then it is not hard to show that for any $a_1, \ldots, a_n \in \mathbb{Z}$,

$$x = a_1 t_1 m_1' + \dots + a_n t_n m_n'$$

satisfies the congruences

$$x \equiv a_i \pmod{m_i}, \quad i = 1, \dots, n.$$

Theorem 32.15 can be used to characterize rings isomorphic to finite products of quotient rings. Such rings play a role in the structure theorem for torsion modules over a PID.

Given n rings A_1, \ldots, A_n , recall that the product ring $A = A_1 \times \cdots \times A_n$ is the ring in which addition and multiplication are defined componenwise. That is,

$$(a_1, \ldots, a_n) + (b_1, \ldots, b_n) = (a_1 + b_1, \ldots, a_n + b_n)$$

 $(a_1, \ldots, a_n) \cdot (b_1, \ldots, b_n) = (a_1 b_1, \ldots, a_n b_n).$

The additive identity is $0_A = (0, ..., 0)$ and the multiplicative identity is $1_A = (1, ..., 1)$. Then, for i = 1, ..., n, we can define the element $e_i \in A$ as follows:

$$e_i = (0, \dots, 0, 1, 0, \dots, 0),$$

where the 1 occurs in position i. Observe that the following properties hold for all $i, j = 1, \ldots, n$:

$$e_i^2 = e_i$$

$$e_i e_j = 0, \quad i \neq j$$

$$e_1 + \dots + e_n = 1_A.$$

Also, for any element $a = (a_1, \ldots, a_n) \in A$, we have

$$e_i a = (0, \dots, 0, a_i, 0, \dots, 0) = pr_i(a),$$

where pr_i is the projection of A onto A_i . As a consequence

$$Ker(pr_i) = (1_A - e_i)A.$$

Definition 32.3. Given a commutative ring A, a direct decomposition of A is a sequence $(\mathfrak{b}_1, \ldots, \mathfrak{b}_n)$ of ideals in A such that there is an isomorphism $A \approx A/\mathfrak{b}_1 \times \cdots \times A/\mathfrak{b}_n$.

The following theorem gives useful conditions characterizing direct decompositions of a ring.

Theorem 32.16. Let A be a commutative ring and let $(\mathfrak{b}_1, \ldots, \mathfrak{b}_n)$ be a sequence of ideals in A. The following conditions are equivalent:

(a) The sequence $(\mathfrak{b}_1,\ldots,\mathfrak{b}_n)$ is a direct decomposition of A.