## Digital Control Systems Technology

(formally Digital Control Systems)

Nimal Skandhakumar

Faculty of Technology
University of Sri Jayewardenepura

## Introduction to Class

## Staff

- Lecturer
  - o Dr. Nimal Skandhakumar
- Instructors
  - o TBC

#### **Course Contents**

- Introduction
- Interfacing Analogue and Digital Worlds
- Hardware/Software Co-design
- Control System Components
- Control System Design
- Project

## **Grading**

| Activities                              | Percentages |
|-----------------------------------------|-------------|
| Continuous Assessment, Quiz, Practicals | 10          |
| Group Project                           | 30          |
| Final Exam                              | 60          |

#### Resources

- Office Hours
  - o Monday 1:00 PM 2:00 PM
    - If alternative times are preferred, let me know.
- Lecture slides, etc.:
  - http://lms.tech.sjp.ac.lk/course/view.php?id=9
  - o <a href="https://academic.nimal.info/">https://academic.nimal.info/</a>

# Introduction to Digital Control Systems

## Controlling systems using digital signals

## What are Systems?

A set of things working together as parts of a mechanism

- Natural Systems
  - Human body
- Artificial Systems
  - Automotive vehicle

## **Dynamic Systems**

Systems that evolve with time

Systems with inputs and outputs: how the input affects the output or what input should be given to generate a desired output.

- Example
  - o Fan vs. Air Conditioner

## What is Control?

Change the behaviour of a system

#### Digital Control

 The control laws are implemented in a digital device

## **Examples of Digitally Controlled Systems**

- Housing
  - o in-house temperature regulation
- Automotive industry
  - speed regulators in cars
- Aeronautic/space industry
  - o autopilots, automatic take off/landing
- Robotics
  - o robot-arm trajectory control

## Advantages of Digital over Analogue

- Speed
  - Superior performance at very fast speeds with digital computers
- Accuracy
  - Digital signals are more accurate
- Flexibility
  - Controller can be modified without complete replacement
- Cost
  - Digital controllers are more economical to build
- Implementation Errors
  - Implementation errors are negligible

## Signals

A magnitude which varies with time

- Variable, not constant
- Simple or complex
- Sound, thermal, etc.

## Type of signals

- Binary
- Digital
- Continuous
- Fuzzy not well defined
- Stochastic unpredictable

### System variables

#### Input Signals:

- Manipulated
  - o can be controlled
- Disturbances
  - cannot be controlled

#### Process Variables:

- External
  - can be sensed
- Internal
  - within the system



## Systems related to signals

- Signal generators (sine wave)
- Signal processes (filer, sampler)
- Sensors or transducers (microphone)
- Receivers and transmitters

## Representation of Signals

• graph or table



function of time

## Representation of Signals

• information + noise



## **Control System Structures**

- Open-loop
  - o set goals, no disturbances, no measurements
- Closed-loop
  - operator sets goals, controller sets variables with measurements

#### **Control System Structures**

- Supervisory
  - o operator supervise closed-loop references
- Cascade
  - sub-processes
- Feed-forward
  - sense disturbance and control input generated
- Two degrees of freedom
  - two controllers to adjust different aspects of process
- Hierarchical
  - hierarchical sub-processes, with central coordinating

## Closed-loop Digital Control Systems

In a closed loop control system, the variable to be controlled (controlled variable / system output) is continuously measured and then compared with a predetermined value (reference variable).



## What do you want to learn?

## **Group Project**

Build a closed-loop control system

- Group size:
  - 0 4-6
- Skills:
  - Electronics, Programming, Research,
     Project Management

Ask Early, Ask Often.