获得的答案

Consider the language $D = \{w \mid w \text{ contains an even number of } a's \text{ and an odd number of } b's \text{ and does not contain the substring } ab\}.$

The language D can be described simply as follows $D = \{w \mid w \text{ contains an odd number of } b's \text{ followed by even number of } a's\}$.

Let M be the DFA with five states that recognizes the language D. The state diagram of M is as follows:

The language accepts the strings like $\{b,baa,bbbaaaa,...\}$. The string b is accepted by the language because, it contains the odd number of b's (1) followed by even number of a's (0).

Now, the language D can be expressed as combination of following two languages $D_{\rm l}$ and $D_{\rm 2}$.

 $D_1 = \{ w \mid w \text{ contain odd number of b's} \}$

 $D_2 = \{ w \mid w \text{ contains even number of a's} \}$

$$D = D_1 o D_2$$

 R_1 be the regular expression that generates D_1

 R_{2} be the regular expression that generates D_{2}

R be the regular expression that generates D

$$R = R_1 o R_2$$

$$R_1 = b(bb)^*$$

$$R_2 = (aa)*$$

$$R = b(bb)*o(aa)*$$

$$R = b(bb)*(aa)*$$

Therefore, the regular expression that generates the language D is b(bb)*(aa)*.