Technische Universität Darmstadt

Telekooperation 1: Exercise WS15/16

Michael Stein, MSc.

michael.stein@tk.informatik.tu-darmstadt.de

Jens Heuschkel, MSc.

<u>jens.heuschkel@tk.informatik.tu-darmstadt.de</u>

Copyrighted material – for TUD student use only

TK1 - EXERCISE

Solution 6th Exercise

Apply the algorithm "Routing with Advertisements" on the router network in illustration 1. Write down which messages are flowing step-by-step (similar to the presented method in the lecture).

1) Publisher P sends an advertisement to router 1.

Initial state:

Source	Dest	Request	Filter

Source	Dest	Request	Filter
1	3	adv	F

Source	Dest	Request	Filter
1	3	adv	F
3	4	adv	F
3	2	adv	F

Source	Dest	Request	Filter
1	3	adv	F
3	4	adv	F
3	2	adv	F
4	5	adv	F
4	6	adv	F

End state:

Source	Dest	Request	Filter
1	3	adv	F
3	4	adv	F
3	2	adv	F
4	5	adv	F
4	6	adv	F

2) Subscriber S1 sends a subscription to router 5.

Source	Dest	Request	Filter
5	4	sub	F
4	3	sub	F
3	1	sub	F

Note: If router 5 receives sub(F) from S1 before it receives adv(F) from P, it has to store the subscription. When adv(F) is received later, the subscription is forwarded.

2) Later S2 sends a subscription to router 6.

Source	Dest	Request	Filter
5	4	sub	F
4	3	sub	F
3	1	sub	F
6	4	sub	F

3) Publisher P sends a notification to router 1

Source	Dest	Message
1	3	notification n (n matches F)
3	4	notification n (n matches F)
4	5	notification n (n matches F)
4	6	notification n (n matches F)

1) Discuss the pros and cons about "Routing with Advertisements" and "Routing with Subscriptions" in the context of a matchmaking system of a video game (i.e., publishers provide information on currently running gaming sessions to the clients).

Requirements of a matchmaking application (other solutions are possible as well!)

- Background: Application that provides information on ongoing play sessions for connecting different players
- System characteristics
 - Possible complexity: one producer vs. many producers
 - Large amount of data because of frequent events (e.g., number of players in a game session changed) → Efficiency important
 - Number of producers constant? Depends on whether players are also publishers
 - Many subscribers
 - Frequent (re)subscribing
- Requirements, e.g.
 - Quick notification for all players

"Routing with Subscriptions"

- Subscriptions are forwarded to all neighbors except source
- Pros (suitable for):
 - Few "unstable" Subscriber (rare (un)subscribing)
 - No advertisements → no dropped notifications (i.e., no advertisements required)
- Cons:
 - Inefficient routing

"Routing with Advertisements"

- What means suitable in case of "Routing with Advertisements"?
 - Minimize routing of advertisements
 - Constant number of Publisher and "stable" publishing is required

Pros:

- Efficient in frequently (re)subscribing
- Subscriptions only flow along the path to the Publisher

Cons:

Advertisement might not be possible

"Routing with Advertisements" probably makes more sense in the considered scenario

- 2) Which routing is more suitable for which application? Explain your decision.
- "Routing with Subscriptions"
 - Small network, few subscriptions
- "Routing with Advertisements"
 - Efficient in frequently (re)subscribing
 - Constant number of publishers
 - Routing efficiency in large networks