COMP9024: Data Structures and Algorithms

Priority Queues and Disjoint Set Union-Find Data Structures

Contents

- Priority queue ADT
- Heap-based priority queues
- Binomial Heaps
- Disjoint set union-find data structures and algorithms

Priority Queue ADT

- A priority queue stores a collection of items.
- Each item is a pair (key, value), where key is the priority of the item.
- Main operations of the Priority Queue ADT:
 - Insert(k, x)
 Inserts an item with key k and value x.
 - RemoveMin() (RemoveMax())
 Removes and returns the item
 with smallest key (largest key).
 We consider RemoverMin() only.
 Implementation of RemoveMax()
 is similar.

- Additional operations
 - Min() (Max())
 returns, but does not remove,
 an entry with smallest key
 (largest key)
 - Size(), IsEmpty()

- Applications:
 - Standby flyers
 - Auctions
 - Stock market

Total Order Relations

- Keys in a priority queue can be arbitrary objects on which a total order is defined.
- Two distinct entries in a priority queue can have the same key.

- Mathematical concept of total order relation ≤
 - Reflexive property:

$$x \le x$$

Antisymmetric property:

$$x \le y \land y \le x \Rightarrow x = y$$

• Transitive property:

$$x \le y \land y \le z \Longrightarrow x \le z$$

Priority Queue Sorting

- We can use a priority queue to sort a set of comparable elements:
 - 1. Insert the elements one by one with a series of Insert operations.
 - 2. Remove the elements in sorted order with a series of RemoveMin operations.
- The running time of this sorting algorithm depends on the priority queue implementation.

```
Algorithm PQ-Sort(S)
 Input sequence S
 Output sequence S sorted in
  non-decreasing order
    { Create an empty priority queue P;
     while (\neg IsEmpty(S))
       \{ e = RemoveFirst(S); \}
        Insert (P, e);
     while (\neg IsEmpty(P))
       \{ e = RemoveMin(P); \}
        InsertLast(S, e);
```

List-based Priority Queue

Implementation with an unsorted list:

- Performance:
 - Insert takes O(1) time since we can insert the item at the beginning or end of the list.
 - RemoveMin and Min take O(n) time since we have to traverse the entire list to find the smallest key.

• Implementation with a sorted list:

- Performance:
 - Insert takes O(n) time since we have to find the place where to insert the item.
 - RemoveMin and Min take O(1) time, since the smallest key is at the beginning.

Selection-Sort

- Selection-sort is a variation of PQ-sort where the priority queue is implemented with an unsorted list.
- Running time of Selection-sort:
 - 1. Inserting the elements into the priority queue with n insert operations takes O(n) time.
 - 2. Removing the elements in sorted order from the priority queue with n RemoveMin operations takes time proportional to

$$1 + 2 + ... + n$$

• Selection-sort runs in $O(n^2)$ time.

Selection-Sort Example

	List S	P	Priority Queue P	
Input:	(7,4,8,2,5,3,9)	()		
Phase 1				
(a)	(4,8,2,5,3,9)		(7)	
(b)	(8,2,5,3,9)	(7,4)		
•				
(g)	()		(7,4,8,2,5,3,9)	
Phase 2				
(a)	(2)		(7,4,8,5,3,9)	
(b)	(2,3)		(7,4,8,5,9)	
(c)	(2,3,4)		(7,8,5,9)	
(d)	(2,3,4,5)		(7,8,9)	
(e)	(2,3,4,5,7)	(8,9)		
(f)	(2,3,4,5,7,8)		(9)	
(g)	(2,3,4,5,7,8,9)		()	

Insertion-Sort

- Insertion-sort is the variation of PQ-sort where the priority queue is implemented with a sorted list.
- Running time of Insertion-sort:
 - 1. Inserting the elements into the priority queue with n Insert operations takes time proportional to

$$1 + 2 + ... + n$$

- 2. Removing the elements in sorted order from the priority queue with a series of n RemoveMin operations takes O(n) time.
- Insertion-sort runs in $O(n^2)$ time.

Insertion-Sort Example

	List S (7,4,8,2,5,3,9)	P riority queue P	
Input:			()
Phase 1			
(a)	(4,8,2,5,3,9)		(7)
(b)	(8,2,5,3,9)	(4,7)	
(c)	(2,5,3,9)		(4,7,8)
(d)	(5,3,9)		(2,4,7,8)
(e)	(3,9)		(2,4,5,7,8)
(f)	(9)		(2,3,4,5,7,8)
(g)	()		(2,3,4,5,7,8,9)
Phase 2			
(a)	(2)		(3,4,5,7,8,9)
(b)	(2,3)		(4,5,7,8,9)
•	•		•
(g)	(2,3,4,5,7,8,9)		()

In-place Insertion-sort

- Instead of using an external data structure, we can implement selection-sort and insertion-sort in-place.
- A portion of the input list itself serves as the priority queue.
- For in-place insertion-sort
 - We keep sorted the initial portion of the list.
 - We can use swaps instead of modifying the list.

Heaps

Heaps

- A min-heap is a binary tree storing keys at its nodes and satisfying the following properties:
 - Heap-Order: for every node v other than the root, key(v) ≥ key(parent(v))
 - Complete Binary Tree: let h be the height of the heap
 - for i = 0, ..., h 1, there are 2^i nodes of depth i
 - at depth *h*, all the nodes are as far left as possible
- The last node of a heap is the rightmost node of depth h.

- A max-heap satisfies a different heap order property:
 - For every node v other than the root,
 key(v) ≤ key(parent(v))
- We consider min-heap only

Height of a Heap

• Theorem: A heap storing n keys has height $O(\log n)$.

Proof: (we apply the complete binary tree property)

- Let h be the height of a heap storing n keys.
- Since there are 2^i keys at depth i = 0, ..., h-1 and at least one key at depth h, we have $n \ge 1+2+4+...+2^{h-1}+1$.
- Thus, $n \ge 2^h$, i.e., $h \le \log n$.

Heaps and Priority Queues

- We can use a heap to implement a priority queue.
- We store a (key, element) item at each node.
- We keep track of the position of the last node.
- For simplicity, we show only the keys in the pictures.

Insertion into a Heap

- Operation Insert of the priority queue ADT corresponds to the insertion of a key k to the heap.
- The insertion algorithm consists of three steps:
 - Find the insertion node z
 (the new last node)
 - Store k at z
 - Restore the heap-order property (discussed next)

Upheap

- After the insertion of a new key k, the heap-order property may be violated.
- Algorithm upheap restores the heap-order property by swapping ${\it k}$ along an upward path from the insertion node.
- Upheap terminates when the key k reaches the root or a node whose parent has a key smaller than or equal to k.
- Since a heap has height $O(\log n)$, upheap runs in $O(\log n)$ time.

Removal from a Heap

- Method RemoveMin of the priority queue ADT corresponds to the removal of the root key from the heap.
- The removal algorithm consists of three steps
 - Replace the root key with the key of the last node w
 - Remove w
 - Restore the heap-order property (discussed next)

Downheap

- After replacing the root key with the key k of the last node, the heap-order property may be violated.
- Algorithm downheap restores the heap-order property by swapping key k along a downward path from the root.
- Downheap terminates when key k reaches a leaf or a node whose children have keys greater than or equal to k.
- Since a heap has height $O(\log n)$, downheap runs in $O(\log n)$ time.

Updating the Last Node

- The insertion node can be found by traversing a path of $O(\log n)$ nodes:
 - Go up until a left child or the root is reached
 - If a left child is reached, go to the right child
 - Go down left until the next node is null.
- Similar algorithm for updating the last node after a removal.

Heap-Sort

- Consider a priority queue with *n* items implemented by means of a heap
 - The space used is O(n)
 - Operations Insert and RemoveMin take O(log n) time
 - Operations Size, IsEmpty, and Min take O(1) time

- Using a heap-based priority queue, we can sort a sequence of n items in O(n log n) time.
- The resulting algorithm is called heap-sort.
- Heap-sort is much faster than quadratic sorting algorithms, such as insertion-sort and selection-sort.

Array-based Heap Implementation

- We can represent a heap with n keys by means of an array of length n + 1.
- For the node at rank i
 - the left child is at rank 2i
 - the right child is at rank 2i + 1
- Links between nodes are not explicitly stored.
- The cell of at rank 0 is not used.
- Operation Insert corresponds to inserting at rank n + 1.
- Operation RemoveMin corresponds to removing at rank n.
- Yields in-place heap-sort.

Merging Two Heaps

- We are given two two heaps and a key k.
- We create a new heap with the root node. storing k and with the two heaps as subtrees
- We perform downheap to restore the heap-order property.

Bottom-up Heap Construction

- We can construct a heap storing n given keys in using a bottom-up construction with log n phases.
- In phase i, pairs of heaps with $2^{i}-1$ keys are merged into heaps with $2^{i+1}-1$ keys.

Example (1/4)

25

Example (2/4)

Example (3/4)

Example (4/4)

Analysis

- We visualize the worst-case time of a downheap with a proxy path that goes first right and then repeatedly goes left until the bottom of the heap (this path may differ from the actual downheap path)
- Since each node is traversed by at most two proxy paths, the total number of nodes of the proxy paths is O(n).
- Thus, bottom-up heap construction runs in O(n) time.
- Bottom-up heap construction is faster than n successive insertions and speeds up the first phase of heap-sort.

Binomial Heaps

Merge Two Heaps with Different Sizes

Merge(H1,H2): Merge two heaps H1 and H2 with sizes m and n.

Algorithm 1: Insert each entry from H1 and H2 into a new heap: Running time: O((m+n) log (m+n))

Algorithm 2: Use the bottom-up heap construction algorithm Running Time: O(m+n)

Can we merge two heaps in O(log(m+n)) time?

Binomial Trees

- Recursive Definition of Binomial tree B_k of height k:
 - B_0 = single root node
 - $B_k = Attach B_{k-1}$ to root of another B_{k-1}

Properties of Binomial Trees

For the binomial tree B_k :

- 1. There are 2^k nodes
- 2. The height of B_k is k
- 3. There are exactly $\begin{pmatrix} k \\ i \end{pmatrix}$ (binomial coefficient) nodes at depth i for i = 0, 1, ..., k

Binomial Heaps

- A binomial heap Hk is a set of binomial trees B₀, B₁, ..., Bk where each binomial tree is heap-ordered:
 - ➤ The key of each node ≥ the key of the parent
- The root of each binomial tree in Hk contains the smallest key in that tree.

findMin()

• Traverse all the roots, taking O(log n) time

Merge Two Binomial Heaps (1/6)

- Key ideas: merge individual pairs of heaps with the same height
- Steps for merging two binomial heaps:
 - 1. Create a new empty binomial heap
 - 2. Start with B_k for the smallest k
 - 3. If there is only one B_k , add B_k to the new binomial heap and go to Step 3 with k = k + 1
 - 4. Merge two $B_{k's}$ into a new B_{k+1} by making the root with a larger key the child of the other root. Go to Step 3 with k = k + 1
- Time complexity: O(log (m+n)), where m and n are the sizes of two heaps.

Merge Two Binomial Heaps (2/6)

Merge Two Binomial Heaps (3/6)

Merge Two Binomial Heaps (4/6)

Merge Two Binomial Heaps (5/6)

Merge Two Binomial Heaps (6/6)

Insertion

- Create a single node tree B_0 with the new item and merge with the existing heap
- Time complexity: O(log n)

How Many Binomial Trees in a Binomial Heap?

Consider a binomial heap with n nodes

- Convert n into a binary number bk bk-1 ... b1 b0
- If $b_i \neq 0$ (i=0, 1, ..., k), the binomial tree B_i is not empty

Example: n=28.

• 28=16+8+4=11100. So k=4. The binomial heap consists of B₄ (16 nodes), B₃ (8 nodes) and B₂ (4 nodes).

removeMin() (1/4)

Steps:

- 1. Find the tree B_k with the smallest root
- 2. Remove B_k from the heap
- 3. Keep the entry stored at the root of B_k (return value) and remove the root of B_k (now we have a new forest B_0 , B_1 , ..., B_{k-1})
- 4. Merge this new forest with remainder of the original
- 5. Return the entry with the min key

Run time analysis:

- Step 1 is O(log n), Step 2 and Step 3 are O(1), and Step 4 is O(log n)
- Total time complexity is O(log n)

removeMin() (2/4)

removeMin() (3/4)

removeMin() (4/4)

Disjoint Set Union-Find Structures

Disjoint Set Union-Find Operations

- MakeSet(x): Create a singleton set containing the element x and return the position storing x in this set.
- Union(A,B): Return the set A U B, destroying the old A and B.
- Find(e): Return the set containing the element e.

List-based Implementation

- Each set is stored in a sequence represented with a linked-list
- Each node should store an object containing the element and a reference to the set name

Analysis of List-based Representation

- When doing a union, always move elements from the smaller set to the larger set
 - Each time an element is moved it goes to a set of size at least double its old set
 - Thus, an element can be moved at most O(log n) times
- Total time needed to do n unions and finds is O(n log n).

Tree-based Implementation

- Each element is stored in a node, which contains a pointer to a set name
- A node v whose set pointer points back to v is also a set name
- Each set is a tree, rooted at a node with a self-referencing set pointer
- For example: The sets "1", "2", and "5":

Union-Find Operations

 To do a Union, simply make the root of one tree point to the root of the other

 To do a Find, follow setname pointers from the starting node until reaching a node whose set-name pointer refers back to itself

Union-Find Heuristic 1

- Union by size:
 - When performing a union, make the root of smaller tree point to the root of the larger
- Implies O(n log n) time for performing n union-find operations:
 - Each time we follow a pointer, we are going to a subtree of size at least double the size of the previous subtree
 - Thus, we will follow at most O(log n) pointers for any find.

Union-Find Heuristic 2

- Path compression:
 - After performing a find, compress all the pointers on the path just traversed so that they all point to the root

- Implies O(n log* n) time for performing n union-find operations:
 - Proof is somewhat involved.

Proof of log* n Amortized Time

- For each node v that is a root
 - define n(v) to be the size of the subtree rooted at v (including v)
 - identified a set with the root of its associated tree.
- We update the size field of v each time a set is unioned into v. Thus, if v is not a root, then n(v) is the largest the subtree rooted at v can be, which occurs just before we union v into some other node whose size is at least as large as v's.
- For any node v, then, define the rank of v, which we denote as r(v), as $r(v) = [\log n(v)]$:
- Thus, $n(v) \ge 2^{r(v)}$.
- Also, since there are at most n nodes in the tree of v, r (v) = [logn], for each node v.

Proof of log* n Amortized Time (2)

- For each node v with parent w:
 - r(w) > r(v)
- Claim: There are at most n/2^s nodes of rank s.
- Proof:
 - Since r(v) < r(w), for any node v with parent w, ranks are monotonically increasing as we follow parent pointers up any tree.
 - Thus, if r(v) = r(w) for two nodes v and w, then the nodes counted in n(v) must be separate and distinct from the nodes counted in n(w).
 - If a node v is of rank s, then $n(v) \ge 2^s$.
 - Therefore, since there are at most n nodes total, there can be at most $n/2^s$ that are of rank s.

Proof of log* n Amortized Time (3)

- Definition: Tower of two's function:
 - $t(i) = 2^{t(i-1)}$
- Nodes v and u are in the same rank group g if
 - $g = \log^*(r(v)) = \log^*(r(u))$:
- Since the largest rank is log n, the largest rank group is
 - $\log^*(\log n) = (\log^* n)-1$

Proof of log* n Amortized Time (4)

- Charge 1 cyber-dollar per pointer hop during a find:
 - If w is the root or if w is in a different rank group than v, then charge the find operation one cyber-dollar.
 - Otherwise (w is not a root and v and w are in the same rank group), charge the node v one cyber-dollar.
- Since there are most (log* n)-1 rank groups, this rule guarantees that any find operation is charged at most log* n cyber-dollars.

Proof of log* n Amortized Time (5)

- After we charge a node v then v will get a new parent, which is a node higher up in v's tree.
- The rank of v 's new parent will be greater than the rank of v 's old parent w.
- Thus, any node v can be charged at most the number of different ranks that are in v's rank group.
- If v is in rank group g > 0, then v can be charged at most t(g)-t(g-1) times before v has a parent in a higher rank group (and from that point on, v will never be charged again). In other words, the total number, C, of cyber-dollars that can ever be charged to nodes can be bound as

$$C \leq \sum_{g=1}^{\log^* n-1} n(g) \cdot (t(g) - t(g-1))$$

Proof of log* n Amortized Time (end)

• Bounding n(g):

$$n(g) \le \sum_{s=t(g-1)+1}^{t(g)} \frac{n}{2^{s}}$$

$$= \frac{n}{2^{t(g-1)+1}} \sum_{s=0}^{t(g)-t(g-1)-1} \frac{1}{2^{s}}$$

$$< \frac{n}{2^{t(g-1)+1}} \cdot 2$$

$$= \frac{n}{2^{t(g-1)}}$$

$$= \frac{n}{t(g)}$$

• Returning to C:

$$C < \sum_{g=1}^{\log^* n - 1} \frac{n}{t(g)} \cdot (t(g) - t(g - 1))$$

$$\leq \sum_{g=1}^{\log^* n - 1} \frac{n}{t(g)} \cdot t(g)$$

$$= \sum_{g=1}^{\log^* n - 1} n$$

$$\leq n \log^* n$$

$$\leq n \log^* n$$

Summary

- Priority queue ADT
- List-based priority queues
- Heap-based priority queues
- Bottom-up heap construction
- Binomial heaps
- Disjoint set union-find data structures and algorithms
- Suggested reading:
 - Sedgewick, Ch. 1.3, 9.