BEST AVAILABLE COPY

1/2 ページ

PATENT ABSTRACTS OF JAPAN

(11)Publication number:

2001-130915

(43)Date of publication of application: 15.05.2001

(51)Int.CI.

CO1G 49/00 // C30B 29/16

(21)Application number: 11-308911

(71)Applicant: ROHM CO LTD

(22)Date of filing:

29.10.1999

(72)Inventor: YOSHIDA HIROSHI

SATO KAZUNORI

(54) FERROMAGNETIC ZINC OXIDE-BASED COMPOUND CONTAINING TRANSITION METAL AND METHOD FOR ADJUSTING FERROMAGNETIC CHARACTERISTIC

(57)Abstract:

PROBLEM TO BE SOLVED: To provide a ferromagnetic ZnO-based compound which is obtained from a lighttransmitting ZnO-based compound and has the ferromagnetic property, and to provide a method for adjusting the ferromagnetic characteristics of the ferromagnetic ZnO-based compound, by which the ferromagnetic characteristics can be adjusted. SOLUTION: This ferromagnetic ZnO-based compound comprising a ZnO-based compound and at least one of metal selected from transition metal elements of V, Cr. Fe, Co, Ni, Rh and Ru. The ferromagnetic characteristics are adjusted by the adjustment of the concentrations of the transition metals, the combination of two or more of the metals selected from the transition metals, Mn or the like, the addition of a dopant or the like.

LEGAL STATUS

[Date of request for examination]

[Date of sending the examiner's decision of rejection

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's decision of rejection]

(19)日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出願公開番号 特開2001 — 130915

(P2001-130915A)

(43)公開日 平成13年5月15日(2001.5.15)

(51) Int.Cl. ⁷	識別記号	F I	7	·-7]-}*(参考)
C 0 1 G 49/00		C 0 1 G 49/00	E	4G002
# C 3 O B 29/16		C 3 0 B 29/16		4 G 0 7 7

審査請求 未請求 請求項の数8 OL (全 7 頁)

(21)出願番号	特顧平11-308911	(71)出願人 000116024
		口一厶株式会社
(22)出顧日	平成11年10月29日(1999.10.29)	京都府京都市右京区西院清崎町21番地
		(72)発明者 吉田 博
		兵庫県川西市大和東2丁目82番4号
		(72)発明者 佐藤 和則
		大阪府箕面市牧幣5丁目2番36号第1福和
		挂 A−12
		(74)代理人 100098464
		弁理士 河村 朔
		Fターム(参考) 40002 AA06
		40077 AA03 AB05 BB07 B060 DA05
		DAO7 DB08 EB01 HA01

(54)【発明の名称】 遷移金属を含有する強磁性 Zn O系化合物およびその強磁性特性の調整方法

(57)【要約】

【課題】 光を透過するZnO系化合物を用いて強磁性が得られる強磁性ZnO系化合物の提供、およびその強磁性特性を調整することができる強磁性ZnO系化合物の強磁性特性を調整する方法を提供する。

【解決手段】 ZnO系化合物に、V、Cr、Fe、Co、Ni、RhおよびRuの遷移金属元素よりなる群れから選ばられる少なくとも1種の金属が含有されている。そして、これらの遷移金属の濃度の調整、Mnなどを加えた金属から2種以上の金属の組合せ、ドーパントの添加などにより強磁性特性を調整する。

【特許請求の範囲】

【請求項1】 ZnO系化合物に、V、Cr、Fe、Co、Ni、RhおよびRuの遷移金属元素よりなる群れから選ばられる少なくとも1種の金属が含有されてなる強磁性ZnO系化合物。

1

【請求項2】 前記遷移金属元素、Ti、MnおよびCuよりなる群れから選ばれる少なくとも2種の金属が含有されてなる請求項1記載の強磁性ZnO系化合物。

【請求項3】 n形ドーバントおよびp形ドーパントの 少なくとも一方がドーピングされてなる請求項1または 10 2記載の強磁性ZnO系化合物。

【請求項4】 ZnO系化合物に(1)V、Cr、Fe、Co、Ni、RhおよびRuの遷移金属元素よりなる群れから選ばられる少なくとも1種の金属元素、

(2)前記選移金属元素、Ti、Mn およびCuよりなる群れから選ばられる少なくとも2種の金属元素、および(3)前記(1)または(2)と、n形ドーパントおよびp形ドーパントの少なくとも一方、のいずれかを添加し、前記選移金属元素、Ti、Mn、Cuまたはn形ドーパントもしくはp形ドーパントの濃度の調整、または前記金属元素の組合せにより強磁性特性を調整する強磁性 Zn O系化合物の強磁性特性の調整方法。

【請求項5】 前記濃度の調整、および前記(2)に列記される金属元素の組合せのうち、少なくとも1つの方法により、強磁性転移温度を所望の温度に調整する請求項4記載の調整方法。

【請求項6】 前記(2)に列記される金属元素を少なくとも2種以上混晶させ、強磁性のエネルギー状態を調整すると共に、該金属元素自身により導入されたホールまたは電子による運動エネルギーによって全エネルギー 30を低下させることにより、強磁性状態を安定化させる請求項4記載の調整方法。

【請求項7】 前記(2) に列記される金属元素を少なくとも2種以上混晶させ、該金属元素自身により導入されたホールまたは電子によって、金属原子間の磁気的相互作用の大きさと符号を制御することにより、強磁性状態を安定化させる請求項4記載の調整方法。

【請求項8】 前記(2) に列記される金属元素を少なくとも2種以上混晶させ、該金属元素自身により導入されたホールまたは電子によって、金属原子間の磁気的相 40 互作用の大きさと符号を制御すると共に、該金属元素の混晶による光の透過特性を制御することにより、所望の光フィルタ特性を有する強磁性 Zn O系化合物とする請求項4記載の調整方法。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、光を透過するZn 〇系化合物にV、Cr、Fe、Co、Ni、Rh、Ru などの遷移金属元素を混晶させることにより強磁性特性 を実現させる単結晶性の強磁性ZnO系化合物およびそ の強磁性特性の調整方法に関する。さらに詳しくは、たとえば強磁性転移温度などの所望の強磁性特性が得られる強磁性ZnO系化合物およびその強磁性特性の調整方法に関する。

[0002]

【従来の技術】光を透過しながら高い強磁性特性を有する単結晶の強磁性薄膜が得られれば、大量情報の伝達に必要な光アイソレータや高密度磁気記録が可能になり、将来の大量情報伝達に必要な電子材料を作製することができる。そのため、光を透過しながら強磁性を有する材料が望まれている。

【0003】一方、ZnO系化合物は、そのバンドギャップが3.3eVと大きく、青色から紫外の波長の光でも透過するという性質を有すると共に、GaNなどに比べてそのエキシトンの結合エネルギーが大きく、この材料で強磁性が得られればコヒーレントなスピン状態を利用した光量子コンピュータなどの光デバイス作製のために大きな発展が期待される。しかし、従来はZnOにMnをドープした例はあるが、反強磁性状態となっており、ZnO系化合物の強磁性状態の実現は報告されていない。

[0004]

【発明が解決しようとする課題】前述のように、ZnO 系化合物を用いて安定した強磁性特性が得られれば、そのエキシトンの結合エネルギーが大きいZnO系化合物からなる半導体レーザなどの発光素子と組み合せて利用することができたり、磁気状態を反映した光を発生させたりすることができ、磁気光学効果を利用するデバイスに非常に用途が大きくなる。

1 【0005】さらに、前述のような光を照射し、磁化状態を変化させることにより、強磁性体メモリを構成する場合、強磁性転移温度(キュリー温度)を光の照射により変化するような温度(室温より僅かに高い温度)に設定するなど、強磁性特性が所望の特性になるように作製する必要がある。

【0006】本発明は、このような状況に鑑みてなされたもので、光を透過するZnO系化合物を用いて、強磁性が得られる強磁性ZnO系化合物を提供することを目的とする。

0 【0007】本発明の他の目的は、強磁性ZnO系化合物を作製するに当り、たとえば強磁性転移温度などの、その強磁性特性を調整することができる強磁性ZnO系化合物の強磁性特性を調整する方法を提供することにある。

[0008]

【課題を解決するための手段】本発明者らは、光を透過する材料としてとくに適したZnO系化合物を用い、強磁性特性を有する単結晶を得るため鋭意検討を重ねた結果、Ti、V、Cr、Mn、Fe、Co、Niなどの遷移金属元素は、Znのイオン半径と近く、Znの50%

程度以上を置き換え(混晶化させ)ても充分に単結晶が得られること、MnをZnOに混晶させると、反強磁性になるが、このMnの電子状態(d電子5個)よりホールまたは電子を増加する(電子を増やしたり減らす)ことにより、強磁性特性が得られること、Mnよりd電子が少なくなるCr、VなどをZnO系化合物に混晶させることにより、Mnにホールを添加したのと同様の効果が得られ、Fe、Co、NiなどをZnO系化合物に混晶させることにより、Mnに電子をドープしたのと同様の効果が得られること、を見出し、V、Cr、Fe、Co、Ni、Rh、Ruなどの遷移金属元素をZnO系化合物に混晶化させることにより、これらの金属単体を混晶させるだけで安定した強磁性状態にすることができることを見出した。

【0009】そして、本発明者らがさらに鋭意検討を重 ねた結果、Ti、V、Cr、Mn、Fe、Co、Niな どの遷移金属元素は、電子スピンs=5/2、4/2、 3/2、2/2、1/2をもつ高スピン状態となり、そ の濃度を変化したり、これらの2種類以上の組合せや、 その割合を変えた混晶にしたり、n形および/またはp 形のドーパントを添加したりすることにより、強磁性転 移温度を可変し得ること、反強磁性や常磁性状態より強 磁性状態を安定化させ得ること、その強磁性状態のエネ ルギー(たとえば僅かの差で反強磁性になるが、通常は 強磁性状態を維持するエネルギー)を調整し得ること、 前述の遷移金属元素により最低透過波長が異なり、2種 類以上を選択的に混晶することにより、所望のフィルタ 機能をもたせ得ること、を見出し、これらの遷移金属元 素の濃度や混合割合を調整することにより、所望の磁気 特性を有する単結晶性で、かつ、強磁性の2n0系化合 30 物が得られることを見出した。

【0010】本発明による強磁性ZnO系化合物は、ZnO系化合物に、V、Cr、Fe、Co、Ni、RhおよびRuの遷移金属元素よりなる群れから選ばられる少なくとも1種の金属が含有されている。

【0011】 CC KZnO 系化合物とは、Zn を含む酸化物、具体例としてはZnO の他、IIA 族元素とZn、またはIIB 族元素とZn、またはIIA 族元素とZnのそれぞれの酸化物であることを意味する。

【0012】この構成にすることにより、前述の遷移金属元素はZnなどのII族元素とイオン半径が近く、Znの50at%以上を置換してもウルツアイト構造の単結晶を維持すると共に、その透明性を維持しながら、Mnよりホールまたは電子が多くなり、強磁性の性質を呈する。

【0013】前配遷移金属元素、Ti、MnおよびCu よりなる群れから選ばれる少なくとも2種の金属が含有 されることにより、その金属元素のd電子の状態がそれ それ異なり、ホールまたは電子をドープするよりも直接 50 的に強磁性特性が変化し、強磁性転移温度などの強磁性 特性を調整することができる。

【0014】n形ドーパントおよびp形ドーパントの少なくとも一方がドーピングされても、ドーパントはZn Oの母体に入るため、遷移金属元素間の影響のように直接的ではないが、Zn Oの母体に近いd電子に作用して、ホールまたは電子が変動し、その強磁性特性を調整することができる。

晶させることにより、Mnに電子をドープしたのと同様 【0015】本発明によるZnO系化合物の強磁性特性の効果が得られること、を見出し、V、Cr、Fe、C 10 の調整方法は、ZnO系化合物に、(1) V、Cr、Fo、Ni、Rh、Ru などの遷移金属元素をZnO系化 e、Co、Ni 、Rh およびRu の遷移金属元素よりな合物に混晶化させることにより、これらの金属単体を混 る群れから選ばられる少なくとも1種の金属元素

(2)前記遷移金属元素、Ti、MnおよびCuよりなる群れから選ばられる少なくとも2種の金属元素、および(3)前記(1)または(2)と、n形ドーパントおよびp形ドーパントの少なくとも一方、のいずれかを添加し、前記遷移金属元素、Ti、Mn、Cuまたはn形ドーパントもしくはp形ドーパントの濃度の調整、または前記金属元素の組合せにより強磁性特性を調整することを特徴とする。

【0016】具体的には、前記濃度(遷移金属、Mnなどの金属元素およびドーパントの濃度)の調整、および前記(2)に列記される金属元素の組合せのうち、少なくとも1つの方法により、強磁性転移温度を所望の温度に調整することができ、また、前記(2)に列記される金属元素を少なくとも2種以上混晶させ、強磁性のエネルギーを調整すると共に、該金属元素自身により導入されたホールまたは電子による運動エネルギーによって全エネルギーを低下させることにより、強磁性状態を安定化させることができ、また、前記(2)に列記される金属元素を少なくとも2種以上混晶させ、該金属元素自身により導入されたホールまたは電子によって、金属原子間の磁気的相互作用の大きさと符号を制御することにより、強磁性状態を安定化させることができる。

【0017】さらに、前記(2)に列記される金属元素を少なくとも2種以上混晶させ、該金属元素自身により導入されたホールまたは電子によって、金属原子間の磁気的相互作用の大きさと符号を制御すると共に、該金属元素の混晶による光の透過特性を制御することにより、所望の光フィルタ特性を有する強磁性 Zn O系化合物とすることができる。

[0018]

【発明の実施の形態】つぎに、図面を参照しながら本発明による強磁性ZnO系化合物、およびその強磁性特性の調整方法について説明をする。本発明による強磁性ZnO系化合物は、ZnO系化合物に、V、Cr、Fe、Co、Ni、RhおよびRuの遷移金属元素よりなる群れから選ばられる少なくとも1種の金属が含有されている。

【0019】前述のように、本発明者らはZnO化合物

6

を用いて強磁性材料を得るために鋭意検討を重ねた結果、V、Cr、Fe、Co、Ni、RhおよびRuの遷移金属元素は、反強磁性を示すMnより3d電子が増減することにより、図2に反強磁性の全体エネルギーと強磁性の全体エネルギーとの差ΔEが示されるように、いずれもこれらの遷移金属元素のみを単独で混晶させるだけで強磁性を示すことを見出した。この混晶割合は、ZnOのZnに対して25at%の例であるが、混晶割合としては、数%でも強磁性を示し、また、多くしても結晶性および透明性を害することがなく、lat%から9at%、好ましくは10at%~80at%であれば、充分な強磁性を得やすい。この遷移金属元素は1種類である必要はなく、後述するように2種類以上を混晶(合金化)することができる。

【0020】とのような遷移金属元素を含有する2n0 化合物の薄膜を成膜するには、たとえば図1にMBE装 置の概略説明図が示されるように、1.33×10-9P 8程度の超高真空を維持できるチャンバー1内の基板ホ ルダー4に、たとえばサファイアなどからなるZnO化 合物を成長する基板5を設置し、ヒータ7により基板5 を加熱できるようになっている。そして、基板ホルダー 4に保持される基板5と対向するように、成長する化合 物を構成する元素の材料(ソース源)2nを入れたセル2 a、Feなどの遷移金属元素を入れたセル(1個しか示 されていないが、2種類以上を混晶させる場合は2個以 上設けられている)2b、n形ドーパントのGa、A 1、1nなどを入れたセル2c、ラジカル酸素Oおよび ラジカルチッ素Nを発生させるRFラジカルセル3a、 3 b が設けられている。なお、 Z n や遷移金属などの固 体原料はとれらの金属の酸化物をセルに入れて原子状に 30 することもできる。

【0021】なお、固体(単体)を入れるセル2a~2 cは、図示されていないが、それぞれにヒータが設けられ、加熱により固体ソースを原子状にして蒸発させられるようになっており、ラジカルセル3a、3bは、図に示されるようにRF(高周波)コイル8により活性化させている。とのZn、遷移金属元素およびn形ドーパント材料としては、純度99.9999%の固体ソースを原子状にし、また、OはO.を前述のRFラジカルセルにより活性化した99.9999%の原子状ガスを用い、N*または励起状態のN.は、N.分子もしくはN.Oを前述のラジカルセルにより活性化して使用する。なお、Gaや遷移金属元素は分子ガスにマイクロ波領域の電磁波を照射することにより原子状にすることもできる。

【0022】そして、ZnOを成長させながら、n形ドーパントのGaを流量1.33×10⁻³Paで、さらにp形ドーパントである原子状Nを6.65×10⁻³Paで、また、たとえばFeの原子状遷移金属元素1.33×10⁻³Paで、同時に基板5上に流しながら、350

~750℃で成長することにより、遷移金属元素を混晶させたZnO薄膜6を成長させることができる。以上の説明では、n形ドーパントやp形ドーパントをドーピングする例で説明しているが、前述の図2および後述する表1および2の例は、いずれのドーパントもドーピングしないで、Mn、Ti、Cuを含む遷移金属のみをドーピングした例である。

【0023】 このようにして、V、Cr、Fe、CoおよびNiを混晶させた ZnO薄膜は、図2に示されるように、V、Cr、Fe、CoおよびNiが、反強磁性エネルギーと強磁性エネルギーとの差 ΔEがそれぞれ20×13.6 me V、15×13.6 me V、10×13.6 me V、14×13.6 me V、18×13.6 me Vと大きく、強磁性を示していることが分る。なお、図2のデータは、第1原理計算(原子番号を入力パラメータとしてシミュレーションする)によるデータである。【0024】 この例では、ZnO化合物に遷移金属元素をドープさせたが、ZnOのZnの一部がMgやCdなどの他のII族元素と置換したZnO系化合物でも、ZnOと同様の構造であり、同じように強磁性の単結晶が得られる。

【0025】本発明の強磁性ZnO系化合物によれば、Znとイオン半径がほぼ同じの遷移金属元素を混晶させているため、Zn^{**}が遷移金属元素のFe^{**}などと置換されて、ウルツアイト構造を維持する。しかも、Feなどの前述の遷移金属元素は、Mnよりd電子が増加する電子構造になっており、図2に示されるように、との強強性状態で安定する。しかも、この強強性ZnOは、後述する表1および2にも示されるように、その磁気モーメントが大きく、たとえばFe単体(磁気モーメント2×9.2.74J/T(2μ))より大きな磁気モーメント4.04×9.274J/T(4.04μ。(ボーア磁子))のFe含有ZnO系化合物が得られ、非常に磁性の強い強磁性磁石が得られる。

【0026】つぎに、遷移金属元素の濃度を変えることによる磁気特性の変化を調べた。前述の25at%濃度の遷移金属元素を含有させたものの他に濃度が50at%のものを作製し、それぞれの磁気モーメント(×9.274J/T))および強磁性転移温度(度K)を調べた。磁気モーメントおよび強磁性転移温度はSQUID(superconducting quantum interference device:超伝導量子干渉素子)による帯磁率の測定から得られたものである。その結果が表1および表2に示されている。表1および表2から、混晶割合が大きくなる(濃度が高い)ほど強磁性転移温度が上昇する傾向が見られ、混晶割合にほぼ比例して増加する。この関係を図3に示す。また、スピン間の強磁性的相互作用も遷移金属元素濃度の増加に伴って増大し、磁気モーメントも増大することが分る。

[0027]

【表1】

遷移金属 の種類	遷移金属の 濃度(at%)	磁気モーメ ント(µ _B)	強磁性転移 温度(度K)
V	2 5	2.42	451
Cr	2 5	3.80	600
Fe	25	4.04	786
Со	2 5	2.96	5 2 8
Ni	2 5	1.88	389

7

[0028]

【表2】

遷移金属 の種類	遷移金属の 濃度(at%)	磁気モーメ ント(µ _B)	強磁性転移 温度(度K)
V	5 0	2.58	681
Cr	5 0	3.95	792
Fe	5 0	4.02	959
Со	5 0	2.97	765
Ni	5 0	1.89	698

前述のように、遷移金属元素は、電子スピン s = 5/ 2、4/2、3/2、2/2、1/2をもつ高スピン状 20 態となり、この表1および2、ならびに図3からも明ら かなように、その濃度を変化させることにより、強磁性 的なスピン間相互作用と強磁性転移温度を調整し、制御 することができることが分る。なお、強磁性転移温度 は、150度K以上になるようにすることが、実用上好 ましい。

【0029】さらに、本発明者らは、これらの遷移金属 元素を2種類以上混晶させることにより、ホールや電子 の状態を調整できると共に、それぞれの磁気特性を併せ もたせることができることを見出した。たとえばFeと 30 Mnを混晶させ、FeとMnとを合せて25at%と し、Fe。.,,,Mn、Zn。,,Oのxを種々変化させ た。その結果、図4 (a) に示されるように、強磁性転 移温度を大きく変化させるとができ、x=0.15で0 度Kとすることができ、 $x = 0 \sim 0.15$ の範囲を選定 することにより、所望の強磁性転移温度に設定すること ができる。また、FeとCoを同様に合せて25at% 混晶させ、Fe。.zs-xCoxZn。.zsOのxを種々変化 させると、図4 (b) に示されるように、強磁性の状態 を維持したまま、その強磁性転移温度を変化させること 40 ができる。また、図示されていないが、磁気モーメント についても両者の混合割合に応じた磁気モーメントが得 られる。

【0030】前述の各例は、遷移金属元素を2種類以上 ドープすることにより、その強磁性特性を変化させた が、n形ドーパントまたはp形ドーパントをドープして も、同様にホールまたは電子の量を変化させることがで き、その強磁性状態を変化させることができる。この場 合、n形またはp形ドーパントは、ZnOの伝導帯や価 電子帯に入り、その近くにある遷移金属元素のd電子に 50

作用するため、必ずしもドーピングされたドーパントが そのまま全て作用することにはならないが、d電子への 作用により、その強磁性状態を変化させ、強磁性転移温 度にも変化を与える。たとえばn形ドーパントをドープ することにより、電子を供給したことになり、Feを混 晶させながらn形ドーパントをドープすることは、前述 のFeにさらにCoを添加するのと同様の効果が得ら れ、Feと共にp形ドーパントをドープすることは、前 述のFeにMnを添加するのと同様の効果が得られる。 10 【0031】たとえばn形ドーパントまたはp形ドーバ ント(電子またはホール)のドーピングによる (反強磁 性のエネルギー) - (強磁性のエネルギー) = ΔEの変 化が顕著であるMnをZnOに混晶させた例で、不純物 をドーピングしたときの不純物濃度 (a t %) に対する △Eの関係を図5に示す。このように10%程度以上の ホールの導入により反強磁性から強磁性に転換し、その 濃度により強磁性特性が変化し、その強磁性特性を調整 することができる。他の遷移金属元素は、元々強磁性を 示し、反強磁性との間でとれほど大きな変化はないが、 同様の強磁性状態を変化させることができ、強磁性転移 温度を調整することができる。なお、このドーパントに よる調整は、前述の2種以上の遷移金属を混晶する調整 と異なり、磁気モーメントそのものは2nのに混晶させ た遷移金属の材料により定まる値を維持する。

【0032】 n形ドーパントとしては、B、A1、I n、Ga、ZnもしくはHを使用することができ、ドー ピングの原料としては、これらの酸化物を使用すること もできる。また、ドナー濃度としては、1×101°cm - * 以上であることが好ましい。たとえば10゚゚~10゚゚ cm⁻¹程度にドープすれば、前述の混晶割合の1~10 %程度に相当する。また、p形ドーパントとしては、前 述のようにN'または励起状態のN,である原子状Nを用 いることができる。この場合、p形ドーパントはドーピ ングしにくいが、n形ドーパントを同時に僅かにドービ ングすることにより、p形濃度を大きくすることができ

【0033】本発明者らは、さらに鋭意検討を重ねた結 果、ZnOに混晶させる遷移金属元素により、その透過 する最小の波長が異なり、混晶する遷移金属元素を2種 類以上混合することにより、その通す光の最小波長を調 整することができ、所望の波長以下の光をカットする光 フィルタを形成することができることを見出した。すな わち、所望の波長の光を透過させる強磁性のZnO系化 合物が得られる。前述の各遷移金属元素を25at%Z n Oに混晶させたときの通す光の最小波長は表3に示す とおりになった。

[0034]

【表3】

BEST AVAILABLE COPY

(6)

特開2001-130915

10

遷移金属 遷移金属の 最小波長 の種類 遺度(at%) (nm) ZnO:V375 25 ZnO:Cr 25 426 ZnO:Fe 25 412 ZnO:Co 2 5 415 ZnO:Ni 25 390 ZnO:Mn25 485

9

すなわち、この例によれば、所望の波長の光に対して、 透明な強磁性磁石を得るととができる。

【0035】以上のように、本発明によれば混晶される 金属元素自身などにより導入されたホールまたは電子の 運動エネルギーによって、全エネルギーを変化させることができ、その全エネルギーを低下させるように導入するホールまたは電子を調整しているため、強磁性状態を 安定化させることができる。また、導入されるホールまたは電子によって金属原子間の磁気的相互作用の大きさ および符号が変化し、そのホールまたは電子によってこれらを制御することにより、強磁性状態を安定化させる ことができる。

【0036】前述の例では、遷移金属元素を含有するZnO系化合物の薄膜を成膜する方法として、MBE(分子線エピタキシー)装置を用いたが、MOCVD(有機金属化学気相成長)装置でも同様に成膜することができる。この場合、Znや遷移金属などの金属材料は、たとえばジメチル亜鉛などの有機金属化合物として、MOCVD装置内に導入する。このようなMBE法やMOCVD法などを用いれば、非平衡状態で成膜することができ、所望の濃度で遷移金属元素などをドーピングすることができる。薄膜の成長法としては、これらの方法に限らず、Zn酸化物固体、遷移金属元素金属または酸化物の固体をターゲットとし、活性化した酸素を基板上に吹き付けながら成膜するレーザアブレーション法でも薄膜を成膜することができる。

【0037】さらに、遷移金属元素やその酸化物を原料※

*としてドーブする場合、ラジオ波、レーザ、X線、または電子線によって電子励起して原子状にするECRブラズマを用いることもできる。n形ドーパントやp形ドーパントでも同様にECRプラズマを用いることができる。このようなECRプラズマを用いることにより、原子状にして高濃度までドープすることができるというメリットがある。

[0038]

【発明の効果】本発明によれば、ZnO系化合物に遷移 10 金属元素を含有させるだけで、強磁性単結晶が得られる ため、すでに実現しているn形およびp形の透明電極と して使用されているZnOや、光ファイバと組み合わせ ることにより、量子コンピュータや大容量光磁気記録、 また、可視光から紫外領域に亘る光エレクトロニクス材 料として、高性能な情報通信、量子コンピュータへの応 用が可能となる。

【図面の簡単な説明】

【図1】本発明の強磁性ZnO系化合物薄膜を形成する 装置の一例の説明図である。

0 【図2】V、Crなどの遷移金属をZnOに混晶させた ときの反強磁性体の全エネルギーと強磁性体の全エネル ギーとの差△Eを示す図である。

【図3】ZnOに混晶させる遷移金属の濃度を変えたときの強磁性転移温度および磁気モーメントの変化を示す図である。

【図4】2種類以上の遷移金属元素を混晶させたときのその割合による強磁性転移温度の変化の状態を説明する図である。

【図5】Mnを例としたn形およびp形のドーパントを) 添加したときの磁性状態の変化を示す説明図である。

【符号の説明】

- 1 チャンバー
- 2、3 セル
- 5 基板
- 6 遷移金属を含有する Z n O薄膜

【図1】

【図2】

BEST AVAILABLE COPY

【図3】

【図5】

(7)

