campR – summary tables

Marcus Vollmer 2019-06-06

Contents

nmary tables
Libraries and data
xtable
stargazer
Own summary functions
strtable and stargazer_long
mytable
characteristics_table
Rapport

This is a campR notebook introduces summary tables with 'xtable', 'stargazer', 'rapport' and show how to use own helper functions for group comparisons.

Rapport needs 'Pandoc' which is not available in all R versions. After that run: 'install_github('rapport', 'rapporter')'.

Summary tables

Libraries and data

The following commands imports the libraries of **xtable**, **stargazer** and **rapport**. Further, we import some user defined function from GitHub. The latter package makes the data frame *movies* available a collection of motion pictures with user ratings from the internet movie database (IMDB).

```
library(xtable)
library(stargazer)

##

## Please cite as:

## Hlavac, Marek (2018). stargazer: Well-Formatted Regression and Summary Statistics Tables.

## R package version 5.2.2. https://CRAN.R-project.org/package=stargazer

library(rapport)

# Load user created functions
library(devtools)
repo = "https://raw.githubusercontent.com/MarcusVollmer/R-Helper-Functions/master/"
source_url(paste0(repo, "strtable.R"))

## SHA-1 hash of file is 6309796f32309527278d63789fae2e3cc2229d99
source_url(paste0(repo, "stargazer_long.R"))
```

SHA-1 hash of file is fc2ebd2a87d6da2f803de4c9243eaf5954836225

```
source_url(paste0(repo, "characteristics_table.R"))
## SHA-1 hash of file is 871b5963575aaf03f2b9965d0bd4da15543b531e
source_url(paste0(repo, "mytable.R"))
## SHA-1 hash of file is 4f787c370d850c7771c3dd5762291edd9da27f71
library(ggplot2movies)
```

xtable

Lets have short look what kind of data xtable can process:

methods(xtable)

```
[1] xtable.anova*
                                  xtable.aov*
##
##
    [3] xtable.aovlist*
                                  xtable.coxph*
##
    [5] xtable.data.frame*
                                  xtable.glm*
  [7] xtable.gmsar*
                                  xtable.lagImpact*
##
  [9] xtable.lm*
                                  xtable.matrix*
## [11] xtable.prcomp*
                                  xtable.sarlm*
## [13] xtable.sarlm.pred*
                                  xtable.spautolm*
## [15] xtable.sphet*
                                  xtable.splm*
## [17] xtable.stsls*
                                  xtable.summary.aov*
## [19] xtable.summary.aovlist*
                                  xtable.summary.glm*
## [21] xtable.summary.gmsar*
                                  xtable.summary.lm*
## [23] xtable.summary.prcomp*
                                  xtable.summary.sarlm*
## [25] xtable.summary.spautolm*
                                 xtable.summary.sphet*
## [27]
       xtable.summary.splm*
                                  xtable.summary.stsls*
## [29] xtable.table*
                                  xtable.ts*
## [31] xtable.zoo*
## see '?methods' for accessing help and source code
```

The xtable documentation summarizes the programming syntax and lists available functions.

We will plot the head of the data and will display the summary of a linear model in the default R:markdown fashion.

```
# Lets quickly check the movie data base
(h = head(movies))
```

```
##
                          title year length budget rating votes
                                                                               r3
                                                                           r2
                                                                     r1
## 1
                              $ 1971
                                                                          4.5 4.5
                                         121
                                                  NA
                                                        6.4
                                                               348
                                                                    4.5
## 2
             $1000 a Touchdown 1939
                                          71
                                                  NA
                                                        6.0
                                                                20
                                                                    0.0 14.5 4.5
## 3
       $21 a Day Once a Month 1941
                                           7
                                                        8.2
                                                                    0.0
                                                                          0.0 0.0
                                                  NA
                                                                 5
## 4
                        $40,000 1996
                                          70
                                                  NA
                                                        8.2
                                                                 6 14.5
                                                                          0.0 0.0
## 5 $50,000 Climax Show, The 1975
                                                                   24.5
                                          71
                                                  NA
                                                        3.4
                                                                17
                                                                          4.5 0.0
## 6
                                          91
                                                  NA
                                                        4.3
                                                                45
                                                                    4.5
                                                                          4.5 4.5
                          $pent 2000
##
       r4
             r5
                  r6
                        r7
                             r8
                                  r9
                                       r10 mpaa Action Animation Comedy Drama
      4.5 14.5 24.5 24.5 14.5
                                       4.5
                                 4.5
                                                      0
                                                                 0
                                                                               1
  2 24.5 14.5 14.5 14.5
                            4.5
                                 4.5 14.5
                                                      0
                                                                 0
                                                                               0
                                                                         1
      0.0
           0.0 24.5
                      0.0 44.5 24.5 24.5
                                                      0
                                                                 1
                                                                         0
                                                                               0
     0.0
          0.0 0.0
                      0.0
                            0.0 34.5 45.5
                                                      0
                                                                 0
                                                                         1
                                                                               0
## 5 14.5 14.5 4.5
                                                      0
                                                                 0
                                                                         0
                      0.0
                            0.0 0.0 24.5
                                                                               0
## 6 14.5 14.5 14.5
                      4.5
                           4.5 14.5 14.5
                                                                         0
                                                                               1
     Documentary Romance
                           Short
## 1
                0
                         0
                               0
## 2
                0
                         0
                               0
                0
                         0
                               1
## 3
## 4
                0
                         0
                               0
## 5
                0
                         0
                               0
                0
                         0
                               0
```

```
# Build a generalized linear model to explain the budget
mymodel = lm(budget ~ length + rating + year + genre, movies)
(s = summary(mymodel))
##
## Call:
## lm(formula = budget ~ length + rating + year + genre, data = movies)
##
## Residuals:
                                        3Q
##
         Min
                    1Q
                          Median
                                                 Max
## -63233855 -10859681 -3929875
                                   4962836 157885203
##
## Coefficients:
##
                      Estimate Std. Error t value Pr(>|t|)
## (Intercept)
                    -570902777
                                 37296310 -15.307 < 2e-16 ***
## length
                        258081
                                    16863 15.305 < 2e-16 ***
## rating
                        167936
                                   276357
                                           0.608
                                                     0.543
                        288880
                                           15.454
                                                   < 2e-16 ***
## year
                                    18693
                                  1298609 -11.217 < 2e-16 ***
## genreComedy
                     -14565943
## genreDrama
                     -20369294
                                  1240837 -16.416 < 2e-16 ***
## genreDocumentary -27896161
                                  2454030 -11.367 < 2e-16 ***
                                  3200503 -5.037 5.06e-07 ***
## genreRomance
                     -16120791
                     -11885684
## genreShort
                                  2517163 -4.722 2.46e-06 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 19630000 on 2588 degrees of freedom
     (56191 observations deleted due to missingness)
## Multiple R-squared: 0.2816, Adjusted R-squared: 0.2793
## F-statistic: 126.8 on 8 and 2588 DF, p-value: < 2.2e-16
Next, we will plot the results with xtable as LaTeX and HTML output.
# The basic LaTeX output
xtable(h)
```

% latex table generated in R 3.4.4 by x table 1.8-3 package % Wed Jun 5 17:15:32 2019

	title	year	length	budget	rating	votes	r1	r2	r3	r4	r5	r6
1	\$	1971	121		6.40	348	4.50	4.50	4.50	4.50	14.50	24.50
2	\$1000 a Touchdown	1939	71		6.00	20	0.00	14.50	4.50	24.50	14.50	14.50
3	\$21 a Day Once a Month	1941	7		8.20	5	0.00	0.00	0.00	0.00	0.00	24.50
4	\$40,000	1996	70		8.20	6	14.50	0.00	0.00	0.00	0.00	0.00
5	\$50,000 Climax Show, The	1975	71		3.40	17	24.50	4.50	0.00	14.50	14.50	4.50
6	\$pent	2000	91		4.30	45	4.50	4.50	4.50	14.50	14.50	14.50

xtable(mymodel)

% latex table generated in R 3.4.4 by x table 1.8-3 package % Wed Jun 5 17:15:33 2019

If you need to change some properties use options:

```
# The basic LaTeX output
xtable(h)
```

% latex table generated in R 3.4.4 by xtable 1.8-3 package %

	Estimate	Std. Error	t value	$\Pr(> t)$
(Intercept)	-570902776.9225	37296310.3349	-15.31	0.0000
length	258081.1427	16862.6383	15.30	0.0000
rating	167935.4543	276357.2885	0.61	0.5435
year	288879.5304	18692.7647	15.45	0.0000
genreComedy	-14565942.9648	1298608.8297	-11.22	0.0000
genreDrama	-20369293.4501	1240837.0406	-16.42	0.0000
genreDocumentary	-27896160.7441	2454030.4535	-11.37	0.0000
genreRomance	-16120790.9017	3200502.7152	-5.04	0.0000
genreShort	-11885684.2953	2517162.9568	-4.72	0.0000

title	year	length	budget	rating	votes	r1	r2	r3	r4	15	16	71	r8
\$	1971	121		6.40	348	4.50	4.50	4.50	4.50	14.50	24.50	24.50	14.50
\$1000 a Touchdown	1939	71		6.00	20	0.00	14.50	4.50	24.50	14.50	14.50	14.50	4.50
\$21 a Day Once a Month	1941	7		8.20	5	0.00	0.00	0.00	0.00	0.00	24.50	0.00	44.50
\$40,000	1996	70		8.20	6	14.50	0.00	0.00	0.00	0.00	0.00	0.00	0.00
\$50,000 Climax Show, The	1975	71		3.40	17	24.50	4.50	0.00	14.50	14.50	4.50	0.00	0.00
\$pent	2000	91		4.30	45	4.50	4.50	4.50	14.50	14.50	14.50	4.50	4.50

xtable(mymodel)

% latex table generated in R 3.4.4 by x table 1.8-3 package %

Estimate	Std. Error	t value	$\Pr(> t)$
-570902776.9225	37296310.3349	-15.31	0.0000
258081.1427	16862.6383	15.30	0.0000
167935.4543	276357.2885	0.61	0.5435
288879.5304	18692.7647	15.45	0.0000
-14565942.9648	1298608.8297	-11.22	0.0000
-20369293.4501	1240837.0406	-16.42	0.0000
-27896160.7441	2454030.4535	-11.37	0.0000
-16120790.9017	3200502.7152	-5.04	0.0000
-11885684.2953	2517162.9568	-4.72	0.0000

stargazer

Stargazer produces LaTeX code, HTML/CSS code and ASCII text for well-formatted tables.

```
# The basic LaTeX output
stargazer(h)
```

% Table created by stargazer v.5.2.2 by Marek Hlavac, Harvard University. E-mail: hlavac at fas.harvard.edu % Date and time: Mi, Jun 05, 2019 - 17:15:33

Table 1:

Statistic	N	Mean	St. Dev.	Min	Pctl(25)	Pctl(75)	Max
year	6	1,970.333	26.090	1,939	1,948.5	1,990.8	2,000
length	6	71.833	37.397	7	70.2	86	121
rating	6	6.083	1.972	3.400	4.725	7.750	8.200
votes	6	73.500	135.252	5	8.8	38.8	348
r1	6	8.000	9.664	0.000	1.125	12.000	24.500
r2	6	4.667	5.298	0.000	1.125	4.500	14.500
r3	6	2.250	2.465	0.000	0.000	4.500	4.500
r4	6	9.667	9.801	0.000	1.125	14.500	24.500
r5	6	9.667	7.488	0.000	3.625	14.500	14.500
r6	6	13.750	10.069	0.000	7.000	22.000	24.500
r7	6	7.250	10.153	0.000	0.000	12.000	24.500
r8	6	11.333	17.090	0.000	1.125	12.000	44.500
r9	6	13.750	13.468	0.000	4.500	22.000	34.500
r10	6	21.333	14.006	4.500	14.500	24.500	45.500
Action	6	0.000	0.000	0	0	0	0
Animation	6	0.167	0.408	0	0	0	1
Comedy	6	0.500	0.548	0	0	1	1
Drama	6	0.333	0.516	0	0	0.8	1
Documentary	6	0.000	0.000	0	0	0	0
Romance	6	0.000	0.000	0	0	0	0
Short	6	0.167	0.408	0	0	0	1

stargazer(mymodel)

% Table created by stargazer v.5.2.2 by Marek Hlavac, Harvard University. E-mail: hlavac at fas.harvard.edu

% Date and time: Mi, Jun 05, 2019 - 17:15:37

```
#
stargazer(h, summary = FALSE)
```

% Table created by stargazer v.5.2.2 by Marek Hlavac, Harvard University. E-mail: hlavac at fas.harvard.edu

% Date and time: Mi, Jun 05, 2019 - 17:15:37

Lets have short look at the supported objects:

```
`?`(`stargazer models`)
```

Stargazer in action to display results of linear models:

```
# Lets model the budget of movies with and without the interaction of movie
# length and genre
m1 = lm(budget ~ length + genre + rating + year, movies)
m2 = lm(budget ~ length * genre + rating + year, movies)
```

Table 2:

	Dependent variable:
	budget
length	258,081.100***
	(16,862.640)
rating	167,935.500
	(276, 357.300)
year	288,879.500***
	(18,692.760)
genreComedy	-14,565,943.000***
· ·	(1,298,609.000)
genreDrama	-20,369,293.000***
	(1,240,837.000)
genreDocumentary	-27,896,161.000***
· ·	(2,454,030.000)
genreRomance	-16,120,791.000***
	(3,200,503.000)
genreShort	-11,885,684.000***
	(2,517,163.000)
Constant	-570,902,777.000***
	(37,296,310.000)
Observations	2,597
\mathbb{R}^2	0.282
Adjusted R ²	0.279
Residual Std. Error F Statistic	19,625,079.000 (df = 2588) $126.782^{***} (df = 8; 2588)$
Note:	<u> </u>
IVOLE.	*p<0.1; **p<0.05; ***p<0.0

Table 3:

	title	year	length	budget	rating	votes	r1	r2	r3	r4
1	\$	1,971	121		6.400	348	4.500	4.500	4.500	4.500
2	\$1000 a Touchdown	1,939	71		6	20	0	14.500	4.500	24.500
3	\$21 a Day Once a Month	1,941	7		8.200	5	0	0	0	0
4	\$40,000	1,996	70		8.200	6	14.500	0	0	0
5	\$50,000 Climax Show, The	1,975	71		3.400	17	24.500	4.500	0	14.500
6	\$pent	2,000	91		4.300	45	4.500	4.500	4.500	14.500

```
# Stargazer has a nice combined representation of multiple models
stargazer(m1, m2, title = "Regression results")
```

% Table created by stargazer v.5.2.2 by Marek Hlavac, Harvard University. E-mail: hlavac at fas.harvard.edu % Date and time: Mi, Jun 05, 2019 - 17:15:37

```
# You have various properties you can change according to your need
stargazer(m1, m2, title = "Regression results", single.row = TRUE, ci = TRUE,
ci.level = 0.95, decimal.mark = ".", digits = 0)
```

% Table created by stargazer v.5.2.2 by Marek Hlavac, Harvard University. E-mail: hlavac at fas.harvard.edu % Date and time: Mi, Jun 05, 2019 - 17:15:37

Or you can use the html output:

Table 4: Regression results

	Dependen	t variable:
	buc	lget
	(1)	(2)
length	258,081.100***	710,893.200***
	(16,862.640)	(45,936.600)
genreComedy	$-14,565,943.000^{***}$	38,161,577.000***
	(1,298,609.000)	(7,052,174.000)
genreDrama	-20,369,293.000***	32,697,800.000***
	(1,240,837.000)	(5,437,043.000)
genreDocumentary	-27,896,161.000***	41,149,598.000***
	(2,454,030.000)	(8,454,675.000)
genreRomance	-16,120,791.000***	53,521,988.000***
	(3,200,503.000)	(13,686,829.000)
genreShort	-11,885,684.000***	41,595,682.000***
	(2,517,163.000)	(5,766,692.000)
rating	167,935.500	$-121,\!085.800$
	(276,357.300)	(272,222.000)
year	288,879.500***	293,678.600***
	(18,692.760)	(18,314.040)
length:genreComedy		-500,094.700***
		(69,912.850)
length:genreDrama		-493,844.000***
		(49,261.050)
length:genreDocumentary		$-695,\!810.900^{***}$
		(89,157.600)
length:genreRomance		-667,970.200***
		(135,037.900)
length:genreShort		-718,418.100***
		(131,061.600)
Constant	-570,902,777.000***	-627,081,945.000***
	(37,296,310.000)	(36,977,034.000)
Observations	2,597	2,597
\mathbb{R}^2	0.282	0.314
Adjusted R^2	0.279	0.310
Residual Std. Error	19,625,079.000 (df = 2588)	19,196,315.000 (df = 2583)
F Statistic	$126.782^{***} (df = 8; 2588)$	$90.921^{***} (df = 13; 2583)$
Note:		*p<0.1; **p<0.05; ***p<0.01

Table 5: Regression results

	$Dependent\ variable:$					
	bud	lget				
	(1)	(2)				
length	$258,081^{***}$ (225,031, 291,131)	710.893^{***} (620,859, 800,927)				
genreComedy	-14,565,943***(-17,111,170, -12,020,716)	$38,161,577^{***}$ (24,339,569, 51,983,585)				
genreDrama	-20,369,293***(-22,801,289,-17,937,298)	32,697,800***(22,041,391,43,354,209)				
genreDocumentary	$-27,896,161^{***}$ $(-32,705,972, -23,086,349)$	41,149,598*** (24,578,740, 57,720,456)				
genreRomance	$-16,120,791^{***}$ $(-22,393,661, -9,847,921)$	53,521,988*** (26,696,296, 80,347,680)				
genreShort	-11,885,684***(-16,819,233, -6,952,136)	41,595,682***(30,293,173,52,898,192)				
rating	$167,935 \ (-373,715,\ 709,586)$	$-121,086 \ (-654,631,\ 412,460)$				
year	$288,880^{***}$ (252,242, 325,517)	293,679*** (257,784, 329,573)				
length:genreComedy		$-500,095^{***}$ (-637,121, -363,068)				
length:genreDrama		$-493,844^{***}$ $(-590,394, -397,294)$				
length:genreDocumentary		$-695,811^{***}$ $(-870,557, -521,065)$				
length:genreRomance		$-667,970^{***}$ $(-932,640, -403,301)$				
length:genreShort		$-718,418^{***}$ $(-975,294, -461,542)$				
Constant	$-570,902,777^{***} \; (-644,002,202, -497,803,352)$	$-627,081,945^{***}$ (-699,555,600, -554,608,2				
Observations	2,597	2,597				
\mathbb{R}^2	0	0				
Adjusted R^2	0	0				
Residual Std. Error	19,625,079 (df = 2588)	19,196,315 (df = 2583)				
F Statistic	$127^{***} (df = 8; 2588)$	$91^{***} (df = 13; 2583)$				

*p<0.1; **p<0.05; ***p<0

Own summary functions

https://github.com/MarcusVollmer/R-Helper-Functions can be sourced directly from GitHub to fasten and to standardize the analysis and to allow reproducability.

Currently there are four useful functions provided:

- 1. strtable.R a modified str implementation for data frames (originally published by Jason Bryer)
- 2. stargazer_long.R a modification of stargazer to display long tables, to allow rotations and LaTeX column specifications
- $3. \, \text{mytable.R} a \, \text{cross-table}$ for factor variables to display counts or summary statistics of a continuous variable with univariable statistical testing
- 4. characteristics table.R creates stratified tables of data along with univariable statistical testing

strtable and stargazer long

variable	NAS.	888	\$ Park
title	0	character	
year	0	integer	m=1976.13, $sd=23.74$, $q=[1893.00, 1958.00, 1983.00, 1997.00, 2005.00]$
length	0	integer	m=82.34, $sd=44.35$, $q=[1.00, 74.00, 90.00, 100.00, 5220.00]$
budget	53,573	integer	m=13412513.25, $sd=23350084.93$, $q=[0.00, 250000.00]$
			3000000.00, 15000000.00, 200000000.00]
rating	0	numeric	m=5.93, $sd=1.55$, $q=[1.00, 5.00, 6.10, 7.00, 10.00]$
votes	0	integer	m=632.13, $sd=3829.62$, $q=[5.00, 11.00, 30.00, 112.00,$
			157608.00]
r1	0	numeric	m=7.01, sd=10.94, q=[0.00, 0.00, 4.50, 4.50, 100.00]
r2	0	numeric	m=4.02, sd=5.96, q=[0.00, 0.00, 4.50, 4.50, 84.50]
r3	0	numeric	m=4.72, $sd=6.45$, $q=[0.00, 0.00, 4.50, 4.50, 84.50]$
r4	0	numeric	m=6.37, $sd=7.59$, $q=[0.00, 0.00, 4.50, 4.50, 100.00]$
r5	0	numeric	m=9.80, sd=9.73, q=[0.00, 4.50, 4.50, 14.50, 100.00]
r6	0	numeric	m=13.04, $sd=10.98$, $q=[0.00, 4.50, 14.50, 14.50, 84.50]$
r7	0	numeric	m=15.55, $sd=11.59$, $q=[0.00, 4.50, 14.50, 24.50, 100.00]$
r8	0	numeric	m=13.88, $sd=11.32$, $q=[0.00, 4.50, 14.50, 24.50, 100.00]$
r9	0	numeric	m=8.95, $sd=9.44$, $q=[0.00, 4.50, 4.50, 14.50, 100.00]$
r10	0	numeric	m=16.85, $sd=15.65$, $q=[0.00, 4.50, 14.50, 24.50, 100.00]$
mpaa	0	character	

Action	0	logical	"FALSE" (54100), "TRUE" (4688)
Animation	0	logical	"FALSE" (55098), "TRUE" (3690)
Comedy	0	logical	"FALSE" (41517), "TRUE" (17271)
Drama	0	logical	"FALSE" (36977), "TRUE" (21811)
Documentary	0	logical	"FALSE" (55316), "TRUE" (3472)
Romance	0	logical	"FALSE" (54044), "TRUE" (4744)
Short	0	logical	"FALSE" (49330), "TRUE" (9458)
genre	27,488	Factor w/ 6 levels	"Action" (2075), "Comedy" (8350), "Drama" (14270),
			"Documentary" (2392), "Romance" (546), "Short" (3667)

mytable

Cross table for count data with confidence intervals

Printing a cross table with p value and percentages (rows sums up to 100%).

```
library(PropCIs)
mytable(movies$Animation, movies$Action, ci = FALSE, prec = "%.2f", latex = TRUE)
```

SHA-1 hash of file is fc2ebd2a87d6da2f803de4c9243eaf5954836225

	FALSE	TRUE
FALSE	50494 (91.64)	4604 (8.36)
TRUE	3606 (97.72)	84 (2.28)

Overall: Fisher's exact test: p-Value=2.04e-52

Printing the same table with 95% exact Clopper-Pearson confidence intervals (PropCIs package required) and less digits with % sign, a fixed column width and floating point p-value style:

```
mytable(movies$Animation, movies$Action, ci = 0.95, prec = "%.1f", prec_p = "%.4f",
    latex = "rp{4cm}p{4cm}", pct_sign = "%")
```

SHA-1 hash of file is fc2ebd2a87d6da2f803de4c9243eaf5954836225

	FALSE	TRUE	95 CI
FALSE	50494 (91.6%)	4604 (8.4%)	8.1 to 8.6
TRUE	3606 (97.7%)	84 (2.3%)	1.8 to 2.8

Overall: Fisher's exact test: p-Value=0.0000

Cross table for a continuous variable with statistical testing

For group-wise testing of a continuous variable pass a third variable to mytable, e.g. comparing the movie rating in relation to the genres:

```
mytable(movies$Animation, movies$Action, movies$budget, latex = TRUE)
```

SHA-1 hash of file is fc2ebd2a87d6da2f803de4c9243eaf5954836225

	FALSE	TRUE	p
FALSE	2000000.0 (200000.0,11000000.0)	16000000.0 (2500000.0,500000000.0)	1.59e-84

```
TRUE 18000000.0 (1750000.0,600000000.0) 14500000.0 (3000000.0,77500000.0) 8.17e-01
```

Line by line: med (q_{25},q_{75}) , Wilcoxon rank sum test Overall: Kruskal-Wallis rank sum test: p-Value=2.11e-89

```
# Change the precision of the numbers and the p-value by adding the
# properties and setting the scientific format with digits:
mytable(movies$Animation, movies$Action, movies$budget, prec = "%.2e", prec_p = "%.2e",
    latex = TRUE)
```

SHA-1 hash of file is fc2ebd2a87d6da2f803de4c9243eaf5954836225

	FALSE	TRUE	
FALSE	2.00e+06 (2.00e+05,1.10e+07)	1.60e+07 (2.50e+06,5.00e+07)	1.59e-84
TRUE	1.80e+07 (1.75e+06,6.00e+07)	1.45e+07 (3.00e+06,7.75e+07)	8.17e-01

Line by line: med (q_{25},q_{75}) , Wilcoxon rank sum test Overall: Kruskal-Wallis rank sum test: p-Value=2.11e-89

```
mytable(movies$Action, movies$length < 60, movies$budget, prec = "%.2e", prec_p = "%.2e",
    latex = TRUE)</pre>
```

SHA-1 hash of file is fc2ebd2a87d6da2f803de4c9243eaf5954836225

	FALSE	TRUE	p
FALSE	3.00e+06 (5.00e+05,1.40e+07)	1.00e+04 (3.81e+03,3.05e+04) 5.00e+03 (2.45e+03,2.50e+04)	1.04e-219
TRUE	1.80e+07 (3.43e+06,5.20e+07)		2.13e-18

Line by line: med (q_{25},q_{75}) , Wilcoxon rank sum test Overall: Kruskal-Wallis rank sum test: p-Value=3.46e-299

$characteristics_table$

This is a helpful function to compute and display a characteristics table of the study population with separate columns for each cohort, e.g. treatment vs. control. In our example data set we stratify the movie database by Documentary which is a binary variable, indicating whether the movie is a documentary or not. characteristics_table.R will do the job of printing characteristics separated by a binary or factorial response (genre). P-values are the results of statistical testing comparing both groups: T test and Wilcoxon ranksum test for continuous variables with mean and SD or median and quartiles respectively. Statistical testing with categorical data is conducted by Fishers exact test or Chi-Squared-Test (categorical with more than 3 levels). Missing values (NA's) was omitted for this analysis. Precision of numerials can be set individually for continuous values and p values. Default is one digit after decimal place prec="%.1f", prec_continuous="%.0f" and four digits for p values prec_p="%.4f".

```
# For LaTeX output as a longtable use the following command. The compiling
# of the LaTeX script to a PDF needs the inclusion of the **longtable** in
# the header.
characteristics_table(-2, "Documentary", movies[, -1], "col", prec = "%.1f",
    prec_continuous = "%.1f", latex = "p{1.5cm}p{2cm}rrrr", tablefootnote = FALSE)
```

SHA-1 hash of file is fc2ebd2a87d6da2f803de4c9243eaf5954836225

Comedy 8350 (28.9) 0 (0.0) Drama 14270 (49.4) 0 (0.0) Drama 14270 (49.4) 0 (0.0) Romance 346 (1.9) 0 (0.0) Short 3667 (12.7) 0 (0.0) year Median 1982.0 (1957.0,1997.0) 1995.0 (1976.0,2001.0) 0.0000 (Quartiles) year Mean (SD) 1975.6 (23.7) 1985.3 (22.3) 0.0000 (Quartiles) Hength Mean (SD) 83.1 (44.3) 70.4 (43.5) 0.0000 (Quartiles) Hodian 3000000.0 (300000.0,16000000.0) 150000.0 (25000.0,600000.0) 0.0000 (Quartiles) Hodian 6.0 (5.0,6.9) 6.9 (5.8,7.7) 0.0000 (Quartiles) Hodian 31.0 (12.0,120.0) 16.0 (80.39.0) 0.0000 (Quartiles) Votes Mean (SD) 665.4 (3938.6) 102.6 (935.8) 0.0000 (Quartiles) r1 Median 4.5 (0.0,4.5) 0.0 (0.0,4.5) 0.0000 (Quartiles) r2 Mean (SD) 7.1 (10.9) 6.0 (10.9) 0.0000 (Quartiles) r3 Mean (SD) 7.1 (10.9) 6.0 (10.9) 0.0000 (Quartiles) r4 Mean (SD) 4.1 (6.0) 2.6 (5.5) 0.0000 (Quartiles) r5 Mean (SD) 4.8 (6.4) 3.0 (6.5) 0.0000 (Quartiles) r4 Mean (SD) 4.8 (6.4) 3.0 (6.5) 0.0000 (Quartiles) r5 Mean (SD) 6.5 (7.6) 3.9 (6.8) 0.0000 (Quartiles) r6 Median 4.5 (0.0,4.5) 0.0 (0.0,4.5) 0.0000 (Quartiles) r7 Median 4.5 (0.0,4.5) 0.0 (0.0,4.5) 0.0000 (Quartiles) r8 Mean (SD) 4.8 (6.4) 3.0 (6.5) 0.0000 (Quartiles) r9 Mean (SD) 4.1 (6.0) 2.6 (5.5) 0.0000 (Quartiles) r6 Median 4.5 (0.0,4.5) 4.5 (0.0,4.5) 0.0000 (Quartiles) r6 Median 4.5 (0.0,4.5) 4.5 (0.0,4.5) 0.0000 (Quartiles) r7 Median 4.5 (0.0,4.5) 0.0 (0.0,4.5) 0.0000 (Quartiles) r8 Mean (SD) 4.8 (6.4) 3.0 (6.5) 0.0000 (Quartiles) r9 Mean (SD) 4.8 (6.4) 3.0 (6.5) 0.0000 (Quartiles) r6 Median 4.5 (0.0,4.5) 4.5 (0.0,4.5) 0.0000 (Quartiles) r7 Median 4.5 (0.0,4.5) 4.5 (0.0,4.5) 0.0000 (Quartiles) r8 Mean (SD) 6.5 (7.6) 3.9 (6.8) 0.0000 (Quartiles) r9 Mean (SD) 6.5 (7.6) 3.9 (6.8) 0.0000 (Quartiles) r6 Median 4.5 (4.5,4.5,4.5) 4.5 (0.0,4.5) 0.0000 (Quartiles)	Variable	Level	FALSE	TRUE	Р	NAs
Animation True 3647 (6.6)	Action	True	4672 (8.4)	16 (0.5)	0.0000	0
False		False	50644 (91.6)	3456 (99.5)		
Comedy True 17140 (31.0) 131 (3.8) 0.0000 False 38176 (69.0) 3341 (96.2) 1.0000 False 33632 (60.8) 3345 (96.3) 1.00.3 Romance True 4734 (8.6) 1.0 (0.3) 0.0000 False 50582 (91.4) 3462 (99.7) 3.0000 Short True 8591 (15.5) 867 (25.0) 0.0000 False 46725 (84.5) 2605 (75.0) 0.0000 274 Genre Action 2075 (7.2) 0 (0.0) 0.0000 274 Comedy 3350 (28.9) 0 (0.0) 0.000 274 Comedy 3363 (28.9) 0 (0.0) 0.000 292 (100.0) 100.0 0.000 274 Comedy 3365 (28.9) 0 (0.0) 2392 (100.0) 100.0 0.000 274 0 (0.0) 0.000 274 0 (0.0) 0.000 274 0 (0.0) 0.000 0.000 0.000 0.000 274 0.000 0.000 0.000 0.000 0.	Animation	True	3647 (6.6)	43 (1.2)	0.0000	0
False		False	51669 (93.4)			
Drama	Comedy	True		131 (3.8)	0.0000	0
False 33632 60.8) 3345 (96.3) Romance True		False	38176 (69.0)	3341 (96.2)		
Romance	Drama	True	21684 (39.2)	127(3.7)	0.0000	0
False		False	33632 (60.8)	3345 (96.3)		
Short True S591 (15.5) S67 (25.0) 0.0000 False 46725 (84.5) 2605 (75.0) 0.0000 False 46725 (84.5) 2605 (75.0) 0.0000 274 2605 (75.0) 0.0000 274 2605 (75.0) 0.0000 274 2605 (75.0) 0.0000 274 275 (7.2) 0.00.0 0.0000 274 275 (7.2) 0.00.0 0.0000 274 275 (7.2) 0.00.0 0.0000 274 275 (7.2) 0.00.0 0.0000 274 275 (7.2) 0.00.0 0.0000 275 (10.0) 0.0000 275 (10.0) 0.0000 275 (10.0) 0.0000 275 (10.0) 0.0000 275 (10.0) 275 (10.0) 0.0000 275 (10.0) 275	Romance	True	$4734 \ (8.6)$	$10 \ (0.3)$	0.0000	0
genre		False	50582 (91.4)	3462 (99.7)		
genre Action 2075 (7.2) 0 (0.0) 0.0000 274 Comedy 8350 (28.9) 0 (0.0) Drama 14270 (49.4) 0 (0.0) Romance 546 (1.9) 0 (0.0) Short 3667 (12.7) 0 (0.0) (Quartiles) year Median 1982.0 (1957.0,1997.0) 1995.0 (1976.0,2001.0) 0.0000 (Quartiles) telength Median 90.0 (75.0,101.0) 76.0 (45.0,91.0) 0.0000 (Quartiles) length Mean (SD) 83.1 (44.3) 70.4 (43.5) 0.0000 (Quartiles) to Median 300000.0 (300000.0,16000000.0) 150000.0 (25000.0,600000.0) 0.0000 (Quartiles) length Mean (SD) 13724631.4 (23552882.6) 908125.2 (1999650.9) 0.0000 535 rating Median 6.0 (5.0,6.9) 6.9 (5.8,7.7) 0.0000 (Quartiles) rating Mean (SD) 5.9 (1.5) 6.7 (1.6) 0.0000 (Quartiles) votes Median 31.0 (12.0,120.0) 16.0 (8.0,39.0) 0.0000 (Quartiles) rating Median 4.5 (0.0,4.5) 0.0 (0.0,4.5) 0.0000 (Quartiles) r1 Mean (SD) 7.1 (10.9) 6.0 (10.9) 0.0000 r2 Median 4.5 (0.0,4.5) 0.0 (0.0,4.5) 0.0000 r2 Median 4.5 (0.0,4.5) 0.0 (0.0,4.5) 0.0000 r3 Median 4.5 (0.0,4.5) 0.0 (0.0,4.5) 0.0000 r4 Median 4.5 (0.0,4.5) 0.0 (0.0,4.5) 0.0000 r5 Median 4.5 (0.0,4.5) 0.0 (0.0,4.5) 0.0000 r6 Median 4.5 (0.0,4.5) 0.0 (0.0,4.5) 0.0000 r6 Median 4.5 (0.0,4.5) 0.0 (0.0,4.5) 0.0000 r6 Median 4.5 (0.0,4.5) 0.0 (0.0,4.5) 0.0000 r7 Median 4.5 (0.0,4.5) 0.0 (0.0,4.5) 0.0000 r6 Median 4.5 (0.0,4.5) 0.0 (0.0,4.5) 0.0000 r7 Median 4.5 (0.0,4.5) 0.0 (0.0,4.5) 0.0000 r6 Median 4.5 (0.0,4.5) 0.0 (0.0,4.5) 0.0000 r7 Median 4.5 (0.0,4.5) 0.0 (0.0,4.5) 0.0000 r6 Median 4.5 (0.0,4.5) 0.0 (0.0,4.5) 0.0000	Short	True	8591 (15.5)	867 (25.0)	0.0000	0
Comedy R350 (28.9) 0 (0.0) Drama 14270 (49.4) 0 (0.0) Documentary 0 (0.0) 2392 (100.0) Romance 546 (1.9) 0 (0.0) Short 3667 (12.7) 0 (0.0) Year Median 1982.0 (1957.0,1997.0) 1995.0 (1976.0,2001.0) 0.0000 (Quartiles) Year Mean (SD) 1975.6 (23.7) 1985.3 (22.3) 0.0000 (Quartiles) Hength Mean (SD) 83.1 (44.3) 70.4 (43.5) 0.0000 (Quartiles) Hodian 3000000.0 (300000.0,16000000.0) 150000.0 (250000.0,600000.0) 0.0000 (Quartiles) Hodian 6.0 (5.0,6.9) 6.9 (5.8,7.7) 0.0000 (Quartiles) Hodian 31.0 (12.0,120.0) 16.0 (80.39.0) 0.0000 (Quartiles) Yotes Mean (SD) 665.4 (3938.6) 102.6 (935.8) 0.0000 (Quartiles) The Median 4.5 (0.0,4.5) 0.0 (0.0,4.5) 0.0000 (Quartiles) The Mean (SD) 7.1 (10.9) 6.0 (10.9) 0.0000 (Quartiles) The Mean (SD) 7.1 (10.9) 6.0 (10.9) 0.0000 (Quartiles) The Mean (SD) 4.1 (6.0) 2.6 (5.5) 0.0000 (Quartiles) The Mean (SD) 4.1 (6.0) 2.6 (5.5) 0.0000 (Quartiles) The Mean (SD) 4.1 (6.0) 2.6 (5.5) 0.0000 (Quartiles) The Mean (SD) 4.1 (6.0) 2.6 (5.5) 0.0000 (Quartiles) The Mean (SD) 4.1 (6.0) 2.6 (5.5) 0.0000 (Quartiles) The Mean (SD) 4.1 (6.0) 3.9 (6.5) 0.0000 (Quartiles) The Mean (SD) 4.1 (6.0) 3.9 (6.5) 0.0000 (Quartiles) The Mean (SD) 4.1 (6.0) 3.9 (6.5) 0.0000 (Quartiles) The Mean (SD) 4.5 (0.0,4.5) 0.0 (0.0,4.5) 0.0000 (Quartiles) The Mean (SD) 4.5 (0.0,4.5) 0.0 (0.0,4.5) 0.0000 (Quartiles) The Mean (SD) 4.5 (0.0,4.5) 0.0 (0.0,4.5) 0.0000 (Quartiles) The Mean (SD) 4.5 (0.0,4.5) 0.0 (0.0,4.5) 0.0000 (Quartiles) The Mean (SD) 4.5 (0.0,4.5) 0.0 (0.0,4.5) 0.0000 (Quartiles) The Mean (SD) 4.5 (0.0,4.5) 0.0 (0.0,4.5) 0.0000 (Quartiles) The Mean (SD) 4.5 (0.0,4.5) 0.0 (0.0,4.5) 0.0000 (Quartiles) The Mean (SD) 6.5 (7.6) 6.7 (9.6) 0.0000 (Quartiles) The Mean (SD) 6.5 (7.6) 6.7 (9.6) 0.0000 (Quartiles) The Mean (SD) 6.5 (7.6) 6.7 (9.6) 0.0000 (Quartiles)		False	46725 (84.5)	2605 (75.0)		
Drama 14270 (49.4) 0 (0.0) 2392 (100.0) Romance 546 (1.9) 0 (0.0) Short 3667 (12.7) 0 (0.0) Short Median 1982.0 (1957.0,1997.0) 1995.0 (1976.0,2001.0) 0.0000 (Quartiles) Separation Mean (SD) 1975.6 (23.7) 1985.3 (22.3) 0.0000 (Quartiles) Separation Median 90.0 (75.0,101.0) 76.0 (45.0,91.0) 0.0000 (Quartiles) Separating Median 3000000.0 (300000.0,16000000.0) 150000.0 (25000.0,600000.0) 0.0000 535 (Quartiles) Separating Median (SD) 13724631.4 (23552882.6) 908125.2 (1999650.9) 0.0000 535 (Quartiles) Separating Median (6.0 (5.0,6.9) 6.9 (5.8,7.7) 0.0000 (Quartiles) Separating Median 31.0 (12.0,120.0) 16.0 (8.0,39.0) 0.0000 (Quartiles) Separating Median 31.0 (12.0,120.0) 16.0 (8.0,39.0) 0.0000 (Quartiles) Separating Mean (SD) 665.4 (3938.6) 102.6 (935.8) 0.0000 (Quartiles) Separation Median 4.5 (0.0,4.5) 0.0 (0.0,4.5) 0.0000 (Quartiles) Separa	genre	Action	2075(7.2)	0(0.0)	0.0000	27488
Documentary O (0.0) 2392 (100.0) Romance S46 (1.9) O (0.0) Short Soft (1.27) O (0.0) O (0.000 O (0.0000 O		Comedy	8350 (28.9)	0 (0.0)		
Romance S46 (1.9) 0 (0.0) Short 3667 (12.7) 0 (0.0) Wear Median 1982.0 (1957.0,1997.0) 1995.0 (1976.0,2001.0) 0.0000 (Quartiles) Wear Mean (SD) 1975.6 (23.7) 1985.3 (22.3) 0.0000 Rength Median 90.0 (75.0,101.0) 76.0 (45.0,91.0) 0.0000 Rength Mean (SD) 83.1 (44.3) 70.4 (43.5) 0.0000 Rength Mean (SD) 83.1 (44.3) 70.4 (43.5) 0.0000 Rength Mean (SD) 83.1 (44.3) 70.4 (43.5) 0.0000 Rength Mean (SD) 13724631.4 (23552882.6) 908125.2 (1999650.9) 0.0000 535 Reting Median 6.0 (5.0,6.9) 6.9 (5.8,7.7) 0.0000 Reting Mean (SD) 5.9 (1.5) 6.7 (1.6) 0.0000 Reting Mean (SD) 5.9 (1.5) 6.7 (1.6) 0.0000 Reting Mean (SD) 665.4 (3938.6) 102.6 (935.8) 0.0000 Reting Mean (SD) 7.1 (10.9) 6.0 (10.9) 0.0000 Reting Mean (SD) 7.1 (10.9) 6.0 (10.9) 0.0000 Reting Mean (SD) 7.1 (10.9) 6.0 (10.9) 0.0000 Reting Mean (SD) 7.1 (10.9) 7.1 (1		Drama	14270 (49.4)	0 (0.0)		
Short 3667 (12.7) 0 (0.0)		Documentary	0(0.0)	2392 (100.0)		
Short 3667 (12.7) 0 (0.0)			546 (1.9)	,		
year Median (Quartiles) (Quartiles) 1982.0 (1957.0,1997.0) 1995.0 (1976.0,2001.0) 0.0000 (Quartiles) year Mean (SD) 1975.6 (23.7) 1985.3 (22.3) 0.0000 (Double (25.0) length Median 90.0 (75.0,101.0) 76.0 (45.0,91.0) 0.0000 (Double (25.0) budget Mean (SD) 83.1 (44.3) 70.4 (43.5) 0.0000 (Double (25.0) budget Median 3000000.0 (300000.0,16000000.0) 150000.0 (25000.0,600000.0) 0.0000 (Double (25.0) budget Mean (SD) 13724631.4 (23552882.6) 908125.2 (1999650.9) 0.0000 (25.0) budget Mean (SD) 13724631.4 (23552882.6) 908125.2 (1999650.9) 0.0000 (25.0) rating Mean (SD) 5.9 (1.5) 6.7 (1.6) 0.0000 (25.0) rating Mean (SD) 5.9 (1.5) 6.7 (1.6) 0.0000 (25.0) votes Mean (SD) 665.4 (3938.6) 102.6 (935.8) 0.0000 (0.0,4.5) votes Mean (SD) 7.1 (10.9) 6.0 (10.9) 0.0000 (0.0,4.5) r1 Mean (SD) 7.1 (10.9) 6.0 (10.9) 0.0000 (0		Short		` ,		
year (Quartiles) Medin (SD) 1975.6 (23.7) 1985.3 (22.3) 0.0000 (0000) length Median Median 90.0 (75.0,101.0) 76.0 (45.0,91.0) 0.0000 (0000) length Mean (SD) 83.1 (44.3) 70.4 (43.5) 0.0000 (0000) budget Median 3000000.0 (300000.0,16000000.0) 150000.0 (25000.0,600000.0) 0.0000 (0000000.0) budget Mean (SD) 13724631.4 (23552882.6) 908125.2 (1999650.9) 0.0000 (00000000000.0) rating Median (SD) 13724631.4 (23552882.6) 908125.2 (1999650.9) 0.0000 (0000000000000000000000000000000	vear				0.0000	0
year Mean (SD) 1975.6 (23.7) 1985.3 (22.3) 0.0000 length Median 90.0 (75.0,101.0) 76.0 (45.0,91.0) 0.0000 (Quartiles) length Mean (SD) 83.1 (44.3) 70.4 (43.5) 0.0000 budget Median 3000000.0 (300000.0,16000000.0) 150000.0 (25000.0,600000.0) 0.0000 budget Mean (SD) 13724631.4 (23552882.6) 908125.2 (1999650.9) 0.0000 rating Median 6.0 (5.0,6.9) 6.9 (5.8,7.7) 0.0000 (Quartiles) Mean (SD) 5.9 (1.5) 6.7 (1.6) 0.0000 votes Mean (SD) 5.9 (1.5) 6.7 (1.6) 0.0000 votes Mean (SD) 665.4 (3938.6) 102.6 (935.8) 0.0000 votes Mean (SD) 665.4 (3938.6) 102.6 (935.8) 0.0000 r1 Median 4.5 (0.0,4.5) 0.0 (0.0,4.5) 0.0000 r2 Median 4.5 (0.0,4.5) 0.0 (0.0,4.5) 0.0000 r2 Mean (SD) 4.8 (6.4) 3.0 (6.5) 0.0000	•		, , ,	, , ,		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	vear	\ -	1975.6 (23.7)	1985.3 (22.3)	0.0000	0
(Quartiles) (Quartiles) (Mean (SD) (S3.1 (44.3) (70.4 (43.5) (0.0000 (0.0000 (0.0000.0 (0.0000.0 (0.0000.0 (0.0000.0 (0.0000.0 (0.0000.0 (0.0000.0 (0.0000.0 (0.0000.0 (0.0000.0 (0.0000.0 (0.0000.0 (0.0000 (0.0000.0 (0.0000	•		,			0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	O		, , ,	, , ,		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	length	\ -	83.1 (44.3)	70.4 (43.5)	0.0000	0
Quartiles budget Mean (SD) 13724631.4 (23552882.6) 908125.2 (1999650.9) 0.0000 535	-					53573
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			(00000000)		0.0000	
rating Median $(0.00, 0.00)$ $(0.00$	budget	\ -	13724631.4 (23552882.6)	908125.2 (1999650.9)	0.0000	53573
$\begin{array}{c} (\text{Quartiles}) \\ \text{rating} & \text{Mean (SD)} \\ \text{votes} & \text{Median} \\ (\text{Quartiles}) \\ \text{votes} & \text{Median} \\ (\text{Quartiles}) \\ \text{votes} & \text{Mean (SD)} \\ \text{otes} & \text{Median} \\ (\text{Quartiles}) \\ \text{r1} & \text{Median} \\ (\text{Quartiles}) \\ \text{r2} & \text{Median} \\ (\text{Quartiles}) \\ \text{r2} & \text{Mean (SD)} \\ \text{r3} & \text{Median} \\ (\text{Quartiles}) \\ \text{r3} & \text{Median} \\ (\text{Quartiles}) \\ \text{r3} & \text{Median} \\ (\text{Quartiles}) \\ \text{r3} & \text{Mean (SD)} \\ \text{r4} & \text{Median} \\ (\text{SD)} & 4.8 (6.4) \\ \text{Median} \\ (\text{Quartiles}) \\ \text{r4} & \text{Median} \\ (\text{Quartiles}) \\ \text{r5} & \text{Mean (SD)} \\ \text{r6} & \text{Median} \\ (\text{Quartiles}) \\ \text{r7} & \text{Mean (SD)} \\ \text{r8} & \text{Mean (SD)} \\ \text{r9} & Mean $	_		(` '		0
rating Mean (SD) $5.9 (1.5)$ $6.7 (1.6)$ 0.0000 votes Median $31.0 (12.0,120.0)$ $16.0 (8.0,39.0)$ 0.0000 (Quartiles) votes Mean (SD) $665.4 (3938.6)$ $102.6 (935.8)$ 0.0000 r1 Median $4.5 (0.0,4.5)$ $0.0 (0.0,4.5)$ 0.0000 (Quartiles) r1 Mean (SD) $7.1 (10.9)$ $6.0 (10.9)$ 0.0000 r2 Median $4.5 (0.0,4.5)$ $0.0 (0.0,4.5)$ 0.0000 (Quartiles) r2 Mean (SD) $4.1 (6.0)$ $2.6 (5.5)$ 0.0000 r3 Median $4.5 (0.0,4.5)$ $0.0 (0.0,4.5)$ 0.0000 r3 Median $4.5 (0.0,4.5)$ $0.0 (0.0,4.5)$ 0.0000 (Quartiles) r3 Mean (SD) $4.8 (6.4)$ $3.0 (6.5)$ 0.0000 r4 Median $4.5 (0.0,14.5)$ $0.0 (0.0,4.5)$ 0.0000 r4 Median $4.5 (0.0,14.5)$ $0.0 (0.0,4.5)$ 0.0000 r5 Median $4.5 (4.5,14.5)$ $4.5 (0.0,14.5)$ 0.0000 r5 Median $4.5 (4.5,14.5)$ $4.5 (0.0,14.5)$ 0.0000 r6 Median $4.5 (4.5,14.5)$ $4.5 (0.0,14.5)$ 0.0000 r6 Median $4.5 (4.5,14.5)$ $4.5 (0.0,14.5)$ 0.0000 r6 Median $4.5 (4.5,14.5)$ $4.5 (0.0,14.5)$ 0.0000			(0.0,0.0)	(0.0,)	0.0000	· ·
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	rating	\ -	5.9 (1.5)	6.7 (1.6)	0.0000	0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	_					0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$.000		0110 (1210,12010)	10.0 (0.0,00.0)	0.0000	v
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	votes	(•	665 4 (3938 6)	102 6 (935 8)	0.0000	0
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$						0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	11		1.0 (0.0, 1.0)	0.0 (0.0,1.9)	0.0000	O
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	r1	\ -	7 1 (10 9)	6.0 (10.9)	0.0000	0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$						0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	12		4.0 (0.0,4.0)	0.0 (0.0,4.9)	0.0000	U
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	r?	\ -	41(60)	26 (55)	0.0000	0
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			` '			0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	10		4.0 (0.0,4.0)	0.0 (0.0,4.5)	0.0000	U
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	rQ	\ •	18(61)	30 (65)	0.0000	0
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			` '			$0 \\ 0$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	14		$4.0 \ (0.0,14.0)$	$0.0 \ (0.0, 4.5)$	0.0000	U
r5 Median (Quartiles) r5 Mean (SD) 10.0 (9.7) 6.7 (9.6) 0.0000 r6 Median 14.5 (4.5,14.5) 4.5 (0.0,14.5) 0.0000 (Quartiles)	m 4		65 (76)	20 (69)	0.0000	0
(Quartiles) r5 Mean (SD) 10.0 (9.7) 6.7 (9.6) 0.0000 r6 Median 14.5 (4.5,14.5) 4.5 (0.0,14.5) 0.0000 (Quartiles)			` ,			0
r5 Mean (SD) 10.0 (9.7) 6.7 (9.6) 0.0000 r6 Median 14.5 (4.5,14.5) 4.5 (0.0,14.5) 0.0000 (Quartiles)	61		$4.5\ (4.5,14.5)$	$4.0 \ (0.0,14.5)$	0.0000	0
r6 Median $14.5 (4.5,14.5)$ $4.5 (0.0,14.5)$ 0.0000 (Quartiles)	۲		10.0 (0.7)	C 7 (0 C)	0.0000	0
(Quartiles)			` '			0
	ro		$14.5 \ (4.5,14.5)$	$4.5 \ (0.0,14.5)$	0.0000	0
	e.		19.0 (10.0)	10 1 (11 0)	0.0000	_
r6 Mean (SD) $13.2 (10.9)$ $10.1 (11.3)$ 0.0000	ro	Mean (SD)	$13.2\ (10.9)$	$10.1 \ (11.3)$	0.0000	0

r7	Median	$14.5 \ (4.5, 24.5)$	$14.5 \ (4.5,24.5)$	0.0000	0
	(Quartiles)	•	,		
r7	Mean (SD)	15.6 (11.5)	14.5 (12.4)	0.0000	0
r8	Median	14.5 (4.5,24.5)	$14.5 \ (4.5, 24.5)$	0.0000	0
	(Quartiles)				
r8	Mean (SD)	13.7 (11.2)	16.5 (12.9)	0.0000	0
r9	Median	4.5 (4.5,14.5)	$14.5 \ (4.5,14.5)$	0.0000	0
	(Quartiles)				
r9	Mean (SD)	8.7 (9.2)	12.7 (12.4)	0.0000	0
r10	Median	$14.5 \ (4.5, 24.5)$	24.5 (14.5,34.5)	0.0000	0
	(Quartiles)				
r10	Mean (SD)	$16.4\ (15.3)$	24.7 (19.0)	0.0000	0

It also works for categorical variables with more than two levels, such as genre, which has six levels specified in movies with a single/unique genre assignment. Statistical testing will change to Chi-Squared-Testing, Kruskal-Wallis rank sum test and One-way analysis of variance (ANOVA). Footnotes will tell you the statistical test behind the p values.

```
# You may change the footnote labeling as follows:
characteristics_table(-2, "genre", movies[, -c(1, 7:16)], "col", prec = "%.1f",
    prec_continuous = "%.1f", prec_p = "%.3f", tablefootnote = TRUE, latex = "p{1.2cm}p{1.5cm}p{1.4cm}p
    fn = c("'", "_", "''", "_", "'''", "_"))
```

SHA-1 hash of file is fc2ebd2a87d6da2f803de4c9243eaf5954836225

Variable	Level	Action	Comedy	Drama	Documen	taryRomance	Short	Р	NAs
Action	True	2075 (100.0)	0 (0.0)	0 (0.0)	0 (0.0)	0 (0.0)	0 (0.0)	0.000'	27488
	False	0 (0.0)	8350	14270	2392	546	3667		
		, ,	(100.0)	(100.0)	(100.0)	(100.0)	(100.0)		
Animation	True	35 (1.7)	113 (1.4)	35 (0.2)	8 (0.3)	9 (1.6)	943 (25.7)	0.000'	27488
	False	2040	8237	14235	2384	537	2724		
		(98.3)	(98.6)	(99.8)	(99.7)	(98.4)	(74.3)		
Comedy	True	0 (0.0)	8350 (100.0)	0 (0.0)	0 (0.0)	0 (0.0)	0 (0.0)	0.000'	27488
	False	2075	0(0.0)	14270	2392	546	3667		
		(100.0)		(100.0)	(100.0)	(100.0)	(100.0)		
Drama	True	0 (0.0)	0 (0.0)	14270 (100.0)	0 (0.0)	0 (0.0)	0 (0.0)	0.000'	27488
	False	2075	8350	0(0.0)	2392	546	3667		
		(100.0)	(100.0)		(100.0)	(100.0)	(100.0)		
Documents	af¶rue	0 (0.0)	0 (0.0)	0 (0.0)	2392 (100.0)	0 (0.0)	0 (0.0)	0.000'	27488
	False	2075	8350	14270	0(0.0)	546	3667		
		(100.0)	(100.0)	(100.0)		(100.0)	(100.0)		
Romance	True	0 (0.0)	0 (0.0)	0 (0.0)	0 (0.0)	546 (100.0)	0 (0.0)	0.000'	27488
	False	2075	8350	14270	2392	0 (0.0)	3667		
		(100.0)	(100.0)	(100.0)	(100.0)	. ,	(100.0)		
Short	True	0 (0.0)	0 (0.0)	0 (0.0)	0 (0.0)	0 (0.0)	3667 (100.0)	0.000'	27488

	False	2075	8350	14270	2392	546	0(0.0)		
		(100.0)	(100.0)	(100.0)	(100.0)	(100.0)	, ,		
year	Median	1990.0	1979.0	1979.5	1997.0	1978.0	1995.0	0.000"	0
	(Quar-	(1979.0, 1997)	7.01)959.0,1994	.(1)957.0,1996	5.01)985.0,2002	2.01951.0,1996	5.01)966.0,2001	.0)	
	tiles)								
year	Mean	1985.2	1974.8	1975.3	1991.4	1972.4	1980.6	0.000"	0
	(SD)	(16.9)	(21.8)	(22.7)	(14.7)	(24.6)	(27.1)		
length	Median	94.0	91.0	96.0	85.0	95.0	11.0	0.000"	0
	(Quar-	(88.0, 102.0)	(84.0,99.0)	(88.0, 108.0)	(70.0,95.0)	(85.0, 106.0)	(7.0,20.0)		
	tiles)								
length	Mean	100.0	91.4	99.0	87.2	99.1	14.1	0.000"	0
	(SD)	(28.6)	(14.1)	(23.0)	(38.1)	(24.5)	(9.7)		
budget	Median	20000000.0	4000000.0	3000000.0	155000.0	1853132.5	9000.0	0.000"	53573
	(Quar-	(4050000.0,5)	50(666000000),17	7(500000.0 .)),12	2Q (5000000) ,550	0(28.93 75.5,60	Q 3000.0),2800	(0.0)	
	tiles)								
budget	Mean	33088683.5	13657908.8	10589139.0	728864.7	6698891.1	391038.9	0.000"	53573
	(SD)	(36845498.0)	(21083219.4)	(17949423.6)	(1871151.4)	(11852982.5)	(3459856.0)		
rating	Median	4.7	5.7	6.3	7.0	6.2	6.5	0.000"	0
	(Quar-	(3.7,6.0)	(4.7,6.6)	(5.4, 7.1)	(6.0, 7.8)	(5.3, 7.1)	(5.4, 7.5)		
	tiles)								
rating	Mean	4.9(1.6)	5.6 (1.5)	6.2(1.4)	6.8(1.6)	$6.1\ (1.4)$	6.4(1.7)	0.000"	0
	(SD)								
votes	Median	65.0	40.0	39.0	18.0	34.5	10.0	0.000"	0
	(Quar-	(20.0, 282.5)	(14.0, 166.0)	(14.0, 148.0)	(9.0,45.0)	(12.0,113.0)	(7.0,19.0)		
	tiles)								
votes	Mean	2152.9	630.2	689.5	106.1	357.0	23.4	0.000"	0
	(SD)	(9591.6)	(2868.1)	(4311.2)	(796.0)	(1551.6)	(82.9)		

^{&#}x27;Chi-squared test

Variable	Lovel	Action	Come de	Drama Brana	Documentary.	Romanos	No.	Q.	N_{A_S}
Action	True	2075 (100.0)	0 (0.0)	0 (0.0)	0 (0.0)	0 (0.0)	0 (0.0)	0.000	27488
	False	0 (0.0)	8350 (100.0)	14270 (100.0)	2392 (100.0)	546 (100.0)	3667 (100.0)		
Animation	True	35 (1.7)	113 (1.4)	35 (0.2)	8 (0.3)	9 (1.6)	943 (25.7)	0.000	27488

[&]quot; Kruskal-Wallis rank sum test

[&]quot;' One-way analysis of variance (ANOVA)

	False	2040	8237	14235	2384	537	2724		
G 1	T.	(98.3)	(98.6)	(99.8)	(99.7)	(98.4)	(74.3)	0.000	07400
Comedy	True	$0\ (0.0)$	8350 (100.0)	0 (0.0)	0 (0.0)	0 (0.0)	0 (0.0)	0.000	27488
	False	2075	0 (0.0)	14270	2392	546	3667		
		(100.0)	0 (0.0)	(100.0)	(100.0)	(100.0)	(100.0)		
Drama	True	0 (0.0)	0(0.0)	14270	0 (0.0)	0 (0.0)	0 (0.0)	0.000	27488
Diama	1140	0 (0.0)	0 (0.0)	(100.0)	0 (0.0)	0 (0.0)	0 (0.0)	0.000	2, 100
	False	2075	8350	0 (0.0)	2392	546	3667		
		(100.0)	(100.0)	,	(100.0)	(100.0)	(100.0)		
Document	af y rue	0(0.0)	0(0.0)	0(0.0)	2392	0 (0.0)	0(0.0)	0.000	27488
					(100.0)				
	False	2075	8350	14270	0(0.0)	546	3667		
		(100.0)	(100.0)	(100.0)		(100.0)	(100.0)		
Romance	True	0(0.0)	0(0.0)	0(0.0)	0(0.0)	546	0(0.0)	0.000	27488
						(100.0)			
	False	2075	8350	14270	2392	0(0.0)	3667		
		(100.0)	(100.0)	(100.0)	(100.0)		(100.0)		
Short	True	0(0.0)	0(0.0)	0(0.0)	0(0.0)	0(0.0)	3667	0.000	27488
							(100.0)		
	False	2075	8350	14270	2392	546	0 (0.0)		
		(100.0)	(100.0)	(100.0)	(100.0)	(100.0)			
year	Median	1990.0	1979.0	1979.5	1997.0	1978.0	1995.0	0.000	0
	(Quartiles)	(1979.0,1997	7.(0))959.0,1994	1.(0))957.0,1996	5. (1) 985.0,2002	2.(1)951.0,1996	5.01)966.0,2001	.0)	
year	Mean	1985.2	1974.8	1975.3	1991.4	1972.4	1980.6	0.000	0
	(SD)	(16.9)	(21.8)	(22.7)	(14.7)	(24.6)	(27.1)		
length	Median	94.0	91.0	96.0	85.0	95.0	11.0	0.000	0
	(Quartiles)	(88.0,102.0)	(84.0,99.0)	(88.0,108.0)	(70.0,95.0)	(85.0,106.0)	(7.0,20.0)		
length	Mean	100.0	91.4	99.0	87.2	99.1	14.1	0.000	0
	(SD)	(28.6)	(14.1)	(23.0)	(38.1)	(24.5)	(9.7)		
budget	Median	20.0	4.0	3.0	0.2	1.9	0.0	0.000	53573
	(Quartiles)	(4.0,50.0)	(0.7,17.0)	(0.5,12.0)	(0.1,0.6)	(0.3,6.0)	(0.0,0.0)		
budget	Mean	33.1	13.7	10.6	0.7(1.9)	6.7	0.4(3.5)	0.000	53573
	(SD)	(36.8)	(21.1)	(17.9)	` ,	(11.9)	` '		
rating	Median	4.7	5.7	6.3	7.0	6.2	6.5	0.000	0
	(Quar-	(3.7,6.0)	(4.7,6.6)	(5.4,7.1)	(6.0,7.8)	(5.3,7.1)	(5.4, 7.5)		
	tiles)								
rating	Mean (SD)	4.9(1.6)	5.6 (1.5)	6.2(1.4)	6.8 (1.6)	$6.1\ (1.4)$	6.4(1.7)	0.000	0
votes	Median	65.0	40.0	39.0	18.0	34.5	10.0	0.000	0
. = = ==	(Quar-			(14.0, 148.0)		(12.0,113.0)		3.000	V
	tiles)	(==:=;===:=)	(,)	(,)	(2.0, -0.0)	(==:0,==0:0)	(3.0,-0.0)		
votes	Mean	2152.9	630.2	689.5	106.1	357.0	23.4	0.000	0

Rapport

http://rapport-package.info/ is an R package that facilitates creation of reproducible statistical report templates. Once created, rapport templates can be exported to various external formats: HTML, LaTeX, PDF, ODT, DOCX etc.

Let's have short look at the available templates:

```
rapport.ls()
```

```
##
    [1] "AnalyzeWizard.rapport"
    [2] "ANOVA.rapport"
##
   [3] "BartlettsTest.rapport"
##
##
   [4] "BrownForsythTest.rapport"
##
   [5] "Correlation.rapport"
##
   [6] "Crosstable.rapport"
   [7] "Descriptives.rapport"
##
   [8] "Example.rapport"
##
   [9] "FactorAnalysis.rapport"
##
## [10] "FTest.rapport"
## [11] "GenerateBeta.rapport"
## [12] "GLM.rapport"
## [13] "HierarchicalClusterAnalysis.rapport"
## [14] "HomogeneityCrosstable.rapport"
## [15] "KMeansCluster.rapport"
## [16] "KolmogorovSmirnovTest.rapport"
  [17] "KruskalWallisTest.rapport"
##
  [18] "LinearRegression.rapport"
## [19] "MDS.rapport"
## [20] "Minimal.rapport"
## [21] "NormalityTest.rapport"
## [22] "OutlierTest.rapport"
## [23] "PCA.rapport"
## [24] "TTestOneSample.rapport"
## [25] "TTestTwoSample.rapport"
## [26] "WilcoxonTest.rapport"
```

Lets try to rebuild the Wilcoxon test results and compare with mytable results:

```
# rapport('WilcoxonTest.tpl', data=movies, ...)

# mytable(movies$Animation, movies$Action, movies$budget, prec='%.2e',
# prec_p='%.2e', latex=TRUE)
```

... to be continued