General Disclaimer

One or more of the Following Statements may affect this Document

- This document has been reproduced from the best copy furnished by the organizational source. It is being released in the interest of making available as much information as possible.
- This document may contain data, which exceeds the sheet parameters. It was furnished in this condition by the organizational source and is the best copy available.
- This document may contain tone-on-tone or color graphs, charts and/or pictures, which have been reproduced in black and white.
- This document is paginated as submitted by the original source.
- Portions of this document are not fully legible due to the historical nature of some
 of the material. However, it is the best reproduction available from the original
 submission.

Produced by the NASA Center for Aerospace Information (CASI)

"Made sealibble under MASA seasonal in the interest of early and side dissemination of Earth Resources Surger Program information and without liability

E7.8-10.046 CR- 145586

COASTAL ZONE CLASSIFICATION FROM SATELLITE IMAGERY

D. Bartlett and V. Klemas College of Marine Studies University of Delaware

R. Rogers and L. Reed Bendix Aerospace Systems Division Ann Arbor, Michigan

October 27, 1975 Report on Significant Pesults NASA LANDSAT CONTRACT NAS5-20983 UN 20570

Prepared for GOODARD SPACE FLIGHT CENTER GREENBELT, MD 20771

(F76-10046) CCASTAL ZONE CLASSIFICATION FFCE SATELLITE THAGEFY (Delaware Univ.) 2 p CSCI 08J BC \$3.50

N76-12335

Unclas G3/43 C0046

for any use made thereot."

SIGNIFICANT RESULTS

Studies of cover distribution along Delaware's coast -- especially in tidal wetlands -- have been made, utilizing semi-automated analysis of LANDSAT-1 MS. digital data. Cover maps with eleven vegetation and other cover categories have been produced with accuracy of identification above 80% in all categories. Recent studies have tested a new technique for training automated analysis which uses ground measured reflectance and atmospheric correction techniques to derive signatures for specific categories in preference to the relative radiance signatures derived from training sets within the LANDSAT data itself. Initial tests using a four category scheme indicate that training data based on absolute measured reflectance and atmospheric correction of LANDSAT data can produce comparable accuracy of categorization to that achieved using more conventional relative radiance training. The analysis of the same four categories produced average categorization accuracies of 82.1% by conventional relative radiance training and 81.9% by use of absolute reflectance signatures. It is believed that refinement of the absolute reflectance training technique may provide better results in the future. Regardless, the absolute reflectance training combined with atmospheric correction of scanner data provides a much more precise and better controlled data base which can be used to identify and assess promising uses of spectral discrimination in any area studied. Field results suggest, for instance, that the height of Spartina alterniflora may, to some extent, be detectable and that early winter imagery may provide optimal spectral differentiation of several wetlands cover types.