决策树之ID3算法

D3算法选择特征的依据是信息增益、C4.5是信息增益比,而CART则是Gini指数。

决策树: 从根节点开始一步步走到叶子节点(决策)

所有的数据最终都会落到叶子节点,既可以做分类也可以做回归

树的组成

根节点:第一个选择点决策树非叶子节点与分支:中间过程

叶子节点: 最终的决策结果

决策树学习通常包括 3 个步骤: **特征选择、决策树的生成、决策树的修剪。**最为关键的就是如何选择最优划分属性。一般而言,随着划分过程不断进行,我们希望决策树的分支结点所包含的样本尽可能属于同一类别,即结点的"纯度"(purity)越来越高。

问题: 根节点的选择该用哪个特征呢? 接下来呢? 如何切分呢?

这里的关键在于如何选择最优特征对数据集进行划分: ID3算法采用信息增益

在讲信息增益之前,这里我们必须先介绍下熵的概念。在信息论里面,熵是一种表示随机变量不确定性的度量方式。若离散随机变量X的概率分布为:

$$P(X = x_i) = p_i$$

则随机变量X的熵定义为:

$$H(X) = -\sum_{i=1}^{n} p_i log p_i$$

意思是一个变量的变化情况可能越多,那么它携带的信息量就越大。 当给定随机变量X的条件下随机变量Y的熵可定义为条件熵H(Y|X):

$$H(Y|X) = -\sum_{i=1}^{n} p_i H(Y|X = x_i)$$

所谓信息增益就是数据在得到特征X的信息时使得类Y的信息不确定性减少的程度。假设数据集D的信息熵为H(D),给定特征A之后的条件熵为H(D|A),则特征A对于数据集的信息增益g(D,A)可表示为:

g(D,A) = H(D) - H(D|A)

信息增益越大,则该特征对数据集确定性贡献越大,表示该特征对数据有较强的分类能力。

Day	Outlook	Temperature	Humidity	Wind	PlayTennis
D1	Sunny	Hot	High	Weak	No
D2	Sunny	Hot	High	Strong	No
D3	Overcast	Hot	High	Weak	Yes
D4	Rain	Mild	High	Weak	Yes
D5	Rain	Cool	Normal	Weak	Yes
D6	Rain	Cool	Normal	Strong	No
D7	Overcast	Cool	Normal	Strong	Yes
D8	Sunny	Mild	High	Weak	No
D9	Sunny	Cool	Normal	Weak	Yes
D10	Rain	Mild	Normal	Weak	Yes
D11	Sunny	Mild	Normal	Strong	Yes
D12	Overcast	Mild	High	Strong	Yes
D13	Overcast	Hot	Normal	Weak	Yes
D14	Rain	Mild	High	Strong	No

其中4个条件属性,一个决策属性 (PlayTennis)

1.基于天气的划分

3.基于湿度的划分

划分方式: 4种决策树

问题: 谁当根节点呢?

依据: 信息增益

2.基于温度的划分

4.基于有风的划分

决策属性PlayTennis的信息熵Entropy:

Entropy(PT) = Entropy(Yes9, No5) = $-\frac{9}{14}\log_2\left(\frac{9}{14}\right) - \frac{5}{14}\log_2\left(\frac{5}{14}\right) = 0.940286$

Outlook = sunny时,熵值为:

Entropy(Sunny) = Entropy(Yes2, No3) = $-\frac{2}{5}\log_2(\frac{2}{5}) - \frac{3}{5}\log_2(\frac{3}{5}) = 0.97095$

Outlook = overcast时, 熵值为:

Entropy(Overcast) = Entropy(Yes4, No0) = $-\frac{4}{4}\log_2\left(\frac{4}{4}\right) - \frac{0}{4}\log_2\left(\frac{0}{4}\right) = 0.0$

Outlook = rain时, 熵值为:

Entropy(Rain) = Entropy(Yes3, No2) = $-\frac{3}{5}\log_2(\frac{3}{5}) - \frac{2}{5}\log_2(\frac{2}{5}) = 0.97095$

Outlook的信息熵Entropy:

根据数据统计,outlook取值分别为**sunny,overcast,rainy**的概率分别为: **5/14, 4/14, 5/14**

Entropy(Outlook) = Entropy(Sunny) + Entropy(Overcast) + Entropy(Rain)

= 5/14 * 0.971 + 4/14 * 0 + 5/14 * 0.971 = 0.693

Outlook 的信息增益 Gain(PT,OI):

$$Gain(PT,Ol) = Entropy(PT) - \frac{5}{14}Entropy(Sunny) - \frac{4}{14}Entropy(Overcast) - \frac{5}{14}Entropy(Rain)$$

=
$$0.940286 - \frac{5}{14} \times 0.97095 - 0.0 - \frac{5}{14} \times 0.97095 = 0.24675$$

同理可得其他属性的信息增益:

Gain(PT,Temp)=0.029

Gain(PT, Humidity) = 0.151

Gain(PT,Wind)=0.048

信息增益:系统的熵值从原始的0.940下降到了0.693,增益为0.247,同样的方式可以计算出其他特征的信息增益,那么我们选择最大的那个就可以啦,相当于是遍历了一遍特征,找出来了大当家,然后再其余的中继续通过信息增益找二当家!

Outlook的信息增益最大作为决策树的第一个根节点:

从Outlook下面出来的三个分支,最左边的Sunny,是Outlook中信息增益最大的那个,以 此类推

C4.5算法

分离信息(Split Informatiion)

数据集通过条件属性A的分离信息

分离信息的计算方法公式为:

SplitInformation(S, A) =
$$-\sum_{i=1}^{c} \frac{|S_i|}{S} \log_2 \left(\frac{|S_i|}{|S|}\right)$$

数据集通过Outlook这个条件属性的分离信息,Outlook有三个属性值分别为: sunny, overcast, rain,它们各占5,4,5,所以

$$SplitInformation(PT, Outlook) = -\frac{5}{14}\log_2\left(\frac{5}{14}\right) - \frac{4}{14}\log_2\left(\frac{4}{14}\right) - \frac{5}{14}\log_2\left(\frac{5}{14}\right) = 1.577$$

同理可得其他属性的分离信息:

SplitInformation(PT,Temp)=1.5566 SplitInformation(PT,Humidity)=1.0 SplitInformation(PT,Wind)=0.9402

信息增益比 (information gain ratio)

信息增益比的计算方法公式为:

$$GainRatio(S, A) = \frac{Gain(S, A)}{SplitInformation(S, A)}$$

根据公式可得:

GainRatio(PT,Outlook)=0.1564
GainRatio(PT,Temp)=0.0187
GainRatio(PT,Humidity)=0.1518
GainRatio(PT,Wind)=0.1087

基尼指数 (Gini index)

ID3还是C4.5都是基于信息论的熵模型的,这里面会涉及大量的对数运算,为了简化模型同时也完全丢失熵模型的优点,在CART算法中使用基尼系数来代替信息增益比,基尼系数代表了模型的不纯度,基尼系数越小,则不纯度越低,特征越好。这和信息增益(比)是相反的。通过子集计算基尼不纯度,即随机放置的数据项出现于错误分类中的概率。以此来评判属性对分类的重要程度。

$$Gini(D) = \sum_{k=1}^{K} p_k (1 - p_k)$$

其中pk为任一样本点属于第k类的概率,也可以说成样本数据集中属于k类的样本的比例。 集合D的基尼指数为Gini(D),在特征A条件下的集合D的基尼指数为

$$Gini(D|A) = \sum_{k=1}^{K} \frac{|D_k|}{|D|} Gain(D_k)$$

其中 | Dk | 为特征A取第i个值时对应的样本个数。 | D | 为总样本个数 CART算法中对于分类树采用的是上述的基尼指数最小化准则。

对于回归树,CART采用的是平方误差最小化准则。

树的建立过程明显是一个递归的过程!

输入: 训练集 $D = \{(\boldsymbol{x}_1, y_1), (\boldsymbol{x}_2, y_2), \dots, (\boldsymbol{x}_m, y_m)\};$ 属性集 $A = \{a_1, a_2, \ldots, a_d\}$. 过程: 函数 TreeGenerate(D, A)1: 生成结点 node; 2: if D 中样本全属于同一类别 C then 递归返回,情形(1). 将 node 标记为 C 类叶结点; return 4: end if 5: **if** $A = \emptyset$ **OR** D 中样本在 A 上取值相同 **then** 递归返回, 情形(2). 将 node 标记为叶结点,其类别标记为 D 中样本数最多的类; return 7: end if 我们将在下一节讨论如 8: 从 A 中选择最优划分属性 a_* ; 何获得最优划分属性. 9: **for** a_* 的每一个值 a_*^v **do** 为 node 生成一个分支; 令 D_v 表示 D 中在 a_* 上取值为 a_*^v 的样本子集; 10: if D_v 为空 then 11: 递归返回, 情形(3). 将分支结点标记为叶结点, 其类别标记为 D 中样本最多的类; return 12: 13: \mathbf{else} 从 A 中去掉 a*. 以 TreeGenerate $(D_v, A \setminus \{a_*\})$ 为分支结点 14: 15: end if 16: end for 输出:以 node 为根结点的一棵决策树

图 4.2 决策树学习基本算法