

Ayudantía Extra Examen

Héctor Núñez, Paula Grune, Manuel Irarrázaval

Pregunta 1: Relaciones y Funciones

Sean A y B conjuntos y (B, \preceq) un orden parcial. Considere el siguiente conjunto:

$$\phi(A, B) = \{ f \mid f : A \to B \}$$

Además definimos la relación binaria \leq_{ϕ} sobre $\phi(A, B)$ como:

$$f \leq_{\phi} g$$
 si y solo si $f(a) \leq g(a) \quad \forall a \in A$

Demuestre que $(\phi(A, B), \leq_{\phi})$ es un orden parcial.

Pregunta 2: Teoría de Números

- 1. Demuestre que un número es divisible por 3 si y solo si la suma de sus digitos es divisible por 3.
- 2. Demuestre que para cada número primo $p \ge 6$, se cumple que p^2-1 o p^2+1 es multiplo de 10.

Pregunta 3: Algoritmos y grafos

a) El número de operaciones de un algoritmo viene dado por la siguiente ecuación de recurrencia:

$$T(n) = \begin{cases} 1 & \text{si } n = 1\\ T(n-1) + n & \text{si } n \ge 2 \end{cases}$$

Resuelva la ecuación y determine la complejidad del algoritmo.

- b) Dado un grafo G = (V, E), decimos que un grafo G' = (V', E') es subgrafo isomorfo de G si y solo si se cumple que existe un grafo $H = (V_H, E_H)$ tal que:
 - H es subgrafo de G, es decir, $V_H \subseteq V$, $E_H \subseteq E$ y $E_H \subseteq V_H \times V_H$.
 - H es isomorfo a G'.

Demuestre que si G_1 es subgrafo isomorfo de G_2 y G_2 es subgrafo isomorfo de G_1 , entonces $G_1 \cong G_2$.

Pregtunta 4: Logica de Predicados

a) (3 ptos.) En clases vimos que

$$\forall x (Q(x) \lor P(x)) \not\equiv \forall x Q(x) \lor \forall x P(x)$$

¿Es cierta la siguiente afirmación?

$$\forall x \forall y (Q(x) \lor P(y)) \equiv \forall x Q(x) \lor \forall x P(x)$$

Demuestre o dé un contraejemplo. b) (3 ptos.) Dado un conjunto Σ de oraciones (fórmulas sin variables libres) en lógica de predicados, diremos que Σ es satisfacible si existe una interpretación \mathcal{I} tal que $\mathcal{I} \models \varphi$ para toda $\varphi \in \Sigma$. En caso contrario, decimos que Σ es inconsistente. Dados un conjunto de oraciones Σ y una oración φ , demuestre que

$$\Sigma \models \varphi$$
 si y solo si $\Sigma \cup \{ \neg \varphi \}$ es inconsistente.