A Complete Characterization of Projectivity for Statistical Relational Models

Manfred Jaeger ¹ Oliver Schulte ²

¹Aalborg University, Denmark ²Simon Fraser University, Vancouver, Canada

Statistical Relational Models

Possible Worlds

Heterogeneous relational structures that allow multiple types of relationships and nodes:

Generative probabilistic model

We are concerned with families of distributions:

$$P^{(n)}$$
 $(n \in \mathbb{N})$

where $P^{(n)}$ is a distribution over n-worlds.

Exchangeability

We always assume that all distributions are exchangeable:

$$P^{(3)}(a - b c) = P^{(3)}(a_{n_312} - a_{n_87})$$

Why families of generative models?

- inherently multi-relational.
- ▶ **inductive:** learning from *training worlds* $\omega_1, \ldots, \omega_N$ (of different sizes); prediction for *query entities* embedded in a new world ω_q .
- ► flexible inference: computation of arbitrary conditional probabilities.

Projectivity and Extendability

The probability of a fixed substructure does not depend on the size of the domain it is embedded in:

Marginalization: $P^{(n)} \rightsquigarrow P^{(n)} \downarrow [m]$ by Fenstad sampling:

Projectivity

The family $(P^{(n)})_n$ is **projective**, if for all m < n:

$$P^{(n)}\downarrow [m]=P^{(m)}.$$

Extendability

 $P^{(m)}$ is **extendable** if for every n there exists $P^{(n)}$ such that

$$P^{(n)}\downarrow [m]=P^{(m)}$$

Why projective families?

- Exact size of domain may be unknown or changing over time.
- Inference complexity independent of domainsize (inference is extremely lifted!)
- Avoid *degeneracy:* extreme probabilities (0 or 1) for queries as $n \to \infty$

AHK Models

Adaptation of representation of infinite exchangeable arrays by Aldous (1981), Hoover (1979), Kallenberg (2006).

D variables

Describe a world by value assignment to the collection of variables that describe the m-ary data for induced sub-structures of size m (m = 1, ..., arity(S)):

Example: $S = \{red/1, edge/2\}$.

State space for $D_{(i)}$ variables:

State space for $D_{(i,j)}$ variables:

AHK plate representation

Model components:

- D-variables
- *U*-variables: i.i.d., uniform on [0, 1]
- Conditional distribution of D's given U's defined by deterministic functions $f^{(m)}$ $m=1,\ldots,a$.

Main Result and Discussion

Main Result

Equivalent for distribution $P^{(m)}$:

- $ightharpoonup P^{(m)}$ extendable
- $ightharpoonup P^{(m)}$ projective extendable
- $ightharpoonup P^{(m)}$ has AHK representation

Equivalent for family $(P^{(n)})_n$:

- $ightharpoonup (P^{(n)})_n$ projective
- \triangleright $(P^{(n)})_n$ has AHK representation

Discussion

Done:

- Comprehensive characterization of projectivity and related properties
- ➤ Some understanding of implications for computational and statistical tractability

To do:

Algorithmic solutions for learning and inference with AHK models

References

David J Aldous. Representations for partially exchangeable arrays of random variables. *Journal of Multivariate Analysis*, 1981.

D. N. Hoover. Relations on probability spaces and arrays of random variables. HPreprint, Institute for Advanced Study, Princeton, NJ, 2, 1979.

Olav Kallenberg. Probabilistic symmetries and invariance principles. Springer, 2006.