1. Formy danych obrazowych. Klasy obrazów. - W1

Formy danych obrazowych (1)

- W systemach cyfrowego przetwarzania obrazu przydatny jest podział danych obrazowych na cztery klasy:
 - I. Obrazy o pełnej gradacji kontrastu (o pełnej skali stopni jasności) i obrazy barwne.
 - II. Obrazy o dwóch poziomach szarości (obrazy binarne).
 - III. Krzywe dyskretne i linie proste.
 - IV. Punkty lub wieloboki.
- Klasa I. Obrazy klasy I dokładnie przedstawiają rzeczywistość. Obrazy są reprezentowane jako macierze z elementami całkowitymi, powszechnie nazywanymi "element obrazu" lub "piksel".
- Do reprezentowania obrazów kolorowych mogą służyć trzy macierze (dla kolorów: czerwonego, zielonego i niebieskiego) lub jedna macierz, w której różne bity każdego elementu odpowiadają poszczególnym kolorom.
- Klasa II. Obraz klasy II jest obrazem dwupoziomowym (czarno-białym). Obrazy tej klasy mogą być reprezentowane jako macierze z jednym bitem na element.
- Klasa III. Kontury obszarów i form falistych lub wykresy funkcji są przykładami obrazów klasy III. Dane są ciągami punktów, które mogą być reprezentowane przez ich współrzędne x i y.
- Krzywe dyskretne zbiór pikseli rastru prostokątnego z których każdy (oprócz pikseli końcowych) posiada nie mniej niż
 2 i nie więcej niż 3 sąsiadów odpowiednio skonfigurowanych.
- Wydajniejszą reprezentacje danych otrzymuje się stosując kody łańcuchowe, w których wektor łączący dwa kolejny punkty jest określony jednym symbolem ze skończonego zbioru symboli.
- Długość kodu łańcuchowego nie zależy od kształtu krzywej (określonego poprzez kody kierunków pomiędzy kolejnymi pikselami krzywej).
- Jeszcze bardziej wydajną metodę otrzymuję się stosując różnicowy kod łańcuchowy, gdzie reprezentacją każdego punktu jest różnica między dwoma kolejnymi kodami bezwzględnymi.
- Długość kodu zależy od kształtu krzywej (określonego poprzez kody zmian kierunków pomiędzy kolejnymi pikselami krzywej).
- Klasa IV. Obrazy klasy IV składają się ze zbiorów oddzielnych punktów. Obrazy reprezentowany za pomocą tablic ich współrzędnych x i y. Punkty mogą być połączone liniami prostymi lub nieskomplikowanymi krzywymi o zadanych parametrach.
- Obrazy tego typu są najczęściej stosowane w grafice komputerowej. Wykorzystywane przy opisie obiektów trójwymiarowych rzutowanych na ekran.

0

2. Zasady tworzenia obrazu cyfrowego. Próbkowanie. Kwantowanie. Obraz jako funkcja. - W2

Zasady tworzenia obrazu cyfrowego (1)

- Cyfrowe przetwarzanie obrazu wymaga przetworzenia obrazu analogowego do odpowiadającej mu postaci cyfrowej.
- Obraz cyfrowy powstaje w wyniku dyskretyzacji obrazu analogowego, dostarczonego przez odpowiedni przetwornik optoelektroniczny
- W technice wizyjnej analogowy obraz jest reprezentowany przez dwuwymiarową funkcję f(x,y), której argumenty x i y opisują współrzędne punktu obrazu, zaś wartość funkcji określona jest przez poziom jasności obrazu.

• Aby obraz analogowy mógł być przetwarzany przez komputer, należy go zamienić na tablice liczb, tj. przedstawić obraz rzeczywisty w postaci skończonej liczby wartości funkcji jasności.

Dyskretyzacja obrazu

- Proces zamiany obrazu ciągłego na formę opisu w postaci macierzy, zwany dyskretyzacją, składa się z dwóch innych procesów: próbkowania i kwantowania.
 - Dyskretyzacja obrazu \rightarrow dyskretyzacja funkcji f(x, y):
 - przestrzenna (próbkowanie obrazu) Próbkowanie definiuje jaka będzie rozdzielczość obrazu;
- amplitudowa (kwantyzacja poziomu szarości) Kwantyzacja definiuje którą wartość z dyskretnego zbioru stanów przybiera piksel.

Próbkowanie obrazu (2)

- Próbkowanie definiuje jaka będzie rozdzielczość przestrzenna obrazu.
- Próbkowanie jest sposobem przedstawienia obrazu ciągłego za pomocą skończonego szeregu lub też tablicy liczb zwanych próbkami.

Kwantowanie obrazu (1)

- Kwantowanie to proces zamiany wartości ciągłych (liczb rzeczywistych) na dyskretne (liczby całkowite) z określonego przedziału.
- Realizowane przez **kwantyzator**, który odwzorowuje intensywność funkcji w skończony zbiór wartości, co prowadzi do nieodwracalnych zniekształceń.
- **Kwantyzator jednostajny** (liniowy): równe długości przedziałów kwantyzacji, prostota implementacji.
- Błąd kwantyzacji rozłożony równomiernie w zakresie (-q/2,q/2), gdzie q to długość przedziału.

Obraz jako funkcja (1)

- W wyniku dyskretyzacji obrazu funkcja f(x, y) o argumentach x i y zmieniających się w sposób ciągły zostaje zamieniona na macierz f(m, n) o M kolumnach i N wierszach, której elementy zawierają skwantowane poziomy jasności.
 - ullet Obraz f(m,n) może być rozważany i traktowany jako określona funkcja dwóch zmiennych.
 - Również przekroje obrazu, to znaczy zbiory wartości pikseli
 - obrazu f(m', n) dla ustalonego m = m' i zmiennego n,
 - obrazu f(m, n') dla ustalonego n = n' i zmiennego m

można traktować odpowiednio jako funkcje jednej zmiennej.

3. Formaty zapisu obrazu cyfrowego. Głębia bitowa. Reprezentacja obrazu cyfrowego. - W2

Głębia bitowa (1)

- Każdy z elementów dyskretnej reprezentacji obrazu może przyjmować tylko jeden spośród ograniczonej ilości stanów.
- Ilość ta, popularne nazywana ilością kolorów, może być także w komputerowej reprezentacji obrazu interpretowana jako ilość bitów przeznaczonych na zapamiętanie stanu jednego elementu obrazu.

Formaty zapisu obrazu cyfrowego (1)

• binarny (1 bpp, bit per piksel) • monochromatyczny (o wielu odcieniach szarości) • kolorowy (24 lub 32 bpp):

Reprezentacja obrazu cyfrowego (2)

- Obraz cyfrowy tablica $M \times N$ próbek wynikających z dyskretyzacji obrazu (przestrzennej); każdy element tablicy przechowuje skwantowany poziom szarości (jeden spośród L poziomów).
- Liczba pikseli i poziomów jasności może być w ogólności dowolna, jednak sposób reprezentacji danych w technice komputerowej przemawia za stosowaniem wielkości będących wielokrotnościami liczby 2, np. 512 x 512 pikseli i 256 poziomów jasności.
- Liczba i gęstość powierzchniowa pikseli powinny być dostatecznie duże, aby zachowane zostały pożądane elementy informacji obrazowej.

- 4. Podział i ogólna charakterystyka algorytmów przetwarzania obrazu. Typy transformacji Obrazów. W3
- Podział i ogólna charakterystyka algorytmów przetwarzania obrazu (1)
- Możliwych sposobów przetworzenia jednego obrazu w inny jest nieskończenie wiele, jednak większość nie posiada znaczenia praktycznego.
- Niemniej pozostała część przekształceń, mogących przynieść praktyczne efekty, jest na tyle liczna, że warto sklasyfikować ją na grupy ze względu na posiadane cechy.
 - Są pięć podstawowych grup przekształceń
 - przekształcenia geometryczne,
 - przekształcenia punktowe (bezkontekstowe),
 - przekształcenia kontekstowe (filtry konwolucyjne, logiczne i medianowe),
 - przekształcenia widmowe (wykorzystujące transformację Fouriera),
 - przekształcenia morfologiczne.

Typy transformacji obrazów (1)

- 1. Transformacja punktowa
- 2. Transformacja lokalna
- 3. Transformacja globalna

5. Przekształcenia geometryczne. - W3

Przekształcenia geometryczne

- Na przekształcenia geometryczne składają się przesunięcia, obroty, odbicia i inne transformacje geometrii obrazu.
- Przekształcenia te wykorzystywane są do korekcji błędów wnoszonych przez system wprowadzający oraz do operacji pomocniczych.
- 1. Przesuwanie (translacja) obrazu 2. Skalowanie obrazu 3. Obracanie obrazu 4. Odbijanie symetryczne obrazów
- Służą do korekcji błędów geometrii obrazu takich jak: zniekształcenia poduszkowe, beczkowate, trapezowe.
- Zwykle są to samodzielne transformacje, ale mogą być też wykorzystywane do wspomagania innych przekształceń.
 - Pochylenie (odkształcenie) obrazów????

6. Przekształcenia punktowe. Podstawowe cechy. Operacje liniowe. - W3

Przekształcenia punktowe

- Cechą charakterystyczną punktowych przekształceń obrazu jest to, że poszczególne elementy obrazu (punkty) modyfikowane są niezależnie od stanu elementów sąsiadujących.
- Dzięki takiej prostej regule operacje jednopunktowe mogą być wykonywane stosunkowo łatwo i szybko nawet na bardzo dużych obrazach.
- Najprostszymi operacjami punktowymi są: utworzenie negatywu, rozjaśnienie lub zaciemnienie wybranych punktów obrazu.
- Przekształcenia jednopunktowe (inaczej znane jako operacje anamorficzne) wykonywane są zwykle z zastosowaniem operacji LUT (look-up table), wykorzystującej z góry przygotowane tablice korekcji.
- Przekształcenia punktowe realizowane są zwykle w taki sposób, że wymagane operacje wykonuje się na poszczególnych pojedynczych punktach wejściowego obrazu, otrzymując w efekcie pojedyncze punkty obrazu wyjściowego.
- Poszczególne elementy obrazu (punkty) modyfikowane są niezależnie od stanu elementów sąsiadujących. Dzięki temu są wykonywane stosunkowo szybko i łatwo nawet na bardzo dużych obrazach.
- Operacji te charakteryzują się następującymi cechami:
- modyfikowana jest jedynie wartość (np. stopień jasności) poszczególnych punktów obrazu. Relacje geometryczne pozostają bez zmian;
- jeżeli wykorzystywana jest funkcja ściśle monotoniczna (rosnąca lub malejąca), to zawsze istnieje operacja odwrotna, sprowadzająca z powrotem obraz wynikowy na wejściowy. Jeżeli zastosowana funkcja nie jest ściśle monotoniczna, pewna część informacji jest bezpowrotnie tracona;
- operacje te mają za zadanie jedynie lepsze uwidocznienie pewnych treści już zawartych w obrazie. Nie wprowadzają one żadnych nowych informacji do obrazu.

Operacje liniowe (1)

- 1. Dodanie do obrazu f (m,n) liczby χ (dodatniej lub ujemnej)
- 2. Negatyw obrazu
- 3. Przemnożenie
- 4. Opisane operacji na obrazie należą do grupy operacji liniowych, ponieważ można je opisać wzorem

$$f'(m,n) = \alpha f(m,n) \pm \chi$$
.

7. Przekształcenia punktowe. Podstawowe cechy. Operacje nieliniowe. - W3

Operacje nieliniowe (1)

- 1. Operacja potęgowania
- 2. Funkcja logarytmiczna

8. Realizacja przekształceń punktowych z użyciem tabeli przekodowania (LUT). - W3

Realizacja przekształceń punktowych z użyciem LUT (1)

- Przekształcenia punktowe obrazów mogą być wykonane bardzo szybko dzięki stosowaniu operacji typu LUT (ang. look- up table).
- W operacji tej do przekształcania wartości poszczególnych punktów obrazu używa się przygotowanych a priori tabel przekodowania, inaczej zwanym tablicami korekcji.
- Możliwość przygotowania tabeli przekodowania wynika z faktu, że przy ograniczonej i dyskretnej skali jasności obrazu dla każdego piksela (m,n) obrazu wejściowego zachodzi warunek $f(m,n) \in \mathcal{N}$ (\mathcal{N} zbiór liczb całkowitych).
- Zbiór $\mathcal N$ zawiera skończoną i na ogół niewielka liczbę wartości, można więc dla każdej z tych wartości $x \in \mathcal N$ z góry obliczyć wartość funkcji $\Psi(x)$ a następnie zbudować tabelę, w której zestawione będą wartości funkcji $\Psi(x)$ dla wszystkich wartości x należących do przedziału [0, 255].
- Wartość piksela źródłowego f(m,n) staje się adresem (numerem wiersza w tabeli), zaś wartość odpowiedniego piksela dla obrazu wynikowego f'(m,n) jest po prostu odczytywana z tabeli i może być natychmiast wykorzystana niezależnie od stopnia złożoności funkcji $\Psi(x)$.

9. Punktowe operacje wykonywane na dwu obrazach. Mieszanie obrazów metodą wagową. - W3

Punktowe operacje wykonywane na dwu obrazach (1)

- Operacjom punktowym mogą podlegać także dwa obrazy f1(m, n) i f2(m, n), dając w rezultacie trzeci obraz (wynikowy) f'(m, n).
- Przyjmując, że określona jest pewna dwuargumentowa (skalarna) funkcja Φ możemy w ogólny sposób zapisać te przekształcenia w postaci: $f'(m,n) = \Phi(f1(m,n), f2(m,n))$.
 - Do podstawowych dwuargumentowych operacji punktowych należą:
 - dodanie dwóch obrazów
 - odjęcie dwóch obrazów
 - przemnożenie dwóch obrazów
 - kombinacja liniowa dwóch obrazów
- Przekształcenie arytmetyczne dwuargumentowe polega na przeprowadzeniu odpowiedniej operacji arytmetycznej na odpowiadających sobie punktach obrazów wejściowych i zapisanie wynikowego elementu do obrazu końcowego
- Mieszanie obrazów metodą wagową
 - ullet Ogólnie w przypadku N obrazów możemy zastosować mieszanie wagowe.
 - Teraz każdy obraz jest mnożony przez stałą reprezentująca udział obrazu w końcowym obrazie.
 - Podejście to możemy wyrazić wzorem

$$f'(m,n)=\alpha_1f_1(m,n)+\alpha_2f_2(m,n)+\cdots+\alpha_Nf_N(m,n),$$
 gdzie
$$\sum_{i=1}^n\alpha_i=1;$$

 αi jest waga, reprezentująca udział i-tego obrazu (i = 1, 2, ..., N) w obrazie wynikowym.

10. Histogram obrazu. Obliczanie składowych histogramu. - W4

Histogram obrazu (1)

- Histogram to statystyczny rozkład poziomów jasności w obrazie cyfrowym, przedstawiany w formie graficznej lub tabeli.
- Stosowany w analizie statystycznej obrazów, umożliwia:
- Zwiększenie kontrastu.
- Rozjaśnienie niedoświetlonych obrazów.
- Przyciemnienie prześwietlonych obrazów.
- Histogram globalnie charakteryzuje obraz, pokazując częstości występowania pikseli o różnych poziomach jasności.
- Formalnie histogram h(ji) opisuje liczbę pikseli hi dla każdego poziomu jasności ji w zakresie i=0,1,...,L-1, gdzie L to liczba dostępnych poziomów intensywności ($L=2^AB$
- Obliczanie składowych histogramu
- · Obliczanie składowych histogramu:

```
h_i = \sum_{m=0}^{M-1} \sum_{n=0}^{N-1} g_i(m,n), \qquad i = 0, 1, ..., 2^B - 1
gdzie m \in \{0, M-1\}, n \in \{0, N-1\},
        M – rozmiar obrazu w kierunku x,
        N – rozmiar obrazu w kierunku y,
        g_i(m, n) = \begin{cases} 1, & gdy \ f(m, n) = i, \\ 0 & w \ przeciwnym \ przypadku. \end{cases}
```

- Każda składowa histogramu h(ji)reprezentuje liczbę pikseli o jasności ji w obrazie.
- Histogram można przedstawić:
- W tabeli: liczby pikseli dla każdego poziomu jasności.
- Na wykresie: oś pozioma poziomy szarości (i=0,1,...,L-1)oś pionowa wartości h(ji)
- Analiza histogramu ujawnia informacje o obrazie, takie jak:
- Niewykorzystane poziomy jasności (h(ji)=0wskazujące na mało efektywne kwantowanie.
- Problemy z dynamika obrazu, np. brak pełnego wykorzystania zakresu szarości.

0

- 11. Operacji poprawy histogramu. Rozszerzanie zakresu jasności. W4
- Operacji poprawy histogramu
 - mają za zadanie poprawić jakość kontrastu obrazu, zmieniają histogram
 - Rozciągnięcie histogramu (rozszerzanie zakresu jasności)
 - piksele powinny używać wszystkich dostępnych poziomów intensywności.
 - Wyrównywanie (ang. equalization) histogramu
 - wszystkie poziomy powinny być w przybliżeniu równoliczne,
 - czyli histogram powinien był płasku, bez gór i dolin.

Rozszerzanie zakresu jasności (1)

- Operacja zwiększa kontrast obrazu, gdy jego zakres jasności fmin do fmax nie wykorzystuje pełnej skali (f1 do f2).
- Jest to liniowa transformacja jasności, opisana wzorem:

$$f'(m,n) = \frac{f(m,n) - f_{min}}{f_{max} - f_{min}} (f_2 - f_1) + f_1.$$

- Najciemniejsze i najjaśniejsze piksele obrazu są dopasowane do nowych skrajnych wartości, a pozostałe rozciągnięte w skali szarości.

Przykład: Rozszerzanie do zakresu [0, 255]:
$$f'(m,n) = \frac{255}{f_{max} - f_{min}} (f(m,n) - f_{min})$$

dla $f_{min} \le f(m,n) \le f_{max}$.

 Użyteczne np. w korekcji obrazów ze skanerów, które często nie wykorzystują pełnej dynamiki kontrastu

12. Operacji poprawy histogramu. Wyrównywanie histogramu. - W4

Wyrównywanie histogramu obrazu (1)

- Polega na przekształceniu jasności pikseli tak, aby liczba pikseli w każdym z przedziałów histogramu była (w przybliżeniu) równa.
- Celem jest równomierny rozkład poziomów jasności, co poprawia kontrast i normalizuje obraz.
- Operacja znana jako "linearyzacja" lub "spłaszczanie histogramu" opiera się na transformacji funkcji h(ji) tak, aby nowe wartości zk były równomiernie rozłożone w zakresie [0, L-1]
- Wzór na histogram skumulowany

$$p(j_k) = \frac{h_k}{H} ,$$

gdzie j_k – poziom jasności,

- h_k liczba pikseli danej jasności.
- Wyrównywanie histogramu można przeprowadzać:
 - o Globalnie: na całym obrazie.
 - o Lokalnie: na fragmentach obrazu, co kompensuje np. nierównomierność oświetlenia.
- Idealny histogram powinien przypominać kształtem prostokąt, bez dominujących obszarów.
- Metoda jest szczególnie przydatna, gdy poziomy jasności są niewykorzystane lub skupione w wąskim zakresie.

13. Binaryzacja obrazu. Najczęściej wykorzystywane metody binaryzacji. - W5

Binaryzacja (1)

- Operacja progowania, która w wyniku daje obraz binarny, nazywa się także binaryzacją obrazu.
- Celem binaryzacji jest radykalna redukcja ilości informacji zawartej w obrazie.
- Przeprowadzenie procesu binaryzacji polega na tym, aby obraz mający wiele poziomów szarości zmienić na obraz, którego piksele mają wyłącznie wartość **0** i **1**.
- Binaryzacja może zostać przedstawiona na wiele sposobów. Poniżej przedstawiono najczęściej wykorzystywane metody.
- 1. Binaryzacja z dolnym progiem jest metodą najprostszą, która stosuje jedną wartość progu i może być realizowana według zależności
- Operacja ta oznacza transformacje obrazu wejściowego w odcieniach szarości w obraz wyjściowy binarny.
- ullet Punkty, dla których f m, n > t są punktami obiektu, zaś pozostałe punkty obrazu nazywamy tłem.
- 2. Czasem możemy posługiwać się wariantem pierwszej metody, który w efekcie daje negację obrazu otrzymanego w wyniku operacji binaryzacji binaryzacja z górnym progiem
- 3. Dla wyodrębnienia obszarów w których wartość punktów może zmieniać się w pewnym zakresie, wprowadzona binaryzacja z podwójnym ograniczeniem

gdzie t1 i t2 – progi binaryzacji, przy czym t1 < t2.

- 14. Progowanie globalne. Zastosowanie histogramu oraz prostej statystyki obrazu. W5
- Progowanie jest prostą i szybką operacja. Jest jednocześnie najstarszą i szeroko stosowaną metodą segmentacji obrazu.

- 2. Jeżeli używamy więcej progów, to taki przypadek nazywamy progowaniem wielokryterialnym.
- Progowanie wielokryterialne generuje obraz, który nie jest binarny, ale złożony z segmentów o różnych poziomach szarości.
- ullet Jeżeli wartość progu t jest jednakowa dla całego obrazu f(m,n), to próg taki nazywamy globalnym.

Zastosowanie histogramu

- Histogram służy do wyznaczania progu *tt*t dla segmentacji obrazu.
- W przypadku **bimodalnego rozkładu histogramu** próg *tt*t ustala się w minimum pomiędzy dwoma pikami (środek "doliny").
- Operacja progowania dzieli obraz na dwie klasy: obiekty i tło.
- Iteracyjny schemat wyznaczania progu dla rozkładu bimodalnego:
- 1. Przyjmij początkowy próg tt.
- 2. Oblicz średnią wartość jasności $\mu 1 \mid mu_1 \mu 1$ dla pikseli poniżej ttt.
- 3. Oblicz średnią wartość jasności $\mu 2 \mid mu_2 \mid \mu 2$ dla pikseli powyżej ttt.
- 4. Wyznacz nowy próg: $t=(\mu 1+\mu 2)/2t=(\mu 1+\mu 2)/2t=(\mu 1+\mu 2)/2$.
- 5. Powtarzaj kroki, aż *tt*t przestanie się zmieniać.

prostej statystyki obrazu

- Przyjmuje założenie, że obraz można podzielić na dwie klasy: obiekty i tło.
- Wyznaczanie progu odbywa się bez użycia histogramu, za pomocą analizy statystycznej (algorytm krokowy nie jest w pełni zawarty w tym fragmencie).

- 15. Progowanie lokalne. Podstawowe metody progowania. W5
- 2. Jeżeli używamy więcej progów, to taki przypadek nazywamy progowaniem wielokryterialnym.
- Progowanie wielokryterialne generuje obraz, który nie jest binarny, ale złożony z segmentów o różnych poziomach szarości.
- ullet Jeżeli wartość progu t jest jednakowa dla całego obrazu f(m,n), to próg taki nazywamy globalnym.
- Zdarza się jednak, że ze względu np. na nierównomierność oświetlenia sceny, punkty odpowiadające takim samym obiektom przyjmują różne wartości w zależności od położenia w obrazie.
- Wtedy lepiej jest przyjmować wartości progu określone lokalnie, różne w różnych częściach obrazu, tak aby dopasować je do zmiennych warunków.
- Podczas progowania lokalnego obraz dzielony jest na podobszary i próg określa się dla każdego z nich niezależnie.
 - To powoduje, że pojawiają się nieciągłości na granicach dwu różnych podobszarów.
- Dlatego stosuje się różne techniki wygładzania tych nieciągłości obrazu, np. poprzez lokalne liniowe interpolowanie wartości progów. Używając interpolacji skonstruowanej na podstawie progów sąsiednich podobszarów otrzymuje się wygładzony obraz.

Metody progowania globalnego (1)

- 1. Zastosowanie histogramu
- 2. Wyznaczenie progu na podstawie prostej statystyki obrazu

Metody progowania lokalnego (1)

- 1. Metoda Bernsena
- 2. Metoda Niblacka

- 16. Filtry cyfrowe. Rodzaje i zastosowania.
- Filtry cyfrowe stanowią o wiele bardziej złożone narzędzie przetwarzania obrazów, niż przekształcenia jednopunktowe. Z reguły filtry używany dla analizy obrazów zakładają, że wykonywane na obrazie operacje będą kontekstowe.

Kontekstowa filtracja obrazu (2)

- W praktyce filtry wykorzystuje się do realizacji następujących celów:
- 1. Stłumienia w obrazie niepożądanego szumu. Filtr działa zazwyczaj na zasadzie lokalnych średnich. Każdemu z punktów obrazu przypisywana jest w takim przypadku średnia wartość jego otoczenia.
- 2. Poprawa ostrości obrazu. Wzmocnienie w obrazie pewnych elementów zgodnych z posiadanym wzorem. W tym przypadku dany punkt zostanie wzmocniony w stopniu zależnym od spełniania przez jego otoczenie określonych warunków.
 - 3. Usunięcie określonych wad z obrazu.
- 4. Poprawa obrazu o złej jakości technicznej. Na przykład: obrazów nieostrych, poruszonych lub o niewielkim kontraście.

 5. Rekonstrukcja obrazu, który uległ częściowemu zniszczeniu.
 - Możemy rozróżnić filtry:
- liniowe (wykonujące operację filtracji w oparciu o pewną liniową kombinację wybranych pikseli obrazu wejściowego);
- nieliniowe (wykonujące operację filtracji w oparciu o pewną nieliniową funkcję wybranych pikseli obrazu wejściowego)
- 17. Konwolucja. Splot dyskretny. Problem normalizacji.

Splot funkcji (konwolucja) (1)

- Przy rozpatrywaniu funkcji realizujących filtry liniowe wygodnie jest się posłużyć pojęciem splotu funkcji (konwolucji), który zdefiniowany jest następującym wzorem:
- Splot g(x) jest zdefiniowany na całym obszarze zmiennej x, ale funkcja h może mieć skończoną dziedzinę. W takim przypadku konwolucja wykorzystująca funkcje h staje się filtrem.
- Funkcję realizującą tłumienie szumów na zasadzie lokalnych średnich można realizować jako następującą konwolucję:

Splot dyskretny (1)

- Dla obrazu 2D, dziedzina funkcji jasności f(m,n)f(m,n) jest dwuwymiarowa i dyskretna.
- Wzór na konwolucję uwzględnia otoczenie *KK*K rozważanego piksela, gdzie:
- w(i,j)w(i,j)w(i,j): wagi otoczenia,
- f(m,n)f(m,n)f(m,n): intensywność obrazu wejściowego.
- Filtry reprezentuje się jako tablice współczynników w(i,j)w(i,j)w(i,j), które stosuje się dla każdego piksela.

problem normalizacji.

- Ze względu na szybkość obliczeń współczynniki w(i,j) wybiera się zwykle jako liczby całkowite. Powód takiego wyboru jest oczywisty dla uzyskania wartości f'(m,n) dla wszystkich punktów obrazu trzeba w typowych warunkach wykonać ogromną liczbę dodawań i mnożeń.
- Po takiej operacji konwolucji nie będzie zazwyczaj spełniony warunek normalizacji $f'(m, n) \in [0, 2^B 1]$.

- Jeżeli wartości macierzy wag w(i,j) sumują się do jedynki, jasność obrazu nie zmienia się.
- W wyniku operacji filtrowania możliwe jest rozjaśnienie obrazu (suma wag mniejsza od jedności), ściemnienie obrazu (suma wag większa od jedności).

18. Przestrzenne filtry dolnoprzepustowe. - W6

Przestrzenne filtry dolnoprzepustowe (1)

- Filtr dolnoprzepustowy to taki, który pozostawia bez zmian składowe widma sygnału o małej częstotliwości, a tłumi natomiast albo blokuje składowe o dużej częstotliwości.
- Filtry dolnoprzepustowe nadają się do filtrowania albo redukowania szumu w obrazie wówczas, gdy szum jest jedno- albo dwupikselowy
- Typowe zastosowanie filtrów dolnoprzepustowych polega na usuwaniu szumu i zakłóceń obrazu. Drobne zakłócenia obrazu znikają (są rozmywane).
- Suma współczynników maski dla filtru dolnoprzepustowego jest na ogół większa niż 1. Po zastosowaniu normalizacji współczynniki reprezentują procentowy udział określonego piksela w nowym pikselu.
- Obszary, w których występuje duża zmiana jasności między sąsiednimi pikselami, zostają uśrednione z sąsiednimi pikselami, co prowadzi do zredukowania składowych obrazu o dużej częstotliwości.
- Wynikiem filtracji dolnoprzepustowej jest rozmycie i wygładzenie obrazu.
- Suma współczynników maski dla filtru dolnoprzepustowego jest na ogół większa niż 1. Po zastosowaniu normalizacji współczynniki reprezentują procentowy udział określonego piksela w nowym pikselu.
- Obszary, w których występuje duża zmiana jasności między sąsiednimi pikselami, zostają uśrednione z sąsiednimi pikselami, co prowadzi do zredukowania składowych obrazu o dużej częstotliwości.
- Wynikiem filtracji dolnoprzepustowej jest rozmycie i wygładzenie obrazu.

- 19. Przestrzenne filtry górnoprzepustowe.
- Filtracja górnoprzepustowa jest używana do wzmocnienia szczegółów o dużej częstotliwości występujących w obrazie, przy zachowywaniu integralności szczegółów o małej częstotliwości.
- Filtracja górnoprzepustowa ma znaczenie wówczas, gdy obiekty w obrazie mają być lepiej zaakcentowane albo zidentyfikowane.
- Przy filtracji górnoprzepustowej części obrazu o większych częstotliwościach staną się jaśniejsze, a części o małych częstotliwościach staną się ciemniejsze.
- Zazwyczaj zwiększa się ostrość obrazu, przy czym ujemnym skutkiem jest wzmacnianie szumu.
- Filtry górnoprzepustowe służą do podkreślenia elementów, które charakteryzują się szybkimi zmianami jasności kontury, krawędzie, drobne elementy faktury itp.
- Zasada stosowanych obliczeń jest identyczna jak i w filtrach dolnoprzepustowych. Jedyna różnica polega na innych wartościach współczynników stosowanych masek.

20. Filtry logiczne.

- Filtrację logiczną stosuje się głównie do obrazów binarnych, tzn. takich, w których piksele przyjmują wartość białą lub czarną **0** lub **1**, czyli każdy element może przyjąć tylko jeden spośród dwóch stanów logicznych: prawda (1) i fałsz (0).
- Polega ona na sprawdzaniu wartości wyrażenia logicznego opisującego pewne związki pomiędzy pikselami dla określonego otoczenia analizowanego punktu.
- Najczęściej takie otoczenie bada się w ramach maski 3×3. Wtedy jako otoczenie można wybrać np. cztery punkty sąsiadujące z punktem centralnym piksele z prawej i lewej oraz piksele położone wyżej i niżej analizowanego piksela *p*:

$$\begin{bmatrix} 0 & b & 0 \\ c & p & a \\ 0 & d & 0 \end{bmatrix}$$

• Zwykle w celu eliminacji zakłóceń na obrazie stosowane są następujące trzy reguły pozwalające na uzyskanie trzech różnych metod filtracji logicznych:

1.
$$p' = \begin{cases} b, & gdy \ a = b = c = d; \\ p, & w \ przeciwnym \ razie, \end{cases}$$

2.
$$p' = \begin{cases} b, & gdy \ b = d; \\ p, & w \ przeciwnym \ razie, \end{cases}$$

3.
$$p' = \begin{cases} a, & gdy \ a = c; \\ p, & w \text{ przeciwnym razie,} \end{cases}$$

gdzie p' oznacza piksel obrazu po filtracji, zaś p – piksel przed filtracją.

- Reguła 1 powoduje usunięcie wyłącznie pojedynczych pikseli, np. piksela czarnego, który jest otoczony pikselami białymi.
- Reguła 2 pozwala wyeliminować zakłócenia w postaci izolowanych pikseli i poziomych linii o pojedynczej grubości.
- Eliminację linii pionowych i izolowanych pikseli zapewnia reguła 3.
- Podobne filtry można również wykorzystać do poprawy ciągłości samej linii (lub linii brzegowej).
- Do usuwania 1-pikselowych przerw w linii pionowej można użyć filtr pionowy, zaś filtr poziomy do likwidacji przerw w linii poziomej.
- Przykłady odpowiednich filtrów są następujące:
- 1) filtr pionowy

$$p' = \begin{cases} b, & gdy \ b = d; \\ p, & gdy \ b \neq d, \end{cases}$$

2) filtr **poziomy**

$$p' = \begin{cases} a, & \text{gdy } a = c; \\ p, & \text{gdy } a \neq c. \end{cases}$$

- Wzorując się na opisanych przypadkach można utworzyć filtry dla innych przypadków.
- Niekiedy po wykryciu linii (krawędzi) przeprowadza się ich pocienianie. Pocienianie może być wykonywane wielokrotnie dla zbyt grubych linii. Realizacja komputerowa pocieniania może polegać na wykorzystaniu operatora koniunkcji

 $p' = p \cap a \cap b \cap c \cap d$.

• W celu poprawy ciągłości linii stosuje się operację odwrotna – pogrubianie. Dla implementacji pogrubiania jest wykorzystywany operator alternatywy

 $p' = p \cup a \cup b \cup c \cup d$.

- Zwykle procedurę pogrubiania stosuje się razem z pocienianiem w następującej kolejności:
- najpierw kilkakrotnie przeprowadza się pocienianie linii. W wyniku tego z obrazu zostają usunięte drobne zakłócenia (np. izolowane ciemne punkty) oraz struktury w postaci "gałązek" odchodzących w bok od ciągłych linii;
- następnie tyle samo razy wykonuje się operację pogrubiania, w wyniku czego zachowane linie zostają wzmocnione i usunięte zostają drobne przerwy.
- Zastosowanie tej prostej techniki w wielu przypadkach powoduje radykalne polepszenie jakości obrazu i występujących linii.
- Dla większości operacji logicznych danymi wejściowymi są dwa obrazy, a rezultatem jest jeden obraz. Na poszczególnych punktach obrazu wykonywane są najczęściej następujące operacje logiczne:

NOT – zaprzeczenie (negatyw obrazu),

AND - iloczyn logiczny,

OR – suma logiczna,

SUB – różnica logiczna,

XOR – suma rozłączna,

NXOR – równoważność logiczna.

• Efekt działania operacji SUB, XOR i NXOR:

- Dla obrazów o większej ilości stanów poszczególnego elementu (kolorów) tradycyjna logika Boole'a jest niewystarczająca.
- Należy wtedy stosować logikę wielowartościową lub tzw. rozmytą.
- Dla przykładu obrazów monochromatycznych o poziomach jasności pojedynczego elementu od 0 do 255 można zdefiniować operacje logiczne następująco:

a) negacja:

$$\bar{x} = \begin{cases} 0, & gdy \ x \le 127; \\ 1, & gdy \ x > 127. \end{cases}$$

b) iloczyn logiczny

$$x \otimes y = \begin{cases} 0, & gdy \ x * y \le 16256; \\ 1, & gdy \ x * y > 16256, \end{cases}$$

c) suma logiczna

$$x \oplus y = \begin{cases} 0, & gdy \ x + y \le 255; \\ 1, & gdy \ x + y > 255. \end{cases}$$

- Na podobnej zasadzie można zdefiniować też wszelkie inne operacje logiczne dla obrazów o wielowartościowej skali stopni szarości.
- Podobnie jak w przypadku filtrów dla dwóch stanów logicznych (obrazów binarnych) filtrację logiczną można łatwo uogólnić na przypadek obrazów o pełnej skali stopni szarości wystarczy po prostu zamiast idealnych równości typu b=d, itp. domagać się tylko tego, by różnica była dostatecznie mała.
- Na przykład można dla reguły 2 zapisać warunek:

$$p' = \begin{cases} b, & gdy \mid b - d \mid < \varepsilon; \\ p, & w \text{ innym } przypadku. \end{cases}$$

21. Filtry medianowe. Filtry minimalne i maksymalne.

Filtry medianowe (13)

- Większość omawianych dotychczas filtrów liniowych miała jedną wspólną niemiłą cechę: usuwając zakłócenia niszczyły one także szczegóły i krawędzie przetwarzanych obrazów oraz wpływają na szum w obrazie w takim samym stopniu jak na użyteczną informację w obrazie.
- Lepsze efekty dają w tym zakresie filtry nieliniowe, który zazwyczaj określają się jako filtry statystyczne, wybierające dla przetwarzanego punktu na obrazie wynikowym jedną z wartości z jego otoczenia na obrazie źródłowym.
- Te filtry umożliwiają oddzielenie i usunięcie szumu z obrazu bez istotnego (jeżeli w ogóle) uszkodzenia pierwotnej użytecznej informacji w obrazie.
- Punkty obrazu wynikowego są nieliniową funkcją punktów obrazu źródłowego i maski filtra.
- Lepsze efekty dają w tym zakresie filtry nieliniowe, który zazwyczaj określają się jako filtry statystyczne, wybierające dla przetwarzanego punktu na obrazie wynikowym jedną z wartości z jego otoczenia na obrazie źródłowym.
- Te filtry umożliwiają oddzielenie i usunięcie szumu z obrazu bez istotnego (jeżeli w ogóle) uszkodzenia pierwotnej użytecznej informacji w obrazie.
- Punkty obrazu wynikowego są nieliniową funkcją punktów obrazu źródłowego i maski filtra

- Szum i zakłócenia jest łatwiej usunąć z obrazu, jeżeli one wyraźnie różnią się od jego treści np. jeżeli szum ma postać ostrych izolowanych punktów (białe i czarne czyli sól i pieprz), podczas gdy obraz składa się z dużych gładkich obiektów.
- Wtedy można jasność każdego piksela porównywać z jego sąsiadami. Jeżeli jasność tego punktu różni się znacznie od zbyt wielu sąsiadów, to możemy ją zastąpić np. przez medianę, a nie przez średnią.
- Mediana jest wartością środkową w uporządkowanym rosnąco ciągu wartości jasności pikseli z całego rozważanego otoczenia przetwarzanego piksela.
- Filtr medianowy wykorzystuje sortowanie pikseli ze względu na jasność w celu określenia wartości piksela po filtracji.
- Ze względu na operację sortowania filtr jest traktowany jako statystyczny.
- Kształt filtru jest taki sam jak w przypadku masek filtrów splotowych, z tym że zamiast ważenia pikseli za pomocą elementów maski filtru, sortujemy te elementy od najmniejszego do największego i wybieramy wartość środkową.
- W obszarach o dużej liczbie szczegółów stosuje się filtr z małym oknem, natomiast na obszarach o mało różniących się jasności wymiar okna może być większy.
- Dla filtrów medianowych najczęściej stosowana jest 9-cioelementowa maska:

$$\begin{bmatrix} a & b & c \\ d & e & f \\ g & h & i \end{bmatrix}$$

• Na przykład weźmy dziewięć pikseli, które tworzą filtr kwadratowy w ramach maski 3×3 (nieparzysta liczba pikseli):

i tak je posortujemy, żeby znaleźć wartość środkową. Jeżeli w wyniku sortowania uzyskamy piksele uporządkowane w następujący sposób:

przy czym p4 jest najmniejszą wartością, a p6 największa, to mówimy, że p1 jest wartością środkową.

Przykład mediany w zbiorze

- Zbiór wejściowy: *A* = {9, 88, 1, 15, 43, 100, 2, 34, 102}
- Sortowanie elementów zbioru A:

$$B = sort(A) \rightarrow B = \{1, 2, 9, 15, 34, 43, 88, 100, 102\}$$

- Wybór mediany zbioru B: mediana(B) = 34
- Mediana dzieli zbiór na dwie równoliczne części.
- Ma wartość większą (bądź równą) od połowy jego elementów oraz ma wartość mniejszą (bądź równą) od połowy jego elementów

- Podstawowym zadaniem przy wyznaczaniu mediany dla zbioru jest jego uporządkowanie (sortowanie).
- Stosując filtr medianowy do całego obrazu możemy wyeliminować znaczną część szumu z obrazu.
- Filtr medianowy bardzo skutecznie zwalcza wszelkie lokalne szumy, nie powodując ich rozmywania na większe obszary, co było wadą filtrów konwolucyjnych.
- Mówiąc inaczej, filtr medianowy eliminuje te piksele, dla których wartość intensywności znacznie odbiega od wartości intensywności pozostałych piksele w oknie.
- Filtracja medianowa nie wprowadza do obrazu żadnych nowych wartości, dlatego obraz po wykonaniu filtracji nie wymaga dodatkowego skalowania, co także jest pewną zaletą.
- Najważniejszym atutem filtracji medianowej jest to, że na ogół nie powoduje ona pogorszenia ostrości krawędzi obecnych na filtrowanym obrazie poszczególnych obiektów.

Filtr medianowy – właściwości (1)

- 1. Skutecznie usuwa zakłócenia impulsowe o liczbie punktów mniejszej niż połowa liczby punktów maski filtracji.
- 2. Zachowuje położenie i "ostrość" brzegów obrazu (w przeciwieństwie do uśredniających filtrów splotowych).
- 3. Jasności punktów obrazu wynikowego mają wartości pochodzące od samego obrazu (nie ma potrzeby skalowania obrazu).
- 4. Duży koszt obliczeniowy wynikający z wymogu sortowania punktów obrazu w masce.

Filtry minimalne i maksymalne (1)

- Do filtrów nieliniowych zalicza się także inne metody analizujące stopnie szarości wybranego otoczenia punktu, jak ciągi liczb.
- Wybierając z takiego ciągu wartość największa uzyskujemy filtr maksymalny.
- Wybierając wartość najmniejszą uzyskujemy filtr minimalny.
- Zasadę działania tych filtrów ilustruje następny przykład:

$$\begin{bmatrix} 3 & 12 & 21 \\ 4 & 12 & 43 \\ 1 & 8 & 100 \end{bmatrix} \Rightarrow (\mathbf{1}, 3, 4, 8, \mathbf{12}, 12, 21, 43, \mathbf{100})$$

$$\uparrow \qquad \qquad \uparrow \qquad \qquad \downarrow \qquad \qquad \uparrow \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \qquad$$

• Filtr minimalny jest również określany jako filtr kompresujący albo erozyjny, ponieważ kolejne stosowanie go powoduje zmniejszanie jasności krawędzi obiektów w obrazie.

- Filtr maksymalny może być określany jako filtr dekompresujący albo ekspansywny, ponieważ kolejne stosowanie tego filtru powoduje zwiększanie jasności krawędzi obiektów w obrazie
- 22. Ważone filtry medianowe. Adaptacyjne filtry medianowe.

Ważone filtry medianowe (1)

- Uogólnieniem filtru medianowego jest ważony filtr medianowy.
- W zwyczajnym filtrze wszystkie elementy obrazu w ramach okna jednakowo wpływają na rezultat nachodzenia mediany.
- Czasem jednak zachodzi potrzeba zróżnicowania próbek tak, by uniknąć niedogodności związanych z jednakowym traktowaniem wszystkich elementów wewnątrz okna obserwacji, np. dodanie większej wagi punktu położonego bliżej centrum okna.
- Podstawową ideą ważonego filtru medianowego jest zmiana liczby elementów w oknie drogą powtórzenia każdego elementu zadanej liczby raz i nachodzenia mediany rozciągniętej konsekwencji wartości intensywności.
- Na przykład, $\begin{bmatrix} b \\ d & e \end{bmatrix}$, maska: $\begin{bmatrix} 2 \\ 1 & 3 & 1 \\ 2 & \end{bmatrix}$

mediana:

$$\operatorname{med}_{w}(b, d, e, f, h) = \operatorname{med}(2 \bullet b, d, 3 \bullet e, f, 2 \bullet h) = \operatorname{med}(b, b, d, e, e, e, f, h, h),$$
 gdzie \bullet – symbol powtórzenia: $k \bullet a = \underbrace{a, a, ..., a}_{k \text{ prov}}$.

• Dla zadanego zestawu wag w(i,j) > 0 ważona mediana daje wynik:

$$\operatorname{med}_{w}(f(x, y)) = \operatorname{med}(w(i, j) \bullet f(x+i, y+j))$$

Najczęściej stosuje się następujące maski współczynników

$$\begin{bmatrix} 1 & 1 & 1 \\ 1 & 3 & 1 \\ 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} 0 & 1 & 0 \\ 1 & 3 & 1 \\ 0 & 1 & 0 \end{bmatrix}$$

Adaptacyjne filtry medianowe (1)

• Działanie filtru medianowego polega w zamianie jasności w punkcie obrazu na medianę wartości jasności w otoczeniu tego punktu:

$$f'(x, y) = \underset{K_{x,y}}{med}(f(x, y)).$$

- Podobnie innym filtrom adaptacyjny filtr medianowy działa w oknie Kx,y. Ale w odróżnieniu od ich on zmienia (powiększa) rozmiary otoczenia w czasie pracy zgodnie z określonymi warunkami.
- Wprowadzimy oznaczenia:

fmin – minimalna wartość jasności w oknie Kx, y,

fmax – maksymalna wartość jasności w oknie Kx,y,

fmed – mediana wartości jasności w oknie Kx, y,

fxy – wartość jasności w punkcie (x, y),

Kmax – maksymalnie dopuszczalny rozmiar okna Kx,y.

- Algorytm adaptacyjnej filtracji medianowej składa się z dwu gałęzi A i B.
- Gałąź A: A

1 = fmed - fmin;

A2 = fmed - fmax;

Jeżeli A1 > 0 i A2 < 0, przejść do gałęzi B inaczej powiększyć rozmiar okna Kx, y;

Jeżeli rozmiar okna $Kx,y \le Kmax$ powtórzyć gałąź A inaczej wynik jest równy fxy.

• Gałąź **B**:

B1 = fxy - fmin;

B2 = fxy - fmax;

Jeżeli B1 > 0 i B2 < 0, wynik jest równy fxy inaczej wynik jest równy fmed.

23. Filtry adaptacyjne dla krawędzi. Filtr kierunkowy. Filtr Kuwahara.

Filtry adaptacyjne dla krawędzi (1)

- Rodzina filtrów nieliniowych jest bardzo bogata. Bardziej skomplikowana grupą filtrów nieliniowych tworzą tzw. filtry adaptacyjne.
- Filtry te zmieniają charakterystykę działania w zależności od cech analizowanego obrazu.
- Filtry adaptacyjne zbudowane są tak, aby wykorzystać zalety filtrów linowych a zniwelować ich wady.

- Na przykład
- prosty filtr uśredniający oprócz wyrównywania intensywności jednolitych płaszczyzn rozmazuje krawędzie,
- prosty filtr górnoprzepustowy wzmacniający krawędzie wydobywa niepotrzebne szczegóły z jednolitych obszarów.

Adaptacyjny filtr uśredniający działa następujące:

- 1). W pierwszym etapie wyznaczany jest parametr mówiący o tym, czy dany punkt należy do krawędzi. Jako kryterium można przyjąć wariancję stopni szarości w jego otoczeniu. Jeżeli taka wariancja przyjmuje duże wartości, punkt z dużym prawdopodobieństwem należy do krawędzi.
- 2). W drugim etapie dokonuje się filtracji filtrem uśredniającym, ale tylko tych punktów, które nie zostały zakwalifikowane do krawędzi. Punkty należące do krawędzi pozostają bez zmian. Unika się w ten sposób ich rozmycia.

Filtr kierunkowy (1)

- Przykładem filtru adaptacyjnego jest filtr kierunkowy.
- Filtry, które nie zamazują krawędzi, lecz tylko usuwają zakłócenia z wnętrza obszaru, są znaczne bardziej złożone niż dowolna z możliwych postaci filtru liniowego. Tego typu filtry muszą wykrywać krawędzie przed zastosowaniem funkcji wygładzania.
- Jedna z metod polega na stosowaniu filtru liniowego, który jest symetryczny w stosunku do pewnej osi zamiast do pojedynczego punktu.
- Dla każdego elementu obrazu jest podejmowana próba oszacowania kierunku krawędzi, jeżeli krawędź istnieje, a filtr nie uśrednia punktów w poprzek krawędzi.
- Takie działanie filtru otrzymuje się dzięki zdefiniowaniu następujących dwóch funkcji kąta ф, jaki krawędź tworzy z osiami współrzędnych

φ	0°	45°	90°	135°
$c(\varphi)$	1	-1	0	1
s(\varphi)	0	1	1	1

• Funkcja filtru $w(i,j,\varphi)$ ma zatem następujące wartości:

$$w(0, 0, \varphi) = 2,$$

$$w(c(\varphi), s(\varphi), \varphi) = w(-c(\varphi), -s(\varphi), \varphi) = 1,$$

a dla wszystkich pozostałych wartości argumentów i, j funkcja przyjmuje wartość 0 (zero).

• Niżej przedstawimy maski filtru wyznaczone dla czterech kierunków:

$$\begin{bmatrix} 0 & 0 & 0 \\ 1 & 2 & 1 \\ 0 & 0 & 0 \end{bmatrix} \qquad \begin{bmatrix} 0 & 0 & 1 \\ 0 & 2 & 0 \\ 1 & 0 & 0 \end{bmatrix} \qquad \begin{bmatrix} 0 & 1 & 0 \\ 0 & 2 & 0 \\ 0 & 1 & 0 \end{bmatrix} \qquad \begin{bmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

$$0^{\circ} \qquad 45^{\circ} \qquad 90^{\circ} \qquad 135^{\circ}$$

• Dla każdego elementu obrazu są obliczane wartości:

$$V(\varphi) = [f(x, y) - f(x + c(\varphi), y + s(\varphi))]^2 + [f(x, y) - f(x - c(\varphi), y - s(\varphi))]^2$$

dla φ = 0, 45, 90, 135.

• Następnie filtr jest stosowany dla tej wartości φ , dla której $V(\varphi)$ ma wartość minimalną.

Filtr Kuwahara (1)

- Kontury odgrywają ważną rolę zarówno w percepcji jak i analizie obrazów. Dlatego ważne jest aby wygładzić obraz bez naruszania ostrości i zmiany położenia jego konturów.
- Przykładem filtru, który spełnia takie oczekiwania jest filtr Kuwahara, należący do grupy filtrów uśredniających z maską rotującą. Chociaż ten filtr można skonstruować dla różnych wymiarów okna, to algorytm opiszemy dla okna kwadratowego 5 × 5.
- Na rysunku pokazano prosty przypadek tego filtru okno Kuwahara z zaznaczonymi obszarami Rk (kolor szary), piksel centralny zaznaczono kolorem czarnym:

- W oknie maski wyróżnia się cztery obszary Rk, k = 1, 2, 3, 4 o wymiarach 3×3 .
- ullet Następnie dla każdego z nich oblicza się średnia jasność mk i wariancję σk 2 , która jest miarą jednorodności obszaru Rk:

$$m_k = \frac{1}{n} \sum_{(i,j) \in R_k} f(i,j),$$

$$\sigma_k^2 = \frac{1}{n} \sum_{(i,j) \in R_k} [f(i,j) - m_k]^2,$$

gdzie n – liczba pikseli w obszarze Rk, k = 1, 2, 3, 4.

- Jako wynikowa jasność piksela centralnego f(x, y) w oknie przyjmuje się średnia tego obszaru, który ma najmniejszą wariancję.
- Ciąg opisanych czynności, które prowadzą do wyznaczenia f ' (x, y) można przedstawić następująco:

$$\min_{S_k}(m_k, s_k) \to m_i \to f'(x, y),$$

gdzie
$$s_k = \sigma_k^2$$
.

- W filtrze uśredniającym dla okna 5 × 5 można stosować więcej masek np. 8 lub 9 lub inny zespół masek rotujących.
- W szczególnym przypadku dla okna 3 × 3 stosuje się maskę rotującą 2 × 1.
- Rozmiar i kształt maski wpływa na wynik. Większe maski lepiej tłumią szum i mocnej poprawiają ostrość, ale mogą zgubić drobne detale obrazu

24. Krawędź. Gradient obrazu.

Definicja i model krawędzi (1)

- Dla obrazów monochromatycznych krawędź definiuje się zazwyczaj jako fizyczne, fotometryczne i geometryczne nieciągłości funkcji obrazowej.
- Fizycznie krawędzie często pokrywają się z miejscami występowania znacznych zmian oświetlenia, orientacji, współczynnika odbicia czy głębi obiektów sceny obrazu.
- Otrzymanie obrazu w formie wyróżnionych krawędzi jest często wystarczające, a jednocześnie wygodne do przeprowadzenia jego logicznej interpretacji.
- Uwypuklanie krawędzi jest zazwyczaj pierwszym krokiem przy wykrywaniu i klasyfikacji obiektów.
- Proces wykrywania krawędzi redukuje obraz do zawartych w nim krawędzi (pierwotna postać obrazu znika).
- Uwypuklanie krawędzi metodami filtrów splotowych znajduje liczne zastosowania od kartografii do automatycznej klasyfikacji obiektów w obrazie.
- Krawędź jest granicą pomiędzy dwoma regionami o różniących się odcieniach jasności. Zatem przejścia między regionami mogą być określone na podstawie różnic szarości pikseli z różnych regionów.
- Krawędź powstaje na granicy obszarów o różnych wartościach funkcji obrazowej i ma charakter krzywoliniowy.
- Z punktu widzenia powierzchni funkcji obrazowej, krawędzie można scharakteryzować rozpatrując ich przekrój poprzeczny.
- Krawędź jest to linia (w najprostszym przypadku prosta) oddzielająca obszary o różnej jasności j1 i j2.
- Prosty model matematyczny krawędzi ma postać skoku jednostkowego w zerze:

$$u(z) = \begin{cases} 1, & z > 0; \\ 1/2, & z = 0; \\ 0, & z < 0. \end{cases}$$

• Zachodzi więc zależność:

$$u(z) = \int_{-\infty}^{z} \delta(t) dt$$
, gdzie $\delta(t)$ – delta-funkcję Diraca

- Filtry używane do wykrywania krawędzi są czasami nazywane filtrami konturowymi.
- Filtry tę są powszechnie używane przy klasyfikacji kształtów obiektów w obrazie.
- Filtry konturowe działają na zasadzie gradientowej.

Gradient obrazu (1)

- Gradient określa, jak w obrazie zmieniają się jasności od piksela do piksela. Odpowiada to wyznaczeniu pochodnej obrazu.
- Gradient jest największy tam, gdzie obraz ma największe zmiany jasności przy przejściu od piksela do piksela.
- Gwałtowna zmiana funkcji jasności wyznacza krawędź. Dlatego dla wydzielenia jej z obrazu zwykle stosowane metody gradientowe.
- Duża wartość gradientu funkcji jasności w danym punkcie wskazuje, że jest to punkt krawędzi.
- Gradient funkcji jasności obrazu f x, y w punkcie x, y wyraża się wzorem:

$$\nabla f = \begin{bmatrix} G_{x} \\ G_{y} \end{bmatrix} = \begin{bmatrix} \frac{\partial f}{\partial x} \\ \frac{\partial f}{\partial y} \end{bmatrix},$$

gdzie składowe wektora gradientu:

$$G_x = \frac{\partial f}{\partial x} = f(x+1,y) - f(x,y),$$

$$G_y = \frac{\partial f}{\partial y} = f(x,y+1) - f(x,y).$$

ullet Wektor gradientu ∇f będziemy opisywać za pomocą dwóch parametrów, tj. modułu i kąta (kierunku wektora gradientu)

$$|\nabla f| = \sqrt{G_x^2 + G_y^2} \approx |G_x| + |G_y|,$$

$$\Psi = \arg\left(\frac{G_y}{G_x}\right),\,$$

gdzie Ψ określa kąt położenia wektora w punkcie x, y względem osi x.

- Moduł gradientu | ∇f | określa wartość (siłę) krawędzi. Aby podnieść zaufanie, że obliczony gradient oznacza krawędź zwykle dodatkowo stosuje się progowanie (aby usunąć drobne zakłócenia i pozostawić mocne sygnały).
- \bullet Natomiast położenie konturu jest zawsze prostopadłe do wektora gradientu, co oznacza że kąt konturu φ jest przesunięty w stosunku do obliczonego kąta gradientu Ψ o 90° .

25. Operatory gradientowe Robertsa, Prewitt, Sobela.

Operatory Robertsa (1)

- Operatory Robertsa są najprostszymi operatorami gradientu. Są one proste w użyciu, ponieważ korzystają z okien o wymiarach 2×2.
- Gradient Robertsa ma wyraźnie kierunkowy charakter. W zależności od wyboru maski gradient podkreśla linie o określonej orientacji.
- Linie pionowe i poziome

• Moduł gradientu wyraża się wzorem:

$$g(x,y) = |f(x,y) - f(x+1,y)| + |f(x,y) - f(x,y+1)|$$

• Linie ukośne

• Moduł gradientu wyraża się wzorem:

$$g(x,y) = |f(x,y) - f(x+1,y+1)| + |f(x+1,y) - f(x,y+1)|$$

- Wadą maski o rozmiarach 2×2 jest niejednoznaczność co do punktu zaczepienia składowych gradientu.
- W zależności od wyboru punktu centralnego, gradient będzie przesunięty względem obrazu oryginalnego o pół piksela w kierunku x i y.
- Aby tego uniknąć, można w naturalny sposób przenieść maskę o rozmiarze 2×2 na maskę 3×3 (możliwe jest 8 różnych operatorów)
- Operatory Robertsa są najprostszym przykładem filtrów wykrywających krawędzie.
- Ich wadą jest wysoka czułość na szumy i niski poziom reakcji na krawędzie obrazu. Wynika to z użycia minimalnych masek do aproksymacji gradientu jasności.
- Cechą charakterystyczną wszystkich operatorów gradientowych jest występowanie w maskach współczynników ujemnych.
- Po wykonaniu splotu w obrazie wynikowym mogą pojawić się piksele o wartościach ujemnych.
- Aby otrzymany wynik był prawidłowy, należy dokonać skalowania jasności lub brać pod uwagę bezwzględne wartości otrzymanych sygnałów.
- Ale pobieranie wartości bezwzględnej ukrywa informację o tym, czy poszczególne zmiany zostały obliczone jako dodatnie (wzrost jasności), czy jako ujemne (spadek jasności).

Operatory Prewitt (1)

- Operatory Prewitt aproksymują pierwszą pochodną.
- Gradient może być estymowany dla ośmiu możliwych kierunków i największa wartość z nich wskazuje kierunek gradientu.

Operatory Sobela (1)

- Maski operatorów Robertsa i Prewitt mają współczynniki –1, 0, 1. Ale w filtrach gradientowych w wyniku pewnej korekcji tych współczynników można wzmocnić wpływ bezpośrednio najbliższego otoczenia analizowanego piksela, dla którego wyznaczana jest wartość piksela na obrazie wynikowym.
- Służą do tego tak zwane maski Sobela. Operatory Sobela są często używane jako prosty detektory do wykrywania krawędzi o orientacji poziomej i pionowej, jak i skośnych.
- Aby zmniejszyć wpływ szumu uśrednia się wartości w pionie (przy gradiencie poziomym) i w poziomie (przy gradiencie pionowym) z większymi wagami przyłożonymi dla kierunku przechodzącego przez analizowany punkt.

• Operator Sobela jest o wiele mniej wrażliwy na szum niż operator Robertsa.

- Dla tych samych krawędzi operator Sobela daje większe wartości na wyjściu niż operator Robertsa czy Prewitt.
- Często na przetworzonym obrazie znajduje się wiele krawędzi wykrytych błędnie z powodu zaszumienia obrazu. Ale intensywność tych niepoprawnych krawędzi w porównaniu z poprawnymi jest o wiele mniejsza niż dla operatora Robertsa.
- Wykryte krawędzie mają na ogół większa grubość.
- Ze względu na swą prostotę i niski koszt obliczeniowy operator Sobela jest stosowany do detekcji krawędzi w obszarach o małej zawartości zakłóceń.
- Składowe Sx i Sy, które określają wartości gradientu Sobela w kierunku osi x i w kierunku osi y zdefiniowane są następująco:

$$S_x = (f(x+1, y-1) + 2f(x+1, y) + f(x+1, y+1) - (f(x-1, y-1) + 2f(x-1, y) + f(x-1, y+1)),$$

$$S_{y} = (f(x-1, y+1) + 2f(x, y+1) + f(x+1, y+1) - (f(x-1, y-1) + 2f(x, y-1) + f(x+1, y-1))$$

26. Wykrywanie narożników. Operatory Robinsona, Kirscha.

Filtry wykrywające narożniki

- Wykrywanie krawędzi metodą gradientu kierunkowego może być użyte do dokładniejszego rozjaśnienia pewnych szczegółów w obrazie.
- Korzystając z gradientowego kierunkowego podejścia do filtrowania będziemy mogli wykryć niektóre obszary w obrazie wyróżnione przez zmianę jasności przy przejściu od piksela k pikselu w danym kierunku.

Operatory Robinsona (1)

- Detekcja krawędzi odbywa się przez konwolucję każdej z ośmiu masek z analizowanym obrazem w każdym jego punkcie.
- Maska dostarczająca w określonym punkcie największej wartości funkcji splotu wskazuje na obecność w tym punkcie krawędzi w formie narożnika o określonej orientacji.

Operatory Kirscha (1)

- Inny rodzaj masek do wykrywania narożników podał Kirsch.
- ullet Obliczanie i znalezienie gradientu kierunkowego w punkcie (x,y)można wykonać według następującego wzoru:

$$f'(x, y) = \max_{k=0...7} \{ |5S_k - 3T_k| \},$$
 gdzie
$$S_k = f_k + f_{k+1} + f_{k+2},$$

$$T_k = f_{k+3} + f_{k+4} + f_{k+5} + f_{k+6} + f_{k+7},$$

przy czym indeksy (liczone modulo 8) wskazują położenia pikseli w masce

27. Operator Laplace'a. Wyostrzanie obrazów. Operatory LoG, RoG.

Laplasjan obrazu (1)

- Wspólną cechą operatorów gradientowych było wykorzystanie asymetrycznych masek współczynników. Następstwem tego były kierunkowe własności filtrów.
- Czasem jednak zadanie przetwarzania obrazu ma charakter bezkierunkowy. Typowym zadaniem, w którym musimy się uwolnić od kierunkowego działania, jest zadanie wykrywania i podkreślenia w obrazie wszelkich krawędzi i konturów obiektów (wyostrzania), niezależnie od tego, pod jakim kątem przebiegają.
- Do tego celu można używać różnych metod, w większości nieliniowych, ale w prostych zadaniach dobre efekty uzyskać można, stosując tak zwane laplasjany.
- Operator Laplace'a różni się od innych operatorów i filtrów tym, że cechuje go wielokierunkowość.
- Metody wykrywania krawędzi korzystające z laplasjanu dają ostrzejsze krawędzie niż większość innych metod, a w wyniku filtracji wartości określają zmiany na krawędziach występujących w obrazie.
- ullet Laplasjan ciągłej funkcji f(x,y) dwóch zmiennych jest sumą drugich pochodnych cząstkowych i wyraża się wzorem

$$L(f(x,y)) = \nabla^2 f(x,y) = \frac{\partial^2 f(x,y)}{\partial x^2} + \frac{\partial^2 f(x,y)}{\partial y^2}$$

• Dla funkcji dyskretnej drugie pochodne cząstkowe mogą być aproksymowany w następujący sposób przez zastąpienie skończonymi przyrostami:

$$\frac{\partial^2 f}{\partial x^2} = [f(x+1, y) - f(x, y)] - [f(x, y) - f(x-1, y)] =$$

$$= f(x+1, y) - 2f(x, y) + f(x-1, y);$$

$$\frac{\partial^2 f}{\partial y^2} = [f(x, y+1) - f(x, y)] - [f(x, y) - f(x, y-1)] =$$

$$= f(x, y+1) - 2f(x, y) + f(x, y-1).$$

• Wtedy możemy aproksymować laplasjan w następujący sposób:

$$L(f(x,y)) = -4f(x,y) + f(x+1,y) + f(x-1,y) + f(x,y+1) + f(x,y-1)$$

- Operator Laplace'a pełni drugorzędną rolę w detekcji brzegów ze względu na następujące jego właściwości:
- jest bardzo czuły na zakłócenia o dużych częstotliwościach,
- generuje podwójne kontury,
- nie pozwala wyznaczać kierunku brzegu.

- Właściwość operatora Laplace'a, którą wykorzystuje się przy detekcji brzegów jest miejsce zerowe (ang. zero crossings).
- Laplasjan jest równy 0 (zero), gdy f(x, y) = const

Laplasjan - wyostrzanie obrazu (1)

• Laplasjan jest ważnym narzędziem wyostrzania obrazów. Dysponując obrazem wejściowym f(x,y) jego wyostrzoną postać można otrzymać przez odjęcie (lub dodanie) do obrazu wejściowego obrazu będącego wynikiem przetwarzania z maską Laplace'a:

$$f'(x,y) = f(x,y) \pm \nabla^2 f(x,y),$$

gdzie znak (+ lub -) zależy od postaci masek użytych do przetwarzania.

- W przypadku masek przedstawionych na poprzednich rysunkach stosuje się dodawanie (znak +). W przypadku zmiany znaku wag w maskach należy zastosować odejmowanie (znak –).
- Operacja dodania do obrazu wejściowego wyniku wyznaczenia drugiej pochodnej (laplasjanu) powoduje zwiększenie kontrastu na krawędziach.
- ullet Efekt wyostrzenia krawędzi można dodatkowo wzmocnić poprzez wprowadzenie czynnika skalującego k, zwiększającego wagę obrazu będącego wynikiem wyznaczenia drugiej pochodnej:

$$f'(x,y) = f(x,y) \pm k\nabla^2 f(x,y),$$

• Proces taki jest nazywany podbijaniem częstości wysokich (ang. highboost filtering).

Operator LoG (Laplasjan of Gaussian) (1)

• W celu stłumienia składowych dużej częstotliwości operator Laplace'a stosuje się wspólnie z filtrem Gaussowskim:

$$h(x,y) = exp\left(-\frac{x^2 + y^2}{2\sigma^2}\right)$$

• Filtracja Laplace'a uzupełniona o filtr Gaussowski daje w wyniku odpowiedź impulsową:

$$\nabla^2 h = \left(\frac{r^2 - \sigma^2}{\sigma^4}\right) exp\left(-\frac{r^2}{2\sigma^2}\right)$$

Laplasjan dwuwymiarowej funkcji gaussowskiej dla σ = 1.

Jest to tzw. funkcja kapelusza meksykańskiego

28. Wykrywanie krawędzi. Filtry kombinowane.

Filtry kombinowane wykrywające krawędzie (1)

- Opisane wyżej laplasjany pozwalają wykrywać krawędzie i kontury obiektów na obrazach z dość dobrą dokładnością w większości praktycznych zastosowań.
- Jednak wtedy, gdy chcemy użyć potem wyznaczonych krawędzi do jakichś bardziej zaawansowanych technik przetwarzania obrazów potrzebne jest narzędzie lokalizujące kontury dokładniej i w sposób bardziej pewny niż laplasjan.
- W opisanych okolicznościach uciekamy się najczęściej do filtrów nieliniowych znanych pod nazwą filtrów kombinowanych.
- Idea tych filtrów polega na kolejnym zastosowaniu dwóch gradientów w prostopadłych do siebie kierunkach, a następnie na dokonaniu nieliniowej kombinacji wyników tych gradientów.
- Dzięki nieliniowej kombinacji rezultatów liniowych transformacji obrazu tworzy się w ten sposób obraz wynikowy o wyjątkowo dobrze podkreślonych konturach niezależnie od kierunku ich przebiegu.
- Niech fx(x, y) i fy(x, y) oznaczają obrazy po obliczeniu gradientów odpowiednio w kierunkach osi x i y.
- Obrazy te mogą zawierać obszary o dodatnich, jak i o ujemnych wartościach pikseli. Dlatego do połączenia ich trzeba użyć formułę obliczania modułów gradientu:

$$f'(x,y) = \sqrt[2]{f_x(x,y)^2 + f_y(x,y)^2}.$$

• Biorąc pod uwagę złożoność obliczeniową wzoru Euklidesa czasem lepiej zastosować uproszczoną formułę:

$$f'(x,y) = |f_x(x,y)| + |f_y(x,y)|$$

lub

$$f'(x,y) = \max\{|f_x(x,y)|, |f_y(x,y)|\}.$$

- Pozwalają one na uzyskanie praktycznie równe dobrych wyników przy zdecydowanie mniejszym koszcie obliczeniowym.
- Przy tworzeniu filtrów kombinowanych najistotniejsze jest użycie obrazów pochodzących z różniczkowania obrazu oryginalnego f(x), y w dwóch kierunkach (zazwyczaj prostopadłych), przy czym nie muszą to być kierunki poziomy i pionowy.

Przykład zastosowania modułu gradientu.

- W celu wyznaczenia konturu obrazu zgodnie z podaną metodyką wyznaczymy dwa prostopadłe do siebie gradienty tego obrazu.
- Tradycja w dziedzinie przetwarzania obrazów nakazuje użycie masek Sobela. Najpierw wykonujemy operacje splotu poziomego filtru Sobela z obrazem, a potem stosujemy filtr pionowy Sobela.

Przykład zastosowania modułu gradientu.

• Jasność nowego piksela obliczamy jako moduł gradientu

$$f'(x,y) = \sqrt[2]{S_x^2 + S_y^2},$$

można także używać drugie aproksymacji

$$f'(x, y) = |S_x| + |S_y|$$
 lub $f'(x, y) = \max\{|S_x|, |S_y|\},$

który porównujemy z progiem t . Każdy punkt, dla którego f ' x,y > t , zostaje wyświetlony.

29. Przekształcenia morfologiczne. Ogólny algorytm.

30. Operacja erozji.

31. Operacja dylatacji.

