Sample

March 24, 2021

```
[1]: import pandas as pd import matplotlib.pyplot as plt import re
```

1 Helper functions

These are borrowed from the Convert.ipynb file.

```
[4]: mapper = pd.read_excel('/Users/alex/Downloads/Mapping material names_20210324.

→xlsx',header=2,usecols='B:U').replace(r'\n','', regex=True)
```

```
[5]: additional_categories_map = {v:k for k,v in {
         'Continuous Footings':'OCF',
         'Foundation Walls':'OFW',
         'Spread Footings':'OSF',
         'Column Piers':'OCP',
         'Columns Supporting Floors':'CSF',
         'Floor Girders and Beams': 'FGB',
         'Floor Trusses':'OFT',
         'Floor Joists':'OFJ',
         'Columns Supporting Roofs':'CSR',
         'Roof Girders and Beams': 'RGB',
         'Roof Trusses':'ORT',
         'Roof Joists':'ORJ',
         'Parking Bumpers':'OPB',
         'Precast Concrete Stair Treads': 'PCS',
         'Roof Curbs':'ORC',
```

```
'Exterior Wall Construction': 'EWC',
    'Composite Decking':'CPD',
    'Cast-in-Place concrete':'CIC',
    'Floor Structural Frame': 'FSF',
    'Associated Metal Fabrications':'AMF',
    'Floor Construction Supplementary Components':'FCS',
    'Roof Construction Supplementary Components':'RCS',
    'Residential Elevators':'ORE',
    'Vegetated Low-Slope Roofing':'VLR',
    'Swimming Pools':'SWP',
    'Excavation Soil Anchors': 'ESA',
    'Floor Trusses':'FTS',
    'Roof Window and Skylight Performance': 'RWS'}.items()
}
additional_categories_map['OFT'] = 'Floor Trusses'
headings = ['Building Identifier',
            'Country',
 'City',
 'Quality / Stage of Data',
 'Construction Date',
 'Building Type',
 'Contributor'
```

```
[6]: def get_material_name(1):
         split = re.split('[_\.\]',1) #Split up the code into its requisite parts
         result = mapper[mapper['Unnamed: 7'] == split[1]+'.'+split[2]] #Filter by__
      →Level 4 Master Format
         if len(result) == 0:
             result = mapper #If that code does not exist in the table, reset
         if len(result) == 1:
             return result['Mapping Table'].values[0] #If it maps to exactly one_
      →value, return that. We do this check after every step
         if split[3] != '000': #Check if there is an additional code, and if so⊔
      \hookrightarrow filter by that
             result = result[result['Level 5\n'] ==_{\sqcup}
      →additional_categories_map[split[3]]]
             if len(result) == 1:
                 return result['Mapping Table'].values[0]
         #Now filter by UniFormat.
         #Filter only by the level of UniFormat present. If the code is XX 00 00,
      \rightarrow for example, then we only have Level 1.
         if int(split[5]) == 0:
             result = result[result['Unnamed: 12'] == f'{split[4]} 00 00']
             if len(result) == 1:
```

```
return result['Mapping Table'].values[0]
  elif int(split[6]) == 0:
      result = result[(result['Unnamed: 14'] == f'{split[4]} {split[5]} 00')
if len(result) == 1:
          return result['Mapping Table'].values[0]
   else:
      result = result[result['Unnamed: 18'] == f'{split[4]} {split[5]}_
\hookrightarrow{split[6]}']
      if len(result) == 1:
          return result['Mapping Table'].values[0]
   #If we couldn't find it, or there is an unspecified edge case, return None.
   if len(result) == 0:
      return None
   \#If there are multiple results but they all map to the same material,
\rightarrow return that material.
   if all(element == result['Mapping Table'].values[0] for element in_{LL}
→result['Mapping Table'].values):
      return result['Mapping Table'].values[0]
  else:
      return None
```

2 1. Plot sample figures

Here we plot building material mass, and volume histograms.

```
[7]: plt.hist(df[[c for c in df.columns if 'kg' in c]].sum(axis=1),bins=50);
   plt.title('Histogram of total building material mass')
   plt.xlabel('Kilogrammes')
   plt.ylabel('Count');
```



```
[8]: plt.hist(df[[c for c in df.columns if 'm3' in c]].sum(axis=1),bins=50);
plt.title('Histogram of total building material volume')
plt.xlabel('Cubic Metres')
plt.ylabel('Count');
```

[8]: Text(0, 0.5, 'Count')

3 2. Investigate a specific material

3067.385626

001

In this example, we use the helper function get_material_name() to select columns which match steel. Then, we calculate the average amount of steel used by floor, produce a table of values by Level 3 MasterFormat only, and calculate the average values for these by year in the dataset.

002	2827.391277
003	1748.778503
004	484.167710
005	818.053124
006	822.260903
007	1488.697400
800	1015.103971
009	653.231968
OOF	7948.405146
OOR	129.413985
010	488.252782
011	515.548827
012	36.441030
013	50.939630
014	35.358148
015	30.791481
016	45.260000
017	39.808611
018	25.340093
019	39.808611
020	39.808611
021	216.558611
022	20.773426
023	20.773426
023	20.787963
025	20.787903
026	72.347685
020	1026.355741
028	27.751204
029	20.555370
030	20.555370
031	22.517870
032	25.774167
033	138.751963
0P1	188.160139
0P2	82.890185
0P3	379.685602
0P4	1439.617315
999	4045.162555
B01	515.030276
MOO	121.837870
MO1	119.556954
P01	2825.480285
P02	17.547222
P03	1476.614537
dtype:	float64

Now, we will aggregate to Level 3 MasterFormat codes, and display these values for the first three entries.

```
[12]: f = lambda x: re.split('[_\.\]',x)[1] #This function takes in a full column_
       →name and returns only the Level 3 MasterFormat code.
      steel_general_df = pd.concat([steel_df[headings[1:]],steel_df[cols].

¬groupby(f,axis=1).sum()],axis=1)
[13]: steel_general_df.head(3)
        Country City Quality / Stage of Data Construction Date Building Type
[13]:
                 TOR
             CA
                                        00IFC
                                                            2021
      1
             CA
                 TOR
                                        OOIFC
                                                            2021
                                                                            SND
      2
                TOR
                                        OOIFC
             CA
                                                            2021
                                                                            SND
                                        Contributor
                                                        A1010 A1020
                                                                          A4010
      O Saxe Research Group University of Toronto
                                                                       285.8086
                                                      91.4005
                                                                  0.0
      1 Saxe Research Group University of Toronto
                                                       0.0000
                                                                  0.0
                                                                         0.0000
      2 Saxe Research Group University of Toronto
                                                     261.3180
                                                                 0.0
                                                                         0.0000
           A4020
                     B2010 B2050
                                   B2070
                                                    B3060
                                                           C1030 C1090
                                                                         D1010
                                             B3010
       16.7488
                       0.0
                              0.0
                                      0.0
                                          81.7519
                                                      0.0
                                                             0.0
                                                                     0.0
                                                                            0.0
      1 27.1446
                       0.0
                              0.0
                                            0.0000
                                                      0.0
                                                             0.0
                                                                     0.0
                                                                            0.0
                                      0.0
      2 15.0979
                       0.0
                              0.0
                                            0.0000
                                                                     0.0
                                      0.0
                                                      0.0
                                                             0.0
                                                                            0.0
         G2010 G2060
      0
           0.0
                  0.0
      1
           0.0
                  0.0
      2
           0.0
                  0.0
```

[3 rows x 26 columns]

We can also calculate the average for each Level 3 MasterFormat code by year of construction:

		9		v	V	
[14]:	steel_general_df.g	roupby('Constr	ruction Date').m	nean()		
[14]:		A1010	A1020	A4010	A4020	\
	Construction Date					
	1913	0.000000	0.000000	48.162700	0.00000	
	1917	0.000000	0.000000	0.000000	20.81880	
	1969	0.000000	0.000000	0.000000	98.43640	
	1988	67016.749257	0.000000	24922.610789	0.00000	
	2007	0.000000	122069.070000	68246.330000	0.00000	
	2009	92590.750000	0.000000	58354.545000	0.00000	
	2011	10048.588750	11019.437500	17521.985000	0.00000	
	2016	0.000000	113531.410000	14850.630000	0.00000	
	2017	8946.288121	3728.788900	7498.122611	0.00000	
	2018	11373.210833	84343 . 296833	1988.405000	0.00000	

2020	418.544600	0 0	.000000	71	.606600	41.67172	
2021	495.281777	7 0	.000000	168	.656643	66.54690	
	14040	٨Ε/	210	16010		D1010 \	
Construction Date	A4040	A50	310	A6010		B1010 \	
1913	0.00000	0.0000	000 0	.000000	0	.000000	
1917	0.000000	0.0000		.000000		.000000	
1969	0.000000	0.0000		.000000		.000000	
1988	0.000000	617.9527		.000000		.786585	
2007	0.000000	0.0000		.000000		3.900000	
2009	0.000000	0.0000	000 0	.000000	77762	2.100000	
2011	180.157500	815.2600	000 0	.000000	92701	.751675	
2016	470.215000	0.0000	000 0	.000000	16048	3.100000	
2017	927.640379	0.0000	000 0	.000000	426847	.063700	
2018	0.000000	6904.0750	000 98	. 648333	3853	.024333	
2020	0.000000	297.0070	000 0	.000000	395	.993400	
2021	0.000000	28.8116	331 0	.000000	91	.699229	
	B1020)	B1080]	B2010	B2050	\
Construction Date							
1913	0.000000		000000		00000	0.000000	
1917	0.000000		000000		00000	0.000000	
1969	0.000000		000000		00000	0.000000	
1988	0.000000			5039.20		0.000000	
2007	2249.000000				00000	0.000000	
2009	63740.722253		730000	1062.89		0.000000	
2011 2016	0.000000			1425.0		0.000000	
	0.000000		785000 000000		00000	0.000000	
2017 2018	867.198000				00000	0.000000	
2010	0.000000		200000			.33.268600	
2020	0.000000		000000			26.285429	
2021	0.000000	0.0	300000	0.00	30000	20.203429	
	B2070	B3010	B306	30	C1030	C109	0 \
Construction Date							
1913	0.000	0.000000	0.00	0.0	000000	0.00000	0
1917		0.000000	0.00		000000	0.00000	
1969		0.000000	0.00		000000	0.00000	
1988	0.000	0.000000	0.00	0.0	000000	0.00000	0
2007	0.000	0.000000	0.00	0.0	000000	16665.00000	0
2009	88591.000 (0.000000	0.00	0.0	000000	0.00000	0
2011	0.000	0.000000	0.00	0.0	000000	0.00000	0
2016	0.000	0.000000	0.00	0.0	000000	0.00000	0
2017	0.000	0.000000	0.00	0.0	000000	0.00000	0
2018	237.372	0.000000	1798.36	62 0.0	000000	320.18075	8
2020	0.000	0.000000	0.00	0.0	000000	0.00000	0
2021	0.000	9.384283	0.00	00 19.	758857	0.00000	0

	D1010	G2010	G2060
Construction Date			
1913	0.000000	0.000	0.00
1917	0.000000	0.000	0.00
1969	0.000000	0.000	0.00
1988	334.146341	0.000	0.00
2007	7925.800000	0.000	0.00
2009	6959.600000	3242.050	0.00
2011	0.000000	988.315	1698.74
2016	0.000000	0.000	0.00
2017	0.000000	0.000	0.00
2018	0.000000	0.000	0.00
2020	0.000000	0.000	0.00
2021	0.000000	0.000	0.00

4 3. Uncertainty by Building Type

In this section, we look at the uncertainty code associated with each column. We collect these by building type and then report the number of each value per type of building.

```
[15]: uncertainty_level = {}
      for k,v in df.iterrows():
          #Initialise empty lists for each building type as they occur
          if v['Building Type'] not in uncertainty_level.keys():
              uncertainty_level[v['Building Type']] = []
          #Append the uncertainty value for each column that is non-NaN
          for key in v[~v.isna()].keys()[7:]:
              uncertainty_level[v['Building Type']].append(key.split('_')[-1])
[16]: from collections import Counter
[17]: for k,v in uncertainty_level.items():
          uncertainty level[k] = Counter(v) #Construct a Counter object per building
       \hookrightarrow type
[18]: uncertainty_level
[18]: {'SND': Counter({'1': 1720, '2': 711, '4': 349}),
       'OFF': Counter({'1': 494, '3': 307}),
       'APB': Counter({'1': 358, '2': 1, '3': 314}),
       'SMD': Counter({'1': 191, '2': 61, '4': 27}),
       'EDU': Counter({'1': 93, '3': 24, '2': 6}),
       'INS': Counter({'1': 90, '3': 77, '2': 1}),
       'ROW': Counter({'1': 15, '3': 5}),
       'MIX': Counter({'1': 315})}
```

Next, we aggregate columns by use code and uncertainty combined, and report the average by building type.

[19]: f = lambda x: re.split('[_\.\]',x)[1][0] + x.split('_')[-1] #From a full code, □ → return only the use code and uncertainty code.

by_function_df = pd.concat([df[headings[1:]],df[cols].groupby(f,axis=1).

→sum()],axis=1)

[20]: by_function_df.groupby('Building Type').mean()

[20]:		Constructio	n Date		A1	A2		A3	\
	Building Type								
	APB		014.50		.154000	0.000000	74	241.767500	
	EDU	2	016.50	0	.000000	0.000000	74	976.547506	
	INS		988.00		.000000	0.000000	92	557.312757	
	MIX	2	018.00	0	.000000	0.000000		0.000000	
	OFF	2	009.00	0	.000000	0.000000	127	794.205833	
	ROW	2	018.00	0	.000000	0.000000		0.000000	
	SMD	1	994.75	82	.653250	11.036450		0.000000	
	SND	2	015.60	676	.023563	68.474865		0.000000	
		A4		B1	В2		В3	В4	\
	Building Type								
	APB	0.000000	6090.	412000	0.0000	38926.972	2500	0.000000	
	EDU	0.000000	221447.	581850	0.0000	3218.892	2500	0.000000	
	INS	0.000000	129.	786585	0.0000	10716.366	983	0.000000	
	MIX	0.000000	0.	000000	0.0000	0.000	0000	0.000000	
	OFF	0.000000	149228.	155201	0.0000	29491.141	667	0.000000	
	ROW	0.000000	7019.	600000	0.0000	1088.010	0000	0.000000	
	SMD	4.246275	0.	000000	0.0000	0.000	0000	0.000000	
	SND	20.342905	115.	462900	55.4561	0.000	0000	6.686572	
		C1	C	22	D1	G	13		
	Building Type								
	APB	480.271137	0.00	0 0	.000000	0.00000	0		
	EDU	0.000000	0.00	0 0	.000000	0.00000	0		
	INS	0.000000	0.00	00 334	.146341	0.00000	00		
	MIX	0.000000	0.00	0 0	.000000	0.00000	00		
	OFF	5555.000000	0.00	0 4961	.800000	2872.05333	3		
	ROW	0.000000	0.00	0 0	.000000	0.00000	00		
	SMD	0.000000	0.00	0 0	.000000	0.00000	00		
	SND	0.000000	17.28	39 0	.000000	0.00000	00		

Lastly, we report the total amount of material falling under each uncertainty code by year of construction.

[21]: f = lambda x: x.split('_')[-1] #Select only the uncertainty code.

	1	2	3	4
Construction Date				
1913	48.162700	0.000000	0.000000	0.000000
1917	0.000000	20.818800	0.000000	0.000000
1969	0.000000	98.436400	0.000000	0.000000
1988	463.932927	0.000000	103273.679739	0.000000
2007	59668.700000	0.000000	276886.770000	0.000000
2009	237053.422253	0.000000	155250.235000	0.000000
2011	93514.931675	0.000000	45065.083750	0.000000
2016	16048.100000	0.000000	135290.040000	0.000000
2017	426847.063700	0.000000	21100.840011	0.000000
2018	72777.384758	0.000000	61876.840000	0.000000
2020	1076.002180	157.941140	0.000000	124.148600
2021	758.911369	133.872774	0.000000	13.640606