

ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ ПРОЦЕССЫ УПРАВЛЕНИЯ N 4, 2010 Электронный журнал,

рег. Эл. N ФС77-39410 от 15.04.2010 ISSN 1817-2172

http://www.math.spbu.ru/diffjournale-mail: jodiff@mail.ru

Теория обыкновенных дифференциальных уравнений

ДВУМЕРНЫЕ ВЕЩЕСТВЕННЫЕ СИСТЕМЫ ОДУ С КВАДРАТИЧНОЙ НЕВОЗМУЩЕННОЙ ЧАСТЬЮ: КЛАССИФИКАЦИЯ И ВЫРОЖДЕННЫЕ ОБОБЩЕННЫЕ НОРМАЛЬНЫЕ ФОРМЫ 1

В. В. БАСОВ, Е. В. ФЕДОРОВА

Россия, 198504, Санкт-Петербург, Петродворец, Университетский пр., д. 28, Санкт-Петербургский Государственный университет, математико-механический факультет, кафедра дифференциальных уравнений, e-mail: vlvlbasov@rambler.ru, fev.math@gmail.com

Аннотация

Рассмотрены вещественные двумерные автономные системы ОДУ, невозмущенная часть которых представляет собой векторный однородный полином второго порядка, а возмущение – векторный формальный степенной ряд, разложение которого начинается не ниже чем с третьего порядка. Предложена и осуществлена нормализация невозмущенной части системы, а именно: множество векторных квадратичных однородных полиномов разбито на девятнадцать классов эквивалентности относительно линейных неособых замен. Представителем каждого класса является каноническая форма - многочлен, имеющий определенную структуру при максимальном числе нулевых коэффициентов. Для пяти систем, невозмущенные части которых образуют вырожденные канонические формы, выписаны все обобщенные нормальные формы, которые можно получить почти тождественными формальными преобразованиями.

¹Работа выполнена при финансовой поддержке РФФИ (грант № 09–01–00734-а)

Часть I

Постановка задачи

1 Введение

Предлагаемая работа продолжает цикл работ ([1] – [6]), посвященных конструктивной нормализации вещественных двумерных автономных систем

$$\dot{x}_i = P_i(x) + X_i(x) \qquad (i = 1, 2),$$
 (1)

где $x=(x_1,x_2), \ P_i=a_ix_1^2+2b_ix_1x_2+c_ix_2^2$ – невозмущенная часть, $X_i=\sum_{p=2}^{\infty}X_i^{(p+1)}(x)$ – возмущение системы, а $X_i^{(r)}=\sum_{s=0}^rX_i^{(s,r-s)}x_1^sx_2^{r-s}$ – форма порядка r $(P_i=P_i^{(2)}).$

В [1, ч. 1] и в [8, §3] изложен метод, называемый методом резонансных уравнений, позволяющий, если удастся преодолеть чисто технические вычислительные трудности, для любой системы с фиксированной невозмущенной частью в явном виде выписать все возможные формально эквивалентные ей обобщенные нормальные формы $(OH\Phi)$.

В отличие от единого определения резонансных нормальных форм или, как их еще называют, нормальных форм Пуанкаре, а раньше просто – нормальных форм (НФ), различных определений ОНФ встречается достаточно много. С их кратким описанием можно ознакомиться, например, в [7], [8].

А достаточно полная, со всеми доказательствами, теория резонансных НФ, характеризуемых наличием у системы линейного первого приближения с ненулевым вектором собственных чисел, имеется в [9] и в кратком виде представлена в [10], [11].

Предлагаемая работа преследует две цели.

1) Первая цель заключается в том, чтобы разбить множество невозмущенных по отношению к (1) систем

$$\dot{x}_1 = a_1 x_1^2 + 2b_1 x_1 x_2 + c_1 x_2^2, \qquad \dot{x}_2 = a_2 x_1^2 + 2b_2 x_1 x_2 + c_2 x_2^2 \tag{2}$$

на классы эквивалентности относительно линейных неособых замен переменных, т. е. выделить конечный набор наиболее простых систем: канонических форм (КФ), попарно линейно неэквивалентных друг другу, и таких, чтобы произвольная система (2) линейной неособой заменой могла быть сведена к одной из КФ. При этом под "простотой" канонической формы понимается ее наибольшая пригодность выступить в роли невозмущенной части системы (1), подлежащей дальнейшей нормализации при помощи почти тождественных замен. Фактически, сведение к канонической форме означает нормализацию квадратичного многочлена (P_1, P_2) в системе (1) или (2).

В части II доказано, что невозмущенная система (2) имеет девятнадцать канонических форм, при этом все они найдены конструктивно, т.е. для каждой КФ в явном виде приведены условия на коэффициенты системы (2) и указана линейная неособая замена, сводящая эту систему к выбранной КФ. При этом пять канонических форм из девятнадцати имеют два представления: основное и вырожденное, которое отличается от основного тем, что один из многочленов в КФ, например P_2 , тождественно равен нулю.

Подобная классификация квадратичных канонических форм, включая вырожденные, была осуществлена ранее в [2, § 2]. И на ее основе в работах [2] – [6] были проведены исследования формальной эквивалентности систем (1) с одиннадцатью К Φ , взятыми в качестве их невозмущенной части, и построены все ОН Φ .

Однако, оказалось, что приведенная классификация была не полна и имела ряд недостатков, связанных с отсутствием на тот момент четко сформулированных принципов, касающихся расположения ненулевых коэффициентов в многочленах P_1 , P_2 и их нормировки, которые должны быть заложены в определение канонической формы.

Эти принципы сформулированы ниже в п. 3.3 части II. Они не оказывают существенного влияния на последующую нормализацию системы (1), но позволяют единственным образом выделить, так сказать, основную КФ и линейно эквивалентные ей дополнительные КФ, имеющие то же число ненулевых элементов, но расположенных не на лучших местах или не так нормированных.

Указанные различия в определении КФ привели к тому, что при исследовании ОНФ в некоторых исходных системах в качестве невозмущенной части ранее выбирались не основные, а дополнительные КФ в соответствии с введенной в [2, § 2] классификацией.

В части II все перечисленные недостатки предшествующей классификации устранены, и сама классификация осуществлена на другой идейной основе, что позволило доказать попарную линейную неэквивалентность выделенных $K\Phi$ и в явном виде указать условия на исходную систему (1), при которых она сводится к определенной канонической форме.

2) Вторая цель предлагаемой работы заключается в том, чтобы нормализовать все системы (1), в которых в качестве невозмущенной части последовательно берутся каждая из пяти вырожденных канонических форм.

Такая нормализация, вообще говоря, менее эффективна по сравнению с нормализацией системы (1), невозмущенная часть которой задана основной канонической формой, эквивалентной вырожденной форме. Но в связи с тем, что основные канонические формы оказались сложнее вырожденных, осуществить полноценную нормализацию с некоторыми из них пока не удается из-за больших технических сложностей.

В части III для системы (1) с каждой из пяти вырожденных КФ, взятых в качестве невозмущенной части, и произвольным возмущением выписаны все обобщенные нормальные формы, которые можно получить при помощи почти тождественных преобразований, и приведены примеры нормальных форм, имеющих специальные структуры.

Для полноты картины следует отметить, что существует еще один путь нормализации системы (1) с вырожденной КФ в невозмущенной части. Для этого на место отсутствующего квадратичного многочлена P_2 ставится и фиксируется какое-либо слагаемое (или слагаемые) более высокого порядка из возмущения X_2 системы (1), но такое, чтобы удалось выровнять порядки в новой невозмущенной части путем придания каждой переменной соответствующего веса.

Указанный путь описан в [1, ч. 1] и осуществлен, например, в [8, § 6]. Ясно, что в ОНФ новый, уже не квадратичный, многочлен P_2 не изменяется (не аннулируется даже частично), но с его помощью удается аннулировать ряд дополнительных членов возмущения.

Наконец, в части IV описано, что к настоящему моменту сделано в решении задачи о нахождении в явном виде всех ОНФ систем, имеющих в качестве невозмущенной части одну из девятнадцати канонических форм.

2 Формальная эквивалентность систем

Итак, рассмотрим двумерную вещественную автономную систему (1)

$$\dot{x}_i = P_i(x) + X_i(x) \quad (i = 1, 2),$$

где
$$P_i = a_i x_1^2 + 2b_i x_1 x_2 + c_i x_2^2$$
, $X_i = \sum_{p=2}^{\infty} X_i^{(p+1)}(x)$, $X_i^{(p+1)} = \sum_{s=0}^{p+1} X_i^{(s,p-s+1)} x_1^s x_2^{p-s+1}$.

Пусть формальная почти тождественная замена

$$x_i = y_i + h_i(y)$$
 $(i = 1, 2),$ (3)

где $y=(y_1,y_2),\ h_i=\sum_{p=2}^{\infty}h_i^{(p)}(y),$ переводит систему (1) в систему

$$\dot{y}_i = P_i(y) + Y_i(y) \qquad (i = 1, 2),$$
 (4)

в которой $Y_i = \sum_{p=2}^{\infty} Y_i^{(p+1)}(y), \quad Y_i^{(p+1)} = \sum_{s=0}^{p+1} Y_i^{(s,p-s+1)} y_1^s y_2^{p-s+1}.$

Продифференцировав по t замену (3) в силу систем (1) и (4), получаем

$$\sum_{j=1}^{2} \left(\frac{\partial h_i(y)}{\partial y_j} P_j(y) - \frac{\partial P_i(y)}{\partial y_j} h_j(y) \right) = X_i(y+h) + P_i(h) - \sum_{j=1}^{2} \frac{\partial h_i(y)}{\partial y_j} Y_j(y) - Y_i(y).$$

Тогда при любом $p \geq 2$ формы $h_i^{(p)}, \, Y_i^{(p+1)}$ удовлетворяют уравнениям

$$(a_1y_1^2 + 2b_1y_1y_2 + c_1y_2^2)\frac{\partial h_i^{(p)}}{\partial y_1} + (a_2y_1^2 + 2b_2y_1y_2 + c_2y_2^2)\frac{\partial h_i^{(p)}}{\partial y_2} - (5)$$

$$-2(a_iy_1 + b_iy_2)h_1^{(p)} - 2(b_iy_1 + c_iy_2)h_2^{(p)} = \widehat{Y}_i^{(p+1)} \qquad (i = 1, 2),$$

где $\widehat{Y}_i^{(p+1)} = \widetilde{Y}_i^{(p+1)}(y) - Y_i^{(p+1)}(y)$, а $\widetilde{Y}_i^{(p+1)}(y) = \{X_i(y+h) + P(h) - \sum_{j=1}^2 Y_j \, \partial h_i / \partial y_j\}^{(p+1)}$ и зависят только от $h^{(r)}$ и $Y^{(r+1)}$ с $2 \leq r \leq p-1$.

Поэтому при последовательном для каждого $p=2,3,\dots$ определении форм $h_i^{(p)}$ и $Y_i^{(p+1)}$ в уравнениях (5) формы $\widetilde{Y}_i^{(p+1)}$ уже известны.

Приравнивая в уравнениях (5) коэффициенты при $y_1^s y_2^{p+1-s}$ ($s=0,1,\ldots,p+1$), получаем систему 2(p+2) уравнений с 2(p+1) неизвестными:

$$a_{2}(p-s+2)h_{1}^{(s-2,p-s+2)} + (a_{1}(s-3) + 2b_{2}(p-s+1))h_{1}^{(s-1,p-s+1)} + (2b_{1}(s-1) + c_{2}(p-s))h_{1}^{(s,p-s)} + c_{1}(s+1)h_{1}^{(s+1,p-s-1)} - 2b_{1}h_{2}^{(s-1,p-s+1)} - 2c_{1}h_{2}^{(s,p-s)} = \widehat{Y}_{1}^{(s,p-s+1)},$$

$$a_{2}(p-s+2)h_{2}^{(s-2,p-s+2)} + (a_{1}(s-1) + 2b_{2}(p-s))h_{2}^{(s-1,p-s+1)} + (2b_{1}s + c_{2}(p-s-2))h_{2}^{(s,p-s)} + c_{1}(s+1)h_{2}^{(s+1,p-s-1)} - 2a_{2}h_{1}^{(s-1,p-s+1)} - 2b_{2}h_{1}^{(s,p-s)} = \widehat{Y}_{2}^{(s,p-s+1)}.$$

$$(6)$$

В системе (6) и всегда в дальнейшем считаем, что коэффициенты рядов \widehat{Y}_i и h_i равны нулю, если один из верхних индексов меньше нуля.

Для всякого $p \geq 2$ условия совместности системы (6) можно записать в виде n_p линейных уравнений, связывающих коэффициенты однородных полиномов $Y_i^{(p+1)}$:

$$\sum_{s=0}^{p+1} (\mathfrak{a}_{\nu_1}^{ps} Y_1^{(s,p-s+1)} + \mathfrak{a}_{\nu_2}^{ps} Y_2^{(s,p-s+1)}) = \widetilde{c} \qquad (\nu = \overline{1, n_p}, \quad n_p \ge 2), \tag{7}$$

где в каждом уравнении $\widetilde{c} = \sum_{s=0}^{p+1} (\mathfrak{a}_{\nu 1}^{ps} \widetilde{Y}_1^{(s,p-s+1)} + \mathfrak{a}_{\nu 2}^{ps} \widetilde{Y}_2^{(s,p-s+1)}).$

Определение 1. Уравнения (7) будем называть резонансными.

Получение резонансных уравнений в явном виде, т.е. вычисление множителей $\mathfrak{a}_{\nu i}^{ps}$, является основной целью описываемого одноименного метода.

Однако, решение этой задачи наталкивается на значительные технические трудности тем большие, чем больше ненулевых коэффициентов имеют многочлены P_1 , P_2 .

Поэтому в первую очередь требуется максимально упростить квадратичную невозмущенную часть системы (1), сведя ее при помощи линейной неособой замены к так называемой канонической форме $(K\Phi)$.

В случае, когда система имеет линейное первое приближение, сведение его к канонической форме, очевидно, означает приведение матрицы линейной части к жордановой форме. А в рассматриваемом случае общепринятого определения КФ нет.

Принципы определения канонической формы будут сформулированы ниже исходя из потребностей, возникающих при решении системы (6) и облегчающих ее решение.

Важным критерием, упрощающим систему (6), является, как уже отмечалось, минимизация числа ненулевых коэффициентов у P_1 и P_2 .

Большое значение имеет также то, какие коэффициенты предпочтительнее обращать в нуль в первую очередь. Так, в многочлене P_1 лучше всего, если это возможно, сделать $c_1 = 0$, а в $P_2 - a_2 = 0$. Одного этого оказывается достаточно, чтобы в левых частях системы (6) исчезло по три слагаемых.

Ясно также, что решать систему (6) будет тем проще, чем больше оставшихся ненулевыми коэффициентов удастся нормировать к единице.

В ряде случаев в системе (1) один из многочленов, например P_2 , удается сделать тождественно равным нулю. Тогда последующие упрощения P_1 приводят к появлению вырожденных $K\Phi$, которые линейно эквивалентны основным и, как отмечалось выше, имеют свои плюсы и минусы.

В заключение напомним необходимые в дальнейшем определения из работы [1].

Определение 2. Коэффициенты однородных многочленов $Y_i^{(p+1)}$ системы (4), входящие хотя бы в одно из резонансных уравнений (7), будем называть резонансными, а остальные – нерезонансными. Коэффициенты однородных многочленов $h_i^{(p)}$, остающиеся свободными при решении системы (6), будем называть резонансными.

Произвольному набору из n_p коэффициентов $Y_{i_k}^{(s_k,p+1-s_k)}$ однородных многочленов $Y_1^{(p+1)},\ Y_2^{(p+1)},\$ где $k=\overline{1,n_p},\ s_k\in\{0,\dots,p+1\},\ i_k\in\{1,2\},\$ сопоставим матрицу $\Upsilon^p=\{\upsilon_{\nu k}^p\}_{\nu,k=1}^{n_p},\$ в которой $\upsilon_{\nu k}^p=\mathfrak{a}_{\nu i_k}^{ps_k}.$

Определение 3. Набор из n_p коэффициентов однородных многочленов $Y_i^{(p+1)}$ будем называть резонансным, если $\det \Upsilon^p \neq 0$.

Таким образом, при любом $p \ge 2$ резонансный набор – это минимальный набор коэффициентов из $Y_1^{(p+1)}$, $Y_2^{(p+1)}$, каждый из которых реально присутствует хотя бы в одном из уравнений (7) и относительно которых резонансные уравнения однозначно разрешимы. При этом в резонансный набор могут входить только различные резонансные коэффициенты, иначе в Υ^p будут одинаковые столбцы или нулевой столбец.

Определение 4. Систему (4) будем называть обобщенной нормальной формой $(OH\Phi),$ если для любого $p\geq 2$ все коэффициенты однородных многочленов $Y_i^{(p+1)}$ равны нулю, за исключением, возможно, коэффициентов из какого-либо резонансного набора.

Предложенное определение $OH\Phi$ соответствует понятию обобщенной нормальной формы первого порядка, введенному в [12].

Часть II

Каноническая форма невозмущенной системы

3 Линейная эквивалентность квадратичных систем

3.1 Запись и характеристика квадратичных систем

Рассмотрим двумерную вещественную невозмущенную систему (2)

$$\dot{x} = P(x) \text{ or } \dot{x} = A q^{[2]}(x) \qquad (P(x) \not\equiv 0, \ A \not= \mathbf{0}),$$

где
$$P = \begin{pmatrix} P_1(x) \\ P_2(x) \end{pmatrix} = \begin{pmatrix} a_1x_1^2 + 2b_1x_1x_2 + c_1x_2^2 \\ a_2x_1^2 + 2b_2x_1x_2 + c_2x_2^2 \end{pmatrix}, \quad A = \begin{pmatrix} a_1 & 2b_1 & c_1 \\ a_2 & 2b_2 & c_2 \end{pmatrix}, \quad q^{[2]}(x) = \begin{pmatrix} x_1^2 \\ x_1x_2 \\ x_2^2 \end{pmatrix}.$$

Определение 5. Общим множителем P_0 многочленов P_1 и P_2 будем называть общий множитель максимальной ненулевой степени, которую будем обозначать через l $(l \in \{1,2\})$. А если общий множитель у многочленов P_1 , P_2 отсутствует, то будем считать, что l=0.

Для многочлена P введем функцию R, называемую результантом:

$$R = \begin{vmatrix} a_1 & 2b_1 & c_1 & 0\\ 0 & a_1 & 2b_1 & c_1\\ a_2 & 2b_2 & c_2 & 0\\ 0 & a_2 & 2b_2 & c_2 \end{vmatrix} = \delta_{ac}^2 - 4\delta_{ab}\delta_{bc}, \tag{8}$$

где $\delta_{ab} = a_1b_2 - a_2b_1$, $\delta_{ac} = a_1c_2 - a_2c_1$, $\delta_{bc} = b_1c_2 - b_2c_1$.

Утверждение 1. Многочлены P_1, P_2 в системе (2) имеют общий множитель тогда и только тогда, когда R = 0 (см. [13, стр. 59]).

3.2 Линейные преобразования квадратичных систем

Будем упрощать систему (2) при помощи линейных неособых замен

$$x_1 = r_1 y_1 + s_1 y_2, \quad x_2 = r_2 y_1 + s_2 y_2 \quad \text{или} \quad x = L y,$$
 (9)

где
$$y = \begin{pmatrix} y_1 \\ y_2 \end{pmatrix}, \quad L = \begin{pmatrix} r_1 & s_1 \\ r_2 & s_2 \end{pmatrix}, \quad \delta = \delta_{rs} = \det L \neq 0.$$

Пусть замена (9) преобразует систему (2) в систему

$$\dot{y} = \widetilde{P}(y)$$
 или $\dot{y} = \widetilde{A} q^{[2]}(y),$ (10)

где
$$\widetilde{P} = \begin{pmatrix} \widetilde{P}_1 \\ \widetilde{P}_2 \end{pmatrix} = \begin{pmatrix} \widetilde{a}_1 y_1^2 + 2\widetilde{b}_1 y_1 y_2 + \widetilde{c}_1 y_2^2 \\ \widetilde{a}_2 y_1^2 + 2\widetilde{b}_2 y_1 y_2 + \widetilde{c}_2 y_2^2 \end{pmatrix}, \quad \widetilde{A} = \begin{pmatrix} \widetilde{a}_1 & 2\widetilde{b}_1 & \widetilde{c}_1 \\ \widetilde{a}_2 & 2\widetilde{b}_2 & \widetilde{c}_2 \end{pmatrix}.$$

Для системы (10) по аналогии с (2) введем результант \widetilde{R} по формуле (8).

Дифференцируя замену (9) в силу систем (2) и (10), получаем $P(Ly) = L\widetilde{P}(y)$ или

$$\widetilde{P}(y) = L^{-1}P(Ly) = L^{-1}Aq^{[2]}(Ly),$$
(11)

где
$$L^{-1} = \delta^{-1} \begin{pmatrix} s_2 & -s_1 \\ -r_2 & r_1 \end{pmatrix}$$
, а $L^{-1}A = \delta^{-1} \begin{pmatrix} \delta_{as} & 2\delta_{bs} & \delta_{cs} \\ -\delta_{ar} & -2\delta_{br} & -\delta_{cr} \end{pmatrix}$.

Поэтому в формуле (11) имеем:

$$\begin{pmatrix} \widetilde{a}_1 y_1^2 + 2\widetilde{b}_1 y_1 y_2 + \widetilde{c}_1 y_2^2 \\ \widetilde{a}_2 y_1^2 + 2\widetilde{b}_2 y_1 y_2 + \widetilde{c}_2 y_2^2 \end{pmatrix} = \delta^{-1} \begin{pmatrix} \delta_{as} & 2\delta_{bs} & \delta_{ds} \\ -\delta_{ar} & -2\delta_{br} & -\delta_{cr} \end{pmatrix} \begin{pmatrix} (r_1 y_1 + s_1 y_2)^2 \\ (r_1 y_1 + s_1 y_2)(r_2 y_1 + s_2 y_2) \\ (r_2 y_1 + s_2 y_2)^2 \end{pmatrix}.$$

Приравнивая коэффициенты при $y_1^s y_2^{2-s}$ $(s=\overline{0,2}),$ получаем

$$\delta \widetilde{a}_{1} = s_{2} P_{1}(r_{1}, r_{2}) - s_{1} P_{2}(r_{1}, r_{2}), \quad -\delta \widetilde{a}_{2} = r_{2} P_{1}(r_{1}, r_{2}) - r_{1} P_{2}(r_{1}, r_{2}),
\delta \widetilde{b}_{1} = s_{2} (a_{1} r_{1} s_{1} + b_{1} \delta_{*} + c_{1} r_{2} s_{2}) - s_{1} (a_{2} r_{1} s_{1} + b_{2} \delta_{*} + c_{2} r_{2} s_{2}),
-\delta \widetilde{b}_{2} = r_{2} (a_{1} r_{1} s_{1} + b_{1} \delta_{*} + c_{1} r_{2} s_{2}) - r_{1} (a_{2} r_{1} s_{1} + b_{2} \delta_{*} + c_{2} r_{2} s_{2}),
\delta \widetilde{c}_{1} = s_{2} P_{1}(s_{1}, s_{2}) - s_{1} P_{2}(s_{1}, s_{2}), \quad -\delta \widetilde{c}_{2} = r_{2} P_{1}(s_{1}, s_{2}) - r_{1} P_{2}(s_{1}, s_{2}).$$

$$(12)$$

где $\delta_* = r_1 s_2 + r_2 s_1$.

Утверждение 2. В системах (2) и (10) или $R, \widetilde{R} = 0$, или $R\widetilde{R} > 0$, т. е. знак R инвариантен по отношению к любой линейной неособой замене (9).

Действительно, нетрудно убедиться, что $\widetilde{R} = \delta^2 R$.

Замечание 1. В дальнейшем для краткости систему (2) будем отождествлять с матрицей коэффициентов A или многочленом P, поступая так же и с другими полученными из нее системами. А замену (9) будем отождествлять с матрицей L.

Среди замен (9), преобразующих (2) в (10), выделим две стандартные:

$$\begin{pmatrix} r_1 & 0 \\ 0 & s_2 \end{pmatrix} - \text{нормировка}, \quad \widetilde{A} = \begin{pmatrix} a_1 r_1 & 2b_1 s_2 & c_1 s_2^2 r_1^{-1} \\ a_2 r_1^2 s_2^{-1} & 2b_2 r_1 & c_2 s_2 \end{pmatrix}; \tag{13}$$

$$\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} - \text{перенумерация}, \quad \widetilde{A} = \begin{pmatrix} c_2 & 2b_2 & a_2 \\ c_1 & 2b_1 & a_1 \end{pmatrix}. \tag{14}$$

3.3 Принципы определения канонической формы

Предложение 1. В дальнейшем, не уменьшая общности, будем считать, что в системе (2) многочлен $P_1(x) \not\equiv 0$, так как в противном случае в ней $P_2(x) \not\equiv 0$ и можно сделать перенумерацию (14).

Будем приписывать каждому элементу матрицы A или коэффициенту многочленов P_1 или P_2 системы (2) индекс, равный числу, стоящему на месте этого элемента в матрице

$$\begin{pmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \end{pmatrix}.$$

Определение 6. Индексом матрицы A системы (2) будем называть сумму индексов ее ненулевых элементов.

Определение 7. Систему (2) будем называть канонической формой $(K\Phi^l)$ или, что то же самое, основной $K\Phi^l$, если линейной неособой заменой (9) из нее нельзя получить систему, которая предпочтительнее исходной с точки зрения следующих иерархических принципов:

- **1)** Система невырождена, т. е. $P_1, P_2 \not\equiv 0$, и, если возможно, $P_1 \equiv P_2$.
- 2) Число ненулевых элементов матрицы A минимально.
- 3) $U H \partial e \kappa c A M U H U M A A A A ...$
- 4) Число элементов A, по модулю равных единице, максимально.
- **5)** Расположение ненулевых коэффициентов многочлена P_1 :
 - **5a)** Порядок первого ненулевого коэффициента P_1 минимален.
 - **5b)** Порядок последнего ненулевого коэффициента P_1 максимален.
- 6) Нормировка ненулевых коэффициентов системы:
 - **6a)** $B P_2$ левый ненулевой элемент равен единице.
 - **6b)** В P_1 модуль правого ненулевого коэффициента равен единице.

Замечание 2. Ключевыми при определении $K\Phi^l$ являются принципы 1-4. А принципы 5 и 6 позволяют выделить среди имеющихся линейно эквивалентных канонических форм, так сказать, основную $K\Phi^l$, хотя остальные линейно эквивалентные ей канонические формы не хуже с точки зрения выбора любой из них в качестве первого приближения в произвольной возмущенной системе при сведении ее к $OH\Phi$.

Эти соображения приводят к появлению понятия дополнительной $\mathsf{K}\Phi^l.$

Определение 8. Систему (2) будем называть дополнительной канонической формой $(\mathcal{J}K\Phi^l)$, если она линейно эквивалентна какой-либо основной $K\Phi^l$, но принцип 5 и, возможно, принцип 6 для нее не выполняются. При этом $\mathcal{J}K\Phi^l$, полученную из любой несимметричной $K\Phi^l$ при помощи перенумерации (14), будем обозначать $K\Phi^{l\Pi}_i$.

4 Канонические формы системы (2) в случае l=0

Рассмотрим систему (2) $\begin{pmatrix} P_1 \\ P_2 \end{pmatrix} = \begin{pmatrix} a_1x_1^2 + 2b_1x_1x_2 + c_1x_2^2 \\ a_2x_1^2 + 2b_2x_1x_2 + c_2x_2^2 \end{pmatrix}$, в которой однородные многочлены $P_1, P_2 \not\equiv 0$ и не имеют общего множителя.

Тогда по определению 5 имеет место случай l=0 и по утверждению 1 введенный в (8) результант $R=\delta_{ac}^2-4\delta_{ab}\delta_{bc}\neq 0$. Поэтому, в частности, $a_1^2+a_2^2\neq 0$ и $c_1^2+c_2^2\neq 0$.

Для того чтобы выписать все канонические формы, к которым система (2) сводится линейной заменой (9), необходимо сформулировать ряд условий.

Введем в рассмотрение два кубических многочлена

$$Q_1(t) = t^3 - ut^2 + vt - 1, \quad Q_2(t) = t^3 + (v^2 - 2u)t^2 + (u^2 - 2v)t + 1,$$
 (15)

у которых входящие в коэффициенты параметры u, v имеют следующие ограничения:

$$uv \neq 0; 1, \quad u \neq v, \quad u^2 + v \neq 0, \quad u + v^2 \neq 0.$$
 (16)

Утверждение 3. *Нули многочленов* Q_1 , Q_2 удовлетворяют одному из двух условий:

$$\exists t_1', t_1'' \in \mathbb{R} : Q_1(t_1') = 0, \quad Q_1(t_1'') = 0, \quad t_1' \neq t_1''; \exists ! \ t_1 \in \mathbb{R} : Q_1(t_1) = 0, \quad \forall \ t_2 \in \mathbb{R} : Q_2(t_2) = 0 \Rightarrow t_2 \neq t_1 \quad (t_1, t_2 \neq 0, u).$$

Доказательство. Предположим, что условия (17) не выполняются.

Это значит, что $Q_1(t)$ имеет единственный вещественный нуль $t_1=-\tau$ и этот нуль является также нулем $Q_2(t)$. Тогда многочлены (15) имеют вид

$$Q_i(t) = (t+\tau)(t^2 + \mathfrak{b}_i t + \mathfrak{c}_i) = t^3 + (\tau + \mathfrak{b}_i)t^2 + (\tau \mathfrak{b}_i + \mathfrak{c}_i)t + \tau \mathfrak{c}_i \qquad (i=1,2).$$

Следовательно,
$$\begin{cases} \mathfrak{b}_1 = -u - \tau \\ \mathfrak{c}_1 = -\tau^{-1} \\ \tau \mathfrak{b}_1 + \mathfrak{c}_1 = v \end{cases}$$
 и
$$\begin{cases} \mathfrak{b}_2 = v^2 - \tau - 2u \\ \mathfrak{c}_2 = \tau^{-1} \\ \tau \mathfrak{b}_2 + \mathfrak{c}_2 = u^2 - 2v \end{cases}$$
 . Из второй системы получаем

$$(u+\tau)^2 = \tau(v+\tau^{-1})^2$$
. Поэтому $\tau > 0$, иначе $u = -\tau$, $v = -\tau^{-1}$, что противоречит (16).

Условие единственности вещественного нуля Q_1 влечет неравенство $\mathfrak{b}_1^2-4\mathfrak{c}_1\leq 0,$ равносильное невозможному неравенству $(u+\tau)^2+4\tau^{-1}\leq 0,$ так как $\tau>0.$

СПИСОК канонических форм системы (2) в случае l = 0:

$$\begin{split} \mathbf{K}\Phi_3^0 &= \begin{pmatrix} 1 & u & 0 \\ 0 & 0 & 1 \end{pmatrix}, \quad \mathbf{K}\Phi_1^0 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}, \quad \mathbf{K}\Phi_2^0 = \begin{pmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \end{pmatrix}, \quad \mathbf{K}\Phi_7^0 = \begin{pmatrix} 0 & u & 1 \\ 1 & 0 & 0 \end{pmatrix}, \\ \mathbf{K}\Phi_4^0 &= \begin{pmatrix} u & 0 & 1 \\ 0 & 0 & 1 \end{pmatrix}, \quad \mathbf{K}\Phi_5^0 = \begin{pmatrix} u & 0 & \sigma \\ 0 & 1 & 0 \end{pmatrix}, \quad \mathbf{K}\Phi_6^0 = \begin{pmatrix} u & 0 & 1 \\ 1 & 0 & 0 \end{pmatrix}, \\ \mathbf{K}\Phi_8^0 &= \begin{pmatrix} u & 1 & 0 \\ 0 & 1 & v \end{pmatrix}, \quad \mathbf{K}\Phi_9^0 = \begin{pmatrix} u & 0 & \sigma \\ 0 & 1 & v \end{pmatrix}, \quad \mathbf{K}\Phi_{10}^0 = \begin{pmatrix} 1/2 & u & -1 \\ 0 & 1 & 0 \end{pmatrix}, \end{split}$$

где $u,v\neq 0,~\sigma=\pm 1;$ в К $\Phi^0_3~u\geq 1,$ в К $\Phi^0_4~u>1/4,$ в К $\Phi^0_5~u\neq \pm 1/2$ при R>0, в К $\Phi^0_9~u\neq 1/2$ при R<0, в К $\Phi^0_{10}~0< u<2^{1/2}.$

Замечание 3. В $\mathrm{K}\Phi^0_1$, $\mathrm{K}\Phi^0_2$, $\mathrm{K}\Phi^0_3$, $\mathrm{K}\Phi^0_6$ и в $\mathrm{K}\Phi^0_7$ R=1, в $\mathrm{K}\Phi^0_4$ $R=u^2$, в $\mathrm{K}\Phi^0_5$ $R=u\sigma$, в $\mathrm{K}\Phi^0_8$ $R=u^2v^2-uv$, в $\mathrm{K}\Phi^0_9$ $R=u^2v^2+u\sigma$, в $\mathrm{K}\Phi^0_{10}$ R=-1/2.

Теорема 1. $K\Phi_1^0 - K\Phi_{10}^0$ в случае l=0 попарно линейно не эквивалентны и система (2) линейной неособой заменой (9) сводится к одной из них.

Доказательство.

1) $R = \delta_{ac}^2 - 4\delta_{ab}\delta_{bc} > 0.$

Покажем сначала, что найдется замена (9), которая сводит (2) к системе (10) вида

$$\begin{pmatrix} \widetilde{a}_1 & 0 & \widetilde{c}_1 \\ \widetilde{a}_2 & 0 & \widetilde{c}_2 \end{pmatrix}. \tag{18}$$

- **1a)** $\delta_{ab} \neq 0$. Тогда при $r_1 = t_1^*t^*$, $s_1 = t_2^*t^*$, $r_2, s_2 = t^*$, где $t_1^* = (-\delta_{ac} + R^{1/2})(2\delta_{ab})^{-1}$, $t_2^* = (-\delta_{ac} R^{1/2})(2\delta_{ab})^{-1}$, $t_3^* = R^{1/2}(\delta_{ab})^{-1}$ ($\delta = t^{*3}$), получаем систему (18), в которой $\widetilde{a}_i = (-1)^i(t_{3-i}^*P_2(t_1^*,1) P_1(t_1^*,1))$, $\widetilde{c}_i = (-1)^i(t_{3-i}^*P_2(t_2^*,1) P_1(t_2^*,1))$ (i=1,2).
 - **1b)** $\delta_{ab} = 0$, $\delta_{bc} \neq 0$ $(\delta_{ac} = 0)$.
- **1b1)** $a_2 \neq 0$. Тогда при $r_1 = 1$, $s_1 = -b_2$, $r_2 = 0$, $s_2 = a_2$ получаем систему (18), в которой $\widetilde{a}_1 = a_1 + b_2$, $\widetilde{c}_1 = a_1b_2^2 2b_1a_2b_2 + a_2^2c_1 b_2^3 + a_2b_2c_2$, $\widetilde{a}_2 = 1$, $\widetilde{c}_2 = a_2c_2 b_2^2$.
- **1b2)** $a_2=0$ $(b_2=0,\,a_1,c_2\neq 0)$. Тогда при $r_1=a_1^{-1},\,\,s_1=-(a_1c_2)^{-1}b_1,\,\,r_2=0,\,\,s_2=c_2^{-1}$ получаем систему (18) с $\widetilde{a}_1=1,\,\,\widetilde{c}_1=(a_1c_1-b_1^2+b_1c_2)c_2^{-2},\,\,\widetilde{a}_2=0,\,\,\widetilde{c}_2=1.$
 - 1c) $b_1, b_2 = 0$ ($\delta_{ac} \neq 0$). Тогда в системе (18) $\widetilde{a}_i = a_i$, $\widetilde{c}_i = c_i$ (i = 1, 2).

Теперь произвольная замена (9) сводит систему (18) к системе с коэффициентами

$$\widetilde{\delta} \widecheck{a}_{1} = s_{2}(\widetilde{a}_{1}r_{1}^{2} + \widetilde{c}_{1}r_{2}^{2}) - s_{1}(\widetilde{a}_{2}r_{1}^{2} + \widetilde{c}_{2}r_{2}^{2}), \quad -\widetilde{\delta} \widecheck{a}_{2} = r_{2}(\widetilde{a}_{1}r_{1}^{2} + \widetilde{c}_{1}r_{2}^{2}) - r_{1}(\widetilde{a}_{2}r_{1}^{2} + \widetilde{c}_{2}r_{2}^{2}),
\widetilde{\delta} \widecheck{b}_{1} = s_{2}(\widetilde{a}_{1}r_{1}s_{1} + \widetilde{c}_{1}r_{2}s_{2}) - s_{1}(\widetilde{a}_{2}r_{1}s_{1} + \widetilde{c}_{2}r_{2}s_{2}),
-\widetilde{\delta} \widecheck{b}_{2} = r_{2}(\widetilde{a}_{1}r_{1}s_{1} + \widetilde{c}_{1}r_{2}s_{2}) - r_{1}(\widetilde{a}_{2}r_{1}s_{1} + \widetilde{c}_{2}r_{2}s_{2}),
\widetilde{\delta} \widecheck{c}_{1} = s_{2}(\widetilde{a}_{1}s_{1}^{2} + \widetilde{c}_{1}s_{2}^{2}) - s_{1}(\widetilde{a}_{2}s_{1}^{2} + \widetilde{c}_{2}s_{2}^{2}), \quad -\widetilde{\delta} \widecheck{c}_{2} = r_{2}(\widetilde{a}_{1}s_{1}^{2} + \widetilde{c}_{1}s_{2}^{2}) - r_{1}(\widetilde{a}_{2}s_{1}^{2} + \widetilde{c}_{2}s_{2}^{2}).$$

$$(19)$$

Далее для краткости будем опускать символ ~ над коэффициентами системы (18).

- $a_1c_2=0$. Тогда $a_2c_1\neq 0$.
- ${f 1_1^1})~a_1,c_2=0.$ Тогда (19) при $r_1=(a_2^2c_1)^{-1/3},~s_1,r_2=0,~s_2=a_2r_1^2$ является К Φ_2^0
- ${f 1_1^2})$ $a_1=0,\ c_2\neq 0.$ Тогда (19) при $r_1=0,\ s_1=c_1r_2^2,\ r_2=(a_2c_1^2)^{-1/3},\ s_2=0$ является К Φ_6^0 с $u=c_2(a_2c_1^2)^{-1/3}\neq 0.$
- ${f 1_1^3})$ $a_1 \neq 0$, $c_2=0$. Тогда (19) при $r_1=(a_2^2c_1)^{-1/3},\ s_1,r_2=0,\ r_2=a_2r_1^2$ является ${f K\Phi}_6^0$ с $u=a_1(a_2^2c_1)^{-1/3} \neq 0$.
 - $a_1c_2 \neq 0.$
 - $\mathbf{1_2^1}$) $a_2, c_1 = 0$. Тогда (19) при $r_1 = a_1^{-1}, \ s_1, r_2 = 0, \ s_2 = c_2^{-1}$ является $\mathrm{K}\Phi^0_1$.
 - $\mathbf{1_2^2}$) $a_2 = 0, c_1 \neq 0.$
- $\mathbf{1_{2}^{2}a}$) $0 \neq a_{1}c_{1}c_{2}^{-2} \leq 1/4$. Тогда (19) при $r_{1}=a_{1}^{-1},\ s_{1}=(2a_{1})^{-1}(1+(1-4a_{1}c_{1}c_{2}^{-2})^{1/2}),$ $r_{2}=0,\ s_{2}=c_{2}^{-1}$ является $\mathrm{K}\Phi_{3}^{0}$ с $u=1+(1-4a_{1}c_{1}c_{2}^{-2})^{1/2}\geq 1.$
- ${f 1_2^2 b})$ $a_1 c_1 c_2^{-2} > 1/4$. Тогда (19) при $r_1 = c_1 c_2^{-2}, \; s_1, r_2 = 0, \; s_2 = c_2^{-1}$ является К Φ_4^0 с $u = a_1 c_1 c_2^{-2} > 1/4$.

$$a_2 = 0, c_1 = 0.$$

 $\mathbf{1_{2}^{3}a}$) $0 \neq a_{2}c_{2}a_{1}^{-2} \leq 1/4$. Тогда система (19) при $r_{1}=0,\ s_{1}=a_{1}^{-1},\ r_{2}=c_{2}^{-1},\ s_{2}=(2c_{2})^{-1}(1+(1-4a_{2}c_{2}a_{1}^{-2})^{1/2})$ является К Φ_{3}^{0} с $u=1+(1-4a_{2}c_{2}a_{1}^{-2})^{1/2}\geq 1$.

 ${f 1_2^3b})$ $a_2c_2a_1^{-2}>1/4$. Тогда (19) при $r_1=0,\ s_1=a_1^{-1},\ r_2=a_2a_1^{-2},\ s_2=0$ является ${f K\Phi}_4^0$ с $u=a_2c_2a_1^{-2}>1/4$.

$$\mathbf{1_2^4}$$
) $a_2c_1 \neq 0$.

 $\mathbf{1_{2}^{4}a})$ $a_{1}c_{1}^{1/3}=a_{2}^{1/3}c_{2}.$ Тогда система (19) при $r_{1}=a_{1}(2a_{1}^{2}-2a_{2}c_{2})^{-1},\ s_{1}=a_{1}|2a_{1}^{4}-2a_{2}^{2}c_{2}^{2}|^{-1/2}\mathrm{sign}\,(a_{2}c_{2}),\ r_{2}=a_{1}^{2}(2a_{1}^{2}c_{2}-2a_{2}c_{2}^{2})^{-1},\ s_{2}=-a_{1}^{2}c_{2}^{-1}|2a_{1}^{4}-2a_{2}^{2}c_{2}^{2}|^{-1/2}\mathrm{sign}\,(a_{2}c_{2})-\mathrm{K}\Phi_{5}^{0}$ с $u=(a_{1}^{2}+a_{2}c_{2})(2a_{1}^{2}-2a_{2}c_{2})^{-1}\neq0;\pm1/2,\ \sigma=\mathrm{sign}\,u.$ При этом $a_{1}^{2}\pm a_{2}c_{2}\neq0,$ иначе в (2) $P_{2}=a_{1}^{-1}a_{2}P_{1}$ и l=3.

 $\mathbf{1_2^4b})$ $a_1^2+a_2c_2=0$. Тогда (19) при $r_1=a_1(a_1^3+a_2^2c_1)^{-2/3},\ s_1=(a_1^3+a_2^2c_1)^{-1/3},\ r_2=a_2(a_1^3+a_2^2c_1)^{-2/3},\ s_2=0$ – $\mathbf{K}\Phi_7^0$ с $u=2a_1(a_1^3+a_2^2c_1)^{-1/3}\neq 0$, причем $a_1^3+a_2^2c_1=-a_2\delta_{ac}\neq 0$.

 $\mathbf{1_2^4c})$ $c_2^2+a_1c_1=0$. Тогда (19) при $r_1=c_1(c_2^3+c_1^2a_2)^{-2/3},\ s_1=0,\ r_2=c_2(c_2^3+c_1^2a_2)^{-2/3},$ $s_2=(c_2^3+c_1^2a_2)^{-1/3}-\mathrm{K}\Phi_7^0$ с $u=2c_2(c_2^3+c_1^2a_2)^{-1/3}\neq 0,$ причем $c_2^3+c_1^2a_2=-c_1\delta_{ac}\neq 0.$

 $\mathbf{1_2^4d}$) $a_1c_1^{1/3} \neq a_2^{1/3}c_2$, $a_1^2+a_2c_2 \neq 0$, $c_2^2+a_1c_1 \neq 0$. Тогда (19) при $r_1=(a_2^2c_1)^{-1/3}$, $s_1,r_2=0$, $s_2=(a_2c_1^2)^{-1/3}$ принимает вид

$$\Phi_1^0 = \begin{pmatrix} u & 0 & 1 \\ 1 & 0 & v \end{pmatrix}$$

с $u = a_1(a_2^2c_1)^{-1/3}$, $v = c_2(a_2c_1^2)^{-1/3}$, удовлетворяющими (16) и $R = (uv - 1)^2 > 0$.

Итак, установлено, что Φ_1^0 с R>0 и индексом восемь при указанных выше условиях на u и v не может быть сведена к системе, имеющей больше двух нулей. Сведем Φ_1^0 к $K\Phi_8^0$ с индексом шесть, а если не получится, то к $K\Phi_9^0$ с индексом семь.

Произвольная замена (9) сводит Φ_1^0 к системе с $\widetilde{R} > 0$ и коэффициентами

$$\widetilde{a}_1 = -((s_1 - us_2)r_1^2 + (vs_1 - s_2)r_2^2)\delta^{-1}, \qquad \widetilde{a}_2 = (r_1^3 - ur_1^2r_2 + vr_1r_2^2 - r_2^3)\delta^{-1},$$

$$\widetilde{b}_1 = -((s_1 - us_2)r_1s_1 + (vs_1 - s_2)r_2s_2)\delta^{-1}, \qquad \widetilde{b}_2 = ((r_1 - ur_2)r_1s_1 + (vr_1 - r_2)r_2s_2)\delta^{-1},$$

$$\widetilde{c}_1 = -(s_1^3 - us_1^2s_2 + vs_1s_2^2 - s_2^3)\delta^{-1}, \qquad \widetilde{c}_2 = ((r_1 - ur_2)s_1^2 + (vr_1 - r_2)s_2^2)\delta^{-1},$$

Коэффициенты \widetilde{a}_2 , \widetilde{c}_1 в полученной системе можно сделать нулевыми, если $Q_1(t)$ из (15) имеет два различных вещественных нуля, т.е. выполняется условие (17_1) .

В этом случае, положив в замене (9) $r_1=t_1'r_2,\ s_1=t_1''s_2,\$ что оставляет ее неособой, получим, что $\widetilde{a}_2=0$ и $\widetilde{c}_1=0,$ и остается сделать нормировку.

Таким образом, Φ_1^0 с $u=u_*$, $v=v_*$, удовлетворяющими (16) и (17₁), при выбранных r_1,s_1 и $r_2=(t_1'-t_1'')(2(t_1'^2t_1''+v_*t_1'-u_*t_1't_1''-1))^{-1}$, $s_2=(t_1''-t_1')(2(t_1't_1''^2-u_*t_1't_1''+v_*t_1''-1))^{-1}$ сводится к Φ_8^0 с $u=(u_*t_1'^2-t_1'^2t_1''-v_*t_1''+1)(2(t_1'^2t_1''+v_*t_1'-u_*t_1't_1''-1))^{-1}$, $v=(u_*t_1''^2-t_1't_1''^2-v_*t_1'+1)(2(t_1't_1''^2-u_*t_1't_1''+v_*t_1''-1))^{-1}$, причем $uv\neq 0$, иначе R=0.

Пусть теперь вместо (17_1) выполняется условие (17_2) . Тогда $\widetilde{a}_2^2 + \widetilde{c}_1^2 \neq 0$.

Положив в замене (9) $r_1 = (tv-1)(u-t)^{-1}t^{-1}r_2$, $s_1 = ts_2$, получим систему

$$\begin{pmatrix} (tv-1)t^{-1}r_2 & 0 & t(t-u)r_2^{-1}s_2^2 \\ Q_2(t)t^{-2}(t-u)^{-2}r_2^2s_2^{-1} & 2(uv-1)(t-u)^{-1}r_2 & (tu+v)s_2 \end{pmatrix},$$

только замена должна быть неособой, т.е. $(1-tv)(t-u)^{-1}t^{-1} \neq t$ или $Q_1(t) \neq 0$.

Согласно (17₂) $Q_1(t_2) \neq 0$. Поэтому $\widetilde{a}_2 = 0$ при $t = t_2$, т. е. Φ_1^0 с $u = u_*$, $v = v_*$ при условиях (16), (17₂), заменой (9) с $t = t_2$ в выбранных r_1 , s_1 и $r_2 = (u_* - t_2)(2u_*v_* - 2)^{-1}$, $s_2 = |2t_2(u_*v_* - 1)|^{-1/2}$ сводится к $K\Phi_9^0$ с $\sigma = -\mathrm{sign}\,(t_2(u_*v_* - 1)), \ u = (u_* - t_2)(t_2v_* - 1) \times (2t_2(u_*v_* - 1))^{-1}, \ v = (t_2u_* + v_*)|2t_2(u_*v_* - 1)|^{-1/2}$. При этом $uv \neq 0$, иначе, если $t_2v_* - 1 = 0$, то $Q_2(t_2) = t_2(t - u)^2 \neq 0$, а если $t_2u_* + v_* = 0$, то $Q_2(-u_*^{-1}v_*) = (1 - u_*v_*)(1 - u_*^{-3}v_*^3) \neq 0$.

2) $R = \delta_{ac}^2 - 4\delta_{ab}\delta_{bc} < 0$. Тогда $\delta_{ab}\delta_{bc} > 0$.

Покажем сначала, что найдется замена (9), которая сводит (2) к системе (10) вида

$$\begin{pmatrix} \widetilde{a}_1 & 2\widetilde{b}_1 & \widetilde{c}_1 \\ 0 & 2\widetilde{b}_2 & \widetilde{c}_2 \end{pmatrix} \qquad (\widetilde{a}_1\widetilde{b}_2 \neq 0). \tag{20}$$

 ${f 2a}$) $a_2 \neq 0$. Тогда при $r_1 = r_*$, $s_1 = 1$, $r_2 = -1$, $s_2 = 0$, где r_* – это вещественный нуль многочлена $a_2r_1^3 + (2b_2 - a_1)r_1^2 + (c_2 - 2b_1)r_1 - c_1$, получаем систему (20), в которой $\widetilde{a}_1 = a_2r_*^2 + 2b_2r_* + c_2$, $\widetilde{b}_1 = -a_2r_* - b_2$, $\widetilde{c}_1 = a_2$, $\widetilde{b}_2 = b_1 + a_1r_* - b_2r_* - a_2r_*^2$, $\widetilde{c}_1 = a_2r_* - a_1$.

2b)
$$a_2 = 0$$
. Тогда в системе (20) $\widetilde{a}_i = a_i$, $\widetilde{b}_i = b_i$, $\widetilde{c}_i = c_i$ ($i = 1, 2$).

Произвольная замена (9) с $r_2 = 0$ сводит систему (20) к системе

$$\begin{pmatrix} \widetilde{a}_1 r_1 & 2(\widetilde{a}_1 - \widetilde{b}_2) s_1 + 2\widetilde{b}_1 s_2 & ((\widetilde{a}_1 - 2\widetilde{b}_2) s_1^2 + (2\widetilde{b}_1 - \widetilde{c}_2) s_1 s_2 + \widetilde{c}_1 s_2^2) r_1^{-1} \\ 0 & 2\widetilde{b}_2 r_1 & 2\widetilde{b}_2 s_1 + \widetilde{c}_2 s_2 \end{pmatrix}. \tag{21}$$

Далее опускаем ~ над коэффициентами (20), а коэффициенты (21) отмечаем ~.

- $\mathbf{2_1}$) $(a_1-b_2)c_2-2b_1b_2=0$ (т. е. можно сделать $\check{b}_1,\check{c}_2=0$). Тогда система (21) при $r_1=(2b_2)^{-1},\ s_1=-|a_1|^{1/2}c_2(-2|b_2|R)^{-1/2}\mathrm{sign}\,b_2,\ r_2=0,\ s_2=|2a_1b_2|^{1/2}(-R)^{-1/2}$ является $\mathrm{K}\Phi^0_5$ с $u=a_1(2b_2)^{-1}\neq 0,\ \sigma=-\mathrm{sign}\,u.$
 - **22**) $(a_1 b_2)c_2 2b_1b_2 \neq 0$. Пусть $d_* = (2b_1 c_2)^2 + 4c_1(2b_2 a_1)$.
- $\mathbf{2_2^1})$ $d_* \geq 0$, т. е. можно сделать $\breve{c}_1 = 0$. При этом $b_* = 2c_1(a_1 b_2) + b_1(c_2 2b_1 + d_*^{1/2} \mathrm{sign}\,(c_2 2b_1)) \neq 0$, иначе при $r_1 = a_1^{-1}$, $s_1 = 2c_1$, $r_2 = 0$, $s_2 = (c_2 2b_1 + d_*^{1/2} \mathrm{sign}\,(c_2 2b_1))$ в системе (21) $\breve{R} = \breve{c}_2^2 \geq 0$, что невозможно. Поэтому при $r_1 = (2b_2)^{-1}$, $s_1 = c_1b_*^{-1}$, $r_2 = 0$, $s_2 = (2b_*)^{-1}(c_2 2b_1 + d_*^{1/2} \mathrm{sign}\,(c_2 2b_1))$ система (21) это $\mathrm{K}\Phi_8^0$ с $u = a_1(2b_2)^{-1}$, $v = (2b_*)^{-1}(4c_1b_2 + c_2^2 2b_1c_2 + c_2d_*^{1/2} \mathrm{sign}\,(c_2 2b_1))$ и 0 < uv < 1, так как R = uv(uv 1) < 0. $\mathbf{2_2^2}$) $d_* < 0$.
- $\mathbf{2_2^2a})$ $a_1 \neq b_2$. Тогда $c_* = 2b_2((a_1-b_2)(a_1c_1+b_1c_2-c_1b_2)-a_1b_1^2) \neq 0$, иначе при $r_1=(2b_2)^{-1},\ s_1=b_1,\ r_2=0,\ s_2=b_2-a_1$ в системе (21) $\breve{c}_1=0$ невозможно при $d_*<0$.

При $r_1=(2b_2)^{-1},\ s_1=b_1|c_*|^{-1/2},\ r_2=0,\ s_2=(b_2-a_1)|c_*|^{-1/2}$ система (21) является $\mathrm{K}\Phi^0_9$ с $u=a_1(2b_2)^{-1}\neq 0;1/2,\ v=(2b_1b_2-(a_1-b_2)c_2)|c_*|^{-1/2}\neq 0,\ \sigma=\mathrm{sign}\ c_*.$ При этом $\check{R}=u(uv^2+\sigma)=R(a_1-b_2)^2b_2^{-2}|4c_*|^{-1}<0,$ следовательно, $|u|v^2<-\mathrm{sign}\ (uc_*).$ А значит, $\sigma=-\mathrm{sign}\ u$ и $|u|v^2<1.$

 $\mathbf{2_2^2b})$ $a_1=b_2$ ($\check{b}_1\neq 0$). Тогда (21) при $r_1=(2a_1)^{-1},$ $s_1=-c_2(-2R)^{-1/2}\mathrm{sign}\,(a_1b_1),$ $r_2=0,$ $s_2=2^{1/2}a_1(-R)^{-1/2}\mathrm{sign}\,(a_1b_1)$ является $\mathrm{K}\Phi^0_{10}$ с $u=2^{3/2}|a_1b_1|(-R)^{-1/2},$ причем $0< u<\sqrt{2},$ так как $u^2-2=-2a_1^2(4b_1^2-4b_1c_2+c_2^2+4a_1c_1)R^{-1}=-2a_1^2d_*R^{-1}<0.$

Замечание 4. К Φ^0_3 с $u=u_*<1$ заменой (9) с $r_1=1,\ s_1=1-u_*,\ r_2=0,\ s_2=1$ опять сводится к К Φ^0_3 , но с $u=2-u_*>1.$

 $\mathrm{K}\Phi_4^0$ с $u=u_*\leq 1/4$ – не каноническая по принципу 3. Заменой (9) с $r_1=u_*^{-1}$, $s_1=(1+(1-4u_*)^{1/2})(2u_*)^{-1},\ r_2=0,\ s_2=1$ она сводится к $\mathrm{K}\Phi_3^0$ с $u=1+(1-4u_*)^{1/2}\geq 1$.

 $K\Phi_5^0$ с |u|=1/2, $\sigma={\rm sign}\,u$ (R=1/2) по принципу 2 канонической формой не является. При u=1/2 заменой (9) с $r_1, s_1=1, r_2=2^{-1/2}, s_2=-2^{-1/2}$ К Φ_5^0 сводится к К Φ_1^0 . А при u=-1/2 заменой (9) с $r_1,s_1=-1,\ r_2=2^{-1/2},\ s_2=-2^{-1/2}$ К Φ_5^0 сводится к К $\Phi_2^0.$

 $\mathrm{K}\Phi^0_9$ с $u=u_*=1/2,~\sigma=-1~(R=(v^2-2)/4<0)$ – неканоническая по принципу 2. Заменой (9) с $r_1=1,\ s_1=-2^{1/2}v(2-v^2)^{-1/2},\ r_2=0,\ s_2=2^{1/2}(2-v^2)^{-1/2}$ она сводится к $K\Phi_5^0$ с u=1/2, $\sigma=-1$ (R=-1/2).

 $K\Phi_{10}^0$ с $u=u_* \notin (0,2^{1/2})$ канонической не является в силу принципов 2 или 3. При $|u_*|=2^{1/2}$ заменой (9) с $r_1=1$, $s_1=0$, $r_2=2^{-1/2}\mathrm{sign}\,u_*$, $s_2=\mathrm{sign}\,u_*$ $\mathrm{K}\Phi^0_{10}$ сводится к $\mathrm{K}\Phi_9^0$ с $u=1,~\sigma=-1,~v=2^{-1/2}~(R=-1/2).$ При $|u_*|>2^{1/2}$ заменой (9) с $r_1=(u_*+(u_*^2-2)^{1/2})u_*^{-1},~s_1=(u_*-(u_*^2-2)^{1/2})u_*^{-1},~r_2,s_2=u_*^{-1}~\mathrm{K}\Phi_{10}^0$ сводится к $\mathrm{K}\Phi_8^0$ c $u = (u_*^2 - 2 + u_*^2 (u_*^2 - 2)^{1/2}) u_*^{-1} (u_*^2 - 2)^{-1/2} \neq 0, \ v = (-u_*^2 + 2 + u_*^2 (u_*^2 - 2)^{1/2}) u_*^{-1} (u_*^2 - 2)^{-1/2} \neq 0,$ причем $uv = 2u_*^{-2} < 1$. А при $-2^{1/2} < u_* < 0$ К Φ_{10}^0 заменой (9) с $r_1 = 1$, $s_1, r_2 = 0$, $s_2 = -1$ опять сводится к $K\Phi^0_{10}$, но с $u = -u_*$, т. е. $0 < u < 2^{1/2}$.

Замечание 5. Формы $\Phi_2^0 = \begin{pmatrix} u_* & v_* & 1 \\ 1 & 0 & 0 \end{pmatrix}$ с $u_*v_* \neq 0$, R=1, и $\Phi_3^0 = \begin{pmatrix} u_* & v_* & 1 \\ 0 & 0 & 1 \end{pmatrix}$ с $u_*v_* \neq 0$, $R = u_*^2$, отсутствующие в списке, – неканонические по принципу 2 или 3.

Форма Φ_2^0 при $v_*^3 - 4u_*v_* - 8 = 0$, $v_*^4 + 32v_* < 0$ заменой (9) с $r_1 = 4v_*^{-2}$, $s_1 = 0$, $r_2 = -2v_*^{-1}$, $s_2 = 2v_*^{-1}$ сводится к $K\Phi_4^0$ с $u = -8v_*^{-3} > 1/4$; при $v_*^3 - 4u_*v_* - 8 = 0$, $v_*^4 + 32v_* \ge 0$ заменой (9) с $r_1 = -v_*/2$, $s_1 = 4v_*^{-1}(v_*^2 \pm (v_*^4 + 32v_*)^{1/2})(16 + v_*^3 \pm v_*^4)$ $v_*(v_*^4+32v_*)^{1/2})^{-1}$, $r_2=v_*^2/4$, $s_2=32v_*^{-1}(16+v_*^3\pm v_*(v_*^4+32v_*)^{1/2})^{-1}$ сводится к $\mathrm{K}\Phi^0_3$ с $u = 16v_*^{-2}(\mp(v_*^4 + 32v_*)^{1/2} - v_*^2)(16 + v_*^3 \pm v_*(v_*^4 + 32v_*)^{1/2})^{-1} \neq 0$. А при $v_*^3 - 4u_*v_* - 8 \neq 0$, если $4u_*=v_*^2$, то заменой (9) с $r_1=0$, $s_1=1$, $r_2=1$, $s_2=-v_*/2$ Φ_2^0 сводится к $\mathrm{K}\Phi_7^0$ с $u=v_*/2\neq 0$; если $4u_*\neq v_*^2$, то заменой (9) с $r_1=0$, $s_1=4(v_*^3-4u_*v_*-8)^{-2/3}$, $r_2=-2(v_*^3-4u_*v_*-8)^{-1/3}$, $s_2=-2v_*(v_*^3-4u_*v_*-8)^{-2/3}$ Φ_2^0 сводится к Φ_1^0 с $u=-v_*(v_*^3-4u_*v_*-8)^{-1/3}$, $v=(4u_*-v_*^2)(v_*^3-4u_*v_*-8)^{-2/3}$, при этом $uv\neq 0$; 1.

Форма Φ_3^0 при $v_*^2 - 2v_* - 4u_* + 1 < 0$ заменой (9) с $r_1 = (2v_* - v_*^2 + 4u_*)(4u_*)^{-1}$, $s_1 = -(2u_*)^{-1}v_*, \quad r_2 = 0, \quad s_2 = 1$ сводится к $\mathrm{K}\Phi^0_4$ с $u = (2v_* - v_*^2 + 4u_*)/4 > 1/4.$ А при $v_*^2 - 2v_* - 4u_* + 1 \ge 0$, если $v_*^2 - 2v_* - 4u_* \ne 0$, то заменой (9) с $r_1 = u_*^{-1}$, $s_1=(1-v_*+(v_*^2-2v_*-4u_*+1)^{1/2})(2u_*)^{-1},\ r_2=0,\ s_2=1$ Φ_3^0 сводится к К Φ_3^0 с $u = 1 + (v_*^2 - 2v_* - 4u_* + 1)^{1/2} \ge 1$; если $v_*^2 - 2v_* - 4u_* = 0$ ($v_* \ne 2$), то заменой (9) с $r_1=u_*^{-1}$, $s_1=-v_*(2u_*)^{-1}$, $r_2=0$, $s_2=1$ Φ^0_3 сводится к $\mathrm{K}\Phi^0_1$.

Замечание 6. Формы $\Phi_4^0 = \begin{pmatrix} u_* & 0 & 1 \\ 1 & v_* & 0 \end{pmatrix}$ с $u_*v_* \neq 0$, $R = 1 + u_*v_*^2$ и $\Phi_5^0 = \begin{pmatrix} 0 & u & 1 \\ 1 & v & 0 \end{pmatrix}$

с $uv \neq 0$, $R = 1 - uv \neq 0$, отсутствующие в списке, – неканонические по принципам 2, 3.

Форма Φ_4^0 с $u_* = u$, $v_* = -2u$ при R > 0 заменой (9) с $r_1 = (R + R^{1/2})(2u^3)^{-1}s_2^2$, $s_1 = -(1 + R^{1/2})(2u^2)^{-1}s_2$, $r_2 = (R + R^{1/2})(1 + R^{1/2})(4u^4)^{-1}s_2^2$ сводится к системе с коэффициентами $\widetilde{a}_1,\widetilde{b}_1,\widetilde{b}_2,\widetilde{c}_2=0,\ \widetilde{a}_2=-R^{3/2}(R^{1/2}+1+2u^3)(2u^6)^{-1}s_2^3\neq 0$, иначе $\widetilde{P}_2\equiv 0$, что невозможно. При $s_2 = -2^{1/3}u^2R^{-1/2}(R^{1/2}+1+2u^3)^{-1/3}$ полученная система – $K\Phi_2^0$.

Форма Φ_4^0 с $u_*=u,\ v_*=v\neq -2u$ при R>0 заменой (9) с $r_1=2(R+R^{1/2})(uv^2)^{-1}s_2^2,$ $s_1=(1+R^{1/2})(uv)^{-1}s_2, \ r_2=(R+R^{1/2})(1+R^{1/2})(uv)^{-2}s_2^2$ сводится к системе с $\widetilde{a}_2=$ $s_*(uv)^{-3}s_2^3$, где $s_*=R((uv^2-2u^2v+4)(R^{1/2}+1)+2uv^2)$, $\widetilde{b}_2,\widetilde{c}_2=0$, при этом $s_*\neq 0$, иначе $\widetilde{P}_2 \equiv 0$, что невозможно. При $s_2 = uvs_*^{-1/3}$ полученная система является Φ_2^0 с $u_* = u(2u+v)(R+R^{1/2})s_*^{-2/3} \neq 0, \ v_* = (2u+v)(1+R^{1/2})s_*^{-1/3} \neq 0.$

Форма Φ_4^0 с $u_*=u$, $v_*=-2u$ при R<0 заменой (9) с $r_1=(u+t^2)(2(u^2-ut^2+t))^{-1}$, $s_1=|2(u^2-ut^2+t)|^{-1/2}$, $r_2=(1-2tu)(2(u^2-ut^2+t))^{-1}$, $s_2=t|2(u^2-ut^2+t)|^{-1/2}$, где t- вещественный корень кубического многочлена $t^3+6u^2t^2-3ut+2u^3+1$, сводится к К Φ_6^0 с u=-1/2, $\sigma=\mathrm{sign}(u^2-ut^2+t)=1$.

Форма Φ_4^0 с $u_*=u,\ v_*=v\neq -2u$ при R<0 заменой (9) с $r_1=(u+t^2)(vt^2+2t-uv)^{-1},\ s_1=|vt^2+2t-uv|^{-1/2},\ r_2=(1+tv)(vt^2+2t-uv)^{-1},\ s_2=t|vt^2+2t-uv|^{-1/2},$ где t – вещественный корень кубического многочлена $t^3+(v-u)vt^2+(u+2v)t-u^2v+1,$ сводится к системе вида

$$\begin{pmatrix} u_* & v_* & \sigma \\ 0 & 1 & 0 \end{pmatrix} \tag{22}$$

c $u_* = (ut^2 - t + u^2 + uv)(vt^2 + 2t - uv)^{-1} < 0, v_* = (2u + v)|vt^2 + 2t - uv|^{-1/2} \neq 0, \sigma = \text{sign}(vt^2 + 2t - uv).$

- $1) \ v_*^2 + 4\sigma_*(1-u_*) \geq 0. \quad \text{Если} \ 4\sigma_*u_* 2\sigma_* v_*^2 |v_*|(v_*^2 + 4\sigma_*(1-u_*))^{1/2} \neq 0, \text{ то система (22) заменой (9) с} \ r_1 = 1, \ s_1 = 2\sigma_*(4\sigma_*u_* 2\sigma_* v_*^2 |v_*|(v_*^2 + 4\sigma_*(1-u_*))^{1/2})^{-1}, \\ r_2 = 0, \ s_2 = (-v_* (v_*^2 + 4\sigma_*(1-u_*))^{1/2} \mathrm{sign} \ v_*)(4\sigma_*u_* 2\sigma_* v_*^2 |v_*|(v_*^2 + 4\sigma_*(1-u_*))^{1/2})^{-1} \\ \mathrm{сводится} \ \mathrm{K} \ \Phi_8^0 \ \mathrm{c} \ u = u_*, \ v = 2\sigma_*(4\sigma_*u_* 2\sigma_* v_*^2 |v_*|(v_*^2 + 4\sigma_*(1-u_*))^{1/2})^{-1}. \ \mathrm{A} \ \mathrm{если} \\ 4\sigma_*u_* 2\sigma_* v_*^2 |v_*|(v_*^2 + 4\sigma_*(1-u_*))^{1/2} = 0 \ (\mathrm{например}, \ \sigma_* = 1, \ u_* = 1, \ v_* = \pm 1), \ \mathrm{то} \\ \mathrm{система} \ (22) \ \mathrm{заменой} \ (9) \ \mathrm{c} \ r_1 = 1, \ s_1 = u_*^{-1}, \ r_2 = (-v_* (v_*^2 + 4\sigma_*(1-u_*))^{1/2} \mathrm{sign} \ v_*)(2\sigma_*)^{-1}, \\ r_2 = 0 \ \mathrm{сводится} \ \mathrm{K} \ \Phi_3^0 \ \mathrm{c} \ u = u_*^{-1}. \end{aligned}$
- 2) $v_*^2+4\sigma_*(1-u_*)<0$. Заменой (9) с $r_1=1$, $s_1=v_*|u_*v_*^2-\sigma_*(2u_*-1)^2|^{-1/2}$, $r_2=0$, $s_2=(1-2u_*)|u_*v_*^2-\sigma(2u_*-1)^2|^{-1/2}$ система (22) сводится к $\mathrm{K}\Phi_9^0$ с $u=u_*$, $\sigma=-\mathrm{sign}\,(u_*v_*^2-\sigma_*(2u_*-1)^2)$, $v=v_*|u_*v_*^2-\sigma_*(2u_*-1)^2|^{-1/2}$, причем $u_*v_*^2\neq\sigma_*(2u_*-1)^2$, иначе $v_*^2+4\sigma_*(1-u_*)\geq 0$.

Форма Φ_5^0 при $u\neq v$ заменой (9) с $r_1=v(v-u^2)s_*^{-2/3}$, $s_1=us_*^{-1/3}$, $r_2=u(u-v^2)s_*^{-2/3}$, $s_2=-vs_*^{-1/3}$, где $s_*=(uv-1)(v-u)(u^2+uv+v^2)\neq 0$, сводится к Φ_4^0 с $u_*=uv(1-uv)s_*^{-2/3}$, $v_*=(u^3-2uv+v^3)s_*^{-2/3}$. А при $u=v=u_*$ заменой (9) с $r_1,r_2=-1/2$, $s_1=|2u_*-2|^{-1/2}$, $s_2=-s_1$ форма Φ_5^0 сводится к К Φ_5^0 с $u=-(u_*+1)/2$, $\sigma=\mathrm{sign}\,(u_*-1)$.

В теореме 1 все линейные неособые замены (9) приведены в явном виде. Поэтому условия, гарантирующие сведение системы (2) к соответствующей $\mathrm{K}\Phi^1_i$, можно записать непосредственно через коэффициенты системы (2).

При
$$R = \delta_{ac}^2 - 4\delta_{ab}\delta_{bc} > 0$$
 положим

$$\widetilde{a}_1 = \begin{bmatrix} P_1(t_1^*,1) - t_2^* P_2(t_1^*,1), & \text{если } \delta_{ab} \neq 0, \\ a_1 + b_2, & \text{если } \delta_{ab} = 0, \ \delta_{bc} \neq 0, \ a_2 \neq 0, \\ 1, & \text{если } \delta_{ab} = 0, \ \delta_{bc} \neq 0, \ a_2 = 0, \\ a_1, & \text{если } b_1, b_2 = 0, \end{bmatrix} \quad \widetilde{a}_2 = \begin{bmatrix} t_1^* P_2(t_1^*,1) - P_1(t_1^*,1), & \text{если } \delta_{ab} \neq 0, \\ 1, & \text{если } \delta_{ab} = 0, \ \delta_{bc} \neq 0, \ a_2 \neq 0, \\ 0, & \text{если } \delta_{ab} = 0, \ \delta_{bc} \neq 0, \ a_2 = 0, \\ a_2, & \text{если } b_1, b_2 = 0, \end{bmatrix}$$

$$\widetilde{c}_{1} = \begin{bmatrix} P_{1}(t_{2}^{*}, 1) - t_{2}^{*}P_{2}(t_{2}^{*}, 1), \text{ если } \delta_{ab} \neq 0, \\ a_{1}b_{2}^{2} - 2b_{1}a_{2}b_{2} + a_{2}^{2}c_{1} - b_{2}^{3} + a_{2}b_{2}c_{2}, \\ \text{ если } \delta_{ab} = 0, \ \delta_{bc} \neq 0, \ a_{2} \neq 0, \\ (a_{1}c_{1} - b_{1}^{2} + b_{1}c_{2})c_{2}^{-2}, \\ \text{ если } \delta_{ab} = 0, \ \delta_{bc} \neq 0, \ a_{2} = 0, \\ c_{1}, \quad \text{ если } b_{1}, b_{2} = 0, \end{cases} \qquad \widetilde{c}_{2} = \begin{bmatrix} t_{1}^{*}P_{2}(t_{2}^{*}, 1) - P_{1}(t_{2}^{*}, 1), \text{ если } \delta_{ab} \neq 0, \\ 1, \quad \text{ если } \delta_{ab} = 0, \ \delta_{bc} \neq 0, \ a_{2} \neq 0, \\ 1, \quad \text{ если } \delta_{ab} = 0, \ \delta_{bc} \neq 0, \ a_{2} = 0, \\ c_{2}, \quad \text{ если } b_{1}, b_{2} = 0, \end{cases}$$

где $t_1^* = (-\delta_{ac} + R^{1/2})(2\delta_{ab})^{-1}$, $t_2^* = (-\delta_{ac} - R^{1/2})(2\delta_{ab})^{-1}$, а при R < 0 положим $\widetilde{a}_1 = \begin{bmatrix} a_2 r_*^2 + 2b_2 r_* + c_2, & \text{если } a_2 \neq 0, \\ a_1, & \text{если } a_2 = 0, \end{bmatrix}$ $\widetilde{b}_1 = \begin{bmatrix} -a_2 r_* - b_2, & \text{если } a_2 \neq 0, \\ b_1, & \text{если } a_2 = 0, \end{bmatrix}$ $\widetilde{b}_2 = \begin{bmatrix} b_1 + a_1 r_* - b_2 r_* - a_2 r_*^2, & \text{если } a_2 \neq 0, \\ b_2, & \text{если } a_2 = 0, \end{bmatrix}$ $\widetilde{c}_1 = \begin{bmatrix} a_2, & \text{если } a_2 \neq 0, \\ c_1, & \text{если } a_2 = 0, \end{bmatrix}$ $\widetilde{c}_2 = \begin{bmatrix} a_2 r_* - a_1, & \text{если } a_2 \neq 0, \\ c_2, & \text{если } a_2 = 0, \end{bmatrix}$ (24)

где r_* – это вещественный нуль кубического многочлена $a_2r_1^3+(2b_2-a_1)r_1^2+(c_2-2b_1)r_1-c_1$.

Следствие 1. Система (2), в которой $R = \delta_{ac}^2 - 4\delta_{ab}\delta_{bc} \neq 0$, линейной неособой заменой (9) сводится к $K\Phi_i^0$ ($i = \overline{1,10}$), если шесть коэффициентов системы: a_i,b_i,c_i (i = 1,2) удовлетворяют условиям:

 $K\Phi_1^0: R>0, \ \widetilde{a}_1\widetilde{c}_2\neq 0, \ \widetilde{a}_2,\widetilde{c}_1=0;$

 $K\Phi_2^0: R>0, \ \widetilde{a}_1, \widetilde{c}_2=0;$

 $K \varPhi_3^0: \quad 1) \ R>0, \ 0 \neq \widetilde{a}_1 \widetilde{c}_1 \widetilde{c}_2^{-2} \leq 1/4, \ \widetilde{a}_2=0, \ mor \partial a \ u=1+(1-4\widetilde{a}_1 \widetilde{c}_1 \widetilde{c}_2^{-2})^{1/2} \geq 1; \\ 2) \ R>0, \ 0 \neq \widetilde{a}_2 \widetilde{c}_2 \widetilde{a}_1^{-2} \leq 1/4, \ \widetilde{c}_1=0, \ mor \partial a \ u=1+(1-4\widetilde{a}_2 \widetilde{c}_2 \widetilde{a}_1^{-2})^{1/2} \geq 1;$

 $K \varPhi_4^0 : \ 1) \ R > 0, \ \widetilde{a}_1 \widetilde{c}_1 \widetilde{c}_2^{-2} > 1/4, \ \widetilde{a}_2 = 0, \ mor \partial a \ u = \widetilde{a}_1 \widetilde{c}_1 \widetilde{c}_2^{-2} > 1/4; \ 2) \ R > 0, \ \widetilde{a}_2 \widetilde{c}_2 \widetilde{a}_1^{-2} > 1/4, \ \widetilde{c}_1 = 0, \ mor \partial a \ u = \widetilde{a}_2 \widetilde{c}_2 \widetilde{a}_1^{-2} > 1/4;$

$$\begin{split} K \varPhi_5^0: \quad 1) \ \ R > 0, \quad \widetilde{a}_1 \widetilde{c}_1^{1/3} &= \widetilde{a}_2^{1/3} \widetilde{c}_2 \neq 0, \quad mor \partial a \quad u = (\widetilde{a}_1^2 + \widetilde{a}_2 \widetilde{c}_2) (2\widetilde{a}_1^2 - 2\widetilde{a}_2 \widetilde{c}_2)^{-1} \neq 0; \\ \sigma &= \mathrm{sign} \ u; \quad 2) \ \ R < 0, \quad (\widetilde{a}_1 - \widetilde{b}_2) \widetilde{c}_2 - 2\widetilde{b}_1 \widetilde{b}_2 = 0, \quad mor \partial a \quad u = \widetilde{a}_1 (2\widetilde{b}_2)^{-1} \neq 0; \quad \sigma = -\mathrm{sign} \ u; \end{split}$$

 $K\varPhi_{6}^{0}: \ 1) \ R>0, \ \widetilde{a}_{1}=0, \ \widetilde{c}_{2}\neq 0, \ mor\partial a \ u=\widetilde{c}_{2}(\widetilde{a}_{2}\widetilde{c}_{1}^{2})^{-1/3}\neq 0; \ 2) \ R>0, \ \widetilde{a}_{1}\neq 0, \ \widetilde{c}_{2}=0, \ mor\partial a \ u=\widetilde{a}_{1}(\widetilde{a}_{2}^{2}\widetilde{c}_{1})^{-1/3}\neq 0;$

 $K\Phi_7^0: 1) \ R > 0, \ \widetilde{a}_1\widetilde{a}_2\widetilde{c}_1\widetilde{c}_2 \neq 0, \ \widetilde{a}_1^2 + \widetilde{a}_2\widetilde{c}_2 = 0, \ mor\partial a \ u = 2\widetilde{a}_1(\widetilde{a}_1^3 + \widetilde{a}_2^2\widetilde{c}_1)^{-1/3} \neq 0;$ 2) $R > 0, \ \widetilde{a}_1\widetilde{a}_2\widetilde{c}_1\widetilde{c}_2 \neq 0, \ \widetilde{c}_2^2 + \widetilde{a}_1\widetilde{c}_1 = 0, \ mor\partial a \ u = 2\widetilde{c}_2(\widetilde{c}_2^3 + \widetilde{c}_1^2\widetilde{a}_2)^{-1/3} \neq 0;$

 $K\Phi_8^0: 1) \ R>0, \ \widetilde{a}_1\widetilde{a}_2\widetilde{c}_1\widetilde{c}_2\neq 0, \ \widetilde{a}_1\widetilde{c}_1^{1/3}\neq \widetilde{a}_2^{1/3}\widetilde{c}_2, \ \widetilde{a}_1^2+\widetilde{a}_2\widetilde{c}_2\neq 0, \ \widetilde{c}_2^2+\widetilde{a}_1\widetilde{c}_1\neq 0,$ $\delta_{\widetilde{a}\widetilde{c}}\neq 0, \ выполнено \ ycловие \ (17_1) \ для \ многочленов \ Q_1(t), \ Q_2(t) \ us \ (15), \ в \ которых \ u=u_*=\widetilde{a}_1(\widetilde{a}_2^2\widetilde{c}_1)^{-1/3}, \ v=v_*=\widetilde{c}_2(\widetilde{a}_2\widetilde{c}_1^2)^{-1/3}, \ morda \ e \ K\Phi_8^0 \ u=(u_*t_1'^2-t_1'^2t_1''-v_*t_1''+1)(2(t_1'^2t_1''+v_*t_1''-1))^{-1}\neq 0, \ v=(u_*t_1''^2-t_1't_1''^2-v_*t_1'+1)(2(t_1't_1''^2-u_*t_1't_1''+v_*t_1''-1))^{-1}\neq 0;$ $2) \ R<0, \ (\widetilde{a}_1-\widetilde{b}_2)\widetilde{c}_2-2\widetilde{b}_1\widetilde{b}_2\neq 0, \ d_*=(2\widetilde{b}_1-\widetilde{c}_2)^2+4\widetilde{c}_1(2\widetilde{b}_2-\widetilde{a}_1)\geq 0, \ morda \ u=\widetilde{a}_1(2\widetilde{b}_2)^{-1}\neq 0;$ $v=(4\widetilde{c}_1(\widetilde{a}_1-\widetilde{b}_2)+2\widetilde{b}_1(\widetilde{c}_2-2\widetilde{b}_1+d_*^{1/2}\mathrm{sign}(\widetilde{c}_2-2\widetilde{b}_1)))^{-1}(4\widetilde{c}_1\widetilde{b}_2+\widetilde{c}_2-2\widetilde{b}_1\widetilde{c}_2+\widetilde{c}_2d_*^{1/2}\mathrm{sign}(\widetilde{c}_2-2\widetilde{b}_1))\neq 0;$

 $K\varPhi_9^0: \ 1) \ R>0, \ \widetilde{a}_1\widetilde{a}_2\widetilde{c}_1\widetilde{c}_2\neq 0, \ \widetilde{a}_1\widetilde{c}_1^{1/3}\neq \widetilde{a}_2^{1/3}\widetilde{c}_2, \ \widetilde{a}_1^2+\widetilde{a}_2\widetilde{c}_2\neq 0, \ \widetilde{c}_2^2+\widetilde{a}_1\widetilde{c}_1\neq 0, \ \delta_{\widetilde{a}\widetilde{c}}\neq 0, \\ \textit{выполнено условие} \ (17_2) \ \textit{для многочленов} \ Q_1(t), \ Q_2(t) \ \textit{из} \ (15), \ \textit{в которых } u=u_*=\widetilde{a}_1(\widetilde{a}_2^2\widetilde{c}_1)^{-1/3}, \ \textit{v}=v_*=\widetilde{c}_2(\widetilde{a}_2\widetilde{c}_1^2)^{-1/3}, \ \textit{тогда} \ \textit{в} \ K\varPhi_9^0 \ u=(t_2-u_*)(1-t_2v_*)(2t_2(u_*v_*-1))^{-1}\neq 0, \\ v=(u_*t_2+v_*)|2t_2(u_*v_*-1)|^{-1/2}\neq 0, \ \sigma=-\text{sign} \ (t_2(u_*v_*-1)); \ \textit{2}) \ R<0, \ (\widetilde{a}_1-\widetilde{b}_2)\widetilde{c}_2-2\widetilde{b}_1\widetilde{b}_2\neq 0, \\ d_*=(2\widetilde{b}_1-\widetilde{c}_2)^2+4\widetilde{c}_1(2\widetilde{b}_2-\widetilde{a}_1)<0, \ \widetilde{a}_1\neq \widetilde{b}_2, \ \textit{morda} \ u=\widetilde{a}_1(2\widetilde{b}_2)^{-1}\neq 0; 1/2, \ \sigma=-\text{sign} \ u, \\ v=(2\widetilde{b}_1\widetilde{b}_2-(\widetilde{a}_1-\widetilde{b}_2)\widetilde{c}_2)|2\widetilde{b}_2((\widetilde{a}_1-\widetilde{b}_2)(\widetilde{a}_1\widetilde{c}_1+\widetilde{b}_1\widetilde{c}_2-\widetilde{c}_1\widetilde{b}_2)-\widetilde{a}_1\widetilde{b}_1^2)|^{-1/2}\neq 0; \\ \end{cases}$

 $K\Phi_{10}^0: R < 0, \ (\widetilde{a}_1 - \widetilde{b}_2)\widetilde{c}_2 - 2\widetilde{b}_1\widetilde{b}_2 \neq 0, \ d_* = (2\widetilde{b}_1 - \widetilde{c}_2)^2 + 4\widetilde{c}_1(2\widetilde{b}_2 - \widetilde{a}_1) < 0, \ \widetilde{a}_1 = \widetilde{b}_2,$ тогда $u = 2^{3/2} |\widetilde{a}_1\widetilde{b}_1| (4\delta_{\widetilde{a}\widetilde{b}}\delta_{\widetilde{b}\widetilde{c}} - \delta_{\widetilde{a}\widetilde{c}}^2)^{-1/2},$ причем $0 < u < \sqrt{2}$.

3десь при R>0 коэффициенты матрицы (18) $\widetilde{a}_1,\widetilde{c}_1,\widetilde{a}_2,\widetilde{c}_2$ определены в (23), а при R<0 коэффициенты матрицы (20) $\widetilde{a}_1,\widetilde{b}_1,\widetilde{c}_1,\widetilde{b}_2,\widetilde{c}_2$ определены в (24).

5 Канонические формы системы (2) в случае l=1

5.1 Линейная эквивалентность систем при $\,l=1\,$

Система (2) $\dot{x} = P(x)$ при l=1 записывается в следующем виде

$$\begin{pmatrix} P_1 \\ P_2 \end{pmatrix} = P_0(x) \begin{pmatrix} p_1 x_1 + q_1 x_2 \\ p_2 x_1 + q_2 x_2 \end{pmatrix} = \langle (\alpha, \beta), x \rangle H x \not\equiv 0 \qquad (\delta_{pq} \neq 0), \tag{25}$$

т. е. в системе (25) общий множитель $P_0=\alpha x_1+\beta x_2\not\equiv 0$, матрица $H=\begin{pmatrix} p_1&q_1\\p_2&q_2\end{pmatrix}$.

Поэтому собственные числа матрицы H отличны от нуля и имеют вид

$$\lambda_{1,2} = (p_1 + q_2 \pm \sqrt{D})/2,\tag{26}$$

где
$$D = (p_1 + q_2)^2 - 4\delta_{pq} = (p_1 - q_2)^2 + 4p_2q_1$$

Предложение 2. В целях нормировки один из ненулевых коэффициентов общего множителя P_0 в системе (25) можно сделать равным единице. Договоримся, что если $\alpha \neq 0$, то $\alpha = 1$, а если $\alpha = 0$, то $\beta = 1$.

Пусть замена (9) x=Ly (det $L=\delta\neq 0$) переводит систему (2) вида (25) в систему (10) $\dot{y}=\widetilde{P}(y)$. Положим

$$(\widetilde{\alpha}, \ \widetilde{\beta}) = (\alpha, \ \beta)L, \quad \widetilde{H} = \begin{pmatrix} \widetilde{p}_1 & \widetilde{q}_1 \\ \widetilde{p}_2 & \widetilde{q}_2 \end{pmatrix} = L^{-1}HL \qquad (\delta_{\widetilde{p}\widetilde{q}} = \det \widetilde{H} = \delta_{pq}),$$
 (27)

T. e.
$$\widetilde{\alpha} = \alpha r_1 + \beta r_2$$
, $\widetilde{\beta} = \alpha s_1 + \beta s_2$, $\widetilde{H} = \delta^{-1} \begin{pmatrix} r_1 \delta_{ps} + r_2 \delta_{qs} & s_1 \delta_{ps} + s_2 \delta_{qs} \\ -r_1 \delta_{pr} - r_2 \delta_{qr} & -s_1 \delta_{pr} - s_2 \delta_{qr} \end{pmatrix}$

Кроме того, в силу ассоциативности матричного произведения имеем:

$$\langle (\alpha, \beta), Ly \rangle = \langle (\alpha, \beta)L, y \rangle.$$
 (28)

Теорема 2. Система (10), полученная из системы (2) вида (25) при помощи линейной неособой замены (9), имеет вид

$$\begin{pmatrix} \widetilde{P}_1 \\ \widetilde{P}_2 \end{pmatrix} = \widetilde{P}_0(y) \begin{pmatrix} \widetilde{p}_1 y_1 + \widetilde{q}_1 y_2 \\ \widetilde{p}_2 y_1 + \widetilde{q}_2 y_2 \end{pmatrix} = \langle (\widetilde{\alpha}, \widetilde{\beta}), y \rangle \widetilde{H} y \quad (\widetilde{P}_0 \not\equiv 0), \tag{29}$$

где коэффициенты многочлена $\widetilde{P}_0=\widetilde{\alpha}y_1+\widetilde{\beta}y_2$ и матрица \widetilde{H} введены в (27).

Тем самым, случай l=1 инвариантен относительно замены (9).

Доказательство. Формула (29) вытекает из следующих равенств:

$$\widetilde{P}(y) \stackrel{(11)}{=} L^{-1}P(Ly) \stackrel{(25)}{=} L^{-1}\big\langle (\alpha,\beta),\, Ly \big\rangle \, HLy \stackrel{(28)}{=} \big\langle (\alpha,\beta)L,y \big\rangle \, L^{-1}HLy \stackrel{(27)}{=} \big\langle (\widetilde{\alpha},\widetilde{\beta}),\, y \big\rangle \, \widetilde{H}y.$$

При этом условие $\tilde{\alpha}^2 + \tilde{\beta}^2 \neq 0$ равносильно тому, что $\alpha^2 + \beta^2 \neq 0$, так как $\delta_{rs} \neq 0$. \square

5.2 Построение канонических форм в случае l=1

Не уменьшая общности, будем считать, что в системе (25) $\alpha \neq 0$, так как если $\alpha = 0$, то сделаем перенумерацию (14), получая систему (29) вида $\begin{pmatrix} \widetilde{P}_1 \\ \widetilde{P}_2 \end{pmatrix} = \beta y_1 \begin{pmatrix} q_2 y_1 + p_2 y_2 \\ q_1 y_1 + p_1 y_2 \end{pmatrix}$.

Теперь, следуя предложению 2, сделаем $\alpha=1$, т.е. в системе (25) всегда общий множитель $P_0=x_1+\beta x_2$.

Для упрощения системы (25) будем выбирать сначала такую замену (9), которая сводит матрицу H к жордановой форме \widetilde{H} в системе (29).

Вид замены, очевидно, зависит от знака дискриминанта $D=(p_1+q_2)^2-4\delta_{pq}$ из формулы (26) для собственных чисел $\lambda_{1,2}\neq 0$ матрицы H.

Затем в системе (29) с жордановой матрицей H будем делать произвольную замену (9) и подбирать ее коэффициенты так, чтобы полученная система оказалась наиболее простой в смысле определения 7 – канонической формой $(K\Phi^2)$.

Все элементы полученной системы будем отмечать символом $\check{}$. При этом аналогично (27) коэффициенты \check{P}_0 имеют вид

СПИСОК канонических форм системы (2) в случае l = 1:

$$\begin{split} \mathbf{K}\Phi_1^1 &= \begin{pmatrix} u & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}, & \mathbf{K}\Phi_2^1 &= \begin{pmatrix} 0 & \sigma & 0 \\ 1 & 0 & 0 \end{pmatrix}, \\ \mathbf{K}\Phi_3^1 &= \begin{pmatrix} u & 1 & 0 \\ 0 & 1 & 0 \end{pmatrix}, & \mathbf{K}\Phi_4^1 &= \begin{pmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \end{pmatrix}, & \mathbf{K}\Phi_5^1 &= \begin{pmatrix} u & -1 & 0 \\ 1 & 0 & 0 \end{pmatrix}, \end{split}$$

где в $\mathrm{K}\Phi^1_1$ $u \neq 0$, в $\mathrm{K}\Phi^1_2$ $\sigma = \pm 1$, в $\mathrm{K}\Phi^1_3$ 0 < |u| < 1 или u = 1, в $\mathrm{K}\Phi^1_5$ 0 < u < 2.

Теорема 3. В случае l=1 система (2) вида (25) линейной неособой заменой (9) сводится к одной из пяти линейно неэквивалентных $K\Phi^1$.

Доказательство.

1) D > 0, т.е. в (26) $\lambda_1, \lambda_2 \neq 0$, вещественны и различны. А точнее,

$$\lambda_1 = (p_1 + q_2 + \sigma_* \sqrt{D})/2, \quad \lambda_2 = (p_1 + q_2 - \sigma_* \sqrt{D})/2, \quad \lambda_* = p_1 - q_2 + \sigma_* \sqrt{D},$$

где $\sigma_* = \{ \, \mathrm{sign} \, (p_1 - q_2) \,$ при $p_1 \neq q_2; \, \, 1 \,$ при $p_1 = q_2 \, \}, \,$ тогда $\, \lambda_* \neq 0.$

Замена (9) с
$$L = \begin{pmatrix} \lambda_* & 2q_1 \\ 2p_2 & -\lambda_* \end{pmatrix}$$
 сводит систему (25) к системе (29) вида

$$\begin{pmatrix} \widetilde{\alpha}\lambda_1 & \widetilde{\beta}\lambda_1 & 0\\ 0 & \widetilde{\alpha}\lambda_2 & \widetilde{\beta}\lambda_2 \end{pmatrix} \quad c \quad \widetilde{\alpha} = 2\beta p_2 + \lambda_*, \quad \widetilde{\beta} = 2q_1 - \beta\lambda_*, \quad \widetilde{H} = \begin{pmatrix} \lambda_1 & 0\\ 0 & \lambda_2 \end{pmatrix}. \tag{31}$$

Теперь произвольная замена (9) сводит систему (31) к системе

$$\delta^{-1} \begin{pmatrix} \breve{\alpha}(\lambda_1 r_1 s_2 - \lambda_2 r_2 s_1) & \breve{\alpha}(\lambda_1 - \lambda_2) s_1 s_2 + \breve{\beta}(\lambda_1 r_1 s_2 - \lambda_2 r_2 s_1) & \breve{\beta}(\lambda_1 - \lambda_2) s_1 s_2 \\ \breve{\alpha}(\lambda_2 - \lambda_1) r_1 r_2 & \breve{\alpha}(\lambda_2 r_1 s_2 - \lambda_1 r_2 s_1) + \breve{\beta}(\lambda_2 - \lambda_1) r_1 r_2 & \breve{\beta}(\lambda_2 r_1 s_2 - \lambda_1 r_2 s_1) \end{pmatrix}$$
(32)

с
$$(\breve{\alpha}, \breve{\beta})$$
 из (30) и $\breve{H} = \delta^{-1} \begin{pmatrix} \lambda_1 r_1 s_2 - \lambda_2 r_2 s_1 & (\lambda_1 - \lambda_2) s_1 s_2 \\ -(\lambda_1 - \lambda_2) r_1 r_2 & \lambda_2 r_1 s_2 - \lambda_1 r_2 s_1 \end{pmatrix}$.

- ${f 1}_1$) $\widetilde{lpha}=0$ ($\widetilde{eta}
 eq 0$). Тогда $\widecheck{eta}=0$ при $s_2=0$ и система (32) принимает вид $egin{pmatrix} \lambda_2\widetilde{eta}r_2 & 0 & 0 \ (\lambda_1-\lambda_2)\widetilde{eta}r_1r_2s_1^{-1} & \lambda_1\widetilde{eta}r_2 & 0 \end{pmatrix}$. При $r_1=0,\ s_1=1,\ r_2=(\lambda_1)^{-1}\widetilde{eta}$ эта система является $K\Phi^1_1$ с $u=\lambda_1^{-1}\lambda_2\neq 0,1$.
- ${f 1_2}$) $\widetilde{eta}=0$ ($\widetilde{lpha}
 eq 0$). Тогда $\widecheck{eta}=0$ при $s_1=0$ и система (32) принимает вид $\begin{pmatrix} \widetilde{lpha}\lambda_1r_1 & 0 & 0 \\ \widetilde{lpha}(\lambda_2-\lambda_1)r_1r_2s_2^{-1} & \widetilde{lpha}\lambda_2r_1 & 0 \end{pmatrix}$. При $r_1=(\widetilde{lpha}\lambda_2)^{-1}, \ r_2=0, \ s_2=1$ эта система является $K\Phi^1_1$ с $u=\lambda_1\lambda_2^{-1}
 eq 0, 1$.
 - $\mathbf{1_{3}}) \quad \widetilde{\alpha}, \ \widetilde{\beta} \neq 0. \quad \text{Тогда} \quad \widetilde{\beta} = 0 \quad \text{при} \quad s_{2} = -\widetilde{\alpha}\widetilde{\beta}^{-1}s_{1} \quad \text{и система (32) принимает вид}$ $\begin{pmatrix} \lambda_{1}\widetilde{\alpha}r_{1} + \lambda_{2}\widetilde{\beta}r_{2} & (\lambda_{1} \lambda_{2})\widetilde{\alpha}s_{1} & 0\\ (\lambda_{1} \lambda_{2})\widetilde{\beta}r_{1}r_{2}s_{1}^{-1} & \lambda_{2}\widetilde{\alpha}r_{1} + \lambda_{1}\widetilde{\beta}r_{2} & 0 \end{pmatrix}. \tag{33}$
- ${f 1_3^1})$ $\lambda_1=-\lambda_2$, тогда в системе (33) $\breve{a}_1=-\breve{b}_2/2=\lambda_1(\widetilde{\alpha}r_1-\widetilde{\beta}r_2)$, поэтому при $r_1,s_1=(2\lambda_1\widetilde{\alpha})^{-1}$, $r_2=(2\lambda_1\widetilde{\beta})^{-1}$ она является ${f K\Phi}_2^1$ с $\sigma=1$.
- ${f 1_3^2})$ $\lambda_1
 eq -\lambda_2$, тогда система (33) при $r_1=(\lambda_2\widetilde{lpha})^{-1},\ s_1=((\lambda_1-\lambda_2)\widetilde{lpha})^{-1},\ r_2=0$ является ${f K\Phi}_3^1$ с $u=\lambda_1\lambda_2^{-1}
 eq 0, \pm 1.$ А при $r_1=0,\ s_1=((\lambda_1-\lambda_2)\widetilde{lpha})^{-1},\ r_2=(\lambda_1\widetilde{eta})^{-1}$ она является ${f K\Phi}_3^1$ с $u=\lambda_1^{-1}\lambda_2
 eq 0, \pm 1.$

Поэтому, выбирая нужную замену, всегда можно получить 0 < |u| < 1.

- **2**) D=0, T. e. B (26) $\lambda=\lambda_{1,2}=(p_1+q_2)/2\neq 0$.
- $\mathbf{2_{1}}) \quad q_{1} \neq 0. \quad \text{Замена} \quad \begin{pmatrix} 0 & 2q_{1} \\ 2 & q_{2} p_{1} \end{pmatrix} \text{ сводит систему (25) к системе (29) вида}$ $\begin{pmatrix} \lambda \widetilde{\alpha} & \lambda \widetilde{\beta} & 0 \\ \widetilde{\alpha} & \lambda \widetilde{\alpha} + \widetilde{\beta} & \lambda \widetilde{\beta} \end{pmatrix} \quad \mathbf{c} \quad \widetilde{\alpha} = 2\beta, \quad \widetilde{\beta} = \beta q_{2} \beta p_{1} + 2q_{1}, \quad \widetilde{H} = \begin{pmatrix} \lambda & 0 \\ 1 & \lambda \end{pmatrix}. \tag{34}$
- ${f 2_1^1})$ $\widetilde{eta}=0$ ($\widetilde{lpha}\neq 0$). Тогда нормировка (13) с $r_1=(\widetilde{lpha}\lambda)^{-1},\ s_2=\widetilde{lpha}^{-1}\lambda^{-2}$ сводит систему (34) к К Φ^1_4 .
 - $\mathbf{2_1^2})$ $\widetilde{\beta} \neq 0$. Тогда произвольная замена (9) сводит (34) к системе

$$\delta^{-1} \begin{pmatrix} \breve{\alpha}(\lambda\delta - r_1 s_1) & \breve{\beta}(\lambda\delta - r_1 s_1) - \breve{\alpha} s_1^2 & -\breve{\beta} s_1^2 \\ \breve{\alpha} r_1^2 & \breve{\alpha}(\lambda\delta + r_1 s_1) + \breve{\beta} r_1^2 & \breve{\beta}(\lambda\delta + r_1 s_1) \end{pmatrix}, \tag{35}$$

в которой $(\check{\alpha},\check{\beta})$ из (30), а $\check{H}=\delta^{-1}\begin{pmatrix}\lambda\delta-r_1s_1&-s_1^2\\r_1^2&\lambda\delta+r_1s_1\end{pmatrix}.$

В системе (35) сделаем $\breve{\beta}=0$, для чего положим $s_2=-\widetilde{\alpha}\widetilde{\beta}^{-1}s_1$, тогда (35) примет вид $\begin{pmatrix} (\widetilde{\alpha}\lambda+\widetilde{\beta})r_1+\widetilde{\beta}\lambda r_2 & \widetilde{\beta}s_1 & 0 \\ -\widetilde{\beta}r_1^2s_1^{-1} & (\widetilde{\alpha}\lambda-\widetilde{\beta})r_1+\widetilde{\beta}\lambda r_2 & 0 \end{pmatrix}$. При $r_1=0$, $s_1=\widetilde{\beta}^{-1}$, $r_2=(\widetilde{\beta}\lambda)^{-1}$ - это $K\Phi_3^1$ с u=1.

$$\mathbf{2_2}$$
) $q_1 = 0$. Тогда в (26) $\lambda = p_1 = q_2 \neq 0$.

$$\mathbf{2_2^1}) \ \ p_2 = 0$$
, т. е. в (25) $H = \begin{pmatrix} p_1 & 0 \\ 0 & p_1 \end{pmatrix}$. Произвольная замена (9) сводит (25) к системе $\begin{pmatrix} \widetilde{\alpha}p_1 & \widetilde{\beta}p_1 & 0 \\ 0 & \widetilde{\alpha}p_1 & \widetilde{\beta}p_1 \end{pmatrix}$ с $\widetilde{\alpha} = r_1 + \beta r_2$, $\widetilde{\beta} = s_1 + \beta s_2$, $\widetilde{H} = H$. При $r_1 = p_1^{-1}$, $s_1 = -\beta$, $r_2 = 0$, $s_2 = 1$ – это $\mathrm{K}\Phi^1_1$ с $u = 1$.

$$\mathbf{2_2^2}$$
) $p_2 \neq 0$, т.е. в (25) $H = \begin{pmatrix} p_1 & 0 \\ p_2 & p_1 \end{pmatrix}$. Нормировка (13) с $r_1 = 1$, $s_2 = p_2$ сводит (25) к системе (34) из 2_1), но с $\widetilde{\alpha} = 1$, $\widetilde{\beta} = \beta p_2$ и $\lambda = p_1$.

3) D<0, т. е. собственные числа λ_1,λ_2 в H – комплексно-сопряженные и $p_2q_1<0$.

Замена
$$\begin{pmatrix} \sqrt{-D} & p_1 - q_2 \\ 0 & 2p_2 \end{pmatrix}$$
 сводит систему (25) к системе (29) вида

$$\begin{pmatrix} \widetilde{\alpha}p_* & \widetilde{\alpha}q_* + \widetilde{\beta}p_* & \widetilde{\beta}q_* \\ -\widetilde{\alpha}q_* & \widetilde{\alpha}p_* - \widetilde{\beta}q_* & \widetilde{\beta}p_* \end{pmatrix} \quad c \quad \widetilde{\alpha} = \sqrt{-D} \neq 0, \quad \widetilde{\beta} = p_1 - q_2 + 2\beta p_2, \quad \widetilde{H} = \begin{pmatrix} p_* & q_* \\ -q_* & p_* \end{pmatrix}, \quad (36)$$

где
$$p_* = (p_1 + q_2)/2$$
 (= Re λ_1), $q_* = -\sqrt{-D}/2$ (= -Im λ_1) < 0.

Теперь произвольная замена (9) сводит систему (36) к системе

$$\delta^{-1} \begin{pmatrix} \breve{\alpha}(p_*\delta + q_*\delta_0) & \breve{\alpha}q_*s_0 + \breve{\beta}(p_*\delta + q_*\delta_0) & \breve{\beta}q_*s_0 \\ -\breve{\alpha}q_*r_0 & \breve{\alpha}(p_*\delta - q_*\delta_0) - \breve{\beta}q_*r_0 & \breve{\beta}(p_*\delta - q_*\delta_0) \end{pmatrix}, \tag{37}$$

в которой $(\breve{\alpha},\breve{\beta})$ из (30), матрица $\breve{H}=\delta^{-1}\begin{pmatrix}p_*\delta+q_*\delta_0&q_*s_0\\-q_*r_0&p_*\delta-q_*\delta_0\end{pmatrix}$, где $\delta_0=r_1s_1+r_2s_2$, $r_0=r_1^2+r_2^2$, $s_0=s_1^2+s_2^2$.

В системе (37) $\breve{\beta}=0$ при $s_1=-\widetilde{\alpha}^{-1}\widetilde{\beta}s_2$ и (37) принимает вид

$$\begin{pmatrix} (\widetilde{\alpha}p_* - \widetilde{\beta}q_*)r_1 + (\widetilde{\alpha}q_* + \widetilde{\beta}p_*)r_2 & \widetilde{\alpha}^{-1}(\widetilde{\alpha}^2 + \widetilde{\beta}^2)q_*s_2 & 0 \\ -\widetilde{\alpha}(r_1^2 + r_2^2)q_*s_2^{-1} & (\widetilde{\alpha}p_* + \widetilde{\beta}q_*)r_1 - (\widetilde{\alpha}q_* - \widetilde{\beta}p_*)r_2 & 0 \end{pmatrix}.$$

$$\mathbf{3_1}$$
) $p_* \neq 0$. Тогда при $r_1 = \frac{(\widetilde{\alpha}q_* - \widetilde{\beta}p_*)\operatorname{sign}p_*}{q_*(\widetilde{\alpha}^2 + \widetilde{\beta}^2)(p_*^2 + q_*^2)^{1/2}}, \quad r_2 = \frac{(\widetilde{\alpha}p_* + \widetilde{\beta}q_*)\operatorname{sign}p_*}{q_*(\widetilde{\alpha}^2 + \widetilde{\beta}^2)(p_*^2 + q_*^2)^{1/2}},$ $s_1 = \frac{\widetilde{\beta}}{q_*(\widetilde{\alpha}^2 + \widetilde{\beta}^2)}, \quad s_2 = -\frac{\widetilde{\alpha}}{q_*(\widetilde{\alpha}^2 + \widetilde{\beta}^2)}, \quad \text{это } \mathrm{K}\Phi_5^1 \ \mathrm{c} \ u = 2|p_*|(p_*^2 + q_*^2)^{-1/2} \ (0 < u < 2),$ $\sigma = -1$.

 ${f 3_2}) \ p_* = 0. \ {
m Tor}$ да при той же замене полученная система – это ${
m K}\Phi^1_2$ с $\sigma = -1.$ \square

Замечание 7. $K\Phi_3^1$ при u=-1 по принципу 2 канонической формой не является. Заменой (9) с $r_1, r_2, s_2=1$, $s_1=0$ она сводится к $K\Phi_2^1$ с $\sigma=1$. А при |u|>1, как было показано в теореме, она опять сводится к $K\Phi_3^1$, но с 0<|u|<1.

Замечание 8. К Φ_5^1 при $|u|\geq 2$ по принципу 3 канонической не является. При $u=u_*$ и $|u_*|=2$ заменой (9) с $r_1=u_*^{-1}$, $s_1=0$, $r_2=1-u_*^{-1}$, $s_2=-1$ она сводится к К Φ_3^1 с $u=u_*^{-1}$. А при $|u_*|>2$ заменой (9) с $r_1=2(u_*\pm(u_*^2-4)^{1/2})^{-1}$, $s_1=0$, $r_2=1$, $s_2=-1$ она сводится к К Φ_3^1 с $u=(u_*\mp(u_*^2-4))(u_*\pm(u_*^2-4)^{1/2})^{-1}$, причем 0<|u|<1 за счет правильного выбора знака в замене. Также К Φ_5^1 с $u=u_*$ при $-2< u_*<0$ заменой (13) с $r_1=-1$, $s_2=1$ сводится к К Φ_5^1 с $u=-u_*$.

Замечание 9. Формы $\Phi_1^1 = \begin{pmatrix} 0 & u_* & 0 \\ 1 & 1 & 0 \end{pmatrix}$ и $\Phi_2^1 = \begin{pmatrix} u_* & 1 & 0 \\ 1 & 0 & 0 \end{pmatrix}$ со структурой $\mathrm{K}\Phi_5^1$, отсутствующие в списке, согласно принципу 3 каноническими не являются.

Форма Φ_1^1 при $u_* \ge -1/4$ заменой (9) с $r_1 = (1-(4u_*+1)^{1/2})(1+2u_*-(4u_*+1)^{1/2})^{-1}$, $s_1=0,\ r_2=2((4u_*+1)^{1/2}-1-2u_*)^{-1},\ s_2=u_*^{-1}$ сводится к $\mathbf{K}\Phi_3^1$ с $u=2u_*((4u_*+1)^{1/2}-1-2u_*)^{-1}\ne 0$; при $u_*<-1/4$ заменой (9) с $r_1=-(-u_*)^{-1/2},\ s_1=0,\ r_2=(-u_*)^{-3/2},\ s_2=-u_*^{-1}$ сводится к системе вида $\mathbf{K}\Phi_5^1$ с $u=-(-u_*)^{-1/2},$ причем -2< u<0.

Форма Φ_2^1 с $u=u_*$ заменой (9) с $r_1=((u_*^2+4)^{1/2}-u_*)/2,\ s_1=0,\ r_2=-1,\ s_2=1$ сводится к системе вида $\mathrm{K}\Phi_3^1$ с $u=u_*((u_*^2+4)^{1/2}-u_*)/2-1<0.$

Замечание 10. Форма $\Phi_3^1 = \begin{pmatrix} u & 0 & 0 \\ 1 & 1 & 0 \end{pmatrix}$ — это $K\Phi_4^1$ при u=1, а при $u\neq 1$ она не является канонической в силу принципа 2. Заменой (9) с $r_1, s_2 = 1$, $s_1 = 0$, $r_2 = (u-1)^{-1}$ Φ_3^1 сводится к $K\Phi_1^1$.

Замечание 11. Каждая $K\Phi^1_i$ $(i=\overline{1,5})$ при помощи перенумерации (14) сводится согласно определению 8 к $K\Phi^{1\Pi}_i$.

В теореме 3 все линейные неособые замены (9) приведены в явном виде. Поэтому условия, гарантирующие сведение системы (2) к соответствующей $K\Phi_i^1$, можно записать непосредственно через коэффициенты системы (25).

Следствие 2. Система (25), в которой $p_1q_2 - p_2q_1 \neq 0$, линейной неособой заменой (9) сводится к $K\Phi^1_i$ ($i=\overline{1,5}$), если пять параметров системы: коэффициент β многочлена P_0 ($\alpha=1$) и элементы p_1,q_1,p_2,q_2 матрицы H удовлетворяют условиям:

 $K\Phi_1^1: 1)\ D>0,\ 2\beta p_2+p_1-q_2+\sigma_*\sqrt{D}=0,\ mor\partial a\ u=\lambda_1^{-1}\lambda_2\neq 0,\ 1;\ 2)\ D>0,\ 2q_1-\beta(p_1-q_2+\sigma_*\sqrt{D})=0,\ mor\partial a\ u=\lambda_1\lambda_2^{-1}\neq 0,\ 1;\ 3)\ D=0,\ q_1=0,\ p_2=0,\ mor\partial a\ u=1;$

 $K\Phi_2^1: \ 1)\ D>0,\ p_1+q_2=0,\ 2\beta p_2+2p_1+\sigma_*\sqrt{D},\ 2q_1-\beta(2p_1+\sigma_*\sqrt{D})\neq 0,\ mor\partial a\ \sigma=1;\ 2)\ D<0,\ p_1+q_2=0,\ mor\partial a\ \sigma=-1;$

 $K\varPhi_{3}^{1}: \ 1) \ D>0, \ p_{1}+q_{2}\neq 0, \ 2\beta p_{2}+p_{1}-q_{2}+\sigma_{*}\sqrt{D}\neq 0, \ 2q_{1}-\beta(p_{1}-q_{2}+\sigma_{*}\sqrt{D})\neq 0, \\ mor\partial a \ u=\lambda_{1}^{-1}\lambda_{2} \ npu \ |\lambda_{1}|>|\lambda_{2}|, \ u=\lambda_{1}\lambda_{2}^{-1} \ npu \ |\lambda_{1}|<|\lambda_{2}|, \ m. \ e. \ 0<|u|<1; \ 2) \ D=0, \\ q_{1}\neq 0, \ 2q_{1}-\beta p_{1}+\beta q_{2}\neq 0, \ mor\partial a \ u=1; \ 3) \ D=0, \ q_{1}=0, \ p_{2}\neq 0, \ \beta\neq 0, \ mor\partial a \ u=1;$

 $K\Phi_4^1$: 1) D = 0, $q_1 \neq 0$, $2q_1 - \beta p_1 + \beta q_2 = 0$; 2) D = 0, $q_1 = 0$, $p_2 \neq 0$, $\beta = 0$;

 $K\Phi_5^1: D < 0, p_1 + q_2 \neq 0, \text{ morda } u = |p_1 + q_2|(p_1q_2 - p_2q_1)^{-1/2}, 0 < u < 2.$

3decv $D = (p_1 - q_2)^2 + 4p_2q_1$, $\lambda_1 = (p_1 + q_2 + \sigma_*\sqrt{D})/2 \neq 0$, $\lambda_2 = (p_1 + q_2 - \sigma_*\sqrt{D})/2 \neq 0$, $\sigma_* = \{ \operatorname{sign}(p_1 - q_2) \ npu \ p_1 \neq q_2; \ 1 \ npu \ p_1 = q_2 \}$.

6 Канонические формы системы (2) в случае l=2

6.1 Линейная эквивалентность систем при 1=2

Утверждение 4. Для системы (2) следующие условия равносильны:

1) l = 2, 2) $\exists k : P_2 \equiv kP_1 \ (a_2 = ka_1, b_2 = kb_1, c_2 = kc_1)$, 3) $\delta_{ab}, \delta_{ac}, \delta_{bc} = 0$.

Доказательство. 1) \Leftrightarrow 2) по определению 5 и предложению 1.

Очевидно, что 2) \Rightarrow 3). Обратно, пусть выполнено 3), тогда, например, $a_1 \neq 0$. Положим $k = a_2/a_1$. Но $a_1b_2 - a_2b_1 = 0$, поэтому $b_2 = kb_1$. Аналогично $c_2 = kc_1$. \square

Утверждение 5. Для системы (2) условие $P_2(x) \equiv 0$ инвариантно относительно любой замены (9) с $r_2 = 0$.

Доказательство. Сделаем в системе (2) с $P_2 \equiv 0$ любую замену (9). Согласно (12) в полученной системе (10)

$$\widetilde{A} = \delta^{-1} \begin{pmatrix} s_2 P_1(r_1, r_2) & s_2(a_1 r_1 s_1 + b_1 \delta_* + c_1 r_2 s_2) & s_2 P_1(s_1, s_2) \\ -r_2 P_1(r_1, r_2) & -r_2(a_1 r_1 s_1 + b_1 \delta_* + c_1 r_2 s_2) & -r_2 P_1(s_1, s_2) \end{pmatrix}.$$
(38)

Если $\widetilde{P}_2\equiv 0$, то $r_2=0$, так как в противном случае обращаются в нуль общие множители, входящие в \widetilde{P}_1 и \widetilde{P}_2 , т.е. $\widetilde{P}_1\equiv 0$. Если же $r_2=0$, то в (38) $\widetilde{P}_2\equiv 0$. \square

Утверждение 6. Любая замена (9) с $r_2 = -s_2 \neq 0$ преобразует систему (2) с $P_2(x) \equiv 0$ в систему (10) с $\widetilde{P}_1 \equiv \widetilde{P}_2$.

Утверждение 6 немедленно вытекает из формулы (38).

В силу утверждения 4 при l=2 найдется такое k, что в (2) $P_2=kP_1$. Поэтому система (2) записывается в одном из следующих двух видов.

$$I) \ b_1 \ge a_1 c_1 : \quad \begin{pmatrix} P_1 \\ P_2 \end{pmatrix} = (\alpha x_1 + \beta x_2) \begin{pmatrix} p_1 x_1 + q_1 x_2 \\ k p_1 x_1 + k q_1 x_2 \end{pmatrix} \qquad \begin{pmatrix} \alpha^2 + \beta^2 \ne 0 \\ p_1^2 + q_1^2 \ne 0 \end{pmatrix}, \tag{39}$$

т. е. $H=\begin{pmatrix}p_1&q_1\\kp_1&kq_1\end{pmatrix}$ и имеет собственные числа $\lambda_1=p_1+kq_1,\ \lambda_2=0.$ Тем самым, (39) – это система (25) из случая l=1, в которой $p_2=kp_1,\ q_2=kq_2$ и $\det H=\delta_{pq}=0.$

Следуя предложению 2, будем считать, что в системе (39), если $\alpha \neq 0$, то $\alpha = 1$ и $P_0 = x_1 + \beta x_2$, а если $\alpha = 0$, то $\beta = 1$ и $P_0 = x_2$.

$$II) b_1^2 < a_1 c_1: \quad \begin{pmatrix} P_1 \\ P_2 \end{pmatrix} = (a_1 x_1^2 + 2b_1 x_1 x_2 + c_1 x_2^2) \begin{pmatrix} 1 \\ k \end{pmatrix}. \tag{40}$$

Замечание 12. Систему (39) можно записывать в виде (40), но вид (39) предпочтительнее, поскольку позволяет использовать результаты, полученные для системы (25).

Предложение 3. Для того чтобы избавиться от неоднозначности, возникающей при вынесении в системе (39) линейного общего множителя P_0 из многочлена P_0 договоримся, если это возможно, выносить такой общий множитель, чтобы в матрице P_0 собственное число P_0 число P_0 на P_0 н

6.2 Построение вырожденных канонических форм при l=2

Будем упрощать систему (39), следуя плану упрощения системы (25).

По теореме 2 произвольная замена (9) сводит систему (25) и, в частности, систему (39) к системе (29) $\widetilde{P} = \left\langle (\widetilde{\alpha}, \widetilde{\beta}), y \right\rangle \widetilde{H}y$, в которой вектор $(\widetilde{\alpha}, \widetilde{\beta})$ и матрица \widetilde{H} определены в (27), но только $\delta_{\widetilde{pq}} = \det \widetilde{H} = 0$.

Выберем замену (9) так, чтобы в системе (29) матрица \widetilde{H} оказалась жордановой, что возможно благодаря формуле (27_2) .

Итак, если $\lambda_1=p_1+kq_1\neq 0$, то замена (9) с $L_1=\begin{pmatrix} 1 & q_1 \\ k & -p_1 \end{pmatrix}$, а если $\lambda_1=0$, то

 $q_1 \neq 0$ и замена (9) с $L_2 = \begin{pmatrix} 1 & 0 \\ k & q_1^{-1} \end{pmatrix}$ преобразует систему (39) в системы (29) следующих двух видов соответственно:

$$\widetilde{\alpha} = \alpha + \beta k, \quad \widetilde{\beta} = \alpha q_1 - \beta p_1, \quad \widetilde{H} = \begin{pmatrix} p_1 + k q_1 & 0 \\ 0 & 0 \end{pmatrix} \quad \text{или} \quad \widetilde{A} = \begin{pmatrix} \lambda_1 \widetilde{\alpha} & \lambda_1 \widetilde{\beta} & 0 \\ 0 & 0 & 0 \end{pmatrix};$$

$$\widetilde{\alpha} = \alpha + \beta k, \quad \widetilde{\beta} = \beta q_1^{-1}, \qquad \widetilde{H} = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} \quad \text{или} \quad \widetilde{A} = \begin{pmatrix} 0 & \widetilde{\alpha} & \widetilde{\beta} \\ 0 & 0 & 0 \end{pmatrix}.$$

$$(41)$$

Таким образом, наличие нулевого собственного числа λ_2 у матрицы H привело к тому, что в системах (41) $\widetilde{P}_2 \equiv 0$.

Далее при помощи замен (9) будем максимально упрощать и нормировать системы (41₁) и (41₂), сохраняя условие $P_2 \equiv 0$ и сводя их, тем самым, к каноническим формам, для которых не выполняется принцип 1.

С учетом утверждения 5 произвольная замена (9) с $r_2=0$ сводит системы (41₁) и (41₂) соответственно к системам

$$\lambda_1 \begin{pmatrix} \widetilde{\alpha}r_1 & 2\widetilde{\alpha}s_1 + \widetilde{\beta}s_2 & (\widetilde{\alpha}s_1 + \widetilde{\beta}s_2)s_1r_1^{-1} \\ 0 & 0 & 0 \end{pmatrix} \quad \mathbf{H} \quad \begin{pmatrix} 0 & \widetilde{\alpha}s_2 & (\widetilde{\alpha}s_1 + \widetilde{\beta}s_2)s_2r_1^{-1} \\ 0 & 0 & 0 \end{pmatrix}. \tag{42}$$

Итак, при l=2 естественным образом возникает понятие вырожденной $K\Phi$.

Определение 9. В случае l=2 систему (2) будем называть вырожденной канонической формой $(BK\Phi^2)$, если она является $K\Phi^2$ в смысле определения 7, в котором принцип 1 заменен условием $P_2\equiv 0$.

Замечание 13. Обобщенная нормальная форма произвольной системы с ВКФ² в качестве невозмущенной части является обобщением нормальной формы Белицкого (см. [7], [14]) на случай, когда невозмущенная часть вырожденная, но не линейная.

СПИСОК вырожденных канонических форм системы (2) в случае l=2:

$$\begin{split} BK\Phi_1^2 &= \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}, \quad BK\Phi_2^2 &= \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix}, \quad BK\Phi_3^2 &= \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}, \\ BK\Phi_4^2 &= \begin{pmatrix} 1 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix}, \quad BK\Phi_5^2 &= \begin{pmatrix} 1 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}. \end{split}$$

Теорема 4. При l=2 система (2) вида (39), (40) линейной неособой заменой (9) сводится к одной из пяти линейно неэквивалентных $BK\Phi^2$.

Доказательство. І) Система (2) имеет вид (39).

- 1) $\lambda_1 = p_1 + kq_1 \neq 0$. Из (39) получена система (41₁), а из нее (42₁).
- ${f 1_1}$) $\widetilde{eta}=0$ ($\widetilde{lpha}
 eq 0$). Тогда (42 $_1$) при $r_1=(\lambda_1\widetilde{lpha})^{-1},\ s_1=0,\ s_2=1$ является ВК Φ_1^2 .
- $\mathbf{1_2}$) $\widetilde{\alpha} = 0$ ($\widetilde{\beta} \neq 0$). Тогда (42₁) при $r_1 = 1$, $s_1 = 0$, $s_2 = (\lambda_1 \widetilde{\beta})^{-1}$ является ВК Φ_2^2 .
- $\mathbf{1_3}$) $\widetilde{\alpha}$, $\widetilde{\beta} \neq 0$. Тогда (42_1) при $r_1 = (\lambda_1 \widetilde{\alpha})^{-1}$, $s_1 = 0$, $s_2 = (\lambda_1 \widetilde{\beta})^{-1}$ является $\mathrm{BK}\Phi_4^2$.
- **2**) $\lambda_1 = p_1 + kq_1 = 0 \ (q_1 \neq 0)$. Из (39) получены системы (41₂) и (42₂).
- ${\bf 2_1}$) $\widetilde{\alpha}=0$ ($\widetilde{\beta}\neq 0$). Тогда (42₂) при $r_1=\widetilde{\beta},\ s_1=0,\ s_2=1$ является ВК Φ^2_3 .
- ${f 2_2})$ $\widetilde{eta}=0$ ($\widetilde{lpha}\neq 0$). Тогда в системе (412) $\widetilde{P}_1=\widetilde{lpha}x_1x_2$. По предложению 3 ситуация 22) возникнуть не может. Она относится к случаю 1).
- ${f 2_3}$) $\widetilde{lpha},\widetilde{eta}\neq 0$. Тогда в (41_2) $\widetilde{P}_1=(\widetilde{lpha}x_1+\widetilde{eta}x_2)x_2$. По предложению 3 ситуация 2_3) возникнуть не может. Она относится к случаю 1).
 - **II**) Система (2) имеет вид (40).

Согласно (12) любая замена (9) сводит (2) с $P_2 = kP_1$ к системе с коэффициентами

$$\widetilde{a}_1 = (s_2 - ks_1)P_1(r_1, r_2)\delta^{-1}, \quad \widetilde{a}_2 = (kr_1 - r_2)P_1(r_1, r_2)\delta^{-1},$$

$$\widetilde{b}_1 = (s_2 - ks_1)(a_1r_1s_1 + b_1(r_1s_2 + r_2s_1) + c_1r_2s_2)\delta^{-1},$$

$$\widetilde{b}_2 = (kr_1 - r_2)(a_1r_1s_1 + b_1(r_1s_2 + r_2s_1) + c_1r_2s_2)\delta^{-1},$$

$$\widetilde{c}_1 = (s_2 - ks_1)P_1(s_1, s_2)\delta^{-1}, \quad \widetilde{c}_2 = (kr_1 - r_2)P_1(s_1, s_2)\delta^{-1}.$$

При $r_2 = kr_1 \ (\delta = r_1(s_2 - ks_1) \neq 0)$ полученная система принимает вид

$$\begin{pmatrix} (a_1 + 2b_1k + c_1k^2)r_1 & 2(a_1s_1 + kb_1s_1 + b_1s_2 + kc_1s_2) & P_1(s_1, s_2)r_1^{-1} \\ 0 & 0 & 0 \end{pmatrix}.$$

При $r_1=(a_1+2b_1k+c_1k^2)^{-1},\ s_1=-(b_1+kc_1)(a_1+2b_1k+c_1k^2)^{-1}(a_1c_1-b_1^2)^{-1/2},\ s_2=(a_1+kb_1)(a_1+2b_1k+c_1k^2)^{-1}(a_1c_1-b_1^2)^{-1/2}$ она является ВК Φ_5^2 . \square

Замечание 14. Формы $\mathbf{B}\Phi_1^2 = \begin{pmatrix} 0 & 1 & 1 \\ 0 & 0 & 0 \end{pmatrix}$ и $\mathbf{B}\Phi_2^2 = \begin{pmatrix} 1 & 0 & -1 \\ 0 & 0 & 0 \end{pmatrix}$ со структурой

 ${\rm BK}\Phi_5^2,\;$ отсутствующие в списке, в силу принципов 2 и 3 каноническими не являются.

Форма В Φ_1^2 заменой (9) с $r_1=1$, $s_1=-1$, $r_2=0$, $s_2=1$ сводится к ВК Φ_2^2 .

Форма В Φ_2^2 заменой (9) с $r_1=1,\ s_1=1/2,\ r_2=0,\ s_2=-1/2$ сводится к ВК $\Phi_4^2.$

Следствие 3. I) Система (39) линейной неособой заменой (9) может быть сведена к $BK\Phi_i^2$ ($i=\overline{1,4}$), если пять параметров системы: коэффициенты α,β общего множителя P_0 , элементы p_1,q_1 матрицы H и коэффициент пропорциональности kудовлетворяют следующим условиям:

 $BK\Phi_1^2$: 1) $\alpha = 1$, $q_1 = \beta p_1$, $kq_1 \neq -p_1$, 2) $\alpha = 0$, $\beta = 1$, $p_1 = 0$, $kq_1 \neq 0$;

 $BK\Phi_2^2$: 1) $\alpha = 1$, $\beta k = -1$, $kq_1 \neq -p_1$, 2) $\alpha = 0$, $\beta = 1$, $p_1 \neq 0$, k = 0;

 $BK\Phi_3^2$: 1) $\alpha=1,\ \beta k=-1,\ kq_1=-p_1,\ 2)$ $\alpha=0,\ \beta=1,\ p_1=0,\ k=0;$ $BK\Phi_4^2$: 1) $\alpha=1,\ \beta k\neq -1,\ kq_1\neq -p_1,\ q_1\neq \beta p_1,\ 2)$ $\alpha=0,\ \beta=1,\ p_1\neq 0,\ k\neq 0,\ kq_1\neq -p_1.$ II) Система (40) линейной неособой заменой (9) сводится к $BK\Phi_5^2$.

6.3 Построение основных и дополнительных К Φ при l=2

Свести системы (41), а с ними вместе системы (39) или (40) к $BK\Phi^2$, вообще говоря, недостаточно с точки зрения последующей нормализации возмущенных систем. Для полноценной нормализации требуется выполнение принципа 1. Поэтому теперь каждую $BK\Phi_i^2$ будем преобразовывать заменой (9) в невырожденную $K\Phi^2$.

Замечание 15. $K\Phi^2$, полученная из $BK\Phi_i^2$, как правило, будет иметь большее число ненулевых элементов, что является естественной "платой" за бо́льшие возможности при последующей нормализации возмущений.

Замечание 16. Специфика случая l=2 такова, что из-за пропорциональности коэффициентов многочленов $P_1,\,P_2$ в системах (39) или (40) принцип 1 в определении канонической формы задействуется в полном объеме, т.е. именно при l=2 актуально требование $P_1\equiv P_2$ (k=1). Но зато принцип 3 целиком теряет свою значимость.

СПИСОК канонических форм системы (2) в случае l=2:

$$K\Phi_1^2 = \begin{pmatrix} 1 & 0 & 0 \\ 1 & 0 & 0 \end{pmatrix}, \quad K\Phi_2^2 = \begin{pmatrix} 1 & 0 & \sigma \\ 1 & 0 & \sigma \end{pmatrix} \quad (\sigma = \pm 1), \quad K\Phi_3^2 = \begin{pmatrix} 1 & -2 & 1 \\ 1 & -2 & 1 \end{pmatrix},$$

$$K\Phi_4^2 = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 1 & 0 \end{pmatrix}; \qquad \qquad \angle K\Phi_2^2 = \begin{pmatrix} 1 & -1 & 0 \\ 1 & -1 & 0 \end{pmatrix}.$$

Теорема 5. Каждая $BK\Phi_i^2$ $(i=\overline{1,5})$ соответствующей линейной неособой заменой (9) сводится к некоторой $K\Phi^2$.

Доказательство. Последовательно для $BK\Phi_1^2,\ldots,BK\Phi_5^2$ будем делать с учетом утверждения 6 замену (9) с $r_2=-s_2\neq 0$ и выбирать остальные ее коэффициенты так, чтобы получить $K\Phi^2$. Пусть $\delta_1=(r_1+s_1)^{-1}$.

ВК Φ_1^2 сводится к системе с $a_1=r_1^2\delta_1,\ b_1=r_1s_1\delta_1,\ c_1=s_1^2\delta_1,$ которая при $r_1=1,$ $s_1=0,\ r_2=-1,\ s_2=1$ является К $\Phi_1^2.$

ВК Φ_2^2 сводится к системе с $a_1=-r_1s_2\delta_1,\ 2b_1=s_2(r_1-s_1)\delta_1,\ c_1=s_1s_2\delta_1,$ которая при $r_1=1,\ s_1=1,\ r_2=2,\ s_2=-2$ является К Φ_2^2 с $\sigma=-1,$ а при $r_1=1,\ s_1=0,$ $r_2=1,\ s_2=-1$ является ДК $\Phi_2^2.$

ВК Φ_3^2 сводится к системе с $a_1=s_2^2\delta_1,\ b_1=-s_2^2\delta_1,\ c_1=s_2^2\delta_1,$ которая при $r_1=1,$ $s_1=1,\ r_2=-2^{1/2},\ s_2=2^{1/2}$ является К $\Phi_3^2.$

ВК Φ_4^2 сводится к системе с $a_1=r_1(r_1-s_2)\delta_1$, $2b_1=(2r_1s_1+r_1s_2-s_1s_2)\delta_1$, $c_1=s_1(s_1+s_2)\delta_1$. которая при $r_1=1$, $s_1=0$, $r_2=-1$, $s_2=1$ является К Φ_4^2 .

ВК Φ_5^2 сводится к системе с $a_1=(r_1^2+s_2^2)\delta_1,\ b_1=(r_1s_1-s_2^2)\delta_1,\ c_1=(s_1^2+s_2^2)\delta_1,$ которая при $r_1=1,\ s_1=1,\ r_2=-1$ $s_2=1$ является К Φ_2^2 с $\sigma=1.$ \square

Замечание 17. Как было показано, $BK\Phi_i^2$ сводятся к $K\Phi_i^2$ для i=1,3,4. А $BK\Phi_2^2$ и $BK\Phi_5^2$ сводятся к $K\Phi_2^2$ соответственно с $\sigma=-1$ и с $\sigma=1$.

Замечание 18. Отсутствующая в списке форма $\Phi_1^2 = \begin{pmatrix} 1 & 1 & 0 \\ 1 & 1 & 0 \end{pmatrix}$ по принципу 2 – не каноническая. Заменой (9) с $r_1=0,\ s_1=1/2,\ r_2=1,\ s_2=-1/2$ она сводится к $\mathrm{BK}\Phi^2_4$ **Замечание 19.** ДК Φ_2^2 с К Φ_2^2 , у которой $\sigma=-1$, связывает не перенумерация, а замена (9) с $r_1,s_1=-2,\ r_2=-4,\ s_2=0.$ При этом К Φ_2^2 по принципу 5b – основная.

ПОЛНЫЙ СПИСОК форм с тремя, четырьмя и шестью ненулевыми элементами

ПОЛНЫЙ СПИСОК форм с тремя, четырьмя и шестью ненулевыми элементам
$$\frac{K\Phi_{1}^{0}}{K} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 1 \end{pmatrix}_{2}, \qquad K\Phi_{1}^{1} = \begin{pmatrix} u & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & u \end{pmatrix}_{3}, \qquad K\Phi_{1}^{2} = \begin{pmatrix} 1 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & u \end{pmatrix}_{4}, \qquad K\Phi_{1}^{1} = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 1 \end{pmatrix}_{4}, \qquad K\Phi_{2}^{1} = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 1 \end{pmatrix}_{5}, \qquad K\Phi_{2}^{1} = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 1 \end{pmatrix}_{5}, \qquad K\Phi_{3}^{1} = \begin{pmatrix} u & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 1 & 0 \end{pmatrix}_{5}, \qquad K\Phi_{5}^{0} = \begin{pmatrix} u & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 1 & 0 \end{pmatrix}_{5}, \qquad K\Phi_{6}^{0} = \begin{pmatrix} u & 0 & 1 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 1 \\ 0 & 0 & 1 \\ 0 & 0 & 1 \end{pmatrix}_{5}, \qquad K\Phi_{5}^{0} = \begin{pmatrix} u & 0 & \sigma \\ 0 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0$$

здесь внизу у каждой матрицы выписан индекс и подчеркнуты симметричные формы.

Часть III

ОНФ систем с вырожденной КФ в невозмущенной части

7 Нормализация систем с ${ m BK}\Phi_1^2$

Пусть в системе (1) невозмущенная часть P(x) линейной неособой заменой сводится к $\mathrm{BK}\Phi_1^2 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$. Будем сразу предполагать, что система (1) имеет вид

$$\dot{x}_1 = x_1^2 + X_1(x_1, x_2), \quad \dot{x}_2 = X_2(x_1, x_2).$$
 (43)

Тогда система (6) запишется в виде

$$(s-3)h_1^{(s-1,p+1-s)} = \widehat{Y}_1^{(s,p+1-s)}, \quad (s-1)h_2^{(s-1,p+1-s)} = \widehat{Y}_2^{(s,p+1-s)} \quad (s=\overline{0,p+1}; \ p \ge 2). \quad (44)$$

Для разрешимости системы (44) необходимо и достаточно выполнения соотношений

$$\widehat{Y}_1^{(0,p+1)} = 0, \quad \widehat{Y}_2^{(0,p+1)} = 0, \quad \widehat{Y}_1^{(3,p-2)} = 0, \quad \widehat{Y}_2^{(1,p)} = 0,$$

при этом коэффициенты $h_1^{(2,p-2)}$ и $h_2^{(0,p)}$ в замене (9) не имеют ограничений.

Используя введенные для уравнений (5) и (7) обозначения, перепишем полученные резонансные связи через коэффициенты системы (4):

$$Y_1^{(0,p+1)} = \widetilde{c}, \quad Y_1^{(3,p-2)} = \widetilde{c}, \quad Y_2^{(0,p+1)} = \widetilde{c}, \quad Y_2^{(1,p)} = \widetilde{c}.$$
 (45)

Теорема 6. Система (43) формально эквивалентна системе (4) с невозмущенной частью $P=(y_1^2,0)$ тогда и только тогда, когда для любого $p\geq 2$ коэффициенты однородных полиномов $Y_i^{(p+1)}$ удовлетворяют четырем резонансным уравнениям (45).

Следствие 4. Pезонансным является единственный набор, состоящий из $Y_1^{(0,p+1)}$, $Y_1^{(3,p-2)}$, $Y_2^{(0,p+1)}$, $Y_2^{(1,p)}$.

Теорема 7. Произвольная система (43) формальной заменой (9) может быть сведена κ ОНФ (4), в которой при любом $p \geq 2$ все коэффициенты $Y_i^{(p+1)}$ (i=1,2) равны нулю, кроме, возможно, четырех коэффициентов из резонансного набора, т. е. любая ОНФ имеет вид:

$$\dot{y}_1 = y_2^2 + \sum_{p=2}^{\infty} (Y_1^{(0,p+1)} y_2^{p+1} + Y_1^{(3,p-2)} y_1^3 y_2^{p-2}), \quad \dot{y}_2 = \sum_{p=2}^{\infty} (Y_2^{(0,p+1)} y_2^{p+1} + Y_2^{(1,p)} y_1 y_2^p).$$

Замечание 20. Любая ОНФ системы (43) имеет жесткую структуру степеней резонансных членов, что является характерным отличием резонансных нормальных форм и, как правило, не выполняется для обобщенных.

8 Нормализация систем с $BK\Phi_2^2$

Пусть в системе (1) невозмущенная часть P(x) линейной неособой заменой сводится к $\mathrm{BK}\Phi_2^2 = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix}$. Будем сразу предполагать, что система (1) имеет вид

$$\dot{x}_1 = x_1 x_2 + X_1(x_1, x_2), \quad \dot{x}_2 = X_2(x_1, x_2).$$
 (46)

Тогда система (6) запишется в виде

$$(s-1)h_1^{(s,p-s)} - h_2^{(s-1,p-s+1)} = \widehat{Y}_1^{(s,p+1-s)}, \ sh_2^{(s,p-s)} = \widehat{Y}_2^{(s,p+1-s)} \quad (s = \overline{0,p+1}; \ p \ge 2). \tag{47}$$

В подсистеме (47_2) при s=0,p+1 имеем

$$\hat{Y}_2^{(0,p+1)} = 0, \qquad \hat{Y}_2^{(p+1,0)} = 0,$$

причем $h_2^{(0,p)}$ свободен, а при $s=\overline{1,p}$ имеем $h_2^{(s,p-s)}=s^{-1}\widehat{Y}_2^{(s,p-s+1)}.$

В подсистеме (47₁) при s=1 имеем $0\cdot h_1^{(1,p-1)}-h_2^{(0,p)}=\widehat{Y}_1^{(1,p+1)}$. Это уравнение однозначно разрешимо за счет $h_2^{(0,p)}$, а $h_1^{(1,p-1)}$ остается свободным. При $s=0,\overline{2,p}$ (47₁) разрешима за счет коэффициентов $h_1^{(s,p-s)}$. А при s=p+1 имеем связь

$$p\widehat{Y}_{1}^{(p+1,0)} + \widehat{Y}_{2}^{(p,1)} = 0.$$

Используя введенные для уравнений (5) и (7) обозначения, перепишем полученные резонансные связи через коэффициенты системы (4):

$$Y_2^{(p+1,0)} = \widetilde{c}, \qquad Y_2^{(0,p+1)} = \widetilde{c}, \qquad pY_1^{(p+1,0)} + Y_2^{(p,1)} = \widetilde{c}.$$
 (48)

Теорема 8. Система (46) формально эквивалентна системе (4) с невозмущенной частью $P=(y_1y_2,0)$ тогда и только тогда, когда для $\forall \, p\geq 2$ коэффициенты однородных полиномов $Y_i^{(p+1)}$ удовлетворяют трем резонансным уравнениям (48).

Следствие 5. Имеются два резонансных набора. В них входят $Y_2^{(0,p+1)}$, $Y_2^{(p+1,0)}$ и либо $Y_1^{(p+1,0)}$, либо $Y_2^{(p,1)}$.

Теорема 9. Произвольная система (46) формальной заменой (9) может быть сведена к $OH\Phi$ (4), в которой при любом $p\geq 2$ все коэффициенты $Y_i^{(p+1)}$ (i=1,2) равны нулю, кроме, возможно, трех коэффициентов из одного из двух имеющихся резонансных наборов, т. е. любая $OH\Phi$ имеет одну из следующих двух структур:

$$\dot{y}_1 = y_2^2 + \sum_{p=2}^{\infty} Y_1^{(p+1,0)} y_1^{p+1}, \quad \dot{y}_2 = \sum_{p=2}^{\infty} (Y_2^{(0,p+1)} y_2^{p+1} + Y_2^{(p+1,0)} y_1^{p+1});$$

$$\dot{y}_1 = y_2^2$$
, $\dot{y}_2 = \sum_{p=2}^{\infty} (Y_2^{(0,p+1)} y_2^{p+1} + Y_2^{(p,1)} y_1^p y_2 + Y_2^{(p+1,0)} y_1^{p+1}).$

9 Нормализация систем с $BK\Phi_3^2$

Пусть в системе (1) невозмущенная часть P(x) линейной неособой заменой сводится к $\mathrm{BK}\Phi_3^2 = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}$. Будем сразу предполагать, что система (1) имеет вид

$$\dot{x}_1 = x_2^2 + X_1(x_1, x_2), \quad \dot{x}_2 = X_2(x_1, x_2).$$
 (49)

Тогда система (6) запишется в виде

$$(s+1)h_1^{(s+1,p-s-1)} - 2h_2^{(s,p-s)} = \widehat{Y}_1^{(s,p+1-s)}, \ (s+1)h_2^{(s+1,p-s-1)} = \widehat{Y}_2^{(s,p+1-s)} \ (s=\overline{0,p+1}). \ (50)$$

В подсистеме (50₂) при s=p,p+1 имеем связи

$$\widehat{Y}_{2}^{(p,1)} = 0, \qquad \widehat{Y}_{2}^{(p+1,0)} = 0,$$

а при $s=\overline{0,p-1}$ имеем $h_2^{(s+1,p-s-1)}=(s+1)^{-1}\widehat{Y}_2^{(s,p+1-s)}$, причем $h_2^{(0,p)}$ свободен.

В подсистеме (50₁) при s=p,p+1 имеем связи

$$\widehat{Y}_1^{(p+1,0)} = 0, \qquad \widehat{Y}_1^{(p,1)} + 2h_2^{(p,0)} = 0,$$

где $h_2^{(p,0)}=p^{-1}\widehat{Y}_2^{(p-1,2)},\,$ т. е. вторая связь имеет вид $p\widehat{Y}_1^{(p,1)}+2\widehat{Y}_2^{(p-1,2)}=0.$

Компоненты $h_1^{(0,p)}$ и $h_2^{(0,p)}$ свободны, так как не входят в систему (50).

Используя введенные для уравнений (5) и (7) обозначения, перепишем полученные резонансные связи через коэффициенты системы (4):

$$Y_1^{(p+1,0)} = \widetilde{c}, \quad Y_2^{(p,1)} = \widetilde{c}, \quad Y_2^{(p+1,0)} = \widetilde{c}, \quad pY_1^{(p,1)} + 2Y_2^{(p-1,2)} = \widetilde{c}.$$
 (51)

Теорема 10. Система (49) формально эквивалентна системе (4) с невозмущенной частью $P=(y_2^2,0)$ тогда и только тогда, когда для любого $p\geq 2$ коэффициенты однородных полиномов $Y_i^{(p+1)}$ удовлетворяют четырем резонансным уравнениям (51).

Следствие 6. Имеются два резонансных набора. В них входят $Y_1^{(p+1,0)}, Y_2^{(p,1)}, Y_2^{(p+1,0)}$ и либо $Y_1^{(p,1)},$ либо $Y_2^{(p-1,2)}$.

Теорема 11. Произвольная система (49) формальной заменой (9) может быть сведена к $OH\Phi$ (4), в которой при любом $p\geq 2$ все коэффициенты $Y_i^{(p+1)}$ (i=1,2) равны нулю, кроме, возможно, четырех коэффициентов из одного из двух имеющихся резонансных наборов, т. е. любая $OH\Phi$ имеет одну из следующих двух структур:

$$\dot{y}_1 = y_2^2 + \sum_{p=2}^{\infty} (Y_1^{(p+1,0)} y_1^{p+1} + Y_1^{(p,1)} y_1^p y_2), \quad \dot{y}_2 = \sum_{p=2}^{\infty} (Y_2^{(p,1)} y_1^p y_2 + Y_2^{(p+1,0)} y_1^{p+1});$$

$$\dot{y}_1 = y_2^2 + \sum_{p=2}^{\infty} Y_1^{(p+1,0)} y_1^{p+1}, \quad \dot{y}_2 = \sum_{p=2}^{\infty} (Y_2^{(p-1,2)} y_1^{p-1} y_2^2 + Y_2^{(p,1)} y_1^p y_2 + Y_2^{(p+1,0)} y_1^{p+1}).$$

Нормализация систем с $BK\Phi_4^2$ 10

Пусть в системе (1) невозмущенная часть P(x) линейной неособой заменой сводится к $BK\Phi_4^2 = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix}$. Будем сразу предполагать, что система (1) имеет вид

$$\dot{x}_1 = x_1^2 + x_1 x_2 + X_1(x_1, x_2), \quad \dot{x}_2 = X_2(x_1, x_2).$$
 (52)

Тогда система (6) запишется в виде

В подсистеме (53₂) при s=0 имеем связь

$$\widehat{Y}_{2}^{(0,p+1)} = 0,$$

причем $h_2^{(0,p)}$ свободен. При $s=\overline{1,p}$ из (53_2) однозначно находятся коэффициенты $h_2^{(s,p-s)}=s^{-1}\sum_{j=1}^s (-1)^{s-j} \widehat{Y}_2^{(j,p+1-j)}$.

Последнее уравнение в (53₂) имеет вид: $ph_2^{(p,0)} = \widehat{Y}_2^{(p+1,0)}$.

Подставляя в него найденный $h_2^{(p,0)}$, получаем вторую связь

$$\sum_{j=1}^{p+1} (-1)^j \widehat{Y}_2^{(j,p+1-j)} = 0.$$

Подставляя теперь
$$h_2^{(s,p-s)}$$
 из (53_2) в (53_1) , получаем систему
$$a_s h_1^{(s-1,p-s+1)} + b_s h_1^{(s,p-s)} = \breve{Y}_1^{(s,p+1-s)} \qquad (s = \overline{0,p+1}), \tag{54}$$

в которой $a_s = s - 3$, $b_s = s - 1$, $\check{Y}_1^{(s,p+1-s)} = \widehat{Y}_1^{(s,p+1-s)} + h_2^{(s-1,p-s+1)}$

Выделим последние p-1 уравнений системы (54) в отдельную подсистему

$$\Theta h_1 = \breve{Y},$$

Выделым носледние
$$p$$
 — 1 уравнения системы (о4) в отдельную подсистему
$$\Theta h_1 = \check{Y},$$
 в оторой $\Theta = \begin{pmatrix} 0 & b_3 & 0 & \dots & 0 & 0 \\ 0 & a_4 & b_4 & \dots & 0 & 0 \\ 0 & 0 & a_5 & \dots & 0 & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & \dots & b_{p-1} & 0 \\ 0 & 0 & 0 & \dots & a_p & b_p \\ 0 & 0 & 0 & \dots & 0 & a_{p+1} \end{pmatrix}$ векторы $h_1 = (h_1^{(2,p-2)}, \dots, h_1^{(p,0)}), \ \check{Y} = (\check{Y}_1^{(3,p-2)}, \dots, \check{Y}_1^{(p+1,0)}).$ Эта система методом Гаусса может быть преобразована в систему $\Theta h_1 = V$

$$\Theta_a h_1 = Y_a, \tag{55}$$

где $\Theta_g=\mathrm{diag}\,\{0,\,a_4,\ldots,a_{p+1}\},\,$ вектор $Y_g=(Y_g^{(3,p-2)},\ldots,Y_g^{(p+1,0)})$ имеет компоненты $Y_g^{(p+1,0)}=\breve{Y}_1^{(p+1,0)},\,\,Y_g^{(s,p+1-s)}=\breve{Y}_1^{(s,p+1-s)}-a_{s+1}^{-1}b_sY_g^{(s+1,p-s)}.$

Очевидно,
$$Y_g^{(s,p+1-s)}=(s-2)^{-1}\sum_{j=s-1}^p (-1)^{j-s+1}(j-1)\breve{Y}_1^{(j+1,p-j)} \quad (s=\overline{p+1,3}).$$

При $s=\overline{p+1,4}$ система (55) однозначно разрешима относительно коэффициентов $h_1^{(p,0)},\dots,h_1^{(3,p-3)},$ а ее первое уравнение (s=3) имеет вид: $0\cdot h_1^{(2,p-2)}=Y_g^{(3,p-2)},$ и в нем $h_1^{(2,p-2)}$ свободен.

Подставляя в него формулы для $Y_g^{(3,p-2)},\ \breve{Y}_1^{(j+1,p-j)},\ h_2^{(j,p-j)},$ получим:

$$\sum_{j=2}^{p} (-1)^{j} (j-1) \widehat{Y}_{1}^{(j+1,p-j)} + \sum_{j=2}^{p} (-1)^{j} \frac{j-1}{j} \sum_{k=1}^{j} (-1)^{j-k} \widehat{Y}_{2}^{(k,p+1-k)} = 0$$

или резонансную связь

$$\sum_{j=2}^{p} (-1)^{j} (j-1) \widehat{Y}_{1}^{(j+1,p-j)} + \sum_{j=1}^{p} (-1)^{j} \sum_{k=j-1}^{p-1} \frac{k}{k+1} \widehat{Y}_{2}^{(j,p+1-j)} = 0.$$

Первые три уравнения системы (54) имеют вид:

$$-h_1^{(0,p)} = \widehat{Y}_1^{(0,p+1)}, \quad -2h_1^{(0,p)} = \widehat{Y}_1^{(1,p)} + h_2^{(0,p)}, \quad -h_1^{(1,p-1)} + h_1^{(2,p-2)} = \widehat{Y}_1^{(2,p+1)} + h_2^{(1,p-1)}.$$

Из первого уравнения однозначно находится $h_1^{(0,p)}$, а за счет свободного $h_2^{(0,p)}$ однозначно разрешимо второе уравнение. В третьем же $h_1^{(1,p-1)}$ или $h_1^{(2,p-2)}$ свободен.

Используя введенные для уравнений (5) и (7) обозначения, перепишем полученные резонансные связи через коэффициенты системы (4):

$$Y_2^{(0,p+1)} = \widetilde{c}, \qquad \sum_{j=1}^{p+1} (-1)^j Y_2^{(j,p+1-j)} = \widetilde{c},$$

$$\sum_{j=2}^p (-1)^j (j-1) Y_1^{(j+1,p-j)} + \sum_{j=1}^p (-1)^j \sum_{k=j-1}^{p-1} \frac{k}{k+1} Y_2^{(j,p+1-j)} = \widetilde{c}.$$
(56)

Теорема 12. Система (52) формально эквивалентна системе (4) с невозмущенной частью $P=(y_1^2+y_1y_2,0)$ тогда и только тогда, когда для любого $p\geq 2$ коэффициенты однородных полиномов $Y_i^{(p+1)}$ (i=1,2) удовлетворяют трем резонансным уравнениям (56).

Следствие 7. В любой резонансный набор входят три коэффициента:

- 1) коэффициент $Y_2^{(0,p+1)}, \ \ 2)$ любой из коэффициентов $Y_2^{(s,p+1-s)} \ \ (1 \le s \le p+1),$
- 3) любой из $Y_1^{(s,p+1-s)}$ $(3 \le s \le p+1)$ или любой из $Y_2^{(s,p+1-s)}$ $(1 \le s \le p+1)$, отличный от выбранного в 2) коэффициента, кроме пары коэффициентов $Y_2^{(1,p)}$ и $Y_2^{(2,p-1)}$, которые не могут входить в резонансный набор одновременно, так как для них $\det \Upsilon^p = 0$.

Теорема 13. Произвольная система (52) формальной заменой (9) может быть преобразована в $OH\Phi$ (4), в которой при любом $p \ge 2$ все коэффициенты $Y_i^{(p+1)}$ (i=1,2) равны нулю, кроме, возможно, трех коэффициентов из произвольно выбранного резонансного набора.

Пример 1. Произвольная система (52) формальной заменой (9) может быть сведена к ОНФ (4), в первом уравнении которой отсутствует возмущение:

$$\dot{y}_1 = y_1^2 + y_1 y_2, \qquad \dot{y}_2 = \sum_{p=2}^{\infty} (Y_2^{(0,p+1)} y_2^{p+1} + Y_2^{(1,p)} y_1 y_2^p + Y_2^{(3,p-2)} y_1^3 y_2^{p-2}).$$

Отметим, что ни в какой ОНФ нельзя гарантированно аннулировать y_2^s $(s \le 3)$, так как любой резонансный набор содержит либо $Y_1^{(s,p+1-s)}$, либо $Y_2^{(s,p+1-s)}$ с $s \ge 3$.

11 Нормализация систем с ${ m BK}\Phi_5^2$

Пусть в системе (1) невозмущенная часть P(x) линейной неособой заменой сводится к $BK\Phi_5^2 = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}$. Будем сразу предполагать, что система (1) имеет вид

$$\dot{x}_1 = x_1^2 + x_2^2 + X_1(x_1, x_2), \quad \dot{x}_2 = X_2(x_1, x_2).$$
 (57)

Тогда система (6) запишется в виде

В зависимости от четности индекса s система (58) распадается на две независимые подсистемы. Поэтому удобно ввести следующие разложения:

$$p = 2r + \mu \quad (r \ge 1, \ \mu \in \{0, 1\}), \quad s = 2\tau + \mu + \nu \quad (-(\nu + \mu)/2 \le \tau \le r, \ \nu \in \{0, 1\}).$$

В результате для любых $r \ge 1, \, \mu \in \{0,1\}$ система (58) принимает вид:

$$(2\tau + \mu + \nu - 3)h_1^{(2\tau + \mu + \nu - 1, 2(r - \tau) + 1 - \nu)} + (2\tau + \mu + \nu + 1)h_1^{(2\tau + \mu + \nu + 1, 2(r - \tau) - 1 - \nu)} - 2h_2^{(2\tau + \mu + \nu, 2(r - \tau) - \nu)} = \widehat{Y}_1^{(2\tau + \mu + \nu, 2(r - \tau) + 1 - \nu)},$$

$$(2\tau + \mu + \nu - 1)h_2^{(2\tau + \mu + \nu - 1, 2(r - \tau) + 1 - \nu)} + (2\tau + \mu + \nu + 1)h_2^{(2\tau + \mu + \nu + 1, 2(r - \tau) - 1 - \nu)} = \widehat{Y}_2^{(2\tau + \mu + \nu, 2(r - \tau) + 1 - \nu)}.$$

$$(58^{\mu})$$

Положив в (58_1^{μ}) $\nu=1$ и в (58_2^{μ}) $\nu=0$, а затем наоборот, для любого $p=2r+\mu$ из системы (58^{μ}) получаем две независимые системы:

$$(2\tau + \mu - 2)h_1^{(2\tau + \mu, 2(r - \tau))} + (2\tau + \mu + 2)h_1^{(2\tau + \mu + 2, 2(r - \tau) - 2)} - 2h_2^{(2\tau + \mu + 1, 2(r - \tau) - 1)} =$$

$$= \widehat{Y}_1^{(2\tau + \mu + 1, 2(r - \tau))} \qquad (-(1 + \mu)/2 \le \tau \le r),$$

$$(2\tau + \mu - 1)h_2^{(2\tau + \mu - 1, 2(r - \tau) + 1)} + (2\tau + \mu + 1)h_2^{(2\tau + \mu + 1, 2(r - \tau) - 1)} = \widehat{Y}_2^{(2\tau + \mu, 2(r - \tau) + 1)} \qquad (59)$$

$$(0 \le \tau \le r);$$

$$(2\tau + \mu - 3)h_1^{(2\tau + \mu - 1, 2(r - \tau) + 1)} + (2\tau + \mu + 1)h_1^{(2\tau + \mu + 1, 2(r - \tau) - 1)} - 2h_2^{(2\tau + \mu, 2(r - \tau))} =$$

$$= \widehat{Y}_1^{(2\tau + \mu, 2(r - \tau) + 1)} \qquad (0 \le \tau \le r),$$

$$(2\tau + \mu)h_2^{(2\tau + \mu, 2(r - \tau))} + (2\tau + \mu + 2)h_2^{(2\tau + \mu + 2, 2(r - \tau) - 2)} = \widehat{Y}_2^{(2\tau + \mu + 1, 2(r - \tau))} \qquad (60)$$

$$(-(1 + \mu)/2 \le \tau \le r).$$

1) Исследование системы (59) при $\mu = 0$ и системы (60) при $\mu = 1$. Система (59) при $\mu = 0$ и система (60) при $\mu = 1$ имеют вид

$$(2\tau - 2)h_1^{(2\tau,2(r-\tau)+\mu)} + (2\tau + 2)h_1^{(2\tau+2,2(r-\tau)-2+\mu)} - 2h_2^{(2\tau+1,2(r-\tau)-1+\mu)} = \widehat{Y}_1^{(2\tau+1,2(r-\tau)+\mu)}$$

$$(0 \le \tau \le r),$$

$$(2(\tau + \mu) - 1)h_2^{(2(\tau+\mu)-1,2(r-\tau)+1-\mu)} + (2(\tau + \mu) + 1)h_2^{(2(\tau+\mu)+1,2(r-\tau)-1-\mu)} =$$

$$= \widehat{Y}_2^{(2(\tau+\mu),2(r-\tau)+1-\mu)} \qquad (-\mu \le \tau \le r).$$

$$(61)$$

При $\tau = \overline{-\mu, r-1}$ из (61_2) однозначно находятся коэффициенты

$$h_2^{(2(\tau+\mu)+1,2(r-\tau)-1-\mu)} = \frac{1}{2(\tau+\mu)+1} \sum_{j=0}^{\tau+\mu} (-1)^{\tau-j+\mu} \widehat{Y}_2^{(2j,2(r-j)+1+\mu)}.$$

Последнее уравнение в (61_2) имеет вид: $(2(r+\mu)-1)h_2^{(2(r+\mu)-1,1-\mu)}=\widehat{Y}_2^{(2(r+\mu),1-\mu)}$. Подставляя в него найденный $h_2^{(2(r+\mu)-1,1-\mu)}$, получаем резонансную связь

$$\sum_{j=0}^{r+\mu} (-1)^j \widehat{Y}_2^{(2j,2(r-j)+1+\mu)} = 0.$$
(62)

Подставляя теперь $h_2^{(2\tau+1,2(r-\tau)-1+\mu)}$ из (61_2) в (61_1) , получаем систему

$$a_{\tau}h_{1}^{(2\tau,2(r-\tau)+\mu)} + b_{\tau}h_{1}^{(2\tau+2,2(r-\tau)-2+\mu)} = \check{Y}_{1}^{(2\tau+1,2(r-\tau)+\mu)} \qquad (\tau = \overline{0,r}), \tag{63}$$

в которой $a_{\tau}=2\tau-2, \ b_{\tau}=2\tau+2, \ \breve{Y}_{1}^{(2\tau+1,2(r-\tau)+\mu)}=\widehat{Y}_{1}^{(2\tau+1,2(r-\tau)+\mu)}+2h_{2}^{(2\tau+1,2(r-\tau)-1+\mu)}.$

Выделим последние r уравнений системы (63) в отдельную подсистему

$$\Theta h_1 = \breve{Y},$$

в которой $\Theta=\begin{pmatrix}0&b_1&0&\dots&0&0\\0&a_2&b_2&\dots&0&0\\0&0&a_3&\dots&0&0\\\vdots&\vdots&\vdots&\ddots&\vdots&\vdots\\0&0&0&\dots&a_{r-1}&b_{r-1}\\0&0&0&\dots&0&a_r\end{pmatrix}$ — двухдиагональная $(r\times r)$ - матрица,

екторы $h_1 = (h_1^{(2,2r-2+\mu)}, \dots, h_1^{(2r,\mu)}), Y = (Y_1^{(3,2r-2+\mu)}, \dots, Y_1^{(2r+1,\mu)}).$

Эта система методом Гаусса может быть преобразована в систему

$$\Theta_g h_1 = Y_g, \tag{64}$$

где $\Theta_g = \operatorname{diag}\{0, a_2, \dots, a_r\}$, вектор $Y_g = (Y_g^{(3,2r-2+\mu)}, \dots, Y_g^{(2r+1,\mu)})$ имеет компоненты $Y_g^{(2r+1,\mu)} = \breve{Y}_1^{(2r+1,\mu)}, \quad Y_g^{(2r+1,2(r-\tau)+\mu)} = \breve{Y}_1^{(2\tau+1,2(r-\tau)+\mu)} - a_{\tau+1}^{-1}b_{\tau}Y_g^{(2\tau+3,2(r-\tau)-2+\mu)}$ $(\tau = \overline{r-1}, \overline{1}).$

Очевидно, $Y_g^{(2\tau+1,2(r-\tau)+\mu)} = \tau^{-1} \sum_{j=\tau}^r (-1)^{j-\tau} j \breve{Y}_1^{(2j+1,2(r-j)+\mu)} \quad (\tau = \overline{r,1}).$

При $\tau=\overline{r,2}$ система (64) однозначно разрешима относительно коэффициентов $h_1^{(4,2r-4+\mu)},\dots,h_1^{(2r,\mu)},$ а ее первое уравнение имеет вид: $0\cdot h_1^{(2,2r-2+\mu)}=Y_g^{(3,2r-2+\mu)},$ и в нем $h_1^{(2,2r-2+\mu)}$ свободен.

Подставляя в это уравнение формулы для $Y_g^{(3,p-2+\mu)},\ \breve{Y}_1^{(2j+1,2(r-j)+\mu)},\ h_2^{(2j+1,2(r-j)-1+\mu)},$ получаем:

$$\sum_{j=1}^{r} (-1)^{j-1} j \widehat{Y}_1^{(2j+1,2(r-j)+\mu)} + 2 \sum_{j=1}^{r-1+\mu} \frac{j}{2j+1} \sum_{k=0}^{j} (-1)^{k+1} \widehat{Y}_2^{(2k,2(r-k)+1+\mu)} = 0$$

или резонансную связь

$$\sum_{j=1}^{r} (-1)^{j-1} j \widehat{Y}_{1}^{(2j+1,2(r-j)+\mu)} + 2 \sum_{j=0}^{r-1+\mu} (-1)^{j+1} \widehat{Y}_{2}^{(2j,2(r-j)+1+\mu)} \sum_{k=j}^{r-1} \frac{k}{2k+1} = 0.$$
 (65)

Первое уравнение системы (63) имеет вид:

$$-2h_1^{(0,2r+\mu)} + 2h_1^{(2,2r-2+\mu)} = \breve{Y}_1^{(1,2r+\mu)}.$$

Оно, очевидно, разрешимо, и коэффициент $h_1^{(0,2r+\mu)}$ (либо $h_1^{(2,2r-2+\mu)}$) свободен.

2) Исследование системы (59) при $\mu = 1$ и системы (60) при $\mu = 0$. Система (60) при $\mu = 0$ и система (59) при $\mu = 1$ имеют вид

$$(2(\tau + \mu) - 3)h_1^{(2(\tau + \mu) - 1, 2(r - \tau) + 1 - \mu)} + (2(\tau + \mu) + 1)h_1^{(2(\tau + \mu) + 1, 2(r - \tau) - 1 - \mu)} - 2h_2^{(2(\tau + \mu), 2(r - \tau) - \mu)} = \widehat{Y}_1^{(2(\tau + \mu), 2(r - \tau) + 1 - \mu)} \qquad (-\mu \le \tau \le r), \qquad (66)$$

$$2\tau h_2^{(2\tau, 2(r - \tau) + \mu)} + (2\tau + 2)h_2^{(2\tau + 2, 2(r - \tau) - 2 + \mu)} = \widehat{Y}_2^{(2\tau + 1, 2(r - \tau) + \mu)} \qquad (0 \le \tau \le r).$$

При $\tau=\overline{0,r-1}$ из (66_2) однозначно находятся коэффициенты $h_2^{(2\tau+2,2(r-\tau)-2+\mu)}=(2\tau+2)^{-1}\sum_{j=0}^{\tau}(-1)^{\tau-j}\widehat{Y}_2^{(2j+1,2(r-j)+\mu)},$ и коэффициент $h_2^{(0,2r+\mu)}$ свободен.

Последнее уравнение в (66_2) имеет вид: $2rh_2^{(2r,\mu)} = \widehat{Y}_2^{(2r+1,\mu)}$.

Подставляя в него найденный $h_2^{(2r,\mu)}$, получаем резонансную связь

$$\sum_{j=0}^{r} (-1)^{j} \widehat{Y}_{2}^{(2j+1,2(r-j)+\mu)} = 0.$$
(67)

Подставляя теперь $h_2^{(2\tau+2,2(r-\tau)-2+\mu)}$ из (66_2) в (66_1) , получаем систему

$$a_{\tau}h_{1}^{(2(\tau+\mu)-1,2(r-\tau)+1-\mu)} + b_{\tau}h_{1}^{(2(\tau+\mu)+1,2(r-\tau)-1-\mu)} = \breve{Y}_{1}^{(2(\tau+\mu),2(r-\tau)+1-\mu)} \qquad (\tau = \overline{-\mu,r}), \quad (68)$$

в которой $\check{Y}_1^{(2(\tau+\mu),2(r-\tau)+1-\mu)} = \widehat{Y}_1^{(2(\tau+\mu),2(r-\tau)+1-\mu)} + 2h_2^{(2(\tau+\mu),2(r-\tau)-\mu)}, \quad a_\tau = 2(\tau+\mu)-3,$ $b_\tau = 2(\tau+\mu)+1.$

Выделим последние $r + \mu$ уравнений системы (68) в отдельную подсистему

$$\Theta h_1 = \breve{Y},$$

в которой
$$\Theta = \begin{pmatrix} a_{1-\mu} & b_{1-\mu} & 0 & \dots & 0 & 0 \\ 0 & a_{2-\mu} & b_{2-\mu} & \dots & 0 & 0 \\ 0 & 0 & a_{3-\mu} & \dots & 0 & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & \dots & a_{r-1} & b_{r-1} \\ 0 & 0 & 0 & \dots & 0 & a_r \end{pmatrix}$$
 – двухдиагональная $(r+\mu)$ - матрица, векторы $h_1 = (h_1^{(1,2r-1+\mu)}, \dots, h_1^{(2(r+\mu)-1,1-\mu)}), \quad \Brightarrow Y = (\Brightarrow Y_1^{(2,2r-1+\mu)}, \dots, \Brightarrow Y_1^{(2(r+\mu),1-\mu)}).$

Данная система однозначно разрешима, поскольку стоящие на главной диагонали коэффициенты $a_{\tau}=2(\tau+\mu)-3\neq 0 \quad (\tau=\overline{1-\mu,r}).$

Первое уравнение в (68) $(\tau=-\mu)$ имеет вид: $h_1^{(1,2r-1+\mu)}=\widehat{Y}_1^{(0,2r+1+\mu)}+2h_2^{(0,2r+\mu)}$ и однозначно разрешимо за счет оставшегося свободным коэффициента $h_2^{(0,2r+\mu)}$.

Используя введенные для уравнений (5) и (7) обозначения, перепишем полученные резонансные связи (65), (62), (67) для $\mu = 0$ и $\mu = 1$ через коэффициенты системы (4):

$$\sum_{j=1}^{r} (-1)^{j-1} j Y_1^{(2j+1,2(r-j))} + 2 \sum_{j=0}^{r-1} (-1)^{j+1} Y_2^{(2j,2(r-j)+1)} \sum_{k=j}^{r-1} \frac{k}{2k+1} = \widetilde{c};
\sum_{j=0}^{r} (-1)^j Y_2^{(2j,2(r-j)+1)} = \widetilde{c}; \qquad \sum_{j=0}^{r} (-1)^j Y_2^{(2j+1,2(r-j))} = \widetilde{c} \qquad (\mu = 0);$$
(69)

$$\sum_{\substack{j=1\\r+1}}^{r} (-1)^{j-1} j Y_1^{(2j+1,2(r-j)+1)} + 2 \sum_{\substack{j=0\\r+1}}^{r} (-1)^{j+1} Y_2^{(2j,2(r-j)+2)} \sum_{k=j}^{r} \frac{k}{2k+1} = \widetilde{c},
\sum_{j=0}^{r} (-1)^{j} Y_2^{(2j,2(r-j)+2)} = \widetilde{c}; \qquad \sum_{j=0}^{r} (-1)^{j} Y_2^{(2j+1,2(r-j)+1)} = \widetilde{c} \qquad (\mu = 1).$$
(70)

Теорема 14. Система (57) формально эквивалентна системе (4) с невозмущенной частью $P=(y_1^2+y_2^2,0)$ тогда и только тогда, когда для любого $p=2r+\mu$ $(r\geq 1,\mu\in\{0,1\})$ коэффициенты однородных полиномов $Y_i^{(p+1)}$ (i=1,2) удовлетворяют трем резонансным уравнениям, а именно:

- 1) при p=2r $(r\geq 1,\,\mu=0)$ коэффициенты $Y_1^{(2\tau+1,2(r-\tau))}$ $(1\leq \tau\leq r),\,\,Y_2^{(2\tau,2(r-\tau)+1)}$ $(0\leq \tau\leq r)$ удовлетворяют уравнениям $(69_1),\,\,(69_2),\,\,a$ коэффициенты $Y_2^{(2\tau+1,2(r-\tau))}$ $(0\leq \tau\leq r)$ удовлетворяют уравнению $(69_3);$
- 2) при p=2r+1 $(r\geq 1,\,\mu=1)$ коэффициенты $Y_1^{(2\tau+1,2(r-\tau)+1)}$ $(1\leq \tau\leq r),$ $Y_2^{(2\tau,2(r-\tau)+2)}$ $(0\leq \tau\leq r+1)$ удовлетворяют уравнениям $(70_1),~(70_2),~$ коэффициенты $Y_2^{(2\tau+1,2(r-\tau)+1)}$ $(0\leq \tau\leq r)$ удовлетворяют уравнению $(70_3).$

Следствие 8. В любой резонансный набор входят три коэффициента.

 $\Pi pu \; p = 2r \; \; (r \geq 1, \; \mu = 0) \;$ – это следующие коэффициенты:

1) любой из $Y_2^{(2\tau,2(r-\tau)+1)}$ $(0 \le \tau \le r);$ 2) любой из $Y_2^{(2\tau+1,2(r-\tau))}$ $(0 \le \tau \le r);$ 3) любой из $Y_1^{(2\tau+1,2(r-\tau))}$ $(1 \le \tau \le r)$ или любой из $Y_2^{(2\tau,2(r-\tau)+1)}$ $(0 \le \tau \le r),$ отличный от выбранного в 1), кроме пары $Y_2^{(0,2r+1)}$ и $Y_2^{(2,2r-1)},$ которые не могут входить в резонансный набор одновременно, поскольку для них $\det \Upsilon^p = 0.$

При p=2r+1 $(r\geq 1,\, \mu=1)$ – это следующие коэффициенты:

1) любой из $Y_2^{(2\tau,2(r-\tau)+2)}$ $(0 \le \tau \le r+1);$ 2) любой из $Y_2^{(2\tau+1,2(r-\tau)+1)}$ $(0 \le \tau \le r);$ 3) любой из $Y_1^{(2\tau+1,2(r-\tau)+1)}$ $(1 \le \tau \le r)$ или любой из $Y_2^{(2\tau,2(r-\tau)+2)}$ $(0 \le \tau \le r+1);$ отличный от выбранного в 1), кроме пары $Y_2^{(0,2r+2)}$ и $Y_2^{(2,2r)}$, которые не могут входить в резонансный набор одновременно, поскольку для них $\det \Upsilon^p = 0.$

Теорема 15. Произвольная система (57) формальной заменой (9) может быть преобразована в $OH\Phi$ (4), в которой при любом $p \geq 2$ все коэффициенты $Y_i^{(p+1)}$ (i=1,2) равны нулю, кроме, возможно, трех коэффициентов из произвольно выбранного резонансного набора, описанного в следствии 8.

Пример 2. Произвольная система (57) формальной заменой (9) может быть сведена к ОНФ (4), которая линейна по y_2 :

$$\dot{y}_1 = y_1^2 + y_1 y_2 + \sum_{r=1}^{\infty} (Y_1^{(2r+1,0)} + Y_1^{(2r+1,1)} y_2) y_1^{2r+1},$$

$$\dot{y}_2 = \sum_{r=1}^{\infty} (Y_2^{(2r+1,0)} y_1 + Y_2^{(2r+2,0)} y_1^2 + Y_2^{(2r,1)} y_2 + Y_2^{(2r+1,1)} y_1 y_2) y_1^{2r}.$$

Часть IV

Заключение

Как отмечалось в части I, процесс нормализации вещественной двумерной системы (1) $\dot{x}_i = P_i(x) + X_i(x)$, в которой $P_i = a_i x_1^2 + 2b_i x_1 x_2 + c_i x_2^2$ – это невозмущенная часть, $X_i = \sum_{p=2}^{\infty} X_i^{(p+1)}(x)$ – возмущение, а $X_i^{(r)}$ – однородный многочлен порядка r (i=1,2), естественным образом распадается на два этапа.

I) На первом этапе при помощи линейных неособых замен (9) упрощается невозмущенная часть системы (1), т.е. векторный однородный квадратичный многочлен $P = (P_1, P_2)$.

В части II множество систем (2) разбивается на девятнадцать линейно неэквивалентных между собой классов. Простейшим представителем каждого класса является каноническая форма (см. определение 7) – аналог жордановой матрицы для линейных систем.

Семейство канонических форм разбивается на три подсемейства в зависимости от степени l общего множителя многочленов P_1 и P_2 (см. определение 5).

Выяснилось, что если P_1 и P_2 не имеют общего множителя (l=0), а это по утверждению 1 равносильно тому, что соответствующий им результант $R \neq 0$, то система (2) может быть сведена к одной из десяти канонических форм: $\mathrm{K}\Phi^0_1 - \mathrm{K}\Phi^0_{10}$. Если P_1 и P_2 имеют общий множитель первой степени, то система (2) сводится к одной из пяти канонических форм: $\mathrm{K}\Phi^1_1 - \mathrm{K}\Phi^1_5$. Наконец, если P_1 и P_2 пропорциональны (l=2), то система (2) сводится к одной из четырех канонических форм: $\mathrm{K}\Phi^2_1 - \mathrm{K}\Phi^2_4$.

Остановимся подробнее на двух моментах.

1) Перенумерация (14) сводит любую $\mathrm{K}\Phi_i^l$, конечно, если она не инвариантна относительно этой замены, к дополнительной канонической форме $\mathrm{K}\Phi_i^{l\Pi}$ (см. определение 8), для которой не выполняется принцип 5 из определения $\mathrm{K}\Phi$.

А при l=2 имеет место другая разновидность дополнительной К Φ : ДК Φ_2^2 согласно замечанию 19 получена из К Φ_2^2 с $\sigma=-1$ линейной заменой, отличной от перенумерации, и имеет свою ДК $\Phi_2^{2\Pi}$.

- 2) В случае l=2 каждая из пяти $K\Phi^2$, если $K\Phi_2^2$ разбить на две формы в зависимости от знака σ , линейно эквивалентна своей вырожденной $K\Phi$ (см. определение 9). Досто-инством $BK\Phi^2$ является ее меньший по сравнению с соответствующей $K\Phi^2$ индекс, что позволяет довольно легко исследовать $OH\Phi$ систем (1) с $BK\Phi^2$ в невозмущенной части. Но отсутствие P_2 не позволяет аннулировать ряд слагаемых в возмущении, что удается сделать при невырожденной $K\Phi$, конечно, если позволяют технические возможности.
- II) Второй этап заключается в том, чтобы из системы (1), невозмущенную часть которой образует одна из $K\Phi^l$ или $BK\Phi^2$, при помощи почти тождественной замены (3) в явном виде получить все обобщенные нормальные формы (см. определение 4).

В части III эта задача решена для систем с $BK\Phi_1^2, \ldots, BK\Phi_5^2$ в невозмущенной части.

Опишем теперь, что сделано с другими $K\Phi_i^l$ или с их близкими аналогами, так как до этой статьи использовалась классификация канонических форм, введенная в [2, § 2], в которой пятый и шестой принципы определения $K\Phi$ не были четко сформулированы.

В случае l=0 ранее исследованы системы (1) со следующими четырьмя формами: с $K\Phi_1^0=\begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}$ — в $[2,\S 6]$, с $K\Phi_2^0=\begin{pmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \end{pmatrix}$ — в $[4,\S 11]$, с $K\Phi_4^{0*}=\begin{pmatrix} 1 & 0 & u_* \\ 0 & 0 & 1 \end{pmatrix}$, отличающейся от $K\Phi_4^0=\begin{pmatrix} u & 0 & 1 \\ 0 & 0 & 1 \end{pmatrix}$ нормировкой, — в $[2,\S 6]$, с $K\Phi_5^0=\begin{pmatrix} u & 0 & \sigma \\ 0 & 1 & 0 \end{pmatrix}$, в которой $\sigma=-\mathrm{sign}\,u$ (R<0), — в $[5,\S 12]$ (к сожалению, $K\Phi_5^0$ с R>0 еще не выявили).

В случае l=1 ранее исследованы системы (1) со следующими четырьмя формами: с $\mathrm{K}\Phi^1_1=\begin{pmatrix}u&0&0\\0&1&0\end{pmatrix}$ — в [2, § 5], с $\mathrm{K}\Phi^1_2=\begin{pmatrix}0&\sigma&0\\1&0&0\end{pmatrix}$ — в [3, § 8], с $\mathrm{K}\Phi^1_3=\begin{pmatrix}u&1&0\\0&1&0\end{pmatrix}$, включая u=-1, — в [3, § 7], с $\mathrm{K}\Phi^1_4=\begin{pmatrix}1&0&0\\1&1&0\end{pmatrix}$ — в [4, § 9].

Таким образом, в одном из случаев получены два набора формально эквивалентных ОНФ. В первом наборе невозмущенная часть представлена $K\Phi_2^1$ с $\sigma=1$, а во втором – формой вида $K\Phi_3^1$, но с u=-1, и эти $K\Phi$ согласно замечанию 7 линейно эквивалентны.

В случае l=2 ранее исследованы системы (1) со следующими тремя формами: с $K\Phi_1^2=\begin{pmatrix}1&0&0\\1&0&0\end{pmatrix}$ — в работе $[2,\,\S\,4],\,$ с $\mathcal{L}K\Phi_2^{2*}=\begin{pmatrix}-1&-1&0\\1&1&0\end{pmatrix},\,$ отличающейся от $\mathcal{L}K\Phi_2^2=\begin{pmatrix}1&-1&0\\1&-1&0\end{pmatrix}$ нормировкой, — в $[4,\,\S\,10],\,$ с $K\Phi_4^2=\begin{pmatrix}0&1&0\\0&1&0\end{pmatrix}$ — в $[2,\,\S\,3].$

Здесь уже в трех случаях получены по два набора формально эквивалентных ОНФ. По теореме 5 $\ {\rm BK}\Phi_i^2$ линейно эквивалентна $\ {\rm K}\Phi_i^2$ (i=1,3,4), $\ {\rm BK}\Phi_2^2$ эквивалентна $\ {\rm K}\Phi_2^2$ с $\sigma=-1$ (и $\ {\rm ДK}\Phi_2^2$), а $\ {\rm BK}\Phi_5^2$ эквивалентна $\ {\rm K}\Phi_2^2$ с $\sigma=1$.

Отметим также, что система (1), исследованная в [4, § 10], – это пока единственная система, невозмущенная часть которой содержит четыре ненулевых слагаемых (ДК Φ_2^{2*}).

Список литературы

- [1] *Басов В. В.* Обобщенная нормальная форма и формальная эквивалентность систем дифференциальных уравнений с нулевым характеристическими числами // Дифференц. уравнения, 2003, т. 39, N 2, с. 154–170.
- [2] *Басов В. В., Скитович А. В.* Обобщенная нормальная форма и формальная эквивалентность двумерных систем с нулевым квадратичным приближением, I // Дифференц, уравнения, 2003, т. 39, N 8, с. 1016–1029.
- [3] *Басов В. В., Скитович А. В.* Обобщенная нормальная форма и формальная эквивалентность двумерных систем с нулевым квадратичным приближением, II // Дифференц. уравнения, 2005, т. 41, N 8, с. 1011–1022.
- [4] *Басов В. В.* Обобщенная нормальная форма и формальная эквивалентность двумерных систем с нулевым квадратичным приближением, III // Дифференц. уравнения, 2006, т. 42, N 3, с. 308–319.
- [5] $Bacos\ B.\ B.$, $\Phiedoposa\ E.\ B.$ Нормализация двумерных систем с невозмущенной частью $(\alpha x_1^2 + x_1x_2, x_1x_2)$ // Труды XII Межд. науч. конф. по дифференц. уравнениям (Еругинские чтения), 2007, с. 24–32.
- [6] *Басов В. В., Федорова Е. В.* Обобщенная нормальная форма и формальная эквивалентность двумерных систем с нулевым квадратичным приближением, IV // Дифференц. уравнения, 2009, т. 45, N 3, с. 297–313.
- [7] Брюно A. Д., Петрович В. Ю. Нормальные формы системы ОДУ // Препринт ИПМ РАН, 2000, N 18.
- [8] $Bacos\ B.\ B.,\ \Phiedomos\ A.\ A.\ Обобщенная нормальная форма двумерных систем ОДУ с линейно-квадратичной невозмущенной частью // Вестник СПбГУ, сер. 1, 2007, вып. 1, с. 13–33.$
- [9] $Брюно\ A.\ Д.$ Аналитическая форма дифференциальных уравнений // Тр. Моск. Матем. о-ва, 1971, т. 25, с. 119–262; 1972, т. 26, с. 7–264.
- [10] *Басов В. В.* Метод нормальных форм в локальной качественной теории дифференц. уравнений: формальная теория нормальных форм. СПб., СПбГУ, 2001. 44 с.
- [11] *Басов В. В.* Метод нормальных форм в локальной качественной теории дифференц. уравнений: аналитическая теория нормальных форм. СПб., СПбГУ, 2002. 100 с.
- [12] Kokubu H., Oka H., Wang D. Linear grading function and further redaction of normal forms // J. Diff. Eq., 1996, v. 132, p. 293–318.
- [13] Сибирский К. С. Введение в алгебраическую теорию инвариантов дифференциальных уравнений // Кишинев "Штиинца," 1982. 168 с.
- [14] $\mathit{Белицкий}\ \Gamma$. Р. Нормальные формы формальных рядов и ростков C^{∞} отображений относительно действия группы // Изв. АН СССР, сер. матем., 1976, т. 40, N 4, с. 855–868.