Model Checking

Linear-Time Properties

[Baier & Katoen, Chapter 3]

Prof. Dr. Nils Jansen Radboud University, 2025

Outline of this lecture

- 1. Models: Transition Systems
- 2. **Properties**

The Third Question Today

How do we specify properties?

Overview

Recap: Traces

2 Linear-Time Properties

Safety Properties

Our Goal: Model Checking

Overview

Recap: Traces

2 Linear-Time Properties

Safety Properties

Traces

Definition: Traces

Let $TS = (S, Act, \rightarrow, I, AP, L)$ be transition system without terminal states.

The trace of execution

$$\rho = s_0 \xrightarrow{\alpha_1} s_1 \xrightarrow{\alpha_2} s_2 \xrightarrow{\alpha_3} \dots$$

is the infinite word $trace(\rho) = L(s_0) L(s_1) L(s_2) \dots$ over $(2^{AP})^{\omega}$. Prefixes of traces are finite traces.

7

Traces

Definition: Traces

Let $TS = (S, Act, \rightarrow, I, AP, L)$ be transition system without terminal states.

• The trace of execution

$$\rho = s_0 \xrightarrow{\alpha_1} s_1 \xrightarrow{\alpha_2} s_2 \xrightarrow{\alpha_3} \dots$$

is the infinite word $trace(\rho) = L(s_0) L(s_1) L(s_2) \dots$ over $(2^{AP})^{\omega}$. Prefixes of traces are finite traces.

• The traces of a set Π of executions (or paths) is defined by:

$$trace(\Pi) = \{ trace(\pi) \mid \pi \in \Pi \}.$$

- The traces of state s are Traces(s) = trace(Paths(s)).
- The traces of transition system TS: $Traces(TS) = \bigcup_{s \in I} Traces(s)$.

7

• Let Σ be an alphabet, i.e. countable set of symbols, with $A \in \Sigma$

- Let Σ be an alphabet, i.e. countable set of symbols, with $A \in \Sigma$
- Regular expressions over Σ have syntax:

- Let Σ be an alphabet, i.e. countable set of symbols, with $A \in \Sigma$
- Regular expressions over Σ have syntax:

$$\mathsf{E} := \underline{\varnothing} \mid \underline{\varepsilon} \mid \underline{A} \mid \mathsf{E} + \mathsf{E}' \mid \mathsf{E} . \mathsf{E}' \mid \mathsf{E}^*$$

■ The semantics of regular expression E is a language $\mathfrak{L}(E) \subseteq \Sigma^*$:

$$\begin{split} \mathfrak{L}(\underline{\varnothing}) = \varnothing, \quad \mathfrak{L}(\underline{\varepsilon}) = \{\,\varepsilon\,\}, \quad \mathfrak{L}(\underline{A}) = \{\,A\,\} \\ \\ \mathfrak{L}(\mathsf{E} + \mathsf{E}') = \mathfrak{L}(\mathsf{E}) \cup \mathfrak{L}(\mathsf{E}') \quad \mathfrak{L}(\mathsf{E} . \mathsf{E}') = \mathfrak{L}(\mathsf{E}).\mathfrak{L}(\mathsf{E}') \quad \mathfrak{L}(\mathsf{E}^*) = \mathfrak{L}(\mathsf{E})^* \end{split}$$

8

- Let Σ be an alphabet, i.e. countable set of symbols, with $A \in \Sigma$
- Regular expressions over Σ have syntax:

$$\mathsf{E} := \underline{\varnothing} \mid \underline{\varepsilon} \mid \underline{A} \mid \mathsf{E} + \mathsf{E}' \mid \mathsf{E}.\mathsf{E}' \mid \mathsf{E}^*$$

■ The semantics of regular expression E is a language $\mathfrak{L}(E) \subseteq \Sigma^*$:

$$\begin{split} \mathfrak{L}(\underline{\varnothing}) &= \varnothing, \quad \mathfrak{L}(\underline{\varepsilon}) = \{\,\varepsilon\,\}, \quad \mathfrak{L}(\underline{A}) = \{\,A\,\} \\ \\ \mathfrak{L}(\mathsf{E} + \mathsf{E}') &= \mathfrak{L}(\mathsf{E}) \cup \mathfrak{L}(\mathsf{E}') \quad \mathfrak{L}(\mathsf{E}.\mathsf{E}') = \mathfrak{L}(\mathsf{E}).\mathfrak{L}(\mathsf{E}') \quad \mathfrak{L}(\mathsf{E}^*) = \mathfrak{L}(\mathsf{E})^* \end{split}$$

Regular expressions denote languages of finite words

ω-Regular Expressions: Syntax

Definition: ω -regular expression

An ω -regular expression G over the alphabet Σ has the form:

$$G = E_1.F_1^{\omega} + \ldots + E_n.F_n^{\omega} \quad \text{for } n \in \mathbb{N}_{>0} \quad (a + b)^{\alpha} \quad b^{\alpha}$$

where E_i , F_i are regular expressions over Σ with $\varepsilon \notin \mathfrak{L}(F_i)$.

g

ω-Regular Expressions: Syntax

Definition: ω -regular expression

An ω -regular expression G over the alphabet Σ has the form:

$$G = E_1.F_1^{\omega} + \ldots + E_n.F_n^{\omega}$$
 for $n \in \mathbb{N}_{>0}$

where E_i , F_i are regular expressions over Σ with $\varepsilon \notin \mathfrak{L}(F_i)$.

• ω -Regular expressions denote languages of infinite words

9

ω -Regular Expressions: Syntax

Definition: ω -regular expression

An ω -regular expression G over the alphabet Σ has the form:

$$G = E_1.F_1^{\omega} + \ldots + E_n.F_n^{\omega}$$
 for $n \in \mathbb{N}_{>0}$

where E_i , F_i are regular expressions over Σ with $\varepsilon \notin \mathfrak{L}(F_i)$.

- ω -Regular expressions denote languages of infinite words
- Examples over the alphabet $\Sigma = \{A, B\}$:
 - language of all words with infinitely many As: $(B^*.A)^{\omega}$

ω -Regular Expressions: Syntax

Definition: ω -regular expression

An ω -regular expression G over the alphabet Σ has the form:

$$G = E_1.F_1^{\omega} + \ldots + E_n.F_n^{\omega}$$
 for $n \in \mathbb{N}_{>0}$

where E_i , F_i are regular expressions over Σ with $\varepsilon \notin \mathfrak{L}(F_i)$.

- ω -Regular expressions denote languages of infinite words
- Examples over the alphabet $\Sigma = \{A, B\}$:
 - language of all words with infinitely many As: $(B^*.A)^{\omega}$
 - language of all words with finitely many As: $(A + B)^*.B^{\omega}$

ω -Regular Expressions: Syntax

Definition: ω -regular expression

An ω -regular expression G over the alphabet Σ has the form:

$$G = E_1.F_1^{\omega} + \ldots + E_n.F_n^{\omega}$$
 for $n \in \mathbb{N}_{>0}$

where E_i , F_i are regular expressions over Σ with $\varepsilon \notin \mathfrak{L}(F_i)$.

- ω -Regular expressions denote languages of infinite words
- Examples over the alphabet $\Sigma = \{A, B\}$:
 - language of all words with infinitely many As: $(B^*.A)^{\omega}$
 - language of all words with finitely many As: $(A + B)^*.B^{\omega}$
 - the empty language

 $\mathbf{Ø}^{\underline{\omega}}$

ω-Regular Expressions: Semantics

Definition: semantics of ω -regular expressions

The semantics of ω -regular expression $G = E_1.F_1^{\omega} + \ldots + E_n.F_n^{\omega}$ is the language $\mathfrak{L}_{\omega}(G) \subseteq \Sigma^{\omega}$ defined by:

$$\mathfrak{L}_{\omega}(\mathsf{G}) = \mathfrak{L}(\mathsf{E}_1).\mathfrak{L}(\mathsf{F}_1)^{\omega} \cup \ldots \cup \mathfrak{L}(\mathsf{E}_n).\mathfrak{L}(\mathsf{F}_n)^{\omega}.$$

where for $\mathfrak{L} \subseteq \Sigma^*$, we have $\mathfrak{L}^{\omega} = \{ w_1 w_2 w_3 \dots | \forall i \geq 0. w_i \in \mathfrak{L} \}.$

ω -Regular Expressions: Semantics

Definition: semantics of ω -regular expressions

The semantics of ω -regular expression $G = E_1.F_1^{\omega} + \ldots + E_n.F_n^{\omega}$ is the language $\mathcal{L}_{\omega}(G) \subseteq \Sigma^{\omega}$ defined by:

$$\mathfrak{L}_{\omega}(\mathsf{G}) = \mathfrak{L}(\mathsf{E}_1).\mathfrak{L}(\mathsf{F}_1)^{\omega} \cup \ldots \cup \mathfrak{L}(\mathsf{E}_n).\mathfrak{L}(\mathsf{F}_n)^{\omega}.$$

where for $\mathfrak{L} \subseteq \Sigma^*$, we have $\mathfrak{L}^{\omega} = \{ w_1 w_2 w_3 \dots | \forall i \geq 0. w_i \in \mathfrak{L} \}.$

The ω -regular expression G_1 and G_2 are equivalent,

denoted
$$G_1 \equiv G_2$$
, if $\mathfrak{L}_{\omega}(G_1) = \mathfrak{L}_{\omega}(G_2)$.

Overview

Recap: Traces

2 Linear-Time Properties

Safety Properties

Linear-Time Properties

Definition: Linear-Time Property

A linear-time property (LT property) over AP is a subset of $(2^{AP})^{\omega}$.

Linear-Time Properties

Definition: Linear-Time Property

A linear-time property (LT property) over AP is a subset of $(2^{AP})^{\omega}$.

- Linear-time properties specify desirable traces of a transition system
- They are infinite words $A_0 A_1 A_2 ...$ with $A_i \subseteq AP$, i.e. traces
- No finite words, as *TS* is assumed to have no terminal states
- TS satisfies property P if all its "observable" behaviours are admitted by P. What does that mean?

Linear-Time Properties

Definition: Linear-Time Property

A linear-time property (LT property) over AP is a subset of $(2^{AP})^{\omega}$.

- Linear-time properties specify desirable traces of a transition system
- They are infinite words $A_0 A_1 A_2 ...$ with $A_i \subseteq AP$, i.e. traces
- No finite words, as *TS* is assumed to have no terminal states
- TS satisfies property P if all its "observable" behaviours are admitted by P. What does that mean?

Satisfaction relation for LT properties

Transition system TS (over AP) satisfies LT property P (over AP):

 $TS \models P$ if and only if $Traces(TS) \subseteq P$.

"Always at most one thread is in its critical section"

Let AP = { crit₁, crit₂ }
 other atomic propositions are not of any relevance for this property

- Let AP = { crit₁, crit₂ }
 other atomic propositions are not of any relevance for this property
- Formalization as LT property $P_{mutex} = \text{ set of infinite words } A_0 A_1 A_2 \dots$ with $\{ crit_1, crit_2 \} \not\subseteq A_i \text{ for all } 0 \le i$

- Let AP = { crit₁, crit₂ }
 other atomic propositions are not of any relevance for this property
- Formalization as LT property

$$P_{mutex}$$
 = set of infinite words $A_0 A_1 A_2 ...$
with $\{ crit_1, crit_2 \} \not \subseteq A_i \text{ for all } 0 \le i$

- Contained in P_{mutex} are e.g., the infinite words:
 - $(\{\mathit{crit}_1\}\{\mathit{crit}_2\})^\omega$ and $(\{\mathit{crit}_1\})^\omega$ and \varnothing^ω

- Let AP = { crit₁, crit₂ }
 other atomic propositions are not of any relevance for this property
- Formalization as LT property

$$P_{mutex}$$
 = set of infinite words $A_0 A_1 A_2 ...$
with $\{ crit_1, crit_2 \} \notin A_i \text{ for all } 0 \le i$

- Contained in P_{mutex} are e.g., the infinite words:
 - $\bullet \ \left(\left\{ \, crit_1 \, \right\} \left\{ \, crit_2 \, \right\} \right)^{\omega} \ \ \text{and} \ \left(\left\{ \, crit_1 \, \right\} \right)^{\omega} \ \ \text{and} \ \ \varnothing^{\omega}$
 - but not $\{ crit_1 \} \emptyset \{ crit_1, crit_2 \} \dots$ or $\emptyset \{ crit_1 \}, (\emptyset \emptyset \{ crit_1, crit_2 \})^{\omega}$

Mutual Exclusion by Semaphores

Yes, the semaphore-based algorithm satisfies P_{mutex} .

Trace Inclusion and LT Properties

Let TS and TS' be transition systems (over AP) without terminal states:

$$\mathit{Traces}(\mathit{TS}) \subseteq \mathit{Traces}(\mathit{TS}')$$
 if and only if for any LT property $P \colon \mathit{TS}' \models P$ implies $\mathit{TS} \models P$.

Trace Inclusion and LT Properties

Let TS and TS' be transition systems (over AP) without terminal states:

$$\mathit{Traces}(\mathit{TS}) \subseteq \mathit{Traces}(\mathit{TS}')$$
 if and only if for any LT property $P \colon \mathit{TS}' \models P$ implies $\mathit{TS} \models P$.

Corollary

Traces(TS) = Traces(TS') iff TS and TS' satisfy the same LT properties.

Overview

Recap: Traces

2 Linear-Time Properties

Safety Properties

Invariants

• LT property E_{inv} over AP is an invariant if it has the form:

$$E_{inv} = \left\{ \ A_0 A_1 A_2 \ldots \in \left(2^{^{AP}}\right)^{\omega} \ \middle| \ \ \forall j \geq 0. \ A_j \models \Phi \ \right\}$$

where (invariant condition) $\boldsymbol{\Phi}$ is a propositional logic formula over $\ensuremath{\mathit{AP}}$

Invariants

• LT property E_{inv} over AP is an invariant if it has the form:

$$E_{inv} = \left\{ A_0 A_1 A_2 \dots \in \left(2^{^{AP}}\right)^{\omega} \mid \forall j \ge 0. \ A_j \models \Phi \right\}$$

where (invariant condition) $\boldsymbol{\Phi}$ is a propositional logic formula over AP

Note that

```
TS \models E_{inv} iff trace(\pi) \in E_{inv} for all paths \pi in TS iff L(s) \models \Phi for all states s that belong to a path of TS iff L(s) \models \Phi for all states s \in Reach(TS)
```

Invariants

• LT property E_{inv} over AP is an invariant if it has the form:

$$E_{inv} = \left\{ \ A_0 A_1 A_2 \ldots \in \left(2^{^{AP}}\right)^{\omega} \ \middle| \ \forall j \geq 0. \ A_j \models \Phi \ \right\}$$

where (invariant condition) Φ is a propositional logic formula over AP

Note that

```
TS \models E_{inv} iff trace(\pi) \in E_{inv} for all paths \pi in TS iff L(s) \models \Phi for all states s that belong to a path of TS iff L(s) \models \Phi for all states s \in Reach(TS)
```

 \blacksquare all initial states fulfil Φ and all transitions in the reachable fragment of TS preserve Φ

Example Invariants

```
mutual exclusion (safety):
```

$$MUTEX = \begin{cases} \text{set of all infinite words } A_0 A_1 A_2 \dots \text{s.t.} \\ \forall i \in \mathbb{N}. \text{ crit}_1 \notin A_i \text{ or crit}_2 \notin A_i \end{cases}$$

invariant condition: $\phi = \neg crit_1 \lor \neg crit_2$

deadlock freedom for 5 dining philosophers:

$$DF = \begin{cases} \text{set of all infinite words } A_0 A_1 A_2 \dots \text{ s.t.} \\ \forall i \in \mathbb{N} \ \exists j \in \{0, 1, 2, 3, 4\}. \ \text{wait}_j \notin A_i \end{cases}$$

invariant condition:

$$\Phi = \neg wait_0 \lor \neg wait_1 \lor \neg wait_2 \lor \neg wait_3 \lor \neg wait_4$$

here:
$$AP = \{ wait_j : 0 \le j \le 4 \} \cup \{ ... \}$$

- Safety properties may impose requirements on finite path fragments
 - and cannot be verified by considering the reachable states individually

- Safety properties may impose requirements on finite path fragments
 - and cannot be verified by considering the reachable states individually
- Every invariant is a safety property, but not the reverse:
- A safety property which is not an invariant:
 - consider a cash dispenser, aka: automated teller machine (ATM)
 - property "money can only be withdrawn once a correct PIN has been provided"
 - ⇒ not an invariant, since it is not a state property vs. Lemparal

- Safety properties may impose requirements on finite path fragments
 - and cannot be verified by considering the reachable states individually
- Every invariant is a safety property, but not the reverse:
- A safety property which is not an invariant:
 - consider a cash dispenser, aka: automated teller machine (ATM)
 - property "money can only be withdrawn once a correct PIN has been provided"
 - ⇒ not an invariant, since it is not a state property
- But a safety property:
 - any infinite run violating the property has a finite prefix that is "bad"
 - i.e., in which money is withdrawn without issuing a PIN before

Definition: Safety Property

LT property E_{safe} over AP is a safety property if for all $\sigma \in (2^{AP})^{\omega} \setminus E_{safe}$:

$$E_{safe} \cap \{\sigma' \in (2^{AP})^{\omega} \mid \widehat{\sigma} \text{ is a prefix of } \sigma'\} = \emptyset.$$

for some prefix $\hat{\sigma}$ of σ .

Definition: Safety Property

LT property E_{safe} over AP is a safety property if for all $\sigma \in (2^{AP})^{\omega} \setminus E_{safe}$:

$$E_{safe} \cap \{\sigma' \in (2^{AP})^{\omega} \mid \hat{\sigma} \text{ is a prefix of } \sigma'\} = \emptyset.$$

for some prefix $\hat{\sigma}$ of σ .

- Path fragment $\hat{\sigma}$ is called a bad prefix of E_{safe}
- Let $BadPref(E_{safe})$ denote the set of bad prefixes of E_{safe}
- $\hat{\sigma} \in E_{safe}$ is minimal if no proper prefix of it is in $BadPref(E_{safe})$

Examples

Safety Properties and Finite Traces

For transition system TS without terminal states and safety property E_{safe} :

 $TS \models E_{safe}$ if and only if $Traces_{fin}(TS) \cap BadPref(E_{safe}) = \emptyset$.

Closure

Definition: closure of a property

The closure of LT property P is defined as:

$$cl(P) = \{ \sigma \in (2^{AP})^{\omega} \mid \text{ every prefix of } \sigma \text{ is a prefix of } P \}$$

- cl(P) contains the set of infinite traces whose finite prefixes are also prefixes of P, or equivalently
- infinite traces in the closure of P do not have a prefix that is not a prefix of P

Safety Properties and Closure

For any LT property P over AP:

P is a safety property if and only if cl(P) = P.

Safety Properties and Finite Trace Equivalence

Let TS and TS' be transition systems (over AP) without terminal states.

 $Traces_{fin}(TS) \subseteq Traces_{fin}(TS')$

if and only if

for any safety property
$$E_{safe}: TS' \models E_{safe} \Rightarrow TS \models E_{safe}.$$

$$E_{Safe} = \alpha + C + \alpha + C$$

$$S_{0} \Rightarrow S_{1} \Rightarrow S_{2} \Rightarrow S_{3}$$

Con the Traces of The Traces of (TS')

Safety Properties and Finite Trace Equivalence

Let TS and TS' be transition systems (over AP) without terminal states.

$$Traces_{fin}(TS) \subseteq Traces_{fin}(TS')$$
 if and only if

for any safety property E_{safe} : $TS \models E_{safe} \Rightarrow TS \models E_{safe}$.

$$Traces_{fin}(TS) = Traces_{fin}(TS')$$
 if and only if

TS and TS' satisfy the same safety properties.

Finite versus Infinite Traces

For TS without terminal states and finite TS':

$$Traces(TS) \subseteq Traces(TS')$$
 iff $Traces_{fin}(TS) \subseteq Traces_{fin}(TS')$

¹Transition systems in which each state has finitely many direct successors.

Finite versus Infinite Traces

For TS without terminal states and finite TS':

$$Traces(TS) \subseteq Traces(TS')$$
 iff $Traces_{fin}(TS) \subseteq Traces_{fin}(TS')$

this does not hold for infinite TS' (cf. next slide) but also holds for image-finite TS'.

¹Transition systems in which each state has finitely many direct successors.

Trace Equivalence # Finite Trace Equivalence

$$T$$

$$Traces(T) = \{\varnothing^{\omega}\}$$

$$Traces_{fin}(T) = \{\varnothing^{n} : n \ge 0\}$$

$$Traces(T') = \{\varnothing^{n}\{b\}^{\omega} : n \ge 2\}$$

$$Traces_{fin}(T') = \{\varnothing^{n} : n \ge 0\} \cup \{\varnothing^{n}\{b\}^{m} : n \ge 2 \land m \ge 1\}$$

$$Traces(T) \not\subseteq Traces(T')$$
, but $Traces_{fin}(T) \subseteq Traces_{fin}(T')$

LT property
$$E \cong$$
 "eventually **b**"
 $T \not\models E, T' \models E$

Summary

- LT properties are finite sets of infinite words over 2^{AP} (= traces)
- An invariant requires a condition Φ to hold in any reachable state
- Each trace refuting a safety property has a finite prefix causing this
 - invariants are safety properties with bad prefix $\Phi^*(\neg \Phi)$
 - ⇒ safety properties constrain finite behaviours