12/13/2011

There is a total of **100 possible points** in this exam + a **bonus** question of up to **10 points**.

PLEASE SHOW ALL WORK. Credit WILL NOT be given if a reasonable amount of work is not shown and partial credit cannot be awarded unless work is shown.

You are **ALLOWED** to use any **NOTES** or the **BOOK** from the class during the exam, as well as a **CALCULATOR**.

NO CELL PHONES OR COMPUTERS.

You will be given **2:30** mins to complete the exam. I will provide updates to time on the board.

Take your time, try your best. GOOD LUCK!!!

DO ALL WORK ON A SEPARATE SHEET and bring those with you when you turn in the exam.

NAME:		
ID:		

1)	(5 points) CALCULATE the SAMPLE STANDARD DEVIATION of the following sample data. Note that the mean of the observations is 6 and the sum of the observations is 48.											
			5	7	6	10	3	2	4	11		
2)	-									n and including 0 and 3 . e. ie $P(0) = P(1) = P(2) = 0$		
	This is where the probability of all integers in the range are the same, ie $P(0) = P(1) = P(2) = P(3)$. What is the common probability of each?											
3)	-		-				_		_	out of 6 th grade math at		
				U	•	-			•	ormally distributed ts was taken and their		
	IQs	s are listed	below.									
		115	130	145	105	125	108	105	135	112		
	,	(2,)	TATI	.1	MDIE	#FIANT (1	1.17	2	2		
	a)	(3 points)	What is	s the SA	MPLE N	IEAN of	the obs	erved I	2 scores	s?		
	b)	(10 points	s) Creat	e a 95 %	CONFI	DENCE	INTERV	AL for	the mea	n IQ score of the kids.		
	c)	(5 points) probabil i	=		t means	to be 95	5% Conf	ident, ie	what i	s happening with a		
	d)	(4 points) situation?		assump	tion tha	t the sa	mple m	ean is d	istribut	ed normally met in this		
	e)	approxim	ately a i	margin (VEL is <u>I</u>	of error <i>NCREAS</i>	not too ED TO	far from 99% , wl	the cur	rent on	nt to maintain e found. If the ne NEW SAMPLE SIZE		

4) (40 points) You are trying to determine if a previous study which claimed that 65% of students go home for thanksgiving break was biased to underestimate the true value. So you want to conduct your own study to determine if 65% is too low of a value.

0 'YES'	10 'YES'	20 'YES'	30 'YES'	40 'NO'	50 'YES'	60 'YES'	70 'YES'	80 'YES'	90 'YES'
1 'NO'	11 'YES'	21 'YES'	31 'NO'	41 'YES'	51 'NO'	61 'YES'	71 'YES'	81 'YES'	91 'YES'
2 'YES'	12 'YES'	22 'NO'	32 'YES'	42 'NO'	52 'YES'	62 'YES'	72 'YES'	82 'YES'	92 'NO'
3 'YES'	13 'YES'	23 'YES'	33 'YES'	43 'YES'	53 'YES'	63 'NO'	73 'YES'	83 'YES'	93 'YES'
4 'YES'	14 'NO'	24 'YES'	34 'YES'	44 'YES'	54 'YES'	64 'YES'	74 'YES'	84 'YES'	94 'YES'
5 'YES'	15 'YES'	25 'YES'	35 'YES'	45 'NO'	55 'NO'	65 'YES'	75 'YES'	85 'YES'	95 'YES'
6 'NO'	16 'NO'	26 'YES'	36 'YES'	46 'YES'	56 'YES'	66 'YES'	76 'NO'	86 'YES'	96 'YES'
7 'YES'	17 'YES'	27 'YES'	37 'YES'	47 'NO'	57 'YES'	67 'YES'	77 'YES'	87 'YES'	97 'NO'
8 'YES'	18 'YES'	28 'YES'	38 'YES'	48 'YES'	58 'YES'	68 'YES'	78 'NO'	88 'YES'	98 'YES'
9 'YES'	19 'NO'	29 'NO'	39 'YES'	49 'YES'	59 'NO'	69 'NO'	79 'YES'	89 'YES'	99 'NO'

- a) (4 points) What are you Null and Alternative Hypotheses?
- b) (4 points) You want to conduct a **Simple Random Sample without replacement** from the above population. You are randomly selecting 16 observations, and I have selected the first 12 for you below. **Finish the sampling procedure** using **Row 9** of the attached **Random Number Table**.

- c) (4 points) Now **CALCULATE** your observed sample statistic \hat{p} .
- d) (5 points) You are asked to test at the 5% level. Recall that $5\% = \alpha = \text{Probability of a}$ Type I error. **Interpret what a Type I error is in this situation**.
- e) (7 points) Calculate your **TEST STATISTIC** for this hypothesis test.
- f) (5 points) Calculate the **P-VALUE** for the test statistic you found in part e).
- g) (6 points) Based on your p-value and α = 5%, what is your **DECISION**? Provide an **INTERPRETATION** of your results.
- h) (5 points) In order for this test to be valid, we assume that $\hat{p} \sim Normal$.

Our check for this is that

$$np > 5$$
 $n(1-p) > 5$

which are satisfied.

Multiple values for \hat{p} given a sample size of 16 are provided below. Since our assumptions are valid, they should show evidence of a normal distribution. **Given the data provided below, CONSTRUCT A HISTOGRAM** of \hat{p} values and **COMMENT** on whether or not you can infer if \hat{p} does **FOLLOW A NORMAL DISTRIBUTION** with a sample size of 16.

Range of \hat{p} values	Frequency
$04375 \le \hat{p} < 0.50$	1
$0.50 \le \hat{p} < 0.5625$	3
$0.5625 \le \hat{p} < 0.625$	4
$0.625 \le \hat{p} < 0.6875$	10
$0.6875 \le \hat{p} < 0.75$	7
$0.75 \le \hat{p} < 0.8125$	3
$0.8125 \le \hat{p} < 0.875$	2

5) (20 points) Consider the operation of opening a new business. Assume that some possible outcomes of your business are considered as events.

Event A: Your company makes a profit within the first 5 years

Event B: Your company goes out of business within the first 5 years

Event C: Your company is purchased by a competitor within the first 5 years

And the probabilities associated with these events are as follows.

$$P(A) = 0.55$$
 $P(B) = 0.60$ $P(C) = 0.30$

- a) (6 points) Based on the probabilities above, **IS IT POSSIBLE** that events **A** and **B** are **MUTUALLY EXCLUSIVE? Why or why not?**
- b) (4 points) You are provided additional information that $P(A \mid C) = 0.70$. What is the probability that your company makes a profit <u>AND</u> is purchased by a competitor within the first 5 years?
- c) (4 points) Are the events **A** and **C** INDEPENDENT? Why or why not?
- d) (6 points) What is the probability that your company doesn't make a profit within the first 5 years \underline{AND} your company isn't purchased by a competitor within the first five years. (Hint: this is asking for the **complement of** $P(A \cup C)$.)

Bonus Question (Up to 10 points)

<u>PICK ONE</u> of the following topics and tell me everything you know about it.

a) Binomial Random Variables

b) Bias in Sampling

c) Experimental Design

d) Boxplots and Modified Boxplots

														
Col. Line	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)	(12)	(13)	(14)
1 1	10460	15011	01536	02011	81647	91646	691 79	14194	62590	36207	20969	99570	91291	90700
2	22368	46573	25595	85393	30995	891 98	27982	53402	93965	34095	52666	19174	39615	99505
3	241 30	48360	22527	97265	76393	64809	15179	24830	49340	32081	30680	19655	63348	58629
4	421 67	93093	06243	61680	07856	16376	39440	53537	71341	57004	00849	74917	97758	16379
5	37570	39975	81837	16656	061 21	91782	60468	81305	49684	60672	14110	06927	01263	54613
ı ı	0.0.0	00010	0,00,	10000	00121	01102	00100	0,000	10001	00012	14110	00021	01200	01010
6	77921	06907	11008	42751	27756	53498	18602	70659	90655	15053	21916	81825	44394	42880
ž	99562	72905	56420	69994	98872	31016	711 94	18738	44013	48840	63213	21069	10634	12952
8	96301	91977	05463	07972	18876	20922	94595	56869	69014	60045	18425	84903	42508	32307
9	89579	14342	63661	10281	17453	181 03	57740	84378	25331	12566	58678	44947	05585	56941
10	85475	36857	53342	53988	53060	59533	38867	62300	081 58	17983	16439	11458	18593	64952
'''	00470	30001	00042	33300	33060	00000	30001	62300	001 00	11303	10433	11430	10000	04332
11	28918	69578	88231	33276	70997	79936	56865	05859	901 06	31595	01547	85590	91610	781 88
12	63553	40961	48235	03427	49626	69445	18663	72695	521 80	20847	12234	90511	33703	90322
13	09429	93969	52636	92737	88974	33488	36320	17617	30015	08272	8411	271 56	30613	74952
14	10365	611 29	87529	85689	48237	52267	67689	93394	01511	26358	851 04	20285	29975	89868
15	07119	97336	71048	081 78	77233	13916	47564	81056	97735	85677	29372	74461	28551	90707
1.0	ELOOF	12705	E1 0.01	E1 2 E 0	774.50	10200	00750	921.44	49442	E20.00	70000	620.00	750.01	40710
16	51085	12765	51821	51259	77452	16308	60756	921 44	49442	53900	70960	63990	75601	40719
17	02368	21382	62404	60268	89368	19885	55322	44819	01188	65255	64835	44919	05944	551 57
18	01011	54092	33362	94904	31273	041 46	18594	29852	71585	85030	51132	01915	92747	64951
19	521 62	53916	46369	58586	23216	14513	831 49	98736	23495	64350	94738	17752	351 56	35749
20	07056	97628	33787	09998	42698	06691	76988	13602	51851	461 04	88916	19509	25625	581 04
	40000								F04.00					
21	48663	91245	85826	14346	091 72	301 68	90229	04734	591 93	221 78	30421	61666	99904	32812
22	541 64	58492	00421	741 03	47070	25306	76468	26384	581 51	06646	21524	15227	96909	44592
23	32639	32363	05597	24200	13363	38005	94342	28728	35806	06912	17012	641 61	18296	22851
24	29334	27001	87637	87308	58731	00256	45834	15398	46557	411 35	10367	07684	361 88	18510
25	02488	33062	28834	07351	19731	92420	60952	61280	50001	67658	32586	86679	50720	94953
26	81525	72295	04839	96423	24878	82651	66566	14778	76797	14780	13300	87074	79666	95725
27	29676	20591	68086	26432	46901	20849	89768	81536	86645	12659	92259	571 02	80428	25280
28	00742	57392	39064	66432	84673	40027	32832	61362	98947	96067	64760	64584	96096	98253
29	05366	04213	25669	26422	44407	44048	37937	63904	45766	661 34	75470	66520	34693	90449
30	91921	26418	64117	94305	26776	25940	39972	22209	71500	64568	91402	42416	07844	69618
31	00582	04711	87917	77341	42206	351 26	74087	99547	81817	42607	43808	76655	62028	76630
32	00725	69884	62797	561 70	86324	88072	76222	36086	84637	931 61	76038	65855	77919	88006
33	69011	65795	95876	55293	18988	27354	26575	08625	40801	59920	29841	801 50	12777	48501
34	25976	57948	29888	88604	67917	48708	18912	82271	65424	69774	33611	54262	85963	03547
35	09763	83473	73577	12908	30883	18317	28290	35797	05998	41688	34952	37888	38917	88050
36	91567	42595	27958	301 34	04024	86385	29880	99730	00036	84855	29080	09250	79656	73211
37	17955	56349	90999	491 27	20044	59931	06115	20542	18059	02008	73708	83517	361 03	42791
38	46503	18584	18845	49618	02304	51038	20655	58727	281 68	15475	56942	53389	20562	87338
39	921 57	89634	94824	781 71	84610	82834	09922	25417	441 37	48413	25555	21246	35509	20468
40	14577	62765	35605	81263	39667	47358	56873	56307	61607	45918	89686	201 03	77490	18062
41	98427	07523	00062	64270	01638	92477	66969	98420	04880	45585	46565	041 02	46880	45709
42	34914	63976	88720	82765	34476	17032	87589	40836	32427	70002	70663	88863	77775	69348
43	70060	28277	39475	46473	23219	53416	94970	25832	69975	94884	19661	72828	001 02	66794
44	53976	54914	06990	67245	68350	82948	11398	42878	80287	88267	47363	46634	06541	97809
45	76072	29515	40980	07391	58745	25774	00987	80059	39911	961 89	41151	14222	60697	59583
46	90725	52210	83974	29992	65831	38857	50490	83765	55657	14361	31720	57375	56228	41546
47	64364	67412	33339	31926	14883	24413	59744	92351	97473	89286	35931	04110	23726	51900
48	08962	00358	31662	25388	61642	34072	81249	35648	56891	69352	48373	45578	78547	81788
49	95012	68379	93526	70765	10592	04542	76463	54328	02349	17247	28865	14777	62730	92277
50		10493	20492	38391	91132	21999	59516	81652	271 95	48223	46751	22923	32261	85653

Standard Normal Cumulative Probability Table

Cumulative probabilities for NEGATIVE z-values are shown in the following table:

Z	0.00	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09
-3.4	0.0003	0.0003	0.0003	0.0003	0.0003	0.0003	0.0003	0.0003	0.0003	0.0002
-3.3	0.0005	0.0005	0.0005	0.0004	0.0004	0.0004	0.0004	0.0004	0.0004	0.0003
-3.2	0.0007	0.0007	0.0006	0.0008	0.0006	0.0006	0.0006	0.0005	0.0005	0.0005
-3.1	0.0010	0.0009	0.0009	0.0009	0.0008	0.0008	0.0008	0.0008	0.0007	0.0007
-3.0	0.0013	0.0013	0.0013	0.0012	0.0012	0.0011	0.0011	0.0011	0.0010	0.0010
-2.9	0.0019	0.0018	0.0018	0.0017	0.0016	0.0016	0.0015	0.0015	0.0014	0.0014
-2.8	0.0026	0.0025	0.0024	0.0023	0.0023	0.0022	0.0021	0.0021	0.0020	0.0019
-2.7	0.0035	0.0034	0.0033	0.0032	0.0031	0.0030	0.0029	0.0028	0.0027	0.0026
-2.6	0.0047	0.0045	0.0044	0.0043	0.0041	0.0040	0.0039	0.0038	0.0037	0.0036
-2.5	0.0062	0.0060	0.0059	0.0057	0.0055	0.0054	0.0052	0.0051	0.0049	0.0048
-2.4	0.0082	0.0080	0.0078	0.0075	0.0073	0.0071	0.0069	0.0068	0.0066	0.0064
-2.3	0.0107	0.0104	0.0102	0.0099	0.0096	0.0094	0.0091	0.0089	0.0087	0.0084
-2.2 -2.1	0.0139 0.0179	0.0136 0.0174	0.0132 0.0170	0.0129 0.0166	0.0125 0.0162	0.0122 0.0158	0.0119 0.0154	0.0116 0.0150	0.0113 0.0146	0.0110 0.0143
-2.1 -2.0	0.0179	0.0174	0.0170	0.0100	0.0102	0.0156	0.0197	0.0190	0.0146	0.0143
-2.0	0.0226	0.0222	0.0217	0.0212	0.0207	0.0202	0.0187	0.0182	0.0100	0.0103
-1.9	0.0287	0.0281	0.0274	0.0268	0.0262	0.0256	0.0250	0.0244	0.0239	0.0233
-1.8	0.0359	0.0351	0.0344	0.0336	0.0329	0.0322	0.0314	0.0307	0.0301	0.0294
-1.7	0.0446	0.0436	0.0427	0.0418	0.0409	0.0401	0.0392	0.0384	0.0375	0.0367
-1.6	0.0548	0.0537	0.0526	0.0516	0.0505	0.0495	0.0485	0.0475	0.0465	0.0455
-1.5	0.0668	0.0655	0.0643	0.0630	0.0618	0.0606	0.0594	0.0582	0.0571	0.0559
-1.4	0.0808	0.0793	0.0778	0.0764	0.0749	0.0735	0.0721	0.0708	0.0694	0.0681
-1.3	0.0968	0.0951	0.0934	0.0918	0.0901	0.0885	0.0869	0.0853	0.0838	0.0823
-1.2	0.1151	0.1131	0.1112	0.1093	0.1075	0.1056	0.1038	0.1020	0.1003	0.0985
-1.1	0.1357	0.1335	0.1314	0.1292	0.1271	0.1251	0.1230	0.1210	0.1190	0.1170
-1.0	0.1587	0.1562	0.1539	0.1515	0.1492	0.1469	0.1446	0.1423	0.1401	0.1379
-0.9	0.1841	0.1814	0.1788	0.1762	0.1736	0.1711	0.1685	0.1660	0.1635	0.1611
-0.8 -0.7	0.2119	0.2090 0.2389	0.2061 0.2358	0.2033 0.2327	0.2005 0.2296	0.1977 0.2266	0.1949 0.2236	0.1922 0.2206	0.1894 0.2177	0.1867 0.2148
-0.7 -0.6	0.2420 0.2743	0.2389	0.2876	0.2843	0.2290	0.2578	0.2546	0.2514	0.2177	0.2148
-0.6 -0.5	0.2743	0.3050	0.3015	0.2043	0.2946	0.2912	0.2877	0.2843	0.2483	0.2776
-0.5	0.3063	0.3030	0.3013	0.2801	0.2810	0.2812	0.2011	0.2043	0.2010	0.2110
-0.4	0.3446	0.3409	0.3372	0.3336	0.3300	0.3264	0.3228	0.3192	0.3156	0.3121
-0.3	0.3821	0.3783	0.3745	0.3707	0.3669	0.3632	0.3594	0.3557	0.3520	0.3483
-0.2	0.4207	0.4168	0.4129	0.4090	0.4052	0.4013	0.3974	0.3936	0.3897	0.3859
-0.1	0.4602	0.4562	0.4522	0.4483	0.4443	0.4404	0.4364	0.4325	0.4286	0.4247
0.0	0.5000	0.4960	0.4920	0.4880	0.4840	0.4801	0.4761	0.4721	0.4681	0.4641
	-									