ISAIM COMPUTING THE D-BASE AND D-RELATION 2024 OF FINITE CLOSURE SYSTEMS

Kira Adaricheva Department of Mathematics, Hofstra University, USA Lhouari Nourine LiMOS, Université Clermont Auvergne, France Simon Vilmin LiS, Aix-Marseille Université, France

Closure systems: what, how, why

What for?

Did you say Horn functions?

Closure systems	Horn functions
closed set irreducible implication implicational base minimal generator	characteristic model (pure) Horn clause (pure) Horn CNF prime implicate

RMK: hence, every results has its Horn counterpart

finite closure systems?

X finite set,
$$F \in 2^{\times}$$

DEF (closure system): set system (X, F) where

· $X \in F$

· $F_1, F_2 \in F$ entails $F_1 \cap F_2 \in F$ (n-closed)

Implications, implicational base (IB)

"If I have A, I have b"

DEF (implicational base, IB):

- · implication: statement (A + b) (A = X, b & X)
- · implicational base: pair (X, Z), E set of implications

Trreducibles

Same information, different POVs

The D-base: our topic of interest

Among minimal generators, Keep the "binary-closure" minimal

Minimal Generators

What is the minimal way of deriving x?"

DEF (minimal generator):
$$A \subseteq X$$
 minimal generator of x

if \subseteq -minimal subset satisfying $A \rightarrow x$

prime implicate

Circuit of Matroid

LHS-minimal FD

binary implications

Zb

$$\Sigma = \begin{bmatrix} 4 \to 2, & 25 \to 4, \\ 3 \to 2, & 34 \to 1, \\ 15 \to 4, & 14 \to 3, \\ 25 \to 3, & 13 \to 5 \end{bmatrix}$$

$$35 \rightarrow 2 \quad X \qquad 5 \rightarrow 2$$

$$234 \rightarrow 1 \quad X \qquad 34 \rightarrow 1$$

$$15 \rightarrow 3 \quad V$$

D-generators, D-base

DEF (D-generator, D-base):

- · D-generators of x: among minimal generators of x, those with s-minimal closure w.r.t. binary implications
- THE D-base (X, Z_D) of a closure system: $\Sigma_D + \{A \rightarrow x : x \in X, A D-gen of x\}$

$$\Sigma_{D} = \{4 \rightarrow 2, 3 \rightarrow 2\} + \begin{cases} 34 \rightarrow 1, 25 \rightarrow 1, 15 \rightarrow 2, \\ 13 \rightarrow 2, 15 \rightarrow 3, 14 \rightarrow 3, \\ 25 \rightarrow 3, 15 \rightarrow 4, 25 \rightarrow 4, \\ 13 \rightarrow 5, 34 \rightarrow 5, 14 \rightarrow 5 \end{cases}$$

Motivation

Theoretical / algorithmic properties:

- · convey structural information of closure systems
- · ordered direct (fast forward chaining)
- · much smaller than the set of all minimal generators

Practical uses:

- · seabreeze forecast Adaricheva et al., 23
- · stomach cancer risk estimation Nation et al., 21

Problems

How hard is it to change the representation?

more generally

Recover the D-base to enjoy its properties

more precisely

D-base from Mi (BB-M): given Mi, find (X, ED)

D-base from Σ (DB-IB): given (X, Σ) , find (X, Σ_D)

Enumeration: output-sensitive complexity

Each of size poly(x)

Enumeration task: with input x, list a set of (solutions) R(x)

Enumeration algorithm A x of size n, R(x) of size m

Output polynomial time

polynomial delay

Output quasi-polynomial time

D-base from Mi (DB-M): given Mi, find (X, ED)

DB-M can be solved in output quasi-polynomial time

Our approach: dualization

Existing work:

· algorithm based on Hypergraph dualization Adaricheva, Nation, 17 produces (possibly large) superset of D-base

TDEA: D-base relies on Eb

Eb defines a distributive closure system

⇒ use dualization in distributive closure systems

Dualization (with E)

$$\cdot \downarrow \mathcal{B}^{\dagger} \cap \uparrow \mathcal{B}^{-} = \phi$$

Dualization: with (X, Z) and antichain B+, find antichain B

Dualization complexity (with E) and DB-M

Intuition: DB-M & Dualization Distr.

Intuition: DB-M > Dualization Distr.

Long story short

ANV, 23+

DB-M is equivalent to dualization in distributive closure systems

ANV, 23+

DB-M can be solved in output-quasipolynomial time

using Elbassioni, 22 K

D-base from Σ (DB-IB): given (X, Σ) , find (X, Σ_D)

DB-IB can be solved with polynomial delay

Our approach: Supergraph trasversal

Existing work:

- · algorithm using simplification logic Rodriguez et al., 15, 17 no (output-sensitive) complexity analysis
- · poly-delay algorithm listing D-minimal Reys Ennaoui, Nourine, 16 based on supergraph traversal (2 D-gen of some x)

IDEA: use Ennaoui, Nourine, 16 as a blackbox

RMK: supergraph traversal also used for minimal Keys Lucchesi, Osborn, 78 Bérczi et al., 23 a

Principle: Supergraph traversal

* transition key idea: substitute $a_z \in A_z$ with B s.t. B \Rightarrow $a_z \in \Xi$ (greedily) minimize w.r.t. Ξ_b

Principle: Supergraph traversal

poly transitions + strongly connected

> poly-delay enumeration (with DFS) of D-gen of some x

PROB: applying algo on each $x \in X$ yields repetitions \Rightarrow no guarantee on delay

Fix: merge the graphs

$$\bigcirc$$
 3 \rightarrow 2, 4 \rightarrow 2

$$\bigcirc$$
 15 → 2, 15 → 3, 15 → 4

$$2 \quad 13 \rightarrow 2, \ 13 \rightarrow 5$$

$$34 \rightarrow 5, 34 \rightarrow 1$$

(5)
$$25 \rightarrow 3$$
, $25 \rightarrow 1$, $25 \rightarrow 4$

FIX: take the union of supergraphs

- · poly transitions
- · strongly connected components
- > poly delay enumeration of all D-gens (with DF5s)

Long story short

with exponential space.

ANY, 937

DB-IB can be solved with polynomial delay

using Ennaoui, Nourine, 16

Conclusion

Finding the D-base:

- · output quasi-poly from M:
- · poly-delay from E

Other results:

- · NP-hardness of finding D-relation (defined from D-base)
- · Connection between E-base (= D-base) and matroids

Further questions:

- · Characterize systems with valid E-base
- · Similar algorithms for E-base?

Adaricheva, Bernhardt, Liu, Schmidt

Adaricheva et al., 23

Importance of overnight parameters to predict sea breeze on Long Island 2023

Nation, Cabot-Miller, Segal, Lucito, Adaricheva Nation et al., 21 Combining algorithms to find signatures that predict risk in early Stage of stomach cancer Journal of Computational Biology, 2021

Adaricheva, Nation

Adaricheva, Nation, 17

Discovery of the D-basis in binary table based on hypergraph dualization Theoretical Computer Science, 2017

Fredman, Khachiyan

Fredman, Khachiyan, 96

On the complexity of dualization of monotone disjunctive normal forms Journal of Algorithms, 1996

Elbassioni

Elbassioni, 22

On dualization over distributive lattices Discrete Mathematics and Theoretical Computer Science, 2022

Kavvadias, Sideri, Stavropoulos Generating maximal models of a Boolean expression Information Processing Letters, 2000 Kavvadias et al., 00

Rodriguez-Lorenzo, Adaricheva, Cordero, Enciso, Mora Rodriguez et al., 17
Formation of the D-basis from implicational system using
Simplification Logic
International Journal on General Systems, 2017

Rodriguez-Lorenzo, Adaricheva, Cordero, Enciso, Mora Rodriguez et al., 15 From an implicational system to its corresponding D-basis 2015

Ennaoui, Nourine, 16
Polynomial delay hybrid algorithms to enumerate candidate keys for a relation BDA, 2016