10

15

CLAIMS

What is claimed is:

1. A compound represented by the following structural formula:

$$Z_1$$
 Z_2
 NR_1R_2
 R_2

or a pharmaceutically acceptable salt thereof, wherein:

Ring A is substituted or unsubstituted and is optionally fused to an aryl group;

 Z_1 and Z_2 are independently =0, =S, =N-OR₁₂ or =NR₁₂;

 R_1 and R_2 are independently -H, an aliphatic group, a substituted aliphatic group, an unsubstituted non-aromatic heterocylic group, a substituted non-aromatic heterocylic group, an unsubstituted aryl group or a substituted aryl group, provided that R_1 and R_2 are not both -H; or -N R_1R_2 , taken together, is a substituted or unsubstituted non-aromatic nitrogen-containing heterocyclic group or a substituted or unsubstituted nitrogen-containing heteroaryl group;

R₃ is a substituted or unsubstituted aryl group or a substituted or unsubstituted aliphatic group;

X is a covalent bond,
$$-C(R_4R_5)$$
-, $-N(R_4)$ -, $-O$ -, $-S$ -, $-S(O)$ -, $-S(O)_2$ -, $-C(=O)$ -, $-C(=O)$ -N(R₄)-, or $-N(R_4)$ -C(=O)-;

 R_4 and R_5 are independently -H or a substituted or unsubstituted aliphatic group; and

 R_{12} is -H or a substituted or unsubstituted alkyl group.

- The compound of Claim 1 wherein: Ring A is substituted or unsubstituted; Z₁
 and Z₂ are both =O; R₁ is -H; R₂ is a substituted or unsubstituted alkyl or aryl group; R₃ is a substituted or unsubstituted aryl group; and X is -C(R₄R₅)-, -N(R₄)- or -O-.
 - 3. The compound of Claim 2 wherein R₂ is represented by a structural formula selected from:

$$\begin{cases} -\frac{1}{2} Q R N ; \\ 0 \end{cases} \Rightarrow \begin{cases} -\frac{1}{2} S T N \end{cases}$$

wherein Rings D-T are substituted or unsubstituted.

- 4. The compound of Claim 3 wherein zero, one or more ring carbons atoms of Rings D-T are substituted a group independently selected from -OH, -Br, -Cl, -I, 5 -F, -OR^a, -O-COR^a, -COR^a, -CN, -NO₂, -COOH, -SO₃H, -NH₂, -NHR^a, -N(RaRb), -COORa, -CHO, -CONH2, -CONHRa, -CON(RaRb), -NHCORa, -NRCOR^a, -NHCONH₂, -NHCONR^aH, -NHCON(R^aR^b), -NR^cCONH₂, -NR°CONRªH, -NR°CON(RªRb), -C(=NH)-NH2, -C(=NH)-NHRª, $-C(=NH)-N(R^aR^b)$, $-C(=NR^c)-NH_2$, $-C(=NR^c)-NHR^a$, $-C(=NR^c)-N(R^aR^b)$, 10 $-NH-C(=NH)-NH_2$, $-NH-C(=NH)-NHR^a$, $-NH-C(=NH)-N(R^aR^b)$, $-NH-C(=NR^c)-NH_2$, $-NH-C(=NR^c)-NHR^a$, $-NH-C(=NR^c)-N(R^aR^b)$, $-NR^{d}H-C(=NH)-NH_{2}$, $-NR^{d}-C(=NH)-NHR^{a}$, $-NR^{d}-C(=NH)-N(R^{a}R^{b})$, $-NR^{d}-C(=NR^{c})-NH_{2}$, $-NR^{d}-C(=NR^{c})-NHR^{a}$, $-NR^{d}-C(=NR^{c})-N(R^{a}R^{b})$, $-NHNH_{2}$, -NHNHRa, -NHRaRb, -SO2NH2, -SO2NHRa, -SO2NRaRb, -CH=CHRa, -CH=CRaRb, -CRc=CRaRb, -CRc=CHRa, -CRc=CRaRb, -CCRa, -SH, -SRa, 15 -S(O)R^a, -S(O)₂R^a, alkyl groups, substituted alkyl group, non-aromatic heterocyclic group, substituted non-aromatic heterocyclic group, benzyl group, substituted benzyl group, aryl group or substituted aryl group wherein Ra-Rd are each independently an alkyl group, substituted alkyl group, benzyl, substituted benzyl, aryl or substituted aryl group, or,-NR^aR^b, taken together, can also form a 20 substituted or unsubstituted non-aromatic heterocyclic group.
 - 5. The compound of Claim 3 wherein zero one or more ring carbon atoms of Rings **D-T** are independently substituted with a group selected from C1-C4 alkyl, C1-C4 hydroxyalkyl, *N*-morpholino, pyrimidyl, C1-C4 alkyl substituted pyrimidyl,

-N(C1-C4 alkyl)₂, -C(O)NH₂, -C(O)NH(C1-C4 alkyl), C(O)N(C1-C4 alkyl)₂, -NHC(O)(C1-C4 alkyl) -NO₂, C1-C4 alkoxy, -C(O)O-CH₂CH₂-N(C1-C4 alkyl)₂,

- -CH₂NH-C(O)-O-(C1-C4 alkyl), -CH₂NH₂, -Cl, -F, -C(O)-O-(C1-C4 alkyl),

 -C(O)-N-(C1-C4 alkyl), C3-C7 cycloalkyl, phenyl, -C(O)-*N*-morpholino,

 -S-(C1-C4 alkyl), -CN, furyl, -S(O)₂-(C1-C4 alkyl), -S(O)₂-NH₂, -S(O)₂-NH(C1-C4 alkyl) and -S(O)₂-N(C1-C4 alkyl)₂.
 - 6. The compound of Claim 5 wherein R₂ is represented by a structural formula selected from:

and R_6 is -H or a substituted or unsubstituted alkyl group.

7. The compound of Claim 5 wherein R₂ is represented by a structural formula selected from:

$$\frac{1}{2}$$
 $\frac{1}{2}$ $\frac{1}$

5 wherein:

 X_3 is -CH- or -N-;

 R_7 and R_8 are independently -H or an alkyl group or -NR $_7$ R $_8$, taken together, is a nitrogen-containing non-aromatic heterocyclic group;

R₉ is an alkyl group; and

R_{10} is -H or an alkyl group.

- 8. The compound of Claim 7 wherein Ring A is optionally substituted with one or more groups selected from -F, -Cl, -Br, -C1-C4 alkyl, C1-C4 alkoxy, -C1-C4 haloalkyl, C1-C4 haloalkoxy, -NH₂ and -CN.
- The compound of Claim 8 wherein Ring A is unsubstituted; R₃ is a phenyl group or pyridyl group substituted with zero, one or more substituents selected from -Br, -Cl, -F, -R^e, -OR^e, -CN, -COOR^e, -N(R^e)₂, -CON(R^e)₂, -NR^eCOR^f, -NHCONH₂ and -SO₂ N(R^e)₂; R₇ and R₈ are both -H and R₉ is methyl; and each R^e and R^f are independently -H, an alkyl group or a substituted alkyl group.
- 10 10. The compound of Claim 9 wherein R₃ is a phenyl ring substituted with zero one or more substituents selected from -Cl, -F, -R^e, -OR^e, -CN, -NH₂, -CONH₂ and -NHCOR^f.
 - 11. The compound of Claim 10 wherein R₃ is a phenyl ring substituted with zero one or more substituents selected from -CH₃, -CH₂CH₃, -OCH₃, -CN, -F and -Cl.
- 15 12. The compound of Claim 11 wherein R₃ is a phenyl ring that is unsubstituted or monosubstituted with -CH₂CH₃, -OCH₃, -CN, -F or -Cl and wherein the phenyl ring substituent is at the *para* position.
 - 13. The compound of Claim 4 wherein R₂ is represented by the following structural formula:

10

15

20

14. A method of treating a subject with cancer comprising administering to the subject an effective amount of a compound represented by the following structural formula:

$$Z_1$$
 Z_2
 NR_1R_2
 R_3

or a pharmaceutically acceptable salts thereof, wherein:

Ring A is substituted or unsubstituted and is optionally fused to an aryl group;

 Z_1 and Z_2 are independently =0, =S, =N-OR₁₂ or =NR₁₂.

 R_1 and R_2 are independently -H, an aliphatic group, a substituted aliphatic group, an unsubstituted non-aromatic heterocylic group, a substituted non-aromatic heterocylic group, an unsubstituted aryl group or a substituted aryl group, provided that R_1 and R_2 are not both -H; or -NR₁R₂, taken together, is a substituted or unsubstituted non-aromatic nitrogen-containing heterocyclic group or a substituted or unsubstituted nitrogen-containing heteroaryl group;

R₃ is a substituted or unsubstituted aryl group or a substituted or unsubstituted aliphatic group;

X is a covalent bond, $-C(R_4R_5)$ -, $-N(R_4)$ -, -O-, -S-, -S(O)-, $-S(O)_2$ -, -C(=O)-, -C(=O)-N(R₄)-, or $-N(R_4)$ -C(=O)-;

 $\ensuremath{R_4}$ and $\ensuremath{R_5}$ are independently -H or a substituted or unsubstituted aliphatic group; and

R₁₂ is -H or a substituted or unsubstituted alkyl group.

- 15. The method of Claim 14 wherein: Ring A substituted or unsubstituted, Z_1 and Z_2 are both =O; R_1 is -H; R_2 is a substituted or unsubstituted alkyl or aryl group; R_3 is a substituted or unsubstituted aryl group; and X is -C(R_4R_5)-, -N(R_4)- or -O-;
- 16. The method of Claim 15 wherein R₂ is represented by a structural formula selected from:

wherein Rings D-T are substituted or unsubstituted.

17. The method of Claim 16 wherein zero, one or more ring carbons atoms of Rings 5 D-T are substituted with a group independently selected from -OH, -Br, -Cl, -I, -F, -ORa, -O-CORa, -CORa, -CN, -NO2, -COOH, -SO3H, -NH2, -NHRa, -N(RaRb), -COORa, -CHO, -CONH2, -CONHRa, -CON(RaRb), -NHCORa, -NRCOR^a, -NHCONH₂, -NHCONR^aH, -NHCON(R^aR^b), -NR^cCONH₂, -NR°CONRªH, -NR°CON(RªRb), -C(=NH)-NH2, -C(=NH)-NHRª, $-C(=NH)-N(R^aR^b), \ -C(=NR^c)-NH_2, \ -C(=NR^c)-NHR^a, \ -C(=NR^c)-N(R^aR^b),$ 10 -NH-C(=NH)-NH₂, -NH-C(=NH)-NHR^a, -NH-C(=NH)-N(R^aR^b), $-NH-C(=NR^c)-NH_2$, $-NH-C(=NR^c)-NHR^a$, $-NH-C(=NR^c)-N(R^aR^b)$, -NR^dH-C(=NH)-NH₂, -NR^d-C(=NH)-NHR^a, -NR^d-C(=NH)-N(R^aR^b), $-NR^{d}-C(=NR^{c})-NH_{2},\ -NR^{d}-C(=NR^{c})-NHR^{a},\ -NR^{d}-C(=NR^{c})-N(R^{a}R^{b}),\ -NHNH_{2},$ -NHNHR^a, -NHR^aR^b, -SO₂NH₂, -SO₂NHR^a, -SO₂NR^aR^b, -CH=CHR^a, 15 -CH=CRaRb, -CRc=CRaRb, -CRc=CHRa, -CRc=CRaRb, -CCRa, -SH, -SRa, -S(O)R^a, -S(O)₂R^a, alkyl groups, substituted alkyl group, non-aromatic heterocyclic group, substituted non-aromatic heterocyclic group, benzyl group, substituted benzyl group, aryl group or substituted aryl group wherein Ra-Rd are 20 each independently an alkyl group, substituted alkyl group, benzyl, substituted

benzyl, aryl or substituted aryl group, or,-NR^aR^b, taken together, can also form a substituted or unsubstituted non-aromatic heterocyclic group.

18. The method of Claim 16 wherein zero one or more ring carbon atoms of Rings **D-T** are independently substituted with a group selected from C1-C4 alkyl, C1-C4 hydroxyalkyl, *N*-morpholino, pyrimidyl, C1-C4 alkyl substituted pyrimidyl, -NH(C1-C4 alkyl), -N(C1-C4 alkyl)₂, -C(O)NH₂, -C(O)NH(C1-C4 alkyl), C(O)N(C1-C4 alkyl)₂, -NHC(O)(C1-C4 alkyl) -NO₂, C1-C4 alkoxy, -C(O)O-CH₂CH₂-NH(C1-C4 alkyl),-C(O)O-CH₂CH₂-N(C1-C4 alkyl)₂,

- -NH-(phenyl), -NH₂, -CH₂NH-C(O)-O-(C1-C4 alkyl), -CH₂NH₂, -Cl, -F, -C(O)-O-(C1-C4 alkyl), -C(O)-NH-(C1-C4 alkyl), C3-C7 cycloalkyl, phenyl, -C(O)-N-morpholino, -S-(C1-C4 alkyl), -CN, furyl, -S(O)₂-(C1-C4 alkyl), -S(O)₂-NH₂, -S(O)₂-NH(C1-C4 alkyl) and S(O)₂-N(C1-C4 alkyl)₂.
- The method of Claim 18 wherein R₂ is represented by a structural formula
 selected from:

and R_6 is -H or a substituted or unsubstituted alkyl group

20. The method of Claim 19 wherein R₂ is represented by a structural formula selected from:

wherein:

X₃ is -CH- or -N-;

 R_7 and R_8 are independently -H or an alkyl group or -NR₇R₈, taken together, is a nitrogen-containing non-aromatic heterocyclic group;

R₉ is an alkyl group; and

 R_{10} is -H or an alkyl group.

- 21. The method of Claim 20 wherein Ring A is optionally substituted with one or more groups selected from -F, -Cl, -Br, -Cl-C4 alkyl, Cl-C4 alkoxy, -Cl-C4 haloalkyl, Cl-C4 haloalkoxy, -NH₂ and -CN.
- 22. The method of Claim 21 wherein Ring A is unsubstituted; R₃ is a phenyl group or pyridyl group substituted with one or more substituents selected from -Br, -Cl, -F, -R^e, -OR^e, -CN, -COOR^e, -N(R^e)₂, -CON(R^e)₂, -NR^eCOR^f, -NHCONH₂ or -SO₂N(R^e)₂; R₇ and R₈ are both -H and R₉ is methyl; and each R^e and R^f are independently -H, an alkyl group or a substituted alkyl group.
- The method of Claim 22 wherein R₃ is a phenyl ring substituted with one or more substituents selected from -Cl, -F, -R^e, -OR^e, -CN, -NH₂, -CONH₂ and -NHCOR^f.
 - 24. The method of Claim 23 wherein R₃ is a phenyl ring substituted with one or more substituents selected from -CH₃, -CH₂CH₃, -OCH₃, -CN, -F and -Cl.
- The method of Claim 23 wherein R₃ is a phenyl ring monosubstituted with -CH₃,
 -CH₂CH₃, -OCH₃, -CN, -F and-Cl and wherein the phenyl ring substituent is at the *para* position.

26. The method of Claim 16 wherein R₂ is represented by the following structural formula:

