

SEQUENCE LISTING

COPY OF PAPERS
ORIGINALLY FILED

<110> MAXYGEN APS

<120> N-TERMINALLY EXTENDED POLYPEPTIDES

<130> 0217us210

<170> PatentIn Ver. 2.1

<210> 1

<211> 497

<212> PRT

<213> Homo sapiens

<220>

<221> MOD_RES

<222> (495)

<223> R or H

<400> 1

Ala Arg Pro Cys Ile Pro Lys Ser Phe Gly Tyr Ser Ser Val Val Cys
1 5 10 15Val Cys Asn Ala Thr Tyr Cys Asp Ser Phe Asp Pro Pro Thr Phe Pro
20 25 30Ala Leu Gly Thr Phe Ser Arg Tyr Glu Ser Thr Arg Ser Gly Arg Arg
35 40 45Met Glu Leu Ser Met Gly Pro Ile Gln Ala Asn His Thr Gly Thr Gly
50 55 60Leu Leu Leu Thr Leu Gln Pro Glu Gln Lys Phe Gln Lys Val Lys Gly
65 70 75 80Phe Gly Gly Ala Met Thr Asp Ala Ala Leu Asn Ile Leu Ala Leu
85 90 95Ser Pro Pro Ala Gln Asn Leu Leu Lys Ser Tyr Phe Ser Glu Glu
100 105 110Gly Ile Gly Tyr Asn Ile Ile Arg Val Pro Met Ala Ser Cys Asp Phe
115 120 125Ser Ile Arg Thr Tyr Thr Tyr Ala Asp Thr Pro Asp Asp Phe Gln Leu
130 135 140His Asn Phe Ser Leu Pro Glu Glu Asp Thr Lys Leu Lys Ile Pro Leu
145 150 155 160Ile His Arg Ala Leu Gln Leu Ala Gln Arg Pro Val Ser Leu Leu Ala
165 170 175Ser Pro Trp Thr Ser Pro Thr Trp Leu Lys Thr Asn Gly Ala Val Asn
180 185 190

Gly Lys Gly Ser Leu Lys Gly Gln Pro Gly Asp Ile Tyr His Gln Thr
195 200 205

Trp Ala Arg Tyr Phe Val Lys Phe Leu Asp Ala Tyr Ala Glu His Lys
210 215 220

Leu Gln Phe Trp Ala Val Thr Ala Glu Asn Glu Pro Ser Ala Gly Leu
225 230 235 240

Leu Ser Gly Tyr Pro Phe Gln Cys Leu Gly Phe Thr Pro Glu His Gln
245 250 255

Arg Asp Phe Ile Ala Arg Asp Leu Gly Pro Thr Leu Ala Asn Ser Thr
260 265 270

His His Asn Val Arg Leu Leu Met Leu Asp Asp Gln Arg Leu Leu Leu
275 280 285

Pro His Trp Ala Lys Val Val Leu Thr Asp Pro Glu Ala Ala Lys Tyr
290 295 300

Val His Gly Ile Ala Val His Trp Tyr Leu Asp Phe Leu Ala Pro Ala
305 310 315 320

Lys Ala Thr Leu Gly Glu Thr His Arg Leu Phe Pro Asn Thr Met Leu
325 330 335

Phe Ala Ser Glu Ala Cys Val Gly Ser Lys Phe Trp Glu Gln Ser Val
340 345 350

Arg Leu Gly Ser Trp Asp Arg Gly Met Gln Tyr Ser His Ser Ile Ile
355 360 365

Thr Asn Leu Leu Tyr His Val Val Gly Trp Thr Asp Trp Asn Leu Ala
370 375 380

Leu Asn Pro Glu Gly Pro Asn Trp Val Arg Asn Phe Val Asp Ser
385 390 395 400

Pro Ile Ile Val Asp Ile Thr Lys Asp Thr Phe Tyr Lys Gln Pro Met
405 410 415

Phe Tyr His Leu Gly His Phe Ser Lys Phe Ile Pro Glu Gly Ser Gln
420 425 430

Arg Val Gly Leu Val Ala Ser Gln Lys Asn Asp Leu Asp Ala Val Ala
435 440 445

Leu Met His Pro Asp Gly Ser Ala Val Val Val Val Leu Asn Arg Ser
450 455 460

Ser Lys Asp Val Pro Leu Thr Ile Lys Asp Pro Ala Val Gly Phe Leu
465 470 475 480

Glu Thr Ile Ser Pro Gly Tyr Ser Ile His Thr Tyr Leu Trp Xaa Arg
485 490 495

Gln

<210> 2
<211> 1551
<212> DNA
<213> Homo sapiens

<400> 2
atggctggca gcctcacagg attgcttcta cttcaggcag tgcgtggc atcaggtgcc 60
cgccccctgca tccctaaaag ctccggctac agtcgtgg tgcgtgtcg caatgccaca 120
tactgtgact ccttgaccc cccgacacctt cctgccctt gtacccatcg ccgctatgag 180
agtacacgcga tggggcgcacg gatggagctg agtatgggc ccatccaggc taatcacacg 240
ggcacaggcc tcgtactgac ctcgcagcca gaacagaagt tccagaaagt gaaggattt 300
ggagggggcca tgacagatgc tgctgtctc aacatcccttgc ccctgtacc ccctgccc 360
aatttgcata ttaaatcgta cttctctgaa gaaggaaatcg gatataacat catccgggt 420
cccatggcca gctgtgactt ctccatccgc accttacactt atgcagacac ccctgtatgat 480
ttccagttgc acaacttcag cttcccgagag gaagataccatc agctcaatgat accccctgtt 540
caccggacac tgcagttggc ccagcgtccc gtttcactcc ttggcagccc ctggacatca 600
cccaacttggc tcaagaccaa tggagcggtt aatgggaagg ggttactcaa gggacagccc 660
ggagacatcatc accaccagatc ctggggccaga tactttgtga agttccttgc tgccatgt 720
gagcacaatgt tacagttctg ggcagtgaca gctgaaaatg agccttctgc tgggctgtt 780
agtggatacc ctttccatgt cttggcttc acccccttgc acatcgaga cttaaattgcc 840
cgtgacccatg gtccttccatc cggccaaatgt acttacccaca atgtccgcctt actcatgt 900
gatgaccaac gcttgcgtgtt gcccactgg gcaaagggtt tgctgacaga cccagaagca 960
gctaaatatgt ttcatggcat tgctgtacat tggtacccatgg actttcttgc tccagccaaa 1020
gccacccttag gggagacaca cccgccttgc cccaaacacca tgctcttgc ctcagaggcc 1080
tgtgtgggtt ccaagttctg ggagcagatg gtgcggctt gcttgcgttgc tgagggatg 1140
cagtacagcc acagcatcatc cacgaacccctc ctgttccatgc tggtcggttgc gaccgactgg 1200
aaccttgcct tgaaccccgaa aggaggacc aattgggtgc gtaactttgtt cgacagtc 1260
atcatttgcgtt acatccatcggc ggacacgtttt tacaaacacgc ccatgttcta ccaccccttgc 1320
catttcacca agttcattcc tgagggttgc cagagatgg ggttgcgttgc cagtcagaag 1380
aacgacccatggc acgcaatggc attgttgcat cccgatggctt ctgttgcgttgc ggttgcgttgc 1440
aaccgcgttcc ttaaggatgt gcttgcgttgc atcaaggatc ctgttgcgttgc gtttgcgttgc 1500
acaatctcactc ctggctactc cattcacacc tacctgtggc gtcgcactgt a 1551

<210> 3
<211> 6186
<212> DNA
<213> Artificial sequence
<220>
<221> exon
<222> (1225)..(1572)
<223> Coding sequence for human FSH-alpha
<400> 3
gacggatcgg gagatctccc gatccctat ggtcgactct cagttacaatc tgctctgtatg 60
ccgcatagtt aagccagttt ctgttccctt cttgtgtttt ggaggtcgctt gagtagtgcg 120
cgagaaaaat ttaagctaca acaaggcaag gcttgcggca caattgcgtt aagaatctgc 180
tttagggtagt ggcgttttgcg ctgttgcgtt atgtacgggc cagatatacg cggttgcattt 240
gattatttgcgtt tagttatcaa tagtaatcaa ttacgggttc attagttcatt agcccatata 300
tggagttccg cgttacataa cttacggtaa atggccgc tggctgaccg cccaaacgacc 360

cccccatt gacgtcaata atgacgtatg ttccccatagt aacgccaata gggactttcc	420
attgacgtca atgggtggac tatttacggt aaactgccc cttggcagta catcaagtgt	480
atcatatgcc aagtacgccc cctattgacg tcaatgacgg taaatggccc gcctggcatt	540
atgcccagta catgacctta tgggactttc ctacttggca gtacatctac gtattagtca	600
tcgctattac catggtgatg cggtttggc agtacatcaa tgggcgtgga tagcggtttg	660
actcacgggg atttccaagt ctccacccca ttgacgtcaa tgggagtttgcattttggcacc	720
aaaatcaacg ggactttcca aatgtcgta acaactccgc cccattgacg caaatggcg	780
gtaggcgtgt acgggtggag gtctatataa gcagagctct ctggctaact agagaaccca	840
ctgcttactg gcttatcgaa attaatacga ctcactatag ggagacccaa gctggctagc	900
ttattgcggt agtttatcac agttaaatttgc ctaacgcagt cagtgcttct gacacaacag	960
tctcgaacct aagctgcagt gactctctta aggtagcctt gcagaagttg gtcgtgaggc	1020
actgggcagg taagtatcaa ggttacaaga caggttaag gagaccaata gaaactggc	1080
ttgtcgagac agagaagact cttgcgtttc tgataggcac ctattggct tactgacatc	1140
cactttgcct ttctctccac aggtgtccac tcccagttca attacagctc taaaagctt	1200
ggtaccgagc tcggatccgc cacc atg gac tac tac cgc aag tac gcc gcc	1251
Met Asp Tyr Tyr Arg Lys Tyr Ala Ala	
1 5	
atc ttc ctg gtg acc ctg agc gtg ttc ctg cac gtg ctg cac agc gcc	1299
Ile Phe Leu Val Thr Leu Ser Val Phe Leu His Val Leu His Ser Ala	
10 15 20 25	
ccc gac gtg cag gac tgc ccc gag tgc acc ctg cag gag aac ccc ttc	1347
Pro Asp Val Gln Asp Cys Pro Glu Cys Thr Leu Gln Glu Asn Pro Phe	
30 35 40	
ttc agc cag ccc ggc gcc ccc atc ctg cag tgc atg ggc tgc tgc ttc	1395
Phe Ser Gln Pro Gly Ala Pro Ile Leu Gln Cys Met Gly Cys Cys Phe	
45 50 55	
agc cgc gcc tac ccc acc ccc ctg cgc agc aag aag acc atg ctg gtg	1443
Ser Arg Ala Tyr Pro Thr Pro Leu Arg Ser Lys Lys Thr Met Leu Val	
60 65 70	
cag aag aac gtg acc agc gag acc tgc tgc gtg gcc aag agc tac	1491
Gln Lys Asn Val Thr Ser Glu Ser Thr Cys Cys Val Ala Lys Ser Tyr	
75 80 85	
aac cgc gtg acc gtg atg ggc ggc ttc aag gtg gag aac cac acc gcc	1539
Asn Arg Val Thr Val Met Gly Gly Phe Lys Val Glu Asn His Thr Ala	
90 95 100 105	

tgc cac tgc agc acc tgc tac tac cac aag agc taatctagag ggcccggtta	1592
Cys His Cys Ser Thr Cys Tyr Tyr His Lys Ser	
110	115
aacccgctga tcagcctcga ctgtgccttc tagttgccag ccatctgttgc ttggccctc	1652
ccccgtgcct tccttgaccc tggaagggtgc cactcccact gtccttcct aataaaatga	1712
ggaaattgca tcgcattgtc tgagtaggtg tcattctatt ctggggggtg ggggtgggca	1772
ggacagcaag ggggaggatt gggaaagacaa tagcaggcat gctggggatg cggtgggctc	1832
tatggcttct gaggcgaaaa gaaccagctg gggctctagg gggtatcccc acgcgcctg	1892
tagcggcgca ttaagcgcgg cgggtgtggt ggttacgcgc aegtgcaccc ctacacttgc	1952
cagcgccta gcgcgcctc cttdcgctt cttdccctcc ttctcgcca cgttcgccgg	2012
cttccccgt caagctctaa atcggggcat cccttaggg ttccgattta gtgcattacg	2072
gcacctcgac cccaaaaaaac ttgatttaggg tggatggtca cgtagtggc catgcgcctg	2132
atagacggtt ttccgcctt tgacggttgg gtcacgttc tttaatagtg gactcttgg	2192
ccaaactgga acaacactca accctatctc ggtctattct ttgatttt aaggatttt	2252
ggggatttcg gcctatttgt taaaaaatga gctgattaa caaaaattta acgcgaatta	2312
attctgttgg aatgtgttca gttagggtgt gaaaagtccc caggtcccc aggcaaggcag	2372
aagtatgcaa agcatgcattc tcaatttagtc agcaaccagg tgtggaaagt cccaggctc	2432
cccaaggcaga agaagtatgc aaagcatgca tctcaattag tcagcaacca tagtcccggc	2492
cctaactccg cccatccgc ccctaactcc gcccagtcc gcccattctc cgccccatgg	2552
ctgactaatt ttttttattt atgcagaggc cgaggccgca tctgcctctg agctattcca	2612
gaagtagtga ggaggcttt ttggaggccct aggctttgc aaaaagctcc cgggagcttgc	2672
tatatccatt ttccggatctg atcagcacgt gatgaaaaag cctgaactca ccgcacgtc	2732
tgtcgagaag ttctgtatcg aaaagttcg a cagcgtctcc gacctgatgc agctctcgga	2792
gggcgaagaa tctcgtgctt tcagttcg a tggatgggg cgtggatatg tcctgcgggt	2852
aaatagctgc gccgatgggt tctacaaaga tcgttatgtt tatcggact ttgcattcg	2912
cgcgctcccg attccgaaag tgcttgacat tgggaaattc agcgagagcc tgacctattg	2972
catctccgc cgtgcacagg gtgtcacgtt gcaagacctg cctgaaaccg aactgcccgc	3032
tgttctgcag ccggcgcgg aggccatgga tgcgatcgct gcccgcgtc ttagccagac	3092
gagcgggttc ggccattcg gaccgcaagg aatcggtcaa tacactacat ggcgtgattt	3152
catatgcgcg attgctgatc cccatgtgtt tcactggcaa actgtgatgg acgacaccgt	3212

cagtgcgtcc gtcgcgcagg ctctcgatga gctgatgctt tgggccgagg actgccccga 3272
agtccggcac ctctgcacg cggatttcgg ctccaacaat gtccgtacgg acaatggccg 3332
cataacagcg gtcattgact ggagcgaggc gatgttcggg gattccaaat acgaggtcgc 3392
caacatcttc ttctggaggc cgtggttggc ttgtatggag cagcagacgc gctacttcga 3452
gcggaggcat ccggagcttg caggatcgcc gcggctccgg gcgtatatgc tccgcattgg 3512
tcttgaccaa ctctatcaga gcttgggttga cggcaatttc gatgtgcag cttgggcgca 3572
gggtcgatgc gacgcaatcg tccgatccgg agccggact gtccggcgta cacaatcgc 3632
ccgcagaagc gcggccgtct ggaccgatgg ctgttagaa gtactcgccg atagtggaaa 3692
ccgacgcccc agcactcgtc cgagggcaaa ggaatagcac gtgctacgag atttcgattc 3752
caccggccccc ttctatgaaa ggttggcctt cggaatcggtt ttccggacg ccggctggat 3812
gatcctccag cgccgggatc tcatgcttga gttctcgcc caccccaact tgtttattgc 3872
agcttataat ggttacaaat aaagcaatag catcacaaat ttcacaaata aagcattttt 3932
ttcactgcat tctagttgtg gtttgcctaa actcatcaat gtatcttac atgtctgtat 3992
accgtcgacc tctagctaga gcttggcgta atcatggtca tagtgtttc ctgtgtgaaa 4052
ttgttatccg ctcacaattc cacacaacat acgagccgga agcataaagt gtaaaggctg 4112
gggtgcctaa tgagtgagct aactcacatt aattgcgttg cgctcaactgc ccgccttcca 4172
gtcgggaaac ctgtcggtcc agctgcatta atgaatcgcc caacgcgcgg ggagaggcgg 4232
tttgcgtatt gggcgcttcc cgcttcctc gtcactgac tcgctcgct cggtcgttcc 4292
gctgcggcga gcggtatcag ctcactaaa ggccgtataa cggttatcca cagaatcagg 4352
ggataacgca gaaaaagaaca tgtgagcaaa aggccagcaa aaggccagga accgtaaaaaa 4412
ggccgcgttg ctggcgcccc tccataggtt ccgcggccctt gacgagcatc acaaaaatcg 4472
acgctcaagt cagaggtggc gaaacccgac aggactataa agataccagg cgtttcccc 4532
tggaaagctcc ctctgcgtcc tccctgttcc gaccctgccc cttacggat acctgtccgc 4592
ctttctccct tcgggaagcg tggcgcttcc tcaatgctca cgctgttaggt atctcagttc 4652
ggtgttaggtc gttcgctcca agctggctg tgtgcaccaa ccccccgttc agcccgaccg 4712
ctgcgcctta tccggtaact atcgtcttga gtccaacccg gtaagacacg acttacgccc 4772
actggcagca gccactggta acaggattag cagagcgagg tatgtaggcg gtgctacaga 4832
gttcttgaag tggtggccta actacggcta cactagaagg acagtatttg gatatctgcgc 4892

tctgctgaag ccagttacct tcggaaaaag agttggtagc tcttgatccg gcaaacaac	4952
caccgcgttgt agcggtggtt ttttggttt caagcagcag attacgcgca gaaaaaaagg	5012
atctcaagaa gatcctttga tctttctac ggggtctgac gctcagtgga acgaaaactc	5072
acgttaaggg atttggtca tgagattatc aaaaaggatc ttcacctaga tcctttaaa	5132
ttaaaaatga agtttaaat caatctaaag tatatatgag taaacttggt ctgacagttt	5192
ccaatgctta atcagtgagg cacctatctc akgatctgt ctatccgtt catccatagt	5252
tgccctgactc cccgtcgtgt agataactac gatacggag ggcttaccat ctggccccag	5312
tgctgcaatg ataccgcgag acccacgctc accggctcca gatttatcg caataaacca	5372
gccagccgga agggccgagc gcagaagtgg tcctgcaact ttatccgcct ccatccagtc	5432
tattaattgt tgccggaaag ctagagtaag tagttcgcca gttaatagtt tgcgcaacgt	5492
tgttgcattt gctacaggca tcgtgggtgc acgctcgctg tttggatgg cttcattcag	5552
ctccgggtcc caacgatcaa ggcgagttac atgatcccc atgttgcgaa aaaaagcggt	5612
tagctccccc ggtcctccga tcgttgcag aagtaagttt gcccgcgtgt tattactcat	5672
ggttatggca gcactgcata attctttac tgcgcgcata tccgtaagat gctttctgt	5732
gactggtgag tactcaacca agtctttctg agaatagtgt atgcggcgcac cgagttgc	5792
ttgcccggcg tcaatacggg ataataccgc gccacatagc agaactttaa aagtgc	5852
cattggaaaa cgttcccg ggcgaaaact ctcaaggatc ttaccgcgt tgagatccag	5912
ttcgatgtaa cccactcggt cacccaaactg atcttcagca tctttactt tcaccagcgt	5972
ttctgggtga gcaaaaacag gaaggcaaaa tgccgcggaa aagggataaa gggcgacacg	6032
gaaatgttga atactcatac tcttccttt tcaatattat tgaagcattt atcagggttta	6092
ttgtctcatg agcggataca tatttgaatg tatttagaaa aataaacaaa taggggttcc	6152
gcgcacattt ccccgaaaag tgccacactga cgtc	6186

<210> 4	
<211> 5651	
<212> DNA	
<213> Artificial sequence	
<220>	
<221> exon	
<222> (1231)..(1617)	
<223> Coding sequence for human FSH-beta	
<400> 4	
gacggatcggtt gagatctccc gatccctat ggtcgactct cagtcataatc tgctctgtatg	60
ccgcataatggccatgtat ctgcgtccctg cttgtgtgtt ggaggtcgct gagtagtgcg	120

cgagcaaaat ttaagctaca acaaggcaag gcttgcaccga caattgcacg aagaatctgc	180
ttagggtagt gcgtttgcg ctgcttcgcg atgtacgggc cagatatacg cggtgacatt	240
gattattgac tagttattaa tagtaatcaa ttacgggtc attagttcat agccatata	300
tggagttccg cgttacataa cttacggtaa atggccgcg tggctgaccg cccaacgacc	360
cccgccccatt gacgtcaata atgacgtatg ttcccatagt aacgccaata gggactttcc	420
attgaacgtca atgggtggac tatttacggt aaactgccc a cttggcagta catcaagtgt	480
atcatatgcc aagtacgccc cctattgacg tcaatgacgg taaaatggccc gcctggcatt	540
atgcccagta catgaccta tgggacttgc ctacttggca gtacatctac gtattagtca	600
tgcgtattac catggtgatg cggtttggc agtacatcaa tggcgtgga tagcggttg	660
actcacgggg atttccaagt ctccacccca ttgacgtcaa tggagtttg ttttggcacc	720
aaaatcaacg ggactttcca aaatgtcgta acaactccgc cccattgacg caaatggcg	780
gtaggcgtgt acgggtggag gtctatataa gcagagctct ctggcttaact agagaaccca	840
ctgcttaactg gcttatcgaa attaatacga ctcactatag ggagacccaa gctggctagc	900
ttattgcgtt agtttatcac agttaaattt ctaacgcagt cagtgcctt gacacaacag	960
tctcgaactt aagctgcagt gactcttta aggttagcctt gcagaagttg gtcgtgaggc	1020
actggcagg taagtatcaa gggtacaaga caggttaag gagaccaata gaaactggc	1080
ttgtcgagac agagaagact cttgcgttgc tgataggcac ctattggct tactgacatc	1140
cactttgcct ttctctccac aggtgtccac tcccagttca attacagctc taaaaagctt	1200
ggtaccgagc tcggatctat cgatgccacc atg gag acc ctg cag ttc ttc ttc Met Glu Thr Leu Gln Phe Phe Phe	1254
1 5	
ctg ttc tgc tgc tgg aag gcc atc tgc tgc aac agc tgc gag ctg acc Leu Phe Cys Cys Trp Lys Ala Ile Cys Cys Asn Ser Cys Glu Leu Thr	1302
10 15 20	
aac atc acc atc gcc atc gag aag gag gag tgc cgc ttc tgc atc agc Asn Ile Thr Ile Ala Ile Glu Lys Glu Glu Cys Arg Phe Cys Ile Ser	1350
25 30 35 40	
atc aac acc acc tgg tgc gcc ggc tac tgc tac acc cgc gac ctg gtg Ile Asn Thr Thr Trp Cys Ala Gly Tyr Cys Tyr Thr Arg Asp Leu Val	1398
45 50 55	
tac aag gac ccc gcc cgc ccc aag atc cag aag acc tgc acc ttc aag Tyr Lys Asp Pro Ala Arg Pro Lys Ile Gln Lys Thr Cys Thr Phe Lys	1446
60 65 70	

gag ctg gtg tac gag acg gtc cgg gtg ccc ggc tgc gcc cac cac gcc Glu Leu Val Tyr Glu Thr Val Arg Val Pro Gly Cys Ala His His Ala 75 80 85	1494
gac agc ctg tac acc tac ccc gtg gcc acc cag tgc cac tgc ggc aag Asp Ser Leu Tyr Thr Tyr Pro Val Ala Thr Gln Cys His Cys Gly Lys 90 95 100	1542
tgc gac agc gac acc gac tgc acc gtg cgc ggc ctg ggc ccc agc Cys Asp Ser Asp Ser Thr Asp Cys Thr Val Arg Gly Leu Gly Pro Ser 105 110 115 120	1590
tac tgc agc ttc ggc gag atg aag gag taactcgaga ctagagggcc Tyr Cys Ser Phe Gly Glu Met Lys Glu 125	1637
cgtttaaacc cgctgatcag cctcgactgt gccttctagt tgccagccat ctgttgttg ccccctcccc gtgccttcct tgaccctgga aggtgccact cccactgtcc tttcctaata aaatgaggaa attgcattcgc attgtctgag taggtgtcat tctattctgg ggggtggggt ggggcaggac agcaaggggg aggattggga agacaatagc aggcattgtg gggatgcgt gggctctatg gcttctgagg cggaaagaac cagctgggc tctaggggt atccccacgc gccctgttagc ggcgcattaa gcgcggcggg tgtgggtt acgcgcagcg tgaccgctac acttgcacgc gccttagcgc ccgccttcc cgccttcttc cttcccttc tcgcccacgt cgccggctt cccctcaag ctctaaatcg gggcatccct ttagggttcc gatttatgc tttacggcac ctgcacccca aaaaacttga tttagggtat gggtcacgtt gtgggcccatt gccctgatag acggtttttc gccctttgac gttggagtcc acgttctta atagtggact cttggccaa actggAACAA cactcaaccc tatctcggtc tattttttt atttataagg gatttgggg atttcggcct attggtaaaa aaatgagctg atttaacaaa aatttaacgc gaatattttc tgtggaatgt gtgtcagtta ggggtgtggaa agtccccagg ctccccaggc aggcagaagt atgcaaaagca tgcatttcaa ttatcgatca accaggtgtg gaaagtcccc aggctccccca gcaggcagaa gtatgcattttt catgcatttc aatttagtcg caaccatagt cccgccccca actccggcca tcccccccc aactccggcc agtccggcc attctccggcc ccatggctga ctaatttttt ttatctatgc agaggccgag gcccctctg cctctgatct attccagaag tagtgaggag gcttttttgg aggccctaggc ttttgcaaaa agtccccgg agcttgtata tccatccatcg gatctgatca gcacgtgtt acaattaatc atcggcatag tatatccggca tagtataata cgacaagggtg aggaactaaa ccatggccaa gttgaccagt gccgttccgg tgctcaccgc gcgcgcacgtc gcccggagccg tcgagttctg gaccgaccgg	1697 1757 1817 1877 1937 1997 2057 2117 2177 2237 2297 2357 2417 2477 2537 2597 2657 2717 2777 2837 2897

ctcgggttct cccgggactt cgtggaggac gacttcgccc gtgtggtccg ggacgacgtg 2957
accctgttca tcagcgccgt ccaggaccag gtgggccgg acaacaccct ggccctgggtg 3017
tgggtgcgcg gcctggacga gctgtacgcc gagtggtcgg aggtcgtgtc cacgaacttc 3077
cgggacgcct ccgggccccgc catgaccgag atcggcgagc agccgtgggg gcgggagttc 3137
gcacctgcgcg accccggccgg caactgcgtg cacttcgtgg ccgaggagca ggactgacac 3197
gtgctacgag atttcgatcc caccgcccccc ttctatgaaa ggttgggctt cggaatcggt 3257
ttccgggacg ccggctggat gatcctccag cgccgggatc tcatgctgga gttcttcgccc 3317
caccccaact tgtttattgc agcttataat ggttacaaat aaagcaatag catcacaaat 3377
ttcacaaata aagcattttt ttcactgcat tctagttgtg gtttgcctaa actcatcaat 3437
gtatcttatac atgtctgtat accgtcgacc tctagctaga gcttggcgta atcatggtca 3497
tagctgtttc ctgtgtgaaa ttgttatccg ctcacaattc cacacaacat acgagccgga 3557
agcataaaagt gtaaaagcctg ggggtgcctaa tgagtgagct aactcacatt aattgcgttg 3617
cgctcaactgc ccgccttcca gtcgggaaac ctgtcgcc agctgcatta atgaatcgcc 3677
caacgcgcgg ggagaggcgg tttgcgtatt gggcgcttt ccgccttcgct gctcaactgac 3737
tcgctgcgtc cggtcggtcg gtcggcgca gcggtatcag ctcactcaaa ggcggtaata 3797
cggttatcca cagaatcagg ggataacgca ggaaagaaca tgtgagcaaa aggccagcaa 3857
aaggccagga accgtaaaaaa ggccgcgttg ctggcggttt tccataggct ccgcggccct 3917
gacgagcatc acaaaaatcg acgctcaagt cagaggtggc gaaacccgac aggactataa 3977
agataccagg cgttcccccc tggaaagctcc ctcgtcggtc ctctgttcc gaccctgcgg 4037
cttaccggat acctgtccgc ctttctccct tcgggaagcg tggcgcttc tcaatgctca 4097
cgctgttaggt atctcagttc ggtgttaggtc gttcgctcca agctggctg tgtgcacgaa 4157
ccccccgttc agcccgaccg ctgcgcctta tccggtaact atcgtcttga gtccaaacccg 4217
gtaagacacg acttatcgcc actggcagca gccactggta acaggattag cagagcgagg 4277
tatgttaggcg gtgtacaga gttcttgaag tgggtggcta actacggcta cactagaagg 4337
acagtatttg gtatctgcgc tctgctgaag ccagttacct tcggaaaaag agttggtagc 4397
tcttgatccg gcaaaacaaac caccgctggt agcgggttgt tttttgttttcaagcagcag 4457
attacgcgcga gaaaaaaaaagg atctcaagaa gatccttga tctttctac ggggtctgac 4517
gctcagtgga acgaaaactc acgttaaggg attttggtca tgagattatc aaaaaggatc 4577

ttcacccataga	tcctttaaaa	ttaaaaatga	agttttaaat	caatctaaag	tatataatgag	4637
taaacatttgt	ctgacagttt	ccaatgttta	atcagtggagg	caccatctc	agcgatctgt	4697
ctatttcggt	catccatagt	tgccctgactc	cccgtcggt	agataactac	gatacgggag	4757
ggcttccat	ctggccccag	tgctgcaatg	ataccgcgag	acccacgctc	accggctcca	4817
gatttatcag	caataaacca	gccagccgga	agggccgagc	gcagaagtgg	tcctgcaact	4877
ttatccgcct	ccatccagtc	tattaattgt	tgccgggaag	ctagagtaag	tagttcgcca	4937
gttaatagtt	tgcgcaacgt	tgttgccatt	gctacaggca	tcgtgggtgc	acgctcgctg	4997
tttggatgg	cttcatttcag	ctccgggtcc	caacgatcaa	ggcgagttac	atgatcccc	5057
atgttgtgca	aaaaagcggt	tagtccttc	ggtcctccga	tcgttgtcag	aagtaagtgg	5117
gcccgagtgt	tatcactcat	ggttatggca	gcactgcata	attctcttac	tgtcatgcca	5177
tccgtaagat	gctttctgt	gactggtgag	tactcaacca	agtcattctg	agaatagtgt	5237
atgcggcgac	cgagttgctc	ttgccccggcg	tcaatacggg	ataataccgc	gccacatagc	5297
agaaccttaa	aagtgctcat	cattggaaaa	cgttcttcgg	ggcgaaaact	ctcaaggatc	5357
ttaccgctgt	tgagatccag	ttcgatgtaa	cccactcggt	cacccaactg	atcttcagca	5417
tcttttactt	tcaccagcgt	ttctgggtga	gcaaaaacag	gaaggcaaaa	tgccgaaaa	5477
aagggaaataa	gggcgacacg	gaaatgttga	ataactcatac	tcttcctttt	tcaatattat	5537
tgaaggcattt	atcagggtta	ttgtctcatg	agcggataca	tatttgaatg	tattttagaaa	5597
aataaacaaa	taqgggttcc	gccccacattt	ccccgaaaaag	tgccacactga	cgtc	5651

<210> 5
<211> 92
<212> PRT
<213> *Homo sapiens*
<400> 5

Ala Pro Asp Val Gln Asp Cys Pro Glu Cys Thr Leu Gln Glu Asn Pro
1 5 10 15

Phe Phe Ser Gln Pro Gly Ala Pro Ile Leu Gln Cys Met Gly Cys Cys
 20 25 30

Phe Ser Arg Ala Tyr Pro Thr Pro Leu Arg Ser Lys Lys Thr Met Leu
35 40 45

Val	Gln	Lys	Asn	Val	Thr	Ser	Glu	Ser	Thr	Cys	Cys	Val	Ala	Lys	Ser
50						55						60			

Tyr Asn Arg Val Thr Val Met Gly Gly Phe Lys Val Glu Asn His Thr
65 70 75 80

Ala Cys His Cys Ser Thr Cys Tyr Tyr His Lys Ser
85 90

<210> 6
<211> 111
<212> PRT
<213> Homo sapiens
<400> 6

Asn Ser Cys Glu Leu Thr Asn Ile Thr Ile Ala Ile Glu Lys Glu Glu
1 5 15

Cys Arg Phe Cys Ile Ser Ile Asn Thr Thr Trp Cys Ala Gly Tyr Cys
20 25 30

Tyr Thr Arg Asp Leu Val Tyr Lys Asp Pro Ala Arg Pro Lys Ile Gln
35 40 45

Lys Thr Cys Thr Phe Lys Glu Leu Val Tyr Glu Thr Val Arg Val Pro
50 55 60

Gly Cys Ala His His Ala Asp Ser Leu Tyr Thr Tyr Pro Val Ala Thr
65 70 80

Gln Cys His Cys Gly Lys Cys Asp Ser Asp Ser Thr Asp Cys Thr Val
85 90 95

Arg Gly Leu Gly Pro Ser Tyr Cys Ser Phe Gly Glu Met Lys Glu
100 105 110

<210> 7
<211> 6213
<212> DNA
<213> Artificial sequence
<220>
<221> exon
<222> (1225)..(1599)
<223> Coding sequence for modified FSH-alpha
<400> 7
gacggatcg gagatctccc gatcccstat ggtcgactct cagtacaatc tgctctgatg 60
ccgcatagtt aagccagtat ctgctccctg ctttgtgtt ggaggtcgct gagtagtgcg 120
cgagcaaaat ttaagctaca acaaggcaag gcttgaccga caattgcatg aagaatctgc 180
ttagggttag gcgtttgcg ctgcttcgcg atgtacgggc cagatatacg cgttgacatt 240
gattattgac tagttattaa tagtaatcaa ttacgggtc attagttcat agcccatata 300
tggagttccg cgttacataa cttacggtaa atggccgc tggctgaccg cccaacgacc 360
cccgccccatt gacgtcaata atgacgtatg ttcccatagt aacgccaata gggactttcc 420
attgacgtca atgggtggac tatttacggt aaactgccc a cttggcagta catcaagtgt 480

atcatatgcc aagtacgccc cctattgacg tcaatgacgg taaatggccc gcctggcatt	540
atgcccgta catgacccta tgggacttc ctactggca gtacatctac gtattagtc	600
tcgctattac catggtgatg cggtttggc agtacatcaa tggcgtgga tagcggttg	660
actcacgggg attccaagt ctccacccca ttgacgtcaa tggagtttgc acc	720
aaaatcaacg ggactttcca aaatgtcgta acaactccgc cccattgacg caaatggcg	780
gtaggcgtgt acgggtggag gtctatataa gcagagctct ctggcttaact agagaaccc	840
ctgcttactg gcttatcgaa attaatacga ctcactatacg gagacccaa gctggctagc	900
ttattgcgtt agtttatcac agttaaattt ctaacgcagt cagtgcctt gacacaacag	960
tctcgaacctt aagctgcagt gactctctta aggtgcctt gcagaagtttgcgtgaggc	1020
actggcagg taagtatcaa ggttacaaga caggttaag gagaccaata gaaactggc	1080
ttgtcgagac agagaagact cttgcgttgc tgataggcac ctattggct tactgacatc	1140
cactttgcct ttctctccac aggtgtccac tcccagttca attacagctc taaaaagctt	1200
ggtaccgagc tcggatccgc cacc atg gac tac tac cgc aag tac gcc gcc Met Asp Tyr Tyr Arg Lys Tyr Ala Ala	1251
1 5	
atc ttc ctg gtg acc ctg agc gtg ttc ctg cac gtg ctg cac agc gcc Ile Phe Leu Val Thr Leu Ser Val Phe Leu His Val Leu His Ser Ala	1299
10 15 20 25	
aac atc acc gtt aac atc acc gtg gcc ccc gac gtg cag gac tgc ccc Asn Ile Thr Val Asn Ile Thr Val Ala Pro Asp Val Gln Asp Cys Pro	1347
30 35 40	
gag tgc acc ctg cag gag aac ccc ttc ttc agc cag ccc ggc gcc ccc Glu Cys Thr Leu Gln Glu Asn Pro Phe Ser Gln Pro Gly Ala Pro	1395
45 50 55	
atc ctg cag tgc atg ggc tgc tgc ttc agc cgc gcc tac ccc acc ccc Ile Leu Gln Cys Met Gly Cys Cys Phe Ser Arg Ala Tyr Pro Thr Pro	1443
60 65 70	
ctg cgc agc aag aag acc atg ctg gtg cag aag aac gtg acc agc gag Leu Arg Ser Lys Lys Thr Met Leu Val Gln Lys Asn Val Thr Ser Glu	1491
75 80 85	
agc acc tgc tgc gtg gcc aag agc tac aac cgc gtg acc gtg atg ggc Ser Thr Cys Cys Val Ala Lys Ser Tyr Asn Arg Val Thr Val Met Gly	1539
90 95 100 105	
ggc ttc aag gtg gag aac cac acc gcc tgc cac tgc agc acc tgc tac Gly Phe Lys Val Glu Asn His Thr Ala Cys His Cys Ser Thr Cys Tyr	1587
110 115 120	
tac cac aag agc taatcttagag ggcccgttta aacccgctga tcagcctcgaa	1639

Tyr His Lys Ser
125

ctgtgccttc tagtgccag ccatctgttg tttgcccctc ccccggtgcct tccttgaccc	1699
tggaaagggtgc cactcccact gtccttccct aataaaatga ggaaattgca tcgcattgtc	1759
tgagtaggtg tcattctatt ctggggggtg gggtggggca ggacagcaag ggggaggatt	1819
gggaagacaa tagcaggcat gctggggatg cggtgggctc tatggcttct gaggcggaaa	1879
gaaccagctg gggctctagg ggttatcccc acgcgcctg tagcggcgca ttaagcgcgg	1939
cgggtgtggt ggttacgcgc acggtgaccc ctacacttgc cagcgcctta gcgcggcgtc	1999
cttcgcctt ctcccttcc tttctcgcca cgttcgcgg cttcccccgt caagctctaa	2059
atcggggcat cccttaggg ttccgattta gtgcttacg gcacctcgac cccaaaaaac	2119
ttgattaggg ttaggttca cgtagtgggc catgcgcctg atagacggtt tttcgccctt	2179
tgacgttgg a gtccacgttc ttaatagtg gactcttgc ccaaactgga acaacactca	2239
accctatctc ggtctattct ttgatttt aagggatttt ggggatttcg gcctatttgt	2299
taaaaaatga gctgatttaa caaaaattta acgcgaatta attctgtgga atgtgtgtca	2359
gttaggggtgt ggaaagtccc caggctcccc aggccaggcag aagtatgcaa agcatgcac	2419
tcaattagtc agcaaccagg tgtggaaagt cccaggctc cccaggcaggc agaagtatgc	2479
aaagcatgca tctcaattag tcagcaacca tagcccccc cctaactccg cccatcccgc	2539
ccctaactcc gcccaggttcc gcccattctc cgcccatgg ctgactaatt ttttttattt	2599
atgcagaggc cgaggccgccc tctgcctctg agctattcca gaagtagtga ggaggcttt	2659
ttggaggcct aggttttgc aaaaagctcc cgggagcttg tataccatt ttcggatctg	2719
atcagcacgt gataaaaaag cctgaactca ccgcgcacgtc tgtcgagaag ttctgtatcg	2779
aaaagttcga cagcgtctcc gacctgatgc agctctcgga gggcgaagaa tctcgtgcct	2839
tcagcttcga tgtggaggg cgtggatatg tcctgcgggt aaatagctgc gccgatggtt	2899
tctacaaaga tcgttatgtt tatcggcact ttgcattccgc cgcgcctccg attccggaaag	2959
tgcttgacat tgggaattc agcgagagcc tgacatttg catctccgc cgtgcacagg	3019
gtgtcacgtt gcaagacctg cctgaaaccg aactgccgc tggctgcag ccggcgcgg	3079
aggccatgg a tgcgatcgct gcggccgatc ttagccagac gagcgggttc ggcattcg	3139
gaccgcagg aatcggtcaa tacactacat ggctgtattt catatgcgcg attgctgatc	3199
cccatgtgta tcactggcaa actgtgatgg acgacaccgt cagtgcgtcc gtcgcgcagg	3259
ctctcgatga gctgatgctt tggccgagg actgcggcac ctcgtgcacg	3319

cggatttcgg ctccaacaat gtcctgacgg acaatggccg cataaacagcg gtcattgact 3379
ggagcgaggc gatgttcggg gattccaaat acgaggtcgc caacatctc ttctggaggc 3439
cgtggttggc ttgtatggag cagcagacgc gctacttcga gcggaggcat ccggagcttg 3499
caggatcgcc gcggctccgg gcgtatatgc tccgcattgg tcttgcacaa ctctatcaga 3559
gcttggttga cgccaatttc gatgatgcag cttggcgca gggtcgatgc gacgcaatcg 3619
tccgatccgg agccggact gtcggcgta cacaatcgc ccgcagaagc gcggccgtct 3679
ggaccgatgg ctgtgttagaa gtactcgccg atagtggaaa ccgacgcccc agcactcgtc 3739
cgagggcaaa ggaatagcac gtgctacgag atttcgattc caccgccc ttctatgaaa 3799
ggttggcgtt cggaatcggtt ttccggacg ccggctggat gatcctccag cgccgggatc 3859
tcatgctgga gttcttcgccc caccccaact tgtttattgc agcttataat ggttacaaat 3919
aaagcaatag catcacaaat ttcacaaata aagcattttt ttcaactgcat tctagttgt 3979
gtttgtccaa actcatcaat gtatcttatac atgtctgtat accgtcgacc tctagctaga 4039
gcttggcgta atcatggtca tagctgttc ctgtgtggaaa ttgttatccg ctcacaattc 4099
cacacaacat acgagccgga agcataaaagt gtaaaggctg ggggcctaa tgagtgagct 4159
aactcacatt aattgcgttg cgctcactgc ccgcatttcca gtcggaaac ctgtcggtcc 4219
agctgcatta atgaatcgcc caacgcgcgg ggagaggcgg tttgcgtatt gggcgctt 4279
ccgcttcctc gctcaactgac tcgctgcgtc cggtcggtcg gctgcggcga gcggatcatcg 4339
ctcaactcaaa ggcggtaata cggttatcca cagaatcagg ggataacgca ggaaagaaca 4399
tgtgagcaaa aggccagcaa aaggccagga accgtaaaaa ggccgcgttgc ctggcggttt 4459
tccataggct ccgcggccct gacgagcatc acaaaaatcg acgctcaagt cagagggtggc 4519
gaaacccgac aggactataa agataaccagg cgtttcccccc tggaaagctcc ctcgtgcgt 4579
ctcctgttcc gaccctgccc cttaccggat acctgtccgc ctttctccct tcggaaagcg 4639
tggcgctttc tcaatgctca cgctgttaggt atctcagttc ggtgttaggtc gttcgctcca 4699
agctgggctg tgtgcacgaa ccccccgttc agcccgaccg ctgcgcctta tccggtaact 4759
atcgcttga gtccaaacccg gtaagacacg acttacgcac actggcagca gccactggta 4819
acaggattag cagagcgagg tatgttaggcg gtgctacaga gttcttgaag tggtggccta 4879
actacggcta cactagaagg acagtatttg gtatctgcgc tctgctgaag ccagttacct 4939
tcggaaaaag agttggtagc tcttgatccg gcaaacaac caccgctggt agcggtggtt 4999

ttttgttg caagcagcag attacgcgca gaaaaaaagg atctcaagaa gatccttga	5059
tctttctac ggggtctgac gtcagtgga acgaaaactc acgttaaggg attttggtca	5119
ttagattatc aaaaaggatc ttcacctaga tcctttaaa ttaaaaatga agttttaaat	5179
caatctaaag tatatatgag taaaccttgt ctgacagttt ccaatgctta atcagtgagg	5239
cacctatctc agcgatctgt ctatccgtt catccatagt tgccctgactc cccgtcggt	5299
agataactac gatacgggag ggcttaccat ctggccccag tgctgcaatg ataccgcgag	5359
acccacgctc accggctcca gatttatcag caataaacca gccagccgga agggccgagc	5419
gcagaagtgg tcctgcaact ttatccgcct ccattccagtc tattaattgt tgccggaaag	5479
ctagagtaag tagtcgcca gttaatagtt tgcccaacgt tggccatt gctacaggca	5539
tcgtgggtgc acgctcgctg tttggtatgg cttcattcag ctccgggtcc caacgatcaa	5599
ggcgagttac atgatcccc atgttgcgca aaaaagcggt tagtccttc ggtcctccga	5659
tcggtgtcag aagtaagttt gcccgcgtgt tatcactcat gtttatggca gcactgcata	5719
attctcttac tgtcatgcca tccgttaagat gctttctgt gactggtag tactcaacca	5779
agtcattctg agaatagttt atgcggcgac cgagttgcgc ttggccggcg tcaatacggg	5839
ataataccgc gcccacatgc agaactttaa aagtgcgtt cattggaaaa cggttcccg	5899
ggcgaaaaact ctcaaggatc ttaccgctgt tgagatccag ttgcgttgcgaa cccactcg	5959
caccaactg atcttcagca tctttactt tcaccagcg ttcgggtga gcaaaaacag	6019
gaaggcaaaa tgccgcaaaa aagggaaataa gggcgacacg gaaatgttga atactcatac	6079
tcttccttt tcaatattat tgaagcattt atcagggtta ttgtctcatg agcggataca	6139
tatttgaatg tatttagaaa aataaacaaa taggggttcc ggcacattt ccccgaaaag	6199
tgccacactga cgtc	6213

<210> 8
<211> 5
<212> PRT
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic peptide

<220>
<221> MOD_RES
<222> (5)
<223> T or S

<400> 8
Ala Ser Asn Ile Xaa
1 5

<210> 9
<211> 6
<212> PRT
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic peptide

<220>
<221> MOD_RES
<222> (6)
<223> T or S

<400> 9
Ser Pro Ile Asn Ala Xaa
1 5

<210> 10
<211> 7
<212> PRT
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic peptide

<220>
<221> MOD_RES
<222> (7)
<223> T or S

<400> 10
Ala Ser Pro Ile Asn Ala Xaa
1 5

<210> 11
<211> 11
<212> PRT
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic peptide

<220>
<221> MOD_RES
<222> (4)
<223> T or S

<220>
<221> MOD_RES
<222> (8)
<223> T or S

<400> 11
Ala Asn Ile Xaa Ala Asn Ile Xaa Ala Asn Ile
1 5 10

<210> 12
<211> 14
<212> PRT
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic peptide

<220>
<221> MOD_RES
<222> (4)
<223> T or S

<220>
<221> MOD_RES
<222> (9)
<223> T or S

<220>
<221> MOD_RES
<222> (14)
<223> T or S

<400> 12
Ala Asn Ile Xaa Gly Ser Asn Ile Xaa Gly Ser Asn Ile Xaa
1 5 10

<210> 13
<211> 13
<212> PRT
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic peptide

<220>
<221> MOD_RES
<222> (5)
<223> T or S

<220>
<221> MOD_RES
<222> (9)

<223> T or S

<220>

<221> MOD_RES

<222> (13)

<223> T or S

<400> 13
Ala Ser Asn Ser Xaa Asn Asn Gly Xaa Leu Asn Ala Xaa
1 5 10

<210> 14

<211> 10

<212> PRT

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: Synthetic peptide

<220>

<221> MOD_RES

<222> (4)

<223> T or S

<220>

<221> MOD_RES

<222> (7)

<223> T or S

<220>

<221> MOD_RES

<222> (10)

<223> T or S

<400> 14
Ala Asn His Xaa Asn Glu Xaa Asn Ala Xaa
1 5 10

<210> 15

<211> 7

<212> PRT

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: Synthetic peptide

<220>

<221> MOD_RES

<222> (7)

<223> T or S

<400> 15
Gly Ser Pro Ile Asn Ala Xaa

```
<210> 16
<211> 13
<212> PRT
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic
      peptide

<220>
<221> MOD_RES
<222> (7)
<223> T or S

<220>
<221> MOD_RES
<222> (13)
<223> T or S

<400> 16
Ala Ser Pro Ile Asn Ala Xaa Ser Pro Ile Asn Ala Xaa
     1           5           10

<210> 17
<211> 10
<212> PRT
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic
      peptide

<220>
<221> MOD_RES
<222> (4)
<223> T or S

<220>
<221> MOD_RES
<222> (7)
<223> T or S

<220>
<221> MOD_RES
<222> (10)
<223> T or S

<400> 17
Ala Asn Asn Xaa Asn Tyr Xaa Asn Trp Xaa
     1           5           10

<210> 18
```

<211> 13
<212> PRT
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic peptide

<220>
<221> MOD_RES
<222> (5)
<223> T or S

<220>
<221> MOD_RES
<222> (9)
<223> T or S

<220>
<221> MOD_RES
<222> (12)
<223> T or S

<400> 18
Ala Thr Asn Ile Xaa Leu Asn Tyr Xaa Ala Asn Xaa Thr
1 5 10

<210> 19
<211> 13
<212> PRT
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic peptide

<220>
<221> MOD_RES
<222> (5)
<223> T or S

<220>
<221> MOD_RES
<222> (9)
<223> T or S

<220>
<221> MOD_RES
<222> (13)
<223> T or S

<400> 19
Ala Ala Asn Ser Xaa Gly Asn Ile Xaa Ile Asn Gly Xaa
1 5 10

<210> 20
<211> 13
<212> PRT
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic peptide

<220>
<221> MOD_RES
<222> (5)
<223> T or S

<220>
<221> MOD_RES
<222> (9)
<223> T or S

<220>
<221> MOD_RES
<222> (13)
<223> T or S

<400> 20
Ala Val Asn Trp Xaa Ser Asn Asp Xaa Ser Asn Ser Xaa
1 5 10

<210> 21
<211> 13
<212> PRT
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic peptide

<220>
<221> MOD_RES
<222> (5)
<223> T or S

<220>
<221> MOD_RES
<222> (9)
<223> T or S

<220>
<221> MOD_RES
<222> (13)
<223> T or S

<400> 21
Ala Val Asn Trp Xaa Ser Asn Asp Xaa Ser Asn Ser Xaa
1 5 10

<210> 22
<211> 10
<212> PRT
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic peptide

<220>
<221> MOD_RES
<222> (4)
<223> T or S

<220>
<221> MOD_RES
<222> (7)
<223> T or S

<220>
<221> MOD_RES
<222> (10)
<223> T or S

<400> 22
Ala Asn Asn Xaa Asn Tyr Xaa Asn Ser Xaa
1 5 10

<210> 23
<211> 10
<212> PRT
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic peptide

<400> 23
Ala Asn Asn Thr Asn Tyr Thr Asn Trp Thr
1 5 10

<210> 24
<211> 15
<212> PRT
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Linker

<400> 24
Gly Gly Gly Gly Ser Gly Gly Gly Ser Gly Gly Gly Ser
1 5 10 15

<210> 25
<211> 35
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Primer

<400> 25
cgcagatctg atggctggca gcctcacagg attgc 35

<210> 26
<211> 37
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Primer

<400> 26
ccggaattcc catcaactggc gacgccacag gtaggtg 37

<210> 27
<211> 35
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Primer

<400> 27
acgcgagctc gcccctgcat ccctaaaagc ttcg 35

<210> 28
<211> 54
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Primer

<400> 28
gcgttgacgg cagtcaagt tgacagaagg gccagccagc aaaggatagt catg 54

<210> 29
<211> 62
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Primer

<400> 29

ctagcatgac tattcctttgc tggctggccc ttctgtcaac tctgactgcc gtcaacgcag 60
ct 62

<210> 30
<211> 48
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Primer

<400> 30
cctgctactg ctcccaagcag cagtgaaaga gtccaaagtg gcagcatg 48

<210> 31
<211> 56
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Primer

<400> 31
ctagcatgct gccactttgg actctttcac tgctgctggg agcagtagca ggagct 56

<210> 32
<211> 21
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Primer

<400> 32
cagctggcca tgggtacccg g 21

<210> 33
<211> 4
<212> PRT
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: N-terminal peptide addition

<400> 33
Ala Asn Ile Thr
1

<210> 34
<211> 7
<212> PRT

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: N-terminal peptide addition

<400> 34
Ala Ser Pro Ile Asn Ala Thr
1 5

<210> 35
<211> 48
<212> DNA
<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: Primer

<400> 35
tgggcatacg gtgccaacat tacagccgc ccctgcattcc ctaaaagc 48

<210> 36
<211> 24
<212> DNA
<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: Primer

<400> 36
tttactgttt tcgtaacagt ttg 24

<210> 37
<211> 48
<212> DNA
<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: Primer

<400> 37
gcaggggcgg gctgtaatgt tggcacctga tgcccacgac actgcctg 48

<210> 38
<211> 13
<212> PRT
<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: Synthetic peptide

<220>

<221> MOD_RES
<222> (1)..(13)
<223> "Xaa" represents a variable amino acid

<400> 38
Ala Xaa Asn Xaa Thr Xaa Asn Xaa Thr Xaa Asn Xaa Thr
1 5 10

<210> 39
<211> 10
<212> PRT
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic peptide

<220>
<221> MOD_RES
<222> (1)..(10)
<223> "Xaa" represents a variable amino acid

<400> 39
Ala Asn Xaa Thr Asn Xaa Thr Asn Xaa Thr
1 5 10

<210> 40
<211> 81
<212> DNA
<213> Artificial Sequence

<220>
<221> modified_base
<222> (1)..(81)
<223> "n" represents a, t, c, g, other or unknown

<220>
<223> Description of Artificial Sequence: Primer

<400> 40
gtgtcggtgg catcaggtgc cnnsaaydns achdnsaayd nsachdnsaa ydnsachgcc 60
cgccccctgca tccctaaaag c 81

<210> 41
<211> 27
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Primer

<400> 41
ggcacctgat gcccacgaca ctgcctg 27

<210> 42
<211> 68
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Primer

<220>
<221> modified_base
<222> (1)..(68)
<223> "nnn" is a mixture of trinucleotide codons for all natural amino acid residues, except proline

<400> 42
cgtgggcattc aggtgccaac nnnnachaaaynn nnachaaaynn nachgccccgc ccctgcattcc 60
ctaaaagc 68

<210> 43
<211> 30
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Primer

<400> 43
gttggcacct gatgccacg acactgcctg 30

<210> 44
<211> 13
<212> PRT
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic peptide

<220>
<221> MOD_RES
<222> (4)
<223> variable amino acid

<220>
<221> MOD_RES
<222> (12)
<223> F or L

<400> 44
Ala Phe Asn Xaa Thr Leu Asn Lys Thr Trp Asn Xaa Thr
1 5 10

<210> 45
<211> 13
<212> PRT
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic peptide

<400> 45
Thr Met Asn Asn Thr Trp Asn Trp Thr Trp Asn Trp Thr
1 5 10

<210> 46
<211> 13
<212> PRT
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic peptide

<400> 46
Ala Leu Asn Ser Thr Gly Asn Leu Thr Val Asp Gly Thr
1 5 10

<210> 47
<211> 13
<212> PRT
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic peptide

<400> 47
Ala Ser Asn Ser Thr Phe Asn Leu Thr Glu Asn Leu Thr
1 5 10

<210> 48
<211> 12
<212> PRT
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic peptide

<400> 48
Thr Arg Asn Val Thr Ile Asn Cys Thr Asn Ser Thr
1 5 10

<210> 49

<211> 13
<212> PRT
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic peptide

<400> 49
Ala Leu Asn Trp Thr Tyr Asn Gly Thr Lys Asn Val Thr
1 5 10

<210> 50
<211> 13
<212> PRT
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic peptide

<400> 50
Ala Ala Asn Trp Thr Val Asn Phe Thr Gly Asn Phe Thr
1 5 10

<210> 51
<211> 12
<212> PRT
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic peptide

<220>
<221> MOD_RES
<222> (2)
<223> variable amino acid

<220>
<221> MOD_RES
<222> (4)
<223> variable amino acid

<400> 51
Ala Xaa Asn Xaa Thr Val Asn Ser Thr Asn Val Thr
1 5 10

<210> 52
<211> 13
<212> PRT
<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: Synthetic peptide

<400> 52
Ala Asn Asn Phe Thr Phe Asn Gly Thr Leu Asn Leu Thr
1 5 10

<210> 53
<211> 13
<212> PRT
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic peptide

<400> 53
Ala Gly Asn Trp Thr Ala Asn Val Thr Val Asn Val Thr
1 5 10

<210> 54
<211> 13
<212> PRT
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic peptide

<400> 54
Ala Gly Asn Ser Thr Ser Asn Val Thr Gly Asn Trp Thr
1 5 10

<210> 55
<211> 13
<212> PRT
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic peptide

<400> 55
Ala Val Asn Ser Thr Met Asn Ile His Ala Ile Pro Pro
1 5 10

<210> 56
<211> 13
<212> PRT
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic

peptide

<400> 56
Ala Gly Asn Gly Thr Val Asn Gly Thr Ile Asn Gly Thr
1 5 10

<210> 57
<211> 13
<212> PRT
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic
peptide

<220>
<221> MOD_RES
<222> (8)
<223> variable amino acid

<400> 57
Ala Val Asn Ser Thr Gly Asn Xaa Thr Gly Asn Trp Thr
1 5 10

<210> 58
<211> 12
<212> PRT
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic
peptide

<400> 58
Ala Gly Asn Gly Thr Asn Gly Thr Ser Asn Leu Thr
1 5 10

<210> 59
<211> 13
<212> PRT
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic
peptide

<400> 59
Ala Met Asn Ser Thr Lys Asn Ser Thr Leu Asn Ile Thr
1 5 10

<210> 60
<211> 10
<212> PRT

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: Synthetic peptide

<400> 60
Ala Phe Asn Tyr Thr Ser Lys Asn Ser Thr
1 5 10

<210> 61
<211> 13
<212> PRT
<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: Synthetic peptide

<400> 61
Ala Val Asn Ala Thr Met Asn Trp Thr Ala Asn Gly Thr
1 5 10

<210> 62
<211> 13
<212> PRT
<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: Synthetic peptide

<400> 62
Ala Ser Asn Ser Thr Asn Asn Gly Thr Leu Asn Ala Thr
1 5 10

<210> 63
<211> 13
<212> PRT
<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: Synthetic peptide

<400> 63
Ala Arg Asn Lys Thr Lys Asn Phe Thr Ile Asn Leu Thr
1 5 10

<210> 64
<211> 12
<212> PRT
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic
peptide

<400> 64
Ala Pro Asn Ile Thr Asn Asp Thr Val Asn Met Thr
1 5 10

<210> 65
<211> 13
<212> PRT
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic
peptide

<400> 65
Ala Gln Asn Lys Thr Phe Asn Phe Thr Met Asn Cys Thr
1 5 10

<210> 66
<211> 13
<212> PRT
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic
peptide

<400> 66
Ala Leu Asn Val Thr Trp Asn Cys Thr Leu Asn Leu Thr
1 5 10

<210> 67
<211> 10
<212> PRT
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic
peptide

<400> 67
Ala Leu Asn Thr Thr Trp Thr Asn Leu Thr
1 5 10

<210> 68
<211> 10
<212> PRT
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic peptide

<400> 68
Ala Asn Thr Thr Asn Phe Thr Asn Glu Thr
1 5 10

<210> 69
<211> 10
<212> PRT
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic peptide

<400> 69
Ala Asn Trp Thr Asn Arg Thr Asn Cys Thr
1 5 10

<210> 70
<211> 10
<212> PRT
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic peptide

<400> 70
Ala Asn Trp Thr Asn Phe Thr Asn Trp Thr
1 5 10

<210> 71
<211> 10
<212> PRT
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic peptide

<400> 71
Pro Thr Gly Leu Ile Gly Thr Asn Phe Thr
1 5 10

<210> 72
<211> 10
<212> PRT
<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: Synthetic peptide

<400> 72

Ala Asn Trp Thr Asn Lys Thr Asn Phe Thr
1 5 10

<210> 73

<211> 10

<212> PRT

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: Synthetic peptide

<400> 73

Ala Asn Asn Thr Asn Leu Thr Asn Ala Thr
1 5 10

<210> 74

<211> 10

<212> PRT

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: Synthetic peptide

<400> 74

Ala Asn Tyr Thr Asn Trp Thr Asn Phe Thr
1 5 10

<210> 75

<211> 10

<212> PRT

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: Synthetic peptide

<400> 75

Ala Asn Thr Thr Asn Gln Thr Asn Asp Thr
1 5 10

<210> 76

<211> 10

<212> PRT

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: Synthetic

peptide

<400> 76

Ala Asn Arg Thr Asn Trp Thr Asn Thr Thr
1 5 10

<210> 77

<211> 10

<212> PRT

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: Synthetic
peptide

<400> 77

Pro Thr Ala Thr Asn His Thr Asn Ser Thr
1 5 10

<210> 78

<211> 10

<212> PRT

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: Synthetic
peptide

<400> 78

Ala Asn Trp Thr Asn Gln Thr Asn Gln Thr
1 5 10

<210> 79

<211> 10

<212> PRT

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: Synthetic
peptide

<400> 79

Ala Asn Trp Thr Asn Trp Thr Asn Ala Thr
1 5 10

<210> 80

<211> 10

<212> PRT

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: Synthetic
peptide

<400> 80
Ala Asn Phe Thr Asn Lys Thr Asn Met Thr
1 5 10

<210> 81
<211> 10
<212> PRT
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic peptide

<400> 81
Ala Asn His Thr Asn Glu Thr Asn Ala Thr
1 5 10

<210> 82
<211> 10
<212> PRT
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic peptide

<220>
<221> MOD_RES
<222> (3)
<223> C or W

<400> 82
Ala Asn Xaa Thr Asn Phe Thr Asn Glu Thr
1 5 10

<210> 83
<211> 9
<212> PRT
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic peptide

<400> 83
Ala Asn Leu Asp Lys Leu His Lys His
1 5

<210> 84
<211> 11
<212> PRT
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic
peptide

<400> 84
Ala Asn Cys Phe Thr Asn Gln Thr Asn Phe Thr
1 5 10

<210> 85
<211> 11
<212> PRT
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic
peptide

<400> 85
Ala Asn Trp Thr Asn Trp Thr Asn Glu Trp Thr
1 5 10

<210> 86
<211> 10
<212> PRT
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic
peptide

<400> 86
Ala Asn Cys Thr Asn Trp Thr Asn Cys Thr
1 5 10

<210> 87
<211> 10
<212> PRT
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic
peptide

<400> 87
Cys His Pro Tyr Asn Trp Thr Asn Trp Thr
1 5 10

<210> 88
<211> 10
<212> PRT
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic peptide

<400> 88
Ala Asn Glu Thr Asn Tyr Thr Asn Glu Thr
1 5 10

<210> 89
<211> 7
<212> PRT
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic peptide

<400> 89
Ala Asn Trp Thr Asn Trp Thr
1 5

<210> 90
<211> 10
<212> PRT
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic peptide

<400> 90
Ala Lys Pro Tyr Lys Ser Tyr Lys Phe Tyr
1 5 10

<210> 91
<211> 10
<212> PRT
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic peptide

<400> 91
Ala Asn Ile Thr Asn Lys Thr Asn Trp Thr
1 5 10

<210> 92
<211> 10
<212> PRT
<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: Synthetic peptide

<400> 92

Ala Asn Trp Thr Asn Met Thr Asn Ile Thr
1 5 10

<210> 93

<211> 10

<212> PRT

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: Synthetic peptide

<400> 93

Ala Asn Asn Thr Asn Arg Thr Asn Phe Thr
1 5 10

<210> 94

<211> 10

<212> PRT

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: Synthetic peptide

<400> 94

Ala Asn Trp Thr Asn Trp Thr Asn Trp Thr
1 5 10

<210> 95

<211> 11

<212> PRT

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: Synthetic peptide

<400> 95

Ala Asn Trp Arg Thr Asn His Thr Asn Lys Thr
1 5 10

<210> 96

<211> 10

<212> PRT

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: Synthetic

peptide

<400> 96
Ala Asn Gln Thr Asn Ile Thr Asn Trp Thr
1 5 10

<210> 97
<211> 11
<212> PRT
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic peptide

<400> 97
Ala Asn Phe Thr Asn Val Ala Thr Asn Gln Thr
1 5 10

<210> 98
<211> 10
<212> PRT
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic peptide

<220>
<221> MOD_RES
<222> (1)
<223> most probable amino acid

<220>
<221> MOD_RES
<222> (2)
<223> most probable amino acid

<220>
<221> MOD_RES
<222> (5)
<223> variable amino acid

<220>
<221> MOD_RES
<222> (9)
<223> most probable amino acid

<400> 98
Ala Asn Thr Thr Xaa Leu Thr Asn Lys Thr
1 5 10

<210> 99
<211> 10

<212> PRT
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic peptide

<220>
<221> MOD_RES
<222> (6)
<223> S or C

<400> 99
Ala Asn Lys Thr Asn Xaa Thr Asn Ile Thr
1 5 10

<210> 100
<211> 10
<212> PRT
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic peptide

<220>
<221> MOD_RES
<222> (9)
<223> most probable amino acid

<400> 100
Ala Asn Trp Thr Asn Cys Thr Asn Ile Thr
1 5 10

<210> 101
<211> 10
<212> PRT
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic peptide

<220>
<221> MOD_RES
<222> (6)
<223> F or L

<400> 101
Ala Asn Trp Thr Asn Xaa Thr Asn Trp Thr
1 5 10

<210> 102
<211> 10

<212> PRT
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic peptide

<400> 102
Cys Gln Leu Asp Arg Ser Thr Asn Glu Thr
1 5 10

<210> 103
<211> 10
<212> PRT
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic peptide

<400> 103
Ala Asn Asn Thr Asn Tyr Thr Asn Trp Thr
1 5 10

<210> 104
<211> 10
<212> PRT
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic peptide

<400> 104
Ala Asn Asn Thr Asn Tyr Thr Asn Trp Thr
1 5 10

<210> 105
<211> 12
<212> PRT
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic peptide

<400> 105
Ala Ala Asn Asp Thr Asn Trp Thr Val Asn Cys Thr
1 5 10

<210> 106
<211> 13
<212> PRT

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: Synthetic peptide

<400> 106

Ala Thr Asn Ile Thr Leu Asn Tyr Thr Ala Asn Thr Thr
1 5 10

<210> 107

<211> 13

<212> PRT

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: Synthetic peptide

<400> 107

Ala Ala Asn Ser Thr Gly Asn Ile Thr Ile Asn Gly Thr
1 5 10

<210> 108

<211> 13

<212> PRT

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: Synthetic peptide

<400> 108

Ala Val Asn Trp Thr Ser Asn Asp Thr Ser Asn Ser Thr
1 5 10

<210> 109

<211> 13

<212> PRT

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: Synthetic peptide

<400> 109

Ala Ser Pro Ile Asn Ala Thr Ser Pro Ile Asn Ala Thr
1 5 10

<210> 110

<211> 4

<212> PRT

<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Linker

<400> 110
Gly Gly Gly Gly
1

<210> 111
<211> 4
<212> PRT
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Linker

<400> 111
Gly Asn Ala Thr

<210> 112
<211> 8
<212> PRT
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic peptide

<400> 112
Asn Ser Thr Gln Asn Ala Thr Ala
1 5

<210> 113
<211> 14
<212> PRT
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic peptide

<400> 113
Ala Asn Leu Thr Val Arg Asn Leu Thr Arg Asn Val Thr Val
1 5 10