

I. Indicateurs de tendance centrale

1) Mode

Définition

Le mode d'une série statistique est la valeur qui a l'effectif le plus important.

Exemple

Le tableau suivant présente le nombre de repas pris chaque semaine par les élèves d'un lycée professionnel :

Nombre de repas	0	1	2	3	4	5
Nombre d'élèves	56	24	72	99	259	115

Ici le mode est 4, car 259 > 56 et 259 > 24 et 259 > 72 et 259 > 99 et 259 > 115.

2) Médiane

Définition

La médiane Me d'une série statistique est le nombre qui partage la série en deux séries ayant le même effectif.

La moitié (ou 50 %) des valeurs de la série sont inférieures ou égales à la médiane et l'autre moitié (50 %) lui sont supérieures ou égales.

Méthode

Pour calculer la valeur Me de la médiane d'une série statistiques :

- ranger les valeurs par ordre croissant (du plus petit grand);
- \rightarrow si l'effectif total (N) est impair, Me est la $\left(\frac{N+1}{2}\right)^e$ valeur de la série.
 - \rightarrow si N est pair, Me est la moyenne entre les $\left(\frac{N}{2}\right)^e$ et $\left(\frac{N}{2}+1\right)^e$ valeurs.

Exemple

Le 1^{er} novembre 2012, on a relevé le prix du gazole sur 10 points de vente du département du Territoire de Belfort. Les 10 prix rangés dans l'ordre croissant sont :

Rang	1	2	3	4	5	6	7	8	9	10
Prix	1,368	1,369	1,374	1,375	1,377	1,379	1,385	1,408	1,450	1,460

Ici N = 10 est pair.

La médiane Me de la série est donc la moyenne entre les 5^e et 6^e valeurs :

$$Me = \frac{n_5 + n_6}{2} = \frac{1,377 + 1,379}{2} = 1,378$$

La moitié des prix pratiqués est donc inférieure ou égale à 1,378 €.

3) Moyenne

Définition

On note $x_1, x_2, ..., x_p$ les valeurs du caractère étudié et $n_1, n_2, ..., n_p$ les effectifs correspondants.

La moyenne
$$\bar{x}$$
 de la série statistique est $\bar{x} = \frac{n_1x_1 + n_2x_2 + ... + n_px_p}{N} = \frac{\sum n_ix_i}{N}$

Exemple

Ici on considère la répartition des prix du gazole dans l'ensemble des 25 stations du département :

Prix	1,368	1,369	1,374	1,375	1,377	1,379	1,385	1,408	1,450	1,460
Nb. de stations	2	5	2	4	1	4	2	1	3	1

Moyenne des prix des 25 stations :

$$\bar{x} = \frac{1,368 \times 2 + 1,369 \times 5 + \dots + 1,450 \times 3 + 1,460}{25} = 1,3884$$

Le prix moyen observé pour ces 25 stations est 1,3884 €.

Ne pas confondre moyenne et médiane qui sont deux indicateurs statistiques très différents.

En 2013 le salaire moyen français était de 7.800 \in bruts par mois, alors que le salaire médian était de 1.675 \in bruts par mois ^a.

 $\it a.~$ Source : http ://www.lefigaro.fr/social/2014/03/13/09010-20140313ARTFIG00167-derriere-le-salaire-moyen-de-fortes-disparites.php

II. Indicateurs de dispersion

1) Étendue

Définition

L'étendue e d'une série statistique est la différence entre la plus grande et la plus petite valeur de la série.

Exemple

Les 10 prix rangés par ordre croissant sont :

Rang	1	2	3	4	5	6	7	8	9	10
Prix	1,368	1,369	1,374	1,375	1,377	1,379	1,385	1,408	1,450	1,460

L'étendue de la série est e = 1,460 - 1,368 = 0,092 €.

2) Quartiles

Définition

- Le premier quartile Q_1 , est la plus petite valeur à laquelle un quart (ou 25%) des valeurs sont inférieures ou égales.
- Le troisième quartile Q_3 , est la plus petite valeur à laquelle trois quarts (ou 75 %) des valeurs sont inférieures ou égales.
- L'écart interquartile $Q_3 Q_1$ est la différence entre les 3^e et $1^e r$ quartiles : $Q_3 Q_1$. Il regroupe au moins 50 % des effectifs de la série avec un nombre égal de valeurs réparties de part et d'autre de la médiane Me.

Méthode

Pour calculer les valeurs Q_1 et Q_3 des quartiles :

- ranger les valeurs de la série par ordre croissant;
- calculer $r_1 = 0,25 \times N$ et $r_3 = 0,75 \times N$;
- \rightarrow Si N est un multiple de 4, Q_1 est la r_1^e valeur de la série et Q_3 est la r_3^e valeur de la série.
 - \rightarrow Si N n'est pas un multiple de 4,
 - le plus petit entier supérieur à r_1 (ou $\lceil r_1 \rceil$) donne le rang de Q_1 .
 - le plus petit entier supérieur à r_3 (ou $\lceil r_3 \rceil$) donne le rang de Q_3 .

Exemple

- Dans l'exemple ci-dessus, on a N = 10, donc N n'est pas un multiple de 4. $r_1 = 0,25 \times N = 0,25 \times 10 = 2,5$ et $r_3 = 0,75 \times N = 0,75 \times 10 = 7,5$
- Calcul du premier quartile Q_1 :
 - \rightarrow le plus petit entier supérieur à $r_1 = 2,5$ est 3;
 - $\rightarrow~Q_1$ correspond à la 3^e valeur de la série : $Q_1=1,374$
- Calcul du troisième quartile Q_3 :
 - \rightarrow le plus petit entier supérieur à $r_3 = 7,5$ est 8;
 - $\rightarrow Q_3$ correspond à la 8^e valeur de la série : $Q_3 = 1,408$

25 % des prix pratiqués sont inférieurs ou égaux à 1,374 € et 75 % des prix pratiqués sont inférieurs à 1,408 €.

• L'écart interquartile $Q_3 - Q_1$ vaut $1,408 - 1,374 = 0,034 \in$.

3) Écart type

Définition

L'écart type σ (sigma), fourni par la calculatrice ou le tableur, mesure la dispersion de la série autour de la moyenne \bar{x} .

Plus l'écart type σ est grand, plus les valeurs sont «dispersées» autour de la moyenne.

Inversement, plus l'écart type σ est grand, plus les valeurs sont «resserrées» autour de la moyenne.

Exemple

Ces deux graphiques représentent deux séries de même effectif et de de même moyenne $\bar{x}=11.$

 $\sigma_A < \sigma_B$: les valeurs de la série **B** sont plus dispersées que celles de la série **A** autour de \bar{x} .

III. Diagrammes en boîte à moustaches

Définition

Exemple

Le diagramme en boîte à moustaches est un dessin à l'échelle, où la «boîte» est un rectangle limité par Q_1 et Q_3 , et regroupe donc 50 % des valeurs.

La médiane Me est repérée par un segment dans le rectangle.

Le minimum x_{min} et le maximum x_{max} correspondent aux extrémités des «moustaches».

Boite à moustache correspondant à l'exemple :

