AS4012 NEBULAE AND STARS 2

STELLAR STRUCTURE

Assessed Computational Homework

The goal of this assessed computational homework is to compute the internal structure of sun-like stars on the Zero-Age-Main-Sequence (ZAMS), using the shooting method. On moodle, you will find two Python codes to get you started

- EZWebReader_student_v2.py allows you to plot and analyse the results of the EZ-Web stellar evolution code which you can create yourself using http://www.astro.wisc.edu/~townsend/static.php?ref=ez-web.
- Homework_student_v2.py contains the stellar structure equations and some fitfunctions for the material properties like opacity $\kappa(\rho, T, X, Y)$ and energy production rate $\epsilon(\rho, T, X, Y, XC)$. The code solves the differential equations in the Eulerian description inside-out, using the radius as independent variable.

Your mission, then, is to create a Lagrangian scheme, which allows the mass of the star to be specified in advance. Pick a random number between 0.8 and 1.2, and round it to the nearest 0.1 solar masses. This will be the mass of your star M_{\star} in solar masses.

- 1. Read the literature on the present-day solar photospheric abundances and the protosolar values, in particular Asplund et al. 2009 ARAA 47, 481. What are the recommended values X, Y, Z, XC for the proto-sun, how do they differ from the present-day photospheric values, and why? [Easy 2 marks]
- 2. Run an EZ-Web model for a star of your choice with solar metallicity (initial mass $0.8 \dots 1.2$, Z = 0.02, maximum number of steps = 100, detailed structure files = yes). Plot this model by using EZWebReader_student_v2.py provided on moodle.
 - (i) What are the initial X, Y, Z, XC abundances in this model, and how do they compare to the values recommended by Asplund et al.(2009)? Then select a stage called the "zero-age main sequence", after the model has settled, but before the core helium abundance starts to increase significantly. Look at the plots created EZWebReader_student_v2.py to answer the following questions:
 - (ii) What is the zero-age main sequence radius R_{\star} , luminosity L_{\star} , and effective temperature $T_{\rm eff}$ of that model, and what are the pressure and temperature values in the stellar core, T_c and P_c ?
 - (iii) Which zones (mass-intervals) are convective and which are radiative?
 - (iv) What is the star's main energy source?

[Easy - 4 marks]

3. Rewrite the numerical integration scheme using the Lagrangian equations with enclosed mass as independent variable. Use $T(0) = T_c$ and $P(0) = P_c$ from your EZ-Web model as boundary conditions. I have already created the set of equations and an example for outward integration of the Euler equations. Set up a scheme which integrates the Lagrange equations outward from the centre of the star to a fitting point at $m = 0.5 M_{\star}$

- (i.e. 0.5 times the total mass of your model). Plot the results as function of m and record the values of the four dependent variables r, P, L, T at the fitting point for the outward integration. [Moderately easy 6 marks]
- 4. Write a second Lagrangian integration scheme which works inward from M_{\star} to $m = 0.5 M_{\star}$. Use the surface values of R_{\star} and L_{\star} from your EZ-Web model as boundary conditions. Plot the results and record the values of r, P, L, T at the fitting point for this inward integration. I'd prefer if you plot both the outward and the inward graphs in one plot for each quantity. [Moderately easy 3 marks]
- 5. Determine the differences in the log values between the outward and inward solutions at the fitting point to fill in the rest vector F and then run another 2 outward and another 2 inward models, with perturbed P(0), T(0), L(M), R(M), to fill in the 4×4 matrix DF. Solve this system of linear equations to obtain the log-corrections for P(0), T(0), L(M), R(M), i.e. the Newton-Raphson step. Apply these corrections (you may want to limit those corrections while they are still large) and repeat the procedure, until the solutions match to within a suitable tolerance at the fitting point. Plot the final structures and record the final values for the stellar radius $R(M) = R_{\star}$, stellar luminosity $L(M) = L_{\star}$, core pressure P(0), core temperature T(0) and the surface temperature $T(M) = T_{\text{eff}}$ of your model. [More challenging 6 marks]
- 6. Now use this model as a starting point for (a) a star with a mass 0.1 solar masses smaller or greater than your original model and the same composition, and (b) a star with the same mass, but with sub-solar metallicity Z=0.001 and appropriate X,Y,XC. Record the final radius, luminosity and effective temperatures of these two models. [The icing on the cake if you get this far 4 marks]

Submission: If you are using plain PYTHON, please create a single python program, which includes all your definitions, functions and plot commands. Redirect all your graphical output into a single .pdf file. Include your answers to questions 1 and 2 in form of further comment lines. I will test your code by running python YourCode.py from the console.

If you are using PYTHON JUPYTER notebooks, please put all yours definitions, functions and the resulting plots into a single notebook. Please add your answers to questions 1 and 2 in form of further comment lines. Please make sure that I can re-run your code using ">>" = restart the current kernel and re-execute the whole notebook from the menu.

Please use the submission tool provided on moodle to submit your code prior to the deadline Friday, March 5th, 2021, 10 am. There is a penalty of 5% point reduction per day of late submission. **Five more marks** will be given for code readability and quality of the figures (readability of axes, tickmarks and labels, correct units). I am expecting to mark all submissions, and send feedback within 14 days after the deadline. The computational exercise will count with 25% towards your module grade.