

第09章 平面、曲面、旋转和实体

顾立平

函数2D图与函数3D图的介绍

2D函数图像

描绘函数在x-y平面上的曲线, 横轴为自变量,纵轴为因变量, 显示其变化趋势。

3D函数图像

扩展到三维空间,增加z轴表示 第三个维度,直观展示函数形 状和变化,适用于多变量函数 分析。

物理学中的3D图 示

力学与电磁学中,3D图用于展示物体轨迹、电场磁场分布,便于理解和分析。

工程学中的3D建模

结构工程和流体动力学中,3D图用于模拟应力分布、流体流动,支持工程设计和优化。

生物学的3D展示

分子生物学展示蛋白质结构,生态学通过2D/3D图 揭示种群动态,助力研究理解。

数据分析的可视化

通过2D/3D图分析数据分布、趋势和相关性,简化复杂信息,增强科研洞察。

金融分析工 具

绘制股票2D图,展示价格随时间变化,辅助投资者理解市场动态,制定投资策略。

市场营销分 析

使用2D图表跟踪销售额和市场份额,评估营销效果,依据消费者行为图像调整产品和策略。

成本控制与 生产管理

通过2D函数图分析 生产成本与库存随 时间或生产量的变 化,实现生产过程 的优化和成本控制。

等差数列的介绍

等差数列定义

数列相邻项差为常数,此常数为公差,体现数学基本规律。

通项公式阐述

an=a1+(n-1)d,揭示数列第n项与首项、公差的关系。

求和公式详解

Sn=□2×(2a1+(n-1)d),用于计 算数列前n项和,方便计算与应用。

描述匀加速运动中物体的 位移、速度随时间的线性 变化规律,帮助理解运动 学原理。

99

用于模拟温度梯度,计算 热量线性传递,分析热力 学过程中的变化规律。

33

计算天体位置变化,预测 近似匀速运动轨迹,便于 天文观测与预测。

33

预测种群数量的线性增长 或下降,分析生物种群在 特定环境下的动态变化。

"

等差数列在运动学中的应用

热学中的等差 数列

天文学中的等 差数列应用

生物学中的等 差数列

063 等差数列

Contour Plot for the Saddle

01 等差数列在金融分析的应用

用于股票市场趋势预测,计算贷款还款,协助投资者制定策略。

02 等差数列营销应用

预测销售额线性增长,制定销售目标和营销策略,模拟市场份额变化。

03 等差数列在库存管理中的应用

预测库存线性变化,帮助企业设定合理库存和补货策略,确保供应链管理。

04 交互式曲面图应用

提供三维数据的直观展示,便于识别模式和趋势,适用于大数据集的交互式分析,支持决策制定。

物理学中的交互式 曲面图

用于展示温度、压力等物 理量空间分布,旋转缩放 揭示复杂物理现象。

生物学中的应用

交互式图表用于基因表达 和蛋白质结构分析,帮助 识别基因互动和蛋白质功 能。

地球科学中的交互 式曲面图

展示地形地貌与气候变化, 动态视图便于理解地球表 面复杂性和趋势。

064 交互式:曲面图

064 交互式:曲面图

金融分析应用

交互式曲面图揭示股票价格动态,助力投资者洞察市场波动, 做出精准投资决策。

02 市场分析工具

通过交互式曲面图分析产品销量趋势,企业可及时调整营销策略,提升市场竞争力。

(供应链管理创新 使用交互式曲面图监控库存与物流,企业能优化管理流程,提 高运营效率。

交互式技术优势 绕x轴旋转功能使用户能多角度观察数据变化,动态分析提升决策效率。

Avoid Timing Market

EDITABLE STROKE

物理学中的三维旋转

模拟刚体旋转、流体涡旋,交互式旋转帮助科学家直观分析运动现象。

生物学中的结构观察

绕x轴旋转分析蛋白质、DNA结构, 探索生物大分子内部的动态变化。

地球科学的地质模拟

通过地球模型的旋转模拟地壳运动、 地球自转,助力理解地质现象。

天文学中的星体旋转

旋转模拟星体和星系运动,帮助天文学家研究星系演化、恒星轨迹等。

三维产品设计 使用x轴旋转查看产品多角度,确保设计准确美观,全 面评估形状、比例和结构。

广告与媒体制作 通过x轴旋转创建视觉效果,动态展示产品细节和功能, 吸引观众注意力。

虚拟现实与增强现实 在VR和AR中, x轴旋转作为交互方式, 让用户自由探索不同视角, 增强沉浸感。

数据分析与可视化 利用x轴旋转展示三维数据的不同视图,帮助用户从不同角度理解数据,深入洞察信息和规律。

交互式几何实体

用户可直接操作几何形状,如点、 线、面及复杂三维模型,应用于 三维建模、VR和AR。

用户可动态调整大小、形状、位置,实现对几何实体的灵活操控。

提供丰富视图角度和渲染设置, 以适应不同领域(如建筑、机械、 生物等)的展示需求。

065 交互式:绕x轴旋转

用于模拟流体流动、结构变形,参数 调整便于理解物理现象。

物理学中的几何实体应用

展示生物大分子结构,辅助药物设计,为疾病研究提供结构基础。

生物大分子结构分析

用于展示地球内部结构,研究地质现象,支持灾害预防和资源勘探。

地质学中的三维建模

三维CAD在工程设计中的应 用

工程师创建、修改产品设计,确保准确性和可行性,提高设计效率。

医学影像与手术模拟

构建人体器官三维模型,帮助医生进行手术规划,提高手术精确度和安全性。

交互式几何实体在 产品设计

设计师借助三维软件创建产品原型,优化设计,助力制造流程。

几何实体在广告媒 体

用于创造视觉特效和动画,提 升广告吸引力,增强观众互动 体验。

在虚拟现实与增强 现实

作为构建VR和AR场景基础, 创建沉浸式环境,广泛应用于 游戏、教育和展览。

066 函数2D3D绘图

067 交互式:几何实体

数据科学R与Python实践

谢谢

gulp@mail.las.ac.cn