Robocode bot evolválása genetikus programozással

Pető Zoltán

Konzulens: Kovács Dániel László

Tartalom

Az önálló labor munka áttekintése – a feladat	3
A Robocode	3
Evolúciós számítási módszerek	4
Rendszerterv	5
Megvalósítás, felhasznált eszközök	7
Kiértékelés, futási eredmények	8
Összefoglalás	9
Tovább fejlesztési lehetőségek:	9
Melléklet	10

Az önálló labor munka áttekintése – a feladat

Az önálló labor munka kezdetén az "Intelligens ágensek optimalizálása evóluciós számítási módszerekkel" c. témakiírásra kerestünk alkalmas feladatot a konzulensemmel. A választás a Robocode keretrendszer felhasználásával, egy Robocode bot optimalizására – ez esetben evolvására – esett.

A témakiírásban szereplő módon, evolúciós módszerekkel kellett megvalósítottam az optimalizálást. Ehhez egy általam korábbról már részben ismert "Watchmaker" evolúciós frameworköt használtam. Ez megkönnyítette az implementációt, és módom volt megismerni a frameworköt nagyobb mélységeiben. Úgy érzem ez is hozzájárult a szemléletmódom változásához.

A Robocode

A Robocode egy IBM fejlesztésű keretrendszer, ami programozók, fejlesztők, IT szakemberek számára teszi lehetővé, hogy –egy mókásabb formában- összemérjék tudásukat.

A feladat, hogy egy Robocode robot program kódját írják meg, amelyek összemérik erejüket. A Robocode keretrendszer többféle játékmódot is támogat. Közös ezekben, hogy cél ez ellenséges robot(ok) likvidálása és saját a robot(ok) túlélésének biztosítása.

A tankok egy bizonyos kezdeti energiaszinttel rendelkeznek és lőhetnek egymásra. Találat esetén az ellenfél energiaszintje csökken. Lényegében az ellenfél lövéseinek kikerülésével, illetve a saját lövésekkel és megfelelő célzással tud a robot nyerni.

A feladat választásának oka, hogy egy nagyobb komplexitású feladatot szerettem volna megoldani, amelyben szerepel valamelyin formában a tér és az idő – amelyek együtt nehezítik a feladatot. A harc "turn"-ökre, azaz diszkrét időegységekre van osztva.

Léteznek "1 az 1 ellen", 2 a 2 ellen", illetve "mindenki mindenki ellen" (Free for All) játékmódok, illetve ezeknek további variánsai (különböző, a szabályra, játéktérre vonatkozó paraméterezésekkel). Ezek közül én az 1v1-re fókuszáltam. Ennek oka, hogy a választhatóak közül ez volt a legegyszerűbb, de ez is elég komplex ahhoz, hogy érdemi feladat legyen végezhető.

A robotokat egy API-n keresztül tudja a programozó "irányítani". Megadhatóak parancsok: mennyit mennyen előre vagy hátra, mennyit forduljon és milyen irányban a robot teste, a robot lövege, illetve a robot radarja, illetve ha lövünk, milyen erősséggel lőjünk. A robotok képesek érzékelni egymást és bizonyos eventeket, amelyek szükségesek a cél teljesítéséhez.

Feladatom volt, hogy megmutassam, hogyan tekinthetünk a Robocode robotokra mint ágensekre. Ehhez a következő tudásmérnöki feladatokat végeztem: a keretrendszer nyújtotta alapokon megterveztem az "evolúciós robot" avagy "evolúciós ágens" (amelyet Evobotnak nevezek) Érzékeléseit, Tudásbázisát, Döntéshozó mechanizmusát és lehetséges Beavatkozásait.

Evolúciós számítási módszerek

Az evolúciós módszerek a természetes evolúciót próbálják lemásolni. Az egyedek populációt alkotnak, populáció pedig generációról generációra változik. Leegyszerűsítve a "rátermett", avagy "inkább rátermett" egyedek kerülnek az új generációba – fenntartva ezzel egyfajta "fejlődést" a generációk között.

Az evolúciós optimalizálási módszerek globális optimumot meghatározó sztochasztikus keresőeljárások. Az eljárás során egy un. "fitnesst", egyfajta "jóságéi mércét" használ, ezt közelíti meg. A feladat jó megoldásához megfelelő fitnesst kell találni. Ez alapjaiban határozza meg az evolúció konvergenciáját, "gyorsaságát" és a végeredményt is – azaz hogy mennyire lesznek ténylegesen használhatóak az így talált "optimális" megoldások.

Az általam válaszott evolúciós módszer a Genetikus Programozás. Ez tekinthető a Genetikus Algoritmusok egy speciális változatának. Míg a Genetikus Algoritmusok esetében a populáció egyedeit bitfűzérek reprezentálják, addig a Genetikus Programozás esetében az egyedek "program-fák".

Az evolúció lépései evolúciós operátoroknak felelhetőek meg. Ezek az alábbiak: szelekció, mutáció, keresztezés.

A szelekció során az adott generációból kiválasztódnak a következő generáció egyedei – általában a fitnesst értéket valamilyen módon figyelembe véve. A mutáció során

egy egyed (programja, vagy bitfűzére) részben megváltozik. A keresztezés során két ős egyed felhasználásából együttesen keletkezik az utód egyed.

Rendszerterv

Meg kellett terveznem az ágens Érzékeléseit, Tudásbázisát, a Döntéshozás folyamatát, Beavatkozásokat. Bővebb táblázatokat erről a melléklet tartalmaz.

A célom volt, hogy három – a robot irányítását tekintve egymást kiegészítő – program fát evolváljak ki a "programfa" belső csúcsai és a levelei egyaránt evolválódnak. Ezek a következőket határozzák meg: Lövés és erőssége, Fordulás iránya és mértéke, Gyorsítás iránya és mértéke.

Az ágens érzékeléseihez tartozik az ellenfél sebessége, saját sebesség, ellenféltől való távolság, az ellenfél energiászintja, a saját energiaszint. Illetve megpróbáltam komplexebb, de (egy komplexebb tudásbázishoz releváns) érzékeléseket is kitalálni: pl.: "ellenfél iránya a tank törzséhez képest"

A Tudásbázis az Érzékelésekből származó aggregált tudás. Paraméterezhető a visszaemlékezés mélysége. Ilyenek szerepelnek benne például: ellenfél átlagsebessége, saját átlagsebesség, falaktól való távolság (x és y irányban).

A lehetséges Beavatkozások pedig a fent említett három fa – különböző (érvényes) paraméterekkel.

Az alapelv az, hogy egy Evolúciós keretrendszert használok egy Robocode ágens kievolválásához. Ehhez szükség van ezen ágensek kiértékelésére, tehát a fitness értékük meghatározására. Egy Ágenst úgy értékelek ki, hogy szimulációt végzek, az Ágens a környezetébe helyezem. A környezetből az Ágens Érzékeléseket kap, és egy Beavatkozást (Cselekvést) ad vissza a Környezet (Robocode) számára. Az evolúció a korábban leírt módon zajlik.

Egy leállási feltételt teljesítve – az evolúció megáll (pl.: egy egyed elért egy megfelelő fitness értéket) , és a kievolvált "Legjobb Ágenst" megkapom.

A fitness értéket az ellenfél megmaradt energiaszintje jelentette. Ennek oka: egyszerű meghatározni, kellőképp jutalmazzuk így a találatokat és az ellenfél lövedékeinek kikerülését, illetve győzelmet is jól reprezentálja.

A szelekció rulett alapú – tehát a fitness értékek alapján, egy bizonyos eséllyel élnek túl az egyedek. Elitizmus is tervezve volt. Ennek lényege, hogy a generáció "n" darab legrátermettebb elitje változtatás nélkül kerül a következő generációba.

Megvalósítás, felhasznált eszközök

Mivel a Robocode (v 1.9.0.0.) Java alapú keretrendszer, így adta magát, hogy a fejlesztést Java nyelven végezzem. Az általam használt evolúciós framework, a Watchmaker (v.0.7.1) szintén Java alapú.

A fejlesztés során a IntelliJ Idea (13.1.1 Community Edition) IDE-t használtam. Ez a második legelterjedtebb Java ide az Eclipse után, ám az internetes fórumok nyomán fejlesztése ma sokkal jobban halad.

További paraméterek: Windows 8 (64 bit), Intel Core 2 Duo 2.26 Ghz, 4GB RAM.

A szimuláció során az egyes egyedeket reprezentáló programfákat más botok ellen értékeltem ki. Ilyen –kevésbé erős – beépített botok voltak a: "Walls", "Spinbot", "VelociRobor" és a "Fire". Egy versenyző bot ellen is futtattam: ez a "DrussGT" volt, amelynek egy újabb verziója a 2013-mas 1v1 bajnok.

A célzás és a radar használatát nem evolúciós módon programoztam be. A radar használata 1v1 szituációkban egyértelmű – megfelelő működést produkálunk, ha a radarunk végig az ellenfélre néz.

A célzás egy úgynevezett "Head-On targeting" technika amit használtam. Lényege, hogy oda lövünk, ahol az ellenfél épp tartózkodik. Ez egy nagyon egyszerű technika, de ezzel valamelyest biztosítottam, hogy legyenek találatai az evolválódó botnak.

Mivel a keretrendszerben nem volt benne a Genetikus Programozás mutációja és kereszteződése általánosan, így egy ezeket én implementáltam.

Kiértékelés, futási eredmények

A futások során az emlékezés mélységét nem változtattam, ez mindenhol 100 "turn" volt. A beépített botok ellen nagyon könnyen győzedelmeskedik a robot, ami betudható annak, hogy "Head-On" targeting mechanizmus megfelelő ellenük, nem mozognak jól.

A következő táblázatban a DrussGT elleni kiértékelés eredményei találhatók.

pm	Max mélység	Belső Node esély	Körök száma/Meccs	Populáció méret	Elitek	Generáció	Futási idő (min)	Normált fitness
0.1	4	0.75	10	20	10	25	25	51.9
0.2	6	0.82	10	20	10	31	22	68.7
0.3	3	0.65	10	10	3	26	21	73.6
0.2	6	0.65	10	20	5	28	22	12.4 !
0.2	10	0.85	5	20	5	80	20	64.2

Látható, hogy Druss GT ellen nagyon kis esély van győzedelmeskedni (hiszen a versenyrobotok ellen a "Head-On" mechanizmus nem eredményes, hiszen szinte mindenképp kitérnek a pontosan feléjük lőtt lövedékek elől) – a fitness többnyire 50 fölött van az egyes populációkban.

Látható azonban hogy van fejlődés. A jóval 100 alatti fitnnesek azt jelentik, hogy egészen jó mozgáskultúra fejlődött ki a DrussGT ellen.

Érdekesség található az utolsó előtti sorban: kifejlődött –majd elterjedt- egy olyan robot, ami meglehetősen sokszor képes nyerni a DrussGT ellen , kihasználva annak egy hibáját.

A stratégia egy része, hogy a robot nem lő (hiszen versenyrobotok ellen ez a célzás úgyis csak az ő energiaszintjén rontana), és nagyon lassú forgással a falnak ütközik, és végig a fal felé mozog. Ennek hatására a DrussGT valamiért összezavarodik, és a lövéseinek nagy részét nem az így játszó robot irányába adja le – így gyorsabban csökken az energiaszintje a DrussGT-nek. Érdekes, hogy az evolúció ilyen "kiskapukat" is képes feltárni.

Sajnos nem végeztem elég futtatást, ahhoz hogy kialakuljon valami komolyabb trend – nehezen tudom őket értékelni. Inkább csak emiprikus úton vettem észre az alábbakait.

Fontos megemlítenem, hogy úgy vettem észre, hogy a futtatások során előny ha "nagyobb teret" adok az evolúciónak. Nagyobb mutálási valószínűség, ám kisebb fáknál. Ugyancsak felesleges sok szimulációt végezni a kis fitnessű egyedekkel. Így – bár nagyobb szórással –de mégis hamarabb kaptam valami látható eredményt. Hosszú távon persze ez lehet, hogy épp megfordul – akár erre is lehetne egy optimalizálást végezni: mikor meddig érdemes kiértékelni egy-egy egyedet.

Összefoglalás

A félévi munkám során megterveztem egy Robocode botok GP-alapú evolúciós optimalizációját biztosító rendszert. Implementáltam a rendszert a Watchmaker framework felhasználásával. Valamelyest teszteltem az így elkészített rendszert.

Tovább fejlesztési lehetőségek:

- A célzás irányát optimalizáló fa (4.) implementálása.
- Ellenfélmodellezés.
- Több Robocode versenyszámban való részvétel.
- Öntanulás megvalósítása.
- Valamint amit a legfontosabbnak érzek: még több tesztelés. A jövőben szeretném kibővíteni a rendszert egy jól megtervezett tesztkörnyezettel, hogy átláthatóak legyenek az eredmények, és ezeket megfelelőképp tudjam magyarázni.
 - o Szeretném vizualizálni az adataimat többféleképp is.

Melléklet

Eventek - OnHit

A melléklet tartalmazza az önálló labor során tervezett specifikációt.

A kiemelések jelentése a következő:

- zöld: a végleges implementációba biztosan be kell kerülnie
- piros: valamilyen okból elvetettem
- rózsaszín: a végleges implementációba biztosan nem fog bekerülni (idő hiányában)

Érzékelések / Sensing

Érzékelések	Rövidítés	Értékkészlet	Komment
(/turn)		(mértékegység)	 egy adott turn-ön belül ezeket érzékeli az ágens
			sok minden ScannedRobotEventből (SRE) kérhető le
Ellenfél sebessége	V _{ELLEN}	[0,8] (px/ turn)	SRE: getVelocity
Saját sebesség	V _{SAJÁT}	[0,8] (px/ turn)	
Ellenféltől való távolság	d	[36,1000] (px)	• ~0~pálya átló
			• tank szélesség: 36
			 pálya: 800x600
			SRE: getDistance
Ellenfél energiája	E _{ELLEN}	[0,200] (energy)	SRE: getEnergy
			• ~200 fölé biztosan nem fog menni 1v1-ben
Saját energia	E _{SAJÁT}	[0,200] (energy)	•szintén
Lőttem-e?	LŐTT	{0,1} (darab)	szükséges: elveszhet az adat
			 (később szintek?: a sebesség miatt)
			HEAT MIATT NEM HASZNALOM
Ellenfél haladási iránya	I _{ELLEN}		getHeading , vagy a Tudásbázisból, előző hely alapján
			 ERRŐL NINCS INFO! KIKÖVETKEZTETNI LEHET
Ellenfél pozíciója	P _{ELLEN}	x= [0,800] (px)	(x,y) koordináta
		y= [0,600] (px)	Még nincs implementálva
Ellenfél iránya a Bodyhoz	Bear_Bod		Sorozatok lövéséhez. (ellenfélhez képest!)
<mark>képest</mark>	У		Haladasi irany – az ellenhez kepest
	(I _{SAJÁT)}		
Saját pozíció	P _{SAJÁT}	x= [0,800] (px)	Faltól való távolsághoz.
		y= [0,600] (px)	
Ellenfél iránya a löveghez	Bear_Gun	[-180,180] (fok)	SRE: getBearing, getBearingRadians
(headinghez) képest		[-PI, PI] (radián)	Gunirany – az ellenhez kepest
			 formulával, getHeading helyett Gunheadinggel
Kilőtt lövedék (objektum)	Löv	N/A	Értesít, ha célba érkezik –
			Talál, vagy nem talál - A különböző sebességek miatt akár
			többször
Saját Heat	H _{SAJÁT}	[0,20] (heat)	• TB?

Tudásbázis / Belief Base

I Carlaha al-	C-Dlodes	É	Manage and	
Hiedelmek	Szükséges érzékelések	Értékkészlet	Komment	
	és hiedelmek	t ∈ [0Inf.]	"-t" turnre visszamenőleg "deltat" időközzel	
- ATT DD CALÁT	ı ÄTT	deltat ∈ Z+	– akár több ilyen idősor más lépésközzel	
LŐTT_DB_SAJÁT Saját lövések száma "-t" turnre	LŐTT	[0,8] (darab)	 Sorozatlövésekhez Értékkészlet: tapasztalati úton becsülve. 	
ELTALÁLTAM_DB Találataim száma "-t" turnre	Löv Event(uj)- ezt lehet igy?	{0,1,2,3} (darab)	 0 és 1 lesz az idő 99.99%-ban. (2 érték elég?) Fitnesshez 	
ELTALÁLT_DB Ellenfél találatainak száma "-t" turnre	E _{SAJÁT}	{0,1,2,3} (darab)	 0 és 1 lesz az idő 99.99%-ban. (2 érték elég?) Fitnesshez 	
<mark>α</mark> célzást segítő paraméter	I _{ELLEN(norm)} V _{ELLEN} Bear d - helyett (A _{ELLEN})	[0,0.2185] (fok/ turn)	 Becsült szögtartomány: megadja, p turn alatt mennyit haladna az ellenfél egyenes vonalú egyenletes mozgást feltételezve Értékkészlet: alfa kicsi (csak +, vagy 0), ki kell tapasztalni max: legközelebb (36px)-re van az ellenfél, maximális, ránk merőleges sebességgel. tang⁻¹(α) = (8px/tick)/(36px) (lövedék típust/sebességet belevenni?) I_{ELLEN}-t normalizálni kell: Bearingre vett skalárszorzata, vagy az ellenfél és a saját pozíciót használjuk becslésre 	
<mark>v/d</mark> általánosabb mint az előző	VELLEN d (AELLEN)	[0, 0.25] (1/turn)	 Ez is célzást segítő paraméter Értékkészlet: 0:, ha v = 0; 0.25 = ha legközelebb van és leggyorsabban megy: (8px/tick) /(36px) 	
VELLEN-ATLAG Az ellenfél átlagsebessége "-t" turnre	V _{ELLEN}	[0,8] (px/turn)	 "e" értékből "i" időközönként predikcióhoz? (alfa?) Értékkészlet: a min/max sebesség miatt. 	
<mark>A_{ELLEN}</mark> az ellenfél gyorsulása	V _{ELLEN}	[-2,1] (px/turn²)	 (utolsó időpillanat) Értékkészlet: a min/max gyorsulás miatt. 	
<mark>Α</mark> άτιας átlaggyorsulás (ellenfélé) "-t" turnre	V _{ELLEN}	[-2,1] (px/turn²)	 mintázat oszcillálás! "e" értékből "i" időközönként számítva - lásd: átlagpozíció(k) (mint A_{ELLEN}, több időpillanat) 	
Vsaját-átlag Saját átlagsebesség "-t" turnre	Vsaját	[0,8] (px/turn)	 Lehet egy optimális sebesség, amivel még jól lehet manőverezni (fordulás, elég kiszámíthatatlan: sok út/idő), de gyorsítani, lassítani is tud – véletlen módon – kiszámíthatatlan lehet mintázat oszcillálás! "e" értékből "i" időközönként számítva - lásd: átlagpozíció(k) 	
Pellen-atlag[] (átlagpozíció(k)	Pellen	x= [0,800](px)	 mintázat (pl. oszcillálás) felismeréséhez,meg adhatunk paraméterként(q) egy számot, hogy várhatóan hány állapot között 	

q, hibafüggvény)		y=	váltogat az ellenfél, és ennyi koordinátával próbálja leginkább leírni
" -t " turnre		[0,600](px)	az "átlagpozíciók" által meghatározott pályát. – négyzetes hiba?
<mark>∆d</mark>	d	[-16,16]	 közeledés (-), vagy távolodás (+)
"-1" turnre		(px)	 utolsó 2 érték alapján
			 EZ NEM AZ ELLENFL KÖZELEDÉSE, LEHET HOGY CSAK MI MOZGUNK,
			DE EZZEL EGYÜTT HASZNOS.
			 Lehetne az eredetinek megfelelő is
<mark>ΔI_{ELLEN}</mark>	I _{ELLEN}	[-10, 10]	 Δle a haladási irány változtatása, tekinthetjük "szögsebességnek" is.
"-1" turnre	(igazibol <mark>Pellen</mark>	(fok/turn)	Értékkészlet: 0 sebesség mellett, (+) óra járása, (-) órával ellentétes.
	kell)		
Δle-átlag	I _{ELLEN}	[-10, 10]	 mintázat oszcillálás! q - lásd: "átlagpozíció(k)"
q	(igazibol Pellen	(fok/turn)	
"- t " turnre	kell)		
ΔΕ	E	[0,200]	 miért lehet hasznos? pl.: ha sok E-t veszít az ellenfél -> közvetetten
" -1 " turnre		(energia)	többet lő (mert bízik abban, hogy jobban céloz)
			 (vagy érdemes lehet külön "TALÁLAT" változót csinálni belőle, ami
			0/1!
			Értékkészlet: maximum a max életét veszítheti el. (Ez praktikusan
			nagy túlzás.)
<mark>x_tav</mark>	<mark>Psajat</mark>	[16,400] (px)	 a kisebb távolság a bal és jobb oldali falaktól
<mark>y_tav</mark>	<mark>Psajat</mark>	[16,300] (px)	 a kisebb távolság a fenti és lenti falaktól
			 ellenfelnel is lehetne ugyanilyen
<mark>α2</mark>	LŐTT	[0,180/1000]	 mennyire lőttünk elé/mögé (<u>fok/távolságban)</u> lőtt a becsülthöz
" db " lövésre	Bear	(px/fok)	képest.
visszamenőleg	"alfa"		Értékkészlet: max: 180 fokkal "mellé", max távolságnál.
			Mivel már mindig rá lövünk
" <mark>epszilon"</mark>	LŐTT		 mennyire elé/mögé (nem is fokban, nem is távolságban) lőtt a
" db " lövésre	Bear		jelenlegi helyéhez képest.
visszamenőleg	Pe		On-Head Targeting van
<mark>heat</mark>	Heat	[0,20]	érdemes lehet tartalékolni,
			vagy több kicsit lőni egy nagy helyett, stb.
<mark>Esajat</mark>			•
<mark>Eellen</mark>			•

Döntéshozás, következtetés

4 fában

A tudásbázisban lévő értékkészletek alapján lehet meg határozni, hogy milyen jellegű belső csomópontokat szeretnénk belőlük összerakni. (>,<, ????)

Paraméter megszorítások – a keresés meggyorsítására, tervezői időben.

Döntéshozó függvény - mindegyik bemenete egy Hiedelem és egy szám	Szükséges tudás	típus	Paraméter megszorítások
LŐTT_SZÁM_SAJÁT (<=, >)	LŐTT_DB_SAJÁT	int	[0,8] (darab)
TALÁLT_DB (<=, >) p	ELTALÁLTAM_DB	int	{0,1,2,3} (darab)
ELTALÁLT_DB (<=, >) p	ELTALÁLT_DB	int	{0,1,2,3} (darab)
alfa_ele_celzas (<=, >)	α	double	[0,0.2185] (fok/ turn)
ele_celzas(<=, >)	<mark>v/d</mark>	double	[0, 0.5] 8/16? (1/turn)
<pre>sebesseg_ellen_atlag(<=, >)</pre>	V _{ELLEN} -átlag	double	[0,8] (px/turn)
gyorsulas_ellen(<=, >)	A _{ELLEN}	double	[-2,1] (px/turn²)
<pre>gyorsulas_ellen_atlag(<=, >)</pre>	A átlag	double	[-2,1] (px/turn²)
<pre>sebesseg_sajat_atlag(<=, >)</pre>	V _{SAJÁT-ÁTLAG}	double	[0,8] (px/turn)
pozicio_ellen_atlag(<=, >)	Pellen-atlag[]	double, double	x= [0,800](px) y= [0,600](px)
kozeledes(=közeledik?)	Δd	0,1	[-8,8] (px)
irany_valtozas_ellen(<=, >)	ΔΙε	double	[-10, 10] (fok/turn)
irany_valtozasatlag_ellen(<=, >)	Δleátlag	double	[-10, 10] (fok/turn)
energia_valtozas_ellen(találat: {0,1})	ΔE – v. elég a találat?	double	[0,200] (energia)
x_tavolsag(<=, >)	x_tav	double	[16,400] (px)
y_tavolsag (<=, >)	<mark>y_tav</mark>	double	[16,300] (px)
beta_ele_celzas (<=, >)	alfa2	double	0,180/1000] (px/fok)
epsilon(<=, >)	epsilon	double	??

heat	<mark>heat</mark>	double	[0,20]
<mark>Esajat</mark>	<mark>Esajat</mark>	double	[0,120] – 120 prakt
Eellen	<mark>Eellen</mark>	double	[0,120] – 120 prakt
SebessegEllen	<mark>Vellen</mark>		
SebessegSajat	<mark>Vsajat</mark>		

Beavatkozás, cselekvés

4 független módon.

http://robowiki.net/wiki/Robocode/Game_Physics

Cselekvés	Értékkészlet	Komment
<mark>gunTurn</mark>	+-[0,20]	szög/ turn
bodyTurn	+-[0,4-10]	szög/ turn
		változó (sebességfüggő)
<mark>fire</mark>	{0,1,2,3}	
accelerate/decelerate	{-2,-1,-0.5,0,0.3,0.6}	