

## INSTITUTO POLITÉCNICO NACIONAL



# ESCUELA SUPERIOR DE CÓMPUTO INGENIERÍA EN SISTEMAS COMPUTACIONALES

### Inteligencia Artificial

**Laboratorio 8: Datasets** 

Marco Isaí Flores Vicencio Jesús Pérez González Sebastián Reyes Núñez

Grupo:

6CV3

#### Introducción

En este laboratorio, se explora el uso y manejo de datasets en el análisis de datos mediante el conjunto de datos "Iris Plant". Este dataset contiene características morfológicas de tres especies de flores de iris: Iris setosa, Iris versicolor, e Iris virginica. A través de este laboratorio, se busca comprender el proceso de lectura y almacenamiento de un archivo de datos en una estructura adecuada, como una matriz o un dataframe, utilizando herramientas de programación.

#### Marco Teórico

Un conjunto de datos es una colección organizada de información que se utiliza en la ciencia de datos para realizar análisis y extraer conclusiones. En el contexto de este laboratorio, el conjunto de datos "Iris Plant" permite aplicar conceptos de clasificación y análisis exploratorio, siendo un recurso ampliamente utilizado en la enseñanza y práctica del aprendizaje automático y el análisis estadístico.

Existen diferentes estructuras de datos que facilitan la manipulación y almacenamiento de información de datasets, entre las que destacan las matrices y los dataframes. Una matriz es una estructura de datos de tipo array multidimensional que se emplea para almacenar datos en filas y columnas, permitiendo realizar operaciones algebraicas de manera eficiente. En el contexto de la programación científica y análisis de datos, las matrices son especialmente útiles para almacenar valores numéricos que requieren operaciones rápidas y eficientes. Por otro lado, un 'dataframe' es una estructura de datos tabular que permite almacenar datos de diferentes tipos en columnas, como números, textos y valores booleanos.

#### Desarrollo

Empezamos importando la librería 'pandas', la cuál se encarga de la manipulación y análisis de los datos.

import pandas as pd

Definimos el nombre del archivo que contiene el dataset. En este caso el archivo se llama 'bezdekIris.data'

file\_name = 'bezdekIris.data'

Después definimos una cadena con los nombres de las columnas del dataset, en este caso se definen con las medidas de las flores y la clase a la que pertenece.

Una vez definida, lee el archivo usando 'pd.read\_csv'. Las opciones de 'header=none' y 'names=column\_names' indican que el archivo no tiene una línea de encabezado y asigna los nombres de las columnas definidas

```
column_names = ['sepal_length', 'sepal_width', 'petal_length', 'petal_width', 'class']
iris_df = pd.read_csv(file_name, header=None, names=column_names)
```

Finalmente, agrupa el dataset por la columna clase y muestra las primeras 5 filas de cada clase. Así podemos visualizar algunos casos de cada clase dentro del dataset.

```
print(iris_df.groupby('class').head(5))
```

#### **Results**

|      | sepal_length   | sepal_width   | petal_length  | petal_width | class           |
|------|----------------|---------------|---------------|-------------|-----------------|
| 0    | 5.1            | 3.5           | 1.4           | 0.2         | Iris-setosa     |
| 1    | 4.9            | 3.0           | 1.4           | 0.2         | Iris-setosa     |
| 2    | 4.7            | 3.2           | 1.3           | 0.2         | Iris-setosa     |
| 3    | 4.6            | 3.1           | 1.5           | 0.2         | Iris-setosa     |
| 4    | 5.0            | 3.6           | 1.4           | 0.2         | Iris-setosa     |
| 50   | 7.0            | 3.2           | 4.7           | 1.4         | Iris-versicolor |
| 51   | 6.4            | 3.2           | 4.5           | 1.5         | Iris-versicolor |
| 52   | 6.9            | 3.1           | 4.9           | 1.5         | Iris-versicolor |
| 53   | 5.5            | 2.3           | 4.0           | 1.3         | Iris-versicolor |
| 54   | 6.5            | 2.8           | 4.6           | 1.5         | Iris-versicolor |
| 100  | 6.3            | 3.3           | 6.0           | 2.5         | Iris-virginica  |
| 101  | 5.8            | 2.7           | 5.1           | 1.9         | Iris-virginica  |
| 102  | 7.1            | 3.0           | 5.9           | 2.1         | Iris-virginica  |
| 103  | 6.3            | 2.9           | 5.6           | 1.8         | Iris-virginica  |
| 104  | 6.5            | 3.0           | 5.8           | 2.2_        | Iris-virginica  |
| PS C | :\Users\Window | s PC\OneDrive | \Inteligencia | Artificial> |                 |

|                                                            | sepal_length | sepal_width | petal_length | petal_width | class           |  |  |  |
|------------------------------------------------------------|--------------|-------------|--------------|-------------|-----------------|--|--|--|
| 0                                                          | 5.1          | 3.5         | 1.4          | 0.2         | Iris-setosa     |  |  |  |
| 1                                                          | 4.9          | 3.0         | 1.4          | 0.2         | Iris-setosa     |  |  |  |
| 50                                                         | 7.0          | 3.2         | 4.7          | 1.4         | Iris-versicolor |  |  |  |
| 51                                                         | 6.4          | 3.2         | 4.5          | 1.5         | Iris-versicolor |  |  |  |
| 100                                                        | 6.3          | 3.3         | 6.0          | 2.5         | Iris-virginica  |  |  |  |
| 101                                                        | 5.8          | 2.7         | 5.1          | 1.9         | Iris-virginica  |  |  |  |
| PS C:\Users\Windows PC\OneDrive\Inteligencia Artificial> [ |              |             |              |             |                 |  |  |  |

#### **Conclusiones**

En este laboratorio, se logró comprender y aplicar técnicas básicas de manipulación de datos mediante el uso del conjunto de datos "Iris Plant". La lectura y almacenamiento del archivo de datos en estructuras como matrices y dataframes permitieron explorar de manera eficiente las características y clases de las especies de iris. A través del uso de herramientas como pandas, se facilitaron las operaciones de agrupamiento y visualización, lo cual es fundamental en la preparación de datos para análisis posteriores o implementación de modelos de aprendizaje automático.

#### Referencias

- Del Río, F. M. (2024, 29 enero). *Tema 8 Tipos de datos: data frames* | *Programación con R*. https://www4.ujaen.es/~fmartin/R/tipos-de-datos-data-frames.html
- Navarro, S. (2024, 17 abril). ¿Qué son los datasets? [4 sitios donde encontrarlos]. *KeepCoding Bootcamps*. https://keepcoding.io/blog/que-son-datasets/
- Solis, D. C. (2023, 1 mayo). Datasets: Qué son y cómo acceder a ellos. *OpenWebinars.net*. https://openwebinars.net/blog/datasets-que-son-y-como-acceder-a-ellos/