

HENSOLDT Analytics

Generating Robust Motion Maps to Enhance Object

Detector Performance

Sébastien Grand

Supervisor: Dr. Jonathan Kobold

06/02/2023

ModIA - Enseeiht

Table of contents

Introduction

Motion Detection

Object Detection

Possible Improvements

Conclusion

Introduction

Context & Objectives

Previous Work

Requirements & Literature Review

Context & Objectives

Do you see any object on this frame?

Figure 1 : Frame from Analytics drone dataset

Context & Objectives

Would you have seen the drone on this frame if it did not have a bounding box?

Figure 2 : Frame from Analytics drone dataset

Previous Work

For *visibility*, the video from the *Davis* dataset [1] called *BMX-bumps* is used as an example of *motion* detection.

Figure 5: Frame-difference computed with 3 frames [2]

Requirements & Literature Review

- List of Requirements:
 - The method must be executable on the CPU:
 - No research on *Deep Learning* methods.
 - The method should handle various situations :
 - Moving Camera;
 - Low-contrast;
 - Dynamic Background;
 - Tiny Objects

- Literature Review:
- Optical Flow;
- Panorama creation;
- Subspace Learning;

Motion Detection: PRPCA

Video Registration : Panorama Creation

Motion Detection : Robust PCA Formulation

Motion Detection : Decomposition Results

Post-processing : Object Detection

Results & Discussions

Video Registration : Frames 1

My camera captures a first frame.

Figure 6 : 1st frame from BMX-bumps video

Video Registration : Frames 2

My camera captures a second frame.

Figure 7: 2nd frame from BMX-bumps video

Video Registration : Frames 3

My camera captures a third frame.

Figure 8: 3rd frame from BMX-bumps video

Video Registration: Panorama of 3 frames

It is possible to align all the frames together with respect to a point of view reference.

Figure 9: 3rd frame from BMX-bumps video

Video Registration : Panorama Creation

Video Registration procedure as proposed in [3].

frames

Video Registration : Resulting Panorama

With a batch of 20 frames captured by moving camera, it is possible to obtain this panorama:

Figure 14: Resulting panorama made of 20 frames with the 10th frame as reference

Motion Detection: Separating the Motion from the Background

How can we separate what is moving (the bike) from what is static (the background)?

Figure 15: Foreground/Background Segmentation

Motion Detection: Separating Motion from the Background

Problem formulation:

Registered frames are stored in X as :

$$X = [vec(\tilde{x}_1), \dots, vec(\tilde{x}_p)]$$

- where, vec(.) is the function to vectorize a frame;
- where \tilde{x}_k refers to the k-th registered frame of X with respect to the anchor frame.
- Then, X can be decomposed [4] as:

$$egin{array}{ll} \min _{L,S} & ||L||_* + \lambda ||S||_1 \ & ext{subject to} & \mathcal{P}_M(L+S) = \mathcal{P}_M(X) \end{array}$$

Motion Detection: Resulting Decomposition

Decompostion of *Paragliding* video from *Davis* dataset :

Figure 16: Paragliding Foreground/Backgroud Segmentation

Decompostion of drone video from Analytics dataset :

Figure 17: Foreground/Backgroud Segmentation of Drone video from Analytics Dataset

Post-processing: Object Detection Input Creation

Creation of Binary Motion Map & Trajectory Map:

Results: Datasets & Metrics

- The two datasets used for evaluation are :
 - Davis Challenge dataset :
 - Dataset for Background/Foreground Separation;
 - . The filming camera is moving;
 - ChangeDetection.net [6] dataset :
 - Database for testing change detection algorithm;
 - The filming camera jitters or the background is dynamic;

Results: Results & Discussions

Results of the experiments conducted on the Davis and CDnet datasets:

Video informations				PRPCA			Baseline
Dataset	Sequence	Camera	Frames	Precision	Recall	F-measure	F-measure
Davis 2017	bmx-bumps	moving	40	0.78	0.72	0.75	0.53
Davis 2017	tennis	moving	35	0.89	0.54	0.67	0.45
CDnet 2014	canoe	jittering	80	0.25	0.26	0.22	0.11
CDnet 2014	fall	jittering	80	0.80	0.53	0.61	0.22

Table 1: Results of PRPCA and baseline model on 4 different videos.

- True Positive (TP): The model prediction matches the ground truth;
- False Positive (FP): The model predicted a label that does not match the ground truth;
- False Negative (FN): The model does not predict a label, but a ground truth label exists;
- Precision (P): TP / (TP + FP)
- Recall (R) : TP / (TP + FN)
- F-measure/F1-score: 2 PR/ (P + R)

Object Detection

- Dataset for Object Detection
- Input Data for Object Detection
- Training Procedure
- Experiments & Results

Dataset for Object Detection

Slow Motion Camera Dataset

- Characteristics :
 - Easy motion compensation;
 - Tiny drones;
 - Low-contrast;
 - 13 videos;
 - ~50 frames / video;

Figure 24: Example of RGB frame and Raw Motion Map in slow motion dataset

Dataset for Object Detection

High Motion Camera Dataset

- Characteristics :
 - Difficult motion compensation;
 - More visible drones;
 - 11 videos;
 - ~50 frames / videos;

Figure 25: Example of RGB frame and Raw Motion Map in high motion dataset

Dataset for Object Detection

Slow & High Motion Camera Dataset

- Characteristics :
 - Various difficulty of motion compensation;
 - Various drone sizes;
 - Various image quality;

Input Data for Object Detection

The different *inputs*:

Figure 26: The differents inputs for object detection experiments

Training Procedure

Experiments & Results

Results of the experiments conducted on the Drone datasets of Analytics:

Dataset	Input	$AP_{drone}(\%)$	$AR_{drone}(\%)$	
Slow motion camera	RGB	49.7	53.2	
	RGB - Raw motion	52.3	54.2	
	RGB - Binary motion	58.4	62.0	
	RGB - Trajectory	54.5	57.0	
High motion camera	RGB	56.4	61.0	
	RGB - Raw motion	55.7	58.0	
	RGB - Binary motion	48.1	52.1	
	RGB - Trajectory	52.2	54.0	
Coupled dataset	RGB	45.6	49.8	
	RGB - Raw motion	51.2	55.7	
	RGB - Binary motion	49.7	52.0	
	RGB - Trajectory	53.7	56.3	

Table 2: YOLOX results on different datasets (Analytics)

AP (%) : average of all precision measurements for each detection.

AR (%): average of all recall measurements for each detection.

Figure 27: Accurate Motion Map (good ego -motion compensation

Figure 28: Noisy Motion Map due to high ego-motion

Possible Improvements & Future Work

- Future improvements :
 - Motion compensation :
 - Extract better features;
 - Estimate better Homographies;
 - Elimination of clutter (moving trees, flowing water):
 - CNN to train to remove clutter;

Conclusion

- In this work, I was able to:
- Learn and perform *motion compensation* by panorama building approach;
- Learn and perform motion detection with Robust PCA;
- Improve motion detection compared to previous work;
- Fine-tune an object detector with different inputs;
- Show that adding *relevant motion information* to an RGB image as input to an object detector *improves* its performance at detecting *small drones*.

Thanks for your attention.

Any questions?

References

- [1] DAVIS: Densely annotated VIdeo segmentation
- [2] G.-W. Yuan, J. Gong, M.-N. Deng, H. Zhou, and D. Xu, "A moving objects detection algorithm
- based on three-frame difference and sparse optical flow,"
- [3] B. E. Moore, C. Gao, and R. R. Nadakuditi, "Panoramic robust PCA for foreground-background separation on noisy, free-motion camera video."
- [4] E. J. Candes, X. Li, Y. Ma, and J. Wright, "Robust principal component analysis?"
- [5] N. Otsu, "A threshold selection method from gray-level histograms,"
- [6] Y. Wang, P.-M. Jodoin, F. Porikli, J. Konrad, Y. Benezeth, and P. Ishwar, "CDnet
- 2014: An expanded change detection benchmark dataset,"
- [7] Z. Ge, S. Liu, F. Wang, Z. Li, and J. Sun, "YOLOX: Exceeding YOLO series in 2021."