

Classification

- Data $\{(x_i, y_i)\}_{i=1}^N x_i \in \Re^M y_i \in L$
- Learn: a mapping from x to discrete value y
 - f(x) = y
- Examples
 - Spam classification
 - Document topic classification
 - Identifying faces in images

Binary Classification

- We'll focus on binary classification
 - $y_i \in \{0,1\}$
- Usually easy to generalize to multi-class classification

Different Definition Fitting a function to data

- Fitting: Optimization, what parameters can we change?
- Function: Model, loss function
- Data: Data/model assumptions? How we use data?
- ML Algorithms: minimize a function on some data

Evaluation

Accuracy

number of correct predictions total number of predictions

- Other measurements appropriate for some tasks
 - Ex. we care more about certain types of mistakes

Regression

- Least squares regression
 - Outputs real number for each example
- It seems that classification should be easier!
- Let's use regression for classification
 - Learn least squares regression model f_w(x)=y
 - f_w(x)=w^Tx
 - If y>0, predict "True (1)"
 - If y≤0 predict "False (0)"

Regression for Classification

- f_w(x)=0 partitions the input space into two class specific regions
 - Linear decision boundary

Figures by Tommi Jaakkola

Regression for Classification

- Mismatch between regression loss and classification
 - Classification: accuracy
 - We don't care about large vs. small values of output
- Outliers problematic
 - Prediction of 42 for example is fine for classification, bad for regression
- We need output to be either 1 or 0

Machine Learning Fitting a function to data

- Fitting: Solve for w given y and x
- Function: Regression uses squared loss
 - Bad match for our task!
- Data: assume dependent variable linear combination of independent variables
- Our loss function doesn't match classification goals

Logistic Function

- Quick fix: apply a function to the output of regression that gives desired valued
- Logistic function
 - Outputs between0 and 1
 - ullet Scaling parameter lpha
 - Most outputs are close to 1 or 0

$$g_{\alpha}^{1 \text{ or } 0} = \frac{1}{1 + e^{-\alpha x}}$$

Logistic Function

Logistic Regression

We can combine the logistic function and our regression model

$$g(\mathbf{w}^T \cdot \mathbf{x}_i) = \frac{1}{1 + e^{-\mathbf{w}^T \cdot \mathbf{x}_i}}$$

- Notice: as $\mathbf{w}^T \cdot \mathbf{x}_i$ becomes:
 - Large- output closer to 1
 - Small- output closer to 0

Probabilistic View

- We want to model the probability of a label given the example
- p(y|x)Conditional likelihood
- Consider
 - We could maximize the joint: p(y, x)
 - Which can be factored as: p(x|y)p(y)
 - However, the best label y is the same under both:

$$\arg \max_{y=0,1} p(x | y)p(y) = \arg \max_{y=0,1} p(y | x)$$

Because x is fixed/given

Probabilistic View

We can now write the distribution as

$$p_w(y=1 \mid x) = \frac{1}{1 + e^{-w^T \cdot x}}$$

Which implies that

$$p_{w}(y=1 \mid x) = \frac{1}{1 + e^{-w^{T} \cdot x}}$$

$$p_{w}(y=0 \mid x) = \frac{e^{-w^{T} \cdot x}}{1 + e^{-w^{T} \cdot x}}$$

• The odds of the event is then
$$\frac{p_w(y=1\,|\,x)}{p_w(y=0\,|\,x)} = e^{w^T\cdot x}$$

And the log-odds are

$$\log \frac{p_w(y=1|x)}{p_w(y=0|x)} = w^T \cdot x$$

Generalized Linear Models

- Generalized linear models
 - A linear model whose output is passed through non-linear function
- Decision boundary/surface
 - An n-1 dimensional hyper-plane that separates the data into two groups
 - The non-linearity gives a classification boundary
- We still have
 - Convex model
 - Hypothesis class: linear decision boundaries

Logistic Regression Decisions

• Given parameters w, how do we make predictions?

$$p_{w}(y=1 \mid x) = \frac{1}{1+e^{-w^{T} \cdot x}}$$

- If output > .5, predict 1, else predict 0
- In addition to prediction, we have confidence in prediction
 - Confidence is the probability of the prediction

Logistic Regression Fitting a function to data

- Fitting: Solve for w given y and x
- Function: Generalized linear function: logistic over regression
- Data: assume dependent variable linear combination of independent variables

Squared loss (green): we told liner regression to predict 1 for positive class Logistic loss (red): loss is suffered whenever p(y=1|x) < 1

The loss suffered (y-axis) by predicting wx (x-axis) when positive is correct answer

Objective Function: Likelihood

Conditional data likelihood

$$p(Y|X,w) = \prod_{i=1}^{n} p(y_i \mid X_i, w)$$

Conditional Log Likelihood

$$p(Y | X, w) = \prod_{i=1}^{n} p(y_i | X_i, w)$$

$$\ell(Y, X, w) = \log p(Y | X, w) = \sum_{i=1}^{n} \log p(y_i | X_i, w)$$

$$p(y=1 \mid x, w) = \frac{1}{1 + e^{-w^T \cdot x}} \qquad p(y=0 \mid x, w) = \frac{e^{-w^T \cdot x}}{1 + e^{-w^T \cdot x}}$$

Logistic Regression Fitting a function to data

- Fitting: Solve for w given y and x
- Function: Generalized linear function: logistic over regression: conditional log likelihood
- Data: assume dependent variable linear combination of independent variables

Function Optimization

- We have a function and want to maximize/minimize it
- How do we find the point at which the function reaches its max/min?

Maximum Likelihood Estimation

- MLE: Find the value at which the likelihood is maximized
 - We'll talk about other options later in the semester
- Given the conditional log likelihood
 - Take the derivatives for parameters w
 - Set each derivative to 0
 - M equations and M variables
 - Solve for w
- Problem
 - No closed form (analytical) solution for w

Convex Optimization

- The conditional maximum likelihood is concave
 - There is a single maximal solution
- We can maximize using convex optimization techniques
 - Its easy to optimize convex functions
 - There are **many** convex optimization algorithms

Gradient Descent

- First order method: needs first order derivatives
- Assuming F(x) is defined and differentiable, then F(x) decreases fastest if we go from x in the direction of the gradient of F
 - $-\nabla F(x)$ vector of partial derivatives of F
 - $x' = x \gamma \nabla F(x)$ Update
 - For sufficiently small values of γ , the value of the function will get smaller

Derivatives

Objective: conditional log likelihood $\ell(Y, X, w) = \log p(Y \mid X, w) = \sum_{i=1}^{n} \log p(y_i \mid X_i, w)$

Given the sigmoid as
$$h_w(x) = \frac{1}{1 + e^{-w^T \cdot x}}$$

We can rewrite compactly $p(y|x) = (h_w(x))^y (1 - h_w(x))^{1-y}$

New objective
$$\mathscr{C}(Y,X,w) = \sum_{i=1}^N \log\{(h_w(x))^y (1-h_w(x))^{1-y}\}$$

Derivative

$$\frac{\partial \ell(Y, X, w)}{\partial w} = \sum_{i=1}^{N} (y_i - h_w(x_i)) x_i$$

- The derivative is 0 when $y_i = p(y_i|x_i,w)$
- Maximizing likelihood = minimize logistic error

Gradient Descent Solution

$$\mathbf{w}^{(t+1)} = \mathbf{w}^t + \gamma \frac{\partial \ell(\mathbf{Y}, \mathbf{X}, \mathbf{w})}{\partial \mathbf{w}}$$

$$w^{t+1} = w^t + \gamma \sum_{i=1}^{N} (y_i - h_w(x_i)) x_i$$

Algorithm: Logistic Regression

- Train: given data X and Y
 - Initialize w to starting value
 - Repeat until convergence
 - Compute the value of the derivative for X,Y and w
 - Update w by taking a gradient step
- Predict: given an example x
 - Using the learned w, compute p(y|x,w)

$$p(y=1 | x, w) = \frac{1}{1 + e^{-w^T \cdot x}}$$

Note: many other optimization routines available

Gradient Based Optimization

- Multiple methods available for optimizing the same objective function
 - First order methods
 - Second order methods
 - Adaptive methods
 - ..

Alternate Methods

- Batch gradient descent
 - Utilize the gradient of all the data
 - Slow: need to consider all the data before making a single update

Stochastic Updates

• Compute the gradient on a single example at a time

$$w^{t+1} = w^t + \gamma(y_i - h_w(x_i))x_i$$

Stochastic gradient descent (one example) More examples in each update (Slower convergence) More examples in each update (Slower convergence)

Regularization

- Same over-fitting problems as least squares
- Add regularization term to objective to favor different considerations
- Similar options
 - Quadratic regularization (L2)
 - L1 regularization (sparse solutions)
 - For each regularization optimize new objective function

Summary

- Logistic regression
 - Learn p(y|x) directly with functional form of distribution
 - Maximize the data conditional log-likelihood
 - Equivalent to linear prediction
 - Decision rule is a hyper-plane
 - Regularization to prevent over-fitting