MA5233 Computational Mathematics

Lecture 19: Theory of PDEs

Simon Etter

2019/2020

Differential equation

Equation in terms of an unknown function $u: \Omega \to \mathbb{R}^n$ and its derivatives which is to hold at every point in a connected domain $\Omega \subset \mathbb{R}^m$.

Solution is typically only unique if we also impose values of u and its derivatives on $\partial\Omega$.

▶ Differential equation is called *ordinary* or *initial value problem* if $\Omega \subset \mathbb{R}$ and we impose values of u and its derivatives at a single point.

Example:
$$\dot{y}(t) = f(y(t))$$
 for all $t \in [0, T]$, $y(0) = y_0$.

▶ Differential equation is called *partial* or *boundary value problem* in all other cases.

Example:
$$-\Delta u(x) = f(x)$$
 for all $x \in \Omega$, $u(x) = 0$ for all $x \in \partial \Omega$.

Focus for the next few lectures: partial differential equations. Focus for today: developing a mathematically sound theory of PDEs. Motivating examples:

https://youtu.be/ureGelZPi3o, https://youtu.be/00kyDKu8K-k

Introductory example

Consider the Poisson equation with Dirichlet boundary conditions,

$$-u'' = f$$
 on $[0,1],$ $u(0) = u(1) = 0.$

A pair f, u which "solves" this equation is given by

$$f(x) = \begin{cases} 0 & x < 0.5, \\ 1 & x > 0.5, \end{cases} \qquad u(x) = \begin{cases} \frac{x}{8} & x < 0.5, \\ \frac{(x-1/4)(1-x)}{2} & x > 0.5, \end{cases}$$

Observation: u''(x) solution is discontinuous at $x = \frac{1}{2}!$ In what sense is $-u''(\frac{1}{2}) = f(\frac{1}{2})$ satisfied?

Introductory example (continued)

In example, we have -u''(x) = f(x) for all $x \in [0,1]$ except at a single point $x = \frac{1}{2}$.

In particular, for any continuous function $\phi(x)$ we have

$$-\int_0^1 u''(x) \,\phi(x) \,dx = \int_0^1 f(x) \,\phi(x) \,dx. \tag{1}$$

Conversely, if (1) is satisfied for all continuous functions $\phi(x)$ and f(x), u''(x) are continuous, then we can set $\phi(x) = u''(x) + f(x)$ and obtain

$$0 = \int_0^1 \left(f(x) + u''(x) \right) \phi(x) \, dx = \int_0^1 \left(f(x) + u''(x) \right)^2 dx$$

which shows that -u''(x) = f(x) for all $x \in [0, 1]$.

Introductory example (continued)

Repeated from previous slide for convenience:

$$-\int_0^1 u''(x) \,\phi(x) \,dx = \int_0^1 f(x) \,\phi(x) \,dx. \tag{1}$$

Summary:

- ▶ If -u''(x) = f(x) holds for all $x \in [0, 1]$, then (1) holds for all continuous $\phi(x)$.
- If (1) holds for all continuous $\phi(x)$ and u''(x), f(x) are continuous, then -u''(x) = f(x) holds for all $x \in [0, 1]$.
- For the concrete pair f, u given above, (1) holds for all continuous $\phi(x)$ while -u''(x) = f(x) does not make sense.

Conclusion: we may *define* that u(x) solves -u''(x) = f(x) if (1) holds for all continuous $\phi(x)$.

Unlike $-\Delta u = f$, which we derived from a flux law and conservation of mass (see Lecture 5), the above reinterpretation of this PDE has no physical meaning. It is just a mathematical trick to arrive at a sound theory.

Also, note that this is not the final definition of what we mean by -u''(x) = f(x).

Def: Function spaces

Consider function $f : [a, b] \to \mathbb{R}$. We define:

- ▶ $f \in C^k([a, b])$ if f has k continuous derivatives.
- $f \in C_0^k([a,b])$ if $f \in C^k([a,b])$ and f(a) = f(b) = 0.
- ▶ $f \in L^2([a, b])$ if $\int_a^b f(x)^2 dx$ is well-defined and finite.

Def: L^2 inner product and norm

$$\langle f, g \rangle_{L^2([a,b])} := \int_a^b f(x) g(x) dx,$$

 $\|f\|_{L^2([a,b])} := \sqrt{\langle f, f \rangle_{L^2([a,b])}} = \sqrt{\int_a^b f(x)^2 dx}.$

By Cauchy-Schwarz inequality, we have

$$\langle f, g \rangle_{L^2([a,b])} \le ||f||_{L^2([a,b])} ||g||_{L^2([a,b])};$$

hence $\langle f, g \rangle_{L^2([a,b])}$ is bounded for all $f, g \in L^2([a,b])$.

Remark on L^2 norm

Strictly speaking, $||f||_{L^2([a,b])}$ is not a norm since for e.g.

$$f(x) = \begin{cases} 1 & \text{if } x = 0.5, \\ 0 & \text{otherwise} \end{cases}$$

we get $||f||_{L^2([0,1])} = 0$ but $f \neq 0$.

We fix this by interpreting a function $f \in L^2([a,b])$ as a *representative* of the set of all functions $g:[a,b] \to \mathbb{R}$ such that $\|f-g\|_{L^2([a,b])}=0$.

Simply put, we define that f = g for $f, g \in L^2([a, b])$ if $||f - g||_{L^2([a, b])} = 0$.

Important consequence: the value of function $f \in L^2([a,b])$ at a single point x is not well defined.

Def: Weak derivative

Let $f, g \in L^2([a, b])$. We say g is a weak derivative of f if for all $\phi \in C_0^\infty([a, b])$ we have

$$\int_a^b f(x) \, \frac{\partial \phi}{\partial x_i}(x) \, dx = - \int_a^b g(x) \, \phi(x) \, dx.$$

Such weak derivatives g may not exist for a given $f \in L^2([a,b])$, but if they do they are unique and we write $\frac{\partial f}{\partial x} := g$.

If $f \in C^1$, then the weak derivatives exists and it agrees with the classical derivative.

Rationale. We obtain using integration by parts and $\phi \in C_0^\infty([a,b]) \iff \phi(a) = \phi(b) = 0$ that

$$\int_{a}^{b} \underbrace{f(x)}_{\downarrow} \underbrace{\frac{\partial \phi}{\partial x}(x)}_{\uparrow} dx = f(b) \underbrace{\phi(b)}_{0} - f(a) \underbrace{\phi(a)}_{0} - \int_{a}^{b} \frac{\partial f}{\partial x}(x) \phi(x) dx$$
$$= - \int_{a}^{b} \frac{\partial f}{\partial x}(x) \phi(x) dx.$$

Thm: Weak derivatives of piecewise C^1 functions

Assume $f:[a,b]\to\mathbb{R}$ is continuous on [a,b] and continuously differentiable except on a countable set $X\subset [a,b]$. Then, the weak derivative $\frac{\partial f}{\partial x}$ exists and it agrees with the classical derivative on $[a,b]\setminus X$.

Proof. Assume $X=\{\hat{x}\}$ for simplicity (result for more points in X can be shown analogously). Then, we have for every $\phi\in C_0^\infty([a,b])$ that

$$\int_{a}^{b} f(x) \frac{\partial \phi}{\partial x}(x) dx = \int_{a}^{\hat{x}} f(x) \frac{\partial \phi}{\partial x}(x) dx + \int_{\hat{x}}^{b} f(x) \frac{\partial \phi}{\partial x}(x) dx$$

$$= f(\hat{x}) \phi(\hat{x}) - f(a) \phi(a) - \int_{a}^{\hat{x}} \frac{\partial f}{\partial x}(x) \phi(x) dx + \dots$$

$$f(b) \phi(b) - f(\hat{x}) \phi(\hat{x}) - \int_{\hat{x}}^{b} \frac{\partial f}{\partial x}(x) \phi(x) dx$$

$$= -\int_{a}^{b} \frac{\partial f}{\partial x}(x) \phi(x) dx.$$

Introductory example (continued)

We have seen that there are pairs f, u which "solve" -u''(x) = f(x) in some sense even though $u \notin C^2$.

We have seen that a reasonable reformulation of the PDE is as follows:

We say $u:[0,1]\to\mathbb{R}$ "solves" -u''(x)=f(x) if u has two weak derivatives and for all $\phi\in C^0([0,1])$ we have that

$$-\int_0^1 u''(x) \, \phi(x) \, dx = \int_0^1 f(x) \, \phi(x) \, dx.$$

However, it turns out that this still is not the most convenient formulation of the problem. If we restrict ϕ to $\phi \in C^1_0([0,1])$, then we obtain by integration by parts that

$$\int_0^1 u'(x) \, \phi'(x) \, dx = \int_0^1 f(x) \, \phi(x) \, dx.$$

This is closer to our final definition of what we mean by -u''(x) = f(x), but it is not quite the final definition yet. In order to get there, we need some more notation.

Def: Sobolev spaces

Consider $f \in L^2([a, b])$. We define:

- ▶ $f \in H^k([a, b])$ if f has k weak derivatives.
- ▶ $f \in H_0^k([a,b])$ if $f \in H^k([a,b])$ and $\frac{\partial^\ell f}{\partial x^\ell}(a) = \frac{\partial^\ell f}{\partial x^\ell}(b) = 0$ for all $\ell \in \{0, \dots, k-1\}$.

Remark: boundary conditions in Sobolev spaces

According to definition, we have $f \in H^1([a, b])$ if $f \in L^2(\Omega)$, f has one weak derivative and f(a) = f(b) = 0.

It is not obvious that the last requirement makes sense: since f is only in $L^2([a,b])$, it is only defined up to modification with a function $\delta f \in L^2([a,b])$ such that $\|\delta f\|_{L^2([a,b])} = 0$, see "Remark on L^2 norm".

However, in one dimension it can be shown that if $f \in H^1([a,b])$, then there exists exactly one δf of the above form such that $f + \delta f \in C^0([a,b])$.

The intended meaning of f(a) = f(b) = 0 is that this condition is satisfied for the representative of $f \in L^2([a,b])$ which is also in $C^0([a,b])$.

Def: Weak solution to Poisson's equation

We say $u:[a,b] \to \mathbb{R}$ is a weak solution to the Poisson equation

$$-u'' = f \text{ on } [a, b], \qquad u(a) = u(b) = 0,$$
 (2)

if $u \in H_0^1([a,b])$ and for all $v \in H_0^1([a,b])$ it holds

$$\int_{a}^{b} u'(x) \, v'(x) \, dx = \int_{a}^{b} f(x) \, v(x) \, dx.$$

Remarks

- ▶ If $u \in C^2([a, b])$ satisfies (2), then u is a weak solution.
- ▶ If $u \in C^1([a, b])$, $u \in C^2([a, b] \setminus X)$ for some countable set $X \subset [a, b]$ and u satisfies (2) except on x, then u is a weak solution.

It follows from the second point that the solution from the introductory example is a weak solution.

[to be continued]