疏水相互作用层析技术 Hydrophbic Interaction Chromatography

层析技术

凝胶过滤

离子交换

疏水层析

反相层析

亲和层析

内容

- 介绍
- 机理和原理
- 纯化过程中的实际问题—优化
- 应用
- 总结

什么是疏水层析?

疏水层析是一种液相吸附层析,它是依据生物分子之间的疏水性的差别来进行分离的。

疏水层析的优点和缺点

可预测性、 高盐/粘度 沉淀/变性

> 温和/稳定 高的选择性 凝胶,离子,亲和的互补技术

内容

- 介绍
- 机理和原理
- 纯化过程中的实际问题—优化
- 应用
- 总结

疏水相互作用原理

疏水层析的主要阶段

- 平衡柱子到适合结合的条件
- 上样
- 清洗杂质
- 洗脱

平衡

- 1. 平衡
- 2. 上样
- 3. 清洗
- 4. 洗脱

平衡柱子到适合结合 的条件

上样

- 1. 平衡
- 2. 上样
- 3. 清洗
- 4. 洗脱

清洗未结合杂质

- 1. 平衡
- 2. 上样
- 3. 清洗
- 4. 洗脱

GE Title or job number / 2009-06-06

洗脱

- 1. 平衡
- 2. 上样
- 3. 清洗
- 4. 洗脱

洗脱

- 1. 平衡
- 2. 上样
- 3. 清洗
- 4. 洗脱

第一次试验,通用的条件

结合缓冲液: 50 mM PBS pH 7.0,含有 1-1.5 M 硫酸铵

洗脱缓冲液: 50 mM PBS pH 7.0

梯度: 10-15 柱体积

流速:参考说明书

填料: Phenyl Sepharose™ 6 Fast Flow (high sub)

内容

- 介绍
- 机理和原理
- 纯化过程中的实际问题-优化
- 应用

如何优化?

- 针对样品建立"盐稳定的范围"
- 选择层析填料
 - 基架的类型
 - 配基的类型
 - 配基取代的程度
- 选择结合条件
- 选择洗脱条件
- 优化策略

选择层析填料基架的类型

交联的琼脂糖

- -Sepharose FF and HP
- -Sepharose 4B and CL-4B

合成的共聚物材料 -SOURCE

AGAROSE

SOURCE™

选择层析填料

配基的类型

Title or job number

选择层析填料配基的取代程度

Columns: HiPrep[™] 16/10

Sample: Cytochrome C (1), ribonuclease A (2), lysozyme (3)

and α -chymotrypsinogen (4)

Phenyl (high sub)

Phenyl (low sub)

不同的填料有不同的选择性

Columns: HiPrep[™] 16/10

Sample: Cytochrome C (1), ribonuclease A (2), lysozyme (3) and α -chymotrypsinogen (4)

不同的填料有不同的选择性

Target protein: Deacetoxycephalosporin C synthase (DAOCS)

Columns: RESOURCE™

ISO

ETH

PHE

Sample: 10 ml DAOCS

purified on

Q Sepharose[™] XL

筛选合适的选择性

HiTrap™ HIC screening kit

RESOURCETM HIC test kit

如何优化?

- 针对样品建立"盐稳定的范围"
- 选择层析填料
- 选择结合条件
 - 盐的类型和浓度
 - pH
 - 温度
- 选择洗脱条件
- 优化策略

选择结合条件盐的类型

不同盐增强疏水配基和蛋白质之间的相互作用的能力不同。

◆ 相互作用强度增强,载量提高

 $Na_2SO_4 > K_2SO_4 > (NH_4)_2SO_4 > NaCI > NH_4CI > NaBr > NaSCN$

选择结合条件 盐类型的影响

1.7 M (NH₄)₂SO₄

1 M Na₂SO₄

3 M NaCl

选择结合条件盐浓度的影响

1 M (NH₄)₂SO₄

0.8 M (NH₄)₂SO₄

选择合适的结合条件 pH的影响

在pH5 and 8.5之间,蛋白和疏水填料的吸附几乎没有变化

选择结合条件温度的影响

4℃样品,23°C系统

选择结合条件温度的影响

SOURCE[™]15 ISO

如何优化?

- 针对样品建立"盐稳定的范围"
- 选择层析填料
- 选择结合条件
- 选择洗脱条件
 - 缓冲液
 - 流速
 - 洗脱梯度
- 优化策略

选择洗脱条件 缓冲液

缓冲液

影响

低盐浓度

有机溶剂

极性 表面张力 三维结构

去垢剂

变性 同蛋白相互作用 同配基相互作用 胶束

选择洗脱条件流速对分辨率的影响

选择洗脱条件 梯度形状对分离的影响

如何优化?

- 针对样品建立"盐稳定的范围"
- 选择层析填料
- 选择结合条件
- 选择洗脱条件
- 优化策略

优化策略

分辨率差

- 如果蛋白洗脱得太晚,改变吸附的盐浓度
- 改变pH 值
- 采用不同的配基或配基的取代水平

洗脱得太早或太晚

- 改变盐浓度
- 采用不同的配基或配基的取代水平

优化策略

蛋白沉淀

- 试着用比吸附缓冲液低的浓度多次上样.
- 在上样之前,才把样品和缓冲液混合

收率低

•蛋白可能不可逆的结合到柱子上,试着采用不同配基的填料和不同配基取代水平的填料.

优化策略总结

- •筛选合适选择性的填料
- •在吸附中,优化盐的浓度和类型
- •优化梯度形状,用以获得最大的分辨率和通量
- •如果柱效不理想,继续优化流速,温度,添加剂或调节pH

内容

- 介绍
- 机理和原理
- 纯化过程中的实际问题—优化
- 应用
- 总结

从毕赤酵母纯化重组 α-甘露糖苷酶

重组人表皮生长因子的捕获

Column: BPG[™] 300/500 packed with Phenyl Sepharose[™]

6 Fast Flow (high sub)

Sample: 80 l yeast supernatant Load: 0.36 mg EGF/ml media

Buffer A: 20 mM sodium phosphate, pH 7.0 + 0.5 M

ammonium sulphate

Buffer B: 20 mM sodium phosphate, pH 7.0

Flow: 300 cm/h during loading, 50 cm/h during elution

纯化重组磷酸脂酶

Sample: 170 ml eluate containing rPhosphatase from a DEAE Sepharose[™] run,

adjusted to 1.6 M $(NH_4)_2SO_4$, pH 7.0

Column: HiLoad™ 16/10 Phenyl Sepharose High Performance

Buffer A: 25 mM Tris-HCL, 1.4 M (NH₄)₂SO₄, 1 mM EDTA, 2 mM DTT, pH 7.4

Buffer B: 25 mM Tris-HCL, 10% glycerol, 1 mM EDTA, 2 mM DTT, pH 7.4

System: ÄKTAprime™, 5.0 ml/min (150 cm/h), 0-100%B in 20 CV

分离 α2-巨球蛋白异构体

column: Phenyl Sepharose[™] High Performance

 5×10 mm i.d. \times bed height

sample: 60 µg active and 60 µg methylamine-

treated, inactive a₂-macroglobulin

从E. coli包涵体纯化 rhGM-CSF

去除缓冲液成分

Guanidine-HCl, Berol 185, glutathione etc

- 纯化倍数: 大约 2 倍
- 收率: 92% 的活性
- 浓缩倍数 大约 5 倍

Belew, M. et al. (1994) J.Chromatogr. A, 679: 67-83

内容

- 介绍
- 机理和原理
- 纯化过程中的实际问题—优化
- 应用
- 总结

总结

- 和离子交换、凝胶过滤和亲和层析技术互补
- 温和, 非变性
- 高选择性
- 高回收率
- 浓缩技术

谢谢

欢迎访问:

www.gehealthcare.com/protein-purification

