

TAACCCTAACCCTAACCCTAACCCTA CCTAACCCTAACCCTAACCCTAACCC CCCTAACCCTAACCCTAACCCTAAC AACCCTAACCCTAACCCTAACCCTA ACCCTAACCCCAACCCCAACCCCAAC CTACCCTAACCCTAACCCTAACCCTA ACCCTAACCCTAACCCTAACCCTAACCCTAA

Ontology, and Identification of Molecular Pathways

北京大学生物信息学中心 魏丽萍 Liping Wei, Ph.D.

Center for Bioinformatics, Peking University

TAACCCTAACCCTAACCCTAACCCTA CCTAACCCTAACCCTAACCCTAACCC CCCTAACCCTAACCCTAACCCTAAC AACCCTAACCCTAACCCTAACCCTA ACCCTAACCCCAACCCCAACCCCAAC CTACCCTAACCCTAACCCTAACCCTA ACCCTAACCCTAACCCTAACCCTAA

Unit 5:

An Application: Common Molecular Pathways Underlying Addiction

北京大学生物信息学中心 魏丽萍 Liping Wei, Ph.D.

Center for Bioinformatics, Peking Univer

Addiction is a serious medical and social problem.

Is there a common molecular pathway for addiction?

Eric J Nestler

Drugs of abuse have very different acute mechanisms of action but converge on the brain's reward pathways by producing a series of common functional effects after both acute and chronic administration. Some similar actions occur for natural rewards as well. Researchers are making progress in understanding the molecular and cellular basis of these common effects. A major goal for future research is to determine whether such common underpinnings of addiction can be exploited for the development of more effective treatments for a wide range of addictive disorders.

acute rewarding effects of all drug of abuse, and research over the past several decades has delineated how each drug, regardless of its distinct mechanism of action, converges on the VTA and NAc with common acute functional effects (Fig. 1). Each drug activates dopaminergic transmission in the NAc and many produce dopamine-like, yet dopamine-independent effects on the same NAc neurons, in many cases via indirect, circuit-level actions^{1–8}. In addition, several drugs (see Fig. 1 legend) seem to activate the brain's endogenous opioid and cannabinoid systems within the VTA-NAc pathway, as exemplified by reduced drug effects in cannabinoid and opioid receptor knockout mice, which further underscores shared acute mechanisms of drug action^{1,8}.

Copyright © Peking University

Nutt, NEJM, '07

Nestler, Nat Neurosci, '05

Which genes are related to addiction?

Evidence Origin	Evidence Type Gene Count		Evidence Count	
Genetics Strategies				
Genetic Linkage Addiction-vulnerable peak regions				
Population Association Addiction-vulnerable points/clusters				
Animal QTL Addiction-vulnerable Regions				
Molecular Biology Strategies 1221				
Single gene strategies	Genes implicated in addiction	185	299	
Microarray	Microarray Genes encoding significantly differentially expressed mRNAs		1297	
Proteomics	Genes encoding significantly differentially expressed proteins		170	
OMIM	Database annotations	24		

Genetic and molecular biological technologies often detect different parts of the same pathways/networks

Copyright © Peking University

MAPK signaling pathway
Neuroactive ligand-receptor interaction
Calcium signaling pathway
TGF-beta signaling pathway
Cytokines
Huntington's disease
Glycerolipid metabolism
Starch and sucrose metabolism
Alanine and aspartate metabolism
Nicotinate and nicotinamide metabolism
Glycine, serine and threonine metabolism

Genes related to addiction

Evidence Origin	Evidence Type	Gene Count	Evidence Count
Genetics Strategies			553

1500 human genes were related to addiction

Among them 396 had two or more pieces of evidence

Single gene strategies	Genes implicated in addiction	185	299
Microarray	Genes encoding significantly differentially expressed mRNAs	949	1297
Proteomics	Genes encoding significantly differentially expressed proteins	119	170
OMIM	Database annotations	24	24

Li, '08, PLos Comp Biol

Copyright © Peking University

Given the set of 396 addiction genes,

- Which pathways are involved?
- Which pathways are statistically significantly represented?

KOBAS web server (http://kobas.cbi.pku.edu.cn)

(Wu et al, Nucleic Acids Research, '06: Xie et al, Nucleic Acids Research, '12)

18 Statistically Enriched Pathways

Pathways	<i>P</i> -Value	<i>Q</i> -Value
Long-term depression	2.1E-07	1.1E-05
Gap junction	1.5E-07	1.1E-05
Long-term potentiation	3.5E-06	7.2E-05
Neuroactive ligand-receptor interaction	2.1E-06	7.2E-05
MAPK signaling pathway	3.1E-06	7.2E-05
GnRH signaling pathway	8.5E-06	1.5E-04
Calcium signaling pathway	4.8E-04	7.0E-03
Colorectal cancer	6.5E-04	8.3E-03
Pores ion channels	2.1E-03	0.02
VEGF signaling pathway	3.2E-03	0.03
Glycolysis /Gluconeogenesis	3.8E-03	0.03
Protein folding and associated processing	3.8E-03	0.03
Focal adhesion	4.4E-03	0.03
Insulin signaling pathway	4.9E-03	0.03
Parkinson's disease	6.3E-03	0.04
Fc epsilon RI signaling pathway	6.9E-03	0.04
Type II diabetes mellitus	7.7E-03	0.05
Progesterone-mediated oocyte maturation	9.1E-03	0.05

Li, *et al*, PLos Comp Biol, '08

Are there common pathways underlying addiction to different substances?

Collection of meta-data enables detailed analysis

Entry Fields	Descriptions and Data Resources
Basic Information	Basic information for this gene, including Gene ID, official symbol, aliases, links to OMIM, links to HPRD, chromosome and location, gene descriptions, gene type and genomic context. Data from NCBI ENTREZ GENE
Evidence Summary	A summary of evidence linking this gene to addiction
KARG Evidence	For each piece of evidence, KARG internal ID, organism, evidence ID and links, addictive drug types and addiction brain areas were annotated. For large-scale profiling evidence, differentially expressed effects and fold-changes were also included.
Gene Ontology	Gene Ontology annotations. Data from GO website
Interaction information	Protein interaction annotations. Data from BIND and HPRD
Domain Information	Protein domain annotations. Data from INTERPRO

Entrez Gene ID	Official Symbol	Locations	Gene description₽	Cocaine	Alcohol	Opioids	Nicotine
124	SERPINA3∉	14q32.1₽	serpin peptidase inhibitor, clade A (alpha-1 antiproteinase, antitrypsin), member 30	Yes₽	Yes₽	Yes₽	Yes₽
18₽	ABAT₽	16p13.2₽	4-aminobutyrate aminotransferase₽	Yes₽	Yes₽	-43	Yes₽
88₽	ACTN2₽	1q42-q43₽	actinin, alpha 2₽	Yes₽	Yes₽	Yes₽	Yes₽
112₽	ADCY6₽		adenylate cyclase 6₽	-43	-42	Yes₽	-47
114₽	ADCY8₽	_	adenylate cyclase 8 (brain)↓ poly (ADP-ribose)		Yes₽	Yes↔	Yes↔
143₽	PARP4¢		polymerase family, member 4₽		Yes₽	-42	-42
213₽	ALB₽	4q11-q13₽	albumin₽	Yes₽	-47	Yes₽	-47
2300	ALDOC&	17cen-q12¢	aldolase C, fructose-bisphosphate₽	-47	Yes₽	Yes₽	-47
231₽	AKR1B1₽	_	aldo-keto reductase family 1, member B1 (aldose reductase)		Yes₽	Yes₽	Yes₽
2424	ALOX12B₽		arachidonate 12-lipoxygenase, 12R type	-47	Yes↔	-43	-43

Copyright © Peking University

Common Pathways

Addictive Drugs	Cocaine	Alcohol	Opioids	Nicotine			
Neuroactive ligand-receptor interaction							
P-Value	5.39E-05	3.24E-02	2.68E-03	7.79E-03			
Q-Value	1.8E-04	0.05	0.01 0				
Long-term potentiation							
P-Value	3.21E-08	8.28E-03	1.05E-02	8.84E-03			
Q-Value	2.8F_07	0.03	0.03	0.04			
	GnRH signali	ng pathway					
P-Value	2.04E-05	2.025.01	4.67E-03	1.72E-02			
Q-Value	1.2E-04	3.6E-03	0.02	0.05			
	MAPK signal	ing pathway					
P-Value	1.28E-04	2.97E-04	7.34E-05	1.10E-02			
Q-Value	3.7F ₋ 04	3.6E-03	5.2E-04	0.04			
Gap junctions							
P-Value	1,02E 09	2 115 03	5.30E-03	5.85E-03			
Q-Value	2.8E-07	0.01	0.01	0.03			

Li, et al, PLos Comp Biol, '08 Copyright © Peking University

Summary

To facilitate communication and computation,

- store data in database whenever possible;
- define an ontology for the data;
- collect meta-data together with data.

To discover higher level patterns in a set of genes or gene products,,

- identify the most significant pathways and functional categories
- perform statistical analysis such as in KOBAS

生物信息学:导论与方法 Bioinformatics: Introduction and Methods

Ge Gao 高歌 & Liping Wei 魏丽萍 Center for Bioinformatics, Peking University

