Lista 02 de Circuitos Lógicos

Leonardo - DRE: XXXXXXXXX

¹Universidade Federal do Rio de Janeiro (UFRJ)

leonardongc@poli.ufrj.br

1. O que é fan-out de uma porta lógica?

É o número de portas portas lógicas que podem ser acionadas por uma única porta em questão. Ou seja, para uma porta com fan out N não pode acionar mais do que N outras portas, para isso precisando de buffers ou outras soluções que ajudem a acionar mais portas.

2. Demonstrar o Teorema de Morgan para 2 variáveis com uma tabela verdade.

A	В	$\overline{A.B}$	$\overline{A} + \overline{B}$	$\overline{A+B}$	$\overline{A}.\overline{B}$
0	0	1	1	1	1
0	1	1	1	0	0
1	0	1	1	0	0
1	1	0	0	0	0

Como pode ser verificado:

$$\overline{A.B} = \overline{A} + \overline{B}$$

$$\overline{A+B} = \overline{A}.\overline{B}$$

3. Os purificadores do Submarino:

Podemos montar a seguinte tabela de acionamento dos purificadores:

A_0	A_1	A_2	A_3	P_0	P ₁
0	0	0	0	0	0
0	0	0	1	0	1
0	0	1	0	0	1
0	0	1	1	0	1
0	1	0	0	1	0
0	1	0	1	1	0
0	1	1	0	1	0
0	1	1	1	0	1 0
1	0	0	0	1	0
1	0	0	1	1	0
1	0	1	0	1	0
1	0	1	1	0	1 0
1	1	0	0	1	
1	1	0	1	1	0
1	1	1	0	1	0
1	1	1	1	1	1

Da qual podemos extrair as seguintes equações em forma disjuntiva:

$$P_0 = A_0.A_1 + A_0.\overline{A_2} + A_0.\overline{A_3} + A_1.\overline{A_2} + A_1.\overline{A_3}$$

$$P_1 = \overline{A_0}.\overline{A_1}.A_2 + \overline{A_0}.\overline{A_1}.A_3 + A_2.A_3$$

Ou na forma conjuntiva:

$$P_0 = (A_0 + A_1).(A_0 + \overline{A_2} + \overline{A_3}).(A_1 + \overline{A_2} + \overline{A_3})$$

$$P_1 = (\overline{A_0} + A_2).(\overline{A_0} + A_3).(\overline{A_1} + A_2).(\overline{A_1} + A_3).(A_2 + A_3)$$

Formando o Circuito:

