Álgebra Linear: Principais Ideias

Adair Antonio da Silva Neto 1 de setembro de 2022

Sumário

1	Estr	uturas Algébricas	1	
	1.1	O que é um corpo (ou field)?	1	
	1.2	O que é um corpo ordenado?	2	
	1.3	Números complexos	2	
	1.4	Como somar números complexos?	3	
	1.5	Como multiplicar números complexos?	3	
	1.6	Representação geométrica de $\mathbb C$	3	
	1.7	Complexo conjugado	3	
	1.8	O que é uma métrica?	3	
	1.9	Função Traço (Trace)	4	
	1.10	Posto de uma Matriz (Matrix Rank)	4	
		Matrizes adjuntas	4	
	1.12	Material Complementar	5	
2	Espaço Vetorial			
	2.1	O que é um espaço vetorial?	6	
	2.2	O que é combinação linear?	7	
	2.3	O que são subespaços?	7	
	2.4	O que significa subespaço gerado (subspace spanned)?	7	
	2.5	O que são base e dimensão?	8	
	2.6	O que são coordenadas?	8	
	2.7	Como fazer matriz de mudança de base?	9	
	2.8	Material Complementar	10	
3	Transformações Lineares			
	3.1	O que é uma transformação linear?	11	
	3.2	O que são Núcleo e Imagem?	12	
	3.3	O que são Posto e Nulidade?	12	
		Teorema do Núcleo e Imagem.	12	
		A Álgebra das Transformações Lineares	13	
		O que são isomorfismos?	14	
		Como representar transformações com matrizes?	15	
	3.8	Exercícios Resolvidos	18	
4	Produto Interno			
	4.1	O que é?	19	
	4.2	Desigualdade de Cauchy-Schwarz	20	
		Norma e Métrica	21	
	1. 1.	Ângulo e Ortogonalidade	22	

	4.5	Processo de Gram-Schmidt	22
	4.6	Complemento Ortogonal	23
	4.7	Projeção Ortogonal	24
	4.8	Operadores auto-adjuntos	24
	4.9	Operadores ortogonais	25
5	Auto	ovalores e Autovetores	26
	5.1	Motivação	26
	5.2	O que são?	27
	5.3	Como encontrá-los?	27
	5.4	Multiplicidades algébrica e geométrica	28
	5.5	Diagonalização	29
	5.6	Subespaço Invariante	30
	5.7	Matrizes Especiais	31
	5.8	Teorema Espectral	33

Aviso: este material está em construção. Ele é escrito por Adair Antonio da Silva Neto, aluno do bacharelado em Matemática da Unicamp, para estudo próprio, mas na expectativa de que ajude outras pessoas em seu aprendizado.

1 Estruturas Algébricas

Nesta seção veremos os conceitos de corpo, corpo ordenado, números complexos e métrica.

1.1 O que é um corpo (ou field)?

Antes de definir o que é um corpo, vamos considerar um exemplo de um corpo.

Seja \mathbb{F} o conjunto dos números reais ou complexos. Sabemos que:

- 1. A adição é comutativa: x + y = y + x, $\forall x, y \in \mathbb{F}$.
- **2.** A adição é associativa x + (y + z) = (x + y) + z, $\forall x, y, z \in \mathbb{F}$.
- 3. Existe um único elemento $0 \in \mathbb{F}$ tal que x + 0 = x, para todo x em \mathbb{F} (elemento neutro).
- 4. Para cada $x \in \mathbb{F}$, existe um único elemento correspondente $(-x) \in \mathbb{F}$ tal que x + (-x) = 0 (elemento simétrico).
- 5. A multiplicação é comutativa xy = yx, $\forall x, y \in \mathbb{F}$.
- 6. A multiplicação é associativa x(yz)=(xy)z, $\forall x,y,z\in\mathbb{F}$.
- 7. Existe um único elemento $1 \in \mathbb{F}$ tal que x1 = x, $\forall x \in \mathbb{F}$ (elemento neutro).
- 8. Para cada elemento $x\in\mathbb{F}$ diferente de zero, existe um único elemento correspondente $x^{-1}=(1/x)$ tal que $xx^{-1}=1$ (inverso multiplicativo).
- 9. Vale a distributividade: x(y+z) = xy + xz, $\forall x, y, z \in \mathbb{F}$.

A motivação por trás da definição de corpo é generalizar essas propriedades para outros conjuntos e outras operações. Ou seja, queremos trabalhar com conjuntos, munidos de duas operações que "funcionam"como a adição e a multiplicação dos reais.

Assim, dizemos que um corpo \mathbb{F} é um conjunto não vazio dotado de duas operações + e \times satisfazendo as propriedades 1-9.

Há ainda uma restrição que precisamos fazer. Queremos que toda operação de adição ou de multiplicação nos leve a um elemento dentro do corpo. Isto é, queremos que o corpo seja fechado quanto à adição e multiplicação. Formalmente,

(F1) Para todos $x, y \in \mathbb{F}$, $x + y \in \mathbb{F}$. (F2) para todos $x, y \in \mathbb{F}$, $x \times y \in \mathbb{F}$.

Esses são chamados axiomas de fechamento. As propriedades 1-4 são chamadas axiomas da operação de adição e as propriedades 5-9, axiomas da operação de multiplicação.

1.2 O que é um corpo ordenado?

Um corpo $\mathbb F$ munido de uma relação de ordem < é chamado de corpo ordenado se ele satisfaz os seguintes axiomas:

- 1. (O1) Princípio da Comparação: Queremos que apenas um dos seguintes casos aconteça: ou x < y, ou y < x ou x = y.
- 2. (O2) Transitividade: $x < y \land y < z \implies x < z$.
- 3. (O3) Consistência da adição: $y < z \implies x + y < x + z$.
- 4. (O4) Consistência da multiplicação: $(0 < x \land 0 < y) \implies 0 < x \times y$.

Onde $x, y, z \in \mathbb{F}$.

1.3 Números complexos

Antes de tudo, como podemos definir o conjunto dos números complexos \mathbb{C} ?

$$\mathbb{C} = \{a + bi : a, b \in \mathbb{R}\}\$$

1.4 Como somar números complexos?

Seja z=a+bi e $w=c+di\in\mathbb{C}.$ Definimos a sua soma como

$$z + w = (a + bi) + (c + di) = (a + c) + (b + d)i$$

1.5 Como multiplicar números complexos?

E definimos seu produto como

$$z \cdot w = (a+bi) \cdot (c+di) = (ac-bd) + (bc+ad)i$$

Note que
$$i^2 = i \cdot i = (0+1i) \cdot (0+1i) = (0-1) + (0+0)i = -1$$
.

O número i é chamado imaginário puro.

1.6 Representação geométrica de ${\mathbb C}$

Dado \mathbb{R}^2 o plano cartesiano usual, identificamos o número complexo z=a+bi com o ponto $(a,b)\in\mathbb{R}^2$.

Com essa representação geométrica em mente, vem do Teorema de Pitágoras que o valor absoluto (ou módulo) de um número complexo z é

$$|z| = \sqrt{a^2 + b^2}$$

Em coordenadas polares, temos $a = r \cos \theta$ e $b = r \sin \theta$.

1.7 Complexo conjugado

Geometricamente, o conjugado complexo de z é a reflexão do ponto z em relação ao eixo real Ox. Simbolicamente,

$$\bar{z} := a - bi$$

1.8 O que é uma métrica?

Como podemos generalizar a noção que temos de distância?

Intuitivamente uma distância exige um ponto inicial e um ponto final, resultando, a partir desses pontos, um número real.

Sabemos que toda distância é simétrica (isto é, têm o mesmo valor independentemente do sentido) e sempre positiva. Além disso, queremos que, dados três pontos x,y,z, a distância de x até z seja menor ou igual a distância de x até y mais a distância de y até z.

Assim, dado um conjunto não vazio qualquer \mathbb{X} , podemos definir uma métrica (ou distância) como sendo uma função $d(\cdot,\cdot):\mathbb{X}\times\mathbb{X}\to\mathbb{R}$ satisfazendo:

1. Simetria: d(x,y)=d(y,x). 2. Positividade: $d(x,y)\geq 0$, sendo que $d(x,y)=0\iff x=y$. 3. Desigualdade Triangular: $d(x,z)\leq d(x,y)+d(y,z)$.

Onde x, y, z são elementos quaisquer do conjunto \mathbb{X} .

Vamos utilizar a notação (\mathbb{X},d) para indicar que o conjunto \mathbb{X} possui a métrica $d(\cdot,\cdot)$. Dizemos que (\mathbb{X},d) é um **espaço métrico**.

1.9 Função Traço (Trace)

É a soma dos elementos da diagonal principal de uma matriz quadrada. Isto é,

$$trA = \sum_{i=1}^{n} a_{ii}$$

onde $A = (a_{ij})_{i,j} \in \mathbb{M}_n(\mathbb{K})$.

1.10 Posto de uma Matriz (Matrix Rank)

É o número de linhas não nulas de uma matriz em sua forma escalonada.

1.11 Matrizes adjuntas

É a transposta da matriz (quadrada!) dos cofatores.

1.12 Material Complementar

O vídeo Vetores, o que são eles afinal? é uma ótima introdução ao que vamos estudar nesta disciplina.

2 Espaço Vetorial

Vamos introduzir aqui o objeto matemático que será o centro de nosso estudo em Álgebra Linear. A ideia é trabalhar com um sistema algébrico que generalize a noção de combinação linear num dado conjunto.

2.1 O que é um espaço vetorial?

Um espaço vetorial consiste de:

- 1. Um conjunto \mathbb{F} de escalares.
- 2. Um conjunto \mathbb{V} de objetos chamados vetores.
- 3. Uma regra (i.e. operação) chamada adição de vetores, que associa cada par de vetores $\alpha, \beta \in \mathbb{V}$ um vetor $\alpha + \beta \in \mathbb{V}$ tal que as seguintes propriedades são satisfeitas:
 - (a) Comutatividade: $\alpha + \beta = \beta + \alpha$.
 - (b) Associatividade: $\alpha + (\beta + \gamma) = (\alpha + \beta) + \gamma$.
 - (c) Elemento neutro: Existe um único vetor $0 \in \mathbb{V}$ tal que $\alpha + 0 = \alpha$, $\forall \alpha \in \mathbb{V}$.
 - (d) Elemento simétrico: Para cada vetor α , existe um único vetor $-\alpha$ tal que $\alpha + (-\alpha) = 0$.
- 4. Uma regra chamada multiplicação por escalar que associa o par $c\in\mathbb{F}$ e $\alpha\in\mathbb{V}$ ao vetor $c\alpha\in\mathbb{V}$, satisfazendo:
 - (a) Elemento identidade: $1\alpha = \alpha$, $\forall \alpha \in \mathbb{V}$.
 - (b) Associatividade: $(c_1c_2)\alpha = c_1(c_2\alpha)$.
 - (c) Distributividade para adição de vetores: $c(\alpha + \beta) = c\alpha + c\beta$.
 - (d) Distributividade para a multiplicação por escalar: $(c_1+c_2)\alpha=c_1\alpha+c_2\alpha$.

Os objetos que chamamos de vetores num espaço vetorial podem não ser os vetores aos quais estamos acostumados do Ensino Médio. Podem ser matrizes, funções, polinômios etc.

2.2 O que é combinação linear?

Falamos em combinação linear anteriormente remetendo à noção intuitiva que temos de Geometria Analítica. Formalmente, dizemos que um vetor β é dito **combinação linear** dos vetores $(\alpha_1, \alpha_2, \ldots, \alpha_n)$ se existirem escalares c_1, \ldots, c_n tais que β pode ser escrito como

$$\beta = c_1 \alpha_1 + \ldots + c_n \alpha_n$$

Ou, em notação mais compacta,

$$\beta = \sum_{i=1}^{n} c_i \alpha_i$$

2.3 O que são subespaços?

Considere V um espaço vetorial sobre o corpo F. Um subconjunto $W \subset V$ é dito um **subespaço** de V se W for um espaço vetorial sobre F com as operações de soma de vetores e multiplicação por escalar.

Exemplo 2.1: Subespaços

Como verificar se S_A é subespaço vetorial de S?

Solução: Basta verificar se $c\alpha + d\beta \in S_A$, onde $c, d \in \mathbb{F}$ e $\alpha, \beta \in \mathbb{V}$.

2.4 O que significa subespaço gerado (subspace spanned)?

Dado um conjunto de vetores S em um espaço vetorial V, dizemos que o **subespaço gerado** por S é a interseção de todos os subespaços de V que contêm S.

Caso S seja um conjunto não nulo, então o subespaço gerado por ele (vamos chamá-lo de W) é o conjunto de todas as combinações lineares de vetores em S. Isto é, a partir dos vetores de S eu consigo escrever qualquer vetor em S.

2.5 O que são base e dimensão?

Uma **base** para o espaço vetorial V é um conjunto de vetores linearmente independentes que geram o espaço (*span the space*) V. Vamos dizer que o espaço V tem **dimensão finita** se ele possui uma base finita.

Por isso, os vetores $e_1=(1,0,0,\ldots,0)$, $e_2=(0,1,0,\ldots,0)$, ..., $e_n=(0,0,0,\ldots,1)$ formam uma base do espaço \mathbb{R}^n e são chamados de **base** canônica de \mathbb{R}^n .

Observe que a definição de base implica que se V é um espaço vetorial gerado por um conjunto de m vetores, então qualquer conjunto de vetores linearmente independentes em V é finito e contém no máximo m elementos. Consequentemente, quaisquer duas bases de V têm o mesmo número m de elementos.

Com isso em mente, vamos definir **dimensão** de um espaço vetorial finito V como sendo o número de elementos da base de V e denotamos $\dim(V)$.

Essas definições têm como consequência dois fatos importantes:

1. Qualquer subconjunto de V com mais de $\dim(V)$ elementos é linearmente dependente. 2. Nenhum subconjunto de V que tem menos que $\dim(V)$ elementos pode gerar V.

Caso W_1 e W_2 sejam dois subespaços finitos de V, então W_1+W_2 tem dimensão finita e

$$\dim(W_1) + \dim(W_2) = \dim(W_1 \cap W_2) + \dim(W_1 + W_2)$$

2.6 O que são coordenadas?

As coordenadas de um vetor $v \in V$, relativas à base β , são os coeficientes que permitem expressar v como uma combinação linear dos vetores de β . As coordenadas mais naturais são aquelas que utilizam a base canônica do corpo $\mathbb F$ no qual estamos trabalhando. Ou seja,

$$v = (x_1, \dots, x_n) = \sum x_i e_i$$

onde e_i é o i-ésimo elemento da base canônica.

Para trabalhar com mudança de coordenadas, precisamos antes entender o que é uma **base ordenada** de um espaço de dimensão finita *V*.

Dizemos que β é uma base ordenada de V se β é uma sequência finita de vetores que é linearmente independente e gera V.

Note que uma base é um conjunto, um objeto no qual a ordem não faz diferença. Porém, uma base ordenada é uma sequência, o que nos permite distinguir quem é seu i-ésimo elemento. Assim, se a_1, \ldots, a_n é uma base ordenada de V, então $\{a_1, \ldots, a_n\}$ é uma base de V.

Vamos denotar $[v]_{\beta}$ as coordenadas do vetor v em relação à base ordenada β . Além disso, vamos fazer um abuso de notação utilizando $\beta = \{a_1, \ldots, a_n\}$ para denotar uma base ordenada.

2.7 Como fazer matriz de mudança de base?

Vamos tomar $\beta = \{\beta_1, \dots, \beta_n\}$ e $\gamma = \{\gamma_1, \dots, \gamma_n\}$ duas bases ordenadas de um espaço finito V.

Note que podemos escrever cada vetor da base γ como combinação linear dos vetores de β da seguinte forma:

$$\gamma_{1} = a_{11} \cdot \beta_{1} + a_{21} \cdot \beta_{2} + \dots + a_{n1} \cdot \beta_{n}
\gamma_{2} = a_{12} \cdot \beta_{1} + a_{22} \cdot \beta_{2} + \dots + a_{n2} \cdot \beta_{n}
\vdots
\gamma_{n} = a_{1n} \cdot \beta_{1} + a_{2n} \cdot \beta_{2} + \dots + a_{nn} \cdot \beta_{n}$$

onde cada a_{ij} é um escalar.

Assim, para cada $i \in \{1,2,\dots,n\}$, as coordenadas do vetor γ_i na base β são dadas por

$$[\gamma_i]_{\beta} = \begin{bmatrix} a_{1i} \\ a_{2i} \\ \vdots \\ a_{ni} \end{bmatrix}$$

Dessa maneira conseguimos obter as coordenadas de cada vetor da base γ em relação à base β . Com isso, montamos a **matriz de mudança de base** de β para γ :

$$P_{\beta \to \gamma} = \begin{bmatrix} a_{11} & \dots & a_{1n} \\ a_{21} & \dots & a_{2n} \\ \vdots & \ddots & \vdots \\ a_{n1} & \dots & a_{nn} \end{bmatrix}$$

Note que cada coluna é formada pelas coordenadas de β_1, \ldots, β_n em relação à base β .

Exemplo 2.2: Mudança de base

Considere β a base canônica de \mathbb{R}^3 e $\gamma=\{(1,0,1),(1,1,1),(1,1,2)\}$. Encontre a matriz de mudança de base $P_{\gamma\to\beta}$.

Solução:

O primeiro passo é escrever cada vetor de β como combinação dos vetores de γ . Isto é,

$$(1,0,0) = a_{11} \cdot (1,0,1) + a_{21} \cdot (1,1,1) + a_{31} \cdot (1,1,2)$$

$$= 1 \cdot (1,0,1) + 1 \cdot (1,1,1) - 1 \cdot (1,1,2)$$

$$(0,1,0) = a_{12} \cdot (1,0,1) + a_{22} \cdot (1,1,1) + a_{32} \cdot (1,1,2)$$

$$= -1 \cdot (1,0,1) + 1 \cdot (1,1,1) + 0 \cdot (1,1,2)$$

$$(0,0,1) = a_{13} \cdot (1,0,1) + a_{23} \cdot (1,1,1) + a_{33} \cdot (1,1,2)$$

$$= 0 \cdot (1,0,1) - 1 \cdot (1,1,1) + 1(1,1,2)$$

E com esses valores montamos a matriz mudança de base:

$$P_{\gamma \to \beta} = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix} = \begin{bmatrix} 1 & -1 & 0 \\ 1 & 1 & -1 \\ -1 & 0 & 1 \end{bmatrix}$$

2.8 Material Complementar

Combinações lineares, subespaços gerados, e bases

3 Transformações Lineares

Nesta seção veremos Teorema do Núcleo e Imagem, Posto e Nulidade, Isomorfismo, Transformação Inversa, Matriz de Representação.

3.1 O que é uma transformação linear?

É um mapa que leva um vetor do espaço vetorial V em um elemento de do espaço W. Ou seja, uma **transformação linear** de V em W é uma função

$$T(cv + w) = cT(v) + T(w)$$

onde $v, w \in V$ e c é um escalar em \mathbb{F} .

Exemplo 3.1: Linearidade

Dado o corpo \mathbb{R} e V o espaço formado pelas funções de $\mathbb{R} \to \mathbb{R}$ contínuas, podemos definir uma transformação linear

$$T(f(x)) = \int_0^x f(t)dt$$

Lembre-se que a linearidade da integração é uma de suas principais propriedades e aparece de maneira análoga nas transformações lineares.

É importante notar que para toda transformação linear T é verdade que T(0)=0. Isto é, T sempre passa pela origem.

Outro fato importante, que vem direto da definição, é que transformações lineares preservam combinações lineares. Ou seja,

$$T(c_1v_1 + \ldots + c_nv_n) = c_1T(v_1) + \ldots + c_nT(v_n)$$

Muitas vezes encontramos o problema inverso de ter que encontrar a transformação T a partir de suas aplicações em vetores e_1, \ldots, e_n . Um resultado útil nesses casos é o seguinte:

Dada uma base ordenada para V então existe uma única transformação linear de V em W que leva cada vetor da base ordenada de V em um vetor de W.

3.2 O que são Núcleo e Imagem?

Considere uma transformação linear $T:V\to W$. Temos que a **imagem** de T é um subespaço de W chamado de imagem de T e denotamos Im(T). Pois bem, quais são os elementos de Im(T)? São todos os vetores em W tais que algum vetor $v\in V$ é levado até ele pela transformação T. Isto é.

$$Im(T) = \{ w \in W : T(v) = w, v \in V \}$$

Outro subespaço bastante útil associado à T é aquele que contém todos os vetores $v \in V$ que levam ao vetor nulo. Ou seja, todos os v tais que T(v) = 0. Esse subespaço é chamado **núcleo** (ou **kernel**) de T e é definido por

$$Ker(T) = \{ v \in V : T(v) = 0 \}$$

3.3 O que são Posto e Nulidade?

Dado um espaço de dimensão finita V, dizemos que o **posto** (ou **rank**) de uma transformação T é a dimensão da imagem de T. Também dizemos que a **nulidade** (ou **nullity**) de T é a dimensão do núcleo de T.

Essas duas definições são relacionadas pelo seguinte

3.4 Teorema do Núcleo e Imagem.

Teorema 3.1: Núcleo e Imagem

Se V e W são dois espaços vetoriais sobre o corpo $\mathbb F$ e T é uma transformação linear de V em W. Supondo que V tem dimensão finita, então

$$posto(T) + nulidade(T) = dim(V)$$

Em outras palavras,

$$\dim(V) = \dim(Ker(T)) + \dim(Im(T))$$

Intuitivamente, o **posto** de uma matriz é o número de linhas ou colunas linearmente independentes da matriz. É um resultado importante

da Álgebra Linear que o posto das linhas de uma matriz é igual ao posto de suas colunas.

3.5 A Álgebra das Transformações Lineares

É importante e bonito notar que o conjunto das transformações lineares herda uma estrutura natural do espaço vetorial. Isso ficará claro com a generalização que faremos agora.

Considerando novamente V,W espaços vetoriais sobre um corpo $\mathbb F$ e T e U transformações lineares. Temos que

$$(T+U)(v) = T(v) + U(v)(cT)(v) = cT(v)$$

são ambas transformações lineares.

Com isso, vem que o conjunto de todas as transformações lineares de V em W, com as operações de adição e multiplicação por escalar conforme definidos acima, são um espaço vetorial sobre $\mathbb F$, que denotaremos L(V,W).

Um importante resultado sobre esse espaço é que se V tem dimensão n e W tem dimensão m, então a dimensão de L(V,W)=mn.

Além disso, se definirmos $T:V\to W$ e $U:W\to Z$, ambas sobre o mesmo corpo $\mathbb F$, então a composição U(T(v)) é uma transformação linear de V em Z.

Por simplicidade, vamos definir um **operador linear** como sendo uma transformação linear de um espaço vetorial V sobre ele mesmo. Isto é, de V em V.

Para os operadores U, T_1, T_2 valem as seguintes propriedades:

- 1. IU = UI = U;
- 2. $U(T_1 + T_2) = UT_1 + UT_2$ e $(T_1 + T_2)U = T_1U + T_2U$;
- 3. $\alpha(UT_1) = (\alpha U)T_1 = U(\alpha T_1)$, onde $\alpha \in \mathbb{F}$.

Uma transformação $T:V\to W$ é dita **invertível** se existe $U:W\to V$ tal que UT é a identidade em V e TU é a identidade em W. Se T é invertível, então a função U é única e denotada por T^{-1} .

T é invertível se, e somente se,

- 1. T é injetora. Ou seja $T(v) = T(w) \implies v = w$.
- 2. T é sobrejetora. Isto é, Im(T) = W.

Uma propriedade importante, análoga a matrizes, é que $(UT)^{-1}=T^{-1}U^{-1}$.

Note que se pela linearidade de T vem que T(v-w)=T(v)-T(w). Portanto, T(v)=T(w) se, e somente se, T(v-w)=0. Esse resultado é bastante útil para verificar se uma transformação é injetora.

Dizemos que T é **não singular** se T(v)=0 implica que v=0. Ou seja, o núcleo de T é $\{0\}$. Assim, T é injetora se, e somente se, T é não singular.

Uma extensão do fato acima é que a não singularidade de T é equivalente a dizer que T leva cada subconjunto linearmente independente de V em um subconjunto linearmente independente de W.

Caso dim(V) = dim(W), então o Teorema do Núcleo e Imagem nos garante que as seguintes afirmações são equivalentes:

- 1. T é invertivel.
- 2. T é não singular (ou seja, é injetora).
- 3. T é sobrejetora.

Assim, caso T seja um operador linear, é suficiente verificar que T é injetora.

Observação: o conjunto dos operadores lineares em um espaço V, munido da operação de composição, é um **grupo**, conceito importante da Álgebra. Além disso, o conjunto de vetores em um espaço vetorial com a operação de soma de vetores é um **grupo comutativo**.

3.6 O que são isomorfismos?

Dizemos que uma transformação linear $T:V\to W$ bijetora é um **isomorfismo de** V **em** W. E se existe um isomorfismo de V em W, dizemos que V é **isomorfo** a W.

Observe que:

1. V é trivialmente isomorfo a V (reflexividade).

- 2. Se V é isomorfo a W através do isomorfismo T, então W é isomorfo a V via T^{-1} (simetria).
- 3. Se V é isomorfo a W e W é isomorfo a Z, então V é isomorfo a Z (transitividade).

Ou seja, o isomorfismo é uma relação de equivalência.

Um importante resultado sobre isomorfismos é que todo espaço vetorial de dimensão n sobre o corpo \mathbb{F} é isomorfo ao espaço \mathbb{F}^n . Ou seja, dois espaços vetoriais finitos, definidos sobre um mesmo corpo, são isomórficos se, e somente se, eles possuem a mesma dimensão.

Em certo sentido, espaços vetoriais isomorfos são o "mesmo". Um exemplo disso é que isomorfismos preservam a dimensão, isto é, qualquer subespaço finito de V tem a mesma dimensão que sua imagem sobre o isomorfismo T.

3.7 Como representar transformações com matrizes?

Para facilitar a notação, definimos V um espaço vetorial de dimensão n e W um espaço vetorial de dimensão m, ambos sobre o corpo \mathbb{F} . Definimos também $\beta = \{v_1, \dots, v_n\}$ uma base ordenada para V e $\gamma = \{w_1, \dots, w_m\}$ uma base ordenada de W.

Se T é uma transformação linear de V em W, então T é definido de maneira única pela sua ação nos vetores v_j de β . Isto é, cada um dos n vetores $T(v_j)$ pode ser escrito de maneira única como uma combinação linear dos vetores de w_i de γ :

$$T(v_j) = c_{1j}w_1 + c_{2j}w_2 + \ldots + c_{mj}w_m = \sum_{i=1}^m c_{ij}w_i$$

onde os escalares c_{1j}, \ldots, c_{mj} são as coordenadas de $T(v_j)$ na base γ . Dessa forma, determinamos T a partir de mn escalares c_{ij} .

Com isso, podemos definir uma matriz $m \times n$ a partir de $A(i,j) = c_{ij}$. Dizemos que A é a **matriz de** T **relativa às bases** β **e** γ . Por simplicidade, denotaremos $A = [T]_{\beta,\gamma}$.

Exemplo 3.2: Representação matricial

Se T é transformação de \mathbb{R}^2 em \mathbb{R}^3 definida por

$$T(x,y) = (x+3y, 2x+5y, 7x+9y)$$

Encontre a matriz de T com respeito às bases canônicas β , de \mathbb{R}^2 , e γ , de \mathbb{R}^3 .

Solução:

Primeiro, vamos calcular a ação de T sobre cada vetor de β :

$$T(1,0) = (1,2,7)$$

$$T(0,1) = (3,5,9)$$

Como escrever cada vetor encontrado na base γ é simplesmente

$$(1,2,7) = 1 \cdot (1,0,0) + 2 \cdot (0,1,0) + 7 \cdot (0,0,1)$$

$$(3,5,9) = 3 \cdot (1,0,0) + 5 \cdot (0,1,0) + 9 \cdot (0,0,1)$$

podemos montar a matriz

$$[T]_{\beta,\gamma} = \begin{bmatrix} 1 & 3 \\ 2 & 5 \\ 7 & 9 \end{bmatrix}$$

Note que $T(v_j)$ pode ser encontrado ao multiplicar cada elemento da j-ésima coluna da matriz de representação pelo elemento da base γ correspondente e somando os resultados.

Se j=2, por exemplo, temos $v_2=(0,1)$ e T(0,1) é dado por

$$3 \cdot (1,0,0) + 5 \cdot (0,1,0) + 9 \cdot (0,0,1) = (3,5,9)$$

Um caso especial do que acabamos de ver é quanto T é um operador linear, isto é, V=W. Nesse caso, só precisamos da base β . Assim, a matriz de T em relação a β é a matriz $n\times n$, denotada por $[T]_{\beta}$ cujas entradas são dadas por

$$T(v_j) = c_{1j}v_1 + c_{2j}v_2 + \ldots + c_{nj}v_n = \sum_{i=1}^n c_{ij}v_i$$

Um importante resultado sobre representação matricial é que se V é um espaço vetorial de dimensão finita com duas bases ordenadas β e γ e T é um operador linear em V, então

$$[T]_{\gamma} = P^{-1}[T]_{\beta}P$$

onde P é a matriz de mudança de base de γ para β .

Por fim, dadas duas matrizes A e B, $n \times n$ sobre o corpo \mathbb{F} , dizemos que B é **similar** a A sobre \mathbb{F} se existe uma matriz P invertível, $n \times n$, tal que $B = P^{-1}AP$. Observamos que a similaridade é uma relação de equivalência no conjunto $\mathbb{M}_n(\mathbb{F})$.

Um resultado que ilustra a importância de matrizes de representação e a facilidade que ela oferece para os cálculos é o seguinte.

Suponha que S e T são transformações lineares e β é uma base ordenada para S,T,S+T. Então a matriz da soma das duas transformações é igual à soma das matrizes das transformações. Isto é,

$$[S+T]_{\beta} = [S]_{\beta} + [T]_{\beta}$$

Similarmente, se λ é um escalar, então a matriz do escalar vezes uma transformação é igual ao escalar vezes a matriz da transformação. Em símbolos,

$$[\lambda T]_{\beta} = \lambda [T]_{\beta}$$

Assim, podemos perceber que transformações lineares "agem" como multiplicação matricial.

Exemplo 3.3

Seja D uma transformação linear de $\mathcal{P}_3(\mathbb{R})$ para $\mathcal{P}_2(\mathbb{R})$ definida como D(p)=p'. Então a matriz de representação de D nas bases canônicas de $\mathcal{P}_3(\mathbb{R})$ e $\mathcal{P}_2(\mathbb{R})$, denotada por $\mathcal{M}(D)$, é dada por:

$$\mathcal{M}(D) = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 3 \end{bmatrix}$$

3.8 Exercícios Resolvidos

Exemplo 3.4: Encontrando a inversa

Encontre a **inversa** de $T(x_1,x_2)=(x_1+x_2,x_1)$, onde T é um operador linear em \mathbb{F}^2 .

Solução:

Primeiro verificamos que T é injetora. Note que se $T(x_1,x_2)=0$, então temos

$$x_1 + x_2 = 0 \\ x_1 = 0$$

Ou seja, $x_1 = x_2 = 0$. Portanto, $Ker(T) = \{0\}$.

Para verificar a sobrejetividade, considere $(z_1,z_2)\in\mathbb{F}^2$. Queremos demonstrar que (z_1,z_2) , que são vetores arbitrários, estão em Im(T). Ou seja, queremos encontrar escalares x_1,x_2 tais que

$$x_1 + x_2 = z_1 x_1 = z_2$$

De onde temos $x_1 = z_2$, $x_2 = z_1 - z_2$.

Portanto, como T é bijetora, temos que T é invertível. O processo para verificar a sobrejetividade nos dá a seguinte fórmula para T^{-1} :

$$T^{-1}(z_1, z_2) = (z_2, z_1 - z_2)$$

4 Produto Interno

Assuntos abordados: Desigualdade de Cauchy-Schwarz, Norma, Ângulo e Ortogonalidade, Base Ortogonal, Processo de Gram-Schmidt.

4.1 O que é?

Começamos lembrando da definição de produto interno (ou produto escalar) da Geometria Analítica. Dados dos vetores de \mathbb{R}^3 $u=(x_1,x_2,x_3)$ e $v=(y_1,y_2,y_3)$, sabemos que o produto escalar entre eles é o número real

$$\langle u, v \rangle = x_1 y_1 + x_2 y_2 + x_3 y_3$$

que também é denotado por $u \cdot v$. Geometricamente, esse produto escalar é o produto do comprimento de u, v e o cosseno do ângulo entre eles. Ou seja, é possível definir conceitos geométricos bastante intuitivos como comprimento e ângulo de vetores em \mathbb{R}^3 a partir da definição algébrica de produto escalar.

Nossa tarefa é generalizar esse conceito, permitindo estudar espaços vetoriais em que faz sentido falar do comprimento de um vetor e do ângulo entre dois vetores.

Isso será possível a partir de uma função que irá levar um par de vetores a um escalar. Essa função será chamada de produto interno se satisfazer algumas condições similares às que temos para o produto escalar ao qual estamos acostumados. Que condições devem ser essas? Como podemos generalizar a noção de ângulo?

Dado o corpo $\mathbb R$ ou $\mathbb C$ e um espaço vetorial V sobre esse corpo, dizemos que o **produto interno** em V é uma função que mapeia cada par ordenado de vetores $u,v\in V$ a um escalar $\langle u,v\rangle$, isto é,

$$\langle \cdot, \cdot \rangle : V \times V \to \mathbb{F}$$

satisfazendo as seguintes propriedades:

- 1. Simetria: $\langle u,v\rangle=\overline{\langle v,u\rangle}$
- 2. Positividade: $\langle u, u \rangle \geq 0$ sendo que $\langle u, u \rangle = 0$ sse. u for o vetor nulo.

- 3. Distributividade: $\langle u+w,v\rangle=\langle u,v\rangle+\langle w,v\rangle$.
- **4.** Homogeneidade: $\langle \lambda u, v \rangle = \lambda \langle u, v \rangle$, onde $\lambda \in \mathbb{F}$.

A partir dessas propriedades também segue que

- $\langle u, v + w \rangle = \langle u, v \rangle + \langle u, w \rangle$
- $\langle u, \lambda v \rangle = \bar{\lambda} \langle u, v \rangle$

Note que tomar o complexo conjugado só faz sentido no caso de \mathbb{C} , porém é necessário para garantir a positividade.

Para ilustrar, daremos alguns exemplos de produtos internos. O mais natural é o **produto interno usual**, chamado de produto interno euclidiano para \mathbb{R}^n e produto interno hermitiano para \mathbb{C}^n e é definido por

$$\langle u, v \rangle = \sum_{i=1}^{n} x_i \bar{y_i}$$

No espaço vetorial real das funções contínuas no intervalo [a,b], i.e. $\mathcal{C}([a,b])$, o produto interno usual é definido como sendo

$$\langle f, g \rangle = \int_{a}^{b} f(x)g(x)dx; \forall f, g \in \mathcal{C}([a, b])$$

Já no espaço das matrizes com entradas reais $\mathbb{M}_n(\mathbb{R})$, o produto interno usual é dado por

$$\langle A, B \rangle = tr(B^t A) = \sum_{i=1}^n \sum_{j=1}^n a_{ij} b_{ij}$$

Caso as entradas das matrizes A e B sejam complexas, basta tomar a **transposta conjugada** B^* .

4.2 Desigualdade de Cauchy-Schwarz

Dado um espaço vetorial real V munido de um produto interno, para todos $u,v\in V$ temos que

$$\langle u, v \rangle^2 \le \langle u, u \rangle \langle v, v \rangle$$

E a igualdade é válida sse. os elementos u e v são linearmente dependentes.

4.3 Norma e Métrica

A partir do conceito de produto interno conseguimos formalizar nossa intuição do que é um "comprimento" ou "magnitude", o que chamaremos de norma.

Uma **norma** em um espaço vetorial V é uma função $||\cdot||$ que leva cada elemento $u \in V$ a um número real ||u|| satisfazendo:

- 1. Positividade: ||u|| > 0 para $u \neq 0$ e $||u|| = 0 \iff u = 0$.
- 2. Homogeneidade: $\|\lambda u\| = |\lambda| \|u\|$, $\lambda \in \mathbb{F}$.
- 3. Desigualdade triangular: $||u+v|| \le ||u|| + ||v||$.

Um espaço vetorial V munido de uma norma $\|\cdot\|$ é chamado de **espaço normado** e denotamos $(V, \|\cdot\|)$.

Além da norma euclidiana, com a qual estamos acostumados, podemos também definir:

Norma do Máximo: $||x||_{\infty} = \max |x_i|$; $1 \le i \le n$

Norma-1 (Norma do Táxi ou de Manhattan): $||x||_1 = \sum_{i=1}^n |x_i|$

De modo geral, podemos definir a **norma induzida do produto interno** em um espaço vetorial V sobre o corpo $\mathbb F$ munido do produto interno $\langle \cdot, \cdot \rangle$.

Para isso, definimos a função $q(\cdot):V\to\mathbb{R}$ como

$$q(u) = \sqrt{\langle u, u \rangle}$$

E $q(\cdot)$ satisfaz as propriedades de norma.

Também podemos definir uma **métrica** ou **distância** a partir da função

$$d(\cdot, \cdot): V \times V \to \mathbb{R}$$

 $(u, v) \to d(u, v)$

satisfazendo as propriedades de positividade, simetria e desigualdade triangular.

Um espaço vetorial munido de uma métrica é chamado de **espaço métrico**.

Um exemplo imediato de métrica é d(u,v) = ||u-v||.

4.4 Ângulo e Ortogonalidade

Utilizando a desigualdade de Cauchy-Schwarz, definimos o **ângulo** entre dois vetores não nulos $u,v\in V$ como sendo o valor $\theta\in [0\pi]$ que satisfaz

$$\cos(\theta) = \frac{\langle u, v \rangle}{\|u\|_2 \|v\|_2}$$

Considere dois vetores u,v em um espaço com produto interno V. u é dito **ortogonal** a v se $\langle u,v\rangle=0$. Pela simetria do produto interno, temos que v é ortogonal a u e assim dizemos que u e v são ortogonais.

Um conjunto S de vetores em V é dito **conjunto ortogonal** se todos os pares de vetores distintos em S são ortogonais. Caso $\|u\|=1$ para todo vetor $u\in S$, dizemos que S é um **conjunto ortonormal**.

É vantajoso trabalhar com bases ortonormais porque elas facilitam os cálculos com coordenadas.

Um importante resultado é que qualquer conjunto de vetores ortogonais não nulos é linearmente independente. Note que o número de vetores em um conjunto ortogonal sem vetores nulos é menor ou igual à dimensão do espaço V.

4.5 Processo de Gram-Schmidt

Teorema 4.1: Processo de Ortogonalização de Gram-Schmidt

Dado um espaço vetorial V com produto interno e v_1, \ldots, v_n vetores linearmente independentes em V. Então é possível construir vetores ortogonais $u_1, \ldots, u_n \in V$ tal que para todo $k=1,2,\ldots,n$

o conjunto

$$\{u_1,\ldots,u_k\}$$

é uma base para o subespaço gerado por v_1, \ldots, v_k .

Demonstração: Primeiro vamos definir $u_1 = v_1$. Encontraremos os outros vetores de maneira recursiva.

Suponha que u_1, \ldots, u_m , onde $1 \leq m < n$ foram escolhidos satisfazendo que para todo k

$$\{u_1, \ldots, u_k\}, 1 \le k \le m$$

é uma base ortogonal para o subespaço de V gerado por v_1,\ldots,v_k .

Para construir o próximo vetor u_{m+1} , seja

$$u_{m+1} = v_{m+1} - \sum_{k=1}^{m} \frac{\langle v_{m+1}, u_k \rangle}{\|u_k\|^2} u_k$$

Sabemos que $u_{m+1} \neq 0$ pois caso contrário v_{m+1} seria uma combinação linear de u_1, \ldots, u_m e, portanto, combinação linear de v_1, \ldots, v_m .

Logo, se $1 \le j \le m$ então

$$\langle u_{m+1}, u_j \rangle = \langle v_{m+1}, u_j \rangle - \sum_{k=1}^m \frac{\langle v_{m+1}, u_k \rangle}{\|u_k\|^2} \langle u_k, u_j \rangle$$
$$= \langle v_{m+1}, u_j \rangle - \langle v_{m+1}, u_j \rangle$$
$$= 0$$

Dessa forma, $\{u_1,\ldots,u_{m+1}\}$ é um conjunto ortogonal com m+1 vetores não nulos no subespaço gerado por v_1,\ldots,v_{m+1} . Portanto, é uma base para esse subespaço.

E os vetores u_1, \ldots, u_n podem ser construídos recursivamente como definimos.

4.6 Complemento Ortogonal

Seja V um espaço vetorial com produto interno e S um conjunto de vetores em V. O **complemento ortogonal** de S é o conjunto S^\perp de todos os vetores em V que são ortogonais a todo vetor em S. Isto é,

$$S^{\perp} = \{ v \in V : \langle v, u \rangle = 0, \, \forall u \in S \}$$

4.7 Projeção Ortogonal

Dado um conjunto vetorial V munido de um produto interno, S um subespaço de V com dimensão finita, $\beta = \{q_1, \ldots, q_n\}$ uma base ortonormal de S e um vetor $v \in V$, dizemos que o vetor $s \in S$ dado por

$$s = \sum_{j=1}^{n} \langle v, q_j \rangle q_j$$

é **projeção ortogonal** do elemento v sobre o subespaço S. E o elemento w=v-s é a projeção ortogonal do elemento v sobre o espaço S^\perp .

Com isso, se β for uma base ortogonal (não ortonormal) para S, então a projeção de $v \in V$ sobre S é dado por

$$s = \sum_{j=1}^{n} \frac{\langle v, q_j \rangle}{\langle q_j, q_j \rangle} q_j$$

Se todo vetor em V tem projeção ortogonal em S, a função que relaciona cada vetor em V com sua projeção em S é dito **projeção ortogonal de** V **em** S.

4.8 Operadores auto-adjuntos

Seja T um operador linear sobre um espaço V com produto interno. Dizemos que T tem uma **adjunta** em V se existe um operador linear T^* em V tal que $\langle Tu, v \rangle = \langle u, T^*v \rangle$ para todo u e v em V.

Notemos que a adjunta é semelhante ao conjugado em números complexos. E valem as seguintes propriedades:

1.
$$(T+U)^* = T^* + U^*$$

2.
$$(cT)^* = \bar{c}T^*$$

3.
$$(TU)^* = U^*T^*$$

4.
$$(T^*)^* = T$$

Assim como um número complexo z é real sse. $z=\bar{z}$, queremos definir algo semelhante para o caso em que $T=T^*$. Caso essa igualdade seja satisfeita, dizemos que o operador linear T é **auto-adjunto** (ou **hermitiano**, no caso complexo, e **simétrico**, no caso real).

Caso T comute com sua adjunta, i.e., $TT^* = T^*T$, então T é dito operador **normal**.

4.9 Operadores ortogonais

Análogo ao que fizemos para operadores auto-adjuntos, temos que ${\cal T}$ é um **operador ortogonal** se

$$\langle T(u), T(v) \rangle = \langle u, v \rangle \forall u, v \in V$$

Note que se T é ortogonal, então T preserva ângulos.

Dizemos que T é uma **isometria** se:

$$||T(u)|| = ||u||, \forall u \in V$$

Com um operador ortogonal ${\it T}$, podemos enunciar alguns resultados importantes:

- 1. T é um isomorfismo (i.e. T é bijetora)
- 2. A inversa T^{-1} é ortogonal
- 3. T é ortogonal sse. T é isometria.

5 Autovalores e Autovetores

Nesta seção veremos o que são Autovalores e Autovetores de Operadores e Matrizes, Multiplicidade Geométrica e Algébrica, Matrizes Especiais, Diagonalização e Teorema Espectral.

5.1 Motivação

A questão que motiva esta seção é encontrar uma base ordenada do espaço vetorial V na qual o operador linear T seja representado (de forma matricial) da maneira mais simples possível.

Para exemplificar, considere a matriz diagonal

$$D = \begin{bmatrix} c_1 & 0 & 0 & \dots & 0 \\ 0 & c_2 & 0 & \dots & 0 \\ 0 & 0 & c_3 & \dots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \dots & c_n \end{bmatrix}$$

E suponha que T é um operador linear num espaço finito V. Se existe uma base ordenada $\beta = \{v_1, v_2, \dots, v_n\}$ de V na qual T é representada matricialmente como a matriz diagonal D, então é possível retirar informações sobre o operador linear T, como seu posto ou determinante, de maneira mais simples e direta.

Como

$$[T]_{\beta} = D \iff T(v_k) = c_k v_k, k = 1, 2, \dots, n$$

A imagem de T é simplesmente o subespaço gerado pelos vetores v_k nos quais $c_k \neq 0$. Analogamente, o núcleo de T é gerado pelos v_k restantes.

Com isso em mente, levantam-se as seguintes questões. É sempre possível representar um operador linear T como uma matriz diagonal? Se não, qual é a forma mais simples de representar matricialmente esse operador?

5.2 O que são?

Vimos que no caso em que ${\cal T}$ pode ser representado como uma matriz diagonal, temos que

$$[T]_{\beta} = D \iff T(v_k) = c_k v_k, k = 1, 2, \dots, n$$

Assim, vamos estudar quais vetores são levados por T em múltiplos escalares de si mesmos.

Dado um espaço vetorial V sobre um corpo $\mathbb F$ e T um operador linear em V, vamos definir o **autovalor** (ou valor característico, ou **eigenvalue**) de T como sendo o escalar $\lambda \in \mathbb F$ tal que existe um valor $v \in V, v \neq 0$ satisfazendo $(v) = \lambda v$.

Se λ é um autovalor de T, então:

- Qualquer vetor v satisfazendo $T(v) = \lambda v$ é dito **autovetor** (ou vetor característico, ou **eigenvector**) de T associado ao autovalor λ .
- O conjunto de todos os autovetores v é chamado **autoespaço** (ou espaço característico, ou **eigenspace**) associado a λ .

Além dos nomes citados acima, autovalores também são conhecidos como valores próprios, valores espectrais, raízes características ou raízes latentes.

5.3 Como encontrá-los?

Note que o autoespaço associado a λ é um subespaço de V e é precisamente o núcleo da transformação linear $(T-\lambda I)$. Dizemos que λ é autovalor de T quando o autoespaço é diferente do espaço nulo, isto é, se $(T-\lambda I)$ não é isomorfismo. Se V for um espaço de dimensão finita, então $(T-\lambda I)$ não é isomorfismo justamente quando seu determinante é diferente de zero. Resumindo, temos o seguinte

Teorema 5.1

Seja T um operador linear em um espaço de dimensão finita V e seja λ um escalar. As seguintes afirmações são equivalentes:

1. λ é autovalor de T.

- 2. O operador $(T \lambda I)$ é singular (i.e. não invertível).
- 3. $\det(T \lambda I) = 0.$

A partir do terceiro critério temos um caminho para encontrar os autovalores de T. Como $det(T-\lambda I)$ é um polinômio de grau n na variável λ , podemos encontrar os autovalores como sendo as raízes desse polinômio.

Se A é a representação matricial de T na base ordenada β (i.e. $A=[T]_{\beta}$), então $(T-\lambda I)$ é invertível sse. $(A-\lambda I)$ for invertível. O que podemos resumir na seguinte definição:

Se A é uma matriz $n \times n$ sobre o corpo \mathbb{F} , um autovalor de A em \mathbb{F} é um escalar $\lambda \in \mathbb{F}$ tal que a matriz $(A - \lambda I)$ é singular.

Ou seja, λ é um **autovalor da matriz** A sse. $det(A - \lambda I) = 0$.

Isso nos motiva a definir o **polinômio característico** de A como sendo

$$f(x) = \det(A - xI)$$

Um importante resultado é que matrizes similares têm o mesmo polinômio característico. Isso implica que elas também possuem os mesmos autovalores.

5.4 Multiplicidades algébrica e geométrica

Considere um operador linear $T:V\to V$ sobre $\mathbb F$ e uma base β qualquer de V. Seu polinômio característico é dado por

$$p_T(\lambda) = \det([T]^{\beta}_{\beta} - \lambda I)$$

Se $\lambda_1,\lambda_2,\dots,\lambda_k$ são as raízes de $p_T(\lambda)$, então pelo Teorema Fundamental da Álgebra temos que

$$p_T(\lambda) = a(\lambda - \lambda_1)^{m_1}(\lambda - \lambda_2)^{m_2} \dots (\lambda - \lambda_k)^{m_k}$$

Escolhendo um autovalor λ_i , definimos a **multiplicidade**

- algébrica de λ_i como o expoente do termo $(\lambda \lambda_i)$ em $p_T(\lambda)$.
- **geométrica** de λ_i como dim Ker $(T \lambda_i I)$.

É importante notar que a multiplicidade geométrica é sempre menor ou igual à multiplicidade algébrica.

5.5 Diagonalização

Dado $T \in \mathcal{L}(V)$, dizemos que T é **diagonalizável** se existe uma base $\beta = \{v_1, v_2, \ldots, v_n\}$ para V formada pelos autovetores de T. Isto é, o operador linear tem uma matriz diagonal com respeito a alguma base de V.

Como $T(v_i) = \lambda_i v_i$, a representação de T na base β é dada por:

$$[T]_{\beta} = \begin{bmatrix} \lambda_1 & 0 & 0 & \dots & 0 \\ 0 & \lambda_2 & 0 & \dots & 0 \\ 0 & 0 & \lambda_3 & \dots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \dots & \lambda_n \end{bmatrix}$$

Alguns resultados importantes:

- 1. T é diagonalizável sse. existir uma base de V formada por autovalores de T.
- 2. Se f é um polinômio qualquer e $T(v) = \lambda v$, então $f(T(v)) = f(\lambda)v$.
- 3. Se $\lambda_1, \ldots, \lambda_k$ são autovalores distintos e v_1, \ldots, v_k são autovetores associados a $\lambda_1, \ldots, \lambda_k$ respectivamente, então $\{v_1, \ldots, v_k\}$ é linearmente independente.
- 4. Se $\dim(V) = n$ e $\lambda_1, \ldots, \lambda_n$ são autovalores distintos de T, então T é diagonalizável. Em outras palavras, se T possui todos os autovalores distintos, então T é diagonalizável.
- 5. Se W_i é o autoespaço associado ao autovalor λ_i e $W=W_1+W_2+\ldots+W_k$, então

$$\dim(W) = \dim(W_1) + \ldots + \dim(W_k)$$

Além disso, se β_i é uma base ordenada para W_i , então $\beta = \{\beta_1, \dots, \beta_n\}$ é base ordenada para W. Note que isso significa que a soma dos autoespaços é uma soma direta.

Com essas conclusões é possível desconfiar que existem mais equivalências entre transformações diagonalizáveis e seus autovalores e autoespaços. De fato, temos o seguinte

Teorema 5.2

Suponha V um espaço vetorial de dimensão finita. Seja $T \in \mathcal{L}(V)$, $\lambda_1, \ldots, \lambda_k$ autovalores distintos de T e $W_i = \text{Ker}(T - \lambda_i I)$. As seguintes afirmações são equivalentes:

- 1. T é diagonalizável.
- 2. O polinômio característico de T é

$$p_T(\lambda) = (\lambda - \lambda_1)^{d_1} (\lambda - \lambda_2)^{d_2} \dots (\lambda - \lambda_k)^{d_k}$$

e dim $(W_i) = d_i$ para $i = 1, 2, \dots, k$.

3. $\dim(W_1) + \ldots + \dim(W_k) = \dim(V)$.

A partir desse resultado, dada uma matriz diagonalizável A, conseguimos encontrar uma matriz diagonal Λ , similar à A, tal que

$$A = P\Lambda P^{-1}$$
 e $\Lambda = P^{-1}AP$

onde Λ é construída a partir dos autovalores de A e P, a partir dos autovetores de A.

5.6 Subespaço Invariante

Suponha $T \in \mathcal{L}(V)$. Se decompormos V em somas diretas

$$V = U_1 \oplus \ldots \oplus U_m$$

onde cada U_j é um subespaço próprio de V, então para entender o comportamento de T basta analisar o comportamento de T em cada U_j . Para facilitar a leitura, vamos denotar $T|_{U_j}$ para nos referirmos a T restrito a um subespaço U_j .

Porém, nem sempre $T|_{U_j}$ terá a imagem no próprio subespaço U_j . Por isso, iremos nos munir da seguinte definição.

Um subespaço U de V é dito **subespaço invariante** sobre T se $u \in U$ implica que $T(u) \in U$. Isto é, U é invariante sobre T se $T|_U$ é um operador linear em U.

5.7 Matrizes Especiais

Uma matriz quadrada A, sobre o corpo $\mathbb F$, tal que $A=\overline{A^T}$, i.e. cada $a_{ij}=\overline{a_{ji}}$, é dita **matriz simétrica** se $\mathbb F=\mathbb R$ e é dita **matriz hermitiana** se $\mathbb F=\mathbb C$.

Para uma matrix 2×2 , uma matriz é hermitiana sse. for da forma

$$\begin{bmatrix} z & x+iy \\ x-iy & w \end{bmatrix}$$

onde $x, y, z, w \in \mathbb{R}$.

Observe que se $A\in \mathbb{M}_n(\mathbb{F})$ é matriz simétrica/hermitiana e $X,Y\in \mathbb{F}^n$, então

$$\langle AX, Y \rangle = \langle X, A^*Y \rangle = \langle X, AY \rangle$$

Outro resultado importante é que se A é hermitiana, então os autovalores de A são reais e os autovetores associados a autovalores distintos são ortogonais entre si.

Dada uma matriz $A \in \mathbb{M}_n(\mathbb{R})$ simétrica, então A é dita **matriz positiva definida** caso

$$\langle Ax, x \rangle = x^T Ax > 0 \, \forall x \neq 0, x \in \mathbb{R}^n$$

Caso $A \in \mathbb{M}_n(\mathbb{C})$ seja uma matriz hermitiana, então A é dita **matriz positiva definida** caso

$$\langle Ax,x\rangle=x^*Ax>0\,\forall x\neq 0,x\in\mathbb{C}^n$$

Quando é o caso que uma matriz simétrica ou hermitiana é positiva definida?

Teorema 5.3

Seja $A \in \mathbb{M}_n(\mathbb{C})$ hermitiana. Então A é positiva definida sse. todos seus autovalores são positivos.

Uma matriz A, com entradas reais ou complexas, $n \times n$, é dita **matriz ortogonal** se $A^TA = I$. Caso A tenha entradas complexas e $A^*A = I$, então A é dita **matriz unitária**.

Dois resultados importantes sobre matrizes unitárias são:

1. Se A é matriz unitária e λ é autovalor de A, então $|\lambda|=1$.

2. Se A é matriz unitária, então $|\det(A)| = 1$.

Exemplo 5.1: Diagonalização de operador linear

Seja $T \in \mathcal{L}(\mathbb{R}^3)$ definido por

$$T(x, y, z) = (-9x + 4y + 4z, -8x + 3y + 4z, -16x + 8y + 7z)$$

Mostre que T é diagonalizável e encontre os autovetores que formam um base para \mathbb{R}^3 .

Solução: Note que a matriz de T na base canônica β é:

$$[T]_{\beta} = \begin{bmatrix} -9 & 4 & 4 \\ -8 & 3 & 4 \\ -16 & 8 & 7 \end{bmatrix}$$

O primeiro passo é encontrar os autovalores de $[T]_{\beta}$. Calculando $\det([T]_{\beta} - \lambda I)$:

$$\begin{vmatrix} -9 - \lambda & 4 & 4 \\ -8 & 3 - \lambda & 4 \\ -16 & 8 & 7 - \lambda \end{vmatrix} = -\lambda^3 + \lambda^2 + 5\lambda + 3 = 0 \iff (\lambda + 1)^2 (\lambda - 3) = 0$$

Assim, temos dois autovalores $\lambda_1=-1$, com multiplicidade algébrica igual a dois, e $\lambda_2=3$.

Calculando o autovetor associado a $\lambda_1 = -1$:

$$\begin{bmatrix} -9 & 4 & 4 \\ -8 & 3 & 4 \\ -16 & 8 & 7 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = -1 \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} \iff \begin{cases} -8x_1 + 4x_2 + 4x_3 = 0 \\ -8x_1 + 4x_2 + 4x_3 = 0 \\ -16x_1 + 8x_2 + 8x_3 = 0 \end{cases}$$

Note que temos apenas uma linha linearmente independente. Ou seja, o núcleo da matriz dos coeficientes tem posto igual a dois. Isso significa que podemos extrair dois autovetores linearmente independentes.

De fato, podemos tomar $x_1 = 1, x_2 = 2, x_3 = 0$ e $x_1 = 1, x_2 = 0, x_3 = 2$, obtendo os autovetores (1, 2, 0) e (1, 0, 2).

Para $\lambda_2 = 3$, temos o sistema:

$$\begin{cases}
-12x_1 + 4x_2 + 4x_3 = 0 \\
-8x_1 + 0x_2 + 4x_3 = 0 \\
-16x_1 + 8x_2 + 4x_3 = 0
\end{cases} \iff \begin{cases}
x_1 & = \frac{1}{2}x_3 \\
x_2 & = \frac{1}{2}x_3 \\
x_3 = x_3
\end{cases}$$

Portanto, podemos escolher o vetor (1, 1, 2).

Como obtivemos três autovetores linearmente independentes, temos que T é um operador diagonalizável. Além disso, temos a seguinte base para \mathbb{R}^3 :

$$\begin{bmatrix} 1 & 2 & 0 \\ 1 & 0 & 2 \\ 1 & 1 & 2 \end{bmatrix}$$

5.8 Teorema Espectral

Teorema 5.4: Teorema Espectral

Suponha T um operador linear em um espaço vetorial finito V. Caso V esteja definido sobre $\mathbb C$, considere T normal. Caso V esteja definido sobre $\mathbb R$, considere T auto-adjunto.

Seja $\lambda_1,\ldots,\lambda_k$ autovalores distintos de T, W_j o autoespaço associado a λ_j e E_j a projeção ortogonal de V em W_j . Então, valem as seguintes afirmações:

- 1. W_j é ortogonal a W_i quando $i \neq j$.
- 2. V é a soma direta de W_1, \ldots, W_k .
- 3. T pode ser decomposto da forma

$$T = \lambda_1 E_1 + \ldots + \lambda_k E_k$$

denominada resolução espectral.

Referências

- [Alg71] Linear Algebra. Kenneth Hoffman and Ray Kunze. Prentice Hall, Englewood Cliffs, New Jersey, 1971.
- [Axl14] Sheldon Axler. Linear algebra done right. Springer, 2014.
- [CoeO1] Flávio Ulhoa Coelho. *Curso de Álgebra Linear, Um Vol.* 34. Edusp, 2001.

[Pul12] Petronio Pulino. Algebra linear e suas aplicaçoes notas de aula. *Campinas: Universidade Estadual de Campinas*, 2012.