One Last Class...

- Team Challenge
 - Take a look at feedback, not just the grade!
 - Use it as guidance on what to focus as you prepare for final exam
- Final
 - Comprehensive, weighted towards chapters after midterm-2
- Course Evaluations

The light at the end of the tunnel

Complexity Theory

- In **computability theory**, we asked the question: Is it possible to solve a problem P?
 - To answer the question we explored:
 - What is a computation
 - What is a problem
 - What does it mean to solve a problem
- In complexity theory, we ask the question: Is it possible to solve P efficiently?
 - To answer that question we will clarify
 - What does complexity mean
 - What is an efficient solution to a problem

Time Complexity

Definition

• Let M be a deterministic TM that halts on all inputs. The time complexity of M is a function $f: \mathbb{N} \to \mathbb{N}$, where f(n) is the maximum number of steps that M uses on any input of length n.

Intuitive idea

- In determining the time complexity of a TM, we analyze the "algorithm" of TM, i.e., the number of steps that the algorithm uses given an input
- We consider worst-case, i.e., the longest running time of all inputs of a particular length

Example

Input	Decision	No. of Steps
00	Reject	1
011	Reject	2
010	Accept	4

f(n) = n + 1Time complexity of TM

An Easier Approach

- In complexity theory, we rarely need an exact value for a TM's time complexity
 - Usually, we are curious with the long-term growth rate of the time complexity
- Example:
 - Assume the time complexity of a TM is f(n) 3n + 5
 - Doubling the length of the string roughly doubles the worst-case runtime
- The question is....
 - How do we describe the time complexity based on the "information we care about"

Time Complexity and Big-Oh

- We can define complexity classes, based on the time complexity of TMs expressed in terms of Big-Oh notation
 - Constant do not matter
 - Only dominant term matters
- The time complexity class TIME(f(n)) is the set of languages decidable by a TM with runtime O(f(n))
 - Examples
 - TIME(n)
 - TM that decides a regular language
 - TIME(n²)
 - Palindrome

Comparison of Run Times

Size	1	Log n	n	n log n		n³	2 ⁿ	
100	1µs	7µs	100µs	0.7ms	10ms	<1min	40 quadrillion yrs	
200	1µs	8µs	200µs	1.5ms	40ms	<1min	More	
•••								
500	1µs	9µs	500µs	4.5ms	250ms	4 min		
1000	1µs	10µs	1000µs	10ms	1000ms	22 min		

Take Away...

A language L can be solved **efficiently** if there is a TM that decides it in **polynomial time**.

The Class P

P is the class of languages that are decidable in polynomial time on a deterministic single-tape TM. $P = \bigcup_k TIME (n^k)$

Theorem: Let t(n) be a function, where t(n) ≥ n. Then every t(n) nondeterministic single-tape TM has an equivalent 2^{O(t(n))} time deterministic single-tape TM

P corresponds to the class of problems that are **realistically solvable** on a computer

Examples:

Is there a path from node A to node?

Search a substring on a given input string?

How to Prove Languages are in P

- Directly prove the language is in P
 - Build a decider for the language L
 - Prove that the decider runs in time O(n^k)
- Use closure properties.
 - Prove that the language can be formed by appropriate transformations of languages in P
- Reduce the language to a language in P
 - Show how a polynomial-time decider for some language L' can be used to decide L

Proof - Directly

Output unary odd numbers

$$tc_M(n) = n + 2$$

Proof - Closure

Union Operation

Let M_A and M_B be any two arbitrary TMs such that their complexity is polynomial.

Let $M_C = M_A \cup M_B$.

Given a string of length n, test for membership in one language and then, if the input is not in M_A , test for membership in M_B .

 $tc_{M_C}(n) \le tc_{M_A}(n) + tc_{M_B}(n)$, and since both $tc_{M_A}(n)$ and $tc_{M_B}(n)$ in \mathbf{P} , $tc_{M_C}(n)$ is in \mathbf{P} .

Proof - Reduction

$$\mathbf{f_C}(\mathbf{n}) = O(n^k) + O((n^k)^r) = O(\mathbf{n}^{rk})$$

Remember! If I do not know the complexity of a new problem, but I can turn it in polynomial time into another problem known to be solved in polynomial time, then I can be sure that my new problem has a solution in polynomial time, i.e., an efficient solution

Take Away...

- P is the complexity class of yes/no questions that can be solved in polynomial time
 - Problems that can be solved in polynomial time using a deterministic, single-tape TM
- P is closed under many operations, such as union and intersection
- P is closed under polynomial-time reductions

The Class NP

NP is the class of languages that are decidable in polynomial time on a nondeterministic single-tape TM. $NP = U_k NTIME (n^k)$

NP corresponds to the class of problems that are **realistically verified** on a computer

Examples:

Hamiltonian Path

Composite number

A Problem in NP Class

Does a Sudoku grid have a solution?

M = "On input <S>, an encoding of a Sudoku puzzle:
 Nondeterministically guess how to fill in all the squares.
 Deterministically check whether the guess is correct.
 If so, accept; if not, reject."

If we allow for a generalized Sudoku board of arbitrary size:
There are polynomially many grid cells to fill in

Checking the grid takes polynomial time

		6		1			2	
4	3			7		6		
		9		4		8	7	3
				8	4	1		
3				5				9
		5	9	3				
2	8	1		6		5		
		7		9			6	2
	6			2		4		

Take Away...

- Basically,
 - NP problems are known to be efficiently verifiable, but have no known efficient solutions
- P= the class of languages for which membership can be **decided** quickly
- NP = the class of languages for which the membership can be **verified** quickly
- Relationship between P and NP

Why Care if P=NP?

- \circ If P = NP:
 - A huge number of seemingly difficult problems could be solved efficiently
 - Our capacity to solve many problems will scale well with the size of the problems we want to solve
- ∘ If P ≠ NP:
 - Enormous computational power would be required to solve many seemingly easy tasks
 - Our capacity to solve many problems will fail to keep up with our curiosity

The Clay Mathematics Institute has offered a \$1,000,000 prize to anyone who proves or disproves P = NP

NP-Completeness

- A language Q is called NP-Hard if for every language L ∈ NP, L is reducible to Q in polynomial time.
- An NP-hard language that is also in NP is called NP-Complete

To prove that P = NP we only need to find a polynomial algorithm for an NP-Complete problem to achieve this goal

