

Medição $\tilde{C}_{n}^{m} = P_{m,n-1} = \frac{(n-1)^{m}}{n}$

- Cada grandeza física tem sua própria unidade de medida
- Sempre comparada com um padrão
- A unidade é um nome único que é dado a unidades medidas
- O padrão corresponde a uma unidade
- Por exemplo: Padrão de comprimento corresponde a 1.0 m (distância que a luz percorre no vácuo em uma fração de segundo)

- Existem algumas unidades básicas
- Unidades derivadas: velocidade, aceleração,...

Quantity	Unit Name	Unit Symbol
Length	meter	m
Time	second	s
Mass	kilogram	kg

Medição $\tilde{C}_{n}^{m} = P_{m,n-1} = \frac{(n-1)^{m}}{2}$

- Sistema Internacional de medidas (SI)
 - Metro
 - Segundos
 - Kilo
- Muitas unidades do SI são baseadas nas unidades básicas:

1 watt = 1 W = 1 kg ·
$$m^2/s^3$$

Notação científica

$$3\,560\,000\,000\,\mathrm{m} = 3.56 \times 10^9\,\mathrm{m}$$

$$0.000\ 000\ 492\ s = 4.92 \times 10^{-7}\ s$$
.

Medição C7 = Pm, n-1 = C7

• Prefixos de unidades

Factor	Prefix ^a	Symbol	Factor	Prefix ^a	Symbol
10^{24}	yotta-	Y	10-1	deci-	d
10^{21}	zetta-	Z	10-2	centi-	c
10^{18}	exa-	E	10-3	milli-	m
10^{15}	peta-	P	10-6	micro-	μ
10^{12}	tera-	T	10-9	nano-	n
10^{9}	giga-	G	10-12	pico-	P
10^{6}	mega-	M	10-15	femto-	f
10^{3}	kilo-	k	10^{-18}	atto-	a
10^{2}	hecto-	h	10^{-21}	zepto-	Z
10^{1}	deka-	da	10-24	yocto-	y

Medição

Mudança de unidades

- Para alteração de unidades é realizado com a técnica de conversão em cadeia através de um fator
- A razão entre unidades é igual a 1

$$\frac{1 \min}{60 \text{ s}} = 1 \quad \text{and} \quad \frac{60 \text{ s}}{1 \min} = 1.$$

$$2 \min = (2 \min)(1) = (2 \min) \left(\frac{60 \text{ s}}{1 \min}\right) = 120 \text{ s}$$

Medição $\tilde{C}_{n}^{m} = P_{m,n-1} = \frac{C^{m}}{2}$

• Mudança de unidades

Plane Angle

	,	*	RADIAN	rev
1 degree = 1	60	3600	1.745×10^{-2}	2.778 × 10 ⁻³
1 minute = 1.667×10^{-2}	1	60	2.909×10^{-4}	4.630×10^{-5}
1 second = 2.778 × 10-4	1.667 × 10-2	1	4.848×10^{-6}	7.716×10^{-7}
1 RADIAN = 57.30	3438	2.063×10^{5}	1	0.1592
1 revolution = 360	2.16×10^{4}	1.296×10^{6}	6.283	1

Speed

ft/s	km/h	METER/SECOND	mi/h	cm/s
1 foot per second = 1	1.097	0.3048	0.6818	30.48
1 kilometer per hour = 0.9113	1	0.2778	0.6214	27.78
1 METER per SECOND = 3.281	3.6	1	2.237	100
1 mile per hour = 1.467	1.609	0.4470	1	44.70
1 centimeter per second = 3.281 × 10 ⁻²	3.6×10^{-2}	0.01	2.237×10^{-2}	1

¹ knot = 1 nautical mi/h = 1.688 ft/s

¹ mi/min = 88.00 ft/s = 60.00 mi/h

- Comprimento
 - Distância percorrida pela luz no vácuo durante o intervalo de tempo de 1/299792458 de um segundo
 - Tendo c = 299792458 m/s (velocidade)

Some Approximate Lengths

Measurement	Length in Meters	
Distance to the first galaxies formed	2×10^{26}	
Distance to the Andromeda galaxy	2×10^{22}	
Distance to the nearby star Proxima Centauri	4×10^{16}	
Distance to Pluto	6×10^{12}	
Radius of Earth	6×10^{6}	
Height of Mt. Everest	9×10^{3}	
Thickness of this page	1×10^{-4}	
Length of a typical virus	1×10^{-8}	
Radius of a hydrogen atom	5×10^{-11}	
Radius of a proton	1×10^{-15}	

Medição $\tilde{C}_{n}^{m} = P_{m,n-1} = \frac{(n-1)^{m}}{n}$

Tempo

- Senso comum x científico
- Quanto tempo um evento durou?
- Qualquer fenômeno que ocorra repetidamente pode ser um padrão temporal
 - Por exemplo, a rotação da Terra determina a duração de um dia
 - Os relógios digitais podem ser calibrados com a rotação da Terra para medir a passagem de tempo
- Um segundo é tempo gasto para se ter 9.192.631.770 oscilações da luz emitida por um átomo de cesium-133

Medição

- Massa
 - Padrão (Kg)
 - Unidade Atômica de medida (segundo padrão)

$$1 \text{ u} = 1.66053886 \times 10^{-27} \text{ kg}$$

• Densidade:

$$\rho = \frac{m}{V}$$

Object	Mass in Kilograms
Known universe	1×10^{53}
Our galaxy	2×10^{41}
Sun	2×10^{30}
Moon	7×10^{22}
Asteroid Eros	5×10^{15}
Small mountain	1×10^{12}
Ocean liner	7×10^{7}
Elephant	5×10^{3}
Grape	3×10^{-3}
Speck of dust	7×10^{-10}
Penicillin molecule	5×10^{-17}
Uranium atom	4×10^{-25}
Proton	2×10^{-27}
Electron	9×10^{-31}

Exercícios

- Uma substituição conveniente para o número de segundos em um ano é $\pi \times 10^7$. Dentro de que percentagem de erro isso está correto
- Uma formação rochosa porosa dentro da qual a água pode se deslocar constitui um aquífero. O volume V de água que passa pela seção reta de área A dessa formação rochosa, no tempo t, é dado pela formula. Onde H é a queda vertical da rocha, em relação à distância horizontal L: ver Fig. Essa relação é chamada de Lei de Darcy. A grandeza K é a condutividade hidráulica da rocha. Quais são as unidades SI de K

$$\frac{V}{t} = KA \frac{H}{L}$$

