انجينئري حساب

خالد خان بوسفرنگی کامسیٹ انسٹیٹیوٹ آف انفار میشن ٹینالوجی، اسلام آباد khalidyousafzai@comsats.edu.pk

عنوان

v	میری پہلی کتاب کادیباچہ
	1 درجهاول ساده تفر
ئى	1.1 نمونه كث
y'=f(x) کا چیو میٹریائی مطلب۔ میدان کی ست اور ترکیب بولر۔	(x,y) 1.2
جحد گی ساوه تفرقی مساوات ِ	
اده تفر قی مساوات اور جزو تکمل	
ده تفرقی مباوات ـ مساوات بر نولی	
خطوطه کی تسلیں	
قیت تفر قی مساوات: حل کی وجودیت اور یکتائیت	1.7 ابتدانی
قي مساوات	2 درجه دوم ساده تفر
خطی د و درجی تفرقی مساوات	. '
عدد ی سروالے متحانس خطی سادہ تفر قی مساوات	
الل	
ے ہے جڑی کمیت کی آزادانہ ارتعاش	
في مساوات	
وجوديت اور يكماني ورونسكي	2.6 حل کی
نس ساده تفرقی مساوات	
. تعاثن ـ گمک	
2 برقرِ إر حال عل كا حيطه ـ عملي كمك	
وار كى نمونيه كثى	2.9 برقی ادو
تعلوم بدلنے کے طریقے سے غیر متجانس خطی سادہ تفرتی مساوات کا حل میں ہدانے کے طریقے سے غیر متجانس خطی سادہ تفرتی	2.10 مقدار
الم قن قي مساوات	3 بلند درجی خطی ساد
.ه رص سادات	
ن حاده همرن مشاوات	- •

غير متجانس خطى ساده تفرقی مساوات	3.3	
سیر بر برای ہوئے ہے طریقے سے غیر متحانس خطی سادہ تفرقی مساوات کاحل	3.4	
, , , , , , , , , , , , , , , , , , , ,		
رقی مساوات	نظامِ تفر	4
قالب اور سمتىي كے بنیادی حقائق	4.1	
سادہ تفر قی مساوات کے نظام بطور انجینئر کی مسائل کے نمونے	4.2	
نظرىيەنظام سادە تفرقى مساوات اور ورونسكى	4.3	
4.3.1 خطی نظام		
متقل عددي سروالے نظام۔ سطح مرحله کی ترکیب	4.4	
نقطہ فاصل کے جانچ کیٹر تال کا مسلمہ معیار۔ استخلام	4.5	
كى تراكيب برائے غير خطى نظام	4.6	
عن در بیب برات بیر قاطعام 4.6.1 منظم حرکت پرایک در جی مساوات میں تباولہ	т.0	
	4.7	
ساده تفر قی مساوات کے غیر متجانس خطمی نظام	4./	
4.7.1 نامعلوم عددی سر کی ترکیب		
10 10 10 10 10 10 10 10 10 10 10 10 10 1	. قبه شا	_
کسل سے سادہ تقر تی مساوات کا حل۔اعلٰی تفاعل سیر سے قبہ بتران		5
تركيب طاقق تسلس		
ليژاندُر مبادات ليژاندُر كثير ركني	5.2 5.3	
مبسوط هاقتی شکل ترکیب فروینیوس	5.3	
5.3.1 عملی استعال	5.4	
مساوات بیش اور میش نقاش	5.4	
311	3.3	
	لا بلاس:	6
لا پلاس بدل ـ الث لا پلاس بدل ـ خطیت	6.1	
277	. .	
وت	اضا فی ثبو	1
	مفيدمعا	ب
اعلی تفاعل کے مساوات	 1.ب	•

میری پہلی کتاب کادیباجیہ

گزشتہ چند برسوں سے حکومتِ پاکستان اعلی تعلیم کی طرف توجہ دے رہی ہے جس سے ملک کی تاریخ میں پہلی مرتبہ اعلیٰ تعلیمی اداروں میں تحقیق کا رجحان پیدا ہوا ہے۔امید کی جاتی ہے کہ یہ سلسلہ جاری رہے گا۔

پاکستان میں اعلیٰ تعلیم کا نظام انگریزی زبان میں رائج ہے۔ دنیا میں تحقیق کام کا بیشتر حصہ انگریزی زبان میں ہی چھپتا ہے۔انگریزی زبان میں ہر موضوع پر لاتعداد کتابیں پائی جاتی ہیں جن سے طلبہ و طالبات استفادہ کر سکتے ہیں۔

جمارے ملک میں طلبہ و طالبات کی ایک بہت بڑی تعداد بنیادی تعلیم اردو زبان میں حاصل کرتی ہے۔ان کے لئے انگریزی زبان میں موجود مواد سے استفادہ حاصل کرنا تو ایک طرف، انگریزی زبان ازخود ایک رکاوٹ کے طور پر ان کے سامنے آتی ہے۔یہ طلبہ و طالبات ذبین ہونے کے باوجود آگے بڑھنے اور قوم و ملک کی بھر پور خدمت کرنے کے قابل نہیں رہتے۔ایسے طلبہ و طالبات کو اردو زبان میں نصاب کی اچھی کتابیں درکار ہیں۔ہم نے قومی سطح پر ایسا کرنے کی کوئی خاطر خواہ کوشش نہیں کی۔

میں برسوں تک اس صورت حال کی وجہ سے پریشانی کا شکار رہا۔ پچھ کرنے کی نیت رکھنے کے باوجود پچھ نہ کر سکتا تھا۔ میرے لئے اردو میں ایک صفحہ بھی لکھنا ناممکن تھا۔ آخر کار ایک دن میں نے اپنی اس کمزوری کو کتاب نہ لکھنے کا جواز بنانے سے انکار کر دیا اور بول یہ کتاب وجود میں آئی۔

یہ کتاب اردو زبان میں تعلیم حاصل کرنے والے طلبہ و طالبات کے لئے نہایت آسان اردو میں لکھی گئی ہے۔ کوشش کی گئی ہے۔ کوشش کی گئی ہے۔ کوشش کی گئی ہے۔ کوشش کی گئی ہے کہ اسکول کی سطح پر نصاب میں استعال ستعال کئے جائیں۔ جہاں ایسے الفاظ موجود نہ سے وہاں روز مرہ میں استعال ہونے والے الفاظ چنے گئے۔ تکنیکی الفاظ کی چنائی کے وقت اس بات کا دہان رکھا گیا کہ ان کا استعال دیگر مضامین میں بھی ممکن ہو۔

کتاب میں بین الا توامی نظامِ اکائی استعال کی گئے۔ اہم متغیرات کی علامتیں وہی رکھی گئی ہیں جو موجودہ نظامِ تعلیم کی نصابی کتابوں میں رائج ہیں۔ یوں اردو میں لکھی اس کتاب اور انگریزی میں اسی مضمون پر لکھی کتاب پڑھنے والے طلبہ و طالبات کو ساتھ کام کرنے میں دشواری نہیں ہو گی۔

امید کی جاتی ہے کہ یہ کتاب ایک دن خالصتاً اردو زبان میں انجنیئر نگ کی نصابی کتاب کے طور پر استعال کی جائے گی۔اردو زبان میں الیکٹریکل انجنیئر نگ کی مکمل نصاب کی طرف یہ پہلا قدم ہے۔

اس کتاب کے پڑھنے والوں سے گزارش کی جاتی ہے کہ اسے زیادہ سے زیادہ طلبہ و طالبات تک پہنچانے میں مدد دیں اور انہیں جہاں اس کتاب میں غلطی نظر آئے وہ اس کی نشاندہی میری ای-میل پر کریں۔میں ان کا نہایت شکر گزار ہوں گا۔

اس کتاب میں تمام غلطیاں مجھ سے ہی ڈلی ہیں البتہ اسے درست بنانے میں بہت لوگوں کا ہاتھ ہے۔ میں ان سب کا شکر یہ ادا کرتا ہوں۔ یہ سلسلہ ابھی جاری ہے اور کمل ہونے یر ان حضرات کے تاثرات یہاں شامل کئے جائیں گے۔

میں یہاں کامسیٹ یونیورسٹی اور ہائر ایجو کیشن کمیشن کا شکریہ ادا کرنا چاہتا ہوں جن کی وجہ سے ایسی سر گرمیاں ممکن ہوئیں۔

خالد خان يوسفر کی

28 اكتوبر 2011

باب6

لايلاس تبادله

لا پلاس بدل کی ترکیب سے ابتدائی قیمت (سرحدی قیمت) تفرقی مساوات حل کیے جاتے ہیں۔ یہ ترکیب تین قدم پر مشتمل ہے۔

- پہلا قدم: ابتدائی قیمت (سرحدی قیمت) تفرقی مساوات کا لاپلاس بدل لیتے ہوئے سادہ ضمنی مساوات حاصل کی جاتی ہے۔
 - دوسرا قدم: ضمنی مساوات کو خالصتاً الجبرائی طور پر حل کیا جاتا ہے۔
 - تيسرا قدم: ضمنى مساوات كے حل كا الف لا پلاس بدل ليتے ہوئے اصل حل حاصل كيا جاتا ہے۔

یوں لاپلاس بدل تفرقی مساوات کے مسئلے کو سادہ الجبرائی مسئلہ میں تبدیل کرتا ہے۔ تیسرے قدم پر الف لاپلاس بدل حاصل کرتے ہوئے عموماً ایس جدول کا سہارہ لیا جاتا ہے جس میں تفاعل اور تفاعل کے الف لاپلاس بدل درج ہوں۔

انحینری میں لاپلاس بدل کی ترکیب اہم کردار ادا کرتی ہے، بالخصوص ان مسائل میں جہاں جبری تفاعل غیر استمراری ہو، مثلاً جب جبری تفاعل کچھ وقفے کے لئے کار آمد ہو یا جبری تفاعل غیر سائن نما دہراتا تفاعل ہو۔

اب تک غیر متجانس مساوات کا عمومی عل حاصل کرتے ہوئے پہلے مطابقی متجانس مساوات کا حل اور پھر غیر متجانس مساوات کا مخصوص حل حاصل کیا جاتا رہا۔ لا پلاس بدل کی ترکیب میں عمومی عل ایک ہی بار میں حاصل ہوتا ہے۔اسی طرح لا پلاس بدل استعال کرتے ہوئے ابتدائی قیمت (سرحدی قیمت) مسائل کے حل میں عمومی حل حاصل کرنے کے بعد ابتدائی (سرحدی) شرائط پر کرنے کی ضرورت پیش نہیں آتی چونکہ حل بے شرائط شامل ہوتے ہیں۔

بابـــ6.لاپلاسس تبادله

6.1 لايلاسبدل-الك لايلاسبدل-خطيت

t فرض کریں کہ تفاعل f(t) تمام $t \geq 0$ پر معین ہے۔ ہم f(t) کو e^{-st} سے ضرب دیتے ہوئے، $t \geq 0$ تمام کی ساتھ، $t \geq 0$ تا $t \geq 0$ تمام کی ساتھ، $t \geq 0$ تا $t \geq 0$ تکمل کیتے ہیں۔ اگر ایسا تمل موجود ہو تو یہ $t \geq 0$ پر منحسر ہو گا للذا اس کو $t \geq 0$ کی سکتا ہے۔

(6.1)
$$F(s) = \int_0^\infty e^{-st} f(t) dt$$

تفاعل F(s) کو تفاعل f(t) کا لاپلاس بدلf(t)کہا جاتا ہے اور اس کو F(s) سے ظاہر کیا جاتا ہے۔

(6.2)
$$F(s) = \mathcal{L}(f) = \int_0^\infty e^{-st} f(t) dt$$

ے حصول کو لاپلاس تبادلہ F(s) کے جسول کو f(t)

 $f(t) = \mathcal{L}^{-1}(F)$ کا الٹ لاپلاس بدل 3 ہیں جے $\mathcal{L}^{-1}(F)$ سے ظاہر کیا جاتا ہے۔ $f(t) = \mathcal{L}^{-1}(F)$

علامت نه سي

اصل تفاعل کو چھوٹے لاطین حرف تبھی سے ظاہر کیا جاتا ہے جبکہ لاپلاس بدل کو اس حرف تبھی کی بڑی صورت سے ظاہر کیا جاتا ہے جبکہ لاپلاس بدل کو اسی حرف تبھی کی بڑی صورت سے ظاہر کیا جاتا ہے۔ یوں (f(s) کا لاپلاس بدل (G(s) ہو گا۔

مثال 6.1: تفاعل f(t)=1 ، جہاں $0 \ge t$ ہے، کا لاپلاس بدل مساوات 6.2 ہے بذریعہ تکمل حاصل کرتے ہیں۔

$$\mathcal{L}(f) = \mathcal{L}(1) = \int_0^\infty e^{-st} \, \mathrm{d}t = -\frac{1}{s} e^{-st} \bigg|_0^\infty$$

Laplace transform¹ Laplace transformation² inverse Laplace transform³

ہو گا جو s>0 کی صورت میں درج ذیل ہو گا۔

$$\mathcal{L}(1) = \frac{1}{s}$$

کمل 6.2 کی علامت پر آسائش ضرور ہے لیکن اس پر مزید غور کی ضرورت ہے۔اس کمل کا وقفہ لا متناہی ہے۔ایسے کمل کو غیر مناسب تکمل ⁴ کہتے ہیں اور حزب تعریف، اس کی قیت درج ذیل اصول کے تحت حاصل کی جاتی ہے۔

$$\int_0^\infty e^{-st} f(t) dt = \lim_{T \to \infty} \int_0^T e^{-st} f(t) dt$$

یوں اس مثال میں اس آسائش علامت کا مطلب درج ذیل ہے۔

$$\int_0^\infty e^{-st} \, dt = \lim_{T \to \infty} \int_0^T e^{-st} \, dt = \lim_{T \to \infty} \left[-\frac{1}{s} e^{-sT} + \frac{1}{s} e^0 \right] = \frac{1}{s}, \quad (s > 0)$$

اس پورے باب میں تمل کی یہی علامت استعال کی جائے گی۔

مثال $\mathcal{L}(f)$ قاعل $f(t)=e^{at}$ جہاں $t\geq 0$ اور a متقل ہے کا لاپلاس بدل $f(t)=e^{at}$ وریافت کریں۔

حل:مساوات 6.2 سے

$$\mathcal{L}(e^{at}) = \int_0^\infty e^{-st} e^{at} dt = \left. \frac{1}{a-s} e^{-(s-a)t} \right|_0^\infty$$

ملتا ہے۔اب اگر a>0 ہو (یعنی a کی قیمت a کی قیمت a سے زیادہ چننی گئی ہو۔) تب درج ذیل حاصل ہو گا۔

$$\mathcal{L}(e^{at}) = \frac{1}{s-a}$$

بابـــ6.لاپلاسس تبادله

اگرچہ ہم بالکل اسی طرز پر دیگر تفاعل کے لاپلاس بدل بذریعہ تکمل حاصل کر سکتے ہیں، حقیقت میں لاپلاس تبادلہ کے ایس کئی خواص ہیں جنہیں استعال کرتے ہوئے دیگر لاپلاس بدل نہایت عمدگی کے ساتھ حاصل کیے جا سکتے ہیں۔ لاپلاس تبادلہ کی ایک خاصیت خطیت ہے جس سے مراد درج ذیل ہے۔

مسکلہ 6.1: لاپلاس تبادلہ کی خطیت لاپلاس تبادلہ نظمی عمل ہے۔ یوں ایسے تفاعل f(t) اور g(t) ، جن کے لاپلاس بدل موجود ہوں، کے عمومی مجموعے کا لابلاس بدل درج ذیل ہو گا جہاں g(t) اور g(t) مستقل ہیں۔

$$\mathcal{L}[af(t) + bg(t)] = a\mathcal{L}[f(t)] + b\mathcal{L}[g(t)]$$

ثبوت : لايلاس تبدله كى تعريف سے درج ذيل لكھتے ہيں۔

$$\mathcal{L}[af(t) + bg(t)] = \int_0^\infty e^{-st} [af(t) + bg(t)] dt$$

$$= a \int_0^\infty e^{-st} f(t) dt + b \int_0^\infty e^{-st} g(t) dt$$

$$= a \mathcal{L}[f(t)] + b \mathcal{L}[g(t)]$$

مثال 6.3: آئیں تفاعل $f(t) = \cosh at$ کا لاپلاس بدل مسلہ 6.1 اور مثال 6.2 کی مدد سے لکھیں۔ چونکہ $\cosh at = \frac{1}{2}(e^{at} + e^{-at})$

$$\mathcal{L}(\cosh at) = \frac{1}{2}\mathcal{L}(e^{at}) + \frac{1}{2}\mathcal{L}(e^{-at}) = \frac{1}{2}\left(\frac{1}{s-a} + \frac{1}{s+a}\right) = \frac{s}{s^2 - a^2}$$
 جو گا جہاں $s > a \ge 0$ پینا گیا ہے۔

مثال 6.4: آئیں تفاعل $at=\frac{1}{2}(e^{at}-e^{-at})$ کا لاپلاس بدل حاصل کریں۔چوککہ $\sinh at=\frac{1}{2}(e^{at}-e^{-at})$ ہناہ خطیت سے تفاعل کا لاپلاس بدل درج ذیل ہو گا۔

$$\mathcal{L}(\sinh at) = \frac{1}{2}\mathcal{L}(e^{at}) - \frac{1}{2}\mathcal{L}(e^{-at}) = \frac{1}{2}\left(\frac{1}{s-a} - \frac{1}{s+a}\right) = \frac{a}{s^2 - a^2}$$

مثال 6.5: $\cos \omega t$ اور $\sin \omega t$ کویں۔

اور $\sin \omega t = \frac{1}{2j}(e^{j\omega t}-e^{-j\omega t})$ اور $\cos \omega t = \frac{1}{2}(e^{j\omega t}+e^{-j\omega t})$ کاری برل ماصل کرتے ہیں۔

$$\mathcal{L}(\cos \omega t) = \frac{1}{2}\mathcal{L}(e^{j\omega t}) + \frac{1}{2}\mathcal{L}(e^{-j\omega t}) = \frac{1}{2}\left(\frac{1}{s-j\omega} + \frac{1}{s+j\omega}\right) = \frac{s}{s^2 + \omega^2}$$

$$\mathcal{L}(\sin \omega t) = \frac{1}{2j}\mathcal{L}(e^{j\omega t}) - \frac{1}{2j}\mathcal{L}(e^{-j\omega t}) = \frac{1}{2j}\left(\frac{1}{s-j\omega} - \frac{1}{s+j\omega}\right) = \frac{\omega}{s^2 + \omega^2}$$

جدول 6.1 میں چند اہم بنیادی تفاعل اور ان کے لاپلاس بدل دیے گئے ہیں۔اس جدول میں دیے لاپلاس بدل جانے کے بعد ہم تقریباً ان تمام تفاعل کے بدل، لاپلاسی خواص سے حاصل کر پائیں گے، جو ہمیں درکار ہوں گے۔

جدول 6.1 میں پہلا، دوسرا اور تیسرا کلیہ چوتھ کلیے سے اخذ کیے جا سکتے ہیں جبکہ چوتھا کلیہ از خود پانچویں کلیہ میں مساوات 5.93 استعال کرتے ہوئے n=n=1 کیھ کر حاصل کیا جا سکتا ہے، جہاں n غیر منفی $n \geq 1$ عدد صحیح ہے۔ یانچواں کلیہ، لایلاس بدل کی تعریف مساوات 6.2

$$\mathcal{L}(t^a) = \int_0^\infty e^{-st} t^a \, \mathrm{d}t$$

میں st = x پر کرتے ہوئے مساوات 5.91 کے استعال سے حاصل کرتے ہیں۔

$$\mathcal{L}(t^{a}) = \int_{0}^{\infty} e^{-x} \left(\frac{x}{s}\right)^{a} \frac{dx}{s} = \frac{1}{s^{a+1}} \int_{0}^{\infty} e^{-x} x^{a} dx = \frac{\Gamma(a+1)}{s+1}, \quad (s > 0)$$

بابـ6. لا پلاسس تب دله

 $\mathcal{L}(f)$ اوران کے لاپلاس بدل f(t) اوران کے لاپلاس بدل

$\mathcal{L}(f)$	f(t)	شار	$\mathcal{L}(f)$	f(t)	شار
$\frac{s}{s^2+\omega^2}$	$\cos \omega t$	7	$\frac{1}{s}$	1	1
$\frac{\omega}{s^2+\omega^2}$	$\sin \omega t$	8	$\frac{1}{s^2}$	t	2
$\frac{s}{s^2-a^2}$	cosh at	9	$\frac{2!}{s^3}$	t^2	3
$\frac{a}{s^2 - a^2}$	sinh at	10	$\frac{n!}{s^{n+1}}$	$(n=1,2,\cdots)$	4
$\frac{s-a}{(s-a)^2+\omega^2}$	$e^{at}\cos\omega t$	11	$\frac{\Gamma(a+1)}{s^{a+1}}$	(a>0)	5
$\frac{\omega}{(s-a)^2+\omega^2}$	$e^{at}\sin\omega t$	12	$\frac{1}{s-a}$	e^{at}	6

s منتقلی

تفاعل f(t) کا لاپلاس بدل جانے ہوئے تفاعل $e^{at}f(t)$ کا لاپلاس بدل درج ذیل مسئلہ کی مدد سے فوراً لکھا جا سکتا ہے۔

$$\mathcal{L}[e^{at}f(t)]=F(s-a)$$
ن کو الٹ لا پلاس بدل کی صورت میں بھی لکھا جا سکتا ہے لیمن $e^{at}f(t)=\mathcal{L}^{-1}[F(s-a)]$

$$s-a$$
 پر کرتے ہوئے: الوپلاس بدل کے تکمل مساوات 6.2 میں s کی جگہ $s-a$ پر کرتے ہوئے: $f(s-a)=\int_0^\infty e^{-(s-a)t}f(t)\,\mathrm{d}t=\int_0^\infty e^{-st}e^{at}f(t)\,\mathrm{d}t=\mathcal{L}[e^{at}f(t)]$

ملتا ہے۔اگر کسی s>k کے لئے f(s) موجود ہو لینی اس کی قیمت محدود ہو تب f(s) کے لئے کے ہوتوں ہو گا۔ اس کلیے کے دونوں اطراف کا الٹ لا پلاس بدل لینے سے مسئلے کی دوسری مساوات حاصل ہوتی ہے۔

مثال 6.6: قصری ارتعاش

جدول 6.1 میں $\cot \omega$ اور $\sin \omega t$ کے بدل کو استعال کرتے ہوئے جدول میں گیارہ اور بارہ شار پر دیے $\sin \omega t$ کی مدد سے فوراً لکھا جا سکتا ہے۔

$$\mathcal{L}[e^{at}\cos\omega t] = \frac{s-a}{(s-a)^2 + \omega^2} \qquad \mathcal{L}[e^{at}\sin\omega t] = \frac{\omega}{(s-a)^2 + \omega^2}$$

انہیں استعال کرتے ہوئے درج ذیل کا الٹ لایلاس بدل حاصل کریں۔

$$\mathcal{L}(f) = \frac{4s + 24}{s^2 + 4s + 104}$$

حل:اس کو در کار صورت

$$f = \mathcal{L}^{-1} \left[\frac{4(s+1) + 2(10)}{(s+1)^2 + 10^2} \right] = 4\mathcal{L}^{-1} \left[\frac{s+1}{(s+1)^2 + 10^2} \right] + 2\mathcal{L}^{-1} \left[\frac{10}{(s+1)^2 + 10^2} \right]$$

میں لاتے ہوئے الٹ لایلاس بدل لکھتے ہیں

$$f = e^{-t} (4\cos 10t + 2\sin 10t)$$

جے شکل 6.1 میں دکھایا گیا ہے۔یہ قصری ارتعاش کو ظاہر کرتی ہے۔

لا پلاس بدل کی وجو دیت اور یکتائی

شكل 6.1: قصرى ارتعاش (مثال 6.6)

بابـــ6.لايلاس تبادله

حواليه

- [1] Coddington, E. A. and N. Levinson, Theory of Ordinary Differential Equations. Malabar, FL: Krieger, 1984.
- [2] Ince, E. L., Ordinary Differential Equations. New York: Dover, 1956.
- [3] Watson, G. N., A Treatise on the Theory of Bessel Functions. 2nd ed. Cambridge: University Press, 1944.