DeFINe – Deep Facial Inpainting Network

- Kevin Gellhaus
- Marcel Früh
- Micha Schilling

Model

 U-Net Architektur (Convolutional Networks for Biomedical Image Segmentation (Ronnenberger et al.)

Zielstellung: Einfluss von verschiedenen Lossfunktionen

Einfacher L1 Loss

•
$$L = \frac{1}{N}||O - GT||_1$$

•
$$L_{hole} = \frac{1}{N} || (1 - M) \odot (O - GT) ||_1$$

$$\bullet L_{valid} = \frac{1}{N} ||(M) \odot (O - GT)||_1$$

•
$$L_{hole} = \frac{1}{N} || (1 - M) \odot (O - GT) ||_1$$

$$\bullet L_{valid} = \frac{1}{N} ||(M) \odot (O - GT)||_1$$

- V2 + Style Loss L_{style}
 - Gram Matrix auf Perceptual Output X
 - $Gram = XX^T$
 - $Gram = X^{B \times \#C \times w \cdot h} * X^{B \times w \cdot h \times \#C}$
 - Batch Size B, number of channels C and width x heigh

V3 + Total Variation Loss

$$- L_{tv} = \sum_{\substack{(i,j) \in R, (i,j+1) \in R}} \frac{||I_{comp}^{i,j+1} - I_{comp}^{i,j}||_{1}}{N} + \sum_{\substack{(i,j) \in R, (i+1,j) \in R}} \frac{||I_{comp}^{i+1,j} - I_{comp}^{i,j}||_{1}}{N} - \frac{||S_{comp}^{i,j+1} - I_{comp}^{i,j}||_{1}}{N} + \sum_{\substack{(i,j) \in R, (i+1,j) \in R}} \frac{||I_{comp}^{i+1,j} - I_{comp}^{i,j}||_{1}}{N} - \frac{||S_{comp}^{i,j}||_{1}}{N} - \frac{||S_{$$

- comp: Vorhersage, bei welcher die nicht-maskierten Pixel auf den Ground Truth gesetzt werden
- Glättung von evtl. Checkerboard Pattern

Final Loss

$$L_{total} = L_{valid} + 6L_{hole} + 0.05L_{perceptual} + 120(L_{style_{out}} + L_{style_{comp}}) + 2L_{tv}$$

Finales Training

- Erste Iteration
- Batch Size: 6
- BatchNormalization
- Learning Rate: 2e-4
- 7 Tage

Finales Training

- Erste Iteration
- Batch Size: 6
- BatchNorm
- Learning Rate: 2e-4
- 7 Tage

- Finetuning
- Batch Size: 6
- BatchNorm nur in Decoder
- Learning Rate: 5e-5
- 7 Tage

DeFINe

13

Image with Mask

Prediction

Vergleich: Final

Prediction

Problem _

Problem

VOILA!

Inpainting complete.

INPAINTED RESULT

Problem

ORIGINAL IMAGE

ORIGINAL IMAGE

INPAINTED RESULT

Problem

Sep. 2018: Our inpainting online demo is now available at https://www.nvidia.com/research/inpainting/ (Note: the natural image model is the consistent with model describled in ECCV paper; the face image model has been further improved by using GAN loss to train the same network after ECCV. We also suggest to do continuous inpainting, uploading the inpainting results to do second-time inpainting, to get better results.)

Benutzeroberfläche

Benutzeroberfläche

Demo Time

Literaturverzeichnis

- https://github.com/NVlabs/ffhq-dataset
- https://github.com/karfly/qd-imd
- https://arxiv.org/abs/1505.04597 U-Net
- https://arxiv.org/pdf/1804.07723.pdf Partial Convolution

Vielen Dank

