- 问题 (1): 本系列问题是为了期中考试复习而设置的.
- 问题 (1.1):请你求出 二面体群 D_{2n} 中每个元素的阶数.

证明. 由定义, r 是 n 阶的, 而 s 是 2 阶的. 对于 r^a , 记 a, n 的最大公因数为 d, 由 Bezout 定理, 存在 $s, t \in \mathbb{Z}$, 使得 sa + tn = d, 进而 $(r^a)^s = r^{as+tn} = r^d$, 故 $\langle r^a \rangle = \langle r^d \rangle$, 即 r^a 和 r^d 有相同的阶数, 进而只需考虑 d 整除 n 的情形, 此时 r^d 的阶为 $\frac{n}{d}$. 对于 $r^b s$, 注意到 $r^b s r^b s = r^b (sr s^{-1})^b = r^b r^{-b} = 1$, 故 $r^b s$ 都是 2 阶的.

问题 (1.2):请证明 关于群的可解性我们有如下事实成立:

- (1) 若 G 是可解群,则 G 的子群和商群都是可解的.
- (2) 反之, 对群 G 及正规子群 N, 若 N 和 G/N 都是可解的, 则 G 也是可解的.
- (3) 群 G 是可解群当且仅当 G 的 Jordan-Hölder 因子都是交换群.

证明. 对于 (1), 对 G 的子群 H, 记 $\mathcal{D}G = \mathcal{D}^1G = [G,G], \mathcal{D}^{n+1}G = [\mathcal{D}^nG,\mathcal{D}^nG]$, 则可以归纳地证明 $\mathcal{D}^nH \subset \mathcal{D}^nG$, 进而当 G 可解, 则 H 可解. 对于商群 G/N, 记 $p:G \to G/N$ 是投影, 注意到 [p(x),p(y)]=p([x,y]), 故可以归纳地证明 $p(\mathcal{D}^nG)=\mathcal{D}^n(G/N)$, 因此 G/N 也是可解的. 对于 (2), 记 $p:G \to G/N$ 是商映射, 由 $p(\mathcal{D}^nG)=\mathcal{D}^n(G/N)$, 故 N 足够大时 $\mathcal{D}^NG \subset N$, 进而 $\mathcal{D}^{N+k}G \subset \mathcal{D}^kN$, 故 G 可解. 对于 (3), 注意到 $\mathcal{D}^kG/\mathcal{D}^{k+1}G$ 是交换群, 故可解群的 Jordan-Hölder 因子是交换群. 反之, 若 G 有合成列 $0=G_0 \triangleleft G_1 \triangleleft \cdots \triangleleft G_n = G$, 使得 G_k/G_{k+1} 是交换单群. 由 G/G_{n-1} 交换, 则 $\mathcal{D}G \subset G_{n-1}$, 进而可以归纳地证明 $\mathcal{D}^kG \subset G_{n-k}$ 对所有 k 成立. 特别地, $\mathcal{D}^nG \subset G_0 = 0$, 故 $\mathcal{D}^nG = 0$, 即 G 是可解的.

问题 (1.3): 对正整数 $n \in \mathbb{Z}_{>1}$, 考虑环 $\mathbb{Z}/n\mathbb{Z}$,请证明: $\mathbb{Z}/n\mathbb{Z}$ 是整环当且仅当 n 是素数.

证明. 对 $s \mod n, t \mod n \in \mathbb{Z}/n\mathbb{Z}$, 则 $st \equiv 0 \mod n$ 当且仅当 n 整除 st. 若 n 是素数, 则 n 整除 s 或整除 t, 进而 $s \equiv 0 \mod n$ 或 $t \equiv 0 \mod n$, 故 $\mathbb{Z}/n\mathbb{Z}$ 是整环. 反之, 当 n 不是素数, 记 n = ab, 其中 0 < a, b < n, 则 $a, b \not\equiv 0 \mod n$, 而 $ab \equiv 0 \mod n$, 故 $a \mod n$ 和 $b \mod n$ 都是零因子.

问题 (2): 本系列问题中, 我们考虑集合 X 的幂集 $\mathcal{P}(X)$ 构成的环.

问题 (2.1): 对于集合 X, 我们记 $\mathcal{P}(X)$ 是 X 的所有子集构成的集合,请证明: 若在 $\mathcal{P}(X)$ 中定义加法 $E+F=(E-F)\cup(F-E)$ 以及乘法 $E\times F=E\cap F$,则 $\mathcal{P}(X)$ 构成一个含幺环.(这里的 $E-F=\{x\in X:x\in E \ | \ x\notin F\}$)

提示: 事实上, 我们可以将 $\mathcal{P}(X)$ 看作所有从 X 到 $\{0,1\}$ 的映射的集合. 对于 $E \in \mathcal{P}(X)$, 我们将其映射为 E 的特征函数 χ_E , 这里: $\chi_E(x) = \begin{cases} 1 & \exists x \in E \\ 0 & \exists x \notin E \end{cases}$. 如果我们将 $\{0,1\}$ 看

作 \mathbb{F}_2 的话, 则从 X 到 \mathbb{F}_2 的映射存在自然的加法和乘法:(f+g)(x)=f(x)+g(x),

(fg)(x) = f(x)g(x). 由 \mathbb{F}_2 是域,则这里的加法和乘法赋予了 $\mathcal{P}(X)$ 含幺环结构 (幺元是 X,零元是 \emptyset). 因此只需验证 $\chi_E + \chi_F = \chi_{E+F}, \chi_E \chi_F = \chi_{E\times F}$ 即可.

证明. 如提示所言, 略.

问题 (2.2): 对于 $\mathcal{P}(X)$ 的子集 $A, \overline{\mathfrak{q}} = \mathfrak{q}$. A 构成 $\mathcal{P}(X)$ 的含幺子环当且仅当 A 满足如下的性质:

- $(1) \emptyset \in A.$
- (2) 若 $E, F \in A$, 则 $E \cup F \in A$.
- (3) 若 $E \in A$, 则 $X E \in A$.

证明. 当 A 是 $\mathcal{P}(X)$ 的含幺子环, 则 $X \in A$, 进而任取 $E \in A$, 有 $E + X = (X - E) \in A$. 特别地, $\emptyset = X - X \in A$. 对 $E, F \in A$, 则 $E \cup F = (E + F) \cup (E \cap F)$, 注意到 $(E + F) \cap (E \cap F) = \emptyset$, 故 $(E + F) + (E \times F) = (E + F) + (E \cap F) = E \cup F$, 故 $E \cup F \in A$. 因此 A 满足以上的 (1), (2), (3).

反之, 若 A 满足以上的 (1), (2), (3). 对 E, $F \in A$, 注意到 $E \cap F = X - (X - E) \cup (X - F)$, 故 $E \cap F \in A$. 进而, 注意到 $E + F = (E \cap (X - E \cap F)) \cup (F \cap (X - E \cap F))$, 故 $E + F \in A$. 进而 A 构成 $\mathcal{P}(X)$ 的子环, 且由 $X = X - \emptyset \in A$, 故 A 是含幺的.

说明: 在测度论中, 我们称满足上述 (1), (2), (3) 的子集族为一个环. 该问题说明, 测度论中定义的环确实构成一个环.

问题 (2.3): 对于集合间的映射 $f: X \to Y$,请证明: $\mathcal{P}(X) \to \mathcal{P}(Y)$, $E \mapsto f(E)$ 不一定是环同态.

证明. 很容易就能找到例子,使得 $f(E \cap F) \neq f(E) \cap f(F)$. 譬如说,考虑 $X = \{0, 1, 2\}$, $E = \{0, 1\}$, $F = \{0, 2\}$,令 f(0) = 0,f(1) = 1,f(2) = 1,则 $f(E \cap F) = \{0\}$,而 $f(E) \cap f(F) = \{0, 1\}$.

问题 (2.4): 在 (2.3) 的条件下,请证明: $\mathcal{P}(Y) \to \mathcal{P}(X), F \mapsto f^{-1}(E)$ 是环同态.

证明. 不难验证 $f^{-1}(E \cup F) = f^{-1}(E) \cup f^{-1}(F), f^{-1}(E \cap F) = f^{-1}(E) \cap f^{-1}(F), f^{-1}(E - F) = f^{-1}(E) - f^{-1}(F),$ 故得证.

问题 (2.5): 对环 R, 若 $f^2 = f$ 对所有 $f \in R$ 都成立, 则称 f 是一个 Boolean 环.<u>请证明</u> 如下事实:

- (1) 对集合 X, $\mathcal{P}(X)$ 是 Boolean 环.
- (2) 若 R 是 Boolean 环, 则任取 $f \in R$, 都有 f + f = 0.
- (3) 若 R 是 Boolean 环, 则 R 是交换的.

证明. 对 $E \in \mathcal{P}(X)$, 则 $E^2 = E \times E = E \cap E = E$, 故 $\mathcal{P}(X)$ 是 Boolean 环. 对 (2), 注意到 $2f = (2f)^2 = 4f^2 = 4f$, 故 2f = 0, 即 f + f = 0. 对 (3), 注意到 $(f + g)^2 = f^2 + fg + gf + g^2 = f + g + fg + gf = (f + g)$, 故 fg + gf = 0. 由 (2), 则 gf = -gf, 故 fg = gf, 进而 R 是交换的.

补充说明: 可以证明, 若 R 是 Boolean 环, 则 R 同构于某个 $\mathcal{P}(X)$ 的子代数. 如果你熟悉交换代数的话, 上述嵌入是这样构造的: 令 $X = \operatorname{Spec}(R)$, 考虑 $R \to \mathcal{P}(X)$, $f \mapsto D(f)$.

问题 (3): 本系列问题中, 我们研究交换环 R 上的形式幂级数环 R[[X]]. 在本系列问题中, 我们固定 R 是一个 (含幺) 交换环.

问题 (3.1): 我们记 R[[X]] 是全体映射 $\mathbb{Z}_{\geq 0} \to R$ 的映射, 当 $a_n = f(n)$, 则我们用符号 $\sum_{n=0}^{\infty} a_n X^n$ 表示 f. 在 R[[X]] 上, 我们定义加法 $\sum_{n=0}^{\infty} a_n X^n + \sum_{n=0}^{\infty} b_n X^n = \sum_{n=0}^{\infty} (a_n + b_n) X^n$ 和乘法 $(\sum_{n=0}^{\infty} a_n X^n)(\sum_{n=0}^{\infty} b_n X^n) = \sum_{n=0}^{\infty} (\sum_{k=0}^{n} a_k b_{n-k}) X^n$.请证明:R[[X]] 构成一个含幺交换环.

补充说明: 事实上, 多项式环的严格定义就是通过类似 (3.1) 的方式构造的. 即对于交换环 R, 我们定义:

$$R[X] = \{f$$
是映射 $\mathbb{Z}_{>0} \to R : 只有有限多个 $f(n)$ 非零 $\}$,$

此时,当 $a_i = f(i)$,且 n 是使得 $f(n) \neq 0$ 的最大正整数,则我们用符号 $f(X) = \sum_{i=0}^n a_i X^i$ 表示 f,并记 $\deg(f)$ 为 n. 通过这种方式定义的多项式环满足多项式环的泛性质: 对任意交换环 S 和环同态 $\phi: R \to S$,任取 $s \in S$,存在唯一环同态 $\widetilde{\phi}: R[X] \to S$,满足 $\widetilde{\phi}(X) = s$ 且 $\widetilde{\phi}|_R = \phi$ (即多项式环是 R-代数范畴中的自由对象) ——因此这种对多项式环的定义是合理的.

问题 (3.2):请证明: 多项式环 R[X] 在自然的意义下构成 R[[X]] 的子环.

问题 (3.3): 我们记 $I_k = \left\{ \sum_{n=0}^{\infty} a_n X^n : \exists n < k \text{时} a_n = 0 \right\}, \ \underline{\text{请证明}} : 对所有 \ k \in \mathbb{Z}_{\geq 1}, \ \text{都有} I_k \ \mathcal{E} \ R[[X]]$ 的理想.

问题 (3.4): 对 $f(X) = \sum_{n=0}^{\infty} a_n X^n \in R[[X]],$ 请证明: f(X) 在 R[[X]] 中可逆当且仅当 a_0 在 R 中可逆.

提示: 一个最简单的例子是 $(1-X)^{-1} = \sum_{n=0}^{\infty} X^n$. 当 a_0 可逆, 则可以归纳地构造 b_0, b_1, \dots, b_n , 使得 $f(X)(\sum_{k=0}^n b_n X^n) = 1 + X^{n+1}h(X)$, 进而 $f(X)(\sum_{k=0}^\infty b_n X^n) = 1$.

证明. 当 f(X) 可逆,则存在 g(X),使得 f(X)g(X) = 1. 记 $g(X) = \sum_{n=0}^{\infty} b_0 X^n$,考虑 f(X)g(X) = 1 的常数项,则 $a_0b_0 = 1$,故 a_0 可逆.反之,当 a_0 可逆,我们归纳地构造一列 b_0,b_1,\ldots ,使得 $f(X)(\sum_{n=0}^{N} b_n X^n) - 1 = X^{N+1}h_N(X)$.令 $b_0 = a_0^{-1}$,则 $b_0f(X) - 1$ 形如 $Xh_0(X)$.若已经构造出了 b_0,b_1,\ldots,b_{N-1} ,则 $f(X)(\sum_{n=0}^{N-1} b_n X^n)$ 的第 N 次项为 $\sum_{n=0}^{N-1} b_n a_{N-n}$.记 $A_N = \sum_{n=0}^{N-1} b_n a_{N-n}$,则 $f(X)(\sum_{n=0}^{N-1} b_n X^n - \frac{A_N}{a_0} X^N)$ 的 N 次项为 0,故令 $b_N = -\frac{A_n}{a_0}$ 即可. 现在,令 $g(X) = \sum_{n=0}^{\infty} b_n X^n$,则由上述 b_n 的构造,一定有 f(X)g(X) = 1,故而 f(X)可逆.

问题 (3.5): 若 K 是域, <u>请证明</u>: 若 I 是 K[[X]] 的非平凡理想, 则存在 $k \in \mathbb{Z}_{\geq 0}$, 使得 $I = I_k$.

提示: 对 $f(X) = \sum_{n=0}^{\infty} a_n X^n$,记 N 是使得 $a_N \neq 0$ 的最小正整数,则 $f(X) = X^N f_0(X)$,其中 $f_0(X) = \sum_{n=0}^{\infty} a_{n+N} X^n$. 由 (3.4),则 $f_0(X)$ 可逆.

证明. 此时, 任取 $f(X) \in K[[X]]$, 记 f(X) 的最低次项为 k, 则 $f(X) = X^k f_0(X)$, 其中 $f_0(X)$ 的常数项非零, 进而 $f_0(X)$ 可逆, 故 $f(X) \in I_k$. 因此, 若 $I \notin K[[X]]$ 的理想, 若 $I \neq 0$, 则存在某个 $k \geq 0$, 使得 $X^k \in I$. 我们记 k 是使得 $X^k \in I$ 的最小正整数. 注意 到 I_k 被 X^k 生成, 故 $I_k \subset I$. 反之, 任取 $f \in I$, 记 $f(X) = X^n f_0(X)$, 由 k 的最小性, 则 $n \geq k$, 进而 $f \in I_k$, 故 $I = I_k$.

问题 (4): 本系列问题中, 我们将研究 $M_n(R)$ 的理想. 为了避免不必要的麻烦, 在本系列问题中, 我们规定 R 是一个 (含幺) 交换环, 且 R 中有足够数量的元素.

问题 (4.1):<u>请证明</u>: $M_n(R)$ 对于矩阵的加法和乘法构成一个 (含幺) 环, 且在 $n \geq 2$ 时, $M_n(R)$ 是非交换的.

证明. $M_n(R)$ 构成环的验证是平凡的. 非交换性可参考第 1 次习题课的 (1.2).

问题 (4.2): 若 $I \in R$ 的理想,<u>请证明</u>: $M_n(R) \to M_n(R/I), (a_{ij}) \mapsto (a_{ij} \mod I)$ 是良定的环同态, 进而其核 $M_n(I)$ 构成 $M_n(R)$ 的理想.

问题 (4.3): 若 J 是 $M_n(R)$ 的 (双边) 理想,请证明:

$$I = \left\{ a \in R : 存在(a_{ij}) \in J 以及1 \le i, j \le n 使得a = a_{ij} \right\}$$

构成 R 的理想.

提示: 对 $A = (a_{ij}), B = (b_{ij}),$ 记 E_{ij} 是只有 (i,j)-元为 1, 其余元为 0 的矩阵. 则 $a_{ij}E_{ij} = E_{ii}AE_{jj}, b_{kl}E_{kl} = E_{kk}BE_{ll},$ 进而 $(a_{ij} + b_{kl})E_{ij} = a_{ij}E_{ij} + E_{ik}(b_{kl}E_{kl})E_{lj},$ 因此 I 对加法封闭.

证明. 由提示容易得到.

问题 (4.4): 在 (2.3) 的条件下,请证明: $J = M_n(I)$.

提示: 对 $A = (a_{ij}) \in M_n(I)$,则存在 $A_{ij} \in J$,使得 A_{ij} 的 (k_{ij}, l_{ij}) -元是 a_{ij} ,进而 $A = \sum_{i,j} E_{i,k_{ij}} A_{ij} E_{l_{ij},j}$.

证明. 由提示容易得到.

问题 (4.5): 对含幺交换环 R,请证明: 若 I 是 R 的的非平凡理想,则 R/I 是域.

证明. 对只需证明 R/I 的非零元都可逆. 对 $x \in R - I$, 考虑 I + Rx, 则 I + Rx 是 R 的理想. 由 I 的极大性, 则 I + Rx = R, 进而存在 $y \in R$, 使得 $xy \equiv 1 \mod I$, 故 $x \in R/I$ 中可逆.

问题 (4.6):<u>请证明</u>: 当 $n \ge 2$, 若 J 是 $M_n(R)$ 的极大的非平凡 (双边) 理想, 则 $M_n(R)/J$ 不是除环, 即 $M_n(R)/J$ 中并非所有非零元都可逆.

证明. 由 (4.4), 则 $J = M_n(I)$, 其中 $I \in R$ 种极大的非平凡理想. 由 (4.5), 记 R/I 是域 K, 则由 (4.2), 我们知道 $M_n(I)/J = M_n(K)$, 而显然 $M_n(K)$ 中存在不可逆的非零元, 譬 如 $\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$.

问题 (5): 本系列问题中, 我们将研究多项式环在置换群作用下的不变量.

问题 (5.1): 对于群 G 和环 R, 若群 G 在集合 R 上有作用, 使得对任意的 $g \in G$, 都有 $r \mapsto gr$ 是 R 的环自同态, 则我们称这个作用是群 G 在环 R 上的一个作用. 我们记:

$$R^{G} = \left\{ r \in R : r = gr$$
对所有 $g \in G$ 成立 $\right\}$,

请证明: 若群 G 在环 R 上有作用, 则 R^G 是 R 的子环.

证明. 略. □

问题 (5.2): 对交换环 A, 记 $R = A[X_1, ..., X_n]$ 是 R 上的 n-元多项式环.<u>请证明</u>: 存在 唯一置换群 S_n 在环 R 上的作用, 满足: $\sigma(X_i) = X_{\sigma(i)}$. 我们称 $f(X) \in R^{S_n}$ 为 R 中的对称多项式.

证明. 略.

问题 (5.3): 我们定义:

盾.

$$e_1(X_1, \dots, X_n) = \sum_{1 \le i \le n} X_i$$

$$e_2(X_1, \dots, X_n) = \sum_{1 \le i < j \le n} X_i X_j$$

$$e_3(X_1, \dots, X_n) = \sum_{1 \le i < j < k \le n} X_i X_j X_k$$

$$\dots$$

$$e_n(X_1, \dots, X_n) = X_1 X_2 \dots X_n$$

请证明: $e_1, e_2, \ldots, e_n \in \mathbb{R}^{S_n}$, 我们称 e_1, \ldots, e_n 为 R 中的初等对称多项式...

问题 (5.4): 对 $f(X) \in R$, 记 $f_l(X)$ 是 f(X) 所有只包含 X_1, \ldots, X_{n-1} 的项构成的多项式,请证明 下列事实:

- (1) $\not\equiv f(X) \in A[X_1, \dots, X_n]^{S_n}, \ \emptyset \ f_l(X) \in A[X_1, \dots, X_{n-1}]^{S_{n-1}}.$
- (2) 对 $f(X), g(X) \in \mathbb{R}^{S_n}$, 当 f(X), g(X) 不包含被 $X_1 X_2 \dots X_n$ 整除的项, 则 $f_l(X) = g_l(X)$ 当且仅当 f(X) = g(X).

提示: 对于 (2), 只需证明若 $f_l = 0$, 则 f = 0. 若 $f \neq 0$, 则 f(X) 中含有非零项 $X_1^{m_1} \dots X_n^{m_n}$. 由 f(X) 没有被 $X_1 \dots X_n$ 整除的项, 则 m_i 至少有一个为 0, 进而存在 $\sigma \in S_n$, 使得 $\sigma(X_1^{m_1} \dots X_n^{m_n})$ 中只含 X_1, \dots, X_{n-1} , 此时它是 f_l 的项, 故 $f_l \neq 0$.

证明. 对 $f(X) \in A[X_1, ..., X_n]^{S_n}$, 考虑 $\sigma \in S_{n-1}$ 在 f(X) 上的作用,则 σ 保持 $X_1, ..., X_{n-1}$ 构成的项,故 $\sigma(f)_l = \sigma(f_l)$,进而 $f_l = \sigma(f)_l = \sigma(f_l)$. 对于 (2),显然 f(X) = g(X) 时 $f_l(X) = g_l(X)$. 反之,若 $f_l(X) = g_l(X)$,不失一般性用 f(X) - g(X) 替代 f(X),不妨设 g(X) = 0. 此时,若 $f(X) \neq 0$,由 $X_1 X_2 ... X_n$ 不整除 f(X),则存 在 $\{1, ..., n\}$ 的子集 $\{i_1, ..., i_r\}$,使得 f(X) 存在非零项 $\prod_{k=1}^r X_{i_k}^{n_k}$. 此时,存在 $\sigma \in S_n$,使

问题 (5.5): 利用归纳法, <u>请证明</u>: $R^{S_n} = A[e_1, \dots, e_n]$, 即若 f(X) 是对称多项式, 则存在 $g(X) \in A[X_1, \dots, X_n]$, 使得 $f(X) = g(e_1(X), \dots, e_n(X))$.

提示: 这里我认为要同时对变元的个数和 f(X) 的次数进行归纳. 用 $X_1 \dots X_n$ 进行带余除法,则 $f(X) = g(X) + X_1 \dots X_n r(X)$,其中 g(X)满足 (5.4)的 (2),而 r(X)的次数严格小于 f(X)的次数. 对前者,考虑 g_l ,使用关于变元个数的归纳. 对于后者,使用关于多项式次数的归纳.

证明. 我们首先对 n 进行归纳, n=1 时结论是显然成立的. 对 n>1, 我们再对 $f(X)\in R^{S_n}$ 的次数进行归纳. 当 $\deg(f)=1$ 时结论仍是显然成立的. 对 $\deg f(X)>1$, 我们记 $f(X)=X_1\ldots X_nh(X)+r(X)$, 其中 $\deg(h(X))<\deg(f(X))$, 而 r(X) 不被 $X_1X_2\ldots X_n$ 整除. 由归纳假设, 则 h(X) 可以被初等对称多项式生成, 因此只需证明 r(X) 可以被初等对称多项式生成. 考虑 $r_l(X)$, 由 (5.4) 则 $r_l(X)\in A[X_1,\ldots,X_{n-1}]^{S_{n-1}}$. 由归纳假设,则存在 $g(X)\in A[X_1,\ldots,X_{n-1}]$, 使得:

$$r_l(X) = g(e_1(X_1, \dots, X_{n-1}, 0), \dots, e_{n-1}(X_1, \dots, X_{n-1}, 0)).$$

(注意到 $e_k(X_1,\ldots,X_{n-1},0)$ 是 $A[X_1,\ldots,X_{n-1}]$ 中的初等对称多项式) 记 $G(X_1,\ldots,X_n)=g(e_1(X_1,\ldots,X_n),\ldots,e_{n-1}(X_1,\ldots,X_n)),$ 则:

$$G_l = g(e_1(X_1, \dots, X_{n-1}, 0), \dots, e_{n-1}(X_1, \dots, X_{n-1}, 0)) = r_l.$$

由 (5.4), 则 G=r, 故 r 可被初等对称多项式生成, 故得证.

关于问题(5)的补充说明: 记 $K(X_1,\ldots,X_n)$ 是域 K 上有理函数构成的域,(5.5)说明 $K(X_1,\ldots,X_n)^{S_n}=K(e_1,\ldots,e_n)$. 注意到 $\prod\limits_{i=1}^n (T-X_i)=T^n-e_1T^{n-1}+\cdots+(-1)^ne_n$. 因此一般 n 次方程 $X^n+a_{n-1}X^{n-1}+\cdots+a_0$ 可以被根式解当且仅当 X_1,\ldots,X_n 可以被表达为关于 e_1,\ldots,e_n 的根式. 利用 Galois 理论,这当且仅当域扩张 $K(X_1,\ldots,X_n)/K(e_1,\ldots,e_n)$ 的 Galois 群是可解的. 而 (5.5) 说明 $K(X_1,\ldots,X_n)/K(e_1,\ldots,e_n)$ 的 Galois 群恰好是 S_n ,进而 $n\geq 5$ 时一般 n 次方程没有根式解. 事实上,当 A 是域,则 (5.5) 可以通过 Galois 理论和一些简单的交换环论得到证明,你可以在学期结束时回来读一读下面的证明: 记 $L=K(e_1,\ldots,e_n), M=K(X_1,\ldots,X_n),$ 则 M 是 $\prod\limits_{i=1}^n (T-X_i)=X^n-e_1X^{n-1}+\cdots+(-1)^ne_n$ 在 L 上的分裂域,进而 M/L 是 Galois 扩张,且 Gal(M/L) 在 X_1,\ldots,X_n 上的作用给出嵌入 $Gal(M/L)\to S_n$. 注意到 S_n 在 M 上有自然的作用,且 $L\subset M^{S_n}$,故 $S_n\subset Gal(M/L)$,则 $Gal(M/L)=S_n$,进而 $M^{S_n}=L$. 记 $R=K[X_1,\ldots,X_n]$, $S=K[e_1,\ldots,e_n]$,则 $M^{S_n}=\operatorname{Frac}(R^{S_n}), L=\operatorname{Frac}(S)$,则 S,R^{S_n} 具有相同的分式域. 注意到 R^{S_n}/S 是整扩张,而 S 是 UFD,进而是整闭,故 $R^{S_n}=S$.

问题 (6): 本系列问题是为熟悉分析学的人准备的, 如果你认为自己对分析学的熟练度不足, 你可以忽略本系列问题.

问题 (6.1): 若 $W \in \mathbb{R}^n$ 中的闭集,请证明: $C_0(W)$ 对函数的逐点加法和逐点乘法构成一个交换环,且 $C_0(W)$ 中存在幺元当且仅当 W 是紧集. 这里 $C_0(W)$ 是所有满足如下条件的函数 $f: W \to \mathbb{C}$ 的集合:

- (1) f 是连续的, 即若 W 中的序列 w_n 收敛到 w, 则 $f(w_n)$ 收敛到 f(w).
- (2) 对所有 $\varepsilon > 0$, $\{w \in W : |f(x)| \ge \varepsilon\}$ 是紧集合.

证明, 略.

问题 (6.2): 对 $C_0(\mathbb{R}^n)$ 中的理想 I, 若对于 I 中的函数列 f_n , 当 f_n 一致收敛到 f, 便有 $f \in I$, 则我们称 I 是 $C_0(\mathbb{R}^n)$ 的一个闭理想.<u>请证明</u>: 对 \mathbb{R}^n 的子集 S, 则 $I(S) = \{f \in C_0(\mathbb{R}^n) : f(s) = 0$ 对所有 $s \in S$ 成立 $\}$ 是 $C_0(\mathbb{R}^n)$ 的闭理想.

证明. 显然 I(S) 是理想. 若 I(S) 中序列 f_n 一致收敛到 f, 则 $f \in C_0(\mathbb{R}^n)$, 且对 $s \in S$, 由 $f_n(s)$ 逐点收敛到 f(s), 则 f(s) = 0, 故 $f \in I(S)$.

问题 (6.3): 对 \mathbb{R}^n 的闭集 W, 请证明: $C_0(\mathbb{R}^n) \to C_0(W), f \mapsto f|_W$ 诱导了环同构 $C_0(\mathbb{R}^n)/I(W) \cong C_0(W)$.

证明. 由 Tietz 扩张定理, 则 $C_0(\mathbb{R}^n) \to C_0(W)$ 是满射 (更详细的论证需要更多的分析 技巧, 故此处略). 由定义, 则 $I(W) = \operatorname{Ker}(f \mapsto f|_L)$, 故得证.

问题 (6.4): 对 $C_0(\mathbb{R}^n)$ 的理想 I,请证明: $V(I) = \{x \in \mathbb{R}^n : f(x) = 0$ 对所有 $f \in I$ 成立} 是 \mathbb{R}^n 中的闭集.

证明. 这是显然的.

问题 (6.5): 对 \mathbb{R}^n 的子集 S,请证明: $V(I(S)) = \overline{S}$, 这里 \overline{S} 是 S 的闭包.

证明. 对 $x \notin \overline{S}$, 取 x 的邻域 U, 使得 $U \cap \overline{S} = \emptyset$. 此时, 取鼓包函数 $f_U \in C_c(\mathbb{R}^n)$ 使得 $f_U(x) = 1$ 而 $\operatorname{Supp}(f_U) \subset U$. 此时 $f_U(s) = 0$ 对所有 $s \in S$ 成立, 故 $f_U \in I(S)$, 进而 $x \notin V(I(S))$, 故 $V(I(S)) \subset \overline{S}$, 而另一个方向的包含是显然的.

问题 (6.6): 对于 $C_0(\mathbb{R}^n)$ 的理想 I,请证明: I(V(I)) 是包含 I 的最小的闭理想 (即 I 在 $C_0(\mathbb{R}^n)$ 中的闭包)

证明. 对 $x \notin V(I)$, 我们首先证明存在 x 附近的鼓包函数 f_U , 使得 $f_U \in I$. 由 $x \notin V(I)$, 则存在 $g \in I$, 使得 $g(x) \neq 0$. 进而 g 在 x 附近的一个开邻域 U 上恒大于 0, 这里 $U \cap V(I) \neq \emptyset$. 此时, 对鼓包函数 f, 若 $Supp(f) \subset U$, 我们定义:

$$(\frac{f}{g})(x) \begin{cases} \frac{f(x)}{g(x)} & \exists x \in U \\ 0 & \exists x \neq U \end{cases}$$

则 $\frac{f}{g} \in C_c(\mathbb{R}^n)$, 且 $f = \frac{f}{g}g \in I$. 因此, 任取 $x \in X - V(I)$, 则 I 包含 X 附近的鼓包函数. 此时, 对 $f \in I(V(I))$, 对 $\varepsilon > 0$, 记 $E_{\varepsilon} = \{x \in X : |f(x)| \geq \varepsilon\}$, 则 $E_{\varepsilon} \cap V(I) = \emptyset$. 此时任取 $x \in E_{\varepsilon}$, I 包含 x 附近的鼓包函数. 注意到 E_{ε} 是紧的, 因此 I 包含 E_{ε} 附近的鼓包函数. 也就是说, 存在 $f \in I$, $f \in C_c(\mathbb{R}^n)$, 使得 $0 \leq f \leq 1$, 且 $f(E_{\varepsilon}) = 1$. 此时我们有 $gf \in I$, 而 $\|gf - g\| \leq 2\varepsilon$, 故而 gf 一致收敛到 g, 进而 I(V(I)) 是包含 I 的最小闭理想.

问题 (6.7):请证明: $I \mapsto V(I)$ 和 $S \mapsto I(S)$ 给出了 \mathbb{R}^n 中的闭集与 $C_0(\mathbb{R}^n)$ 中闭理想的 1-1 对应. 特别地, 对 $C_0(\mathbb{R}^n)$ 的闭理想 I, 则 I 是极大的非平凡闭理想当且仅当 V(I) 是单点集.

证明. 由 (6.5) 和 (6.6) 容易看出.

问题 (6.8): 利用上述结果,请证明: 对 $f \in C_0(\mathbb{R}^n)$,则 f 可以被 $C_c(\mathbb{R}^n)$ 中的函数逼近. 证明. 不难看出 $C_c(\mathbb{R}^n)$ 是 $C_0(\mathbb{R}^n)$ 的理想,且 $V(C_c(\mathbb{R}^n)) = \emptyset$,故 $\overline{C_c(\mathbb{R}^n)} = C_0(\mathbb{R}^n)$. □ 说明: 事实上,对一般的局部紧拓扑空间 X,本系列问题的结论依旧对 $C_0(X)$ 成立. 进一步地,对交换 C^* 代数 A,通过 Gelfand 表示,则局部紧拓扑空间 X,使得我们有等距同构 $A \cong C_0(X)$. 因此,本命题事实上说明,对任意 C^* 代数 A 的理想 I,都有 $\overline{I} = \bigcap_{\substack{\mathbf{m} \in \mathbb{R} N \in \mathbb{R}^n \\ \mathbf{m} \supseteq I}} \mathbf{m}$

——换而言之,本系列问题给出了 Hilbert 零点定理的 C^* 代数版本.