A fast recursive algorithm for computing cyclotomic polynomials

Andrew Arnold, Michael Monagan

Centre for Experimental and Constructive Mathematics Simon Fraser University

PASCO 2010, Grenoble, France

Organization of talk

- ► An introduction to cyclotomic polynomials and the sparse power series (SPS) algorithm
- ▶ Improving the SPS algorithm
- ▶ A challenge problem: computing giant cyclotomic polynomials
- A look at cyclotomic coefficients

What are cyclotomic polynomials?

Definition

The n_{th} **cyclotomic polynomial**, $\Phi_n(z)$, is the monic polynomial whose $\phi(n)$ distinct roots are the n_{th} primitive roots of unity.

$$\Phi_n(z) = \prod_{\substack{0 \le j < n \\ \gcd(j,n) = 1}} \left(z - e^{\frac{2\pi ij}{n}}\right).$$

We let the **order** of $\Phi_n(z)$ denote the number of distinct odd primes dividing its index n.

Definition

The n_{th} inverse cyclotomic polynomial, $\Psi_n(z)$, is defined as

$$\Psi_n(z) = (z^n - 1)/\Phi_n(z).$$

A motivating problem

We let A(n) denote the **height** of $\Phi_n(z)$, that is, the absolute value of the largest coefficient of $\Phi_n(z)$.

Theorem (Erdős, 1946)

Fix c>0, then there exists infinitely many n such that $A(n)>n^c$.

Question

Given c, what is the least n such that $A(n) > n^c$?

A motivating problem

We let A(n) denote the **height** of $\Phi_n(z)$, that is, the absolute value of the largest coefficient of $\Phi_n(z)$.

Theorem (Erdős, 1946)

Fix c > 0, then there exists infinitely many n such that $A(n) > n^c$.

Question

Given c, what is the least n such that $A(n) > n^c$?

Table: The least n such that $A(n) > n^c$, for c = 1, 2, 3, 4

С	n	A(n)
1	1181895	14102773
2	43730115	862550638890874931
3	416690995	80103182105128365570406901971
4	1880394945	64540997036010911566826446181523888971563

Some basic identities of cyclotomic polynomials

Lemma

Let $p \mid m$, then $\Phi_{mp}(z) = \Phi_m(z^p)$.

Lemma

Let m be odd, then $\Phi_{2m}(z) = \Phi_m(-z)$.

These two lemmas give an easy means of computing $\Phi_n(z)$ from $\Phi_m(z)$, where m is the largest squarefree odd divisor of n.

Lemma

Let $p \nmid m$, then $\Phi_{mp}(z) = \Phi_m(z^p)/\Phi_m(z) = \Phi_m(z^p)\Psi_m(z)/(z^m-1)$.

This lemma outlines a method of computing $\Phi_n(z)$ for odd, squarefree n by way of a series of polynomial divisions.

The sparse power series (SPS) algorithm

For n > 1, we compute $\Phi_n(z)$ as

$$\Phi_n(z) = \prod_{d \mid n} (1 - z^d)^{\mu(n/d)}.$$

We call the $(1-z^d)^{\pm 1}$ (alternatively $(z^d-1)^{\pm 1}$) comprising $\Phi_n(z)$ the **subterms** of $\Phi_n(z)$.

Example

For $n = 105 = 3 \cdot 5 \cdot 7$:

$$\Phi_{105}(z) = \frac{(1-z^{105})(1-z^7)(1-z^5)(1-z^3)}{(1-z^{15})(1-z^{21})(1-z^{25})(1-z)}$$

We can compute the truncated power series of this product. Multiplying a truncated power series of degree D by either $(1-z^d)$ or $(1-z^d)^{-1}=(1+z^d+z^{2d}+\dots)$ requires $\mathcal{O}(D)$ arithmetic operations in the coefficient domain.

The sparse power series algorithm

```
Input: n = p_1 p_2 \cdots p_k, a product of k distinct primes
Output: the coefficients of \Phi_n(z) = \sum_{i=0}^{\phi(n)} a(i)z^i
D \longleftarrow \phi(n),
                           // truncate to degree \phi(n)
a(0), a(1), a(2), \ldots, a(D) \leftarrow 1, 0, 0, \ldots, 0
for d \mid n such that d > 0 do
                            // multiply by 1-z^d
   if \mu(\frac{n}{d}) = 1 then
   | for i = D down to d by -1 do a(i) \leftarrow a(i) - a(i-d)
                                                 // divide by 1-z^d
   else
    for i = d to D do a(i) \leftarrow a(i) + a(i - d)
    end
end
return a(0), a(1), ..., a(D)
# of operations in \mathbb{Z}: \mathcal{O}(2^k \cdot \phi(n))
```

Improving the sparse power series algorithm

Let $d_1, d_2, \ldots, d_{2^k}$ be the divisors of n in the order the SPS algorithm iterates through them all. The SPS algorithm computes 2^k truncated power series,

$$f_s(z) = \prod_{i=1}^s (1-z^d)^{\mu(n/d)} \bmod z^{\phi(n)+1}, \text{ for } 1 \leq s \leq 2^k.$$

If, however, $f_t(z)$ is a polynomial of degree $D_t < \phi(n)$, then for s < t, we need only compute the terms of $f_s(z)$ to degree D_t .

Aim

Order the divisors of n in an order which minimizes the degree bound at every stage of the computation of $\Phi_n(z)$.

The palindromic property of cyclotomic coefficients

Lemma

Let

$$f(z) = \sum_{k=0}^{D} a(k)z^{k} = \Phi_{n_1}(z) \cdots \Phi_{n_r}(z)$$

be a degree-D product of cyclotomic polynomials such that n_1, \ldots, n_r are all odd, then

$$a(k) = (-1)^D a(D-k).$$

For odd n if $f_t = \prod_{j=0}^t (1-z^{d_j})^{n/d_j}$ is a polynomial of degree D_t , then it is exactly a product of cyclotomic polynomials of the form in lemma above. Thus for $s \le t$, we actually only have to truncate to degree $\lfloor D_t/2 \rfloor$. If the degree bound increases from f_t to f_{t+1} , we can apply this lemma to trivially obtain the higher-degree terms of $f_t(z)$.

SPS2: A first improvement

For a prime n = mp,

$$\Phi_n(z) = \Psi_m(z)\Phi_m(z^p)(z^m-1)^{-1}.$$

We can reexpress this equation in terms of the subterms of $\Phi_n(z)$:

$$\Phi_n(z) = \left(\prod_{d|m,d < m} (z^d - 1)^{\mu(n/d)}\right) \left(\prod_{d|n,p|m} (z^d - 1)^{\mu(n/d)}\right) (z^m - 1)^{-1}$$

- ▶ We multiply by the $2^{k-1}-1$ subterms appearing in the left product first, truncating to degree $\lfloor (m-\phi(m))/2 \rfloor$. This produces the first half of the terms of $\Psi_m(z)$.
- ▶ We then apply the palindromic property to yield the higher-degree terms of $\Psi_m(z)$ (up to degree at most $\phi(n)/2$), and multiply by the remaining subterms, truncating to degree $\phi(n)/2$.

SPS2: A first improvement

Example

For
$$n = 3 \cdot 5 \cdot 7$$
,

$$\Phi_{105}(z) = \Psi_{15}(z)\Phi_{15}(z^7)(z^{15}-1)^{-1}$$

Table: A comparison of the degree bound using SPS and SPS2

method	d n								
method	1	3	5	7	15	21	35	105	
SPS1	24	24	24	24	24	24	24	24	
SPS2	3	3	3	24	24	24	24	24	

▶ This change does not improve the complexity of the algorithm; however, it saves us a factor of 2 in practice.

SPS3: The iterative SPS algorithm

We can apply the identity $\Phi_{mp}(z) = \Psi_m(z)\Phi_m(z^p)(z^m-1)^{-1}$ iteratively. Let $n=p_1p_2\cdots p_k$, a product of k distinct odd primes. For $1\leq i\leq k$, let $m_i=p_1p_2\cdots p_{i-1}$ and $e_i=p_{i+1}\cdots p_k$. We set $m_1=e_k=1$. Note that $e_ip_im_i=n$ for $1\leq i\leq k$. By repeated appliation of the SPS2 identity, we can show that

$$\Phi_n(z) = \left(\prod_{j=2}^k \Psi_{m_j}(z^{e_j})\right) \left(\prod_{j=1}^k (z^{n/p_j} - 1)^{-1}\right) (z^n - 1)$$

We compute $\Phi_n(z)$ as

$$\Psi_{m_k}(z^{e_k})\cdots\Psi_{m_2}(z^{e_2})\cdot\left(\prod_{j=1}^k(z^{n/p_j}-1)^{-1}\right)(z^n-1)$$

from left to right.

SPS3: The iterative SPS algorithm

Example

$$\Phi_{105}(z) = \Psi_{15}(z)\Psi_3(z^7)(z^{15}-1)^{-1}(z^{21}-1)^{-1}(z^{35}-1)^{-1}(z^{105}-1)$$

Table: A comparison of the degree bound using SPS1-3

method	d n							
method	1	3	5	7	15	21	35	105
SPS1	24	24	24	24	24	24	24	24
SPS2	3	3	3	24	24	24	24	24
SPS3	3	3	3	7	24	24	24	24

The speedup we see from SPS2-3 is small for $\Phi_n(z)$ of low order; however, these are exactly the $\Phi_n(z)$ that are easy to compute. For $\Phi_n(z)$ or order k>2, the degree bound lowers (over SPS2) for $2^k-2^{k-1}-k$ subterms of $\Phi_n(z)$. We see considerably speedup (3-5x) for $\Phi_n(z)$ of order ≥ 6 .

SPS4: The recursive SPS algorithm

For SPS3 with express $\Phi_n(z)$ as a product of inverse cyclotomic polynomials (plus some additional subterms). We derive an analog for $\Psi_n(z)$. Given $n=p_1p_2\cdots p_k$, again let $m_i=p_1p_2\cdots p_{i-1}$ and $e_i=p_{i+1}\cdots p_k$, $m_1=e_k=1$ then:

$$\Psi_n(z) = \Phi_{m_k}(z^{e_k}) \cdots \Phi_{m_1}(z^{e_1}).$$

Thus we can break $\Phi_n(z)$ into products of $\Psi_m(z)$ of smaller index, and in turn break $\Psi_m(z)$ into products of cyclotomic polynomials of yet smaller index. We recurse until we have a cyclotomic or inverse cyclotomic polynomial of order 1.

SPS4: An example

Consider the case of $\Phi_{105}(z)$ again. SPS3 computes $\Phi_n(z)$ as

$$\Phi_{105}(z) = \Psi_{15}(z)\Psi_3(z^7)(z^{15}-1)^{-1}(z^{21}-1)^{-1}(z^{35}-1)^{-1}(z^{105}-1)$$

However, in light of our new identity for $\Psi_n(z)$, we know SPS3 computes $\Psi_{15}(z)$ in a wasteful manner.

$$= \left(\Phi_3(z)\Phi_1(z^5)\right)\Psi_3(z^7)(z^{15}-1)^{-1}(z^{21}-1)^{-1}(z^{35}-1)^{-1}(z^{105}-1)$$

- ► For the two subterms appearing in $\Phi_3(z) = (z^3 1)/(z 1)$, we truncate to degree $\phi(3)/2 = 1$.
- ▶ Then for the remaining subterm in $\Psi_{15}(z)$, $\Phi_1(z^5) = z^5 1$, we truncate to half the degree of $\Psi_{15}(z)$, as before with SPS3 and SPS2.

Comparing SPS1-4 on $\Phi_{105}(z)$

Table: degree bound using SPS1-4 on $\Phi_{105}(z)$

method	d n								
method	1	3	5	7	15	21	35	105	
SPS1	24	24	24	24	24	24	24	24	
SPS2	3	3	3	24	24	24	24	24	
SPS3	3	3	3	7	24	24	24	24	
SPS4	1	1	3	7	24	24	24	24	

Comparing SPS1-4 on $\Phi_{43730115}(z)$

Comparing SPS1-4 on $\Phi_{3234846615}(z)$

Timings

Table: Time to calculate $\Phi_n(z)$ (in seconds*) on a Intel 2.7 GHz Core i7

	order	algorithm						
n	of $\Phi_n(z)$	FFT	SPS	SPS2	SPS3	SPS4		
255255	6	0.40	0.00	0.00	0.00	0.00		
1181895	6	1.76	0.01	0.00	0.00	0.00		
4849845	7	7.74	0.12	0.06	0.02	0.01		
37182145	7	142.37	1.75	0.95	0.23	0.19		
43730115	7	140.62	1.69	0.93	0.23	0.19		
111546435	8	295.19	6.94	3.88	1.45	0.94		
1078282205	8	-	105.61	58.25	12.34	9.29		
3234846615	9	-	432.28	244.44	81.32	49.18		

^{*}times are rounded to the nearest hundredth of a second

A challenge problem

T.D. Noe asked us to compute $\Phi_n(z)$, where

$$n = 99660932085 = 3 \cdot 5 \cdot 11 \cdot 13 \cdot 19 \cdot 29 \cdot 37 \cdot 43 \cdot 53.$$

- ▶ This is the lcm of the least two integers m satisfying $A(m) > m^4$.
- This polynomial requires a large amount of space; storing the coefficients of $\Phi_n(z)$ as 320-bit integers requires 760 GB. Moreover, we didn't have an array of disks to expedite the computation.

A first attempt

Our first attempt (before we thought of SPS2-4) was to compute $\Phi_n(z)$ modulo 32-bit primes using SPS. Each image is roughly 76 GB. As such, our computation was disk-based. This technique unfortunately was not an effective approach to compute $\Phi_n(z)$. The computation was very slow. Each image of $\Phi_n(z)$ took over two weeks to compute.

It was, however, an effective means of destroying hard disks.

A new approach

We computed $\Psi_m(z)$, where m=n/53=1880394945, modulo five 64-bit primes. We then computed $g_j(z)$, where, given

$$\sum_{k=0}^{\phi(n)/2} c(k) z^k = \Psi_m(z) \cdot (z^m - 1)^{-1} \bmod z^{\phi(n)/2 + 1}.$$

we set $g_i(z)$ as

$$g_j(z) = \sum_{0 \le i+53k \le \phi(p)/2} c(j+53k)z^k,$$

in which case,

$$\sum_{j=2}^{52} z^j g_j(z^{53}) = \Psi_m(z) \cdot (z^m - 1)^{-1} \bmod z^{\phi(n)/2 + 1}.$$

A new approach (continued)

$$\sum_{i=0}^{52} z^j g_j(z^{53}) = \Psi_m(z) \cdot (z^m - 1)^{-1} \bmod z^{\phi(n)/2 + 1}.$$

Thus, as $\Phi_n(z) = \Psi_m(z)(z^m - 1)^{-1}\Phi_m(z^{53})$,

$$\sum_{j=0}^{52} z^j g_j(z^{53}) \Phi_m(z^{53}) \equiv \Phi_n(z) \pmod{z^{\phi(n)/2+1}}.$$

Thus to compute all the coefficients of $\Phi_n(z)$, we need only compute $g_j(z)\Phi_m(z)$ for $0 \le j < 53$. We can compute $g_j(z)\Phi_m(z)$ modulo a 64-bit prime in memory with > 5GB of RAM. We can then reconstruct $g_j(z)\Phi_m(z)$ by way of Chinese remaindering.

A new approach (continued)

$$\sum_{j=0}^{32} z^j g_j(z^{53}) = \Psi_m(z) \cdot (z^m - 1)^{-1} \bmod z^{\phi(n)/2 + 1}.$$

Thus, as $\Phi_n(z) = \Psi_m(z)(z^m - 1)^{-1}\Phi_m(z^{53})$,

$$\sum_{j=0}^{52} z^j g_j(z^{53}) \Phi_m(z^{53}) \equiv \Phi_n(z) \pmod{z^{\phi(n)/2+1}}.$$

Thus to compute all the coefficients of $\Phi_n(z)$, we need only compute $g_j(z)\Phi_m(z)$ for $0 \le j < 53$. We can compute $g_j(z)\Phi_m(z)$ modulo a 64-bit prime in memory with > 5GB of RAM. We can then reconstruct $g_j(z)\Phi_m(z)$ by way of Chinese remaindering. We found that

$$A(99660932085) = 61267208717407836670896202324395260$$

 $12472525473338153078678961755149378773915536447185370,$

which is roughly $2^{291.6}$ or $n^{7.98}$. The computation took roughly 2 days, distributed over 3 desktop computers.

The coefficients of $\Phi_{4849845}(z)$

Plots of $\Phi_{1181895}(z)$

Plots of $\Phi_{43730115}(z)$

The coefficients of $\Phi_{40324935}(z)$

