Práctica 1 - Conjuntos, Relaciones y Funciones

Conjuntos

- 1. i) $1 \in A$ Verdadero.
 - ii) $\{1\} \subseteq A$ Verdadero.
 - iii) $\{2,1\} \subseteq A$ Verdadero.
- i) $3 \in A$ Falso.
 - ii) $\{3\} \subseteq A$ Falso.
 - iii) $\{3\} \in A$ Verdadero.
 - iv) $\{\{3\}\}\subseteq A$ Verdadero.
 - v) $\{1,2\} \in A$ Verdadero.
 - vi) $\{1,2\} \subseteq A$ Falso.

- iv) $\{1,3\} \in A$ Falso.
- v) $\{2\} \in A$ Falso.
- vii) $\{\{1,2\}\}\subseteq A$ Verdadero.
- viii) $\{\{1,2\},3\} \subseteq A$ Falso.
- ix) $\emptyset \in A$ Falso.
- x) $\emptyset \subseteq A$ Verdadero.
- xi) $A \in A$ Falso.
- xii) $A \subseteq A$ Verdadero.
- i) $A \subseteq B$ pues $1 \in B$, $2 \in B$ y iii) $A \not\subseteq B$ pues $\frac{5}{2} \in A$ pero $\frac{5}{2} \notin B$. $3 \in B$.

 - ii) $A \not\subseteq B$ pues $3 \in A$ pero $3 \notin B$. iv) $A \not\subseteq B$ pues $\emptyset \in A$ pero $\emptyset \notin B$.
- $A \cap B = \{3, 7, 11\}$
- $B A = \{-1, -5, -8\}$
- $A \cup B = \{-1, 1, 3, -5, 5, 7, -8, 8, 11\}$ $A \triangle B = \{-1, 1, -5, 5, -8, 8\}$
- i) $B \cap C = \emptyset$

Por lo tanto, $B \triangle C = B \cup C = \{1, \{3\}, 10, -2, \{1, 2, 3\}, 3\}$

Luego, $A \cap (B \triangle C)$ es igual a

$$\{1, -2, 7, 3\} \cap \{1, \{3\}, 10, -2, \{1, 2, 3\}, 3\} = \{1, -2, 3\}$$

ii) $A \cap B = \{1\}$

$$A \cap C = \{-2, 3\}$$

$$\therefore (A \cap B) \triangle (A \cap C) = \{1\} \triangle \{-2, 3\} = \{1, -2, 3\}$$

iii) $A^c = V - A = \{\{3\}, 10, \{1, 2, 3\}\}$

$$B^c = \{-2, 7, \{1, 2, 3\}, 3\}$$

$$C^c = \{1, \{3\}, 7, 10\}$$

$$A^c \cap B^c \cap C^c = \emptyset$$

- 6. Por la Ley de De Morgan:
 - $(A \cup B \cup C)^c = A^c \cap B^c \cap C^c$ $(A \cap B \cap C)^c = A^c \cup B^c \cup C^c$
- 7. Acá debería mostrar diagramas de Venn. Cuando tenga tiempo voy a buscar algún paquete de LaTeX para hacerlos.
- 8. La idea de este ejercicio es buscar formas de expresar la resta de conjuntos y la diferencia simétrica utilizando uniones, intersecciones y complementos.

- i) $(A \cap B^c) \cup (B \cap C \cap A^c)$
- iii) $((A \cap B) \cup (B \cap C) \cup (C \cap A)) \cap (A \cap B \cap C)^c$
- ii) $(A \cup C) \cap (A \cap C)^c \cap B^c$
- 9. i) $\{\emptyset, \{1\}\}$
 - ii) $\{\emptyset, \{a\}, \{b\}, \{a, b\}\}$
 - iii) $\{\emptyset, \{1\}, \{\{1,2\}\}, \{1, \{1,2\}\}\}$
 - iv) $\{\emptyset, \{a\}, \{b\}, \{c\}, \{a,b\}, \{a,c\}, \{b,c\}, \{a,b,c\}\}\}$
 - v) $\{\emptyset, \{1\}, \{a\}, \{\{-1\}\}, \{1, a\}, \{1, \{-1\}\}, \{a, \{-1\}\}, \{1, a, \{-1\}\}\}\}$
 - vi) $\{\emptyset\}$
- 10. Para probar que $P(A) \subseteq P(B) \Leftrightarrow A \subseteq B$ hay que probar que $P(A) \subseteq P(B) \Rightarrow A \subseteq B$ y que $P(A) \subseteq P(B) \Leftarrow A \subseteq B$. Es decir, hay que probar la implicación para los dos lados.
 - $P(A) \subseteq P(B) \Rightarrow A \subseteq B$:

Demostración por el absurdo. Supongamos que $A \not\subseteq B$. Entonces existe $a \in A$ que no pertenece a B. Esto es equivalente a decir que $\{a\} \subseteq A$ pero $\{a\} \not\subseteq B$ (por definición de conjunto de partes). ¡Absurdo! Pues esta afirmación contradice a $P(A) \subseteq P(B)$. Luego, $P(A) \subseteq P(B) \Rightarrow A \subseteq B$.

• $A \subseteq B \Rightarrow P(A) \subseteq P(B)$:

Demostración por el absurdo. Supongamos que $P(A) \not\subseteq P(B)$. Entonces existe $a \in P(A)$ que no pertenece a P(B). Esto es equivalente a decir que $a \subseteq A$ pero $a \not\subseteq B$ (por definición de conjunto de partes). ¡Absurdo! Pues esta afirmación contradice a $P(A) \not\subseteq P(B)$.

Acabamos de probar que $P(A) \subseteq P(B) \Leftrightarrow A \subseteq B$.

- 11. Pendiente de completar.
- 12. Sean los conjuntos

 $A = \{$ "Argentinos" $\}$

 $E = \{$ "Estudiantes de matemática de la facultad" $\}$

 $M = \{$ "Materos, personas que toman mate" $\}$

Sabemos que

- $E \not\subseteq A$ (hay estudiantes extranjeros).
- $(M-A) \cap E = \emptyset$ (no hay materos extranjeros en la facultad).

¿Estas premisas implican que $E \not\subseteq M$ (hay estudiantes que no toman mate)?

Sí, los estudiantes extranjeros no toman mate.

 $E \not\subseteq A$ implica que existe una persona p tal que $p \in E$ y $p \notin A$. Luego, $p \notin (M-A)$ pues $(M-A) \cap E = \emptyset$. Sabemos que $p \notin (M-A)$ y $p \notin A$. Entonces, $p \notin M$. Es decir, $p \in E$ pero $p \notin M$. Esto dice que $E \not\subseteq M$.

Relaciones

18.	Dados dos conjuntos A y B , un conjunto R es una relación de A en .	B s	sii
	$R \in P(A \times B)$ o, equivalentemente, $R \subseteq A \times B$.		

- i) Sí. vi) Sí. vi) Sí.
- ii) No, pues $(3,2) \notin$ iv) Sí. vii) Sí. $A \times B$. v) Sí. viii) Sí.
- 19. Pendiente de completar.
- 20. Dado un conjunto A, una relación R de A en A (una relación en A) es
 - Reflexiva sii $(\forall a \in A)aRa$.
 - Simétrica sii $(\forall a, b \in A)(aRb \Rightarrow bRa)$.
 - Transitiva sii $(\forall a, b, c \in A)((aRb \land bRc) \Rightarrow aRc)$.
 - Antisimétrica sii $(\forall a, b \in A)((aRb \land bRa) \Rightarrow a = b)$ o, equivalentemente, $(\forall a, b \in A, a \neq b)((a, b) \in R \Rightarrow (b, a) \notin R)$.
 - i) No reflexiva pues $(a, a) \notin R$.
 - No simétrica pues $(h,g) \in R$ pero $(g,h) \notin R$.
 - No transitiva pues eRc y cRh pero $(e,h) \notin R$.
 - No antisimétrica pues aRb y bRa.
 - ii) Reflexiva.
 - No simétrica pues $(h,g) \in R$ pero $(g,h) \notin R$.
 - No transitiva pues cRh y hRg pero $(c,g) \notin R$.
 - No antisimétrica pues aRb y bRa.
 - iii) No reflexiva pues $(d, d) \notin R$.
 - No simétrica pues $(h,g) \in R$ pero $(g,h) \notin R$.
 - Transitiva.
 - \bullet No antisimétrica pues aRb y bRa.
 - iv) Reflexiva.
 - Simétrica.
 - Transitiva.
 - No antisimétrica pues aRb y bRa.
- 21. Pendiente de completar.
- 22. Pendiente de completar.
- 23. Decimos que una relación es
 - una relación de equivalencia sii es reflexiva, simétrica y transitiva.

- una relación de orden sii es reflexiva, antisimétrica y transitiva.
- Reflexiva, simétrica, transitiva, antisimétrica. Relación de orden y de equivalencia.
- ii) No reflexiva, simétrica, transitiva, antisimétrica.
- iii) Reflexiva, no simétrica, transitiva, antisimétrica. Relación de orden.
- iv) Reflexiva, simétrica, transitiva, no antisimétrica. Relación de equivalencia.
- v) Reflexiva, no simétrica, transitiva, antisimétrica. Relación de orden.
- vi) Reflexiva, no simétrica, transitiva, antisimétrica. Relación de orden.
- vii) Reflexiva, no simétrica, transitiva y antisimétrica porque está definida con el operador ⊆. Relación de orden.
- 24. i) Dado un conjunto A y una relación R en A
 - Si $R = \emptyset$ entonces es simétrica y antisimétrica.
 - \bullet Si R es la relación de igualdad (o sea, la relación en A solo reflexiva), también es simétrica y antisimétrica.
 - Si a la relación de igualdad le quitamos algunos elementos, sigue siendo simétrica y antisimétrica.

Entonces, una relación R en A es simétrica y antisimétrica sii $R \subseteq \{(a,a): a \in A\}$.

ii) Para ser una relación de equivalencia y de orden, además de ser simétrica y antisimétrica debe ser reflexiva y transitiva. La relación de igualdad es la única que es simétrica, antisimétrica y reflexiva. Además, también es transitiva. Luego, la única relación de equivalencia y de orden es la relación de igualdad.

Una relación puede no ser simétrica ni antisimétrica. Por ejemplo, la relación del ejercicio 20. i).

- 25. Sea R una relación de equivalencia en el conjunto A y sea $a \in A$. La clase de equivalencia de a es el conjunto de elementos de A que se relacionan con él y la notamos \overline{a} . Es decir, $\overline{a} = \{b : b \in A, bRa\}$ La partición asociada a R es el conjunto de clases de equivalencia. Notar que des elementos \overline{a} e A que den tener la misma elementos de equivalencia.
 - que dos elementos $x, y \in A$ pueden tener la misma clase de equivalencia, o sea $\overline{x} = \overline{y}$. En ese caso solo escribimos uno de los dos al describir la partición por extensión para que sea lo más corta posible.
 - No voy a escribir las clases de equivalencia y la partición de este ejercicio porque es muy tedioso.
- 26. El primer ítem nos dice que podemos separar los números naturales según su último dígito. Es decir, la partición de R es $\{\overline{0}, \overline{1}, \overline{2} \dots \overline{9}\}$.
 - Pero como $(1,2) \in R$ y es una relación de equivalencia, entonces $\overline{1} = \overline{2}$. Siguiendo el mismo razonamiento, $\overline{1} = \overline{2} = \overline{5} = \overline{7}$, $\overline{4} = \overline{6}$, $\overline{3} = \overline{8} = \overline{0}$. La

partición de R queda igual a $\{\overline{0}, \overline{1}, \overline{4}, \overline{9}\}.$

Por otro lado, el hecho de que $(1,4) \notin R$ nos dice que $\overline{1} \neq \overline{4}$. Siguiendo el mismo razonamiento, obtenemos que $\overline{1} \neq \overline{0}$, $\overline{9} \neq \overline{0}$, $\overline{9} \neq \overline{4}$.

Con estas restricciones, lo único que no está determinado es si $\overline{0} = \overline{4}$ y si $\overline{1} = \overline{9}$. Es decir, las posibles particiones de R son:

•
$$\{\overline{0},\overline{1},\overline{4},\overline{9}\}$$

•
$$\{\overline{0}, \overline{1}, \overline{4}\}$$
 con $\overline{1} = \overline{9}$

•
$$\{\overline{0}, \overline{1}, \overline{9}\}$$
 con $\overline{0} = \overline{4}$

•
$$\{\overline{0}, \overline{1}\}$$
 con $\overline{0} = \overline{4}$ y $\overline{1} = \overline{9}$

Dar la partición de una relación es equivalente a definir la relación. Por lo tanto, estas particiones nos dicen que hay 4 relaciones de equivalencia distintas que verifican simultáneamente las propiedades del enunciado.

27. La relación tiene dos clases de equivalencia, a saber: la clase de equivalencia de los números pares y la de los impares. Vamos a llamar $\overline{0}$ a la clase de equivalencia de los números pares y $\bar{1}$ a la de los impares. Algunos representantes:

•
$$0, 2, -2, 4, -4 \in \overline{0}$$

•
$$1, 3, -3, 5, -5 \in \overline{1}$$

28. Sea $\overline{1}$ la clase de equivalencia de los subconjuntos de un elemento, $\overline{2}$ la clase de equivalencia de los subconjuntos de dos elementos y así siguiendo. Hay una clase de equivalencia para cada número natural. Es decir hay cardinal de $\mathbb N$ clases de equivalencia. Los representantes más simples son

•
$$\{1,2,3\} \in \overline{3}$$

•
$$\{1,2\} \in \overline{2}$$