浙江大学 20_13_ - 20_14_学年_春夏_学期 《电磁场与电磁波》课程期末考试试卷

课程号: ____11120010 _____, 开课学院: ____信电系______

考试试	卷: √A 卷、E	3卷(请在选为	定项上打√)					
考试形式:闭、√开卷(请在选定项上打√),允许带课本入场								
考试日期: <u>2014</u> 年 <u>6</u> 月 <u>28</u> 日, 考试时间: <u>120</u> 分钟								
					-			
诚信考试,沉着应考,杜绝违纪。								
考生姓名:		学号:		所属院系			1	
题序	_	=	Ξ	四	五	总 分		
得分								
评卷人								
一、单项选择题(每小题 2 分, 共 30 分)								
1. 微波传轴	渝线是一种_	В	电路。					
A) 集总	总常数	B) 分布参	数 C)	纯阻	D) 无耗			
2. 特征阻抗为 Z_0 的均匀无耗传输线上传输行驻波,驻波系数为 ρ ,其电压波腹处(电压最								
· · · · · · · · · · · · · · · · · · ·								
A) Z_0		B) ρ/ Z ₀	C) p	Z_0	D) Z_0/ρ			
3. 一恒定磁场 H_0 加在铁氧体上,一线极化平面波以波矢 k 为 H_0 方向								
入射铁氧体,测得透射波的极化方向旋转了 30° 。如果在铁氧体后面 , \blacksquare								
放置理想导体,将透射波全反射,再次透过氧体后,反射波的极化								
放直達思等体,特透射放至反射,特次透过氧体后,反射放的极化 铁氧体 方向相对于入射波为 C 。								
	万 回相刈丁八別級 万 。 A) 没变化 B) 旋转了 30° C) 旋转了 60°度 D) 旋转了 90°							
						y were a		
		_	D	_	/)			
			C) TM 波					
5. 传输线特征阻抗为 Z_0 ,负载阻抗为 R_L ,且 $Z_0 \neq R_L$,若用特性阻抗为 Z_{01} 的 $\lambda/4$ 阻抗变换								
器进行匹配,则匹配条件为。								
A) Z_{01}	$= Z_0 R_L$	$B) Z_{01} = \sqrt{Z}$	$\overline{C_0R_L}$ C)	$Z_0 = \sqrt{Z_{01}}I$	$\overline{R_L}$ D) Z	$C_{01} = R_L$		

6	二个金属空腔谐振器,形状尺寸完全相同,一个材料是铝,一个材料是铜,比较二者的
	品质因素,正确的是(B)
	A. 铝腔大 B. 铜腔大 C. 二者一样大 D. 频率低时铜腔大,频率高时铝腔大
7. 🔻	若抛物面天线直径为 $2m$,有效面积为 $1.6m^2$,工作频率为 $6GHz$,则天线增益为。
-	A) 33dB B) 66dB C) 39dB D) 78dB
8. =	无耗均匀传输线特征阻抗为 50Ω ,终端接 25Ω 负载,则该传输线上的驻波比为 A 。
	A) 2 B) 1.5 C) 1 D) 0.5
9	一感性负载经过四分之一阻抗变换器变为。
A	A) 容性 B) 感性 C) 纯电阻性 D) 纯电感性
10.	截面尺寸为 $a \times b$ ($b < a/2$)的矩形波导, TE_{10} 波在其中单模传播的条件为
	λ为工作波长)
	A) $0 < \lambda < a$ B) $2b < \lambda < 2a$ C) $a < \lambda < 2a$ D) $2a < \lambda$
11.	$z=0$ 是空气($\varepsilon=\varepsilon_0$)与介质($\varepsilon_2=4\varepsilon_0$)的分界面,若已知空气中的电场强度 $\mathbf{E}_1=2\mathbf{x}_0+4\mathbf{z}_0$,
	则介质中的电场强度应为。
	A) $E_2 = 2x_0 + 16z_0$ B) $E_2 = 2x_0 + z_0$ C) $E_2 = 8x_0 + 4z_0$ D) $E_2 = 8x_0 + 4z_0$
12.	区域 V 全部用无耗介质填充,当此区域中的电磁场能量减少时,一定是 A
	A) 能量流出了区域 B) 能量在区域中被损耗
	C) 能量流进了区域 D) 同时选择 A 和 B
13.	电偶极子的远区辐射场是。
	A) 非均匀平面波 B) 均匀平面波 C) 非均匀球面波 D) 均匀球面波
14.	已知均匀导波系统中电磁波沿着 z 方向传播, TE 波的波阻抗为 Z _{TE} , 这 TE 波的场量满
	足 <u>A</u> 。
	A) $\mathbf{E} = Z_{TE} \mathbf{H} \times \mathbf{z_0}$ B) $\mathbf{H} = Z_{TE} \mathbf{E} \times \mathbf{z_0}$ C) $\mathbf{E} = Z_{TE} \mathbf{z_0} \times \mathbf{H}$ D) $\mathbf{H} = Z_{TE} \mathbf{z_0} \times \mathbf{E}$
15.	当波长为λ的电磁波垂直入射到理想导体表面时,电磁波会发生全反射形成驻波,这磁
	场强度的波节点距离理想导体的最短距离为。
	A) 0 B) $\lambda/8$ C) $\lambda/4$ D) $\lambda/2$

二、计算题(共70分)

1、(20 分) 一均匀平面波从海水表面(x=0)沿+x 方向向海水中传播。在 x=0 处,电场强度 为 $E=\hat{y}100\cos(10^7\pi t)$ V/m 。 若 海 水 的 $\varepsilon_r=80,\mu_r=1,\sigma=4$ S/m ,已 知 $\mu_0=4\pi\times10^{-7}H/m,\varepsilon_0=8.854\times10^{-12}F/m$ 。

- (1) 求衰减常数、相位常数、波阻抗、相速、波长、趋肤深度;
- (2) 写出海水中的电场强度和磁场强度表达式;
- (3) 求坡印亭矢量S(r,t)和其平均值。

$$\mathbf{\widetilde{H}}: (1) \quad \mathscr{E} = \varepsilon \left(1 - j\frac{\sigma}{\omega\varepsilon}\right) \approx -j\frac{\sigma}{\omega} \qquad \qquad \mathscr{E} = \omega\sqrt{\mu\varepsilon} = \beta - j\alpha = 2\sqrt{2}\pi - j2\sqrt{2}\pi$$

$$\text{PF} \sqrt{\frac{\mu}{80}} = \pi e^{j\frac{\pi}{4}} \qquad \lambda = \frac{2\pi}{\beta} = \frac{\sqrt{2}}{2} \qquad v_p = \frac{\omega}{\beta} = \frac{10^7 \pi}{2\sqrt{2}\pi} = 25\sqrt{2} \times 10^5 \qquad d_p = \frac{1}{\alpha} = \frac{\sqrt{2}}{4\pi} = \frac{\sqrt{2}}{2\sqrt{2}\pi} = 25\sqrt{2} \times 10^5 \qquad d_p = \frac{1}{\alpha} = \frac{\sqrt{2}}{4\pi} = \frac{\sqrt{2}}{2\sqrt{2}\pi} = \frac{10^7 \pi}{2\sqrt{2}\pi} = \frac{10^7 \pi}{2\sqrt{2$$

(2)
$$E(x,t) = \hat{y}100e^{-2\sqrt{2}x}\cos(10^7\pi t - 2\sqrt{2}\pi x)$$

$$H(x,t) = \hat{z} \frac{100}{\pi} e^{-2\sqrt{2}x} \cos(10^7 \pi t - 2\sqrt{2}\pi x - \frac{\pi}{4})$$

(3)

$$S = E \times H$$

$$= \hat{\mathbf{y}} 100e^{-2\sqrt{2}x} \cos(10^7 \pi t - 2\sqrt{2}\pi x) \times \hat{\mathbf{z}} \frac{100}{\pi} e^{-2\sqrt{2}x} \cos(10^7 \pi t - 2\sqrt{2}\pi x - \frac{\pi}{4})$$

$$= \hat{\mathbf{x}} \frac{10000}{\pi} e^{-4\sqrt{2}x} \cos(10^7 \pi t - 2\sqrt{2}\pi x) \cos(10^7 \pi t - 2\sqrt{2}\pi x - \frac{\pi}{4})$$

$$\mathbf{S}_{av} = \frac{1}{2} \operatorname{Re}(\mathbf{E} \times \mathbf{H}^{*})$$

$$= \frac{1}{2} \operatorname{Re}[\hat{\mathbf{y}} 100 e^{-2\sqrt{2}x} \times \hat{\mathbf{z}} \frac{100}{\pi} e^{-2\sqrt{2}x} e^{j\frac{\pi}{4}}]$$

$$= \hat{\mathbf{x}} \frac{5000}{\pi} e^{-4\sqrt{2}x} \frac{\sqrt{2}}{2}$$

$$= \hat{\mathbf{x}} \frac{2500\sqrt{2}}{\pi} e^{-4\sqrt{2}x}$$

2、(20 分) 一均匀平面波 $\mathbf{E}(\mathbf{r}) = (j\mathbf{x}_0 + \mathbf{y}_0 2 - j\sqrt{3}\mathbf{z}_0)e^{-j(ax+bz)}$ V/m,自空气中向 $\mu = \mu_0$, $\varepsilon = 3\varepsilon_0$ 的介质中斜入射,z=0 的平面是空气和介质的交界面,已知工作波长 $\lambda = 3.14$ 米,求:

- (1) 说明入射波的极化状态;
- (2) 若反射波为线极化波,入射角应为多大?
- (3) 入射波矢 k_1 的表达式 (求出 a, b, 然后写出波矢)
- (4) 反射波的电场表达式

解: (1)右旋圆极化波。

(2) 要使反射波为线极化波,入射角必须满足布儒斯特角

$$\theta_i = \arctan(\sqrt{\frac{3}{1}}) = \frac{\pi}{3}$$

(3)
$$\lambda = 3.14, k = \frac{2\pi}{\lambda} = 2, \quad k_{x1} = a = k \sin \theta_i = \sqrt{3}, \quad k_{z1} = b = k \cos \theta_i = 1, \quad k_1 = \sqrt{3} \mathbf{x} + \mathbf{z}$$

(4)
$$k_2 = \sqrt{3}k_1 = 2\sqrt{3}$$
, $k_{x2} = k_{x1} = \sqrt{3}$, $k_{z2} = \sqrt{k_2^2 - k_{x2}^2} = 3$, $k_2 = \sqrt{3}\mathbf{x} - 3\mathbf{z}$

$$\mathbf{E}(\mathbf{r}) = (j\mathbf{x}_0 + \mathbf{y}_0 2 - j\sqrt{3}\mathbf{z}_0)e^{-j(\sqrt{3}x + z)} = E_1 + E_2$$

$$TE$$
波: $E_1 = \mathbf{y}_0 2e^{-j(\sqrt{3}x+z)}$, T M波: $E_2 = (j\mathbf{x}_0 - j\sqrt{3}\mathbf{z}_0)e^{-j(\sqrt{3}x+z)}$

$$TE$$
反射系数: $\Gamma_1 = \frac{k_{z1} - k_{z2}}{k_{z1} - k_{z2}} = \frac{1 - 3}{1 + 3} = -0.5$

$$E_1^r = \Gamma_1 \mathbf{y}_0 2e^{-j(\sqrt{3}x-z)} = -\mathbf{y}_0 e^{-j(\sqrt{3}x-z)}$$

TM反射系数: $\Gamma_2 = 0$

∴总反射波电场
$$E^r = \Gamma_1 \mathbf{y}_0 2e^{-j(\sqrt{3}x-z)} = -\mathbf{y}_0 e^{-j(\sqrt{3}x-z)}$$

- 3、(15 分)如图所示,一平行板波导相距为a,x < 3a/8 和x > 5a/8区域是自由空间(ε_0, μ_0), 3a/8 < x < 5a/8区域充满 (ε, μ_0) 的介质。假设波矢k在x-z平面,波在x方向谐振,沿z向传播。
 - (1) 求该波导最低阶 TE 模(电场为y方向)的色散关系;
 - (2) 若 $\varepsilon = 9\varepsilon_0$, a = 2cm , 求截止频率。

解:(1)用传输线等效,TE模的最低阶模,对称面为开路。

$$k_{x1} = \sqrt{k_1^2 - k_z^2} = \sqrt{\omega^2 \varepsilon_0 \mu_0 - k_z^2}$$

$$k_{x2} = \sqrt{k_2^2 - k_z^2} = \sqrt{\omega^2 \varepsilon \mu_0 - k_z^2}$$

$$Y_1 = \frac{k_{x1}}{\omega \mu_0}, \quad Y_2 = \frac{k_{x2}}{\omega \mu_0}$$

以 x=3a/8 处为参考面,

$$\overset{\text{S.I.}}{Y} = -jY_1 \operatorname{ctg}(k_{x1} \frac{3a}{8}), \overset{\text{Wr}}{Y} = jY_2 \tan(k_{x2} \frac{a}{8})$$

+ Y + Y = 0,

得色散方程:
$$-jY_1 \operatorname{ctg}(k_{x1} \frac{3a}{8}) + jY_2 \tan(k_{x2} \frac{a}{8}) = 0$$

 $\sqrt{\omega^2 \varepsilon_0 \mu_0 - k_z^2} \operatorname{ctg}(\frac{3a}{8} \sqrt{\omega^2 \varepsilon_0 \mu_0 - k_z^2}) - \sqrt{\omega^2 \varepsilon \mu_0 - k_z^2} \tan(\frac{a}{8} \sqrt{\omega^2 \varepsilon \mu_0 - k_z^2}) = 0$

(2) 截止时, $k_z = 0$, $k_{x1} = k_1 = \omega \sqrt{\varepsilon_0 \mu_0} = k_0$, $k_{x2} = k_2 = \omega \sqrt{\varepsilon \mu_0} = 3k_0$, $Y_2 = 3Y_1$

$$k_0 \cot(k_0 \frac{3a}{8}) - 3k_0 \tan(\frac{3a}{8}k_0) = 0$$

$$\frac{k_0}{\tan(k_0 \frac{3a}{8})} - 3k_0 \tan(\frac{3a}{8}k_0) = 0$$

$$\frac{c \operatorname{tg}(k_0 - 3k_0) - 3k_0 \tan(\frac{3a}{8}k_0) = 0}{\tan(k_0 - 3k_0)} - 3k_0 \tan(\frac{3a}{8}k_0) = 0$$

$$\frac{k_0}{\tan(k_0 - 3k_0)} - 3k_0 \tan(\frac{3a}{8}k_0) = 0$$

$$\frac{k_{x_1} \cdot Z_1 - k_{x_2} \cdot Z_2}{x - 3a/8}$$

$$\tan(\frac{3a}{8}k_0) = \frac{\sqrt{3}}{3}$$
 $\frac{3a}{8}k_0 = \frac{\pi}{6}$ $k_0 = \frac{4\pi}{9a}$ $\lambda_c = \frac{9a}{2} = 9\text{cm}$

$$f_c = \frac{c}{\lambda_c} = \frac{3 \times 10^8}{9 \times 10^{-2}} = 0.333 \times 10^{10} \text{Hz} = 3.33 \text{GHz}$$

- 4、(15 分)如图所示,完纯导体(xy 平面)上垂直放置或水平放置一根电基本振子天线,分别为 L_1 和 L_2 ,这两种情况下,已知天线中心与导体的距离均为 $\lambda/2$,电基本振子天线由同一个源激励,激励功率相等,中心激励电流均为 I_0 。试求:
 - (1) 根据镜像原理,分别画出这两种情况下,天线关于完纯导体的镜像;
 - (2) 分别求这两情况下,天线与镜像组成的天线阵的阵因子;
 - (3) 分别求这两种情况下天线电场的辐射方向函数。

- 解: (1) 根据镜像原理,垂直放置的电基本振子的镜像即以导体面为对称的同相的电基本振子; 水平放置的电基本振子的镜像即以导体面为对称的方向的电基本振子,分别构成各自的天线阵。
- (2) 垂直放置的电基本振子,辐射方向函数为 $\sin \theta$

天线阵, 阵因子 $F(\theta) = 2\cos(\pi\cos\theta)$

水平放置的电基本振子,辐射方向函数为 $\sin \theta_x = \sqrt{1-\sin^2 \theta \cos^2 \varphi}$ 天线阵,阵因子 $F(\theta) = 2\cos \left(\pi\cos\theta + \frac{\pi}{2}\right)$

(3) 垂直放置的电基本振子,总的辐射方向图为 $F_1 = 2\cos(\pi\cos\theta)\sin\theta$

水平放置的电基本振子,总的辐射方向图

$$F_2 = 2\cos\left(\pi\cos\theta + \frac{\pi}{2}\right)\sin\theta_x = 2\cos\left(\pi\cos\theta + \frac{\pi}{2}\right)\sqrt{1 - \sin^2\theta\cos^2\varphi}$$