第6周习题课 连续函数

1. 研究下列函数在定义域内的连续性,若有间断点,指出间断点及其类别.

(1)
$$f(x) = (1+x)^{\frac{x}{\tan(x-\frac{\pi}{4})}}, \quad x \in (0,2\pi);$$
 (2) $f(x) = \frac{x(x-1)}{|x|(x^2-1)};$

(3)
$$f(x) = [|\cos x|];$$
 (4) $f(x) = \frac{[\sqrt{x}]\ln(1+x)}{1+\sin x};$

(5)
$$f(x) = \begin{cases} \lim_{t \to x} (\frac{x-1}{t-1})^{\frac{t}{x-t}}, & x \neq 1, \\ 0, & x = 1. \end{cases}$$

注 (3)(4)中的[x]是取整函数.

解: (1) 对初等函数,找间断点就是找没定义的孤立点.

在 $(0,2\pi)$ 内, $\tan(x-\frac{\pi}{4})$ 没定义的点为 $\frac{3\pi}{4},\frac{7\pi}{4}$, $\tan(x-\frac{\pi}{4})$ 等于零的点为 $\frac{\pi}{4},\frac{5\pi}{4}$, 所以函数

$$f(x) = (1+x)^{\frac{x}{\tan(x-\frac{\pi}{4})}}$$
在 $(0,2\pi)$ 内的间断点有 4 个. 其中, $x = \frac{3\pi}{4}$, $x = \frac{7\pi}{4}$ 是第一类间断点(可

去型), $x = \frac{\pi}{4}$, $x = \frac{5\pi}{4}$ 为第二类间断点. 说明如下:

因为
$$\lim_{x \to \frac{3\pi}{4}} (1+x)^{\frac{x}{\tan(x-\frac{\pi}{4})}} = (1+\frac{3\pi}{4})^0 = 1$$
,所以 $x = \frac{3\pi}{4}$ 是函数 $f(x) = (1+x)^{\frac{x}{\tan(x-\frac{\pi}{4})}}$ 的可去间断

点. $x = \frac{7\pi}{4}$ 是第一类间断点的理由类似.

因为
$$\lim_{x \to \frac{\pi^+}{4}} (1+x)^{\frac{x}{\tan(x-\frac{\pi}{4})}} = +\infty$$
,所以 $x = \frac{\pi}{4}$ 是函数 $f(x) = (1+x)^{\frac{x}{\tan(x-\frac{\pi}{4})}}$ 的第二类间断点. $x = \frac{5\pi}{4}$ 是

第二类间断点的理由类似.

(2) 函数
$$f(x) = \frac{x(x-1)}{|x|(x^2-1)}$$
 的间断点为 $x = 0$, $x = \pm 1$.

因为 $\lim_{x\to 0^+} f(x) = 1$, $\lim_{x\to 0^-} f(x) = -1$, 所以 x = 0 是 f(x) 的第一类间断点(跳跃间断点).

因为
$$\lim_{x \to \Gamma} f(x) = \frac{1}{2}$$
 , $\lim_{x \to \Gamma} f(x) = \frac{1}{2}$, 所以 $x = 1$ 是 $f(x)$ 的第一类间断点(可去间断点).

因为 $\lim_{x \to -\Gamma} f(x) = -\infty$, $\lim_{x \to -\Gamma} f(x) = +\infty$, 所以 x = -1 是 f(x) 的第二类间断点.

(3)
$$f(x) = [|\cos x|]$$

当 $x = k\pi$ 时, $|\cos x| = 1$, $f(x) = [|\cos x|] = 1$;

当 $x \neq k\pi$ 时, $|\cos x| < 1$, $f(x) = [|\cos x|] = 0$.

因此 $x = k\pi$ 是间断点.

因为 $\lim_{x\to k\pi} [|\cos x|] = \lim_{x\to k\pi} 0 = 0 \neq 1 = f(k\pi)$,所以 $x = k\pi$ 均为第一类间断点(可去间断点).

(4)
$$f(x) = \frac{[\sqrt{x}]\ln(1+x)}{1+\sin x}$$
 的定义域是 $\{x \mid x \ge 0, x \ne 2k\pi - \frac{\pi}{2}, k \in \mathbf{Z}^+\}$, $x_0 = 2k\pi - \frac{\pi}{2}$ 是 $f(x)$ 的间断点.

由于
$$\lim_{x\to 2k\pi-\frac{\pi}{2}} f(x) = \lim_{x\to 2k\pi-\frac{\pi}{2}} \frac{[\sqrt{x}]\ln(1+x)}{1+\sin x} = \infty$$
,所以 $x_0 = 2k\pi - \frac{\pi}{2}$ 是 $f(x)$ 的第二类间断点.

$$\stackrel{\underline{\mathsf{M}}}{=} x = n^2, n \in \mathbf{Z}^+ \; \exists f, \quad \lim_{x \to n^2 +} f(x) = \lim_{x \to n^2 +} \frac{n \ln(1+x)}{1+\sin x} = \frac{n \ln(1+n^2)}{1+\sin n^2} = f(n^2) \; ,$$

$$\lim_{x \to n^2 -} f(x) = \lim_{x \to n^2 -} \frac{(n-1)\ln(1+x)}{1+\sin x} = \frac{(n-1)\ln(1+n^2)}{1+\sin n^2} \neq f(n^2),$$

所以 $x = n^2, n \in \mathbb{Z}^+$ 为f(x)的第一类间断点(跳跃间断点).

(5)
$$\stackrel{\underline{u}}{=} x \neq 1 \text{ ft}$$
, $\lim_{t \to x} \left(\frac{x-1}{t-1}\right)^{\frac{t}{x-t}} = \lim_{t \to x} \left[\left(1 + \frac{x-t}{t-1}\right)^{\frac{t-1}{x-t}} \right]^{\frac{x-t}{x-t}} = e^{\frac{x}{x-1}}$,

所以
$$f(x) = \begin{cases} 0, & x = 1, \\ \frac{x}{e^{\frac{x}{x-1}}}, & x \neq 1. \end{cases}$$

由于 $\lim_{x\to 1^+} f(x) = +\infty$, $\lim_{x\to 1^-} f(x) = 0$, 所以函数 f(x) 在 x = 1 处间断,且 x = 1 是 f(x) 的第二类间断点.

2. 试举出定义在 $(-\infty, +\infty)$ 上的函数 f(x) . 要求: f(x) 仅在 0, 1, 2 三点处连续, 其余的点都是 f(x) 的第二类间断点.

解: (答案不唯一) 令
$$f(x) = x(x-1)(x-2)D(x)$$
, 其中 $D(x) = \begin{cases} 1, & x \in \mathbb{Q}, \\ 0, & x \notin \mathbb{Q}. \end{cases}$

在点 x = 0 附近, 易见 (x-1)(x-2)D(x) 有界, 故有

$$\lim_{x \to 0} f(x) = 0 = f(0) ,$$

即 f(x) 在 x=0 点连续. 类似可证 f(x) 在 x=1 和 x=2 点连续.

另一方面, $\forall x_0 \in \mathbb{R} \setminus \{0,1,2\}$,取有理点列 $\{x_n\}$ 使得 $x_n \to x_0 (n \to \infty)$,有

$$\lim_{n \to \infty} f(x_n) = x_0(x_0 - 1)(x_0 - 2) \quad (\neq 0) ;$$

取无理点列 $\{x'_n\}$, $x'_n \rightarrow x_0 (n \rightarrow \infty)$, 有

$$\lim_{n\to\infty}f(x_n')=0.$$

所以 f(x) 在点 x_0 不存在右极限,故 x_0 为 f(x) 的第二类间断点.

注: 函数
$$f(x) = \begin{cases} x(x-1)(x-2), & x \in \mathbf{Q}, \\ -x(x-1)(x-2), & x \notin \mathbf{Q} \end{cases}$$
 也满足要求。

- 3. 利用零点存在定理证明下列各题:
- (1) 设 $f \in C(-\infty, +\infty)$ 且f(f(x)) = x,证明:存在 $\xi \in (-\infty, +\infty)$ 使得 $f(\xi) = \xi$.
- (2) 设 f(x) 是以 2π 为周期的连续函数,则在任何一个周期内,存在 $\xi \in \mathbb{R}$,使得 $f(\xi + \pi) = f(\xi)$ 。
- (3) 设 $f \in C[a,b]$, 且 $f([a,b]) \subset [a,b]$. 证明: $\exists \xi \in [a,b]$ 使得 $f(\xi) = \xi$.

证明: (1) 记F(x) = f(x) - x,则F(x)为 $(-\infty, +\infty)$ 上的连续函数,且

$$F(f(x)) = f(f(x)) - f(x) = x - f(x)$$
$$F(x) \cdot F(f(x)) \le 0$$

在以x, f(x)为端点的闭区间上,应用连续函数的零点存在定理,可得存在 $\xi \in (-\infty, +\infty)$,使得 $F(\xi) = 0$,即 $f(\xi) = \xi$.

(2) 令 $F(x) = f(x+\pi) - f(x)$,则 F(x) 为连续函数,且 $F(a) = f(a+\pi) - f(a)$, $F(a+\pi) = f(a+2\pi) - f(a+\pi) = f(a) - f(a+\pi),$

故 $F(a)\cdot F(a+\pi)\leq 0$. 若 $F(a)\cdot F(\pi+a)=0$,取 $\xi=a$; 现在设 $F(a)\cdot F(\pi+a)<0$,由闭区间上连续函数的零点存在定理可得,存在 $\xi\in (a,a+\pi)\subset\mathbb{R}$ 使得 $F(\xi)=0$,即

 $f(\xi + \pi) = f(\xi)$.

(3) $i \exists F(x) = f(x) - x$, $\bigcup F \in C[a,b]$.

若 $F(a) \cdot F(b) = 0$,则F(a) = 0或F(b) = 0,取 $\xi = a$ 或b,则有 $f(\xi) = \xi$;

若 $F(a) \cdot F(b) \neq 0$,因为 $f([a,b]) \subset [a,b]$,则 F(a) > 0,F(b) < 0,所以由闭区间上连续函数的 零点存在定理, $\exists \xi \in (a,b)$ 使得 $F(\xi) = 0$,即 $f(\xi) = \xi$. 故 $\exists \xi \in [a,b]$ 使得 $f(\xi) = \xi$. 证毕。

4. 设 $f \in C[a,b]$,且存在 $q \in (0,1)$,使得 $\forall x \in [a,b]$,因 $g \in [a,b]$,满足 $|f(y)| \leq q |f(x)|$. 证明: 日 $\xi \in [a,b]$ 使得 $f(\xi) = 0$.

证明:因为 $f \in C[a,b]$,所以 $|f| \in C[a,b]$.因此|f(x)|在[a,b]上能够取到最小值,故存在 $\xi \in [a,b]$ 使得 $|f(\xi)| = \min\{|f(x)|| \forall x \in [a,b]\}$.若 $f(\xi) \neq 0$,由已知条件知, $\exists y_0 \in [a,b], 满足|f(y_0)| \leq q|f(\xi)| \langle |f(\xi)||, 这与|f(\xi)| = \min_{x \in [a,b]} |f(x)|$ 矛盾。所以 $f(\xi) = 0$.证毕。

5. 设 $\{f_n(x)\}$ 是[a,b]上的连续函数列,且存在M>0使得 $\forall n \in \mathbb{N}^+$ 及 $\forall x \in [a,b]$,有 $|f_n(x)| \leq M \text{ , } 问 F(x) = \inf_{n \in \mathbb{N}^+} \{f_n(x)\}$ 是否是连续函数?

解: 不一定。例如,令 $f_n(x) = \frac{x^n}{1+x^n}$, $x \in [0,1]$,则对 $\forall x \in [0,1]$ 及任意的正整数 $n \ge 1$,有 $|f_n(x)| = \frac{x^n}{1+x^n}| \le \frac{1}{2}, \text{且 } F(x) = \inf_{n \in \mathbb{N}^+} \{f_n(x)\} = \begin{cases} 0, & x \in [0,1) \\ \frac{1}{2}, & x = 1 \end{cases}$,显然 x = 1 是 F(x) 的第一类间断点。解答完毕。

- **6.** 设常数 a_1, a_2, \dots, a_n 满足 $a_1 + a_2 + \dots + a_n = 0$, 计算 $\lim_{x \to \infty} \left(a_1 \sin \sqrt{x+1} + a_2 \sin \sqrt{x+2} + \dots + a_n \sin \sqrt{x+n} \right).$
- 解: 因为 $a_1 + a_2 + \dots + a_n = 0$,所以 $a_1 \sin \sqrt{x+1} + a_2 \sin \sqrt{x+2} + \dots + a_n \sin \sqrt{x+n}$ $= a_1 (\sin \sqrt{x+1} \sin \sqrt{x}) + a_2 (\sin \sqrt{x+2} \sin \sqrt{x}) + \dots + a_n (\sin \sqrt{x+n} \sin \sqrt{x})$ $= 2 \left(a_1 \sin \frac{\sqrt{x+1} \sqrt{x}}{2} \cos \frac{\sqrt{x+1} + \sqrt{x}}{2} + a_2 \sin \frac{\sqrt{x+2} \sqrt{x}}{2} \cos \frac{\sqrt{x+2} + \sqrt{x}}{2} + \dots + a_n \sin \frac{\sqrt{x+n} \sqrt{x}}{2} \cos \frac{\sqrt{x+n} + \sqrt{x}}{2} \right)$ $+ \dots + a_n \sin \frac{\sqrt{x+n} \sqrt{x}}{2} \cos \frac{\sqrt{x+n} + \sqrt{x}}{2}$

而
$$\lim_{x \to +\infty} \sin \frac{\sqrt{x+k} - \sqrt{x}}{2} = \lim_{x \to +\infty} \sin \frac{k}{2(\sqrt{x+k} + \sqrt{x})} = 0$$
, $|\cos \frac{\sqrt{x+k} + \sqrt{x}}{2}| \le 1$, $k = 1, 2, \dots, n$, 所以
$$\lim_{x \to +\infty} \left(a_1 \sin \sqrt{x+1} + a_2 \sin \sqrt{x+2} + \dots + a_n \sin \sqrt{x+n} \right) = 0$$
. 解答完毕。

7. 设 $f \in C[a,b]$, $f([a,b]) \subset [a,b]$, 且对 $\forall x, y \in [a,b]$, $|f(x)-f(y)| \le |x-y|$. 任取 $x_1 \in [a,b]$, 记 $x_{n+1} = \frac{1}{2}[x_n + f(x_n)]$, n = 1, 2, ...。证明:数列 $\{x_n\}$ 有极限 x_0 ,且 $f(x_0) = x_0$.

证明: 因为 $f([a,b]) \subset [a,b]$,所以 $x_{n+1} = \frac{1}{2}[x_n + f(x_n)] \in [a,b]$, $n = 1,2,\ldots$ 。下面证明数列 $\{x_n\}$ 单调。

(I) 若 $x_1 \ge f(x_1)$,则 $x_2 - x_1 = \frac{1}{2}[f(x_1) - x_1] \le 0$ 。由数学归纳法证明此时数列 $\{x_n\}$ 单调减:

设 $x_{k+1} \le x_k$,由条件 $|f(x) - f(y)| \le |x - y|$, $\forall x, y \in [a,b]$ 可得

$$\begin{aligned} x_{k+2} - x_{k+1} &= \frac{1}{2} (x_{k+1} - x_k) + \frac{1}{2} [f(x_{k+1}) - f(x_k)] \\ &\leq \frac{1}{2} (x_{k+1} - x_k) + \frac{1}{2} |x_{k+1} - x_k| = 0. \end{aligned}$$

(II) 若 $x_1 < f(x_1)$, 类似可证数列 $\{x_n\}$ 单调增加。

由单调有界定理知,数列 $\{x_n\}$ 收敛,记 $\lim_{n\to\infty}x_n=x_0$,则在等式 $x_{n+1}=\frac{1}{2}[x_n+f(x_n)]$ 两边取极限,可得 $f(x_0)=x_0$. 证毕。

- **8.** (1) 求常数 a,b, 使得 $\lim_{x\to 1} \frac{\ln(2-x^2)}{x^2+ax+b} = -\frac{1}{2}$;
 - (2) 已知 $\lim_{x\to +\infty} ((x^3+x^2)^c-x)$ 存在,求常数 c 及极限值。

(3) 定义函数
$$f(x) = \begin{cases} \frac{\sin x}{2x}, & x < 0, \\ a, & x = 0,$$
 试确定常数 a, b 使得函数 $f(x)$ 在点 $x = 0$ 处 $(1+bx)^{\frac{1}{x}}, x > 0$

连续。

解: (1) 因为
$$\lim_{x\to 1} \frac{\ln(2-x^2)}{x^2+ax+b} = \lim_{x\to 1} \frac{\ln(1+(1-x^2))}{x^2+ax+b} = \lim_{x\to 1} \frac{1-x^2}{x^2+ax+b} = -\frac{1}{2}$$
,

所以当 $x\to 1$ 时,分母 $x^2+ax+b\to 0$,即1+a+b=0。此时 $x^2+ax+b=(x-1)(x+a+1)$,故

$$\lim_{x \to 1} \frac{1 - x^2}{x^2 + ax + b} = \lim_{x \to 1} \frac{-1 - x}{x + a + 1} = -\frac{2}{a + 2} = -\frac{1}{2} , \text{ fill } a = 2 .$$

(2) $(x^3 + x^2)^c - x = x^{3c}(1 + \frac{1}{x})^c - x$ 。要使得 $\lim_{x \to +\infty} ((x^3 + x^2)^c - x)$ 存在,则 3c = 1,即 $c = \frac{1}{3}$ 。此时

$$\lim_{x \to +\infty} ((x^3 + x^2)^c - x) = \lim_{x \to +\infty} \left(x(1 + \frac{1}{x})^{\frac{1}{3}} - x \right) = \lim_{x \to +\infty} x \left((1 + \frac{1}{x})^{\frac{1}{3}} - 1 \right) = \lim_{x \to +\infty} \left(x \cdot \frac{1}{3x} \right) = \frac{1}{3}.$$

(3) 函数 f(x) 在点 x = 0 处连续,当且仅当 $\lim_{x \to 0^+} f(x) = f(0) = \lim_{x \to 0^-} f(x)$ 。简单计算得

$$\lim_{x\to 0^-} f(x) = \lim_{x\to 0^-} \frac{\sin x}{2x} = \frac{1}{2}; \quad \lim_{x\to 0^+} f(x) = \lim_{x\to 0^+} \left(1 + bx\right)^{1/x} = e^b \text{ 。于是函数 } f(x) \text{ 在点 } x = 0 \text{ 处 }$$
连续,当且仅当 $\frac{1}{2} = a = e^b$,当且仅当 $a = \frac{1}{2}$, $b = -\ln 2$ 。解答完毕。

- **9.** 设定义在 \mathbb{R} 上的函数 f(x) 满足: f(x+y) = f(x) + f(y), $\forall x, y \in \mathbb{R}$ 。求证:
 - (1) 存在实数 $a \in \mathbb{R}$, 使得 $\forall x \in \mathbb{Q}$, f(x) = ax;
 - (2) 若 f(x) 在 x = 0 点连续,则存在实数 $a \in \mathbb{R}$,使得 $\forall x \in \mathbb{R}$, f(x) = ax .

证明: (1) 令
$$x = y = 0$$
,则 $f(0) = 2f(0)$ 蕴涵 $f(0) = 0$ 。令 $y = -x$,则

0 = f(0) = f(x) + f(-x), 所以 f(-x) = -f(x), 即 f 是奇函数。对正整数 p,q, 反复运

用可加性条件, 我们有 f(p) = pf(1), $f(\frac{1}{q}) = \frac{1}{q}f(1)$ 。从而 $f(\frac{p}{q}) = \frac{p}{q}f(1)$ 对所有的正整数

p,q 成立。结合 f 是奇函数,上式对一切整数 p,q 成立 $(q \neq 0)$,从而 $\forall r = \frac{p}{q} \in \mathbb{Q}$,有 f(r) = rf(1) ,其中 $a = f(1) \in \mathbb{R}$ 。

(2) $\forall x_0 \in \mathbb{R}$,因为 $f(x) = f(x - x_0) + f(x_0)$ 且 f(x) 在 0 点连续,所以 $\lim_{x \to x_0} f(x) = f(x_0)$,故 f(x) 在 \mathbb{R} 上连续。对 $\forall x \in \mathbb{R}$,存在点列 $\{r_n\} \subset \mathbb{Q}$ 使得 $r_n \to x$ $(n \to \infty)$,则 f(x) 的连续性表明 $f(x) = \lim_{n \to \infty} f(r_n) = f(1) \lim_{n \to \infty} r_n = f(1)x$ 。证毕。

10. 设 f(x) 在 (a,b) 内至多只有第一类间断点,且满足如下凸性条件:

$$f\left(\frac{x+y}{2}\right) \le \frac{f(x)+f(y)}{2}, \quad \forall x, y \in (a,b)$$
 (*)

证明:函数 f(x) 在(a,b) 上处处连续。

证明: 对 $\forall x_0 \in (a,b)$, 下证 f(x) 在 x_0 处连续。由假设知, f(x) 在 x_0 处的左、右极限均存在。记 $\lim_{x \to x_0^-} f(x) = A$, $\lim_{x \to x_0^+} f(x) = B$ 。 只需证 $A = B = f(x_0)$ 。

在 (*) 式中, 取 $y = x_0$, 则 $f\left(\frac{x + x_0}{2}\right) \le \frac{f(x) + f(x_0)}{2}$ 。关于 x 取右极限得

$$\lim_{x \to x_0^+} f\left(\frac{x + x_0}{2}\right) \le \lim_{x \to x_0^+} \frac{f(x) + f(x_0)}{2} .$$

由此得 $B \le [B + f(x_0)]/2$ 。此即 $B \le f(x_0)$ 。同理可证 $A \le f(x_0)$ 。

另外, 在 (*) 式中, 取 $x = x_0 - h$, $y = x_0 + h$, 则

$$f(x_0) = f\left(\frac{x_0 - h + x_0 + h}{2}\right) \le \frac{f(x_0 - h) + f(x_0 + h)}{2},$$

故 $f(x_0) \le \lim_{h \to 0^+} \frac{f(x_0 - h) + f(x_0 + h)}{2} = \frac{A + B}{2}$,从而 $A = B = f(x_0)$ 。证毕。

11. 设函数 f(x) 在 $[0,+\infty)$ 上连续且非负。 若 $\lim_{x\to +\infty} f(f(x)) = +\infty$,证明 $\lim_{x\to +\infty} f(x) = +\infty$. 证明(反证法): 假设 $\lim_{x\to +\infty} f(x) = +\infty$ 不成立,则存在一个序列 $x_n \to +\infty$ 和正数 $M_1 > 0$,使得 $0 \le f(x_n) \le M_1$ 。 一方面,函数 f(x) 在闭区间 $[0,M_1]$ 上连续,从而有界,即存在正数 $M_2 > 0$,使得 $0 \le f(x) \le M_2$, $\forall x \in [0,M_1]$ 。 于是 $0 \le f(f(x_n)) \le M_2$, $\forall n \ge 1$ 。另一方面,由假设 $\lim_{x\to +\infty} f(f(x)) = +\infty$,有 $\lim_{x\to +\infty} f(f(x_n)) = +\infty$,矛盾。故结论成立。证毕。

12. 设 $f(x) = a_n \cos nx + a_{n-1} \cos(n-1)x + \dots + a_1 \cos x + a_0$,其中系数满足

$$a_n > |a_{n-1}| + |a_{n-2}| + \dots + |a_1| + |a_0|.$$

证明:函数 f(x) 在区间[0,2 π] 内至少有 2n 个根。

证明: 己知 $f(0) = a_n + a_{n-1} + \dots + a_1 + a_0 \ge a_n - (|a_{n-1}| + |a_{n-2}| + \dots + |a_0|) > 0$,

$$f\left(\frac{\pi}{n}\right) = a_n \cos \pi + a_{n-1} \cos \frac{(n-1)\pi}{n} + \dots + a_1 \cos \frac{\pi}{n} + a_0$$

$$\leq -a_n + (|a_{n-1}| + |a_{n-2}| + \dots + |a_0|) < 0,$$

$$f\left(\frac{2\pi}{n}\right) = a_n \cos 2\pi + a_{n-1} \cos \frac{2(n-1)\pi}{n} + \dots + a_1 \cos \frac{2\pi}{n} + a_0$$

$$\geq a_n - (|a_{n-1}| + |a_{n-2}| + \dots + |a_0|) > 0,$$

$$\dots$$

$$f\left(\frac{(2n-1)\pi}{n}\right) < 0,$$

$$f\left(\frac{(2n-1)\pi}{n}\right) < 0.$$

由闭区间上连续函数的零点存在定理可知,在这 2n 个闭区间 $[0,\frac{\pi}{n}]$, $[\frac{\pi}{n},\frac{2\pi}{n}]$,…, $[\frac{(2n-1)\pi}{n},2\pi]$ 的每一个之内,函数 f(x) 至少有一个零点。因此 f(x) 在 $[0,2\pi]$ 内至少有 2n 个根。证毕。

13. 通过函数图像可知,方程 $\tan x=x$ 在区间 $(n\pi,n\pi+\frac{\pi}{2})$ 上有唯一个解 a_n ,即 $\tan a_n=a_n$, $n=0,1,2,\cdots$ 。证明 $\lim_{n\to\infty}(a_{n+1}-a_n)=\pi$ 。

证明: 由 $a_n \in (n\pi, n\pi + \frac{\pi}{2})$ 知 $a_n \to +\infty$ $(n \to +\infty)$ 。记 $A_n = n\pi + \frac{\pi}{2} - a_n$ 。则 $A_n \in (0, \frac{\pi}{2})$

且 $\tan A_n = \tan(\frac{\pi}{2} - a_n) = 1/\tan a_n = 1/a_n \to 0$, $n \to +\infty$ 。 故 $A_n = \arctan(1/a_n) \to 0$, $n \to +\infty$ 。 于是 $a_{n+1} - a_n = \pi + A_n - A_{n+1} \to \pi$, $n \to +\infty$ 。 证毕 。

14. 设 f(x) 在区间 I 上有定义。一个点 $x_0 \in I$ 称作函数 f(x) 的极大值(或极小值)点,如果存在正数 $\delta > 0$,使得对 $\forall x \in I \cap (x_0 - \delta, x_0 + \delta)$, $f(x) \leq f(x_0)$ (或 $f(x) \geq f(x_0)$)。极大点和极小点都称作极值点。证明命题:设函数 f(x) 在有界闭区间 I = [a, b] 上连续。若 f(x) 在开区间 (a, b) 上无极值点,则 f(x) 在 I 上严格单调。

证明:由于闭区间上的连续函数能够取到最值,因此函数 f(x) 在 I 上可取得最大值 M 和最小值 m . 显然最大值点和最小值点都是极值点。 根据假设, f(x) 在 T 区间 (a,b) 上无极值点。因此 f(x) 在 I 上的最大值点和最小值点只能是区间端点 a 和 b 。若 f(a) = f(b),此时必有 M = m,即 f(x) 是常数函数。于是开区间 (a,b) 上的每个点都是 f(x) 的极值点,与假设相矛盾。 故 $f(a) \neq f(b)$ 。 不妨设 f(a) < f(b) 。 此时有 m = f(a) , M = f(b) 。 下证 f(x) 在 I 上严格单调上升。采用反证法。假设 f(x) 在 I 上不是严格单调上升。则存在两点 $x_1, x_2 \in [a,b]$ 满足 $x_1 < x_2$,使得 $f(x_1) \ge f(x_2)$ 。在 $[x_1, x_2]$ 上,类似于前面的讨论可知 $f(x_1) \ne f(x_2)$,故 $f(x_1) > f(x_2)$.

现在考虑 f(x) 在闭区间 $[x_1,b]$ 上的最小值。由于 $M=f(b)\geq f(x_1)>f(x_2)$,故 $x_2< b$ 。 因此 $x_2\in (x_1,b)$ 。由此可断言,f(x) 在闭区间 $[x_1,b]$ 上的最小值必在开区间 (x_1,b) 内的某个点处取得。而这个点同时也是 f(x) 在 $(a,b)\supset (x_1,b)$ 上的极值点。矛盾。证毕。

15. 设 $f(x) \in C[a, +\infty)$ 且有界,若 $f(a) < \sup_{x \in [a, +\infty)} \{f(x)\}$,则当 α 满足 $f(a) < \alpha < \sup_{x \in [a, +\infty)} \{f(x)\}$ 时,都存在 $\xi \in [a, +\infty)$,使得 $\alpha = f(\xi)$.

证明: 当 α 满足 $f(a) < \alpha < \sup_{x \in [a, +\infty)} \{f(x)\}$ 时,取 $\varepsilon = \frac{1}{2} \left\{ \sup_{x \in [a, +\infty)} \left\{ f\left(x\right) \right\} - \alpha \right\}$,则 $\exists b \in (a, +\infty)$,使 得 $f(b) > \sup_{x \in [a, +\infty)} \left\{ f(x) \right\} - \varepsilon = \frac{1}{2} \left(\sup_{x \in [a, +\infty)} \left\{ f(x) \right\} + \alpha \right) > \alpha > f(a)$.

由于 $f(x) \in C[a,b]$,根据闭区间上连续函数的介值定理知, $\exists \xi \in (a,b) \subset (a,+\infty)$, 使得 $f(\xi) = \alpha$.

下列题目根据个人情况选做。

16. $\stackrel{\sim}{\boxtimes} f \in C[a,b], \quad m(x) = \inf_{t \in [a,x]} \{f(t)\}, \quad M(x) = \sup_{t \in [a,x]} \{f(t)\}, \quad \Re \, \stackrel{\sim}{\coprod} m(x), \quad M(x) \in C[a,b].$

证明: 首先证明 $m(x) \in C[a,b]$. $\forall x_0 \in (a,b)$, 下证 $\lim_{x \to x_0^1} m(x) = m(x_0)$.

因为 $f \in C[a,b]$,由闭区间上连续函数的最值定理知, $\exists x_0 \in [a,x_0]$,使得 $m(x_0) = f(x_0)$. 因为 $\lim_{x \to x_0} f(x) = f(x_0)$, 故 $\forall \varepsilon > 0$, $\exists \delta > 0$, $\forall x \in (x_0,x_0+\delta)$, $f(x_0) - \varepsilon < f(x) < f(x_0) + \varepsilon$. 当 $x \in (x_0,x_0+\delta)$ 时,记

 $m(x) = f(x), x \in [a,x]$, 显然 $m(x) \le m(x_0)$. 下面讨论 x 的不同情况:

- (I) 若 $x \in [a, x_0]$, 则 $m(x) = m(x_0)$;
- (II) 若 $x \in [x_0, x]$, 则 $m(x_0) \varepsilon \le f(x_0) \varepsilon < m(x) \le m(x_0)$.

所以当 $x \in (x_0, x_0 + \delta)$ 时, $m(x_0) - \varepsilon < f(x_0) - \varepsilon < m(x) \le m(x_0)$,故 $\lim_{x \to x_0^+} m(x) = m(x_0)$.

类似可证 $\lim_{x\to x_0^-} m(x) = m(x_0)$. 这样 m(x) 在 x_0 既左连续、又右连续,从而 m(x) 在 x_0 连续。故 m(x) 在 (a,b) 内连续。类似可证 m(x) 在 a,b 两点分别右连续与左连续。这样 $m(x) \in C[a,b]$. 同理可证 $m(x) \in C[a,b]$. 证毕。

课堂练习题参考解答:

1. 设 $f(x) \in C(-\infty, +\infty)$. 若对任意的开区间 (a,b),其值域 f((a,b)) 必是开区间。证明: $f(x) \oplus C(-\infty + \infty)$ 上是单调函数。

证明: (反证)设f(x)在 $(-\infty+\infty)$ 上不是单调函数,

则存在 a < b < c 使得 f(a) < f(b) > f(c). 因为 $f(x) \in C(-\infty, +\infty)$,因此 $f(x) \in C[a, c]$,这样存在 $x_0 \in (a, c)$ 使得 $f(x_0) = \max\{f(x) | \forall x \in [a, c]\}$. 注意到 $x_0 \neq a$, $x_0 \neq c$,因此 f(x) 在 f(x) 和 f(x) 在 f(x) 在 f(x) 在 f(x) 和 f(x) 在 f(x) 和 f(x) 在 f(x) 和 f