A comparative analysis on classification algorithms in R programming

Dataset Details

Name	Wisconsin Diagnostic Breast Cancer
Attributes	10
Task	Classification
Instances	699
Link	http://archive.ics.uci.edu/ml/machine-learning-databases/breast-cancer-wisconsin/breast-cancer-wisconsin.data
Туре	Multivariate

Preprocessing

- null values are removed
- question marks present in the data are replaced
- Column names are added
- The data is scaled

Pseudocode for preprocessing

data <- data[-1]

data[is.na(data)] <- 0

data[data == "?"] <- 0

apply(data,2,function(x) sum(is.na(x)))

Evaluation Metric

Precison evaluation metric is used

Results Table

Classifier	Nfold Cross Validation	Parametres used	Accuracy	Accuracy Precision
Decision Tree	10	Cost factor=0.1 depth=10	95.184	0.949
Perceptron	10	Threshold=5 activation function=tanh	83.23	0.635
NeuralNetworks	10	Hiddenlayers=3 Threshold=0.1	95	0.502
Deep Learning	10	Hiddenlayers=20 Threshold=0.2	85.9294	0.321
SVM	10	Cost=10 Gamma=0.1 Threshold=Linear	97.224	0.987
Naivebayes	10	Na.action=omit/pass	97.50	0.993

K-NN	10	K=5	99.56	0.997
		L=2		
		Linear		
AdaBoosting	10	Iteration=20	96.48	0.98
		Delta=4		
		Bagiteration=20		
		Type=gentle		
Bagging	10	Mfinal=10	96.64	0.96
		Length=4		
		Iterations=1000		
		Cp=0		
Logistic Regression	10	Family=Bipnomial/Quassy	44.62	0.059
Gradient Boosting	10	Ntree=2000	99.56	0.98
		Shrinkage=0.02		
		Depth=10		
		Bagfraction=0.1		
RandomForests	10	Ntree=1000	96.75	0.998
		Mty=2		
		Proximity=true		
		Maxfeatures=2		

Algorithms

- Decision Trees
 - Perceptron
 - Neural Net
 - Deep Learning
 - o SVM
 - o naïve Bayes
 - o Logistic Regression
 - k-Nearest Neighbors
 - Bagging
 - Random Forests
 - AdaBoost
 - Gradient Boosting

Analysis

Experiments were carried out by providing the same dataset as input to 12 different classifiers in order to assess and compare the performances of algorithms and the effectiveness of the hypothesis created from them. Experiment included studying each of the classifying algorithm, selecting different input parameters for each of them, verifying how each of them influence the output and logging each instance of them. After few comparative dry runs, the input combination that resulted in maximum accuracy was then set as best set of parameters for each of the classifier.

In the goal of highlighting the strength and weaknesses of algorithms being compared, apart from just accuracy or misclassification error as a performance metric, we also included in the comparative study, an additional evaluation parameter "precision" which is usually referred as positive predictive value and gives the preciseness of the trained model in terms of probability of relevancy in the predictions.

Both of these metrics were then collected from repeated runs of cross validation where overall accuracy and precision were averaged across each fold of validation. Such a comparison on the taken breast cancer dataset resulted in the below observations:

10 fold cross validation on each classifier

1)Decision Trees

Parametre-1	Parametre-2	AverageAccuracy
Complexity Parametre(cp)	Maximum Depth	
0.1	10	91.108
0.2	10	91.1058
0.2	30	91.10
0.02	30	93.287
0.01	20	93.865
0.05	20	93.135
0.06	20	92
0.3	20	91.1086
0.03	10	93.438
001	10	95.1843
0.2	5	91.1058
0.2	2	91.108
0.1	20	91.1086
0.1	25	91.1086
0.05	20	93.1357
0.5	10	91.1086
0.25	10	91.1086

2)Perceptron

Parametre1	Parametre-2	Average Accuracy
Threshold	Learningrate	
0.01	Logistic	82.85
0.02	Logistic	82.85
5	Tanh	83.23
10	Tanh	82.54
20	Logistic	82.10
25	Tanh	81.96
30	Logistic	81.667
25	Logistic	81.96
50	Tanh	80.220
0.01	Tanh	82.85

40	Logistic	81.23
10	Logistic	82.54
20	Tanh	82.10
30	Tanh	81.667
15	Tanh	79.75

3)Neural Networks

Parametre-1	Parametre2	Accuracy
hidden layers	Threshold	
3	0.01	94.89
3	0.1	95
3	0.2	94.47
1	0.2	85.93
4	0.3	90.78
4	0.2	91.085
4	0.1	91.087
4	0.01	91.222
5	0.2	93.8474
5	0.1	94.1674
5	0.3	93.8944
5	0.4	93.5842
7	0.1	91.197
10	0.1	93.4199

4)Deep Learning

Parametre-1 hidden layers	Parametre-2 threshold	Accuracy	
50	0.1	77.1592	
40	0.1	75.3439	
20	0.2	85.9294	
40	0.2	77.3797	
30	0.1	81.661	
35	0.1	80.71	
50	0.2	77.1592	
40	0.2	75.3439	
35	0.2	80.43	
45	0.2	75.75	
45	0.1	77.269	
25	0.1	80.9667	
25	0.2	81.6448	
20	0.1	85.9294	

5)SVM

Parametre-1 Cost	Parametre-2 Gamma	Parametre-3 Kernel type	Average Accuracy
10	0.1	Linear	97.224875
30	0.3	Linear	90.52
50	0.4	Linear	93.25
20	0.1	Polynomial	96.32
40	0.2	Polynomial	87.325
50	0.4	Polynomial	91.021
25	0.1	Radial	95.32
35	0.3	Radial	92.156

6)Naïve Bayes Classifier

Parametre-1	Accuracy
(na)	
Pass	97.40
Omit	97.40

7)K-NN

Parametre-1	Parametre-2	AverageAccuracy
K	L	
5	2	99.85507246
3	2	96.223
10	3	97.258
20	3	95.236
30	2	92.564
5	4	90.231
6	5	87.235

8)RandomForests

Parametre-1	Parametre-2	Parametre-3	Parametre-4	AverageAccuracy
Ntree	ntry	Proximity	Maxfeatures	
2000	2	FALSE	2	96.495
1000	2	FALSE	2	97.9727
500	2	TRUE	2	97.682
1500	2	FALSE	1	96.9347

1000	4	TRUE	3	97.517
1000	2	FALSE	2	97.9727
500	1	TRUE	1	96.1882
1000	1	TRUE	3	96.932
1000	1	FALSE	1	96.932
1000	5	TRUE	5	94.365
2000	4	FALSE	3	96.907
2000	2	TRUE	2	96.4953
1000	4	TRUE	5	95.517
1000	4	FALSE	4	94.517
2000	4	TRUE	4	96.9064

9)Logistic Regression

Parametre	Average Accuracy
Family	
Binomial	44.62
Quasi Binomial	44.62

10)Bagging

Parametre-1 Mfinal	Parametre-2 lengthdivisor	Parametre-3 Iterations	Parametre-4 cp	AverageAccuracy
10	4	1000	0	96.64
20	4	1000	0	95.79
20	2	500	1	63.25
5	2	500	1	63.25
30	2	500	1	63.25
30	4	500	0	95.79
30	4	1000	0	95.79
30	4	1000	2	63.58
30	2	1000	3	68.25
20	4	1000	0	95.79

11)AdaBoosting

Parametre-1 iterations	Parametre-2 delta	Parametre-3 bagfraction	Parametre-4 type	Average Accuracy
20	1	20	Real	86.061
20	1	20	Discreet	96.1992
20	2	20	gentle	97.21132

10	3	10	gentle	96.201
10	3	20	gentle	96.201
10	3	20	Real	77.74
10	3	20	Discrete	95.7553
50	2	20	discrete	97.04
50	2	20	Gentle	96.4533
100	4	50	gentle	97.05
100	4	50	Discrete	96.9040
50	1	20	Discrete	97.0416
80	4	20	Discrete	96.8006
80	1	20	Gentle	96.214
20	4	20	gentle	97.21132

12)Gradient Boosting

Parametre-1	Parametre-2	Parametre-3	Parametre-4	Accuracy
ntree	shrinkage	Interaction depth	Bag fraction	
1200	0.01	7	0.9	96.1698
1000	0.01	6	0.9	98.5309
800	0.02	7	0.8	99.275
800	0.01	7	0.8	99.275
800	0.01	10	0.8	99.275
500	0.02	10	0.6	97.469
400	0.01	8	0.6	97.469
2000	0.02	10	0.4	99.56
600	0.02	10	0.4	98.67
700	0.02	8	0.4	98.55
800	0.01	8	0.7	98.384
2600	0.04	8	0.6	98.810
200	0.01	10	0.7	98.550
3000	0.03	10	0.6	98.5507
500	0.03	8	0.6	97.4692

Sample Output

Conclusion

Though KNN had highest accuracy on precision, we cannot directly conclude that, because there is not a significant difference from gradient boosting, NaiveBayes and SVM. Comparatively, a weaker method on the taken dataset was Logistic regression which resulted in low accuracy as well as preciseness. May be because it predicts the outcomes based on independent attributes and is also prone to overfit the training instances which did not suite the particular data set. So the proper selection of algorithm at relevant scenarios is of high importance in machine learning to provide significant results.