ELEVATOR PICH Team 4

DETECTING AND CLASSIFYING DEFECTS IN CHIPS WITH COMPUTER VISION

Why Does This Matter?

- Manual defect inspection in semiconductors is slow, error-prone, and expensive.
- Existing systems struggle with tiny, overlapping, or complex defects.
- Result: Increased costs, lower yield, and reliability issues in chips.

A Multi-Model AI System for Defect Detection

- Used 5 advanced Machine Learning, Deep Learning and Vision Models
- Real-time detection via Flask/Streamlit interface
- Cloud-deployed on AWS (S3 + EC2)
- Supports continuous learning through feedback

Our Workflow Pipeline

- 1. Data Collection: PCB (1.3k images), Wafer (811k+ maps)
- 2. Preprocessing: Resize, normalize, augment, and label
- 3. Modeling: Train & evaluate five models with stratified K-fold
- 4. Deployment: Flask UI + AWS Cloud + Real-time inference

Model Performance Highlights

Model	Accuracy	Precision	Recall	Inference Time
YOLOv8	98%	95%	93%	1 sec
CNN (Wafer)	95%	98%	90%	Moderate
ResNet	87%	89%	94%	2 sec
Faster R-CNN	87%	86%	90%	2 sec
V-DETR	40%	44%	40%	High

Product Demo Snapshot

From Image to Insight

- Upload interface (PCB/Wafer image)
- Real-time prediction + bounding boxes
- Immediate result & feedback loop
- (Insert interface screenshots)

Innovation Highlights

- Multi-model comparison & evaluation
- Human-in-the-loop continuous training
- Highly scalable via AWS deployment
- Integrated front-end for industrial usability

Thank you.