

ME40343: Helicopter Dynamics

ADVANCED HELICOPTER DYNAMICS

Dr David Cleaver S1 2018

PART 1: LECTURE PLAN

1: Introduction

2: Actuator Disc Theory (ADT) Hover

3: ADT Vertical Flight

4: ADT Forward Flight

5: Blade Element Theory (BET)

6: Blade Element Momentum Theory (BEMT)

7: Coursework – The Wind Turbine

ACTUATOR DISC THEORY*

BET / BEMT*

^{* 1} Question Each in Exam Paper

ROTOR AERODYNAMICS

APPLY TO WIND TURBINE

1. Actuator Disc Theory

Newton's second law: F = ma

1D 'Conceptual' Approach

2. Blade Element Theory

Integration of individual airfoil elements

$\lambda(r,\lambda_c) = \sqrt{\left(\frac{\sigma C_{l\alpha}}{16} - \frac{\lambda_c}{2}\right)^2 + \frac{\sigma C_{l\alpha}}{8} \theta r} - \left(\frac{\sigma C_{l\alpha}}{16} - \frac{\lambda_c}{2}\right)$

$$\Delta C_{T,n} = \frac{\sigma C_{l\alpha}}{2} (\theta(r_n) r_n^2 - \lambda(r_n) r_n) \Delta r$$

$$C_T = \sum_{n=1}^N \Delta C_{T,n}$$

$$C_P = C_Q = \sum_{n=1}^N \lambda_n \Delta C_{T,n}$$

- 1. BEMT Balances momentum and blade forces to predict non-uniform inflow.
- 2. Non-uniform inflow always increase power
- 3. Non-uniformity minimised through ideal twist but neglects stall and profile power.

$$\theta(r) = \frac{\theta_{tip}}{r}$$

4. Total power minimised through optimum hovering rotor (maintain $(L/D)_{max}$ and uniform inflow through chordwise variation). Not realistic use taper instead. $c = \frac{c_{tip}}{c}$

LECTURE 7

7: The Inverse Problem: The Wind Turbine

- 1. The Wind Turbine
- 2. Derive BEMT for wind turbine
- 3. Coursework
- 4. MATLAB

CO2 Cost

- Fastest growing energy sector
- ~16% p.a
- ~100GW Installed capacity
- €32.5bn GDP (2010)

- Fastest growing energy sector ~ 30% p.a.
- 2020 forecast of 26GW
- At cost of ~£60bn

Europe

velocity ψaV_0 $V_{\rm o}$ u_1 x_{rotor} pressure p_{o}

 $x_{\rm rotor}$

<u>ADT</u>

Axial Induction Factor a:

$$u = (1 - a)V_0$$

a = proportion of velocity absorbed

W.T. equivalent of induced velocity

<u>ADT</u>

See Hansen chapter 4 for derivation:

$$C_T = 4a(1-a)$$

$$C_P = 4a(1-a)^2$$

Maxima / minima when $\frac{dC_P}{da} = 0$:

$$\frac{dC_P}{da} = 4(1-a)(1-3a) = 0$$

a=1: minima/3: maxima

$$C_{P,max} = 4 * \frac{1}{3} \left(1 - \frac{1}{3} \right)^2 = \frac{16}{27}$$

BETZ LIMIT

Rotor diameter (m)

15 m ø

THE WIND TURBINE

See Hansen chapter 6 for more detail.

Momentum Equations:

BET Equations:

$$dT = \frac{1}{2}\rho B \left(\frac{V_0 (1-a)}{\sin \Phi}\right)^2 cC_n dy$$

$$dM = \frac{1}{2}\rho y B \frac{V_0 (1-a)\varpi y (1+a')}{\sin \Phi \cos \Phi} cC_t dy$$

Momentum Equations

$$dT = 4\pi r \rho V_0^2 a(1-a)dr$$

$$dM = 4\pi r^3 \rho V_0 \omega (1 - a)a' dr$$

BET Equations

$$dT = \frac{1}{2} \rho B \left(\frac{V_0 (1 - a)}{\sin \Phi} \right)^2 c C_n dr$$

$$dM = \frac{1}{2} \rho r B \frac{V_0 \left(1 - a \varpi r \left(1 + a'\right)\right)}{\sin \Phi \cos \Phi} cC_t dr$$

Equate (dT=dT and dM=dM) gives:

BEMT

$$a = \frac{1}{\frac{4\sin^2\phi}{\sigma C_n} + 1}$$

$$a' = \frac{1}{\frac{4sin\phi cos\phi}{\sigma C_t} - 1}$$

Iterative Solution

- 1. Initial guess for a and a'
- 2. Calculate flow angle ϕ :

$$tan\phi = \frac{(1-a)V_0}{(1+a')\omega y}$$

- 3. Calculate angle $\alpha = \phi \theta$
- 4. Use MATLAB function (in Moodle) to get $Cl(\alpha, Re)$ and $Cd(\alpha, Re)$

[Cl, Cd] = ForceCoefficient(Alpha, Re)

5. Convert to normal and tangential forces

$$C_n = C_l cos\phi + C_d sin\phi$$

$$C_t = C_l sin\phi - C_d cos\phi$$

Error > tolerance

6. Calculate a and a'

$$a = \frac{1}{\frac{4sin^2\phi}{\sigma C_n} + 1}$$

$$a' = \frac{1}{\frac{4sin\phi cos\phi}{\sigma C_t} - 1}$$

7. If a and a' are outside a specified tolerance, loop back to step 2 with these new values.

Error =
$$abs(a_{OUT}-a_{IN})+abs(a'_{OUT}-a'_{IN})$$

Error < tolerance

Calculate Forces

Design a technically optimal wind turbine.

1. Understand Wind Turbines

Growing sector closely related to aerospace.

2. Apply BEMT

Very important, widely used for a range of problems (rotorcraft, propellers, wind turbines...)

3. Develop Programming Skills

Extremely useful skill

4. Apply Optimisation

Applicable to a very wide range of problems, becoming standard.

Part A (50%): BEMT Model

Write a model to calculate the Annual Energy Production (AEP) of a given design.

Part B (50%): Optimisation

Use MATLAB optimisation routines to optimise: $\theta_0,\,\theta_{tw}$, and $c_{\text{grad.}}$

Critically assess and discuss model and design limitations.

Part A: BEMT Model

3: Annual Energy Production

Repeat for velocity range and multiply by probability to get AEP.

2: Whole Rotor

Integration across rotor to get total force for 1 velocity.

1: Single Element

BEMT Loop. Calculate force at 1 radius for 1 velocity.

1: Single Element

At a given radius and velocity, calculate the forces.

UNSTABLE ITERATION?

- Initial guess for a and a'
- 2. Calculate flow angle φ:

$$tan\phi = \frac{(1-a)V_0}{(1+a')\omega y}$$

A) ADD RELAXATION FACTOR

a=k*(a_{out}-a_{in})+a_{in} \a'=k*(a'_{out}-a'_{in})+a'_{in}

- 3. Calculate angle $\alpha = \phi \theta$
- 4. Use MATLAB function (in Moodle) to get $Cl(\alpha, Re)$ and $Cd(\alpha, Re)$

[Cl, Cd] = ForceCoefficient(Alpha, Re)

5. Convert to normal and tangential forces

$$C_n = C_l cos\phi + C_d sin\phi$$

$$C_t = C_l sin\phi - C_d cos\phi$$

6. Calculate a and a'

$$a = \frac{1}{\frac{4\sin^2\phi}{\sigma C_n} + 1}$$

$$a' = \frac{1}{\frac{4sin\phi cos\phi}{\sigma C_t} - 1}$$

Error>tolerance

B) ADD COUNTER

If Count > 100 loop without a' end

7. If a and a' are outside a specified tolerance, loop back to step 2 with these new values.

Error =
$$abs(a_{OUT}-a_{IN})+abs(a'_{OUT}-a'_{IN})$$

UNSTABLE ITERATION?

ALTERNATE a LOOP

- Initial guess for a
- Calculate flow angle φ:

$$tan\phi = \frac{(1-a)V_0}{\omega y}$$

- 3. Calculate angle $\alpha = \phi \theta$
- 4. Use MATLAB function (in Moodle) to get $Cl(\alpha, Re)$ and $Cd(\alpha, Re)$

[Cl, Cd] = ForceCoefficient(Alpha, Re)

Convert to normal and tangential forces

$$C_n = C_l cos\phi + C_d sin\phi$$

$$C_n = C_l \cos \phi + C_d \sin \phi \qquad C_t = C_l \sin \phi - C_d \cos \phi$$

Error>tolerance

Calculate a 6.

$$a = \frac{1}{\frac{4\sin^2\phi}{\sigma C_n} + 1}$$

If a is outside a specified tolerance, loop back to step 2 with these new values.

Error =
$$abs(a_{OUT}-a_{IN})$$

Error<tolerance

Calculate Forces

Part A

3: Annual Energy Production

Repeat for velocity range and multiply by probability to get AEP.

2: Whole Rotor

Integration across rotor to get total force for 1 velocity.

1: Single Element

BEMT Loop. Calculate force at 1 radius for 1 velocity.

2: Whole Rotor

For one wind speed, calculate total moments (torque and bending)

- 1. Loop single element calculation to cover 1..N radii
- 2. Calculate two moments

$$\boldsymbol{M_i} = \left(\frac{1}{2}\boldsymbol{\rho}\boldsymbol{V_{REL}}^2\boldsymbol{c}\boldsymbol{C}_?\right)\Delta\boldsymbol{y} * \boldsymbol{y_i}$$

3. Numerically Integrate moments

$$M_{TOT,?} = \sum_{i=1}^{N} M_i$$

4. Calculate power:

$$P = M_{TOT,t} * B * \omega$$

 $M_{TOT,t}$ = in-plane moment for power extraction $M_{TOT,n}$ = out-of-plane blade bending moment

Part A

3: Annual Energy Production

Repeat for velocity range and multiply by probability to get AEP.

2: Whole Rotor

Integration across rotor to get total force for 1 velocity.

1: Single Element

BEMT Loop. Calculate force at 1 radius for 1 velocity.

3: Annual Energy

Loop for range of wind speeds then multiply by probability to get AEP

Loop Whole Rotor for velocity range.

X

$$f(V_i < V_0 < V_{i+1}) = exp\left\{-\left(\frac{V_i}{A}\right)^k\right\} - exp\left\{-\left(\frac{V_{i+1}}{A}\right)^k\right\}$$

Power per ΔV

Integration = AEP

Constants for a site

$$A = 7$$

 $k = 1.8$

$$AEP = \sum_{i=1}^{N} \frac{1}{2} [P(V_i) + P(V_{i+1})] * f(V_i < V_0 < V_{i+1}) * 8760$$

Convert to W*hr/year

Part A

- Can now calculate AEP for a particular W.T. design. But which design?
 - For a given airfoil and radius blade can be defined through: $\theta(r)$ and c(r).
- Part A use <u>linear taper</u> and <u>linear twist</u> with constant blade area. 3 variables: θ_0 , θ_{tw} and c_{grad} .
- Starting values for part A:

$$\theta_0 = 12^{\circ}$$

$$\theta_{tw} = -0.4^{\circ}$$

$$c_{grad} = 0$$

Part B

Optimise θ_0 , θ_{tw} and c_{grad} for maximum AEP

- Use MATLAB optimisation function.
- Loops through part A code varying θ_0 , θ_{tw} and c_{grad} until AEP is maximum.

Optimisation

- Start from initial guess.
- Uses gradient to go 'downhill' and find minimum.

- New field with potential to revolutionise design in all fields of engineering.
- Particular interest from aerospace industry.
- Built on definition of a <u>cost function</u>. Goal is to minimise cost.

Optimisation

Sine Curve Example

Optimise A, f and ϕ to get best fit.

1. Check Optima:

2. Good Starting Point:

3. Minimise Parameter Space

Part B: Discussion

- (i) What are the limitations of the model? Describe the principle limitations of the model including possible improvements.
- (ii) What are the limitations of the design? This could include aspects outside the scope of the optimisation / model like current, emerging and future technologies or changes to the design constraints.

Extra credit for demonstrating the above effects / improvements.

Deadline: 4pm 16th November

Report < 2,000 words.

	<u> Mark (%)</u>	<u>Description</u>
Summary	5	
Introduction	5	Brief.
Methodology	5	Very brief.
Results & Discussion	45	Majority of report, two sub-sections: A. AEP – explain the behaviour B. Optimal Design - use figures to demonstrate why it is optimal and what would happen if you were to vary the 3 input parameters. Discuss and further considerations
Conclusions	5	Be concise.
References & Appendices	25	Include your final MATLAB code here.
Report Quality	10	Clarity. The goal is to convey your meaning as clearly and succinctly as possible. Use figures, tables and bullet points / lists to help you.

Next?

Tutorial Questions: ADT Q1 – 13 (solutions on Moodle), BET Q1-4 & BEMT Q5-7.

Tutorials in 4E 2.39

Further Reading: Hansen (excellent text). On Moodle / through library.

Next Lecture: Forward Flight.