

# Seguimiento de rutas 3D por un drone con autolocalización visual con balizas





### Manuel Zafra Villar

11 de enero de 2018







### **Contenidos**

- Introducción
- Objetivos
- Infraestructura
- Componente de autolocalización
- Componente de control de posición
- Integración del sistema
- Experimentos
- Conclusiones

©Manuel Zafra Villar







### Introducción







### **Objetivos**

Diseño de un sistema de navegación de para drones en espacios interiores mediante el seguimiento fino de una ruta en 3D. El drone debe conocer su posición en el entorno, para lo que se usará una técnica de visión artificial basada en marcadores.

### Subobjetivos

- Refactorización e integración del componente *Cam\_autoloc*
- Desarrollo de un componente de control de posición
- Validación experimental en entorno simulado

©Manuel Zafra Villar





# Infraestructura (I)

- JdeRobot
  - Pose3D
  - Uav\_viewer
  - Ardrone\_server
  - CameraCalibrator
  - Recorder/Replayer
- Gazebo
- ICE
- Parrot ArDrone2

©Manuel Zafra Villar





# Infraestructura (II)

- AprilTags
- Python
  - NumPy
  - PyQt
  - PyOpenGL
  - PyQtGraph
- OpenCV

©Manuel Zafra Villar





# Diseño global del sistema



©Manuel Zafra Villar





## Componente de autolocalización



©Manuel Zafra Villar





# Componente de control de posición



©Manuel Zafra Villar





# Integración del sistema



©Manuel Zafra Villar





#### Entorno de simulación



©Manuel Zafra Villar





### Control de posición con posición verdadera



©Manuel Zafra Villar





### Control de posición con posición verdadera



©Manuel Zafra Villar





### Componente de autolocalización



©Manuel Zafra Villar





### Componente de autolocalización





©Manuel Zafra Villar





### Sistema completo



©Manuel Zafra Villar





### Sistema completo



©Manuel Zafra Villar





### Componente autolocalización en entorno real



©Manuel Zafra Villar





### Sistema completo en entorno real



©Manuel Zafra Villar





### Sistema completo en entorno real



©Manuel Zafra Villar





### Sistema completo en entorno real





©Manuel Zafra Villar





# Conclusiones (II)

- Desarrollo de componente de navegación
- Refactorización e integración de componente de autolocalización
- Validación esperimental en simulación
- Extra: Experimentos en entorno real





# **Conclusiones (II)**

### **Trabajos Futuros**

- Nuevos tipos de movimiento
- Funcionalidades adicionales
- Sistema propio de estabilización
- Técnicas complementarias de visión artificial

©Manuel Zafra Villar