Exercise Solutions for Math 20 Radicals and Complex Numbers

Nile Jocson <novoseiversia@gmail.com> ${\it November~8,~2024}$

Contents

1	Sim	aplify the following. Rationalize the denominators.	3
	1.1	$rac{24c^{-rac{1}{2}}d^{rac{2}{3}}}{18c^{-rac{1}{7}}d^{-rac{2}{5}}}$	
	1.2	$(u^{\frac{1}{3}} + (uv)^{\frac{1}{6}} + v^{\frac{1}{3}})(u^{\frac{1}{6}} - v^{\frac{1}{6}}) \dots $	3
	1.3	$\sqrt[3]{-8^4}$	3
	1.4	$\sqrt[4]{9x^8}$	4
	1.5	$\sqrt[3]{9a^4b^4}$	4
	1.6	$\frac{2\sqrt{5}}{\sqrt{8}} + \frac{9}{\sqrt[3]{16}} \dots $	
	1.7	$\frac{x^2-2x+1}{\sqrt{x}+1}$	4
	1.8	$\frac{\sqrt{3}+1}{\sqrt[3]{4}-\sqrt[3]{-27}}$	5
2	Per	form the following operations and simplify.	6
	2.1	$3i(i^2 - i^3 + 5i^5 - i^{-2})$	6
	2.2	(3-5i)(7+4i)	6
	2.3	$\frac{\grave{3}i-2}{3i+2}$	6
	2.4	$\frac{7+i-4(3-i)}{6-5i^3} \dots \dots \dots \dots \dots \dots \dots \dots \dots $	7
	2.5	$\frac{2-2(\overline{i+1})}{2-\sqrt{-4}}$	7

1 Simplify the following. Rationalize the denominators.

1.1 $\frac{24c^{-\frac{1}{2}}d^{\frac{2}{3}}}{18c^{-\frac{1}{7}}d^{-\frac{3}{5}}}$

$\Rightarrow \frac{4c^{-\frac{1}{2}}d^{\frac{2}{3}}}{3c^{-\frac{1}{7}}d^{-\frac{5}{5}}}$ $\Rightarrow \frac{4d^{\frac{2}{3}}c^{\frac{7}{7}}d^{\frac{3}{5}}}{3c^{\frac{1}{2}}}$ $\Rightarrow \frac{4d^{\frac{2}{3}}d^{\frac{3}{5}}}{3}c^{\frac{1}{7}-\frac{1}{2}}$	Simplify the fraction to lowest terms.
$\Rightarrow \frac{4d^{\frac{2}{3}}c^{\frac{1}{7}}d^{\frac{3}{5}}}{3c^{\frac{1}{2}}}$	$a^{-\frac{b}{c}} = \frac{1}{a^{\frac{b}{c}}}$
	$\frac{a^m}{a^n} = a^{m-n}$
$\Rightarrow \frac{4d^{\frac{2}{3}}d^{\frac{3}{5}}}{3}c^{\frac{2}{14} - \frac{7}{14}}$	LCM = 14
$\Rightarrow \frac{4d^{\frac{2}{3}}d^{\frac{3}{5}}}{3}c^{-\frac{5}{14}}$	
$\Rightarrow \frac{4}{3}c^{-\frac{5}{14}}d^{\frac{2}{3} + \frac{3}{5}}$	$a^m a^n = a^{m+n}$
$\Rightarrow \frac{4}{3}c^{-\frac{5}{14}}d^{\frac{10}{15} + \frac{9}{15}}$	LCM = 15
$\Rightarrow \frac{4}{3}c^{-\frac{5}{14}}d^{\frac{19}{15}}$	
$\Rightarrow \frac{4d^{\frac{19}{15}}}{3c^{\frac{5}{14}}}$	$a^{-\frac{b}{c}} = \frac{1}{a^{\frac{b}{c}}}$
$\Rightarrow rac{4\sqrt[15]{d^{19}}}{3\sqrt[14]{c^5}}$	
$\Rightarrow \frac{4^{15}\sqrt{d^{19}}}{3^{14}\sqrt{c^5}} \cdot \frac{{}^{14}\sqrt{c^9}}{{}^{14}\sqrt{c^9}}$	Rationalize.
$\Rightarrow \frac{4^{14}\sqrt{c^{9}} \sqrt[15]{d^{19}}}{3c}$	
	•

1.2 $(u^{\frac{1}{3}} + (uv)^{\frac{1}{6}} + v^{\frac{1}{3}})(u^{\frac{1}{6}} - v^{\frac{1}{6}})$

$\Rightarrow (u^{\frac{1}{3}} + u^{\frac{1}{6}}v^{\frac{1}{6}} + v^{\frac{1}{3}})(u^{\frac{1}{6}} - v^{\frac{1}{6}})$	Distribute exponent.
$\Rightarrow u^{\frac{1}{2}} - v^{\frac{1}{2}}$	Use difference of two cubes.
$\Rightarrow \sqrt{u} - \sqrt{v}$	

1.3 $\sqrt[3]{-8^4}$

$\Rightarrow -\sqrt[3]{8^4}$	$\sqrt[m]{-a} = -\sqrt[m]{a}$ for odd m
$\Rightarrow -\sqrt[3]{(2^3)^4}$	
$\Rightarrow -\sqrt[3]{(2^4)^3}$	$(a^m)^n = (a^n)^m$
$\Rightarrow -2^4$	
$\Rightarrow -16$	

1.4 $\sqrt[4]{9x^8}$

$$\Rightarrow \sqrt[4]{9}\sqrt[4]{x^8}$$

$$\Rightarrow \sqrt[4]{3^2}\sqrt[4]{x^8}$$

$$\Rightarrow x^2\sqrt{3}$$

1.5 $\sqrt[3]{9a^4b^4}$

$$\Rightarrow \sqrt[6]{9a^4b^4}$$

$$\Rightarrow \sqrt[6]{3^2 a^4 b^4}$$

$$\Rightarrow \sqrt[3]{3a^2b^2}$$

1.6
$$\frac{2\sqrt{5}}{\sqrt{8}} + \frac{9}{\sqrt[3]{16}}$$

$$\Rightarrow \frac{2\sqrt{5}}{\sqrt{8}} \cdot \frac{\sqrt{2}}{\sqrt{2}} + \frac{9}{\sqrt[3]{16}} \cdot \frac{\sqrt[3]{4}}{\sqrt[3]{4}}$$

$$\Rightarrow \frac{2\sqrt{5}\sqrt{2}}{\sqrt{16}} + \frac{9\sqrt[3]{4}}{\sqrt[3]{64}}$$

$$\Rightarrow \frac{2\sqrt{5}\sqrt{2}}{4} + \frac{9\sqrt[3]{4}}{4}$$

$$\Rightarrow \frac{2\sqrt{5}\sqrt{2} + 9\sqrt[3]{4}}{4}$$

$$\Rightarrow \frac{2\sqrt{5}\sqrt{2} + 9\sqrt[3]{4}}{4}$$

$$\Rightarrow \frac{2\sqrt{5}\sqrt{2}}{\sqrt{16}} + \frac{9\sqrt[3]{4}}{\sqrt[3]{64}}$$

$$\Rightarrow \frac{2\sqrt{5}\sqrt{2}}{4} + \frac{9\sqrt[3]{4}}{4}$$

$$\Rightarrow \tfrac{2\sqrt{5}\sqrt{2}+9\sqrt[3]{4}}{4}$$

$$\Rightarrow \frac{2\sqrt{10}+9\sqrt[3]{4}}{4}$$

1.7 $\frac{x^2-2x+1}{\sqrt{x}+1}$

$$\Rightarrow \frac{x^2 - 2x + 1}{\sqrt{x} + 1} \cdot \frac{\sqrt{x} - 1}{\sqrt{x} - 1}$$
 Rationalize using difference of two squares.
$$\Rightarrow \frac{(x^2 - 2x + 1)(\sqrt{x} - 1)}{x - 1}$$

$$\Rightarrow \frac{(x - 1)^2(\sqrt{x} - 1)}{x - 1}$$
 Factor by grouping.

$$\Rightarrow \frac{(x^2-2x+1)(\sqrt{x}-1)}{x-1}$$

$$\Rightarrow \frac{(x-1)^2(\sqrt{x}-1)}{x-1}$$
 Factor by grouping.

$$\Rightarrow (x-1)(\sqrt{x}-1)$$

1.8 $\frac{1}{\sqrt[3]{4}-\sqrt[3]{-27}}$

$\Rightarrow \frac{1}{\sqrt[3]{4} + \sqrt[3]{27}}$	$\sqrt[m]{-a} = -\sqrt[m]{a}$ for odd m
$\Rightarrow \frac{1}{\sqrt[3]{4} + \sqrt[3]{27}} \cdot \frac{\sqrt[3]{4^2} - \sqrt[3]{4}\sqrt[3]{27} + \sqrt[3]{27^2}}{\sqrt[3]{4^2} - \sqrt[3]{4}\sqrt[3]{27} + \sqrt[3]{27^2}}$	Rationalize using difference of two cubes.
$\Rightarrow \frac{\sqrt[3]{4^2 - \sqrt[3]{4}} \sqrt[3]{27} + \sqrt[3]{27^2}}{4 + 27}$	
$\Rightarrow \frac{\sqrt[3]{4^2 - 3\sqrt[3]{4} + \sqrt[3]{27^2}}}{4 + 27}$	
$\Rightarrow \frac{\sqrt[3]{4^2} - 3\sqrt[3]{4} + \sqrt[3]{27^2}}{31}$	
$\Rightarrow \frac{\sqrt[3]{16} - 3\sqrt[3]{4} + \sqrt[3]{27^2}}{31}$	
$\Rightarrow \frac{\sqrt[3]{16} - 3\sqrt[3]{4} + \sqrt[3]{(3^3)^2}}{31}$	
$\Rightarrow \frac{\sqrt[3]{16} - 3\sqrt[3]{4} + \sqrt[3]{(3^2)^3}}{31}$	$(a^m)^n = (a^n)^m$
$\Rightarrow \frac{\sqrt[3]{16} - 3\sqrt[3]{4} + 3^2}{31}$	
$\Rightarrow \frac{\sqrt[3]{16} - 3\sqrt[3]{4} + 9}{31}$	
$\Rightarrow \frac{\sqrt[3]{8}\sqrt[3]{2} - 3\sqrt[3]{4} + 9}{31}$	$\sqrt[m]{ab} = \sqrt[m]{a} \sqrt[m]{b}$
$\Rightarrow \frac{2\sqrt[3]{2} - 3\sqrt[3]{4} + 9}{31}$	

2 Perform the following operations and simplify.

2.1 $3i(i^2 - i^3 + 5i^5 - i^{-2})$

$\Rightarrow 3i(-1-i^3+5i^5-i^{-2})$	$i^2 = -1$
$\Rightarrow 3i(-1+i+5i^5-i^{-2})$	$i^3 = -i$
$\Rightarrow 3i(-1+i+5i-i^{-2})$	$i^5 = i$
$\Rightarrow 3i(-1+i+5i+1)$	$i^{-2} = -1$
$\Rightarrow 3i(6i)$	
$\Rightarrow 18i^2$	
$\Rightarrow -18$	$i^2 = -1$
	•

2.2 (3-5i)(7+4i)

$\Rightarrow 21 + 12i - 35i - 20i^2$	Expand.
$\Rightarrow 21 + 12i - 35i + 20$	$i^2 = -1$
$\Rightarrow 41 - 23i$	
	•

2.3 $\frac{3i-2}{3i+2}$

$\Rightarrow \frac{-2+3i}{2+3i}$	Rewrite in standard form.
$\Rightarrow \frac{-2+3i}{2+3i} \cdot \frac{2-3i}{2-3i}$	Multiply by conjugate to eliminate the complex denominator.
$\Rightarrow \frac{(-2+3i)(2-3i)}{(2+3i)(2-3i)}$	
$\Rightarrow \frac{-4+6i+6i-9i^2}{4-9i^2}$	
$\Rightarrow \frac{-4+12i-9i^2}{4-9i^2}$	
$\Rightarrow \frac{-4+12i+9}{4+9}$	$i^2 = -1$
$\Rightarrow \frac{5+12i}{13}$	
$\Rightarrow \frac{5}{13} + \frac{12}{13}i$	

2.4 $\frac{7+i-4(3-i)}{6-5i^3}$

$\Rightarrow \frac{7+i-4(3-i)}{6+5i}$	$i^3 = -i$
$\Rightarrow \frac{7+i-12+4i}{6+5i}$	
$\Rightarrow \frac{-5+5i}{6+5i}$	
$\Rightarrow \frac{-5+5i}{6+5i} \cdot \frac{6-5i}{6-5i}$	Multiply by conjugate to eliminate the complex

$$\Rightarrow \frac{-3+3i}{6+5i} \cdot \frac{0-3i}{6-5i}$$
 Multiply by conjugate to eliminate the complex denominator.
$$\Rightarrow \frac{(-5+5i)(6-5i)}{(6+5i)(6-5i)}$$

$$\Rightarrow \frac{-30 + 25i + 30i - 25i^2}{36 - 25i^2}$$

$$\Rightarrow \frac{-30 + 25i + 30i + 25}{36 + 25}$$
 $i^2 = -1$

$$\begin{array}{c} -36+25 \\ \Rightarrow \frac{-5+55i}{61} \end{array}$$

$$\Rightarrow -\frac{5}{61} + \frac{55}{61}i$$

2.5 $\frac{2-2(\overline{i+1})}{2-\sqrt{-4}}$

$$\Rightarrow \frac{2-2(i-1)}{2-\sqrt{-4}}$$
 Line above a complex number denotes its conjugate.
$$\Rightarrow \frac{2-2i+2}{2}$$

$$\Rightarrow \frac{4-2i}{2-\sqrt{-4}}$$

$$\Rightarrow \frac{4-2i}{2-2i}$$

$$\sqrt{-a} = i\sqrt{a}$$

$$\Rightarrow \frac{4-2i}{2-2i} \cdot \frac{2+2i}{2+2i}$$
 Multiply by conjugate to eliminate the complex

$$\frac{2-2i}{2+2i}$$
 denominator.

$$\Rightarrow \frac{8+8i-4i-4i^2}{4-4i^2}$$

$$\Rightarrow \frac{8+4i+4}{4-4i}$$

$$i^2 = -1$$

$$\Rightarrow \frac{0+4i+4}{4+4i}
\Rightarrow \frac{12+4i}{9}$$

$$\Rightarrow \frac{12+4i}{8}$$

$$\Rightarrow \frac{3+i}{2}$$

$$\Rightarrow \frac{3}{2} + \frac{1}{2}i$$

7