

MATHEMATICS STANDARD LEVEL PAPER 1

Thursday 4 November 2010 (afternoon)

1	hour	30	min	LITES
- 1	HOUL	Dυ	1111111	utes

Candidate session number							
0	0						

INSTRUCTIONS TO CANDIDATES

- Write your session number in the boxes above.
- Do not open this examination paper until instructed to do so.
- You are not permitted access to any calculator for this paper.
- Section A: answer all of Section A in the spaces provided.
- Section B: answer all of Section B on the answer sheets provided. Write your session number
 on each answer sheet, and attach them to this examination paper and your cover
 sheet using the tag provided.
- At the end of the examination, indicate the number of sheets used in the appropriate box on your cover sheet.
- Unless otherwise stated in the question, all numerical answers must be given exactly or correct to three significant figures.

Full marks are not necessarily awarded for a correct answer with no working. Answers must be supported by working and/or explanations. Where an answer is incorrect, some marks may be given for a correct method, provided this is shown by written working. You are therefore advised to show all working.

SECTION A

Answer **all** the questions in the spaces provided. Working may be continued below the lines, if necessary.

1.	[Max	ximum mark: 5]	
	The	first three terms of an infinite geometric sequence are 32, 16 and 8.	
	(a)	Write down the value of r .	[1 mark]
	(b)	Find u_6 .	[2 marks]
	(c)	Find the sum to infinity of this sequence.	[2 marks]

2.	[Maximum	mark:	7]

Let $g(x) = 2x \sin x$.

(a)	Find $g'(x)$.	[4 marks]
(u)	$1 \text{ mu } \leq (\lambda)$.	1 T HUINS

(b) Find the gradient of the graph of g at $x = \pi$. [3 marks]

.....

3. [Maximum mark: 6]

The diagram shows two concentric circles with centre O.

The radius of the smaller circle is 8 cm and the radius of the larger circle is 10 cm. Points A, B and C are on the circumference of the larger circle such that \hat{AOB} is $\frac{\pi}{3}$ radians.

(a)	Find the length of the arc ACB.	[2 marks]
(b)	Find the area of the shaded region.	[4 marks]

4. [Maximum mark: 7]

The diagram below shows the probabilities for events A and B, with P(A') = p.

(a)	Write down the value of p .	[1 m	arkī
(u)	write down the value of p.	/1 ////	ui ivi

(b) 1	Find $P(B)$.	[3 marks]

(c)	Find $P(A' B)$.		[3 marks]
(\mathbf{c})	$I \text{ III of } I (II \mid D)$.	I	Jinarasj

5. [Maximum mark: 7]

(a)	Show that	$4-\cos 2\theta +$	$-5\sin\theta =$	$2\sin^2\theta$	$+5\sin\theta+3$
(a)	SHOW that	T - COS 20 T	23m0 -	2 SIII U	$\tau J S m U \tau J$

[2 marks]

(b) **Hence**, solve the equation $4 - \cos 2\theta + 5\sin \theta = 0$ for $0 \le \theta \le 2\pi$.

[5 marks]

.....

.....

.....

6. [Maximum mark: 6]

The graph of the function $y = f(x)$ passes through function of f is given as $f'(x) = \sin(2x-3)$. Find	the point $\left(\frac{3}{2}, 4\right)$. The gradient $f(x)$.

7. [Maximum mark: 7]

Let
$$\mathbf{A} = \begin{pmatrix} 9e^x & e^x \\ e^x & e^{3x} \end{pmatrix}$$
.

(a) Find an expression for $\det A$.

[2 marks]

(b) Find the value of x for which A has no inverse. Express your answer in the form $a \ln b$, where $a, b \in \mathbb{Z}$.

[5 marks]

Do NOT write solutions on this page. Any working on this page will NOT be marked.

SECTION B

Answer all the questions on the answer sheets provided. Please start each question on a new page.

8. [Maximum mark: 17]

The diagram shows quadrilateral ABCD with vertices A(1, 0), B(1, 5), C(5, 2) and D(4, -1).

- (a) (i) Show that $\overrightarrow{AC} = \begin{pmatrix} 4 \\ 2 \end{pmatrix}$.
 - (ii) Find \overrightarrow{BD} .
 - (iii) Show that \overrightarrow{AC} is perpendicular to \overrightarrow{BD} .

[5 marks]

The line (AC) has equation r = u + sv.

- (b) (i) Write down vector \mathbf{u} and vector \mathbf{v} .
 - (ii) Find a vector equation for the line (BD).

[4 marks]

The lines (AC) and (BD) intersect at the point P(3, k).

(c) Show that k = 1.

[3 marks]

(d) **Hence** find the area of triangle ACD.

[5 marks]

Do NOT write solutions on this page. Any working on this page will NOT be marked.

9. [Maximum mark: 12]

Let $f(x) = x^2 + 4$ and g(x) = x - 1.

(a) Find $(f \circ g)(x)$.

[2 marks]

The vector $\begin{pmatrix} 3 \\ -1 \end{pmatrix}$ translates the graph of $(f \circ g)$ to the graph of h.

(b) Find the coordinates of the vertex of the graph of h.

[3 marks]

(c) Show that $h(x) = x^2 - 8x + 19$.

[2 marks]

(d) The line y = 2x - 6 is a tangent to the graph of h at the point P. Find the x-coordinate of P.

[5 marks]

10. [Maximum mark: 16]

Let $f(x) = x^3$. The following diagram shows part of the graph of f.

The point P(a, f(a)), where a > 0, lies on the graph of f. The tangent at P crosses the x-axis at the point $Q\left(\frac{2}{3}, 0\right)$. This tangent intersects the graph of f at the point R(-2, -8).

(This question continues on the following page)

Do NOT write solutions on this page. Any working on this page will NOT be marked.

(Question 10 continued)

- (a) (i) Show that the gradient of [PQ] is $\frac{a^3}{a \frac{2}{3}}$.
 - (ii) Find f'(a).
 - (iii) Hence show that a = 1.

[7 marks]

The equation of the tangent at P is y = 3x - 2. Let T be the region enclosed by the graph of f, the tangent [PR] and the line x = k, between x = -2 and x = k where -2 < k < 1. This is shown in the diagram below.

(b) Given that the area of T is 2k+4, show that k satisfies the equation $k^4-6k^2+8=0$.

[9 marks]

