Homework 4, Due Date (Thursday, Feb 21st, 2013, In Class)

For the common-source circuit in Figure P4.24, the bias voltages are changed to $V^{\dagger}=3$ V and $V^{\prime}=-3$ V. The PMOS transistor parameters are: $V_{TP}=-0.5$ V, $K_p=0.8$ mA/V², and $\lambda=0$. The load resistor is $R_L=2$ k Ω . (a) Design the circuit such that $I_{DQ}=0.25$ mA and $V_{SDQ}=1.5$ V. (b) Determine the small-signal voltage gain $A_v=v_o/v_i$.

Neamen, Microelectronics, 4th edition, 2010. ©The McGraw-Hill Companies. Sanjay, Krishna: University of New Mexico

The open-circuit $(RL = \infty)$ voltage gain of the ac equivalent source-follower circuit shown in Figure P4.31 is $A_v = 0.98$. When R_L is set to 1 k Ω , the voltage gain is reduced to $A_v = 0.49$. What are the values of g_m and r_o ?

$$A_{V} = \frac{V_{0}}{V_{W}}$$
 $V_{0} = g_{m}V_{65}(\Gamma_{0}//R_{L})$
 $V_{65} = V_{6} - V_{5} \Rightarrow V_{6} = V_{65} + V_{5}$
 $V_{10} = V_{6} = V_{65} + V_{5}$
 $V_{10} = V_{6} = V_{65} + V_{5}$
 $V_{5} = V_{6}$

$$g_{m} = \frac{49}{10} \Rightarrow g_{m} = \frac{49}{50K}$$

$$V_i \stackrel{+}{=} V_o$$

$$= R_L$$

Figure P4.31

Av = 0.98, RL =
$$10$$
 $0.98 = 9m(10)$
 $1+9m(10)$
 $0.98 = 0.029m(10)$
 $9m(10) = 49$
 $9m(10) = 49$
 $9m = 41$
 $0.49 = 9m(10)/1k$
 $0.49 = 9m(10)/1k$
 $0.49 = 0.519m(10)/1k$
 $0.49 = 0.519m(10)/1k$

Consider the source follower circuit in Figure P4.37 with transistor parameters $V_{TN}=0.8~{
m V},~k_n=100~\mu$ A/V 2 , W/L=20 , and $\lambda=0.02~{
m V}^{-1}$. (a) Let $I_Q=5~{
m mA}$.

(i) Determine the small-signal voltage gain. (ii) Find the output resistance R_o . Kn = K'n (12) => Kn = 100ml (20) = 1 ml/12 gm=2JKnIDQ C_{C1} $\begin{cases} R_G = \\ 5000 \end{cases}$ $500~k\Omega$ To = 10K リーエア => 岩=エーリ(を) Figure P4.37 Ro = (\frac{1}{9m/(\text{ro})}) => \frac{1}{9m+\frac{1}{10k}} = \frac{1}{4.47m+\frac{1}{10k}} VGS = UG - VS => VIN = VGS + VS Vin = VGS + Vo Vo= gm Ves (rol/RL) R = 218.71652 Av= gm Vas (ro//RL) V as + (sm Vas(ro//RL)) Av = 9 m (10/19L) 1 + 3 m (10/18L) AV -0907 Ro = \frac{1}{9m}//ro => Ro = (2.828m)(25K) Av = 0.927m

Neamen, Microelectronics, 4th edition, 2010. ©The McGraw-Hill Companies. Sanjay Krishna: University of New Mexico

Consider the PMOS common-gate circuit in Figure P4.49. The transistor parameters are: $V_{TP} = -1$ V, $K_p = 0.5$ mA/V², and $\lambda = 0$. (a) Determine R_S and R_D such that $I_{DQ} = 0.75$ mA and $V_{SDQ} = 6$ V. (b) Determine the input impedance R_i and the output impedance R_o . (c) Determine the load current i_o and the output voltage v_o , if $i_i = 5 \sin \omega t \, \mu$ A.

A source-follower circuit with a saturated load is shown in Figure P4.57. The transistor parameters are $V_{TND} = 1$ V, $K_{nD} = 1$ mA/V² for M_D , and $V_{TNL} = 1$ V, $K_{nL} = 0.1$ mA/V² for M_L . Assume $\lambda = 0$ for both transistors. Let $V_{DD} = 9$ V. (a) Determine V_{GG} such that the quiescent value of v_{DSL} is 4 V. (b) Show that the small-signal open-circuit $(R_L = \infty)$ voltage gain about this O-point is given by $A_N = 1/[1 + \sqrt{(K_{NL}/(K_{ND}))}]$, (c) Calculate the

$$A_{V} = \underbrace{\left(\frac{9mD}{9mL}\right)}_{1 + \left(\frac{9mD}{9mL}\right)}$$

 $V_{10} = V_{00} + V_{0}$ $V_{10} = V_{00} + V_{00}$ V_{10

Au = 690,61m

Neamen, Microelectronics, 4th edition, 2010. ©The McGraw-Hill Companies.