Zeckendorf's Game

DiPS CodeJam 22-

Prompt

In a game of Zeckendorf, your task is to find the shortest representation of a given integer as a sum of Fibonacci numbers. For example, the Zeckendorf representation of 10 is 10 = 2 + 8. Numbers **cannot** be repeated.

Pranav and Prithvi are playing a game of Zeckendorf. Can you help them find the answers as fast as possible?

Input Format

The first and only line of input will contain an integer n.

Output Format

The first and only line of your output must contain a space-separated list of the Zeckendorf representation of n, sorted in ascending order.

Constraints

 $1 \le n \le 10^5$

Sample Input/Output

Input	Output
93743	2 5 13 987 17711 75025

Solution

Let's take the sample input (93743) as n. To find the Zeckendorf representation, we

- First, find the greatest Fibonacci Number smaller than or equal to n.
- Append the fibonacci number we found to an array.
- Reduce n by f (n = n f).
- Repeat these steps while n > 0.
- We now have an array of the Zeckendorf representation of n. To obtain the result, we sort the array in ascending order, and then print it.

Sample Program

```
# Helper: Returns the greatest Fibonacci Number smaller than or equal to n.
def nearestSmallerEqFib(n):
     # Edge cases
     if (n == 0 \text{ or } n == 1):
          return n
     # Finds the greatest Fibonacci mumber smaller than n.
     f1, f2, f3 = 0, 1, 1
     while (f3 <= n):
          f1 = f2;
          f2 = f3;
          f3 = f1 + f2;
     return f2;
n = int(input())
result = []
while (n>0):
     # Find the greatest Fibonacci Number smaller than or equal to n
     f = nearestSmallerEqFib(n);
     # Append the fibonacci number we found
     result.append(f)
     # Reduce n
     n = n-f
result.sort()
print(" ".join(str(e) for e in result))
```