S.No	Bloom leves	Question	Α	В	С	D	E	Ans
1	analyzi ng	A loop in a graph is	an edge with no endpoint	an edge with a single endpoint	an edge with two endpoint s	None of the above		В
2	analyz ing	A simple graph is a graph with	Both Loops and parallel edges	Only loops	Only parallel edges	No loops and parallel edges		D
3	analyz ing	In any graph the number of vertices of odd degree is	An even number	An odd number	A Prime number	An Armstrong number		A
4	analyz ing	The number of edges of a simple graph with <i>n</i> vertices	n-1	n.	n*(n-1)/2	n*(n+1)/2		С
5	analyz ing	A graph has vertices of degrees 0, 2, 2, 3, and 9. How many edges does the graph have?	8	6	9	5		A
6	analyz ing	Number of edges in the graph K ₅	9	11	8	10		D
7	analyz ing	The total degree of a graph is defined as	the sum of the of weights of all the edges of the graph	the sum of the degrees of all the vertices of the graph.	the product of the degrees of all the vertices of the graph.	None		В
8	analyz	A complete bipartite graph on (m, n) vertices is a simple graph whose vertices can be partitioned into two disjoint sets $V1$ and $V2$ in such a way that each of the m vertices in $V1$ is to each of the n vertices in $V2$, no vertex in $V1$ is connected to, and no vertex in $V2$ is connected to	Not connected by an edge; any other vertex in V1; any other vertex in V2.	connected by an edge; any other vertex in V2; any other vertex in V1	connecte d by an edge; any other vertex in V1; any other vertex in V2	NONE.		С
9	analyz ing	The handshake theorem says that the total degree of a graph is	equal to twice the number of edges of the graph	equal to the number of edges of the complement of the graph	equal to the number of vertices and	All mentioned		A

	1	T	T	T	1 0	T	I	1 1
					edges of the graph			
10	analyz ing	A trail from v to w is a	does not	does not contain	does not	contains a		
	ing	walk from v to w that	contain a	both repeated	contain a	repeated		
			repeated	Vertex and	repeated	edge.		C
			Vertex.	repeated edge	edge.			
11	analyz	Let G be simple,						
	ing	connected graph such	9	16	8	12		C
		that every vertex in G has degree 4. And E =						
		16. Then V =						
12	analyz	Which of the following	<2, 2, 2, 1,	<4, 2, 2, 2, 2>	<7, 1, 1,	<5, 2, 1, 1,		
	ing	degree sequence is NOT	1>		1, 1, 1, 1,	1, 1>		D
		graphic for simple graphs?			1>			D
		graphs:						
13	analyz	Which of the following	Every path	Every trail is a	Every	none		
	ing	statements is correct?	is a trail	path	walk is a trail			Α
14	analyz ing	a walk that starts and ends at the same vertex	closed walk	double walk	open walk	Pseudo walk		A
	ing	is a			waik	waik		A
15	analyz	How many edges are	17	36	72	24		С
13	ing	there in $K_{8,9}$		30	12	24		
16	analyz	We use <i>Km,n</i> to						
10	ing	represent a graph	Cyclic	Complete	Kristal's	Complete		В
		on n vertices		Bipartite		_		
17	analyz	Consider vertices x and y						
	ing	,if there is more than one	Master edge	Dashed edge	Loop	Multi edge		D
		edge joining x and y is a						
18	analyz	A Part of the graph that	X 7			N		
	ing	<i>joins</i> its endpoints is called as	Vertex	degree	Edge	None		С
4.0		canoa ao						
19	analyz ing	An edge that joins a	Parallel edge	Dashed edge	Multi-	None		D
	5	vertex to itself is	1 2280	2 2 2 2 2 2	edge			
20	analyz	How many vertices are	17	36	72	24		А
	ing	there in K _{8,9}						
21	analyz	Which of the following	A.	B. Adjacency	C. Both	D. Neither		С
	ing	is true for an undirected graph?	Links(EDG ES)are	matrix is	(a) and (b)	(a) nor (b)		
		grapii:	bidirectional	symmetric	(0)			

22	analyz ing	An undirected acyclic graph with 'n' vertices	It is multigraph	It is disconnected	It is a tree	None of the above	С
		has (n-1) edges. What can you say about it?					
23	analyz ing	Which of the algorithms is used to find minimum spanning tree of a graph	DFS	Kruskal's algorithm	BFS	None of the mentioned	В
24	analyz ing	the number of edges coming out of a Vertex of a graph is defined as	In-degree	Out-degree	Degree	None	В
25	analyz ing	If the edges of a graph have directions attached to it then the graph is called as	Acyclic graph	Undirected graph	Digraph	Cyclic graph	С
26	analyz ing	How many edges are there in $K_{m,n}$	m+n	m-n	m*n	m/n	С
27	analyz ing	If the graph Km,12 has 72 edges then what is 'm'	2	4	8	6	D
28	analyz ing	Determine V for the graph G that has 9 edges such that all vertices have degree 3	6	4	8	9	A
29	analyz ing	Determine V for the graph G that has 10 edges such that 2 vertices have degree 4 and all others of degree 3	12	6	8	17	В
30	analyz ing	How many Vertices are there in $K_{m,n}$	m+n	m-n	m*n	m/n	A