

planetmath.org

Math for the people, by the people.

ideal included in union of prime ideals

Canonical name IdealIncludedInUnionOfPrimeIdeals

Date of creation 2013-03-22 16:53:14 Last modified on 2013-03-22 16:53:14 Owner polarbear (3475) Last modified by polarbear (3475)

Numerical id 10

Author polarbear (3475)

Entry type Result
Classification msc 16D99
Classification msc 13C99

Synonym prime avoidance lemma

 $Related\ topic \qquad Ideals Contained In AUnion Of Ideals$

In the following R is a commutative ring with unity.

Proposition 1. Let I be an ideal of the ring R and $P_1, P_2, ..., P_n$ be prime ideals of R. If $I \subseteq P_i$, for all i, then $I \subseteq \cup P_i$.

Proof. We will prove by induction on n. For n=1 the proof is trivial. Assume now that the result is true for n-1. That implies the existence, for each i, of an element s_i such that $s_i \in I$ and $s_i \notin \bigcup_{j \neq i} P_j$. If for some i, $s_i \notin P_i$ then we are done. Thus, we may consider only the case $s_i \in P_i$, for all i.

Let $a_i = r_1...r_{i-1}r_{i+1}...r_n$. Since P_i is prime then $a_i \notin P_i$, for all i. Moreover, for $j \neq i$, the element $a_i \in P_j$. Consider the element $a = \sum a_j \in I$. Since $a_i = a - \sum_{i \neq j} a_j$ and $\sum_{i \neq j} a_j \in P_i$, it follows that $a \notin P_i$, otherwise $a_i \in P_i$, contradiction. The existence of the element a proves the proposition.

Corollary 1. Let I be an ideal of the ring R and $P_1, P_2, ..., P_n$ be prime ideals of R. If $I \subseteq \cup P_i$, then $I \subseteq P_i$, for some i.