

SÍLABO 2025-1

FACULTAD DE INGENIERÍA CARRERA DE INGENIERÍA DE SISTEMAS

I. Información general

Asignatura	Aprendizaje de Máquina/Machine Learning		
Tipo de asignatura	Obligatoria		
Área	Ingeniería de Software		
Código	650064		
Nivel	Séptimo		
Modalidad	Presencial		
Naturaleza	Teórico-práctica		
Requisito	Estadística Aplicada		
Créditos	Cuatro (4)		
Horas de teoría	Tres (3)		
Horas de práctica	Dos (2)		
Coordinador	Huaranga Junco Edgar Jesús		
Docente	Gutierrez Cardenas Juan Manuel		

II. Sumilla

La asignatura es de naturaleza teórico-práctica, en la que estudiante evalúa las diversas técnicas de Aprendizaje de Máquina, enfocadas a modelos supervisados y no supervisados, para seleccionar la más adecuada en la resolución de un problema específico. Esta asignatura aborda los conceptos estadísticos, matemáticos y algorítmicos que corresponden a cada una de las técnicas presentadas, la implementación y prueba de los conceptos a través de librerías y diversos lenguajes de programación mediante el uso de datos reales.

III. Competencias

Competencias genéricas			
Solución creativa de	Toma decisiones estratégicas para generar un cambio de	G2	
problemas	forma innovadora.	GZ	

IV. Logros de aprendizaje

Logro de aprendizaje general

El estudiante evalúa las diversas técnicas de Aprendizaje de Máquina, enfocadas a modelos supervisados y no supervisados, para seleccionar la más adecuada en la resolución de un problema específico.

	Logros de aprendizaje específicos			
L1	Diferencia problemas que requieren aprendizaje supervisado y no supervisado, mediante el análisis de datos y objetivos del problema, para determinar la técnica/modelo de ml más apropiado.			
L2 Evaluar modelos de aprendizaje de máquina, utilizando métricas y técnicas de validación, para seleccionar el modelo con mejor rendimiento.				
L3	Implementar soluciones de aprendizaje de máquina, utilizando herramientas y frameworks especializados, para resolver problemas específicos.			

V. Estrategia de enseñanza

Metodologías y técnicas de enseñanza

- Clase magistral
- Ejercicios prácticos
- Análisis de casos
- Aprendizaje basado en proyectos
- Aprendizaje basado en problemas

Recursos de aprendizaje

- Laboratorios y talleres
- Aulas especializadas
- Multimedia
- Material didáctico
- Plataformas de aprendizaje

VI. Programa analítico

Semana	Tema (EE)	Descripción (EE)	Evaluación
1	Conceptos Introductorios y manejo de datos	Conceptos fundamentales de ML. Manipulación de datos. Tipos de datos. Conceptos matemáticos y estadísticos.	
2	Análisis descriptivo de datos	Imputación de datos. Métodos paramétricos, y no paramétricos. Tratamiento de outliers. Detección de outliers e inliers.	
3	Feature Engineering	Métodos de selección de características. Reducción de la dimensionalidad.	
4	Balanceo de datos	Smote, Scut, Tomek Links, etc.	1
5	Algoritmos de Regresión	Regresión Lineal simple y múltiple. Métricas de evaluación. Técnicas de Regulación	
6	Algoritmos de Regresión Con Vectores de soporte. Árboles de Decisión. Random Forest, XGBoost / LightGBM		
7	Algoritmos de Clasificación Métricas de evaluación. Regresión Logística KNN. Clasificación con Vectores de Soporte		
8	Algoritmos de Clasificación de Clasificación GINI y Entropía. Random Forest. XGBoost / LightGBM		2
9	Algoritmos de Métricas de evaluación. Reducción de dimensionalidad PCA, Algoritmo K-means		
10	Algoritmos de Clustering Algoritmo Jerárquico. Algoritmo DBSCAN. Algoritmo GMM		
11	Estrategias para la calibración de hiperparámetros. Aprendizaje ensamblado (bagging, boosting, voting)		
12	Heurísticas	Análisis de técnicas heurísticas en ML: Random Walk, Simmulated Annealing, Algoritmos Genéticos, Swarm Intelligence	
13	Introducción al Deep Learning, afinamiento de hiperparámetros, arquitecturas clásicas (VGG-16).		
14	Introducción al NLP Conceptos sobre procesamiento de lenguaje natural. Técnicas basadas en frecuencia, en contexto e introducción a modelos basados en atención: BERT.		
15	Aprendizaje por refuerzo	Técnicas dadas en aprendizaje por refuerzo (Q-Learning)	4

16	Retroalimentación	Cierre de la evaluación continua, retroalimentación del aprendizaje y entrega final de notas.	
----	-------------------	---	--

Las sesiones de enseñanza y aprendizaje se estructuran mediante el **plan de clase IATC**:

- Impacto: Motivar y generar curiosidad.
- Asimilación del aprendizaje: Construir el conocimiento con estrategias innovadoras.
- Transformación de lo aprendido: Desarrollar actividades significativas.
- Cierre del aprendizaje: Concluir y reflexionar sobre el aprendizaje.

VII. Evaluación

La nota final de la asignatura (NF) es el promedio ponderado de las notas obtenidas en el proceso de evaluación continua (EC):

N.º	Semana	Tipo de evaluación	Peso	Calificación	Logro
1	4	Examen Escrito	20%	100% individual	L1, L2
2	8	Práctica en Laboratorio 1	20%	100% individual	L1, L2, L3
3	12	Práctica en Laboratorio 2	30%	100% individual	L1, L2, L3
4	15	Proyecto	30%	100% grupal	L1, L2

VIII. Referencias

Alpaydin, E. (2020). Introduction to machine learning (4th ed.). MIT Press.

Géron, A. (2023). Hands-on machine learning with Scikit-Learn, Keras, and TensorFlow: Concepts, tools, and techniques to build intelligent systems. O'Reilly Media.

Goodfellow, I., Bengio, Y., & Courville, A. (2016). *Deep learning*. MIT Press. http://www.deeplearningbook.org