Connecting the Persian-speaking World through Transliteration

Rayyan Merchanti, Akhilesh Kakolu Ramarao2, and Kevin Tangi, 2

Department of Linguistics, University of Florida, Gainesville, Florida, 32611-5454, United States of America

2Department of English Language and Linguistics, Institute of English and American Studies, Heinrich-Heine-University, Düsseldorf, 40225, Germany

February 26, 2025

Abstract

Despite speaking mutually intelligible varieties of the same language, speakers of Tajik Persian, written in a modified Cyrillic alphabet, cannot read Iranian and Afghan texts written in the Perso-Arabic script. As the vast majority of Persian text on the Internet is written in Perso-Arabic, monolingual Tajik speakers are unable to interface with the Internet in any meaningful way. Due to overwhelming similarity between the formal registers of these dialects and the scarcity of Tajik-Farsi parallel data, machine transliteration has been proposed as more a practical and appropriate solution than machine translation. This paper presents a transformer-based G2P approach to Tajik-Farsi transliteration, achieving chrF++ scores of 58.70 (Farsi to Tajik) and 74.20 (Tajik to Farsi) on novel digraphic datasets, setting a comparable baseline metric for future work. Our results also demonstrate the non-trivial difficulty of this task in both directions. We also provide an overview of the differences between the two scripts and the challenges they present, so as to aid future efforts in Tajik-Farsi transliteration.

Keywords: Persian, Tajik, Transliteration, Orthography, Computational Linguistics

1 Introduction

Tajik Persian (henceforth, Tajik) is the formal variety of Modern Persian spoken in Tajikistan. As such, it retains an extremely high level of mutual intelligibility with formal Persian as spoken in Iran and Afghanistan (henceforth referred to as Farsi). Unlike these two countries which use the centuries-old Perso-Arabic script, Tajikistan uses the relatively new Tajik-Cyrillic script due to Tajikistan's Soviet heritage (Perry 2005).

While proposals have been made to shift the script back to Perso-Arabic, any significant shift will likely not occur in the near future, with Tajikistan's former Minister of Culture stating in 2008 that "...some 90-95% of Tajikistan's population is not familiar with Arabic script..."

(Ghufronov 2008). As a result, the vast majority of the 10 million Persian speakers in Tajikistan are unable to read written Persian media produced by the 100 million Persian speakers in Iran and Afghanistan. This restriction extends to the Internet, where Farsi dominates. As of September 2023, the Tajik Wikipedia had 269,857 articles and 10.5 million words across all content pages compared to the Farsi Wikipedia's 5.5 million articles and 194 million words (Wikimedia Foundation 2023b). Moreover, despite Afghan Persian (known as Dari) being similarly divergent, the Farsi Wikipedia is the most popular Wikipedia in Afghanistan and there currently exists no Dari Wikipedia (Wikimedia Foundation 2023a).

These two scripts are highly incongruous (Perry 2005). The Perso-Arabic script, as an impure abjad, often omits vowels, and those that are written are ambiguous. Meanwhile, the Tajik-Cyrillic script, as an alphabet, writes out all vowels, making it a phonetic representation of the language. Example 1 demonstrates how a Persian phrase is written in both Tajik and Farsi.

While proprietary tools such as Google Translate¹ are capable of translating between the two varieties, they have limitations. As translation quality largely depends on the amount of data available, low-resource language pairs like Tajik and Farsi suffer from a lack of large amounts of diverse data (Haddow et al. 2022). Furthermore, as these are two varieties of the same language, machine translation (which does not preserve exact wording) between the two is absolutely fatal to reading poetry (a beloved piece of Persian-speaking culture) and also renders direct quotations of text impossible. On a finer level, this prevents the communication of lexical subtleties.

(I) زبان فارسی забони форсū zaboni forsī

'The Persian language'

Due to their mutual intelligibility in spoken form and the small amount of parallel Tajik-Farsi data, machine transliteration has been proposed as a practical alternative. Early work includes a proof-of-concept system by Megerdoomian & Parvaz (2008) for Tajik to Farsi conversion incorporating a Finite-State Transducer (FST) and lexical lookup. Later, Davis (2012) then introduced a statistical machine transliteration model for transliteration in both directions. Both of these methods lacked corpora made up of sentences with the exact same wording, instead opting for unrelated Tajik and Farsi corpora and a medium-size word list. While functional, such data does not allow for straightforward evaluation metrics on the sentence level (such as sequence accuracy) and cannot capture features that span across several words (such as the Persian Ezafe).

Grapheme to Phoneme Conversion (G2P) is a task that converts letters (grapheme sequence) to their corresponding pronunciations (phoneme sequence) (Yolchuyeva et al. 2019). As a pair of non-phonetic and phonetic representations of the same language, transliteration between Tajik and Farsi resembles G2P. We base our transliteration method on this and treat the task as one of G2P conversion. The main goal of this chapter is to present the current findings of this approach. The preliminary results of our ongoing investigation, drawn from the novel digraphic corpus we created, also provide a benchmark for future work. As a secondary goal, this chapter aims to provide a detailed walkthrough of the many challenges involved in Tajik-Farsi transliteration for others who may attempt similar work in the future.

https://translate.google.com (Date of Access: 09/30/2023)

The chapter is organized as follows: we first provide an overview of the many differences between Tajik and Farsi (Section 2). Following this, we provide a substantial description of the challenges in transliteration between the two (Section 3) and describe previous (Section 4) and related work (Section 5). We then discuss our parallel dataset (Section 6). Finally, we describe how we trained our model (Section 7) and analyze the results (Section 8) before ending with our concluding remarks (Section 9).

2 Tajik and Farsi

2.1 Orthographic Differences

Farsi uses the Perso-Arabic script, an impure abjad which often omits vowels. To better reflect Persian phonology, it includes the letters ψ /p/, ξ /tf/, $\hat{\jmath}$ /g/. As a result of these factors, the script itself is quite consonant-heavy and rather vowel-deficient (Perry 2005).

2.2 Phonological Differences

While the formal languages have retained mutual intelligibility, they have nonetheless evolved separately for several centuries and noticeably diverged in pronunciation (Perry 2005). For example, Tajik retains the Classical Persian distinction between fir "milk" and fer "lion" (written as IIIIIP and IIIIIP and IIIIIP in Farsi, these are homonyms, both pronounced as /fir/ and written as IIIIIP on the other hand, Farsi distinguishes between Jpul ("money") and Jpul ("bridge") (both written as IIIIP /pul/ in Tajik). The widespread merger of /q/ and /y/ (in Tajik /в/) into [Vec] in many varieties of Farsi is also significant, although the distinction is preserved in both orthographies as $\ddot{\epsilon}$, and $\ddot{\epsilon}$, in Farsi and in Tajik as κ and κ .

2.2.1 Loanwords

The two varieties have also adopted words from different sources, particularly in the realm of science and technology (Perry 2005). Some of the most common examples include the word for "thank you" (French-derived Farsi "mersi" vs. native Tajik "rahmat") and "potato" (native Farsi "seb-e zamin" vs. Russian-derived Tajik "kartoshka"). Due to recent efforts to remove Russian influence in Tajikistan, many words in the formal Tajik standard are shared with Farsi, but continue to differ in colloquial form, such as "airplane" (Farsi and Tajik "havopaimo" vs. Russian-derived Tajik "samalyot"). Owing to the aforementioned "Persianization" and prevalence of Iranian media, Farsi-specific terms present much less of an issue to Tajiki-speakers than the other way around.

Challenges in Transliteration

As previously described, Farsi and Tajik diverge in a number of ways which render one-to-one letter conversion largely ineffective. An example transliteration employing such a technique can be seen in Table 1.

Table 1: One-to-one Transliteration of Farsi and Tajik						
Farsi	Farsi Translit.	Tajik	Tajik Translit.			
من کتاب را خواندم	mn ktob ro xwondm	ман китобро хондам	man kitobro xondam			

3.1 One to Many, Many to One

Owing to the incongruous natures of the two scripts, there exist several challenges in ambiguity when transliterating in either direction. This results in many characters mapping to a single character, and vice versa. This difficulty is pronounced particularly in vowels but extends to consonants as well.

3.1.1 Vowels

The character 1, known as *alef*, can represent several different vowels. If in word medial or terminal position, the *alef* typically maps to the Tajik O. In word start position, it only represents O if written with the *maddah* diacritic, making it 1. Otherwise, it can map to several different vowels. This behavior is demonstrated in Table 2.

Table 2: Examples of (alef) mapping to various vowels					
Farsi	Farsi Translit.	Tajik	Tajik Translit.	English	
انجمن	anjmn	анчуман	anjuman	'organization'	
انتخاب	antxob	интихоб	intixob	'choice'	
امید	amyd	умед	umed	'hope'	
او	aw	ӯ	ü	'(s)he'	
آهنگ	ohng	оҳанг	ohang	'song'	
خاردن	xoridn	хоридан	xoridan	'to itch'	

The letter 9, known as vav, can map to the vowels y and \bar{y} , or the consonant B, as shown in Table 3.

The letter 6, known as ye, maps to several different vowels, depending on its position in the word. In addition, in some words of Arabic origin, the character can map to when in word final position. Table 4 provides examples of the character in various positions.

Although not a vowel, the consonant &, known as he (do cheshm), maps to either the consonant X or to vowels when in word final position. This occurs in a large number of common words, as shown in Table 5.

The character ε , or *ayn*, displays not one, but two separate challenges. The first is that it can map to any vowel (see Table 6), and the second is that after the mapped vowel the glottal

Table 3: Examples of 9 (vav) mapping to vowels and consonants

Farsi	Farsi Translit.	Tajik	Tajik Translit.	English
ولايت	wlayt	вилоят	viloyat	'province'
آورد	owrd	овард	ovard	'brought'
گاو	gaw	ГОВ	gov	'cow'
بود	bwd	буд	bud	'was'
امروز	amrwz	имрӯз	imrüz	'today'

Table 4: Examples of (ye) mappings

Farsi	Farsi Translit.	Tajik	Tajik Translit.	English
یراق	yraq	яроқ	yaroq	'weapon'
دریا	drya	дарё	daryo	'river/sea'
چای	çay	чой	çoy	'tea'
ایران	ayran	Эрон	Eron	'Iran'
خیلی	xyly	хеле	xele	'very'
عالى	'aly	ОЛЙ	olī	'great'
حتى	hty	ҳатто	hatto	'even'

stop sign \mathfrak{T} is inconsistently written. Moreover, the glottal stop sign also denotes actual glottal stops, and so can be written in words in the absence of *ayn*. However, the erroneous omission or addition of the glottal stop character rarely leads to difficulties in comprehension.

The ε , or *hamza*, exhibits similar behavior to *ayn* by mapping to both vowels and the Tajik glottal stop sign. It can be written as a standalone letter, or over *alif*, *vav*, or *ye*. However, this character is often replaced with a *ye* or simply removed from the letter it is written over.

Vowel diacritics are also often unwritten in the Perso-Arabic script, further obfuscating short vowel determination. Without vowel diacritics, the word گرد may represent either гард /gard/ ('dust'), гирд /gird/ ('round'), or гурд /gurd/ ('hero').

3.1.2 Consonants

As the Perso-Arabic script retains many redundant consonants from Arabic, some Cyrillic letters each have multiple Perso-Arabic letters equivalents. Table 7 provides an overview of these sounds and the corresponding letters in each script.

Outside of these redundant consonants and the vowels mentioned previously, consonant to consonant mapping between the two scripts is one-to-one and can be considered trivial.

3.2 Capitalization

As a modified Cyrillic alphabet, Tajik-Cyrillic capitalizes proper nouns and the beginning of sentences while the Perso-Arabic script does not capitalize at all. When transliterating from Farsi to Tajik, a complete system will need employ a named-entity recognition step, while no additional step is required in the other direction.

Table 5: Examples of δ (*he*) Mapping

Farsi	Farsi Translit.	Tajik	Tajik Translit.	English
به	bh	ба	ba	'to'
که	kh	КИ	ki	'that (conj.)'
چە قاعدە	çh	чи	çi	'what'
قاعده	qa'dh	қоида	qoida	'rule'
سیاه	syah	сиёҳ	siyoh	'black'
ده	dh	дах	dah	'ten'
فربه	frbh	фарбех	farbeh	'fat'

Table 6: Examples of ε (ayn) Mapping mapping

Farsi	Farsi Translit.	Tajik	Tajik Translit.	English
عضو	'zw	узв	uzw	'limb'
علامت	'lamt	аломат	alomat	ʻsign'
فعاليت	f'alyt	фаъолият	fa'oliyat	'activity'
ساعت	sa't	соат	soat	'hour'
تاريخ	taryx	таърих/торих	ta'rix/torix	'history'
تاریخ قرآن	qron	Қуръон	Qur'on	'Quran'

3.3 Persian Ezafe/Izofat Detection

The Persian Ezafe (known as izofat in Tajik) is a Persian grammatical feature that links an modifier to a preceding head noun (or preceding modifier) through the unstressed affix /-i/ (or /-yi/) in Tajik, and /-e/ (or /-ye/) in Farsi (Perry 2005). Example 2 demonstrates its usage to link an adjective to a head noun, and Example 3 demonstrates its usage to denote possession.

This affix manifests itself in different ways in both scripts. In accordance with its phonetic nature, the Tajik standard always writes the Ezafe as an - $\mathbf{\Pi}$ attached to the previous word. When it is added to a word that ends with - $\mathbf{\Pi}$, the accent is dropped and it becomes - $\mathbf{\Pi}$. However, when it is added to a word with - $\mathbf{\Pi}$, either the accent is dropped and it becomes - $\mathbf{\Pi}$ or it is preserved.

In contrast, the Perso-Arabic script almost always omits the Ezafe, so the reader must infer its location from the surrounding context. Typically, the Ezafe is only always written as a ω when added to the plural marker /-ho/ ω . This behavior can be seen in Examples 4 and 5. Otherwise, if it is absolutely needed to disambiguate a phrase, it is written as a a diacritic at the end of the head noun.

(2) خانه زیبا хонаи зебо xona-i zebo house-EZ beautiful

'The beautiful house'

Table 7: One to many mappings of consonants from Tajik to Farsi

Phoneme	Tajik	Farsi
/z/	3	j
		ذ
		ت ض ظ
		ظ
/s/	С	س
		س ص ث
		ث
/t/	\mathbf{T}	ت ط
		ط
/h/	Ҳ	ح
		٥

(3) خانه مرد хонаи мард xona-i mard

'The man's house'

house-EZ man

خانههای مرد (4) хонаҳои мард xona-ho-i mard house-PL-EZ man

'The man's houses'

خانههای زیبا مرد (5) хонаҳои зебои мард xona-ho-i zebo-i mard house-PL-EZ beautiful-EZ man

'The man's beautiful houses'

The Ezafe has the potential to drastically change a given sentence's phrasal boundaries, and subsequently, its meaning (Doostmohammadi et al. 2020). As such, a given sentence in Farsi can be written one way but interpreted in several, as demonstrated in Examples 6 and 7 (with explicitly marked Ezafe).

در پیِ اتفاقاتِ دیروز او استعفا داد Дар пайи иттифоқоти дирӯз ӯ истеъфо дод dar pay-i ittifoqot-i dirüz ü iste'fo dod Following-EZ events-EZ yesterday (s)he resign did

'Following yesterday's events, he/she resigned'

در پې اتفاقات ديروز او استعفا داد Дар пайи иттифоқот дирӯз ӯ истеъфо дод dar pay-i ittifoqot dirüz ü iste'fo dod Following-EZ events yesterday (s)he resign did

'Following the events, (s)he resigned yesterday'

While the word-final -II can simply be ignored when converting from Tajik to Farsi, the opposite direction is another matter. When converting from Farsi to Tajik, a complete system must infer the Ezafe's location, which can only be determined from semantic - rather than orthographic - context. Unfortunately, despite the dearth of literature on the Ezafe, to our knowledge there exists only one publicly available Ezafe detection tool by Etezadi et al. (2022). Moreover, its Ezafe detection accuracy has not been measured and verified.

3.4 The Conjunction "va"

The conjunction "and" also presents a unique set of problems. In Tajik, its two equivalents are the independent Ba /va/ and the enclitic -y/-u/ (Perry 2005). However, in Farsi both forms are written as 9. There is no way to distinguish between the two possibilities when transliterating from Farsi to Tajik. An exception to this rule may be poetry, where the surrounding context would guide a reader's pronunciation. Examples 8 and 9 demonstrate these different forms with a single Farsi phrase from our dataset.

This causes several issues for transliteration from Farsi to Tajik. The first is that it presents our models with two equally-valid transliterations of the same word. This could act as "noise" for our model, and result in a completely invalid transliteration. It also complicates efforts to evaluate the word-level and character-level accuracy of our model.

- تاجیک و ایرانی و افغان (8) тоҷик ва эронӣ ва афғон tojik va eronī va afghon Tajik and Iranian and Afghan
- (9) تاجیک و ایرانی و افغان точику эрониву афғон tojik-u eroni-vu afghon Tajik-AND Iranian-AND Afghan

3.5 Zero-width Non-joiner

The Zero-width Non-joiner (ZWNJ) is a very common yet invisible (non-printing) character used solely when writing Farsi with a keyboard. Placing it between two Farsi characters causes them to be written as if they were separated, meaning in their initial and final forms, respectively. In informal texts, it is common to see the ZWNJ either simply removed or replaced with a space. As a general rule, words written with a ZWNJ in Farsi are also written as single words in Tajik.

There are several situations in which the ZWNJ is used: affixes, verbal auxiliaries, the Persian object marker *ro*, the present tense conjunction, and compound nouns.

Table 8 and Table 9 demonstrate the ZWNJ with examples for the present tense conjunction and the following affixes: the plural marker, the Persian object marker "ro", and the verbal auxiliary.

Table 8: Different Ways to Separate Affixes

Farsi with ZWNJ	Farsi without ZWNJ	Farsi with Space
موضوعرا	موضوعرا	موضوع را
خانهها	خانهها	خانه ها
میخواهم	میخواهم	خواهم می
كتابفروش	كتابفروش	فروش كتاب

Table 9: Separated Affixes in Farsi

Farsi	Farsi Translit.	Tajik	Tajik Translit.	English
کردہ است	krdh ast	кардааст	kardaast	'has done'
خانهها	xanh ha	хонахо	xonaho	'houses'
موضوعرا	mwzw' ra	мавзўъро	mavzü'ro	'the subject'
میخواهم	myxwahm	мехоҳам	mexoham	'I want'
كتابفروش	ktabfrwš	китобфурўш	kitobfurüš	'book seller'

3.6 The Glottal Stop '**b**'

This character ъ represents the glottal stop and typically corresponds to an instance of Farsi *'ayn* ε . However, it often presents inconsistencies, occurring in the absence of *'ayn* or disappearing when *'ayn* is present. The most common example of this is the word COAT/ шаш meaning 'hour'. An incorrect transliteration of this word would result in COЪAT instead. This character can even be duplicated, such as in the word Фаъолият which is sometimes written as фаъъолият. Although the character is extremely common, omission of this character does not hinder comprehension on a sentence level.

3.7 The Dash Character in Tajik

4 Previous Work

4.1 Finite-State Transducer

Megerdoomian & Parvaz (2008) developed the first-ever system designed to tackle Tajik to Farsi transliteration, creating a proof-of-concept system based on a finite-state transducer (FST). The FST converts Tajik to Farsi, overgenerating a number of possible transliterations for the input data based on a number of given contextual rules. All results are then subject to morphological analysis and a dictionary lookup. If the system finds morphological match or lexical match, then that match is used (in that order of testing). If no match is found, it selects the most-likely form using "rules of thumb" based letter frequencies. Their system achieved 89.8% accuracy in transliterating a document from Tajik to Farsi, and generated 6.27 alternative spellings for the average token.

4.2 Statistical Machine Transliteration

Davis (2012) introduced a phrase-based statistical machine transliteration model for Tajik-Farsi transliteration. In this model, the transliteration model translates at the word-level using character-based n-grams, rather than at the word-level using word-based n-grams. This work created character-level language models based on Tajik and Farsi corpora made from online news sources and a training corpus of 3,503 pairs. Due to a lack of parallel corpora, evaluation of model's accuracy was conducted using two tasks: part of speech (POS) tagging and machine translation. For part of speech tagging, a Tajik POS tagger was trained on transliterated text and its accuracy was compared to a subset of the corpus to the reported accuracy of other Farsi POS taggers on the unrelated Bijankhan corpus. The SMT model achieved an accuracy of 92.52%. In the machine translation task, he transliterated Tajik to Farsi, and then translated the resulting Farsi into English using Google Translate. The system achieved a BLEU score of 0.2349. As this BLEU score was \approx 90% within Google's BLEU score for Farsi to English, the system's raw accuracy was approximated at \approx 90%. However, as both BLEU score and PoS tagger accuracy are not meant to be compared across datasets without recalculation, we consider these results invalid and do not reference them.

5 Related Work

As stated earlier, machine transliteration is typically used for the transcription of named entities, rather than translation to a highly related dialect. However, that does not mean that Tajik and Farsi are in a singular situation. Several other languages present similar levels of intelligibility and digraphia, and machine transliteration has been investigated in these cases as well. Ahmadi (2019) presented a rule-based approach for Sorani Kurdish transliteration between an Arabic-based and a Latin-based orthography. Talafha et al. (2021) describe a model based on Recurrent Neural Networks (RNN) for transliteration between Jordanian Arabic written in the Arabic script and in a non-standard romanization known as Arabizi. For the extinct Ottoman Turkish, Jaf & Kayhan (2021) explored rule and lexicon-based transliteration to aid documentation efforts. Durrani et al. (2010) trained conditional and joint probability models for Hindi-Urdu, also two

closely-related varieties of one macrolanguage. Following recent orthography reforms, Salaev et al. (2022) explored rule-based transliteration for Uzbek.

6 Dataset

6.1 Dataset Compilation

To effectively train and evaluate our model, we require Tajik-Farsi parallel data aligned on a word-to-word basis. Unfortunately, due to lexical and grammatical differences and translator bias, parallel texts sourced from organizations such as the United Nations or Jehovah's Witnesses generally contain extremely divergent sentence pairs. This renders usage of such texts inappropriate for our purposes. To amass as much data as possible, we collected data from various sources on the Internet. Our efforts created the very first digraphic Tajik-Farsi corpus (Merchant & Tang 2024). On top of this data, we include a digraphic dataset released by another group after our own. Tables 10 and 11 provide comparison of the two corpora. We note that the second corpus consists of both a dictionary and poetry collection, so we do not include sentence statistics. To our knowledge, both datasets have not undergone in-depth analysis from native speakers and therefore may occasionally contain incorrect correspondences. We note that creation of digraphic dataset checked by native speakers presents another avenue for research.

We determined combined usage of these two datasets to be sufficient for our purposes based on related work in transliteration. In the case of Tajik and Farsi, Davis (2012) used a list of only 3,503 words. In the NEWS 2018 Shared Task on Machine Transliteration (Chen et al. 2018), the submitted neural models achieved F-scores of almost 80% or more on language pairs with datasets ranging in same from 6,000 to 41,318 individual names per language pair. Taking this into account we judge our dataset to be more than adequate, especially considering the fact that our model operates at the character level.

Table 10: Our Corpus Statistics *Note we did not consider the whitespace character

Statistics	Farsi	Tajik
# of sentences	2,813	2,813
# of word tokens	43,846	42,226
# of characters*	186,414	222,986
Avg. # of tokens in a sentence	15.59	15.01
Avg. # of characters* in a sentence	66.27	79.27

Table 11: Stibiumghost Corpus Statistics *Note we did not consider the whitespace character

Statistics	Farsi	Tajik
# of word tokens	403,829	392,924
# of word tokens (excl. dictionary)	360,294	349,389
# of characters*	1,555,580	1,862,938
# of characters* (excl. dictionary)	1,258,628	1,533,549

6.1.1 Online Blogs and BBC Articles

After an extensive search, we found two main sources of parallel data online: blogs and British Broadcasting Corporation (BBC) News. The two blogs we found were written by Persian-speakers who knew both scripts and dealt with a wide variety of topics that include poetry and politics²³. To filter our posts written in only script or other languages (mainly Russian), we opted to manually collect these data rather than use an automatic website scraping tool. We were also able to find 23 BBC News articles written in both scripts⁴⁵. These articles almost exclusively deal with politics, and exhibited a similar degree of word-to-word alignment. Due to the small number of articles, we elected to collect these by hand as well. Our corpus contains 2,813 Tajik-Farsi sentences with average Tajik and Farsi sentence lengths of 15.59 and 15.01 words respectively, as shown in Table 10 (Merchant & Tang 2024). We note that our our corpus will eventually be made freely available to the broader linguistics community.

6.1.2 Dictionary and Poetry

Several months after creating our dataset, another group released their own set of digraphic Persian data on GitHub for the purpose of Tajik to Farsi transliteration (stibiumghost 2022). This includes parallel news texts, a Classical Persian poetry collection, and a Farsi-Tajik dictionary. This data is publicly available on the project's GitHub repository. The dictionary contains 43,525 entries, and the rest of the corpus consists of 37,940 Tajik-Farsi sentences with average Tajik and Farsi sentence lengths of 49 and 42.91 words respectively. The combined statistics has been shown in Table 11.

6.2 Data Processing

6.2.1 Alignment and Normalization

As the corpus that we compiled was not aligned on a sentence-to-sentence basis, we utilized GaChalign, a Python implementation of the Gale-Church alignment algorithm, to do so (Tan & Bond 2014). Afterwards, we normalize the data by stripping it of any and all characters that are not Perso-Arabic or Tajik-Cyrillic letters, including Arabic diacritics, numbers, and punctuation. We also strip the hyphen character from our Tajik data, which is often used to show that a certain word is made up of two words. This is typically seen in poetry, for example the single word K-a3, made up of KII (which) and a3 (from). Preliminary testing showed that this character only provided additional noise to our data, so we deemed it unnecessary.

6.2.2 Separated Affix Normalization

As described earlier, certain affixes in Farsi can be written in several different ways. As the authors of our data incorporate both the ZWNJ and a single space to separate these affixes, we opted to normalize this data. To do so, we connected all the affixes we could find (using a rule-based

²https://dariussthoughtland.blogspot.com/

³https://jaamjam.blogspot.com/

⁴https://www.bbc.com/tajik

⁵https://www.bbc.com/persian

approach) to the preceding stem using the ZWNJ. We provide the ZWNJ to our model as an an acceptable Farsi grapheme.

7 System Description

7.1 Transformer-based G2P Conversion

The transformer architecture has become an increasingly popular and successful choice for sequence-to-sequence conversion in recent years, rivaling the previously state-of-the-art recurrent neural networks (RNNs) with less data and training time (Wu et al. 2021). Previously applied mainly to larger tasks, such as machine translation, question answering, and summarization, more and more research has begun applying it to character and sub-word level tasks, such as G2P conversion, transliteration, and morphological inflection. Here too, the model has replicated its initial success ⁶. We train the model in both directions, Farsi to Tajik and Tajik to Farsi.

We apply a encoder-based seq2seq model based on that proposed by Yolchuyeva et al. (2019) using the DeepPhonemizer tool from Schäfer et al. (2023). The transformer architecture consists of 4 encoder and decoder layers, with four parallel attention layers. The size of the embeddings is 256 and the dimension of the feed-forward neural network inner layer is 1024. Our code⁷ and data⁸ are both available available to access online.

7.2 Model Training

To prepare our dataset, we utilize ten-fold cross validation, ensuring that for each model interation, we use a unique (and randomized) split. Our overall dataset is split into 80% training, 10% dev, and 10% test sets, with this split being applied to each individual source of data (dictionaries, blogs, poetry etc.)

We trained our model with an initial learning rate of 0.001 and multiplied the value by 0.5 if performance on the validation set did not improve for 10 epochs. We also implement a warmup phase of 5 epochs, and set the dropout rate for both the encoder and decoder to 0.1 to combat overfitting (Srivastava et al. 2014). Due to hardware limitations, batch size is set to 16. Training hyperparameters are not changed when training in either direction. With these settings, we found that training our model past 100 epochs did not lead to significant differences in accuracy.

8 Evaluation and Results

8.1 Metrics

As this task blends translation with transliteration, we report several evaluation metrics to evaluate our model from different viewpoints 9. As previous efforts presented indirect metrics due

⁶We are aware that LLMs could also be utilized for this task, but elected to only use transformers due to the abundance of literature applying transformer models to transliteration and the lack thereof for LLMs.

⁷https://github.com/merchantrayyan/NACIL_ParsTranslate/tree/main

[%]https://github.com/merchantrayyan/ParsText

⁹As we only present one model, we do not present a trajectory of learning over epochs. However, in future, different hyperparameters should be experimented with and the results of these across epochs could then be compared.

to a lack of parallel data, the results provided in Table 12 also set a baseline for future efforts (including our own).

Character F-score (chrF) is based on the intuition that more accurate translations will tend to have characters that appear in a human's translation. To do so, it compares the number of character n-gram overlaps between the system output and the reference transliteration. While the base implementation only looks at character n-grams (and is therefore slightly optimistic), recent research from Popović (2017) has shown that a modified version (chrF++), which takes unigrams and bigrams into account, better reflects human judgement. As such, we provide chrF++ as our main metric.

Sequence Accuracy is the percentage of model outputs that are exactly the same as their expected counterpart. Due to differences in word segmentation between Farsi and Tajik, this is calculated by removing all spaces from both the reference transliteration and the system output and comparing the two resulting sequences.

Relaxed Sequence Accuracy (RSA) denotes the total number of correct sequences combined with the number of sequences one edit distance away and vice versa. A single edit distance is defined as a single addition, subtraction, or substitution to the predicted sequence that would make it exactly the same as the reference sequence.

Average Levenshtein Distance (Avg. LD) is realized as the average Levenshtein (or edit) Distance between the expected output sequence and the model prediction.

Levenshtein Distance Ratio (LD Ratio) is taken as the ratio of the Levenshtein Distance to the length of max(expectedoutput, modeloutput). Given an expected sequence and a reference sequence, a NPER of 0.0 means that the sequences are exactly identical, while a NPER of 1.0 means that they have nothing in common.

F-score is deemed a more appropriate metric for character-level evaluation due to the fact that raw accuracy would not accurately reflect less-common characters. We created a confusion matrix by aligning reference translations to our system output, and then calculate the overall F-score as well as the F-score for consonants and vowels. This data is presented in Tables 13, 14, and 15.

8.2 Results

Interestingly, our results revealed that our model performed significantly better on Tajik-to-Farsi transliteration than Farsi-to-Tajik across all metrics, seen in Table 12. Although the Sequence Accuracy between Farsi-to-Tajik and Tajik-to-Farsi (with ZWNJ) are within 0.4% of each other, the chrF++ scores of 58.70 and 65.43 show a greater difference in performance. Interestingly, omitting the ZWNJ drastically increases Sequence Accuracy for Tajik-to-Farsi from 34.37% to 50.46%, chrF++ from 65.43 to 74.20, and decreases the Levenshtein Distance Ratio (L.D. Ratio) from 0.09 to 0.05. As the ZWNJ is an invisible character, we consider these results to be much more representative of our model's performance in this direction.

The stark contrast in these directions suggests that Farsi-to-Tajik transliteration poses a much greater challenge to our model than Tajik-to-Farsi transliteration. Comparison of the F1 scores shown in Tables 13 and 14 reveals vowel prediction to be the primary factor, with a weighted F1 score of 0.85 from Farsi-to-Tajik lagging behind the 0.99 achieved by Tajik-to-Farsi. A contributing factor to this may have been the surprising inability of our model to correctly transliterate the character *he* when in word-final position, despite the prevalence of the prepositions 4 and 4 (KII and 6a) as seen in Examples 10 and 11. Beyond vowel prediction, our model

also failed to predict semantically-important features such as the conjunction "va" and the Ezafe, as seen in Examples 10, 11, and 12.

Although our model performed better on Tajik-to-Farsi transliteration, several issues are stillclear. Most notably, prediction of the ZWNJ proves to be more difficult than anticipated, with its omission causing significant improvements across all metrics. Since the ZWNJ does not impact comprehension, our model still outputs quite understandable transliterations, as seen in Examples 13, 14, and 15. Of course, some small errors remain, as demonstrated by the Macro F1 score of 0.95 in 15, and the unsuccessful deletion of the vowel "vav" in Example 15. The Macro F1 score in Table 13 in particular suggests that mapping to the redundant Farsi consonants may have caused a small issue. Although such incorrect mapping has greater semantic implications than the ZWNJ, it would cause only minimal confusion for a native speaker.

For all examples, the first line is the input sequence, the second line is the reference (correct) transliteration, and the final line is our system output. Incorrect and omitted letters are indicated in bold.

Table 12: Evaluation metrics for model performance in both directions

Model	chrF++	Seq. Acc.	RSA+1	RSA+2	Avg. L.D.	L.D. Ratio
Farsi→Tajik	58.70	33.99%	46.55%	52.39%	3.79	O.II
Tajik→Farsi (ZWNJ)	65.43	34.37%	56.78%	69.68%	2.12	0.09
Tajik→Farsi (No ZWNJ)	74.20	50.46%	70.59%	82.86%	1.38	0.05

Table 13: F1 scores for predicted consonants in both directions (without ZWNJ)

	Macro F1	Micro F1	Weighted F1
<u>Farsi</u> →Tajik	0.97	0.98	0.98
Tajik→Farsi	0.94	0.99	0.98

Table 14: F1 scores for predicted vowels in both directions (without ZWNJ)

	Macro F1	Micro Fi	Weighted F1
Farsi→Tajik	0.80	0.86	0.85
Tajik→Farsi	0.97	0.99	0.99

- نگو که چشم مرا مونس نگاه نبود (١٥) нагӯ ки чашм**и** маро мўнис**и** нигох набуд
 - наг**у** к**аҳ** чашм м**у**ро м**у**нис ниг**а**ҳ набуд
- (II) این باز مارا به بحث خط و زبان می آرد ин боз моро ба баҳс**и** хат**ту** забон меорад ин боз моро б**еҳ** баҳс хат **в** забон меорад

Table 15: F1 scores for all predicted characters in both directions (without ZWNJ)

	Macro F1	Micro F1	Weighted F1
Farsi→Tajik	0.91	0.93	0.90
Tajik→Farsi	0.95	0.99	0.98

که ز خرمنهای خوش اعمی بود (۱2) می کشد آن دانه را با حرص و بیم ки зи хирманҳои хуш аъмо бу**ва**д мекашад он донаро бо ҳирс**у** бим

к**ах** з**е** хирманх**й** хваш аъмо буд м**ай**кашад он донаро б**й** хирс в бим

(13) забони давлатии Точикистон забони точикӣ аст נبان دولتی تاجیکستان زبان تاجیکی است

زبان دولتی تاجیکستان زبان تاجیکی است

(14) бидонем кистему аз кучо меоем بدانیم کیستیم و از کجا میآییم

بدانیم کیستیمو از کجا میایم

(15) Гуфт Исрофилро Яздони мо Ки бирав зон хок пур кун каф биё گفت اسرافیلرا یزدان ما که برو زان خاک پر کن کف بیا

> گفت اسرافیلرا یزدان ما که برو زان خاک **یور کون** کف بیا

9 Conclusion and Future Work

In this paper, we explored the challenges of Tajik-Farsi transliteration and presented a transformer-based transliteration approach as an alternative to machine translation. Our results prove our approach to be viable, with our model achieving strong chrF++ scores of 58.70 (Farsi-to-Tajik), 65.43 (Tajik-to-Farsi), and 74.20 (Tajik-to-Farsi without the ZWNJ) on novel digraphic datasets. Our usage of digraphic texts by native speakers, as opposed to word lists or non-corresponding texts, allowed for realistic evaluation of model performance inter-word features such as the conjunction "va", the ZWNJ, and the Ezafe.

Further analysis revealed our model encountered significant issues in Farsi-to-Tajik transliteration. In this direction, our model achieved lower results across all metrics, most notably a weighted F1 score of 0.85 for vowel prediction. Its inability to detect the Ezafe also negatively impacted sentence meaning. Transliteration in the opposite direction proved to be much easier, with a 16.09% increase in Sequence Accuracy when the semantically-trivial ZWNJ was omitted. Overall, our model generally outputs quite understandable Tajik-to-Farsi transliterations. In both directions, our model's results set a strong baseline across a variety of metrics, thus allowing for comparison with future efforts and highlighting the key challenges Tajik-Farsi transliteration presents.

The success of this approach also suggests that it can be applied to other cases of digraphia with non-phonetic and phonetic written standards, including but not limited to: Arabic (Talafha et al. 2021), Hindi-Urdu (Durrani et al. 2010), Kurdish (Ahmadi 2019), Azeri (Zohrabi et al. 2023), Konkani (Rajan 2014) and even Ottoman Turkish (Jaf & Kayhan 2021). In the case of Hindi-Urdu and Ottoman Turkish, both of these languages borrow heavily from Persian to the point where even Ezafe detection would be necessary.

Our future work will focus on hyperparameter tuning, Ezafe detection, and further data acquisition to increase model performance. In particular, our Ezafe detection and additional data from different domains will greatly improve the versaility of our model. We hope that our efforts contribute to the development of a practical Tajik-Farsi transliteration tool, further connecting Tajikistan with the broader Persian-speaking world.

Funding information

The work was partly performed during a research visit by Rayyan Merchant funded by the Summer Undergraduate International Research Program, University of Florida.

CRediT authorship contribution statement

We follow the CRediT taxonomy¹⁰.

Conceptualization: RM; Data curation: RM; Formal Analysis: RM, AKR, KT; Funding acquisition: RM, Investigation: RM; Methodology: RM, AKR, KT; Supervision: AKR, KT; Visualization: RM; Writing: RM; and Writing – review & editing: RM, AKR, KT.

Acknowledgements

We would like to thank the audience at the Third North American Conference in Iranian Linguistics (NACIL 3) for their feedback and comments on our work. Significant thanks are due to Dr. Christopher Geissler, Anna Stein, Anh Kim Nguyen, Julika Weber, Lara Rüter, Nina Stratmann, and Ann-Sophie Haan for their support, advice, and assistance throughout this project. All remaining errors are our own.

¹ohttps://credit.niso.org/

Abbreviations

FST Finite-State Transducer
POS Part of Speech
BBC British Broadcasting Corporation
G2P Grapheme-to-Phoneme
TTS Text-to-Speech
RNN Recurrent Neural Network
ZWNJ Zero-width Non-joiner

References

Ahmadi, Sina. 2019. A rule-based Kurdish text transliteration system. ACM Transactions on Asian and Low-Resource Language Information Processing 18(2). doi:10.1145/3278623.

Chen, Nancy, Rafael E. Banchs, Min Zhang, Xiangyu Duan & Haizhou Li. 2018. Report of NEWS 2018 Named Entity Transliteration Shared Task. In *Proceedings of the Seventh Named Entities Workshop*, 55–73. Melbourne, Australia: Association for Computational Linguistics. doi:10.18653/v1/W18-2409. http://aclweb.org/anthology/W18-2409.

Davis, Chris Irwin. 2012. Tajik-Farsi Persian transliteration using statistical machine translation. In Nicoletta Calzolari, Khalid Choukri, Thierry Declerck, Mehmet Uğur Doğan, Bente Maegaard, Joseph Mariani, Asuncion Moreno, Jan Odijk & Stelios Piperidis (eds.), *Proceedings of the Eighth International Conference on Language Resources and Evaluation (LREC'12)*, 3988–3995. Istanbul, Turkey: European Language Resources Association (ELRA). https://aclanthology.org/L12-1601/.

Doostmohammadi, Ehsan, Minoo Nassajian & Adel Rahimi. 2020. Persian Ezafe recognition using transformers and its role in part-of-speech tagging. In Trevor Cohn, Yulan He & Yang Liu (eds.), Findings of the association for computational linguistics: Emnlp 2020, 961–971. Online: Association for Computational Linguistics. doi:10.18653/v1/2020.findings-emnlp.86. https://aclanthology.org/2020.findings-emnlp.86/.

Durrani, Nadir, Hassan Sajjad, Alexander Fraser & Helmut Schmid. 2010. Hindi-to-Urdu machine translation through transliteration. In Jan Hajič, Sandra Carberry, Stephen Clark & Joakim Nivre (eds.), *Proceedings of the 48th Annual Meeting of the Association for Computational Linguistics*, 465–474. Uppsala, Sweden: Association for Computational Linguistics. https://aclanthology.org/P10-1048.

Etezadi, Romina, Mohammad Karrabi, Najmeh Zare, Mohamad Bagher Sajadi & Mohammad Taher Pilehvar. 2022. DadmaTools: Natural language processing toolkit for Persian language. In *Proceedings of the 2022 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies: System Demonstrations*, 124–130. Hybrid: Seattle, Washington + Online: Association for Computational Linguistics. doi: 10.18653/v1/2022.naacl-demo.13. https://aclanthology.org/2022.naacl-demo.13.

- Ghufronov, Daler. 2008. Shifting Tajik writing system to Arabic script takes a lot of time, says minister. ASIA-Plus https://www.asiaplustj.info/en/news/29/20080721/shifting-tajik-writing-system-arabic-script-takes-lot-time-says-minister.
- Haddow, Barry, Rachel Bawden, Antonio Valerio Miceli Barone, Jindřich Helcl & Alexandra Birch. 2022. Survey of low-resource machine translation. *Computational Linguistics* 48(3). 673–732. doi:10.1162/coli_a_00446. https://aclanthology.org/2022.cl-3.6/.
- Jaf, Ashti Afasyaw & Sema Koç Kayhan. 2021. Machine-Based Transliterate of Ottoman to Latin-Based Script. *Scientific Programming* 2021. 1–8. doi:10.1155/2021/7152935. https://www.hindawi.com/journals/sp/2021/7152935/.
- Megerdoomian, Karine & Dan Parvaz. 2008. Low-density language bootstrapping: the case of Tajiki Persian. In Nicoletta Calzolari, Khalid Choukri, Bente Maegaard, Joseph Mariani, Jan Odijk, Stelios Piperidis & Daniel Tapias (eds.), *Proceedings of the Sixth International Conference on Language Resources and Evaluation (LREC'08)*, Marrakech, Morocco: European Language Resources Association (ELRA). https://aclanthology.org/L08-1591/.
- Merchant, Rayyan & Kevin Tang. 2024. ParsText: A digraphic corpus for Tajik-Farsi transliteration. In Kyle Gorman, Emily Prud'hommeaux, Brian Roark & Richard Sproat (eds.), *Proceedings of the second workshop on computation and written language (cawl)* @ lrec-coling 2024, I-7. Torino, Italia: ELRA and ICCL. https://aclanthology.org/2024.cawl-1.1/.
- Perry, John R. 2005. A Tajik Persian Reference Grammar. Koninklijke Brill NV.
- Popović, Maja. 2017. chrF++: words helping character n-grams. In Ondřej Bojar, Christian Buck, Rajen Chatterjee, Christian Federmann, Yvette Graham, Barry Haddow, Matthias Huck, Antonio Jimeno Yepes, Philipp Koehn & Julia Kreutzer (eds.), *Proceedings of the Second Conference on Machine Translation*, 612–618. Copenhagen, Denmark: Association for Computational Linguistics. doi:10.18653/vi/W17-4770. https://aclanthology.org/W17-4770/.
- Rajan, Vinodh. 2014. Konkanverter a finite state transducer based statistical machine transliteration engine for Konkani language. In Christian Boitet & M.G. Abbas Malik (eds.), *Proceedings of the fifth workshop on south and southeast Asian natural language processing*, 11–19. Dublin, Ireland: Association for Computational Linguistics and Dublin City University. doi: 10.3115/VI/W14-5502. https://aclanthology.org/W14-5502/.
- Salaev, Ulugbek, Elmurod Kuriyozov & Carlos Gómez-Rodríguez. 2022. A machine transliteration tool between Uzbek alphabets. In *Proceedings of the ALTNLP the international conference and workshop on agglutinative language technologies as a challenge of natural language processing*, 42–50. Koper, Slovenia: CEUR Workshop Proceedings (CEUR-WS.org). https://ceur-ws.org/Vol-3315/paper05.pdf.
- Schäfer, Christian, Oleksiy Oliynyk & Moritz Haller. 2023. Deep-Phonemizer. https://github.com/as-ideas/DeepPhonemizer. commit: 5dce7e27556aef4426f5623baf6351d266a30a73.

- Srivastava, Nitish, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever & Ruslan Salakhutdinov. 2014. Dropout: A simple way to prevent neural networks from overfitting. *Journal of Machine Learning Research* 15(56). 1929–1958. http://jmlr.org/papers/v15/srivastava14a. html.
- stibiumghost. 2022. Tajik-to-Persian transliteration. https://github.com/stibiumghost/tajik-to-persian-transliteration. commit: 47792d13a97b60ea6ff562d20675cdf5e5e0a05e.
- Talafha, Bashar, Analle Abuammar & Mahmoud Al-Ayyoub. 2021. Atar: Attention-based LSTM for Arabizi transliteration. *International Journal of Electrical and Computer Engineering (IJECE)* 11(3). 2327–2334. doi:10.11591/ijece.viii3.pp2327-2334. https://ijece.iaescore.com/index.php/IJECE/article/view/22767.
- Tan, Liling & Francis Bond. 2014. NTU-MC toolkit: Annotating a linguistically diverse corpus. In Lamia Tounsi & Rafal Rak (eds.), *Proceedings of COLING 2014, the 25th international conference on computational linguistics: System demonstrations*, 86–89. Dublin, Ireland: Dublin City University and Association for Computational Linguistics. https://aclanthology.org/C14-2019/.
- Wikimedia Foundation. 2023a. List of wikipedias. https://en.wikipedia.org/wiki/List_of_Wikipedias.
- Wikimedia Foundation. 2023b. Statistics. https://fa.wikipedia.org/wiki/%D9%88%DB%8C%DA%98%D9%87:%D8%A2%D9%85%D8%A7%D8%B1.
- Wu, Shijie, Ryan Cotterell & Mans Hulden. 2021. Applying the transformer to character-level transduction. In Paola Merlo, Jorg Tiedemann & Reut Tsarfaty (eds.), *Proceedings of the 16th conference of the european chapter of the association for computational linguistics: Main volume*, 1901–1907. Online: Association for Computational Linguistics. doi: 10.18653/v1/2021.eacl-main.163. https://aclanthology.org/2021.eacl-main.163/.
- Yolchuyeva, Sevinj, Géza Németh & Bálint Gyires-Tóth. 2019. Transformer based grapheme-to-phoneme conversion. In *Interspeech 2019*, 2095–2099. doi:10.21437/Interspeech.2019-1954.
- Zohrabi, Reihaneh, Mostafa Masumi, Omid Ghahroodi, Parham AbedAzad, Hamid Beigy, Mohammad Hossein Rohban & Ehsaneddin Asgari. 2023. Borderless Azerbaijani processing: Linguistic resources and a transformer-based approach for Azerbaijani transliteration. In Jong C. Park, Yuki Arase, Baotian Hu, Wei Lu, Derry Wijaya, Ayu Purwarianti & Adila Alfa Krisnadhi (eds.), Proceedings of the 13th international joint conference on natural language processing and the 3rd conference of the Asia-Pacific chapter of the association for computational linguistics (volume 2: Short papers), 175–183. Nusa Dua, Bali: Association for Computational Linguistics. doi:10.18653/v1/2023.ijcnlp-short.20. https://aclanthology.org/2023.ijcnlp-short.20/.