Clayton Seitz

cwseitz@iu.edu cwseitz.github.io

SUMMARY

Aspiring machine learning engineer in pharma or biotech. As a physicist, I am entering into this space having relevant background in Bayesian statistics, optimization, variational inference, information theory, and stochastic processes. I am also quite familiar with deep learning and modern deep learning frameworks. During my academic training, I have brought mathematical and statistical knowledge, learned in physics and computer science, to biology. In brief, I have used the above frameworks to study (i) cytokine-induced transcriptional memory and transcriptional dynamics in mammalian cells and (i) the relationship between structure and dynamics in neural microcircuits. I also have experience building specialized fluorescence microscopes for high-throughput imaging, which has led to a general interest in high-content screens of the tumor microenvironment during cancer immunotherapy. In the future, I envision that I will work as a project lead for a machine learning group focusing on drug discovery.

EDUCATION

Doctor of Philosopy, Physics

Purdue University, West Lafeyette, IN, 2024

Thesis: Untitled

Master of Science, Biophysics

University of Chicago, Chicago, IL, 2021

Thesis: Stable cell assembly formation in excitatory-inhibitory neuronal networks

Bachelor of Science, Magna Cum Laude, Physics

Purdue University, Indianapolis, IN, 2019

Minor: Mathematics

Bachelor of Science, Magna Cum Laude, Informatics

Luddy School of Informatics, Computing, and Engineering, Indiana University Bloom-

ington, 2019

Concentration: Mathematics

COMPUTER SKILLS

Languages & Software: Python, R, PyTorch, C, Git, LaTeX, Bash, Linux

EXPERIENCE

Research Technician

2019-2021

Indiana University - Purdue University, Indianapolis, IN

- Develop an image processing software pipeline for high-throughput quantification of images in fluorescence microscopy
- Utilize high performance computing clusters for image segmentation, single particle tracking, and image registration

$Under graduate\ Researcher$

2019-2020

Indiana University - Purdue University, Indianapolis, IN

• Utilize time-correlated single photon counting (TCSPC) to characterize the sub-Poissonian emission of organic quantum dots dispersed in a thin film of poly-methyl methacrylate (PMMA)

• Design and utilize a 3-color imaging protocol to perform single-molecule imaging of mRNA transcripts in human epithelial kidney and osteosarcoma cells

Undergraduate Tutor

2018-2019

Indiana University - Purdue University, Indianapolis, IN

• Tutored undergraduate students in introductory physics courses covering classical mechanics, classical electromagnetism, circuit analysis, and modern physics

AWARDS

NIH Graduate Training Fellowship University of Chicago, Chicago, IL 2020

PS-ON Annual Investigator Meeting Travel Award Indiana University - Purdue University, Indianapolis, IN 2019

Hudson and Holland Scholarship for Diversity and Inclusion

2013-2017

Indiana University, Bloomington, IN

Founders Scholar

2013-2017

Indiana University, Bloomington, IN

Cigital Scholarship

2016-2017

Indiana University, Bloomington, IN

PUBLICATIONS Maelle Locatelli[†], Josh Lawrimore[†], Hua Lin[†], Sarvath Sanaullah, Clayton Seitz, Dave Segall, Paul Kefer, Salvador Moreno Naike, Benton Lietz, Rebecca Anderson, Julia Holmes, Chongli Yuan, George Holzwarth, Bloom Kerry, Jing Liu, Keith D Bonin, Pierre-Alexandre Vidi. DNA damage reduces heterogeneity and coherence of chromatin motions. PNAS. 2022

> Mengdi Zhang, Clayton Seitz, Garrick Chang, Fadil Iqbal, Hua Lin, and Jing Liu A guide for single-particle chromatin tracking in live cell nuclei. Cell Biology International. January 2022.

> Wenting Wu, Farooq Syed, Edward Simpson, Chih-Chun Lee, Jing Liu, Garrick Chang, Chuanpeng Dong, Clayton Seitz, Decio L. Eizirik, Raghavendra G. Mirmira, Yunlong Liu, Carmella Evans-Molina; Impact of Proinflammatory Cytokines on Alternative Splicing Patterns in Human Islets. Diabetes 1 January 2022; 71 (1): 116 - 127