C3 : La matière à l'échelle microscopique

Atomes ions et molécules sont des entitées chimiques

Atome Mo

Une espèce chimique est une « collection » d'un grand nombre d'entités.

En physique, on distingue l'échelle macroscopique qui est celle des objets de notre quotidien, et l'échelle microscopique qui est celle des atomes.

1 Les atomes.

A. Composition.

- L'atome est la plus petite des entités chimiques, il est constitué d'un noyau entouré d'un nuage électronique.
- Le **noyau** est constitués de particules appelées nucléons. Un nucléon peut être un **proton** ou un **neutron**.

B Définition Notation symbolique

• Un noyau de symbole X est noté : 4X

où Z est le nombre de protons (ou numéro atomique) et A est le nombre de nucléons (ou nombre de masse)

- Le nombre de neutrons N se calcule par N = A Z
- Le **symbole** chimique d'un atome est une lettre majuscule parfois associé à une lettre minuscule.

Exemple: Cu; C; O; Mn ...

B. Quelques grandeurs physiques

• Taille et charge de l'atome

	Atome	Noyau		
Taille(m)	1 × 10 ⁻¹⁰	1 × 10 ⁻¹⁵		

Proriété : L'atome est électriquement neutre et essentiellement constitué de vide !

• Masse et charge du noyau:

	Masse (kg) Charge (C)			
proton	1,67 × 10 ⁻²⁷	+e = 1,60 × 10 ⁻¹⁹ C		
neutron	1,67 × 10 ⁻²⁷	0		
électron	9,11 × 10 ⁻³¹	- e = 1,60 × 10 ⁻¹⁹ C		

Observations:

- 1. Les nucléons ont quasiment la même masse.
- 2. La masse d'un électrons est beaucoup plus petite que celle d'un nucléon.

3. Le proton et l'électron ont des charges électriques opposées

Remarques:

- Une charge électrique s'exprime en coulomb (C)
- La plus petite charge électrique possible est notée e (comme élémentaire)

Proriété :

- La masse d'un atome est presque la même que celle des nucléons.
- L'atome est électriquement neutre, car il contient le même nombre de protons et d'électrons.

2 Les molécules.

B Définition Molécules

Une molécule est un ensemble d'atomes liés entre eux.

 La formule brute d'une molécule se composte de lettres et de chiffre.

Attention: le nombre est toujours écrit après la lettre!

Exemples:

- Dans H₂O il y a deux atomes H et un seul O
- Dans CO₂ il y a un atome C et deux atomes O.

3 Les ions.

A. Composition

Définition lons

- Un ions est un atome ou une molécule qui a gagné ou perdu un ou plusieurs électron(s).
- Il possède une charge électrique positive ou négative.

La charge électrique totale d'un ion est notée en exposant **Exemples :** Cu^{2+} ; H^+ ; SO_4^{2-} ; MnO_4^{2-}

- Les ions chargés négativement sont des anions
- Les ions chargés positivement sont des cations

B. Solide ionique

Définition Solide ionique

À l'état solide, les ions de charges opposées s'associent pour former un composé ionique qui est globalement neutre.

Exemples:

 Le chlorure de sodium est un solide ionique contenant des ions Na⁺ et Cl⁻ sa formule est NaCl

Lycée Kleber (HW 2025) 1 / 4

 Le chlorure de cuivre est un solide ionique contenant des ions Cu²⁺ et Cl⁻ sa formule est CuCl₂

Ce qu'il faut savoir faire

- ✓ Définir une espèce chimique comme une collection d'un nombre très élevé d'entités identiques.
- ✓ Exploiter l'électroneutralité de la matière pour associer des espèces ioniques et citer des formules de composés ioniques.
- ✓ Utiliser le terme adapté parmi molécule, atome, anion et cation pour qualifier une entité chimique à partir d'une formule chimique donnée.
- ✓ Citer l'ordre de grandeur de la valeur de la taille d'un atome.
- ✓ Comparer la taille et la masse d'un atome et de son noyau.
- ✓ Établir l'écriture conventionnelle d'un noyau à partir de sa composition et inversement.

Lycée Kleber (HW 2025) 2 / 4

C3: Activité et Exercices

▲ Méthode de travail à suivre :

- Lire la partie cours et suivre les explications du profes-
- Rédiger les réponses aux questions Q1.. sur une feuille de travail. Ne pas attendre la correction pour commencer!
- Réaliser une carte mentale (ou un résumé) du cours
- Faire les exercices dans l'ordre (sur une feuille)
- Q1. Quelles sont les entités chimiques à l'échelle microscopique?
- Q2. Quelle est la composition du noyau d'hélium ⁴₂He ? Même question pour <u>l'atome</u> ⁴He
- Q3. En utilisant les données chiffrées du cours, calculer combien de fois un atome est plus grand que son noyau. Associer une des propriétés du cours au résultat précé-
- Q4. En utilisant les données chiffrées du cours, calculer combien de fois la masse d'un nucléon est-elle plus grande que celle d'un électron ? Associer une des propriétés du cours au résultat précédent.
- Q5. Quelle est la charge d'un ion qui a gagné des électrons? Comment appelle-t-on ce type d'ion?
- **Q6.** Quelles affirmations sont justes?
 - Un composé ionique contient autant d'anions que de cations.
 - Un composé ionique est électriquement neutre
 - Un composé ionique est un ensemble d'un très grand nombre d'ions

Outils mathématiques pour la physique :

Les puissances de 10 permettent d'écrire simplement de très grands ou de très petits nombres.

a) Calculer (de tête)

 $10^2 \times 10^3 = \dots$ $10^2 \times 10^{-3} = \dots$ $10^5 / 10^3 = \dots$ $2 \times 10^8 / (2 \times 10^2) = \dots$ $3 \times 10^{-3} \times 2 \times 10^{3} = \dots$

b) À l'aide votre calculette, calculer :

5,12×10⁻¹⁸ / 32 = 4,0×10⁻²⁰ / 1,6×10 ⁻¹⁹ =

Attention : les calculettes affichent généralement la lettre E à la place des puissances de 10, par exemple 1,6×10⁻¹⁹ sera affiché 1.6E-19. Cette notation ne doit pas être écrite sur vos copies!

Exemple: Pour entrer la valeur 9,11 ×10 -31

• Sur une calculatrice Ti:

Sur une calculatrice Casio:

Exercice 1: Formule d'une espèce chimique

Pour toutes les espèces chimiques suivantes, donner sa composition complète (nombre d'atomes et de charges s'il y en a)

H₂SO₄

CaCO₃

 NO_3^-

O²⁻

PO₄3-

Exercice 2: entités chimiques Compléter le tableau :

Nom:	Hy- dro- gène			Chlo- rure	Eau	Sulfate
Type d'entité :						
Formule :			Mg ²⁺	Cl⁻		
Composition : (atomes)		1 C 2 O				2 S 4 O
Charge :		0				2-

Exercice 3: Composés ioniques

Données: Formules chimiques de quelques ions

Nom:	Cuivre	Nitrate	Sodium	Fer	Carbo- nate	Hy- droxyde
Formule:	Cu ²⁺	NO ₃ -	Na⁺	Fe ²⁺	CO ₃ ²⁻	HO-

- 1) Écrire les formules des composés ioniques suivants :
 - Hydroxyde de sodium
 - Carbonate de fer
 - Nitrate de cuivre
- 2) Donner les noms de composés suivants :
 - Fe(HO)₂
 - NaNO₃

Exercice 4: Composition du noyau

- 1) Quelle est la composition du noyau ³⁵Cl ?
- 2) Quelle est la composition du noyau ⁴⁴₂₀Ca ?
- 3) Un noyau d'argent Ag possède 47 protons et 61 neutrons écrire sa formule symbolique complète.

Lycée Kleber (HW 2025) 3/4

Données :

masse d'un nucléon m = 1,67×10⁻²⁷ kg ; charge élémentaire e = 1,6×10⁻¹⁹ C

- **4)** La masse d'un noyau est de 7,35×10⁻²⁶ kg, quel est son nombre de masse ?
- 5) La charge d'un noyau est de 2,72×10-18 C, quel est son numéro atomique ?

Exercice 5: Propriétés de l'atome

Le rayon d'un atome d'oxygène $^{16}_{8}$ O est de 4,8×10-9 m et celui de son noyau est de 3,7×10-15 m

- 1) Combien de fois un atome d'oxygène est-il plus grand que son noyau ?
- 2) Quelle propriété de l'atome est illustré par cet exemple ?

La masse d'un proton est m_p = 1,673×10⁻²⁷ kg et celle d'un neutron est m_n = 1,675×10⁻²⁷ kg.

- 3) Calculer la masse du noyau 160
- **4)** Sachant que la masse de l'atome $^{16}_8$ O est 2,680×10⁻²⁶ kg, calculer la proportion de masse de l'atome située dans son noyau.
- **5)** Quelle propriété de l'atome est illustré par cet exemple ?

Lycée Kleber (HW 2025) 4 / 4