Bitvectors and RSA queries

Ben Langmead

Department of Computer Science

Please sign guestbook (www.langmead-lab.org/teaching-materials) to tell me briefly how you are using the slides. For original Keynote files, email me (ben.langmead@gmail.com).

Bitvectors are no stranger to us; Bloom filters!

Now we consider bitvectors where slots have *meaning*

Navigating between slots also meaningful

Does this bitvector have a "meaning?"

What if its name was is_prime? 6

How might we query it?

E.g. next-highest-prime

E.g. designing a 2-universal hash, we want smallest prime (leftmost 1) greater than some number

What if the vector really was a Bloom filter?

Why might want to "navigate" it?

Say we are counting 1s to estimate cardinality

Might want to "jump" between 1s, ask how spaced out they are $(k^{th}$ minimum value)

0
0
0
1
0
0
0
1
0
0
0
0
1
0
0
0
0
0
0
0

Might represent words in a document

abinoam 0 abiogenesis abiological 0 0 abiosis 0 abiotic 0 abiotically abiotrophy 0 abirritate 0 abishag 0 abit 0 abitibi 0 abiu 0 abject

•

Could be a "one-hot" encoding of string

Navigating bitvectors = navigating the occurrences of characters in the string

How do we navigate / query bitvectors?

Proposal: "RSA" (Rank, Select, Access)

$$B$$
 . $access(i) = B[i]$

Conceptually trivial, but harder if we compress B (more later)

Indexing starts at 0

$$B \cdot \text{rank}_1(i) = \sum_{j=0}^{i-1} B[j]$$

$$B \cdot \operatorname{rank}_0(i) = i - B \cdot \operatorname{rank}_1(i)$$

Rank counts up to but not including offset *i*


```
B \cdot \operatorname{select}_1(i) =
\max\{j \mid B \cdot \operatorname{rank}_1(j) = i\}
B \cdot \operatorname{select}_0(i) =
\max\{j \mid B \cdot \operatorname{rank}_0(j) = i\}
```


B.access(...)

B. rank(...)

B.select (\dots)

Let |B| = n and let m equal the number of set bits

What does this do?

$$B$$
 . select₁(B . rank₁(i) – 1)

$$B \cdot \text{rank}_1(i) = \sum_{j=0}^{i-1} B[j]$$

$$B \cdot \operatorname{select}_1(i) = \max\{ j \mid B \cdot \operatorname{rank}_1(j) = i \}$$

Gives offset of next-earliest set bit -- predecessor

How to implement B . rank₁ & B . select₁? Idea 0: linear scans over B

Can we be more efficient?

Idea 1: Pre-calculate all answers

Idea 1: Pre-calculate all answers

	Time	Space (bits)	Note
B . access	<i>O</i> (1)	n	Lookup
$oldsymbol{B}$. $select_1$	<i>O</i> (1)	$O(m \log n)$	Pre-calculate S_1
B . rank $_1$	<i>O</i> (1)	$O(n \log m)$	Pre-calculate R_1

Idea 2: Pre-calculate all answers for B . select $_1$

 $O(m \log n)$ bits. B . rank₁ is $O(\log m)$ time.

Idea 2: Pre-calculate all answers for ${\it B}$. select $_1$

	Time	Space (bits)	Note
B . $access$	<i>O</i> (1)	n	Lookup
B . $select_1$	<i>O</i> (1)	$O(m \log n)$	Pre-calculate S_1
B . rank $_1$	$O(\log m)$	$O(m \log n)$	Binary search on S_1

Coming soon:

	Time	Space (bits)	Note
B . access	<i>O</i> (1)	n	Lookup
B . $select_1$	<i>O</i> (1)	$\check{o}(n)$?****?
B. rank ₁	<i>O</i> (1)	$\check{o}(n)$?****?