200 parcial - A.M. I-IC - 2018 $f(x) = \int \frac{x^2 q}{\sqrt{12}} \sin x \neq -3$ O a) Determinar si f es continua eu x = -3, y en ceso de no serlo, clasificar éltipo de discontinuidad. Para que una función sea continua enun punto a debe complis. 1) a < Dom f / exist f(a)) 2) \(\(\) 3) f(a) = lim f(x) x=-3 pertence el dominio -> f(-3)=0 1) 2) ya que la función a la derecha de x=-3 es la misma que le función a la izevierdo de x=-3, poro ven si existe el &(x) no hace follo colcular la linite laterales (podion hearby verificar que den iguales) s diferencia de cuadrados $\frac{x^{2}-9}{x+3} = 0.$ $\frac{(x-3)(x+3)}{(x+3)} = 0.$ x-3 = -6Por lo tendo: Existe lim f(x) l. f(x) = -6 5 Como no son iguales entonces 3) f(-3)=0 f(x) No es continua en x=-3. > El tipo de discontinuidad es evitable ye que Il f(x) y es finito.

b) De la ecusción de la recta temente el gratico de fix)
en el punto (-1,0)

4 = 2 x + b

le recte tengente à b tración enel purb (x=-1, y=0) tiere

perdiente a=f'(-1)

 $a = f'(-1) = -\frac{\pi}{2} \cdot e^{-1+1} \cdot \operatorname{Sen}\left(\frac{\pi}{2} \cdot e^{-1+1}\right) = -\frac{\pi}{2} \cdot e^{0} \cdot \operatorname{Sen}\left(\frac{\pi}{2} \cdot e^{0}\right) = -\frac{\pi}{2} \cdot \operatorname{Sen}\left(\frac{\pi}{2}\right)$

2 = - II

 $y = -\frac{\pi}{2} \times + b$

pese por (-1,0) ~ 0 = -II (-1) + b

$$O = \frac{\pi}{2} + b \longrightarrow b = -\frac{\pi}{2}$$

 $y = -\frac{\pi}{2} \times -\frac{\pi}{2} = -\frac{\pi}{2} (x+1)$ recta targente a fuel punt (-1,0)

3) Colcular limites:

a)
$$\lim_{x \to 0} \frac{\sqrt{x^2+1}-1}{\sqrt{x^2+1}+1} = \lim_{x \to 0} \frac{\sqrt{x^2+1}+1}{\sqrt{x^2+1}+1} = \lim_{x \to 0} \frac{\sqrt{x^2+1}+1}{\sqrt{x$$

$$= \underbrace{\left(\sqrt{x^2+1}\right)^2 - 1^2}_{\times \to \infty} - \underbrace{\left(\sqrt{x^2+1}\right)^2 - 1^2}_{\times \to \infty} - \underbrace{\left(\sqrt{x^2+1}+1\right)}_{\times \to \infty} - \underbrace{\left(\sqrt{x^2+1}+1$$

$$= \underbrace{\begin{array}{c|c} 1 & 1 & 1 \\ \times \neq 0 & \sqrt{x^2 + 1} + 1 & 1 + 1 \\ \end{array}}_{1}$$

