Sheet 14: Cauchy Sequences

Definition 1 (Cauchy Sequence) We say that a sequence (a_n) is a Cauchy sequence if for each $\varepsilon > 0$ there exists $N \in \mathbb{N}$ such that if $n, m \geq N$, then $|a_n - a_m| < \varepsilon$.

Lemma 2 Every convergent sequence has the Cauchy property.

Proof. Let (a_n) converge to a and let $\varepsilon > 0$. Consider $\varepsilon/2$. Then there exists $N \in \mathbb{N}$ such that for all n > N we have $a_n \in (a - \varepsilon/2; a + \varepsilon/2)$. But then also for all m, n > N we have $a_m, a_n \in (a - \varepsilon/2; a + \varepsilon/2)$. Then the distance between a_m and a_n is no more than $\varepsilon/2 + \varepsilon/2 = \varepsilon$. Thus, there exists $N \in \mathbb{N}$ such that for all m, n > N we have $|a_m - a_n| < \varepsilon$.

Lemma 3 Let (a_n) be a Cauchy sequence and let $(b_k = a_{n_k})$ be a subsequence. If (b_k) converges then so does (a_n) .

Proof. Let $(b_k = a_{n_k})$ be a subsequence of (a_n) which converges to a and let $\varepsilon > 0$. Then there exists $N_1 \in \mathbb{N}$ such that for all $k > N_1$ we have $|a - b_k| < \varepsilon/2$. But also (a_n) is a Cauchy sequence and so there exists some $N_2 \in \mathbb{N}$ such that for all $n, m > N_2$ we have $|a_m - a_n| < \varepsilon/2$. Let $N = \max(N_1, N_2)$. Then for all n, m > N we have $|a - b_n| < \varepsilon/2$ and $|a_m - a_n| < \varepsilon/2$. Thus by the triangle inequality for all n > N we have $|a - a_n| < \varepsilon$ and so (a_n) converges to a.

Lemma 4 Every Cauchy sequence is bounded.

Proof. Let (a_n) be a Cauchy sequence and let $\varepsilon > 0$. There exists $N \in \mathbb{N}$ such that for all n > N we have $|a_N - a_n| < \varepsilon$. Then there are finitely many $n \in \mathbb{N}$ such that $a_n \notin (-\varepsilon + a_N; \varepsilon + a_N)$. Then the largest of these a_n is greater than or equal to every other term of (a_n) . Note that if there are no terms of (a_n) greater than $a_N + \varepsilon$, then we can choose a smaller epsilon so that such a term exists. A similar argument shows that there is a lower bound of (a_n) .

Theorem 5 A sequence is convergent if and only if it is Cauchy.

Proof. Let (a_n) be a Cauchy sequence. Then by Lemma 4 we know (a_n) is bounded and therefore there exists a convergent subsequence of (a_n) (13.16, 14.4). But then by Lemma 3 we know (a_n) converges (14.3). Conversely if a sequence is convergent then it Cauchy by Lemma 2 (14.2).

Definition 6 Let (a_n) be a bounded sequence and A be the set of its accumulation points. We define its limes inferior, $\liminf_{n\to\infty} a_n$, to be the first point of A and the limes superior, $\limsup_{n\to\infty} a_n$, to be the last point of A.

Corollary 7 Let (a_n) be a bounded sequence. Then $\liminf_{n\to\infty} a_n \le \limsup_{n\to\infty} a_n$ and equality holds if and only if the sequence is convergent.

Proof. Let A be the set of accumulation points for (a_n) . Since $\liminf_{n\to\infty} a_n$ is the first point of A, we have $\liminf_{n\to\infty} a_n \leq a$ for all $a\in A$. But since $\limsup_{n\to\infty} a_n \in A$ we have $\liminf_{n\to\infty} a_n \leq \limsup_{n\to\infty} a_n$. Suppose now that $\liminf_{n\to\infty} a_n = \limsup_{n\to\infty} a_n$. Then the first and last points of A are equal and so A only has one accumulation point. But then since (a_n) is bounded we have (a_n) is convergent (13.17). Conversely assume that (a_n) is convergent. Then (a_n) only has one accumulation point and so A contains one point (13.17). But then $\liminf_{n\to\infty} a_n = \limsup_{n\to\infty} a_n$.

Theorem 8 Let (a_n) be a bounded sequence. Then

$$\lim \inf_{n \to \infty} a_n = \lim_{n \to \infty} (\inf\{a_k \mid k > n\})$$

and

$$\lim \sup_{n \to \infty} a_n = \lim_{n \to \infty} (\sup\{a_k \mid k > n\}).$$

Proof. Consider the sequence (b_n) where $b_n = \inf\{a_k \mid k > n\}$. Then (b_n) is bounded because (a_n) is bounded and it's increasing because each infimum will either be less than or equal to the previous one. Thus $\lim_{n\to\infty}b_n=\sup\{b_n\mid n\in\mathbb{N}\}=s$ (13.18). Now consider some region (p;q) with $s\in(p;q)$. Note that $p<\inf\{a_k\mid k>n\}=r$ for some n, otherwise there would exist some point in (p;s) which would be an upper bound for $\{b_n\mid n\in\mathbb{N}\}$. Note that there are finitely many n such that $a_n< r$ because of how r is defined. Thus there are finitely many n with $a_n< p$. But also there must be finitely many n with $a_n>q$ because if there were infinitely many then there would exist $a_k>q$ such that k is greater than every index of $a_n\leq q$. But this contradicts how s is defined. Thus there are infinitely many n with $a_n\in(p;q)$ and so s is an accumulation point of (a_n) . But there can't be an accumulation point of (a_n) less than s because for each term or (b_n) there are finitely many n with a_n less that it and an accumulation point would imply infinitely many such n. Thus $s=\liminf_{n\to\infty} a_n$. A similar proof holds to show $\limsup_{n\to\infty} a_n=\lim_{n\to\infty} (\sup\{a_k\mid k>n\})$.

Theorem 9 Let (a_n) be a bounded sequence. Then

$$\lim \inf_{n \to \infty} a_n = \sup\{x \mid \text{ there are finitely many } n \text{ with } a_n \in (-\infty; x)\}$$

and

$$\lim_{n\to\infty} \sup a_n = \inf\{x \mid \text{ there are finitely many } n \text{ with } a_n \in (x; \infty)\}$$

Proof. Let $S = \{x \mid \text{ there are finitely many } n \text{ with } a_n \in (-\infty; x)\}$. Note that S is nonempty because (a_n) is bounded. Thus a lower bound for (a_n) shows that S is nonempty and an upper bound for (a_n) shows that S is bounded. Thus $\sup S = t$ exists. Let (b_n) be defined such that $b_n = \inf\{a_k \mid k > n\}$ and let $s = \lim_{n \to \infty} b_n = \sup\{b_n \mid n \in \mathbb{N}\}$ (13.18, 14,8). First suppose that t > s. Then there exists $x \in (s; t)$ such that there are finitely many n with $a_n < x$. But then if we take the largest index, i, of all such a_n we have $\inf\{a_k \mid k > i\} > s$ which is a contradiction. So $t \le s$. Suppose that t < s. Then for all $x \in (t; s)$ there are infinitely many n with $a_n < x$. But this implies that there are infinitely many n with $a_n \in (t; s)$ because there exists x < t such that there are finitely many n with $a_n < x$. But then there exists some element of b_n which is less than s, but greater than infinitely many terms of (a_n) . This cannot happen and so s = t. But then using Theorem 8 we have $t = \liminf_{n \to \infty} a_n$ (14.8).

Sheet 15: Series

Definition 1 A series of real numbers is an expression $\sum_{n=1}^{\infty} a_n$, where (a_n) is a real sequence.

Definition 2 (Convergent Series) Let $\sum_{n=1}^{\infty} a_n$ be a series. The sequence of partial sums is defined as

$$s_n = a_1 + a_2 + \dots + a_n = \sum_{i=1}^n a_i.$$

We say that the series $\sum_{n=1}^{\infty} a_n$ converges to s (or $\sum_{n=1}^{\infty} a_n = s$) if $\lim_{n\to\infty} s_n = s$. If such an s exists, we say that $\sum_{n=1}^{\infty} a_n$ is convergent, otherwise it is divergent.

Exercise 3 Reformulate convergence using the Cauchy property.

We say a series $\sum_{n=1}^{\infty} a_n$ is convergent if for all $\varepsilon > 0$ there exists $N \in \mathbb{N}$ such that for all n, m > N we have $|s_n - s_m| < \varepsilon$.

Lemma 4 If $\sum_{n=1}^{\infty} a_n$ is a convergent series, the the sequence (a_n) converges to 0.

Proof. Let $\sum_{n=1}^{\infty} a_n = s$. Then the sequence of partial sums (s_n) converges to s and (s_n) is a Cauchy sequence. Thus for all $\varepsilon > 0$ there exists $N \in \mathbb{N}$ such that for all n, m > N we have $|s_n - s_m| < \varepsilon$. But note that $s_{n+1} - s_n = a_n$ so for n > N + 1 we have $|a_n| < \varepsilon$ which means $\lim_{n \to \infty} a_n = 0$.

Lemma 5 Let $\sum_{n=1}^{\infty} a_n$ be convergent with a partial sum sequence (s_n) . Let $n_0 = 0$ and $n_1 < n_2 < \dots$ be a sequence of natural numbers. For $k \in \mathbb{N}$ let

$$b_k = a_{n_{k-1}+1} + \dots + a_{n_k} = \sum_{i=n_{k-1}+1}^{n_k} a_i.$$

Then

$$\sum_{k=1}^{\infty} b_k = \sum_{n=1}^{\infty} a_n.$$

Proof. Let $s_{b_k} = \sum_{i=1}^k b_i$ and $s_{a_n} = \sum_{i=1}^n a_i$. Then note that

$$s_{b_k} = \sum_{i=1}^k b_i = \sum_{i=1}^{n_1} a_i + \sum_{i=n_1+1}^{n_2} a_i + \dots + \sum_{i=n_{k-1}+1}^{n_k} a_i = s_{a_{n_k}}.$$

We know $\sum_{n=1}^{\infty} a_n$ is convergent so (s_{a_n}) converges. Also $(s_{a_{n_k}})$ is a subsequence of (s_{a_n}) so it converges as well (13.12). But $(s_{b_k}) = (s_{a_{n_k}})$ so $\lim_{n\to\infty} s_{b_k} = \lim_{n\to\infty} s_{a_{n_k}}$ which implies

$$\sum_{k=1}^{\infty} b_k = \sum_{n=1}^{\infty} a_n.$$

Theorem 6 (Geometric Series) For all t < |1|, we have

$$\sum_{n=0}^{\infty} t^n \frac{1}{1-t}.$$

Proof. Consider a partial sum of $\sum_{n=0}^{\infty} t^n$,

$$s_k = \sum_{n=0}^{\infty} t^n = 1 + t + \dots + t^k = \frac{1 - t^{k+1}}{1 - t} = \frac{1}{1 - t} - \frac{t^k}{1 - t}.$$

But since t < |1| we have $\lim_{k \to \infty} t^k/(1-t) = 0$. So then $\lim_{k \to \infty} s_k = 1/(1-t) + 0$ which means

$$\sum_{n=0}^{\infty} t^n \frac{1}{1-t}.$$

Theorem 7 The series $\sum_{n=1}^{\infty} 1/n$ is not convergent.

Proof. Suppose that $\sum_{n=1}^{\infty} 1/n$ is convergent. Create a sequence (b_k) as in Lemma 5 such that

$$b_k = \sum_{i=n_{k-1}+1}^{n_k} \frac{1}{n}$$

where $n_k = 2^{k-1}$ for $k \in \mathbb{N}$ and $n_0 = 0$. Note that for $k \ge 2$, b_k has $2^{k-1} - 2^{k-2} = 2^{k-2}$ terms, the smallest of which is $1/2^{k-1}$. Thus, for all $k \ge 2$, $b_k \ge 2^{k-2}/2^{k-1} = 1/2$. Also $b_1 = \sum_{n=1}^{1} 1/n = 1$. So for all $k \in \mathbb{N}$ we have $b_k \ge 1/2$. But then there are infinitely many $k \in \mathbb{N}$ such that $b_k \notin (-1/2; 1/2)$ so $\lim_{k \to \infty} b_k \ne 0$. Thus, $\sum_{k=1}^{\infty} k_n$ is not convergent (15.4). But we know that $\sum_{k=1}^{\infty} b_k = \sum_{n=1}^{\infty} a_n$ which is a contradiction (15.5). Thus $\sum_{n=1}^{\infty} 1/n$ is not convergent.

Theorem 8 (Alternating Sign Series) Let $\sum_{n=1}^{\infty} a_n$ be a series with the following properties: 1) a_n is positive if n is odd and negative if n is even; 2) $|a_{n+1}| < |a_n|$ for all n; 3) $\lim_{n\to\infty} a_n = 0$. Then $\sum_{n=1}^{\infty} a_n$ is convergent.

Proof. Let $\varepsilon > 0$. Then there exists $N \in \mathbb{N}$ such that for all n > N we have $|a_n| < \varepsilon$. Let $n \in \mathbb{N}$ such that n > N and n is even. Then $a_{n+1} > 0$. We have $s_{n+1} = s_n + a_{n+1} > s_n$. Also $a_{n+2} < 0$ and $|a_{n+2}| < |a_{n+1}|$ so $a_{n+1} + a_{n+2} > 0$. Then $s_{n+1} > s_{n+1} + a_{n+2} = s_n + a_{n+1} + a_{n+2} > s_n$. So for n > N even we have $s_n \le s_{n+2} \le s_{n+1}$ and a similar proof shows that for n > N odd we have $s_n \ge s_{n+2} \ge s_{n+1}$. Use strong induction on n to show that for k + N even $s_N \le s_{k+N} \le s_{N+1}$. We see that for k = 1 we have $s_N \le s_{N+1} \le s_{N+1}$ which is true since a_{N+1} is positive. We've also shown the case for k = 2. Assume that for n + N even we have $s_N \le s_{N+n} \le s_{N+1}$. Consider s_{N+n+2} . We know $s_{N+n} \le s_{N+n+2} \le s_{N+n+1}$ and $s_{N+n-1} \le s_{N+n+1} \le s_{N+n}$. Combining these three inequalities we have $s_N \le s_{N+n+2} \le s_{N+1}$. Thus for all even N + n we have $s_N \le s_{N+n} \le s_{N+1}$. A similar proof holds to show that for odd N + n we have $s_N \le s_{N+n} \le s_{N+1}$. Since this is true for any N given ε , for any region $(s_N; s_{N+1})$ there are finitely many n with s_n not in the region. Thus $\sum_{n=1}^{\infty} a_n$ is convergent.

Exercise 9 The series

$$\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n}$$

is convergent.

Proof. Note that for n odd we have $a_n = (-1)^{n+1}/n$ and since n+1 is even and n>0 we have $a_n = 1/n > 0$. For n even n+1 is odd so $a_n = (-1)^{n+1}/n = -1/n < 0$. Also $|a_{n+1}| = 1/(n+1) < 1/n = |a_n|$. Finally we know that $\lim_{n\to\infty} a_n = 0$ (13.4). Since this series fulfills the requirements of Theorem 8, it must be convergent.

Definition 10 A series $\sum_{n=1}^{\infty} a_n$ is called absolutely convergent if the series $\sum_{n=1}^{\infty} |a_n|$ is convergent.

Lemma 11 $\sum_{n=1}^{\infty} a_n$ is absolutely convergent if and only if there exists $C \in \mathbb{R}$ such that for all $N \in \mathbb{N}$, $\sum_{n=1}^{N} |a_n| \leq C$.

Proof. Suppose that $\sum_{n=1}^{\infty} a_n$ is absolutely convergent. Let $s_k = \sum_{n=1}^k |a_n|$. Then (s_n) is convergent and therefore bounded (13.15). Thus there exists $C \in \mathbb{R}$ such that for all N we have $s_N = \sum n = 1^N |a_n| \le C$.

Now suppose there exists $C \in \mathbb{R}$ such that $s_N \leq C$ for all N. Thus (s_n) is bounded. Note that $s_n = s_{n-1} + |a_n|$ and since $|a_n| \geq 0$ for all n we have (s_n) is an increasing sequence. Since (s_n) is bounded and increasing we know it is convergent (13.18). Thus $\sum_{n=1}^{\infty} |a_n|$ is convergent and so $\sum_{n=1}^{\infty} a_n$ is absolutely convergent.

Theorem 12 (Comparison Criterion) Let $\sum_{n=1}^{\infty} a_n$ and $\sum_{n=1}^{\infty} b_n$ be two series. Suppose there is some N such that for all $n \geq N$ we have $|a_n| \leq |b_n|$. Then if $\sum_{n=1}^{\infty} b_n$ is absolutely convergent so is $\sum_{n=1}^{\infty} a_n$.

Proof. For all $M \geq N$ note that

$$\sum_{n=N}^{M} |a_n| \le \sum_{n=N}^{M} |b_n| \le \sum_{n=1}^{M} \le C$$

for some $C \in \mathbb{R}$ because every term in $(|b_n|)$ is greater than or equal to zero (15.11). Also note that

$$\sum_{n=1}^{M} |a_n| \le C + \sum_{n=1}^{N-1} |a_n| \le C'$$

for some $C' \in \mathbb{R}$ because every term of $(|a_n|)$ is greater than or equal to zero. Also note that for $M' < N \le M$ we have

$$\sum_{n=1}^{M'} |a_n| \le \sum_{n=1}^{M} \le C'$$

so that for all M we have $\sum_{n=1}^{M} |a_n| \leq C'$. By Lemma 11 $\sum_{n=1}^{\infty} a_n$ is absolutely convergent (15.11).

Corollary 13 (Quotient Criterion) Let $\sum_{n=1}^{\infty} a_n$ be a series. Suppose that there is an $N \in \mathbb{N}$ and 0 < r < 1, such that $|a_{n+1}/a_n| \le r$ for all $n \ge N$. Then $\sum_{n=1}^{\infty} a_n$ is absolutely convergent.

Proof. Use induction on n to show that $|a_{N+n}| \leq |a_N| r^n$. For the base case, n=1 we have $|a_{N+1}| \leq |a_N| r$ by assumption. Assume that for all $n \in \mathbb{N}$ we have $|a_{N+n}| \leq |a_N| r^n$ so $|a_{N+n}| r \leq |a_N| r^{n+1}$. Then note that $|a_{N+n+1}| \leq |a_N| r^{n+1}$ as desired. Thus for $n \geq N$ we have $|a_n| \leq |a_N| r^{n-N}$. Let $b_n = |a_N| r^{n-N}$. Then for n > N we have $|a_n| \leq |a_N| r^{n-N} = |a_N| r^{n-N} = |a_N| r^{n-N} = |a_N| r^{n-N} = |a_N| r^{n-N}$.

$$\sum_{n=1}^{\infty} |a_N r^{n-N}| = \sum_{n=0}^{\infty} |a_N| r^{n-N+1} = |a_N| r^{-N+1} \sum_{n=0}^{\infty} r^n$$

and so $\sum_{n=1}^{\infty} b_n$ is absolutely convergent by Theorem 6, because r > 0 and because $|a_N|r^{-N+1}$ is a constant value (15.6). Thus, by Theorem 12 we have $\sum_{n=1}^{\infty} a_n$ is absolutely convergent.

Definition 14 Let $\sum_{n=1}^{\infty} a_n$ be a series. A reordering of $\sum_{n=1}^{\infty} a_n$ is a series of the form $\sum_{n=1}^{\infty} b_n$, where $b_n = a_{f(n)}$ for some bijection $f: \mathbb{N} \to \mathbb{N}$.

Lemma 15 Let $\sum_{n=1}^{\infty} a_n$ be an absolutely convergent series, and let $\sum_{n=1}^{\infty} b_n$ be a reordering of it. Then for every $k \in \mathbb{N}$ there exists $L \in \mathbb{N}$ such that for all $l \geq L$,

$$\left| \sum_{n=1}^{\infty} a_n - \sum_{n=1}^{l} b_n \right| \le \sum_{n=k+1}^{\infty} |a_n|.$$

Proof. Let $g: \mathbb{R} \to \mathbb{R}$ be a function such that g(x) = |x|. We know that since g is continuous, for a sequence (a_n) , if $\lim_{n\to\infty} a_n = a$, then $\lim_{n\to\infty} |a_n| = |a|$ (13.7). We have $\sum_{n=1}^{\infty} a_n$ is absolutely convergent so $|\sum_{n=1}^{\infty} a_n| = \lim_{n\to\infty} |s_n|$. Then use induction on n to show that $|s_n| \le \sum_{k=1}^{n} |a_k|$. For n=1 we have $|s_1| = |a_1| = \sum_{k=1}^{1} |a_1|$. Assume that for $n \in \mathbb{N}$, $\sum_{k=1}^{n} |a_k| \ge |s_n|$. Then

$$\sum_{k=1}^{n+1} |a_k| = \sum_{k=1}^{n} |a_k| + |a_{n+1}| \ge |s_n| + |a_{n+1}| \ge |s_n + a_{n+1}| = |s_{n+1}|$$

by the triangle inequality and our inductive hypothesis (9.36). Therefore we have

$$\left| \sum_{n=1}^{\infty} a_n \right| \le \sum_{n=1}^{\infty} |a_n|.$$

Let $k \in \mathbb{N}$ and consider the sets $A = \{a_n \mid n \leq k\}$ and $S = \{f(n) \mid n \leq k\}$ Let $L = \sup S$. Consider $l \geq L$ and let $B = \{b_n \mid n \leq l\}$ and $T = \{n \mid b_n \in B\}$. Note that every element of B is in A because $L \geq k$. Finally let $C = \{a_n \mid n \notin T\}$. Make a new sequence c_n where n is the nth element of C. Note that by definition, $\sum_{n=1}^{\infty} c_n = \sum_{n=1}^{\infty} a_n - \sum_{n=1}^{l} b_n$. Then

$$\left| \sum_{n=1}^{\infty} c_n \right| = \left| \sum_{n=1}^{\infty} a_n - \sum_{n=1}^{l} b_n \right| \le \sum_{n=1}^{\infty} |c_n| \le \sum_{k=1}^{\infty} |a_n|.$$

The last inequality holds because (c_n) is the sequence (a_n) , but with at least k terms missing.

Theorem 16 (Abel Resummation Theorem) Let $\sum_{n=1}^{\infty} a_n$ be an absolutely convergent series, and let $\sum_{n=1}^{\infty} b_n$ be a reordering of it. Then $\sum_{n=1}^{\infty} b_n$ absolutely convergent and

$$\sum_{n=1}^{\infty} b_n = \sum_{n=1}^{\infty} a_n.$$

Proof. Let $k \in \mathbb{N}$ and consider the sets $A = \{a_n \mid n \leq k\}$ and $S = \{f(n) \mid n \leq k\}$ Let $L = \sup S$ and let $B = \{b_n \mid n \leq L\}$. Note that every element of B is in A because $L \geq k$. But then

$$\sum_{n=1}^{L} |b_n| = \sum_{n=1}^{L} |a_n| \le C$$

for some $C \in \mathbb{R}$ (15.11). Since f is a bijection, L can be any value of \mathbb{N} , so every partial sum of $\sum_{n=1}^{\infty} |b_n|$ is bounded and thus $\sum_{n=1}^{\infty} b_n$ is absolutely convergent (15.11). Now consider $\sum_{n=k+1}^{\infty} |a_n| = \sum_{n=1}^{\infty} |a_n| - \sum_{n=1}^{k} |a_n|$ (15.5). Take the limit as k goes to infinity. We have

$$\lim_{k \to \infty} \sum_{n=k+1}^{\infty} |a_n| = \lim_{k \to \infty} \left(\sum_{n=1}^{\infty} |a_n| - \sum_{n=1}^{k} |a_n| \right) = \sum_{n=1}^{\infty} |a_n| - \lim_{k \to \infty} s_k = 0.$$

But then we have

$$\lim_{l \to \infty} \left| \sum_{n=1}^{\infty} a_n - \sum_{n=1}^{l} b_n \right| = \left| \sum_{n=1}^{\infty} a_n - \sum_{n=1}^{\infty} b_n \right| \le \lim_{n \to \infty} \sum_{n=k+1}^{\infty} |a_n| = 0$$
 (15.15).

Thus,

$$\sum_{n=1}^{\infty} b_n = \sum_{n=1}^{\infty} a_n.$$

Theorem 17 Let $\sum_{n=1}^{\infty} a_n$ be a convergent, but not absolutely convergent series. Then for all $c \in \mathbb{R}$ there exists a reordering $\sum_{n=1}^{\infty} b_n$ of $\sum_{n=1}^{\infty} a_n$ such that

$$\sum_{n=1}^{\infty} b_n = c.$$

Proof. Let $A = \{a_n \mid n \in \mathbb{N}\}$. Then A is nonempty and bounded, so $\sup A$ exists (6. 11, 13.15). Suppose that for any positive term of (a_n) there are infinitely many terms greater than or equal to it. Consider some term $a_k > 0$ and the region $(-a_k; a_k)$. Then there are infinitely many terms of (a_n) which are not in $(-a_k; a_k)$. But then (a_n) does not converge to zero which means $\sum_{n=1}^{\infty} a_n$ is not convergent (13.4). This is a contradiction and so for all positive terms of (a_n) there are finitely many terms greater than or equal to it. A similar proof holds to show that for a negative term of (a_n) , there are finitely many terms less than or equal to it.

We have $\sum_{n=1}^{\infty} a_n = a$ for some $a \in \mathbb{R}$. Assume that $a_n = 0$ for finitely many n. We can order the positive elements of (a_n) in decreasing order and the negative elements of (a_n) in increasing order because there are finitely many positive or negative terms of (a_n) greater than or less than any given term respectively. Define (x_k) where x_k is the kth positive element of (a_n) and (y_k) where y_k is the kth negative element of (a_n) . Then for all $k \in \mathbb{N}$ we have $y_k < 0 \le x_k$. Suppose there are finitely many negative terms of (a_n) . Then there exists a largest element, j, of N so that

$$\sum_{k=1}^{j} y_k = q \text{ and } \sum_{k=1}^{j} |y_k| = -q$$

for some $q \in \mathbb{R}$ because $y_k < 0$ for all k. Then we have

$$\sum_{n=1}^{\infty} a_n = \sum_{k=1}^{\infty} x_k + \sum_{k=1}^{j} y_k \text{ and so } \sum_{k=1}^{\infty} x_n = \sum_{k=1}^{\infty} |x_k| = a - q.$$

This follows from Lemma 5. But then

$$(a-q) + q = \sum_{k=p_1}^{\infty} |x_k| + \sum_{k=n_1}^{n_j} |y_k| = \sum_{n=1}^{\infty} |a_n|$$

which means $\sum_{n=1}^{\infty} a_n$ is absolutely convergent which is a contradiction. Thus there are infinitely many terms of (y_k) and a similar proof shows there are infinitely many terms of (x_k) .

Let $c \in \mathbb{R}$. Now suppose that for all $j \in \mathbb{N}$ we have $\sum_{k=1}^{j} x_k \leq c$. Since $x_k > 0$ for all k, we have the partial sums of $\sum_{k=1}^{\infty} x_k$ are bounded and increasing so it must converge to x for some $x \in \mathbb{R}$ (13.18). Suppose that $\sum_{k=1}^{\infty} |y_k| = y$ for some $y \in \mathbb{R}$. Then $\sum_{n=1}^{\infty} |a_n| = \sum_{k=1}^{\infty} |x_k| + \sum_{k=1}^{\infty} |y_k| = x + y$ which is a

contradiction (15.16). Thus $\sum_{k=1}^{\infty} y_k$ is not absolutely convergent so there exists $l \in \mathbb{N}$ such that $\sum_{k=1}^{l} |y_k| > c$ (15.11). But since $y_k < 0$ for all k we have $-c < \sum_{k=1}^{l} y_k$.

Now consider the sequence (a'_n) where $a'_n = a_n$ if $a_n < 0$ and 0 if $a_n \ge 0$. Then a partial sum of

$$\sum_{n=1}^{\infty} a'_n \text{ is } s_{a'_n} = \sum_{k=1}^n a_k - \sum_{k=1}^{n'} x_k$$

supposing there are n' positive terms in the first n terms of (a_n) . Then if we consider $\lim_{n\to\infty} s_{a'_n}$ we simply have a-x since n' will go to ∞ as n does. Hence

$$\sum_{n=1}^{\infty} a'_n = \sum_{k=1}^{\infty} y_k + 0 = a - x.$$

Thus $\sum_{k=1}^{\infty} y_k$ is convergent, but we just showed that the partial sums of this series are unbounded which is a contradiction (13.15). Thus, for $c \in \mathbb{R}$ there exists $j \in \mathbb{N}$ such that $\sum_{k=1}^{j} x_k > c$. A similar proof shows that for $c \in \mathbb{R}$ there exists $j \in \mathbb{N}$ such that $\sum_{k=1}^{j} y_k < c$

Define a reordering of $\sum_{n=1}^{\infty} a_n$, $\sum_{n=1}^{\infty} b_n$ where the first n_1 terms of b_n are the least number of terms of (x_k) such that $\sum_{k=1}^{n_1} x_k > c$. Then let the next n_2 terms be the least number of terms of (y_k) such that $\sum_{k=1}^{n_1} x_k + \sum_{k=1}^{n_2} y_k < c$. Note that we can always do this because the partial sums of

$$\sum_{k=1}^{\infty} x_k \text{ and } \sum_{k=1}^{\infty} y_k$$

are unbounded. Then for odd $i \in \mathbb{N}$, n_i is the least number of terms of (x_k) such that

$$\sum_{n=1}^{n_i} b_n = \sum_{k=1}^{n_i} x_k + \sum_{k=1}^{n_{i-1}} y_k > c$$

and for even i, n_i is the least number of terms of (y_k) such that

$$\sum_{n=1}^{n_i} b_n = \sum_{k=1}^{n_i-1} + \sum_{k=1}^{n_i} y_k < c.$$

Let $s_k = \sum_{n=1}^k b_n$. Note that s_k for k between n_i and n_{i+1} for $i \in \mathbb{N}$ is between s_{n_i} and $s_{n_{i+1}}$ because the terms of b_n change sign at n_i . Consider some region (p;q) such that $c \in (p;q)$. Since the least number of elements of (y_k) are added to $s_{n_{i-1}}$ so that $s_{n_i} < c$, we have $|c - s_{n_i}|$ is always less than or equal to the absolute value of some element of (y_k) . Suppose that $p > s_{n_i}$ for an infinite number of odd i. Then |c - p| is less than or equal to an infinite number of absolute values of terms of (y_k) . But then if we consider some $|y_k| > |c - p|$ there are an infinite number of n such that $|y_n| > |y_k|$. This is a contradiction and so $p > s_{n_i}$ for finitely many odd i. But also for all s_{n_i} with odd i there are finitely many s_k such that i < k < i + 1 because the positive and negative partial sums are unbounded. Thus there are finitely many n such that $s_n < p$. A similar proof shows that there are finitely many n with $s_n > q$ so there are finitely many n with $s_n \neq (p;q)$. Therefore $\lim_{n\to\infty} s_n = c$ and so

$$\sum_{n=1}^{\infty} b_n = c.$$

If there are infinitely many n such that $a_n = 0$ the change b_n so that a zero term is added to each n_i th partial sum. This will not change the resulting series convergence.

Sheet 16: Metric Spaces

Definition 1 Let X be a set. A topology on X is a set A of subsets of X, that we call open sets, satisfying the following:

- 1) $\emptyset \in \mathcal{A}$ and $X \in \mathcal{A}$;
- 2) if $A, B \in \mathcal{A}$ then $A \cap B \in \mathcal{A}$;
- 3) if $\mathcal{B} \subset \mathcal{A}$ then

$$\bigcup_{B\in\mathcal{B}}B\in\mathcal{A}.$$

Definition 2 A topological space is a pair (X, A) such that A is a topology on X.

Definition 3 Let X be a set and let $d: X \times X \to \mathbb{R}$ be a function. We say that (X, d) is a metric space if the following hold:

- 1) $d(x,y) \ge 0$ and d(x,y) = 0 if and only if x = y;
- 2) d(x,y) = d(y,x);
- 3) $d(x,y) + d(y,z) \ge d(x,z)$.

Definition 4 For $c \in X$ and $r \in \mathbb{R}$ with r > 0 let

$$B(c, r) = \{ x \in X \mid d(c, x) < r \}$$

be the ball of radius r centered at c.

Definition 5 A subset $A \subseteq X$ is open if for every $a \in A$ there exists r > 0 such that $B(a, r) \subseteq A$. This topology is the topology generated by d.

Theorem 6 For all $c \in X$ and r > 0 the ball B(c, r) is open.

Proof. Let $a \in B(c,r)$. Then d(c,a) < r. Consider the ball B(a,r-d(c,a)). For $x \in B(a,r-d(c,a))$ we have d(a,x) < r - d(c,a) so d(c,a) + d(a,x) < r. By the triangle inequality we have d(c,x) < r so $x \in B(c,r)$. Thus, $B(a,r-d(c,a)) \subseteq B(c,r)$ and B(c,r) is open.

Proposition 7 There is a topology on $\{0,1\}$ that cannot be generated by any metric on $\{0,1\}$.

Proof. Consider the topology $\mathcal{A} = \{\emptyset, \{0, 1\}\}$ and consider some arbitrary metric on $\{0, 1\}$, d(0, 1) = a for $a \in \mathbb{R}$. Then the ball B(0, a) will be in the topology generated by this metric, but $B(0, a) = \{0\}$ which is not in \mathcal{A} .

Theorem 8 (Metric Spaces are Hausdorff) Let (X,d) be a metric space and let $a,b \in X$ with $a \neq b$. Then there exist $A,B \subseteq X$ open such that $a \in A, b \in B$ and $A \cap B = \emptyset$.

Proof. Consider the two balls B(a,d(a,b)/2) and B(b,d(a,b)/2). Suppose there exists $x \in X$ such that $x \in B(a,d(a,b)/2)$ and $x \in B(b,d(a,b)/2)$. Then d(a,x) < d(a,b)/2 and d(b,x) < d(a,b)/2 so d(a,x) + d(x,b) < d(a,b) which contradicts the triangle inequality. Thus $B(a,d(a,b)/2) \cap B(b,d(a,b)/2) = \emptyset$. We also have B(a,d(a,b)/2) and B(a,d(a,b)/2) are open (16.6).

Definition 9 Let $A \subseteq X$ be a subset. We say that $x \in X$ is a limit point of A if for all open sets $B \subseteq X$ with $x \in B$ the intersection $A \cap B$ is infinite.

Lemma 10 Let $A \subseteq X$ be a subset. Then $x \in X$ is a limit point of A if for all r > 0 the intersection $A \cap B(x,r)$ is infinite.

Proof. Suppose that for $x \in X$ and all r > 0 we have $A \cap B(x,r)$ is infinite. Consider some open set $B \subseteq X$ with $x \in B$. Then there exists $B(x,r) \subseteq B$ because B is open. But then $B \cap A$ is infinite since $B(x,r) \cap A$ is infinite.

Theorem 11 A subset of X is closed if and only if it contains all its limit points.

Proof. Let $A \subseteq X$ be closed and consider some point $p \in X \setminus A$. Since $X \setminus A$ is open, there exists some ball $B(p,r) \subseteq X \setminus A$. But since this ball is open and disjoint from X we have p is not a limit point of A (16.6). Thus there are no limit points of A in $X \setminus A$ so A must contain all its limit points. Conversely let $A \subseteq X$ be a subset which contains all its limit points and let $p \in X \setminus A$. Since p is not a limit point of A, there exists some ball B(p,r) such that $B(p,r) \cap A$ is finite. Then consider the point $x \in B(p,r) \cap A$ such that $d(p,x) = \min\{d(p,y) \mid y \in B(p,r) \cap A\}$. The ball B(p,x) will then contain no points of A which means $B(p,x) \subseteq X \setminus A$ and thus $X \setminus A$ is open. Then A is closed.

Theorem 12 (Metric Spaces are T3) Let $C \subseteq X$ be closed and let $b \in X$ such that $b \notin C$. Then there exist $A, B \subseteq X$ open such that $C \subseteq A$, $b \in B$ and $A \cap B = \emptyset$.

Proof. Since C is closed, $X \setminus C$ is open and so there exists a ball $B = B(b, r) \subseteq X \setminus C$. Consider the set $S = \{B(a, (d(a, b) - r)/2) \mid a \in C\}$. Then let

$$A = \bigcup_{B(a,r) \in S} B(a,r)$$

so that $C \subseteq A$. Now let $x \in A$. Then there exists some ball $B(a, (d(a,b)-r)/2) \subseteq A$ such that $a \in C$ and $x \in B(a, (d(a,b)-r)/2)$. Then d(x,a) < d(a,b)-r so $r < d(a,b)-d(a,x) \le d(x,b)$. Thus $x \notin B(b,r)$ and so $A \cap B = \emptyset$.

Definition 13 A subset $C \subseteq X$ is compact if every open cover of C has a finite subcover.

Definition 14 A sequence on X is a function from \mathbb{N} to X. The sequence (a_n) converges to a (or $\lim_{n\to\infty} a_n = a$) if for every open set $A \subseteq X$ with $a \in A$ there are only finitely many n with $a_n \notin A$.

Proposition 15 There is a topological space on every set where every sequence converges to every element.

Proof. Consider the trivial topology, $\{\emptyset, X\}$. Consider some sequence $(a_n) \in X$ and let $a \in X$. The only open set which contains a is X, but there are no terms of (a_n) not in X so we have for all open sets A with $a \in A$, there are finitely many terms of (a_n) not in A. Thus (a_n) converges to a. This is true of all sequences and points in X.

Proposition 16 There is a topological space on every set where the only convergent sequences are the ones that are constant up to finitely many elements.

Proof. Consider the full topology where every subset is open. Then for all $x \in X$, the set $\{x\}$ is open. Thus for a sequence (a_n) , there are finitely many n such that $a_n \notin \{x\}$ which means there are finitely many n such that $a_n \neq x$.

Definition 17 Let (X, \mathcal{A}) and (Y, \mathcal{B}) be topological spaces. A function $f: X \to Y$ is continuous if for all $B \in \mathcal{B}$ the preimage $f^{-1}(B) \in \mathcal{A}$

Theorem 18 Let (X, A) be a Hausdorff topological space and let (a_n) be a sequence on X. If $\lim_{n\to\infty} a_n = a$ and $\lim_{n\to\infty} a_n = b$ then a = b.

Proof. Suppose that $a \neq b$. Then there exist two open sets A and B such that $a \in A$ and $b \in B$ and $A \cap B = \emptyset$ by the Hausdorff property. There are finitely many n with $a_n \notin A$ so there are infinitely many n with $a_n \in A$. But then there are finitely many n with $a_n \notin B$ which is a contradiction because $\lim_{n \to \infty} a_n = b$. Thus a = b.

Theorem 19 Let (X,d) and (X',d') be metric spaces and let $f:X\to X'$ be a function. Then the following are equivalent:

- 1) f is continuous;
- 2) for all $x \in X$ and for all $\varepsilon > 0$ there exists $\delta > 0$ such that for all $y \in X$ with $d(x,y) < \delta$ we have $d'(f(x), f(y)) < \varepsilon$;
- 3) for all convergent sequences $a_n \in X$ we have

$$\lim_{n \to \infty} f(a_n) = f\left(\lim_{n \to \infty} a_n\right).$$

Proof. Let f be continuous and let $x \in X$ and consider the ball $B(f(x), \varepsilon)$ for $\varepsilon > 0$. Then since f is continuous, $f^{-1}(B(f(x), \varepsilon))$ is open. And since $x \in f^{-1}(B(f(x), \varepsilon))$ there exists some ball $B(x, \delta) \subseteq B(f(x), \varepsilon)$. But then for all $y \in B(x, \delta)$, $f(y) \in B(f(x), \varepsilon)$. Thus for all $y \in X$ such that $d(x, y) < \delta$ we have $d'(f(x), f(y)) < \varepsilon$.

Now suppose that for all $x \in X$ and for all $\varepsilon > 0$ there exists $\delta > 0$ such that for all $y \in X$ with $d(x,y) < \delta$ we have $d'(f(x), f(y)) < \varepsilon$. Let $a_n \in X$ be a sequence which converges to a and let $\varepsilon > 0$. Consider $B(a, \delta)$. Since $\lim_{n \to \infty} a_n = a$, there are finitely many n with $a_n \notin B(a, \delta)$. But then there are finitely many n such that $d(a, a_n) \ge \delta$ which means there are finitely many n with $d'(f(a), f(a_n)) \ge \varepsilon$. Therefore there are finitely many n with $f(a_n) \notin B(f(a), \varepsilon)$ and since this is true for all $\varepsilon > 0$, we have $\lim_{n \to \infty} f(a_n) = f(a)$.

Finally use the contrapositive and assume that f is not continuous. Then there exists some set $A \subseteq X'$ such that $f^{-1}(A)$ is not open. Then there exists $a \in f^{-1}(A)$ such that for all r > 0 there exists $x \in B(a, r)$ such that $x \notin A$. Create a sequence $a_n \in X$ where $a_n \in B(a, 1/n)$, but $a_n \notin A$. We know that a_n exists for all n because $f^{-1}(A)$ is not open. Note that for the ball B(a, r) with r > 1 there are no terms of (a_n) not in B(a, r) and for $r \le 1$ we can use the Archimedean Property to show that there are finitely many terms not in B(a, r). Thus (a_n) converges to a. Note that for all n, $a_n \notin f^{-1}(A)$ and thus $f(a_n) \notin A$, while $a \in f^{-1}(A)$ and so $f(a) \in A$. But A is open so there exists some ball $B(a, r) \subseteq A$ for which $a_n \notin B(a, r)$ for all n. But then $\lim_{n\to\infty} f(a_n) \ne f(a)$.

Theorem 20 Let (X, \mathcal{A}) and (Y, \mathcal{B}) be topological spaces and let $f: X \to Y$ be continuous. Then for every compact subset $C \subseteq X$ the image f(C) is also compact.

Proof. Let $\mathcal{E} \subseteq \mathcal{B}$ be an open cover of f(C). For all $x \in C$ we have $x \in f(C)$ and so for all $x \in C$ there exist an open set $B \in \mathcal{E}$ such that $f(x) \in B$. But then for all $x \in C$, $x \in f^{-1}(B)$ for some $B \in \mathcal{E}$. So we have $C \subseteq \bigcup_{B \in \mathcal{E}} f^{-1}(B)$ and since f is continuous $\{f^{-1}(B) \mid B \in \mathcal{E}\} \subseteq \mathcal{A}$ is an open cover for C. But C is compact so there exists a finite subcover, $\{f^{-1}(B_1), f^{-1}(B_2), \dots, f^{-1}(B_n)\}$ which covers C. So for all $x \in C$ there exists some $B_i \in \mathcal{E}$ such that $x \in f^{-1}(B_i)$. But then $f(x) \in B_i$ and since $f(C) = \{y \in Y \mid x \in C, y = f(x)\}$, we have for all $y \in f(C), y \in B_i$. Since every $B_i \in \mathcal{E}$ we have found a finite subcover of \mathcal{E} which covers f(C). Thus f(C) is compact.

Theorem 21 Let (X,d) be a metric space. Then every compact subset of X is bounded and closed.

Proof. Let C be a compact subset of X and suppose that C is not bounded below. Let A be the set of all balls centered at $c \in C$. Then A covers C and since C is compact there exists a finite subcover $B \subseteq A$ which covers C. Then $B = \{B(c, r_1), B(c, r_2), \dots, B(c, r_n)\}$. Take the largest r_i such that $B(c, r_i) \in B$. But we have C is not bounded below so there exists $x \in C$ such that $d(x, c) > r_i$. Thus $C \nsubseteq \bigcup_{B \in B} B$ and so B doesn't cover C. This is a contradiction and so compact sets are bounded below. A similar proof holds to show compact sets must be bounded above.

Now suppose that $C \subseteq X$ is compact and C is not closed. Let $p \notin C$ be a limit point of C. Let $\mathcal{A} = \{X \setminus B(p,r) \mid r \in \mathbb{R}\}$. Since $p \notin C$ we see that \mathcal{A} covers C. Since C is compact, let \mathcal{B} be a finite subset of \mathcal{A} which covers C. We have X is open and $X \setminus \emptyset$ is closed so $X \neq \emptyset$. Thus if $\mathcal{B} = \emptyset$, \mathcal{B} does not cover X. Then $\mathcal{B} = \{X \setminus B_1(p,r_1), X \setminus B_2(p,r_2), \ldots, X \setminus B_n(p,r_n)\}$. Take the smallest r_i such that $B_i(p,r_i) \in \mathcal{B}$ and consider $B(p,r_i/2)$. This ball contains p, which is a limit point of C, and since balls are open, $B(p,r_i/2) \cap C \neq \emptyset$. But $B(p,r_i/2)$ is defined such that $B(p,r_i/2) \nsubseteq \bigcup_{B \in \mathcal{B}} B$ and so $C \nsubseteq \bigcup_{B \in \mathcal{B}} B$. But then \mathcal{B} doesn't cover C which is a contradiction. Therefore compact sets are closed.

Proposition 22 Let X be an infinite set. Then there is a metric on X such that there exists a bounded and closed set that is not compact.

Proof. Consider the metric d(x,y) = a for some $a \in \mathbb{R}$. Let $Y \subseteq X$ be a bounded closed infinite set and let $\mathcal{A} = \{B(y,a) \mid y \in Y\}$. This set covers Y, but each element contains only one element of Y so a finite subset of \mathcal{A} will only contain finitely many elements of Y.

Definition 23 Let (X, d) and (X', d') be metric spaces and let $f: X \to X'$ be a function. We say that f is uniformly continuous if for all $\varepsilon > 0$ there exists $\delta > 0$ such that for all $x, y \in X$ with $d(x, y) < \delta$ we have $d'(f(x), f(y)) < \varepsilon$.

Theorem 24 Let (X,d) and (X',d') be metric spaces and let $f: X \to X'$ be a continuous function. If X is compact then f is uniformly continuous.

Proof. Let $\varepsilon > 0$ and consider $\varepsilon/2 > 0$. We have f is continuous so for all $x \in X$ there exists $\delta(x) > 0$ such that for all $y \in X$ with $d(x,y) < \delta(x)$ we have $d'(f(x),f(y)) < \varepsilon/2$ (16.19). Consider the set of balls $\mathcal{A} = \{B(x,\delta(x)) \mid x \in X\}$ and let $\mathcal{A}' = \{B(x,\delta(x)/2) \mid B(x,\delta(x)) \in \mathcal{A}\}$. \mathcal{A}' is an open cover for X and since X is compact there exists a finite subcover, $\mathcal{B} \subseteq \mathcal{A}'$. Let $\delta = \min\{\delta(x)/2 \mid B(x,\delta(x)/2) \in \mathcal{B}\}$. Then consider two points $x,y \in X$ such that $d(x,y) < \delta$. \mathcal{B} is an open cover for X so there exists some ball $B(z,\delta(z)/2) \in \mathcal{B}$ such that $x \in B(z,\delta(z)/2)$. Then $d(x,z) < \delta(z)/2 < \delta(z)$ and $d(x,y) < \delta \le \delta(z)/2$ so $d(z,y) \le d(z,x) + d(x,y) < \delta(z)$. But then $d'(f(z),f(x)) < \varepsilon/2$ and $d'(f(z),f(y)) < \varepsilon/2$ so $d'(f(x),f(y)) \le d'(f(x),f(z)) + d'(f(z),f(y)) < \varepsilon$. Therefore for every $\varepsilon > 0$ there exists a $\delta > 0$ such that for all $x,y \in X$ with $d(x,y) < \delta$ we have $d'(f(x),f(y)) < \varepsilon$.

Sheet 17: More About Metric Spaces

Theorem 1 Let (X,d) be a metric space and let (a_n) be a sequence in X. Then $\lim_{n\to\infty} a_n = a$ if and only if $\lim_{n\to\infty} d(a_n,a) = 0$.

Proof. Let $\lim_{n\to\infty} a_n = a$. Then for every open set $A \subseteq X$ with $a \in A$ there are finitely many n with $a_n \notin A$. But then for $r \in \mathbb{R}$, there are finitely many n with $a_n \notin B(a,r)$. Then there are finitely many n such that $d(a_n,a) < r$ which means there are finitely many n such that $d(a_n,a) \notin (-r,r)$. Thus, $\lim_{n\to\infty} d(a_n,a) = 0$.

Conversely, let $\lim_{n\to\infty} d(a_n,a)=0$. Then for all $r\in\mathbb{R}$ there are finitely many n such that $d(a_n,a)\notin(-r,r)$ which means there are finitely many n such that $d(a_n,a)>r$. But then there are finitely many n such that $a_n\notin B(a,r)$. If we consider some open set $A\subseteq X$ such that $a\in A$, there there exists some ball $B(a,r)\subseteq A$. But since there are finitely many n with $a_n\notin B(a,r)$, there are only finitely n with $a_n\notin A$. Thus, $\lim_{n\to\infty} a_n=a$.

Definition 2 Let $\mathbb{R}^n = \{(a_1, a_2, \dots, a_n) \mid a_i \in \mathbb{R}\}$ denote the set of real n-tuples.

Definition 3 For $\mathbf{a} = (a_1, a_2, \dots, a_n) \in \mathbb{R}^n$ and $\mathbf{b} = (b_1, b_2, \dots b_n) \in \mathbb{R}^n$ let

$$d_0(\mathbf{a}, \mathbf{b}) = \max_{1 \le i \le n} |a_i - b_i|,$$

$$d_1(\mathbf{a}, \mathbf{b}) = \sum_{i=1}^n |a_i - b_i|$$

and

$$d_2(\mathbf{a}, \mathbf{b}) = \sqrt{\sum_{i=1}^n (a_i - b_i)^2}.$$

Theorem 4 The functions d_0 , d_1 and d_2 are all metrics on \mathbb{R}^n .

Proof. Let $\mathbf{a}, \mathbf{b}, \mathbf{c} \in \mathbb{R}^n$. It's clear that $d_0(\mathbf{a}, \mathbf{b})$, $d_1(\mathbf{a}, \mathbf{b})$ and $d_2(\mathbf{a}, \mathbf{b})$ are all greater than or equal to 0. Let $d_0(\mathbf{a}, \mathbf{b}) = 0$. Then $\max_{1 \le i \le n} |a_i - b_i| = 0$ and so $a_i = b_i$. Since the maximum positive difference between two coordinates is 0, all the distances must be 0 as well. Now let $\mathbf{a} = \mathbf{b}$. Then $a_i = b_i$ for $1 \le i \le n$. Thus $\max_{1 \le i \le n} |a_i - b_i| = 0$ and $d_0(\mathbf{a}, \mathbf{b}) = 0$.

Let $d_1(\mathbf{a}, \mathbf{b}) = 0$. Then $\sum_{i=1}^n |a_i - b_i| = 0$. But since $|a_i - b_i| \ge 0$ for $1 \le i \le n$ we have $|a_i - b_i| = 0$ for $1 \le i \le n$. Thus $a_i = b_i$ and $\mathbf{a} = \mathbf{b}$. Now suppose that $\mathbf{a} = \mathbf{b}$. Then we have $a_i = b_i$ for $1 \le i \le n$ and so $|a_i - b_i| = 0$. But then $\sum_{i=1}^n |a_i - b_i| = 0$ and so $d_1(\mathbf{a}, \mathbf{b}) = 0$.

Let $d_2(\mathbf{a}, \mathbf{b}) = 0$. Then $\sqrt{\sum_{i=1}^n (a_i - b_i)^2} = 0$ which means $\sum_{i=1}^n (a_i - b_i)^2 = 0$. From here the proof follows similarly to that of $d_1(\mathbf{a}, \mathbf{b})$.

Since |a-b|=|b-a| and $(a-b)^2=(b-a)^2$ for all $a,b\in\mathbb{R}$, we have $d_i(\mathbf{a},\mathbf{b})=d_i(\mathbf{b},\mathbf{a})$ for $0\leq i\leq 2$. Finally, note that using the triangle inequality we have

 $\max_{1\leq i\leq n}|a_i-b_i|+\max_{1\leq i\leq n}|b_i-c_i|\geq |a_i-b_i|+|b_i-c_i|$ for arbitrary $1\leq i\leq n$ which is in turn greater than $\max_{1\leq i\leq n}|a_i-c_i|$. Note also that by the triangle inequality we have $|a_i-b_i|+|b_i-c_i|\geq |a_i-c_i|$ for $1\leq i\leq n$. But then if we sum this inequality n times we have $\sum_{i=1}^n|a_i-b_i|+\sum_{i=1}^n|b_i-c_i|\geq \sum_{i=1}^n|a_i-c_i|.$ Lastly note that

$$\sqrt{\sum_{i=1}^{n} (a_i - b_i)^2} + \sqrt{\sum_{i=1}^{n} (b_i - c_i)^2} \ge \sqrt{\sum_{i=1}^{n} ((a_i - b_i)^2 + (b_i - c_i)^2)} \ge \sqrt{\sum_{i=1}^{n} (a_i - c_i)^2}.$$

Thus all three distance functions satisfy the triangle inequality. Therefore all three are metrics. \Box

Theorem 5 For all $0 \le i \le 2$, $0 \le j \le 2$ and for all $\mathbf{x} \in \mathbb{R}^n$ and r > 0 there exists r' > 0 such that

$$B_{d_i}(x,r') \subseteq B_{d_i}(x,r).$$

Proof. Let $\mathbf{x} \in \mathbb{R}^n$ and let r > 0. Consider $B_{d_0}(\mathbf{x}, r)$, let r = r' and let $\mathbf{y} \in B_{d_1}(\mathbf{x}, r')$. Then $\sum_{i=1}^n |x_i - y_i| < r'$ and so $d_0(\mathbf{x}, \mathbf{y}) = \max_{1 \le i \le n} |x_i - y_i| < r' = r$. Thus $\mathbf{y} \in B_{d_0}(\mathbf{x}, r)$ and $B_{d_1}(\mathbf{x}, r') \subseteq B_{d_0}(\mathbf{x}, r)$. Now let r = r' again and let $\mathbf{y} \in B_{d_2}(\mathbf{x}, r')$. Then

$$\sqrt{\sum_{i=1}^{n} (x_i - y_i)^2} < r'$$

so $\max_{1 \le i \le n} (x_i - y_i)^2 < \sum_{i=1}^n (x_i - y_i)^2 < r'^2$ and $d_0(\mathbf{x}, \mathbf{y}) = \max_{1 \le i \le n} |x_i - y_i| < r' = r$. Thus $\mathbf{y} \in B_{d_0}(\mathbf{x}, r)$ and $B_{d_2}(\mathbf{x}, r') \subseteq B_{d_0}(\mathbf{x}, r)$.

Next consider $B_{d_1}(\mathbf{x}, r)$, let r' = r/n and let $\mathbf{y} \in B_{d_0}(\mathbf{x}, r')$. Then $\max_{1 \le i \le n} |x_i - y_i| < r/n$ which means $d_1(\mathbf{x}, \mathbf{y}) = \sum_{i=1}^n |x_i - y_i| < r$ and $\mathbf{y} \in B_{d_1}(\mathbf{x}, r)$. Thus $B_{d_0}(\mathbf{x}, r') \subseteq B_{d_1}(\mathbf{x}, r)$. Now let $r' = r/\sqrt{n}$ and let $\mathbf{y} \in B_{d_2}(\mathbf{x}, r')$. Then

$$\sqrt{\sum_{i=1}^{n} (x_i - y_i)^2} < \frac{r}{\sqrt{n}}$$

so $\sum_{i=1}^{n} (x_i - y_i)^2 < r^2/n$ and $(x_i - y_i)^2 < r^2/n^2$ for $1 \le i \le n$. Thus $|x_i - y_i| < r/n$ for $1 \le i \le n$ and so $d_1(\mathbf{x}, \mathbf{y}) = \sum_{i=1}^{n} |x_i - y_i| < r$. Thus $B_{d_2}(\mathbf{x}, r') \subseteq B_{d_1}(\mathbf{x}, r)$.

Finally, consider $B_{d_2}(\mathbf{x}, r)$, let $r' = r/\sqrt{n}$ and let $\mathbf{y} \in B_{d_0}(\mathbf{x}, r')$. Then $\max_{1 \leq i \leq n} |x_i - y_i| < r/\sqrt{n}$ which means $\max_{1 \leq i \leq n} (x_i - y_i)^2 < r^2/n$ and

$$d_2(\mathbf{x}, \mathbf{y}) = \sqrt{\sum_{i=1}^n (x_i - y_i)^2} < r.$$

Thus $\mathbf{y} \in B_{d_2}(\mathbf{x}, r)$ and $B_{d_0}(\mathbf{x}, r') \subseteq B_{d_2}(\mathbf{x}, r)$. Now let $r' = r/n\sqrt{n}$ and let $\mathbf{y} \in B_{d_1}(\mathbf{x}, r')$. Then $\sum_{i=1}^n |x_i - y_i| < r/n\sqrt{n}$ so $|x_i - y_i| < r/\sqrt{n}$ and $(x_i - y_i)^2 < r^2/n$ for $1 \le i \le n$. Then $\sum_{i=1}^n (x_i - y_i)^2 < r^2$ and

$$d_2(\mathbf{x}, \mathbf{y}) = \sqrt{\sum_{i=1}^n (x_i - y_i)^2} < r.$$

Thus $\mathbf{y} \in B_{d_2}(\mathbf{x}, r)$ and $B_{d_1}(\mathbf{x}, r') \subseteq B_{d_2}(\mathbf{x}, r)$.

Corollary 6 The metrics d_0 , d_1 and d_2 generate the same topology on \mathbb{R}^n , namely, a subset $A \subseteq \mathbb{R}^n$ is open in (\mathbb{R}^n, d_i) if it is open in (\mathbb{R}^n, d_j) $(0 \le i \le 2, 0 \le j \le 2)$.

Proof. Let $A \subseteq \mathbb{R}^n$ be an open set in (\mathbb{R}^n, d_j) . Then for all $a \in A$ there exists $r \in \mathbb{R}$ such that $B_{d_j}(a, r) \subseteq A$. But from Theorem 5 we know that there exists $r' \in \mathbb{R}$ such that $B_{d_i}(a, r') \subseteq B_{d_j}(a, r) \subseteq A$ (17.5). Thus A is open for (\mathbb{R}, d_i) . This is true for arbitrary $0 \le i \le 2$, $0 \le j \le 2$.

Definition 7 Let (X,d) be a metric space. A sequence (a_n) on X has the Cauchy property if for all $\varepsilon > 0$ there exists N such that for all n, m > N we have $d(a_n, a_m) < \varepsilon$.

Definition 8 A metric space (X, d) is complete if every Cauchy sequence on X is convergent.

Theorem 9 \mathbb{R}^n is complete.

Proof. Let (\mathbf{a}_n) be a Cauchy sequence on \mathbb{R}^d and let $\varepsilon' > 0$. Then there exists N such that for all n, m > N we have

$$d_2(\mathbf{a}_n, \mathbf{a}_m) = \sqrt{\sum_{i=1}^d (a_{ni} - a_{mi})^2} < \varepsilon'$$

so $(a_{ni}-a_{mi})^2 \leq \sum_{i=1}^d (a_{ni}-a_{mi})^2 < \varepsilon'^2$ and $|a_{ni}-a_{mi}| < \varepsilon'$. Thus the *i*th coordinate of the terms of (\mathbf{a}_n) forms a Cauchy sequence which converges to some b_i (14.5). Then let $\mathbf{b}=(b_1,b_2,\ldots,b_d)$, let $\varepsilon>0$ and consider ε/\sqrt{d} . For all $i\leq d$ there exists some N_i such that for $n>N_i$ we have $|a_{ni}-b_i|<\varepsilon/\sqrt{d}$ by convergence (13.3). Let N be the largest of all such N_i so that for all n>N we have $|a_{ni}-b_i|<\varepsilon/\sqrt{d}$. Then $(a_{ni}-b_i)^2<\varepsilon^2/d$ and $\sum_{i=1}^d (a_{ni}-b_i)^2<\varepsilon^2$. Then $d_2(\mathbf{a}_n,\mathbf{b})<\varepsilon$ for all n>N and $|d(\mathbf{a}_n,\mathbf{b})|<\varepsilon$ for all n>N. Thus $\lim_{n\to\infty}\mathbf{a}_n=\mathbf{b}$ because $\lim_{n\to\infty}d(\mathbf{a}_n,\mathbf{b})=0$ (13.3, 17.1).

Theorem 10 Every compact metric space is complete.

Proof. Let (X,d) be a compact metric space and suppose that (X,d) is not complete. Then there exists some Cauchy sequence $(a_n) \in X$ such that (a_n) does not converge. Therefore for all $x \in X$ there exists some ball $B(x,\varepsilon)$ such that there are infinitely many n with $a_n \notin B(x,\varepsilon)$. Let \mathcal{A} be the set of all such balls and let $\mathcal{A}' = \{B(x,\varepsilon/2) \mid B(x,\varepsilon) \in \mathcal{A}\}$. Then \mathcal{A}' is an open cover for X and X is compact so let \mathcal{B} be a finite subcover for \mathcal{A}' . Let $B(x,\varepsilon/2) \in \mathcal{B}$. Note that there are infinitely many n such that $a_n \notin B(x,\varepsilon)$ so there are infinitely many n such that $a_n \notin B(x,\varepsilon/2)$. We have (a_n) is Cauchy so there exists N such that for all n,m>N we have $d(a_n,a_m)<\varepsilon/2$. Suppose that there are infinitely many n with $a_n \in B(x,\varepsilon/2)$. Since there are infinitely many n with $a_n \in B(x,\varepsilon/2)$ and $a_n \notin B(x,\varepsilon/2)$ choose n,m>N with $a_n \in B(x,\varepsilon/2)$ and $a_n \notin B(x,\varepsilon/2)$. But then $d(x,a_n) \leq d(x,a_n) + d(a_n,a_m) < \varepsilon$. Thus there are infinitely many n with $a_n \in B(x,\varepsilon/2)$ which is a contradiction. Therefore there are finitely many n with $a_n \in B(x,\varepsilon/2)$. But this is true for all $B(x,\varepsilon/2) \in \mathcal{B}$ and there are finitely many elements of \mathcal{B} which is an open cover for X. So we have finitely many n with $a_n \in X$ which is a contradiction. Therefore (X,d) is complete.

Theorem 11 Let (\mathbf{a}_n) be a bounded sequence in \mathbb{R}^d . Show that (\mathbf{a}_n) has a convergent subsequence.

Proof. Consider the sequence (a_{1n}) where a_{1n} is the 1st coordinate in the *n*th term of (\mathbf{a}_n) . Then we have (a_{1n}) is a bounded sequence so there exists some convergent subsequence (b_{1k}) . Use induction on n. We have shown the base case for n=1. Now assume that a bounded sequence $(\mathbf{a}_n) \in \mathbb{R}^d$ has a convergent subsequence for $d \in \mathbb{N}$. Consider a bounded sequence $(\mathbf{a}_n) \in \mathbb{R}^{d+1}$. By our Inductive Hypothesis there exists a convergent subsequence in \mathbb{R}^d formed by the first d coordinates of terms in (\mathbf{a}_n) . Let the corresponding terms in (\mathbf{a}_n) be the sequence $(\mathbf{b}_k = \mathbf{a}_{n_k})$ Form a subsequence $(\mathbf{c}_k = \mathbf{a}_{n_k})$ of (\mathbf{a}_n) where the kth term has the coordinates of \mathbf{b}_k as the first d coordinates and the d+1th coordinate of \mathbf{a}_{n_k} as the d+1th coordinate. Now take the sequence in \mathbb{R} where the kth term is the d+1th coordinate of \mathbf{c}_k . Then this sequence is bounded so there exists a convergent subsequence $(e_i = c_{k_i(d+1)})$. Finally form a subsequence of (\mathbf{a}_n) where the ith term is c_{k_i} . Now every coordinate in (\mathbf{c}_{k_i}) forms a convergent sequence in \mathbb{R} so (\mathbf{c}_{k+i}) converges to some $\mathbf{f} \in \mathbb{R}^{d+1}$ using a similar proof as in Theorem 9.

Theorem 12 Show that a set $A \subseteq \mathbb{R}^d$ is open if and only if for all $\mathbf{x} \in A$ there is a rational ball O such that $\mathbf{x} \in O$ and $O \subseteq A$.

Proof. Suppose that for all $\mathbf{x} \in A$ there is a rational ball $B(\mathbf{a}, r) \subseteq A$ such that $\mathbf{x} \in B(\mathbf{a}, r)$. Then consider the ball $B(\mathbf{x}, r - d(\mathbf{a}, \mathbf{x}))$. For $\mathbf{y} \in B(\mathbf{x}, r - d(\mathbf{a}, \mathbf{x}))$ we have $d(\mathbf{x}, \mathbf{y}) < r - d(\mathbf{a}, \mathbf{x})$ which means $d(\mathbf{a}, \mathbf{y}) \le d(\mathbf{a}, \mathbf{x}) + d(\mathbf{x}, \mathbf{y}) < r$ and so $\mathbf{y} \in B(\mathbf{a}, r)$. Thus $B(\mathbf{x}, r - d(\mathbf{a}, \mathbf{x})) \subseteq B(\mathbf{a}, r) \subseteq A$. Then for all $\mathbf{x} \in A$ there exists a ball $B(\mathbf{x}, r') \subseteq A$ so A is open.

Conversely let $A \subseteq \mathbb{R}^d$ be open. Let $\mathbf{x} \in A$. There exists a ball $B(\mathbf{x}, r) \subseteq A$ where r may be rational or not. If $r \notin \mathbb{Q}$ then consider some $r' \in \mathbb{Q}$ such that 0 < r' < r and then $B(\mathbf{x}, r') \subseteq B(\mathbf{x}, r) \subseteq A$ (9.12). We have $B(\mathbf{x}, r'/2) \subseteq B(\mathbf{x}, r') \subseteq A$. Let $\mathbf{y} = (y_1, y_2, \dots, y_d)$ where $y_i \in \mathbb{Q}$ and $0 < y_i < r'/(2\sqrt{d}) + x_i$ (9.12). Then $y_i - x_i < r'/(2\sqrt{d})$ and $|x_i - y_i| < r'/(2\sqrt{d})$. Also $(x_i - y_i)^2 < r'^2/(4d)$ so $\sum_{i=1}^d (x_i - y_i)^2 < r'^2/4$ and $d(\mathbf{x}, \mathbf{y}) < r'/2$. Finally consider $\mathbf{z} \in B(\mathbf{y}, r'/2)$. Then $d(\mathbf{y}, \mathbf{z}) < r'/2$. But also $d(\mathbf{x}, \mathbf{y}) < r'/2$ so we have $d(\mathbf{x}, \mathbf{z}) \le d(\mathbf{x}, \mathbf{y}) + d(\mathbf{y}, \mathbf{z}) < r'/2 + r'/2 = r'$. Thus $B(\mathbf{y}, r'/2) \subseteq B(\mathbf{x}, r') \subseteq A$. Also $d(\mathbf{y}, \mathbf{x}) < r'/2 < r'$ so $\mathbf{x} \in B(\mathbf{y}, r'/2)$. Note that $r'/2 \in \mathbb{Q}$ and $\mathbf{y} \in \mathbb{Q}^d$.

Theorem 13 Let C be a closed, bounded subset of \mathbb{R}^d and let A be an open cover for C. Then A has a countable subcover.

Proof. Let $\mathbf{x} \in C$. Then there exists $A \in \mathcal{A}$ such that $\mathbf{x} \in A$. We have A is open, so there exists some rational ball $O \subseteq A$ such that $\mathbf{x} \in O$. Let \mathcal{B} be the set of all such rational balls for all $\mathbf{x} \in C$. Each of these balls has a center in \mathbb{Q}^d which is countable, so there are countably many of them. Then let $\mathcal{C} \subseteq \mathcal{A}$ be set set of elements of \mathcal{A} which have subsets in \mathcal{B} . Since every element of \mathcal{B} is a subset of some element of \mathcal{A} , there are countable many elements of \mathcal{C} . But \mathcal{C} covers C.

Theorem 14 Closed bounded subsets of \mathbb{R}^d are compact.

Proof. Assume C is a closed bounded subset of \mathbb{R}^d which is not compact. Let \mathcal{A} be an open cover for C which does not have a finite subcover. Let $\mathcal{B} = \{B_i \mid i \in \mathbb{N}\} \subseteq \mathcal{A}$ be a countably infinite subcover for C (17.13). Create a sequence $(\mathbf{a}_n) \in C$ such that $\mathbf{a}_1 \in B_1$ and for n > 1

$$\mathbf{a}_n \in C \setminus (B_1 \cup B_2 \cup \dots B_{n-1}).$$

Then for all j > i, $\mathbf{a}_j \notin B_i$. Thus for all $B_i \in \mathcal{B}$, there are infinitely many n with $\mathbf{a}_n \notin B_i$. Note that (\mathbf{a}_n) is bounded since C is bounded, so there exists a subsequence $(\mathbf{b}_n) \in C$ such that $\lim_{n \to \infty} \mathbf{b}_n = \mathbf{b}$. Note that C is closed, so if $\mathbf{b} \notin C$ then there exists some ball $B(\mathbf{b}, r) \subseteq \mathbb{R}^d \setminus C$ because $\mathbb{R}^d \setminus C$ is open. But $(\mathbf{b}_n) \in C$ so there are infinitely many n such that $\mathbf{b}_n \notin \mathbb{R}^d \setminus C$. Thus $\mathbf{b} \in C$. Then $\mathbf{b} \in B_i$ for some $B_i \in \mathcal{B}$. But there are infinitely many n such that $\mathbf{a}_n \notin B_i$ and so $\lim_{n \to \infty} \mathbf{b}_n \notin B_i$. Thus, (\mathbf{b}_n) does not converge which is a contradiction. Therefore C is compact.

Sheet 18: Convergence of Functions

Definition 1 For a < b with $a, b \in \mathbb{R}$ let

$$B[a;b] = \{f : [a;b] \to \mathbb{R} \mid f \text{ is bounded on } [a;b]\}$$

be the set of bounded real functions on [a; b].

Definition 2 We say that f is the pointwise limit of (f_n) , or

$$\lim_{n\to\infty}^{\bullet} f_n = f$$

if for all $x \in [a; b]$ we have

$$\lim_{n \to \infty} f_n(x) = f(x).$$

Definition 3 For $f, g \in B$ let

$$d(f,g) = \sup_{x \in [a;b]} |f(x) - g(x)|.$$

Theorem 4 d is a metric on B.

Proof. Let $f, g, h \in B$. We have $|f(x) - g(x)| \ge 0$ for all $x \in [a; b]$ so then $d(f, g) = \sup_{x \in [a; b]} |f(x) - g(x)| = 0$ then |f(x) - g(x)| = 0 for all $x \in [a; b]$ because d(f, g) is an upper bound. But then f(x) = g(x) for $x \in [a; b]$. Conversely suppose that f(x) = g(x) for all $x \in [a; b]$. Then |f(x) - g(x)| = 0 for all $x \in [a; b]$ and so $d(f, g) = \sup_{x \in [a; b]} |f(x) - g(x)| = 0$. Also $d(f, g) = \sup_{x \in [a; b]} |f(x) - g(x)| = \sup_{x \in [a; b]} |g(x) - f(x)| = d(g, f)$. Finally from the triangle inequality we have $|f(x) - g(x)| + |g(x) - h(x)| \ge |f(x) - h(x)|$ for all $x \in [a; b]$ so $|f(x) - g(x)| + |g(x) - h(x)| \ge \sup_{x \in [a; b]} |f(x) - h(x)|$ for all $x \in [a; b]$. But then $d(f, g) + d(g, h) = \sup_{x \in [a; b]} |f(x) - g(x)| + \sup_{x \in [a; b]} |f(x) - h(x)| \ge |f(x) - g(x)| + |g(x) - h(x)| \ge \sup_{x \in [a; b]} |f(x) - h(x)| = d(f, h)$ for all $x \in [a; b]$. □

Definition 5 We say that f is the uniform limit of (f_n) , or

$$\lim_{n \to \infty} f_n = f$$

if $\lim_{n\to\infty} f_n = f$ in the metric d.

Theorem 6 W have $\lim_{n\to\infty} f_n = f$ if and only if for all $\varepsilon > 0$ there exists N such that for all n > N and for all $x \in [a;b]$ we have $|f(x) - f_n(x)| < \varepsilon$.

Proof. Suppose that $\lim_{n\to\infty} f_n = f$. Then $\lim_{n\to\infty} f_n = f$ in the metric d. Thus $\lim_{n\to\infty} d(f,f_n) = 0$ which means $\lim_{n\to\infty} \sup_{x\in[a;b]} |f(x)-f_n(x)| = 0$ (17.1). Then for all $\varepsilon > 0$ there exists N such that for all n>N we have $|\sup_{x\in[a;b]} |f(x)-f_n(x)|| < \varepsilon$. But then for all $\varepsilon > 0$ there exists N such that for all n>N and for all $x\in[a;b]$ we have $|f(x)-f_n(x)|<\varepsilon$.

Conversely suppose that for all $\varepsilon > 0$ there exists N such that for all n > N and for all $x \in [a;b]$ we have $|f(x) - f_n(x)| < \varepsilon$. Since this is true for all $x \in [a;b]$ then for all $\varepsilon > 0$ there exists N such that for all n > N we have $\sup_{x \in [a;b]} |f(x) - f_n(x)| = |\sup_{x \in [a;b]} |f(x) - f_n(x)| - 0| = |d(f,f_n) - 0| < \varepsilon$. But then $\lim_{n \to \infty} d(f,f_n) = 0$ and so $\lim_{n \to \infty} f_n = f$ (17.1).

Theorem 7 If $\lim_{n\to\infty} f_n = f$ then $\lim_{n\to\infty}^{\bullet} f_n = f$.

Proof. We have $\lim_{n\to\infty} f_n = f$ and so for all $\varepsilon > 0$ there exists N such that for all n > N and all $x \in [a;b]$ we have $|f(x) - f_n(x)| < \varepsilon$. But then for all $x \in [a;b]$ and all $\varepsilon > 0$ there exists N such that for all n > N we have $|f(x) - f_n(x)| < \varepsilon$. Thus $\lim_{n\to\infty}^{\bullet} f_n = f$.

Theorem 8 The sequence $f_n(x) = x^n$ on the interval [0,1] converges pointwise but not uniformly.

Proof. Let

$$f = \begin{cases} 0 & \text{if } 0 \le x < 1\\ 1 & \text{if } x = 1 \end{cases}$$

and let $x \in [0; 1)$. Since $0 \le x < 1$ we have $\lim_{n \to \infty} f_n(x) = \lim_{n \to \infty} x^n = 0 = f(x)$. If x = 1 then $x^n = 1$ for all n and so $\lim_{n \to \infty} x^n = 1 = f(x)$. Thus, (f_n) converges pointwise. Suppose that (f_n) converges uniformly and let $1 > \varepsilon > 0$. Then there exists an N such that for all n > N and for all $x \in [0; 1]$ we have $|f(x) - f_n(x)| < \varepsilon$. But since f(x) = 0 for $x \in [0; 1)$ we can choose x large enough such that $x^n \ge \varepsilon < 1$. Thus there exists $\varepsilon > 0$ such that for all N there exists n > N and $n \in [0; 1]$ such that $|f(x) - f_n(x)| \ge \varepsilon$ and so (f_n) doesn't converge uniformly.

Theorem 9 Let (f_n) be a sequence of continuous functions on [a;b] that uniformly converges to f on [a;b]. Then f is continuous on [a;b].

Proof. Let $\varepsilon > 0$ and consider $\varepsilon/3$. We know (f_n) uniformly converges to f so there exists N such that for all n > N and for all $x, y \in [a; b]$ we have $|f(x) - f_n(x)| < \varepsilon/3$ and $|f(y) - f_n(y)| < \varepsilon/3$. Also f_n is continuous for all n so for all n > N and for all $x \in [a; b]$ there exists $\delta_n > 0$ such that for all $y \in [a; b]$ with $|x - y| < \delta_n$ we have $|f_n(x) - f_n(y)| < \varepsilon/3$. Consider δ_{N+1} . Then for all $x \in [a; b]$ there exists $\delta_{N+1} > 0$, which may depend on x, such that for all $y \in [a; b]$ with $|x - y| < \delta_{N+1}$ we have $|f_{N+1}(x) + f_{N+1}(y)| < \varepsilon/3$. By the triangle inequality we have $|f(x) - f_{N+1}(y)| \le |f_{N+1}(x) - f_{N+1}(y)| + |f(x) - f_{N+1}(x)| < 2\varepsilon/3$ and then $|f(x) - f(y)| < |f(x) - f_{N+1}(y)| + |f(y) - f_{N+1}(y)| < \varepsilon$. Thus for all $x \in [a; b]$ there exists some $\delta > 0$ such that for all $y \in [a; b]$ with $|x - y| < \delta$ we have $|f(x) - f(y)| < \varepsilon$. Therefore f is continuous on [a; b]. \square

Sheet 19: Polynomials

Definition 1 A real polynomial of degree n is a function of the form

$$p(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0$$

where $a_i \in \mathbb{R}$ $(0 \le i \le n)$ and $a_n \ne 0$. If p(x) = 0 then we define the degree $\deg p = -\infty$. The set of real polynomials is denoted by $\mathbb{R}[x]$.

Theorem 2 For all $p, q \in \mathbb{R}[x]$ we have

$$deg(p+q) \le max(deg(p), deg(q))$$

and

$$\deg(pq) = \deg(p) + \deg(q)$$

Proof. Let $p(x) = \sum_{i=0}^{n} a_i x^i$ and $q(x) = \sum_{i=0}^{m} b_i x^i$. Then

$$p + q(x) = p(x) + q(x) = \left(\sum_{i=0}^{n} a_i x^i\right) + \left(\sum_{i=0}^{m} b_i x^i\right)$$

and so deg(p+q) = max(n, m) = max(deg(p), deg(q)). Also

$$pq(x) = p(x)q(x) = \left(\sum_{i=0}^{n} a_i x^i\right) \left(\sum_{i=0}^{m} b_i x^i\right)$$

and so using the product of powers $\deg pq = n + m = \deg(p) + \deg(q)$.

Theorem 3 (Division Remainder) Let $a, b \in \mathbb{R}[x]$ be polynomials with $b \neq 0$. Then there exists unique $q, r \in \mathbb{R}[x]$ such that

$$a = bq + r$$

and

$$\deg r < \deg b$$
.

Proof. To show existence consider the set $S = \{a - bc \mid c \in \mathbb{R}[x]\}$. Suppose that for all $r \in S$, $\deg(r) \geq \deg(b)$. Choose $p \in S$ such that $\deg(p)$ is the minimum degree of all elements of S using the Well Ordering Principle. Note that p = a - bc for some $c \in \mathbb{R}[x]$. Now let q = p - bd for some $d \in \mathbb{R}[x]$. Then q = a - bc - bd = a - b(c + d) and so $q \in S$. Thus $\deg(q) \geq \deg(p)$. But then if $p(x) = \sum_{i=0}^n a_i x^i$ and $b(x) = \sum_{i=0}^m b_i x^i$ then consider $d = (a_n/b_m)x^{(n-m)}$. Then $\deg(bd) = n$ and so $\deg(q) < \deg(p)$ since q = p - bd. This is a contradiction and so there exists $r \in S$ such that $\deg(r) < \deg(b)$.

For uniqueness suppose that there exists q, q', r, r' with $q \neq q'$ and $r \neq r'$ such that a = bq + r, a = bq' + r', $\deg(r) < b$ and $\deg(r') < b$. Then bq + r = bq' + r' and b(q - q') = r' - r. Note that since $q \neq q'$ and $r \neq r'$, $\deg(q - q') \geq 0$ and $\deg(r - r') \geq 0$. But then using Theorem 2 we have $\deg(r - r') < b$ and $\deg(b(q - q')) = \deg(b) + \deg(q - q') \geq \deg(b)$ (19.2). This is a contradiction and so q = q' and r = r' which means q and r are unique.

Definition 4 We call r the remainder of a divided by b.

Exercise 5 Divide $x^3 + 4$ by $2x^2 - 1$ with remainder. Also $x^4 - 1$ by $x^2 - 1$.

 $x^3 + 4$ divided by $2x^2 - 1$ is x/2 with x/2 + 4 as a remainder because $x^3 + 4 = x^3 + x/2 - x/2 + 4 = (2x^2 - 1)(x/2) + x/2 + 4$. Also $(x^2 - 1)(x^2 + 1) = x^4 - 1$ so $x^4 - 1$ divided by $x^2 - 1$ is $x^2 + 1$ with no remainder.

Definition 6 A real number α is a root of $p(x) \in \mathbb{R}[x]$ if $p(\alpha) = 0$.

Theorem 7 Let $p, q \in \mathbb{R}[x]$. Then α is a root of pq if and only if α is a root of p or q.

Proof. Let $p(x) = \sum_{i=0}^{n} a_i x^i$ and $q(x) = \sum_{i=0}^{m} b_i x^i$ and suppose that α is a root of p or q. Without loss of generality suppose that α is a root of p. Then $\sum_{i=0}^{n} a_i \alpha^i = 0$ and so

$$pq(\alpha) = p(\alpha)q(\alpha) = \left(\sum_{i=0}^{n} a_i \alpha^i\right) \left(\sum_{i=1}^{m} b_i \alpha^i\right) = 0 \cdot \left(\sum_{i=1}^{m} b_i \alpha^i\right) = 0$$

which means α is a root of pq. For the converse we use the contrapositive. Suppose that α is not a root of p and q. Then $p(\alpha) \neq 0$ and $q(\alpha) \neq 0$. But then $pq(\alpha) = p(\alpha)q(\alpha) \neq 0$.

Theorem 8 Let $p \in \mathbb{R}[x]$. Then α is a root of p if and only if $p = (x - \alpha)q$ for some $q \in \mathbb{R}[x]$.

Proof. Suppose that $p = (x - \alpha)q$ for some $q \in \mathbb{R}[x]$. Then $p(\alpha) = (\alpha - \alpha)q = 0$ and so α is a root of p. Conversely suppose that α is a root of p. From Theorem 3 we know that $p = (x - \alpha)q + r$ for $q, r \in \mathbb{R}[x]$ and $\deg(r) = 0$ (19.3). Thus r is a constant and since α is a root of p we have $p(\alpha) = (\alpha - \alpha)q + r = r = 0$. Thus $p = (x - \alpha)q$ for some $q \in \mathbb{R}[x]$.

Theorem 9 Let $p \in \mathbb{R}[x]$ be a nonzero polynomial of degree n. Then p has at most n roots.

Proof. Suppose that $\deg(p) = n$ and p has m distinct roots with m > n. Let the m roots be $\alpha_1, \alpha_2, \ldots, \alpha_m$. From Theorem 8 we know that $p = (x - \alpha_1)q_1$ for some $q \in \mathbb{R}[x]$ (19.8). From Theorem 7 we know that since α_2 is a root of p it is a root of $(x - \alpha_1)$ or p (19.7). Since p is a root of p it is a root of p it

$$p = \prod_{i=1}^{m} (x - \alpha_i) q_m.$$

But then $deg(p) = m \neq n$ which is a contradiction.

Theorem 10 For every even n there exists a real polynomial of degree n with no roots. Every real polynomial of odd degree has a root.

Proof. Let n be even. Consider the polynomial $p(x) = x^n + 1$. Since n is even, n = 2k for some $k \in \mathbb{N}$. Then $p(x) = x^{2k} + 1 = (x^k)^2 + 1$. But then p(x) > 0 for all $x \in \mathbb{R}$ and so p(x) has no roots.

Now let p be a polynomial of degree n with n odd such that $p(x) = \sum_{i=0}^n a_i x^i$. Suppose that $a_n > 0$. We know $\lim_{x \to \infty} p(x)/(a_n x^n) = 1$. Let $\varepsilon = 1/2$. Then there exists $m \in \mathbb{R}$ such that for all x > m we have $|p(x)/(a_n x^n) - 1| < 1/2$. Thus there exists $x_1 > 0$ such that $1/2 < p(x_1)/(a_n x_1^n)$. Since $x_1, a_n > 0$ and n is odd we have $0 < (a_n x_1^n)/2 < p(x_1)$. Thus $p(x_1)$ is positive. Similarly take $\lim_{x \to -\infty} p(x)/(a_n x^n) = 1$ and let $\varepsilon = 1/2$. Then there exists $m \in \mathbb{R}$ such that for all x < m we have $|p(x)/(a_n x^n) - 1| < 1/2$. Then there exists $x_2 < 0$ such that $1/2 < p(x)/(a_n x^n)$. But since $x_2 < 0$ and $a_n > 0$ we have $a_n x^n < 0$ so then $p(x) < (a_n x^n)/2 < 0$. Thus $p(x_2) < 0$. Therefore there exist $x_1, x_2 \in \mathbb{R}$ with $p(x_2) < 0$ and $p(x_1) > 0$ so there must exist $c \in (x_2; x_1)$ with p(c) = 0 by the Intermediate Value Theorem. A very similar proof holds if $a_n < 0$ where the limits give values of opposite signs as in this proof.

Theorem 11 (Lagrange Interpolation) Let $a_1 < a_2 < \cdots < a_n$ and b_1, b_2, \ldots, b_n be real numbers. Then there exists a polynomial p(x) of degree at most n-1 such that

$$p(a_i) = b_i \ (1 \le i \le n).$$

Proof. Consider the polynomial

$$p(x) = \sum_{i=1}^{n} b_i \prod_{j=1, j \neq i}^{n} \frac{(x - a_j)}{(a_i - a_j)}.$$

Note that

$$p(a_k) = \sum_{i=1}^n b_i \prod_{j=1, j \neq i}^n \frac{(a_k - a_j)}{(a_i - a_j)} = b_k \prod_{j=1, j \neq k}^n \frac{(a_k - a_j)}{(a_k - a_j)} = b_k.$$

Exercise 12 Is this polynomial unique?

Yes.

Proof. Let $a_1 < a_2 < \cdots < a_n$ and b_1, b_2, \ldots, b_n be real numbers. Consider two polynomials f(x) and g(x) such that $f(a_i) = b_i$ and $g(a_i) = b_i$ $(1 \le i \le n)$. Then consider h(x) = f(x) - g(x). We see h(x) = 0 for each a_i and so h has n roots. But then $n \le \deg(h) \le \max(\deg(p), \deg(q))$ (19.2, 19.9). Thus $\deg(p)$ or $\deg(q)$ is greater than or equal to n which means there exists only one such polynomial with degree less than n.

Theorem 13 Let p be a real polynomial which maps rationals to rationals. Then all the coefficients of p are rational.

Proof. Take n+1 rational points $a_1 < a_2 < \cdots < a_{n+1}$ and their images $p(a_1) = b_1, p(a_2) = b_2, \dots, p(a_{n+1}) = b_{n+1}$. From Theorem 11 we know that there exists a polynomial of degree n

$$p'(x) = \sum_{i=1}^{n} b_i \prod_{j=1, j \neq i}^{n} \frac{(x - a_j)}{(a_i - a_j)}$$

such that $p'(a_i) = b_i$ $(1 \le i \le n+1)$ (19.11). Note that the coefficients of p' are all rational because $a_i, b_i \in \mathbb{Q}$ $(1 \le i \le n)$. From Exercise 12 we know that this polynomial is unique and so p = p' (19.12). Thus p has all rational coefficients.