Universidade Federal de Santa Catarina Departamento de Informática e de Estatística Curso de Ciências da Computação

Capítulo 4 Camada de Aplicação

Prof. Roberto Willrich INE - UFSC willrich@inf.ufsc.br

Capítulo 2 Camada de aplicação

Nota sobre o uso destes slides ppt:

Estamos disponibilizando estes slides gratuitamente a todos (professores, alunos, leitores). Eles estão em formato do PowerPoint para que você possa incluir, modificar e excluir slides (incluindo este) e o conteúdo do slide, de acordo com suas necessidades. Eles obviamente representam *muito* trabalho da nossa parte. Em retorno pelo uso, pedimos apenas o seguinte:

- Se você usar estes slides (por exemplo, em sala de aula) sem muita alteração, que mencione sua fonte (afinal, gostamos que as pessoas usem nosso livro!).
- □ Se você postar quaisquer slides sem muita alteração em um site Web, que informe que eles foram adaptados dos (ou talvez idênticos aos) nossos slides, e inclua nossa nota de direito autoral desse material.

Obrigado e divirta-se! JFK/KWR

Todo o material copyright 1996-2009

J. F Kurose e K. W. Ross, Todos os direitos reservados.

Capítulo 4: Camada de Aplicação

Metas do capítulo:

- Aspectos conceituais e de implementação de protocolos de aplicação em redes
 - modelos de serviço da camada de transporte
 - paradigma cliente servidor
 - paradigma peer-topeer
- □ Estudo dos protocolos da camada de aplicação através das aplicações populares

Mais metas do capítulo

- □ Protocolos específicos:
 - DNS
 - O HTTP
 - o FTP
 - Telnet
 - NFS
 - Email: SMTP/POP3/IMAP
- □ Programação de aplicações de rede
 - programação usando a API de sockets

Algumas aplicações <u>de rede</u>

- □ e-mail
- □ web
- □ mensagem instantânea
- □ login remoto
- compartilhamento de arquivos P2P
- jogos em rede multiusuários
- clipes de vídeo armazenados em fluxo contínuo

- redes sociais
- □ voice over IP
- vídeoconferência em tempo real
- □ computação em grade

Criando uma aplicação de rede

Programas aplicativos

- executam em (diferentes)sistemas finais
- o se comunicam pela rede
- p. e., software de servidor Web se comunica com software de navegador Web

Não é preciso escrever software para dispositivos do núcleo da rede

- dispositivos do núcleo da rede não executam aplicações do usuário
- as aplicações nos sistemas finais permitem rápido desenvolvimento

Os protocolos da camada de aplicação definem

- □ Tipos de mensagens trocadas, ex. mensagens de pedido e resposta
- □ Sintaxe dos tipos das mensagens: campos presentes nas mensagens e como são identificados
- Semântica dos campos,
 i.e., significado da
 informação nos campos
- Regras para quando os processos enviam e respondem às mensagens

Protocolos de domínio público:

- □ definidos em RFCs
- □ Permitem a interoperação
- □ ex, HTTP e FTP, SMTP,

Protocolos proprietários:

□ Ex., KaZaA

Arquiteturas de aplicação

- ☐ Cliente-servidor
 - Incluindo centros de dados/cloud computing
- □ Peer-to-peer (P2P)
- ☐ Híbrida de cliente-servidor e P2P

Arquitetura Cliente Servidor

 Aplicações típicas de rede tem duas partes: cliente e servidor

□ Servidor:

- Fornece o serviço solicitado pelo cliente
- Hospedeiro sempre ativo
- o Endereço IP permanente
- Exemplos: servidor web, servidor de emails.

☐ Cliente:

- Inicia contato com servidor
- Normalmente pede um serviço para o servidor
- Podem ser conectados intermitentemente
- Podem ter endereço IP dinâmico
- Não se comunicam diretamente uns com os outros
- Exemplos: browser, leitor de emails

Centros de dados da Google

- □ custo estimado do centro de dados: \$600M
- □ Google gastou \$2,4B em 2007 em novos centros de dados
- □ cada centro de dados usa de 50 a 100 megawatts de potência

Arquitetura P2P pura

- nenhum servidor sempre ligado
- sistemas finais arbitrários se comunicam diretamente
- pares são conectados intermitentemente e mudam endereços IP

peer-peer

altamente escalável, mas difícil de administrar

Híbrido de cliente-servidor e P2P

Skype

- o aplicação P2P voice-over-IP P2P
- o servidor centralizado: achando endereço da parte remota
- conexão cliente-cliente: direta (não através de servidor)

Mensagem instantânea

- o bate-papo entre dois usuários é P2P
- serviço centralizado: detecção/localização da presença do cliente
 - usuário registra seu endereço IP com servidor central quando entra on-line
 - usuário contacta servidor central para descobrir endereços IP dos parceiros

Aplicações de Rede: Jargão

- □ Um processo é um programa que roda em um host
- □ Dentro do mesmo host
 - Processos se comunicam usando comunicação inter-processos fornecido pelo S.O.
- □ Processos rodando em diferentes hosts
 - Se comunicam via protocolo do nível aplicação
 - o Enviando e recebendo mensagens de suas portas
 - · Uma via de acesso ao processo
 - Do outro lado da porta tem processos que enviam a mensagem ao destino

□ Socket

- Um processo envia/recebe mensagens para/de seu socket
 - O socket é análogo a uma porta
 - O processo de envio confia na infraestrutura de transporte no outro lado da porta que leva a mensagem para o socket no processo de recepção

□ Socket

- API entre a camada de aplicação e a camada de transporte.
 Desenvolvedor:
 - Cria o programa (processo)
 - · Escolhe o protocolo de transporte
 - Fixa alguns parâmetros da camada de transporte (tamanho máximo do buffer e tamanho máximo de segmentos)

- □ Endereçamento de processos
 - o Para um processo se comunicar com outro
 - Processo originador tem de identificar o processo destinatário
 - Para identificar o processo destinatário deve-se especificar:
 - · Nome ou endereço da máquina hospedeira
 - Identificador que especifique a identidade do processo destinatário no hospedeiro de destino
 - O número da porta

- □ Endereçamento da máquina hospedeira
 - Através do endereço IP
 - Valor de 32 bits (IPv4)
 - Ex.: 150.162.60.23
 - O Identifica unicamente uma máquina na Internet
 - Mais correto: identifica exclusivamente a interface que liga o hospedeiro à rede
 - Deve ser gerenciado com cuidado

- □ Identificação do processo na máquina hospedeira
 - Através do número da porta

Alguns números de portas foram reservados para

aplicações mais populares

Serviço	Porta	Descrição
FTP	21	Transferência de Arquivos
Telnet	23	Acesso Remoto
SMTP	25	Envio de Email
DOMAIN	53	Nomes do Domínio
Gopher	70	Browser em modo texto
HTTP	80	WWW
POP3	110	Receber Email
NNTP	119	Newsgroup
IRC	6667	Internet Relay Chat
ICQ	4144	Bate papo
AOL	5190	America On Line
MSN	569	Microsoft Network

Comando netstat (windows&unix)

- □ Mostra status da rede
 - O Estatísticas e conexões TCP/UDP
- □ Para ver portas usadas e processos
 - o netstat -a

Nível Aplicação na Internet

Que tipo de serviço de transporte é necessário?

□ Confiabilidade

- Algumas aplicações toleram certo nível de perda de dados (p.e. áudio)
- Algumas aplicações necessitam de 100% de confiabilidade (p.e. ftp e telnet)

□ Taxa de bits

- Algumas aplicações necessitam um valor mínimo de taxa de bits para ser efetiva (p.e. multimídia)
- Outras aplicações precisam apenas de conectividade e não requerem garantias de taxa de bits (aplicações elásticas)

□ Atraso

 Algumas aplicações requerem pequeno atraso para serem efetivas (p.e. voz a pacotes)

Requisitos de serviços de transporte para algumas aplicações comuns

Aplicação	Confiab.	Taxa de bits	Sensível a atraso
ftp	100%	elástica	não
e-mail	100%	elástica	não
documentos Web	100%	elástica	não
audio/video tempo-real	Tol. perdas	áudio: 5Kb-1Mb vídeo:10Kb-5Mb	sim, 100's msec
audio/video armaz.	Tol. perdas	Idem anterior	sim, poucos secs
jogos interativos	Tol. perdas	poucos Kbps	sim, 100's msec
aplic. financeiras	100%	elástica	sim e não

□ Serviço TCP:

- Orientado a conexão (Criação da conexão TCP)
 - Cliente e servidor trocam informações de controle da camada de transporte antes do envio dos dados
 - Alerta o cliente e servidor para se prepararem para a transmissão dos dados
 - Conexão full-duplex entre os dois processos
 - Após terminada a transmissão a conexão é encerrada

□ Serviço TCP:

- Transporte confiável entre os processos emissor e receptor
 - Processos confiam no TCP para a entrega dos dados enviados sem erro e na ordem correta
- Controle de congestionamento
 - Serviço mais voltado para o bom funcionamento da Internet do que para os próprios processos comunicantes
 - Limita a capacidade de transmissão de um cliente quando a rede está congestionada
 - Prejudicial para as aplicações de áudio e vídeo em tempo real
 - com exigência de taxa de transferência
 - que são mais flexíveis a problemas de erros

- □ Serviço TCP
 - Controle de fluxo (de congestionamento)
 - Não deixa um processo mandar mais dados que outro possa consumir
- □ TCP não oferece
 - Não garante taxa de transmissão mínima
 - Taxa de transmissão é regulada pelo controle de fluxo e de congestionamento do TCP
 - Não garante atraso na transmissão
 - Não garante o tempo entre o processo originador passar os dados para a porta TCP e o processo receptor receber os dados na porta TCP

- □ Serviço UDP
 - Protocolo de transporte simplificado, leve, com um modelo de serviço minimalista
 - Não é orientado a conexão
 - Não há um contato prévio antes dos dados serem enviados
 - Transporte não confiável entre os processos emissor e receptor
 - Não há garantias que um dado colocado na porta UDP chegará no destino
 - · Podem chegar fora de ordem

- □ Serviço UDP
 - Não inclui mecanismos de controle de congestionamento
 - Processo pode tentar transmitir na taxa que quiser
 - Desenvolvedores costumam adotar o protocolo UDP para desenvolver aplicações tempo real
 - Não fornece garantias de atraso e taxa de bits

Aplicações Internet: seus protocolos e protocolos de transporte

Aplicação	Protocolo de aplicação	Protocolo de transporte
e-mail	smtp [RFC 821]	TCP
acesso de terminais remotos	telnet [RFC 854]	TCP
Web	http [RFC 2068]	TCP
transferência de arquivos	ftp [RFC 959]	TCP
streaming multimídia	RTP ou proprietário	TCP ou UDP
_	(ex.: RealNetworks)	
servidor de arquivos remoto	NSF	TCP ou UDP
telefonia Internet	RTP ou proprietário (ex.: Vocaltec)	tipicamente UDP