| Algorithmics | Student information       | Date                     | Number of session |
|--------------|---------------------------|--------------------------|-------------------|
|              | UO:276824                 | 17/03/2021               | 3.1               |
|              | Surname: García Fernández | Escuela de<br>Ingeniería |                   |
|              |                           |                          |                   |



Name: Pablo

## Activity 1. Basic recursive models.

## A brief explanation for each of the given classes indicating how you calculated the complexity of that class.

Division 1: It has a=1, b=3 and k=1 since it is a division and  $a < b^k$  it means that its complexity is  $O(n^k)$  that is O(n).

Division 2: It has a=2, b=2 and k=1 since it is a division and  $a = b^k$  it means that its complexity is  $O(n^k * \log n)$  that is  $O(n * \log n)$ .

Division 3: It has a=2, b=2 and k=0 since it is a division and  $a > b^k$  it means that its complexity is  $O(n^{\log_b a})$  that is O(n).

Subtraction 1: It has a=1, b=1 and k=0 since it is a subtraction and a =1 it means that its complexity is  $O(n^{k+1})$  that is O(n).

Subtraction 2: It has a=1, b=1 and k=1 since it is a subtraction and a =1 it means that its complexity is  $O(n^{k+1})$  that is  $O(n^2)$ .

Subtraction 3: It has a=2, b=1 and k=0 since it is a subtraction and a >1 it means that its complexity is  $O(a^{n \operatorname{div} b})$  that is  $O(2^n)$ .

## A brief explanation for each of the two new classes indicating how you calculate the complexity to get the requested one.

Division 4: It has a=4, b=2 and k=0 since it is a division and  $a > b^k$  it means that its complexity is  $O(n^{\log_b a})$  that is  $O(n^2)$ .

| Algorithmics | Student information       | Date       | Number of session |
|--------------|---------------------------|------------|-------------------|
|              | UO:276824                 | 17/03/2021 | 3.1               |
|              | Surname: García Fernández |            |                   |
|              | Name: Pablo               |            |                   |

Subtraction 4: It has a=3, b=2 and k=0 since it is a subtraction and  $\alpha$  > 1 it means that its complexity is  $O(a^{n \operatorname{div} b})$  that is  $O(3^{n/2})$ .