EXERCISES FOR VECTOR CALCULUS 2023/24

ACKNOWLEGMENTS

This collection of exercises was created by Dr Eli Hawkins to accompany his notes for the "Vector Calculus" module taught by him from 2017/18 to 2022/23 (I have only made some minor changes). I would like to express my deep gratitude to Eli for consenting to the use of this collection for the "Vector Calculus" part of "Vector and Complex Calculus 2023-24".

Francesco Cosentino

Exercises

(1) Find the angle between the vectors:

(a)
$$\underline{\alpha} = (-1, 2), \underline{b} = (\frac{1}{2}, -1).$$

(b)
$$\underline{a} = (1, 2, 3), \underline{b} = (1, 1, -1).$$

(c)
$$\underline{a} = (1, -1, 0), \underline{b} = (0, 1, 1).$$

(d)
$$a = (1, 2, 1), b = (1, 1, 0).$$

(2) For two vectors $\underline{a}, \underline{b} \in \mathbb{R}^3$, with angle θ between them, what is $(\underline{a} \cdot \underline{b})^2 + \|\underline{a} \times \underline{b}\|^2$?

(3) For each of the following vector fields, $\underline{g} : \mathbb{R}^2 \to \mathbb{R}^2$, determine whether it may be a gradient. If so, find a scalar field f such that $\nabla f = g$.

(a)
$$g(x,y) = (y, -x)$$

(b)
$$\underline{g}(x,y) = (5x^4 + y, x - 12y^3)$$

(c)
$$g(x, y) = (3x^2 \cos y, -x^3 \sin y)$$

(d)
$$g(x, y) = (e^y \sec^2 x, e^y \tan x)$$

(e)
$$\underline{g}(x,y) = (xy, -y)$$

(f)
$$g(x,y) = (x^2 + y^2, \cos y)$$

(4) Make a sketch of the region $R \subset \mathbb{R}^2$ and evaluate the integral $\iint_R f \, dA$ for:

(a) $f(x,y) = 10 + 2x^2 + 2y^2$ and R is the triangle bounded by y = x, x = 2y, and y = 2.

- (b) $f(x,y) = \frac{y}{x^2 + y^2}$ and R is the trapezoid bounded by y = x, y = 2x, x = 1, and x = 2.
- (c) f(x, y) = y and R is bounded by $y = 4 x^2$ and y = 4 x.
- * (d) $f(x,y) = \frac{y}{1+x}$ and R is bounded by y = 0, $y = \sqrt{x}$, and x = 4.
 - (5) Make a sketch of the region $R \subset \mathbb{R}^2$ and evaluate the integral $\iint_R f \, dA$ using polar coordinates for:
 - (a) f(x,y) = x and R is the region in the first quadrant bounded by $x^2 + y^2 = 25$, 3x = 4y, and y = 0.
 - (b) f(x,y) = 1 and R is the region in the first quadrant below the line y = x and inside the circle of radius 1 centered at (0,1).
- * **(6)** Compute and fully simplify:

(a)
$$\sum_{k=1}^{3} \frac{1}{k}$$
 (b) $\sum_{k=1}^{n} 1$, where $n \in \mathbb{N}$.

(7) For the maps and vector defined by

(i)
$$\underline{f}: \mathbb{R}^3 \to \mathbb{R}^2$$
, $\underline{f}(x, y, z) = (x^3 + y^2 - 2z, x - 2y^2 + z^3)$, $\underline{g}: \mathbb{R}^2 \to \mathbb{R}^2$, $\underline{g}(u, v) = (e^{2u+v}, e^{u-2v})$, $\underline{\alpha} = (1, 1, 1)$

(ii)
$$\underline{\mathbf{f}}: \mathbb{R}^3 \to \mathbb{R}^2$$
, $\underline{\mathbf{f}}(\mathbf{x}, \mathbf{y}, \mathbf{z}) = (\mathbf{x} + \mathbf{y}\mathbf{z}, \mathbf{x} - \mathbf{y}\mathbf{z})$, $\underline{\mathbf{g}}: \mathbb{R}^2 \to \mathbb{R}^2$, $\underline{\mathbf{g}}(\mathbf{u}, \mathbf{v}) = (\mathbf{u} + \mathbf{v}, \mathbf{u}\mathbf{v})$, $\underline{\mathbf{a}} = (0, 1, 2)$

(iii)
$$\underline{\mathbf{f}}: \mathbb{R}^3 \to \mathbb{R}^3$$
, $\underline{\mathbf{f}}(\mathbf{x}, \mathbf{y}, \mathbf{z}) = (\mathbf{x}\mathbf{y}^2\mathbf{z}^2, \mathbf{z}^2\sin\mathbf{y}, \mathbf{x}^2\mathbf{e}^\mathbf{y})$, $\underline{\mathbf{g}}: \mathbb{R}^3 \to \mathbb{R}^2$, $\underline{\mathbf{g}}(\mathbf{u}, \mathbf{v}, \mathbf{w}) = (\mathbf{u}^2 + \mathbf{v} + \mathbf{w}, 2\mathbf{u} + \mathbf{v} + \mathbf{w}^2)$, $\underline{\mathbf{a}} = (\mathbf{x}, \mathbf{0}, \mathbf{z})$

do the following:

- (a) Compute the matrices $D\underline{f}(x, y, z)$ and $D\underline{g}(u, v)$.
- (b) Work out the composition $\underline{F}(x, y, z) = \underline{g}(\underline{f}(x, y, z))$.
- (c) Compute $D\underline{F}(\underline{a})$.
- (d) Compare this with the matrix product $Dg(\underline{b}) D\underline{f}(\underline{a})$, where $\underline{b} = \underline{f}(\underline{a})$.
- **(8)** Let $f_1, f_2 \in C^1(\mathbb{R}^n, \mathbb{R})$ be any continuously differentiable functions. Let $g : \mathbb{R}^2 \to \mathbb{R}$, g(u, v) = uv. Define $\underline{f} = (f_1, f_2)$.
 - (a) Compute the matrix product $Dg(\underline{f}[\underline{x}])D\underline{f}(\underline{x})$.
 - (b) Compute the composition $F := g \circ \underline{f}$ and its derivative DF directly.

By the chain rule, these should give the same result.

(9) A scalar field f is homogeneous of degree c if it satisfies

$$f(\lambda x) = \lambda^{c} f(x)$$

for all $\lambda > 0$ and $\underline{x} \in \mathbb{R}^n$.

Let f be such a scalar field. For any fixed $\underline{x} \in \mathbb{R}^n$, define $g(\lambda) = f(\lambda \underline{x})$, use the chain rule, and then set $\lambda = 1$ to show that

$$\underline{x} \cdot \nabla f(\underline{x}) = c f(\underline{x}). \tag{*}$$

(10) Verify that eq. (*) holds for each of the following functions, and give the value of the degree *c* in each case.

(a)
$$f(x,y,z) = xyz$$
; (b) $f(x,y) = \frac{xy}{\sqrt{x^2 + y^2}}$; (c) $f(x,y) = \frac{xy}{x^2 + y^2}$.

- (11) Find a parametrization for each of the following curves:
 - (a) $C \subset \mathbb{R}^2$ is the part of the curve defined by $y^2 = x$ from (0,0) to (1,1).
- (b) $C \subset \mathbb{R}^2$ is the part of the ellipse defined by $x^2 + 4y^2 = 4$ anticlockwise from (2,0) to (0,1).
 - (c) $C \subset \mathbb{R}^2$ is the part of the graph $y = \cos x$ from $(\frac{\pi}{2}, 0)$ to $(-\frac{\pi}{2}, 0)$.
 - (d) $C \subset \mathbb{R}^3$ satisfying $z = x^2$ and $z = y^3$ from (0, 0, 0) to (1, 1, 1).
 - (e) $C \subset \mathbb{R}^3$ satisfying $x^2 + y^2 = 1$, $z = x^2$, and $y \ge 0$ from (1, 0, 1) to (-1, 0, 1).
 - (12) Evaluate the line integral $\int_C \underline{g}(\underline{x}) \cdot d\underline{x}$ for the following:
 - (a) $\underline{g}(x, y, z) = (x, y, xz y)$ and C is the straight line from (0, 0, 0) to (1, 2, 4).
 - (b) $\underline{g}(x,y,z) = (x,y,xz-y)$ and C is parametrized by $\underline{p}:[0,1] \to \mathbb{R}^3$, $\underline{p}(t) = (t^2,2t,4t^3)$.
 - (c) $\underline{g}(x,y,z)=(y^2-z^2,2yz,-x^2)$ and C is parametrized by $\underline{p}:[0,1]\to\mathbb{R}^3$, $\underline{p}(t)=(t,t^2,t^3)$.
- * (d) $g(x, y, z) = (2xy, x^2 + z, y)$ and C is the line segment from (1, 0, 2) to (3, 4, 1).
 - (e) $\underline{g}(x,y,z)=(-x^2y,x^3,y^2)$ and C is parametrized by $\underline{p}:[0,\pi]\to\mathbb{R}^3$, $\underline{p}(t)=(\cos t,\sin t,t)$
 - (13) Use line integration to find a scalar field f such that $\underline{g} = \nabla f$ for each of the following:
 - (a) $\underline{g}(x, y, z) = (e^{y^2}, 2xye^{y^2} + \sin z, y \cos z)$
 - (b) $g(x, y, z) = (ye^{xy+z}, xe^{xy+z}, e^{xy+z})$

- (c) g(x, y, z) = (y + z, x + z, x + y)
- (d) $g(x, y, z) = (y \sin z, x \sin z, xy \cos z)$
- * (e) $\underline{g}(\underline{x}) = \frac{\underline{x}}{\|x\|}$.

$$(f) \ \underline{g}(\underline{x}) = \left(1 - \frac{x_1^2}{\|\underline{x}\|}, -\frac{x_1 x_2}{\|\underline{x}\|}, -\frac{x_1 x_3}{\|\underline{x}\|}\right) e^{-\|\underline{x}\|}.$$

(14) For any $\underline{x} \in \mathbb{R}^n$ abbreviate $\|\underline{x}\| = r$. Then, for any $k \in \mathbb{R}$ let φ be the function defined by

$$\varphi(\underline{x}) = \begin{cases} \frac{r^{k+2}}{k+2}, & \text{if } k \neq -2, \\ \log r, & \text{if } k = -2. \end{cases}$$

Compute $\nabla \phi$. Deduce that every vector field of the form $\underline{F}(\underline{x}) = r^k \underline{x}$ is a gradient.

(15) Newton's law of gravitation states that the force exerted on a particle of mass m located at $\underline{x} \in \mathbb{R}^3$ by a particle of mass M located at $\underline{0}$ is

$$\underline{F}(\underline{x}) = -\frac{GmM}{r^3}\underline{x},$$

where G > 0 is a constant and $r = \|\underline{x}\|$ again. For all $\underline{a}, \underline{b} \in \mathbb{R}^3$, use the result of Exercise 14 to find the work done by \underline{F} in moving the particle from \underline{a} to \underline{b} along any curve C. How much potential energy is gained by the particle if moved from \underline{a} to "infinity"?

- (16) In each case, find the arc length of the curve C parametrized by the given \underline{p} . Also evaluate $\int_C f \, ds$, where f(x, y, z) = z.
 - (a) Conical spiral: $\underline{p}:[0,2\pi]\to\mathbb{R}^3$, $\underline{p}(t)=(e^t\cos t,e^t\sin t,e^t)$.
 - (b) Tennis ball curve: $\underline{p}:[0,2\pi]\to\mathbb{R}^3$,

$$\underline{p}(t) = (2\cos t - \frac{4}{3}\cos^3 t, \frac{4}{3}\sin^3 t - 2\sin t, \cos 2t).$$

- (c) Helix: $p:[0,2\pi] \to \mathbb{R}^3$, $p(t)=(\cos t,\sin t,t)$.
 - (d) The conical helix: $\underline{p}:[0,2\pi]\to\mathbb{R}^3, \underline{p}(t)=(t\cos t,t\sin t,t).$
 - (e) The stretched helix: $p:[0,1]\to\mathbb{R}^3$, $p(t)=(\cos t,\sin t,\frac{1}{2}t^2)$.
- (17) In each case, use an appropriate substitution to integrate f over $R \subset \mathbb{R}^2$.
 - (a) $f(x,y) = \sin \sqrt{x^2 + y^2}$, R is the annulus bounded between the circles of radii $\pi/4$ and $3\pi/4$ centered at $\underline{0}$.
 - (b) $f(x,y) = e^{(x+2y)/(x+y)}$, R is the triangle with vertices (0,0), (1,0) and (0,1).
 - (c) $f(x,y) = \frac{x-y-1}{x+y+1}$, R is the triangle with vertices (0,0), (1,0) and (0,1).

- (d) $f(x,y) = \cos\left(\frac{\pi}{2}\frac{x-y}{x+y}\right)$, R is the triangle with vertices (0,0), $(\pi,0)$, $(0,\pi)$.
 - (e) $f(x,y) = e^{1+x^2+2y^2}$, R is the region enclosed by the ellipse $x^2 + 2y^2 = 2$.
 - (f) $f(x,y) = x^2$, R is the region of the first quadrant bounded by the hyperbolae xy = 1, xy = 2, and the lines 2y = x, y = 2x.
 - (g) $f(x,y) = (x-2y)^2 \sin^2(x+2y)$, R is the rhombus with vertices $(\pi,0)$, $(2\pi,\pi/2)$, (π,π) , and $(0,\pi/2)$.
- (18) For each planar region $R \subset \mathbb{R}^2$, describe the boundary ∂R either by giving a parametrization or by giving a parametrization of each smooth component of ∂R .
 - (a) $R = \{(x, y) \in \mathbb{R}^2 \mid x^2 + 4y^2 \le 4\}.$
 - (b) $R = \{(x, y) \in \mathbb{R}^2 \mid 0 \le y \le x \le 1\}.$
 - (c) $R = \{(x, y) \in \mathbb{R}^2 \mid 1 \le x^2 + y^2 \le 9\}.$
 - (d) $R = \{(x, y) \in \mathbb{R}^2 \mid |x| + |y| \le 1\}.$
- (19) Consider a general region of the form

$$R = \left\{ (x,y) \in \mathbb{R}^2 \;\middle|\; \alpha \leq x \leq b, \; \phi_1(x) \leq y \leq \phi_2(x) \right\},$$

where a < b and $\phi_1 \le \phi_2 \in \mathcal{C}^1(\mathbb{R}, \mathbb{R})$, and some function $Q \in \mathcal{C}^1(\mathbb{R}^2, \mathbb{R})$. Show that Green's theorem is true for the vector field (0, Q) and this region, i.e., show

$$\oint_{\partial R} Q(x,y) dy = \iint_{R} \frac{\partial Q(x,y)}{\partial x} dx dy.$$

Hint: First, use the chain rule and the Fundamental Theorem of Calculus to compute

$$\frac{d}{dx}\int_{\phi_1(x)}^{\phi_2(x)}Q(x,y)\,dy.$$

- **(20)** Use Green's theorem to integrate the vector field \underline{F} around the closed curve C, oriented anticlockwise.
 - (a) $\underline{F}(x,y) = (x^2y, xy^2)$, C is the square with vertices (0,0), (2,0), (2,2), (0,2).
 - (b) $\underline{F}(x,y) = (x^2y, x^3)$, C is the square with vertices (1,1), (-1,1), (-1,-1), (1,-1).
 - (c) $\underline{F}(x,y) = (xy^2, xy)$, C is the triangle with vertices (0,0), (1,1), (-1,1).
 - (d) $\underline{F}(x,y) = (-y^3, x^3)$, C is the (rotated) square with vertices (2,0), (0,2), (-2,0), (0,-2).
- **(21)** In each case, sketch the planar region R and use Green's theorem to find its area. (For each curve, $p : [0, 2\pi] \to \mathbb{R}^2$. However, not all curves are oriented anticlockwise!)
 - (a) R is the region enclosed by the astroid, $\underline{p}(t) = (\cos^3 t, \sin^3 t)$.
 - (b) R is region enclosed by one arch of the cycloid, $\underline{p}(t) = (t \sin t, 1 \cos t)$, and the x-axis.

- (c) R is the region enclosed by the cardioid, $p(t) = (2 \cos t \cos 2t, 2 \sin t \sin 2t)$.
- (d) R is the region enclosed by the deltoid, $p(t) = (2\cos t + \cos 2t, 2\sin t \sin 2t)$.

Suggestion: To visualise R, try Maple's parametric plotter:

- (22) Check the identity $\varepsilon_{abe}\varepsilon_{cde}=\delta_{ac}\delta_{bd}-\delta_{ad}\delta_{bc}$ by direct calculation for the components:
 - (a) a = 1, b = 2, c = 2, d = 1.
 - (b) a = 1, b = 2, c = 2, d = 3.
 - (c) a = b = c = d = 2.
- **(23)** Use the rules of index notation and the summation convention to simplify the following expressions (in 3 dimensions):
 - (a) δ_{aa} (b) $\delta_{ab}u_av_b$ (c) $\epsilon_{abc}\delta_{bc}$ (d) $\epsilon_{abc}\epsilon_{abd}$ (e) $\epsilon_{abc}\epsilon_{abc}$ * (f) $\epsilon_{abc}\epsilon_{cde}\epsilon_{efa}$
- (24) Use index notation to show that

$$(\underline{\mathbf{u}} \times \underline{\mathbf{v}}) \cdot (\underline{\mathbf{w}} \times \underline{\mathbf{x}}) = (\underline{\mathbf{u}} \cdot \underline{\mathbf{w}})(\underline{\mathbf{v}} \cdot \underline{\mathbf{x}}) - (\underline{\mathbf{u}} \cdot \underline{\mathbf{x}})(\underline{\mathbf{v}} \cdot \underline{\mathbf{w}})$$

for any $\underline{u}, \underline{v}, \underline{w}, \underline{x} \in \mathbb{R}^3$.

(25) For $\underline{u}, \underline{v} \in \mathbb{R}^3$, express

$$(\underline{\mathbf{u}} \cdot \underline{\mathbf{v}})^2 + ||\underline{\mathbf{u}} \times \underline{\mathbf{v}}||^2$$

in index notation, simplify it, and express the result in vector notation. You should get the same identity as in Exercise 1.2. *Hint:* Remember that $\|\underline{w}\|^2 = \underline{w} \cdot \underline{w}$.

(26) Let $\underline{u}, \underline{v}, \underline{w} \in \mathbb{R}^3$. Use the identity for $\underline{u} \times (\underline{v} \times \underline{w})$ from the lectures to show that $\underline{0} = \underline{u} \times (\underline{v} \times \underline{w}) + \underline{v} \times (\underline{w} \times \underline{u}) + \underline{w} \times (\underline{u} \times \underline{v}).$

(This is the *Jacobi identity*. It means that \mathbb{R}^3 with the operation \times is a *Lie algebra*. These are very important in algebra and particle physics.)

(27) Let A and B be $n \times n$ matrices with components $A_{\alpha b}$ and $B_{\alpha b}$. Write down the component $C_{\alpha b}$ of C=AB. The *trace* of an $n \times n$ matrix A is defined by $Tr A=A_{\alpha \alpha}$. Use index notation to show that Tr AB=Tr BA.

Use this result to prove that if H and J are similar $n \times n$ matrices, i.e., $H = PJP^{-1}$ for some invertible $n \times n$ matrix P, then Tr H = Tr J.

(28) Let A be an antisymmetric 3×3 matrix, i.e., $A^T = -A$, where T denotes the transpose. Express this condition in index notation.

For the vector $\underline{\omega}$ defined by

$$\omega_{a} = -\frac{1}{2} \varepsilon_{abc} A_{bc}$$

show that $A\underline{x} = \underline{\omega} \times \underline{x}$, for all vectors \underline{x} .

(29) Continuing from Exercise 28, if $\underline{\omega} = \theta \, \underline{n}$, where $\|\underline{n}\| = 1$, show that the matrix exponential of A, $\exp A = \mathbb{I} + \sum_{r=1}^{\infty} \frac{A^r}{r!}$ (where \mathbb{I} is the identity matrix) has components

$$[\exp A]_{ab} = \delta_{ab}\cos\theta + n_a n_b (1 - \cos\theta) - \varepsilon_{abc} n_c \sin\theta.$$

Hint: Note that $\Omega(t) = exp(At)$ is the unique solution to the matrix differential equation $\dot{\Omega}(t) = A\Omega(t)$ with $\Omega(0) = \mathbb{I}$.

* (30) Let ψ be the scalar field,

$$\psi(x, y, z) = x^2 e^y \sin z,$$

and F the vector field

$$\underline{F}(x, y, z) = (z \cos y, x^2 y, z).$$

Compute $\nabla \psi$, $\nabla^2 \psi$, $\nabla \cdot \underline{F}$, and $\nabla \times \underline{F}$.

- (31) For $\phi, \psi \in \mathcal{C}^1(\mathbb{R}^3, \mathbb{R})$ and $\underline{F}, \underline{G} \in \mathcal{C}^1(\mathbb{R}^3, \mathbb{R}^3)$, use index notation to show that
 - (a) $\nabla(\phi\psi) = \psi\nabla\phi + \phi\nabla\psi$
 - (b) $\nabla \times (\Phi \underline{F}) = (\nabla \Phi) \times \underline{F} + \Phi (\nabla \times \underline{F})$
 - (c) $\nabla \times (\underline{F} \times \underline{G}) = (\underline{G} \cdot \nabla)\underline{F} (\underline{F} \cdot \nabla)\underline{G} + \underline{F}(\nabla \cdot \underline{G}) (\nabla \cdot \underline{F})\underline{G}$
- (32) If $g \in \mathcal{C}^2(\mathbb{R}^3,\mathbb{R})$, then at any point $\underline{x} \in \mathbb{R}^3$, the gradient $\nabla g(\underline{x})$ is normal at \underline{x} to the level surface of g passing through \underline{x} . If another vector field $\underline{F} \in \mathcal{C}^1(\mathbb{R}^3,\mathbb{R}^3)$ is also normal to the level surfaces of g, then it must be parallel to ∇g at every point. This implies that

$$F = f \nabla g$$

for some scalar field $f \in \mathcal{C}^1(\mathbb{R}^3, \mathbb{R})$. Show that this implies

$$0 = \mathbf{F} \cdot (\nabla \times \mathbf{F}).$$

(You will need various identities from the lectures and exercises.)

(33) The *Lie bracket* of two vector fields $\underline{F},\underline{G}\in\mathcal{C}^1(\mathbb{R}^3,\mathbb{R}^3)$ is another vector field defined as

$$[\underline{F},\underline{G}] := (\underline{F} \cdot \nabla)\underline{G} - (\underline{G} \cdot \nabla)\underline{F}.$$

- (a) Express this in index notation.
- (b) Use index notation to show that

$$[F,G] = (\nabla \cdot F) G - (\nabla \cdot G) F - \nabla \times (F \times G).$$

(c) Use part (a) to show that for $\underline{F}, \underline{G}, \underline{H} \in \mathcal{C}^2(\mathbb{R}^3, \mathbb{R}^3)$ this satisfies the Jacobi identity (Exercise 26)

$$0 = [F, [G, H]] + [G, [H, F]] + [H, [F, G]].$$

(34) In each case, evaluate the triple integral

$$I = \iiint_{E} f dV$$

of the given function $f : \mathbb{R}^3 \to \mathbb{R}$ over the given solid region $E \subset \mathbb{R}^3$. Use Cartesian, cylindrical, or spherical coordinates as appropriate..

(a) f(x, y, z) = z and E is the tetrahedron

$$E = \{(x, y, z) \in \mathbb{R}^3 \mid 0 \le x \le y \le z \le 1\}.$$

(b) $f(x, y, z) = x^2 + y^2 + z$ and E is the cylinder

$$E = \{(x, y, z) \in \mathbb{R}^3 \mid 0 \le z \le 1, \ x^2 + y^2 \le a^2\}.$$

(c) f(x, y, z) = y and

$$E = \{(x, y, z) \in \mathbb{R}^3 \mid x^2 + y^2 \le z \le x, \ 0 \le y\},\$$

- (d) f(x, y, z) = xy + zy and E is the triangular prism of height h > 0 with vertices 0, (1, 0, 0), (0, 1, 0), (0, 0, h), (1, 0, h) and (0, 1, h).
- (e) $f(x, y, z) = x^2$ and E is the solid cone

$$E = \{(x, y, z) \in \mathbb{R}^3 \mid x^2 + y^2 \le z^2, \ 0 \le z \le 1\}.$$

- (f) f(x,y,z) = z and E is bounded below by the cone where $x^2 + y^2 = \frac{1}{3}z^2$ and $z \ge 0$, and above by the sphere of radius 1 centered at the origin.
- (g) $f(x,y,z) = (x^2 + y^2 + z^2)^{-1}$ and E is the region inside the sphere of radius 1 in the 1st octant,

$$E = \{(x, y, z) \in \mathbb{R}^3 \mid x, y, z \ge 0, \ x^2 + y^2 + z^2 \le 1\}.$$

(35) Find the volume of the intersection $C_1 \cap C_2$ of the cylinders

$$C_1 = \{(x, y, z) \in \mathbb{R}^3 \mid x^2 + y^2 \le a^2\}, \text{ and } C_2 = \{(x, y, z) \in \mathbb{R}^3 \mid x^2 + z^2 \le a^2\}$$
 by triple integration.

(36) Suppose 0 < b < a. Let $E \subset \mathbb{R}^3$ be the solid torus,

$$E = \{(x, y, z) \in \mathbb{R}^3 \mid (\sqrt{x^2 + y^2} - a)^2 + z^2 \le b^2 \}.$$

To integrate over E, make the change of variables:

$$x = (a + r\cos\phi)\cos\theta$$
, $y = (a + r\cos\phi)\sin\theta$, $z = r\sin\phi$,

where $0 \le r \le b$ and $0 \le \theta, \varphi \le 2\pi$. (This is the toroidal version of spherical polar coordinates.)

- (a) Show that $\frac{\partial(x,y,z)}{\partial(r,\theta,\phi)} = r(\alpha + r\cos\phi)$.
- (b) Hence show that the volume of E is $2\pi^2 ab^2$.
- (c) Suppose E is filled with material of uniform density. Show that moment of inertia I_z about the *z*-axis is:

$$I_z = (\alpha^2 + \frac{3}{4}b^2)M,$$

where M is the total mass. Find also I_x (or I_y ; they are the same). Which is greater? Is this what you expect?

(37) Let $f: [a, b] \to \mathbb{R}$ be continuous and positive, and let $E \subset \mathbb{R}^3$ be the solid of revolution enclosed by rotating the graph of f around the *z*-axis:

$$E = \{(x, y, z) \mid x^2 + y^2 \le f(z)^2\}.$$

- (a) Describe E in cylindrical coordinates. That is, write down a region W in r- θ -z-space that corresponds to E.
- (b) Use cylindrical coordinates to show that the volume of E is

Volume(E) =
$$\pi \int_a^b f(z)^2 dz$$
.

(38) Let

$$R = \{(x,y) \in \mathbb{R}^2 \mid \alpha \le x \le b, \ \phi_1(x) \le y \le \phi_2(x)\},\$$

where ϕ_1, ϕ_2 : $[a, b] \to \mathbb{R}$ are continuous positive functions with $\phi_1 \le \phi_2$. Let \bar{y} be the y-coordinate of the centroid of R, defined by

$$\bar{y} = \frac{1}{\text{Area}(R)} \iint_{R} y \, dA.$$

If $E \subset \mathbb{R}^3$ is the solid region obtained by rotating R about the x-axis, use Exercise 37 to derive *Pappus' formula*:

Volume(E) =
$$2\pi \bar{y}$$
 Area(R).

Check that this gives the correct formula for the volume of a torus. [See Exercise 36.]

(39) For each surface, evaluate the flux integrals of the vector fields defined by

$$\underline{f}(x, y, z) = (1, 1, 1),$$

$$\underline{g}(x, y, z) = (xz, yz, z^2),$$

$$h(x, y, z) = (0, e^z, 0).$$

(a) The rectangle Σ_1 with vertices (1,0,-1), (0,1,-1), (-1,0,1) and (0,-1,1), parametrized by $\underline{p}:[0,1]\times[0,1]\to\mathbb{R}^3$,

$$\underline{p}(u,v) = (0,-1,1) + u(1,1,-2) + v(-1,1,0).$$

- (b) The triangle Σ_2 with vertices \underline{e}_1 , \underline{e}_2 , \underline{e}_3 , parametrized by $\underline{p}:[0,1]\times[0,1]\to\mathbb{R}^3$, $\underline{p}(u,v)=(1-u,u[1-v],uv).$
- (c) The half-cylinder Σ_3 , parametrized by $\underline{p}:[0,\pi]\times[0,1]\to\mathbb{R}^3$, $p(u,v)=(\cos u,\sin u,v)$.
- (d) The surface Σ_4 parametrized by $\underline{p}:[0,1]\times[-1,1]\to\mathbb{R}^3$, $p(u,v)=(u,uv,v^2).$

(40) For a region $R \subset \mathbb{R}^2$ and a function $f \in \mathcal{C}^2(\mathbb{R}^2, \mathbb{R})$, show that the area of the graph

$$\Sigma = \{(x, y, z) \in \mathbb{R}^3 \mid (x, y) \in \mathbb{R}, \ z = f(x, y)\}$$

is

Area(
$$\Sigma$$
) = $\iint_{\mathbb{R}} \sqrt{1 + (D_1 f)^2 + (D_2 f)^2} dA$.

(41) Suppose that a < b and $f \in \mathcal{C}^1([a,b],\mathbb{R})$ with $f \geq 0$. This determines a *surface of revolution*

$$\Sigma = \{(x, y, z) \in \mathbb{R}^3 \mid x^2 + y^2 = f^2(z)\}.$$

- (a) Describe Σ in cylindrical coordinates.
- (b) Use this to parametrize Σ .
- (c) Compute the surface area of Σ .
- (42) In each case, compute the area of the give surface, Σ . Then compute the surface integral

$$I = \iint_{\Sigma} f \, dS$$

for the given function $f: \mathbb{R}^3 \to \mathbb{R}$.

(a) Σ is the cylinder parametrized by $p:[0,2\pi]\times[0,1]\to\mathbb{R}^3$,

$$p(\theta, z) = (\cos \theta, \sin \theta, z)$$

and $f(x, y, z) = x^2 z$.

(b) Σ is the helicoid parametrized by $\underline{p}:[0,1]\times[0,\pi]\to\mathbb{R}^3$,

$$p(r,\theta) = (r\cos\theta, r\sin\theta, \theta)$$

and f(x, y, z) = y.

(c) For $0 < b < \alpha$, Σ is the torus is parametrized by $\underline{p} : [0, 2\pi] \times [0, 2\pi] \to \mathbb{R}^3$,

$$\underline{p}(u,v) = ([a+b\cos u]\sin v, [a+b\cos u]\cos v, b\sin u)$$

and

$$f(x, y, z) = \frac{|z|}{x^2 + y^2}$$

(43) Compute the flux integral of $g: \mathbb{R}^3 \to \mathbb{R}^3$,

$$\iint_{\partial F} \underline{g} \cdot d\underline{S}$$

both directly and by using Gauss' Theorem.

(a) The cube $E = [0, 1] \times [0, 1] \times [0, 1]$ and $g(x, y, z) = (x^2, y^2, z^2)$.

(b)
$$E = \{(x, y, z) \in \mathbb{R}^3 \mid 0 \le z \le 1 - x^2 - y^2\}$$
 and $g(x, y, z) = (x, y, 0)$.

- (c) The cylinder $E = \{(x, y, z) \in \mathbb{R}^3 \mid x^2 + y^2 \le 1, \ 0 \le z \le 1\}$ and $\underline{g}(x, y, z) = (x, y, z^2)$.
- (d) The ball (solid sphere) $E = \{\underline{x} \in \mathbb{R}^3 \mid \|\underline{x}\| \le 1\}$ and $\underline{g}(x,y,z) = z\sqrt{x^2 + y^2}\,\underline{e}_3$.
- **(44)** Use Gauss' Theorem to evaluate the flux $\iint_{\Sigma} \underline{F} \cdot d\underline{S}$ for each of the following:
 - (a) $\underline{F}(x,y,z)=(3xy^2,3x^2y,z^3)$ and $\Sigma=\{\underline{x}\in\mathbb{R}^3\mid \|\underline{x}\|=1\}$ with the outward orientation.
 - (b) $\underline{F}(x,y,z) = (xye^z, xy^2z^3, -ye^z)$ and Σ is the boundary of the box bounded by the planes where x=3, y=2, and z=1, and the coordinate planes.
 - (c) $\underline{F}(x,y,z)=(3xy^2,xe^z,z^3)$ and Σ is the boundary of the solid region $E=\{(x,y,z)\in\mathbb{R}^3\mid -1\leq x\leq 2,\ y^2+z^2\leq 1\}.$
 - (d) $\underline{F}(x,y,z) = (x^2 \sin y, x \cos y, -xz \sin y)$ and $\Sigma = \{(x,y,z) \in \mathbb{R}^3 \mid x^8 + y^8 + z^8 = 8\}$ with the outward orientation.
 - (e) $\underline{F}(x,y,z)=(x^4,-x^3z^2,4xy^2z)$ and Σ is the boundary of the solid bounded by $x^2+y^2=1$, z=x+2, and z=0.
- **(45)** Let $E \subset \mathbb{R}^3$ be a solid region, $f \in \mathcal{C}^1(\mathbb{R}^3, \mathbb{R})$ a scalar field, and $\underline{F}, \underline{G} \in \mathcal{C}^1(\mathbb{R}^3, \mathbb{R}^3)$ vector fields. Use Gauss' Theorem and the identities

$$\nabla \cdot (f \underline{G}) = (\nabla f) \cdot \underline{G} + f \nabla \cdot \underline{G}$$
$$\nabla \cdot (\underline{F} \times \underline{G}) = (\nabla \times \underline{F}) \cdot \underline{G} - \underline{F} \cdot (\nabla \times \underline{G})$$

to derive the following formulae for "integration by parts" for triple integrals:

(a)
$$\iiint_{E} f \nabla \cdot \underline{G} dV = \iint_{\partial E} f \underline{G} \cdot d\underline{S} - \iiint_{E} (\nabla f) \cdot \underline{G} dV$$

(b)
$$\iiint_{E} \underline{G} \cdot (\nabla \times \underline{F}) dV = \iint_{\partial E} (\underline{F} \times \underline{G}) \cdot d\underline{S} + \iiint_{E} \underline{F} \cdot (\nabla \times \underline{G}) dV$$

(46) Supposing that $\Sigma \subset \mathbb{R}^3$ is the boundary of a solid region and $\underline{F} \in \mathcal{C}^2(\mathbb{R}^3, \mathbb{R}^3)$, use Gauss' Theorem to show that

$$\iint_{\Sigma} (\nabla \times \underline{F}) \cdot d\underline{S} = 0.$$

- **(47)** For each surface, Σ , describe the boundary, $\partial \Sigma$, precisely.
 - (a) For $R = \{(x,y) \in \mathbb{R}^2 \mid x^2 + y^2 \le 1\}$, Σ is parametrized by $\underline{p} : R \to \mathbb{R}^3$,

$$\underline{p}(x,y) = (x,y,x^2).$$

(b) Σ is parametrized by $p : [0,1] \times [0,1] \to \mathbb{R}^3$,

$$p(x,y) = (x,y,xy).$$

(c) Σ is the part of the unit sphere in the first octant, parametrized by $\underline{p}:[0,\frac{\pi}{2}]\times[0,\frac{\pi}{2}]\to\mathbb{R}^3$,

$$p(\theta, \phi) = (\sin \theta \cos \phi, \sin \theta \sin \phi, \cos \phi).$$

(48) Let $\underline{F} \in \mathcal{C}^1(\mathbb{R}^3, \mathbb{R}^3)$ be a vector field and Σ a surface with parametrization $\underline{p} : R \to \mathbb{R}^3$. Define a 2-dimensional vector field $g : R \to \mathbb{R}^2$ by

$$g(\underline{u}) = (D_1 p_{\alpha}[\underline{u}], D_2 p_{\alpha}[\underline{u}]) F_{\alpha}(p[\underline{u}]).$$

(a) If $\underline{q}:[a,b]\to\mathbb{R}^2$ is a parametrization of ∂R , then $\underline{p}\circ\underline{q}$ is a parametrization of $\partial \Sigma$. Use this to show that

$$\oint_{\partial\Sigma} \underline{F}(\underline{x}) \cdot d\underline{x} = \oint_{\partial R} \underline{g}(\underline{u}) \cdot d\underline{u}.$$

- (b) Compute (i.e., simplify the expression for) curl *g*, the planar curl.
- (c) Use index notation to compute the triple product

$$(\nabla \times \underline{F})(p[\underline{u}]) \cdot (D_1p[\underline{u}] \times D_2p[\underline{u}])$$

and show that this equals curl $g(\underline{u})$.

- (d) Use Green's Theorem to show that Stokes' Theorem is true for \underline{F} and Σ .
- **(49)** Let Σ be the portion of the surface defined by $2z = x^2 + y^2$ below the plane z = 2, and oriented by the upward unit normal vector field. Sketch Σ and give a parametrization of this surface. If $\underline{F} : \mathbb{R}^3 \to \mathbb{R}^3$ is the vector field

$$\underline{F}(x, y, z) = (3y, -xz, yz^2),$$

compute $\iint_{\Sigma} (\nabla \times \underline{F}) \cdot d\underline{S}$ both directly and using Stokes' theorem.

(50) If $\Sigma \subset \mathbb{R}^3$ is a surface, and $\underline{b} \in \mathbb{R}^3$ is a fixed vector, show that

$$2\iint_{\Sigma}\underline{\mathbf{b}}\cdot\mathbf{d}\underline{\mathbf{S}}=\oint_{\partial\Sigma}(\underline{\mathbf{b}}\times\underline{\mathbf{x}})\cdot\mathbf{d}\underline{\mathbf{x}}.$$

(51) By calculating both of the integrals appearing in Stokes' formula, verify that Stokes' Theorem holds for each of the vector fields defined by

$$\underline{F}(x,y,z) = (z,x,y), \qquad \underline{G}(x,y,z) = (e^z,y,z), \qquad \underline{H}(x,y,z) = (x^2,z^2,y^2),$$

and each of the surfaces

(a) The rectangle Σ_1 with vertices (1,0,-1), (0,1,-1), (-1,0,1) and (0,-1,1), parametrized by $p:[0,1]\times[0,1]\to\mathbb{R}^3$,

$$\underline{p}(u,v) = (0,-1,1) + u(1,1,-2) + v(-1,1,0).$$

- (b) The triangle Σ_2 with vertices \underline{e}_1 , \underline{e}_2 , \underline{e}_3 , parametrized by $\underline{p}:[0,1]\times[0,1]\to\mathbb{R}^3$, p(u,v)=(1-u,u[1-v],uv).
- (c) The half-cylinder Σ_3 , parametrized by $\underline{p}:[0,\pi]\times[0,1]\to\mathbb{R}^3$, $\underline{p}(u,\nu)=(\cos u,\sin u,\nu).$
- (d) The surface Σ_4 parametrized by $\underline{p}:[0,1]\times[-1,1]\to\mathbb{R}^3$, $\underline{p}(u,\nu)=(u,u\nu,\nu^2).$