

Système à transitions probabilistes et vérification

Structure du cours

- Motivations
- Quelques éléments de contexte : les bases en probabilités
 - Vocabulaire clés, notations importantes
 - Théorèmes et principes requis
- Modèle de chaine de Markov à Temps Discret
- Problèmes de vérification vs quantification
 - Solution 1 : extension de CTL => PTCL
 - Solution 2 : Récompense et intervalle de confiance
- Produit de Chaines de Markov
 - Produit de CTMD endogène (i.e. reste une CMTD)
 - non déterminisme & probabilité (intuition du PMD)

Motivations

Evaluer des objectifs de fiabilité / disponibilité

- Fiabilité : capacité du système à produire un résultat correct
- Pb : incertitude sur l'occurrence de l'activation des fautes et l'apparition de défaillances
- Idée : modéliser l'activation comme un phénomène aléatoire mais quantifiable (e.g. probabilité).
- Objectif:
 - Quels formalismes peuvent être utiles ?
 - Quelles sont les analyses faisables sur de tels modèles ?
- Un petit exemple peut être ?

Vous n'avez pas confiance dans votre régulateur ? Dupliquez le....

- Pb : vous souhaitez intégrer un composant de détection de panneaux de signalisation dans un drone terrestre.
 - Vous ne faites pas trop confiance aux solutions clés en main mais vous ne pouvez pas développer votre solution
 - Vous pouvez en acheter plusieurs ... de différentes sources/ utilisant différentes technologies
- Solution : embarquez N versions différentes de la même fonction et fusionnez les résultats...
- Idée : modéliser l'exécution et l'aléa du système et se munir d'une logique vérifiable pour exprimer le choix de la réponse

Autres application des modèles probabilistes

- Algorithmes reposant sur un choix aléatoire :
 - Synchronisation
 - Diffusion par commérage
 - Sécurité (aléa de génération de défis)
- Intérêt des logiques temporelles (permet d'avoir des expression clés en main pour analyser des propriétés d'intérêt pour la SdF)
- Il faut pouvoir quantifier la vraisemblance des chemins d'exécution les uns par rapports aux autres.

Quelques bases en probabilités ...

Kit de survie pour les probabilité

- Espace de probabilité : (Ω, \mathcal{F}, P)
 - Ω ensemble des « cas possibles »
 - \mathcal{F} ensemble de parties de Ω permettant de définir une mesure (surtout utile si Ω est infini non dénombrable)
 - P mesure dans [0,1] définie sur \mathcal{F} cette fonction doit par extension permettre de « mesurer » toute partie de Ω)
- Evénement = sous ensemble de Ω => P(E)= mesure de E.
- Attention on manipule rarement Ω ... on utilise plutôt le notion de variable aléatoire

Kit de survie pour les probabilité

- Variable aléatoire X (le truc réellement manipulé) Fonction de Ω vers le E domaine mesurable de la variable. $A \subseteq E, P_X(B) = P(X^{-1}(A)) = P(X \in A)$
- En X n'a pas 1 valeur dans E mais un ensemble de valeur de E aura une probabilité d'être la valeur retournée si on consulte X (attention, on part du principe que cette valeur n'est pas consultable => on fait donc des hypothèses dessus)
- Correlations : 2 variables aléatoires X1,X2 booléennes t.q. $P(X1 \in \{true\}) = 0.4, P(X2 \in \{true\}) = 0.4 \Rightarrow P(X1,X2 \in \{(true,true)\}) \in [0,0.4]$ tout dépend de la mesure de $X1^{-1}(\{true\}) \cap X2^{-1}(\{true\})$

Indépendance, probabilités conditionnelles et échantillonnage

- 2 événements de Ω = 2 sous ensembles Questions : est ce que le fait d'appartenir au sous ensemble A change la probabilité d'être aussi dans B ... ~ à mesure de $(A \cap B)$ dans A proportionnellement identique à mesure de B dans Ω == indépendance ...
- Probabilités conditionnelles $P(\cdot | \cdot)$: $P(B | A) \cdot P(A) = P(A \cap B)$
- Independence v2: $P(B) \cdot P(A) = P(A \cap B)$
- Evénements disjoints : $P(A \cup B) = P(A) + P(B)$

De l'automate fini à la chaîne de Markov

Rappel automate fini étiqueté.

- Q: états
- Σ : étiquette des transitions
- Δ : transitions (q,q',a) dans $Q \times Q \times \Sigma \cup \{e\}$ Σ est l'ensemble des étiquette de transition et emodélise l'absence d'étiquette.
- I : ensemble des état initiaux.
- AP : ensemble de variables propositionnelles
- LQ : étiquetage d'état de Q dans Partie(AP).
 (comme pour les structures de Kripke)

Chaine de Markov à temps discret

Machine à état fini + probabilités sur transitions et état initial

CMTD sur D = séquence de variables aléatoire (Xi),i entier tel que

- Chaque Xi est une variable aléatoire dans D
- Xi représente l'état du système à la date discrète i
- P($X_i=v_i \mid X_{i-1}=v_{i-1}, X_{i-2}=v_{i-2},....X_0=v_0$)= P($X_i=v_i \mid X_{i-1}=v_{i-1}$) est une constante (i.e. ne change pas en fonction de i du temps) == chaîne homogène
- Si |D|=n, nous prendrons à partir de maintenant D= {1,...,n}

Matrice de transition

- Distribution de probabilité pour un état « incertain » X, $v=(v_1,\ldots,v_n)$, t.q. $\sum_{1\leq i\leq n}v_i=1$, et P(X=i)=v[i]
- Matrice de transition = $(M_{i,j})_{1 \leq i \leq n, 1 \leq j \leq n}$, tq pour tout k, $P(X_{k+1}=j \,|\, X_k=i)=M_{i,j}$
 - Propriété 1 : si v distribution de probabilité pour l'état X_k , alors tv . M représente la distribution de probabilité pour l'état aléatoire X_{k+1}
 - Propriété 2 : M^k , matrice des probabilités pour k transitions consécutives dans la chaine de Markov (k=0, cas trivial: l)
- Caractérisation d'une chaine : (M, v_0) matrice + distribution initiale v_0

Modélisation de séquence d'exécution par CMTD

- Idée rassembler l'automat fini et la chaine de Markov
 - Surcharge des états et des transitions par les deux étiquetages.
 - Adaptation de la notion d'état initial
- Exécution = chemin = séquence d'états dans le graphe de la chaîne de Markov
- Chaque préfix fini d'un chemin aura une probabilité = probabilité de franchir la séquence fini de transitions indiquée à partir de l'état initial (aléatoire, rappel).

Modélisation de systèmes par chaine de Markov discrète

- Q : ensemble fini d'états préférablement = {1... n},
- $(M_{i,j})_{1 \le i \le n, 1 \le j \le n}$: matrice de probabilité $(M_{i,j})_{1 \le i \le n, 1 \le j \le n}$ telle que $M_{i,j}$ est la probabilité de passer dans l'état j à partir de l'état i,
- Δ : partie de QxQ telle que si $M_{i,j} \neq 0$, alors (i,j) dans Δ ,
- v_0 : distribution de probabilité pour l'état initial,
- AP : un ensemble de variable propositionnelle,
- LQ : une fonction qui associe à chaque état s de Q l'ensemble des variables vrai dans l'état s,

(Au départ nous considèrerons qu'il n'y a pas de symboles attachés aux transitions)

 A partir de maintenant une chaine de Markov discrete sera notée CM et correspondra à cette définition, et les notations ci-dessus seront utilisées pour représenter les attributs correspondant de la chaine : CM.v0 (ou v0 lorsque il n'y a pas d'ambiguïté possible)

Un petit exemple lié à la fiabilité

Variables booléens (Ok, Failed1, Failed2)

Etats et probabilités des transitions

D	LQ	(j,P(Succ=j)
1	{OK}	(1,0.8) (2,0.15) (3,0.5)
2	{Failed1}	(1,0.8) (2,0.2)
3	{Failed2}	(3,1)

$$V0=(1,0,0)$$

$$\begin{pmatrix} 0.8 & 0.15 & 0.05 \\ 0.8 & 0.2 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

Matrice de transition

Chemins d'exécution (formalisation)

- Chaine CM=(Q,M, ∆,v0, AP, Lap, L∑), Q états, I états initiaux, ∆ transitions, Lp étiquetage de probabilités, Lap étiquetage de formules d'état, et L∑ étiquetage d'action des transitions
- Chemin dans CM depuis s = chemin w dans T depuis s = une séquence d'états de Q (i.e. {1,...,n}) finie ou non :

$$w = s . s1.s2. \cdots . sk \cdots$$

- On notera $\{1,..,n\}^{\omega} = Q^{\omega}$ l'ensemble des chemins infinis, et path(w,s,CM) est vrai si w est un chemin partant de s dans le système à transition sous-jacent à CM.
- $Path^{\omega}_{CM}(s) = \{w \mid w \in \{1,...,n\}^{\omega}, path(w, s, CM)\}$ est l'ensemble des exécution de CM à partir de s
- $Path_M^*(s) = \{p \mid p \in \{1,...,n\}^*, path(p,s,M)\}$ ensemble deschemins finis.

Chemins d'exécution, un espace probabiliste (formalisation)

- Cylindre du prefix pref, pref = s . s1.s2......sk, $Cyl_{CM}(pref) = \{pref. p | p \in Q^{\omega}\}$
- On état la définition des cylindres au cas ou pref est infini : $Cyl_{M}(pref) = \{pref\}$

■ Représentation de $Path_M(s)$ sous forme d'arbre (prefix communs

fusionnés)

 Mesurer de probabilité sur un ensemble de chemin = somme dénombrable de la probabilité d'un Cylindre

Mesurer un cylindre : cas pref fini

- Rappel $X_{i,i>0}$, désigne la séquence d'états aléatoire de CM.
- Mesurer la probabilité d'un cylindre =
 - $P(X_{i,i\geq 0} \in Cyl_{CM}(pref))$
 - Equivalent à $P(A \land B)$, A et B respectivement $X_{i,0 \le i < |pref|} = pref$, et $X_{j \ge |perf|} \in Q^\omega$
 - $P(A \wedge B) = P(B|A) \cdot P(A)$, or $\forall j, P((X_{i,i \geq j}) \in Q^{\omega}) = 1$ (car X est forcément dans Q) donc $P(B|A) \cdot P(A) = P(A)$
- Mesure de $X_{i,0 \le i < |pref|} = pref$: $pref = s . s_1 . \cdots . s_k$, $P(Cyl_M(pref) = P(X_0 = s \land X_1 = s1 \land \cdots \land X_k = s_k) = P(X_0 = s \land X_1 = s_1 \land \cdots \land X_{k-1} = s_{k-1}) . P(X_k = s_k | X_{k-1} = s_{k-1}) = P(X_0 = s) . M_{s,s1} . M_{s1,s2} . \cdots . M_{s_{k-1},s_k}$
- Nous avons une mesure de probabilité sur $(Path_M^\omega(s), \Sigma_{Cyl()})$, [KSK76] pour les détails :)... cas pref infini plus dur, ce qu'il faut retenir = construction correct

Hum et en pratique ...

• Que vaut $P(Cyl_{CM}(ok.ok.ok.ok))$?

• Que vaut $P(Cyl_{CM}(ok.failed1.ok.failed1.failed2))$?

Existe-t-il un pref infini dans notre exemple tel que $P(Cyl_{CM}(perf)) = 0$? $P(Cyl_{CM}(perf)) \neq 0$?

Problèmes de vérification vs quantification

Requis si SE301b: https://se206.wp.imt.fr/files/2020/01/se206-2020-hardware.pdf
Tr 16 and follow up ...

Comprendre les formules logiques

 1 formule = 1 contraintes sur l'exécution (identifie les exécutions rendant la formule vrai)

 La formule est « évaluée » soit pour un état d'un système à transition, soit pour une exécution.

Système à transition sous-jacent

- Soit une chaine de Markov CM sont automate sous jacent est : (CM.Q, CM. \triangle , $\{i \mid v_0[j] > 0\}$, CM.AP, CM.LQ)
 - Etats : CM.Q: {1,...,n}
 - Transitions : CM. \triangle , : {(i,j, $M_{i,j}$) / $M_{i,j}$ >0}
 - Etats initiaux : $\{i \mid v_0[j] > 0\}$, CM.∑, CM.AP, CM.LQ, CM.L∑)
 - Variables propositionnelles et étiquetage des états = idem CM
- Remarques:
 - Le système à transition ne contient pas d'état sans transition sortante = aucune impasse.
 - La somme de l'ensemble des valeurs sur les transitions sortantes d'un état vaut 1.
 - Une seule transition par couple d'état.
- On peut verifier des propriétés CTL sur le système à transition sous jacent à une chaine de Markov.

De CTL à PTCL

- CTL => définit un sous ensemble du cylindre démarrant à l'état initial
- Question légitime : quelle serait la probabilité à partir d'un état de ne franchir que les transitions qui permettent de satisfaire une formule CTL donnée (≠ probabilité que la formule soit vrai : i.e. soit 0 ou 1).
- Syntax
 - Φ :: $true | false | a, a \in AP | \Phi \land \Phi | \neg \Phi | P < cstr > \Psi$
 - $< cstr > :: < c | > c | \le c | \ge c, c \in \mathbb{N}$
 - $\Psi :: X\Phi \mid \Phi \cup \Phi \ (opt. \mid \Phi \cup^{\leq c} \Phi)$
- Une seule quantification sur les chemins P...

Que veut dire l'opérateur P : intuition

- Notons $[[\Phi]]_{CM}(s) = \{ w \in Path(CM, s) | w \models \Phi \}$
 - Cet ensemble ne contient que les chemins pour lesquels Φ est satisfaite pour w
 - Cet ensemble peut se définir comme une somme dénombrable de cylindre.
- Pour éviter toute ambiguïté la probabilité sera noté Pr désormais :
 - Théoriquement $Pr(X_{i,i\geq 0}\in [[\Phi]]_{CM}(s)))$ est définie et caractérise la probabilité qu'une exécution de notre chaine satisfasse la propriété.
- $P_{Cstr}(\Phi)$ contraint la valeur de $Pr(X_{i,i\geq 0} \in [[\Phi]]_{CM}(s))$

Sémantique de PCTL

- Sémantique des formules sur les états :
 - État s pour chaine induite de (M, s) avec Lap étiquetage de formules.
 - Pour tout s, $s \models true$ est vrai et $s \models false$ est faux
 - $s \models a$, si a est dans LQ(s).
 - $s \models \Phi 1 \land \Phi 2$, $s \models \Phi 1$ et $s \models \Phi 2$
 - $s \models \neg \Phi, s \models \Phi$ est faux.
- Sémantique sur les chemins $w = s_0 . s_1 . \cdots . s_k . \cdots$, tq on note

$$w_i = s_i . s_{i+1} . \cdots . s_k . \cdots$$
 (e.g. $\forall i > 0, w = s_0 ... s_{i-1} . w_i$ et $w = w_0$)

- $w \models X\Phi$, si $w_1 \models \Phi$
- $w \models \Phi 1 U^{\leq k} \Phi 2$, si il existe $0 \leq j \leq k$ t.q. $w_j \models \Phi 2$, et pour tout i < j, $w_i \models \Phi 1$
- $w \models \Phi 1U\Phi 2$, si il existe j ≥0 t.q. $w_j \models \Phi 2$, et pour tout i <j, $w_i \models \Phi 1$

Sémantique opérateur P

Satisfaction de P :

$$s \models P_{\sim C}(\Phi)$$
 s.s.i. $Pr(X_{i,i>0} \in [[\Phi]]_{CM}(s))) \sim C$

- Par exemple $P_{>5}(ok \cup failed2)$ est vrai pour l'état ok car contient au moins $Cyl_{CM}(ok \cdot ok \cdot failed2^{\omega})$ dont la mesure est 0.8 (rappel état initial = ok avec probabilité 1)
- Remarque contre intuitive : $s \models P_{=1}(\Phi)$ n'implique pas que Φ est vraie à partir de s pour le système à transition sous-jacent pourquoi ? Un exemple sur notre chaine à 3 états ?

Approche de vérification reposant sur les récompenses

- Etiqueter les transitions et variables par un scalaire (identifiant un coût ou un gain) appelé recompense.
- Contraindre pour la valeur moyenne de la récompense de l'état occupé à la fin d'un chemin fini

$$ExpectedReward(X_k) = \sum_{s \in Q} P(X_k = s) . Reward(s)$$

- Contraindre pour un chemin la valeur moyenne accumulée $CumulativeReward(w) = P(w) \cdot \sum_{\sigma \in w} Reward(\sigma)$
- Exemple : Récompense de 1 pour ok, 0 pour les autres états
 - Récompense moyenne pour date k = disponibilité à la date k
 - Récompense cumulative = disponibilité moyenne sur un intervalle
 - Possibilité de calcul [min max] ou probabilité d'un intervalle

Pour aller plus loin sur les récompenses

Sur le site de PRISM, un cours dédié au sujet :

https://www.prismmodelchecker.org/lectures/pmc/07-costs%20rewards.pdf

Produit de chaine de Markov

non déterminisme vs probabilité

Rappel sur produit libre de deux automates

- 2 automates $A_1 = (Q_1, \Delta_1, I_1, AP_1, LQ_1, \Sigma_1, L\Sigma_1)$, $A_2 = (Q_2, \Delta_2, I_2, AP_2, LQ_2, \Sigma_2, L\Sigma_2)$
- on appellera respectivement $\Delta_{1,2}(i)$ l'ensemble des n-uplets : $((q_1,q_2),(q'_1,q'_2)) \text{ tels que } (q_i,q'_i) \in \Delta_i \text{ et } q_{\bar{i}}=q'_{\bar{i}}$
- Produit libre A1xA2 : un automate tel que son espace d'état est Q1xQ2, ses transitions sont dans $\Delta_{1,2}=\Delta_{1,2}(1)\cup\Delta_{1,2}(2)$,
- Les étiquettes sont fixées comme suit chaque élément de $\Delta_{1,2}(i)$ est étiqueté par le résultat de $L\Sigma_i$ appliqué à (q_i,q'_i)
- Idée : peut on faire le produit de deux chaines de Markov et adapter la règle ci-dessus pour définir les probabilité associées aux transitions pas si simple

Produit synchronisé de deux automates

- 2 automate $A_1=(Q_1,\Delta_1,I_1,AP_1,LQ_1,\Sigma_1,L\Sigma_1)$, $A_2=(Q_2,\Delta_2,I_2,AP_2,LQ_2,\Sigma_2,L\Sigma_2)$
- Nous noterons $\Delta_{1/2}$ le plus grand sous ensemble de des transitions de A_1 telle que pour $L\Sigma_1(\Delta_{1/2})\cap\Sigma_2=\varnothing$ (transition dites locales, $\Delta_{2/1}$ est l'équivalent pour A_2)
- $Self_i = \{(q, q) | \in Q_i\}$
- Automate produit
 - Etats $Q_1 \times Q_2$
 - Transitions $\Delta_A \cup \Delta_B \cup \Delta_C$
 - $\Delta_A = \{ ((q_1, q_2), (q_1', q_2'), a) \mid (q_1, q_1', a) \in \Delta_{1/2} \land (q_2 = q_2') \}$ $\Delta_B = \{ ((q_1, q_2), (q_1', q_2'), a) \mid (q_2, q_2', a) \in \Delta_{2/1} \land (q_1 = q_1') \}$ $\Delta_C = \{ ((q_1, q_2), (q_1', q_2'), a) \mid ((q_1, q_1', a) \in \Delta_1 \land (q_2, q_2', a) \in \Delta_2) \}$

Intuition du produit de chaines de Markov synchronisé

- Idée : on ne va pas utiliser les probabilité comme étiquette, on va considérer que chaque transition est étiqueté τ .
- Le produit de 2 chaines = franchir une transition sur chaque chaine

■ Quelles probabilité ? Pour $((i_1,i_2),(j_1,j_2),\tau)$, M_{i_1,j_1} . M_{i_2,j_2}

Résultat du produit sur l'exemple

Exemple d'usage pragmatique

 Modélisation d'une réplique avec probabilité de défaillance f distribution initial (0,1)

Modèle réplication active Produit de 3 copies de cette chaine => état fiables (2,2,1) (2,2,2) (1,2,2) ...

Modèle alternatif

- Et si le produit synchronisé sur une partie des transitions => 1 transition ≠ 1 transition sur chaque chaine
- L'ensemble des chemins ~ chemins du produit synchronisé des systèmes à transition sous jacents.
- Pb : le choix de quel « type » de transition doit être franchie = pas défini
- probabilité(1,1) une infinité de valeurs possibles si chemin
 - bleu*
 - rouge*
 - {blue, rouge}*
- Mélange non-déterminisme
 + probabilités
 => motivation des Processus
 Markoviens

Processus de décision markovien

- PDM= (Q, Init, Step,L) / Q =états, Init=état initial, L étiquetage de Q par ensemble de variable propositionnelles, et Step = « transitions »
- Intuition : chaque action => l'état de destination est une variable aléatoire à valeur dans l'ensemble des états

Transition avec destination aléatoire a

- Chaque « transition » = (a, Dist) s . t . $a \in \Sigma$ et Dist est une distribution de probabilité sur Q
- Il faut connaitre la séquence de « transitions » franchies (donc de symboles pour déterminer la probabilité d'un état!

Petit tour rapide de PRISM

PRISM: https://www.prismmodelchecker.org/

- Outil pour la vérification de PCTL, PTCL*, calcul de moyennes, variances et intervalles min-max pour
 - DTMC
 - CTMC
 - PMD
 -
- Un langage dédié pour décrire les systèmes (textuel, modulaire, concis ...)
- Un moteur de vérification qui supporte
 - Les analyses exactes (symboliques/ paramétriques)
 - Les analyses par simulation (Monte Carlo ou autre)

Logique de l'outil

DSL de spécification PRISM

- Idée : permettre de choisir le formalisme de manière non ambigu entre CMTD (mot clé : dtmc), ou chaine continue ou processus de décision Markovien.
- Syntax unifiée (unique ?) pour décrire les transitions du modèle
- Notion de module (module) (utile pour la composition parallèle)
- Notion de variable : définit l'espace d'état des processus stochastiques
- Notion de constante (const) : définit des paramètres constant lors de l'analyse mais modifiables entre 2 analyses

Les points clés de la syntaxe

dtmc

Type du modèle 1 fois par fichier

module permanentFail

Unité composition \\,

Espace d'état + état initial (e.g. une Distrib particulière)

[]
$$x=1 \rightarrow 0.9$$
: $(x'=1) +0.1$: $(x'=0)$;

{transitions}

[]
$$x=0 \rightarrow 1$$
: $(x'=0)$;

endmodule

Spécification de module supplémentaire

- 2 choix :
 - vous donnez une définition complète de module
 - Vous recopiez un module existant puis réalisez des substitutions sur les noms
 - De variables
 - D'événements de synchro
 - De constantes
 - De module ...
- Comment marche la copie/substitution
 - Module new =old [subst1,... substn] endmodule
 - subst1 : oldname=newname

Copie / substitution en pratique

```
dtmc
module permanentFail1
x: [0..1] init 1;
[] x=1 -> 0.9: (x'=1) +0.1: (x'=0);
[] x=0 -> 1: (x'=0);
endmodule

module permanentFail2
y: [0..1] init 1;
[] y=1 -> 0.9: (y'=1) +0.1: (y'=0);
[] y=0 -> 1: (y'=0);
endmodule
```



```
dtmc
module permanentFail1
x: [0..1] init 1;
[] x=1 -> 0.9: (x'=1) +0.1: (x'=0);
[] x=0 -> 1: (x'=0);
endmodule

module permanentFail2
[x=y]
Endmodule
```


Questions?

Références

- Inspiration pour ce cours pris dans les cours sur le site de PRISM : (et surtout celui ci) https://www.prismmodelchecker.org/lectures/pmc/04-prob%20logics.pdf
- [KSK76]: J. Kemeny, J. Snell, and A. Knapp.
 Denumerable Markov Chains. Springer-Verlag, 2nd edition, 1976.

