Dynamic programming

3.1 The Binomial Coefficient

✓ Divide-and-conquer approach

$$C_{k}^{n} = \frac{n!}{(n-k)!k!}$$

$$C_{k}^{n} = C_{k-1}^{n-1} + C_{k}^{n-1} \quad 0 < k < n$$

$$= 1 \quad k = 0 \text{ or } k = n$$

✓ Algorithm 3.1

This algorithm computes ${}^{2C_k^n-1}$ terms to determine ${}^{C_k^n}$

✓ Proof by induction

$$\begin{split} T_k^{n+1} &= 1 + T_k^n + T_{k-1}^n = 1 + 2C_k^n - 1 + 2C_{k-1}^n - 1 \\ &= 2C_k^n + 2C_{k-1}^n - 1 \\ &= 2\frac{n!}{k!(n-k)!} + 2\frac{n!}{(k-1)!(n-k+1)!} - 1 \\ &= 2\frac{n!(n-k+1)}{k!(n-k+1)!} + 2\frac{n!k}{k!(n-k+1)!} - 1 \\ &= 2\frac{(n+1)n!}{k!(n-k+1)!} - 1 = 2\frac{(n+1)!}{k!(n-k+1)!} - 1 \\ &= 2C_k^{n+1} - 1 \end{split}$$

✓ Dynamic Programming approach Figure 3.1

Algorithm 3.2

Time complexity of algorithm 3.2 is

$$1+2+3+\ldots+k+(k+1)+(k+1)\ldots(k+1)$$

$$=\frac{k(k+1)}{2}+(n-k+1)(k+1)=\frac{(2n-k+2)(k+1)}{2} \in \theta(nk)$$

All-Pairs shortest path

✓ A sample Graph—Figure 3.2

The representation matrix W—Fig 3.3

 $D^{(k)}[i,j]$ be the length of a shortest path

from v_i to v_j using only vertices in the set

 $\{v_1, v_2, ..., v_k\}$ as intermediate nodes

$$D^{(k)}[i,j] = \min\{ D^{(k-1)}[i,j],$$

$$D^{(k-1)}[i,k] + D^{(k-1)}[k,j]$$

$$D^0 \!\! \Rightarrow D^1 \!\! \Rightarrow D^2 \!\! \Rightarrow \!\! \dots \dots \Rightarrow \!\! D^{n\text{-}1} \!\! \Rightarrow D^n$$

✓ Algorithm 3.3

D0	1	2	3	4	5	D1	1	2	3	4	5
1	0	1	∞	1	5	1	0	1	8	1	5
2	9	0	3	2	∞	$\frac{1}{2}$	9	0	3	2	14
3	∞	∞	0	4	∞	3	∞	∞	0	4	∞
4	∞	∞	2	0	3	4	∞	∞	2	0	3
5	3	∞	∞	∞	0	5	3	4	∞	4	0

D2	1	2	3	4	5	D3	1	2	3	4	5
1	0	1	4	1	5	1	0	1	4	1	5
2	9	0	3	2	14	2	9	0	3	2	14
3	∞	∞	0	4	∞	3	∞	8	0	4	∞
4	∞	∞	2	0	3	4	∞	∞	2	0	3
5	3	4	7	4	0	5	3	4	7	4	0

D4	1	2	3	4	5	D5	1	2	3	4	5
1	0	1	3	1	4	1	0	1	3	1	4
2	9	0	3	2	5	2	8	0	3	2	5
3	∞	∞	0	4	7	3	10	11	0	4	7
4	∞	∞	2	0	3	4	6	7	2	0	3
5	3	4	6	4	0	5	3	4	6	4	0

✓ Finding path routes

P[i,j]: highest index of an intermediate node on the shortest path from v_i to v_j Algorithm 3.4 reserves path information Algorithm 3.5 prints path routes

1	P1	5	4	3	2	1	P0
0	1	0	0	0	0	0	1
0	2	0	0	0	0	0	2
0	3	0	0	0	0	0	3
0	4	0	0	0	0	0	4
0	5	0	0	0	0	0	5
_	2 3 4 5	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0	0 0 0 0	4

<u>P1</u>	1	2	3	4	5
1	0	0	0	0	0
2	0	0	0	0	0
3	0	0	0	0	0
4	0	0	0	0	0
5	0	1	0	1	0

P2	1	2	3	4	5	P3	1
1	0	0	2	0	0	1	0
2	0	0	0	0	0	2	0
3	0	0	0	0	0	3	0
4	0	0	0	0	0	4	0
5	0	1	2	1	0	5	0
				•	•		

P3	1	2	3	4	5
1	0	0	2	0	0
2	0	0	0	0	0
3	0	0	0	0	0
4	0	0	0	0	0
5	0	1	2	1	0

P4	1	2	3	4	5	P5	1
1	0	0	4	0	4	1	0
2	0	0	0	0	4	2	5
3	0	0	0	0	4	3	5
4	0	0	0	0	0	4	5
5	0	1	4	1	0	5	0

_						
5	P5	1	2	3	4	5
4	1	0	0	4	0	4
4	2	5	0	0	0	4
4	3	5	5	0	0	4
0	4	5	5	0	0	0
0	5	0	1	4	1	0

✓ Principle of optimality: a problem possess
this property if an optimum solution to an
instance always contains optimum
solutions to all subinstances
 The shortest path problem does but the
longest path problem does not

3.4 Chained matrix multiplication

✓ A_{ij}×B_{jk} needs ijk multiplications

$$\begin{split} &A_{20\times2}\times (B_{2\times30}\times (C_{30\times12}\times D_{12\times8}))\\ &(A_{20\times2}\times B_{2\times30})\times (C_{30\times12}\times D_{12\times8})\\ &A_{20\times2}\times ((B_{2\times30}\times C_{30\times12})\times D_{12\times8})\\ &((A_{20\times2}\times B_{2\times30})\times C_{30\times12})\times D_{12\times8}\\ &(A_{20\times2}\times (B_{2\times30}\times C_{30\times12})\times D_{12\times8}) \end{split}$$

✓ Brute-force method

Let t_n be the number of different orders where we can multiply n matrices.

 $A_1A_2...A_{n-1}A_n$ can be multiply by either $A_1(A_2...A_{n-1}A_n)$ or $(A_1A_2...A_{n-1})A_n$ $t_n \ge t_{n-1} + t_{n-1} = 2t_{n-1}$ and $t_2 = 1$ $\Rightarrow t_n \ge 2^{n-2}$

 \checkmark Let A_i be a matrix of $d_{i-1} \times d_i$ A_2A_3 needs $d_1 \times d_2 \times d_3$ 乘 法 $A_1(A_2A_3)$ needs $d_0 \times d_1 \times d_3$ 乘 法 $(A_1A_2A_3)A_4$ needs $d_0 \times d_3 \times d_4$ 乘 法 $A_2(A_3A_4A_5)$ needs $d_1 \times d_2 \times d_5$ 乘 法

✓ Dynamic Programming approach

Let M[i,j] be the minimum number of ×

needed to multiply A_i through A_i

$$M[i, j] = \min_{i \le k \le j-1} \{M[i, k] + M[k+1, j] + d_{i-1}d_kd_j\}$$

$$M[i, i] = 0$$

Examples 3.5, 3.6 and Algorithm 3.6

✓ Every case time complexity

$$\sum_{diagonal=1}^{n-1} (n-diagonal) \times diagonal$$

$$= n \sum_{diagonal=1}^{n-1} diagonal - \sum_{diagonal=1}^{n-1} diagonal$$

$$= \frac{n^2(n-1)}{2} - \frac{(n-1)(n)(2n-1)}{6} = \frac{n^3-n}{6} = \frac{n(n-1)(n+1)}{6}$$

$$\in \Theta(n^3)$$

✓ Algorithm 3.7 prints the sequence of matrix multiplication

3.5 Optimal binary search tree

✓ Every key has a distinct access frequency.

These frequencies are known

These frequencies are known.

How can we build the most efficient binary search tree?

Example 3.7

 \checkmark Let c_m be the level of key_m in the tree.

Assume that key_k is the root of the tree.

Let c'_m be the level of key_m in the subtree after removing the root key_k .

Let A[i,j] be the average number of comparisons needed for the optimal binary search tree constructed for key_i through

keyj

$$\begin{split} A[1,n] &= \sum_{i=1}^{n} p_{i}c_{i} = p_{k}c_{k} + \sum_{i=1}^{k-1} p_{i}c_{i} + \sum_{i=k+1}^{n} p_{i}c_{i} \\ &= p_{k} + \sum_{i=1}^{k-1} p_{i}(c'_{i}+1) + \sum_{i=k+1}^{n} p_{i}(c'_{i}+1) \\ &= p_{k} + \sum_{i=1}^{k-1} p_{i}c'_{i} + \sum_{i=k+1}^{n} p_{i}c'_{i} + \sum_{i=1}^{k-1} p_{i} + \sum_{i=k+1}^{n} p_{i} \\ &= \sum_{i=1}^{n} p_{i} + \sum_{i=1}^{k-1} p_{i}c'_{i} + \sum_{i=k+1}^{n} p_{i}c'_{i} \end{split}$$

$$= \sum_{i=1}^{n} p_i + A[1, k-1] + A[k+1, n]$$

Similarly, we can get the following

$$A[i,j] = \sum_{m=i}^{j} p_m + A[i,k-1] + A[k+1,j]$$

$$A[1,1]=0.2, A[5,5]=0.1, A[7,7]=0.05$$

$$A[4,5]=0.2+A[5,5]=0.3$$

$$=(1\times0.1)+(2\times0.05)=0.3$$

$$A[3,7]=0.5+A[4,5]+A[6,7]=0.5+0.3+0.15$$

$$=0.95=(1\times0.2)+(2\times0.1)+(2\times0.05)+(3\times0.1)+(3\times0.0)$$

$$A[1,7]=1.0+A[1,1]+A[3,7]=1.0+0.2+0.95=2.15$$

=(1*0.3)+(2*0.2)+(2*0.2)+(3*0.15)+(4*0.15)

✓ The recursive relation

$$A[1,n] = \min_{1 \le k \le j} \sum_{i=1}^{n} p_i + A[1,k-1] + A[k+1,n]$$

$$A[i,j] = \min_{i \le k \le j} \sum_{m=i}^{j} p_m + A[i,k-1] + A[k+1,j]$$

$$A[i,i] = p_i$$

$$A[i,i-1] = 0 \text{ and } A[j+1,j] = 0$$

- ✓ Algorithm 3.9 finds the matrix A Algorithm 3.10 builds the tree Example 3.9
- ✓ Please compute the following data

Diagonal=1 Diagonal=2 Diagonal=3

:	`,	·., ·	<u>``</u>	***					
j i	0	1	2	3	4	5	6	7	8
1	0	0.2	0.4	0.55	0.95				
2		0	0.1	0.2	0.5	e de la companya de l	****		
3			0	0.05	0.25	0.55	arananan an	,,,,	
4				0	0.15	0.45	0.85	garaga and a said	
5					0	0.15	0.5	0.6	
6						0	0.2	0.30	0.55
7							0	0.05	0.2
8								0	0.1
9									0

Diagonal=1 Diagonal=2 Diagonal=3

		****	٠,						
j i	0	1	2	3	4	5	6	7	8
1	0	1	1	1	2	4444			
2		0	2	2	4	Tananananan Tanan	****		
3			0	3	4	4		****	
4				0	4	4,5	5	**************************************	****
5					0	5	6	6	
6						0	6	6.	6.
7							0	7	8.
8								0	8

9					0

- 3.6 The traveling salesman problem
- ✓ A tour in a directed graph is a path from a node to itself that passes through each of the other nodes exactly once.

An optimum tour is such a path of minimum length.

Figure 3.16 is the directed graph.

Figure 3.17 is the adjacency matrix.

✓ Let D[v_i,A] is the length of a shortest path from v_i to v₁ passing each node in A exactly once.

$$\begin{aligned} & \text{optimal length} = \min_{2 \leq j \leq n} (W[1,j] + D[v_j, V - \{v_1, v_j\}]) \\ & D[v_i, A] = \min_{j \in A} (W[i,j] + D[v_j, A - \{v_j\}]) \text{ if } A \neq \emptyset \\ & D[v_i, \phi] = W[i,1] \end{aligned}$$

✓ Examples 3.10, 3.11

Algorithm 3.11

✓ Theorem 3.1: $\sum_{k=1}^{n} kC_k^n = n2^{n-1}$

$$kC_k^n = k \frac{n!}{(n-k)!k!} = \frac{n!}{(n-k)!(k-1)!} = \frac{(n-1)!n}{(n-k)!(k-1)!} = nC_{k-1}^{n-1}$$

$$\sum_{k=1}^{n} k C_k^n = n \sum_{k=1}^{n} C_{k-1}^{n-1} = n \sum_{k=0}^{n-1} C_k^{n-1} = n 2^{n-1}$$

✓ Time complexity analysis

$$T(n) = \sum_{k=1}^{n-2} (n-1-k)kC_k^{n-1}$$

$$n (n-1-k)C_k^{n-1} = (n-1)C_k^{n-2}$$

$$T(n) = (n-1)\sum_{k=1}^{n-2} kC_k^{n-2} = (n-1)(n-2)2^{n-3} \in \theta(n^2 2^n)$$

 \checkmark The memory size $D[v_i,A]$ and $P[v_i,A]$

$$\sum_{k=1}^{n-2} (n-1-k)C_k^{n-1} = \sum_{k=1}^{n-2} (n-1)C_k^{n-2} = (n-1)\sum_{k=1}^{n-2} C_k^{n-2}$$
$$= (n-1) \times 2^{n-2} \in \Theta(n2^n)$$

✓ Example 3.12