Algebraic Structures

Ji, Yong-hyeon

February 12, 2025

We cover the following topics in this note.

- · Group, Ring, Field
- Module, Vector Space, Algebra

Figure 1: Algebraic Structures

Binary Operation

Definition. Let *S* be a nonempty set. A **binary operation on** *S* is a function

$$*: S \times S \rightarrow S$$
,

which assigns to each ordered pair $(a, b) \in S \times S$ an element $*(a, b) = a * b \in S$.

$$\boxed{S \times S} \qquad (a,b) \longrightarrow \boxed{*} \qquad a * b \longrightarrow \boxed{S}$$

Example 1. A binary operation on a set *S* is a rule that assigns to every ordered pair $(a, b) \in S$ an element $a * b \in S$.

• (Addition on Integers) Let $S = \mathbb{Z}$ and define

$$+: \mathbb{Z} \times \mathbb{Z} \to \mathbb{Z}, \quad (a,b) \mapsto +(a,b) = a+b.$$

This rule is a binary operation because the sum of any two integers is an integer.

• (*Maximum of Two Real Numbers*) Let $S = \mathbb{R}$ and define

$$\max : \mathbb{R} \times \mathbb{R} \longrightarrow \mathbb{R}$$

$$(a,b) \longmapsto \max\{a,b\}.$$

For any two real numbers, their maximum is again a real number, so this is a valid binary operation.

Semi-group

Definition. A **semigroup** is an algebraic structure (S, *) where:

- (i) $S \neq \emptyset$;
- (ii) $*: S \times S \rightarrow S$ is a binary operation that is associative: for all $a, b, c \in S$,

$$(a * b) * c = a * (b * c).$$

Example 2. A semigroup (S, *) is a set S together with a binary operation * that is associative.

• (*Positive Integers under Addition*) Let $S = \mathbb{Z}^+ = \{1, 2, 3, ...\}$ and define addition as the operation. For $a, b, c \in \mathbb{Z}^+$,

$$(a + b) + c = a + (b + c).$$

and the sum of two positive integers is again a positive integer.

• (*The Set* {0,1} *under Multiplication*) We consider the set

$$S = \{0, 1\}$$
 (or \mathbb{Z}_2 or \mathbb{F}_2)

and define binary operation \times : $S \times S \rightarrow S$ by the usual multiplication of numbers. That is, $\forall a, b \in S$,

$$a \times b = \begin{cases} 0 & : a = 0 \text{ or } b = 0 \\ 1 & : a = 1 \text{ and } b = 1 \end{cases}$$
.

The multiplication table for *S* is

$$\begin{array}{c|c|c|c}
\times & 0 & 1 \\
\hline
0 & 0 & 0 \\
\hline
1 & 0 & 1
\end{array}$$

We check that (S, \times) is a semigroup:

- Closure: For $a, b \in S$, the product $a \times b$ is either 0 or 1; hence $a \times b \in S$.
- Associativity: The operation is associative.

Note that (S, \times) is in fact a *monoid* since there is the multiplicative identity 1 s.t.

$$1 \times a = a = a \times 1$$
 for all $a \in S$.

• (Singular Matrices under Matrix Multiplication) Let

$$S := \{A \in M_{n \times n}(\mathbb{R}) : \det(A) = 0\}$$
, the set of all $n \times n$ singular matrices over \mathbb{R} ,

the set of all $n \times n$ singular matrices over \mathbb{R} , and define the operation as matrix multiplication.

- Closure: If A and B are singular, then det(AB) = det(A) det(B) = 0; hence, AB is singular.
- Associativity: Matrix multiplication is associative.

Since the identity matrix (which is non-singular) is not in S, this semigroup does not have an identity element.

Monoid

Definition. A **monoid** is a semigroup (S, *) that contains the *identity element*. That is, there exists the element $e \in S$ such that for all $a \in S$.

$$e*a = a = a*e$$
.

Example 3. A monoid is a semigroup that also has an identity element.

- (Nonnegative Integers under Addition) Let $S = \mathbb{Z}_{\geq 0} = \{0, 1, 2, \dots\}$ and define addition on $\mathbb{Z}_{\geq 0}$.
 - Associativity: Addition is associative.
 - **–** Identity: The element $0 ∈ \mathbb{Z}_{>0}$ is the identity since

$$0 + a = a + 0 = a$$
 for each $a \in \mathbb{Z}_{\geq 0}$.

- (All Square Matrices under Multiplication) Let $S = M_n(\mathbb{R})$, the set of all $n \times n$ matrices with real entries, and define the operation as matrix multiplication.
 - Associativity: Matrix multiplication is associative.
 - Identity: The identity matrix I_n (with ones on the diagonal and zeros elsewhere) satisfies

$$I_n A = A = A I_n$$
 for all $A \in M_n(\mathbb{R})$.

Group

Definition. A **group** is a monoid (S, *) in which every element has the *inverse*. That is, for all $a \in S$, there exists the element $b \in S$ such that

$$a * b = e = b * a.$$

Such $b \in S$ is called an *inverse* of a, and is commonly denoted $b = a^{-1}$.

Remark 1. A **group** is an algebraic structure (G, *) satisfying the following axioms:

- (G0) (Closure) $\forall a, b \in G, \ a * b \in G$;
- (G1) (Associativity) $\forall a, b, c \in G$, (a * b) * c = a * (b * c);
- (G2) (Identity) $\exists e \in G : \forall a \in G, a * e = a = e * a;$
- (G3) (Inverse) $\forall a \in G, \ \exists a^{-1} \in G : a^{-1} * a = e = a * a^{-1}.$

Example 4. A group (G, *) is a monoid in which every element has the inverse.

- (Integers under Addition) Let $G = \mathbb{Z}$ and define addition on \mathbb{Z} .
 - Associativity: Addition is associative;
 - Identity: The integer 0 is the identity;
 - Inverse: For every $a \in \mathbb{Z}$, the element $-a \in \mathbb{Z}$ is its inverse since a + (-a) = 0 = (-a) + a.

This group is abelian because addition is commutative.

• (Bijections under Composition) Let *X* be a nonempty set. Consider the set

$$G = \mathcal{F} := \left\{ f \in X^X : f \text{ is a bijection} \right\}.$$

Define the binary operation \circ as the composition of functions. The structure (\mathcal{F}, \circ) forms a group:

- Associativity: Composition is associative.
- Identity: $id_X : X \to X$, $x \mapsto x$ for all $x \in X$.
- Inverse: Every bijection f has an inverse function f^{-1} .

• (General Linear Group) Let

$$G = GL(n, \mathbb{R}) = \{ A \in M_n(\mathbb{R}) : \det(A) \neq 0 \},$$

with the operation of matrix multiplication.

- Associativity: Matrix multiplication is associative.
- Identity: The identity matrix I_n is the identity.
- Inverse: Every matrix in $GL(n,\mathbb{R})$ is invertible. This group is generally non-abelian.

Remark 2. A group (G, *) is called an **abelian group** (or **commutative group**) if the binary operation * is *commutative*; that is, for all $a, b \in G$,

$$a * b = b * a$$
,

Example 5 (Lie-bracket). Let g be a vector space over a field F. A **Lie bracket** on g is a bilinear map

Then, for all $x, y, z \in \mathfrak{g}$,

$$[x, [y, z]] = [x, yz - zy] = x(yz - zy) - (yz - zy)x = xyz - xzy - yzx + zyx,$$

$$[[x, y], z] = [xy - yx, z] = (xy - yx)z - z(xy - yx) = xyz - yxz - zxy + zyx.$$

Thus, Lie bracket is *not* associative.

Left and Right Cancellation

Proposition 1. *Let* G *be a group, and let* a, b, c, $d \in G$. *Let* $e \in G$ *is the identity of* G.

- (1) (Left Cancellation) $ca = cb \implies a = b$.
- (2) (Right Cancellation) $ac = bc \implies a = b$.
- (3) $ab = e \iff ba = e$

Proof. (1) $ca = cb \implies c^{-1}(ca) = c^{-1}(cb) \implies (c^{-1}c)a = (c^{-1}c)b \implies ea = eb \implies a = b.$

- (2) $ac = bc \implies (ac)c^{-1} = (bc)c^{-1} \implies a(cc^{-1}) = b(cc^{-1}) \implies ae = be \implies a = b.$
- (3) (\Rightarrow) $ab = e \implies a^{-1}(ab) = a^{-1}e \implies b = a^{-1} \implies ba = e$
 - $(\Leftarrow) \ ba = e \implies b^{-1}(ba) = b^{-1}e \implies a = b^{-1} \implies ab = e$

Uniqueness of Identity and Inverse

Proposition 2. *Let G be a group.*

- (1) The identity $e \in G$ is unique.
- (2) For each $a \in G$, the inverse $a^{-1} \in G$ is unique.

Proof. (1) Let e, e' are identities of G. Then

$$e = ee' = e'$$
.

 e' is an identity of G

(2) Let a_1^{-1} , a_2^{-1} are inverses of $a \in G$. Then

$$aa_1^{-1} = aa_2^{-1} \implies a_1^{-1} = a_2^{-1}$$
 by left cancellation law.

Ring

Definition. A **ring** is an algebraic structure $(R, +, \cdot)$ where:

- (i) (R, +) is an abelian group with identity element 0: that is, for all $a, b, c \in R$:
 - Associativity: (a + b) + c = a + (b + c);
 - Commutativity: a + b = b + a;
 - Identity: There exists $0 \in R$ such that a + 0 = a;
 - Inverse: For every $a \in R$, there exits an element $-a \in R$ with a + (-a) = 0.
- (ii) (R, \cdot) is a semigroup; that is, multiplication is associative:

$$(a \cdot b) \cdot c = a \cdot (b \cdot c)$$
 for all $a, b, c \in R$.

(iii) Distributivity (Compatibility):

Multiplication is distributive over addition; that is, for all
$$a, b, c \in R$$
,

$$a \cdot (b+c) = a \cdot b + a \cdot c$$
 and $(a+b) \cdot c = a \cdot c + b \cdot c$.

Some authors require the existence of a multiplicative identity (an element $1 \in R$ such that $1 \cdot a = a = a \cdot 1$ for all $a \in R$); if so, the ring is called a ring with unity.

Example 6.

- (The Integers \mathbb{Z}) Consider $R = \mathbb{Z}$ with the usual addition and multiplication.
 - $-(\mathbb{Z},+)$ is an abelian group (with identity 0).
 - Multiplication is associative.
 - The distributive laws hold, i.e., a(b+c) = ab + ac and (a+b)c = ac + bc for all $a,b,c \in \mathbb{Z}$.

This ring is also commutative and has a multiplicative identity 1.

- (Polynomial Ring $\mathbb{C}[x]$) Let $R = \mathbb{C}[x]$, the set of all polynomials in x with complex coefficients.
 - $(\mathbb{C}[x], +)$ is an abelian group (with the zero polynomial 0 as the identity).
 - Polynomial multiplication is associative.
 - The distributive laws hold, i.e., f(x)(g(x) + h(x)) = f(x)g(x) + f(x)h(x) and (f(x) + g(x))h(x) = f(x)h(x) + g(x)h(x) for all $f(x), g(x), h(x) \in \mathbb{C}[x]$.

This ring is also commutative and has a multiplicative identity 1 (the constant polynomial 1).

Field

Definition. A **field** an algebraic structure $(F, +, \cdot)$ such that

- (i) (F, +) is an abelian group with additive identity element 0;
- (ii) $(F \setminus \{0\}, \cdot)$ is a commutative group with multiplicative identity element 1, where $0 \neq 1$;
- (iii) Distributivity: Multiplication is distributive over addition; that is, for all $a, b, c \in F$,

$$a \cdot (b + c) = a \cdot b + a \cdot c$$
.

A field *F* is a commutative division ring.

Remark 3. A field is the smallest algebraic structure in which we can perform all the arithmetic operations +, -, \times , \div (division by nonzero element), so in particular every nonzero element must a the multiplicative inverse.

Example 7. A field is a commutative ring with unity in which every nonzero element is invertible under multiplication.

- (The Real Numbers \mathbb{R}) Let $F = \mathbb{R}$ with the usual addition and multiplication.
 - $-(\mathbb{R},+)$ is an abelian group (with 0 as the additive identity)
 - $-(\mathbb{R}\setminus\{0\},\cdot)$ is an commutative group (with 1 as the multiplicative identity)
 - Multiplicative distributes over addition.
- (Finite Field \mathbb{Z}_p) Let p be a prime number and define

$$\mathbb{Z}_p := \{0, 1, \dots, p-1\},$$

with addition and multiplication defined modulo *p*.

- $-(\mathbb{Z}_p,+)$ is an abelian group with the additive identity 0.
- $(\mathbb{Z}_p \setminus \{0\}, \cdot)$ is a commutative group with the multiplicative identity 1 since every nonzero element has a unique inverse module p^1 .
- The distributive laws hold.

¹By Bézout's identity, for $a, b \in \mathbb{Z}$, $\exists x, y \in \mathbb{Z}$ s.t. $ax + by = \gcd(a, b)$. Let p be a prime. Then for any integer $a \in \mathbb{Z}$, $\exists x, y \text{ s.t. } ax + py = \gcd(a, p) = 1$, and so $ax \equiv 1 \pmod{p}$.

Module

Definition. Let R be a ring with unity 1_R . An R-module is an structure $(M, +, \cdot)$ consisting of an abelian group (M, +) together with a scalar multiplication $\cdot : R \times M \to M$ that satisfies the following axioms for all $r, r_1, r_2 \in R$ and $m, m_1, m_2 \in M$:

$$(i)^a r \cdot (m_1 + m_2) = r \cdot m_1 + r \cdot m_2$$

$$(ii)^b (r_1 + r_2) \cdot m = r_1 \cdot m + r_2 \cdot m$$

$$(iii)^c (r_1r_2) \cdot m = r_1 \cdot (r_2 \cdot m)$$

$$(iv)^d$$
 $1_R \cdot m = m$.

Remark 4. Consider *R*-module $(M, +, \cdot)$. Let $m \in M$. Since $0_R = 0_R + 0_R$, we have

$$0_R \cdot m = (0_R + 0_R) \cdot m = 0_R \cdot m + 0_R \cdot m.$$

Then

$$0_R \cdot m - 0_R \cdot m = 0_R \cdot m + 0_R \cdot m - 0_R \cdot m$$

and so $0_M = 0_R \cdot m + 0_M$, i.e., $0_M = 0_R \cdot m$.

Vector Space

Definition. Let *F* be a field. A *vector space* over *F* is a structure $(V, +, \cdot)$ satisfying:

- (i) (V, +) is an abelian group with identity element $0 \in V$.
- (ii) $\cdot: F \times V \to V$ is a function called *scalar multiplication*.
- (iii) The following axioms hold: for all $a, b \in F$ and $u, v \in V$,

(a)
$$a \cdot (u + v) = a \cdot u + a \cdot v$$
.

(b)
$$(a + b) \cdot v = a \cdot v + b \cdot v$$
.

(c)
$$a \cdot (b \cdot v) = (ab) \cdot v$$
.

(d) $1_F \cdot v = v$ where 1_F denotes the multiplicative identity in F.

In other words, we say *V* is a vector space over a field *F* if *V* is a *F*-module

^aDistributivity over Module Addition

^bDistributivity over Ring Addition

^cAssociativity of Scalar Multiplication

^dUnital Property (if *R* is unital)

Algebra over a Field

Definition. Let *F* be a field. An *F*-algebra is a quadruple $(V, +, \cdot, \circ)$ where

- (i) a (V, +) is an abelian group (with additive identity 0).
- (ii)^b $(V, +, \cdot)$ is an *F*-vector space. That is, for all $x, y \in V$ and $\lambda, \mu \in F$,
 - $\lambda \cdot (x + y) = \lambda \cdot x + \lambda \cdot y$,
 - $(\lambda + \mu)x = \lambda \cdot x + \lambda \cdot x$,
 - $(\lambda \mu) \cdot x = \lambda \cdot (\mu \cdot x)$,
 - $1_F \cdot x = x$.
- (iii)^c There is a binary operation

$$\circ: V \times V \to V$$
,

which is *F*-bilinear. That is, for all $x, y, z \in V$ and all $\lambda \in F$,

$$(\lambda x + y) \circ z = \lambda(x \circ z) + (y \circ z),$$

$$x \circ (\lambda y + z) = \lambda(x \circ y) + (x \circ z).$$

An algebra (V, \circ) over a ring F, where F is a field and the F-module is a vector space.

References

[1] 수학의 즐거움, Enjoying Math. "수학 공부, 기초부터 대학원 수학까지, 13. 대수학: 군, 환, 체, 가군, 벡터공간, 대수의 정의" YouTube Video, 27:06. Published October 7, 2019. URL: https://www.youtube.com/watch?v=6DP6UQ2sPus.

^aAbelian Group Structure

^bVector Space Structure

^cAlgebra Multiplication