

LTE Security I

- LTE Security Concept and LTE Authentication -

August 21, 2012

(Last Updated: July 31, 2013)

NMC Consulting Group (tech@netmanias.com)

www.netmanias.com www.nmcgroups.com

About NMC Consulting Group

NMC Consulting Group is an advanced and professional network consulting company, specializing in IP network areas (e.g., FTTH, Metro Ethernet and IP/MPLS), service areas (e.g., IPTV, IMS and CDN), and wireless network areas (e.g., Mobile WiMAX, LTE and Wi-Fi) since 2002.

Copyright © 2002-2013 NMC Consulting Group. All rights reserved.

Scope and Concept of LTE Security

LTE Authentication

- Mutual authentication between UE and LTE network (UE – MME – HSS) using EPS-AKA
 - Base key: **K**
 - Derived key: K_{ASME}

NAS Security

- Integrity check (protection/verification) and ciphering /deciphering (or encryption/decryption) for NAS signaling messages between UE and MME
 - Base key: K_{ASME}
 - Derived key: K_{NASint}, K_{NASenc}

8 AS Security

- Integrity check (protection/verification) and ciphering /deciphering (or encryption/decryption) for RRC signaling messages between UE and eNB
 - Base key: K_{eNB}
 - Derived key: K_{RRCint}, K_{RRCenc}
- Ciphering/deciphering (or encryption/decryption) for user IP packets between UE and eNB
 - Base key: K_{eNB}
 - Derived key: K_{UPenc}

Overview of LTE Security

Overview of LTE Authentication Procedure: EPS AKA

EPS AKA (Evolved Packet System Authentication and Key Agreement)

LTE Authentication Procedure (1)

- Provisioning Information @HSS/AuC
 - K: provisioned to AuC at subscription time
 - IMSI: provisioned to HSS & AuC at subscription time
- Storing Information @USIM
 - K & IMSI: stored to USIM at manufacturing time

1. Authentication Request from UE

- **1** [UE → MME] Request by UE for Network Registration
 - UE sends Attach Request (IMSI, UE Network Capability, KSI_{ASME}=7) message to MME
 - IMSI: International Mobile Subscriber Identity, a unique identifier associated with the user
 - UE Network Capability: security algorithms available to UE
 - KSI_{ASME}=7: indicates UE has no authentication key

EEA and EIA in "UE Network Capability" Information [3]

_	_	
_	_	^

Algorithm ID	Description
128-EEA0	Null Ciphering Algorithm
128-EEA1	SNOW 3G
128-EEA2	AES
128-EEA3	ZUC (optional)

EIA

Algorithm ID	Description
Algorithm ID	Description
-	-
128-EIA1	SNOW 3G
128-EIA2	AES
128-EIA3	ZUC (optional)

LTE Authentication Procedure (2)

2. Transfer of Authentication Vector(s) from HSS to MME

- **②** [MME → HSS] Request by MME for Authentication Data
 - MME sends Authentication Information Request (IMSI, SN ID, n, Network Type)
 message to HSS to request authentication vector(s) for the UE
 - IMSI: a unique identifier associated with the user
 - SN ID: refers to the network accessed by the user, consists of PLMN ID (MCC+MNC)
 - n: number of authentication vectors that MME requests
 - Network Type: type of the network accessed by UE (E-UTRAN herein)
 - HSS
 - Generates RAND and SQN
 - Calculates XRES, AUTN, CK and IK using AKA Algorithm with inputs,
 LTE Key (K), SQN and RAND
 - Calculates local master key K_{ASME} using KDF with inputs, CK, IK, SQN and SN ID
 - Constitutes Authentication Vector(s), AV=(RAND, AUTH, XRES, K_{ASME})
- **③** [MME ← HSS] Response by HSS to the Authentication Data Request
 - HSS sends Authentication Information Answer (AVs) message including AVs back to MME
 - MME
 - Stores AVs and selects an AV (here the ith AV, AVi=(RANDi, AUTHi, XRESi, K_{ASME}i))

LTE Authentication Procedure (3)

3. Mutual Authentication by UE and MME

- K_{ASMF}: MME Base Key (local master key). Stored only in MME, not delivered to the UE
- UE authenticates the Network (HSS) by comparing AUTN with AUTH_{UE}
- MME (on behalf of HSS) authenticates the UE by comparing RES with XRES

4 [UE ← MME] Request by MME for User Authentication

- MME sends Authentication Request (KSI_{ASME}i, RANDi, AUTNi) message to UE
 - Keeps $K_{ASME}i$ and XRESi
 - Allocates $KSI_{ASMF}i$ to uniquely identify $K_{ASMF}i$ ($KSI_{ASMF}i$ is shared in the UE and MME)
 - Sends KSI_{ASME}i, RANDi, AUTNi to UE
- UE
 - Calculates Authentication Vector, AV=(RAND, AUTH_{UE}, RES, K_{ASME})
 using the same AKA algorithm as in HSS
 - Authenticates the Network (HSS) by comparing AUTHi with AUTHUE

5 [UE → MME] Response by UE to User Authentication

- UE sends Authentication Response (RES) message back to MME
- MME
 - Authenticates the UE by comparing RES with XRESi

Summary of LTE Security Keys: Authentication

LTE Security Keys related to the LTE Authentication (EPS AKA)

Key	Length	Location	Derived from	Description	
K	128 bits	USIM, AuC	-	EPS master key	
СК	128 bits	USIM, HSS	K	Cipher key	
IK	128 bits	USIM, HSS	K	Integrity key	
K _{ASME}	256 bits	UE, HSS, MME	CK, IK	MME base key	

References and Abbreviations

- [1] Netmanias Technical Document, "LTE Security II: NAS and AS Security", August 2013, http://www.netmanias.com/bbs/view.php?id=techdocs&no=66
- [2] 3GPP TS 24.301, "Non-Access-Stratum (NAS) protocol for Evolved Packet System (EPS); Stage 3".
- [3] 3GPP TS 33.401, "3GPP System Architecture Evolution (SAE); Security architecture".
- [4] NMC Consulting Group Confidential Internal Report, "E2E LTE Network Design", August 2010.

Abbreviations

: Advanced Encryption Standard AES AKA : Authentication and Key Agreement AS : Access Stratum : Access Security Management Entity **ASMF** AuC : Authentication Center **AUTN** : Authentication Token ΑV : Authentication Vector CK : Cipher Key EEA : EPS Encryption Algorithm EIA : EPS Integrity Algorithm : Evolved Packet System **FPS**

IK : Integrity KeyIMSI : International Mobile Subscriber Identity

KSI : Key Set Identifier LTE : Long Term Evolution

: Home Subscriber Server

MCC : Mobile Country Code

MME : Mobilety Management Entity

MNC : Mobile Network Code

MNC : Mobile Network Code NAS : Non Access Stratum

PLMN : Public Land Mobile Network

RAND : RANDom number

RES : Response

RRC : Radio Resource Control
SN ID : Serving Network ID
SQN : Sequence Number
UE : User Equipment

UP : User Plane

USIM : Universal Subscriber Identity Module

XRES : Expected Response

HSS

Netmanias LTE Technical Documents

Visit http://www.netmanias.com to view and download more technical documents.

Index	Topic	Document title	Document presented here
1	Network Architecture	LTE Network Architecture: Basic	
2		LTE Identification I: UE and ME Identifier	
3	Identification	LTE Identification II: NE and Location Identifier	
4		LTE Identification III: EPS Session/Bearer Identifier	
5	Convitu	LTE Security I: LTE Security Concept and LTE Authentication	0
6	Security	LTE Security II: NAS and AS Security	
7	QoS	LTE QoS: SDF and EPS Bearer QoS	
8	8	LTE EMM and ECM States	
9		LTE EMM: User Experience based EMM Scenario and Eleven EMM Cases	
10		LTE EMM Procedure: 1. Initial Attach (Part 1) – Case of Initial Attach	
11		LTE EMM Procedure: 1. Initial Attach (Part 2) – Call Flow of Initial Attach	
12	EMM	LTE EMM Procedure: 2. Detach	
13		LTE EMM Procedure: 3. S1 Release	
14		LTE EMM Procedure: 4. Service Request	
15		LTE EMM Procedure: 5. Periodic TAU	
16		LTE EMM Procedure: 6. Handover without TAU (Part 1) – Overview of LTE Handover	
17		LTE EMM Procedure: 6. Handover without TAU (Part 2) – X2 Handover	
18		LTE EMM Procedure: 6. Handover without TAU (Part 3) – S1 Handover	
19		LTE EMM Procedure: 7. Cell Reselection without TAU	
20		LTE EMM Procedure: 8/9. Handover/Cell Reselection with TAU	
21		LTE EMM Procedure: 10/11. Toward Another City	
22	PCC	LTE Policy and Charging Control (PCC)	
23	Charging	LTE Charging I: Offline	
24	Charging	LTE Charging II: Online (TBD)	
25	IP Address Allocation	LTE: IP Address Allocation Schemes I: Basic	
26	II Address Allocation	LTE: IP Address Allocation Schemes II: A Case for Two Cities	

Netmanias Research and Consulting Scope

Visit http://www.netmanias.com to view and download more technical documents.