ECE194N HW 1

KNN Report

February 8, 2019

Student: Erik Rosten
Perm Number: 7143571

Email: erosten@ucsb.edu

Department of Electrical and Computer Engineering, UCSB

Code

My code for this programming problem is below

```
import numpy as np
 2 | import cifar_loader
 3 | import matplotlib.pyplot as plt
   import os
 5
 6
 7
 8
    def split_sets(all_images, all_classes, labels_to_keep):
9
      images = []
10
      classes = []
      for i in range(labels_to_keep.shape[0]):
11
12
         indices = np.where(all_classes == labels_to_keep[i])[0]
13
         images.append(all_images[indices])
         classes.append(all_classes[indices])
14
15
16
      images = np.array(images)
      images = images.reshape([-1,32,32,3])
17
      classes = np.array(classes)
18
      classes = classes.reshape([-1,])
19
20
      return images, classes
21
22
   def split_class_names(all_class_names, class_numbers):
23
      class_names = []
24
      for i in range(class_numbers.shape[0]):
         class_names.append(all_class_names[class_numbers[i]])
25
26
      return np.array(class_names)
27
28
    def view_examples(train_imgs, train_cls, labels_to_keep, class_names):
29
      print(class_names)
30
      plt.figure(1)
      for i in range(labels_to_keep.shape[0]):
31
32
         label_class_name = class_names[i]
33
         rand_integer = np.random.randint(0,4999)
         # grab a random example index
34
35
         index = np.where(train_cls == labels_to_keep[i])[0][rand_integer]
         img_example = train_imgs[index]
36
37
         ax = plt.subplot(1,labels_to_keep.shape[0],i + 1)
38
39
         ax.axis('off')
40
         imgplot = plt.imshow(img_example)
         ax.set_title(label_class_name)
41
42
      plt.show()
43
44
45
   def rgb2gray_average(rgb_imgs):
      gray_imgs = np.zeros((rgb_imgs.shape[0],32,32))
46
47
      for i in range(rgb_imgs.shape[0]):
         r, g, b = rgb_imgs[i,:,:,0], rgb_imgs[i,:,:,1], rgb_imgs[i,:,:,2]
48
         gray_imgs[i,:,:] = (r + g + b) / 3
49
50
      return gray_imgs
```

```
51
52
    def rgb2gray_luminosity(rgb_imgs):
53
       gray_imgs = np.zeros((rgb_imgs.shape[0],32,32))
       for i in range(rgb_imgs.shape[0]):
54
 55
          r, g, b = rgb_imgs[i,:,:,0], rgb_imgs[i,:,:,1], rgb_imgs[i,:,:,2]
          gray_imgs[i,:,:] = 0.21 * r + 0.72 * g + 0.07 * b
 56
57
       return gray_imgs
 58
59
    def euclidean_dist(img1, img2):
60
       return np.linalg.norm(img1-img2)
61
 62
    def ssd(img1, img2):
       return np.sum((img1-img2)**2)
63
64
65
    def compute_dists(train_imgs, test_imgs):
 66
       num_test = test_imgs.shape[0]
67
       num_train = train_imgs.shape[0]
       dists = np.zeros((num_test, num_train))
68
       for i in range(num_test):
69
          print(i)
 70
 71
          for j in range(num_train):
 72
             dists[i,j] = euclidean_dist(train_imgs[j,:], test_imgs[i,:])
 73
       return dists
 74
 75
    def find_nearest_neighbors(k, dists, train_cls):
 76
       nn_distances = np.zeros((dists.shape[0],k))
 77
       nn_classes = np.zeros((dists.shape[0],k))
       nn_classes_indices = np.zeros((dists.shape[0],k))
 78
       for i in range(dists.shape[0]):
 79
          idx = np.argpartition(dists[i,:], k, axis = 0)[:k]
80
81
          nn_distances[i,:] = dists[i,idx]
82
          nn_classes[i,:] = train_cls[idx]
83
          nn_classes_indices[i,:] = idx
84
       return nn_distances, nn_classes.astype(int), nn_classes_indices.astype(int)
 85
 86
    def compute_error_rate(nn, test_cls , nn_cls):
87
       acc_count = 0
       total_test_imgs = nn.shape[0]
 88
 89
       k = nn.shape[1]
90
91
       for i in range(total_test_imgs):
          unique_labels = np.unique(nn_cls[i])
92
93
          label_count = 0
 94
          label = np.max(unique_labels) + 1
          for j in range(unique_labels.shape[0]):
95
             num_occurences = np.count_nonzero(nn_cls[i] == unique_labels[j])
96
97
             if (num_occurences > label_count):
98
                label_count = num_occurences
99
                label = unique_labels[j]
100
             elif(num_occurences == label_count):
               new_indices = np.where(nn_cls[i] == unique_labels[j])[0]
101
102
                old_indices = np.where(nn_cls[i] == label)[0]
               new_avg = np.average(nn[i,new_indices])
103
                old_avg = np.average(nn[i,old_indices])
104
```

```
105
                if (new_avg < old_avg):</pre>
106
                   label = unique_labels[j]
107
108
          if (test_cls[i] != label):
109
             acc_count = acc_count + 1
110
111
       return acc_count / total_test_imgs
112
113
    def plot_nearest_neighbors(labels_to_keep, dists, train_cls, test_cls, test_imgs,
        train_imgs, class_names):
114
115
       for i in range(labels_to_keep.shape[0]):
116
          label = labels_to_keep[i]
117
          nn_dists, nn_cls, nn_cls_indices = find_nearest_neighbors(5, dists, train_cls)
118
          label_indices = np.where(test_cls == label)[0]
119
          ind = np.random.randint(0, label_indices.shape[0] - 1)
120
          label_index = label_indices[ind]
          nn_img_indices = nn_cls_indices[label_index,:]
121
122
          nn_cls = nn_cls[label_index]
123
          nn_dists = nn_dists[label_index]
124
125
          plt.figure(1)
126
          ax1 = plt.subplot(2,3,1)
127
          ax1.axis('off')
128
          imgplt1 = plt.imshow(test_imgs[label_index])
129
          ax1.set_title('Test Image ({})'.format(class_names[i]), size=10)
130
131
          for j in range(5):
132
             ax2 = plt.subplot(2,3,(j+2))
133
             ax2.axis('off')
134
             nn_class = class_names[np.where(labels_to_keep == nn_cls[j])[0][0]]
135
             imgplt2 = plt.imshow(train_imgs[nn_img_indices[j]])
136
             ax2.set_title('NN: {} , dist: {:0.2f}, class: {}'.format(j+1, nn_dists[j]
                 ,nn_class), size=7)
137
138
          plt.show()
139
    def plot_k_error_rates(k_array, dists, train_cls, test_cls):
140
141
       e_rates = np.zeros(k_array.shape)
142
       for k in range(k_array.shape[0]):
143
          nn, nn_cls, _ = find_nearest_neighbors(k_array[k], dists, train_cls)
          e_rate = compute_error_rate(nn, test_cls, nn_cls)
144
145
          e_rates[k] = e_rate
146
          print('Error rate for k = {} is {}'.format(k_array[k], e_rate))
147
148
       plt.plot(k_array, e_rates)
149
       plt.ylabel('Error Rates')
150
       plt.xlabel('K')
151
       plt.show()
152
153
    def get_dists(filename, train_imgs, test_imgs):
154
       # size of dists is 4000 x 10000
155
       if (os.path.isfile(filename)):
156
          dists = np.load(filename)
```

```
print('Precalculated distances loaded.')
157
       else:
158
159
          print('Calculating distances')
160
          dists = compute_dists(train_imgs, test_imgs)
161
          print('Saving distances')
          np.save(filename, dists)
162
163
          print('Distances saved')
164
       return dists
165
166
167
    def run_KNN():
168
169
       # load CIFAR data
170
       train_imgs, train_cls, train_names = cifar_loader.load_training_data()
171
       test_imgs, test_cls, test_names = cifar_loader.load_test_data()
172
       class_names = np.array(cifar_loader.load_class_names())
173
       # get relevant class data
174
175
       labels_to_keep = np.sort(np.array([0, 1, 8, 9]))
176
       train_imgs, train_cls = split_sets(train_imgs, train_cls, labels_to_keep)
       test_imgs, test_cls = split_sets(test_imgs, test_cls, labels_to_keep)
177
178
       class_names = split_class_names(class_names, labels_to_keep)
179
180
       # part a
181
       view_examples(train_imgs, train_cls, labels_to_keep, class_names)
182
183
       # part b and c
184
       train_imgs_gray = rgb2gray_luminosity(train_imgs)
185
       test_imgs_gray = rgb2gray_luminosity(test_imgs)
       dists = get_dists('dists_lum_eucl.npy',train_imgs_gray, test_imgs_gray)
186
187
188
189
190
       k_{array} = np.array([1,2,5,10,20])
       plot_k_error_rates(k_array, dists, train_cls, test_cls)
191
192
193
       # part d
194
195
       plot_nearest_neighbors(labels_to_keep, dists, train_cls, test_cls, test_imgs,
           train_imgs, class_names)
196
197
198
199
200
201
202
    if __name__ == '__main__':
203
        run_KNN()
```

where the $cifar_loader$ file is included in the code. The assignment is run through the function $run_KNN()$.

Part a: Random Image Visualization

I've chosen the classes

'[airplane',' automobile',' ship',' truck']

which correspond with labels

[0, 1, 8, 9]

The random image visualization is accomplished by the function $view_examples()$ and is called on line 181, with the function definition on lines 28-42. Calling the code once returns the figure below

Figure 1: Random Image Examples 1

Figure 2: Random Image Examples 2

Part b and c: Applying KNN Algorithm for $k=1,\,2,\,5,\,10,\,20$

The relevant code in $run_KNN()$ is in lines 184-191. This function converts all the training and testing images to grayscale to compute one distance between two images as opposed to one for each channel (lines 184-185). I used two different grayscale conversions, one being the average of the rgb channels, and the other being a coefficient based conversion. This last algorithm emphasizes that the majority of color that we see is in the green channel. The code then computes a distance matrix on line 186, with the function $get_dists()$, which looks for a saved distance matrix and loads it if it exists, and if not found, computes it. I the Euclidean Distance as a distance metric. The function $get_dists()$ is on lines 153-164 and calls $compute_dists()$, which is on lines 65-73. Once the distances have been calculated or loaded, it computes the error rates and plots them using $plot_k_error_rates()$ (lines 140-151), $find_nearest_neighbors()$ (lines 75-84) and $compute_error_rate()$ (lines 86-111). If the predicted classes for the nearest neighbors are the same, it chooses the neighbor with the smallest average distance. The results for the different grayscale conversions are below

Average Grayscale and Euclidean Distance

Using the average grayscaling and Euclidean Distance gives the following output and graph

```
1 Error rate for k = 1 is 0.52975

2 Error rate for k = 2 is 0.52975

3 Error rate for k = 5 is 0.53325

4 Error rate for k = 10 is 0.5355

5 Error rate for k = 20 is 0.549
```


Figure 3: K vs Error Rate Using Average Grayscaling and Euclidean Distance

A more comprehensive sweep, using k's from 1-20 gives

```
Error rate for k = 1 is 0.52975

Error rate for k = 2 is 0.52975

Error rate for k = 3 is 0.52925

Error rate for k = 4 is 0.53025

Error rate for k = 5 is 0.53325

Error rate for k = 6 is 0.5305

Error rate for k = 7 is 0.5355

Error rate for k = 8 is 0.53675

Error rate for k = 9 is 0.53325

Error rate for k = 10 is 0.5355
```

```
11
   Error rate for k = 11 is 0.537
12
   Error rate for k = 12 is 0.53825
13
   Error rate for k = 13 is 0.5405
   Error rate for k = 14 is 0.54175
15
   Error rate for k = 15 is 0.54175
   Error rate for k = 16 is 0.54525
17
   Error rate for k = 17 is 0.54825
   Error rate for k = 18 is 0.54875
19
   Error rate for k = 19 is 0.54825
20
   Error rate for k = 20 is 0.549
```


Figure 4: K vs Error Rate Using Average Grayscaling and Euclidean Distance

Which shows that the minimum error rate is again given by k=3, and the error rate for k=1 is 0.52975

Coefficient Grayscale and Euclidean Distance

Using the coefficient grayscaling and Euclidean Distance gives the following output and graph

```
1 Error rate for k = 1 is 0.53125

2 Error rate for k = 2 is 0.53125

3 Error rate for k = 5 is 0.54

4 Error rate for k = 10 is 0.54275

5 Error rate for k = 20 is 0.5475
```


Figure 5: K vs Error Rate Using Coefficient Grayscaling and Euclidean Distance

A more comprehensive sweep, using k's from 1-20 gives

```
Error rate for k = 1 is 0.53125
 1
 2
   Error rate for k = 2 is 0.53125
 3
   Error rate for k = 3 is 0.53875
   Error rate for k = 4 is 0.54025
 4
   Error rate for k = 5 is 0.54
 6
   Error rate for k = 6 is 0.542
 7
   Error rate for k = 7 is 0.545
   Error rate for k = 8 is 0.54075
   Error rate for k = 9 is 0.54125
10 | Error rate for k = 10 is 0.54275
```

```
Error rate for k = 11 is 0.54075
11
12
   Error rate for k = 12 is 0.546
13
   Error rate for k = 13 is 0.54575
   Error rate for k = 14 is 0.54625
15
   Error rate for k = 15 is 0.546
   Error rate for k = 16 is 0.5465
17
   Error rate for k = 17 is 0.54625
   Error rate for k = 18 is 0.5485
19
   Error rate for k = 19 is 0.54475
20
   Error rate for k = 20 is 0.5475
```


Figure 6: K vs Error Rate Using Coefficient Grayscaling and Euclidean Distance

Which shows that the minimum error rate is again given by k = 1,2, and the error rate for k = 1 is 0.53125.

In general, the error rate does not decrease with k, and it shouldn't since it is a dataset dependent variable.

1 Part d: Visualizing the 5 Nearest Neighbors

This part is accomplished with the function call on 196 (definition on lines 113-138). Two runs of the code gives the plots below which show the randomness of the image choice.

Figure 7: Random Airplane Image and it's 5 Nearest Neighbors

Figure 8: Random Airplane Image and it's 5 Nearest Neighbors

Figure 9: Random Automobile Image and it's 5 Nearest Neighbors

Figure 10: Random Automobile Image and it's 5 Nearest Neighbors

Figure 11: Random Ship Image and it's 5 Nearest Neighbors

Figure 12: Random Ship Image and it's 5 Nearest Neighbors

Figure 13: Random Truck Image and it's 5 Nearest Neighbors

Figure 14: Random Truck Image and it's 5 Nearest Neighbors