Computer Networks: Physical Layer

By,

Mr. Kumar Pudashine, (MEng, AIT, Bangkok)
CISA, CISM, CRISC, CNDA, CDCP, COBIT 5, CCNP (Enterprise), JNCIA, CEH v9, ITIL, ISO 27001:2013, AcitivIdentity Certified
Senior Section Chief, Network and Security
Agricultural Development Bank,
Kathmandu

OSI Layers: Physical Layer

Transmission Media: classes??

Transmission Media: Twisted Pair Cable

Twisted Pair Cable: STP and UTP

Twisted Pair Cable: STP and UTP

Twisted Pair: Applications??

- Most Common Medium.
- For Local Area Networks (LAN).
- Telephone Networks
 - Between House and Local Exchange (Subscriber Loop).
- Within Buildings
 - To Private Branch Exchange (PBX).
- Cable Connectors => RJ45 and RJ11.

Twisted Pair: UTP Categories

Category	Bandwidth	Data Rate	Digital/Analog	Use
1	Very Low	<100 Kbps	Analog	Telephone
2	< 2MHz	2Mbps	Analog/Digital	T-1 Lines
3	16 MHz	10 Mbps	Digital	LANs.
4	20 MHz	20 Mbps	Digital	LANs.
5	100 MHz	100 Mbps	Digital	LANs.
6	200 MHz	1000 Mbps	Digital	LANs

Twisted Pair: Latest Cables

Twisted Pair: Cable Connectors??

Twisted Pair: T568A and T568B Standards

Coaxial Cable: Structure?

Coaxial Cable: Applications??

- Cable Television Distribution.
- Long Distance Telephone Transmission.
 - Can Carry 10,000 Voice Calls Simultaneously.
- Traditional LAN => Diskless Workstation in Novell Netware.
- Being Replaced by Optical Fibers.
- Baseband Cable and Broadband Cable

Coaxial Cable: Baseband Cable

- Carries Single Signal at a Fixed Frequency.
- It is used for Digital Transmission.
- Uses Digital Signaling Technique.
- It is used for Small Area.
- 10 Base 5 Cable => Distance up to 500m.
- Repeaters Can be used to deal with attenuation.

Coaxial Cable: Broadband Cable

- Carries Multiple Signals => Multiplexing.
- It is used for Analog Transmission.
- Uses Analog Signaling Technique.
- It is used for Large Area => Cable Television
- Amplifiers Can be used to deal with attenuation.

Coaxial Cable : Applications

Optical Fiber: Bending of Light Ray

Optical Fiber: Structure?

Optical Fiber: Types?

Optical Fiber: Patch Cables ??

Optical Fiber: Benefits??

- Supports Higher Data Rate => Up to Tera Bits Per Second (Tbps)
- Smaller Size and Weight.
- Lower Attenuation
- Electromagnetic Isolation
- Greater Repeater Spacing

Electromagnetic Spectrum: Wireless Communication

Propagation Methods ??

Ground propagation (below 2 MHz)

Ionosphere

Sky propagation (2 - 30 MHz)

Ionosphere

Line-of-sight propagation (above 30 MHz)

Wireless LANs: Architecture

- Wireless Communication is one of the growing Technologies.
- Found everywhere => Home, Office Buildings, Campuses.
- Promising Wireless LAN Technologies
 - IEEE 802.11 Wireless LAN
 - Bluetooth
- IEEE 802.11 Wireless LAN is also referred as Wireless Ethernet.
- A Bluetooth LAN is an ad hoc Network.
- The gadgets find each other and make a network called Piconet.
- Bluetooth is defined by the IEEE 802.15 Standard.
- It defines Wireless PAN operable in an area of room or a hall.

Wireless LANs: Basic Service Set

Wireless LANs: Extended Service Set

Bluetooth: Piconet

Frequency reuse patterns

a. Reuse factor of 4

b. Reuse factor of 7

Satellite frequency band

Band	Downlink, GHz	Uplink, GHz	Bandwidth, MHz
L	1.5	1.6	15
S	1.9	2.2	70
С	4	6	500
Ku	11	14	500
Ka	20	30	3500

UML: User Mobile Link

GWL: Gateway Link

Bandwidth

- The bandwidth is a property of a medium.
- It is the difference between the highest and the lowest frequencies that the medium can satisfactorily pass.
- Bit Rate and Bandwidth are proportional to each other.

Bit Rate and Bit Interval

- ☐ Bit Interval is the Inverse of Bit Rate.
- ☐ The analog bandwidth of a medium is expressed in hertz; the digital bandwidth, in bits per second.

Channels: Low Pass and Band Pass Channel

Baud Rate Vs. Bit Rate

- The baud rate of a data communications system is the number of symbols per second transferred.
- A symbol may have more than two states.

Bit Rate = Baud per second x No of bits per baud.

- No of bits per baud depends on modulation technique.
- Bell 212A modem uses Phase Shift Keying (PSK) modulation, and each symbol has one of four phase shifts (of O(deg), 90(deg), 180(deg), or 270(deg)).=> 2 Bits Required to represent 4 shifts.
- This Modem transmits data at the rate of 1200 bps at 600 baud.
- □ For 64QAM Modem M = 64 => 6 Bits Required.
- Bit Rate is 6 Times the Baud Rate

!! Analogy of Baud Rate and Bit Rate!!

Passenger in a Highway Bus

Bandwidth Delay Product

 Bandwidth-delay product refers to the product of a data link's capacity (in bits per second) and its round-trip delay time (in seconds)

Moderate speed satellite network: 512 Kbit/s, 900 ms RTT

$$B \times D = 512 \times 10^3 \text{ b/s} \times 900 \times 10^{-3} \text{ s} = 460,800 \text{ b., } / 8 = 57,600 \text{ B}$$

Residential DSL: 2 Mbit/s, 50 ms RTT

 $B \times D = 2 \times 10^6 \text{ b/s} \times 50 \times 10^{-3} \text{ s} = 100 \times 10^3 \text{ b, or } 100 \text{ Kb, or } 12.5 \text{ KB.}$

Mobile broadband (HSDPA): 6 Mbit/s, 100 ms RTT

 $B \times D = 6 \times 10^6 \text{ b/s} \times 10^{-1} \text{ s} = 6 \times 10^5 \text{ b}$, or 600 Kb, or 75 KB.

Residential ADSL2+: 20 Mbit/s (from DSLAM to residential modem), 50 ms RTT

 $B \times D = 20 \times 10^6 \text{ b/s} \times 50 \times 10^{-3} \text{ s} = 10^6 \text{ b, or 1 Mb, or 125 KB.}$

High-speed terrestrial network: 1 Gbit/s, 1 ms RTT

 $B \times D = 10^9 \text{ b/s} \times 10^{-3} \text{ s} = 10^6 \text{ b, or } 1 \text{ Mb, or } 125 \text{ KB.}$

Jitter

- □ The Internet makes no guarantees about time of delivery of a packet
- Consider an IP telephony session:

Time

Jitter (cont'd)

☐ A Packet Pair's Jitter is the difference between the transmission time gap and the receive time gap

- Desired time-gap: $S_{i+1} S_i$ Received time-gap: $R_{i+1} R_i$
- □ Jitter between packets i and $i+1: (R_{i+1} R_i) (S_{i+1} S_i)$

Thank You