Announcements

Quiz 2 Closes on Friday in the evening (5:00 PM)

Review 1 this week – can attend either Thursday or Friday. Details will be posted on myCourses

SciLearn Peer Collab: Monday and Wednesday 3:00 to 5:00 pm (2001 McGill College Ave)

Office Hours: Thursday 3:00 pm to 4:30 pm in Otto Maass 100

This is what a Chemist looks like Jennifer Murphy

- McGill Alumna Professor at University of Toronto
- Atmospheric Chemistry research trace gases and particles
- Measurement of NH₃ and other reactive nitrogen species in atmosphere – urban air quality, climate change, and effects on ecosystems.

https://sites.chem.utoronto.ca/murphygroup/

Spin Quantum number describes the electron in the orbital

- 1. Principal Quantum Number (n)
- 1. Positive integer (1,2,3....)
- 2. Indicates the relative size of the orbital relative distance
- 3. Specifies the energy level (higher n indicated higher energy)
- 2. Angular Quantum Number (l)
 - 1. Positive Integer (0 to n-1)
 - 2. Shape of the orbital
 - 3. The value of n limits l; if n=1, l can only have the value 0; if n=2, l can have the values 0 and 1
- 3. Magnetic Quantum Number (m_I)
 - 1. Integer (-l to +l)
- 2. Orientation of the orbital around the nucleus
- 3. The value of I limits m_i ; For I=1, values of m_i can be -1,0, and 1
- 4. Spin Quantum Number (m_s)
 - 1. -1/2 or +1/2
 - 2. Direction of electron's angular momentum

Electron Shielding and Effective Nuclear Charge

Electrons experience an "effective" nuclear charge (Z_{eff}) that depends on atomic number (Z) and shielding (S) by inner electrons

$$Z_{eff} = Z - S$$

Energy Level Diagram for Atomic Orbitals

Energy Level Diagram for Atomic Orbitals

Taking all this shielding into account, we calculate the ENERGY for EACH orbital available, and rank them in order, 'closer' to further', lowest E up to highest E, and that's the order in which the orbitals are filled with electrons

Order of atomic orbitals (lowest to highest energy) 1s<2s<2p<3s<3p<4s<3d<4p<5s<4d<5p<6s<4f...

Periodic Table

Periodic Table (Available on myCourses)

	57	58	59	60	61	62	63	64	65	66	67	68	69	70	71
Lanthanide Series	La	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Но	Er	Tm	Yb	Lu
	Lanthanum 138,905	Cerium 140,116	Praseodymium 140.908	Neodymium 144,243	Promethium 144.913	Samarium 150.36	Europium 151.964	Gadolinium 157,25	Terbium 158,925	Dysprosium 162.500	Holmium 164.930	Erbium 167,259	Thu l ium 168.934	Ytterbium 173.055	Lutetium 174.967
	89	90	91	92	93	94	95	96	97	98	99	100	101	102	103
Actinide Series	Ac	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr
50.105	Actinium 227 028	Thorium	Protactinium 231.036	Uranium 238 029	Neptunium 237 nas	Plutonium 244.064	Americium 243 061	Curium 247 070	Berkelium 247.070	Californium 251 080	Einsteinium	Fermium 257.005	Mendelevium	Nobelium 259 101	Lawrencium 12621

2017 Todd Helmenstine

Concept Video 7- Q 1 Give the four quantum numbers that describe the 5th electron of a ground state Carbon atom

Give the four quantum numbers that describe the 5th electron of a ground state Carbon atom

```
5th electron will have n=2; l=1 m_l can be 0, -1 or +1 m_s can be +1/2 or -1/2 (conventionally +1/2 – filled spin up first)
```

C: $1s^22s^22p^2$

Concept Videos 7 – Q 2

Write the ground state electronic configuration (condensed), and the number of valence electrons for the following elements. Would these elements likely form cations or anions? (there may be some that would be difficult to judge)

- 1) Te
- 2) I
- 3) Rb
- 4) Ga
- 5) As

© 2017 Todd Helmenstine sciencenotes.org Write the ground state electronic configuration (condensed), and the number of valence electrons for the following elements. Would these elements likely form cations or anions? (there may be some that would be difficult to judge)

- A. Te: $[Kr]5s^2 4d^{10}5p^4$ (6 valence electrons) (learn more next week)
- B. I: [Kr]5s²4d¹⁰5p⁵ (7 valence electrons) (will form I⁻ anion)
- C. Rb: [Kr]5s¹ (1 valence electron) ((will form Rb⁺ cation)
- D. Ga: [Ar]4s²3d¹⁰4p¹ (3 valence electrons) (learn more next week)
- E. As:[Ar]4s²3d¹⁰4p³ (5 valence electrons) (learn more next week)

Rank each of these main-group elements in decreasing atomic size?

Among the following which of the following ionizations would require the least amount of energy?

- 1. From $Si_{(g)}([Ne]3s^23p^2)$ to $Si^+_{(g)}([Ne]3s^13p^2) + e^-$
- 2. From $Si_{(g)}$ ([Ne]3s²3p²) to $Si^{+}_{(g)}$ ([Ne] 3s²3p¹) + e⁻
- 3. From $Si^{+}_{(g)}([Ne]3s^{2}3p^{1})$ to $Si^{2+}_{(g)}([Ne]3s^{2}) + e^{-}$

Among the following, which ionizations would require the least amount of energy?

- 1. From $Si_{(g)}([Ne]3s^23p^2)$ to $Si^+_{(g)}([Ne]3s^13p^2) + e^-$
- 2. From $Si_{(g)}$ ([Ne]3s²3p²) to $Si^{+}_{(g)}$ ([Ne] 3s²3p¹) + e⁻
- 3. From $Si^{+}_{(g)}([Ne]3s^{2}3p^{1})$ to $Si^{2+}_{(g)}([Ne]3s^{2}) + e^{-}$

Using electronic configuration, describe IE_1 , IE_2 , and IE_3 of the following atoms? Circle the largest IE (among IE1/IE2/IE3) for each atom

Na

Using electronic configuration, describe IE_1 , IE_2 , and IE_3 of the following atoms? Circle the largest

For the same element: IE3 > IE2 > IE1 $IE_{(n+1)}$ is always $> IE_{(n)}$

slido

A main group element belonging to period 3 has the following ionization energies? Without looking at a table with IE values, predict which of the following is it? IE in kJ/mol:

IE1 = 738; IE2 = 1451; IE3: 7732; IE4: 10542

⁽i) Start presenting to display the poll results on this slide.

Sirjoosingh_Chem 110

An element belonging to period 3 has the following ionization energies? Predict which element is it?

IE in kJ/mol: $IE_1 = 738$; $IE_2 = 1451$; IE_3 : 7732; IE_4 : 10542

An element belonging to period 3 has the following ionization energies? Predict which element is it?

IE in kJ/mol:

$$IE_1 = 738$$
; $IE_2 = 1451$; IE_3 : 7732; IE_4 : 10542

Biggest jump between IE2 and IE3

2+ state (A^{2+}) – noble gas configuration

The element is Mg since Mg²⁺ is isoelectronic with Ne

Arrange the following in decreasing ionic size: S⁻², O⁻², Be²⁺, Li⁺

Arrange the following in decreasing ionic size: S^{2-} , O^{2-} , Be^{2+} , Li^+

$$S^{2-} > O^{2-} > Li^+ > Be^{2+}$$

Provide the condensed electronic configuration of the following and determine if they are paramagnetic or diamagnetic

Ti

 Zn^{2+}

Ti²⁺

Fe³⁺

•

Concept Video 9

Provide the condensed electronic configuration of the following and determine if they are paramagnetic or diamagnetic

Practice questions: Which of the following are paramagnetic?

A. Sc⁺B. Zn²⁺

E. La³⁺

