Примем для удобства $t_0 = a, t_n = b.$

Рис. 9

Площадь S, о которой идёт речь, с любой точностью можно заменить на сумму площадей прямоугольников с нижними основаниями $[t_0,t_1]$, $[t_1,t_2]$, ..., $[t_{n-1},t_n]$ и с высотами $v(t_0)$, $v(t_1)$, ..., $v(t_{n-1})$, т.е. получаем

$$S \approx v(t_0)(t_1 - t_0) + v(t_1)(t_2 - t_1) + \dots + v(t_{n-1})(t_n - t_{n-1}) = \sum_{k=0}^{n-1} v(t_k)(t_{k+1} - t_k) = \sum_{k=0}^{n-1} v(t_k)(t_{k+1} - t_k) = \sum_{k=0}^{n-1} v(t_k)(t_k - t_k) = \sum_{k=0}^{n-1} v(t_k)(t$$

(это сокращённое обозначение левой части).

Более точная запись:

$$S = \lim_{\Delta t_k \to 0, n \to \infty} \sum_{k=0}^{n-1} v(t_k)(t_{k+1} - t_k) = \lim_{\Delta t_k \to 0, n \to \infty} \sum_{k=0}^{n-1} v(t_k) \Delta t_k,$$

где $\Delta t_k = t_{k+1} - t_k$. Можно, например, брать разбиение отрезка [a,b] на n равных частей, так что $\Delta t_k = \frac{b-a}{n}$, и тогда условие перехода к пределу состоит просто в том, что $n \to \infty$.

Но, с другой стороны, точно так же можно находить путь, пройденный в промежутке от a до b, так как на маленьких участках $[t_k, t_{k+1}]$ скорость можно считать постоянной. Итак,

$$S = \int_{a}^{b} v(t) dt = \lim_{\Delta t_k \to 0, n \to \infty} \sum_{k=0}^{n-1} v(t_k) \Delta t_k.$$

Отметим соглашение о знаке площади: если кусок площади лежит под осью абсцисс, то его знак считается отрицательным, так как в этом случае $\Delta t_k > 0$, а $v(t_k) < 0$.

Пример 1. Найдём площадь S под параболой $y=x^2$ от точки x=0 до точки x=1 (рис. 10). Имеем:

$$S = \int_0^1 x^2 dx = \left. \frac{x^3}{3} \right|_0^1 = \frac{1}{3}.$$

Пример 2. Площадь под гиперболой $y = \frac{1}{x}$ от x = 1 до произвольного x равна

$$\int_{1}^{x} \frac{1}{t} dt = \ln t \Big|_{1}^{x} = \ln x.$$

Таков геометрический смысл натурального логарифма.