Задача ранжирования экспертов

А. В. Филатов

Московский физико-технический институт Факультет управления и прикладной математики Кафедра интеллектуальных систем

Математические методы прогнозирования 2021 г.

План

- Постановка задачи
- Описание предложенного подхода
- Вывод

Постановка задачи

Задача

Построение рейтинг продуктов, который включает в себя оценки экспертов и удовлетворяет требованиям заказчика.

Исследуемая проблема

В случае нескольких нескольких экспертов рассмотрение их оценок, в виду отсутствия отношения порядка между ними. Для решения этой проблемы предлагается ввести отношения порядка.

Метод решения

Отношение порядка мы строим на основе согласованности оценки эксперта с другим. То есть, тот эксперт, чье мнение чаще всего согласуется с мнением других эксперт будет самым главным. Далее, ранжирование экспертов происходит в соответствии с мерой согласованности.

Мера согласованности

В качестве меры согласованности мы рассмотрим корреляцию Пирсона.

Корреляция Кендалла

Пусть x_{l*}, x_{k*} — вектора оценок экспертов. Тогда корреляция между их оценками имеет следующий вид:

$$\tau = 1 - \frac{4}{n(n-1)}R; \ R = \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} \left[\left[x_{li} < x_{lj} \right] \neq \left[x_{ki} < x_{kj} \right] \right]$$

Оценка эксперта

В качестве оценки эксперта возьмем медиану Кемени:

$$\mathrm{Expert}_{i} \mathrm{score} = \text{arg} \, \text{min} \sum_{i=1}^{} d(r_{i*}, r); \ d\left(x, y\right) = \frac{1}{2} \sum_{i=1}^{N} \sum_{j=1}^{N} \left| m_{ij}^{u} - m_{ij}^{v} \right|$$

Проблема пропусков

Для подсчета оценки эксперта нам нужно иметь заполненную матрицу оценки объектов и экспертов. Но в данных могут находиться пропуски поэтому нам нужно восстановить матрицу. Для этого будет использоваться подход matrix completion. Методом A Singular Value Thresholding Algorithm for Matrix Completion.

Matrix completion

Пусть есть исходная матрица M с пропусками. Мы хотим найти X без пропусков. Также матрица X должна иметь теже значения на известных элементах матрицы M. Задача matrix completion имеет следующую формулировку:

$$\begin{aligned} \operatorname{rank}(X) &\to \min_{X \in \mathbb{R}^n} \\ s.t. \ X_{ij} &= M_{ij} \end{aligned}$$

Рейтинг

Устр.	Apax.	Мол.	Мак.	Мол. овс.	Шок.	Сыр.	Кеф.	Греча
7	5	3	4	8	2	1	9	6

Сравнение рейтингов

Ablation study

- Добавление признаков не дает значимый вклад в финальный рейтинг (тест корреляции Кендалла)
- Равномерное удаление 30% рейтингов дает значимый вклад в рейтинг

Вывод

Был предложен алгоритм по построению интегрального индикатора. Этот подход может учитывать оценки нескольких экспертов и работать при наличие экспертов. Подход является устойчивом при добавление новых экспертов (при условии, что исходное их число не слишком мало). При добавлении новых объектов, можно быстро скорректировать подсчеты и учесть новый объект.

Дискуссия

Основной проблемой предложенного подхода является добавление нового эксперта. В этом случае должен происходить полный пересчет решения. Это проблема актуальна не только в нашем подходе. С это проблемой сталкивается любая модель автокодировщика. И дальнейшее развитие может быть направлено на адаптирование подходов из этой области