Figure 3. A

Figure 3.B

Figure 3.C

Figure 5.C

Figure 6. A $\lambda = slope$ $b = -\frac{1}{2}$ $a = -\frac{1}{2}$ $b = -\frac{1}{2}$

Figure 8. F

Figure 8.6

Figure 9. A

Figure 11. A

Figure 11.B

isoline $f_1(x_1,x_2)=0$ isoline $f_2(x_1,x_2)=0$ x_1 local minimum of F, where F is no root even close to that minimum

Figure M. F

Figure 11. G

Figure 11. H

Step 1: reflection

step 7: expansion

step 3: contraction

Step 4: multiple contraction

Figure M. I minimize along fixed directions, e.g. coordinate steps axes $\rightarrow \times_{\wedge}$ XZ for high quality figures cf. "Numerical recipies", Tigure 10.7.1, 10.8.1 7 steps 11. J Figure 1×2 minimize along Steepest descent many Steps

Figure 11. K

fast cooling

slow cooling

