Lesson 11

José M. Corcuera. University of Barcelona.

The Girsanov theorem

Definition

Let $(\Omega, \mathcal{F}, \mathbb{P})$ a probability space. We say that X is a Brownian motion in [0, T] if it satisfies:

- i) $s \longmapsto X_s(\omega)$ is continuous a.s.- \mathbb{P}
- $ii) X_0 = 0 \text{ a.s.-}\mathbb{P}$
- iii) X_{t_1} , $X_{t_2}-X_{t_1}$, ..., $X_{t_n}-X_{t_{n-1}}$ are ind. r.v. for all $0\leq t_1\leq ...\leq t_n\leq T$
- iv) $X_t X_s \sim N(0, t s)$ for $0 \le s < t \le T$.

Lemma

If X is a Brownian motion in [0,T] and $\theta \in \mathbb{R}$ then

$$Z_t := \exp\left\{ heta X_t - rac{1}{2} heta^2 t
ight\}$$
 , $0 \leq t \leq T$

is a martingale.

Proof.

Let $t \geq s$

$$\begin{split} & \mathbb{E}\left(\left.Z_{t}\right|Z_{u},0\leq u\leq s\right) \\ &= \left.Z_{s}\mathbb{E}\left(\left.\frac{Z_{t}}{Z_{s}}\right|Z_{u},0\leq u\leq s\right) \\ &= \left.Z_{s}\mathbb{E}\left(\left.\exp\left\{\theta\left(X_{t}-X_{s}\right)-\frac{1}{2}\theta^{2}(t-s)\right\}\right|X_{u},0\leq u\leq s\right) \\ &= \left.Z_{s}\mathbb{E}\left(\exp\left\{\theta\left(X_{t}-X_{s}\right)-\frac{1}{2}\theta^{2}(t-s)\right\}\right), \end{split}$$

(continuation) and

$$\begin{split} &\mathbb{E}\left(\exp\left\{\theta\left(X_{t}-X_{s}\right)\right\}\right) \\ &= \int_{\mathbb{R}}e^{\theta x}\frac{1}{\sqrt{2\pi(t-s)}}e^{-\frac{1}{2(t-s)}x^{2}}dx \\ &= \int_{\mathbb{R}}\frac{1}{\sqrt{2\pi(t-s)}}e^{-\frac{1}{2(t-s)}(x^{2}-2\theta x(t-s))}dx \\ &= e^{\frac{1}{2}\theta^{2}(t-s)}\int_{\mathbb{R}}\frac{1}{\sqrt{2\pi(t-s)}}e^{-\frac{1}{2(t-s)}(x^{2}-2\theta x(t-s)+\theta^{2}(t-s)^{2})}dx \\ &= e^{\frac{1}{2}\theta^{2}(t-s)}\int_{\mathbb{R}}\frac{1}{\sqrt{2\pi(t-s)}}e^{-\frac{1}{2(t-s)}(x-\theta(t-s))^{2}}dx \\ &= e^{\frac{1}{2}\theta^{2}(t-s)}. \end{split}$$

Theorem

(Girsanov's theorem) Let X be a Brownian motion in [0, T] defined on $(\Omega, \mathcal{F}, \mathbb{P})$, set $\tilde{\mathbb{P}}(A) := \mathbb{E}(Z\mathbf{1}_A)$ with

$$Z = \exp\left\{\theta X_T - \frac{1}{2}\theta^2 T\right\}$$

for $A \in \mathcal{F}$, then $Y_t := X_t - \theta t$, $0 \le t \le T$ is a Brownian motion in [0, T] on $(\Omega, \mathcal{F}, \tilde{\mathbb{P}})$.

In the Definition 1 i) and ii) are trivially fulfilled. Set $0 = t_0 \le t_1 \le ... \le t_n \le t_{n+1} = T$ and let $B_1, B_2, ..., B_n, B_{n+1}$ be Borelian sets in $\mathbb R$ with $B_{n+1} = \mathbb R$. Set $A = \{X_{t_1} \in B_1, X_{t_2} - X_{t_1} \in B_2, ..., X_{t_n} - X_{t_{n-1}} \in B_n\}$

$$\begin{split} \tilde{\mathbb{P}}(A) &= \mathbb{E}\left(\exp\left\{\theta X_{T} - \frac{1}{2}\theta^{2}T\right\}\mathbf{1}_{A}\right) \\ &= \mathbb{E}\left(\exp\left\{\sum_{i=1}^{n+1}\left(\theta\left(X_{t_{i}} - X_{t_{i-1}}\right) - \frac{1}{2}\theta^{2}(t_{i} - t_{i-1})\right)\right\}\mathbf{1}_{A}\right) \\ &= \int_{B_{1}}\int_{B_{2}} ... \int_{B_{n}}\int_{B_{n+1}} \prod_{i=1}^{n+1} \exp\left\{\theta u_{i} - \frac{1}{2}\theta^{2}(t_{i} - t_{i-1})\right\} \\ &\times \frac{1}{\sqrt{2\pi(t_{i} - t_{i-1})}} \exp\left\{-\frac{u_{i}^{2}}{2(t_{i} - t_{i-1})}\right\} du \end{split}$$

<ロト 4回り 4 重り 4 重り

Therefore

$$\tilde{\mathbb{P}}(A) = \prod_{i=1}^{n+1} \int_{B_i} \frac{1}{\sqrt{2\pi(t_i - t_{i-1})}} \exp\left\{-\frac{(u_i - \theta(t_i - t_{i-1}))^2}{2(t_i - t_{i-1})}\right\} du_i
= \prod_{i=1}^{n} \int_{B_i} \frac{1}{\sqrt{2\pi(t_i - t_{i-1})}} \exp\left\{-\frac{(u_i - \theta(t_i - t_{i-1}))^2}{2(t_i - t_{i-1})}\right\} du_i,$$

since
$$\int_{\mathbb{R}} \frac{1}{\sqrt{2\pi(t_{n+1}-t_n)}} \exp\left\{-\frac{(u_{n+1}-\theta(t_{n+1}-t_n))^2}{2(t_{n+1}-t_n)}\right\} du_{n+1} = 1$$

(continuation) Then we conclude that

$$\tilde{\mathbb{P}}(X_{t_1} \in B_1, X_{t_2} - X_{t_1} \in B_2, ..., X_{t_n} - X_{t_{n-1}} \in B_n) \\
= \prod_{i=1}^n \tilde{\mathbb{P}}(X_{t_i} - X_{t_{i-1}} \in B_i),$$

with $X_{t_i}-X_{t_{i-1}}\sim N(\theta(t_i-t_{i-1}),t_i-t_{i-1})$ or equivalently $X_{t_i}-X_{t_{i-1}}-\theta(t_i-t_{i-1})\sim N(0,t_i-t_{i-1})$ and they are independent, so $X_t-\theta t$, satisfies iii) and iv).

Example

Consider the discounted price of the stock in the BS-model. We have that

$$d\tilde{S}_{t} = d\left(e^{-rt}S_{t}\right) = -re^{-rt}S_{t}dt + e^{-rt}dS_{t}$$

$$= e^{-rt}S_{t}\left(-rdt + \mu dt + \sigma dW_{t}\right)$$

$$= \sigma \tilde{S}_{t}d\left(-\frac{r - \mu}{\sigma}t + W_{t}\right)$$

$$= \sigma \tilde{S}_{t}d\bar{W}_{t}$$
(1)

with

$$\bar{W}_t = W_t - \frac{r - \mu}{\sigma} t.$$

Then by the Girsanov theorem with $\theta=\frac{r-\mu}{\sigma}$ it turns out that \bar{W} is a Brownian motion with respect to the probability \mathbb{P}^*

$$\mathrm{d}\mathbb{P}^* = \exp\left\{rac{r-\mu}{\sigma}W_T - rac{1}{2}\left(rac{r-\mu}{\sigma}
ight)^2T
ight\}\mathrm{d}\mathbb{P}.$$

Example

(continuation) From (1) we deduce that

$$ilde{S}_t = S_0 \exp\left\{-rac{1}{2}\sigma^2 t + \sigma ar{W}_t
ight\}$$

and that \tilde{S} is a \mathbb{P}^* -martingale. We also have that

$$S_t = S_0 \exp\left\{rt - \frac{1}{2}\sigma^2t + \sigma \bar{W}_t\right\}.$$

Theorem

The Black-Scholes model is free of arbitrage.

Proof.

It is a particular case of modelling the stock process with an Itô process and where we can find a risk-neutral probability.

Definition

We say that an option is replicable if its payoff is equal to the final value of an admissible strategy.

Definition

We say that an option is replicable if its payoff is equal to the final value of an admissible strategy.

Definition

We shall say that the model is complete if any option with not negative payoff X, square integrable with respect to \mathbb{P}^* , is replicable.

Definition

We say that an option is replicable if its payoff is equal to the final value of an admissible strategy.

Definition

We shall say that the model is complete if any option with not negative payoff X, square integrable with respect to \mathbb{P}^* , is replicable.

Theorem

The Black-Scholes model is complete. Any option with payoff $X \geq 0$, \mathcal{F}_T -measurable and square integrable under \mathbb{P}^* is replicable and its value, at time $t \in [0,T]$, is given by

$$C_t = \mathbb{E}_{\mathbb{P}^*}(e^{-r(T-t)}X|\mathcal{F}_t).$$

Under \mathbb{P}^*

$$M_t := \mathbb{E}_{\mathbb{P}^*}(e^{-rT}X|\mathcal{F}_t)$$
, $0 \le t \le T$

is a square integrable martingale, then by the representation theorem of Brownian martingales, (that we shall discuss later) there exists a unique adapted process Y such that

$$M_t = M_0 + \int_0^t Y_s \mathrm{d}\bar{W}_s, 0 \le t \le T$$

with

$$\mathbb{E}_{\mathbb{P}^*}\left(\int_0^1 Y_s^2 \mathrm{d}s\right) < \infty.$$

(It is important to note that the filtration generated by \bar{W} and W is the same!)

Then we can define ϕ_t^1 by

$$\phi_t^1 = \frac{Y_t}{\sigma \tilde{S}_t}$$

and we have that

$$M_{t} = M_{0} + \int_{0}^{t} Y_{s} d\bar{W}_{s} = \int_{0}^{t} \phi_{s}^{1} \sigma \tilde{S}_{s} d\bar{W}_{t}$$
$$= M_{0} + \int_{0}^{t} \phi_{s}^{1} d\tilde{S}_{t} = \tilde{V}_{t}(\phi)$$

that is

$$\tilde{C}_t = C_0 + \int_0^t \phi_t^1 \mathrm{d}\tilde{S}_t.$$

Therefore the strategy (ϕ_t^0, ϕ_t^1) with $\phi_t^0 e^{rt} = C_t - \phi_t^1 S_t$ is self-financing and replicates X. To see that it is admissible it is enough to take into account that since X > 0, $C_t > 0$.

Theorem

In the BS model the price of an option with payoff $X = f(S_T) \ge 0$ and square integrable with respect to \mathbb{P}^* , is given by $C(t, S_t) = \mathbb{E}_{\mathbb{P}^*}(e^{-r(T-t)}X|\mathcal{F}_t)$ and if C(t, x) is $C^{1,2}$, the strategy that replicates X is given by (ϕ_t^0, ϕ_t^1) con

$$\phi_t^1 = \frac{\partial C(t, S_t)}{\partial S_t}$$

$$\phi_t^0 e^{rt} = C(t, S_t) - \phi_t^1 S_t,$$

and $C(t, S_t)$ is the solution of

$$\frac{\partial C(t, S_t)}{\partial t} + rS_t \frac{\partial C(t, S_t)}{\partial S_t} + \frac{1}{2} \sigma^2 S_t^2 \frac{\partial^2 C(t, S_t)}{\partial S_t^2} = rC(t, S_t).$$
 (2)

with the boundary condition $C(T, S_T) = f(S_T)$.

José M. Corcuera. University of Barcelona.

First of all, by the independence of the relative increments

$$\mathbb{E}_{\mathbb{P}^*}\left(\left(e^{-r(T-t)}f(S_T)\middle|\mathcal{F}_t\right) = \mathbb{E}_{\mathbb{P}^*}\left(\left.e^{-r(T-t)}f\left(\frac{S_T}{S_t}S_t\right)\middle|\mathcal{F}_t\right)\right.$$

$$= \mathbb{E}_{\mathbb{P}^*}\left(\left.e^{-r(T-t)}f\left(\frac{S_T}{S_t}x\right)\right)\right|_{x=S_t}$$

$$= C(t, S_t),$$

so the price at t is a function of on S_t and t. Now define $\bar{C}(t,x):=e^{-rt}C(t,xe^{rt})$. Notice that $\bar{C}(t,\tilde{S}_t)$ is a \mathbb{P}^* -martingale:

$$\bar{C}(t, \tilde{S}_t) = e^{-rt}C(t, S_t) = \mathbb{E}_{\mathbb{P}^*}\left(\left.e^{-rT}f(S_T)\right|\mathcal{F}_t\right),$$

José M. Corcuera. University of Barcelona.

If If we apply now the Itô formula to $\bar{C}(t, \tilde{S}_t) = e^{-rt}C(t, \tilde{S}_te^{rt})$, we have

$$\begin{split} &\bar{\mathcal{C}}(t,\tilde{\mathcal{S}}_t) - \mathcal{C}(0,\mathcal{S}_0) \\ &= \int_0^t \frac{\partial \bar{\mathcal{C}}(s,\tilde{\mathcal{S}}_s)}{\partial s} \mathrm{d}s + \int_0^t \frac{\partial \bar{\mathcal{C}}(s,\tilde{\mathcal{S}}_s)}{\partial \tilde{\mathcal{S}}_s} \mathrm{d}\tilde{\mathcal{S}}_s + \frac{1}{2} \int_0^t \frac{\partial^2 \bar{\mathcal{C}}(s,\tilde{\mathcal{S}}_s)}{\partial \tilde{\mathcal{S}}_s^2} \mathrm{d}\langle \tilde{\mathcal{S}},\tilde{\mathcal{S}} \rangle_s \end{split}$$

and since

$$\mathrm{d}\tilde{S}_t = \sigma \tilde{S}_t \mathrm{d}\bar{W}_t$$

we obtain

$$\bar{C}(t,\tilde{S}_t) - C(0,S_0)
= \int_0^t \frac{\partial \bar{C}(s,\tilde{S}_s)}{\partial \tilde{S}_s} \sigma \tilde{S}_s d\bar{W}_s + \int_0^t \left(\frac{\partial \bar{C}(s,\tilde{S}_s)}{\partial s} + \frac{1}{2} \frac{\partial^2 \bar{C}(s,\tilde{S}_s)}{\partial \tilde{S}_s^2} \sigma^2 \tilde{S}_s^2 \right) ds.$$

Therefore, since $\bar{C}(t, \tilde{S}_t)$ is a martingale and the decomposition of an Itô process is unique we have that

$$\tilde{C}(t, S_t) = C(0, S_0) + \int_0^t \frac{\partial \bar{C}(s, \tilde{S}_s)}{\partial \tilde{S}_s} d\tilde{S}_s$$
$$\frac{\partial \bar{C}(t, \tilde{S}_t)}{\partial t} + \frac{1}{2} \frac{\partial^2 \bar{C}(t, \tilde{S}_t)}{\partial \tilde{S}_s^2} \sigma^2 \tilde{S}_t^2 = 0.$$

Now since

$$\frac{\partial \bar{C}(t, \tilde{S}_t)}{\partial t} = -re^{-rt}C(t, S_t) + e^{-rt}\frac{\partial C(t, S_t)}{\partial t} + re^{-rt}S_t\frac{\partial C(t, S_t)}{\partial S_t}$$
$$\frac{\partial \bar{C}(t, \tilde{S}_t)}{\partial \tilde{S}_s} = e^{-rt}\frac{\partial C(s, S_t)}{\partial S_t}\frac{\partial S_t}{\partial \tilde{S}_t} = \frac{\partial C(t, S_t)}{\partial S_t}$$

and

$$\frac{\partial^2 \bar{C}(t, \tilde{S}_t)}{\partial \tilde{S}_t^2} = \frac{\partial^2 C(t, S_t)}{\partial S_t^2} \frac{\partial S_t}{\partial \tilde{S}_t} = e^{rt} \frac{\partial^2 C(t, S_t)}{\partial S_t^2},$$

and we obtain that

$$\tilde{C}(t, S_t) = C(0, S_0) + \int_0^t \frac{\partial C(s, S_s)}{\partial S_s} d\tilde{S}_s$$

that is

$$\phi_t^1 = \frac{\partial C(t, S_t)}{\partial S_t}, \ \phi_t^0 = \tilde{C}(t, S_t) - \frac{\partial C(t, S_t)}{\partial S_t} \tilde{S}_t$$

and

$$\frac{\partial C(t, S_t)}{\partial t} + rS_t \frac{\partial C(t, S_t)}{\partial S_t} + \frac{1}{2} \sigma^2 S_t^2 \frac{\partial^2 C(t, S_t)}{\partial S_t^2} = rC(t, S_t).$$

Pricing and hedging of a call option. The Black-Scholes formula

For simplicity we write W instead of \bar{W}

$$\begin{split} &C(t,S_t)\\ &= \mathbb{E}_{\mathbb{P}^*} \left(e^{-r(T-t)} (S_T - K)_+ | \mathcal{F}_t \right) \\ &= e^{-r(T-t)} \mathbb{E}_{\mathbb{P}^*} \left(S_T \mathbf{1}_{\{S_T > K\}} | \mathcal{F}_t \right) - K e^{-r(T-t)} \mathbb{E}_{\mathbb{P}^*} (\mathbf{1}_{\{S_T > K\}} | \mathcal{F}_t) \\ &= e^{-r(T-t)} S_t \mathbb{E}_{\mathbb{P}^*} \left(\frac{S_T}{S_t} \mathbf{1}_{\left\{ \frac{S_T}{S_t} > \frac{K}{x} \right\}} \right)_{x = S_t} - K e^{-r(T-t)} \mathbb{E}_{\mathbb{P}^*} \left(\mathbf{1}_{\left\{ \frac{S_T}{S_t} > \frac{K}{x} \right\}} \right)_{x = S_t}, \end{split}$$

but

$$\begin{split} \frac{S_T}{S_t} &= \exp\{(r - \frac{1}{2}\sigma^2)(T - t) + \sigma\left(W_T - W_t\right)\} \\ &\stackrel{\text{Law}}{=} \exp\{(r - \frac{1}{2}\sigma^2)(T - t) + \sigma W_{T - t}\} \end{split}$$

then

$$\begin{split} \mathbb{E}_{\mathbb{P}^*} \left(\mathbf{1}_{\left\{ \frac{S_T}{S_t} > \frac{K}{x} \right\}} \right) &= \mathbb{P}^* \left(\frac{S_T}{S_t} > \frac{K}{x} \right) \\ &= \mathbb{P}^* \left(\log \frac{S_T}{S_t} > \log \frac{K}{x} \right) \\ &= \mathbb{P}^* \left(\frac{W_{T-t}}{\sqrt{(T-t)}} > \frac{\log \frac{K}{x} - (r - \frac{1}{2}\sigma^2)(T-t)}{\sigma \sqrt{(T-t)}} \right) \\ &= \Phi \left(\frac{\log \frac{x}{K} + (r - \frac{1}{2}\sigma^2)(T-t)}{\sigma \sqrt{(T-t)}} \right) \\ &= \Phi(d_-) \text{ (replacing x by S_t)} \end{split}$$

Moreover, if we write Y to indicate a standard normal r.v.

$$\begin{split} &e^{-r(T-t)}\mathbb{E}_{\mathbb{P}^*}\left(\frac{S_T}{S_t}\mathbf{1}_{\left\{\frac{S_T}{S_t}>\frac{K}{X}\right\}}\right)\\ &=e^{-r(T-t)}\\ &\times\mathbb{E}_{\mathbb{P}^*}\left(\exp\left\{(r-\frac{1}{2}\sigma^2)(T-t)+\sigma W_{T-t}\right\}\mathbf{1}_{\left\{\sigma W_{T-t}>\log\frac{K}{X}-(r-\frac{1}{2}\sigma^2)(T-t)\right\}}\right)\\ &=\mathbb{E}_{\mathbb{P}^*}\left(\exp\left\{\left(-\frac{1}{2}\sigma^2\right)(T-t)+\sigma W_{T-t}\right\}\mathbf{1}_{\left\{\sigma W_{T-t}>\log\frac{K}{X}-(r-\frac{1}{2}\sigma^2)(T-t)\right\}}\right)\\ &=\frac{1}{\sqrt{(2\pi)}}\int_{-\infty}^{\frac{\log\frac{K}{X}+(r-\frac{1}{2}\sigma^2)(T-t)}{\sigma\sqrt{(T-t)}}}\exp\left\{-\frac{1}{2}\sigma^2(T-t)-\sigma\sqrt{(T-t)}y-\frac{1}{2}y^2\right\}dy\\ &=\frac{1}{\sqrt{(2\pi)}}\int_{-\infty}^{\frac{\log\frac{K}{X}+(r-\frac{1}{2}\sigma^2)(T-t)}{\sigma\sqrt{(T-t)}}}\exp\left\{-\frac{1}{2}\left(\sigma\sqrt{(T-t)+y}\right)^2\right\}dy\\ &=\frac{1}{\sqrt{(2\pi)}}\int_{-\infty}^{\frac{\log\frac{K}{X}+(r+\frac{1}{2}\sigma^2)(T-t)}{\sigma\sqrt{(T-t)}}}\exp\left\{-\frac{1}{2}u^2\right\}du=\Phi(d_+) \text{ (replacing x by S_t)} \end{split}$$

Therefore

$$C(t, S_t) = S_t \Phi(d_+) - Ke^{-r(T-t)} \Phi(d_-)$$

where $\Phi(x)$ is the standard normal distribution function and

$$d_{\pm} = \frac{\log\left(\frac{S_t}{K}\right) + \left(r \pm \frac{1}{2}\sigma^2\right)(T-t)}{\sigma\sqrt{T-t}}.$$

It is easy to see that

$$\phi_t^1 = \frac{\partial C(t, S_t)}{\partial S_t} = \Phi(d_+) := \Delta.$$

and consequently that

$$\phi_t^0 = -Ke^{-rT}\Phi(d_-)$$