Дослідивши різноманітні алгоритми шифрування, було вирішено зупинитися на симетричних алгоритмах, оскільки, вони більш продуктивні, прості та здатні обробляти великий обсяг інформації, а це саме те, що нам потрібно.

Порівнявши алгоритми шифрування, такі як (AES, DES, TDES), обрано AES (Advanced Encryption Standart).

AES-алгоритм вважається найнадійнішим серед симетричних алгоритмів, також прийнятий як американський стандарт шифрування урядом США.

AES працює із 128-бітними блоками даних, використовуючи ключ змінної довжини (128, 192 або 256 біт)

Порівняно з **DES**, у якому довжина ключа 56-біт і обробка блоку даних довжиною 64-біт, **AES** надійніший і здатний обробляти більший обсяг інформації швидше.

TDES має достатню довжину ключа і надійніший ніж **DES**, але він повільніший, адже три рази виконує шифрування типу **DES**.

Це головні причини чому обрано Advanced Encryption Standart (Rijndael).

3 мінусів хочеться виділити меншу надійність ніж асиметричні алгоритми, але ми можемо добавити ключ для авторизації отримувача, за допомогою асиметричного шифрування, щоб посилити безпеку.

AES-алгоритм для ключа 128 біт має 10 раундів у яких послідовно виконуються операції

• *subBytes*()

	S-box															
١	0	1	2	3	4	5	6	7	8	9	а	b	С	d	е	f
0	63	7c	77	7b	f2	6b	6f	с5	30	01	67	2b	fe	d7	ab	76
1	ca	82	с9	7d	fa	59	47	f0	ad	d4	a2	af	9с	a4	72	с0
2	b7	fd	93	26	36	3f	f7	СС	34	а5	e5	f1	71	d8	31	15
3	04	c7	23	сЗ	18	96	05	9a	07	12	80	e2	eb	27	b2	75
4	09	83	2c	1a	1b	6e	5a	a0	52	3b	d6	b3	29	e3	2f	84
5	53	d1	00	ed	20	fc	b1	5b	6a	cb	be	39	4a	4c	58	cf
6	d0	ef	aa	fb	43	4d	33	85	45	f9	02	7 f	50	3с	9f	a8
7	51	a3	40	8f	92	9d	38	f5	bc	b6	da	21	10	ff	f3	d2
8	cd	0c	13	ес	5f	97	44	17	с4	a7	7e	3d	64	5d	19	73
9	60	81	4f	dc	22	2a	90	88	46	ee	b8	14	de	5e	0b	db
а	e0	32	3a	0a	49	06	24	5c	c2	d3	ac	62	91	95	e4	79
b	e7	с8	37	6d	8d	d5	4e	a9	6c	56	f4	ea	65	7a	ae	80
С	ba	78	25	2e	1c	a6	b4	с6	e8	dd	74	1f	4b	bd	8b	8a
d	70	3e	b5	66	48	03	f6	0e	61	35	57	b9	86	с1	1d	9e
е	e1	f8	98	11	69	d9	8e	94	9b	1e	87	e9	се	55	28	df
f	8c	a1	89	0d	bf	e6	42	68	41	99	2d	Of	b0	54	bb	16

• shiftRows()

• *mixcolumns*() (у 10-му раунді пропускається)

xorRoundKey()

