Selected Q

Show that the language $\{0^m1^n : m \neq n\}$ is not regular. (Hint: you may find that pumping theorem does not work well in this case. Try the closure property.)

- Q5. Assume that $L_1 = \{0^m 1^n : m \neq n\}$ is regular. Since $L = L(0^*1^*)$ is regular, by the closure property of regular languages, $L L_1 = \{0^n 1^n : n \geq 0\}$ is regular (because $L L_1 = L \cap \overline{L}_1$). It is, however, known that $\{0^n 1^n : n \geq 0\}$ is not regular. Contradiction.
 - (a) If L is a non-empty finite language, then the minimum pumping length that works for L is 1+ the length of the longest string in L. $\sqrt{}$
 - (b) Let $G = (V, \Sigma, S, R)$ be some context-free grammar in Chomsky norm form. For any string $w \in L(G)$, the number of distinct derivations from S to w is finite. $\forall v \in L(G)$
- Q1. Prove that the following language is not recursive, but is recursively enumerable.

 $L_1 = \{ M'' : M \text{ is a Turing machine that halts on at least 2023 strings.}$

Q1. We first show L_1 is not recursive by reducing H to L_1 . Suppose that some Turing machine M_1 decides L_1 . Consider the following Turing machine M_H .

 $M_H =$ on input "M""w":

1.construct a Turing machine \widetilde{M} as follows

$$\widetilde{M} = \text{on input } x \\ 1. \text{ run } M \text{ on } w$$

2. run M_1 on " \widetilde{M} " and the return the result

If M halts on w, then \widetilde{M} halts on every input. If M does not halt on w, \widetilde{M} halts on no input. Therefore, M halts on w if and only if \widetilde{M} halts on at least 2023 strings (that is, M_1 accepts " \widetilde{M} "). M_H decides H. This completes the reduction.

Next we show that L_1 is recursive enumerable by presenting a Turing machine M'_1 to semidecide it. We label the strings in Σ^* as s_1, s_2, \ldots in incresing length.

构造一个图灵机来证明, 采用了折现法来<mark>遍历</mark> $M_1' =$ on input "M":

1. For $i = 2023, 2024, \dots$

- 2. For $s = s_1, s_2, \dots, s_i$
- 3. Run M on s for i steps
- 4. If M halts on at least 2023 strings
- 5. halt

证明r.e一般就是构造一个图灵 机来半判定(如果还有w,就要 构造广义图灵机),另一种小 的方法是规约到H Q3. Prove that the following language is not recursively enumerable. (Hint: you may reduce \overline{H} to L_3 .)

 $L_3 = \{ M'' : M \text{ is a Turing machine such that there}$ are at least 2023 strings on which M does not halt.

Q3. We already know that \overline{H} is not recursively enumerable. reduce H to L_3 . Given any Turing machine M and its input w, we construct the following Tuing machine

$$f("M""w") = \text{on input } "x":$$
 1.run M on w

If M halts on w, then f(M, w) halts on every input. If M does not halt on w, f(M, w) halts on no input. Therefore, M does not halt on w if and only if there are at least 2023 strings on which f(M, w) does not halt. In otherwords, "M""w" $\in \overline{H}$ if and only if $f(M, w) \in L_3$. f is a reduction from \overline{H} to L_3 . This completes the proof.

Theory of Computation, Fall 2023 Quiz 3

Q1.	Show that the following language is decidable	You may use any conclusion that we have
	proved in class.	

 $S = \{$ "M" is a DFA and M accepts w^R whenever it accepts $w\}$

Q2. Prove that the following language is not recursive. You may reduce from any language that has been proved to be non-recursive in class.

 $A = \{ \text{``}M_1\text{'``}M_2\text{''}: \, M_1 \text{ and } M_2 \text{ are two Turing machines with } L(M_1) \cap L(M_2) \neq \emptyset \}$

Theory of Computation, Fall 2023 Quiz 3 Solutions

Q1. In class, we have proved that EQ_{DFA} is recursive. Suppose Turing machine M_{EQ} decides

$$EQ_{DFA} = \{"M_1""M_2" : M_1 \text{ and } M_2 \text{ are two DFAs with } L(M_1) = L(M_2)\}.$$

To prove that S is recursive, it suffices to reduce S to EQ_{DFA} . We construct a Turing machine M_S that decides S as follows.

$$M_S = \text{ on input "}M":$$

- 1. construct a DFA M_R with $L(M_R) = \{w^R : w \in L(M)\}$
- 2. run M_{EQ} on "M"" M_R "
- 3. return the result of M_{EQ}

This completes the proof.

Q2. Let $L = \{"M" : "M" \text{ is a Turing machine that halts on some input}\}$. In class, we have proved that L is not recursive. To prove that A is not recursive, it suffices to reduce L to A. Suppose there is a Turing machine M_A decides A. Then we can construct a Turing machine M_L that decides L as follows.

$$M_L = \text{ on input "}M":$$

- 1. construct a Turing machine M_{all} that halts on every input
- 2. run M_A on "M"" M_{all} "
- 3. return the result of M_A