Learning logic programs though divide, constrain, and conquer

Andrew Cropper

University of Oxford

https://github.com/logic-and-learning-lab/Popper

What is this talk about?

• **Simple** program induction approach

Good performance

No technical details

$$\frac{1}{2} AB SIN C = A^{2} = B^{2} + C^{2} - ^{2}BC COS A - \frac{SINA}{A} = \frac{SINB}{B} = \frac{SINC}{C} + TV(T) + \frac{1}{C} + \frac{1}{C}$$

Examples

Examples

input	output		
dog	g		
sheep	р		
chicken	?		

Examples

Background knowledge

Examples

head tail empty reverse

Background knowledge

input	output	
dog	g	
sheep	р	
chicken	?	

input	output
dog	g
sheep	р
chicken	?

```
def f(a):
    t = tail(a)
    if empty(t):
        return head(a)
    return f(t)
```

Inductive logic programming

input	output
dog	g
sheep	р
chicken	?

```
f(A,B):-tail(A,C),empty(C),head(A,B)
f(A,B):-tail(A,C),f(C,B)
```

Limitations

Large hypothesis spaces

Classical ILP

Good	Bad
Large rules	
Many rules	No predicate invention
	Overfitting

Modern ILP

Bad	Good
Small rules	
	Predicate invention
	Optimality

Idea

Combine old and new

Idea

Combine classical divide-and-conquer search with modern constraint-driven search

Divide, conquer, constrain (DCC)

- Step 1. Learn a program for each example
- Step 2. Generalise the programs

Key idea

use constraints to reduce the search complexity

Suppose we want to a program to find odd elements in a list:

```
f(A,B):-head(A,B),odd(B)
f(A,B):-head(A,B),even(B),tail(A,C),f(C,B)
```

$$e1 = f([4,3,4,6],3)$$

```
e1 = f([4,3,4,6],3)
h1 = f(A,B):-tail(A,C),head(C,B),odd(B)
```

```
e1 = f([4,3,4,6],3)
h1 = f(A,B):-tail(A,C),head(C,B),odd(B)
e2 = f([2,2,9,4,8,10],9)
```

```
e1 = f([4,3,4,6],3)
h1 = f(A,B):-tail(A,C),head(C,B),odd(B)

e2 = f([2,2,9,4,8,10],9)
h2 = f(A,B):-tail(A,C),tail(C,D),head(D,B),odd(B)
```

```
h1 = f(A,B):-tail(A,C),head(C,B),odd(B)
h2 = f(A,B):-tail(A,C),tail(C,D),head(D,B),odd(B)
```

```
h1 = f(A,B):-tail(A,C),head(C,B),odd(B)

h2 = f(A,B):-tail(A,C),tail(C,D),head(D,B),odd(B)
```

```
h3 =
  f(A,B):-tail(A,C),head(C,B),odd(B)
  f(A,B):-tail(A,C),tail(C,D),head(D,B),odd(B)
```

```
h1 = f(A,B):-tail(A,C),head(C,B),odd(B)
h2 = f(A,B):-tail(A,C),tail(C,D),head(D,B),odd(B)
h3 =
   f(A,B):-tail(A,C),head(C,B),odd(B)
   f(A,B):-tail(A,C),tail(C,D),head(D,B),odd(B)
```

Goal: find h4 s.t. |h4| < |h3|

```
h1 = f(A,B):-tail(A,C),head(C,B),odd(B)
h2 = f(A,B):-tail(A,C),tail(C,D),head(D,B),odd(B)
h3 =
   f(A,B):-tail(A,C),head(C,B),odd(B)
   f(A,B):-tail(A,C),tail(C,D),head(D,B),odd(B)
```

Conditions on h4:

- |h4| >= |h1|
- |h4| >= |h2|
- |h4| < |h3|
- |h4| is not a specialisation of h1
- |h4| is not a specialisation of h2
- |h4| is not a specialisation of h3

Optimisations

Constraints: maintain constraints during the search

Laziness: reuse existing solutions

Chunking: merge/compress examples

Does it work?

Q1. Can DCC improve learning performance?

Q2. How important are the optimisations?

Domains

- Trains (classification)
- Inductive general game playing
- Program synthesis

Predictive accuracies

Task	DCC	POPPER	ALEPH	METAGOL
trains1	100 ± 0	100 ± 0	100 ± 0	27 ± 0
trains2	98 ± 0	98 ± 0	100 ± 0	19 ± 0
trains3	98 ± 0	81 ± 1	100 ± 0	79 ± 0
trains4	100 ± 0	42 ± 5	39 ± 4	32 ± 0
md	99 ± 0	100 ± 0	94 ± 0	11 ± 0
buttons	98 ± 0	19 ± 0	87 ± 0	19 ± 0
rps	97 ± 0	18 ± 0	100 ± 0	18 ± 0
coins	86 ± 0	17 ± 0	17 ± 0	17 ± 0
dropk	99 ± 0	100 ± 0	52 ± 2	50 ± 0
droplast	100 ± 0	100 ± 0	50 ± 0	50 ± 0
evens	100 ± 0	100 ± 0	51 ± 0	50 ± 0
finddup	98 ± 0	98 ± 0	50 ± 0	50 ± 0
last	100 ± 0	100 ± 0	49 ± 0	55 ± 3
len	100 ± 0	100 ± 0	50 ± 0	50 ± 0
sorted	94 ± 2	96 ± 1	70 ± 1	50 ± 0
sumlist	100 ± 0	100 ± 0	50 ± 0	62 ± 4

Learning times

Task	DCC	POPPER	ALEPH	METAGOL
trains1	8 ± 2	2 ± 0	4 ± 0.2	300 ± 0
trains2	41 ± 12	7 ± 0.9	1 ± 0.1	300 ± 0
trains3	106 ± 17	295 ± 3	35 ± 0.9	300 ± 0
trains4	268 ± 9	295 ± 2	297 ± 1	300 ± 0
md	172 ± 27	52 ± 1	3 ± 0	300 ± 0
buttons	300 ± 0	299 ± 0	86 ± 1	300 ± 0
rps	282 ± 12	285 ± 14	4 ± 0.1	0.3 ± 0
coins	291 ± 4	299 ± 0	300 ± 0	0.4 ± 0
dropk	3 ± 0.2	2 ± 0.2	3 ± 0.3	0.3 ± 0
droplast	2 ± 0.2	3 ± 0.1	300 ± 0	300 ± 0
evens	5 ± 0.4	4 ± 0.1	1 ± 0	217 ± 26
finddup	47 ± 6	13 ± 0.3	1 ± 0.1	300 ± 0
last	2 ± 0.4	2 ± 0.1	1 ± 0	270 ± 20
len	16 ± 2	5 ± 0.1	1 ± 0	300 ± 0
sorted	29 ± 3	19 ± 1	1 ± 0	288 ± 11
sumlist	18 ± 0.3	19 ± 0.6	0.6 ± 0	225 ± 29

Why does it work?

Decompose the learning task

Learn from failures, i.e. never repeat ourselves

Why care?

Simplicity: no metarules

Performance: good empirical results

Feature-rich:

- Recursion
- Optimal programs
- Large rules
- Many rules
- Predicate invention

Inductive general game playing

```
\label{eq:next} \begin{split} &\text{next}(A,B)\text{:-succ}(C,B), \text{true}(A,C).\\ &\text{next}(A,B)\text{:-c_p}(B), \text{does}(A,C,D), \text{not_true}(A,B), \text{input}(C,D), \text{c_a}(D).\\ &\text{next}(A,B)\text{:-c_q}(B), \text{input}(C,E), \text{c_c}(E), \text{c_r}(D), \text{true}(A,D), \text{does}(A,C,E).\\ &\text{next}(A,B)\text{:-c_b}(C), \text{true}(A,B), \text{c_r}(B), \text{does}(A,D,C), \text{input}(D,C).\\ &\text{next}(A,B)\text{:-true}(A,C), \text{input}(E,D), \text{c_q}(C), \text{c_r}(B), \text{does}(A,E,D), \text{c_c}(D).\\ &\text{next}(A,B)\text{:-c_p}(B), \text{true}(A,B), \text{does}(A,C,D), \text{input}(C,D), \text{c_a}(D).\\ &\text{next}(A,B)\text{:-true}(A,B), \text{c_r}(B), \text{does}(A,C,D), \text{input}(C,D), \text{c_a}(D).\\ &\text{next}(A,B)\text{:-true}(A,C), \text{c_p}(D), \text{does}(A,E,C), \text{input}(E,C), \text{true}(A,D), \text{c_q}(B).\\ &\text{next}(A,B)\text{:-true}(A,C), \text{c_p}(B), \text{does}(A,E,D), \text{c_q}(C), \text{c_b}(D), \text{input}(E,D).\\ \end{split}
```

Program synthesis

```
f(A,B,C):-one(B),tail(A,C).
f(A,B,C):-decrement(B,D),f(A,D,E),tail(E,C).
```

Limitations + future work

Expressivity: negation as failure, higher-order

Limitations + future work

Expressivity: negation as failure, higher-order

Constants: especially numerical values

Limitations + future work

Expressivity: negation as failure, higher-order

Constants: especially numerical values

Faster: detailed failure explanation, more `complete' constraints

Questions?

https://github.com/logic-and-learning-lab/Popper