10.569 Synthesis of Polymers Prof. Paula Hammond

Lecture 17: Stereoregular Polymerizations

Final comments: copolymerization

Recall azeotrope: occurs r_1 , $r_2 < 1$

$$\Rightarrow$$
 f₁ = F₁ monomer comp = final copolymer comp - if you have no perturbations, can get same composition throughout full range of π - if there is perturbation \rightarrow move further and

further away from $f_1 = F_1$

For all copolymerizations in which

- azeotrope comp
- perfectly alternating system $(f_1 = F_1)$

We have unchanged polymer composition

BUT for all other cases (most cases), monomer compositions are continually changing.

- must create different expressions and integrate to get polymer composition averaged over conversion

Skeist:

$$1 - \frac{[M]}{[M]_o} = \pi$$

$$\int_{M_o}^{M} \frac{dM}{M} = \ln \frac{[M]}{[M]_o} = \int_{(f_1)_o}^{f_1} \frac{df_1}{(F_1 - f_1)}$$

$$\pi = 1 - \frac{[M]}{[M]_o} = 1 - \left[\frac{f_1}{(f_1)_o}\right]^{\alpha} \left[\frac{f_2}{(f_2)_o}\right]^{\beta} \left[\frac{(f_1)_o - \delta}{(f_1 - \delta)}\right]^{\gamma}$$

where
$$\alpha = \frac{r_2}{1 - r_2}$$

$$\beta = \frac{r_1}{1 - r_1}$$

$$\gamma = \frac{1 - r_1 r_2}{\left(1 - r_1\right)\left(1 - r_2\right)}$$

$$\delta = \frac{1 - r_2}{\left(2 - r_1 - r_2\right)}$$

Stereochemistry of polymer chains

Dyad tacticity

Triad tacticity

CH₂=CHR

In "normal" solution/bulk free radical polymerization

10.569, Synthesis of Polymers, Fall 2006 Prof. Paula Hammond Lecture 17 Page 2 of 6

$$\frac{k_r}{k_m} \Rightarrow$$
 determine tacticity

$$\frac{k_r}{k_m} \sim 1.0 \Rightarrow \text{atactic}$$

$$\frac{k_r}{k_m}$$
 << 1.0 \Rightarrow isotactic

$$\frac{k_r}{k_m} >> 1.0 \Rightarrow \text{syndiotactic}$$

Sterics prefer syndiotactic addition.

E_a slightly higher for iso addition

As T↑ iso fractions ↑ T↓ syndio fractions ↑

e.g. PMMA:

$$T_p = 100^{\circ}$$

 $r = 0.73$

$$T_p = -78^{\circ}0$$
 $r = 0.87$

e.g. PVC

$$T_p = 60^{\circ}C$$

 $r = 0.5$

$$T_p = -38^{\circ}C$$
 $r = 0.6$

Coordination Polymerization

Coordinated catalyst: usually metal/metal halide or oxide complex:

- promote stereospecific + controlled addition of monomer

Ziegler and Natta (Germany) (Italy) Nobel Prize, 1963

e.g.

propylene (propane)

Initiator: Group I-III metal (e.g. Al) + transition metal (e.g. Ti)

Ziegler-Natta Catalyst

Usually TiCl₄ or TiCl₃

+

 $AIR_3 + AIR_2CI$ $R=CH_2CH_3$ or $(CH_2)_nCH_3$

alkyl tail

$$CH_2$$
 CH_2
 CI
 CH_2
 CI
 CH_2
 CH_2

"Escort" process guides stereochemistry many of Z-N catalysts (crys) ⇒ isotactic addition (soluble) ⇒ syndiotactic

10.569, Synthesis of Polymers, Fall 2006 Prof. Paula Hammond

Lecture 17 Page 4 of 6 Consider polypropylene

Atactic PP: $T_g \sim -70^{\circ}C$

fully noncrystalline liquid-like, paste

Isotactic PP: $T_m = 170$ °C

highly crystalline

amorphous region: $T_g \sim -50^{\circ}\text{C} - -60^{\circ}\text{C}$

insoluble

Syndiotactic PP: very crystalline $T_m \sim 130^{\circ}C$

$$CH_2 = CH_2 \longrightarrow \frac{\begin{pmatrix} H_2 & H_2 \\ C^2 - C^2 \end{pmatrix}_n}{\begin{pmatrix} A & A & A \end{pmatrix}}$$

regular structure

Traditional free radical polymerization
Tubular Reactors: 2-6 cm in diameter
0.5 – 1.5 km in length

10.569, Synthesis of Polymers, Fall 2006 Prof. Paula Hammond Lecture 17 Page 5 of 6

Chain transfer to monomer and polymer:

$$\sim$$
 \sim \sim $+$ \sim $+$ \sim \sim \sim

Branches hinder crystallinity

Low density PE (LDPE)

 $\rho = 0.9 \text{ g/cm}^3$ $T_g = -120^{\circ}\text{C}$ $T_m = 105^{\circ}\text{C}$

Highly branched, Irregular length

Z-N catalyst: reduce transfer

minimal branching

High density PE (HDPE)

% crystallinity: 80-90%

 $\rho = 0.94 - 0.96$

 $T_{\rm m} > 130^{\circ} C$