AL-TR-1991-0154

AD-A247 824

WASTEWATER CHARACTERIZATION SURVEY, HOLLOMAN AIR FORCE BASE, NEW MEXICO

Darrin L. Curtis, First Lieutenant, USAF, BSC

DTIC Brooks Air Force Base, TX 78235-5000

SELECTE DARR 17, 1992

ARMSTRONG

LABORATORY

January 1992

Final Technical Report for Period 12-23 August 1991

Approved for public release; distribution is unlimited.

92 3 16 122

92-06841

AIR FORCE SYSTEMS COMMAND BROOKS AIR FORCE BASE, TEXAS 78235-5000

NOTICES

When Government drawings, specifications, or other data are used for any purpose other than in connection with a definitely Government-related procurement, the United States Government incurs no responsibility or any obligation whatsoever. The fact that the Government may have formulated or in any way supplied the said drawings, specifications, or other data, is not to be regarded by implication, or otherwise in any manner construed, as licensing the holder or any other person or corporation; or as conveying any rights or permission to manufacture, use, or sell any patented invention that may in any way be related thereto.

The mention of trade names or commercial products in this publication is for illustration purposes and does not constitute endorsement or recommendation for use by the United States Air Force.

The Office of Public Affairs has reviewed this report, and it is releasable to the National Technical Information Service, where it will be available to the general public, including foreign nationals.

This report has been reviewed and is approved for publication.

Government agencies and their contractors registered with Defense Technical Information Center (DTIC) should direct requests for copies to: DTIC, Cameron Station, Alexandria VA 22304-6145.

Nongovernment agencies may purchase copies of this report from: National Technical Information Service (NTIS), 5285 Port Royal Road, Springfield VA 22161.

DARRIN L. CURTIS, 1Lt. USAF, BSC

Environmental Engineer Consultant

EDWARD F. MAHER, Colonel, USAF, BSC Chief, Bioenvironmental Engineering

Division

REPORT DOCUMENTATION PAGE

Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data solgathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for information Operations and Reports, 1215 Jef Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

Devising inverse, sente recor, animation, or the	to the state of th	daget, aperior reduction ro	ect (0 / 04-0 / 00), Trasmington, Oc 20303.
1. AGENCY USE ONLY (Leave bla	ank) 2. REPORT DATE January 1992	3. REPORT TYPE AN	D DATES COVERED 2-23 August 1991
4. TITLE AND SUBTITLE	outlowy took		5. FUNDING NUMBERS
Wastewater Characterization	on Survey, Holloman Air Force	Base, New Mexico	
6. AUTHOR(S)			
Darrin L. Curtis			
7. PERFORMING ORGANIZATION	NAME(S) AND ADDRESS(ES)		8. PERFORMING ORGANIZATION REPORT NUMBER
Armstrong Laboratory			AL-TR-1991-0154
Occupational and Environm			/ m 111 100 10 10 1
Brooks Air Force Base, TX	78235-5000		
9. SPONSORING/MONITORING AC	GENCY NAME(S) AND ADDRESS(ES	3)	10. SPONSORING / MONITORING
			AGENCY REPORT NUMBER
11. SUPPLEMENTARY NOTES			
12a. DISTRIBUTION / A - AILABILITY	STATEMENT		12b. DISTRIBUTION CODE
Approved for public release	e distribution is unlimited.		
P P. 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	al gracinaments in minimitales		
13. ABSTRACT (Maximum 200 wor	rds)		
	trong Laboratory Water Quality	-	•
	23 Aug 91. The scope of the ent facility (a lagoon system)		
design of a wastewater tre	eatment facility at Holloman /	AFB, NM. Another o	bjective was to sample
	er quality. Significant findings lity and very high chloride cor		
direinia nie nemiioiii iroii	ity and tory riight ornorae ee.		NOWALGI.
14. SUBJECT TERMS			15. NUMBER OF PAGES
Wastewater, Holloman AFE	ર		68 16. PRICE CODE
·			
17. SECURITY CLASSIFICATION OF REPORT	18. SECURITY CLASSIFICATION OF THIS PAGE	19. SECURITY CLASSIFIC OF ABSTRACT	CATION 20. LIMITATION OF ABSTRACT
Unclossified	Unclassified	Unclassified	l ui

Table of Contents

		Page
ACKNOWLEDGMENTS		V
INTRODUCTION		1
DISCUSSION		1
RESULTS		3
RECOMMENDATIONS AND CONCLUSIONS		10
BIBLIOGRAPHY		11
ACRONYMS		12
APPENDIXES:		
A Analyzed Data		19 31 39 47
Fig. No.		
1 Location of Sampler STP and STP#	Accession For NTIS MARI DTI 100 Under 1100 July 100 1100	4
	By	

List of Tables

Table <u>No.</u>		Page
1	Parameters, Group, Grab/Composite, Containers, and Preservation	3
2	STP# Composite Sampling Times	4
3	Typical Composition of Untreated Domestic Wastewater	7
4	Settleable Solids "grab samples" Concentrations at Site Location STP	7
5	Salt Tolerance of Ornamental Shrubs	8

ACKNOWLEDGMENTS

The author greatly appreciates the technical expertise and hard work provided by the other members of the survey team: Capt Paul T. Scott, 1st Lt Michael C. Carter, and 2d Lt Anita M. Acker.

I would also like to thank all the personnel in the Bioenvironmental Erigineering Services (BES) and the Environmental Coordinator's Offices for their assistance in the accomplishment of the survey.

WASTEWATER CHARACTERIZATION SURVEY, HOLLOMAN AIR FORCE BASE, NEW MEXICO

INTRODUCTION

A wastewater characterization survey was conducted at Holloman Air Force Base (AFB), New Mexico, from 12-23 August 1991 by personnel from Armstrong Laboratory (AL) located at Brooks AFB, Texas. Influent samples to the Sewage Treatment Plant (STP) were collected and analyzed for various parameters. The sample results will be used by HQ TAC/DESU for the design of a new Wastewater Treatment Plant (WWTP) at Holloman AFB. Specific sampling sites around base were also sampled for various parameters. These sample results were intended for use by Holloman AFB personnel to identify toxic discharges they may have in the wastewater collection system.

The survey was performed in response to a request from HQ TAC/SGPB to perform a characterization study to support the Architect and Engineer (A & E) design of the WWTP.

Armstrong Laboratory personnel performing the survey included 1st Lt Darrin L. Curtis (Project Engineer), Capt Paul T. Scott (Chemist), 1st Lt Michael C. Carter, and 2d Lt Anita M. Acker.

DISCUSSION

Background

Holloman AFB is located in south-central New Mexico, approximately 7 miles west of the city of Alamogordo. The Tactical Air Command (TAC) has operated the base since 1971, and currently, the 833d Air Division is the host organization. Major TAC organizations located at the base include the 49th Tactical Fighter Wing (TFW), the 497th Tactical Training Wing (TTW), the 833d Combat Support Group, the 833d Medical Group, and the Deputy Commander for Resource Management, which includes the 4449th Mobility Support Squadron (MOBSS). The base is also preparing for the arrival of the F-117.

To support these organizations and their missions, several industrial facilities are located at the base: aircraft and vehicle washracks, corrosion control facilities, and equipment maintenance facilities. An electroplating facility is also located at the base, but the electroplating operations have been discontinued.

The existing wastewater facilities at Holloman AFB include a number of oil/water separators, a combined industrial and domestic collection system, several lift stations, a small laboratory and operations building, facultative lagoons, and a land application system. Except for the land application system, all of these facilities are currently in service.

Very little information was available on the composition of the wastewater generated at Holloman AFB. Therefore, AL was called upon to provide a characterization of the wastewater generated.

Permit Standards

The existing lagoons discharge to Lake Holloman via a natural ditch. Lake Holloman is a playa lake and is not considered "waters of the United States" by Region VI of the United States Environmental Protection Agency (EPA). Therefore, the discharge to Lake Holloman is not currently regulated under the Clean Water Act's National Pollutant Discharge Elimination System (NPDES) program. Discussions with EPA Region VI officials, base personnel, and the New Mexico Environmental Improvement Division (EID), have indicated that, in the future, Lake Holloman may be classified as "waters of the United States." If this classification is granted, discharge of wastewater from Holloman AFB to Lake Holloman would be regulated under a NPDES permit.

Sampling Strategy

A presurvey was conducted at Holloman AFB from 12-13 June 1991. During this presurvey, the sampling protocol that had been developed by 1st Lt Curtis was reviewed by the Base Bioenvironmental Engineer (BEE) and the Environmental Coordinator. All parties concurred with the sampling strategy.

Sampling Methods

Wastewater samples were typically collected over a 24-h period as a time-proportional composite (i.e., a composite of 24 samples collected at 1-h intervals). The automated composite sampler contains a 3-gal (11.4-L) glass jar which was packed in ice before each day of sampling. Samples collected for volatile organics, oils and greases, and total petroleum hydrocarbons were collected as grab samples. Any unusual characteristics (odor, color, etc.) of the samples were noted.

Samples were then placed in iced coolers and transported back to the workcenter (Wastewater Treatment Plant Laboratory, Bldg 752) for preservation and/or refrigeration until shipment to the Armstrong Laboratory Analytical Services Division at Brooks AFB TX. Sample preservation was in accordance with the Air Force Occupational and Environmental Health Laboratory (AFOEHL) Sampling Guide, March 1989.

RESULTS

Results of all the data collected during the survey except for Biochemical Oxygen Demand (BOD), and Toxicity Characteristic Leaching Procedure (TCLP) are located in Appendix A. Appendix A also shows what method was used in the analytical process. Appendix B shows detectable parameters. Grab samples are shaded in Appendix B to separate them from composites. Biochemical Oxygen Demand data are included in Appendix B, and the TCLP data are included in Appendix F.

Sampling Sites

Table 1 shows grab and composite parameters. If a sample was collected differently from this method, it is noted in the comments section under each site. For some samples low flow resulted in part of a sample being a grab because of the limited volume.

TABLE 1. PARAMETERS, GROUP, GRAB/COMPOSITE, CONTAINERS, AND PRESERVATION

Parameter Name	Grab/Composite	Container	Preservation
GROUP A (other than O & G) Chemical Oxygen Demand Kjeldahl Nitrogen Organic Carbon Phosphorus, Total	Composite	Plastic	Cool to 4 °C & H ₂ SO ₄ to pH<2
GROUP A (O & G) Oil & Grease Total Petroleum Hydrocarbons	Grab	Glass	Cool to 4 °C & H ₂ SO ₄ to pH<2
GROUP E Phenois	Composite	Glass	Cool to 4 °C & H ₂ SO ₄ to pH<2
GROUP F Metals	Composite	Plastic	HNO, to pH<2
Group G Alkalinity Chloride Specific Conductance Surfactant-MBAS Solids	Composite	Plastic	Cool to 4 °C
60 1/ 60 1	Grab	40 ml Vial	Cool to 4 °C

Sewage Treatment Plant (STP)

The sampler was located below the comminutor and before the grit chamber (Fig. 1) located by building 752, Appendix C, Figure C-3 (Tab G-2, page 3 of the

sanitary sewerage system prints at location CC-9). Samples were collected between 14-21 Aug 91.

Comments: 14 Aug 91, all samples were grab

17 Aug 91, milky sample

19 Aug 91, all samples were grab

Sewage Treatment Plant (STP#)

These samples were collected as 6-h composite samples. Table 2 has the time and date each sample was collected.

Figure 1. Location of Sampler STP and STP#.

TABLE 2. STP# COMPOSITE SAMPLING TIMES

Sample	Time	BOD mg/L		
STP	Grab-1300 14 Aug 91	135		
STP 1	600-2230 14 Aug 91	100		
STP 2	2230-0800 15 Aug 91	55		
STP 3	1030-1330 15 Aug 91	105		
STP 4	1330-2000 15 Aug 91	150		
STP 5	2000-0800 16 Aug 91	90		
STP 6	0800-1000 16 Aug 91	95		
STP 7	1230-1800 16 Aug 91	115		

Site 1

Manhole 437: This site is located southwest of the main taxiway/runway access ramp, Appendix C, Figure C-3 (Tab G-2, page 3 of the sanitary sewerage system prints at location BB-9). Samples were collected on the 14th, 15th, and 16th of Aug 91.

Comments: 14 Aug 91, Group G grab

16 Aug 91, Group F grab

Site 2

Manhole 380: This site is located by billeting across West Eleventh Street from the softball fields, Appendix C, Figure C-3 (Tab G-2, page 3 of the sanitary sewerage system prints at location BB-11). Samples were collected on the 15th, 16th, and 20th of Aug 91.

Comments: 20 Aug 91, Groups F & E were grab

Site 3

Building 912 Lift Station: This site is a lift station adjacent to Building 912, Appendix C, Figure C-5 (Tab G-2, page 2 of the sanitary sewerage system prints at location CC-7). Samples were collected on the 15th, 16th, and 20th of Aug 91.

Site 4

Manhole 427: This site was located in the MOBSS Complex beside Building 927 and across from building 938, Appendix C, Figure C-5 (Tab G-2, page 2 of the sanitary sewerage system prints at location AA-7). The site was collected on 21 Aug 91.

Comments: Groups A, G, and E were grab

Site 5

Manhole 516: This site was located in the primate area, Rhesus Monkey, between buildings 262 and 267, Appendix C, Figure C-4 (Tab G-2, page 7 of the sanitary sewerage system prints at location Q-12). Samples were collected on the 16th, 20th, and 21st of Aug 91.

Comments: 16 Aug 91, very high solids observed 20 Aug 91, very high solids and hair observed

Site 6

Manhole 337: This site is located by Corrosion Control between buildings 281 and 282, Appendix C, Figure C-3 (Tab G-2, page 3 of the sanitary sewerage system prints). Samples were collected on the 16th, 20th, and 21st of Aug 91.

Comments: 16 Aug 91, Groups F and A were grab 20 Aug 91, Groups A, G, and E were grab

Lake

Lake Holloman: This site was located 50 m north of the concrete outfall to Lake Holloman, Appendix C, Figure C-1.

Comments: This sample was collected at the lake bank as a grab sample using a pitcher.

Discussion of Results

Appendix B shows a condensed version of the data taken at Holloman AFB. Select data will be discussed briefly in this section. Appendix A shows the data that was sent to HQ/TAC and the base during the writing of this report. Updated versions were sent out on three occasions with the last update being 18 Nov 91, 1 working day after the last data was received by the Bioenvironmental Engineering Division of AL (AL/OEB). These updates to HQ/TAC were an essential part of the project.

BOD, Solids, Chloride

Biochemical Oxygen Demand samples were collected at the wastewater treatment plant only, due to time and resource constraints. The BOD ranged from a low of 50 mg/L to a high of 150 mg/L. These results also agree with the contract labs data shown in Appendix D. This concentration constitutes a weak wastewater when compared to the values for BOD shown in Table 3.

The solids data from the STP show that the observed concentrations constitute a strong domestic waste when compared to Table 3. This data should be considered questionable because of discrepancies between filterable and total solids data. Some sites were found to have a higher filterable amount of solids than total solids which is in error. This error is most likely caused by the small-diameter filter paper and the small drying dishes used for the test at AL. Settleable solids data as seen in Table 4 are representative of a typical weak domestic waste when compared to cited values in Table 3.

Chloride concentrations in the wastewater seem to indicate an infiltration problem. Chloride sampling was initiated halfway through the survey at the request of the Environmental Coordinator to determine if possible infiltration is occurring. At the same time, a background water sample from the potable water system was taken to determine the amount of influence the chloride in the potable water source had on the wastewater. The potable background sample indicated that only 31 mg/L of chloride was in the drinking water. The WWTP influent had 900 mg/L chloride. Certain industrial facilities could also be contributing to the high chloride concentration.

TABLE 3. TYPICAL COMPOSITION OF UNTREATED DOMESTIC WASTEWATER (After Metcalf & Eddy, 1979(7))

(All values except settleable solids are expressed in mg/L)*

	Concentration					
Dissolved, total Fixed Volatile Suspended, total Fixed Volatile ettleable solids, ml/L biochemical oxygen demand, 5-day, 20°C Total organic carbon (TOC) Chemical oxygen demand (COD) Sitrogen (total as N): Organic Free ammonia Nitrites Nitrates Phosphorus (total as P): Organic Inorganic Chlorides	Strong	Medium	Weak			
Solids, total:	1,200	720	350			
Dissolved, total	850	500	250			
Fixed	525	300	145			
Volatile	325 ·	200	105			
Suspended, total	350	220	100			
Fixed	7 5	55	20			
Volatile	275	165	80			
Settleable solids, ml/L	20	10	5			
Biochemical oxygen demand, 5-day, 20°C	400	220	110			
Total organic carbon (TOC)	290	160	80			
Chemical oxygen demand (COD)	1,000	500	250			
Nitrogen (total as N):	85	40	20			
Organic	35	15	8			
Free ammonia	50	25	12			
Nitrites	0	0	0			
Nitrates	0	0	0			
Phosphorus (total as P):	15	8	4			
Organic	5	3	1			
Inorganic	10	5	3			
Chlorides ^b	100	50	30			
Alkalinity (as CaCO ₃) ^b	200	100	50			
Grease	150	100	50			

 $mg/L = g/m^3$.

Note: $1.8(^{\circ}C) + 32 = ^{\circ}F$

TABLE 4. SETTLEABLE SOLIDS "GRAB SAMPLES" CONCENTRATIONS AT SITE LOCATION STP

Date	Time (hours)	Concentration (ml/L)
15 Aug 91	2000	5
16 Aug 91	0800	4
16 Aug 91	1230	4
17 Aug 91	0800	3
19 Aug 91	0750	9
20 Aug 91	0830	5

If effluent from the new WWTP is used for irrigation, different application methods should be considered because of the amount of chloride in the wastewater. Borderstrip flooding or ridge-and-furrow irrigation would be recommended over a sprinkler

Values should be increased by amount in domestic water supply.

type system. Foliar absorption of chlorides must be considered if the sprinkler application method is used. Salt tolerance of ornamental shrubs is shown in Table 5.

Chloride concentrations over 3,750 mg/L were found in Lake Holloman. Sea water has 18,980 (ppm) of chloride. Please take into consideration that the sample was taken very close to the bank and the concentration could be higher at this point than at the center of the lake. But, realizing that the concentrations are high, irrigation from this source is strongly discouraged. Even if a salt tolerant plant is found that can thrive at these high levels, the irrigation piping will degrade and become unusable in a very short time.

TABLE 5. SALT TOLERANCE OF ORNAMENTAL SHRUBS (After CRC Press, 1973(2))

Limit	of concentration
in	irrigation water

		_	
Shrub*	EC.	EC.	ppm ⁴
Sensitive			
Roses	3,000	517	362
Pineapple guave	3,000	517	362
Viburnum	3,000	517	362
Moderately sensitive			
Pyracantha	5,000	1,000	700
Pittosporum	5,000	1,000	700
Xylosma	5,000	1,000	700
Texas prive	5,000	1,000	700
Moderately salt tolerant			
Arbor vitae	8,000	1,560	1,092
Spreading juniper	8,000	1,560	1,092
Lantana	8,000	1,560	1,092
Salt tolerant	·	•	
Oleander	10,000	2,000	1,400
Bottlebrush	10,000	2,000	1,400

^{*} The indicated salt levels are the maximum tolerance by the U.S. Department of Agriculture.

Sewage Treatment Plant and Sewage Treatment Plant

The composition of the influent to the STP does not resemble a "typical" domestic or industrial waste. The BOD and Chemical Oxygen Demand (COD) is more representative of a medium to weak domestic waste. The questionable solids data indicates a strong domestic waste. Trace amounts of silver were found at this site but the highest concentration is only 5 times the detectable amount. This diluted level may indicate a stronger source upstream, possibly the Hospital or the base Photo

b EC electrical conductivity of soil solution, umbo/cm.

Salinity of irrigation water required, as derived from author's table, assuming a 25% leaching requirement.

⁴ Required irrigation water in ppm, using a conversion of 1 mho=770 ppm.

Lab. Oil & Grease do not seem to be a major problem but its presence may indicate that a number of oil/water separators are not working properly.

Site 1. Site 2, and Site 4

The data received on these sites indicated that no apparent problems were occurring upstream from the sampling point.

Site 3

The 980 mg/L of chloride reported at this site could indicate an infiltration problem. Note, only 1 of the 3 sampling days was analyzed for chloride.

Site 5

Two sampling days were analyzed for chloride at this site. One day with 2,560 mg/L and the other day having a concentration of 720 mg/L of chloride. Again this level could indicate infiltration to the system upstream from Site 5. Oil & grease data indicates that there may be an oil/water separator upstream that is not working properly.

Site 6

One of the 3 sampling days at this site had 100,000 μ g/L of phenol. Methylene chloride of 23,516 μ g/L was also reported on that day. Toluene and chloroform were also found. This data indicates that proper shop practices may not be in use upstream from this site.

Lake

If Lake Holloman water is considered for irrigation, the 3,760 mg/L of chloride and the 18,650 umhos of specific conductance should be considered. Barium, nickel, and phenol were also found in the lake.

Flow

During the survey, flow measurements were taken at the WWTP's parshall flume. The calculations are shown in Appendix E for 1 of the 2 measurements taken. The average flow recorded by AL personnel was 863 gal/min (3,266 L/min). Holloman's electronic flow meter was reading 860 gal/min during the same period. These results indicate that the flow readings at the treatment plant should represent the correct flow even though flow is entering one side of the flume faster than the other side. This flow is due to the influent being channeled through only one side of the grit chamber. For this reason there is not a quiet area before the flume and an earlier concern was that this could possibly reduce the accuracy of the electronic flow meter. Our results

showed that this is not a problem at this flow rate; however, higher or lower flow rates may be effected because there is not an adequate quiet area before the flume.

RECOMMENDATIONS AND CONCLUSIONS

Sewage Treatment Plant

Since the data shows the BOD to be very low for domestic waste, an activated sludge treatment method would not meet the treatment objective. With all things considered, an oxidation ditch may prove to be the best treatment alternative.

Chlorides

Chloride levels above background were found throughout the collection system. This finding could indicate infiltration problems. But, with the chloride concentration of the surface ground water being high, it doesn't take very much infiltration to show up as chloride in the wastewater. Water from Lake Holloman should not be used in a sprinkler-type irrigation system.

Proper Shop Practice

Site 6 data indicates that proper shop practices may not be in use upstream from this site. Unannounced visits to these shops may also reveal improper housekeeping. A review of the shop's Operating Instructions (OIs) may be beneficial.

<u>Flow</u>

The AL flow calculations mirrored Holloman's electronic flow meter, at 860 gal/min (3,218 L/min). The flow wheels at the base should provide an accurate measure of the flow.

Wastewater Characterization

Holloman is now undergoing changes and will be bedding down the F-117 Stealth Fighter. The type of waste stream coming from the stealth flightline area of the base will most likely change. Since this type of waste stream hasn't been characterized before, Holloman may want to consider a study of that portion of the wastewater collection system.

BIBLIOGRAPHY

- 1. Benefield, L. D. and C. W. Randall, *Biological Process Design for Wastewater Treatment*, Englewood Cliffs, N.J., Prentice-Hall, Inc., 1980.
- 2. Bond, R. G. and C. P. Straub, ed, *Handbook of Environmental Control: Volume III,* Water Supply and Treatment, CRC Press, Cleveland, Ohio, 1973.
- 3. Curtis, D. L., An Evaluation of the Historical Variation of Chloride in the Arkansas River Basin, University of Arkansas, December 1989.
- 4. Eckenfelder, W. W., Jr., *Industrial Water Pollution Control*, Second Edition, New York, McGraw-Hill, 1989.
- 5. Federal Water Pollution Control Administration, *Water Quality Criteria*, U. S. Department of the Interior, Washington, D. C., April 1968.
- 6. Leeden, Frits van der, *The Water Encyclopedia*, Second Edition, Chelsea, Michigan, Lewis Publishers, 1990.
- 7. Metcalf and Eddy, Inc., Wastewater Engineering, McGraw-Hill, New York, 1979.
- 8. Office of Water Resources Research, *Use of Naturally Impaired Water*, U. S. Department of the Interior, Springfield, Virginia, May 1973.
- 9. Plumb, R. H., Jr. 1981. "Procedure for Handling and Chemical Analysis of Sediment and Water Samples," Technical Report EPA/CE-81-1, prepared by Great Lakes Laboratory, State University College at Buffalo, Buffalo, N. Y., for the U. S. Environmental Protection Agency/Corps of Engineers Technical Committee on Criteria for Dredged and Fill Material. Published by the U.S. Army Engineer Waterways Experiment Station, CE, Vicksburg, Miss.
- 10. Standard Methods for the Examination of Water and Wastewater, 17th Edition, American Public Health Association, Washington, D.C., 1989.
- 11. United States Environmental Protection Agency, Quality Criteria for Water, Washington, D.C., 1976.
- 12. United States Environmental Protection Agency, Handbook for Sampling and Sample Preservation of Water and Wastewater, EPA-600/4-82-029, Cincinnati, OH, 1982.
- 13. Wilcox, Lloyd Vernon, *Quality of Irrigation Water*, U.S. Department of Agriculture, Washington, D.C., December 1958.

ACRONYMS

A & E Architect and Engineer

AFB Air Force Base

AFOEHL Air Force Occupational and Environmental Health Laboratory

AL Armstrong Laboratory (AL)

/OE Occupational and Environmental Health Directorate (AL/OE)

B Bioenvironmental Engineering Division (AL/OEB)

BEE Bioenvironmental Engineer

BES Bioenvironmental Engineering Services

BOD Biochemical Oxygen Demand COD Chemical Oxygen Demand

EID Environmental Improvement Division EPA Environmental Protection Agency

mg/L Milligrams per Liter

HQ Headquarters

MOBSS Mobility Support Squadron

NM New Mexico

NPDES National Pollution Discharge Elimination System

ppm Parts per Million

STP Sewage Treatment Plant

TCLP Toxicity Characteristic Leaching Procedure

TAC Tactical Air Command
TFW Tactical Fighter Wing
TTW Tactical Training Wing

WWTP Wastewater Treatment Plant

Appendix A

Analyzed Data

Figure A-1

			STP GN913000 14-Aug-91 0800 hrs	STP GN913002 15-Aug-91 0600 hrs	STP GN913010 16-Aug-91 0800 hrs	STP GN913022 17-Aug-91 0745 hrs	STP GN913023 18-Aug-91 0815 hrs	STP GN913024 19-Aug-91 0750 hrs	STP GN913025 20-Aug-91 0830 hrs	STP GN913026 21-Aug-91 0750 hrs
Phenoi	ug/L	EPA 420.2	50	25	<10.0	180	20	31	20	20
Alkalinity (bicarbonate) Alkalinity (total)	mg/L mg/L	EPA 310.1 EPA 310.2		•			•	•	311 311	278 278
Chlorides Residue, Filterable	mg/L	EPA 325.2	3500	1200	2200	2400	2400	2100	860	910
Residue, Nonfilterable	mg/L mg/L	EPA 160.1 EPA 160.2	3300 55	1300 150	3200 155	3400 14	3600 5	3100 70	3200 18	3100 14
Residue, Settleable Residue, Total	ml/L mg/L	EPA 160.5 EPA 160.3	3900	4500	6 4200	1 4100	41 00	5 3700	3500	3500
Residue, Total Volatile	mg/L	EPA 160.4	930	1300	910	870	660	770	600	750
Specific conductance Surfactants-MBAS	umhos mg/L	EPA 120.1 EPA 425.1	4700 0.2	4270 0.3	5000 2.5	4900 0.1	4900 0.2	4600 0.2	4420 0.2	4370 0,3
Chemical oxygen demand	mg/L	STDM 508C	200	110	360	140	223	385	220	215
Total organic carbon Oil & Gresse	mg/L mg/L	EPA 415.1 EPA 413.2	27 19.6	30 97.6	42 82.4	11 4.0	17 4.3	20 62.4	29 54.8	23 40.0
Total hydrocarbons	mg/L	EPA 418.1	5.4	54.7	14.6	<1.0	<1.0	8.9	23.4	7.7
Kjeldahl nitrogen (total) Phosphorus (total)	mg/L	EPA 351.2 EPA 365.1	10.5 3.4	12.0 3.4	7.0 3.8	8.3 1.3	8.5 2.3	12.5 3.2	20.5 4.6	19.0 3.1
Arsenic	ug/L	EPA 206.2	<10.0	<10.0	11	<10.0	<10.0	11	<10.0	<10.0
Barium Bervilium	ug/L ug/L	EPA 200.7 EPA 210.1	<1000 11	<1000 <10.0	<1000 <10.0	<1000 <10.0	<1000 <10.0	<1000 <10.0	<100 <10.0	130 <10.0
Cedmium	ug/L	EPA 213.1	<5.0	< 5.0	<5.0	<5.0	<5.0	<5.0	<10.0	<10.0
Calcium Chromium	mg/L ug/L	EPA 215.1 EPA 218.1	306 <20	337 <20	372 37	317 40	347 <20	213 24	290 <50	360 <50
Chromium VI	ug/L	EPA 218.4	<20	<20	•	•	<20	•	<50	<50
Copper Iron	ug/L ug/L	EPA 220.1 EPA 236.1	52 549	31 653	160 3224	151 461	128 1680	207 878	<20 270	40 480
Lead	ug/L	EPA 239.1	<20	<20	<20	<20	<20	<20	<20	<20
Magnesium Manganese	mg/L ug/L	EPA 242.1 EPA 243.1	162 97	149 87	152 133	172 111	162 222	162 98	140 100	170 100
Mercury Nickel	ug/L	EPA 245.1	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Silver	ug/L ug/L	EPA 249.1 EPA 272.1	<50 <10.0	<50 10	<50 52	<50 29	<50 18	<50 20	<50 <10.0	<50 <10.0
Zinc Potassium	ug/L mg/L	EPA 289.1 EPA 258.1	<50	64	300	358	127	238	<50 13	<50 16
Sodium	mg/L	EPA 273.1	•	•	•	•	•	•	500	620
Bromodichloromethane	ug/L	EPA 601	< 0.4	< 0.4	< 0.4	<0.4	< 0.4	< 0.4	<0.4	< 0.4
Bromoform Carbon Tetrachioride	ug/L ug/L	EPA 601 EPA 601	<0.7 <0.5							
Chlorobenzene	ug/L	EPA 601	< 0.6	<0.6	<0.6	<0.6	<0.6	<0.6	<0.6	< 0.6
Chloroethane Chloroform	ug/L ug/L	EPA 601 EPA 601	<0.9 0.62	<0.9 0.75	<0.9 <0.3	<0.9 <0.3	<0.9 <0.3	<0.9 <0.3	<0.9 <0.3	<0.9 <0.3
Chloromethane	ug/L	EPA 601	<0.8	<0.8	<0.8	<0.8	<0.8	<0.8	<0.8	<0.8
Chlorodibromomethane 1,2-Dichlorobenzene	ug/L ug/L	EPA 601 EPA 601	<0.5 <1.0							
1,3-Dichlorobenzene 1,4-Dichlorobenzene	ug/L	EPA 601	<0.5 4.4	<0.5	<0.5	<0.5	< 0.5	<0.5	<0.5	<0.5
Dichlorodifluoromethane	ug/L ug/L	EPA 601 EPA 601	<0.9	4.9 <0.9	<0.7 <0.9	<0.7 <0.9	<0.7 <0.9	<0.7 <0.9	<0.7 <0.9	<0.7 <0.9
1,1-Dichloroethane 1,2-Dichloroethane	ug/L	EPA 601 EPA 601	<0.4 1.9	<0.4 4.0	<0.4 <0.3	<0.4 <0.3	<0.4 <0.3	<0.4 <0.3	<0.4 <0.3	<0.4 <0.3
1.1-Dichloroethene	ug/L ug/L	EPA 601	< 0.3	< 0.3	<0.3	<0.3	<0.3	< 0.3	< 0.3	< 0.3
trans-1,2-Dichloroethene 1,2-Dichloropropane	ug/L ug/L	EPA 601 EPA 601	<0.5 <0.3							
cis-1,3-Dichloropropene	ug/L	EPA 601	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
trans-1,3-Dichloropropene Methylene chloride	ug/L ug/L	EPA 601 EPA 601	<0.5 30.2	<0.5 <0.4						
1,1,2,2-Tetrachioroethane	ug/L	EPA 601	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Tetrachloroethylene 1,1,1-Trichloroethane	ug/L ug/L	EPA 601 EPA 601	<0.6 <0.5	<0.6 < 0. 5						
1,1,2-Trichloroethane	ug/L	EPA 601	< 0.5	< 0.5	< 0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Trichloroethylene Trichlorofluoromethane	ug/L ug/L	EPA 601 EPA 601	<0.5 <0.4							
Vinyl chloride	ug/L	EPA 601 EPA 601	<0.9	<0.9	<0.9 <0.9	<0.9	<0.9 <0.9	<0.9 <0.9	<0.9 <0.9	<0.9 <0.9
Bromomethane 2-Chloroethylvinyl ether	ug/L ug/L	EPA 601	<0.9 <0.9							
1,3-Dichlorobenzene	ug/L	EPA 602	•	•	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
1,4-Dichlorobenzene Ethyl Benzene	ug/L	EPA 602 EPA 602	13.2	247	<0.7 5.0	<0.7 <0.3	<0.7 <0.3	<0.7 <0.3	<0.7 <0.3	<0.7 <0.3
Chlorobenzene	ug/L	EPA 602	<0.6	3.4	<0.6	<0.6	<0.6	<0.6	<0.6	< 0.6
Toluene Benzene	ug/L ug/L	EPA 602 EPA 602	26.7 19.4	360 247	11 7.1	<0.3 <0.5	<0.3 <0.5	<0.3 <0.5	<0.3 <0.5	<0.3 <0.5
1,2-Dichlorobenzene	ug/L	EPA 602			<1.0	<1.0	<1.0	<1.0	<1.0	<1.0

Figure A-2

			STP #1 GN913006 14-Aug-91 2230 hrs	STP #2 GN913007 15-Aug-91 0800 hrs	STP #3 GN913006 15-Aug-91 1330 hrs	STP #4 GN913009 15-Aug-91 2000 hrs	STP #5 GN913016 16-Aug-91 0000 hrs	STP #6 GN913017 16-Aug-91 1000 hrs	STP #7 GN913021 16-Aug-91 1800 hrs
Phenol	ug/L	EPA 420.2	88	20	25	25	24	26	33
Alkalinity (bicarbonate)	mg/L	EPA 310.1	•	•	•	•	•	•	•
Alkalinity (total) Chlorides	mg/L mg/L	EPA 310.2 EPA 325.2	•	•	:	:	•	•	•
Residue, Filterable	mg/L	EPA 160.1	3600	4100	3100	3100	3200	3100	13000
Residue, Nonfilterable	mg/L	EPA 160.2 EPA 160.5	160	88	100	635	75 3	100	13
Residue, Settleable Residue, Total	me/L	EPA 160.3	4200	51 00	3700	11 4300	4300	880	3600
Residue, Total Volatile	mg/L	EPA 160.4	1100	1400	650	1100	690	175	665
Specific conductance Surfactants-MBAS	umhos mg/L	EPA 120.1 EPA 425.1	4030 0.3	4700 0.2	4600 1.5	4050 2.7	5200 0.7	4500 0.2	3700 1.0
Chemical oxygen demand	mg/L	STDM 508C	160	750	400	400	150	170	110
Total organic carbon	mg/L	EPA 415.1	26	23	_ 35	40	21	38	31
Oil & Grease Total hydrocarbons	mg/L mg/L	EPA 413.2 EPA 418.1	48.8 4.3	122.0 78.0	79.2 9.7	40.0 14.0	179.2 34.2	104.0 44.2	49.6 2.6
Kjeldahl nitrogen (total)	mg/L	EPA 351.2	9.0	13.0	200.0	9.5	8.0	95	10.0
Phosphorus (total)	mg/L	EPA 365.1	3.7	3.7	4.1	3.5	3.4	5.3	3.6
Amenic	ug/L	EPA 206.2	<10.0	<10.0	<10.0	<10.0	<10.0	<10.0	<10.0
Barium Bervilium	ug/L ug/L	EPA 200.7 EPA 210.1	<1000 <10.0						
Cadmium	ug/L	EPA 213.1	<5.0	<5.0	<5.0	<5.0	<10.0	<5.0	<5.0
Calcium	mg/L	EPA 215.1	370	450	337	374	412	305	284
Chromium VI	ug/L ug/L	EPA 218.1 EPA 218.4	43 < 20	36 <20	260	26	23	22	34
Copper	ug/L	EPA 220.1	88	71	305	454	156	92	40
iron Lead	ug/L	EPA 236.1 EPA 239.1	1335 21	191 <20	3114	9930 <20	1711 <20	783 <20	376 <20
Magnesium	ug/L mg/L	EPA 242.1	169	169	<20 157	158	148	146	150
Manganese	ug/L	EPA 243.1	114	<50	155	161	140	106	102
Mercury Nickel	ug/L ug/L	EPA 245.1 EPA 249.1	<1.0 <50	<1.0 <50	<1.0 181	<1.0 <50	<1.0 <50	<1.0 <50	<1.0 <50
Silver	ug/L	EPA 272.1	27	21	35	38	25	12	11
Zinc	ug/L	EPA 289.1	164	<50	400	621	243	<50	358
Potassium Sodium	mg/L mg/L	EPA 258.1 EPA 273.1		•	:	:	:	:	:
Bromodichloromethane	ug/L	EPA 601	<0.4	<0.4	<0.4	<0.4	<0.4	5.7	13
Bromoform	ug/L	EPA 601	<0.7	<0.7	<0.7	< 0.7	<0.7	< 0.7	<0.7
Carbon Tetrachloride Chlorobenzene	ug/L	EPA 601 EPA 601	<0.5 <0.6						
Chloroethane	ug/L ug/L	EPA 601	<0.9	<0.9	<0.9	<0.9	<0.9	<0.9	<0.9
Chloroform	ug/L	EPA 601	<0.3	<0.3	< 0.3	< 0.3	<0.3	< 0.3	< 0.3
Chlorodibromomethane	ug/L	EPA 601 EPA 601	<0.8 <0.5	<0.8 <0.5	8.0> 2.0>	<0.8 <0.5	8.0> 2.0>	<0.8 <0.5	<0.8 <0.5
1.2-Dichlorobenzene	ug/L ug/L	EPA 601	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
1,3-Dichlorobenzene	ug/L	EPA 601	< 0.5	<0.5	< 0.5	<0.5	<0.5	< 0.5	<0.5
1,4-Dichlorobenzene Dichlorodifluoromethane	ug/L ug/L	EPA 601 EPA 601	<0.7 <0.9						
1,1-Dichloroethane	ug/L	EPA 601	< 0.4	<0.4	<0.4	< 0.4	< 0.4	<0.4	<0.4
1,2-Dichloroethane	ug/L	EPA 601	<0.3	<0.3	< 0.3	< 0.3	< 0.3	<0.3	<0.3
1,1-Dichloroethene trans-1,2-Dichloroethene	ug/L ug/L	EPA 601 EPA 601	<0.3 <0.5						
1,2-Dichloropropane	ug/L	EPA 601	< 0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3
cis-1,3-Dichloropropene	ug/L	EPA 601	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
trans-1,3-Dichloropropene Methylene chloride	ug/L ug/L	EPA 601 EPA 601	<0.5 <0.4						
1,1,2,2-Tetrachloroethane	ue/L	EPA 601	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Tetrachioroethylene	ug/L	EPA 601	<0.6	<0.6	<0.6	<0.6	<0.6	<0.6	<0.6
1,1,1-Trichloroethane 1,1,2-Trichloroethane	ug/L ug/L	EPA 601 EPA 601	<0.5 <0.5	کە> کە>	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5
Trichloroethylene	ug/L	EPA 601	< 0.5	<0.5	<0.5	<0.5	<0.5	<0.5	< 0.5
Trichiorofluoromethane	ug/L	EPA 601	<0.4 <0.9	<0.4	<0.4 <0.9	<0.4 <0.9	<0.4 <0.9	<0.4 <0.9	<0.4 <0.9
Vinyl chloride Bromomethane	ug/L ug/L	EPA 601 EPA 601	<0.9	<0.9 <0.9	<0.9 <0.9	<0.9 <0.9	<0.9	<0.9	<0.9
2-Chloroethylvinyi ether	ug/L	EPA 601	<0.9	<0.9	<0.9	<0.9	<0.9	<0.9	< 0.9
1,3-Dichlorobenzene	ug/L	EPA 602	•	•	<0.5	<0.5	<0.5	<0.5	< 0.5
1,4-Dichlorobenzene Ethyl Benzene	ug/L	EPA 602 EPA 602	19.7	271	<0.7 10	<0.7 8.5	< 0. 7 5 .7	<0.7 144	<0.7 5.5
Chlorobenzene	ug/L	EPA 602	<0.6	3.5	<0.6	<0.6	< 0.6	<0.6	<0.6
Toluene	ug/L	EPA 602	65.2	352	31	52 27	14 8.8	553 174	17 14
Benzene 1.2-Dichlorobenzene	ug/L ug/L	EPA 602 EPA 602	63.1	256	23 <1.0	<1.0	<1.0	<1.0	<1.0

Figure A-3

			Site 1 GN913001 14-Aug-91 0820 ars	Site 1 GN913003 15-Aug-91 0822 hrs	Site 1 GN913011 16-Aug-91 0822 hrs	Site 2 GN913004 15-Aug-91 0800 hrs	Site 2 GN913012 16-Aug-91 0855 hrs	Site 2 GN913027 20-Aug-91 0835 hrs
Phenoi	ug/L	EPA 420.2	29	15	15	29	22	<10.0
Alkalinity (bicarbonate)	mg/L	EPA 310.1	•	•	•	-	•	•
Alkalinity (total) Chlorides	mg/L mg/L	EPA 310.2 EPA 325.2	•		•	÷	•	210
Residue, Filterable	mg/L	EPA 160.1	1400	2100	3600	1300	1100	1030
Residue, Nonfilterable Residue, Settleable	mg/L ml/L	EPA 160.2 EPA 160.5	7 2	12 0. 3	20	50 0.3	35 1.5	110 2.5
Residue, Total	mg/L	EPA 160.3	1500	2300	0.4 2200	1400	1400	1400
Residue, Total Volatile	mg/L	EPA 160.4	280	530	660	300	220	330
Specific conductance Surfactants-MBAS	umbos mg/L	EPA 120.1 EPA 425.1	1580 0.2	2900 0,3	2240 0,3	1609 0.2	1910 1.7	1820 0,3
Chemical oxygen demand	mg/L	STDM 508C	160	65	110	95	165	214
Total organic carbon Oil & Grease	mg/L mg/L	EPA 415.1 EPA 413.2	40 4.0	17 22	26 8.2	28 40.0	31 42.8	71 97.6
Total hydrocarbons	mg/L	EPA 418.1	1.3	13	3.7	4.5	2.6	19.5
Kjeldahl nitrogen (total)	mg/L	EPA 351.2	22.0	8.0	13.5	14.0	17.5	20.0
Phosphorus (total)	mg/L	EPA 365.1	4.6	1.2	1.9	3.6	4.7	5.6
Arsenic Barium	ug/L ug/L	EPA 206.2 EPA 200.7	<10.0 <1000	<10.0 <1000	<10.0 <1000	<10.0 <1000	<10.0 <1000	<10.0 <100
Beryllium	ug/L	EPA 210.1	<10.0	<10.0	<10.0	<10.0	<10.0	<10.0
Cadmium	ug/L	EPA 213.1	<5.0	<5.0	<5.0	<5.0	<5.0	<10.0
Calcium Chromium	mg/L ug/L	EPA 215.1 EPA 218.1	235 <20	377 <20	347 45	161 <20	243 <20	140 <50
Chromium VI	ue/L	EPA 218.4	<20	<20	75	₹20	<20	<50
Copper	ug/L	EPA 220.1 EPA 236.1	44 790	<20	157	97	179	<20 3200
iron Lead	ug/L ug/L	EPA 239.1	<20	168 <20	1098 <20	385 <20	137 <20	3200 <20
Magnesium	mg/L	EPA 242.1	29	34	47	46	89	51
Manganese Mercury	ug/L ug/L	EPA 243.1 EPA 245.1	99 <1.0	96 <1.0	234 <1.0	<50 <1.0	78 <1.0	90 <1.0
Nickel	ug/L	EPA 249.1	<50	<50	150	<50	<50	<50
Silver	ug/L	EPA 272.1	23	10	10	36	<10.0	<10.0
Zinc Potassium	ug/L mg/L	EPA 289.1 EPA 258.1	95	<50	291	η	585	180 10
Sodium	mg/L	EPA 273.1	•	•	•	•	•	130
Bromodichloromethane	ug/L	EPA 601	<0.4	< 0.4	<0.4	< 0.4	<0.4	<0.4
Bromoform Control Tetraphlanida	ug/L	EPA 601	< 0.7	< 0.7	< 0.7	<0.7	< 0.7	< 0.7
Carbon Tetrachloride Chlorobenzene	ug/L ug/L	EPA 601 EPA 601	2.0> 2.0>	2.0> 3.0>	<0.5 <0.6	<0.5 <0.6	<0.5 <0.6	<0.5 <0.6
Chloroethane	ug/L	EPA 601	<0.9	<0.9	<0.9	<0.9	<0.9	< 0.9
Chloroform Chloromethane	ug/L ug/L	EPA 601 EPA 601	<0.3 <0.8	<0.3 <0. 8	<0.3 <0.8	0.85 0.8 5	<0.3 <0.8	<0.3 <0.8
Chlorodibromomethane	ug/L	EPA 601	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
1,2-Dichlorobenzene	ug/L	EPA 601	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
1,3-Dichlorobenzene 1.4-Dichlorobenzene	ug/L ug/L	EPA 601 EPA 601	<0.5 <0.7	<0.5 1.8	<0.5 <0.7	20.5 6.6	<0.5 <0.7	<0.5 <0.7
Dichlorodifluoromethane	ug/L	EPA 601	<0.9	< 0.9	<0.9	<0.9	<0.9	< 0.9
1,1-Dichloroethane	ug/L	EPA 601	< 0.4	< 0.4	<0.4	<0.4	<0.4	<0.4 <0.3
1,2-Dichloroethane 1,1-Dichloroethane	ug/L ug/L	EPA 601 EPA 601	<0.3 <0.3	< 0. 3 < 0. 3	<0.3 <0.3	<0.3 <0.3	<0.3 <0.3	<0.3
trans-1,2-Dichloroethene	ug/L	EPA 601	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
1,2-Dichloropropene cis-1,3-Dichloropropene	ug/L	EPA 601 EPA 601	<0.3 < 0. 5	<0.3 <0.5	<0.3 <0.5	<0.3 <0.5	<0.3 <0.5	<0.3 <0.5
trans-1,3-Dichloropropene	ug/L ug/L	EPA 601	<0.5	<0.5	<0.5	<0.5	<0.5	<0. 3
Methylene chloride	ug/L	EPA 601	24.5	10.7	<0.4	< 0.4	<0.4	< 0.4
1,1,2,2-Tetrachioroethane Tetrachioroethylene	ug/L ug/L	EPA 601 EPA 601	<0.5 <0.6	<0.5 <0.6	<0.5 3.0>	<0.5 <0.6	<0.5 <0.6	<0.5 <0.6
1,1,1-Trichloroethane	ug/L	EPA 601	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
1,1,2-Trichloroethene	ue/L	EPA 601	<0.5	<0.5	<0.5	<0.5	< 0.5	<0.5
Trichloroethylene Trichlorofluoromethane	ug/L ug/L	EPA 601 EPA 601	<0.5 <0.4	<0.5 <0.4	<0.5 <0.4	<0.5 <0.4	<0.5 <0.4	<0.5 <0.4
Viayl chloride	ug/L	EPA 601	<0.9	< 0.9	< 0.9	<0.9	< 0.9	<0.9
Bromomethane 2-Chloroethylvinyl ether	ue/L	EPA 601 EPA 601	<0.9 <0.9	<0.9 <0.9	<0.9 <0.9	<0.9 <0.9	<0.9 <0.9	<0.9 <0.9
• •	ug/L						<0.5	<0.5
1,3-Dichlorobenzene 1,4-Dichlorobenzene	ug/L	EPA 602 EPA 602	<0.5 <0.7	<0.5 <0.7	<0.5 <0.7	•	<0.3 <0.7	<0.7
Ethyl Benzene	ug/L	EPA 602	<0.3	<0.3	<0.3	<0.3	<0.3	< 0.3
Chlorobenzene	mg/L	EPA 602 EPA 602	<0.6 <0.3	<0.6 <0.3	<0.6 <0.3	<0.6 <0.3	<0.6 <0.3	<0.6 <0.3
Toluene Benzene	ug/L ug/L	EPA 602	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
1,2-Dichlorobenzene	ug/L	EPA 602	<1.0	<1.0	<1.0	•	<1.0	<1.0

Figure A-4

			Site 3 GN913005 15-Aug-91 0815 hrs	Site 3 GN913013 16-Aug-91 0835 hrs		Site 4 GN913034 21-Aug-91 0920 hrs			
Phenol	ug/L	EPA 420.2	18	36	47	22	<10.0	<10.0	170
Alkalinity (bicarbonate) Alkalinity (total)	mg/L	EPA 310.1 EPA 310.2	•	•	•	•	7	195	•
Chlorides	mg/L mg/L	EPA 325.2	•	•	980	300	<1.0	195 31	3760
Residue, Filterable Residue, Nonfilterable	mg/L	EPA 160.1	3300	4100	4100	1400	<1.0	460	7700
Residue, Settleable	mg/L ml/L	EPA 160.2 EPA 160.5	10 0.2	0.2	3 0.4	18 0.2	<1.0 <0.2	<1.0 <0.2	110 1.5
Residue, Total Residue, Total Volatile	mg/L	EPA 160.3	3700 830	4500	4700	1700	30	530	8400
Specific conductance	mg/L umhos	EPA 160.4 EPA 120.1	4090	800 5450	1100 5260	350 2230	27 1	110 723	3600 18650
Surfactants-MBAS	mg/L	EPA 425.1	0.2	0.2	0.1	0.1	<0.1	< 0.1	0.9
Chemical oxygen demand Total organic carbon	mg/L mg/L	STDM 508C EPA 415.1	100 13	105 13	62 12	84 33	<10.0 5	<10.0 2	520 66
Oil & Grease	mg/L	EPA 413.2	3.7	4.0	2.4	6.7	0.6	0.5	7.9
Total hydrocarbons Kjeldahl nitrogen (total)	mg/L mg/L	EPA 418.1 EPA 351.2	1.9 4.5	1.1 6.5	<1.0 5.9	1.3 18.0	<1.0 0.6	<1.0 0.5	1.7 7.5
Phosphorus (total)	mg/L	EPA 365.1	0.7	\$3	0.6	1.6	< 0.1	<0.1	0.8
Amenic	ug/L	EPA 206.2	<10.0	<10.0	<10.0	<10.0	<10.0	<10.0	10
Berium Beryllium	ug/L ug/L	EPA 200.7 EPA 210.1	<1000 <10.0	<1000 <10.0	<100 <10.0	<10.0 <10.0	<10.0 <10.0	<10.0 <10.0	140 <10.0
Cadmium	ug/L	EPA 213.1	<5.0	<5.0	<10.0	<10.0	<10.0	<10.0	<10.0
Calcium Chromium	mg/L ug/L	EPA 215.1 EPA 218.1	410 26	552 21	390 <50	150 <50	<0.1 <50	76 <50	940 <50
Chromium VI	ug/L	EPA 218.4	<20	21	<50	<50	<50	<50	< 50
Copper	ug/L	EPA 220.1	261	162	40	30	<20	100	70 220
iron Lead	ug/L ug/L	EPA 236.1 EPA 239.1	361 54	474 <20	190 <20	260 <20	100 <20	110 <20	220 <20
Magnesium	mg/L	EPA 242.1	121	170	170	83	<0.1	26	670
Manganese Mercury	ug/L ug/L	EPA 243.1 EPA 245.1	74 <1.0	126 <1.0	100 <1.0	60 <1.0	<50 <1.0	<50 <1.0	110 <1.0
Nickel	ug/L	EPA 249.1	<50	370	<50	<50	<50	<50	170
Silver Zinc	ug/L	EPA 272.1 EPA 289.1	27 161	20	<10.0	<10.0	<10.0	<10.0	<10.0
Potassium	ug/L mg/L	EPA 258.1	101	370	<50 17	<50 4	<50 <0.1	<50 3	< 50
Sodium	mg/L	EPA 273.1	•	•	600	230	<0.1	67	2300
Bromodichloromethane Bromoform	ug/L	EPA 601	<0.4 <0.7	<0.4	< 0.4	<0.4	<0.4	1.3	<0.4
Carbon Tetrachloride	ug/L ug/L	EPA 601 EPA 601	<0.7	<0.7 <0.5	<0.7 <0.5	<0.7 <0.5	<0.7 <0.5	7.0 <0. 5	<0.7 <0.5
Chlorobenzene	ug/L	EPA 601	<0.6	<0.6	<0.6	<0.6	<0.6	<0.6	< 0.6
Chloroethane Chloroform	ug/L ug/L	EPA 601 EPA 601	<0.9 0.52	<0.9 <0.3	<0.9 <0.3	<0.9 <0.3	<0.9 <0.3	<0.9 <0.3	<0.9 <0.3
Chloromethane	ug/L	EPA 601	<0.8	<0.8	<0.8	<0.8	<0.8	<0.8	<0.8
Chlorodibromomethane 1.2-Dichlorobenzene	ug/L ug/L	EPA 601 EPA 601	<0.5 <1.0	<0.5 <1.0	<0.5 <1.0	<0.5 <1.0	<0.5 <1.0	3.1 <1.0	<0.5 <1.0
1,3-Dichlorobenzene	ug/L	EPA 601	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
1,4-Dichlorobenzene	ug/L	EPA 601	<0.7	<0.7	<0.7	<0.7	<0.7	<0.7	<0.7
Dichlorodifluoromethane 1,1-Dichloroethane	ug/L ug/L	EPA 601 EPA 601	<0.9 <0.4	<0.9 <0.4	<0.9 <0.4	<0.9 <0.4	<0.9 <0.4	<0.9 <0.4	<0.9 <0.4
1,2-Dichloroethane	ug/L	EPA 601	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3
1,1-Dichloroethene trans-1,2-Dichloroethene	ug/L ug/L	EPA 601 EPA 601	<0.3 <0.5	<0.3 <0.5	<0.3 <0.5	<0.3 <0.5	<0.3 <0.5	<0.3 <0.5	<0.3 <0.5
1.2-Dichloropropane	ug/L	EPA 601	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3
cis-1,3-Dichloropropene trans-1,3-Dichloropropene	ug/L	EPA 601 EPA 601	<0.5 <0.5	<0.5	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5
Methylene chloride	ug/L ug/L	EPA 601	11.7	<0.5 <0.4	<0.4	<0.4	<0.4	<0.4	<0.4
1,1,2,2-Tetrachloroethane	ug/L	EPA 601	<0.5	<0.5	<0.5	<0.5	<0.5	< 0.5	<0.5
Tetrachioroethylene 1,1,1-Trichioroethane	ug/L ug/L	EPA 601 EPA 601	<0.6 < 0. 5	<0.6 <0.5	<0.6 <0.5	<0.6 <0.5	<0.6 <0.5	<0.6 <0.5	<0.6 <0.5
1,1,2-Trichloroethane	ug/L	EPA 601	<0.5	<0.5	<0.5	<0.5	<0.5	< 0.5	<0.5
Trichloroethylene Trichlorofluoromethane	ug/L ug/L	EPA 601 EPA 601	2.7 < 0.4	<0.5 <0.4	<0.5 <0.4	<0.5 <0.4	<0.5 <0.4	<0.5 <0.4	<0.5 <0.4
Viny! chloride	ug/L	EPA 601	<0.9	<0.9	<0.9	<0.9	<0.9	<0.9	<0.9
Bromomethane	ug/L	EPA 601	<0.9	<0.9	<0.9	<0.9	<0.9	<0.9	<0.9
2-Chloroethylvinyl ether 1.3-Dichlorobenzene	ug/L	EPA 601	<0.9	<0.9 <0.5	<0.9 <0.5	<0.9 <0.5	<0.9 <0.5	<0.9 <0.5	<0.9 <0.5
1,4-Dichlorobenzene	ug/L ug/L	EPA 602 EPA 602	•	<0.7	<0. 7	<0.7	<0.7	< 0.7	<0.7
Ethyl Benzene	ug/L	EPA 602	<0.3	<0.3	< 0.3	<0.3	<0.3	<0.3	<0.3
Chlorobenzene Toluene	ug/L ug/L	EPA 602 EPA 602	<0.6 1.3	<0.6 <0.3	<0.6 <0.3	<0.6 <0.3	<0.6 <0.3	<0.6 <0.3	<0.6 <0.3
Benzene	ug/L	EPA 602	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
1,2-Dichlorobenzene	ug/L	EPA 602	•	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0

Figure A-5

			Site 5 GN913014 16-Aug-91 0855 hrs	Site 5 GN913029 20-Aug-91 0815 hrs	Site 5 GN913032 21-Aug-91 0820 hrs	Site 6 GN913015 16-Aug-91 0910 hrs	Site 6 GN913030 20-Aug-91 1030 hrs	Site 6 GN913033 21-Aug-91 0655 hrs
Phenol	ug/L	EPA 420.2	98	302	144	386	100000	11750
Alkalinity (bicarbonate)	mg/L	EPA 310.1	•	•	•	:	•	
Alkalinity (total) Chlorides	mg/L mg/L	EPA 310.2 EPA 325.2		2560	720	•	87	85
Residue, Filterable	mg/L	EPA 160.1	2500	2100	1900	370	1150	590
Residue, Nonfilterable	mg/L	EPA 160.2	650	230	415	140	15	110
Residue, Settlesble Residue, Total	ml/L mg/L	EPA 160.5 EPA 160.3	9.8 1900	9.9 6400	19.4 3400	3.0 930	29.0 1400	6.7 1400
Residue, Total Volatile	mg/L	EPA 160.4	640	6500	1000	280	700	720
Specific conductance	umbos		2840	9910	3620	1410	1540	1440
Surfactants-MBAS Chamical owners demand	mg/L	EPA 425.1 STDM 508C	0.2 280	1.0 300	0.3 61	0.5 305	0.9 3270	0.6 500
Chemical oxygen demand Total organic carbon	mg/L	EPA 415.1	87	63	152	75	555	158
Oil & Grease	mg/L	EPA 413.2	256	86.4	800	159.1	76.0	73.2
Total hydrocarbons Violable pitters (total)	mg/L	EPA 418.1 EPA 351.2	<1.0 39.0	5.1 30.5	31.7 56.0	36.9 47.5	54.8 54.0	10.4 4 6.0
Kjeldahl nitrogen (total) Phosphorus (total)	mg/L	EPA 365.1	14.0	18.2	57.0	5.2	1.6	10.4
Arsenic	ug/L	EPA 206.2	<10.0	<10.0	<10.0	<10.0	<10.0	<10.0
Berium	ug/L	EPA 200.7	<100	300	280	<1000	<100	100
Beryllium	ug/L	EPA 210.1	<10.0	<10.0 <10.0	<10.0 20	<10.0 44	<10.0 <10.0	<10.0 <10.0
Cadmium Calcium	ug/L mg/L	EPA 213.1 EPA 215.1	<5.0 89	290	84	93	100	110
Chromium	ug/L	EPA 218.1	<20	<50	<50	164	70	<50
Chromium VI	ug/L	EPA 218.4	<20	<50	<50	220	40	<50 80
Copper Iron	ug/L ug/L	EPA 220.1 EPA 236.1	171 2077	90 6100	<100 5400	330 17590	9400	1400
Lead	ug/L	EPA 239.1	<20	31	100	56	37	<20
Magnesium	mg/L	EPA 242.1	23	48	39	31	27	.37
Manganese	ug/L	EPA 243.1 EPA 245.1	434 13	690 <1.0	1300 <1.0	207 <1.0	90 <1.0	100 <1.0
Mercury Nickel	ug/L ug/L	EPA 249.1	<50	60	60	<50	50	<50
Silver	ug/L	EPA 272.1	<10.0	<10.0	<10.0	<10.0	<10.0	<10.0
Zinc	ug/L	EPA 289.1	1755	3400	<50	593	270	230
Potassium Sodium	mg/L mg/L	EPA 258.1 EPA 273.1	:	32 1600	40 840	:	18 82	39 120
Bromodichloromethane	ug/L	EPA 601	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4
Bromoform	ug/L	EPA 601	<0.7	<0.7	<0.7	<0.7	<0.7	< 0.7
Carbon Tetrachloride	ug/L	EPA 601	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5 <0.6
Chlorobenzene Chloroethane	ug/L	EPA 601 EPA 601	<0.6 <0.9	<0.6 <0.9	<0.6 <0.9	<0.6 <0.9	<0.6 <0.9	<0.9
Chloroform	ug/L	EPA 601	<0.3	<0.3	4.9	<0.3	1479	< 0.3
Chloromethane	ug/L	EPA 601	<0.8	<0.8	<0.8	<0.8	<0.8	<0.8
Chlorodibromomethane	ug/L	EPA 601	<0.5	<0.5	<0.5 <1.0	<0.5 <1.0	<0.5 <1.0	<0.5 <1.0
1,2-Dichlorobenzene 1,3-Dichlorobenzene	ug/L ug/L	EPA 601 EPA 601	<1.0 <0.5	<1.0 <0.5	<0.5	<0.5	<0.5	<0.5
1,4-Dichlorobenzene	ug/L	EPA 601	<0.7	<0.7	<0.7	<0.7	8.6	13
Dichlorodifluoromethane	ug/L	EPA 601	<0.9	<0.9	<0.9	<0.9	<0.9 <0.4	<0.9 <0.4
1,1-Dichloroethane 1,2-Dichloroethane	ug/L	EPA 601 EPA 601	<0.4 <0.3	<0.4 <0.3	<0.4 <0.3	<0.4 <0.3	<0.4	<0.3
1,1-Dichloroethene	ug/L	EPA 601	<0.3	<0.3	<0.3	< 0.3	<0.3	< 0.3
trans-1,2-Dichloroethene	ug/L	EPA 601	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
1,2-Dichloropropane	ug/L	EPA 601	<0.3	<0.3	<0.3 <0.5	<0.3 <0.5	<0.3 <0.5	<0.3 <0.5
cis-1,3-Dichloropropene trans-1,3-Dichloropropene	ug/L ug/L	EPA 601 EPA 601	<0.5 <0.5	<0.5 <0.5	<0.5	<0.5	<0.5	<0. 5
Methylene chloride	ug/L	EPA 601	<0.4	<0.4	< 0.4	48	23516	<0.4
1,1,2,2-Tetrachioroethane	ug/L	EPA 601	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Tetrachloroethylene	ug/L	EPA 601	56 <0.5	<0.6 < 0. 5	<0.6 <0.5	<0.6 <0.5	870 <0.5	<0.6 <0.5
1,1,1-Trichloroethane 1,1,2-Trichloroethane	ug/L	EPA 601 EPA 601	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Trichloroethylene	wg/L	EPA 601	<0.5	<0.5	<0.5	<0.5	114	<0.5
Trichlorofluoromethane	ug/L	EPA 601	<0.4	< 0.4	<0.4	<0.4 <0.9	<0.4 <0.9	<0.4 <0.9
Vinyl chloride	ug/L	EPA 601 EPA 601	<0.9 <0.9	<0.9 <0.9		<0.9 <0.9	<0.9 <0.9	<0.9 <0.9
Bromomethane 2-Chloroethylvinyl ether	ug/L ug/L	EPA 601	<0.9	<0.9	2.1	<0.9	<0.9	<0.9
1,3-Dichlorobenzene	ug/L	EPA 602	<0.5	<0.5		<0.5	<0.5	< 0.5
1,4-Dichlorobenzene	ug/L	EPA 602	<0.7	<0.7		<0.7 <0.3	21 20	17 <0.3
Ethyl Benzene Chlorobenzene	ug/L	EPA 602 EPA 602	<0.3 <0.6	<0.3 <0.6		<0.6	-20.6 -20.6	20 <i>></i>
Toluene	ug/L ug/L	EPA 602	28	<0.3	<0.3	<0.3	891	<0.3
Benzene	ug/L	EPA 602	<0.5	<0.5	< 0.5	<0.5		<0.5
1,2-Dichlorobenzene	ug/L	EPA 602	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0

Appendix B

Detectable Data

Figure B-1

Phenol Alkalinity (bicarbonate) Alkalinity (total) Chlorides	ow the ding mg/L ug/L mg/L mg/L	STP GN913000 14-Aug-91 0800 hrs 50 50	STP GN913002 15-Aug-91 0800 hrs 85 25	STP GN913010 16-Aug-91 0800 hrs	STP GN913022 17-Aug-91 0745 hrs
the comminutor and before t grit chamber located by build 752. BOD Phenol Alkalinity (bicarbonate) Alkalinity (total) Chlorides	mg/L ug/L mg/L mg/L mg/L mg/L	14-Aug-91 0800 hrs 50 50	15-Aug-91 0800 hrs	16-Aug-91 0800 hrs	17-Aug-91 0745 hrs
grit chamber located by build 752. BOD Phenol Alkalinity (bicarbonate) Alkalinity (total) Chlorides	mg/L ug/L mg/L mg/L	0800 hrs 50 50	0800 hrs 85	0800 hrs 115	0745 hrs
752. BOD Phenol Alkalinity (bicarbonate) Alkalinity (total) Chlorides	mg/L ug/L mg/L mg/L	50 50	85	115	
Phenol Alkalinity (bicarbonate) Alkalinity (total) Chlorides	ug/L mg/L mg/L	.50 *			75
Phenol Alkalinity (bicarbonate) Alkalinity (total) Chlorides	ug/L mg/L mg/L		25		75
Alkalinity (bicarbonate) Alkalinity (total) Chlorides	mg/L mg/L			<10.0	180
Alkalinity (total) Chlorides	mg/L		*	*	*
Chlorides			*	*	*
	mg/L		*	*	*
Residue, Filterable	mg/L	3500	1300	3200	3400
	mg/L	55	150	155	14
Residue, Settleable	ml/L	2	2	6	1
	mg/L	3900	4500	4200	4100
	mg/L	930	1300	910	870
	umhos	4700	4270	5000	4900
Surfactants-MBAS	mg/L	0.2	0.3	2.5	0.1
Chemical oxygen demand	mg/L	200	110	360	140
	mg/L	27	30	42	11
	mg/L	19.6	97.6	82.4	4.0
	mg/L	5.4	54.7	14.6	<1.0
	mg/L	10.5	12.0	7.0	8.3
	mg/L	3.4	3.4	3.8	1.3
Calcium	mg/L	306	337	372	317
Copper	ug/L	52	31	160	151
Iron	ug/L	549	653	3224	461
Magnesium	mg/L	162	149	152	172
Manganese	ug/L	97	87	133	111
Silver	ug/L	<10.0	10	52	29
Zinc	ug/L	<50	64	300	358
Potassium	mg/L		*	*	*
Sodium	mg/L		*	*	*
Chloroform	ug/L	0.62	0.75	<0.3	<0.3
1,4-Dichlorobenzene	ug/L	4.4	4.9	<0.7	<0.7
1,2-Dichloroethane	ug/L	1.9	4.0	<0.3	<0.3
Methylene chloride	ug/L	30.2	<0.4	<0.4	<0.4
Ethyl Benzene	ug/L	13.2	247	5.0	<0.3
Chlorobenzene	ug/L	<0.6	3.4	<0.6	<0.6
Toluene	ug/L	26.7	360	ar., ee 11	< 0.3
Benzene	ug/L	19.4	247	7.1	< 0.5

Figure B-2

Sewage Treatment Plant (S	STP):	STP	STP	STP	STP
The sampler was located b		GN913023	GN913024	GN913025	GN913026
the comminutor and before		18-Aug-91	19-Aug-91	20-Aug-91	21-Aug-91
grit chamber located by bu		0815 hrs	0750 hrs	0830 hrs	0750 hrs
752.					
BOD	mg/L	*		*	*
Phenol	ug/L	20	31	20	20
Alkalinity (bicarbonate)	mg/L	*		311	278
Alkalinity (total)	mg/L	*	•	311	278
Chlorides	mg/L	*	•	860	910
Residue, Filterable	mg/L	3600	3100	3200	3100
Residue, Nonfilterable	mg/L	5	70	18	14
Residue, Settleable	ml/L	1	5	1	1
Residue, Total	mg/L	4100	3700	3500	3500
Residue, Total Volatile	mg/L	660	770	600	750
Specific conductance	umhos	4900	4600	4420	4370
Surfactants-MBAS	mg/L	0.2	0.2	0.2	0.3
Chemical oxygen demand	mg/L	223	385	220	215
Total organic carbon	mg/L	17	20	29	23
Oil & Grease	mg/L	4.3	62.4	54.8	40.0
Total hydrocarbons	mg/L	<1.0	8.9	23.4	7.7
Kjeldahl nitrogen (total)	mg/L	8.5	12.5	20.5	19.0
Phosphorus (total)	mg/L	2.3	3.2	4.6	3.1
Calcium	mg/L	347	213	290	360
Copper	ug/L	128	207	<20	40
Iron	ug/L	1680	878	270	480
Magnesium	mg/L	162	162	140	170
Manganese	ug/L	222	98	100	100
Silver	ug/L	18	20	<10.0	<10.0
Zinc	ug/L	127	238	<50	<50
Potassium	mg/L	*		13	16
Sodium	mg/L	*		500	620
Chloroform	ug/L	<0.3	<0.3	<0.3	< 0.3
1,4-Dichlorobenzene	ug/L	<0.7	<0.7	< 0.7	<0.7
1,2-Dichloroethane	ug/L	<0.3	<0.3	<0.3	< 0.3
Methylene chloride	ug/L	<0.4	< 0.4	<0.4	<0.4
Ethyl Benzene	ug/L	<0.3	<0.3	<0.3	<0.3
Chlorobenzene	ug/L	<0.6	<0.6	< 0.6	<0.6
Toluene	ug/L	< 0.3	<0.3	<0.3	< 0.3
Benzene	ug/L	<0.5	<0.5	<0.5	<0.5

Figure B-3

Sewage Treament Plant (ST	P#):	STP#1	STP #2	STP #3	STP #4
The sampler was located be		GN913006		GN913008	GN913009
the comminutor and before		14-Aug-91		15-Aug-91	15-Aug-91
grit chamber located by buil		2230 hrs	0800 hrs	1330 hrs	2000 hrs
752.					
BOD	mg/L	100	55	105	150
Phenol	ug/L	88	20	25	25
Alkalinity (bicarbonate)	mg/L	*	*	*	*
Alkaiinity (total)	mg/L	*	*	*	. *
Chlorides	mg/L	*	*	*	*
Residue, Filterable	mg/L	3600	4100	3100	3100
Residue, Nonfilterable	mg/L	160	88	100	635
Residue, Settleable	ml/L	1	2	4	11
Residue, Total	mg/L	4200	5100	3700	4300
Residue, Total Volatile	mg/L	1100	1400	650	1100
Specific conductance	umhos	4030	4700	4600	4050
Surfactants-MBAS	mg/L	0.3	0.2	1.5	2.7
Chemical oxygen demand	mg/L	160	750	400	400
Total organic carbon	mg/L	26	23	35	40
Oil & Grease	mg/L	48.8	122.0	79.2	40.0
Total hydrocarbons	mg/L	4.3	78.0	9.7	14.0
Kjeldahl nitrogen (total)	mg/L	9.0	13.0	200.0	9.5
Phosphorus (total)	mg/L	3.7	3.7	4.1	3.5
Calcium	mg/L	370	450	337	374
Chromium	ug/L	43	36	260	26
Copper	ug/L	88	71	305	454
Iron	ug/L	1335	191	3114	9930
Magnesium	mg/L	169	169	157	158
Manganese	ug/L	114	<50	155	161
Nickel	ug/L	<50	<50	181	<50
Silver	ug/L	27	21	35	38
Zinc	ug/L	164	<50	400	621
Bromodichloromethane	ug/L	< 0.4	<0.4	<0.4	<0.4
Ethyl Benzene	ug/L	19.7	271	10	8.5
Chlorobenzene	ug/L	<0.6	3.5	<0.6	< 0.6
Toluene	ug/L	65.2	352	31	52
Benzene	ug/L	63.1	256	23	27

Figure B-4

Sewage Treament Plant (ST	P#):	STP #5	STP #6	STP #7
The sampler was located below		GN913016	GN913017	GN913021
the comminutor and before		16-Aug-91	16-Aug-91	16-Aug-91
grit chamber located by buil	ding	0800 hrs	1000 hrs	1800 hrs
752.				
BOD	mg/L	90	95	115
Phenol	ug/L	24	26	33
Alkalinity (bicarbonate)	mg/L	*	*	*
Alkalinity (total)	mg/L	*	*	*
Chlorides	mg/L	*	*	*
Residue, Filterable	mg/L	3200	3100	13000
Residue, Nonfilterable	mg/L	75	100	13
Residue, Settleable	ml/L	3	4	1
Residue, Total	mg/L	4300	880	3600
Residue, Total Volatile	mg/L	690	175	665
Specific conductance	umhos	5200	4500	3700
Surfactants-MBAS	mg/L	0.7	0.2	1.0
Chemical oxygen demand	mg/L	150	170	110
Total organic carbon	mg/L	21	38	31
Oil & Grease	mg/L	179.2	104.0	49.6
Total hydrocarbons	mg/L	34.2	44.2	2.6
Kjeldahl nitrogen (total)	mg/L	8.0	9.5	10.0
Phosphorus (total)	mg/L	3.4	5.3	3.6
Calcium	mg/L	412	305	284
Chromium	ug/L	23	22	34
Copper	ug/L	156	92	40
Iron	ug/L	1711	783	376
Magnesium	mg/L	148	146	150
Manganese	ug/L	140	106	102
Nickel	ug/L	<50	<50	<50
Silver	ug/L	25	12	11
Zinc	ug/L	243	<50	358
Bromodichloromethane	ug/L	<0.4	5.7	. 13
Ethyl Benzene	ug/L	mia 3.5.7	144	5.5
Chlorobenzene	ug/L	<0.6	<0.6	<0.6
Toluene	ug/L	14	553	17
Benzene	ug/L	8.8	174	14

Figure B-5

Manhole 437: This site is lo	Site 1	Site 1	Site 1	
southwest of the main		GN913001	GN913003	GN913011
taxiway/runway		14-Aug-91	15-Aug-91	16-Aug-91
access.		0820 hrs	0822 hrs	0822 hrs
Phenol	ug/L	29	15	15
Residue, Filterable	mg/L	1400	2100	3600
Residue, Nonfilterable	mg/L	7	12	20
Residue, Settleable	ml/L	2	0.3	0.4
Residue, Total	mg/L	1500	2300	2200
Residue, Total Volatile	mg/L	280	530	660
Specific conductance	umhos	1580	2900	2240
Surfactants-MBAS	mg/L	0.2	0.3	0.3
Chemical oxygen demand	mg/L	160	65	110
Total organic carbon	mg/L	40	17	26
Oil & Grease	mg/L	4.0	2.2	8.2
Total hydrocarbons	mg/L	1.3	1.3	3.7
Kjeldahl nitrogen (total)	mg/L	22.0	8.0	13.5
Phosphorus (total)	mg/L	4.6	1.2	1.9
Calcium	mg/L	235	377	347
Chromium	ug/L	<20	<20	45
Copper	ug/L	44	<20	157
Iron	ug/L	790	168	1098
Magnesium	mg/L	29	34	47
Manganese	ug/L	99	96	234
Nickel	ug/L	<50	<50	150
Silver	ug/L	23	10	10
Zinc	ug/L	95	<50	291
1,4-Dichlorobenzene	ug/L	<0.7	1.8	<0.7
Methylene chloride	ug/L	24.5	10.7	<0.4

Figure B-6

Manhole 380: This site is lo	Site 2	Site 2	Site 2	
by billeting across West Elev	venth	GN913004	GN913012	GN913027
Street from the softball fields.		15-Aug-91	16-Aug-91	20-Aug-91
		0800 hrs	0855 hrs	0835 hrs
			_	
Phenol	ug/L	29	22	<10.0
Chlorides	mg/L	*	*	210
Residue, Filterable	mg/L	1300	1100	1030
Residue, Nonfilterable	mg/L	50	35	110
Residue, Settleable	ml/L	0.3	1.5	2.5
Residue, Total	mg/L	1400	1400	1400
Residue, Total Volatile	mg/L	300	220	330
Specific conductance	umhos	1609	1910	1820
Surfactants-MBAS	mg/L	0.2	1.7	0.3
Chemical oxygen demand	mg/L	95	165	214
Total organic carbon	mg/L	28	31	71
Oil & Grease	mg/L	40.0	42.8	97.6
Total hydrocarbons	mg/L	4.5	2.6	19.5
Kjeldahl nitrogen (total)	mg/L	14.0	17.5	20.0
Phosphorus (total)	mg/L	3.6	4.7	5.6
Calcium	mg/L	161	243	140
Copper	ug/L	97	179	<20
Iron	ug/L	385	137	3200
Magnesium	mg/L	46	89	51
Manganese	ug/L	<50	78	90
Silver	ug/L	36	<10.0	<10.0
Zinc	ug/L	77	585	180
Potassium	mg/L	*	*	10
Sodium	mg/L	*	*	130
Chloroform	ug/L	0.85	< 0.3	<0.3
1,4-Dichlorobenzene	ug/L	6.6	<0.7	<0.7

Figure B-7

Building 912 Lift Station:		Site 3	Site 3	Site 3
This site was the lift station		GN913005	GN913013	GN913028
outside of building 912.		15-Aug-91	16-Aug-91	20-Aug-91
outside of bunding 712.		0815 hrs	0835 hrs	0850 hrs
		0015 1115	0033 1113	0050 1113
Fhenol	ug/L	18	36	47
Chlorides	mg/L	*	*	980
Residue, Filterable	mg/L	3300	4100	4100
Residue, Nonfilterable	mg/L	10	5	3
Residue, Settleable	ml/L	0.2	0.2	0.4
Residue, Total	mg/L	3700	4500	4700
Residue, Total Volatile	mg/L	830	800	1100
Specific conductance	umhos	4090	5450	5260
Surfactants-MBAS	mg/L	0.2	0.2	0.1
Chemical oxygen demand	mg/L	100	105	62
Total organic carbon	mg/L	13	13	12
Oil & Grease	mg/L	3.7	4.0	2.4
Total hydrocarbons	mg/L	1.9	1.1	<1.0
Kjeldahl nitrogen (total)	mg/L	4.5	6.5	5.9
Phosphorus (total)	mg/L	0.7	5.3	0.6
Calcium	mg/L	410	552	390
Chromium	ug/L	26	21	<50
Copper	ug/L	*	162	40
Iron	ug/L	361	474	190
Lead	ug/L	54	<20	<20
Magnesium	mg/L	121	170	170
Manganese	ug/L	74	126	100
Nickel	ug/L	<50	370	<50
Silver	ug/L	27	20	<10.0
Zinc	ug/L	161	370	<50
Potassium	mg/L	*	*	17
Sodium	mg/L	*	*	600
Methylene chloride	ug/L	11.7	<0.4	< 0.4
Trichloroethylene	ug/L	2.7	<0.5	<0.5
Toluene	ug/L	1.3	< 0.3	< 0.3

Figure B-8

Manhole 427: Site 4 was loo	cated in	Site 4	Blank	Tap Water	Lake
the MOBSS Complex beside	e	GN913034	GN913035	GN913036	GN913031
building 938.		21-Aug-91	21-Aug-91	21-Aug-91	20-Aug-91
Lake Holloman: 50 meters	from	0920 hrs			1400 hrs
the concrete piped outfall					
Phenol	ug/L	22	<10.0	<10.0	170
Alkalinity (bicarbonate)	mg/L		ar merili uy 7 .	195	.a.s
Alkalinity (total)	mg/L		7	195	
Chlorides	mg/L	300	<1.0	31	3760
Residue, Filterable	mg/L	1400	<1.0	460	7700
Residue, Nonfilterable	mg/L	18	<1.0	<1.0	110
Residue, Settleable	ml/L	0.2	<0.2	<0.2	1.5
Residue, Total	mg/L	1700	30	<i>5</i> 30	8400
Residue, Total Volatile	mg/L	350	27	110	3600
Specific conductance	umhos	2230	i dejinele 🎜 🗈	723	18650
Surfactants-MBAS	mg/L	0.1	< 0.1	< 0.1	0.9
Chemical oxygen demand	mg/L	84	<10.0	<10.0	520
Total organic carbon	mg/L	33	5 5	2	66
Oil & Grease	mg/L	6.7	0.6	0.5	7.9
Total hydrocarbons	mg/L	1.3	<1.0	<1.0	Table 1.7
Kjeldahl nitrogen (total)	mg/L	18.0	0.6	0.5	7.5
Phosphorus (total)	mg/L	1.6	<0.1	<0.1	0.8
Arsenic	ug/L	<10.0	<10.0	<10.0	
Barium	ug/L	<10.0	<10.0	<10.0	140
Calcium	mg/L	150	<0.1	76	940
Copper	ug/L	30	<20	100	70
Iron	ug/L	260	100	110	220
Magnesium	mg/L	83	< 0.1	26	670
Manganese	ug/L	60	<50	<50	110
Nickel	ug/L	<50	<50	<50	170
Potassium	mg/L	4	<0.1	. jane 43	
Sodium	mg/L	230	< 0.1	67	2300
Bromodichloromethane	ug/L	< 0.4	< 0.4		< 0.4
Bromoform	ug/L	<0.7	<0.7	7.0	<0.7

Figure B-9

Manhole 516: This site was	Site 5	Site 5	Site 5	
in the primate area between		GN913014	GN913029	GN913032
buildings 262 and 267.		16-Aug-91	20-Aug-91	21-Aug-91
		0855 hrs	0815 hrs	0820 hrs
Phenol	ug/L	98	302	144
Chlorides	mg/L	*	2560	720
Residue, Filterable	mg/L	2500	2100	1900
Residue, Nonfilterable	mg/L	650	230	415
Residue, Settleable	ml/L	9.8	9.9	19.4
Residue, Total	mg/L	1900	6400	3400
Residue, Total Volatile	mg/L	640	6500	1000
Specific conductance	umhos	2840	9910	3620
Surfactants-MBAS	mg/L	0.2	1.0	0.3
Chemical oxygen demand	mg/L	280	300	61
Total organic carbon	mg/L	87	63	152
Oil & Grease	mg/L	256	86.4	800
Total hydrocarbons	mg/L	<1.0	5.1	31.7
Kjeldahl nitrogen (total)	mg/L	39.0	30.5	56.0
Phosphorus (total)	mg/L	14.0	18.2	57.0
Barium	ug/L	<100	300	280
Beryllium	ug/L	<10.0	<10.0	<10.0
Cadmium	ug/L	<5.0	<10.0	20
Calcium	mg/L	89	290	84
Copper	ug/L	171	90	<100
Iron	ug/L	2077	6100	5400
Lead	ug/L	<20	31	100
Magnesium	mg/L	23	48	39
Manganese	ug/L	434	690	1300
Mercury	ug/L	13	<1.0	<1.0
Nickel	ug/L	<50	60	60
Zinc	ug/L	1755	3400	<50
Potassium	mg/L	*	32	40
Sodium	mg/L	*	1600	840
Chloroform	ug/L	< 0.3	<0.3	4.9
Tetrachloroethylene	ug/L	56	<0.6	<0.6
Toluene	ug/L	28	< 0.3	<0.3

Figure B-10

Manhole 337: This site is located		Site 6	Site 6	Site 6
by corrosion control between	n	GN913015	GN913030	GN913033
buildings 281 and 282.		16-Aug-91	20-Aug-91	21-Aug-91
		0910 hrs	1030 hrs	0855 hrs
Phenol	ug/L	386	100000	11750
Chlorides	mg/L	*	87	85
Residue, Filterable	mg/L	370	1150	590
Residue, Nonfilterable	mg/L	140	15.	110
Residue, Settleable	ml/L	3.0	29.0	6.7
Residue, Total	mg/L	930	1400	1400
Residue, Total Volatile	mg/L	280	700	720
Specific conductance	umhos	1410	1540	1440
Surfactants-MBAS	mg/L	0.5	0.9	0.6
Chemical oxygen demand	mg/L	305	3270	500
Total organic carbon	mg/L	75	555	158
Oil & Grease	mg/L	159.1	76.0	73.2
Total hydrocarbons	mg/L	36.9	54.8	10.4
Kjeldahl nitrogen (total)	mg/L	47.5	54.0	46.0
Phosphorus (total)	mg/L	5.2	1.6	10.4
Cadmium	ug/L	a.j., 1102 44	<10.0	<10.0
Calcium	mg/L	93	100	110
Chromium	ug/L	164	70	<50
Copper	ug/L	330	40	80
Iron	ug/L	17590	9400	1400
Lead	ug/L	56	37	<20
Magnesium	mg/L	31	27	37
Manganese	ug/L	207	90	100
Potassium	mg/L		18	39
Sodium	mg/L		82	120
Chloroform	ug/L	< 0.3	14 79	<0.3
1,4-Dichlorobenzene	ug/L	<0.7	6 tampe (j. 8.6	13
Methylene chloride	ug/L	48	23516	< 0.4
Trichloroethylene	ug/L	<0.5	114	<0.5
1,4-Dichlorobenzene	ug/L	< 0.7	21	
Ethyl Benzene	ug/L	<0.3	20	< 0.3
Toluene	ug/L	<0.3	891	<0.3

Appendix C Maps

Figure C-1

Appendix D Potable Flow and Contract Lab Data

DEPARTMENT OF THE AIR FORCE

HEADQUARTERS 833D COMBAT SUPPORT GROUP (TAC) HOLLOMAN AIR FORCE BASE, NM 88330-5000

REPLY TO

DEV

1 1 SEP 1891

SUBJECT

Letter of Transmittal

USAF Armstrong Laboratory/OEBE Attn: Lt Darrin L. Curtis Brooks AFB, TX 78235

- 1. Attached please find:
 - a. Summary Sheet for the ANA Lab Survey.
 - b. HAFB water production figures for August 1991.
 - c. Select STP Flow Records.
- 2. If we can be of any further assistance to you, please contact Mr. Ron Schotter at 479-3931.

Deputy Base Civil Engineer

3 Atchs

- 1. Summary Sheet
- 2. HAFB Water Production Figures, 1991
- 3. STP Flow Records

HOLLOMAN AFB STP SURVEY SUMMARY, ANA LAB DATA

	DAY 1	DAY 2	DAY 3	AVE
ALKALINITY	220.1	280 h	255	251/6
BOD	110 h	90	30 1	76.6
TDS 7	2200 12	2500	3000 h	2566.6
TSS &	148 h	42	36.1	75.3
рН	701 1	10.4 h	7.3	8.2
CHLORIDE	900 1	910	1300 h	1036.6
AMMONIA NITROGEN	9.8	14.5 h	6.8	10.3
TKN	15.0	19.8 h	11.4 1	15.5
CALCIUM	290	280 1	410 h	326.6
MAGNESIUM	130.1	150	230 h	170
SODIUM	400.1	470	690	520
TOTAL PHOSPHORUS	3.4	3.8 h	2.1 1	3.1
COD	140 h	140	98.1	126
TOTAL ORGANIC CARE	ON 38	58 h	31.1	42.3
HYDROCARBONS	9 h	8	2 1	6.3
OIL & GREASE	11 h	11 h	3 1	8.3

HAFB WATER PRODUCTION AUGUST 1991

Aug	5	-	2,	453	3,6	000
-----	---	---	----	-----	-----	-----

Aig
$$8 - 3,002,000$$

Aug
$$19 - 2,566,000$$

Analytical Chemistry • Utility Operations

08/10/91

833 CSG/DE

MRK: F2965191MV222

Bldg. 55

Holloman AFB, NM 88330 Attention: Ron Schotter 833 CSG/DE

MRK: F2965191MV222

Bldg. 55

Holloman AFB, NM 88330 Attention: Ron Schotter

Sample Identification:

Composite - Influent

Collected By: D. Cook

Date & Time Taken: 07/27/91 0700

Lab Sample Number: 192016 Received:

07/29/91

Client: HAFB

_				•		
PARAMETER	RESULTS	UNITS	TIME	DATE	METHOD	BY
Sep. Liquid-Liquid Extraction	1000->1	mt->ml	1200	08/05/91	EPA Method 3520	LW
Free Alkalinity	0	mg/l	2200	07/30/91	EPA Method 310.1	DG
Alkalinity	255	mg/l	2200	07/30/91	EPA Method 310.1	DG
Biochemical Oxygen Demand	30	mg/l	1620	08/03/91	EPA Method 405.1	cs
800 Test Started	Started		2200	07/29/91		cs
Boron	<.5	mg/l	1200	08/05/91	EPA Method 212.3	DG
Hexavalent Chromium	<.01	mg/l	2100	07/29/91	EPA Method 7196	CJL
Surfactants	.70	mg/l	1500	07/31/91	EPA Method 425.1	ВС
Nitrite	<.17	mg/l	2200	07/29/91	EPA Method 354.1	SB
Total Dissolved Solids	3000	mg/l	1340	07/31/91	EPA Method 160.1	BW
Total Residue	3900	mg/l	1330	07/31/91	EPA Method 160.3	BW
Total Suspended Solids	36	mg/l	0230	07/30/91	EPA Method 160.2	MB
Volatile Suspended Solids	30	mg/l	0400	07/30/91	EPA Method 160.4	MB
рн	7.3	SU	2245	07/29/91	EPA Method 150.1	JB
Chloride	1300	mg/l	2300	07/30/91	EPA Method 325.3	DG
Ammonia Nitrogen	6.8	mg/l	1500	08/01/91	EPA Method 350.2	SM
Nitrate - Nitrite	.31	mg/l	1500	08/01/91	EPA Method 353.3	ВС

Continued

Analytical Chemistry • Utility Operations

08/10/91

833 CSG/DE

MRK: F2965191MV222

Bldg. 55

Holloman AFB, NM 88330 Attention: Ron Schotter

Sample Identification: Composite - Influent

Collected By: Donald Cook

Date & Time Taken: 07/24/91 1400

Lab Sample Number	191933	Received:	07	7/26/91	Client:	HAFB
PARAMETER	RESULTS	UNITS	TIME	DATE	METHOD	BY
Sep. Liquid-Liquid Extraction	790->1	ml ->ml	1200	08/05/91	EPA Method 3520	ſĦ
Free Alkalinity	0	mg/l	2200	07/30/91	EPA Method 310.1	DG
Alkalinity	280	mg/l	2200	07/30/91	EPA Method 310.1	DG
Biochemical Oxygen Demand	90	mg/l	1800	07/31/91	EPA Method 405.1	JSB
BOO Test Started	Started		2100	07/26/91		SB
Boron	.8	mg/l	1200	08/05/91	EPA Method 212.3	DG
Hexavalent Chromium	<.01	mg/l	2100	07/29/91	EPA Nethod 7196	CJL
Surfactants	.63	mg/l	1500	07/31/91	EPA Method 425.1	ВС
Nitrite	<.17	mg/l	0030	07/27/91	EPA Method 354.1	MB
Total Dissolved Solids	2500	mg/l	1340	07/31/91	EPA Method 160.1	BW
Total Residue	2900	mg/l	1330	07/31/91	EPA Method 160.3	BW
Total Suspended Solids	42	mg/l	0100	07/30/91	EPA Method 160.2	MB
Volatile Suspended Solids	38	mg/l	0100	07/29/91	EPA Method 160.4	MB
рн	10.4	SU	0100	07/27/91	EPA Method 150.1	SB
Chloride	910	mg/l	2300	07/30/91	EPA Method 325.3	DG
Ammonia Nitrogen	14.5	mg/l	1500	08/01/91	EPA Method 350.2	SM
Nitrate - Nitrite	.75	mg/l	1500	08/01/91	EPA Nethod 353.3	BC .

Continued

2600 DUDLEY ROAD - KILGORE. TEXAS 75662 - 903/984-0551 - FAX 903/984-5914

Analytical Chemistry • Utility Operations

08/10/91

833 CSG/DE

MRK: F2965191MV222

Bldg. 55

Holloman AFB, NM 88330 Attention: Ron Schotter

Sample Identification: Composite - Influent

Collected By: Donald Cook

Date & Time Taken: 07/25/91 1400

Lab Sample Number:	191930	Received:	. 0	7/26/91	Client:	HAFB
PARAMETER	RESULTS	UNITS	TIME	DATE	METHOD	BY
Sep. Liquid-Liquid Extraction	1000->1	mi->mi	1200	08/05/91	EPA Nethod 3520	LW
Free Alkalinity	0	mg/l	2200	07/30/91	EPA Method 310.1	DG
Alkalinity	220	mg/l	2200	07/30/91	EPA Method 310.1	DG
Biochemical Oxygen Demand	110	mg/l	1800	07/31/91	EPA Method 405.1	JSB
800 Test Started	Started		2100	07/26/91		SB
Boron	<.5	mg/l	1200	08/05/91	EPA Method 212.3	DG
Hexavalent Chromium	<.01	mg/l	2110	07/26/91	EPA Method 7196	CJL
Surfactants	.77	mg/l	1500	07/31/91	EPA Method 425.1	BC
Witrite	<.17	mg/l	0030	07/27/91	EPA Method 354.1	MB
Total Dissolved Solids	2200	mg/l	1340	07/31/91	EPA Method 160.1	BW
Total Residue	2800	mg/l	1330	07/31/91	EPA Method 160.3	B¥
Total Suspended Solids	148	mg/l	0100	07/29/91	EPA Method 160.2	MB
Volatile Suspended Solids	124	mg/l	0100	07/30/91	EPA Method 160.4	MB
Н	7.0	Sü	0100	07/27/91	EPA Method 150.1	SB
Chloride	900	mg/l	2300	07/30/91	EPA Method 325.3	DG
Ammonia Nitrogen	9.8	mg/l	1500	08/01/91	EPA Method 350.2	SM
Nitrate - Nitrite	.62	mg/i	1500	08/01/91	EPA Method 353.3	BC

Continued

Appendix E

Treatment Plant Flow Calculations

Figure E-2	
Flow Feet/s	
	1.0
0 1 2 1 3	0.8
	70.9
6" = 1/"	× 6" -
Block Area F42 Flow Fa/s	F.+3/5
A 1042 2,2 B 1910 1,0	0,2292
0 .1042 1.0 0 .1042 1.7 E .1910 1.3	0:10#2 0:177/ 0:2183
5 1042 0.8 6 ,0633 2.2	0.0834 0.1833 0.1681
H -/5.28 /./ I' -0833 - 2.5 T -0833 - 1.4	0,0750
k 1528 /.3 L ,0833 /.1	0.1986
7014	1,9497
1.9497 G3 X 605 X 7.48 griss =	875 gollers/rin
1 8956 Ft3 × 605 × 7, 489 policus = 81	00 grillons/min
Average: (875+8:0)/2 =	= 863 gr21120-1 m n

Appendix F

TCLP Data

12 1/0,91

REPORT OF ANALYSIS

BASE SAMPLE NO: GN913018 DEHL SAMPLE NO: 91044094

SAMPLE TYPE: NON-POTABLE WATER

SITE IDENTIFIER: NOXXX

DATE RECEIVED: 910820

DATE COLLECTED: 910816

DATE REPORTED: 911101

SAMPLE SUBMITTED BY: 833 MEDICAL GROUP/SGPB

RESULTS

Test	Results	<u>Units</u>	EPA Method
Arsenic	<0.5	mg/L	3020/7060
Barium	<10.0	mg/L	3010/7080
Cadmium	<0.1	mg/L	3010/7130
Chromium	<0.5	mg/L	3010/7190
Lead	<0.5	mg/L	3010/7420
Mercury	<0.02	mg/L	7470
Selenium	<0.1	mg/L	3020/7740
Silver	<0.5	mg/L	3010/7760
Benzene	<0.05	mg /L	
Carbon Tetrachloride	(0.05	mg/L	
Chlorobenzene	<10.0	mg/L	
Chloroform	<0.5	mg/L	
1,2-Dichloroethane	<0.05	mg/L	
1,1-Dichloroethene	<0.05	mg/L	
Methyl Ethyl Ketone	<20.	mg /L	
Tetrachloroethylene	<0.05	mg/L	
Trichloroethylene	<0.05	mg/L	
Vinyl Chloride	<0.1	mg/L	
1,4-Dichlorobenzene	<0.7	mg/L	
2,4-Dinitrotoluene	<0.02	mg/L	
Hexachlorobenzene	<0.02	mg/L	
Hexachlorobutadiene	<0.05	mg/L	
Hexachloroethane	<0.3	mg/L	
Nitrobenzene	<0.2	mg/L	
o-Cresol	<20.	mg/L	
m-Cresol	<20.	mg/L	
p-Cresol	<20.	mg/L	
Pentachlorophenol	<10.0	mg/L	

TO:

AL/OEBE

BROOKS AFB | TX 78235-5000

PAGE 1(Cont'd)

REPORT OF ANALYSIS

BASE SAMPLE NO: GN913018

OEHL SAMPLE NO: 91044094

SAMPLE TYPE:

NON-POTABLE WATER

SITE IDENTIFIER: NOXXX

DATE RECEIVED: 910820

(DATE COLLECTED: 910816)

DATE REPORTED: 911101

SAMPLE SUBMITTED BY: 833 MEDICAL GROUP/SGPB

RESULTS

Test	Results	Units	EPA Method
Pyridine	<0.5	mg/L	
2,4,5-Trichlorophenol	<40.	mg/L	
2,4,6-Trichlorophenol	<0.2	mg/L	
Chlordane	<0.003	mg/L	
Endrin	<0.002	mg/L	
Heptachlor	<0.0008	mg/L	
Lindane	<0.04	mg/L	
Methoxychlor	<1.0	mg/L	
Toxaphene	<0.35	mg/L	
2,4-D	<1.0	mg/L	
Flash Point (closed cup)	>200	degrees F	1010
Corrosivity	SINC		1110
Hydrogen ion (pH)	5.20		1110
Eyanide (total)	<25 mg/kg		SW 846 SEC 8.3
Sulfides	SN	mg/L	SW 846 SEC 8.3
Silvex	<0.1	mg/L	

SINC : Sample is not corrosive.

SN : See comment.

Comments:

LT DARRIN CURTIS/HOLLOMAN AFB SAMPLE IS >99% WATER.

PAGE 2/Cont'd)

REPORT OF ANALYSIS

BASE SAMPLE NO: GN913019

DEHL SAMPLE NO: 91044095

SAMPLE TYPE: NON-POTABLE WATER

SITE IDENTIFIER: NOXXX

DATE RECEIVED: 910820

(DATE COLLECTED:

910816

DATE REPORTED: 911101

SAMPLE SUBMITTED BY: 833 MEDICAL GROUP/SGPB

RESULTS

Test	Results	<u>Units</u>	EPA Method
Arsenic	<0.5	mq/L	3020/7060
Barium	<10.0	mg/L	3010/7080
Cadmium	<0.1	mg/L	3810/7130
Chromium	<0.5	mq/L	3010/7190
Lead	<0.5	mg/L	3010/7420
Mercury	<0.02	mg/L	7470
Selenium	<0.1	mg/L	3020/7740
Silver	<0.5	mg/L	3010/7760
Benzen e	<0.05	mg/L	
Carbon Tetrachloride	<0.05	mg/L	
Chlorobenzene	<10.0	mg/L	
Chloroform	<0.5	mg/L	
1,2-Dichloroethane	<0.05	mg/L	
1,1-Dichloroethene	<0.05	mg/L	
Methyl Ethyl Ketone	<20.	mg/L	
Tetrachioroethylene	<0.05	mg/L	
Trichloroethylene	<0.05	mg/L	
Vinyl Chloride	<0.1	mg/L	
1,4-Dichlorobenzene	<0.7	ma/L	
2,4-Dinitrotoluene	<0.02	mg/L	
Hexachlorobenzene	<0.02	ma/L	
Hexachlorobutadiene	<0.05	mg/L	
Hexachloroethane	<0.3	mg/L	
Nitrobenzene	<0.2	mg/L	
o-Cresol	<20.	mg/L	
m-Crescl	<20.	mg/L	
p-Cresol	<2 0.	mg:/L	
Pentachlorophenol	<10.0	mg/L	

TO:

AL/DEBE

BROOKS AFB | TX 78239-5000

PAGE 1(Cont'd)

REPORT OF ANALYSIS

BASE SAMPLE NO: GN913019

DEHL SAMPLE NO: 91044095

SAMPLE TYPE: NON-POTABLE WATER

SITE IDENTIFIER: NOXXX

DATE RECEIVED: 910820

DATE COLLECTED: 910816

DATE REPORTED: 911101

SAMPLE SUBMITTED BY: 833 MEDICAL GROUP/SGP8

Site 2

RESULTS

Test	Results	<u>Units</u>	EPA Method
Pyridine 2,4,5-Trichlorophenol 2,4,6-Trichlorophenol Chlordane Endrin Heptachlor Lindane Methoxychlor Toxaphene 2,4-0	<0.5 <40. <0.2 <0.003 <0.002 <0.0008 <0.04 <1.0 <0.05	mg/L mg/L mg/L mg/L mg/L mg/L mg/L	EPA Method
Flash Point (closed cup) Corrosivity Hydrogen ion (pH) Cyanide (total) Sulfides Silvex	<1.0 >200 SINC 6.52 <25 mg/kg SN <0.1	mg/L degrees F mg/L mg/L	1010 1110 1110 SW 846 SEC 8.3 SW 846 SEC 8.3

SINC

: Sample is not corrosive.

SN

: See comment.

Comments:

LT DARRIN CURTIS/HOLLOMAN AFB SAMPLE IS >99% WATER.

PAGE 2(Cont'd)

12 Nor91

AIR FORCE OCCUPATIONAL AND ENVIRONMENTAL HEALTH DIRECTORATE BROOKS AFB, TEXAS, 78235-5000

REPORT OF AMALYSIS

BASE SAMPLE NO: GN913020

DEHL SAMPLE NO: 91044096

SAMPLE TYPE: NON-POTABLE WATER

SITE IDENTIFIER: NOXXX

DATE RECEIVED: 910820

(DATE COLLECTED: 910916

DATE REPORTED: 911101

SAMPLE SUBMITTED BY: 833 MEDICAL GROUP/SGPB

RESULTS

Test	Results	Units	EPA Method
Arsenic	<0.5	mg/L	3020/7060
Barium	<10.0	mq/L	3010/7080
Cadmium	<0.1	mg/L	3010/7130
Chromium	<0.5	mg/L	3010/7190
Lead	<0.5	mg/L	3010/7420
Mercury	<0.02	mg/L	7470
Selenium	<0.1	mg/L	3020/7740
Silver	<0.5	mg/L	3010/7760
Benzene	<0.05	mg/L	
Carbon Tetrachloride	<0.05	mg/L	
Chlorobenzene	<10.0	mg/L	
Chloroform	<0.5	mg/L	
1,2-Dichloroethane	<0.05	mg/L	
1,1-Dichloroethene	<0.05	mg/L	
Methyl Ethyl Ketone	<20.	mg/L	
Tetrachloroethylene	<0.05	mg/L	
Trichloroethylene	<0.05	mg/L	
Vinyl Chloride	<0.92	mg/L	•
1,4-Dichlorobenzene	<0.7	mg/L	
2,4-Dinitrotoluene	<0.02	mg/L	
Hexachlorobenzene	<0.02	mg/L	
Hexachlorobutadiene	<0.05	mg/L	
Hexachloroethane	<0.3	mg/L	
Nitrobenzene	<0.2	mg/L	
o-Cresol	<20.	mg/L	
m-Cresol	<20.	mg/L	
p-Cresol	<20.	mg/L	
Pentachlorophenol	<10.0	mg/L	

TO:

AL/CEBE

SROOKS AFB | TX 78235-5000

PAGE 1(Cont'd)

REPORT OF ANALYSIS

BASE SAMPLE NO: GN913020 DEHL SAMPLE NO: 91044096

SAMPLE TYPE: NON-POTABLE WATER

SITE IDENTIFIEP: NOXXX

DATE RECEIVED: 910820

DATE COLLECTED: 910816)

DATE REPORTED: 911101

SAMPLE SUBMITTED BY: 833 MEDICAL GROUP/SGPB

RESULTS

Test	Results	Units	EPA Method
Pyridine 2,4,5-Trichlorophenol 2,4,6-Trichlorophenol Chlordane Endrin Heptachlor Lindane Methoxychlor Toxaphene 2,4-D Flash Point (closed cup) Corrosimity Hydrogen ion (pH)	<0.5 <40. <0.2 <0.003 <0.002 <0.0005 <0.04 <1.0 <0.05 <1.0 >200 SINC 5.70	Units mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L degrees F	1010 1110 1110
Cyanide (total) Sulfides Silvex	<25 mg %g SN <0.1	mg/L mg/L	SW 846 SEC 8.3 SW 846 SEC 8.3

SINC : Sample is not corrosive.

SN : See comment.

Comments:

LT DARRIN CURTISZHOLLOMAN AFB SAMPLE IS >99% WATER.

PAGE 2(Cont'd)