Lecture 23: Boolean Function & Circuits

Jingjin Yu | Computer Science @ Rutgers

Outline

- Lecture 21-22 review
- Boolean Functions
 - Boolean algebra
 - Boolean functions
 - Duality
- Representing Boolean functions
 - Minterms and sum-of-product
 - Functional completeness
- Logic gates and Boolean circuits
- ► A repeating note: make sure you read the textbook

L21-22: Primality & FTA

- ▶ \mathbf{Def}^n : An integer p > 1 is a **prime** if its only positive factors are 1 and p. Otherwise, p is a composite
- ▶ **Lemma 1**. If n > 1 is a composite, then n has a prime factor of no more than \sqrt{n} .
- ▶ **Ex**: For 101, only need to check 2, 3, 5, 7 ($<\sqrt{101}$)

- ▶ **Theorem 2**. (Fundamental Theorem of Arithmetic). Every integer > 1 can be written **uniquely** as a prime or as the product of two or more primes where the prime factors are written in non-decreasing size.
- **Ex**: $1024 = 2^{10}$, $100 = 2^25^2$, 1500450271 is a prime

L21-22: Prime Factorization Algorithm

- ▶ **Algorithm**. (Prime Factorization). To factorize n or determine it is a prime, let $n_1 = n$. Starting with i = 1, do
 - 1) Let the prime numbers $\leq \sqrt{n_1}$ be $p_1 = 2$, $p_2 = 3$, ...
 - 2) Test whether $p_i \mid n_i$ starting from j = 1,2,... two possibilities
 - 3) If for some j, $p_j \mid n_i$, let $n_{i+1} = \frac{n_i}{p_j}$ and $q_i = p_j$. Go to 1) with i = i+1
 - 4) Let $q_i = n_i$. All the q_i collected so far are the prime factors
- \triangleright **Ex**: Factor n = 126

L21-22: Finding All Primes < n

Copyrighted Material – Do Not Distribute

- ▶ **Algorithm**. (Sieve of Eratosthenes). List all primes $p_1 = 2$, $p_2 = 3$, ..., p_k less than \sqrt{n} . Then starting with $p_1 = 2$, remove all numbers less than n divisible by p_1 , except p_1 . Repeat until p_k is done
- **Ex**: Find all primes less than 40

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40

Properties of primes (e.g., Goldbach's conjecture)

L21-22: GCD and LCM

- ▶ **Def**ⁿ: Let $a \neq b$ be integers. The largest d such that $d \mid a$ and $d \mid b$ is the **greatest common divisor** of a and b, or gcd(a, b).
- **Ex**: gcd(35, 28) = 7, gcd(5, 22) = 1
- ▶ **Def**ⁿ: Integers a and b are **relatively prime** if gcd(a, b) = 1.
- **Ex**: 5 and 22 are relative primes.
- ▶ **Def**ⁿ: The **least common multiple** of positive integers a and b is the smallest positive integer that is divisible by a and b, denoted as lcm(a, b).
- **Ex**: lcm(3, 6) = 6, lcm(4, 5) = 20
- ▶ **Theorem 6.** For positive integers a and b,

$$ab = \gcd(a, b) \cdot \operatorname{lcm}(a, b)$$

L21-22: Euclid's Algorithm

- ▶ **Lemma 7**. Let a = bq + r where a, b, q, and r are integers. Then gcd(a, b) = gcd(b, r)
 - $\qquad \qquad \text{Proof: } d = \gcd(a,b) \Rightarrow d|a,d|b \Rightarrow d|-bq \Rightarrow d|(a-bq) \Rightarrow d|r$
- ▶ **Algorithm**. Let $r_0 = a > r_1 = b$

$$r_0 = r_1 q_1 + r_2, 0 < r_2 < r_1$$

$$r_1 = r_2 q_2 + r_3, 0 < r_3 < r_2$$

- **>** ...
- $r_{n-2} = r_{n-1} q_{n-1} + r_n, 0 < r_n < r_{n-1}$
- ho $r_{n-1} = r_n q_n$
- $\gcd(a,b) = \gcd(r_0,r_1) = \gcd(r_1,r_2) = \dots = \gcd(r_{n-1},r_n) = r_n$
- **Ex**: Compute gcd(662, 414)

L21-22: Euclid's Lemma

- ▶ **Theorem 8**: If a and b are positive integers, then there exists integers s, t such that gcd(a,b) = sa + tb
 - A constructive proof via Euclid's algorithm
- ▶ Corollary 9: If gcd(a, b) = 1, then $\exists s, t, sa + tb = 1$.
- ▶ **Lemma 10**. (**Euclid's lemma**). Let p be a prime. For integers a and b, if $p \mid ab$, then $p \mid a$ or $p \mid b$
- Using Euclid's lemma, we can prove the uniqueness statement in the Fundamental Theorem of Arithmetic

Boolean Algebra

Copyrighted Material – Do Not Distribute

- Basic Boolean values: 1 (True) and 0 (False)
- Operations
 - \triangleright Completement: $\overline{0} = 1$, $\overline{1} = 0$
 - \triangleright "Boolean Sum" (OR): 1+1=1, 1+0=1, 0+1=1, 0+0=0
 - ▷ "Boolean Product" (AND): $1 \cdot 1 = 1$, $1 \cdot 0 = 0$, $0 \cdot 1 = 0$, $0 \cdot 0 = 0$
 - May omit the "·" when there is no confusion, e.g., (0+1)(1+1)
- **Ex** (Boolean Algebra): $1 \cdot 0 + \overline{(0+1)}$

0+1=0

Translating to logical equivalence

Boolean Functions

Copyrighted Material – Do Not Distribute

- ▶ **Def**ⁿ: A Boolean function is a function that maps a vector of Boolean values to Boolean values, i.e., $f: \{0,1\}^n \to \{0,1\}$
 - Possible operations: complement, sum, product
 - \triangleright Ex: $f(x_1, ..., x_n) = x_1 + ... + x_n$ is a Boolean function
 - Boolean functions themselves can be treated as Boolean variables in Boolean functions. E.g. $F(f,g)=\bar{f}+fg$
- $Ex: f(x,y) = x\bar{y}$
- $Ex: g(x, y, z) = xy + \bar{z}$

Ex: $F(x, y, z) = f(x, y)g(x, yz) = x\overline{y}(xy + \overline{z})$

Number of Boolean Functions

- ► For *n* Boolean variables: # of possible Boolean functions?
 - ▶ For a given input, a function must produce a fixed output
- ▶ # Boolean functions for n = 1 variable?
- ▶ # Boolean functions for n = 2 variable?
- ► In general, 2^{2ⁿ}

Identity of Boolean Algebra & Duality

- Identities (read the text)
- Dual

 \triangleright Ex: x(y+0)

 \triangleright Ex: x(y+0)

▶ Duality: $f = g \Leftrightarrow d(f) = d(g)$

TABLE 5 Boolean Identities.					
Identity	Name				
$\overline{\overline{x}} = x$	Law of the double complement				
$x + x = x$ $x \cdot x = x$	Idempotent laws				
$x + 0 = x$ $x \cdot 1 = x$	Identity laws				
$x + 1 = 1$ $x \cdot 0 = 0$	Domination laws				
x + y = y + x $xy = yx$	Commutative laws				
x + (y + z) = (x + y) + z $x(yz) = (xy)z$	Associative laws				
x + yz = (x + y)(x + z) $x(y + z) = xy + xz$	Distributive laws				
$\frac{\overline{(xy)} = \overline{x} + \overline{y}}{(x+y)} = \overline{x} \overline{y}$	De Morgan's laws				
x + xy = x $x(x + y) = x$	Absorption laws				
$x + \overline{x} = 1$	Unit property				
$x\overline{x} = 0$	Zero property				

Sum-of-Product Expansion

- Question: Given inputs and outputs of Boolean functions, how can we find the corresponding function?
 - Using sum-of-product!
- ▶ **Def**ⁿ: A **literal** for a Boolean variable x is x or \bar{x} .
- ▶ **Def**ⁿ: A **minterm** of Boolean variables $x_1, ..., x_n$ is a **Boolean product** $y_1 ... y_n$ where y_i is a literal for the variable x_i . That is, $y_i = x_i$ or $y_i = \overline{x_i}$.
 - \triangleright **Ex**: Determine when the minterm $\overline{x_1}x_2\overline{x_3}\overline{x_4}x_5$ takes value 1 and 0.
- ▶ **Def**ⁿ: A **sum-of-product** Boolean function is composed of sums of minterms
 - Next: Representing Boolean functions as sum-of-products

Boolean Functions as Sum-of-Products

• We want to get an expression of $F(x_1, x_2, ..., x_n)$ given entries of the Boolean function

Siveri efferies of the Boolean famotion	1	1	1	1	U	U	
	2	1	1	0	0	1	
$x_1^1, x_2^1, \dots, x_n^1, F^1$	3	1	0	1	1	0	
	4	1	0	0	0	0	
$x_1^2, x_2^2, \dots, x_n^2, F^2$	5	0	1	1	0	0	
	6	0	1	0	0	1	
$x_1^m, x_2^m, \dots, x_n^m, F^m$	7	0	0	1	0	0	
1, 2, , 11,	8	0	0	0	0	0	
▶ Algorithm : Set $F = 0$. For each entry $1 \le k \le m$ of function F , if $F^k = 1$,							

Copyrighted Material -

▶ **Algorithm**: Set F = 0. For each entry $1 \le k \le m$ of function F, if $F^k = 1$, add an additive minterm to F such that if $x_i^k = 1$, the literal x_i^k is added to the minterm; otherwise, the literal $\overline{x_i^k}$ is added to the minterm.

Converting to Sum-of-Product Form

Copyrighted Material – Do Not Distribute

Ex: Convert $F(x, y, z) = (x + y)\bar{z}$ to sum of product

$$f(x,y,z) = (x+y)z$$

$$= \chi^2 + \chi^2$$

Functional Completeness

- ▶ \mathbf{Def}^n : A set of Boolean operators is functionally complete if Boolean functions constructed with these operators over n variables can represent all 2^{2^n} possible Boolean functions.
- ▶ **Theorem**. $\{+, \cdot, -\}$ is functionally complete.
 - ▶ Proof: every Boolean function can be represented as sum-of-products.
- Other functionally complete operators
 - > NAND
 - ▶ NOR

Logic Gates

Copyrighted Material – Do Not Distribute

▶ NOT (invertor), OR, and AND gates.

► NAND, NOR, and XOR gates

Each gate is a Boolean function

Boolean Circuits

- ► These "circuit gates" act like actual gates, in a sense
 - There is a trigger that "opens" a gate periodically
 - ▶ The specified operation (AND, OR, NOT, ...) then happens
- ► In modern computers, these gates open/close a few trillion times a second, giving us GHz chips.
- Multiple input AND and OR gates

Multiple OR gate

Non-Uniqueness of Boolean Circuits

Copyrighted Material – Do Not Distribute

ightharpoonup Ex: $xy + \bar{x}y$

Designing a Two-Way Switch

Copyrighted Material – Do Not Distribute

► Task: Designing a two-way light switch

- \triangleright Input: switches x, y, which can be on (1) or off (0)
- \triangleright Output: light on/off as a Boolean function F(x, y)

Steps:

- Assume that x = 0 means switch x is off. Same for y. [different from the textbook]
- Assume when x = y = 0, F(x, y) = 0, light off.
- From here, two possibilities: x = 0, y = 1 or x = 1, y = 0, F(x, y) = 1, light on.
- \triangleright From here, two possibilities: x = y = 0 or x = y = 1, light off.
- ightharpoonup We get F(x, y) = 1 when x = 0, y = 1 or x = 1, y = 0.
- Using the sum-of-product construction, $F(x,y) = x\bar{y} + \bar{x}y$
- Circuit:

A Three-Way Switch

Copyrighted Material – Do Not Distribute xyz $x\overline{y}\overline{z}$ $xyz + x\overline{y}\overline{z} + \overline{x}y\overline{z} + \overline{x}\overline{y}z$ $\overline{x}y\overline{z}$ $\overline{x}\overline{y}z$

Half-Adder and Full-Adder

Copyrighted Material – Do Not Distribute

Half adder

Full adder

