ду которыми $r_0 \approx 3\dot{A}$ *). Предположим, что деформация остается упругой вплоть до деформации, соответствующей разрыву; иначе говоря, большей упругой деформации соответствует напряжение, равное пределу прочности. Но максимальной упругой деформации приблизительно соответствует максимальное значение силы межатомного притяжения (см. рис. 1).

Опыты с самыми прочными кристаллами показали, что их максимальная относительная упругая деформация ϵ_{max} **) перед разрушением обычно не превышает 10-20%. Положим $\epsilon_{max}=\frac{1}{6}\approx 17\%$. Этой относительной деформации соответствует смещение этомов от положения равновесия на расстояние $\Delta r = \epsilon r_0 = \frac{1}{6} 3 \dot{A} = 0.5 \dot{A}$. Таким образом, при подсчете сил межатомного притяжения для рассматриваемой модели кристалла за расстояние между нонами следует брать величину

$$r = r_0 + \Delta r = 3\dot{A} + 0.5\dot{A} = 3.5\dot{A}.$$

Если учесть, что заряд каждого иона по величине равен заряду электрона, то есть $q=1.6*10^{-19}~\kappa$, то максимальное значение силы притяжения между двумя атомами будет равно

$$F_{max} = \frac{1}{4\pi\epsilon_0} \frac{q^2}{r^2} = 9 * 10^9 \frac{(1.6*10^{-19})^2}{(3.5*10^{-10})^2} \approx$$

 $\approx 2 * 10^{-9} \ (\textit{\textit{n}}).$

Таково по порядку величины значение единичной силы межатомной связи.

Прочность кристалла

Оценим примерное число атомов приходящихся на единицу поверхности разрыва кристалла Диаметр иона равен приблизительно расстоянию между соседними ионами. Мы считали это расстояние равным $3\dot{A}$, тогда число атомов на каждом квадратном метре поверхности разрыва кристалла

$$N_{am} \sim \frac{1}{(3*10^{-20})^2} \approx 10^{19} \left(\frac{1}{M^2}\right).$$

В нашей модели кристалла число связей, проходящих через единицу площади, равно числу атомов $N_{C6}=N_{am}$, значит, $N_{C6}\approx 10^{19}~\text{M}^{-2}$.

Теперь можно оценить теорети- ческую величину предела прочности кристаллов:

$$\delta \approx 2 * 10^{10} \ \text{H/M}^2$$
.

Оценка величины модуля упругости

Если известны значения единичной межатомной связи и, следовательно, предела прочности кристаллов, то можно оценить величину модуля упругости.

По закону Гука в пределах упругой деформации напряжение пропорционально растяжению. Коэффициент пропорциональности между величиной деформации ϵ и напряжением δ (модуль упругости)

$$E = \frac{\delta}{\epsilon}$$
.

Так как величина прочности по нашей оценке

$$\delta \approx 2 * 10^{10} \ \mathrm{H/M^2},$$

а максимальная упругая деформация $\epsilon_{max} \approx \frac{1}{6},$ то модуль упругости

$$E = \frac{2*10^{10}*6}{1} \approx 10^{11} (\frac{\mathcal{H}}{M^2}).$$

Результат расчета по порядку величины соответствует экспериментальным данным, Например, модуль упругости стали $2*10^{11}~ \mu/m^2$, алюминия $0.7*10^{11}~ \mu/m^2$, каменной соли $-0.4*10^{11}~ \mu/m^2$.

^{*)} Для кристаала NaCl это расстояние равно $2.814\dot{A}$

^{**}) Относительная деформация ϵ рпи растяжении равна отношению абсолютной деформации тела к длине этого тела в нормальном состоянии

Рисунок 1

Рисунок 2

1	123	123	132	132	
1.	132	123	123	123	

2			132		
∠.	132	123	123	123	132

2	123	123	132
3.	132	123	123

123 123 132	
	123 123

Таблица 1: перемещённая вниз

Можно и так	ЧТО-ТО	
	Интересно	вау
	очень	1