Tarefas de Mineração de Dados

Exemplo de um Sistema de Recomendação usando Associação

Motivação: Youtube

2.2 Related Videos

One of the building blocks of the recommendation system is the construction of a mapping from a video v_i to a set of similar or related videos R_i . In this context, we define similar videos as those that a user is likely to watch after having watched the given seed video v. In order to compute the mapping we make use of a well-known technique known as association rule mining [1] or co-visitation counts. Consider sessions of user watch activities on the site. For a given time period (usually 24 hours), we count for each pair of videos (v_i, v_j) how often they were co-watched within sessions. Denoting this co-visitation count by c_{ij} , we define the relatedness score of video v_j to base video v_i as:

The YouTube Video Recommendation System

Motivação

Frequently Bought Together

Total price: CDN\$ 102.41

Add all three to Cart

Associação

Uma regra de associação é uma implicação da forma $(X \rightarrow Y)$, onde X e Y são conjuntos de itens e $X \cap Y = \emptyset$.

TID	Lista de Itens
T1	praga_colmo, praga_raizes
T2	praga_colmo, produção, cachaça, logística
T3	praga_raizes, produção, cachaça, etanol
T4	praga_colmo, praga_raizes, produção, cachaça
T5	praga_colmo, praga_raizes, produção, etanol

- ▶ R1: {cachaça} → {produção}
- ➤ R2: {cachaça, praga colmo} → {praga raizes}

Ilustrando o Princípio Apriori

Item	Frequência
Praga_colmo	4
Praga_raizes	2
Cachaça	4
Produção	3
Logística	4
Açúcar	1

Itens (1-itemset)

Item	Frequência
{Praga_colmo, Cachaça}	3
{Praga_colmo, Produção}	2
{Praga_colmo, Logística}	3
{Cachaça, Produção}	2
{Cachaça, Logística}	3
{Produção, Logística}	3

Pares (2-itemsets)

Não há necessidade de gerar candidatos que contém Praga_raízes ou Açúcar.

Mínimo Suporte = 3

Item	Frequência
{Praga_colmo, Cachaça, Logística}	3

Reduzindo o Número de Candidatos

Métricas

Suporte (s):

* Fração das transações que contém ambos X e Y.

* Sup
$$(X \rightarrow Y) = P(X e Y)$$

Confiança (c):

* Mede a frequência dos itens em Y que aparece nas transações em que contem X.

* Conf(
$$X \rightarrow Y$$
) = P($Y|X$).

TID	Lista de Itens
T1	praga_colmo, praga_raizes
T2	praga_colmo, produção, cachaça, logística
Т3	praga_raizes, produção, cachaça, etanol
T4	praga_colmo, praga_raizes, produção, cachaça
T5	praga_colmo, praga_raizes, produção, etanol

Exemplo:

$$Sup = \underline{Freq(cachaça, produção)} = 3/5$$

$$|T|$$

^{*} $Conf(X \rightarrow Y) = Sup(X e Y)/Sup(X)$

Big Data

Apriori-Map/Reduce Algorithm