WHAT IS CLAIMED IS:

1	An apparatus for alerting a pilot of a rotary wing aircraft of proximity						
2	to terrain, the apparatus comprising:						
3	an input for receiving signals representative of a position of the aircraft, a						
4	flight path angle of the aircraft and a speed of the aircraft, and coupled to a database of stored						
5	terrain information;						
6	an output;						
7	a signal processing device, coupled to said input, and coupled to said output,						
8	for:						
9	(a) defining a look ahead distance;						
_1 0	(b) defining a first alert envelope, indicative of a first severity of terrain threat,						
41 01	wherein boundaries of said first alert envelope are determined as a first function of the						
1 12	flight path angle, said look ahead distance, and a terrain floor boundary; wherein said						
	terrain floor boundary comprises a function of an aircraft altitude and said speed;						
₩ 1 4	(c) defining a second alert envelope, indicative of a second severity of terrain						
= 15	threat, wherein boundaries of said second alert envelope are determined as a second						
	function of the flight path angle, said look ahead distance and said terrain floor						
∏7 ∐8	boundary; and						
	(d) outputting an alert signal when a subset of the stored terrain information is						
19	located within the boundaries of at least one of said first and said second alert						
20	envelopes.						
1	2. The apparatus of claim 1 wherein at least one of said first and second						
2	alert envelopes is further bounded by a cut-off envelope.						
1	3. The apparatus of claim 1 wherein said signals representative of the						
2	position of an aircraft include a first signal received from a satellite navigation system						
3	indicative of the aircraft altitude and a second signal representative of the aircraft altitude						
4	received from a source other than the satellite navigation system, and wherein said signal						
5	processing device further comprises a means for determining a compound altitude signal.						
1	4. The apparatus of claim 1 wherein the boundaries of at least one of said						
2	first and second alert envelopes is further determined as a function of a configurable datum.						

ΠJ

1 2

phases are defined as a function of said speed of the aircraft.

The apparatus of claim 11 wherein said cruise, approach and landing

The apparatus of claim 1 wherein said look ahead distance is a function

1

13.

1	19. The method of claim 14 further comprising the step of outputting a								
2	video control signal to control representation of terrain in a first color for terrain located more								
3	than a predefined amount relative to current altitude of the aircraft and in a second color for								
4	terrain located less than said predefined amount relative to said current altitude wherein said								
5	predefined amount is a first value for a cruise phase of flight, a second value for an approach								
6	phase of flight, and a third value for a landing phase of flight.								
1	20. A computer program product for alerting a pilot of a rotary wing								
2	aircraft of proximity to terrain comprising:								
3	a computer readable storage medium having computer readable program code								
4	means embodied in said medium, said computer readable program code means comprising:								
<u>[</u>] 5	a first computer instruction means for accessing a database of terrain								
<u>መ</u> 6	information;								
7 U 7 U 8	a second computer instruction means for accessing signals representative of a								
<u>i</u> 8	position of the aircraft, a flight path angle of the aircraft and a speed of the aircraft;								
وليا ايا	a third computer instruction means for defining a look ahead distance;								
= 10	a fourth computer instruction means for defining a first alert envelope,								
10 11 11 12 13 14 15 15 15 15 15 15 15 15 15 15 15 15 15	indicative of a first severity of terrain threat, wherein boundaries of said first alert envelope								
H 2	are determined as a first function of the flight path angle, said look ahead distance, and a								
C1 3	terrain floor boundary;								
14	a fifth computer instruction means for defining a second alert envelope,								
15	indicative of a second severity of terrain threat, wherein boundaries of said second alert								
16	envelope are determined as a second function of the flight path angle, said look ahead								
17	distance and said terrain floor boundary;								
18	a sixth computer instruction means for defining said terrain floor boundary as								
19	a function of an aircraft altitude and a said speed; and								
20	a seventh computer instruction means for outputting an alert signal when a								
21	subset of the stored terrain information is located within the boundaries of at least one of said								
22	first and said second alert envelopes.								
1	21. The computer program product of claim 20 further comprising an								

terrain on a display device.

eighth computer instruction means for outputting a video control signal to control display of

- distinct first and second sources respectively to obtain a compound altitude signal
 representative of the aircraft altitude.
 - 24. The computer program product of claim 20 wherein said seventh computer instruction means further comprises a means for outputting an audio control signal to generate an aural alert.
 - 25. The computer program product of claim 20 further comprising an eighth computer instruction means for outputting a video control signal to control representation of terrain in a first color for terrain located more than a predefined amount relative to a current altitude of the aircraft and in a second color for terrain located less than said predefined amount relative to said current altitude wherein said predefined amount is a first value for a cruise phase of flight, a second value for an approach phase of flight, and a third value for a landing phase of flight.
 - 26. An apparatus for alerting a pilot of a hover-capable aircraft of proximity to terrain, the apparatus comprising:

an input for receiving signals representative of a position of the aircraft, a flight path angle of the aircraft and a speed of the aircraft, and coupled to a database of stored terrain information;

6 an output;

a signal processing device, coupled to said input, and coupled to said output,

8 for:

1

2

C) 3 C) 1 C) 1 C) 2

W3

<u>내</u>4

5 46

TJ 7

2

3

4

5

7

9

10

11

12

13

를 L: 1

- (a) defining a look ahead distance as a function of a distance to transition from a first phase of flight to a hover phase of flight;
- (b) defining a first alert envelope, indicative of a first severity of terrain threat, wherein boundaries of said first alert envelope are determined as a first function of the flight path angle, said look ahead distance, and a terrain floor boundary;

14 (c) defining a second alert envelope, indicative of a second severity of terrain 15 threat, wherein boundaries of said second alert envelope are determined as a second 16 function of the flight path angle, said look ahead distance and said terrain floor 17 boundary; and 18 (d) outputting an alert signal when a subset of the stored terrain information is 19 located within the boundaries of at least one of said first and said second alert 20 envelopes. 1 27. The apparatus of claim 26 wherein at least one of said first and second 2 alert envelopes is further bounded by a cut-off envelope. 1 28. The apparatus of claim 26 wherein said signals representative of the **[]** 2 position of an aircraft include a first signal received from a satellite navigation system 4 014 indicative of an aircraft altitude and a second signal representative of the aircraft altitude received from a source other than the satellite navigation system, and wherein said signal processing device further comprises a means for determining a compound altitude signal. L. ¥ 1 29. The apparatus of claim 26 wherein the boundaries of at least one of 1 1 1 1 1 3 said first and second alert envelopes is further determined as a function of a configurable datum. 30. The apparatus of claim 26 wherein at least one of said first and second 2 alert envelopes further comprises a subset of alert envelopes representing various severities of 3 hazard to the aircraft. 1 31. The apparatus of claim 26 wherein said signal processing device 2 comprises a microprocessor. 1 32. The apparatus of claim 26 wherein said signal processing device 2 comprises a means for outputting said alert signal as a video control signal, wherein said 3 video control signal is useful for controlling representation of terrain on a video display in 4 various colors according to a degree of terrain threat.

33. The apparatus of claim 26 further comprising a voice warning generator coupled to said signal processor and wherein said alert signal output from said

1

4	generator to output an aural alert.			
1	34. The apparatus of claim 26 wherein said speed comprises a			
2	groundspeed of the aircraft.			
1	The apparatus of claim 26 wherein the aircraft is an airship.			
1	36. The apparatus of claim 26 wherein the aircraft is a tilt rotor.			
1	37. The apparatus of claim 26 wherein said signal processing device			
2	further comprises a means for outputting a video control signal to control representation of a			
3	background terrain data proximate the aircraft:			
4	in a first color for terrain located more than a predetermined amount relative to			
5	a current altitude of the aircraft wherein said predetermined amount is a first value for a			
6	cruise phase of flight and a second value for an approach phase of flight and a third value for			
7	a landing phase of flight; and			
8	in a second color for terrain located less than said predetermined amount			
9	relative to said current altitude.			
1	38. The apparatus of claim 26 wherein said cruise, approach and landing			
2	phases are defined as a function of said speed of the aircraft.			
1	39. A method for alerting a pilot of a hover-capable aircraft of proximity to			
2	terrain comprising the steps of:			
3	accessing a database of terrain information;			
4	receiving signals representative of a position of the aircraft, a flight path angle			
5	of the aircraft and a speed of the aircraft;			
6	defining a look ahead distance as a function of a distance to transition from a			
7	first phase of flight to a hover phase of flight;			
8	defining a first alert envelope, indicative of a first severity of terrain threat,			
9	wherein boundaries of said first alert envelope are determined as a first function of the flight			
10	path angle, said look ahead distance, and a terrain floor boundary;			
11	defining a second alert envelope, indicative of a second severity of terrain			
12	threat, wherein boundaries of said second alert envelope are determined as a second function			
13	of the flight path angle, said look ahead distance and said terrain floor boundary; and			

signal processing device comprises an audio control signal to command said voice warning

15

1

2

3

1

2

1

2

二 5

^{|--|} 6

1

2

3

4

7

8

- 40. The method of claim 39 wherein said step of outputting an alert signal further comprises the step of outputting a video control signal to control display of terrain on a display device.
- 41. The method of claim 39 further comprising the step of defining a cutoff envelope to form a boundary of at least one of said first and second alert envelopes.
- 42. The method of claim 39 further comprising the step of receiving a first and a second altitude signal from a distinct first and second sources respectively to obtain a compound altitude signal representative of the aircraft altitude.
- 43. The method of claim 39 wherein said step of outputting an alert signal comprises outputting an audio control signal to generate an aural alert.
- 44. The method of claim 39 further comprising the step of outputting a video control signal to control representation of terrain in a first color for terrain located more than a predefined amount relative to a current altitude of the aircraft and in a second color for terrain located less than said predefined amount relative to said current altitude wherein said predefined amount is a first value for a cruise phase of flight, a second value for an approach phase of flight, and a third value for a landing phase of flight.
- 45. A computer program product for alerting a pilot of a hover-capable aircraft of proximity to terrain comprising:
- a computer readable storage medium having computer readable program code means embodied in said medium, said computer readable program code means comprising:
- 5 a first computer instruction means for accessing a database of terrain 6 information;
 - a second computer instruction means for accessing signals representative of a position of the aircraft, a flight path angle of the aircraft and a speed of the aircraft;
- 9 a third computer instruction means for defining a look ahead distance as a 10 function of a distance to transition from a first phase of flight to a hover phase of flight;
- a fourth computer instruction means for defining a first alert envelope, 12 indicative of a first severity of terrain threat, wherein boundaries of said first alert envelope

are determined as a first function of the flight path angle, said look ahead distance, and a terrain floor boundary;

1314

15

16

17

18

19

20

21

1

2

(1) (1) (1) (1) (2)

ы 4

1

2

3

1

2

3

4

5

6 7 a fifth computer instruction means for defining a second alert envelope, indicative of a second severity of terrain threat, wherein boundaries of said second alert envelope are determined as a second function of the flight path angle, said look ahead distance and said terrain floor boundary; and

a sixth computer instruction means for outputting an alert signal when a subset of the stored terrain information is located within the boundaries of at least one of said first and said second alert envelopes.

- 46. The computer program product of claim 45 further comprising a seventh computer instruction means for outputting a video control signal to control display of terrain on a display device.
- 47. The computer program product of claim 45 further comprising a seventh computer instruction means for defining a cut-off envelope to form a boundary of at least one of said first and second alert envelopes.
- 48. The computer program product of claim 45 further comprising a seventh computer instruction means for accessing a first and a second altitude signal from a distinct first and second sources respectively to obtain a compound altitude signal representative of the aircraft altitude.
- 49. The computer program product of claim 45 wherein said sixth computer instruction means further comprises a means for outputting an audio control signal to generate an aural alert.
- 50. The computer program product of claim 45 further comprising a seventh computer instruction means for outputting a video control signal to control representation of terrain in a first color for terrain located more than a predefined amount relative to a current altitude of the aircraft and in a second color for terrain located less than said predefined amount relative to said current altitude wherein said predefined amount is a first value for a cruise phase of flight, a second value for an approach phase of flight, and a third value for a landing phase of flight.

1	51. An apparatus for alerting a pilot of a rotary wing aircraft of proximity					
2	to terrain comprising:					
3	an input for receiving signals representative of a position of the					
4	aircraft, a flight path angle of the aircraft and a speed of the aircraft, and coupled to a					
5	database of stored terrain information;					
6	an output; and					
7	a signal processor, coupled to said input and to said output for:					
8	(a) defining a look ahead/look down alert envelope, wherein					
9	boundaries of said alert envelope are determined as a function of the flight path angle,					
10	a look ahead distance, and a terrain floor boundary; wherein said terrain floor					
11	boundary comprises a function of an aircraft altitude and said speed, and wherein said					
<u>.</u> 12	look ahead distance comprises a function of a distance to transition from a first phase					
113	of flight to a hover phase of flight; and					
714	(b) outputting an alert signal when a subset of the stored terrain					
#15 #1	information is located within the boundaries of said alert envelope.					
1	52. The apparatus of claim 51 wherein said look ahead/look down alert					
	envelope further comprises a first, caution, envelope and a second, warning, envelope.					
1	53. The apparatus of claim 52 wherein said signal processor outputs a first					
== 2	alert signal when said subset of the stored terrain information is located within the boundaries					
3	of said caution envelope and a second alert signal when said subset of the stored terrain					
4	information is located within the boundaries of said warning envelope.					
1	54. The apparatus of claim 51 wherein said signal processor comprises a					
2	microprocessor.					
1	55. The apparatus of claim 51 wherein said speed comprises a					
2	groundspeed of the aircraft.					
1	56. The apparatus of claim 51 wherein said signal processing device					
2	comprises a means for outputting said alert signal as a video control signal, wherein said					
3	video control signal is useful for controlling representation of terrain on a video display in					
4	various colors according to a degree of terrain threat					

1 57. The apparatus of claim 51 further comprising a voice warning 2 generator coupled to said signal processor and wherein said alert signal output from said 3 signal processing device comprises an audio control signal to command said voice warning 4 generator to output an aural alert. 1 58. The apparatus of claim 51 wherein said signal processing device 2 further comprises a means for outputting a video control signal to control representation of a 3 background terrain data proximate the aircraft: 4 in a first color for terrain located more than a predetermined amount relative to 5 a current altitude of the aircraft wherein said predetermined amount is a first value for a 6 cruise phase of flight and a second value for an approach phase of flight and a third value for \Box 7 a landing phase of flight; and <u>rii</u> 8 in a second color for terrain located less than said predetermined amount **0**19 relative to said current altitude. <u>Li</u> 1 59. The apparatus of claim 58 wherein said cruise, approach and landing phases are defined as a function of said speed of the aircraft. The apparatus of claim 51 wherein said signal processor further defines 60. **J** 2 a look up envelope and outputs said alert signal when said subset of terrain is located within **□** 3 said look up envelope. 1 61. A method for alerting a pilot of a rotary wing aircraft of proximity to 2 terrain comprising the steps of: 3 receiving signals representative of a position of the aircraft, a flight path angle 4 of the aircraft and a speed of the aircraft, and stored terrain information; 5 defining a look ahead/look down alert envelope, wherein boundaries of said 6 alert envelope are determined as a function of the flight path angle, a look ahead distance, and 7 a terrain floor boundary; wherein said terrain floor boundary comprises a function of an 8 aircraft altitude and a said speed, and wherein said look ahead distance comprises a function 9 of a distance to transition from a first phase of flight to a hover phase of flight; and 10 outputting an alert signal when a subset of the stored terrain information is

11

located within said alert envelope.

- 62. The method of claim 61 wherein said look ahead/look down alert envelope further comprises a first caution envelope and a second warning envelope.
- 63. The method of claim 62 further comprising the steps of outputting a first alert signal when said subset of the stored terrain information is located within the boundaries of said caution envelope and outputting a second alert signal when said subset of the stored terrain information is located within the boundaries of said warning envelope.
- 64. The method of claim 61 further comprising the step of outputting a video control signal, wherein said video control signal is useful for controlling representation of terrain on a video display in various colors according to a degree of terrain threat.
- 65. The method of claim 61 further comprising the step of outputting an aural alert.
- 66. The method of claim 61 further comprising the step of outputting a video control signal to control representation on a display of a background terrain data proximate the aircraft:

in a first color for terrain located more than a predetermined amount relative to a current altitude of the aircraft wherein said predetermined amount is a first value for a cruise phase of flight and a second value for an approach phase of flight and a third value for a landing phase of flight; and

in a second color for terrain located less than said predetermined amount relative to said current altitude.

- 67. The method of claim 66 further comprising the step of defining said cruise, approach and landing phases as a function of said speed of the aircraft.
- 68. The method of claim 61 further comprising the step of defining a look up envelope and outputting said alert signal when said subset of terrain is located within said look up envelope.
 - 69. A computer program product for alerting a pilot of a rotary wing aircraft of proximity to terrain comprising:
- a computer readable storage medium having computer readable program code means embodied in said medium, said computer readable program code means comprising:

ΠJ 4

[] 5 |--

1

2

3

4

1

2

1

2

3

4

- 70. The computer program product of claim 69 wherein said second computer instruction means further defines said look ahead/look down alert envelope as comprising a first caution envelope and a second warning envelope.
- 71. The computer program product of claim 70 further comprising a fourth computer instruction means for outputting a first alert signal when said subset of the stored terrain information is located within the boundaries of said caution envelope and outputting a second alert signal when said subset of the stored terrain information is located within the boundaries of said warning envelope.
- 72. The computer program product of claim 69 further comprising a fourth computer instruction means for outputting a video control signal, wherein said video control signal is useful for controlling representation of terrain on a video display in various colors according to a degree of terrain threat.
- 73. The computer program product of claim 69 further comprising a fourth computer instruction means for outputting an aural alert.
- 74. The computer program product of claim 69 further comprising a fourth computer instruction means for outputting a video control signal to control representation on a display of a background terrain data proximate the aircraft:
- in a first color for terrain located more than a predetermined amount relative to a current altitude of the aircraft wherein said predetermined amount is a first value for a

6 cruise phase of flight and a second value for an approach phase of flight and a third value for 7 a landing phase of flight; and 8 in a second color for terrain located less than said predetermined amount 9 relative to said current altitude. 75. 1 The computer program product of claim 74 further comprising a fifth 2 computer instruction means for defining said cruise, approach and landing phases as a 3 function of said speed of the aircraft. 1 76. The computer program product of claim 69 further comprising a fourth 2 computer instruction means for defining a look up envelope and wherein said third computer 3 instruction means outputs said alert signal when said subset of terrain is located within said C) 4 look up envelope. T T T T 1 77. A ground proximity warning system for rotary wing aircraft . Ц comprising: a warning computer including: 4 15 15 6 (a) an input for receiving signals representative of a position of the aircraft, a flight path angle of the aircraft and a speed of the aircraft, and coupled to a database of stored terrain information; (b) an output; and **= 8** (c) a signal processor, coupled to said input and to said output for: 9 (i) defining an alert envelope, wherein boundaries of said alert envelope 10 are determined as a function of the flight path angle, a look ahead distance, 11 and a terrain floor boundary; wherein said terrain floor boundary comprises a 12 function of an aircraft altitude and said speed, and wherein said look ahead 13 distance comprises a function of a distance to transition from a first phase of 14 flight to a hover phase of flight; and 15 (ii) outputting an alert signal when a subset of the stored terrain 16 information is located within the boundaries of said alert envelope; and 17 a display, having an display input coupled to said output of said warning 18 computer, for displaying said terrain data proximate the aircraft in various colors

according to a degree of terrain threat.

1		78.	The system of claim 77 wherein said warning computer comprises a		
2	general purpose processor.				
1		79.	The system of claim 77 wherein said speed comprises a groundspeed		
2	of the aircraft.				
1		80.	The system of claim 77 wherein the aircraft is a tilt rotor.		
1		81.	A ground proximity warning system for rotary wing aircraft		
2	comprising:				
3		a warn	ing computer including:		
4		(a) an	input for receiving signals representative of a position of the aircraft, a		
C) 5	flight pa	ath ang	gle of the aircraft and a speed of the aircraft, and coupled to a database		
4 6	of store	d terra	in information;		
ወነ ሀ1 7		(b) an	output; and		
년 년 8	1	(c) a si	gnal processor, coupled to said input and to said output for:		
LJ 9		(i)	defining an alert envelope, wherein boundaries of said alert envelope		
<u>_</u> 10		are det	ermined as a function of the flight path angle, a look ahead distance,		
		and a t	errain floor boundary; wherein said terrain floor boundary comprises a		
[] 12		functio	on of an aircraft altitude and said speed, and wherein said look ahead		
<u>=</u> 13	•	distand	ce comprises a function of a distance to transition from a first phase of		
14		flight t	o a hover phase of flight; and		
15		(ii) outputting an alert signal when a subset of the stored terrain		
16	:	inform	ation is located within the boundaries of said alert envelope; and		
17	;	a displ	ay, having an display input coupled to said output of said warning		
18	computer, for:				
19	•	(a) dis _l	playing said terrain data located in the boundaries of said alert envelope		
20	in various colors according to a degree of terrain threat; and				
21	•	(b) dis	playing terrain data proximate the aircraft:		
22		(i)	in a first color for terrain located more than a predetermined amount		
23	1	relativ	e to a current altitude of the aircraft wherein said predetermined amount		
24	i	is a fir	st value for a cruise phase of flight and a second value for an approach		
25	1	phase o	of flight and a third value for a landing phase of flight; and		

2	26	(ii) in a second color for terrain located less than said predetermined				
2	27	amount relative to said current altitude.				
	1		82.	The system of claim 77 wherein the aircraft is a tilt rotor.		
	1		83.	The method of claim 14 wherein said speed comprises a groundspeed		
	2	of the aircraft.				
	1		84.	The computer program product of claim 20 wherein said speed		
	2	comprises a groundspeed of the aircraft.				
	1		85.	The method of claim 39 wherein said speed comprises a groundspeed		
	2	of the aircraft.				
	1		86.	The computer program product of claim 45 wherein said speed		
	2	comprises a gr	oundsp	peed of the aircraft.		
1	1		87.	The method of claim 61 wherein said speed comprises a groundspeed		
L.	2	of the aircraft.				
	1		88.	The computer program product of claim 69 wherein said speed		
	2	comprises a gr	oundsp	peed of the aircraft.		
	1		89.	The method of claim 1 wherein said look ahead distance comprises a		
	2	function of a d	ictance	to a negrest runway		