Homework 1, Math 4150

- 1. Exercise Set 1.1, #6.
 - (a) Let $a, b, c \in \mathbb{Z}$ with $c \neq 0$. Show that $a \mid b$ if and only if $ac \mid bc$.
 - (b) Provide a counterexample showing that the conclusion above does not hold if c = 0.

Solution.

(a). First we show that a|b implies ac|bc. If a|b then there exists some $x \in \mathbb{Z}$ such that ax = b. Now multiply c on both sides to get acx = bc. This means that there is some $x \in \mathbb{Z}$ for which ac multiplied by x is bc. In other words by definition we have ac|bc.

Now we show that ac|bc implies that a|b. If ac|bc, by definition we have some $x \in \mathbb{Z}$ such that acx = bc. Now, because $c \neq 0$ we can divide c from both sides to get ax = b. Again by definition this means that b is a multiple of a or that a|b.

(b). Consider a=3 and b=5. If c=0 we have ac=0 and bc=0. Now 0|0 is true because for any choice of $x\in\mathbb{Z}$ we have 0x=0. So we have ac|bc. However, we can easily see that 3|5 is not true. So this counterexample shows that the statement if and only if doesn't hold if c=0

2. Exercise Set 1.1, #9. Let a, m, n be positive integers, with a > 1. Show that $a^m - 1 \mid a^n - 1$ if and only if $m \mid n$.

Solution.

First we show that if m|n then $a^m - 1|a^n - 1$. If m|n then we have for some $x \in \mathbb{Z}$ that mx = n which means that $a^{mx} - 1 = a^n - 1$. We can write the left hand side as $(a^m)^x - 1 = (a^m - 1)(a^{m(x-1)} + a^{m(x-2)} + \cdots + 1) = (a^m - 1)(k)$ where $k = (a^{m(x-1)} + a^{m(x-2)} + \cdots + 1)$. This give us,

$$(a^m - 1)k = a^n - 1$$

Or that $a^m - 1|a^n - 1$

Now, we show that $a^m - 1|a^n - 1$ implies that m|n. If $a^m - 1|a^n - 1$ then that means $\exists x \in \mathbb{Z}$ such that $(a^m - 1)x = a^n - 1$. Now as n > m (we know this because x is a positive integer, which means that $a^n > a^m$ which means that n > m) we can take n = qm + r for some $q, r \in \mathbb{N}$ where r < m. Now we can write,

$$a^{n} - 1 = a^{qm}a^{r} - 1$$

$$= a^{qm}a^{r} - a^{r} + a^{r} - 1$$

$$= (a^{qm} - 1)a^{r} + (a^{r} - 1)$$

Now we know that $a^m - 1|a^n - 1$ by assupmtion and we also know from the above proof that $a^m - 1|a^{qm} - 1$ as m|qm. Hence, this also must mean that $a^m - 1|a^r - 1$. However, by construction we have r < m based on how we constructed n as n = qm + r. This means that $a^m - 1 > a^r - 1$. A larger mumber divides a smaller number only when the smaller number is zero. SO we have $a^r - 1 = 0$. Or that r = 0. This gives us, n = qm + r = qm + 0 = qm which implies that m|n.

3. Exercise Set 1.1, #10. Let $n \in \mathbb{Z}$.

- (a) Prove that $3 \mid n^3 n$
- (b) Prove that $5 \mid n^5 n$
- (c) Is it true that $4 \mid n^4 n$? Provide a proof or a counterexample.

Solution.

(a). First we rewrite $n^3 - n = n(n^2 - 1) = n(n + 1)(n - 1)$

We have three cases,

Case 1: n = 3q + 0 for some $q \in Z$

Here n = 3q so we have

$$n(n+1)(n-1) = 3q(3q+1)(3q-1) = 3(k)$$

where k = q(3q+1)(3q-1). Hence we have $3|n^3-n$

Case 2: n = 3q + 1 for some $q \in Z$

Here n = 3q + 1 so we have

$$n^{3} - n = n(n+1)(n-1) = (3q+1)(3q+2)(3q) = 3k$$

where k = (3q + 1)(3q + 2)q so we have $3|n^3 - n|$

Case 3: n = 3q + 2 for some $q \in Z$

Here n = 3q + 2 so we have

$$n^{3} - n = n(n+1)(n-1) = (3q+2)(3q+3)(3q+1) = 3(3q+2)(q+1)(3q+1) = 3k$$

where k = (3q+2)(q+1)(3q+1) which means that $3|n^3 - n$

So, in all three cases we have $3|n^3 - n$

(b). Similar to above we have 5 cases as any number can only leave reminaders 0, 1, 2, 3, 4 when divided by 5. We can also expand

$$n^5 - n = n(n^4 - 1) = n(n^2 + 1)(n + 1)(n - 1)$$

Now the five cases are,

Case 1: n = 5q + 0

Here n = 5q so

$$n^5 - n = n(n^2 + 1)(n + 1)(n - 1) = 5q(5q^2 + 1)(5q + 1)(5q - 1) = 5k$$

where $k = q(5q^2 + 1)(5q + 1)(5q - 1)$ which gives us $5|n^5 - n|$

Case 2: n = 5q + 1

Here n = 5q + 1 so

$$n^5 - n = n(n^2 + 1)(n + 1)(n - 1) = (5q + 1)((5q + 1)^2 + 1)(5q + 2)(5q) = 5k$$

where $k = (5q + 1)((5q + 1)^2 + 1)(5q + 2)q$ which gives us $5|n^5 - n$

Case 3: n = 5q + 2

Here n = 5q + 2 so

$$n^{5} - n = n(n^{2} + 1)(n + 1)(n - 1) = (5q + 2)((5q + 2)^{2} + 1)(5q + 3)(5q + 1)$$

$$= (5q + 2)(25q^{2} + 4 + 20q + 1)(5q + 3)(5q + 1)$$

$$= (5q + 2)5(5q^{2} + 1 + 4q)(5q + 3)(5q + 1)$$

$$= 5k$$

where $k = (5q + 2)(5q^2 + 1 + 4q)(5q + 3)(5q + 1)$ so we have $5|n^5 - n$

Case 4: n = 5q + 3

Here n = 5q + 3 so

$$n^{5} - n = n(n^{2} + 1)(n + 1)(n - 1) = (5q + 3)((5q + 3)^{2} + 1)(5q + 4)(5q + 2)$$

$$= (5q + 3)(25q^{2} + 9 + 30q + 1)(5q + 4)(5q + 2)$$

$$= (5q + 3)(25q^{2} + 10 + 30q)(5q + 4)(5q + 2)$$

$$= 5(5q + 3)(5^{2} + 2 + 6)(5q + 4)(5q + 2)$$

$$= 5k$$

where $k = (5q+3)(5^2+2+6)(5q+4)(5q+2)$ which gives us $5|n^5-n$

Case 5: n = 5q + 4

Here n = 5q + 4 so

$$n^{5} - n = n(n^{2} + 1)(n + 1)(n - 1) = (5q + 4)((5q + 4)^{2} + 1)(5q + 5)(5q + 3)$$
$$= 5(5q + 4)((5q + 4)^{2} + 1)(q + 1)(5q + 3)$$
$$= 5k$$

where $k = (5q+4)((5q+4)^2+1)(q+1)(5q+3)$ which means that $5|n^5-n$ So in all three cases we have $5|n^5-n$

In all cases we have $5|n^5 - n$

(c). We need to either prove or disprove that $4|n^4 - n$. We will disprove the statement by giving a counter example. Consider n = 3. Here we have $n^4 - n = 81 - 3 = 78$. We see that $78 = 4 \times 19 + 1$ which means that $4 \ / 78$ and hence disproves the statement.

4. Exercise Set 1.2, #28

Let a, n be positive integers, with a > 1. Show that if $a^n + 1$ is prime, then a is even, and n is a power of 2.

Solution.

Let us assume the contrary that a is odd or n is not a power of 2.

Case 1 we have n is odd. This means that a^n is odd (as odd times odd is always odd). If a^n is odd then $a^n + 1$ is even and not equal to $2(as \ a > 1)$ we have $a^n + 1 > 2$. And we know that 2 is the only even prime number. This means that $a^n + 1$ is composite which breaks our assumption that it is prime. Hence, n cannot be odd.

Case 2 we have n not a power of 2. This means that n has an odd factor. So let r be an odd number such that n = rs for some $s \in \mathbb{Z}$. So we have $a^{rs} + 1 = (a^s)^r + 1 = x^r + 1^r$. Now as r is odd we can factorize this as follows,

$$x^{r} + 1^{r} = (x+1)(x^{r-1} - x^{r-2} + x^{r-3}...)$$

Now that x + 1 > 1 we have $(x + 1)|x^r + 1$ implying that $x^r + 1$ is not a prime number as it has a prime divisor. Hence, contradicting our assumption

So we show that either a has to be even or n is a power of 2.

5. Let n > 1 be an integer. Prove that, if $n^2 + 1$ is a prime number, then $n^2 + 1$ is expressible in the form 4k + 1 with integer k.

Solution.

Given that n^2+1 is prime. We know from above that n has to be even as if its odd the number would be composite. Now if n is even then there is some $m \in \mathbb{Z}$ such that n=2m. Plugging this into n^2+1 we have $(2m)^2+1=4m^2+1=4k+1$ if we take $m^2=k$. Hence, we show that any prime number of the form n^2+1 can be written in the form 4k+1.

- 6. Exercise Set 1.3, #43.
 - (a) Let $a, b, c \in \mathbb{Z}$ with (a, b) = 1. If $a \mid c$ and $b \mid c$ prove that $ab \mid c$.
 - (b) Provide a counterexample to show why the statement in (a) cannot hold if (a, b) > 1.
 - (c) Let $a_1, \ldots, a_n \in \mathbb{Z}$ be pairwise relatively prime numbers. Prove that if each $a_j \mid c$, then $a_1 \cdots a_n \mid c$.

Solution.

(a). We have GCD(a, b) = 1. We need to show that a|c, b|c implies that ab|c.

If GCD(a, b) = 1 we have some $m, n \in \mathbb{Z}$ such that am + bn = 1. If a|c, b|c then we have some $x, y \in \mathbb{Z}$ such that ax = c and by = c.

We have,

$$am + bn = 1$$

 $cam + cbn = c$
 $byam + axbn = c$ as $c = ax = by$
 $ab(ym + xn) = c$
 $ab(z) = c$

which by definition mean that ab|c

- (b). Consider if a = 5 and b = 10, so we have (a, b) = 5. We see that if c = 20 we have, a = 5|20 and b = 10|20. However we see that ab = 50 /20.
- (c). We have $a_1, \ldots, a_n \in \mathbb{Z}$ which are pairwise relatively prime numbers. We need to show that if $a_i | c$ then $a_1 \ldots a_n | c$.

First we prove a primliminary result that given relatively prime numbers a_1, \ldots, a_n , the gcd of the product of a subset of these numbers is relatively prime with numbers outside the subset. In other words we show that,

$$qcd(a_1 \dots a_i, a_k) = 1 \text{ if } k > i$$

We will do this by induction. For the base case we have i = 1 for which this is trivially true by construction (as all the numbers are pairwise relatively prime). Now consider the case for some arbitrary m. So we have,

$$gcd(a_1 \dots a_m, a_{m+1}) = 1$$

We need to show this is true for m + 1. Now let $a_1
ldots a_m = x, a_{m+1} = y, a_k = z$ where k > m + 1. Note that x and y are coprime as well as x and z (by the inductive hypothesis).

So we have,

$$xm_1 + zn_1 = 1$$
 for some $m_1, n_1 \in \mathbb{Z}$
 $ym_2 + zn_2 = 1$ for some $m_2, n_2 \in \mathbb{Z}$

Now multiplying these two together we have,

$$xym_1m_2 + z(xm_1n_2 + zn_1n_2 + yn_1m_2) = 1$$

 $xym_3 + z(n_3) = 1$ where $m_3 = m_1m_2, n_3 = xm_1n_2 + zn_1n_2 + yn_1m_2$

This by definition means that gcd(xy, z) = 1. Or expending it gives us,

$$gcd(a_1 \dots a_m a_{m+1}, a_{m+2}) = 1$$

Which is the case for n = m + 1

Now we prove the initial statement inductively. Consider i=1 for which the statement is trivially true. Now consider the statement is true for some arbitrary i so we have $a_1 \ldots a_i | c$ given $a_1 | c, \ldots, a_i | c$. Now, consider a_{i+1} . Let $a_1 \ldots a_i = a'$ so we have $\gcd(a', a_{i+1}) = 1$ based on the proof above. Similarly we have a' | c and $a_{i+1} | c$ by assumption. So based on the proof in (a) this means that $a'a_{i+1} | c$ or that $a_1 \ldots a_{i+1} | c$ which is the case for i+1. Hence we compute the inductive step and show that it must be true for any i.

7. Exercise Set 1.3, #48. Let $a, b \in \mathbb{Z}$. Show that (a, b) = 1 if and only if (a + b, ab) = 1. Solution.

We have $a, b \in \mathbb{Z}$. We need to show that (a, b) = 1 if and only if (a + b, ab) = 1. First we show the if condition. So we have,

$$(a+b,ab) = 1$$

which means that,

$$(a+b)m + abn = 1$$
 for some $m, n \in \mathbb{Z}$

Now we have,

$$am + bm + abn = 1$$
$$a(m + bn) + bm = 1$$
$$ax + by = 1$$

By definition this means that (a, b) = 1

Now we show the only if condition.

Let's assume the contrary that (a + b, ab) = x > 1 so we have,

$$x|a+b$$
 and $x|ab$

If x|ab let p be a prime dividing x then it must mean either p|a or p|b as p can't divide a and b as gcd(a,b)=1. So assume without loss of generality that p|a. Now we know that x|a+b which means p|a+b. But if p|a+b and p|a, then that must mean p also divides their difference or that p|(a+b)-a or p|b. However, then we get that p|a and p|b or that a and b are not coprime as $p \neq 1$ which is a contradiction as we know that gcd(a,b)=1. Hence, our assumption must be wrong and it must be true that (a+b,ab)=1.

8. Excercise Set 1.4, #54(c). Use the Euclidean Algorithm for this exercise. Compute the gcd (441, 1155), and express it as an integral linear combination of the 441 and 1155.

Solution.

We need to compute gcd(441, 1155) using the euclidean algorithm,

$$1155 = 441 \times 2 + 273$$

$$441 = 273 \times 1 + 168$$

$$273 = 168 \times 1 + 105$$

$$168 = 105 \times 1 + 63$$

$$105 = 63 \times 1 + 42$$

$$63 = 42 \times 1 + 21$$

$$42 = 21 \times 2 + 0$$

This gives us the GCD as 21

To find the linear combination we go backwards to get,

$$1 \times 105 = 63 + (63 - 21) = 2 \times 63 - 21$$

$$2 \times 168 = 2 \times 105 + (105 + 21) = 3 \times 105 + 21$$

$$3 \times 273 = 3 \times 168 + (2 \times 168 - 21) = 5 \times 168 - 21$$

$$5 \times 441 = 5 \times 273 + (3 \times 273 + 21) = 8 \times 273 + 21$$

$$8 \times 1155 = 16 \times 441 + (5 \times 441 - 21) = 21 \times 441 - 21$$

This gives us,

$$21 \times 441 - 8 \times 1155 = 21$$

9. Excercise Set 1.4, #56. Find two rational numbers with denominators 11 and 13, whose sum is $\frac{7}{143}$.

Solution.

We need to find two rations with denominators 11 and 13 whose sum is $\frac{7}{143}$. Consider the rationals to be $\frac{p}{11}$ and $\frac{q}{13}$ so we have,

$$\frac{p}{11} + \frac{q}{13} = \frac{7}{143}$$
$$\frac{13p + 11q}{143} = \frac{7}{143}$$
$$13p + 11q = 7$$

We know that 13 and 11 have gcd of 1 so there exists m, n such that 13m + 11n = 1.

$$13 = 11 \times 1 + 2$$

$$11 = 2 \times 5 + 1$$

$$5 \times 13 = 5 \times 11 + (11 - 1)$$

$$6 \times 11 - 5 \times 13 = 1$$

Multiplying this by 7 we get,

$$11 \times 42 + 13 \times -35 = 7$$

Hence we get p = -35 and q = 42 to get,

$$\frac{-35}{11} + \frac{42}{13} = \frac{7}{143}$$