CAB420: Comparing Things with Deep Neural Networks

THING A VS THING B

Comparing Things with Machine Learning

- Often in machine learning we want to know how similar two things are
- Two main uses for comparisons
 - Verification
 - Identification
- The face recognition examples from our look at PCA and LDA are good examples
 - Are these two people the same?

Verification

- Verification, seeks to answer the question "are these two things the same?"
 - Example: SmartGate at Australian Airports
 - You claim an identity via your passport
 - The system then attempts to verify that it's you
 - Usual approach
 - Compute distance between claimed identity and observed identity
 - Apply a threshold to decide if samples are the same

Identification

- Identification, seeks to answer the question "which thing is this?"
 - Based on having a gallery of previously seen "things", and comparing the new "thing" to all these other "things"
 - Typically returns a ranked list, i.e. the N most similar "things"
- Usual approach
 - Compute distance between new "thing" and all other previously seen "things"
 - Return a ranked list based on distance

A Simple Approach

- Telling if two things are the same can be viewed as a classification task
 - Requires us to know all classes in advance
 - Then we train a classifier to split them
 - This is what we've done for face rec with PCA and/or LDA and a CKNN
- However
 - What happens when a new class of things appears?
 - Open world scenario: we don't know what all the "things" are when we train the network
 - In this case, we weed to retrain the lot
 - That gets impractical quickly

Open World Approaches

- What we want to do is
 - Computes a subspace where
 - Things of the same class are close
 - Things of different classes are far away
 - To compare two things, we
 - Project them into the subspace
 - Compute the distance between them
- This method scales and allows us to add new "classes" after training
 - Assuming the data is of the same broad type/format, etc

Replicating this with DCNNs

We need to

- Train a model that can learn a subspace where we can compare things
- This should, given a pair of images extract a compact representation that
 - Has things of the same class close to each other
 - Has things of a different class far away from each other
 - The distance between should, ideally, reflect similarity

CAB420: Siamese Networks

COMPUTER VISION AND CATS

Siamese Networks

- We have two streams
 - Each is identical
 - Same structure, weights, etc.
 - For the same image, each stream will extract the same features
 - For images of the same class we'll get similar features
 - Hopefully

Siamese Networks

- The output of these streams is a compact representation
 - We'll call this an embedding
 - We can compare these embeddings to tell if things are the same, or different
 - May be compared by another small network

Siamese Networks

- The main stream of the network
 - Can be anything
 - VGG
 - ResNet
 - Something else
 - The embedding
 - Can be whatever size you want
 - Larger embeddings are potentially more descriptive

Comparing Things with Siamese Networks

NEURAL NETWORKS AND CATS — A MATCH MADE IN INTERNET HEAVEN

Comparing Embeddings - Naïve Solution

- We can view this as a binary classification task
 - A pair of images is either
 - Of the same type
 - Of a different type
 - Therefore
 - Binary Cross Entropy

$$L = -\frac{1}{N} \sum_{i=1}^{N} y_i \log(\bar{y}_i) + (1 - y_i) \log(1 - \bar{y}_i)$$

- y_i = true probability, 0 or 1
- \bar{y}_i = estimated probability
- N = batch size

Comparing Embeddings - Naïve Solution

- What this means is
 - We take our two embeddings
 - We input them into another network with a single output
 - An output of 1 indicates the same class
 - An output of 0 indicates different classes

Data

- We need pairs of images
- We can generate this from a labelled dataset
 - i.e. we have class identities
- Randomly select a sample
 - For a positive pair, randomly select another sample of the same class
 - For a negative pair, randomly select another sample of a different class

An Example

- See CAB420_Metric_Learning_Example_1_Siamese_Networks.ipynb
- Data
 - Fashion MNIST
 - Random pairs create, 50% positive (same class), 50% negative (different class)

Backbone Network

- The backbone is the network that processes the two input images prior to comparing them
 - VGG Style Network
 - 3 pairs of two 2D Convolution layers
- Final dense layer of size 32
 - The embedding
- We could use a pretrained network here and fine-tune

Model: "SiameseBranch"

Layer (type)	Output Shape	Param #
input 2 (InputLayer)		0
conv2d 24 (Conv2D)		80
conv2d 25 (Conv2D)	(None, 28, 28, 8)	584
batch normalization 13 (Batc		
activation 4 (Activation)		0
spatial dropout2d 12 (Spatia		0
max pooling2d 8 (MaxPooling2		0
conv2d 26 (Conv2D)	(None, 14, 14, 16)	1168
conv2d 27 (Conv2D)	(None, 14, 14, 16)	2320
batch normalization 14 (Batc	(None, 14, 14, 16)	64
activation 5 (Activation)	(None, 14, 14, 16)	0
spatial dropout2d 13 (Spatia	(None, 14, 14, 16)	0
max pooling2d 9 (MaxPooling2	(None, 7, 7, 16)	0
 conv2d 28 (Conv2D)	(None, 7, 7, 32)	4640
conv2d 29 (Conv2D)	(None, 7, 7, 32)	9248
batch normalization 15 (Batc	(None, 7, 7, 32)	128
activation 6 (Activation)	(None, 7, 7, 32)	0
spatial dropout2d 14 (Spatia	(None, 7, 7, 32)	0
flatten 4 (Flatten)	(None, 1568)	0
dense 11 (Dense)	(None, 256)	401664
batch normalization 16 (Batc	(None, 256)	1024
activation 7 (Activation)	(None, 256)	0
dense_12 (Dense)	(None, 32)	8224

Total params: 429,176 Trainable params: 428,552 Non-trainable params: 624

Siamese Network

- Pass two images through the same backbone
- Concatenate the output
- Pass the concatenated result through one or more addition dense layers
- Final layer of size 1:
 - True/False to indicate if images are the same or different classes

Some Predictions

- All show correct results
 - Values close to 1 for postive (same) pairs
 - Values close to 0 for negative (different) pairs

Some Predictions

- Same query image in all cases
 - Correct labels are predicted in all cases
 - Little, if any, meaning in the actual scores beyond same/different

What did the network learn?

- Visualise embeddings using t-SNE
- Pass entire test set through the backbone network
 - Extract embeddings
- Plot embeddings in 2D using t-SNE
 - Some classes are well separated
 - Others, not so much

Comparing with a regular classification network

- Take our same backbone, train for classification using categorical cross entropy
 - Extact embeddings (size 32) and plot with t-SNE
- Top: DCNN + Categorical Cross Entropy
- Bottom: Siamese
- Both networks perform simiarly
 - Slightly cleaner class boundaries with the Siamese network
 - To be expected, both networks have the same structure and a very similar loss

CAB420: A Better Loss (Contrastive Loss)

POOR PERFORMANCE MAKES ME GRUMPY

What's Wrong with Binary Cross Entropy?

- With our first approach we can determine if two items are the same or not by applying a threshold
- But...
 - The loss (BCE) does not force similar images to have similar features
 - We rely on another network to do this
 - This limits our ability to "rank" things

Contrastive Loss

- What we'd like is to try to replicate LDA
 - Have examples of the same class close to each other
 - Have examples of different classes far from each other
- Contrastive Loss

$$L = \frac{1}{N} \sum_{i=1}^{N} y_i d_i + (1 - y_i) \max(margin - d_i, 0)$$
$$d_i = |\bar{y}_1 - \bar{y}_2|_2$$

- note that we can use a different distance metric here, such as cosine or L1
- \circ y_i is the pair label; 1 indicates the pair is the same class; 0 indicates they are different
- Contrastive loss aims to separate positive and negative pairs of embeddings by a margin

Contrastive Loss Network

- What this means is
 - We take our two embeddings
 - We compute the loss directly on them
 - No subnetwork needed

Contrastive Loss Margin

- What should it be?
 - Depends on the range of the magnitude of the embedding
 - Bigger embedding, potentially bigger margin
 - Could change it dynamically
 - As the network learns, make it bigger
 - Or, normalise the embedding
 - Embeddings now have a constant magnitude, regardless of size
 - Can then set the margin to 1 and regardless of embedding size, this will work
 - We'll do this

An Example

- See CAB420_Metric_Learning_Example_2_Contrastive_Loss.ipynb
- Data
 - Same as Example 1

The Network

- Very similar to Example 1
 - Same backbone
 - No feature concatenation and dense layer(s)
 - Loss is computed directly on the two embeddings from the backbone
 - Simpler network on the whole

Some Predictions

- Items that are the same (label 1) should have a small distance
 - Similar items have distances less than 0.5
 - Dissimilar items have distances greater than 0.5

Distribution of Distances

- This plot shows
 - A histogram of distances for matched pairs
 - A histogram of distances for mismatched pairs
- We have trained the network to have items of the same class closer together in feature space
 - This has, mostly, been achieved
 - Some overlap in distributions
 - Would lead to errors when making decisions

Embedding Space

- t-SNE plots of the learned embedding
 - Top: Binary Cross Entropy
 - Bottom: Contrastive loss
- Contrastive loss leads to much clearer class boundaries
 - Still some confusion
 - Some classes are broken into multiple clusters
 - Possibly capturing different semantic details
 - Different types of shoes perhaps?

CAB420: Because Two's Not Enough

TRIPLET NETWORKS

Triplets

- Three images
 - Anchor
 - Positive
 - Negative
- Two pairs
 - Positive Pair
 - Negative Pair
- Pull the positive pair embeddings close
- Push the negative pair embeddings far away

Triplet Loss

$$L = \max(d(a, p) - d(a, n) + margin, 0)$$

- d(a, p), distance between anchor and positive
- d(a, n), distance between anchor and negative
- As usual we can use whatever distance function we like

The margin

- Serves much the same role as it does in the contrastive loss
- Again, if we normalise vectors we can fix this at 1

An Example

- See CAB420_Metric_Learning_Example_3_Triplet_Loss.ipynb
- Data
 - Same as first two example, except we now have triplets
 - Each sample has
 - A random **anchor** image
 - A random **positive** image, the same class as the anchor
 - A random **negative** image, of a different class to the anchor

The Network

- Same backbone as Examples 1 and 2
- Three inputs
- Triplet loss
 - As per contrastive loss, no additional layers beyond the backbone
 - Loss computed directly on the embeddings

Some Predictions

- Visualising results for triplets
 - Negative images much further from the anchor than positive images

Distribution of Distances

- This plot shows
 - A histogram of distances for matched pairs
 - A histogram of distances for mismatched pairs
- Positive and Negative distributions well seaprated
 - Though with some overlap
- Negative distribution has a greater spread

Comparing Distributions

- Top: Constrastive Loss
- Bottom: Triplet Loss
- Triplet loss leads to clearer separation
 - Mean of negative pair distances further from the mean of positive pair distances
 - Negative pair spread larger in both cases

Embedding Space

- t-SNE plots of the learned embedding
 - Top: Contrastive loss
 - Bottom: Triplet loss
- Similar embedding spaces
 - Slighlty better class separation for triplet loss

CAB420: Embedding Size

AND WHY 32 MAY NOT BE THE BEST CHOICE

- In all examples we have used an embedding size of 32
- What happens when this changes? We'll try
 - ° 2
 - 4
 - · 8
 - 32
 - 128
- All using triplet loss, and the same backbone with Fashion MNIST
 - See CAB420_Metric_Learning_Additional_Example_Embedding_Size.ipynb for code

- Smaller embeddings perform worse
 - 2 and 4 are noticeably worse than others
- Continued improvement as embedding size increases
 - Improvement slows as embedding gets larger
- Improvement gains for larger embeddings limited by
 - Backbone, we have the same backbone for all networks, and this can only capture so much detail
 - Data, we have 10 classes. Do we need 128 dimensions to separate these?
- Embedding size should be considered for each problem

Siamese Network Applications

WHAT DO I ACTUALLY DO WITH THIS?

Applications of Siamese Networks

Biometric systems

- Solve the problem of "are these two people the same"
- Compare sets of embeddings to determine if a person is the same

Content Based Retrieval

- Find content like a provided sample, i.e. finding similar images
- Compare the embedding for a given sample to a database of other content, returning the most relevant
 - Can order results by distance to return the most relevant results first

Why Siamese Networks?

- Extend better to unseen classes
- Consider a biometric system. We seek to enrol a new person:
 - For a Siamese network, we
 - Compute an embedding for their enrollment data
 - Add this to the existing database
 - For a classifiation DNN, where the network is trained to classify the identify, we
 - Modify the network to contain an additional output class
 - Re-train (possibly just fine-tune) the network

Summary Time

CATS, NARWHALS, AND LOSS FUNCTIONS

Comparing things with DCNNs

- We can replicate the idea of LDA with a DCNN
 - Supervised data required
 - No ability to map from learned feature back to the input space
- Use a DCNN as a feature extractor
 - Requires us to formulate a loss function to encourage
 - Samples from the same class to be close together
 - Samples from different classes to be far apart
- A naïve approach of binary cross entropy can do a fair job of verification, but
 - Does not provide great embeddings;
 - Won't provide a good ranking of similarity.

Comparing things with DCNNs

- Contrastive loss considers pairs of images
 - Tries to force similar pairs to be closer together than negative pairs by a margin
- Triplet loss uses three images and forms two pairs
 - Tries to make the positive pair closer together than the negative pair by a margin
- For both, we can use normalisation to simplify setting the margin

Comparing things with DCNNs

- What we ultimately compare is a learned embedding
 - Compact representation of the input feature
- We can control the size of the embedding
 - Hyper-parameter chosen at design time
 - Bigger embedding means a richer description
 - May take longer to train
 - May have severe impacts on run-time for some tasks
 - More complex problems (larger number of classes, greater variation) will require a larger embedding