

An introduction to SDMX data validation using Fusion Metadata Registry Glenn Tice

Topics

- FMR data validation use cases
- Validating data interactively using FMR's web user interface
- The validation rules available in FMR
- Using Concept representations and Constraints to define the universe of valid data
- Checking balance equalities using Validation Schemes

FMR data validation use cases

Data Reporting

Data Collection

Statistics Production

Data producers use FMR to validate reporting data using the collectors' rules prior to transmission

Data collectors validate data received from data reporters

Set and enforce dataset quality rules

Using FMR's web UI to validate a data set

FMR's nine validation rules – a quick overview

applied
2

Semantically Compliant		The XML, JSON, CSV or Excel is well formed
O Duplicate Observation	ns 🗸	Uniqueness - there is only one observation value reported for each time period
Mandatory Attributes	~	All mandatory attributes are reported
Obs Status	~	OBS STATUS is consistent with the observation value
Time Period Format	~	E.g. FREQ=M means the TIME_PERIOD format must be YYYY-MM
O Valid Calculations	observation consistency	Balance equalities defined using Validation Schemes
⊘ Valid Constraint	valid universe of data (ID)	The data is within the universe defined by Data Constraints
⊘ Valid Representation	valid universe of data (D)	Each component complies with the representation defined in the DSD
O Valid Structure	~	The dimensions and attributes are consistent with the DSD

Defining the valid universe of data (\mathbb{D}) – DSD component representations

An example DSD – BIS Macro-economic series

Dimensions		
Frequency		
BIS economic phenomenon		
Reference area		
BIS suffix		
Measures		
Observation value		
Attributes		
Observation comment		

Infinite universe of data Everything is valid!

Representation
String
String
String
String
String
String

The dataset's universe is more specific

Codelist: CL_FREQ

Codelist: CL_BIS_TOPIC

Codelist: CL_REF_AREA

Codelist: CL_BIS_SUFFIX

Number: $\mathbb{R} > 0$

String: $1 \le \text{length} \le 1050$

Setting DSD component representations in practice using FMR

Choose between coded (enumerated) or un-coded (described)

For coded components, pick the Codelist to use from those available in the registry

For coded representation, SDMX also allows further restriction rules to be applied, e.g. only codes that start with a specific string

Further refining the valid universe of data (\mathbb{D}) – Data Constraints

- A dataset's universe of valid data can still be large even with carefully designed representations
- **SDMX Data Constraints** allow further restrictions on the valid universe
- Constraints come in two flavours:
 - Cube Region
 - Series

Further refining the valid universe of data (\mathbb{D}) – Data Constraints

Two common use cases for Data Constraints

1. Restrict the domain for a specific Dataflow

- Problem: generic DSD that can be used for different datasets
 e.g. World Bank World Development Indicators DSD <u>WB:WDI(1.0)</u>
- Solution: Add constraint to the <u>Dataflow</u> to make the domain specific

2. Restrict what specific data providers can report

- Problem: Each data provider must only report certain values
- Solution: Add a constraint to each <u>Provision Agreement</u>

each component: Included values Defining Data Constraints in practice using FMR **Excluded values Reporting Constraint Wizard** OECD:CC_SMEE_OUTLOOK(1.0) 2. Constrained Structure Select one of the four attachment Cube Region Structure Type Dataflow Constrained Structure(s) levels OECD:DF_SMEE_OUTLOOK(1.0) Remove Selected Add New example Choose which Select Components to Include in Constraint components Selected Component Id Component Name Codelist Type to constrain COU CL_SMEE_OUTLOOK__COU[1.0] Country Dimension INDICATOR Indicator CL_SMEE_OUTLOOK__INDICATOR[1.0] **Dimension** YEAR Year CL_SMEE_OUTLOOK_YEAR[1.0] Dimension OBS_STATUS Observation Status CL_SMEE_OUTLOOK__OBS_STATUS[1.0] Attribute UNIT_MEASURE Unit of Measures CL_SMEE_OUTLOOK__UNIT_MEASURE[1.0] Attribute UNIT_MULT CL_SMEE_OUTLOOK__UNIT_MULT[1.0] Multiplier Attribute

Showing 1 to 6 of 6 entries 3 rows selected

Set the valid values for

Search:

Checking data set 'balance equalities' using FMR Validation Schemes

In some datasets, reported observations must be in balance

Dimension REF_AREA

Balance rule EUR = DE + FR + ES + IT

	REF_AREA	2019	2020	2021
	DE	5	6	4
	FR	3	4	5
Reported values -	ES	7	5	5
	IT	2	7	2
	EUR 17 20	16		
Balance equality	EUR = DE + FR + ES + I	Т		

20≠22

Defining balance equalities in practice using FMR Validation Schemes

Validation Scheme Wizard BIS:VS1(1.0)					
Details	2. Attachment	3. CSV Import	4. Expression builder		
ules will be added in addition to a ach validation expression can come the rules' expression is then broke EUROPE]; Equality Operator, v	any rules which may exist for this Validation ontain 'meta' information such as an Id, Nai ken down into: Dimension Id on which the	n Scheme. me, and Dimension Id. rule is operating, e.g REF_AREA; Output, ei	example "AN_ID","A Name","A description". Any CSV ither numerical, or Code Id in square brackets e.g must be placed in square brackets, for example [UK]+		
Rule Details	Column Index	Rule Expression	Column Index		
Rule Id	1	Dimension Id	3		
Rule Name	2	Output	4		
Rule Description		Equality Operator	5		
		Expression	6		
REF_AREA_BALANCE.Eur	rope balance check.REF_AREA,[EUR]],=,"[DE]+[FR]+[ES]+[IT]"			

Equalities are defined for specific dimensions in a DSD - REF_AREA in this example

An expression defines the balance calculation – standard arithmetic operators are allowed (+ - / *)

Balances of the following form are also allowed: 0 = [EUR] - ([DE]+[FR]+[ES]+[IT])

Topics

We saw:

- FMR data validation use cases
- Validating data interactively using FMR's web user interface
- The validation rules available in FMR
- Using Concept representations and Constraints to define the universe of valid data
- Checking balance equalities using Validation Schemes

Questions

FMR data validation follow-on topics

- Series Constraints
- + and % operators for efficiently defining Series Constraints
- Code validity periods Constraints, and at the code level
- Balance equalities using Hierarchical Codelists (Hierarchies in SDMX 3.0)
- Automating data validation using FMR's REST API
- Using FMR SDMX Codelists for validation in R

References

FMR Docker image https://hub.docker.com/r/metadatatechnology/fmr-mysql

Download FMR https://fusionsoftware.s3.us-west-2.amazonaws.com/fmr

FMR product page https://metadatatechnology.com/software/FMR.php

FMR quick start guide https://fmrwiki.sdmxcloud.org/Quick_start_guide_--Windows, Linux_or_Mac

FMR Wiki – general reference https://fmrwiki.sdmxcloud.org/Main_Page

Data Validation Cookbook https://data-cleaning.github.io/validate/