ASSIGNMENT I MSO 202 A

COMPLEX NUMBERS, HOLOMORPHICITY, AND C-R EQUATIONS

Exercise 0.1: Verify the following for all complex numbers z and w:

- (1) $|z+w| \le |z| + |w|$.
- $(2) ||z| |w|| \le |z + w|.$

Exercise 0.2 : Let $z, w \in \mathbb{C}$ belong to the upper half plane. Show that the distance between z and w is at most the distance between z and \overline{w} .

Recall the De Moivers formula: If $z = r(\cos(\theta) + i\sin(\theta))$ then $z^n = r^n(\cos(n\theta) + i\sin(n\theta)).$

Exercise 0.3: Find all complex numbers z such that $z^3 + 1 = 0$.

A map f from \mathbb{C} is $\underline{\mathbb{R}\text{-linear}}$ if f(z+w)=f(z)+f(w) and $f(a\ z)=a\ f(z)$ for all $z,w\in\mathbb{C}$ and $a\in\mathbb{R}$. A map f from \mathbb{C} is $\underline{\mathbb{C}\text{-linear}}$ if f(z+w)=f(z)+f(w) and $f(a\ z)=a\ f(z)$ for all $z,w\in\mathbb{C}$ and $a\in\mathbb{C}$.

Exercise 0.4: For given scalars $a, b \in \mathbb{C}$, show that $f(z) = az + b\overline{z}$ is always \mathbb{R} -linear, where $\overline{z} = x - iy$ for z = x + iy. Verify further that f is \mathbb{C} -linear if and only if b = 0.

Exercise 0.5 : Let $f: \mathbb{C} \to \mathbb{C}$ be a function such that

(0.1)
$$f(az) = a f(z) \text{ for all } z, w, a \in \mathbb{C}.$$

Show that there exists $\alpha \in \mathbb{C}$ such that $f(z) = \alpha z$ for all $z \in \mathbb{C}$.

Exercise 0.6 : Show that a holomorphic function $f = u + iv : \mathbb{C} \to \mathbb{C}$ is constant if $\overline{f} = u - iv$ is holomorphic.

Exercise 0.7: Show that a holomorphic function $f: \mathbb{C} \to \mathbb{C}$ is constant if the range of f is contained in a circle.

Exercise 0.8: Show that a a holomorphic function $f: \mathbb{C} \to \mathbb{C}$ is constant if the range of f is contained in a parabola.