CS 61C: Great Ideas in Computer Architecture Finite State Machines

Instructors:

Krste Asanovic & Vladimir Stojanovic http://inst.eecs.berkeley.edu/~cs61c/sp15

Type of Circuits

- Synchronous Digital Systems consist of two basic types of circuits:
 - Combinational Logic (CL) circuits
 - Output is a function of the inputs only, not the history of its execution
 - E.g., circuits to add A, B (ALUs)
 - Sequential Logic (SL)
 - Circuits that "remember" or store information
 - aka "State Elements"
 - E.g., memories and registers (Registers)

Uses for State Elements

- Place to store values for later re-use:
 - Register files (like \$1-\$31 in MIPS)
 - Memory (caches and main memory)
- Help control flow of information between combinational logic blocks
 - State elements hold up the movement of information at input to combinational logic blocks to allow for orderly passage

Accumulator Example

Why do we need to control the flow of information?

Want:

S=0;

for (i=0; i < n; i++)S = S + X_i

Assume:

- Each X value is applied in succession, one per cycle
- After n cycles the sum is present on S

First Try: Does this work?

No!

Reason #1: How to control the next iteration of

the 'for' loop?

Reason #2: How do we say: 'S=0'?

Camera Analogy Timing Terms

- Want to take a portrait timing right before and after taking picture
- Set up time don't move since about to take picture (open camera shutter)
- Hold time need to hold still after shutter opens until camera shutter closes
- Time click to data time from open shutter until can see image on output (viewscreen)

12

Hardware Timing Terms

- Setup Time: when the input must be stable before the edge of the CLK
- Hold Time: when the input must be stable *after* the edge of the CLK
- "CLK-to-Q" Delay: how long it takes the output to change, measured from the edge of the CLK

• What is the maximum frequency of this circuit?

Inputs Combinational Outputs Hint: Frequency = 1/Period

Register Current State

Max Delay = CLK-to-Q Delay + CL Delay + Setup Time

Recap of Timing Terms

- Clock (CLK) steady square wave that synchronizes system
- Setup Time when the input must be stable <u>before</u> the rising edge of the CLK
- Hold Time when the input must be stable <u>after</u> the rising edge of the CLK
- "CLK-to-Q" Delay how long it takes the output to change, measured from the rising edge of the CLK
- Flip-flop one bit of state that samples every rising edge of the CLK (positive edge-triggered)
- Register several bits of state that samples on rising edge of CLK or on LOAD (positive edge-triggered)

Clickers/Peer Instruction

Clock->Q 1ns Setup 1ns Hold 1ns AND delay 1ns

What is maximum clock frequency?

- A: 5 GHz
- B: 200 MHz
- C: 500 MHz
- D: 1/7 GHz
- E: 1/6 GHz

Administrivia

- Project 1-1 due 3/01
- Midterm is next Thursday 2/26, in class
 - Covers up to and including the previous lecture
 - 1 handwritten, double sided, 8.5"x11" cheat sheet
 - We'll give you MIPS green sheet
- · Review Sessions:
 - TA: Monday 2/23, 7-9pm, 10 Evans
 - HKN: Saturday 2/21, 1-4pm, 100 Genetics Plant Biology

21

Finite State Machines (FSM) Intro

- You have seen FSMs in other classes.
- · Same basic idea.
- The function can be represented with a "state transition diagram".
- With combinational logic and registers, any FSM can be implemented in hardware.

FSM Example: 3 ones...

FSM to detect the occurrence of 3 consecutive 1's in the input.

Draw the FSM...

Assume state transitions are controlled by the clock: on each clock cycle the machine checks the inputs and moves to a new state and produces a new output...

FSM Combinational Logic

Specify CL using a truth table.

Truth table...

Trutti tubic			
PS	Input	NS	Output
00	0	00	0
00	1	01	0
01	0	00	0
01	1	10	0
10	0	00	0
10	1	00	1

Moving between Representations

 Use this table and techniques we learned last time to transform between alternative views of same logic function

Building Standard Functional Units

- · Data multiplexers
- · Arithmetic and Logic Unit
- · Adder/Subtractor

N instances of 1-bit-wide mux

How many rows in TT?

$$c = \overline{s}a\overline{b} + \overline{s}ab + s\overline{a}b + sab$$

$$= \overline{s}(a\overline{b} + ab) + s(\overline{a}b + ab)$$

$$= \overline{s}(a(\overline{b} + b)) + s((\overline{a} + a)b)$$

$$= \overline{s}(a(1) + s((1)b))$$

$$= \overline{s}a + sb$$

How do we build a 1-bit-wide mux? $\overline{s}a + sb$

Arithmetic and Logic Unit

- Most processors contain a special logic block called the "Arithmetic and Logic Unit" (ALU)
- We'll show you an easy one that does ADD, SUB, bitwise AND, bitwise OR

when S=00, R=A+B when S=01, R=A-B when S=10, R=A $_{\rm AND}$ B when S=11, R=A $_{\rm OR}$ B

In the News: Microsoft, Google beat Humans at Image Recognition (EE Times)

- On ImageNet benchmark image database, systems from Microsoft and Google performed better than humans at recognizing images
- Both companies used deep artificial neural networks to train on image database

How to design Adder/Subtractor?

- Truth-table, then determine canonical form, then minimize and implement as we've seen before
- Look at breaking the problem down into smaller pieces that we can cascade or hierarchically layer

35

Adder/Subtractor – One-bit adder LSB...

$$s_0 = c_1 = c_1 = c_1$$

 c_{i+1}

Adder/Subtractor - One-bit adder (2/2)

N 1-bit adders ⇒ 1 N-bit adder

Extremely Clever Subtractor

In Conclusion

- Finite State Machines have clocked state elements plus combinational logic to describe transition between states
- Standard combinational functional unit blocks built hierarchically from subcomponents

42