Data Science – ML – Dummy Variable & OneHotEncoding

16. Data Science – ML – Dummy Variable & OneHotEncoding

Contents

1. Dataset : homeprices2.csv	2	
2. Categorical data	3	;
3. How to handle text data in town column		
4. Model may behaves like below,		
5. Dummy variables		

16. Data Science – ML – Dummy Variable & OneHotEncoding

1. Dataset : homeprices2.csv

town	area	price
Vijayawada	2600	550000
Vijayawada	3000	565000
Vijayawada	3200	610000
Vijayawada	3600	680000
Vijayawada	4000	725000
Guntur	2600	585000
Guntur	2800	615000
Guntur	3300	650000
Guntur	3600	710000
Gudiwada	2600	575000
Gudiwada	2900	600000
Gudiwada	3100	620000
Gudiwada	3600	695000

Prediction

- ✓ With 3400 sqr ft area in Guntur
- ✓ With 2800 sqr ft area in Gudiwada

2. Categorical data

Data Science – ML – Dummy Variable & OneHotEncoding

3. How to handle text data in town column

- ✓ Here town column having text data
- ✓ How to handle text data in numeric model?

4. Model may behaves like below,

- ✓ We can convert text data into number and can proceed to the next step.
 - Vijayawada 1
 - o Guntur 2
 - o Gudiwada 3
- ✓ If we are giving data to the model then model assumes that the order like 1, 2, 3 and follow the below approach
 - Vijayawada < Guntur < Gudiwada
 - Or
 - Vijayawada + Guntur = Gudiwada

5. Dummy variables

✓ So, in this scenario we need to create dummy variable

Town	Area	Price	Gudiwada	Guntur	Vijayawada
Gudiwada	2600	575000	1	0	0
Gudiwada	2900	600000	1	0	0
Gudiwada	3100	620000	1	0	0
Gudiwada	3600	695000	1	0	0
Guntur	2600	585000	0	1	0
Guntur	2800	615000	0	1	0
Guntur	3300	650000	0	1	0
Guntur	3600	710000	0	1	0
Vijayawada	2600	550000	0	0	1
Vijayawada	3000	565000	0	0	1
Vijayawada	3200	610000	0	0	1
Vijayawada	3600	680000	0	0	1
Vijayawada	4000	725000	0	0	1

Program Loading dataset Name demo1.py

import pandas as pd

df = pd.read_csv("homeprices2.csv")

print(df)

	town	area	price
0	Vijayawada	2600	550000
1	Vijayawada	3000	565000
2	Vijayawada	3200	610000
3	Vijayawada	3600	680000
4	Vijayawada	4000	725000
5	Guntur	2600	585000
6	Guntur	2800	615000
7	Guntur	3300	650000
8	Guntur	3600	710000
9	Gudiwada	2600	575000
10	Gudiwada	2900	600000
11	Gudiwada	3100	620000
12	Gudiwada	3600	695000

Creating dummy variables by using pandas demo2.py

import pandas as pd

df = pd.read_csv("homeprices2.csv")
dummies = pd.get_dummies(df.town)

print(dummies)

	Gudiwada	Guntur	Vijayawada
0	0	0	1
1	0	0	1
2	0	0	1
3	0	0	1
4	0	0	1
5	0	1	0
6	0	1	0
7	0	1	0
8	0	1	0
9	1	0	0
10	1	0	0
11	1	0	0
12	1	0	0

Creating dummy variables and adding to the dataframe demo3.py

import pandas as pd

df = pd.read_csv("homeprices2.csv")
dummies = pd.get_dummies(df.town)
merged = pd.concat([df, dummies], axis='columns')

print(merged)

	town	area	price	Gudiwada	Guntur	Vijayawada
				Guulwaua	Guircui	vijayawada
0	Vijayawada	2600	550000	0	0	1
1	Vijayawada	3000	565000	0	0	1
2	Vijayawada	3200	610000	0	0	1
3	Vijayawada	3600	680000	0	0	1
4	Vijayawada	4000	725000	0	0	1
5	Guntur	2600	585000	0	1	0
6	Guntur	2800	615000	0	1	0
7	Guntur	3300	650000	0	1	0
8	Guntur	3600	710000	0	1	0
9	Gudiwada	2600	575000	1	0	0
10	Gudiwada	2900	600000	1	0	0
11	Gudiwada	3100	620000	1	0	0
12	Gudiwada	3600	695000	1	0	0

Creating dummy variables and preparing the dataframe demo4.py

import pandas as pd

df = pd.read_csv("homeprices2.csv")
dummies = pd.get_dummies(df.town)

merged = pd.concat([df, dummies],axis='columns')

final = merged.drop(['town'], axis='columns')

print(final)

	area	price	Gudiwada	Guntur	Vijayawada
0	2600	550000	0	0	1
1	3000	565000	0	0	1
2	3200	610000	0	0	1
3	3600	680000	0	0	1
4	4000	725000	0	0	1
5	2600	585000	0	1	0
6	2800	615000	0	1	0
7	3300	650000	0	1	0
8	3600	710000	0	1	0
9	2600	575000	1	0	0
10	2900	600000	1	0	0
11	3100	620000	1	0	0
12	3600	695000	1	0	0

```
Preparing X and y
Program
            demo5.py
Name
            import pandas as pd
            df = pd.read_csv("homeprices2.csv")
            dummies = pd.get_dummies(df.town)
            merged = pd.concat([df, dummies],axis='columns')
            final = merged.drop(['town'], axis='columns')
            X = final.drop('price', axis='columns')
            y = final.price
            print(X)
            print(y)
```

	area	Gudiwada	Guntur	Vijayawada
0	2600	0	0	1
1	3000	0	0	1
2	3200	0	0	1
3	3600	0	0	1
1 2 3 4 5	4000	0	0	1
5	2600	0	1	0
6	2800	0	1	0
7	3300	0	1	0
8	3600	0	1	0
9	2600	1	0	Ø
10	2900	1	0	0
11	3100	1	0	0
12	3600	1	0	Ø
0	5500	000		
1	5650	000		
2	6100	000		
3	680	000		
4	7250	000		
2 3 4 5 6 7	5850	000		
6	6150	000		
7	6500	000		
8	7100	000		
9	5750	000		
10	6000	000		
11	6200			
12	6950	000		
Name	e: pri	ce, dtype:	int64	

Program Creating a model Name demo6.py

import pandas as pd
from sklearn.linear model import LinearRegression

df = pd.read_csv("homeprices2.csv")
dummies = pd.get_dummies(df.town)
merged = pd.concat([df, dummies],axis='columns')
final = merged.drop(['town'], axis='columns')

X = final.drop('price', axis='columns')
y = final.price

model = LinearRegression()

model.fit(X, y)

print("Model got trained")

Output

Model got trained

Predicting the house prices

demo7.py

import pandas as pd

from sklearn.linear_model import LinearRegression

df=pd.read_csv("homeprices2.csv")
dummies = pd.get_dummies(df.town)

merged = pd.concat([df, dummies],axis='columns')

final = merged.drop(['town'], axis='columns')

X = final.drop('price', axis='columns')

y = final.price

model = LinearRegression()

model.fit(X, y)

print(model.predict(X))

Output

[539709.73984091 590468.71640508 615848.20468716 666607.18125133 717366.1578155 579723.71533005 605103.20361214 668551.92431735 706621.15674047 565396.15136531 603465.38378844 628844.87207052 692293.59277574]

Program Cho Name dei

Checking the score demo8.py

import pandas as pd
from sklearn.linear model import LinearRegression

df=pd.read_csv("homeprices2.csv")
dummies = pd.get_dummies(df.town)
merged = pd.concat([df, dummies],axis='columns')
final = merged.drop(['town'], axis='columns')

X = final.drop('price', axis='columns')
y = final.price

model = LinearRegression()
model.fit(X, y)
print(model.score(X, y))

Output

0.9573929037221873

Predicting house price in Vijayawada

demo9.py

import pandas as pd

from sklearn.linear model import LinearRegression

df=pd.read_csv("homeprices2.csv")
dummies = pd.get_dummies(df.town)

merged = pd.concat([df, dummies],axis='columns')

final = merged.drop(['town'], axis='columns')

X = final.drop('price', axis='columns')

y = final.price

model = LinearRegression()

model.fit(X, y)

print(model.predict([[3400, 0, 0, 1]]))

Output

[641227.69296925]

```
Predicting house price in Guntur
Program
Name
            demo10.py
            import pandas as pd
            from sklearn.linear_model import LinearRegression
            df=pd.read_csv("homeprices2.csv")
            dummies = pd.get_dummies(df.town)
            merged = pd.concat([df, dummies],axis='columns')
            final = merged.drop(['town'], axis='columns')
            X = final.drop('price', axis='columns')
            y = final.price
            model = LinearRegression()
            model.fit(X, y)
            print(model.predict([[3400, 0, 1, 0]]))
Output
            [681241.66845839]
```

```
Predicting house price in Gudiwada
Program
            demo11.py
Name
            import pandas as pd
            from sklearn.linear model import LinearRegression
            df=pd.read_csv("homeprices2.csv")
            dummies = pd.get_dummies(df.town)
            merged = pd.concat([df, dummies],axis='columns')
            final = merged.drop(['town'], axis='columns')
            X = final.drop('price', axis='columns')
            y = final.price
            model = LinearRegression()
            model.fit(X, y)
            print(model.predict([[3400, 1, 0, 0]]))
Output
            [666914.10449365]
```