Gym Members Exercise Analysis

Applied Machine Learning - Group 27

Tattie Chitrakorn (tc3117), Eesun Moon (em3907), Akshara Pramod (ap4613), Tianjun Zhong (tz2634), Jayanthi Yerchuru (jy3344)

Data Overview: Gym Members Exercise Dataset [Link]

Feature Information

Data #	columns (total 15 columns): Column	Non-Null Count	Dtype		
0	Age	973 non-null	int64		
1	Gender	973 non-null	object		
2	Weight (kg)	973 non-null	float64		
3	Height (m)	973 non-null	float64		
4	Max_BPM	973 non-null	int64		
5	Avg_BPM	973 non-null	int64		
6	Resting_BPM	973 non-null	int64		
7	Session_Duration (hours)	973 non-null	float64		
8	Calories_Burned	973 non-null	float64		
9	Workout_Type	973 non-null	object		
10	Fat_Percentage	973 non-null	float64		
11	Water_Intake (liters)	973 non-null	float64		
12	Workout_Frequency (days/week)	973 non-null	int64		
13	Experience_Level	973 non-null	int64		
14	BMI	973 non-null	float64		
dtypes: float64(7), int64(6), object(2)					

The dataset provides insights into gym members' physical characteristics and workout habits. This dataset contains **973 entries** with **no missing values** in any column, as indicated by the "Non-Null Count' for each feature. [Columns Overview]

- Numerical Features:
 - Demographic: Age
 - Physiological: Weight(kg), Height(m), BMI, BPM(Max, Average, Resting),
 Fat Percentage
 - Workout-Related: Session Duration(hours), Calories Burned, Water Intake(liters), Workout Frequency(days/week), Experience Level
- Categorical Features: Gender, Workout Type

- The bar chart illustrates the number of outliers identified for each feature using the **Interquartile Range (IQR)** method. Notably, *Weight(kg)*, *Calories_Burned*, and *BMI* have higher counts of outliers.
- To mitigate the impact of outliers in the dataset, Robust Scaling was applied. This method scales features based on the IQR, making it less sensitive to extreme values.

Distribution Analysis

Distribution of Numerical Features

- Age, Weights(kg), Calories_Burned, and BMI have varied scales, which suggests that standardization could help align these features for modeling.
- Calories_Burned and BMI show right-skewed distributions, with outliers on the higher end. Applying Robust Scaling can help minimize the influence of these outliers by scaling based on the IQR.

✓ Target Variable Distribution: Workout Types

The bar chart illustrates the distribution of the target variable, *Workout_Type*, which is **evenly** distributed across four categories:

Yoga: 239 membersHIIT: 221 membersCardio: 255 members

Strength: 258 members

The **near-equal distribution** across workout types indicates a balanced dataset, which reduces the risk of model bias toward a particular class.

Correlation Analysis of Numerical Features

High Positive Correlations:

0.6

0.2

0.0

-0.2

-0.4

- [0.91] Session_Duration(hours) and Calories_Burned: Indicates that longer workout sessions lead to more calories burned.
- **[0.85]** Weight(kg) and BMI: A strong positive correlation, which is expected since BMI is partially derived from weight.
- [0.84] Workout_Frequency(days/week) and Experience_Level: Shows that experienced individuals tend to work out more frequently.

... Moderate Positive Correlations:

- [0.39] Water_Intake(liters) and Weight(kg): Heavier individuals may tend to drink more water, possibly due to greater hydration needs.
- **[0.34]** Calories_Burned and Avg_BPM: Suggests higher average heart rates during workouts are associated with higher calorie burns, indicating more intense exercise.

8. Negative Correlations:

Fat_Percentage with Experience_Level [-0.65], Calories_burned [-0.60], and Worout_Frequency(days/week) [-0.54]: Implies that experienced individuals, those with higher calorie expenditure, or those who work out frequently tend to have lower fat percentages.

Low or Near-Zero Correlations:

- Age and Height(m): Shows minimal correlation with other features, suggesting they do not significantly influence other variables in this dataset.
- Max_BPM and Resting_BPM: Shows low correlations with most features, suggesting these are more individual-specific metrics.

Data Preprocessing & Insights - Analysis of BPM, Fat Percentage, and BMI

In this analysis, firstly, we focused on the three distinct BPM-related features:

Max_BPM, Avg_BPM, and Resting_BPM. To gain a more comprehensive
understanding of these heart rate metrics, we derived additional features that
consolidate the highlight key aspects of these variables:

- BPM_Reserve: Calculated as Max_BPM Resting_BPM, this feature represents the difference between maximum heart rate during exercise and resting heart rate.
- Intensity_Ratio: Defined as Avg_BPM / Max_BPM, this feature indicates how close
 the average heart rate is to the maximum heart rate during exercise. A higher intensity
 Ratio suggests a more intense workout.
- Principal Components Analysis (PCA): To retain the core information of all three
 BPM metrics while simplifying the analysis, we applied PCA, reducing these three
 variables into a single principal component.

After deriving these consolidated features, we applied **Standardization** to scale all BPM-related features, fat_percentages, and BMI to have mean 0 and a standard deviation of 1. This scaling step ensures that each feature contributes equally to the analysis without being influenced by differences in units or scales.

We conducted **an ANOVA test** on the scaled features to examine if there are statistically significant differences across workout types. The resulting ANOVA p-values provide insight into which features differ meaningfully between workout types, guiding us toward a deeper understanding of how physiological metrics related to exercise preferences.

As shown in the **ANOVA p-values**, none of the original or derived physiological features show significant difference across workout types, as all p-values are above the 0.05 threshold. These results suggest that heart rate and body composition metrics, including BPM metrics, body fat percentage, and BMI, are **largely independent of workout type**.

Since none of these features show significant variation across workout types, they may have limited usefulness for predicting workout type preferences based on these physiological metrics alone. Therefore, **exploring other feature categories together** may yield more meaningful predictors.

Exploring Additional Feature Relationships

V

BPM(Max, Average, Resting), Fat_Percentage, and BMI

- BMI vs Fat_Percentage: This plot reveals a positive correlation between BMI and fat percentages, as both metrics are related to body composition. Generally, higher BMI corresponds with a higher fat percentage. However, there are some variations, indicating that individuals with similar BMIs may have different fat composition, likely influenced by factors such as muscle mass.
- Intensity_Ratio vs Calories_Burned: The intensity ratio, defined as average BPM relative to maximum BPM, shows no strong correlation with calories burned. This suggests that while workout intensity might impact calorie burn to some extent, it is not the sole determining factor. Other factors, such as workout duration and type, likely play significant roles in overall calorie expenditure.
- Water_Intake vs BMI: There is no clear trend or strong correlation between water intake and BMI, suggesting that BMI does not directly relate to water intake. This also implies that personal hydration preferences that are not directly tied to BMI.
- Fat_Percentage vs Calories_Burned: There is a slight inverse trend, where individuals with lower fat percentages appear to burn more calories. This may indicate that individuals with lower body fat percentages are more active or engage in more intense exercises, resulting in higher calorie burns.

Bivariate Analysis Between Demographic Features and Calories Burned

Independent t-test between Gender and other 3 numeric demographic features:

- Age: no significant difference in age between genders.
- Weight: significant difference in weight between genders, with males having higher weight distributions.
- <u>Height</u>: significant difference in height between genders, with males being generally taller.

Pearson Correlation Coefficient among the 3 numeric demographic features:

- Age vs Weight: Very weak negative correlation, no meaningful relationship.
- Age vs Height: Very weak negative correlation, no relationship with height.
- Weight vs Height: Moderate positive correlation, indicating taller individuals tend to weigh more.

Pearson Correlation Coefficient between Age, Height, Weight, and the target variable Calories_Burned

- <u>Calories Burned vs Age:</u> Weak negative correlation (-0.155), suggesting a slight decrease in calories burned with age
- <u>Calories Burned vs Weight:</u> Very weak positive correlation (0.095), indicating a minimal relationship.
- <u>Calories Burned vs Height:</u> Very weak positive correlation (0.086), indicating a minimal relationship.

Independent t-test between Gender and target variable Calories

Burned

 The t-test shows a significant difference in calories burned between genders, with males generally burning more calories than females.

Descriptive Statistics and Outlier Analysis

	Session_Duration (hours)	Workout_Frequency (days/week)	Water_Intake (liters)	Experience_Level	Calories_Burned
count	973.000000	973.000000	973.000000	973.000000	973.000000
mean	1.256423	3.321686	2.626619	1.809866	905.422405
std	0.343033	0.913047	0.600172	0.739693	272.641516
min	0.500000	2.000000	1.500000	1.000000	303.000000
25%	1.040000	3.000000	2.200000	1.000000	720.000000
50%	1.260000	3.000000	2.600000	2.000000	893.000000
75%	1.460000	4.000000	3.100000	2.000000	1076.000000
max	2.000000	5.000000	3.700000	3.000000	1783.000000

Number of samples in each column	that	lie	outside	the	98th	percentile:	
Session_Duration (hours)	20						
Workout_Frequency (days/week)	0						
Water_Intake (liters)	14						
Experience_Level	0						
Calories_Burned	20						

The table summarizes the key statistics (mean, standard deviation, percentiles) for the columns, indicating Session_Duration, Workout_Frequency,
Water_Intake, Expereience_Level, and Calories_Burned. These Statistics provide a high-level view of the data distribution within each feature, which may help identify potential patterns or abnormalities.

- The box plots display the distribution of each feature,
 highlighting possible outliers. Features such as Calores_Burned show a few extreme values.
- Approximately 100 samples lie outside the 98th percentile in one or more columns. Removing these would result in significant data loss, so future examination of these high values may reveal patterns or insights.

Spearman Correlation and Distribution Insights

Spearman's correlation measures the **rank-order** association between two variables, where +1 indicates a perfect positive monotonic relationship, -1 indicates a perfect negative monotonic relationship, and 0 means little to no monotonic relationship.

- Box Plot Distributions: The plots show similar distributions of features across different workout types, which
 visually supports the interpretation that these features do not vary significantly with Workout_Type.
- Spearman Correlation Results: The low Spearman coefficients (close to 0) for each feature with respect to Workout_Type indicate that there is little to no monotonic relationship between these features and the target variable. Even after applying transformations (logarithmic and squared), the correlations remain low, suggesting that these features alone might lack predictive power for differentiating workout types.
- Given the low correlation, **exploring non-linear relationships** or **examining combinations of features** may vield better predictive insights.

Spearman Correlation Coefficients with target:

Session_Duration (hours)	0.035122
Workout_Frequency (days/week)	0.045042
Water_Intake (liters)	0.004560
Experience_Level	0.050035
Calories Burned	0.018511

Spearman Correlation Coefficients with target after log transform:

5
2
.0
5
1

Spearman Correlation Coefficients with target after squaring the features: Session Duration (hours) 0.039197

Machine Learning Techniques

Initial exploration – Based on the preprocessing techniques suggested, we applied scaling using robust scaling and standard scaling, encoding using one-hot encoding for *gender*, and label encoding for *workout_type*. After preprocessing, we trained vanilla versions of the following models to get a rough understanding of their performance:

Logistic Regression, Decision Trees, Random Forest, XGBoost,Naive Bayes, KNN, and 5-layered Neural Nets. We trained these baseline models setting the target variable as Workout_Type. However, our preliminary findings indicated minimal correlation between the features and the target, resulting in poor performance and generalization.

This led us to reconsider our initial problem statement.

Further analyses – Our initial investigation led us to consider other target variables and problem statements. We explored three different target variables, which demonstrated some kind of relation with the other features. These target variables are as follows:

regression on Calories_Burned, multi-class classification on Expereince_Level and regression on Session Duration (hours). Following all the data-preprocessing steps and model trainings and evaluations, these three labels showed some strong correlation with rest of the features and provided better training and evaluation results.

Next steps – Moving forward, we plan to leverage the strengths of our initial findings, incorporate more sophisticated feature engineering, and try to build on a more nuanced problem statement by improving our dataset or setting a target variable that can show some strong relation with rest of the features. This optimization would help us to address more complex fitness-related questions and improve the model's generalizability.

Performance Metrics of Different ML Models (Target: Workout_Type)

Model	Accuracy	Precision (Avg)	Recall(Avg)
Logistic Regression	0.24	0.24	0.25
Decision Tree	0.33	0.32	0.32
Random Forest	0.26	0.26	0.27
KNN	0.27	0.27	0.28
XGBoost	0.24	0.24	0.24
Naive Bayes	0.22	0.22	0.23
5-Layered Neural Net	0.33	0.29	0.31

Performance with different Target Variables

Target	Performance (Random Forest Regressor)
Session Duration	R squared score: 0.9576
Experience Level	Accuracy: 0.91
Calories Burned	R squared score: 0.9635