Regression för tidsserier

Mattias Villani

Institutionen för datavetenskap Linköpings universitet

Översikt

- Regression för tidsserier
- Durbin-Watson test
- Modellval för tidsserieregression genom prognosförmåga.

Mattias Villani

Regression för tidsserier

Regression

$$y = \alpha + \beta_1 x_1 + \ldots + \beta_k x_k + \varepsilon$$

där feltermerna ε antas bara oberoende från $N(0, \sigma_{\varepsilon}^2)$.

- Oberoende = okorrelerade f\u00f6r normalf\u00f6rdelade variabler.
- Regressionen skattas med

$$y = a + b_1 x_1 + \ldots + b_k x_k$$

och vi får residualer

$$e_t = y_t - \hat{y}_t.$$

- Vi kan undersöka om residualerna är okorrelerade.
- Två metoder:
 - ▶ Visuellt genom att plotta autokorrelationsfunktionen för e_t
 - Durbin-Watson test

ACF residualer - temp

Mattias Villani

ACF residualer - alla variabler

Regression med alla förklarande variabler: temp, hum, windspeed, holiday, workingday, säsong, yr.

Regression för tidsserier

Regressionsmodeller för tidsserier

$$y_t = \alpha + \beta_1 x_t + \varepsilon_t$$

får ofta korrelerade residualer. 🧐

Kombinera enkel regression och AR(1)

$$y_t = \alpha + \beta_1 x_t + \beta_2 y_{t-1} + \varepsilon_t$$

Kombinera multipel regression och AR(p)

$$y_t = \alpha + \beta_1 x_t + \ldots + \beta_k x_{kt} + \beta_{k+1} y_{t-1} + \ldots + \beta_{k+p} y_{t-p} + \varepsilon_t$$

Cykeluthyrning:

$$\texttt{AntalUthyr}_{\texttt{idag}} = \textit{a} + \textit{b}_1 \cdot \texttt{temp}_{\texttt{idag}} + \textit{b}_2 \cdot \texttt{AntalUthyr}_{\texttt{igar}}$$

Standardfel och hypotestest måste korrigeras om laggar av y_t används som förklarande variabel.

ACF residualer - enbart lag 1

Mattias Villani

ACF residualer - alla variabler + lag 1-4

Mattias Villani

Durbin-Watson test

- Test för autokorrelation (i feltermer).
- Teststatistika

$$d = \frac{\sum_{t=2}^{T} (e_t - e_{t-1})^2}{\sum_{t=1}^{T} e_t^2}$$

Durbin-Watson testar första autokorrelationen (AJÅ)

$$d \approx 2(1-r_1)$$

Teststatistikan uppfyller

$$0 \le d \le 4$$

Grova kritiska gränser:

$$d$$
 nära $2 \implies$ ej signifikant $d < 1 \implies$ signifikant positiv autokorrelation $d > 1 \implies$ signifikant negativ autokorrelation

Durbin-Watson test kan inte användas när man har laggar av målvariabeln (y_{t-1} etc) som förklarande variabler.

Mattias Villani ST123

Durbin-Watson test - cykeluthyrning

Förklarande variabler	R ²	$r_1^{(\mathrm{res})}$	d	<i>p</i> -värde
temp	0.385	0.764	0.471***	< 1 e-93
temp,hum,windspeed,holiday,workingday,säsong,yr	0.795	0.447	1.104***	< 1 e-33

Mattias Villani

Cykeluthyrningar - utvärdera prognosförmåga

- Träningsdata: Jan 1, 2011 Aug 31, 2012.
- **Testdata**: Sept 1, 2012 Dec 31, 2012.
- Prediktionsmått RMSE

$$RMSE_{test} = \sqrt{\frac{1}{n_{test}} \sum_{t \in Testdata} (y_t - \hat{y}_t)^2}$$

Cykeluthyrningar

Träningsdata: Jan 1, 2011 - Aug 31, 2012.

Testdata: Sept 1, 2012 - Dec 31, 2012.

Förklarande variabler	R ²	RMSE _{test}
temp	0.385	2346.60
$\verb temp,hum,windspeed,holiday,workingday,säsong,yr \\$	0.795	1292.07
lagi	0.714	1274.32
lag1,lag2	0.730	1279.30
lag1-lag4	0.746	1267.84
lag1-lag6	0.764	1262.10
temp,hum,windspeed,holiday,workingday,säsong,yr,lag1	0.825	1127.63
temp,hum,windspeed,holiday,workingday,säsong,yr,lag1-lag4	0.827	1118.83
temp,hum,windspeed,holiday,workingday,säsong,yr,lag1-lag6	0.830	1117.63
$\verb temp,hum,windspeed,holiday,workingday,säsong,yr,lag1-lag6, \\ Lasso \\$	NA	1118.34

Mattias Villani