

Individual Coursework Submission Form

Specialist Masters Programme

Surname:		First Name:	
Ahn		Hyun	
MSc in:		Student ID number:	
Mathematical Trading and Finan	ice		
Module Code:			
SMM748			
Module Title:			
Machine Learning for Quantitative	Professionals		
Lecturer:		Submission Date:	
Rui Zhu		16/March/2025	
Declaration:			
By submitting this work, I declare the	hat this work is er	ntirely my own except those par	ts duly
identified and referenced in my sub	omission. It comp	lies with any specified word limi	its and the
requirements and regulations detail	iled in the course	work instructions and any other	relevant
programme and module document	ation. In submitti	ng this work, I acknowledge tha	t I have read
and understood the regulations and	d code regarding	academic misconduct, including	that relating
to plagiarism, as specified in the Pro	ogramme Handbo	ook. I also acknowledge that this	s work will be
subject to a variety of checks for ac	ademic miscondu	ıct.	
We acknowledge that work submit	ted late without a	granted extension will be subje	ect to penalties,
as outlined in the Programme Hand	dbook. Penalties v	vill be applied for a maximum o	f five days
lateness, after which a mark of zero	will be awarded		
Marker's Comments (if not being r	marked on-line):		
Deduction for Late Submission:		Final Mark:	%

0. Information About Coursework Conduction

- This report presents the results of the first individual coursework for the 2025 Machine Learning for Quantitative Professionals course.
- 2. The assignment was completed using Python, and the details of the libraries used are specified at the end of this document.

1. Introduction

This report aims to predict **coronary heart disease** (**CHD**) **for males** in a high-risk heart disease region of the **Western Cape**, **South Africa**, as specified in the coursework requirements. Instead of providing an extensive description of the given dataset, this report will primarily focus on the methodologies used and the rationale behind their selection.

2. Exploratory Data Analysis (EDA)

To perform exploratory data analysis, the **ydata-profiling** library was utilized. The key findings deemed significant are summarized below:

2-1. Binary Representation of the famhist Feature

• The famhist feature represents a family history of heart disease and is stored as categorical values "Absent" or "Present", which are not suitable for direct model analysis.

2-2. Class Imbalance in the Target Variable (chd)

- The **chd** variable, which is the dependent variable to be predicted, exhibits a significant class imbalance:
 - \circ Positive cases (CHD = 1): 34.6%
 - Negative cases (CHD = 0): 65.4%

Given this imbalance, evaluating model performance using only accuracy is insufficient.
Additional techniques such as undersampling, oversampling, or alternative evaluation metrics should be considered to address this issue.

2-3. Correlation Analysis and Multicollinearity

- The **Correlation Heatmap** reveals five significant relationships between independent variables:
 - o Adiposity Age
 - Adiposity Ldl
 - o Adiposity Obesity
 - o Age Tobacco
 - Ldl Obesity
- Given that the dataset contains only 462 observations but includes nine independent variables, there is a potential risk of multicollinearity. Applying Principal Component Analysis (PCA) may help mitigate this issue.

3. Data Preprocessing

3-1. Binarization of the famhist Feature

- To facilitate model training, the famhist feature was converted into a binary format:
 - \circ "Present" $\rightarrow 1$
 - \circ "Absent" \rightarrow **0**

3-2. Principal Component Analysis (PCA)

- Since there are 9 independent variables and only 462 observations, the risk of multicollinearity is high.
- PCA was applied to five features (adiposity, age, ldl, obesity, tobacco) to reduce dimensionality.

 The first two principal components accounted for 71.70% of the variance in these five features.

4. Logistic Regression with Ridge Penalty

- As per the coursework requirements, a **logistic regression model with a ridge penalty** was implemented using a fixed **C value of 1**.
- The key results are as follows:

Logit Regression Results

========						
Dep. Variab	ole:	(hd No. 0	bservations:		323
Model:		Log	git Df Re	siduals:		316
Method:		N	ILE Df Mo	del:		6
Date:	Sun	, 16 Mar 20	25 Pseud	o R-squ.:		0.1731
Time:		16:08:	40 Log-L	ikelihood:		-172.38
converged:		Tr	rue LL-Nu	11:		-208.47
Covariance	Type:	nonrobu	ust LLR p	-value:		1.456e-13
========		========		========	=======	
	coef	std err	Z	P> z	[0.025	0.975]
	2 6054	0.653	4 444	0.000	2.065	1 406
const	-2.6854	0.653				
sbp	0.7849	0.745	1.053	0.292	-0.676	2.246
famhist	0.9010	0.267	3.380	0.001	0.379	1.423
typea	2.2073	0.909	2.428	0.015	0.425	3.989
alcohol	-0.4644	0.787	-0.590	0.555	-2.006	1.078
PC1	0.5327	0.103	5.147	0.000	0.330	0.736
PC2	0.4200	0.132	3.173	0.002	0.161	0.679
========						

- The model did not produce **overly high coefficients**, suggesting that **scaling and PCA** helped stabilize variable importance.
- Most features showed statistically significant **p-values**, except for sbp and alcohol. However, this could be due to the **simplicity of logistic regression**, so further evaluation was postponed.

4-1. Justification for Performance Metrics

The model prediction results are as follows:

accuracy	f1-score	roc_auc	recall
0.7410071942446043	0.6170212765957447	0.8070054945054945	0.604166666666666

These four metrics were chosen for evaluating classifiers:

- **Accuracy:** Commonly used to measure model performance.
- **F1 Score:** Particularly useful for imbalanced datasets, balancing precision and recall.
- **ROC_AUC:** Evaluates how well the model differentiates between classes across different thresholds.
- Recall: Especially relevant in medical prediction tasks, as identifying positive cases (CHD patients) is crucial for healthcare companies.
- Given these results, **logistic regression** provides a reasonably reliable performance, with **accuracy of 74.1%** and a **robust ROC_AUC score**. However, the **recall rate of 60.4%** may

be concerning from a business perspective, as it suggests that some **CHD-positive cases are** being misclassified.

5. Other Classifiers

The following classifiers were tested using **GridSearchCV** with **5-fold cross-validation** to determine optimal hyperparameters based on **F1 Score**:

Model	Hyperparameters		
Decision Tree	ccp_alpha: [1, 0.1, 0.01, 0.001, 0.0001]		
Random Forest	max_features: [5, 10, 20, 30, 40, 50, "sqrt"]		
AdaBoost	learning_rate: [0.001, 0.01, 0.1, 1]		
Gradient Boosting	learning_rate: [0.001, 0.01, 0.1, 1]		
k-Nearest Neighbors	n_neighbors: [3, 5, 7, 9]		
LDA, QDA,	No hyperparameters		
GaussianNB	1.0 mj posporaniovala		
SVC	gamma: [1, 1e-1, 1e-2, 1e-3, 1e-4], C: [1, 10, 100, 1000]		

• The **best model in terms of accuracy was LDA (Linear Discriminant Analysis**), as required by the coursework.

6. Results and Discussion

6-1. LDA Performance Metrics

accuracy	f1-score	roc_auc	recall
0.7338129496402878	0.6021505376344086	0.8129578754578755	0.58333333333333334

6-2. Comparison with Logistic Regression

- LDA achieved a **higher ROC_AUC** than **logistic regression**, suggesting better class separation.
- However, F1 Score, Accuracy, and Recall were lower, making it less effective for CHD detection.

6-3. Business Perspective Analysis

- Medical companies prioritize **recall (identifying all positive cases)** over accuracy.
- Since LDA had a lower **recall** than logistic regression, it is **not a suitable replacement**.
- The accuracy-based selection criterion in the coursework may have led to the incorrect conclusion that LDA is the best model.

data splitting.			

Given the small dataset (<500 observations), a simple model like logistic regression