

ADASYN

 Uses a weighted distribution of the minority class according to how difficult the observations are to be learned or classified.

 More synthetic data is generated from samples that are harder to classify

ADASYN vs SMOTE

• **SMOTE**: uses all samples from the minority class to create the synthetic data.

 ADASYN: uses more samples that are harder to classify and less that are easy to classify to create the synthetic data

ADASYN vs SMOTE

- **SMOTE**: uses only minority class to train the KNN.
- ADASYN: uses all samples to train KNN

ADASYN vs SMOTE

• **SMOTE**: interpolates between samples of minority class.

 ADASYN: interpolates between sample of minority class and neighbour from minority or majority

• **Step 1**: determine the balancing ratio.

$$R(x) = \frac{X(minority)}{X(majority)}$$

• Step 2: determine the number of samples to generate.

$$G = (X(majority) - X(minority)) * factor$$

- If Xmaj = 900 and Xmin=100 → G=800
- Factor is 1 for full balancing, or balancing ratio of 1

- Step 3:
- 1. train KNN using entire dataset (not only minority class as SMOTE)
- 2. Find K closest neighbours for each sample of minority class
- 3. Determine the weighting r

$$r = \frac{D}{K}$$
 D = neighbours from the majority class K = neighbours

• Step 4: Normalise r

$$r_{norm} = \frac{r}{sum(rs)}$$

 Remember that there is 1 r value per observation of the minority class

 Step 5: Calculate the number of synthetic examples that need to be generated for each observation of the minority class

$$g_i = r_i \times G$$

ri = weight for observation i

G = number of samples to generate

gi = number of samples to generate from observation i

 Step 6: For each minority class example xi, generate g1 synthetic samples

 $New\ sample = minority\ sample\ - factor\ * (minority\ sample\ - neighbour)$

The neighbour can be from the majority or the minority class.

The KNN is trained on the entire dataset

Different from SMOTE!

Imbalanced-learn: ADASYN

```
ada = ADASYN(
    sampling_strategy='auto', # samples only the minority class
    random_state=0, # for reproducibility
    n_neighbors=5,
    n_jobs=4
)

X_res, y_res = ada.fit_resample(X, y)
```


Imbalanced-learn: ADASYN

THANK YOU

www.trainindata.com