T1 -Estudo do movimento de um projétil

Universidade do Minho

Tratamento de dados:

Tabela para um ângulo de (40,0 ± 0,5) graus

Diâmetro da bola usada = (25,45 ± 0,05) mm

Δx	(±0,05) cm	4t (±0,0001)s	<i>∆y</i> (±0,05)cm	<u>∆t</u> (±0,0001)s	<u>⊿y</u> (±0,05)cm	$V_0 = (\pm 0.04) \text{m/s}$	V_{0x} (±0,05) m/s	$V_{\rm 0y}$ (±0,03) m/s	
	0,00		26,90		26,90				
	45,00 55,00	0,0093	45,30 45,30	0,0086	45,30 45,03	2,95 3,05	2,26 2,33	1,90	
		0,0085 0,0084	45,30 45,40						
		0,0083	45,40						
		0,0003	44,90						
l		0,0003	45,00						
l		0,0083	44,90						
ı		0,0085	45,30						
\vdash	65,00	0,0084	42,90	0,0084	42,80	3,03	2,32	1,95	
l		0,0084	42,80						
l		0,0084	42,80						
l		0,0084	42,70						
\Box	80,00	0,0083	36,60	0,0083	36,43	3,06	2,34	1,97	
ı		0,0084	36,10						
ı		0,0083	36,60						
		0,0083	36,40						
	95,00	0,0084	24,90	0,0084	25,18	3,05	2,33	1,96	
ı		0,0084	25,40						
ı		0,0084	25,20						
ᆫ		0,0082	25,20						
ı		0,0082	15,30	0,0084	15,13	3,03	2,32	1,95	
l	105,00	0,0083	15,40						
100,0	,	0,0084	14,90						
		0,0087	14,90						
I	110,00	0,0086	9,30	0,0085					
		0,0088	9,70		0,0085	9,60	3,00	2,30	1,93
		0,0082	9,80						
L.		0,0083	9,60			0.00	2.00		
Méd	dia					3,02	2,32	1,94	

Elaboração de um gráfico:

experimental teó	rico
------------------	------

<i>∆x</i> (±0,05) m	Δy (±0,05) m	$\overline{\Delta y}$ m
0,00	0,27	0,27
0,45	0,45	0,46
0,55	0,45	0,46
0,65	0,43	0,43
0,80	0,36	0,36
0,95	0,25	0,25
1,05	0,15	0,15
1,10	0,10	0,09

T1 -Estudo do movimento de um projétil

Universidade do Minho Escola de Engenharia

Comentários:

Analisando o gráfico, conseguimos concluir, como esperado, que o valor da altura máxima obtida experimentalmente é inferior ao valor obtido pela teoria, caso não considerássemos a resistência do ar.

Isto verifica-se pois o projétil está sujeito a uma força proveniente do ar que o impede de alcançar a mesma altura máxima que atingiria caso não se verificasse a resistência do ar.

Além disso, sendo que o coeficiente de correlação da regressão quadrática obtida é aproximadamente 0,9993, que é muito próximo de 1 o que significa que existe uma boa correlação entre as posições x e y do projétil.

T1 -Estudo do movimento de um projétil

	Universidade do Minh
PARA O CÁLCULO DE INCERTEZAS:	
o da velocidade cinicial (°0):	
$\delta v = v \left(\frac{\delta d}{d} \right)^2 + \left(\frac{\delta \Delta k}{\Delta t} \right)^2$	
/ (d/ (DE)	
o da velocidade box:	
$\int v_{0x} = v_{0x} \left(\frac{\int v}{v} \right)^{2} + \left(\frac{\int o}{o} \right)^{2}$	
· da velocidade voy:	
$\int v_{0y} = v_{0y} \sqrt{\left(\frac{\int v}{v}\right)^{2} + \left(\frac{\int o}{o}\right)^{2}}$	
EQUAÇÕES NECESSÁRIAS:	
equações de movimento:	D
$\Delta y = \frac{v_{oy}}{v_{ox}} \Delta x - \frac{9}{2 v_{ox}^2} \Delta x^2 =$	
(=) $y = -\frac{9}{2 v_{0x}^{2}} x^{2} + \frac{v_{0y}}{v_{0x}} x + y_{0}$	
CÁLCULO DA EQUAÇÃO DE TRAJETÓRIA:	
$v_0 = 3.02 \text{ m/s}$ $v_{0x} = 2.32 \text{ m/s}$ $q = 9.807 \text{ m/s}$ $v_{0y} = 1.94 \text{ m/s}$	
g = 9,807 m ls2	
$\Delta y = \frac{1,94}{2,32} \Delta x - \frac{9,807}{2 \times 2,32^2} \Delta x^2 =$	
(a) $\Delta y = 0,836\Delta x - 0,911\Delta x^{2} (=)$	
$y = -0.911x^2 + 0.836x + 0.269$	

Carlos Ferreira – A92846 Beatriz Demétrio – A92839 Ano 2 - Turno 1 – Grupo 1 Engenharia Física