Aritmética do Computador

Inteiros Ponto Flutuante

Coordenadoria de Informática Sistemas de Informação Profs. Vitor Faiçal Campana Francisco Rapchan Material cedido pelo Prof. Flávio Giraldeli

2019/2

Unidade Lógica e Aritmética (ULA) Aritmetic and Logic Unit (ALU)

- Faz os cálculos.
- Tudo o mais no computador existe para atender a essa unidade.
- Trata de inteiros.
- Pode tratar de números de ponto flutuante (reais).
- Pode ser FPU separada (coprocessador matemático).
- A partir do Intel 486DX, é integrada a CPU.

Entradas e saídas da ALU

Aritmética de Inteiros

Um mundo "ideal"...

Representação de inteiros

• No sistema numérico binário, números quaisquer podem ser representados apenas com os algarismos 0 e 1, o sinal de menos e a vírgula, ou vírgula fracionada.

$$-1101,0101_2 = -13,3125_{10}$$

- Para finalidades de armazenamento e processamento no computador, porém, não temos o benefício dos sinais de menos e vírgula (que, como veremos, podem ser representados de outras formas)
- Se nos limitarmos a não negativos, a representação é direta.

```
000000000 = 0
00000001 = 1
00101001 = 41
10000000 = 128
11111111 = 255
```

• De modo geral, se temos uma sequencia de n bits $a_{n-1}a_{n-2}a_1a_0$ como um inteiro sem sinal, seu valor A será:

$$A = \sum_{i=0}^{n-1} 2^i a_i$$

Sinal-Magnitude

- Bit mais à esquerda é bit de sinal.
 - 0 significa positivo.
 - 1 significa negativo.
 - Exemplos:
 - \circ +18 = 00010010.
 - \circ -18 = 10010010.
- Problemas:
 - Precisa considerar sinal e magnitude na aritmética.
 - Duas representações de zero (+0 e -0).
 - Mais difícil de testar se um resultado é zero (operação muito comum em computação)
 - o Por isso, raramente é usada na prática.

Complemento a dois

 \circ -128 = 1000000

Benefícios do complemento a dois

- Uma representação de zero.
- Aritmética funciona com facilidade (ver mais adiante).
- Negação é muito fácil.

o +3	00000011
 Complemento Booleano gera 	11111100
• Some 1 ao LSB e tem-se -3	11111101

Negação especial

- o Caso 1:
 - **o** 0 = 00000000
 - Not bit a bit
 11111111
 - Some 1 ao LSB +1
 - Resultado 100000000
 - \bullet Estouro ignorado, portanto, -0 = +0
- Caso 2:
 - **○** -128 = 10000000
 - Not bit a bit 01111111
 - Some 1 ao LSB +1
 - Resultado 10000000
 - Portanto:
 - \circ -(-128) = -128 (ERRO!)
 - Monitore MSB (bit de sinal).
 - Ele deve mudar durante a negação.

Intervalo de números

- Complemento a 2 com 8 bits:
 - \circ +127 = 01111111 = 2⁷ -1
 - \circ -128 = 10000000 = -2⁷
- Complemento a 2 com 16 bits:
 - \bullet +32767 = 0111111111 11111111 = 2^{15} 1
 - \circ -32768 = 100000000 00000000 = -2¹⁵

Complemento a dois Resumo...

Tabela 9.1 Características da representação e aritmética de complemento a dois

Intervalo	-2^{n-1} até $2^{n-1}-1$	
Número de representações de zero	Uma	
Negação	Apanhe o complemento booleano de cada bit do número positivo correspondente, depois some 1 ao padrão de bits resultante visto como um inteiro sem sinal.	
Expansão do tamanho em bits	Acrescente posições de bit adicionais à esquerda e preencha com o valor do bit de sinal original.	
Regra de <i>overflow</i>	Se dois números com o mesmo sinal (positivo ou negativo) são somados, então o estouro ocorre se e somente se o resultado tem o sinal oposto.	
Regra de subtração	Para subtrair B de A, apanhe o complemento a dois de B e some-o a A.	

Representação de inteiros

Representação decimal	Representação sinal-magnitude	Representação em complemento de dois	Representação polarizada	
+8	-	- 1111		
+7	0111	0111	1110	
+6	0110	0110	1101	
+5	0101	0101	1100	
+4	0100	0100	1011	
+3	0011	0011	1010	
+2	0010	0010	1001	
+1	0001	0001	1000	
+0	0000	0000	0111	
-0	1000	-	-	
–1	1001	1111	0110	
-2	1010	1110	0101	
-3	1011	1101	0100	
-4	1100	1100	0011	
-5	1101	1011	0010	
-6	1110	1010	0001	
-7	1111	1001	0000	
-8	-	1000	-	

Conversão entre tamanhos

- Pacote de número positivo com zeros iniciais.
 - \circ +18 = 00010010
 - \circ +18 = 00000000 00010010
- Pacote de números negativos com uns iniciais.
 - **◦** -18 = 10010010
- Ou seja, pacote com MSB (bit de sinal).

Aritmética com inteiros

- Adição
 - Adição binária normal.
 - Monitore estouro no bit de sinal.
 - Exemplos:

$ \begin{array}{rcl} & 1001 & = & -7 \\ & +0101 & = & 5 \\ & 1110 & = & -2 \end{array} $ $ \begin{array}{rcl} & \mathbf{(a)} (-7) + (+5) \end{array} $	1100 = -4 +0100 = 4 10000 = 0 (b) (-4) + (+4)
0011 = 3 + 0100 = 4 0111 = 7 (c) (+3) + (+4)	1100 = -4 + 1111 = -1 1011 = -5 (d) (-4) + (-1)
0101 = 5 + 0100 = 4 1001 = Overflow (e) (+5) + (+4)	1001 = -7 + 1010 = -6 10011 = Overflow (f) (-7) + (-6)

Aritmética com inteiros

- Subtração
 - Pegue o complemento a dois do subtraendo e some ao minuendo.

$$\circ$$
 a - b = a + (-b).

• Exemplos:

$\begin{array}{r} 0010 = 2 \\ +\frac{1001}{1011} = -7 \\ \hline $	0101 = 5 $+1110 = -2$ $10011 = 3$ (b) M = 5 = 0101 $S = 2 = 0010$ $-S = 1110$
$ \begin{array}{r} 1011 = -5 \\ +1110 = -2 \\ 11001 = -7 \end{array} $ (c) M = -5 = 1011 S = 2 = 0010 -s = 1110	0101 = 5 +0010 = 2 0111 = 7 (d) M = 5 = 0101 S = -2 = 1110 -S = 0010
$0111 = 7 \\ + 0111 = 7 \\ 1110 = Overflow$ (e) M = 7 = 0111 $S = -7 = 1001 \\ -S = 0111$	$ \begin{array}{r} 1010 = -6 \\ +1100 = -4 \\ \hline 10110 = Overflow \end{array} $ (f) M = -6 = 1010 S = 4 = 0100 -S = 1100

Hardware para adição e subtração

OF = bit de *overflow* (do inglês *overflow bit*)

SW = seletor - multiplexador (seleciona adição ou subtração)

Multiplicação

- Se comparada a adição e subtração, a multiplicação é uma operação complexa.
- Dois casos a se considerar:
 - Inteiros sem sinal
 - Inteiros com sinal

Multiplicação de inteiros sem sinal

- É realizada tal qual todos nós já aprendemos com lápis e papel aplicada aos números decimais. No entanto é até mais simples!
- Exemplo:

Multiplicação de inteiros com sinal

- O método estudado não funciona!
- Solução 1:
 - Converta para positivo, se for preciso.
 - Multiplique como antes.
 - Se sinais diferentes, negue a resposta.
- Solução 2:
 - Algoritmo de Booth
 - É computacionalmente mais leve, porém, por ser bem mais complexo de entender, não será estudado. É preciso simplificar o capítulo para que possamos cumprir com a ementa.

Divisão

- Ainda mais complexa que a multiplicação.
- Números negativos são realmente maus!
- Baseada na divisão longa.
- o Logo...

Aritmética de Ponto Flutuante

Um mundo "nem tão ideal"...

Representação de Ponto Flutuante

- Com a notação de ponto fixo é possível representar um intervalo de inteiros positivos e negativos centrados em 0.
- Assumindo um binário fixo e ponto fracionário, esse formato permite a representação de números também com componente fracionário.
- Limitações:
 - Números muito grandes não podem ser representados, nem frações muito pequenas.
 - A parte fracionária do quociente em uma divisão de dois números grandes poderia ser perdida.
- Solução? Representação em ponto flutuante (ideia derivada da notação científica).

Ponto Flutuante

- Formato:
 - $\bullet \pm S \times B^{\pm E}$
- Três campos:
 - Sinal: mais (0) ou menos (1).
 - Significando S.
 - Expoente E.
- A base B é implicita e não precisa ser armazenada.

Formato típico de ponto flutuante de 32 bits

(a) Formato

(b) Exemplos

Ponto Flutuante

- Mantissa é armazenada em complemento a dois.
- Expoente usa a chamada representação polarizada.
 - Um valor fixo, chamado de polarização, é subtraído do campo para obter o valor verdadeiro do expoente. Normalmente é igual a 2^{k-1}-1.
 - Exemplo:
 - k = 8 (bits) \rightarrow Polarização = 127 (2⁷-1)
 - Intervalo de valor puro 0-255.
 - Subtraia 127 para obter valor correto.
 - Intervalo de -127 a +128.

Ponto Flutuante: Normalização

- Números de PF geralmente são normalizados, ou seja, expoente é ajustado de modo que bit inicial (MSB) do significando seja 1.
- Por ser sempre 1, não é preciso armazená-lo.
- Ponto flutuante normalizado:
 - \bullet $\pm 1.bbb \dots b \times 2^{\pm E}$
 - Campo de 23 bits é usado para armazenar um significando de 24 bits com um valor no intervalo meio aberto [1,2)

Ponto Flutuante: Intervalos

Padrão IEEE para representação binária de ponto flutuante (IEEE 754)

Formato:

Convertendo... Decimal ↔ IEEE 754 (32 bits)

$$-26,5 \xrightarrow{bin\acute{a}rio} -11010,1 \times 2^{0} \xrightarrow{normalização} -1, \underline{10101} \times 2^{\underline{4}}$$

$$4 + 127 = 131$$

1.10000011.101010000000000000000000

$$-7,1875 \xrightarrow{bin\acute{a}rio} -111,0011 \times 2^{0} \xrightarrow{normalizaç\~ao} -1, \underline{110011} \times 2^{\underline{2}}$$

$$2 + 127 = 129$$

1.10000001.11001100000000000000000

$$+20.8 \xrightarrow{binlphario} + 10100, [1100] \times 2^0 \xrightarrow{normalização} + 1, 0[1001] \times 2^{\frac{4}{2}}$$

0.10000011.0100110011001100110

Parâmetros de formato IEEE 754

Do sê sa otasa		Format	0	
Parâmetro Isolado		Estendido isolado	Duplo	Estendido duplo
Tamanho da palavra (bits)	32	≥ 43	64	≥ 79
Tamanho do expoente (bits)	8	≥ 11	11	≥ 15
Polarização do expoente	127	Não especificado	1023	Não especificado
Expoente máximo	127	≥ 1023	1023	≥ 16383
Exponente mínimo	-126	≤ −1022	-1022	≤ −16382
Intervalo numérico (base 10)	10 ⁻³⁸ , 10 ⁺³⁸	Não especificado	10 ⁻³⁰⁸ , 10 ⁺³⁰⁸	Não especificado
Tamanho do significando (bits)*	23	≥ 31	52	≥ 63
Número de expoentes	254	Não especificado	2046	Não especificado
Número de frações	2 ²³	Não especificado	2 ⁵²	Não especificado
Número de valores	$1,98 \times 2^{31}$	Não especificado	1,99 × 2 ⁶³	Não especificado

^{*} Não incluso o bit implícito.

Ponto Flutuante: Densidade

- Números Inteiros (ponto fixo) = Espaçamento linear (uniforme) ao longo de todo intervalo.
- Números de Ponto Flutuante = Espaçamento não uniforme.
 - Mais próximo da origem (zero) = maior densidade (ou seja, os números possíveis de serem representados ficam mais próximos).
 - Mais afastado da origem = menor densidade.

Ponto Flutuante: intervalo ou precisão?

- Ponto flutuante de 32 bits:
 - 1 bit de sinal
 - 8 bits de expoente
 - 23 bits de significando
- Se aumentarmos o número de bits no expoente, expandimos o intervalo de números representáveis.
- Mas como apenas um número fixo de valores diferentes podem ser representados, reduzimos a densidade desses números e, portanto, a precisão.
- O único modo de aumentar esses dois fatores é usar mais bits.
 - Comumente usados:
 - 32 bits (precisão simples)
 - 64 bits (precisão dupla)

Aritmética de Ponto Flutuante

Números de ponto flutuante	Operações aritméticas
$X = X_S \times B^{X_E}$ $Y = Y_S \times B^{Y_E}$	$X + Y = (X_S \times B^{X_E - Y_E} + Y_S) \times B^{Y_E} $ $X - Y = (X_S \times B^{X_E - Y_E} - Y_S) \times B^{Y_E} $ $X \times Y = (X_S \times Y_S) \times B^{X_E + Y_E} $ $\frac{X}{Y} = \left(\frac{X_S}{Y_S}\right) \times B^{X_E - Y_E} $

- Anomalias possíveis:
 - Overflow de expoente: expoente positivo maior que o máximo possível.
 - **Underflow de expoente**: expoente negativo menor que o mínimo possível (ex: -200 é menor que -127). Ou seja, o número é muito pequeno para ser representado.
 - **Underflow de significando**: no alinhamento dos significandos, os dígitos podem sair pela extremidade direita do significando.
 - Overflow de significando: adição de dois significandos com o mesmo sinal pode resultar em um carry pelo bit mais significativo.

Adição e Subtração de PF

- Passo-a-passo:
 - 0. É uma operação de subtração?
 - Troque o sinal do subtraendo.
 - 1. Verificação de zero.
 - 2. Alinhamento do significando.
 - 3. Adição.
 - 4. Normalização

Adição e Subtração de PF

Multiplicação e Divisão de PF

- Passo-a-passo
 - Verifique zero.
 - Soma/subtraia expoentes.
 - Multiplique/divida significandos (observe sinal).
 - Normalize.
 - Arredonde.
 - Todos os resultados intermediários devem ser em armazenamento de tamanho duplo.

Multiplicação de PF

Divisão de PF

