Branch: CSE/IT

Batch: Hinglish

Discrete Mathematics Set Theory

DPP-01

[NAT]

1. Which of the following statements are true?

I. $\phi \in \phi$

II. $\phi \subset \phi$

III. $\phi \subseteq \phi$

IV. $\phi \in \{\phi\}$

V. $\phi \subset \{\phi\}$

VI. $\phi \subseteq \{\phi\}$

[NAT]

2. If a set A has 63 proper subsets, then what is the cardinality of A?

[MCQ]

3. If a set A has 64 subsets of odd cardinality, then what is |A|?

(a) 6

(b) 63

(c) 7

(d) 128

[NAT]

4. How many subset of {1, 2, 3, ..., 11} contain at-least one even integer?

[NAT]

5. Let $A = \{1, 2, 3, 4, 5, 7, 8, 10, 11, 14, 17, 18\}$ How many subsets of A contain six elements?

[NAT]

6. Let A = {2, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 15} How many six-elements subsets of A contain four even integers and two odd integers?

[NAT]

7. Let A = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12} How many subsets of A contain only odd integers?

Answer Key

- 1. (4)
- 2. (6)
- **3.** (c)
- 4. (1984)

- 5. (924)
- **6.** (225)
- 7. (63)

Hints and Solutions

1. (4)

- **I.** $\phi \in \phi$ is false. The empty set has no members.
- II. $\phi \subset \phi$ is false. The empty set is not a proper subset of itself.
- III. $\phi \subseteq \phi$ is true. The empty set is a subset of every set
 - : subset of itself
- **IV.** $\phi \in \{\phi\}$ is true. ϕ is a member here.
- **V.** $\phi \subset \{\phi\}$ is true. The empty set is a proper subset of itself.
- **VI.** $\phi \subseteq \{\phi\}$ is true. The empty set is a subset of every set.

2. (6)

If a set has n elements then the number of subsets will be 2^n and the number of proper subsets will be $2^n - 1$.

A has 63 proper subsets, so $2^n - 1 = 63$

$$2^n = 63 + 1$$

$$2^n = 64$$

$$2^n = 2^6$$

$$\therefore$$
 n = 6

The cardinality of A is 6

3. (c)

The number of subsets for $\{1, 2, 3, ... n\}$ with odd cardinality is 2^{n-1} .

Number of subsets with cardinality $i = {}^{n}C_{i}$

So, the number of subsets with odd cardinality

$$\Sigma i = 1, 3 \dots n - 1 {}^{n}C_{i} = 2^{n-1}.$$

Now, given

$$2^{n-1} = 64$$

$$2^{n-1} = 2^6$$

$$n - 1 = 6$$

[Bases are same, so equating power]

$$n = 7$$

4. (1984)

 2^{11} subset for $\{1, 2, 3, \dots 11\}$

 2^6 subset for $\{1, 3, 5, 7, 9, 11\}$ contains none of the even integers $\{2, 4, 6, 8, 10\}$.

Hence, there are $2^{11} - 2^6 = 1984$ subsets that contain at least one even integer.

5. (924)

If we choose 6 elements from a set of 12 elements where order does not matter. Then we can do it in ${}^{12}C_6$ ways.

For example consider a set = $\{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12\}$ out of this set we have to choose a subset of 6 elements. This can be done in following ways:

That means the arrangement or order of elements does not matter, therefore we can do it using combinations.

$$^{12}C_{6} = \frac{\cancel{\cancel{2}} \times 11 \times \cancel{\cancel{10}}^{2} \times \cancel{\cancel{5}}^{3} \times \cancel{\cancel{5}}^{2} \times 7 \times \cancel{\cancel{5}}!}{\cancel{\cancel{5}}! \times \cancel{\cancel{5}} \times \cancel{\cancel{5}$$

6. (225)

Out of 6 element subsets, we can choose 4 even integers in 6C_4 ways.

Similarly to find 2 odd integers out of 6 element subset, can be done in 6C_2 ways.

Therefore
$${}^{6}C_{4} * {}^{6}C_{2} * = \frac{\cancel{6}^{3} \times 5 \times \cancel{4}!}{\cancel{2} \times \cancel{4}!} \times \frac{\cancel{6}^{3} \times 5 \times \cancel{4}!}{\cancel{4}! \times \cancel{2}}$$

= 15 * 15 = 225

7. (63)

In the given set, there are 6 odd integers, we have two choices for each odd integer to be included or not included, therefore total possibilities = $2^6-1 = 63$.

Any issue with DPP, please report by clicking here:- $\frac{https://forms.gle/t2SzQVvQcs638c4r5}{https://smart.link/sdfez8ejd80if}$ For more questions, kindly visit the library section: Link for web: $\frac{https://smart.link/sdfez8ejd80if}{https://smart.link/sdfez8ejd80if}$

