Lee: Introduction to Topological Manifolds

Danny Nygård Hansen 1st April 2022

5 • Cell Complexes

EXERCISE 5.3

Suppose X is a topological space whose topology is coherent with a family \mathcal{B} of subspaces.

- (a) If *Y* is another topological space, then a map $f: X \to Y$ is continuous if and only if $f|_B$ is continuous for every $B \in \mathcal{B}$.
- (b) The map $q: \coprod_{B \in \mathcal{B}} B \to X$ induced by the inclusion of each set $B \hookrightarrow X$ is a quotient map.

SOLUTION. (a) Let $V \subseteq Y$. Then $f^{-1}(V)$ is open if and only if $(f|_B)^{-1}(V) = f^{-1}(V) \cap B$ is open in B for all $B \in \mathcal{B}$. But this precisely expresses that each $f|_B$ is continuous, so the claim follows.

(b) Notice that $q^{-1}(U) = U \cap B$ for all $U \subseteq X$. Since the topology on X is coherent with \mathcal{B} , the set U is open if and only if $U \cap B$ is open for all $B \in \mathcal{B}$. But this precisely expresses that q is a quotient map.

Problems

PROBLEM 5.5

Suppose X is a topological space and $\{X_{\alpha}\}$ is a family of subspaces whose union in X. Show that the topology of X is coherent with the subspaces $\{X_{\alpha}\}$ if and only if it is the finest topology on X for which all of the inclusion maps $i_{\alpha} \colon X_{\alpha} \hookrightarrow X$ are continuous.

SOLUTION. This follows immediately from the fact that $i_{\alpha}^{-1}(U) = U \cap X_{\alpha}$ for all $U \subseteq X$.

5. Cell Complexes

2

PROBLEM 5.6

Suppose *X* is a topological space. Show that the topology of *X* is coherent with each of the following collections of subspaces of *X*:

- (a) Any open over of X.
- (b) Any locally finite closed cover of *X*.

SOLUTION. (a) Let V be an open cover of X. If $U \subseteq X$ is open $U \cap V$ is open for all $V \in \mathcal{V}$ (as Lee also remarks, this implication always holds). Conversely, if $U \cap V$ is open in V for all $V \in V$, then since each V is open in X, $U \cap V$ is also open in X. Furthermore, because V is a cover of X we have

$$U=U\cap\bigcup_{V\in\mathcal{V}}V=\bigcup_{V\in\mathcal{V}}(U\cap V),$$

so *U* is a union of open set, hence itself open.

(b) We first prove the following lemma:

Let \mathcal{F} be a locally finite collection of closed sets in a topological space X. Then the union $\mathbb{F} = \bigcup_{F \in \mathcal{F}} F$ is closed in X.

Let $x \in \mathbb{F}^c$. Then since \mathcal{F} is locally finite, x has an open neighbourhood U that intersects finitely many elements from \mathcal{F} , say F_1, \ldots, F_n . Let U' = $U \setminus (F_1 \cup \cdots \cup F_n)$. Then U' is an open neighbourhood of x disjoint from \mathbb{F} , so \mathbb{F}^c is open.

We now solve the exercise. Let \mathcal{F} be a locally finite closed over of X, and let $C \subseteq X$ be such that $C \cap F$ is closed in F for all $F \in \mathcal{F}$. Then

$$C=C\cap \bigcup_{F\in\mathcal{F}}F=\bigcup_{F\in\mathcal{F}}(C\cap F).$$

The collection $\{C \cap F \mid F \in \mathcal{F}\}$ is clearly also locally finite, so since each $C \cap F$ is closed in X, the lemma shows that the above union is also closed in X. \Box