ЦИКЛ СЕМИНАРОВ «ВЫСШЕЕ ИНЖЕНЕРНОЕ ОБРАЗОВАНИЕ В НГТУ: ВЫЗОВЫ, ПРОБЛЕМЫ, НАПРАВЛЕНИЯ ТРАНСФОРМАЦИИ»

Тематика семинара: «Информационные технологии и основы программирования при реализации инженерных образовательных программ»

Тема доклада: «Цифровые двойники в обучении студентов и переподготовке специалистов»

Спикер: Петрищев Алексей Васильевич, к.т.н., доцент АЭЭС ФЭН НГТУ

Основные положения доклада:

- 1) Переход электроэнергетики РФ на новый технологический уклад
- 2) Новые (интеллектуальные) технологии управления энергообъектами
- 3) Примеры действующих и проектируемых энергообъектов
- 4) Электродинамические и цифровые двойники
- 5) Технологические и цифровые модели двойника
- 6) Информационные технологии и основы программирования цифровых двойников при реализации образовательных программ ФЭН НГТУ

1) Переход электроэнергетики РФ на новый технологический уклад

2) Новые (интеллектуальные) технологии управления энергообъектами

«Стратегическим направлением развития системы управления является существенное повышение степени автоматизации контроля и управления (в качестве «асимптотической» цели рассматривается полная автоматизация управления режимами энергосистем) с увеличением степени адаптивности автоматического управления и соответствующим развитием алгоритмов и технических средств управления.»

[Концепция ИЭЭС с ААС, Версия 5.0]

Возможные направления применения интеллектуального управления в ЭЭС

- Микросеть GRID
- Диагностика неисправностей и уведомление в реальном времени
- Автоматическая реконфигурация сети при КЗ
- Локализация неисправности оборудования в энергосистеме
- Управление спросом
- Экономические механизмы управления спросом
- Распределенная когенерация с использованием сетевых технологий
- Прогноз вероятности аварий на основе технологий искусственного интеллекта и баз знаний
- Мониторинг состояния энергосистемы по его предистории из базы знаний в реальном времени
- Мониторинг запаса статической устойчивости в реальном времени
- Ситуационное ассоциативное управление режимом с использованием предистории состояния энергосистемы
- Интеллектуальные системы управления спросом на основе МАС технологий
- Распределенные технологии моделирования, оптимизации и управления на основе вычислительных GRID-сетей
- «Самовосстановление» автоматизированного энергетического комплекса
- Интеллектуальные методы защиты от киберугроз и техногенных аварий
- Интеллектуальные системы управления ТЭК города

2) Новые (интеллектуальные) технологии управления энергообъектами

Технология интеллектуального управления режимами самобалансирующихся локальных интеллектуальных энергосистем на основе синхронной малой генерации (Минигрид), интегрированных в существующие электрические сети централизованного энергоснабжения, разработанная в НГТУ.

Обобщённый объект Минигрид

Синхронная электрогенерация

Когенерация (электроэнергия и тепло)

Газопоршневые установки (ГПУ) или газотурбинные установки (ГТУ)

Установленная мощность генераторов ~(10 − 50) МВт

Необходимость технологии интеллектуального управления режимами Минигрид

Изолированный режим Минигрид:

Надёжность	1. Частые отключения энергоблоков автоматикой при сбросах или набросах нагрузки, в режимах минимальной нагрузки.	
	2. Погашение нагрузки на время восстановления.	
Экономичность	1. Низкий КИУМ генерации ввиду высокой неравномерности	
	суточного профиля нагрузки,	
	2. Повышенный расход газа и ресурса ГПУ ввиду непрерывного	
	регулировании частоты.	
Качество	Нестабильность частоты	
Экологичность	Повышенный расход газа при непрерывном поддержании баланса	
	активной мощности путем регулирования частоты	

Интеграция Минигрид с внешней энергосистемой преследует цели получения положительных системных эффектов по надежности энергоснабжения, качеству электрической энергии, экономичности и экологичности работы электростанции Минигрид, а также создания положительных системных эффектов для внешней сети.

Основная идея технологии интеллектуального управления режимами Минигрид

Минигрид предполагает параллельную работу с внешней сетью в одном из трех режимов:

- 1. Избыточный с выдачей значимой мощности во внешнюю сеть (Рвыд = Рзад);
- 2. Сбалансированный без выдачи значимой мощности во внешнюю сеть (Рвыд = 0);
- 3. Дефицитный с потреблением значимой мощности из внешней сети (Рвыд = Рзад).

Энергоблоки Минигрид в зависимости от общего баланса активной мощности динамически делятся на две группы:

- 1. Группа А или «Балансирующие энергоблоки» состоит из минимального числа энергоблоков, достаточного для поддержания баланса мощности собственной нагрузки в текущем режиме.
- 2. Группа В или «Свободные энергоблоки» состоит из энергоблоков с избыточной для покрытия собственной нагрузки мощностью, что позволяет направлять их мощность во внешнюю электрическую сеть.

Специальные способы управления режимами Минигрид

- Экстренное противоаварийное сбалансированное отделение Минигрид от внешней сети при угрозах нарушения устойчивости параллельной работы или возникновения опасных ударных моментов на валах генераторов электростанции.
- Поддержание постоянной готовности к спорадическому противоаварийному сбалансированному отделению Минигрид от внешней электрической сети путем совместного выбора состава работающего генерирующего оборудования и сечения для отделения.
- Создание наиболее благоприятных режимов для генерирующего оборудования электростанции Минигрид по экономичности и использованию эксплуатационного ресурса.
- Автоматическое восстановление нормального режима параллельной работы Минигрид с внешней сетью при возникновении соответствующих ему условий.
- Специализированное автоматическое регулирование частоты и обменной мощности.

(Автооператорная) сеть переходов между классами состояния Минигрид

Технология интеллектуального управления режимами Минигрид (патенты)

- 1. Патент RU 2662728 C2. Способ противоаварийного управления режимом параллельной работы синхронных генераторов в электрических сетях: заявл. 06.12.2016; опубл. 30.07.2018. Фишов А.Г., Мукатов Б.Б., Марченко А.И.; заявитель Фишов А.Г.; патентообладатель Новосибирский государственный технический университет.
- 2. Патент RU 2697510 C1. Способ управления составом и загрузкой генераторов электростанции с собственными нагрузками, работающей изолированно и параллельно с приемной энергосистемой: заявл. 10.04.2018; опубл. 15.08.2019. Фишов А.Г., Семендяев Р.Ю., Ивкин Е.С.
- 3. Патент RU 2686079 C1. Способ синхронизации частей электрической сети: заявл. 30.11.2017; опубл. 24.04.2019. Фишов А.Г., Армеев Д.В., Сердюков О.В.
- 4. Патент RU 2752248 C1. Способ управления режимом параллельной работы синхронных генераторов в электрических сетях: заявл. 07.12.2020; опубл. 23.07.2021. Фишов А.Г., Какоша Ю.В.
- 5. Патент RU 2752693 C1. Способ удаленной синхронизации и восстановления нормального режима аварийно разделенной электрической сети с генераторами: заявл. 28.09.2020; опубл. 30.07.2021. Фишов А. Г., Гуломзода А. Х.

3) Примеры действующих и проектируемых энергообъектов (Минигрид)

Действующий Минигрид жилмассива «Берёзовый» г. Новосибирск:

- 1. Пять газопоршневых установок (ГПУ) Caterpillar по 2 МВт.
- 2. Две резервных дизель-генераторных установки (ДГУ) по 1,6 МВт.
- 3. Суммарная мощность теплогенерации за счет когенерации тепла и газовых котлов ~ 50 МВт.

Этап	Длительность	Наименование	Содержание
1	2015 – 2019	CICTOORHOU DEWINN	Создание системы энергоснабжения жилмассива.
			Минигрид полностью изолирована от внешней сети.
2	2019 – 2021	с резервированием от внешней сети	Подключение Минигрид к внешней сети.
			Параллельная работа генераторов Минигрид с внешней
			сетью запрещена.
3	2021 – н.в.	Режим параллельной работы	Параллельная работа генераторов Минигрид с внешней
		с правом выдачи мощности	сетью и обмен мощностью разрешены.

Минигрид «Берёзовое». APM диспетчера Минигрид (ЛСЭ) ПТК «Smart Торнадо»

Возможность автооператорного управления

Видеокадр «Режим ЛСЭ»

Проектируемый энергообъект (Минигрид)

Минигрид строящегося жилмассива «Радуга Сибири» Установленная мощность электрогенераторов 24 МВт

4) Электродинамические и цифровые двойники

Электродинамическая модель Минигрид НГТУ с ПТК «Smart Tophago»

Цифровой двойник Минигрид. Общий доступ, защита, коммерциализация

Симулятор размещен на терминальном сервере Math.

Файл подключения к серверу

https://cloud.nstu.ru/files/Cloud-Math.rdp?v6.

Для входа на сервер укажите данные от своей единой учетной записи НГТУ.

На сервере Симулятор размещен по пути:

C:\Program Files (x86)\v0.6.5dd.

Лицензионная защита обеспечивается аппаратными и программными ключами GUARDANT (АО «АКТИВ-СОФТ»).

Цифровой двойник Минигрид. Классы решаемых задач

Классы решаемых задач:

- демонстрация положительных системных эффектов, возникающих при параллельной работе Минигрид с внешней сетью (надёжность, экономичность, качество энергоснабжения);
- демонстрация выполнения специальных способов управления режимами Минигрид:
 - экстренное противоаварийное сбалансированное отделение Минигрид от внешней сети при угрозах нарушения устойчивости параллельной работы или возникновения опасных ударных моментов на валах генераторов электростанции;
 - □ поддержание постоянной готовности к спорадическому противоаварийному отделению Минигрид от внешней электрической сети путем совместного выбора состава работающего генерирующего оборудования и сечения для деления;
 - о создание наиболее благоприятных режимов для генерирующего оборудования Минигрид по экономичности и использованию эксплуатационного ресурса;
 - о автоматическое восстановление нормального режима параллельной работы Минигрид с внешней сетью при возникновении соответствующих ему условий;
 - о специализированное автоматическое регулирование частоты и обменной мощности.

Цифровой двойник Минигрид (Примеры видеокадров)

Сопоставление цифрового двойника с электродинамической и технологической моделями

«Представленный цифровой двойник Минигрид с инновационным режимном и противоаварийном управлении позволяет во всех эксплуатационных режимах качественно и количественно с достаточной для подготовки оперативного персонала степенью достоверности моделировать поведение такой энергосистемы.

Опыт применения цифрового двойника Минигрид для подготовки и аттестации дежурного персонала реального объекта, а также обучения магистрантов подтвердил его эффективность.» [Статья сдана в издательство, 2023 г.]

5) Технологические и цифровые модели двойника (сокращённый вариант)

Алгоритм и структура программы

6) Информационные технологии и основы программирования при реализации образовательных программ ФЭН НГТУ

ФГОС ВО – бакалавриат по направлению подготовки 13.03.02 Электроэнергетика и электротехника

Наименование категории (группы) общепрофессиональных компетенций	Код и наименование общепрофессиональной компетенции выпускника
Информационная культура	ОПК-1. Способен понимать принципы работы современных информационных технологий и использовать их для решения задач профессиональной деятельности ОПК-2. Способен разрабатывать алгоритмы и компьютерные программы, пригодные для практического применения
Фундаментальная подготовка	ОПК-3. Способен применять соответствующий физико-математический аппарат, методы анализа и моделирования, теоретического и экспериментального исследования при решении профессиональных задач
Теоретическая и практическая профессиональная подготовка	ОПК-4. Способен использовать методы анализа и моделирования электрических цепей и электрических машин ОПК-5. Способен использовать свойства конструкционных и электротехнических материалов в расчетах параметров и режимов объектов профессиональной деятельности
	ОПК-6. Способен проводить измерения электрических и неэлектрических величин применительно к объектам профессиональной деятельности

Цифровой двойник Минигрид. Классы учебных задач для ОПК-1 и ОПК-2

Разработка:

- структур хранения исходных данных
- вычислительных алгоритмов
- структуры программы
- видеокадров
- реестра сообщений оператору

Последовательность:

- ...Алгоритмизация
- ...Кодирование
- ...Отладка
- ...Тестирование
- ...Документирование

Цифровой двойник Минигрид. Адаптация задач. Редукция схемы Минигрид

Сокращенно число элементов:

- источников,
- потребителей,
- связей.

Схема замещения подготовлена к расчёту:

- представлена в виде схемы,
- пронумерованы ветви, узлы, источники ЭДС,
- выбраны направления тока в ветвях.

Цифровой двойник Минигрид. Адаптация задач.

Руководство по оформлению расчётных данных Минигрид

Дано пошаговое руководство по составлению матриц A, Y, E, J, U системы линейных алгебраических уравнений для расчёта установившегося режима сети:

$$AYA^{T}U_{0} = -A(J + YE)$$

Цифровой двойник Минигрид. Сокращение числа задач

Исключены задачи:

- динамического моделирования (движения ротора генератора, действия системы возбуждения),
- моделирования защиты и автоматики,
- моделирования режимов управления,

- ...

Цифровой двойник Минигрид. Адаптация задач.

Референсные методы расчётов для тестирования

Решение вычислительных задач способами:

- 1. «эталонный 1» с использованием встроенных функций «калькулятора» Mathcad,
- 2. «эталонный 2» с использованием известных библиотек на изучаемом языке программирования высокого уровня,
- 2. собственный создание собственных библиотек вычислительных функций с пошаговым выполнением «прямого» и «обратного» хода по методу Гаусса для СЛАУ, умножения, сложения и транспонирования матриц на языке программирования высокого уровня.

Информатика и програмирование

Учебные материалы

В мае 2023 г. в издательстве НГТУ выходит межкафедральное учебное пособие «Информационные технологии и основы программирования в электроэнергетике»

В ноябре 2023 г. выходит вторая часть.

Исполнители и участники

