Analysis II

Sommersemester 2014

Prof. Dr. D. Lenz

Blatt 2

Abgabe 24.04.2014

- (1) Sei I ein abgeschlossenes Intervall in \mathbb{R} und $f:I \longrightarrow \mathbb{R}$ differenzierbar. Zeigen Sie, dass f'(I) ein Intervall ist.
- (2) Sei I ein beschränktes, abgeschlossenes Intervall in \mathbb{R} und $f:I\longrightarrow\mathbb{R}$ konvex. Untersuchen Sie f auf Stetigkeit.
- (3) Sei $f:[0,\infty)\longrightarrow\mathbb{R}$ stetig, auf $(0,\infty)$ differenzierbar und für $k,K\in\mathbb{R}$ gelte

$$kf < f' < Kf$$
.

Dann folgt für alle $x \ge 0$

$$f(0)e^{kx} \le f(x) \le f(0)e^{Kx}.$$

(4) Seien $f, g : \mathbb{R} \longrightarrow \mathbb{R}$ n-mal differenzierbar. Man beweise

$$(fg)^{(n)} = \sum_{k=0}^{n} \binom{n}{k} f^{(k)} g^{(n-k)},$$

wobei $h^{(k)}=\frac{d^k}{dx^k}h$ und $h^{(0)}=h$ für eine k-mal differenzierbare Funktion h. Berechne $h^{(1999)}$ für $h:\mathbb{R}\longrightarrow\mathbb{R},\,x\mapsto x^3e^x$.

Zusatzaufgabe: Finden Sie ein Beispiel einer Funktion, die in einem Punkt differenzierbar ist und nirgends sonst stetig.