

Troubleshooting Deep Neural Networks

Class Annoucement

- HW1 Grading: Released
- HW2 Submission: due Feb 14 (tomorrow)
- HW3: Release next week
- Midterm and Final Exams: Team Projects
- Invited Talk: Walmart (Thu, Feb. 20)

Lifecycle of a ML project

Why talk about DL troubleshooting?

XKCD, https://xkcd.com/1838/

Why talk about DL troubleshooting?

Common sentiment among practitioners:

80-90% of time debugging and tuning

10-20% deriving math or implementing things

Why is DL troubleshooting so hard?

He, Kaiming, et al. "Deep residual learning for image recognition." Proceedings of the IEEE conference on computer vision and pattern recognition. 2016.

Your learning curve

He, Kaiming, et al. "Deep residual learning for image recognition." Proceedings of the IEEE conference on computer vision and pattern recognition. 2016.

https://papers.neurips.cc/paper_files/paper/2022/file/dfc310e81992d2e4cedc09ac47eff13e-Paper-Conference.pdf

Grokking

Figure 8: Left: Training curves for a run on MNIST, in the setting where we observe grokking. Right: Phase diagram with the four phases of learning dynamics on MNIST.

Towards Understanding Grokking: An Effective Theory of Representation Learning

Ziming Liu, Ouail Kitouni, Niklas Nolte, Eric J. Michaud, Max Tegmark, Mike Williams
Department of Physics, Institute for AI and Fundamental Interactions, MIT
{zmliu,kitouni,nnolte,ericjm,tegmark,mwill}@mit.edu

Abstract

We aim to understand grokking, a phenomenon where models generalize long after overfitting their training set. We present both a microscopic analysis anchored by an effective theory and a macroscopic analysis of phase diagrams describing learning performance across hyperparameters. We find that generalization originates from structured representations whose training dynamics and dependence on training set size can be predicted by our effective theory in a toy setting. We observe empirically the presence of four learning phases: comprehension, grokking, memorization, and confusion. We find representation learning to occur only in a "Goldilocks zone" (including comprehension and grokking) between memorization and confusion. We find on transformers the grokking phase stays closer to the memorization phase (compared to the comprehension phase), leading to delayed generalization. The Goldilocks phase is reminiscent of "intelligence from starvation" in Darwinian evolution, where resource limitations drive discovery of more efficient solutions. This study not only provides intuitive explanations of the origin of grokking, but also highlights the usefulness of physics-inspired tools, e.g., effective theories and phase diagrams, for understanding deep learning.

Poor model performance

Implementation bugs

Poor model performance

Most DL bugs are invisible

```
features = glob.glob('path/to/features/*')
labels = glob.glob('path/to/labels/*')
train(features, labels)
```


Most DL bugs are invisible

1 features = glob.glob('path/to/features/*') 2 labels = glob.glob('path/to/labels/*') 3 train(features, labels)

Implementation bugs

Poor model performance

Models are sensitive to hyperparameters

Andrej Karpathy, CS231n course notes

Models are sensitive to hyperparameters

Andrej Karpathy, CS231n course notes

He, Kaiming, et al. "Delving deep into rectifiers: Surpassing human-level performance on imagenet classification." Proceedings of the IEEE international conference on computer vision. 2015.

Data / model fit

Data from the paper: ImageNet

Data / model fit

Data from the paper: ImageNet

Yours: self-driving car images

Constructing good datasets is hard

Slide from Andrej Karpathy's talk "Building the Software 2.0 Stack" at TrainAl 2018, 5/10/2018

Common dataset construction issues

- Not enough data
- Class imbalances
- Noisy labels
- Train / test from different distributions
- etc

Takeaways: why is troubleshooting hard?

- Hard to tell if you have a bug
- Lots of possible sources for the same degradation in performance
- Results can be sensitive to small changes in hyperparameters and dataset makeup

Strategy for DL troubleshooting

Key mindset for DL troubleshooting

Pessimism

Key idea of DL troubleshooting

Since it's hard to disambiguate errors...

...Start simple and gradually ramp up complexity

Strategy for DL troubleshooting

 Choose the simplest model & data possible (e.g., LeNet on a subset of your data)

 Choose the simplest model & data possible (e.g., LeNet on a subset of your data)

Once model runs, overfit a single batch & reproduce a known result

 Choose the simplest model & data possible (e.g., LeNet on a subset of your data)

Once model runs, overfit a single batch & reproduce a known result

 Apply the bias-variance decomposition to decide what to do next

 Choose the simplest model & data possible (e.g., LeNet on a subset of your data)

Once model runs, overfit a single batch & reproduce a known result

 Apply the bias-variance decomposition to decide what to do next

Use coarse-to-fine random searches

Quick summary

 Choose the simplest model & data possible (e.g., LeNet on a subset of your data)

Once model runs, overfit a single batch & reproduce a known result

 Apply the bias-variance decomposition to decide what to do next

Use coarse-to-fine random searches

 Make your model bigger if you underfit; add data or regularize if you overfit

We'll assume you already have...

- Initial test set
- A single metric to improve
- Target performance based on human-level performance, published results, previous baselines, etc

We'll assume you already have...

- Initial test set
- A single metric to improve
- Target performance based on human-level performance, published results, previous baselines, etc

Running example

Goal: 99% classification accuracy

Questions?

Strategy for DL troubleshooting

Starting simple

1. Map each into a lower dimensional feature space

1. Map each into a lower dimensional feature space

2. Concatenate

3. Pass through fully connected layers to output

Starting simple

Recommended network / optimizer defaults

- Optimizer: Adam optimizer with learning rate 3e-4
- Activations: relu (FC and Conv models), tanh (LSTMs)
- Initialization: He et al. normal (relu), Glorot normal (tanh)
- Regularization: None
- Data normalization: None

Starting simple

Important to normalize scale of input data

- Subtract mean and divide by variance
- For images, fine to scale values to [0, 1] or [-0.5, 0.5] (e.g., by dividing by 255) [Careful, make sure your library doesn't do it for you!]

Starting simple

Steps

Consider simplifying the problem as well

- Start with a small training set (~10,000 examples)
- Use a fixed number of objects, classes, image size, etc.
- Create a simpler synthetic training set

Simplest model for pedestrian detection

- Start with a subset of 10,000 images for training, 1,000 for val, and 500 for test
- Use a LeNet architecture with sigmoid cross-entropy loss
- Adam optimizer with LR 3e-4
- No regularization

Simplest model for pedestrian detection

Running example

- Start with a subset of 10,000 images for trainifor test
- Use a LeNet architecture with sigmoid cross-
- Adam optimizer with LR 3e-4
- No regularization

Goal: 99% classification accuracy

Starting simple

Questions?

Strategy for DL troubleshooting

Incorrect shapes for your tensors

Can fail silently! E.g., accidental broadcasting: x.shape = (None,), y.shape = (None, 1), (x+y).shape = (None, None)

- Incorrect shapes for your tensors
 Can fail silently! E.g., accidental broadcasting: x.shape = (None,), y.shape = (None, 1), (x+y).shape = (None, None)
- Pre-processing inputs incorrectly
 E.g., Forgetting to normalize, or too much pre-processing

Incorrect shapes for your tensors

Can fail silently! E.g., accidental broadcasting: x.shape = (None,), y.shape = (None, 1), (x+y).shape = (None, None)

- Pre-processing inputs incorrectly
 E.g., Forgetting to normalize, or too much pre-processing
- Incorrect input to your loss function
 E.g., softmaxed outputs to a loss that expects logits

- Incorrect shapes for your tensors
 Can fail silently! E.g., accidental broadcasting: x.shape = (None,), y.shape = (None, 1), (x+y).shape = (None, None)
- Pre-processing inputs incorrectly
 E.g., Forgetting to normalize, or too much pre-processing
- Incorrect input to your loss function
 E.g., softmaxed outputs to a loss that expects logits
- Forgot to set up train mode for the net correctly E.g., toggling train/eval, controlling batch norm dependencies

- Incorrect shapes for your tensors
 Can fail silently! E.g., accidental broadcasting: x.shape = (None,), y.shape = (None, 1), (x+y).shape = (None, None)
- Pre-processing inputs incorrectly
 E.g., Forgetting to normalize, or too much pre-processing
- Incorrect input to your loss function
 E.g., softmaxed outputs to a loss that expects logits
- Forgot to set up train mode for the net correctly
 E.g., toggling train/eval, controlling batch norm dependencies
- Numerical instability inf/NaN
 Often stems from using an exp, log, or div operation

General advice for implementing your model

Lightweight implementation

- Minimum possible new lines of code for v1
- Rule of thumb: <200 lines
- (Tested infrastructure components are fine)

Use off-the-shelf components, e.g.,

- Keras
- tf.layers.dense(...)
 instead of
 tf.nn.relu(tf.matmul(W, x))
- tf.losses.cross_entropy(...) instead of writing out the exp

Build complicated data pipelines later

 Start with a dataset you can load into memory

Debuggers for DL code

- Pytorch: easy, use ipdb
- tensorflow: trickier

Option 1: step through graph creation

```
2 # Option 1: step through graph creation
3 import ipdb; ipdb.set_trace()
4
5 for i in range(num_layers):
6     out = layers.fully_connected(out, 50)
7
```

Debuggers for DL code

- Pytorch: easy, use ipdb
- tensorflow: trickier

Option 2: step into training loop

```
9 # Option 2: step into training loop
10 sess = tf.Session()
11 for i in range(num_epochs):
12    import ipdb; ipdb.set_trace()
13    loss_, _ = sess.run([loss, train_op])
14
```

Evaluate tensors using sess.run(...)

Debuggers for DL code

Pytorch: easy, use ipdb

tensorflow: trickier

Option 3: use tfdb

https://medium.com/data-from-the-trenches/the-learning-rate-black-magic-c4a652133cd7

https://medium.com/data-from-the-trenches/the-learning-rate-black-magic-c4a652133cd7

Error oscillates

https://medium.com/data-from-the-trenches/the-learning-rate-black-magic-c4a652133cd7

More useful

 Official model implementation evaluated on similar dataset to yours

You can:

- Walk through code line-by-line and ensure you have the same output
- Ensure your performance is up to par with expectations

More useful

 Official model implementation evaluated on benchmark (e.g., MNIST)

You can:

 Walk through code line-by-line and ensure you have the same output

More useful

Unofficial model implementation

You can:

• Same as before, but with lower confidence

More useful

Results from a paper (with no code)

You can:

Ensure your performance is up to par with expectations

More useful

You can:

- Make sure your model performs well in a simpler setting
- Results from your model on a benchmark dataset (e.g., MNIST)

More useful

You can:

 Get a general sense of what kind of performance can be expected

· Results from a similar model on a similar dataset

More useful

You can:

 Make sure your model is learning anything at all

Less useful

• Super simple baselines (e.g., average of outputs or linear regression)

More useful

- Official model implementation evaluated on similar dataset to yours
- Official model implementation evaluated on benchmark (e.g., MNIST)
- Unofficial model implementation
- Results from the paper (with no code)
- Results from your model on a benchmark dataset (e.g., MNIST)
- Results from a similar model on a similar dataset
- Super simple baselines (e.g., average of outputs or linear regression)

Summary: how to implement & debug

Questions?

Strategy for DL troubleshooting

- Test error = irreducible error + bias + variance + val overfitting
- This assumes train, val, and test all come from the same distribution.
 What if not?

Handling distribution shift

Train data

Test data

Use two val sets: one sampled from training distribution and one from test distribution

The bias-variance tradeoff

Bias-variance with distribution shift

Bias-variance with distribution shift

		Running example
Error source	Value	
Goal performance	1%	
Train error	20%	Val - train = 7%
Validation error	27%	(over-fitting) 0 (no pedestrian) 1 (yes pedestrian)
Test error	28%	Goal: 99% classification accuracy

		Running example
Error source	Value	
Goal performance	1%	
Train error	20%	
Validation error	27%	Test - val = 1% 0 (no pedestrian) 1 (yes pedestrian)
Test error	28%	Test - val = 1% (looks good!) 0 (no pedestrian) 1 (yes pedestrian) Goal: 99% classification accuracy

Summary: evaluating model performance

Test error = irreducible error + bias + variance + distribution shift + val overfitting

Questions?

Strategy for DL troubleshooting

Prioritizing improvements (i.e., applied b-v)

Addressing under-fitting (i.e., reducing bias)

Try first

- A. Make your model bigger (i.e., add layers or use more units per layer)
- B. Reduce regularization
- C. Error analysis
- D. Choose a different (closer to state-of-the art) model architecture (e.g., move from LeNet to ResNet)
- E. Tune hyper-parameters (e.g., learning rate)

Try later

F. Add features

Add more layers to the ConvNet

Error source	Value	Value
Goal performance	1%	1%
Train error	20%	7%
Validation error	27%	19%
Test error	28%	20%

Goal: 99% classification accuracy (i.e., 1% error)

Switch to ResNet-101

Error source	Value	Value	Value
Goal performance	1%	1%	1%
Train error	20%	7%	3%
Validation error	27%	19%	10%
Test error	28%	20%	10%

Goal: 99% classification accuracy (i.e., 1% error)

Tune	learning
rate	

Error source	Value	Value	Value	Value
Goal performance	1%	1%	1%	1%
Train error	20%	7%	3%	0.8%
Validation error	27%	19%	10%	12%
Test error	28%	20%	10%	12%

Goal: 99% classification accuracy (i.e., 1% error)

Prioritizing improvements (i.e., applied b-v)

Addressing over-fitting (i.e., reducing variance)

Try first

- A. Add more training data (if possible!)
- B. Add normalization (e.g., batch norm, layer norm)
- C. Add data augmentation
- D. Increase regularization (e.g., dropout, L2, weight decay)
- E. Error analysis
- F. Choose a different (closer to state-of-the-art) model architecture
- G. Tune hyperparameters
- H. Early stopping
- Remove features
- J. Reduce model size

Try later

Addressing over-fitting (i.e., reducing variance)

Try first

- A. Add more training data (if possible!)
- B. Add normalization (e.g., batch norm, layer norm)
- C. Add data augmentation
- D. Increase regularization (e.g., dropout, L2, weight decay)
- E. Error analysis
- F. Choose a different (closer to state-of-the-art) model architecture
- G. Tune hyperparameters

H. Early stopping

- . Remove features
- J. Reduce model size

Try later

⊓NOT Frecommended!

Error source	Value
Goal performance	1%
Train error	0.8%
Validation error	12%
Test error	12%

Running example 0 (no pedestrian) 1 (yes pedestrian)

Running example O (no pedestrian) 1 (yes pedestrian)

Add data augmentation Running example Value Value Value Value **Error source** Goal performance 1% 1% 0.8% 1.5% 1.7% Train error 2% Validation error 12% 5% 4% 2.5% 0 (no pedestrian) 1 (yes pedestrian) 12% 6% 4% 2.6% Test error Goal: 99% classification accuracy

Tune num layers, optimizer params, weight

initialization, kernel size, weight decay

Dunn	IDA	AVAMA	
RUIIII	ши	examp	
		OMMILIP	_

					*	The state of the s	
Error source	Value	Value	Value	Value	Value		
Goal performance	1%	1%	1%	1%	1%		tun V
Train error	0.8%	1.5%	1.7%	2%	0.6%		
Validation error	12%	5%	4%	2.5%	0.9%	↓) (no pedestrian) 1 (y	↓ /es pedestrian)
Test error	12%	6%	4%	2.6%	1.0%	Goal: 99% classification	ı accuracy

Prioritizing improvements (i.e., applied b-v)

Addressing distribution shift

Try first

- A. Analyze test-val set errors & collect more training data to compensate
- B. Analyze test-val set errors & synthesize more training data to compensate
- C. Apply domain adaptation techniques to training & test distributions

Try later

Test-val set errors (no pedestrian detected)

Test-val set errors (no pedestrian detected)

Train-val set errors (no pedestrian detected)

Error type 1: hard-to-see pedestrians

Test-val set errors (no pedestrian detected)

Train-val set errors (no pedestrian detected)

Error type 2: reflections

Test-val set errors (no pedestrian detected)

Train-val set errors (no pedestrian detected)

Error type 3 (test-val only): night scenes

Error type	Error % (train-val)	Error % (test-val)	Potential solutions	Priority
Hard-to-see pedestrians	0.1%	0.1%	Better sensors	Low
2. Reflections	0.3%	0.3%	 Collect more data with reflections Add synthetic reflections to train set Try to remove with pre-processing Better sensors 	Medium
3. Nighttime scenes	0.1%	1%	 Collect more data at night Synthetically darken training images Simulate night-time data Use domain adaptation 	High

Domain adaptation

What is it?

Techniques to train on "source" distribution and generalize to another "target" using only unlabeled data or limited labeled data

When should you consider using it?

- Access to labeled data from test distribution is limited
- Access to relatively similar data is plentiful

Types of domain adaptation

Туре	Use case	Example techniques
Supervised	You have limited data from target domain	Fine-tuning a pre- trained modelAdding target data to train set
Un-supervised	You have lots of unlabeled data from target domain	Correlation Alignment (CORAL)Domain confusionCycleGAN

Prioritizing improvements (i.e., applied b-v)

Rebalancing datasets

- If (test)-val looks significantly better than test, you overfit to the val set
- This happens with small val sets or lots of hyper parameter tuning
- When it does, recollect val data

Questions?

Strategy for DL troubleshooting

Im Troubleshooting - tune

Hyperparameter optimization

Model & optimizer choices?

Network: ResNet

- How many layers?
- Weight initialization?
- Kernel size?
- Etc

Optimizer: Adam

- Batch size?
- Learning rate?
- beta1, beta2, epsilon?

Regularization

-

Running example

Goal: 99% classification accuracy

Which hyper-parameters to tune?

Choosing hyper-parameters

- More sensitive to some than others
- Depends on choice of model
- Rules of thumb (only) to the right
- Sensitivity is relative to default values!
 (e.g., if you are using all-zeros weight initialization or vanilla SGD, changing to the defaults will make a big difference)

Approximate sensitivity
High
High
Low
Low
Low
Medium
High
Medium
High
Medium
Medium
Low

Method 1: manual hyperparam optimization

How it works

- Understand the algorithm
 - E.g., higher learning rate means faster less stable training
- Train & evaluate model
- Guess a better hyperparam value & reevaluate
- Can be combined with other methods (e.g., manually select parameter ranges to optimizer over)

Advantages

 For a skilled practitioner, may require least computation to get good result

Disadvantages

- Requires detailed understanding of the algorithm
- Time-consuming

Method 2: grid search

How it works

Advantages

- Super simple to implement
- Can produce good results

Disadvantages

- Not very efficient: need to train on all cross-combos of hyperparameters
- May require prior knowledge about parameters to get good results

Hyperparameter 2 (e.g., learning rate)

Hyperparameter 1 (e.g., batch size)

Method 3: random search

How it works

Hyperparameter 2 (e.g., learning rate)

Advantages

- Easy to implement
- Often produces better results than grid search

Disadvantages

- Not very interpretable
- May require prior knowledge about parameters to get good results

Hyperparameter 1 (e.g., batch size)

How it works

_____ Advantages

Disadvantages

Hyperparameter 2 (e.g., learning rate)

How it works

Advantages

Disadvantages

Hyperparameter 2 (e.g., learning rate)

How it works

Advantages

Disadvantages

Hyperparameter 2 (e.g., learning rate)

How it works

etc.

Advantages

- Can narrow in on very high performing hyperparameters
- Most used method in practice

Disadvantages

Somewhat manual process

Hyperparameter 1 (e.g., batch size)

Method 5: Bayesian hyperparam opt

How it works (at a high level)

- Start with a prior estimate of parameter distributions
- Maintain a probabilistic model of the relationship between hyper-parameter values and model performance
- Alternate between:
 - Training with the hyper-parameter values that maximize the expected improvement
 - Using training results to update our probabilistic model
- To learn more, see:

Advantages

 Generally the most efficient hands-off way to choose hyperparameters

Disadvantages

- Difficult to implement from scratch
- Can be hard to integrate with off-the-shelf tools

https://towards datascience.com/a-conceptual-explanation-of-bayesian-model-based-hyperparameter-optimization-for-machine-learning-b8172278050 for the conceptual-explanation of the conc

Method 5: Bayesian hyperparam opt

How it works (at a high level)

- Start with a prior estimate of parameter distributions
- Maintain a probabilistic model of the relationship between hyper-parameter values and model p
- Alternate between:
 - values that maxir improvement

 Using training results to update our probabilistic model

Advantages

 Generally the most efficient hands-off way to choose hyperparameters

More on tools to do this automatically inadvantages Training with the hypernearameter ucture & tooling lecture!

ent from scratch

can be nare to integrate with off-the-shelf

tools

To learn more, see:

https://towardsdatascience.com/a-conceptual-explanation-of-bayesian-model-based-hyperparameter-optimization-for-machine-learning-b8172278050f

Summary of how to optimize hyperparams

- Coarse-to-fine random searches
- Consider Bayesian hyper-parameter optimization solutions as your codebase matures

Questions?

Conclusion

- DL debugging is hard due to many competing sources of error
- To train bug-free DL models, we treat building our model as an iterative process
- The following steps can make the process easier and catch errors as early as possible

Troubleshooting - conclusion 15

How to build bug-free DL models

• Choose the simplest model & data possible (e.g., LeNet on a subset of your data)

Once model runs, overfit a single batch & reproduce a known result

 Apply the bias-variance decomposition to decide what to do next

Use coarse-to-fine random searches

 Make your model bigger if you underfit; add data or regularize if you overfit

Troubleshooting - conclusion

