Section 9.3 | Logarithmic Functions

The Meaning of Logarithms

ESSENTIALS

The Meaning of $\log_a x$

$$y = a^{\chi}$$
 if $a^{\chi} = \chi$ and y .

For x > 0 and a positive constant other than 1, $\log_a x$ is the exponent to which a must be raised in order to get x. Thus,

$$\log_a x = m$$
 means $a^m = x$

or equivalently,

equivalently,
$$\log_a x = m \text{ means } a^m = x$$
equivalently,
$$\log_a x \text{ is that unique exponent for which } a^{\log_a x} = x.$$

$$\log_a x \text{ is that unique exponent for which } a^{\log_a x} = x.$$

Example

Simplify: $\log_3 27. = \gamma \gamma \implies \beta^{\gamma \gamma} = \beta \gamma$

log₃ 27 is the exponent to which we raise 3 to get 27. That exponent is 3. Thus, $\log_3 27 = 3$.

GUIDED LEARNING: Textbook	k 🕒 Instructor 🕑 Video
EXAMPLE 1	YOUR TURN 1
Simplify: $\log_8 64. = m \implies 8^m = 64$	Simplify: $\log_2 16. = m \implies 2^m = 16$
$\log_8 64$ is the exponent to which we raise 8 to get 64.	⇒ m=4
That exponent is [2].	=> log 16 = H
Thus, $\log_8 64 = 2$.	
EXAMPLE 2	YOUR TURN 2
Simplify: $\log_5 \frac{1}{125}$: \Longrightarrow $5^{\text{M}} = \frac{1}{125}$	Simplify: $\log_4 \frac{1}{256} = m \implies 4^m = \frac{1}{25}$
$\log_5 \frac{1}{125}$ is the exponent to which we raise 5	$256 = 16^2 = (4^2)^2 = 44$
to get $\frac{1}{125}$. Since $5^{-3} = \frac{1}{125}$, we have	$\frac{1}{256} = 4^{-4} \Rightarrow m = -4$ $\Rightarrow \log_4 \frac{1}{257} = -4$
$\log_5 \frac{1}{125} = \boxed{-3}.$	=) logu = -4

$$5^{3} = 125 \Rightarrow \frac{1}{125} = \frac{1}{5^{3}} = \frac{5^{\circ}}{5^{3}} = 5^{-3}$$

$$5^{\circ} = 5^{-3}$$

480

$$36^{m} = 6$$

$$\Rightarrow (6^{2})^{m} = 6 \Rightarrow 6^{2m} = 6^{1}$$

$$3m = 1 \Rightarrow m = \frac{1}{2}$$

$$36^{3} = 6$$

$$\Rightarrow (6^{2})^{m} = 6 \Rightarrow 6^{2m} = 6^{-1}$$

$$\Rightarrow (6^{2})^{m} = 6^{-1}$$

$$\Rightarrow (6^{2})^{m} = 6^{-1}$$

$$\Rightarrow 6^{2m} = 6^{-1} \Rightarrow 2m = -1$$

$$\Rightarrow m = -\frac{1}{2}$$

Graphs of Logarithmic Functions

ESSENTIALS

To graph logarithmic functions recall that if $y = \log_a x$, then $a^y = x$.

- 1. Choose values for *y* and compute the *x*-values.
- 2. Plot the points.
- 3. Connect the points with a smooth curve.

Example

• Graph: $y = f(x) = \log_6 x$.

 $y = \log_6 x$ is equivalent to $6^y = x$. Choose y-values, compute x-values, plot the points, and connect them with a smooth curve.

x	У
1	0
6 36	1
36	2
$\frac{1}{6}$	-1
<u>1</u> 36	-2

GUIDED LEARNING:

Textbook

Instructor

Video

EXAMPLE 1

Graph: $y = \log_9 x$.

 $y = \log_9 x$ is equivalent to $9^y = x$. Choose y-values, compute x-values, plot the points, and connect them with a smooth curve.

x	у
1	0
9	1
81	2
19	-1
$\frac{1}{81}$	-2

YOUR TURN 1

Graph: $y = \log_5 x$. $\Rightarrow \chi = 5$

X	y
	D
<u></u> 5	1

Copyright © 2018 Pearson Education, Inc.

EXAMPLE 2

Graph: $y = \log_{1.5} x$.

 $y = \log_{1.5} x$ is equivalent to $1.5^y = x$, or

 $\left(\frac{3}{2}\right)^y = x$. Choose *y*-values, compute *x*-values,

plot the points, and connect them with a smooth curve.

\boldsymbol{x}	y
1	0
$\frac{3}{2}$	1
$\frac{\frac{3}{2}}{\frac{9}{4}}$	2
2 M	-1
$\frac{4}{9}$	-2

YOUR TURN 2

Graph: $y = \log_{1/3} x$. \Rightarrow $\chi = \left(\frac{1}{3}\right)^{\frac{1}{3}}$

X	14	
-	0	
19	ನಿ	
3		

$$1.5^{-1} = \frac{1}{1.5} = \frac{2}{3}$$

$$\left(\frac{1}{3}\right)^{-1} = \frac{1}{\frac{1}{3}} = 3$$
 $\left(\frac{1}{3}\right)^{-1} = 3^2 = 9$

Equivalent Equations

ESSENTIALS

A *logarithmic equation* can be written as an *exponential equation*, or vice versa, by using the definition of a logarithm:

$$m = \log_a x$$
 is equivalent to $a^m = x$.

Examples

• Rewrite $3 = \log_a 9$ as an equivalent exponential equation.

 $3 = \log_a 9$ is equivalent to $a^3 = 9$. The logarithm, 3, is the exponent. The base, a, remains the base.

• Rewrite $9 = 3^x$ as an equivalent logarithmic equation.

 $9 = 3^x$ is equivalent to $x = \log_3 9$. The exponent, x, is the logarithm. The base remains the base.

GUIDED LEARNING: Textbook Instructor Video	
EXAMPLE 1	YOUR TURN 1
Rewrite $y = \log_2 6$ as an equivalent exponential equation.	Rewrite $y = \log_5 4$ as an equivalent exponential equation.
$y = \log_2 6$ is equivalent to $2^y = 6$.	5 ⁴ = 4
EXAMPLE 2	YOUR TURN 2
Rewrite $3 = \log_7 x$ as an equivalent exponential equation.	Rewrite $4 = \log_2 x$ as an equivalent exponential equation.
$3 = \log_7 x$ is equivalent to $\boxed{7}^3 = \boxed{2}$.	24 = x
EXAMPLE 3	YOUR TURN 3
Rewrite $y^{-2} = 8$ as an equivalent logarithmic equation.	Rewrite $y^6 = 15$ as an equivalent logarithmic equation.
$y^{-2} = 8$ is equivalent to $\boxed{-2} = \log_y 8$.	logy 15 = 6

EXAMPLE 4	YOUR TURN 4
Rewrite $\left(\frac{1}{2}\right)^{-3} = x$ as an equivalent logarithmic equation.	Rewrite $\left(\frac{1}{3}\right)^{-1} = x$ as an equivalent logarithmic equation.
$\left(\frac{1}{2}\right)^{-3} = x \text{ is equivalent to } \boxed{-3} = \log_{1/2} x.$	$\log 1/3 \chi = -1$

485

ESSENTIALS

The Principle of Exponential Equality

For any real number b, where $b \neq -1$, 0, or 1,

$$b^m = b^n$$
 is equivalent to $m = n$.

(Powers of the same base are equal if and only if the exponents are equal.)

$$\log_a 1 = \gamma \gamma \Rightarrow \alpha^{\gamma \gamma} = 1 \Rightarrow \gamma \gamma = 0$$

The logarithm, base a, of 1 is 0: $\log_a 1 = 0$.

$$\log_a a = m \implies \alpha^m = \alpha^l \implies m = 1$$

The logarithm, base a, of a is 1: $\log_a a = 1$.

Examples

• Solve: $\log_3 x = -2$.

$$\log_3 x = -2$$

 $3^{-2} = x$ Rewriting as an exponential equation

$$\frac{1}{9} = x$$
 Computing 3^{-2}

Check: $\log_3 x = -2$ is the exponent to which 3 must be raised to get $\frac{1}{9}$.

Since that exponent is -2, the number $\frac{1}{9}$ checks.

• Solve: $\log_{10} 100 = x$.

$$\log_{10} 100 = x$$

 $10^x = 100$ Rewriting as an exponential equation

 $10^x = 10^2$ Writing 100 as a power of 10

x = 2 Equating exponents

Check: $\log_{10} 100 = x$ is the exponent to which 10 must be raised to get 100.

Since $10^2 = 100$, the solution is 2.

GUIDED LEARNING:	Textbook Instructor Video
EXAMPLE 1	YOUR TURN 1
Solve: $\log_2 x = -5$.	Solve: $\log_2 x = -2$.
$\log_2 x = -5$	$a^{-\lambda} = x$
$2^{-5} = x$	
$\frac{1}{32} = x$	$=) \chi = \frac{1}{2^2} = \frac{1}{4}$
The solution is $\frac{1}{32}$.	$\Rightarrow \chi = \frac{1}{4}$
EXAMPLE 2	YOUR TURN 2
Solve: $\log_{x} 12 = \frac{1}{2}$.	Solve: $\log_x 2 = \frac{1}{5}$.
$\log_x 12 = \frac{1}{2}$	x5 = 2
$x^{1/2} = 12$ $\left(x^{1/2}\right)^2 = \boxed{12}^2$	$\left(\chi^{\frac{1}{5}}\right)^{5} = 2^{5} \Rightarrow \chi^{\frac{1}{5}\times 5}$
$x = \boxed{1 + 4}$ The solution is $\boxed{144}$.	$\Rightarrow \chi = 32$
EXAMPLE 3	YOUR TURN 3
Solve: $\log_3 81 = x$.	Solve: $\log_2 16 = x$.
$\log_3 81 = x$	_
$3^x = 81$	$2^{2} = 16$
$3^x = \boxed{3}^4$	$2^{\chi} = 2^{H}$
$x = \boxed{4}$ The solution is $\boxed{4}$.	⇒ X=4

Practice Exercises

Readiness Check

Determine whether the statement is true or false.

- 1. The logarithm, base a, of 1 is 1.
- 2. A logarithmic function is the inverse of an exponential function.
- **3.** A logarithm is an exponent.
- 4. The logarithm, base a, of a is 0.

The Meaning of Logarithms

Simplify.

- 5. $\log_{10} 10,000$
- **6.** $\log_{49} 7$

7. $\log_{7} 7$

8. $\log_8 \frac{1}{64}$

9. $\log_{16} 64$

10. $5^{\log_5 24}$

Graphs of Logarithmic Equations

11. $y = \log_4 x$

12. $y = \log_{3.5} x$

13. Graph the functions $f(x) = 8^x$ and $f^{-1}(x) = \log_8 x$ using one set of axes.

Equivalent Equations

Rewrite each of the following as an equivalent exponential equation. Do not solve.

14.
$$x = \log_{20} 12$$

488

15.
$$\log_a b = 6$$

16.
$$\log_e 0.975 = -0.025$$

Rewrite each of the following as an equivalent logarithmic equation. Do not solve.

17.
$$4^{-3} = \frac{1}{64}$$

18.
$$p^t = 15$$

18.
$$p^t = 15$$
 19. $128^{1/7} = 2$

Solving Certain Logarithmic Equations

Solve.

20.
$$\log_7 x = 2$$

21.
$$\log_5 125 = x$$

22.
$$\log_{x} 18 = 1$$

23.
$$\log_2 x = -5$$

24.
$$\log_3 1 = x$$

$$3^{\chi} = 3^{\circ}$$

25.
$$\log_{32} x = \frac{3}{5}$$

$$2 = 32^{3/5}$$

$$= (2^{5})^{3/5}$$

$$= 2^{5 \times \frac{3}{5}} = 2^{3} = 8$$

$$= 2^{5 \times \frac{3}{5}} = 2^{3} = 8$$