CLAIMS

What is claimed is:

- 1. A process for the preparation of α -olefins by the catalyzed oligomerization of ethylene using as part of a catalyst system a complex of a late transition metal with a tridentate ligand wherein a process stream comprising said α -olefins and said catalyst system is produced, wherein the improvement comprises, deactivating said catalyst system by adding to said process stream one or more organic compounds having a pKa of about 2 to about 20.
- 2. The process as recited in claim 1 wherein said late transition metal is iron and said ligand is a 2,6-pyridinedicarboxaldehyebisimine or a 2,6-diacylpyridinebisimine.
- 3. The process as recited in claim 2 wherein said ligand has the formula

$$R^{1}$$
 R^{2}
 R^{3}
 R^{5}
 R^{7}
 R^{7}
 R^{1}

wherein:

R¹, R² and R³ are each independently hydrogen, hydrocarbyl, substituted hydrocarbyl or an inert functional group, provided that any two of R¹, R² and R³ vicinal to one another taken together may form a ring;

R⁴ and R⁵ are each independently hydrogen, hydrocarbyl, substituted hydrocarbyl or an inert functional group;

R⁶ and R⁷ are each independently a substituted aryl having a first ring atom bound to the imino nitrogen, provided that:

in R⁶, a second ring atom adjacent to said first ring atom is bound to a halogen, a primary carbon group, a secondary carbon group or a tertiary carbon group; and further provided that

in R⁶, when said second ring atom is bound to a halogen or a primary carbon group, none, one or two of the other ring atoms in R⁶ and R⁷ adjacent to said first ring atom are bound to a halogen or a primary carbon group, with

the remainder of the ring atoms adjacent to said first ring atom being bound to a hydrogen atom; or

in R⁶, when said second ring atom is bound to a secondary carbon group, none, one or two of the other ring atoms in R⁶ and R⁷ adjacent to said first ring atom are bound to a halogen, a primary carbon group or a secondary carbon group, with the remainder of the ring atoms adjacent to said first ring atom being bound to a hydrogen atom; or

in R⁶, when said second ring atom is bound to a tertiary carbon group, none or one of the other ring atoms in R⁶ and R⁷ adjacent to said first ring atom are bound to a tertiary carbon group, with the remainder of the ring atoms adjacent to said first ring atom being bound to a hydrogen atom.

4. The process as recited in claim 3 wherein R⁶ is

and R⁷ is

wherein:

R⁸ is a halogen, a primary carbon group, a secondary carbon group or a tertiary carbon group; and

R⁹, R¹⁰, R¹¹, R¹⁴, R¹⁵, R¹⁶ and R¹⁷ are each independently hydrogen, hydrocarbyl, substituted hydrocarbyl or a functional group; provided that:

when R⁸ is a halogen or primary carbon group none, one or two of R¹², R¹³ and R¹⁷ are a halogen or a primary carbon group, with the remainder of R¹², R¹³ and R¹⁷ being hydrogen; or

when R^8 is a secondary carbon group, none or one of R^{12} , R^{13} and R^{17} is a halogen, a primary carbon group or a secondary carbon group, with the remainder of R^{12} , R^{13} and R^{17} being hydrogen; or

when R⁸ is a tertiary carbon group, none or one of R¹², R¹³ and R¹⁷ is tertiary carbon group, with the remainder of R¹², R¹³ and R¹⁷ being hydrogen; and further provided that any two of R⁸, R⁹, R¹⁰, R¹¹, R¹², R¹³, R¹⁴, R¹⁵, R¹⁶ and R¹⁷ vicinal to one another, taken together may form a ring.

5. The process as recited in claim 5 wherein:

R¹, R² and R³ are hydrogen;

R⁴ and R⁵ are methyl;

 R^9 , R^{10} , R^{11} , R^{12} , R^{14} , R^{15} , R^{16} and R^{17} are all hydrogen, R^{13} is methyl, and R^8 is methyl; or

 R^9 , R^{10} , R^{11} , R^{12} , R^{14} , R^{15} , R^{16} and R^{17} are all hydrogen, R^{13} is ethyl, and R^8 is ethyl; or

R⁹, R¹⁰, R¹¹, R¹², R¹⁴, R¹⁵, R¹⁶ and R¹⁷ are all hydrogen, R¹³ is isopropyl, and R⁸ is isopropyl, or

 R^9 , R^{10} , R^{11} , R^{12} , R^{14} , R^{15} , R^{16} and R^{17} are all hydrogen, R^{13} is n-propyl, and R^8 is n-propyl; or

 R^9 , R^{10} , R^{11} , R^{12} , R^{14} , R^{15} , R^{16} and R^{17} are all hydrogen, R^{13} is chloro, and R^8 is chloro; or

 R^9 , R^{10} , R^{11} , R^{12} , R^{14} , R^{15} , R^{16} and R^{17} are all hydrogen, R^{13} is trifluoromethyl, and R^8 is trifluoromethyl.

- 6. The process as recited in claim 1 wherein one or more alkylating or hydriding agents are present.
- 7. The process as recited in claim 1 wherein one or more alkylaluminum compounds are also present.
- 8. The process as recited in claim 1 wherein said pKa is about 3 to about 18.
- 9. The process as recited in claim 1 wherein said organic compound is an alcohol, phenol, or carboxylic acid.
- 10. The process as recited in claim 3 wherein said organic compound is an alcohol, phenol, or carboxylic acid.
- 11. The process as recited in claim 7 wherein said organic compound is an alcohol, phenol, or carboxylic acid.

- 12. The process as recited in claim 9 wherein said organic compound is an alcohol.
- 13. The process as recited in claim 9 wherein said organic compound is a carboxylic acid.
- 14. The process as recited in claim 1 wherein said organic compound is monofunctional.
- 15. The process as recited in claim 1 wherein a stoichiometric excess of said organic compound is added.