UNIVERSIDADE DE SÃO PAULO Instituto de Ciências Matemáticas e de Computação

Geradores de homologia persistente e aplicações

Carlos Henrique Venturi Ronchi

Dissertação de Mestrado do Programa de Pós-Graduação em Matemática (PPG-Mat)

SERVIÇO DE PÓS-GRADUAÇÃO DO ICMC-USP
Data de Depósito:
Assinatura:

Carlos Henrique Venturi Ronchi

Geradores de homologia persistente e aplicações

Dissertação apresentada ao Instituto de Ciências Matemáticas e de Computação – ICMC-USP, como parte dos requisitos para obtenção do título de Mestre em Ciências – Matemática. *EXEMPLAR DE DEFESA*

Área de Concentração: Matemática

Orientador: Prof. Dr. Marcio Fuzeto Gameiro

USP – São Carlos Junho de 2018

Carlos Henrique Venturi Ronchi

Persistent homology generators and applications

Dissertation submitted to the Institute of Mathematics and Computer Sciences – ICMC-USP – in accordance with the requirements of the Mathematics Graduate Program, for the degree of Master in Science. *EXAMINATION BOARD PRESENTATION COPY*

Concentration Area: Mathematics

Advisor: Prof. Dr. Marcio Fuzeto Gameiro

USP – São Carlos June 2018

RESUMO

RONCHI, C. H. V. **Geradores de homologia persistente e aplicações**. 2018. 41 p. Dissertação (Mestrado em Ciências – Matemática) – Instituto de Ciências Matemáticas e de Computação, Universidade de São Paulo, São Carlos – SP, 2018.

a.

Palavras-chave: Modelo, Monografia de qualificação, Dissertação, Tese, Latex.

ABSTRACT

RONCHI, C. H. V. **Persistent homology generators and applications**. 2018. 41 p. Dissertação (Mestrado em Ciências – Matemática) – Instituto de Ciências Matemáticas e de Computação, Universidade de São Paulo, São Carlos – SP, 2018.

a.

Keywords: Template, Qualification monograph, Dissertation, Thesis, Latex.

LISTA DE ILUSTRAÇÕES

Figura 1 -	Representação do pipeline para a utilização da homologia persistente	
	com um conjunto de dados	22
Figura 2 -	Exemplos de k -simplexos para $k \in \{0,1,2,3\}$	23
Figura 3 -	Exemplo em que a interseção de dois simplexos não é um simplexo	24
Figura 4 -	Exemplo de filtração para um complexo simplicial K	24
$Figura \ 5 \ -$	Exemplo de um complexo simplicial abstrato e sua realização geométrica	25
Figura 6 -	Exemplo de um complexo de Čech para um raio r fixado	26
$Figura \ 7 \ -$	Exemplo do complexo de Vietoris-Rips com os mesmos pontos utiliza-	
	dos para a construção na Figura 6	27
Figura 8 -	Diagrama de Voronoi de três pontos no plano	28
Figura 9 -	Complexo Alpha para um conjunto de pontos no plano	29
Figura 10 -	Exemplo da filtração de um complexo simplicial e o barcode e diagra-	
	mas de persistência associados	30
Figura 11 –	Esquema de uma rede neural artificial. O número de vértices na camada	
	escondida é determinado pelo tamanho da matriz A_i	38

LISTA DE ALGORITMOS

Algoritmo 1 –	Redução	da matriz	bordo	∂ .		 	 						32

LISTA DE CÓDIGOS-FONTE

LISTA DE TABELAS

SUMÁRIO

1	INTRODUÇÃO	19
2	HOMOLOGIA PERSISTENTE 101	21
2.1	Filtrações	22
2.1.1	Complexo de Čech	24
2.1.2	Complexo de Vietoris-Rips	26
2.1.3	Complexo Alpha	27
2.2	A matriz de bordo ∂	29
2.3	Redução da matriz ∂	31
3	MÓDULOS DE PERSISTÊNCIA	33
4	GERADORES ÓTIMOS E OUTROS CONCEITOS	35
4.1	Geradores ótimos	35
4.2	Vetorização do diagrama de persistência	35
4.3	Mapper	35
5	APLICAÇÕES	37
5.1	Geradores ótimos em classificadores de imagens	37
5.1.1	Redes Neurais Convolucionais (CNN)	37
5.2	Imagens de persistência aplicadas a proteínas	38
6	CONCLUSÃO	39
DEEEDÍ	ÊNCIAS	/11

INTRODUÇÃO

2

HOMOLOGIA PERSISTENTE 101

A topologia sempre foi vista como uma área de abstração da matemática, sem espaço para aplicações. Ela é usada para o estudo de diversos espaços em sua forma abstrata, auxiliando matemáticos em diversas demonstrações de teoremas e dando uma base fundamental para grande parte da teoria matemática usada no dia a dia (POINCARÉ, 1895).

Certas propriedades dos espaços topológicos são estudadas através da topologia algébrica, dando algumas informações, como o número de componentes conexas por caminhos de um espaço e buracos. A princípio esta é uma área altamente abstrata da matemática, nos últimos anos esta visão foi mudando, com o desenvolvimento da Homologia Persistente e Análise Topológica de Dados.

Um conjunto de dados, geralmente um subconjunto finito de algum espaço métrico, pode ser estudado através da homologia persistente e assim obtemos informações topológicas do objeto em estudo.

O pipeline da análise topológica de dados pode ser divido nos seguintes passos:

- 1. A entrada do algoritmo pode ser um conjunto de pontos ou alguma matriz de distância/similaridade do conjunto de dados.
- A construção de um objeto combinatorial em cima do conjunto de dados ou da matriz de distância. Geralmente uma filtração ou um complexo simplicial.
- 3. A partir da filtração ou do complexo simplicial é possível extrair informações topológicas e geométricas do conjunto de dados, por exemplo o número de componentes conexas, como um algoritmo de Clustering.
- 4. Por fim a interpretação dos dados obtidos e possível pós processamento para a utilização em outros algoritmos, como os de classificação ou regressão.

Figura 1 – Representação do pipeline para a utilização da homologia persistente com um conjunto de dados.

Neste capítulo descrevemos de forma ingênua a homologia persistente, começando com filtrações, passando pelos espaços vetoriais associados aos complexos simpliciais e chegando ao algoritmo de homologia persistente. Mostraremos também como interpretar os resultados obtidos. A Figura 1 mostra os passos para utilizar esta ferramenta em um conjunto de dados.

2.1 Filtrações

A filtração de um conjunto de dados é o primeiro passo na nossa sequência apresentada na Figura 1. Dado um conjunto de dados precisamos construir um objeto combinatorial de forma que possa ser analisado do ponto de vista da topologia assim como computacionalmente. A filtração é este objeto que captura as mudanças do conjunto dada uma escala.

Algumas definições se fazem necessárias para entendermos o que é a filtração e qual o seu papel na análise topológica de dados. Começamos definindo um simplexo, primeiro objeto combinatorial que é a base da filtração.

Definição 2.1.1. Sejam $v_0, v_1, \dots, v_k \in \mathbb{R}^n$ linearmente afins, ou seja $\{v_1 - v_0, \dots, v_k - v_0\}$ é

2.1. Filtrações 23

Figura 2 – Exemplos de k-simplexos para $k \in \{0,1,2,3\}$.

um conjunto linearmente independente. O k-simplexo definido pelos pontos acima, chamados de vértices, é a envoltória convexa, definida na abaixo.

$$\left\{ \sum_{i=0}^{k} \lambda_i \nu_i \mid \sum_{i=0}^{k} \lambda_i = 1 \in \lambda_i \ge 0, \ \forall i \right\}.$$
 (2.1)

Denotamos o k-simplexo por v_0, \ldots, v_k .

Note que para k=0, temos um único vértice. Para k=1, temos uma reta, já para k=2 temos um triângulo preenchido. E no caso k=3, um tetraedro. Os simplexos podem ser vistos na Figura 2. Além disso, dizemos que a dimensão do k-simplexo é k. A envoltória convexa de qualquer subconjunto dos vértices de um simplexo σ é chamado de face de σ .

Tendo definido os k-simplexos, podemos definir o complexo simplicial.

Definição 2.1.2. Um complexo simplicial K é uma coleção de simplexos satisfazendo as seguintes relações:

- Dado $\sigma \in K$, temos que para toda face $\tau \subset \sigma$ vale $\tau \in K$.
- A interseção de dois simplexos é face de ambos os simplexos, em outras palavras, $\sigma, \tau \in K$ implica que $\sigma \cap \tau \subset \sigma$ e $\sigma \cap \tau \subset \tau$.

Nessa definição utilizamos o símbolo \subset para indicar que uma face. Usaremos esse símbolo com essa denotação quando falarmos sobre simplexos e faces. A segunda condição é necessária para evitar casos patológicos como mostrado na Figura 3. Dizemos que a dimensão do complexo simplicial K é a maior dimensão dentre os simplexos em K. Podemos definir agora a filtração de um complexo simplicial.

Figura 3 – Exemplo em que a interseção de dois simplexos não é um simplexo.

Definição 2.1.3. Seja K um complexo simplicial. Definimos uma filtração de K sendo uma sequência de subconjuntos $K_i \subset K$, com $i \in \{1, ..., n\}$, de tal forma que K_i é um complexo simplicial para todo i e vale que

$$K_1 \subset \cdots \subset K_{n-1} \subset K_n = K$$
.

Na Figura 4 temos um exemplo de filtração para um complexo simplicial.

Figura 4 – Exemplo de filtração para um complexo simplicial K.

2.1.1 Complexo de Čech

Para construir complexos simpliciais a partir dos dados, precisamos abstrair a noção de um simplexo simplicial. Na definição dada anteriormente, temos uma representação geométrica do que é um simplexo, mas podemos abstrair tal noção dando origem aos complexos simpliciais abstratos. As definições para os complexos definidos nesta seção e nas próximas foram retiradas de (EDELSBRUNNER, 2010).

2.1. Filtrações 25

Figura 5 – Exemplo de um complexo simplicial abstrato e sua realização geométrica

Definição 2.1.4. Seja X um conjunto finito com pontos quaisquer. Seja F um conjunto de subconjuntos não-vazios de X. Dizemos que F é um complexo simplicial abstrato de X se a seguinte condição é satisfeita.

• Se para todo $\sigma \in F$, temos que para todo subconjunto $\sigma' \subset \sigma$ está em F também.

Cada elemento $\sigma \in F$ é chamado de simplexo. Denotamos um k-simplexo σ por $\langle x_{i_0}, \dots, x_{i_k} \rangle$, onde x_{i_i} são elementos de X.

Exemplo 2.1.1. Seja $X = \{a,b,c\}$ e considere $F = \{\{a\},\{b\},\{c\},\{a,b\},\{a,c\},\{b,c\}\}\}$. Precisamos mostrar que F é um complexo simplicial abstrato. Seja $\sigma = \{a,c\}$. Note que seus subconjuntos são $\{a\}$ e $\{c\}$, além disso ambos pertencem a F. De forma análoga, mostramos que para qualquer outro simplexo, suas faces (subconjuntos) estão em F.

Podemos realizar os complexos simpliciais abstratos geometricamente, ou seja, apesar de trabalharmos com conjuntos de elementos quaiser, podemos incluir esses complexos em algum \mathbb{R}^n e assim visualiza-los. Para obtermos o complexo simplicial geométrico, associamos a cada simplexo abstrato σ um simplexo geométrico. Por exemplo, se adotarmos o complexo simplicial abstrato F acima mostrado, teriamos que sua realização geométrica seria um triângulo sem preenchimento, como é mostrado na Figura 5.

Observe que se o nosso conjunto X for um subconjunto finito de \mathbb{R}^d , podemos ter simplexos de dimensão maiores do que d, ou seja, não podem ser realizados (ou visualizados) em \mathbb{R}^d necessariamente. Um exemplo dessa situação pode ser visto no complexo simplicial final da Figura 4, considerando que os pontos vermelhos são a realização geométrica dos pontos de X, onde X é um subconjunto do \mathbb{R}^2 .

Essa é uma grande diferença entre os complexos simpliciais geométricos e abstratos. Uma vez tendo definido os complexos simpliciais abstratos, podemos definir o *complexo* de Čech.

Definição 2.1.5. Seja X um conjunto de pontos $\{x_1, \ldots, x_n\}$ em \mathbb{R}^d . O complexo de Čech de X para um valor real r > 0 é o conjunto $C^r(X)$, onde $\sigma = \langle x_{i_1}, \ldots, x_{i_k} \rangle \in C^r(X)$ se, e somente se vale a seguinte condição

$$\bigcap_{j=1}^k B(x_{i_j},r) \neq \varnothing.$$

A definição acima nos diz que quando temos k pontos cujas bolas de raio r centradas neles se intersectam, adicionamos um k simplexo no complexo simplicial abstrato, o que seria apenas o conjunto desses pontos. Geometricamente falando, se duas bolas se intersectam, adicionamos uma aresta. Se três bolas se intersectam, adicionamos um triângulo preenchido, e assim por diante. Na Figura 6 temos um exemplo do complexo simplicial de Čech.

Figura 6 – Exemplo de um complexo de Čech para um raio r fixado.

Da mesma forma que definimos a filtração para um complexo simplicial geométrico, o mesmo vale para o caso abstrato.

2.1.2 Complexo de Vietoris-Rips

O complexo de Vietoris-Rips possui uma construção similar ao complexo de Čech, porém computacionalmente é um método mais barato, já que analisa apenas distância entre pontos dois a dois.

2.1. Filtrações 27

Definição 2.1.6. Seja X um conjunto de pontos $\{x_1, ..., x_n\}$ em \mathbb{R}^d . O complexo de Vietoris-Rips de X para um valor real r > 0 é o conjunto $V^r(X)$, onde o simplexo $\sigma = \langle x_{i_1}, ..., x_{i_k} \rangle \in V^r(X)$ se, e somente se vale a seguinte condição

$$d(x_{i_k}, x_{i_j}) < r \ \forall j, l \in 1, \ldots, k.$$

A Figura 7 é um exemplo do complexo de Vietoris-Rips. Uma das diferenças que a construção dos dois complexos já definidos nos dá é que no caso do complexo de Čech temos triângulos preenchidos, e isso não ocorre para Vietoris-Rips.

Figura 7 – Exemplo do complexo de Vietoris-Rips com os mesmos pontos utilizados para a construção na Figura 6.

Mesmo com as regras diferentes para a construção de complexos, temos a seguinte relação entre os dois complexos.

$$C^{r}(X) \subset V^{r}(X) \subset C^{2r}(X) \tag{2.2}$$

A primeira inclusão segue do fato que se k bolas se intersectam então elas se intersectam dois a dois com a mesma distância. A segunda inclusão segue da desigualdade triangular da métrica sendo usada e o fato que as bolas se intersectam duas a duas.

2.1.3 Complexo Alpha

E como uma terceira opção para a construção de um complexo simplicial através de pontos no \mathbb{R}^n , temos o complexo Alpha. A construção é similar ao complexo de Čech, porém os conjuntos centrados nos pontos são uma interseção de bolas no \mathbb{R}^n com conjuntos convexos especiais, as células de Voronoi. Nesta subseção utilizaremos o \mathbb{R}^n para as definições, porém elas podem ser generalizadas para qualquer espaço métrico.

O diagrama de Voronoi é um tipo especial de decomposição de um espaço métrico, um conjunto que possui uma distância associada a ele. Dado um subconjunto $X \subset \mathbb{R}^n$ finito, onde $X = \{x_1, \dots, x_k\}$, definimos a célula de Voronoi associada ao ponto x_i sendo o seguinte conjunto

$$V_i = \left\{ x \in \mathbb{R}^n \mid d(x_i, x) \le d(x_j, x), \ \forall j \in 1, \dots, k \right\},\,$$

em que d é a distância euclidiana usual. A Figura 8 mostra um exemplo de diagram de Voronoi para três pontos no \mathbb{R}^2 . Podemos agora definir o complexo simplicial Alpha.

Figura 8 – Diagrama de Voronoi de três pontos no plano.

Definição 2.1.7. Seja X um conjunto de pontos $\{x_1, \ldots, x_n\}$ em \mathbb{R}^d . O complexo Alpha de X para um valor real r > 0 é o conjunto $A^r(X)$, onde o simplexo $\sigma = \langle x_{i_1}, \ldots, x_{i_k} \rangle \in A^r(X)$ se, e somente se vale a seguinte condição

$$\bigcap_{i=1}^k R(x_{i_j},r) \neq \emptyset,$$

onde $R(x_{i_j},r) = B(x_{i_j},r) \cap V_{i_j}$, para todo $j \in \{1,\ldots,k\}$.

Na Figura 9 temos o exemplo de um complexo Alpha. É interessante notar que o Alpha é um subcomplexo do complexo de Čech, ou seja, para r > 0, $A^r(X) \subset C^r(X)$. Além disso esse complexo herda uma propriedade importante dos diagramas de Voronoi, a realização geométrica no espaço em que os pontos se encontram, isto é, se os pontos em \mathbb{R}^d satisfazem a condição de posição geral, então o complexo simplicial abstrato Alpha pode ser realizado geometricamente no \mathbb{R}^d , ou seja o complexo simplicial geométrico pode ser construído no \mathbb{R}^d ! Isso é fundamental computacionalmente, já que diminui a complexidade dos cálculos e aumenta a velocidade para obtenção do complexo.

Uma variação muito importante do complexo Alpha é a versão com peso. Ao invés de considerar um raio fixo para cada bola ao redor de um ponto, podemos dar um *peso*

Figura 9 – Complexo Alpha para um conjunto de pontos no plano.

para cada ponto. Seja $X = \{x_1, ..., x_n\}$ o nosso conjunto de pontos finitos e $\{w_1, ..., w_n\}$ conjunto de valores maiores ou iguais a zero, que serão os pesos associados a cada ponto. Para cada x_i , ao invés de associar a bola usual do complexo Alpha, associamos a seguinte bola.

$$R_{w_i}(x_i,r) = B(x_i,r+w_i^2) \cap V_i$$

Esse é um complexo muito usado em aplicações biomoleculares, em que o conjunto de pontos são átomos de uma molécula e o peso para cada átomo é o seu respectivo raio de Van der Waals.

2.2 A matriz de bordo ∂

Agora vamos para o terceiro passo descrito na lista anteriormente. Uma vez com os dados, podemos construir uma filtração de um complexo simplicial criado a partir deles que irá capturar diversas informações, como os buracos que um conjunto de dados tem e o quanto eles persistem na nossa filtração.

A ferramenta matemática utilizada para extrair essas informações da filtração são os grupos de homologia. Para uma filtração $K_1 \subset \cdots \subset K_m = K$ e um p fixo, a p-ésima homologia persistente de K é o par

$$(\{H_p(K_i)\}_{1 \le i \le m}, \{f_{i,j}\}_{1 \le i \le j \le m}), \tag{2.3}$$

em que para todo $i, j \in \{1, ..., m\}$, $f_{i,j}$ são aplicações lineares entre os espaços vetoriais $H_p(K_i)$ e $H_p(K_j)$. Mais especificamente, os espaços vetoriais $H_p(K_i)$ são grupos de homologia com coeficientes em um espaço vetorial. No nosso caso usamos o espaço vetorial \mathbb{Z}_2 .

Figura 10 – Exemplo da filtração de um complexo simplicial e o barcode e diagramas de persistência associados.

Consulte (EDELSBRUNNER, 2010) para uma introdução à teoria de homologia nesse contexto.

A homologia persistente dá informações topológicas sobre a filtração do complexo simplicial. Os elementos das bases de cada $H_p(K_i)$ correspondem a ciclos p-dimensionais, podendo ser buracos. No caso p = 0, temos que cada elemento da base corresponde à uma componente conexa, p = 1 cada elemento corresponde a um buraco. Portanto, considere os elementos da base de $H_p(K_i)$. Para cada um deles, desenhe um ponto. Se $f_{i,i+1}(u) = 0$, então desenhe um intervalo que termina em i+1. Se $f_{i,i+1} = v$, onde v é um elemento da base de $H_p(K_{i+1})$, então desenhe uma reta que liga u ao ponto que representa v no próximo passo da filtração. Dessa forma vamos anotando os ciclos, que são os elementos da base, ao longo da filtração. Na Figura 10 temos um exemplo para uma filtração.

Podemos falar também que $u \in H_p(K_i)$ nasceu no tempo i da filtração se u não é imagem de nenhum elemento de $H_p(K_{i-1})$ sobre $f_{i-1,i}$. Dizemos também que $u \in H_p(K_j)$ morreu em j se j é o menor índice tal que $f_{i,j}(u) = 0$, onde j > i. A persistência do ponto u pode ser representada pelo intervalo [i,j). Além disso, se u nasce no tempo i e nunca morre, denotamos o intervalo associado à essa informação como $[i,+\infty)$.

Existem duas formas de visualizar esses intervalos, através dos barcodes ou dos diagramas de persistência (PD). No barcode desenhamos uma barra do comprimento do intervalo [i,j). Já no diagrama de persistência representamos com um ponto (i,j) no plano. A Figura 10 possui o barcode e o diagrama de persistência para o conjunto de dados associado.

Tendo essa ferramenta, como podemos traduzi-la para o contexto dos dados, e como calcular os pares dos diagramas de persistência? Abaixo segue uma lista dos primeiros

passos que devem ser feitos para a obtenção do diagrama de persistência.

- 1. Dado um conjunto de dados, determinar alguma filtração;
- 2. Listar todos os simplexos na filtração;
- 3. Ordenar os simplexos satisfazendo duas regras:
 - a) A face um simplexo o precede na ordenação;
 - b) Um simplexo no complexo K_i precede os simplexos em K_j , j > i, que não pertencem a K_i ;
- 4. Construir a matriz de bordo.

A matriz de bordo é quem vai armazenar as informações topológicas importantes das quais iremos extrair mais tarde.

Definição 2.2.1. Seja K um complexo simplicial, $K_1 \subset \cdots \subset K_m$ uma filtração e $\sigma_1, \ldots, \sigma_n$ uma ordenação dos simplexos de K satisfazendo as regras acima mencionadas. A matriz de bordo de K, denotada por ∂ , é uma matriz de tamanho $n \times n$, em que cada entrada tem o seguinte valor

$$\delta(i,j) = \begin{cases} 1, & \text{se o simplexo } \sigma_i \text{ \'e face de } \sigma_j \text{ e dim}(\sigma_j) = \dim(\sigma_i) + 1 \\ 0, & \text{caso contr\'ario.} \end{cases}$$

Com a matriz construída, podemos utilizar um método de eliminação de Gauss para a redução da matriz.

2.3 Redução da matriz ∂

O algoritmo que será descrito aqui é conhecido como algoritmo standard para a redução da matriz ∂ (EDELSBRUNNER; LETSCHER; ZOMORODIAN, 2000). Estamos trabalhando sobre \mathbb{Z}_2 , ou seja, 1+1=0. Durante o processo de redução da matriz será apenas necessário somar colunas.

Dado $j \in \{1, ..., n\}$, denotamos por low(j) o maior inteiro $i \in \{1, ..., n\}$ tal que $\delta(i, j) = 1$. Note que i < j, pois segundo as regras de construção da matriz de bordo, temos que $\delta(i, j) = 1$ só quando σ_i é face de codimensão 1 de σ_j . Assim temos o Algoritmo 1 para reduzir a matriz de bordo.

Uma vez com a matriz reduzida, podemos extrair as informações topológicas a partir dela. Denotamos por R a matriz reduzida de ∂ .

Algoritmo 1 – Redução da matriz bordo ∂ .

```
1: Dados os simplexos \sigma_1, \dots, \sigma_n e a matriz de bordo \partial correspondente.
```

- 2: para $j \in \{1, ..., n\}$ faça
- 3: **enquanto** existe i tal que low(i) = low(j) faça
- 4: Some a coluna i a coluna j.
- 5: fim enquanto
- 6: fim para

3

MÓDULOS DE PERSISTÊNCIA

4

GERADORES ÓTIMOS E OUTROS CONCEITOS

- 4.1 Geradores ótimos
- 4.2 Vetorização do diagrama de persistência
- 4.3 Mapper

5

APLICAÇÕES

Neste capítulo serão descritas algumas aplicações utilizando geradores ótimos e imagens de persistência.

5.1 Geradores ótimos em classificadores de imagens

Utilizando imagens e rótulos associados a elas é possível criar classificadores, algoritmos que decidem os rótulos dada uma imagem. Alguns deles são Redes Neurais (MCCULLOCH; PITTS, 1943), SVM (CORTES; VAPNIK, 1995), Redes Neurais Convolucionais (abreviado por CNN, sigla em inglês) (LECUN et al., 1989) e Generative Adversarial Networks (GAN) (GOODFELLOW et al., 2014).

Nesta seção será descrito as redes neurais convolucionais e como obteve-se um classificador de imagens utilizando-as. Além disso, será descrito como outros classificadores foram gerados utilizando informações disponibilizadas pelos geradores ótimos para obterse um classificador com melhor acurácia do que a rede neural convolucional original.

5.1.1 Redes Neurais Convolucionais (CNN)

O algoritmo de redes neurais artificiais é o precurso da CNN. Um rede neural artificial é uma composição de funções f_n que tem como contra domínio algum \mathbb{R}^m . O seu domínio é dado pela dimensão dos dados disponíveis, por exemplo, se temos uma imagem de tamanho 10x10, a dimensão do domínio é 100. Logo, a rede neural pode ser descrita como uma função $Ann: \mathbb{R}^p \to \mathbb{R}^m$

$$Ann(x) = f_n(...f_2(A_2 * f_1(A_1 * x + b_1) + b_2), \tag{5.1}$$

onde A_i é uma matrix de tamanho arbitrário e $b_i \in \mathbb{R}$. Na Figura 11, temos uma imagem clássica para redes neurais.

Figura 11 – Esquema de uma rede neural artificial. O número de vértices na camada escondida é determinado pelo tamanho da matriz A_i

5.2 Imagens de persistência aplicadas a proteínas

b

CONCLUSÃO

REFERÊNCIAS

CORTES, C.; VAPNIK, V. Support-vector networks. **Machine Learning**, Springer Nature, v. 20, n. 3, p. 273–297, set. 1995. Disponível em: https://doi.org/10.1007/bf00994018>. Citado na página 37.

EDELSBRUNNER, H. Computational topology: an introduction. Providence, R.I: American Mathematical Society, 2010. ISBN 0821849255. Citado nas páginas 24 e 30.

EDELSBRUNNER, H.; LETSCHER, D.; ZOMORODIAN, A. Topological persistence and simplification. In: **Proceedings 41st Annual Symposium on Foundations of Computer Science**. IEEE Comput. Soc, 2000. Disponível em: https://doi.org/10.1109/sfcs.2000.892133. Citado na página 31.

GOODFELLOW, I. J.; POUGET-ABADIE, J.; MIRZA, M.; XU, B.; WARDE-FARLEY, D.; OZAIR, S.; COURVILLE, A.; BENGIO, Y. Generative adversarial nets. In: **Proceedings of the 27th International Conference on Neural Information Processing Systems - Volume 2**. Cambridge, MA, USA: MIT Press, 2014. (NIPS'14), p. 2672–2680. Disponível em: http://dl.acm.org/citation.cfm?id=2969033.2969125. Citado na página 37.

LECUN, Y.; BOSER, B.; DENKER, J. S.; HENDERSON, D.; HOWARD, R. E.; HUBBARD, W.; JACKEL, L. D. Backpropagation applied to handwritten zip code recognition. **Neural Computation**, MIT Press - Journals, v. 1, n. 4, p. 541–551, dez. 1989. Disponível em: https://doi.org/10.1162/neco.1989.1.4.541. Citado na página 37.

MCCULLOCH, W. S.; PITTS, W. A logical calculus of the ideas immanent in nervous activity. **The Bulletin of Mathematical Biophysics**, Springer Nature, v. 5, n. 4, p. 115–133, dez. 1943. Disponível em: https://doi.org/10.1007/bf02478259. Citado na página 37.

POINCARé, H. Analysis situs. **Journal de l'École Polytechnique**, p. 1–123, 1895. Citado na página 21.

