Measuring the Stellar Abundance of Sodium

Astron 5205 SP22 Shannon McKinney, Bailee Wolfe, Madison Englerth, Payton Cassel, Richard Kane

1. Motivations

- Measuring the width of a solar Sodium doublet line
- Finding the number density of Sodium atoms in the ground state
- Estimating the ratio of Sodium atoms in the ground state to those in excited states
- Estimating the ratio of neutral Sodium atoms to ionized sodium atoms
- Calculating the total column density of Sodium atoms in the sun's photosphere
- Stellar abundance suggests planet composition

2. Methods

- Used the solar spectrum from BASS2000 to find the equivalent width of the Sodium doublet line at 5890 Angstrom
- Found the number density of Sodium atoms based on a specific growth plot
- Used the Boltzmann equation to estimate ratio between ground and excited states
- Used Saha equation to estimate ratio between neutral and ionized atoms
- Used both ratios to compute column density in photosphere
- Found Sodium abundance relative to Hydrogen

Equivalent Width

- Essentially the area of the absorption line
- 5890 Angstrom
- Width of the absorption line and height of the continuum emission

Curve of Growth Plot

Figure 9.22 A general curve of growth for the Sun. (Figure from Aller, *Atoms, Stars, and Nebulae*, Revised Edition, Harvard University Press, Cambridge, MA, 1971.)

Ground State to Excited State

 Used the following Boltzmann equation to estimate the ratio of Sodium atoms in the ground state to the Sodium atoms in excited states

$$\frac{N_2}{N_1} = \frac{g_2}{g_1} \exp\left(-\frac{E_2 - E_1}{kT}\right)$$

• Where the subscripts 1 and 2 refer to the 3s and 3p states, N is the number density, g is the number of separate states degenerate in energy, E is the energy, k is the Boltzmann constant, and T is the temperature

Neutral to Ionized

 Used following Saha equation to estimate the ratio of neutral Sodium atoms to ionized Sodium atoms

$$\frac{Na_{II}}{Na_{I}} = \frac{2kT}{P_{e}} \frac{Z_{II}}{Z_{I}} \left(\frac{2\pi m_{e}kT}{h^{2}}\right)^{3/2} \exp\left(-\frac{\chi}{kT}\right)$$

 Where m_e is the electron mass, Z_I and Z_II are partition functions equaling 2.4 and 1.0 respectively, P_e is electron pressure, and χ is the ionization energy equaling 5.1 eV

Total Column Density in Sun's Photosphere

Assuming that the total number of Sodium atoms equals to

$$N_1 \times \frac{N_2}{N_1} \times \frac{Na_{II}}{Na_{II}}$$

 N_1 is measured from growth curve the ratios are the previously calculated ratios

Sodium to Hydrogen

- The column density of Hydrogen is about 6.6×10^{23}
- Relative log abundance for Hydrogen is set to 12
- The abundances of all other elements are expressed as

$$12 + log_{10}(N_{element}/N_H)$$

Where N is number density

3. Results

- Equivalent width: 0.8347 Angstrom
- N_2/N_1: 200 ionized for each neutral
- N_all/N_al: 0.05

Na/H

- Astronomer's: about 0.6 ([Na/H] ratio calculated/sun ratio)
- Physicist's: 3.3 x 10^-7 (Mole ratio to Hydrogen)

4. Conclusions

- Stellar abundance -> planet composition
- Sodium in gas giant planets
- WASP-39b and 96b (direct detection of sodium)

5. Citations

- *Curve example image- spiff.rit.edu*. (n.d.). Retrieved March 30, 2022, from http://spiff.rit.edu/classes/phys440/lectures/curve/curve_example.pdf
- Schulze et al. 2020
- Wang et al. 2019
- Nikolov et al. 2018