# PREDICTING TESLA'S STOCK PRICE WITH MACHINE LEARNING

Christopher Pearson

#### TESLA stock price over time



#### Our Data: Tesla Stock Prices

- Clean Data: No missing Data
- 2416 Rows
- Features
  - Date
  - Opening
  - Closing
  - High
  - Low
  - Volume

#### Tesla: Daily Price Change



### Additional Feature: Daily Change

- Looking at Closing –Opening Price
- Some incredible spikes, no sudden drops.
- This is NOT today's closing – yesterday's closing
  - Yesterday's closing today's opening lost





### HISTOGRAMS

|                | open     | high     | low      | close    | adj_close | volume   | days_after_ipo | daily change |
|----------------|----------|----------|----------|----------|-----------|----------|----------------|--------------|
| count          | 2416     |          |          |          |           |          |                |              |
| mean           | 186.2714 | 189.5782 | 182.9166 | 186.4037 | 186.4037  | 5572722  | 1902.465       | 0.132504     |
| std            | 118.7402 | 120.8923 | 116.8576 | 119.136  | 119.136   | 4987809  | 1012.571       | 5.628115     |
| min            | 16.14    | 16.63    | 14.98    | 15.8     | 15.8      | 118500   | 151            | -28.08       |
| 25%            | 34.3425  | 34.8975  | 33.5875  | 34.4     | 34.4      | 1899275  | 12025.75       | -1.76251     |
| 50%            | 213.035  | 216.745  | 208.87   | 212.96   | 212.96    | 4578400  | 1903.5         | -0.015       |
| 75%            | 266.45   | 270.9275 | 262.1025 | 266.775  | 266.775   | 7361150  | 2778.25        | 1.762506     |
| max            | 673.69   | 786.14   | 673.52   | 780      | 780       | 47065000 | 3657           | 106.31       |
|                |          |          |          |          |           |          |                |              |
| Corrrelation   | open     | high     | low      | close    | adj_close | volume   | days_after_ipo | daily_change |
| open           | 1        | 0.999425 | 0.999575 | 0.998886 | 0.998886  | 0.501762 | 0.98111        | 0.046754     |
| high           |          | 1        | 0.999389 | 0.99964  | 0.99964   | 0.512944 | 0.890536       | 0.07485      |
| low            |          |          | 1        | 0.999447 | 0.999447  | 0.493496 | 0.89096        | 0.067596     |
| close          |          |          |          | 1        | 1         | 0.505169 | 0.890294       | 0.093839     |
| adj_close      |          |          |          |          | 1         | 0.505169 | 0.890294       | 0.093839     |
| Volume         |          |          |          |          |           | 1        | 0.477066       | 0.107403     |
| days_after_ipo |          |          |          |          |           |          | 1              | 0.045402     |
| daily_change   |          |          |          |          |           |          |                | 1            |

#### Key Figures

 $\circ$  N = 2416

• No missing data

• Range: \$14.98 – \$786.14

• Average: \$186

- Open, high, low, close and adjusted close all highly correlated
- Volume and daily change not very correlated w/ other columns

#### Real vs Predicted Tesla Stock Price 800 Real Tesla Stock Price Predicted Tesla Stock Price 700 600 500 Stock Price 400 300 200 100 0 -500 1000 1500 2000 2500 3000 3500 Market Days After IPO

#### Basic Regression Model

- $\circ$  R<sup>2</sup> = 0.88
- OK for summary
- Not for Prediction
- Regression Model w/ more independent variables would be better



# Machine Learning Model: Can we improve?

- Long Short-Term Memory (LSTM)
- Stateful
- Batch Size = 64
- ∘ Timesteps = 32
- Epochs = 120
- Data must be in full batches of 64, and each batch is used to predict 32 market days into the future. So we have four types of cases:
  - Scraps: data at beginning of dataset we cannot put in a batch
  - Training: Data to build our model
  - Test: Data we can test our model on
  - Future: Data to make predictions that cannot be verified until we get more data





#### Closing Price Prediction:

- $\circ$  30-Day R<sup>2</sup> = 0.8540
- $\circ$  15-Day R<sup>2</sup> = 0.8599
- $\circ$  I-Day R<sup>2</sup> = 0.2994
- Good 30 and 15 predictions
- Unreliable for next-day predictions
  - Likely need hourly data to predict next-day price



## What do residuals tell us?

- Residuals for I-Day prediction not random
  - Dropout layer may help
- Added two lines for local maximum and minimum of actual data
- The I-day prediction model the worst—lemming-like predictions
- Better as tool for longer-term investing.
  - Model of lemming behavior can still be useful
    - Try to out-lemming the lemmings
    - Or take advantage of lemming behavior



### Daily Price Prediction

- Was curious how this would perform
- Does not look like we have the data to predict one-day price changes



# Checking Residuals for Daily Change Prediction

- Model seems to know it cannot predict next-day price changes
- Additional data may lead to different results
- Perhaps best not to try predicting one-day changes
- Could try to simply predict whether stock would go up or down on a given day
- $\circ$  30-Day R2 = -0.00079
- $\circ$  15-Day R2 = -0.00135
- $\circ$  I-Day R2 = -0.00231

### Consideration on Models and Data Used

- Regression learning algorithm using only prices is good for summaries, but not predictions
- Machine learning algorithm works fairly well predicting closing prices 3-6 weeks in the future
  - Could improve performance for near-future predictions with finer-grained data
- For daily change, the model is not useful
- Would be use model with additional data added.