MATEMATICA 1C 2DO PARCIAL

DERIVADAS

Derivada por definición:

$$f'(c) = \lim_{x \to c} \frac{f(x) - f(c)}{x - c}.$$

Interpretación geométrica: RECTA TANGENTE:

$$y = f'(c)(x - c) + f(c)$$
, F'(C)= Pendiente.

- → Si existe la derivada de la funcion en un punto ⇒ existe pendiente de recta tangente en el punto ⇒ existe recta tangente en el punto.
- → Si no existe derivada en el punto ⇒ no existe pendiente ⇒ no existe recta tangente, al menos, recta tangente no vertical.

Si f no es continua en un punto, entonces no es derivable en ese punto.

Aproximación lineal:

$$\overline{f(x) \simeq f(x_0) + f'(x_0)(x - x_0)}$$

TABLA DE DERIVADAS DE FUNCIONES BASICAS

f(x)	f'(x)	f(x)	f'(x)
а	0	$\log_a(x), \ a > 0, a \neq 1$	$\frac{1}{\ln(a)x}$
$x^q, q \in \mathbb{Q} - \{0\}$	qx^{q-1}	sen(x)	cos(x)
a^x , $a > 0$, $a \neq 1$	In(<i>a</i>) <i>a</i> ^x	cos(x)	- sen(<i>x</i>)

F (X)	F'(X)
Ln(x)	1/x
TG (X)	SEC2 (x)

Análogamente, se prueba que $(\cot(x))' = -\csc^2(x)$, $(\sec(x))' = \sec(x)\tan(x)$ y $(\csc(x))' = -\csc(x)\cot(x)$.

1

Propiedades y reglas de derivación:

En producto de funciones:

$$(f \cdot g)'(x) = f'(x)g(x) + f(x)g'(x)$$

En división de funciones:

$$\left(\frac{f}{g}\right)'(x) = \frac{f'(x)g(x) - f(x)g'(x)}{[g(x)]^2}$$

PROBLEMAS DE APLICACIÓN:

Cuando me hablan de **razón de cambio o marginal**: Se refiere a que busque su derivada, o que me están dando su derivada.

• Ingreso per cápita: PNB/POBLACION

• Costo promedio: C(X)/X

• **Utilidad marginal:** Derivada de I(X) – C(X); Ingreso – Costo.

Recordando que:

• **Costo:** CF+CV.

• **Ingreso:** P x Q (Precio * Cantidad).

• **Utilidad:** Ingreso – Costo.

INCREMENTOS:

1. Se calcula $\Delta X = (X2-X1)$

2. Se calcula valores de Y en X1 y X2 = (F(X1); F(X2)).

3. Se saca $\Delta Y = (F(X1) - F(X2))$.

Regla de L'HOPITAL:

$$\lim_{x\to x_0}\frac{f(x)}{g(x)}=\lim_{x\to x_0}\frac{f'(x)}{g'(x)}=L$$

Con límites especiales que den 0*∞:

Por ejemplo: (X-1)*ln(x-1)= El **In lo dejo arriba**; y lo otro lo paso abajo como 1/x-1. Y sobre eso hago L'HOPITAL.

Con funciones a trozos: Analizo en los puntos su continuidad, y si existe la derivada. Para que sea continua: 1. F en el punto tiene que ser igual a el límite de x tendiendo a ese punto; si no lo es entonces la función es discontinua, y por lo tanto no existe la derivada. A la hora de buscar la derivada analizo por definición.

Cuando tengo una función valor absoluto:

- 1. La reflejo como una función a trozos.
- Me fijo si es continua; me fijo si es derivable en el punto (por definición). Generalmente no existe la derivada en ese punto; por lo tanto lo reflejo asi:

No existe en X= 1
$$1 \text{ si } X \ge 1$$

$$-1 \text{ SI } X \le 1$$

ESTUDIO DE FUNCIONES

Pasos:

- 1. Analizo el **dominio**.
- 2. Busco las **intersecciones** con los ejes X e Y.
- 3. Busco las asíntotas:

ASINTOTA VERTICAL: Se analiza con límite de la X que **no** pertenece al **dominio**.

Si me da ∞ es porque es A.V.

ASINTOTA HORIZONTAL: Se busca con límite de X tendiendo a ∞ . Si me da un \mathbb{N}° significa que esa es la A.H.

A la hora de evaluar con límite:

- $O/N^{\circ} = O$
- $0/\infty = 0$
- $N_{\circ} \setminus O = \infty$
- ∞ / $N_o = \infty$

En los límites de ∞ :

Saco factor común en el numerador y denominador con el exponente más grande.

4. Busco la **derivada primera**; para hallar sus puntos críticos, máximos, mínimos (RELATIVOS), intervalos de crecimiento y decrecimiento.

Para esto es necesario hacerle un **estudio de signo** a F´(X), con F´(X)=0

- 1. Si el signo de f'(x) cambia de negativo a positivo en x = c, f(x) tiene un mínimo relativo en x = c.
- 2. Si el signo de f'(x) cambia de positivo a negativo en x = c, f(x) tiene un máximo relativo en x = c.
- 3. Si f'(x) NO cambia de signo en x = c, f(x) NO tiene extremo relativo en x = c.

Existencia de extremos absolutos: Si una función f(x) es continua en un intervalo cerrado [a, b], entonces f(x) posee un valor máximo y un valor mínimo en [a, b].

Puntos críticos:

Los **posibles puntos extremos** (máximos o mínimos) de una función f los toma en los puntos $c \in Dom(f)$ tales que: f'(c) = 0 o $\nexists f'(c)$.

A la hora de hacer la derivada primera, también indico su dominio.

5. Busco la **derivada segunda**, puntos de inflexión y cambios de concavidad.

Hago un estudio de signo con F'(X).

Decimos que una función f es **cóncava hacia arriba** en x_0 si $f''(x_0) > 0$. Informalmente lo indicamos $\hat{}^{\perp}$. Decimos que una función f es **cóncava hacia arriba** en x_0 si $f''(x_0) < 0$. Informalmente lo indicamos $\hat{\downarrow}$.

Signo de $f'(x)$ y $f''(x)$	Propiedades de la gráfica de f	Forma de la gráfica	
f'(x) > 0 y $f''(x) > 0$	Creciente y cóncava hacia arriba		
f'(x) > 0 y $f''(x) < 0$	Creciente y cóncava hacia abajo		
f'(x) < 0 y $f''(x) > 0$	Decreciente y cóncava hacia arriba		
f'(x) < 0 y $f''(x) < 0$	Decreciente y cóncava hacia abajo		

6. Calculo el **valor de F en los extremos relativos y puntos de inflexión**; normalmente se hacen aproximaciones groseras solo para graficar.

7. **Resumo** la información en una **tabla** para mayor facilidad a la hora de **graficar**.

Dominio/intervalos			
Estudio de F´(X)			
Estudio de F´´(X)			
F (X)			
Forma de la grafica			

Ejemplo:

Dominio	$(-\infty, -1)$	$x_2 = -1$	(-1,0)	$x_1 = 0$	(0, 1)	$x_3 = 1$	$(1,+\infty)$
Estudio f'	< 0	< 0	< 0	=0	> 0	> 0	> 0
Estudio f''	< 0	=0	> 0	> 0	> 0	=0	< 0
f	decrece y $\widehat{\downarrow}$	inflexión	decrece y $\stackrel{\uparrow}{\smile}$	mín. rel.	crece y 🔨	inflexión	$\widehat{\downarrow}$

8. **Graficar** con toda esta información.

En caso de función valor absoluto:

- 1. La reflejo como una función a trozos.
- 2. Me fijo si es **continua**; me fijo si es **derivable** en el punto (por definición).
- 3. Tengo en cuenta que si **no existe la derivada** en ese punto; entonces ese es un **punto crítico**; al igual que si existe.

En cualquier función:

Si cuando lo derivo (vale para la derivada primera o segunda), se **limita el dominio** en algún punto; entonces me fijo que pasa con **límite por definición** (ya que ese puede ser un posible punto crítico o de inflexión). Si da **infinito** significa que no existe la derivada y por lo tanto ese es un **punto crítico o de inflexión.**

INTEGRALES

Primitiva/proceso de integración= anti derivada. No toda función tiene primitiva.

TABLA BASICA DE INTEGRALES:

SOX	X+C
χ^{-1}	In IXI +C
JXK DX	Ktn +C
Sex DX	ex +C
Sax DX	AX +C
S (6)(4) 8x	Sen (+) +0
5500(+)84	- Cos (+) +c
SSEC2 (+18x	(3 (+) + C
2 ot xs	arcts(+)+c
J 0 × 1-x2	JRCSEN(x)+C

METODOS DE INTEGRACION

1. Método de sustitución (o de cambio de variable):

Se sustituye por t; se hace la integral con dt, y luego una vez definida la integral reemplazo t. **No olvidarme el +C**

2. Método de integración por partes

$$\int u \, dv = u.v - \int v \, du.$$

6

- Para integrar LN(X): Siempre se hace por partes: pensándolo como 1*ln(x).
- Para integrar dos funciones cíclicas: Aplico dos veces el método de integración por partes.

Ejemplos:

3. Aplicar dos veces el método de integración por partes para hallar $\int e^x \operatorname{sen}(x) dx$. Sea $F(x) = e^x$ y $G'(x) = \operatorname{sen}(x)$ (luego, $G(x) = -\cos(x)$). Así, aplicando la fórmula de integral por partes, obtenemos

$$\int e^x \operatorname{sen}(x) \, \mathrm{d}x = -e^x \cos(x) + \int e^x \cos(x) \, \mathrm{d}x. \tag{14.2}$$

La integral del miembro derecho es de la misma naturaleza y del mismo grado de dificultad que la integral original, por lo que intentamos repetir la integración por partes haciendo $F = e^x$ y $G'(x) = \cos(x)$, por lo que $G(x) = \sin(x)$. Entonces

$$\int e^x \cos(x) dx = -e^x \sin(x) + \int e^x \sin(x) dx.$$
 Sustituyendo esta expresión en (14.2),
$$\int e^x \sin(x) dx = -e^x \cos(x) + \left(e^x \sin(x) - \int e^x \sin(x) dx\right).$$
 Entonces, pasando la última integral sumando al primer miembro, vale que

$$2\int e^x \sin(x) dx = e^x \sin(x) - e^x \cos(x), \quad \text{por lo que podemos afirmar que}$$
$$\int e^x \sin(x) dx = \frac{e^x \sin(x) - e^x \cos(x)}{2} + C.$$

2. Hallar $\int \ln(x) dx$ usando integración por partes.

Sea $F(x) = \ln(x)$ y G'(x) = 1 (luego G(x) = x). Entonces aplicando la fórmula de la integral por partes tenemos que

$$\int \ln(x) \, dx = \ln(x) \cdot x - \int \frac{x}{x} \, dx = x \ln(x) - \int 1 \, dx = x \ln(x) - x + C.$$

EN LOS PROBLEMAS DE INTEGRALES:

Es necesario **hallar el valor de C**. Para eso generalmente me dan algún dato, convertible a punto tal como (0; 3) que me permite reemplazar en la función y obtener mi valor C.