iiiiiii HEAD iiiiiii HEAD

¿¿¿¿¿¿ eefe2b0 (Begins Orbital Exam 1 crib sheet.) ====== c99cbd9 (Finishes the different types of orbits and their properties.)

«««; HEAD «««; HEAD Marissa Palamara

ASEN 3200 Frang de 200 Sheet De 200 Prophis (Finishes the different types of orbits and their properties.)

Two-Body Problem

Newton's Law: $\Sigma \vec{F} = \frac{d(m\vec{v})}{dt} = m\vec{a}$

Universal Law of Gravitation: $\vec{F}_g = -\frac{Gm_1m_2}{r^2}\frac{\vec{r}}{|\vec{r}|}$

Apply Newton's Laws to a two-body problem with the assumptions:

Only system force: Gravity → acts along the line joining the centers of the bodies.

Mass of each body is constant.

3. Treat each body as a spherically symmetrical point mass with uniform density.

«««; HEAD «««; HEAD

Orbits

Elliptical Orbits:

Orbital Properties: ===== Orbital Properties: »»»; eefe2b0 (Begins Orbital Exam 1 crib sheet.)

Orbits

Elliptical Orbits:

Orbital Properties: "" c99cbd9 (Finishes the different types of orbits and their properties.)

• a = semimajor axis

• b = semiminor axis

• p = semiperimeter

• $r_a/r_p = \text{radii of apoapsis/periapsis}$

• $\vec{e} = \text{eccentricity}$

2a

«««; HEAD «««; HEAD

Useful Equations:

====== Useful Equations: »»»; eefe2b0 (Begins Orbital Exam 1 crib sheet.) ======

Useful Equations:

»»»; c99cbd9 (Finishes the different types of orbits and their properties.) $a = \frac{1}{2}(r_a + r_p)$

$$p = \frac{b^2}{a} = a(1 - e^2) = \frac{\tilde{h}^2}{\mu}$$

$$r_a = \frac{p}{1-e} = a(1+e)$$

$$r_p = \frac{1}{1+e} = a(1-e)$$

$$e = \frac{r_a - r_p}{r_a + r_p} = \frac{c}{a} = \frac{\sqrt{a^2 - b^2}}{a} = \sqrt{1 + \frac{2h^2 \varepsilon}{\mu^2}}$$

$$b = a\sqrt{1 - e^2}$$

Angular Momentum: $\vec{h} = \vec{r} \times \vec{v} = \sqrt{\mu a(1 - e^2)}$

Eccentricity Vector: $\vec{e} = \frac{\vec{v} \times \vec{h}}{\mu} - \frac{\vec{r}}{r}$

Specific Energy: $\varepsilon = \frac{v^2}{2} - \frac{\mu}{r} = \frac{\mu^2(e^2 - 1)}{2h^2}$

• $\varepsilon < 0$ Motion of Body 2 is bounded wrt Body 1 • $\varepsilon \ge 0$ Motion of Body 2 is unbounded wrt Body 1

Conic Equation: $r = \frac{h^2/\mu}{1 + e \cos \theta} = \frac{p}{1 + e \cos \theta}$

«««; HEAD «««; HEAD ======= »»»; c99cbd9 (Finishes the different types of orbits and their properties.)

Vis-Viva Equation: $v = \sqrt{\frac{2\mu}{r} - \frac{\mu}{a}}$

True Anomaly:

• θ or ν

• Measured from periapsis, \vec{e} to radius, \vec{r}

 $\theta = 0$ at periapsis

• $0^{\circ} > \theta > 180^{\circ} \rightarrow m_2$ moving away from periapsis

• $180^{\circ} < \theta < 360^{\circ} m_2$ moving toward periapsis

Flight Path Angle:

• $\tan \gamma = \frac{e \sin \theta}{1 + e \cos \theta} = \frac{v_r}{v_\theta}$

• $v_r = \frac{\mu}{h}e\sin\theta$ and $v_\theta = \frac{\mu}{h}(1 + e\cos\theta)$

• $\gamma > 0$ when $v_r > 0$ and $\theta > 0 \rightarrow m_2$ moving away from periapsis

Perifocal Frame:

• $\vec{r} = r\hat{r} = r\cos\theta\hat{p} + r\sin\theta\hat{q}$

• $\vec{v} = \frac{\mu}{b} \left[-\sin\theta \hat{p} + (e + \cos\theta) \hat{q} \right]$

Kepler's Law: A line joining a planet and the Sun sweep out equal areas during equal intervals of time.

Elliptical Orbits: $\mathbb{P} = 2\pi \sqrt{\frac{a^3}{\mu}}, \, \varepsilon < 0$

Mean Motion: $n = \sqrt{\frac{\mu}{a^3}}$ - mean angular rate of motion Circular Orbits:

• r = a, $\vec{v} \perp \vec{r}$, and $\gamma = 0$ everywhere

•
$$v_c = \sqrt{\frac{\mu}{r}}$$

Parabolic Orbits:

• e = 1, $a = \inf$, $r_a =$ undefined • Conic equation applies still

• $p = \frac{h^2}{h^2}$

• $\varepsilon = 0$ everywhere

•
$$v = \sqrt{\frac{2\mu}{r}} = v_{esc}$$

Hyperbolic Orbits: • $v > v_{esc}, e > 1, \varepsilon > 0, a < 0$

• $r_p = |a|(e-1)$

• $p = |a|(e^2 - 1) = a(1 - e^2)$

• $r = \frac{a(1-e^2)}{1+e\cos\theta} = \frac{|a|(e^2-1)}{1+e\cos\theta}$

• at $r = \infty$, $\varepsilon = \frac{-\mu}{2a} = \frac{v_{\infty}^2}{2} \to v_{\infty} = \sqrt{\frac{\mu}{|a|}}$

 $\begin{array}{ll} \bullet & \theta_{\infty}=\pm\cos^{-1}\left(\frac{-1}{e}\right)\\ \bullet & v^2=v_{esc}^2+v_{\infty}^2\\ \bullet & \text{turning angle: } \frac{\delta}{2}+90^\circ=\theta_{\infty},\, \delta=2\sin^{-1}(\frac{1}{e}) \end{array}$

The Anomalies

«««; HEAD

