

Homework#8, Due Thursday (6/10) Sort the list [64, 13, 29, 32, 21, 46, 60] using Exchange sort; show each pass Bubble sort; show each pass Merge sort; show each sublist For each case, give the number of 2-number comparisons required. Use Newton's method to find the square root of 27 up to 2 decimal places. Use 7 as your initial guess. Page 204, Problem 52 Page 216, Problem 2, 8, and 14 Page 217, 34(a) Page 218, 74(a), and 74(b)

5

Cardinality - Countable/Uncountable Sets

Review:
What's the cardinality of the set A where A = {2, 3, 5, 7, 11}?

If two finite sets can be placed into 1-1 onto correspondence (that is, a bijection) then they have the same size. In other words, set A and set B are of the same size if there is a bijection from set A to set B

Georg Cantor (1845-1918)

Cantor's Definition (1874)

- Cantor extended the Correspondence definition to the infinite sets.
- Two sets A and B are defined to have the same size if there is a bijection from A to B.
- A set is countable if it has the same size as the set of positive integers, Z⁺
 - Aside: Many call *Z*⁺ the set of natural numbers
- In this discussion, we will use the words size and cardinality interchangeably.

37/

Do Z^+ and E have the same size?

- $Z^+ = \{1, 2, 3, 4, 5, 6, 7, \dots\}$
- $E = \{0, 2, 4, 6, 8, 10, 12, \dots\}$
- $f: \mathbb{Z}^+ \to E, f(n) = 2n 2$

377

Do Z^+ and O have the same size?

- $Z^+ = \{1, 2, 3, 4, 5, 6, 7, \dots\}$
- $O = \{1, 3, 5, 7, 9, 11, 13, \dots\}$
- $f: \mathbb{Z}^+ \to O, f(n) = 2n 1$

378

Do Z^+ and Z have the same size?

- $Z^+ = \{1, 2, 3, 4, 5, 6, 7, \dots\}$
- $Z = \{ ..., -2, -1, 0, 1, 2, 3, \}$
- Let's "line" them up this way:
- **1**, 2, 3, 4, 5, 6, 7,
- **•** {0, 1, -1, 2, -2, 3, -3,}

379

Do Z^+ and Z have the same size?...

- **1**, 2, 3, 4, 5, 6, 7, }
- **•** {0, 1, -1, 2, -2, 3, -3,}

$$f(n) = \begin{cases} 0, & n = 1 \\ \left\lfloor \frac{n}{2} \right\rfloor, & n \text{ even} \\ -\left\lfloor \frac{n}{2} \right\rfloor, & n \text{ odd} \end{cases}$$

Transitivity Lemma

- If $f: A \rightarrow B$ is a bijection, and $g: B \rightarrow C$ is a bijection, then $h(x) = g(f(x)): A \rightarrow C$ is a bijection.
- Hence, Z⁺, E, O, and Z all have the same cardinality.

381

Do Z^+ and Q have the same cardinality?

- $Z^+ = \{1, 2, 3, 4, 5, 6, 7, \dots\}$
- Q = The Rational Numbers
- Let's "line" them up this way
- $Z^+ = \{1, 2, 3, 4, 5, 6, 7, \dots\}$
- $Q = \{\frac{-1}{1}, \frac{2}{1}, \frac{1}{2}, \frac{-1}{2}, \frac{-2}{1}, \frac{3}{1}, \frac{3}{2}, \frac{1}{3}, \frac{-1}{3}, \dots\}$

5

Do Z^+ and R have the same cardinality? $Z^+ = \{1, 2, 3, 4, 5, 6, 7, \dots\}$ R = The Real Numbers

Theorem: The set *W* of reals between 0 and 1 is not countable
Proof by contradiction:
Suppose *W* is countable. Let *f* be a 1-1 onto function from *Z** to *W*. Make a list *L* as follows:
1: decimal expansion of *f*(1)
2: decimal expansion of *f*(2)
... *k*: decimal expansion of *f*(*k*)
...

Countable/Uncountable Sets

- Facts:
 - □ If *A* and *B* are countable sets, then $A \cup B$ is also *countable*.
 - □ A subset of a countable set is *countable*.
 - □ If *A* is uncountable and $A \subseteq B$ then *B* is *uncountable*.
 - There are functions which are uncomputable.
 - □ The power set of **Z**⁺ is uncountable.
- There are uncomputable functions; a function is said to be computable if there is a computer program in some programming language that finds the values of this function. If a function is not computable we say it is uncomputable.

Uncomputable functions

- Consider the following function:
- $f: Z^+ \to \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}$
- If x is a real number whose decimal representation is $0.d_1d_2d_3$... then we associate to x the function whose rule is given by $f(n)=d_n$. Clearly this is a one-to-one function from the set of real numbers between 0 and 1 and a subset of the set of all functions from the set of positive integers to the set {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}. Two different real numbers must have different decimal representations, so the corresponding functions are different. Since the set of real numbers between 0 and 1 is uncountable, the subset of functions we have associated with them must be uncountable. But the set of all such functions has at least this cardinality, so it, too, must be uncountable

What is an Algorithm

Persian textbook author, Abu Abdullah Muhammad bin Musa al-Khwarizmi (780-850)

- An Algorithm is a finite set of instructions for solving a class of problems on a computer, conforming to the following properties
 - Definiteness: Each instruction must be "precisely" defined.
 - Effectiveness: Each instruction must be sufficiently "basic".
 - □ *Finiteness*: An algorithm must always terminate.

5

393

Basic computer operations on numbers

- Operations on numbers
 - Addition
 - Subtraction
 - Multiplication
 - Division
 - Shift
 - Compare/testing
- How are other functions/operations, such as the nth root, sine, log,..., done?
 - These functions are either expressed in terms of "basic" operations, or in terms of procedures that only require "basic" operations.

5

...

Algorithm example

- *Take* two positive integers n and b > 1.
- Divide n by b, and let q and r be the quotient and the remainder, respectively.
- Print r
- *If* q is zero, stop.
- Treat q as n and go to

=

333

Algorithm example

- Step 1: *Take* two positive integers n and b > 1.
- Step 2: Divide n by b, and let q and r be the quotient and the remainder, respectively.
- Step 3: *Print r*
- Step 4: *If q* is zero, *stop*.
- Step 5: Treat q as n and go to Step 2.

Let's try it for n = 27 and b = 3

5

396

Algorithm examples

- Carry out the following calculation
 - □ 3 + 2*4
- Find the max value in the following list
 - **a** [3, 2, 14, 6, 5]

5

207

Examples of algorithms

- Searching
 - Linear Search
 - Binary search
- Sorting
 - Exchange sort
 - Bubble sort
 - Merge Sort
- Computing SQRT

5

398