

This is a digital copy of a book that was preserved for generations on library shelves before it was carefully scanned by Google as part of a project to make the world's books discoverable online.

It has survived long enough for the copyright to expire and the book to enter the public domain. A public domain book is one that was never subject to copyright or whose legal copyright term has expired. Whether a book is in the public domain may vary country to country. Public domain books are our gateways to the past, representing a wealth of history, culture and knowledge that's often difficult to discover.

Marks, notations and other marginalia present in the original volume will appear in this file - a reminder of this book's long journey from the publisher to a library and finally to you.

Usage guidelines

Google is proud to partner with libraries to digitize public domain materials and make them widely accessible. Public domain books belong to the public and we are merely their custodians. Nevertheless, this work is expensive, so in order to keep providing this resource, we have taken steps to prevent abuse by commercial parties, including placing technical restrictions on automated querying.

We also ask that you:

- + *Make non-commercial use of the files* We designed Google Book Search for use by individuals, and we request that you use these files for personal, non-commercial purposes.
- + Refrain from automated querying Do not send automated queries of any sort to Google's system: If you are conducting research on machine translation, optical character recognition or other areas where access to a large amount of text is helpful, please contact us. We encourage the use of public domain materials for these purposes and may be able to help.
- + *Maintain attribution* The Google "watermark" you see on each file is essential for informing people about this project and helping them find additional materials through Google Book Search. Please do not remove it.
- + *Keep it legal* Whatever your use, remember that you are responsible for ensuring that what you are doing is legal. Do not assume that just because we believe a book is in the public domain for users in the United States, that the work is also in the public domain for users in other countries. Whether a book is still in copyright varies from country to country, and we can't offer guidance on whether any specific use of any specific book is allowed. Please do not assume that a book's appearance in Google Book Search means it can be used in any manner anywhere in the world. Copyright infringement liability can be quite severe.

About Google Book Search

Google's mission is to organize the world's information and to make it universally accessible and useful. Google Book Search helps readers discover the world's books while helping authors and publishers reach new audiences. You can search through the full text of this book on the web at http://books.google.com/

MATHEMATICAL TABLES

J. M. PEIRCE

3 2044 097 000 970

		,	

• · . ____

MATHEMATICAL TABLES

CHIEFLY TO FOUR FIGURES

FIRST SERIES

BY

JAMES MILLS PEIRCE

UNIVERSITY PROFESSOR OF MATHEMATICS IN HARVARD UNIVERSITY

BOSTON:
PUBLISHED BY GINN & COMPANY.
1886.

EducT 118,86,678

HARVARD COLLEGE LIDEARY
GIFT OF THE
NEWTON FREE LIDEARY
FLB. 18, 1937

Copyright, 1879,
By J. M. Peirch.

CONTENTS.

	PAG	Æ
TABLE OF	LOGARITHMS	2
TABLE OF	LOGARITHMS OF SUMS AND DIFFERENCES	в
TABLE OF	LOGARITHMS OF CIRCULAR FUNCTIONS	8
TABLE OF	Inverse Circular Functions	16
TABLE OF	LOGARITHMS OF HYPERBOLIC FUNCTIONS	19
TABLE OF	NATURAL SINES AND COSINES	2
TABLE OF	NATURAL TANGENTS AND COTANGENTS	34
TABLE OF	NATURAL SECANTS AND COSECANTS	36
Explanat	ION OF THE TABLES.	
§ 1.	TABLES IN GENERAL	29
§ 2.	Interpolation	9
§ 3.	PROPORTIONAL PARTS	31
§ 4.	LOGARITHMS	12
· § 5.	LOGARITHMS OF SUMS AND DIFFERENCES	35
§ 6.	CIRCULAR, OR TRIGONOMETRIC, FUNCTIONS: NATURAL	
	VALUES	6
§ 7.	LOGARITHMS OF CIRCULAR FUNCTIONS	37
§ 8.	Inverse Circular Functions	Ю
§ 9.	Hyperbolic Functions	1
§ 10.	NATURAL LOGARITHMS	3
TABLE OF	Proportional Parts	5

N	0	1	2	3	4	5	6	7	8	9	P. P. 1· 2· 3· 4· 5
10	0000	0043	0086	0128	0170	0212	0253	0294	0334	0374	4. 8.12.17.21
11					0569		0645	0682	0719	0755	
12	0792	0828	0864	0899	0934	0969	1004	1038	1072	1106	3. 7.10.14.17
13	1139	1173	1206	1239	1271	1303	1335	1367	1399	1430	3. 6.10.13.16
14	1461	1492	1523	1553	1584	1614	1644	1673	1703	1732	3. 6. 9.12.15
15	1761	1790	1818	1847	1875	1903	1931	1959	1987	2014	3. 6. 8.11.14
16		2068	2095	2122	2148	2175	2201	2227			3. 5. 8.11.13
17		2330	2355	2380	2405	2430	2455	2480	2504	2529	2. 5. 7.10.12
18	2553	2577	2601	2625	2648	2672	2695	2718	2742	2765	2. 5. 7. 9.12
19	2788	2810	2833	2856	2878	2900	2923	2945	2967	2989	2. 4. 7. 9.11
20	3010	3032	3054	3075	3096	3118	3139	3160	3181	3201	2. 4. 6. 8 11
21		3243						3365			2. 4. 6. 8.10
22		3444						3560			2. 4. 6. 8.10
23		-	3655				3729		3766		2.4.5.7.9
24		3820	3838	3856	3874	3892	3909	3927	3945	3962	2. 4. 5. 7. 9
25	3979	3997	4014	4031	4049	4085	4082	4099	4118	4133	2 3 5 7 9
26		4166						4265			2 3 5 7 8
27		4330						4425			2. 3. 5. 6. 8
28		4487						4579			2.3.5.6.8
29		4639		4669	4683		4713		4742	4757	1. 3. 4. 6. 7
30	4221	4700	4000	4014	4000	4040	4857	4071	4006	4000	10407
31		4786			4969			5011	4886		1. 3. 4. 6. 7
32		5065						5145			1. 3. 4. 6. 7 1. 3. 4. 5. 7
33		5198			-	ľ		5276			1. 3. 4. 5. 6
34		5328					5391		5416		1.3.4.5.6
11 -	_										
35		5453						5527 5647			1. 2. 4. 5. 6
36		5575 5694						5763			1. 2. 4. 5. 6
38		5809		5832			5866		5888	5899	1 · 2 · 3 · 5 · 6 1 · 2 · 3 · 5 · 6
38		5922					5977			6010	1. 2. 3. 4. 6
1											
40		6031		6053				6096		-	1.2.3.4.5
41		6138						6201			1.2.3.4.5
42		6243						6304			1. 2. 3. 4. 5
43		6345			6375		6493	6405 6503	6513	6522	1 · 2 · 3 · 4 · 5 1 · 2 · 3 · 4 · 5
44			6454		6474						1. 2. 3. 4. 0
45	6532	6542	6551	6561	6571		6590		6609		1. 2. 3. 4. 5
46		6637		6656				6693			1 2 3 4 5
47	1	6730			6758	6767			6794		1. 2. 3. 4. 5
48		6821			6848	6857		6875			1. 2. 3. 4. 4
49	6902	6911	6920	6928	6937	6946			6972	6981	1.2.3.4.4
50	6990	6998	7007	7016	7024	7033	7042	7050	7059	7067	1.2.3.3.4
51	7076	7084	7093	7101	7110			7135			1. 2. 3. 3. 4
52	7160	7168	7177	7185	7193			7218			1.2.2.3.4
53	7243			7267			7292		7308		
04 /	7324 7	332 7	7340	7348	7356	7364	7372	7380	7388	7396	1. 2. 2. 3. 4

Logarithms

											P. P.
N	0	1	2	3	4	5	6	7	8	9	1. 2. 3. 4. 5
55	7404	7410	7410	7407	7495	7443	7451	7450	7488	7474	
56						7520					
57			7574						7619		1. 2. 2. 3. 4
58			7649						7694		1. 1. 2. 3. 4
59			7723		7738	7745		7760		7774	1. 1. 2. 3 4
60	7782	7789	7796	7803	7810	7818	7825	7832	7839	7846	1. 1. 2. 3. 4
61			7868						7910		1. 1. 2. 3. 4
62	7924	7931	7938	7945	7952	7959	7966	7973	7980	7987	1 1 2 3 3
63	7993	8000	8007	8014	8021	8028	8035	8041	8048	8055	1. 1. 2. 3. 3
64	8062	8069	8075	8082	8089	8096	8102	8109	8116	8122	1.1.2.3.3
65	8129	8136	8142	8149	8156	8162	8169	8176	8182	8189	1.1.2.3.3
66	8195	8202	8209	8215	8222	8228	8235	8241	8248	8254	1. 1. 2. 3. 3
67			8274						8312		1. 1. 2. 3. 3
68			8338						8376		1. 1. 2. 3. 3
69	8388	8395	8401	8407	8414	8420	8426	8432	8439	8445	1. 1. 2. 3. 3
70					8476				8500		1.1.2.2.3
71	-					8543					1. 1. 2. 2. 3
72			8585						8621		1. 1. 2. 2. 3
73			8645				8669		8681		1. 1. 2. 2. 3
74	8692	869 8	8704	8710	8716	8722	8727	8733	8739	87 4 5	1.1.2.2.3
75	8751	8756	8762	8768	8774	8779	8785	8791	8797	8802	1. 1. 2. 2. 3
76	8808	8814	8820	8825	8831	8837	8842	8848	8854	8859	1. 1. 2. 2. 3
77			8876						8910		1.1.2.2.3
78			8932						8965		1.1.2.2.3
79	8976	8982	8987	8993	8998	9004	9009	9015	9020	9025	1. 1. 2. 2. 3
80	9031	9036	9042	9047	9053	9058	9063	9069	9074	9079	1.1.2.2.3
81	9085	9090	9096	9101	9106	9112	9117	9122	9128	9133	1.1.2.2.3
82			9149						9180		
83			9201			9217			9232		
84	9243	9248	9253	9258	9263	9269	9274	9279	9284	9289	1.1.2.2.3
85	9294	9299	9304	9309	9315	9320	9325	9330	9335	9340	1.1.2 2.3
86			9355			9370	9375	9380	9385	9390	1. 1. 2. 2. 3
87			9405						9435		0.1.1.2.2
88			9455						9484		
89	9494	9499	9504	9509	9513	9518	9523	9528	9533	9538	0. 1. 1. 2. 2
90			9552						9581		
91			9600						9628		0.1.1.2.2
92			9647					-	9675		0- 1- 1-2-2
93			9694						9722		0. 1. 1. 2. 2
94	9731	9736	9741	9745	9750	9754	9759	9763	9768	9773	0.1.1.2 2
95	9777	9782	9786	9791	9795	9800	9805	9809	9814	9818	0.1.1.2.2
96						9845					
97						9890					
98	9912	9917	9921	9926	9930	9934	8838	884	3 884	300 B	10 8 4 0 1 1 1 18 40 1 1 1 . s
99	9956	9961	9965	9969	9974	. 1997	8 66 8	3 88	84 88	AT A)	988 0.1.1

Logarithms.

N	0	1	2	8	4	5	6	7	8	9	10
100	0000	0004	0009	0018	0017	0022	0026	0030	0035	0039	0043
101	0043	0048	0002	0056	0060	0065	0069	0073	0077	0082	0086
102	0086	0090	0095	0099	0103	0107	0111	0116	0120	0124	0128
103				0141		0149			0162		0170
104	0170	0175	0179	0183	0187	0191	0195	0199	0204	0208	0212
105	0212	0216	0220	0224	0228	0233	0237	0241	0245	0249	0253
106				0265			0278		0286		0294
107	0294	0298	0302	0306	0310	0314	0318	0322	0326	0330	0834
108				0346					0366		0374
109	0374	0378	0382	0386	0390	0394	0398	0402	0406	0410	0414
110		0418			0430				0445		0453
111				0465		0473	0477	0481	0484	0488	0492
112				0504		0512	0515	0519	0523	0527	0531
113	0531			0542		0550			0561		0569
114	0569	0573	0577	0580	0584	0588	0592	0596	0599	0603	0607
115	0607			0618			0630		0637		0645
116	0645			0656					0674		0682
117	0682			0693					0711		0719
118	0719			0730		0737			0748		0755
119	0755	0759	0763	0766	0770	0774	0777	0781	0785	0788	0792
120	0792	0795	0799	0803	0806	0810	0813	0817	0821	0824	0828
121		0831		0839			0849			0860	0864
122	0864			0874			0885	0888		0896	0899
123	0899			0910		0917	0920		0927	0931	0984
124	0934	0938	0941	0945	0948	0952	0955	0959	0962	0966	0969
125	0969			0980		0986			0997	1000	1004
126	1004			1014		1021		1028		1035	1038
127				1048					1065		1072
128				1082		1089			1099		1106
129				1116	1118	1123	1126	1129	1133	1136	1139
130	1139		1146		1153	1156	1159	1163	1166	1169	1173
131				1183		1189		1196		1202	1206
132		1209		1216		1222	1225		1232		1239
133		1242		1248		1255			1265		1271
134	1271			1281	1284	1287	1280	1284	1297	1300	1303
135	1303		1310		1316	1319	1323		1329		1335
136				1345			1355		1361		1367
137				1377		1383			1392		1399
138		1402			1411				1424		1430
139	1490	T#22	1420	1440	1449				1455	T#DR	1461
140				1471		1477			1486	1489	1492
141		1495			1504				1517		1523
142		1526			1535	1538		1544		1550	1553
143 144				1562 1593		1569 1599	1572 1602		1578 1608	1681	1584 1614
	_										
145		1617		1623	1626	1629	1632			1641	1644
146 147		1647				1688	1661 1691		1667 1697	1670 1700	1673 1703
148		1676			1685 1714				1726		1732
	, 1,00				1744				1100	7128	(2787

Logarithms.

N	0	1	2	8	4	5	6	7	8	9	10
150	1761	1764	1767	1770	1772	1775	1778	1781	1784	1787	1790
151			1796						1813		1818
152			1824						1841		1847
158	1847	1850	1853	1855	1858	1861	1864	1867	1870	1872	1875
154	1875	1878	1881	1884	1886	1889	1892	1895	1898	1901	1903
155	1903	1906	1909	1912	1915	1917	1920	1923	1926	1928	1931
156	1931	1934	1937	1940	1942				1953		1959
157	1959	1962	1965	1967	1970				1981		1987
158			1992		1998				2009		2014
159	2014	2017	2019	2022	2025	2028	2030	2033	2036	2038	2041
160	2041	2044	2047	2049	2052	2055	2057	2060	2063	2066	2068
161	2068	2071	2074	2076	2079	2082	2084	2087	2090	2092	2095
162			2101						2117		2122
163			2127						2143		2148
164	2148	2151	2154	2156	2159	2162	2164	2167	2170	2172	2175
165	2175	2177	2180	2183	2185	2188	2191	2193	2196	2198	2201
166			2206						2222		2227
167			2232						2248		2253
168					2263					2276	2279
169	2279	2281	2284	2287	2289	2292	2294	2297	2299	2302	2304
170	2304	2307	2310	2312	2315	2317	2320	2322	2325	2327	2330
171			2335						2350		2355
.172			2360						2375		2380
173			2385						2400		2405
174	2405	2408	2410	2413	2415	2418	2420	2423	2425	2428	2430
175	2430	2433	2435	2438	2440	2443	2445	2448	2450	2453	2455
176			2460						2475		2480
177			2485						2499		2504
178					2514				2524		2529
179	2029	2031	2033	2030	2538	2541	2043	2040	2548	2000	2553
180			2558		2562				2572		2577
181			2582						2596		2601
182			2605						2620		2625
183 184		2627 2651	2653		2634				2643 2667		2648 2672
185	2672		2676		2681 2704				2690 2714		2695
186 187					2728				2714		2718 2742
188			2746		2751				2760		2765
189					2774				2783		2788
190	2790	2790	2792	2794	9707	2799			2806		0010
191			2815						2828		2810 2833
192			2838						2851		2856
193			2860		2865				2874		2878
194			2882				2891		2896		2900
195	2900	2902	2905	2907	2909	2011	2014	2016	2918	2020	2923
196	2923		2927		2931	2934	2936	2938	2940	3045	12845
197	2945				2953	2958	8958	5980	598	\$ 500	2945
198	2967		2071	9979	9075	1 0070	000	ν $\sigma\sigma_{\delta}$	い ひひ	84 50	801.0
199	0000	2991	2009	2006	2007	1 299	B 30	08 30	C 400	008 3	1 800

Logarithms of Sums and Differences.

A	6.	7.	8.	9.	0.	1.	2.	3.
00	0.0000	0.0004	0.0043	0.0414 9	0.3010 50	1.0414 91	2.0043	3,0004
01	0.0000	0.0004	0.0044	0.0423 9	0.3061 51	1.0505 91	2.0142	3.0104
02	0.0000	0.0005	0.0045	0.0432 9	0.3111 51	1.0596 91	2.0241	3.0204
03	0.0000	0.0005	0.0046	0.0442 10	0.3163 52	1.0687 91	2.0340	3.0304
04	0.0000	0.0005	0.0047	0.0452 10	0.3215 52	1.0779 92	2.0439	3.0404
05	0.0000	0.0005	0.0048	0.0462 10	0.3267 53	1.0871 92	2.0539	3.0504
06	0.0000	0.0005	0.0050	0.0472 10	0.3321 53	1.0963 92	2.0638	3.0604
07	0.0001	0.0005	0.0051	0.0482 11	0.3374 54	1.1055 92	2.0737	3.0704
08	0.0001	0.0005	0.0052	0.0493 11	0.3429 55	1.1147 92	2.0836	3.0804
09	0.0001	0.0005	0.0053	0.0504 11	0.3484 55	1.1239 92	2.0935	3.0904
10	0.0001	0.0005	0.0054	0.0515 11	0.3539 56	1.1332 93	2.1034	3.1003
11	0.0001	0.0006	0.0056	0.0526 11	0.3595 56	1.1425 93	2.1134	3.1103
12	0.0001	0.0006	0.0057	0.0538 12	0.3652 57	1.1518 93	2.1233	3.1203
13	0.0001	0.0006	0.0058	0.0550 12	0.3709 57	1.1611 93	2.1332	3.1303
14	0.0001	0.0006	0.0060	0.0562 12	0.3766 58	1.1704 93	2.1431	3.1403
15	0.0001	0.0006	0.0061	0.0574 12	0.3825 59	1.1797 93	2.1531	3.1503
16	0.0001	0.0006	0.0062	0.0586 13	0.3884 59	1.1891 94	2.1630	3.1603
17	0.0001	0.0006	0.0064	0.0599 13	0.3943 60	1.1984 94	2.1729	3.1703
18	0.0001	0.0007	0.0065	0,0612 13	0.4003 60	1.2078 94	2.1829	3.1803
19	0.0001	0.0007	0.0067	0.0625 13	0.4063 61	1.2172 94	2.1928	3.1903
20	0.0001	0.0007	0.0088	0.0639 14	0.4124 61	1,2266 94	2.2027	3.2003
21	0.0001	0.0007	0.0070	0.0653 14	0.4186 62	1.2360 94	2.2127	3.2103
22	0.0001	0.0007	0.0071	0.0667 14	0.4248 62	1.2454 94	2.2226	3.2203
23	0.0001	0.0007	0.0073	0.0681 15	0.4311 63	1.2548 94	2.2325	3.2303
24	0.0001	0.0008	0.0075	0.0696 15	0.4374 63	1.2643 95	2.2425	3.2402
25	0.0001	0.0008	0.0077	0.0711 15	0.4438 64	1.2738 95	2.2524	3.2502
26	0.0001	0.0008	0.0078	0.0726 15	0.4502 65	1.2832 95	2.2624	3.2602
27	0.0001	0.0008	0.0080	0.0742 16	0.4567 65	1.2927 95	2.2723	3.2702
28	0.0001	0.0008	0.0082	0.0757 16	0.4632 66	1.3022 95	2.2823	3.2802
29	0.0001	0.0008	0.0084	0.0774 16	0.4698 66	1.3117 95	2.2922	3.2902
30	0.0001	0.0009	0.0086	0.0790 17	0.4764 67	1.3212 95	2.3022	3,3002
31	0.0001	0.0009	0.0088	0.0807 17	0.4831 67	1.3308 95	2.3121	3.3102
32	0.0001	0.0009	0.0090	0.0824 17	0.4899 68	1.3403 95	2.3221	3.3202
33	0.0001	0.0009	0.0092	0.0841 18	0.4966 68	1.3499 96	2.3320	3.3302
34	0.0001	0.0009	0.0094	0.0859 18	0.5035 69	1.3594 96	2.3420	3.3402
35	0.0001	0.0010	0.0096	0.0877 18	0.5104 69	1.3690 96	2.3519	3.3502
36	0.0001	0.0010	0.0098	0.0896 19	0.5173 70	1.3786 96	2.3619	3.3602
37	0.0001	0.0010	0.0101	0.0915 19	0.5243 70	1.3881 96	2.3718	3.3702
38	0.0001	0.0010	0.0103	0.0934 19	0.5313 71	1.3977 96	2.3818	3.3802
39	0.0001	0.0011	0.0105	0.0953 20	0.5384 71	1.4073 96	2.3918	3.3902
40	0.0001	0.0011	0.0108	0.0973 20	0.5455 72	1.4170 96	2.4017	3.4002
41	0.0001	0.0011	0.0110	0.0993 20	0.5527 72	1,4266 96	2.4117	3.4102
42	0.0001	0.0011	0.0113	0.1014 21	0.5599 72	1.4362 96	2.4216	3.4202
43	0.0001	0.0012	0.0115	0.1035 21	0.5672 73	1.4458 96	2.4316	3.4302
44	0.0001	0.0012	0.0118	0.1057 22	0.6745 73	1.4555 96	2.4416	3.4402
45	0.0001	0.0012	0.0121	0.1078 22	0.5819 74	1.4651 97	2.4515	3.4502
46	0.0001	0.0013	0.0123	0.1101 22	0.5893 74	1.4748 97	2.4615	3.4602
47	0.0001	0.0013	0.0126	0.1123 23	0.5967 75	1.4845 97	2.4715	3.4701
48	0.0001	0.0013	0.0129	0.1146 23	0.6042 75	1.4941 97	2.4814	3.4801
49	9.0001	0.0013	0.0132	0.1169 24	0.6118 76	1.5038 97	2.4914	3.4901
50/	0.0001/	0.0014/	0.0135	0.1193 24	0.6193 76	1.5135 %	2.5014	3.5001

Logarithms of Sums and Differences.

	0	P		•	0.	1		•
A	6.	7.	8.	9.	U.	1.	2.	3.
50	0.0001	0.0014	0.0135	0.1193 24	0.6193 76	1.5135 97	2.5014	3.5001
51	0.0001	0.0014	0.0138	0.1218 24	0.6269 76	1.5232 97	2.5113	3.5101
52 53	0.0001	0.0014	0.0141 0.0145	0.1242 25 0.1267 25	0.6346 77 0.6423 77	1.5329 97 1.5426 97	2.5213	3.5201 3.5301
54	0.0001	0.0015	0.0148	0.1207 28	0.6501 78	1.5523 97	2.5413	3.5401
55	0.0002	0.0015		0.1319 26	0.6578 78	1.5621 97	2.5512	3.5501
56	0.0002	0.0018	0.0151	0.1315 26	0.6657 78	1.5718 97	2.5612	3.5601
57	0.0002	0.0016	0.0158	0.1372 27	0.6735 79	1.5815 97	2.5712	3.5701
58	0.0002	0.0016	0.0162	0.1399 28	0.6814 79	1.5913 97	2.5811	3.5801
59	0.0002	0.0017	0.0166	0.1427 28	0.6893 80	1.6010 97	2.5911	3.5901
60	0.0002	0.0017	0.0170	0.1455 28	0.6973 80	1.6108 98	2.6011	3.6001
61	0.0002	0.0018	0.0173	0.1484 29	0.7053 80	1.6205 98	2,6111	3.6101
62	0.0002	0.0018	0.0177	0.1513 29	0.7134 81	1.6303 98	2.6210	3.6201
63 64	0.0002 0.0002	0.0018	0.0181	0.1543 30 0.1573 30	0,7215 81 0,7296 81	1.6401 98 1.6498 98	2.6310 2.6410	3.6301 3.6401
		0.0019						
65	0.0002	0.0019 0.0020	0.0190 0.0194	0.1604 31 0.1635 31	0.7377 82 0.7459 82	1.6596 98 1.6694 98	2.6510 2.6609	3.6501 3.6601
67	0.0002	0.0020	0.0194	0.1666 32	0.7409 82	1.6792 98	2.6709	3.6701
68	0.0002	0.0021	0.0203	0.1699 32	0.7624 83	1.6890 98	2.6809	3.6801
69	0.0002	0.0021	0.0208	0.1731 33	0.7707 83	1.6988 98	2.6909	3.6901
70	0.0002	0.0022	0.0212	0.1764 33	0,7790 83	1.7086 98	2.7009	8.7001
71	0.0002	0.0022	0.0217	0.1798 34	0.7874 84	1.7184 98	2.7108	3.7101
72	0.0002	0.0023	0.0222	0.1832 34	0,7957 84	1.7282 98	2.7208	3.7201
73	0.0002	0.0023	0.0227	0.1867 35	0.8042 84	1.7380 98	2.7308	3.7301
74	0.0002	0.0024	0.0232	0.1902 35	0.8126 85	1.7478 98	2.7408	3.7401
75	0.0002	0.0024	0.0238	0.1938 36	0.8211 85	1.7577 98	2.7508	3.7501
76 77	0.0002 0.0003	0.0025	0.0243	0.1974 37 0.2011 37	0,8296 85 0,8381 85	1.7675 98 1.7773 98	2.7608 2.7707	3.7601 3.7701
78	0.0003	0.0026	0.0254	0.2011 31	0.8467 86	1.7871 98	2.7807	3.7801
79	0.0003	0.0027	0.0260	0.2086 38	0.8553 86	1.7970 98	2.7907	3.7901
so	0.0003	0.0027	0.0266	0.2124 39	0.8639 86	1.8068 98	2.8007	3.8001
81	0.0003	0.0028	0.0272	0.2163 39	0.8725 87	1.8167 98	2.8107	3.8101
82	0.0003	0.0029	0.0278	0.2203 40	0,8812 87	1.8265 99	2.8207	3.8201
83	0.0003	0.0029	0.0284	0.2243 40	0.8899 87	1.8364 99	2.8306	3.8301
84	0.0003	0.0030	0.0291	0.2284 41	0.8986 87	1.8462 99	2.8406	3.8401
85	0.0003	0.0031	0.0297	0.2325 41	0.9074 88	1.8561 99	2.8506	3.8501
86	0.0003	0.0031	0.0304	0.2366 42	0.9162 88	1.8660 99	2.8606	3.8601
87 88	0.0003	0.0032 0.0033	0.0311	0.2409 43 0.2452 43	0,9250 88 0,9338 88	1.8758 99 1.8857 99	2.8706 2.8806	3.8701 3.8801
89	0.0003	0.0034	0.0315	0.2495 44	0.9426 89	1.8956 99	2.8906	3.8901
90	0.0003	0.0034	0.0332	0.2539 44	0,9515 89	1.9054 99	2.9005	3.9001
91	0.0003	0.0034	0.0332	0.2584 45	0.9604 89	1.9153 99	2.9105	3.9101
92	0.0004	0.0036	0.0347	0.2629 45	0.9693 89	1.9252 99	2.9205	3.9201
93	0,0004	0.0037	0.0355	0.2674 46	0.9782 89	1.9351 99	2.9305	3.9301
94	0.0004	0.0038	0.0363	0.2721 47	0.9872 90	1,9450 99	2.9405	3.9400
95	0.0004	0.0039	0.0371	0.2767 47	0.9962 90	1.9548 99	2.9505	3.9500
96	0.0004	0.0039	0.0379	0.2815 48	1.0052 90	1.9647 99	2.9605	3.9600
97 98	0.0004	0.0040	0.0387	0.2863 48	1.0142 90	1.9746 99	2.9705 2,9805	3.9700 2080.8
80	0.0004	0.0041	0.0396	0.2911 49 0,2961 49	1.0232 91 <i>1.0323 91</i>	1.9845 % \1.9944 %		
99	0.0004							Z / 3133

		_		_			
ø	0° lsin ltn	lsc	1º lsin ltn	l sc	2° lsin ltn	lsc	
00/	- 00	00	8.2419 19 72	01	8.5428 31 36	03	60/
01′ 02′	6.4637 37 6.7648 48 6.9408 08	88	8.2490 91 71 8.2561 62 70 8.2630 31 69	01 01	8.5464 67 36 8.5500 03 36	03 03 03 03	59' 58'
02/ 03/ 04/	6.9408 08 7.0658 58	00	8.2630 31 69	01	8.5535 38 35	ŎŽ	h h'// I
05/	7.0658 58 7.1627 27	00 00	8.2699*00 68 8.2766 67 67	01		_	56′ 55′
	7.2419 19	00		01	8.5605 08 35	03	
06' 07' 08'	7:3088 88	00	8.2832 33 66 8.2898 99 65 8.2962 63 64	01 01	8.5640 43 34 8.5674 77 34 8.5708 11 34	03	53′
08/	7.3088 88 7.3668 68 7.4180 80	88	8.2962 63 64 8.3025 26 63	01 01	8.5674 77 34 8.5708 11 34 8.5742 45 34	03 03 03 03	54/ 53/ 52/ 51/
10′	7.4637 37	00	8.3088 89 62	01	8.5776 79 33	03	50'
11′	7,5051 51	00		01	8.5809 12 33		49/
12/ 13/ 14/	7.5429 29	88	8.3210 11 60 8.3270 71 59		8.5842 45 33	ŎŠ	48/ 47/
ΪΨ	7.5777 77 7.6099 99	ŏŏ	8.3150 50 61 8.3210 11 60 8.3270 71 59 8.3329 30 59	ŏi	8.5875 78 33 8.5907 11 32	0000	46/
15′	7.6398 98	00	8.3388 89 58	01	8.5939 43 32	03	45'
16/	7.6678 78 7.6942 42 7.7190 90	00	8.3445 46 57 8.3502 03 56 8.3558 59 56 8.3613 14 55	01	8.5972 75 32 8.6003 07 32	03	44' 43' 42'
17' 18' 19'	7.7190 90	00 00 00	8.3502`03 56 8.3558 59 56	01 01	8,0030 38 31	03 03 04	42
	7.7425 25			8 <u>1</u>		04	41/
20′	7.7648 48	00	8.3668 69 54	01	8.6097*01 31	04	40′
21' 22' 23' 24'	7.7859 60 7.8061 62	80	8.3722 23 54 8.3775 76 53 8.3828 29 52 8.3880 81 52	01 01	8.6128 32 31 8.6159 63 31 8.6189 93 30	04 04	39' 38' 37' 36'
23/	7.8255 55 7.8439 39	ŎŎ	8.3775 76 53 8.3828 29 52 8.3880 81 52	ŎĪ ŎĪ	8.6159 63 31 8.6189 93 30	04	37/
25	7.8439 39	00	8.3880 81 52 8.3931 32 51	01	8.6220 23 30 8.6250 54 30	04	35 [/]
		00	4.64.64	01		04	
26' 27' 28'	7.8787 87 7.8951 51 7.9109 09	ÕÕ	8.4032 33 50	01	8.6309 13 30	1041	33/
28/	7.9109 09 7.9261 61	00	8.4082 83 49 8.4131 32 49		8.6339 43 29 8.6368 72 29	04 04	34/ 33/ 32/ 31/
30/	7.9408 09	00	8.4179 81 48	01	8.6397*01 29	04	30/
31/	7.9551 51	00	8.4227 29 48	02	8.6426 30 29	04	29/
32/ 33/ 34/	7.9689 89 7.9822 23 132 7.9952 52 128	80	8.4227 29 48 8.4275 76 47 8.4322 23 47	02 02	8.6454 59 29 8.6483 87 28	04 04	28' 27' 26'
34/	7.9952 52 128	ŎŎ	8.4368 70 46	02	8.6511 15 28	Ŏ4	26/
35′	8.0078 78 124	00	8.4414 16 46	02	8.6539 44 28	04	25/
36' 37' 38' 39'	8.0200 00 121 8.0319 19 117	00	8.4459 61 45 8.4504 06 45	02 02	8.6567 71 28 8.6595 99 28	04 05	24/ 23/ 22/ 21/
38/	8.0435 35 114	00	8.4549 51 44	1021	8.6622 27 27	05	22/
	8.0548 48 111	00	8.4593 95 44	02	8.6650 54 27	05	
40/	8.0658 58 109	90	8.4637 38 43	02	8.6677 82 27	05	20/
41' 42' 43'	8.0765 65 106 8.0870 70 103	80	8.4680 82 43 8.4723 25 43 8.4765 67 42	02 02 02	8.6704 09 27 8.6731 36 27 8.6758 62 27	05 05 05	19/ 18/ 17/ 16/
44	8.0870 70 103 8.0972 72 101 8.1072 72 99	00 00 00	8.4765 67 42 8.4807 09 42	02 02	8.6731 36 27 8.6758 62 27 8.6784 89 26	05 05	17/
45/	8.1169 70 97	60	8.4848 51 41	02	8.6810 15 26	05	15/
48/	8.1265 65 94	00		02		05	14/
47' 48'	8.1358 59 92	ŎŎ	8.4890 92 41 8.4930 33 41 8.4971 73 40 8.5011 13 40	02 02 02	8.6837 42 26 8.6863 68 26 8.6889 94 26	05 05	13' 12' 11'
49/	8.1450 50 90 8.1539 40 89	ŏŏ	8.5011 13 40	ŎŽ	8.6914 20 26	ŎĎ	111
50/	8.1627 27 87	00	8.5050 53 39	02	8.6940 45 26	05	10′
51/ 52/ 53/	8.1713 13 85 8.1797 98 84 8.1880 80 82	00	8,5090 92 39	02 02	8.6965 71 25 8.6991 96 25	05 05	09' 08'
53	8.1797 98 84 8.1880 80 82	00 01	8.5129 31 39 8.5167 70 38	02	8.7016 21 25	1061	1 077 1
54	8.1961 62 80	01	8.5206 08 38	02	8.7041 46 25	06	06/
55/	8.2041 41 79	01	8,5243 46 38	02	8.7088 71 25	06	05'
56	8.2119 20 78 8.2196 96 76	01 01	8.5281 83 37 8.5318 21 37	02 03 03	8.7090 96 25 8.7115 21 25	06 06	03/
56' 57' 58' 59'	8.2271 72 78	01	8.5355 58 37	03 03	8.7115 21 25 8.7140 45 24 8.7164 70 24	06 06	04' 03' 02' 01'
60/	8.2346 46 74 8.2419 19 72	01 01	8.5392 94 37 8.5428 31 36	03	8.7188 94 24	06	00'
//		_		CBC		CBC	1
	Cos Icus Icui I	uot l	GG - ICOS ICMI I	COC	EGI. ICOBICNI I	<i>`''</i>	# 2 '

φ	30	lsin	ltn	1	lsc	40	lsin	l tn		1 sc	50	lsin	l t	n	lsc	
00′		3.7188	94	24	06		8.843	6 46	18	11	_	8.940	3 20	14	17	60/
01' 02' 03' 04'	-	3.7212 3.7236 3.7260 3.7283	18 42 66	24 24 24	06 06 06		8.847 8.847 8.849	4 65 2 83	18 18 18	11 11 11 11		8.941 8.943 8.944	2 49	14	17 17 17 17	59' 58' 57'
04/		3.7283 3.7307		24	06	_	8.850	81 30	18	11	_	8.946 8.947	0 77			56' 55'
				23	06	\vdash	8.854	0 E4	18			8.948	_	_	17	54
06' 07' 08' 09'		8.7330 8.7354 8.7377 8.7400	37 80 83 006	23 23 23	06 06 07		8.856 8.857 8.859	0 72 8 89	18 18 18	11 11 11 11	0	8.950 8.951 8.953	3 20	14	17 17 17 18	53' 52' 51'
10/		3.7423		23	07		8.861		17	11	_	8.954			18	50/
11' 12' 13' 14'		8.7446 8.7468 8.7491 8.751	62	23 23 23 22	07 07 07 07		8.863 8.864 8.866 8.868	0 42 7 59 5 76 2 94	17 17 17 17	12 12 12 12		8.955 8.957 8.958 8.960	9 77 3 91 7*05	14 14 14	18 18 18 18	49' 48' 47' 46'
15/		3.7535		22	07		8.869		17	12	_	8.961	_	_	18	45
16' 17' 18' 19'	-	3.7557 3.7580 3.7602 3.7623	65 87 8 09	22 22 22 22 22	07 07 07 07		8.871 8.873 8.874 8.876	6 28 3 45 9 62	17 17 17 17	12 12 12 12	T.	8.962 8.964 8.965 8.966	8 46 2 60 5 74	14	18 18 19 19	44' 43' 42' 41'
20/	_	3.7646	_	22	07		8.878		17	12		8.968		_	19	40
21' 22' 23' 24'		3.7667 3.7688 3.7710 3.7731		22 22 21 21	07 08 08 08		8.876 8.881 8.883 8.884	6 29	17 17 17 16	13 13 13 13		8.969 8.970 8.972 8.973	6*1 F	14 14 13	19 19 19 19	39' 38' 37' 36'
25		3.7752		21	08		8.886		16	13		8.975		_	19	35
26' 27' 28' 29'		3.7773 3.7794 3.7815 3.7836	*02	21 21 21 21 21	08 08 08 08		8.888 8.889 8.891 8.893	8*11	16 16 16 16	13 13 13 13		8.976 8.977 8.978 8.980	6 96	13	20 20 20 20 20	34' 33' 32' 31'
30'		3.7857	_	21	08		8.894	_	16	13		8.981	_	_	20	30/
31' 32' 33' 34'		8.7877 8.7898 8.7918 8.7938	86 8*06 3 27	21 20 20 20 20	08 08 08 08		8.896	2 76 8 92 4*08	16 16 16	14 14 14 14		8.982 8.984 8.985 8.986	9 49 2 62 5 75	13	20 20 20 21	29' 28' 27' 26'
35/		3.7969		20	08			6 40	16	14	_	8.988		_	21	25/
36' 37' 38' 39'	1 8	8.7979 8.7998 8.8019 8.8039	908	20 20 20 20 20	09 09 09 09		8.904 8.905 8.907 8.908	7 71 3 87	16 16 16 16	14 14 14 14		8.989 8.990 8.991 8.993	$\frac{7}{9}$ $\frac{28}{40}$	13	21 21 21 21 21	24' 23' 22' 21'
40/		8.8059	67	20	09		8.910	4 18	16	14		8.994	5 66	13	21	20/
41' 42' 43' 44'	1 8	8.8078 8.8098 8.8117 8.8137	3*07	20 20 19 19	09 09 09 09		8.911 8.913 8.916 8.916	5 50 0 65	15 15 15 15	15 15 15 15		8.995 8.997 8.998 8.999	0 92 3*05	13	21 22 22 22	19' 18' 17' 16'
45		3.8156		19	09	-	8.918	1 96	15	16		9.000	8 30	13	22	15'
46' 47' 48' 49'	200	8.8175 8.8194 8.8213 8.8232	85 1*04 23	19 19 19 19	09 09 10 10		8.919 8.921 8.922 8.924	1 26 6 41	15 15 15 15	15 15 15 15		9.002 9.003 9.004 9.005	$\frac{3}{6} \frac{55}{68}$	13 12	22 22 22 22	14' 13' 12' 11'
50		8.8251		19	10	-	8.925	_	15	15	_	9.007	_	_	23	10'
51' 52' 53' 54'		8.8270 8.8289 8.8307 8.8326		19 19 19 19	10 10 10 10		8.927	1 87	15 15 15 15	16 16 16 16	ď,	9.008 9.009 9.010 9.012	3*05 5*18 7 30	12 12 12	233333	09' 08' 07' 06'
55		3.8346	_	19	10	-	8.933		15	16	_	9.013	_	_	23	05
56' 57' 58' 59'		3.8363 3.8381 3.8400 3.8418	73 92 10	18 18 18 18	10 10 10 10		8.934 8.935 8.937 8.938	5 61 9 76 4 90	15 15 15 15	16 16 16 16		9.014 9.015 9.016 9.018	4 67 6 80 8 92	12 12 12	23 23 24 24	04' 03' 02' 01'
60/		3.8436	_	18	11	1	8.940	_	14	17		10,8	_	_	1/8	10/2

ф	8 lsin ϕ	ф	T	l tan φ	4	l sec φ	ф	l sec φ
	6.46		6.4			0.00		0.00
0.00.000	37 - co	0°00'.00		-∞ 8.1087		0′.000		7.701 7.918 13
1°51′.479	36 8.5108	1°40′.55		8.4663		2'.164 01 0'.348 01		7.762 14
2°49',567	8.6929	2015/.16	8 39	8.5948		6'.634 02		7.271 15
3°32'.313	35 8.7904	2°42'.56		8.6751		7/.998 03		7.477 16
1	34	3°05′.95	40	8.7336		6'.469 04		3'.407 17
4°07′.789	33	3°26′.71 3°45′.56	1 40	8.7796 8.8176	2°5	2'.976 05	5°17	7.084 18
4°38′.788	9 0005	402/.95		8.8500	3°0	8′.038 06	5°25	7.528 ¹⁹
5°06'.659	8.9498	4°19′.17	1 45	8.8781	3°2	1′.977 08	5°33	7.758 20
5°32′.201		4°34'.42		8.9031		P,'OTR U0		7.789 21
	30	4°48′.87	U 40	8.9255		77.800 10		7.633 ²²
5°55′.913	29	5°02′.62 5°15′.78	0 40	8.9458 8.9643		8'.955		7.805 23
6°18′.138	0.0405	5°28'.40		8.9815		0'.064 19		1014
		5°40'.55	0 51	8.9973	4°2	0′.701	6°12	1.170 No
		5°52'.27	8 52	9.0121			Ī	
	1	6°03′.62	3 53	9.0260				l.
•	l sin ø 1	csc ø l	tan ø	l ctn	φ	lsecφ lc	οε φ	
					Υ		35 Y	
6 ° 00 ′	9.0192 120 0.	9808 8	.0216	122 0.97	84	0.0024 1 9.6	976	84° 00 ′
6° 10′	9.0311 117 0.	9689 9	.0336	118 0.96	64	0.0025 1 9.9	975	83° 50′
6° 20′	9,0426 114 0.			115 0.95		0.0027 1 9.9		83° 40′
6° 30′	9.0539 111 0.			112 0.94		0.0028 1 9.9		83° 30′
6° 40′ 6° 50′	9.0648 108 0. 9.0755 105 0.			110 0.93 ;		0.0029 1 9.6 0.0031 2 9.6		83° 20′ 83° 10′
7° 00′	9.0859 103 0			104 0.91	-	0.0032 2 9.8		
					-			88° 00′
7° 10′	9.0961 100 0.			102 0.90		0.0034 2 9.9		82° 50′
7° 20′ 7° 80′				100 0.89 98 0.88		0.0036 2 9.8 0.0037 2 9.8		82° 40′ 82° 30′
7° 40'			.1291	96 0.87		0.0039 2 9.8		82° 20′
7° 50′			.1385	94 0.86		0.0041 2 9.8		82° 10′
8° 00'	9.1436 90 0.	8564 8	.1478	92 0.85	22	0.0042 2 9.8	958	82° 00′
8° 10'	9.1525 88 0.	8476 9	.1569	90 0.84	0.1	0.0044 2 9.6	058	81° 50′
8° 20′			.1658	88 0.83		0.0044 2 9.8		81° 40′
8° 30′			.1745	86 0.82		0.0048 2 9.8	952	81° 30′
8° 40′			.1831	85 0.81		0.0050 2 9.9		81° 20′
8° 50′	9.1863 81 0.	8137 9	.1915	83 0.80	85 (0.0052 2 9.8	948	81° 10′
9 ° 00′	9.1943 80 0.	8057 9	.1997	82 0.80	03	0.0054 2 9.8	946	81° 00 ′
9° 10′			.2078	80 0.79		0.0056 2 9.8		80° 50′
9° 20′			.2158	79 0.78		0.0058 2 9.8		80° 40′
90 30			.2236	78 0.77		0.0060 2 9.8		80° 30′ 80° 20′
9° 40′ 9° 50′			.2313	76 0.76		0.0062 2 9.8 0.0064 2 9.8		80° 20'
10°00′			.2463	74 0.75		0.0066 2 9.8		80° 00′
	l cos θ l	sec 0 l	ctn θ	l tan	θ	lese θ ls	in $\dot{\theta}$	θ

φ	lsinφ lcscφ	ltanφ lctnφ	lsec φ lcos φ	
· · ·		1	·	
10° 00′	9.2397 72 0,7603	9.2463 74 0.7537	0.0066 2 9.9934	80° 00′
10° 10′	9.2468 70 0.7532		0.0069 2 9.9931	79° 50′
10° 20′ 10° 30′	9.2538 69 0.7462 9.2606 68 0.7394		0.0071 2 9.9929 0.0073 2 9.9927	79° 40′ 79° 30′
10° 40′	9.2674 67 0.7326	9.2750 69 0.7250	0.0076 2 9.9924	79° 20′
10° 50′	9.2740 66 0.7260	9.2819 68 0.7181	0.0078 2 9.9922	79° 10′
11° 00′	9.3806 65 0.7194	9.2887 67 0.7113	0.0081 2 9.9919	79° 00′
11° 10′	9.2870 64 0.7130	9.2953 66 0.7047	0.0083 2 9.9917	78° 50′
11° 20′	9.2934 63 0.7066	9.3020 66 0.6980	0.0086 3 9.9914	78° 40′
11° 30′	9.2997 62 0.7003		0.0088 3 9.9912	78° 30′
11° 40′ 11° 50′	9.3058 61 0.6942 9.3119 60 0.6881	9.3149 64 0.6851 9.3212 63 0.6788	0.0091 3 9.9909 0.0093 8 9.9907	78° 20′ 78° 10′
12° 00′		9.3275 62 0.6725	0.0096 3 9.9904	78° 00′
12° 10′	9.3238 59 0.6762			77° 50′
12° 20′ 12° 30′	9.3296 58 0.6704			77° 40′ 77° 30′
12° 30'	9.3353 57 0.6647 9.3410 56 0.6590		0.0104 3 9.9896 0.0107 3 9.9893	77° 30′ 77° 20′
12° 50′	9.3466 55 0.6534		0.0110 3 9.9890	77° 10′
18° 00′	9.3521 55 0.6479	9.3634 58 0.6366	0.0113 3 9.9887	77° 00′
13° 10′	9.3675 54 0.6425	9,3691 57 0,6309	0.0116 8 9.9884	76° 50′
13° 20′	9.3629 53 0.6371		0.0119 8 9.9881	76° 40′
13° 30′	9.3682 53 0.6318		0.0122 3 9.9878	76° 30′
13° 40′ 13° 50′	9.3734 52 0.6266	***************************************	0.0125 8 9.9875	76° 20′
	9.3786 51 0.6214	9.3914 54 0.6086	0.0128 3 9.9872	76° 10′
14° 00′	9.3837 51 0.6163	9.3968 54 0.6032	0.0131 3 9.9869	7 6 ° 00′
14° 10′	9.3887 50 0.6113			75° 50′
14° 20′ 14° 30′	9,3937 49 0,6063	,	0.0137 3 9.9863	75° 40′
14° 40′	9.3986 49 0.6014 9.4035 48 0.5965			75° 30′ 75° 20′
14° 50′	9.4083 48 0.5917		0.0144 3 9.9856 0.0147 3 9.9853	75° 10′
15° 00′		0.12200 02 0.0170	0.0151 3 9.9849	75° 00′
15° 10′	9.4177 47 0.5823			74° 50′
15° 20′	9.4223 46 0.5777	9.4381 50 0.5619	0.0157 3 9.9843	74° 40′
15° 30′	9.4269 46 0.5731	9.4430 49 0.5570	0.0161 4 9.9839	74° 30′
15° 40′	9.4314 45 0.5686	9.4479 49 0.5521	0.0164 4 9.9836	74° 20′
15° 50′	9.4359 45 0.5641	9.4527 48 0.5473	0.0168 4 9.9832	74° 10′
16° 00′	9.4403 44 0.5597	9.4575 48 0.5425	0.0172 4 9.9828	74° 00′
16° 10′	9.4447 44 0.5553		0.0175 4 9.9825	73° 50′
16° 20′	9.4491 43 0.5509	9.4669 47 0.5331	0.0179 4 9.9821	78° 40′
16° 30′ 16° 40′	9.4533 43 0.5467 9.4576 42 0.5424	9.4716 46 0.5284	0.0183 4 9.9817	73° 30′ 73° 20′
16° 50′	9.4618 42 0.5382	9.4762 46 0.5238 9.4808 46 0.5192	0.0186 4 9.9814 0.0190 4 9.9810	73° 20' 73° 10'
17° 00′	9.4659 41 0.5341		0.0194 4 9.9806	78° 00′
	l cos θ l sec θ	letn 0 ltan 0	lcsc 0 lsin	9 8

φ	lsinφ lcsc φ	ltanφ lctnφ	lsecφ lcosφ	
17° 00′	9.4659 41 0.5341	9.4853 45 0.5147	0.0194 4 9.9806	73° 00′
17° 10′	9.4700 41 0.5300	9.4898 45 0.5102	0.0198 4 9.9802	72° 50′
17° 20′	9.4741 40 0.5259	9.4943 44 0.5057	0.0202 4 9.9798	72° 40′
17° 30′	9.4781 40 0.5219	9.4987 44 0.5013	0.0206 4 9.9794	72° 30′
17° 40′	9.4821 40 0.5179	9.5031 44 0.4969	0.0210 4 9.9790	72° 20′
17° 50′	9.4861 39 0.5139	9.5075 43 0.4925	0.0214 4 9.9786	72° 10′
18° 00′	9.4900 39 0.5100	9.5118 43 0.4882	0.0218 4 9.9782	72° 00′
18° 10′	9.4939 38 0.5061	9.5161 43 0.4839	0.0222 4 9.9778	71° 50′
18° 20′	9.4977 38 0.5023	9.5203 42 0.4797	0.0226 4 9.9774	71° 40′
18° 30′	9.5015 38 0.4985	9.5245 42 0.4755	0.0230 4 9.9770	71° 30′
18° 40′	9.5052 37 0.4948	9.5287 42 0.4713	0.0235 4 9.9765	71° 20′
18° 50′	9.5090 37 0:4910	9.5329 41 0.4671	0.0239 4 9.9761	71° 10′
19° 00′	9.5126 37 0.4874	9.5370 41 0.4630	0.0243 4 9.9757	71° 00′
19° 10′	9.5163 36 0.4837	9.5411 41 0.4589	0.0248 4 9.9752	70° 50′
19° 20′	9.5199 36 0.4801	9.5451 40 0.4549	0.0252 4 9.9748	70° 40′
19° 30′	9.5235 36 0.4765	9.5491 40 0.4509	0.0257 4 9.9743	70° 30′
19° 40′	9.5270 35 0.4730	9.5531 40 0.4469	0.0261 5 9.9739	70° 20′
19° 50′	9.5306 35 0.4694	9.5571 40 0.4429	0.0266 5 9.9734	70° 10′
20° 00′	9.5341 35 0.4659	9.5611 39 0.4389	0.0270 5 9.9730	70° 00′
20° 10′	9.5375 34 0.4625	9.5650 39 0.4350	0.0275 5 9.9725	69° 50′
20° 20′	9.5409 34 0.4591	9.5689 39 0.4311	0.0279 5 9.9721	69° 40′
20° 30′	9.5443 34 0.4557	9.5727 39 0.4273	0.0284 5 9.9716	69° 30′
20° 40′	9.5477 33 0.4523	9.5766 38 0.4234	0.0289 5 9.9711	69° 20′
20° 50′	9.5510 33 0.4490	9.5804 38 0.4196	0.0294 5 9.9706	69° 10′
21° 00′	9.5543 33 0.4457	9.5842 38 0.4158	0.0298 5 9.9702	6 9 ° 00′
21° 10′	9.5576 33 0.4424	9.5879 38 0.4121	0.0303 5 9.9697	68° 50′
21° 20′	9.5609 32 0.4391	9.5917 37 0.4083	0.0308 5 9.9692	68° 40′
21° 30′	9.5641 32 0.4359	9.5954 37 0.4046	0.0313 5 9.9687	68° 30′
21° 40′	9.5673 32 0.4327	9.5991 37 0.4009	0.0318 5 9.9682	68° 20′
21° 50′	9.5704 32 0.4296	9.6028 37 0.3972	0.0323 5 9.9677	68° 10′
22° 00′	9.5736 31 0.4264	9.6064 36 0.3936	0.0328 5 9.9672	68 ° 00′
22° 10′	9,5767 31 0,4233	9,6100 36 0,3900	0.0333 5 9.9667	67° 50′
22° 20′	9.5798 31 0.4202	9.6136 36 0.3864	0.0339 5 9.9661	67° 40′
22° 30′	9.5828 30 0.4172	9.6172 36 0.3828	0.0344 5 9.9656	67 30/
22° 40′	9.5859 30 0.4141	9.6208 36 0.3792	0.0349 5 9.9651	67° 20′
22° 50′	9.5889 30 0.4111	9.6243 35 0.3757	0.0354 5 9.9646	67° 10′
23° 00′	9.5919 30 0.4081	9.6279 35 0.3721	0.0380 5 9.9840	67° 00′
23° 10′	9.5948 30 0.4052	9.6314 35 0.3686	0.0365 5 9.9635	66° 50′
23° 20′	9.5978 29 0.4022	9.6348 35 0.3652	0.0371 5 9.9629	66° 40′
23° 30′	9.6007 29 0.3993	9.6383 35 0.3617	0.0376 5 9.9624	66° 30′
23° 40′	9.6036 29 0.3964	9.6417 34 0.3583	0.0382 6 9.9618	66° 20′
23° 50′	9.6065 29 0.3935	9.6452 34 0.3548	0.0387 6 9.9613	66° 10′
24° 00 ′	9.6093 28 0.3907	9.6486 34 0.3514	0.0393 6 9.9607	66 ° 00′
	lcosθ lsecθ	letn θ l tan θ	l csc θ l sin θ	θ

φ	lsinφ lescφ	ltanφ lctnφ	lsec φ lcos φ	
24° 00′	9.6093 28 0.3907	9.6486 34 0,3514	0.0393 6 9.9607	66° 00′
24° 10′	9.6121 28 0.3879	9.6520 34 0.3480	0.0398 6 9.9602	65° 50′
24° 20′	9.6149 28 0.3851	9.6553 34 0.3447	0.0404 6 9.9596	65° 40′
24° 30′	9.6177 28 0.3823	9.6587 33 0.3413	0.0410 6 9.9590	65° 30′
24° 40′ 24° 50′	9.6205 28 0.3795 9.6232 27 0.3768	9.6620 33 0.3380 9.6654 33 0.3346	0.0416 6 9.9584	65° 20′
	8.0232 ZI U.3708		0.0421 6 9.9579	65° 10′
25° 00′	9.6259 27 0.3741	9.6687 33 0,3313	0.0427 6 9.9573	65° 00′
25° 10′	9.6286 27 0.3714		0.0433 6 9.9567	64° 50′
25° 20′	9.6313 27 0.3687	9.6752 33 0.3248		64° 40′
25° 30′ 25° 40′	9.6340 26 0.3660	9.6785 33 0.3215	0.0445 6 9.9555	64° 30′
25° 50′	9.6366 26 0.3634 9.6392 26 0.3608	9.6817 32 0.3183 9.6850 32 0.3150	0.0451 6 9.9549 0.0457 6 9.9543	64° 20′ 64° 10′
26° 00′	9.6418 26 0.3582	9.6882 32 0.3118	0.0463 6 9.9537	
			0.0403 6 9.9037	64° 00 ′
26° 10′	9.6444 26 0.3556	0.0000		63° 50′
26° 20′	9.6470 26 0.3530	9.6946 32 0.3054		63° 40′
26° 30′ 26° 40′	9.6495 25 0.3505 9.6521 25 0.3479	9.6977 32 0.3023	0.0482 6 9.9518	63° 30′
26° 50′	9.6546 25 0.3454	9.7009 31 0.2991 9.7040 31 0.2960	0.0488 6 9.9512 0.0495 6 9.9505	63° 20′ 63° 10′
27° 00′	9.6570 25 0.3430	9.7072 31 0.2928	0.0501 6 9.9499	63 ° 00′
27° 10′	9.6595 25 0.3405	9.7103 31 0.2897	0.0508 6 9.9492	62° 50′
27° 20′	9.6620 24 0.3380	9.7134 31 0.2866	0.0514 7 9.9486	62° 40′
27° 30′	9.6644 24 0.3356	9.7165 31 0.2835	0.0521 7 9.9479	62° 30′
27° 40′ 27° 50′	9.6668 24 0.3332 9.6692 24 0.3308	9.7196 31 0.2804	0.0527 7 9.9473	62° 20′ 62° 10′
28° 00′		9.7226 31 0.2774	0.0534 7 9.9466	
	9.6716 24 0.3284	9.7257 30 0.2743	0.0541 7 9.9459	62° 00′
28° 10′	9.6740 24 0.3260	0	0.0547 7 9.9453	61° 50′
28° 20′	9.6763 23 0.3237	9,7317 30 0,2683	0.0554 7 9.9446	61° 40′
28° 30′ 28° 40′	9.6787 23 0.3213 9.6810 23 0.3190	9.7348 30 0.2652	0.0561 7 9.9439	61° 30′ 61° 20′
28° 50′	9.6833 23 0.3167	9.7378 30 0.2622 9.7408 30 0.2592	0.0568 7 9.9432	61° 10′
29° 00′	9.6856 23 0.3144		0.0575 7 9.9425	1 1
		9.7438 30 0.2562	0.0582 7 9.9418	61° 00′
29° 10′	9.6878 23 0.3122	9.7467 30 0.2533		60° 50′
29° 20′ 29° 30′	9.6901 22 0.3099	9.7497 30 0.2503	0.0596 7 9.9404	60° 40′
29° 30' 29° 40'	9.6923 22 0.3077 9.6946 22 0.3054	9.7526 29 0.2474		60° 30′ 60° 20′
29° 50′	9.6968 22 0.3032	9.7556 29 0.2444 9.7585 29 0.2415	0.0610 7 9.9390 0.0617 7 9.9383	60° 20'
30° 00⁄	9.6990 22 0.3010	9.7614 29 0.2386	0.0625 7 9.9375	60° 00′
30° 10′	9.7012 22 0.2988	9,7644 29 0,2356	0.0632 7 9.9368	59° 50′
30° 20′	9.7033 22 0.2967	9.7673 29 0.2327	0.0639 7 9.9361	59° 40′
30° 30′	9.7055 21 0.2945	9.7701 29 0.2299	0.0647 7 9.9353	59° 30′
30° 40′	9.7076 21 0.2924		0.0654 7 9.9346	59° 20′
30° 50′	9.7097 21 0.2903	9.7759 29 0.2241	0.0662 8 9.9338	59° 10′
31° 00′	9.7118 21 0.2882	9.7788 29 0.2212	0.0669 8 9.9331	59° 00′
	lcosθ lsecθ	lctn 0 ltan 0	lcsc 0 lsin	θ. θ

ф	lsinφ lesc φ	ltanφ lctnφ	lsec φ lcos φ	
31° 00′	9.7118 21 0.2882	9.7788 29 0.2212	0.0669 8 9.9331	59° 00 ′
31° 10′	9.7139 21 0.2861	9.7816 29 0.2184	0.0677 8 9.9323	58° 50′
31° 20′ 31° 30′	9.7160 21 0.2840 9.7181 21 0.2819	9.7845 28 0.2155 9.7873 28 0.2127	0.0685 8 9.9315 0.0692 8 9.9308	58° 40′ 58° 30′
31° 40′	9.7201 20 0.2799	9.7902 28 0.2098	0.0700 8 9.9300	58° 20′
31° 50′	9.7222 20 0.2778	9.7930 28 0.2070	0.0708 8 9.9292	58° 10′
82° 00′	9.7242 20 0.2758	9.7958 28 0.2042	0.0716 8 9.9284	58° 90'
32° 10′	9.7262 20 0.2738	9,7986 28 0,2014	0.0724 8 9.9276	57° 50′
32° 20′	9.7282 20 0.2718	9.8014 28 0.1986	0.0732 8 9.9268	57° 40′
32° 30′	9.7302 20 0.2698	9.8042 28 0.1958	0.0740 8 9.9260	57° 30′
32° 40′	9.7322 20 0.2678	9.8070 28 0.1930	0.0748 8 9.9252	57° 20′
32° 50′	9.7342 20 0.2658	9.8097 28 0.1903	0.0756 8 9.9244	57° 10′
38° 00′	9.7361 19 0.2639	9.8125 28 0.1875	0.0764 8 9.9236	57° 00′
33° 10′	9.7380 19 0.2620	9.8153 28 0.1847	0.0772 8 9.9228	56° 50′
33° 20′	9.7400 19 0.2600	9.8180 28 0.1820	0.0781 8 9.9219	56° 40′
83° 30′	9.7419 19 0.2581 9.7438 19 0.2562	9.8208 27 0.1792	0.0789 8 9.9211	56° 30′
33° 40′ 33° 50′	9.7456 19 0.2562	9.8235 27 0.1765 9.8263 27 0.1737	0.0797 8 9.9203 0.0806 8 9.9194	56° 20′ 56° 10′
84° 00′	9.7476 19 0.2524	9.8290 27 0.1710	0.0814 9 9.9186	56° 96′
34° 10′	9,7494 19 0,2506	9.8317 27 0.1683	0.0823 9 9.9177	55° 50′
34° 20′	9.7513 18 0.2487	9.8344 27 0.1656	0.0831 9 9.9169	55° 40′
84° 30′	9.7531 18 0.2469	9.8371 27 0.1629	0.0840 9 9.9160	55° 30′
34° 40′	9.7550 18 0.2450	9.8398 27 0.1602	0.0849 9 9.9151	55° 20′
34° 50′	9.7568 18 0.2432	9.8425 27 0.1575	0.0858 9 9.9142	55° 10′
35° 00′	9.7586 18 0.2414	9.8452 27 0.1548	0.0866 9 9.9134	55° 00′
35° 10′	9.7604 18 0.2396	9.8479 27 0.1521	0.0875 9 9.9125	54° 50′
35° 20′	9.7622 18 0.2378	9.8506 27 0.1494	0.0884 9 9.9116	54° 40′
35° 30′	9.7640 18 0.2360	9.8533 27 0.1467	0.0893 9 9.9107	54° 30′
35° 40′	9.7657 18 0.2343	9.8559 27 0.1441	0.0902 9 9.9098	54° 20′
35° 50′	9.7675 17 0.2325	9.8588 27 0.1414	0.0911 9 9.9089	54° 10′
86° 00′	9.7692 17 0.2308	9.8613 27 0.1387	0.0920 9 9.9080	54° 00 ′
36° 10′	9.7710 17 0.2290	9.8639 27 0.1361	0.0930 9 9.9070	53° 50′
36° 20′	9.7727 17 0.2273	9.8666 26 0.1334	0.0939 9 9.9061	53° 40′
36° 30′	9.7744 17 0.2256	9.8692 26 0.1308	0.0948 9 9.9052	53° 30′
36° 40′ 36° 50′	9.7761 17 0.2239	9.8718 26 0.1282	0.0958 9 9.9042	53° 20′ 53° 10′
	9.7778 17 0.2222	9.8745 26 0.1255	0.0967 9 9.9033	09-10
37° 00′	9.7795 17 0.2205	9.8771 26 0.1229	0.0977 10 9.9023	58° 00 ′
37° 10′	9.7811 17 0.2189	9.8797 26 0.1203	0.0986 10 9.9014	52° 50′
37° 20′ 37° 30′	9,7828 17 0.2172	9.8824 26 0.1176	0.0996 10 9.9004	52° 40′
37° 30' 37° 40'	9.7844 16 0.2156	9.8850 26 0.1150	0.1005 10 9.8995	52° 30′
37° 40′ 37° 50′	9.7861 16 0.2139 9.7877 16 0.2123	9.8876 26 0.1124 9.8902 26 0.1098	0.1015 10 9.8985 0.1025 10 9.8975	52° 20′ 52° 10′
38° 00′	9.7893 16 0.2107	9.8928 26 0.1072	0.1035 10 9.8965	52° 00′
	lcos θ lsec θ	lctn θ ltan θ	$l \csc \theta$ $l \sin \theta$	· O

Logarithms of Circular Functions.

	<u> </u>			
φ	lsinφ lcscφ	ltanφ letnφ	l sec φ l cos φ	
38° 00′	9.7893 16 0.2107	9.8928 26 0.1072	0.1035 10 9.8965	52° 00 ′
38° 10′	9.7910 16 0.2090	9.8954 26 0.1046	0.1045 10 9.8955	51° 50′
38° 20′	9.7926 16 0.2074	9.8980 26 0.1020	0.1055 10 9.8945	51° 40′
38° 30′ 38° 40′	9.7941 16 0.2059	9.9006 26 0.0994	0.1065 10 9.8935	51° 30′ 51° 20′
38° 50′	9.7957 16 0.2043 9.7973 16 0.2027	9.9032 26 0.0968 9.9058 26 0.0942	0.1075 10 9.8925 0.1085 10 9.8915	51° 20'
39° 00′	9.7989 16 0.2011	9,9084 26 0,0916	0.1085 10 9.8915	51° 00′
39° 10′				
39° 20′	9.8004 16 0.1996 9.8020 15 0.1980	9.9110 26 0.0890 9.9135 26 0.0865	0.1105 10 9.8895 0.1116 10 9.8884	50° 50′ 50° 40′
39° 30′	9.8035 15 0.1965	9.9161 26 0.0839	0.1116 10 9.8874	50° 30′
39° 40′	9.8050 15 0.1950	9.9187 26 0.0813	0.1136 10 9.8864	50° 20′
39° 50′	9.8066 15 0.1934	9,9212 26 0,0788	0.1147 11 9.8853	50° 10′
40° 00′	9,8081 15 0,1919	9.9238 26 0.0762	0,1157 11 9.8843	50° 00′
40° 10′ 40° 20′	9.8096 15 0.1904	9.9264 26 0.0736	0.1168 11 9.8832	49° 50′
40° 20'	9.8111 15 0.1889	9.9289 26 0.0711	0.1179 11 9.8821	49° 40′
40° 40′	9.8125 15 0.1875 9.8140 15 0.1860	9.9315 26 0.0685 9.9341 26 0.0659	0.1190 11 9.8810	49° 30′ 49° 20′
40° 50′	9.8155 15 0.1845	9.9366 26 0.0634	0.1200 11 9.8800 0.1211 11 9.8789	49° 20'
41° 00′	9.8169 15 0.1831	9.9392 26 0.0608	0.1222 11 9.8778	49° 00′
41° 10′ 41° 20′	9.8184 14 0.1816	9.9417 25 0.0583	0.1233 11 9.8767	48° 50′
41° 30′	9.8198 14 0.1802	9.9443 25 0.0557	0.1244 11 9.8756	48° 40′ 48° 30′
41° 40′	9.8213 14 0.1787 9.8227 14 0.1773	9.9468 25 0.0532	0.1255 11 9.8745	48° 30' 48° 26'
41° 50′	9.8241 14 0.1759	9.9494 25 0.0506 9.9519 25 0.0481	0.1267 11 9.8733 0.1278 11 9.8722	48° 10′
42° 00′	9.8255 14 0.1745	9.9544 25 0.0456	0.1289 11 9.8711	48° 00 ′
42° 10′	9.8269 14 0.1731	9.9570 25 0.0430	0.1301 11 9.8699	47° 50′
42° 20′	9.8283 14 0.1717	9.9595 25 0.0405	0.1312 12 9.8688	47° 40′
42° 30′	9.8297 14 0.1703	9.9621 25 0.0379	0.1324 12 9.8676	47° 30′
42° 40′	9.8311 14 0.1689	9.9646 25 0.0354	0.1 335 12 9.8665	47° 20′ -
42° 50′	9.8324 14 0.1676	9.9671 25 0.0329	0.1347 12 9.8653	47° 10′
43° 00′	9.8338 14 0.1662	9.9697 25 0.0303	0.1359 12 9.8641	47° 00 ′
43° 10′	9.8351 13 0.1649	9.9722 25 0.0278	0.1371 12 9.8629	46° 50′
43° 20′	9.8365 13 0.1635	9.9747 25 0.0253	0.1382 12 9.8618	46° 40′
43° 30′	9.8378 13 0.1622	9.9772 25 0.0228	0.1394 12 9.8606	46° 30′
43° 40′	9.8391 13 0.1609	9.9798 25 0.0202	0.1406 12 9.8594	46° 20′
43° 50′	9.8405 13 0.1595	9.9823 25 0.0177	0.1418 12 9.8582	46° 10′
44° 00′	9.8418 13 0.1582	9.9848 25 0.0152	0.1431 12 9.8569	46° 00 ′
44° 10′	9.8431 13 0.1569	9.9874 25 0.0126	0.1443 12 9.8557	45° 50′
44° 20′	9.8444 13 0.1556	9.9899 25 0.0101	0.1455 12 9.8545	45° 40′
44° 30′ 44° 40′	9.8457 13 0.1543	9.9924 25 0.0076	0.1468 12 9.8532	45° 30′
44° 50′	9.8469 13 0.1531 9.8482 13 0.1518	9.9949 25 0.0051 9.9975 25 0.0025	0.1480 12 9.8520 0.1493 13 9.8507	45° 20′ 45° 10′
45° 00′	9.8495 13 0.1505	0.0000 25 0.0000	0.1505 13 9.8495	45° 00′
	l cos θ l sec θ	letn 0 ltan 0	lcsc 0 lsin	0 0

Inverse Circular Functions.

log u	sin-1 u cos-1 u	tan-lu ctn-lu	log u	sin-1 u cos-1 u	tan-lu ctn-lu
9.	0 0	0 0 5.71 10 94.00	9.	18.43 44 71.57	0 0 17.55 38 72.45
00	5.74 13 84.26 5.87 14 84.13	5.71 13 84.29 5.84 13 84.16	50	18.88 45 71.12	17.93 39 72.07
02	6.01 14 83.99	5.98 14 84.02	52	19.34 46 70.66	18.32 39 71.68
03	6.15 14 83.85	6.12 14 83.88	53	19.81 48 70.19	18.72 40 71.28
04	6.30 15 83.70	6.26 14 83.74	54	20.29 49 69.71	19.12 41 70.88
05	6.44 15 83.56	6.40 15 83.60	55	20.78 50 69.22	19.54 42 70.46
08	6.59 15 83.41	6.55 15 83.45	56	21.29 51 68.71	19.95 42 70.05
07	6.75 16 83.25	6.70 15 83.30	57	21.81 53 68.19	20.38 43 69.62
08	6.91 16 83.09	6.86 16 83.14	58	22.35 54 67.65	20.82 44 69.18
09	7.07 16 82.93	7.01 16 82.99	59	22.90 56 67.10	21.26 45 68.74
10	7.23 17 82.77	7.18 16 82.82	60	23.46 57 66.54	21.71 45 68.29
11	7.40 17 82.60	7.34 17 82.66	61	24.04 59 65.96	22.17 46 67.83
12	7.58 18 82.42	7.51 17 82.49	62	24.64 61 65.36	22.63 47 67.37
13	7.75 18 82.25	7.68 17 82.32	68 64	25.25 62 64.75 25.88 64 64.12	23.10 48 69.90 23.58 48 66.42
	7.93 18 82.07	7.86 18 82.14			
15	8.12 19 81.88	8.04 18 81.96	65	26.53 66 63.47	24.07 49 65.93
16 17	8.31 19 81.69 8.51 20 81.49	8.22 19 81.78 8.41 19 81.59	66 67	27.20 68 62.80 27.89 70 62.11	24.56 50 65.44 25.07 51 64.93
18	8.71 20 81.29	8.61 20 81.39	68	28,60 72 61,40	25.58 51 64.42
19	8.91 21 81.09	8.80 20 81.20	69	29.33 74 60.67	26.09 52 63.91
		9.01 20 80.99	70	30.08 76 59.92	26.62 53 63.38
20 21	9.12 21 80.88 9.33 22 80.67	9.21 21 80.79	70 71	30.85 79 59.15	27.15 54 62.85
22	9.55 22 80.45	9.42 21 80.58	72	31.66 81 58.34	27.69 54 62.31
23	9.78 23 80.22	9.64 22 80.36	73	32.48 84 57.52	28.24 55 61.76
24	10.01 23 79.99	9.86 22 80.14	74	33.34 87 56.66	28.79 56 61.21
25	10.24 24 79.76	10.08 23 79.92	75	34.22 90 55.78	29.35 56 60.65
26	10.48 24 79.52	10.31 23 79.69	76	35.13 54.87	29.92 57 60.08
27	10.73 25 79.27	10.55 24 79.45	77	36.07 53.93	30.49 58 59.51
28	10.98 26 79.02	10.79 24 79.21	78	37.05 52.95	31.07 58 58.93
29	11.24 26 78.76	11.03 25 78.97	79	38.07 51.93	31.66 59 58.34
30	11.51 27 78.49	11.28 25 78.72	80	39.12 50.88	32.25 60 57.75
31	11.78 28 78.22	11.54 26 78.46	81	40.21 49.79	32.85 60 57.15
32	12.06 28 77.94	11.80 26 78.20	82	41.35 48.65	33.45 61 56.55
33	12.34 29 77.66	12.07 27 77.93	83	42.54 47.46	34.06 61 55.94
34	12.64 30 77.36	12.34 28 77.66	84	43.78 46.22	34.68 62 55.32
35	12.94 30 77.06	12.62 28 77.38	85	45.07 44.9 3	35.30 62 54.70
36 37	13.24 31 76.76	12.90 29 77.10	86 87	46.42 43.58 47.84 42.16	35.92 63 54.08 36.55 63 53.45
38	13.56 32 76.44 13.88 33 76.12	13.19 29 76.81 13.49 30 76.51	88	49.34 40.66	37.18 64 52.82
39	14.21 33 75.79	13.79 31 76.21	89	50.92 39.08	37.82 64 52.18
40	14.55 34 75.45	14.10 31 75.90	90	52.59 37.41	38.46 64 51.54
41	14.89 35 75.11	14.42 32 75.58	91	54.37 85.63	39.11 65 50.89
42	15.25 36 74.75	14.74 32 75.26	92	56.28 33.72	39.75 65 50.25
43	15.61 37 74.39	15.06 33 74.94	93	58.34 31.66	40.40 65 49.60
44	15.99 38 74.01	15.40 34 74.60	94	60.57 29.43	41.05 65 48.95
45	16.37 39 73.63	15.74 34 74.26	95	63.03 26.97	41.71 66 48.29
46	16.76 40 73.24	16.09 35 73.91	96	65.78 24.22	42.37 66 47.63
47	17.16 41 72.84	16.44 36 73.56	97	68.95 21.05	43.02 66 46.98
48	17.58 42 72.42	16.80 37 73.20	98	72.74 17.26	43.68 66 46.32
49	18.00 43 72.00	17.17 37 72.83	99	77.75 12.25	44.34 66 45.88
50 / 1	8.43 44 71.57	17.55 38 72.45	00	90.00 0 0.00	45.00 66 45.00

Inverse Circular Functions.

logu	sin-1 u	-	cos-1 u	logu	sin-1 u	==	cos-lu	log #	sin-1 u	CO8-1 u	7
log u	8111 - W		CO8 - 14	log u	8111 - 4		COS - u	log u	8111 - 11	CO8-1 U	
9.	04.00	_	65.70	9.	0 10		60 00	9.	450-	0	
750	34.22 34.31	9	55.78 55.69	800 801	39.12 39.23	11 11	50.88 50.77	850 851		13 44.93 13 44.80	
751 752	34.40	9	55.60	802	39.34	11	50.66	852		13 44.8 0 13 44.6 7	
753	34.49	9	55.51	802	39.44	11	50.56	853		13 44. 53	
754	34.58	9	55.42	804	39.55	11	50.56	85 4		13 44.4 0	
		9									-
755	34.67	9	55.33	805	39.66	11	50.34	855		4 44.26	
756	34.76	9	55.24	806	39.77	11	50.2 3	856		4 44.13	Ì
757	34.85	9	55.15	807	39.88	11	50.12	857		4 43.99	
758	34.95	9	55.05	808	39.99	11	50.01	858		43.85	Ш
759	35.04	9	54.96	809	40.10	11	49.90	859	46.28 1	4 43.72	J
760	35.13	9	54.87	810	40.21	11	49.79	860	46.42 1	4 43.58	1
761	35.22	9	54.78	811	40.33	11	49.67	861	46.56 1	4 43.44	I
762	35.32	9	54.68	812	40.44	11	49.56	862	46.70 1	4 43.30	П
763	35.41	9	54.59	813	40.55	11	49.45	8 63	46.84 1	4 43.16	1
764	35.50	9	54.50	814	40.66	11	49.34	864	46.98 1	4 43.02	H
765	35.60	9	54.40	815	40.78	11	49.22	865	47.12 1	4 42.88	1
766	35.69	9	54.31	816	40.89	11	49.11	866		4 42.73	
767	35.79	10	54.21	817	41.01	11	48.99	867		4 42.59	П
768	35.88	10	54.12	818	41.12	12	48.88	868		4 42.45	
769	35.98	10	54.02	819	41.24	12	48.76	869		4 42.30	
				- 1		_					4
770	36.07	10	53.93	820	41.35	12	48.65	870		5 42.16	\parallel
771	36.17	10	53.83	821	41.47	12	48.53	871		5 42.01	1
772	36.27	10	53.73	822	41.59	12	48.41	872		5 41.86	Ш
773	36.36	10	53.64	823	41.70	12	48.30	873		5 41.72	Н
774	36.46	10	53.54	824	41.82	12	48.18	874	48.43 1	5 41.57	Ц
775	36.56	10	53.44	825	41.94	12	48.06	875	48.58 1	5 41.42	11
776	36.66	10	53.34	826	42.06	12	47.94	876	48.73 1	5 41.27	Ш
777	36.76	10	53.24	827	42.18	12	47.82	877	48.88 1	5 41.12	Ш
778	36.85	10	53.15	828	42.30	12	47.70	878	49.03 1	5 40.97	I
779	36.95	10	53.05	829	42.42	12	47.58	879	49.19 1	5 40.81	Ш
780	37.05	10	52.95	830	42.54	12	47.46	880	49,34 1	5 40.66	11
781	37.15	10	52.85	831	42.66	12	47.34	881		5 40.51	1
782	37.25	10	52.75	832	42.78	12	47.22	882		6 40.35	ľ
783	37.35	10	52.65	833	42.90	12	47.10	883		6 40.20	
784	37.45	10	52.55	834	43.03	12	46.97	884		6 40.04	
		_									1
785	37.56	10	52.44	835	43.15	12	46.85	885		6 39.88	
786	37.66	10	52.34	836	43.27	12	46.73	886		6 39.72	
787	37.76	10	52.24	837	43.40	12	46.60	887		6 39.56	
788 789	37.86	10	52.14	838	43.52	13	46.48	888		6 39.40 6 39.24	1
	37.96	10	52.04	839	43.65	13	46.35	889			ļ١
790	38.07	10	51.93	840	43.78	13	46.22	890		6 39.08	II
791	38.17	10	51.83	841	43.90	13	46.10	891		6 38.92	
792	38.28	10	51.72	842	44.03	13	45.97	892		6 38.75	
793	38.38	10	51.62	843	44.16	13	45.84	893		7 38.59	
794	38.48	10	51.52	844	44.29	13	45.71	894	51.58 1	7 38.42	
795	38.59	11	51.41	845	44.41	13	45.59	895	51.74 1	7 38.26	11
796	38.69	11	51.31	846	44.54	13	45.46	896		7 38.09	U
797	38.80	11	51.20	847	44.67	13	45.33	188		8.78 m	v,
798	. 38.91	11	51.09	848	44.80	13		888	62.25	12 31	r
799	39.01	11	50.99	849	44.94	13				5 11 3	_
-		_				_		→ ~.		TL 07.	0,
800	39.12	11	50.88	850	45.07	1	3 44.9	93 / 9 9	00 25	11 60,	_

Inverse Circular Functions.

log u	sin-lu cos-lu	log u	sin-1 u cos-1 u	log u	sin-l u	log u	sin-1 u
9.	0 0	9.	0 0	9.	0	9.	0
900	52.59 17 37.41	950	63.03 26 26.97	9900	77.75	9950	81.32
901	52.76 17 37.24	951	63.29 26 26.71	9901	77.81	9951	81.41
902	52.94 17 37.06	952	63.56 27 26.44	9902	77.87	9952	81.50
903	53.11 18 36.89	953	63.82 27 26.18	9903	77.94	9953	81.59
904	53.29 18 36.71	954	64.09 27 25.91	9904	78.00	9954	81.68
905	53.47 18 36.53	955	64.37 27 25.63	9905	78.06	9955	81.77
906	53 65 18 36 35	956	64.64 28 25.86	9906	78.12	9956	81.86
907	53.83 18 36.17	957	64.92 28 25.08	9907	78.18	9957	81.95
908	54.01 18 35.99	958	65.21 20 24.79	9908	78.25	9958	82.04
909	54.19 18 35.81	950	65.40 29 24.51	9909	78.31	9959	82.14
910	54.37 18 35.63	960	65.78 29 24.22	9910	78.38	9960	82.24
911	54.56 19 35.44	961	66.08 30 23.92	9911	78.44	9961	82.33
912	54.74 19 35.26	962	66.38 30 23.62	9912	78.50	9962	82.43
913	54.93 19 35.07	963	66.68 31 23.32	9913	78.57	9963	82.5
914	55.12 19 34.88	964	66.99 31 23.01	9914	78.64	9964	82.6
915	55.31 19 34.69	965	67.30 32 22.70	9915	78.70	9965	82.7
916	55.50 19 34.50	968	67.62 32 22.38	9916	78.77	9966	82.8
917	55.69 19 34.31	967	67.95 33 22.05	9917	78.83	9967	82.9
918	55.89 19 34.11	968	68.27 33 21.73	9918	78.90	9968	83.1
919	56.08 20 33.92	969	68.61 34 21.39	9919	78.97	9969	83.2
1 1					_		
920	56.28 20 33.72	970	68.95 34 21.05	9920	79.04	9970	83.3
921	56.48 20 33.52	971	69.29 35 20.71	9921	79.10	9971	83.4
922	56.68 20 33.32	972	69.65 36 20.35	9922	79.17	9972	83.5
923	56.88 20 38.12	978	70.01 36 19.99	9923	79.24	9973	83. c
924	57.08 20 32.92	974	70.37 37 19.63	9924	79.31	997 4	83.7
925	57.29 21 32.71	975	70.75 38 19.25	9925	79.38	9975	83.9
926	57.49 21 32.51	976	71.13 39 18.87	9926	79.45	9976	84.0
927	57.70 21 32.30	97 7	71.52 39 18.48	9927	79.52	9977	84.1
928	57.91 21 32.09	978	71.92 40 18.08	9928	79.60	9978	84.2
929	58.12 21 31.88	979	72.83 41 17.67	9929	79.67	9979	84.4
930	58.34 21 31.66	980	72.74 42 17.26	9930	79.74	9980	84.5
	58.55 22 31.45	981		9931	79.81	9981	84.6
931 932	58.77 22 31.45	982	73.18 44 16.82 73.69 45 16.38	9931	79.89	9982	84.8
932	58.99 22 31.01	983		9933	79.96	9983	84.9
934	59.21 22 30.79	984	74.0: 46 15.93	9934	80.04	9984	85.1
			74.54 48 15.46				
935	59.43 22 30.57	985	75 .0 3 49 14.97	9935	80.11	9985	85.2
936	59.65 23 30.35	986	75.53 51 14.4 7	9936	80.19	9986	85.4
937	59.88 23 30.12	987	76.05 53 13.95	9937	80.26	9987	85.6
938	60.11 23 29.89	988	76.59 55 13.41	9938	80.34	9988	85.7
939	60.34 23 29.66	989	77.16 58 12.84	9939	80.42	9989	85.9
940	60.57 23 29.43	990	77.75 61 12.25	9940	80.50	9990	86.1
941	60.81 24 29.19	991	78.38 11 6 2	9941	80.58	9991	86.3
942	61.04 24 28.96	992	79.04 10.96	9942	80.66	9992	86.5
943	61.28 24 28.72	993	79.74 10.26	9943	80.74	9993	86.7
944	61.52 24 28.48	994	80.50 9.50	9944	80.82	9994	87.0
				9945	80.90	9995	87.3
945	61.77 25 28.23	995	81.32 8.68	9946	80.98	9996	87.5
946	62.02 25 27.98	996	82.24 7.76		81.07	9997	87.9
948	62.27 25 27.73	997	83.3 6.7	9947 9948	81.15	9998	88.3
747 1	62.52 25 27.48	998	84.5 5.K	9840			
	62.77 26 27.23	999	86.1 3.9	9949	81.24	8999	8.88 /

Logarithms of Hyperbolic Functions.

_								
x	gd x		x	$\operatorname{\mathbf{gd}} x$	x	l Sh x	1 Ch x	l Th x
	۰			0		0.	O•	9.
0.00	0.0000		0.50	27.524 508	1.00	0701 57	1884 88	8817 24
0.01	0.5729		0.51	28.031 506	1.01	0758 57	1917 38	8840 23
0.02	1.1458		0.52	28.535 503	1.02	0815 56	1950 33	8864 23
0.03	1.7186		0.53	29.037 501	1.03	0871 56	1984 34	8887 23
0.04	2.2912	5725	0.54	29.537 498	1.04	0927 56	2018 34	8909 22
0.05	2.8636	5722	0.55	30.084 496	1.05	0982 56	2051 34	8931 22
0.06	3.4357		0.56	30.529 494	1.06	1038 55	2086 34	8952 21
0.07	4.0074		0.57	31.021 491	1.07	1093 55	2120 34	8973 21
0.08	4.5788		0.58	31.511 488	1.08	1148 55	2154 31	8994 20
0.09	5.1497	5706	0.59	31.998 486	1.09	1203 54	2189 35	9014 20
.10	5.720	570	0.60	32.483 483	1.10	1257 54	2223 35	9034 19
0.11	6.290	570	0.61	32,965 481	1.11	1311 54	2258 35	9053 19
0.12	6.859	569	0.62	33.444 478	1.12	1365 51	2293 35	9072 10
0.13	7.428	568	0.68	33.921 475	1.13	1419 54	2328 85	9090 18
0.14	7.995	567	0.64	34.395 473	1.14	1472 53	2364 35	9108 13
1								
0.15	8.562	567	0.65	34.867 470	1.15	1525 53	2399 36	9126 18
0.16	9.128 9.694	566 KOK	0.66 0.67	35.336 467	1.16 1.17	1578 53 1631 53	2435 36 2470 36	9144 17 9161 17
0.17	10.258	565 564	0.68	35.802 465 36.265 462	1.18	1684 52	2506 36	9177 17
0.19	10.208	563	0.69	36.726 459	1.19	1736 52	2542 36	9194 16
								
0.20	11.384	562	0.70	37.183 456	1.20	1788 52	2578 36	9210 16
0.21	11.945	561	0.71	37.638 454	1.21	1840 52	2615 26	9226 16
0.22	12.505	559	0.72	38.091 451	1.22	1892 52	2651 36	9241 15
0.23	13.063	558	0.73	38.540 448	1.23	1944 52	2688 37	9256 15
0.24	13.621	557	0.74	38.987 445	1.24	1995 51	2724 37	9271 15
0.25	14177	556	0.75	39.431 443	1.25	2046 51	2761 37	9285 14
0.26	14.732	554	0.76	39.872 440	1.26	2098 51	2798 37	9300 14
0.27	15.285	553	0.77	40.310 437	1.27	2148 51	2835 37	9314 14
0.28	15.837	551	0.78	40.746 434	1.28	2199 51	2872 37	9327 14
0.29	16.388	550	0.79	41.179 431	1.29	2250 51	2909 37	9341 13
0.30	16,937	548	0.80	41.608 428	1.30	2300 50	2947 37	9854 13
0.51	17.484	546	0.81	42.035 426	1.31	2351 50	2984 38	9367 13
0.32	18.030	545	0.82	42.460 423	1.32	2401 50	3022 38	9379 12
0.33	18.573	543	0.83	42.881 420	1.33	2451 50	3059 38	9391 12
0.34	19.116	541	0.84	43.299 417	1.34	2501 50	3097 38	9404 12
0.35	19.656	540	0.85	43,715 414	1.35	2551 50	3135 38	9415 12
0.36	20.195	538	0.86	44.128 411	1.36	2600 50	3173 38	9427 11
0.37	20.732	536	0.87	44.537 408	1.37	2650 49	3211 38	9438 11
0.38	21.267	534	0.88	44.944 406	1.38	2699 49	3249 38	9450 11
0.39	21.800	532	0.89	45.348 403	1.39	2748 49	3288 38	9460 11
0.40	22.331	530	0.90	45.750 400	1.40	2797 49	3326 38	9471 11
0.41	22.859	528	0.91	46.148 397	1.41	2846 49	3365 39	9482 10
0.42	23.386	526 526	0.92	46.544 394	1.42	2895 49	3403 39	9492 10
0.43	23.911	524	0.93	46.936 391	1.43	2944 49	3442 39	9502 10
0.44	24.434	522	0.94	47.326 388	1.44	2993 49	3481 39	9512 10
			0.95					
0.45	24.955	519		47.713 386	1.45	3041 48	3520 39	9522 10
0.46	25.473	517	0.96 0.97	48.097 383	1.46 1.47	3090 48	3559 39	9531 9 <i>9540 9</i>
0.47	25.989 26.503	515	0.98	48.478 380	1.48	3138 48 3188 49	8 883E 1886 8	/ ••
0.49	I	513	0.99	48.857 377	1		· \	
UITO	27.015	510	0.00	49.232 374	# T1.20	040-		
0.50	27.524		1.00	49.805 37	71.5	0 3385	1 007	16 39 86

Logarithms of Hyperbolic Functions.

x	l Sh x	1 Ch x	l Th x	x	I Sh x	l Ch x	l Th x
	0.	0.	9.		0.	0.	9.
1.50	3282 48	3715 39	9567 9	2.00	5595 45	575 4 42	9841 3
1.51	3330 48	8754 39	9576 8	2.01	5 640 4 5	5796 42	9844 3
1.52	3378 48	3794 39	9584 8	2.02	5685 45	5838 42	9847 3
1.53	3426 48	3838 40	9592 8	2.03	5730 45	5880 42	9850 3
1.54	3474 48	3873 40	9601 8	2.04	5775 45	5922 42	9853 3
1.55	3521 48	3913 40	9608 8	2.05	5820 45	5964 42	9856 3
1.56	3569 47	3952 40	9616 8	2.06	5865 45	6006 42	9859 3
1.57	3616 47	3992 40	9624 8	2.07	5910 45	6048 42	9862 3
1.58	3663 47	4082 40	9631 7 9639 7	2.08 2.09	5955 45 6000 45	6090 42	9864 3
1.59	3711 47	4072 40				6132 42	9867 3
1.60	3758 47	4112 40	9646 7	2.10	6044 45	6175 42	9870 з
1.61	3805 47	4152 40	9653 7	2.11	6089 45	6217 42	9872 3
1.62	3852 47 3899 47	4192 40	9660 7 9666 7	2.12 2.13	6134 45 6178 45	6259 42	9875 8
1.63 1.64	3899 47 3946 47	4232 40 4273 40	9666 7 9673 7	2.13	6178 45 6223 45	6301 42 6343 42	9877 2 9880 2
il I							
1.65	3992 47	4313 40	9679 6	2.15	6268 45	6386 42	9882 2
1.66 1.67	4039 47 4086 47	4353 40 4394 40	9686 6 9692 6	2.16 2.17	6312 45 6357 45	6428 42 6470 42	9884 2
1.68	4132 47	4434 41	9692 6 9698 6	2.17	6357 45 6401 45	6512 42	9887 2 9889 2
1.69	4179 46	4475 41	9704 6	2.19	6446 45	6555 42	9891 2
1.70 1.71	4225 46 4272 46	4515 41 4556 41	9710 6 9716 6	2.20 2.21	6491 45 6535 44	6597 42	9893 2
1.72	4318 46	4556 41 4597 41	9721 6	2.22	6535 44 6580 44	6640 42 6682 42	9895 2 9898 2
1.73	4364 46	4637 41	9727 5	2.23	6624 44	6724 42	9900 2
1.74	4411 46	4678 41	9732 5	2.24	6668 44	6767 42	9902 2
1.75	4457 46	4719 41	9738 5	2.25	6713 44	6809 42	
1.76	4503 46	4760 41	9743 5	2,26	6757 44	6852 42	9904 2 9905 2
1.77	4549 46	4801 41	9748 5	2.27	6802 44	6894 43	9907 2
1.78	4595 46	4842 41	9753 5	2.28	6846 44	6937 43	9909 2
1.79	4641 46	4883 41	9758 B	2.29	6890 44	6979 43	9911 2
1.80	4687 46	4924 41	9768 5	2.30	6935 44	7022 43	9913 2
1.81	4733 46	4965 41	9767 5	2.31	6979 44	7064 43	9914 2
1.82	4778 46	5006 41	9772 5	2.32	7023 44	7107 43	9916 2
1.83	4824 46	5048 41	9776 4	2.33	7067 44	7150 43	9918 2
1.84	4870 46	5089 41	9781 4	2.84	7112 44	7192 43	9919 2
1.85	4915 46	5130 41	9785 4	2.35	7156 44	7235 43	9921 2
1.86	4961 46	5172 41	9789 4	2.36	7200 44	7278 43	9923 2
1.87	5007 46	5213 41	9794 4	2.37	7244 44	7320 43	9924 2
1.88	5052 46	5254 41	9798 4	2.38	7289 44	7363 43	9926 1
1.89	5098 45	5296 41	9802 4	2.39	7333 44	7406 43	9927 1
1.90	5143 45	5337 42	9806 4	2.40	7877 44	7448 43	9929 1
1.91	5188 45	5379 42	9810 4	2.41	7421 44	7491 43	9930 1
1.92	5234 45	5421 42	9813 4	2.42	7465 44	7534 43	9931 1
1.98 1.94	5279 45 5324 45	5462 42 5504 42	9817 4	2,43	7509 44	7577 43	9933 1
B3			9821 4	2.44	7553 44	7619 43	9934 1
1.95	5370 45	5545 42	9824 4	2.45	7597 44	7662 43	9935 1
1.96 1.97	5415 45 5460 45	5687 42	9828 3	2.46	7642 44	7705 43	9937 1
1.97	5460 45 5505 45	5629 42 5671 42	9831 3 9834 3	2.47 2.48	7686 44	7748 43 7791 43	9938 1
1.99	5550 45	5713 42	9834 3 9838 3	2.48 2.49	7730 44 7774 44	7839 43	9940 1
2.00							
Z.00	5595 45	5754 42	9841 3	2.50	7818 44	7876 43	9941 1

Logarithms of Hyperbolic Functions.

	x	l Sh x	l Ch x	l Th x	x	l Sh x	l Ch x	l Th x
		0.	0.	9.				
9	2.50	7818 44	7876 43	9941	3.0	1.0008 436	1.0029 432	9.9978
	2.51	7862 44	7919 43	9943	3.1	1.0444 436	1.0462 433	9.9982
	2.52	7906 44	7962 43	9944	3.2	1.0880 436	1.0894 433	9.9986
	2.53	7950 44	8005 43	9945	3.3	1.1316 435	1.1327 433	9.9988
1	2.54	7994 44	8048 43	9946	3.4	1.1751 435	1.1761 433	9.9990
1	2.55	8038 44	8091 43	9947	3.5	1.2186 435	1.2194 434	9.9992
	2.56	8082 44	8134 43	9948	3.6	1.2621 435	1.2628 434	9.9994
	2.57	8126 44	8176 43	9949	3.7	1.3056 435	1.3061 434	9.9995
	2.58	8169 44	8219 43	9950	3.8	1.3491 435	1.3495 434	9.9996
	2.59	8213 44	8262 43	9951	3.9	1.3925 435	1.3929 434	9.9996
2	2.60	8257 44	8305 43	9952	4.0	1.4360 435	1.4363 434	9.9997
ŀ	2.61	8301 44	8348 43	9953	4.1	1.4795 435	1.4797 434	9.9998
	2.62	8345 44	8391 43	9954	4.2	1.5229 434	1.5231 434	9.9998
	2.63	8389 44	8434 43	9955	4.3	1.5664 434	1.5665 434	9.9998
1	2.64	8433 44	8477 43	9956	4.4	1.6098 434	1.6099 434	9.9999
	2.65	8477 44	8520 43	9957	4.5	1.6532 434	1.6533 434	9.9999
	2.66	8521 44	8563 43	9958	4.6	1.6967 434	1.6968 434	9.9999
1	2.67	8564 44	8606 43	9958	4.7	1.7401 434	1.7402 434	9.9999
	2.68	8608 44	8649 43	9959	4.8	1.7836 434	1.7836 434	9.9999
	2.69	8652 44	8692 43	9960	4.9	1.8270 434	1.8270 434	0.0000
	2.70	8696 44	8735 43	9961	5.0	1.8704 434	1.8705 434	0.0000
	2.71	8740 44	8778 43	9962	5.1	1.9139 434	1.9139 434	0.0000
	2.72	8784 44	8821 43	9962	5.2	1.9573 434	1.9573 434	0.0000
1	2.73	8827 44	8864 43	9963	5.3	2.0007 434	2.0007 434	0.0000
	2.74	8871 44	8907 43	9964	5.4	2.0442 434	2.0442 434	0.0000
2	2.75	8915 44	8951 43	9965	5.5	2.0876 434	2.0876 434	0.0000
	2.76	8959 44	8994 43	9965	5.6	2.1310 434	2.1310 434	0.0000
	2.77	9003 44	9037 43	9966	5.7	2.1744 434	2.1745 434	0.0000
	2.78	9046 44	9080 43	9967	5.8	2.2179 434	2.2179 434	0.0000
	2.79	9090 44	9123 43	9967	5.9	2.2613 434	2.2613 434	0.0000
5	2.80	9134 44	9166 43	9968	6.0	2.3047 4343	2.3047 4343	0.0000
	2.81	9178 44	9209 43	9969	7.0	2.7390 4343	2.7390 4343	0.0000
1	2.82	9221 44	9252 43	9969	8.0	3.1733 4343	3.1783 4343	0.0000
	2.83	9265 44	9295 43	9970	9.0	3.6076 4343	3.6076 4343	0.0000
	2.84	9309 44	9338 43	9970	10.0	4.0419 4343	4.0419 4343	0.0000
9	2.85	9353 44	9382 43	9971		73 1:3		
1	2.86	9396 44	9425 43	9972	10 - 5	For high	er values:	1000.
	2.87	9440 44	9468 43	9972	10g S	$0 x = \log Ch$	$x = x\mu - 0.30$ $(\log u + 0.30)$	1000;
	2.88	9484 44	9511 43	9973	SII-1	- CII-u =	(108 n - 0.90)	υ, μ
	2.89	9527 44	9554 43	9973	n	nμ .	nμ-1	n
9	2.90	9571 44	9597 43	9974		<i>"μ</i> ".	- مر،،	
	2.91	9615 44	9641 43	9974	1	0.434294	2.302585	1 1
1		9658 44	9684 43	9975	2	0.868589	4.605170	2
1	2.92		9727 43	9975	3	1.302883	6.907755	3
	2.93	9702 44						
		9702 44 9746 44	9770 43	9976	4	1.787178	9,210340	14
9	2.93	9746 44			4. 5	1.737178 2.171472	9.210340	5
9	2.93 2.94		9770 43	9976 9976 9977	5	2.171472	11.512925	5.
5	2.93 2.94 2. 95	9746 44 9789 44	9770 43 9813 43	9976	5 6	2.171472 2.605767	11.512925 13.815511	_ 5 6
2	2.93 2.94 2.95 2.96	9746 44 9789 44 9833 44	9770 43 9813 43 9856 43	9976 9977	5 6 7	2.171472 2.605767 3.040061	11.512925 13.815511 16.118096	- 6 6 7
9	2.93 2.94 2.95 2.96 2.97	9746 44 9789 44 9833 44 9877 44	9770 43 9813 43 9856 43 9900 43	9976 9977 9977	5 6	2.171472 2.605767	11.512925 13.815511	- 6 6 7 8

Natural Sines and Cosines.

ф	sin φ	cos φ		ф	sin φ	сов ф		φ	sin φ	сов ф	
0°	.000000	1.0000	90 °		ŀ	1		15°	.2588	.9659	75°
10′	.002909	1.0000	60 ′	30' 40'	.1305 .1334	.9914	30′ 20′	10′	.2616	.9652	50 ′
20′	.005818	1.0000	40′	50'	.1363	.9907	10	20′	.2644	.9644	40′
30′	.008727	1.0000	30′	80			820	30' 40'	2672	.9636	30/
40′ 50′	.011635	0.9999	20′ 10′	_	.1392	.9903		50'	.2700 .2728	.9628	20' 10'
10	.017452	0.9998	890	10' 20'	.1421 .1449	.9899	50′ 40′	16°	.2756	.9613	740
10′	.02036	0.9998	50	30′	.1478	.9890	30'	10'	.2784	.9605	50′
20	.02327	0.9997	40	40′	.1507	.9886	20′	20	.2812	.9596	40
30'	.02618	0.9997	30'	50′	.1536	.9881	10′	30′	.2840	.9588	30/
40′	.02908	0.9996	20'	9°	.1564	.9877	81°	40′	.2868	.9580	20/
50′	.03199	0.9995	10′	10′	.1593	.9872	50′	50′	.2896	.9572	10′
2°	.03490	0.9994	880	20′	.1622	.9868	40′	170	.2924	.9563	73°
10′	.03781	0.9993	50′	30′	.1650	.9863	30′	10′	.2952	.9555	50′
20′	.04071	0.9992	40'	40′	.1679	.9858	20′	20′	.2979	.9546	40′
30/	.04362	0.9990	30′	50′	.1708	.9853	10′	30′	.3007	.9537	30/
40′	.04653	0.9989	20′	10°	.1736	.9848	80°	40′	.3035	.9528	20′
50′	.04943	0.9988	10′	10′	.1765	.9843	50′	50′	.3062	.9520	10′
3°	.05234	0.9986	87°	20′ 30′	.1794	.9838	40′	18°	.3080	.9511	72 °
10′	.05524	0.9985	50′	40	.1822 .1851	.9833	30' 20'	10′	.3118	.9502	50′
20'	.05814	0.9983	40′	50	1880	.9822	10′	20′	.3145	.9492	40′
30' 40'	.06105	0.9981	30'	110	_		790	80′	.3173	.9483	30/
50	.06395 .06685	0.9980 0.9978	20' 10'		.1908	.9816		40′ 50′	.3201 .3228	.9474	20' 10'
40	.06976	0.9976	860	10' 20'	.1937 .1965	.9811	50′ 40′	19°	.3256	.9455	710
- 1				30	.1994	.9799	30				
10' 20'	.07266 .07556	0.9974 0.9971	50′ 40′	40'	.2022	.9793	20	10' 20'	.3283 .3311	.9446	50′ 40′
30	.07846	0.9969	30/	5 0′	.2051	.9787	10′	30	.3338	.9426	30
40/	.08136	0.9967	20	12°	.2079	.9781	780	40'	.3365	.9417	20′
50′	.08426	0.9964	10′	10'	.2108	.9775	50′	50′	.3393	.9407	10′
5°	.08716	0.9962	85 °	20′	.2136	.9769	40′	20°	.3420	.9397	70°
10′	.09005	0.9959	50′	30′	.2164	.9763	30′	10′	.3448	.9387	60′
20′	.09295	0.9957	40'	40' 50'	.2193	.9757	20/	20′	.3475	.9877	40′
30′	.09585	0.9954	30′			.9750	10′	80′	.3502	.9367	30′
40′ 50′	.09874 .10164	0.9951 0.9948	20' 10'	13°	.2250	.9744	770	40' 50'	.3529 .3567	.9356 .9346	20′ 10′
<u>6°</u>	.10453	0.9945	84°	10' 20'	.2278	.9737	50′	210	.3584	.9336	69 °
			-	30/	.2306	.9730	40′ 30′				
10' 20'	.107 4 .1103	0.9942 0.9939	50' 40'	40′	.2363	.9717	20	10' 20'	.3611 .3638	.9325	50′ 40′
30	.1132	0.9936	30/	50′	.2391	.9710	10′	30	.3665	.9304	30/
40′	.1161	0.9932	20′	14°	.2419	.9703	760	40	.3692	.9293	20′
50′	.1190	0.9929	10′	10′	2447	.9696	50′	50'	.3719	.9283	10′
70	.1219	0.9925	830	20′	2476	.9689	40′	22°	.3746	.9272	68 °
10′	.1248	0.9922	50′	30′	.2504	.9681	30′	10′	.3773	.9261	50′
20′	.1276	0.9918	40′	40′	.2532	.9674	20′	20′	.3800	.9250	40′
30′	.1305	0.9914	3 0′	50′	.2560	.9667	10′	30′	.3827	.9239	30/
			82°	15°	.2588	.9 6 59	750				67°
	cos 0	sin 0	θ		cos θ	sin 0	θ		сов в	в пів	в

Natural Sines and Cosines.

							_				
φ	sin φ	сов ф		φ	sin φ	сов ф		φ	sin φ	cos φ	
220				30°	.5000	.8660	60°	37°			
30′	.3827	.9239	30′	10′	.5025	.8646	50'	30'	.6088	.7934	30′
40'	.3854	' .9228	20′	20′	.5050	.8631	40'	40′	.6111	.7916	20'
50′	.3881	.9216	10′	30′	.5075	.8616	30/	50′	.6134	.7898	10'
230	.3907	.9205	67°	40′	.5100	.8601	20′	38°	.6157	.7880	52°
10'	.3934	.9194	50'	50′	.5125	.8587	10′	10'	.6180	.7862	50'
20'	.3961	.9182	40′	31°	.5150	.8572	59°	20′	.6202	.7844	40'
30'	.3987	.9171	30′	10′	.5175	.8557	50′	30′	.6225	.7826	30/
40'	.4014	.9159	20′	20'	.5200	.8542	40	40′	.6248	.7808	20′
50′	.4041	.9147	10′	30'	.5225	.8526	30	50′	.6271	.7790	10'
24	.4067	.9135	66°	40′	.5250	.8511	20′	39 °	.6293	.7771	51°
10′	.4094	.9124	50′	50′	.5275	.8496	10′	10′	.6316	.7753	50′
20'	4120	.9112	40'	320	.5299	.8480	580	20/	.6338	.7735	40
30′	4147	.9100	30'	10′	.5324	0405	50′	30′	.6361	.7716	30/
40'	.4173	.9088	20'	20'	.5348	.8465	40	40′	.6383	.7698	20/
50'	.4200	.9075	10′	30′		.8450		50′	.6406	.7679	10'
25	.4226	.9063	650	40/	.5373 .5398	.8434	30' 20'	40°	.6428	.7660	50°
10′	.4253	.9051	50′	50′	.5422	.8403	10'	10′	.6450	.7642	50'
20	4279	.9038	40	33°	.5446	.8387	570	20	.6472	.7623	40/
30	4305	.9026	30′	10′			50′	30'	.6494	.7604	30/
40	.4331	.9013	20'	20'	.5471	.8371	40′	40'	.6517	.7585	20/
50′	.4358	.9001	10'	30	.5495	.8355		5 0 ′	.6539	.7566	10
26		.8988	640		.5519 .5544	.8339	30' 20'	410	.6561	.7547	490
10′	4410	.8975	50′	5 0′	.5568	.8307	10'	10′	.6583	.7528	50′
20	4436	.8962	40'	34°	.5592	.8290	560	20'	.6604	7509	40/
30	.4462	.8949	30'	10′			50/	30/	.6626	.7490	30/
40	4488	.8936	201		.5616	.8274	50′ 40′	40'	.6648	.7470	20/
50	4514	.8923	10'	20′	.5640	.8258	30	50/	.6670	.7451	10
270	4540	.8910	63°	30′ 40′	.5664	.8241	20	420	.6691	.7431	480
10'	4566	.8897	50′	50′	.5712	.8208	10′	10′	.6713	.7412	50′
20	4592	.8884	40'	35°	.5736	.8192	55°	20'	.6734	.7392	40
30	.4617	.8870	30'	10′		,	_	30'	.6756	.7373	30
40'	.4643	.8857	20	20'	.5760	.8175	50′	40′	.6777	.7353	20
50	4669	.8843	10	30'	.5783	.8158	40′	50	.6799	7333	10
280		.8829	620	40'	.5807 .5831	.8141	30' 20'	430	.6820		470
10'				5 0′	.5854	.8107	10'				50'
20'	.4720	.8816	50' 40'	36°	.5878	.8090	540	10' 20'	.6841	.7294	40′
30'	.4772	.8788	30				_	30	6884	.7254	30/
40′	.4797	.8774	20	10′	.5901	.8073	50′	40'	.6905	.7234	20/
50	4823	.8760	10	20′	.5925	.8056	40′	50	.6926	.7214	10/
29°		8746	610	30' 40'	.5948	.8039	30' 20'	440	.6947	.7193	46°
				50'	.5995	.8004	10/				_
20'	4874	.8732	50′	370	6018	.7986	53°	10′ 20′	.6967	.7173	50′ 40′
30	.4899	.8718	40/					30'	.7009	.7153 .7133	30
40'	.4950	.8704 .8689	30′ 20′	10′	.6041	.7969	50′	40/	.7030	.7112	20/
50	.4975	.8675	10'	20′	.6065	.7951	40′	50′	.7050	7092	10
300	.5000	-8660	60°	30⁄	.6088	.7934	30/	450	Tron	1.00.7	45
	10000	,0000	احتا		-		520	1=0.	1.121.7	`	7=2
/ /	cos θ	$\sin \theta$	θ	l '	cos θ	0 nis	θ	1	COR	e eir	00
			-		1						

Natural Tangents and Cotangents.

φ	tan φ	ctn φ		ф	tan φ	ctn φ		ф	tan φ	ctn φ	
0°	.000000		90 °	70				15°	.2679	3.732	75°
10′	.002909		50′	30' 40'	.1317 .13 4 6	7.60 7.43	30′ 20′	10′	.2711	3.689	50′
20′	.005818		40′	50	.1376		10	20′ 30′	.2742	3.647	40′
30′ 40′	.008727 .011636		30′ 20′	80	.1405		820	40′	.2773 .2805	3.606 3.566	30′ 20′
50	.014545		10	10′	.1435	6.97	50′	50'	.2836	3.526	10′
10	.017455	57.	89°	20'	.1465	6.83	40′	16°	.2867	3.487	740
10	.02036	49.	50/	30′	.1495	6.69	30′	10′	.2899	3,450	50′
20′	.02328	48.	40'	40′	.1524	6.56	20′	20′	.2931	3.412	40'
30′	.02619	38.	30⁄	50′	.1554	6.43	10′	30′	.2962	3.376	30/
40′	.02910	34.	20′	9 °	.1584	6.31	81°	40′	.2994	3.340	20′
50′	.03201	31.	10′	10′	.1614	6.197	50′	50′	.3026	3.305	10′
2°	.03492	28.6	880	20′	.1644	6.084	40′	170	.3057	3.271	73°
10′	.03783	26.4	50′	30' 40'	.1673 .1703	5.976 5.871	30' 20'	10′	.3089	3.237	50′
20′	.04075	24.5	40′	50	1733	5.769	10	20′	.3121	3.204	40′
30' 40'	.04366 .04658	22.9 21.5	30′ 20′	10°	.1763	5,671	80°	30′ 40′	.3153	3.172 3.140	30' 20'
50	.04949	20.2	10'	10′	.1793	5.576	50	50	.8217	3.108	10
3°	.05241	19.1	870	20′	.1823	5.485	40′	18°	.3249	3.078	720
10	.05583	18.1	50′	30′	.1853	5.396	30′	10	.3281	3.047	50′
20	.05824	17.2	40'	40′	.1883	5.309	20′	20/	.3314	3.018	40
80′	.06116	16.3	30'	50′	.1914	5.226	10′	30′	.3346	2.989	30/
40′	.06408	15.6	20′	110	.1944	5.145	79°	40′	.3378	2.960	20′
50′	.06700	14.9	10′	10′	.1974	5.066	50′	50'	.3411	2.932	10′
4º	.06993	14.3	86°	20′ 30′	.2004	4.989 4.915	40′ 30′	19°	.3443	2.904	710
10′	.07285	13.73	50′	40	.2065	4.843	20	10′	.3476	2.877	50′
20′ 30′	.07578 .07870	13.20 12.71	40′ 30′	50'	.2095	4.773	10	20' 30'	.3508 .3541	2.850 2.824	40′ 30′
40/	.08163	12.25	20/	120	.2126	4.705	780	40'	.3574	2.798	20′
50′	.08456	11.83	10′	10′	2156	4.638	50′	50′	.3607	2.773	10′
5°	.08749	11.43	85°	20′	.2186	4.574	40′	20°	.3640	2.747	70°
10'	.09042	11.06	50′	30′	.2217	4.511	30′	10′	.3673	2.723	50′
20′	.09335	10.71	40′	40' 50'	.22 47 .2278	4.449	20′	20′	.3706	2.699	40′
30′	.09629	10.39	30′			4.390	10	30′	.8789	2.675	30′
40' 50'	.09923 .10216	10.08 9.79	20' 10'	13°	.2309		770	40' 50'	.3772 .3805	2.651 2.628	20′ 10′
6 °	.10510	9.51	840	10′ 20′	.2339 .2370	4.275 4.219	50' 40'	210	.3839	2.605	69 °
10′	.1080	9,26	5 0′	30′	.2401	4.165	30⁄	10′	.3872	2.583	50′
20	.1110	9.01	40′	40′	.2432	4.113	20′	20	.3906	2.560	40′
30′	.1139	8.78	30′	50′	.2462	4.061	10′	30′	.3939	2.539	30′
40′	.1169	8.56	20′	14°	.2493	4.011	76°	40′	.3973	2.517	20′
50′	.1198	8.34	10′	10′	.2524	3.962	50′	50′	.4006	2.496	10′
7°	.1228	8.14	83 °	20′	.2555	3.914	40′	220	.4040	2.476	68 °
10′	.1257	7.95	50′	30′ 40′	.2586 .2617	3.867 3.821	30' 20'	10′	.4074	2.455	50′
20′	.1287	7.77	40′	50	.2648	3.776	10	20′	.4108	2.434	40′
30′	.1317	7.60	30′ 82°	15°	.2679	3.732	750	30⁄	.4142	2.414	30′ 67 °
	ctn θ	tan θ	θ		ctn 0	tan 0	0		ctn 0	tan 0	9

Natural Tangents and Cotangents.

ф	tan φ	ctn φ		φ	tan φ	ctn φ		φ	tan φ	ctn φ	
220				30°	.5774	1.732	60°	37°			
30/	.4142	2.414	30/	10′	.5812	1.720	50′	30′	.7673	1.803	80/
40/	.4176	2.394	20'	20	.5851	1.709	40′	40′	.7720	1.295	20
50/	.4210	2.375	10′	30	.5890	1.698	30/	50′	.7766	1.288	10
23°	.4245	2.356	670	40′	.5930	1.686	20'	380	.7813	1,280	520
10′	.4279	2.337	50′	50′	.5969	1.675	10′	10′	.7860	1.272	50′
20/	.4314	2.318	40/	31°	.6009	1.664	5 9 °	20′	.7907	1.265	40
30′	.4348	2,300	30/	10′	0040		50/	30′	.7954	1.257	30/
40/	.4383	2.282	20/		.6048	1.653	50′	40'	.8002	1.250	20
50/	.4417	2.264	10	20′ 30′	.6088	1.643	40′	50′	.8050	1.242	10
240	.4452	2,246	660	40	.6128	1.632	30′ 20′	39°	.8098	1.235	510
10'	.4487	2.229	50′	50	.6208	1.611	10	10′	.8146	1.228	
20/	.4522	2.211	40'	320	.6249	1,600	580	20'	.8195	1.220	50′
30	.4557	2.194	30				90	30	.8243	1.213	40′ 30′
40/	.4592	2.177	20/	10′	.6289	1.590	50′	40′	.8292	1.206	
50	.4628	2.161	10	20′	.6330	1.580	40′	50	.8342	1.199	20' 10'
				30′	.6371	1.570	30′				J I
25°	.4663	2,145	65°	40′ 50′	.6412	1.560 1.550	20′ 10′	40°	.8391	1.192	50 °
10/	.4699	2.128	50′					10′	.8441	1.185	50'
20′	.4734	2.112	40′	33°	.6494	1.540	57°	20′	.8491	1.178	40′
80′	.4770	2.097	30′	10′	.6536	1.530	50′	30′	.8541	1.171	30′
40/	.4806	2.081	20′	20′	.6577	1.520	40'	40′	.8591	1.164	20′
50′	.4841	2.066	10′	30⁄	.6619	1.511	30′	50′	.8642	1.157	10′
26°	.4877	2.050	64 °	40′	.6661	1.501	20′	41 °	.8693	1.150	49°
10′	.4913	2.035	50′	50	.6703	1.492	10′	10′	.8744	1.144	50′
20′	.4950	2.020	40′	3 4 °	.6745	1.483	56 °	20'	.8796	1.137	40′
30′	4986	2.006	30′	10′	.6787	1.473	50′	80′	.8847	1.130	30′
40	.5022	1.991	20′	20′	.6830	1.464	40′	40′	.8899	1.124	20′
50′	.5059	1.977	10′	30⁄	.6873	1.455	30′	50′	.8952	1.117	10
27°	.5095	1.963	63°	40′	.6916	1.446	20′	42 °	.9004	1.111	48°
10/	.5132	1.949	5 0 ′	50′	.6959	1.437	10′	10′	.9057	1.104	50/
20/	.5169	1.935	40′	35°	.7002	1.428	55°	20′	.9110	1.098	40/
30/	5206	1.921	30/	10′	.7046	1.419	50′	30′	.9163	1.091	30/
40/	.5243	1.907	20′	20'	.7089	1.411	40′	40′	.9217	1.085	20/
50′	.5280	1.894	10′	30′	.7133	1.402	30	50′	.9271	1.079	10′
28°	.5317	1.881	62°	40′	.7177	1.393	20′	43°	.9325	1.072	470
10′	.5354	1.868	50′	50′	.7221	1.385	10′	10′	,9380	1.066	50′
20′	.5392	1.855	40′	36°	.7265	1.376	54 °	20′	.9435	1.060	40′
30′	5430	1.842	30′	10′	.7310	1.368	50/	30′	.9490	1.054	30/
40'	.5467	1.829	20′	20'	.7355	1.360	40/	40′	.9545	1.048	20
50/	.5505	1.816	10′	30′	.7400	1.351	30/	50′	.9601	1.042	10′
29°	.5543	1.804	61°	40′	.7445	1.343	20/	440	.9657	1.036	46 °
10′	.5581	1.792	50′	50′	.7490	1.335	10′	10′	.9713	1.030	50′
20′	.5619	1,780	40/	37°	.7536	1.327	53 °	20'	.9770	1.024	40′
30′	.5658	1.767	30/	10′				30	.9827	1.018	30′
40′	.5696	1.756	20′	20'	.7581 .7627	1.319	50′ 40′	40′	.9884	1.012	20′
5 0 ′	.5735	1.744	10′	30	.7673	1.303	30/	50'	.9942	1.006	10′
30 °	.5774	1.732	60°		.,,,,		52°	45°	1.0000	1.000	450
	ctn θ	tan θ	θ		ctn 0	tan 0	8	\int	cin	rat 0	10 6

Natural Secants and Cosecants.

φ	sec φ	свс ф		ф	вес ф	свс ф		φ	secp	свс ф	
0°	1.0000		90 °					15°	1.035	8.864	75°
10′	1.0000		50′	30' 40'	1.009 1.009	7.66 7.50	30' 20'	10′	1.036	3.822	50′
20′	1.0000		40'	50	1.009	7.34	10	20′	1.037	3.782	40′
30' 40'	1.0000		30′	80			820	30′ 40′	1.038	8.742	30′
50	1.0001		20' 10'	_	1.010	7.19		50	1.039	3.703 3.665	20' 10'
10	1.0002	57.	890	10′ 20′	1.010 1.011	7.04 6.90	50′ 40′	16°	1.040	3.628	740
10	1.0002	49.	50′	30'	1.011	6.77	30/	10′	1.041	3.592	50′
20	1.0003	43.	40'	40′	1.012	6.64	20′	20	1.042	3.556	40
30'	1.0003	38.	30/	50′	1.012	6.51	10′	30′	1.043	3.521	30/
40′	1.0004	34.	20′	9 °	1.012	6.39	81 °	40′	1.044	3.487	20/
50′	1.0005	31.	10′	10′	1.013	6.277	50′	50′	1.045	8.453	10
2°	1.0006	28.7	880	20'	1.013	6.166	40′	170	1.046	3.420	73 °
10′	1.0007	26.5	50′	30′ 40′	1.014 1.014	6.059	30′	10'	1.047	3.388	50′
20′	1.0008	24.6	40′	50	1.014	5.955 5.855	20' 10'	20	1.048	8.356	40′
80′	1.0010	22.9	30′				80°	30′	1.049	3.326	30/
40′ 50′	1.0011	21.5 20.2	20' 10'	10°	1.015	5.759		40′ 50′	1.049 1.050	3.295 3.265	20' 10'
3°	1.0014	19.1	870	10' 20'	1.016 1.016	5.665 5.575	50′ 40′	180	1.051	8.236	720
10′	1.0015	18.1	50′	30′	1.017	5.487	30	10′	1.052	3.207	
20	1.0015	17.2	40′	40′	1.018	5.403	20'	20	1.053	3.179	50′ 40′
30	1.0019	16.4	30	50′	1.018	5.320	10'	30	1.054	3.152	30/
40′	1.0021	15.6	20	110	1.019	5.241	799	40/	1.056	3.124	20'
50′	1.0022	15.0	10'	10′	1.019	5.164	50/	50/	1.057	3.098	10′
40	1.0024	14.3	86 °	20′	1.020	5.089	40'	19°	1.058	3.072	710
10′	1.0026	13.76	50′	30′	1.020	5.016	30′	10	1.059	3.046	50'
20/	1.0029	13.23	40′	40/	1.021	4.945	20′	20′	1.060	3.021	40'
30′	1.0031	12.75	30'	50′	1.022	4.876	10′	80′	1.063	2.996	30/
40′	1,0033	12.29	20′	12°	1.022	4.810	78°	40′	1.062	2.971	20′
50′	1.0036	11.87	10'	10′	1.023	4.745	50′	60/	1.063	2.947	10′
5 °	1.0038	11.47	85°	20' 30'	1.024	4.682 4.620	40′ 30′	30 °	1.064	2.924	70°
10' 20'	1.0041	11.10	50′	40′	1.025	4.560	20	10′	1.065	2.901	50′
30	1.0043 1.0046	10.76 10.43	40′ 30′	50′	1.026	4.502	10	20′ 80′	1.066 1.068	2.878 2.855	40′ 30′
40	1.0040	10.13	20/	13°	1,026	4,445	770	40	1.069	2.833	20/
50'	1.0052	9.84	10′	10′	1.027	4.390	50/	50	1.070	2.812	10′
6°	1.0055	9.57	84 °	20′	1.028	4.336	40'	210	1.071	2.790	69°
10′	1.0058	9.31	50′	30′	1.028	4.284	30	10′	1.072	2.769	50′
20/	1.0061	9.07	40′	40′	1.029	4.232	20′	20	1.074	2.749	40'
30/	1.0065	8.83	30′	50′	1.030	4.182	10	80′	1.075	2.729	30/
40′	1.0068	8.61	20′	14°	1.031	4.134	76°	40'	1.076	2.709	20′
50′	1.0072	8.40	10′	10′	1.031	4.086	50	50	1.077	2.689	10′
70	1.0075	8.21	83°	20′ 30′	1.032	4.039	40° 30°	220	1.079	2.669	68°
10′	1.0079	8.02	50′	40′	1.033	3.994 3.950	20	10	1.080	2.650	50′
20' 30'	1.0082 1.0086	7.83 7.66	40′ 30′	50′	1.034	3.906	10	20' 30'	1.081	2.632 2.613	40' 30'
"	1,0090	1.00	30° 82°	15°	1.035	3.864	750	<i>50</i>	11002	a.ulo	670
		-	32								
, /	csc θ	sec 0	θ		csc θ	sec 0	θ		csc θ	sec 0	θ

Natural Secants and Cosecants.

Ψ	sec ø	CSC Ø		•	sec ø	CSC Ø		6	sec ø	CSC Ø	
220		<u> </u>		Ŀ		· ·	200	370		<u> </u>	\vdash
	1 000	2.613	30′	30 °	1.155	2.000	60°	30/	1 000		
30′ 40′	1.082 1.084	2.595	20	10′	1.157	1.990	50′	40′	1.260	1.643	30′
50'	1.085	2.577	10	20′	1.159	1.980	40′	50'	1.263	1.636	20′
230	1.086	2.559	670	30' 40'	1.161	1.970	30' 20'	380	1.266	1.630	10′
			50′	50	1.165	1.961	10	10′		1.624	52°
10' 20'	1.088	2.542	40′	31°	1.167	1.942	59 °	20'	1.272	1.618	50′ 40′
30′	1.090	2.508	30′	10′	1.169	1.932	50'	30′	1.278	1.606	30'
40'	1.092	2.491	20'	20'	1.171	1.923	40	40′	1.281	1.601	20'
50′	1.093	2.475	10'	80'	1.173	1.914	30	50′	1.284	1.595	10'
240	1.095	2.459	660	40'	1.175	1.905	20	39°	1.287	1.589	510
10'	1.096	2.443	50′	50′	1.177	1.896	10'	10'	1,290	1.583	50
20'	1.097	2.427	40/	32 °	1,179	1.887	580		1.293	1.578	40
30	1.099	2.411	30/			-		30'	1.296	1.572	30
40'	1100	2,396	20/	10′	1.181	1.878	50'	40′	1.299	1.567	20
50	1102	2.381	10'	20′ 30′	1.184	1.870	40′	50'	1.302	1.561	10
250	1.103	2,366	65°	40'	1.186	1.861	30' 20'	40°	1,305	1.556	50°
10'	1.105	2.352	50′	50′	1.190	1.844	10	10′	1.309	1.550	50'
20/	1.106	2.337	40'	33°	1.192	1.836	570	20/	1.312	1.546	40′
80/	1.108	2.323	30	10′			F64	30/	1.315	1.540	30
40'	1.109	2.309	20/	20'	1.195	1.828	50′	40′	1.318	1.53₺	20'
50'	1.111	2.295	10'	30	1.197	1.820	40' 30'	60′	1.322	1.529	10'
26°	1.113	2.281	640	40/	1.199	1.812	20	410	1.325	1.524	490
10′	1.114	2.268	50′	5 0′	1.204	1.796	10'	10′	1.328	1.519	50'
20	1.116	2.254	40	340	1,206	1.788	560	20	1.332	1.514	40'
30	1.117	2.241	30'	10′	1.209	1.781	50′	80′	1.885	1.509	30/
40	1.119	2.228	20′	20'	1.211	1.773	40'	40'	1.339	1.504	20'
50/	1.121	2.215	10'	30'	1.211	1.766	30	50'	1.342	1.499	10
270	1.122	2.203	630	40′	1.216	1.758	20	420	1,346	1.494	480
10	1.124	2,190	50′	5 0′	1.218	1.751	10′	10′	1.349	1.490	50′
20/	1.126	2.178	40′	35°	1.221	1.743	550		1.353	1.485	40'
30′	1.127	2.166	30/	10′				30/	1.356	1.480	80'
40'	1.129	2.154	20/	20/	1.223 1.226	1.736 1.729	50′ 40′	40′	1.360	1.476	20′
50′	1.131	2.142	10′	30'	1.228	1.729	30	50'	1.364	1.471	10'
28°	1.133	2.130	62°	40′	1.231	1.715	20′	43°	1.367	1.466	470
10'	1.134	2.118	50′	50′	1.233	1.708	10′	10′	1.371	1.462	50′
20/	1.136	2.107	40′	36°	1.236	1.701	54°	20′	1.375	1.457	40′
30′	1.138	2.096	30′	10'	1.239	1,695	50′	30′	1.379	1.453	30′
40′	1.140	2.085	20′	20/	1.241	1.688	40/	40′	1.382	1.448	20′
50′	1.142	2.074	10′	30/	1.244	1.681	30/	50′	1.386	1.444	10′
29°	1.143	2.063	61°	40′	1.247	1.675	20′	440	1.390	1.440	46 °
10	1.145	2.052	5 0 ′	50′	1.249	1.668	10′	10′	1.394	1.435	50/
20′	1.147	2.041	40′	37°	1.252	1.662	53°	20'	1.398	1.431	40′
30′	1.149	2.031	30′	10′	1,255	1,655	50′	30′	1.402	1.427	30′
40′	1.151	2.020	20'	20'	1.258	1.649	40'	40′	1.406	1.423	20′
50′	1.153	2.010	10'	30′	1.260	1.643	30′	50′	1.410	1.418	10'
30°	1,155	2.000	60°				52°	45 °	1.414	1.414	45%
	csc θ	sec θ	θ		csc 0	80C 0	θ	\int	CSC 8	860	0 0

EXPLANATION OF THE TABLES.

§ 1. TABLES IN GENERAL.

- a. One quantity is said to be a function of another, when the former quantity is regarded as determined by the latter, according to some rule or formula. E. g. x^2 , \sqrt{x} , $\log x$, $\sin x$, $\log \sin x$, are all called functions of x. A mathematical table is an orderly arrangement of the values of some function for certain selected values of the quantity by which it is regarded as determined. The successive values of the latter quantity are assumed arbitrarily, and generally at equal intervals; and this quantity is called the argument of the table. Some functions require several independent quantities for their determination; and the corresponding tables are tables of several arguments. Thus, a multiplication-table is a table of two arguments; namely, the two factors.
- b. A table may be used in two ways: directly and inversely. The direct use of the table consists in finding the value of the function for an assumed value of the argument; the inverse use, in finding the value of the argument for an assumed value of the function.
- c. Before beginning to use any table, the student should give attentive consideration to its arrangement, and to the best mode of employing it with accuracy and ease. Every feature of it should be carefully examined, and the explanations which are attached to it should be fully mastered. The time thus spent will be time gained, contributing not only to power in computation, but also, very materially, to the thorough practical knowledge of the nature of the tabulated functions.

§ 2. INTERPOLATION.

a. Interpolation consists in finding the value of one of the two quantities, argument and function, for an assumed value of the other quantity, lying between two successive tabulated values. Most mathematical tables are so constructed as to admit of interpolation by the principle that corresponding non-tabulated values of the function and argument lie between corresponding tabulated values and divide the differences between them in the same ratio. This is the principle of proportional parts. Let x_1 and x_2 be two successive tabulated values of the argument of a table, and u_1 and u_2 the correspond-

ing values of the function. Then, $x_2 - x_1$ and $u_2 - u_1$ are called corresponding tabular differences. We shall denote these differences by Δx and Δu . If, now, x and u are corresponding values of the function and argument, of which one is known to lie between the two above-cited tabulated values of the same quantity, the principle of proportional parts is that if

$$\lambda = \frac{x - x_1}{\Delta x}, \qquad \lambda' = \frac{x_2 - x}{\Delta x} = 1 - \lambda,$$

$$\mu = \frac{u - u_1}{\Delta u}, \qquad \mu' = \frac{u_2 - u}{\Delta u} = 1 - \mu,$$

then (to the limit of accuracy belonging to the table)

or,
$$\lambda = \mu, \qquad \lambda' = \mu',$$
$$u = u_1 + \lambda \Delta u = u_2 - \lambda' \Delta u,$$
$$x = x_1 + \mu \Delta x = x_2 - \mu' \Delta x.$$

Thus, the required value of the function or argument may be obtained by applying a correction to either of the two tabulated values between which the required value lies. In computing this correction, the signs of the differences employed must be carefully observed. If x_1 and x_2 are so chosen as to make Δx positive, Δu may be either positive or negative. In the former case, the function is said to be increasing; in the latter, decreasing.

- b. Either of the two formulas given above for finding u may be employed, in interpolation, in the direct use of the table; either of the formulas for x may be employed in the inverse use of the table. In most tables, $\Delta x =$ one unit in the last numeral place of the tabulated values of x. Hence λ is composed of the figures which follow that numeral place in the given non-tabulated value of the argument, preceded by a decimal-point; while λ' is the complement of λ (that is, can be found by subtracting from θ each figure of λ except the last, and subtracting that from 10). The correction for u is, therefore, found simply by multiplying the figures in question into Δu , and pointing off according to the case; x will be corrected by annexing to x_1 the figures of $\frac{u-u_1}{\Delta u}$, or the figures complementary to $\frac{u_2-u_1}{\Delta u}$.
- c. In some of the tables of this collection will be found, set against each value of the function, a number in small type, which shows what Δu would be if the function varied through a whole interval corresponding to Δx at the same rate at which it is changing when it passes through the value against which this number is set. This number may be called the rate of difference, or simply the difference, of u, and may be substituted for Δu in the formulas of interpolation. But, in that case, we ought to work from the NEAREST tabulated value of x or u; that is, from x_1 or u_1 when λ or $\mu < 0.5$, and from x_2 or u_2 when λ' or $\mu' < 0.5$. (See examples in the explanation of the table of Logarithms of Circular Functions.)
- d. An interpolated value of the function should not be carried out beyond the last numeral place of the tabulated value from which it is computed; so that, in finding $\lambda \Delta u$ or $\lambda' \Delta u$, we should reject the decimal part of the product, Δu being regarded as an integer. Owing to the combination of the figures rejected in the correction and those omitted in the tabulated value of the function, an interpolated value is liable to an error of ± 1 in the last figure.

Proportional Parts.

The number of figures annexed to the tabulated value of the argument, in inverse interpolation, should be less by one than the number of figures contained in Δu . It is sometimes, indeed, made equal to the latter number (and will always be, if Δu consists of only one figure); but, in that case, the last figure must be regarded as uncertain. When the given value of the function is the result of computation, of course this uncertainty may extend back to earlier figures.

e. In taking the correction of either the function or the argument only to a certain number of figures, we must observe the following rule, which is a universal rule of computation:—

Whenever figures are neglected at the end of a number, if the figures neglected amount to more than half a unit in the place of the last figure retained, the last figure retained must be increased by 1. E. g. 27.528 = 27.53 to the nearest hundredth = 27.5 to the nearest tenth = 28 to the nearest unit = 30 to the nearest ten.

- f. The various rules of interpolation will be found to be fully exemplified below, in the explanations of the tables of Logarithms and Logarithms of Circular Functions.
- g. In interpolating in some tables (e. g. in VLACQ's great ten-place table), we must have regard to **second differences**, or differences between differences. In this case, we add to the above formulas for u the term

$$-\frac{1}{2}\lambda\lambda'\Delta^2u$$
.

where $\Delta^2 u$ denotes the second difference of u, taken positively when Δu is rincreasing. The greatest value of this term is one eighth of $\Delta^2 u$, so that it is insignificant when $\Delta^2 u < 4$. In the present tables this term may always be neglected; although it is useful as measuring the extent of error, and may occasionally guide the judgment of the computer when the fractional part of the correction is equal, or nearly equal, to 0.5. But where such nicety of work seems to be called for, it is best to use a table of a larger number of places.

§ 3. PROPORTIONAL PARTS.

a. The table of **Proportional Parts** (folded page) may be used in connexion with any other table, as an aid in interpolation. It contains the product of every integer from 1 to 100 by every tenth from 0.1 to 0.9. If the multiplier consists of one figure in any other numeral place, it is only necessary to change the position of the decimal-point in the product. To multiply a number of two figures by any decimal whatever, we must find the products which correspond to the successive figures of the multiplier, and add them together. The decimal part of the result is generally to be discarded, and in that case the general rule given above (in $\S 2$, e) must be observed. Thus, let it be required to find 0.619 \times 37. Looking in the column belonging to 37, we find

$$\begin{array}{ccc}
0.6 & \times 37 = 22.2 \\
0.01 & \times 37 = 0.37 \\
0.009 & \times 37 = 0.333 \\
\therefore & 0.619 & \times 37 = 23.
\end{array}$$

In like manner, we find

$$0.27 \times 15 = 4$$
, $0.59 \times 73 = 43$, $0.78 \times 69 = 54$, $0.96 \times 84 = 81$, $0.36 \times 57 = 21$, $0.289 \times 51 = 15$, $0.483 \times 93 = 45$, $0.374 \times 82 = 31$, $0.053 \times 68 = 4$.

b. This table can also be used inversely. Thus, let it be required to find, to two decimal-places, what part 36 is of 79. Looking in the column of 79, we find

$$0.4 \times 79 = \frac{36}{4.4}$$

$$0.06 \times 79 = 4.74 \text{ (the nearest product)}$$

$$0.06 \times \frac{36}{79} = 0.46.$$

In like manner, we find

$$\frac{29}{68} = 0.43, \quad \frac{72}{89} = 0.81, \quad \frac{31}{98} = 0.32, \quad \frac{26}{71} = 0.37, \quad \frac{45}{57} = 0.79, \quad \frac{11}{37} = 0.30.$$

A little practice will enable the student to use this table easily and rapidly.

§ 4. LOGARITHMS.

- a. Denary, or Briggsian, logarithms, being those employed in actual 4 computation, are always referred to, in this collection of tables, when the term logarithm is used without qualification. The characteristic, or integral part, of the denary logarithm of a number depends only on the position of the first significant figure of the number relatively to the units' place, and may be found by a well-known rule; the mantissa, or fractional part, depends only on the series of significant figures which compose the number, and is the only part of the logarithm for which it is necessary to employ a table. A table of logarithms is complete, to an assigned number of places, if it gives (explicitly or by interpolation) to that number of places the mantissa of the logarithm of every possible series of significant figures. Denary logarithms are, in general, incommensurable numbers, and cannot, therefore, be exactly expressed in figures. They are variously given, in different tables, to ten, seven, six, five, four, and three places of decimals. Four-place logarithms are sufficient for the ordinary purposes of engineering, navigation, the work of the physical and chemical laboratory, and many of the subordinate computations of astronomy; and, in most of these cases, are all that the accuracy of the data will justify us in using. Seven places are, however, needful for the more accurate kinds of astronomical and geodetic work.
- b. If one number is the logarithm of another, the second number is called the **antilogarithm** of the first. This relation is denoted by the symbol \log^{-1} . Thus, if $u = \log x$, then $x = \log^{-1} u$. In an ordinary table of logarithms, the argument is the antilogarithm, which is tabulated to a greater or less number of figures, according to the number of places to

Logarithms.

which the logarithm is given, and the function is the mantissa of the logarithm, which we often speak of simply as the logarithm.

To find the logarithm of any number.

c. If the number consists of three significant figures, seek the first two significant figures in the first column of the table of Logarithms (pp. 2, 3). and the third at the top of the table. In the line and column thus determined will be found the mantissa of the required logarithm, printed without the decimal-point. Find the characteristic by the rule, and prefix it, with the decimal-point, to the mantissa. E. g., log 2870 = 3.4579. If the given number has less than three significant figures, fill it out to three figures by anexing a zero or zeros. E. g., $\log 0.35 = \log 0.350 = 9.5441 - 10$. $\log 6 = \log 6.00 = 0.7782$. If the number has more than three significant figures, its logarithm must be found by one of the formulas of interpolation given above. The rule is: - Find the logarithm of the first three significant figures of the given number and also that of the next following number of three figures (1000 following 999); then apply to BITHER of these two logarithms a correction, obtained by multiplying the difference between them by the difference between the given number and the three-figure number which corresponds to the loggrithm chosen to be corrected, and rejecting (with due attention to the rule of § 2, e) as many figures at the end of the product as are contained in the latter difference. The table of Proportional Parts may be employed in performing the multiplications. Thus, to find log 5668.4. Using the notation of the formulas of interpolation, and remembering that the place of the decimal-point in the given number may be disregarded in finding the mantissa of the required logarithm, we have

$$x_1 = 566,$$
 $u_1 = \text{mant log } x_1 = 7528,$ $x_2 = 567,$ $u_2 = \text{mant log } x_2 = 7536,$ $\Delta x = 1.$ $\Delta u = 8$

so that $\log x$ may be found by either of the following methods: —

$$\lambda = 0.84$$
, $\lambda \Delta u = 6.72 = 7$ to units, $u = 7528 + 7 = 7535$; or,

$$\lambda' = 1 - \lambda = 0.16$$
, $\lambda' \Delta u = 1.28 = 1$ to units, $u = 7536 - 1 = 7535$.
 $\therefore \log 5668.4 = 3.7535$.

Let the beginner find the following logarithms by this method: -

```
    log 59.43
    = 1.7740,
    log 0.0081472
    = 7.9110
    10,

    log 284.8
    = 2.4545,
    log 572820
    = 5.7581,

    log 0.073748
    = 8.8678
    - 10,
    log 0.50167
    = 9.7004
    - 10,

    log 3.1607
    = 0.4998,
    log 99968.
    = 4.9999.
```

The interpolated logarithm should never be carried to more than four decimalplaces.

d. The work of interpolation may be shortened by using the column of proportional parts, marked P. P., on the right of the table. In using this column, one must work from the three-figure number NEAREST to the given

number (in the above example, from 567, not from 566). If the given number has only four figures, so that λ or λ' has only one figure, then the correction will be found in the column P. P., under λ or λ' (according as we are working from the number below or the number above the given number), and in the same line with the logarithm to be corrected. If the given number has more than four figures, the correction must be estimated by the observation of the corrections which correspond to the figures below and above the first figure of λ or λ' . E. g.

```
mant log 2848 = mant log 285 — cor. for .2 = 4548 — 3 = 4545; mant log 56684 = mant log 567 — cor. for .16 = 7536 — 2 = 7534
```

In the last case the correction is either 1 or 2, and, since .16 is nearer .20 than .10, we choose the correction belonging to .20. Larger tables show that the mantissa of the required logarithm, to five places, is 75346; so that the value found by the column P. P. is here nearly as accurate as that obtained by computation. There is a slightly greater liability to error when we use the column P. P. than when we interpolate by computation; but the disadvantage is generally insignificant. The last figure of an interpolated logarithm obtained from any table may always be one unit in error. E. g.: the true mant log of 57282 to five places is 75802; and this is a case in which the column P. P. gives a better result than computation.

The student is advised now to find all the logarithms in the above list by using the column P. P.

e. If the first figure of the given number is 1, it will be found tabulated to four figures in pp. 4, 5. The correction for a fifth and following figures may be found by the method of interpolation explained in c. As the differences are always small on these pages, and the corrections easily computed, the column P. P. is not here given; but, to facilitate taking the last difference, we have printed at the end of each line, under the heading 10, the first logarithm of the following line. Let the student find the following logarithms:—

```
\log 11.737 = 1.0696, \log 0.00100066 = 7.0003 - 10, \log 0.15703 = 9.1960 - 10, \log 18597. = 4.2694.
```

To find the antilogarithm of any logarithm.

f. It is enough to explain the way of finding the series of significant figures which compose the antilogarithm, by means of the mantissa of the given logarithm; the pointing off of the antilogarithm being determined, according to rule, by the given characteristic. If the mantissa of the given logarithm is contained in the table, the required antilogarithm is at once found by inspection. Otherwise, we must resort to the formulas of interpolation, which give the following rule: — Find two successive tabulated logarithms $(u_1 \text{ and } u_2)$ between which the given logarithm (u) lies; then divide the difference either of these tabulated logarithms and the given loyarithm $(u - u_1 \text{ or } u_2 - u)$ by the difference between the tabulated logarithms (Δu) , carry out the quotient to the NEAREST tenth (that is, to one figure, which may be 0), and add it to or subtract it from the antilogarithm $(x_1 \text{ or } x_2)$ of the tabulated logarithm $(u_1 \text{ or } u_2)$ with which the given logarithm has been compared. The antilogarithm is always a figure annexed to the three or four tabulated figures of x_1 .

Logarithms of Sums and Differences.

The division should not generally be carried beyond one figure. Even the first figure is, in most cases, somewhat uncertain. If the mantissa of the given logarithm is less than 3010, pp. 4, 5 should be used. On pp. 2, 3, the column P. P. may be employed.

Let it be required to find log-1 1.5284. We find

$$u_1 = 5276,$$
 $u_1 = 337,$ $u - u_1 = 8,$ $u_2 - u = 5,$ $u_2 = 5289,$ $u_2 = 338,$ $\mu = \mu \Delta x = \frac{8}{13} = 0.6..,$ $\Delta u = 13,$ $\Delta x = 1,$ $\mu' = \mu' \Delta x = \frac{5}{13} = 0.4..,$ $x = 337 + 0.6 = 338 - 0.4 = 337.6;$ $\therefore \log^{-1} 1.5284 = 33.76.$

More briefly, looking along the line of $u_2 = 5289$ for $5 = u_2 - u$ in column P. P., we find that 5 corresponds to the correction 4, which gives at once the required number. In like manner, the student may find

$$\log^{-1} 1.9155 = 82.32,$$
 $\log^{-1} (5.8760 - 10) = 0.00007517,$ $\log^{-1} 3.8291 = 6747,$ $\log^{-1} (9.5727 - 10) = 0.3738,$ $\log^{-1} 0.1548 = 1.4283,$ $\log^{-1} (8.2731 - 10) = 0.018755.$

g. The convenient usage of making negative characteristics positive, by the addition of 10, is followed, throughout the present collection of tables, whenever logarithms are printed with their characteristics. This must be always understood, though no explicit reference be made to it in the explanation of the table.

§ 5. LOGARITHMS OF SUMS AND DIFFERENCES.

a. This is one form of a table devised by Gauss to facilitate finding the logarithm of the sum or difference of two numbers which are themselves given only by their logarithms. The argument of the table is any logarithm, and may be called $\log x$; the function tabulated is then $\log (x+1)$. It follows that, if the function is denoted by $\log x$, the argument is $\log (x-1)$. The function may be called the Gaussian of the argument, and the argument the anti-Gaussian of the function; and the symbols G and G^{-1} may be used to denote these relations. Thus we have

$$\log (x+1) = \mathfrak{G} \log x, \qquad \log (x-1) = \mathfrak{G}^{-1} \log x.$$

b. To find the Gaussian of a given logarithm. Seek the characteristic of the given logarithm (increased by 10 if negative) at the top of the table, and the first two figures of the mantissa in the left-hand column. If the third and fourth figures of the mantissa are zero, the Gaussian will be found in the column and line thus determined; otherwise, it can be obtained by the method of interpolation which has been fully explained in § 2. In three columns of the table, the rate of difference of the Gaussian is printed in small type after the value of the function, and may be used instead of the tabular difference of the Gaussian through half the tabular interval before and after the value to which it is attached, as explained in

§ 2, c, and completely illustrated below, in the explanation of the table of Logarithms of Circular Functions. The table of Proportional Parts may be employed in computing the corrections. Examples:—

$$\textcircled{9}$$
 1.0960 = 1.1295,
 $\textcircled{9}$ (7.5265 — 10) = 0.0015,

 $\textcircled{9}$ 3.8129 = 3.8130,
 $\textcircled{9}$ (9.6431 — 10) = 0.1582.

 If $\log x < 6.0000 = 10$,
 $\log (x + 1) = 0.0000$ to four places;

 if $\log x > 4.0000$,
 $\log (x + 1) = \log x$ to four places.

c. To find the anti-Gaussian of a given logarithm. Seek, in the body of the table, two successive logarithms between which the given logarithm lies, and then find the corresponding value of the argument by interpolation. Examples:—

$$\mathfrak{G}^{-1}$$
 1.0960 = 1.0597, \mathfrak{G}^{-1} 0.1051 = 9.4373 — 10, \mathfrak{G}^{-1} 3.8129 = 3.8128, \mathfrak{G}^{-1} 1.0216 = 0.9782.

d. To find the logarithm of the sum or difference of the antilogarithms of two given logarithms. If m and n are two numbers,

$$m+n=n\left(\frac{m}{n}+1\right), \qquad m-n=n\left(\frac{m}{n}-1\right),$$

$$\log\left(m+n\right)=\log n+\log\left(\frac{m}{n}+1\right)=\log n+\Im\log\frac{m}{n},$$

$$\log\left(m-n\right)=\log n+\log\left(\frac{m}{n}-1\right)=\log n+\Im\log\frac{m}{n}.$$

Example: -

Given
$$a=4.142$$
, $b=2.399$; to find $\sqrt{(a^2+b^2)}$ and $\sqrt{(a^2-b^2)}$. log $a=0.6172$, log $b=0.3800$, log $a^2=1.2344$, log $b^2=0.7600$, log $\frac{a^2}{b^2}=0.4744$;
$$\textcircled{G} \log \frac{a^2}{b^2}=0.6000, \qquad \textcircled{G}^{-1} \log \frac{a^2}{b^2}=0.2970, \\ \log b^2=0.7600, \qquad \log b^2=0.7600, \\ \log (a^2+b^2)=1.3600, \qquad \log b^2=0.7600, \\ \log \sqrt{(a^2+b^2)}=1.3600, \qquad \log \sqrt{(a^2-b^2)}=1.0570, \\ \sqrt{(a^2+b^2)}=4.787; \qquad \sqrt{(a^2-b^2)}=3.377.$$

§ 6. CIRCULAR, OR TRIGONOMETRIC, FUNCTIONS: NATURAL VALUES.

a. Three tables of the natural values of the trigonometric functions are given on pp. 22-27. Each table is broken up into six divisions, and occupies two pages. The argument is the angle, which is tabulated at intervals of 10' from 0° to 90°. Angles in the first half of the quadrant will be found in the left-hand column of the several divisions of the table, and for those angles the names of the functions are to be taken from the top of the page; angles in the second half of the quadrant are to be found in the right-hand

Logarithms of Circular Functions.

column of the table, and for those angles the names of the functions are to be taken from the bottom of the page. The angles standing at the right and left in the same line are complements of each other; and the names of the functions at the top and bottom of the same column are complementary. The value of any of the functions for a non-tabulated angle, or the value of the angle for a non-tabulated value of one of the functions, can be found by the method of interpolation explained in § 2. The precepts of § 2, d, e, should be observed in computing the corrections. The tabulated values of the functions are generally given to four significant figures; but, in the tables of tangents and secants, they are sometimes given to a less number of figures (to avoid errors in interpolation), and are sometimes omitted altogether. In these cases the functions can be best found by finding their logarithms by the table of Logarithms of Circular Functions (see § 7), and then the numbers corresponding by the table of Logarithms.

- b. To find any function of an angle greater than 90°, we must subtract from the given angle the greatest multiple of 90° which it contains; if an even multiple has been subtracted, we look out the required function of the remainder; if an odd multiple, the complementary function; and we then fix the sign of the function by considering the quadrant in which the given angle lies. For a negative angle, we find the required function of the corresponding positive angle, and then fix its sign by considering the quadrant of the angle.
 - c. Examples of the use of these tables:—

```
sin 77° 37'
                        0.9767,
                                    \tan 53^{\circ} 04' = 1.330
                                                                     sec 68° 45' =
                                                                                            2.759,
cos 16º 19'
                                           3° 18' =
                                                                    \csc 55^{\circ} 13' =
                        0.9597,
                                    ctn
                                                          17.4,
                                                                                            1.217;
\sin 257^{\circ} 37' = -0.9767
                                    tan 93^{\circ} 18' = -17.4,
                                                                     \sec 325^{\circ} 13' =
                                                                                            1.217.
\cos 163^{\circ} 41' = -0.9597, \cot 323^{\circ} 04' = -1.330, \csc 158^{\circ} 45' =
                                                                                            2.759:
\sin(-257^{\circ}37') = 0.9767, \tan(-93^{\circ}18') = 17.4, \sec(-325^{\circ}13') =
                                                                                            1.217,
\cos(-163^{\circ}41') = -0.9597, \cot(-323^{\circ}04') = 1.330, \csc(-158^{\circ}45') = -2.759;
     \sin^{-1} 0.2000
                                  11° 32′ or = 168° 28′ or =
                                                                          371° 32′, etc.,
     \cos^{-1}(-0.3542) = 110^{\circ} 45' \text{ or } = 249^{\circ} 15' \text{ or } = 830^{\circ} 45', \text{ etc.}
     tan^{-1} (-4.570) = 102° 21' or = 282° 21' or = -77° 39', etc.,
     ctn-1 0.3163
                                  72^{\circ} 27' or = 252^{\circ} 27' or = -107^{\circ} 33', etc.,
     sec^{-1} 5.000
                                  78^{\circ} 28' \text{ or } = -78^{\circ} 28' \text{ or } = \pm 281^{\circ} 32', \text{ etc.}
     \csc^{-1}(-3.529) = -16^{\circ} 28' \text{ or } = 196^{\circ} 28' \text{ or } = -163^{\circ} 32', \text{ etc.}
```

§ 7. LOGARITHMS OF CIRCULAR FUNCTIONS.

To find the logarithm of any circular function of a given angle.

a. If the angle is less than 6° , the part of the table which occupies the upper half of p. 10 may be used. (See also g.) The left-hand division of this part of the table gives the values of a logarithm S (the characteristic and the first two figures of the mantissa being printed at the head of the column), with the angular limits between which each value may be used. Thus, for all positive angles less than 1° 51'.479, S = 0.4837; for all angles between 1° 51'.479 and 2° 49'.567, S = 0.4836; etc. The next following

division gives, in like manner, the values of a logarithm T. We must find the logarithm of the angle, reduced to minutes and decimals of a minute, and must then apply the formulas:—

```
\log \sin \phi = \log (\phi \text{ in minutes}) + S - 10,

\log \tan \phi = \log (\phi \text{ in minutes}) + T - 10.
```

The two right-hand divisions of this part of the table give the values of the log sec, with the angular limits for each value. The logarithms of the cosine, cotangent, and cosecant are the arithmetical complements (— 10) of the logarithms of the secant, tangent, and sine, respectively. Example:—

```
1 \sin 3^{\circ} 15'.23 = 8.7541, 1 \tan 3^{\circ} 15'.23 = 8.7548, 1 \sec 3^{\circ} 15'.23 = 0.0007, 1 \csc 3^{\circ} 15'.23 = 1.2459, 1 \cot 3^{\circ} 15'.23 = 1.2452, 1 \cos 3^{\circ} 15'.23 = 9.9993;
```

the negative characteristics being here, as in the following examples, made positive by the addition of 10.

b. If the angle is acute and greater than 84°, we must take its complement, and then seek the function complementary to that required, for the angle thus obtained, by the method just expounded. Example:—

```
l sin 86° 44'.77 = 9.9993, l tan 86° 44'.77 = 1.2452, l sec 86° 44'.77 = 1.2459, l ccc 86° 44'.77 = 0.0007, l ctn 86° 44'.77 = 8.7548, l ccs 86° 44'.77 = 8.7541.
```

c. If the angle is contained between 6° and 84°, we use the main part of the table, occupying the lower half of p. 10 and pp. 11-15. The angle is tabulated at intervals of 10', from 6° to 45° in the left-hand column of the table. and from 45° to 84° in the right-hand column. The names of the functions are to be taken from the tops of the columns, when the angle is on the left; and from the bottoms of the columns, when the angle is on the right. The angles on the right and left of any line and the names at the top and bottom of any column have the same relation to each other as in the tables of Natural Values (§ 6). The true characteristic in the first, third, and sixth columns is -1, but is printed 9. The six columns are arranged in pairs. The two functions in each pair of columns are reciprocal to each other; and the logarithms are therefore complementary, and their differences are equal in value, with opposite signs. Down the middle of each double column are printed, in small type, the rates of difference of the logarithms in that double column. • Each value of this rate may be used in interpolation, instead of Δu , through half the interval before and after the line on which it stands, as stated in § 2, c. Thus, in finding the logarithms of the circular functions of any angle between 25° 25' and 25° 35' we work from the values corresponding to 25° 30', the nearest tabulated angle; and compute the corrections by taking proportional parts of 26, 33, and 6, for the three pairs of functions. In applying the corrections, we must carefully observe, for each function, whether the function is increasing or decreasing.

For example, let the logarithms of the circular functions of 25° $27'.4 = 25^{\circ}$ 30' - 02'.6 be required. We find

Logarithms of Circular Functions.

In like manner, we have

l
$$\sin 74^{\circ} 46' = 9.9845$$
, l $\tan 74^{\circ} 46' = 0.5849$, l $\sec 74^{\circ} 46' = 0.5804$, l $\cot 74^{\circ} 46' = 9.4351$, l $\cos 74^{\circ} 46' = 9.4196$.

d. If the angle is greater than 90° , or negative, we must use the method explained in § 6, b, for the tables of Natural Values of the circular functions. When the natural value of a circular function is negative, this should be indicated by writing the letter n after its logarithm. Examples:

Given the logarithm of any circular function, to find the value of the corresponding angle.

e. If the given logarithm lies without the limits of the main part of the table, the upper part of p. 10 may be used. If the given logarithm is a log sin less than 9.0192, or a log tan less than 9.0216, subtract from it the proper value of S or T (or add the arithmetical complement), and the remainder is the log of the required angle in minutes. The limiting values of the log sin and log tan for each value of S and T are given in the table. If the given log is a log csc greater than 0.9808, or a log ctn greater than 0.9784, its arithmetical complement will be a log sin less than 9.0192, or a log tan less than 9.0216. If the given log is a log sec less than 0.0024, the limits between which the required angle lies are given by the table; the angle may have any value between these limits, and is not therefore very closely determined. If the given log is a log cos greater than 9.9976, its arithmetical complement is a log sec less than 0.0024.

If the given log is a log sin, log tan, or log sec greater than 9.9976, 0.9784, or 0.9808 (respectively), or a log csc, log ctn, or log cos less than 0.0024, 9.0216, or 9.0192 (respectively), we must change the name of the function to the complementary name (sin to cos, etc.), find the corresponding angle as above, and take the complement of the angle thus found. Examples:—

$$(\log \sin)^{-1} 8.9542 = 5^{\circ} 09'.8,$$
 $(\log \cot)^{-1} 2.0531 = 0^{\circ} 30'.42,$ $(\log \cot)^{-1} 9.0024 = 84^{\circ} 15'.5,$ $(\log \sin)^{-1} 9.9983 = 84^{\circ} 56' \pm 44'.$

f. If the given logarithm is contained within the limits of the main part of the table, the required angle is found by ordinary interpolation; and we may use the printed rate of difference as the value of Δu , working in each case from the nearest tabulated value. The angle should be found to the nearest minute, or, when the difference exceeds 100, to the nearest tenth of a

minute. But in the right-hand pair of columns, the last figure of the angle thus found will generally be uncertain. Examples:—

Let it be required to find (log sec)-1 0.0343; i.e. the angle of which the log sec is 0.0643. The nearest tabulated log sec is 0.0647. We have, then,

(log sec)⁻¹ 0.0647 = 30° 30′,
$$u_2 - u = 4$$
, $\Delta u = 7$, $\frac{4}{7} = 0.6$,
 \therefore (log sec)⁻¹ 0.0643 = 80° 30′ $-$ 06′ $=$ 30° 24′.

In like manner, let the student find

The angle may also be found by the next following table.

g. Pp. 8 and 9 may also be used for angles less than 6° or greater than 84°.

E.g.
$$1 \sin 4^{\circ} 03'.4 = 8.8497$$
, $1 \tan 4^{\circ} 03'.4 = 8.8508$, $1 \sec 4^{\circ} 03'.4 = 0.0011$, $1 \csc 4^{\circ} 03'.4 = 1.1503$, $1 \cot 4^{\circ} 03'.4 = 1.1492$, $1 \cos 4^{\circ} 03'.4 = 9.9989$.

§ 8. INVERSE CIRCULAR FUNCTIONS.

a. The table having this heading (pp. 16-18) is a table for finding the angle which corresponds to the given logarithm of a circular function. The logarithm (increased by 10) is the argument of the table, and is to be regarded as given to four places of decimals. It is tabulated at intervals of 0.0100 from 9.0000 to 0.0000 through the first page of the table, then at intervals of 0.0010, and in the last two divisions at intervals of 0.0001. characteristic of the argument is printed at the head of the column. figures supposed to follow the printed figures in the values of the argument are zeros. Thus, the first value is 9.0000, the next 9.0100, etc. The angle is given, for convenience of interpolation, in degrees and decimals of a degree. When found, it is easily reduced to degrees and minutes, if that is necessary, and should, in general, be taken only to the nearest minute. The angle under the heading $\sin^{-1} u$ is that angle of which the corresponding value of the argument, log u, is the log sin; etc. In interpolating in this table, we may use the printed rate of difference instead of Δu , working from the nearest tabulated value of the argument, and carefully observing whether the tabulated angle ought to be increased or diminished. When the printed rate of difference is omitted, this is because the interval is too great to admit In this case, we must resort to those later of accurate interpolation. divisions of the table in which the argument is tabulated at smaller inter-When the last figure of the tabulated angle is printed in small type, this shows that that figure is uncertain, if the logarithm is given to only four places; that is, that there is a possible variation, on each side of the tabulated angle, as great as half a unit in the place of the figure so printed. For example, if $\log u = 9.9000$, we find the last figures of $\sin^{-1} u$ and $\cos^{-1} u$ to be printed in small type. Now, seven-place tables show that (log sin)-1 $9.8999500 = 52^{\circ}.581$, while $(\log \sin)^{-1} 9.9000500 = 52^{\circ}.600$. may represent any logarithm between these; and hence the corresponding angle, in this case, admits a like variation, while cos-1 u may have any value between 37°.419 and 37°.400.

Hyperbolic Functions.

Neither of these difficulties presents itself in finding an angle from its log tan or log ctn. If $\log u = 9.9000$, $\tan^{-1} u$ can only vary from 38°.458 to 38°.464.

The angle found by interpolation should be carried out only to the nearest hundredth of a degree, in any case. The last column of the table shows that the angle is not always determined even to the nearest tenth.

- b. If the characteristic of the given logarithm is 0, we must take its arithmetical complement, which will be the logarithm of the reciprocal function of the same angle. The angle can then be found by the table.
- c. If the given logarithm is less than 9.0000, or greater than 0.0000, the tables in the upper part of p. 10 may be used, as explained in § 7, e; or pp. 8, 9.
- d. Let us find by this table the angles sought above, in § 7, f. We have, in the case of the first example,

$$(\log \sec)^{-1} 0.0643 = (\log \cos)^{-1} 9.9357.$$

Then the table gives

(log cos)⁻¹ 9.9360 = 30°.35,
$$\Delta u = 23$$
, $0.3 \times 0.23 = .07$
 \therefore (log cos)⁻¹ 9.9357 = 30°.42 = 30° 25′.

In fact, the limits of the angle are 30° 24'.2 and 30° 25'.6, the mean value being 30° 24'.9. In this case, the present table gives a better value than the other; but both values are admissible.

In like manner, we have

$$\begin{array}{l} (\log \sin)^{-1} \ 9.5663 = 21^{\circ}.81 \ -\ 20 = 21^{\circ}.61 = 21^{\circ}\ 37', \\ (\log \cos)^{-1} \ 9.9188 = 33^{\circ}.92 \ +\ .04 = 33^{\circ}.96 = 33^{\circ}\ 58', \\ (\log \tan)^{-1} \ 0.7507 = 79^{\circ}.92 \ +\ .02 = 79^{\circ}.94 = 79^{\circ}\ 58', \\ (\log \cot)^{-1} \ 0.0496 = 41^{\circ}.71 \ +\ .03 = 41^{\circ}.74 = 41^{\circ}\ 44', \\ (\log \sec)^{-1} \ 0.2272 = 53^{\circ}.64 \ +\ .02 = 53^{\circ}.66 = 53^{\circ}\ 40', \\ (\log \csc)^{-1} \ 0.1433 = 46^{\circ}.01 \ -\ .04 = 45^{\circ}.97 = 45^{\circ}\ 58'. \end{array}$$

§ 9. HYPERBOLIC FUNCTIONS.

a. The hyperbolic functions are certain functions which bear relations to the equilateral hyperbola similar to those borne by the circular functions to the circle; and they may often be usefully employed both in computation and in analysis. They are named the hyperbolic sine, cosine, tangent, cotangent, secant, and cosecant; and are variously denoted by different writers. They are here represented by the symbols: Sh, Ch, Th, Cth, Sch, Csch. They may be defined by the following formulas, in which

They bear to the circular functions the relations expressed by the following formulas, in which $i = \sqrt{-1}$:—

$$\operatorname{Sh} x = \frac{\sin xi}{i}, \qquad \qquad \sin x = \frac{\operatorname{Sh} xi}{i},$$

$$\operatorname{Ch} x = \cos xi, \qquad \qquad \cos x = \operatorname{Ch} xi,$$

$$\operatorname{Th} x = \frac{\tan xi}{i}, \qquad \qquad \tan x = \frac{\operatorname{Th} xi}{i},$$

$$\operatorname{Cth} x = i \operatorname{ctn} xi, \qquad \qquad \operatorname{ctn} x = i \operatorname{Cth} xi,$$

$$\operatorname{Sch} x = \sec xi, \qquad \qquad \operatorname{sec} x = \operatorname{Sch} xi,$$

$$\operatorname{Csch} x = i \operatorname{csc} xi, \qquad \operatorname{csc} x = i \operatorname{Csch} xi.$$

Again, if ϕ is so taken that

$$x = \text{nat log tan } (45^{\circ} + \frac{1}{4} \phi),$$

Sh
$$x = \tan \phi$$
, Ch $x = \sec \phi$, Csch $x = \cot \phi$,
Th $x = \sin \phi$, Sch $x = \cos \phi$, Cth $x = \csc \phi$.

The value of ϕ determined by this formula has been called by some writers the Gudermannian of x, and denoted by the symbol: gd x.

- b. From x=0.00 to x=1.00, the function tabulated is gd x in degrees, at intervals of 0.01 in the value of x. The hyperbolic functions of x are then readily found, by the aid of the formulas last given, from the tables of circular functions. Beginning with x=1.00, log Sh x, log Ch x, and log Th x are tabulated, at intervals of 0.01 in the value of x, up to x=3.00, the characteristic of each logarithm being placed at the head of its column; then at intervals of 0.1 up to x=6.0; and lastly at intervals of 1 up to x=10.0. The printed differences are to be used, as in other tables, each through half the interval before and after the line on which it stands.
- c. If x > 10, log Th x = 0.0000, while log Sh x and log Ch x may be found by the formula and table given at the lower right-hand corner of p. 21. The quantity μ is the modulus of the denary system of logarithms; that is, it is the denary logarithm of the exponential base. The values of $n \mu$ being given for all integral values of n from 1 to 10, any product $n \mu$ is readily found, by adding together the products of $n \mu$ by the successive figures of $n \mu$. Only four decimal-figures should be retained in the result.
- d. The functions $\log \operatorname{Cth} x$, $\log \operatorname{Sch} x$, and $\log \operatorname{Csch} x$ are the arithmetical complements of $\log \operatorname{Th} x$, $\log \operatorname{Ch} x$, and $\log \operatorname{Sh} x$, respectively.
 - e. The table may be used both directly and inversely. Examples: —

Natural Logarithms.

NATURAL LOGARITHMS.

a. The natural system of logarithms is that which is founded on the exponential base (see § 9). This number is defined as the limiting value to which the expression

$$(1+\epsilon)^{\frac{1}{\epsilon}}=\sqrt[\epsilon]{(1+\epsilon)}$$

approaches, as e approaches 0. It is most frequently denoted by the letter e; but, as being one of the few peculiar constants of analysis, it is here represented by the symbol 6, which may be read "base."

The following formulas are proved in treatises on the Differential Calculus:-

$$6 = 1 + \frac{1}{1} + \frac{1}{1.2} + \frac{1}{1.2.3} + \frac{1}{1.2.3.4} + \dots,$$

$$6^{x} = 1 + \frac{x}{1} + \frac{x^{2}}{1.2} + \frac{x^{3}}{1.2.3} + \frac{x^{4}}{1.2.3.4} + \dots,$$

$$\text{nat log } (1 + x) = x - \frac{x^{2}}{2} + \frac{x^{3}}{2} - \frac{x^{4}}{4} + \frac{x^{5}}{5} - \dots;$$

the second formula being applicable to all values of x, but the last only when x is numerically less than 1. If x is very small, then approximately

$$6^x = 1 + x$$
, nat $\log (1 + x) = x$, nat $\log (1 - x) = -x$.

We also have, in the natural system,

$$\log (a + h) = \log a + \log \left(1 + \frac{h}{a}\right) = \log a + \frac{h}{a} - \frac{h^2}{2a^2} + \frac{h^3}{3a^3} - \dots,$$
 provided h is numerically less than a.

The rate of difference of G^x , for $\Delta x = 1$, is always G^x , and that of nat $\log x$ is $\frac{1}{x}$.

b. The numerical value of 6 or of any power of 6 can be computed, to any assigned number of decimal-places, by using a sufficient number of terms of the first two series given above. Thus, to find 6 to four decimal-places, we proceed as follows, observing that, if any term be divided by its number in the series, the next following term is obtained: -

- 1) 1.00000
- 2) 1.00000
- 3) 0.50000
- 4) 0.16667
- 5) 0.04167
- 6) 0.00833
- 7) 0.00139
- 8) 0.00020
- 0.00002

$$6 = 2.7183 \dots$$

c. The modulus of any system of logarithms is the logarithm of \odot in that system. If m is the modulus of a system of which a is the base, then

$$a^{m} = 6, \qquad 6^{m^{-1}} = a.$$

The modulus of the natural system itself is 1. The values of the modulus of the denary system and of the reciprocal of that modulus are

$$\mu$$
 = den log $\mathfrak{S} = 0.4342944819...$, μ^{-1} = nat log $10 = 2.3025850930...$

By the rule for converting logarithms from one system to another, the logarithm of a number in any system may be found by multiplying the modulus of that system into the natural logarithm of the same number. Thus,

den
$$\log x = \mu$$
 nat $\log x$,
nat $\log x = \mu^{-1}$ den $\log x$.

By the aid of these formulas, the table at the bottom of p. 21 may be used to find the natural logarithm of any number, or the denary logarithm of any power of the exponential base, or to find a number from its natural logarithm. For example:—

nat log 72.5 = 1.8603 ×
$$\mu^{-1}$$
 = 4.2835,
nat log 1.0074 = 0.0032 × μ^{-1} = 0.0074,
den log $\bigcirc^{\frac{1}{7}}$ = $\frac{1}{7}\mu$ = 0.0620,
(nat log)⁻¹ 10.2108 = (den log)⁻¹ (10.2108 × μ)
= (den log)⁻¹ 4.4345 = 27194.

- d. The natural system is so called, because, in the higher mathematics, it is convenient to regard all other systems as founded upon this. It is named by some writers hyperbolic, and by others Neperian. But in fact, it is not the system of Napier; nor has it any other relation to the hyperbola than that which belongs to logarithms in general.
- e. We may make the following statement of the relation of logarithms and of the hyperbolic functions to the hyperbola, using the notation of Analytic Geometry:—

Let xy=1 be the equation of an hyperbola referred to its asymptotes. It can be proved by the Integral Calculus that the area, contained between the curve and the axis of x, and between two ordinates of which one is drawn to the vertex of the curve, is measured by $\log x$ in the system of which the modulus is $\sin \omega$. Thus, the logarithms belonging to any system may be represented by the areas of an appropriate hyperbola. The natural system corresponds to the equilateral hyperbola, for which $\sin \omega = 1$.

Again, if u denotes twice the area of the sector of the hyperbola $x^2 - y^2 = 1$, contained between the axis of x and a radius vector from the centre, then

$$x = \operatorname{Ch} u, \qquad y = \operatorname{Sh} u;$$

just as, in the circle $x^2 + y^2 = 1$, with a similar meaning of u,

$$x = \cos u$$
 $y = \sin u$.

					_		
10		15		20			
0.8 0.9 1.0	1.1 1.2	1.3 1.4 1.5	1.6 1.7 1.8	1.9 2.0	1		
1.6 1.8 2.0	2.2 2.4	2.6 2.8 3.0	3.2 3.4 3.6	3.8 4.0	2		
2.4 2.7 3.0	3.3 3.6	3.9 4.2 4.5	4.8 5.1 5.4	5.7 6.0	3		
3.2 3.6 4.0	4.4 4.8	5.2 5.6 6.0	6.4 6.8 7.2	7.8 8.0	4		
4.0 4.5 5.0	5.5 6.0	6.5 7.0 7.5	8.0 8.5 9.0	9.5 10.0	Б		
4.8 5.4 6.0	6.6 7.2	7.8 8.4 9.0	9.6 10.2 10.8	11.4 12.0	6		
5.6 6.3 7.0	7.7 8.4	9.1 9.8 10.5	11.2 11.9 12.6	13.3 14.0	7		
6.4 7.2 8.0		10.4 11.2 12.0	12.8 13.6 14.4		8		
7.2 8.1 9.0	9.9 10.8 1	11.7 12.6 13.5	14.4 15.3 16.2		9		
30 35 40							
2.8 2.9 3.0	3.1 3.2	3.3 3.4 3.5	3.6 3.7 3.8	3.9 4.0	1		
5.6 5.8 6.0	6.2 6.4	6.6 6.8 7.0	7.2 7.4 7.6		2		
8.4 8.7 9.0	9.3 9.6	9.9 10.2 10.5	10.8 11.1 11.4		3		
11,2 11,6 12.0		13.2 13.6 14.0	14.4 14.8 15.2		4		
14.0 14.5 15.0		18.5 17.0 17.5	18.0 18.5 19.0		5		
16.8 17.4 18.0		19.8 20.4 21 0	21.6 22.2 22.8		6		
19.6 20.3 21.0	1	23.1 23.8 24.5	25.2 25.9 26.6		7		
22.4 23.2 24.0		26.4 27.2 28.0	28.8 29.6 30.4		8		
25.2 26.1 27.0		29.7 30.6 31.5	32.4 33.3 34.2		9		
	21.0 20.0 2		02/1 00/0 01/0		Ť		
50	· · · · · · · · · · · · · · · · · · ·	55		60			
4.8 4.9 5.0	5.1 5.2	5.3 5.4 5.5	5.6 5.7 5.8	5.9 6.0	1		
9.6 9.8 10.0		10.6 10.8 11.0	11.2 11.4 11.6		2		
14.4 14.7 15.0	ı	15.9 16.2 16.5	16.8 17.1 17.4		3		
19.2 19.6 20.0		31.2 21.6 22.0	22.4 22.8 23.2		4		
24.0 24.5 25.0		26.5 27.0 27.5	28.0 28.5 29.0		5		
28.8 29.4 30.0		31.8 32.4 33.0	33.6 34.2 34.8		6		
33.6 34.3 35.0		37.1 37.8 38.5	39.2 39.9 40.6		7		
38.4 39.2 40.0		12.4 43.2 44.0	44.8 45.6 46.4		8		
10/2 12/1 15/0 15/0 10/0 1/1/ 10/0 15/0 05/2 05/0 05/2 05/0 05/0							
70		75		80			
6.8 6.9 7.0	7.1 7.2	7.3 7.4 7.5	7.6 7.7 7.8	7.9 8.0	1		
13.6 13.8 14.0		14.6 14.8 15.0	15.2 15.4 15.6		2		
20.4 20.7 21.0		21.9 22.2 22.5	22.8 23.1 23.4				
27.2 27.6 28.0		39.2 29.6 30.0	30.4 30.8 31.2		4		
34.0 34.5 35.0		36.5 37.0 37.5	38.0 38.5 39.0		5 6		
40.8 41.4 42.0		13.8 44.4 45.0	45.6 46.2 46.8				
47.6 48.3 49.0		51.1 51.8 52.5	53.2 53.9 54.6		7		
54.4 55.2 56.0		8.4 59.2 60.0	60.8 61.6 62.4		8		
61.2 62.1 63.0	83.9 84.8 6	35.7 66.6 67.5	68.4 69.3 70.2	11.1 14.0	-		
90	,	95	T	100			
8.8 8.9 9.0	9.1 9.2	9.3 9.4 9.5	9.6 9.7 9.8		1		
17.6 17.8 18.0		L8.6 18.8 19.0	19.2 19.4 19.6		2		
26.4 26.7 27.0		27.9 28.2 28. 5	28.8 29.1 29.4		3		
35.2 35.6 36.0		37.2 37.6 38.0	38.4 38.8 39.2		4		
44.0 44.5 45.0		46.5 47.0 47. 5	48.0 48.5 49.0		5		
52.8 53.4 54.0		55.8 56.4 57.0	57.6 58.2 58.8		6		
61.6 62.3 63.0				60 9 70 0 L	7		
		85.1 65.8 66. 5	67.2 67.9 68.6	0912 1212 1			
70.4 71.2 72.0 79.2 80.1 81.0	72.8 73.6 7	85.1 85.8 86.5 7 4.4 75.2 7 <i>6.</i> 0 83.7 8 4. 8 <i>85.5</i>	18.8 77.8 78.4	0.08 S.BT 4	18		

. .

This book should be returned to the Library on or before the last date stamped below.

A fine of five cents a day is incurred by retaining it beyond the specified time.

Please return promptly.

