

6	692	980	1200	1384	1550	1692
5	632	896	1096	1264	1410	1550
4	564	800	960	1128	1264	1384
3	490	692	846	980	1096	1200
2	400	564	692	800	896	980
1	282	400	490	564	632	692
	1	2	3	4	5	6

Possible Output Levels

This matrix shows what can be produced with all possible combinations of L and K

Output with 1 worker 1 machine

Output with 1 worker 6 machines

Output with 6 workers 1 machine

Output with Possible Output Levels 6 machines

1	machine				0	utput with	
1	utput with worker	1	2	3	4	5	6
	1	→ 282	400	490	564	632	≁ 692
Cap	2	400	564	692	800	896	980
pita	3	490	692	846	980	1096	1200
$\overline{\mathbf{S}}$	4	564	800	960	1128	1264	1384
	5	632	896	1096	1264	1410	1550
	6	692	980	1200	1384	1550	1692
	o maciline:	>					

Labor (L)

6 workers

1 machine

In the next example, assume that we know how many machines we want to use and we need to decide how many workers to hire