Interpretación geométrica:

$$\mathcal{A}(R) = \mathcal{A}(S)$$

Teorema del Valor Medio Ponderado para integrales: Sean f y g continuas en [a, b]. Si g no cambia de signo en [a, b], entonces existe $\xi \in [a, b]$ tal que

$$\int_{a}^{b} f(x)g(x)dx = f(\xi) \int_{a}^{b} g(x)dx$$

Dem: no la hacemos.

Relación entre integración v derivación.

Aunque el cálculo diferencial y el cálculo integral surgieron de problemas en apariencia no relacionados, el de la tangente y el del área, Isaac Barrow (1630-1677) descubrió que estos dos problemas estaban intimamente relacionados. De hecho, se dió cuenta que la derivación y la integración son, de alguna forma, procesos inversos. Newton y Leibnitz explotaron esta relación y lograron transformar el cálculo en un método matemático sistemático.

La función integral.

Definición: Si f es integrable en [a,x] para cada $x \in [a,b]$, definimos la función $g:[a,b] \to \mathbb{R}$ por

$$g(x) = \int_{a}^{x} f(t)dt$$

Ejemplos:

1) f(x) = x, con $x \in [0, b]$, f es continua luego integrable $g(x) = \int_0^x t dt = \frac{x^2}{2} \ \forall x \in [0, b].$

$$g(x) = \int_0^x t dt = \frac{x^2}{2} \quad \forall x \in [0, b].$$

Observar que g'(x) = f(x), es decir g es primitiva de f.

2) f(x) = [x], con [0, 3], f es seccionalmente continua luego integrable

$$g(x) = \int_0^x f(t)dt$$
Since $x < 1$, $g(x) = \int_0^x f(t)dt$

Si
$$0 \le x < 1$$
, $g(x) = \int_0^x [t] dt = \int_0^x 0 dt = 0$

Si
$$1 \le x < 2$$
, $g(x) = \int_0^x [t]dt = \int_0^1 [t]dt + \int_1^x [t]dt = \int_0^1 0dt + \int_1^x 1dt = 0 + 1(x - 1) = x - 1$

$$g(x) = \int_0^x f(t)dt$$
Si $0 \le x < 1$, $g(x) = \int_0^x [t]dt = \int_0^x 0dt = 0$
Si $1 \le x < 2$, $g(x) = \int_0^x [t]dt = \int_0^1 [t]dt + \int_1^x [t]dt = \int_0^1 0dt + \int_1^x 1dt = 0 + 1(x - 1) = x - 1$
Si $2 \le x \le 3$, $g(x) = \int_0^x [t]dt = \int_0^1 0dt + \int_1^2 1dt + \int_2^x 2dt = 0 + 1(2 - 1) + 2(x - 2) = 2x - 3$
Luego
$$g(x) = \begin{cases} 0 & \text{si } 0 \le x < 1 \\ x - 1 & \text{si } 1 \le x < 2 \\ 2x - 3 & \text{si } 2 \le x \le 3 \end{cases}$$

$$g(x) = \begin{cases} 0 & \text{si } 0 \le x < 1\\ x - 1 & \text{si } 1 \le x < 2\\ 2x - 3 & \text{si } 2 \le x \le 3 \end{cases}$$

g no es derivable en x = 1, 2, 3 pero g'(x) = f(x) en $(0, 1) \cup (1, 2) \cup (2, 3)$.

Definición: En general, si f es integrable en [a, x] para cada $x \in [a, b]$ y $c \in [a, b]$ se puede definir

$$F_c(x) = \int_c^x f(t)dt$$
 $x \in [a, b]$

Observación: si $c, d \in [a, b]$, F_c y F_d differen en una constante. En efecto,

$$F_c(x) - F_d(x) = \int_c^x f(t)dt - \int_d^x f(t)dt =$$

$$= \int_c^x f(t)dt + \int_x^d f(t)dt =$$

$$= \int_c^d f(t)dt \quad \text{constante}$$

Teorema (Primer teorema fundamental del cálculo): Sea f integrable en [a, x] para cada $x \in [a, b]$ y sea $c \in [a, b]$, definimos

$$F_c(x) = \int_c^x f(t)dt$$
 para $x \in [a, b]$

Entonces F_c es continua en [a,b] y además, si f es continua en $x\in(a,b),\ F_c$ es derivable en x y $F_c'(x) = f(x).$

Dem: 1°) Veamos que F_c es continua en [a,b] mostrando que si $x \in [a,b]$, $\lim_{h\to 0} F_c(x+h) = F_c(x)$.

· Si h > 0: $F_c(x+h) - F_c(x) = \int_c^{x+h} f(t)dt - \int_c^x f(t)dt = \int_x^{x+h} f(t)dt$ Como f es integrable en [a,b], f es accetada en [a,b] y existen $m, M \in \mathbb{R}$ tales que $m \le f(x) \le M$ $\forall x \in [a,b]$. Entonces $mh \le \int_x^{x+h} f(t)dt \le Mh$ luego

$$mh \le F_c(x+h) - F_c(x) \le Mh$$

y como $\lim_{h\to 0^+} mh = \lim_{h\to 0^+} Mh = 0$, por principio de intercalación $\lim_{h\to 0^+} (F_c(x+h) - F_c(x)) = 0$ es decir

$$\lim_{h \to 0^+} F_c(x+h) = F_c(x)$$

· Si h < 0: $F_c(x) - F_c(x+h) = \int_{x+h}^x f(t)dt$, con igual argumento, tenemos

$$\underbrace{m(-h)}_{\searrow 0} \leq F_c(x) - F_c(x+h) \leq \underbrace{M(-h)}_{\searrow 0}$$

luego $\lim_{h\to 0^-} (F_c(x) - F_c(x+h)) = 0$ entonces

$$\lim_{h \to 0^-} F_c(x+h) = F_c(x)$$

Por lo tanto

$$\lim_{h \to 0} F_c(x+h) = F_c(x)$$

resultando F_c continua en $x \ \forall x \in [a, b]$.

2°) Sea f continua en (a,b), veamos que existe $F'_c(x) \ \forall x \in (a,b)$ y que $F'_c(x) = f(x)$.

· Sea h>0 tal que $x+h\in(a,b),$ $\frac{F_c(x+h)-F_c(x)}{h}=\frac{1}{h}\int_x^{x+h}f(t)dt=\int_{\text{TVMI}}^xf(t)dt$

Ahora estimamos
$$\lim_{h \to 0^+} \frac{F_c(x+h) - F_c(x)}{h} = \lim_{h \to 0^+} f(d) = \lim_{d \to x^+} f(d) = \lim_{f \text{ cont en } x} f(x)$$

· Sea h<0 tal que $x+h\in(a,b),$ $\frac{F_c(x)-F_c(x+h)}{-h}=\frac{1}{-h}\int_{x+h}^x f(t)dt = f(e)$ para algún $e\in(x+h,x)$. Ahora estimamos

$$\lim_{h \to 0^{-}} \frac{F_{c}(x) - F_{c}(x+h)}{-h} = \lim_{h \to 0^{-}} \frac{F_{c}(x+h) - F_{c}(x)}{h} = \lim_{h \to 0^{-}} f(e) = \lim_{e \to x^{-}} f(e) = \lim_{e \to x^{-}} f(x)$$

Por lo tanto existe el límite y

$$F'_c(x) = \lim_{h \to 0} \frac{F_c(x+h) - F_c(x)}{h} = f(x)$$

Observación: El teorema nos dice, bajo hipótesis de continuidad de f, que

$$F_c(x) = \int_c^x f(t)dt$$
 es una primitiva de f

Teorema (Segundo teorema fundamental del cálculo): Sea f continua en [a,b] y sea P una primitiva de f en (a,b). Entonces para todo $c \in (a,b)$ vale

$$P(x) = P(c) + \int_{c}^{x} f(t)dt$$
 para todo $x \in (a, b)$

O bien

$$\int_{c}^{x} f(t)dt = P(x) - P(c)$$

Dem: Sea $g(x) = \int_c^x f(t)dt$, como f continua en (a,b), por el 1º teorema fundamental del cálculo, g'(x) = f(x). Es decir, g es una primitiva de f. Ahora como por hipótesis P es una primitiva de f, es $g(x) - P(x) = k \ \forall x \in (a,b)$. En particular, para x = c se tiene que g(c) - P(c) = k y como g(c) = 0, es k = -P(c), por lo tanto

$$\overline{\downarrow}_{\mathbb{C}}(x) = g(x) = P(x) - P(c)$$

entonces

$$\int_{c}^{x} f(t)dt = P(x) - P(c) \qquad \qquad \forall x \in (a_{b})$$

Observación: El teorema anterior nos permite calcular integrales definidas, conocida una primitiva de la función integrando y no como límite de sus sumas de Riemann. Más precisamente,

$$\int_{a}^{b} f(t)dt = P(b) - P(a)$$

donde P es una primitiva de f.

Regla de Barrow

$$\int_{a}^{b} f(t)dt = P(x)|_{a}^{b} = P(b) - P(a)$$

Ejemplo:
$$\int_1^3 x^3 dx = \frac{x^4}{4} \Big|_1^3 = \frac{3^4}{4} - \frac{1^4}{4} = 20$$

La función logaritmo definida como una integral. La función exponencial.

En AMI definimos la función logaritmo como inversa de la función exponencial y a su vez, a ésta, la definimos "intuitivamente" en \mathbb{R} , ya que no se definió correctamente a^x con x irracional.

Vamos a definir aquí la función logaritmo como una integral y la función exponencial como la inversa de ésta.

Definición: Se llama función logaritmo natural de x y se nota ln x a la función

$$\ln : \mathbb{R}^+ \to \mathbb{R}
x \to \ln x = \int_1^x \frac{1}{t} dt$$

Observaciones:

1) $\ln x$ está bien definida pues la función inetgrando $f(x) = \frac{1}{x}$ es continua en $(0, +\infty)$.

2) Si
$$x > 1$$
, $\ln x = \int_1^x \frac{1}{t} dt = \mathcal{A}(R_1)$
Si $0 < x < 1$, $\ln x = \int_1^x \frac{1}{t} dt = -\int_x^1 \frac{1}{t} dt = -\mathcal{A}(R_2)$
Si $x = 1$, $\ln 1 = \int_1^1 \frac{1}{t} dt = 0$
Por lo tanto, $\ln x > 0$ si $x > 1$; $\ln x < 0$ si $0 < x < 1$ y $\ln 1 = 0$

3) Como $f(x) = \frac{1}{x}$ es continua en \mathbb{R}^+ , por 1°TFC tenemos que $\ln x$ es continua y derivable en \mathbb{R}^+ siendo además $(\ln x)' = \frac{1}{x} \, \forall x \in \mathbb{R}^+.$

Teorema (Propiedades algebraicas de la función logaritmo natural): Sean $x, y \in \mathbb{R}^+, r \in \mathbb{Q}$ entonces:

$$1) \ln(xy) = \ln x + \ln y$$

2)
$$\ln(\frac{1}{y}) = -\ln y$$

2)
$$\ln(\frac{1}{y}) = -\ln y$$

3) $\ln(\frac{x}{y}) = \ln x - \ln y$

$$4) \ln(\tilde{x}^r) = r \ln x$$

Dem: 1) Sea, para y fijo, $h(x) = \ln(xy)$, por regla de la cadena $h'(x) = \frac{1}{xy}y = \frac{1}{x}$, luego h(x) y $\ln x$ son primitivas de $\frac{1}{r}$ y luego difieren en una constante

$$h(x) = \ln x + c \Rightarrow \ln(xy) = \ln x + c$$

Si tomamos x = 1, $h(1) = \ln(y) = \ln 1 + c = c$, luego

$$\ln\left(xy\right) = \ln x + \ln y$$