

IIC2115 - Programación como Herramienta para la Ingeniería

Bases de datos relacionales

Profesor: Hans Löbel

¿Qué es una base de datos?

- Corresponde un conjunto de datos de un mismo contexto y almacenados bajo cierta lógica/estructura e indexados para su posterior uso eficiente.
- 2. En el caso de una base relacional, es una colección de una o más relaciones, donde cada relación es una tabla con filas y columnas.

RELATIONAL DATABASE

Base de datos (Database)

Esquema (Schema)

Tabla (Table)

Tabla

Columna: Guarda un tipo específico de datos

CHAR(N) VARCHAR(N) INTEGER REAL

...

	Emp No	Name	Age	Department	Salary
Fila: Corresponde a un registro o instancia	001	Alex S	26	Store	5000
	002	Golith K	32	Marketing	5600
	003	Rabin R	31	Marketing	5600
	004	Jons	26	Security	5100

Empleados (Emp No: STRING, Name: STRING, Age: INTEGER, Department: STRING, Salary: REAL)

Llaves primarias y secundarias (primary keys y foreign keys)

PK FK

Structured Query Language (SQL)

- Lenguage de definición de datos (DDL)
 - Creación
 - Inserción
 - Eliminación
 - Modificación de definiciones de tablas.

*Las restricciones de integridad se pueden definir en tablas, ya sea cuando se crea la tabla o posteriormente.

- Lenguaje de manipulación de datos (DML)
 - Consultas

Creación

CREATE TABLE [IF NOT EXISTS] table_name (column_1 data_type, column_2 data_type, ...)

Emp No	10.1		Age Department	
001	Alex S	26	Store	5000
002	Golith K	32	Marketing	5600
003	Rabin R	31	Marketing	5600
004	Jons	26	Security	5100

CREATE TABLE Empleados (Emp_No CHAR(3), Name VARCHAR(20), Age INTEGER, Department VARCHAR(10), Salary REAL)

Inserción

INSERT INTO table_name (column1,column2,...) VALUES(value1, value2,...)

Emp No	Name	Age	Department	Salary
001	Alex S	26	Store	5000
002	Golith K	32	Marketing	5600
003	Rabin R	31	Marketing	5600

INSERT INTO Empleados (Emp_No, Name, Age, Department, Salary) VALUES ('004', 'Jons', 26, 'Security', 5100)

Modificación

UPDATE table_name SET column_1 = new_value_1, column_2 = new_value_2
WHERE search_condition

Emp No	Name	Age	Department	Salary	
001	Alex S	26	Store	5000	
002	Golith K	32	Marketing	5600	
003	Rabin R	31	Marketing	5600	
004	Jons	26	Marketing	5100	

UPDATE Empleados E **SET** E.Department = 'Marketing' **WHERE** E.Emp_No = '004'

Eliminación

DELETE FROM table_name **WHERE** search_condition;

Emp No			Department	Salary
001	Alex S	26	Store	5000
002	Golith K	32	Marketing	5600
003	Rabin R	31	Marketing	5600

DELETE FROM Empleados E **WHERE** E.Emp_No = '004'

Creación de tablas con *Primary Key* y *Foreign Key*

Emp No	Name	Age	Department id	Salary	Id	Departme
001	Alex S	26	1	5000	1	Store
001	Alex 3	20		3000	2	Marketing
002	Golith K	32	2	5600	3	Security
003	Rabin R	31	2	5600		
004	Jons	26	3	5100		

CREATE TABLE Departments (Id INTEGER, Department VARCHAR(20), PRIMARY KEY(Id))

CREATE TABLE Empleados (Emp_No CHAR(3), Name VARCHAR(20), Age INTEGER,
Department_id INTEGER, Salary REAL, PRIMARY KEY(Emp_No), FOREING KEY (Department_id) REFERENCES
Departments.Id)

Uso en Python: DDL

```
import sqlite3
connection = sqlite3.connect('ejemplo.db')
cursor = connection.cursor()
sqlStatement = 'CREATE TABLE Empleados (Emp_No CHAR(3), Name VARCHAR(20), Age INTEGER, Department
VARCHAR(10), Salary REAL)'
cursor.execute(sqlStatement)
Sq12 = 'INSERT INTO Empleados (Emp No, Name, Age, Department, Salary) VALUES ('004', 'Jons', 26, 'Security', 5100)'
cursor.execute(Sq12)
connection.commit()
connection.close()
```

Manejo de errores

Al desarrollar este capítulo, se encontrarán dos tipos de errores:

- Errores de Python (de los que ya están familiarizados)
- Errores de la sintaxis de la base de datos (SQL)

CONSEJO: Pueden testear sus consultas directamente en la base de datos (p.ej., con SQLiteStudio) y luego utilizarla en Python

IIC2115 - Programación como Herramienta para la Ingeniería

Bases de datos relacionales

Profesor: Hans Löbel