## Module 9 5 Lectures

## **Hydrologic Simulation Models**

Prof. Subhankar Karmakar IIT Bombay

Objectives of this module is to investigate on various hydrologic simulation models and the steps in watershed modeling along with applications and limitations of major hydrologic models

## Topics to be covered

- Hydrologic simulation models
- Steps in watershed modeling
- Major hydrologic models
  - > HSPF(SWM)
  - > HEC
  - MIKE

#### Module 9

# Lecture 1: Introduction to hydrologic simulation modelling

## **Watershed Classification**

| Watershed (ha)  | Classification   |  |
|-----------------|------------------|--|
| 50,000-2,00,000 | Watershed        |  |
| 10,000-50,000   | Sub-watershed    |  |
| 1,000-10,000    | Milli- watershed |  |
| 100-1,000       | Micro-watershed  |  |
| 10-100          | Mini-watershed   |  |
|                 |                  |  |
|                 |                  |  |
|                 |                  |  |

(Bedient et al., 2008)

## **Hydrologic Simulation Model**



A hydrologic simulation model is composed of three basic elements, which are:

- (1) Equations that govern the hydrologic processes,
- (2) Maps that define the study area and
- (3) **Database** tables that numerically describe the study area and model parameters.

#### **Hydrologic Simulation Model**

Contd...

- ❖ A hydrological simulation model can also be defined here as a mathematical model aimed at synthesizing a (continuous) record of some hydrological variable Y, for a period T, from available concurrent records of other variables X, Z, ....
- ❖ In contrast, a hydrological forecasting model is aimed at synthesizing a record of a variable Y (or estimating some of its states) in an interval ∆T, from available records of the same variable Y and/or other variables X, Z, ..., in an immediately preceding period T.

#### **Hydrologic Simulation Model**

Contd...

A hydrological simulation model can operate in a "forecasting mode" if estimates of the records of the independent variables (predictors) X, Z, ..., for the forecast interval ΔT are available through an independent forecast. Then the simulation model, by simulating a record of the dependent variable, [Y] ΔT will in fact produce its forecast.

In short, a hydrological simulation model works in a forecasting mode whenever it uses forecasted rather than observed records of the independent variables.

## **A Typical Watershed Delineation Model**



## Classification of Hydrologic Models



## **Spatial Scaling of Models**

#### Lumped

Parameters assigned to each sub-basin



#### **Semi-Distributed**

Parameters assigned to each grid cell, but cells with same parameters are grouped



#### **Fully-Distributed**

Parameters assigned to each grid cell



#### **Parameters of Watershed**

- 1. Size
- 2. Shape
- 3. Physiography
- 4. Climate
- 5. Drainage
- 6. Land use

- 7. Vegetation
- 8. Geology and Soils
- 9. Hydrology
- 10. Hydrogeology
- 11. Socioeconomics

#### Flowchart of simple watershed model (McCuen, 1989)



## **Strengths of Watershed Models**

#### **❖Diversity of the current generation of models**

There exists a multitude of watershed models, and their diversity is so large that one can easily find more than one watershed model for addressing any practical problem.

#### **❖Comprehensive Nature**

Many of the models can be applied to a range of problems.

#### ❖ Reasonable modeling of physical phenomena

In many cases models mimic reasonably well the physics of the underlying hydrologic processes in space and time.

#### **Strengths of Watershed Models**

Contd...

#### **❖Distributed in Space and Time**

Many models are distributed in space and time.

#### **♦ Multi-disciplinary nature**

Several of the models attempt to integrate with hydrology:

- a) Ecosystems and ecology,
- b) Environmental components,
- c) Biosystems,
- d) Geochemistry,
- e) Atmospheric sciences and
- f) Coastal processes
- This reflects the increasing role of watershed models in tackling environmental and ecosystems problems.

#### **Deficiencies of Watershed Models**

The most ubiquitous deficiencies of the models are:

- Lack of user-friendliness,
- Large data requirements,
- Lack of quantitative measures of their reliability,
- Lack of clear statement of their limitations, and
- Lack of clear guidance as to the conditions for their applicability.

Also, some of the models cannot be embedded with social, political, and environmental systems.

Although watershed models have become increasingly more sophisticated, there is a long way to go before they become "household" tools.

## **Hydrologic Models**

| Model Type       | Example of Model                  |
|------------------|-----------------------------------|
| Lumped parameter | Snyder or Clark UH                |
| Distributed      | Kinematic wave                    |
| Event            | HEC-1, HEC-HMS, SWMM, SCS TR-20   |
| Continuous       | Stanford Model, SWMM, HSPF, STORM |
| Physically based | HEC-1, HEC-HMS, SWMM, HSPF        |
| Stochastic       | Synthetic streamflows             |
| Numerical        | Kinematic or dynamic wave models  |
| Analytical       | Rational Method, Nash IUH         |

## **Hydrologic Models**

#### Contd...

| Models                                          | Application Areas                                                                 |
|-------------------------------------------------|-----------------------------------------------------------------------------------|
| HEC-HMS                                         | Design of drainage systems, quantifying the effect of land use change on flooding |
| National Weather Service (NWS)                  | Flood forecasting.                                                                |
| Modular Modeling System (MMS)                   | Water resources planning and management works                                     |
| University of British Columbia (UBC) & WATFLOOD | Hydrologic simulation                                                             |
| Runoff-Routing model (RORB) & WBN               | Flood forecasting, drainage design, and evaluating the effect of land use change  |
| TOPMODEL & SHE                                  | Hydrologic analysis                                                               |
| HBV                                             | Flow forecasting                                                                  |

# A List of Popular Hydrologic Models

## **Popular Hydrologic Models**

| Model name/acronym                                                             | Author(s)(year)                                              | Remarks                                                                                                     |
|--------------------------------------------------------------------------------|--------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|
| Stanford watershed Model (SWM)/Hydrologic Simulation Package-Fortran IV (HSPF) | Crawford and<br>Linsley (1966),<br>Bicknell et al.<br>(1993) | Continuous, dynamic event or steady-state simulator of hydrologic and hydraulic and water quality processes |
| Catchment Model (CM)                                                           | Dawdy and<br>O'Donnell (1965)                                | Lumped, event-based runoff model                                                                            |
| Tennessee Valley Authority (TVA)<br>Model                                      | Tenn. Valley<br>Authority (1972)                             | Lumped, event-based runoff model                                                                            |
| U.S. Department of Agriculture<br>Hydrograph Laboratory<br>(USDAHL) Model      | Holtan and Lopez<br>(1971), Holtan et al.<br>(1974)          | Event-based, process-oriented, lumped hydrograph model                                                      |
| U.S. Geological Survey (USGS)<br>Model                                         | Dawdy et al. (1970,<br>1978)                                 | Process-oriented,<br>continuous/event-based<br>runoff model                                                 |

## **Popular Hydrologic Models**

#### Contd...

| Model name/acronym                                                        | Author(s)(year)                                                             | Remarks                                                              |
|---------------------------------------------------------------------------|-----------------------------------------------------------------------------|----------------------------------------------------------------------|
| Utah State University (USU)<br>Model                                      | Andrews et al. (1978)                                                       | Process-oriented, event /continuous streamflow model                 |
| Purdue Model                                                              | Huggins and Monke (1970)                                                    | Process-oriented, physically based, event runoff model               |
| Antecedent Precipitation Index (API)Model                                 | Sittner et al. (1969)                                                       | Lumped, river flow forecast model                                    |
| Hydrologic Engineering Center—<br>Hydrologic Modeling<br>System (HEC-HMS) | Feldman (1981), HEC<br>(1981, 2000)                                         | Physically-based, semi-<br>distributed, event-based,<br>runoff model |
| Streamflow Synthesis and<br>Reservoir regulation (SSARR)<br>Model         | Rockwood (1982)<br>U.S. Army Corps of<br>Engineers (1987),<br>Speers (1995) | Lumped, continuous streamflow simulation model                       |

## **Popular Hydrologic Models**

#### Contd...

| Model name/acronym                                       | Author(s)(year)                                         | Remarks                                                                         |
|----------------------------------------------------------|---------------------------------------------------------|---------------------------------------------------------------------------------|
| National Weather service-River Forecast System (NWS-RFS) | Burnash et al.<br>(1973a,b),<br>Burnash (1975)          | Lumped, continuous river forecast system                                        |
| University of British Columbia (UBC) Model               | Quick and Pipes (1977),<br>Quick (1995)                 | Process-oriented, lumped parameter, continuous simulation model                 |
| Tank Model                                               | Sugawara et al. (1974) ,<br>Sugawara (1995)             | Process-oriented, semi-<br>distributed or lumped<br>continuous simulation model |
| Runoff Routing Model (RORB)                              | Laurenson (1964),<br>Laurenson and Mein<br>(1993, 1995) | Lumped, event-based runoff simulation model                                     |
| Agricultural Runoff Model (ARM)                          | Donigian et al. (1977)                                  | Process-oriented, lumped runoff simulation model                                |

| Model name/acronym                                                                  | Author(s)(year)                                                                   | Remarks                                                                                                     |
|-------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|
| Storm Water Management Model (SWMM)                                                 | Metcalf and Eddy et al. (1971),<br>Huber and Dickinson<br>(1988),<br>Huber (1995) | Continuous, dynamic event or steady-state simulator of hydrologic and hydraulic and water quality processes |
| Areal Non-point Source<br>Watershed Environment<br>Response<br>Simulation (ANSWERS) | Beasley et al. (1977),<br>Bouraoui et al. (2002)                                  | Event-based or continuous, lumped parameter runoff and sediment yield simulation model                      |
| National Hydrology Research<br>Institute (NHRI)Model                                | Vandenberg (1989)                                                                 | Physically based, lumped parameter, continuous hydrologic simulation model                                  |
| Technical Report-20 (TR-20)<br>Model                                                | Soil Conservation<br>Service (1965)                                               | Event-based, process-<br>oriented, lumped<br>hydrograph model                                               |
| U.S. Geological Survey (USGS)<br>Model                                              | Dawdy et al. (1970,<br>1978)                                                      | Lumped parameter, event based runoff simulation model                                                       |

| Model name/acronym                                                         | Author(s)(year)                                   | Remarks                                                                                      |
|----------------------------------------------------------------------------|---------------------------------------------------|----------------------------------------------------------------------------------------------|
| Physically Based Runoff Production Model (TOPMODEL)                        | Beven and Kirkby<br>(1976, 1979), Beven<br>(1995) | Physically based,<br>distributed, continuous<br>hydrologic simulation<br>model               |
| Generalized River Modeling Package—Systeme Hydroloque Europeen (MIKE- SHE) | Refsgaard and Storm (1995)                        | Physically based,<br>distributed, continuous<br>hydrologic and hydraulic<br>simulation model |
| ARNO(Arno River )Model                                                     | Todini (1988a,b, 1996)                            | Semidistributed,<br>continuous rainfall-runoff<br>simulation model                           |
| Waterloo Flood System (WATFLOOD)                                           | Kouwen et al. (1993),<br>Kouwen (2000)            | Process-oriented, semidistributed continuous flow simulation model                           |
| Topgraphic Kinematic Approximation and Integration (TOPIKAPI)Model         | Todini (1995)                                     | Distributed, physically based, continuous rainfall-runoff simulation model                   |

| Model name/acronym                                                   | Author(s)(year)                                           | Remarks                                                                        |
|----------------------------------------------------------------------|-----------------------------------------------------------|--------------------------------------------------------------------------------|
| Soil-Vegetation-Atmosphere<br>Transfer (SVAT) Model                  | Ma et al. (1999),<br>Ma and Cheng (1998)                  | Macroscale, lumped parameter, streamflow simulation system                     |
| Systeme Hydrologique Europeen<br>Transport<br>(SHETRAN)              | Ewen et al. (2000)                                        | Physically based, distributed, water quantity and quality simulation model     |
| Daily Conceptual Rainfall-Runoff<br>Model (HYDROLOG)-Monash<br>Model | Potter and McMahon<br>(1976), Chiew and<br>McMahon (1994) | Lumped, conceptual rainfall-runoff model                                       |
| Soil Water Assessment Tool (SWAT)                                    | Arnold et al. (1998)                                      | Distributed, conceptual, continuous simulation model                           |
| Distributed Hydrological Model (HYDROTEL)                            | Fortin et al. (2001a,b)                                   | Physically based,<br>distributed, continuous<br>hydrologic simulation<br>model |