Algebra

Introduction to Computing Foundations

Foo Yong Qi

11 January 2024 | Day 1 AM Session 1

Department of Computer Science School of Computing National University of Singapore

Table of contents

- 1. Equations and Inequalities
- 2. Functions
- 3. Exponentials, Logarithms and Absolutes
- 4. Series

Equations and Inequalities

Equations

$$x = 5001$$

LHS (x, which is a variable) is equal to the RHS (the number 5001)

$$y = 500 + 1$$

y is equal to the quantity 500 + 1 = 501

Numbers

 $x \in A$ means x is a member of the collection A, $y \in \mathbb{N}$ means y is a natural number

Operations on Numbers

$$a+b$$

$$a-b$$

$$a \times b$$

$$a \div b$$

$$a^b$$

Subtraction

Multiplication

Division

Exponentiation

First four operators are left-associative:

$$a + b + c + d = ((a + b) + c) + d$$

Order of precedence follows PEMDAS

$$1 + 2 \times 3 - 4 \div 5^{2} = 1 + (2 \times 3) - (4 \div (5^{2}))$$
$$= 1 + 6 - \frac{4}{25}$$
$$= 6.84$$

Operations on Numbers

What is
$$6 \div 2(1+2)$$
?

ab (instead of $a \times b$) is implicit multiplication by juxtaposition, higher precedence than multiplication/division

Use variables as 'placeholders' for unknown quantities to solve for.

Construct systems of equations on these variables; once solved, quantities will be known

Example 1.1

Alice has 1.5 times as many oranges than Bob. Bob has 5 more oranges than Charlie. Finally, Alice has 15 more oranges than Charlie. How many oranges do Alice, Bob and Charlie each have?

Example 1.1

Alice has 1.5 times as many oranges than Bob. Bob has 5 more oranges than Charlie. Finally, Alice has 15 more oranges than Charlie. How many oranges do Alice, Bob and Charlie each have?

Let a, b and c be the number of oranges that Alice, Bob and Charlie have respectively.

$$a = 1.5b \tag{1}$$

$$b = c + 5 \tag{2}$$

$$a = c + 15 \tag{3}$$

Manipulate this system of equations via some rules:

- 1. If in one equation we have X = Y, we can substitute X for Y or Y for X in other equations
- 2. We can do the same operation to both sides of any equation

For example, by eq. (3), a=c+15 and a occurs in eq. (1). Replace a with c+15 in eq. (1):

$$c + 15 = 1.5b (4)$$

Or, we can also multiply both sides of eq. (4) by 2:

$$c+15=1.5b \tag{4}$$

$$\Rightarrow \qquad 2(c+15)=2(1.5b) \qquad \text{p multiply both sides by 2}$$

$$\Rightarrow \qquad 2c+30=3b \tag{5}$$

9

Trick to solving equations: isolate one variable then substitute into another equation:

$$2c + 30 = 3b$$

$$\Rightarrow (2c + 30) - 30 = 3b - 30$$

$$\Rightarrow 2c = 3b - 30$$

$$\Rightarrow \frac{2c}{2} = \frac{3b - 30}{2}$$

$$\Rightarrow c = \frac{3b - 30}{2}$$

$$\Rightarrow c = \frac{3b - 30}{2}$$

$$\Rightarrow (5)$$

$$\Rightarrow \text{subtract 30 from both sides}$$

$$\Rightarrow (6)$$

$$\Rightarrow (7)$$

$$\Rightarrow (8)$$

Now express b without any other variables by substituting eq. (9) into eq. (2):

$$b = c + 5 \tag{2}$$

$$c = \frac{3b - 30}{2} \tag{9}$$

$$\Rightarrow \qquad b = \frac{3b - 30}{2} + 5 \qquad \qquad \triangleright \text{ by substitution of (9) onto (2)}$$

$$\Rightarrow$$
 2b = 3b - 30 + 10 \Rightarrow multiply both sides by 2 (11)

$$\Rightarrow$$
 $b=20$ \Rightarrow add 20 – 2 b to both sides (12)

Substitute b = 20 into original equations to solve other variables:

$$a = 1.5b \tag{1}$$

$$b = c + 5 \tag{2}$$

$$a = c + 15 \tag{3}$$

Exercise 1.1.

Solve the system of equations (1) a=2b and (2) b=a+3.

Exercise 1.1.

Solve the system of equations (1) a = 2b and (2) b = a + 3.

Solution 1.1.

Substitute a for 2b in (2):

$$b = 2b + 3$$

$$b = -3$$

Thus, a = -6.

What is wrong with this?

Let a = b. Then:

$$x \leq 1$$

This is an inequality stating that x is less than or equal to 1

Four kinds of inequalities:

- 1. x < y: x strictly less than y
- 2. $x \le y$: x less than or equal to y
- 3. x > y. x strictly greater than y
- 4. $x \ge y$. x greater than or equal to y

Another way to denote inequalities: interval notation

$$x < y < z \Leftrightarrow x < y \text{ and } y < z$$

As intervals:

1.
$$x < y < z \Leftrightarrow y \in (x, z)$$

$$2. \ x < y \le z \Leftrightarrow y \in (x, z]$$

3.
$$x \le y < z \Leftrightarrow y \in [x, z)$$

4.
$$x \le y \le z \Leftrightarrow y \in [x, z]$$

Proposition (Multiplication by -1 on inequalities).

For all real numbers x and y, if x < y then -x > -y, and if $x \le y$ then $-x \ge -y$.

Proof Sketch.

$$x < y \Rightarrow x + k < y + k$$

Substracting x + y from both sides

$$x < y \Rightarrow x - x - y < y - x - y$$
$$\Rightarrow -y < -x$$

Argue similarly for \leq .

Systems of Inequalities

Systems of inequalities help solve optimization problems
Usually done with linear programming (which requires linear algebra; stay tuned!)

Use variables, mathematical operations and rules for

manipulating systems of equations to solve for unknown

quantities.

$$f(x) = 2x + 3$$

f is a function receiving input called x and will output 2x+3

Arity: number of parameters a function receives: f has arity 1 Function with arity 1 is unary, arity 2 is binary

$$f: A \to B$$

f has domain (collection of all possible inputs) A and codomain (collection of possible outputs) B

Example 1.2

 $f\colon \mathbb{R} \to \mathbb{R}$ given by f(x)=2x+3 receives real numbers as inputs and produce real numbers as output.

$$g: \mathbb{R} \to \mathbb{N}$$

$$g(x) = 1$$

If $f: A \to B$ then image of A under f is the collection of all (and only) the possible outputs of f that are also members of B

Example 1.3

Let g be the following function:

$$g: \mathbb{R} \to \mathbb{N}$$

$$g(x) = 1$$

Domain of g is $\mathbb N$ but image of $\mathbb R$ under g is the collection only containing 1

Exercise 1.2.

Suppose we define a binary function f(x, y) = x/y. Would $\mathbb{N} \times \mathbb{N}^+ \to \mathbb{N}$ (where \mathbb{N}^+ represents *positive* natural numbers) be a correct description of f? If not, why?

Exercise 1.2.

Suppose we define a binary function f(x, y) = x/y. Would $\mathbb{N} \times \mathbb{N}^+ \to \mathbb{N}$ (where \mathbb{N}^+ represents *positive* natural numbers) be a correct description of f? If not, why?

Solution 1.2.

No because x/y could be a rational number and not a natural number, so the codomain of f is not \mathbb{N} .

How Functions Work

The function f(x) = 2x + 3 receives some input and produces output.

Given some number a, f(a) is what you get by replacing x with a everywhere.

Example: f(2) = 2(2) + 3 = 7.

Plotting a Graph of a Function

Plot f(x) = 2x + 3 where horizontal axis is input x and vertical axis is output f(x):

Figure 1: Graph of f(x) = 2x + 3.

Root of Function

Given f(x) = 2x + 3, what values of x is f(x) = 0?

$$2x + 3 = 0$$

$$\Rightarrow 2x = -3 \qquad \Rightarrow \text{subtract 3 from both sides} \qquad (13)$$

$$\Rightarrow x = -\frac{3}{2} \qquad \Rightarrow \text{divide both sides by 2} \qquad (14)$$

f intersects the x-axis when $x=-\frac{3}{2}$

This value of x is also known as the root of the equation/function

Roots are important because they are, frequently, solutions to problems formulated as equations

Univariate Polynomials

f(x) = 2x + 3 is a linear function, which is a polynomial function.

Definition 1.1 (Polynomial function).

A (uni-variate) polynomial function of degree n is a function in the form

$$f(x) = c_n x^n + c_{n-1} x^{n-1} + \dots + c_1 x + c_0$$

where n is a natural number and c_n to c_0 are real numbers.

Quadratic Function

A quadratic equation is a polynomial with degree 2 in the form of $f(x) = c_2x^2 + c_1x + c_0$ with nonzero c_2 .

Figure 2: Graph of $f(x) = x^2 + 2x - 5$.

Root(s) of Quadratic Functions

Given quadratic function $f(x)=ax^2+bx+c$, roots of the equation are $\frac{-b\pm\sqrt{b^2-4ac}}{2a}$

Why?

Root(s) of Quadratic Functions (Derivation)

$$ax^{2} + bx + c = 0$$

$$\Rightarrow x^{2} + \frac{b}{a}x + \frac{c}{a} = 0$$

$$\Rightarrow x^{2} + \frac{b}{a}x = -\frac{c}{a}$$

$$\Rightarrow x^{2} + 2\frac{b}{2a}x = -\frac{c}{a}$$

$$\Rightarrow x^{2} + 2\frac{b}{2a}x + \left(\frac{b}{2a}\right)^{2} = -\frac{c}{a} + \left(\frac{b}{2a}\right)^{2}$$

$$\Rightarrow \left(x + \frac{b}{2a}\right)^{2} = -\frac{c}{a} + \left(\frac{b}{2a}\right)^{2}$$

$$\Rightarrow factorize LHS$$

Root(s) of Quadratic Functions (Derivation)

$$\Rightarrow \qquad \left(x + \frac{b}{2a}\right)^2 = -\frac{c}{a} + \left(\frac{b}{2a}\right)^2 \qquad \qquad \triangleright \text{ factorize LHS}$$

$$\Rightarrow \qquad \left(x + \frac{b}{2a}\right)^2 = -\frac{c}{a} + \frac{b^2}{4a^2} \qquad \qquad \triangleright \left(\frac{x}{y}\right)^2 = \frac{x^2}{y^2}$$

$$\Rightarrow \qquad \left(x + \frac{b}{2a}\right)^2 = -\frac{4ac}{4a^2} + \frac{b^2}{4a^2} \qquad \qquad \triangleright \frac{x}{y} = \frac{4ax}{4ay}$$

$$\Rightarrow \qquad \left(x + \frac{b}{2a}\right)^2 = \frac{b^2 - 4ac}{4a^2} \qquad \qquad \triangleright \frac{a}{c} + \frac{b}{c} = \frac{a+b}{c}$$

$$\Rightarrow \qquad x + \frac{b}{2a} = \pm \sqrt{\frac{b^2 - 4ac}{4a^2}} \qquad \qquad \triangleright \text{ take square roots}$$

Root(s) of Quadratic Functions (Derivation)

$$\Rightarrow \qquad x + \frac{b}{2a} = \pm \sqrt{\frac{b^2 - 4ac}{4a^2}} \qquad \qquad \triangleright \text{ take square roots}$$

$$\Rightarrow \qquad x + \frac{b}{2a} = \pm \frac{\sqrt{b^2 - 4ac}}{2a} \qquad \qquad \triangleright \sqrt{\frac{a}{b}} = \frac{\sqrt{a}}{\sqrt{b}}$$

$$\Rightarrow \qquad x = -\frac{b}{2a} \pm \frac{\sqrt{b^2 - 4ac}}{2a} \qquad \qquad \triangleright \text{ subtract } \frac{b}{2a}$$

$$\Rightarrow \qquad x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \qquad \qquad \triangleright \frac{a}{c} + \frac{b}{c} = \frac{a+b}{c}$$

Root(s) of Quadratic Functions

For
$$f(x) = x^2 + 2x - 5$$
 we have $a = 1$, $b = 2$, $c = -5$, so we have two roots:

$$\frac{-2 + \sqrt{4 + 20}}{2} = \sqrt{6} - 1$$

$$\frac{-2+\sqrt{4+20}}{2} = \sqrt{6}-1 \qquad \qquad \frac{-2-\sqrt{4+20}}{2} = -1-\sqrt{6}$$

N-nary Functions

A function that has arity n is also called n-nary

$$f: \mathbb{R} \times \mathbb{R} \to \mathbb{R}$$

$$f(x,y) = 2x + 3y$$

$$g: \mathbb{R} \times \mathbb{N} \times \mathbb{R} \to \mathbb{R}$$

$$g(x, y, z) = x + y - z$$

Objects in the collection $\mathbb{R} \times \mathbb{R}$ are *pairs* of real numbers, like (1.5, -3).

In general, things like (1,2) or (1,2,3,4) are known as tuples.

N-nary Functions

Functions can also produce outputs as tuples too

$$f: \mathbb{R} \to \mathbb{R} \times \mathbb{R}$$

$$f(x) = (2x, 3x)$$

Binary Functions

Binary functions have arity 2

They can be written in different styles of notation:

- Prefix notation: + x y or +(x, y)
- Infix notation x + y
- Postfix notation x y +

Syntax vs Semantics

Two different-looking statements can mean the same thing!

- If f is a binary function that f(x, y) can be written x f y
- f(x) = 2x is the same as f(y) = 2y
- If g(x,y) = x + 2y and we let * = g then a*b = *(a,b) = g(a,b)

Being able to separate **syntax** (how things look) and **semantics** (what things mean) is crucial to learning programming

Plotting Binary Functions

Figure 3: Example binary functions: f(x, y) = 2x + 3y (left) and $g(x, y) = x^2 + y^2$ (right).

Function Composition

If machine A receives eggs and produce chicks and machine B receives chicks and produces chickens, we can make a new machine $B \circ A$ that receives eggs and produces chickens

This is known as function composition

Function Composition

Definition 1.2 (Function composition)

Suppose we have functions $f: A \to B$ and $g: B \to C$. The composite of f and g, denoted $g \circ f$ (read as g after f) is the function $(g \circ f): A \to C$ where $(g \circ f)(x) = g(f(x))$.

Function Composition

Example 1.5

Suppose we have $h: \mathbb{R} \to \mathbb{R} \times \mathbb{R}$ and $k: \mathbb{R} \times \mathbb{R} \to \mathbb{R}$ where h(x) = (2x, 3x) and k(x, y) = 2x + 3y. Then, $k \circ h: \mathbb{R} \to \mathbb{R}$ is

$$(k \circ h)(x) = k(h(x)) = k(2x, 3x) = 4x + 9x = 13x$$

Functions are like machines that receive input and produce

output:

We can easily find the roots of linear and quadratic functions:

Functions can be plotted on graphs and composed

Exponentials, Logarithms and Absolutes

If we started with \$1\$ in a bank that pays 10% interest per year compounded annually, how much money would we have after n years?

$$(1+1/10)^n$$

$$f(x) = 2^x$$

f is an exponential function

Figure 4: Graph of $f(x) = 2^x$.

Suppose we have \$1 in a bank giving 100% interest annually.

If in a year, the bank compounds our interest n times, we would have $(1+1/n)^n$ after one year.

What if bank compounds interest continuously?

We would have \$2.71828..., which is Euler's number e

$$\exp x = e^x$$

Inverses

Definition (Inverse function).

For a function f(x), its inverse f^{-1} is a function where $(f^{-1} \circ f)(x) = x$

Example (Inverse).

The inverse of f(x) = 2x is $f^{-1}(x) = x/2$.

Logarithms

The inverse of
$$f(x) = a^x$$
 is $f^{-1}(b) = \log_a b$

$$a^x = b \Leftrightarrow \log_a b = x$$

$$e^x = a \Leftrightarrow \log_e a = \ln a = x$$

Logarithms

Figure 5: Graph of $f^{-1}(x) = \log_2 x$.

Exponentials and Logarithms

If we started with one cell and every cell divides into 2 every day: how many cells would we have after n days? How many days required to get m cells?

Figure 6: Tree showing cell division after 3 days.

Exponentials and Logarithms

• If we had a piece of paper that only had space for *n* digits, what is the largest number we can write on it?

$$10^{n} - 1$$

 \cdot Given a number m, what is least amount of space needed to write it?

$$\lceil \log_{10} m \rceil$$

[x]: ceiling of x, rounding x up to nearest integer

 $\lfloor x \rfloor$: floor of x, rounding x down to nearest integer

Exponentials and Logarithms

Laws of exponentials and logarithms

$$a^{b}a^{c} = a^{b+c} \qquad \qquad \left(a^{b}\right)^{c} = a^{bc} \qquad \qquad a^{c}b^{c} = (ab)^{c}$$

$$\frac{a^{b}}{a^{c}} = a^{b-c} \qquad \qquad \frac{a^{c}}{b^{c}} = \left(\frac{a}{b}\right)^{c} \qquad \qquad a^{0} = 1$$

$$\log_{a}b + \log_{a}c = \log_{a}(bc) \qquad \log_{a}b - \log_{a}c = \log_{a}\frac{b}{c} \qquad \log_{a}b = \frac{\log_{c}b}{\log_{c}a}$$

$$\log_{a}(b^{x}) = x\log_{a}b \qquad \qquad a^{\log_{a}x} = x \qquad \qquad \log_{a}a = 1$$

$$x = y \Leftrightarrow a^{x} = a^{y} \Leftrightarrow \log_{a}x = \log_{a}y$$

Absolutes

"Size" of a number

$$|x| = \begin{cases} x & \text{if } x \ge 0 \\ -x & \text{otherwise} \end{cases}$$
$$|2| = |-2| = 2$$

$$|x| \ge 0 \qquad |xy| = |x||y| \qquad |f(x)| = \begin{cases} f(x) & \text{if } f(x) \ge 0 \\ -f(x) & \text{otherwise} \end{cases}$$
$$|x^n| = |x|^n \qquad |-x| = x \qquad |x| = y \Leftrightarrow x = y \text{ or } -x = y$$

Absolutes

Figure 7: Graph of f(x) = |x|.

Exponential functions model exponential growth; its inverse

is the logarithm.

Absolute values are the 'size' of the value

Complete the sequences:

$$3, 5, 7, 9, \dots$$

 $1, 2, 4, 8, \dots$

$$1, 2, 4, 8, \dots$$

We can construct a sequence of numbers u_0, u_1, u_2, \ldots

Summation:

$$\sum_{x=0}^{n} u_x = u_0 + u_1 + \dots + u_{n-1} + u_n$$

Product:

$$\prod_{x=0}^{n} u_x = u_0 \times u_1 \times \dots \times u_{n-1} \times u_n$$

Factorial

$$n! = n \times (n-1) \times \cdots \times 2 \times 1 = \prod_{i=1}^{n} i$$

For example, $4! = 1 \times 2 \times 3 \times 4 = 24$

е

$$e = \sum_{n=0}^{\infty} \frac{1}{n!} = 1 + \frac{1}{1 \times 2} + \frac{1}{1 \times 2 \times 3} + \frac{1}{1 \times 2 \times 3 \times 4} + \dots$$

Arithmetic Progression

$$3, 5, 7, 9, \dots$$

This is an arithmetic progression because difference between adjacent terms is always constant (2)

$$u_i = u_{i-1} + c$$

The i^{th} term is f(i) where i starts from 0:

$$f(x) = cx + u_0$$

Arithmetic Progression

Let the i^{th} term be f(i) where f(x) = 2x + 3

$$3, 5, 7, 9, 11, 13, 15, 17, 19, 21, \dots$$

What is the sum of the first 10 terms?

$$(3+21) + (5+19) + \dots + (11+13) = 5 \times 24 = 120$$

For any AP with each term given by f(x) = ax + b, sum of first n terms is

$$\sum_{n=0}^{n-1} (ax+b) = \frac{n}{2} (a(n-1) + 2b) = \frac{an^2 - an + 2bn}{2}$$

Arithmetic Progression

What is the sum of all terms of AP?

As n gets larger, $|(an^2 - an + 2bn)/2|$ also gets larger (unless a = b = 0)

Sum of all terms of AP is infinite, series is divergent

$$1, 2, 4, 8, \dots$$

This is a geometric progression because ratio of adjacent terms is always constant (2)

$$u_i = c \times u_{i-1}$$

The i^{th} term is f(i):

$$f(x) = u_0 \times c^x$$

Suppose we have GP where each term is $f(x) = ab^x$

Let S(n) be sum of first n terms of GP.

$$S(n) = a + ab + ab^2 + \dots + ab^{n-1}$$

Multiply both sides by b:

$$b \times S(n) = ab + ab^2 + \dots + ab^n$$

$$S(n) = a + ab + ab^{2} + \dots + ab^{n-1}$$
$$b \times S(n) = ab + ab^{2} + \dots + ab^{n}$$

Take top minus bottom:

$$S(n) - b \times S(n) = a - ab^n$$

$$S(n) - b \times S(n) = a(1 - b^n)$$

$$(1 - b)(S(n)) = a(1 - b^n)$$

$$S(n) = \frac{a(1 - b^n)}{1 - b}$$

$$\frac{a(1-b^n)}{1-b}$$

What is the sum of all terms of a GP?

- If |b|>1, as n gets infinitely large, $|b^n|$ also gets infinitely large, so series is divergent
- If |b| < 1, as n gets larger, b^n gets closer to 0!

$$\lim_{n \to \infty} b^n = 0 \qquad |b| < 1$$

Thus,

$$\sum_{x=0}^{\infty} ab^x = \frac{a}{1-b} \qquad |b| < 1$$

When |b| < 1, GP is convergent

$$1 + \frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \dots = 2$$

Recurrence Relations

In sequences, terms can depend on previous terms

AP:
$$u_i = u_{i-1} + c$$

GP:
$$u_i = u_{i-1} \times c$$

In general, when a term depends on previous terms, the sequence of terms is a recurrence relation

Recurrence Relations

$$n! = \prod_{i=1}^{n}$$

Alternative formulation: We have

$$(n+1)! = (n+1) \times n \times (n-1) \times \cdots \times 1$$
$$= (n+1) \times n!$$

Therefore,

$$n! = \begin{cases} 1 & \text{if } n = 0 \\ n \times (n-1)! & \text{otherwise} \end{cases}$$

Recurrence Relations

Fibonacci Sequence: 1, 1, 2, 3, 5, 8, 13, ...

$$\operatorname{fib}_n = \begin{cases} 1 & \text{if } n = 0 \text{ or } 1 \\ \operatorname{fib}_{n-1} + \operatorname{fib}_{n-2} & \text{otherwise} \end{cases}$$