Linear Algebra 101

Agenda

- **❖** Why learn linear algebra?
- ❖ Solution of a system of equation
- **❖**Matrix
- **❖**Matrix Math
- Eigenvalue & Eigen vectors
- Dimensionality Reduction
- ❖ Singular Value Decomposition

Motivation to learn Linear Algebra

- ❖ What you see when you look at this image?
- **❖** How computer process this image?

Neural Network/Deep Learning

Text Mining

• Document Term Matrix (DTM)

	Doc 1	Doc 2	Doc 3
abbey	2	3	5
spinning	1	0	1
soil	3	4	1
$\operatorname{stunned}$	2	1	3
wrath	1	1	4

Representation of Problems in Linear Algebra

Suppose that price of 1 ball & 2 bat or 2 bat and 1 ball is 100 units. We need to find price of a ball and a bat.

How do we define this problem?

- Let's translate this in mathematical form –
- $2x + y = 100 \dots (1)$
- Similarly, for the second condition-
- $x + 2y = 100 \dots (2)$

Solving: x=100/3, y=100/3

What is a Matrix?

Matrix is a rectangular array of numbers, symbols, or expressions, arranged in rows and columns.

$$a_{0} + a_{1} + a_{2} = -1$$

$$a_{0} + 2a_{1} + 4a_{2} = 3$$

$$a_{0} + 3a_{3} + 9a_{2} = 3$$

$$a_{0} + 4a_{1} + 16a_{2} = 5$$

$$\begin{bmatrix} 1 & 1 & 1 & -1 \\ 1 & 2 & 4 & 3 \\ 1 & 3 & 9 & 3 \\ 1 & 4 & 16 & 5 \end{bmatrix} \Rightarrow \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Terms related to Matrix

• Order of matrix – If a matrix has 3 rows and 4 columns, order of the matrix is 3*4 i.e. row*column.

$$A = \begin{pmatrix} 1 & 2 & -1 & 0 \\ 0 & 5 & 3 & 0 \\ -2 & 0 & 0 & 4 \\ 0 & 6 & -4 & -3 \end{pmatrix}$$

- What is the order of the matrix?
- What is A_{23} ?
- **Square matrix** The matrix in which the number of rows is equal to the number of columns.

• **Diagonal matrix** – A matrix with all the non-diagonal elements equal to 0 is called a diagonal matrix.

$$\mathbf{A} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 3 \end{bmatrix}$$

- **Upper triangular matrix** Square matrix with all the elements below diagonal equal to 0.
- Lower triangular matrix Square matrix with all the elements above the diagonal equal to 0.

Identity matrix – Square matrix with all the diagonal elements equal to 1 and all the non-diagonal elements equal to 0.

$$I_n = \begin{pmatrix} 1 & 0 & 0 & \cdots & 0 \\ 0 & 1 & 0 & \cdots & 0 \\ 0 & 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & 1 \end{pmatrix}.$$

- Column matrix The matrix which consists of only 1 column. Sometimes, it is used to represent a vector.
- **Row matrix** A matrix consisting only of row.

Trace of a Matrix

• Trace of a matrix is equal to adding the diagonal elements of the matrix

```
tr(A+B) = tr(A) + tr(B)

tr(cAB) = c*tr(A)

tr(A) = Tr(A^T)
```

Basic Mathematical Operation on Matrix

Addition:
$$G = \begin{bmatrix} 1 & 2 \\ 3 & 4 \\ 6 & 7 \end{bmatrix}$$
, $F = \begin{bmatrix} 1 & 0 \\ 1 & 1 \\ 0 & 1 \end{bmatrix}$

$$\mathbf{F} + \mathbf{G} = \begin{bmatrix} \mathbf{O} & 2 \\ 3 & 4 \\ 6 & 7 \end{bmatrix} + \begin{bmatrix} \mathbf{O} & 0 \\ 1 & 1 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} \mathbf{O} + \mathbf{O} & 2 + 0 \\ 3 + \mathbf{O} & 4 + 1 \\ 6 + \mathbf{O} & 7 + 1 \end{bmatrix} = \begin{bmatrix} \mathbf{O} & 2 \\ 4 & 5 \\ 6 & 8 \end{bmatrix},$$

Subtraction:

$$\begin{bmatrix} -1 & 2 & 0 \\ 4 & 1 & 10 \end{bmatrix} - \begin{bmatrix} 3 & 2 & 4 \\ 0 & 8 & 16 \end{bmatrix} = \begin{bmatrix} -1-3 & 2-2 & 0-4 \\ 4-0 & 1-8 & 10-16 \end{bmatrix}$$

$$= \begin{bmatrix} -4 & 0 & -4 \\ 4 & -7 & -6 \end{bmatrix}$$

final answer

Multiplication:

$$\begin{bmatrix} 123 \\ 456 \end{bmatrix} \times \begin{bmatrix} 78 \\ 910 \\ 112 \end{bmatrix} = \begin{bmatrix} 58 \\ 1 \times 7 + 2 \times 9 + 3 \times 11 = 58 \end{bmatrix}$$

$$\begin{bmatrix} 123 \\ 456 \end{bmatrix} \times \begin{bmatrix} 78 \\ 910 \\ 1112 \end{bmatrix} = \begin{bmatrix} 5864 \\ 1112 \end{bmatrix} = \begin{bmatrix} 128 + 2 \times 10 + 3 \times 12 = 64 \end{bmatrix}$$

Basic Mathematical Operation on Matrix

- The multiplication of two matrices of orders i*j and j*k results into a matrix of order i*k. Just keep the outer indices in order to get the indices of the final matrix.
- Two matrices will be compatible for multiplication only if the number of columns of the first matrix and the number of rows of the second one are same.
- ❖ The third point is that order of multiplication matters.

Scalar Multiplication

$$2 \cdot \begin{bmatrix} 10 & 6 \\ 4 & 3 \end{bmatrix} = \begin{bmatrix} 2 \cdot 10 & 2 \cdot 6 \\ 2 \cdot 4 & 2 \cdot 3 \end{bmatrix}$$

Transposition

$$A = \begin{bmatrix} 3 & 1 & 1 \\ -1 & 3 & 1 \end{bmatrix} \qquad A^T = \begin{bmatrix} 3 & -1 \\ 1 & 3 \\ 1 & 1 \end{bmatrix}$$

Representing Equations in matrix Form

How to solve AX=Z?

$$X = A^{-1} Z$$

For this you will have to know how to take inverse of a matrix. We will revisit this problem soon.

Determinant of a matrix

A determinant is a function of a square matrix that reduces it to a single number. The determinant of a matrix A is denoted |A| or det(A). If A consists of one element a, then |A| = a; in other words if A = [6] then |A| = 6.

```
Of 2*2 matrix:

A = \begin{pmatrix} 3 & 8 \\ 4 & 6 \end{pmatrix}

Det A = |A| = 3*6-8*4= 18-32= -14

Of 3*3 Matrix:

A = \begin{pmatrix} 6 & 1 & 1 \\ 4 & -2 & 5 \\ 2 & 8 & 7 \end{pmatrix}
```

Det.
$$A = |A| = 6*(-2*7-5*8)-1*(4*7-5*2)+(1)*(4*8-(-2*2)) = 6*(-54)-1*18+1*36=-306$$

Of 4*4 Matrix or higher:

- The pattern continues for 4×4 matrices:
- **plus a** times the determinant of the matrix that is **not** in **a**'s row or column,
- **minus b** times the determinant of the matrix that is **not** in **b**'s row or column,
- **plus c** times the determinant of the matrix that is **not** in **c**'s row or column,
- minus d times the determinant of the matrix that is **not** in d's row or column,

$$|A| = a \cdot \begin{vmatrix} f & g & h \\ j & k & l \\ n & o & p \end{vmatrix} - b \cdot \begin{vmatrix} e & g & h \\ i & k & l \\ m & o & p \end{vmatrix} + c \cdot \begin{vmatrix} e & f & h \\ i & j & l \\ m & n & p \end{vmatrix} - d \cdot \begin{vmatrix} e & f & g \\ i & j & k \\ m & n & o \end{vmatrix}$$

Minor & Cofactor of a Matrix

- If A is a square matrix, then the **minor** of the entry in the *i*-th row and *j*-th column (also called the (i,j) **minor** is the determinant of the submatrix formed by deleting the i-th row and j-th column. This number is often denoted $M_{i,j}$. The (i,j) **cofactor** is obtained by multiplying the minor by $(-1)^{n}$ i+j.
- To illustrate these definitions, consider the following 3 by 3 matrix,

$$\begin{bmatrix} 1 & 4 & 7 \\ 3 & 0 & 5 \\ -1 & 9 & 11 \end{bmatrix}$$

What is Minor M2,3 and Cofactor C 2,3 of Matrix A as shown above?

$$M2,3 = 13$$

$$C2,3 = 13$$

How to take inverse of a matrix?

It involves several steps:

Step 1: calculating the Matrix of Minors,

Step 2: then turn that into the Matrix of Cofactors,

Step 3: then the Adjugate and Step 4: multiply that by 1/Determinant

Find Inverse of this matrix A:

$$\begin{bmatrix} 0\times1 - (-2)\times1 & 2\times1 - (-2)\times0 & 2\times1 - 0\times0 \\ 0\times1 - 2\times1 & 3\times1 - 2\times0 & 3\times1 - 0\times0 \\ 0\times(-2) - 2\times0 & 3\times(-2) - 2\times2 & 3\times0 - 0\times2 \end{bmatrix} = \begin{bmatrix} 2 & 2 & 2 \\ -2 & 3 & 3 \\ 0 & -10 & 0 \end{bmatrix}$$
Step 1
Matrix of Minors

$$\begin{bmatrix} 2 & 2 & 2 \\ -2 & 3 & 3 \\ 0 & -10 & 0 \end{bmatrix} \longrightarrow \begin{bmatrix} + & - & + \\ - & + & - \\ + & - & + \end{bmatrix} \longrightarrow \begin{bmatrix} 2 & -2 & 2 \\ +2 & 3 & -3 \\ 0 & +10 & 0 \end{bmatrix}$$

$$Matrix of Minors$$

$$Matrix of CoFactors$$

Step 3

Inverse of a Matrix

Final Step: Multiply by 1/determinant

Eigen values & Eigen Vectors

• An eigenvector is a nonzero vector that satisfies the equation $\overrightarrow{A}v = \lambda \overrightarrow{v}v$ where A is a square matrix, λ is a scalar, and $\overrightarrow{v}v$ is the eigen vector.

$$A = \begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix} \quad A\vec{v} = \lambda \vec{v} = \begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \lambda \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$

$$2x_1 + x_2 = \lambda x_1 \qquad (2 - \lambda)x_1 + x_2 = 0$$

$$x_1 + 2x_2 = \lambda x_2 \qquad x_1 + (2 - \lambda)x_2 = 0$$

A necessary and sufficient condition for this system to have a nonzero vector $[x_1, x_2]$ is that the determinant of the coefficient matrix

$$\left[\begin{array}{cc} (2-\lambda) & 1\\ 1 & (2-\lambda) \end{array}\right]$$

be equal to zero. Accordingly,

$$\begin{vmatrix} (2-\lambda) & 1\\ 1 & (2-\lambda) \end{vmatrix} = 0$$
$$(2-\lambda)(2-\lambda) - 1 \cdot 1 = 0$$
$$\lambda^2 - 4\lambda + 3 = 0$$
$$(\lambda - 3)(\lambda - 1) = 0$$

There are two values of λ that satisfy the last equation; thus there are two eigenvalues of the original matrix A and these are $\lambda_1 = 3, \lambda_2 = 1$.

Eigen vector

• To find associated Eigen vector with Eigen value of 3,

$$(2-\lambda)x_1 + x_2 = 0$$

$$(2-3)x_1 + x_2 = 0$$

$$x1 = x2$$

There are an infinite number of values for x1 which satisfy this equation; the only restriction is that not all the components in an eigenvector can equal zero. So if x1 = 1, then x2 = 1 and an eigenvector corresponding to $\lambda = 3$ is [1, 1].

Finding an eigenvector for $\lambda = 1$ works the same way.

$$(2-1)x1 + x2 = 0$$

$$x1 = -x2$$

So an eigenvector for $\lambda = 1$ is [1, -1].

Single Value Decomposition (SVD): Motivation

SVD

SVD is based on a theorem from linear algebra which says that a rectangular matrix A can be broken down into the product of three matrices - an orthogonal matrix U, a diagonal matrix S, and the transpose of an orthogonal matrix V. The theorem is usually presented something like this:

$$A_{mn} = U_{mm} S_{mn} V_{nn}^T$$

where $U^TU = I, V^TV = I$; the columns of U are orthonormal eigenvectors of AA^T , the columns of V are orthonormal eigenvectors of A^TA , and S is a diagonal matrix containing the square roots of eigenvalues from U or V in descending order.

Singular Value Decomposition

$$A_{mn} = U_{mm} S_{mn} V_{nn}^{T}$$

$$A = \begin{bmatrix} 3 & 1 & 1 \\ -1 & 3 & 1 \end{bmatrix}$$

$$A^{T} = \begin{bmatrix} 3 & -1 \\ 1 & 3 \\ 1 & 1 \end{bmatrix}$$

$$AA^{T} = \begin{bmatrix} 3 & 1 & 1 \\ -1 & 3 & 1 \end{bmatrix} \begin{bmatrix} 3 & -1 \\ 1 & 3 \\ 1 & 1 \end{bmatrix} = \begin{bmatrix} 11 & 1 \\ 1 & 11 \end{bmatrix}$$

Next, we have to find the eigenvalues and corresponding eigenvectors of AA^T . We know that eigenvectors are defined by the equation $A\vec{v} = \lambda \vec{v}$, and applying this to AA^T gives us

$$\left[\begin{array}{cc} 11 & 1 \\ 1 & 11 \end{array}\right] \left[\begin{array}{c} x_1 \\ x_2 \end{array}\right] = \lambda \left[\begin{array}{c} x_1 \\ x_2 \end{array}\right]$$

We rewrite this as the set of equations

$$11x_1 + x_2 = \lambda x_1$$

$$x_1 + 11x_2 = \lambda x_2$$

and rearrange to get

$$(11 - \lambda)x_1 + x_2 = 0$$

Finally, we find eigenvalue: $\lambda = 10$, $\lambda = 12$

Eigen vectors are respectively: [1,1] and [1,-1]

Now we need to find Ortho-normal basis for these using Gram-Schmidt Ortho Normalization process:

$$\vec{u_1} = \frac{\vec{v_1}}{|\vec{v_1}|} = \frac{[1,1]}{\sqrt{1^2 + 1^2}} = \frac{[1,1]}{\sqrt{2}} = [\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}]$$

$$\vec{w_2} = \vec{v_2} - \vec{u_1} \cdot \vec{v_2} * \vec{u_1} =$$

$$[1, -1] - \left[\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right] \cdot [1, -1] * \left[\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right] =$$

$$[1, -1] - 0 * \left[\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right] = [1, -1] - [0, 0] = [1, -1]$$

and normalize

$$\vec{u_2} = \frac{\vec{w_2}}{|\vec{w_2}|} = \left[\frac{1}{\sqrt{2}}, \frac{-1}{\sqrt{2}}\right]$$

to give

$$U = \begin{bmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & \frac{-1}{\sqrt{2}} \end{bmatrix}$$

Find V

• Follow the same previous steps for A^TA ,

$$V^{T} = \begin{bmatrix} \frac{1}{\sqrt{6}} & \frac{2}{\sqrt{6}} & \frac{1}{\sqrt{6}} \\ \frac{2}{\sqrt{5}} & \frac{-1}{\sqrt{5}} & 0 \\ \frac{1}{\sqrt{30}} & \frac{2}{\sqrt{30}} & \frac{-5}{\sqrt{30}} \end{bmatrix}$$

Eigen values are: 0, 10, 12

Find S

• We take square root on non-negative eigen values. Non-zero eigen values are always the same for U & V.

$$S = \left[\begin{array}{ccc} \sqrt{12} & 0 & 0 \\ 0 & \sqrt{10} & 0 \end{array} \right]$$

These values indicate the variance of the linearly components along each dimension

$$A_{mn} = U_{mm} S_{mn} V_{nn}^{T} = \begin{bmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & \frac{-1}{\sqrt{2}} \end{bmatrix} \begin{bmatrix} \sqrt{12} & 0 & 0 \\ 0 & \sqrt{10} & 0 \end{bmatrix} \begin{bmatrix} \frac{1}{\sqrt{6}} & \frac{2}{\sqrt{6}} & \frac{1}{\sqrt{6}} \\ \frac{2}{\sqrt{5}} & \frac{-1}{\sqrt{5}} & 0 \\ \frac{1}{\sqrt{30}} & \frac{2}{\sqrt{30}} & \frac{-5}{\sqrt{30}} \end{bmatrix}$$

An Example

$$A = \begin{bmatrix} 2 & 0 & 8 & 6 & 0 \\ 1 & 6 & 0 & 1 & 7 \\ 5 & 0 & 7 & 4 & 0 \\ 7 & 0 & 8 & 5 & 0 \\ 0 & 10 & 0 & 0 & 7 \end{bmatrix}$$
 Consider A as the word document matrix
$$Non-zero eigen values are:$$

$$\lambda = 321.07, \lambda = 230.17, \lambda = 12.70, \lambda = 3.94, \lambda = 0.12$$

$$\lambda = 321.07, \lambda = 230.17, \lambda = 12.70, \lambda = 3.94, \lambda = 0.12$$

Keeping only 3 dimensions:

$$S = \left[\begin{array}{rrr} 17.92 & 0 & 0 \\ 0 & 15.17 & 0 \\ 0 & 0 & 3.56 \end{array} \right]$$

$$\hat{A} =$$

$$\begin{bmatrix} -0.54 & 0.07 & 0.82 \\ -0.10 & -0.59 & -0.11 \\ -0.53 & 0.06 & -0.21 \\ -0.65 & 0.07 & -0.51 \\ -0.06 & -0.80 & 0.09 \end{bmatrix} \begin{bmatrix} 17.92 & 0 & 0 \\ 0 & 15.17 & 0 \\ 0 & 0 & 3.56 \end{bmatrix} \begin{bmatrix} -0.46 & 0.02 & -0.87 & -0.00 & 0.17 \\ -0.07 & -0.76 & 0.06 & 0.60 & 0.23 \\ -0.74 & 0.10 & 0.28 & 0.22 & -0.56 \end{bmatrix}$$

$$= \begin{bmatrix} 2.29 & -0.66 & 9.33 & 1.25 & -3.09 \\ 1.77 & 6.76 & 0.90 & -5.50 & -2.13 \\ 4.86 & -0.96 & 8.01 & 0.38 & -0.97 \\ 6.62 & -1.23 & 9.58 & 0.24 & -0.71 \\ 1.14 & 9.19 & 0.33 & -7.19 & -3.13 \end{bmatrix}$$

SVD Example: Cont'd

• Our idea was not to recreate the original matrix but to use the reduced dimensionality representation to identify similar word and documents.

Documents are represented by row vectors in v and document similarity is obtained by comparing rows in VS.

Word similarity is obtained by comparing rows in US.

Inner product

The inner product of two vectors (also called the dot product or scalar product) defines multiplication of vectors. It is found by multiplying each component in $\vec{v_1}$ by the component in $\vec{v_2}$ in the same position and adding them all together to yield a scalar value. The inner product is only defined for vectors of the same dimension. The inner product of two vectors is denoted $(\vec{v_1}, \vec{v_2})$ or $\vec{v_1} \cdot \vec{v_2}$ (the dot product). Thus,

$$(\vec{x}, \vec{y}) = \vec{x} \cdot \vec{y} = \sum_{i=1}^{n} x_i y_i$$

For example, if $\vec{x} = [1, 6, 7, 4]$ and $\vec{y} = [3, 2, 8, 3]$, then

$$\vec{x} \cdot \vec{y} = 1(3) + 6(2) + 7(8) + 3(4) = 83$$

Two vectors are orthogonal to each other if their inner product is equal to zero.

Normal Vector

A normal vector (or unit vector) is a vector of length 1. Any vector with an initial length > 0 can be normalized by dividing each component in it by the vector's length. For example, if $\vec{v} = [2, 4, 1, 2]$, then

$$|\vec{v}| = \sqrt{2^2 + 4^2 + 1^2 + 2^2} = \sqrt{25} = 5$$

Then $\vec{u} = [2/5, 4/5, 1/5, 1/5]$ is a normal vector because

$$|\vec{u}| = \sqrt{(2/5)^2 + (4/5)^2 + (1/5)^2 + (2/5)^2} = \sqrt{25/25} = 1$$

Orthonormal Vector

Vectors of unit length that are orthogonal to each other are said to be *orthonormal*. For example,

$$\vec{u} = [2/5, 1/5, -2/5, 4/5]$$

and

$$\vec{v} = [3/\sqrt{65}, -6/\sqrt{65}, 4/\sqrt{65}, 2/\sqrt{65}]$$

are orthonormal because

$$\begin{aligned} |\vec{u}| &= \sqrt{(2/5)^2 + (1/5)^2 + (-2/5)^2 + (4/5)^2} = 1 \\ |\vec{v}| &= \sqrt{(3/\sqrt{65})^2 + (-6/\sqrt{65})^2 + (4/\sqrt{65})^2 + (2/\sqrt{65})^2} = 1 \\ \vec{u} \cdot \vec{v} &= \frac{6}{5\sqrt{65}} - \frac{6}{5\sqrt{65}} - \frac{8}{5\sqrt{65}} + \frac{8}{5\sqrt{65}} = 0 \end{aligned}$$

Gram-Schmidt Orthogonalization: Example

$$A = \begin{bmatrix} 1 & 2 & 1 \\ 0 & 2 & 0 \\ 2 & 3 & 1 \\ 1 & 1 & 0 \end{bmatrix}$$

$$\vec{v_1} = [1, 0, 2, 1]$$
 $\vec{u_1} = [\frac{1}{\sqrt{6}}, 0, \frac{2}{\sqrt{6}}, \frac{1}{\sqrt{6}}].$

$$\begin{split} \vec{w_2} &= \vec{v_2} - \vec{u_1} \cdot \vec{v_2} * \vec{u_1} = [2, 2, 3, 1] - [\frac{1}{\sqrt{6}}, 0, \frac{2}{\sqrt{6}}, \frac{1}{\sqrt{6}}] \cdot [2, 2, 3, 1] * [\frac{1}{\sqrt{6}}, 0, \frac{2}{\sqrt{6}}, \frac{1}{\sqrt{6}}] \\ &= [2, 2, 3, 1] - (\frac{9}{\sqrt{6}}) * [\frac{1}{\sqrt{6}}, 0, \frac{2}{\sqrt{6}}, \frac{1}{\sqrt{6}}] \\ &= [2, 2, 3, 1] - [\frac{3}{2}, 0, 3, \frac{3}{2}] \\ &= [\frac{1}{2}, 2, 0, \frac{-1}{2}] \end{split}$$

After normalizing: $\vec{u_2} = [\frac{\sqrt{2}}{6}, \frac{2\sqrt{2}}{3}, 0, \frac{-\sqrt{2}}{6}]$

$$\vec{w_3} = \vec{v_3} - \vec{u_1} \cdot \vec{v_3} * \vec{u_1} - \vec{u_2} \cdot \vec{v_3} * \vec{u_2}$$