Solution to Homework 5

1) Assume Ti, and Tiz are stationary distributions, and let

 $\hat{\Pi}_3 = \lambda \hat{\Pi}_1 + (1-\lambda)\hat{\Pi}_2$, $0 \le \lambda \le 1$.
Then,

· For all i,

 $\Pi_3(i) = \lambda \Pi_1(i) + (1-\lambda)\Pi_2(i) \geq 0$ since $\Pi_1(i) \geq 0$, $\Pi_2(i) \geq 0$, $0 \leq \lambda \leq 1$.

$$\sum_{i=1}^{N} \prod_{3}(i) = \lambda \sum_{i=1}^{N} \prod_{j}(i) + (1-\lambda) \sum_{i=1}^{N} \prod_{2}(i)$$

$$= \lambda + (1-\lambda) = 1$$

 $\vec{\Pi}_{3} \rho = \left[\lambda \vec{\Pi}_{1} + (1-\lambda) \vec{\Pi}_{2} \right] \rho$ $= \lambda \vec{\Pi}_{1} \rho + (1-\lambda) \vec{\Pi}_{2} \rho$ $= \lambda \vec{\Pi}_{1} + (1-\lambda) \vec{\Pi}_{2} = \vec{\Pi}_{3}$ $\vec{\Pi}_{3} \text{ ratisfies the three conditions for being a tationary distribution.}$

2)

a) Let $\vec{1} = [1,1,...,1]^T$ be a column vector of ones. Since all rows of p sum to 1, we have $p\vec{1} = \vec{1}$

Do, 1 is an eighnealne of p.

b) The Genshgorin Circle Theorem rays that all the eigenvalues of a matrix A are contained in $G = \bigcup_{i=1}^{n} C_i$, where C_i is the circle with center at a_{ii} and radius $\sum_{i \neq i} |a_{ij}|$.

In other words, every eigenvalue of p ratisfies

 $|\lambda - \rho_{ii}| \leq \sum_{i \neq i} \rho_{ii}$ So

 $|\lambda| \leq |\lambda - \rho_{ii} + \rho_{ii}| \leq |\lambda - \rho_{ii}| + |\rho_{ii}|$

$$\leq \sum_{i \neq i} \rho_{ij} + \rho_{ii} = \sum_{j=1}^{N} \rho_{ij} = 1$$

In this problem we accept a graphical argument like this

3) Let 1 be a column vector of ones.

Note that

A is stochastic

rows and columns

 $\overrightarrow{A} = \overrightarrow{1}$ and $\overrightarrow{1} A = \overrightarrow{1}$

So, suppose that A and B are stochastic. Then $(AB)\vec{1} = A(BT) = A\vec{1} = \vec{1} \quad \text{and}$ $\vec{1}^T(AB) = (\vec{1}^TA)B = \vec{1}^TB = \vec{1}^T$

So AB is also stochastic.

Step 1:	Simulate $U \sim \text{Uniform}(0,1)$
Step 2:	Set $i=1$
Step 3:	If $U < \sum_{k=1}^{i} \mu(k)$ then $X_0 = i$, else $i = i + 1$, and repeat
Step 4:	t = 1
Step 5:	While $t \leq n$ do
	Simulate $V \sim \text{Uniform}(0,1)$
	i=1
	If $V \leq \sum_{k=1}^{i} p(X_{t-1}, i)$ then $X_t = i$, else $i = i+1$, and repeat $t = t+1$
	t=t+1

$$T(3) = T(2) \begin{pmatrix} \beta \end{pmatrix} e^{2(\alpha - a)} = T(1) \begin{pmatrix} \beta \\ y \end{pmatrix} e^{(\alpha - a)(1+2)}$$
the pattern gives

 $TI(2) = T(1)(\beta)e^{(\alpha-\alpha)}$

$$T(N) = T(1) \left(\frac{\beta}{br}\right)^{n-1} e^{(\alpha-\alpha)(1+2+3+\cdots+(n-1))}$$
Now we $1+2+\cdots+n-1 = \frac{(n-1)N}{2}$
and $\left(\frac{\beta}{br}\right)^{n-1} = e^{(n-1)\ln(\beta/b)}$ to get
$$T(N) = T(1) e^{(n-1)\left[\ln(\beta/b) + \frac{\alpha-\alpha}{2}n\right]}$$
Where $T(1)$ is rolved from
$$1 = \sum_{n=1}^{10} T(n) = \sum_{n=1}^{10} e^{(n-1)\left[\ln(\beta/b) + \frac{\alpha-\alpha}{2}n\right]}$$

The plots of the histogram run with 10^6 steps, the detailed-balance result, and the numerically calculated eigenvector are shown below.

The rest of the problem is done in

the attached matlab file called

moblem 5.m.

We have $p^2(1,1) > 0$ and $p^3(1,1) > 0$, so 2, $3 \in I_1$. Since 2 and 3 are nutually prime, the period of 1 is 1. Since the chain is ineducable, every state has period $1 \Rightarrow aperiodic$

Stationary Distribution:

$$TI(1) = TI(3) + \frac{1}{2}TI(2)$$

$$\Pi(2) = \Pi(1)$$

$$T(1) = C + \frac{1}{2}2C = 2C$$

$$\frac{1}{11} = \begin{bmatrix} 2 & 2 & 1 \\ 5 & 5 & 5 \end{bmatrix}$$

One can only come back to node I following the path $1 \rightarrow 2 \rightarrow 1$ or $1 \rightarrow 2 \rightarrow 3 \rightarrow 4 \rightarrow 1$, both of which have an even number of steps. $I_1 = \{2, 4, 6, 1, ...\}$ see period of $1 = GCD(I_1) = 2$.

Since the chain is irreducible, everyone has period 2. \Rightarrow period 2

Stationary Distribution:

$$T(1) = \frac{1}{2}T(2) + T(4)$$

$$\Pi(2) = \Gamma(1)$$

$$TI(4) = TI(3)$$

Let TT(4) = C

$$T(3) = C$$

$$T(2) = 2C$$

$$TI(1) = \frac{1}{2}(2c) + C = 2c$$

 \Rightarrow $\overrightarrow{T} = [2C, 2C, C, C]$ By normalization, $C = \frac{1}{6}$

$$\vec{\Pi} = \begin{bmatrix} 1 & 1 & 1 \\ 3 & 3 & 6 & 16 \end{bmatrix}$$

State 1 belongs to a cycle of length 3 and another of length 4. Since 3, 4 are intually prime and 3, 4 \in I1, then $GCD(I_1) = period of 1 = 1$

Since the chain is irreduible, everyone has period 1.

Stationary Dishrbution:

$$TT(1) = TT(4)$$

$$T(2) = T(1)$$

$$TT(3) = \frac{1}{2}T(2)$$

$$T(4) = T(3) + \pm T(2)$$

Let $T(1) = C \rightarrow T(2) = C \rightarrow T(3) = C/2$ $\rightarrow T(4) = C/2 + \frac{1}{2}C = C$

One can only come back to state 2 using the paths $2 \rightarrow 5 \rightarrow 2$, $2 \rightarrow 3 \rightarrow 4 \rightarrow 5 \rightarrow 6 \rightarrow 1 \rightarrow 2$, $2 \rightarrow 3 \rightarrow 4 \rightarrow 5 \rightarrow 2$, all of which have even length, and the smallest of which has length?

So period of 2 = 2 \Rightarrow period 2 ineducable

Stationary distribution

By symmetry, we see that TI(2) = TI(5) TI(3) = TI(6)TI(4) = TI(1)

We have

$$T(1) = T(6) \rightarrow T(1) = T(3)$$

$$T(2) = T(1) + \frac{1}{2}T(5) \rightarrow T(2) = T(1) + \frac{1}{2}T(2)$$

$$T(3) = \frac{1}{2}T(2)$$

Set T(1) = C. Then T(3) = CT(2) = 2C

$$\hat{\Pi} = \begin{bmatrix} \frac{1}{8}, \frac{1}{4}, \frac{1}{8}, \frac{1}{8}, \frac{1}{4}, \frac{1}{8} \end{bmatrix}$$