НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ «МОСКОВСКИЙ ФИЗИКО-ТЕХНИЧЕСКИЙ ИНСТИТУТ»

Лабораторная работа 5.1.2 «Исследование эффекта Комптона»

Шумаков Иван Игоревич студент группы Б01-009 3 курс ФРКТ **Цель работы:** Исследовать энергетический спектр рассеянных на графите γ -квантов.

В работе используются: Источник γ -лучей, рассеиватель из графита, детектор излучения.

1 Теоретические сведения

Пусть на покоящийся электрон (энергия покоя mc^2) налетает γ -квант с начальной энергией $\hbar\omega_0$. После соударения электрон приобретает энергию γmc^2 и импульс γmv , а γ -квант рассеивается на некотрый угол θ по отношению к начальному направлению с новой энергией $\hbar\omega_1$. Из законов сохранения импульса и энергии можно получить, что разница между длинами волн падающего и рассенного γ -квантов

$$\Delta \lambda = \lambda_1 - \lambda_0 = \frac{h}{mc} (1 - \cos \theta). \tag{1}$$

В наличии этой разницы и заключается эффект Комптона. Для дальнейшего применения полезно будет представить (1) в виде

$$\frac{1}{\varepsilon(\theta)} - \frac{1}{\varepsilon_0} = 1 - \cos\theta,\tag{1a}$$

где $\varepsilon_0 = E_0/mc^2$ – начальная энергия γ -квантов в единицах mc^2 , $\varepsilon(\theta)$ – энергия рассеянных γ -квантов в тех же единицах.

Отметим, что всё вышесказанное применительно в том случае, когда электрон свободный, что справедливо для лёгких атомов, где энергия связи не больше нескольких килоэлектрон-вольт, а чаще всего меньше, и γ -квантов с энергией в несколько десятков-сотен килоэлектрон-вольт.

В данной работе измеряется номер канала счетчика, который линейно зависит от энергии излучения, поэтому расчетную формулу можно преобразовать.

Пусть $\varepsilon(\theta) = AN(\theta)$, A – коэффициент пропорциональность, $N(\theta)$ – номер соответствующего канала. Тогда (1a) перепишется как

$$\frac{1}{N(\theta)} - \frac{1}{N(0)} = A(1 - \cos \theta). \tag{1b}$$

Отсюда можно определить энергию покоя электрона как

$$mc^2 = E_\gamma \frac{N(90)}{N(0) - N(90)},$$
 (2)

где $E_{\gamma}=E_0$ – энергия испускаемых источником γ -квантов.

2 Экспериментальная установка

Рис. 1. (а) Блок-схема установки по изучению рассения γ -квантов. (b) Блок-схема измерительного комплекса.

На Рис. 1а изображена блок-схема установки. Источником (1) служит ^{137}Cs , испускающий γ -лучи с энергией 662 кэB, который помещён в толстостенный свинцовый контейнер с коллиматором. Сформированный коллиматором узкий пучок γ -квантов попадает на графитовую мишень (2), испытывает рассеяние и регистрируется сцинтилляционным счётчиком, состоянищим из фотоэлектронного умножителя (ФЭУ) и сцинтиллятора – выходное окно сцинтиллятора находится в оптическом контакте с фотокатодом ФЭУ. Сигналы, возникающием в аноде ФЭУ, подаются на компьютер для амплитудного анализа. Кристалл и ФЭУ расположены в светонепроницаемом блоке, укреплённого на горизонтальной штанге, которая может вместе с ним вращаться, угол поворота отсчитывается по лимбу (6). Головная часть сцинтилляционного блока закрыта свинцовым коллиматором (5), который формирует входной пучок и защищает детектор от постороннего излучения, в основном γ -квантов, проходящих через стенки защитного контейнера источника. При больших углах измерения для дополнительной защиты между контейнером и источником и детектором ставился свинцовый экран.

3 Ход работы

В ходе работы были измерены координаты пиков излучения в зависимости от угла рассеяния: При измерении положения пика измерялась

θ^o	0	10	20	30	40	50	60	70	80	90	100	110	120
$N_{ m канала}$	968	843	852	742	664	583	518	459	414	366	322	303	288

координата его оси симметрии. В результате этого пристуствует ошибка связанная с дискретностью каналов и с неточностью определения оси

симметрии. Таким образом примем погрешность данных равной:

$$\delta_N \approx 1\%$$
 (3)

По полученным данным был построен график зависимости обраьного номера канала от косинуса угла рассеяния:

Рис. 2. График зависимоти энергии от угла рассеяния

По графику были найдены:

$$A = 16.2 * 10^{-4}$$
 $1/N(0) = 11.1 * 10^{-4}$ $1/N(90) = 27.3 * 10^{-4}$ (4)

Погрешность углового коэффициента A примерно $1\,\%$, поэтому примеем погрешность E равной такому же значению. Итогова япогрешность энергии покоя электрона:

$$\delta \approx 2\% \tag{5}$$

Энергия электронов с учетом погрешности:

$$mc^2 = E_\gamma \frac{N(90)}{N(0) - N(90)} = 662 \frac{1/27.3}{1/11.1 - 1/27.3} = 453 \pm 9$$
[кэВ] (6)

4 Вывод

Конечная погрешность результатов мала, поэтому из эксперимента можно сделать вывод о том, что эффект Комптона выполняется.

Табличное значение энергии покоя электронов $mc^2 = 511$ кэВ больше получившегося значения. При измерении пика присутствовал фон, который имел явный наклон близкий к линейному. С его учетом реальные значения пиков N должны быть больше. Таким образом реальное значение энергии покоя электронов тоже должно быть быольше полученного.