

Methods On The Effects of Sexism in Academic Literature

Lylybell Teran

Mathematics and Computer Science Department

Abstract

Over 10.8 million workers in the U.S. are involved in STEM occupations yet merely 27% are filled by women.

Despite the increasing demand for workers, the issue remains that women are far less likely to enter a career in STEM compared to their male counterparts.

In this study, we explored the underlying influences on gender inequality by processing textual analysis of academic literature.

Introduction

- Textbooks provide a comprehensive understanding of a branch of study, which allows for future independent development.
- Foundational influences may establish long-lasting effects that differ between men and women:
 - Self-identification,
 - Social ideology,
 - Cultural ideology
- 1960's Feminist Movement led to non-sexist guidelines for publishers.
- Objective: Use text-mining and sentiment analysis to evaluate emotional bias of textbooks with respect to gender pronouns.

Methodology

Project Overview

Fig. 1: Flowchart of Summarized Steps

Step 1: Data Pre-processing

- 30 open-source literature:
 - 20 textbooks and 10 articles from journals
 - Natural sciences: Mathematics, Physics, Biology
 - Social Sciences: Humanities, History, and Business

Step 2: Create Bigrams

- Tokenized text into bigrams (consecutive pairs of words)
- pronoun + word = 'tidy data'
 - Example: <u>She cries</u> or <u>He smiles</u>

Step 3: TidyText Analysis

- Pronoun and Proper Noun frequencies were calculated:
 - Masculine: He, Him, His, Himself, Top 30 Names
 - Feminine: She, Her, Hers, Herself, Tops 30 Names
- Frequency

Fig. 2: Skewed Words Based on Frequency

Step 4: Sentiment Analysis

- AFINN lexicon was used to extract sentiment from each word
 - Integer rating between -5 and +5
- Evaluation Metric:
 - Sentiment Severity = sentiment score × frequency

Step 5: ANOVA Test

- Dependent variable:
 - Sentiment Severity (numeric)
- Independent variables:
 - Gender: M or F (2 levels)
 - Post-1960: T or F (2 levels)
 - Hard vs. Soft: H or S (2 levels)

Alpha level (significance level) – 0.05

Positive Words

Variable	F-Value	P-Value
Gender	0.3085	0.5787
Post1960	0.1159	0.7336
Hard vs. Soft	0.1926	0.6609

Fig. 3: Results of ANOVA on Positive Words

Negative Words

Variable	F-Value	P-value
Gender	0.1850	0.66720
Post1960	0.4008	0.52685
Hard vs. Soft	2.8854	0.08979

Fig. 4: Results of ANOVA on Negative Words

 Accepted Null Hypothesis: There is no interaction between the variables.

Step 6: Top 20 Most Contributing Words

- Same verbs and adjectives
- Similar levels of sentiment severity

Fig. 5: Male Characterization

<u>Positive Words:</u> Thrilled, Ecstatic, Triumph, Win Negative Words: Tortures, Fraudulent, Bastards

Results

- No statistical influence of variables on sentiment severity of words.
 - But there are skews in the usage of some words (in accordance with previous research on Fairy-tales).
 - More "masculine"
 - Best
 - Great
 - More "feminine"
 - Pretty
 - Cried
- Skewed words are **not** statistically influential.

Conclusion

Results demonstrate that academic subject nor publication year has an influence on sentiment severity of gender-associated words. However, gender characterization may be differentiated in another dataset.

Future Works

- Obtain unbiased dataset
- Account for visuals (computer vision application)

Acknowledgements

This work was supported in part by Adelphi University and Carl Giuffre, Ph.D. whose expertise was invaluable in completing my research.