Episodio 17-Epílogo.

Autovalores y Autovectores.

Departamento de Matemática FIUBA

Definición: Dados $\mathbb{V}-\mathbb{K}$ espacio vectorial y $T\in\mathcal{L}(\mathbb{V})$, un **autovalor** de T es un escalar $\lambda\in\mathbb{K}$ tal que existe $v\in\mathbb{K}^n,\ v\neq 0$, que cumple $T(v)=\lambda v$. Se dice que v es **autovector** de T asociado a λ . Llamamos **autoespacio** de T asociado a λ al subespacio $S_\lambda=\{v\in\mathbb{V},\,T(v)=\lambda v\}$

- La definición no tiene , obviamente, ninguna novedad con respecto a la definición dada para matrices en $\mathbb{K}^{n\times n}$. Más aún todo lo visto para matrices, puede entenderse como un caso particular de esta definición: el espacio vectorial considerado es \mathbb{K}^n y la transformación lineal T(X) = AX.
- ▶ Si λ_0 es autovalor de $T \Rightarrow T \lambda_0 I$ es una transformación lineal no inyectiva.

- Si $\lambda_1, \ldots, \lambda_k$ son autovalores distintos de T asociados respectivamente a los autovectores $\{v_1, \ldots, v_k\}$ Entonces $\{v_1, \ldots, v_k\}$ es l.i.
 - A autovalores distintos corresponden autovectores l.i.
- Como consecuencia de la observación anterior: Si $S_{\lambda_1}, \dots, S_{\lambda_k}$ son autoespacios de T correspondientes a autovalores distintos $\Rightarrow S_{\lambda_1}, \dots, S_{\lambda_k}$ están en suma directa. $S_{\lambda_1} \oplus \dots \oplus S_{\lambda_k} \subseteq \mathbb{V}$.

Ejemplos

- ▶ Sea $\mathbb V$ es un espacio vectorial con Producto Interno y $S \subseteq \mathbb V$ un subespacio de $\mathbb V$, si consideramos $T(v) = proy_S(v) \Rightarrow \lambda = 1$ es autovalor de T asociado al autoespacio S y $\lambda = 0$ es autovalor de T asociado a S^{\perp} .
- Si T es una t.l. no inyectiva, o sea $\dim(\operatorname{Nu}(T)) > 0$, $\lambda = 0$ es autovalor de T y $S_{\lambda=0} = \operatorname{Nu}(T)$.
- ▶ Si consideramos $(D \lambda I)$: $\mathbb{C}^{\infty} \to \mathbb{C}^{\infty}$ por lo visto en la práctica de t.l. que $\text{Nu}((D \lambda I)) = \text{gen}\{e^{\lambda x}\} \Rightarrow 0$ es autovalor de $(D \lambda I)$ y su autoespacio asociado es $S = \text{gen}\{e^{\lambda x}\}$.
- ▶ Entonces, si analizamos el operador $D: \mathbb{C}^{\infty} \to \mathbb{C}^{\infty}$ y buscamos sus autovalores y autovectores, queremos encontrar $\lambda \in \mathbb{R}/\exists y \not\equiv 0, D(y) = \lambda y \Leftrightarrow y' = \lambda y \Leftrightarrow y = ke^{\lambda x}$, para $\lambda \in \mathbb{R}$. Entonces todo $\lambda \in \mathbb{R}$ es autovalor de D y para cada λ la función $ke^{\lambda x}$ es autovector de D.

Si $\mathbb V$ es un espacio de dimensión finita y $T \in \mathcal L(\mathbb V)$ encontrar los autovalores y autovectores de T es muy sencillo. Sea $B = \{v_1, \ v_2, \ \dots, v_n\}$ base de $\mathbb V$, por definición v es un autovector de T asociado al autovalor λ si:

$$T(v) = \lambda v.$$
$$[T(v)]^B = [\lambda v]^B = \lambda [v]^B$$
$$[T]_B^B [v]^B = \lambda [v]^B$$

Entonces:

v es un autovector de T asociado al autovalor $\lambda \iff [v]^B$ es autovector de $[T]_B^B$ asociado al autovalor λ .

Observación:

▶ Si B y B' son bases de \mathbb{V} :

$$[T]_{B}^{B} = M_{B'}^{B}[T]_{B'}^{B'}M_{B}^{B'}$$

Como ya dijimos, $[T]_B^B \sim [T]_{B'}^{B'}$

Entonces los polinomios característicos de estas matrices son iguales y por lo tanto tiene sentido hablar de **polinomio** característico de T.

Definición: Sea $\mathbb V$ un espacio vectorial de dimensión finita y $T: \mathbb V \to \mathbb V$ transformación lineal se llama **polinomio** característico de T a $P_T(\lambda) = det(\lambda I - [T]_B^B)$ donde B es cualquier base de $\mathbb V$.

Definición: Si $T \in \mathcal{L}(\mathbb{V})$ se dice que T es diagonalizable si existe una base de V formada por autovectores de T.

Observaciones:

a. Si $B' = \{w_1, w_2, \dots, w_n\}$ es una base de \mathbb{V} formada por autovectores de $T \in \mathcal{L}(\mathbb{V}), \ T(w_i) = \lambda_i w_i, \ \lambda_i \in \mathbb{K}$.

$$[T]_{B'}^{B'} = \begin{bmatrix} \lambda_1 & 0 & \dots & 0 \\ 0 & \lambda_2 & \dots & 0 \\ \vdots & \vdots & \dots & \vdots \\ 0 & 0 & \dots & \lambda_n \end{bmatrix}$$

Si \mathcal{T} es diagonalizable su representación matricial con respecto a una base de V formada por sus autovectores es una matriz diagonal.

b. Como todas las representaciones matriciales de T con respecto a una base B de $\mathbb V$ son semejantes, entonces T es diagonalizable \Leftrightarrow su representación matricial, $[T]_B^B$, con respecto a cualquier base B de $\mathbb V$ es diagonalizable.

Para calcular autovalores y autovectores de T, usando su representación matricial, la base de entrada y de salida de esa representación matricial debe ser la misma. Comentarios sobre matrices no diagonalizables en $\mathbb{C}^{n\times n}$.

Si una matriz $A \in \mathbb{C}^{n \times n}$ no es diagonalizable es porque existe algún autovalor cuya multiplicidad algebraica no coincide con la multiplicidad geométrica. En ese caso, no podemos encontrar una matriz diagonal D semejante a A. Pero se prueba que sí podemos encontrar una matriz más sencilla, diagonal por bloques, semejante a esa matriz A. Son las llamadas matrices de Jordan que no vamos a estudiar en detalle.

Vamos a ver concretamente el caso en $\mathbb{C}^{3\times3}$. Si A es una matriz de $\mathbb{C}^{3\times3}$ no diagonalizable, se cumple alguno de los siguientes casos: Caso 1:

 $\it A$ tiene un autovalor de multiplicidad algebraica 2 y multiplicidad geométrica $\it 1$.

Llamemos λ_1 al autovalor de multiplicidad algebraica 2 y multiplicidad geométrica 1 y λ_2 al autovalor de A de multiplicidad algebraica 1.

En este caso, podemos probar que
$$A \sim J_1 = \begin{bmatrix} \lambda_1 & 1 & 0 \\ 0 & \lambda_1 & 0 \\ 0 & 0 & \lambda_2 \end{bmatrix}$$
.

O sea, existe Q tal que $A = Q J_1 Q^{-1}$

Buscamos Q tal como la buscamos en el caso de A diagonalizable:

$$A = Q J_1 Q^{-1} \Longleftrightarrow A Q = Q J_1$$

Si explicitamos las columnas de $Q = [V_1|V_2|V_3]$:

$$A[V_1|V_2|V_3] = [V_1|V_2|V_3] \begin{bmatrix} \lambda_1 & 1 & 0 \\ 0 & \lambda_1 & 0 \\ 0 & 0 & \lambda_2 \end{bmatrix}$$

Entonces, igualando columna a columna:

 $AV_1 = \lambda_1 V_1 \Rightarrow V_1$ es autovector de A asociado a λ_1 .

$$AV_2 = \begin{bmatrix} V_1 | V_2 | V_3 \end{bmatrix} \begin{bmatrix} 1 \\ \lambda_1 \\ 0 \end{bmatrix} = V_1 + \lambda_1 V_2 \Rightarrow (A - \lambda_1 I) V_2 = V_1$$

 $AV_3 = \lambda_2 V_3 \Rightarrow V_3$ es autovector de A asociado a λ_2 .

Entonces: construimos la matriz $Q = [V_1|V_2|V_3]$, de la siguiente forma:

Asociado al autovalor simple λ_2 buscaremos su correspondiente autoespacio S_{λ_2} y obtendremos un generador, V_3 .

Buscamos un generador de S_{λ_1} , V_1 , y luego buscamos V_2 , resolviendo el sistema no homogéneo $(A - \lambda_1 I)V_2 = V_1$.

Caso 2:

A tiene un autovalor, λ , de multiplicidad algebraica 3 y multiplicidad geométrica 1.

En este caso, podemos probar que
$$A \sim J_2 = egin{bmatrix} \lambda & 1 & 0 \\ 0 & \lambda & 1 \\ 0 & 0 & \lambda \end{bmatrix}.$$

Otra vez buscamos Q tal que A Q = Q J_2 .

Si $Q = [V_1|V_2|V_3]$:

$$A[V_1|V_2|V_3] = [V_1|V_2|V_3] \begin{bmatrix} \lambda & 1 & 0 \\ 0 & \lambda & 1 \\ 0 & 0 & \lambda \end{bmatrix}$$

Igualando columna a columna otra vez:

 $AV_1 = \lambda V_1 \Rightarrow V_1$ es autovector de A asociado a λ .

$$AV_2 = V_1 + \lambda V_2 \Rightarrow (A - \lambda I)V_2 = V_1.$$

$$AV_3 = V_2 + \lambda V_3 \Rightarrow (A - \lambda I)V_3 = V_2.$$

Entonces, en este caso tenemos también un algoritmo para construir la matriz Q.

Caso 3:

A tiene un autovalor, λ , de multiplicidad algebraica 3 y multiplicidad geométrica 2.

En este caso, podemos probar que $A \sim J_3 = \begin{bmatrix} \lambda & 0 & 0 \\ 0 & \lambda & 1 \\ 0 & 0 & \lambda \end{bmatrix}$.

Otra vez necesitamos encontrar $Q = \left[V_1 | V_2 | V_3 \right]$ tal que :

$$A[V_1|V_2|V_3] = [V_1|V_2|V_3] \begin{bmatrix} \lambda & 0 & 0 \\ 0 & \lambda & 1 \\ 0 & 0 & \lambda \end{bmatrix}$$

Tarea para el hogar