

GIẢI TÍCH 1

1.TÀI LIỆU HỌC:

GIÁO TRÌNH GIẢI TÍCH 1 (Tg: Vũ Gia Tê)

2.TÀI LIỆU THAM KHẢO:

+Toán cao cấp tập 2 (Nguyễn Đình Trí)

+Bài tập Toán cao cấp tập 2 (Nguyễn Đình Trí)

+ Giải tích tập 1 (James Stewart)

CHƯƠNG 1: GIỚI HẠN CỦA DÃY SỐ

GIỚI THIỆU VỀ CHƯƠNG 1

Bài 1: Số thực

Bài 2: Số phức

Bài 3: Dãy số thực

§1. SỐ THỰC

- 1. Các tính chất cơ bản của tập số thực
 - a) Một số định nghĩa

Cho $X \subset \mathbb{R}$, $a \in \mathbb{R}$

- * a được gọi là **cận trên** của X nếu $x \le a$ với $\forall x \in X$.
 - * a được gọi là **cận dưới** của X nếu $x \ge a$ với $\forall x \in X$.

 Số nhỏ nhất trong các cận trên của X gọi là cận trên đúng của X.

Kí hiệu: $\sup X$

• Số lớn nhất trong các cận dưới của X gọi là cận dưới đúng của X.

Kí hiệu: inf X

Định lí: Cho $X \subset \mathbb{R}, X \neq \emptyset, a \in \mathbb{R}$. Khi đó:

$$a = \sup X \Leftrightarrow \left\{ \begin{array}{ll} * \ x \leq a \quad \text{v\'oi} \quad \forall x \in X \\ * \ \text{V\'oi} \ \text{m\'oi} \quad \varepsilon > 0, \ \exists x_0 \in X : a - \varepsilon < x_0 \end{array} \right.$$

Định lí: Cho $X \subset \mathbb{R}, X \neq \emptyset, a \in \mathbb{R}$. Khi đó:

$$a = \inf X \Leftrightarrow \left\{ \begin{array}{ll} * \ x \geq a \quad \text{v\'oi} \quad \forall x \in X \\ * \ \text{V\'oi} \ \text{m\~oi} \quad \varepsilon > 0, \ \exists x_0 \in X : a + \varepsilon > x_0 \end{array} \right.$$

* Nếu $a \in X$ và $a \le x$ với $\forall x \in X$

thì a được gọi là phần tử nhỏ nhất của X.

Kí hiệu: min X

* Nếu $a \in X$ và $a \ge x$ với $\forall x \in X$

thì a được gọi là phần tử lớn nhất của X.

Kí hiệu: $\max X$

Ví dụ: Cho
$$X = (1,2]$$

Có
$$\max X = 2$$

 $\min X$: không có

$$\sup X = 2$$

$$\inf X = 1$$

Tập X được gọi là bị chặn trên nếu X có cận trên

Tập X được gọi là bị chặn dưới nếu X có cận dưới

b. Một số tính chất của tập số thực

* Tập số thực là đầy

nghĩa là:

Mọi tập con $X \neq \emptyset$ của \mathbb{R} bị chặn trên đều có cận trên đúng thuộc \mathbb{R} .

Mọi tập con $X \neq \emptyset$ của \mathbb{R} bị chặn dưới đều có cận dưới đúng thuộc \mathbb{R} .

* Giữa hai số vô tỉ tồn tại vô số số hữu tỉ

2. Tập số thực mở rộng

Tập số thực mở rộng kí hiệu là $\, \overline{\mathbb{R}} \,$

$$\overline{\mathbb{R}} = \mathbb{R} \cup \{-\infty, +\infty\}$$

$$1^0$$
) $\forall x \in \mathbb{R}$: $-\infty < x < +\infty$

$$2^0$$
) $\forall x \in \mathbb{R}$:

$$x + (+\infty) = +\infty + x = +\infty$$

$$x + (-\infty) = -\infty + x = -\infty$$

$$3^{0}$$
)

$$+\infty+(+\infty)=+\infty$$

$$-\infty + (-\infty) = -\infty$$

$$4^0$$
) $\forall x > 0 \ (x \in \mathbb{R})$

$$x.(+\infty) = +\infty.x = +\infty$$

$$x.(-\infty) = -\infty.x = -\infty$$

5°)
$$\forall x < 0 \ (x \in \mathbb{R})$$

 $x.(+\infty) = +\infty.x = -\infty$
 $x.(-\infty) = -\infty.x = +\infty$

$$6^{0}$$

$$+\infty.(+\infty) = -\infty.(-\infty) = +\infty$$

$$-\infty.(+\infty) = +\infty.(-\infty) = -\infty$$

CHƯƠNG 1: GIỚI HẠN CỦA DÃY SỐ

§2. SỐ PHỨC

1. Định nghĩa và các dạng số phức

a. Định nghĩa

Số phức có dạng
$$z = x + iy$$
 $(i^2 = -1)$

x là phần thực của z, ki hiệu Rez

y là phần ảo của z, ki hiệu lm z

$$r = \sqrt{x^2 + y^2}$$
 gọi là môđun của z, kí hiệu $|z|$

Số
$$heta \in \mathbb{R}$$
 mà

Số
$$\theta \in \mathbb{R}$$
 mà
$$\cos \theta = \frac{x}{|z|}$$

$$\sin \theta = \frac{y}{|z|}$$

gọi là argumen của z, kí hiệu arg z

Như vậy, các argumen của z sai khác nhau $2k\pi$.

* Tập các số phức kí hiệu là C.

b. Các dạng số phức

Mỗi số phức có thể viết dưới các dạng sau:

$$z = x + iy$$
 (Dạng đại số)

$$z = r(\cos\theta + i\sin\theta)$$
 (Dạng lượng giác)

$$z = re^{i\theta}$$
 (Dạng mũ)

(vì
$$e^{i\theta} = \cos\theta + i\sin\theta$$
) (Công thức Euler)

c. Biểu diễn hình học các số phức

Ánh xạ
$$\varphi: \mathbb{C} \longrightarrow mp \, xOy$$

$$z = x + iy \longmapsto M(x, y)$$

là một song ánh

$$\left| \overrightarrow{OM} \right| = \left| z \right|$$

2. Các phép toán trên $\,\mathbb{C}\,$

a. Phép so sánh bằng nhau

$$x + iy = x' + iy' \Leftrightarrow \begin{cases} x = x' \\ y = y' \end{cases}$$

b. Phép lấy liên hợp

Số phức $\overline{z} = x - iy$ gọi là số phức liên hợp của số z = x + iy

c. Phép cộng

$$(x+iy) + (x'+iy') = x + x' + i(y+y')$$

d. Phép lấy số đối

Số đối của số phức
$$z = x + iy$$
 là $-z = -x - iy$

e. Phép trừ

$$z - z' = z + (-z')$$

f. Phép nhân

*
$$(x+iy).(x'+iy') = xx' - yy' + i(xy' + yx')$$

* Giả sử
$$z_1 = r_1(\cos\theta_1 + i\sin\theta_1)$$

$$z_2 = r_2(\cos\theta_2 + i\sin\theta_2)$$

$$z_1.z_2 =$$

$$r_1 r_2 \left[(\cos \theta_1 . \cos \theta_2 - \sin \theta_1 . \sin \theta_2) + i (\sin \theta_1 \cos \theta_2 + \cos \theta_1 \sin \theta_2) \right]$$

$$= r_1 r_2 \left[\cos(\theta_1 + \theta_2) + i \sin(\theta_1 + \theta_2) \right]$$

g. Phép lấy nghịch đảo

$$z = x + iy \neq 0$$
 có nghịch đảo là z^{-1} hay $\frac{1}{z}$

$$\frac{1}{z} = \frac{1}{x + iy} = \frac{x - iy}{x^2 + y^2} = \frac{x}{x^2 + y^2} + i\frac{-y}{x^2 + y^2}$$

h. Phép chia

$$z_1: z_2 = z_1.z_2^{-1}$$

i. Phép lũy thừa

* Với
$$n \in \mathbb{N}^*$$
,
$$z^n = z.z...z \qquad (n \text{ thừa số})$$

$$z^{-n} = \frac{1}{z^n}$$
 * $z^0 = 1$

* Giả sử $z = r(\cos\theta + i\sin\theta)$

 $\Rightarrow z^n = r^n(\cos \theta + i\sin n\theta)$

(Công thức Moivre)

j. Phép khai căn

Số phức ω được gọi là một căn bậc n của z nếu $\omega^n = z$

Ví dụ: 2i và -2i là các căn bậc hai của -4.

Giả sử $z = r(\cos\theta + i\sin\theta)$

 $\omega = R(\cos\varphi + i\sin\varphi)$ là một căn bậc n của z.

Có $\omega^n = z \implies R^n(\cos n\varphi + i\sin n\varphi) = r(\cos \theta + i\sin \theta)$

$$\Rightarrow \begin{cases} R = \sqrt[n]{r} \\ \varphi = \frac{\theta + 2k\pi}{n} \end{cases} \quad (k \in \mathbb{Z})$$

Vậy số phức $z = r(\cos\theta + i\sin\theta)$ có n căn bậc n.

Đó là các số phức có dạng

$$\omega_{k} = \sqrt[n]{r} \left(\cos \frac{\theta + 2k\pi}{n} + i \sin \frac{\theta + 2k\pi}{n} \right)$$

$$k = 0, 1, ..., n - 1.$$

3. Một số ví dụ:

Ví dụ 1: Giải phương trình $x^2 + x + 1 = 0$ trên \mathbb{C} .

Giải:

$$\Delta = 1^2 - 4.1.1 = -3 = 3i^2$$

⇒ Phương trình có hai nghiệm là:

$$x_1 = \frac{-1 + i\sqrt{3}}{2} \qquad x_2 = \frac{-1 - i\sqrt{3}}{2}$$

Ví dụ 2: Tìm căn bậc bốn của số phức $z = -1 + i\sqrt{3}$

Giải:

$$|z| = \sqrt{(-1)^2 + (\sqrt{3})^2} = 2$$

$$\begin{cases}
\cos\theta = -\frac{1}{2} \\
\sin\theta = \frac{\sqrt{3}}{2}
\end{cases} \Rightarrow \theta = \frac{2\pi}{3} \quad (+2k\pi)$$

$$z = 2\left(\cos\frac{2\pi}{3} + i\sin\frac{2\pi}{3}\right)$$

Căn bậc 4 của z gồm 4 số phức có dạng:

$$\omega_k = \sqrt[4]{2} \left(\cos \frac{\frac{2\pi}{3} + 2k\pi}{4} + i \sin \frac{\frac{2\pi}{3} + 2k\pi}{4} \right)$$

với
$$k = 0,1,2,3$$
.

Cụ thể:

$$\omega_{0} = \sqrt[4]{2} \left(\cos \frac{\pi}{6} + i \sin \frac{\pi}{6} \right) = \sqrt[4]{2} \left(\frac{\sqrt{3}}{2} + i \cdot \frac{1}{2} \right)$$

$$\omega_{1} = \sqrt[4]{2} \left(\cos \frac{2\pi}{3} + i \sin \frac{2\pi}{3} \right) = \sqrt[4]{2} \left(-\frac{1}{2} + i \cdot \frac{\sqrt{3}}{2} \right)$$

$$\omega_{2} = \sqrt[4]{2} \left(\cos \frac{7\pi}{6} + i \sin \frac{7\pi}{6} \right) = \sqrt[4]{2} \left(-\frac{\sqrt{3}}{2} - i \cdot \frac{1}{2} \right)$$

$$\omega_{3} = \sqrt[4]{2} \left(\cos \frac{5\pi}{3} + i \sin \frac{5\pi}{3} \right) = \sqrt[4]{2} \left(\frac{1}{2} + i \frac{-\sqrt{3}}{2} \right)$$

Ví dụ: Tìm môđun và argumen của số phức

$$z = \frac{(1-i)^{100}}{\left(\sqrt{3} + i\right)^{200}}$$

Giải:

Đặt
$$z_1 = 1 - i$$
, $z_2 = \sqrt{3} + i$

Ta có:
$$z = z_1^{100}.z_2^{-200}$$

$$\left|z_1\right| = \sqrt{2}, \qquad \left|z_2\right| = 2$$

$$\arg z_1 = -\frac{\pi}{4}, \qquad \arg z_2 = \frac{\pi}{6}$$

$$\left|z_1^{100}\right| = 2^{50}$$

$$\left|z_{2}^{-200}\right| = 2^{-200}$$

$$\arg z_1^{100} = -25\pi$$
 hay $\arg z_1^{100} = -\pi$

$$\arg z_2^{-200} = -\frac{200\pi}{6}$$
 hay $\arg z_2^{-200} = \frac{2\pi}{3}$

Vậy
$$|z| = \frac{1}{2^{150}}$$
 $\arg z = -\frac{\pi}{3}$

CHƯƠNG 1: GIỚI HẠN CỦA DÃY SỐ

§3. Dãy số thực

- 1. Định nghĩa dãy số thực, dãy số đơn điệu, dãy số bị chặn
- 2. Giới hạn dãy số, dãy số hội tụ, dãy số phân kì
- 3. Tính chất của dãy số hội tụ
- 4. Dãy kề nhau
- 5. Dãy con
- 6. Tiêu chuẩn Cô si về sự hội tụ của dãy số

CHƯƠNG 1: GIỚI HẠN CỦA DÃY SỐ

§3. DÃY SỐ THỰC

1. Định nghĩa dãy số thực, dãy số đơn điệu, dãy số bị chặn

Định nghĩa:

Hàm số
$$u: \mathbb{N}^* \to \mathbb{R}$$
 $n \mapsto u(n) = u_n$ gọi là một dãy số thực.

Dãy số thường được viết dưới dạng $\{u_n\}$ hoặc $u_1,u_2,...,u_n,...$ u_n gọi là số hạng tổng quát của dãy số $\{u_n\}$.

§3. DÃY SỐ THỰC

Định nghĩa:

Dãy $\{u_n\}$ được gọi là

tăng nếu $u_n \leq u_{n+1}$ với $\forall n \in \mathbb{N}^*$

tăng ngặt nếu $u_n < u_{n+1}$ với $\forall n \in \mathbb{N}^*$

giảm nếu $u_n \ge u_{n+1}$ với $\forall n \in \mathbb{N}^*$

giảm ngặt nếu $u_n > u_{n+1}$ với $\forall n \in \mathbb{N}^*$

Dãy số tăng hoặc giảm gọi là dãy số đơn điệu.

Dãy số tăng ngặt hoặc giảm ngặt gọi là dãy số đơn điệu ngặt.

§3. DÃY SỐ THỰC

Định nghĩa:

Ta nói rằng dãy $\{u_n\}$

bị chặn trên nếu $\exists A \in \mathbb{R}$ sao cho $u_n \leq A, \forall n \in \mathbb{N}^*$

bị chặn dưới nếu $\exists B \in \mathbb{R}$ sao cho $u_n \geq B, \forall n \in \mathbb{N}^*$

bị chặn nếu tồn tại $M \in \mathbb{R}_+$ sao cho $|u_n| \leq M, \forall n \in \mathbb{N}^*$

2. Giới hạn dãy số, dãy số hội tụ, dãy số phân kì

Dãy $\{u_n\}$ được gọi là có giới hạn $l \in \mathbb{R}$ nếu với mỗi số dương ε cho trước nhỏ tùy ý, tồn tại số $n_0 \in \mathbb{N}^*$ sao cho:

$$(\forall n \in \mathbb{N}^*) \ n \ge n_0 \Longrightarrow |u_n - l| < \varepsilon$$

Kí hiệu $\lim_{n\to\infty} u_n = l$ hoặc $u_n \to l$ khi $n\to\infty$

• Dãy $\left\{u_n\right\}$ được gọi là hội tụ nếu có số $l\in\mathbb{R}$ để $\lim_{n o\infty}u_n=l$

Dãy số không hội tụ gọi là dãy phân kì.

• Dãy $\{u_n\}$ được gọi là có giới hạn $+\infty$ nếu với mỗi số dương A cho trước lớn tùy ý, tồn tại số $n_0 \in \mathbb{N}^*$ sao cho:

$$(\forall n \in \mathbb{N}^*) n \ge n_0 \Longrightarrow u_n > A$$

Kí hiệu
$$\lim_{n\to\infty}u_n=+\infty$$
.

• Dãy $\{u_n\}$ được gọi là có giới hạn $-\infty$ nếu với mỗi số âm A cho trước nhỏ tùy ý, tồn tại số $n_0 \in \mathbb{N}^*$ sao cho:

$$(\forall n \in \mathbb{N}^*) n \ge n_0 \Longrightarrow u_n < A$$
.

Kí hiệu
$$\lim_{n\to\infty}u_n=-\infty$$
.

Ví dụ: Chứng minh
$$\lim_{n\to\infty} \frac{1}{n} = 0$$

Giải:

$$\forall \varepsilon > 0, \left| \frac{1}{n} - 0 \right| < \varepsilon \iff n > \frac{1}{\varepsilon}$$

Lấy n_0 là số tự nhiên lớn hơn $\frac{1}{\mathcal{E}}$

Với
$$\forall n \ge n_0$$
, ta có: $n > \frac{1}{\varepsilon} \Rightarrow \left| \frac{1}{n} - 0 \right| < \varepsilon$

$$V_{\text{ay}} \quad \lim_{n \to \infty} \frac{1}{n} = 0$$

Ví dụ:

Xét dãy $\{u_n\}$ gồm các số hạng

10, 20, 30, 40, 50, 60, 70,
$$\frac{1}{8}$$
, $\frac{1}{9}$, $\frac{1}{10}$,..., $\frac{1}{n}$,...

Dễ thấy
$$\lim_{n\to\infty}u_n=0$$
.

Ví dụ: Xét dãy $\{u_n\}$ với $u_n = a$, $\forall n$

Dễ thấy $\lim_{n\to\infty}u_n=a$.

Ví dụ:

$$\lim_{n\to\infty} \left(n^3+1\right) = +\infty$$

$$\lim_{n\to\infty} \left(1-n^3\right) = -\infty$$

3. Tính chất của dãy số hội tụ

A. Tính duy nhất của giới hạn

Định lí:

Nếu dãy $\{u_n\}$ có giới hạn thì giới hạn đó là duy nhất.

B. Tính bị chặn

- * Dãy $\{u_n\}$ hội tụ thì bị chặn trong tập $\mathbb R$.
- * Dãy $\{u_n\}$ tiến đến $+\infty$ thì bị chặn dưới trong tập $\mathbb R$.
- * Dãy $\{u_n\}$ tiến đến $-\infty$ thì bị chặn trên trong tập $\mathbb R$.

C. Tính chất đại số của dãy hội tụ (T/h giới hạn hữu hạn)

- **1.** $\lim_{n\to\infty}u_n=a\Rightarrow\lim_{n\to\infty}|u_n|=|a|.$
- $2. \lim_{n\to\infty} u_n = 0 \Leftrightarrow \lim_{n\to\infty} |u_n| = 0.$
- 3. $\lim_{n\to\infty} u_n = a$, $\lim_{n\to\infty} v_n = b \Rightarrow \lim_{n\to\infty} (u_n + v_n) = a + b$.
- **4.** $\lim_{n\to\infty}u_n=a\Rightarrow\lim_{n\to\infty}\lambda u_n=\lambda a$, λ là hằng số.
- **5.** $\lim_{n\to\infty}u_n=0$, $\{v_n\}$ bị chặn $\Rightarrow \lim_{n\to\infty}(u_nv_n)=0$.
- **6.** $\lim_{n\to\infty} u_n = a, \lim_{n\to\infty} v_n = b \Rightarrow \lim_{n\to\infty} (u_n v_n) = ab$.
- 7. $\lim_{n\to\infty} u_n = a$, $\lim_{n\to\infty} v_n = b \neq 0 \Rightarrow \lim_{n\to\infty} \frac{u_n}{v_n} = \frac{a}{b}$.

D. Tính chất về thứ tự và nguyên lý kẹp

- **1.** Giả sử $\lim_{n\to\infty} u_n = l$ và a < l < b. Khi đó $\exists n_0 \in \mathbb{N}^*$ sao cho $n \ge n_0 \Rightarrow a < u_n < b$.
- **2.** Giả sử $\lim_{n\to\infty}u_n=l$ và $\exists\,n_0:\forall n\geq n_0\Rightarrow a\leq u_n\leq b.$ Khi đó $a\leq l\leq b.$
- **3.** Giả sử 3 dãy $\{u_n\},\{v_n\},\{w_n\}$ thoả mãn:

$$\exists n_0\colon \ \forall n\geq n_0 \Rightarrow u_n\leq v_n\leq w_n \quad \text{và } \lim_{n\to\infty}u_n=\lim_{n\to\infty}w_n=l.$$
 Khi đó $\lim_{n\to\infty}v_n=l.$

4. Giả sử $\forall n \ge n_0, u_n \le v_n$ và $\lim_{n \to \infty} u_n = +\infty$. Khi đó $\lim_{n \to \infty} v_n = +\infty$.

Ví dụ: Tìm
$$\lim_{n\to\infty} u_n$$
 với $u_n = \sum_{k=1}^n \frac{n}{n^2 + k}$

Giải:

$$u_n = \frac{n}{n^2 + 1} + \frac{n}{n^2 + 2} + \dots + \frac{n}{n^2 + n}$$

$$\frac{n^2}{n^2 + n} \le u_n \le \frac{n^2}{n^2 + 1} \qquad \forall n \in \mathbb{N}^*$$

mà
$$\lim_{n\to\infty} \frac{n^2}{n^2 + n} = \lim_{n\to\infty} \frac{n^2}{n^2 + 1} = 1$$

$$n \hat{\mathbf{e}} n \lim_{n \to \infty} u_n = 1$$

Ví dụ: Chứng minh rằng

$$\lim_{n \to \infty} a^{n} = \begin{cases} 0 & khi |a| < 1 \\ 1 & khi |a| = 1 \\ +\infty & khi |a| > 1 \end{cases}$$

- * Nếu a = 1 thì công thức hiển nhiên đúng
- * Nếu a > 1

$$\exists h > 0$$
 sao cho $a = 1 + h$

$$a^{n} = (1+h)^{n} = \sum_{k=0}^{n} C_{n}^{k} h^{k}$$

$$= 1 + nh + \frac{n(n-1)}{2}h^2 + \dots > 1 + nh$$

$$\min_{n\to\infty} \lim_{n\to\infty} (1+nh) = +\infty \quad \text{nen } \lim_{n\to\infty} a^n = +\infty$$

* Nếu
$$0 < |a| < 1$$
 thì $\frac{1}{|a|} > 1$

$$\lim_{n\to\infty}\frac{1}{|a|^n} = +\infty \implies \lim_{n\to\infty}|a^n| = 0$$

$$\Rightarrow \lim_{n\to\infty} a^n = 0.$$

* Nếu a = 0 thì hiển nhiên $\lim_{n \to \infty} a^n = 0$.

* Ví dụ: Tìm
$$\lim_{n\to\infty} \frac{a^n}{n^{\alpha}}$$

$$(a > 1, \alpha \in \mathbb{N}^*)$$

Giải:

$$\mathbf{C\acute{o}} \quad \frac{a^n}{n^{\alpha}} = \left(\frac{a^{\frac{n}{\alpha}}}{n}\right)^{\alpha}$$

$$a^{\frac{n}{\alpha}} = \left(a^{\frac{1}{\alpha}}\right)^n$$

Vì
$$a > 1$$
 nên $a^{\frac{1}{\alpha}} > 1$ $\Rightarrow \exists h > 0 : a^{\frac{1}{\alpha}} = 1 + h$

$$\Rightarrow a^{\frac{n}{\alpha}} = (1+h)^n = 1 + nh + \frac{n(n-1)}{2}h^2 + \dots > \frac{n(n-1)}{2}h^2$$

$$\Rightarrow \frac{a^{\frac{n}{\alpha}}}{n} > \frac{n-1}{2}h^2$$

$$\Rightarrow \lim_{n \to \infty} \frac{a^{\frac{n}{\alpha}}}{n} = +\infty. \quad \text{Vậy } \lim_{n \to \infty} \frac{a^n}{n^{\alpha}} = +\infty.$$

* Ví dụ: Tìm
$$\lim_{n\to\infty}\frac{a^n}{n!}$$
 $(a\in\mathbb{R})$

Giải:

Tồn tại
$$n_0 \in \mathbb{N}^*$$
 mà $n_0 > |a|$.

(chẳng hạn
$$n_0 = \lceil |a| \rceil + 1$$
)

Ta thấy
$$\left| \frac{a^n}{n!} \right| = \left| \frac{a}{1} \right| \left| \frac{a}{2} \right| \dots \left| \frac{a}{n_0} \right| \cdot \left| \frac{a}{n_0 + 1} \right| \dots \left| \frac{a}{n} \right|$$

$$\leq \left| \frac{a}{1} \right| \left| \frac{a}{2} \right| \dots \left| \frac{a}{n_0} \right| \cdot \left| \frac{a}{n} \right|$$

mà
$$\lim_{n\to\infty} \left| \frac{a}{n} \right| = 0$$
 nên $\lim_{n\to\infty} \left| \frac{a^n}{n!} \right| = 0$

$$V_{\text{ay}} \lim_{n \to \infty} \frac{a^n}{n!} = 0$$

Hàm giai thừa tăng nhanh hơn hàm mũ

Ví dụ: Chứng minh rằng

a)
$$\lim_{n \to \infty} \sqrt[n]{a} = 1$$
, $\forall a > 0$

$$b) \lim_{n \to \infty} \sqrt[n]{n} = 1$$

E. Tính chất của dãy số đơn điệu

Định lí:

- * Dãy $\{u_n\}$ tăng và bị chặn trên thì hội tụ và giới hạn của nó bằng cận trên đúng của nó.
- * Dãy $\{u_n\}$ giảm và bị chặn dưới thì hội tụ và giới hạn của nó bằng cận dưới đúng của nó.

Chứng minh:

Giả sử $\{u_n\}$ tăng và bị chặn trên

$$\Rightarrow \exists l = \sup\{u_n\}$$

$$\forall \varepsilon > 0, \exists n_0 : u_{n_0} > l - \varepsilon$$

$$\forall n \geq n_0$$
,

$$\begin{aligned} l - \varepsilon < u_{n_0} &\le u_n \le l < l + \varepsilon \\ \Rightarrow & |u_n - l| < \varepsilon. \end{aligned}$$

Vậy
$$\lim_{n\to\infty}u_n=l.$$

Định lí:

Nếu dãy $\{u_n\}$ tăng và không bị chặn trên thì $\lim_{n\to\infty}u_n=+\infty$

Nếu dãy $\{u_n\}$ giảm và không bị chặn dưới thì $\lim_{n\to\infty}u_n=-\infty$

Nhận xét:

Nếu dãy $\{u_n\}$ tăng thì $\{u_n\}$ hội tụ hoặc $\lim_{n\to\infty}u_n=+\infty$

Nếu dãy $\{u_n\}$ giảm thì $\{u_n\}$ hội tụ hoặc $\lim_{n\to\infty}u_n=-\infty$

Ví dụ: Chứng minh rằng dãy $\{e_n\} = \left\{ \left(1 + \frac{1}{n}\right)^n \right\}$ hội tụ.

Giải:

Dãy $\{e_n\}$ tăng và bị chặn trên nên hội tụ.

$$\lim_{n\to\infty} \left(1+\frac{1}{n}\right)^n = e.$$

Ví dụ: Tìm giới hạn của dãy $\{u_n\}$ biết

$$u_n = \frac{5 + u_{n-1}^2}{2u_{n-1}}, \quad u_1 > 5$$

Giải:

Dễ thấy $u_n > 0$ với $\forall n \in \mathbb{N}^*$

$$u_n = \frac{5}{2u_{n-1}} + \frac{u_{n-1}}{2} \ge 2\sqrt{\frac{5}{4}} = \sqrt{5}, \qquad \forall n \in \mathbb{N}^*, n > 1$$

Vậy dãy $\{u_n\}$ bị chặn dưới.

Ta có:

$$u_{n} - u_{n-1} = \frac{5 + u_{n-1}^{2} - 2u_{n-1}^{2}}{2u_{n-1}} = \frac{5 - u_{n-1}^{2}}{2u_{n-1}} \le 0 \quad (\forall n \in \mathbb{N}^{*}, n > 1)$$

$$\Rightarrow \{u_n\}$$
 giảm.

Vậy $\{u_n\}$ hội tụ.

Giả sử $\lim_{n\to\infty}u_n=a$.

Có
$$a = \frac{5 + a^2}{2a} \Leftrightarrow a^2 = 5 \Leftrightarrow a = \sqrt{5}$$
 hoặc $a = -\sqrt{5}$

Giá trị $a=-\sqrt{5}$ không thỏa mãn vì $u_n \ge \sqrt{5}$ với $\forall n$

Vậy
$$\lim_{n\to\infty} u_n = \sqrt{5}$$
.

4. Dãy kề nhau

Định nghĩa:

Hai dãy $\{u_n\},\{v_n\}$ được gọi là kề nhau nếu $\{u_n\}$

tăng, $\{v_n\}$ giảm và

$$\lim_{n\to\infty} (u_n - v_n) = 0$$

Ví dụ: $\left\{-\frac{1}{n}\right\}, \left\{\frac{1}{n}\right\}$ là hai dãy kề nhau

Định lí:

Hai dãy kề nhau thì cùng hội tụ về một giới hạn *l* và

$$u_n \le u_{n+1} \le l \le v_{n+1} \le v_n, \quad \forall n$$

Định lí: (về dãy các đoạn bao nhau và thắt)

Cho hai dãy $\{a_n\},\{b_n\}$ sao cho $a_n \leq b_n$,

$$[a_{n+1},b_{n+1}]\subset [a_n,b_n]$$
 với mọi n và

$$\lim_{n\to\infty} (b_n - a_n) = 0.$$

Thế thì tồn tại duy nhất $c \in [a_n, b_n], \forall n$.

5. Dãy con

Định nghĩa:

Cho dãy
$$\{u_n\}$$
. Từ dãy $\{u_n\}$ ta trích ra một dãy

$$\{u_{n_k}\}$$
 với $n_1 < n_2 < ... < n_k < ...$

Dãy
$$\{u_{n_k}\}$$
 gọi là dãy con của dãy $\{u_n\}$.

Ví dụ:

Các dãy

$$\{u_{2n}\},\{u_{2n+1}\},\{u_{n^2}\}$$

$$u_1, u_2, u_3, u_4, u_6, u_8, \dots$$

là các dãy con của dãy $\{u_n\}$.

* Định lí:

Nếu dãy $\{u_n\}$ hội tụ về a thì mọi dãy con của nó cũng hội tụ về a.

Chứng minh:

Giả sử $\left\{u_{n_k}\right\}$ là một dãy con của $\left\{u_n\right\}$

$$\forall \varepsilon > 0$$
, vì $\lim_{n \to \infty} u_n = a$ nên $\exists n_0 \in \mathbb{N}^* : \forall n \ge n_0 \ |u_n - a| < \varepsilon$

$$\forall k \geq n_0$$
, ta có $n_k \geq k \geq n_0 \Longrightarrow \left| u_{n_k} - a \right| < \varepsilon$

$$V\hat{a}y \lim_{k\to\infty} u_{n_k} = a$$

* Định lí:

Điều kiện cần và đủ để dãy $\{u_{\scriptscriptstyle n}\}$ hội tụ về a

là hai dãy con $\{u_{2n}\},\{u_{2n+1}\}$ cùng hội tụ về a.

Ví dụ: Xét sự hội tụ của dãy $\{(-1)^n\}$.

Giải:

$$\lim_{n\to\infty}u_{2n}=1$$

$$\lim_{n\to\infty} u_{2n+1} = -1 \neq 1$$

Vậy $\{u_n\}$ phân kì.

Định lí: (Bolzano- Weierstrass)

Mỗi dãy số thực bị chặn đều có một dãy con hội tụ.

6. Tiêu chuẩn Côsi về sự hội tụ của dãy số

Dãy $\{u_n\}$ hội tụ khi và chỉ khi

$$\forall \varepsilon > 0, \exists n_0 \in \mathbb{N}^* : (\forall m, n \in \mathbb{N}^*) m, n \ge n_0 \Longrightarrow |u_n - u_m| < \varepsilon.$$

Như vậy,

Dãy $\{u_n\}$ hội tụ khi và chỉ khi

$$\forall \varepsilon > 0, \exists n_0 \in \mathbb{N}^* : \forall n \ge n_0, \forall p \in \mathbb{N}^* \Longrightarrow |u_{n+p} - u_n| < \varepsilon$$

Ví dụ: Áp dụng tiêu chuẩn Côsi, chứng minh rằng dãy

$$u_n = \frac{\sin 1}{2} + \frac{\sin 2}{2^2} + \dots + \frac{\sin n}{2^n}$$

hội tụ.

Giải:

$$\forall \varepsilon > 0 \ (\varepsilon \ \text{du bé})$$

$$\left|u_{n+p} - u_n\right| = \left|\frac{\sin(n+1)}{2^{n+1}} + \dots + \frac{\sin(n+p)}{2^{n+p}}\right|$$

$$\leq \frac{1}{2^{n+1}} + \dots + \frac{1}{2^{n+p}} = \frac{1}{2^{n+1}} \cdot \frac{1 - \left(\frac{1}{2}\right)^p}{1 - \frac{1}{2}} < \frac{1}{2^n} < \varepsilon$$

$$\Leftrightarrow 2^n > \frac{1}{\varepsilon} \Leftrightarrow n > \log_2 \frac{1}{\varepsilon}$$

Chọn
$$n_0 = \left[\log_2 \frac{1}{\varepsilon}\right] + 1$$

$$\forall n \geq n_0, \ \forall p \in \mathbb{N}^* \qquad \left| u_{n+p} - u_n \right| < \varepsilon.$$

Vậy $\{u_n\}$ hội tụ.

6. Định lí:

Mỗi số thực đều là giới hạn của một dãy số hữu tỉ