TEORIA DE GRAFOS E COMPUTABILIDADE

FUNÇÕES

Funções: Introdução

Frequentemente temos que associar cada elemento de um conjunto a um elemento particular de outro conjunto.

Por exemplo, podemos:

- Associar cada aluno de Matemática Discreta a um conceito A, B, C, D, E ou F.
- Associar cada inteiro ao seu quadrado.
- Associar cada país ao seu chefe de Estado.
- O conceito de função formaliza este tipo de associação.
- Em matemática e ciência da computação, funções são fundamentais:
 - na definição de estruturas discretas como sequências e strings,
 - no estudo de complexidade de algoritmos,
 - · na produção de algoritmos recursivos,

. . .

Funções

Sejam A e B conjuntos não-vazios.

Uma **função** *f* de *A* para *B* é uma associação de <u>exatamente um</u> elemento de *B* a cada elemento de *A*.

Escrevemos

$$f(a) = b$$

se b for o único elemento de B associado através de f ao elemento a de A.

Funções

■ Se f é uma função de A para B, escrevemos

$$f:A\to B$$

para denotar o tipo da função.

O conjunto A é chamado de **domínio** de f .

O conjunto B é chamado de **co-domínio** ou **contra-domínio** de f . A **imagem** de f é o conjunto de valores que f pode assumir:

imagem de
$$f = \{b \in B \mid b = f(a) \text{ para algum } a \in A\}$$

A **imagem inversa** de um elemento $b \in B$ é o conjunto de valores $a \in A$ que são mapeados a b via f:

imagem inversa de
$$b = \{a \in A \mid f(a) = b\}$$

Funções: Exemplos

Exemplo: Sejam os conjuntos A = {x, y, z} e B = {1, 2, 3, 4}.
Seja a função f : A → B definida pelo diagrama abaixo.

- Domínio de $f: \{x, y, z\}$
- Co-domínio de f: {1, 2, 3, 4}
- <u>Imagem</u> de f: {2, 4}

$$f(z) = 2$$
$$f(x) = 2$$
$$f(y) = 4$$

- Imagem inversa de 1: Ø
- Imagem inversa de 2: {x, z}
- Imagem inversa de 3: Ø
- Imagem inversa de 4: {y}
- A função f pode ser representada como o conjunto de pares ordenados:

$$f = \{(x, 2), (y, 4), (z, 2)\}$$

Funções: Exemplos

- Exemplo: Outros exemplos de funções:
 - Função quadrado $f: R \rightarrow R$:

$$f(x) = x^2$$
 ou $f: x \rightarrow x^2$

■ Função sucessor $f: Z \rightarrow Z$:

$$f(n) = n + 1$$
 ou $f: n \rightarrow n + 1$

■ Função constante $f: Q \rightarrow Z$:

$$f(r) = 2$$
 ou $f: r \rightarrow 2$

■ Função pai $f: P \rightarrow P$, onde P é o conjunto de todas as pessoas:

$$f: p \rightarrow p^j$$
, onde p^j é pai de p

Igualdade de funções

- Duas funções f e g são iguais sse elas:
 - têm o mesmo domínio
 - têm o mesmo codomínio
 - mapeiam cada elemento do domínio ao mesmo elemento do co-domínio.

Formalmente, para duas funções f e g definidas em $A \rightarrow B$

$$f = g$$
 sse $\forall a \in A : f(a) = g(a)$.

• Exemplo: Sejam $f(x) = |x| e g(x) = \sqrt{x^2}$.

Então f = g, pois $\forall x \in \mathbb{R}$:

$$|x| = \sqrt{x^2}.$$

Função injetiva

Uma função f : A → B é uma função injetiva (ou injetora ou um-para-um) sse para todos a₁, a₂ ∈ A:

$$a_1 = a_2 \rightarrow f(a_1) = f(a_2)$$

ou, equivalentemente,

$$f(a_1) = f(a_2) \rightarrow a_1 = a_2$$

- Intuitivamente, uma função é injetiva se cada elemento do domínio é mapeado em um elemento diferente do co-domínio.
- Exemplo: Seja $f: R \to R$ em cada caso abaixo. Então:

■
$$f(x) = x^2$$

não é injetiva;

Função sobrejetiva

- Uma função $f: A \rightarrow B$ é uma função sobrejetiva (ou sobrejetora) sse para todo $b \in B$ é possível achar um $a \in A$ tal que f(a) = b.
- Intuitivamente, uma função é sobrejetora se cada elemento do codomínio é imagem de pelo menos um elemento do domínio.
- **Exemplo:** Seja $f: R \rightarrow R$ em cada caso abaixo. Então:
 - f(x) = x + 1 é sobrejetiva;
 - f(x) = x/10 é sobrejetiva;
 - $f(x) = x^2$ não é sobrejetiva;

Função sobrejetiva

- Uma função f : A → B é uma função bijetiva (ou bijetora) sse f é injetiva e sobrejetiva.
- Exemplo: Seja f : R → R em cada caso abaixo. Então:
 - f(x) = x + 1 é bijetiva, pois é injetiva e sobrejetiva;
 - f(x) = x/10 é bijetiva, pois é injetiva e sobrejetiva;
 - $f(x) = 2^x$ não é bijetiva (é injetiva mas não é sobrejetiva);
 - f(x) = (x-1)(x-2)(x-3) não é bijetiva (é sobrejetiva mas não é injetiva);

Função inversa

■ Seja $f: A \rightarrow B$ uma função bijetiva.

A função inversa de f é f^{-1} : $B \to A$ tal que

$$f^{-1}(y) = x$$
 sse $y = f(x)$

Exemplo: A função $f: \mathbb{N} \to \mathbb{N}$ definida como f(x) = x + 1 é invertível porque ela é bijetiva. Sua inversa é

$$f^{-1}(x) = x - 1$$

■ Exemplo: A função $f: \mathbb{R} \to \mathbb{R}$ definida como $f(x) = x^2$ não é invertível porque ela não é bijetiva: f(2) = f(-2) = 4, logo $f^{-1}(4)$ não é definido.

Composição de funções

■ Sejam $g: A \to B^j$ e $f: B \to C$ funções tais que a imagem de g é um subconjunto do domínio de f, i.e., $B^j \subseteq B$.

A **função composta** de f com g, denotada por $f \circ g : A \to C$, é definida para todo $a \in A$ da seguinte forma:

$$(f\circ g)(a)=f(g(a))$$

A função $f \circ g$ é chamada de **composição de** f **e** g .

Composição de funções

■ Exemplo 9: Sejam $f: Z \rightarrow Z$ e $g: Z \rightarrow Z$ tais que

$$f(n) = n + 1$$
 e $g(n) = n^2$.

Everdade que $f \circ g = g \circ f$?

Solução. ∀n ∈ Z temos que

$$(f \circ g)(n) = f(g(n)) = f(n^2) = n^2 + 1.$$

porém

$$(g \circ f)(n) = g(f(n)) = g(n+1) = (n+1)^2 = n^2 + n + 1,$$

Logo $f \circ g != g \circ f$.

 O exemplo acima mostra que a composição de funções não é comutativa.