CS3841 - Scheduling

Scheduling Considerations:

- The OS needs to schedule processes to run. The OS has several options each with considerations
 - Pre-emptive Do processes run to completion without being stopped?
 - Round Robin How long should the time slice be?
 - Multi-processor Which processor should processes be run on? What about cache efficiency?
 What about cache coherency?
 - Priority Is one process more important than another?
 - Fairness I/O Intensive processes vs CPU intensive processes

Fairness

- Want to schedule processes so that all make forward progress in a fair way.
- Don't want to 'starve' a process of CPU access
- I/O intensive Processes that take more time waiting for input/output than using the CPU for computation e.g. a shell
- CPU intensive Processes that need lots of CPU cycles and don't spend much time (if any) waiting for I/O – e.g. matrix math
- What's fair scheduling when there are a mixture of I/O intensive and CPU intensive processes?

Queuing and Scheduling

Priority Scheduling

Operating Systems

Scheduling Options

- No preemption OS lets processes run to completion without interruption
 - First come/first served (FCFS)
 - Processes are executed in the order in which they are submitted
 - Shorted Job Next (SJN)
 - Of all processes in the ready queue, pick the one that needs the least time
- Preemption OS interrupts processes running for some reason
 - Shorted Remaining Time (SRT)
 - At any point in time swap to the process in the ready queue that has the least amount of time remaining
 - Round Robin
 - Processes are given a time quantum
 - Removed from CPU after quantum has expired

Evaluation Criteria

- Fairness
 - Turnaround time Elapsed time from the time of submission to the time of completion
 - Wait time The amount of time spent in the *ready* queue
 - NOTE: time spent in the suspended or blocked queue is not recorded
 - Response Ratio Turnaround time / Service time
 - How many times longer did it take for the process to complete than what was required?
- CPU Utilization Amount of time the CPU spends executing 'useful' work
- Throughput Number of processes completed per unit time
- Deadline Did process complete on or before it needed to

Example – No Preemption

Process	Arrival Time	Service Time
Α	0	3
В	2	6
С	4	4
D	6	5
E	8	2

Example – No Preemption

Process	Arrival Time	Service Time
Α	0	3
В	2	6
С	4	4
D	6	5
Е	8	2

FCFS	A	В	С	D	Е	Avg
Finish Time	3	9	13	18	20	
Turnaround Time	3	7	9	12	12	8.6
Response Ratio	1	1.17	2.25	2.4	6	2.56

SJN	Α	В	С	D	E	Avg
Finish Time	3	9	15	20	11	
Turnaround Time	3	7	11	14	3	7.6
Response Ratio	1	1.17	2.75	2.8	1.5	1.84

Operating Systems

Example – Preemption

Process	Arrival Time	Service Time
Α	0	3
В	2	6
С	4	4
D	6	5
Е	8	2

Example – Preemption

Process	Arrival Time	Service Time
Α	0	3
В	2	6
С	4	4
D	6	5
Е	8	2

Round Robin	A	В	С	D	Е	Avg
Finish Time	4	18	17	20	15	
Turnaround Time	4	16	13	14	7	10.8
Response Ratio	1	2.67	3.25	2.8	3.5	2.71

SRT	A	В	С	D	E	Avg
Finish Time	3	15	8	20	10	
Turnaround Time	3	13	4	14	2	7.2
Response Ratio	1	2.17	1	2.8	1	1.59

Operating Systems 10

Preemption vs Non-Preemption

- FCFS and SJN
 - Attempts to minimize turn around time
 - Works well for CPU intensive processes
- Round Robin
 - Gives appearance of multiprogramming
 - Large time quantum
 - -> low overhead
 - -> poor response for multiprogramming
 - Low time quantum
 - -> high overhead
 - -> better response for multiprogramming
 - Optimal? Enough for user interaction

- SRT
 - Provably optimal if service time is known
- SJN and SRT
 - Often not possible to know service time

