Prova I (ANN0001/ CCI122-03U)

Prof. Helder G. G. de Lima¹

Nome do(a) aluno(a): ______ Data: 03/04/2018

- Identifique-se em todas as folhas.
- Mantenha o celular e os demais equipamentos eletrônicos desligados durante a prova.
- Justifique cada resposta com cálculos ou argumentos baseados na teoria estudada.
- Sempre que calcular o valor de uma das funções consideradas em um ponto x, arredonde o resultado para o número de dígitos especificado, e só então use esse valor (arredondado) nas fórmulas dos métodos iterativos.
- Resolva apenas os itens de que precisar para somar 10,0 pontos.
- 1. (2,5) Seja $\overline{x} = \frac{618}{50}$.
 - (a) Obtenha a representação de \overline{x} em binário, com 8 algarismos corretos após a vírgula.
 - (b) Quantos desses algarismos (binários) são necessários após a vírgula para representar \overline{x} com erro relativo percentual inferior a 5%?
- **2.** (2,5) Considere $f(x) = \ln(x) \frac{1}{x}$ e $x_0 = 2$.
 - (a) Mostre que a função $\varphi_1(x) = \frac{1}{\ln(x)}$ é uma função de iteração para f(x) = 0.
 - (b) Discuta se é possível garantir que a sequência dada por $x_k = \varphi_1(x_{k-1})$, convergirá para algum \overline{x} tal que $f(\overline{x}) = 0$. Em caso afirmativo, calcule o erro relativo percentual para x_5 .
 - (c) Mostre que a função $\varphi_2(x) = x x \cdot f(x)$ é uma função de iteração para f(x) = 0.
- (d) Discuta se é possível garantir que a sequência dada por x_k = φ₂(x_{k-1}), convergirá para algum x̄ tal que f(x̄) = 0. Em caso afirmativo, calcule o erro relativo percentual para x₅.
 (obs: nos itens (b) e (d), arredonde cada φ_i(x) com 4 dígitos após a vírgula)
- 3. (2,5) Obtenha a única raiz do polinômio $p(x) = x^5 x^3 + x + 2$ com um erro absoluto estimado menor do que 10^{-3} , utilizando o método de Newton (versão para polinômios). (os resultados devem ser arredondados com 4 dígitos após a vírgula)
- 4. (2,5) Identifique um intervalo no qual a função $f(x) = \cos(\ln(x))$ tenha um zero $\overline{x} > 1/2$. Aplique o método da posição falsa para obter $x_k \approx \overline{x}$, de modo que $|f(x_k)| < 0,0001$. (arredonde cada valor de f(x) utilizado com 5 dígitos após a vírgula)
- **5.** (2,5) Utilize o método da bisseção para obter uma raiz de $f(x) = \cos(x)$ no intervalo $[a_0, b_0] = [0, 3]$, com erro relativo percentual estimado inferior a 0, 1%. (arredonde cada valor com 5 dígitos após a vírgula)

BOA PROVA!

 $^{^1}$ Este é um material de acesso livre distribuído sob os termos da licença Creative Commons Atribuição-Compartilha Igual $4.0\ {\rm Internacional}$

Respostas

1. (Solução) Observe que $\overline{x} = \frac{618}{50} = 12, 36 = 12 + 0, 36.$

(a) Tem-se $12 = 8 + 4 = 1 \cdot 2^3 + 1 \cdot 2^2 + 0 \cdot 2^1 + 0 \cdot 2^0 = (1100)_2$ e além disso,

	1 '	0,72				1 '		
$2 \cdot x$	0,72	1 ,44	0,88	1 ,76	1 ,52	1 ,04	0 ,08	0 ,16

Logo,

$$\overline{x} = \frac{618}{50} = (12, 36)_{10} \approx (1100, 01011100)_2.$$

(b) Ao truncar $\overline{x} = 12,65$ para o inteiro x = 12, o erro relativo percentual é

$$\varepsilon_{per} = \frac{|12 - 12, 65|}{|12, 65|} \times 100\% = \frac{|-0, 65|}{|12, 65|} \times 100\% \approx 2,91\%.$$

Então, não são necessários dígitos após a vírgula para que o erro seja menor do que 5%. Solução 2: Observando que

$$\varepsilon_{per} < 5\% \Leftrightarrow \frac{|x - 12, 36|}{|12, 36|} < 0, 05 \Leftrightarrow 11, 742 < x < 12, 978$$

e que $12 \in (11,742,12,978)$, conclui-se que não é preciso nenhum dígito após a vírgula.

2. (Solução) (a) Basta observar que $f(x) = 0 \Leftrightarrow \ln(x) - \frac{1}{x} = 0 \Leftrightarrow \ln(x) = \frac{1}{x} \Leftrightarrow x = \frac{1}{\ln(x)}$.

- (b) Como $\varphi_1'(x) = -\frac{1}{x(\ln(x))^2}$, tem-se $|\varphi_1'(x_0)| = -\frac{1}{2(\ln(2))^2} \approx |-1,0407| > 1$, e não é possível garantir que a sequência gerada a partir desta aproximação inicial convergirá.
- (c) Basta observar que, para todo x > 0, tem-se

$$f(x) = 0 \Leftrightarrow xf(x) = 0 \Leftrightarrow xf(x) + x = x \Leftrightarrow x = x - xf(x) = \varphi_2(x).$$

(d) Como $\varphi_2'(x)=x-xf(x)=x-x\left(\ln(x)-\frac{1}{x}\right)=x+1-x\ln(x),$ para todo x>0, tem-se:

$$\varphi_2'(x) = (x + 1 - x \ln(x))' = 1 - 1 \ln(x) - x \frac{1}{x} = -\ln(x).$$

Assim,

$$|\varphi_2'(x)| < 1 \Leftrightarrow |-\ln(x)| < 1 \Leftrightarrow -1 < \ln(x) < 1 \Leftrightarrow 0,3679 \approx e^{-1} < x < e^1 \approx 2,7183.$$

Considerando que f e φ_2 são contínuas em $I = (e^{-1}, e)$ e que $f(e^{-1}) \approx -3,7183 < 0 < 0,6321 \approx f(e)$, segue do teorema de Bolzano que f possui uma raiz em I. Como $2 \in I$, conclui-se que a sequência $(x_k)_{k=0}^{\infty}$ definida por $x_0 = 2$ e $x_k = x_{k-1} + 1 - x_{k-1} \ln(x_{k-1})$ para $k \geq 1$, é convergente. Os primeiros termos dessa sequência são os seguintes (arredondados no quarto dígito decimal a cada iteração).

k	0	1	2	3	4	5
$x_k = \varphi_2(x_{k-1})$	2,0000	1,6137	1,8415	1,7171	1,7888	1,7486

3. (Solução) Considerando que p(-2) = -24 < 0 < 1 = f(-1), há uma raiz $\overline{x} \in (-2, -1)$. Escolhendo a aproximação inicial $x_0 = -1$, tem-se:

x_0	a_5	a_4	a_3	a_2	a_1	a_0
-1	1	0	-1	0	1	2
		-1	1	0	0	-1
b_k	1	-1	0	0	1	1
		-1	2	-2	2	
	1	-2	2	-2	3	

Logo, $p(x_0) = 1$ e $p'(x_0) = 3$. Assim, $x_1 = -1 - 1/3 \approx -1,3333$.

x_0	a_5	a_4	a_3	a_2	a_1	a_0
-1,3333	1	0	-1	0	1	2
		-1,3333	1,7777	-1,0369	1,3825	-3,1766
b_k	1	-1,3333	0,7777	-1,0369	2,3825	-1,1766
		-1,3333	3,5554	-5,7773	9,0854	
c_k	1	-2,6666	4,3331	-6,8142	11,4679	

Logo, $p(x_1) = -\frac{1,1766 \text{ e } p'(x_1)}{1,1766 \text{ e } p'(x_1)} = 11,4679$. Assim, $x_2 = -1,3333+1,1766/11,4679 \approx -1,2307$.

x_0	a_5	a_4	a_3	a_2	a_1	a_0
-1,2307	1	0	-1	0	1	2
		-1,2307	1,5146	-0,6333	0,7794	-2,1899
b_k	1	-1,2307	0,5146	-0,6333	1,7794	-0,1899
		-1,2307	3,0292	-4,3614	6,147	
c_k	1	-2,4614	3,5438	-4,9947	$7,\!9264$	

Logo, $p(x_2) = -0.1899 \text{ e } p'(x_2) = 7.9264$. Assim, $x_3 = -1.2307 + 0.1899/7.9264 \approx -1.2067$.

x_0	a_5	a_4	a_3	a_2	a_1	a_0
-1,2067	1	0	-1	0	1	2
		-1,2067	1,4561	-0,5504	0,6642	-2,0082
b_k	1	-1,2067	0,4561	-0,5504	1,6642	-0,0082
		-1,2067	2,9122	-4,0645	5,5688	
c_k	1	-2,4134	3,3683	-4,6149	7,233	

Logo, $p(x_3) = -0.1899$ e $p'(x_3) = 7.9264$. Assim, $x_4 = -1.2307 + 0.1899/7.9264 \approx -1.2067$. Como $\varepsilon_{abs} \approx |x_4 - x_3| = 0 < 10^{-3}$, $x_4 = -1.2067$ é a aproximação procurada.

4. (Solução) Atribuindo alguns valores para x, obtém-se:

x	2	3	4	5
f(x)	0,76924	0,45483	0,18346	-0,03863

Assim, pelo teorema de Bolzano, deve existir uma raiz de f no intervalo I=(4,5).

Estas são as primeiras iterações do método da posição falsa partindo do intervalo inicial $a_0 = 4$ e $b_0 = 5$, com arredondamento no quinto dígito decimal a cada iteração:

	k	a_k	x_k	b_k	$f(a_k)$	$f(x_k)$	$f(b_k)$	$f(a_k) \cdot f(x_k)$
	0	4	4,82606	5	0,18346	-0,00323	-0,03863	< 0
ſ	1	4	4,81177	4,82606	0,18346	-0,00027	-0,00323	< 0
	2	4	4,81058	4,81177	0,18346	-0,00002	-0,00027	< 0

Nesta etapa, obtém-se a aproximação $x_2 = 4,81058,$ com $|f(x_2)| \approx 0,00002 < 0,0001.$

5. (Solução) Estas são as primeiras iterações do método da bisseção partindo do intervalo inicial $a_0 = 0$ e $b_0 = 3$, com arredondamento no quinto dígito decimal a cada iteração:

k	a_k	x_k	b_k	$f(a_k)$	$f(x_k)$	$f(b_k)$	$f(a_k) \cdot f(x_k)$	$arepsilon_{per}$
0	0	1,5	3	1	0,07074	-0,98999	-	-
1	1,5	2,25	3	0,07074	-0,62817	-0,98999	< 0	33,33333%
2	1,5	1,875	2,25	0,07074	-0,29953	-0,62817	< 0	20,00000%
3	1,5	1,6875	1,875	0,07074	-0,11644	-0,29953	< 0	11,111111%
4	1,5	1,59375	1,6875	0,07074	-0,02295	-0,11644	< 0	5,88235%
5	1,5	1,54688	1,59375	0,07074	0,02391	-0,02295	> 0	3,02997%
6	1,54688	1,57032	1,59375	0,02391	0,00048	-0,02295	> 0	1,49269%
7	1,57032	1,58204	1,59375	0,00048	-0,01124	-0,02295	< 0	0,74082%
8	1,57032	1,57618	1,58204	0,00048	-0,00538	-0,01124	< 0	0,37178%
9	1,57032	1,57325	1,57618	0,00048	-0,00245	-0,00538	< 0	$0,\!18624\%$
10	1,57032	1,57179	1,57325	0,00048	-0,00099	-0,00245	< 0	0,09289%

Nesta etapa, obtém-se a aproximação $x_{10}=1,57179,$ com $|x_{10}-x_9|/|x_{10}|\approx 0,09289\%<0,1.$