INTRODUCTION TO MACHINE LEARNING

FUNDAMENTAL CONCEPTS

Andreu Arderiu

NORTHIN SUMMER SCHOOL Barcelona, July 2022

Linear regression: cost function

• Minimize cost function: $J(\beta_0, \beta_1) = \frac{1}{n} \sum_{i=1}^n (h_\beta(x^{(i)}) - y^{(i)})^2$

• <u>Gradient descent</u> algorithm: Iterate $\beta_j := \beta_j - \alpha \frac{\partial}{\partial \beta_j} J(\beta_0, \beta_1)$

Source: Coursera

Gradient descent: find the weights minimizing cost

Multivariate linear regression: overview

• Hypothesis: $h_{\beta}(x) = \beta_0 + \beta_1 x_1 + ... + x_m \beta_m = \beta^T x$

Multiple features (variables).

Size (feet²)	Number of bedrooms	Number of floors	Age of home (years)	Price (\$1000)	
2104	5	1	45	460	
1416	3	2	40	232	Source
1534	3	2	30	315	
852	2	1	36	178	

Source: Coursera

Notation:

 $x^{(i)}$ = input (features) of i^{th} training example.

 $x_j^{(i)}$ = value of feature j in i^{th} training example.

Polynomial regression

- Non-linear combinations of x
- Hypothesis: $h_{\beta}(x) = \beta_0 + \beta_1 x + x^2 \beta_2 + \sqrt{x} \beta_3 + \cdots$

Model performance: finite samples

- Most datasets are samples taken from an infinite population.
- We are interested in modelling the **whole population**, we just have access to a **finite sample**.

Source: Hotcubator

Model performance: Bias and variance

- Consider a fixed X
- Bias: Expected difference between predictions and true value
- Variance: "Variability" of predictions

Source: Robert West, EPFL

Quizz: Bias and variance

• Complex models (many parameters) have low/high bias? low/high variance?

• **Simple** models (**few** parameters) have low/high bias? low/high variance?

Quizz: Bias and variance

Complex models (many parameters) have low/high bias?
 low/high variance?

Simple models (few parameters) have low/high bias?
 low/high variance?

Overfitting: Bias-variance tradeoff

• If we use too many features, the learned model may fit the training data very well (overfit), but fail to generalize to new examples

Underfitting

Overfitting

Overfitting: Bias-variance tradeoff

• If we use too many features, the learned model may fit the training data very well (overfit), but fail to generalize to new examples

Overfitting: Bias-variance tradeoff

 Ideally we want low bias (small training error) and low variance (small test error)

Overfitting: solutions

How to reduce overfitting?

Overfitting: solutions

How to reduce overfitting?

- 1. Reduce the number of features: Manually select/reduce the number of features to use
- 2. Regularization: Modify cost function to penalise number of weights or weights high values

Regularization

 Regularization helps us to maintain all variables or features in the model by reducing the magnitude of the variables. Hence, it maintains accuracy as well as the generalization power of the model.

Model selection: overview

- Usually a classifier has some "hyperparameters" to be tuned
 - ➤ Linear regression: Number of features
 - ➤ Polynomial regression: Degree of the polynomial
 - \triangleright Lasso/ridge regression: Regularization parameter λ
 - >...
- Hyperparameters are set before training can begin

Model selection: Train/Validation/Test sets

- 1. Fit model parameters on training set
- 2. Choose model/hyperparameter configuration with lower validation error
- 3. Evaluate model performance with testing set

Model evaluation: k-fold cross-validation

- More efficient way to compute validation error if we have little data
- Average error over the k red portions
 Validation error

Logistic regression: overview

- Supervised learning algorithm for classification tasks
- Hypothesis: $h_{\beta}(x) = P(y = 1|x; \beta) = g(\beta^T x) = \frac{1}{1 + e^{-\beta^T x}}$
- $g(\cdot)$ sigmoid or logistic function, values between 0 and 1

$$g(z) \ge 0.5 if z \ge 0$$

Logistic regression: decision boundary

- Assume we **predict** y = 1 if $h_{\beta}(x) = P(y = 1|x; \beta) \ge 0.5$
- Example 1:

$$h_{\beta}(x) = g(-3 + x_1 + x_2)$$

 $y = 1 \text{ if } -3 + x_1 + x_2 \ge 0;$

• Decision boundary $x_1 + x_2 = 3$

Performance metrics for classification

- In binary classification (Yes/no, 0/1), we use the **confusion matrix** which has 4 values:
 - >True positives: positive examples classified as positive
 - >True negatives: negative examples classified as negative
 - False positives: negative examples classified as positive
 - False negatives: positive examples classified as negative

Credit: Robert West, EPFL

Accuracy: overview

Represents the % of correctly predicted cases

$$A = \frac{TP + TN}{TP + TN + FP + FN} = \frac{TP + TN}{N}$$

- Good metric when
 - ➤ Classes are not skewed
 - > Errors (FP, FN) have the same importance

Source: Avinash Pandey

Accuracy: skewed example

Credit: Robert West, EPFL

$$A = \frac{90}{100} = 0.90$$

Credit: Robert West, EPFL

Accuracy: errors with different importance

$$A = \frac{75}{100} = 0.75$$

Credit: RobertWest, EPFL

$$A = \frac{80}{100} = 0.80$$

Credit: RobertWest, EPFL

Precision, recall, F1-score

Precision: What fraction of positive predictions are actually positive?

$$P = \frac{TP}{TP + FP}$$

Recall: What fraction of positive examples did I recognize as such?

$$R = \frac{TP}{TP + FN}$$

• F1-score: Harmonic mean of precision and recall

$$F1 = 2 \frac{P \cdot R}{P + R}$$