Learning a Strategy for Adapting a Program Analysis via Bayesian Optimization

Hakjoo Oh

Korea University

Hongseok Yang

Oxford University

Kwangkeun Yi

Seoul National University

Challenge in Static Analysis

Challenge in Static Analysis

Х	[0,0]
У	[0,0]
Z	[1,1]

Х	[0,0]
у	[0,0]
Z	[1,1]
X	[1,1]
у	[0,0]
Z	[1,1]

Х	[0,0]
у	[0,0]
Z	[1,1]
X	[1,1]
V	[0,0]
	[1,1]
	[.,.]
X	[1,1]
у	[0,0]
Z	[2,2]

X	[0,0]
у	[0,0]
Z	[1,1]
X	[1,1]
у	[0,0]
Z	[1,1]
X	[1,1]
у	[0,0]
Z	[2,2]
X	[1,1]
У	[1,1]
	[0 0]

precise but costly

Flow-Insensitivity

Flow-Insensitivity

X	[0,+∞]
у	[0,+∞]
Z	[1,+∞]

cheap but imprecise

FS: {x}

 $FI: \{y,z\}$

FS : {**x**}

x [0,0]

x [1,+∞]

x [I,+∞]

x [1,+∞]

 $FI: \{y,z\}$

у	[0,+∞]
Z	[1,+∞]

FS : {**x**}

x [0,0]

x [1,+∞]

x [I,+∞]

x [1,+∞]

fail to prove

 $FI: \{y,z\}$

у	[0,+∞]
Z	[1,+∞]

FS : {y}

у [0,0]

у [0,0]

у [0,0]

y [0,+∞]

fail to prove

 $FI: \{x,z\}$

X	[0,+∞]
Z	[1,+∞]

FS : {z}

z [1,1]

z [I,I]

z [2,2]

z [2,2]

fail to prove

 $FI: \{x,y\}$

X	[0,+∞]
У	[0,+∞]

FS : {y,z}

у	[0,0]
Z	[1,1]

у	[0,0]
Z	[1,1]

у	[0,0]
Z	[2,2]

у	[0,+∞]
Z	[0,0]

FI : {x}

fail to prove

FS : {x,y}

X	[0,0]
У	[0,0]

X	[1,+∞]
у	[0,0]

X	[1,+∞]
У	[0,0]

х	[1,+∞]
у	[1,+∞]

Succeed

FI : {z}

z [[,+∞]

Hard Search Problem

- Intractably large space, if not infinite
 - 2^N different abstractions for FS
- Most of them are too imprecise or costly
 - $P(\{x,y,z\}) = \{\emptyset,\{x\},\{y\},\{z\},\{x,y\},\{y,z\},\{x,z\},\{x,y,z\}\}\}$

Hard Search Problem

- Intractably large space, if not infinite
 - 2^N different abstractions for FS
- Most of them are too imprecise or costly
 - $P(\{x,y,z\}) = \{\emptyset,\{x\},\{y\},\{z\},\{x,y\},\{y,z\},\{x,z\},\{x,y,z\}\}\}$

How to automatically find a cheap yet precise abstraction?

Active Area in Static Analysis

- Recent work:
 - Impact pre-analysis [OhLeHeYaYi'l4]
 - CEGAR with MAXSAT solving [ZhMaNaGrYa'14]
 - CEGAR with optimality guarantee [ZhNaYa'l3]
 - Abstractions from tests [NaYaHa'l2]

•

Parameterized adaptation strategy

$$S_w : pgm \rightarrow 2^{Var}$$

Parameterized adaptation strategy

$$S_w : pgm \rightarrow 2^{Var}$$

• Learn a good parameter W from existing codebase

$$P_1, P_2, ..., P_m \implies W$$
Codebase

Parameterized adaptation strategy

$$S_w : pgm \rightarrow 2^{Var}$$

• Learn a good parameter W from existing codebase

$$\begin{array}{c} \hline \\ P_1, P_2, ..., P_m \end{array} \Longrightarrow W$$

$$\begin{array}{c} \\ \\ \\ \\ \\ \end{array} Codebase \end{array}$$

• For new program P, run static analysis with Sw(P)

Effectiveness

- Implemented in Sparrow, a realistic C static analyzer
- Partially flow- and context-sensitive

Effectiveness

- Implemented in Sparrow, a realistic C static analyzer
- Partially flow- and context-sensitive

Effectiveness

- Implemented in Sparrow, a realistic C static analyzer
- Partially flow- and context-sensitive

Static Analyzer

number of proved assertions

$$F(p, a) \Rightarrow n$$

abstraction (e.g., a set of variables)

I. The abstraction is determined by a parameterized strategy:

$$S_w : pgm \rightarrow 2^{Var}$$

2. The parameter is learnt from an existing codebase:

$$\begin{array}{c} \hline \\ P_1, P_2, ..., P_m \end{array} \Longrightarrow W$$
 Codebase

1. Parameterized Strategy

 $S_w : pgm \rightarrow 2^{Var}$

- (I) Represent program variables as feature vectors.
- (2) Compute the score of each variable.
- (3) Choose the top-k variables based on the score.

(I) Features

Predicates over variables:

$$f = \{f_1, f_2,...,f_5\}$$
 $(f_i: Var \rightarrow \{0,1\})$

(I) Features

Predicates over variables:

$$f = \{f_1, f_2, ..., f_5\}$$
 $(f_i : Var \rightarrow \{0, 1\})$

- Mostly syntactic features for variables: e.g,
 - local / global variable, passed to / returned from malloc, incremented by constants, etc
 - 45 features for flow-sensitivity

(I) Features

Represent each variable as a feature vector:

$$f(x) = \langle f_1(x), f_2(x), f_3(x), f_4(x), f_5(x) \rangle$$

$$f(x) = \langle 1, 0, 1, 0, 0 \rangle$$

$$f(y) = \langle 1, 0, 1, 0, 1 \rangle$$

$$f(z) = \langle 0, 0, 1, 1, 0 \rangle$$

(2) Scoring

• The parameter w is a real-valued vector: e.g.,

$$w = \langle 0.9, 0.5, -0.6, 0.7, 0.3 \rangle$$

Compute scores of variables:

```
score(x) = \langle 1,0,1,0,0 \rangle \cdot \langle 0.9,0.5,-0.6,0.7,0.3 \rangle = 0.3

score(y) = \langle 1,0,1,0,1 \rangle \cdot \langle 0.9,0.5,-0.6,0.7,0.3 \rangle = 0.6

score(z) = \langle 0,0,1,1,0 \rangle \cdot \langle 0.9,0.5,-0.6,0.7,0.3 \rangle = 0.1
```

(3) Choose Top-k Variables

 Choose the top-k variables based on their scores: e.g., when k=2,

score(x) = 0.3
score(y) = 0.6
score(z) = 0.1
$$\{x,y\}$$

 In experiments, we chosen 10% of variables with highest scores.

2. Learn a Good Parameter

$$\begin{array}{c} \hline \\ P_1, P_2, ..., P_m \\ \hline \\ Codebase \\ \end{array} \hspace{0.5cm} \longrightarrow \hspace{0.5cm} W$$

Solve the optimization problem:

Find w that maximizes
$$\sum_{P_i} F(P_i, S_{\mathbf{w}}(P_i))$$

Learning via Random Sampling

repeat N times

pick $\mathbf{w} \in \mathbb{R}^n$ randomly

evaluate
$$\sum_{P_i} F(P_i, S_{\mathbf{w}}(P_i))$$

return best w found

1. (0.2, 0.7, -0.1, 0.9, -1.0)

 $x : \langle 1,0,1,0,0 \rangle \cdot \langle 0.2,0.7,-0.1,0.9,-1.0 \rangle = 0.1$

 $y : \langle 1,0,1,0,1 \rangle \cdot \langle 0.2,0.7,-0.1,0.9,-1.0 \rangle = -0.9$

 $z : \langle 0,0,1,1,0 \rangle \cdot \langle 0.2,0.7,-0.1,0.9,-1.0 \rangle = 0.8$

 $x : \langle 1,0,1,0,0 \rangle \cdot \langle 0.2,0.7,-0.1,0.9,-1.0 \rangle = 0.1$ $y : \langle 1,0,1,0,1 \rangle \cdot \langle 0.2,0.7,-0.1,0.9,-1.0 \rangle = -0.9$ $z : \langle 0,0,1,1,0 \rangle \cdot \langle 0.2,0.7,-0.1,0.9,-1.0 \rangle = 0.8$ $F(p, \{x,z\}) = 0$

$$x : \langle 1,0,1,0,0 \rangle \cdot \langle 0.2,0.7,-0.1,0.9,-1.0 \rangle = 0.1$$

 $y : \langle 1,0,1,0,1 \rangle \cdot \langle 0.2,0.7,-0.1,0.9,-1.0 \rangle = -0.9$
 $z : \langle 0,0,1,1,0 \rangle \cdot \langle 0.2,0.7,-0.1,0.9,-1.0 \rangle = 0.8$

$$F(p, \{x,z\}) = 0$$

$$F(p, \{y,z\}) = 0$$

$$x : \langle 1,0,1,0,0 \rangle \cdot \langle 0.2,0.7,-0.1,0.9,-1.0 \rangle = 0.1$$

 $y : \langle 1,0,1,0,1 \rangle \cdot \langle 0.2,0.7,-0.1,0.9,-1.0 \rangle = -0.9$
 $z : \langle 0,0,1,1,0 \rangle \cdot \langle 0.2,0.7,-0.1,0.9,-1.0 \rangle = 0.8$

$$F(p, \{x,z\}) = 0$$

$$F(p, \{y,z\}) = 0$$

$$3.\langle 0.7, 0.1, -0.6, -0.5, -0.1 \rangle$$

$$F(p, \{x,y\}) = I$$

$$x : \langle 1,0,1,0,0 \rangle \cdot \langle 0.2,0.7,-0.1,0.9,-1.0 \rangle = 0.1$$

 $y : \langle 1,0,1,0,1 \rangle \cdot \langle 0.2,0.7,-0.1,0.9,-1.0 \rangle = -0.9$
 $z : \langle 0,0,1,1,0 \rangle \cdot \langle 0.2,0.7,-0.1,0.9,-1.0 \rangle = 0.8$

$$F(p, \{x,z\}) = 0$$

$$F(p, \{y,z\}) = 0$$

$$3.\langle 0.7, 0.1, -0.6, -0.5, -0.1 \rangle$$

$$F(p, \{x,y\}) = I$$

$$F(p, \{x,z\}) = 0$$

$$x : \langle 1,0,1,0,0 \rangle \cdot \langle 0.2,0.7,-0.1,0.9,-1.0 \rangle = 0.1$$

 $y : \langle 1,0,1,0,1 \rangle \cdot \langle 0.2,0.7,-0.1,0.9,-1.0 \rangle = -0.9$
 $z : \langle 0,0,1,1,0 \rangle \cdot \langle 0.2,0.7,-0.1,0.9,-1.0 \rangle = 0.8$

$$F(p, \{x,z\}) = 0$$

$$F(p, \{y,z\}) = 0$$

$$3.\langle 0.7, 0.1, -0.6, -0.5, -0.1\rangle$$

$$F(p, \{x,y\}) = 1$$

$$F(p, \{x,z\}) = 0$$

$$F(p, \{x,z\}) = 0$$

Learning via Random Sampling

Our Approach: Learning via Bayesian Optimization

- A powerful method for solving difficult optimization problems.
- Especially when, the objective function is expensive to evaluate and lack a good structure.
- Key idea: use a probabilistic model to reduce the number of objective function evaluations.

Learning via Bayesian Optimization

repeat N times

update the probabilistic model select a promising w

evaluate
$$\sum_{P_i} F(P_i, S_{\mathbf{w}}(P_i))$$

return best w found

- Probabilistic model: Gaussian processes
- Selection strategy: Expected improvement

Learning via Bayesian Optimization

Experiments

- Sparrow: a C static analyzer for buffer-overrun checking
- Tune partial flow- and context-sensitivity of Sparrow
 - 10% of program variables for flow-sensitivity
 - 10% of procedures for context-sensitivity
- 30 C programs (2K ~ 90KLoC)

Research Questions

- 1. Does our learning algorithm produce a good strategy?
 - Cross validation with 20 training and 10 testing programs, repeated for five times
- 2. How much does the Bayesian optimization benefit?
 - Comparison with random sampling
- 3. Does the learnt strategy provide new insights?

I. Performance

Flow-Sensitivity

		Testing											
	FI	FS	partial FS		FI		FS			partial FS			
Trial	prove	prove	prove	quality	prove	sec	prove	sec	cost	prove	sec	quality	cost
1	6,383	7,316	7,089	75.7 %	2,788	48	4,009	627	13.2 x	3,692	78	74.0 %	1.6 x
2	5,788	7,422	7,219	87.6 %	3,383	55	3,903	531	9.6 x	3,721	93	65.0 %	1.7 x
3	6,148	7,842	7,595	85.4 %	3,023	49	3,483	1,898	38.6 x	3,303	99	60.9 %	2.0 x
4	6,138	7,895	7,599	83.2 %	3,033	38	3,430	237	6.2 x	3,286	51	63.7 %	1.3 x
5	7,343	9,150	8,868	84.4 %	1,828	28	2,175	577	20.5 x	2,103	54	79.3 %	1.9 x
TOTAL	31,800	39,625	38,370	84.0 %	14,055	218	17,000	3,868	17.8 x	16,105	374	69.6 %	1.7 x

Flow-Sensitivity + Context-Sensitivity

		ining	Testing										
	FICI	FSCS	partial FSCS		FICI		FSCS			partial FSCS			
Trial	prove	prove	prove	quality	prove	sec	prove	sec	cost	prove	sec	quality	cost
1	6,383	9,237	8,674	80.3 %	2,788	46	4,275	5,425	118.2 x	3,907	187	75.3 %	4.1 x
2	5,788	8,287	7,598	72.4 %	3,383	57	5,225	4,495	79.4 x	4,597	194	65.9 %	3.4 x
3	6,148	8,737	8,123	76.3 %	3,023	48	4,775	5,235	108.8 x	4,419	150	79.7 %	3.1 x
4	6,138	9,883	8,899	73.7 %	3,033	38	3,629	1,609	42.0 x	3,482	82	75.3 %	2.1 x
5	7,343	10,082	10,040	98.5 %	1,828	30	2,670	7,801	258.3 x	2,513	104	81.4 %	3.4 x
TOTAL	31,800	46,226	43,334	80.0 %	14,055	219	20,574	24,565	112.1 x	18,918	717	74.6 %	3.3 x

2. Comparison

• Typical scenario where flow-sensitivity helps:

```
int mirror[7];
int i = unknown;
for (i=1;i<7;i++)
if (mirror[i-1] == '1') ...</pre>
```

• Typical scenario where flow-sensitivity helps:

```
local variable
    int mirror[7];
    int i = unknown;
    for (i=1;i<7;i++)
        if (mirror[i-1] == '1') ...</pre>
```

Typical scenario where flow-sensitivity helps:

```
int mirror[7];
  int i = unknown;
  for (i=1;i<7;i++)
  if (mirror[i-1] == '1') ...</pre>
```

• Typical scenario where flow-sensitivity helps:

```
int mirror[7];
  int i = unknown;
  for (i=1;i<7;i++)
      if (mirror[i-1] == '1') ...

used as an
      array index</pre>
```

• Also provide unexpected domain knowledge.

```
int pos = unknown;
if (!pos)
path[pos] = 0;
```

Also provide unexpected domain knowledge.

```
negated in conditional expression

int pos = unknown;

if (!pos)

path[pos] = 0;
```

Also provide unexpected domain knowledge.

```
negated in conditional
expression

int pos = unknown;

if (!pos)

path[pos] = 0;
```

 Over the entire codebase, the feature is a strong indicator for flow-"insensitivity"

Summary Our Learning-based Approach

- First machine learning-based approach
 - formulated as an optimization problem
 - solved by Bayesian optimization
- Effective: 75% precision with 2% cost
- Generally applicable to any static analysis and automatic

Summary Our Learning-based Approach

- First machine learning-based approach
 - formulated as an optimization problem
 - solved by Bayesian optimization
- Effective: 75% precision with 2% cost
- Generally applicable to any static analysis and automatic

Thank you