PHIL3110 - Exam

Maxwell Bo

June 21, 2018

Part A

Problem 1

1. Let $\beta = \{ \varphi \mid \varphi \in \Gamma \land \varphi \in \Delta \}$.

Say there's some φ such that $\beta \models \varphi$ but $\varphi \notin \beta$. If $\varphi \notin \beta$, then $\varphi \notin \Gamma$ and $\varphi \notin \Delta$.

ABORTATIVE I looked for a counter-example φ that could both be true in two separate sets, but when stripped of its environment (all the ψ s in which $\psi \in \Gamma$ but $\psi \notin \Delta$, and vice-versa) allowed a derivation to something that was not in Γ and Δ . I found this very difficult.

2. Let Ξ be $\{\varphi\}$ such that for any ψ not equal to φ , $\varphi \not\vdash \psi$. In other words, φ only derives itself.

 Ξ is a theory. By completeness, $\Xi \models \varphi$, and $\varphi \in \Xi$. Furthermore, also by completeness, there is no ψ such that $\Xi \models \psi$ and $\psi \notin \Xi$.

Choose some arbitrary χ . Let $\Gamma = \Xi \cup \{\chi\} \cup \{$ sentences required to make Γ a theory $\}$.

 Ξ is a proper subset of Γ . Γ is a theory. Yet Ξ is a theory. This serves as a counter-example.

Problem 2

$$(P \to Q) \to P$$

Problem 3

Let A be the range of the increasing total recursive function $f: \omega \to \omega$. We interpret "range" to mean the image of the function, not its co-domain.

Thus,

$$A = im(f) = \{ f(a) \mid a \in dom(f) \}$$

Recalling Definition 190¹ and Definition 191², we'll construct a function that for any n will verify whether or not it is in A, and halts in finite time.

We'll reason informally about this function.

First, we'll assume that im(f) is finite. As f is increasing, it is injective. As it is injective, dom(f) is finite. As f is a total recursive function, it halts in finite time for all inputs in its domain. Therefore, collecting all f(n) for every $n \in dom(f)$ halts in finite time. Checking membership of a finite set halts in finite time. If a is in this set, $a \in A$, otherwise $a \notin A$.

Secondly, we'll assume that im(f) is infinite. For every $n \in dom(f)$, we compute f(n) (in finite time). If f(n) = a, we halt, and confirm that $a \in A$. If f(n) > a, we halt, and confirm that $a \notin A$. As f is increasing, we can assume that some successive n will never produce something that is equal to a - e.g. we are allowed to halt when f(n) > a. As $a \in A$ describes some finite point in the ordered ω , checking that $a \in A$ will halt in finite time.

¹Page 124 of course notes

²Page 124 of course notes

Problem 4

Given:

- for $x \in M$, x is regular $\Leftrightarrow x \in R^{\mathcal{M}}$
- for $x \in N$, x is perfect $\Leftrightarrow x \in P^N$
- \bullet Every derivation in M is regular
- \bullet Every derivation in N is perfect

We'll assume for both \mathcal{M} and \mathcal{N} , that for each constant symbol $a, a^{\mathcal{M}} = a$ and $a^{\mathcal{N}} = a$ We can thus conclude that $M = R^{\mathcal{M}}$ and $N = P^{\mathcal{N}}$. We can say that $\mathcal{M} \models \forall x R x$ and $\mathcal{N} \models \forall x P x$.

- 1. \mathcal{N} has a non-empty quantifiable domain, N. If $\mathcal{N} \models \forall x P x$, then $\mathcal{N} \models \exists x P x$. Therefore, $\mathcal{N} \models \exists x P x$.
- 2. Fix \mathcal{M}^+ such that there is some new $m \in \mathcal{L}(C)$, such that $m^{\mathcal{M}^+} = m$, where $m \notin P^{\mathcal{M}^+}$. \mathcal{M}^+ is a valid substitute for \mathcal{M} , as it can be constructed using the rules specified prior.

Thus, $\mathcal{M} \not\models \forall x P x$.

- 3. Note that $\forall xRx$ is a Π_1 sentence (a \forall -sentence). By Theorem 139(2)³, if φ is Π_1 , and $N \subseteq M$, and $\mathcal{M} \models \varphi$, then $\mathcal{N} \models \varphi$. As specified prior $\mathcal{M} \models \forall xRx$. Therefore $\mathcal{N} \models \forall xRx$.
- 4. \mathcal{N} has a non-empty quantifiable domain, N. If $\mathcal{N} \models \forall x P x$, then $\mathcal{N} \models \exists x P x$. For $N \subseteq M$ to be true, if $m \in P^{\mathcal{N}}$, then $m \in P^{\mathcal{M}}$. Therefore $m \in P^{\mathcal{M}}$. Therefore $\mathcal{M} \models \exists x P x$.

Problem 6

1. Let \mathcal{M} be a model with domain $M = \{\}$.

 $\not\exists x(x=x)$ is a consequence.

Furthermore, we run into some strangeness when we find that $\forall x(x \neq x)$ is a consequence.

 $\forall x \varphi(x) \Rightarrow \exists x \varphi(x)$ no longer holds either.

In other words, free logic admits existentially quantified formulas always being false in the empty domain, and universally quantified formulas always being true.

Furthermore, the notion that $\neg \exists x \varphi(x) \Rightarrow \forall x \neg \varphi(x)$ ceases to be meaningful.

2. Rules

We're also going to consider \exists in the set logical vocabulary, because, why not?

³Page 85 of course notes

where E!c expands to $\exists x(x=c)^4$.

By new we mean that the name a has not occurred anywhere on the branches above.

3. Our goal is to show that if $\models_f \varphi$, then $\vdash_{Tab} \varphi$. In other words, if every model \mathcal{M} (of the language φ) is such that if $\mathcal{M} \models \varphi$ then the tableau commencing with $\neg \varphi$ is closed.

By contraposition, if $\not\vdash_{Tab} \varphi$ then $\not\models_f \varphi$.

In other words, if the tableau commencing with $\neg \varphi$ does not close, then there is some \mathcal{M} such that $M \models \neg \varphi$.

Rather than choosing some open branch \mathcal{B} of a tableau commencing with $\neg \varphi$, and defining a $\mathcal{M}^{\mathcal{B}}$, and reasoning with +-complexity, we'll use a Δ that is maximally consistent⁵ and existentially witnessed⁶ set of of sentences.

Let \mathcal{M}^{Δ} be such that:

- M^{Δ} is the set of constant symbols a occurring in the stentences in Δ .
- for each constant symbol a, let $a^{\mathcal{M}} = a$
- for each n-ary relation symbol R of $\mathcal{L}(C)$ let $R^{\mathcal{M}}$ be the set of n-tuples $\langle a_1, ..., a_n \rangle$ such that $Ra_1, ..., a_n$ is in Δ .

Reiterating

Claim 120 Suppose Δ is maximal consistent. Then $\varphi \in \Delta \Leftrightarrow \mathcal{M}^{\Delta} \models \varphi$

but eliding Proof 120^7 .

We will show $\varphi \in \Delta \Rightarrow \mathcal{M}^{\Delta} \models \varphi$

We proceed by induction on the complexity of the forumula.

Base

Suppose $\psi := \chi$. Then

$$\chi \in \Delta \Leftrightarrow \mathcal{M}^{\Delta} \models \chi$$

This flows trivially from Claim 120.

Induction Step

• Suppose $\psi := \chi \wedge \delta \in \Delta$.

We claim that $\chi \wedge \delta \in \Delta$ iff both $\chi \in \Delta$ and $\delta \in \Delta$.

If $\chi \wedge \delta \in \Delta$, then by Claim 120 and tableau rule (\wedge), we have both χ and δ in Δ .

$$\chi \wedge \delta \in \Delta \Rightarrow \chi \in \Delta \text{ and } \delta \in \Delta$$

 $\Leftrightarrow \mathcal{M}^{\Delta} \models \chi \text{ and } \mathcal{M}^{\Delta} \models \delta$
 $\Leftrightarrow \mathcal{M}^{\Delta} \models \chi \wedge \delta$

The first \Rightarrow is via our claim; the second \Leftrightarrow is by induction hypothesis; and the last \Leftrightarrow is from the \models definition.

 $^{^4\}mathrm{I}$ had to do this because the forest package wouldn't typeset leaves over a certain number of characters

⁵ for an arbitrary φ either $\varphi \in \Delta$ or $\neg \varphi \in \Delta$

⁶if $\exists x \varphi(x) \in \Delta$, then for some constant symbol $a, \varphi(a) \in \Delta$

⁷Page 77 of course notes

• Suppose $\psi := \neg \chi$.

If $\chi \in \delta$, then by CLAIM 120 and tableau rule (\neg) , $\chi \notin \Delta$.

$$\neg \chi \in \Delta \Leftrightarrow \chi \not\in \Delta$$
$$\Leftrightarrow \mathcal{M}^{\Delta} \not\models \chi$$
$$\Leftrightarrow \mathcal{M}^{\Delta} \models \neg \chi$$

The first \Leftrightarrow is via the completeness of Δ ; the second \Leftrightarrow is by the induction hypothesis; and the last is via the \models definition.

• Suppose $\psi := \forall x \chi(x)$.

We claim $\forall x \chi(x) \in \Delta$ for every constant symbol $a \in \mathcal{L}(C)$ such that $\chi(a) \in \Delta$.

Suppose $\forall x \chi(x) \in \Delta$.

Suppose $\mathcal{L}(C) \neq \{\}$, which given our definition of \mathcal{M}^{Δ} , occurs when $M^{\Delta} \neq \{\}$.

Then by claim Claim 120 and tableau rule (\forall) , for all $a \in \mathcal{L}(C)$, $\chi(a) \in \Delta$.

Suppose $\mathcal{L}(C) = \{\}$. We assert that there must be something in Δ that says there is no $a \in \mathcal{L}(C)$.

Then by Claim 120 and tableau rule (\forall) , there is some φ of the form $\neg \exists y (y = a)$ such that $\varphi \in \Delta$.

On the other hand, if for some some $a \in \mathcal{L}(C)$, $\chi(a) \in \Delta$, then by Claim 120 and (\forall) , $\forall x \chi(x) \in \Delta$.

Then we have

$$\forall x \chi(x) \in \Delta \Rightarrow \text{ for all } a \in M^{\Delta}, \ \chi(a) \in \Delta \text{ or } \neg \exists y (y = a) \in \Delta$$

 $\Leftrightarrow \text{ for all } a \in M^{\Delta}, \ \mathcal{M}^{\Delta} \models \chi(a) \in \Delta \text{ or } \mathcal{M}^{\Delta} \models \neg \exists y (y = a)$
 $\Leftrightarrow \mathcal{M}^{\Delta} \models \forall x \chi(x)$

The first \Rightarrow is via our claim; the second \Leftrightarrow is by induction hypothesis; and the final \Leftrightarrow is was via the \models definition.

• Suppose $\psi := \exists x \chi(x)$.

Then we claim $\exists x \chi(x) \in \Delta$ iff there is some constant symbol $a \in \mathcal{L}(C)$ such that $\chi(a) \in \Delta$. Suppose $\exists x \chi(x) \in \Delta$.

By the construction of Δ^8 , Claim 120 and tableau rule (\exists), there is some $a \in \mathcal{L}(C)$ such that $\chi(a) \in \Delta$.

Furthermore we may also say that there exists some φ of the form $\exists y(y=a)$, such that $\varphi \in \Delta$. We would not be able to say this if Δ were not existentially witnessed.

Then we have

$$\exists x \chi(x) \in \Delta \Leftrightarrow \text{there is some } a \in M^{\Delta} \text{ such that } \chi(a) \in \Delta \text{ and } \exists y(y=a) \in \Delta$$

 $\Leftrightarrow \text{ there is some } a \in M^{\Delta} \text{ such that } \mathcal{M}^{\Delta} \models \chi(a) \text{ and } \mathcal{M}^{\Delta} \models \exists y(y=a)$
 $\Leftrightarrow \mathcal{M}^{\Delta} \models \exists x \chi(x)$

The first \Rightarrow is via our claim; the second \Leftrightarrow is by induction hypothesis; and the final \Leftrightarrow is was via the \models definition.

The other cases are left as exercises for the marker.

⁸it is existentially witnessed