# **Collecting Data**

In [3]: import pandas as pd
 import numpy as np
 import seaborn as sns
 import matplotlib.pyplot as plt
 %matplotlib inline
 import math
 loan\_data=pd.read\_csv('C:/Users/sanaa/Dropbox/PC/Desktop/UB/Resume/Python/Data/ar
 loan\_data.head(10)

## Out[3]:

| Married | Dependents | Education       | Self_Employed | ApplicantIncome | CoapplicantIncome | LoanAmount |
|---------|------------|-----------------|---------------|-----------------|-------------------|------------|
| No      | 0          | Graduate        | No            | 5849            | 0.0               | NaN        |
| Yes     | 1          | Graduate        | No            | 4583            | 1508.0            | 128.0      |
| Yes     | 0          | Graduate        | Yes           | 3000            | 0.0               | 66.0       |
| Yes     | 0          | Not<br>Graduate | No            | 2583            | 2358.0            | 120.0      |
| No      | 0          | Graduate        | No            | 6000            | 0.0               | 141.0      |
| Yes     | 2          | Graduate        | Yes           | 5417            | 4196.0            | 267.0      |
| Yes     | 0          | Not<br>Graduate | No            | 2333            | 1516.0            | 95.0       |
| Yes     | 3+         | Graduate        | No            | 3036            | 2504.0            | 158.0      |
| Yes     | 2          | Graduate        | No            | 4006            | 1526.0            | 168.0      |
| Yes     | 1          | Graduate        | No            | 12841           | 10968.0           | 349.0      |
| 4       |            |                 |               |                 |                   | •          |

In [4]: print('# of Loan Id in original data:' + str(len(loan\_data.index)))

# of Loan Id in original data:614

# **Analyzing Data**

```
In [7]: sns.countplot(x="Loan_Status",data=loan_data)
```

Out[7]: <AxesSubplot:xlabel='Loan\_Status', ylabel='count'>





Out[8]: <AxesSubplot:xlabel='Loan\_Status', ylabel='count'>



```
In [9]: sns.countplot(x="Loan_Status", hue="Married",data=loan_data)
```

Out[9]: <AxesSubplot:xlabel='Loan\_Status', ylabel='count'>





Out[18]: <AxesSubplot:ylabel='Frequency'>



```
In [19]: loan_data.info()
         <class 'pandas.core.frame.DataFrame'>
         RangeIndex: 614 entries, 0 to 613
         Data columns (total 13 columns):
          #
              Column
                                  Non-Null Count
                                                  Dtype
                                  -----
                                                  ----
          0
              Loan ID
                                  614 non-null
                                                  object
          1
              Gender
                                  601 non-null
                                                  object
          2
              Married
                                  611 non-null
                                                  object
          3
              Dependents
                                  599 non-null
                                                  object
          4
              Education
                                                  object
                                  614 non-null
          5
              Self_Employed
                                  582 non-null
                                                  object
          6
              ApplicantIncome
                                                  int64
                                  614 non-null
          7
              CoapplicantIncome
                                 614 non-null
                                                  float64
          8
              LoanAmount
                                  592 non-null
                                                  float64
          9
              Loan_Amount_Term
                                                  float64
                                  600 non-null
          10 Credit History
                                                  float64
                                  564 non-null
              Property_Area
                                                  object
          11
                                  614 non-null
          12 Loan_Status
                                  614 non-null
                                                  object
         dtypes: float64(4), int64(1), object(8)
         memory usage: 62.5+ KB
```

# **Data Wrangling**

In [20]: loan\_data.isnull()

Out[20]:

|     | Loan_ID | Gender | Married | Dependents | Education | Self_Employed | ApplicantIncome | Coapplic |  |  |
|-----|---------|--------|---------|------------|-----------|---------------|-----------------|----------|--|--|
| 0   | False   | False  | False   | False      | False     | False         | False           |          |  |  |
| 1   | False   | False  | False   | False      | False     | False         | False           |          |  |  |
| 2   | False   | False  | False   | False      | False     | False         | False           |          |  |  |
| 3   | False   | False  | False   | False      | False     | False         | False           |          |  |  |
| 4   | False   | False  | False   | False      | False     | False         | False           |          |  |  |
|     |         |        |         |            |           |               |                 |          |  |  |
| 609 | False   | False  | False   | False      | False     | False         | False           |          |  |  |
| 610 | False   | False  | False   | False      | False     | False         | False           |          |  |  |
| 611 | False   | False  | False   | False      | False     | False         | False           |          |  |  |
| 612 | False   | False  | False   | False      | False     | False         | False           |          |  |  |
| 613 | False   | False  | False   | False      | False     | False         | False           |          |  |  |
| 044 | 044     |        |         |            |           |               |                 |          |  |  |

614 rows × 13 columns

localhost:8888/notebooks/Loan Approval Prediction Model.ipynb#

```
In [22]: loan_data.isnull().sum()
Out[22]: Loan_ID
                                0
         Gender
                               13
         Married
                                3
         Dependents
                               15
         Education
                                0
         Self_Employed
                               32
         ApplicantIncome
                                0
         CoapplicantIncome
                                0
         LoanAmount
                               22
         Loan_Amount_Term
                               14
         Credit_History
                               50
         Property_Area
                                0
         Loan_Status
                                0
         dtype: int64
In [27]: loan_data.dropna(inplace=True)
In [28]:
         sns.heatmap(loan_data.isnull(),yticklabels=False)
```

# Out[28]: <AxesSubplot:>



```
In [32]: loan_data.isnull().sum()
Out[32]: Loan_ID
                               0
         Gender
                               0
         Married
                               0
         Dependents
                               0
         Education
                               0
         Self_Employed
                               0
         ApplicantIncome
                               0
         CoapplicantIncome
         LoanAmount
                               0
         Loan_Amount_Term
                               0
         Credit_History
                               0
         Property_Area
                               0
         Loan_Status
         dtype: int64
In [36]: gender=pd.get_dummies(loan_data["Gender"],drop_first=True)
         gender.head(5)
Out[36]:
             Male
          1
               1
          2
                1
                1
                1
                1
In [40]: married=pd.get_dummies(loan_data["Married"],drop_first=True)
         married.head(5)
Out[40]:
```

|   | res |
|---|-----|
| 1 | 1   |
| 2 | 1   |
| 3 | 1   |
| 4 | 0   |
| 5 | 1   |

In [47]: education=pd.get\_dummies(loan\_data["Education"],drop\_first=True) education.head(5)

## Out[47]:

|   | Not Graduate |
|---|--------------|
| 1 | 0            |
| 2 | 0            |
| 3 | 1            |
| 4 | 0            |
| 5 | 0            |

In [50]: self\_employed=pd.get\_dummies(loan\_data["Self\_Employed"],drop\_first=True) self\_employed.head(5)

## Out[50]:

| 1 | 0 |
|---|---|
| 2 | 1 |
| 3 | 0 |
| 4 | 0 |
| 5 | 1 |

Yes

In [52]: property\_area=pd.get\_dummies(loan\_data["Property\_Area"],drop\_first=True) property\_area.head()

## Out[52]:

|   | Semiurban | Urban |
|---|-----------|-------|
| 1 | 0         | 0     |
| 2 | 0         | 1     |
| 3 | 0         | 1     |
| 4 | 0         | 1     |
| 5 | 0         | 1     |

In [54]: loan\_status=pd.get\_dummies(loan\_data["Loan\_Status"],drop\_first=True)
loan\_status.head(5)

#### Out[54]:

- **1** 0
- **2** 1
- **3** 1
- **4** 1
- **5** 1
- In [56]: dependents=pd.get\_dummies(loan\_data["Dependents"],drop\_first=True)
   dependents.head(5)

#### Out[56]:

- **1 2 3+ 1** 1 0 0
- **2** 0 0 0
- 3 0 0 0
- **4** 0 0 0
- **5** 0 1 0
- In [57]: loan\_data=pd.concat([loan\_data,gender,married,education,self\_employed,property\_ar
  loan\_data.head()

# Out[57]:

|   | Loan_ID  | Gender | Married | Dependents | Education       | Self_Employed | ApplicantIncome | Coapplica |
|---|----------|--------|---------|------------|-----------------|---------------|-----------------|-----------|
| 1 | LP001003 | Male   | Yes     | 1          | Graduate        | No            | 4583            |           |
| 2 | LP001005 | Male   | Yes     | 0          | Graduate        | Yes           | 3000            |           |
| 3 | LP001006 | Male   | Yes     | 0          | Not<br>Graduate | No            | 2583            |           |
| 4 | LP001008 | Male   | No      | 0          | Graduate        | No            | 6000            |           |
| 5 | LP001011 | Male   | Yes     | 2          | Graduate        | Yes           | 5417            |           |

5 rows × 23 columns

**→** 

In [58]: loan\_data.drop(['Gender','Married','Dependents','Education','Self\_Employed','Prop

```
In [59]: loan_data.head()
```

# Out[59]:

|   | Loan_ID  | ApplicantIncome | CoapplicantIncome | LoanAmount | Loan_Amount_Term | Credit_History |
|---|----------|-----------------|-------------------|------------|------------------|----------------|
| 1 | LP001003 | 4583            | 1508.0            | 128.0      | 360.0            | 1.0            |
| 2 | LP001005 | 3000            | 0.0               | 66.0       | 360.0            | 1.0            |
| 3 | LP001006 | 2583            | 2358.0            | 120.0      | 360.0            | 1.0            |
| 4 | LP001008 | 6000            | 0.0               | 141.0      | 360.0            | 1.0            |
| 5 | LP001011 | 5417            | 4196.0            | 267.0      | 360.0            | 1.0            |

**←** 

```
In [101]: cols = []
    count = 1
    for column in loan_data.columns:
        if column == 'Yes':
            cols.append(f'Loan_{count}')
            count+=1
            continue
        cols.append(column)
        loan_data.columns = cols
```

```
In [107]: loan_data=loan_data.rename({'Y':'Loan_Status(Approved)'},axis=1)
loan_data.head()
```

# Out[107]:

| Loan_ID  | ApplicantIncome | CoapplicantIncome | LoanAmount | Loan_Amount_Term | Credit_History | Ма |
|----------|-----------------|-------------------|------------|------------------|----------------|----|
| LP001003 | 4583            | 1508.0            | 128.0      | 360.0            | 1.0            |    |
| LP001005 | 3000            | 0.0               | 66.0       | 360.0            | 1.0            |    |
| LP001006 | 2583            | 2358.0            | 120.0      | 360.0            | 1.0            |    |
| LP001008 | 6000            | 0.0               | 141.0      | 360.0            | 1.0            |    |
| LP001011 | 5417            | 4196.0            | 267.0      | 360.0            | 1.0            |    |
| 4        |                 |                   |            |                  |                | •  |

```
In [109]: loan_data=loan_data.rename({'Loan_2':'Self_Employed'},axis=1)
loan_data.head()
```

#### Out[109]:

| tincome | CoapplicantIncome | LoanAmount | Loan_Amount_Term | Credit_History | Male | Married(Y) | Grac |
|---------|-------------------|------------|------------------|----------------|------|------------|------|
| 4583    | 1508.0            | 128.0      | 360.0            | 1.0            | 1    | 1          |      |
| 3000    | 0.0               | 66.0       | 360.0            | 1.0            | 1    | 1          |      |
| 2583    | 2358.0            | 120.0      | 360.0            | 1.0            | 1    | 1          |      |
| 6000    | 0.0               | 141.0      | 360.0            | 1.0            | 1    | 0          |      |
| 5417    | 4196.0            | 267.0      | 360.0            | 1.0            | 1    | 1          |      |

| In [110]: | <pre>loan_data=loan_data.rename({'Married(Y)':'Married'},axis=1) loan_data.head()</pre> |
|-----------|-----------------------------------------------------------------------------------------|

## Out[110]:

|   | Loan_ID  | ApplicantIncome | CoapplicantIncome | LoanAmount | Loan_Amount_Term | Credit_History |
|---|----------|-----------------|-------------------|------------|------------------|----------------|
| 1 | LP001003 | 4583            | 1508.0            | 128.0      | 360.0            | 1.0            |
| 2 | LP001005 | 3000            | 0.0               | 66.0       | 360.0            | 1.0            |
| 3 | LP001006 | 2583            | 2358.0            | 120.0      | 360.0            | 1.0            |
| 4 | LP001008 | 6000            | 0.0               | 141.0      | 360.0            | 1.0            |
| 5 | LP001011 | 5417            | 4196.0            | 267.0      | 360.0            | 1.0            |
| 4 |          |                 |                   |            |                  | <b>•</b>       |

# **Train Data**

```
In [114]: X=loan_data.drop("Loan_Status(Approved)",axis=1)
y=loan_data["Loan_Status(Approved)"]

In [116]: from sklearn.model_selection import train_test_split

In [117]: X_train,X_test,y_train,y_test=train_test_split(X,y,test_size=0.3,random_state=1)

In [118]: from sklearn.linear_model import LogisticRegression

In [121]: logmodel=LogisticRegression(solver='lbfgs', max_iter=1000)
```

```
In [122]: logmodel.fit(X_train,y_train)
Out[122]: LogisticRegression(max iter=1000)
In [123]: predictions=logmodel.predict(X_test)
In [124]: from sklearn.metrics import classification_report
In [125]: classification_report(y_test,predictions)
Out[125]:
                                       recall f1-score
                                                                                         0.
                         precision
                                                          support\n\n
                                                                                     0.85
          85
                  0.45
                             0.59
                                         51\n
                                                        1
                                                                0.76
                                                                           0.96
          93\n\n
                     accuracy
                                                        0.78
                                                                    144\n
                                                                            macro avg
                                          144\nweighted avg
          0.81
                     0.70
                               0.72
                                                                  0.79
                                                                             0.78
                                                                                       0.76
          144\n'
In [126]: from sklearn.metrics import confusion matrix
In [127]: | confusion matrix(y test,predictions)
Out[127]: array([[23, 28],
                  [ 4, 89]], dtype=int64)
In [128]: from sklearn.metrics import accuracy_score
```

# **Accuracy Check**

```
In [129]: accuracy_score(y_test,predictions)
Out[129]: 0.777777777778
In [ ]:
```