SARDAR PATEL INSTITUTE OF TECHNOLOGY

(Autonomous Institute Affiliated to University of Mumbai) Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058, India

> BRANCH: COMP. ENGG., DS, AIML END SEMESTER EXAMINATION

> > **CE206: Operating Systems**

Max. Marks: 100

Time: 3 hours

Instructions

- Carefully read the question and the weight age given, and accordingly strategies your answers. (Don't write things which are not asked)
- Make suitable assumptions, if required. Mention those categorically.
- All Questions are Compulsory.
- New Question (not a sub-question) be solved from a new page.
- You may choose any sequence of questions while writing the answers, however, all sub questions must be written in a sequence.
- The last two columns are related to Outcome Based Education. (You don't bother)

0 N	To I			Questio	ns			MM	BL	CO
Q. N Q.1	a	Explain the process of loading an executable program into memory					5	2	1	
Q.1	a	ucing a loade	r in systems	s programmi	ng.		1			1
	b	How does Multitasking operating system differ from Time Sharing Operating System, and what are the key benefits of each?						5	2	1
		Operating Sy	stem, and v	what are the	key benefi	ts of each	differences	5	2	1
	c	How does the process differ from thread? What are the differences between user level thread and kernel level thread?							_	
		between user	r level threa	OR	icver time	aa.				
		What are the	What are the different types of thread states? What are the benefits							
		of multithrea	aded program	mming?					1	2
	d	Consider the	e set of 3 pr	rocesses wh	ose arriva	l time and	burst time	5	3	2
		are given be	elow-							
							-	do.		
		No. Arrival Time	Priority	Burst Time CPU I/O CPU						
					I/O	CPU				
					Burst	W.O. 525				
	1				Burst	Burst	Burst			
		P1	0	2	1	5	Burst 3			
		P1 P2	0 2	2	1 3					

		If the CPU scheduling policy is Priority Scheduling, calculate the average waiting time and average turn around time. (Lower number means higher priority)			
Q.2	a	What will be the output of the following code. Draw the tree representing various processes. Justify your answer.	5	4	1
		#include <stdio.h> #include <unistd.h></unistd.h></stdio.h>	-		
		int main() {			
		if (fork() && (!fork())) { if (fork() fork()) { fork();			
		} printf("2 "); return 0;			
		OR			
		Consider a process P that executes the fork system call twice. That is, it runs code like this: int ret1 = fork(); int ret2 = fork(); How many direct children of P (i.e., processes whose parent is P) and how many other descendants of P (i.e., processes who are not direct children of P, but whose grandparent or great grandparent or some such ancestor is P) are created by the above lines of code? Justify your answer. You may assume that all fork system calls succeed. (a) Two direct children of P are created. (b) Four direct children of P are created. (c) No other descendant of P is created.			
	ь	Di di G 1 D2 D2 faulta D2 and D2 forks	2	2	1

	С	A system with two dual-core processors has four processors available for scheduling. A CPU-intensive application (e.g., a program that spends most of its time on computation, not I/O or memory accesses) is running on this system. All input is performed at program start-up, when a single file must be opened and read sequentially. Similarly, all output is performed just before the program terminates, when the program results must be written sequentially to a single file. Between startup and termination, the program is entirely CPU-bound (e.g., only executing instructions). Your task is to improve the performance of this application by Multithreading. The system runs on OnetoOne threading model. Determine: i) How many threads will you create to handle input and output? Briefly explain. ii) How many threads will you create for the CPU-bound portion of the application? Briefly explain				
	d	Consider a logical address space into 64 frames. What is the nuaddress?	of 32 pages of 2048 words mapped imber of bits required for logical	10	3	4
Q.3	a Consider the following solution to the producer-consumer synchronization problem. The shared buffer size is N. Three semaphores <i>empty</i> , <i>full</i> and <i>mutex</i> are defined with respective initial values of 0, N and 1. Semaphore <i>empty</i> denotes the number of available slots in the buffer, for the consumer to read from Semaphore <i>full</i> denotes the number of available slots in the buffer, for the producer to write to. The placeholder variables, denoted by P. Q, R and S, in the code below can be assigned either <i>empty</i> or <i>full</i> . The valid semaphore operations are: <i>wait()</i> and <i>signal()</i> .				4	3
		Producer:	Consumer:			
		do {	do {			
		wait (P);	wait (R);			
		wait (mutex);	wait (mutex);			
		//Add item to buffer	//consume item from buffer			
		signal (mutex);	signal (mutex);			
		signal (Q);	signal (S);			
		\} while (1); What value of P,Q.R and S will	}while (1);			7
		Justify your answer	yield the correct solution.			

	b	Suppose S an share the resc code assumin justify your a	owing	5	4	3			
		P1		P2				1	
		Wait(S);		Wait(Q)	;	İ			
		Wait(Q);	E 11	Wait(S					
		CS1		CS2					
		Signal(S));	Signal	(Q);				
		Signal(Q);	Signal	081 3084 30				
	С	What is the co What are the explain in brid	ritical section pro requirements to seef?	blem in Opera	ting Systems? al section problem		5	2	3
Q.4	a	What is extern of it?	nal fragmentation	? How do ope	rating system take	care	4	4	4
		What is thrast	OR shing? Discuss of	lifferent techr	niques to take ca	re of		i.	
	b	of physical ac page table en What is the n	ldress is 30-bit, p try is 32-bit. The naximum number	age size is 4 I main memory of bits that c	Il address is 32-bit Kbyte and size of ry is byte address can be used for st	each sable.	8	4	4
×	protection and other information in each page table entry? c Consider the following snapshot of a system. P0, P1, P2, P3, P4 are the processes and A, B, C, D are the resource types. The values in the table indicate the number of instances of a specific resource (for example: 3 3 2 1 under the last column indicates that there are 3 A-type, 3 B-type, 2 C-type and 1 D-type resources available after allocating the resources to all five processes).						8	3	3
		Process	Allocation	Max	Available				
			ABCD	ABCD	ABCD				
		P0	2001	4212	3 3 2 1				
		P1	3 1 2 1	5 2 5 2					
		P2	2 1 0 3	2 3 1 6					
		Р3	1 3 1 2	1 4 2 4					
		P4	1 4 3 2	3665					
		Answer the following questions using banker's algorithm by providing all intermediate steps: i. Compute the Need matrix for the given snapshot of a system.							

	T	ii. Verify whether the snapshot of the present system is in a safe state			,
		by demonstrating an order in which the processes may complete. iii. If a request from process P1 arrives for (1,1,0,0), can the request	(4)	,	
		be granted immediately?			
		iv. If a request from process P4 arrives for (0,0,2,0), can the request			
Q.5	a	be granted immediately? Suppose the following disk request sequence (track numbers) for a	5	3	5
Q.J		disk with 100 tracks is given: 45, 20, 90, 10, 50, 60, 80, 25, 70. Assume that the initial position of the R/W head is on track 50. How much additional or less distance that will be traversed by the R/W head when the Shortest Seek Time First (SSTF) algorithm is used compared to the SCAN (Elevator) algorithm in tracks (assuming that SCAN algorithm moves towards 100 when it starts execution)?	8	3	3
	b	A hard disk system has the following parameters: Number of tracks = 500	5	4	5
		Number of sectors/track = 100			
		Number of bytes /sector = 500			
		Time taken by the head to move from one track to			
		adjacent track = 1 ms			
		Rotation speed = 600 rpm. What is the average time taken for transferring 250 bytes from the			
		disk?			
	С	A file system with 300 GByte uses a file descriptor with 8 direct block addresses. I indirect block address and I doubly indirect block address. The size of each disk block is 128 Bytes and the size of each disk block address is 8 Bytes. What is the maximum possible file size in this file system?	5	4	5
	d	Consider three processes, all arriving at time zero, with total execution time of 10. 20 and 30 units respectively. Each process spends the first 20% of execution time doing I/O, the next 70% of time doing computation, and the last 10% of time doing I/O again. The operating system uses a shortest remaining compute time first scheduling algorithm and schedules a new process either when the running process gets blocked on I/O or when the running process finishes its compute burst. Assume that all I/O operations can be overlapped as much as possible. For what percentage of the CPU remains idle?	5	4	2
		OR			
		Three processes P1, P2 and P3 arrive at time zero. Their total execution time is 10ms, 15ms, and 20ms respectively. They spent the first 20% of their execution time in doing I/O, next 60% in CPU processing and the last 20% again doing I/O. For what percentage of time was the CPU free? Use Round robin algorithm with time quantum 5ms.			
1	->-	Good Luck !!			

APPROXIMENT TO SERVER

