Department of Mathematics, Bennett University Engineering Calculus (EMAT101L) **Tutorial Sheet 6**

1. Find radius of convergence of following power series:

(a)
$$\sum_{n=1}^{\infty} \frac{1}{n^n} x^n$$

(a)
$$\sum_{n=1}^{\infty} \frac{1}{n^n} x^n$$
 (b) $\sum_{n=1}^{\infty} \frac{1}{n^n} (x-5)^n$ (c) $\sum_{n=1}^{\infty} 4^n x^n$ (d) $\sum_{n=1}^{\infty} \frac{1}{4^n} x^n$ (e) $\sum_{n=1}^{\infty} \frac{1}{3^n + 1} x^n$ (f) $\sum_{n=1}^{\infty} \frac{1}{n!} (x-3)^n$

(c)
$$\sum_{n=1}^{\infty} 4^n x^n$$

$$(\mathbf{d}) \quad \sum_{n=1}^{\infty} \frac{1}{4^n} x^n$$

(e)
$$\sum_{n=1}^{\infty} \frac{1}{3^n + 1} x^n$$

(f)
$$\sum_{n=1}^{\infty} \frac{1}{n!} (x-3)^n$$

$$(\mathbf{g}) \quad \sum_{n=1}^{\infty} \frac{1}{n^p} x^n$$

(h)
$$\sum_{n=1}^{\infty} \frac{n!}{n^n} (x+3)^n$$

2. Find Taylor series of following functions about given points.

- (a) $\sin(x)$ about $c = \frac{\pi}{4}$
- (b) $x^3 7x + 11$ about c = -1
- (c) $\frac{1}{x}$ about c = 1
- (d) $\frac{x}{x^4+9}$ about c=0