	High dimensional Statistic - M2 TIDE KORAIBI Kamar & YALAP Sophia Introduction The purpose of this study is to apply some classification approaches (SVM, Boosting, NMF etc) on the Titanic dataset provided and illustrate their results (performance criterion, graphs,), tune the parameters and compare these approaches Task repartition: • KAMAR Koraibi: EDA, Pre-processing, Machine Learning techniques
	 YALAP Sophia: EDA, Clustering Table of Contents Introduction EDA Pre-processing Train/test split Feature selection Q. Univariate selection
	 Univariate selection Feature importance - Tree Based Classifier Permutation feature importance - sklearn Feature Scaling Machine Learning techniques SVM / Kernel SVM Ensemble Learning models Adaboost Xgboost ROC-AUC Comparison
	 Clustering Raw data Dimension reduction - PCA Dimension reduction - NMF Dimension reduction - Comparison EDA Members: KORAIBI Kamar & YALAP Sophia
In [1]:	·
In [2]:	# importing data df = pd.read_csv("titanic.csv") train = pd.read_csv("train-data.csv") test = pd.read_csv("test-data.csv") SweetViz - quick view Sweetviz is an open-source Python library that generates beautiful, high-density visualizations to kickstart EDA (Exploratory Data Analysis) with just two lines of code. Output is a fully self-contained HTML application. The system is built around quickly visualizing target values and comparing datasets. I will use this package at first but then I will analyse the data manually.
In [3]: In [4]:	<pre>mport sweetv12 as sv my_report = sv.analyze(df) my_report.show_html() Report SWEETV1Z_REPORT.html was generated! NOTEBOOK/COLAB USERS: the web browser MAY not pop up, regardless, the report IS saved in your notebook/colab files. print(f'df shape : {df.shape}\ntrain shape : {train.shape}\ntest shape : {test.shape}') df shape : (156, 13) train shape : (712, 25)</pre>
In [5]: Out[5]:	test shape: (179, 25) We will be working on the train/test data sets. But first, we will take a glance on the titanic.csv (df) data set to see the original column structure of the data. # df gives an overview of the original columns of the data set. df.head()
In [6]:	2 3 1 3 Heikkinen Miss. Laina female 26.0 0 0 STON/O2. 3101282 7.9250 NaN S 3 4 1 1 Futrelle Mrs. Jacques Heath (Lily May Peel) female 35.0 1 0 113803 53.1000 C123 S 4 5 0 3 Allen Mr. William Henry male 35.0 0 0 373450 8.0500 NaN S
Out[6]:	PassengerId int64 Survived int64 Pclass int64 Lname object Name object Sex object Age float64 SibSp int64 Parch int64 Ticket object Fare float64 Cabin object Embarked object
In [7]:	<pre>plt.figure(figsize=(8,3)) df.dtypes.value_counts().plot.pie();</pre> <pre>object</pre>
In [8]:	<pre>sns.heatmap(df.isna(), cbar=False) plt.title('Missing values') plt.show()</pre>
	Missing values 16 - 24 - 32 - 40 - 48 - 56 - 64 - 72 - 80 - 88 - 96 - 104 - 112 - 120 - 128 - 136 - 144 - 1
In []:	We notice that the Cabin and Age columns have many missing values in this sample, but this is not a concern because we will work with the train and test bases for the modeling part. (df.isna().sum()/df.shape[0]).sort_values(ascending=False) # Cabin has more than 80% of missing values (for 156 observations).
<pre>In [9]: In [10]: Out[10]:</pre>	<pre># Checking duplicates dfs = [df,train,test] for d in dfs: if d[d.duplicated(keep=False)].shape[0]==0: print('No duplicates') No duplicates # average age per sex and pclass df.groupby(['Sex','Pclass']).agg({'Age':'mean'})</pre>
To [11].	Sex Pclass female 1 35.25000 2 24.625000 3 21.203704 male 1 39.315789 2 30.578235 3 26.255814
In [11]:	<pre># age vs Pclass / survived sns.set_theme(style="whitegrid") sns.violinplot(data=df, x="Pclass", y="Age", hue="Survived",</pre>
	20 20 1 2 3 Pclass
In [13]:	<pre># family size for data vizualisation df['FamilySize'] = df['SibSp'] + df['Parch'] # countplot sns.catplot(y='FamilySize', kind='count', data=df[df.FamilySize>=2], aspect=1, height=5, saturation=0.5) plt.title("Family Size", size=15) plt.xlabel("Number of people", size=15) plt.show()</pre> Family Size
	2 3 4 5
	6 7 0 2 4 6 8 10 12 14 Number of people
In [14]: In [15]:	di.drop(ramilysize ,axis-i, implace-irue) # Defection of the previously created variable to avoid autocorrelation
	Survived -0.19 Pclass 0.012 -0.12 Age 0.075 -0.12 -0.36 SibSp -0.14 -0.067 0.087 -0.39 Parch -0.027 0.039 0.016 -0.22 0.4 Fare -0.027 0.029 -0.61 0.024 0.27 0.25
In [16]:	<pre>PassengerId Survived Pclass Age SibSp Parch Fare corr_matrix = df.corr() upper_tri = corr_matrix.where(np.triu(np.ones(corr_matrix.shape),k=1).astype(np.bool)) def top_correlation(df,n): correlation = upper_tri.stack().sort_values(ascending=False) correlation = upper_tri.stack().sort_values(ascending=False) correlation = pd.DataFrame(correlation).reset_index() correlation.columns=["Variable 1","Variable 2","Correlation"] correlation = correlation.reindex(correlation.Correlation.abs().sort_values(ascending=False).index).reset_i return correlation.head(n)</pre>
Out[16]:	Variable 1 Variable 2 Correlation 0 Pclass Fare -0.607256 1 SibSp Parch 0.399040 2 Age SibSp -0.393500 3 Pclass Age -0.362627 4 SibSp Fare 0.271997 5 Parch Fare 0.254822
	6 Age Parch -0.215169 7 Passengerld Survived -0.192991 8 Passengerld SibSp -0.136420 9 Survived Age -0.120416 Variables are not highly correlated. Let's take a look on the feature Survived We try to see if the distribution of the data varies with the survival of the individual.
<pre>In [17]: Out[17]: In [18]:</pre>	# % survival for each class df.groupby('Pclass')['Survived'].mean() Pclass 1 0.400000 2 0.466667 3 0.291667 Name: Survived, dtype: float64 We can see that 1st and 2nd class are more likely to survive than 3rd class
Out[18]:	df.groupby(['Pclass', 'Embarked'])['Survived'].mean() Pclass Embarked 1
In [19]:	sns.heatmap(pd.crosstab(df['Survived'], df['Embarked']), annot=True, fmt='d'); - 70 - 60 - 50
	- 40 - 30 - 20 - 10 C Q S Embarked
In [20]:	# Age and pclass sns.lmplot(x = 'Pclass', y = 'Age', hue='Survived', data = df); 70 60 50
	30 Survived 0 1
In [21]:	<pre>nsurvived = df[df['Survived'] == 0] survived = df[df['Survived'] == 1]</pre>
In [22]:	<pre>plt.figure() fig, axes = plt.subplots(2, 3, figsize=(20, 10)) sns.distplot(nsurvived['Pclass'], label = "N'ont pas survecu", ax = axes[0,0]) sns.distplot(survived['Pclass'], label = "Ont survecu", ax = axes[0,0]).legend() sns.distplot(nsurvived['Sex'], label = "N'ont pas survecu", ax = axes[0,1]) sns.distplot(survived['Sex'], label = "Ont survecu", ax = axes[0,1]).legend() sns.distplot(nsurvived['Age'], label = "N'ont pas survecu", ax = axes[0,2]) sns.distplot(survived['Age'], label = "Ont survecu", ax = axes[0,2]).legend() sns.distplot(survived['SibSp'], label = "N'ont pas survecu", ax = axes[1,0]) sns.distplot(survived['SibSp'], label = "Ont survecu", ax = axes[1,0]).legend()</pre>
	sns.distplot(survived['Parch'], label = "N'ont pas survecu", ax = axes[1,1]) sns.distplot(survived['Parch'], label = "Ont survecu", ax = axes[1,1]).legend() sns.distplot(nsurvived['Fare'], label = "N'ont pas survecu", ax = axes[1,2]) sns.distplot(survived['Fare'], label = "Ont survecu", ax = axes[1,2]) sns.distplot(survived['Fare'], label = "Ont survecu", ax = axes[1,2]).legend() plt.show(); <figure 0="" 600x400="" axes="" size="" with=""> Nontpas survecu Ont survecu</figure>
	2 0.025 8 0.020 0.015 0.010 0.005 0.000 0.015 0.000 0.000 0.0000 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.00000 0.0000 0.00000 0.00000 0.00000 0.0000 0.0000 0.00000 0.00
	Wa can see that the distribution curves are similar for an individual who has survived or not. This phenomenon can be seen with all variables except Sex and Age. We can assume that these variables will be influential in predicting the survival of an individual. According to the Sex graph, women are more likely to survive than men.
In [23]:	# deleted Cabin from df because Index(['Survived', 'Age', 'Fare', 'Pclass 1', 'Pclass 2', 'Pclass 3',
In [24]:	'Sex_female', 'Sex_male', 'SibSp_0', 'SibSp_1', 'SibSp_2', 'SibSp_3', 'SibSp_4', 'SibSp_5', 'SibSp_8', 'Parch_0', 'Parch_1', 'Parch_2', 'Parch_3', 'Parch_4', 'Parch_5', 'Parch_6', 'Embarked_C', 'Embarked_Q', 'Embarked_S'], dtype='object') The variables Id, Lname, Name and Ticket are not present in the train and test datasets because they are not considered useful for the modeling although it could have been interesting to analyze the titles (mrs,mr,dr). The other character variables have been encoded. Moreover, we should be aware of the dummy variable trap that may result from the one hot encoding. train.shape
In [25]: Out[25]: In [26]:	train.isha().sum().sum() test.isha().sum() # no missing values in train nor test. 0
	textcoords='offset points') plt.title('"Survived" distribution (train)') plt.show(); "Survived" distribution (train) 432
	300 280 100 —
In [27]: Out[27]:	0 Survived The data is not perfectly balanced but it is ok, there is no need to resample. # Age variable description (train) pd. DataFrame (train. Age. describe ()). T count mean std min 25% 50% 75% max Age 712.0 29.674341 12.986095 0.42 22.0 29.699118 35.0 80.0
In [28]:	
	0.03 0.02 0.01 0.00 0 20 40 60 80 Age
In [29]:	Train_Test The given data is already split into two data sets: training (size of 80%) and test (size of 20%). I usually use also a validation set when I have got algorithms to tune because it provides a great insight into whether the model is overfitting or not. I could split the given test set into test and validation but I decided to keep the splits as they were given. X_train = train.drop('Survived', axis=1)
<pre>In [30]: Out[30]: In [31]: Out[31]:</pre>	0 0.606742 1 0.393258 Name: Survived, dtype: float64
Out[32]:	1 0.346369 Name: Survived, dtype: float64 Class proportions are almost similar in the train and test sets. Moreover, the train set has a proportion of about 60-40%, I personnaly think that it is not imbalanced enough, so I will not use any resampling technique. Feature_selection There are several methods of variable selection among others:
In [33]:	 Univariate selection: statistical tests can be used to select those features that have the strongest relationship with the output variable. Feature importance: the higher the score, the more important or relevant is the feature towards the output variable. Permutation feature importance (which will be discussed later on in the modeling part). 1.Univariate_selection from sklearn.feature_selection import SelectKBest from sklearn.feature_selection import chi2 # Feature extraction - 8 best features best_features = SelectKBest(score_func=chi2, k=8) fit = best_features.fit(X_train, y_train)
In [34]: In [35]: In [36]:	<pre>discores = pd.DataFrame(X_train.columns) featureScores = pd.concat([dfcolumns,dfscores],axis=1) featureScores.columns = ['Features','Score']</pre>
In [37]:	5 Sex_female 127.341783 6 Sex_male 72.366035 2 Pclass_1 37.778575 4 Pclass_3 30.581144 21 Embarked_C 13.979501 15 Parch_1 13.091688 8 SibSp_1 11.818931 Chi-square tests for variable selection are not recommended because repeating tests per variable creates a problem of multiple tests, the more tests we have, the greater the probability of error. We can do the Fisher test for a linear regression but the problem persists. 2.Feature_importance-CART from sklearn.ensemble import ExtraTreesClassifier
In [38]:	<pre>import matplotlib.pyplot as plt model = ExtraTreesClassifier() model.fit(X_train,y_train) print(model.feature_importances_) [0.2436282 0.23797023 0.03563814 0.01840319 0.05207464 0.12255299 0.15068073 0.01709495 0.0135847 0.00528195 0.00892492 0.0041949 0.0009251 0.00212306 0.01758642 0.01436521 0.00938151 0.0011233 0.00268738 0.0026483 0.00050872 0.01280613 0.0085401 0.01727522]</pre>
	Pclass_3 Sex_female Sex_male Fare
	Age 0.00 0.05 0.10 0.15 0.20 0.25 However, as seen in class, it turns out that the variable selection methods based on decision trees are not always reliable and can be strongly biased. I personally prefer to opt for the permutation importance method because it selects the important variables according to each algorithm. There exist many other techniques but they have some limits when there are correlated variables (called "associations") and the random permutation breaks this association link. Pycaret package uses the appropriate method by case and therefore the choice of Pycaret is based on the algorithm itself. I will not use Pycaret in this analysis though.
	PermutationFeatureImportance-Sklearn Warning: Features that are deemed of low importance for a bad model (low cross-validation score) could be very important for a good model. Therefore it is always important to evaluate the predictive power of a model using a held-out set (or better with cross-validation) prior to computing importances. Permutation importance does not reflect to the intrinsic predictive value of a feature by itself but how important this feature is for a particular model. In case of strongly correlated features, if one of them is permuted, the model will still have access to the feature through its correlated feature which will lead to a low feature importance value for all of them. Therefore, clustering can be used in order to keep only one feature from each cluster. This method will be seen later in the modeling part.
	Feature_Scaling Algorithms that computes the distance between the data points (Logistic Regression, KNN, SVM, K-means etc) or are used for matrix factorization or dimensionality reduction (PCA) require feature scaling. Types of scaling: 1. MaxAbsScaler():
	• valeurs dispersées/en désordre + beaucoup d'outliers (les autres techniques effacent l'impact des outliers). 2. MinMaxScaler() - Normalization : $X_{norm} = \frac{x_i - min(x)}{max(x) - min(x)}$ • Utilise min-max. • Calibre les données sur une plage de valeurs. 3. RobustScaler() : $x_i - Q_1(x)$
	$\frac{x_i-Q_1(x)}{Q_3(x)-Q_1(x)}$ • Utilise l'intervalle interquantile. • Plus fiable vis-à-vis des outliers. $(Q_1:25\%,Q_2:75\%)$ 4. StandardScaler() - Standardization : $\frac{x_i-mean(x)}{sd(x)}$ • Part du principe que les données sont normalement distribuées.
In [39]:	
In [40]:	Support Vector Machines first appeared in the 60s and then were developed in the 90s and became popular more recently in machine learning, being somewhat different from other algorithms and applied in several areas. The purpose of Support Vector Machines is to separate the data into classes thanks to a separator so that the distance (margin) between the groups of data and the border which separates them is maximum. The Support Vector Machines is a popular algorithm used for regression as well as classification. Albeit this algorithm takes a long time to work on a large database, SVM remains a fairly robust and efficient method with little risk of overfitting.
In [41]:	<pre>print("SVM classifier Accuracy on Test Dataset (before tuning): {}".format(accuracy_score(y_test,y_prd).round SVM classifier Accuracy on Train Dataset (before tuning): 0.652 SVM classifier Accuracy on Test Dataset (before tuning): 0.726 from sklearn.svm import SVC svm_clf = SVC(random_state=16) svm_clf.fit(X_train_sc,y_train) y_prd = svm_clf.predict(X_test_sc) print("SVM classifier Accuracy on Train Dataset (before tuning - scaled): {}".format(svm_clf.score(X_train_sc, print("SVM classifier Accuracy on Test Dataset (before tuning - scaled): {}".format(accuracy_score(y_test,y_print)) SVM classifier Accuracy on Train Dataset (before tuning - scaled): 0.833</pre>
	SVM classifier Accuracy on Train Dataset (before tuning - scaled): 0.833 SVM classifier Accuracy on Test Dataset (before tuning - scaled): 0.804 We notice that the feature scaling improved the performance.

Tn [421	 Hyperparameters are parameters that the model cannot learn on its own, we need to tune them in order to improve the performance of our model. Grid Search: every possible combination, but it is inefficient in computing time and power when the number of hyperparameters increase. Random Search: we define a sampling distribution for each hyperparameter. We can also set the number of iterations we want. Bayesian Optimization: SMBO (Sequential Model-Based Optimization) algorithm, it uses the previous results to decide the next ones. Tuning SVM with GridSearchCV
In [42]	<pre>kernelsvm = SVC() parameters = [{'C': [0.4,0.5,0.6], 'kernel': ['linear']},</pre>
In [43] Out[43] In [44]	<pre>grid_search.best_estimator_ SVC(C=0.5, kernel='linear')</pre>
In [45]	plot_confusion_matrix(kern_svm, x_test, y_test,cmap=*not*) plt.grid(False); - 100
	0 104 13 - 80 - 60 - 40 - 20
	Predicted label Ensemble_Learning Ensemble learning can be defined as the process of combining a multitude of algorithms that are working together in order to improve the predictability of the model. Bagging, boosting and stacking are among the most popular ensemble methods. Boosting Techniques
	Boosting Techniques Boosting is an ensemble learning method based on the idea of "wisdom of the crowd", related to the law of large numbers, where the word "crowd" here refers to a group of weak machine learning models. The boosting method combines several binary classifiers to optimize their performance, the principle is based on combining several weak classifiers in order to produce a final and more powerful classifier by the majority vote principle. This is a sequential method, at each new step a new classifier, more suitable than the previous one is built. Classification and Regression Trees are among the most widely used classifiers for boosting. In bagging, the models are trained in parallel and are all relatively strong, each in an over-fitting situation, so bringing together the predictions helps reduce the variance of the set. Conversely, with boosting, the models are trained sequentially and are all weak, each in an under-fitting situation but by building them on top of each other, the overall bias is reduced. Albeit bagging and boosting are two different methods, they achieve the same result - a strong, wide and diverse final set of models.
In [46]	Adaptive Boosting, also known as Adaboost, is one of the most used algorithms in boosting. This algorithm was introduced by Freund and Shapire in 1997 and is employed here to classify whether the passengers survived or not, given a set of predictive variables. from sklearn.metrics import roc_curve, plot_roc_curve from sklearn.ensemble import AdaBoostClassifier ada_model = AdaBoostClassifier(random_state=16) ada_model.fit(X_train, y_train)
In [47]	<pre>r = permutation_importance(ada_model, X_train, y_train,</pre>
	<pre>for i in r.importances_mean.argsort()[::-1]: if r.importances_mean[i] - 2 * r.importances_std[i] > 0: print(f"{train.columns[i]:<8} "</pre>
	Permutation feature importance can be calculated either on the training or validation set. In this analysis I did not use a validation set even though it seems to be very intuitive. So I fitted it on the train set. Features that seem to be important in the training set but not on the test or validation set might lead to overfitting. In this example I chose 30 iterations and the decrease in performance is calculated in each iteration. For the 'Sex_female' column for instance, the 0.182 represents the mean by which the performance of the model decreased on the 30 iterations and 0.011 is the standard deviation. Xgboost XGBoost is one of the most popular variants of the Gradient Boosting, which has been improved recently (2016) in a very powerful version called eXtreme Gradient Boosting (XGBoost) which thus serves to improve the performance and speed of the model. It is an optimized open source implementation of the gradient boosting tree algorithm.
In [48]	<pre>import xgboost as xgb from sklearn.metrics import roc_auc_score xgb_model = xgb.XGBClassifier() xgb_model.fit(X_train, y_train) y_xgb = xgb_model.predict(X_test) print("Xgboost classifier Accuracy on Train Dataset : {}".format(xgb_model.score(X_train, y_train).round(3))) print("Xgboost classifier Accuracy on Test Dataset : {}".format(accuracy_score(y_test,y_xgb).round(3))) [04:08:17] WARNING: C:/Users/Administrator/workspace/xgboost-win64_release_1.5.1/src/learner.cc:1115: Starting in XGBoost 1.3.0, the default evaluation metric used with the objective 'binary:logistic' was changed from 'err</pre>
In [49]	or' to 'logloss'. Explicitly set eval_metric if you'd like to restore the old behavior. Xgboost classifier Accuracy on Train Dataset : 0.969 Xgboost classifier Accuracy on Test Dataset : 0.849 Xgboost overfitted comparing to other algorithms but gave the best results.
	f"{r.importances_mean[i]:.3f}" f" +/- {r.importances_std[i]:.3f}") Pclass_3 0.225 +/- 0.010 Age 0.167 +/- 0.008 Survived 0.153 +/- 0.013 Pclass_2 0.089 +/- 0.010 Fare 0.032 +/- 0.004 Parch_6 0.018 +/- 0.004 SibSp_8 0.017 +/- 0.004 Embarked_0 0.011 +/- 0.003 Embarked_0 0.004 +/- 0.001 Sex_male 0.004 +/- 0.002 Parch_1 0.002 +/- 0.001
In [50]	<pre>params = { 'min_child_weight': [3,4,5,6],</pre>
In []	<pre>print(f'Best Estimator : {grid_search.best_estimator_} \nBest Parameters : {grid_search.best_params_}') print(f'Best Score : {grid_search.best_scoreround(3)}') Best Estimator : XGBClassifier(base_score=0.5, booster='gbtree', colsample_bylevel=1,</pre>
In [54]	<pre>xg = xgb.XGBClassifier(colsample_bytree=0.7, gamma=1, max_depth=10,</pre>
In [55]	<pre>from sklearn.metrics import confusion_matrix, accuracy_score xg.fit(X_train, y_train) y_pred = xg.predict(X_test) print("XGBOOST classifier Accuracy on Train Dataset : {}".format(xg.score(X_train, y_train).round(3))) print("XGBOOST classifier Accuracy on Test Dataset : {}".format(accuracy_score(y_test,y_pred).round(3))) print(classification_report(y_test,y_pred)) # The test accuracy improved. [04:40:57] WARNING: C:/Users/Administrator/workspace/xgboost-win64_release_1.5.1/src/learner.cc:1115: Starting in XGBoost 1.3.0, the default evaluation metric used with the objective 'binary:logistic' was changed from 'err or' to 'logloss'. Explicitly set eval_metric if you'd like to restore the old behavior. XGBOOST classifier Accuracy on Train Dataset : 0.893 XGBOOST classifier Accuracy on Test Dataset : 0.855</pre>
	precision recall f1-score support 0 0.87 0.91 0.89 117 1 0.82 0.74 0.78 62 accuracy 0.85 179 macro avg 0.85 0.83 0.84 179 weighted avg 0.85 0.85 0.85 179 • macro average = (precision of class 0 + precision of class 1)/2 • weighted average = precision of all classes merged together.
In [56]	plt.grid(False); #OrRd - 100 107 10 - 80
	1 16 46 - 40 - 20 Predicted label
	Predicted label The test accuracy slightly improved and the model did not overfit. ROC-AUC The Receiver Operating Characteristic (ROC) curve is a statistical tool for evaluating and comparing models, it is a probabilistic measure of the performance of a binary classifier. It is, in fact, a graphical representation of the True Positive Rate - TPR (Sensitivity) on the y-axis and the False Positive Rate - FPR (1-Specificity) on the x-axis with a threshold which varies from 0 to 1. In many applications, the ROC curve provides more interesting information on the quality of learning than the simple error rate. The larger the Area Under the Curve (AUC), the better the model. However, the selection of the threshold depends on the area of expertise, the performance of the model as well as the data. The area under the curve can be calculated using a sorting algorithm, by calculating integrals from (0,0) to (1,1):
In [57]	$AUC = \int_0^1 rac{TP}{TP + FN} drac{FP}{FP + TN}$
	(L)
	No. 2 No. 2 No. 2 No. 3 No. 2 No. 3 No. 4 No. 2 No. 3 No. 4 No. 2 No. 3 No. 4 No. 4 No. 4 No. 4 No. 5 No. 2 No. 4 No. 6 No. 8 No
	Clustering Members: YALAP Sophia In this section, we will use the k-means clustering algorithm to define clusters in our dataset. We will also perform a dimension reduction via the PCA and NMF. Summary: 1. Use of raw data without dimension reduction
In [59]	 1. Dimension reduction with NMF 1. Dimension reduction comparison from sklearn.preprocessing import StandardScaler, normalize from sklearn.decomposition import PCA from sklearn.metrics import silhouette_score from sklearn.cluster import KMeans from sklearn.decomposition import NMF
In [61]	test = pd.read_csv("test-data.csv") print(train.shape, test.shape) (712, 25) (179, 25) With a clustering problem, we don't have to have a target. The aim is to find groups of individuals in our dataset. Moreover, we don't need to test our models on a test set. That's why we will work on a merged dataset (training set, test set) X = pd.concat([train, test]) X.shape
In [62]	X. nead(2)
In [64]	<pre>fig, axes = plt.subplots(1,2, sharex=True, figsize=(10,4)) fig.suptitle('Boxplot') sns.boxplot(ax=axes[0], data = X, y = X['Age']) axes[0].set_title('Age') sns.boxplot(ax=axes[1], data = X, y = X['Fare']) axes[1].set_title('Fare') plt.show();</pre> Boxplot
	Age Fare 80 70 60 50 300 200
In [65]	fig, axes = plt.subplots(1,2, sharex=True, figsize=(15,3)) fig.suptitle('Distplot') sns.distplot(ax=axes[0], x = X['Age']) axes[0].set_title('Age')
	sns.distplot(ax=axes[1], x = X['Fare']) axes[1].set_title('Fare') plt.show() Age Distplot Fare 0.10 0.08 Age 0.003 Age 0.003 Age 0.003 Age 0.003
In [66]	axes[1].set_title('Fare') plt.show() Age Distplot Fare 0.10 0.08 0.00 0.00 0.00 We will remove outliers of the variable Fare. Keeping these values could distort the results. $X = X[X['Fare'] < 300]$
	District Pare Par
	axes (1) .set_title (*Fare*) plt .show() We will remove outliers of the variable Fare. Keeping these values could distort the results. **If a x = x(x(*Fare*) < 300) **Plt .fsgure*(fsgure*(5,4)) sno.boxplot*(data = x, y = x(*Fare*)); **Inc. boxplot*(data = x, y = x(*Fare*)); **I
In [79]	axes [1] .aez_(fare!) plt.abov() Age Distplot Fare Occ Occ Occ Occ Occ Occ Occ O
In [79]	District The first thing to do its defining the right compromise between a low internally coherent clusters. How does it work **Bloom method** The elbow method consists in defining the right compromise between a low inertia and a reasonable number of clusters. How does it work **Bloom method** The beard is formed and this value will consepond to our optimal number of clusters. How does it work **Bloom method** The week and the inertia ? Inertia can be recognized as a measure of how internally coherent clusters are. **Inertia** **Proc. circulated as a company carray is not a paracos character and a measure of clusters can be found with the elbow method. **Bloom method** The elbow method consists in defining the right compromise between a low inertia and a reasonable number of clusters. How does it work **Two have a graph with the number of clusters. The number of clusters are not the ordinate. When we plot the values, we can locate where the Peard is formed and this value will consepond to our optimal number of clusters. **Inertia** **Inertia** **The Kreams algorithm aims to choose composite that minimise the inertia, or within cluster sum of squares criterion. **Proc. circulated as a character control is not choose composite that minimise the inertia, or within cluster sum of squares criterion. **Proc. circulated the inertia?** **Proc. circulated the inertia?* **Proc. circul
In [79]	The Elbow Method
In [79]	### Displace The part of the
In [79]	The Blow method consists in defining the ingle consones between a low internally consent distance in code of the residual to t
In [79]	The coverage part is character of a control to the coverage of
In [79] In [80]	The cores against the restrict of distinct and an exception of the restrict of the season restrict. **Description of the control of distinct on the origin of distinct on the
In [79] In [80]	The contraction of the contract of the contrac
In [80] In [81]	The control of the co
In [80] In [81]	Standard Sta
In [80] In [81]	The content of the co
In [83] In [83] In [93]	State of the control
In [83] In [83] In [93]	Control of the contro
In [83] In [83] In [93]	The first part of the control of the
In [83] In [83] In [94]	The content of the co
In [83] In [83] In [94]	The control of the co
In [83] In [83] In [94]	Section of the control of the contro
In [88] In [83] In [94] In [94]	The content of the co
In [88] In [83] In [94] In [94]	The content of the co
In [83] In [94] In [94]	Section 1997 Fig. 199
In [88] In [83] In [94] In [94]	The content of the co
In [83] In [94] In [94]	The content of the co
In [88] In [83] In [94] In [94]	Section 1997 For any of the control
In [88] In [98] In [98] In [98]	The state of the s
In [96] In [96] In [96] In [96] In [96]	The control of the co
In [96] In [97] In [98] In [98] In [98] In [98] In [98] In [98]	The content of the co

