

I hereby certify that this correspondence is being deposited with the United States Postal Services as first class mail in envelope addressed to: Commissioner of Patents and Trademarks, Washington, D.C. 20231, on July 13, 1999.

By Denise Lauer

RECEIVED

JUL 22 1999

TECH CENTER 1600/2900

Re 1641
Box 58

LUD 5538.1CIP - JEL/NDH (987339)

W/D

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

RECEIVED

Applicant(s) : CHEN et al.

JUL 21 1998

Serial No. : 09/270,437

TECH CENTER 1600/2900

Filing Date : March 16, 1999

For : ISOLATED NUCLEIC ACID MOLECULE ENCODING CANCER ASSOCIATED ANTIGENS, THE ANTIGENS PER SE, AND USES THEREOF

Art Unit : 1641

4 1/2 Am/HB

Examiner : Unknown

TL
08/06/99

Hon. Commissioner of Patents
and Trademarks
Washington, D.C. 20231

July 13, 1999

LETTER

SIR:

Transmitted herewith are paper copy and CRF of sequence information for the above referenced case. It is requested that the paper copy be placed after page 21 and prior to page 22 of the subject application, and that the paper copy of sequence information that currently follows the abstract be CANCELLED.

The undersigned hereby declares that to the best of his knowledge, the accompanying paper copy and CRF of sequence information are identical to each other and to the sequence information as filed originally in this application. No new matter is believed to be included

Respectfully submitted,

FULBRIGHT & JAWORSKI L.L.P.

By
Norman D. Hanson

Reg. No. 30,946

666 Fifth Avenue
New York, New York 10103
(212) 318-3000

O I P E

JUL 15 1999

PATENT TRADE

B' CONTD

<110> Chen, Yao-Tseng
Gure, Ali
Tsang, Solam
Stockert, Elisabeth
Jager, Elke
Knuth, Alexander
Old, Lloyd J.

<120> Isolated Nucleic Acid Molecules Encoding Cancer Associated Antigen, The Antigens Per Se, And Uses Thereof

<130> LUD 5538.1 PCT

<140> PCT/US 99/05766

<141> 1998 - 04 - 17

<160> 3

<210> 1
<211> 4265
<212> DNA
<213> Homo sapiens
<220>
<400> 1

GTCTGAAGGA CCTGAGGCAT TTTGTGACGA GGATCGTCTC AGGTCAGCGG AGGGAGGAGA 60
CTTATAGACC TATCCAGTCT TCAAGGTGCT CCAGAAAGCA GGAGTTGAAG ACCTGGGTGT 120
GAGGGACACA TACATCCTAA AAGCACCA GCAGAGGAGG CCCAGGCAGT GCCAGGAGTC 180
AAGGGTCCC AAGACAAAC CCCCTAGGAA GACAGGCCAC CTGTGAGGCC CTAGAGCACC 240
ACCTTAAGAG AAGAAGAGCT GTAAGCCGGC CTTTGTAGA GCCATCATGG GGGACAAGGA 300
TATGCCACT GCTGGGATGC CGAGTCTTCT CCAGAGTTCC TCTGAGAGTC CTCAGAGTTG 360
TCCTGAGGGG GAGGACTCCC AGTCTCCTCT CCAGATTCCC CAGAGTTCTC CTGAGAGCGA 420
CGACACCCCTG TATCCTCTCC AGAGTCTCTA GAGTCGTTCT GAGGGGGAGG ACTCCTCGGA 480
TCCTCTCCAG AGACCTCCTG AGGGGAAGGA CTCCCACTCT CCTCTCCAGA TTCCCCAGAG 540
TTCTCCTGAG GGCGACGACA CCCAGTCTCC TCTCCAGAAT TCTCAGAGTT CTCCAGAGGG 600
GAAGGACTCC CTGTCTCCTC TAGAGATTTC TCAGAGCCCT CCTGAGGGTG AGGATGTCCA 660
GTCTCCTCTG CAGAACCTCTG CGAGTCTCTT CTTCTCCTCT GCTTTATTGA GTATTTCCA 720
GAGTTCCCT GAGAGTATTG AAAGTCCTT TGAGGGTTTT CCCCAGTCTG TTCTCCAGAT 780
TCCTGTGAGC GCCGCCTCCT CCTCCACTTT AGTGAGTATT TTCCAGAGTT CCCCTGAGAG 840
TACTCAAAGT CTTTGAGG GTTTCCCCA GTCTCCACTC CAGATTCTG TGAGCCGCTC 900
CTTCTCCTCC ACTTTATTGA GTATTTCCA GAGTCCCT GAGAGAAGTC AGAGAACTTC 960
TGAGGGTTTT GCACAGTCTC CTCTCCAGAT TCCTGTGAGC TCCTCTCGT CCTCCACTTT 1020
ACTGAGTCTT TTCCAGAGTT CCCCTGAGAG AACTCAGAGT ACTTTTGAGG GTTTCCCCA 1080
GTCTCCACTC CAGATTCTG TGAGCCGCTC CTTCTCCTCC ACTTTATTGA GTATTTCCA 1140
GAGTTCCCT GAGAGAACTC AGAGTACTTT TGAGGGTTTT GCCCAGTCTC CTCTCCAGAT 1200
TCCTGTGAGC CCCTCCTCT CCTCCACTTT AGTGAGTATT TTCCAGAGTT CCCCTGAGAG 1260
AACTCAGAGT ACTTTGAGG GTTTCCCCA GTCTCCTCTC CAGATTCTG TGAGCTCCTC 1320
CTTCTCCTCC ACTTTATTGA GTCTTTCCA GAGTCCCT GAGAGAAGTC AGAGTACTTT 1380
TGAGGGTTTT CCCCAGTCTC CTCTCCAGAT TCCTGGAAAGC CCCTCCTCT CCTCCACTTT 1440
ACTGAGTCTT TTCCAGAGTT CCCCTGAGAG AACTCACAGT ACTTTTGAGG GTTTCCCCA 1500
GTCTCCTCTC CAGATTCTA TGACCTCCTC CTTCTCCTCT ACTTTATTGA GTATTTACA 1560
GAGTTCTCCT GAGAGTGCTC AAAGTGCTT TGAGGGTTTT CCCCAGTCTC CTCTCCAGAT 1620
TCCTGTGAGC TCCTCTTCT CCTACACTTT ATTGAGTCTT TTCCAGAGTT CCCCTGAGAG 1680
AACTCACAGT ACTTTGAGG GTTTCCCCA GTCTCCTCTC CAGATTCTG TGAGCTCCTC 1740
CTCCTCCTCC TCCACTTTAT TGAGTCTTT CCAGAGTTCC CCTGAGTCTA CTCAAGTAC 1800
TTTGAGGGT TTTCCCCAGT CCTCTCTCCA GATTCTCAG AGTCCTCCTG AAGGGGAGAA 1860
TACCCATTCT CCTCTCCAGA TTGTTCCAAG TCTTCCTGAG TGGGAGGACT CCCTGTCTCC 1920
TCACTACTTT CCTCAGAGCC CTCCTCAGGG GGAGGACTCC CTATCTCCTC ACTACTTTCC 1980

TCAGAGCCCT CCTCAGGGGG AGGACTCCCT GTCTCCTCAC TACTTCCTC AGAGCCCTCA 2040
 GGGGGAGGAC TCCCTGTCTC CTCACTACTT TCCTCAGAGC CCTCCTCAGG GGGAGGAAGTC 2100
 CATGTCTCCT CTCTACTTTTC CTCAGAGTCC TCTTCAGGGG GAGGAATTCC AGTCTTCTCT 2160
 CCAGAGCCCT GTGAGCATCT GCTCCTCCTC CACTCCATCC AGTCTCCCCC AGAGTTTCCC 2220
 TGAGAGTTCT CAGAGTCCTC CTGAGGGGCC TGTCAGTCT CCTCTCCATA GTCTCAGAG 2280
 CCCTCCTGAG GGGATGCACT CCCAATCTCC TCTCCAGAGT CCTGAGAGTG CTCCTGAGGG 2340
 GGAGGATTCC CTGTCCTCCTC TCCAAATTC TCAGAGTCCT CTTGAGGGAG AGGACTCCCT 2400
 GTCTTCTCTC CATTTCCTC AGAGTCCTCC TGAGTGGGAG GACTCCCTCT CTCTCTCCA 2460
 CTTTCTCTCAG TTTCTCTCAGG AGGGGGAGGA CTTCCAGTCT TCTCTCCAGA GTCTGTGAG 2520
 TATCTGCTCC TCTCTCCACTT CTTTGAGTCT TCCCCAGAGT TTCCCTGAGA GTCTCAGAG 2580
 TCCTCCTGAG GGGCTGTCTC AGTCTCCTCT CCAGAGACCT GTCAGCTCCT TCTCTCCTA 2640
 CACTTTAGCG AGTCCTCTCC AAAGTTCCA TGAGAGTCCT CAGAGTCCTC CTGAGGGGCC 2700
 TGCCCAGTCT CCTCTCCAGA GTCTGTGAG CTCCTTCCCC TCCTCCACTT CATCGAGTCT 2760
 TTCCCAGAGT TCTCCTGTGA GCTCCTTCCC CTCCTCCACT TCATCGAGTC TTTCCAAGAG 2820
 TTCCCCTGAG AGTCCTCTCC AGAGTCCTGT GATCTCCTTC TCCTCCTCCA CTTCATTGAG 2880
 CCCATTCACT GAAGAGTCCA GCAGCCCCAGT AGATGAATAT ACAAGTCCCT CAGACACCTT 2940
 GCTAGAGAGT GATTCTTGA CAGACAGCGA GTCCTTGATA GAGAGCGAGC CTTGTTCAC 3000
 TTATACACTG GATGAAAAGG TGGACGAGTT GGCGCGGTTT CTTCTCTCA AATATCAAGT 3060
 GAAGCAGCCT ATCACAAAGG CAGAGATGCT GACGAATGTC ATCAGCAGGT ACACGGGCTA 3120
 CTTTCCTGTG ATCTTCAGGA AAGCCCGTGA GTTCATAGAG ATACTTTG GCATTTCCCT 3180
 GAGAGAAGTG GACCCTGTATG ACTCTATGT CTTTGTAAAC ACATTAGACC TCACCTCTGA 3240
 GGGGTGTCTG AGTGTGAGC AGGGGATGTC CCAGAACCGC CTCCTGTATT TCATTCTGAG 3300
 TATCATCTC ATAAAGGGCA CCTATGCCCT TGAGGAGGTC ATCTGGGATG TGCTGAGTGG 3360
 AATAGGGGTG CGTGTGGGAG GGGAGCAGTT TGCCCTTGGG GAGCCCAGGG AGCTCCTCAC 3420
 TAAAGTTGG GTGCAGGAAC ATTACCTAGA GTACCGGGAG GTGCCCAACT CTTCTCCTCC 3480
 TCGTTACGAA TTCCTGTGGG GTCCAAGAGC TCATTCTGAA GTCATTAAGA GGAAAGTAGT 3540
 AGAGTTTTG GCCATGCTAA AGAATACCGT CCCTATTACC TTTCCATCT CTTACAAGGA 3600
 TGCTTTGAAA GATGTGGAAG AGAGAGCCCA GGCCATAATT GACACCACAG ATGATTGAC 3660
 TGCCACAGAA AGTGCAGT CCAGTGTCT GTCCCCCAGC TTCTCTCTG AGTGAAGTCT 3720
 AGGGCAGATT CTTCCCTCTG AGTTGAGG GGGCAGTCGA GTTCTACGT GGTGGAGGGC 3780
 CTGGTTGAGG CTGGAGAGAA CACAGTGCTA TTTGCATTTC TGTTCCATAT GGGTAGTTAT 3840
 GGGGTTTACC TGTTTACTT TTGGGTATTT TTCAAATGCT TTTCTATTAA ATAACAGGTT 3900
 TAAATAGCTT CAGAACCTA GTTTATGCAC ATGAGTCGCA CATGTATTGC TGTTTTCTG 3960
 GTTTAAGAGT AACAGTTGA TATTTGTAA AAACAAAAAC ACACCCAAAC ACACCACATT 4020
 GGGAAACCT TCTGCCTCAT TTTGTGATGT GTCACAGGTT AATGTGGTGT TACTGTAGGA 4080
 ATTTTCTTGA AACTGTGAAG GAACTCTGCA GTTAAATAGT GGAATAAAGT AAAGGATTGT 4140
 TAATGTTGC ATTTCTCAG GTCCCTTAGT CTGTTGTTCT TGAAAACATAA AGATACATAC 4200
 CTGGTTTGCT TGGCTTACGT AAGAAAGTCG AAGAAAGTAA ACTGTAATAA ATAAAAGTGT 4260
 CAGTG 4265

<210> 2
 <211> 1142
 <212> PRT
 <213> Homo sapiens
 <220>
 <400> 2

Met	Gly	Asp	Lys	Asp	Met	Pro	Thr	Ala	Gly	Met	Pro	Ser	Leu	Leu	Gln
					5				10				15		
Ser	Ser	Ser	Glu	Ser	Pro	Gln	Ser	Cys	Pro	Glu	Gly	Glu	Asp	Ser	Gln
					20				25				30		
Ser	Pro	Leu	Gln	Ile	Pro	Gln	Ser	Ser	Pro	Glu	Ser	Asp	Asp	Thr	Leu
					35				40				45		
Tyr	Pro	Leu	Gln	Ser	Pro	Gln	Ser	Arg	Ser	Glu	Gly	Glu	Asp	Ser	Ser
					50				55				60		
Asp	Pro	Leu	Gln	Arg	Pro	Pro	Glu	Gly	Lys	Asp	Ser	Gln	Ser	Pro	Leu
					65				70				75		80
Gln	Ile	Pro	Gln	Ser	Ser	Pro	Glu	Gly	Asp	Asp	Thr	Gln	Ser	Pro	Leu
					85				90				95		

Gln Asn Ser Gln Ser Ser Pro Glu Gly Lys Asp Ser Leu Ser Pro Leu
100 105 110
Glu Ile Ser Gln Ser Pro Pro Glu Gly Glu Asp Val Gln Ser Pro Leu
115 120 125
Gln Asn Pro Ala Ser Ser Phe Phe Ser Ser Ala Leu Leu Ser Ile Phe
130 135 140
Gln Ser Ser Pro Glu Ser Ile Gln Ser Pro Phe Glu Gly Phe Pro Gln
145 150 155 160
Ser Val Leu Gln Ile Pro Val Ser Ala Ala Ser Ser Ser Thr Leu Val
165 170 175
Ser Ile Phe Gln Ser Ser Pro Glu Ser Thr Gln Ser Pro Phe Glu Gly
180 185 190
Phe Pro Gln Ser Pro Leu Gln Ile Pro Val Ser Arg Ser Phe Ser Ser
195 200 205
Thr Leu Leu Ser Ile Phe Gln Ser Ser Pro Glu Arg Ser Gln Arg Thr
210 215 220
Ser Glu Gly Phe Ala Gln Ser Pro Leu Gln Ile Pro Val Ser Ser Ser
225 230 235 240
Ser Ser Ser Thr Leu Leu Ser Leu Phe Gln Ser Ser Pro Glu Arg Thr
245 250 255
Gln Ser Thr Phe Glu Gly Phe Pro Gln Ser Pro Leu Gln Ile Pro Val
260 265 270
Ser Arg Ser Phe Ser Ser Thr Leu Leu Ser Ile Phe Gln Ser Ser Pro
275 280 285
Glu Arg Thr Gln Ser Thr Phe Glu Gly Phe Ala Gln Ser Pro Leu Gln
290 295 300
Ile Pro Val Ser Pro Ser Phe Ser Ser Thr Leu Val Ser Ile Phe Gln
305 310 315 320
Ser Ser Pro Glu Arg Thr Gln Ser Thr Phe Glu Gly Phe Pro Gln Ser
325 330 335
Pro Leu Gln Ile Pro Val Ser Ser Ser Phe Ser Ser Thr Leu Leu Ser
340 345 350
Leu Phe Gln Ser Ser Pro Glu Arg Thr Gln Ser Thr Phe Glu Gly Phe
355 360 365
Pro Gln Ser Pro Leu Gln Ile Pro Gly Ser Pro Ser Phe Ser Ser Thr
370 375 380
Leu Leu Ser Leu Phe Gln Ser Ser Pro Glu Arg Thr His Ser Thr Phe
385 390 395 400
Glu Gly Phe Pro Gln Ser Pro Leu Gln Ile Pro Met Thr Ser Ser Phe
405 410 415
Ser Ser Thr Leu Leu Ser Ile Leu Gln Ser Ser Pro Glu Ser Ala Gln
420 425 430
Ser Ala Phe Glu Gly Phe Pro Gln Ser Pro Leu Gln Ile Pro Val Ser
435 440 445
Ser Ser Phe Ser Tyr Thr Leu Leu Ser Leu Phe Gln Ser Ser Pro Glu
450 455 460
Arg Thr His Ser Thr Phe Glu Gly Phe Pro Gln Ser Pro Leu Gln Ile
465 470 475 480
Pro Val Ser Ser Ser Ser Ser Thr Leu Leu Ser Leu Phe Gln
485 490 495
Ser Ser Pro Glu Cys Thr Gln Ser Thr Phe Glu Gly Phe Pro Gln Ser
500 505 510
Pro Leu Gln Ile Pro Gln Ser Pro Pro Glu Gly Glu Asn Thr His Ser
515 520 525
Pro Leu Gln Ile Val Pro Ser Leu Pro Glu Trp Glu Asp Ser Leu Ser
530 535 540
Pro His Tyr Phe Pro Gln Ser Pro Pro Gln Gly Glu Asp Ser Leu Ser
545 550 555 560
Pro His Tyr Phe Pro Gln Ser Pro Pro Gln Gly Glu Asp Ser Leu Ser
565 570 575

Ans
C2
u/t

Pro His Tyr Phe Pro Gln Ser Pro Gln Gly Glu Asp Ser Leu Ser Pro
580 585 590
His Tyr Phe Pro Gln Ser Pro Pro Gln Gly Glu Asp Ser Met Ser Pro
595 600 605
Leu Tyr Phe Pro Gln Ser Pro Leu Gln Gly Glu Asp Ser Gln Ser Ser
610 615 620
Leu Gln Ser Pro Val Ser Ile Cys Ser Ser Ser Thr Pro Ser Ser Leu
625 630 635 640
Pro Gln Ser Phe Pro Glu Ser Ser Gln Ser Pro Pro Glu Gly Pro Val
645 650 655
Gln Ser Pro Leu His Ser Pro Gln Ser Pro Pro Glu Gly Met His Ser
660 665 670
Gln Ser Pro Leu Gln Ser Pro Glu Ser Ala Pro Glu Gly Glu Asp Ser
675 680 685
Leu Ser Pro Leu Gln Ile Pro Gln Ser Pro Leu Glu Gly Glu Asp Ser
690 695 700
Leu Ser Ser Leu His Phe Pro Gln Ser Pro Pro Glu Trp Glu Asp Ser
705 710 715 720
Leu Ser Pro Leu His Phe Pro Gln Phe Pro Pro Gln Gly Glu Asp Phe
725 730 735
Gln Ser Ser Leu Gln Ser Pro Val Ser Ile Cys Ser Ser Ser Thr Ser
740 745 750
Leu Ser Leu Pro Gln Ser Phe Pro Glu Ser Pro Gln Ser Pro Pro Glu
755 760 765
Gly Pro Ala Gln Ser Pro Leu Gln Arg Pro Val Ser Ser Phe Phe Ser
770 775 780
Tyr Thr Leu Ala Ser Leu Leu Gln Ser Ser His Glu Ser Pro Gln Ser
785 790 795 800
Pro Pro Glu Gly Pro Ala Gln Ser Pro Leu Gln Ser Pro Val Ser Ser
805 810 815
Phe Pro Ser Ser Thr Ser Ser Leu Ser Gln Ser Ser Pro Val Ser
820 825 830
Ser Phe Pro Ser Ser Thr Ser Ser Leu Ser Lys Ser Ser Pro Glu
835 840 845
Ser Pro Leu Gln Ser Pro Val Ile Ser Phe Ser Ser Ser Thr Ser Leu
850 855 860
Ser Pro Phe Ser Glu Glu Ser Ser Ser Pro Val Asp Glu Tyr Thr Ser
865 870 875 880
Ser Ser Asp Thr Leu Leu Glu Ser Asp Ser Leu Thr Asp Ser Glu Ser
885 890 895
Leu Ile Glu Ser Glu Pro Leu Phe Thr Tyr Thr Leu Asp Glu Lys Val
900 905 910
Asp Glu Leu Ala Arg Phe Leu Leu Lys Tyr Gln Val Lys Gln Pro
915 920 925
Ile Thr Lys Ala Glu Met Leu Thr Asn Val Ile Ser Arg Tyr Thr Gly
930 935 940
Tyr Phe Pro Val Ile Phe Arg Lys Ala Arg Glu Phe Ile Glu Ile Leu
945 950 955 960
Phe Gly Ile Ser Leu Arg Glu Val Asp Pro Asp Asp Ser Tyr Val Phe
965 970 975
Val Asn Thr Leu Asp Leu Thr Ser Glu Gly Cys Leu Ser Asp Glu Gln
980 985 990
Gly Met Ser Gln Asn Arg Leu Leu Ile Leu Ser Ile Ile Phe
995 1000 1005
Ile Lys Gly Thr Tyr Ala Ser Glu Glu Val Ile Trp Asp Val Leu Ser
1010 1015 1020
Gly Ile Gly Val Arg Ala Gly Arg Glu His Phe Ala Phe Gly Glu Pro
1025 1030 1035 1040
Arg Glu Leu Leu Thr Lys Val Trp Val Gln Glu His Tyr Leu Glu Tyr
1045 1050 1055

Arg Glu Val Pro Asn Ser Ser Pro Pro Arg Tyr Glu Phe Leu Trp Gly
 1060 1065 1070
 Pro Arg Ala His Ser Glu Val Ile Lys Arg Lys Val Val Glu Phe Leu
 1075 1080 1085
 Ala Met Leu Lys Asn Thr Val Pro Ile Thr Phe Pro Ser Ser Tyr Lys
 1090 1095 1100
 Asp Ala Leu Lys Asp Val Glu Glu Arg Ala Gln Ala Ile Ile Asp Thr
 1105 1110 1115 1120
 Thr Asp Asp Ser Thr Ala Thr Glu Ser Ala Ser Ser Ser Val Met Ser
 1125 1130 1135
 Pro Ser Phe Ser Ser Glu
 1140

<210> 3
 <211> 7
 <212> PRT
 <213> Homo sapiens
 <220>
 <400> 3

Pro Gln Ser Pro Leu Gln Ile
 1 5

<210> 4
 <211> 4159
 <212> DNA
 <213> Homo sapiens
 <220>
 <400> 4

GGTGGATGCG TTTGGGTTGT AGCTAGGCCTT TTTCTTTCT TTCTCTTTTA AAACACATCT 60
 AGACAAGGAA AAAACAAGCC TCGGATCTGA TTTTCACCTC CTCGTTCTTG TGCTTGGTTC 120
 TTACTGTGTT TGTGTATTTT AAAGGCGAGA AGACGAGGGGG AACAAAACCA GCTGGATCCA 180
 TCCATCACCG TGGGTGGTTT TAATTTTCTG TTTTTTCTCG TTATTTTTTT TTAAACAACC 240
 ACTCTTCACA ATGAACAAAC TGTATATCGG AAACCTCAGC GAGAACGCCG CCCCCCTCGGA 300
 CCTAGAAAGT ATCTTCAAGG ACGCCAAGAT CCCGGTGTGCG GGACCCCTTC TGTTGAAGAC 360
 TGGCTACGCG TTCGTTGGACT GCCCGGACGA GAGCTGGGCC CTCAAGGCCA TCGAGGCGCT 420
 TTCAGGTAAA ATAGAACTGC ACAGGGAAACC CATAGAAGTT GAGCACTCGG TCCCAAAAAG 480
 GCAAAGGATT CGGAAACTTC AGATACGAAA TATCCCGCCT CATTTCACAGT GGGAGGTGCT 540
 GGATAGTTA CTAGTCCAGT ATGGAGTTGGT GGAGAGCTGT GAGCAAGTGA ACAC TGACTC 600
 GGAAACTGCA GTTGTAAATG TAACCTATTTC CAGTAAGGAC CAAGCTAGAC AAGCACTAGA 660
 CAAACTGAAT GGATTTCAGT TAGAGAATT CACCTTGAAA GTAGCCTATA TCCCTGATGA 720
 AATGGCCGCC CAGCAAAACC CCTTGCAGCA GCCCCGAGGT CGCCGGGGGC TTGGGCAGAG 780
 GGGCTCCTCA AGGCAGGGGT CTCCAGGATC CGTATCCAAG CAGAAACCAT GTGATTTGCC 840
 TCTGCGCCTG CTGGTCCCCA CCAATTGTTG TGAGGCCATC ATAGGAAAAG AAGGTGCCAC 900
 CATTGGAAC ATCACCAAAC AGACCCAGTC TAAAATCGAT GTCCACCGTA AAGAAAATGC 960
 GGGGGCTGCT GAGAAGTCGA TTACTATCCT CTCTACTCCT GAAGGCACCT CTGGGCTTG 1020
 TAAGTCTATT CTGGAGATTA TGCATAAGGA AGCTCAAGAT ATAAAATTCA CAGAAGAGAT 1080
 CCCCTTGAAAG ATTTTAGCTC ATAATAACTT TGTTGGACGT CTTATTGGTA AAGAAGGAAG 1140
 AAATCTTAAA AAAATGAGC AAGACACAGA CACTAAAATC ACGATATCTC CATTGCAAGGA 1200
 ATTGACGCTG TATAATCCAG AACGCACTAT TACAGTTAAA GGCAATGTG AGACATGTGC 1260
 CAAAGCTGAG GAGGAGATCA TGAAGAAAAT CAGGGAGTCT TATGAAAATG ATATTGCTTC 1320
 TATGAATCTT CAAGCACATT TAATTCTGG ATTAATCTG AACGCCCTGG GTCTGTTCCC 1380
 ACCCACTTCA GGGATGCCAC CTCCCCACCTC AGGGCCCCCT TCAGCCATGA CTCCCTCCCTA 1440
 CCCGCAGTTT GAGCAATCAG AAACGGAGAC TGTTCATCAG TTTATCCCAG CTCTATCAGT 1500
 CGGTGCCATC ATCGGCAAGC AGGGCCAGCA CATCAAGCAG CTTTCTCGCT TTGCTGGAGC 1560
 TTCAATTAAG ATTGCTCCAG CGGAAGCACC AGATGCTAAA GTGAGGATGG TGATTATCAC 1620

TGGACCA	GAGGCTCAGT	TCAAGGCTCA	GGGAAGAATT	TATGGAAAAA	TTAAAGAAGA	1680
AAACTTGTT	AGTCCTAAAG	AAGAGGTGAA	ACTTGAGCT	CATATCAGAG	TGCCATCCTT	1740
TGCTGCTGGC	AGAGTTATTG	GAAAAGGAGG	CAAACCGGTG	AATGAACCTC	AGAATTGTC	1800
AAGTGCAGAA	GTGTTGTCC	CTCGTGACCA	GACACCTGAT	GAGAATGACC	AAGTGGTTGT	1860
CAAAATAACT	GGTCACTTCT	ATGCTTGCCA	GGTTGCCAG	AGAAAAATTTC	AGGAAATTCT	1920
GAETCAGGTA	AAGCAGCACC	AACAACAGAA	GGCTCTGC	AGTGGACCAAC	CTCAGTCAAG	1980
ACGGAAGTAA	AGGCTCAGGA	AACAGCCCAC	CACAGAGGCA	GATGCCAAC	CAAAGACAGA	2040
TTGCTTAACG	AACAGATGGG	CGCTGACCC	CTATCCAGAA	TCACATGCAC	AAGTTTTTAC	2100
CTAGCCAGTT	GTTCCTGAGG	ACCAGGCAAC	TTTGAACTC	CTGTCCTGT	GAGAATGTAT	2160
ACTTTATGCT	CTCTGAAATG	TATGACACCC	AGCTTTAAA	CAAACAAACA	AACAAACAAA	2220
AAAAGGGTGG	GGGAGGGAGG	GAAAGAGAAG	AGCTCTGCAC	TTCCCTTGT	TGTAGTCTCA	2280
CACTATAACA	GATACTCAA	TTCTCTTAA	TATTCCCCCA	TAATGCCAGA	AATTGGCTTA	2340
ATGATGCTTT	CACTAAATTG	ATCAAATAGA	TTGCTCCTAA	ATCCAATTGT	AAAATTGGA	2400
TCAGAATAAT	TATCACAGGA	ACTTAAATGT	TAAGCCATT	GCATAGAAAA	ACTGTTCTCA	2460
GTTTTATTTT	TACCTAACAC	TAACATGAGT	AACCTAAGGG	AAAGTGCAGA	TGGTGTGAGC	2520
AGGGGTATTA	AACGTGCATT	TTTACTCAAC	TACCTCAGGT	ATTCACTAAT	ACAATGAAA	2580
GCAAAATTGT	TCCCTTTTTT	TGAAAATTTT	ATATACTTTA	TAATGATAGA	AGTCCAACCG	2640
TTTTTAAAGA	AATAAATTG	AAATTAAACA	GCAATCAGCT	AACAGGCAA	TTAAGATTT	2700
TACTTCTGGC	TGGTGACAGT	AAAGCTGGAA	AATTAATTT	AGGGTTTTT	GAGGCTTTG	2760
ACACAGTTAT	TAGTTAACAT	AAATGTCAA	AAATACGGAG	CAGTGCCTAG	TATCTGGAGA	2820
GCAGCACTAC	CATTATTCT	TTCATTATA	GTGAAAAG	TTTTGACGG	TACTAACAAA	2880
GTGGTCGAG	GAGATTTGG	AAACGGCTGG	TTAAATGGCT	TCAGGAGACT	TCAGTTTTT	2940
GTTTAGCTAC	ATGATTGAAT	GCATAATAAA	TGCTTGTGC	TTCTGACTAT	CAATACCTAA	3000
AGAAAAGTGC	TCAGTGAAGA	GATGCAAGAC	TTCAACTGA	CTGGCAAAAA	GCAAGCTTTA	3060
GCTTGTCTTA	TAGGATGCTT	AGTTTGCAC	TACACTTCAG	ACCAATGGGA	CAGTCATAGA	3120
TGGTGTGACA	GTGTTAAAC	GCAACAAAAG	GCTACATTTC	CATGGGGCCA	GCACTGTCAT	3180
GAGCCTCACT	AAGCTATT	GAAGATTTT	AAGCACTGAT	AAATTAAAAA	AAAAAAAAAA	3240
AAATTAGACT	CCACCTTAAG	TAGTAAAGTA	TAACAGGATT	TCTGTATACT	GTGCAATCAG	3300
TTCTTGAAA	AAAAAGTCAA	AAGATAGAGA	ATACAAGAAA	AGTTTNGGG	ATATAATTG	3360
AATGACTGT	AAAACATATG	ACCTTGTATA	ACGAACCTCAT	TTGCTCACTC	CTTGACAGCA	3420
AAGCCCAGTA	CGTACAAATTG	TGTTGGGTGT	GGGTGGTCTC	CAAGGCCACG	CTGCTCTCTG	3480
AATTGATTT	TTGAGTTTG	GNTTGNAGA	TGATCACAGN	CATGTTACAC	TGATCTTNA	3540
GGACATATNT	TATAACCCCT	TAAAAAA	ATCCCCGTGCC	TCATTCTTAT	TTGAGATGA	3600
ATTCGATAC	AGACTAGATG	TCTTCTGAA	GATCAATTAG	ACATTNTGAA	AATGATTAA	3660
AGTGTGTTCC	TTAATGTTCT	CTGAAAACAA	GTTCCTTTG	TAGTTTAAC	AAAAAAAGTG	3720
CCCTTTTGT	CACTGGTTTC	TCCTAGCATT	CATGATTTT	TTTTCACACA	ATGAATTAAA	3780
ATTGCTAAA	TCATGGACTG	GCTTCTGGT	TGGATTTCA	GTAAGATGTG	TTAAGGCCA	3840
GAGCTTTCT	CAGTATTG	TTTTTTCCC	CAATATTG	TTTTTAAA	ATATACACAT	3900
AGGAGCTGCA	TTTAAACACT	GCTGGTTAA	ATTCTGTCAN	ATTTCACTTC	TAGCCTTTA	3960
GTATGGCNA	TCANAATT	CTTTTACTTA	AGCATTGTA	ATTTGGAGTA	TCTGGTACTA	4020
GCTAAGAAAT	AATTNCATAA	TTGAGTTTG	TACTCNCCAA	ANATGGGTCA	TTCCATG	4080
ATAATGTNCC	CCCAATGCAG	CTTCATTTC	CAGANACCTT	GACGCAGGAT	AAATTTTTC	4140
ATCATTTAGG	CCCCAAAAA					4159

<210> 5
<211> 1708
<212> DNA
<213> Homo sapiens
<220>
<400> 5

AGGGACGCTG	CCGCACCGCC	CCAGTTTACC	CCGGGGAGCC	ATCATGAAGC	TGAATGGC	60
CCAGTTGGAG	AACCATGCC	TGAAGGTCTC	CTACATCCCC	GATGAGCAGA	TAGCACAGGG	120
ACCTGAGAAT	GGGCGCCGAG	GGGGCTTGG	CTCTCGGGGT	CAGCCCGCC	AGGGCTCAC	180
TGTGGCAGCG	GGGGCCCCAG	CCAAGCAGCA	GCAAGTGGAC	ATCCCCCTTC	GGCTCCTGGT	240
GCCCACCCAG	TATGTGGGTG	CCATTATTGG	CAAGGAGGGG	GCCACCATCC	GCAACATCAC	300
AAAACAGACC	CAGTCCAAGA	TAGACGTGCA	TAGGAAGGG	AACGCAGGTG	CAGCTGAAA	360
AGCCATCAGT	GTGCACTCCA	CCCCTGAGGG	CTGCTCCTCC	GCTTGTAAAGA	TGATCTTGG	420
GATTATGCAT	AAAGAGGCTA	AGGACACCAA	AACGGCTGAC	GAGGTTCCCC	TGAAGATCCT	480

GGCCCATAAT AACTTTGAG GGCCTCTCAT TGGCAAGGAA GGACGGAACC TGAAGAAGGT 540
 AGAGCAAGAT ACCGAGACAA AAATCACCCT CTCCTCGTG CAAGACCTTA CCCTTACAA 600
 CCCTGAGAGG ACCATCACTG TGAAAGGGGC CATCGAGAAT TGTTGCAGGG CCGAGCAGGA 660
 ATAATGAAG AAAGTTCGGG AGGCCTATGA GAATGATGTG GCTGCCATGA GCTCTCACCT 720
 GATCCCTGGC CTGAACCTGG CTGCTGTAGG TCTTTCCCA GCTTCATCCA GCGCAGTCCC 780
 GCGGCTCCC AGCAGCGTTA CTGGGCTGC TCCCTATAGC TCCTTATGC AGGCTCCCAGA 840
 GCAGGAGATG GTGCAGGTGT TTATCCCCGC CCAGGCAGTG GGCGCCATCA TCAGCAAGAA 900
 GGGGCAGCAC ATCAAACAGC TCTCCCGTT TGCCAGCGCC TCCATCAAGA TTGCACCACC 960
 CGAAACACCT GACTCCAAAG TTCGTATGGT TATCATCACT GGACCGCCAG AGGCCCATT 1020
 CAAGGCTCAG GGAAGAATCT ATGGCAAAC CAAGGAGGAG AACTTCTTG GTCCAAGGA 1080
 GGAAGTGAAG CTGGAGACCC ACATACGTGT GCCAGCATCA GCAGCTGGCC GGGTCATTGG 1140
 CAAAGGTGGA AAAACGGTGA ACAGAGTTGCA GAATTGACG GCAGCTGAGG TGGTAGTACC 1200
 AAGAGACCAG ACCCCTGATG AGAACGACCA GGTACATCGTG AAAATCATCG GACATTCTA 1260
 TGCCAGTCAG ATGGCTAAC GGAAGATCCG AGACATCCTG GCCCAGGTTA AGCAGCAGCA 1320
 TCAGAAGGGGA CAGAGTAACC AGGCCAGGC ACGGAGGAAG TGACCAGCCC CTCCCTGTCC 1380
 CTTNGAGTCC AGGACAACAA CGGGCAGAAA TCGAGAGTGT GCTCTCCCCG GCAGGCCTGA 1440
 GAATGAGTGG GAATCCGGGA SACNTGGGC GGGCTGTAGA TCAGGTTGC CCACATTGATT 1500
 GAGAAAGATG TTCCAGTGAG GAAACCTGAT CTNTCAGCCC CAAACACCCA CCCAATTGGC 1560
 CCAACACTGT NTGCCCCTCG GGGTGTAGA AATTNTAGCG CAAGGCACCT TTAAACGTGG 1620
 ATTGTTAAA GAAGCTCTCC AGGCCACC AAGAGGGTGG ATCACACCTC AGTGGGAAGA 1680
 AAAATAAAAT TTCCCTCAGG TTTTAAAAA 1708

<210> 6
 <211> 3412
 <212> DNA
 <213> Homo sapiens
 <220>
 <400> 6

Ab C2 W
 GGCAGCGGAG GAGGCAGGA GCGCCGGGTA CCGGGCCGGG GGAGCCGGG GCTCTCGGGG 60
 AAGAGACGGA TGATGAACAA GCTTTACATC GGGAACCTGA GCCCCGCCGT CACCGCCGAC 120
 GACCTCCGGC AGCTCTTGG GGACAGGAAG CTGCCCCCTGG CGGGACAGGT CCTGCTGAAG 180
 TCCGGCTACG CCTCGTGGGA CTACCCCGAC CAGAACTGGG CCATCCGGC CATCGAGACC 240
 CTCTCGGGTA AAGTGGAAATT GCATGGAAA ATCATGGAAG TTGATTACTC AGTCTCTAAA 300
 AAGCTAAGGA GCAGGAAAAT TCAGATTGCA AACATCCCTC CTCACCTGCA GTGGGAGGTG 360
 TTGGATGGAC TTTGGCTCA ATATGGGACA GTGGAGAATG TGGAACAAAGT CAACACAGAC 420
 ACAGAAACCG CGTGTGCAA CGTCACATAT GCAACAAGAG AAGAAGCAAA AATAGCCATG 480
 GAGAAGCTAA CGGGCATCA GTTGAGAAC TACTCTTCA AGATTCCTA CATCCCGGAT 540
 GAAGAGGTGA GCTCCCTTC GCCCCCTCAG CGAGCCCAGC GTGGGGACCA CTCTCCCGG 600
 GAGCAAGGCC ACGCCCTGG GGGCACTTCT CAGGCCAGAC AGATTGATTT CCCGCTGCGG 660
 ATCCTGGTCC CCACCCAGTT TGTTGGTGC ATCATCGGAA AGGAGGGTT GACCATAAAG 720
 AACATCACTA AGCAGACCCA GTCCCGGGTA GATATCCATA GAAAAGAGAA CTCTGGAGCT 780
 GCAGAGAAGC CTGTCACCAT CCATGCCACC CCAGAGGGGA CTTCTGAAGC ATGCCGCATG 840
 ATTCTGAAA TCATGCAAGA AGAGGCAGAT GAGACCAAAAC TAGCCGAAGA GATTCTCTG 900
 AAAATCTGG CACACAATGG CTTGGTTGGA AGACTGATTG GAAAAGAAGG CAGAAATTG 960
 AAGAAAATTG AACATGAAAC AGGGACCAAG ATAACAATCT CATCTTGCAT GGATTGAGC 1020
 ATATACAACC CGGAAAGAAC CATCACTGTG AAGGGCACAG TTGAGGCCTG TGCCAGTGCT 1080
 GAGATAGAGA TTATGAAGAA GTCGCGTGAG GCCTTGTAAA ATGATATGCT GGCTGTTAAC 1140
 CAACAAGCCA ATCTGATCCC AGGGTTGAAC CTCAGCGCAC TTGGCATCTT TTCAACAGGA 1200
 CTGTCCGTG TATCTCCACC AGCAGGGCCC CGCGGAGCTC CCCCCGCTGC CCCCTACCC 1260
 CCCTTCACTA CCCACTCCGG ATACTCTCC AGCCTGTACC CCCATCACCA GTTGGCCCG 1320
 TTCCCGCATIC ATCACTCTTA TCCAGAGCAG GAGATTGTGA ATCTCTCAT CCCAACCCAG 1380
 GCTGTGGCG CCATCATCGG GAAGAAGGGG GCACACATCA AACAGCTGGC GAGATTGCC 1440
 GGAGCCTCTA TCAAGATTGC CCCTGCGGAA GGCCCAGACG TCAGCGAAAG GATGGTCATC 1500
 ATCACCGGGC CACCGGAAGC CCAGTTCAAG GCCCAGGGAC GGATCTTGG GAAACTGAAA 1560
 GAGGAAAATC TCTTTAACCC CAAAGAAGAA GTGAAGCTGG AAGCGCATAT CAGAGTGCC 1620
 TCTTCCACAG CTGGCCGGGT GATTGGCAAAG GGTGGCAAGA CCGTGAACGA ACTGCAGAAC 1680
 TTAACCAGTG CAGAAGTCAT CGTGCCTCGT GACCAAAACGC CAGATGAAAAA TGAGGAAGTG 1740
 ATCGTCAGAA TTATCGGGCA CTTCTTGCT AGCCAGACTG CACAGCGCAA GATCAGGGAA 1800

ATTGTACAAC AGGTGAAGCA GCAGGAGCAG AAATACCCTC AGGGAGTCGC CTCACAGCGC 1860
 ACCAAGTGAG GCTCCCACAG GCACCAGCAA AACAAACGGAT GAATGTAGCC CTTCCAACAC 1920
 CTGACAGAAT GAGACCAAAC GCAGCCAGCC AGATCGGGAG CAAACCAAAG ACCATCTGAG 1980
 GAATGAGAAG TCTGCGGAGG CGGCCAGGGG CTCTGCCAG GCCCTGAGAA CCCCAGGGC 2040
 CGAGGAGGGG CGGGGAAGGT CAGCCAGGTT TGCCAGAAC ACCGAGCCCC GCCTCCCGCC 2100
 CCCCAGGGCT TCTGCGAGCT TCAGCCATCC ACTTCACCAT CCACTCGGAT CTCTCCTGAA 2160
 CTCCCACGAC GCTATCCCT TTAGTTGAAC TAACATAGGT GAACGTGTTA AAAGCCAAGC 2220
 AAAATGCACA CCCTTTTCT GTGGCAAATC GTCTCTGTAC ATGTGTGTAC ATATTAGAAA 2280
 GGGAAGATGT TAAGATATGT GGCCTGTGGG TTACACAGGG TGCCCTGCAGC GGTAAATATA 2340
 TTTAGAAATA ATATATCAA TAACTCAACT AACTCCAATT TTTAATCAAT TATTAATT 2400
 TTTTCTTTT TAAAGAGAAA GCAGGCTTT CTAGACTTTA AAGAATAAAG TCTTGGGAG 2460
 GTCTCACGGT GTAGAGAGGA GCTTGAGGC CACCCGCACA AAATTCAACCC AGAGGGAAAT 2520
 CTCGTCGAA GGACACTCAC GGCAGTTCTG GATCACCTGT GTATGTCAAC AGAAGGGATA 2580
 CCGTCTCCTT GAAGAGGAAA CTCTGTCACT CCTCATGCCT GTCTAGCTCA TACACCCATT 2640
 TCTCTTGCT TCACAGGTT TAAACTGGTT TTTGTCATAC TGCTATATAA TTCTCTGTCT 2700
 CTCTCTGTT ATCTCTCCCT TCCCTCCCT CCCCTCTTC TCCATCTCCA TTCTTTGAA 2760
 TTTCCATCATC CCTCCATCTC AATCCCGTAT CTACGCACCC CCCCCCCCCC AGGAAAGCA 2820
 GTGCTCTGAG TATCACATCA CACAAAAGGA ACAAAAGCGA AACACACAAA CCAGCCTCAA 2880
 CTTACACTG GTTACTCAA AGAACAAAGAG TCAATGGTAC TTGTCCTAGC GTTTGGAAAG 2940
 AGGAAAACAG GAACCCACCA AACCAACCA TCAACCAAAC AAAGAAAAAA TTCCACAATG 3000
 AAAGAATGTA TTTTGTCTT TTGCATTTTG GTGTATAAGC CATCAATATT CAGCAAAATG 3060
 ATTCCTTCTT TTAAAAAAA AAATGTGGAG GAAAGTAGAA ATTTACCAAG GTGTTGGCC 3120
 CAGGGCGTTA AATTACACAGA TTTTTTAAC GAGAAAAAACACACAGAAGAA GCTACCTCAG 3180
 GTGTTTTTAC CTCAGCACCT TGCTCTGTG TTTCCCTTAG AGATTTGTA AAGCTGATAG 3240
 TTGGAGCATT TTTTATTTT TTTAATAAAA ATGAGTTGGA AAAAAAAATAA GATATCAACT 3300
 GCCAGCCTGG AGAAGGTGAC AGTCCAAGTG TGCAACAGCT GTTCTGAATT GTCTCCGCT 3360
 AGCCAAGAAC CNATATGGCC TTCTTTGGA CAAACCTTGA AAATGTTAT TT 3412

<210> 7
 <211> 1946
 <212> DNA
 <213> Homo sapiens
 <220>
 <400> 7

GCTGTAGCGG AGGGCTGGG GGGCTGCTCT GTCCCTTCC TTGCGCGCTG CGGCCTCAGC 60
 CCACCCAGAG GCGGGGTGG GAGGGCGAGT GCTCAGCTTC CCGGGTTAGG AGCCGGAAAAA 120
 TCTCAAATCCG AAATATTCCA CCCCAGCTCC GATGGGAAGT ACTGGACAGC CTGCTGGCTC 180
 AGTATGGTAC AGTAGAGAAC TGTGAGCAAG TGAACACCGA GAGTGGACAGC GCAGTGGTGA 240
 ATGTCACCTA TTCCAACCGG GAGCAGACCA GGCAAGCCAT CATGAAGCTG AATGCCACC 300
 AGTTGGAGAA CCATGCCCTG AAGGTCTCCT ACATCCCGA TGAGCAGATA GCACAGGGAC 360
 CTGAGAATGG GCGCCGAGGG GGCTTGGCT CTCGGGGTCA GCCCCGCCAG GGCTCACCTG 420
 TGGCAGCGGG GGCCCCAGCC AAGCAGCAGC AAGTGGACAT CCCCCTCGG CTCCTGGTGC 480
 CCACCCAGTA TGTGGGTGCC ATTATTGGCA AGGAGGGGGC CACCATCCGC AACATCACAA 540
 AACAGACCCA GTCCAAGATA GACGTGCATA GGAAGGAGAA CGCAGGTGCA GCTGAAAAG 600
 CCATCAGTGT GCACTCCACC CCTGAGGGCT GCTCCTCCGC TTGTAAGATG ATCTTGGAGA 660
 TTATGCATAA AGAGGCTAAG GACACCAAAA CGGCTGACGA GGTTCCCTG AAGATCCTGG 720
 CCCATAATAA CTTTGTAGGG CGTCTCATG GCAAGGAAGG ACGGAACCTG AAGAAGGTAG 780
 AGCAAGATAC CGAGACAAAAA ATCACCACAT CCTCGTTGCA AGACCTTAC CTTTACAACC 840
 CTGAGAGGAC CATCACTGTG AAGGGGGCCA TCGAGAATTG TTGCAGGGCC GAGCAGGAAA 900
 TAATGAAGAA AGTTGGGAG GCCTATGAGA ATGATGTGGC TGCCATGAGC TCTCACCTGA 960
 TCCCTGGCCT GAACCTGGCT GCTGTAGGTC TTTTCCAGC TTCATCCAGC GCAGTCCCGC 1020
 CGCCTCCAG CAGCGTTACT GGGGCTGCTC CCTATAGCTC CTTTATGCGAG GCTCCCGAGC 1080
 AGGAGATGGT GCAGGTGTTT ATCCCCGCC AGGCAGTGGG CGCCATCATC GGCAAGAAGG 1140
 GGCAGCACAT CAAACAGCTC TCCCGGTTG CCAGGCCTC CATCAAGATT GCACCAACCG 1200
 AAACACCTGA CTCCAAAGTT CGTATGGTTA TCATCACTGG ACCGCCAGAG GCCCAATTCA 1260
 AGGCTCAGGG AAGAATCTAT GGCAAACCTCA AGGAGGAGAA CTTCTTTGGT CCCAAGGAGG 1320
 AAGTGAAGCT GGAGACCCAC ATACGTGTGC CAGCAGTCAGC AGCTGGCCGG GTCATTGGCA 1380
 AAGGTGGAAA AACGGTGAAC GAGTTGCAGA ATTTGACGGC AGCTGAGGTG GTAGTACCAA 1440

GAGACCAGAC	CCCTGATGAG	AACGACCAGG	TCATCGTCAA	AATCATCGGA	CATTTCTATG	1500
CCAGTCAGAT	GGCTCAACGG	AAGATCCGAG	ACATCCTGGC	CCAGGTTAAG	CAGCAGCATC	1560
AGAAGGSACA	GAGTAACCAG	GCCCAGGCAC	GGAGGAAGTG	ACCAGCCCT	CCCTGTCCCT	1620
TNGAGTCAG	GACAACAACG	GGCAGAAATC	GAGAGTGTGC	TCTCCCCGGC	AGGCCTGAGA	1680
ATGAGTGGGA	ATCCGGGACA	CNTGGGCCGG	GCTGTAGATC	AGGTTTGCCC	ACTTGATTGA	1740
GAAAGATGTT	CCAGTGAGGA	ACCCCTGATCT	NTCAGCCCCA	AACACCCACC	CAATTGGCCC	1800
AACACTGTNT	CCCCCTCGGG	GTGTCAGAAA	TTNTAGCGCA	AGGCACCTTT	AAACGTGGAT	1860
TGTTTAAAGA	AGCTCTCCAG	GCCCCACCAA	GAGGGTGGAT	CACACCTCAG	TGGGAAGAAA	1920
ATAAAAATTT	CCTTCAGGTT	TTAAAAA				1946

<210> 8
<211> 3283
<212> DNA
<213> Homo sapiens
<220>
<400> 8

GGCAGCGGAG	GAGGCAGGAA	GCGCCGGGTA	CCGGGCCGGG	GGAGCCGGG	GCTCTCGGGG	60
AAGAGACGGA	TGATGAACAA	GCTTTACATC	GGGAACCTGA	GCCCCGCCGT	CACCGCCGAC	120
GACCTCCGGC	AGCTCTTGG	GGACAGGAAG	CTGCCCCCTGG	CGGGACAGGT	CCTGCTGAAG	180
TCCGGCTACG	CCTTCGTGGA	CTACCCCGAC	CAGAACTGGG	CCATCCGGC	CATCGAGACC	240
CTCTCGGGTA	AAGTGGAAATT	GCATGGGAAA	ATCATGGAAG	TTGATTACTC	AGTCTCTAAA	300
AAGCTAAGGA	GCAGGAAAAT	TCAGATTGCA	AAACATCCCTC	CTCACCTGCA	GTGGGAGGTG	360
TTGGATGGAC	TTTGGCTCA	ATATGGGACA	GTGGAGAATG	TGGAACAAGT	CAACACAGAC	420
ACAGAAACCG	CCGTTGTCAA	CGTCACATAT	GCAACAAGAG	AAGAAGCAA	AATAGCCATG	480
GAGAAGCTAA	CGGGGCATCA	GTGGAGAAC	TACCTCTTCA	AGATTTCCTA	CATCCCGGAT	540
GAAGAGGTGA	GCTCCCTTC	GCCCCCTCAG	CGAGGCCAGC	GTGGGGACCA	CTCTTCCCGG	600
GAGCAAGGCC	ACGCCCCCTGG	GGGCACTTCT	CAGGCCAGAC	AGATTGATTT	CCCGCTGCAG	660
ATCCTGGTCC	CCACCCAGTT	TGTTGGTGC	ATCATCGGAA	AGGAGGGCTT	GACCATAAAG	720
ACACATCACTA	AGCAGACCCA	GTCCCGGGTA	GATATCCATA	GAAAAGAGAA	CTCTGGAGCT	780
GCAGAGAAC	CTGTCACCAT	CCATGCCACC	CCAGAGGGGA	TTCTGAAGC	ATGCCGCATG	840
ATTCTTGAAA	TCATGCGAGAA	AGAGGGCAGAT	GAGACCAAAC	TAGCCGAAGA	GATTCCCTCTG	900
AAAATCTTGG	CACACAATGG	CTTGGTTGGA	AGACTGATTG	GAAAAGAAGG	CAGAAATTG	960
AAGAAAATTG	AACATGAAAC	AGGGACCAAG	ATAACAAATCT	CATCTTGCA	GGATTGAGC	1020
ATATACAACC	CGGAAAGAAC	CATCACTGTG	AAGGGCACAG	TTGAGGCTG	TGCCAGTGCT	1080
GAGATAGAGA	TTATGAAGAA	GCTGCGTGAG	GCCTTGAAA	ATGATATGCT	GGCTGTTAAC	1140
ACCCACTCCG	GATACTTCTC	CAGCCTGTAC	CCCCATCACC	AGTTTGGCCC	GTTCCCGCAT	1200
CATCACTCTT	ATCCAGAGCA	GGAGATTGTG	AATCTCTTCA	TCCCCAACCA	GGCTGTTGGC	1260
GCCATCATCG	GGAAAGAAGGG	GGCACACATC	AAACAGCTGG	CGAGATTGGC	CGGAGCCTCT	1320
ATCAAGATTG	CCCCTGCGGA	AGGCCAGAC	GTCAGCGAA	GGATGGTCAT	CATCACCGGG	1380
CCACCGGAAG	CCCAGTTCAA	GGCCCAGGG	CGGATCTTG	GGAAACTGAA	AGAGGAAAAC	1440
TTCTTTAACCC	CCAAAAGAAGA	AGTGAAGCTG	GAAGCGATA	TCAGAGTGCC	CTCTTCCACA	1500
GCTGGCCGGG	TGATTGGCAA	AGGTGGCAAG	ACCGTGAACG	AAC TGAGAA	CTTAACCAGT	1560
GCAGAAAGTCA	TCGTGCCCTCG	TGACCAAACG	CCAGATGAA	ATGAGGAAGT	GATCGTCAGA	1620
ATTATCGGGC	ACTCTTTGC	TAGCCAGACT	GCACAGCGCA	AGATCAGGG	AATGTACAA	1680
CAGGTGAAGC	AGCAGGAGCA	GAAATACCC	CAGGGAGTCG	CCTCACAGCG	CAGCAAGTGA	1740
GGCTCCCACA	GGCACCCAGCA	AAACAAACGGA	TGAATGTAGC	CCTTCCAACA	CCTGACAGAA	1800
TGAGACCAAA	CGCAGGCCAGC	CAGATCGGG	GCAAACCAAA	GACCATCTGA	GGAATGAGAA	1860
GTCTGCGGAG	GGGCCAGGG	ACTCTGCCGA	GGCCCTGAGA	ACCCCAAGGG	CCGAGGAGGG	1920
GCGGGGAAAGG	TCAGCCAGGT	TTGCCAGAAC	CACCGAGCCC	CGCCCTCCCGC	CCCCCAGGGC	1980
TTCTGCAGGC	TTCAGCCATC	CACTTCACCA	TCCACTCGGA	TCTCTCTGA	ACTCCACGA	2040
CGCTATCCCT	TTTAGTTGAA	CTAACATAGG	TGAACGTGTT	CAAAGCCAAG	CAAATGCCAC	2100
ACCCCTTTTC	TGTGGCAAAT	CGTCTCTGTA	CATGTGTGTA	CATATTAGAA	AGGGAAGATG	2160
TTAAGATATG	TGGCCTGTGG	GTTACACAGG	GTGCCCTGAG	CGGTAATATA	TTTTAGAAAT	2220
AATATATCAA	ATAACTCAAC	TAACTCCAAT	TTTTAATCAA	TTATTAATTT	TTTTTCTTT	2280
TTAAAGAGAA	AGCAGGCTT	TCTAGACTT	AAAGAATAAA	GTCTTGGGA	GGTCTCACGG	2340
TGTAGAGAGG	AGCTTTGAGG	CCACCCGCAC	AAAATTCAAC	CAGAGGGAAA	TCTCGTCAGGA	2400
AGGACACTCA	CGGCAGTTCT	GGATCACCTG	TGTATGTCAA	CAGAAGGGAT	ACCGTCTCCT	2460
TGAAGAGGAA	ACTCTGTCAC	TCCTCATGCC	TGTCTAGCTC	ATACACCCAT	TTCTCTTGC	2520

B¹
conc'b

TTCACAGGTT TTAAACTGGT TTTTGATA CTGCTATATA ATTCTCTGTC TCTCTCTGTT 2580
TATCTCTCCC CTCCCT~~CCCC~~ TCCCCTCTT CTCCATCTCC ATTCTTTGA ATTCCTCAT 2640
CCCTCCATCT CAATCCCGTA TCTACGCACC CCCCCCCCCC CAGGCAAAGC AGTGCTCTGA 2700
GTATCACATC ACACAAAAGG AACAAAAGCG AAACACACAA ACCAGCCTCA ACTTACACTT 2760
GGTTACTCAA AAGAACAAAGA GTCAATGGTA CTTGTCCTAG CGTTTGAA GAGGAAAACA 2820
GGAACCCACC AAACCAACCA ATCAACAAA CAAAGAAAAA ATTCCACAAAT GAAAGAATGT 2880
ATTTTGTCTT TTTGATTTT GGTGTATAAG CCATCAATAT TCAGCAAAAT GATTCCTTTC 2940
TTTAAAAAAA AAAATGTGGA GGAAAGTAGA AATTACCAA GGTTGTTGGC CCAGGGCGTT 3000
AAATTACACAG ATTTTTTAA CGAGAAAAC ACACAGAAGA AGCTAC~~CTCA~~ GGTGTTTTA 3060
CCTCAGCACC TTGCTCTGT GTTCCCTTA GAGATTTGT AAAGCTGATA CTTGGAGCAT 3120
TTTTTATTT TTTAATAAA AATGAGTTGG AAAAAAAATA AGATATCAAC TGCA~~GCGT~~ 3180
GAGAAGGTGA CAGTCCAAGT GTGCAACAGC TGTTCTGAAT TGTCTCCGC TAGCCAAGAA 3240
CCNATATGGC CTTCTTTGG ACAAACCTTG AAAATGTTA TTT 3283
