





## Olimpiada Națională de Matematică Etapa Județeană și a Municipiului București, 10 martie 2018

## CLASA a 9-a

## Varianta 2

**Problema 1.** Determinați funcțiile strict crescătoare  $f: \mathbb{N} \to \mathbb{N}$  cu proprietatea că  $\frac{f(x) + f(y)}{1 + f(x + y)}$  este un număr natural nenul, pentru orice  $x, y \in \mathbb{N}$ .

Gazeta Matematică

**Problema 2.** Se consideră triunghiul dreptunghic ABC,  $m(\angle A) = 90^{\circ}$  și punctele D și E pe cateta AB astfel încât  $\angle ACD \equiv \angle DCE \equiv \angle ECB$ . Arătați că dacă  $3\overline{AD} = 2\overline{DE}$  și  $\overline{CD} + \overline{CE} = 2\overline{CM}$  atunci  $\overline{AB} = 4\overline{AM}$ .

**Problema 3.** Fie AD, BE, CF înălțimile triunghiului ABC și K, L, M ortocentrele triunghiurilor AEF, BFD, respectiv CDE. Notăm cu  $G_1$  și  $G_2$  centrele de greutate ale triunghiurilor DEF, respectiv KLM. Să se arate că  $HG_1 = G_1G_2$ , unde H este ortocentrul triunghiului ABC.

**Problema 4.** Fie  $f: \mathbb{R} \to \mathbb{R}$  o funcție. Pentru fiecare  $a \in \mathbb{Z}$  considerăm funcția  $f_a: \mathbb{R} \to \mathbb{R}$ ,  $f_a(x) = (x-a)f(x)$ . Arătați că dacă există o infinitate de valori  $a \in \mathbb{Z}$  pentru care funcțiile  $f_a$  sunt crescătoare, atunci și funcția f este monotonă.