RECAP

- We looked at n-length random vectors X which are essentially multivariate random variables.
- Its CDF/pdf is simply joint CDF/pdf of components
- $ightharpoonup E[\mathbf{X}] = [E[X_1], \dots E[X_n]].$ $C_{\mathbf{X}}$ is the covariance matrix.

Let $\mathbf{Y} = G(\mathbf{X})$ where $G : \mathbb{R}^n \to \mathbb{R}^n$, continuous invertible with continuous partial derivatives. Let H denote its inverse. Then $f_{\mathbf{Y}}(\mathbf{y}) = f_{\mathbf{X}}(H(\mathbf{y}))|J|$ where J is the determinant of the Jacobian matrix.

▶ If $\mathbf{Y} = \mathbf{AX} + \mathbf{b}$, then $C_{\mathbf{Y}} = AC_{\mathbf{X}}A^{T}$ and

$$f_{\mathbf{Y}}(\mathbf{y}) = \frac{1}{|det(A)|} f_{\mathbf{X}}(A^{-1}(\mathbf{y} - \mathbf{b}))$$

RECAP

A random vector \mathbf{Z} is called as a standard normal vector if its components Z_i are independent and standard normal.

$$f_{\mathcal{Z}}(\mathbf{z}) = rac{1}{(2\pi)^{n/2}}e^{\{-rac{1}{2}\mathbf{z}^T\mathbf{z}\}}$$

ightharpoonup For $\mathbf{X} = A\mathbf{Z} + \mu$. and $E[\mathbf{X}] = \mu$ and $\Sigma := C_{\mathbf{X}} = AA^T$ and

$$f_{\mathbf{X}}(\mathbf{x}) = \frac{1}{(2\pi)^{n/2} \sqrt{\det(C_{\mathbf{X}})}} e^{\left\{-\frac{1}{2}(\mathbf{x} - \boldsymbol{\mu})^T C_X^{-1}(\mathbf{x} - \boldsymbol{\mu})\right\}}$$

lacksquare We say that $old X \sim \mathcal{N}(old \mu, \Sigma)$

A random vector ${\bf X}$ is Gaussian iff for some A and ${m \mu}$, it can be written as ${\bf X} = A{\bf Z} + {m \mu}$

Affine transformations preserve Gaussianity

- Suppose $\mathbf{X} \sim \mathcal{N}(\boldsymbol{\mu}, \boldsymbol{\Sigma})$, then what can we say about $\mathbf{Y} = \mathbf{A}\mathbf{X} + \mathbf{b}$? Is it a Gaussian vector?
- ► Easy to see that $E[\mathbf{Y}] = AE[\mathbf{X}] + b$ and $C_{\mathbf{Y}} = A\Sigma A^T$.
- Like in the univariate case, we can use MGF (for multivariate MGF see Bertsekas) to show the following

Suppose $\mathbf{X} \sim \mathcal{N}(\boldsymbol{\mu}, \boldsymbol{\Sigma})$. Now consider $\mathbf{Y} = \mathbf{A}\mathbf{X} + \mathbf{b}$. Then we have $\mathbf{Y} \sim \mathcal{N}(AE[\mathbf{X}] + b, A\boldsymbol{\Sigma}A^T)$.

Equivalent definitions of a Gaussian vector

The following are equivalent definitions (without proof)

 $\mathbf{X} \sim \mathcal{N}(\mu, \mathbf{\Sigma})$ iff for some A and $m{\mu}$, it can be written as $\mathbf{X} = A\mathbf{Z} + m{\mu}$

$$\mathbf{X} = A\mathbf{Z} + \mathbf{\mu}$$

X is Gaussian with mean vector μ and covariance matrix Σ (denoted by $\mathbf{X} \sim \mathcal{N}(\mu, \mathbf{\Sigma})$) iff it has the pdf

$$f_{\mathbf{X}}(\mathbf{x}) = \frac{1}{(2\pi)^{n/2} \sqrt{\det(C_{\mathbf{X}})}} e^{\left\{-\frac{1}{2}(\mathbf{x} - \boldsymbol{\mu})^T C_X^{-1}(\mathbf{x} - \boldsymbol{\mu})\right\}}$$

 $\mathbf{X} \sim \mathcal{N}(\boldsymbol{\mu}, \boldsymbol{\Sigma})$ iff for all vectors $\mathbf{a} \in \mathbb{R}^n$, it turns out that $\mathbf{a}^\mathsf{T} \mathbf{X}$ is univariate Gaussian $\mathcal{N}(a^T \mu, a^T \Sigma a)$.

Marginalization and Conditioning (without proof)

- Let $X \sim \mathcal{N}(\mu, \Sigma)$ and partition X as $[X_1, X_2]^T$ where X_1 is $m \times 1$ and X_2 is $(n m) \times 1$.
- We similarly have $\mu = [\mu_1, \mu_1]^T$ and $\Sigma = \begin{bmatrix} \Sigma_{11} & \Sigma_{12} \\ \Sigma_{21} & \Sigma_{22} \end{bmatrix}$ where Σ_{11} is $m \times m$ matrix and so on ..

Marginalization property: The m-dimensional marginal distribution of $\mathbf{X_1}$ is $\mathcal{N}(\mu_1, \Sigma_{11})$ and $\mathbf{X_2}$ is $\mathcal{N}(\mu_2, \Sigma_{22})$

Conditioning property: The m-dimensional conditional distribution of X_1 given $X_2 = x_2$ is

$$\mathcal{N}(\mu_1 + \Sigma_{12}\Sigma_{22}^{-1}(\mathbf{x_2} - \mu_2), \Sigma_{11} - \Sigma_{12}\Sigma_{22}^{-1}\Sigma_{21}).$$

Note the decrease in variance which does not depend on x_2 .

Towards Bivariate Gaussians

- Suppose $X_1 \sim \mathcal{N}(\mu_1, \sigma_1^2)$ and $X_2 \sim \mathcal{N}(\mu_2, \sigma_2^2)$. Also suppose X_1 and X_2 are independent. Then is $\mathbf{X} = [X_1, X_2]^T$ bivariate Gaussian? What is the mean vector and Covariance matrix?
- ightharpoonup For $\mathbf{x} = [x_2, x_2]^T$, we have

$$f_{\mathbf{X}}(\mathbf{x}) = f_{X_{1}}(x_{1})f_{X_{2}}(x_{2})$$

$$= \frac{1}{2\pi\sigma_{1}\sigma_{2}}e^{-\left(\frac{(x_{1}-\mu_{1})^{2}}{2\sigma_{1}^{2}} + \frac{(x_{2}-\mu_{2})^{2}}{2\sigma_{2}^{2}}\right)}$$

$$= \frac{1}{(2\pi)\sqrt{det(\Sigma)}}e^{\left\{-\frac{1}{2}(\mathbf{x}-\boldsymbol{\mu})^{T}\Sigma^{-1}(\mathbf{x}-\boldsymbol{\mu})\right\}}$$

where
$$\Sigma = \begin{bmatrix} \sigma_1^2 & 0 \\ 0 & \sigma_2^2 \end{bmatrix}$$
 and hence ${\bf X}$ is bivariate Gaussian.

In general, a vector composed of independent Gaussians is a Gaussian vector. The converse is not true: a vector of dependent Gaussian components need not be Gaussian vector (EX 5.35 in probabilitycourse.com).

16/32

Bivariate Gaussians

In general, X_1 and X_2 need not be independent in which case we have a general bivariate Gaussian

$$\mathbf{X} = [X_1, X_2]^T \sim \mathcal{N}(\boldsymbol{\mu}, \boldsymbol{\Sigma}) \text{ where } \boldsymbol{\mu} = [\mu_1, \mu_2]^T \text{ and } \boldsymbol{\Sigma} = \begin{bmatrix} \Sigma_{11} & \Sigma_{12} \\ \Sigma_{21} & \Sigma_{22} \end{bmatrix}$$

- Show that Bivariate Gaussian is closed under marginalization,i.e., $X_1 \sim \mathcal{N}(\mu_1, \Sigma_{11})$ and $X_2 \sim \mathcal{N}(\mu_2, \Sigma_{22})$.
- Show that Bivariate Gaussian is closed under conditioning. (For proof see Theorem 5.4, probabilitycourse.com).
- This means that Given $X_2 = x_2$, one can show that $f_{X_1|X_2}(x_1|x_2)$ is Gaussian.
- These two properties make multivariate Gaussians as efficient modelling tools and the handy in Gaussian processes and Bayesian optimization.

Some Bivariate gaussian pdfs

Some Bivariate gaussian pdfs

