SAT-based Proof Search in Intermediate Propositional Logics

Camillo Fiorentini¹ Mauro Ferrari²

¹Università degli Studi di Milano, Italy

²Università degli Studi dell'Insubria, Italy

IJCAR 2022, August 8th, Haifa, Israel
Part of FLoC 2022, https://www.floc2022.org/

Motivations

- In 2015, Claessen and Rosén introduced intuit, an efficient decision procedure for IPL (Intuitionistic Propositional Logic) exploiting an incremental SAT-solver.
 - K. Claessen and D. Rosén. SAT Modulo Intuitionistic Implications, LPAR 2015
- To improve performances, we have re-designed intuit by adding a restart operation, thus obtaining intuitR (intuit with Restart).
 - C. Fiorentini. Efficient SAT-based Proof Search in Intuitionistic Propositional Logic. CADE 2021
- intuitR outperforms intuit and other state-of-the-art provers:
 - fCube Ferrari et al. LPAR 2010 intHistGC Goré et al., IJCAR 2014
- Here we present intuitRIL, an extension of intuitR to Intermediate Logics.

CPL vs. IPL

ullet Language ${\mathcal L}$ over $V=\{p,q,p_1,p_2,\dots\}$ (propositional variables)

$$\begin{array}{cccc} \alpha, \beta & \coloneqq & \mathbf{p} \in \mathbf{V} \mid \bot \mid \alpha \land \beta \mid \alpha \lor \beta \mid \alpha \to \beta \\ \neg \alpha & \coloneqq & \alpha \to \bot \end{array}$$

• CPL (Classical Propositional Logic)

Set of formulas valid in all classical interpretations.

$$\alpha \notin \mathrm{CPL} \implies \exists I \text{ (classical interpretation) s.t. } I \not\models \alpha$$
 (classical) countermodel

• IPL (Intuitionistic Propositional Logic)

Set of formulas valid in all Kripke models.

- A frame $\langle W, \leq, r \rangle$ is a poset (partially ordered set), where r (the root) is the minimum element
- A Kripke model over the frame $\langle W, \leq, r \rangle$ is obtained by defining a valuation $\vartheta: W \to 2^V$ on the worlds W which is persistent:

$$w_1 \leq w_2 \implies \vartheta(w_1) \subseteq \vartheta(w_2)$$

Validity of a formula in a world in a expressed by forcing (⊩)

```
w \Vdash p \text{ iff } p \in \vartheta(w) \ (p \in V) \text{ and } w \nvDash \bot
w \Vdash A \land B \text{ iff } w \Vdash A \text{ and } w \Vdash B
w \Vdash A \lor B \text{ iff } w \Vdash A \text{ or } w \Vdash B
w \Vdash A \to B \text{ iff, for every } w' \in W \text{ s.t. } w \leq w', \ w' \nvDash A \text{ or } w' \Vdash B
```

CPL vs. IPL

- A classical interpretation can be viewed as a "degenerate" Kripke model only containing the root.
- Accordingly IPL \subseteq CPL.
- The inclusion is strict
 Examples of formula valid in CPL, but not in IPL.

$$a \vee \neg a$$
, $\neg a \vee \neg \neg a$, $(a \rightarrow b) \vee (b \rightarrow a)$...

Are there logics L such that IPL $\subset L \subset CPL$?

Intermediate Logics

An intermediate logic L is a set of formulas s.t. IPL $\subset L \subset \mathrm{CPL}$ and:

(C1) L is closed under modus ponens

$$\alpha \to \beta \in L$$
 & $\alpha \in L \implies \beta \in L$

(C2) L is closed under substitutions (maps $\chi: V \to \mathcal{L}$)

$$\alpha \in L \implies \chi(\alpha) \in L, \quad \forall \ \chi : V \to \mathcal{L}$$

An intermediate logic L can be obtained:

Semantically
 Impose some frame conditions

$$\alpha \in L$$
 iff α is valid in all Kripke models satisfying the frame conditions

Syntactically

$$L = IPL + Axioms$$
 Axioms: set of formulas

$$\alpha \in L \text{ iff } \Psi \vdash_{\text{ipl}} \alpha$$

 Ψ : finite set of instances of the axioms (extra assumptions)

 \vdash_{ipl} : derivability in IPL

Intermediate Logics: GL (Gödel-Dummett Logic)

Semantical characterization: linear models

• Syntactical characterization:

$$GL = IPL + \underbrace{(\alpha \to \beta) \lor (\beta \to \alpha)}_{\text{linearity axiom}}$$

GL has been deeply investigated in the literature:

- close connections with fuzzy logics;
- Curry-Howard Interpretation of GL [Aschieri et al., LICS 2017]: extension of the λ -calculus so to capture parallel computations and communications between them.

Intermediate Logics: GL_n $(n \ge 0)$

- Semantical characterization: linear models having depth at most n
- Syntactical characterization:

$$\mathrm{GL}_n = \mathrm{IPL} + \mathrm{bd}_n$$
 $\begin{array}{ccc} \mathrm{bd}_0 & = & a_0 \vee \neg a_0 \\ \mathrm{bd}_{n+1} & = & a_{n+1} \vee (a_{n+1} \to \mathrm{bd}_n) \end{array}$

We remark that:

- \bullet GL₀ = CPL
- GL₁: formulas valid in the models

 GL_1 is also known as *Here and There Logic (HT)*, well-known for its applications in ASP (Answer Set Programming).

See the characterization of stable model semantics based on HT-models introduced in [Lifschitz at al., TOCL 2021].

Intermediate Logics

- Infinitely many intermediate logics (power of the continuum).
- Ad hoc decision procedures: each logic is treated apart.

We present a general approach to decide validity in Intermediate Logics based on reduction to IPL-validity.

Given a logic L and a formula α :

(1) Single out a finite set Ψ containing instances of the characteristic axiom of L such that

$$\alpha \in L$$
 iff $\Psi \vdash_{\text{ipl}} \alpha$

(2) Decide whether $\Psi \vdash_{\mathrm{ipl}} \alpha$ Steps (1) and (2) are interleaved.

intuitR: architecture

- ullet The prover search for a countermodel for lpha
- Most of the computation is performed by an incremental SAT-solver
- We need a preprocessing phase (clausification) to reduce the input formula α to an equivalent set of clauses Γ of the form

flat clauses
$$\varphi:=\bigwedge A_1\to\bigvee A_2$$
 $A_1,\ A_2$: sets of atoms clauses added to the SAT-solver

implication clauses
$$\lambda := (a \to b) \to c$$
 a, b, c: atoms clauses generating new worlds of the countermodel

intuitR: Prover

Incremental SAT-solver

clauses can be added to the solver, but not removed

- Learning mechanism to generate new clauses to feed the SAT-solver.
 Whenever we add a clause, the SAT-solver performs some internal simplifications, and next queries can be solved more efficiently
- However, since the SAT-solver is incremental, it is not possible to backtrack!

Accordingly, the decision procedure is quite different from standard strategy based on tableaux/sequent calculi, where backtracking is crucial to get completeness.

intuitR: Prover

Loop

- (1) Try to build a Kripke countermodel $\mathcal K$ for Γ .
- (2) Whenever the construction of the countermodel fails:
 - (2.1) Learn a new flat clause (encoding the thrown semantic conflict)
 - (2.2) Add the learned clause to the SAT-solver
 - (2.3) Restart from (1) (new iteration of the loop)

The learned clauses prevent the repetition of the same semantic conflict, and this is crucial to get termination.

intuitR: Prover

W:

```
Input Assumptions
                                                                                             Output Properties
                   \Gamma = R, X, g where:
                          R: set of clauses \bigwedge A_1 \rightarrow \bigvee A_2
                                                                                                    Valid \implies R, X \vdash_{ipl} g
                          X: set of clauses (a \rightarrow b) \rightarrow c
                                                                                               CountSat \implies R, X \nvdash_i g
                          g: atom
                                     \Gamma = R, X, g
                                                                                       ← newSolver(R)
       \varphi \leftarrow \bigwedge(A \setminus \{a\}) \rightarrow c // LEARNED
                                                                                              W \leftarrow \emptyset
       addClause(s, \varphi)
                                                                                                                           Yes(\emptyset)
                                                                                            R^* \vdash_{c} g?
                                                                                                                                              Valid
                                                                      @SAT
                         Yes(A)
                                                                                        No(M)
                                                               No(M)
                         R^*, w, a \vdash_{c} b?
                                                                                       W \leftarrow W \cup \{M\}
@SAT
                                                                                                                                           CountSat
                                                                                                                              No such \langle w, \lambda \rangle
                                            \langle w, (a \rightarrow b) \rightarrow c \rangle
                                                                                       select \langle w, \lambda \rangle s.t.
  set of interpretations
                                                                                   w \in W, \lambda \in X, w \not \succ_W \lambda
  clauses in the SAT-solver s
```

intuitR: soundness

- The procedure is terminating.
- If the construction of a countermodel \mathcal{K} for Γ succeeds: By properties of Clausification, \mathcal{K} is a countermodel for α .

$$\implies \alpha \notin IPL$$

• If the construction of a countermodel K for Γ fails: By properties of Clausification, there exists no countermodel for α .

$$\implies \alpha \in IPL$$

intuitRIL

intuitRIL is obtained by extending intuitR to Intermediate Logics.

Given an intermediate logic of L, we tweak the countermodel-search procedure as follows.

- (1) Whenever a countermodel \mathcal{K} is found, if \mathcal{K} is not an L-model, we throw a semantic conflict.
- (2) We pinpoint an instance ψ of the characteristic axiom of L which is falsified in \mathcal{K} (there exists at least one)
- (3) ψ is acknowledged as learned axiom
- (4) Restart

Main differences with respect to the original procedure:

- \bullet In general the learned axiom ψ is not a flat clause; thus, ψ must be clausified
- Termination is not guaranteed and must be investigated on a case-by-case analysis.

Actually, we can only prove that the learned axioms are pairwise non IPL-equivalent.

intuitRIL: a learning example

$$\begin{array}{ll} \mathsf{Logic} & \mathrm{GL} \, = \, \mathrm{IPL} + (\beta \to \gamma) \lor (\gamma \to \beta) \\ \mathsf{Input formula} & \alpha = \, \neg a \lor \neg \neg a \quad (\mathsf{Weak Excluded Middle}) \end{array}$$

The formula α is valid in GL (α cannot be falsified on linear models).

At some point of the computation of intuitRIL(α ,GL), we get the following countermodel $\mathcal K$ for α

 $\mathcal K$ is not a model for GL (actually, GL is not linear)

The following instance ψ of the linearity axiom is falsified in ${\cal K}$

$$\psi = (a \rightarrow \neg a) \lor (\neg a \rightarrow a)$$
 learned axiom

We clausify ψ , add the obtained clauses and restart.

intuitRIL: termination

For logic GL, the procedure is terminating.

This follows from the fact that we can bound the instances of the linearity axiom $(\beta \to \gamma) \lor (\gamma \to \beta)$ needed to prove a formula

• If α is GL-valid, there is $\Psi_{\alpha} \subseteq \operatorname{Ax}_{\operatorname{GL}}(\alpha)$ such that $\Psi_{\alpha} \vdash_{\operatorname{ipl}} \alpha$, where

$$\begin{array}{lll} \operatorname{Ax}_{\operatorname{GL}}(\alpha) & = & \{\,(a \to b) \lor (b \to a) \mid a,b \in \mathcal{V}_{\alpha}\,\} \cup \\ & \{\,(a \to \neg a) \lor (\neg a \to a) \mid a \in \mathcal{V}_{\alpha}\,\} \cup \\ & \{\,(a \to (a \to b)) \lor ((a \to b) \to a)) \mid a,b \in \mathcal{V}_{\alpha}\,\} \\ & \mathcal{V}_{\alpha} \colon \operatorname{prop. \ variables \ occurring \ in \ } \alpha \end{array}$$

 Ψ_{α} is a bounding function for GL.

Here we improve the bounding functions for ${\rm GL}$ introduced in [Avellone et al., TABLEAUX 1997; Ciabattoni et al., JSL 2021].

intuitRIL: termination

Using similar techniques we can guarantee termination for:

- All the Gödel-Dummett Logic GL_n (bounded depth)
- Jankov logic Jn

$${
m Jn} = {
m IPL} + \underbrace{\neg \alpha \lor \neg \neg \alpha}_{
m Weak \ Excluded \ Middle}$$
 models having a maximum world

Scott Logic ST

This case is peculiar since ST-models are not first-order definable.

This witnesses that our approach is quite robust and general.

Conclusions & future work

intuitRIL is a general prover for Intermediate Logics.
 An Haskell implementation is available at

https://github.com/cfiorentini/intuitRIL

- The procedure is quite modular; to treat a specific logic L:
 - $\sqrt{}$ Implement a concrete learning mechanism for L
 - √ Prove termination
- We have implemented some of the mentioned intermediate logics.
- Future work
 - Extensions to other non-classical logics and to (fragments of) predicate logics.
 - √ [Goré at al, TABLEAUX 2021]: applications to Modal logics.

 In this case, it is not possible to use a single SAT-solver, since the forcing relation in modal Kripke models is not persistent.