CN-Advanced L44

OSPF

Dr. Ram P Rustagi rprustagi@ksit.edu.in http://www.rprustagi.comhttps://www.youtube.com/rprustagi

Chapter 4 Wireless and Mobile Networks

KUROSE ROSS

A note on the use of these ppt slides:

We're making these slides freely available to all (faculty, students, readers). They're in PowerPoint form so you see the animations; and can add, modify, and delete slides (including this one) and slide content to suit your needs. They obviously represent a *lot* of work on our part. In return for use, we only ask the following:

- If you use these slides (e.g., in a class) that you mention their source (after all, we'd like people to use our book!)
- If you post any slides on a www site, that you note that they are adapted from (or perhaps identical to) our slides, and note our copyright of this material.

Thanks and enjoy! JFK/KWR

All material copyright 1996-2012 J.F Kurose and K.W. Ross, All Rights Reserved

Computer Networking: A Top Down Approach 6th edition Jim Kurose, Keith Ross Addison-Wesley March 2012

OSPF

- Open
 - implies it is for any one to use
 - it is not a proprietary protocol
- SPF Shortest Path First
 - comes from Link State Routing protocol
- A Link State routing protocol
 - each router maintains identical database
 - topology of Autonomous System
- Fast convergence
- OSPF advertisements flooded to entire AS
 - Carries one entry per neighbour
 - Runs directly over IP (no TCP or UDP)

3

OSPF (Open Shortest Path First)

- Began in 1987
- 1989 OSPFv1 released in RFC 1131
- This version was experimental & never deployed
- 1991 OSPFv2 released in RFC 1247
- 1998 OSPFv2 updated in RFC 2328
- 1999 OSPFv3 (IPv6) published in RFC 2740

OSPF Development Timeline

OSPF

- Designed specifically for TCP/IP networks
 - Should work for both small and large AS
 - Allows variable length subnetting
- Provides for authentication of updates
- Utilizes multicast when sending updates
- Routes packets based solely on destination address
- Uses the concept of Areas (using 32 bits)
 - Backbone (Primary) area area and secondary areas
 - Topology of the area is hidden from rest of AS
 - Enables reduction of routing traffic
 - Can be considered as generalization of IP Subnetting

OSPF "advanced" features (not in RIP)

- security: all OSPF messages are authenticated (to prevent malicious intrusion)
 - Simple password communication
 - MD5 based: uses a shared secret key
- multiple same-cost paths allowed (only one path in RIP)
- for each link, multiple cost metrics for different TOS
 - e.g., satellite link cost set "low" for best effort ToS
 - high for real time ToS)
- integrated uni- and multicast support:
 - Multicast OSPF (MOSPF) uses same topology data base as OSPF
- hierarchical OSPF in large domains.

Hierarchical OSPF

Src: Computer Networks by Forouzan

Hierarchical OSPF

- two-level hierarchy: local area, backbone.
 - link-state advertisements only in area
 - each nodes has detailed area topology;
 - only know direction (shortest path) to nets in other areas.
- area border routers: "summarize" distances to nets in own area, advertise to other Area Border routers.
- backbone routers: run OSPF routing limited to backbone.
- boundary routers: connect to other AS's.

OSPF Areas

- Backbone Area
 - it is the special area, called area 0
 - typically written as 0.0.0.0
 - areas are generally written as IP addresses
 - responsible for distributing information to other areas
 - must be contiguous (logically)
 - need not be physically contiguous
 - can use virtual links
 - connects to all other areas

OSPF

- OSPF vs RIP
 - OSPF can calculate separate routes
 - For each TOS
 - For same destination, multiple routes
 - Each i/f is assigned a dimensionless cost
 - Based on throughput, RTT, reliability etc
 - Allows load balancing on equal cost route
 - Supports subnet masks
 - Point to point links do not need IP address
 - Supports authentication
 - Uses multicasting instead of broadcasting
 - Works directly on top of IP
 - Fast convergence

Interdomain Routing - Challenges

- Policies for an AS
 - Send traffic via X than Y
 - Can send traffic to Y but
 - not from X to Y (no transit)
 - paid them only to carry my traffic
 - Would like to keep policies private
 - Can have more complex policies
 - Use Y only for routes R1, R2
 - Use X for other routes
 - Does not advertise all routes

12

Inter Domain Routing - Challenges

- Each domains runs its own protocol
- Practically impossible to calculate meaningful path costs. Why?
 - Costs of one AS could be quite different from cost of other AS
- Issues of trust
 - Relates to complex policies
 - Trust X only if it advertises routes to R1, ... Rk

13

Summary

- OSPF
 - Open
 - SPF
- OSPF Hierarchy
- OSPF Areas
- Inter domain routing challenges