Aula V: 1 de 12

Aula 05 – Comandos Concorrentes básicos

Aula V: 2 de 12

Tópicos da aula

- Concorrência em VHDL
- Comandos concorrentes básicos

Aula V: 3 de 12

Concorrência em VHDL

- VHDL é uma linguagem de síntese de circuitos digitais
- Ela não pode ser entendida como as linguagens de programação para processadores (C, Java, etc.)
- Cada linha de programa em VHDL representa um circuito digital independente
- Pode-se pensar um programa VHDL como um protoboard, onde componentes digitais são conectados entre sí.

Aula V: 4 de 12

Concorrência em VHDL

```
library ieee;
      use ieee.std logic 1164.all;
      use ieee.numeric std.all;
      use IEEE.STD LOGIC UNSIGNED.ALL;
      use IEEE.STD LOGIC ARITH.ALL;
    ENTITY PORTA AND IS
          PORT (
10
                          : IN STD LOGIC;
11
                          : IN STD LOGIC;
12
                          : OUT STD LOGIC;
13
                          : OUT STD LOGIC;
14
                          : OUT STD LOGIC
15
16
      END PORTA AND;
17
18
     ■ARCHITECTURE behavioral OF PORTA AND IS
19
20
21
22
     BEGIN
23
24
         C \le A and B;
25
         D \le (not A) and B;
         E \ll A \text{ or } B;
26
27
      END behavioral;
```


Aula V: 5 de 12

Comando WHEN ELSE

- Transferência condicional de um sinal
- Contém: uma lista de condições e expressões
- Primeira condição verdadeira: define expressão transferida
- Formato da construção:

Aula V: 6 de 12

Comando WHEN ELSE

```
b <= "1000" when a = "00" else

"0100" when a = "01" else

"0010" when a = "10" else

"0001" when a = "11";
```


Aula V: 7 de 12

Exercícios

Implemente um MULTIPLEXADOR 4x1 utilizando os comandos WHEN ELSE

Aula V: 8 de 12

Construção WITH SELECT

- Transferência condicional de um sinal
- Contém: uma lista de opções
- Todas as condições da expressão de escolha devem ser consideradas
 - não existe uma prioridade como na construção WHEN ELSE
- As opções podem ser agrupadas: o caractere | equivale a "ou"
 TO e DOWNTO delimitam faixas de opções
- Opções restantes: palavra reservada OTHERS
- Formato da construção:

Aula V: 9 de 12

Construção WITH SELECT

```
with a select b <=
   "1000" when "00",
   "0100" when "01",
   "0010" when "10",
   "0001" when "11";</pre>
```

Aula V: 10 de 12

Tipos de modelagem

Estrutural

■ "O que é"

```
ENTITY mux_2x1 IS
PORT (a, b : IN BIT;
    sel : IN BIT;
    s : OUT BIT);
END mux;

ARCHITECTURE structural OF mux_2x1 IS
BEGIN
    s <= (a AND NOT sel) OR
        (b AND sel);
END structural;</pre>
```

Comportamental

"O que faz"

```
ENTITY mux 2x1 IS
PORT (a, b : IN BIT;
     sel : IN BIT;
     s : OUT BIT);
END mux;
ARCHITECTURE behavior OF mux 2x1 IS
BEGIN
  PROCESS(a,b,sel)
  BEGIN
     IF (sel='0') THEN
        s \le a;
     ELSE
        s \le b;
     END IF:
  END PROCESS:
END behavior;
```


Aula V: 11 de 12

Exercícios

Implemente um MULTIPLEXADOR 8x1 utilizando os comandos WITH SELECT

Aula V: 12 de 12

Exercícios

	TRUTH TABLE													
	INPUTS						OUTPUTS							
E ₁	E ₂	E ₃	A ₀	A ₁	A ₂	00	01	02	03	04	05	06	07	
Н	Х	Х	Х	Х	Х	Н	Н	Н	Н	Н	Н	Н	Н	
X	H	X	X	X	X	Н	Н	Н	Н	H	Н	H	Н	
X	X	L	X	X	X	H	H	Н	H	H	Н	H	Н	
L	L	H	L	L	L	L	H	H	H	H	H	H	H	
L	L	Н	Н	L	L	Н	L	Н	H	H	H	H	Н	
L	L	Н	L	Н	L	Н	Н	L	Н	H	Н	H	Н	
L	L	Н	H	Н	L	H	H	Н	L	Н	Н	H	Н	
L	L	Н	L	L	Н	H	H	Н	Н	L	Н	H	Н	
L	L	Н	Н	L	Н	Н	H	Н	H	H	L	H	Н	
L	L	Н	L	Н	Н	Н	Н	Н	Н	H	Н	L	Н	
L	L	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	L	

H = HIGH Voltage Level L = LOW Voltage Level X = Don't Care

Aula V: 13 de 12

Comando PROCESS

- Objetivo: delimitar regiões de código sequencial
- Início: palavra reservada PROCESS
- Lista de sensibilidade: identifica que sinais ativam a execução do processo
- Comandos sequenciais: próximo capítulo

```
abc: PROCESS (lista de sensibilidade)

BEGIN

comando_1;
comando_2;

...

comando_n;

END PROCESS abc;

def: PROCESS (lista de sensibilidade)

BEGIN

comando_1;
comando_1;
comando_2;
...
...
comando_n;

END PROCESS def;
```


Aula V: 14 de 12

Exemplo

```
22 | PROCESS (A, B)
24 | BEGIN
25 | C <= A and B;
26 | D <= not F;
27 | END PROCESS;
28
```


Aula V: 15 de 12

FIM AULA V