Assignment 03 & 04 of I2ML-s23

Q1 Show that the following sequents are not valid by finding a valuation (model) in which the truth values of the formulas to the left of $are\ 1s\ (Ts)$ and the truth value of the formula to the right of $is\ 0\ (F)$. $(6\ *\ 10pts = 60\ pts)$

(a)
$$\neg p \lor (q \rightarrow p) \vdash \neg p \land q$$

(b)
$$\neg r \rightarrow (p \lor q), r \land \neg q \vdash r \rightarrow q$$

(c)
$$\neg p, p \lor q \vdash \neg q$$

(d)
$$p \rightarrow (\neg q \lor r), \neg r \vdash \neg q \rightarrow \neg p$$

(e)
$$p \rightarrow q \vdash p \lor q$$

(f)
$$p \to (q \lor r) \vdash (p \to q) \land (p \to r)$$

Q2 Prove the validity of the following sequents (study all of them first, and then choose 4 of the hardest sequents for you to prove and do not duplicate with formulas or sequents you have proved in the assignment 1 or 2) by formal proof rules and format learnt in Lecture Notes 05 & 06. (Pay attention that F1 \vdash F2 is a shorthand of $\{F1\}$ \vdash F2 in formal proof.) (4*10pts = 40pts)

(a)
$$\phi_1 \wedge \neg \phi_2 \vdash \neg (\phi_1 \rightarrow \phi_2)$$

(b)
$$\neg \phi_1 \land \neg \phi_2 \vdash \phi_1 \rightarrow \phi_2$$

(c)
$$\neg \phi_1 \land \phi_2 \vdash \phi_1 \rightarrow \phi_2$$

(d)
$$\phi_1 \wedge \phi_2 \vdash \phi_1 \rightarrow \phi_2$$

(e)
$$\neg \phi_1 \land \phi_2 \vdash \neg (\phi_1 \land \phi_2)$$

(f)
$$\neg \phi_1 \wedge \neg \phi_2 \vdash \neg (\phi_1 \wedge \phi_2)$$

(g)
$$\phi_1 \wedge \neg \phi_2 \vdash \neg (\phi_1 \wedge \phi_2)$$

(h)
$$\neg \phi_1 \wedge \neg \phi_2 \vdash \neg (\phi_1 \vee \phi_2)$$

(i)
$$\phi_1 \wedge \phi_2 \vdash \phi_1 \vee \phi_2$$

(j)
$$\neg \phi_1 \land \phi_2 \vdash \phi_1 \lor \phi_2$$

(k)
$$\phi_1 \wedge \neg \phi_2 \vdash \phi_1 \vee \phi_2$$
.

Q3 Use mathematical induction on *n* to prove the following equivalence: (20 pts)

$$((\phi_1 \wedge (\phi_2 \wedge (\cdots \wedge \phi_n) \dots) \to \psi) \equiv (\phi_1 \to (\phi_2 \to (\dots (\phi_n \to \psi) \dots)))).$$

Q4 Find a formula of propositional logic φ which contains only the atoms p, q and r and which is true only when p and q are false, or when $\neg q \land (p \lor r)$ is true. (10pts)

Q5 Derive the following statements by formal proof learnt in Lecture Notes 05 & 06. (2 * 15 pts = 30 pts)

5a)
$$\emptyset \vdash (p \Rightarrow (q \lor r)) \lor (r \Rightarrow \neg p)$$

5b)
$$\{r \lor (s \land \neg t), (r \lor s) \Rightarrow (u \lor \neg t)\} \vdash t \Rightarrow u$$

Q6 Prove the following equivalences: (2 * 15 pts = 30 pts)

6a)
$$p \Rightarrow q \equiv \neg p \lor q \equiv \neg (p \land \neg q) \equiv \neg q \Rightarrow \neg p$$

6b)
$$(p \land q \land r) \lor (\neg p \land \neg q \land \neg r) \equiv p \Leftrightarrow q \Leftrightarrow r$$

Q7 Simplify (10 pts)

$$\underbrace{p \oplus \ldots \oplus p}_{n} \oplus \underbrace{\neg p \oplus \ldots \oplus \neg p}_{k} \equiv ?$$

Q8 For the formula:
$$\neg(\neg((s \Rightarrow \neg(p \Leftrightarrow q))) \oplus (\neg q \lor r))$$

- 8a) Convert the above formula into NNF;
- 8b) Remove \Rightarrow , \Leftrightarrow , and \oplus before turning the above into NNF, redo 8a).

$$(2 * 10pts = 20pts)$$