Cauchy-Schwarz inequality

2019年12月2日

一般的书上都是 Hilbert 空间中的 Cauchy-Schwarz inequality, 张恭庆的书上讲了个更一般的. 而下面的 Cauchy-Schwarz inequality, 是我见过的条件最弱的, 暂时还没找到该定理的出处.

Definition 1. If bilinear function $a: X \times X \to \mathbb{C}$ satisfied: for any $\alpha \in \mathbb{C}$ and $x, y \in X$,

(i)
$$a(\alpha x, y) = \alpha a(x, y)$$
;

(ii)
$$a(x, \alpha y) = \overline{\alpha}a(x, y)$$
.

We call $a(\cdot, \cdot)$ is a conjugate bilinear function on linear space X.

Theorem 1 (Cauchy–Schwarz inequality). Let $a(\cdot, \cdot)$ be a conjugate bilinear function on linear space X and for any $x \in X$,

$$a(x, x) > 0$$
,

then for any $x, y \in X$,

$$|a(x,y)|^2 \le a(x,x)a(y,y). \tag{1}$$

证明. For any $x, y \in X$, if a(x, x) = a(y, y) = 0, then

$$0 \le a(x+y, x+y) = a(x, x) + a(y, y) + 2\operatorname{Re}a(x, y) = 2\operatorname{Re}a(x, y),$$

$$0 \le a(x - y, x - y) = a(x, x) + a(y, y) - 2\operatorname{Re}a(x, y) = -2\operatorname{Re}a(x, y),$$

$$0 \le a(x + iy, x + iy) = a(x, x) + a(y, y) + 2\operatorname{Im} a(x, y) = 2\operatorname{Im} a(x, y),$$

$$0 \le a(x - iy, x + iy) = a(x, x) + a(y, y) - 2\operatorname{Im}a(x, y) = -2\operatorname{Im}a(x, y),$$

So $\operatorname{Re}a(x,y)=0=\operatorname{Im}a(x,y),$ i.e a(x,y)=0.

$$|a(x,y)|^2 = 0 = a(x,x)a(y,y).$$

Otherwise, we assume $a(y, y) \neq 0$, let $\lambda := a(x, y)/a(y, y)$, then

$$0 \le a(x - \lambda y, x - \lambda y)$$

$$= a(x, x) - \overline{\lambda}a(x, y) - \lambda a(y, x) + |\lambda|^2 a(y, y)$$

$$= a(x, x) - \frac{|a(x, y)|^2}{a(y, y)}.$$

From this we have

$$|a(x,y)|^2 \le a(x,x)a(y,y).$$

The proof of Cauchy-Schwarz inequality is finished.