fo/u fopkjr Hk# tu] ughavkjEHksdke] foifr n\{k NkWsrjar e/;e eu dj ';keA i&'k flg ladyi dj] lgrsfoifr vusd] ^cuk^ u NkWs/;\\$ dk\\$ j?kqj jk[ksVsdAA

jipr%ekuo /keZizksk I nxif Jh j. kVkkhkl thegkjkt

ASSERTION & REASON FOR SEQUANCE AND SERIES

Some questions (Assertion–Reason type) are given below. Each question contains **Statement – 1** (**Assertion**) and **Statement – 2** (**Reason**). Each question has 4 choices (A), (B), (C) and (D) out of which **ONLY ONE** is correct. So select the correct choice:

- (A) Statement 1 is True, Statement 2 is True; Statement 2 is a correct explanation for Statement 1.
- (B) Statement 1 is True, Statement 2 is True; Statement 2 is NOT a correct explanation for Statement 1.
- (C) Statement 1 is True, Statement 2 is False.
- (D) **Statement 1** is False, **Statement 2** is True.
- **549.** Statement–1: In the expression $(x + 1)(x + 2) \dots (x + 50)$, coefficient of x^{49} is equal to 1275.

Statement-2:
$$\sum_{r=i}^{n} r = \frac{n(n+1)}{2}, \ n \in N.$$

550. Let a, b, c, d are four positive number

Statement-1 : $\left(\frac{a}{b} + \frac{b}{c}\right) \left(\frac{c}{d} + \frac{d}{e}\right) \ge 4\sqrt{\frac{a}{e}}$ Statement-2 : $\frac{b}{a} + \frac{c}{b} + \frac{d}{c} + \frac{e}{d} + \frac{a}{e} \ge 5$.

551. Let a, b, c and d be distinct positive real numbers in H.P.

Statement-1: a + d > b + c **Statement-2**: $\frac{1}{a} + \frac{1}{d} = \frac{1}{b} + \frac{1}{c}$

552. Let a, $r \in R - \{0, 1, -1\}$ and n be an even number. **Statement-1**: a. ar. $ar^2 \dots ar^{n-1} = (a^2 r^{n-1})^{n/2}$.

Statement-2: Product of kth term from the beginning and from the end in a G.P. is independent of k.

Statement–1 : Let p, q, $r \in R^+$ and $27pqr \ge (p+q+r)^3$ and 3p+4q+5r=12, then $p^3+q^4+r^5$ is equal to 4. **Statement–2** : If A,G, and H are A.M., G.M., and H.M. of positive numbers $a_1, a_2, a_3, \ldots, a_n$ then $H \le G \le A$.

554. Statement-1 : The sum of series n.n + (n - 1) (n + 1) + (n - 2) (n + 2) + . . . 1. (2n - 1) is $\frac{1}{6}n(n+1)(4n+1).$

Statement-2 : The sum of any series S_n can be given as, $S_n = \sum_{r=1}^n T_r$, where T_r is the general ten of the

series. **Statement–1**: P is a point (a, b, c). Let A, B, C be images of P in yz, zx and xy plane respectively, then equation of plane must be $\frac{x}{a} + \frac{y}{b} + \frac{z}{c} = 1$.

Statement-2: The direction ratio of the line joining origin and point (x, y, z) must be x, y, z.

Statement–1: If A, B, C, D be the vertices of a rectangle in order. The position vector of A, B, C, D be a, b, c, d respectively, then $\vec{a} \cdot \vec{c} = \vec{b} \cdot \vec{d}$.

Statement–2: In a triangle ABC, let O, G and H be the circumcentre, centroid and orthocentre of the triangle ABC, then OA + OB + OC = OH.

- **557. Statement-1:** $1 + 3 + 7 + 13 + \dots$ upto n terms = $\frac{n(n+2)}{3}$ **Statement-2:** $\frac{a^{n+1} + b^{n+1}}{a^n + b^n}$ is HM of a & b if $n = -\frac{1}{2}$
- **558. Statement-1:** 1111 1 (up to 91 terms) is a prime number

Statement-2: If $\frac{b+c-a}{a}$, $\frac{c+a-b}{b}$, $\frac{a+b-c}{c}$ are in A.P., then $\frac{1}{a}$, $\frac{1}{b}$, $\frac{1}{c}$ are also in A.P.

Download FREE Study Package from www.TekoClasses.com & Learn on Video www.MathsBySuhag.com Phone: (0755) 32 00 000, 98930 58881 WhatsApp 9009 260 559 SEQUENCE & SERIES PART 2 OF 2

Statement-1: For a infinite G.P. whose first term is 'a' and common ratio is r, then $S_{\infty} = \frac{a}{1-r}$ where $|r| \ge 1$ 559.

Statement-2: A, G, H are arithmetic mean, Geometric mean and harmonic mean of two positive real numbers a & b. Then A, G, H are in G.P.

560. **Statement-1:** 11 11 1 (up to 91 terms) is a prime number.

Statement-2: If $\frac{b+c-a}{a}$, $\frac{c+a-b}{b}$, $\frac{a+b-c}{c}$ Are in A.P., then $\frac{1}{a}$, $\frac{1}{b}$, $\frac{1}{c}$ are also in A.P.

Statement-1: The sum of all the products of the first n positive integers taken two at a time is $\frac{1}{24}$ (n – 1) (n + 1) 561.

Statement-2: $\sum_{i=1,\dots,n} a_i a_j = (a_1 + a_2 + \dots + a_n)^2 - (a_1^2 + a_2^2 + a_n^2)$

- 562. Statement-1: Let the positive numbers a, b, c, d, e be in AP, then abcd, abce, abde, acde, bcde are in HP Statement-2: If each term of an A.P. is divided by the same number k, the resulting sequence is also
- **Statement-1:** If a, b, c are in G.P., $\frac{1}{\log a}$, $\frac{1}{\log b}$, $\frac{1}{\log c}$ are in H.P. 563.

Statement-2: When we take logarithm of the terms in G.P., they occur in A.P.

564. **Statement-1:** If 3p + 4q + 5r = 12 then $p^{3}q^{4}r^{5} \ge 1$ here $p, q, r \in \mathbb{R}^{+}$

S-2: If the quantities are positive then weighted arithmetic mean is greater than or equal to geometric mean.

Statement-1: $S = 1/4 - 1/2 + 1 - 2 + 2^2 - \dots = \frac{1/4}{1+2} = \frac{1}{12}$ 565.

S-2: Sum of n terms of a G.P. with first term as 'a' and common ratio as r in given by $a\left(\frac{r^n-1}{r-1}\right)$, |r|>1.

566. **Statement-1:** $-4 + 2 - 1 + 1/2 - 1/4 + ... \infty$ is a geometric sequence.

Statement-2: Terms of a sequence are positive numebrs.

Statement-1: The sum of the infinite A.P. $1 + 2 + 2^2 + 2^3 + \dots + 1$ is given by $\frac{a}{1-r} = \frac{1}{1-2} = -1$ 567.

Statement-2: The sum of an infinite G.P. is given by $\frac{a}{1-r}$ where |r| < 1 a is first term and r is common ratio.

568. Statement-1: If a₁, a₂, a₃, a_n are positive real numbers whose product is a fixed number C, then the minimum value of $a_1 + a_2 + \dots + a_{n-1} + 2a_n$ is $n(2c)^{1/n}$.

Statement-2: If $a_1, a_2, a_3, \ldots, a_n \in \mathbb{R}^+$, then $\frac{a_1 + a_2 + a_3 + \ldots + a_n}{a_1 + a_2 + a_3 + \ldots + a_n} \ge (a_1 a_2 a_3 + \ldots + a_n)^{1/n}$

Statement-1: If $a(b-c) x^2 + b (c-a) x + c(a-b) = 0$ has equal roots, then a, b, c are in H.P. 569. Statement-2: Sum of the roots and product of the root are equal

Statement-1: $\lim_{n\to\infty} \frac{x^n}{n!} = 0$ for every n > 0570.

Statement-2: Every sequence whose nth term contains n! in the denominator converges to zero.

- 571. Statement-1: Sum of an infinite geometric series with common ratio more than one is not possible to find out. S-2: The geometric series (Infinite) with common ratio more than one becomes diverging and sum is not fixed.
- Statement-1: If arithmetic mean of two numbers is 5/2, Geometric mean of the numbers is 2 then harmonic mean 572. will be 8/5.

Statement-2: for a group of numbers $(GM)^2 = (AM) \times (HM)$.

Statement-1: If a, b, c, d be four distinct positive quantities in H.P. then a + d > b + c, ad > bc. 573.

Statement-2: A.M. > G.M. > H.M.

Statement-1: The sum of n arithmetic means between two given numbers is n times the single arithmetic mean 574. between them.

Statement-2: n^{th} term of the A.P. with first term a and common difference d is a + (n + 1)d.

a > 0, b > 0, c > 0, then greatest value of $a^2b^3c^4 = 3^{10}2^4 - 77$. 575.

Statement-2: If $a_i > 0$ i = 1, 2, 3, n, then $\frac{a_1 + a_2 + a_3 + + a_n}{n} \ge (a_1 a_2 a_n)^{1/n}$

ANSWER SHEET

549. A 550. B 551. B 552. B 553. D 554. D 555. B 556. B 557. C 558. D 559. D 560. D 561. A 562. A 563. A 564. D 565. D 566. D 567. D568. A 569. C 570. C 571. A 572. C 573. A 574. C 575. A

IMP QUESTION FROM COMPETETIVE EXAMS

1.	If the angles of a quadrilatera	al are in A.P. whose commo	n difference	e is 10^o , then the a	angles of th	he quadrilateral are		
	(a) 65°, 85°, 95°, 105°	(b) 75°, 85°, 95°, 105°	(b)	65°,75°,85°,95	^o (d)	65°, 95°, 105°, 115°		
2.	If the sum of first n terms of will be	•		m terms, $(m \neq n)$,	then the	sum of its first $(m+n)$ terms		
	(a) 0	(b) n	(c)	m (d)	m+n			
3.	If p , q , r are in A.P. and are	positive, the roots of the qu	uadratic equ	nation $px^2 + qx + r$	= 0 are a	ll real for [IIT 1995]		
	(a) $\left \frac{r}{p} - 7 \right \ge 4\sqrt{3}$	(b) $\left \frac{p}{r} - 7 \right < 4\sqrt{3}$	(c)	All p and r	(d)	No p and r		
4.	The sums of <i>n</i> terms of three The true relation is	ee A.P.'s whose first term is	1 and com	nmon differences a	re 1, 2, 3	are S_1 , S_2 , S_3 respectively.		
	(a) $S_1 + S_3 = S_2$	(b) $S_1 + S_3 = 2S_2$	(c)	$S_1 + S_2 = 2S_3$	(d)	$S_1 + S_2 = S_3$		
5.	The value of x satisfying							
	$\log_a x + \log_{\sqrt{a}} x + \log_{3\sqrt{a}} x +$	$\dots \log_{a\sqrt{a}} x = \frac{a+1}{2} \text{ will}$	be					
	(a) $x = a$	(b) $x = a^a$	(c)	$x=a^{-1/a}$	(d)	$x=a^{1/a}$		
6.					oromised t [UPSEA			
	(a) Rs. 21555	(b) Rs. 20475	(c)	Rs. 20500	(d)	Rs. 20700		
7.								
	(a) 7	(b) 8	(c)	9 (d)	10			
8.					e 1, 2, 3,	, m and common		
	(a) $\frac{1}{2} mn(mn+1)$	(b) <i>mn</i> (<i>m</i> +1)	(c)	$\frac{1}{4}mn(mn-1)$	(d)	None of the above		
9.	If $a_1, a_2, a_3, \dots, a_{24}$ are in an	rithmetic progression and a	$a_1 + a_5 + a_{10}$	$+a_{15}+a_{20}+a_{24}$	= 225 , th	en		
	$a_1 + a_2 + a_3 + \dots + a_{23} +$	a ₂₄ =		[MP PET 1999; AMU 1997]				
	(a) 909	(b) 75	ive, the roots of the quadratic equation px^2 $\left \frac{p}{r}-7\right < 4\sqrt{3}$ (c) All p and p and p and p and p are p swhose first term is 1 and common differ p and p and p and p and p and p are p and p and p are p and p and p are p and p are p and p are p and p are p and p and p are p are p and p are p and p are p are p are p and	750 (d)	900			
10.	If the roots of the equation x	$x^3 - 12x^2 + 39x - 28 = 0$ as	re in A.P., th	nen their common	difference	will be		
	(a) ±1							
11.	If the first term of a G.P. a_1 ,	a_2 , a_3 ,is unity such	that $4a_2 + 5$	$5a_3$ is least, then the	ne commo	on ratio of G.P. is		
	(a) $-\frac{2}{5}$	(b) $-\frac{3}{5}$ (c)	$\frac{2}{5}$	(d) None of these)			
12.	If the sum of the <i>n</i> terms of C	G.P. is S product is P and	sum of thei	ir inverse is R , tha	n P ² is e	qual to		
	(a) $\frac{R}{S}$	(b) $\frac{S}{R}$	(c)	$\left(\frac{R}{S}\right)^n$ (d)	$\left(\frac{S}{R}\right)^n$	IIT 1966; Roorkee 1981]		
13.	Let n(> 1) be a positive integ	er, then the largest integer	m such tha	t $(n^m + 1)$ divides ($(1 + n + n^2)$	+ + n ¹²⁷) , is		
	(a) 32	(b) 63			127 [117			

Download FREE Study Package from www.tekoClasses.com & Learn on Video www.MathsBySuhag.com Phone : (0755) 32 00 000, 98930 58881 WhatsApp 9009 260 559 SEQUENCE & SERIES PART 2 OF 2

14.	A G.P. consists of an even number of terms. If the sum of all the terms is 5 times the sum of the terms occupying odd places, then the common ratio will be equal to								
	(a) 2	(b)		(c)	4	(d)	5		
15.	If $f(x)$ is a function satisfying	f(x	(x + y) = f(x)f(y) for all	x, y∈N su	uch that	f(1) = 3 ar	$\int_{x=1}^{n} f(x)$	α) = 120 . Then the value of	
	n is		[IIT 1992]						
14	(a) 4	(b)		(c)	6 Roomotrio	(d)	None of		
16.	If <i>n</i> geometric means between				geometric	mean be	G, men	ille li de relation is	
	(a) $G_1.G_2G_n = G$								
	(c) $G_1.G_2G_n = G^n$						2		
17.	α , β are the roots of the equation form an increasing G.P., then	(a, l	(b) = [DCE 2	000]		of the equ		$-12x + b = 0$. If α , β , γ , δ	
		(b)	(12, 3)	(c)	(2, 32)	(d)	(4, 16)		
18.	2.357 =		[IIT 1983; RPET 1	995]					
	1001		2370 997		2355 999	(d)	None of	these	
19.	If $1 + \cos \alpha + \cos^2 \alpha + \dots \infty$			$<\pi$) is		[Roorl	kee 2000 ;	AMU 2005]	
	(a) $\pi/8$		π/6	(c)	$\pi/4$	(d)	$3\pi/4$		
20.	The first term of an infinite geometric (a) $0 \le x \le 10$		tric progression is x a $0 < x < 10$	na its sum i (c)	s 5. Then −10 < 3		(d)	eening 2004] x > 10	
21.	If a, b, c are in H.P., then the								
	(a) $\frac{2}{bc} + \frac{1}{b^2}$	(b)	$\frac{3}{c^2} + \frac{2}{ca}$	(c)	$\frac{3}{b^2} - \frac{2}{ab}$	<u>!</u> b	(d)	None of these	
22.	If m is a root of the given equand b , then the difference be						monic mea	ans are inserted between a	
	(a) b-a	(b)	ab(b−a)	(c)	a(b – a)	(d)	ab(a – b)		
23.	A boy goes to school from hi speed is given by	s ho	me at a speed of <i>x kr</i>		comes ba	ack at a sp	peed of y	km/hour, then the average	
	(a) A.M.	(b)	G.M.	(c)	H.M.	(d)	None of	these	
24.	If a, b, c, d be in H.P., then								
	(a) $a^2 + c^2 > b^2 + d^2$	(b)	$a^2+d^2>b^2+c^2$	(c)	ac + bd	$> b^2 + c^2$	(d)	$ac + bd > b^2 + d^2$	
<i>2</i> 5.	If a, b, c are the positive integ	jers,	then $(a+b)(b+c)(c+$	a) is [DCE 2 0	000]				
	(a) < 8 abc	(b)	> 8abc	(c)	= 8 <i>abc</i>	(d)	None of	these	
26 .	In a G.P. the sum of three nu becomes A.P., then the greater			to first two	numbers [Roorke		racted fro	om third number, the series	
	(a) 8	(b)	4	(c)	24	(d)	16		
27.	If a, b, c are in G.P. and log sides of a triangle which is	g <i>a</i> –	log 2b, log 2b – log 3d	and log 3	c – log a	are in A.F	P., then <i>a</i>	, b, c are the length of the	
	(a) Acute angled	(b)	Obtuse angled	(c)	Right an	ngled	(d)	Equilateral	
28.	If A_1 , A_2 ; G_1 , G_2 and H_1 , H_2	be	AM's, GM's and HM	1's betweer	n two qua	intities, the	en the valu	ue of $\frac{G_1G_2}{H_1H_2}$ is	

	: (0755) 32 00 00		_	-					
(a)	$\frac{A_1 + A_2}{H_1 + H_2}$	(b)	$\frac{A_1 - A_2}{H_1 + H_2}$	(c)	$\frac{A_1 + A_2}{H_1 - H_2}$	2 1 ₂	(d)	$\frac{A_1 - A_2}{H_1 - H_2}$	
	ne harmonic mean o Imbers are		pers is 4 and the all 87; UPSEAT 1999,		d geometric	means	satisfy the	e relation $2A + G^2 = 27$, the	
(a)	6, 3	(b)	5, 4	(c)	5, – 2.5	(d)	-3, 1		
	the A.M. of two numbers are	ımbers is gr		f the numbe 「1988]	ers by 2 ar	nd the ra	atio of the	e numbers is 4:1, then the	
(a)	4, 1	(b)	12, 3	(c)	16, 4	(d)	None o	of these	
. If t	the A.M. and G.M. o	of roots of a	quadratic equations	s are 8 and 5	respective	ly, then	the quadra	atic equation will be	
								[Pb. CET 1990	
(a)	$x^2 - 16x - 25 = 0$	(b)	$x^2 - 8x + 5 = 0$	(c)	$x^2 - 16$	x + 25 =	0 (d)	$x^2 + 16x - 25 = 0$	
			n two numbers are	$\frac{144}{15}$, 15 a	nd 12, but	not nec	essarily in	this order. Then H.M., G.M	
	d A.M. respectively		144			1 4 4		144	
(a)) 15, 12, 144 15	(b)	144 15, 12, 15	(c)	12, 15,	15	(d)	15, 15, 12	
lf	a be the arithmetic	mean of b	and c and G_1 , G_2	be the two g	jeometric m	neans be	etween the	m, then $G_1^3 + G_2^3 =$	
(a)	G_1G_2a	(b)	$2G_1G_2a$	(c)	$3G_1G_2a$	a (d)	None c	of these	
	nree numbers form a the second term of the			-				otained will constitute an A.P s will be	
(a)	4, 20, 36	(b)	4, 12, 36	(c)	4, 20, 1	00	(d)	None of the above	
lf	x > 1, y > 1,z > 1 ar	e in G.P., th	en $\frac{1}{1 + \ln x}$, $\frac{1}{1 + \ln y}$	$\frac{1}{y}$, $\frac{1}{1 + \ln z}$	are in	[11	T 1998; U	PSEAT 2001]	
(a)) A.P.	(b)	H.P.	(c)	G.P.	(d)	None c	of these	
a,	g, h are arithmetic r	mean, geom	etric mean and har	monic mean	between tv	wo positi	ive numbe	ers x and y respectively. Ther	
ide	entify the correct sta		[Karnat	aka CET	ka CET 2001]				
(a)	h is the harmonic	(b)	No such	ch relation exists between a, g and h					
(c)	g is the geometric mean between a and h			(d)	A is the arithmetic mean between g and h				
2 ^s	$\sin \theta + 2^{\cos \theta}$ is greate	r than	[AML	J 2000]					
(a)	$\frac{1}{2}$	(b)	$\sqrt{2}$	(c)	$2^{\frac{1}{\sqrt{2}}}$	(d)	$2^{\left(1-\frac{1}{\sqrt{2}}\right)}$	ē)	
If	a, b, c, d are positive	e real numbe	ers such that a+b+	-c+d=2, 1	then $M = ($	(a + b)(c	+ d) satisf	ies the relation	
								[IIT Screening 2000	
	0 < <i>M</i> ≤ 1		1 ≤ <i>M</i> ≤ 2					-	

39. Suppose a, b, c are in A.P. and a^2, b^2, c^2 are in G.P. If a < b < c and $a + b + c = \frac{3}{2}$, then the value of a is

(c) $2 \le M \le 3$ (d) $3 \le M \le 4$

[IIT Screening 2002]

Download FREE Study Package from www.tekoClasses.com & Learn on Video www.MathsBySuhag.com Phone : (0755) 32 00 000, 98930 58881 WhatsApp 9009 260 559 SEQUENCE & SERIES PART 2 OF 2

(a)
$$\frac{1}{2\sqrt{2}}$$

(b)
$$\frac{1}{2\sqrt{3}}$$

(c)
$$\frac{1}{2} - \frac{1}{\sqrt{3}}$$
 (d) $\frac{1}{2} - \frac{1}{\sqrt{2}}$

$$\frac{1}{2} - \frac{1}{\sqrt{2}}$$

40. n^{th} term of the series $1 + \frac{4}{5} + \frac{7}{5^2} + \frac{10}{5^3} + \dots$ will be

(a)
$$\frac{3n+1}{5^{n-1}}$$

(b)
$$\frac{3n-1}{5^n}$$
 (c) $\frac{3n-2}{5^{n-1}}$ (d) $\frac{3n+2}{5^{n-1}}$

$$\frac{3n}{5^{n}}$$

41. The sum of the series $\frac{1}{1+1^2+1^4} + \frac{2}{1+2^2+2^4} + \frac{3}{1+3^2+3^4} + \dots$ to *n* terms is

(a)
$$\frac{n(n^2+1)}{n^2+n+1}$$

(a)
$$\frac{n(n^2+1)}{n^2+n+1}$$
 (b) $\frac{n(n+1)}{2(n^2+n+1)}$ (c) $\frac{n(n^2-1)}{2(n^2+n+1)}$ (d) None of these

$$\frac{n(n^2-1)}{2(n^2+n+1)}$$

42. For any odd integer $n \ge 1$,

$$n^3 - (n-1)^3 + \dots + (-1)^{n-1} 1^3 =$$

(a)
$$\frac{1}{2}(n-1)^2(2n-1)^2$$

(b)
$$\frac{1}{4}(n-1)^2(2n-1)$$

(a)
$$\frac{1}{2}(n-1)^2(2n-1)$$
 (b) $\frac{1}{4}(n-1)^2(2n-1)$ (c) $\frac{1}{2}(n+1)^2(2n-1)$ (d) $\frac{1}{4}(n+1)^2(2n-1)$

$$\frac{1}{4}(n+1)^2(2n-1)^2$$

43. The sum of *n* terms of the series $\frac{1}{1+\sqrt{3}} + \frac{1}{\sqrt{3}+\sqrt{5}} + \frac{1}{\sqrt{5}+\sqrt{7}} + \dots$ is **[UPSEAT 2002]**

(a)
$$\sqrt{2n+1}$$

(b)
$$\frac{1}{2}\sqrt{2n+1}$$

c)
$$\sqrt{2n+1}$$
 –

(b)
$$\frac{1}{2}\sqrt{2n+1}$$
 (c) $\sqrt{2n+1}-1$ (d) $\frac{1}{2}(\sqrt{2n+1}-1)$

44. n^{th} term of the series $\frac{1^3}{1} + \frac{1^3 + 2^3}{1 + 3} + \frac{1^3 + 2^3 + 3^3}{1 + 3 + 5} + \dots$ will be **[Pb. CET 2000]**

(a)
$$n^2 + 2n + 1$$

(b)
$$\frac{n^2 + 2n + 1}{8}$$

(a)
$$n^2 + 2n + 1$$
 (b) $\frac{n^2 + 2n + 1}{8}$ (c) $\frac{n^2 + 2n + 1}{4}$ (d) $\frac{n^2 - 2n + 1}{4}$

$$\frac{n^2-2n+4}{4}$$

45. The sum of the series $\frac{1}{\sqrt{1+\sqrt{2}}} + \frac{1}{\sqrt{2+\sqrt{3}}} + \frac{1}{\sqrt{3+\sqrt{4}}} + \dots + \frac{1}{\sqrt{p^2-1}+\sqrt{p^2}}$

(a)
$$\frac{(2n+1)}{\sqrt{n}}$$

(b)
$$\frac{\sqrt{n+1}}{\sqrt{n+\sqrt{n-1}}}$$

(b)
$$\frac{\sqrt{n+1}}{\sqrt{n}+\sqrt{n-1}}$$
 (c) $\frac{(n+\sqrt{n^2-1})}{2\sqrt{n}}$ (d) $n-1$

ANSWER

		_						-	
1	b	2	а	3	а	4	b	5	d
6	С	7	b,c,d	8	а	9	d	10	С
11	а	12	d	13	С	14	С	15	а
16	С	17	С	18	С	19	d	20	b
21	С	22	b	23	С	24	С	25	b
26	а	27	b	28	а	29	a	30	С
31	С	32	b	33	b	34	С	35	b
36	С	37	d	38	а	39	d	40	С
41	b	42	d	43	d	44	С	45	d

For 38 Years Que. of IIT-JEE (Advanced)

& 14 Years Que. of AIEEE (JEE Main)

we have already distributed a book