

Armadilha de Íons

Grupo: Gustavo Carvalho Leonardo Faustino Jonas Santos

• O que é uma armadilha de Íons?

- O que é uma armadilha de Íons?
- Por que usar um Íon?

- O que é uma armadilha de Íons?
- Por que usar um Íon?
- Como o Íon se torna um qubit?

- O que é uma armadilha de Íons?
- Por que usar um Íon?
- Como o Íon se torna um qubit?
- Como controlamos o qubit?

- O que é uma armadilha de Íons?
- Por que usar um Íon?
- Como o Íon se torna um qubit?
- Como controlamos o qubit?
- Quais as vantagens?

- O que é uma armadilha de Íons?
- Por que usar um Íon?
- Como o Íon se torna um qubit?
- Como controlamos o qubit?
- Quais as vantagens?
- Quais as desvantagens?

- O que é uma armadilha de íons?
- Por que usar um Íon?
- Como o Íon se torna um qubit?
- Como controlamos o qubit?
- Quais as vantagens?
- Quais as desvantagens?
- Quais grupos lideram essa abordagem?

O que é uma armadilha de Íons?

O que é uma armadilha de Íons?

Campos elétricos e/ou magnéticos

Usados para confinar partículas carregadas (Íons) no espaço

Armadilha de Paul

Utiliza campos elétricos dinâmicos para aprisionar e isolar os Íons no espaço

Princípio de funcionamento da armadilha de Paul

Por que usar um Íon?

Por que usar um Íon?

Idênticos e perfeitos

Cada íon de um mesmo elemento, Itérbio-171, por exemplo, é perfeitamente idêntico.

Estabilidade

Níveis de energia extremamente estáveis e bem definidos.

Isolamento

A armadilha no vácuo isola o Íon do ruído externo.

Controle e detecção fáceis

Campos elétricos e lasers podem ser usados para controlar e detectar os íons.

Como o Íon se torna um qubit?

Como o Íon se torna um qubit?

Escolha dos níveis de energia

- O íon possui níveis de energia discretos que seus elétrons podem ocupar.
- A propriedade quântica escolhida é o nível de energia interno do íon.
- Por convenção, o degrau de menor energia representa o estado |0> (estado fundamental) e ao degrau de maior energia o estado |1> (estado excitado).

Criação da superposição

- Um laser ou um pulso de micro-ondas) é usado para manipular o estado do íon.
- A fonte de energia é calibrada com a frequência exata que corresponde à diferença de energia entre o nível |0> e |1>.
- Aplicar um pulso com metade da duração necessária para mudar o estado faz o Íon entrar em superposição.

Definição do estado

- Um laser de medição é
 usado para interagir com
 apenas um dos estados,
 por exemplo, o estado |1>.
- Se estiver no estado |1>, o
 ion reemitirá a luz
 rapidamente.
- A superposição é destruída (colapsa).

Como o Íon se torna um qubit?

Qubits Hiperfinos

- Utiliza o Spin do núcleo do Íon.
- São resistentes a perturbações externas.
- Mantem seu estado por segundos ou minutos.
- É manipulado com frequências na faixa de micro-ondas.

Qubits Ópticos

- Utiliza os orbitais dos elétrons ao redor do núcleo.
- As operações são executadas mais rapidamente com lasers.
- O feixe de laser pode ser focado com precisão.

Como controlamos o qubit?

Como controlamos o qubit?

Inicialização

Um processo chamado
 "resfriamento Doppler"
 utiliza lasers para
 remover energia cinética
 do lon.

Portas lógicas

- Pulsos de lasers executam as portas quânticas.
- Para portas de dois qubits o estado logico é acoplado ao movimento coletivo dos íons.
- A interação entre os íons emaranha os dois qubits.

Leitura (Medição)

- Um laser de leitura é apontado para Íon.
- A luz é reemitida caso
 esteja em um dos estados
 (|1> por exemplo).
- Fidelidade superior a 99.9%.

Quais as vantagens e desvantagens?

Vantagens e Desvantagens

Vantagens

- Fidelidade altíssima.
- Longos tempos de coerência.
- Conectividade total (All-to-All).

Desvantagens

- Velocidade lenta.
- Desafios de escalabilidade.
- Infraestrutura complexa.

Quais grupos lideram essa abordagem?

Empresas

Alpine Quantum Technologies (AQT)

Grupos de pesquisa

NIST (National Institute of Standards and Technology, EUA) Universidade de Innsbruck (Áustria) Universidade de Maryland (EUA)

Conclusão

As armadilhas de íons representam uma fronteira promissora na computação quântica, combinando fidelidade e longa coerência, através do controle preciso dos qubits utilizando lasers. Além disso, grandes empresas e grupos de pesquisa apostam nessa abordagem para o desenvolvimento de seus computadores quânticos.

Referências

Araneda, Gabriel. (2019). Experiments with single photons emitted by single atoms. 10.13140/RG.2.2.33220.17288.

H. Winter and H. W. Ortjohann, "Simple demonstration of storing macroscopic particles in a 'Paul trap'", Am. J. Phys. 59, 807 (1991)

National Institute of Standards and Technology - Quantum Computing; Ion Trapping, Public Domain, https://commons.wikimedia.org/w/index.php?curid=51195437

DUKE ION TRAP GROUP. Useful References. Durham: Duke University, [s. d.]. Disponível em: https://iontrap.duke.edu/resources/useful-references. Acesso em: 27 ago. 2025.