

# Text Technologies for Data Science INFR11145

### Ranked IR

Instructor: Walid Magdy

## Assignment Project Exam Help

14-Oct-2020

https://powcoder.com

# Lectured de Wie Chat powcoder

- <u>Learn</u> about Ranked IR
  - TFIDF
  - VSM
  - SMART notation
- Implement:
  - TFIDF



### **Boolean Retrieval**

- Thus far, our queries have all been Boolean.
  - Documents either: "match" or "no match".
- Good for <u>expert users</u> with precise understanding of their needs and the collection.
  - Patent search uses sophisticated sets of Boolean queries and check hundreds of search results (car OR vehicle) AND (motor OR engine) AND NOT (cooler)
- Not good for the majority of users.
  - Most incapable of writing Boolean queries.
  - Most don't want to go through 1000s of results.

Assignments the repetitive sarches are the petitive sarches and the repetitive sarches are the petitive sarches are the p

Walid Magdy, TTDS 2020/2021



https://powcoder.com

## RankeAddriWeChat powcoder

- Typical queries: free text queries
- Results are "ranked" with respect to a query
- Large result sets are not an issue
  - We just show the top k (≈ 10) results
  - We don't overwhelm the user
- Criteria:
  - Top ranked documents are the most likely to satisfy user's query
  - Score is based on how well documents match a query Score(d,q)



### **Old Example**

- Find documents matching query {ink wink}
  - 1. Load inverted lists for each query word
  - Merge two postings lists → Linear merge
- Apply function for matches
  - Boolean: exist / not exist = 0 or 1
  - Matches • Ranked:  $f(tf, df, length, ...) = 0 \rightarrow 1$

1: f(0,1)

4:1 5:1 3: f(1,0)

4: f(1,0)

5:1 Assignment Project Exam Help

Walid Magdy, TTDS 2020/2021

https://powcoder.com

## Function Charge Charge Wendernt

- a commonly used measure of overlap of two sets A and B
- $jaccard(A, B) = \frac{|A \cap B|}{|A \cup B|}$

D1: He likes to wink, he likes to drink

D2: He likes to drink, and drink, and drink

- jaccard(A, A) = 1
- jaccard(A, B) = 0, if  $A \cap B = 0$
- Example:
  - D1 ∪ D2 = {he, likes, to, wink, and, drink}
  - D1 ∩ D2 = {he, likes, to, drink}
  - $jaccard(D1, D2) = \frac{4}{6} = 0.6667$



### **Jaccard coefficient: Issues**

- Does not consider term frequency (how many times a term occurs in a document)
- It treats all terms equally!
  - How about rare terms in a collection? more informative than frequent terms.
  - He likes to drink, shall "to" == "drink"?
- Needs more sophisticated way of length normalization
  - |D1| = 3, |D2| = 1000!
  - D1 → Q, D2 → D

## Assignment Project Exam Help

Walid Magdy, TTDS 2020/2021



https://powcoder.com

## shoulAdd We Chat powcoder

- Collection of 5 documents (balls = terms)
- Query



- Which is the least relevant document?
- Which is the most relevant document?





### **TFIDF**

 TFIDF: Term Frequency, Inverse Document Frequency

tf(t,d):
 number of times term t appeared in document d

- As  $tf(t,d) \uparrow \uparrow \rightarrow$  importance of t in  $d \uparrow \uparrow$
- Document about IR, contains "retrieval" more than others
- *df(t)*:

number of documents term t appeared in

- As  $df(d) \uparrow \uparrow \rightarrow \text{importance if } t \text{ in a collection } \downarrow \downarrow$ 
  - "the" appears in many document → not important

Assignment Project Exam Help

Walid Magdy, TTDS 2020/2021



https://powcoder.com

## DF, crAdd WeChat powcoder

- **DF** ≠ **CF** (collection frequency)
  - cf(t) = total number of occurrences of term t in a collection
  - $df(t) \le N(N: number of documents in a collection)$
  - *cf(t)* can be ≥ *N*
- DF is more commonly used in IR than CF
  - CF is still used
- idf(t): inverse of df(t)
  - As  $idf(t) \uparrow \uparrow \rightarrow rare term \rightarrow importance \uparrow \uparrow$
  - idf(t) → measure of the informativeness of t

THE UNIVERSITY

### DF vs CF

| þe | drink |   | ink | likes | pink | think | wink |  |
|----|-------|---|-----|-------|------|-------|------|--|
| 2  | 1     |   | 0   | 2     | 0    | 0     | 1    |  |
| 1  | 3     |   | 0   | 1     | 0    | 0     | 0    |  |
| 1  | 1     |   | 1   | 1     | 0    | 1     | 0    |  |
| 1  | 1     |   | 1   | 1     | 1    | 0     | 0    |  |
| 1  | 1     | П | 1   | 1     | 1    | n     | 1    |  |

← D1: He likes to wink, he likes to drink

← **D2:** He likes to drink, and drink, and drink

← **D3:** The thing he likes to drink is ink

← **D4:** The ink he likes to drink is pink

← **D5:** He likes to wink, and drink pink ink

5 5 3 5 2 1 2 DF

6 7 3 6 2 1 2 CF

Assignment Project Exam Help

Walid Magdy, TTDS 2020/2021



11 https://powcoder.com

## IDF: fcAddaWeChat powcoder

$$idf(t) = log_{10}(\frac{N}{df(t)})$$

- Log scale used to dampen the effect of IDF
- Suppose N = 1 million  $\rightarrow$

| term      | df(t)     | idf(t) |
|-----------|-----------|--------|
| calpurnia | 1         | 6      |
| animal    | 100       | 4      |
| sky       | 1,000     | 3      |
| fly       | 10,000    | 2      |
| under     | 100,000   | 1      |
| the       | 1,000,000 | 0      |



### **TFIDF term weighting**

- One the best known term weights schemes in IR
  - Increases with the number of occurrences within a document
  - Increases with the rarity of the term in the collection
- Combines TF and IDF to find the weight of terms

$$w_{t.d} = \left(1 + \log_{10} t f(t, d)\right) \times \log_{10}\left(\frac{N}{d f(t)}\right)$$

• For a query q and document d, retrieval score f(q,d):

Walid Magdy, TTDS 2020/2021



13

### https://powcoder.com

### Documedd We Chatspowegder **Antony and Cleopatra Julius Caesar** The Tempest **Hamlet** Othello Macbeth **Antony** 5.25 3.18 0 0 0 0.35 1.21 0 1 0 **Brutus** 6.1 Caesar 8.59 2.54 0 1.51 0.25 n 0 1.54 0 0 0 Calpurnia 2.85 0 0 0 0 Cleopatra 0 mercy 1.51 0 1.9 0.12 5.25 0.88 0.25 1.37 0 0.11 4.15 1.95 worser

→ Vector Space Model

THE UNIVERSITY

### **Vector Space Model**

- Documents and Queries are presented as vectors
- Match (Q,D) = Distance between vectors
- Example: Q= Gossip Jealous
- Euclidean Distance?
   Distance between the endpoints of the two vectors
- Large for vectors of diff. lengths



 Take a document d and append it to itself. Call this document d'.

Assisementically dailed have the same eatent Help

Walid Magdy, TTDS 2020/2021

https://powcoder.com

# Angle AddaWe Ghat powcoder

- The angle between the two documents is 0, corresponding to maximal similarity.
- Key idea: Rank documents according to angle with query.
  - Rank documents in increasing order of the angle with query
  - Rank documents in decreasing order of cosine (query, document)
- Cosine of angle = projection of one vector on the other



THE UNIVERSITY
of EDINBURGH

Walid Magdy, TTDS 2020/2021

16

15

### **Length Normalization**

 A vector can be normalized by dividing each of its components by its length – for this we use the L<sub>2</sub> norm:

$$\|\vec{x}\|_2 = \sqrt{\sum_i x_i^2}$$

- Dividing a vector by its L<sub>2</sub> norm makes it a unit (length) vector (on surface of unit hypersphere)
- Effect on the two documents d and d' (d appended to itself) from earlier slide: they have identical vectors after length-normalization.

Assignmento Projecto Example Help

Walid Magdy, TTDS 2020/2021



17 https://s

## https://powcoder.com

## Exampledd WeChat powcoder

• D1 = 
$$\begin{bmatrix} 1 \\ 3 \\ 2 \end{bmatrix}$$
  $\rightarrow$   $\|\overrightarrow{D1}\|_2 = \sqrt{1+9+4} = 3.74$ 

• 
$$D1_{normalized} = \begin{bmatrix} 0.267 \\ 0.802 \\ 0.535 \end{bmatrix}$$

• D2 = 
$$\begin{bmatrix} 3 \\ 9 \\ 6 \end{bmatrix}$$
  $\rightarrow \|\overrightarrow{D1}\|_2 = \sqrt{9 + 81 + 36} = 11.25$ 

• 
$$D2_{normalized} = \begin{bmatrix} 0.267\\ 0.802\\ 0.535 \end{bmatrix}$$



### **Cosine "Similarity" (Query, Document)**

- $\vec{q}_i$  is the tf-idf weight of term i in the query
- $\vec{d}_i$  is the tf-idf weight of term i in the document
- For normalized vectors:

$$\cos(\vec{q}, \vec{d}) = \vec{q} \cdot \vec{d} = \sum_{i=1}^{|V|} q_i d_i$$

For non-normalized vectors:





Walid Magdy, TTDS 2020/2021

19

https://powcoder.com

## Algorithdd WeChat powcoder

CosineScore(q)

- 1 float Scores[N] = 0
- 2 float Length[N]
- 3 **for each** query term t
- 4 **do** calculate  $w_{t,q}$  and fetch postings list for t
- for each pair $(d, \mathsf{tf}_{t,d})$  in postings list
- 6 **do**  $Scores[d] += w_{t,d} \times w_{t,q}$
- 7 Read the array Length
- 8 for each d
- 9 **do** Scores[d] = Scores[d]/Length[d]
- 10 **return** Top K components of Scores[]



### **TFIDF Variants**



- Many search engines allow for different weightings for queries vs. documents
- SMART Notation: use notation ddd.qqq, using the

Assignment Project Exam Help Avery standard weighting scheme is: Inc. Itc

Walid Magdy, TTDS 2020/2021

https://powcoder.com

## For LaAdd WeChat powcoder

| Term          | frequency                                                                                      | Docum        | ent frequency                                            | Normalization         |                                                  |  |  |
|---------------|------------------------------------------------------------------------------------------------|--------------|----------------------------------------------------------|-----------------------|--------------------------------------------------|--|--|
| n (natural)   | $tf_{t,d}$                                                                                     | n (no)       | 1                                                        | n (none)              | 1 1                                              |  |  |
| I (logarithm) | $1 + \log(tf_{t,d})$                                                                           | t (idf)      | $\log \frac{N}{\mathrm{df}_t}$                           | c (cosine)            | $\frac{1}{\sqrt{w_1^2 + w_2^2 + \dots + w_M^2}}$ |  |  |
| a (augmented) | $0.5 + \frac{0.5 \times tf_{t,d}}{max_t(tf_{t,d})}$                                            | p (prob idf) | $max\{0, log \tfrac{N - \mathrm{df}_t}{\mathrm{df}_t}\}$ | u (pivoted<br>unique) | $\sqrt{w_1+w_2++w_M}$<br>1/u                     |  |  |
| b (boolean)   | $\begin{cases} 1 & \text{if } \operatorname{tf}_{t,d} > 0 \\ 0 & \text{otherwise} \end{cases}$ |              |                                                          | b (byte size)         | $1/\mathit{CharLength}^{lpha}, \ lpha < 1$       |  |  |
| L (log ave)   | $\frac{1 + \log(tf_{t,d})}{1 + \log(ave_{t \in d}(tf_{t,d}))}$                                 |              |                                                          |                       |                                                  |  |  |

"OR" operator, then:

$$Score(q,d) = \sum_{t \in q \cap d} \left(1 + log_{10}tf(t,d)\right) \times log_{10}(\frac{N}{df(t)})$$

Walid Magdy, TTDS 2020/2021



21

### **Summary of Steps:**

- Represent the query as a weighted tf-idf vector
- Represent each document as a weighted tf-idf vector
- Compute the cosine similarity score for the query vector and each document vector
- Rank documents with respect to the query by score
- Return the top K (e.g., K = 10) to the user

## Assignment Project Exam Help

Walid Magdy, TTDS 2020/2021



23

https://powcoder.com

## Retrie Add We Chat powcoder

- For a query q<sub>1</sub>, the output would be a list of documents <u>ranked</u> according to the score(q<sub>1</sub>,d)
- Possible output format:

```
1, 710, 0.9234

1, 213, 0.7678

1, 103, 0.6761

1, 13, 0.6556

1, 501, 0.4301

Query id document id score
```



### Resources

- Text book 1: Intro to IR, Chapter 6.2 → 6.4
- Text book 2: IR in Practice, Chapter 7
- Lab 3

## Assignment Project Exam Help

Walid Magdy, TTDS 2020/2021



https://powcoder.com

Add WeChat powcoder