Vertinimo instrukcija

VBE 1 dalis (išplėstinis)

1.	$x_2 = \sqrt{2x_1 + 3} = \sqrt{2 \cdot 3 + 3} = 3 \implies x_3 = \sqrt{2x_2 + 3} = \sqrt{2 \cdot 3 + 3} = 3$	
	Atsakymas: 3	1 taškas
2.	Atsakymas: D	1 taškas
3.	Atsakymas: C	1 taškas
4.	$\frac{m}{9} = \frac{1}{m} \Longrightarrow m^2 = 9 \Longrightarrow m = \pm 3$	
	Atsakymas: $\mathbf{m} = -3$	1 taškas
5.	$\sqrt{1-4a} = 1-a \Longrightarrow a=0; a=-2 \text{ Atsakymas: } \mathbf{a=0; a=-2}$	1 taškas
6.	$\sin(\arctan(\frac{\sqrt{3}}{3}) + 2\arccos(-\frac{\sqrt{2}}{2})) = \sin(\frac{\pi}{6} + 2 \cdot \frac{3\pi}{4}) = \sin(\frac{5\pi}{3}) = -\frac{\sqrt{3}}{2}$	
	Atsakymas: $-\frac{\sqrt{3}}{2}$	1 taškas
7	Atsakymas: B	1 taškas
8	Atsakymas: 8	1 taškas
9.	$\lim_{x \to -4} (-4x + 2) = -4 \cdot (-4) + 2 = 18$	
	$\lim_{x\to -4} \left(\frac{k}{x+2}\right) = 18 \Longrightarrow k = -36 \text{ Atsakymas: } \mathbf{k=-36}$	1 taškas
10.	$D = (-a)^2 - 4 \cdot (a+2) \cdot (-a) = 0 \Longrightarrow a = 0, a = -\frac{8}{5}$	
	Atsakymas: $a = -\frac{8}{5}$	1 taškas
11.	$\frac{m}{8n-1} = \frac{4}{m+2} = \frac{m^2-1}{2m+4} \Longrightarrow m = \pm 3, n = \frac{19}{32}, n = \frac{7}{32}$	
	Atsakymas: $n = 3; m = \frac{19}{32}$	2 taškai
12.	$\frac{10x+5}{x+2} = \frac{10x+20-20+5}{x+2} = \frac{10(x+2)-15}{x+2} = 10 - \frac{15}{x+2}$	
	Atsakymas: $k = 10, m = -15$	2 taškai
13	f(-2) = -f(2) = -(-3) = 3, f(3) = -f(-3) = -2	
	$4f(-2) + 7f(3) = 4 \cdot 3 + 7 \cdot (-2) = -2$	
	Atsakymas: -2	1 taškas
14.	$\cos(bx)$ periodas yra $\frac{2\pi}{ b } \Longrightarrow \cos(bx) $ periodas yra $\frac{1}{2} \cdot \frac{2\pi}{ b } = \frac{\pi}{ b }$	
	$T = \frac{\pi}{3} \Longrightarrow \frac{\pi}{ b } = \frac{\pi}{3} \Longrightarrow b = \pm 3$	
	$\cos(bx) \leqslant 1 \Longrightarrow \cos(bx) \leqslant 1 \Longrightarrow a \cos(bx) + 3 \leqslant a + 3$	
	$ a + 3 = 5 \Longrightarrow a = 2 \Longrightarrow a = \pm 2$	
	a=-2 netinka, nes tuomet didžiausia reikšmė bus 3.	
	Atsakymas: $a = 2; b = \pm 3$	2 taškai

15.	$\ln(x(2x+1)) = \ln 1 \Longrightarrow 2x^2 + x = 1 \Longrightarrow x = -1, x = \frac{1}{2}$	
	$x=-1$ netinka, nes $x\in(0;+\infty)$ Atsakymas: $x=\frac{1}{2}$	1 taškas
16.	$3a-2 \le 0 \Longrightarrow a \in (-\infty; \frac{2}{3}]$. Atsakymas: B	1 taškas
17.	$f(-4) + \frac{1}{2}f(5) + f(8,2) = 4 \cdot (-4) + 2 + \frac{1}{2}(\lg(2 \cdot 5) + 4) + 5 = -6,5$	
	Atsakymas: -6,5	1 taškas
18.	$(x-y)(x+y) = 45; 45 = 1 \cdot 45 = 3 \cdot 15 = 5 \cdot 9$	
	$\begin{cases} x - y = 1 \\ x + y = 45 \end{cases} \implies (x; y) = (23; 22)$ $\begin{cases} x - y = 3 \\ x + y = 15 \end{cases} \implies (x; y) = (9; 6)$ $\begin{cases} x - y = 5 \\ x + y = 9 \end{cases} \implies (x; y) = (7; 2)$	
	Atsakymas: C	1 taškas
19.	Atsakymas: $a = 3; b = 2$	2 taškai
20.	$-1 \leqslant -3x^2 + 2 \leqslant 1 \Longrightarrow x \in [-1; -\frac{\sqrt{3}}{3}] \cup \left[\frac{\sqrt{3}}{3}; 1\right]$	
	Atsakymas: C	1 taškas
21.1.	Atsakymas: $\sqrt[3]{a^2} + \sqrt[3]{b^2}$	1 taškas
21.2.	Atsakymas: -4	1 taškas
21.3.	Atsakymas: $\frac{a^3-b^3}{a^3+b^3}$	1 taškas
21.4.	Atsakymas: $-\sin \alpha$	1 taškas
22.	$a = 4; b = 5, c = -2 \Longrightarrow a + b + c = 4 + 5 + (-2) = 7$	
	Atsakymas: 7	1 taškas

23.	$y = (\frac{1}{3})^{\frac{3}{x}}$ apkeičiame x su y vietom: $(\frac{1}{3})^{\frac{3}{x}}$	
	$\log_{\frac{1}{3}}(x) = \log_{\frac{1}{3}}(\frac{1}{3})^{\frac{3}{y}} \Longrightarrow \log_{\frac{1}{3}}(x) = \frac{3}{y} \Longrightarrow y = \frac{3}{\log_{\frac{1}{2}}(x)}$	
	Atsakymas: $f^{-1}(x) = \frac{3}{\log_{\frac{1}{2}}(x)}$	1 taškas
24.1.	$b_1 = S_1 = 3 \cdot 2^{1+1} - 6 = 6$ Atsakymas: C	1 taškas
24.2.	$S_{10} = 3 \cdot 2^{10+1} - 6 = 6138; S_4 = 3 \cdot 2^{4+1} - 6 = 90$	
	$S_{5iki10} = S_{10} - S_4 = 6048$	
	Atsakymas: 6048	1 taškas
25	$\overrightarrow{EB} = \frac{2}{5}\vec{a}; \overrightarrow{BD} = -\vec{a} + \vec{b} \Longrightarrow \overrightarrow{BO} = -\frac{1}{2}\vec{a} + \frac{1}{2}\vec{b}$	
	$\overrightarrow{EO} = \overrightarrow{EB} + \overrightarrow{BO} = -\frac{1}{10}\vec{a} + \frac{1}{2}\vec{b}$	
	Atsakymas: $m = -\frac{1}{10}$; $n = \frac{1}{2}$	2 taškai
26.	$f(5\cdot 3) = 3f(3) + 2\cdot 3 \Longrightarrow f(3) = \frac{7}{3}$	
	Atsakymas: $f(3) = \frac{7}{3}$	1 taškas
27.1.	Atsakymas: $x \in (-\frac{3}{2}; +\infty)$	1 taškas
27.2.	Atsakymas: $x \in (-\infty; -2222\frac{2}{9}]$	1 taškas
28.	$h(x) = \sqrt{\cos^2 x - 1} \Longrightarrow \cos^2(x) \geqslant 1 \Longrightarrow \frac{1 + \cos(2x)}{2} \geqslant 1 \Longrightarrow \cos(2x) \geqslant 1$	
	$2x = t \Longrightarrow \cos(t) \geqslant 1 \Longrightarrow t = 2\pi k, k \in \mathbb{Z}$	
	$2x = 2\pi k, k \in \mathbb{Z} \Longrightarrow x = \pi k, k \in \mathbb{Z}$	
	Atsakymas: $D(h) = \{\pi k, k \in \mathbb{Z}\}$	1 taškas
29.	$AD = a - d; DE = a; EB = a + d \Longrightarrow AB = AD + DE + EB = 3a$	
	Pagal Talio teoremą: $\frac{AD}{AB} = \frac{AF}{AC} \Longrightarrow \frac{a-d}{3a} = \frac{AF}{AC} \Longrightarrow AF = \frac{a-d}{3a}AC$	
	AE = AD + DE = 2a - d	
	Pagal Talio teorema $\frac{AE}{AB} = \frac{AG}{AC} \Longrightarrow \frac{2a-d}{3a} = \frac{AG}{AC} \Longrightarrow AG = \frac{2a-d}{3a}AC$	
	$FG = AG - AF = \frac{1}{3}AC; GC = AC - AG = \frac{a+d}{3a}AC$	
	Geometrinė progresija, tai: $FG^2 = AF \cdot GC$	
	$\left(\frac{1}{3}AC\right)^2 = \left(\frac{a-d}{3a}AC\right)\left(\frac{a+d}{3a}AC\right) \Longrightarrow d = 0$	
	Atsakymas: $q = \frac{FG}{AF} = 1$	2 taškai