Practice Sheet #7

Leibnitz's Theorem

- 1. If $y = \tan^{-1} x$, show that $(1+x^2)y_{n+2} + 2(n+1)xy_{n+1} + n(n+1)y_n = 0$.
- 2. If $y = \cot^{-1} x$, show that $(1 + x^2)y_{n+2} + 2(n+1)xy_{n+1} + n(n+1)y_n = 0$.
- 3. If $y\sqrt{1-x^2} = \sin^{-1} x$, show that $(1-x^2)y_{n+1} (2n+1)xy_n n^2y_{n-1} = 0$.
- 4. If $y = e^{\tan^{-1} x}$, show that $(1+x^2)y_{n+2} + (2nx+2x-1)y_{n+1} + n(n+1)y_n = 0$.
- 5. If $y = e^{m \sin^{-1} x}$, show that $(1 x^2) y_{n+2} (2n+1) x y_{n+1} (n^2 + m^2) y_n = 0$.
- 6. If $y = (\sin^{-1} x)^2$, show that $(1 x^2)y_{n+2} (2n+1)xy_{n+1} n^2y_n = 0$.
- 7. If $\log_e y = a \sin^{-1} x$, show that $(1 x^2) y_{n+2} (2n+1) x y_{n+1} (n^2 + a^2) y_n = 0$.
- 8. If $y = e^{m\cos^{-1}x}$, show that $(1-x^2)y_{n+2} (2n+1)xy_{n+1} (n^2 + m^2)y_n = 0$.
- 9. If $\log_e y = \tan^{-1} x$, show that $(1+x^2)y_{n+2} + (2nx+2x-1)y_{n+1} + n(n+1)y_n = 0$.
- 10. If $y = (\cos^{-1} x)^2$, show that $(1 x^2)y_{n+2} (2n+1)xy_{n+1} n^2y_n = 0$.
- 11. If $\ln y = m\cos^{-1} x$, show that $(1-x^2)y_{n+2} (2n+1)xy_{n+1} (n^2 + m^2)y_n = 0$.
- 12. If $x = \tan(\ln y)$, show that $(1 + x^2)y_{n+2} + (2nx + 2x 1)y_{n+1} + n(n+1)y_n = 0$.