Effect of aging (250°C for 1hr) on the mechanical properties of new alloys Table 1.

		3	0001.8		0730	MCR·10 ⁹ , S ⁻¹	0°, S ⁻¹	ξ
Alloy	State	TYS MPa	OTS MPa	E%	CYS MPa	150°C 100 MPa	200°C 55 MPa	CIK mg/cm²/day
	ഥ	183	237	4	183	0.84	1.05	1.58
Example 3	T5	195	250	5	195	0.82	1.08	1.53
-	ſ±,	179	240	5	. 179	1.44	2.54	1.38
Example 6	T5	200	255	5	198	1.28	2.35	1.41
	ſΞ	188	236	. 5	186	1.05	1.95	1.35
Example 8	T5	197	243 -	3	198	1.02	1.97	1.32
-	ĘĽ,	195	234	3	193	1.31	2.40	, 1.35
Example 14	T5	203	250	3	202	1.18	2.28	1.37

Fig.

Table 2. Chemical Compositions of Alloys

	-		7.2	ú	C.	Š	ij	Π̈́A	ż	ئ	Re
Alloy	K %	nivi %	17 %	% ڙ	 	5 %	5 %	3 %	: %	3 %	
Example 1	4.7	0.29		1.9	1.8	0.3	0.01	0.002	9000.0	0.0005	
Example 2	5.3	0.31	0.3	1.8	0.3	•	0.01	0.007	0.0005	9000.0	0.0005
Example 3	5.1	0.30		2.9	1.0	1	0.01	0.003	9000.0	0.0006	•
Example 4	4.9	0.30		2.0	2.0	0.3	0.01	0.003	0.0005	0.0005	•
Example 5	5.2	0.31		3.1	0.5	•	0.01	0.002	0.0007	0.0004	0.0007
Example 6	6.1	0.29	9.0	2.2	2.0	1	0.01	0.002	0.0006	0.0006	•
Example 7	6.2	0.30	•	2.1	0.5	0.3	0.01	0.003	9000.0	0.0005	•
Example 8	6.2	0.28	•	2.8	1.5		0.01	0.003	0.0007	0.0005	•
Example 9	5.9	0.26	•	3.0	0.5	0.3	0.01	0.002	0.0005	0.0006	•
Example 10	9.9	0.25		1.9	1.5	0.5	0.01	0.003	0.0006	0.0005	•
Example 11	7.1	0.26		2.0	0.5	•	0.01	0.003	9000.0	0.0006	•
Example 12	7.0	0.23	8.0	2.1	2.0		0.01	0.002	0.0005	0.0005	•
Example 13	7.3	0.24		3.1	0.7	•	0.01	0.003	0.0006	0.0005	0.0004
Example 14	7.1	0.21	0.7	3.0	1.1	•	0.01	0.002	0.0005	0.0005	•
Comparative Example 1	8.9	0.23	0.74	•	1	1	0.01	0.002	0.0007	600000	0.0009
Comparative Example 2	4.3	0.29	0.01	2.4% RE	1	ı	0.01	0.005	0.0008	0.0008	0.0008
Comparative Example 3	4.1	0.34	•	1.5	1	0.10	0.01	0.002	0.0005	0.0007	0.0009
Comparative Example 4	5.5	0.31	1	2.7	•	0.15	0.01	0.003	9000.0	0.0008	0.0008
Comparative Example 5	7.9	0.24	0.7	2.2	1.0	•	0.01	0.003	0.0008	0.0007	

Fig. 2

Table 3. Die castability properties of new alloys

Alloy	Metal temperature [°C]	Oxidation resistance	Fluidity	Die sticking	Rank
Example 1	029	10	6	6	<i>L</i> .19
Example 2	069	10	10	8	86.7
Example 3	675	10	9	8	85.1
Example 4	089	. 10	10	6	93.3
Example 5	029	10	6	6	91.7
Example 6	0.29	10	6	10	98.4
Example 7	099	10	6	6	2.16
Example 8	099	10	6	6	<i>L</i> .16
Example 9	029	10	10	6	93.3
Example 10	675	10	10	6	93.3
Example 11	. 660	10 ·	10	6	93.3
Example 12	099	10	10	10	100
Example 13	099	10	10	6	, 93.3
Example 14	099	10	10	6	93.3
Comparative Example 1	670	6	10	10	. 98.4
Comparative Example 2	690	8	8	6	80
Comparative Example 3	690	10	8	5	09
Comparative Example 4	675	10	6	7	78.3
Comparative Example 5	099	10	10	6	93.3

Fig. 3

Table 4. Intermetallic Phases in New Alloys

Alloy	Phase composition
Example 1	Mg-Al-Snss, Al ₂ Ca, Al ₂ (Ca,Sn), Al ₂ (Ca,Sr), Al ₂ (Ca,Sn,Sr), Al _{0.54} Mn _{0.06}
Example 2	Mg-Alss, Al2Ca, Al2(Ca,Sn), Alos6Mno.44
Example 3	Mg-Al-Snss, Al ₂ Ca, Al ₂ (Ca,Sn), Al _{0.55} Mn _{0.45}
Example 4	Mg-Al-Sn ₅₅ , Al ₂ Ca, Al ₂ (Ca,Sn), Al ₂ (Ca,Sr), Al ₂ (Ca,Sn,Sr), Al _{0.53} Mn _{0.47}
Example 5	Mg-Alss, Al2Ca, Al2(Ca,Sn), Al0.58Mn.42
Example 6	Mg-Al-Zn-Sn _{ss} , Al ₂ Ca, Al ₂ (Ca,Sn), Al _{0.61} Mn _{0.39}
Example 7	Mg-Alss, Al2Ca, Al2(Ca,Sr), Al2(Ca,Sn), Al2(Ca,Sn,Sr), Al0.59Mn0.41
Example 8	Mg-Al-Sn _{ss} , Al ₂ Ca, Al ₂ (Ca,Sn), Al _{0.63} Mn _{0.37}
Example 9	Mg-Alss, Al ₂ Ca, Al ₂ (Ca,Sn), Al ₂ (Ca,Sr), Al ₂ (Ca,Sn,Sr), Al _{0.62} Mn _{0.38}
Example 10	Mg-Al-Sn _{ss} , Al ₂ Ca, Al ₂ (Ca,Sr), Al ₂ (Ca,Sn,Sr)
Example 11	Mg-Alss, Al2Ca, Al2(Ca,Sn), Alo64Mno.36
Example 12	Mg-Al-Zn-Sn _{ss} , Al ₂ Ca, Al ₂ (Ca,Sn), Al _{0.65} Mn _{0.35}
Example 13	Mg-Al-Snss, Al ₂ Ca, Al ₂ (Ca,Sn), Al _{0.62} Mn _{0.38}
Example 14	Mg-Al-Sn _{ss} , Al ₂ Ca, Al ₂ (Ca,Sn), Al _{0.64} Mn _{0.36} .
Comparative example 1	Mg-Alss, Mg17(Al,Zn)12, Al8Mn5
Comparative example 2	Mg-Alss, Ali RE3, Ali RE2Mn7
Comparative example 3	Comparative example 3 Mg-Alss, Al ₂ Ca, Al ₂ (Ca,Sr), Al _{0.58} Mn _{0.42}
Comparative example 4	Comparative example 4 Mg-Alss, Al ₂ Ca, Al ₂ (Ca,Sr), Al _{0.54} Mn _{0.46}
Comparative example 5	Comparative example 5 Mg-Al-Sn-Zn _{ss} , Al ₂ Ca, Al ₂ (Ca,Sn)

Fig. 4

Table 5. Mechanical Properties and Creep Behavior

Alloy		TYS Mpa		UTS MPa	त्र %		CYS MPa		MCR·10 ⁹ , S ⁻¹	0°, S ⁻¹	CR
(all of	20°C	175°C	200°C	20°C	20°C	20°C	175°C	200°C	150°C, 100 MPa	200°C, 55 MPa	mg/cm²/day
Example 1	175	160	145	227	5	172	155	143	1.30	1.96	1.52
Example 2	172	158	142	235	5	175	651	146	1.25	1.85	1.50
Example 3	183	165	154	237	4	183	591	155	0.84	1.05	1.58
Example 4	170	161	142	236	9	171	.091	143	1.05	1.40	1.48
Example 5	180	168	152	235	4	179	168	153	0.80	1.08	1.56
Example 6	179	165	145	240	5	179	164	147	1.44	2.54	1.38
Example 7	178	163	148	238	5	176	163	146	1.39	2.44	1.45
Example 8	188	170	155	236	5	186	169	155	1.05	1.95	1.37
Example 9	186	172	157	232	4	186	172	157	0.95	1.88	1.49
Example 10	179	162	145	250	5	180	160	146	1.65	4.50	1.54
Example 11	180	160	143	248	5	179	160	142	1.64	4.80	1.32
Example 12	183	165	145	245	4	185	163	144	1.59	4.55	1.45
Example 13	196	170	158	230	3	192	170	157	1.25	2.25	1.47
Example 14	195	174	160	234	3	193	173	161	1.31	2.40	1.32
Comparative Example 1	160	88	75	260	9	158	98	75	1426	2890	1.31
Comparative Example 2	135	88	85	240	12	136	06	98	784	463	1.62
Comparative Example 3	160	148	138	225	3	155	147	136	1.82	4.72	1.59
Comparative Example 4	179	160	145	220	3	178	161	144	0.87	1.67	1.47
Comparative Example 5	195	168	153	230	-	192	165	150	1.75	5.6	1.39

Fig. 5

Fig. 6A

Fig. 6B

Fig. 7A

Fig. 7B

Fig. 8A

Fig. 8B

Fig. 9A

Fig. 9B