Isomorphism Theorems

Go Back

Def. Projection

Let $N \triangleleft G$. Then

is an epimorphism and ${\rm Ker}\ \pi=N.$ Such π is called the **canonical epimorphism** or **(natural) projection**. Therefore, unless otherwise stated, $G\to G/N$ always denotes the cannonical epimorphism.

▶ Proof

Thm. Fundamental Theorem on Homomorphisms

Let $\varphi:G o H$ be a group homomorphism and $N ext{ } ext{$\leq$ }G.$ Then there exists an unique homomorphism $ar{\varphi}$ where

$$egin{array}{lll} ar{arphi}:&G/N&
ightarrow&H\ &aN&\mapsto&arphi(a) \end{array}$$

and

- $\varphi(G) = \bar{\varphi}(G/N)$,
- $\operatorname{Ker} \bar{\varphi} = (\operatorname{Ker} \varphi)/N$

▶ Proof

Thm. First Isomorphism Theorem

Let arphi:G o H be a group homomorphism. Then

- 1. Ker $\varphi \leq G$, so kernel of any group homomorphism is normal,
- 2. $\varphi(G) \leq H$, so image of any group homomorphism is a subgroup,
- 3. $\varphi(G)\cong G/(\operatorname{Ker}\varphi)$, so if φ is an epimorphism, then $H\cong G/(\operatorname{Ker}\varphi)$.
- ▶ Proof

(Figure 1) First Isomorphism Theorem

Thm. Second Isomorphism Theorem

This theorem is also called the **Diamond Isomorphism Theorem** or **Parallelogram Theorem** due to lattice it draws.

Let $B \leq G$ and $A \leq N_G(B)$, so that A is a subgroup of the *normalized* B. Then, noting A is normal

- 1. $AB \leq G$
- 2. B riangleq AB,
- 3. $A\cap B ext{ } ext{ } ext{ } ext{ } ext{ } A$, and
- 4. $AB/B \cong A/A \cap B$.
- ▶ Proof

(Figure 2) Second Isomorphism Theorem

Thm. Third Isomorphism Theorem

Let $K \unlhd H \unlhd G$, then

1. K/H riangleq G/H, and

2. $(G/K)/(H/K) \cong G/H$.

▶ Proof