Внешние и дифференциальные формы

05.03.2018

Звезда Ходжа — это такой линейный изоморфизм $\star: \Lambda^k(V) \to \Lambda^{n-k}(V)$, что $\star(f_{j_1} \wedge \ldots \wedge f_{j_k}) = f_{j_{k+1}} \wedge \ldots \wedge f_{j_n}$, где $\{f_1, \ldots, f_n\}$ — двойственный базис, и перестановка (j_1, \ldots, j_n) является чётной.

Внешний дифференциал k-формы $\omega = \sum_{j_1 < \ldots < j_k} \omega_{j_1 \ldots j_k}(x) dx_{j_1} \wedge \ldots \wedge dx_{j_k}$ на многообразии M — это дифференциальная (k+1)-форма $d\omega = \sum_{j_1 < \ldots < j_k} d\omega_{j_1 \ldots j_k}(x) \wedge dx_{j_1} \wedge \ldots \wedge dx_{j_k}$.

ГКП3 \diamond 1. Пусть $\omega_1 = f_1 + f_2 + f_3$, $\omega_2 = f_1 - f_2 + 2f_3 \in \Lambda^1(\mathbb{R}^3)$. Вычислить $\star \omega_1$, $\star \omega_2$ и $\star (\omega_1 \wedge \omega_2)$. ГКП3 \diamond 2. Пусть $\omega \in \Lambda^1(\mathbb{R}^n)$.

- (1) Для n=2 покажите, что $\star(\star\omega)=-\omega$, а для n=3 что $\star(\star\omega)=\omega$.
- (2) Для всех $n \ge 2$ покажите, что $\star(\star\omega) = (-1)^{n+1}\omega$.
- (3) А что можно сказать про $\star(\star\omega)$, если ω внешняя k-форма?

ГКП3 \diamond **3.** Кодифференциал дифференциальной формы $\omega \in \Lambda^k(M)$ определяется по правилу

$$\delta\omega := \star (d(\star\omega)).$$

- (1) Докажите, что если k=0, то $\delta\omega=0$.
- (2) Докажите, что если $\omega \in \Lambda^k(M)$, то $\delta \omega \in \Lambda^{k-1}(M)$.
- (3) Вычислите $\delta \omega$ для $\omega = e^y dx + (x+y)^2 dy \in \Lambda^1(\mathbb{R}^2)$.

ГКП3◊**4.** Обобщённый Лапласиан на *k*-формах задаётся по формуле

$$\Delta := \delta d + d\delta = \star d \star d + d \star d \star .$$

- (1) Пусть $f(x,y) = xy + 2y^2$. Вычислите Δf , используя формулу выше и стандартную формулу из анализа. Сравните результат.
- (2) Вычислите $\Delta \omega$, для $\omega = xdx + zdy ydz \in \Lambda^1(\mathbb{R}^3)$.

ГКП3 \diamond **5.** Пусть $\omega = 2dx + xdy$ — дифференциальная 1-форма на \mathbb{R}^2 , A = (0,0), B = (1,1). Проинтегрируйте ω вдоль ориентированных отрезков AB и BA. Как соотносятся эти два значения?

ГКП3 \diamond **6.** Пусть ω — дискретная дифференциальная 0-форма на треугольной сетке. Вычислите $d^2\omega$.