Geometria

Lic. Ciências da Computação & Lic. em Matemática 22/07/2019

Época Especial

Todas as respostas devem ser justificadas e os cálculos devem ser apresentados.

- 1. Seja \mathcal{A} um espaço euclidiano tridimensional munido de um referencial ortonormado.
 - (a) Seja r a reta que passa pelos pontos A=(1,-1,0) e B=(1,2,3). Determine a equação cartesiana do plano π perpendicular a r que passa pelo ponto P=(1,1,2).
 - (b) Seja σ o plano definido pela equação cartesiana -x+z-1=0. Determine as equações paramétricas da reta s perpendicular a σ que passa pelo ponto Q=(2,0,-1).
- 2. Seja \mathcal{A} um espaço afim tridimensional munido de um referencial ortonormado.

Considere as retas r e s definidas pelas seguintes equações vetoriais

$$r = A + \langle \vec{v} \rangle = (0, 0, -1) + \langle (0, 1, 0) \rangle$$
 e $s = B + \langle \vec{w} \rangle = (1, 1, -1) + \langle (0, 1, 1) \rangle$.

- (a) Mostre que as retas r e s são enviesadas.
- (b) Determine os pés da perpendicular comum a r e a s.
- 3. Seja \mathcal{A} um plano euclidiano munido de referencial ortonormado.

Determine a representação matricial do redimensionamento de parâmetros 1 e 2 centrado na origem e na direção das bissetrizes do primeiro e segundo quadrantes.

4. Seja \mathcal{A} um espaço euclidiano tridimensional munido de referencial ortonormado.

Considere o plano π de equação cartesiana

$$\pi: x + y + z = 1.$$

(a) Verifique que a expressão analítica da simetria paralela ρ no plano π segundo o vetor $\vec{v}=(1,0,1)$ é dada por

$$\rho(x, y, z) = (1 - y - z, y, 1 - x - y)$$

- (b) Verifique que a aplicação ρ não é uma isometria.
- 5. Seja \mathcal{A} um espaço euclidiano tridimensional munido de referencial ortonormado.
 - (a) Determine a expressão analítica da rotação de ângulo $\theta = \frac{\pi}{2}$ em torno do eixo dirigido pelo vetor $\vec{u} = \left(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}, 0\right)$ e que incide na origem.
 - (b) Determine a expressão analítica da rotação de ângulo $\theta = \frac{\pi}{2}$ em torno do eixo dirigido pelo vetor $\vec{u} = \left(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}, 0\right)$ e que incide no ponto $\Omega = (0, 0, 1)$.
- 6. Seja \mathcal{A} um plano euclidiano munido de referencial ortonormado.

Sejam r e s duas retas paralelas. Sejam P_1 e P_2 dois pontos da reta r e Q_1 e Q_2 as projeções ortogonais de P_1 e P_2 na reta s, respetivamente. Mostre que $d(P_1,Q_1)=d(P_2,Q_2)$.

Cotações: Todas as questões estão cotadas para 2 valores.