Universidade Federal da Paraíba Centro de Informática

Departamento de Informática

Aprendizado Profundo Redes Neurais Recorrentes

Tiago Maritan (tiago@ci.ufpb.br)

- Não memorizam a(s) última(s) saídas
 - Informações fluem apenas para frente (da entrada até a saída);
 - Decisões são tomadas com base na entrada atual;
 - Não existem ciclos ou loops na rede;

- <u>Tem dificuldade para lidar com dados sequenciais</u>;
 - Exemplo: textos, áudios ou vídeos;
- Considera apenas a entrada atual
- Não memoriza entradas anteriores

- Problema: Treinar uma rede neural para traduzir sentenças Português-Inglês
 - Rede neural recebe uma palavra por vez, como entrada;

Entrada anterior "comi" ajuda a identificar o contexto.

Problema: Uma CNN consegue prever o acidente usando apenas essa imagem?

Em algumas aplicações, o <u>contexto</u> e a <u>ordem dos eventos</u> são <u>extremamente importantes</u>.

Exemplos:

Processamento de Linguagem Natural

- Reconhecimento de Fala
- Análise de Sentimentos
- Geração de textos
- Tradução

Processamento de Imagem e Vídeo

- Carros autônomos
- Legenda de imagens
- Descrição automatizada

- Incluem o conceito de memória ao serem executadas de forma recorrente (loops)
 - Processa a <u>entrada atual</u> + <u>entradas (estados) recebidos de</u> <u>entradas anteriores</u>.
 - Podem manipular dados sequenciais

- Incluem o conceito de memória ao serem executadas de forma recorrente (loops)
 - Processa a <u>entrada atual</u> + <u>entradas (estados) recebidos de</u> <u>entradas anteriores</u>.
 - Podem manipular dados sequenciais

Visão desenrolada: múltiplas cópias da rede, cada uma passando uma mensagem para a sua sucessora.

Visualizando apenas 1 neurônio recorrente:

Visualizando 1 neurônio recorrente:

Visualizando 1 neurônio recorrente:

Visualizando 1 camada de neurônios recorrentes:

- Cada neurônio recorrente terá dois conjuntos de pesos:
 - w_x vetor de peso para as entradas x_(t)
 - $\mathbf{w_y}$ vetor de peso para as saídas do tempo anterior $\mathbf{y_{(t-1)}}$

Visualizando 1 camada de neurônios recorrentes:

- Se considerarmos toda a camada recorrente, podemos colocar todos os vetores de peso em 2 matrizes:
 - $\mathbf{W}_{\mathbf{x}}$ matriz de pesos para a entrada $(\mathbf{x}_{(t)})$ de todos os neurônios;
 - $\mathbf{W}_{\mathbf{y}}$ matriz de pesos para as saídas $(\mathbf{y}_{(\mathbf{t-1})})$ de todos os neurônios;

Vetor de saída y(t) pode ser calculado da seguinte forma:

$$\mathbf{y}(t) = \phi \left(\mathbf{W}_{x}^{\mathsf{T}} \mathbf{x}_{(t)} + \mathbf{W}_{y}^{\mathsf{T}} \mathbf{y}_{(t-1)} + \mathbf{b} \right)$$

Vetor de saída y(t) pode ser calculado da seguinte forma:

Ex: Legenda de imagens

Imagem -> sequência de palavras

Ex: **Análise de sentimentos** sequência de palavras -> sentimento

Ex: **Tradução Automática** sequência de palavras

Funcionamento de uma RNN

- Considere tentar prever a próxima palavra do texto:
 - "cresci na França, sou fluente em [?]

Treinamento de uma RNN

Backpropagation Through Time (BPTT)

 Para treinar uma RNN, um caminho é desenrolá-la ao longo do tempo, e fazer uma retropropagação normal

Treinamento de uma RNN

Backpropagation Through Time (BPTT)

A sequência de saída é avaliada usando uma função de custo $C(Y_{(0)}, Y_{(1)}, ..., Y_{(T)})$... em que T é o intervalo de tempo máximo.

Backpropagation Through Time (BPTT)

- Gradientes da função de custo C são retropropagados pela rede desenrolada
- Parâmetros do modelo são atualizados usando os gradientes calculados durante a BPTT.
- Obs: Gradientes fluem em direção inversa por meio de todas as saídas usadas pela função de custo, não apenas a última saída.

Problemas das Dependências de Longo Prazo (Long-Term Dependencies)

- RNN clássicas têm dificuldade em lidar com <u>dependências</u>
 <u>de longo prazo.</u>
- "João e Maria estão namorando, a mãe de Maria não gosta desse namoro, então João terminou com?

Problemas das Dependências de Longo Prazo (Long-Term Dependencies)

- Isso ocorre devido ao problema do desaparecimento do gradiente (vanishing gradient)
 - Difícil o erro se retropropagrar até o início da sequência para predizer a saída

Problema dos Gradientes Instáveis

- Outro problema que pode acontecer são os gradientes instáveis
 - RNNs geralmente usam tanh para mitigar isso (e não ReLU);
 - Por quê? Suponha que o gradiente atualize os pesos de forma que aumente ligeiramente a saída em t = 0;
 - As saídas em t=1 também podem ser aumentadas, e assim sucessivamente (t=2, t=3, etc)... até que as saídas explodam!

Problema dos Gradientes Instáveis

- Outro problema que pode acontecer são os gradientes instáveis
 - ReLU é uma função não saturadora (não tem valor máximo), e, portanto, não impede que essa explosão aconteça;
 - tanh é uma função saturadora (limita os valores a intervalos [-1,1]) e mitiga o problema da explosão do gradiente;
 - Por isso tanh é mais usada para RNNs!

RNNs Profundas

É comum empilhar várias camadas de células RNNs para resolver problemas mais complexos.

RNNs Profundas

- Em RNNs com várias camadas, se a saída da rede for um valor unitário (ex: na predição de uma série temporal), pode-se substituir a célula recorrente da última camada por um neurônio convencional (sem recorrência).
- Ex: No Keras

```
model = keras.models.Sequential([
     keras.layers.SimpleRNN(20, return_sequences=True, input_shape=[None,
1]),
     keras.layers.SimpleRNN(20, return_sequences=True),
     keras.layers.SimpleRNN(1)
```

```
model = keras.models.Sequential([
     keras.layers.SimpleRNN(20, return_sequences=True, input_shape=[None,
1]),
     keras.layers.SimpleRNN(20, return_sequences=True),
     keras.layers.Dense(1)
```

RNNs Profundas

Por quê?

- Célula recorrente da camada de saída teria um único número como estado oculto $(y_{(t-1)})$, com um único peso (w_y) , o que não tem muita serventia.
- Função de ativação da saída geralmente usa tanh;
- Substituir por um neurônio denso, faz com que:
 - Rede execute um pouco mais rápido;
 - Acurácia parecida;
 - Possibilidade de escolher outra função de ativação;
 - Converge mais rápido;

Redes LSTM (Long Short Term Memory)

Redes LSTM podem endereçar esse problema!

- LSTM: tipo especial de rede recorrente capaz de <u>aprender</u> <u>dependências de longo prazo</u>.
- Módulo (unidade) tem uma estrutura diferente.

Unidade LSTM

Formada por: Memory cell e Gates

Unidade LSTM

Formada por: Memory cell e Gates

Unidade LSTM

Formada por: Memory cell e Gates

Memory Cell

Loop que mantém informações aprendidas ao longo do tempo;

 A cada passo de tempo, a <u>unidade LSTM modifica a</u> <u>memory cell</u> com <u>informações fornecidas pelos gates</u>

Forget/Keep Gate

- Determina quanto da memória anterior ele deve manter
 - E, consequentemente, **quanto ele deve esquecer**;
 - Esquecer é bom!!!

state [t-1] = [0.7, -1.0, 0.03, -0.93] tensor_bits = [0, 1, 1, 0]

remaining_state[t] = [0, -1.0, 0.03, 0]

- ---> O informação esquecida
- ---> 1 informação mantida

Forget/Keep Gate - Como Funciona?

- Computa um <u>tensor de bits</u> (0s e 1s) e multiplica pelo estado anterior.
 - 1 informação do estado anterior mantida
 - 0 informação apagada
- <u>Tensor de bits</u> é calculado da seguinte forma:
 - Concatena entrada atual (input[t]) e saída da etapa anterior (output[t-1]) e aplica a função sigmóide
 - Função sigmóide: gera valores muito próximos de 1 ou muito próximos de 0.
 - Resultado é próximo a tensor de bits (0s e 1s)

Forget/Keep Gate - Como Funciona?

- Função Sigmóide: gera valores entre 0 e 1
 - Geralmente mais próximos de 0 ou 1;
 - Exceto quando a entrada é próxima de 0;

Write Gate

- Define <u>que novas informações devem ser escritas no</u> <u>estado de memória.</u>
 - Ou seja, atualiza o estado anterior (t-1) para o atual (t)

Write Gate

- Define que novas informações devem ser escritas no estado de memória.
 - Ou seja, atualiza o estado anterior (t-1) para o atual (t)

Write Gate - Como Funciona?

- Duas partes:
 - Parte 1 Tanh: define um <u>tensor intermediário</u> com valores candidatos (novas informações) a serem adicionados no novo estado.
 - Parte 2 Sigmóide: cria um tensor de bits (0s e 1s)
 que define que informações do outro tensor (parte
 01) serão escritas no novo estado.
 - Usando a mesma estratégia do Keep Gate;
- A saída é um novo estado (com novas informações);

Write Gate - Como Funciona?

► Função Tangente Hiperbólica: gera valores entre -1 e 1

Output Gate

- Define que informações vão para a saída!
 - Baseado no estado atual, mas em uma versão filtrada.

Output Gate - Como Funciona?

- Funcionamento similar ao Keep Gate
- Saída é gerada a partir do estado atual (filtrado)
 - Multiplica o estado atual por um tensor de bits (0s e 1s) gerado usando a função sigmóide.

Modelos Seq2Seq (Sequence-to-Sequence)

- Geralmente usada em problemas "Many-to-many"
 - Sequência de palavras -> sequência de palavras
- Exemplos de aplicações:
 - Tradução Automática
 - Sumarização
 - Chatbots

Utiliza 2 RNNs separadas: Encoder e Decoder

- Utiliza 2 RNNs separadas:
 - Encoder: Gera uma compreensão da entrada e a resume em um vetor, que é o seu estado final.
 - Decoder: Produz a sequência de saída token por token
 - Seu estado inicial é o estado final do Encoder.
 - A cada etapa, <u>consome a saída da etapa anterior</u> como a <u>entrada da etapa atual</u>

Utiliza 2 RNNs separadas: Encoder e Decoder

Modelos Seq2Seq -Tradução Automática Neural (NMT)

- Tradução Automática Neural (NMT) é a tarefa mais emblemática em PLN com Deep Learning
 - Responsável por muitas inovações recentes em PLN com Deep Learning
- NMT saiu de uma atividade de pesquisa de nicho em 2014 para se tornar o método padrão em 2016.
 - 2014: Primeiro artigo sobre seq2seq foi publicado
 - 2016: Google Translate troca SMT por NMT

Tradução Automática Neural (NMT)

Tradução Automática Neural (NMT)

Geralmente baseada em modelos Seq2Seq

Universidade Federal da Paraíba Centro de Informática

Departamento de Informática

Aprendizado Profundo Redes Neurais Recorrentes

Tiago Maritan (tiago@ci.ufpb.br)