

Europäisches Patentamt **European Patent Office** Office européen des brevets

11 Veröffentlichungsnummer: 0 557 549 A1

12

EUROPÄISCHE PATENTANMELDUNG

Anmeldenummer: 92103238.9

(51) Int. Cl.5; H01F 31/00

22) Anmeldetag: 26.02.92

Veröffentlichungstag der Anmeldung: 01.09.93 Patentblatt 93/35

Benannte Vertragsstaaten: DE ES FR GB IT

71 Anmelder: J. SCHNEIDER ELEKTROTECHNIK **GmbH** Helmholtzstrasse 13, Postfach 2327 D-77613 Offenburg(DE)

2 Erfinder: Hanser, Volker Zollstrasse 2 W-7640 Kehl-Auenheim(DE)

(4) Vertreter: Trappenberg, Hans Trappenberg u. Dimmerling, Postfach 21 13 75, Wendtstrasse 1 D-76163 Karlsruhe (DE)

Ringkerntransformator.

(57) Unter Verwendung von Transformatorenblech mit einer mangetischen Vorzugsrichtung hergestellte Transformatoren sind schwer, weisen ein großes Volumen auf und sind schwierig und daher unwirtschaftlich herzustellen.

Die Erfindung gibt einen Ringkerntransformator mit einem in der magnetischen Vorzugsrichtung gewickelten kreisrunden Ringkern an, der diese Nachteile nicht aufweist und einfach und daher auf wirtschaftliche Art und Weise herstellbar ist.

Die Erfindung betrifft ein Verfahren zum Herstellen eines mit Gießharz vergossenen Netz-Leistungstransformators mit einem gewickelten Schnittbandkern, vorzugsweise aus einer kaltgewalzten Ferrolegierung, die eine magnetische Vorzugsrichtung aufweist, sowie einen nach diesem Verfahren hergestellten Ringkerntransformator.

1

Moderne Ferrolegierungen zur Herstellung von Transformatorenblechen, im wesentlichen bestehend aus Eisen/ Nickel- oder Eisen/Silicium-Legierungen, weisen zwar sehr gute magnetische Eigenschaften auf die es erlauben, Transformatoren mit entsprechend guten elektrischen Werten aufzubauen, sind jedoch in ihrer Verarbeitung sehr schwierig. Sollen die guten magnetischen Eigenschaften dieser Transformatorenbleche ausgenutzt werden, muß die magnetische Vorzugsrichtung mit der Haupt-Flußrichtung im Transformatorenblech möglichst weitgehend übereinstimmen. Dies bedeutet, daß beispielsweise keine normalen M-Schnitte eingesetzt werden können, sondern daß bei einem Drei-Säulen-Transformator die magnetische Vorzugsrichtung in den Jochen senkrecht zu denjenigen in den Kernen liegen muß. Außerdem müssen die Kern- und Jochbleche auf Gehrung geschnitten werden, um weitgehend die Flußrichtung in der Vorzugsrichtung der Bleche zu halten. Das Zuschneiden der Bleche mit einer speziellen Blechschneidemaschine mit Schrägschnitteinrichtung, wie auch insbesondere das notwendige, sorgsame Schichten der Transformatorenbleche, ist außerordentlich zeitaufwendig und Iohnintensiv. Damit ergibt sich, daß mlt diesen Transformatorenblechen aufgebaute Transformatoren zwar zufriedenstellende elektrische Eigenschaften aufweisen, aber verhältnismäßig teuer sind. Hinzu kommt bei den üblichen Blechschnitten noch das große Volumen und hohe Gewicht solcher Transformatoren, was zu Schwierigkeiten bei deren Aufstellung führen kann.

Seit längerer Zeit sind schon Ringkerntransformatoren bekannt, bei denen das in Bandform vorliegende Transformatorenblech in einem Ring gewickelt und sodann dieser Ringkern mit Transformatorenspulen bewickelt wird. Bei einem solchen Ringkerntransformator entstehen die oben geschilderten Schwierigkeiten nicht, da stets die Flußrichtung im Transformatorenblech mit dessen magnetischer Vorzugsrichtung übereinstimmt. Schwierigkeiten bereiten bei solchen Ringkerntransformatoren jedoch das Aufbringen der Wicklungen durch besondere Spezial-Wickelmaschinen. Ringkerntransformatoren und -Drosseln wurden daher bisher nur für kleine Leistungen gebaut. Netz-Leistungstransformatoren mit diesem Aufbau sind bisher nicht bekanntgeworden.

Ausgehend von diesen Ringkerntransformatoren beziehungsweise Ringkerndrosseln werden auch Schnittbandkerne eingesetzt, die ebenfalls wie bei den Ringkerntransformatoren einen gewikkelten, üblicherweise jedoch in angenäherter Rechteckform gewickelten Kern aufweisen, der an zwei Stellen quer zur Längsrichtung der Bleche zerschnitten ist. Dadurch wird es ermöglicht, zuvor gefertigte Spulen auf die geraden Teile dieser in Rechteckform gewickelten Schnittbandkerne aufzustecken und die beiden Kernhälften anschließend mit möglichst geringem Luftspalt wieder aufeinander zu bringen. Damit ist die Schwierigkeit des Bewickelns derartiger Kerne, die ebenfalls äußerst gute elektrische Eigenschaften aufweisen, behoben. Allerdings sind bisher auch nur mit derartigen Schnittbandkernen ausgestattete Transformatoren für geringe Leistungen bekanntgeworden.

Aufgabe der Erfindung ist es, die guten Eigenschaften solcher Ringkerntransformatoren mit Schnittbandkernen auch für Transformatoren und Drosseln verhältnismäßig hoher Leistung auszunutzen, mit solchen Kernen also auch Netz-Leistungstransformatoren aufbauen zu können. Erreicht wird dies in erfindungsgemäßer Weise, ausgehend von einem in der magnetischen Vorzugsrichtung spiralförmig gewickelten Band, das durch Harzbeigabe zu einem runden Ringkern verfestigt wurde durch folgende teilweise bekannte Verfahrensschritte:

- 1. Beschichten des Ringkerns mit einer elektrisch isolierenden, jedoch wärmeleitfähigen und wärmebeständigen, elastisch-nachgiebigen Dämmstofflage;
- 2. Zerschneiden des Ringkerns in zwei Ringhälften;

3.

35

40

45

50

55

- a) Überschieben einer Niederspannungs-Rechteckwicklung aus lackisoliertem Rund-, Rechteck- oder Profildraht auf jeweils eine Ringhälfte;
- b) gegebenenfalls Überschieben einer oder weiterer Rechteckwicklungen auf die jeweils zuvor aufgebrachte Wicklung;

4.

- a) Vergleßen der bewickelten Ringkernhälften oder
- b) Aufbringen von aus Gießharz gefertigten Stützelementen;
- 5. Überschieben von jeweils zusammengefügten Hochspannungs-Wicklungsscheiben;
- 6. Zusammenfügen der beiden Ringkernhälften;
- 7. Verbinden oder Herausführen der Wicklungsenden;
- 8. Vergießen des kompletten Transformators mit rippenartigem Umgießen der Wicklungsscheiben.

Der Ringkerntransformator nach der Erfindung unterscheidet sich damit von den bekannten Ringkerntransformatoren mit Schnittbandkern dadurch, daß er nicht wie diese einen rechteckförmig gewikkelten Kern aufweist, sondern dieser Wickelkern

kreisrund ist. Dies hat zwar vordergründig den Nachteil, daß keine zylinderförmigen Spulen auf den Wickelkern aufgeschoben werden können, sondern daß, und das hielt wahrscheinlich die Fachwelt von der Verwendung derartiger runder Wickelkerne ab, das Wickeln und Aufschieben der Spulen Schwierigkeiten bereiten könnte. Tatsächlich ist dies nicht der Fall, wenn so, wie durch die Erfindung dargelegt, vorgegangen wird, da die Niederspannungsspule mit aus Ihrem verhältnismäßig dicken Drahtquerschnitt als Luftspule vorgewickelt und sodann ohne Schwierigkeiten über den Halbbogen des zerschnittenen Kerns übergeschoben werden kann. Auch das Überschieben weiterer Niederspannungswicklungen über die jeweils zuvor aufgebrachte Wicklung bereitet, wie die Praxis gezeigt hat, absolut keine Schwierigkeiten, so daß der bisherige Einwand gegen Ringkerntransformatoren mit rundgewickeltem Ringkern widerlegt ist. Das Aufschieben der Hochspannungsspulen gelingt allerdings nicht auf diese Art und Weise. Diese Hochspannungswicklung müßte tatsächlich halbkreisförmig gewickelt werden, was wiederum eine Spezial-Wickelmaschine voraussetzen würde. Außerdem könnten bei einer solchen Hochspannungspule Isolationsprobleme entstehen. Diese Schwierigkeiten werden nach der Erfindung dadurch umgangen, daß die Hochspannungsspule in einzelne, verhältnismäßig dünne Wicklungsscheiben unterteilt wird, die nun ohne Schwierigkeiten auf normalen Wickelmaschinen zu wickeln und ebenfalls ohne Schwierigkeiten auf den zuvor umgossenen oder mit Stützelementen versehenen Ringkern aufgeschoben werden können. Hierbei sollen die Wicklungsscheiben eine Scheibenbreite von 40 Bogengrad des inneren Ringkerndurchmessers nicht überschreiten, um insbesondere das Überschieben der einzelnen Wicklungsscheiben über den Ringkern zu ermöglichen. Durch die scheibenförmige Ausbildung der Hochspannungswicklung werden jedoch nicht nur die Schwierigkeiten beim Überschieben der Wicklungsteile auf den Ringkern vermieden, sondern es ergeben sich dadurch auch keine Isolationsprobleme, da diese Wicklungsscheiben jeweils nur einen begrenzten Spannungsbereich der gesamten Hochspannungsspule aufzunehmen haben. Selbstverständlich kann hierbei auch die Anordnung der einzelnen Wicklungsscheiben den jeweiligen Erfordernissen angepaßt, es können also einzelne Wicklungsscheiben zu Scheibensegmenten zusammengefaßt oder auch symetrische Abstände eingestellt werden. Ein außerordentlicher weiterer Vorteil ist darin zu erblicken, daß derartige Transformatoren nunmehr mit einzelnen Modulen aufgebaut werden können, da das Anpassen der Hochspannungsspule an die jewells vorliegende Spannung einfach durch Aufstecken mehr oder weniger derartiger Wicklungsscheiben durchgeführt

werden kann. Diese Modulbauweise erlaubt die rationelle Herstellung großer Stückzahlen gleichartiger Bauteile und damit deren und selbstverständlich auch der Transformatoren wirtschaftliche Produktion. Außerdem können die Wicklungsenden dieser Scheibenwicklungen auch nach außen geführt werden, so daß deren Verschaltung auch au-Berhalb des Transformators vorgenommen werden kann. Ein weiterer, beachtlicher Vorzug derartiger Transformatoren ergibt sich durch ihr geringes Gewicht und ihr kleines Volumen. Tatsächlich finden sich in einem solchen Ringkerntransformator ja nahezu nur die Teile, die ein solcher Transformator benötigt, also die Primär- und die Sekundärspule sowie das in idealer Weise aufgewickelte Transformatorenblech. Umfassende Joche oder Blechstege wie bei den üblichen Transformatoren entfallen vollkommen und damit auch deren Volumen und deren Gewicht. Beachtlich ist selbstverständlich auch die Gewichtseinsparung durch den Wegfall eines umgebenden Mantels, da der mit Gießharz vergossene Transformator einen solchen Mantel nicht mehr benötigt.

Nach dem Verfahrensschritt 4 wird der ausgehärtete Ringkern mit einem elastisch-nachgiebigen Dämmstoff beschichtet. Dieser Dämmstoff stellt nicht nur eine elektrische Isolationsschicht zu dem Ringkern dar, sondern ermöglicht auch eine gewisse Wärmebewegung sowohl des Ringkerns wie auch der auf den Ringkern aufgeschobenen Niederspannungsspule. Damit ist diese Dämmschicht ein wichtiges Erfindungsmerkmal, da sich gezeigt hat, daß bei derartigen Transformatoren größerer Leistung der Abtransport der in diesen kompakt gebauten Transformatoren entstehenden Wärme Schwierigkeiten bereiten kann und daher zu Wärmebewegungen der einzelnen Bauteile führt. Da das Gießharz, in das der Ringkerntransformator eingegossen ist, als starr gelten kann, führen derartige Wärmebewegungen, bedingt durch die unterschiedlichen Wärme-Ausdehnungskoeffizienten der verschiedenen Materialien letztlich zu Mikrorissen innerhalb des Gießharzes, die zu einer Änderung des elektrischen Feldes beziehungsweise zum elektrischen Durchschlag führen kann. Bei dem erfindungsgemäß aufgebauten Ringkerntransformator hingegen werden diese im Inneren des Ringkerntransformators sich ergebenden Wärmebewegungen durch die elastischnachgieblge Dämmschicht aufgenommen, praktisch ohne Einwirkung auf den umgebenden Gießharzmantel. Tatsächlich hat die Praxis auch gezeigt, daß derart aufgebaute Transformatoren frei von solchen gefährlichen Mikrorissen sind.

Hingewiesen werden darf in diesem Zusammenhang auch darauf, daß das komplette Vergießen des erfindungsgemäßen Transformators den Vorteil einer außerordentlichen Geräuschdämmung

55

10

20

mit sich bringt. Dies wird zum einen dadurch bewirkt, daß sämtliche Teile des Transformators - Eisenkern, Niederspannungs- und Hochspannungsspule - fest im Gießharz eingebettet sind, zum anderen auch dadurch, daß das Gießharz eine schalldämmende Schicht um den Transformator bildet. Dieses komplette Eingießen ist allerdings nur durch die erfindungsgemäß eingefügte Dämmstoffschicht möglich.

Als bevorzugter Dämmstoff wird ein Silikon vorgeschlagen, das sowohl elastisch-nachgiebig aufgebaut werden kann bei guten elektrischen und thermischen Eigenschaften.

Die Wicklungsscheiben der Hochspannungswicklung werden üblicherweise so gewickelt, daß
sich Scheiben mit gleichbleibender Breite ergeben.
Um das Volumen derartiger Ringkerntransformatoren jedoch voll ausnutzen zu können, kann es auch
zweckmäßig sein, diese Scheiben keilförmig zu
wickeln, also daß die zum Zentrum des Ringkerns
weisenden Seiten mit geringerer Breite ausgeführt
werden als auf der Gegenseite. Eine solche Wicklung ist ohne Schwierigkeiten mit den modernen
Wickelautomaten herzustellen.

Der Transformator nach der Erfindung kann, wird hochgespannte Gleichspannung benötigt, auch gleich mit Dioden zur Gleichrichtung bestückt werden. Dies kann nach der Erfindung so erfolgen, daß an oder in den nach außen abstehenden Vergußrippen jeder Wicklungsscheibe zugeordnete Dioden angeordnet sind. Zweckmäßigerweise werden die Dioden hierbei in einem senkrechten an den Rippen vorgesehenen Luftschacht untergebracht. Dies hat den Vorteil, daß die Dioden gegen mechanische Beschädigungen geschützt sind, daß sie zugänglich und damit leicht auswechselbar sind und daß Sie außerdem durch den sich in diesem Luftschacht ergebenden Luftstrom ausreichend gekühlt sind. Zu diesen Vorteilen ergeben sich auch noch vorteilhafte elektrische Spannungsverhältnisse, da jede Diode beziehungswelse Diodenanordnung jeweils nur von der Teilspannung einer einzigen Wicklungsscheibe beaufschlagt wird.

Selbstverständlich können die so aufgebauten Einphasentransformatoren in üblicher Weise zu nebeneinander stehenden Drehstromtransformatoren verschaltet werden. Eine besonders zweckmäßige Ausführung ergibt sich dadurch, daß die drei Einzeltransformatoren zu einer "Energiesäule" aufeinander gestellt und In dieser Lage verankert werden. Diese bringt nicht nur räumliche Vorteile, sondern auch eine gute Wärmeabführung durch die übereinander angeordneten rippenförmigen Teile der Transformatoren. Die Verankerung wird hierbei so vorgenommen, daß auch in vertikaler Richtung ein Verschieben der einzelnen Transformatorenblöcke möglich ist, um auch hier die Wärmebewegungen auszugleichen.

Auf der Zeichnung ist der Erfindungsgegenstand schematisch dargestellt, und zwar zeigen:

- Fig. 1 eine perspektivische Darstellung, teilweise geschnitten,
- Fig. 2 die Draufsicht und
- Fig. 3 die Seitenansicht eines gewickelten Ringbandkernes,
- Fig. 4 eine erste
 - und
- Fig. 5 eine zweite mögliche Spulenanordnung,
- Fig. 6 eine Draufsicht, teilweise geschnitten,
- Fig. 7 eine vorgewickelte Niederspannungsspule in Ansicht und
- Fig. 8 im Querschnitt und
- Fig. 9 eine teilweise auf einen Halb-Ringkern aufgeschobene Niederspannnungsspule.

Fig. 10 eine "Energiesäule"

Der dargestellte Ringkerntransformator weist einen kreisrund gewickelten Ringkern (1) auf, der durch zwei Schnitte (2) in zwei Ringhälften geteilt ist. Auf diese beiden Ringhälften werden Niederspannungsspulen (3), die zuvor als Luftspulen gefertigt wurden, aufgeschoben, wie dies Fig. 9 zeigt. Zwischen der Niederspannungsspule (3) und dem Ringkern (1) befindet sich eine elastisch-nachgiebige Dämmschicht (4). Nach diesen Arbeiten werden die beiden Ringkernhälften jeweils für sich vergossen, wobei allerdings die Schnittflächen (2) der Ringkerne noch freibleiben. Eingezeichnet (Fig. 1) sind auch noch Stützelemente (8), die dann auf die Niederspannungsspule (3) aufgesetzt werden, wenn die bis zur Niederspannungsspule fertiggestellten Ringkernhälften nicht vergossen werden. Diese Stützelemente, aus dem gleichen Gießharz der zum kompletten Vergießen des Transformators Verwendung finden, bestimmen hierbei die Lage der aufzuschiebenden Hochspannungsspulen (5, 15). Danach werden die Hochspannungsspulen (5 beziehungsweise 15) über die Ringkernhälften übergeschoben, wie dies aus den Fig. 4 und 5 ersichtlich ist. Nach diesen Arbeiten werden die beiden Ringkernhälften an ihren Schnittflächen zusammengepreßt und, beispielsweise durch oberflächiges Verschweißen, in dieser Lage fixiert und sodann mit Gießharz (6) vergossen. Beim Vergie-Ben ergeben sich durch die abstehenden Wicklungsscheiben der Hochspannungswicklungen (5) Rippen (7), die einer guten Belüftung des so aufgebauten Ringkerntransformators dienen.

Fig. 10 zeigt schließlich noch eine "Energiesäule" gebildet aus drei übereinandergesetzten Einzel-Ringkerntransformatoren, die durch

50

5

15

20

25

30

35

40

45

50

65

einen zentralen Druckstab (9) und einen federnden Spannring (8) in dieser Lage gehalten sind.

Patentansprüche

Verfahren zum Herstellen eines mit Gießharz vergossenen Netz-Leistungstransformators, mit einem vorzugsweise aus einer kaltgewalzten Ferrolegierung, die eine magnetische Vorzugsrichtung aufweist, in der magnetischen Vorzugsrichtung spiralförmig gewickelten, durch Harzbeigabe verfestigten Schnittbandkern, gekennzeichnet

durch folgende teilweise bekannte Verfahrensschritte:

- 1. Beschichten des Ringkerns (1) mit einer elektrisch isolierenden, jedoch wärmeleitfähigen undwärmebeständigen elastischnachgiebigen Dämmstofflage (4);
- 2. Zerschneiden des Ringkerns (1) in zwei Ringhälften;
- 3.
 - a) Überschieben einer Niederspannungs-Rechteckwicklung (3) aus lackisoliertem Rund-, Rechteck- oder Profildraht auf jeweils eine Ringhälfte;
 - b) gegebenenfalls Überschieben einer oder weiterer Rechteckwicklungen (3) auf die jeweils zuvor aufgebrachte Wicklung;
- a) Vergießen der bewickelten Ringkernhälften oder Aufbringen von aus Gießharz gefertigten Stütz elementen (10);
- 5. Überschieben von jeweils zusammengefügten Hoch spannungs-Wicklungsscheiben (5, 15);
- 6. Zusammenfügen der beiden Ringkernhälften;
- 7. Verbinden oder Herausführen der Wicklungsenden;
- 8. Vergießen des kompletten Transformators mit rippenartigem Umgießen der Wicklungsscheiben (5).
- Ringkerntransformator nach Anspruch 1, dadurch gekennzeichnet, daß der Dämmstoff ein Silicon ist.
- 3. Ringkerntransformator nach Anspruch 1, dadurch gekennzeichnet, daß das Silikon hinsichtlich seines Ausdehnungskoeffizienten auf den Temperatur-Ausdehnungskoeffizienten des Ferromaterials oder des Wicklungsmaterials eingestellt ist;
- Ringkerntransformator nach Anspruch 1, dadurch gekennzeichnet, daß die Wicklungsscheibenbreite ≤ 40 Bogen-

grad des inneren Ringkerndurchmessers ist.

- Ringkemtransformator nach Anspruch 1 oder 4,
 dadurch gekennzeichnet,
 daß die Seitenflächen der Wicklungsscheiben (5) in einem spitzen Winkel verlaufen.
- 6. Ringkerntransformator nach Anspruch 1, dadurch gekennzeichnet, daß an den nach außen abstehenden Vergußrippen (7) jeder Wicklungsscheibe (5,15) Lüftungkanäle zur Aufnahme von Dioden angeordnet sind.
 - Ringkerntransformator nach Anspruch 1, dadurch gekennzelchnet, daß drei Einzeltransformatoren elastisch nachgiebig Übereinander angeordnet sind.

5

FIG. 10

EP 92 10 3238

	EINSCHLÄGIGE DO	KUMENTE		
Kategorie	der mußgeblichen Teile		Betrifft Anspruch	KLASSIFIKATION DER
A	DE-A-3 613 861 (NKL NATU KLEINSPANNUNGSTECHNIK) * Spalte 3, Zeile 54 - S Abbildung 1 *		1,2	H01F31/00
	FR-A-1 281 532 (CALDWELL * Seite 4, linke Spalte, 5, rechte Spalte, Zeile 2 17,18 *	70110 27 - 5-4	1	
	PATENT ABSTRACTS OF JAPAN vol. 9, no. 15 (E-291)(17 1985 JP-A-59 161 806 (OOSAK September 1984 Zusammenfassung *	38) 22. Januar	1,5	
				RECHERCHIERTE SACHGERIETE (Int. Cl.5)
				101F
vorliege	ade Recherchenbericht wurde für alle Pate	entanapriiche cratelit		
Rach	Ale	Chiefdebate der Becherche	¥	T Maley
KATEA von beson von beson anderen V	GORIE DER GENANNTEN DOKUMENTE derer Bedeutung silein betrachtet derer Bedeutung in Verbindung mit einer eröffentlichung derseiben Kategorie scher Hintergrund	T: der Erfindung zugrund E: älteres Patentdokume nach dem Anmeldedat D: in der Anmeldung and L: aus andern Gränden a	de liegende Theor nt, das jedoch ers tum veröffentlicht	t son oder Worlen ist

EPO FORM 1503 03.87 (P040)