# Counting Irreducible Representations of General Linear Groups and Unitary Groups

Qiutong Wang

**Zhejiang University** 

August 11, 2025

## Outline

 Introduce the counting method developed by Dan Barbasch, Jia-Jun Ma, Binyong Sun, and Chen-Bo Zhu in their paper: Special unipotent representations of real classical groups: Counting and reduction. J. Eur. Math. Soc. (2025).

## Outline

- Introduce the counting method developed by Dan Barbasch, Jia-Jun Ma, Binyong Sun, and Chen-Bo Zhu in their paper: Special unipotent representations of real classical groups: Counting and reduction. J. Eur. Math. Soc. (2025).
- Show its application in counting the irreducible representations of general linear groups and unitary groups.

ullet G: connected reductive algebraic group defined over  $\mathbb R$ ;

- G: connected reductive algebraic group defined over  $\mathbb{R}$ ;
- G is a real Lie group together with a Lie group homorphism  $\iota: G \to \mathrm{G}(\mathbb{R})$  with open image and finite kernel;

- G: connected reductive algebraic group defined over  $\mathbb{R}$ ;
- G is a real Lie group together with a Lie group homorphism  $\iota: G \to \mathrm{G}(\mathbb{R})$  with open image and finite kernel;
- $\mathfrak{g}$ ,  $\mathfrak{g}_0$  are Lie algebras of  $G(\mathbb{C})$ , G;

- ullet G: connected reductive algebraic group defined over  $\mathbb{R}$ ;
- G is a real Lie group together with a Lie group homorphism  $\iota:G\to \mathrm{G}(\mathbb{R})$  with open image and finite kernel;
- $\mathfrak{g}$ ,  $\mathfrak{g}_0$  are Lie algebras of  $G(\mathbb{C})$ , G;
- ${}^a\mathfrak{h}$ : the abstract Caratan subalgebra of  $\mathfrak{g}$ , with root lattice  $Q_{\mathfrak{g}}$ , weight group  $Q^{\mathfrak{g}}$ , and analalytic weight lattice  $Q_{\iota}$   $(Q_{\mathfrak{g}} \subseteq Q_{\iota} \subseteq Q^{\mathfrak{g}} \subseteq {}^a\mathfrak{h}^*);$

- G: connected reductive algebraic group defined over  $\mathbb{R}$ ;
- G is a real Lie group together with a Lie group homorphism  $\iota:G\to \mathrm{G}(\mathbb{R})$  with open image and finite kernel;
- $\mathfrak{g}$ ,  $\mathfrak{g}_0$  are Lie algebras of  $G(\mathbb{C})$ , G;
- ${}^a\mathfrak{h}$ : the abstract Caratan subalgebra of  $\mathfrak{g}$ , with root lattice  $Q_{\mathfrak{g}}$ , weight group  $Q^{\mathfrak{g}}$ , and analalytic weight lattice  $Q_{\iota}$   $(Q_{\mathfrak{g}}\subseteq Q_{\iota}\subseteq Q^{\mathfrak{g}}\subseteq {}^a\mathfrak{h}^*);$
- W: the abstract Weyl group of  $\mathfrak{g}$  acts on  ${}^{a}\mathfrak{h}$ ;

- G: connected reductive algebraic group defined over  $\mathbb{R}$ ;
- G is a real Lie group together with a Lie group homorphism  $\iota:G\to \mathrm{G}(\mathbb{R})$  with open image and finite kernel;
- $\mathfrak{g}$ ,  $\mathfrak{g}_0$  are Lie algebras of  $G(\mathbb{C})$ , G;
- ${}^a\mathfrak{h}$ : the abstract Caratan subalgebra of  $\mathfrak{g}$ , with root lattice  $Q_{\mathfrak{g}}$ , weight group  $Q^{\mathfrak{g}}$ , and analalytic weight lattice  $Q_{\iota}$   $(Q_{\mathfrak{g}}\subseteq Q_{\iota}\subseteq Q^{\mathfrak{g}}\subseteq {}^a\mathfrak{h}^*);$
- W: the abstract Weyl group of  $\mathfrak{g}$  acts on  ${}^{a}\mathfrak{h}$ ;
- $\operatorname{Rep}(G)$  is the category of Casselman-Wallach representations of G, with the Grothendieck group  $\mathcal{K}(G)$ ;

- G: connected reductive algebraic group defined over  $\mathbb{R}$ ;
- G is a real Lie group together with a Lie group homorphism  $\iota:G\to \mathrm{G}(\mathbb{R})$  with open image and finite kernel;
- $\mathfrak{g}$ ,  $\mathfrak{g}_0$  are Lie algebras of  $G(\mathbb{C})$ , G;
- ${}^a\mathfrak{h}$ : the abstract Caratan subalgebra of  $\mathfrak{g}$ , with root lattice  $Q_{\mathfrak{g}}$ , weight group  $Q^{\mathfrak{g}}$ , and analalytic weight lattice  $Q_{\iota}$   $(Q_{\mathfrak{g}}\subseteq Q_{\iota}\subseteq Q^{\mathfrak{g}}\subseteq {}^a\mathfrak{h}^*);$
- W: the abstract Weyl group of  $\mathfrak{g}$  acts on  ${}^{a}\mathfrak{h}$ ;
- $\operatorname{Rep}(G)$  is the category of Casselman-Wallach representations of G, with the Grothendieck group  $\mathcal{K}(G)$ ;
- $\operatorname{Irr}(G)$  is the set of isomorphism classes of irreducible objects in  $\operatorname{Rep}(G)$ ,  $\operatorname{Irr}_{\lambda}(G)$  is the subset with infinitesimal character  $\lambda \in {}^{a}\mathfrak{h}^{*}$ .

## Goals

• The set Irr(G) admits a partition according to infinitesimal characters:

$$\operatorname{Irr}(G) = \bigsqcup_{\lambda \in W \setminus {}^{a}\mathfrak{h}^{*}} \operatorname{Irr}_{\lambda}(G).$$

By Harish-Chandra's work, each subset  $Irr_{\lambda}(G)$  is finite.

## Goals

• The set Irr(G) admits a partition according to infinitesimal characters:

$$\operatorname{Irr}(G) = \bigsqcup_{\lambda \in W \setminus {}^{a}\mathfrak{h}^{*}} \operatorname{Irr}_{\lambda}(G).$$

By Harish-Chandra's work, each subset  $Irr_{\lambda}(G)$  is finite.

• Further, using the notion of the complex associated variety (also called the annihilator variety, which is always the closure of a unique nilpotent orbit by results of Borho-Brylinski and Joseph), the set  ${\rm Irr}_{\lambda}(G)$  admits a finer partition:

$$\operatorname{Irr}_{\lambda}(\mathit{G}) = \bigsqcup_{\mathcal{O} \in \operatorname{G}(\mathbb{C}) \setminus \operatorname{Nil}(\mathfrak{g})} \operatorname{Irr}_{\lambda}(\mathit{G}; \mathcal{O}).$$

## Goals

• The set Irr(G) admits a partition according to infinitesimal characters:

$$\operatorname{Irr}(G) = \bigsqcup_{\lambda \in W \setminus {}^{a}\mathfrak{h}^{*}} \operatorname{Irr}_{\lambda}(G).$$

By Harish-Chandra's work, each subset  $Irr_{\lambda}(G)$  is finite.

• Further, using the notion of the complex associated variety (also called the annihilator variety, which is always the closure of a unique nilpotent orbit by results of Borho-Brylinski and Joseph), the set  ${\rm Irr}_{\lambda}(G)$  admits a finer partition:

$$\operatorname{Irr}_{\lambda}(\mathit{G}) = \bigsqcup_{\mathit{O} \in \operatorname{G}(\mathbb{C}) \setminus \operatorname{Nil}(\mathfrak{g})} \operatorname{Irr}_{\lambda}(\mathit{G}; \mathit{O}).$$

**Goal:** Describe the size of each set  $\operatorname{Irr}_{\lambda}(G; \mathcal{O})$  in terms of some combinatorial data.

# Counting Formula

## Theorem (Barbasch, Ma, Sun, Zhu)

$$\sharp (\operatorname{Irr}_{\nu}(\mathit{G}; \mathcal{O})) \leq \sum_{\sigma \in \operatorname{Irr}(\mathit{W}(\Lambda); \mathcal{O})} [1_{\mathit{W}_{\nu}} : \sigma] \cdot [\sigma : \operatorname{Coh}_{\Lambda}(\mathcal{K}(\mathit{G}))],$$

where  $1_{W_{\nu}}$  denotes the trivial representation of the stabilizer  $W_{\nu}$  of  $\nu$  in W. The equality holds if the Coxeter group  $W(\Lambda)$  has no simple factor of type  $F_4$ ,  $E_6$ ,  $E_7$ , or  $E_8$ , and G is linear or isomorphic to a real metaplectic group.

## Counting Formula

## Theorem (Barbasch, Ma, Sun, Zhu)

$$\sharp (\operatorname{Irr}_{\nu}(\mathit{G}; \mathcal{O})) \leq \sum_{\sigma \in \operatorname{Irr}(\mathit{W}(\Lambda); \mathcal{O})} [1_{\mathit{W}_{\nu}} : \sigma] \cdot [\sigma : \operatorname{Coh}_{\Lambda}(\mathcal{K}(\mathit{G}))],$$

where  $1_{W_{\nu}}$  denotes the trivial representation of the stabilizer  $W_{\nu}$  of  $\nu$  in W. The equality holds if the Coxeter group  $W(\Lambda)$  has no simple factor of type  $F_4$ ,  $E_6$ ,  $E_7$ , or  $E_8$ , and G is linear or isomorphic to a real metaplectic group.

In their paper, they use this formula to count the number of special unipotent representations to construct them via theta correspondence.

• Springer correspondence:  $\sigma \in Irr(W) \rightsquigarrow (\mathcal{O}, \mathcal{L})$ ;

- Springer correspondence:  $\sigma \in Irr(W) \rightsquigarrow (\mathcal{O}, \mathcal{L})$ ;
- For the Weyl group W, Lusztig define a class of special representations:  $\sigma_{\mathcal{O}} \leadsto (\mathcal{O}, 1)$ , here  $\mathcal{O}$  is a special nilpotent orbit.

- Springer correspondence:  $\sigma \in Irr(W) \rightsquigarrow (\mathcal{O}, \mathcal{L})$ ;
- For the Weyl group W, Lusztig define a class of special representations:  $\sigma_{\mathcal{O}} \leadsto (\mathcal{O}, 1)$ , here  $\mathcal{O}$  is a special nilpotent orbit.
- Lusztig also defined an equivalence relation on Irr(W), each equivalence class is called a double cell, Irr<sup>sp</sup>(W) ↔ {double cells}.

- Springer correspondence:  $\sigma \in Irr(W) \rightsquigarrow (\mathcal{O}, \mathcal{L})$ ;
- For the Weyl group W, Lusztig define a class of special representations:  $\sigma_{\mathcal{O}} \leadsto (\mathcal{O}, 1)$ , here  $\mathcal{O}$  is a special nilpotent orbit.
- Lusztig also defined an equivalence relation on Irr(W), each equivalence class is called a double cell, Irr<sup>sp</sup>(W) ↔ {double cells}.
- There is a *j*-induction (also called the truncated induction) operation,  $j_{W(\Lambda)}^W$ : {special representations  $W(\Lambda)$ }  $\rightarrow$  {Springer representations of W}.

#### Definition

For a nilpotent orbit  $\mathcal{O} \in Nil(\mathfrak{g})$ .

•  $\operatorname{Irr}^{\operatorname{sp}}(W(\Lambda); \mathcal{O}) = \{ \sigma \in \operatorname{Irr}(W(\Lambda)) \mid \sigma \text{ is special}, j_{W(\Lambda)}^{W}(\sigma) = \sigma_{\mathcal{O}} \};$ 

#### Definition

For a nilpotent orbit  $\mathcal{O} \in \text{Nil}(\mathfrak{g})$ .

- $\operatorname{Irr}^{\operatorname{sp}}(W(\Lambda); \mathcal{O}) = \{ \sigma \in \operatorname{Irr}(W(\Lambda)) \mid \sigma \text{ is special}, j_{W(\Lambda)}^{W}(\sigma) = \sigma_{\mathcal{O}} \};$
- $\operatorname{Irr}(W(\Lambda); \mathcal{O}) = \{ \sigma \in \operatorname{Irr}(W(\Lambda); \mathcal{O}), \sigma \approx \sigma_0, \}$

#### Definition

For a nilpotent orbit  $\mathcal{O} \in \text{Nil}(\mathfrak{g})$ .

- $\operatorname{Irr}^{\operatorname{sp}}(W(\Lambda); \mathcal{O}) = \{ \sigma \in \operatorname{Irr}(W(\Lambda)) \mid \sigma \text{ is special}, j_{W(\Lambda)}^{W}(\sigma) = \sigma_{\mathcal{O}} \};$
- $\operatorname{Irr}(W(\Lambda); \mathcal{O}) = \{ \sigma \in \operatorname{Irr}^{\operatorname{sp}}(W(\Lambda); \mathcal{O}), \sigma \approx \sigma_0, \}$

 $Irr(W(\Lambda); \mathcal{O})$  is a union of several double cells.

# Coherent continuation representations

 $\mathcal{R}_{hol}(G(\mathbb{C}))$ : Grothendieck ring of finite-dimensional holomorphic representations of  $G(\mathbb{C})$ .

# Coherent continuation representations

 $\mathcal{R}_{hol}(G(\mathbb{C}))$ : Grothendieck ring of finite-dimensional holomorphic representations of  $G(\mathbb{C})$ .

 $\mathcal{K}(G)$ : Grothendieck group of  $\operatorname{Rep}(G)$  which has a  $\mathcal{R}_{\operatorname{hol}}(G(\mathbb{C}))$  module structure via tensor product.

# Coherent continuation representations

 $\mathcal{R}_{hol}(G(\mathbb{C}))$ : Grothendieck ring of finite-dimensional holomorphic representations of  $G(\mathbb{C})$ .

 $\mathcal{K}(G)$ : Grothendieck group of  $\operatorname{Rep}(G)$  which has a  $\mathcal{R}_{\operatorname{hol}}(\operatorname{G}(\mathbb{C}))$  module structure via tensor product.

#### Coherent family

Let  $\Lambda = \nu + Q_{\iota} \subseteq {}^{a}\mathfrak{h}^{*}$ , a  $\Lambda$ -coherent family is a map

$$\Phi: \Lambda \to \mathcal{K}(G)$$
,

#### such that:

- for any  $\nu \in \Lambda$ ,  $\Phi(\nu) \in \mathcal{K}_{\nu}(G)$ ;
- for any  $F \in \mathcal{R}_{hol}(G(\mathbb{C}))$  and  $\nu \in \Lambda$ ,  $F \cdot (\Phi(\nu)) = \sum_{\mu \in \Delta(F)} \Phi(\nu + \mu)$  (where  $\Delta(F)$  is the set of weights of F counted multiplicity).

#### Coherent continuation representation

Let  $\mathrm{Coh}_{\Lambda}(\mathcal{K}(G))$  denote the complex vector space of all coherent families on  $\Lambda$ . It is a representation of  $W(\Lambda)$  under the action

$$(w\cdot\Psi)(\nu)=\Psi(w^{-1}\nu),$$

for any  $w \in W(\Lambda)$ ,  $\Psi \in Coh_{\Lambda}(\mathcal{K}(G))$ ,  $\nu \in \Lambda$ .

#### Coherent continuation representation

Let  $\mathrm{Coh}_{\Lambda}(\mathcal{K}(G))$  denote the complex vector space of all coherent families on  $\Lambda$ . It is a representation of  $W(\Lambda)$  under the action

$$(w\cdot\Psi)(\nu)=\Psi(w^{-1}\nu),$$

for any  $w \in W(\Lambda)$ ,  $\Psi \in \mathrm{Coh}_{\Lambda}(\mathcal{K}(G))$ ,  $\nu \in \Lambda$ .

For any  $\nu \in \Lambda$  we have the evaluation map

ev: 
$$\operatorname{Coh}_{\Lambda}(\mathcal{K}(G)) \longrightarrow \mathcal{K}_{\nu}$$
  
 $\Psi \longmapsto \Psi(\nu)$ 

#### Coherent continuation representation

Let  $\mathrm{Coh}_{\Lambda}(\mathcal{K}(G))$  denote the complex vector space of all coherent families on  $\Lambda$ . It is a representation of  $W(\Lambda)$  under the action

$$(w\cdot\Psi)(\nu)=\Psi(w^{-1}\nu),$$

for any  $w \in W(\Lambda)$ ,  $\Psi \in \mathrm{Coh}_{\Lambda}(\mathcal{K}(G))$ ,  $\nu \in \Lambda$ .

For any  $\nu \in \Lambda$  we have the evaluation map

ev: 
$$\operatorname{Coh}_{\Lambda}(\mathcal{K}(G)) \longrightarrow \mathcal{K}_{\nu}$$
  
 $\Psi \longmapsto \Psi(\nu)$ 

#### Theorem (Schmid, Zuckerman)

ev is surjective for each  $\nu \in \Lambda$ , and bijective when  $\nu$  is regular.

## Theorem(Vogan's green book)

Suppose  $\nu \in {}^a\mathfrak{h}^*$  dominant,  $M \in \mathcal{K}_{\nu}(G)$  is an irreducible representation. Then there exist a unique coherent family  $\overline{\Psi}$  characterised by the following properties:

- $\overline{\Psi}(\nu) = M$ ;
- If  $\mu$  is dominant, then  $\overline{\Psi}(\mu)$  is irreducible or zero.

## Theorem(Vogan's green book)

Suppose  $\nu \in {}^a\mathfrak{h}^*$  dominant,  $M \in \mathcal{K}_{\nu}(G)$  is an irreducible representation. Then there exist a unique coherent family  $\overline{\Psi}$  characterised by the following properties:

- $\overline{\Psi}(\nu) = M$ ;
- If  $\mu$  is dominant, then  $\overline{\Psi}(\mu)$  is irreducible or zero.

There is a basis  $\mathcal{B} = \{\overline{\Psi_i}\}\$  of  $\mathrm{Coh}_\Lambda(\mathcal{K}(G))$  such that for any regular dominant  $\mu$ ,  $\overline{\Psi_i}(\mu)$  is an irreducible representation with infinitesimal character  $\mu$ .

## Theorem(Vogan's green book)

Suppose  $\nu \in {}^a\mathfrak{h}^*$  dominant,  $M \in \mathcal{K}_{\nu}(G)$  is an irreducible representation. Then there exist a unique coherent family  $\overline{\Psi}$  characterised by the following properties:

- $\overline{\Psi}(\nu) = M$ ;
- If  $\mu$  is dominant, then  $\overline{\Psi}(\mu)$  is irreducible or zero.

There is a basis  $\mathcal{B} = \{\overline{\Psi_i}\}$  of  $\mathrm{Coh}_\Lambda(\mathcal{K}(G))$  such that for any regular dominant  $\mu$ ,  $\overline{\Psi_i}(\mu)$  is an irreducible representation with infinitesimal character  $\mu$ .

We call  $(Coh_{\Lambda}(\mathcal{K}(G)), \mathcal{B})$  a basal representation.

## Theorem(Vogan's green book)

Suppose  $\nu \in {}^a\mathfrak{h}^*$  dominant,  $M \in \mathcal{K}_{\nu}(G)$  is an irreducible representation. Then there exist a unique coherent family  $\overline{\Psi}$  characterised by the following properties:

- $\overline{\Psi}(\nu) = M$ ;
- If  $\mu$  is dominant, then  $\overline{\Psi}(\mu)$  is irreducible or zero.

There is a basis  $\mathcal{B} = \{\overline{\Psi_i}\}$  of  $\mathrm{Coh}_\Lambda(\mathcal{K}(G))$  such that for any regular dominant  $\mu$ ,  $\overline{\Psi_i}(\mu)$  is an irreducible representation with infinitesimal character  $\mu$ .

We call  $(Coh_{\Lambda}(\mathcal{K}(G)), \mathcal{B})$  a basal representation.

We can also define basal subrepresentations, which are subrepresentations of  $\mathrm{Coh}_{\Lambda}(\mathcal{K}(G))$  spanned by a subset of  $\mathcal{B}$ .

• For any subset  $\mathcal{S}$  of  $\mathrm{Coh}_{\Lambda}(\mathcal{K}(G))$ , denote by  $\langle \mathcal{S} \rangle$  the minimal basal subrepresentation containing  $\mathcal{S}$ .

- For any subset S of  $Coh_{\Lambda}(\mathcal{K}(G))$ , denote by  $\langle S \rangle$  the minimal basal subrepresentation containing S.
- Define an equivalence relation on  $\mathcal{B}$  by:  $\overline{\Psi_i} \approx \overline{\Psi_j}$  if and only if  $\langle \overline{\Psi_i} \rangle = \langle \overline{\Psi_j} \rangle$ .

- For any subset  $\mathcal{S}$  of  $\mathrm{Coh}_{\Lambda}(\mathcal{K}(G))$ , denote by  $\langle \mathcal{S} \rangle$  the minimal basal subrepresentation containing  $\mathcal{S}$ .
- Define an equivalence relation on  $\mathcal{B}$  by:  $\overline{\Psi_i} \approx \overline{\Psi_j}$  if and only if  $\langle \overline{\Psi_i} \rangle = \langle \overline{\Psi_j} \rangle$ .
- ullet The equivalence classes of  ${\cal B}$  under this relation are called Harish-Chandra cells.

- For any subset S of  $Coh_{\Lambda}(\mathcal{K}(G))$ , denote by  $\langle S \rangle$  the minimal basal subrepresentation containing S.
- Define an equivalence relation on  $\mathcal{B}$  by:  $\overline{\Psi_i} \approx \overline{\Psi_j}$  if and only if  $\langle \overline{\Psi_i} \rangle = \langle \overline{\Psi_j} \rangle$ .
- ullet The equivalence classes of  ${\cal B}$  under this relation are called Harish-Chandra cells.

#### Cell representations

Let  $\mathcal C$  be a cell in  $\mathcal B$  and put  $\overline{\mathcal C}=\langle \mathcal C\rangle\cap \mathcal B$ . Define the cell representation attached to  $\mathcal C$  by

$$\mathrm{Coh}_{\Lambda}(\mathcal{K}(\mathit{G}))(\mathcal{C}) := \left\langle \overline{\mathcal{C}} \right\rangle / \left\langle \overline{\mathcal{C}} \backslash \mathcal{C} \right\rangle$$

- There is also a coherent continuation theory  $(\operatorname{Coh}_{\Lambda}(\mathcal{K}(\mathfrak{g},\mathfrak{b})))$  for highest weight representations of complex reductive Lie algebra  $\mathfrak{g}$ , similarly there is a notion of two-side cells (Kazhdan-Lusztig calls), which is 1-1 correspondence with special representations in  $\operatorname{Irr}(W(\Lambda))$ .
- Every Harish-Chandra cell corresponds to a Kazhdan-Lusztig cell (via comparing their annihilator ideals); furthermore, we have a map  $\{Harish-Chandra\ cells\} \to \operatorname{Irr}^{sp}(W(\Lambda)),\ \mathcal{C} \mapsto \sigma_{\mathcal{C}}.$
- In fact every representation in a Harish-Chandra cell  $\mathcal C$  has the same complex associated variety  $\overline{\mathcal O_{\mathcal C}}$ , here  $\mathcal O_{\mathcal C}$  is the nilpotent orbit corresponds to  $j_{W(\Lambda)}^W \sigma_{\mathcal C}$ .

## Conjecture

The set  $\{\sigma \in \operatorname{Irr}(W(\Lambda)) \mid \sigma \text{ occurs in } \operatorname{Coh}_{\Lambda}(\mathcal{K}(G))(\mathcal{C})\}$  is contained in the double cell containing the special representation  $\sigma_{\mathcal{C}}$ .

# BMSZ's proof of the counting formula

BMSZ proved that this conjecture holds under some technical assumptions ( $W(\Lambda)$ ) has no simple factor of type  $F_4$ ,  $E_6$ ,  $E_7$ , or  $E_8$ , and G is linear or isomorphic to a real metaplectic group).

# BMSZ's proof of the counting formula

BMSZ proved that this conjecture holds under some technical assumptions ( $W(\Lambda)$ ) has no simple factor of type  $F_4$ ,  $E_6$ ,  $E_7$ , or  $E_8$ , and G is linear or isomorphic to a real metaplectic group).

$$\begin{split} \sharp(\operatorname{Irr}_{\nu}(G)) &= \dim \mathcal{K}_{\nu}(G) \xrightarrow{\underline{Vogan}} \dim \operatorname{Coh}_{\Lambda}(\mathcal{K}(G))_{W_{\nu}} \\ &= [1_{W_{\nu}} : \operatorname{Coh}_{\Lambda}(\mathcal{K}(G))] \\ &= \sum_{\sigma \in \operatorname{Irr}(W(\Lambda))} [1_{W_{\nu}} : \sigma] \cdot [\sigma : \operatorname{Coh}_{\Lambda}(\mathcal{K}(G))], \end{split}$$

# BMSZ's proof of the counting formula

BMSZ proved that this conjecture holds under some technical assumptions ( $W(\Lambda)$ ) has no simple factor of type  $F_4$ ,  $E_6$ ,  $E_7$ , or  $E_8$ , and G is linear or isomorphic to a real metaplectic group).

$$\begin{split} \sharp(\operatorname{Irr}_{\nu}(G)) &= \dim \mathcal{K}_{\nu}(G) \xrightarrow{\underline{Vogan}} \dim \operatorname{Coh}_{\Lambda}(\mathcal{K}(G))_{W_{\nu}} \\ &= [1_{W_{\nu}} : \operatorname{Coh}_{\Lambda}(\mathcal{K}(G))] \\ &= \sum_{\sigma \in \operatorname{Irr}(W(\Lambda))} [1_{W_{\nu}} : \sigma] \cdot [\sigma : \operatorname{Coh}_{\Lambda}(\mathcal{K}(G))], \end{split}$$

If S is a Zariski closed  $G(\mathbb{C})$ -stable subset of  $Nil(\mathfrak{g})$ , then

$$\sharp(\operatorname{Irr}_{\nu,S}(G)) = \sum_{\sigma \in \operatorname{Irr}(W(\Lambda))} [1_{W_{\nu}} : \sigma] \cdot [\sigma : \operatorname{Coh}_{\Lambda,S}(\mathcal{K}(G))]$$

$$\xrightarrow{\text{Conjecture}} \sum_{\sigma \in \operatorname{Irr}_{S}(W(\Lambda))} [1_{W_{\nu}} : \sigma] \cdot [\sigma : \operatorname{Coh}_{\Lambda}(\mathcal{K}(G))].$$

# Classical groups considered

| Label ⋆                                                 | Classical Lie Group <i>G</i>                                                                    | Complex Lie Group $\mathrm{G}(\mathbb{C})$                                                                |
|---------------------------------------------------------|-------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|
| $\mathcal{A}^{\mathbb{R}}$                              | $\operatorname{GL}_n(\mathbb{R})$                                                               | $\mathrm{GL}_n(\mathbb{C})$                                                                               |
| $oldsymbol{A}^{\mathbb{H}}$ $oldsymbol{A}^{\mathbb{C}}$ | $\operatorname{GL}_{rac{n}{2}}(\mathbb{H})$ ( $n$ is even) $\operatorname{GL}_{n}(\mathbb{C})$ | $\operatorname{GL}_n(\mathbb{C})$ $\operatorname{GL}_n(\mathbb{C}) 	imes \operatorname{GL}_n(\mathbb{C})$ |
| A                                                       | U(p,q)                                                                                          | $\operatorname{GL}_n(\mathbb{C}) \wedge \operatorname{GL}_n(\mathbb{C})$                                  |

# Classical groups considered

| Label ⋆                    | Classical Lie Group <i>G</i>                                      | Complex Lie Group $\mathrm{G}(\mathbb{C})$                  |
|----------------------------|-------------------------------------------------------------------|-------------------------------------------------------------|
| $\mathcal{A}^{\mathbb{R}}$ | $\mathrm{GL}_n(\mathbb{R})$                                       | $\mathrm{GL}_n(\mathbb{C})$                                 |
| ${A}^{\mathbb{H}}$         | $\operatorname{GL}_{\frac{n}{2}}(\mathbb{H})$ ( <i>n</i> is even) | $\mathrm{GL}_n(\mathbb{C})$                                 |
| $\mathcal{A}^{\mathbb{C}}$ | $^{2}$ $\mathrm{GL}_{n}(\mathbb{C})$                              | $\mathrm{GL}_n(\mathbb{C}) 	imes \mathrm{GL}_n(\mathbb{C})$ |
| A                          | $\mathrm{U}(p,q)$                                                 | $\operatorname{GL}_n(\mathbb{C})$ $(n=p+q)$                 |

#### Identification:

$$\begin{split} {}^{a}\mathfrak{h}^{*} &= \begin{cases} \mathbb{C}^{n}, & \text{if } \star \in \{A^{\mathbb{R}}, A^{\mathbb{H}}, A\}; \\ \mathbb{C}^{n} \times \mathbb{C}^{n}, & \text{if } \star = A^{\mathbb{C}}. \end{cases} \\ Q_{\iota} &= \begin{cases} \mathbb{Z}^{n} \subseteq \mathbb{C}^{n} = {}^{a}\mathfrak{h}^{*}, & \text{if } \star \in \{A^{\mathbb{R}}, A^{\mathbb{H}}, A\}; \\ \mathbb{Z}^{n} \times \mathbb{Z}^{n} \subseteq \mathbb{C}^{n} \times \mathbb{C}^{n} = {}^{a}\mathfrak{h}^{*}, & \text{if } \star = A^{\mathbb{C}}, \end{cases} \end{split}$$

# Painted Young Diagram (type $A^{\mathbb{R}}$ )

A painting on a Young diagram  $\iota$  of type  $A^{\mathbb{R}}$  is a map (we place a symbol in each box)

$$\mathcal{P}: \mathrm{Box}(\iota) \to \{\bullet, c, d\}$$

# Painted Young Diagram (type $A^{\mathbb{R}}$ )

A painting on a Young diagram  $\iota$  of type  $A^{\mathbb{R}}$  is a map (we place a symbol in each box)

$$\mathcal{P}: \mathrm{Box}(\iota) \to \{\bullet, c, d\}$$

With the following properties

• if we remove the boxes painted with  $\{d\}$ ,  $\{c, d\}$ , the remainder still constitutes a Young diagram;

# Painted Young Diagram (type $A^{\mathbb{R}}$ )

A painting on a Young diagram  $\iota$  of type  $A^{\mathbb{R}}$  is a map (we place a symbol in each box)

$$\mathcal{P}: \mathrm{Box}(\iota) \to \{\bullet, c, d\}$$

- if we remove the boxes painted with  $\{d\}$ ,  $\{c, d\}$ , the remainder still constitutes a Young diagram;
- every column of ι has at most one box painted with c, and has at most one box painted with d;

# Painted Young Diagram (type $A^{\mathbb{R}}$ )

A painting on a Young diagram  $\iota$  of type  $A^{\mathbb{R}}$  is a map (we place a symbol in each box)

$$\mathcal{P}: \mathrm{Box}(\iota) \to \{\bullet, c, d\}$$

- if we remove the boxes painted with  $\{d\}$ ,  $\{c, d\}$ , the remainder still constitutes a Young diagram;
- every column of ι has at most one box painted with c, and has at most one box painted with d;
- ullet every row of  $\iota$  has an even number of boxes painted with ullet.

# Painted Young Diagram (type $A^{\mathbb{R}}$ )

A painting on a Young diagram  $\iota$  of type  $A^{\mathbb{R}}$  is a map (we place a symbol in each box)

$$\mathcal{P}: \mathrm{Box}(\iota) \to \{\bullet, c, d\}$$

With the following properties

- if we remove the boxes painted with  $\{d\}$ ,  $\{c, d\}$ , the remainder still constitutes a Young diagram;
- every column of ι has at most one box painted with c, and has at most one box painted with d;
- ullet every row of  $\iota$  has an even number of boxes painted with ullet.

A painted Young diagram is a pair  $(\iota, \mathcal{P})$  consisting of a Young diagram  $\iota$  and a painting  $\mathcal{P}$  on  $\iota$ . Denote by  $P_{\mathcal{A}^{\mathbb{R}}}(\iota)$  the set of paintings on  $\iota$  of type  $\mathcal{A}^{\mathbb{R}}$ .

# Example

The following represents a painted Young diagram.

| • | • | С | d |  |
|---|---|---|---|--|
| • | • | d |   |  |
| С |   |   |   |  |
| d |   |   |   |  |

# Example

The following represents a painted Young diagram.

| • | • | С | d |  |
|---|---|---|---|--|
| • | • | d |   |  |
| С |   |   |   |  |
| d |   |   |   |  |

Each of the following does not represent a painted Young diagram.

For a Young diagram  $\iota$ , and a partition  $[d_1, \cdots, d_k]$  of  $|\iota|$ . An assignment of type  $[d_1, d_2, \cdots, d_N]$  on  $\iota$  is a map

$$\mathcal{Q}: \mathrm{Box}(\iota) \to \{1, 2, \cdots, N\}$$

For a Young diagram  $\iota$ , and a partition  $[d_1, \dots, d_k]$  of  $|\iota|$ . An assignment of type  $[d_1, d_2, \dots, d_N]$  on  $\iota$  is a map

$$Q: \operatorname{Box}(\iota) \to \{1, 2, \cdots, N\}$$

With the following properties

• for each  $i \in \{1, 2, \dots, N\}$ , the preimage  $\mathcal{P}^{-1}(i)$  has exactly  $d_i$  elements;

For a Young diagram  $\iota$ , and a partition  $[d_1, \dots, d_k]$  of  $|\iota|$ . An assignment of type  $[d_1, d_2, \dots, d_N]$  on  $\iota$  is a map

$$\mathcal{Q}: \mathrm{Box}(\iota) \to \{1, 2, \cdots, \textit{N}\}$$

- for each  $i \in \{1, 2, \dots, N\}$ , the preimage  $\mathcal{P}^{-1}(i)$  has exactly  $d_i$  elements;
- for each  $1 \le n \le N$ , if we remove the boxes assigned with  $\{n+1, \cdots, N\}$ , the reminder still constitutes a Young diagram;

For a Young diagram  $\iota$ , and a partition  $[d_1, \dots, d_k]$  of  $|\iota|$ . An assignment of type  $[d_1, d_2, \dots, d_N]$  on  $\iota$  is a map

$$Q: \operatorname{Box}(\iota) \to \{1, 2, \cdots, N\}$$

- for each  $i \in \{1, 2, \dots, N\}$ , the preimage  $\mathcal{P}^{-1}(i)$  has exactly  $d_i$  elements;
- for each  $1 \le n \le N$ , if we remove the boxes assigned with  $\{n+1,\cdots,N\}$ , the reminder still constitutes a Young diagram;
- each positive integer occurs at most once in each column.

For a Young diagram  $\iota$ , and a partition  $[d_1, \dots, d_k]$  of  $|\iota|$ . An assignment of type  $[d_1, d_2, \dots, d_N]$  on  $\iota$  is a map

$$Q: \operatorname{Box}(\iota) \to \{1, 2, \cdots, N\}$$

With the following properties

- for each  $i \in \{1, 2, \dots, N\}$ , the preimage  $\mathcal{P}^{-1}(i)$  has exactly  $d_i$  elements;
- for each  $1 \le n \le N$ , if we remove the boxes assigned with  $\{n+1, \cdots, N\}$ , the reminder still constitutes a Young diagram;
- each positive integer occurs at most once in each column.

An assigned Young diagram of type  $[d_1, d_2, \cdots, d_N]$  is a pair  $(\iota, \mathcal{Q})$  consisting of a Young diagram  $\iota$  and an assignment  $\mathcal{Q}$  of type  $[d_1, d_2, \cdots, d_N]$  on  $\iota$ . Denote by  $A_{[d_1, d_2, \cdots, d_N]}(\iota)$  the set of all assignments on  $\iota$  of type  $[d_1, d_2, \cdots, d_N]$ .

# Counting result for $GL_n(\mathbb{R})$ : The integral case

 $G = \mathrm{GL}_n(\mathbb{R})$   $(n \in \mathbb{N})$ .  $\mathcal{O}$  is a nilpotent orbits in  $\mathfrak{g}$ , denote the corresponding Young diagram by  $\iota(\mathcal{O})$ .

If  $\nu \in {}^a \mathfrak{h}^* = \mathbb{C}^n$  is integral, its coordinates can be permuted such that

$$\nu = (\underbrace{\lambda_1, \cdots, \lambda_1}_{d_1}, \underbrace{\lambda_2, \cdots, \lambda_2}_{d_2}, \cdots, \underbrace{\lambda_k, \cdots, \lambda_k}_{d_k}) \in \mathbb{C}^n,$$

where  $[d_1, d_2, \cdots, d_k]$  is a partition of n, and the  $\lambda_i \in \mathbb{C}$  satisfy the condition  $\lambda_i - \lambda_i \in \mathbb{Z} \setminus \{0\}$  for any  $i \neq j$ .

# Counting result for $GL_n(\mathbb{R})$ : The integral case

 $G = \mathrm{GL}_n(\mathbb{R})$   $(n \in \mathbb{N})$ .  $\mathcal{O}$  is a nilpotent orbits in  $\mathfrak{g}$ , denote the corresponding Young diagram by  $\iota(\mathcal{O})$ .

If  $\nu \in {}^a \mathfrak{h}^* = \mathbb{C}^n$  is integral, its coordinates can be permuted such that

$$\nu = (\underbrace{\lambda_1, \cdots, \lambda_1}_{d_1}, \underbrace{\lambda_2, \cdots, \lambda_2}_{d_2}, \cdots, \underbrace{\lambda_k, \cdots, \lambda_k}_{d_k}) \in \mathbb{C}^n,$$

where  $[d_1, d_2, \cdots, d_k]$  is a partition of n, and the  $\lambda_i \in \mathbb{C}$  satisfy the condition  $\lambda_i - \lambda_i \in \mathbb{Z} \setminus \{0\}$  for any  $i \neq j$ .

#### Theorem

$$\sharp(\operatorname{Irr}_{\nu}(\operatorname{GL}_{n}(\mathbb{R});\mathcal{O}))=\sharp(\operatorname{P}_{\mathcal{A}^{\mathbb{R}}}(\iota(\mathcal{O})))\cdot\sharp(\operatorname{A}_{[d_{1},\cdots,d_{\nu}]}(\iota(\mathcal{O}))).$$

## Sketch of the calculation

Coherent continuation representations can be explicitly computed via the Hecke algebra module structure described by Lusztig and Vogan.

$$\mathrm{Coh}_{\Lambda}(\mathcal{K}(\mathrm{GL}_n(\mathbb{R}))) = \bigoplus_{2r+i \leq n} \mathrm{Ind}_{\mathrm{W}_r \times \mathrm{S}_i \times \mathrm{S}_{n-2r-i}}^{\mathrm{S}_n} \epsilon \otimes 1 \otimes 1.$$

## Sketch of the calculation

Coherent continuation representations can be explicitly computed via the Hecke algebra module structure described by Lusztig and Vogan.

$$\mathrm{Coh}_{\Lambda}(\mathcal{K}(\mathrm{GL}_n(\mathbb{R}))) = \bigoplus_{2r+i \leq n} \mathrm{Ind}_{\mathrm{W}_r \times \mathrm{S}_i \times \mathrm{S}_{n-2r-i}}^{\mathrm{S}_n} \epsilon \otimes 1 \otimes 1.$$

The computation makes essential use of Pieri's rule and Frobenius reciprocity.

$$\begin{split} \sharp(\operatorname{Irr}_{\nu}(\operatorname{GL}_{n}(\mathbb{R});\mathcal{O})) &= [1_{W_{\nu}} : \sigma_{\mathcal{O}}] \cdot [\sigma_{\mathcal{O}} : \operatorname{Coh}_{\Lambda}(\mathcal{K}(\operatorname{GL}_{n}(\mathbb{R})))] \\ &= [\sigma_{\mathcal{O}} : \operatorname{Ind}_{W_{\nu}}^{W} 1_{W_{\nu}}] \cdot [\sigma_{\mathcal{O}} : \operatorname{Coh}_{\Lambda}(\mathcal{K}(\operatorname{GL}_{n}(\mathbb{R})))] \\ &= \sharp \left( \operatorname{A}_{[d_{1}, \cdots, d_{k}]}(\iota(\mathcal{O})) \right) \cdot \sharp \left( \operatorname{P}_{A^{\mathbb{R}}}(\iota(\mathcal{O})) \right). \end{split}$$

# Example: Minimal representations

Let  $\nu \in {}^a \mathfrak{h}^*$  be a regular integral infinitesimal character, and let  $\mathcal{O}_{\min}$  denote the minimal nilpotent orbit.

There are n-1 assignments of type  $[\underbrace{1,1,\ldots,1}_n]$  on it, given by



# Example: Minimal representations

Let  $\nu \in {}^a \mathfrak{h}^*$  be a regular integral infinitesimal character, and let  $\mathcal{O}_{\min}$  denote the minimal nilpotent orbit.

There are n-1 assignments of type  $[\underbrace{1,1,\ldots,1}_n]$  on it, given by

| 1           | i+1 | for | 1 < | i < | n — | 1. |
|-------------|-----|-----|-----|-----|-----|----|
| 2           |     |     |     |     | •   |    |
| ÷           |     |     |     |     |     |    |
| i           |     |     |     |     |     |    |
| <i>i</i> +2 |     |     |     |     |     |    |
| :           |     |     |     |     |     |    |
| n           |     |     |     |     |     |    |

Since there are 4 distinct paintings on  $\iota_{\mathcal{O}}$ , we obtain exactly 4(n-1) minimal representations with the fixed infinitesimal character  $\nu$ .

# Non-integral case

For an arbitrary  $\nu \in {}^{a}\mathfrak{h}^{*}$ , its coordinates can be permuted such that

$$u = (\lambda_1, \dots, \lambda_r) \in \mathbb{C}^n,$$

$$\lambda_i = (\underbrace{\lambda_{i,1}, \dots, \lambda_{i,1}}_{d_{i,1}}, \dots, \underbrace{\lambda_{i,k_i}, \dots, \lambda_{i,k_i}}_{d_{i,k_i}}) \in \mathbb{C}^{e_i} \quad (e_i \ge 1),$$

where each  $\lambda_i$  is integral but  $(\lambda_i, \lambda_j) \in \mathbb{C}^{e_i + e_j}$  is not integral for any  $i \neq j$ ,  $[d_{i,1}, \cdots d_{i,k_i}]$  is a partition of  $e_i$ , and the condition  $\lambda_{i,p} - \lambda_{i,q} \in \mathbb{Z} \setminus \{0\}$  holds for any  $p \neq q$ .

# Non-integral case

For an arbitrary  $\nu \in {}^a \mathfrak{h}^*$ , its coordinates can be permuted such that

$$u = (\lambda_1, \dots, \lambda_r) \in \mathbb{C}^n,$$

$$\lambda_i = (\underbrace{\lambda_{i,1}, \dots, \lambda_{i,1}}_{d_{i,1}}, \dots, \underbrace{\lambda_{i,k_i}, \dots, \lambda_{i,k_i}}_{d_{i,k_i}}) \in \mathbb{C}^{e_i} \quad (e_i \ge 1),$$

where each  $\lambda_i$  is integral but  $(\lambda_i, \lambda_j) \in \mathbb{C}^{e_i + e_j}$  is not integral for any  $i \neq j$ ,  $[d_{i,1}, \cdots d_{i,k_i}]$  is a partition of  $e_i$ , and the condition  $\lambda_{i,p} - \lambda_{i,q} \in \mathbb{Z} \setminus \{0\}$  holds for any  $p \neq q$ .

#### Theorem

$$\sharp(\operatorname{Irr}_{\nu}(\mathcal{G};\mathcal{O})) = \sum_{\substack{(\iota_{1},\cdots,\iota_{r}) \in \operatorname{YD}_{e_{1}} \times \cdots \times \operatorname{YD}_{e_{r}} \\ \iota_{1} \stackrel{r}{\sqcup} \iota_{2} \cdots \stackrel{r}{\sqcup} \iota_{r} = \iota(\mathcal{O})}} \prod_{i=1}^{r} \sharp(\operatorname{Irr}_{\boldsymbol{\lambda}_{i}}(\operatorname{GL}_{e_{i}}(\mathbb{R});\mathcal{O}_{\iota_{i}}))$$

# Key observation

There are natural isomorphism of  $W(\Lambda)$ -representations:

$$\begin{array}{c} \operatorname{Coh}_{\Lambda_1}(\mathcal{K}(\operatorname{GL}_{e_1}(\mathbb{R}))) \otimes \cdots \otimes \operatorname{Coh}_{\Lambda_r}(\mathcal{K}(\operatorname{GL}_{e_r}(\mathbb{R}))) \to \operatorname{Coh}_{\Lambda}(\mathcal{K}(\operatorname{GL}_n(\mathbb{R}))) \\ \overline{\psi_1} \otimes \cdots \otimes \overline{\psi_r} \mapsto \overline{\psi} \end{array}$$

where  $\overline{\Psi}(\mu) = \operatorname{Ind}_{P}^{\operatorname{GL}_{n}(\mathbb{R})} \overline{\Psi_{1}}(\mu) \otimes \cdots \otimes \overline{\Psi_{r}}(\mu)$  is still irreducible for regular dominant  $\mu \in {}^{a}\mathfrak{h}^{*}$ .

# Painted Young diagram (type A)

A painting on a Young diagram  $\iota$  of type A is a map (we place a symbol in each box)

$$\mathcal{P}: \mathrm{Box}(\iota) \to \{\bullet, s, r\}$$

# Painted Young diagram (type A)

A painting on a Young diagram  $\iota$  of type A is a map (we place a symbol in each box)

$$\mathcal{P}: \mathrm{Box}(\iota) \to \{\bullet, s, r\}$$

With the following properties

• if we remove the boxes painted with  $\{s\}$ ,  $\{s, r\}$ , the remainder still constitutes a Young diagram;

## Painted Young diagram (type A)

A painting on a Young diagram  $\iota$  of type A is a map (we place a symbol in each box)

$$\mathcal{P}: \mathrm{Box}(\iota) \to \{\bullet, s, r\}$$

- if we remove the boxes painted with  $\{s\}, \{s, r\}$ , the remainder still constitutes a Young diagram;
- every row of ι has at most one box painted with c, and has at most one box painted with d;

# Painted Young diagram (type A)

A painting on a Young diagram  $\iota$  of type A is a map (we place a symbol in each box)

$$\mathcal{P}: \mathrm{Box}(\iota) \to \{\bullet, s, r\}$$

- if we remove the boxes painted with  $\{s\}, \{s, r\}$ , the remainder still constitutes a Young diagram;
- every row of ι has at most one box painted with c, and has at most one box painted with d;
- ullet every row of  $\iota$  has an even number of boxes painted with ullet.

# Painted Young diagram (type A)

A painting on a Young diagram  $\iota$  of type A is a map (we place a symbol in each box)

$$\mathcal{P}: \operatorname{Box}(\iota) \to \{\bullet, s, r\}$$

With the following properties

- if we remove the boxes painted with  $\{s\}$ ,  $\{s, r\}$ , the remainder still constitutes a Young diagram;
- every row of ι has at most one box painted with c, and has at most one box painted with d;
- ullet every row of  $\iota$  has an even number of boxes painted with ullet.

A painted Young diagram is a pair  $(\iota, \mathcal{P})$  consisting of a Young diagram  $\iota$  and a painting  $\mathcal{P}$  on  $\iota$ . Denote by  $P_A(\iota)$  the set of paintings on  $\iota$  of type A.

Let  $\iota$  be a Young diagram and  $\mathcal{P}$  be a painting on  $\iota$  of type A. Define the signature of  $\mathcal{P}$  to be the pair of non-negative integers

$$(p_{\mathcal{P}},q_{\mathcal{P}}):=\left(\frac{\sharp(\mathcal{P}^{-1}(\bullet))}{2}+\sharp(\mathcal{P}^{-1}(s)),\frac{\sharp(\mathcal{P}^{-1}(\bullet))}{2}+\sharp(\mathcal{P}^{-1}(r))\right),$$

for every  $p,q\in\mathbb{N}$  such that  $p+q=|\iota|$ , we define

$$\mathrm{P}_{A}^{p,q}(\iota) := \{ \mathcal{P} \in \mathrm{P}_{A}(\iota) \, | \, (p_{\mathcal{P}}, q_{\mathcal{P}}) = (p, q) \}.$$

# Counting result for U(p, q): The integral case

 $G = \mathrm{U}(p,q)$   $(p,q \in \mathbb{N})$ .  $\mathcal{O}$  is a nilpotent orbit in  $\mathfrak{g}$ , denote the corresponding Young diagram by  $\iota(\mathcal{O})$ .

If  $\nu \in {}^a\mathfrak{h}^* = \mathbb{C}^n$  (n=p+q) is integral, that is, the differences of its coordinates are integral, then its coordinates can be permuted such that

$$\nu = (\underbrace{\lambda_1, \cdots, \lambda_1}_{d_1}, \underbrace{\lambda_2, \cdots, \lambda_2}_{d_2}, \cdots, \underbrace{\lambda_k, \cdots, \lambda_k}_{d_k}) \in \mathbb{C}^n,$$

where  $[d_1, d_2, \cdots, d_k]$  is a partition of n, and the  $\lambda_i \in \mathbb{C}$  satisfy the condition  $\lambda_i - \lambda_j \in \mathbb{Z} \setminus \{0\}$  for any  $i \neq j$ .

#### Theorem

If 
$$\lambda_1 \in \frac{n-1}{2} + \mathbb{Z}$$
, then

$$\sharp(\operatorname{Irr}_{\nu}(\operatorname{U}(p,q);\mathcal{O}))=\sharp\left(\operatorname{P}_{A}^{p,q}(\iota(\mathcal{O}))\right)\cdot\sharp\left(\operatorname{A}_{[d_{1},\cdots,d_{k}]}(\iota(\mathcal{O}))\right).$$

If 
$$\lambda_1 \in \frac{n}{2} + \mathbb{Z}$$
, then

$$\sharp(\operatorname{Irr}_{\nu}(\operatorname{U}(p,q);\mathcal{O}))=\sharp\left(\operatorname{A}_{[d_{1},\cdots,d_{k}]}(\iota(\mathcal{O}))\right)\cdot\delta_{p,q}.$$

Otherwise, 
$$\sharp(\operatorname{Irr}_{\nu}(\operatorname{U}(p,q);\mathcal{O}))=0.$$

# Example: Generic representations

Let G = U(n, n), and let  $\mathcal{O}_{prin}$  denote the principal nilpotent orbit.

If the coordinates of  $\nu$  are all half-integers, there is only one assignment on  $\iota(\mathcal{O}_{\mathrm{prin}})$ , and exactly two paintings:



Hence, there are exactly 2 generic representations with this infinitesimal character.

# Example: Generic representations

Let G = U(n, n), and let  $\mathcal{O}_{prin}$  denote the principal nilpotent orbit.

If the coordinates of  $\nu$  are all half-integers, there is only one assignment on  $\iota(\mathcal{O}_{\mathrm{prin}})$ , and exactly two paintings:



Hence, there are exactly 2 generic representations with this infinitesimal character.

If the coordinates of  $\nu$  are all integers, then there is only one assignment. Therefore, there is only 1 generic representation with this infinitesimal character.

# Thank you