Final Exam: Question 3

You are required to write code to create a decision tree (DT) model using the above dataset (Question 1). In order to achieve the task, you are going to cover the following steps:

- Importing required libraries
- Loading Data
- Feature Selection
- Splitting Data
- Building Decision Tree Model
- Evaluating Model
- Visualizing Decision Trees

Step 1: Importing required libraries

```
# Load libraries
import pandas as pd
from sklearn.tree import DecisionTreeClassifier # Import Decision Tree Classifier
from sklearn import tree
from sklearn.model_selection import train_test_split # Import train_test_split function
from sklearn import metrics
```


Step 2: Loading the dataset

- i. Perform the code below to create a feature for the Change of price/ index for the stocks and index as follows:
 - a. Maybank MBB
 - b. RHB
 - c. KLCI Kuala Lumpur Composite Index
 - d. DJI Dow Jone Index
 - e. SNP S&P 500 Index

```
MBB1 = MBB.iloc[:, 0:2]
CIMB1= CIMB.iloc[:, 0:2]
RHB1 = RHB.iloc[:, 0:2]
KLCI1 = KLCI.iloc[:, 0:2]
DJI1 = DJI.iloc[:, 0:2]
SNP1 = SNP.iloc[:, 0:2]
for i in range(1, len(MBB1)):
    MBB1.loc[i, 'Change'] = MBB1.loc[i-1, 'close'] - MBB1.loc[i, 'close']
print(MBB1)
for i in range(1, len(CIMB1)):
    CIMB1.loc[i, 'Change'] = CIMB1.loc[i-1, 'close'] - CIMB1.loc[i, 'close']
print(CIMB1)
for i in range(1, len(RHB1)):
    RHB1.loc[i, 'Change'] = RHB1.loc[i-1, 'close'] - RHB1.loc[i, 'close']
print(CIMB1)
for i in range(1, len(KLCI1)):
    KLCI1.loc[i, 'Change'] = KLCI1.loc[i-1, 'close'] - KLCI1.loc[i, 'close']
print(KLCI1)
for i in range(1, len(DJI1)):
    DJI1.loc[i, 'Change'] = DJI1.loc[i-1, 'close'] - DJI1.loc[i, 'close']
print(DJI1)
for i in range(1, len(SNP1)):
    SNP1.loc[i, 'Change'] = SNP1.loc[i-1, 'close'] - SNP1.loc[i, 'close']
print(SNP1)
```

```
MBB
                  close
            date
                            Change
     2020-03-09
                   8.24
                               NaN
     2020-03-06
                   8.50
                         0.260000
     2020-03-05
                   8.53
                         0.030000
                   8.47
     2020-03-04
                          0.059999
     2020-03-03
                   8.41
                          0.060000
1237 2015-03-16
                   9.09
                          0.070000
1238 2015-03-13
                   9.10
                         0.010000
1239 2015-03-12
                   9.12
                         0.020000
1240 2015-03-11
                   9.09
                          0.030000
1241 2015-03-10
                   9.23
                         -0.139999
[1242 rows x 3 columns]
            date
                  close
                          Change
     2020-03-09
                   4.20
                            NaN
     2020-03-06
                   4.44
                           -0.24
     2020-03-05
                   4.50
                           -0.06
                   4.54
                           -0.04
     2020-03-04
     2020-03-03
                   4.50
                           0.04
                             . . .
1238 2015-03-16
                   5.91
                            0.05
     2015-03-13
                           -0.01
                            0.07
1240 2015-03-12
                   5.85
1241 2015-03-11
                   5.80
                            0.05
1242 2015-03-10
                   5.95
                           -0.15
[1243 rows x 3 columns]
                  close
                          Change
     2020-03-09
                   4.20
                            NaN
     2020-03-06
                   4.44
                           -0.24
     2020-03-05
                           -0.06
                   4.50
     2020-03-04
                   4.54
                           -0.04
     2020-03-03
                   4.50
                            0.04
1238 2015-03-16
                   5.91
                            0.05
1239 2015-03-13
                   5.92
                           -0.01
1240 2015-03-12
                   5.85
                            0.07
1241 2015-03-11
                   5.80
                            0.05
1242 2015-03-10
                   5.95
                           -0.15
[1243 rows x 3 columns]
```

```
Change
           date
                       close
     2020-03-09
                1424.160034
                                    NaN
     2020-03-06
                 1483.099976
                              -58.939941
     2020-03-05
                1491.030029
                              -7.930054
                1489.949951
                               1.080078
     2020-03-04
                1478.640015
     2020-03-03
                              11.309937
1221 2015-03-16
                1780.540039
                               7.329956
1222 2015-03-13 1781.750000
                              -1.209961
1223 2015-03-12 1786.869995
                              -5.119995
1224 2015-03-11 1778.160034
                               8.709961
1225 2015-03-10 1789.729980 -11.569946
[1226 rows x 3 columns]
           date
                        close
                                    Change
     2020-03-09
                 23851.019531
                 25864.779297
     2020-03-06
                              -2013.759766
     2020-03-05
                 26121.279297
                               -256.500000
                 27090.859375
     2020-03-04
                               -969.580078
     2020-03-03
                25917.410156
                               1173.449219
1254 2015-03-16 17977,419922
                               -128.339844
1255 2015-03-13 17749.310547
                                228.109375
1256 2015-03-12
                17895.220703
                                -145.910156
1257 2015-03-11 17635.390625
                                259.830078
1258 2015-03-10 17662.939453
                                -27.548828
[1259 rows x 3 columns]
                       close
           date
                                  Change
     2020-03-09
                2746.560059
     2020-03-06
                2972.370117
                              -225.810059
     2020-03-05
                 3023.939941
                              -51.569824
                 3130.120117
                              -106.180176
     2020-03-04
     2020-03-03
                3003.370117
                              126.750000
1254 2015-03-16
                2081.189941
                               -6.909912
1255 2015-03-13
                 2053.399902
                               27.790039
1256 2015-03-12
                 2065.949951
                               -12.550049
1257 2015-03-11 2040.239990
                               25.709961
1258 2015-03-10 2044.160034
                               -3.920044
```

[1259 rows x 3 columns]

Step 2: Loading the dataset (Continued from previous slide)

- ii. Perform the following code to create a "movement" column. The value of the features as follows:
 - a. No Change
 - b. Rise
 - c. Drop

```
def f(row):
    if row['Change'] > 0:
        val = 'Rise'
    elif row['Change'] < 0:
        val = 'Drop'
    else:
        val = 'No Change'
    return val

MBB1['MBB_Movement'] = MBB1.apply(f, axis=1)
CIMB1['CIMB1_Movement'] = CIMB1.apply(f, axis=1)
RHB1['RHB1_Movement'] = RHB1.apply(f, axis=1)
KLCI1['KLCI1_Movement'] = KLCI1.apply(f, axis=1)
DJI1['DJI1_Movement'] = DJI1.apply(f, axis=1)
SNP1['SNP1_Movement'] = SNP1.apply(f, axis=1)</pre>
```

```
MBB
            date
                  close
                            Change MBB Movement
                                       No Change
      2020-03-09
                    8.24
                               NaN
      2020-03-06
                    8.50 -0.260000
                                            Drop
      2020-03-05
                    8.53 -0.030000
                                            Drop
      2020-03-04
                    8.47
                          0.059999
                                            Rise
      2020-03-03
                    8.41
                          0.060000
                                            Rise
      2015-03-16
                    9.09
                                            Rise
1238 2015-03-13
                    9.10 -0.010000
                                            Drop
                    9.12 -0.020000
1239 2015-03-12
                                            Drop
1240 2015-03-11
                    9.09
                         0.030000
                                            Rise
1241 2015-03-10
                    9.23 -0.139999
                                            Drop
 [1242 rows x 4 columns]
            date
                  close
                          Change CIMB1 Movement
      2020-03-09
                             NaN
                                       No Change
                    4.20
      2020-03-06
                    4.44
                           -0.24
                                            Drop
      2020-03-05
                    4.50
                           -0.06
                                            Drop
      2020-03-04
                    4.54
                           -0.04
                                            Drop
                    4.50
      2020-03-03
                            0.04
                                            Rise
                             . . .
                    5.91
                            0.05
                                            Rise
      2015-03-16
      2015-03-13
                    5.92
                           -0.01
                                            Drop
                    5.85
                            0.07
                                            Rise
1240 2015-03-12
 1241 2015-03-11
                    5.80
                            0.05
                                            Rise
 1242 2015-03-10
                    5.95
                           -0.15
                                            Drop
 [1243 rows x 4 columns]
  RHB
                     close
                             Change
                                    RHB1 Movement
      2020-03-09
                  5.47000
                                NaN
                                         No Change
      2020-03-06
                  5.70000 -0.23000
                                              Drop
      2020-03-05
                  5.71000
                           -0.01000
                                              Drop
      2020-03-04
                  5.71000
                                         No Change
                  5.64000
      2020-03-03
                            0.07000
                                              Rise
      2015-03-16
                  7.26511
                            0.03740
                                              Rise
     2015-03-13
                                              Rise
                  7.19966
                            0.06545
                  7.23706
 1240 2015-03-12
                           -0.03740
                                              Drop
 1241 2015-03-11 7.34926 -0.11220
                                              Drop
 1242 2015-03-10
                  7.38666 -0.03740
                                              Drop
[1243 rows x 4 columns]
```


Step 2: Loading the dataset (Continued from previous slide)

iv. Perform the following code to drop the unnecessary features:

```
MBB2 = MBB1.drop(['close', 'Change'], axis=1)
CIMB2 = CIMB1.drop(['close', 'Change'], axis=1)
RHB2 = RHB1.drop(['close', 'Change'], axis=1)
KLCI2 = KLCI1.drop(['close', 'Change'], axis=1)
DJI2 = DJI1.drop(['close', 'Change'], axis=1)
SNP2 = SNP1.drop(['close', 'Change'], axis=1)
```

```
date KLCI1 Movement
                                     KLC12
            date MBB Movement
                                          2020-03-09
                                                          No Change
     2020-03-09
                    No Change
                                          2020-03-06
                                                                Drop
     2020-03-06
                          Drop
                                         2020-03-05
                                                                Drop
     2020-03-05
                          Drop
                                         2020-03-04
                                                                Rise
     2020-03-04
                          Rise
                                          2020-03-03
                                                                Rise
     2020-03-03
                          Rise
                                    1221 2015-03-16
                                                                Rise
1237 2015-03-16
                          Rise
                                    1222 2015-03-13
                                                                Drop
1238 2015-03-13
                          Drop
                                    1223 2015-03-12
                                                               Drop
1239 2015-03-12
                          Drop
                                    1224 2015-03-11
                                                                Rise
1240 2015-03-11
                          Rise
                                    1225 2015-03-10
                                                                Drop
1241 2015-03-10
                          Drop
                                     [1226 rows x 2 columns]
[1242 rows x 2 columns]
                                                date DJI1 Movement
            date CIMB1 Movement
CIMB2
                                          2020-03-09
                                                         No Change
                       No Change
     2020-03-09
                                         2020-03-06
                                                              Drop
     2020-03-06
                            Drop
                                          2020-03-05
                                                              Drop
     2020-03-05
                            Drop
                                         2020-03-04
                                                              Drop
     2020-03-04
                            Drop
                                          2020-03-03
                                                               Rise
                            Rise
     2020-03-03
                                                                - - -
                                    1254 2015-03-16
                                                              Drop
                            Rise
1238 2015-03-16
                                    1255 2015-03-13
                                                               Rise
1239 2015-03-13
                            Drop
                                    1256 2015-03-12
                                                              Drop
1240 2015-03-12
                            Rise
                                    1257 2015-03-11
                                                              Rise
1241 2015-03-11
                            Rise
                                     1258 2015-03-10
                                                              Drop
1242 2015-03-10
                            Drop
                                     [1259 rows x 2 columns]
[1243 rows x 2 columns]
                                    SNP2
                                                date SNP1_Movement
            date RHB1 Movement
                                                         No Change
                                          2020-03-09
     2020-03-09
                      No Change
                                          2020-03-06
                                                              Drop
     2020-03-06
                           Drop
                                         2020-03-05
                                                              Drop
     2020-03-05
                           Drop
                                          2020-03-04
                                                              Drop
     2020-03-04
                      No Change
                                          2020-03-03
                                                               Rise
     2020-03-03
                           Rise
                                                                . . .
                            - - -
                                    1254 2015-03-16
                                                              Drop
1238 2015-03-16
                           Rise
                                    1255 2015-03-13
                                                               Rise
1239 2015-03-13
                           Rise
                                    1256 2015-03-12
                                                              Drop
1240 2015-03-12
                           Drop
                                                              Rise
                                    1257 2015-03-11
1241 2015-03-11
                           Drop
                                    1258 2015-03-10
                                                              Drop
1242 2015-03-10
                           Drop
                                     [1259 rows x 2 columns]
[1243 rows x 2 columns]
```

Step 2: Loading the dataset (Continued from previous slide)

v. Perform the following code to combine the required data then clean them

```
MergeD = pd.merge(KLCI1, DJI1,
                      how="left", on=["date"])
MergeD1 = pd.merge(MergeD, SNP1,
                      how="left", on=["date"])
MergeD2 = pd.merge(MergeD1,MBB2,
                      how="left", on=["date"])
MergeD3 = pd.merge(MergeD2, RHB2,
                      how="left", on=["date"])
Tree Decision Dataset = pd.merge(MergeD3, CIMB2,
                      how="left", on=["date"])
Tree Decision Dataset1 = Tree Decision Dataset.dropna(how='any',axis=0)
print(Tree Decision Dataset1.isnull().sum())
print(Tree Decision Dataset1)
date
                  0
close x
Change x
KLCI1 Movement
close y
Change y
DJI1 Movement
close
Change
SNP1 Movement
MBB Movement
RHB1 Movement
CIMB1 Movement
dtype: int64
```

```
date
                       close x
                                 Change x KLCI1 Movement
                                                                  close y
1
     2020-03-06
                  1483.099976
                               -58.939941
                                                      Drop
                                                            25864.779297
2
     2020-03-05
                  1491.030029
                                -7.930054
                                                      Drop
                                                            26121.279297
3
                  1489.949951
     2020-03-04
                                 1.080078
                                                      Rise
                                                            27090.859375
4
     2020-03-03
                  1478.640015
                                11.309937
                                                      Rise
                                                            25917,410156
5
                                                      Rise
                                                            26703.320312
     2020-03-02
                  1466.939941
                                11.700073
                                                       . . .
1221 2015-03-16
                  1780.540039
                                 7.329956
                                                      Rise
                                                            17977.419922
                  1781.750000
                                -1.209961
                                                            17749.310547
1222 2015-03-13
                                                      Drop
                                -5.119995
     2015-03-12
                  1786.869995
                                                      Drop
                                                            17895.220703
     2015-03-11
                  1778.160034
                                 8.709961
                                                            17635.390625
                                                      Rise
1225 2015-03-10
                  1789.729980 -11.569946
                                                            17662.939453
         Change y DJI1 Movement
                                          close
                                                      Change SNP1 Movement
                                   2972.370117 -225.810059
1
     -2013.759766
                             Drop
                                                                       Drop
2
      -256.500000
                             Drop
                                   3023.939941
                                                 -51.569824
                                                                       Drop
3
                                   3130.120117 -106.180176
                                                                       Drop
      -969.580078
                             Drop
4
      1173.449219
                             Rise
                                   3003.370117
                                                 126.750000
                                                                       Rise
5
      -785.910156
                             Drop
                                   3090.229980
                                                 -86.859863
                                                                       Drop
- - -
                              - - -
1221
      -128.339844
                                   2081.189941
                                                   -6.909912
                             Drop
                                                                       Drop
1222
                                                   27.790039
       228.109375
                             Rise
                                   2053.399902
                                                                       Rise
1223
      -145.910156
                             Drop
                                   2065.949951
                                                 -12.550049
                                                                       Drop
1224
       259.830078
                                   2040.239990
                                                   25.709961
                                                                       Rise
1225
       -27.548828
                             Drop
                                   2044.160034
                                                   -3.920044
                                                                       Drop
     MBB Movement RHB1 Movement CIMB1 Movement
1
              Drop
                             Drop
                                             Drop
2
                             Drop
              Drop
                                             Drop
3
              Rise
                       No Change
                                             Drop
4
              Rise
                             Rise
                                             Rise
5
              Rise
                             Rise
                                             Drop
1221
              Rise
                             Rise
                                             Rise
1222
              Drop
                             Rise
                                             Drop
                                             Rise
1223
              Drop
                             Drop
1224
              Rise
                             Drop
                                             Rise
1225
              Drop
                             Drop
                                             Drop
[1192 rows x 13 columns]
```

Step 3 to step 6 of Question 3

MayBank Stock price movement vs daily change of KLCI, DJI & SNP

Step 3. Feature

KLCI1_Movement

```
feature_cols = ['Change_x']
X = Tree_Decision_Dataset1[feature_cols] # Features
y = Tree_Decision_Dataset1.MBB_Movement # Target variable
```

DJI1_Movement

```
feature_cols = ['Change_y|']
X = Tree_Decision_Dataset1[feature_cols] # Features
y = Tree_Decision_Dataset1.MBB_Movement # Target variable
```

SNP1_Movement

```
feature_cols = ['Change']
X = Tree_Decision_Dataset1[feature_cols] # Features
y = Tree_Decision_Dataset1.MBB_Movement # Target variable
```

Step 4. Split the data

```
# Split dataset into training set and test set
# 70% training and 30% test
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=1)
```

Step 5. Building the decision tree model

```
# Create Decision Tree classifer object
clf = DecisionTreeClassifier()

# Train Decision Tree Classifer
clf = clf.fit(X_train,y_train)

#Predict the response for test dataset
y_pred = clf.predict(X_test)
```

Step 6. Evaluating Model

Step 7: Visualizing Decision Trees by performing the code below:

MayBank Stock price movement vs daily change of KLCI, DJI & SNP

KLCI1_Movement

DJI1 Movement

SNP1 Movement

Step 3 to step 6 of Question 3

CIMB Stock price movement vs daily change of KLCI, DJI & SNP

Step 3. Feature

KLCI1_Movement

```
feature_cols = ['Change_x']
X = Tree_Decision_Dataset1[feature_cols] # Features
y = Tree_Decision_Dataset1.CIMB1_Movement # Target variable
```

DJI1_Movement

```
feature_cols = ['Change_y']
X = Tree_Decision_Dataset1[feature_cols] # Features
y = Tree_Decision_Dataset1.CIMB1_Movement # Target variable
```

SNP1_Movement

```
feature_cols = ['Change']
X = Tree_Decision_Dataset1[feature_cols] # Features
y = Tree_Decision_Dataset1.CIMB1_Movement # Target variable
```

Step 4. Split the data

```
# Split dataset into training set and test set
# 70% training and 30% test
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=1)
```

Step 5. Building the decision tree model

```
# Create Decision Tree classifer object
clf = DecisionTreeClassifier()

# Train Decision Tree Classifer
clf = clf.fit(X_train,y_train)

#Predict the response for test dataset
y_pred = clf.predict(X_test)
```

Step 6. Evaluating Model

```
accuracy = metrics.accuracy_score(y_test,y_pred)
accuracy

0.5195530726256983 KLCI1_Movement
0.4329608938547486 DJI1_Movement
0.40502793296089384 SNP1_Movement
```

Step 7: Visualizing Decision Trees by performing the code below: CIMB Stock price movement vs daily change of KLCI, DJI & SNP

KLCI1_Movement

DJI1_Movement

SNP1 Movement

Step 3 to step 6 of Question 3

RHB Stock price movement vs daily change of KLCI, DJI & SNP

Step 3. Feature

KLCI1_Movement

```
feature_cols = ['Change_x']
X = Tree_Decision_Dataset1[feature_cols] # Features
y = Tree_Decision_Dataset1.RHB1_Movement # Target variable
```

DJI1_Movement

```
feature_cols = ['Change_y']
X = Tree_Decision_Dataset1[feature_cols] # Features
y = Tree_Decision_Dataset1.RHB1_Movement # Target variable
```

SNP1_Movement

```
feature_cols = ['Change']
X = Tree_Decision_Dataset1[feature_cols] # Features
y = Tree_Decision_Dataset1.RHB1_Movement # Target variable
```

Step 4. Split the data

```
# Split dataset into training set and test set
# 70% training and 30% test
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=1)
```

Step 5. Building the decision tree model

```
# Create Decision Tree classifer object
clf = DecisionTreeClassifier()

# Train Decision Tree Classifer
clf = clf.fit(X_train,y_train)

#Predict the response for test dataset
y_pred = clf.predict(X_test)
```

Step 6. Evaluating Model

Step 7: Visualizing Decision Trees by performing the code below: RHB Stock price movement vs daily change of KLCI, DJI & SNP

KLCI1_Movement

DJI1 Movement

SNP1 Movement

Conclusion for final exam question 3

- The accuracy of tree decision for all Maybank, CIMB and RHB share in term of their respective movement against KLCI, DJI and SNP are not more than 50%
- Thus, the level of purity is very low, presenting a messy tree decision chart

Final Exam: Question4

You are required to write code to find frequent itemsets using the above dataset (Question 1). In order to achieve the task, you are going to cover the following steps:

- Importing required libraries
- Creating a list from dataset (Question 1)
- Convert list to dataframe with boolean values
- Find frequently occurring itemsets using Apriori Algorithm
- Find frequently occurring itemsets using F-P Growth
- Mine the Association Rules

Step 1: Importing required libraries

```
import pyfpgrowth
import pandas as pd
import matplotlib.pyplot as plt
import networkx as nx
import pandas as pd
import numpy as np
```

```
# Training the Model
## Generating Frequent Itemsets
from mlxtend.frequent_patterns import apriori
from mlxtend.frequent_patterns import association_rules
```


Step 2: Creating a list from dataset (Question 1)

i. Perform the code below to transform the data (on the left) into the required dataset as follows:

```
MBB<sub>2</sub>
                                     KLC<sub>12</sub>
                                                  date KLCI1 Movement
              date MBB Movement
                                           2020-03-09
                                                            No Change
 0
       2020-03-09
                       No Change
                                           2020-03-06
                                                                  Drop
 1
       2020-03-06
                            Drop
                                           2020-03-05
                                                                  Drop
       2020-03-05
                            Drop
                                           2020-03-04
                                                                  Rise
  3
       2020-03-04
                            Rise
                                           2020-03-03
                                                                  Rise
       2020-03-03
                            Rise
                                                                   . . .
                             . . .
  . . .
                                      1221 2015-03-16
                                                                  Rise
  1237 2015-03-16
                            Rise
                                      1222 2015-03-13
                                                                  Drop
  1238 2015-03-13
                            Drop
                                      1223 2015-03-12
                                                                  Drop
  1239 2015-03-12
                            Drop
                                      1224 2015-03-11
                                                                  Rise
  1240 2015-03-11
                            Rise
                                      1225 2015-03-10
                                                                  Drop
  1241 2015-03-10
                            Drop
CIMB2 rows x 2 columns]
                                      [1226 rows x 2 columns]
                                                  date DJI1 Movement
              date CIMB1 Movement
                                           2020-03-09
                                                           No Change
 0
       2020-03-09
                         No Change
                                      1
                                           2020-03-06
                                                                Drop
       2020-03-06
                               Drop
                                           2020-03-05
                                                                Drop
       2020-03-05
                               Drop
                                           2020-03-04
                                                                Drop
       2020-03-04
                               Drop
                                           2020-03-03
                                                                Rise
       2020-03-03
                               Rise
                                                                  - - -
                                - - -
                                      1254 2015-03-16
                                                                Drop
  1238 2015-03-16
                               Rise
                                      1255 2015-03-13
                                                                Rise
  1239 2015-03-13
                               Drop
                                      1256 2015-03-12
                                                                Drop
  1240 2015-03-12
                               Rise
                                      1257 2015-03-11
                                                                Rise
                               Rise
  1241 2015-03-11
                                      1258 2015-03-10
                                                                Drop
 1242 2015-03-10
                               Drop
                                      [1259 rows x 2 columns]
  [1243 rows x 2 columns]
RHB2
                                                  date SNP1 Movement
              date RHB1_Movement
                                           2020-03-09
                                                           No Change
       2020-03-09
                        No Change
                                      1
                                           2020-03-06
                                                                Drop
 1
       2020-03-06
                              Drop
                                           2020-03-05
                                                                Drop
       2020-03-05
                              Drop
                                           2020-03-04
                                                                Drop
                        No Change
  3
       2020-03-04
                                           2020-03-03
                                                                Rise
       2020-03-03
                              Rise
                                      1254 2015-03-16
                                                                Drop
  1238 2015-03-16
                              Rise
                                      1255 2015-03-13
                                                                Rise
  1239 2015-03-13
                              Rise
                                      1256 2015-03-12
                                                                Drop
  1240 2015-03-12
                              Drop
                                      1257 2015-03-11
                                                                Rise
  1241 2015-03-11
                              Drop
                                      1258 2015-03-10
                                                                Drop
  1242 2015-03-10
                              Drop
                                      [1259 rows x 2 columns]
  [1243 rows x 2 columns]
```

	date	KLCI1_Wovement	MBB_Movement	CliviB1_iviovement	KHB1_INIOVEMENT	DJ11_INIOVEMENT	SNP1_IVIOVEMEN
0	2020-03-09	No Change	No Change	No Change	No Change	No Change	No Chang
1	2020-03-06	Drop	Drop	Drop	Drop	Drop	Dro
2	2020-03-05	Drop	Drop	Drop	Drop	Drop	Dro
3	2020-03-04	Rise	Rise	Drop	No Change	Drop	Dro
4	2020-03-03	Rise	Rise	Rise	Rise	Rise	Ris
1221	2015-03-16	Rise	Rise	Rise	Rise	Drop	Dro
1222	2015-03-13	Drop	Drop	Drop	Rise	Rise	Rise
1223	2015-03-12	Drop	Drop	Rise	Drop	Drop	Drop
1224	2015-03-11	Rise	Rise	Rise	Drop	Rise	Rise
1225	2015-03-10	Drop	Drop	Drop	Drop	Drop	Dro

date KLCI1 Movement MRR Movement CIMR1 Movement RHR1 Movement D II1 Movement SNR1 Move

1226 rows × 7 columns

Step 2: Creating a list from dataset (Question 1) (continued from previous slide)

ii. Perform the code below to change the value of every index/price movement into the required dataset as follows:

Step 2: Creating a list from dataset (Question 1) (continued from previous slide)

iii. Perform the code to preprocess the dataset as follows:

a. Change the trading date to "string" type of data

```
TD_Dataset6['date'] = TD_Dataset6['date'].astype('str')
TD_Dataset6
```

b. Feature selection

```
KLCI = TD_Dataset6.loc[:,['date','KLCI1_Movement']]
MBB = TD_Dataset6.loc[:,['date','MBB_Movement']]
CIMB = TD_Dataset6.loc[:,['date','CIMB1_Movement']]
RHB = TD_Dataset6.loc[:,['date','RHB1_Movement']]
DJI = TD_Dataset6.loc[:,['date','DJI1_Movement']]
SNP = TD_Dataset6.loc[:,['date','SNP1_Movement']]
```

c. Rename the column name

d. Combine the dataset and create a frequency column

```
DATASET_AM = pd.concat([MBB, CIMB, RHB, KLCI, DJI, SNP], ignore_index=True)
DATASET_AM.sort_values(by=['Trading_Date'], inplace=True)
DATASET_AM["Frequency"] = 1
DATASET_AM
```

	Trading_Date	Movement	Frequency
3578	2015-03-10	RHB:Drop	1
5964	2015-03-10	DJI:Drop	1
4771	2015-03-10	KLCI:Drop	1
2385	2015-03-10	CIMB:Drop	1
1192	2015-03-10	MBB:Drop	1
3579	2020-03-09	KLCI:No_Change	1
4772	2020-03-09	DJI:No_Change	1
5965	2020-03-09	SNP:No_Change	1
2386	2020-03-09	RHB:No_Change	1
0	2020-03-09	MBB:No_Change	1

7158 rows × 3 columns

Step 3 : Convert list to data frame with boolean values

i. Perform code below to create the "Basket" of dataset with Boolean values:

```
MyBasket= (DATASET_AM.groupby(['Trading_Date','Movement'])['Frequency'].sum()
            .unstack().reset_index().fillna(0).set_index('Trading_Date'))
def my encode units(x):
    if x <=0:
        return 0
    if x >=1:
        return 1
my basket sets = MyBasket.applymap(my encode units)
my basket sets
   Movement CIMB:Drop CIMB:No_Change CIMB:Rise DJI:Drop DJI:No_Change DJI:Rise KLCI:Drop KLCI:No_Change KLCI:Rise MBB:Drop MBB:No_
 Trading Date
   2015-03-10
                     1
                                     0
                                                                      0
                                                                              0
                                                                                                        0
                                                                                                                  0
                                                                                                                            1
   2015-03-11
                     0
                                     0
                                                                      0
                                                                                         0
                                                                                                        0
                                                                                                                            0
   2015-03-12
                                     0
                                                                      0
                                                                              0
                                                                                                                  0
                                                                                                                  0
   2015-03-13
   2015-03-16
                                                                      0
                                                                               0
                                                                                         0
                                                                                                                            0
   2020-03-03
                                                                                         0
                                                                                                                            0
   2020-03-04
                                                                               0
                                               0
                                                                      0
                                                                                         0
                                                                                                        0
                                                                                                                            0
   2020-03-05
                                     0
                                               0
                                                                      0
                                                                              0
                                                                                                                  0
                                                                                                                            1
   2020-03-06
                                                                      0
                                                                              0
                                                                                                                  0
   2020-03-09
                                                                              0
                                                                                         0
                                                                                                                  0
                                                                                                                            0
```


Step 4: Find frequently occurring itemsets using Apriori Algorithm

i. Perform code below to create the "Basket" of dataset:

```
my_frequent_itemsets = apriori(my_basket_sets, min_support = 0.07, use_colnames = True)
my_frequent_itemsets
```

	support	itemsets
0	0.433361	(CIMB:Drop)
1	0.131601	(CIMB:No_Change)
2	0.435038	(CIMB:Rise)
3	0.455993	(DJI:Drop)
4	0.541492	(DJI:Rise)
240	0.087175	(DJI:Drop, KLCI:Drop, RHB:Drop, MBB:Drop, SNP:
241	0.072087	(DJI:Drop, MBB:Rise, RHB:Rise, SNP:Drop, KLCI:
242	0.087175	(DJI:Rise, KLCI:Drop, RHB:Drop, MBB:Drop, SNP:
243	0.116513	(DJI:Rise, MBB:Rise, RHB:Rise, SNP:Rise, KLCI:
244	0.090528	(DJI:Rise, MBB:Rise, RHB:Rise, CIMB:Rise, SNP:

245 rows x 2 columns

Step 5: Find frequently occurring itemsets using F-P Growth

i. Perform code below to create the listing of "Basket" for the dataset and the patterns frequency:

```
grouped df = DATASET AM.groupby(by = ['Trading Date'])
transactions = []
for group, pdf in grouped df:
    transactions.append(pdf['Movement'].values.tolist())
transactions
[['RHB:Drop', 'DJI:Drop', 'KLCI:Drop', 'CIMB:Drop', 'MBB:Drop', 'SNP:Drop'],
  'SNP:Rise', 'CIMB:Rise', 'RHB:Drop', 'MBB:Rise', 'DJI:Rise', 'KLCI:Rise'],
  'DJI:Drop', 'RHB:Drop', 'CIMB:Rise', 'SNP:Drop', 'KLCI:Drop', 'MBB:Drop'],
  'KLCI:Drop', 'RHB:Rise', 'CIMB:Drop', 'DJI:Rise', 'MBB:Drop', 'SNP:Rise'],
  'RHB:Rise', 'MBB:Rise', 'SNP:Drop', 'KLCI:Rise', 'CIMB:Rise', 'DJI:Drop'],
  ['KLCI:Rise',
  'RHB:Drop',
  'CIMB:Drop',
  'SNP:Rise',
  'DJI:Rise',
  'MBB:No Change'],
  'SNP:Drop', 'CIMB:Rise', 'DJI:Drop', 'KLCI:Rise', 'MBB:Rise', 'RHB:Rise'],
  ''CIMB:No Change',
  'MBB:Drop',
  'SNP:Rise',
  'RHB:Drop',
  'DJI:Rise',
  'KLCI:Drop'],
  'DJI:Drop', 'SNP:Drop', 'CIMB:Drop', 'MBB:Drop', 'KLCI:Drop', 'RHB:Rise']
```

```
patterns = pyfpgrowth.find frequent patterns(transactions, 300)
patterns
{('RHB:Drop',): 507,
 ('KLCI:Drop', 'RHB:Drop'): 345,
 ('CIMB:Drop', 'MBB:Drop'): 300,
 ('KLCI:Drop', 'MBB:Drop'): 387,
 ('CIMB:Drop',): 517,
 ('CIMB:Drop', 'KLCI:Drop'): 389,
 ('CIMB:Rise', 'MBB:Rise'): 313,
 ('CIMB:Rise', 'KLCI:Rise'): 377,
 ('RHB:Rise', 'SNP:Rise'): 301,
 ('DJI:Rise', 'RHB:Rise'): 307,
 ('KLCI:Rise', 'RHB:Rise'): 360,
 ('DJI:Rise', 'MBB:Rise'): 300,
  ''MBB:Rise', 'SNP:Rise'): 305,
 ('KLCI:Rise', 'MBB:Rise'): 391,
 ('DJI:Drop',): 544,
 ('DJI:Drop', 'SNP:Drop'): 474,
 ('SNP:Drop',): 545,
 ('KLCI:Rise', 'SNP:Rise'): 337,
 ('DJI:Rise', 'KLCI:Rise', 'SNP:Rise'): 307,
 ('DJI:Rise', 'KLCI:Rise'): 341,
 ('DJI:Rise', 'KLCI:Drop'): 305,
 ('KLCI:Drop', 'SNP:Rise'): 309,
 ('SNP:Rise',): 646,
 ('DJI:Rise',): 646}
```


Step 6: Mine the Association Rules using Apriori Algorithm & F-P Growth

i. Perform code below to calculate support, confidence and lift value for the respective combination of items (mining the association rule):

	antecedents	consequents	antecedent support	consequent support	support	confidence	lift	leverage	conviction
1403	(MBB:Rise, CIMB:Rise, SNP:Drop)	(DJI:Drop, KLCI:Rise)	0.108131	0.207041	0.080469	0.744186	3.594388	0.058082	3.099749
1605	(DJI:Drop, MBB:Rise, RHB:Rise)	(KLCI:Rise, SNP:Drop)	0.096396	0.210394	0.072087	0.747826	3.554408	0.051806	3.131196
1611	(MBB:Rise, RHB:Rise, SNP:Drop)	(DJI:Drop, KLCI:Rise)	0.094719	0.207041	0.072087	0.761062	3.675898	0.052476	3.318680

ii. Perform code below to mine the combination of items that have 0.8 threshold set for confidence (mining the association rule):

```
rules = pyfpgrowth.generate_association_rules(patterns, 0.80)
rules

{('DJI:Drop',): (('SNP:Drop',), 0.8713235294117647),
   ('SNP:Drop',): (('DJI:Drop',), 0.8697247706422019),
   ('DJI:Rise', 'KLCI:Rise'): (('SNP:Rise',), 0.9002932551319648),
   ('KLCI:Rise', 'SNP:Rise'): (('DJI:Rise',), 0.9109792284866469)}
```


Conclusion for final exam question 4

Using Apriori required multiple scans of the database to check the support count of each item and itemsets.
 When the database is huge, this will cost a significant amount of disk I/O and computing power. Therefore the FP-Growth algorithm is created