

A Path Towards an Automated and Inclusive Clinical Research

Azadeh MobasherPrincipal Data Scientist
Genentech

Background

 Quality healthcare relies on many sources of information, however majority of data is unstructured and difficult to analyze

Traditional Medicine

- Millions of people are taking medications that will **not** help them [1]
- Top ten highest-grossing drugs in the United States help 1 in 4 of the people who take them [1]
- There are drugs that are harmful to certain ethnic groups because of the bias towards white western participants in classical clinical trials [1]
- Doubling time of medical knowledge is merely 73 days today compared to 50 years in 1950 [2]

Precision Medicine

 Delivering individual patient level medicine, by considering genomics & omics, lifestyle, preferences, health history, medical records, compliance and exogenous factors [1]

[1] Personalized medicine: Time for one-person trials

[2] How will artificial intelligence change medical training?

Natural Language Processing

Natural Language Processing (NLP) describes the interaction between human language and computers

Spelling and Grammar Checks

Search Engines

Digital Voice Assistants

Clinical trials patient matching

- Essential: Annual market over \$46 billion
 - Clinical trials play important roles in drug development but often suffer from inaccurate, insufficient and expensive patient recruitment
- Time consuming
 - 50% of trials **delayed**, 25% of cancer trials **failed** due to enrollment
 - 37% of sites **fail** to meet their recruitment targets
- High costs
 - Average recruitment cost: \$6000 to \$7500 per patient
- Underrepresentation
 - 13.4% of the U.S. population is Black versus only 5% of trial participants
 - 18% of the US population is Latinx versus only 1% of trial participants

Clinical trials process

- Data-driven practices to identify PIs and select sites
 - Collaboration with data owners to locate principal investigators and select sites
 - Manual and rule-based with focus on centralized site selection, takes at least 2 to 4 weeks per study protocol
- Patient-trial matching: finding qualified patients given structured EHR and unstructured eligibility criteria

Patient-trial matching

- · Finding matching trials for a patient
 - · Given a patient electronic medical records, identify one or multiple trials that a patient is eligible

Finding eligible patients for a trial

- · Given a clinical trial study protocol, identify as many as eligible patients and consequently corresponding providers
- Claims data contains anonymized patients information
- Outreach campaigns do not use patient data

Current challenges

- Manual and rule-based with high focus on centralized site location
- Time consuming and resource intensive to convert natural language in clinical trials study protocols to query language
- Inflexible due to inadequate rule coverage

An automated method

- Empowering outreach programs
- Enable faster design and site selection cycles

 Inform clinical trial study design and its impact on potential patient pool population

Problem description

- Structured Electronic Health Records data in IQVIA Claims
 - Procedures
 - Diagnosis
 - Drugs
- Clinical trials study protocols
 - Inclusion criteria
 - Exclusion criteria

Gender: Male Age: 45

Diagnosis:

Lung Cancer

Medications:

- Atezolizumab
- Codeine

Procedures:

Radiation therapy

Inclusion Criteria

- √ 18 < Age < 54
- √ Patient with cancer
- √ Receiving Codeine

Exclusion Criteria

- ✓ Pregnant
- √ Female with age > 35

Current methodologies

- Rule-based systems:
 - Extracting named entities and relations from inclusion/exclusion criteria and construct rules to identify patients
 - Requires: (1) large number of annotations or (2) train models to extract rules or (3) combined ML & rule-based methods
 - One of the state-of-the-art models: <u>Criteria2Ouerv</u>
- Deep embedding based models:
 - Jointly embeds patient records and trial eligibility criteria in the same latent space and then formulate the problem as a binary classification task per criteria
 - Some models distinguish between inclusion and exclusion criteria
 - One of the state-of-the-art models: <u>COMPOSE</u>

Problem formulation

- Input data definition
 - Patient records
 - In claims data, each patient can be represented as a sequence of multivariate observations
 - Each patient can have many records across time
 - Each record will be represented by list of diagnosis, procedures and products
 - Each record also contains patient demographics information
 - Clinical trials
 - A list of inclusion criteria
 - A list of exclusion criteria
 - Multi-level descriptions of diagnosis, products and procedures

- Problem definition
 - Patient criteria matching
 - Multi-class classification task
 - Classify the matching results between patients and eligibility criteria into "match", "mismatch" and "unknown"
 - Patient trial matching
 - A patient is a match only if the patient matches all inclusion criteria and mismatches all exclusion criteria

Psuedo-Siamese Network

Data and modeling challenges

- Existing methodologies suffer from poor recall
- Training data is not available
 - Manual data annotation
 - Evaluate with clinical trials team
- Complex clinical trial criteria
 - Eligibility criteria often encode more general disease concepts (e.g. cardiovascular disease)
 - EHR represents patients conditions using more specific medical codes (e.g. peripheral vascular disease or PAD)
 - Severity or score calculations, multi-line criteria, etc.

- Confirmed diagnosis of meeting the following criteria:
 - Documented history of
 - severity of Class II, III, or IV at screening
- A total score of ≥5 points at screening with more than 50% of this score
 - Reports experiencing at least one of the following common in the last 3 months:
 - Difficulty with swallowing
 - Shortness of breath
 - Slurred speech
 - Weakness of your arms, hands, fingers, legs, and/or neck muscles (for example, having difficulty keeping your head up)
 - General fatigue (for example, feeling of tiredness, lack of energy, difficulty with concentration)

Collaboration – rare disease trial

- Identifying providers of potential patients accurately and empower targeted outreach campaigns
- Measuring accuracy of automated approaches and their impact is imperative.
- Empowering inclusive research for underrepresented patient populations

Conclusion

- Quality healthcare relies on many sources of information
- Healthcare professionals are baffled with mountains of healthcare data and ever-expanding medical knowledge that is making it increasingly hard to master
- Clinical operations teams are working tirelessly to advocate for health equity and precision medicine
- AI/NLP can help to empower inclusive research and facilitate faster research cycles

