Topics in Differentiation

Exercise Set 3.1

1. (a)
$$1+y+x\frac{dy}{dx}-6x^2=0, \frac{dy}{dx}=\frac{6x^2-y-1}{x}.$$

(b)
$$y = \frac{2+2x^3-x}{x} = \frac{2}{x} + 2x^2 - 1, \frac{dy}{dx} = -\frac{2}{x^2} + 4x.$$

(c) From part (a),
$$\frac{dy}{dx} = 6x - \frac{1}{x} - \frac{1}{x}y = 6x - \frac{1}{x} - \frac{1}{x}\left(\frac{2}{x} + 2x^2 - 1\right) = 4x - \frac{2}{x^2}$$
.

3.
$$2x + 2y \frac{dy}{dx} = 0$$
 so $\frac{dy}{dx} = -\frac{x}{y}$

5.
$$x^2 \frac{dy}{dx} + 2xy + 3x(3y^2) \frac{dy}{dx} + 3y^3 - 1 = 0$$
, $(x^2 + 9xy^2) \frac{dy}{dx} = 1 - 2xy - 3y^3$, so $\frac{dy}{dx} = \frac{1 - 2xy - 3y^3}{x^2 + 9xy^2}$.

7.
$$-\frac{1}{2x^{3/2}} - \frac{\frac{dy}{dx}}{2y^{3/2}} = 0$$
, so $\frac{dy}{dx} = -\frac{y^{3/2}}{x^{3/2}}$.

9.
$$\cos(x^2y^2)\left[x^2(2y)\frac{dy}{dx} + 2xy^2\right] = 1$$
, so $\frac{dy}{dx} = \frac{1 - 2xy^2\cos(x^2y^2)}{2x^2y\cos(x^2y^2)}$.

11.
$$3\tan^2(xy^2+y)\sec^2(xy^2+y)\left(2xy\frac{dy}{dx}+y^2+\frac{dy}{dx}\right)=1$$
, so $\frac{dy}{dx}=\frac{1-3y^2\tan^2(xy^2+y)\sec^2(xy^2+y)}{3(2xy+1)\tan^2(xy^2+y)\sec^2(xy^2+y)}$.

13.
$$4x - 6y \frac{dy}{dx} = 0$$
, $\frac{dy}{dx} = \frac{2x}{3y}$, $4 - 6\left(\frac{dy}{dx}\right)^2 - 6y \frac{d^2y}{dx^2} = 0$, so $\frac{d^2y}{dx^2} = -\frac{3\left(\frac{dy}{dx}\right)^2 - 2}{3y} = \frac{2(3y^2 - 2x^2)}{9y^3} = -\frac{8}{9y^3}$.

15.
$$\frac{dy}{dx} = -\frac{y}{x}$$
, $\frac{d^2y}{dx^2} = -\frac{x(dy/dx) - y(1)}{x^2} = -\frac{x(-y/x) - y}{x^2} = \frac{2y}{x^2}$.

17.
$$\frac{dy}{dx} = (1 + \cos y)^{-1}, \ \frac{d^2y}{dx^2} = -(1 + \cos y)^{-2}(-\sin y)\frac{dy}{dx} = \frac{\sin y}{(1 + \cos y)^3}.$$

19. By implicit differentiation,
$$2x + 2y(dy/dx) = 0$$
, $\frac{dy}{dx} = -\frac{x}{y}$; at $(1/2, \sqrt{3}/2)$, $\frac{dy}{dx} = -\sqrt{3}/3$; at $(1/2, -\sqrt{3}/2)$, $\frac{dy}{dx} = +\sqrt{3}/3$. Directly, at the upper point $y = \sqrt{1-x^2}$, $\frac{dy}{dx} = \frac{-x}{\sqrt{1-x^2}} = -\frac{1/2}{\sqrt{3/4}} = -1/\sqrt{3}$ and at the lower point $y = -\sqrt{1-x^2}$, $\frac{dy}{dx} = \frac{x}{\sqrt{1-x^2}} = +1/\sqrt{3}$.

21. False; $x = y^2$ defines two functions $y = \pm \sqrt{x}$. See Definition 3.1.1.

44 Chapter 3

23. False; the equation is equivalent to $x^2 = y^2$ which is satisfied by y = |x|.

25.
$$4x^3 + 4y^3 \frac{dy}{dx} = 0$$
, so $\frac{dy}{dx} = -\frac{x^3}{y^3} = -\frac{1}{15^{3/4}} \approx -0.1312$.

27.
$$4(x^2+y^2)\left(2x+2y\frac{dy}{dx}\right)=25\left(2x-2y\frac{dy}{dx}\right), \ \frac{dy}{dx}=\frac{x[25-4(x^2+y^2)]}{y[25+4(x^2+y^2)]}; \ \text{at} \ (3,1) \ \frac{dy}{dx}=-9/13.$$

29.
$$4a^3 \frac{da}{dt} - 4t^3 = 6\left(a^2 + 2at\frac{da}{dt}\right)$$
, solve for $\frac{da}{dt}$ to get $\frac{da}{dt} = \frac{2t^3 + 3a^2}{2a^3 - 6at}$.

31.
$$2a^2\omega \frac{d\omega}{d\lambda} + 2b^2\lambda = 0$$
, so $\frac{d\omega}{d\lambda} = -\frac{b^2\lambda}{a^2\omega}$

33. $2x + x\frac{dy}{dx} + y + 2y\frac{dy}{dx} = 0$. Substitute y = -2x to obtain $-3x\frac{dy}{dx} = 0$. Since $x = \pm 1$ at the indicated points, $\frac{dy}{dx} = 0$ there.

35. (a)

(b) Implicit differentiation of the curve yields $(4y^3 + 2y)\frac{dy}{dx} = 2x - 1$, so $\frac{dy}{dx} = 0$ only if x = 1/2 but $y^4 + y^2 \ge 0$ so x = 1/2 is impossible.

(c)
$$x^2 - x - (y^4 + y^2) = 0$$
, so by the Quadratic Formula, $x = \frac{-1 \pm \sqrt{(2y^2 + 1)^2}}{2} = 1 + y^2$ or $-y^2$, and we have the two parabolas $x = -y^2$, $x = 1 + y^2$.

- **37.** The point (1,1) is on the graph, so 1+a=b. The slope of the tangent line at (1,1) is -4/3; use implicit differentiation to get $\frac{dy}{dx}=-\frac{2xy}{x^2+2ay}$ so at $(1,1), -\frac{2}{1+2a}=-\frac{4}{3}, 1+2a=3/2, a=1/4$ and hence b=1+1/4=5/4.
- **39.** We shall find when the curves intersect and check that the slopes are negative reciprocals. For the intersection solve the simultaneous equations $x^2 + (y c)^2 = c^2$ and $(x k)^2 + y^2 = k^2$ to obtain $cy = kx = \frac{1}{2}(x^2 + y^2)$. Thus $x^2 + y^2 = cy + kx$, or $y^2 cy = -x^2 + kx$, and $\frac{y c}{x} = -\frac{x k}{y}$. Differentiating the two families yields (black) $\frac{dy}{dx} = -\frac{x}{y c}$, and (gray) $\frac{dy}{dx} = -\frac{x k}{y}$. But it was proven that these quantities are negative reciprocals of each other.