卖给其他罪犯,从而从事更多犯罪活动。

利用恶意软件从事的另一种犯罪是窃取用户账户中的财产,该类恶意软件平时一直处在潜伏状态,直到用户正确地登录到他的网络银行账户中去,该软件立刻发起一次快速的交易,查看该账户有多少余额,并将所有的钱都转到罪犯的账户中,这笔钱接着连续转移很多个账户,以便警方在追踪现金流走向的时候需要花很多天甚至几个星期来获得查看账户的相关许可。这种犯罪通常设计很大的交易量,已经不能视为青少年的恶作剧了。

恶意软件不只会被有组织的犯罪团伙所使用,在工业生产中同样可以看到其身影。一个公司可能会向对手的工厂中安装一些恶意软件,当这些恶意软件检测到没有管理员处于登录状态时,便会运行并干扰正常的生产过程,降低产品的质量,以此来给竞争对手制造麻烦。而在其他情况下这类恶意软件不会做任何事情,因此难以被检测到。

另一种恶意软件可能由野心勃勃的公司领导人所利用,这种病毒被投放在局域网中,并且会检测它是否在总裁的计算机中运行,如果是,则找到其中的电子报表,并随机交换两个单元格的内容。而总裁迟早会基于这份错误的报表做出不正确的决定,到时等待他的就是被炒鱿鱼的下场,成为一个无名之辈。

些人无论走到哪里肩膀上都会有一个芯片(请不要与肩膀上的RFID芯片弄混)。他们对社会充满了或真实或想象中的怨恨,想要进行报复。此时他们可能会选择恶意软件。很多现代计算机将BIOS保存在闪存中,闪存可以在程序的控制下被重写(以便生产者可以方便地修正其错误)。恶意软件向闪存中随机地写人垃圾数据,使得电脑无法启动。如果闪存在电脑插槽中,那么修复这个问题需要将电脑打开,并且换一个新的闪存,如果闪存被焊接在母板上,可能整块母板都可能作废,不得不买一块新的母板。

我们不打算继续深入地讨论这个问题,读者到这里已经了解关于恶意软件的基本情况,如果想了解 更多内容,请在搜索引擎中输入"恶意软件"。

很多人会问:"为什么恶意软件会如此容易地传播开來?"产生这种情况的原因有很多。其中之一是世界上90%的计算机运行的是单一版本的操作系统(Windows),使得它成为一个非常容易被攻击的目标。假设每台计算机都有10个操作系统,其中每个操作系统占有市场的10%,那么传播恶意代码就会变得加倍的困难。这就好比在生物世界中,物种多样化可以有效防止生物灭绝。

第二个原因是,微软在很早以前就强调其Windows操作系统对于没有计算机专业知识的人而言是简单易用的。例如Windows允许设置在没有密码的情况下登录,而UNIX从诞生之初就始终要求登录密码(尽管随着Linux不断试图向Windows靠近,这种传统正在逐步地淡化),操作系统易用性是微软一贯坚持的市场策略,因此他们在安全性与易用性之间不断进行着权衡。如果读者认为安全性更加重要,那么请先停止阅读,在用你的手机打电话之前先为它注册一个PIN码——几乎所有的手机都有此功能。如果你不知道如何去做,那么请从生产商的网站下载用户手册。

在下面的几节中我们将会看到恶意软件更为一般化的形式,读者将会看到这些软件是如何组织并传播的。之后我们会提供对恶意软件的一些防御方法。

9.7.1 特洛伊木马

编写恶意代码是第一步,你可以在你的卧室里完成这件事情。然而让数以百万计的人将你的程序安装到他们的电脑中则是完全不同的另一件事。我们的软件编写者Mal该如何做呢?一般的方法是编写一些有用的程序,并将恶意代码嵌入到其中。游戏、音乐播放器、色情书刊阅览器等都是比较好的选择。人们会自愿地下载并安装这些应用程序。作为安装免费软件的代价,他们也同时安装了恶意软件。这种方式叫做木马攻击(Torjan horse attack),引自希腊荷马所做《奥德赛》中装满了希腊上兵的木马。在计算机安全世界中,它指人们自愿下载的软件中所隐藏的恶意软件。

当用户下载的程序运行时,它调用函数将恶意代码写入磁盘成为可执行程序并启动该程序。恶意代码接下来便可以进行任何预先设计好的破坏活动,如删除、修改或加密文件。它还可以搜索信用卡号、密码和其他有用的信息,并且通过互联网发送给Mal。该恶意代码很有可能连接到某些IP端口上以监听远程命令,将该计算机变成僵尸机器,随时准备发送垃圾邮件或完成攻击者的指示。通常情况下,恶意代码还包括一些指令,使得它在计算机每次重新启动的时候自动启动,这一点所有的操作系统都可以做到。

木马攻击的美妙之处在下,木马的拥有者不必自己费尽心机侵入到受害者的计算机中,因为木马是