhoon Related Tweets. <u>Proceedings of the 10th National Natural Language Processing Research Symposium</u>.
- Levenshtein, V. (1965). Binary Codes Capable of Correcting Deletions, Insertions and Reversals. Doklady Academii Nauk SSSR, 163(4): 845-848.
- Lynch, J. (2008). <u>The English Language: A User's Guide</u>. Newburyport, MA: Focus Publishing/R. Pullins Company.
- Manguilimotan, E. and Yuji Matsumoto. (2011). Dependency-based Analysis for Tagalog Sentences. Proceedings of the 25th Pacific Asia Conference on Language, Information, and Computation.
- Miguel, D. and Rachel Edita Roxas. (2007). Comparative analysis of Tagalog part-of-speech (POS) taggers. Proceedings of the 4th National Natural Language Processing Research Symposium.
- Naber, D. (2003). <u>A Rule-Based Style and Grammar Checker</u>. Diploma Thesis. Bielefeld University, Bielefeld.
- Oco, N. and Allan Borra. (2011). A Grammar Checker for Tagalog using LanguageTool. <u>Proceedings of the 9th Workshop on Asian Language Resources Collocated with IJCNLP 2011</u>.
- Oco, N. and Rachel Edita Roxas. (2012). Pattern Matching Refinements to Dictionary-based Code-Switching Point Detection. <u>Proceedings of the 26th Pacific Asia Conference on Language, Information, and Computation</u>.
- Oco, N., Jason Wong, Joel Ilao, and Rachel Edita Roxas. (2013a). Code-Switches using Word Bigram Frequency Count. Proceedings of the 9th National Natural Language Processing Research Symposium.
- Oco, N., Joel IIao, Rachel Edita Roxas, Leif Romeritch Syliongka. (2013b). Measuring Language Similarity using Trigrams: Limitations of Language Identification. <u>Proceedings of the 3rd International Conference on Recent Trends in Information Technology</u>.
- Oco, N., Leif Romeritch Syliongka, Joel Ilao, Rachel Edita Roxas. (2013c). Dice's Coefficient on Trigram Profiles as Metric for Language Similarity. Proceedings of the 16th Oriental COCOSDA.
- Oco, N., Leif Romeritch Syliongka, Joel Ilao, and Rachel Edita Roxas. (2014a). N-gram based Language Identification and Rule-based Grammar Checking. <u>Proceedings of the 14th Philippines Computing Science Congress</u>.
- Oco, N., Raquel Sison-Buban, Leif Romeritch Syliongka, Rachel Edita Roxas, and Joel IIao. (2014b). Ang Paggamit ng Trigram Ranking Bilang Panukat sa Pagkakahalintulad at Pagkakapangkat ng mga Wika/Trigram Ranking: Metric for Language Similarity and Clustering. Malay, 26 (2), pp: 53-68.
- Rabo, V. (2004). <u>TPOST: A template-based, n-gram part-of-speech tagger for Tagalog</u>. Graduate Thesis. De La Salle University, Manila.
- Rabo, V. and Charibeth K. Cheng. (2006). TPOST: A Template-based Part-of-Speech Tagger for Tagalog. Journal of Research in Science, Computing, and Engineering, 3(1).
- Ramos, T. (1971). Makabagong Balarila ng Pilipino. Manila: Rex Bookstore.
- Roxas, R.E., Charibeth K. Cheng, and Nathalie Rose T. Lim. (2009). Philippine Language Resources: Trends and Directions. Proceedings of the 7th Workshop on Asian Language Resource.
- Roxas, R.E., Allan Borra, Charibeth Cheng, Nathalie Rose Lim, Ethel Ong, Michelle Wendy Tan. (2008). Building Language Resources for a Multi-Engine English-Filipino Machine Translation System. Language Resources and Evaluation, 42(2): 183-195.
- Santos, L. (1939). Balarila ng Wikang Pambansa. Manila: Institute of Philippine Language.

- Sentro ng Wikang Filipino Diliman. (2008). <u>Gabay sa Editing sa Wikang Filipino</u>. Quezon City: Unibersidad ng Pilipinas.
- Schachter, P. and Fe T. Otanes. (1972). <u>Tagalog Reference Grammar</u>. Berkeley, CA: University of California Press.
- Schumaker, R. and Hsinchun Chen. (2010). Interaction Analysis of the ALICE Chatterbot: A Two-Study Investigation of Dialog and Domain Questioning. <u>IEEE Transactions on Systems</u>, <u>Man and Cybernetics</u>, Part A: Systems and Humans, 40(1): 40-51.
- Syliongka, L.R. and Nathaniel Oco. (2014). Using Language Modeling and Data Association to Perform Named Entity Recognition. <u>Proceedings of the 10th National Natural Language Processing Research Symposium</u>.
- Wang, T., Yaoyong Li, Kalina Bontcheva, Hamish Cunningham, and Ji Wang. (2006). Automatic Extraction of Hierarchical Relations from Text. <u>Proceedings of the 3rd European Conference on the Semantic Web: Research and Applications.</u>
- Yeong, Y.-L. and Tien-Ping Tan. (2010). Language Identification of Code-Switching Malay-English Words Using Syllable Structure Information. <u>Proceedings of the 2nd Workshop on Spoken Languages</u> Technologies for Under-Resourced Languages.
- Zuraw, K. (2006). Using the Web as a Phonological Corpus: a Case Study from Tagalog. <u>Proceedings of the 2nd International Workshop on Web as Corpus.</u>

Appendix A. Email Communication

This section shows email communications cited in this research.

With Mr. Mark Johnson (February 01, 2011)

Professor of Language Sciences (CORE)
Director, Centre for Language Sciences (CLaS)
Department of Computing
Faculty of Science
Macquarie University
Sydney, Australia
mark.johnson@mq.edu.au

Hi Nathaniel,

I think most grammar-checkers are simple regular-expression pattern matchers -- they look for a relatively small set of possible errors. The idea is that it's not enough to detect an error; the program should also propose a correction. This is not straight-forward with a probabilistic grammar; it's hard to tell exactly where the error is, and how it should be fixed.

However, I've heard that the grammar checker in Microsoft Word (TM) does use a probabilistic model, so I guess it can be made to work. Microsoft isn't saying exactly how it works, though!

Best, Mark Johnson

With Mr. Manu Konchady (May 08, 2011)

Mustru Search Services

mkonchady@yahoo.com

1. In your paper, you mentioned that one of the drawbacks of LanguageTool (http://www.languagetool.org/) is its low recall rate because the "number of rules to cover a majority of the grammatical errors is much larger". Could you please elaborate this statement.

Well, I believe that the grammar rules in LanguageTool must be manually generated. Unfortunately, language can be used in almost infinite ways and it takes a large number of rules to spot all possible errors. One example of a rule from LanguageTool is shown in the paper. You can imagine the effort required to generate several thousand such rules.

2. What is the relationship between the amount of rules and the recall rate of a Manual Rule-Based system?

Since, the number of rules in a manual system is less than the number of rules in an automated system, a grammar checker using the manual rules will miss many of the possible errors leading to lower recall.

3. What are the advantages of a Manual Rule-Based system over an Automatic Rule-Based system?

An automatic system will create rules based on statistics in a tagged corpus. However, the tagged corpus may not cover all possible instances of tag patterns and therefore, the automatic rules may not generate all possible language POS tag patterns.

It is easy to add rules to manual system to gradually build a more precise grammar checker over time. Any errors detected by the automatic system are almost certain to be errors. Therefore precision is high.

Regards,

Manu Konchady

With Mr. Davis Dimalen (2011)

De La Salle University Alumni

d_dimalen@yahoo.com

The problems observed from the corpus extracted from ICE-PH. The problems that were considered in this report are code switching points that were tagged by the "<indig></indig>" tag pairs. The items below are the descriptions of the different problems discovered in the corpus. The problematic elements where marked red.

1. Some tags were not closed

Example:

These things <indig> naka- boutique
Oh she she she tried it for the
soap but it 's kinda big
She make it she 'll make it smaller
<indig> para </indig> it 's easier to repack it

2. Improper use of close </indig> tag.

Example:

I was so <indig>lugi pala <indig> the other day Why
Yesterday I missed all my classes you know that

3. Some words were tagged as indigenous when they are not really indigenous Example:

Especially <indig> yung mga mga ano yung mga trying times </indig>

The above problems did not only occur once in the corpus but several times.

Appendix B. Word Unigram

hindi 231660	maging 29043	inyong 17993	gobyerno 12430
isang 198385	saan 28298	ngunit 17974	rights 12369
kung 166616	dalawang 27769	doon 17889	dahilan 12278
niya 142099	kasi 27620	marami 17850	gaya 12275
para 141337	ilang 27307	babae 17767	ayaw 12129
siya 139178	tayo 26708	nina 17572	iyan 12072
nang 139067	bahay 26281	buong 17568	mang 12020
naman 129414	kayo 25919	sana 16835	kapatid 12005
lang 125746	hanggang 25359	nitong 16743	pagkatapos 11745
kanyang 121829	akong 25315	ring 16743	buwan 11607
dahil 112044	bagong 24952	maaaring 16447	magiging 11600
lamang 82785	taong 24885	tulad 16446	nangyari 11595
nila 72313	bago 24380	tunay 16377	higit 11593
sila 71784	taon 24147	pala 16026	patuloy 11409
kanilang 70435	mong 24010	oras 15892	gawin 11343
kaya 65765	itong 23711	biktima 15814	katawan 11293
lahat 65050	naging 23701	kailangan 15781	reserved 11267
walang 58938	alam 23661	asawa 15696	kaso 11202
nito 57172	kasama 23583	pamilya 15249	gayon 11193
upang 56721	habang 23137	puso 15181	lalong 11188
ngayon 53802	talaga 23039	sabihin 14798	pangalan 11051
niyang 48410	panahon 22570	bata 14776	amin 10971
siyang 47890	laban 22570	huwag 14770	bahagi 10941
wala 47411	sina 22118	malaking 14714	pera 10879
mula 45978	bagay 22009	aming 14446	tanong 10774
pang 44606	tungkol 21636	nating 14420	muli 10754
aking 43460	pamamagitan 21525	gabi 14372	mundo 10705
dapat 41486	kapag 21088	dalawa 14287	dumating 10676
natin 40235	sinabi 20998	halos 14226	talagang 10475
noong 39468	kanila 20960	lugar 14104	sagot 10456
kanya 38996	unang 20785	trabaho 14055	batas 10421
pero 38978	nilang 20782	ikaw 13876	tila 10414
ating 38268	lalo 20588	kaniyang 13820	paano 10377
buhay 37376	maraming 20010	nasabing 13743	pamahalaan 10368
bilang 37274	iyon 19984	agad 13656	ngayong 10344
iyong 37192	umano 19923	lalaki 13639	mahal 10256
namin 36236	silang 19824	muna 13588	totoo 10244
dito 36083	dating 19675	ginawa 13515	nakita 9966
kong 35302	bayan 19394	sino 13513	paraan 9931
anak 34689	bakit 19362	bawat 13270	ginagawa 9912
kahit 34048	matapos 19168	problema 13096	kamay 9880
kami 33045	sabi 19075	kahapon 13014	that 9880
ibang 32845	gusto 18991	kaibigan 12954	bang 9710
loob 32570	sarili 18987	ibig 12644	lupa 9693
araw 32542	namang 18770	tatlong 12619	huling 9648
akin 31354	kundi 18556	rito 12575	magandang 9593
bansa 30570	ninyo 18200	kang 12541	nung 9574
nasa 30133	noon 18043	baka 12528	magulang 9545
yung 29078	parang 17994	ayon 12432	inyo 9545
June 27010	Paralle 1777	a, 511 12 152	111,0 70 10

Appendix C. Personal Vitae

Nathaniel Oco Researcher Center for Language Technologies College of Computer Studies De La Salle University-Manila nathan.oco@delasalle.ph +639178477549