

## Mathematische Methoden für Informatiker INF-120 Sommersemester 2019

11. Übungsblatt für die Woche 24.06. - 30.06.2019

Differentialgleichungen, Dgl.-Systeme

Ü61 (a) Gegeben ist das homogene lineare Differentialgleichungssystem

$$\mathbf{y}'(x) = \begin{pmatrix} 1 & 6 \\ 5 & 2 \end{pmatrix} \mathbf{y}(x).$$

Es ist bekannt, dass  $\mathbf{v}_1 = (1,1)^T$  und  $\mathbf{v}_2 = (6,-5)^T$  Eigenvektoren der Koeffizientenmatrix sind. Stellen Sie die allgemeine Lösung des Differentialgleichungssystems auf, und skizzieren Sie den (qualitativen) Verlauf der Lösungskurven in der xy-Ebene.

(b) Gegeben ist das homogene lineare Differentialgleichungssystem

$$\mathbf{y}'(x) = \begin{pmatrix} -3 & 2 \\ -2 & -3 \end{pmatrix} \mathbf{y}(x).$$

Die Eigenwerte der Koeffizientenmatrix sind bekannt, es sind  $\lambda_{1,2} = -3 \pm 2i$ . Berechnen Sie die allgemeine Lösung, und skizzieren Sie den (qualitativen) Verlauf derjenigen Lösungskurve in der xy-Ebene, die die Bedingungen  $\mathbf{y}_s(0) = (1,0)^T$  erfüllt.

Ü62 (a) Berechnen Sie eine Eigenvektorbasis der Matrix  $A = \begin{pmatrix} 4 & 0 & 1 \\ -2 & 1 & 0 \\ -2 & 0 & 1 \end{pmatrix}$ .

(b) Verwenden Sie (a), um für das Differentialgleichungssystem

$$y'_1 = 4y_1 + y_3$$
  
 $y'_2 = -2y_1 + y_2$   
 $y'_3 = -2y_1 + y_3$ 

die allgemeine Lösung  $\mathbf{y}(x) = (y_1(x), y_2(x), y_3(x))^T$  aufzustellen. Bestimmen Sie weiterhin diejenige Lösung  $\mathbf{y}_s(x)$ , die die Anfangsbedingung  $\mathbf{y}_s(0) = (0, 1, -1)^T$  erfüllt.

(c) Gegeben ist das Differentialgleichungssystem

$$y'_1 = -3y_1 + 10y_2 - 5y_3$$
  

$$y'_2 = -5y_1 + 12y_2 - 5y_3$$
  

$$y'_3 = -10y_1 + 20y_2 - 8y_3$$

Bekannt ist, dass  $\mathbf{v} = (1, 1, 2)^T$  ein Eigenvektor der Koeffizientenmatrix dieses Systems ist, und dass k = 2 ein doppelter Eigenwert dieser Koeffizientenmatrix ist.

Berechnen Sie die allgemeine Lösung  $\mathbf{y}(x) = (y_1(x), y_2(x), y_3(x))^T$ , sowie diejenige Lösung  $\mathbf{y}_s(x)$ , die die Anfangsbedingung  $\mathbf{y}_s(0) = (1, 0, 0)^T$  erfüllt.

Ü63 Es wird die homogene Differentialgleichung 2. Ordnung y'' + 3y' + 2y = 0 betrachtet.

- (a) Überführen Sie die Differentialgleichung in ein Differentialgleichungssystem  $\mathbf{y}' = A\mathbf{y}$ , und bestimmen Sie die allgemeine Lösung dieses Differentialgleichungssystems.
- (b) Geben Sie die allgemeine Lösung der ursprünglichen Differentialgleichung 2. Ordnung an. Bestimmen Sie diejenige Lösung  $y_s(x)$ , die die Bedingungen  $y_s(0) = 2$ ,  $y'_s(0) = 0$  erfüllt.

H64 A Gegeben ist folgendes homogenes lineares Differentialgleichungssystem:

$$\mathbf{y}'(x) = \begin{pmatrix} -2 & 0 & 0\\ 9 & 4 & -3\\ 9 & 6 & -5 \end{pmatrix} \mathbf{y}(x)$$

Berechnen Sie die allgemeine Lösung  $\mathbf{y}(x)$ , sowie diejenige Lösung  $\mathbf{y}_s(x)$ , die die Anfangsbedingung  $\mathbf{y}_s(0) = (1,2,3)^T$  erfüllt.

H65 Gegeben ist die Differentialgleichung y'' + cy' + y = 0 mit einem reellen Parameter  $c \ge 0$ .

- (a) Überführen Sie die Differentialgleichung in ein entsprechendes Differentialgleichungssystem. Berechnen Sie die Eigenwerte der Koeffizientenmatrix in Abhängigkeit vom Parameter c. Für welchen Parameterwert  $c_0 \geq 0$  gilt, dass die Eigenwerte für  $c \geq c_0$  reell und für  $c < c_0$  nicht reell sind?
- (b) Berechnen Sie die allgemeine Lösung der gegebenen Differentialgleichung für den Parameterwert c=0 (ungedämpfter Oszillator).

H66 Überführen Sie die Differentialgleichung 3. Ordnung des Anfangswertproblems

$$y''' - y'' - 2y' = 0$$
 mit  $y(0) = 6$ ,  $y'(0) = 1$ ,  $y''(0) = 11$ .

in ein entsprechendes Differentialgleichungssystem, und lösen Sie dieses System. Verwenden Sie die Lösung dieses Systems, um die allgemeine Lösung der ursprünglichen Differentialgleichung aufzustellen.

| Lin. Dgl-System.                                                                                                        |
|-------------------------------------------------------------------------------------------------------------------------|
| $Y'(x) = A'(x)$ mit $(n \times n) - Matrix A$                                                                           |
| Siche n Lin. mabhan. Lois.                                                                                              |
| Y263),, Yn65]                                                                                                           |
| => allg. Losung.                                                                                                        |
| Y(x) = C1 Y1/x) + + Cn Yn(x), C1,, Cn ER                                                                                |
| o Eigenwerte us A                                                                                                       |
| $det(A - \lambda E_n) = 0 \Rightarrow \lambda_1, \dots, \lambda_n$                                                      |
|                                                                                                                         |
| o Eigenvelter basis berechnen $(A - \lambda_{1c} E_{1}) v = 0.$                                                         |
| talls existent. { V1,, Vn}                                                                                              |
| 2 h lin unah lisa, ma 1 hn dag tarm                                                                                     |
| on lin- unabh. Lissungen von der Form                                                                                   |
| YK(x) = CXXVK                                                                                                           |
| (1)                                                                                                                     |
| $61) a) Y(x) = \begin{pmatrix} 1 & 6 \\ 5 & 2 \end{pmatrix} Y(x)$                                                       |
| $=\lambda$                                                                                                              |
| geg. $V_1 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$ . $V_2 = \begin{pmatrix} 1 \\ -5 \end{pmatrix}$ Eigen vektoven von A. |
|                                                                                                                         |

| ZV1, V2) lin. unabh. >> {U1, U2] ist Basis des K                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Eigenwerte: $\begin{pmatrix} 1 & 6 \\ 5 & 2 \end{pmatrix} \begin{pmatrix} 4 \\ 1 \end{pmatrix} = \begin{pmatrix} 7 \\ 7 \end{pmatrix} = 7 \begin{pmatrix} 1 \\ 1 \end{pmatrix}$ $\Rightarrow \lambda_1 = 7$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| $\begin{pmatrix} 1 & 6 \\ 5 & 2 \end{pmatrix} \begin{pmatrix} 6 \\ -5 \end{pmatrix} = \begin{pmatrix} -24 \\ 20 \end{pmatrix} = -4 \begin{pmatrix} 6 \\ -5 \end{pmatrix}$ $\Rightarrow \lambda_{2} = -4$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| => algemeine Lisung:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Y(5)= Cne (1) + Cre (5), Cn, Cr ER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 7(10)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| -5+ V2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| $Y(5) = \begin{pmatrix} y_1(5) \\ y_2(5) \end{pmatrix}$ $C_1 = 0;$ $C_2 = 0;$ $C_3 = 0;$ $C_4 = 0;$ $C_5 = 0;$ $C_7 = 0;$ $C_$ |
| Cn=0: Cqetry                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |

| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                      |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------|
| Eigenwerte $\lambda_{1,2} = -3 \pm 2i$                                                                                                                    |
| Keine reellen Eigenverktoren.                                                                                                                             |
| TRICK: Erweitenung des Zahlraumes: R-> (                                                                                                                  |
| komplexer EV zu $\lambda_1 = -3 + 2i$ :                                                                                                                   |
|                                                                                                                                                           |
| $\begin{pmatrix} -3 - (-342i) & 2 \\ -1 & -3 - (-342i) \end{pmatrix} \begin{pmatrix} \pi_1 \\ \pi_2 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$ |
| $(-2i)x_1 + 2x_2 = 0$ $x_2 = ix_1$                                                                                                                        |
| -2 + 59 - (2i) + 52 = 0 $-51 = -i + 52$                                                                                                                   |
| $\Rightarrow \overline{L}V: U_{1} = \begin{pmatrix} 1 \\ \vdots \end{pmatrix}$                                                                            |
|                                                                                                                                                           |
| L=) 1/-2; 2 / 1/m / 10/                                                                                                                                   |
| 2eilen > (-2i) + (5n) = (0)                                                                                                                               |
| sind La2isy +2m=0 => sr=isy                                                                                                                               |
| $\rightarrow Eig_A(\lambda_1) = Span(\xi(1)) = Span(\xi(1))$                                                                                              |
|                                                                                                                                                           |
| eine zugehövige Komplexe Lissung                                                                                                                          |
| $Y_{a}^{c}(x) = e^{(-3+xi)x}(1)$                                                                                                                          |
| Re Yi, Im You sind L.U. reelle Lissung (S. VL)                                                                                                            |
| $Y^{4}(x) = e^{-3x} \cdot (\cos(2x) + i\sin(2x)) \cdot ((0) + i(0))$                                                                                      |
| = e-35 ( Cus(2x) (3) + i Cus(2x) (3) + isin(2x) (3) - sin(x)(3)                                                                                           |
| $= e^{-3\pi} \left( $                                                 |
| Reebteil Imag teit                                                                                                                                        |
| ice view                                                                                                                                                  |

| Re( $Y_1(x)$ ) = $e^{-3x}$ ( $Cos(2x)$ ), $Im(Y_1(x)) = e^{-3x}$ ( $Sin(2x)$ ) all $Cisung$ .  Y(x) = $C_1e^{-3x}$ ( $Cos(2x)$ ) + $C_2e^{-3x}$ ( $Sin(2x)$ ) $Cos(2x)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Cr, CrEP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| $= e^{-3/5} \left( C_{05}(xx) + S_{10}(xx) \right) \left( C_{1} \right)$ $= -S_{10}(xx) + S_{10}(xx) + S_{10}(xx)$ |
| im Uhrzeigersinn                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Spezielle lösung: $Y_s(0) = \begin{pmatrix} 1 \\ 2 \end{pmatrix} = e^{3.0} \begin{pmatrix} 0 \\ 0 \end{pmatrix} \begin{pmatrix} 0 \\ 0 \end{pmatrix}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 62) a], b)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| $Y(x) = (y_1(x)) = (200)(y_1(x))$ $(y_2(x)) = (-200)(y_2(x))$ $(y_3(x)) = (-200)(y_3(x))$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| (4 <sup>2</sup> / <sub>3</sub> / <sub>3</sub> ) (-2 0 1 ) (4 <sub>3</sub> / <sub>3</sub> )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| · Eigenherte von A.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |

| 14-20 1                                                                                                                                                                                                                                          |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $\begin{vmatrix} 14-\lambda & 0 & 1 \\ -\lambda & 1-\lambda & 0 \end{vmatrix} = \begin{vmatrix} 1-\lambda & 1 \\ -\lambda & 1-\lambda \end{vmatrix}$                                                                                             |
|                                                                                                                                                                                                                                                  |
| $= (1-\lambda)((4-\lambda)(1-\lambda)+2)$ $= (1-\lambda)(\lambda-2)(\lambda-3) = 0$                                                                                                                                                              |
|                                                                                                                                                                                                                                                  |
| $\Rightarrow \lambda_1 = 1, \lambda_2 = 2, \lambda_3 = 3$ $\Rightarrow \lambda_1 :$                                                                                                                                                              |
|                                                                                                                                                                                                                                                  |
| $\begin{pmatrix} 3 & 0 & 1 \\ -2 & 0 & 0 \end{pmatrix} \begin{pmatrix} y_1(s) \\ y_2(s) \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 3 \end{pmatrix}$ $\begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}$ $\begin{pmatrix} 3 \\ -2 \\ 0 \\ 3 \end{pmatrix}$ |
| y, κ)=> y, (κ)=> 52 be(iedig.                                                                                                                                                                                                                    |
| => Eig (In) = Span (E(1) g)                                                                                                                                                                                                                      |
| Elgenräume.                                                                                                                                                                                                                                      |
| $\lambda_1 = 1$ $\lambda_2 = 0$                                                                                                                                                                                                                  |
| 73                                                                                                                                                                                                                                               |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                            |
|                                                                                                                                                                                                                                                  |
| = $53 = -251$ . $5n = -251$                                                                                                                                                                                                                      |
| $\Rightarrow \text{ Eig}_{A}(\lambda_{2}) = \text{Span}\left(\xi\left(\frac{1}{-2}\right)\right)$                                                                                                                                                |

| Eigenverte:      | (siehe. $VL$ ) $\lambda^2 + 3\lambda + 2 = 0$                                                                                      |
|------------------|------------------------------------------------------------------------------------------------------------------------------------|
|                  | $\lambda_{1,2} = -\frac{3}{2} + \frac{1}{2}$                                                                                       |
| => \(\lambda_1 = | $ -2 $ , $ \lambda_1 =- -1 $                                                                                                       |
| YK)= Y           | (Lissung der Ursprunglich.                                                                                                         |
| 92K)=U           | (1x)= C1(-x)ex+ (1(-1)ex)                                                                                                          |
| oder über        | das System.                                                                                                                        |
| $\lambda_1 = -$  | $\begin{pmatrix} 2 & 3 & 1 \\ -2 & -1 \end{pmatrix} \begin{pmatrix} 51 \\ 5v \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$ |
|                  | $-\lambda_1 \times_1 + \times_2 = 0$                                                                                               |
|                  | 52=1154                                                                                                                            |
|                  | $Eiq_{A}(\lambda_{1}) = Span(?(?))$                                                                                                |
|                  |                                                                                                                                    |
|                  |                                                                                                                                    |
|                  |                                                                                                                                    |
|                  |                                                                                                                                    |
|                  |                                                                                                                                    |
|                  |                                                                                                                                    |
|                  |                                                                                                                                    |
|                  |                                                                                                                                    |
|                  |                                                                                                                                    |
|                  |                                                                                                                                    |
|                  |                                                                                                                                    |
|                  |                                                                                                                                    |
|                  |                                                                                                                                    |