

Convolution for edge detection/smoothing - 1D/2D

A function \underline{h} is the convolution of two functions \underline{f} and \underline{g} (denoted by $\underline{f} \stackrel{\star}{\star} \underline{g}$) if we $h(x) = (f * g)(x) = \sum_{x} \underbrace{f(u)}_{x} \underbrace{g(x-u)}_{y}$

Usually g(x) is the image matrix and f(x) is the Gaussian filter. Instead of running ufrom -inf to +inf we usually run it from -3 to +3.

Theorem: For any functions \underline{f} and \underline{g} , the derivative of the convolution, (g*f)' is equal to the convolution with the derivative g*(f')

- Instead of smoothing the image and then differentiating
 - Convolve the image with the derivative of the smoothing function

Consi

Ste cer

aro

Ste eac

 (x_0)

Ste

directly detect the regions themselves