Exercícios Numéricos

2.2.1. Se
$$\det(A) = -3$$
, encontre
(a) $\det(A^2)$; (b) $\det(A^3)$; (c) $\det(A^{-1})$; (d) $\det(A^t)$;

- **2.2.2.** Se $A \in B$ são matrizes $n \times n$ tais que $\det(A) = -2$ e $\det(B) = 3$, calcule $\det(A^t B^{-1})$.
- 2.2.5. Calcule o determinante de cada uma das matrizes seguintes usando operações elementares para transformá-las em matrizes triangulares superiores.

(a)
$$\begin{bmatrix} 1 & -2 & 3 & 1 \\ 5 & -9 & 6 & 3 \\ -1 & 2 & -6 & -2 \\ 2 & 8 & 6 & 1 \end{bmatrix}$$
 (b)
$$\begin{bmatrix} 2 & 1 & 3 & 1 \\ 1 & 0 & 1 & 1 \\ 0 & 2 & 1 & 0 \\ 0 & 1 & 2 & 3 \end{bmatrix}$$
.

2.2.6 Vamos calcular a inversa da matriz

$$B = \left[\begin{array}{rrr} 1 & 2 & 3 \\ 0 & 3 & 2 \\ 0 & 0 & -2 \end{array} \right]$$

2.2.7. Calcule o determinante das matrizes da questão 2.2.5 utilizando Laplace e Chió.

OBS: Na questão 2.2.5 entenda **operações elementares** como **propriedades** elementares **do determinante.**