Deep Learning Theory and Applications

Gradient Descent

CPSC/AMTH 663

Learning with Gradient Descent

MNIST as an example

Classifying handwritten digits

 Goal: learn the weights and biases in a network to perform handwritten digit recognition

MNIST data set

- 60,000 training images
 - 28×28 greyscale images
 - Scanned handwriting samples from 250 people (half from US Census Bureau employees, other half were high school students)
- 10,000 test images
 - 28×28 greyscale images
 - Scanned handwriting samples from different 250 people (half from US Census Bureau employees, other half were high school students)
- x = a training input
 - $28 \times 28 = 784$ -dimensional vector
- y = y(x) is the desired output
 - 10-dimensional vector
 - E.g., if x depicts a 6, then $y(x) = (0,0,0,0,0,0,1,0,0,0)^T$

Cost function

- Goal: develop an algorithm that finds weights and biases s.t. the network output approximates y(x) for all training inputs x
- Define a cost function (also referred to as a loss or objective function)

$$C(w,b) = \frac{1}{2n} \sum_{x} ||y(x) - a||^2$$

- w is the collection of all weights in the network
- b is the collection of all biases in the network
- a = a(x, w, b) is the output when x is the input
- C is referred to as the quadratic cost function or mean squared error (MSE)

Cost function

$$C(w,b) = \frac{1}{2n} \sum_{x} ||y(x) - a||^2$$

- w is the collection of all weights in the network
- b is the collection of all biases in the network
- a = a(x, w, b) is the output when x is the input
- $C(w,b) \approx 0$ when $y(x) \approx a$ for all training inputs x
 - Algorithm has done well if it can find weights and biases s.t. $C(w,b) \approx 0$
 - Algorithm has not done well if C(w, b) is large
 - $\Rightarrow y(x)$ is not close to the output a for a large number of inputs
- Goal of training algorithm is to choose w and b to minimize C(w,b)
- We'll use gradient descent

Cost function

- Why use MSE?
 - Why not use 0-1 loss or average probability of error?
- 0-1 loss is not a smooth function of the weights and biases
 - Difficult to change weights and biases to improve performance as measured by this loss
- Small changes in weights and biases can result in small improvements to MSE
 - We can figure out which direction to go

Gradient descent

- How do we minimize a cost function in general?
- Suppose we want to minimize some function $\mathcal{C}(v)$
 - $v = v_1, v_2, ...$
 - We're not limiting ourselves to neural networks right now

Gradient descent

- What if we have more variables?
- Could try calculus to find extremum of C
 - Difficult when we have lots of variables
 - Largest neural networks have billions of weights and biases

Rolling ball analogy

- Choose a random start point
- Ball rolls to the bottom of the valley
- Can simulate this by computing $\mathbf{1}^{\text{st}}$ and $\mathbf{2}^{\text{nd}}$ derivatives of C

The gradient

- Choose a random starting point
- Move small amounts Δv_1 in the v_1 direction and Δv_2 in the v_2 direction

$$\Delta C \approx \frac{\partial C}{\partial v_1} \Delta v_1 + \frac{\partial C}{\partial v_2} \Delta v_2$$

- Goal is to minimize C
 - Choose Δv_1 and Δv_2 so that ΔC is negative
 - I.e. move in a direction that decreases C
- Define $\Delta v = (\Delta v_1, \Delta v_2)^T$
- The *gradient* of *C* is $\nabla C = \left(\frac{\partial C}{\partial v_1}, \frac{\partial C}{\partial v_2}\right)^T$
- $\Delta C \approx \nabla C \cdot \Delta v$

The gradient

- Define $\Delta v = (\Delta v_1, \Delta v_2)^T$
- The **gradient** of C is $\nabla C = \left(\frac{\partial C}{\partial v_1}, \frac{\partial C}{\partial v_2}\right)^T$
- $\Delta C \approx \nabla C \cdot \Delta v$
- How should we choose Δv to ensure ΔC is negative?
- Choose $\Delta v = -\eta \nabla C$
 - η is a small, positive parameter (known as the *learning rate*)
 - $\Rightarrow \Delta C \approx -\eta \nabla C \cdot \nabla C = -\eta \|\nabla C\|^2$
 - Since $\|\nabla C\|^2 \ge 0$, $\Delta C \le 0$
 - Thus C will always decrease and never increase
- Thus, choose new position $v \to v \eta \nabla C$
- Repeat until we reach the minimum

Summary of gradient descent

- Compute the gradient ∇C
- Move in the opposite direction
 - It's like falling down the slope of the valley

Gradient descent with more variables

- Gradient descent extends easily to functions of more variables
- Let C be a function of m variables, v_1, \ldots, v_m

$$\Delta v = (\Delta v_1, \dots, \Delta v_m)^T$$

$$\nabla C = \left(\frac{\partial C}{\partial v_1}, \dots, \frac{\partial C}{\partial v_m}\right)^T$$

- Then $\Delta C \approx \nabla C \cdot \Delta v$
- As before, choose $\Delta v = -\eta \nabla C$
- The update step is again $v \to v \eta \nabla C$

Gradient descent is optimal in some sense

- Suppose we want to find Δv that decreases C as much as possible
 - Equivalent to minimizing $\Delta C \approx \nabla C \cdot \Delta v$
- Constrain the size $||\Delta v|| = \epsilon$ for some $\epsilon > 0$
- What is the direction that decreases C the most?
- Can be shown that $\Delta v = -\eta \nabla C$ minimizes $\nabla C \cdot \Delta v$

•
$$\eta = \frac{\epsilon}{\|\nabla C\|}$$

• Gradient descent can be interpreted as taking small steps in the direction that decreases \mathcal{C} the most

Choosing the learning rate

- Need to choose η small enough that the approximation $\Delta C \approx -\eta \nabla C \cdot \nabla C$ is good
 - Otherwise, we may end up with $\Delta C > 0$
- On the other hand, very small $\eta \Rightarrow$ tiny steps
 - Slow convergence to the minimum
- In practice, η is varied so that the approximation $\Delta C \approx$
 - $-\eta \nabla C \cdot \nabla C$ is good and the algorithm isn't too slow

Gradient descent in neural networks

- Goal: use gradient descent to find weights and biases that minimize $C(w,b) = \frac{1}{2n} \sum_{x} ||y(x) a||^2$
- Gradient descent update rules:

$$w_k \to w_k' = w_k - \eta \frac{\partial C}{\partial w_k}$$

$$b_l \to b_l' = b_l - \eta \frac{\partial C}{\partial b_l}$$

 Repeatedly applying the update enables us to "roll down the hill" to the minimum of the cost function

Gradient of a sigmoidal neuron

•
$$f(z) = \frac{1}{1 + e^{-z}}$$

• Use chain rule with $g(z) = e^{-z}$

• Ose chain rule with
$$g(z) = e$$
• $\frac{\delta(f(g(z)))}{\delta(z)} = \frac{\delta(f(g(z)))}{\delta(z)} \frac{\delta(g(z))}{\delta(z)}$
• $\frac{\delta(f(g(z)))}{\delta(z)} = \frac{e^{-z}}{(1+e^{-z})^2}$
• $\frac{\delta(f(g(z)))}{\delta(z)} = \frac{(1+e^{-z})^2}{(1+e^{-z})^2}$
• $\frac{\delta(f(g(z)))}{\delta(z)} = \frac{(1+e^{-z})^2}{(1+e^{-z})^2} - \frac{1}{(1+e^{-z})^2}$
• $\frac{\delta(f(g(z)))}{\delta(z)} = \frac{1}{1+e^{-z}} - \frac{1}{(1+e^{-z})^2}$

- Nice form of answer is $\frac{\delta(f(g(z)))}{\delta(z)} = f(z)$ (1-f(z))
- How do you get this in terms of weights and biases?

Large Sample Challenges

- Challenge: $C(w,b) = \frac{1}{n} \sum_{x} C_{x}$ is an average over training example costs $C_{x} = \frac{\|y(x) a\|}{2}$
- $\Rightarrow \nabla C = \frac{1}{n} \sum_{x} \nabla C_{x}$
 - Computing the gradients for each training input \boldsymbol{x} can be slow for large sample sizes
 - ⇒ learning occurs slowly
- We can speed things up by computing ∇C_{χ} for a small random sample of training inputs
 - Provides an estimate of ∇C
 - Speeds up gradient descent and learning
 - Known as **Stochastic Gradient Descent** (SGD)

Stochastic Gradient Descent (SGD)

- Pick a random set of m training inputs X_1, X_2, \dots, X_m
 - Referred to as a *mini-batch*
- If m is large enough, then the average value of ∇C_{X_j} will be roughly equal to the average over all ∇C_{x} :

$$\frac{1}{m} \sum_{j=1}^{m} \nabla C_{X_j} \approx \frac{1}{n} \sum_{x} \nabla C_{x} = \nabla C$$

• In neural networks, this gives update steps of

$$w_k o w_k' = w_k - \frac{\eta}{m} \sum_{j} \frac{\partial C_{X_j}}{\partial w_k}$$
 $b_l o b_l' = b_l - \frac{\eta}{m} \sum_{j} \frac{\partial C_{X_j}}{\partial b_l}$

Stochastic Gradient Descent Summary

A training *epoch*:

- 1. Pick a random subset of the training data
 - Referred to as a mini-batch
- 2. Update the weights and biases using the gradient estimates from the mini-batch
- 3. Pick another random mini-batch from remaining training points and repeat step 2
 - Repeat until all training inputs have been used

Repeat multiple epochs until stopping conditions

Analogy to political polling

- Much easier to carry out a poll than run a full election
- Similarly, it's much easier to estimate gradients from minibatches than the entire training set
- Downside: gradient estimates will be noisier in SGD
- That's ok: we only need to move in a general direction that decreases C
 - Don't need an extremely accurate estimate of the gradient
- In practice, SGD is used extensively in learning neural networks

Back to MNIST

- Goal: learn the weights and biases in a network to perform handwritten digit recognition
- Code and data available on github
 - Link provided in the Nielsen book, chapter 1
 - An optional (ungraded) problem in HW 1 is to implement this code on your machine
- First split the training data into 2 parts
 - 50,000 images for training
 - Referred to as the "MNIST training data"
 - 10,000 images for validation
 - Used to set *hyper-parameters*
 - Not used today, but later

Our architecture

We will vary the number of neurons in the hidden layer

Vector notation

- Store weights and biases as matrices
- Suppose we are considering the weights from the second (hidden) layer to the third (output) layer
 - w is the weight matrix with w_{jk} the weight for the connection between the kth neuron in the second layer and the jth neuron in the third layer
 - b is the vector of biases in the third layer
 - a is the vector of activations (output) of the 2^{nd} layer
 - a' the vector of activations (output) of the third layer

$$a' = \sigma(wa + b)$$

How the code works

- 1. In each epoch, randomly shuffle the training data
- 2. Partition the shuffled training data into mini-batches
- For each mini-batch, apply a single step of gradient descent
 - Gradients are calculated via backpropagation (the next topic)
- 4. Train for multiple epochs

First attempt

- 30 nodes in hidden layer
- 30 epochs
- Mini-batch size = 10
- Learning rate $\eta = 3.0$

```
Epoch 0: 9129 / 10000

Epoch 1: 9295 / 10000

Epoch 2: 9348 / 10000

...

Epoch 27: 9528 / 10000

Epoch 28: 9542 / 10000

Epoch 29: 9534 / 10000
```

Second attempt

- 100 nodes in hidden layer
- 30 epochs
- Mini-batch size = 10
- Learning rate $\eta = 3.0$
- Improves accuracy to 96.59%
 - Although depends on initialization: some runs give worse results

Third attempt

- 100 nodes in hidden layer
- 30 epochs
- Mini-batch size = 10
- Learning rate $\eta=0.001$

```
Epoch 0: 1139 / 10000

Epoch 1: 1136 / 10000

Epoch 2: 1135 / 10000

...

Epoch 27: 2101 / 10000

Epoch 28: 2123 / 10000

Epoch 29: 2142 / 10000
```

Debugging a neural network

- What do we do if the output is essentially noise?
- Suppose we ran the following as our first attempt:
- 30 nodes in hidden layer
- 30 epochs
- Mini-batch size = 10
- Learning rate $\eta = 100.0$

```
Epoch 0: 1009 / 10000

Epoch 1: 1009 / 10000

Epoch 2: 1009 / 10000

Epoch 3: 1009 / 10000

...

Epoch 27: 982 / 10000

Epoch 28: 982 / 10000

Epoch 29: 982 / 10000
```

Debugging a neural network

- What can we do?
 - Should we change the learning rate?
 - Should we initialize differently?
 - Do we need more training data?
 - Should we change the architecture?
 - Should we run for more epochs?
 - Are the features relevant for the problem (i.e. is the Bayes error rate reasonable)?
- Debugging is an art
 - We'll develop good heuristics for choosing good architectures and hyper parameters

How well does our network do?

- Need to compare to some baselines
- Random guessing: 10% accuracy
 - Our network does much better
- Simple idea: How dark is the image?
 - E.g. a 2 will typically be darker than a 1

Average darkness

- Compute average darkness for each digit from the training data
- Classify an image based on the digit with the closest average darkness
- This gives 22.25% accuracy
 - Better than random guessing

Support Vector Machine (SVM)

- Using default settings in SVM scikit-learn (a Python library) gives 94.35% accuracy
 - It's possible to optimize tuning parameters to achieve 98.5% accuracy
- Can neural networks do better?
- Yes!
 - Record set in 2013 was 99.79% accuracy (only 21 wrong in the test data)
 - Can you do better?

Take away message

- We achieved pretty good results using simple architecture and off-the-shelf SVM
- State of the art network was also pretty simple (compared to modern architectures)

sophisticated algorithm ≤ simple learning algorithm + good training data

Why does the neural network work?

- Weights and biases were discovered automatically
- Can we find a way to understand how the network classifies the digits correctly?
 - Given this understanding, can we improve?
- More broadly, suppose we develop artificial intelligence in the future
- Will we understand how such intelligence works?
- Will such an understanding (if we obtain it) lead to better understanding of the brain?
 - This was a goal of early AI research

Some heuristics

Suppose we want to detect a human face in images

How would we design a network by hand?

Some heuristics

Break the problem down into sub-problems

Some heuristics

Can break the sub-problems down further

• Eventually, we deal with sub-problems at the pixel level

Towards Deep learning

- The end result is a network that answers a complicated question
 - Uses a series of many layers
 - Early layers answer simple questions about input image
 - Later layers build up a hierarchy of complex and abstract concepts
 - Known as a deep neural network
- Researchers tried to train deep neural networks in the 80's and 90's
 - Little luck
- Breakthroughs since 2006 have made it much easier to train deep networks

Further Reading

- Nielsen, chapter 1
- Goodfellow et al., Section 5.9 and chapter 6