Introduction to Electronics

S. Lodha

EE 101

Autumn 2015

EE101: Next steps

- Electronic circuits
 - Basic "semiconductor" components/devices
 - Diodes
 - Bipolar Junction Transistors (BJTs)
 - Metal-Oxide-Semiconductor (MOS) Field Effect Transistors (MOSFETs)
 - Typically, these components are "integrated" in electronic circuits → "Integrated Circuits" → "ICs"
 - Silicon chip with millions billions of devices

Transforming Sand to Chips

Source: Intel

Silicon is used in >95% of all Integrated Circuits

iPhone 5

Source: https://www.ifixit.com/Teardown/iPhone+5+Teardown/10525

iPhone 5 Logic Board

Various ICs can be seen

The Processor Chip

Source: chipworks.com

Apple A6 processor (IC)

Cross-section the processor

 Various transistors, resistors, capacitors etc. are "integrated" on Silicon

Processor Specs

- 32 bit, 1.3 GHz dual-core CPU
- Integrated 266 MHz triple-core graphics processing unit
- 1 GB of LPDDR2 RAM
- Integrated image signal processor
- Manufactured by Samsung on a High- κ metal gate (HKMG) 32 nm process
- Area 96.71 mm²

The Transistor

- John Bardeen, Walter Brattain and William Shockley
 - 1947, Bell Labs
 - Point contact Ge transistor

IC History

10

- Sept 12, 1958, Texas Instruments
- Phase shift oscillator at 1.3 MHz made of Ge, 7/16 x 1/16 inches
- 2000 Nobel Prize in Physics

2015 S. Lodha, EE101

iPhone Memory

The simulated results for airgap shape and air height.

Source: K. W. Lee et al., VLSI 2012

128 Gb (16 GB) NAND Flash, 21 nm technology (2 bits per cell)

Flash Memory History

Fujio Masuoka, IEDM 1984 Toshiba

Other iPhone Chips

- Qualcomm PM8018 RF power management IC
- Broadcom BCM4334 Wi-Fi module
- Texas Instruments 27C245I touch screen SoC
- Broadcom BCM5976 touchscreen controller
- Qualcomm MDM9615M LTE modem
- Qualcomm RTR8600 Multi-band/mode RF transceiver

iPhone 5 Sensors

MEMS Gyroscope

MEMS Accelerometer

- Gyroscope: Rotation Sensor
- Accelerometer: Motion Sensor

iPhone Camera

- Active Pixel Sensor (APS)
 - Also called CMOS Image Sensor
 - Also used in digital cameras, DSLRs

iPhone SIM Card

Also an Integrated Electronic Circuit

iPhone 5 Touchscreen

Bent Stumpe, CERN

Capacitative touch screens

- Human touch can change the electrostatic field on top of a conducting oxide film and hence the capacitance
 - Location of the touch

iPhone Display

LED backlighting

• 336 PPI (Pixels per inch)

Display History

- Nick Holonyak Jr
- Coherent (visible) light emission from GaAsP junctions
 - Applied Physics Letters (1962)

Why build the iPhone?

Preliminary iPhone 5 Bill of Materials and Manufacturing Cost Estimate Based on Virtual Teardown (Costs in U.S. Dollars)

		iPhone 5 Model		
Components / Hardware Elements	iPhone 5 Hardware Comments	16GByte	32GByte	64GByte
Pricing without Contract		\$649	\$749	\$849
Total BOM Cost		\$199	\$209	\$230
Manufacturing Cost		\$8.00	\$8.00	\$8.00
BOM + Manufacturing		\$207	\$217	\$238
Major Cost Drivers				
Memory				
NAND Flash		\$10.40	\$20.80	\$41.60
DRAM	1GByte LPDDR2	\$10.45	\$10.45	\$10.45
Display & Touchscreen		\$44.00	\$44.00	\$44.00
Processor	A6 Processor	\$17.50	\$17.50	\$17.50
Camera(s)	8 Megapixel + 1, 2 Megapixel	\$18.00	\$18.00	\$18.00
Wireless Section - BB/RF/PA	Qualcomm MDM9615+RTR8600+Front End*	\$34.00	\$34.00	\$34.00
User Interface & Sensors		\$6.50	\$6.50	\$6.50
BT / WLAN	BTv4.0 + Dual-Band Wireless-N	\$5.00	\$5.00	\$5.00
Power Management		\$8.50	\$8.50	\$8.50
Battery	Assumed 1800mAh	\$4.50	\$4.50	\$4.50
Mechanical / Electro-Mechanical		\$33.00	\$33.00	\$33.00
Box Contents		\$7.00	\$7.00	\$7.00

^{* -} Assumed

Source: IHS iSuppli Research, September 2012

Computational Capability

Source: Kurzweil 1999 - Moravec 1998

21

Levels of Integration in ICs

Integration level	Number devices	Approx. year
Small scale integration (SSI)	10 - 50	1959
Medium scale integration (MSI)	50 - 10 ³	1960s
Large scale integration (LSI)	10 ³ - 10 ⁴	1970s
Very large scale integration (VLSI) 10 ⁴ - 10 ⁶	1980s
Ultra large scale integration (ULS	l) 10 ⁶ - 10 ⁸	1990s
Giga scale integration	10 ⁹ - 10 ¹⁰	2000s

 Current research focus on "Exa-scale Computing" - 10¹⁸ flops

Moore's Law

Moore's Law - It's All About Economics

"Reduced cost is one of the big attractions of integrated electronics, and the cost advantage continues to increase as the technology evolves toward the production of larger and larger circuit functions on a single semiconductor substrate."

Electronics, Volume 38, Number 8, April 19, 1965

- Integrating more components per chip
 - Roughly 2X every 18 months

2015

Unit cost falls as number of components per chip increases

Moore's Law: Transistor Innovation

Source: Intel

Average transistor price per year

Source: G. Moore

Price per FAB (IC factory)

Source: Intel

Moore's Law

Source: Intel

Microprocessor evolution: Latency perspective

80486, circa 1990 1.2 Million Transistors

Tukwila, circa 2010 2 Billion Transistors

Source: www.intel.com

Typical access latency in processor cycles (@ 4 GHz)

Source: Prof. M. Qureshi

Next Class

- Video on IC Manufacturing Process
- Introduction to semiconductor devices