

ข้นตอนการทำงาน

01 การเตรียมข้อมูล

02 การคลีนข้อมูล

03 การนำข้อมูลเข้าสู่ตัวโครงงาน

04 หาความสัมพันธ์ระหว่างปัจจัยต่างๆด้วย Pearson's

Similarity

05 ประมวลผลข้อมูลเพื่อเตรียมนำเข้าสู่ตัวโมเดล

06 แบ่งข้อมูลเป็นชุดทดลองและชุดทดสอบ

07 นำข้อมูลชุดทดลองเข้าสู่โมเดล Logistic Regression

08 นำข้อมูลชุดทดสอบเข้าสู่โมเดล Logistic Regression

09 นำผลลัพธ์ที่ได้จากโมเดลมาทำ Confusion Matrix

10 สร้าง GUI ให้ user ตอบแบบสอบถาม

การเตรียมข้อมูล

• Import libraries ที่ใช้ใน project และ import dataset

```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
from sklearn.preprocessing import LabelEncoder

plt.style.use('fivethirtyeight')
colors=['#011f4b','#03396c','#005b96','#6497b1','#b3cde0']
sns.set_palette(sns.color_palette(colors))

## Loading Dataset
df = pd.read_csv('survey_lung_cancer.csv')
print(df.head)
```

 Output ที่ได้เป็นข้อมูลภายในไฟล์ survey_lung_cancer.csv (309 rows x 16 columns)

<box< td=""><td>d metho</td><td>od NDI</td><td>Frame.head of</td><td>GENDER A</td><td>GE SMOKING</td><td>YELLOW_FINGERS</td><td>ANXIETY</td><td>PEER</td><td>PRESSURE</td><td>CHRONIC</td><td>DISEASE .</td><td> k</td><td>WHEEZING</td><td>ALCOHOL CONSUMIN</td><td>G COUGHING</td><td>SHORTNESS O</td><td>F BREATH</td><td>SWALLOWING</td><td>DIFFICULTY</td></box<>	d metho	od NDI	Frame.head of	GENDER A	GE SMOKING	YELLOW_FINGERS	ANXIETY	PEER	PRESSURE	CHRONIC	DISEASE .	k	WHEEZING	ALCOHOL CONSUMIN	G COUGHING	SHORTNESS O	F BREATH	SWALLOWING	DIFFICULTY
CHE	ST PAIN	N LUI	NG_CANCER																
1	М	74	2	1	1	1		2		L		1	1		2		2	2	YES
2	F	59	1	1	1	2		1		2		1	2		2		1	2	NO
3	М	63	2	2	2	1		1		1		2	1		1		2	2	NO
4	F	63	1	2	1	1		1	3	2		1	2		2		1	1	NO
304	F	56	1	1	1	2		2		1		2	2		2		2	1	YES
305	М	70	2	1	1	1		1		2		2	2		2		1	2	YES
306	М	58	2	1	1	1		1		2		2	2		1		1	2	YES
307	М	67	2	1	2	1		1		L		2	2		2		1	2	YES
308	М	62	1	1	1	2		1		2		2	1		1		2	1	YES
[309	rows x	16 c	olumns]>																

• หาสถิติของข้อมูลแต่ละรูปแบบ

Analysis numeriacal columns
print(df.describe())

Output:

	AGE	SMOKING	YELLOW_FINGERS	ANXIETY	PEER_PRESSURE	CHRONIC DISEASE	WHEEZING	ALCOHOL CONSUMING	COUGHING	SHORTNESS OF BREATH	SWALLOWING DIFFICULTY	CHEST PAIN
count	309.000000	309.000000	309.000000	309.000000	309.000000	309.000000	309.000000	309.000000	309.000000	309.000000	309.000000	309.000000
mean	62.673139	1.563107	1.569579	1.498382	1.501618	1.504854	1.556634	1.556634	1.579288	1.640777	1.469256	1.556634
std	8.210301	0.496806	0.495938	0.500808	0.500808	0.500787	0.497588	0.497588	0.494474	0.480551	0.499863	0.497588
min	21.000000	1.000000	1.000000	1.000000	1.000000	1.000000	1.000000	1.000000	1.000000	1.000000	1.000000	1.000000
25%	57.000000	1.000000	1.000000	1.000000	1.000000	1.000000	1.000000	1.000000	1.000000	1.000000	1.000000	1.000000
50%	62.000000	2.000000	2.000000	1.000000	2.000000	2.000000	2.000000	2.000000	2.000000	2.000000	1.000000	2.000000
75%	69.000000	2.000000	2.000000	2.000000	2.000000	2.000000	2.000000	2.000000	2.000000	2.000000	2.000000	2.000000
max	87.000000	2.000000	2.000000	2.000000	2.000000	2.000000	2.000000	2.000000	2.000000	2.000000	2.000000	2.000000

[8 rows x 14 columns]

• สามารถทำออกมาเป็นตารางได้ดังนี้

	AGE	SMOKING	YELLOW FINGERS	ANXIETY	PEER PRESSURE	CHRONIC DISEASE	FATIGUE
count	309.000000	309.000000	309.000000	309.000000	309.000000	309.000000	309.000000
mean	62.673139	1.563107	1.569579	1.498382	1.501618	1.504854	1.673139
std	8.210301	0.496806	0.495938	0.500808	0.500808	0.500787	0.469827
min	21.000000	1.000000	1.000000	1.000000	1.000000	1.000000	1.000000
25%	57.000000	1.000000	1.000000	1.000000	1.000000	1.000000	1.000000
50%	62.000000	2.000000	2.000000	1.000000	2.000000	2.000000	2.000000
75%	69.000000	2.000000	2.000000	2.000000	2.000000	2.000000	2.000000
max	87.000000	2.000000	2.000000	2.000000	2.000000	2.000000	2.000000

	ALLERGY	WHEEZING	ALCOHOL CONSUMING	COUGHING	SHORTNESS OF BREATH	SWALLOWING DIFFICULTY	CHEST PAIN
count	309.000000	309.000000	309.000000	309.000000	309.000000	309.000000	309.000000
mean	1.556634	1.556634	1.556634	1.579288	1.640777	1.469256	1.556634
std	0.497588	0.497588	0.497588	0.494474	0.480551	0.499863	0.497588
min	1.000000	1.000000	1.000000	1.000000	1.000000	1.000000	1.000000
25%	1.000000	1.000000	1.000000	1.000000	1.000000	1.000000	1.000000
50%	2.000000	2.000000	2.000000	2.000000	2.000000	1.000000	2.000000
75%	2.000000	2.000000	2.000000	2.000000	2.000000	2.000000	2.000000
max	2.000000	2.000000	2.000000	2.000000	2.000000	2.000000	2.000000

• เช็คข้อมูลที่ซ้ำกัน

```
# Check for duplicates in the dataset
print('Duplicated:',df.duplicated().sum())
```

OUT:

Duplicated: 33

• ลบข้อมูลที่ซ้ำกัน

```
## Drop duplicates value
df.drop_duplicates(inplace=True)
print(df.shape)
```

OUT:

(276, 16)

(Before)

(309, 16)

• เช็คช่องข้อมูลที่เป็นช่องว่าง

```
# Check for null values
print(df.isnull().sum())
```

OUT:

ไม่มีข้อมูลที่เป็นช่องว่าง

```
GENDER 0
AGE 0
SMOKING 0
YELLOW_FINGERS 0
ANXIETY 0
PEER_PRESSURE 0
CHRONIC DISEASE 0
FATIGUE 0
ALLERGY 0
WHEEZING 0
ALCOHOL CONSUMING 0
COUGHING 0
SHORTNESS OF BREATH 0
SWALLOWING DIFFICULTY 0
CHEST PAIN 0
LUNG_CANCER 0
dtype: int64
```

• ENCODING COLUMNS ที่ไม่เป็นตัวเลข

มีข้อมูลเป็น M/F และ YES/NO ดังนั้นจึงต้องเปลี่ยนข้อมูลเป็น ตัวเลขเพื่อให้ง่ายต่อการคำนวณ

```
## Encoding LUNG_CANCER and GENDER column
encoder = LabelEncoder()
df['LUNG_CANCER']=encoder.fit_transform(df['LUNG_CANCER'])
df['GENDER']=encoder.fit_transform(df['GENDER'])
print(df.head)
```

OUT:

```
## SPANS SECTION | Control | Control
```

การคลีนข้อมูล

การนำข้อมูลเข้าสู่ตัวโครงงาน

หลังจาก Clean ข้อมูลแล้ว จะเหลือข้อมูลอยู่ทั้งหมด 276 ชุดข้อมูล และ อยู่ในรูปเมทริกซ์จำนวน 15 ชุด

หาความสัมพันธ์ระหว่างปัจจัยต่างๆด้วย PEARSON'S SIMILARITY

$$CORR(\mathbf{x}, \mathbf{y}) = \frac{\sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y})}{\sqrt{\sum_{i=1}^{n} (x_i - \bar{x})^2} \sqrt{\sum_{i=1}^{n} (y_i - \bar{y})^2}}$$

	GENDER	AGE	SMOKING	YELLOW_FINGERS	ANXIETY	PEER_PRESSURE	CHRONIC DISEASE	FATIGUE	ALLERGY	WHEEZING
0	1	69	0	1	1	0	0	1	0	1
1	1	74	1	0	0	0	1	1	1	0
2	0	59	0	0	0	1	0	1	0	1
3	1	63	1	1	1	0	0	0	0	0
4	0	63	0	1	0	0	0	0	0	1

WHEEZING	ALCOHOL CONSUMING	COUGHING	SHORTNESS OF BREATH	SWALLOWING DIFFICULTY	CHEST PAIN
1	1	1	1	1	1
0	0	0	1	1	1
1	0	1	1	0	1
0	1	0	0	1	1
1	0	1	1	0	0

แบ่งข้อมูลเป็นชุดทดลองและชุดทดสอบ

X_over,y_over=RandomOverSampler().fit_resample(X,y)

```
IN:
           X_train,X_test,y_train,y_test = train_test_split(X_over,y_over,random_state=42,stratify=y_over)
          print(X_train.head())
OUT:
           print(X_test.head())
OUT:
```

นำข้อมูลชุดทดลองเข้าสู่โมเดล LOGISTIC REGRESSION

IN:

```
# Logistic Regression
param_grid={'C':[0.001,0.01,0.1,1,10,100], 'max_iter':[50,75,100,200,300,400,500,700]}
log=RandomizedSearchCV(LogisticRegression(solver='lbfgs'),param_grid,cv=5)
log.fit(X_train,y_train)
log.score(X_train, y_train)
```

OUT:

0.927170868347339

นำข้อมูลชุดทดสอบเข้าสู่โมเดล LOGISTIC REGRESSION

IN:

y_pred_log = log.predict(X_test)
print(y_pred_log)

OUT:

IN:

log.score(X_test,y_test)

OUT:

0.8907563025210085

นำผลลัพธ์ที่ได้จากโมเดลมาทำ CONFUSION MATRIX

```
#Confusion Matrix
confusion_log=confusion_matrix(y_test,log.predict(X_test))
plt.figure(figsize=(8,8))
sns.heatmap(confusion_log,annot=True)
plt.xlabel("Predicted")
plt.ylabel("Actual")
plt.show()
```


วิธีนำเข้าข้อมูลส่วนสร้างระบบและทดสอบระบบ

```
param_grid={'C':[0.001,0.01,0.1,1,10,100], 'max_iter':[50,75,100,200,300,400,500,700]}
log=RandomizedSearchCV(LogisticRegression(solver='lbfgs'),param_grid,cv=5)
log.fit(X_train,y_train)
y pred log = log.predict(X test)
confusion log=confusion matrix(y test,log.predict(X test))
plt.figure(figsize=(8,8))
sns.heatmap(confusion_log,annot=True)
plt.xlabel("Predicted")
plt.ylabel("Actual")
plt.show()
```

ตัวอย่างข้อมูลทดสอบและผลการทดสอบ

print(X_test.head())

	SWALLOWING DIFFICULTY CHEST PAIN
129 0 61 1 0 0 0 1 1 1 0 0 0 1	0 0
227 0 49 0 1 1 0 0 0 0 0 0 1 0	0 0
133 0 56 1 1 1 0 0 1 1 0 0 1	0 1
100 1 64 1 0 0 0 0 1 1 1 1 1 1	0 1
184 1 55 1 0 0 0 0 1 0 0 0	0 0

print(y_test.values)

ตัวอย่างข้อมูลทดสอบและผลการทดสอบ

Confusion Matrix

	Actually	Actually		
	Positive (1)	Negative (0)		
Predicted	True	False		
Positive (1)	Positives	Positives		
FOSITIVE (1)	(TPs)	(FPs)		
Predicted	False	True		
Negative (0)	Negatives	Negatives		
Negative (0)	(FNs)	(TNs)		

log.score(X_test,y_test)

0.8907563025210085

แนวทางในการพัฒนาต่อ

สามารถใช้หลักการทางคณิตศาสตร์อื่นๆในการทำนายได้ เช่น SUPPORT VECTOR MACHINE หรือ LGBM CLASSIFIER

ซึ่งอาจจะมีค่าความแม่นยำในการทำนายมากกว่าใช้ LOGISTIC REGRESSION

GUI

MODEL ACCURACY: 89 %

MEMBERS

G8 : RAINJERR X แมวอะชอบงับคุณ

บุริศ เสรีวัตตนะ 64010462

ภัทราภรณ์ จันเดชา 64010659

วัทธิกร เจริญกัลป์ 64010801

วิรุฬ สำเภาทอง 64010815

