Math 131A Homework 5

Jiaping Zeng

9/3/2020

- 19.1 Which of the following continuous functions are uniformly continuous on the specified set? Justify your answer.
 - (a) $f(x) = x^{17} \sin x e^x \cos 3x$ on $[0, \pi]$: Uniformly continuous

Proof: Since f(x) is continuous on $[0, \pi]$ (by applying Theorem 17.4 to known continuous functions), it must also be uniformly continuous on $[0, \pi]$ by Theorem 19.2.

(c) $f(x) = x^3$ on (0,1): Uniformly continuous

Proof: Since x^3 is continuous on the closed interval [0,1], it must be uniformly continuous on (0,1) by Theorem 19.5.

(d) $f(x) = x^3$ on \mathbb{R} : Not uniformly continuous

Proof: By contradiction. Suppose x^3 is uniformly continuous on \mathbb{R} , let $\epsilon=1$ and $\delta>0$, then for $x,y\in\mathbb{R}$ we should have $|x-y|<\delta\implies \left|x^3-y^3\right|=|x-y|\cdot\left|x^2+xy+y^2\right|<1$. However, if we choose $x=\frac{2}{\delta}$ and $y=\frac{2}{\delta}+\frac{\delta}{2}$, we have $|x-y|=\frac{\delta}{2}<\delta$ and $|x^2+xy+y^2|=\frac{\delta^2}{4}+\frac{12}{\delta^2}+3$ which is greater than $\epsilon=1$. Therefore x^3 is not uniformly continuous on \mathbb{R} .

(e) $f(x) = \sin \frac{1}{x^2}$ on (0,1]: Not uniformly continuous

Proof: Let $(s_n) = \frac{1}{n}$, which is a Cauchy sequence on (0,1], then $(f(s_n)) = \sin n^2$ which is not convergent on (0,1] and therefore is not a Cauchy sequence. Therefore f(x) is not uniformly continuous by Theorem 19.4.

- 19.2 Prove each of the following functions is uniformly continuous on the indicated set by directly verifying the ϵ - δ property in Definition 19.1.
 - (a) f(x) = 3x + 11 on \mathbb{R}

Proof: |f(x) - f(y)| = |3x + 11 - 3y - 11| = 3|x - y|; Then if we take $\delta = \frac{\epsilon}{3}$ we have $|x - y| < \delta \implies 3|x - y| < 3\delta \implies |f(x) - f(y)| < \epsilon$.

(b) $f(x) = x^2$ on [0,3]

Proof: $|f(x) - f(y)| = |x^2 - y^2| = |x + y| \cdot |x - y|$; since $x, y \in [0, 3], |x + y| \le 6$. Then if we take $\delta = \frac{\epsilon}{6}$ we have $|x - y| < \delta \implies |f(x) - f(y)| \le 6|x - y| < \epsilon$.

19.4 (a) **Proof:** Assume f is not a bounded function on S. Since S is a bounded set, there exists a bounded sequence (s_n) in S with a Cauchy subsequence (s_{n_k}) by Theorem 11.5. Then, since f is uniformly continuous, $(f(s_{n_k}))$ is also a Cauchy sequence. However this contradicts with f not being a bounded function on S; therefore the assumption is false and f is a bounded function.

1

- (b) Since $\lim_{x\to 0} \frac{1}{x^2} = +\infty$, $\frac{1}{x^2}$ is not a bounded function on the bounded set (0,1). Then by the contrapositive of part (a), $\frac{1}{x^2}$ is not uniformly continuous on (0,1).
- 19.7 (a) Since f is continuous on $[0, \infty)$, it is continuous on [0, k]. Then f is also uniformly continuous on [0, k] by Theorem 19.2. Then since it is given that f is uniformly continuous on $[k, \infty]$, combining the two gives us that f is uniformly continuous on $[0, \infty]$.
- 20.14 Prove $\lim_{n\to 0^+} \frac{1}{x} = +\infty$ and $\lim_{n\to 0^-} \frac{1}{x} = -\infty$.
- $x \to 0^+$: **Proof:** Let M > 0 and choose $\delta = \frac{1}{M} > 0$, then $0 < x < \delta \implies f(x) = \frac{1}{x} > \frac{1}{\delta} = M$. Therefore $\lim_{n \to 0^+} \frac{1}{x} = +\infty$ by definition.
- $x \to 0^-$: **Proof:** Let M < 0 and choose $\delta = -\frac{1}{M} > 0$, then $-\delta < x < 0 \implies f(x) = \frac{1}{x} < -\frac{1}{\delta} = M$. Therefore $\lim_{n \to 0^-} \frac{1}{x} = -\infty$ by definition.
- 20.16 Suppose the limits $L_1 = \lim_{x \to a^+} f_1(x)$ and $L_2 = \lim_{x \to a^+} f_2(x)$ exists.
 - (a) Show if $f_1(x) \leq f_2(x)$ for all x in some interval (a,b), then $L_1 \leq L_2$. **Proof:** By definition, we can take a sequence (x_n) in (a,b) with limit a such that $\lim_{n\to\infty} f_1(x_n) = L_1$. Similarly, $\lim_{n\to\infty} f_2(x_n) = L_2$. Then since $f_1(x) \leq f_2(x)$, $\lim_{n\to\infty} f_1(x_n) \leq \lim_{n\to\infty} f_2(x_n)$ by Exercise 9.9(c). Therefore $L_1 \leq L_2$.
 - (b) Suppose that, in fact, $f_1(x) < f_2(x)$ for all x in some interval (a, b). Can you conclude $L_1 < L_2$? **Proof:** No; by counter example: $f_1(x) = x$ and $f_2(x) = x^2$ on (0, 1). Clearly $f_1(x) < f_2(x)$ for x > 0, yet $\lim_{n \to 0^+} f_1(x) = \lim_{n \to 0^+} f_2(x) = 0$.
- 28.2 Use the *definition* of derivative to calculate the derivatives of the following functions at the indicated points.
 - (a) $f(x)x^3$ at $x = 2 \implies f'(2) = \lim_{x \to 2} \frac{x^3 2^3}{x 2} = \lim_{x \to 2} (x^2 + 2x + 4) = 12$
 - (b) g(x) = x + 2 at $x = a \implies f'(a) = \lim_{x \to a} \frac{x + 2 a 2}{x a} = \lim_{x \to a} \frac{x + 2 a 2}$
- 28.11 Suppose f is differentiable at a, g is differentiable at f(a), and h is differentiable at $g \circ f(a)$. State and prove the chain rule for $(h \circ g \circ f)'(a)$.

 $(h \circ g \circ f)'(a) = h'(g \circ f(a)) \cdot g'(f(a) \cdot f'(a)),$ **Proof:** Let $y(x) = (g \circ f)(x)$, then by substitution and Chain Rule we have $y(a) = (g \circ f)(a)$ and $y'(a) = g'(f(a)) \cdot f'(a)$. Again by substitution and Chain Rule, $(h \circ g \circ f)'(a) = (h \circ y)'(a) = h'(y(a)) \cdot y'(a) = h'(g \circ f(a)) \cdot g'(f(a)) \cdot f'(a)$.

- 28.14 Suppose f is differentiable at a. Prove
 - (a) $\lim_{h\to 0} \frac{f(a+h)-f(a)}{h} = f'(a)$

Proof: Since f is differentiable at a, we have $f'(a) = \lim_{x \to a} \frac{f(x) - f(a)}{x - a}$ by definition. Then we can substitute in $h = x - a \implies x = a + h$, which gives us $f'(a) = \lim_{h \to 0} \frac{f(a+h) - f(a)}{h}$.

(b) $\lim_{h\to 0} \frac{f(a+h)-f(a-h)}{2h} = f'(a)$

Proof: By algebra as follows, using part (a):

$$\begin{split} &\lim_{h\rightarrow 0}\frac{f(a+h)-f(a-h)}{2h}\\ &=\lim_{h\rightarrow 0}\frac{f(a+h)-f(a)-f(a-h)+f(a)}{2h} \end{split}$$

$$= \frac{1}{2} \lim_{h \to 0} \frac{f(a+h) - f(a)}{h} + \frac{1}{2} \lim_{(-h) \to 0} \frac{f(a+(-h)) - f(a)}{(-h)}$$
$$= \frac{1}{2} f'(a) + \frac{1}{2} f'(a)$$
$$= f'(a)$$

- 29.3 Suppose f is differentiable on \mathbb{R} and f(0) = 0, f(1) = 1 and f(2) = 1.
 - (a) Show $f'(x) = \frac{1}{2}$ for some $x \in (0, 2)$.

Proof: Let a=0 and b=2, then by Mean Value Theorem there exists at least one x in (0,2) such that $f'(x) = \frac{f(b) - f(a)}{b - a} = \frac{1 - 0}{2 - 0} = \frac{1}{2}$.

29.7 (a) Suppose f is twice differentiable on an open interval I and f''(x) = 0 for all $x \in I$. Show f has the form f(x) = ax + b for suitable constants a and b.

Proof: Let g(x) = f'(x), then g is a constant function on (a, b) by Corollary 29.4, i.e. g(x) = f'(x) = a for some $a \in \mathbb{R}$. Now let h(x) = f(x) - ax, then we have h'(x) = f'(x) - a = 0; again by Corollary 29.4, h(x) is also a constant function, i.e. h(x) = f(x) - ax = b for some $b \in \mathbb{R}$. Therefore by rearranging the last equation we have f(x) = ax + b.

(b) Suppose f is three times differentiable on an open interval I and f''' = 0 on I. What form does f have? Prove your claim.

Proof: Let g(x) = f'(x), then g''(x) = f'''(x) = 0 and therefore g(x) = f'(x) = ax + b for $b, c \in \mathbb{R}$ by part (a). Now let $h(x) = f(x) - \frac{1}{2}ax^2 - bx$, then using Power Rule we have h'(x) = f'(x) - ax - b = 0. Then h(x) is a constant function, i.e. $h(x) = f(x) - \frac{1}{2}ax^2 - bx = c$ for some $c \in \mathbb{R}$. By rearranging the last equation we have $f(x) = \frac{1}{2}ax^2 + bx + c$; note that $\frac{1}{2}a$ is simply another arbitrary constant in \mathbb{R} , therefore upon renaming we have $f(x) = ax^2 + bx + c$.

29.13 Prove that if f and g are differentiable on \mathbb{R} , if f(0) = g(0) and if $f'(x) \leq g'(x)$ for all $x \in \mathbb{R}$, then $f(x) \leq g(x)$ for $x \geq 0$.

Proof: Let h(x) = g(x) - f(x), then h is differentiable by Theorem 28.3(ii) and h'(x) = g'(x) - f'(x). Since $f'(x) \le g'(x)$, we have $h'(x) \ge 0$, then h is increasing by Corollary 29.7(iii). Then $x_1 < x_2 \implies h(x_1) \le h(x_2)$ for all $x_1, x_2 \in \mathbb{R}$ by definition of increasing function. If we take $x_1 = 0$ and x_2 to be an arbitrary $x \ge 0$, we have $x \ge 0 \implies h(x) \ge h(0) \implies g(x) - f(x) \ge g(0) - f(0) = 0 \implies f(x) \le g(x)$.

P1 Let f be a differentiable function on an interval (a, b). Prove that if f'(x) < 0 for all $x \in (a, b)$, then f is strictly decreasing on (a, b).

Proof: Take arbitrary x_1, x_2 such that $a < x_1 < x_2 < b$. Then by Mean Value Theorem we have $\frac{f(x_2) - f(x_1)}{x_2 - x_1} = f'(x) < 0$ for some $x \in (a, b)$. Since the denominator is positive as $x_1 < x_2$, the numerator must be negative to satisfy f'(x) < 0; i.e. $f(x_2) - f(x_1) < 0 \implies f(x_1) > f(x_2)$. Then f is strictly decreasing by definition.

P2 Let a < b be reals. Let f be a function defined on (a, b), and let $x_0 \in (a, b)$. Prove that if f is differentiable at x_0 and $f'(x_0) > 0$, then there is some $x > x_0$ such that $f(x) > f(x_0)$.

Proof: By definition of derivative, we have $f'(x_0) = \lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0} > 0$. Let $x_n = x_0 + \frac{1}{n}$, then (x_n) is a sequence converging to x_0 and $x_n > x_0$. Then there exists an n such that $\frac{f(x_n) - f(x_0)}{x_n - x_0} > 0$. Since $x_n > x_0 \implies x_n - x_0 > 0$, we must also have $f(x_n) - f(x_0) > 0 \implies f(x_n) > f(x_0)$.

P3 Suppose that f and f' are differentiable functions on \mathbb{R} , and there are $x_1 < x_2 < x_3$ so that $f(x_1) > f(x_2)$ and $f(x_3) > f(x_2)$. Prove that there is a point x_0 such that $f''(x_0) > 0$.

Proof: By Mean Value Theorem, there exists an x_a in (x_1, x_2) such that $f'(x_a) = \frac{f(x_2) - f(x_1)}{x_2 - x_1}$. Since $x_1 < x_2$ and $f(x_1) > f(x_2)$, $f'(x_a) < 0$. Similarly, there exists an x_b in x_2, x_3 such that $f'(x_b) = \frac{f(x_3) - f(x_2)}{x_3 - x_2}$, implying that $f'(x_b) > 0$. Combining the two above and using the Mean Value Theorem once more, there exists an $x \in (x_a, x_b)$ such that $f''(x) = \frac{f''(x_b) - f''(x_a)}{x_b - x_a}$. Since $f''(x_a) < 0 < f''(x_b)$, $f''(x_b) - f''(x_a) > 0$. In addition, since $x_a \le x_2 \le x_b$, $x_b - x_a > 0$. Therefore both the numerator and denominator are positive and f''(x) > 0.