Learning Green's Functions in RKHS and Application to Kohn–Sham DFT

Haejung Koh, Pritam Kayal

16th April 2025

Based on: Stepaniants et al., "Learning Partial Differential Equations in Reproducing Kernel Hilbert Spaces," JMLR, 2023

Clarification of the Paper

- Paper: Stepaniants et al., "Learning Partial Differential Equations in Reproducing Kernel Hilbert Spaces," JMLR, 2023
- \bullet Goal: Learn the Green's function G(x,y) of linear PDEs via functional regression in RKHS
- Key idea: Represent G(x, y) as a kernel expansion, minimize operator residual norm in RKHS dual space
- Target PDE form: $u(y) = \int G(x, y) f(x) dx + \beta(y)$

Gauss Law:
$$-\vec{\nabla}^2 V(\vec{x}) = \rho(\vec{x})$$

 $-\vec{\nabla}^2$: — Laplacian
 $V(\vec{x})$: Electric Potential
 $\rho(\vec{x})$: Charge Density

Electric potential due to point charge is given by $G(\vec{x}, \vec{x}') = 1/4\pi |\vec{x} - \vec{x}'|$. Full potential is a sum of them: $V(\vec{x}) = \int d^3x' \frac{\rho(\vec{x}')}{4\pi |\vec{x} - \vec{x}'|}.$

Green's Function G(x, s) is a solution of a linear PDE for point source at s given by Dirac Delta $\delta(x - s)$:

$$\hat{P}_{x}G(x,s)=\delta(x-s).$$

For $\hat{P}_x u(x) = f(x)$ and $f(x) \approx \sum_i c_i \delta(x - s_i)$ (RKHS-like), we have

$$\hat{P}_{x}\left[\sum_{i}c_{i}G(x,s_{i})\right]=\sum_{i}c_{i}\left[\hat{P}_{x}G(x,s_{i})\right]=\sum_{i}c_{i}\delta(x-s_{i})\approx f(x).$$
 (1)

Then u is given by a linear superposition of G from different sources s_i :

$$u(x) \approx \sum_{i} c_{i} G(x, s_{i}) = \sum_{i} c_{i} \int \delta(x' - s_{i}) G(x, x') dx'$$
 (2)

$$= \int \left[\sum_{i} c_{i} \delta(x'-s_{i})\right] G(x,x') dx' \approx \int f(x') G(x,x') dx'. \tag{3}$$

In practice, we can find a "small enough" σ where $k_{\sigma}(x,x') \equiv \delta_{\sigma}(x-x')$ serve as a "pseudo" Dirac Delta.

$$f(x) = \sin(2\pi x)e^{-x^2} \approx \sum_{i=1}^{n} a_i \delta_{\sigma}(x - x_i)$$
$$\sigma = 0.05, \quad n = 50$$

- In RKHS, we have "Dirac Delta-like" reproducing kernel $k(\cdot,\cdot)$.
- Green function would be a solution of $\hat{P}_{x}G(x,y)=k(x,y).$
- RKHS would be a "right" function space to solve PDE.

Setting up our working space

Definition

For any compact $K \subset \mathbb{R}^n$, \mathcal{D}_K is defined as the set of smooth functions ϕ with supp $(\phi) \subset K$ with a topology τ_K defined by a countable collection of norms

$$||\phi||_{\mathcal{N}} = \sup_{|\alpha| \le \mathcal{N}} \sup_{x \in \mathbb{R}^n} |D^{\alpha}\phi(x)|$$

This makes \mathcal{D}_K a Frechet Space (a complete topological vector space with a translation invariant metric)

Definition

 $\mathcal{D}(\mathbb{R}^n)$ is defined as the set of smooth functions with compact support. We define $\beta = \{W \subset \mathcal{D}(\mathbb{R}^n) : W \text{ is convex and balanced}, W \cap \mathcal{D}_K \in \tau_K \text{ for all compact } K \subset \mathbb{R}^n \}$. We equip $\mathcal{D}(\mathbb{R}^n)$ with topology

$$\tau = \{ \phi + W : \phi \in \mathcal{D}(\mathbb{R}^n), W \in \beta \}$$

Setting up our working space (cont.)

Definition

A continuous (w.r.t τ) linear functional on $\mathcal{D}(\mathbb{R}^n)$ is called a distribution on \mathbb{R}^n . The set of distributions is denoted $\mathcal{D}'(\mathbb{R}^n)$.

Examples:

- Dirac distribution δ is defined as $\langle \delta, \phi \rangle = \phi(0)$
- If f is any locally integrable function, that is $\int_K |f(x)| dx < \infty$ for all compact $K \subset \mathbb{R}^n$, then Λ_f defined as $\langle \Lambda_f, \phi \rangle = \int f(x) \phi(x) dx$ is a distribution
- If Λ is any distribution then for any multi-index $\alpha \in \mathbb{R}^n$, then $D^{\alpha}\Lambda$, defined as $\langle D^{\alpha}\Lambda, \phi \rangle = (-1)^{|\alpha|} \langle \lambda, D^{\alpha}\phi \rangle$, is also a distribution. Here

$$D^{\alpha} = \left(\frac{\partial}{\partial x_1}\right)^{\alpha_1} \left(\frac{\partial}{\partial x_2}\right)^{\alpha_2} \dots \left(\frac{\partial}{\partial x_n}\right)^{\alpha_n}$$

Convolution

For two function f and g on \mathbb{R}^n , we define their convolution as

$$(f * g)(x) = \int f(y)g(x - y)dy$$
 (when it exists)

For a distribution $\Lambda \in \mathcal{D}'(\mathbb{R}^n)$ and $\phi \in \mathcal{D}(\mathbb{R}^n)$, $\Lambda * \phi$ is a function on \mathbb{R}^n defined as

$$(\Lambda * \phi)(x) = \langle \Lambda, \tau_x \tilde{\phi} \rangle$$
 where $\tau_x f : y \mapsto f(y - x)$ and $\tilde{f} : y \mapsto f(-y)$

Properties:

- $\delta * \phi = \phi$ for any $\phi \in \mathcal{D}(\mathbb{R}^n)$
- $\Lambda * \phi \in C^{\infty}(\mathbb{R}^n)$ for any $\Lambda \in \mathcal{D}'(\mathbb{R}^n), \phi \in \mathcal{D}(\mathbb{R}^n)$ and

$$D^{\alpha}(\Lambda * \phi) = (D^{\alpha}\Lambda) * \phi = \Lambda * (D^{\alpha}\phi)$$

Definition

If P is a polynomial function on \mathbb{R}^n defined as $P(x) = \sum_{|\alpha| \leq N} c_{\alpha} x^{\alpha}$ then we define differential operator P(D) as $P(D) = \sum_{|\alpha| \leq N} c_{\alpha} D^{\alpha}$. Here, x^{α} for $x \in \mathbb{R}^n$ and multi-index $\alpha \in \mathbb{R}^n$, is defined as $\prod_{i=1}^n x_i^{\alpha_i}$

Theorem

For any non-homogeneous linear PDE, P(D)u = f for some polynomial P, if there exists a distribution Λ (called a fundamental solution) such that $P(D)\Lambda = \delta$ then $u = \Lambda * f$ is a solution.

Proof.

Let Λ be such a distribution. Then, using the properties above,

$$P(D)(\Lambda * f) = (P(D)\Lambda) * f = \delta * f = f$$

Green's Functions

Note that if Λ_F is a fundamental solution to PDE above, then

$$u(y) = (\Lambda_F * f)(y) = \langle \Lambda_F, \tau_y \tilde{f} \rangle = \int F(x) f(y - x) dx = \int F(y - x) f(x) dx$$

So we have $u(y) = \int G(x, y) f(x) dx$ where G(x, y) = F(y - x).

What about initial/ boundary conditions? What about homogeneous equations?

$$u(y) = \beta(y) + \int_{K} G(x, y) f(x) dx$$

Theory

Empirical Risk and Empirical Regularized Risk:

$$\hat{R}(\beta,G) = \frac{1}{N} \sum_{i=1}^{N} \left| \left| u_i - \beta - \int_{D_f} G(x,\cdot) f_i(x) dx \right| \right|_{L^2(D_u)}^2$$

$$\hat{R}_{\rho,\lambda}(\beta,G) = \hat{R}(\beta,G) + \rho||\beta||_{\mathcal{B}} + \lambda||G||_{\mathcal{G}}$$

Goal:

$$\hat{\beta}_{N,\rho,\lambda}, \hat{G}_{N,\rho,\lambda} =_{\beta \in \mathcal{B}, G \in \mathcal{G}} \hat{\mathcal{R}}_{\rho,\lambda}(\beta, G)$$

Exponential Kernels:

$$K(x, y, \xi, \eta) = \exp\left(-\sqrt{\frac{||x - \xi||^2}{\sigma_x^2} + \frac{||y - \eta||^2}{\sigma_y^2}}\right)$$
$$Q(y, \eta) = \exp\left(-\frac{||y - \eta||}{\sigma_y}\right)$$

Theorem

For optimal $\hat{\beta}_{N,\rho,\lambda}$ and $\hat{G}_{N,\rho,\lambda}$ on data $\{f_i,u_i\}_{i=1}^n \subset L^2(D_f) \times L^2(D_u)$, the function $\hat{G}_{N,\rho,\lambda}$ must have the form

$$\hat{G}_{N,\rho,\lambda}(x,y) = \sum_{i=1}^{n} \int_{D_f \times D_u} K(x,y,\xi,\eta) f_i(\xi) c_i(\eta) d(\xi,\eta)$$

where $c_i \in L^2(D_u)$ for all $i \in \{1, 2, ..., n\}$

- Model $\mathcal G$ as a space of linear operators $\mathcal O$ with $O_G(f)=y\mapsto \int_{D_f}G(x,y)f(x)dx$ and define $\langle O_G,O_{G'}\rangle=\langle G,G'\rangle_{\mathcal G}$
- ullet Define an operator-valued kernel $\mathcal{K}: L^2(D_f) imes L^2(D_f) o \mathcal{L}ig(L^2(D_u)ig)$

$$[\mathcal{K}(f,g)u](y) = \int_{D_f} \int_{D_g} \int_{D_g} K(x,y,\xi,\eta)g(x)f(\xi)u(\eta)d\eta d\xi dx$$

for $f, g \in L^2(D_f)$ and $u \in L^2(D_v)$

Green's Function Approach to Solving Linear PDEs

Target PDE (e.g. Schrödinger Equation):

$$\left(-\frac{1}{2}\nabla^2+V(x)\right)u(x)=f(x)$$

Green's Function Representation:

$$u(x) = \int G(x,y)f(y) dy$$
 where $\mathcal{L}_x G(x,y) = \delta(x-y)$

Stepaniants et al. (JMLR 2023):

- Represent $G(x,y) \in \mathcal{H}_K$, a Reproducing Kernel Hilbert Space
- Learn G from data $\{f_i, u_i\}$ using functional regression
- Loss function (empirical risk):

$$\hat{R}(G) = \frac{1}{N} \sum_{i=1}^{N} \left\| u_i - \int G(x, y) f_i(y) \, dy \right\|_{L^2}^2$$

Add regularization:

$$\hat{R}_{\rho,\lambda}(G) = \hat{R}(G) + \lambda \|G\|_{\mathcal{H}_K}^2$$

Key Benefit: Green's function learning approximates \mathcal{L}^{-1} directly from data.

From Linear to non-Linear PDEs

Linear vs Nonlinear PDEs:

Linear: $\mathcal{L}u = f \Rightarrow u = Gf$

Nonlinear: $\mathcal{L}[u]u = f \Rightarrow u$ depends on itself

Kohn-Sham DFT Equation (Nonlinear):

$$\left(-\frac{1}{2}\nabla^2 + V_{\rm eff}[\rho]\right)u = \varepsilon u, \quad \rho = |u|^2$$

$$V_{ ext{eff}}[
ho] = V_{ ext{ext}} + V_{H}[
ho] + V_{ ext{XC}}[
ho]$$

1D H₂-like System (soft Coulomb):

$$\begin{split} V_{\text{ext}}(x) &= -\frac{1}{\sqrt{(x - R_1)^2 + \epsilon}} - \frac{1}{\sqrt{(x - R_2)^2 + \epsilon}} \\ V_H(x) &= \int \frac{\rho(x')}{|x - x'| + \epsilon} dx' \\ V_{\text{XC}}(x) &= -0.75 \cdot \rho(x)^{1/3} \end{split}$$

Takeaway: Nonlinearity prevents closed-form Green's function \rightarrow iterative solution (e.g., SCF) required.

Goal: Can RKHS-learned Green's function G(x, y) replace standard DFT solvers?

Experimental Steps:

- Set up a 1D H2-like Kohn-Sham system
- Q Generate reference solution using traditional SCF method
- Compare three solver types

Solver Comparison

Method	workflow	Characteristics
SCF (Standard)	Iterative: $ ho ightarrow V_{ ext{eff}}[ho] ightarrow u ightarrow ho$	+ Accurate - Slow convergence
Spectral	Basis expansion: $u(x) = \sum c_n \phi_n(x)$, solve algebraically	+ Guaranteed convergence, interpretable - Depends on basis quality
RKHS (Ours)	Learn $G(x, y)$ from (f_i, u_i) , apply via $u = Gf$	+ Avoids solving PDEs at inference - unstable convergence, black-box

Evaluation:

$$u(x)$$
, $\rho(x) = |u(x)|^2$, Total energy, Convergence

Results

Key Observations

- RKHS method can learn a structured Green's function G(x, y) from data in each step.
- Convergence speed: SCF(tradition) > RKHS > Spectral

Oracle Inequality-inspired Decay

$$R(\hat{G}_n) - R(G^*) = \mathcal{O}\left(\frac{1}{n^{r/(r+1)}}\right),$$
 (theoretical)

Critical Analysis and Outlook

Limitations:

- Only linear PDEs currently addressed
- Kernel choice impacts stability and expressiveness
- Computational cost scales with grid size and number of energies (In some cases, the original method might be faster)

• Extensions:

- Apply to higher-dimensional problems
- Learn nonlinear operators via operator-valued kernels
- Integrate into full DFT package with SCF iterations

Appendix: Point Source- Dirac Delta Function

Definition

The Dirac delta function $\delta(x)$ is a "distribution" such that for all smooth functions f,

$$\int_{-\infty}^{\infty} f(x)\delta(x-x_0)\,dx = f(x_0).$$

Heuristically, we can say

$$\delta(x) = \begin{cases} 0, & x \neq 0 \\ \infty, & x = 0 \end{cases}, \quad \int_{-\infty}^{\infty} \delta(x) dx = 1.$$

- In a sloppy sense, Dirac Delta can serve as a positive semi-definite kernel of RKHS, $k(x, x') \approx \delta(x x')$.
- Many representations exist, e.g., $\delta(x-x') = \lim_{\sigma \to 0} \mathcal{N}(x',\sigma)$.

Appendix: Point Source- Dirac Delta Function

$$\delta(x)$$

$$\delta_{\sigma}(x) = \frac{1}{\sqrt{2\pi}\sigma} \exp\left(-\frac{x^2}{2\sigma^2}\right)$$

Appendix:
$$-\vec{\nabla}^2 \frac{1}{4\pi |\vec{x}-\vec{x}'|} = \delta^3 (\vec{x}-\vec{x}')$$

Let $\vec{r} = \vec{x} - \vec{x}'$ and $r = |\vec{r}|$. $\vec{\nabla} = \vec{\nabla}_x = \sum_i \hat{x}_i \partial_{x_i}$. Note that

$$\vec{\nabla}^2 \frac{1}{|\vec{x} - \vec{x'}|} = \vec{\nabla}^2 \frac{1}{r} = \vec{\nabla} \cdot \left(\frac{-\hat{r}}{r^2}\right) = \vec{\nabla} \cdot \left(\frac{-\vec{r}}{r^3}\right). \tag{4}$$

and

$$\vec{\nabla} \cdot (f(r) \ \vec{r}) = \partial_x (f(r)x) + \partial_y (f(r)y) + \partial_z (f(r)z) \tag{5}$$

$$=3f(r)+(\partial_x r+\partial_y r+\partial_z r)(df/dr)=3f(r)+r\frac{df}{dr}.$$
 (6)

Then, for $f(r) = r^{n-1}$, $\vec{\nabla} \cdot (r^{n-1}\vec{r}) = \vec{\nabla} \cdot (r^n\hat{r}) = (n+2)r^{n-1}$, which vanishes for n = -2, except at r = 0.

Appendix:
$$-\vec{\nabla}^2 \frac{1}{4\pi |\vec{x}-\vec{x}'|} = \delta^3 (\vec{x} - \vec{x}')$$

For
$$\vec{x} - \vec{x}' \neq \vec{0}$$
, $-\vec{\nabla}^2 \frac{1}{4\pi |\vec{x} - \vec{x}'|} = \vec{\nabla} \cdot \left(\frac{\vec{x} - \vec{x}'}{4\pi |\vec{x} - \vec{x}'|^3} \right) = 0$ (previous page).

For $\vec{x}-\vec{x}'\to \vec{0}$, consider a small sphere with radius ε centered at \vec{x}' . Do volume integration of $-\vec{\nabla}^2 \frac{1}{4\pi |\vec{x}-\vec{x}'|}$ in the sphere:

$$\int_{V} -\vec{\nabla}^{2} \frac{1}{4\pi |\vec{x} - \vec{x'}|} d^{3}x = \int_{V} \vec{\nabla} \cdot \left(\frac{\vec{x} - \vec{x'}}{4\pi |\vec{x} - \vec{x'}|^{3}} \right) d^{3}x \tag{7}$$

$$= \int_{S} \frac{\vec{x} - \vec{x}'}{4\pi |\vec{x} - \vec{x}'|^{3}} \cdot d\vec{\sigma} \quad \text{Divergence theorem} \quad (8)$$

$$= \int_{S} \frac{\hat{r}}{4\pi\varepsilon^{2}} \cdot \hat{r} dS = \frac{1}{4\pi\varepsilon^{2}} \int_{S} dS \tag{9}$$

$$= \frac{1}{4\pi\varepsilon^2} 4\pi\varepsilon^2 = 1 \text{ for arbitrary small } \varepsilon. \tag{10}$$

So, $-\vec{\nabla}^2 \frac{1}{4\pi |\vec{x} - \vec{x}'|}$ is a Dirac Delta function in 3-d Euclidean space.

