

Die Geometrische Brownsche Bewegung und Anwendungen

Inhalt

- Grundlagen zu Stochastischen Prozessen und der Brownschen Bewegung
- Herleitung der geometrischen Brownschen Bewegung aus dem Binomialmodell
- Modellierung von Finanzzeitreihen mit der geometrischen Brownschen Bewegung
- Bewertung von Aktienoptionen mit Black Scholes

- Zeitdiskrete Modelle: Zufallsspaziergang, Binomialmodell
- Zeitstetige Grenzprozesse: Brownsche Bewegung als Limit
- Filtration, bedingter Erwartungswert, Adaptierung (Information über Zeit)

Die diskrete Brownsche Bewegung

- Konstruktion durch aufsummierte unabhängige Normalvariablen
- Skaliertes Interpolationsverfahren (N-ter Ordnung) (\rightarrow Varianz \rightarrow t)
- Martingal-Eigenschaft und Varianzwachstum linear in der Zeit

Die Brownsche Bewegung

- Klassische Axiome
 - $W_0 = 0$, Pfade fast-sicher stetig
 - unabhängige, stationäre Normalinkremente
- Brownsche Bewegung als Grenzwert
 - Donsker / Zentrale Grenzwertsatz f
 ür Prozesse
 - Existenz der endlich-dimensionalen Verteilungen und Kontinuität

Kovarianzstruktur der Brownschen Bewegung

- Kovarianz: $Cov(W_s, W_t) = min(s, t)$
- ullet Unabhängigkeit der Inkremente \Rightarrow Varianz wächst linear
- Grundlage f
 ür Simulation und Modellierung von Zeitreihen

- Martingal-Eigenschaften (zero mean increments)
- stationäre, unabhängige Inkremente, Normalverteilung
- Höhere Regularität: Pfade sind nicht differenzierbar, aber stetig
- Somit eignet sich die Brownsche Bewegung zur Modellierung von Rauschen

Diskretes Modell

- Multiplikatives Modell: $S_{k+1} = S_k(1 + X_{k+1})$
- Annahme: $X_{k+1} = \mu \Delta t + \sigma \sqrt{\Delta t} \, \varepsilon_{k+1}$
- Grundlage f
 ür Euler–Maruyama und Ubergang zur GBM

Geschlossene Formel

- Geschlossene Lösung der SDE / Grenzwert:
- $S_T = S_0 \exp((\mu \frac{1}{2}\sigma^2)T + \sigma W_T)$
- S_T ist log-normalverteilt; Erwartungswert und Varianz bekannt

Beweisskizze

- Logarithmierung: $\log S_n = \log S_0 + \sum \log(1 + X_i)$
- Taylor-Entwicklung bis 2. Ordnung, Quadratterm liefert $-\frac{1}{2}\sigma^2T$
- CLT f. Summe der Zufallsvariablen $\Rightarrow \sigma W_T$; LLN f. Quadratterm

Eigenschaften

• Positivität: $S_t > 0$ fast sicher

Einleitung

- Log-Normalverteilung: einfache Momente für Risikoanalyse
- Skalierungseigenschaften; analytische Preise für einfache Derivate

Kalibrierung

- Schätzung von μ, σ über Log-Returns (MLE / Momente)
- Konfidenzintervalle und Unsicherheitsschätzung (Bootstrap)
- Praktisch: Rolling Window Anpassung an sich ändernde Volatilität

Simulation

- Exakte Pfadsimulation für GBM via geschlossene Formel
- Monte-Carlo-Simulation für Optionspreise und Konfidenzbänder
- Numerik: Euler–Maruyama für verallgemeinerte Modelle (CEV etc.)

Backtests

- Evaluierung von Handelsstrategien auf historischen Daten (DAX, Lufthansa, ...)
- Vergleich von Modellen (GBM vs. CEV) mittels Backtests und Performance-Metriken
- Visualisierung der Backtests und Confidence Bands

Optionen

- Europäische Call- und Put-Option: Recht, nicht Pflicht
- Auszahlung: $\max(S_T K, 0)$ (Call), $(K S_T)^+$ (Put)
- Unterscheidung: europäisch vs. amerikanisch (Ausübungsrechte)

Beispiele

- Numerische Bewertung vs. geschlossene Formel: Vergleich für DAX-Calls
- Monte-Carlo- vs. Black-Scholes-Ergebnisvergleiche
- Visualisierung der Preisverläufe und Hedging-Performance

Ende

Risikoneutrale Bewertung

- Diskontierter Aktienkurs ist unter dem risikoneutralen Maß Q ein Martingal
- Erwartungswert unter Q des diskontierten Auszahlungsstroms gibt den fairen Preis
- Hedging-Interpretation: Replikation via dynamischem Portfolio (Delta-Hedging)

Ende

Der faire Preis von Optionen

- Für europäische Calls: Black-Scholes-Formel
- $C = S_0 \Phi(d_1) Ke^{-rT} \Phi(d_2)$ mit $d_{1,2}$ standardmäßig definiert
- Keine Arbitrage, perfekte Replikation unter Modellannahmen

Ende

Das Black-Scholes Modell

- Modellannahmen: GBM für Underlier, konstante r, σ , keine Transaktionskosten
- PDE-Herleitung führt zur geschlossenen Preislösung für europäische Optionen
- Praktische Limitationen: Volatilitätsstruktur, Marktfriktionen

Anwendungen

- Delta-Hedging und Risikomanagement in Portfolios
- Implied Volatility Extraction und Volatility-Surfaces
- Einsatz in Pricing-, Hedging- und Backtesting-Pipelines

Ausblick

• Stochastische Differentialgleichungen

Schlusswort

Vielen Dank für Ihre Aufmerksamkeit