Sup

1. A compound of the formula I

5

10

Claims

R¹00C H₃CH₃

a

2.5 A 25 2. A compound of claim 1, wherein R^1 is selected from the group consisting of $-CH_3$, $-CH_2CH_2OCH_3$, $-CH_2CH_2OC_2H_5$, and $-CH_3CH_2OC_2H_5$, and $-CH_3CH_2OC_2H_5$, and $-CH_3CH_3OC_3H_5$, $-CH_$

a 30

35

3. A compound of claim 1, wherein R^1 is $-CH_3$, $-C_2H_5$, $-CH_2CH_2OCH_3$, $-CH_2CH_2OC_2H_5$, and $-(CH_2CH_2OC_2CH_3)$, R^2 is selected from the group consisting of $-CH_2C=CH$, $-CH_2C(CH_3)=CH_2$, R^3 is selected from the group consisting of chloro and methoxy, and R^4 is selected from the group consisting of chloro, methyl, and methoxy.

4. A compound according to claims 1-3, wherein

5

20

- 2,6-dimethyl-4-(2,3-dichlorophenyl)-1,4-dihydropyridine -3,5-dicarboxylic acid-3-methylester-5-ethylester;
- 2) 2,6-dimethyl-4-(2,3-dichlorophenyl)-1,4-dihydropyridine--3,5-dicarboxylic acid-3-ethylester-5-(2-methoxyethylester);
- 10 3) 2,6-dimethyl-4-(2,3-dichlorophenyl)-1,4-dihydropyridine--3,5-dicarboxylic acid-3-methylester-5-isopropylester;
- 4) 2,6-dimethyl-4 (2,3-dichlorophenyl)-1,4-dihydropyridine--3,5-dicarboxylic acid-3-methylester-5-(1-methylpropylester);
 - 5) 2,6-dimethy (2,3-dichlorophenyl)-1,4-dihydropyridine--3,5-dicarboxylic acid-3-methyl-5-tert.butylester;
 - 6) 2.6-dimethyl 4-(2,3-dichlorophenyl)-1,4-dihydropyridine-3,5-dicarboxylic acid-3-methylester-5-(2-methoxy-1-methylethylester);
- 25 7) 2,6-dimethyl-4-(2-methoxy-3-chlorophenyl)-1,4-dihydro-pyridine-3,5-dicarboxylic acid-3-methylester-5-ethyl-ester;
- 8) 2,6-dimethyl-4-(2,3-diphlorophenyl)-1,4-dihydropyridine-30 -3,5-dicarboxylic apid-3-(2-methoxyethyl)ester-5-isopropylester;
- 9) 2,6-dimethyl-4-(1,3-dichlorophenyl)-1,4-dihydropyridine--3,5-dicarboxylic acid-3-(2-ethoxyethyl)ester-5-ethyl 35 ester;
 - 10) 2,6-dimethyl-4-(2,3-dichlorophenyl)-1,4-dihydropyridine-3,5-dicarboxylic acid-3-[2-(2-methoxyethoxy)ethyl]ester-5-isopropylester;

36

- 11) 2,6-dimethyl-4-(2,3-dichlerophenyl)-1,4-dihydropyridine-3,5-dicarboxylic acid-3-methylester-5-(2-isopropyloxyethyl)ester;
- 12) 2,6-dimethyl-4-(2,3-dichlorophenyl)-1,4-dihydropyridine -3,5-dicarboxylic acid-3-methylester-5-(2-methoxy-1,1-dimethylethyl)ester;
 - 13) 2,6-dimethyl-4-(2,3-dich/lorophenyl)-1,4-dihydropyridine--3,5-dicarboxylic acid-8-methylester-5-(2-ethoxyethyl)ester;

10

15

35

- 14) 2,6-dimethyl-4-(2,3-dichlorophenyl)-1,4-dihydropyridine-3,5-dicarboxylic adid-3-(2-methoxy)ethylester-5-propargyl ester;
- 15) 2,6-dimethyl-4-(2,3-dichlorophenyl)-1,4-dihydropyridine--3,5-dicarboxylic acad 3-methylester-5-(2-methyl)allylester;
- 20 16) 2,6-dimethyl-4/(2-methoxy-3-chlorophenyl)-1,4-dihydropyridine-3,5-dicarboxylic acid-3-methylester-5-isopropylester;
- 17) 2,6-dimethy/1-4-(2-methoxy-3-chlorophenyl)-1,4-dihydro25 pyridine-3,5-dicarboxylic acid-3-(2-methoxyethyl)ester-5-ethylester.
- 18) 2,6-dimethyl-4-(2-methoxy-3-chlorophenyl)-1,4-dihydro-pyridine-3,5-dicarboxylic acid-3-(2-methoxyethyl)ester-5-isopropylester;
 - 19) 2,6-dimethyl-4-(2-chloro-3-methoxyphenyl)-1,4-dihydro-pyridine-3,5-dicarboxylic acid-3-methylester-5-(1-methyl)-n-propylester;
 - 20) 2,6-dimethyl-4-(2-chloro-3-methoxyphenyl)-1,4-dihydro-pyridine-3,5)dicarboxylic acid-3-ethylester-5-isopropylester:

38

- 21) 2,6-dimethyl-4-(2-ch1oro-3-methylphenyl)-1,4-dihydro-pyridine-3,5-dicarboxylic acid-3-methylester-5-ethylester; or
- 22) 2,6-dimethy/-4-(2-ehloro-3-methoxyphenyl)-1,4-dihydro-pyridine-3,5-dicarboxylic acid-3-methylester-5-ethylester; is selected.

Sulson Bangar

5. A method for treating arterial hypertension by relaxing vascular smooth muscle in mammals, including man, by administering a therapeutically active amount of a compound of formula I

 R^{1} R^{3} R^{1} R^{2} R^{3} R^{3

15

wherein R^1 is selected from the group consisting of $-CH_3$, $-C_2H_5$, $-CH_2CH_2OCH_3$, $-CH_2CH_2OC_2H_5$, and $-(CH_2CH_2O)_2CH_3$, R^2 is selected from the group consisting of $-CH_2CH_3$, $-CH(CH_3)_2$, $-CH_2CH_2OCH(CH_3)_2$, $-CH(CH_3)_2$, whereby R^1 and R^2 are not the same, R^3 is selected from the group consisting of chloro and methoxy and R^4 is selected from the group consisting of chloro methyl, and methoxy.

30

A method according to claim 2, wherein a compound of formula I is administered, wherein R^1 is selected from the group consisting of $-CH_3$, $-CH_2CH_2OCH_3$, $-CH_2CH_2OC_2H_5$, and $-(CH_2CH_2OC_2H_5)$ and R^2 is selected from the group consisting of $-C_2H_5$, $-CH(CH_3)_2$, $-C(CH_3)_3$, $-CH(CH_3)_2$, $-CH(CH_3)_2$, $-CH(CH_3)_2$, and $-CH(CH_3)_2$.

A method according to claim 2, wherein a compound of formula I is administered, wherein R¹ is -CH₃, -C₂H₅, -CH₂CH₂OC₂H₅, and -(CH₂CH₂OC₂H₅, R² is selected from the group consisting of -CH₂C=CH, -CH₂C(CH₃)=CH₂, R³ is selected from the group consisting of chloro and methoxy, and R⁴ is selected from the group consisting of chloro, methyl, and methoxy.

8. Pharmaceutical preparation, which comprises as an active ingredient a therapeutically effective dose of at least one antihypertensive compound having vescular smooth muscle relaxing properties which compound has the formula I

 R^{1} R^{2} R^{2} R^{2} R^{3} R^{2} R^{3} R^{2} R^{3} R^{4} R^{2} R^{3} R^{2} R^{3} R^{4} R^{4

wherein R^1 is selected from the group consisting of $-CH_3$, $-C_2H_5$, $-CH_2CH_2OCH_3$, $-CH_2CH_2OC_2H_5$, and $-(CH_2CH_2OCH_3)$, $-CH(CH_3)_2$, whereby R^1 and R^2 are not the same, R^3 is selected from the group consisting of chloro and methoxy, and R^4 is selected from the group consisting of chloro, methyl, and methoxy, in association with a pharmaceutically acceptable carrier.

a 35

15

20

39

chloro and methoxy, and R⁴ is selected from the group consisting of chloro, methyl, and methoxy.

20. A pharmaceutical preparation according to claim 5.

5 wherein the active ingredient is a compound of formula I, wherein R¹ is -CH₃, -C₂H₅, -CH₂CH₂OCH₃, -CH₂CH₂OC₂H₅, and -(CH₂CH₂O)₂CH₃, R² is selected from the group consisting of CH₂C CH₃ -CH₂C(CH₃)=CH₂, R³ is selected from the group consisting of chloro, and methoxy, and R⁴ is selected from the group consisting of chloro, methyl, and methoxy.

A pharmaceutical preparation according to claim wherein the substituted 2,6-dimethyl-4-phenyl-1,4-dihydropyridine-3,5-dicarboxylic acid-diester compound comprises 0.1 to 99 % by weight of the preparation.

add >

B