### **Social Media Analytics**

**Product Preference Networks** 

MSBA, 7<sup>th</sup> Feb, 2022



David Bruton Jr. Centennial Chair Professor of Business
Distinguished Fellow, INFORMS Information Systems Society
University of Texas Distinguished Teaching Professor
Associate Director, Center for Research in e-Commerce
McCombs School of Business, University of Texas at Austin

Email: aniteshb@gmail.com



### **SMA Project: Example #1**



## Your Customers Help Each Others or Do They? An Analysis of an Enterprise-to-Enterprise Forum

- The Mantra: "Let customers help each other"
- Cisco and Dell implemented successfully
- Not a new idea, but difficult to succeed with
- Right kind of (typically social) incentives
- Enterprise to Enterprise (E2E) Community of Texas Instruments (TI)
- Tools and software products
- Both customers and TI employees
- To what extent are customers helping each other?
- What is the role of TI employees?
- Is TI recognizing the right people?

\*MSBA project by Megan, Lydia, Anusha, Diana & Tianjiao



#### The Forum

- http://e2e.ti.com/support/data\_converters/precision\_data\_converters/f/73
  - Python crawler, 24682 messages from one forum
  - Variables: Time, poster, level, points, member type, response to, content (text)
  - What kind of analysis can answer the questions?





#### **TI Forum Network**



- Includes all participants who have posted ≥ three times.
- TI employees (Orange color) are central
- Many self loops
- Top 20 (by degree) are all TI employees









## What Happens if we Remove all TI Employees?



# From the Overall Network Perspective









|                    | Members and TI |               |                 |
|--------------------|----------------|---------------|-----------------|
| Metrics            | Employees      | Top 5 Missing | No TI Employees |
| Vertices           | 1091           | 828           | 636             |
| Edges              | 2092           | 1130          | 654             |
| Average Degree     | 2.8            | 2.4           | 2.1             |
| Average Betweeness | 1217.501       | 50.205        | 0.019           |
| Density            | 0.0012         | 0.00066       | 0.00008         |

### **Sentiment Analysis**

|      | Tauran . | Overall Sentiment                  | _ |
|------|----------|------------------------------------|---|
| tank | Name     | Average Overall Sentiment Identity |   |
| 20   |          | 1.615384615 TI Employee            |   |
| 15   |          | 1.215686275 TI Employee            |   |
| 14   |          | 1.215384615 TI Employee            |   |
| 11   | I        | 1.198019802 TI Employee            |   |
| 7    |          | 1.15862069 TI Employee             |   |
| 13   | I        | 1.14084507 TI Employee             | Ξ |
| 9    |          | 1.1 Ti Employee                    |   |
| 16   |          | 1.1 TI Employee                    |   |
| 12   | I        | 1.094594595 TI Employee            | Ξ |
| 3    | I        | 1.070844687 TI Employee            | Ξ |
| 1    | I        | 1.066204288 TI Employee            | Ξ |
| 10   |          | 1.048076923 TI Employee            | Ξ |
| 6    |          | 1.034161491 TI Employee            |   |
| 4    | I        | 1.019163763 TI Employee            |   |
| 5    | Ī        | 1.016605166 TI Employee            |   |
| 2    | I        | 1.007686932 TI Employee            |   |
| 17   | I        | 1 Ti Employee                      |   |
| 8    |          | 0.975694444 TI Employee            |   |
| 18   | Ī        | 0.936170213 TI Employee            |   |
| 19   | 1        | 0.225 Community Memi               | v |



## **Implications**

- Customers are not helping customers!
- Employee performance appraisal
  - Network visualize the position and calculate the centrality of employees
  - Sentiment Analysis identify which employees give the highest quality responses (e.g., John Doe)
- Improving TI's technical documents
  - Look at posts with negative sentiment scores
  - Find the posts of "isolated members"



# **Predicting Business Outcomes**From User Generated Content



- Can UGC (e.g., product reviews) predict business outcomes such as sales and market share?
- Often users mention competing products in reviews
- Can we extract preference information?
- Can we draw product preference networks from this information?
- Can such networks help predict business outcomes?

## From Product Comparisons to Preference Networks



- "The B&W P7 are high on my favorite list after the H8 by B&O. I also like the new P5 because their sound is almost as good as the P7."
- "I just love the luxury, style and performance of the Audi A6; the Lexus GS300 is a nice reliable car and a very good value, but lacks the coolness factor."



 "I need a super reliable car with the great creature comforts, and while the A6 is a wonderful car, it's quite expensive; the Lexus GS300 isn't exactly the lap of luxury, but really fits the bill for me in every way."

### The Main Idea

- Product preference networks
- Arrows indicate implicit preferences
- Relative desirability of a node
- A product review
  - Must mention two or more products
  - Has two sentiment scores ( $s_1$  and  $s_2$ ) for two products 1 and 2 respectively.
  - Arrow between the two product, tip ends on the product with higher sentiment score
  - Difference in sentiment scores becomes the weight of the arrow
- How to put a score on each node which represents its desirability



# What Metric Can Capture the Relative Importance of a Product?



- Create a network of product preferences
- PageRank is one possibility
- Developed by Larry Page, Serge Brin & Rajiv Motwani at Stanford
- A variation of the good old eigenvector algebra
- Based on how many web pages refer to a particular web page.

### **Problems Galore ...**



Web page x<sub>1</sub>

Links to: Page x<sub>3</sub> Web page x<sub>3</sub>

Links to: None

Web page x<sub>2</sub>

Links to: Page x<sub>3</sub>

- What does the transition matrix look like?
- What will be the PageRank scores? Will there be a problem?

## **Problem Cases (Contd.)**

Web page x<sub>1</sub>

Links to Page x<sub>2</sub>

Web page x<sub>2</sub>

Links to Page x<sub>1</sub>

Web page x<sub>3</sub>

Links to: Pages x<sub>4</sub> & x<sub>5</sub>

> Web page x<sub>4</sub> Links to: Page x<sub>3</sub> & x<sub>5</sub>

Web page x<sub>5</sub> Links to: Pages x<sub>3</sub> & x<sub>4</sub>

What did Brin et al. suggest as a solution?

Source: R. Remus





Replace the original transition matrix A by M = (1-p). A + p.B where 0 (often taken to be a small number, like .05 or .1)

where 
$$B = \frac{1}{n} \cdot \begin{bmatrix} 1 & 1 & \dots & 1 \\ \vdots & \vdots & \ddots & \vdots \\ 1 & 1 & \dots & 1 \end{bmatrix}$$

- What is the interpretation of this version of the transition matrix?
- How does this help?

Source: R. Remus

### Weighted PageRank



- Not all incoming links are created equal
- Different ways to create weights on links
- networkx library in python can calculate weighted PageRank scores

## **Real World Implications**



