Stateful-Failure Reactive Designs in Isabelle/UTP

Simon Foster James Baxter Ana Cavalcanti Jim Woodcock February 1, 2019

Abstract

Stateful-Failure Reactive Designs specialise reactive design contracts with failures traces, as present in languages like CSP and Circus. A failure trace consists of a sequence of events and a refusal set. It intuitively represents a quiescent observation, where certain events have previously occurred, and others are currently being accepted. Following the UTP book, we add an observational variable to represent refusal sets, and healthiness conditions that ensure their well-formedness. Using these, we also specialise our theory of reactive relations with operators to characterise both completed and quiescent interactions, and an accompanying equational theory. We use these to define the core operators — including assignment, event occurence, and external choice — and specialise our proof strategy to support these. We also demonstrate a link with the CSP failures-divergences semantic model.

Contents

1 Introduction						
2	Stat	teful-Failure Core Types	2			
	2.1	SFRD Alphabet	3			
	2.2	Basic laws				
	2.3	Unrestriction laws	3			
3	Stateful-Failure Reactive Relations 5					
	3.1	Healthiness Conditions	5			
	3.2	Closure Properties	6			
	3.3	Introduction laws	12			
	3.4	Weakest Precondition	13			
	3.5	Trace Substitution				
	3.6	Initial Interaction				
	3.7	Enabled Events				
	3.8	Completed Trace Interaction				
	3.9	Downward closure of refusals				
	3.10	Renaming				
4	Stat	seful-Failure Healthiness Conditions	25			
5	Definitions					
	5.1	Healthiness condition properties	26			
	5.2	CSP theories				
	5.3					

6	Stat	seful-Failure Reactive Contracts	38			
7	External Choice					
	7.1	Definitions and syntax	40			
	7.2	Basic laws	40			
	7.3	Algebraic laws	40			
	7.4	Reactive design calculations	40			
	7.5	Productivity and Guardedness	49			
	7.6	Algebraic laws	50			
8	Stateful-Failure Programs 53					
	8.1	Conditionals	53			
	8.2	Guarded commands	53			
	8.3	Alternation	53			
	8.4	While Loops	54			
	8.5	Iteration Construction	54			
	8.6	Assignment	56			
	8.7	Assignment with update	58			
	8.8	State abstraction	59			
	8.9	Assumptions	59			
		Guards	59			
		Basic events	63			
		Event prefix	65			
		Guarded external choice	68			
		Input prefix	68			
		Renaming	69			
		Algebraic laws	70			
	0.10	Ingestute tamb	•			
9		ursion in Stateful-Failures	72			
	9.1	Fixed-points	72			
	9.2	Example action expansion	73			
10	Linl	king to the Failures-Divergences Model	74			
	10.1	Failures-Divergences Semantics	74			
		Circus Operators	76			
		Deadlock Freedom	82			
11	Met	a-theory for Stateful-Failure Reactive Designs	82			

1 Introduction

This document contains a mechanisation in Isabelle/UTP [1] of an specialisation of stateful reactive designs with refusal information, as present in languages like Circus [2].

2 Stateful-Failure Core Types

 $\begin{array}{l} \textbf{theory} \ utp\text{-}sfrd\text{-}core \\ \textbf{imports} \ UTP-Reactive-Designs.utp\text{-}rea\text{-}designs \\ \textbf{begin} \end{array}$

2.1 SFRD Alphabet

```
alphabet ('\sigma, '\varphi) sfrd-vars = ('\varphi \ list, '\sigma) rsp-vars + ref :: '\varphi \ set
```

The following two locale interpretations are a technicality to improve the behaviour of the automatic tactics. They enable (re)interpretation of state spaces in order to remove any occurrences of lens types, replacing them by tuple types after the tactics *pred-simp* and *rel-simp* are applied. Eventually, it would be desirable to automate preform these interpretations automatically as part of the **alphabet** command.

```
type-synonym ('\sigma,'\varphi) sfrd = ('\sigma, '\varphi) sfrd-vars
type-synonym ('\sigma,'\varphi) action = ('\sigma, '\varphi) sfrd hrel
type-synonym '\varphi csp = (unit,'\varphi) sfrd
type-synonym '\varphi process = '\varphi csp hrel
```

There is some slight imprecision with the translations, in that we don't bother to check if the trace event type and refusal set event types are the same. Essentially this is because its very difficult to construct processes where this would be the case. However, it may be better to add a proper ML print translation in the future.

translations

```
(type) ('\sigma,'\varphi) sfrd <= (type) ('\sigma, '\varphi) sfrd-vars (type) ('\sigma,'\varphi) action <= (type) ('\sigma, '\varphi) sfrd hrel (type) '\varphi process <= (type) (unit,'\varphi) action
```

notation sfrd- $vars.more_L$ (Σ_C)

```
declare des-vars.splits [alpha-splits del]
declare rp-vars.splits [alpha-splits del]
declare des-vars.splits [alpha-splits del]
declare rsp-vars.splits [alpha-splits]
declare rp-vars.splits [alpha-splits]
declare rp-vars.splits [alpha-splits]
declare des-vars.splits [alpha-splits]
```

2.2 Basic laws

```
lemma R2c-tr-ext: R2c (\$tr' =_u \$tr \ \hat{\ }_u \ \langle \lceil a \rceil_{S<} \rangle) = (\$tr' =_u \$tr \ \hat{\ }_u \ \langle \lceil a \rceil_{S<} \rangle) by (rel-auto)

lemma circus-alpha-bij-lens:
bij-lens (\{\$ok,\$ok',\$wait,\$wait',\$tr,\$tr',\$st,\$st',\$ref,\$ref'\}_{\alpha} :: - \Longrightarrow ('s,'e) \ sfrd \times ('s,'e) \ sfrd)
```

2.3 Unrestriction laws

by (unfold-locales, lens-simp+)

```
lemma pre-unrest-ref [unrest]: $ref \mathbb{p} P \impsim $ref \mathbb{p} pre_R(P)$
by (simp add: pre_R-def unrest)

lemma peri-unrest-ref [unrest]: $ref \mathbb{p} P \impsim $ref \mathbb{p} peri_R(P)$
by (simp add: peri_R-def unrest)

lemma post-unrest-ref [unrest]: $ref \mathbb{p} P \impsim $ref \mathbb{p} post_R(P)$
by (simp add: post_R-def unrest)
```

```
lemma cmt-unrest-ref [unrest]: $ref \ \ P \ \imp \ $ref \ \ \ cmt_R(P)
  by (simp\ add:\ cmt_R\text{-}def\ unrest)
lemma st-lift-unrest-ref' [unrest]: ref' \sharp [b]_{S<}
  by (rel-auto)
lemma RHS-design-ref-unrest [unrest]:
  \llbracket \$ref \ \sharp \ P; \$ref \ \sharp \ Q \ \rrbracket \Longrightarrow \$ref \ \sharp \ (\mathbf{R}_s(P \vdash Q)) \llbracket false / \$wait \rrbracket
  by (simp add: RHS-def R1-def R2c-def R2s-def R3h-def design-def usubst unrest)
lemma R1-ref-unrest [unrest]: $ref $$ P \Longrightarrow $ref $$ R1(P)
  by (simp add: R1-def unrest)
lemma R2c\text{-ref-unrest} [unrest]: $ref \mu P \Longrightarrow $ref \mu R2c(P)
  by (simp add: R2c-def unrest)
lemma R1-ref'-unrest [unrest]: ref' \sharp P \Longrightarrow ref' \sharp R1(P)
  by (simp add: R1-def unrest)
lemma R2c\text{-ref'-unrest} [unrest]: ref' \sharp P \Longrightarrow ref' \sharp R2c(P)
  by (simp add: R2c-def unrest)
lemma R2s-notin-ref': R2s(\lceil \ll x \gg \rceil_{S < \notin_u \$ref'}) = (\lceil \ll x \gg \rceil_{S < \notin_u \$ref'})
  by (pred-auto)
{f lemma} unrest-circus-alpha:
  fixes P :: ('e, 't) action
  assumes
    \$ok \ \sharp \ P \ \$ok' \ \sharp \ P \ \$wait \ \sharp \ P \ \$wait' \ \sharp \ P \ \$tr \ \sharp \ P
    tr' \ddagger P $st \ddagger P $st' \ddagger P $ref \ddagger P $ref' \ddagger P 
  shows \Sigma \sharp P
  by (rule bij-lens-unrest-all OF circus-alpha-bij-lens), simp add: unrest assms)
\mathbf{lemma}\ unrest\text{-}all\text{-}circus\text{-}vars:
  fixes P :: ('s, 'e) \ action
  assumes \$ok \sharp P \$ok \acute{} \sharp P \$wait \sharp P \$wait \acute{} \sharp P \$ref \sharp P \Sigma \sharp r' \Sigma \sharp s \Sigma \sharp s' \Sigma \sharp t \Sigma \sharp t'
  shows \Sigma \sharp [\$ref' \mapsto_s r', \$st \mapsto_s s, \$st' \mapsto_s s', \$tr \mapsto_s t, \$tr' \mapsto_s t'] \dagger P
  using assms
  by (simp add: bij-lens-unrest-all-eq[OF circus-alpha-bij-lens] unrest-plus-split plus-vwb-lens)
      (simp add: unrest usubst closure)
lemma unrest-all-circus-vars-st-st':
  fixes P :: ('s, 'e) \ action
  \mathbf{assumes} \ \$ok \ \sharp \ P \ \$vait \ \sharp \ P \ \$wait' \ \sharp \ P \ \$ref \ \sharp \ P \ \$ref' \ \sharp \ P \ \Sigma \ \sharp \ s \ \Sigma \ \sharp \ s' \ \Sigma \ \sharp \ t' \ \Sigma \ \sharp \ t'
  shows \Sigma \sharp [\$st \mapsto_s s, \$st' \mapsto_s s', \$tr \mapsto_s t, \$tr' \mapsto_s t'] \dagger P
  using assms
  \mathbf{by}\ (simp\ add\colon bij\text{-}lens\text{-}unrest\text{-}all\text{-}eq[\mathit{OF}\ circus\text{-}alpha\text{-}bij\text{-}lens]\ unrest\text{-}plus\text{-}split\ plus\text{-}vwb\text{-}lens)
      (simp add: unrest usubst closure)
\mathbf{lemma}\ unrest\text{-}all\text{-}circus\text{-}vars\text{-}st\text{:}
  fixes P :: ('s, 'e) action
  \mathbf{assumes} \ \$ok \ \sharp \ P \ \$vait \ \sharp \ P \ \$wait' \ \sharp \ P \ \$ref \ \sharp \ P \ \$ref \ \sharp \ P \ \$st' \ \sharp \ P \ \Sigma \ \sharp \ s \ \Sigma \ \sharp \ t' \ \Sigma \ \sharp \ t'
  shows \Sigma \sharp [\$st \mapsto_s s, \$tr \mapsto_s t, \$tr' \mapsto_s t'] \dagger P
  using assms
```

```
by (simp add: bij-lens-unrest-all-eq[OF circus-alpha-bij-lens] unrest-plus-split plus-vwb-lens)
      (simp add: unrest usubst closure)
lemma unrest-any-circus-var:
  fixes P :: ('s, 'e) \ action
  assumes \$ok \ \sharp \ P \ \$ok \ \sharp \ P \ \$wait \ \sharp \ P \ \$wait \ \sharp \ P \ \$ref \ \sharp \ P \ \$ref \ \sharp \ P \ \Sigma \ \sharp \ s \ \Sigma \ \sharp \ s' \ \Sigma \ \sharp \ t' \ \Sigma \ \sharp \ t'
  shows x \sharp [\$st \mapsto_s s, \$st' \mapsto_s s', \$tr \mapsto_s t, \$tr' \mapsto_s t'] \dagger P
  by (simp add: unrest-all-var unrest-all-circus-vars-st-st' assms)
lemma unrest-any-circus-var-st:
  fixes P :: ('s, 'e) \ action
  \mathbf{assumes} \ \$ok \ \sharp \ P \ \$vait \ \sharp \ P \ \$wait' \ \sharp \ P \ \$ref \ \sharp \ P \ \$ref' \ \sharp \ P \ \$st' \ \sharp \ P \ \Sigma \ \sharp \ s \ \Sigma \ \sharp \ t' \ \Sigma \ \sharp \ t'
  shows x \sharp [\$st \mapsto_s s, \$tr \mapsto_s t, \$tr' \mapsto_s t'] \dagger P
  by (simp add: unrest-all-var unrest-all-circus-vars-st assms)
end
       Stateful-Failure Reactive Relations
3
theory utp-sfrd-rel
  imports utp-sfrd-core
begin
         Healthiness Conditions
3.1
CSP Reactive Relations
definition CRR :: ('s, 'e) \ action \Rightarrow ('s, 'e) \ action where
[upred-defs]: CRR(P) = (\exists \$ref \cdot RR(P))
lemma CRR-idem: CRR(CRR(P)) = CRR(P)
  by (rel-auto)
lemma Idempotent-CRR [closure]: Idempotent CRR
  by (simp add: CRR-idem Idempotent-def)
lemma Continuous-CRR [closure]: Continuous CRR
  by (rel-blast)
lemma CRR-intro:
  assumes ref \ proper P is RR
  shows P is CRR
  by (simp add: CRR-def Healthy-def, simp add: Healthy-if assms ex-unrest)
\mathbf{lemma} \ \mathit{CRR-form} : \ \mathit{CRR}(P) = (\exists \ \{\$ok, \$ok', \$wait, \$wait', \$ref\} \cdot (\exists \ tt_0 \cdot P[\langle \rangle / \$tr][[\ll tt_0 \gg / \$tr']]
\wedge \$tr' =_u \$tr \hat{u} \ll tt_0 \gg )
  by (rel-auto; fastforce)
lemma CRR-seqr-form:
  CRR(P) ;; CRR(Q) =
    (\exists tt_1 \cdot \exists tt_2 \cdot ((\exists \{\$ok, \$ok', \$wait, \$wait', \$ref\} \cdot P) \llbracket \langle \rangle / \$tr \rrbracket \llbracket \ll tt_1 \gg / \$tr' \rrbracket ;;
                            (\exists \{\$ok, \$ok', \$wait, \$wait', \$ref\} \cdot Q) [\![\langle \rangle / \$tr]\!] [\![\ll tt_2 \gg / \$tr']\!] \land \$tr' =_u \$tr \hat{u}
\ll tt_1 \gg \hat{u} \ll tt_2 \gg ))
  by (simp add: CRR-form, rel-auto; fastforce)
```

CSP Reactive Conditions

```
definition CRC :: ('s, 'e) \ action \Rightarrow ('s, 'e) \ action  where
[upred-defs]: CRC(P) = (\exists \$ref \cdot RC(P))
lemma CRC-intro:
 assumes \$ref \ \sharp \ P \ P \ is \ RC
 shows P is CRC
 by (simp add: CRC-def Healthy-def, simp add: Healthy-if assms ex-unrest)
lemma CRC-intro':
 assumes P is CRR P is RC
 shows P is CRC
 \mathbf{by}\ (\mathit{metis}\ \mathit{CRC-def}\ \mathit{CRR-def}\ \mathit{Healthy-def}\ \mathit{RC-implies-RR}\ \mathit{assms})
lemma ref-unrest-RR [unrest]: ref \sharp P \Longrightarrow ref \sharp RR P
 by (rel-auto, blast+)
lemma ref-unrest-RC1 [unrest]: ref \sharp P \Longrightarrow ref \sharp RC1 P
 by (rel-auto, blast+)
lemma ref-unrest-RC [unrest]: ref \sharp P \Longrightarrow ref \sharp RC P
 by (simp add: RC-R2-def ref-unrest-RC1 ref-unrest-RR)
lemma RR-ex-ref: RR (\exists $ref • RR P) = (\exists $ref • RR P)
 by (rel-auto)
lemma RC1-ex-ref: RC1 (\exists \$ref \cdot RC1 \ P) = (\exists \$ref \cdot RC1 \ P)
 by (rel-auto, meson dual-order.trans)
lemma ex-ref'-RR-closed [closure]:
 assumes P is RR
 \mathbf{shows}\ (\exists\ \$\mathit{ref'} \boldsymbol{\cdot}\ P)\ \mathit{is}\ RR
proof -
 have RR \ (\exists \$ref' \cdot RR(P)) = (\exists \$ref' \cdot RR(P))
   by (rel-auto)
 thus ?thesis
   by (metis Healthy-def assms)
qed
lemma CRC\text{-}idem: CRC(CRC(P)) = CRC(P)
 apply (simp add: CRC-def ex-unrest unrest)
 apply (simp add: RC-def RR-ex-ref)
 apply (metis (no-types, hide-lams) Healthy-def RC1-RR-closed RC1-ex-ref RR-ex-ref RR-idem)
done
lemma Idempotent-CRC [closure]: Idempotent CRC
 by (simp add: CRC-idem Idempotent-def)
3.2
       Closure Properties
lemma CRR-implies-RR [closure]:
 assumes P is CRR
 shows P is RR
proof -
 have RR(CRR(P)) = CRR(P)
   by (rel-auto)
```

```
thus ?thesis
   \mathbf{by}\ (\mathit{metis}\ \mathit{Healthy-def'}\ \mathit{assms})
lemma CRC-intro":
 assumes P is CRR P is RC1
 shows P is CRC
 by (simp add: CRC-intro' CRR-implies-RR RC-intro' assms)
lemma CRC-implies-RR [closure]:
 assumes P is CRC
 shows P is RR
proof -
 have RR(CRC(P)) = CRC(P)
   by (rel-auto)
     (metis (no-types, lifting) Prefix-Order.prefixE Prefix-Order.prefixI append.assoc append-minus)+
 thus ?thesis
   by (metis Healthy-def assms)
qed
lemma CRC-implies-RC [closure]:
 assumes P is CRC
 shows P is RC
proof -
 have RC1(CRC(P)) = CRC(P)
   by (rel-auto, meson dual-order.trans)
 thus ?thesis
   by (simp add: CRC-implies-RR Healthy-if RC1-def RC-intro assms)
lemma CRR-unrest-ref [unrest]: P is CRR \Longrightarrow \$ref \sharp P
 by (metis CRR-def CRR-implies-RR Healthy-def in-var-uvar ref-vwb-lens unrest-as-exists)
lemma CRC-implies-CRR [closure]:
 assumes P is CRC
 shows P is CRR
 apply (rule CRR-intro)
  apply (simp-all add: unrest assms closure)
 apply (metis CRC-def CRC-implies-RC Healthy-def assms in-var-uvar ref-vwb-lens unrest-as-exists)
 done
lemma unrest-ref'-neg-RC [unrest]:
 assumes P is RR P is RC
 \mathbf{shows} \ \$\mathit{ref'} \ \sharp \ P
proof -
 have P = (\neg_r \ \neg_r \ P)
   by (simp add: closure rpred assms)
 also have ... = (\neg_r \ (\neg_r \ P) \ ;; \ true_r)
   \mathbf{by}\ (\textit{metis Healthy-if RC1-def RC-implies-RC1 assms(2) calculation})
 also have $ref' \mu ...
   by (rel-auto)
 finally show ?thesis.
qed
lemma rea-true-CRR [closure]: true_r is CRR
```

```
by (rel-auto)
lemma rea-true-CRC [closure]: true_r is CRC
  by (rel-auto)
lemma false-CRR [closure]: false is CRR
 by (rel-auto)
lemma false-CRC [closure]: false is CRC
  by (rel-auto)
lemma st-pred-CRR [closure]: [P]_{S<} is CRR
 by (rel-auto)
lemma st-post-unrest-ref' [unrest]: ref' \sharp [b]_{S>}
 by (rel-auto)
lemma st-post-CRR [closure]: [b]_{S>} is CRR
  by (rel-auto)
lemma st-cond-CRC [closure]: [P]_{S<} is CRC
 by (rel-auto)
lemma rea-rename-CRR-closed [closure]:
  assumes P is CRR
 shows P(|f|)_r is CRR
proof -
 have ref \sharp (CRR P)(|f|)_r
   by (rel-auto)
  thus ?thesis
   by (rule-tac CRR-intro, simp-all add: closure Healthy-if assms)
qed
lemma st-subst-CRR-closed [closure]:
  assumes P is CRR
 shows (\sigma \dagger_S P) is CRR
 by (rule CRR-intro, simp-all add: unrest closure assms)
lemma st-subst-CRC-closed [closure]:
 assumes P is CRC
 shows (\sigma \dagger_S P) is CRC
  by (rule CRC-intro, simp-all add: closure assms unrest)
lemma conj-CRC-closed [closure]:
  \llbracket P \text{ is } CRC; Q \text{ is } CRC \rrbracket \Longrightarrow (P \land Q) \text{ is } CRC
 by (rule CRC-intro, simp-all add: unrest closure)
lemma disj-CRC-closed [closure]:
  \llbracket P \text{ is } CRC; Q \text{ is } CRC \rrbracket \Longrightarrow (P \lor Q) \text{ is } CRC
 \mathbf{by}\ (\mathit{rule}\ \mathit{CRC\text{-}intro},\ \mathit{simp\text{-}all}\ \mathit{add}\colon \mathit{unrest}\ \mathit{closure})
lemma st-cond-left-impl-CRC-closed [closure]:
  P \text{ is } CRC \Longrightarrow ([b]_{S<} \Rightarrow_r P) \text{ is } CRC
 by (rule CRC-intro, simp-all add: unrest closure)
```

```
lemma unrest-ref-map-st [unrest]: ref \ \sharp \ P \Longrightarrow ref \ \sharp \ P \oplus_r \ map-st_L[a]
    by (rel-auto)
lemma unrest-ref'-map-st [unrest]: ref' \sharp P \Longrightarrow ref' \sharp P \oplus_r map-st_L[a]
    by (rel-auto)
lemma unrest-ref-rdes-frame-ext [unrest]:
    ref \sharp P \Longrightarrow ref \sharp a:[P]_r^+
    by (rel-blast)
lemma unrest-ref'-rdes-frame-ext [unrest]:
    ref' \sharp P \Longrightarrow ref' \sharp a:[P]_r^+
    by (rel-blast)
lemma map-st-ext-CRR-closed [closure]:
    assumes P is CRR
    shows P \oplus_r map-st_L[a] is CRR
    by (rule CRR-intro, simp-all add: closure unrest assms)
\mathbf{lemma} \ \mathit{map-st-ext-CRC-closed} \ [\mathit{closure}] :
    assumes P is CRC
    shows P \oplus_r map-st_L[a] is CRC
    by (rule CRC-intro, simp-all add: closure unrest assms)
  lemma rdes-frame-ext-CRR-closed [closure]:
    assumes P is CRR
    shows a:[P]_r^+ is CRR
    by (rule CRR-intro, simp-all add: closure unrest assms)
\textbf{lemma} \ \textit{USUP-CRC-closed} \ [\textit{closure}] \colon \llbracket \ A \neq \{\}; \ \land \ i. \ i \in A \Longrightarrow P \ i \ is \ \textit{CRC} \ \rrbracket \Longrightarrow ( \bigsqcup \ i \in A \cdot P \ i) \ is \ A \cdot P \ i) \ i \ A \cdot P \ i \ A \cdot P \ i) \ i \ A \cdot P \ i \ A
    by (rule CRC-intro, simp-all add: unrest closure)
lemma UINF-CRR-closed [closure]: \llbracket \bigwedge i. i \in A \Longrightarrow P i \text{ is } CRR \rrbracket \Longrightarrow (\bigcap i \in A \cdot P i) \text{ is } CRR
    \mathbf{by}\ (\mathit{rule}\ \mathit{CRR-intro},\ \mathit{simp-all}\ \mathit{add}\colon \mathit{unrest}\ \mathit{closure})
lemma cond-CRC-closed [closure]:
    assumes P is CRC Q is CRC
    shows P \triangleleft b \triangleright_R Q is CRC
    by (rule CRC-intro, simp-all add: closure assms unrest)
lemma shEx-CRR-closed [closure]:
    assumes \bigwedge x. P x is CRR
    shows (\exists x \cdot P(x)) is CRR
proof -
    have CRR(\exists x \cdot CRR(P(x))) = (\exists x \cdot CRR(P(x)))
        by (rel-auto)
    thus ?thesis
        by (metis Healthy-def assms shEx-cong)
\mathbf{qed}
lemma USUP-ind-CRR-closed [closure]:
    assumes \bigwedge i. P i is CRR
    shows (   i \cdot P(i) ) is CRR
    by (rule CRR-intro, simp-all add: assms unrest closure)
```

```
lemma UINF-ind-CRR-closed [closure]:
  assumes \bigwedge i. P i is CRR
  shows (   i \cdot P(i) ) is CRR
  by (rule CRR-intro, simp-all add: assms unrest closure)
lemma cond-tt-CRR-closed [closure]:
  assumes P is CRR Q is CRR
  \mathbf{shows}\ P \mathrel{\triangleleft} \$tr' =_u \$tr \mathrel{\triangleright} Q\ is\ CRR
  by (rule CRR-intro, simp-all add: unrest assms closure)
lemma rea-implies-CRR-closed [closure]:
  \llbracket P \text{ is } CRR; Q \text{ is } CRR \rrbracket \Longrightarrow (P \Rightarrow_r Q) \text{ is } CRR
  by (simp-all add: CRR-intro closure unrest)
lemma conj-CRR-closed [closure]:
  \llbracket P \text{ is } CRR; Q \text{ is } CRR \rrbracket \Longrightarrow (P \land Q) \text{ is } CRR
  by (simp-all add: CRR-intro closure unrest)
lemma disj-CRR-closed [closure]:
  \llbracket P \text{ is } CRR; Q \text{ is } CRR \rrbracket \Longrightarrow (P \lor Q) \text{ is } CRR
  by (rule CRR-intro, simp-all add: unrest closure)
lemma rea-not-CRR-closed [closure]:
  P \text{ is } CRR \Longrightarrow (\neg_r P) \text{ is } CRR
  using false-CRR rea-implies-CRR-closed by fastforce
lemma disj-R1-closed [closure]: [P \text{ is } R1; Q \text{ is } R1] \implies (P \vee Q) \text{ is } R1
  by (rel-blast)
\mathbf{lemma} \ \textit{st-cond-R1-closed} \ [\textit{closure}] \colon \llbracket \ \textit{P} \ \textit{is} \ \textit{R1} \, ; \ \textit{Q} \ \textit{is} \ \textit{R1} \ \rrbracket \Longrightarrow (\textit{P} \mathrel{\triangleleft} \textit{b} \mathrel{\triangleright}_{\textit{R}} \ \textit{Q}) \ \textit{is} \ \textit{R1}
  by (rel-blast)
lemma cond-st-RR-closed [closure]:
  assumes P is RR Q is RR
  shows (P \triangleleft b \triangleright_R Q) is RR
  apply (rule RR-intro, simp-all add: unrest closure assms, simp add: Healthy-def R2c-condr)
  apply (simp add: Healthy-if assms RR-implies-R2c)
  apply (rel-auto)
done
lemma cond-st-CRR-closed [closure]:
  \llbracket P \text{ is } CRR; Q \text{ is } CRR \rrbracket \Longrightarrow (P \triangleleft b \triangleright_R Q) \text{ is } CRR
  by (simp-all add: CRR-intro closure unrest)
lemma seq-CRR-closed [closure]:
  assumes P is CRR Q is RR
  shows (P ;; Q) is CRR
  by (rule CRR-intro, simp-all add: unrest assms closure)
lemma wp-rea-CRC [closure]: \llbracket P \text{ is } CRR; Q \text{ is } RC \rrbracket \implies P \text{ } wp_r \text{ } Q \text{ is } CRC
  by (rule CRC-intro, simp-all add: unrest closure)
lemma USUP-ind-CRC-closed [closure]:
  \llbracket \bigwedge i. \ P \ i \ is \ CRC \ \rrbracket \Longrightarrow (\bigsqcup i \cdot P \ i) \ is \ CRC
```

by (metis CRC-implies-CRR CRC-implies-RC USUP-ind-CRR-closed USUP-ind-RC-closed false-CRC rea-not-CRR-closed wp-rea-CRC wp-rea-RC-false)

```
lemma tr-extend-segr-lit [rdes]:
  fixes P :: ('s, 'e) action
  assumes \$ok \ \sharp \ P \ \$wait \ \sharp \ P \ \$ref \ \sharp \ P
 \mathbf{shows} \ (\$tr\ \hat{\ } =_u \$tr\ \hat{\ }_u \ \langle \lessdot a \gg \rangle \ \wedge \ \$st\ \hat{\ } =_u \ \$st) \ ;; \ P \ = \ P[\![\$tr\ \hat{\ }_u \ \langle \lessdot a \gg \rangle / \$tr]\!]
  using assms by (rel-auto, meson)
lemma tr-assign-comp [rdes]:
 fixes P :: ('s, 'e) \ action
  assumes \$ok \ \sharp \ P \ \$wait \ \sharp \ P \ \$ref \ \sharp \ P
 shows (\$tr' =_u \$tr \land [\langle \sigma \rangle_a]_S) ;; P = [\sigma]_{S\sigma} \dagger P
 using assms by (rel-auto, meson)
lemma RR-msubst-tt: RR((P\ t)[t\rightarrow\&tt]) = (RR\ (P\ t))[t\rightarrow\&tt]
  by (rel-auto)
lemma RR-msubst-ref': RR((P \ r) \llbracket r \rightarrow \$ref' \rrbracket) = (RR \ (P \ r)) \llbracket r \rightarrow \$ref' \rrbracket
 by (rel-auto)
lemma msubst-tt-RR [closure]: [ \bigwedge t. P t is RR ]] \Longrightarrow (P t)[t\rightarrow&tt] is RR
 by (simp add: Healthy-def RR-msubst-tt)
lemma msubst-ref'-RR [closure]: \llbracket \land r. P r is RR \rrbracket \Longrightarrow (P r) \llbracket r \rightarrow \$ref' \rrbracket is RR
  by (simp add: Healthy-def RR-msubst-ref')
lemma conj-less-tr-RR-closed [closure]:
  assumes P is CRR
  shows (P \wedge \$tr <_u \$tr') is CRR
proof -
 have CRR(CRR(P) \land \$tr <_u \$tr') = (CRR(P) \land \$tr <_u \$tr')
    apply (rel-auto, blast+)
    using less-le apply fastforce+
    done
  thus ?thesis
    by (metis Healthy-def assms)
qed
lemma R4\text{-}CRR\text{-}closed [closure]: P is CRR \Longrightarrow R4(P) is CRR
 by (simp add: R4-def conj-less-tr-RR-closed)
\mathbf{lemma}\ \textit{R5-CRR-closed}\ [\textit{closure}]:
  assumes P is CRR
  shows R5(P) is CRR
proof -
 have R5(CRR(P)) is CRR
    by (rel-auto; blast)
  thus ?thesis
    by (simp add: assms Healthy-if)
qed
lemma conj-eq-tr-RR-closed [closure]:
  assumes P is CRR
 shows (P \land \$tr' =_u \$tr) is CRR
```

```
proof -
 have CRR(CRR(P) \land \$tr' =_u \$tr) = (CRR(P) \land \$tr' =_u \$tr)
   by (rel-auto, blast+)
  thus ?thesis
   by (metis Healthy-def assms)
qed
lemma all-ref-CRC-closed [closure]:
  P \text{ is } CRC \Longrightarrow (\forall \$ref \cdot P) \text{ is } CRC
 by (simp add: CRC-implies-CRR CRR-unrest-ref all-unrest)
lemma ex-ref-CRR-closed [closure]:
  P \text{ is } CRR \Longrightarrow (\exists \$ref \cdot P) \text{ is } CRR
  by (simp add: CRR-unrest-ref ex-unrest)
lemma ex-st'-CRR-closed [closure]:
  P \text{ is } CRR \Longrightarrow (\exists \$st' \cdot P) \text{ is } CRR
 by (rule CRR-intro, simp-all add: closure unrest)
lemma ex-ref'-CRR-closed [closure]:
  P \text{ is } CRR \Longrightarrow (\exists \$ref' \cdot P) \text{ is } CRR
  using CRR-implies-RR CRR-intro CRR-unrest-ref ex-ref'-RR-closed out-in-indep unrest-ex-diff by
blast
```

3.3 Introduction laws

Extensionality principles for introducing refinement and equality of Circus reactive relations. It is necessary only to consider a subset of the variables that are present.

```
lemma CRR-refine-ext:
 assumes
   P is CRR Q is CRR
  shows P \sqsubseteq Q
proof -
 have \bigwedge t s s' r'. (CRR P) \llbracket \langle \rangle, \ll t \gg, \ll s' \gg, \ll r' \gg / \$tr, \$tr', \$st, \$st', \$ref' \rrbracket
                \sqsubseteq (CRR\ Q) \llbracket \langle \rangle, \ll t \gg, \ll s \gg, \ll s' \gg, \ll r' \gg /\$tr, \$tr', \$st, \$st', \$ref' \rrbracket
   using assms by (simp add: Healthy-if)
 hence CRR P \sqsubseteq CRR Q
   by (rel-auto)
 thus ?thesis
   by (metis\ Healthy-if\ assms(1)\ assms(2))
qed
lemma CRR-eq-ext:
 assumes
   P is CRR Q is CRR
  shows P = Q
proof -
 have \bigwedge t s s' r'. (CRR P) \llbracket \langle \rangle, \ll t \gg, \ll s' \gg, \ll r' \gg / \$tr, \$tr', \$st, \$st', \$ref' \rrbracket
                = (CRR\ Q) [\langle \rangle, \ll t \gg, \ll s \gg, \ll s' \gg, \ll r' \gg /\$tr, \$tr', \$st, \$st', \$ref']
   using assms by (simp add: Healthy-if)
 hence CRR P = CRR Q
   by (rel-auto)
 thus ?thesis
```

```
by (metis\ Healthy\text{-}if\ assms(1)\ assms(2)) qed  \begin{aligned} &\text{lemma}\ CRR\text{-}refine\text{-}impl\text{-}prop:} \\ &\text{assumes}\ P\ is\ CRR\ Q\ is\ CRR \\ &\wedge\ t\ s\ s'\ r'.\ `Q[\ll r'\gg,\ll s\gg,\ll s'\gg,\langle\rangle,\ll t\gg/\$ref\ `,\$st,\$st\ `,\$tr,\$tr\ `]\ `\Longrightarrow\ `P[\ll r'\gg,\ll s\gg,\ll s'\gg,\langle\rangle,\ll t\gg/\$ref\ `,\$st,\$st\ `,\$tr,\$tr\ `]\ \\ &\text{shows}\ P\ \sqsubseteq\ Q \\ &\text{by}\ (rule\ CRR\text{-}refine\text{-}ext,\ simp\text{-}all\ add:\ assms\ closure\ unrest\ usubst)} \\ &(rule\ refine\text{-}prop\text{-}intro,\ simp\text{-}all\ add:\ unrest\ unrest\text{-}all\text{-}circus\text{-}vars\ closure\ assms}) \end{aligned}
```

3.4 Weakest Precondition

```
lemma nil-least [simp]:
  \langle \rangle \leq_u x = true \ \mathbf{by} \ rel-auto
lemma minus-nil [simp]:
 xs - \langle \rangle = xs by rel-auto
lemma wp-rea-circus-lemma-1:
  assumes P is CRR \$ref' \sharp P
  shows out\alpha \sharp P[\ll s_0\gg,\ll t_0\gg/\$st',\$tr']
  have out\alpha \sharp (CRR (\exists \$ref' \cdot P))[\![\ll s_0 \gg, \ll t_0 \gg /\$st', \$tr']\!]
    by (rel-auto)
  thus ?thesis
    by (simp\ add: Healthy-if\ assms(1)\ assms(2)\ ex-unrest)
lemma wp-rea-circus-lemma-2:
  assumes P is CRR
 shows in\alpha \sharp P[\ll s_0\gg,\ll t_0\gg/\$st,\$tr]
proof -
  have in\alpha \sharp (CRR\ P)[\![\ll s_0\gg,\ll t_0\gg/\$st,\$tr]\!]
    by (rel-auto)
  thus ?thesis
    by (simp add: Healthy-if assms ex-unrest)
qed
```

The meaning of reactive weakest precondition for Circus. P wp_r Q means that, whenever P terminates in a state s_0 having done the interaction trace t_0 , which is a prefix of the overall trace, then Q must be satisfied. This in particular means that the remainder of the trace after t_0 must not be a divergent behaviour of Q.

```
lemma wp\text{-}rea\text{-}circus\text{-}form: assumes P is CRR \$ref ' \sharp P Q is CRC shows (P wp_r Q) = (\forall (s_0,t_0) \cdot \ll t_0 \gg \leq_u \$tr' \land P[\![\ll s_0 \gg, \ll t_0 \gg /\$st',\$tr']\!] \Rightarrow_r Q[\![\ll s_0 \gg, \ll t_0 \gg /\$st,\$tr]\!]) proof - have (P wp_r Q) = (\neg_r (\exists t_0 \cdot P[\![\ll t_0 \gg /\$tr']\!] ;; (\neg_r Q)[\![\ll t_0 \gg /\$tr]\!] \land \ll t_0 \gg \leq_u \$tr')) by (simp\text{-}all\ add:\ wp\text{-}rea\text{-}def\ R2\text{-}tr\text{-}middle\ closure\ assms}) also have \dots = (\neg_r (\exists (s_0,t_0) \cdot P[\![\ll s_0 \gg, \ll t_0 \gg /\$st',\$tr']\!] ;; (\neg_r Q)[\![\ll s_0 \gg, \ll t_0 \gg /\$st,\$tr]\!] \land \ll t_0 \gg \leq_u \$tr')) by (rel\text{-}blast) also have \dots = (\neg_r (\exists (s_0,t_0) \cdot P[\![\ll s_0 \gg, \ll t_0 \gg /\$st',\$tr']\!] \land (\neg_r Q)[\![\ll s_0 \gg, \ll t_0 \gg /\$st,\$tr]\!] \land \ll t_0 \gg \leq_u \$tr')) by (simp\ add:\ seqr\text{-}to\text{-}conj\ add:\ wp\text{-}rea\text{-}circus\text{-}lemma\text{-}}1\ wp\text{-}rea\text{-}circus\text{-}lemma\text{-}}2\ assms\ closure\ conj\text{-}assoc) also have \dots = (\forall (s_0,t_0) \cdot \neg_r P[\![\ll s_0 \gg, \ll t_0 \gg /\$st',\$tr']\!] \lor \neg_r (\neg_r Q)[\![\ll s_0 \gg, \ll t_0 \gg /\$st,\$tr]\!] \lor \neg_r
```

```
\ll t_0 \gg \leq_u \$tr'
         by (rel-auto)
     also have ... = (\forall (s_0, t_0) \cdot \neg_r P[\![\ll s_0 \gg, \ll t_0 \gg /\$st', \$tr']\!] \vee \neg_r (\neg_r RR Q)[\![\ll s_0 \gg, \ll t_0 \gg /\$st, \$tr]\!] \vee \neg_r (\neg_r RR Q)[\![\ll s_0 \gg, \ll t_0 \gg /\$st, \$tr]\!] \vee \neg_r (\neg_r RR Q)[\![\ll s_0 \gg, \ll t_0 \gg /\$st, \$tr]\!] \vee \neg_r (\neg_r RR Q)[\![\ll s_0 \gg, \ll t_0 \gg /\$st, \$tr]\!] \vee \neg_r (\neg_r RR Q)[\![\ll s_0 \gg, \ll t_0 \gg /\$st, \$tr]\!] \vee \neg_r (\neg_r RR Q)[\![\ll s_0 \gg, \ll t_0 \gg /\$st, \$tr]\!] \vee \neg_r (\neg_r RR Q)[\![\ll s_0 \gg, \ll t_0 \gg /\$st, \$tr]\!] \vee \neg_r (\neg_r RR Q)[\![\ll s_0 \gg, \ll t_0 \gg /\$st, \$tr]\!] \vee \neg_r (\neg_r RR Q)[\![\ll s_0 \gg, \ll t_0 \gg /\$st, \$tr]\!] \vee \neg_r (\neg_r RR Q)[\![\ll s_0 \gg, \ll t_0 \gg /\$st, \$tr]\!] \vee \neg_r (\neg_r RR Q)[\![\ll s_0 \gg, \ll t_0 \gg /\$st, \$tr]\!] \vee \neg_r (\neg_r RR Q)[\![\ll s_0 \gg, \ll t_0 \gg /\$st, \$tr]\!] \vee \neg_r (\neg_r RR Q)[\![\ll s_0 \gg, \ll t_0 \gg /\$st, \$tr]\!] \vee \neg_r (\neg_r RR Q)[\![\ll s_0 \gg, \ll t_0 \gg /\$st, \$tr]\!] \vee \neg_r (\neg_r RR Q)[\![\ll s_0 \gg, \ll t_0 \gg /\$st, \$tr]\!] \vee \neg_r (\neg_r RR Q)[\![\ll s_0 \gg, \ll t_0 \gg /\$st, \$tr]\!] \vee \neg_r (\neg_r RR Q)[\![\ll s_0 \gg, \ll t_0 \gg /\$st, \$tr]\!] \vee \neg_r (\neg_r RR Q)[\![\ll s_0 \gg, \ll t_0 \gg /\$st, \$tr]\!] \vee \neg_r (\neg_r RR Q)[\![\ll s_0 \gg, \ll t_0 \gg /\$st, \$tr]\!] \vee \neg_r (\neg_r RR Q)[\![\ll s_0 \gg, \ll t_0 \gg /\$st, \$tr]\!] \vee \neg_r (\neg_r RR Q)[\![\ll s_0 \gg, \ll t_0 \gg /\$st, \$tr]\!] \vee \neg_r (\neg_r RR Q)[\![\ll s_0 \gg, \ll t_0 \gg /\$st, \$tr]\!] \vee \neg_r (\neg_r RR Q)[\![\ll s_0 \gg, \ll t_0 \gg /\$st, \$tr]\!] \vee \neg_r (\neg_r RR Q)[\![\ll s_0 \gg, \ll t_0 \gg /\$st, \$tr]\!] \vee \neg_r (\neg_r RR Q)[\![\ll s_0 \gg, \ll t_0 \gg /\$st, \$tr]\!] \vee \neg_r (\neg_r RR Q)[\![\ll s_0 \gg /\$st, \$tr]\!] \vee \neg_r (\neg_r RR Q)[\![\ll s_0 \gg /\$st, \$tr]\!] \vee \neg_r (\neg_r RR Q)[\![\ll s_0 \gg /\$st, \$tr]\!] \vee \neg_r (\neg_r RR Q)[\![\ll s_0 \gg /\$st, \$tr]\!] \vee \neg_r (\neg_r RR Q)[\![\ll s_0 \gg /\$st, \$tr]\!] \vee \neg_r (\neg_r RR Q)[\![\ll s_0 \gg /\$st, \$tr]\!] \vee \neg_r (\neg_r RR Q)[\![\ll s_0 \gg /\$st, \$tr]\!] \vee \neg_r (\neg_r RR Q)[\![\ll s_0 \gg /\$st, \$tr]\!] \vee \neg_r (\neg_r RR Q)[\![\ll s_0 \gg /\$st, \$tr]\!] \vee \neg_r (\neg_r RR Q)[\![\ll s_0 \gg /\$st, \$tr]\!] \vee \neg_r (\neg_r RR Q)[\![\ll s_0 \gg /\$st, \$tr]\!] \wedge \neg_r (\neg_r RR Q)[\![\ll s_0 \gg /\$st, \$tr]\!] \vee \neg_r (\neg_r RR Q)[\![\ll s_0 \gg /\$st, \$tr]\!] \wedge \neg_r (\neg_r RR Q)[\![\ll s_0 \gg /\$st, \$tr]\!] \wedge \neg_r (\neg_r RR Q)[\![\ll s_0 \gg /\$st, \$tr]\!] \wedge \neg_r (\neg_r RR Q)[\![\ll s_0 \gg /\$st, \$tr]\!] \wedge \neg_r (\neg_r RR Q)[\![\ll s_0 \gg /\$st, \$tr]\!] \wedge \neg_r (\neg_r RR Q)[\![\ll s_0 \gg /\$st, \$tr]\!] \wedge \neg_r (\neg_r RR Q)[\![\ll s_0 
\ll t_0 \gg \leq_u \$tr'
         by (simp add: Healthy-if assms closure)
   \textbf{also have} \ ... = (\forall \ (s_0, t_0) \cdot \neg_r \ P[\![ \ll s_0 \gg, \ll t_0 \gg /\$st', \$tr']\!] \ \lor \ (RR \ Q)[\![ \ll s_0 \gg, \ll t_0 \gg /\$st, \$tr]\!] \ \lor \ \neg_r \ \ll t_0 \gg \le_u 
$tr')
         by (rel-auto)
  also have ... = (\forall (s_0, t_0) \cdot \langle t_0 \rangle \leq_u \$tr' \wedge P[\langle s_0 \rangle, \langle t_0 \rangle / \$st', \$tr'] \Rightarrow_r (RR Q)[\langle s_0 \rangle, \langle t_0 \rangle / \$st, \$tr]
         by (rel-auto)
    also have ... = (\forall (s_0, t_0) \cdot \langle t_0 \rangle \leq_u \$tr' \land P[\langle s_0 \rangle, \langle t_0 \rangle / \$st', \$tr'] \Rightarrow_r Q[\langle s_0 \rangle, \langle t_0 \rangle / \$st, \$tr])
         by (simp add: Healthy-if assms closure)
    finally show ?thesis.
qed
lemma wp-rea-circus-form-alt:
    assumes P is CRR ref' <math>\sharp P Q is CRC
    shows (P w p_r Q) = (\forall (s_0, t_0) \cdot \$tr \hat{\ }_u \ll t_0 \gg \leq_u \$tr' \land P \llbracket \ll s_0 \gg , \langle \rangle, \ll t_0 \gg / \$st', \$tr, \$tr' \rrbracket
                                                                       \Rightarrow_r R1(Q[\ll s_0\gg,\langle\rangle,(\&tt-\ll t_0\gg)/\$st,\$tr,\$tr']))
proof -
    have (P wp_r Q) = R2(P wp_r Q)
        by (simp add: CRC-implies-RR CRR-implies-RR Healthy-if RR-implies-R2 assms wp-rea-R2-closed)
   \textbf{also have} \ ... = R2(\forall \ (s_0, tr_0) \cdot \ll tr_0 \gg \leq_u \$tr' \land (RR\ P)[\![\ll s_0 \gg, \ll tr_0 \gg /\$st', \$tr']\!] \Rightarrow_r (RR\ Q)[\![\ll s_0 \gg, \ll tr_0 \gg /\$st, \$tr]\!])
         by (simp add: wp-rea-circus-form assms closure Healthy-if)
    also have ... = (\exists tt_0 \cdot (\forall (s_0, tr_0) \cdot \langle tr_0 \rangle \leq_u \langle tt_0 \rangle \wedge (RRP)[\langle s_0 \rangle, \langle \rangle, \langle tr_0 \rangle / \$st', \$tr']]
                                                                                           \Rightarrow_r (RR \ Q) \llbracket \ll s_0 \gg, \ll tr_0 \gg, \ll tt_0 \gg /\$st, \$tr, \$tr' \rrbracket )
                                                                                             \wedge \$tr' =_u \$tr \hat{\ }_u \ll tt_0 \gg)
         by (simp add: R2-form, rel-auto)
     \textbf{also have} \ ... = (\exists \ tt_0 \cdot (\forall \ (s_0, tr_0) \cdot \ll tr_0 ) \leq_u \ll tt_0 ) \wedge (RR \ P)[\ll s_0 ), (\forall \ str_0 ) / \$st', \$tr, \$tr']
                                                                                           \Rightarrow_r (RR\ Q)[\![\ll s_0\gg,\langle\rangle,\ll tt_0-tr_0\gg/\$st,\$tr,\$tr']\!])
                                                                                             \wedge \$tr' =_u \$tr \hat{\ }_u \ll tt_0 \gg)
         by (rel-auto)
    also have ... = (\exists tt_0 \cdot (\forall (s_0, tr_0) \cdot \$tr \hat{\ }_u \ll tr_0 \gg \leq_u \$tr' \land (RR\ P)[\ll s_0 \gg, \langle \rangle, \ll tr_0 \gg /\$st', \$tr, \$tr']]
                                                                                           \Rightarrow_r (RR \ Q)[\ll s_0\gg,\langle\rangle,(\&tt-\ll tr_0\gg)/\$st,\$tr,\$tr'])
                                                                                             \wedge \$tr' =_u \$tr \hat{u} \ll tt_0 \gg)
         by (rel-auto, (metis list-concat-minus-list-concat)+)
    \textbf{also have} \ \dots = (\forall \ (s_0, tr_0) \cdot \$tr \ \hat{\ }_u \ «tr_0» \leq_u \ \$tr' \land (RR \ P)[[«s_0», \langle \rangle, «tr_0»/\$st', \$tr, \$tr']]
                                                                                           \Rightarrow_r R1((RR\ Q)[\ll s_0\gg,\langle\rangle,(\&tt-\ll tr_0\gg)/\$st,\$tr,\$tr']))
         by (rel-auto, blast+)
    also have ... = (\forall (s_0,t_0) \cdot \$tr \hat{u} \ll t_0 \gg \leq_u \$tr' \wedge P[\ll s_0 \gg, \langle \rangle, \ll t_0 \gg /\$st', \$tr, \$tr']
                                                                       \Rightarrow_r R1(Q[\ll s_0\gg,\langle\rangle,(\&tt-\ll t_0\gg)/\$st,\$tr,\$tr']))
         by (simp add: Healthy-if assms closure)
    finally show ?thesis.
qed
lemma wp-rea-circus-form-alt:
    assumes P is CRR \$ ref' \sharp P Q is CRC
    shows (P \ wp_r \ Q) = (\forall \ (s_0,t_0) \cdot \$tr \ _u \ll t_0 \gg \leq_u \$tr' \land P[\ll s_0 \gg , \langle \rangle, \ll t_0 \gg /\$st', \$tr, \$tr']
                                                                       \Rightarrow_r R1(Q[\ll s_0\gg,\langle\rangle,(\&tt-\ll t_0\gg)/\$st,\$tr,\$tr']))
    oops
```

3.5 **Trace Substitution**

```
definition trace-subst (-\llbracket -\rrbracket_t [999,0] 999)
where [upred\text{-}defs]: P[v]_t = (P[(\&tt-[v]_{S<})/\&tt] \land \$tr + [v]_{S<} \leq_u \$tr')
```

```
lemma unrest-trace-subst [unrest]:
  \llbracket mwb\text{-}lens\ x;\ x\bowtie (\$tr)_v;\ x\bowtie (\$tr')_v;\ x\bowtie (\$st)_v;\ x\ \sharp\ P\ \rrbracket \Longrightarrow x\ \sharp\ P\llbracket v\rrbracket_t
  by (simp add: trace-subst-def lens-indep-sym unrest)
lemma trace-subst-RR-closed [closure]:
  assumes P is RR
  shows P[v]_t is RR
proof -
  have (RR \ P)[v]_t is RR
    apply (rel-auto)
    apply (metis diff-add-cancel-left' trace-class.add-left-mono)
    apply (metis le-add minus-cancel-le trace-class.add-diff-cancel-left)
    using le-add order-trans apply blast
  done
  thus ?thesis
    by (simp add: Healthy-if assms)
lemma trace-subst-CRR-closed [closure]:
  assumes P is CRR
  shows P[v]_t is CRR
  by (rule CRR-intro, simp-all add: closure assms unrest)
lemma tsubst-nil [usubst]:
  assumes P is CRR
  shows P[\![\langle\rangle]\!]_t = P
proof -
  have (CRR\ P)[\![\langle\rangle]\!]_t = CRR\ P
    by (rel-auto)
  thus ?thesis
    by (simp add: Healthy-if assms)
qed
lemma tsubst-false [usubst]: false[[y]]_t = false
  by rel-auto
lemma cond-rea-tt-subst [usubst]:
  (P \triangleleft b \triangleright_R Q)\llbracket v \rrbracket_t = (P\llbracket v \rrbracket_t \triangleleft b \triangleright_R Q\llbracket v \rrbracket_t)
  by (rel-auto)
lemma tsubst-conj [usubst]: (P \wedge Q) \llbracket v \rrbracket_t = (P \llbracket v \rrbracket_t \wedge Q \llbracket v \rrbracket_t)
  by (rel-auto)
lemma tsubst-disj [usubst]: (P \lor Q) \llbracket v \rrbracket_t = (P \llbracket v \rrbracket_t \lor Q \llbracket v \rrbracket_t)
  by (rel-auto)
lemma rea-subst-R1-closed [closure]: P[v]_t is R1
  apply (rel-auto) using le-add order.trans by blast
lemma tsubst-UINF-ind [usubst]: (<math>\bigcap i \cdot P(i))[v]_t = (\bigcap i \cdot (P(i))[v]_t)
  by (rel-auto)
3.6
         Initial Interaction
definition rea-init :: 's upred \Rightarrow ('t::trace, 's) uexpr \Rightarrow ('s, 't, '\alpha, '\beta) rel-rsp (\mathcal{I}'(-,-')) where
[upred-defs]: \mathcal{I}(s,t) = (\lceil s \rceil_{S<} \land \$tr + \lceil t \rceil_{S<} \leq_u \$tr')
```

 $\mathcal{I}(s,t)$ is a predicate stating that, if the initial state satisfies state predicate s, then the trace t is an initial trace.

```
lemma unrest-rea-init [unrest]:
  \llbracket x \bowtie (\$tr)_v; x \bowtie (\$tr')_v; x \bowtie (\$st)_v \rrbracket \Longrightarrow x \sharp \mathcal{I}(s,t)
 by (simp add: rea-init-def unrest lens-indep-sym)
lemma rea-init-R1 [closure]: \mathcal{I}(s,t) is R1
 apply (rel-auto) using dual-order.trans le-add by blast
lemma rea-init-R2c [closure]: \mathcal{I}(s,t) is R2c
  apply (rel-auto)
 apply (metis diff-add-cancel-left' trace-class.add-left-mono)
  apply (metis le-add minus-cancel-le trace-class.add-diff-cancel-left)
done
lemma rea-init-R2 [closure]: \mathcal{I}(s,t) is R2
 by (metis Healthy-def R1-R2c-is-R2 rea-init-R1 rea-init-R2c)
lemma csp-init-RR [closure]: \mathcal{I}(s,t) is RR
  apply (rel-auto)
 apply (metis diff-add-cancel-left' trace-class.add-left-mono)
 apply (metis le-add minus-cancel-le trace-class.add-diff-cancel-left)
 apply (metis le-add less-le less-le-trans)
done
lemma csp-init-CRR [closure]: \mathcal{I}(s,t) is CRR
 by (rule CRR-intro, simp-all add: unrest closure)
lemma rea-init-impl-st [closure]: (\mathcal{I}(b,t) \Rightarrow_r [c]_{S<}) is RC
  apply (rule RC-intro)
 apply (simp add: closure)
 apply (rel-auto)
 using order-trans by auto
lemma rea-init-RC1:
  \neg_r \ \mathcal{I}(P,t) is RC1
 apply (rel-auto) using dual-order.trans by blast
lemma init-acts-empty [rpred]: \mathcal{I}(true,\langle\rangle) = true_r
 by (rel-auto)
lemma rea-not-init [rpred]:
  (\neg_r \ \mathcal{I}(P,\langle\rangle)) = \mathcal{I}(\neg P,\langle\rangle)
 by (rel-auto)
lemma rea-init-conj [rpred]:
  (\mathcal{I}(P,t) \wedge \mathcal{I}(Q,t)) = \mathcal{I}(P \wedge Q,t)
 by (rel-auto)
lemma rea-init-empty-trace [rpred]: \mathcal{I}(s,\langle\rangle) = [s]_{S<}
 by (rel-auto)
lemma rea-init-disj-same [rpred]: (\mathcal{I}(s_1,t) \vee \mathcal{I}(s_2,t)) = \mathcal{I}(s_1 \vee s_2, t)
  by (rel-auto)
```

```
lemma rea-init-impl-same [rpred]: (\mathcal{I}(s_1,t) \Rightarrow_r \mathcal{I}(s_2,t)) = (\mathcal{I}(s_1,t) \Rightarrow_r [s_2]_{S<})
  apply (rel-auto) using dual-order.trans le-add by blast+
lemma tsubst-st-cond [usubst]: [P]_{S<}[\![t]\!]_t = \mathcal{I}(P,t)
 by (rel-auto)
lemma tsubst-rea-init [usubst]: (\mathcal{I}(s,x))[\![y]\!]_t = \mathcal{I}(s,y+x)
  apply (rel-auto)
 apply (metis add.assoc diff-add-cancel-left' trace-class.add-le-imp-le-left trace-class.add-left-mono)
 apply (metis add. assoc diff-add-cancel-left' le-add trace-class. add-le-imp-le-left trace-class. add-left-mono) +
lemma tsubst-rea-not [usubst]: (\neg_r P)[\![v]\!]_t = ((\neg_r P[\![v]\!]_t) \land \mathcal{I}(true,v))
 apply (rel-auto)
  using le-add order-trans by blast
lemma tsubst-true [usubst]: true_r[v]_t = \mathcal{I}(true,v)
  by (rel-auto)
lemma R_4-csp-init [rpred]: R_4(\mathcal{I}(s,bop\ Cons\ x\ xs)) = \mathcal{I}(s,bop\ Cons\ x\ xs)
  using less-list-def by (rel-blast)
lemma R5-csp-init [rpred]: R5(\mathcal{I}(s,bop\ Cons\ x\ xs)) = false
 by (rel-auto)
lemma R4-trace-subst [rpred]:
  R4 (P[bop\ Cons\ x\ xs]_t) = P[bop\ Cons\ x\ xs]_t
  using le-imp-less-or-eq by (rel-blast)
lemma R5-trace-subst [rpred]:
  R5 (P[bop\ Cons\ x\ xs]_t) = false
 by (rel-auto)
3.7
        Enabled Events
definition csp\text{-}enable :: 's \ upred \Rightarrow ('e \ list, 's) \ uexpr \Rightarrow ('e \ set, 's) \ uexpr \Rightarrow ('s, 'e) \ action (\mathcal{E}'(-,-,-'))
[upred-defs]: \mathcal{E}(s,t,E) = (\lceil s \rceil_{S <} \land \$tr' =_u \$tr \upharpoonright_u \lceil t \rceil_{S <} \land (\forall e \in \lceil E \rceil_{S <} \cdot \ll e \gg \notin_u \$ref'))
Predicate \mathcal{E}(s,t,E) states that, if the initial state satisfies predicate s, then t is a possible
(failure) trace, such that the events in the set E are enabled after the given interaction.
lemma csp-enable-R1-closed [closure]: \mathcal{E}(s,t,E) is R1
 by (rel-auto)
lemma csp-enable-R2-closed [closure]: \mathcal{E}(s,t,E) is R2c
 by (rel-auto)
lemma csp-enable-RR [closure]: \mathcal{E}(s,t,E) is CRR
 by (rel-auto)
lemma tsubst-csp-enable [usubst]: \mathcal{E}(s,t_2,e)[t_1]_t = \mathcal{E}(s,t_1 \hat{u}_t_2,e)
  apply (rel-auto)
 apply (metis append.assoc less-eq-list-def prefix-concat-minus)
 apply (simp add: list-concat-minus-list-concat)
done
```

```
lemma csp-enable-unrests [unrest]:
   \llbracket x \bowtie (\$tr)_v; x \bowtie (\$tr')_v; x \bowtie (\$st)_v; x \bowtie (\$ref')_v \rrbracket \Longrightarrow x \sharp \mathcal{E}(s,t,e)
  by (simp add: csp-enable-def R1-def lens-indep-sym unrest)
lemma st-unrest-csp-enable [unrest]: \llbracket \&\mathbf{v} \sharp s; \&\mathbf{v} \sharp t; \&\mathbf{v} \sharp E \rrbracket \Longrightarrow \$st \sharp \mathcal{E}(s, t, E)
  by (simp add: csp-enable-def unrest)
lemma csp-enable-tr'-eq-tr [rpred]:
  \mathcal{E}(s,\langle\rangle,r) \triangleleft \$tr' =_u \$tr \triangleright false = \mathcal{E}(s,\langle\rangle,r)
  by (rel-auto)
lemma csp-enable-st-pred [rpred]:
   ([s_1]_{S<} \wedge \mathcal{E}(s_2,t,E)) = \mathcal{E}(s_1 \wedge s_2,t,E)
  by (rel-auto)
lemma csp-enable-conj [rpred]:
  (\mathcal{E}(s, t, E_1) \wedge \mathcal{E}(s, t, E_2)) = \mathcal{E}(s, t, E_1 \cup_u E_2)
  by (rel-auto)
lemma csp-enable-cond [rpred]:
  \mathcal{E}(s_1, t_1, E_1) \triangleleft b \triangleright_R \mathcal{E}(s_2, t_2, E_2) = \mathcal{E}(s_1 \triangleleft b \triangleright s_2, t_1 \triangleleft b \triangleright t_2, E_1 \triangleleft b \triangleright E_2)
  by (rel-auto)
lemma csp-enable-rea-assm [rpred]:
  [b]^{\top}_{r};; \mathcal{E}(s,t,E) = \mathcal{E}(b \wedge s,t,E)
  by (rel-auto)
lemma csp-enable-tr-empty: \mathcal{E}(true, \langle \rangle, \{v\}_u) = (\$tr' =_u \$tr \land \lceil v \rceil_{S <} \notin_u \$ref')
  by (rel-auto)
lemma csp-enable-nothing: \mathcal{E}(true,\langle\rangle,\{\}_u) = (\$tr' =_u \$tr)
  by (rel-auto)
\mathbf{lemma} \ \mathit{msubst-nil-csp-enable} \ [\mathit{usubst}] :
  \mathcal{E}(s(x),t(x),E(x))[x\rightarrow\langle\rangle] = \mathcal{E}(s(x)[x\rightarrow\langle\rangle],t(x)[x\rightarrow\langle\rangle],E(x)[x\rightarrow\langle\rangle])
  by (pred-auto)
lemma msubst-csp-enable [usubst]:
  \mathcal{E}(s(x),t(x),E(x))\llbracket x \to \lceil v \rceil_{S \leftarrow} \rrbracket = \mathcal{E}(s(x)\llbracket x \to v \rrbracket,t(x)\llbracket x \to v \rrbracket,E(x)\llbracket x \to v \rrbracket)
  by (rel-auto)
lemma csp-enable-false [rpred]: \mathcal{E}(false,t,E) = false
  by (rel-auto)
lemma conj-csp-enable [rpred]: (\mathcal{E}(b_1, t, E_1) \wedge \mathcal{E}(b_2, t, E_2)) = \mathcal{E}(b_1 \wedge b_2, t, E_1 \cup_u E_2)
  by (rel-auto)
lemma USUP-csp-enable [rpred]:
   (\bigsqcup x \cdot \mathcal{E}(s, t, A(x))) = \mathcal{E}(s, t, (\bigvee x \cdot A(x)))
  by (rel-auto)
lemma R4-csp-enable-nil [rpred]:
   R4(\mathcal{E}(s, \langle \rangle, E)) = false
  by (rel-auto)
```

```
lemma R5-csp-enable-nil [rpred]:
  R5(\mathcal{E}(s, \langle \rangle, E)) = \mathcal{E}(s, \langle \rangle, E)
 by (rel-auto)
lemma R4-csp-enable-Cons [rpred]:
  R4(\mathcal{E}(s,bop\ Cons\ x\ xs,\ E)) = \mathcal{E}(s,bop\ Cons\ x\ xs,\ E)
 by (rel-auto, simp add: Prefix-Order.strict-prefixI')
lemma R5-csp-enable-Cons [rpred]:
  R5(\mathcal{E}(s,bop\ Cons\ x\ xs,\ E)) = false
  by (rel-auto)
lemma rel-aext-csp-enable [alpha]:
  vwb-lens a \Longrightarrow \mathcal{E}(s, t, E) \oplus_r map-st_L[a] = \mathcal{E}(s \oplus_p a, t \oplus_p a, E \oplus_p a)
 by (rel-auto)
        Completed Trace Interaction
```

3.8

lemma unrest-csp-do [unrest]:

```
definition csp\text{-}do :: 's \ upred \Rightarrow ('s \Rightarrow 's) \Rightarrow ('e \ list, 's) \ uexpr \Rightarrow ('s, 'e) \ action \ (\Phi'(-,-,-')) \ \textbf{where}
[upred-defs]: \Phi(s,\sigma,t) = (\lceil s \rceil_{S<} \land \$tr' =_u \$tr \cdot [t]_{S<} \land [\langle \sigma \rangle_a]_S)
```

Predicate $\Phi(s,\sigma,t)$ states that if the initial state satisfies s, and the trace t is performed, then afterwards the state update σ is executed.

```
\llbracket x \bowtie (\$tr)_v; x \bowtie (\$tr')_v; x \bowtie (\$st)_v; x \bowtie (\$st')_v \rrbracket \Longrightarrow x \sharp \Phi(s,\sigma,t)
  by (simp-all add: csp-do-def alpha-in-var alpha-out-var prod-as-plus unrest lens-indep-sym)
lemma csp-do-CRR [closure]: \Phi(s,\sigma,t) is CRR
  by (rel-auto)
lemma csp-do-R4-closed [closure]:
  \Phi(b,\sigma,bop\ Cons\ x\ xs) is R4
  by (rel-auto, simp add: Prefix-Order.strict-prefixI')
lemma st-pred-conj-csp-do [rpred]:
  ([b]_{S<} \wedge \Phi(s,\sigma,t)) = \Phi(b \wedge s,\sigma,t)
  by (rel-auto)
lemma trea-subst-csp-do [usubst]:
  (\Phi(s,\sigma,t_2))[\![t_1]\!]_t = \Phi(s,\sigma,t_1 \hat{\ }_u t_2)
  apply (rel-auto)
  apply (metis append.assoc less-eq-list-def prefix-concat-minus)
  apply (simp add: list-concat-minus-list-concat)
done
lemma st-subst-csp-do [usubst]:
  \lceil \sigma \rceil_{S\sigma} \dagger \Phi(s,\varrho,t) = \Phi(\sigma \dagger s,\varrho \circ \sigma,\sigma \dagger t)
  by (rel-auto)
lemma csp-init-do [rpred]: (\mathcal{I}(s1,t) \land \Phi(s2,\sigma,t)) = \Phi(s1 \land s2, \sigma, t)
  by (rel-auto)
lemma csp-do-false [rpred]: \Phi(false, s, t) = false
  by (rel-auto)
```

```
lemma csp-do-assign [rpred]:
  assumes P is CRR
  shows \Phi(s, \sigma, t) ;; P = ([s]_{S <} \land ([\sigma]_{S \sigma} \dagger P)[\![t]\!]_t)
proof -
  have \Phi(s,\sigma,t) ;; CRR(P) = ([s]_{S<} \land ([\sigma]_{S\sigma} \dagger CRR(P))[\![t]\!]_t)
     by (rel-blast)
  thus ?thesis
     by (simp add: Healthy-if assms)
lemma \ subst-state-csp-enable \ [usubst]:
   [\sigma]_{S\sigma} \dagger \mathcal{E}(s,t_2,e) = \mathcal{E}(\sigma \dagger s, \sigma \dagger t_2, \sigma \dagger e)
  by (rel-auto)
lemma csp-do-assign-enable [rpred]:
  \Phi(s_1,\sigma,t_1) :: \mathcal{E}(s_2,t_2,e) = \mathcal{E}(s_1 \wedge \sigma \dagger s_2, t_1 \hat{u}(\sigma \dagger t_2), (\sigma \dagger e))
  by (simp add: rpred closure usubst)
lemma csp-do-assign-do [rpred]:
   \Phi(s_1,\sigma,t_1) :: \Phi(s_2,\varrho,t_2) = \Phi(s_1 \wedge (\sigma \dagger s_2), \varrho \circ \sigma, t_1 \hat{u}(\sigma \dagger t_2))
  by (rel-auto)
lemma csp-do-cond [rpred]:
   \Phi(s_1, \sigma, t_1) \triangleleft b \triangleright_R \Phi(s_2, \varrho, t_2) = \Phi(s_1 \triangleleft b \triangleright s_2, \sigma \triangleleft b \triangleright_s \varrho, t_1 \triangleleft b \triangleright t_2)
  by (rel-auto)
lemma rea-assm-csp-do [rpred]:
  [b]^{\top}_{r};; \Phi(s,\sigma,t) = \Phi(b \wedge s,\sigma,t)
  by (rel-auto)
\mathbf{lemma}\ csp\text{-}do\text{-}skip\ [rpred]:
  assumes P is CRR
  shows \Phi(true,id,t) ;; P = P[t]_t
proof -
  have \Phi(true,id,t) ;; CRR(P) = (CRR \ P)[\![t]\!]_t
     by (rel-auto)
  thus ?thesis
     by (simp add: Healthy-if assms)
qed
lemma wp-rea-csp-do-lemma:
  fixes P :: ('\sigma, '\varphi) \ action
  assumes \$ok \ \sharp \ P \ \$wait \ \sharp \ P \ \$ref \ \sharp \ P
  \mathbf{shows} \; (\lceil \langle \sigma \rangle_a \rceil_S \; \wedge \; \$tr \; \hat{} \; =_u \; \$tr \; \hat{} \; _u \; \lceil t \rceil_{S <}) \; ;; \; P = (\lceil \sigma \rceil_{S \sigma} \; \dagger \; P) \llbracket \$tr \; \hat{} \; _u \; \lceil t \rceil_{S <} / \$tr \rrbracket
  using assms by (rel-auto, meson)
lemma wp-rea-csp-do [wp]:
  fixes P :: ('\sigma, '\varphi) action
  assumes P is CRR
  shows \Phi(s,\sigma,t) wp_r P = (\mathcal{I}(s,t) \Rightarrow_r (\lceil \sigma \rceil_{S\sigma} \dagger P) \llbracket t \rrbracket_t)
  have \Phi(s,\sigma,t) wp_r CRR(P) = (\mathcal{I}(s,t) \Rightarrow_r (\lceil \sigma \rceil_{S\sigma} \dagger CRR(P))[\![t]\!]_t)
     by (rel-blast)
  thus ?thesis
```

```
by (simp add: assms Healthy-if)
qed
lemma csp-do-power-Suc [rpred]:
 \Phi(true, id, t) \hat{\ } (Suc i) = \Phi(true, id, iter[Suc i](t))
 by (induct\ i, (rel-auto)+)
lemma csp-power-do-comp [rpred]:
 assumes P is CRR
 shows \Phi(true, id, t) \hat{i} ;; P = \Phi(true, id, iter[i](t)) ;; P
 apply (cases i)
  apply (simp-all add: rpred usubst assms closure)
 done
lemma wp-rea-csp-do-skip [wp]:
 fixes Q :: ('\sigma, '\varphi) action
 assumes P is CRR
 shows \Phi(s,id,t) wp_r P = (\mathcal{I}(s,t) \Rightarrow_r P[\![t]\!]_t)
proof -
 have \Phi(s,id,t) wp_r P = \Phi(s,id,t) wp_r P
   by (simp\ add:\ skip-r-def)
 thus ?thesis by (simp add: wp assms usubst alpha)
qed
lemma msubst-csp-do [usubst]:
  \Phi(s(x),\!\sigma,\!t(x))[\![x \to \lceil v \rceil_{S \leftarrow}]\!] = \Phi(s(x)[\![x \to v]\!],\!\sigma,\!t(x)[\![x \to v]\!])
 by (rel-auto)
lemma rea-frame-ext-csp-do [frame]:
  vwb-lens a \Longrightarrow a: [\Phi(s,\sigma,t)]_r^+ = \Phi(s \oplus_p a,\sigma \oplus_s a,t \oplus_p a)
 by (rel-auto)
3.9
       Downward closure of refusals
We define downward closure of the pericondition by the following healthiness condition
definition CDC :: ('s, 'e) \ action \Rightarrow ('s, 'e) \ action \ where
[upred-defs]: CDC(P) = (\exists ref_0 \cdot P[\llbracket \ll ref_0 \gg /\$ ref']] \land \$ ref' \subseteq_u \ll ref_0 \gg)
lemma CDC-idem: CDC(CDC(P)) = CDC(P)
 by (rel-auto)
lemma CDC-RR-commute: <math>CDC(RR(P)) = RR(CDC(P))
 by (rel-blast)
lemma CDC-RR-closed [closure]: P is RR \Longrightarrow CDC(P) is RR
 by (metis CDC-RR-commute Healthy-def)
lemma CDC-CRR-commute: CDC (CRR P) = CRR (CDC P)
 by (rel-blast)
lemma CDC-CRR-closed [closure]:
 assumes P is CRR
 shows CDC(P) is CRR
```

by (rule CRR-intro, simp add: CDC-def unrest assms closure, simp add: unrest assms closure)

```
lemma CDC-unrest [unrest]: \llbracket vwb\text{-lens } x; (\$ref')_v \bowtie x; x \sharp P \rrbracket \Longrightarrow x \sharp CDC(P)
 by (simp add: CDC-def unrest usubst lens-indep-sym)
lemma CDC-R_4-commute: CDC(R_4(P)) = R_4(CDC(P))
 by (rel-auto)
lemma R4\text{-}CDC\text{-}closed [closure]: P is CDC \Longrightarrow R4(P) is CDC
 by (simp add: CDC-R4-commute Healthy-def)
lemma CDC-R5-commute: <math>CDC(R5(P)) = R5(CDC(P))
 by (rel-auto)
lemma R5-CDC-closed [closure]: P is CDC \Longrightarrow R5(P) is CDC
 by (simp add: CDC-R5-commute Healthy-def)
lemma rea-true-CDC [closure]: true_r is CDC
 by (rel-auto)
lemma false-CDC [closure]: false is CDC
 by (rel-auto)
lemma CDC-UINF-closed [closure]:
 assumes \bigwedge i. i \in I \Longrightarrow P i is CDC
 shows (\prod i \in I \cdot P i) is CDC
 using assms by (rel-blast)
lemma CDC-disj-closed [closure]:
 assumes P is CDC Q is CDC
 shows (P \vee Q) is CDC
proof -
 have CDC(P \lor Q) = (CDC(P) \lor CDC(Q))
   by (rel-auto)
 thus ?thesis
   by (metis\ Healthy-def\ assms(1)\ assms(2))
\mathbf{qed}
lemma CDC-USUP-closed [closure]:
 assumes \bigwedge i. i \in I \Longrightarrow P i is CDC
 using assms by (rel-blast)
lemma CDC-conj-closed [closure]:
 assumes P is CDC Q is CDC
 shows (P \land Q) is CDC
 using assms by (rel-auto, blast, meson)
lemma CDC-rea-impl [rpred]:
 ref' \sharp P \Longrightarrow CDC(P \Rightarrow_r Q) = (P \Rightarrow_r CDC(Q))
 by (rel-auto)
lemma rea-impl-CDC-closed [closure]:
 assumes ref' \ddagger P Q is CDC
 shows (P \Rightarrow_r Q) is CDC
 using assms by (simp add: CDC-rea-impl Healthy-def)
```

```
lemma seq-CDC-closed [closure]:
    assumes Q is CDC
    shows (P ;; Q) is CDC
proof -
     have CDC(P ;; Q) = P ;; CDC(Q)
          by (rel-blast)
     thus ?thesis
          by (metis Healthy-def assms)
qed
lemma st-subst-CDC-closed [closure]:
    assumes P is CDC
    shows (\sigma \dagger_S P) is CDC
proof -
    have (\sigma \dagger_S CDC P) is CDC
          by (rel-auto)
     thus ?thesis
          by (simp add: assms Healthy-if)
qed
lemma rea-st-cond-CDC [closure]: [g]_{S<} is CDC
    by (rel-auto)
lemma csp\text{-}enable\text{-}CDC [closure]: \mathcal{E}(s,t,E) is CDC
    by (rel-auto)
lemma state-srea-CDC-closed [closure]:
    assumes P is CDC
    shows state 'a \cdot P is CDC
proof -
    have state 'a \cdot CDC(P) is CDC
          by (rel-blast)
    thus ?thesis
          by (simp add: Healthy-if assms)
qed
3.10
                           Renaming
abbreviation pre-image f B \equiv \{x. f(x) \in B\}
definition csp-rename :: ('s, 'e) action \Rightarrow ('e \Rightarrow 'f) \Rightarrow ('s, 'f) action ((-)([-])_c [999, 0] 999) where
[\textit{upred-defs}]: P(|f|)_c = R2((\$tr' =_u \langle \rangle \land \$st' =_u \$st) \; ;; \; P \; ;; \; (\$tr' =_u map_u \ll f \gg \$tr \land \$st' =_u \$st \land f =_
uop\ (pre\text{-}image\ f)\ \$ref'\subseteq_u\ \$ref))
lemma csp-rename-CRR-closed [closure]:
    assumes P is CRR
    shows P(|f|)_c is CRR
proof -
    have (CRR \ P)(|f|)_c is CRR
         by (rel-auto)
    thus ?thesis by (simp add: assms Healthy-if)
lemma csp-rename-disj [rpred]: (P \vee Q)(f)_c = (P(f)_c \vee Q(f)_c)
    by (rel-blast)
```

```
lemma csp-rename-UINF-ind [rpred]: (   i \cdot P i)(f)_c = (  i \cdot (P i)(f)_c )
    by (rel-blast)
lemma csp-rename-UINF-mem [rpred]: (\bigcap i \in A \cdot P \ i)(|f|)_c = (\bigcap i \in A \cdot (P \ i)(|f|)_c)
    by (rel-blast)
Renaming distributes through conjunction only when both sides are downward closed
lemma csp-rename-conj [rpred]:
    assumes inj f P is CRR Q is CRR P is CDC Q is CDC
   shows (P \wedge Q)(|f|)_c = (P(|f|)_c \wedge Q(|f|)_c)
proof -
    from assms(1) have ((CDC\ (CRR\ P)) \land (CDC\ (CRR\ Q)))(|f|)_c = ((CDC\ (CRR\ P))(|f|)_c \land (CDC\ (CRR\ P))(|f|)_c \land (C
(CRR Q)(|f|_c)
        apply (rel-auto)
        apply blast
        apply blast
        apply (meson order-reft order-trans)
        done
    thus ?thesis
        by (simp add: assms Healthy-if)
qed
lemma csp-rename-seq [rpred]:
    assumes P is CRR Q is CRR
   shows (P ;; Q)(|f|)_c = P(|f|)_c ;; Q(|f|)_c
   oops
lemma csp-rename-R4 [rpred]:
    (R4(P))(|f|)_c = R4(P(|f|)_c)
   apply (rel-auto, blast)
   using less-le apply fastforce
   apply (metis (mono-tags, lifting) Prefix-Order.Nil-prefix append-Nil2 diff-add-cancel-left' less-le list.simps(8)
plus-list-def)
    done
lemma csp-rename-R5 [rpred]:
    (R5(P))(|f|)_c = R5(P(|f|)_c)
   apply (rel-auto, blast)
   using less-le apply fastforce
    done
lemma csp-rename-do [rpred]: \Phi(s,\sigma,t)(|f|)_c = \Phi(s,\sigma,map_u \ll f \gg t)
    by (rel-auto)
lemma csp-rename-enable [rpred]: \mathcal{E}(s,t,E)(|f|)_c = \mathcal{E}(s,map_u \ll f \gg t, uop (image f) E)
   by (rel-auto)
lemma st'-unrest-csp-rename [unrest]: \$st' \sharp P \Longrightarrow \$st' \sharp P(|f|)_c
   by (rel-blast)
lemma ref'-unrest-csp-rename [unrest]: ref' \sharp P \Longrightarrow ref' \sharp P(|f|)_c
   \mathbf{by} \ (rel\text{-}blast)
lemma csp-rename-CDC-closed [closure]:
    P \text{ is } CDC \Longrightarrow P(|f|)_c \text{ is } CDC
```

```
by (rel\text{-}blast) 
lemma csp\text{-}do\text{-}CDC [closure]: \Phi(s,\sigma,t) is CDC by (rel\text{-}auto) 
end
```

4 Stateful-Failure Healthiness Conditions

theory utp-sfrd-healths imports utp-sfrd-rel begin

5 Definitions

```
We here define extra healthiness conditions for stateful-failure reactive designs.
abbreviation CSP1 :: (('\sigma, '\varphi) \ sfrd \times ('\sigma, '\varphi) \ sfrd) health
where CSP1(P) \equiv RD1(P)
abbreviation CSP2 :: (('\sigma, '\varphi) \ sfrd \times ('\sigma, '\varphi) \ sfrd) health
where CSP2(P) \equiv RD2(P)
abbreviation CSP :: (('\sigma, '\varphi) \ sfrd \times ('\sigma, '\varphi) \ sfrd) health
where CSP(P) \equiv SRD(P)
definition STOP :: '\varphi \ process \ \mathbf{where}
[upred-defs]: STOP = CSP1(\$ok' \land R3c(\$tr' =_u \$tr \land \$wait'))
definition SKIP :: '\varphi \ process \ \mathbf{where}
[upred-defs]: SKIP = \mathbf{R}_s(\exists \$ref \cdot CSP1(II))
definition Stop :: ('\sigma, '\varphi) \ action \ where
[upred-defs]: Stop = \mathbf{R}_s(true \vdash (\$tr' =_u \$tr \land \$wait'))
definition Skip :: ('\sigma, '\varphi) \ action \ where
[upred-defs]: Skip = \mathbf{R}_s(true \vdash (\$tr' =_u \$tr \land \neg \$wait' \land \$st' =_u \$st))
definition CSP3 :: (('\sigma, '\varphi) \ sfrd \times ('\sigma, '\varphi) \ sfrd) health where
[upred-defs]: CSP3(P) = (Skip ;; P)
definition CSP4 :: (('\sigma, '\varphi) \ sfrd \times ('\sigma, '\varphi) \ sfrd) health where
[upred-defs]: CSP_4(P) = (P ;; Skip)
definition NCSP :: (('\sigma, '\varphi) \ sfrd \times ('\sigma, '\varphi) \ sfrd) health where
[upred-defs]: NCSP = CSP3 \circ CSP4 \circ CSP
Productive and normal processes
abbreviation PCSP \equiv Productive \circ NCSP
Instantaneous and normal processes
abbreviation ICSP \equiv ISRD1 \circ NCSP
```

5.1 Healthiness condition properties

SKIP is the same as Skip, and STOP is the same as Stop, when we consider stateless CSP processes. This is because any reference to the st variable degenerates when the alphabet type coerces its type to be empty. We therefore need not consider SKIP and STOP actions.

```
theorem SKIP-is-Skip [simp]: SKIP = Skip
 by (rel-auto)
theorem STOP-is-Stop [simp]: STOP = Stop
 by (rel-auto)
theorem Skip-UTP-form: Skip = \mathbf{R}_s(\exists \$ref \cdot CSP1(II))
 by (rel-auto)
lemma Skip-is-CSP [closure]:
  Skip is CSP
 by (simp add: Skip-def RHS-design-is-SRD unrest)
lemma Skip-RHS-tri-design:
  Skip = \mathbf{R}_s(true \vdash (false \diamond (\$tr' =_u \$tr \land \$st' =_u \$st)))
 by (rel-auto)
lemma Skip-RHS-tri-design' [rdes-def]:
  Skip = \mathbf{R}_s(true_r \vdash (false \diamond \Phi(true, id, \langle \rangle)))
 by (rel-auto)
lemma Skip-frame [frame]: vwb-lens a \Longrightarrow a:[Skip]_R^+ = Skip
 by (rdes-eq)
lemma Stop-is-CSP [closure]:
  Stop is CSP
 by (simp add: Stop-def RHS-design-is-SRD unrest)
lemma Stop-RHS-tri-design: Stop = \mathbf{R}_s(true \vdash (\$tr' =_u \$tr) \diamond false)
 by (rel-auto)
lemma Stop-RHS-rdes-def [rdes-def]: Stop = \mathbf{R}_s(true_r \vdash \mathcal{E}(true,\langle\rangle,\{\}_u) \diamond false)
 by (rel-auto)
lemma preR-Skip [rdes]: pre_R(Skip) = true_r
 by (rel-auto)
lemma periR-Skip [rdes]: peri_R(Skip) = false
 by (rel-auto)
lemma postR-Skip [rdes]: post_R(Skip) = \Phi(true, id, \langle \rangle)
 by (rel-auto)
lemma Productive-Stop [closure]:
 Stop is Productive
 by (simp add: Stop-RHS-tri-design Healthy-def Productive-RHS-design-form unrest)
lemma Skip-left-lemma:
 assumes P is CSP
 shows Skip ;; P = \mathbf{R}_s ((\forall \$ref \cdot pre_R P) \vdash (\exists \$ref \cdot cmt_R P))
```

```
proof -
  have Skip :: P =
        \mathbf{R}_s \ ((\$tr' =_u \$tr \land \$st' =_u \$st) \ wp_r \ pre_R \ P \vdash
            (\$tr' =_u \$tr \land \$st' =_u \$st) ;; peri_R P \diamond
            (\$tr' =_u \$tr \land \$st' =_u \$st) ;; post_R P)
    by (simp add: SRD-composition-wp alpha rdes closure wp assms rpred C1, rel-auto)
  also have ... = \mathbf{R}_s ((\forall \$ref \cdot pre_R P) \vdash
                       (\$tr' =_u \$tr \land \neg \$wait' \land \$st' =_u \$st) ;; ((\exists \$st \cdot [H]_D) \triangleleft \$wait \triangleright cmt_R P))
    \mathbf{by} \ (\mathit{rule} \ \mathit{cong}[\mathit{of} \ \mathbf{R}_s \ \mathbf{R}_s], \ \mathit{simp}, \ \mathit{rel-auto})
  also have ... = \mathbf{R}_s ((\forall \$ref \cdot pre_R P) \vdash (\exists \$ref \cdot cmt_R P))
    by (rule cong[of \mathbf{R}_s \mathbf{R}_s], simp, rel-auto)
 finally show ?thesis.
qed
lemma Skip-left-unit-ref-unrest:
  assumes P is CSP ref <math> P[false/wait]
 shows Skip ;; P = P
  using assms
  by (simp add: Skip-left-lemma)
   (metis SRD-reactive-design-alt all-unrest cmt-unrest-ref cmt-wait-false ex-unrest pre-unrest-ref pre-wait-false)
lemma CSP3-intro:
  \llbracket P \text{ is } CSP; \$ref \sharp P \llbracket false / \$wait \rrbracket \rrbracket \Longrightarrow P \text{ is } CSP3
 by (simp add: CSP3-def Healthy-def' Skip-left-unit-ref-unrest)
lemma ref-unrest-RHS-design:
  assumes ref \ \sharp P \ ref \ \sharp Q_1 \ ref \ \sharp Q_2
  shows ref \sharp (\mathbf{R}_s(P \vdash Q_1 \diamond Q_2)) f
  by (simp add: RHS-def R1-def R2c-def R2s-def R3h-def design-def unrest usubst assms)
lemma CSP3-SRD-intro:
 assumes P is CSP ref <math>\sharp pre_R(P) ref \sharp peri_R(P) ref \sharp post_R(P)
 shows P is CSP3
proof -
  have P: \mathbf{R}_s(pre_R(P) \vdash peri_R(P) \diamond post_R(P)) = P
    by (simp add: SRD-reactive-design-alt assms(1) wait'-cond-peri-post-cmt[THEN sym])
  have \mathbf{R}_s(pre_R(P) \vdash peri_R(P) \diamond post_R(P)) is CSP3
    by (rule CSP3-intro, simp add: assms P, simp add: ref-unrest-RHS-design assms)
  thus ?thesis
    by (simp \ add: P)
qed
lemma Skip-unrest-ref [unrest]: $ref \pm Skip[false/$wait]
 by (simp add: Skip-def RHS-def R1-def R2c-def R2s-def R3h-def design-def usubst unrest)
\mathbf{lemma} \ \mathit{Skip-unrest-ref'} \ [\mathit{unrest}] \colon \$\mathit{ref'} \ \sharp \ \mathit{Skip} \llbracket \mathit{false} / \$\mathit{wait} \rrbracket
  by (simp add: Skip-def RHS-def R1-def R2c-def R2s-def R3h-def design-def usubst unrest)
lemma CSP3-iff:
  assumes P is CSP
  shows P is CSP3 \longleftrightarrow (\$ref \sharp P\llbracket false/\$wait \rrbracket)
proof
  assume 1: P is CSP3
 have ref \sharp (Skip ;; P) \llbracket false / \$wait \rrbracket
    by (simp add: usubst unrest)
```

```
with 1 show ref \ p[false/\wait]
   by (metis CSP3-def Healthy-def)
  assume 1:ref \ \sharp \ P[false/\$wait]
 show P is CSP3
   by (simp add: 1 CSP3-intro assms)
qed
lemma CSP3-unrest-ref [unrest]:
 assumes P is CSP P is CSP3
 shows ref \sharp pre_R(P) \ ref \sharp peri_R(P) \ ref \sharp post_R(P)
proof -
  have a:(\$ref \ \sharp \ P[[false/\$wait]])
   using CSP3-iff assms by blast
  from a show ref \sharp pre_R(P)
   by (rel-blast)
  from a show ref \sharp peri_R(P)
   by (rel-blast)
  from a show ref \sharp post_R(P)
   by (rel-blast)
qed
lemma CSP3-rdes:
  assumes P is RR Q is RR R is RR
 shows CSP3(\mathbf{R}_s(P \vdash Q \diamond R)) = \mathbf{R}_s((\forall \$ref \cdot P) \vdash (\exists \$ref \cdot Q) \diamond (\exists \$ref \cdot R))
  by (simp add: CSP3-def Skip-left-lemma closure assms rdes, rel-auto)
lemma CSP3-form:
  assumes P is CSP
  shows CSP3(P) = \mathbf{R}_s((\forall \$ref \cdot pre_R(P)) \vdash (\exists \$ref \cdot peri_R(P)) \diamond (\exists \$ref \cdot post_R(P)))
 by (simp add: CSP3-def Skip-left-lemma assms, rel-auto)
lemma CSP3-Skip [closure]:
  Skip is CSP3
  by (rule CSP3-intro, simp add: Skip-is-CSP, simp add: Skip-def unrest)
lemma CSP3-Stop [closure]:
  Stop is CSP3
 by (rule CSP3-intro, simp add: Stop-is-CSP, simp add: Stop-def unrest)
lemma CSP3-Idempotent [closure]: Idempotent CSP3
  by (metis (no-types, lifting) CSP3-Skip CSP3-def Healthy-if Idempotent-def seqr-assoc)
lemma CSP3-Continuous: Continuous CSP3
  by (simp add: Continuous-def CSP3-def seq-Sup-distl)
lemma Skip-right-lemma:
 assumes P is CSP
 shows P;; Skip = \mathbf{R}_s ((\neg_r \ pre_R \ P) \ wp_r \ false \vdash ((\exists \$st' \cdot cmt_R \ P) \triangleleft \$wait' \triangleright (\exists \$ref' \cdot cmt_R \ P)))
proof -
 have P :: Skip = \mathbf{R}_s ((\neg_r \ pre_R \ P) \ wp_r \ false \vdash (\exists \$st' \cdot peri_R \ P) \diamond post_R \ P :: (\$tr' =_u \$tr \land \$st')
   by (simp add: SRD-composition-wp closure assms wp rdes rpred, rel-auto)
  also have ... = \mathbf{R}_s ((\neg_r \ pre_R \ P) wp_r \ false \vdash
                      ((cmt_R \ P \ ;; (\exists \$st \cdot \lceil II \rceil_D)) \triangleleft \$wait' \triangleright (cmt_R \ P \ ;; (\$tr' =_u \$tr \land \neg \$wait \land \$st')
```

```
=_{u} \$st))))
    by (rule cong[of \mathbf{R}_s \mathbf{R}_s], simp, rel-auto)
  also have ... = \mathbf{R}_s ((\neg_r \ pre_R \ P) wp_r \ false \vdash
                         ((\exists \$st' \cdot cmt_R P) \triangleleft \$wait' \triangleright (cmt_R P ;; (\$tr' =_u \$tr \land \neg \$wait \land \$st' =_u \$st))))
    by (rule cong [of \mathbf{R}_s, \mathbf{R}_s], simp, rel-auto)
  also have ... = \mathbf{R}_s \ ((\neg_r \ pre_R \ P) \ wp_r \ false \vdash ((\exists \$st' \cdot cmt_R \ P) \triangleleft \$wait' \triangleright (\exists \$ref' \cdot cmt_R \ P)))
    by (rule cong[of \mathbf{R}_s \mathbf{R}_s], simp, rel-auto)
  finally show ?thesis.
qed
lemma Skip-right-tri-lemma:
  assumes P is CSP
  shows P;; Skip = \mathbf{R}_s \ ((\neg_r \ pre_R \ P) \ wp_r \ false \vdash ((\exists \$st' \cdot peri_R \ P) \diamond (\exists \$ref' \cdot post_R \ P)))
  have ((\exists \$st' \cdot cmt_R P) \triangleleft \$wait' \triangleright (\exists \$ref' \cdot cmt_R P)) = ((\exists \$st' \cdot peri_R P) \diamond (\exists \$ref' \cdot post_R P))
    by (rel-auto)
  thus ?thesis by (simp add: Skip-right-lemma[OF assms])
qed
lemma CSP4-intro:
  assumes P is CSP (\neg_r \ pre_R(P));; R1(true) = (\neg_r \ pre_R(P))
           st' \sharp (cmt_R P) \llbracket true / swait' \rrbracket \ ref' \sharp (cmt_R P) \llbracket false / swait' \rrbracket
  shows P is CSP4
proof -
  have CSP_4(P) = \mathbf{R}_s ((\neg_r \ pre_R \ P) \ wp_r \ false \vdash ((\exists \$st' \cdot cmt_R \ P) \land \$wait' \rhd (\exists \$ref' \cdot cmt_R \ P)))
    by (simp add: CSP4-def Skip-right-lemma assms(1))
   also have ... = \mathbf{R}_s (pre<sub>R</sub>(P) \vdash ((\exists $st' \cdot cmt<sub>R</sub> P)[[true/$wait']] \triangleleft $wait' \triangleright (\exists $ref' \cdot cmt<sub>R</sub>
P)[false/\$wait'])
    by (simp add: wp-rea-def assms(2) rpred closure cond-var-subst-left cond-var-subst-right)
   also have ... = \mathbf{R}_s (pre_R(P) \vdash ((\exists \$st' \cdot (cmt_R P)[true/\$wait']) \triangleleft \$wait' \triangleright (\exists \$ref' \cdot (cmt_R P)[true/\$wait'])
P)[false/\$wait']))
    by (simp add: usubst unrest)
  also have ... = \mathbf{R}_s (pre<sub>R</sub> P \vdash ((cmt_R \ P)[[true/\$wait']] \triangleleft \$wait' \triangleright (cmt_R \ P)[[false/\$wait']])
    \mathbf{by}\ (simp\ add\colon \mathit{ex-unrest}\ \mathit{assms})
  also have ... = \mathbf{R}_s (pre<sub>R</sub> P \vdash cmt_R P)
    by (simp add: cond-var-split)
  also have \dots = P
    by (simp\ add:\ SRD\text{-}reactive\text{-}design\text{-}alt\ assms}(1))
  finally show ?thesis
    by (simp add: Healthy-def')
qed
lemma CSP4-RC-intro:
  assumes P is CSP pre_R(P) is RC
           st' \sharp (cmt_R P) \llbracket true / swait' \rrbracket \ ref' \sharp (cmt_R P) \llbracket false / swait' \rrbracket
  shows P is CSP4
proof -
  have (\neg_r \ pre_R(P));; R1(true) = (\neg_r \ pre_R(P))
   by (metis (no-types, lifting) R1-seqr-closure assms(2) rea-not-R1 rea-not-false rea-not-not wp-rea-RC-false
wp-rea-def)
  thus ?thesis
    by (simp add: CSP4-intro assms)
qed
```

```
lemma CSP4-rdes:
 assumes P is RR Q is RR R is RR
 shows CSP_4(\mathbf{R}_s(P \vdash Q \diamond R)) = \mathbf{R}_s ((\neg_r P) \ wp_r \ false \vdash ((\exists \$st' \cdot Q) \diamond (\exists \$ref' \cdot R)))
 by (simp add: CSP4-def Skip-right-lemma closure assms rdes, rel-auto, blast+)
lemma CSP4-form:
 assumes P is CSP
 shows CSP_4(P) = \mathbf{R}_s ((\neg_r \ pre_R \ P) \ wp_r \ false \vdash ((\exists \$st' \cdot peri_R \ P) \diamond (\exists \$ref' \cdot post_R \ P)))
 by (simp add: CSP4-def Skip-right-tri-lemma assms)
lemma Skip-srdes-right-unit:
  (Skip :: ('\sigma, '\varphi) \ action) ;; II_R = Skip
 by (rdes-simp)
lemma Skip-srdes-left-unit:
 II_R;; (Skip :: ('\sigma, '\varphi) \ action) = Skip
 by (rdes-eq)
lemma CSP4-right-subsumes-RD3: RD3(CSP4(P)) = CSP4(P)
 by (metis (no-types, hide-lams) CSP4-def RD3-def Skip-srdes-right-unit seqr-assoc)
lemma CSP4-implies-RD3: P is CSP4 \implies P is RD3
 by (metis CSP4-right-subsumes-RD3 Healthy-def)
lemma CSP4-tri-intro:
 assumes P is CSP (\neg_r \ pre_R(P));; R1(true) = (\neg_r \ pre_R(P)) $st' \mu \ peri_R(P) $ref' \mu \ post_R(P)
 shows P is CSP4
 using assms
 by (rule-tac CSP4-intro, simp-all add: pre_R-def peri_R-def post_R-def usubst\ cmt_R-def)
lemma CSP4-NSRD-intro:
 assumes P is NSRD ref' \not\equiv post_R(P)
 shows P is CSP4
 by (simp add: CSP4-tri-intro NSRD-is-SRD NSRD-neg-pre-unit NSRD-st'-unrest-peri assms)
lemma CSP3-commutes-CSP4: CSP3(CSP4(P)) = CSP4(CSP3(P))
 by (simp add: CSP3-def CSP4-def segr-assoc)
lemma NCSP-implies-CSP [closure]: P is NCSP \Longrightarrow P is CSP
 by (metis (no-types, hide-lams) CSP3-def CSP4-def Healthy-def NCSP-def SRD-idem SRD-seqr-closure
Skip-is-CSP \ comp-apply)
lemma NCSP-elim [RD-elim]:
  \llbracket X \text{ is NCSP}; P(\mathbf{R}_s(pre_R(X) \vdash peri_R(X) \diamond post_R(X))) \rrbracket \Longrightarrow P(X)
 by (simp add: SRD-reactive-tri-design closure)
lemma NCSP-implies-CSP3 [closure]:
  P \text{ is } NCSP \Longrightarrow P \text{ is } CSP3
  by (metis (no-types, lifting) CSP3-def Healthy-def' NCSP-def Skip-is-CSP Skip-left-unit-ref-unrest
Skip-unrest-ref comp-apply seqr-assoc)
lemma NCSP-implies-CSP4 [closure]:
  P \text{ is } NCSP \Longrightarrow P \text{ is } CSP4
  by (metis (no-types, hide-lams) CSP3-commutes-CSP4 Healthy-def NCSP-def NCSP-implies-CSP
```

NCSP-implies-CSP3 comp-apply)

```
lemma NCSP-implies-RD3 [closure]: P is NCSP \implies P is RD3
 by (metis CSP3-commutes-CSP4 CSP4-right-subsumes-RD3 Healthy-def NCSP-def comp-apply)
lemma NCSP-implies-NSRD [closure]: P is NCSP \implies P is NSRD
 by (simp add: NCSP-implies-CSP NCSP-implies-RD3 SRD-RD3-implies-NSRD)
lemma NCSP-subset-implies-CSP [closure]:
 A \subseteq [\![NCSP]\!]_H \Longrightarrow A \subseteq [\![CSP]\!]_H
 using NCSP-implies-CSP by blast
lemma NCSP-subset-implies-NSRD [closure]:
 A \subseteq [NCSP]_H \Longrightarrow A \subseteq [NSRD]_H
 using NCSP-implies-NSRD by blast
lemma CSP-Healthy-subset-member: [P \in A; A \subseteq [CSP]_H] \implies P is CSP
 by (simp add: is-Healthy-subset-member)
lemma CSP3-Healthy-subset-member: [P \in A; A \subseteq [CSP3]_H] \implies P is CSP3
 by (simp add: is-Healthy-subset-member)
lemma CSP4-Healthy-subset-member: [P \in A; A \subseteq [CSP4]_H] \implies P is CSP4
 by (simp add: is-Healthy-subset-member)
lemma NCSP-Healthy-subset-member: [P \in A; A \subseteq [NCSP]_H] \implies P is NCSP
 by (simp add: is-Healthy-subset-member)
lemma NCSP-intro:
 assumes P is CSP P is CSP3 P is CSP4
 shows P is NCSP
 by (metis Healthy-def NCSP-def assms comp-eq-dest-lhs)
lemma Skip-left-unit: P is NCSP \Longrightarrow Skip;; P = P
 by (metis (full-types) CSP3-def Healthy-if NCSP-implies-CSP3)
lemma Skip-right-unit: P is NCSP \Longrightarrow P ;; Skip = P
 by (metis (full-types) CSP4-def Healthy-if NCSP-implies-CSP4)
lemma NCSP-NSRD-intro:
 assumes P is NSRD $ref \mu pre_R(P) $ref \mu peri_R(P) $ref \mu post_R(P) $ref' \mu post_R(P)$
 shows P is NCSP
 by (simp add: CSP3-SRD-intro CSP4-NSRD-intro NCSP-intro NSRD-is-SRD assms)
lemma CSP4-neg-pre-unit:
 assumes P is CSP P is CSP4
 shows (\neg_r \ pre_R(P)) \ ;; \ R1(true) = (\neg_r \ pre_R(P))
 by (simp add: CSP4-implies-RD3 NSRD-neg-pre-unit SRD-RD3-implies-NSRD assms(1) assms(2))
lemma NSRD-CSP4-intro:
 assumes P is CSP P is CSP4
 shows P is NSRD
 by (simp add: CSP4-implies-RD3 SRD-RD3-implies-NSRD assms(1) assms(2))
\mathbf{lemma}\ \mathit{NCSP-form}\colon
 NCSP\ P = \mathbf{R}_s\ ((\forall\ \$ref\ \cdot\ (\neg_r\ pre_R(P))\ wp_r\ false) \vdash ((\exists\ \$ref\ \cdot\ \exists\ \$st'\ \cdot\ peri_R(P))\ \diamond\ (\exists\ \$ref\ \cdot\ \exists
```

```
ref' \cdot post_R(P)))
proof -
  have NCSP P = CSP3 (CSP4 (NSRD P))
   \textbf{by} \ (\textit{metis} \ (\textit{no-types}, \ \textit{hide-lams}) \ \textit{CSP4-def} \ \textit{NCSP-def} \ \textit{NSRD-alt-def} \ \textit{RA1} \ \textit{RD3-def} \ \textit{Skip-srdes-left-unit}
o-apply)
  also
 have ... = \mathbf{R}_s ((\forall $ref · (\neg_r pre_R (NSRD P)) wp_r false) \vdash
                    (\exists \$ref \cdot \exists \$st' \cdot peri_R (NSRD P)) \diamond
                    (\exists \$ref \cdot \exists \$ref' \cdot post_R (NSRD P)))
    by (simp add: CSP3-form CSP4-form closure unrest rdes, rel-auto)
 also have ... = \mathbf{R}_s ((\forall \$ref \cdot (\neg_r \ pre_R(P)) \ wp_r \ false) \vdash ((\exists \$ref \cdot \exists \$st' \cdot peri_R(P)) \diamond (\exists \$ref \cdot \exists
ref' \cdot post_R(P)))
    by (simp add: NSRD-form rdes closure, rel-blast)
 finally show ?thesis.
qed
lemma CSP4-st'-unrest-peri [unrest]:
 assumes P is CSP P is CSP4
  shows \$st' \sharp peri_R(P)
 by (simp add: NSRD-CSP4-intro NSRD-st'-unrest-peri assms)
lemma CSP4-healthy-form:
  assumes P is CSP P is CSP4
  shows P = \mathbf{R}_s((\neg_r \ pre_R \ P) \ wp_r \ false \vdash ((\exists \$st' \cdot peri_R(P)) \diamond (\exists \$ref' \cdot post_R(P))))
proof -
  have P = \mathbf{R}_s ((\neg_r \ pre_R \ P) \ wp_r \ false \vdash ((\exists \$st' \cdot cmt_R \ P) \land \$wait' \rhd (\exists \$ref' \cdot cmt_R \ P)))
    by (metis CSP4-def Healthy-def Skip-right-lemma assms(1) assms(2))
 \mathbf{also\ have}\ ... = \mathbf{R}_s\ ((\lnot_r\ pre_R\ P)\ wp_r\ false \ \vdash ((\exists\ \$st'\cdot cmt_R\ P)[[true/\$wait']] \ \triangleleft\ \$wait' \ \triangleright\ (\exists\ \$ref'\cdot erref') \ |
cmt_R \ P)[false/\$wait'])
    by (metis (no-types, hide-lams) subst-wait'-left-subst subst-wait'-right-subst wait'-cond-def)
  also have ... = \mathbf{R}_s((\neg_r \ pre_R \ P) \ wp_r \ false \vdash ((\exists \ \$st' \cdot peri_R(P)) \diamond (\exists \ \$ref' \cdot post_R(P))))
    by (simp add: wait'-cond-def usubst peri_R-def post_R-def cmt_R-def unrest)
 finally show ?thesis.
qed
lemma CSP4-ref'-unrest-pre [unrest]:
  assumes P is CSP P is CSP4
  shows ref' \sharp pre_R(P)
proof -
  have pre_R(P) = pre_R(\mathbf{R}_s((\neg_r \ pre_R \ P) \ wp_r \ false \vdash ((\exists \$st' \cdot peri_R(P)) \diamond (\exists \$ref' \cdot post_R(P)))))
    using CSP4-healthy-form assms(1) assms(2) by fastforce
  also have ... = (\neg_r \ pre_R \ P) \ wp_r \ false
    by (simp add: rea-pre-RHS-design wp-rea-def usubst unrest
        CSP4-neg-pre-unit R1-rea-not R2c-preR R2c-rea-not assms)
  also have \$ref' \sharp ...
    by (simp add: wp-rea-def unrest)
 finally show ?thesis.
qed
lemma NCSP-set-unrest-pre-wait':
 assumes A \subseteq [NCSP]_H
 shows \bigwedge P. P \in A \Longrightarrow \$wait' \sharp pre_R(P)
proof -
 \mathbf{fix} P
 assume P \in A
```

```
hence P is NSRD
   using NCSP-implies-NSRD assms by auto
 thus wait' \sharp pre_R(P)
   using NSRD-wait'-unrest-pre by blast
qed
lemma CSP4-set-unrest-pre-st':
 assumes A \subseteq [\![CSP]\!]_H \ A \subseteq [\![CSP4]\!]_H
 shows \bigwedge P. P \in A \Longrightarrow \$st' \sharp pre_R(P)
proof -
 \mathbf{fix} P
 assume P \in A
 hence P is NSRD
   using NSRD-CSP4-intro assms(1) assms(2) by blast
 thus \$st' \sharp pre_R(P)
   using NSRD-st'-unrest-pre by blast
qed
lemma CSP4-ref'-unrest-post [unrest]:
 assumes P is CSP P is CSP4
 shows ref' \sharp post_R(P)
proof -
 \mathbf{have} \ post_R(P) = post_R(\mathbf{R}_s((\neg_r \ pre_R \ P) \ wp_r \ false \vdash ((\exists \ \$st' \cdot peri_R(P)) \diamond (\exists \ \$ref' \cdot post_R(P)))))
   using CSP4-healthy-form assms(1) assms(2) by fastforce
 also have ... = R1 (R2c ((\neg_r \ pre_R \ P) \ wp_r \ false \Rightarrow_r (\exists \ \$ref' \cdot post_R \ P)))
   by (simp add: rea-post-RHS-design usubst unrest wp-rea-def)
 also have $ref' \pm ...
   by (simp add: R1-def R2c-def wp-rea-def unrest)
 finally show ?thesis.
qed
lemma CSP3-Chaos [closure]: Chaos is CSP3
 by (simp add: Chaos-def, rule CSP3-intro, simp-all add: RHS-design-is-SRD unrest)
lemma CSP4-Chaos [closure]: Chaos is CSP4
 by (rule CSP4-tri-intro, simp-all add: closure rdes unrest)
lemma NCSP-Chaos [closure]: Chaos is NCSP
 by (simp add: NCSP-intro closure)
lemma CSP3-Miracle [closure]: Miracle is CSP3
 by (simp add: Miracle-def, rule CSP3-intro, simp-all add: RHS-design-is-SRD unrest)
lemma CSP4-Miracle [closure]: Miracle is CSP4
 by (rule CSP4-tri-intro, simp-all add: closure rdes unrest)
lemma NCSP-Miracle [closure]: Miracle is NCSP
 by (simp add: NCSP-intro closure)
lemma NCSP-seqr-closure [closure]:
 assumes P is NCSP Q is NCSP
 shows P ;; Q is NCSP
 by (metis (no-types, lifting) CSP3-def CSP4-def Healthy-def' NCSP-implies-CSP NCSP-implies-CSP3
     NCSP-implies-CSP4 NCSP-intro SRD-seqr-closure assms(1) assms(2) seqr-assoc)
```

```
lemma CSP4-Skip [closure]: Skip is CSP4
 apply (rule CSP4-intro, simp-all add: Skip-is-CSP)
 apply (simp-all add: Skip-def rea-pre-RHS-design rea-cmt-RHS-design usubst unrest R2c-true)
done
lemma NCSP-Skip [closure]: Skip is NCSP
 by (metis CSP3-Skip CSP4-Skip Healthy-def NCSP-def Skip-is-CSP comp-apply)
lemma CSP4-Stop [closure]: Stop is CSP4
 apply (rule CSP4-intro, simp-all add: Stop-is-CSP)
 apply (simp-all add: Stop-def rea-pre-RHS-design rea-cmt-RHS-design usubst unrest R2c-true)
done
lemma NCSP-Stop [closure]: Stop is NCSP
 by (metis CSP3-Stop CSP4-Stop Healthy-def NCSP-def Stop-is-CSP comp-apply)
lemma CSP4-Idempotent: Idempotent CSP4
 by (metis (no-types, lifting) CSP3-Skip CSP3-def CSP4-def Healthy-if Idempotent-def seqr-assoc)
lemma CSP4-Continuous: Continuous CSP4
 by (simp add: Continuous-def CSP4-def seq-Sup-distr)
lemma rdes-frame-ext-NCSP-closed [closure]:
 assumes vwb-lens a P is NCSP
 shows a:[P]_R^+ is NCSP
 by (metis (no-types, lifting) CSP3-def CSP4-def Healthy-intro NCSP-Skip NCSP-implies-NSRD NCSP-intro
NSRD-is-SRD Skip-frame Skip-left-unit Skip-right-unit assms(1) assms(2) rdes-frame-ext-NSRD-closed
seq-srea-frame)
lemma preR-Stop [rdes]: pre_R(Stop) = true_r
 by (simp add: Stop-def Stop-is-CSP rea-pre-RHS-design unrest usubst R2c-true)
lemma periR-Stop [rdes]: peri_R(Stop) = \mathcal{E}(true, \langle \rangle, \{\}_u)
 by (rel-auto)
lemma postR-Stop [rdes]: post_R(Stop) = false
 by (rel-auto)
lemma cmtR-Stop [rdes]: cmt_R(Stop) = (\$tr' =_u \$tr \land \$wait')
 by (rel-auto)
lemma NCSP-Idempotent [closure]: Idempotent NCSP
 by (clarsimp simp add: NCSP-def Idempotent-def)
    (metis (no-types, hide-lams) CSP3-Idempotent CSP3-def CSP4-Idempotent CSP4-def Healthy-def
Idempotent-def SRD-idem SRD-seqr-closure Skip-is-CSP seqr-assoc)
lemma NCSP-Continuous [closure]: Continuous NCSP
 by (simp add: CSP3-Continuous CSP4-Continuous Continuous-comp NCSP-def SRD-Continuous)
lemma preR-CRR [closure]: P is NCSP \Longrightarrow pre_R(P) is CRR
 by (rule CRR-intro, simp-all add: closure unrest)
lemma periR-CRR [closure]: P is NCSP \Longrightarrow peri_R(P) is CRR
 by (rule CRR-intro, simp-all add: closure unrest)
```

```
lemma postR-CRR [closure]: P is NCSP \Longrightarrow post_R(P) is CRR
 by (rule CRR-intro, simp-all add: closure unrest)
lemma NCSP-rdes-intro [closure]:
 assumes P is CRC Q is CRR R is CRR
        st' \sharp Q ref' \sharp R
 shows \mathbf{R}_s(P \vdash Q \diamond R) is NCSP
 apply (rule NCSP-intro)
   apply (simp-all add: closure assms)
  apply (rule CSP3-SRD-intro)
     apply (simp-all add: rdes closure assms unrest)
 apply (rule CSP4-tri-intro)
    apply (simp-all add: rdes closure assms unrest)
 apply (metis (no-types, lifting) CRC-implies-RC R1-seqr-closure assms(1) rea-not-R1 rea-not-false
rea-not-not wp-rea-RC-false wp-rea-def)
 done
lemma NCSP-preR-CRC [closure]:
 assumes P is NCSP
 shows pre_R(P) is CRC
 by (rule CRC-intro, simp-all add: closure assms unrest)
lemma CSP3-Sup-closure [closure]:
 apply (auto simp add: CSP3-def Healthy-def seq-Sup-distl)
 apply (rule cong[of Sup])
  apply (simp)
 using image-iff apply force
 done
lemma CSP4-Sup-closure [closure]:
 apply (auto simp add: CSP4-def Healthy-def seq-Sup-distr)
 apply (rule\ cong[of\ Sup])
  apply (simp)
 using image-iff apply force
 done
lemma NCSP-Sup-closure [closure]: A \subseteq NCSP_H; A \neq \{\} \Longrightarrow (\square A) is NCSP
 apply (rule NCSP-intro, simp-all add: closure)
  apply (metis (no-types, lifting) Ball-Collect CSP3-Sup-closure NCSP-implies-CSP3)
 \mathbf{apply}\ (\mathit{metis}\ (\mathit{no-types},\ \mathit{lifting})\ \mathit{Ball-Collect}\ \mathit{CSP4-Sup-closure}\ \mathit{NCSP-implies-CSP4})
 done
lemma NCSP-SUP-closure [closure]: \llbracket \bigwedge i. P(i) \text{ is NCSP}; A \neq \{\} \rrbracket \Longrightarrow (\prod i \in A. P(i)) \text{ is NCSP}
 by (metis (mono-tags, lifting) Ball-Collect NCSP-Sup-closure image-iff image-is-empty)
lemma PCSP-implies-NCSP [closure]:
 assumes P is PCSP
 shows P is NCSP
proof -
 have P = Productive(NCSP(NCSP|P))
   by (metis (no-types, hide-lams) Healthy-def' Idempotent-def NCSP-Idempotent assms comp-apply)
 also have ... = \mathbf{R}_s ((\forall \$ref \cdot (\neg_r pre_R(NCSP P)) wp_r false) \vdash
```

```
(\exists \$ref \cdot \exists \$st' \cdot peri_R(NCSP\ P)) \diamond
                      ((\exists \$ref \cdot \exists \$ref' \cdot post_R (NCSP P)) \land \$tr <_u \$tr'))
   by (simp add: NCSP-form Productive-RHS-design-form unrest closure)
  also have ... is NCSP
   apply (rule NCSP-rdes-intro)
       apply (rule CRC-intro)
        apply (simp-all add: unrest ex-unrest all-unrest closure)
   done
 finally show ?thesis.
qed
lemma PCSP-elim [RD-elim]:
  assumes X is PCSP P (\mathbf{R}_s ((pre_R X) \vdash peri_R X \diamond (R \not \downarrow (post_R X))))
 shows PX
 by (metis R4-def Healthy-if NCSP-implies-CSP PCSP-implies-NCSP Productive-form assms comp-apply)
lemma ICSP-implies-NCSP [closure]:
 assumes P is ICSP
  shows P is NCSP
proof -
  have P = ISRD1(NCSP(NCSP P))
   by (metis (no-types, hide-lams) Healthy-def' Idempotent-def NCSP-Idempotent assms comp-apply)
  also have ... = ISRD1 (\mathbf{R}_s ((\forall $ref \cdot (\neg_r pre_R (NCSP P)) wp_r false) \vdash
                            (\exists \$\mathit{ref} \cdot \exists \$\mathit{st'} \cdot \mathit{peri}_R (\mathit{NCSP}\ P)) \diamond
                            (\exists \$ref \cdot \exists \$ref' \cdot post_R (NCSP P))))
   by (simp add: NCSP-form)
  also have ... = \mathbf{R}_s ((\forall $ref \cdot (\neg_r pre<sub>R</sub>(NCSP P)) wp<sub>r</sub> false) \vdash
                     false \diamond
                      ((\exists \$ref \cdot \exists \$ref' \cdot post_R (NCSP P)) \land \$tr' =_u \$tr))
     by (simp-all add: ISRD1-RHS-design-form closure rdes unrest)
  also have ... is NCSP
   apply (rule NCSP-rdes-intro)
       apply (rule CRC-intro)
        apply (simp-all add: unrest ex-unrest all-unrest closure)
   done
 finally show ?thesis.
lemma ICSP-implies-ISRD [closure]:
 assumes P is ICSP
 shows P is ISRD
 by (metis (no-types, hide-lams) Healthy-def ICSP-implies-NCSP ISRD-def NCSP-implies-NSRD assms
comp-apply)
lemma ICSP-elim [RD-elim]:
  assumes X is ICSP P (\mathbf{R}_s ((pre<sub>R</sub> X) \vdash false \diamond (post<sub>R</sub> X \land $tr' =<sub>u</sub> $tr)))
 shows PX
 \mathbf{by}\ (\mathit{metis}\ \mathit{Healthy-if}\ \mathit{NCSP-implies-CSP}\ \mathit{ICSP-implies-NCSP}\ \mathit{ISRD1-form}\ \mathit{assms}\ \mathit{comp-apply})
lemma ICSP-Stop-right-zero-lemma:
  (P \land (\$tr' =_u \$tr)) ;; true_r = true_r \Longrightarrow (P \land (\$tr' =_u \$tr)) ;; (\$tr' =_u \$tr) = (\$tr' =_u \$tr)
 by (rel-blast)
lemma ICSP-Stop-right-zero:
  assumes P is ICSP pre_R(P) = true_r post_R(P) ;; true_r = true_r
```

```
shows P :: Stop = Stop
proof -
  from assms(3) have 1:(post_R P \land \$tr' =_u \$tr) ;; true_r = true_r
   by (rel-auto, metis (full-types, hide-lams) dual-order.antisym order-refl)
 show ?thesis
   by (rdes-simp cls: assms(1), simp add: csp-enable-nothing assms(2) ICSP-Stop-right-zero-lemma[OF
1])
qed
lemma ICSP-intro: [P \text{ is NCSP}; P \text{ is ISRD1}] \implies P \text{ is ICSP}
 using Healthy-comp by blast
lemma seq-ICSP-closed [closure]:
 assumes P is ICSP Q is ICSP
 shows P ;; Q is ICSP
 \mathbf{by}\ (meson\ ICSP\text{-}implies\text{-}ISRD\ ICSP\text{-}implies\text{-}NCSP\ ICSP\text{-}intro\ ISRD\text{-}implies\text{-}ISRD1\ NCSP\text{-}segr\text{-}closure}
assms seq-ISRD-closed)
lemma Miracle-ICSP [closure]: Miracle is ICSP
 \mathbf{by}\ (\mathit{rule}\ \mathit{ICSP-intro},\ \mathit{simp}\ \mathit{add}\colon \mathit{closure},\ \mathit{simp}\ \mathit{add}\colon \mathit{ISRD1-rdes-intro}\ \mathit{rdes-def}\ \mathit{closure})
5.2
       CSP theories
lemma NCSP-false: NCSP false = Miracle
 by (simp add: NCSP-def srdes-theory.healthy-top[THEN sym], simp add: closure Healthy-if)
\mathbf{lemma}\ \mathit{NCSP-true}\colon \mathit{NCSP}\ \mathit{true} = \mathit{Chaos}
 by (simp add: NCSP-def srdes-theory.healthy-bottom[THEN sym], simp add: closure Healthy-if)
interpretation csp-theory: utp-theory-kleene NCSP Skip
 rewrites P \in carrier\ csp\text{-theory.thy-order} \longleftrightarrow P\ is\ NCSP
 and carrier csp-theory.thy-order \rightarrow carrier csp-theory.thy-order \equiv [NCSP]_H \rightarrow [NCSP]_H
 and le csp-theory.thy-order = (\sqsubseteq)
 and eq csp-theory.thy-order = (=)
 and csp-top: csp-theory.utp-top = Miracle
 and csp-bottom: csp-theory.utp-bottom = Chaos
proof -
 have utp-theory-continuous NCSP
  by (unfold-locales, simp-all add: Healthy-Idempotent Healthy-if NCSP-Idempotent NCSP-Continuous)
  then interpret utp-theory-continuous NCSP
   by simp
 show t: utp-top = Miracle and b:utp-bottom = Chaos
   by (simp-all add: healthy-top healthy-bottom NCSP-false NCSP-true)
 show utp-theory-kleene NCSP Skip
   by (unfold-locales, simp-all add: closure Skip-left-unit Skip-right-unit Miracle-left-zero t)
qed (simp-all)
abbreviation TestC (test_C) where
test_C P \equiv csp\text{-theory.utp-test } P
abbreviation StarC :: ('\sigma, '\varphi) \ action \Rightarrow ('\sigma, '\varphi) \ action (-*C [999] 999) where
StarC P \equiv csp\text{-}theory.utp\text{-}star P
```

5.3 Algebraic laws

lemma Stop-left-zero:

```
assumes P is CSP
   shows Stop ;; P = Stop
   by (simp add: NSRD-seq-post-false assms NCSP-implies-NSRD NCSP-Stop postR-Stop)
end
              Stateful-Failure Reactive Contracts
6
theory utp-sfrd-contracts
   imports utp-sfrd-healths
begin
definition mk-CRD :: 's upred \Rightarrow ('e \ list \Rightarrow 'e \ set \Rightarrow 's \ upred) \Rightarrow ('e \ list \Rightarrow 's \ hrel) \Rightarrow ('s, 'e) action
[rdes-def]: mk-CRD \ P \ Q \ R = \mathbf{R}_s([P]_{S<} \vdash [Q \ x \ r]_{S<}[x \rightarrow \&tt]][r \rightarrow \$ref \ ] \diamond [R(x)]_{S'}[x \rightarrow \&tt]]
syntax
    -ref-var :: logic
    -mk-CRD :: logic \Rightarrow logic \Rightarrow logic \Rightarrow logic ([-/ \vdash -/ \mid -]_C)
parse-translation \langle\!\langle
   fun \ ref-var-tr \ [] = Syntax.free \ refs
        | ref-var-tr - = raise Match;
[(@{syntax-const - ref-var}, K ref-var-tr)]
end
\rangle\!\rangle
translations
   [P \vdash Q \mid R]_C = > CONST \ mk\text{-}CRD \ P \ (\lambda \text{-}trace\text{-}var \text{-}ref\text{-}var. \ Q) \ (\lambda \text{-}trace\text{-}var. \ R)
   [P \vdash Q \mid R]_C <= CONST \ mk\text{-}CRD \ P \ (\lambda \ x \ r. \ Q) \ (\lambda \ y. \ R)
lemma CSP-mk-CRD [closure]: [P \vdash Q \text{ trace refs} \mid R(\text{trace})]_C \text{ is CSP}
    by (simp add: mk-CRD-def closure unrest)
lemma preR-mk-CRD [rdes]: pre_R([P \vdash Q trace refs \mid R(trace)]_C) = [P]_{S < P}
  by (simp add: mk-CRD-def rea-pre-RHS-design usubst unrest R2c-not R2c-lift-state-pre rea-st-cond-def,
rel-auto)
\mathbf{lemma} \ periR\text{-}mk\text{-}CRD \ [rdes]: peri_R([P \vdash Q \ trace \ refs \mid R(trace) \ ]_C) = ([P]_{S<} \Rightarrow_r ([Q \ trace \ refs]_{S<}) \llbracket (trace, refs) \rightarrow (\&tt,\$refs) - (\&tt,\$r
    by (simp add: mk-CRD-def rea-peri-RHS-design usubst unrest R2c-not R2c-lift-state-pre
                                 impl-alt-def R2c-disj R2c-msubst-tt R1-disj, rel-auto)
\mathbf{lemma} \ postR-mk-CRD \ [rdes]: post_R([P \vdash Q \ trace \ refs \mid R(trace)]_C) = ([P]_{S <} \Rightarrow_r ([R(trace)]_S') \llbracket trace \rightarrow \&tt \rrbracket)
    \mathbf{by}\ (simp\ add:\ mk\text{-}CRD\text{-}def\ rea\text{-}post\text{-}RHS\text{-}design\ usubst\ unrest\ R2c\text{-}not\ R2c\text{-}lift\text{-}state\text{-}pre
                                 impl-alt-def R2c-disj R2c-msubst-tt R1-disj, rel-auto)
Refinement introduction law for contracts
lemma CRD-contract-refine:
    assumes
         Q \text{ is } CSP \text{ `} \lceil P_1 \rceil_{S<} \Rightarrow pre_R Q \text{`}
```

 $`\lceil P_1 \rceil_{S<} \land peri_R \ Q \Rightarrow \lceil P_2 \ t \ r \rceil_{S<} \llbracket t \rightarrow \&tt \rrbracket \llbracket r \rightarrow \$ref \, ' \rrbracket \, '$

 $\lceil P_1 \rceil_{S<} \land post_R \ Q \Rightarrow \lceil P_3 \ x \rceil_S \llbracket x \rightarrow \&tt \rrbracket$ shows $\lceil P_1 \vdash P_2 \ trace \ refs \mid P_3(trace) \rceil_C \sqsubseteq Q$

```
proof -
  have [P_1 \vdash P_2 \ trace \ refs \mid P_3(trace)]_C \sqsubseteq \mathbf{R}_s(pre_R(Q) \vdash peri_R(Q) \diamond post_R(Q))
    using assms by (simp add: mk-CRD-def, rule-tac srdes-tri-refine-intro, rel-auto+)
  thus ?thesis
    by (simp\ add:\ SRD\text{-}reactive\text{-}tri\text{-}design\ assms}(1))
qed
lemma CRD-contract-refine':
  assumes
     Q \text{ is } CSP \text{ `} \lceil P_1 \rceil_{S<} \Rightarrow pre_R Q \text{'}
     \lceil P_2 \ t \ r \rceil_{S <} \llbracket t \rightarrow \& tt \rrbracket \llbracket r \rightarrow \$ ref \' \rrbracket \sqsubseteq (\lceil P_1 \rceil_{S <} \land peri_R \ Q)
     [P_3 \ x]_S[x \rightarrow \&tt] \sqsubseteq ([P_1]_{S <} \land post_R \ Q)
  shows [P_1 \vdash P_2 \ trace \ refs \mid P_3(trace)]_C \sqsubseteq Q
  using assms by (rule-tac CRD-contract-refine, simp-all add: refBy-order)
lemma CRD-refine-CRD:
  assumes
     [P_1]_{S<} \Rightarrow ([Q_1]_{S<} :: ('e,'s) \ action)
    (\lceil P_2 \ x \ r \rceil_{S < \llbracket x \to \&tt \rrbracket \rrbracket \llbracket r \to \$ref \' \rrbracket)} \sqsubseteq (\lceil P_1 \rceil_{S < \land} \lceil Q_2 \ x \ r \rceil_{S < \llbracket x \to \&tt \rrbracket \rrbracket \llbracket r \to \$ref \' \rrbracket :: (\'e, \'s) \ action)
    [P_3 \ x]_S[x \rightarrow \&tt] \sqsubseteq ([P_1]_{S <} \land [Q_3 \ x]_S[x \rightarrow \&tt] :: ('e,'s) \ action)
  shows ([P_1 \vdash P_2 \ trace \ refs \mid P_3 \ trace]_C :: ('e,'s) \ action) \sqsubseteq [Q_1 \vdash Q_2 \ trace \ refs \mid Q_3 \ trace]_C
  by (simp add: mk-CRD-def, rule-tac srdes-tri-refine-intro, rel-auto+)
lemma CRD-refine-rdes:
  assumes
     [P_1]_{S<} \Rightarrow Q_1
    ([P_2 \ x \ r]_{S<}[x\rightarrow\&tt][r\rightarrow\$ref']) \sqsubseteq ([P_1]_{S<} \land Q_2)
    [P_3 \ x]_S'[x \rightarrow \&tt] \sqsubseteq ([P_1]_{S<} \land Q_3)
  shows ([P_1 \vdash P_2 \ trace \ refs \mid P_3 \ trace]_C :: ('e,'s) \ action) \sqsubseteq
           \mathbf{R}_s(Q_1 \vdash Q_2 \diamond Q_3)
  using assms
  by (simp add: mk-CRD-def, rule-tac srdes-tri-refine-intro, rel-auto+)
lemma CRD-refine-rdes':
  assumes
     Q_2 is RR
     Q_3 is RR
     [P_1]_{S<} \Rightarrow Q_1
    shows ([P_1 \vdash P_2 \ trace \ refs \mid P_3 \ trace]_C :: ('e,'s) \ action) \sqsubseteq
            \mathbf{R}_s(Q_1 \vdash Q_2 \diamond Q_3)
proof (simp add: mk-CRD-def, rule srdes-tri-refine-intro)
  show '[P_1]_{S<} \Rightarrow Q_1' by (fact \ assms(3))
  have \bigwedge t. ([P_2 \ t \ r]_{S <} \llbracket r \rightarrow \$ref' \rrbracket) \subseteq ([P_1]_{S <} \land (RR \ Q_2) \llbracket \langle \rangle, \ll t \gg / \$tr, \$tr' \rrbracket)
    by (simp add: assms Healthy-if)
  hence [P_1]_{S<} \land RR(Q_2) \Rightarrow [P_2 \ x \ r]_{S<} [x \rightarrow \&tt] [r \rightarrow \$ref']
    by (rel-simp; meson)
  thus [P_1]_{S<} \land Q_2 \Rightarrow [P_2 \ x \ r]_{S<} [x \rightarrow \&tt] [r \rightarrow \$ref']
    by (simp add: Healthy-if assms)
  have \bigwedge t. [P_3 \ t]_S' \subseteq ([P_1]_{S<} \land (RR \ Q_3)[[\langle \rangle, \ll t \gg /\$tr, \$tr']])
    by (simp add: assms Healthy-if)
```

```
hence [P_1]_{S<} \land (RR\ Q_3) \Rightarrow [P_3\ x]_S'[x \rightarrow \&tt]]'
by (rel\text{-}simp;\ meson)
thus [P_1]_{S<} \land Q_3 \Rightarrow [P_3\ x]_S'[x \rightarrow \&tt]]'
by (simp\ add:\ Healthy\text{-}if\ assms)
qed
```

7 External Choice

```
\begin{array}{c} \textbf{theory} \ utp\text{-}sfrd\text{-}extchoice\\ \textbf{imports}\\ utp\text{-}sfrd\text{-}healths\\ utp\text{-}sfrd\text{-}rel\\ \textbf{begin} \end{array}
```

7.1 Definitions and syntax

```
\mathbf{definition} \ \mathit{ExtChoice} ::
  ('\sigma, '\varphi) action set \Rightarrow ('\sigma, '\varphi) action where
[upred-defs]: ExtChoice A = \mathbf{R}_s((\bigsqcup P \in A \cdot pre_R(P)) \vdash ((\bigsqcup P \in A \cdot cmt_R(P)) \triangleleft \$tr' =_u \$tr \land \$wait'
\triangleright ( \bigcap P \in A \cdot cmt_R(P)))
syntax
  -ExtChoice :: pttrn \Rightarrow 'a \ set \Rightarrow 'b \Rightarrow 'b \ ((3\Box - \in - \cdot / -) [0, 0, 10] \ 10)
  -ExtChoice-simp :: pttrn \Rightarrow 'b \Rightarrow 'b ((3\square - \cdot / -) [0, 10] 10)
translations
  \Box P \in A \cdot B \implies CONST \ ExtChoice \ ((\lambda P. B) \ `A)
                  \Rightarrow CONST ExtChoice (CONST range (\lambda P. B))
\mathbf{definition} extChoice ::
  ('\sigma, '\varphi) \ action \Rightarrow ('\sigma, '\varphi) \ action \Rightarrow ('\sigma, '\varphi) \ action \ (infixl \square 59) \ where
[upred-defs]: P \square Q \equiv ExtChoice \{P, Q\}
Small external choice as an indexed big external choice.
\mathbf{lemma}\ \mathit{extChoice-alt-def}\colon
  P \square Q = (\square i :: nat \in \{0,1\} \cdot P \triangleleft \ll i = 0 \gg \triangleright Q)
  by (simp add: extChoice-def ExtChoice-def)
```

7.2 Basic laws

7.3 Algebraic laws

```
lemma ExtChoice-empty: ExtChoice {} = Stop
by (simp add: ExtChoice-def cond-def Stop-def)

lemma ExtChoice-single:
  P is CSP ⇒ ExtChoice {P} = P
by (simp add: ExtChoice-def usup-and uinf-or SRD-reactive-design-alt)
```

7.4 Reactive design calculations

```
lemma ExtChoice-rdes:
assumes \bigwedge i. \$ok' \sharp P(i) A \neq \{\}
```

```
(\prod i \in A \cdot Q(i)))
proof -
  have (\Box i \in A \cdot \mathbf{R}_s(P(i) \vdash Q(i))) =
         \mathbf{R}_s (( \sqsubseteq i \in A \cdot pre_R (\mathbf{R}_s (P i \vdash Q i))) \vdash
              ((\bigsqcup i \in A \cdot cmt_R (\mathbf{R}_s (P i \vdash Q i))))
                \triangleleft \$tr' =_u \$tr \land \$wait' \triangleright
               (\prod i \in A \cdot cmt_R (\mathbf{R}_s (P i \vdash Q i)))))
    by (simp add: ExtChoice-def)
  also have \dots =
         \mathbf{R}_s ((| | i \in A \cdot R1 (R2c (pre_s \dagger P(i))))) \vdash
              \triangleleft \$tr' =_u \$tr \land \$wait' \triangleright
               (\prod i \in A \cdot R1(R2c(cmt_s \dagger (P(i) \Rightarrow Q(i))))))
    by (simp add: rea-pre-RHS-design rea-cmt-RHS-design)
  also have ... =
         \mathbf{R}_s ((| | i \in A \cdot R1 (R2c (pre_s \dagger P(i))))) \vdash
              R1(R2c)
              \triangleleft \$tr' =_u \$tr \land \$wait' \triangleright
               (\prod i \in A \cdot R1(R2c(cmt_s \dagger (P(i) \Rightarrow Q(i)))))))
    by (metis (no-types, lifting) RHS-design-export-R1 RHS-design-export-R2c)
  also have \dots =
         \mathbf{R}_s \ (( \bigsqcup i \in A \cdot R1 \ (R2c \ (pre_s \dagger P(i)))) \vdash
              R1(R2c)
              (( \sqsubseteq i \in A \cdot (cmt_s \dagger (P(i) \Rightarrow Q(i))))
                \triangleleft \$tr' =_u \$tr \land \$wait' \triangleright
               (\prod i \in A \cdot (cmt_s \dagger (P(i) \Rightarrow Q(i))))))
    by (simp add: R2c-UINF R2c-condr R1-cond R1-idem R1-R2c-commute R2c-idem R1-UINF assms
R1-USUP R2c-USUP)
  also have ... =
         \mathbf{R}_s (( \bigsqcup i \in A \cdot R1 \ (R2c \ (pre_s \dagger P(i))))) \vdash
              (( \bigsqcup i \in A \cdot (cmt_s \dagger (P(i) \Rightarrow Q(i))))
                \triangleleft \ \$tr' =_u \ \$tr \land \$wait' \rhd
               (\prod i \in A \cdot (cmt_s \dagger (P(i) \Rightarrow Q(i)))))
    by (metis (no-types, lifting) RHS-design-export-R1 RHS-design-export-R2c rdes-export-cmt)
  also have \dots =
         \mathbf{R}_s (( \sqsubseteq i \in A \cdot R1 \ (R2c \ (pre_s \dagger P(i)))) \vdash
              cmt_s †
              ((\bigsqcup i \in A \cdot (P(i) \Rightarrow Q(i))))
                \triangleleft \$tr' =_u \$tr \land \$wait' \triangleright
               (\prod i \in A \cdot (P(i) \Rightarrow Q(i))))
    by (simp add: usubst)
  also have ... =
         \mathbf{R}_s (( \sqsubseteq i \in A \cdot R1 \ (R2c \ (pre_s \dagger P(i))))) \vdash
              ((||i \in A \cdot (P(i) \Rightarrow Q(i)))) \triangleleft \$tr' =_u \$tr \land \$wait' \triangleright (||i \in A \cdot (P(i) \Rightarrow Q(i)))))
    by (simp add: rdes-export-cmt)
  also have ... =
         \mathbf{R}_s ((R1(R2c(\bigsqcup i \in A \cdot (pre_s \dagger P(i)))))) \vdash
              ((\bigsqcup i \in A \, \cdot \, (P(i) \, \Rightarrow \, Q(i))) \, \lhd \, \$tr \, ' \, =_u \, \$tr \, \wedge \, \$wait \, ' \, \rhd \, (\bigcap i \in A \, \cdot \, (P(i) \, \Rightarrow \, Q(i)))))
    by (simp add: not-UINF R1-UINF R2c-UINF assms)
  also have ... =
         \mathbf{R}_s ((R2c(\bigsqcup i \in A \cdot (pre_s \dagger P(i)))) \vdash
              ((\bigsqcup i \in A \cdot (P(i) \Rightarrow Q(i))) \triangleleft \$tr' =_u \$tr \land \$wait' \triangleright (\prod i \in A \cdot (P(i) \Rightarrow Q(i)))))
```

```
by (simp \ add: R1-design-R1-pre)
                also have \dots =
                                                       \mathbf{R}_s ((( \sqsubseteq i \in A \cdot (pre_s \dagger P(i)))) \vdash
                                                                                     ((\bigsqcup i \in A \cdot (P(i) \Rightarrow Q(i))) \triangleleft \$tr' =_u \$tr \land \$wait' \triangleright (\bigcap i \in A \cdot (P(i) \Rightarrow Q(i)))))
                           by (metis (no-types, lifting) RHS-design-R2c-pre)
              also have \dots =
                                                       \mathbf{R}_s (([\$ok \mapsto_s true, \$wait \mapsto_s false] \dagger (\bigsqcup i \in A \cdot P(i))) \vdash
                                                                                     ((\bigsqcup i \in A \cdot (P(i) \Rightarrow Q(i))) \triangleleft \$tr' =_u \$tr \land \$wait' \triangleright (\prod i \in A \cdot (P(i) \Rightarrow Q(i)))))
                           from assms have \bigwedge i. pre_s \dagger P(i) = [\$ok \mapsto_s true, \$wait \mapsto_s false] \dagger P(i)
                                         by (rel-auto)
                           \mathbf{thus}~? the sis
                                          by (simp add: usubst)
              qed
              also have ... =
                                                             \mathbf{R}_s \; ((\mid \mid i \in A \cdot P(i)) \vdash ((\mid \mid i \in A \cdot (P(i) \Rightarrow Q(i)))) \triangleleft \$tr' =_u \$tr \land \$wait' \rhd (\mid \mid i \in A \cdot (P(i) \Rightarrow Q(i))) \triangleleft \$tr' =_u \$tr \land \$wait' \rhd (\mid \mid i \in A \cdot (P(i) \Rightarrow Q(i))) \triangleleft \$tr' =_u \$tr \land \$wait' \rhd (\mid \mid i \in A \cdot (P(i) \Rightarrow Q(i))) \triangleleft \$tr' =_u \$tr \land \$wait' \rhd (\mid \mid i \in A \cdot (P(i) \Rightarrow Q(i))) \triangleleft \$tr' =_u \$tr \land \$wait' \rhd (\mid \mid i \in A \cdot (P(i) \Rightarrow Q(i))) \triangleleft \$tr' =_u \$tr \land \$wait' \rhd (\mid \mid i \in A \cdot (P(i) \Rightarrow Q(i))) \triangleleft \$tr' =_u \$tr \land \$wait' \rhd (\mid \mid i \in A \cdot (P(i) \Rightarrow Q(i))) \triangleleft \$tr' =_u \$tr \land \$wait' \rhd (\mid \mid i \in A \cdot (P(i) \Rightarrow Q(i))) \triangleleft \$tr' =_u \$tr \land \$wait' \rhd (\mid \mid i \in A \cdot (P(i) \Rightarrow Q(i))) \triangleleft \$tr' =_u \$tr \land \$wait' \rhd (\mid \mid i \in A \cdot (P(i) \Rightarrow Q(i))) \triangleleft \$tr' =_u \$tr \land \$wait' \rhd (\mid \mid i \in A \cdot (P(i) \Rightarrow Q(i))) \triangleleft \$tr' =_u \$tr \land \$wait' \rhd (\mid \mid i \in A \cdot (P(i) \Rightarrow Q(i))) \triangleleft \$tr' =_u \$tr \land \$wait' \rhd (\mid \mid i \in A \cdot (P(i) \Rightarrow Q(i))) \triangleleft \$tr' =_u \$tr \land \$wait' \rhd (\mid \mid i \in A \cdot (P(i) \Rightarrow Q(i))) \triangleleft \$tr' =_u \$tr \land (P(i) \Rightarrow Q(i)) \land (P(i) \Rightarrow Q(
    Q(i)))))
                           by (simp add: rdes-export-pre not-UINF)
             also have ... = \mathbf{R}_s ((\bigcup i \in A \cdot P(i)) \vdash ((\bigcup i \in A \cdot Q(i)) \triangleleft \$tr' =_u \$tr \land \$wait' \rhd (\bigcap i \in A \cdot Q(i))))
                           by (rule cong[of \mathbf{R}_s \mathbf{R}_s], simp, rel-auto, blast+)
              finally show ?thesis.
qed
{f lemma} {\it ExtChoice-tri-rdes}:
             assumes \bigwedge i . \$ok' \sharp P_1(i) A \neq \{\}
             shows (\Box i \in A \cdot \mathbf{R}_s(P_1(i) \vdash P_2(i) \diamond P_3(i))) =
                                                                         \mathbf{R}_s\ ((\bigsqcup\ i\in A\ \cdot\ P_1(i))\ \vdash\ (((\bigsqcup\ i\in A\ \cdot\ P_2(i)))\ \triangleleft\ \$tr\ '\ =_u\ \$tr\ \rhd\ (\bigcap\ i\in A\ \cdot\ P_2(i)))\ \diamond\ (\bigcap\ i\in A\ \cdot\ P_2(i)))
P_3(i))))
proof -
             have (\Box i \in A \cdot \mathbf{R}_s(P_1(i) \vdash P_2(i) \diamond P_3(i))) =
                                                             \mathbf{R}_s \; (( \bigsqcup \; i \in A \; \cdot \; P_1(i)) \; \vdash \; (( \bigsqcup \; i \in A \; \cdot \; P_2(i) \; \diamond \; P_3(i)) \; \lhd \; \$tr' \; =_u \; \$tr \; \land \; \$wait' \; \rhd \; ( \bigcap \; i \in A \; \cdot \; P_2(i) \; \diamond \; P_3(i)) \; \lhd \; \$tr' \; =_u \; \$tr \; \land \; \$wait' \; \rhd \; ( \bigcap \; i \in A \; \cdot \; P_2(i) \; \diamond \; P_3(i)) \; \lhd \; \$tr' \; =_u \; \$tr \; \land \; \$wait' \; \rhd \; ( \bigcap \; i \in A \; \cdot \; P_2(i) \; \diamond \; P_3(i)) \; \lhd \; \$tr' \; =_u \; \$tr \; \land \; \$wait' \; \rhd \; ( \bigcap \; i \in A \; \cdot \; P_2(i) \; \diamond \; P_3(i)) \; \lhd \; \$tr' \; =_u \; \$tr \; \land \; \$wait' \; \rhd \; ( \bigcap \; i \in A \; \cdot \; P_2(i) \; \diamond \; P_3(i)) \; \lhd \; \$tr' \; =_u \; \$tr' \; \Rightarrow_u \; \$tr' \; \Rightarrow_u \; \P_1(i) \; \Leftrightarrow_u \; \P_2(i) \; \Leftrightarrow_u \; \P_1(i) \; \Rightarrow_u \; \P_1(i) \; \Rightarrow_u
                           by (simp add: ExtChoice-rdes assms)
              also
             have \dots =
                                                             \mathbf{R}_s \ (( \bigsqcup \ i \in A \cdot P_1(i)) \vdash (( \bigsqcup \ i \in A \cdot P_2(i) \diamond P_3(i)) \mathrel{\triangleleft} \$wait' \land \$tr' =_u \$tr \mathrel{\triangleright} ( \bigcap \ i \in A \cdot P_2(i) \diamond P_3(i)) \mathrel{\triangleleft} \$wait' \land \$tr' =_u \$tr \mathrel{\triangleright} ( \bigcap \ i \in A \cdot P_2(i) \diamond P_3(i)) \mathrel{\triangleleft} \$wait' \land \$tr' =_u \$tr \mathrel{\triangleright} ( \bigcap \ i \in A \cdot P_2(i) \diamond P_3(i)) \mathrel{\triangleleft} \$wait' \land \$tr' =_u \$tr \mathrel{\triangleright} ( \bigcap \ i \in A \cdot P_2(i) \diamond P_3(i)) \mathrel{\triangleleft} \$wait' \land \$tr' =_u \$tr \mathrel{\triangleright} ( \bigcap \ i \in A \cdot P_2(i) \diamond P_3(i)) \mathrel{\triangleleft} \$wait' \land \$tr' =_u \$tr \mathrel{\triangleright} ( \bigcap \ i \in A \cdot P_2(i) \diamond P_3(i)) \mathrel{\triangleleft} \$wait' \land \$tr' =_u \$tr \mathrel{\triangleright} ( \bigcap \ i \in A \cdot P_2(i) \diamond P_3(i)) \mathrel{\triangleleft} \$wait' \land \$tr' =_u \$tr \mathrel{\triangleright} ( \bigcap \ i \in A \cdot P_2(i) \diamond P_3(i)) \mathrel{\triangleleft} \$wait' \land \$tr' =_u \$tr \mathrel{\triangleright} ( \bigcap \ i \in A \cdot P_2(i) \diamond P_3(i)) \mathrel{\triangleleft} \$wait' \land \$tr' =_u \$tr \mathrel{\triangleright} ( \bigcap \ i \in A \cdot P_2(i) \diamond P_3(i)) \mathrel{\triangleleft} \$wait' \land \$tr' =_u \$tr \mathrel{\triangleright} ( \bigcap \ i \in A \cdot P_2(i) \diamond P_3(i)) \mathrel{\triangleleft} \$wait' \land \$tr' =_u \$tr \mathrel{\triangleright} ( \bigcap \ i \in A \cdot P_2(i) \diamond P_3(i)) \mathrel{\triangleleft} \$wait' \land \$tr' =_u \$tr \mathrel{\triangleright} ( \bigcap \ i \in A \cdot P_2(i) \diamond P_3(i)) \mathrel{\triangleleft} \$wait' \land \$tr' =_u \$tr \mathrel{\triangleright} ( \bigcap \ i \in A \cdot P_2(i) \diamond P_3(i)) \mathrel{\triangleleft} \$wait' \land \$tr' =_u \$tr \mathrel{\triangleright} ( \bigcap \ i \in A \cdot P_2(i) \diamond P_3(i)) \mathrel{\triangleleft} \$wait' \land \$tr' =_u \$tr \mathrel{\triangleright} ( \bigcap \ i \in A \cdot P_2(i) \diamond P_3(i)) \mathrel{\triangleleft} \$wait' \land \$tr' =_u \$tr \mathrel{\triangleright} ( \bigcap \ i \in A \cdot P_2(i) \diamond P_3(i)) \mathrel{\triangleleft} \$wait' \land \$tr' =_u \$tr' \mathrel{\triangleright} ( \bigcap \ i \in A \cdot P_2(i) \diamond P_3(i)) \mathrel{\triangleleft} \$wait' \land \$tr' =_u \$tr' \mathrel{\triangleright} ( \bigcap \ i \in A \cdot P_2(i) \diamond P_3(i)) \mathrel{\triangleleft} \$wait' \land \$tr' =_u \$tr' \mathrel{\triangleright} ( \bigcap \ i \in A \cdot P_2(i) \diamond P_3(i)) \mathrel{\triangleleft} ( \bigcap \ i \in A \cdot P_2(i) \diamond P_3(i)) \mathrel{\triangleleft} ( \bigcap \ i \in A \cdot P_2(i) \diamond P_3(i) \mathrel{\triangleleft} ( \bigcap \ i \in A \cdot P_2(i) \diamond P_3(i)) \mathrel{\triangleleft} ( \bigcap \ i \in A \cdot P_2(i) \mathrel{\triangleleft} ( \bigcap \ i \in A \cdot P_2(i) ) \mathrel{\triangleleft} ( \bigcap \ i \in A \cdot P_2(i) ) \mathrel{\triangleleft} ( \bigcap \ i \in A \cdot P_2(i) ) \mathrel{\triangleleft} ( \bigcap \ i \in A \cdot P_2(i) ) \mathrel{\triangleleft} ( \bigcap \ i \in A \cdot P_2(i) ) \mathrel{\triangleleft} ( \bigcap \ i \in A \cdot P_2(i) ) \mathrel{\triangleleft} ( \bigcap \ i \in A \cdot P_2(i) ) \mathrel{\triangleleft} ( \bigcap \ i \in A \cdot P_2(i) ) \mathrel{\triangleleft} ( \bigcap \ i \in A \cdot P_2(i) ) \mathrel{\triangleleft} ( \bigcap \ i \in A \cdot P_2(i) ) \mathrel{\triangleleft} ( \bigcap \ i \in A \cdot P_2(i) ) \mathrel{\triangleleft} ( \bigcap \ i \in A \cdot P_2(i) ) \mathrel{\triangleleft} ( \bigcap \ i \in A \cdot P_2(i) ) \mathrel{\triangleleft} ( \bigcap \ i \in A \cdot P_2(i) ) \mathrel{\triangleleft} ( \bigcap \ i \in A \cdot P_2(i) ) \mathrel{\triangleleft} ( \bigcap \ i \in A \cdot P_2(i) ) \mathrel{\triangleleft} ( \bigcap \ i \in A \cdot P_2(i) ) \mathrel{\triangleleft} ( \bigcap \ i \in A \cdot P_2(i) ) \mathrel{\triangleleft} ( \bigcap \ i \in A \cdot P_2(i) ) {\mathbin{\triangleleft} ( \bigcap \ i \in A \cdot P_2(i) ) \mathrel{\triangleleft} ( \bigcap \ i \in A \cdot P
 P_3(i))))
                           by (simp add: conj-comm)
             also
             \mathbf{have}\ ...\ =
                                                            \mathbf{R}_s\ ((\bigsqcup\ i\in A\ \cdot\ P_1(i))\ \vdash\ (((\bigsqcup\ i\in A\ \cdot\ P_2(i)\ \diamond\ P_3(i)))\ \lhd\ \$tr\ '=_u\ \$tr\ \rhd\ (\bigcap\ i\in A\ \cdot\ P_2(i)\ \diamond\ P_3(i)))\ \diamond\ \mathsf{R}_s\ ((\bigcup\ i\in A\ \cdot\ P_2(i)\ \diamond\ P_3(i)))\ \diamond\ \mathsf{R}_s\ ((\bigcup\ i\in A\ \cdot\ P_2(i)\ \diamond\ P_3(i)))\ \diamond\ \mathsf{R}_s\ ((\bigcup\ i\in A\ \cdot\ P_2(i)\ \diamond\ P_3(i)))\ \diamond\ \mathsf{R}_s\ ((\bigcup\ i\in A\ \cdot\ P_2(i)\ \diamond\ P_3(i)))\ \diamond\ \mathsf{R}_s\ ((\bigcup\ i\in A\ \cdot\ P_2(i)\ \diamond\ P_3(i)))\ \diamond\ \mathsf{R}_s\ ((\bigcup\ i\in A\ \cdot\ P_2(i)\ \diamond\ P_3(i)))\ \diamond\ \mathsf{R}_s\ ((\bigcup\ i\in A\ \cdot\ P_2(i)\ \diamond\ P_3(i)))\ \diamond\ \mathsf{R}_s\ ((\bigcup\ i\in A\ \cdot\ P_2(i)\ \diamond\ P_3(i)))\ \diamond\ \mathsf{R}_s\ ((\bigcup\ i\in A\ \cdot\ P_2(i)\ \diamond\ P_3(i)))\ \diamond\ \mathsf{R}_s\ ((\bigcup\ i\in A\ \cdot\ P_2(i)\ \diamond\ P_3(i)))\ \diamond\ \mathsf{R}_s\ ((\bigcup\ i\in A\ \cdot\ P_2(i)\ \diamond\ P_3(i)))\ \diamond\ \mathsf{R}_s\ ((\bigcup\ i\in A\ \cdot\ P_2(i)\ \diamond\ P_3(i)))\ \diamond\ \mathsf{R}_s\ ((\bigcup\ i\in A\ \cdot\ P_2(i)\ \diamond\ P_3(i)))\ \diamond\ \mathsf{R}_s\ ((\bigcup\ i\in A\ \cdot\ P_2(i)\ \diamond\ P_3(i)))\ \diamond\ \mathsf{R}_s\ ((\bigcup\ i\in A\ \cdot\ P_2(i)\ \diamond\ P_3(i))))\ \diamond\ \mathsf{R}_s\ ((\bigcup\ i\in A\ \cdot\ P_2(i)\ \diamond\ P_3(i)))\ \diamond\ \mathsf{R}_s\ ((\bigcup\ i\in A\ \cdot\ P_2(i)\ \diamond\ P_3(i))))\ \diamond\ \mathsf{R}_s\ ((\bigcup\ i\in A\ \cdot\ P_2(i)\ \diamond\ P_3(i)))\ \diamond\ \mathsf{R}_s\ ((\bigcup\ i\in A\ \cdot\ P_2(i)\ \diamond\ P_3(i))))\ \diamond\ \mathsf{R}_s\ ((\bigcup\ i\in A\ \cdot\ P_2(i)\ \diamond\ P_3(i))))\ \diamond\ \mathsf{R}_s\ ((\bigcup\ i\in A\ \cdot\ P_2(i)\ \diamond\ P_3(i))))\ \diamond\ \mathsf{R}_s\ ((\bigcup\ i\in A\ \cdot\ P_2(i)\ \diamond\ P_3(i))))\ \diamond\ \mathsf{R}_s\ ((\bigcup\ i\in A\ \cdot\ P_2(i)\ \diamond\ P_3(i))))\ \diamond\ \mathsf{R}_s\ ((\bigcup\ i\in A\ \cdot\ P_2(i)\ \diamond\ P_3(i))))\ \diamond\ \mathsf{R}_s\ ((\bigcup\ i\in A\ \cdot\ P_2(i)\ \diamond\ P_3(i))))\ \diamond\ \mathsf{R}_s\ ((\bigcup\ i\in A\ \cdot\ P_2(i)\ \diamond\ P_3(i))))\ \diamond\ \mathsf{R}_s\ ((\bigcup\ i\in A\ \cdot\ P_2(i)\ \diamond\ P_3(i))))\ \diamond\ \mathsf{R}_s\ ((\bigcup\ i\in A\ \cdot\ P_2(i)\ \diamond\ P_3(i))))\ \diamond\ \mathsf{R}_s\ ((\bigcup\ i\in A\ \cdot\ P_2(i)\ \diamond\ P_3(i)))) \equathar_s\ ((\bigcup\ i\in A\ \cdot\ P_2(i)\ \diamond\ P_3(i)))\ \diamond\ \mathsf{R}_s\ ((\bigcup\ i\in A\ \cdot\ P_2(i)\ \diamond\ P_3(i)))) \equathar_s\ ((\bigcup\ i\in A\ \cdot\ P_3(i)\ \bullet\ P_3(i)))\ \diamond\ \mathsf{R}_s\ ((\bigcup\ i\in A\ \cdot\ P_3(i)\ \bullet\ P_3(i)))
 by (simp add: cond-conj wait'-cond-def)
           have ... = \mathbf{R}_s (([ ] i \in A \cdot P_1(i) ) \vdash ((([ ] i \in A \cdot P_2(i) )) \triangleleft \$tr' =_u \$tr \triangleright ([ ] i \in A \cdot P_2(i) )) \diamond ([ ] i \in A \cdot P_2(i) )
 P_3(i))))
                          by (rule cong [of \mathbf{R}_s \mathbf{R}_s], simp, rel-auto)
             finally show ?thesis.
qed
lemma ExtChoice-tri-rdes' [rdes-def]:
              assumes \bigwedge i . \$ok' \sharp P_1(i) A \neq \{\}
             shows (\Box i \in A \cdot \mathbf{R}_s(P_1(i) \vdash P_2(i) \diamond P_3(i))) =
                                                             \mathbf{R}_s \; (( \bigsqcup \; i \in A \; \cdot \; P_1(i)) \; \vdash \; ((( \bigsqcup \; i \in A \; \cdot \; R5(P_2(i))) \; \lor \; (\bigcap \; i \in A \; \cdot \; R4(P_2(i)))) \; \diamond \; (\bigcap \; i \in A \; \cdot \; P_3(i))))
```

```
by (simp add: ExtChoice-tri-rdes assms, rel-auto, simp-all add: less-le assms)
```

```
lemma ExtChoice-tri-rdes-def [rdes-def]:
       assumes A \subseteq [\![CSP]\!]_H
       shows ExtChoice\ A = \mathbf{R}_s\ ((\bigsqcup\ P \in A \cdot pre_R\ P) \vdash (((\bigcup\ P \in A \cdot peri_R\ P) \triangleleft \$tr' =_u \$tr \triangleright (\bigcap\ P \in A \cdot peri_R\ P))
proof -
      (((\bigsqcup P \in A \cdot cmt_R P) \triangleleft \$tr' =_u \$tr \triangleright (\bigcap P \in A \cdot cmt_R P)) \diamond (\bigcap P \in A \cdot cmt_R P))
             by (rel-auto)
      also have ... = (((| P \in A \cdot peri_R P) \land \$tr' =_u \$tr \triangleright (| P \in A \cdot peri_R P)) \diamond (| P \in A \cdot post_R P))
            by (rel-auto)
      finally show ?thesis
             by (simp add: ExtChoice-def)
qed
lemma extChoice-rdes:
      assumes \$ok' \sharp P_1 \$ok' \sharp Q_1
      shows \mathbf{R}_s(P_1 \vdash P_2) \square \mathbf{R}_s(Q_1 \vdash Q_2) = \mathbf{R}_s ((P_1 \land Q_1) \vdash ((P_2 \land Q_2) \triangleleft \$tr' =_u \$tr \land \$wait' \triangleright (P_2 \land Q_2) \triangleleft \$tr' =_u \$tr \land \$wait' \models (P_2 \land Q_2) \triangleleft \$tr' =_u \$tr \land \$wait' \models (P_2 \land Q_2) \triangleleft \$tr' =_u \$tr \land \$wait' \models (P_2 \land Q_2) \triangleleft \$tr' =_u \$tr \land \$wait' \models (P_2 \land Q_2) \triangleleft \$tr' =_u \$tr \land \$wait' \models (P_2 \land Q_2) \triangleleft \$tr' =_u \$tr \land \$wait' \models (P_2 \land Q_2) \triangleleft \$tr' =_u \$tr \land \$wait' \models (P_2 \land Q_2) \triangleleft \$tr' =_u \$tr \land \$wait' \models (P_2 \land Q_2) \triangleleft \$tr' =_u \$tr \land \$wait' \models (P_2 \land Q_2) \triangleleft \$tr' =_u \$tr \land \$wait' \models (P_2 \land Q_2) \triangleleft \$tr' =_u \$tr \land \$wait' \models (P_2 \land Q_2) \triangleleft \$tr' =_u \$tr \land \$wait' \models (P_2 \land Q_2) \triangleleft \$tr' =_u \$tr \land \$wait' \models (P_2 \land Q_2) \triangleleft \$tr' =_u \$tr \land \$wait' \models (P_2 \land Q_2) \triangleleft \$tr' =_u \$tr \land \$wait' \models (P_2 \land Q_2) \triangleleft \$tr' =_u \$tr \land \$wait' \models (P_2 \land Q_2) \triangleleft \$tr' =_u \$tr \land \$wait' \models (P_2 \land Q_2) \triangleleft \$tr' =_u \$tr \land \$wait' \models (P_2 \land Q_2) \triangleleft \$tr' =_u \$tr \land \$wait' \models (P_2 \land Q_2) \triangleleft \$tr' =_u \$tr \land \$wait' \models (P_2 \land Q_2) \triangleleft \$tr' =_u \$tr \land \$wait' \models (P_2 \land Q_2) \triangleleft \$tr' =_u \$tr \land \$wait' \models (P_2 \land Q_2) \triangleleft \$tr' =_u \$tr \land \$wait' \models (P_2 \land Q_2) \triangleleft \$tr' =_u \$tr \land \$wait' \models (P_2 \land Q_2) \triangleleft \$tr' =_u \$tr \land \$wait' \models (P_2 \land Q_2) \triangleleft \$tr' =_u \$tr \land \$wait' \models (P_2 \land Q_2) \triangleleft \$tr' =_u \$tr' =_u
\vee Q_2)))
proof -
      \mathbf{have} \ (\Box i :: nat \in \{\theta, 1\} \cdot \mathbf{R}_s \ (P_1 \vdash P_2) \triangleleft \ll i = \theta \gg \mathsf{R}_s \ (Q_1 \vdash Q_2)) = (\Box i :: nat \in \{\theta, 1\} \cdot \mathbf{R}_s \ ((P_1 \vdash P_2) \vdash P_3)) = (\Box i :: nat \in \{\theta, 1\} \cdot \mathbf{R}_s ) = (\Box i :: nat \in \{\theta, 1\} \cdot \mathbf{R}_s ) = (\Box i :: nat \in \{\theta, 1\} \cdot \mathbf{R}_s ) = (\Box i :: nat \in \{\theta, 1\} \cdot \mathbf{R}_s ) = (\Box i :: nat \in \{\theta, 1\} \cdot \mathbf{R}_s ) = (\Box i :: nat \in \{\theta, 1\} \cdot \mathbf{R}_s ) = (\Box i :: nat \in \{\theta, 1\} \cdot \mathbf{R}_s ) = (\Box i :: nat \in \{\theta, 1\} \cdot \mathbf{R}_s ) = (\Box i :: nat \in \{\theta, 1\} \cdot \mathbf{R}_s ) = (\Box i :: nat \in \{\theta, 1\} \cdot \mathbf{R}_s ) = (\Box i :: nat \in \{\theta, 1\} \cdot \mathbf{R}_s ) = (\Box i :: nat \in \{\theta, 1\} \cdot \mathbf{R}_s ) = (\Box i :: nat \in \{\theta, 1\} \cdot \mathbf{R}_s ) = (\Box i :: nat \in \{\theta, 1\} \cdot \mathbf{R}_s ) = (\Box i :: nat \in \{\theta, 1\} \cdot \mathbf{R}_s ) = (\Box i :: nat \in \{\theta, 1\} \cdot \mathbf{R}_s ) = (\Box i :: nat \in \{\theta, 1\} \cdot \mathbf{R}_s ) = (\Box i :: nat \in \{\theta, 1\} \cdot \mathbf{R}_s ) = (\Box i :: nat \in \{\theta, 1\} \cdot \mathbf{R}_s ) = (\Box i :: nat \in \{\theta, 1\} \cdot \mathbf{R}_s ) = (\Box i :: nat \in \{\theta, 1\} \cdot \mathbf{R}_s ) = (\Box i :: nat \in \{\theta, 1\} \cdot \mathbf{R}_s ) = (\Box i :: nat \in \{\theta, 1\} \cdot \mathbf{R}_s ) = (\Box i :: nat \in \{\theta, 1\} \cdot \mathbf{R}_s ) = (\Box i :: nat \in \{\theta, 1\} \cdot \mathbf{R}_s ) = (\Box i :: nat \in \{\theta, 1\} \cdot \mathbf{R}_s ) = (\Box i :: nat \in \{\theta, 1\} \cdot \mathbf{R}_s ) = (\Box i :: nat \in \{\theta, 1\} \cdot \mathbf{R}_s ) = (\Box i :: nat \in \{\theta, 1\} \cdot \mathbf{R}_s ) = (\Box i :: nat \in \{\theta, 1\} \cdot \mathbf{R}_s ) = (\Box i :: nat \in \{\theta, 1\} \cdot \mathbf{R}_s ) = (\Box i :: nat \in \{\theta, 1\} \cdot \mathbf{R}_s ) = (\Box i :: nat \in \{\theta, 1\} \cdot \mathbf{R}_s ) = (\Box i :: nat \in \{\theta, 1\} \cdot \mathbf{R}_s ) = (\Box i :: nat \in \{\theta, 1\} \cdot \mathbf{R}_s ) = (\Box i :: nat \in \{\theta, 1\} \cdot \mathbf{R}_s ) = (\Box i :: nat \in \{\theta, 1\} \cdot \mathbf{R}_s ) = (\Box i :: nat \in \{\theta, 1\} \cdot \mathbf{R}_s ) = (\Box i :: nat \in \{\theta, 1\} \cdot \mathbf{R}_s ) = (\Box i :: nat \in \{\theta, 1\} \cdot \mathbf{R}_s ) = (\Box i :: nat \in \{\theta, 1\} \cdot \mathbf{R}_s ) = (\Box i :: nat \in \{\theta, 1\} \cdot \mathbf{R}_s ) = (\Box i :: nat \in \{\theta, 1\} \cdot \mathbf{R}_s ) = (\Box i :: nat \in \{\theta, 1\} \cdot \mathbf{R}_s ) = (\Box i :: nat \in \{\theta, 1\} \cdot \mathbf{R}_s ) = (\Box i :: nat \in \{\theta, 1\} \cdot \mathbf{R}_s ) = (\Box i :: nat \in \{\theta, 1\} \cdot \mathbf{R}_s ) = (\Box i :: nat \in \{\theta, 1\} \cdot \mathbf{R}_s ) = (\Box i :: nat \in \{\theta, 1\} \cdot \mathbf{R}_s ) = (\Box i :: nat \in \{\theta, 1\} \cdot \mathbf{R}_s ) = (\Box i :: nat \in \{\theta, 1\} \cdot \mathbf{R}_s ) = (\Box i :: nat \in \{\theta, 1\} \cdot \mathbf{R}_s ) = (\Box i :: nat \in \{\theta, 1\} \cdot \mathbf{R}_s ) = (\Box i :: nat \in \{\theta, 1\} \cdot \mathbf{R}_s ) = (\Box i :: nat \in \{\theta, 1\} ) = (\Box i :: nat \in \{\theta, 1\} ) = (\Box i :: nat \in
P_2) \triangleleft \ll i = \theta \gg (Q_1 \vdash Q_2))
             by (simp only: RHS-cond R2c-lit)
       also have ... = (\Box i :: nat \in \{0, 1\} \cdot \mathbf{R}_s \ ((P_1 \triangleleft \ll i = \theta \gg \rhd Q_1) \vdash (P_2 \triangleleft \ll i = \theta \gg \rhd Q_2)))
            by (simp add: design-condr)
       also have ... = \mathbf{R}_s ((P_1 \land Q_1) \vdash ((P_2 \land Q_2) \triangleleft \$tr' =_u \$tr \land \$wait' \triangleright (P_2 \lor Q_2)))
             by (subst ExtChoice-rdes, simp-all add: assms unrest uinf-or usup-and)
       finally show ?thesis by (simp add: extChoice-alt-def)
qed
{f lemma} extChoice-tri-rdes:
      assumes \$ok' \sharp P_1 \$ok' \sharp Q_1
      shows \mathbf{R}_s(P_1 \vdash P_2 \diamond P_3) \square \mathbf{R}_s(Q_1 \vdash Q_2 \diamond Q_3) =
                               \mathbf{R}_s \ ((P_1 \land Q_1) \vdash (((P_2 \land Q_2) \triangleleft \$tr' =_u \$tr \triangleright (P_2 \lor Q_2)) \diamond (P_3 \lor Q_3)))
proof -
       have \mathbf{R}_s(P_1 \vdash P_2 \diamond P_3) \square \mathbf{R}_s(Q_1 \vdash Q_2 \diamond Q_3) =
                           \mathbf{R}_s ((P_1 \wedge Q_1) \vdash ((P_2 \diamond P_3 \wedge Q_2 \diamond Q_3)) \triangleleft \$tr' =_u \$tr \wedge \$wait' \triangleright (P_2 \diamond P_3 \vee Q_2 \diamond Q_3)))
             by (simp add: extChoice-rdes assms)
       also
      \mathbf{have} \dots = \mathbf{R}_s \ ((P_1 \land Q_1) \vdash ((P_2 \diamond P_3 \land Q_2 \diamond Q_3) \triangleleft \$wait' \land \$tr' =_u \$tr \triangleright (P_2 \diamond P_3 \lor Q_2 \diamond Q_3)))
            by (simp add: conj-comm)
       also
      have ... = \mathbf{R}_s ((P_1 \wedge Q_1) \vdash
                                                   (((P_2 \diamond P_3 \land Q_2 \diamond Q_3) \diamond \$tr' =_u \$tr \triangleright (P_2 \diamond P_3 \lor Q_2 \diamond Q_3)) \diamond (P_2 \diamond P_3 \lor Q_2 \diamond Q_3)))
            by (simp add: cond-conj wait'-cond-def)
       also
       have ... = \mathbf{R}_s ((P_1 \land Q_1) \vdash (((P_2 \land Q_2) \triangleleft \$tr' =_u \$tr \triangleright (P_2 \lor Q_2)) \diamond (P_3 \lor Q_3)))
             by (rule cong[of \mathbf{R}_s \mathbf{R}_s], simp, rel-auto)
      finally show ?thesis.
qed
lemma extChoice-rdes-def:
       assumes P_1 is RR Q_1 is RR
       shows \mathbf{R}_s(P_1 \vdash P_2 \diamond P_3) \square \mathbf{R}_s(Q_1 \vdash Q_2 \diamond Q_3) =
```

```
\mathbf{R}_s ((P_1 \wedge Q_1) \vdash (((P_2 \wedge Q_2) \triangleleft \$tr' =_u \$tr \triangleright (P_2 \vee Q_2)) \diamond (P_3 \vee Q_3)))
  by (subst extChoice-tri-rdes, simp-all add: assms unrest)
lemma extChoice-rdes-def' [rdes-def]:
  assumes P_1 is RR Q_1 is RR
  shows \mathbf{R}_s(P_1 \vdash P_2 \diamond P_3) \square \mathbf{R}_s(Q_1 \vdash Q_2 \diamond Q_3) =
        \mathbf{R}_s ((P_1 \land Q_1) \vdash ((R5(P_2 \land Q_2) \lor R_4(P_2 \lor Q_2)) \diamond (P_3 \lor Q_3)))
  by (simp add: extChoice-rdes-def assms, rel-auto, simp-all add: less-le)
lemma CSP-ExtChoice [closure]:
  ExtChoice\ A\ is\ CSP
  by (simp add: ExtChoice-def RHS-design-is-SRD unrest)
lemma CSP-extChoice [closure]:
  P \square Q \text{ is } CSP
 by (simp add: CSP-ExtChoice extChoice-def)
lemma preR-ExtChoice [rdes]:
  assumes A \neq \{\} A \subseteq [CSP]_H
 shows pre_R(ExtChoice\ A) = ( \ P \in A \cdot pre_R(P) )
proof -
  have pre_R (ExtChoice A) = (R1 (R2c (( | P \in A \cdot pre_R P))))
    by (simp add: ExtChoice-def rea-pre-RHS-design usubst unrest)
  also from assms have ... = (R1 \ (R2c \ ( \ P \in A \cdot (pre_R(CSP(P))))))
    by (metis USUP-healthy)
  also from assms have ... = (| P \in A \cdot (pre_R(CSP(P))))
   by (rel-auto)
  also from assms have ... = (| P \in A \cdot (pre_R(P)))
   by (metis USUP-healthy)
 finally show ?thesis.
qed
lemma preR-ExtChoice-ind [rdes]:
 assumes A \neq \{\} \land P. P \in A \Longrightarrow F(P) is CSP
 shows pre_R(\square P \in A \cdot F(P)) = (\bigsqcup P \in A \cdot pre_R(F(P)))
  using assms by (subst preR-ExtChoice, auto)
lemma periR-ExtChoice [rdes]:
  assumes A \subseteq [NCSP]_H A \neq \{\}
  shows peri_R(ExtChoice\ A) = (( \ \ P \in A \cdot pre_R(P)) \Rightarrow_r ( \ \ P \in A \cdot peri_R\ P)) \triangleleft \$tr' =_u \$tr \triangleright (\ \ \ \ )
P \in A \cdot peri_R P
proof -
  have peri_R (ExtChoice A) = peri_R (\mathbf{R}_s ((\bigcup P \in A \cdot pre_R P) \vdash
                                       ((\bigsqcup\ P\in A\cdot peri_R\ P) \mathrel{\triangleleft} \$tr\,' =_u \$tr \mathrel{\triangleright} (\bigcap\ P\in A\cdot peri_R\ P)) \mathrel{\diamond}
                                       ( \bigcap P \in A \cdot post_R P)))
    by (simp add: ExtChoice-tri-rdes-def assms closure)
  also have ... = peri_R (\mathbf{R}_s ((| | P \in A \cdot pre_R (NCSP P)) \vdash
                           ((| P \in A \cdot peri_R (NCSP P))) \triangleleft \$tr' =_u \$tr \triangleright (| P \in A \cdot peri_R (NCSP P))) \diamond
                              ( \bigcap P \in A \cdot post_R P)))
    by (simp add: UINF-healthy[OF assms(1), THEN sym] USUP-healthy[OF assms(1), THEN sym])
 also have ... = R1 (R2c (( \square P \in A \cdot pre_R (NCSP P)) \Rightarrow_r
                            \triangleleft \$tr' =_u \$tr \triangleright
```

```
( \bigcap P \in A \cdot peri_R (NCSP P))))
   proof -
       have ([] P \in A \cdot [\$ok \mapsto_s true, \$ok' \mapsto_s true, \$wait \mapsto_s false, \$wait' \mapsto_s true] \dagger pre_R (NCSP P)
                = (| | P \in A \cdot pre_R (NCSP P))
           by (rule USUP-cong, simp add: closure usubst unrest assms)
       thus ?thesis
           by (simp add: rea-peri-RHS-design Healthy-Idempotent SRD-Idempotent usubst unrest assms)
   qed
   also have ... = R1 (( | P \in A \cdot pre_R (NCSP P) ) \Rightarrow_r 
                                          (| P \in A \cdot peri_R (NCSP P))
                                                \triangleleft \$tr' =_u \$tr \triangleright
                                           ( \bigcap P \in A \cdot peri_R (NCSP P) ) )
       by (simp add: R2c-rea-impl R2c-condr R2c-UINF R2c-preR R2c-periR R2c-tr'-minus-tr R2c-USUP
closure)
   also have ... = (((| \mid P \in A \cdot pre_R (NCSP P))) \Rightarrow_r (| \mid P \in A \cdot peri_R (NCSP P)))
                                        \triangleleft \$tr' =_u \$tr \triangleright
                                     ((| \mid P \in A \cdot pre_R (NCSP P))) \Rightarrow_r (| \mid P \in A \cdot peri_R (NCSP P))))
       by (simp add: R1-rea-impl R1-cond R1-USUP R1-UINF assms Healthy-if closure, rel-auto)
   also have ... = ((( | | P \in A \cdot pre_R (NCSP P))) \Rightarrow_r (| | P \in A \cdot peri_R (NCSP P)))
                                        \triangleleft \$tr' =_u \$tr \triangleright
                                     by (simp add: UINF-rea-impl[THEN sym])
    also have ... = ((( \bigsqcup P \in A \cdot pre_R (NCSP P))) \Rightarrow_r ( \bigsqcup P \in A \cdot peri_R (NCSP P)))
                                         \triangleleft \$tr' =_u \$tr \triangleright
                                     by (simp add: SRD-peri-under-pre closure assms unrest)
    \triangleleft \ \$tr' =_u \ \$tr \rhd
                                     by (simp add: UINF-healthy[OF assms(1), THEN sym] USUP-healthy[OF assms(1), THEN sym])
   finally show ?thesis.
qed
lemma periR-ExtChoice':
   assumes A \subseteq [NCSP]_H \ A \neq \{\}
     shows peri_R(ExtChoice\ A) = (R5((|\ P \in A \cdot pre_R(P))) \Rightarrow_r (|\ P \in A \cdot peri_R\ P)) \lor (|\ P \in A \cdot peri_R\ P)
R4(peri_R P)))
   using assms(2)
   by (simp add: periR-ExtChoice assms(1), rel-auto)
lemma periR-ExtChoice-ind [rdes]:
   assumes \bigwedge P. P \in A \Longrightarrow F(P) is NCSP A \neq \{\}
   \mathbf{shows}\ peri_R(\square\ P \in A \ \cdot\ F(P)) = ((\bigsqcup\ P \in A \ \cdot\ pre_R(F\ P))) \Rightarrow_r (\bigsqcup\ P \in A \ \cdot\ peri_R\ (F\ P))) \mathrel{\triangleleft} \$tr' =_u \$tr
\triangleright ( \bigcap P \in A \cdot peri_R (F P) )
   using assms by (subst periR-ExtChoice, auto simp add: closure unrest)
lemma periR-ExtChoice-ind':
   assumes \bigwedge P. P \in A \Longrightarrow F(P) is NCSP A \neq \{\}
   shows peri_R(\Box P \in A \cdot F(P)) = (R5((| P \in A \cdot pre_R(FP))) \Rightarrow_r (| P \in A \cdot peri_R(FP))) \vee (| P \in A \cdot pre_R(FP)) \vee (| P \in A \cdot p
• R4(peri_R(FP)))
   using assms by (subst periR-ExtChoice', auto simp add: closure unrest)
lemma postR-ExtChoice [rdes]:
   assumes A \subseteq [NCSP]_H A \neq \{\}
   shows post_R(ExtChoice\ A) = (\bigcap\ P \in A \cdot post_R\ P)
```

```
proof -
 have post_R (ExtChoice A) = post_R (\mathbf{R}_s ((\square P \in A \cdot pre_R P) \vdash
                                ( \bigcap P \in A \cdot post_R P)))
   by (simp add: ExtChoice-tri-rdes-def closure assms)
 also have ... = post_R (\mathbf{R}_s ((\bigcup P \in A \cdot pre_R (NCSP P)) \vdash
                        ( \bigcap P \in A \cdot post_R (NCSP P))))
   by (simp add: UINF-healthy[OF assms(1), THEN sym] USUP-healthy[OF assms(1), THEN sym])
 proof -
   have ( \bigsqcup P \in A \cdot [\$ok \mapsto_s true, \$ok' \mapsto_s true, \$wait \mapsto_s false, \$wait' \mapsto_s false] \dagger pre_R (NCSP P))
       = ( \bigsqcup P \in A \cdot pre_R (NCSP P) )
     by (rule USUP-cong, simp add: usubst closure unrest assms)
   thus ?thesis
     by (simp add: rea-post-RHS-design Healthy-Idempotent SRD-Idempotent usubst unrest assms)
 \mathbf{qed}
 also have ... = R1 ((\bigcup P \in A \cdot pre_R (NCSP P)) \Rightarrow_r (\bigcap P \in A \cdot post_R (NCSP P)))
   by (simp add: R2c-rea-impl R2c-condr R2c-UINF R2c-preR R2c-postR
               R2c-tr'-minus-tr R2c-USUP closure)
 also from assms(2) have ... = (( \bigcup P \in A \cdot pre_R (NCSP P)) \Rightarrow_r ( \bigcap P \in A \cdot post_R (NCSP P)))
   by (simp add: R1-rea-impl R1-cond R1-USUP R1-UINF assms Healthy-if closure)
 also have ... = ( \bigcap P \in A \cdot pre_R (NCSP P) \Rightarrow_r post_R (NCSP P) )
   by (simp add: UINF-rea-impl)
 also have ... = ( \bigcap P \in A \cdot post_R (NCSP P) )
   by (simp add: SRD-post-under-pre closure assms unrest)
 finally show ?thesis
   by (simp add: UINF-healthy[OF assms(1), THEN sym] USUP-healthy[OF assms(1), THEN sym])
\mathbf{qed}
lemma postR-ExtChoice-ind [rdes]:
 assumes \bigwedge P. P \in A \Longrightarrow F(P) is NCSP A \neq \{\}
 shows post_R(\square P \in A \cdot F(P)) = (\bigcap P \in A \cdot post_R(F(P)))
 using assms by (subst postR-ExtChoice, auto simp add: closure unrest)
lemma preR-extChoice:
 assumes P is CSP Q is CSP wait' \sharp pre_R(P) \ wait' \sharp pre_R(Q)
 shows pre_R(P \square Q) = (pre_R(P) \land pre_R(Q))
 by (simp add: extChoice-def preR-ExtChoice assms usup-and)
lemma preR-extChoice' [rdes]:
 assumes P is NCSP Q is NCSP
 shows pre_R(P \square Q) = (pre_R(P) \land pre_R(Q))
 by (simp add: preR-extChoice closure assms unrest)
lemma periR-extChoice [rdes]:
 assumes P is NCSP Q is NCSP
 shows peri_R(P \square Q) = ((pre_R(P) \land pre_R(Q) \Rightarrow_r peri_R(P) \land peri_R(Q)) \triangleleft \$tr' =_u \$tr \triangleright (peri_R(P))
\vee peri_R(Q)))
 by (simp add: extChoice-def, subst periR-ExtChoice, auto simp add: usup-and uinf-or)
lemma postR-extChoice [rdes]:
```

```
assumes P is NCSP Q is NCSP
 shows post_R(P \square Q) = (post_R(P) \lor post_R(Q))
 using assms
 by (simp add: extChoice-def, subst postR-ExtChoice, auto simp add: usup-and uinf-or)
lemma ExtChoice-cong:
 assumes \bigwedge P. P \in A \Longrightarrow F(P) = G(P)
 shows (\Box P \in A \cdot F(P)) = (\Box P \in A \cdot G(P))
 using assms image-cong by force
lemma ref-unrest-ExtChoice:
 assumes
   \bigwedge P. P \in A \Longrightarrow \$ref \sharp pre_R(P)
   \bigwedge P. P \in A \Longrightarrow \$ref \sharp cmt_R(P)
 shows ref \sharp (ExtChoice A) \llbracket false / \$wait \rrbracket
proof -
 have \bigwedge P. P \in A \Longrightarrow \$ref \sharp pre_R(P\llbracket \theta / \$tr \rrbracket)
   using assms by (rel-blast)
 with assms show ?thesis
   by (simp add: ExtChoice-def RHS-def R1-def R2c-def R2s-def R3h-def design-def usubst unrest)
qed
lemma CSP4-ExtChoice:
 assumes A \subseteq [NCSP]_H
 shows ExtChoice A is CSP4
proof (cases\ A = \{\})
 case True thus ?thesis
   by (simp add: ExtChoice-empty Healthy-def CSP4-def, simp add: Skip-is-CSP Stop-left-zero)
next
 case False
 have 1:(\neg_r \ (\neg_r \ pre_R \ (ExtChoice \ A)) \ ;;_h \ R1 \ true) = pre_R \ (ExtChoice \ A)
 proof –
   have \bigwedge P. P \in A \Longrightarrow (\neg_r \ pre_R(P)) :: R1 \ true = (\neg_r \ pre_R(P))
     by (simp add: NCSP-Healthy-subset-member NCSP-implies-NSRD NSRD-neg-pre-unit assms)
   thus ?thesis
   apply (simp add: False preR-ExtChoice closure NCSP-set-unrest-pre-wait' assms not-UINF seq-UINF-distr
not-USUP)
     apply (rule USUP-conq)
     apply (simp add: rpred assms closure)
     done
 qed
 have 2: \$st' \sharp peri_R (ExtChoice A)
 proof -
   have a: \bigwedge P. P \in A \Longrightarrow \$st' \sharp pre_R(P)
     by (simp add: NCSP-Healthy-subset-member NCSP-implies-NSRD NSRD-st'-unrest-pre assms)
   have b: \land P. P \in A \Longrightarrow \$st' \sharp peri_R(P)
     \mathbf{by}\ (simp\ add:\ NCSP-Healthy-subset-member\ NCSP-implies-NSRD\ NSRD-st'-unrest-peri\ assms)
   from a b show ?thesis
     apply (subst periR-ExtChoice)
         apply (simp-all add: assms closure unrest CSP4-set-unrest-pre-st' NCSP-set-unrest-pre-wait'
False)
     done
 qed
 have 3: \$ref' \sharp post_R (ExtChoice A)
 proof -
```

```
have a: \bigwedge P. P \in A \Longrightarrow \$ref' \sharp pre_R(P)
      by (simp add: CSP4-ref'-unrest-pre CSP-Healthy-subset-member NCSP-Healthy-subset-member
NCSP-implies-CSP4 NCSP-subset-implies-CSP assms)
   have b: \bigwedge P. P \in A \Longrightarrow \$ref' \sharp post_R(P)
      by (simp add: CSP4-ref'-unrest-post CSP-Healthy-subset-member NCSP-Healthy-subset-member
NCSP-implies-CSP4 NCSP-subset-implies-CSP assms)
   from a b show ?thesis
    by (subst postR-ExtChoice, simp-all add: assms CSP4-set-unrest-pre-st' NCSP-set-unrest-pre-wait'
unrest False)
 qed
 show ?thesis
   \mathbf{by}\ (\mathit{rule}\ \mathit{CSP4-tri-intro},\ \mathit{simp-all}\ \mathit{add}\colon \mathit{1\ 2\ 3\ assms\ closure})
      (metis 1 R1-seqr-closure rea-not-R1 rea-not-not rea-true-R1)
qed
lemma CSP4-extChoice [closure]:
 assumes P is NCSP Q is NCSP
 shows P \square Q is CSP4
 by (simp add: extChoice-def, rule CSP4-ExtChoice, simp-all add: assms)
lemma NCSP-ExtChoice [closure]:
 assumes A \subseteq [NCSP]_H
 shows ExtChoice A is NCSP
proof (cases\ A = \{\})
 case True
 then show ?thesis by (simp add: ExtChoice-empty closure)
next
 case False
 show ?thesis
 proof (rule NCSP-intro)
   from assms have cls: A \subseteq [\![CSP]\!]_H A \subseteq [\![CSP3]\!]_H A \subseteq [\![CSP4]\!]_H
     using NCSP-implies-CSP NCSP-implies-CSP3 NCSP-implies-CSP4 by blast+
   have wu: \bigwedge P. P \in A \Longrightarrow \$wait' \sharp pre_R(P)
     using NCSP-implies-NSRD NSRD-wait'-unrest-pre assms by force
   \mathbf{show}\ 1{:}ExtChoice\ A\ is\ CSP
     by (metis (mono-tags) Ball-Collect CSP-ExtChoice NCSP-implies-CSP assms)
   from cls show ExtChoice A is CSP3
   by (rule-tac CSP3-SRD-intro, simp-all add: CSP-Healthy-subset-member CSP3-Healthy-subset-member
closure rdes unrest wu assms 1 False)
   from cls show ExtChoice A is CSP4
     by (simp add: CSP4-ExtChoice assms)
 qed
qed
lemma ExtChoice-NCSP-closed [closure]:
 assumes \bigwedge i. i \in I \Longrightarrow P(i) is NCSP
 shows (\Box i \in I \cdot P(i)) is NCSP
 by (simp add: NCSP-ExtChoice assms image-subset-iff)
lemma NCSP-extChoice [closure]:
 assumes P is NCSP Q is NCSP
 shows P \square Q is NCSP
 by (simp add: NCSP-ExtChoice assms extChoice-def)
```

7.5 Productivity and Guardedness

```
lemma Productive-ExtChoice [closure]:
 assumes A \neq \{\} A \subseteq [NCSP]_H A \subseteq [Productive]_H
 shows ExtChoice A is Productive
proof -
 have 1: \bigwedge P. P \in A \Longrightarrow \$wait' \sharp pre_R(P)
   using NCSP-implies-NSRD NSRD-wait'-unrest-pre assms(2) by blast
 show ?thesis
 proof (rule Productive-intro, simp-all add: assms closure rdes 1 unrest)
   have ((| P \in A \cdot pre_R P) \land ( P \in A \cdot post_R P)) =
         moreover have (\bigcap P \in A \cdot (pre_R P \land post_R P)) = (\bigcap P \in A \cdot ((pre_R P \land post_R P) \land \$tr <_u
    by (rule UINF-cong, metis (no-types, lifting) 1 Ball-Collect NCSP-implies-CSP Productive-post-refines-tr-increase
assms\ utp-pred-laws.inf.absorb1)
   ultimately show (\$tr'>_u \$tr) \sqsubseteq ((\bigsqcup P \in A \cdot pre_R P) \land ((\bigcap P \in A \cdot post_R P)))
     by (rel-auto)
 qed
qed
lemma Productive-extChoice [closure]:
 assumes P is NCSP Q is NCSP P is Productive Q is Productive
 shows P \square Q is Productive
 by (simp add: extChoice-def Productive-ExtChoice assms)
lemma ExtChoice-Guarded [closure]:
 assumes \bigwedge P. P \in A \Longrightarrow Guarded P
 shows Guarded (\lambda X. \Box P \in A \cdot P(X))
proof (rule GuardedI)
 \mathbf{fix} \ X \ n
 have \bigwedge Y. ((\Box P \in A \cdot P \ Y) \land qvrt(n+1)) = ((\Box P \in A \cdot (P \ Y \land qvrt(n+1))) \land qvrt(n+1))
 proof -
   \mathbf{fix} \ Y
   let ?lhs = ((\Box P \in A \cdot P \ Y) \land qvrt(n+1)) and ?rhs = ((\Box P \in A \cdot (P \ Y \land qvrt(n+1))) \land qvrt(n+1))
   have a:?lhs[false/\$ok]] = ?rhs[false/\$ok]]
     by (rel-auto)
   have b:?lhs[true/\$ok][true/\$wait] = ?rhs[true/\$ok][true/\$wait]
     by (rel-auto)
   have c:?lhs[true/\$ok][false/\$wait] = ?rhs[true/\$ok][false/$wait]
      by (simp add: ExtChoice-def RHS-def R1-def R2c-def R2s-def R3h-def design-def usubst unrest,
rel-blast)
   show ?lhs = ?rhs
     using a b c
     by (rule-tac bool-eq-split[of in-var ok], simp, rule-tac bool-eq-split[of in-var wait], simp-all)
  moreover have ((\Box P \in A \cdot (P \mid X \land gvrt(n+1))) \land gvrt(n+1)) = ((\Box P \in A \cdot (P \mid (X \land gvrt(n))) \land gvrt(n+1)))
gvrt(n+1))) \wedge gvrt(n+1))
 proof -
   have (\Box P \in A \cdot (P \mid X \land qvrt(n+1))) = (\Box P \in A \cdot (P \mid (X \land qvrt(n)) \land qvrt(n+1)))
   proof (rule ExtChoice-cong)
     fix P assume P \in A
     thus (P X \land gvrt(n+1)) = (P (X \land gvrt(n)) \land gvrt(n+1))
       using Guarded-def assms by blast
```

```
qed
    thus ?thesis by simp
  ultimately show ((\Box P \in A \cdot P \ X) \land qvrt(n+1)) = ((\Box P \in A \cdot (P \ (X \land qvrt(n)))) \land qvrt(n+1))
    by simp
qed
lemma extChoice-Guarded [closure]:
  assumes Guarded P Guarded Q
  shows Guarded (\lambda X. P(X) \square Q(X))
proof -
  have Guarded (\lambda X. \Box F \in \{P,Q\} \cdot F(X))
    by (rule ExtChoice-Guarded, auto simp add: assms)
  thus ?thesis
    by (simp add: extChoice-def)
qed
7.6
         Algebraic laws
lemma extChoice-comm:
  P \square Q = Q \square P
  by (unfold extChoice-def, simp add: insert-commute)
lemma extChoice-idem:
  P \text{ is } CSP \Longrightarrow P \square P = P
  by (unfold extChoice-def, simp add: ExtChoice-single)
lemma extChoice-assoc:
  assumes P is CSP Q is CSP R is CSP
  shows P \square Q \square R = P \square (Q \square R)
proof -
 have P \square Q \square R = \mathbf{R}_s(pre_R(P) \vdash cmt_R(P)) \square \mathbf{R}_s(pre_R(Q) \vdash cmt_R(Q)) \square \mathbf{R}_s(pre_R(R) \vdash cmt_R(R))
    by (simp\ add:\ SRD\text{-reactive-design-alt}\ assms(1)\ assms(2)\ assms(3))
  also have \dots =
    \mathbf{R}_s (((pre_R \ P \land pre_R \ Q) \land pre_R \ R) \vdash
           (((cmt_R\ P\ \land\ cmt_R\ Q)\ \triangleleft\ \$tr'=_u\ \$tr\ \land\ \$wait'\ \rhd\ (cmt_R\ P\ \lor\ cmt_R\ Q)\ \land\ cmt_R\ R)
               \triangleleft \ \$tr' =_u \ \$tr \land \$wait' \rhd
            ((cmt_R \ P \land cmt_R \ Q) \triangleleft \$tr' =_u \$tr \land \$wait' \triangleright (cmt_R \ P \lor cmt_R \ Q) \lor cmt_R \ R)))
    by (simp add: extChoice-rdes unrest)
  also have ... =
    \mathbf{R}_s (((pre_R \ P \land pre_R \ Q) \land pre_R \ R) \vdash
           (((cmt_R \ P \land cmt_R \ Q) \land cmt_R \ R)
               \triangleleft \ \$tr' =_u \ \$tr \land \ \$wait' \rhd
             ((cmt_R \ P \lor cmt_R \ Q) \lor cmt_R \ R)))
    \mathbf{by} \ (\mathit{rule} \ \mathit{cong}[\mathit{of} \ \mathbf{R}_s \ \mathbf{R}_s], \ \mathit{simp}, \ \mathit{rel-auto})
  also have ... =
    \mathbf{R}_s \ ((pre_R \ P \land pre_R \ Q \land pre_R \ R) \vdash
           ((cmt_R \ P \land (cmt_R \ Q \land cmt_R \ R))
               \triangleleft \$tr' =_{u} \$tr \land \$wait' \triangleright
            (cmt_R \ P \lor (cmt_R \ Q \lor cmt_R \ R))))
    by (simp add: conj-assoc disj-assoc)
  also have \dots =
    \mathbf{R}_s ((pre_R \ P \land pre_R \ Q \land pre_R \ R) \vdash
           ((cmt_R \ P \land (cmt_R \ Q \land cmt_R \ R) \triangleleft \$tr' =_u \$tr \land \$wait' \triangleright (cmt_R \ Q \lor cmt_R \ R))
               \triangleleft \$tr' =_u \$tr \land \$wait' \triangleright
            (cmt_R \ P \lor (cmt_R \ Q \land cmt_R \ R) \triangleleft \$tr' =_u \$tr \land \$wait' \triangleright (cmt_R \ Q \lor cmt_R \ R))))
```

```
by (rule cong[of \mathbf{R}_s \mathbf{R}_s], simp, rel-auto)
  also have ... = \mathbf{R}_s(pre_R(P) \vdash cmt_R(P)) \square (\mathbf{R}_s(pre_R(Q) \vdash cmt_R(Q)) \square \mathbf{R}_s(pre_R(R) \vdash cmt_R(R)))
    by (simp add: extChoice-rdes unrest)
  also have \dots = P \square (Q \square R)
    by (simp\ add:\ SRD\text{-}reactive\text{-}design\text{-}alt\ assms(1)\ assms(2)\ assms(3))
  finally show ?thesis.
qed
lemma extChoice-Stop:
 assumes Q is CSP
  shows Stop \square Q = Q
 using assms
proof -
  have Stop \square Q = \mathbf{R}_s \ (true \vdash (\$tr' =_u \$tr \land \$wait')) \square \mathbf{R}_s(pre_R(Q) \vdash cmt_R(Q))
    by (simp add: Stop-def SRD-reactive-design-alt assms)
 also have ... = \mathbf{R}_s (pre<sub>R</sub> Q \vdash (((\$tr' =_u \$tr \land \$wait') \land cmt_R Q) \triangleleft \$tr' =_u \$tr \land \$wait' \triangleright (\$tr')
=_u \$tr \land \$wait' \lor cmt_R \ Q)))
    by (simp add: extChoice-rdes unrest)
  also have ... = \mathbf{R}_s (pre<sub>R</sub> Q \vdash (cmt_R \ Q \triangleleft \$tr' =_u \$tr \land \$wait' \triangleright cmt_R \ Q))
    by (metis (no-types, lifting) cond-def eq-upred-sym neg-conj-cancel1 utp-pred-laws.inf.left-idem)
  also have ... = \mathbf{R}_s (pre<sub>R</sub> Q \vdash cmt_R Q)
    by (simp add: cond-idem)
  also have \dots = Q
    by (simp add: SRD-reactive-design-alt assms)
 finally show ?thesis.
qed
lemma extChoice-Chaos:
  assumes Q is CSP
  shows Chaos \square Q = Chaos
proof -
  have Chaos \square Q = \mathbf{R}_s (false \vdash true) \square \mathbf{R}_s(pre_R(Q) \vdash cmt_R(Q))
    by (simp add: Chaos-def SRD-reactive-design-alt assms)
  also have ... = \mathbf{R}_s (false \vdash (cmt<sub>R</sub> Q \triangleleft \$tr' =_u \$tr \land \$wait' \triangleright true))
    \mathbf{by}\ (simp\ add\colon extChoice\text{-}rdes\ unrest)
  also have ... = \mathbf{R}_s (false \vdash true)
    by (rule cong [of \mathbf{R}_s \mathbf{R}_s], simp, rel-auto)
  also have \dots = Chaos
    by (simp add: Chaos-def)
  finally show ?thesis.
qed
lemma extChoice-Dist:
  assumes P is CSP S \subseteq [\![CSP]\!]_H S \neq \{\}
  shows P \square (\square S) = (\square Q \in S. P \square Q)
proof -
 let ?S1 = pre_R 'S and ?S2 = cmt_R 'S
 have P \square (\square S) = P \square (\square Q \in S \cdot \mathbf{R}_s(pre_R(Q) \vdash cmt_R(Q)))
  by (simp add: SRD-as-reactive-design[THEN sym] Healthy-SUPREMUM UINF-as-Sup-collect assms)
  also have ... = \mathbf{R}_s(pre_R(P) \vdash cmt_R(P)) \square \mathbf{R}_s((\bigcup Q \in S \cdot pre_R(Q)) \vdash (\bigcap Q \in S \cdot cmt_R(Q)))
    by (simp add: RHS-design-USUP SRD-reactive-design-alt assms)
  also have ... = \mathbf{R}_s ((pre_R(P) \land (\bigsqcup Q \in S \cdot pre_R(Q))) \vdash
                       ((cmt_R(P) \land (   Q \in S \cdot cmt_R(Q) ))
                          \triangleleft \$tr' =_u \$tr \land \$wait' \triangleright
                         (cmt_R(P) \vee (   Q \in S \cdot cmt_R(Q)))))
```

```
by (simp add: extChoice-rdes unrest)
  also have ... = \mathbf{R}_s ((\bigcup Q \in S \cdot pre_R P \land pre_R Q) \vdash
                      ( \bigcap Q \in S \cdot (cmt_R \ P \land cmt_R \ Q) \triangleleft \$tr' =_u \$tr \land \$wait' \triangleright (cmt_R \ P \lor cmt_R \ Q)))
   by (simp add: conj-USUP-dist conj-UINF-dist disj-UINF-dist cond-UINF-dist assms)
  also have ... = ( \bigcap Q \in S \cdot \mathbf{R}_s ((pre_R P \land pre_R Q) \vdash
                                ((cmt_R \ P \land cmt_R \ Q) \triangleleft \$tr' =_u \$tr \land \$wait' \triangleright (cmt_R \ P \lor cmt_R \ Q))))
   by (simp add: assms RHS-design-USUP)
  also have ... = (\bigcap Q \in S \cdot \mathbf{R}_s(pre_R(P) \vdash cmt_R(P)) \Box \mathbf{R}_s(pre_R(Q) \vdash cmt_R(Q)))
   by (simp add: extChoice-rdes unrest)
  also have ... = (   Q \in S. P \square CSP(Q) )
     by (simp add: UINF-as-Sup-collect, metis (no-types, lifting) Healthy-if SRD-as-reactive-design
assms(1)
  also have ... = (   Q \in S. P \square Q )
   by (rule SUP-cong, simp-all add: Healthy-subset-member[OF assms(2)])
 finally show ?thesis.
qed
lemma extChoice-dist:
  assumes P is CSP Q is CSP R is CSP
 shows P \square (Q \sqcap R) = (P \square Q) \sqcap (P \square R)
  using assms extChoice-Dist[of\ P\ \{Q,\ R\}] by simp
lemma ExtChoice-seq-distr:
  assumes \bigwedge i. i \in A \Longrightarrow P i is PCSP Q is NCSP
  shows (\Box i \in A \cdot P i) ;; Q = (\Box i \in A \cdot P i ;; Q)
proof (cases\ A = \{\})
  case True
  then show ?thesis
   by (simp add: ExtChoice-empty NCSP-implies-CSP Stop-left-zero assms(2))
next
  case False
 show ?thesis
  proof -
   have 1:(\Box i \in A \cdot P i) = (\Box i \in A \cdot (\mathbf{R}_s ((pre_R (P i)) \vdash peri_R (P i) \diamond (R4(post_R (P i))))))
     (is ?X = ?Y)
    by (rule ExtChoice-cong, metis (no-types, hide-lams) R4-def Healthy-if NCSP-implies-CSP PCSP-implies-NCSP
Productive-form assms(1) comp-apply)
   have 2:(\Box i \in A \cdot P \ i \ ;; \ Q) = (\Box i \in A \cdot (\mathbf{R}_s \ ((pre_R \ (P \ i)) \vdash peri_R \ (P \ i) \diamond (R_4 (post_R \ (P \ i))))) \ ;; \ Q)
     (is ?X = ?Y)
    \textbf{by} \; (\textit{rule ExtChoice-cong}, \, \textit{metis} \; (\textit{no-types}, \, \textit{hide-lams}) \; \textit{R4-def Healthy-if NCSP-implies-CSP PCSP-implies-NCSP} \\
Productive-form \ assms(1) \ comp-apply)
   show ?thesis
     by (simp add: 12, rdes-eq cls: assms False cong: ExtChoice-cong USUP-cong)
  qed
qed
lemma extChoice-seq-distr:
 assumes P is PCSP Q is PCSP R is NCSP
  shows (P \square Q) :: R = (P :: R \square Q :: R)
 by (rdes-eq cls: assms)
lemma extChoice-seq-distl:
  assumes P is ICSP Q is ICSP R is NCSP
 shows P :: (Q \square R) = (P :: Q \square P :: R)
  by (rdes-eq cls: assms)
```

```
\mathbf{lemma}\ extchoice\text{-}StateInvR\text{-}refine\text{:}
  assumes
   P is NCSP Q is NCSP
   sinv_R(b) \sqsubseteq P \ sinv_R(b) \sqsubseteq Q
  shows sinv_R(b) \sqsubseteq P \square Q
proof -
 have 1:
   pre_R \ P \sqsubseteq [b]_{S<} \ [b]_{S>} \sqsubseteq ([b]_{S<} \land post_R \ P)
   pre_R \ Q \sqsubseteq [b]_{S<} \ [b]_{S>} \sqsubseteq ([b]_{S<} \land post_R \ Q)
  by (metis (no-types, lifting) CRR-implies-RR NCSP-implies-CSP RHS-tri-design-refine SRD-reactive-tri-design
StateInvR-def assms periR-RR postR-RR preR-CRR rea-st-cond-RR rea-true-RR refBy-order st-post-CRR) +
 show ?thesis
  by (rdes-refine-split\ cls:\ assms(1-2),\ simp-all\ add:\ 1\ closure\ assms\ truer-bottom-rpred\ utp-pred-laws.inf-sup-distrib1)
\mathbf{qed}
end
      Stateful-Failure Programs
```

8

```
theory utp-sfrd-prog
 imports
   UTP.utp-full
   utp-sfrd-extchoice
begin
```

Conditionals 8.1

```
lemma NCSP-cond-srea [closure]:
  assumes P is NCSP Q is NCSP
  shows P \triangleleft b \triangleright_R Q is NCSP
  \mathbf{by}\ (\mathit{rule}\ \mathit{NCSP-NSRD-intro},\ \mathit{simp-all}\ \mathit{add}\colon \mathit{closure}\ \mathit{rdes}\ \mathit{assms}\ \mathit{unrest})
```

Guarded commands 8.2

```
lemma GuardedCommR-NCSP-closed [closure]:
 assumes P is NCSP
 shows g \to_R P is NCSP
 by (simp add: gcmd-def closure assms)
```

8.3 Alternation

```
lemma AlternateR-NCSP-closed [closure]:
 assumes \bigwedge i. i \in A \Longrightarrow P(i) is NCSP Q is NCSP
 shows (if_R i \in A \cdot g(i) \rightarrow P(i) else Q fi) is NCSP
proof (cases\ A = \{\})
 case True
 then show ?thesis
   by (simp add: assms)
next
 {\bf case}\ \mathit{False}
 then show ?thesis
   by (simp add: AlternateR-def closure assms)
qed
```

```
lemma AlternateR-list-NCSP-closed [closure]:
   assumes \bigwedge b P. (b, P) \in set A \Longrightarrow P is NCSP Q is NCSP
   shows (AlternateR-list A Q) is NCSP
   apply (simp add: AlternateR-list-def)
   apply (rule AlternateR-NCSP-closed)
   apply (auto simp add: assms)
   apply (metis assms(1) eq-snd-iff nth-mem)
   done
8.4
               While Loops
lemma NSRD-coerce-NCSP:
   P \text{ is } NSRD \Longrightarrow Skip ;; P ;; Skip \text{ is } NCSP
  \textbf{by} \; (\textit{metis} \; (\textit{no-types}, \, \textit{hide-lams}) \; \textit{CSP3-Skip} \; \textit{CSP3-def} \; \textit{CSP4-def} \; \textit{Healthy-def} \; \textit{NCSP-Skip} \; \textit{NCSP-implies-CSP} \; \textit{CSP4-def} \; \textit{Healthy-def} \; \textit{NCSP-Skip} \; \textit{NCSP-implies-CSP} \; \textit{NCSP-implies-CSP-implies-CSP} \; \textit{NCSP-implies-CSP-implies-CSP-implies-CSP-implies-CSP-implies-CSP-implies-CSP-implies-CSP-implies-CSP-implies-CSP-implies-CSP-implies-CSP-implies-CSP-implies-CSP-implies-CSP-implies-CSP-implies-CSP-implies-CSP-implies-CSP-implies-CSP-implies-CSP-implies-CSP-implies-CSP-implies-CSP-implies-CSP-implies-CSP-implies-CSP-implies-CSP-implies-CSP-implies-CSP-implies-CSP-implies-CSP-implies-CSP-implies-CSP-implies-CSP-implies-CSP-implies-CSP-implies-CSP-implies-CSP-implies-CSP-implies-CSP-implies-CSP-implies-CSP-implies-CSP-implies-CSP-implies-CSP-implies-CSP-implies-CSP-implies-CSP-implies-CSP-implies-CSP-implies-CSP-implies-CSP-implies-CSP-implies-CSP-implies-CSP-implies-CSP-implies-CSP-implies-CSP-implies-CSP-implies-CSP-implies-CSP-implies-CSP-implies-CSP-implies-CSP-implies-CSP-implies-CSP-implies-CSP-implies-CSP-implies-CSP-implies-CSP-implies-CSP-implies-CSP-implies-CSP-implies-CSP-implies-CSP-implies-CSP-implies-CSP-implies-CSP-implies-CSP-implies-CSP-implies-CSP-implies-CSP-implies-CSP-implies-CSP-implies-CSP-implies-CSP-implies-CSP-implies-CSP-implies-CSP-implies-CSP-implies-CSP-implies-CSP-
NCSP-intro NSRD-is-SRD RA1 SRD-seqr-closure)
definition While C :: 's \ upred \Rightarrow ('s, 'e) \ action \Rightarrow ('s, 'e) \ action \ (while_C - do - od) where
[rdes-def]: while_C \ b \ do \ P \ od = Skip ;; while_R \ b \ do \ P \ od ;; Skip
lemma While C-NCSP-closed [closure]:
   assumes P is NCSP P is Productive
   shows while_C b do P od is NCSP
   by (simp add: While C-def NSRD-coerce-NCSP assms closure)
\mathbf{lemma}\ \mathit{WhileC-false}:
    P \text{ is } NCSP \Longrightarrow While C \text{ false } P = Skip
   by (simp add: NCSP-implies-NSRD Skip-srdes-left-unit WhileC-def WhileR-false)
8.5
               Iteration Construction
definition Iterate C: 'a \ set \Rightarrow ('a \Rightarrow 's \ upred) \Rightarrow ('a \Rightarrow ('s, 'e) \ action) \Rightarrow ('s, 'e) \ action
where [upred-defs, ndes-simp]: Iterate C \land g P = while_C (\bigvee i \in A \cdot g(i)) \ do \ (if_R \ i \in A \cdot g(i) \rightarrow P(i) \ fi)
od
lemma IterateC-IterateR-def: IterateC A g P = Skip ;; <math>IterateR A g P ;; Skip
   by (simp add: IterateC-def IterateR-def WhileC-def)
definition Iterate C-list :: ('s upred \times ('s, 'e) action) list \Rightarrow ('s, 'e) action where
[upred-defs, ndes-simp]:
    Iterate C-list xs = Iterate C \{0... < length xs\} (\lambda i. map fst xs ! i) (\lambda i. map snd xs ! i)
syntax
    -iter-C
                         :: pttrn \Rightarrow logic \Rightarrow logic \Rightarrow logic \Rightarrow logic (do_C \rightarrow \leftarrow \rightarrow \rightarrow - od)
   -iter-gcommC :: gcomms \Rightarrow logic (do_C/ - /od)
translations
    -iter-C x A g P => CONST IterateC A (\lambda x. g) (\lambda x. P)
    -iter-C x A g P \leq CONST IterateC A (\lambda x. g) (\lambda x'. P)
    -iter-gcommC\ cs\ 
ightharpoonup CONST\ IterateC-list\ cs
    -iter-gcommC (-gcomm-show cs) \leftarrow CONST IterateC-list cs
lemma IterateC-NCSP-closed [closure]:
   assumes
       \bigwedge i. i \in I \Longrightarrow P(i) \text{ is NCSP}
       \bigwedge i. i \in I \Longrightarrow P(i) is Productive
```

```
shows do_C i \in I \cdot g(i) \rightarrow P(i) od is NCSP
 by (simp add: Iterate C-Iterate R-def Iterate R-NSRD-closed NCSP-implies-NSRD NSRD-coerce-NCSP
assms(1) \ assms(2))
lemma IterateC-list-NCSP-closed [closure]:
  assumes
    \bigwedge b P. (b, P) \in set A \Longrightarrow P is NCSP
    \bigwedge b P. (b, P) \in set A \Longrightarrow P is Productive
  shows IterateC-list A is NCSP
  apply (simp add: IterateC-list-def, rule IterateC-NCSP-closed)
  apply (metis assms atLeastLessThan-iff nth-map nth-mem prod.collapse)+
  done
lemma IterateC-list-alt-def:
  IterateC-list xs = while_C (\bigvee b \in set(map\ fst\ xs) \cdot b) do AlternateR-list xs\ Chaos\ od
proof -
 have (\bigvee i \in \{0... < length(xs)\} \cdot (map\ fst\ xs) \mid i) = (\bigvee b \in set(map\ fst\ xs) \cdot b)
    by (rel-auto, metis nth-mem prod.collapse, metis fst-conv in-set-conv-nth nth-map)
  thus ?thesis
    by (simp add: IterateC-list-def IterateC-def AlternateR-list-def)
qed
lemma IterateC-empty:
  do_C \ i \in \{\} \cdot g(i) \rightarrow P(i) \ od = Skip
  by (simp add: IterateC-IterateR-def IterateR-empty closure Skip-srdes-left-unit)
\mathbf{lemma}\ \mathit{IterateC-singleton}:
  assumes P k is NCSP P k is Productive
 shows do_C \ i \in \{k\} \cdot g(i) \rightarrow P(i) \ od = while_C \ g(k) \ do \ P(k) \ od \ (is ?lhs = ?rhs)
 by (simp add: IterateC-IterateR-def IterateR-singleton NCSP-implies-NSRD WhileC-def assms)
lemma IterateC-outer-refine-intro:
  assumes I \neq \{\} \land i. i \in I \Longrightarrow P \ i \ is \ NCSP \land i. i \in I \Longrightarrow P \ i \ is \ Productive
    \bigwedge i. \ i \in I \Longrightarrow S \sqsubseteq (b \ i \to_R P \ i \ ;; S) \ S \ is \ NCSP
    shows S \sqsubseteq do_C \ i \in I \cdot b(i) \rightarrow P(i) \ od
  have S \sqsubseteq do_R \ i \in I \cdot b(i) \rightarrow P(i) \ od
    by (simp add: IterateR-outer-refine-intro NCSP-implies-NSRD assms)
  thus ?thesis
    unfolding IterateC-IterateR-def
   by (metis (full-types) Skip-left-unit Skip-right-unit assms(5) urel-dioid.mult-isol urel-dioid.mult-isor)
qed
\mathbf{lemma}\ \mathit{IterateC-outer-refine-init-intro}:
  assumes
    \bigwedge i. i \in A \Longrightarrow P i \text{ is NCSP}
    \bigwedge i. i \in A \Longrightarrow P i is Productive
    S is NCSP I is NCSP
    S \sqsubseteq I ;; [\neg ( \bigcap i \in A \cdot b i)]^{\perp}_{R}
    \bigwedge \ i. \ i \in A \Longrightarrow S \sqsubseteq S \ ;; \ b \ i \to_R P \ i
    \bigwedge i. \ i \in A \Longrightarrow S \sqsubseteq I ;; \ b \ i \to_R P \ i
  shows S \sqsubseteq I ;; do_C i \in A \cdot b(i) \rightarrow P(i) od
proof (cases\ A = \{\})
  {f case}\ True
```

```
with assms(5) show ?thesis
   by (simp add: IterateC-empty assms closure Skip-right-unit AssumeR-true NSRD-right-unit)
  case False
  have S \sqsubseteq I :: do_R \ i \in A \cdot b(i) \rightarrow P(i) \ od
   by (simp add: IterateR-outer-refine-init-intro NCSP-implies-NSRD assms False)
  thus ?thesis
   unfolding IterateC-IterateR-def
   by (metis (no-types, hide-lams) RA1 Skip-right-unit assms(3) assms(4) urel-dioid.mult-isor)
\mathbf{lemma}\ \mathit{IterateC-list-outer-refine-intro}:
  assumes
   A \neq [] S is NCSP
   \bigwedge b P. (b, P) \in set A \Longrightarrow P is NCSP
   \bigwedge b P. (b, P) \in set A \Longrightarrow P is Productive
   \bigwedge b \ P. \ (b, P) \in set \ A \Longrightarrow S \sqsubseteq (b \to_R P \ ;; \ S)
   S \sqsubseteq [\neg ( (b, P) \in set \ A \cdot b)]^{\top}_{R}
  shows S \sqsubseteq IterateC-list A
proof -
  have (\bigcap i \in \{0..< length(A)\} \cdot (map\ fst\ A) \mid i) = (\bigcap (b,\ P) \in set\ A \cdot b)
   by (rel-auto, metis nth-mem prod.exhaust-sel, metis fst-conv in-set-conv-nth nth-map)
  thus ?thesis
   apply (simp add: IterateC-list-def)
   apply (rule IterateC-outer-refine-intro)
    apply (simp-all add: closure assms)
   apply (metis assms(3) nth-mem prod.collapse)
   apply (metis assms(4) nth-mem prod.collapse)
   done
qed
lemma IterateC-list-outer-refine-init-intro:
  assumes
   S is NCSP I is NCSP
   \land b \ P. \ (b, P) \in set \ A \Longrightarrow P \ is \ NCSP
   \bigwedge b \ P. \ (b, P) \in set \ A \Longrightarrow P \ is \ Productive
   S \sqsubseteq I ;; [\neg ( (b, P) \in set A \cdot b)]^{\top}_{R}
   \bigwedge b \ P. \ (b, P) \in set \ A \Longrightarrow S \sqsubseteq S \ ;; \ b \to_R P
   \bigwedge b P. (b, P) \in set A \Longrightarrow S \sqsubseteq I ;; b \to_R P
 \mathbf{shows}\ S\sqsubseteq I\ ;;\ \mathit{IterateC-list}\ A
proof
  have ( \bigcap i \in \{0..< length(A)\} \cdot (map\ fst\ A) \mid i) = ( \bigcap (b,\ P) \in set\ A \cdot b)
   by (rel-auto, metis nth-mem prod.exhaust-sel, metis fst-conv in-set-conv-nth nth-map)
  thus ?thesis
   apply (simp add: IterateC-list-def)
   apply (rule IterateC-outer-refine-init-intro)
    apply (simp-all add: closure assms)
   apply (metis assms(3) nth-mem prod.collapse)
   apply (metis assms(4) nth-mem prod.collapse)
   done
qed
```

8.6 Assignment

definition Assigns CSP :: ' σ usubst \Rightarrow (' σ , ' φ) action ($\langle - \rangle_C$) where

```
[upred-defs]: Assigns CSP \sigma = \mathbf{R}_s(true \vdash false \diamond (\$tr' =_u \$tr \land \lceil \langle \sigma \rangle_a \rceil_S))
syntax
  -assigns-csp :: svids \Rightarrow uexprs \Rightarrow logic ('(-') :=_C '(-'))
  -assigns-csp :: svids \Rightarrow uexprs \Rightarrow logic (infixr :=_C 64)
translations
  -assigns-csp \ xs \ vs => CONST \ AssignsCSP \ (-mk-usubst \ (CONST \ id) \ xs \ vs)
  -assigns-csp \ x \ v \le CONST \ AssignsCSP \ (CONST \ subst-upd \ (CONST \ id) \ x \ v)
  -assigns-csp \ x \ v <= -assigns-csp \ (-spvar \ x) \ v
 x,y:=_C u,v <= CONST \ Assigns CSP \ (CONST \ subst-upd \ (CONST \ subst-upd \ (CONST \ id) \ (CONST \ id)
svar x) u) (CONST svar y) v)
lemma preR-AssignsCSP [rdes]: pre_R(\langle \sigma \rangle_C) = true_r
 by (rel-auto)
lemma periR-Assigns CSP [rdes]: peri_R(\langle \sigma \rangle_C) = false
  by (rel-auto)
lemma postR-Assigns CSP [rdes]: post_R(\langle \sigma \rangle_C) = \Phi(true, \sigma, \langle \rangle)
 by (rel-auto)
lemma AssignsCSP-rdes-def [rdes-def] : \langle \sigma \rangle_C = \mathbf{R}_s(true_r \vdash false \diamond \Phi(true, \sigma, \langle \rangle))
  by (rel-auto)
lemma Assigns CSP-CSP [closure]: \langle \sigma \rangle_C is CSP
  by (simp add: AssignsCSP-def RHS-tri-design-is-SRD unrest)
lemma Assigns CSP-CSP3 [closure]: \langle \sigma \rangle_C is CSP3
  by (rule CSP3-intro, simp add: closure, rel-auto)
lemma Assigns CSP-CSP4 [closure]: \langle \sigma \rangle_C is CSP4
  by (rule CSP4-intro, simp add: closure, rel-auto+)
lemma AssignsCSP-NCSP [closure]: \langle \sigma \rangle_C is NCSP
  by (simp add: AssignsCSP-CSP AssignsCSP-CSP3 AssignsCSP-CSP4 NCSP-intro)
lemma AssignsCSP-ICSP [closure]: \langle \sigma \rangle_C is ICSP
  apply (rule ICSP-intro, simp add: closure, simp add: rdes-def)
 apply (rule ISRD1-rdes-intro)
 apply (simp-all add: closure)
 apply (rel-auto)
done
lemma AssignsCSP-as-AssignsR: \langle \sigma \rangle_R;; Skip = \langle \sigma \rangle_C
 by (rdes-eq)
lemma Assign C-init-refine-intro:
  assumes
    vwb-lens x $st:x \ \sharp P_2 $st:x \ \sharp P_3
    P_2 is RR P_3 is RR Q is NCSP
    \mathbf{R}_s([\&x =_u \ll k \gg]_{S <} \vdash P_2 \diamond P_3) \sqsubseteq Q
 shows \mathbf{R}_s(true_r \vdash P_2 \diamond P_3) \sqsubseteq (x :=_C \ll k \gg) ;; Q
 \textbf{by} \ (simp \ add: Assigns CSP-as-Assigns R[\ THEN \ sym] \ assms \ seqr-assoc \ Skip-left-unit \ Assign R-init-refine-intro
```

```
closure)
```

```
lemma AssignsCSP-refines-sinv:

assumes '\sigma \dagger b'

shows sinv_R(b) \sqsubseteq \langle \sigma \rangle_C

apply (rdes-refine-split)

apply (simp-all)

apply (metis\ rea-st-cond-true st-cond-conj utp-pred-laws.inf.absorb-iff2 utp-pred-laws.inf-top-left)

using assms apply (rel-auto)

done
```

8.7 Assignment with update

 $\mathbf{definition} \ Assign CSP$ -update ::

by (simp add: closure)

There are different collections that we would like to assign to, but they all have different types and perhaps more importantly different conditions on the update being well defined. For example, for a list well-definedness equates to the index being less than the length etc. Thus we here set up a polymorphic constant for CSP assignment updates that can be specialised to different types.

```
('f \Rightarrow 'k \ set) \Rightarrow ('f \Rightarrow 'k \Rightarrow 'v \Rightarrow 'f) \Rightarrow ('f \Longrightarrow '\sigma) \Rightarrow
  ('k, '\sigma) \ uexpr \Rightarrow ('v, '\sigma) \ uexpr \Rightarrow ('\sigma, '\varphi) \ action \ where
[upred-defs, rdes-def]: Assign CSP-update domf updatef x k v =
 \mathbf{R}_s([k \in_u uop\ domf\ (\&x)]_{S<} \vdash false \diamond \Phi(true,[x \mapsto_s trop\ updatef\ (\&x)\ k\ v],\ \langle\rangle))
All different assignment updates have the same syntax; the type resolves which implementation
to use.
syntax
  -csp-assign-upd :: svid \Rightarrow uexp \Rightarrow uexp \Rightarrow logic (-[-] :=_C - [61,0,62] 62)
translations
  -csp-assign-upd x \ k \ v == CONST \ AssignCSP-update (CONST udom) (CONST uupd) x \ k \ v
lemma AssignCSP-update-CSP [closure]:
  AssignCSP-update domf updatef x \ k \ v \ is \ CSP
  by (simp add: AssignCSP-update-def RHS-tri-design-is-SRD unrest)
lemma preR-AssignCSP-update [rdes]:
  pre_R(AssignCSP\text{-}update\ domf\ updatef\ x\ k\ v) = [k \in_u \ uop\ domf\ (\&x)]_{S<}
 by (rel-auto)
lemma periR-AssignCSP-update [rdes]:
  peri_R(AssignCSP\text{-update domf updatef } x \ k \ v) = [k \notin_u uop domf (\&x)]_{S < v}
 by (rel\text{-}simp)
lemma post-AssignCSP-update [rdes]:
  post_R(AssignCSP\text{-}update\ domf\ updatef\ x\ k\ v) =
    (\Phi(true, [x \mapsto_s trop\ updatef\ (\&x)\ k\ v], \langle\rangle) \triangleleft (k \in_u uop\ domf\ (\&x)) \triangleright_R R1(true))
  by (rel-auto)
lemma AssignCSP-update-NCSP [closure]:
  (AssignCSP-update\ domf\ updatef\ x\ k\ v)\ is\ NCSP
proof (rule NCSP-intro)
  show (Assign CSP-update domf updatef x k v) is CSP
```

```
show (AssignCSP-update domf updatef x \ k \ v) is CSP3
   by (rule CSP3-SRD-intro, simp-all add: csp-do-def closure rdes unrest)
 show (AssignCSP-update domf updatef x \ k \ v) is CSP4
   by (rule CSP4-tri-intro, simp-all add: csp-do-def closure rdes unrest, rel-auto)
qed
        State abstraction
8.8
lemma ref-unrest-abs-st [unrest]:
  ref \ \sharp \ P \Longrightarrow ref \ \sharp \ \langle P \rangle_S
 ref' \sharp P \Longrightarrow ref' \sharp \langle P \rangle_S
 by (rel\text{-}simp)+
lemma NCSP-state-srea [closure]: P is NCSP \Longrightarrow state 'a \cdot P is NCSP
  apply (rule NCSP-NSRD-intro)
 apply (simp-all add: closure rdes)
 apply (simp-all add: state-srea-def unrest closure)
done
8.9
        Assumptions
definition AssumeCircus ([-]_C) where
[rdes-def]: [b]_C = b \rightarrow_R Skip
lemma AssumeCircus-NCSP [closure]: [b]_C is NCSP
 by (simp add: AssumeCircus-def GuardedCommR-NCSP-closed NCSP-Skip)
lemma Assume Circus-Assume R: Skip;; [b]^{\top}_{R} = [b]_{C} [b]^{\top}_{R};; Skip = [b]_{C}
  by (rdes-eq)+
lemma AssumeR-comp-AssumeCircus: P is <math>NCSP \Longrightarrow P ;; [b]^{\top}_{R} = P ;; [b]_{C}
  by (metis (no-types, hide-lams) AssumeCircus-AssumeR(1) RA1 Skip-right-unit)
lemma gcmd-AssumeCircus:
  P \text{ is } NCSP \Longrightarrow b \rightarrow_R P = [b]_C \text{ };; P
 by (simp add: AssumeCircus-def NCSP-implies-NSRD Skip-left-unit gcmd-seq-distr)
lemma rdes-assume-pre-refine:
  assumes P is NCSP
  shows P \sqsubseteq [b]_C ;; P
 by (rdes-refine cls: assms)
8.10
         Guards
definition GuardCSP ::
  '\sigma \ cond \Rightarrow
  ('\sigma, '\varphi) \ action \Rightarrow
  ('\sigma, '\varphi) action where
[upred-defs]: GuardCSP g A = \mathbf{R}_s((\lceil g \rceil_{S <} \Rightarrow_r pre_R(A)) \vdash ((\lceil g \rceil_{S <} \land cmt_R(A)) \lor (\lceil \neg g \rceil_{S <}) \land \$tr' =_u
tr \wedge wait')
syntax
  -GuardCSP :: uexp \Rightarrow logic \Rightarrow logic (infixr &<sub>u</sub> 60)
```

translations

 $-GuardCSP \ b \ P == CONST \ GuardCSP \ b \ P$

```
lemma Guard-tri-design:
      g \&_u P = \mathbf{R}_s((\lceil g \rceil_{S \leqslant} \Rightarrow_r pre_R P) \vdash (peri_R(P) \triangleleft \lceil g \rceil_{S \leqslant} \triangleright (\$tr' =_u \$tr)) \diamond (\lceil g \rceil_{S \leqslant} \wedge post_R(P)))
proof -
     have (\lceil g \rceil_{S <} \land cmt_R \ P \lor \lceil \neg g \rceil_{S <} \land \$tr' =_u \$tr \land \$wait') = (peri_R(P) \triangleleft \lceil g \rceil_{S <} \triangleright (\$tr' =_u \$tr)) \diamond
(\lceil g \rceil_{S <} \land post_R(P))
          by (rel-auto)
     thus ?thesis by (simp add: GuardCSP-def)
qed
lemma csp-do-cond-conj:
     assumes P is CRR
     shows (\lceil b \rceil_{S<} \land P) = \Phi(b, id, \langle \rangle) ;; P
proof -
     have (\lceil b \rceil_{S <} \land CRR(P)) = \Phi(b, id, \langle \rangle) ;; CRR(P)
          by (rel-auto)
     thus ?thesis
          by (simp add: Healthy-if assms)
qed
lemma Guard-rdes-def [rdes-def]:
     assumes P is RR Q is CRR R is CRR
     \mathbf{shows}\ g\ \&_u\ \mathbf{R}_s(P\vdash Q\diamond R) = \mathbf{R}_s\ ((\mathcal{I}(g,\langle\rangle)\Rightarrow_r P)\vdash ((\Phi(g,id,\langle\rangle)\ ;;\ Q)\lor \mathcal{E}(\neg g,\langle\rangle,\{\}_u)) \diamond (\Phi(g,id,\langle\rangle)) = ((\Phi(g,id,\langle\rangle),\{\}_u)) \diamond (\Phi(g,id,\langle\rangle)) \diamond (\Phi(g,id,\langle\rangle)) = ((\Phi(g,id,\langle\rangle),\{\}_u)) \diamond (\Phi(g,id,\langle\rangle)) = ((\Phi(g,id,\langle\rangle),\{\}_u)) \diamond (\Phi(g,id,\langle\rangle)) = ((\Phi(g,id,\langle\rangle),\{\}_u)) \diamond (\Phi(g,id,\langle\rangle)) = ((\Phi(g,id,\langle\rangle),\{\}_u)) \diamond (\Phi(g,id,\langle\rangle)) \diamond (\Phi(g,id,\langle\rangle)) = ((\Phi(g,id,\langle\rangle),\{\}_u) \diamond (\Phi(g,id,\langle\rangle)) = ((\Phi(g,id,\langle\rangle),\{\}_u)) \diamond (\Phi(g,id,\langle\rangle)) = ((\Phi(g,
\langle \rangle ) ; R)
     (is ?lhs = ?rhs)
proof -
     have ?lhs = \mathbf{R}_s ((\lceil g \rceil_{S <} \Rightarrow_r P) \vdash ((P \Rightarrow_r Q) \triangleleft \lceil g \rceil_{S <} \triangleright (\$tr' =_u \$tr)) \diamond (\lceil g \rceil_{S <} \wedge (P \Rightarrow_r R)))
          by (simp add: Guard-tri-design rdes assms closure)
     also have ... = \mathbf{R}_s ((\mathcal{I}(g,\langle\rangle) \Rightarrow_r P) \vdash ((\lceil g \rceil_{S<} \land Q) \lor \mathcal{E}(\neg g,\langle\rangle, \{\}_u)) \diamond (\lceil g \rceil_{S<} \land R))
          by (rel-auto)
     also have ... = \mathbf{R}_s ((\mathcal{I}(g,\langle\rangle) \Rightarrow_r P) \vdash ((\Phi(g,id,\langle\rangle);;Q) \lor \mathcal{E}(\neg g,\langle\rangle,\{\}_u)) \diamond (\Phi(g,id,\langle\rangle);;R))
          by (simp\ add:\ assms(2)\ assms(3)\ csp-do-cond-conj)
     finally show ?thesis.
qed
lemma Guard-rdes-def':
     assumes \$ok' \sharp P
     shows g \&_u (\mathbf{R}_s(P \vdash Q)) = \mathbf{R}_s((\lceil g \rceil_{S <} \Rightarrow_r P) \vdash (\lceil g \rceil_{S <} \land Q \lor \lceil \neg g \rceil_{S <} \land \$tr' =_u \$tr \land \$wait'))
     have g \&_u (\mathbf{R}_s(P \vdash Q)) = \mathbf{R}_s((\lceil g \rceil_{S \leq r} pre_R (\mathbf{R}_s (P \vdash Q))) \vdash (\lceil g \rceil_{S \leq r} cmt_R (\mathbf{R}_s (P \vdash Q))) \lor
\lceil \neg g \rceil_{S<} \land \$tr' =_u \$tr \land \$wait')
          \mathbf{by}\ (simp\ add\colon GuardCSP\text{-}def)
   \textbf{also have} \ ... = \mathbf{R}_s((\lceil g \rceil_{S<} \Rightarrow_r R1(R2c(pre_s \dagger P))) \vdash (\lceil g \rceil_{S<} \land R1(R2c(cmt_s \dagger (P \Rightarrow Q))) \lor \lceil \neg g \rceil_{S<}))) \lor \lceil \neg g \rceil_{S<})
\wedge \$tr' =_u \$tr \wedge \$wait')
          by (simp add: rea-pre-RHS-design rea-cmt-RHS-design)
     also have ... = \mathbf{R}_s((\lceil g \rceil_{S \leq r} R1(R2c(pre_s \dagger P))) \vdash R1(R2c(\lceil g \rceil_{S \leq r} \land R1(R2c(cmt_s \dagger (P \Rightarrow Q))))
\vee [\neg g]_{S<} \wedge \$tr' =_u \$tr \wedge \$wait')))
          by (metis (no-types, lifting) RHS-design-export-R1 RHS-design-export-R2c)
       also have ... = \mathbf{R}_s((\lceil g \rceil_{S \leq} \Rightarrow_r R1(R2c(pre_s \dagger P))) \vdash R1(R2c(\lceil g \rceil_{S \leq} \land (cmt_s \dagger (P \Rightarrow Q)) \lor \lceil \neg g \rceil_{S \leq}))
\wedge \$tr' =_u \$tr \wedge \$wait')))
             by (simp add: R1-R2c-commute R1-disj R1-extend-conj' R1-idem R2c-and R2c-disj R2c-idem)
       also have ... = \mathbf{R}_s((\lceil g \rceil_{S <} \Rightarrow_r R1(R2c(pre_s \dagger P))) \vdash (\lceil g \rceil_{S <} \land (cmt_s \dagger (P \Rightarrow Q)) \lor \lceil \neg g \rceil_{S <} \land \$tr'
=_{u} \$tr \land \$wait')
             by (metis (no-types, lifting) RHS-design-export-R1 RHS-design-export-R2c)
       also have ... = \mathbf{R}_s((\lceil g \rceil_{S <} \Rightarrow_r R1(R2c(pre_s \dagger P)))) \vdash cmt_s \dagger (\lceil g \rceil_{S <} \land (cmt_s \dagger (P \Rightarrow Q)) \lor \lceil \neg g \rceil_{S <})
```

```
\wedge \$tr' =_u \$tr \wedge \$wait')
                   by (simp add: rdes-export-cmt)
            also have ... = \mathbf{R}_s((\lceil g \rceil_{S \leqslant} \Rightarrow_r R1(R2c(pre_s \dagger P))) \vdash cmt_s \dagger (\lceil g \rceil_{S \leqslant} \land (P \Rightarrow Q) \lor \lceil \neg g \rceil_{S \leqslant} \land \$tr'
=_{u} \$tr \land \$wait')
                   by (simp add: usubst)
            also have ... = \mathbf{R}_s((\lceil g \rceil_{S<} \Rightarrow_r R1(R2c(pre_s \dagger P))) \vdash (\lceil g \rceil_{S<} \land (P \Rightarrow Q) \lor \lceil \neg g \rceil_{S<} \land \$tr' =_u \$tr
\land \$wait'))
                   by (simp add: rdes-export-cmt)
           also from assms have ... = \mathbf{R}_s((\lceil g \rceil_{S<} \Rightarrow_r (pre_s \dagger P)) \vdash (\lceil g \rceil_{S<} \land (P \Rightarrow Q) \lor \lceil \neg g \rceil_{S<} \land \$tr' =_u
tr \wedge wait')
                   by (rel-auto)
             also have ... = \mathbf{R}_s((\lceil g \rceil_{S <} \Rightarrow_r pre_s \dagger P) \llbracket true, false/\$ok, \$wait \rrbracket \vdash (\lceil g \rceil_{S <} \land (P \Rightarrow Q) \lor \lceil \neg g \rceil_{S <} \land (P \Rightarrow Q) \lor \lceil \neg g \rceil_{S <} \land (P \Rightarrow Q) \lor \lceil \neg g \rceil_{S <} \land (P \Rightarrow Q) \lor \lceil \neg g \rceil_{S <} \land (P \Rightarrow Q) \lor \lceil \neg g \rceil_{S <} \land (P \Rightarrow Q) \lor \lceil \neg g \rceil_{S <} \land (P \Rightarrow Q) \lor \lceil \neg g \rceil_{S <} \land (P \Rightarrow Q) \lor \lceil \neg g \rceil_{S <} \land (P \Rightarrow Q) \lor \lceil \neg g \rceil_{S <} \land (P \Rightarrow Q) \lor \lceil \neg g \rceil_{S <} \land (P \Rightarrow Q) \lor \lceil \neg g \rceil_{S <} \land (P \Rightarrow Q) \lor \lceil \neg g \rceil_{S <} \land (P \Rightarrow Q) \lor \lceil \neg g \rceil_{S <} \land (P \Rightarrow Q) \lor [\neg g \Rightarrow_{S <} \land (P \Rightarrow Q) \lor [\neg g \Rightarrow_{S <} \land (P \Rightarrow Q) \lor [\neg g \Rightarrow_{S <} \land (P \Rightarrow Q) \lor [\neg g \Rightarrow_{S <} \land (P \Rightarrow Q) \lor [\neg g \Rightarrow_{S <} \land (P \Rightarrow Q) \lor [\neg g \Rightarrow_{S <} \land (P \Rightarrow Q) \lor [\neg g \Rightarrow_{S <} \land (P \Rightarrow Q) \lor [\neg g \Rightarrow_{S <} \land (P \Rightarrow Q) \lor [\neg g \Rightarrow_{S <} \land (P \Rightarrow Q) \lor [\neg g \Rightarrow_{S <} \land (P \Rightarrow Q) \lor [\neg g \Rightarrow_{S <} \land (P \Rightarrow Q) \lor [\neg g \Rightarrow_{S <} \land (P \Rightarrow Q) \lor [\neg g \Rightarrow_{S <} \land (P \Rightarrow Q) \lor [\neg g \Rightarrow_{S <} \land (P \Rightarrow Q) \lor [\neg g \Rightarrow_{S <} \land (P \Rightarrow Q) \lor [\neg g \Rightarrow_{S <} \land (P \Rightarrow Q) \lor [\neg g \Rightarrow_{S <} \land (P \Rightarrow Q) \lor (P \Rightarrow_{S <} \land (P \Rightarrow Q) \lor [\neg g \Rightarrow_{S <} \land (P \Rightarrow Q) \lor (P \Rightarrow_{S <} \land (P \Rightarrow_{S <}
tr' =_u tr \wedge wait')
                   by (simp add: rdes-export-pre)
         \textbf{also from } \textit{assms } \textbf{have } ... = \mathbf{R}_s((\lceil g \rceil_{S<} \Rightarrow_r P)[\![\textit{true}, \textit{false}/\$\textit{ok}, \$\textit{wait}]\!] \vdash (\lceil g \rceil_{S<} \land (P \Rightarrow Q) \lor \lceil \neg g \rceil_{S<})
\wedge \$tr' =_u \$tr \wedge \$wait')
                   by (rel-auto)
             also from assms have ... = \mathbf{R}_s((\lceil g \rceil_{S<} \Rightarrow_r P) \vdash (\lceil g \rceil_{S<} \land (P \Rightarrow Q) \lor \lceil \neg g \rceil_{S<} \land \$tr' =_u \$tr \land (P \Rightarrow Q) \lor [\neg g \rceil_{S<} \land \$tr' =_u \$tr \land (P \Rightarrow Q) \lor [\neg g \rceil_{S<} \land \$tr' =_u \$tr \land (P \Rightarrow Q) \lor [\neg g \rceil_{S<} \land \$tr' =_u \$tr \land (P \Rightarrow Q) \lor [\neg g \rceil_{S<} \land \$tr' =_u \$tr \land (P \Rightarrow Q) \lor [\neg g \rceil_{S<} \land \$tr' =_u \$tr \land (P \Rightarrow Q) \lor [\neg g \rceil_{S<} \land \$tr' =_u \$tr \land (P \Rightarrow Q) \lor [\neg g \rceil_{S<} \land \$tr' =_u \$tr \land (P \Rightarrow Q) \lor [\neg g \rceil_{S<} \land \$tr' =_u \$tr \land (P \Rightarrow Q) \lor [\neg g \rceil_{S<} \land \$tr' =_u \$tr \land (P \Rightarrow Q) \lor [\neg g \rceil_{S<} \land \$tr' =_u \$tr \land (P \Rightarrow Q) \lor [\neg g \rceil_{S<} \land (P \Rightarrow Q) \lor [\neg g \rceil_{S} \land (P \Rightarrow 
$wait'))
                   by (simp add: rdes-export-pre)
           also have ... = \mathbf{R}_s((\lceil g \rceil_{S \leq} \Rightarrow_r P) \vdash (\lceil g \rceil_{S \leq} \land Q \lor \lceil \neg g \rceil_{S \leq} \land \$tr' =_u \$tr \land \$wait'))
                   by (rule cong[of \mathbf{R}_s \mathbf{R}_s], simp, rel-auto)
           finally show ?thesis.
qed
lemma CSP-Guard [closure]: b \&_u P is CSP
        by (simp add: GuardCSP-def, rule RHS-design-is-SRD, simp-all add: unrest)
lemma preR-Guard [rdes]: P is CSP \Longrightarrow pre_R(b \&_u P) = ([b]_{S<} \Rightarrow_r pre_R P)
        by (simp add: Guard-tri-design rea-pre-RHS-design usubst unrest R2c-preR R2c-lift-state-pre
                        R2c-rea-impl R1-rea-impl R1-preR Healthy-if, rel-auto)
lemma periR-Guard [rdes]:
        assumes P is NCSP
       shows peri_R(b \&_u P) = (peri_R P \triangleleft b \triangleright_R \mathcal{E}(true, \langle \rangle, \{\}_u))
proof -
        have peri_R(b \&_u P) = ((\lceil b \rceil_{S \leqslant \Rightarrow_r} pre_R P) \Rightarrow_r (peri_R P \triangleleft \lceil b \rceil_{S \leqslant \triangleright} (\$tr' =_u \$tr)))
               by (simp add: assms Guard-tri-design rea-peri-RHS-design usubst unrest R1-rea-impl R2c-rea-not
                                R2c-rea-impl R2c-preR R2c-periR R2c-tr'-minus-tr R2c-lift-state-pre R2c-condr closure
                                Healthy-if R1-cond R1-tr'-eq-tr)
        also have ... = ((pre_R P \Rightarrow_r peri_R P) \triangleleft \lceil b \rceil_{S <} \triangleright (\$tr' =_u \$tr))
               by (rel-auto)
        also have ... = (peri_R \ P \triangleleft \lceil b \rceil_{S <} \triangleright (\$tr' =_u \$tr))
               by (simp add: SRD-peri-under-pre add: unrest closure assms)
        finally show ?thesis
               \mathbf{by} rel-auto
qed
lemma postR-Guard [rdes]:
        assumes P is NCSP
        shows post_R(b \&_u P) = ([b]_{S <} \land post_R P)
        have post_R(b \&_u P) = ((\lceil b \rceil_{S <} \Rightarrow_r pre_R P) \Rightarrow_r (\lceil b \rceil_{S <} \land post_R P))
             by (simp add: Guard-tri-design rea-post-RHS-design usubst unrest R2c-rea-not R2c-and R2c-rea-impl
                                R2c-preR R2c-postR R2c-tr'-minus-tr R2c-lift-state-pre R2c-condr R1-rea-impl R1-extend-conj'
```

```
R1-post-SRD closure assms)
 also have ... = (\lceil b \rceil_{S <} \land (pre_R P \Rightarrow_r post_R P))
   by (rel-auto)
  also have ... = (\lceil b \rceil_{S <} \land post_R P)
   by (simp add: SRD-post-under-pre add: unrest closure assms)
 also have ... = ([b]_{S<} \land post_R P)
   by (metis CSP-Guard R1-extend-conj R1-post-SRD calculation rea-st-cond-def)
 finally show ?thesis.
qed
lemma CSP3-Guard [closure]:
 assumes P is CSP P is CSP3
 shows b \&_u P is CSP3
proof -
 from assms have 1:ref \ \sharp \ P[false/\$wait]
   by (simp add: CSP-Guard CSP3-iff)
 hence ref \sharp pre_R (P \llbracket 0/\$tr \rrbracket) \$ref \sharp pre_R P \$ref \sharp cmt_R P
   by (pred-blast)+
 hence ref \sharp (b \&_u P) \llbracket false / \$wait \rrbracket
    by (simp add: CSP3-iff GuardCSP-def RHS-def R1-def R2c-def R2s-def R3h-def design-def unrest
usubst)
 thus ?thesis
   by (metis CSP3-intro CSP-Guard)
qed
lemma CSP4-Guard [closure]:
 assumes P is NCSP
 shows b \&_u P is CSP4
proof (rule CSP4-tri-intro[OF CSP-Guard])
 show (\neg_r \ pre_R \ (b \ \&_u \ P)) \ ;; \ R1 \ true = (\neg_r \ pre_R \ (b \ \&_u \ P))
 proof -
   have a:(\neg_r \ pre_R \ P) \ ;; \ R1 \ true = (\neg_r \ pre_R \ P)
     by (simp add: CSP4-neg-pre-unit assms closure)
   have (\neg_r ([b]_{S<} \Rightarrow_r pre_R P)) ;; R1 true = (\neg_r ([b]_{S<} \Rightarrow_r pre_R P))
   proof -
     have 1:(\neg_r ([b]_{S<} \Rightarrow_r pre_R P)) = ([b]_{S<} \land (\neg_r pre_R P))
       by (rel-auto)
     also have 2:... = ([b]_{S <} \land ((\neg_r \ pre_R \ P) \ ;; \ R1 \ true))
       by (simp \ add: \ a)
     also have 3:... = (\neg_r ([b]_{S <} \Rightarrow_r pre_R P)) ;; R1 true
       by (rel-auto)
     finally show ?thesis ..
   qed
   thus ?thesis
     by (simp add: preR-Guard periR-Guard NSRD-CSP4-intro closure assms unrest)
 show \$st' \sharp peri_R (b \&_u P)
   by (simp add: preR-Guard periR-Guard NSRD-CSP4-intro closure assms unrest)
 show \$ref' \sharp post_R (b \&_u P)
   by (simp add: preR-Guard postR-Guard NSRD-CSP4-intro closure assms unrest)
qed
lemma NCSP-Guard [closure]:
 assumes P is NCSP
 shows b \&_u P is NCSP
```

```
proof -
      have P is CSP
           using NCSP-implies-CSP assms by blast
      then show ?thesis
         by (metis (no-types) CSP3-Guard CSP3-commutes-CSP4 CSP4-Guard CSP4-Idempotent CSP-Guard
Healthy-Idempotent Healthy-def NCSP-def assms comp-apply)
qed
lemma Productive-Guard [closure]:
     assumes P is CSP P is Productive wait' \not\equiv pre_R(P)
     shows b \&_u P is Productive
proof -
      have b \&_u P = b \&_u \mathbf{R}_s(pre_R(P) \vdash peri_R(P) \diamond (post_R(P) \land \$tr <_u \$tr'))
           by (metis\ Healthy-def\ Productive-form\ assms(1)\ assms(2))
     also have ... =
                      \mathbf{R}_s ((\lceil b \rceil_{S <} \Rightarrow_r pre_R P) \vdash
                             ((pre_R P \Rightarrow_r peri_R P) \triangleleft \lceil b \rceil_{S \leq P} (\$tr' =_u \$tr)) \triangleleft (\lceil b \rceil_{S \leq P} \land (pre_R P \Rightarrow_r post_R P \land \$tr' >_u
           by (simp add: Guard-tri-design rea-pre-RHS-design rea-peri-RHS-design rea-post-RHS-design unrest
assms
                 usubst\ R1-preR\ Healthy-if\ R1-rea-impl\ R1-peri-SRD\ R1-extend-conj'\ R2c-preR\ R2c-not\ R2c-rea-impl\ R1-peri-SRD\ R1-extend-conj'\ R2c-preR\ R2c-not\ R2c-rea-impl\ R1-peri-SRD\ R1-extend-conj'\ R2c-preR\ R2c-not\ R2c-peri-substantial
                       R2c-periR R2c-postR R2c-and R2c-tr-less-tr' R1-tr-less-tr')
     \textbf{also have} \ ... = \mathbf{R}_s \ ((\lceil b \rceil_{S<} \Rightarrow_r \mathit{pre}_R \ P) \vdash (\mathit{peri}_R \ P \mathrel{\triangleleft} \lceil b \rceil_{S<} \mathrel{\triangleright} (\$tr' =_u \$tr)) \mathrel{\Diamond} ((\lceil b \rceil_{S<} \land \mathit{post}_R \ P)
\wedge \$tr' >_{u} \$tr)
           by (rel-auto)
      also have ... = Productive(b \&_u P)
           by (simp add: Productive-def Guard-tri-design RHS-tri-design-par unrest)
     finally show ?thesis
           by (simp add: Healthy-def')
qed
lemma Guard-refines-sinv:
     assumes P is NCSP sinv_R(b) \sqsubseteq P
     shows sinv_R(b) \sqsubseteq g \&_u P
proof -
      have \mathbf{R}_s([b]_{S<} \vdash R1 \; true \diamond [b]_{S>}) \sqsubseteq \mathbf{R}_s(pre_R(P) \vdash peri_R(P) \diamond post_R(P))
           by (simp add: rdes-def NCSP-implies-CSP SRD-reactive-tri-design)
      thus ?thesis
           apply (simp add: RHS-tri-design-refine' closure unrest assms)
           apply (safe)
           apply (rdes-refine\ cls:\ assms(1))
           done
qed
8.11
                              Basic events
definition do_u ::
      (\varphi, '\sigma) \ uexpr \Rightarrow (\sigma, '\varphi) \ action \ where
[\textit{upred-defs}]: \textit{do}_u \ e = ((\$\textit{tr'} =_u \$\textit{tr} \land \lceil e \rceil_{S<} \not\in_u \$\textit{ref'}) \triangleleft \$\textit{wait'} \rhd (\$\textit{tr'} =_u \$\textit{tr} \ \hat{\ \ }_u \ \langle \lceil e \rceil_{S<} \rangle \land \$\textit{st'} =_u \$\textit{tr} \ \hat{\ \ }_u \ \langle \lceil e \rceil_{S<} \rangle \land \$\textit{st'} =_u \$\textit{tr} \ \hat{\ \ }_u \ \langle \lceil e \rceil_{S<} \rangle \land \$\textit{st'} =_u \$\textit{tr} \ \hat{\ \ }_u \ \langle \lceil e \rceil_{S<} \rangle \land \$\textit{st'} =_u \$\textit{tr} \ \hat{\ \ }_u \ \langle \lceil e \rceil_{S<} \rangle \land \$\textit{st'} =_u \$\textit{tr} \ \hat{\ \ }_u \ \langle \lceil e \rceil_{S<} \rangle \land \$\textit{st'} =_u \ \langle \lceil e \rceil_{S<} \rangle \land \$\textit{st'} =_u \ \langle \lceil e \rceil_{S<} \rangle \land \$\textit{st'} =_u \ \langle \lceil e \rceil_{S<} \rangle \land \$\textit{st'} =_u \ \langle \lceil e \rceil_{S<} \rangle \land \$\textit{st'} =_u \ \langle \lceil e \rceil_{S<} \rangle \land \$\textit{st'} =_u \ \langle \lceil e \rceil_{S<} \rangle \land \$\textit{st'} =_u \ \langle \lceil e \rceil_{S<} \rangle \land \$\textit{st'} =_u \ \langle \lceil e \rceil_{S<} \rangle \land \$\textit{st'} =_u \ \langle \lceil e \rceil_{S<} \rangle \land \$\textit{st'} =_u \ \langle \lceil e \rceil_{S<} \rangle \land \$\textit{st'} =_u \ \langle \lceil e \rceil_{S<} \rangle \land \$\textit{st'} =_u \ \langle \lceil e \rceil_{S<} \rangle \land \$\textit{st'} =_u \ \langle \lceil e \rceil_{S<} \rangle \land \$\textit{st'} =_u \ \langle \lceil e \rceil_{S<} \rangle \land \$\textit{st'} =_u \ \langle \lceil e \rceil_{S<} \rangle \land \$\textit{st'} =_u \ \langle \lceil e \rceil_{S<} \rangle \land \$\textit{st'} =_u \ \langle \lceil e \rceil_{S<} \rangle \land \$\textit{st'} =_u \ \langle \lceil e \rceil_{S<} \rangle \land \$\textit{st'} =_u \ \langle \lceil e \rceil_{S<} \rangle \land \$\textit{st'} =_u \ \langle \lceil e \rceil_{S<} \rangle \land \$\textit{st'} =_u \ \langle \lceil e \rceil_{S<} \rangle \land \$\textit{st'} =_u \ \langle \lceil e \rceil_{S<} \rangle \land \$\textit{st'} =_u \ \langle \lceil e \rceil_{S<} \rangle \land \$\textit{st'} =_u \ \langle \lceil e \rceil_{S<} \rangle \land \$\textit{st'} =_u \ \langle \lceil e \rceil_{S<} \rangle \land \$\textit{st'} =_u \ \langle \lceil e \rceil_{S>} \rangle \land \$\textit{st'} =_u \ \langle \lceil e \rceil_{S>} \rangle \land \$\textit{st'} =_u \ \langle \lceil e \rceil_{S>} \rangle \land \$\textit{st'} =_u \ \langle \lceil e \rceil_{S>} \rangle \land \$\textit{st'} =_u \ \langle \lceil e \rceil_{S>} \rangle \land \$\textit{st'} =_u \ \langle \lceil e \rceil_{S>} \rangle \land \$\textit{st'} =_u \ \langle \lceil e \rceil_{S>} \rangle \land \$\textit{st'} =_u \ \langle \lceil e \rceil_{S>} \rangle \land \$\textit{st'} =_u \ \langle \lceil e \rceil_{S>} \rangle \land \$\textit{st'} =_u \ \langle \lceil e \rceil_{S>} \rangle \land \$\textit{st'} =_u \ \langle \lceil e \rceil_{S>} \rangle \land \$\textit{st'} =_u \ \langle \lceil e \rceil_{S>} \rangle \land \$\textit{st'} =_u \ \langle \lceil e \rceil_{S>} \rangle \land \$\textit{st'} =_u \ \langle \lceil e \rceil_{S>} \rangle \land \$\textit{st'} =_u \ \langle \lceil e \rceil_{S>} \rangle \land \$\textit{st'} =_u \ \langle \lceil e \rceil_{S>} \rangle \land \$\textit{st'} =_u \ \langle \lceil e \rceil_{S>} \rangle \land \land \upharpoonright =_u \ \langle \lceil e \rceil_{S>} \rangle \land \upharpoonright =_u \ \langle \lceil e \rceil_{S>} \rangle \land \land \upharpoonright =_u \ \langle \lceil e \rceil_{S>} \rangle \land \upharpoonright =_u \ \langle \lceil e \rceil_{S>} \rangle \land \upharpoonright =_u \ \langle \lceil e \rceil_{S>} \rangle \land \upharpoonright =_u \ \langle \lceil e \rceil_{S>} \rangle \land \upharpoonright =_u \ \langle \lceil e \rceil_{S>} \rangle \land \upharpoonright =_u \ \langle \lceil e \rceil_{S>} \rangle \land \upharpoonright =_u \ \langle \lceil e \rceil_{S>} \rangle \land \upharpoonright =_u \ \langle \lceil e \rceil_{S>} \rangle \land \upharpoonright =_u \ \langle \lceil e \rceil_{S>} \rangle \land \land \upharpoonright =_u \ \langle \lceil e \rceil_{S>} \rangle \land \upharpoonright =_u \ \langle \lceil e \rceil_{S>} \rangle \land \upharpoonright =_u \ \langle \lceil e \rceil_
\$st)
definition \textit{DoCSP} :: ('\varphi, '\sigma) \ \textit{uexpr} \Rightarrow ('\sigma, '\varphi) \ \textit{action} \ (\textit{do}_{\textit{C}}) \ \textbf{where}
[upred-defs]: DoCSP \ a = \mathbf{R}_s(true \vdash do_u \ a)
```

```
lemma R1-DoAct: R1(do_u(a)) = do_u(a)
 by (rel-auto)
lemma R2c\text{-}DoAct: R2c(do_u(a)) = do_u(a)
 by (rel-auto)
lemma DoCSP-alt-def: do_C(a) = R3h(CSP1(\$ok' \land do_u(a)))
 apply (simp add: DoCSP-def RHS-def design-def impl-alt-def R1-R3h-commute R2c-R3h-commute
R2c-disj
                R2c-not R2c-ok R2c-ok' R2c-and R2c-DoAct R1-disj R1-extend-conj' R1-DoAct)
 apply (rel-auto)
done
lemma DoAct-unrests [unrest]:
 \$ok \sharp do_n(a) \$wait \sharp do_n(a)
 by (pred-auto)+
lemma DoCSP-RHS-tri [rdes-def]:
 do_C(a) = \mathbf{R}_s(true_r \vdash (\mathcal{E}(true, \langle \rangle, \{a\}_u) \diamond \Phi(true, id, \langle a \rangle)))
 by (simp add: DoCSP-def do_u-def wait'-cond-def, rel-auto)
lemma CSP-DoCSP [closure]: do_C(a) is CSP
 by (simp add: DoCSP-def do_u-def RHS-design-is-SRD unrest)
lemma preR-DoCSP [rdes]: pre_R(do_C(a)) = true_r
 by (simp add: DoCSP-def rea-pre-RHS-design unrest usubst R2c-true)
lemma periR-DoCSP [rdes]: peri_R(do_C(a)) = \mathcal{E}(true, \langle \rangle, \{a\}_u)
 by (rel-auto)
lemma postR-DoCSP [rdes]: post_R(do_C(a)) = \Phi(true, id, \langle a \rangle)
 by (rel-auto)
lemma CSP3-DoCSP [closure]: do_C(a) is CSP3
 by (rule CSP3-intro[OF CSP-DoCSP])
    (simp\ add:\ DoCSP-def\ do_u-def\ RHS-def\ design-def\ R1-def\ R2c-def\ R2s-def\ R3h-def\ unrest\ usubst)
lemma CSP4-DoCSP [closure]: do_C(a) is CSP4
  by (rule CSP4-tri-intro[OF CSP-DoCSP], simp-all add: preR-DoCSP periR-DoCSP postR-DoCSP
unrest)
lemma NCSP-DoCSP [closure]: do_C(a) is NCSP
 by (metis CSP3-DoCSP CSP4-DoCSP CSP-DoCSP Healthy-def NCSP-def comp-apply)
lemma Productive-DoCSP [closure]:
 (do_C \ a :: ('\sigma, '\psi) \ action) \ is \ Productive
proof -
 have ((\Phi(true,id,\langle a\rangle) \land \$tr' >_u \$tr) :: ('\sigma, '\psi) \ action)
       = (\Phi(true, id, \langle a \rangle))
   by (rel-auto, simp add: Prefix-Order.strict-prefixI')
 hence Productive(do_C \ a) = do_C \ a
   by (simp add: Productive-RHS-design-form DoCSP-RHS-tri unrest)
 thus ?thesis
   by (simp add: Healthy-def)
qed
```

```
lemma PCSP-DoCSP [closure]:
  (do_C \ a :: ('\sigma, '\psi) \ action) \ is \ PCSP
  by (simp add: Healthy-comp NCSP-DoCSP Productive-DoCSP)
\mathbf{lemma}\ wp\text{-}rea\text{-}DoCSP\text{-}lemma:
  fixes P :: ('\sigma, '\varphi) \ action
  assumes \$ok \ \sharp \ P \ \$wait \ \sharp \ P
  \mathbf{shows} \ (\$tr' =_u \$tr \ \hat{\ }_u \ \langle \lceil a \rceil_{S<} \rangle \wedge \$st' =_u \$st) \ ;; \ P = (\exists \ \$ref \cdot P[\$tr \ \hat{\ }_u \ \langle \lceil a \rceil_{S<} \rangle / \$tr])
  using assms
  by (rel-auto, meson)
lemma wp-rea-DoCSP:
  assumes P is NCSP
 shows (tr' =_u tr \hat{u} \langle [a]_{S<} \rangle \wedge t' =_u tr \rangle wp_r pre_R P =
        (\neg_r \ (\neg_r \ pre_R \ P) \llbracket \$tr \ \widehat{\ }_u \ \langle \lceil a \rceil_{S<} \rangle / \$tr \rrbracket)
 by (simp add: wp-rea-def wp-rea-DoCSP-lemma unrest usubst ex-unrest assms closure)
lemma wp-rea-DoCSP-alt:
  assumes P is NCSP
  shows (\$tr' =_u \$tr \hat{u} \langle \lceil a \rceil_{S<}) \wedge \$st' =_u \$st) wp_r pre_R P =
         (\$tr' \geq_u \$tr \hat{\ }_u \ \langle \lceil a \rceil_{S<} \rangle \Rightarrow_r (pre_R \ P) \llbracket \$tr \hat{\ }_u \ \langle \lceil a \rceil_{S<} / \$tr \rrbracket)
  by (simp add: wp-rea-DoCSP assms rea-not-def R1-def usubst unrest, rel-auto)
lemma DoCSP-refine-sinv: sinv_R(b) \sqsubseteq do_C(a)
  by (rdes-refine)
          Event prefix
8.12
\mathbf{definition}\ \mathit{PrefixCSP}\ ::
  ('\varphi, '\sigma) \ uexpr \Rightarrow
  ('\sigma, '\varphi) \ action \Rightarrow
  ('\sigma, '\varphi) \ action \ (-\rightarrow_C - [81, 80] \ 80) \ \mathbf{where}
[upred-defs]: PrefixCSP \ a \ P = (do_C(a) ;; CSP(P))
abbreviation OutputCSP \ c \ v \ P \equiv PrefixCSP \ (c \cdot v)_u \ P
lemma CSP-PrefixCSP [closure]: PrefixCSP a P is CSP
 by (simp add: PrefixCSP-def closure)
lemma CSP3-PrefixCSP [closure]:
  PrefixCSP a P is CSP3
  by (metis (no-types, hide-lams) CSP3-DoCSP CSP3-def Healthy-def PrefixCSP-def seqr-assoc)
lemma CSP4-PrefixCSP [closure]:
  assumes P is CSP P is CSP4
  shows PrefixCSP a P is CSP4
  by (metis (no-types, hide-lams) CSP4-def Healthy-def PrefixCSP-def assms(1) assms(2) seqr-assoc)
lemma NCSP-PrefixCSP [closure]:
 assumes P is NCSP
 shows PrefixCSP a P is NCSP
 by (metis (no-types, hide-lams) CSP3-PrefixCSP CSP3-commutes-CSP4 CSP4-Idempotent CSP4-PrefixCSP
        CSP-PrefixCSP Healthy-Idempotent Healthy-def NCSP-def NCSP-implies-CSP assms comp-apply)
lemma Productive-PrefixCSP [closure]: P is NCSP \Longrightarrow PrefixCSP a P is Productive
```

```
lemma PCSP-PrefixCSP [closure]: P is NCSP \Longrightarrow PrefixCSP a P is PCSP
  by (simp add: Healthy-comp NCSP-PrefixCSP Productive-PrefixCSP)
lemma PrefixCSP-Guarded [closure]: Guarded (PrefixCSP a)
proof -
  have PrefixCSP \ a = (\lambda \ X. \ do_C(a) \ ;; \ CSP(X))
    by (simp add: fun-eq-iff PrefixCSP-def)
  thus ?thesis
    using Guarded-if-Productive NCSP-DoCSP NCSP-implies-NSRD Productive-DoCSP by auto
qed
lemma PrefixCSP-type [closure]: PrefixCSP a \in [H]_H \to [CSP]_H
  using CSP-PrefixCSP by blast
lemma PrefixCSP-Continuous [closure]: Continuous (PrefixCSP a)
  by (simp add: Continuous-def PrefixCSP-def ContinuousD[OF SRD-Continuous] seq-Sup-distl)
lemma PrefixCSP-RHS-tri-lemma1:
  R1 \ (R2s \ (\$tr' =_u \$tr \hat{\ }_u \ \langle \lceil a \rceil_{S<} \rangle \wedge \lceil II \rceil_R)) = (\$tr' =_u \$tr \hat{\ }_u \ \langle \lceil a \rceil_{S<} \rangle \wedge \lceil II \rceil_R)
  by (rel-auto)
lemma PrefixCSP-RHS-tri-lemma2:
  fixes P :: ('\sigma, '\varphi) \ action
  assumes \$ok \ \sharp \ P \ \$wait \ \sharp \ P
 shows ((\$tr' =_u \$tr \hat{\ }_u \langle [a]_{S<} \rangle \wedge \$st' =_u \$st) \wedge \neg \$wait') ;; P = (\exists \$ref \cdot P[\$tr \hat{\ }_u \langle [a]_{S<} \rangle / \$tr])
  using assms
  by (rel-auto, meson, fastforce)
lemma tr-extend-seqr:
  fixes P :: ('\sigma, '\varphi) \ action
  assumes \$ok \ \sharp \ P \ \$wait \ \sharp \ P \ \$ref \ \sharp \ P
  shows (\$tr' =_u \$tr \hat{u} \langle [a]_{S<} \rangle \wedge \$st' =_u \$st) ;; P = P[\![\$tr \hat{u} \langle [a]_{S<} \rangle / \$tr]\!]
  using assms by (simp add: wp-rea-DoCSP-lemma assms unrest ex-unrest)
lemma trace-ext-R1-closed [closure]: P is R1 \Longrightarrow P[\$tr \hat{u} e/\$tr] is R1
  by (rel-blast)
lemma preR-PrefixCSP-NCSP [rdes]:
  assumes P is NCSP
  shows pre_R(PrefixCSP \ a \ P) = (\mathcal{I}(true,\langle a \rangle) \Rightarrow_r (pre_R \ P) [\![\langle a \rangle]\!]_t)
  by (simp add: PrefixCSP-def assms closure rdes rpred Healthy-if wp usubst unrest)
lemma periR-PrefixCSP [rdes]:
  assumes P is NCSP
  shows peri_R(PrefixCSP \ a \ P) = (\mathcal{E}(true, \langle \rangle, \{a\}_u) \lor (peri_R \ P) \llbracket \langle a \rangle \rrbracket_t)
proof -
  have peri_R(PrefixCSP \ a \ P) = peri_R \ (do_C \ a \ ;; \ P)
    by (simp add: PrefixCSP-def closure assms Healthy-if)
  also have ... = ((\mathcal{I}(true,\langle a \rangle) \Rightarrow_r pre_R P \llbracket \langle a \rangle \rrbracket_t) \Rightarrow_r \$tr' =_u \$tr \land \lceil a \rceil_{S <} \notin_u \$ref' \lor peri_R P \llbracket \langle a \rangle \rrbracket_t)
   by (simp add: assms NSRD-CSP4-intro csp-enable-tr-empty closure rdes unrest ex-unrest usubst rpred
  also have ... = (\mathcal{E}(true,\langle\rangle,\{a\}_u) \vee ((\mathcal{I}(true,\langle a\rangle)) \Rightarrow_r pre_R P[\![\langle a\rangle]\!]_t) \Rightarrow_r peri_R P[\![\langle a\rangle]\!]_t)
```

by (simp add: Healthy-if NCSP-DoCSP NCSP-implies-NSRD NSRD-is-SRD PrefixCSP-def Productive-DoCSP

Productive-seq-1)

```
by (rel-auto)
  also have ... = (\mathcal{E}(true, \langle \rangle, \{a\}_u) \vee ((pre_R(P) \Rightarrow_r peri_R P) \llbracket \langle a \rangle \rrbracket_t))
    by (rel-auto)
  also have ... = (\mathcal{E}(true, \langle \rangle, \{a\}_u) \vee (peri_R P) \llbracket \langle a \rangle \rrbracket_t)
    by (simp add: SRD-peri-under-pre assms closure unrest)
  finally show ?thesis.
qed
lemma postR-PrefixCSP [rdes]:
  assumes P is NCSP
  shows post_R(PrefixCSP \ a \ P) = (post_R \ P) [\![\langle a \rangle]\!]_t
proof -
  have post_R(PrefixCSP \ a \ P) = ((\mathcal{I}(true,\langle a \rangle) \Rightarrow_r (pre_R \ P) [\![\langle a \rangle]\!]_t) \Rightarrow_r (post_R \ P) [\![\langle a \rangle]\!]_t)
    by (simp add: PrefixCSP-def assms Healthy-if)
        (simp add: assms Healthy-if wp closure rdes rpred wp-rea-DoCSP-lemma unrest ex-unrest usubst)
  also have ... = (\mathcal{I}(true,\langle a \rangle) \land (pre_R P \Rightarrow_r post_R P) \llbracket \langle a \rangle \rrbracket_t)
    by (rel-auto)
  also have ... = (\mathcal{I}(true,\langle a \rangle) \land (post_R P) \llbracket \langle a \rangle \rrbracket_t)
    by (simp add: SRD-post-under-pre assms closure unrest)
  also have ... = (post_R P) \llbracket \langle a \rangle \rrbracket_t
    by (rel-auto)
  finally show ?thesis.
qed
lemma PrefixCSP-RHS-tri:
  assumes P is NCSP
  shows PrefixCSP \ a \ P = \mathbf{R}_s \ ((\mathcal{I}(true,\langle a \rangle) \Rightarrow_r pre_R P[\![\langle a \rangle]\!]_t) \vdash (\mathcal{E}(true,\langle \rangle, \{a\}_u) \lor peri_R P[\![\langle a \rangle]\!]_t) \diamond
post_R P[\![\langle a \rangle ]\!]_t)
  by (simp add: PrefixCSP-def Healthy-if unrest assms closure NSRD-composition-wp rdes rpred usubst
wp)
For prefix, we can chose whether to propagate the assumptions or not, hence there are two laws.
lemma PrefixCSP-rdes-def-1 [rdes-def]:
  assumes P is CRC Q is CRR R is CRR
            \$st' \sharp Q \$ref' \sharp R
  shows PrefixCSP \ a \ (\mathbf{R}_s(P \vdash Q \diamond R)) = \mathbf{R}_s((\mathcal{I}(true,\langle a \rangle) \Rightarrow_r P \llbracket \langle a \rangle \rrbracket_t) \vdash (\mathcal{E}(true,\langle \rangle, \{a\}_u) \lor Q \llbracket \langle a \rangle \rrbracket_t)
\diamond R[\![\langle a \rangle]\!]_t)
  apply (subst PrefixCSP-RHS-tri)
   apply (rule NCSP-rdes-intro)
        apply (simp-all add: assms rdes closure)
  apply (rel-auto)
  done
lemma PrefixCSP-rdes-def-2:
  assumes P is CRC Q is CRR R is CRR
            \$st' \sharp Q \$ref' \sharp R
 shows PrefixCSP\ a\ (\mathbf{R}_s(P \vdash Q \diamond R)) = \mathbf{R}_s((\mathcal{I}(true,\langle a \rangle) \Rightarrow_r P[\![\langle a \rangle]\!]_t) \vdash (\mathcal{E}(true,\langle \rangle, \{a\}_u) \lor (P \land Q)[\![\langle a \rangle]\!]_t)
\diamond (P \wedge R) \llbracket \langle a \rangle \rrbracket_t
  apply (subst PrefixCSP-RHS-tri)
   apply (rule NCSP-rdes-intro)
        apply (simp-all add: assms rdes closure)
  apply (rel-auto)
  done
```

8.13 Guarded external choice

```
abbreviation Guarded Choice CSP: '\vartheta set \Rightarrow ('\vartheta \Rightarrow ('\sigma, '\vartheta) action) \Rightarrow ('\sigma, '\vartheta) action where
GuardedChoiceCSP \ A \ P \equiv (\Box \ x \in A \cdot PrefixCSP \ll x \gg (P(x)))
  -GuardedChoiceCSP :: logic \Rightarrow logic \Rightarrow logic \Rightarrow logic (\Box - \in - \rightarrow - [0,0,85] 86)
translations
  \square x \in A \rightarrow P == CONST \ Guarded \ Choice \ CSP \ A \ (\lambda x. P)
lemma GuardedChoiceCSP [rdes-def]:
  assumes \bigwedge x. P(x) is NCSP A \neq \{\}
  shows (\Box x \in A \to P(x)) =
               \mathbf{R}_s (( \sqsubseteq x \in A \cdot \mathcal{I}(true, \langle \ll x \gg \rangle) \Rightarrow_r pre_R (P x) \llbracket \langle \ll x \gg \rangle \rrbracket_t) \vdash
                    ((\bigsqcup x \in A \cdot \mathcal{E}(true, \langle \rangle, \{\ll x \gg\}_u)) \triangleleft \$tr' =_u \$tr \triangleright (\prod x \in A \cdot peri_R (P x) \llbracket (\ll x \gg) \rrbracket_t)) \diamond
                     ( [ x \in A \cdot post_R (P x) [ \langle \langle x \rangle \rangle ]_t ) )
  by (simp add: PrefixCSP-RHS-tri assms ExtChoice-tri-rdes closure unrest, rel-auto)
           Input prefix
8.14
definition Input CSP ::
  ('a, '\vartheta) \ chan \Rightarrow ('a \Rightarrow '\sigma \ upred) \Rightarrow ('a \Rightarrow ('\sigma, '\vartheta) \ action) \Rightarrow ('\sigma, '\vartheta) \ action \ where
[upred-defs]: InputCSP c A P = (\Box x \in UNIV \cdot A(x) \&_u PrefixCSP (c \cdot \ll x \gg)_u (P x))
definition Input VarCSP :: ('a, '\vartheta) chan \Rightarrow ('a \Longrightarrow '\sigma) \Rightarrow ('a \Rightarrow '\sigma \ upred) \Rightarrow ('\sigma, '\vartheta) action where
[upred-defs, rdes-def]: Input VarCSP c x A = Input CSP c A (\lambda v. \langle [x \mapsto_s \ll v \gg] \rangle_C)
definition do_I ::
  ('a, '\vartheta) \ chan \Rightarrow
  ('a \Longrightarrow ('\sigma, '\vartheta) sfrd) \Rightarrow
  ('a \Rightarrow ('\sigma, '\vartheta) \ action) \Rightarrow
  ('\sigma, '\vartheta) action where
do_I \ c \ x \ P = (
  (\$tr' =_u \$tr \land \{e : \ll \delta_u(c) \gg | P(e) \cdot (c \cdot \ll e)_u\}_u \cap_u \$ref' =_u \{\}_u)
    \triangleleft \$wait' \triangleright
  ((\$tr' - \$tr) \in_u \{e : \langle \delta_u(c) \rangle \mid P(e) \cdot \langle (c \cdot \langle e \rangle)_u \rangle\}_u \wedge (c \cdot \$x')_u =_u last_u(\$tr'))
lemma InputCSP-CSP [closure]: InputCSP c A P is CSP
  by (simp add: CSP-ExtChoice InputCSP-def)
lemma InputCSP-NCSP [closure]: [\bigwedge v. P(v) is NCSP] \Longrightarrow InputCSP c A P is NCSP
  apply (simp add: InputCSP-def)
  apply (rule NCSP-ExtChoice)
  apply (simp add: NCSP-Guard NCSP-PrefixCSP image-Collect-subsetI top-set-def)
  done
lemma Productive-InputCSP [closure]:
  \llbracket \bigwedge v. \ P(v) \ is \ NCSP \ \rrbracket \Longrightarrow InputCSP \ x \ A \ P \ is \ Productive
  by (auto simp add: InputCSP-def unrest closure intro: Productive-ExtChoice)
lemma preR-InputCSP [rdes]:
  assumes \bigwedge v. P(v) is NCSP
 \mathbf{shows} \ pre_R(InputCSP \ a \ A \ P) = ([\ ] \ v \cdot [A(v)]_{S <} \Rightarrow_r \mathcal{I}(true, \langle (a \cdot \ll v \gg)_u \rangle) \Rightarrow_r (pre_R(P(v))) [\langle (a \cdot \ll v \gg)_u \rangle]_t)
  by (simp add: InputCSP-def rdes closure assms alpha usubst unrest)
```

```
lemma periR-InputCSP [rdes]:
  assumes \bigwedge v. P(v) is NCSP
  shows peri_R(InputCSP \ a \ A \ P) =
             (( \sqsubseteq x \cdot [A(x)]_{S <} \Rightarrow_r \mathcal{E}(true, \langle \rangle, \{(a \cdot \ll x \gg)_u\}_u)))
                \triangleleft \$tr' =_{u} \$tr \triangleright
              ( \bigcap x \cdot [A(x)]_{S <} \land (peri_R (P x)) \llbracket \langle (a \cdot \ll x \gg)_u \rangle \rrbracket_t )
  by (simp add: InputCSP-def rdes closure assms, rel-auto)
lemma postR-InputCSP [rdes]:
  assumes \bigwedge v. P(v) is NCSP
  shows post_R(InputCSP \ a \ A \ P) =
           ([] x \cdot [A \ x]_{S <} \land post_R (P \ x) [[\langle (a \cdot \ll x \gg)_u \rangle]]_t)
  using assms by (simp add: InputCSP-def rdes closure assms usubst unrest)
lemma InputCSP-rdes-def [rdes-def]:
  assumes \bigwedge v. P(v) is CRC \bigwedge v. Q(v) is CRR \bigwedge v. R(v) is CRR
           \bigwedge v. \$st' \sharp Q(v) \bigwedge v. \$ref' \sharp R(v)
  shows Input CSP a A (\lambda v. \mathbf{R}_s(P(v) \vdash Q(v) \diamond R(v))) =
          \mathbf{R}_s(\ (\bigsqcup\ v\ \cdot\ ([A(v)]_{S<}\Rightarrow_r \mathcal{I}(true, \langle (a\cdot \ll v\gg)_u\rangle)\Rightarrow_r (P\ v)[\![\langle (a\cdot \ll v\gg)_u\rangle]\!]_t))
            \vdash (((\bigsqcup x \cdot R5([A(x)]_{S <} \Rightarrow_r \mathcal{E}(true, \langle \rangle, \{(a \cdot \ll x \gg)_u\}_u))))
                 (   x \cdot [A(x)]_{S <} \wedge (P x \wedge Q x) [(a \cdot \langle x \rangle)_u \rangle]_t ) 
            \diamond ( [ ] x \cdot [A \ x]_{S<} \land (P \ x \land R \ x) [ ((a \cdot \ll x \gg)_u) ]_t ) ) \text{ (is ?} lhs = ?rhs)
proof
  have 1:pre_R(?lhs) = (| | v \cdot [A \ v]_{S<} \Rightarrow_r \mathcal{I}(true, \langle (a \cdot \langle v \rangle_u)) \Rightarrow_r P \ v[\langle (a \cdot \langle v \rangle_u)_u \rangle]_t) (is -=?A)
    by (simp add: rdes NCSP-rdes-intro assms conj-comm closure)
  have 2:peri_R(?lhs) = (\bigsqcup x \cdot [A \ x]_{S <} \Rightarrow_r \mathcal{E}(true,\langle\rangle, \{(a \cdot \langle x \rangle_u\}_u)) \triangleleft \$tr' =_u \$tr \triangleright (\bigcap x \cdot [A \ x]_{S <})
\wedge (P x \Rightarrow_r Q x) [\![\langle (a \cdot \ll x \gg)_u \rangle ]\!]_t)
    (is - = ?B)
    by (simp add: rdes NCSP-rdes-intro assms closure)
  have \beta:post_R(?lhs) = (\prod x \cdot [A \ x]_{S<} \land (P \ x \Rightarrow_r R \ x)[\![\langle (a \cdot \ll x \gg)_u \rangle]\!]_t)
    (is -= ?C)
    by (simp add: rdes NCSP-rdes-intro assms closure)
  have ?lhs = \mathbf{R}_s(?A \vdash ?B \diamond ?C)
    by (subst SRD-reactive-tri-design[THEN sym], simp-all add: closure 1 2 3)
  also have \dots = ?rhs
    by (rel-auto)
  finally show ?thesis.
qed
8.15
            Renaming
[upred-defs]: RenameCSP Pf = \mathbf{R}_s((\neg_r (\neg_r pre_R(P))(f)_c ;; true_r) \vdash ((peri_R(P))(f)_c) \diamond ((post_R(P))(f)_c))
lemma RenameCSP-rdes-def [rdes-def]:
  assumes P is CRC Q is CRR R is CRR
  shows (\mathbf{R}_s(P \vdash Q \diamond R))(|f|)_C = \mathbf{R}_s((\neg_r (\neg_r P)(|f|)_c ;; true_r) \vdash Q(|f|)_c \diamond R(|f|)_c) (is ?lhs = ?rhs)
proof -
  have ?lhs = \mathbf{R}_s ((\neg_r (\neg_r P)(|f|)_c ;; true_r) \vdash (P \Rightarrow_r Q)(|f|)_c \diamond (P \Rightarrow_r R)(|f|)_c)
    by (simp add: RenameCSP-def rdes closure assms)
  \textbf{also have} \ \dots = \mathbf{R}_s \ ((\lnot_r \ (\lnot_r \ CRC(P))( \lVert f \rVert_c \ ;; \ true_r) \vdash (\mathit{CRC}(P) \Rightarrow_r \mathit{CRR}(Q))( \lVert f \rVert_c \diamond (\mathit{CRC}(P) \Rightarrow_r \mathit{CRR}(Q)) ) ) )
CRR(R)(|f|_c)
    by (simp add: Healthy-if assms)
  also have ... = \mathbf{R}_s ((\neg_r \ CRC(P))(f)_c \ ;; \ true_r) \vdash (CRR(Q))(f)_c \diamond (CRR(R))(f)_c)
    by (rel-auto, (metis order-refl)+)
```

```
also have \dots = ?rhs
   by (simp add: Healthy-if assms)
 finally show ?thesis.
qed
lemma RenameCSP-pre-CRC-closed:
 assumes P is CRR
 shows \neg_r (\neg_r P)(|f|)_c;; R1 true is CRC
 apply (rule CRC-intro'')
  apply (simp add: unrest closure assms)
 apply (simp add: Healthy-def, simp add: RC1-def rpred closure CRC-idem assms seqr-assoc)
 done
lemma RenameCSP-NCSP-closed [closure]:
 assumes P is NCSP
 shows P(|f|)_C is NCSP
 by (simp add: RenameCSP-def RenameCSP-pre-CRC-closed closure assms unrest)
lemma csp-rename-false [rpred]:
 false(|f|)_c = false
 by (rel-auto)
lemma umap-nil [simp]: map_u f \langle \rangle = \langle \rangle
 by (rel-auto)
lemma rename-Skip: Skip(|f|)_C = Skip
 by (rdes-eq)
lemma rename-Chaos: Chaos(|f|)_C = Chaos
 by (rdes-eq-split; rel-simp; force)
lemma rename-Miracle: Miracle(f)_C = Miracle
 by (rdes-eq)
lemma rename-DoCSP: (do_C(a))(|f|)_C = do_C(\ll f \gg (a)_a)
 \mathbf{by} \ (rdes\text{-}eq)
         Algebraic laws
8.16
lemma Assign CSP-conditional:
 assumes vwb-lens x
 shows x :=_C e \triangleleft b \triangleright_R x :=_C f = x :=_C (e \triangleleft b \triangleright f)
 by (rdes-eq cls: assms)
lemma AssignsCSP-id: \langle id \rangle_C = Skip
 by (rel-auto)
lemma Guard-comp:
 g \&_u h \&_u P = (g \wedge h) \&_u P
 by (rule antisym, rel-blast, rel-blast)
lemma Guard-false [simp]: false &<sub>u</sub> P = Stop
 by (simp add: GuardCSP-def Stop-def rpred closure alpha R1-design-R1-pre)
lemma Guard-true [simp]:
 P \text{ is } CSP \Longrightarrow true \&_u P = P
```

```
lemma Guard-conditional:
 assumes P is NCSP
 shows b \&_u P = P \triangleleft b \triangleright_R Stop
 by (rdes-eq cls: assms)
lemma Guard-expansion:
  (g_1 \vee g_2) \&_u P = (g_1 \&_u P) \square (g_2 \&_u P)
 by (rel-auto)
lemma Conditional-as-Guard:
 assumes P is NCSP Q is NCSP
 shows P \triangleleft b \triangleright_R Q = b \&_u P \square (\neg b) \&_u Q
 by (rdes-eq cls: assms; simp add: le-less)
lemma PrefixCSP-dist:
  PrefixCSP \ a \ (P \sqcap Q) = (PrefixCSP \ a \ P) \sqcap (PrefixCSP \ a \ Q)
 using Continuous-Disjunctous Disjunctuous-def PrefixCSP-Continuous by auto
lemma DoCSP-is-Prefix:
  do_C(a) = PrefixCSP \ a \ Skip
 by (simp add: PrefixCSP-def Healthy-if closure, metis CSP4-DoCSP CSP4-def Healthy-def)
lemma PrefixCSP-seq:
 assumes P is CSP Q is CSP
 \mathbf{shows}\ (\mathit{PrefixCSP}\ a\ P)\ ;;\ Q = (\mathit{PrefixCSP}\ a\ (P\ ;;\ Q))
 by (simp add: PrefixCSP-def seqr-assoc Healthy-if assms closure)
lemma PrefixCSP-extChoice-dist:
 assumes P is NCSP Q is NCSP R is NCSP
 shows ((a \rightarrow_C P) \Box (b \rightarrow_C Q)) ;; R = (a \rightarrow_C P ;; R) \Box (b \rightarrow_C Q ;; R)
 by (simp\ add:\ PCSP-PrefixCSP\ assms(1)\ assms(2)\ assms(3)\ extChoice-seq-distr)
\mathbf{lemma}\ \mathit{GuardedChoiceCSP-dist}\colon
 assumes \bigwedge i. i \in A \Longrightarrow P(i) is NCSP Q is NCSP
 shows \square x \in A \to P(x) :: Q = \square x \in A \to (P(x) :: Q)
 by (simp add: ExtChoice-seq-distr PrefixCSP-seq closure assms conq: ExtChoice-conq)
Alternation can be re-expressed as an external choice when the guards are disjoint
declare ExtChoice-tri-rdes [rdes-def]
declare ExtChoice-tri-rdes' [rdes-def del]
declare extChoice-rdes-def [rdes-def]
declare extChoice-rdes-def' [rdes-def del]
lemma AlternateR-as-ExtChoice:
 assumes
   \bigwedge i. i \in A \Longrightarrow P(i) \text{ is NCSP } Q \text{ is NCSP}
   \bigwedge i j. [i \in A; j \in A; i \neq j] \Longrightarrow (g i \land g j) = false
 shows (if_R i \in A \cdot g(i) \rightarrow P(i) else Q fi) =
        (\Box i \in A \cdot g(i) \&_u P(i)) \Box (\bigwedge i \in A \cdot \neg g(i)) \&_u Q
proof (cases\ A = \{\})
 case True
 then show ?thesis by (simp add: ExtChoice-empty extChoice-Stop closure assms)
```

by (simp add: GuardCSP-def alpha SRD-reactive-design-alt closure rpred)

```
next
 {f case} False
 show ?thesis
 proof -
   have 1:(\bigcap i \in A \cdot q \ i \rightarrow_R P \ i) = (\bigcap i \in A \cdot q \ i \rightarrow_R \mathbf{R}_s(pre_R(P \ i) \vdash peri_R(P \ i) \diamond post_R(P \ i)))
     by (rule UINF-cong, simp add: NCSP-implies-CSP SRD-reactive-tri-design assms(1))
   have 2:(\Box i \in A \cdot g(i) \&_u P(i)) = (\Box i \in A \cdot g(i) \&_u \mathbf{R}_s(pre_R(P_i) \vdash peri_R(P_i) \diamond post_R(P_i)))
      by (rule ExtChoice-cong, simp add: NCSP-implies-NSRD NSRD-is-SRD SRD-reactive-tri-design
assms(1)
   from assms(3) show ?thesis
     by (simp add: AlternateR-def 1 2)
        (rdes-eq\ cls:\ assms(1-2)\ simps:\ False\ cong:\ UINF-cong\ ExtChoice-cong)
 qed
qed
declare ExtChoice-tri-rdes [rdes-def del]
declare ExtChoice-tri-rdes' [rdes-def]
declare extChoice-rdes-def [rdes-def del]
declare extChoice-rdes-def' [rdes-def]
end
```

9 Recursion in Stateful-Failures

```
theory utp-sfrd-recursion
imports utp-sfrd-contracts utp-sfrd-prog
begin
```

9.1 Fixed-points

The CSP weakest fixed-point is obtained simply by precomposing the body with the CSP healthiness condition.

```
abbreviation mu\text{-}CSP :: (('\sigma, '\varphi) \ action \Rightarrow ('\sigma, '\varphi) \ action) \Rightarrow ('\sigma, '\varphi) \ action \ (\mu_C) where \mu_C \ F \equiv \mu \ (F \circ CSP)

syntax

-mu\text{-}CSP :: pttrn \Rightarrow logic \Rightarrow logic \ (\mu_C - \cdot \cdot - [0, 10] \ 10)

translations

\mu_C \ X \cdot P == CONST \ mu\text{-}CSP \ (\lambda \ X. \ P)

lemma mu\text{-}CSP\text{-}equiv :

assumes Monotonic \ F \ F \in \llbracket CSP \rrbracket_H \to \llbracket CSP \rrbracket_H

shows (\mu_R \ F) = (\mu_C \ F)

by (simp \ add : srd\text{-}mu\text{-}equiv \ assms \ comp\text{-}def)

lemma mu\text{-}CSP\text{-}unfold :

P \ is \ CSP \implies (\mu_C \ X \cdot P \ ;; \ X) = P \ ;; \ (\mu_C \ X \cdot P \ ;; \ X)

apply (subst \ gfp\text{-}unfold)

apply (simp\text{-}all \ add : closure \ Healthy\text{-}if)

done
```

```
lemma mu-csp-expand [rdes]: (\mu_C((:;) Q)) = (\mu X \cdot Q :; CSP X)
  by (simp add: comp-def)
lemma mu-csp-basic-refine:
  assumes
    P is CSP Q is NCSP Q is Productive pre_R(P) = true_r \ pre_R(Q) = true_r
   peri_R P \sqsubseteq peri_R Q
   peri_R P \sqsubseteq post_R Q ;; peri_R P
  shows P \sqsubseteq (\mu_C \ X \cdot Q \ ;; \ X)
proof (rule SRD-refine-intro', simp-all add: closure usubst alpha rpred rdes unrest wp seq-UINF-distr
  show peri_R P \sqsubseteq (\bigcap i \cdot post_R Q \hat{i};; peri_R Q)
  proof (rule UINF-refines')
   \mathbf{fix} i
   show peri_R P \sqsubseteq post_R Q \hat{i};; peri_R Q
   proof (induct i)
      case \theta
      then show ?case by (simp add: assms)
   next
      case (Suc\ i)
      then show ?case
       by (meson\ assms(6)\ assms(7)\ semilattice-sup-class.le-sup-iff\ upower-inductl)
  qed
qed
lemma CRD-mu-basic-refine:
 fixes P :: 'e \ list \Rightarrow 'e \ set \Rightarrow 's \ upred
  assumes
    Q is NCSP Q is Productive pre_R(Q) = true_r
    [P\ t\ r]_{S<}[(t,\ r)\rightarrow(\&tt,\ ref')_u] \sqsubseteq peri_R\ Q
    [P\ t\ r]_{S<}[(t,\ r)\to(\&tt,\ \$ref')_u] \sqsubseteq post_R\ Q\ ;;_h\ [P\ t\ r]_{S<}[(t,\ r)\to(\&tt,\ \$ref')_u]
 shows [true \vdash P trace refs \mid R \mid_C \sqsubseteq (\mu_C \ X \cdot Q \ ;; \ X)
proof (rule mu-csp-basic-refine, simp-all add: msubst-pair assms closure alpha rdes rpred Healthy-if
R1-false)
  show [P \ trace \ refs]_{S<}[[trace \rightarrow \&tt]][refs \rightarrow \$ref'] \subseteq peri_R \ Q
   using assms by (simp add: msubst-pair)
 \mathbf{show} \ [P \ trace \ refs]_{S < [[trace \to \&tt]][refs \to \$ref`]]} \sqsubseteq post_R \ Q \ ;; \ [P \ trace \ refs]_{S < [[trace \to \&tt]][refs \to \$ref`]]}
   using assms by (simp add: msubst-pair)
qed
9.2
        Example action expansion
lemma mu-example1: (\mu \ X \cdot \ll a \gg \rightarrow_C \ X) = (\prod i \cdot do_C(\ll a \gg) \hat{\ } (i+1));; Miracle
 by (simp add: PrefixCSP-def mu-csp-form-1 closure)
lemma preR-mu-example1 [rdes]: pre_R(\mu \ X \cdot \ll a \gg \rightarrow_C \ X) = true_r
 by (simp add: mu-example1 rdes closure unrest wp)
lemma periR-mu-example1 [rdes]:
  peri_R(\mu \ X \cdot \langle a \rangle) \rightarrow_C X) = (\bigcap \ i \cdot \mathcal{E}(true, iter[i](\langle \langle a \rangle), \{\langle a \rangle\}_u))
 by (simp add: mu-example1 rdes rpred closure unrest wp seq-UINF-distr alpha usubst)
lemma postR-mu-example1 [rdes]:
  post_R(\mu \ X \cdot \ll a \gg \to_C \ X) = false
  by (simp add: mu-example1 rdes closure unrest wp)
```

10 Linking to the Failures-Divergences Model

```
theory utp-sfrd-fdsem
imports utp-sfrd-recursion
begin
```

10.1 Failures-Divergences Semantics

The following functions play a similar role to those in Roscoe's CSP semantics, and are calculated from the Circus reactive design semantics. A major difference is that these three functions account for state. Each divergence, trace, and failure is subject to an initial state. Moreover, the traces are terminating traces, and therefore also provide a final state following the given interaction. A more subtle difference from the Roscoe semantics is that the set of traces do not include the divergences. The same semantic information is present, but we construct a direct analogy with the pre-, peri- and postconditions of our reactive designs.

```
definition divergences :: ('\sigma, '\varphi) action \Rightarrow '\sigma \Rightarrow '\varphi list set (dv[-]-[0,100] \ 100) where
[upred-defs]: divergences P s = \{t \mid t. \ (\neg_r \ pre_R(P)) \| \ll s >, \langle \rangle, \ll t >/\$st, \$tr, \$tr' \| \}
definition traces :: ('\sigma, '\varphi) action \Rightarrow '\sigma \Rightarrow ('\varphi \ list \times '\sigma) \ set \ (tr[-]-[0,100]\ 100) where
[upred-defs]: traces\ P\ s = \{(t,s') \mid t\ s'.\ (pre_R(P) \land post_R(P)) | s > s, s' > \langle \rangle, s' > s', s', t', t', t' \rangle \}
definition failures :: ('\sigma, '\varphi) action \Rightarrow '\sigma \Rightarrow ('\varphi \text{ list } \times '\varphi \text{ set}) \text{ set } (f[[-]] - [0,100] 100) where
[upred-defs]: failures P s = \{(t,r) \mid t \mid r. '(pre_R(P) \land peri_R(P)) \llbracket \ll r \gg, \ll s \gg, \langle \rangle, \ll t \gg /\$ ref', \$ st, \$ tr, \$ tr'\rrbracket'\}
lemma trace-divergence-disj:
  assumes P is NCSP (t, s') \in tr[\![P]\!]s t \in dv[\![P]\!]s
  shows False
  using assms(2,3)
  by (simp add: traces-def divergences-def, rdes-simp cls:assms, rel-auto)
{f lemma} preR-refine-divergences:
  assumes P is NCSP Q is NCSP \bigwedge s. dv \llbracket P \rrbracket s \subseteq dv \llbracket Q \rrbracket s
  shows pre_R(P) \sqsubseteq pre_R(Q)
proof (rule CRR-refine-impl-prop, simp-all add: assms closure usubst unrest)
  \mathbf{fix} \ t \ s
  assume a: '[\$st \mapsto_s \ll s \gg, \$tr \mapsto_s \langle \rangle, \$tr' \mapsto_s \ll t \gg] \dagger pre_R Q'
  with a show '[\$st \mapsto_s \ll s \gg, \$tr \mapsto_s \langle \rangle, \$tr' \mapsto_s \ll t \gg] \dagger pre_R P'
  proof (rule-tac ccontr)
    \mathbf{from}\ assms(\mathcal{J})[of\ s]\ \mathbf{have}\ b\colon t\in\ dv \llbracket P \rrbracket s \Longrightarrow t\in\ dv \llbracket Q \rrbracket s
       by (auto)
    assume \neg '[$st \mapsto_s \ll s \gg, $tr \mapsto_s \langle \rangle, $tr' \mapsto_s \ll t \gg] † pre_R P'
    hence \neg '[$st \mapsto_s \ll s \gg, $tr \mapsto_s \langle \rangle, $tr' \mapsto_s \ll t \gg] † CRC(pre_R P)'
       by (simp add: assms closure Healthy-if)
    hence '[\$st \mapsto_s \ll s \gg, \$tr \mapsto_s \langle \rangle, \$tr' \mapsto_s \ll t \gg] \dagger (\neg_r \ CRC(pre_R \ P))'
       by (rel-auto)
    hence '[\$st \mapsto_s \ll s \gg, \$tr \mapsto_s \langle \rangle, \$tr' \mapsto_s \ll t \gg] \dagger (\neg_r pre_R P)'
       by (simp add: assms closure Healthy-if)
    with a b show False
       by (rel-auto)
  qed
qed
```

```
lemma preR-eq-divergences:
  assumes P is NCSP Q is NCSP \bigwedge s. dv \llbracket P \rrbracket s = dv \llbracket Q \rrbracket s
  shows pre_R(P) = pre_R(Q)
  by (metis assms dual-order.antisym order-refl preR-refine-divergences)
lemma periR-refine-failures:
  assumes P is NCSP Q is NCSP \bigwedge s. fl \llbracket Q \rrbracket s \subseteq fl \llbracket P \rrbracket s
  shows (pre_R(P) \land peri_R(P)) \sqsubseteq (pre_R(Q) \land peri_R(Q))
proof (rule CRR-refine-impl-prop, simp-all add: assms closure unrest subst-unrest-3)
  \mathbf{assume}\ a\colon `[\$ref'\mapsto_s \ll r'\gg, \$st\mapsto_s \ll s\gg, \$tr\mapsto_s \langle\rangle, \$tr'\mapsto_s \ll t\gg] \dagger (pre_R\ Q \land peri_R\ Q)`
  from assms(3)[of s] have b: (t, r') \in fl[\![Q]\!]s \Longrightarrow (t, r') \in fl[\![P]\!]s
    by (auto)
  with a show '\lceil \$ref' \mapsto_s \ll r' \gg, \$st \mapsto_s \ll s \gg, \$tr \mapsto_s \ll t \gg \rceil \dagger (pre_R P \land peri_R P)'
    by (simp add: failures-def)
qed
lemma periR-eq-failures:
  assumes P is NCSP Q is NCSP \bigwedge s. fl \llbracket P \rrbracket s = fl \llbracket Q \rrbracket s
  shows (pre_R(P) \land peri_R(P)) = (pre_R(Q) \land peri_R(Q))
  by (metis (full-types) assms dual-order antisym order-refl periR-refine-failures)
\mathbf{lemma}\ postR\text{-}refine\text{-}traces:
  assumes P is NCSP Q is NCSP \bigwedge s. tr[\![Q]\!]s \subseteq tr[\![P]\!]s
  shows (pre_R(P) \land post_R(P)) \sqsubseteq (pre_R(Q) \land post_R(Q))
proof (rule CRR-refine-impl-prop, simp-all add: assms closure unrest subst-unrest-5)
  fix t s s'
  assume a: `[\$st \mapsto_s \ll s \gg, \$st' \mapsto_s \ll s' \gg, \$tr \mapsto_s \langle \rangle, \$tr' \mapsto_s \ll t \gg] \dagger (pre_R Q \land post_R Q)`
  from assms(3)[of s] have b: (t, s') \in tr[Q]s \Longrightarrow (t, s') \in tr[P]s
  with a show '[\$st \mapsto_s \ll s \gg, \$st' \mapsto_s \ll s' \gg, \$tr \mapsto_s \langle \rangle, \$tr' \mapsto_s \ll t \gg] \dagger (pre_R P \land post_R P)'
    by (simp add: traces-def)
qed
lemma postR-eq-traces:
  assumes P is NCSP Q is NCSP \bigwedge s. tr[P]s = tr[Q]s
  shows (pre_R(P) \land post_R(P)) = (pre_R(Q) \land post_R(Q))
  by (metis assms dual-order.antisym order-refl postR-refine-traces)
lemma circus-fd-refine-intro:
  \textbf{assumes} \ P \ is \ NCSP \ Q \ is \ NCSP \ \land \ s. \ dv \llbracket Q \rrbracket s \subseteq dv \llbracket P \rrbracket s \ \land \ s. \ fr \llbracket Q \rrbracket s \subseteq fr \llbracket P \rrbracket s \ \land \ s. \ tr \llbracket Q \rrbracket s \subseteq tr \llbracket P \rrbracket s
  shows P \sqsubseteq Q
proof (rule SRD-refine-intro', simp-all add: closure assms)
  show a: 'pre_R P \Rightarrow pre_R Q'
    using assms(1) assms(2) assms(3) preR-refine-divergences refBy-order by blast
  show peri_R P \sqsubseteq (pre_R P \land peri_R Q)
  proof -
    have peri_R P \sqsubseteq (pre_R Q \land peri_R Q)
      by (metis (no-types) assms(1) assms(2) assms(4) periR-refine-failures utp-pred-laws.le-inf-iff)
    then show ?thesis
      by (metis a refBy-order utp-pred-laws.inf.order-iff utp-pred-laws.inf-assoc)
  show post_R P \sqsubseteq (pre_R P \land post_R Q)
  proof -
```

```
have post_R P \sqsubseteq (pre_R Q \land post_R Q)
     by (meson\ assms(1)\ assms(2)\ assms(5)\ postR-refine-traces\ utp-pred-laws.le-inf-iff)
   then show ?thesis
     by (metis a refBy-order utp-pred-laws.inf.absorb-iff1 utp-pred-laws.inf-assoc)
 qed
qed
        Circus Operators
10.2
lemma traces-Skip:
 tr[Skip]s = \{([], s)\}
 by (simp add: traces-def rdes alpha closure, rel-simp)
lemma failures-Skip:
 fl[Skip]s = \{\}
 by (simp add: failures-def, rdes-calc)
lemma divergences-Skip:
 dv [Skip] s = \{\}
 by (simp add: divergences-def, rdes-calc)
lemma traces-Stop:
```

 $tr[Stop]s = \{\}$ by (simp add: traces-def, rdes-calc)

lemma failures-Stop:

```
fl[Stop]s = \{([], E) \mid E. True\}
by (simp add: failures-def, rdes-calc, rel-auto)
```

lemma divergences-Stop:

```
dv[Stop]s = \{\}
```

by (simp add: divergences-def, rdes-calc)

lemma traces-AssignsCSP:

```
tr[\![\langle \sigma \rangle_C]\!]s = \{([], \sigma(s))\}
```

by (simp add: traces-def rdes closure usubst alpha, rel-auto)

lemma failures-AssignsCSP:

```
fl[\![\langle \sigma \rangle_C]\!]s = \{\}
```

by (simp add: failures-def, rdes-calc)

${\bf lemma}\ divergences\text{-}AssignsCSP\text{:}$

$$dv \llbracket \langle \sigma \rangle_C \rrbracket s = \{\}$$

by (simp add: divergences-def, rdes-calc)

lemma failures-Miracle: $fl[Miracle]s = \{\}$

by (simp add: failures-def rdes closure usubst)

lemma divergences-Miracle: $dv \llbracket Miracle \rrbracket s = \{\}$

by (simp add: divergences-def rdes closure usubst)

lemma failures-Chaos: $fl \| Chaos \| s = \{ \}$

by (simp add: failures-def rdes, rel-auto)

lemma divergences-Chaos: $dv \llbracket Chaos \rrbracket s = UNIV$

by (simp add: divergences-def rdes, rel-auto)

```
lemma traces-Chaos: tr[Chaos]s = \{\}
  by (simp add: traces-def rdes closure usubst)
lemma divergences-cond:
  assumes P is NCSP Q is NCSP
  shows dv \llbracket P \triangleleft b \triangleright_R Q \rrbracket s = (if (\llbracket b \rrbracket_e s) then <math>dv \llbracket P \rrbracket s else dv \llbracket Q \rrbracket s)
  by (rdes-simp cls: assms, simp add: divergences-def traces-def rdes closure rpred assms, rel-auto)
lemma traces-cond:
  assumes P is NCSP Q is NCSP
  shows tr[P \triangleleft b \triangleright_R Q]s = (if ([[b]]_e s) then tr[P]]s else tr[Q]]s)
  by (rdes-simp cls: assms, simp add: divergences-def traces-def rdes closure rpred assms, rel-auto)
lemma failures-cond:
  assumes P is NCSP Q is NCSP
  shows f[P \triangleleft b \triangleright_R Q]s = (if ([b]_e s) then f[P] s else f[Q] s)
  by (rdes-simp cls: assms, simp add: divergences-def failures-def rdes closure rpred assms, rel-auto)
lemma divergences-guard:
  assumes P is NCSP
  shows dv \llbracket g \&_u P \rrbracket s = (if (\llbracket g \rrbracket_e s) \text{ then } dv \llbracket g \&_u P \rrbracket s \text{ else } \{\})
  by (rdes-simp cls: assms, simp add: divergences-def traces-def rdes closure rpred assms, rel-auto)
lemma traces-do: tr[do_C(e)]s = \{([[e]_e s], s)\}
  by (rdes-simp, simp add: traces-def rdes closure rpred, rel-auto)
lemma failures-do: fl[do_C(e)]s = \{([], E) \mid E. [e]_e s \notin E\}
  by (rdes-simp, simp add: failures-def rdes closure rpred usubst, rel-auto)
lemma divergences-do: dv \llbracket do_C(e) \rrbracket s = \{\}
  by (rel-auto)
lemma divergences-seg:
  fixes P :: ('s, 'e) action
  assumes P is NCSP Q is NCSP
  shows dv \llbracket P ;; Q \rrbracket s = dv \llbracket P \rrbracket s \cup \{t_1 @ t_2 \mid t_1 \ t_2 \ s_0, (t_1, s_0) \in tr \llbracket P \rrbracket s \land t_2 \in dv \llbracket Q \rrbracket s_0 \}
  (is ?lhs = ?rhs)
  oops
lemma traces-seq:
  fixes P :: ('s, 'e) \ action
  assumes P is NCSP Q is NCSP
  shows tr[P ;; Q]s =
          \{(t_1 \ @ \ t_2, \, s') \mid t_1 \ t_2 \ s_0 \ s'. \ (t_1, \, s_0) \in tr[\![P]\!] s \wedge (t_2, \, s') \in tr[\![Q]\!] s_0
                                      \wedge (t_1@t_2) \notin dv \llbracket P \rrbracket s
                                      \wedge (\forall (t, s_1) \in tr[P]s. \ t < t_1@t_2 \longrightarrow (t_1@t_2) - t \notin dv[Q]s_1) \}
  (is ?lhs = ?rhs)
proof
  show ?lhs \subseteq ?rhs
  proof (rdes-expand cls: assms, simp add: traces-def divergences-def rdes closure assms rdes-def unrest
rpred usubst, auto)
    fix t :: 'e \ list \ and \ s' :: 's
    let ?\sigma = [\$st \mapsto_s \ll s\gg, \$st' \mapsto_s \ll s'\gg, \$tr \mapsto_s \langle \rangle, \$tr' \mapsto_s \ll t \gg]
    assume
```

```
a1: '?\sigma \dagger (post_R P ;; post_R Q)' and
                  a2: '[\$st \mapsto_s \ll s \gg, \$tr \mapsto_s \langle \rangle, \$tr' \mapsto_s \ll t \gg] \dagger pre_R P' and
                   a3: (\$st \mapsto_s \ll s \gg, \$tr \mapsto_s \langle \rangle, \$tr' \mapsto_s \ll t \gg) \dagger (post_R P wp_r pre_R Q)
            \textbf{from } a1 \textbf{ have } `?\sigma \dagger (\exists tr_0 \cdot ((post_R P)[\![\ll tr_0 \gg /\$tr']\!] \; ;; \; (post_R Q)[\![\ll tr_0 \gg /\$tr]\!]) \; \land \; \ll tr_0 \gg \leq_u \$tr') `` tr_0 \iff d_1 \Leftrightarrow d_2 \Leftrightarrow d_3 \Leftrightarrow d_4 \Leftrightarrow
                  by (simp add: R2-tr-middle assms closure)
             then obtain tr_0 where p1: '?\sigma † ((post_R P)[\ll tr_0 \gg /\$tr'] ;; (post_R Q)[\ll tr_0 \gg /\$tr]) 'and tr0: tr_0
                  apply (simp add: usubst)
                  apply (erule taut-shEx-elim)
                    apply (simp add: unrest-all-circus-vars-st-st' closure unrest assms)
                  apply (rel-auto)
                  done
        from p1 have '?\sigma \dagger (\exists st_0 \cdot (post_R P)[(st_0)/\$tr'][(st_0)/\$st'] ;; (post_R Q)[(st_0)/\$tr][(st_0)/\$st])'
                  by (simp add: seqr-middle[of st, THEN sym])
          then obtain s_0 where ?\sigma \uparrow ((post_R P) \llbracket \ll s_0 \gg, \ll tr_0 \gg /\$st', \$tr' \rrbracket ;; (post_R Q) \llbracket \ll s_0 \gg, \ll tr_0 \gg /\$st, \$tr \rrbracket )
                  apply (simp add: usubst)
                  apply (erule taut-shEx-elim)
                    apply (simp add: unrest-all-circus-vars-st-st' closure unrest assms)
                  apply (rel-auto)
                  done
            hence '(([\$st \mapsto_s \ll s\gg, \$st' \mapsto_s \ll s_0\gg, \$tr \mapsto_s \langle \rangle, \$tr' \mapsto_s \ll tr_0\gg] † post_R P) ;;
                                          ([\$st \mapsto_s \ll s_0 \gg, \$st' \mapsto_s \ll s' \gg, \$tr \mapsto_s \ll tr_0 \gg, \$tr' \mapsto_s \ll t \gg] \dagger post_R Q))'
                  by (rel-auto)
            \mathbf{hence} \ `(([\$st \mapsto_s «s», \$st' \mapsto_s «s_0», \$tr \mapsto_s \langle \rangle, \$tr' \mapsto_s «tr_0»] \dagger \ post_R \ P) \ \land
                                         ([\$st \mapsto_s \ll s_0), \$st' \mapsto_s \ll s'), \$tr \mapsto_s \ll tr_0), \$tr' \mapsto_s \ll t) \dagger post_R Q))
                  by (simp add: seqr-to-conj unrest-any-circus-var assms closure unrest)
            hence postP: '([\$st \mapsto_s \ll s \gg, \$st' \mapsto_s \ll s_0 \gg, \$tr \mapsto_s \langle \rangle, \$tr' \mapsto_s \ll tr_0 \gg] † post<sub>R</sub> P)' and
                               postQ': '([$st \mapsto_s \ll s_0 \gg, $st' \mapsto_s \ll s' \gg, $tr \mapsto_s \ll tr_0 \gg, $tr' \mapsto_s \ll t \gg] † post_R Q)'
                  by (rel-auto)+
               from postQ' have '[\$st \mapsto_s \ll s_0 \gg, \$st' \mapsto_s \ll s' \gg] † [\$tr \mapsto_s \ll tr_0 \gg, \$tr' \mapsto_s \ll tr_0 \gg + (\ll t \gg -
\ll tr_0 \gg)] † post_R Q'
                  using tr\theta by (rel-auto)
            hence \{\$st \mapsto_s \ll s_0 \gg, \$st' \mapsto_s \ll s' \gg\} \uparrow \{\$tr \mapsto_s \theta, \$tr' \mapsto_s \ll t \gg - \ll tr_0 \gg\} \uparrow post_R Q'
                  by (simp add: R2-subst-tr closure assms)
            hence postQ: '[\$st \mapsto_s \ll s_0 \gg, \$st' \mapsto_s \ll s' \gg, \$tr \mapsto_s \langle \rangle, \$tr' \mapsto_s \ll t - tr_0 \gg] † post_R Q'
                  by (rel-auto)
            have preP: '[\$st \mapsto_s \ll s \gg, \$tr \mapsto_s \langle \rangle, \$tr' \mapsto_s \ll tr_0 \gg] † pre_R P'
            proof -
                  have (pre_R P) \llbracket \theta, \ll tr_0 \gg /\$tr, \$tr' \rrbracket \sqsubseteq (pre_R P) \llbracket \theta, \ll t \gg /\$tr, \$tr' \rrbracket
                        by (simp add: RC-prefix-refine closure assms tr\theta)
                    hence [\$st \mapsto_s \ll s \gg, \$tr \mapsto_s \langle \rangle, \$tr' \mapsto_s \ll tr_0 \gg] \dagger pre_R P \sqsubseteq [\$st \mapsto_s \ll s \gg, \$tr \mapsto_s \langle \rangle, \$tr' \mapsto_s \ll tr_0 \gg]
\ll t \gg] † pre_R P
                        by (rel-auto)
                  thus ?thesis
                        by (simp add: taut-refine-impl a2)
            have preQ: '[\$st \mapsto_s \ll s_0 \gg, \$tr \mapsto_s \langle \rangle, \$tr' \mapsto_s \ll t - tr_0 \gg] † pre_R Q'
            proof -
                  from postP a3 have '[\$st \mapsto_s \ll s_0 \gg, \$tr \mapsto_s \ll tr_0 \gg, \$tr' \mapsto_s \ll t \gg] \dagger pre_R Q'
                        apply (simp add: wp-rea-def)
                        apply (rel-auto)
                        using tr\theta apply blast+
                  \mathbf{hence} \ `[\$st \mapsto_s «s_0»] \dagger [\$tr \mapsto_s «tr_0», \$tr' \mapsto_s «tr_0» + («t» - «tr_0»)] \dagger pre_R \ Q`
```

```
by (rel-auto)
                       hence '[\$st \mapsto_s \ll s_0 \gg] \dagger [\$tr \mapsto_s 0, \$tr' \mapsto_s \ll t \gg - \ll tr_0 \gg] \dagger pre_R Q'
                               by (simp add: R2-subst-tr closure assms)
                       thus ?thesis
                               by (rel-auto)
               qed
               from a2 have ndiv: \neg '[\$st \mapsto_s \ll s \gg, \$tr \mapsto_s \langle \rangle, \$tr' \mapsto_s \ll t \gg] † (\neg_r \ pre_R \ P)'
                       by (rel-auto)
               have t-minus-tr0: tr_0 \otimes (t - tr_0) = t
                       using append-minus tr\theta by blast
               from a3
               have wpr: \bigwedge t_0 \ s_1.
                                            `[\$st \mapsto_s \ll s \gg, \$tr \mapsto_s \langle \rangle, \$tr' \mapsto_s \ll t_0 \gg] \dagger pre_R P' \Longrightarrow
                                            `[\$st \mapsto_s \ll s \gg, \$st' \mapsto_s \ll s_1 \gg, \$tr \mapsto_s \langle \rangle, \$tr' \mapsto_s \ll t_0 \gg] \dagger post_R P` \Longrightarrow
                                             t_0 \leq t \Longrightarrow `[\$st \mapsto_s \ll s_1 \gg, \$tr \mapsto_s \langle \rangle, \$tr' \mapsto_s \ll t - t_0 \gg] \dagger (\neg_r \ pre_R \ Q)` \Longrightarrow False
               proof -
                       fix t_0 s_1
                       assume b:
                                `[\$st \mapsto_s \ll s \gg, \$tr \mapsto_s \langle \rangle, \$tr' \mapsto_s \ll t_0 \gg] \dagger pre_R P`
                                `[\$st \mapsto_s \ll s \gg, \$st' \mapsto_s \ll s_1 \gg, \$tr \mapsto_s \langle \rangle, \$tr' \mapsto_s \ll t_0 \gg] \dagger post_R P`
                               t_0 \leq t
                                (st \mapsto_s \ll s_1), str \mapsto_s \langle \rangle, str' \mapsto_s \ll t - t_0) \dagger (\neg_r pre_R Q)
                       from a3 have c: \forall (s_0, t_0) \cdot \langle t_0 \rangle \leq_u \langle t \rangle
                                                                                                                            \land [\$st \mapsto_s \ll s \gg, \$st' \mapsto_s \ll s_0 \gg, \$tr \mapsto_s \langle \rangle, \$tr' \mapsto_s \ll t_0 \gg] \dagger post_R P
                                                                                                                             \Rightarrow [\$st \mapsto_s \ll s_0 \gg, \$tr \mapsto_s \langle \rangle, \$tr' \mapsto_s \ll t \gg - \ll t_0 \gg] \dagger pre_R Q'
                               by (simp\ add:\ wp\text{-}rea\text{-}circus\text{-}form\text{-}alt[of\ post_R\ P\ pre_R\ Q]\ closure\ assms\ unrest\ usubst)
                                           (rel-simp)
                       from c \ b(2-4) show False
                               by (rel-auto)
               qed
               show \exists t_1 \ t_2.
                                               t = t_1 \otimes t_2 \wedge
                                              (\exists s_0. \ `[\$st \mapsto_s \ll s \gg, \$tr \mapsto_s \langle \rangle, \$tr' \mapsto_s \ll t_1 \gg] \dagger pre_R P \land
                                                                             [\$st \mapsto_s \ll s\gg, \$st' \mapsto_s \ll s_0\gg, \$tr \mapsto_s \langle \rangle, \$tr' \mapsto_s \ll t_1\gg] \dagger post_R P' \wedge
                                                                           `[\$st \mapsto_s \ll s_0 \gg, \$tr \mapsto_s \langle \rangle, \$tr' \mapsto_s \ll t_2 \gg] \dagger pre_R Q \land 
                                                                             [\$st \mapsto_s \ll s_0 \gg, \$st' \mapsto_s \ll s' \gg, \$tr \mapsto_s \langle \rangle, \$tr' \mapsto_s \ll t_2 \gg] \dagger post_R Q' \land A
                                                                              \neg `[\$st \mapsto_s \ll s \gg, \$tr \mapsto_s \langle \rangle, \$tr' \mapsto_s \ll t_1 @ t_2 \gg] \dagger (\neg_r \ pre_R \ P)` \land 
                                                                             (\forall \ t_0 \ s_1. \ `[\$st \mapsto_s \ «s», \$tr \mapsto_s \ \langle \rangle, \$tr' \mapsto_s \ «t_0»] \dagger \ pre_R \ P \ \land \ Tr' \mapsto_s \ (t_0) \land t_0 \land 
                                                                                                               [\$st \mapsto_s \ll s \gg, \$st' \mapsto_s \ll s_1 \gg, \$tr \mapsto_s \langle \rangle, \$tr' \mapsto_s \ll t_0 \gg] \dagger post_R P' \longrightarrow t_0 \gg t_0 t_0 \gg t_0 t
                                                                                                          t_0 \leq t_1 \otimes t_2 \longrightarrow \neg '[\$st \mapsto_s \ll s_1 \gg, \$tr \mapsto_s \langle \rangle, \$tr' \mapsto_s \ll (t_1 \otimes t_2) - t_0 \gg] \dagger (\neg_r)
pre_R(Q)'))
                       apply (rule-tac x=tr_0 in exI)
                       apply (rule-tac x=(t-tr_0) in exI)
                       apply (auto)
                       using tr\theta apply auto[1]
                       apply (rule-tac x=s_0 in exI)
                       apply (auto intro:wpr simp add: taut-conj preP preQ postP postQ ndiv wpr t-minus-tr0)
                       done
```

```
qed
```

```
show ?rhs \subseteq ?lhs
  proof (rdes-expand cls: assms, simp add: traces-def divergences-def rdes closure assms rdes-def unrest
rpred usubst, auto)
     fix t_1 t_2 :: 'e list and s_0 s' :: 's
     assume
       a1: \neg '[$st \mapsto_s \ll s \gg, $tr \mapsto_s \langle \rangle, $tr' \mapsto_s \ll t_1 @ t_2 \gg] † (\neg_r \ pre_R \ P)' and
       a2: '[\$st \mapsto_s \ll s \gg, \$tr \mapsto_s \langle \rangle, \$tr' \mapsto_s \ll t_1 \gg] \dagger pre_R P' and
       a3: '\{\$st \mapsto_s \ll s \gg, \$st' \mapsto_s \ll s_0 \gg, \$tr \mapsto_s \langle \rangle, \$tr' \mapsto_s \ll t_1 \gg \} \dagger post_R P' and
       a4: '[$st \mapsto_s \ll s_0 \gg, $tr \mapsto_s \langle \rangle, $tr' \mapsto_s \ll t_2 \gg] † pre_R Q' and
       a5: '[\$st \mapsto_s \ll s_0 \gg, \$st' \mapsto_s \ll s' \gg, \$tr \mapsto_s \langle \rangle, \$tr' \mapsto_s \ll t_2 \gg] \dagger post_R Q' and
       a6: \forall t \ s_1. \ `[\$st \mapsto_s \ll s \gg, \$tr \mapsto_s \langle \rangle, \$tr' \mapsto_s \ll t \gg] \dagger pre_R \ P \land 
                      [\$st \mapsto_s \ll s \gg, \$st' \mapsto_s \ll s_1 \gg, \$tr \mapsto_s \langle \rangle, \$tr' \mapsto_s \ll t \gg] \dagger post_R P' \longrightarrow
                      t \leq t_1 \otimes t_2 \longrightarrow \neg '[\$st \mapsto_s \ll s_1 \gg, \$tr \mapsto_s \langle \rangle, \$tr' \mapsto_s \ll (t_1 \otimes t_2) - t \gg ] \dagger (\neg_r \ pre_R \ Q)'
     from a1 have preP: '[\$st \mapsto_s \ll s \gg, \$tr \mapsto_s \langle \rangle, \$tr' \mapsto_s \ll t_1 @ t_2 \gg] \dagger (pre_R P)'
       by (simp add: taut-not unrest-all-circus-vars-st assms closure unrest, rel-auto)
     have '[\$st \mapsto_s \ll s_0 \gg, \$st' \mapsto_s \ll s' \gg, \$tr \mapsto_s \ll t_1 \gg, \$tr' \mapsto_s \ll t_1 \gg + \ll t_2 \gg] \dagger post_R Q'
     proof -
       have [\$st \mapsto_s \ll s_0 \gg, \$st' \mapsto_s \ll s' \gg, \$tr \mapsto_s \langle \rangle, \$tr' \mapsto_s \ll t_2 \gg] \dagger post_R Q =
               [\$st \mapsto_s \ll s_0 \gg, \$st' \mapsto_s \ll s' \gg] \dagger [\$tr \mapsto_s \langle \rangle, \$tr' \mapsto_s \ll t_2 \gg] \dagger post_R Q
         by rel-auto
       also have ... = [\$st \mapsto_s \ll s_0 \gg, \$st' \mapsto_s \ll s' \gg] \dagger [\$tr \mapsto_s \ll t_1 \gg, \$tr' \mapsto_s \ll t_1 \gg + \ll t_2 \gg] \dagger post_R Q
         by (simp add: R2-subst-tr assms closure, rel-auto)
       finally show ?thesis using a5
         by (rel-auto)
     qed
     with a3
     have postPQ: '[$st \mapsto_s \ll s\gg, $st' \mapsto_s \ll s'\gg, $tr \mapsto_s \langle \rangle, $tr' \mapsto_s \ll t_1 @ t_2\gg] † (post_R P ;; post_R
Q) '
       by (rel-auto, meson Prefix-Order.prefixI)
     have '[\$st \mapsto_s «s_0 », \$tr \mapsto_s «t_1 », \$tr' \mapsto_s «t_1 » + «t_2 »] † pre_R Q'
     proof -
       have [\$st \mapsto_s \ll s_0 \gg, \$tr \mapsto_s \ll t_1 \gg, \$tr' \mapsto_s \ll t_1 \gg + \ll t_2 \gg] \dagger pre_R Q =
               [\$st \mapsto_s \ll s_0 \gg] \dagger [\$tr \mapsto_s \ll t_1 \gg, \$tr' \mapsto_s \ll t_1 \gg + \ll t_2 \gg] \dagger pre_R Q
       also have ... = [\$st \mapsto_s \ll s_0 \gg] \dagger [\$tr \mapsto_s \theta, \$tr' \mapsto_s \ll t_2 \gg] \dagger pre_R Q
         by (simp add: R2-subst-tr assms closure)
       finally show ?thesis using a4
         by (rel-auto)
     qed
     from a6
     have a6': \land t s_1. [t \le t_1 \otimes t_2; (st \mapsto_s \ll s), str \mapsto_s \ll s] \dagger pre_R P'; (st \mapsto_s \ll s),
\$st' \mapsto_s \ll s_1 \gg, \$tr \mapsto_s \langle \rangle, \$tr' \mapsto_s \ll t \gg ] \dagger post_R P' \rrbracket \Longrightarrow
                                `[\$st \mapsto_s «s_1 », \$tr \mapsto_s \langle \rangle, \$tr' \mapsto_s «(t_1 @ t_2) - t »] \dagger pre_R Q`
       apply (subst (asm) taut-not)
       apply (simp add: unrest-all-circus-vars-st assms closure unrest)
       apply (rel-auto)
       done
     have wpR: '[$st \mapsto_s \ll s \gg, $tr \mapsto_s \langle \rangle, $tr' \mapsto_s \ll t_1 @ t_2 \gg] † (post<sub>R</sub> P wp<sub>r</sub> pre<sub>R</sub> Q)'
```

```
proof -
             have \bigwedge s_1 \ t_0. \llbracket \ t_0 \leq t_1 \ @ \ t_2; '\llbracket st \mapsto_s \ll s \gg, \$st' \mapsto_s \ll s_1 \gg, \$tr \mapsto_s \lang{\rangle}, \$tr' \mapsto_s \ll t_0 \gg \rrbracket \dagger post_R P'
\implies '[$st \mapsto_s \ll s_1\gg, $tr \mapsto_s \langle \rangle, $tr' \mapsto_s \ll (t_1 @ t_2) - t_0\gg] † pre<sub>R</sub> Q'
              proof -
                   fix s_1 t_0
                  assume c:t_0 \leq t_1 \otimes t_2 '[\$st \mapsto_s \ll s \gg, \$st' \mapsto_s \ll s_1 \gg, \$tr \mapsto_s \langle \rangle, \$tr' \mapsto_s \ll t_0 \gg] \dagger post_R P'
                  have preP': '[\$st \mapsto_s \ll s \gg, \$tr \mapsto_s \langle \rangle, \$tr' \mapsto_s \ll t_0 \gg] \dagger pre_R P'
                   proof -
                       have (pre_R P)[0,\ll t_0 \gg /\$tr,\$tr'] \subseteq (pre_R P)[0,\ll t_1 @ t_2 \gg /\$tr,\$tr']
                           by (simp add: RC-prefix-refine closure assms c)
                       \mathbf{hence}~[\$st \mapsto_s \ll s \gg, \$tr \mapsto_s \langle \rangle, \$tr' \mapsto_s \ll t_0 \gg] \dagger~pre_R~P \sqsubseteq [\$st \mapsto_s \ll s \gg, \$tr \mapsto_s \langle \rangle, \$tr' \mapsto_s \ll t_0 \gg s \gg t_0 \gg 
\ll t_1 \otimes t_2 \gg \uparrow pre_R P
                           by (rel-auto)
                       thus ?thesis
                           by (simp add: taut-refine-impl preP)
                   qed
                  with c a3 preP a6'[of t_0 s_1] show '[\$st \mapsto_s \ll s_1 \gg, \$tr \mapsto_s \langle \rangle, \$tr' \mapsto_s \ll (t_1 @ t_2) - t_0 \gg] † pre_R
Q
                       by (simp)
              qed
              thus ?thesis
                  apply (simp-all add: wp-rea-circus-form-alt assms closure unrest usubst rea-impl-alt-def)
                  apply (simp add: R1-def usubst tcontr-alt-def)
                  apply (auto intro!: taut-shAll-intro-2)
                  apply (rule taut-impl-intro)
                  apply (simp add: unrest-all-circus-vars-st-st' unrest closure assms)
                  apply (rel-simp)
              done
         qed
         show '([\$st \mapsto_s \ll s \gg, \$tr \mapsto_s \langle \rangle, \$tr' \mapsto_s \ll t_1 @ t_2 \gg] † pre_R P \wedge
                     [\$st \mapsto_s \ll s \gg, \$tr \mapsto_s \langle \rangle, \$tr' \mapsto_s \ll t_1 @ t_2 \gg] \dagger (post_R P wp_r pre_R Q)) \wedge
                   [\$st \mapsto_s \ll s \gg, \$st' \mapsto_s \ll s' \gg, \$tr \mapsto_s \langle \rangle, \$tr' \mapsto_s \ll t_1 @ t_2 \gg ] \dagger (post_R P :: post_R Q)'
              by (auto simp add: taut-conj preP postPQ wpR)
     qed
qed
lemma Cons-minus [simp]: (a \# t) - [a] = t
    by (metis append-Cons append-Nil append-minus)
lemma traces-prefix:
     assumes P is NCSP
     shows tr[\![ \ll a \gg \to_C P ]\!] s = \{(a \# t, s') \mid t s'. (t, s') \in tr[\![ P ]\!] s\}
      apply (auto simp add: PrefixCSP-def traces-seq traces-do divergences-do lit.rep-eq assms closure
Healthy-if trace-divergence-disj)
     apply (meson assms trace-divergence-disj)
     done
```

10.3 Deadlock Freedom

The following is a specification for deadlock free actions. In any intermediate observation, there must be at least one enabled event.

11 Meta-theory for Stateful-Failure Reactive Designs

```
theory utp-sf-rdes
imports
utp-sfrd-core
utp-sfrd-rel
utp-sfrd-healths
utp-sfrd-extchoice
utp-sfrd-prog
utp-sfrd-recursion
utp-sfrd-fdsem
begin end
```

end

References

- [1] S. Foster, F. Zeyda, and J. Woodcock. Unifying heterogeneous state-spaces with lenses. In *ICTAC*, LNCS 9965. Springer, 2016.
- [2] M. V. M. Oliveira. Formal Derivation of State-Rich Reactive Programs using Circus. PhD thesis, Department of Computer Science University of York, UK, 2006. YCST-2006-02.