Exercise 5.1

Question 1:

Find the complement of each of the following angles:

Answer 1:

Complementary angle = 90° – given angle

- (i) Complement of $20^{\circ} = 90^{\circ} 20^{\circ} = 70^{\circ}$
- (ii) Complement of $63^{\circ} = 90^{\circ} 63^{\circ} = 27^{\circ}$
- (iii) Complement of $57^{\circ} = 90^{\circ} 57^{\circ} = 33^{\circ}$

Question 2:

Find the supplement of each of the following angles:

Answer 2:

Supplementary angle = 180° – given angle

- (i) Supplement of $105^{\circ} = 180^{\circ} 105^{\circ} = 75^{\circ}$
- (ii) Supplement of $87^{\circ} = 180^{\circ} 87^{\circ} = 93^{\circ}$
- (iii) Supplement of $154^{\circ} = 180^{\circ} 154^{\circ} = 26^{\circ}$

(Chapter – 5) (Lines and Angles) (Class - VII)

Question 3:

Identify which of the following pairs of angles are complementary and which are supplementary:

Answer 3:

If sum of two angles is 180°, then they are called supplementary angles.

If sum of two angles is 90° , then they are called complementary angles.

(i)
$$65^{\circ}+115^{\circ}=180^{\circ}$$
 These are supplementary angles.

(ii)
$$63^{\circ} + 27^{\circ} = 90^{\circ}$$
 These are complementary angles.

(iii)
$$112^{\circ} + 68^{\circ} = 180^{\circ}$$
 These are supplementary angles.

(iv)
$$130^{\circ} + 50^{\circ} = 180^{\circ}$$
 These are supplementary angles.
(v) $45^{\circ} + 45^{\circ} = 90^{\circ}$ These are complementary angles.

(vi)
$$80^{\circ}+10^{\circ}=90^{\circ}$$
 These are complementary angles.

Question 4:

Find the angle which is equal to its complement.

Answer 4:

Let one of the two equal complementary angles be x.

$$\therefore x + x = 90^{\circ}$$

$$\Rightarrow 2x = 90^{\circ}$$

$$\Rightarrow x = \frac{90^{\circ}}{2} = 45^{\circ}$$

Thus, 45° is equal to its complement.

Question 5:

Find the angle which is equal to its supplement.

Answer 5:

Let *x* be two equal angles of its supplement.

Therefore,
$$x+x=180^{\circ}$$

[Supplementary angles]

$$\Rightarrow 2x = 180^{\circ}$$

$$\Rightarrow \qquad x = \frac{180^{\circ}}{2} = 90^{\circ}$$

Thus, 90° is equal to its supplement.

Question 6:

In the given figure, $\angle 1$ and $\angle 2$ are supplementary angles. If $\angle 1$ is decreased, what changes should take place in $\angle 2$ so that both the angles still remain supplementary?

Answer 6:

If \angle 1 is decreased then, \angle 2 will increase with the same measure, so that both the angles still remain supplementary.

Question 7:

Can two angles be supplementary if both of them are:

(i) acute

(ii) obtuse

(iii) right?

Answer 7:

- (i) No, because sum of two acute angles is less than 180°.
- (ii) No, because sum of two obtuse angles is more than 180°.
- (iii) Yes, because sum of two right angles is 180°.

Question 8:

An angle is greater than 45°. Is its complementary angle greater than 45° or equal to 45° or less than 45°?

Answer 8:

Let the complementary angles be x and y, i.e., $x + y = 90^{\circ}$

It is given that $x > 45^{\circ}$

Adding y both sides, $x + y > 45^{\circ} + y$

 \Rightarrow 90° > 45° + y

 \Rightarrow 90° -45° > y

 \Rightarrow $y < 45^{\circ}$

Thus, its complementary angle is less than 45°.

(Chapter – 5) (Lines and Angles) (Class – VII)

Question 9:

In the adjoining figure:

- (i) Is $\angle 1$ adjacent to $\angle 2$?
- (ii) Is \angle AOC adjacent to \angle AOE?
- (iii) Do \angle COE and \angle EOD form a linear pair?
- (iv) Are \angle BOD and \angle DOA supplementary?
- (v) Is $\angle 1$ vertically opposite to $\angle 4$?
- (vi) What is the vertically opposite angle of \angle 5?

Answer 9:

- (i) Yes, in \angle AOE, OC is common arm.
- (ii) No, they have no non-common arms on opposite side of common arm.
- (iii) Yes, they form linear pair.
- (iv) Yes, they are supplementary.
- (v) Yes, they are vertically opposite angles.
- (vi) Vertically opposite angles of \angle 5 is \angle COB.

Question 10:

Indicate which pairs of angles are:

- (i) Vertically opposite angles?
- (ii) Linear pairs?

Answer 10:

- (i) Vertically opposite angles, $\angle 1$ and $\angle 4$; $\angle 5$ and $\angle 2 + \angle 3$.
- (ii) Linear pairs $\angle 1$ and $\angle 5$; $\angle 5$ and $\angle 4$.

Question 11:

In the following figure, is $\angle 1$ adjacent to $\angle 2$? Give reasons.

Answer 11:

 \angle 1 and $\, \angle$ 2 are not adjacent angles because their vertex is not common.

(Chapter – 5) (Lines and Angles) (Class - VII)

Question 12:

Find the values of the angles x, y and z in each of the following:

[Vertically opposite angles]

[Vertically opposite angles]

[Angles on straight line]

[Linear pair]

[Linear pair]

[Linear pair]

[From equation (i)]

....(i)

Answer 12:

(i)
$$x = 55^{\circ}$$

Now $55^{\circ} + y = 180^{\circ}$
 $\Rightarrow y = 180^{\circ} - 55^{\circ} = 125^{\circ}$

Also
$$y = z = 125^{\circ}$$

Also
$$y = z = 125^{\circ}$$

Thus, $x = 55^{\circ}$, $y = 125^{\circ}$ and $z = 125^{\circ}$.

(ii)
$$40^{\circ} + x + 25^{\circ} = 180^{\circ}$$

 $\Rightarrow 65^{\circ} + x = 180^{\circ}$

$$\Rightarrow x = 180^{\circ} - 65^{\circ} = 115^{\circ}$$
Now $40^{\circ} + y = 180^{\circ}$

$$\Rightarrow y = 180^{\circ} - 40^{\circ} = 140^{\circ}$$
Also $y + z = 180^{\circ}$

$$\Rightarrow 140^{\circ} + z = 180^{\circ}$$
$$\Rightarrow z = 180^{\circ} - 140^{\circ} = 40^{\circ}$$

Thus,
$$x = 115^{\circ}$$
, $y = 140^{\circ}$ and $z = 40^{\circ}$.

Question 13:

Fill in the blanks:

- (i) If two angles are complementary, then the sum of their measures is
- (ii) If two angles are supplementary, then the sum of their measures is
 - Two angles forming a linear pair are _____ (iii)
 - If two adjacent angles are supplementary, they form a ____ (iv)

- $(v) \qquad \hbox{If two lines intersect a point, then the vertically opposite angles are always } \\$
- (vi) If two lines intersect at a point and if one pair of vertically opposite angles are acute angles, then the other pair of vertically opposite angles are

Answer 13:

- (i) 90° (ii) 180° (iii) supplementary
- (iv) linear pair (v) equal (vi) obtuse angles

Question 14:

In the adjoining figure, name the following pairs of angles:

- (i) Obtuse vertically opposite angles.
- (ii) Adjacent complementary angles.
- (iii) Equal supplementary angles.
- (iv) Unequal supplementary angles.
- (v) Adjacent angles that do not form a linear pair.

A D D

Answer 14:

- (i) Obtuse vertically opposite angles means greater than 90° and equal \angle AOD = \angle BOC.
- (ii) Adjacent complementary angles means angles have common vertex, common arm, non-common arms are on either side of common arm and sum of angles is 90°.
- (iii) Equal supplementary angles means sum of angles is 180° and supplement angles are equal.
- (iv) Unequal supplementary angles means sum of angles is 180° and supplement angles are unequal.

i.e., \angle AOE, \angle EOC; \angle AOD, \angle DOC and \angle AOB, \angle BOC

(v) Adjacent angles that do not form a linear pair mean, angles have common ray but the angles in a linear pair are not supplementary.
i.e., ∠AOB, ∠AOE; ∠AOE, ∠EOD and ∠EOD, ∠COD