

CS 4364/6364 Machine Learning

Fall Semester 8/31/2023
Lecture 3.
Probability and Information Theory

John Sipple jsipple@gwu.edu

Probability

Language of uncertainty

x - Random Variable (RV), that can take on a value in its domain

x = x, An Event where RV x takes on a value x

Degree of belief that x will occur given that we know y has occurred:

$$P(x=x|y=y) \in [0, 1]$$

Probability Mass Function

The domain of P must be the set of all possible states (events) of x.

$$\forall x \in \mathbf{x}, 0 \leq P(x) \leq 1$$

From P(Impossible Event) = 0 to P(Completely Certain Event) = 1

The PMF is normalized, ensuring that it bounded between 0 and 1: $\sum_{x \in \mathbf{x}} P(x) = 1$

Example: Uniform distribution with k possible events: $P(\mathbf{x} = x_i) = \frac{1}{k}$

Probability Density Function

The domain if p must be the set of all possible states of x.

$$orall x \in \mathbf{x}, p(x) \geq 0$$
 Note that we do not require $p(x) \leq 1$

$$\int p(x)dx = 1$$

Example: uniform distribution:

$$u(x;a,b) = \frac{1}{b-a}$$

https://en.wikipedia.org/wiki/Continuous_uniform_distribution

Marginal Probability

$$\forall x \in \mathbf{x}, P(\mathbf{x} = x) = \sum_{y} P(\mathbf{x} = x, \mathbf{y} = y)$$

$$p(x) = \int p(x, y) dy$$

GW

5

		Male	Female	Total
a	Football	120	75	195
	Rugby	100	25	125
	Other	50	130	180
		270	230	500

Adapted from: Marginal, Joint and Conditional Probabilities explained By Data Scientist https://towardsdatascience.com/marginal-joint-and-conditional-probabilities-explained-by-data-scientist-4225b28907a4

5

		Male	Female	Total
a	Football	0.24	0.15	0.39
	Rugby	0.2	0.05	0.25
	Other	0.1	0.26	0.36
		0.54	0.46	1

Marginal Probability (example)

5

Joint Probability P(s,a)

		Male	Female	Total
a	Football	0.24	0.15	0.39
	Rugby	0.2	0.05	0.25
	Other	0.1	0.26	0.36
		0,54	0.46	1

Marginal Probabilities $P(\mathbf{s}), P(\mathbf{a})$

$$P(s = Female)$$

$$= P(s = Female, a = Football) + P(s = Female, a = Rugby) + P(s = Female, a = Other)$$

 $= 0.46$

Joint and Conditional Probability

$$P(\mathbf{x} = x, \mathbf{y} = y)$$

$$= P(\mathbf{y} = y | \mathbf{x} = x)P(\mathbf{x} = x)$$

$$= P(\mathbf{x} = x | \mathbf{y} = y)P(\mathbf{y} = y)$$

$$P(y = y|x = x) = \frac{P(y = y, x = x)}{P(x = x)}$$

5

		Male	Female	Total	
	Football	0.24	0.15	0.39	
a	Rugby	0.2	0.05	0.25	Conditional Probabilities $P(\mathbf{s} \mathbf{a}), P(\mathbf{a} \mathbf{s})$
	Other	0.1	0.26	0.36	
		0.54	0.46	1	-

$$P(\mathbf{a} = Football | \mathbf{s} = Male) = \frac{P(\mathbf{a} = Football, \mathbf{s} = Male)}{P(\mathbf{s} = Male)} = \frac{0.24}{0.54} = 0.44$$

Chain Rule of Probability

Joint Probability for variables $x^{(1)}$, $x^{(2)}$, $x^{(3)}$

$$P(\mathbf{x}^{(1)}, \mathbf{x}^{(2)}, \mathbf{x}^{(3)}) = P(\mathbf{x}^{(1)})P(\mathbf{x}^{(2)}|\mathbf{x}^{(1)})P(\mathbf{x}^{(3)}|\mathbf{x}^{(2)}, \mathbf{x}^{(1)})$$

Joint Probability for n variables $x^{(1)}, x^{(2)}, ..., x^{(n)}$

$$P(\mathbf{x}^{(1)},\ldots,\mathbf{x}^{(n)}) = P(\mathbf{x}^{(1)}) \prod_{i=2}^{n} P(\mathbf{x}^{(i)}|\mathbf{x}^{(1)},\ldots,\mathbf{x}^{(i-1)})$$

Independence

$$orall x \in \mathrm{x}, y \in \mathrm{y}, \ p(\mathrm{x} = x, \mathrm{y} = y) = p(\mathrm{x} = x)p(\mathrm{y} = y)$$

Conditional Independence

$$\forall x \in \mathbf{x}, y \in \mathbf{y}, z \in \mathbf{z},$$
 $p(\mathbf{x} = x, \mathbf{y} = y | \mathbf{z} = z) = p(\mathbf{x} = x | \mathbf{z} = z)p(\mathbf{y} = y | \mathbf{z} = z)$

Expectation

$$\mathbb{E}_{\mathrm{x}\sim P}[f(x)] = \sum_x P(x)f(x)$$

$$\mathbb{E}_{\mathtt{x}\sim p}[f(x)] = \int p(x)f(x)dx$$

Linearity of expectations:

$$\mathbb{E}_{\mathbf{x}}[\alpha f(x) + \beta g(x)] = \alpha \mathbb{E}_{\mathbf{x}}[f(x)] + \beta \mathbb{E}_{\mathbf{x}}[g(x)]$$

Variance and Covariance

$$\operatorname{Var}(f(x)) = \mathbb{E}\left[\left(f(x) - \mathbb{E}[f(x)]\right)^2\right]$$

$$Cov(f(x), g(x)) = \mathbb{E}[f(x) - \mathbb{E}(f(x)(g(x) - \mathbb{E}(g(x)))]$$

Covariance Matrix

$$\Sigma = \operatorname{Cov}(\mathbf{x})_{i,j} = \operatorname{Cov}(\mathbf{x}_i, \mathbf{x}_j)$$

$$P(\mathbf{x} = 1) = \phi$$
 $P(\mathbf{x} = 0) = 1 - \phi$
 $P(\mathbf{x} = x) = \phi^x (1 - \phi)^{1-x}$
 $\mathbb{E}_{\mathbf{x}}[\mathbf{x}] = \phi$
 $\mathbf{Var}_{\mathbf{x}}(\mathbf{x}) = \phi(1 - \phi)$

Gaussian Distribution

Parameterized by variance

$$\mathcal{N}(x;\mu,\sigma^2) = \sqrt{rac{1}{2\pi\sigma^2}} \mathrm{exp}\left(-rac{1}{2\sigma^2}(x-\mu)^2
ight)$$

Parameterized by precision:

$$\mathcal{N}(x;\mu,eta^{-1}) = \sqrt{rac{eta}{2\pi}} \mathrm{exp}\left(-rac{eta}{2}(x-\mu)^2
ight)$$

Gaussian Distribution

Multivariate Gaussian

Parameterized by covariance matrix Σ :

$$\mathcal{N}(\mathbf{x}; \mu, \Sigma) = \sqrt{\frac{1}{(2\pi)^n \det(\Sigma)}} \exp\left(-\frac{1}{2}(\mathbf{x} - \mu)^T \Sigma^{-1}(\mathbf{x} - \mu)\right)$$

Parameterized by precision matrix β :

$$\mathcal{N}(\mathbf{x}; \mu, \beta^{-1}) = \sqrt{\frac{\det(\beta)}{(2\pi)^n}} \exp\left(-\frac{1}{2}(\mathbf{x} - \mu)^{\mathbf{T}}\beta(\mathbf{x} - \mu)\right)$$

Multivariate Gaussian

Long-tailed distribution

Often represents occurrence counts of some process

 λ controls the shape of the distribution

$$p(x; \lambda) = \lambda \mathbf{1}_{x>0} \exp(-\lambda x)$$

Laplace Distribution

Difference of two independent exponential variables

Peak at the mean μ

 γ controls the shape of the distribution

$$Laplace(x; \mu, \gamma) = \frac{1}{2\gamma} exp\left(-\frac{|x - \mu|}{\gamma}\right)$$

Dirac Delta Function

"Unit Impulse Function"

1 at parameter μ , 0 everywhere else

$$p(x) = \delta(x - \mu)$$

Empirical Distribution

Of m observed data points, each point $x^{(i)}$ gets weight 1/m

$$\hat{p}(\mathbf{x}) = \frac{1}{m} \sum_{i=1}^{m} \delta(\mathbf{x} - \mathbf{x}^{(i)})$$

Mixture Distributions

aka Multimodal distribution

$$P(\mathbf{x}) = \sum_{i} P(c = i) P(\mathbf{x}|\mathbf{c})$$

Gaussian mixture with three components

Figure 3.2

Logistic Sigmoid

Forces x (aka *logit*) into range of [0,1]:

Used in logistic regression, DNN binary classifiers to approximate probability

$$\sigma(x) = rac{1}{1 + \exp(-x)}$$

Soft Plus Function

Smoothed version of

$$x^+ = \max(0,x)$$

Can be used to parameterize σ in a Normal distribution

$$\zeta(x) = \log(1 + \exp(x))$$

Bayes Rule

$$P(\mathbf{x}|\mathbf{y}) = \text{posterior} = \frac{\text{likelihood} \times \text{prior}}{\text{evidence}} = \frac{P(\mathbf{y}|\mathbf{x})P(\mathbf{x})}{P(\mathbf{y})}$$

Change of Variables

Given a continuous, invertible, continuously differentiable function

$$\boldsymbol{y} = g(\boldsymbol{x})$$

Doesn't guarantee the area under the probability curve is 1!

$$p_y(oldsymbol{y})
eq p_x(g^{-1}(oldsymbol{y}))$$

Need to rescale:

$$p_x(oldsymbol{x}) = p_y(g(oldsymbol{x})) \left| \det \left(rac{\partial g(oldsymbol{x})}{\partial oldsymbol{x}}
ight)
ight|$$

Information Theory

Basic Idea: Learning that an unlikely event occurred is more informative than learning that a likely event occurred.

Information of a single event:

$$I(x) = -\log P(\mathbf{x} = x)$$

Entropy of a distribution:

$$egin{aligned} H(\mathbf{x}) &= \mathbb{E}_{x \sim P}\left[I(x)
ight] = -\mathbb{E}_{x \sim P}\left[\log P(x)
ight] \ H(\mathbf{x}) &= -\sum_x P(\mathbf{x} = x) \log P(\mathbf{x} = x) \end{aligned}$$

Entropy of a Coin Flip (Bernoulli RV)

$$H(x) = -(1-p)\log(p-1) - p\log(p)$$

Kullback-Leibler (KL) Divergence

Measures the difference between two distributions from the "perspective" of one distribution

$$D_{KL}(P||Q) = \mathbb{E}_{ ext{x}\sim P}\left[\lograc{P(x)}{Q(x)}
ight] = \mathbb{E}_{ ext{x}\sim P}\left[\log P(x) - logQ(x)
ight]$$

$$D_{KL}(P||Q) = \sum_x P(\mathrm{x} = x) \log rac{P(\mathrm{x} = x)}{Q(\mathrm{x} = x)}$$

KL Divergence is Asymmetric

Directed Structured Model

Figure 3.7

$$p(\mathbf{a}, \mathbf{b}, \mathbf{c}, \mathbf{d}, \mathbf{e}) = p(\mathbf{a})p(\mathbf{b} \mid \mathbf{a})p(\mathbf{c} \mid \mathbf{a}, \mathbf{b})p(\mathbf{d} \mid \mathbf{b})p(\mathbf{e} \mid \mathbf{c}).$$

Undirected Structured Model

$$p(a, b, c, d, e) = \frac{1}{Z}\phi^{(1)}(a, b, c)\phi^{(2)}(b, d)\phi^{(3)}(c, e).$$