Siddhi Sunil Nalawade Siddhisu@buffalo.edu 50613176

Big-data Processing and Machine Learning Introduction

This report analyzes Nvidia's stock prices from July 2022 to July 2024 using data processing and machine learning. It covers data cleaning, visualization, and predictive modeling with K-Means clustering and LSTM. The goal is to identify patterns and improve stock trend predictions.

Part 1: Big Data Processing

Data Cleaning and Exploration

1. Load Dataset and Display Metadata

- The code imports necessary libraries, loads Nvidia's historical stock price data into a pandas Data Frame, and displays its structure.
- The output reveals 523 rows and 7 columns, with some missing values in Open, High, Close, and Volume. The first five rows show stock price details, confirming that the Date column needs conversion and numerical data is in floating-point format.

	Date	Open	High	Low	Close	Adj Close	Volume
0	2022/7/1	14.899	15.063000	14.392	14.523	14.506663	577610000.0
1	2022/7/5	14.175	14.971000	14.055	14.964	14.947166	651397000.0
2	2022/7/6	15.010	15.319000	14.789	15.130	15.112980	529066000.0
3	2022/7/7	15.456	15.945000	15.389	15.858	15.840160	492903000.0
4	2022/7/8	15.430	16.037001	15.389	15.838	15.820185	467972000.0

2. Check and Handle Missing Values

- Checked missing values using df.isnull().sum(), found missing data in Date, Open, High, Close, and Volume.
- Forward-filled (ffill) missing values in Date, Open, High, and Close to maintain continuity.
- Filled Volume with its median to prevent data skewing.
- After processing, df.isnull().sum() confirmed zero missing values.

3. Convert Date to Proper Format

Converted the **Date** column to datetime format and reformatted it to "**DD-MM-YYYY**", ensuring consistency in date representation.

Date Date_formatted 0 2022-07-01 01-07-2022 1 2022-07-05 05-07-2022 2 2022-07-06 06-07-2022 3 2022-07-07 07-07-2022 4 2022-07-08 08-07-2022

4. Compute Basic Statistics

Computed Min, Max, Mean, Median, and Standard Deviation for key numerical features like Open, High, Low, Close, Adj Close, and Volume.

Below is the output:

Open:

Min: 10.971

Max: 139.800003

Mean: 46.92134795411089

Median: 42.321999

Standard Deviation: 32.99460807074795

High:

Min: 11.735

Max: 140.759995

Mean: 47.77337285468452

➤ Median: 43.0

> Standard Deviation: 33.56795208828847

Low:

Min: 10.813

Max: 132.419998

Mean: 46.00918748183556

Median: 41.654999

> Standard Deviation: 32.21017457790228

Close:

Min: 0.0Max: 1.0

Mean: 0.28724432436351643

> Median: 0.2500140768616104

> Standard Deviation: 0.26452802363423594

Adj Close:

Min: 11.217702Max: 135.580002

Mean: 46.93218490057361

Median: 42.304337

> Standard Deviation: 32.892753324228046

Volume:

Min: 167934000.0Max: 1543911000.0

Mean: 483429610.3250478

Median: 457328000.0

> Standard Deviation: 157556862.10013533

5. Data Visualization

- The stock price remained stable in 2022, gradually increased in 2023, and showed a sharp upward trend in 2024.
- A significant surge in early 2024 was followed by fluctuations, indicating market corrections and volatility.
- This visualization highlights key trends and turning points, useful for analyzing investment patterns and stock performance.

Feature Engineering

1. Calculate Daily Returns and Find Top 10 Days

ъ.	D 11 D 1
Date	Daily_Return
226 2023-05-25	0.243696
412 2024-02-22	0.164009
92 2022-11-10	0.143293
162 2023-02-23	0.140214
522 2024-07-31	0.128121
476 2024-05-23	0.093197
285 2023-08-21	0.084713
105 2022-11-30	0.082379
17 2022-07-27	0.076030
140 2023-01-23	0.075901

2. Compute 7-Day Moving Average and Plot

- The 7-day moving average smooths short-term fluctuations, providing a clearer view of the overall trend in stock prices.
- The moving average closely follows the closing price, highlighting long-term growth and filtering out daily volatility.
- This technique helps in identifying trends, potential reversals, and market momentum for better trading decisions.

3. Normalize Trading Volume and Find Top 10 Days

Date	Volume	Normalized_Volume
226	2023-05-25	1.543911e+09 1.000000
43	2022-09-01	1.178865e+09 0.734701
288	2023-08-24	1.156044e+09 0.718115
423	2024-03-08	1.142269e+09 0.708104
162	2023-02-23	1.117995e+09 0.690463
229	2023-05-31	1.002580e+09 0.606584
25	2022-08-08	9.818590e+08 0.591525
264	2023-07-21	9.637690e+08 0.578378
289	2023-08-25	9.253410e+08 0.550450
228	2023-05-30	9.234010e+08 0.549040

Data Visualization

1. Histogram of Daily Returns

- The distribution of daily returns is approximately normal, with most returns clustered around 0%, indicating small daily price changes.
- There are some extreme values on both ends, showing occasional large gains or losses, reflecting market volatility and sudden price swings.

2. Boxplot of Trading Volume

- The boxplot reveals outliers indicating periods of unusually high trading volume, suggesting market spikes.
- Most trading volumes are concentrated around the median, showing a relatively stable distribution with occasional surges.

3. Correlation Heatmap of Numerical Features

- The heatmap shows a strong positive correlation (1.00) among Open, High, Low, Close, and Adjusted Close prices, indicating they move together.
- Trading volume has a weak negative correlation (\sim -0.21) with price-related features, suggesting that volume changes do not strongly influence price fluctuations.
- This analysis helps in understanding how different stock features relate to each other, aiding in feature selection for machine learning models.

Part 2: Machine Learning

Clustering with K- Means

1. Select Features for Clustering

Normalized Daily Return, Adjusted Close Price, and Volume using Min-Max Scaling and selected them for K- Means clustering.

2. Find Optimal Clusters with Elbow Method

- Used the Elbow Method by plotting Sum of Squared Errors (SSE) against different values of k (number of clusters).
- The graph shows a **sharp decline at k = 3**, indicating the optimal number of clusters for KMeans.

3. Apply K- Means and Visualize Clusters

- Applied KMeans clustering with k = 3, grouping stock behavior based on Daily Return and Adjusted Close Price.
- The scatter plot shows three distinct clusters, representing different market trends and volatility levels.

4. Interpret and Analyze Cluster Insights

Cluster Analysis and Insights

The clustering results reveal three distinct groups of stock behavior:

- **Cluster 0:** Represents moderately priced stocks with stable daily returns and lower trading volume. These stocks tend to have minimal fluctuations, making them relatively stable investments.
- **Cluster 1:** Includes high-performing stocks with significantly higher adjusted closing prices and slightly better daily returns. These stocks are likely associated with strong market trends and increased investor confidence.
- **Cluster 2:** Consists of lower-priced stocks with higher volatility. These stocks experience larger fluctuations in daily returns and tend to have more unpredictable movements.

Cluster 0 Statistics:							
	Daily_Return	Normalized_Volume	Adj Close				
count	185.000000	185.000000	185.000000				
mean	0.003160	0.223455	48.191037				
std	0.024645	0.108947	8.217178				
min	-0.100046	0.022003	37.463783				
25%	-0.010686	0.154549	43.032112				
50%	0.002970	0.195976	45.945034				
75%	0.018804	0.263237	48.983681				
max	0.084713	0.718115	76.193741				
Cluste	r 1 Statistics:						
	Daily_Return	Normalized_Volume					
count	110.000000	110.000000	110.000000				
mean	0.006633	0.198195	102.141636				
std	0.036687	0.116575	17.873822				
min	-0.070436	0.004344	77.652985				
25%	-0.016006	0.110559	87.769791				
50%	0.004675	0.190869	92.607392				
75%	0.026720	0.255809	120.968546				
max	0.164009	0.708104	135.580002				
Cluster 2 Statistics:							
	<i>3</i> –	Normalized_Volume	Adj Close				
count	228.000000	228.000000	228.000000				
mean	0.004660	0.249023	19.274609				
std	0.037779	0.114528	5.760822				
min	-0.094726	0.000000	11.217702				
25%	-0.016239	0.175659	14.823009				
50%	0.005115	0.230611	17.333285				

1.000000

Other machine learning methods

 50%
 0.005115
 0.230611

 75%
 0.023597
 0.289769

0.243696

max

Train a regression model LSTM to predict the closing price of the stock based on historical data

17.333285 23.500787

37.964703

1. Stock Price Prediction - LSTM

- Trained an LSTM model on historical stock prices, achieving an MSE of 0.0065, indicating reasonable accuracy.
- The plot shows that the model captures overall stock trends but smooths short-term fluctuations.

LSTM Model with Hyperparameter Tuning

- Enhanced the LSTM model with more layers and dropout regularization, reducing overfitting.
- Achieved MSE = 0.0054 and $R^2 = 0.7285$, showing improved prediction accuracy while capturing market trends more effectively.

2. Trend Classification

Trend Classification: Implement a classification model Support Vector Machine to predict whether the stock price will go up or down the next day.

- Implemented an SVM model to predict whether the stock price will go up or down the next day based on Open, High, Low, and Volume features.
- Achieved an accuracy of 48.57%, indicating that the model struggles to make reliable predictions, likely due to market volatility and feature limitations.

SVM Model with Hyperparameter Tuning

- Tuned the SVM model using GridSearchCV with different values of C and gamma to improve prediction accuracy.
- Achieved a best cross-validation accuracy of 57.10% and a test set accuracy of 52.38%, showing slight improvement but still limited by stock market volatility.

• Conclusion:

- K- Means clustering successfully categorized stocks into three groups based on volatility and performance.
- LSTM provided the best stock price predictions, with MSE = 0.0054 and R^2 = 0.7285, capturing market trends effectively.
- SVM struggled with trend classification (52.38% accuracy), highlighting the difficulty of short-term stock movement predictions.
- Overall, machine learning techniques provided valuable insights, with LSTM excelling in forecasting and clustering helping in market segmentation.