Topological field theory: generalities

Arun Debray

May 31, 2021

Some logistics

- One hour lecture
- ► "Office hours" 3–4ish CDT
- ► I will post some exercises, which are mostly of the "interesting things to think about" variety

We regrettably won't cover...

- Extended TFT and the cobordism hypothesis
- Chern-Simons theory
- Connections with physics

Outline

- 1. Bordism
- 2. Bordisms with structure
- 3. Topological field theories
- 4. Duality

Some words that are different but mean the same thing

► Bordism vs cobordism

Some words that are different but mean the same thing

- Bordism vs cobordism
- ► Topological field theory (TFT) vs topological quantum field theory (TQFT)

Bordism

Definition

Let M_0 and M_1 be closed n-manifolds. A *bordism* from M_0 to M_1 is a compact (n+1)-manifold X, a partition $\partial X = Y_0 \coprod Y_1$, and diffeomorphisms $\theta_i \colon Y_i \xrightarrow{\cong} M_i$. If there is a bordism from M_0 to M_1 , we say M_0 and M_1 are *bordant*.

Bordism is an equivalence relation

Algebraic structure

- Disjoint union descends to bordism classes, giving a commutative monoid $\Omega_n^{\rm O}$ of bordism classes of closed n-manifolds
 - \triangleright Ø (which is a closed *n*-manifold!) is the unit
- ► It turns out this is an abelian group!
- ▶ Direct product turns $\Omega_*^{\mathcal{O}} := \bigoplus_n \Omega_n^{\mathcal{O}}$ into a \mathbb{Z} -graded ring

Tangential structures

- ► Goal: introduce variants of this notion which take into account additional *topological* information
- ► So stuff like orientations, spin structures, maps to a space
- ► Not geometric information (e.g. Riemannian metric or connection on a principal bundle)
- Information must be "local" (so nothing like a CW structure or a point inside the manifold)

Tangential structures

- Consider the *stable orthogonal group* $O := \operatorname{colim}_n O_n$. The classifying space BO is the classifying space for stable virtual vector bundles
 - ► "Virtual" means we allow formal differences E F for $E, F \rightarrow X$
 - ▶ "Stable" means we ignore the difference between E and $E \oplus \mathbb{R}$
 - ► So [*M*, *B*O] is identified with stable isomorphism classes of virtual vector bundles
- A manifold has a canonical (homotopy class of) map $M \rightarrow BO$ which classifies its tangent bundle

Tangential structures: definition

► Let $\xi: B \to BO$ be a fibration. A ξ -structure on a manifold is a lift

$$M \xrightarrow{TM} BO.$$

Two ξ -structures are equivalent if they are homotopic through lifts of the tangent bundle map

Tangential structures: examples

- ▶ Given a family of maps $G_n \to O_n$, obtain $\xi : BG \to BO$
- In this case, a *ξ*-structure is a reduction of structure group for the frame bundle to G_n
- ▶ For example, for $BSO \rightarrow BO$, this is an orientation
- ► For $BSpin \rightarrow BO$, this is a spin structure

Tangential structures: examples

- ▶ $BO \times BG \rightarrow BO$: a principal *G*-bundle
- ▶ $BO \times X \rightarrow BO$: a map to X

Induced structures on the boundary

- ► If *M* is a manifold with boundary, $T(\partial M) \oplus v \cong TM|_{\partial M}$
- ► Therefore as virtual stable vector bundles, $T(\partial M) \cong TM|_{\partial M} v$
- ν is trivializable, but has two trivializations! (outward vs inward unit normal)
- ▶ A trivialization of ν and a ξ -structure on TM induce a ξ -structure on $T(\partial M)$, but the two ξ -structures may differ
- ▶ We let ∂M refer to ∂M with its ξ -structure via the inner unit normal, and $-\partial M$ for the ξ -structure via the outer unit normal

Induced structures on the boundary

Induced structures on the boundary

Structured bordisms

- ▶ We can now define bordisms of ξ -manifolds in much the same way, except that we ask for an identification of manifolds with ξ -structure from ∂X to $M \coprod -N$
- This is again an equivalence relation compatible with disjoint union, giving us bordism groups Ω_n^{ξ}
 - ► (This is a good thing to think through if you're seeing this stuff for the first time!)
- It is not always true that we get a graded ring

Bordism categories

- We want to upgrade or categorify this structure
- ▶ Define a bordism category $\mathcal{B}ord_n^{\xi}$ whose objects are closed (n-1)-dimensional ξ -manifolds, and whose morphisms are* ξ -structured bordisms between them
- Composition is gluing of bordisms
- *: we need to take diffeomorphism classes rel boundary of bordisms in order for composition to be associative

Bordism categories: extra structure

- ▶ (\coprod , \varnothing) induce a "categorical commutative monoid" structure on $\mathcal{B}ord_n^{\xi}$, the structure of a *symmetric monoidal category*
- ► This is a unit and a "tensor product" II which has data enforcing associativity and commutativity up to natural isomorphism, etc.
- ► Example: $(Vect_{\mathbb{C}}, \otimes)$
- Also a notion of symmetric monoidal functors and symmetric monoidal natural transformations

Topological field theories

- A topological field theory is a symmetric monoidal functor $Z \colon \mathcal{B}ord_n^{\xi} \to \mathcal{V}ect_{\mathbb{C}}$
- ▶ *n* is called the (*spacetime*) *dimension* of the theory; *n* is the *space dimension*
- For every closed (n-1)-manifold M, we get a vector space Z(M) called the *state space*
- ▶ A bordism $X: M \to N$ defines a linear map $Z(X): Z(M) \to Z(N)$; gluing goes to composition
- ▶ $Z(\emptyset) = \mathbb{C}$. Therefore a closed n-manifold X, as a bordism $\emptyset \to \emptyset$, defines a linear map $\mathbb{C} \to \mathbb{C}$; the image of 1 is called the *partition function* of X

Example: the Euler TFT

- ▶ Assign to every closed (n-1)-manifold the state space \mathbb{C}
- Assign to every bordism $X: M \to N$ the quantity $\lambda^{\chi(X,N)}$ $(\lambda \in \mathbb{C}^{\times} \text{ fixed; } \chi(X,n) \text{ is the relative Euler characteristic)}$
- Gluing and symmetric monoidality hold because of formulas for χ

A first theorem

Theorem

Let $Z \colon \mathcal{B}ord_n^{\xi} \to \operatorname{Vect}_{\mathbb{C}}$ be a TFT and M be a closed (n-1)-dimensional ξ -manifold. Then the vector space Z(M) is finite-dimensional.

We will prove this by defining a generalization of "finite-dimensional" in arbitrary symmetric monoidal categories, preserved by symmetric monoidal functors; then showing all objects in $\mathcal{B}ord_n^{\xi}$ are "finite-dimensional"

Duality in symmetric monoidal categories

Let \mathcal{C} be a symmetric monoidal category and $x \in \mathcal{C}$. Duality data for x is an object $x^{\vee} \in \mathcal{C}$ and morphisms $e: x \otimes e^{\vee} \to 1$ and $c: 1 \to x \otimes x^{\vee}$ such that the following maps compose to the identity:

$$x \xrightarrow{c \otimes \mathrm{id}_x} x \otimes x^{\vee} \otimes x \xrightarrow{\mathrm{id}_x \otimes e} x \tag{1a}$$

$$x^{\vee} \xrightarrow{\operatorname{id}_{x^{\vee}} \otimes c} x^{\vee} \otimes x \otimes x^{\vee} \xrightarrow{e \otimes \operatorname{id}_{x^{\vee}}} x^{\vee}.$$
 (1b)

If duality data exists for x, we call x dualizable, x^{\vee} the dual of x, e evaluation, and c coevaluation.

Visualizing dualizability

Figure: Evaluation (on left) and coevaluation (on right).

Figure: Left: the S-diagram, encoding (1a). Right: the Z-diagram, encoding (1b). These equalities are the conditions on duality data.

Dualizability in $Vect_k$

- Say *V* is dualizable with duality data (V^{\vee}, c, e) , and let $c(1) = \sum v^i \otimes v_i$. Crucially, this is a finite sum!
- ▶ Apply the Z-diagram to compute that for any $x \in V$,

$$x = \sum_{i} e(x, v^{i}) v_{i},$$

i.e. the finite set $\{v_i\}$ spans V.

► Conversely, given a finite-dimensional vector space, let $V^{\vee} := \operatorname{Hom}(V, \mathbb{C})$, e be evaluation, and c send $1 \mapsto \sum e^i \otimes e_i$ $(\{e_i\} \text{ a basis, } \{e^i\} \text{ the dual basis})$

Every object is dualizable in $\mathcal{B}ord_n^{\xi}$

Figure: "Zorro's lemma," that these two bordisms are equivalent, shows that all objects of $\mathcal{B}ord_n^{\xi}$ are dualizable.

Proof of the main theorem

- ▶ If $f: \mathcal{C} \to \mathcal{D}$ is a symmetric monoidal functor and $x \in \mathcal{C}$ is dualizable, the image of the duality data for x under f is duality data for f(x), so f(x) is dualizable
- ► So if $Z: \mathcal{B}ord_n^{\xi} \to \mathcal{V}ect_{\mathbb{C}}$ is a TFT and M is a closed (n-1)-dimensional ξ -manifold, then M is dualizable in $\mathcal{B}ord_n^{\xi}$, so Z(M) is dualizable in $\mathcal{V}ect_{\mathbb{C}}$, i.e. finite-dimensional.

Mapping class group actions

- ► Another general feature of TFTs which is occasionally useful
 - Working with general tangential structures requires some care, but O, SO, etc., are fine
- ▶ Idea: Diff(M) acts on the state space Z(M) by mapping cylinders: if $\varphi \in \text{Diff}(M)$, then it defines a bordism $M \to M$ by $[0,1] \times M$, where at 0 we attach by id, and at 1 we attach by φ
- ▶ If φ , φ' are isotopic, their mapping cylinders are diffeomorphic rel boundary, so they define the same morphism in $\mathbb{B}ord_n$. So the Diff(M)-action factors through the action of the mapping class group MCG(M) := Diff(M)/Diff₀(M)

Traces

- The mapping torus of $\varphi \in \text{Diff}(M)$ is $M_{\varphi} := [0,1] \times M/(0,x) \sim (1,\varphi(x)).$
- One can show that if *Z* is a TFT, the partition function $Z(M_{\varphi})$ is the trace of the action of φ on the state space Z(M)
- ▶ Special case: $Z(M \times S^1) = \dim Z(M)$