LIGHT UNFLAVORED MESONS (S = C = B = 0)

For I=1 $(\pi,\ b,\ \rho,\ a)$: $u\overline{d},\ (u\overline{u}-d\overline{d})/\sqrt{2},\ d\overline{u};$ for I=0 $(\eta,\ \eta',\ h,\ h',\ \omega,\ \phi,\ f,\ f')$: $c_1(u\overline{u}+d\overline{d})+c_2(s\overline{s})$

$$I^{G}(J^{P}) = 1^{-}(0^{-})$$

Mass
$$m=139.57018\pm0.00035$$
 MeV (S = 1.2) Mean life $\tau=(2.6033\pm0.0005)\times10^{-8}$ s (S = 1.2) $c\tau=7.8045$ m

 $\pi^{\pm} \rightarrow \ell^{\pm} \nu \gamma$ form factors [a]

$$F_V = 0.017 \pm 0.008$$

 $F_A = 0.0116 \pm 0.0016$ (S = 1.3)
 $R = 0.059^{+0.009}_{-0.008}$

 π^- modes are charge conjugates of the modes below.

For decay limits to particles which are not established, see the appropriate Search setions (Massive Neutrino Peak Search Test, A^0 (axion), and Other Light Boson (X^0) Searches, etc.).

π^+ DECAY MODES	Fraction (Γ_j	·/୮)	Confidence level	<i>p</i> (MeV/ <i>c</i>)
$\mu^+ u_{\mu}$	[b] (99.98770	0.0000	(4) %	30
$\mu^{\dot{+}} u_{\mu}\gamma$	[c] (2.00	±0.25	$) \times 10^{-4}$	30
$e^+ \nu_e$	[b] (1.230	± 0.004	$) \times 10^{-4}$	70
$e^+ u_{f e}\gamma$	[c] (1.61	± 0.23	$) \times 10^{-7}$	70
$e^+ \nu_e \pi^0$	(1.025	± 0.034	$) \times 10^{-8}$	4
$e^+ u_ee^+e^-$	(3.2		$) \times 10^{-9}$	70
$e^+ \nu_e \nu \overline{\nu}$	< 5		$\times 10^{-6} 90\%$	70
Lautan Familia namban (// /		\! - I - . !	1

Lepton Family number (LF) or Lepton number (L) violating modes

$\mu^+ \overline{\nu}_e$	L	[d] < 1.5	$\times 10^{-3} 90\%$ 30
$\mu^+ \nu_e$	LF	[d] < 8.0	$\times 10^{-3} 90\%$ 30
$\mu^- e^+ e^+ \nu$	LF	< 1.6	$\times 10^{-6} 90\%$ 30

$$\pi^0$$

$$I^{G}(J^{PC}) = 1^{-}(0^{-}+)$$

Mass
$$m=134.9766\pm0.0006$$
 MeV (S $=1.1$) $m_{\pi^\pm}-m_{\pi^0}=4.5936\pm0.0005$ MeV Mean life $\tau=(8.4\pm0.6)\times10^{-17}$ s (S $=3.0$) $c\tau=25.1$ nm

For decay limits to particles which are not established, see the appropriate Search setions (A^0 (axion), and Other Light Boson (X^0) Searches, etc.).

π^0 DECAY MODES	Fraction (Γ_i/Γ)		le factor/ lence level	<i>p</i> (MeV/ <i>c</i>)
2γ	(98.798±0.03	32) %	S=1.1	67
$e^+e^-\gamma$	$(1.198\pm0.03$	32) %	S=1.1	67
γ positronium	(1.82 ± 0.29	$9) \times 10^{-9}$		67
$e^{+}e^{+}e^{-}e^{-}$	(3.14 ± 0.30)	$0) \times 10^{-5}$		67
e^+e^-	(6.2 ± 0.5	,		67
4 γ	< 2	$\times 10^{-8}$	CL=90%	67
$ u \overline{ u}$	[e] < 8.3	$\times 10^{-7}$	CL=90%	67
$ u_{\mathbf{e}} \overline{ u}_{\mathbf{e}}$	< 1.7	$\times 10^{-6}$	CL=90%	67
$ u_{\mu}\overline{ u}_{\mu}$	< 3.1	\times 10 ⁻⁶	CL=90%	67
$ u_{ au} \overline{ u}_{ au}$	< 2.1	\times 10 ⁻⁶	CL=90%	67
$\gamma u \overline{ u}$	< 6	$\times 10^{-4}$	CL=90%	_

Charge conjugation (C) or Lepton Family number (LF) violating modes

3γ	С	< 3.1	$\times 10^{-8}$ CL=90%	67
μ^+ e $^-$	LF	< 3.8	$\times10^{-10}$ CL=90%	26
$\mu^-\mathrm{e}^+$	LF	< 3.4	$\times 10^{-9}$ CL=90%	_
$\mu^{+}e^{-} + \mu^{-}e^{+}$	LF	< 1.72	$\times 10^{-8} \text{ CL}=90\%$	26

$$I^{G}(J^{PC}) = 0^{+}(0^{-}+)$$

Created: 10/8/2002 11:05

Mass
$$m=547.30\pm0.12~{
m MeV}$$

Full width $\Gamma=1.18\pm0.11~{
m keV}^{\,[f]}~({
m S}=1.8)$

C-nonconserving decay parameters

$$\begin{array}{ll} \pi^+ \, \pi^- \, \pi^0 & \text{Left-right asymmetry} = (0.09 \pm 0.17) \times 10^{-2} \\ \pi^+ \, \pi^- \, \pi^0 & \text{Sextant asymmetry} = (0.18 \pm 0.16) \times 10^{-2} \\ \pi^+ \, \pi^- \, \pi^0 & \text{Quadrant asymmetry} = (-0.17 \pm 0.17) \times 10^{-2} \\ \pi^+ \, \pi^- \, \gamma & \text{Left-right asymmetry} = (0.9 \pm 0.4) \times 10^{-2} \\ \pi^+ \, \pi^- \, \gamma & \beta \; (\textit{D-wave}) = -0.02 \pm 0.07 \quad (\text{S} = 1.3) \end{array}$$

Dalitz plot parameter

$$\pi^0\pi^0\pi^0$$
 $\alpha=-0.031\pm0.004$ (S $=1.1$)

		Scale factor/	p
η DECAY MODES	Fraction (Γ_i/Γ)	Confidence level	(MeV/ <i>c</i>)
	Neutral modes		
neutral modes	(72.0 ± 0.5)	% S=1.3	_
2γ	[f] (39.43 ± 0.26)	% S=1.2	274
$3\pi^0$	(32.51± 0.29)	% S=1.2	178
$\pi^{f 0}2\gamma$	(7.2 ± 1.4)	$\times 10^{-4}$	257
other neutral modes	< 2.8	% CL=90%	_
	Charged modes		
charged modes	(28.0 ± 0.5)	% S=1.3	_
$\pi^{+}\pi^{-}\pi^{0}$	(22.6 ± 0.4)	% S=1.3	173
$\pi^+\pi^-\gamma$	(4.68 ± 0.11)	% S=1.2	235
$e^+e^-\gamma$	(6.0 ± 0.8)	$\times 10^{-3}$ S=1.4	274
$\mu^+\mu^-\gamma$	(3.1 ± 0.4)	$\times 10^{-4}$	252
e^+e^-	< 7.7	$\times 10^{-5}$ CL=90%	274
$\mu^+\mu^-$	(5.8 ± 0.8)		252
$e^+e^-e^+e^-$	< 6.9	$\times 10^{-5}$ CL=90%	274
$\pi^{+}\pi^{-}e^{+}e^{-}$	$(4.0 \begin{array}{c} +14.0 \\ -2.7 \end{array})$	$\times 10^{-4}$ S=5.8	235
$\pi^+\pi^-2\gamma$	< 2.0	$\times 10^{-3}$	235
$\pi^+\pi^-\pi^0\gamma$	< 5	$\times10^{-4}$ CL=90%	173
$\pi^0 \mu^+ \mu^- \gamma$	< 3	$\times 10^{-6}$ CL=90%	210
Charg	e conjugation (C) , Parity	(<i>P</i>),	
Charge	conjugation \times Parity (C	<i>P</i>), or	
Lepton Fa	mily number (LF) violation	ng modes	
$\pi^+\pi^-$	P,CP < 3.3	$\times10^{-4}$ CL=90%	235
$\pi^0 \pi^0$	P,CP < 4.3	$\times10^{-4}\text{CL}{=}90\%$	238
3γ	C < 5	$\times10^{-4}$ CL=95%	274
$4\pi^0$	P,CP < 6.9	$\times10^{-7}\text{CL}{=}90\%$	39
$\pi^{0}e^{+}e^{-}$	C $[g] < 4$	$\times10^{-5}\text{CL}{=}90\%$	257
$\pi^0 \mu^+ \mu^-$	C $[g] < 5$	$\times 10^{-6}$ CL=90%	210
$\mu^{+}e^{-} + \mu^{-}e^{+}$	<i>LF</i> < 6	$\times 10^{-6}$ CL=90%	263

 $f_0(600)$ [h]

$$I^{G}(J^{PC}) = 0^{+}(0^{+})$$

Mass m = (400-1200) MeVFull width $\Gamma = (600-1000) \text{ MeV}$

Fraction (Γ_i/Γ)	p (MeV/c)
dominant	_
seen	_
	dominant

ρ(770) [i]

$$I^{G}(J^{PC}) = 1^{+}(1^{-})$$

Mass $m=771.1\pm0.9$ MeV (S = 2.6) Full width $\Gamma=149.2\pm0.7$ MeV (S = 1.1) $\Gamma_{ee}=6.85\pm0.11$ keV

ho(770) DECAY MODES	Fraction (Γ_i /		ale factor/ dence level	-
$\pi\pi$	~ 100	%		358
	$ ho$ (770) $^{\pm}$ decays			
$\pi^{\pm}\gamma$	(4.5 ± 0)	$.5) \times 10^{-4}$	S=2.2	372
$\pi^{\pm}\eta$	< 6			146
$\pi^{\pm}\pi^{+}\pi^{-}\pi^{0}$	< 2.0	$\times 10^{-3}$	CL=84%	249
	$ ho(770)^{0}$ decays			
$\pi^+\pi^-\gamma$	(9.9 ± 1)	$.6) \times 10^{-3}$		358
$\pi^0 \gamma$	(7.9 ± 2)	$.0) \times 10^{-4}$		372
$\eta \gamma$	(3.8 ± 0.0)	$.7) \times 10^{-4}$		189
$\pi^0 \pi^0 \gamma$	$(4.8 \begin{array}{c} +3. \\ -1. \end{array}$	$^{.4}_{.9}$) × 10 ⁻⁵		_
$\mu^+\mu^-$	$[j]$ (4.60 \pm 0	$.28) \times 10^{-5}$		369
e^+e^-	$[j]$ (4.54 \pm 0	$.10) \times 10^{-5}$	S=1.1	384
$\pi^+\pi^-\pi^0$	< 1.2	$\times 10^{-4}$	CL=90%	319
$\pi^{+}\pi^{-}\pi^{+}\pi^{-}$	(1.8 ± 0	$.9) \times 10^{-5}$		246
$\pi^{+} \pi^{-} \pi^{0} \pi^{0}$	< 4	\times 10 ⁻⁵	CL=90%	252

$$\omega$$
(782)

$$I^{G}(J^{PC}) = 0^{-}(1^{-})$$

Mass $m=782.57\pm0.12$ MeV (S =1.8) Full width $\Gamma=8.44\pm0.09$ MeV $\Gamma_{ee}=0.60\pm0.02$ keV

ω (782) DECAY MODES	Fraction (Γ_{ℓ}/Γ)	Scale factor/ Confidence level	-
	Traction (1 ₁ /1)	Confidence level	(IVIE V/C)
$\pi^+\pi^-\pi^0$	(89.1 ± 0.7) %	S=1.1	327
$\pi^{0} \gamma$	$(8.7 \pm 0.4)\%$)	379
$\pi^+\pi^-$	$(1.70\pm0.28)\%$	S=1.5	365
neutrals (excluding $\pi^0\gamma$)	($4.1 \ ^{+8.2}_{-2.8}$) $ imes$	10 ⁻³	_
$\eta\gamma$	($6.5~\pm1.1$) $ imes$	10^{-4}	199
$\pi^0 e^+ e^-$	(5.9 ± 1.9) $ imes$	10^{-4}	379
$\pi^0\mu^+\mu^-$	(9.6 \pm 2.3) \times	10^{-5}	349
e^+e^-	$(6.95\pm0.15) \times$	10^{-5} S=1.1	391
$\pi^+\pi^-\pi^0\pi^0$	< 2 %	CL=90%	261
$\pi^+\pi^-\gamma$	< 3.6 ×	10^{-3} CL=95%	365
$\pi^+\pi^-\pi^+\pi^-$	< 1 ×	10^{-3} CL=90%	256
$\pi^0 \pi^0 \gamma$	(7.8 \pm 3.4) \times	10^{-5}	367
$\mu^+\mu^-$	(9.0 \pm 3.1) $ imes$	10^{-5}	376
3γ	< 1.9 ×	10^{-4} CL=95%	391
Charge conjugat	ion (C) violating	modes	
$\eta \pi^0$	< 1 ×	10^{-3} CL=90%	162
	< 3 ×		329

$\eta'(958)$

$$I^{G}(J^{PC}) = 0^{+}(0^{-})$$

Mass $m=957.78\pm0.14$ MeV Full width $\Gamma=0.202\pm0.016$ MeV (S =1.3)

η' (958) DECAY MODES	Fraction (Γ_i/Γ)	Scale factor/ Confidence level	<i>p</i> (MeV/ <i>c</i>)
	· · · ·		
$\pi^+\pi^-\eta$	$(44.3 \pm 1.5) \%$	S=1.2	232
$ ho^{0}\gamma$ (including non-	(29.5 ± 1.0) %	S=1.2	169
resonant $\pi^+\pi^-\gamma$)			
$\pi^0\pi^0\eta$	(20.9 ± 1.2) %	S=1.2	239
$\omega \gamma$	$(3.03\pm0.31)\%$		160
$\gamma \gamma_{\underline{}}$	$(2.12\pm0.14)\%$	S=1.3	479
$3\pi^0$	$(1.56 \pm 0.26) \times 1$	10^{-3}	430
$\mu^+\mu^-\gamma$	$(1.04\pm0.26)\times1$	10^{-4}	467
$\pi^+\pi^-\pi^0$	< 5 %	CL=90%	427
$\pi^0 \rho^0$	< 4 %	CL=90%	118

HTTP://PDG.LBL.GOV

Page 5

$\pi^+\pi^+\pi^-\pi^-$	< 1	%	CL=90%	372
$\pi^+\pi^+\pi^-\pi^-$ neutrals	< 1	%	CL=95%	_
$\pi^{+} \pi^{+} \pi^{-} \pi^{-} \pi^{0}$	< 1	%	CL=90%	298
6π	< 1	%	CL=90%	189
$\pi^{+}\pi^{-}e^{+}e^{-}$	< 6	$\times 10^{-3}$	CL=90%	458
$\gamma\mathrm{e^+e^-}$	< 9	$\times 10^{-4}$	CL=90%	_
$\pi^0 \gamma \gamma$	< 8	$\times 10^{-4}$	CL=90%	469
$4\pi^0$	< 5	$\times 10^{-4}$	CL=90%	379
e^+e^-	< 2.1	$\times 10^{-7}$	CL=90%	479

Charge conjugation (C), Parity (P), Lepton family number (LF) violating modes

$\pi^+\pi^-$	P,CP	<	2	%	CL=90%	458
$\pi^{0} \pi^{0}$	P,CP	<	9	\times 10 ⁻⁴	CL=90%	459
$\pi^0 e^+ e^-$	С	[g] <	1.4	$\times 10^{-3}$	CL=90%	469
$\eta e^+ e^-$	С	[g] <	2.4	$\times 10^{-3}$	CL=90%	322
3γ	C	<	1.0	$\times 10^{-4}$	CL=90%	479
$\mu^+\mu^-\pi^0$	C	[g] <	6.0	$\times 10^{-5}$	CL=90%	445
$\mu^+\mu^-\eta$	С	[g] <	1.5	$\times 10^{-5}$	CL=90%	274
$e\mu$	LF	<	4.7	× 10 ⁻⁴	CL=90%	_

f₀(980) [k]

$$I^{G}(J^{PC}) = 0^{+}(0^{+})$$

Mass $m=980\pm10~{\rm MeV}$ Full width $\Gamma=40~{\rm to}~100~{\rm MeV}$

f ₀ (980) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$\pi\pi$	dominant	470
$K\overline{K}$	seen	_

$$a_0(980)^{[k]}$$

$$I^{G}(J^{PC}) = 1^{-}(0^{+})$$

Created: 10/8/2002 11:05

Mass $m=984.7\pm1.2~{\rm MeV}~{\rm (S=1.5)}$ Full width $\Gamma=50$ to 100 MeV

_{a0} (980) DECAY MODES	Fraction (Γ_i/Γ)	<i>p</i> (MeV/ <i>c</i>)
$\eta\pi$	dominant	321
$K\overline{K}$	seen	_
$\gamma \gamma$	seen	492

 ϕ (1020)

$$I^{G}(J^{PC}) = 0^{-}(1^{-})$$

Mass $m=1019.456\pm0.020$ MeV (S =1.1) Full width $\Gamma=4.26\pm0.05$ MeV (S =1.7)

ϕ (1020) DECAY MODES	Fraction (Γ_i/Γ)	Scale factor/ Confidence level	
K ⁺ K ⁻	$(49.2 {}^{+0.6}_{-0.7}$) % S=1.2	127
$K_I^0 K_S^0$	(33.7 ± 0.5)) % S=1.2	110
$\rho \pi + \pi^{+} \pi^{-} \pi^{0}$	(15.5 ± 0.5)) % S=1.3	_
$\eta \gamma$	$(1.299\pm0.026$,	363
$\pi^0 \gamma$	(1.24 ± 0.10	•	501
e^+e^-	(2.96 ± 0.04)	,	510
$\mu^+\mu^-$	$(2.87 \begin{array}{c} +0.18 \\ -0.22 \end{array}$) × 10 ⁻⁴	499
$\eta e^+ e^-$	(1.15 ± 0.10	,	363
$\pi^+\pi^-$	(7.3 ± 1.3)	$) \times 10^{-5}$	490
$\omega\pi^0$	$(5.2 + 1.3 \\ -1.1$	$) \times 10^{-5}$	-
$\omega\gamma$	< 5	% CL=84%	210
$ ho\gamma$	< 1.2	$\times 10^{-5}$ CL=90%	219
$\pi^+\pi^-\gamma$	(4.1 ± 1.3		490
$f_0(980)\gamma$	$(3.3 +0.8 \\ -0.5$) × 10 ⁻⁴	39
$\pi^0 \pi^0 \gamma$	(1.08 ± 0.19	$) \times 10^{-4}$	492
$\pi^+\pi^-\pi^+\pi^-$	$(4.0 \begin{array}{c} +2.8 \\ -2.2 \end{array}$	$) \times 10^{-6}$	410
$\pi^{+} \pi^{+} \pi^{-} \pi^{-} \pi^{0}$	< 4.6	$\times10^{-6}$ CL=90%	341
$\pi^{0} e^{+} e^{-}$	•	$) \times 10^{-5}$	501
$\pi^0 \eta \gamma$	(8.9 ± 1.4		346
$a_0(980)\gamma$) × 10 ⁻⁴	36
η' (958) γ	$(6.7 + 1.5 \\ -1.4$	$) \times 10^{-5}$	_
$\eta \pi^0 \pi^0 \gamma$	< 2	$\times10^{-5}$ CL=90%	_
$\mu^+\mu^-\gamma$	(1.4 ± 0.5		_
$ ho\gamma\gamma$	< 5	$\times 10^{-4}$ CL=90%	_
$\eta \pi^+ \pi^-$	< 1.8	$\times 10^{-5}$ CL=90%	_
$\eta \mu^+ \mu^-$	< 9.4	$\times 10^{-6}$ CL=90%	

$$I^{G}(J^{PC}) = 0^{-}(1^{+})$$

Mass $m=1170\pm 20~{
m MeV}$ Full width $\Gamma=360\pm 40~{
m MeV}$

Fraction (Γ_i/Γ)

p (MeV/c)

 $\rho\pi$

seen

310

$b_1(1235)$

$$I^{G}(J^{PC}) = 1^{+}(1^{+})$$

Mass $m=1229.5\pm3.2$ MeV (S = 1.6) Full width $\Gamma=142\pm9$ MeV (S = 1.2)

b ₁ (1235) DECAY MODES	Fraction (Γ	_i /Γ)	Confidence level	(MeV/c)
$\omega\pi$ [D/S amplitude ratio = 0.29 \pm	dominar : 0.04]	nt		348
$\pi^{\pm}\gamma$	$(1.6\pm0.$.4) × 10	-3	608
ηho	seen			_
$\pi^{+} \pi^{+} \pi^{-} \pi^{0}$	< 50	%	84%	536
$(K\overline{K})^{\pm}\pi^0$	< 8	%	90%	248
$\overset{\cdot}{\mathcal{K}}^0_S\overset{\cdot}{\mathcal{K}}^0_L\pi^\pm \ \overset{\cdot}{\mathcal{K}}^0_S\overset{\cdot}{\mathcal{K}}^0_S\pi^\pm$	< 6	%	90%	238
$K_S^{ar{0}}K_S^{ar{0}}\pi^{\pm}$	< 2	%	90%	238
$\phi\pi$	< 1.5	%	84%	146

a₁(1260) [/]

$$I^{G}(J^{PC}) = 1^{-}(1^{+})$$

Created: 10/8/2002 11:05

Mass $m=1230\pm40$ MeV $^{[m]}$ Full width $\Gamma=250$ to 600 MeV

a ₁ (1260) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$(\rho\pi)_{S-\text{wave}}$	seen	_
$(ho\pi)_{D-wave}$	seen	_
$(\rho(1450)\pi)_{S-wave}$	seen	_
$(ho(1450)\pi)_{D-wave}$	seen	_
$\sigma\pi$	seen	_
$f_0(980)\pi$	not seen	_
$f_0(1370)\pi$	seen	_
$f_2(1270)\pi$	seen	_
$K\overline{K}^*(892)+c.c.$	seen	_
$\pi\gamma$	seen	607

$$I^{G}(J^{PC}) = 0^{+}(2^{+})$$

Mass $m=1275.4\pm1.2~{
m MeV}$ Full width $\Gamma=185.1^{+3.4}_{-2.6}~{
m MeV}~({
m S}=1.5)$

f ₂ (1270) DECAY MODES	Fraction (Γ_i	/Γ) C	Scale factor/ onfidence level	<i>p</i> (MeV/ <i>c</i>)
$\pi\pi$	$(84.7 \begin{array}{c} +2 \\ -1 \end{array})$.4) %	S=1.3	622
$\pi^{+} \pi^{-} 2\pi^{0}$	$(7.1 \begin{array}{c} +1. \\ -2. \end{array}$.5 .6) %	S=1.3	562
$K\overline{K}$	(4.6 ± 0	.5)%	S=2.8	403
$2\pi^{+}2\pi^{-}$	(2.8 ± 0.0	.4) %	S=1.2	559
$\eta\eta_{_}$	(4.5 ± 1	.0) × 10 ⁻	S=2.4	327
$4\pi^0$	(3.0 ± 1	.0) × 10 ⁻	-3	564
$\gamma\gamma$	(1.41 ± 0.1)	.13) × 10 ⁻	-5	637
$\eta\pi\pi$	< 8	× 10 ⁻	-3 CL=95%	475
$K^0 K^- \pi^+ + \text{c.c.}$	< 3.4	× 10 ⁻	-3 CL=95%	293
e^+e^-	< 6	× 10 ⁻	-10 CL=90%	637

$f_1(1285)$

$$I^{G}(J^{PC}) = 0^{+}(1^{+})$$

Mass $m=1281.9\pm0.6$ MeV (S = 1.6) Full width $\Gamma=24.0\pm1.2$ MeV (S = 1.4)

(100E) DECAY MODES	F .: (F /F)	Scale factor/	-
<u>f</u> ₁ (1285) DECAY MODES	Fraction (Γ_i/Γ)	Confidence level	(MeV/ <i>c</i>)
4π	$(33.1^{+}_{-}\ \overset{2.1}{1.8})\ \%$	S=1.3	563
$\pi^{0} \pi^{0} \pi^{+} \pi^{-}$	$(22.0 {+} \ \ 1.4 {1.2}) \%$	S=1.3	566
$2\pi^+2\pi^-$	$(11.0 {+\atop -}\ {0.7\atop 0.6})\ \%$	S=1.3	563
$\rho^{0}\pi^{+}\pi^{-}$	$(11.0 {+\atop -}\ {0.7\atop 0.6})\ \%$	S=1.3	340
$ ho^0 ho^0$	seen		_
$4\pi^{0}$ $\rho^{0}\rho^{0}$	< 7 × 10	$^{-4}$ CL=90%	568
$\eta\pi\pi$	(52 ± 16)%		479
$a_0(980)\pi$ [ignoring $a_0(980) ightarrow$	$(36 \pm 7)\%$		234
$\eta\pi\pi$ [excluding $a_0(980)\pi$]	$(16 \pm 7)\%$		_
$K\overline{K}\pi$	$(9.0\pm~0.4)~\%$	S=1.1	308
<i>K</i> K *(892)	not seen		_
$\gamma \rho^0$	($5.5\pm~1.3)~\%$	S=2.8	410
$\phi\gamma$	$(7.4\pm\ 2.6)\times10$	-4	236

$$\eta$$
(1295)

$$I^{G}(J^{PC}) = 0^{+}(0^{-})$$

Mass $m=1293\pm 5$ MeV (S =1.9) Full width $\Gamma=55\pm 5$ MeV

η (1295) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$\eta \pi^+ \pi^-$	seen	488
$a_0(980)\pi \\ \eta \pi^0 \pi^0$	seen	245
•	seen	_
$\eta(\pi\pi)_{\mathcal{S}}$ -wave	seen	_

π (1300)

$$I^{G}(J^{PC}) = 1^{-}(0^{-}+)$$

Mass $m=1300\pm 100$ MeV $^{[m]}$ Full width $\Gamma=200$ to 600 MeV

π (1300) DECAY MODES	Fraction (Γ_i/Γ)
$\rho\pi$	seen

a₂(1320)

$$I^{G}(J^{PC}) = 1^{-}(2^{+})$$

p (MeV/c)

Created: 10/8/2002 11:05

406

Mass $m=1318.0\pm0.6$ MeV (S =1.1) Full width $\Gamma=107\pm5$ MeV $^{[m]}$

a ₂ (1320) DECAY MODES	Fraction (Γ_i/Γ)	Scale factor/ Confidence level	<i>p</i> (MeV/ <i>c</i>)
$\rho\pi$	$(70.1 \pm 2.7)\%$	S=1.2	419
$\eta\pi$	(14.5 \pm 1.2) %		535
$\omega\pi\pi$	(10.6 \pm 3.2) %	S=1.3	362
$K\overline{K}$	(4.9 \pm 0.8) %		437
$\eta'(958)\pi$	(5.3 \pm 0.9) $ imes$	10^{-3}	287
$\pi^{\pm}\gamma$	($2.68\pm0.31)$ $ imes$	₁₀ -3	652
$\gamma \gamma$	(9.4 \pm 0.7) $ imes$	10^{-6}	659
$\pi^{+}\pi^{-}\pi^{-}$	< 8 %	CL=90%	621
e^+e^-	< 6 ×	10^{-9} CL=90%	659

 $f_0(1370)^{[k]}$

$$I^{G}(J^{PC}) = 0^{+}(0^{+})$$

Mass m=1200 to 1500 MeV Full width $\Gamma=200$ to 500 MeV

f ₀ (1370) DECAY MODES	Fraction (Γ_i/Γ)	<i>p</i> (MeV/ <i>c</i>)
$\pi\pi$	seen	-
4π	seen	_
$4\pi^0$	seen	_
$2\pi^+2\pi^-$	seen	_
$\pi^{+} \pi^{-} 2 \pi^{0}$	seen	_
ho ho	dominant	_
$2(\pi\pi)_{S ext{-wave}}$	seen	_
$rac{\eta\eta}{K\overline{K}}$	seen	_
$K\overline{K}$	seen	_
$\gamma\gamma$	seen	_
e^+e^-	not seen	_

f₁(1420) [n]

$$I^{G}(J^{PC}) = 0^{+}(1^{+})$$

Mass $m=1426.3\pm1.1~{\rm MeV}~{\rm (S}=1.3)$ Full width $\Gamma=55.5\pm2.9~{\rm MeV}$

f ₁ (1420) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$\overline{K}\overline{K}\pi$	dominant	439
$K\overline{K}^*(892)+$ c.c.	dominant	155
$\eta\pi\pi$	possibly seen	571
$\phi\gamma$	seen	_

ω(1420) [*ο*]

$$I^{G}(J^{PC}) = 0^{-}(1^{-})$$

Created: 10/8/2002 11:05

Mass $m=1419\pm31~{
m MeV}$ Full width $\Gamma=174\pm60~{
m MeV}$

ω (1420) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$ ho\pi$	dominant	488
$\omega\pi\pi$	possibly seen	_
$b_1(1235)\pi$	seen	_

$$I^{G}(J^{PC}) = 0^{+}(0^{-})$$

Mass m=1400 - 1470 MeV $^{[m]}$ Full width $\Gamma=50$ - 80 MeV $^{[m]}$

η (1440) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$\overline{K}\overline{K}\pi$	seen	_
$K\overline{K}^*$ (892) $+$ c.c.	seen	_
$\eta\pi\pi$	seen	_
$a_0(980)\pi$	seen	_
$\eta(\pi\pi)_{\mathcal{S} ext{-}wave}$	seen	_
$f_0(980)\eta$	seen	_
4π	seen	_

*a*₀(1450)

$$I^{G}(J^{PC}) = 1^{-}(0^{+})$$

Mass $m=1474\pm19~{
m MeV}$ Full width $\Gamma=265\pm13~{
m MeV}$

a ₀ (1450) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$\pi\eta$	seen	613
$\pi \underline{\eta'(958)}$	seen	392
KK	seen	530

ρ(1450) [q]

$$I^{G}(J^{PC}) = 1^{+}(1^{-})$$

Created: 10/8/2002 11:05

Mass $m=1465\pm25$ MeV $^{[m]}$ Full width $\Gamma=310\pm60$ MeV $^{[m]}$

ho(1450) DECAY MODES	Fraction (Γ_i/Γ)	Confidence level	<i>p</i> (MeV/ <i>c</i>)
$\pi\pi$	seen		719
4π	seen		665
$\omega\pi$	<2.0 %	95%	512
e^+e^-	seen		732
ηho	<4 %		317
$a_2(1320)\pi$	not seen		_
$\phi\pi$	<1 %		358
$K\overline{K}$	$< 1.6 \times 10^{-3}$	95%	541
$\frac{\eta \gamma}{}$	possibly seen		_

$$I^{G}(J^{PC}) = 0^{+}(0^{+})$$

Mass $m=1507\pm 5$ MeV (S = 1.2) Full width $\Gamma=109\pm 7$ MeV

f ₀ (1500) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$\eta \eta'$ (958)	seen	_
$\eta \eta$	seen	513
4π	seen	_
$4\pi^0 \ 2\pi^+2\pi^-$	seen	690
$2\pi^{+}2\pi^{-}$	seen	686
$\pi\pi$	seen	_
$\pi^+\pi^- 2\pi^0$	seen	737
	seen	738
$K\overline{K}$	seen	563
$\gamma \gamma$	not seen	_

$f_2'(1525)$

$$I^{G}(J^{PC}) = 0^{+}(2^{+})$$

Mass $m=1525\pm 5~{
m MeV}~{}^{[m]}$ Full width $\Gamma=76\pm 10~{
m MeV}~{}^{[m]}$

$f_2'(1525)$ DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
KK	(88.8 ±3.1) %	581
$\eta\eta$	(10.3 \pm 3.1) %	531
$\pi\pi$	$(8.2 \pm 1.5) \times 10^{-3}$	750
$\gamma\gamma$	$(1.23\pm0.17)\times10^{-6}$	763

ω (1650) [s] was ω (1600)

$$I^{G}(J^{PC}) = 0^{-}(1^{-})$$

Created: 10/8/2002 11:05

Mass $m=1649\pm24$ MeV (S = 2.3) Full width $\Gamma=220\pm35$ MeV (S = 1.6)

ω (1650) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$\rho\pi$	seen	637
$\omega \pi \pi$	seen	601
$\begin{array}{c} \omega\eta \\ e^+e^- \end{array}$	seen	_
e^+e^-	seen	824

$$\omega_3$$
(1670)

$$I^{G}(J^{PC}) = 0^{-}(3^{-})$$

Mass $m=1667\pm 4~{
m MeV}$ Full width $\Gamma=168\pm 10~{
m MeV}$ $^{[m]}$

ω_3 (1670) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$ ho\pi$	seen	647
$\omega\pi\pi$	seen	614
$b_1(1235)\pi$	possibly seen	359

π_2 (1670)

$$I^{G}(J^{PC}) = 1^{-}(2^{-})$$

Mass $m=1670\pm 20$ MeV $^{[m]}$ Full width $\Gamma=259\pm 10$ MeV $^{[m]}$ (S =1.4)

π_2 (1670) DECAY MODES	Fraction (Γ_i/Γ)	Confidence level	<i>p</i> (MeV/ <i>c</i>)
3π	(95.8±1.4) %		806
$f_2(1270)\pi$	(56.2±3.2) %		325
$ ho\pi$	$(31 \pm 4)\%$		649
$\sigma\pi$	$(13 \pm 6)\%$		_
$f_0(1370) \pi$	(8.7±3.4) %		_
$K\overline{K}^*(892)+$ c.c.	$(4.2\pm1.4)\%$		453
ωho	$(2.7\pm1.1)\%$		_
$ ho$ (1450) π	< 3.6 × 1	10^{-3} 97.7%	_
$b_1(1235)\pi$	< 1.9 × 1	10 ⁻³ 97.7%	_

ϕ (1680)

$$I^{G}(J^{PC}) = 0^{-}(1^{-})$$

Created: 10/8/2002 11:05

Mass $m=1680\pm20$ MeV $^{[m]}$ Full width $\Gamma=150\pm50$ MeV $^{[m]}$

ϕ (1680) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$\overline{KK^*(892)}$ + c.c.	dominant	463
$K_{\underline{S}}^{0}K\pi$ KK	seen	620
	seen	681
e^+e^-	seen	840
$\omega\pi\pi$	not seen	622

$$\rho_3$$
(1690)

$$I^{G}(J^{PC}) = 1^{+}(3^{-})$$

Mass $m=1691\pm 5$ MeV $^{[m]}$ Full width $\Gamma=161\pm 10$ MeV $^{[m]}$ (S =1.5)

ρ_3 (1690) DECAY MODES	Fraction (Γ_i/Γ)	Scale factor	<i>p</i> (MeV/ <i>c</i>)
4π	$(71.1 \pm 1.9)\%$		788
$\pi^{\pm}\pi^{+}\pi^{-}\pi^{0}$	$(67 \pm 22)\%$		788
$\omega\pi$	$(16\pm6)\%$		656
$\pi\pi$	(23.6 \pm 1.3) %		834
$K\overline{K}\pi$	(3.8 ± 1.2) %		628
$K\overline{K}$	$(~1.58\pm~0.26)~\%$	1.2	686
$\eta \pi^+ \pi^-$	seen		728
$ ho$ (770) η	seen		-

ρ(1700) [q]

$$I^{G}(J^{PC}) = 1^{+}(1^{-})$$

Mass $m=1700\pm20$ MeV $^{[m]}$ $(\eta\,\rho^0$ and $\pi^+\,\pi^-$ modes) Full width $\Gamma=240\pm60$ MeV $^{[m]}$ $(\eta\,\rho^0$ and $\pi^+\,\pi^-$ modes)

ho(1700) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$2(\pi^+\pi^-)$	large	792
$\rho\pi\pi$	dominant	640
$\rho^{0}\pi^{+}\pi^{-}$	large	640
$ \rho^{0} \pi^{+} \pi^{-} $ $ \rho^{\pm} \pi^{\mp} \pi^{0} $ $ \pi^{+} \pi^{-} $	large	642
$\pi^+\pi^-$	seen	838
$\pi\pi$	seen	839
$K\overline{K}^{*}(892) + \text{c.c.}$	seen	479
ηho	seen	533
$a_2(1320)\pi$	not seen	_
$K\overline{K}$	seen	692
e^+e^-	seen	850
$\pi^0 \omega$	seen	662

$$f_0(1710)^{[t]}$$

$$I^{G}(J^{PC}) = 0^{+}(0^{+})$$

Mass $m=1713\pm 6~{
m MeV}$ Full width $\Gamma=125\pm 10~{
m MeV}$

f ₀ (1710) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
KK	seen	690
$\eta\eta$	seen	648
$\pi\pi$	seen	837

π (1800)

$$I^{G}(J^{PC}) = 1^{-}(0^{-}+)$$

Mass $m=1801\pm13$ MeV (S =1.9) Full width $\Gamma=210\pm15$ MeV

π (1800) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$\pi^+\pi^-\pi^-$	seen	_
$f_0(980)\pi^-$	seen	623
$f_0(1370)\pi^-$	seen	_
$ ho\pi^-$	not seen	728
$\eta \eta \pi^-$	seen	_
$a_0(980)\eta$	seen	459
$f_0(1500)\pi^-$	seen	240
$\eta \eta'$ (958) π^-	seen	_
$K_0^*(1430) K^-$	seen	_
$K^*(892) K^-$	not seen	560

$\phi_3(1850)$

$$I^{G}(J^{PC}) = 0^{-}(3^{-})$$

Created: 10/8/2002 11:05

Mass $m=1854\pm7$ MeV Full width $\Gamma=87^{+28}_{-23}$ MeV (S =1.2)

ϕ_3 (1850) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
KK	seen	785
$K\overline{K}^*$ (892) $+$ c.c.	seen	602

f₂(2010)

$$I^{G}(J^{PC}) = 0^{+}(2^{+})$$

Mass $m=2011^{+60}_{-80}~{
m MeV}$ Full width $\Gamma=202\pm60~{
m MeV}$

f₂(2010) DECAY MODES

Fraction (Γ_i/Γ)

(MeV/c

 $\phi \phi$

seen

a₄(2040)

$$I^{G}(J^{PC}) = 1^{-}(4^{+})$$

Mass $m=2011\pm13~{\rm MeV}$ Full width $\Gamma=360\pm40~{\rm MeV}$

a ₄ (2040) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
KK	seen	892
$\pi^+\pi^-\pi^0$	seen	_
$\eta\pi^{0}$	seen	941
$\eta'(958)\pi$	seen	_

f₄(2050)

$$I^{G}(J^{PC}) = 0^{+}(4^{+})$$

Mass $m=2025\pm 8$ MeV (S =1.7) Full width $\Gamma=194\pm 13$ MeV (S =2.2)

f ₄ (2050) DECAY MODES	Fraction (Γ_i/Γ)	<i>p</i> (MeV/ <i>c</i>)	
$\omega\omega$	not seen	658	
$\pi\pi$	$(17.0\pm1.5)~\%$	1012	
$K\overline{K}$	$(6.8^{+3.4}_{-1.8}) \times 10^{-3}$	895	
$\eta\eta_{_{-}}$	$(2.1\pm0.8)\times10^{-3}$	863	
$rac{\eta \eta}{4\pi}$ 0	< 1.2 %	977	
$a_2(1320)\pi$	seen	_	

f₂(2300)

$$I^{G}(J^{PC}) = 0^{+}(2^{+})$$

Mass $m=2297\pm28~{\rm MeV}$ Full width $\Gamma=149\pm40~{\rm MeV}$

f ₂ (2300) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$\phi\phi$	seen	529

HTTP://PDG.LBL.GOV

Page 17

f₂(2340)

$$I^{G}(J^{PC}) = 0^{+}(2^{+})$$

Mass $m=2339\pm60$ MeV Full width $\Gamma=319^{+80}_{-70}$ MeV

f ₂ (2340) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$\phi \phi$	seen	573

STRANGE MESONS $(S = \pm 1, C = B = 0)$

 $K^+=u\overline{s},~K^0=d\overline{s},~\overline{K}^0=\overline{d}\,s,~K^-=\overline{u}\,s,~$ similarly for K^* 's

Κ±

$$I(J^P) = \frac{1}{2}(0^-)$$

Mass
$$m=493.677\pm0.016$$
 MeV $^{[u]}$ (S $=2.8$)
Mean life $\tau=(1.2384\pm0.0024)\times10^{-8}$ s (S $=2.0$)
 $c\tau=3.713$ m

Slope parameter $g^{[v]}$

(See Particle Listings for quadratic coefficients)

$$K^{+} \rightarrow \pi^{+}\pi^{+}\pi^{-} = -0.2154 \pm 0.0035$$
 (S = 1.4)
 $K^{-} \rightarrow \pi^{-}\pi^{-}\pi^{+} = -0.217 \pm 0.007$ (S = 2.5)
 $K^{\pm} \rightarrow \pi^{\pm}\pi^{0}\pi^{0} = 0.652 \pm 0.031$ (S = 2.7)

K^{\pm} decay form factors [a, w]

Assuming μ -e universality

$$\lambda_{+}(K_{\mu 3}^{+}) = \lambda_{+}(K_{e 3}^{+}) = 0.0282 \pm 0.0027$$
 (S = 1.5)
 $\lambda_{0}(K_{\mu 3}^{+}) = 0.013 \pm 0.005$ (S = 1.5)

Not assuming μ -e universality

$$\lambda_{+}(K_{e3}^{+}) = 0.0278 \pm 0.0019$$

$$\lambda_{+}(K_{\mu3}^{+}) = 0.033 \pm 0.010 \quad (S = 1.8)$$

$$\lambda_{0}(K_{\mu3}^{+}) = 0.004 \pm 0.009 \quad (S = 1.8)$$

$$K_{e3}^{+} \quad |f_{S}/f_{+}| = 0.045 \pm 0.033 \quad (S = 1.8)$$

$$K_{e3}^{+} \quad |f_{T}/f_{+}| = 0.31 \pm 0.25 \quad (S = 2.4)$$

$$K_{\mu3}^{+} \quad |f_{T}/f_{+}| = 0.02 \pm 0.12$$

$$K^{+} \rightarrow e^{+}\nu_{e}\gamma \quad |F_{A} + F_{V}| = 0.148 \pm 0.010$$

$$K^{+} \rightarrow \mu^{+}\nu_{\mu}\gamma \quad |F_{A} + F_{V}| = 0.165 \pm 0.013$$

$$K^{+} \rightarrow e^{+}\nu_{e}\gamma \quad |F_{A} - F_{V}| < 0.49$$

$$K^{+} \rightarrow \mu^{+}\nu_{\mu}\gamma \quad |F_{A} - F_{V}|$$

 ${\it K}^-$ modes are charge conjugates of the modes below.

K+ DECAY MODES	Fraction (Γ_i/Γ)	Scale factor/ Confidence level	' - '			
Len	tonic and semileptonic mo	odes				
$e^+ u_{ m P}$	(1.55 ± 0.07		247			
$\mu^+ u_\mu$	(63.43 ± 0.17)	•	236			
$\pi^0 e^+ \nu_e$	(4.87 ±0.06	,	228			
Called K_{e3}^+ .	(4.07 ±0.00) /0 3—1.2	220			
$\pi^0 \mu^+ \nu_\mu$	(3.27 ±0.06) % S=1.2	215			
· · · · · · · · · · · · · · · · · · ·	(3.27 ±0.00) /0	213			
Called $K_{\mu 3}^+$.						
$\pi^{0}\pi^{0}e^{+}\nu_{e}$	(2.1 ± 0.4)		206			
$\pi^{+}\pi^{-}e^{+}\nu_{e}$	(4.08 ± 0.09		203			
$\pi^{+}\pi^{-}\mu^{+}\nu_{\mu}$	(1.4 ± 0.9	•	151			
$\pi^{0} \pi^{0} \pi^{0} e^{+\nu}_{e}$	< 3.5	$\times 10^{-6}$ CL=90%	135			
	Hadronic modes					
$\pi^+\pi^0$	(21.13 ± 0.14)) % S=1.1	205			
$\pi^+\pi^0\pi^0$	•) % S=1.2	133			
$\pi^{+} \pi^{+} \pi^{-}$	(5.576±0.03		125			
l antonia a	` 	, .hh				
	nd semileptonic modes with	-	225			
$\mu^+ \nu_\mu \gamma$	$[x,y]$ (5.50 ± 0.28		236			
$\pi^0 e^+ \nu_e \gamma$	$[x,y]$ (2.65 \pm 0.20		228			
$\pi^0 e^+ \nu_e \gamma (SD)$	z < 5.3	$\times 10^{-5}$ CL=90%	228			
$\pi^0 \mu^+ \nu_\mu \gamma$	[x,y] < 6.1		215			
$\pi^0 \pi^0 e^+ \nu_e \gamma$	< 5	$\times 10^{-6} \text{ CL}=90\%$	206			
Ha	Hadronic modes with photons					
$\pi^+\pi^0\gamma$	$[x,y]$ (2.75 ± 0.15	$) \times 10^{-4}$	205			
$\pi^+\pi^0\gamma(DE)$	[y,aa] (4.7 ± 0.9	$) \times 10^{-6}$	205			
$\pi^+\pi^0\pi^0\gamma$	[x,y] (7.4 $ +5.5$) × 10 ⁻⁶	133			
$\pi^+\pi^+\pi^-\gamma$	$[x,y]$ (1.04 \pm 0.31		125			
$\pi^+ \gamma \gamma$	[y] (1.10 ± 0.32	,	227			
$\pi^+ 3\gamma$		$\times 10^{-4} \text{ CL}=90\%$	227			
,	_					
	eptonic modes with $\ell \overline{\ell}$ pai					
$e^+ \nu_e \nu \overline{\nu}$	< 6	$\times 10^{-5}$ CL=90%	247			
$\mu^+ u_{\mu} u \overline{ u}$	< 6.0	$\times 10^{-6}$ CL=90%	236			
$e^+ \nu_e e^+ e^-$	$(3.1 \begin{array}{cc} +3.1 \\ -1.6 \end{array})$	$) \times 10^{-8}$	247			
$\mu^+ u_\mu\mathrm{e}^+\mathrm{e}^-$	(1.3 ± 0.4)		236			
$e^+ \nu_e \mu^+ \mu^-$	· ·	$\times 10^{-7} \text{ CL}=90\%$	_			
$\mu^+ \nu_\mu \mu^+ \mu^-$		$\times 10^{-7} \text{ CL}=90\%$	185			
μμ μ	₹.1	7. 10 CL=30/0	103			

Lepton Family number (LF), Lepton number (L), $\Delta S = \Delta Q$ (SQ) violating modes, or $\Delta S = 1$ weak neutral current (S1) modes

$\pi^+\pi^+e^-\overline{ u}_e$	SQ	<	1.2		\times 10 ⁻⁸	CL=90%	203
$\pi^+\pi^+\mu^-\overline{ u}_{\mu}$	SQ	<	3.0		\times 10 ⁻⁶	CL=95%	151
$\pi^{+} e^{+} e^{-}$	<i>S</i> 1	(2.88	± 0.13	$) \times 10^{-7}$		227
$\pi^+\mu^+\mu^-$	<i>S</i> 1	(7.6	±2.1	$) \times 10^{-8}$	S=3.4	172
$\pi^+ u \overline{ u}$	<i>S</i> 1	(1.6	$^{+1.8}_{-0.8}$	$) \times 10^{-10}$)	227
$\pi^+\pi^0 u\overline{ u}$	<i>S</i> 1	<	4.3		$\times 10^{-5}$	CL=90%	_
$\mu^- u e^+ e^+$	LF	<	2.0		$\times 10^{-8}$	CL=90%	236
$\mu^+ u_e$	LF	[d]	4			CL=90%	236
$\pi^+\mu^+e^-$	LF	<	2.8			^L CL=90%	214
$\pi^+\mu^-e^+$	LF	<	5.2			CL=90%	214
$\pi^-\mu^+e^+$	L	<	5.0			CL=90%	214
$\pi^- e^+ e^+$	L	<	6.4		\times 10 ⁻¹⁰	CL=90%	227
$\pi^{-}\mu^{+}\mu^{+}$	L	[d]	3.0		$\times 10^{-9}$	CL=90%	172
$\mu^+ \overline{\nu}_e$	L	[d]	3.3		$\times 10^{-3}$	CL=90%	236
$\pi^0 e^+ \overline{ u}_e$	L	<	3		$\times 10^{-3}$	CL=90%	228
$\pi^+ \gamma$		[bb] <	3.6		$\times 10^{-7}$	CL=90%	-

K⁰

$$I(J^P) = \frac{1}{2}(0^-)$$

Mass
$$m = 497.672 \pm 0.031 \; \text{MeV}$$

$$m_{K^0} - m_{K^\pm} = 3.995 \pm 0.034 \; {
m MeV} \quad ({
m S} = 1.1) \ \left| m_{K^0} - m_{\overline{K}^0}
ight| / m_{
m average} \; < \; 10^{-18} , \; {
m CL} = 90\% \; ^{[cc]}$$

T-violation parameters in K^0 - \overline{K}^0 mixing [w]

Asymmetry
$$A_T$$
 in K^0 - \overline{K}^0 mixing = $(6.6 \pm 1.6) \times 10^{-3}$

CPT-violation parameters in K^0 - $\overline{K^0}$ mixing [w]

Re
$$\delta = (2.9 \pm 2.7) \times 10^{-4}$$

Im $\delta = (-0.8 \pm 3.1) \times 10^{-3}$

$$I(J^P) = \frac{1}{2}(0^-)$$

Mean life $\tau=(0.8935\pm0.0008)\times10^{-10}$ s Assuming *CPT* Mean life $\tau=(0.8937\pm0.0012)\times10^{-10}$ s Not assuming *CPT* $c\tau=2.6786$ cm Assuming *CPT*

CP-violation parameters [dd]

$$Im(\eta_{+-0}) = -0.002 \pm 0.009$$

 $Im(\eta_{000}) = -0.05 \pm 0.13$

κ_S^0 decay modes

Fraction (Γ_i/Γ)

Scale factor/ p Confidence level (MeV/c)

	Hadronic modes		
$\pi^0 \pi^0$	$(31.40\pm0.27)~\%$	S=1.2	209
$\pi^+\pi^-$	$(68.60\pm0.27)~\%$	S=1.2	206
$\pi^+\pi^-\pi^0$	$(3.2 \ ^{+1.2}_{-1.0}) \times 10^{-7}$		133

Modes with photons or $\ell \bar{\ell}$ pairs

Semileptonic modes

$$\pi^{\pm} e^{\mp} \nu_{e}$$
 [ff] $(7.2 \pm 1.4) \times 10^{-4}$ 229

CP violating (CP) and $\Delta S = 1$ weak neutral current (S1) modes

139
225
249
231

$$I(J^P) = \frac{1}{2}(0^-)$$

$$\begin{array}{l} \textit{m}_{\textit{K}_{\textit{L}}} - \textit{m}_{\textit{K}_{\textit{S}}} \\ &= (0.5303 \pm 0.0009) \times 10^{10} \; \hbar \; \text{s}^{-1} \quad \text{Assuming CPT} \\ &= (3.490 \pm 0.006) \times 10^{-12} \; \text{MeV} \quad \text{Assuming CPT} \\ &= (0.5301 \pm 0.0016) \times 10^{10} \; \hbar \; \text{s}^{-1} \quad \text{Not assuming CPT} \\ \text{Mean life } \tau = (5.17 \pm 0.04) \times 10^{-8} \; \text{s} \quad (\text{S} = 1.1) \\ \textit{c}\tau = 15.51 \; \text{m} \end{array}$$

Slope parameter $g^{[v]}$

(See Particle Listings for quadratic coefficients)

$$K_L^0 \rightarrow \pi^+\pi^-\pi^0 = 0.678 \pm 0.008 \quad (S = 1.5)$$

HTTP://PDG.LBL.GOV

Page 22

K_L decay form factors [w]

Assuming μ -e universality

$$\lambda_{+}(K_{\mu3}^{0}) = \lambda_{+}(K_{e3}^{0}) = 0.0300 \pm 0.0020$$
 (S = 2.0)
 $\lambda_{0}(K_{\mu3}^{0}) = 0.030 \pm 0.005$ (S = 2.0)

Not assuming μ -e universality

$$\lambda_+(K^0_{e3}) = 0.0291 \pm 0.0018 \quad (S = 1.5)$$
 $\lambda_+(K^0_{\mu3}) = 0.033 \pm 0.005 \quad (S = 2.3)$ $\lambda_0(K^0_{\mu3}) = 0.027 \pm 0.006 \quad (S = 2.3)$ $K^0_{e3} \quad \left|f_S/f_+\right| < 0.04, \, \text{CL} = 68\%$

$$K_{e3}^{0}$$
 $|f_{S}/f_{+}| < 0.04$, $CL = 68\%$
 K_{e3}^{0} $|f_{T}/f_{+}| < 0.23$, $CL = 68\%$

$$K_{\mu 3}^{0} \quad \left| f_{T}/f_{+} \right| = 0.12 \pm 0.12$$

$$K_L \rightarrow e^+ e^- \gamma$$
: $\alpha_{K^*} = -0.33 \pm 0.05$

$$\alpha_{K^*} = -0.158 \pm 0.027$$

$$lpha_{K^*}^{
m eff} = -0.14 \pm 0.22 \ a_V = -0.72 \pm 0.07$$

CP-violation parameters [dd]

$$\delta_L = (0.327 \pm 0.012)\% \ \left| \eta_{00} \right| = (2.274 \pm 0.017) \times 10^{-3}$$

$$\left|\eta_{+-}\right| = (2.286 \pm 0.017) \times 10^{-3}$$

$$|\eta_{00}/\eta_{+-}| = 0.9946 \pm 0.0013$$
 [gg] (S = 2.3)

$$Re(\epsilon'/\epsilon) = (1.8 \pm 0.4) \times 10^{-3} [gg]$$
 (S = 2.3)

Assuming CPT

$$\phi_{+-} = \phi_{00} = (43.51 \pm 0.06)^{\circ}$$

Not assuming CPT

$$\phi_{+-} = (43.4 \pm 0.7)^{\circ}$$

$$\phi_{00} = (43.2 \pm 1.0)^{\circ}$$

$$\phi_{00} - \phi_{+-} = (-0.1 \pm 0.8)^{\circ}$$

CP asymmetry *A* in $K_L^0 \to \pi^+ \pi^- e^+ e^- = (13.6 \pm 2.8)\%$ β_{CP} from $K_L \to e^+ e^- e^+ e^- = -0.23 \pm 0.09$ γ_{CP} from $K_L^0 \to e^+ e^- e^+ e^- = -0.09 \pm 0.09$

j for $K_I^0 \to \pi^+ \pi^- \pi^0 = 0.0011 \pm 0.0008$

f for $K_I^0 \to \pi^+\pi^-\pi^0 = 0.004 \pm 0.006$

$$|\eta_{+-\gamma}| = (2.35 \pm 0.07) \times 10^{-3}$$

$$\phi_{+-\gamma} = (44 \pm 4)^{\circ}$$

$$|\epsilon_{+-\gamma}^{'}|/\epsilon$$
 < 0.3, CL = 90%

$\Delta S = -\Delta Q$ in $K_{\ell 3}^0$ decay

 $\text{Re } x = -0.002 \pm 0.006$

 $\text{Im } x = 0.0012 \pm 0.0021$

KO DECAY MODES

Fraction (Γ_i/Γ)

Scale factor/ Confidence level (MeV/c)

Created: 10/8/2002 11:05

Semileptonic modes

$$\pi^{\pm} \, e^{\mp} \, \nu_{e} \qquad \qquad [\textit{ff}] \quad (38.79 \, \pm 0.27 \,) \, \% \qquad \qquad \text{S=1.1} \qquad 229 \\ \text{Called} \, \, K^{0}_{e3}. \qquad \qquad \\ \pi^{\pm} \, \mu^{\mp} \, \nu_{\mu} \qquad \qquad [\textit{ff}] \quad (27.18 \, \pm 0.25 \,) \, \% \qquad \qquad \text{S=1.1} \qquad 216 \\ \text{Called} \, \, K^{0}_{\mu 3}. \qquad \qquad \qquad [\textit{ff}] \quad (27.18 \, \pm 0.25 \,) \, \% \qquad \qquad \text{S=1.1} \qquad 216 \\ \text{Called} \, \, K^{0}_{\mu 3}. \qquad \qquad \qquad [\textit{ff}] \quad (27.18 \, \pm 0.25 \,) \, \% \qquad \qquad \text{S=1.1} \qquad 216 \\ \text{Called} \, \, K^{0}_{\mu 3}. \qquad \qquad \qquad [\textit{ff}] \quad (27.18 \, \pm 0.25 \,) \, \% \qquad \qquad \text{S=1.1} \qquad 216 \\ \text{Called} \, \, K^{0}_{\mu 3}. \qquad \qquad [\textit{ff}] \quad (27.18 \, \pm 0.25 \,) \, \% \qquad \qquad \text{S=1.1} \qquad 216 \\ \text{Called} \, \, K^{0}_{\mu 3}. \qquad \qquad [\textit{ff}] \quad (27.18 \, \pm 0.25 \,) \, \% \qquad \qquad \text{S=1.1} \qquad 216 \\ \text{Called} \, \, K^{0}_{\mu 3}. \qquad \qquad [\textit{ff}] \quad (27.18 \, \pm 0.25 \,) \, \% \qquad \qquad \text{S=1.1} \qquad 216 \\ \text{Called} \, \, K^{0}_{\mu 3}. \qquad \qquad [\textit{ff}] \quad (27.18 \, \pm 0.25 \,) \, \% \qquad \qquad \text{S=1.1} \qquad 216 \\ \text{Called} \, \, K^{0}_{\mu 3}. \qquad \qquad [\textit{ff}] \quad (27.18 \, \pm 0.25 \,) \, \% \qquad \qquad \text{S=1.1} \qquad 216 \\ \text{Called} \, \, K^{0}_{\mu 3}. \qquad \qquad [\textit{ff}] \quad (27.18 \, \pm 0.25 \,) \, \% \qquad \qquad \text{S=1.1} \qquad 216 \\ \text{Called} \, \, K^{0}_{\mu 3}. \qquad \qquad [\textit{ff}] \quad (27.18 \, \pm 0.25 \,) \, \% \qquad \qquad \text{S=1.1} \qquad 216 \\ \text{Called} \, \, K^{0}_{\mu 3}. \qquad \qquad [\textit{ff}] \quad (27.18 \, \pm 0.25 \,) \, \% \qquad \qquad \text{S=1.1} \qquad 216 \\ \text{Called} \, \, K^{0}_{\mu 3}. \qquad \qquad \text{Called} \, K^{0}_{\mu 3}. \qquad$$

Called
$$K_{\mu 3}^0$$
.

$$(\pi \mu \text{atom}) \nu$$
 (1.06 ±0.11) × 10⁻⁷ 188 $\pi^0 \pi^{\pm} e^{\mp} \nu$ [ff] (5.18 ±0.29) × 10⁻⁵ 207

Hadronic modes, including Charge conjugation×Parity Violating (CPV) modes

$3\pi^{0}$		(21.08 ± 0.27) %	S=1.1	139
$\pi^{+}\pi^{-}\pi^{0}$		(12.58 ± 0.19) %	S=1.7	133
$\pi^+\pi^-$	CPV	$(2.084\pm0.032)\times10^{-3}$	S=1.1	206
$\pi^0\pi^0$	CPV	$(9.42 \pm 0.19) \times 10^{-4}$	S=1.1	209

Semileptonic modes with photons

$$\pi^{\pm} e^{\mp} \nu_{e} \gamma \qquad [x, ff, hh] \quad (3.53 \pm 0.06) \times 10^{-3} \qquad 229$$

$$\pi^{\pm} \mu^{\mp} \nu_{\mu} \gamma \qquad (5.7 + 0.6) \times 10^{-4} \qquad -$$

Hadronic modes with photons or $\ell \overline{\ell}$ pairs

$\pi^{0}\pi^{0}\gamma$	< 5.6	\times 10 ⁻⁶		209
$\pi^+\pi^-\gamma$	$[x,hh]$ (4.38 ± 0.1	$3) \times 10^{-5}$	S=1.8	206
$\pi^0 2\gamma$	[hh] (1.68 ± 0.1	0) \times 10 ⁻⁶		231
$\pi^0 \gamma e^+ e^-$	(2.3 ± 0.4	$) \times 10^{-8}$		_

Other modes with photons or $\ell \overline{\ell}$ pairs

2γ	(5.96	± 0.15	$) \times 10^{-4}$		249
3γ	< 2.4		$\times 10^{-7}$	CL=90%	249
$e^+e^-\gamma$	(10.0	±0.5	$) \times 10^{-6}$	S=1.5	249
$\mu^+\mu^-\gamma$	(3.59	± 0.11	$) \times 10^{-7}$	S=1.3	225
$e^+e^-\gamma\gamma$ [hh	n] (5.95	± 0.33	$) \times 10^{-7}$		249
$\mu^+\mu^-\gamma\gamma$ [hh	n] (1.0	$^{+0.8}_{-0.6}$) × 10 ⁻⁸		_

Charge conjugation \times Parity (*CP*) or Lepton Family number (*LF*) violating modes, or $\Delta S = 1$ weak neutral current (*S1*) modes

violating modes, or		,,,			iciai ce	inche (SI) modes	
$\mu^+\mu^-$	<i>S</i> 1		(7.25	±0.16	$) \times 10^{-9}$	225
e^+e^-	<i>S</i> 1		(9	$^{+6}_{-4}$	$)\times 10^{-12}$	249
$\pi^{+}\pi^{-}e^{+}e^{-}$	<i>S</i> 1	[hh]	(3.5	± 0.6	$) \times 10^{-7}$	206
$\mu^{+}\mu^{-}e^{+}e^{-}$	<i>S</i> 1		(2.6	± 0.4	$) \times 10^{-9}$	225
$e^{+}e^{-}e^{+}e^{-}$	<i>S</i> 1		(3.75	± 0.27	$) \times 10^{-8}$	249
$\pi^{0} \mu^{+} \mu^{-}$	CP,S1	[ii] <	<	3.8		$\times 10^{-10}$ CL=90%	177
$\pi^{0} e^{+} e^{-}$	CP,S1	[ii] <	<	5.1		$\times 10^{-10}$ CL=90%	231
$\pi^0 \nu \overline{\nu}$	CP,S1	[<i>jj</i>] <	<	5.9		$\times 10^{-7}$ CL=90%	231
$e^{\pm}\mu^{\mp}$	LF	[ff] <	<	4.7		$\times 10^{-12}$ CL=90%	238
$e^{\pm}e^{\pm}\mu^{\mp}\mu^{\mp}$	LF	[ff] <	<	1.23		$ imes$ 10 $^{-10}$ CL=90%	_
$\pi^0 \mu^\pm e^\mp$	LF	[ff] <	<	6.2		$\times 10^{-9}$ CL=90%	_

K*(892)

$$I(J^P) = \frac{1}{2}(1^-)$$

$$K^*(892)^\pm$$
 mass $m=891.66\pm0.26$ MeV $K^*(892)^0$ mass $m=896.10\pm0.27$ MeV (S = 1.4) $K^*(892)^\pm$ full width $\Gamma=50.8\pm0.9$ MeV $K^*(892)^0$ full width $\Gamma=50.7\pm0.6$ MeV (S = 1.1)

K*(892) DECAY MODES	Fraction (Γ_i/Γ)	Confidence level	<i>p</i> (MeV/ <i>c</i>)
$K\pi$	~ 100	%	291
$K^0\gamma$	(2.30 ± 0.20)	$\times 10^{-3}$	310
$\mathcal{K}^{\pm}\gamma$	(9.9 \pm 0.9):	$\times 10^{-4}$	309
$K\pi\pi$	< 7	$\times 10^{-4}$ 95%	224

$K_1(1270)$

$$I(J^P) = \frac{1}{2}(1^+)$$

Mass $m=1273\pm7$ MeV $^{[m]}$ Full width $\Gamma=90\pm20$ MeV $^{[m]}$

K ₁ (1270) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$K\rho$	(42 ±6) %	76
$K_0^*(1430)\pi$	(28 ± 4) %	_
$K^*(892)\pi$	(16 ± 5)%	301
$K\omega$	$(11.0\pm2.0)~\%$	_
$K f_0(1370)$	(3.0 ± 2.0) %	_

K₁(1400)

$$I(J^P) = \frac{1}{2}(1^+)$$

Mass $m=1402\pm7~{\rm MeV}$ Full width $\Gamma=174\pm13~{\rm MeV}~(S=1.6)$

K ₁ (1400) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$K^*(892)\pi$	(94 ±6)%	401
$K \rho$	(3.0 ± 3.0) %	298
$K f_0(1370)$	(2.0 ± 2.0) %	_
$K\omega$	$(1.0\pm1.0)~\%$	285
$K_0^*(1430)\pi$	not seen	_

K*(1410)

$$I(J^P) = \frac{1}{2}(1^-)$$

Mass $m=1414\pm15$ MeV (S = 1.3) Full width $\Gamma=232\pm21$ MeV (S = 1.1)

K*(1410) DECAY MODES	Fraction (Γ _i /Γ)	Confidence level	<i>p</i> (MeV/ <i>c</i>)
$K^*(892)\pi$	> 40	%	95%	408
$K\pi$	(6.6±	1.3) %		611
$K\rho$	< 7	%	95%	309

K*(1430) [kk]

$$I(J^P) = \frac{1}{2}(0^+)$$

Mass $m=1412\pm 6$ MeV Full width $\Gamma=294\pm 23$ MeV

K*(1430)	DECAY	MODES	

Fraction (Γ_i/Γ)

 $(93\pm10)\%$

p (MeV/c)

621

$$K\pi$$

 $K_2^*(1430)$

$$I(J^P) = \frac{1}{2}(2^+)$$

$$K_2^*(1430)^\pm$$
 mass $m=1425.6\pm1.5$ MeV (S = 1.1) $K_2^*(1430)^0$ mass $m=1432.4\pm1.3$ MeV $K_2^*(1430)^\pm$ full width $\Gamma=98.5\pm2.7$ MeV (S = 1.1) $K_2^*(1430)^0$ full width $\Gamma=109\pm5$ MeV (S = 1.9)

K*(1430) DECAY MODES	Fraction (Γ_i/Γ)	Scale factor/ Confidence level	<i>p</i> (MeV/ <i>c</i>)
$K\pi$	(49.9±1.2) %		622
$K^*(892)\pi$	$(24.7 \pm 1.5) \%$		423
$K^*(892)\pi\pi$	(13.4 ± 2.2) %		375
$K \rho$	(8.7±0.8) %	S=1.2	331
$K \omega$	$(2.9\pm0.8)\%$		319
$\mathcal{K}^+ \gamma$	$(2.4\pm0.5)\times1$	10^{-3} S=1.1	627
$K\eta$	$(1.5^{+3.4}_{-1.0}) \times 1$	10^{-3} S=1.3	492
$K\omega\pi$	< 7.2 × 1	10^{-4} CL=95%	110
$K^0\gamma$	< 9 × 1	10^{-4} CL=90%	631

K*(1680)

$$I(J^P) = \frac{1}{2}(1^-)$$

Created: 10/8/2002 11:05

Mass $m=1717\pm27$ MeV (S =1.4) Full width $\Gamma=322\pm110$ MeV (S =4.2)

K*(1680) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$K\pi$	(38.7±2.5) %	779
$K \rho$	$(31.4^{+4.7}_{-2.1})\%$	571
$K^*(892)\pi$	(29.9+2.2) %	615

K₂(1770) [//]

$$I(J^P) = \frac{1}{2}(2^-)$$

Mass $m=1773\pm 8~{
m MeV}$ Full width $\Gamma=186\pm 14~{
m MeV}$

K₂(1770) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$K\pi\pi$		_
$K_2^*(1430)\pi$	dominant	287
\mathcal{K}^* (892) π	seen	653
$K f_2(1270)$	seen	_
$\mathcal{K}\phi$	seen	441
$K\omega$	seen	608

K₃(1780)

$$I(J^P) = \frac{1}{2}(3^-)$$

Mass $m=1776\pm7$ MeV (S =1.1) Full width $\Gamma=159\pm21$ MeV (S =1.3)

K*(1780) DECAY MODES	Fraction (Γ_i/Γ)	Confidence level	<i>p</i> (MeV/ <i>c</i>)
$K\rho$	$(31 \pm 9)\%$		612
$K^*(892)\pi$	$(20 \pm 5)\%$		651
$K\pi$	$(18.8 \pm \ 1.0) \%$		810
$K\eta$	$(30 \pm 13)\%$		715
$K_2^*(1430)\pi$	< 16 %	95%	284

K₂(1820) [mm]

$$I(J^P) = \frac{1}{2}(2^-)$$

Created: 10/8/2002 11:05

Mass $m=1816\pm13~{
m MeV}$ Full width $\Gamma=276\pm35~{
m MeV}$

K₂(1820) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$K_2^*(1430)\pi$	seen	325
$K^*(892)\pi$	seen	680
$K f_2(1270)$	seen	186
$K \omega$	seen	638

$$I(J^P) = \frac{1}{2}(4^+)$$

Mass $m=2045\pm 9$ MeV (S = 1.1) Full width $\Gamma=198\pm30~\text{MeV}$

K*(2045) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
Κπ	(9.9±1.2) %	958
$K^*(892)\pi\pi$	$(9$ ± 5 $) \%$	800
$K^*(892)\pi\pi\pi$	(7 ±5)%	764
$ ho K \pi$	(5.7±3.2) %	742
$\omega K \pi$	(5.0 ± 3.0) %	736
$\phi K \pi$	$(2.8 \pm 1.4) \%$	591
<i>φ K</i> *(892)	$(1.4\pm0.7)~\%$	363

CHARMED MESONS $(C = \pm 1)$

 $D^+=c\overline{d},\ D^0=c\overline{u},\ \overline{D}{}^0=\overline{c}\,u,\ D^-=\overline{c}\,d,$ similarly for D^* 's

$$I(J^P) = \frac{1}{2}(0^-)$$

Mass
$$m=1869.3\pm0.5$$
 MeV $~({\rm S}=1.1)$ Mean life $\tau=(1051\pm13)\times10^{-15}$ s $c\tau=315~\mu{\rm m}$

c-quark decays

$$\Gamma(c \to \ell^+ \text{ anything})/\Gamma(c \to \text{ anything}) = 0.096 \pm 0.004 \, ^{[nn]}$$

 $\Gamma(c \to D^*(2010)^+ \text{ anything})/\Gamma(c \to \text{ anything}) = 0.255 \pm 0.017$

CP-violation decay-rate asymmetries

$$A_{CP}(K_S^0 \pi^{\pm}) = -0.016 \pm 0.017$$

 $A_{CP}(K_S^0 K^{\pm}) = 0.07 \pm 0.06$
 $A_{CP}(K^+ K^- \pi^{\pm}) = 0.002 \pm 0.011$
 $A_{CP}(K^{\pm} K^{*0}) = -0.02 \pm 0.05$
 $A_{CP}(\phi \pi^{\pm}) = -0.014 \pm 0.033$
 $A_{CP}(\pi^+ \pi^- \pi^{\pm}) = -0.02 \pm 0.04$

$D^+ \rightarrow \overline{K}^*(892)^0 \ell^+ \nu_\ell$ form factors

$$r_{V} = 1.82 \pm 0.09$$
 $r_{2} = 0.78 \pm 0.07$
 $r_{3} = 0.0 \pm 0.4$
 $\Gamma_{L}/\Gamma_{T} = 1.14 \pm 0.08$
 $\Gamma_{+}/\Gamma_{-} = 0.21 \pm 0.04$ (S = 1.3)

 D^- modes are charge conjugates of the modes below.

D+ DECAY MODES	Fraction (Γ_i/Γ)	Scale factor/ Confidence level	<i>p</i> (MeV/ <i>c</i>)
	Inclusive modes		
e^+ anything	(17.2 \pm 1.9) %		_
K^- anything	$(24.2 \pm 2.8)\%$	S=1.4	_
$\overline{K}{}^0$ anything $+$ K^0 anything	$(59 \pm 7)\%$		_
K^+ anything	(5.8 ± 1.4) %		_
η anything	[oo] < 13 %	CL=90%	_
ϕ anything	< 1.8 %	CL=90%	_
ϕe^+ anything	< 1.6 %	CL=90%	_

HTTP://PDG.LBL.GOV

Page 30

Leptonic and semileptonic modes

Fractions of some of the following modes with resonances have already appeared above as submodes of particular charged-particle modes.

Hadronic modes with a \overline{K} or $\overline{K}K\overline{K}$

riadionic modes with a N of NNN						
$\overline{K}{}^0\pi^+$	$(2.77\pm~0.18)~\%$	862				
	$^{\circ}]$ ($9.1~\pm~0.6$) $\%$	845				
$\overline{\mathit{K}}^*$ (892) $^0\pi^+$	$(~1.28\pm~0.13)~\%$	712				
$ imes$ B($\overline{K}^{*0} ightarrow K^- \pi^+$)						
$\overline{K}_{0}^{*}(1430)^{0}\pi^{+}$	(2.3 ± 0.3) %	368				
$ imes$ B(\overline{K}_0^* (1430) $^0 ightarrow K^- \pi^+$)						
$\overline{\mathcal{K}}^*$ (1680) $^{\check{0}}$ π^+	$(3.7 \pm 0.8) \times 10^{-3}$	65				
$ imes$ B(\overline{K}^* (1680) $^0 ightarrow K^- \pi^+$)						
$K^-\pi^+\pi^+$ nonresonant	$(8.6 \pm 0.8)\%$	845				

HTTP://PDG.LBL.GOV

Page 31

$\overline{\mathcal{K}}^0\pi^+\pi^0$	[rr]	(9.7	\pm	3.0) %	S=1.1	845
$\overline{\mathcal{K}}{}^0 ho^+$) %		680
$\overline{K}^*(892)^0 \pi^+$		(6.4	\pm	0.6	$) \times 10^{-3}$		712
\times B $(\overline{K}^{*0} o \overline{K}^0 \pi^0)$		•				•		
$\overline{\mathcal{K}}{}^0\pi^+\pi^0$ nonresonant $$		(1.3	\pm	1.1) %		845
$K^-\pi^+\pi^+\pi^0$	[rr]) %		816
$\overline{K}^*(892)^0 ho^+$ total) %		423
$\times B(\overset{\prime}{\mathcal{K}}^{\prime}{}^{*0} \to K^{-}\pi^{+})$		`				, , ,		
$\overline{K}_{1}(1400)^{0}\pi^{+}$		(2.1	\pm	0.5) %		390
\times B($\overline{K}_1(1400)^0 \rightarrow K^-\pi^+$	π^0)	`				, , ,		
$K^-\rho^+\pi^+$ total	,	(3.1	\pm	1.1) %		616
$K^-\rho^+\pi^+$ 3-body) %		616
$\overline{K}^*(892)^0\pi^+\pi^0$ total) %		687
\times B($\overline{K}^{*0} \rightarrow K^{-}\pi^{+}$)		(, , ,		
$\overline{K}^*(892)^0 \pi^+ \pi^0$ 3-body		(2.8	+	0.9) %		687
$\times B(\overline{K}^{*0} \to K^-\pi^+)$		(0.5	, , •		00.
$K^*(892)^-\pi^+\pi^+$ 3-body		(7	+	3	$) \times 10^{-3}$		688
\times B($K^{*-} \rightarrow K^{-}\pi^{0}$)		() / L=0		000
$K^-\pi^+\pi^+\pi^0$ nonresonant	[ss]	(1.2	+	0.6) %		816
$\overline{K}^0\pi^+\pi^+\pi^-$	[rr]) %		814
$\frac{\pi}{K^0} a_1(1260)^+$	[]	`) %		328
$\times B(a_1(1260)^+ \to \pi^+\pi^+\tau^+\tau^-)$	τ-)	(, , ,		
$\overline{K}_1(1400)^0 \pi^+$. ,	(2.1	+	0.5) %		390
\times B(\overline{K}_1 (1400) ⁰ $\rightarrow \overline{K}^0\pi^+\pi^-$	π-)	(_	0.0	, , ,		333
$K^*(892)^-\pi^+\pi^+$ 3-body	. ,	(1.4	+	0.6) %		688
$\times B(K^{*-} \to \overline{K}^0\pi^-)$		(0.0	, , •		000
$\overline{K}^0 \rho^0 \pi^+$ total		(4 2	+	n 9) %		614
$\frac{\rho}{K^0} \rho^0 \pi^+$ 3-body						$) \times 10^{-3}$		614
$\overline{K}^0 \pi^+ \pi^+ \pi^-$ nonresonant						$) \times 10^{-3}$		814
$K^-\pi^+\pi^+\pi^+\pi^-$	[rr]					$) \times 10^{-3}$		772
	[,,]					$) \times 10^{-3}$		642
$\overline{\mathcal{K}}^*(892)^0\pi^+\pi^+\pi^- imes B(\overline{\mathcal{K}}^{*0} o\mathcal{K}^-\pi^+)$		(5.5	_	۷.5) ^ 10		042
		,		+	11	·3		
$\overline{\mathcal{K}}^*(892)^0 ho^0 \pi^+ imes B(\overline{\mathcal{K}}^{*0} o \ \mathcal{K}^- \pi^+)$		(1.9	_	1.0	$) \times 10^{-3}$		242
		,	2.0			\ 10-3		6.40
$\overline{K}^*(892)^0 \pi^+ \pi^+ \pi^- \text{no-} \rho$		(2.9	土	1.1	$) \times 10^{-3}$		642
$\times B(\overline{K}^{*0} \rightarrow K^{-}\pi^{+})$,				\3		
$K^{-}\rho^{0}\pi^{+}\pi^{+}$		•				$) \times 10^{-3}$	CI 0/	529
$K^-\pi^+\pi^+\pi^+\pi^-$ nonresonant $\overline{K}^0\overline{K}^0K^+$						× 10 ⁻³	CL=90%	772
7. 7. 7.) %		545
$K^+K^-\overline{K}{}^0\pi^+$		(5.4	\pm	1.4	$) \times 10^{-4}$		435

Fractions of some of the following modes with resonances have already appeared above as submodes of particular charged-particle modes.

$\overline{\mathcal{K}}{}^0 \rho^+$	(6.6 ± 2.5) %	680
$\frac{\kappa}{K^0} a_1(1260)^+$	$(8.1 \pm 1.7)\%$	328
$\frac{K}{K^0} a_2(1320)^+$	$< 3 \times 10^{-3} \text{ CL}=90\%$	199
$\frac{K}{K}$ *(892) ⁰ π ⁺	(1.92± 0.19) %	712
$\frac{K}{K}$ *(892) $^{0}\rho^{+}$ total	$(5.52\pm 0.13)\%$ [ss] $(2.1 \pm 1.4)\%$	423
$\frac{(632)}{K}$ * $(892)^0 \rho^+ S$ -wave	[ss] (2.1 ± 1.1) /%	423
$K^*(892)^0 \rho^+ P$ -wave	$< 1 \times 10^{-3} \text{ CL}=90\%$	423
$\overline{\underline{K}}^*(892)^0 \rho^+ D$ -wave	$(10 \pm 7) \times 10^{-3}$	423
$\overline{K}^*(892)^0 \rho^+ D$ -wave longitu-		423
dinal		
$\overline{K}_{1}(1270)^{0}\pi^{+}$	$< 7 \times 10^{-3} \text{ CL}=90\%$	487
$\overline{K}_{1}(1400)^{0}\pi^{+}$	(4.9 ± 1.2) %	390
$\overline{K}_0^* (1430)^0 \pi^+$	(3.7 ± 0.4) %	368
$\overline{K}^*(1680)^0\pi^+$	($1.45\pm~0.31)~\%$	65
$\overline{K}^*(892)^0\pi^+\pi^0$ total	(6.7 ± 1.4) %	687
$\overline{K}^*(892)^0 \pi^+ \pi^0$ 3-body	[ss] (4.2 ± 1.4) %	687
$K^*(892)^-\pi^+\pi^+$ 3-body	($2.1~\pm~0.9$) %	688
$K^- ho^+ \pi^+$ total	(3.1 ± 1.1) %	616
$K^- ho^+\pi^+$ 3-body	(1.1 ± 0.4) %	616
$\overline{K}{}^0 ho^0\pi^+$ total	(4.2 ± 0.9) % CL=90%	614
$\overline{K}{}^0 ho^0 \pi^+$ 3-body	$(5 \pm 5) \times 10^{-3}$	614
$\overline{K}^*(892)^0 \pi^+ \pi^+ \pi^-$	$(8.2 \pm 3.4) \times 10^{-3}$ S=1.7	642
$\overline{K}^*(892)^0 \rho^0 \pi^+$	$(2.9 \ ^{+} \ ^{1.7} \) \times 10^{-3}$ S=1.8	242
\overline{K}^* (892) $^0\pi^+\pi^+\pi^-$ no- $ ho$	$(4.3 \pm 1.7) \times 10^{-3}$	642
$\kappa^- \rho^0 \pi^+ \pi^+$	$(3.1 \pm 1.0) \times 10^{-3}$	529
,		
$\pi^+\pi^0$	Pionic modes	005
$\pi^+\pi^ \pi^+\pi^+\pi^-$	$(2.5 \pm 0.7) \times 10^{-3}$	925
$\sigma\pi^+$	$(3.1 \pm 0.4) \times 10^{-3}$ S=1.5	908
$\rho^0\pi^+$	$(2.1 \pm 0.5) \times 10^{-3}$	760
$f_0(980)\pi^+$	$(1.04\pm 0.18) \times 10^{-3}$	769
$\times B(f_0 \rightarrow \pi^+\pi^-)$	[tt] (1.9 \pm 0.5) \times 10 ⁻⁴	669
$f_2(1270)\pi^+$	$(6.0 \pm 1.1) \times 10^{-4}$	485
$\times B(f_2 \rightarrow \pi^+\pi^-)$	(0.0 ± 1.1) × 10	703
$\pi^+\pi^+\pi^-$ nonresonant	$(2.4 \pm 2.1) \times 10^{-4}$	908
$\pi^+\pi^+\pi^-\pi^0$	——————————————————————————————————————	882
$\eta \pi^+ \times B(\eta \to \pi^+ \pi^- \pi^0)$	$(6.9 \pm 1.4) \times 10^{-4}$	848
$\omega \pi^+ \times B(\omega \to \pi^+ \pi^- \pi^0)$	$< 6 \times 10^{-3} \text{ CL} = 90\%$	764
$\pi^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-}$	$(2.1 \pm 0.4) \times 10^{-3}$	845

Fractions of some of the following modes with resonances have already appeared above as submodes of particular charged-particle modes.

$\eta\pi^+$	(3.0 ± 0	$0.6) \times 10^{-3}$		848
$ ho^0\pi^+$	($1.04\pm$ ($0.18) \times 10^{-3}$		769
$\omega \pi^+$	< 7	$\times 10^{-3}$	CL=90%	764
$\eta \rho^+$	< 7	$\times 10^{-3}$	CL=90%	658
η^{\prime} (958) π^{+}	(5.0 \pm 1	$1.0) \times 10^{-3}$		680
η^{\prime} (958) $ ho^{+}$	< 5	$\times 10^{-3}$	CL=90%	355
$f_2(1270)\pi^+$	($1.06\pm$ ($0.20) \times 10^{-3}$		485

Hadronic modes with a $K\overline{K}$ pair

Fractions of the following modes with resonances have already appeared above as submodes of particular charged-particle modes.

$\phi\pi^+$	(6.1 ± 0.6	$) \times 10^{-3}$		647
$\phi \pi^+ \pi^0$	(2.3 ± 1.0) %		619
ϕho^+	< 1.4	%	CL=90%	268
$\phi \pi^+ \pi^+ \pi^-$	< 2	$\times 10^{-3}$	CL=90%	565
$K^{+}\overline{K}^{*}(892)^{0}$	(4.2 ± 0.5	$) \times 10^{-3}$		610
$K^*(892)^+\overline{K}^0$	(3.1 ± 1.4) %		611
$K^*(892)^+\overline{K}^*(892)^0$	(2.6 ± 1.1) %		273

Doubly Cabibbo suppressed (DC) modes, $\Delta C = 1$ weak neutral current (C1) modes, or Lepton Family number (LF) or Lepton number (L) violating modes

	(,,	(_, ::::		
$K^+\pi^+\pi^-$	DC	(6.8	$\pm 1.5) \times 10^{-4}$		845
$\mathcal{K}^+ ho^0$	DC	(2.5	$\pm 1.2) \times 10^{-4}$		681
$K^*(892)^0\pi^+$	DC	(3.6	$\pm 1.6) \times 10^{-4}$		712
$K^+\pi^+\pi^-$ nonresonant	DC	(2.5	$\pm 1.2) \times 10^{-4}$		845
$K^+K^+K^-$	DC	< 1.4	$\times10^{-4}$	CL=90%	550
ϕK^+	DC	< 1.3	$\times 10^{-4}$	CL=90%	527
$\pi^{+} e^{+} e^{-}$	C1	< 5.2	$\times10^{-5}$	CL=90%	929
$\pi^{+} \mu^{+} \mu^{-}$	C1	< 1.5	$\times10^{-5}$	CL=90%	917
$ ho^+\mu^+\mu^-$	C1	< 5.6	$\times 10^{-4}$	CL=90%	759
$K^{+} e^{+} e^{-}$		[uu] < 2.0	$\times 10^{-4}$	CL=90%	869
$K^+\mu^+\mu^-$		[uu] < 4.4	$\times 10^{-5}$	CL=90%	856
$\pi^+ e^{\pm} \mu^{\mp}$	LF	[ff] < 3.4	$\times 10^{-5}$	CL=90%	926
$\mathit{K}^{+}e^{\pm}\mu^{\mp}$	LF	[ff] < 6.8	$\times 10^{-5}$	CL=90%	866
$\pi^{-} e^{+} e^{+}$	L	< 9.6	$\times10^{-5}$	CL=90%	929
$\pi^{-} \mu^{+} \mu^{+}$	L	< 1.7	$\times10^{-5}$	CL=90%	917
$\pi^- e^+ \mu^+$	L	< 5.0	$\times10^{-5}$	CL=90%	926
$ ho^-\mu^+\mu^+$	L	< 5.6	$\times 10^{-4}$	CL=90%	759
$K^{-}e^{+}e^{+}$	L	< 1.2	$\times10^{-4}$	CL=90%	869
$K^-\mu^+\mu^+$	L	< 1.2	$\times10^{-4}$	CL=90%	856
$K^-e^+\mu^+$	L	< 1.3	$\times10^{-4}$	CL=90%	866
$K^*(892)^-\mu^+\mu^+$	L	< 8.5	$\times10^{-4}$	CL=90%	703

 D^0

$$I(J^P) = \frac{1}{2}(0^-)$$

Mass
$$m=1864.5\pm0.5$$
 MeV (S = 1.1) $m_{D^\pm}-m_{D^0}=4.78\pm0.10$ MeV (S = 1.1) Mean life $\tau=(411.7\pm2.7)\times10^{-15}$ s $c\tau=123.4~\mu\mathrm{m}$ $\left|m_{D_1^0}-m_{D_2^0}\right|<7\times10^{10}~\hbar~\mathrm{s}^{-1},~\mathrm{CL}=95\%~\mathrm{[vv]}$ $\left(\Gamma_{D_1^0}-\Gamma_{D_2^0}\right)/\Gamma=2y=-0.003\pm0.022~\mathrm{(S=1.4)}$ $\Gamma(K^+\ell^-\overline{\nu}_\ell~\mathrm{(via}~\overline{D}^0))/\Gamma(K^-\ell^+\nu_\ell)<0.005,~\mathrm{CL}=90\%$ $\Gamma(K^+\pi^-(\mathrm{via}~\overline{D}^0))/\Gamma(K^-\pi^+)<4.1\times10^{-4},~\mathrm{CL}=95\%$

CP-violation decay-rate asymmetries

$$\begin{split} &A_{CP}(K^+K^-) = 0.005 \pm 0.016 \\ &A_{CP}(K_S^0K_S^0) = -0.23 \pm 0.19 \\ &A_{CP}(\pi^+\pi^-) = 0.021 \pm 0.026 \\ &A_{CP}(\pi^0\pi^0) = 0.00 \pm 0.05 \\ &A_{CP}(K_S^0\phi) = -0.03 \pm 0.09 \\ &A_{CP}(K_S^0\phi) = 0.001 \pm 0.013 \\ &A_{CP}(K^\pm\pi^\mp) = 0.02 \pm 0.20 \\ &A_{CP}(K^\mp\pi^\pm\pi^0) = -0.03 \pm 0.09 \\ &A_{CP}(K^\pm\pi^\mp\pi^0) = 0.09_{-0.22}^{+0.25} \end{split}$$

 $\overline{{\it D}}{}^0$ modes are charge conjugates of the modes below.

		Scale factor/	р				
D ⁰ DECAY MODES	Fraction (Γ_i/Γ)	Confidence level	(MeV/c)				
Inclusive modes							
e^+ anything	[ww] $(6.87 \pm 0.28)\%$		_				
μ^+ anything	(6.5 ±0.8)%		_				
K^- anything	$(53 \pm 4)\%$	S=1.3	_				
$\overline{\mathit{K}}^{0}$ anything $+~\mathit{K}^{0}$ anything	$(42 \pm 5)\%$		_				
K^+ anything	$(3.4 \begin{array}{c} +0.6 \\ -0.4 \end{array})\%$		_				
η anything	[oo] < 13 %	CL=90%	_				
ϕ anything	(1.7 \pm 0.8)%		_				
S	Semileptonic modes						
$\mathit{K}^-\ell^+ u_\ell$	[pp] (3.43±0.15) %	S=1.2	867				
$K^-e^+\nu_e$	$(3.58\pm0.18)\%$	S=1.1	867				
$\mathcal{K}^-\mu^+ u_\mu$	$(3.19\pm0.17)\%$		863				
${\it K}^-\pi^0{ m e}^+ u_{ m e}$	$(\begin{array}{cc} 1.1 & +0.8 \\ -0.6 \end{array})\%$	S=1.6	861				
$\overline{\it K}{}^0\pi^-e^+ u_e$	(1.8 \pm 0.8) %	S=1.6	860				
$\overline{K}^*(892)^- e^+ \nu_e$	$(1.43\pm0.23)\%$		719				
\times B($K^{*-} \rightarrow \overline{K}^0 \pi^-$)		2					
$K^-\underline{\pi}^+\pi^-\mu^+ u_\mu$		10^{-3} CL=90%	821				
$(\overline{K}^*(892)\pi)^-\mu^+\nu_\mu$	< 1.4 × 1		693				
$\pi^- e^+ u_e$	($3.6~\pm0.6$) $ imes$ 1	.0-3	927				

A fraction of the following resonance mode has already appeared above as a submode of a charged-particle mode.

$$K^*(892)^- e^+ \nu_e$$
 (2.14±0.35)% 719

Hadronic modes with a \overline{K} or $\overline{K}K\overline{K}$ $K^-\pi^+$ $(3.80\pm0.09)\%$ 861 $\overline{K}^0\pi^0$ $(2.28\pm0.22)\%$ 860 $\overline{K}^0\pi^+\pi^-$ [rr] $(5.92\pm0.35)\%$ S = 1.1842 $\overline{K}^0 \rho^0$ $(1.47\pm0.29)\%$ 676 $\overline{K}^{0}f_{0}(980)$ $(3.2 \pm 0.9) \times 10^{-3}$ 549 \times B($f_0 \rightarrow \pi^+\pi^-$) $\overline{K}^0 f_2(1270)$ $(2.5 \pm 1.0) \times 10^{-3}$ 263 $\times B(f_2 \rightarrow \pi^+\pi^-)$ $\overline{K}^0 f_0(1370)$ (4.7 ± 1.4) $\times\,10^{-3}$ $\times B(f_0 \to \pi^+ \pi^-)$ $K^*(892)^- \pi^+$ $(4.0 \pm 0.4)\%$ 711 \times B($K^{*-} \rightarrow \overline{K}^0 \pi^-$) $K_0^*(1430)^-\pi^+$ $(7.3 \pm 1.6) \times 10^{-3}$ 364 \times B($K_0^*(1430)^- \rightarrow \overline{K}^0\pi^-$) $K^-\pi^+\pi^0$ [rr] (13.1 \pm 0.9)% S = 1.3844 $K^-\rho^+$ $(10.2 \pm 0.9)\%$ 678 $K^- \rho (1700)^+$ $(7.5 \pm 1.7) \times 10^{-3}$ $\times \ \mathsf{B}(\rho(1700)^{+} \to \ \pi^{+}\pi^{0})$ $K^*(892)^-\pi^+$ $(2.0 \pm 0.2)\%$ 711 $\stackrel{\times}{K}^{*}(892)^{0}\pi^{0}$ $(1.87\pm0.27)\%$ 709 \times B($\overline{K}^{*0} \rightarrow K^-\pi^+$) $K_0^*(1430)^-\pi^+$ $(3.6 \pm 0.8) \times 10^{-3}$ 364 $\times B(K_0^*(1430)^- \to K^-\pi^0)$ $(5.3 \begin{array}{c} +4.2 \\ -1.4 \end{array}) \times 10^{-3}$ $\overline{K}_{0}^{*}(1430)^{0}\pi^{0}$ 365 \times B(\overline{K}_0^* (1430) $^0 \rightarrow K^-\pi^+$) $(1.7 \pm 0.6) \times 10^{-3}$ $K^*(1680)^-\pi^+$ 115 $\times B(K^*(1680)^- \to K^-\pi^0)$ $K^-\pi^+\pi^0$ nonresonant $(1.05^{+0.51}_{-0.19})\%$ 844 $\overline{K}^0\pi^0\pi^0$ 843 $\overline{K}^*(892)^0 \pi^0$ $(9.3 \pm 1.3) \times 10^{-3}$ 709 $\times B(\overline{K}^{*0} \rightarrow \overline{K}^{0}\pi^{0})$ $\overline{K}{}^0\pi^0\pi^0$ nonresonant $(8.4 \pm 2.2) \times 10^{-3}$ 843 $K^-\pi^+\pi^+\pi^-$ [rr] $(7.46\pm0.31)\%$ 812 $K^-\pi^+\rho^0$ total $(6.2 \pm 0.4)\%$ 612 $K^-\pi^+\rho^0$ 3-body $(4.7 \pm 2.1) \times 10^{-3}$ 612 $\overline{K}^*(892)^0 \rho^0$ $(9.7 \pm 2.1) \times 10^{-3}$ 418 $\times B(\overline{K}^{*0} \rightarrow K^{-}\pi^{+})$ $K^{-}a_{1}(1260)^{+}$ $(3.6 \pm 0.6)\%$ 327 \times B(a₁(1260)⁺ \to $\pi^{+}\pi^{+}\pi^{-}$)

$\overline{K}^*(892)^0 \pi^+ \pi^- \text{ total}$	($1.5~\pm0.4$) %	683
$ \begin{array}{c} \times B(\overline{K}^{*0} \to K^{-}\pi^{+}) \\ \overline{K}^{*}(892)^{0}\pi^{+}\pi^{-}3\text{-body} \end{array} $	(9.5 ± 2.1) $\times 10^{-3}$	683
$ \begin{array}{ccc} \times & B(\overline{K}^{*0} \to & K^{-}\pi^{+}) \\ K_{1}(1270)^{-}\pi^{+} & [ss] \end{array} $	(3.7 ± 1.0) $\times 10^{-3}$	483
\times B($K_1(1270)^- \rightarrow K^-\pi^+\pi^-$) $K^-\pi^+\pi^+\pi^-$ nonresonant	(1.74±0.25) %	812
$\overline{K}^0 \pi^+ \pi^- \pi^0$ [rr]	· ·	812
$\overline{K}^0 \eta \times B(\eta \to \pi^+ \pi^- \pi^0)$	$(1.7 \pm 0.3) \times 10^{-3}$	772
$\frac{K}{K^0}\omega \times B(\omega \to \pi^+\pi^-\pi^0)$	$(2.2 \pm 0.4)\%$	670
$K^*(892)^- \rho^+$	$(4.3 \pm 1.7)\%$	422
$\times B(K^{*-} \to \overline{K}{}^{0}\pi^{-})$	(113 ± 111) //	
$\overline{K}^*(892)^0 \rho^0$	(4.8 ± 1.1) $\times 10^{-3}$	418
$\times B(\overline{K}^{*0} \to \overline{K}^0\pi^0)$	(= 1.12) // 23	.20
$K_1(1270)^-\pi^+$ [ss]	$(5.3 \pm 1.5) \times 10^{-3}$	483
\times B($K_1(1270)^- \rightarrow \overline{K}^0 \pi^- \pi^0$)	(:: = ::)	
$\overline{K}^*(892)^0 \pi^+ \pi^- 3$ -body	$(4.7 \pm 1.0) \times 10^{-3}$	683
$\times \ B(\overline{K}^{*0} \to \overline{K}^0\pi^0)$		
$\overline{K}{}^0\pi^+\pi^-\pi^0$ nonresonant	(2.3 ±2.3)%	812
$K^-\pi^+\pi^+\pi^-\pi^0$	(4.0 ±0.4) %	771
$\overline{K}^*(892)^0 \pi^+ \pi^- \pi^0$	(1.2 ±0.6) %	641
$\times B(\overline{K}^{*0} \rightarrow K^{-}\pi^{+})$		
$\overline{K}^*(892)^0 \eta$	$(2.8 \pm 0.6) \times 10^{-3}$	580
$\times B(\overleftarrow{K}^{*0} \to K^-\pi^+)$,	
$ imes$ B $(\eta o \pi^+\pi^-\pi^0)$		
$K^-\pi^+\omega \times B(\omega \to \pi^+\pi^-\pi^0)$	$(2.7 \pm 0.5)\%$	605
$\overline{K}^*(892)^0\omega$	$(6.5 \pm 2.4) \times 10^{-3}$	406
\times B($\overline{K}^{*0} \rightarrow K^-\pi^+$)	,	
\times B($\omega \rightarrow \pi^{+}\pi^{-}\pi^{0}$)		
$\overline{K}{}^0\pi^+\pi^+\pi^-\pi^-$	$(6.3 \pm 1.8) \times 10^{-3}$	768
$\overline{K}^0K^+K^-$	(1.02±0.10) %	544
$\overline{K}^0 \phi \times B(\phi \to K^+ K^-)$	$(4.7 \pm 0.6) \times 10^{-3}$	520
$\overline{K}^0K^+K^-$ non- ϕ	$(5.5 \pm 0.9) \times 10^{-3}$	544
$K_S^0 K_S^0 K_S^0$	$(9.1 \pm 1.6) \times 10^{-4}$	538
$K^+K^-K^-\pi^+$	$(2.4 \pm 0.7) \times 10^{-4}$	434
	•	

Fractions of many of the following modes with resonances have already appeared above as submodes of particular charged-particle modes. (Modes for which there are only upper limits and $\overline{K}^*(892)\,\rho$ submodes only appear below.)

$\overline{K}{}^0\eta$	$(7.6 \pm 1.1) \times 10^{-3}$		772
$\overline{K}^0 \rho^0$	(1.47±0.29) %		676
$K^{-'}\rho^+$	$(10.2 \pm 0.8)\%$	S=1.2	678
$\overline{K}^0\omega$	(2.2 ±0.4) %		670
$\overline{K}{}^0\eta'(958)$	(1.87±0.28) %		565
$\overline{K}^0\phi$	$(9.4 \pm 1.1) \times 10^{-3}$		520
$K^{-}a_{1}(1260)^{+}$	$(7.2 \pm 1.1)\%$		327
$\overline{K}^0 a_1(1260)^0$	< 1.9 %	CL=90%	322
$\overline{K}^0 f_2(1270)$	$(4.5 \pm 1.7) \times 10^{-3}$		263
$K^- a_2(1320)^+$	$< 2 \times 10^{-3}$	CL=90%	197
$K^*(892)^-\pi^+$	($6.0~\pm0.5$)%	S=1.2	711
$\overline{K}^*(892)^0 \pi^0$	(2.8 ± 0.4) %	S=1.1	709
$\overline{K}^*(892)^0\pi^+\pi^-$ total	($2.2~\pm0.5$) %		683
$\overline{\mathit{K}}^*$ (892) $^0\pi^+\pi^-$ 3-body	$(1.42\pm0.31)\%$		683
$K^-\pi^+ ho^0$ total	(6.2 ± 0.4) %		612
$K^-\pi^+ ho^0$ 3-body	$(4.7 \pm 2.1) \times 10^{-3}$		612
$\overline{K}^*(892)^0 \rho^0$	$(1.45\pm0.32)\%$		418
$\overline{K}^*(892)^0_{-}\rho^0_{-}$ transverse	($1.5~\pm0.5$)%		418
$\overline{K}^*(892)^0 \rho^0 S$ -wave	(2.8 ± 0.6)%		418
$\overline{K}^*(892)^0 \rho^0 S$ -wave long.	$<$ 3 \times 10 ⁻³	CL=90%	418
$\overline{K}^*(892)^0_{-} \rho^0_{-}$ P-wave	$<$ 3 \times 10 ⁻³	CL=90%	418
$\overline{\mathit{K}}^*(892)^0 ho^0\mathit{D}$ -wave	($1.9~\pm0.6$)%		418
$K^*(892)^- \rho^+$	(6.5 ± 2.6)%		422
$K^*(892)^- ho^+$ longitudinal	(3.1 ± 1.3) %		422
$K^*(892)^- ho^+$ transverse	(3.4 ± 2.0) %		422
$K^*(892)^- ho^+ P$ -wave	< 1.5 %	CL=90%	422
$K_1(1270)^-\pi^+$	[ss] $(1.13\pm0.31)\%$		483
$K_1(1400)^-\pi^+$	< 1.2 %	CL=90%	386
$\overline{K}_{1}(1400)^{0}\pi^{0}$	< 3.7 %	CL=90%	387
$K_0^*(1430)^-\pi^+$	$(1.18\pm0.25)\%$		364
$\overline{K}_{0}^{*}(1430)^{0}\pi^{0}$	($8.6 \ ^{+6.8}_{-2.3}$) $\times 10^{-3}$		_
$K_2^*(1430)^-\pi^+$	$< 9 \times 10^{-3}$	CL=90%	367
$\overline{K}_{2}^{*}(1430)^{0}\pi^{0}$	$< 3.4 \times 10^{-3}$	CL=90%	363
$K^*(1680)^-\pi^+$	($1.3~\pm0.5$) %		_
$\overline{K}^*(892)^0\pi^+\pi^-\pi^0$	$(1.8 \pm 0.9)\%$		641
$K^*(892)^0 \eta$	$(1.8 \pm 0.4)\%$		580
$K^-\pi^+\omega$	(3.0 ±0.6) %		605

$\overline{K}^*(892)^0 \omega$	(1.1 ±0.4) %		406
$K^-\pi^+\eta'(958)$	$(6.9 \pm 1.8) \times 10^{-3}$	CI 000/	479
$\overline{K}^*(892)^0 \eta'(958) \ {\cal K}^- \pi^+ \phi$	$< 1.0 \times 10^{-3}$ $(3.3 \pm 1.7) \times 10^{-4}$	CL=90%	99
$\kappa + \kappa + \phi$	$(5.5 \pm 1.7) \times 10^{-5}$		_
	Pionic modes		
$\pi^{+}\pi^{-}$	$(1.43\pm0.07)\times10^{-3}$		922
$\pi^{0}\pi^{0}$	$(8.4 \pm 2.2) \times 10^{-4}$		922
$\pi^{+}\pi^{-}\pi^{0}$	(1.1 ± 0.4) %		907
$\pi^{+}\pi^{+}\pi^{-}\pi^{-}$	$(7.3 \pm 0.5) \times 10^{-3}$		879
	modes with a $K\overline{K}$ pair		
K^+K^-	$(4.12\pm0.14)\times10^{-3}$		791
$K_0^0 \overline{K}^0$	$(7.1 \pm 1.9) \times 10^{-4}$	S=1.2	788
$K^{0}K^{-}\pi^{+}$	$(6.9 \pm 1.0) \times 10^{-3}$	S=1.1	739
$\overline{K}^*(892)^0 K^0$	$< 1.1 \times 10^{-3}$	CL=90%	605
\times B($\overline{K}^{*0} \rightarrow K^-\pi^+$)			
$K^*(892)^+K^-$	$(2.5 \pm 0.5) \times 10^{-3}$		610
$\times B(K^{*+} \rightarrow K^0\pi^+)$			
$K^0K^-\pi^+$ nonresonant $K^0K^+\pi^-$	$(2.3 \pm 2.3) \times 10^{-3}$		739
$K^*(892)^0 \overline{K}^0$	$(5.2 \pm 1.0) \times 10^{-3}$	CI 000/	739
\times B($K^{*0} \rightarrow K^+\pi^-$)	$< 6 \times 10^{-4}$	CL=90%	605
$K^*(892)^-K^+$	$(1.3 \pm 0.7) \times 10^{-3}$		610
\times B($K^{*-} \rightarrow \overline{K}^0 \pi^-$)	$(1.3 \pm 0.7) \times 10^{-3}$		610
$\overline{K}^0K^+\pi^-$ nonresonant	$(3.8 \begin{array}{c} +2.3 \\ -1.9 \end{array}) \times 10^{-3}$		739
$K^+K^-\pi^0$			
$K_{S}^{0}K_{S}^{0}\pi^{0}$	$(1.24\pm0.35)\times10^{-3}$ $<5.9\times10^{-4}$		742
$K^+K^-\pi^+\pi^-$			739
$\phi \pi^+ \pi^- \times B(\phi \to K^+ K^-)$	[xx] $(2.49\pm0.23)\times10^{-3}$		676
$\phi \rho^0 \times B(\phi \to K^+K^-)$	$(5.3 \pm 1.4) \times 10^{-4}$		614
$K^+K^-\rho^0$ 3-body	$(2.9 \pm 1.5) \times 10^{-4}$ $(9.0 \pm 2.3) \times 10^{-4}$		260 309
$K^*(892)^0 K^- \pi^+ + \text{c.c.}$	[yy] < 5		528
\times B($K^{*0} \rightarrow K^{+}\pi^{-}$)	[99] < 3 \tau 10		320
$K^*(892)^0 \overline{K}^*(892)^0$	$(6 \pm 2) \times 10^{-4}$		257
\times B ² ($K^{*0} \rightarrow K^{+}\pi^{-}$)	()3		
$K^+K^-\pi^+\pi^-$ nonresonant	$< 8 \times 10^{-4}$	CL=90%	676
$K^0\overline{K}{}^0\pi^+\pi^-$	$(7.5 \pm 2.9) \times 10^{-3}$		673
$K^+K^-\pi^+\pi^-\pi^0$	$(3.1 \pm 2.0) \times 10^{-3}$		600

Fractions of most of the following modes with resonances have already appeared above as submodes of particular charged-particle modes.

$\overline{K}^*(892)^0 K^0$	< 1.7	$\times 10^{-3}$	CL=90%	605
$K^*(892)^+ K^-$	(3.8 ± 0.8	$) \times 10^{-3}$		610
$K^*(892)^0 \overline{K}{}^0$	< 9	$\times 10^{-4}$	CL=90%	605
$K^*(892)^-K^+$	(2.0 ± 1.1	$1) \times 10^{-3}$		610
$\phi\pi^{0}$	< 1.4	$\times 10^{-3}$	CL=90%	644
$\phi \eta$	< 2.8	$\times 10^{-3}$	CL=90%	489
$\phi\omega$	< 2.1	$\times 10^{-3}$	CL=90%	239
$\phi \pi^+ \pi^-$	$(1.07\pm0.2$	$(28) \times 10^{-3}$		614
ϕho^0	(5.7 ± 3.0	$) \times 10^{-4}$		260
$\phi\pi^+\pi^-$ 3-body	(7 ± 5)			614
$K^*(892)^0 K^- \pi^+ + \text{c.c.}$	[yy] < 7	$\times 10^{-4}$	CL=90%	528
$K^*(892)^0 \overline{K}^*(892)^0$	(1.4 ± 0.5	$5) \times 10^{-3}$		257

Radiative modes

$\rho^{0}\gamma$	< 2.4	$\times 10^{-4}$	CL=90%	773
$\omega \gamma$	< 2.4	$\times 10^{-4}$	CL=90%	768
$\phi\gamma$	< 1.9	$\times 10^{-4}$	CL=90%	654
$K^*(892)^0 \gamma$	< 7.6	$\times 10^{-4}$	CL=90%	717

Doubly Cabibbo suppressed (DC) modes, $\Delta C = 2$ forbidden via mixing (C2M) modes, $\Delta C = 1$ weak neutral current (C1) modes, Lepton Family number (LF) violating modes, or Lepton number (L) violating modes

$\mathit{K}^{+}\ell^{-}\overline{ u}_{\ell}$ (via $\overline{D}{}^{0}$)	C2M	<	1.7	$\times 10^{-4}$	CL=90%	_
$K^+\pi^-$	DC	(1.48 ± 0.21	$) \times 10^{-4}$		861
$K^+\pi^-$ (via $\overline{D}{}^0)$	C2M	<	1.6	$\times 10^{-5}$	CL=95%	861
$K^+\pi^-\pi^0$		(5.6 ±1.7	$) \times 10^{-4}$		844
$K^+\pi^-\pi^+\pi^-$	DC	(3.1 ± 1.0	$) \times 10^{-4}$		812
$K^+\pi^-\pi^+\pi^-$ (via $\overline{D}{}^0$)	C2M	<	4	$\times 10^{-4}$	CL=90%	812
$K^+\pi^-$ or		<	1.0	$\times 10^{-3}$	CL=90%	_
$K^+\pi^-\pi^+\pi^-$ (via $\overline{D}{}^0$)						
μ^- anything (via $\overline{D}{}^0$)	C2M	<	4	$\times 10^{-4}$	CL=90%	_
e^+e^-	C1	<	6.2	$\times 10^{-6}$	CL=90%	932
$\mu_{\perp}^{+}\mu^{-}$	C1	<	4.1	$\times 10^{-6}$	CL=90%	926
$\pi^{0} e^{+} e^{-}$	C1	<	4.5	$\times 10^{-5}$	CL=90%	927
$\pi^0 \mu^+ \mu^-$	C1	<	1.8	$\times 10^{-4}$	CL=90%	915
$\eta e^+ e^-$	C1	<	1.1	$\times 10^{-4}$	CL=90%	852
$\eta \mu^+ \mu^-$	C1	<	5.3	$\times 10^{-4}$	CL=90%	838
$\pi^{+}\pi^{-}e^{+}e^{-}$	C1	<	3.73	$\times 10^{-4}$	CL=90%	922
$ ho^0e^+e^-$	C1	<	1.0	$\times 10^{-4}$	CL=90%	773
$\pi^{+}\pi^{-}\mu^{+}\mu^{-}$	C1	<	3.0	$\times 10^{-5}$	CL=90%	894
$ ho^0 \mu^+ \mu^-$	C1	<	2.2	$\times 10^{-5}$	CL=90%	756

$\omega \mu^{+} \mu^{-}$ C1 < 8.3 × 10 ⁻⁴ CL=90% $K^{-} K^{+} e^{+} e^{-}$ C1 < 3.15 × 10 ⁻⁴ CL=90% $\phi e^{+} e^{-}$ C1 < 5.2 × 10 ⁻⁵ CL=90%	751 790 654 709 631
	654 709
$\phi_0 + \phi_0^-$	709
ψ e e $C1 < 5.2 \times 10^{-5} \text{ CL} = 90\%$	
$K^-K^+\mu^+\mu^-$ C1 < 3.3 × 10 ⁻⁵ CL=90%	631
$\phi \mu^{+} \mu^{-}$ C1 < 3.1 × 10 ⁻⁵ CL=90%	031
$\overline{K}{}^{0} e^{+} e^{-}$ [uu] < 1.1 × 10 ⁻⁴ CL=90%	866
$\overline{K}{}^{0}\mu^{+}\mu^{-}$ [uu] < 2.6 × 10 ⁻⁴ CL=90%	852
$K^-\pi^+e^+e^-$ C1 < 3.85 $\times 10^{-4}$ CL=90%	861
$\overline{K}^*(892)^0 e^+ e^-$ [uu] < 4.7 × 10 ⁻⁵ CL=90%	717
$K^-\pi^+\mu^+\mu^-$ C1 < 3.59 × 10 ⁻⁴ CL=90%	829
$\overline{K}^*(892)^0 \mu^+ \mu^-$ [uu] < 2.4 × 10 ⁻⁵ CL=90%	698
$\pi^{+}\pi^{-}\pi^{0}\mu^{+}\mu^{-}$ C1 < 8.1 × 10 ⁻⁴ CL=90%	863
$\mu^{\pm} e^{\mp}$ LF [ff] < 8.1 \times 10 ⁻⁶ CL=90%	929
$\pi^0 e^{\pm} \mu^{\mp}$ LF [ff] < 8.6 $\times 10^{-5}$ CL=90%	924
$\eta e^{\pm} \mu^{\mp}$ LF [ff] < 1.0 $\times 10^{-4}$ CL=90%	848
$\pi^{+} \pi^{-} e^{\pm} \mu^{\mp}$ LF [ff] < 1.5 $\times 10^{-5}$ CL=90%	911
$ ho^0\mathrm{e}^\pm\mu^\mp$ LF [ff] $<$ 4.9 $ imes$ 10 ⁻⁵ CL=90%	769
$\omega e^{\pm} \mu^{\mp}$ LF [ff] < 1.2 $\times 10^{-4}$ CL=90%	764
$K^- K^+ e^{\pm} \mu^{\mp}$ LF [ff] < 1.8 $\times 10^{-4}$ CL=90%	754
$\phi e^{\pm} \mu^{\mp}$	648
$\overline{K}^0 e^{\pm} \mu^{\mp}$ LF [ff] < 1.0 $\times 10^{-4}$ CL=90%	862
$K^{-}\pi^{+}e^{\pm}\mu^{\mp}$ LF [ff] < 5.53 × 10 ⁻⁴ CL=90%	848
$\overline{K}^*(892)^0 e^{\pm} \mu^{\mp}$ LF [ff] < 8.3 × 10 ⁻⁵ CL=90%	712
$\pi^{-}\pi^{-}e^{+}e^{+} + c.c.$ L < 1.12 $\times 10^{-4}$ CL=90%	922
$\pi^- \pi^- \mu^+ \mu^+ + \text{c.c.}$ L < 2.9 × 10 ⁻⁵ CL=90%	894
$K^-\pi^-e^+e^+ + \text{c.c.}$ L < 2.06 $\times 10^{-4}$ CL=90%	861
$K^-\pi^-\mu^+\mu^+ + \text{c.c.}$ $L < 3.9 \times 10^{-4} \text{ CL}=90\%$	829
$K^-K^-e^+e^+ + c.c.$ $L < 1.52 \times 10^{-4} CL=90\%$	790
$K^-K^-\mu^+\mu^+ + \text{c.c.}$ L < 9.4 × 10 ⁻⁵ CL=90%	709
$\pi^- \pi^- e^+ \mu^+ + \text{c.c.}$ L < 7.9 × 10 ⁻⁵ CL=90%	911
$K^-\pi^-e^+\mu^+ + \text{c.c.}$ L < 2.18 $\times 10^{-4}$ CL=90%	848
$K^-K^-e^+\mu^+ + \text{c.c.}$ $L < 5.7 \times 10^{-5} \text{ CL}=90\%$	754

$$D^*(2007)^0$$

$$I(J^P) = \frac{1}{2}(1^-)$$

I, J, P need confirmation.

Mass
$$m=2006.7\pm0.5$$
 MeV (S $=1.1$) $m_{D^{*0}}-m_{D^0}=142.12\pm0.07$ MeV Full width Γ $<$ 2.1 MeV, CL $=90\%$

 $\overline{D}^*(2007)^0$ modes are charge conjugates of modes below.

D*(2007) ⁰ DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$D^0\pi^0$	(61.9±2.9) %	43
$D^0\gamma$	$(38.1\pm2.9)\%$	137

$D^*(2010)^{\pm}$

$$I(J^P) = \frac{1}{2}(1^-)$$

I, J, P need confirmation.

Mass $m=2010.0\pm0.5$ MeV (S = 1.1)

$$m_{D^*(2010)^+} - m_{D^+} = 140.64 \pm 0.10 \text{ MeV} \quad (S = 1.1)$$

$$m_{D^*(2010)^+} - m_{D^0} = 145.421 \pm 0.010 \text{ MeV} \quad (S = 1.1)$$

Full width $\Gamma = 96 \pm 22 \text{ keV}$

 $D^*(2010)^-$ modes are charge conjugates of the modes below.

D*(2010) [±] DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)	
$D^0\pi^+$	(67.7±0.5) %	39	
$D^+\pi^0$	(30.7±0.5) %	38	
$D^+\gamma$	$(1.6\pm0.4)\%$	136	

$D_1(2420)^0$

$$I(J^P) = \frac{1}{2}(1^+)$$

I, J, P need confirmation.

Created: 10/8/2002 11:05

Mass
$$m=2422.2\pm1.8~{\rm MeV}~{\rm (S}=1.2)$$
 Full width $\Gamma=18.9^{+4.6}_{-3.5}~{\rm MeV}$

 $\overline{\mathcal{D}}_1(2420)^0$ modes are charge conjugates of modes below.

D ₁ (2420) ⁰ DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$D^*(2010)^+\pi^-$	seen	355
$D^+\pi^-$	not seen	474

$$D_2^*(2460)^0$$

$$I(J^P) = \frac{1}{2}(2^+)$$

 $J^P = 2^+$ assignment strongly favored (ALBRECHT 89B).

Mass
$$m=2458.9\pm2.0~{\rm MeV}~{\rm (S}=1.2)$$
 Full width $\Gamma=23\pm5~{\rm MeV}$

 $\overline{D}_2^*(2460)^0$ modes are charge conjugates of modes below.

<i>D</i> ₂ *(2460) ⁰ DECAY MODES	Fraction (Γ_i/Γ)	<i>p</i> (MeV/ <i>c</i>)	
$D^{+}\pi^{-}$ $D^{*}(2010)^{+}\pi^{-}$	seen seen	503 387	

$D_2^*(2460)^{\pm}$

$$I(J^P) = \frac{1}{2}(2^+)$$

$$J^P=2^+$$
 assignment strongly favored (ALBRECHT 89B). Mass $m=2459\pm4$ MeV (S $=1.7$) $m_{D_2^*(2460)^\pm}-m_{D_2^*(2460)^0}=0.9\pm3.3$ MeV (S $=1.1$) Full width $\Gamma=25^{+8}_{-7}$ MeV

 $D_2^*(2460)^-$ modes are charge conjugates of modes below.

$D_2^*(2460)^{\pm}$ DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$D^0\pi^+$	seen	508
$D^{*0}\pi^{+}$	seen	390

CHARMED, STRANGE MESONS $(C = S = \pm 1)$

 $D_s^+ = c\overline{s}$, $D_s^- = \overline{c}s$, similarly for D_s^* 's

 D_s^\pm was F^\pm

$$I(J^P) = 0(0^-)$$

Mass
$$m=1968.5\pm0.6$$
 MeV (S $=1.1$) $m_{D_s^\pm}-m_{D^\pm}=99.2\pm0.5$ MeV (S $=1.1$) Mean life $\tau=(490\pm9)\times10^{-15}$ s (S $=1.1$) $c\tau=147.0~\mu{\rm m}$

D_s^+ form factors

$$r_2 = 1.60 \pm 0.24$$

 $r_v = 1.92 \pm 0.32$
 $\Gamma_L/\Gamma_T = 0.72 \pm 0.18$

Unless otherwise noted, the branching fractions for modes with a resonance in the final state include all the decay modes of the resonance. D_s^- modes are charge conjugates of the modes below.

D+ DECAY MODES

Created: 10/8/2002 11:05

	icive		
-	 	-	~~~

meidsit	C 1110	u Co		
K^- anything	(13	$^{+14}_{-12}$) %	_
$\overline{\mathit{K}}^{0}$ anything $+\ \mathit{K}^{0}$ anything	(39	± 28) %	_
\mathcal{K}^+ anything	(20	$^{+18}_{-14}$) %	_
non- $K\overline{K}$ anything	(64	± 17) %	_
e^+ anything	(8	+ 6 - 5) %	_
ϕ anything	(18	$^{+15}_{-10}$) %	_

Leptonic and semileptonic modes

$\mu^+ u_{\mu}$		$(5.1 \pm 1.9) \times 10^{-3}$	S=1.2	981
$ au^+ u_ au$		(6.4 ± 1.5) %		182
$\phi \ell^+ u_{\ell}$	[zz]	($2.0~\pm~0.5$) %		_
$\eta \ell^+ \nu_\ell + \eta'(958) \ell^+ \nu_\ell$	[zz]	(3.5 ± 1.0) %		_
$\eta\ell^+ u_\ell$	[zz]	($2.6~\pm~0.7$) %		_
$\eta'(958)\ell^+ u_\ell$	[zz]	$(9.1 \pm 3.4) \times 10^{-3}$		_

HTTP://PDG.LBL.GOV

Page 45

Hadronic modes with a $K\overline{K}$ pair (including from a ϕ)

. — -			
$K^+\overline{K}^0$		$(3.6 \pm 1.1)\%$	850
$K^+K^-\pi^+$	[<i>rr</i>]	$(4.4 \pm 1.2)\%$	805
$\phi\pi^+$	[aaa]	$(3.6 \pm 0.9)\%$	712
$K^{+}\overline{K}^{*}(892)^{0}$	[<i>aaa</i>]	(3.3 ± 0.9) %	682
$f_0(980) \pi^+$	[bbb]	$(4.9 \pm 2.3) \times 10^{-3}$	732
\times B($f_0 \rightarrow K^+K^-$)			
$K^{+}\overline{K}_{0}^{*}(1430)^{0}$	[<i>aaa</i>]	$(7 \pm 4) \times 10^{-3}$	186
${\it K}^{+}{\it K}^{-}\pi^{+}$ nonresonant		$(9 \pm 4) \times 10^{-3}$	805
$K^0\overline{K}{}^0\pi^+$		_	802
$K^*(892)^+\overline{K}{}^0$	[aaa]	$(4.3 \pm 1.4)\%$	683
$K^+K^-\pi^+\pi^0$		_	748
$\phi \pi^+ \pi^0$	[aaa]	(9 ± 5)%	687
$\phi \rho^+$	[aaa]	$(6.7 \pm 2.3)\%$	407
$\phi\pi^+\pi^0$ 3-body	[aaa] <	2.6 % CL=90%	687
$\mathit{K}^{+}\mathit{K}^{-}\pi^{+}\pi^{0}$ non- ϕ	<	9 % CL=90%	748
$K^+\overline{K}{}^0\pi^+\pi^-$		$(2.5 \pm 0.9)\%$	744
$K^0K^-\pi^+\pi^+$		$(4.3 \pm 1.5)\%$	744
$K^*(892)^+\overline{K}^*(892)^0$	[aaa]	$(5.8 \pm 2.5)\%$	412
$K^0 K^- \pi^+ \pi^+$ non- $K^{*+} \overline{K}^{*0}$	<	2.9 % CL=90%	744
$K^{+}K^{-}\pi^{+}\pi^{+}\pi^{-}$		$(8.4 \pm 3.3) \times 10^{-3}$	673
$\phi \pi^+ \pi^+ \pi^-$	[aaa]	(1.18± 0.35) %	640

Hadronic modes without K's

$\pi^+\pi^+\pi^-$		(1.0	1± 0.2	8) %	S=1.1	959
$ ho^{0}\pi^{+}$		< 7		$\times 10^{-4}$	CL=90%	827
$f_0(980)\pi^+$	[tt]	(5.7	± 1.7	$) \times 10^{-3}$		732
$ imes$ B($f_0 ightarrow \pi^+ \pi^-$)						
$f_2(1270)\pi^+$	[<i>aaa</i>]	(3.5	± 1.2	$(1) \times 10^{-3}$		559
$f_0(1370)\pi^+$	[tt]	(3.3	± 1.2	$\times 10^{-3}$		_
$ imes$ B($f_0 ightarrow \pi^+ \pi^-$)						
$ ho$ (1450) $^{0}\pi^{+}$	[tt]	(4.4	± 2.5	$) \times 10^{-4}$		_
$ imes$ B($ ho^0 ightarrow \ \pi^+\pi^-$)						
$\pi^+\pi^+\pi^-$ nonresonant		(5	± 22	$) \times 10^{-5}$		959
$\pi^{+} \pi^{+} \pi^{-} \pi^{0}$		< 12		%	CL=90%	935
$\eta \pi^+$	[<i>aaa</i>]	(1.7	± 0.5) %		902
$\omega\pi^+$	[<i>aaa</i>]	(2.8	± 1.1	$) \times 10^{-3}$		822
$\pi^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-}$		(7.0	± 3.0	$) \times 10^{-3}$		899
$\pi^{+} \pi^{+} \pi^{-} \pi^{0} \pi^{0}$			_			902
ηho^+	[aaa]	(10.8	± 3.1) %		727

$\eta\pi^+\pi^0$ 3-body	[<i>aaa</i>] < 4	%	CL=90%	886
$\pi^{+} \pi^{+} \pi^{+} \pi^{-} \pi^{-} \pi^{0}$	(4.9 ± 3)	.2)%		856
$\eta'(958)\pi^+$	[aaa] ($3.9~\pm~1$.0)%		743
$\pi^{+} \pi^{+} \pi^{+} \pi^{-} \pi^{-} \pi^{0} \pi^{0}$	_			803
$\eta'(958) ho^+$	[aaa] (10.1 ± 2)	.8)%		470
η^\prime (958) $\pi^+\pi^0$ 3-body	[aaa] < 1.4	%	CL=90%	720

Modes with one or three K's

		. •		
$\mathcal{K}^0\pi^+$	< 8	$\times 10^{-3}$	CL=90%	916
$K^+\pi^+\pi^-$	(1.0 ± 0.4) %		900
$\mathcal{K}^+ ho^0$	< 2.9	$\times 10^{-3}$	CL=90%	747
$K^*(892)^0\pi^+$	[aaa] ($6.5~\pm~2.8$	$) \times 10^{-3}$		773
$K^+K^+K^-$	< 6	$\times 10^{-4}$	CL=90%	628
ϕ K $^+$	[<i>aaa</i>] < 5	$\times 10^{-4}$	CL=90%	607

$\Delta C = 1$ weak neutral current (C1) modes, Lepton family number (LF), or Lepton number (L) violating modes

$\pi^+e^+e^-$		[uu] <	2.7	$\times 10^{-4}$	CL=90%	979
$\pi^{+} \mu^{+} \mu^{-}$		[uu] <	1.4	$\times 10^{-4}$	CL=90%	968
$K^+ e^+ e^-$	C1	<	1.6	$\times 10^{-3}$	CL=90%	922
$K^+\mu^+\mu^-$	C1	<	1.4	× 10 ⁻⁴	CL=90%	909
$K^*(892)^+ \mu^+ \mu^-$	C1	<	1.4	$\times 10^{-3}$	CL=90%	765
$\pi^+e^\pm\mu^\mp$	LF	[ff] <	6.1	\times 10 ⁻⁴	CL=90%	976
$\mathit{K}^{+}\mathit{e}^{\pm}\mu^{\mp}$	LF	[ff] <	6.3	$\times 10^{-4}$	CL=90%	919
$\pi^- e^+ e^+$	L	<	6.9	× 10 ⁻⁴	CL=90%	979
$\pi^{-}\mu^{+}\mu^{+}$	L	<	8.2	$\times 10^{-5}$	CL=90%	968
$\pi^-e^+\mu^+$	L	<	7.3	× 10 ⁻⁴	CL=90%	976
$K^{-}e^{+}e^{+}$	L	<	6.3	$\times 10^{-4}$	CL=90%	922
$K^-\mu^+\mu^+$	L	<	1.8	× 10 ⁻⁴	CL=90%	909
$\mathit{K^-e^+\mu^+}$	L	<	6.8	× 10 ⁻⁴	CL=90%	919
$K^*(892)^-\mu^+\mu^+$	L	<	1.4	× 10 ⁻³	CL=90%	765

$$D_{m s}^{*\pm}$$

$$I(J^P) = 0(??)$$

Mass
$$m=2112.4\pm0.7$$
 MeV (S $=1.1$) $m_{D_s^{*\pm}}-m_{D_s^{\pm}}=143.8\pm0.4$ MeV Full width Γ $<$ 1.9 MeV, CL $=$ 90%

 $D_{\rm s}^{*-}$ modes are charge conjugates of the modes below.

D*+ DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$\overline{D_s^+ \gamma}$	(94.2±2.5) %	139
$D_s^+ \gamma D_s^+ \pi^0$	(5.8±2.5) %	48

$D_{s1}(2536)^{\pm}$

$$I(J^P) = 0(1^+)$$

J, P need confirmation.

Mass $m=2535.35\pm0.34\pm0.5$ MeV Full width Γ < 2.3 MeV, CL = 90%

 $D_{\rm s1}(2536)^-$ modes are charge conjugates of the modes below.

$D_{s1}(2536)^+$ DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)	
$D^*(2010)^+ K^0$	seen	150	
$D^*(2007)^0 K^+$	seen	169	
$D^+ K^0$	not seen	382	
D^0K^+	not seen	392	
$D_s^{*+}\gamma$	possibly seen	389	

$$D_{sJ}(2573)^{\pm}$$

$$I(J^P) = 0(??)$$

Created: 10/8/2002 11:05

 ${\it J}^{\it P}$ is natural, width and decay modes consistent with 2^+ .

Mass
$$m=2572.4\pm1.5~{\rm MeV}$$

Full width $\Gamma=15^{+5}_{-4}~{\rm MeV}$

 $D_{s,I}(2573)^{-}$ modes are charge conjugates of the modes below.

D_{sJ} (2573) $^+$ DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
D^0K^+	seen	436
$D^*(2007)^0 K^+$	not seen	245

BOTTOM MESONS

$$(B=\pm 1)$$

$$B^+=u\overline{b},\ B^0=d\overline{b},\ \overline{B}{}^0=\overline{d}\,b,\ B^-=\overline{u}\,b,\quad \text{similarly for }B^*\text{'s}$$

B-particle organization

Many measurements of B decays involve admixtures of B hadrons. Previously we arbitrarily included such admixtures in the B^\pm section, but because of their importance we have created two new sections: " B^\pm/B^0 Admixture" for $\Upsilon(4S)$ results and " $B^\pm/B^0/B_s^0/b$ -baryon Admixture" for results at higher energies. Most inclusive decay branching fractions and χ_b at high energy are found in the Admixture sections. $B^0-\overline{B}^0$ mixing data are found in the B^0 section, while $B_s^0-\overline{B}_s^0$ mixing data and $B-\overline{B}$ mixing data for a B^0/B_s^0 admixture are found in the B_s^0 section. CP-violation data are found in the B^\pm , B^0 , and B^\pm B^0 Admixture sections. b-baryons are found near the end of the Baryon section.

The organization of the *B* sections is now as follows, where bullets indicate particle sections and brackets indicate reviews.

- ullet mass, mean life, branching fractions $\it CP$ violation
- B^0 mass, mean life, branching fractions polarization in B^0 decay, B^0 - \overline{B}^0 mixing, CP violation
- B^{\pm} B^{0} Admixtures branching fractions, CP violation
- $B^{\pm}/B^0/B_s^0/b$ -baryon Admixtures mean life, production fractions, branching fractions χ_b at high energy, V_{cb} measurements
- *B** mass
- B_s^0 mass, mean life, branching fractions polarization in B_s^0 decay, B_s^0 - \overline{B}_s^0 mixing
- B_c^{\pm} mass, mean life, branching fractions

At end of Baryon Listings:

- ullet Λ_b mass, mean life, branching fractions
- b-baryon Admixture mean life, branching fractions

$$I(J^P) = \frac{1}{2}(0^-)$$

I, *J*, *P* need confirmation. Quantum numbers shown are quark-model predictions.

Mass
$$m_{B^\pm}=5279.0\pm0.5$$
 MeV Mean life $au_{B^\pm}=(1.674\pm0.018)\times10^{-12}$ s $c au=502~\mu{\rm m}$

CP violation

$$A_{CP}(B^{+} \rightarrow J/\psi(1S)K^{+}) = 0.008 \pm 0.025$$

 $A_{CP}(B^{+} \rightarrow J/\psi(1S)\pi^{+}) = 0.01 \pm 0.22$
 $A_{CP}(B^{+} \rightarrow \psi(2S)K^{+}) = 0.02 \pm 0.09$
 $A_{CP}(B^{+} \rightarrow K^{+}\pi^{0}) = -0.10 \pm 0.12$
 $A_{CP}(B^{+} \rightarrow K_{S}^{0}\pi^{+}) = -0.05 \pm 0.14$
 $A_{CP}(B^{+} \rightarrow K^{+}\eta') = -0.02 \pm 0.07$
 $A_{CP}(B^{+} \rightarrow \omega\pi^{+}) = -0.21 \pm 0.19$
 $A_{CP}(B^{+} \rightarrow \phi K^{+}) = -0.05 \pm 0.20$
 $A_{CP}(B^{+} \rightarrow \phi K^{+}) = -0.43_{-0.31}^{+0.36}$

 B^- modes are charge conjugates of the modes below. Modes which do not identify the charge state of the B are listed in the B^\pm/B^0 ADMIXTURE section.

The branching fractions listed below assume 50% $B^0\overline{B}^0$ and 50% B^+B^- production at the $\Upsilon(4S)$. We have attempted to bring older measurements up to date by rescaling their assumed $\Upsilon(4S)$ production ratio to 50:50 and their assumed D, D_S , D^* , and ψ branching ratios to current values whenever this would affect our averages and best limits significantly.

Indentation is used to indicate a subchannel of a previous reaction. All resonant subchannels have been corrected for resonance branching fractions to the final state so the sum of the subchannel branching fractions can exceed that of the final state.

B⁺ DECAY MODES

Fraction (Γ_i/Γ)

Scale factor/ p Confidence level (MeV/c)

Created: 10/8/2002 11:05

Semileptonic and leptonic modes

$\omega \ell^+ \nu_\ell$	[qq] < 2.1	$\times 10^{-4}$	CL=90%	_
$ ho^0 \ell^+ u_\ell$	$[qq]$ (1.34 $^{+0}_{-0}$	$^{.32}_{.35}) \times 10^{-4}$		_
$e^+ u_e$	< 1.5	$\times10^{-5}$	CL=90%	2640
$\mu^+ \nu_{\mu}$	< 2.1	$\times 10^{-5}$	CL=90%	2638
$ au^+ u_ au$	< 5.7		CL=90%	2340
$e^+ \nu_e \gamma$	< 2.0	\times 10 ⁻⁴	CL=90%	_
$\mu^+ u_{\mu} \gamma$	< 5.2	$\times 10^{-5}$	CL=90%	_

D, D^* , or D_s modes

	, D , or D_{S} inlocates		
$\overline{D}{}^0\pi^+$	$(5.3 \pm 0.5) \times 10^{-3}$		2308
$\overline{D}{}^0 \rho^+$	$(1.34\pm0.18)\%$		2237
$\overline{\mathcal{D}}{}^0 K^+$	$(3.7 \pm 0.6) \times 10^{-4}$	S=1.1	_
$\overline{D}{}^{0}K^{*}(892)^{+}$	$(6.1 \pm 2.3) \times 10^{-4}$		_
$\overline{D}{}^0\pi^+\pi^+\pi^-$	($1.1~\pm0.4$) %		2289
$\overline{D}{}^0\pi^+\pi^+\pi^-$ nonresonant	$(5 \pm 4) \times 10^{-3}$		2289
$\overline{D}{}^0\pi^+ ho^0$	$(4.2 \pm 3.0) \times 10^{-3}$		2208
$\overline{D}{}^0 a_1(1260)^+$	$(5 \pm 4) \times 10^{-3}$		2123
$\overline{D}{}^0\omega\pi^+$	$(4.1 \pm 0.9) \times 10^{-3}$		_
$D^*(2010)^-\pi^+\pi^+$	$(2.1 \pm 0.6) \times 10^{-3}$		2247
$D^{-}\pi^{+}\pi^{+}$	$< 1.4 \times 10^{-3}$	CL=90%	2299
$\overline{D}^*(2007)^0_{\ \alpha}\pi^+$	$(4.6 \pm 0.4) \times 10^{-3}$		2256
$\overline{D}^*(2007)^0 \omega \pi^+$	$(4.5 \pm 1.2) \times 10^{-3}$		_
$\overline{D}^*(2007)^0 \rho^+$	$(1.55\pm0.31)\%$		2182
$\overline{D}^*(2007)^0K^+$	$(3.6 \pm 1.0) \times 10^{-4}$		_
$\overline{D}^*(2007)^0 K^*(892)^+$	$(7.2 \pm 3.4) \times 10^{-4}$		_
$\overline{D}^*(2007)^0\pi^+\pi^+\pi^-$	$(9.4 \pm 2.6) \times 10^{-3}$		2236
$\overline{D}^*(2007)^0 a_1(1260)^+$	(1.9 ± 0.5) %		2062
$\overline{D}^*(2007)^0\pi^-\pi^+\pi^+\pi^0$	(1.8 \pm 0.4) %		_
$\underline{D}^*(2010)^+\pi^0$	$< 1.7 \times 10^{-4}$	CL=90%	2254
$\overline{D}^*(2010)^+ K^0$	$< 9.5 \times 10^{-5}$	CL=90%	_
$D^*(2010)^-\pi^+\pi^+\pi^0$	$(1.5 \pm 0.7)\%$		2235
$D^*(2010)^-\pi^+\pi^+\pi^+\pi^-$	< 1 %	CL=90%	2217
$\overline{D}_{1}^{*}(2420)^{0}\pi^{+}$	$(1.5 \pm 0.6) \times 10^{-3}$	S=1.3	2081
$\overline{D}_{1}^{*}(2420)^{0}\rho^{+}$	$< 1.4 \times 10^{-3}$	CL=90%	1996
$\overline{D}_{2}^{*}(2460)^{0}\pi^{+}$	$< 1.3 \times 10^{-3}$	CL=90%	2064
$\overline{D}_{2}^{*}(2460)^{0}\rho^{+}$	$< 4.7 \times 10^{-3}$	CL=90%	1978
$\overline{D}^{\overline{0}}D_{\varepsilon}^{+}$	(1.3 ± 0.4) %		1815
$\overline{D}{}^0D^s_s$	$(9 \pm 4) \times 10^{-3}$		1734
$\overline{D}^*(2007)^0 D_s^+$	(1.2 ±0.5) %		1737
$\overline{D}^*(2007)^0 D_s^{*+}$	$(2.7 \pm 1.0)\%$		1650
$D_{s}^{(*)+}\overline{D}^{**0}$,		1000
S D	$(2.7 \pm 1.2)\%$		_

$\overline{D}^*(2007)^0 D^*(2010)^+$	< 1.1	%	CL=90%	_
$\overline{D}^{0} \underline{D}^{*} (2010)^{+} +$	< 1.3	%	CL=90%	_
$\overline{D}^*(2007)^0 D^+$		2		
$\overline{D}{}^0D^+$	< 6.7	$\times 10^{-3}$	CL=90%	_
$D_{s}^{+}\pi^{0}$	< 2.0	× 10 ⁻⁴	CL=90%	2270
$D_{s}^{*+}\pi^{0}$ $D_{s}^{+}\eta$ $D_{s}^{*+}\eta$ $D_{s}^{+}\rho^{0}$ $D_{s}^{*+}\rho^{0}$ $D_{s}^{*+}\omega$ $D_{s}^{*+}\omega$	< 3.3	× 10 ⁻⁴	CL=90%	2214
$D_{s}^{+}\eta$	< 5	$\times 10^{-4}$	CL=90%	2235
$D_s^{*+}\eta$	< 8	$\times 10^{-4}$	CL=90%	2178
$D_s^+ ho^0$	< 4	$\times 10^{-4}$	CL=90%	2197
$D_{s}^{*+}\rho^{0}$	< 5	$\times 10^{-4}$	CL=90%	2138
$D_s^+\omega$	< 5	$\times10^{-4}$	CL=90%	2195
$D_{\varepsilon}^{*+}\omega$	< 7	$\times10^{-4}$	CL=90%	2136
D^{+} a ₁ (1260) ⁰	< 2.2	$\times10^{-3}$	CL=90%	2079
$D_{c}^{*+}a_{1}(1260)^{0}$	< 1.6	$\times10^{-3}$	CL=90%	2014
$D_{+}^{+}\phi$	< 3.2	$\times 10^{-4}$	CL=90%	2141
$D^{*+}_{-}\phi$	< 4	$\times10^{-4}$	CL=90%	2079
$D^{\stackrel{s}{+}}\overline{K}{}^0$	< 1.1	$\times 10^{-3}$	CL=90%	2241
$D_{s}^{*+} a_{1}(1260)^{0}$ $D_{s}^{++} \phi$ $D_{s}^{*+} \phi$ $D_{s}^{++} \overline{K}^{0}$ $D_{s}^{++} \overline{K}^{0}$ $D_{s}^{++} \overline{K}^{+} (892)^{0}$ $D_{s}^{++} \overline{K}^{+} (892)^{0}$	< 1.1	$\times 10^{-3}$	CL=90%	2184
$D^{\frac{s}{K}}*(892)^{0}$	< 5	× 10 ⁻⁴	CL=90%	2171
$D_s^{*+} \overline{K}^* (892)^0$	< 4	× 10 ⁻⁴	CL=90%	2110
$D^-\pi^+K^+$	< 8	× 10 ⁻⁴	CL=90%	2222
$D_{s}^{3}\pi^{+}K^{+}$ $D_{s}^{*-}\pi^{+}K^{+}$	< 1.2	× 10 ⁻³	CL=90%	2164
$D_s^- \pi^+ K^*(892)^+$	< 6	× 10 ⁻³		2137
$D_s^{*-}\pi^+K^*(892)^+$	< 8	× 10 × 10 ⁻³	CL=90%	2076
$D_s = R \cdot (0.92)$	< 0	X 10	CL=90/0	2070
	Charmonium modes			
$\eta_{c}K^{+}$	$(6.9 \begin{array}{c} +3.4 \\ -3.0 \end{array}$	$) \times 10^{-4}$		_
$J/\psi(1S)K^+$	(1.01±0.0	$5) \times 10^{-3}$		1683
$J/\psi(1S)K^{+}\pi^{+}\pi^{-}$	(1.4 ± 0.6			1612
$J/\psi(1S)K^*(892)^+$	(1.39 ± 0.13)			1571
$J/\psi(1S)K(1270)^+$	(1.8 ± 0.5	$) \times 10^{-3}$		_
$J/\psi(1S)K(1400)^+$		$\times 10^{-4}$	CL=90%	_
$J/\psi(1S)\phi K^+$	$(8.8 \begin{array}{c} +3.7 \\ -3.3 \end{array}$	$) \times 10^{-5}$		_
$J/\psi(1S)\pi^+$	(4.2 ± 0.7)			1727
J/γ(10)	(7.2 ±0.7	, 1		1141

 $J/\psi(1S)\rho^+$

 $J/\psi(1S) a_1(1260)^+$

< 7.7

< 1.2

 $\times 10^{-4}$

 $\times 10^{-3}$

CL=90%

CL=90%

Created: 10/8/2002 11:05

1613

1414

$\psi(2S)K^+ \ \psi(2S)K^*(892)^+$		6) \times 10 ⁻⁴ 2) \times 10 ⁻⁴		1284 1115
$\psi(2S)K^{+}\pi^{+}\pi^{-}$		$(2) \times 10^{-3}$		909
$\chi_{c0}(1P)K^+$	$(6.0 \begin{array}{c} +2. \\ -2. \end{array}$	$^{4}_{1}) \times 10^{-4}$		-
$\chi_{c1}(1P)K^+$	($6.5 \pm 1.$	$1) \times 10^{-4}$		1412
$\chi_{c1}(1P) K^*(892)^+$	< 2.1	$\times 10^{-3}$	CL=90%	1265
	K or K* modes			
$\kappa^0\pi^+$	(1.73^{+0}_{-0})	$^{27}_{24}) \times 10^{-5}$		2614
$K^+\pi^0$	(1.21±0.	$(16) \times 10^{-5}$		2615
$\eta' K^+$		$(7) \times 10^{-5}$		2528
$\eta' K^* (892)^+$	< 3.5	$\times10^{-5}$	CL=90%	2472
η K $^+$	< 6.9	$\times 10^{-6}$	CL=90%	2587
$\eta K^*(892)^+$	$(2.6 \begin{array}{c} +1. \\ -0. \end{array}$	$_{9}^{0}$) × 10 ⁻⁵		2534
ωK^+	< 4	$\times 10^{-6}$	CL=90%	_
$\omega K^*(892)^+$	< 8.7	$\times 10^{-5}$	CL=90%	_
$K^*(892)^0\pi^+$	$(1.9 \begin{array}{c} +0. \\ -0. \end{array}$	$^{6}_{8}$) × 10 ⁻⁵		2561
$K^*(892)^+\pi^0$	< 3.1	$\times10^{-5}$	CL=90%	2562
$K^+\pi^-\pi^+$	(5.6 ± 1 .	$0) \times 10^{-5}$		_
$K^+\pi^-\pi^+$ nonresonant	< 2.8	\times 10 ⁻⁵	CL=90%	2609
$K^+\rho^0$	< 1.2	$\times 10^{-5}$	CL=90%	2559
$K_2^*(1430)^0\pi^+$	< 6.8		CL=90%	2443
$K^-\pi^+\pi^+$	< 7.0	$\times 10^{-6}$	CL=90%	_
$K^-\pi^+\pi^+$ nonresonant	< 5.6	$\times 10^{-5}$	CL=90%	- 0.451
$K_1(1400)^0\pi^+ \ K^0 ho^+$	< 2.6	$\times 10^{-3}$	CL=90%	2451
$K^*(892)^+\pi^+\pi^-$	< 4.8 < 1.1	$\begin{array}{c} \times10^{-5} \\ \times10^{-3} \end{array}$	CL=90% CL=90%	2559 2556
$K^*(892)^+ \rho^0$	< 7.4	× 10 × 10 ⁻⁵	CL=90% CL=90%	2504
$K^*(892)^+ K^*(892)^0$	< 7.1	× 10 ⁻⁵	CL=90%	_
$K_1(1400)^+ \rho^0$	< 7.8	× 10 ⁻⁴	CL=90%	2388
$K_2^*(1430)^+ \rho^0$	< 1.5	\times 10 ⁻³	CL=90%	2382
$K^{+}\overline{K}^{0}$	< 2.4	$\times10^{-6}$	CL=90%	2592
$K^+K^-\pi^+$	< 1.2	$\times10^{-6}$	CL=90%	_
$K^+K^-\pi^+$ nonresonant	< 7.5	$\times10^{-5}$	CL=90%	_
$K^+K^+\pi^-$	< 3.2		CL=90%	_
$K^+K^+\pi^-$ nonresonant	< 8.79		CL=90%	_
$K^+K^*(892)^0$	< 5.3	\times 10 ⁻⁶	CL=90%	_
K+K-K+	•	$6) \times 10^{-5}$		2522
$K^+\phi$	$(7.9 \begin{array}{c} +2. \\ -1. \end{array}$	$^{0}_{8}$) × 10 ⁻⁶	S=1.6	2516

$K^+K^-K^+$ nonresonant	< 3.8	$\times10^{-5}$	CL=90%	2516		
$K^*(892)^+ K^+ K^-$	< 1.6	$\times 10^{-3}$	CL=90%	2466		
\mathcal{K}^* (892) $^+\phi$	$(10 \begin{array}{cc} +5 \\ -4 \end{array}$	$) \times 10^{-6}$		2460		
$K_1(1400)^+ \phi$	< 1.1	$\times10^{-3}$	CL=90%	2339		
$K_2^*(1430)^+ \phi$	< 3.4	$\times 10^{-3}$	CL=90%	2332		
$K^{*}(892)^{+}\gamma$	($3.8 \pm 0.$	$5) \times 10^{-5}$		2564		
$K_1(1270)^+ \gamma$	< 7.3	$\times 10^{-3}$	CL=90%	2486		
$K_1(1400)^+\gamma$	< 2.2	$\times 10^{-3}$	CL=90%	2453		
$K_2^*(1430)^+\gamma$	< 1.4	$\times 10^{-3}$	CL=90%	2447		
$K^*(1680)^+\gamma$	< 1.9	$\times 10^{-3}$	CL=90%	2360		
$K_3^*(1780)^+\gamma$	< 5.5	$\times 10^{-3}$	CL=90%	2341		
$\kappa_{4}^{*}(2045)^{+}\gamma$	< 9.9	$\times 10^{-3}$	CL=90%	2243		
Light unflavored meson modes						

Light unhavored meson modes						
$ ho^+\gamma$	< 1.3	$\times10^{-5}$	CL=90%	_		
$\pi^+\pi^0$	< 9.6	$\times10^{-6}$	CL=90%	2636		
$\pi^+\pi^+\pi^-$	< 1.3	$\times 10^{-4}$	CL=90%	2630		
$ ho^{0}\pi^{+}$	($1.0 \pm 0.$	4) $\times 10^{-5}$		2581		
$\pi^+ f_0(980)$	< 1.4	$\times 10^{-4}$	CL=90%	2547		
$\pi^+ f_2(1270)$	< 2.4	$\times 10^{-4}$	CL=90%	2483		
$\pi^+\pi^-\pi^+$ nonresonant	< 4.1	$\times10^{-5}$	CL=90%	_		
$\pi^{+} \pi^{0} \pi^{0}$	< 8.9	$\times10^{-4}$	CL=90%	2631		
$ ho^+\pi^0$	< 4.3	$\times10^{-5}$	CL=90%	2581		
$\pi^{+} \pi^{-} \pi^{+} \pi^{0}$	< 4.0	$\times 10^{-3}$	CL=90%	2621		
$ ho^+ ho^0$	< 1.0	$\times10^{-3}$	CL=90%	2524		
$a_1(1260)^+\pi^0$	< 1.7	$\times 10^{-3}$	CL=90%	2494		
$a_1(1260)^0\pi^+$	< 9.0	$\times 10^{-4}$	CL=90%	2494		
$\omega \pi^+$	$(8.1 \begin{array}{c} +2. \\ -2. \end{array}$	$_{0}^{3}) \times 10^{-6}$	S=1.2	2580		
$\omega \rho^+$	< 6.1	$\times10^{-5}$	CL=90%	_		
$\eta\pi^+$	< 5.7	$\times 10^{-6}$	CL=90%	2609		
$\eta'\pi^+$	< 7.0	$\times10^{-6}$	CL=90%	2550		
$\eta' ho^+$	< 3.3	$\times10^{-5}$	CL=90%	2493		
$\eta \rho^+$	< 1.5	$\times10^{-5}$	CL=90%	2554		
$\phi\pi^+$	< 1.4	$\times 10^{-6}$	CL=90%	_		
$\phi \rho^+$	< 1.6	\times 10 ⁻⁵		_		
$\pi^{+} \pi^{+} \pi^{+} \pi^{-} \pi^{-}$	< 8.6	$\times 10^{-4}$	CL=90%	2608		
$ ho^{0}a_{1}(1260)^{+}$	< 6.2	\times 10 ⁻⁴	CL=90%	2433		
$ ho^0 a_2(1320)^+$	< 7.2	$\times 10^{-4}$	CL=90%	2411		
$\pi^{+} \pi^{+} \pi^{+} \pi^{-} \pi^{-} \pi^{0}$	< 6.3	$\times10^{-3}$	CL=90%	2592		
$a_1(1260)^+ a_1(1260)^0$	< 1.3	%	CL=90%	2335		

Charged particle (h^{\pm}) modes

$$h^{\pm} = K^{\pm} \text{ or } \pi^{\pm}$$

$h^+\pi^0$	$(1.6 \ ^{+0.7}_{-0.6}\) imes 10^{-5}$	_
ωh^+	$(1.4 \pm 0.4) \times 10^{-5}$	_
$h^+ X^0$ (Familon)	$< 4.9 \times 10^{-5} \text{ CL}=90\%$	_

Baryon modes

Daiyon modes					
$ ho \overline{ ho} \pi^+$	< 1.6	$\times10^{-4}$	CL=90%	2439	
$p \overline{p} \pi^+$ nonresonant	< 5.3	$\times 10^{-5}$	CL=90%	_	
$ ho \overline{ ho} \pi^+ \pi^+ \pi^-$	< 5.2	$\times 10^{-4}$	CL=90%	2369	
$ ho \overline{ ho} K^+$ nonresonant	< 8.9	$\times 10^{-5}$	CL=90%	_	
pΛ	< 2.6	$\times 10^{-6}$	CL=90%	2430	
$ ho \overline{\Lambda} \pi^+ \pi^-$	< 2.0	$\times 10^{-4}$	CL=90%	2367	
$\overline{\Delta}{}^0 p$	< 3.8	$\times 10^{-4}$	CL=90%	2402	
$\Delta^{++}\overline{p}$	< 1.5	$\times 10^{-4}$	CL=90%	2402	
$\Lambda_c^- p \pi^+$	(6.2 ± 2.7	$) \times 10^{-4}$		_	
$\Lambda_c^- p \pi^+ \pi^0$	< 3.12	$\times 10^{-3}$	CL=90%	_	
$\Lambda_{c}^{-} p \pi^{+} \pi^{+} \pi^{-}$	< 1.46	$\times 10^{-3}$	CL=90%	_	
$\Lambda_{c}^{-} p \pi^{+} \pi^{+} \pi^{-} \pi^{0}$	< 1.34	%	CL=90%	_	

Lepton Family number (LF) or Lepton number (L) violating modes, or $\Delta B = 1$ weak neutral current (B1) modes

$\pi^{+} e^{+} e^{-}$	B1	< 3.9	$\times10^{-3}$	CL=90%	2638
$\pi^{+} \mu^{+} \mu^{-}$	B1	< 9.1	$\times 10^{-3}$	CL=90%	2633
$K^+e^+e^-$	B1	< 1.4	\times 10 ⁻⁶	CL=90%	2616
$K^+\mu^+\mu^-$	B1	$(10 \begin{array}{cc} +5 \\ -4 \end{array}$	$) \times 10^{-7}$		2612
$K^+\overline{ u} u$	B1	< 2.4	$\times10^{-4}$	CL=90%	_
$K^*(892)^+ e^+ e^-$	B1	< 8.9	$\times 10^{-6}$	CL=90%	2564
$K^*(892)^+ \mu^+ \mu^-$	B1	< 3.9	$\times 10^{-6}$	CL=90%	2560
$\pi^+e^+\mu^-$	LF	< 6.4	$\times 10^{-3}$	CL=90%	2637
$\pi^+e^-\mu^+$	LF	< 6.4	$\times 10^{-3}$	CL=90%	2637
$\mathit{K}^{+}e^{+}\mu^{-}$	LF	< 6.4	$\times 10^{-3}$	CL=90%	2615
$K^+\mathrm{e}^-\mu^+$	LF	< 6.4	$\times 10^{-3}$	CL=90%	2615
$\pi^{-} e^{+} e^{+}$	L	< 3.9	$\times 10^{-3}$	CL=90%	2638
$\pi^{-}\mu^{+}\mu^{+}$	L	< 9.1	$\times 10^{-3}$	CL=90%	2633
$\pi^-e^+\mu^+$	L	< 6.4	$\times 10^{-3}$	CL=90%	2637
$K^{-}e^{+}e^{+}$	L	< 3.9	$\times 10^{-3}$	CL=90%	2616
$K^-\mu^+\mu^+$	L	< 9.1	$\times 10^{-3}$	CL=90%	2612
$K^-e^+\mu^+$	L	< 6.4	$\times 10^{-3}$	CL=90%	2615

$$I(J^P) = \frac{1}{2}(0^-)$$

I, *J*, *P* need confirmation. Quantum numbers shown are quark-model predictions.

Mass
$$m_{B^0}=5279.4\pm0.5~{
m MeV}$$
 $m_{B^0}-m_{B^\pm}=0.33\pm0.28~{
m MeV}~({
m S}=1.1)$ Mean life $\tau_{B^0}=(1.542\pm0.016)\times10^{-12}~{
m s}$ $c au=462~\mu{
m m}$ $au_{B^+}/ au_{B^0}=1.083\pm0.017~{
m (direct\ measurements)}$

$B^0-\overline{B}^0$ mixing parameters

$$\chi_d = 0.181 \pm 0.004$$

$$\Delta m_{B^0} = m_{B^0_H} - m_{B^0_L} = (0.489 \pm 0.008) \times 10^{12} \ \hbar \ \mathrm{s}^{-1}$$

$$\chi_d = \Delta m_{B^0} / \Gamma_{B^0} = 0.755 \pm 0.015$$

CP violation parameters

$$\begin{array}{l} \operatorname{Re}(\epsilon_{B^0})/(1+\left|\epsilon_{B^0}\right|^2) = (0\pm 4)\times 10^{-3} \\ A_{CP} \ (B^0 \to K^+\pi^-) = -0.09 \pm 0.06 \\ A_{CP} (B^0 \to \phi K^*(892)^0) = 0.00 \pm 0.27 \\ C_{\pi\pi} \ (B^0 \to \pi^+\pi^-) = -0.2 \pm 0.5 \\ S_{\pi\pi} \ (B^0 \to \pi^+\pi^-) = 0.0 \pm 0.6 \\ \sin(2\beta) = 0.79 \pm 0.14 \quad (S=1.3) \end{array}$$

 \overline{B}^0 modes are charge conjugates of the modes below. Reactions indicate the weak decay vertex and do not include mixing. Modes which do not identify the charge state of the B are listed in the B^\pm/B^0 ADMIXTURE section.

The branching fractions listed below assume 50% $B^0\overline{B}{}^0$ and 50% B^+B^- production at the $\Upsilon(4S)$. We have attempted to bring older measurements up to date by rescaling their assumed $\Upsilon(4S)$ production ratio to 50:50 and their assumed D, D_S , D^* , and ψ branching ratios to current values whenever this would affect our averages and best limits significantly.

Indentation is used to indicate a subchannel of a previous reaction. All resonant subchannels have been corrected for resonance branching fractions to the final state so the sum of the subchannel branching fractions can exceed that of the final state.

				S	cale factor/	p
B ⁰ DECAY MODES	F	raction	(Γ_i/Γ)	Cont	fidence level	(MeV/ <i>c</i>)
0+		(10.5		. 0/		
$\ell^+ \nu_\ell$ anything	[qq]	•	±0.8	•		_
$D^-\ell^+ u_\ell$	[qq]	`	1 ± 0.17	•		_
$D^*(2010)^-\ell^+ u_\ell$	[qq]	`	0 ± 0.21	•		_
$ ho^-\ell^+ u_\ell$	[qq]	(2.6	$+0.6 \\ -0.7$	$) \times 10^{-4}$		_
$\pi^- \ell^+ u_\ell$		(1.8	± 0.6	$) \times 10^{-4}$		_
In	clusiv	e mod	des			
K^+ anything		(78	±8) %		_
D , D^* , or D_s modes						
$D^-\pi^+$,	_		$) \times 10^{-3}$		2306
$D^{-}\rho^{+}$		•		$) \times 10^{-3}$		2236
$D^{-}K^{*}(892)^{+}$				$) \times 10^{-4}$		_
$D^-\omega\pi^+$		•		$) \times 10^{-3}$		_
D^-K^+				$) \times 10^{-4}$		_
$\overline{D}{}^0\pi^+\pi^-$		< 1.6		$^{'} \times 10^{-3}$	CL=90%	2301
$D^*(2010)^-\pi^+$		(2.7		$) \times 10^{-3}$		2255
$D^-\pi^+\pi^+\pi^-$				$) \times 10^{-3}$		2287
$(D^-\pi^+\pi^+\pi^-)$ nonresonant		(3.9	± 1.9	$) \times 10^{-3}$		2287
$D^-\pi^+ ho^0$		(1.1	± 1.0	$) \times 10^{-3}$		2207
$D^- a_1(1260)^+$				$) \times 10^{-3}$		2121
$D^*(2010)^-\pi^+\pi^0$		(1.5	± 0.5) %		2248
$D^*(2010)^- ho^+$		(7.3	±1.5	$) \times 10^{-3}$		2181
$D^*(2010)^- K^+$		(2.0	±0.5	$) \times 10^{-4}$		_
$D^*(2010)^- K^*(892)^+$				$) \times 10^{-4}$		_
$D^*(2010)^-\pi^+\pi^+\pi^-$				$) \times 10^{-3}$	S=1.4	2235
$(D^*(2010)^-\pi^+\pi^+\pi^-)$ non-		(0.0	±2.5	$) \times 10^{-3}$		2235
resonant				. 2		
$D^*(2010)^-\pi^+\rho^0$				$) \times 10^{-3}$		2151
$D^*(2010)^- a_1(1260)^+$		(1.3	0 ± 0.27) %		2061
HTTP://PDG.LBL.GOV	Pag	e 58		Created:	10/8/200	2 11:05

D*(0010) 0					
$D^*(2010)^-\pi^+\pi^+\pi^-\pi^0$	•	1.76 ± 0.27			2218
$D^*(2010)^+\pi^+\pi^-\pi^-\pi^0$		1.8 ± 0.7			_
$D^*(2010)^- p \overline{p} \pi^+$		6.5 ± 1.6			_
$\frac{D^*(2010)^-}{D^*(2010)^-} p \overline{n}$		1.5 ± 0.4	_		_
$\overline{D}^*(2010)^- \omega \pi^+ \overline{D}^*_2(2460)^- \pi^+$,	2.9 ± 0.5) 2.2	$\times 10^{-3}$	CL=90%	- 2064
$\frac{D_2(2460)}{D_2^*(2460)} + \rho^+$		4.9	\times 10 \times 10 -3		
$D_2(2400)^- p^+ = D^- D^+$	<			CL=90%	1978
$D^-D_s^+$	<		$\times 10^{-4}$	CL=90%	1010
		8.0 ± 3.0			1812
$D^*(2010)^-D_s^+$	`	1.11 ± 0.33			1735
$D^{-}D_{s}^{*+}$	`	1.0 ± 0.5			1732
$D^*(2010)^- D_s^{*+}$	`	1.8 ± 0.6			1649
$D_s^+\pi^-$	<	2.8	× 10 ⁻⁴	CL=90%	2270
$D_{s}^{*+}\pi^{-}$	<	5	$\times 10^{-4}$	CL=90%	2215
$D_s^+ \rho^-$	<	7	$\times 10^{-4}$	CL=90%	2198
$D_{s}^{*+}\pi^{-}$ $D_{s}^{+}\rho^{-}$ $D_{s}^{*+}\rho^{-}$	<	8	$\times 10^{-4}$	CL=90%	2139
$D_s^+ a_1(1260)^-$	<	2.6	$\times 10^{-3}$	CL=90%	2079
$D_s^{*+} a_1(1260)^-$	<	2.2	$\times 10^{-3}$	CL=90%	2015
$D_s^- K^+$	<	2.4	$\times10^{-4}$	CL=90%	2242
$D_s^{*-}K^+$	<	1.7	$\times10^{-4}$	CL=90%	2185
$D_{s}^{-}K^{*}(892)^{+}$	<	9.9	$\times 10^{-4}$	CL=90%	2172
$D_s^{*-}K^{*}(892)^{+}$	<	1.1	$\times 10^{-3}$	CL=90%	2112
$D_s^-\pi^+K^0$	<	5	$\times 10^{-3}$	CL=90%	2222
$D_{s}^{*-}\pi^{+}K^{0}$	<	3.1	$\times 10^{-3}$	CL=90%	2164
$D_{5}^{-}\pi^{+}K^{*}(892)^{0}$	<	4	$\times 10^{-3}$	CL=90%	2137
	<	2.0	$\times 10^{-3}$	CL=90%	2075
$\frac{D_s^{*-}\pi^+K^*(892)^0}{\overline{D}^0\pi^0}$		2.9 ±0.5			2308
$\overline{D}{}^{0}\rho^{0}$		3.9	$ imes 10^{-4}$	CL=90%	2238
$\overline{D}{}^{0}\eta$	($1.4 \begin{array}{c} +0.6 \\ -0.5 \end{array}$			2274
$\overline{D}{}^0\eta'$		9.4	× 10 ⁻⁴	CL=90%	2198
$\frac{D}{D}$ ⁰ ω		1.8 ± 0.6		CL=3070	2235
$\frac{D}{D}$ *0 γ	•	5.0	$\times 10^{-5}$	CL=90%	_
$\overline{D}^*(2007)^0\pi^0$		2.5 ± 0.7			2256
$\overline{D}^*(2007)^0 \rho^0$		5.6	$\times 10^{-4}$	CL=90%	2182
$\overline{D}^*(2007)^0 \eta$	<	2.6	$\times10^{-4}$	CL=90%	2220
$\overline{D}^*(2007)^0 \eta'$	<	1.4	$\times 10^{-3}$	CL=90%	2141
$\overline{D}^*(2007)^0_0 \omega$		7.4	\times 10 ⁻⁴	CL=90%	2180
$D^*(2007)^0 \pi^+ \pi^+ \pi^- \pi^-$	(3.0 ± 0.9	$) \times 10^{-3}$		_

$\eta_c K^0$	Charmonium modes)10-3		
$D^{(*)0}\overline{D}^{(*)0}$	< 2.7	%	CL=90%	_
$D^*(2010)^+D^- \ D^{(*)0}\overline{D}^{(*)0}$	< 6.3	$\times10^{-4}$	CL=90%	1790
$D^*(2010)^+ D^*(2010)^-$	$(9.9 \begin{array}{c} +4.4 \\ -3.5 \end{array}$	$) \times 10^{-4}$		1711

K or K* modes

K or K* modes							
$K^+\pi^-$	(1.74 ± 0.1	$(5) \times 10^{-5}$		2615			
$K^0\pi^0$	$(1.07^{+0.2}_{-0.2})$	$(27) \times 10^{-5}$		2614			
$\eta' K^0$	(5.8 $^{+1.4}_{-1.3}$	$\times 10^{-5}$	S=1.5	2528			
$\eta' K^* (892)^0$	< 2.4	$\times 10^{-5}$	CL=90%	2472			
$\eta K^*(892)^0$	($1.4 \begin{array}{c} +0.6 \\ -0.5 \end{array}$	$\times 10^{-5}$		2534			
ηK^0	< 9.3	$\times10^{-6}$	CL=90%	2593			
ωK^0	< 1.3	$\times10^{-5}$	CL=90%	_			
$K_S^0 X^0$ (Familon)	< 5.3	$\times10^{-5}$	CL=90%	_			
$\omega K^*(892)^0$	< 2.3	$\times10^{-5}$	CL=90%	_			
K^+K^-	< 1.9	$\times 10^{-6}$	CL=90%	2593			
$K^0\overline{K}^0$	< 1.7	$\times 10^{-5}$	CL=90%	2592			
$K^+ ho^-$	< 3.2	$\times 10^{-5}$	CL=90%	2559			
$\mathcal{K}^0 ho^0$	< 3.9	$\times 10^{-5}$	CL=90%	2559			
$K^0 f_0(980)$	< 3.6	$\times 10^{-4}$	CL=90%	2524			

HTTP://PDG.LBL.GOV Page 60 Created: 10/8/2002 11:05

$K^*(892)^+\pi^-$	< 7.2	$\times 10^{-5}$	CL=90%	2562
$K^*(892)^0 \pi^0$	< 3.6	$\times 10^{-6}$	CL=90%	2562
$K_2^*(1430)^+\pi^-$	< 2.6	$\times 10^{-3}$	CL=90%	2445
$K^0K^+K^-$	< 1.3	$\times 10^{-3}$	CL=90%	2522
$\mathcal{K}^{0}\phi$	$(8.1 \begin{array}{c} +3. \\ -2. \end{array})$	$_{6}^{2}) \times 10^{-6}$		2516
$\mathcal{K}^-\pi^+\pi^+\pi^-$	[<i>ccc</i>] < 2.3	$\times10^{-4}$	CL=90%	2600
K^* (892) 0 π^+ π^-	< 1.4	$\times10^{-3}$	CL=90%	2556
$\hat{K}^*(892)^0 \rho^0$	< 3.4	$\times10^{-5}$	CL=90%	2504
$K^*(892)^0 f_0(980)$	< 1.7	$\times10^{-4}$	CL=90%	2467
$K_1(1400)^+\pi^-$	< 1.1	$\times10^{-3}$	CL=90%	2451
$K^{-}a_{1}(1260)^{+}$	[<i>ccc</i>] < 2.3	$\times10^{-4}$	CL=90%	2471
$K^*(892)^0 \stackrel{\frown}{K}^+ \stackrel{\frown}{K}^-$	< 6.1	$\times10^{-4}$	CL=90%	2466
$K^*(892)^0 \phi$	$(9.5 \begin{array}{c} +2.5 \\ -2.5 \end{array})$	$^{4}_{0}) \times 10^{-6}$		2459
$\overline{K}^*(892)^0 K^*(892)^0$	< 2.2	\times 10 ⁻⁵	CL=90%	_
$K^*(892)^0 K^*(892)^0$	< 3.7	$\times10^{-5}$	CL=90%	_
$K^*(892)^+ K^*(892)^-$	< 1.41	$\times10^{-4}$	CL=90%	_
$K_1(1400)^0 \rho^0$	< 3.0	$\times10^{-3}$	CL=90%	2388
$K_1(1400)^0 \phi$	< 5.0	$\times 10^{-3}$	CL=90%	2340
$K_2^*(1430)^0 \rho^0$	< 1.1	$\times 10^{-3}$	CL=90%	2380
$K_2^*(1430)^0 \phi$	< 1.4	$\times 10^{-3}$	CL=90%	2331
$K^*(892)^0 \gamma$		4) × 10 ⁻⁵		2564
$K_1(1270)^0 \gamma$	< 7.0	× 10 ⁻³	CL=90%	2486
$K_1(1400)^0 \gamma$	< 4.3	$\times10^{-3}$	CL=90%	2454
$K_2^*(1430)^0 \gamma$	< 4.0	$\times10^{-4}$	CL=90%	2445
$K^{*}(1680)^{0}\gamma$	< 2.0	$\times10^{-3}$	CL=90%	2360
$K_3^*(1780)^0 \dot{\gamma}$	< 1.0	%	CL=90%	2341
$K_{4}^{*}(2045)^{0}\gamma$	< 4.3	$\times10^{-3}$	CL=90%	2244
	unflavored meson r	modes		
$ ho^0\gamma$	< 1.7	× 10 ⁻⁵	CL=90%	_
$\omega\gamma$	< 9.2	× 10 × 10 ⁻⁶	CL=90% CL=90%	_
$\phi \gamma$	< 3.3	× 10 × 10 ⁻⁶	CL=90% CL=90%	_
$\pi^+\pi^-$		9) $\times 10^{-6}$	CL 3070	2636
$\pi^0 \pi^0$	< 5.7	× 10 ⁻⁶	CL=90%	2636
$\eta\pi^0$	< 2.9	\times 10 ⁻⁶	CL=90%	2610
$\eta \eta$	< 1.8	$\times10^{-5}$	CL=90%	2582
$\eta'\pi^0$	< 5.7	$\times10^{-6}$	CL=90%	2551
$\eta'\eta'$	< 4.7	$\times10^{-5}$	CL=90%	2460
$\eta' \dot{\eta}$	< 2.7	$\times10^{-5}$	CL=90%	2522
$\eta' \rho^0$	< 1.2	$\times10^{-5}$	CL=90%	2493
$\eta \rho^0$	< 1.0	$\times10^{-5}$	CL=90%	2554
$\omega\eta$	< 1.2	$\times10^{-5}$	CL=90%	_
$\omega \dot{\eta}'$	< 6.0	$\times10^{-5}$	CL=90%	_

$\omega \rho^{0}$	< 1.1	$\times 10^{-5}$	CL=90%	_
$\omega \omega$	< 1.9	\times 10 ⁻⁵	CL=90%	_
$\phi \pi^0$	< 5	\times 10 ⁻⁶	CL=90%	_
$\phi \eta$	< 9	$\times 10^{-6}$	CL=90%	_
$\phi \eta'_{\perp}$	< 3.1	\times 10 ⁻⁵	CL=90%	_
$\phi ho^{f 0}$	< 1.3	\times 10 ⁻⁵	CL=90%	_
$\phi\omega$	< 2.1	$\times10^{-5}$	CL=90%	_
$\phi\phi$	< 1.2	\times 10 ⁻⁵	CL=90%	2435
$\pi^+\pi^-\pi^0$	< 7.2	\times 10 ⁻⁴	CL=90%	2631
$ ho^0 \pi^0$	< 5.5	$\times 10^{-6}$	CL=90%	2581
$ ho^{\mp}\pi^{\pm}$	[ff] (2.8 ± 0.0	$.9) \times 10^{-5}$		2581
$\pi^{+}\pi^{-}\pi^{+}\pi^{-}$	< 2.3	\times 10 ⁻⁴	CL=90%	2621
$ ho^0 ho^0$	< 1.8	\times 10 ⁻⁵	CL=90%	2525
$a_1(1260)^{\mp}\pi^{\pm}$	[ff] < 4.9	\times 10 ⁻⁴	CL=90%	2494
$a_2(1320)^{\mp}\pi^{\pm}$	[ff] < 3.0	\times 10 ⁻⁴	CL=90%	2473
$\pi^{+} \frac{1}{\pi^{-}} \pi^{0} \pi^{0}$	< 3.1	$\times 10^{-3}$	CL=90%	2622
$ ho^+ ho^-$	< 2.2	$\times 10^{-3}$	CL=90%	2525
$a_1(1260)^0 \pi^0$	< 1.1	$\times 10^{-3}$	CL=90%	2494
$\omega \pi^0$	< 3	\times 10 ⁻⁶	CL=90%	2580
$\pi^{+} \pi^{+} \pi^{-} \pi^{-} \pi^{0}$	< 9.0	$\times 10^{-3}$	CL=90%	2609
$a_1(1260)^+ \rho^-$	< 3.4	$\times 10^{-3}$	CL=90%	2433
$a_1(1260)^0 \rho^0$	< 2.4	$\times 10^{-3}$	CL=90%	2433
$\pi^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{-}$	< 3.0	$\times 10^{-3}$	CL=90%	2592
$a_1(1260)^+ a_1(1260)^-$	< 2.8	$\times 10^{-3}$	CL=90%	2336
$\pi^{+} \pi^{+} \pi^{+} \pi^{-} \pi^{-} \pi^{-} \pi^{0}$	< 1.1	%	CL=90%	2572
	Baryon modes			
p p	< 7.0	$\times 10^{-6}$	CL=90%	2467
$\rho \overline{\rho} \pi^+ \pi^-$	< 2.5	× 10 × 10 −4	CL=90%	2406
$\rho \overline{\Lambda} \pi^-$	< 1.3	× 10 ⁻⁵	CL=90%	2401
$\frac{P}{\Lambda}\Lambda$	< 3.9	× 10 ⁻⁶	CL=90%	_
$\Delta^0 \overline{\Delta}{}^0$	< 1.5	× 10 ⁻³	CL=90%	2335
$\Delta^{++}\Delta^{}$	< 1.1	× 10 ⁻⁴		2335
$\overline{\Sigma}^{}\Delta^{++}$	< 1.0		CL=90%	1839
$\overline{\Lambda}^{c} p_{\pi} + \pi^{-}$.6) \times 10 ⁻³		_
$\frac{\Lambda_c}{\Lambda}$ p	< 2.1	× 10 ⁻⁴	CL=90%	2021
$ \frac{\Delta}{\Sigma_{c}} - \Delta^{++} $ $ \frac{\overline{\Lambda}_{c}}{\overline{\Lambda}_{c}} \rho \pi^{+} \pi^{-} $ $ \overline{\Lambda}_{c}^{-} \rho $ $ \overline{\Lambda}_{c}^{-} \rho \pi^{0} $ $ \overline{\Lambda}_{c}^{-} \rho \pi^{+} \pi^{-} \pi^{0} $ $ \overline{\Lambda}_{c}^{-} \rho \pi^{+} \pi^{-} \pi^{+} \pi^{-} $				2021
$\frac{\pi_c}{4} p^{\pi} + 0$	< 5.9		CL=90%	_
$\frac{\Lambda_c}{\sigma} p \pi^+ \pi^- \pi^-$	< 5.07		CL=90%	_
$\Lambda_c^- p \pi^+ \pi^- \pi^+ \pi^-$	< 2.74	\times 10 ⁻³	CL=90%	_

Lepton Family number (LF) violating modes, or $\Delta B = 1$ weak neutral current (B1) modes

$\gamma \gamma$		< 1.7	\times 10 ⁻⁶	CL=90%	2640
e^+e^-	B1	< 8.3	\times 10 ⁻⁷	CL=90%	2640
$\mu^+\mu^-$	B1	< 6.1	$\times 10^{-7}$	CL=90%	2638
$K^0e^+e^-$	B1	< 2.7	$\times 10^{-6}$	CL=90%	2616
$K^0\mu^+\mu^-$	B1	< 3.3	$\times 10^{-6}$	CL=90%	2612
$K^*(892)^0 e^+ e^-$	B1	< 6.4	$\times 10^{-6}$	CL=90%	2564
$K^*(892)^0 \mu^+ \mu^-$	B1	< 4.2	$\times 10^{-6}$	CL=90%	2559
$K^*(892)^0 \nu \overline{\nu}$	B1	< 1.0	$\times 10^{-3}$	CL=90%	2244
$e^{\pm}\mu^{\mp}$	LF	[ff] < 1.5	$\times 10^{-6}$	CL=90%	2639
$e^{\pm} au^{\mp}$	LF	[ff] < 5.3	$\times 10^{-4}$	CL=90%	2341
$\mu^{\pm} \tau^{\mp}$	LF	[ff] < 8.3	$\times 10^{-4}$	CL=90%	2339

B^{\pm}/B^0 ADMIXTURE

CP violation

$$A_{CP}(B \to K^*(892)\gamma) = -0.01 \pm 0.07$$

 $A_{CP}(B \to s\gamma) = -0.08 \pm 0.11$

The branching fraction measurements are for an admixture of B mesons at the $\Upsilon(4S)$. The values quoted assume that $B(\Upsilon(4S) \to B\overline{B}) = 100\%$.

For inclusive branching fractions, e.g., $B \rightarrow D^{\pm}$ anything, the treatment of multiple D's in the final state must be defined. One possiblity would be to count the number of events with one-or-more D's and divide by the total number of B's. Another possibility would be to count the total number of D's and divide by the total number of B's, which is the definition of average multiplicity. The two definitions are identical when only one of the specified particles is allowed in the final state. Even though the "one-or-more" definition seems sensible, for practical reasons inclusive branching fractions are almost always measured using the multiplicity definition. For heavy final state particles, authors call their results inclusive branching fractions while for light particles some authors call their results multiplicities. In the B sections, we list all results as inclusive branching fractions, adopting a multiplicity definition. This means that inclusive branching fractions can exceed 100% and that inclusive partial widths can exceed total widths, just as inclusive cross sections can exceed total cross sections.

 \overline{B} modes are charge conjugates of the modes below. Reactions indicate the weak decay vertex and do not include mixing.

Scale factor/ pB DECAY MODES Fraction (Γ_j/Γ) Confidence level (MeV/c)

Semileptonic and leptonic modes

```
B \rightarrow {\rm e}^+ \nu_{\rm e} anything [ddd] ( 10.2 \pm 0.4 ) % B \rightarrow \overline{p} \, {\rm e}^+ \nu_{\rm e} anything < 1.6 \times B \rightarrow \ell^+ \nu_{\ell} anything [qq,ddd] ( 10.38 \pm 0.32) %
                                                                                     \times 10^{-3} CL=90%
    B 
ightarrow D^- \ell^+ 
u_\ell anything [qq] ( 2.7 \pm 0.8 )%
    B \rightarrow \overline{D}^0 \ell^+ \nu_{\ell} anything [qq] ( 7.0 ± 1.4 )%
    B 
ightarrow \, \overline{D}^{**} \ell^+ 
u_\ell [qq,eee] ( 2.7 \pm 0.7 )%
        B \to \overline{D}_1(2420) \ell^+ \nu_\ell \, {\rm any} ( 7.4 \pm 1.6 ) \times 10<sup>-3</sup>
             thing
        B \rightarrow D\pi \ell^+ \nu_{\ell} anything + (2.6 ± 0.5)%
                                                                                                     S = 1.5
             D^*\pi\ell^+\nu_\ell anything
        B \to D\pi \ell^+ \nu_\ell anything ( 1.5 \pm 0.6 ) % 
 B \to D^*\pi \ell^+ \nu_\ell anything ( 1.9 \pm 0.4 ) % 
 B \to \overline{D}_2^*(2460) \ell^+ \nu_\ell any- < 6.5 \times 10<sup>-3</sup> CL=95%
        B \to \tilde{D}^{*-} \pi^+ \ell^+ \nu_\ell any- ( 1.00 ± 0.34) %
             thing
    B \to D_s^- \ell^+ \nu_\ell anything [qq] < 9 \times 10^{-3} \text{ CL} = 90\% B \to D_s^- \ell^+ \nu_\ell K^+ any- [qq] < 6 \times 10^{-3} \text{ CL} = 90\%
        B \rightarrow D_s^- \ell^+ \nu_\ell K^0 anything [qq] < 9 \times 10^{-3} CL=90%
    B \rightarrow K^+ \tilde{\ell}^+ \nu_{\ell} anything
                                              [qq] ( 6.0 \pm 0.6 ) %
    B \rightarrow K^- \ell^+ \nu_\ell anything
                                             [qq] (10 \pm 4) \times 10^{-3}
    B \rightarrow K^0 / \overline{K}^0 \ell^+ \nu_\ell anything [qq] ( 4.4 \pm 0.5)%
                                              D, D^*, or D_s modes
                                                 (23.9 \pm 1.9)\%
(63.9 \pm 3.0)\%
 B \rightarrow D^{\pm} anything
B \rightarrow D^0/\overline{D}^0 anything
                                                                                                     S = 1.1
                                                     (22.5 \pm 1.5)\%
B \rightarrow D^*(2010)^{\pm} anything
B \rightarrow D_s^{*\pm} \overline{D}^{(*)}
                                                              (4.2 \pm 1.2)\%
 B \rightarrow D^{(*)} \overline{D}^{(*)} K^0 + [ff,fff] (7.1 + 2.7 / 1.7) \%
```

$$B \to D_s^{(*)} \overline{D}^{(*)}$$
 [ff,fff] (4.9 ± 1.2)%
 $B \to D^* D^* (2010)^{\pm}$ [ff] < 5.9 × 10⁻³ CL = 90%

$$B \to D^* D^* (2010)^{\pm}$$
 [ff] < 5.9 $\times 10^{-3}$ CL=90%
 $B \to D D^* (2010)^{\pm} + D^* D^{\pm}$ [ff] < 5.5 $\times 10^{-3}$ CL=90%

```
B \rightarrow DD^{\pm}
                                                     [ff] < 3.1 \times 10^{-3} \text{ CL} = 90\%
B 
ightarrow \left. D_s^{\,(*)\pm} \, \overline{D}^{\,(*)} \, X \left( n \, \pi^\pm 
ight) - \left[ 	ext{\it ff,fff} 
ight] \, \left( egin{array}{ccc} 9 & + & 5 \\ - & 4 \end{array} 
ight) \, \%
                                              < 1.1 \times 10^{-3} CL=90% [ff] < 5 \times 10^{-4} CL=90%
B \rightarrow D^*(2010) \gamma
B \rightarrow D_s^+ \pi^- , D_s^{*+} \pi^- ,
     D_{s}^{+}\rho^{-}, D_{s}^{*+}\rho^{-}, D_{s}^{+}\pi^{0}, D_{s}^{*+}\pi^{0}, D_{s}^{*+}\eta, D_{s}^{*+}\eta,
     D_{s}^{+} \rho^{0}, D_{s}^{*+} \rho^{0}, D_{s}^{+} \omega,
B \rightarrow D_{s1}(2536)^+ anything
                                                                   9.5 \times 10^{-3} CL=90%
                                              Charmonium modes
                                                     ( 1.15\pm~0.06)~\%
B \rightarrow J/\psi(1S) anything
                                                   (8.0 \pm 0.8) \times 10^{-3}
   B \rightarrow J/\psi(1S) (direct) any-
        thing
   \begin{array}{lll} \rightarrow & \psi(2S) \text{ anything} & (& 3.5 \, \pm \, 0.5 \,\,) \times 10^{-3} \\ \rightarrow & \chi_{c1}(1P) \text{ anything} & (& 3.6 \, \pm \, 0.5 \,\,) \times 10^{-3} \\ B \rightarrow & \chi_{c1}(1P) \text{ (direct) any-} & (& 3.3 \, \pm \, 0.5 \,\,) \times 10^{-3} \end{array}
B \rightarrow \psi(2S) anything
B 
ightarrow \ \chi_{c1}(1P) anything
        thing
                                                (\phantom{0}7\phantom{0}\pm\phantom{4}\phantom{0})\times10^{-4}
B \rightarrow \chi_{c2}(1P) anything
                                                                                 \times 10^{-3} CL=90%
B \rightarrow \eta_c(1S) anything
                                                 K or K* modes
B \rightarrow K^{\pm} anything
                                                      [ff] ( 78.9 \pm 2.5 ) %
   B \rightarrow K^+ anything
                                                              (66 \pm 5)\%
   B \rightarrow K^- anything
                                                              (13 \pm 4)\%
B \rightarrow K^0 / \overline{K}^0 anything
                                                     [ff] (64 \pm 4)\%
B \rightarrow K^*(892)^{\pm} anything
                                                              (18 \pm 6)\%
B \rightarrow K^*(892)^0 / \overline{K}^*(892)^0 any- [ff] (14.6 ± 2.6) %
     thing
                                                             (4.2 \pm 0.6) \times 10^{-5}
B \rightarrow K^*(892)\gamma
                                                            < 1.27 \times 10<sup>-4</sup> CL=90%
B \rightarrow K_1(1400) \gamma
                                                            (1.7 \ ^{+} \ ^{0.6} _{-}) \times 10^{-5}
B \rightarrow K_2^*(1430) \gamma
                                                            < 1.2 \times 10^{-3} CL=90%
B \rightarrow K_2(1770) \gamma
                                                                                  \times 10^{-3} CL=90%
B \rightarrow K_3^*(1780) \gamma
                                                            < 3.0
B \rightarrow K_A^*(2045) \gamma
                                                            < 1.0
                                                                                     \times 10^{-3} CL=90%
B \rightarrow \eta'(958) K
                                                           (8.3 \pm 1.1) \times 10^{-5}
B \rightarrow \eta'(958) K^*(892)
                                                                                     \times 10^{-5} CL=90%
                                                            < 2.2
                                                                                     \times 10^{-6} CL=90%
B \rightarrow \eta K
                                                            < 5.2
B \rightarrow \eta K^*(892)
                                                           (1.8 \pm 0.5) \times 10^{-5}
B \rightarrow b \rightarrow \overline{s}\gamma
                                                            (3.3 \pm 0.4) \times 10^{-4}
B \rightarrow \overline{b} \rightarrow \overline{s} gluon
                                                                                     % CL=90%
                                                            < 6.8
                                                            < 4.4 \times 10^{-4} CL=90%
   B \rightarrow \eta anything
                                                             (6.2 \ ^{+} \ ^{2.1} _{-} \ ) \times 10^{-4}
   B \rightarrow \eta' anything
HTTP://PDG.LBL.GOV
                                         Page 65 Created: 10/8/2002 11:05
```

Light unflavored meson modes

$B ightarrow ho \gamma$	< 1.4	$\times 10^{-5}$	CL=90%	_
$B ightarrow \ \pi^{\pm}$ anything	[ff , ggg] (358 \pm 7) %		_
$B ightarrow \ \pi^0$ anything	(235 ± 11)) %		_
$B ightarrow \ \eta$ anything	(17.6 ± 1.6)) %		_
$B ightarrow ho^0$ anything	(21 ± 5) %		_
$B ightarrow \ \omega$ anything	< 81	%	CL=90%	_
$B ightarrow \ \phi$ anything	$(3.5\ \pm\ 0.7$) %	S=1.8	_
$B \rightarrow \phi K^*(892)$	< 2.2	$\times 10^{-5}$	CL=90%	_

	Baryon modes	
$B \rightarrow \Lambda_c^{\pm}$ anything	(6.4 \pm 1.1) %	_
$B \rightarrow \overline{\Lambda}_c^- e^+$ anything	$<$ 3.2 \times 10 ⁻³ CL=	90% –
$B \rightarrow \overline{\Lambda}_c^- p$ anything	(3.6 ± 0.7) %	_
$B \rightarrow \overline{\Lambda}_c^- p e^+ \nu_e$	$<$ 1.5 \times 10 ⁻³ CL=	90% –
$B \to \overline{\Sigma}_c^{}$ anything	(4.2 \pm 2.4) \times 10 ⁻³	_
$B \to \overline{\Sigma}_{c}^{-}$ anything	$< 9.6 \times 10^{-3} \text{ CL} =$	90% –
$B \to \overline{\Sigma}_c^{0}$ anything	(4.6 \pm 2.4) \times 10 ⁻³	_
$B \to \overline{\Sigma_c^0} N(N = p \text{ or } n)$	$<$ 1.5 \times 10 ⁻³ CL=	90% –
$B \rightarrow \Xi_c^0$ anything	(1.4 ± 0.5) $\times 10^{-4}$	_
$ imes$ B($\overline{\Xi}_c^0 ightarrow \overline{\Xi}^- \pi^+$)		
$B \rightarrow \Xi_c^+$ anything	$(4.5 + 1.3) \times 10^{-4}$	_
$\times \ B(\Xi_c^+ \to \Xi^- \pi^+ \pi^+)$	- 1.2 /	
$B \rightarrow p/\overline{p}$ anything	[ff] (8.0 \pm 0.4) %	_
$B \rightarrow p/\overline{p}(\text{direct})$ anything	[ff] (5.5 \pm 0.5)%	_
$B \rightarrow \Lambda/\overline{\Lambda}$ anything	[ff] (4.0 ± 0.5)%	_
$B o \Xi^-/\overline{\Xi}^+$ anything	[ff] $(2.7 \pm 0.6) \times 10^{-3}$	_
$B \rightarrow \text{ baryons anything}$	(6.8 \pm 0.6) %	_
$B \rightarrow p\overline{p}$ anything	(2.47± 0.23) %	_
$B \rightarrow \Lambda \overline{p} / \overline{\Lambda} p$ anything	[ff] $(2.5 \pm 0.4)\%$	_
$B o \Lambda\Lambda$ anything	$<$ 5 \times 10 ⁻³ CL=	90% –

Lepton Family number (LF) violating modes or $\Delta B = 1$ weak neutral current (B1) modes

				` '	
$B \rightarrow e^+e^-s$	B1	<	5.7	$ imes 10^{-5}$ CL=90%	_
$B \rightarrow \mu^+ \mu^- s$	B1	<	5.8	$\times10^{-5}$ CL=90%	_
$B ightarrow \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	B1	<	1.3	imes 10 ⁻⁶ CL=90%	_
$B \to K^*(892) e^+ e^-$	B1	<	5.6	$\times 10^{-6} \text{ CL} = 90\%$	_

$$B \to K \mu^+ \mu^ B1$$
 $(9.9 + 4.2 \atop -3.5) \times 10^{-7}$ $B \to K^*(892) \mu^+ \mu^ B1$ $< 3.1 \times 10^{-6} \text{ CL} = 90\%$ $B \to K \ell^+ \ell^ B1$ $(7.5 + 2.6 \atop -2.2) \times 10^{-7}$ $B \to K^*(892) \ell^+ \ell^ B1$ $< 3.3 \times 10^{-6} \text{ CL} = 90\%$ $B \to e^{\pm} \mu^{\mp} s$ LF $[ff] < 2.2 \times 10^{-5} \text{ CL} = 90\%$

$B^{\pm}/B^{0}/B_{s}^{0}/b$ -baryon ADMIXTURE

These measurements are for an admixture of bottom particles at high energy (LEP, Tevatron, $Sp\overline{p}S$).

Mean life
$$au=(1.564\pm0.014)\times10^{-12}$$
 s Mean life $au=(1.72\pm0.10)\times10^{-12}$ s Charged b -hadron admixture Mean life $au=(1.58\pm0.14)\times10^{-12}$ s Neutral b -hadron admixture
$$au_{\rm charged} = (1.58\pm0.14)\times10^{-12} = 1.09\pm0.13$$

$$au_{\rm charged} = (1.58\pm0.14)\times10^{-12} = 1.09\pm0.13$$

$$au_{\rm charged} = (1.58\pm0.14)\times10^{-12} = 1.09\pm0.13$$

$$au_{\rm charged} = (1.58\pm0.14)\times10^{-12} = 1.09\pm0.13$$

The branching fraction measurements are for an admixture of B mesons and baryons at energies above the $\Upsilon(4S)$. Only the highest energy results (LEP, Tevatron, $Sp\overline{p}S$) are used in the branching fraction averages. In the following, we assume that the production fractions are the same at the LEP and at the Tevatron.

For inclusive branching fractions, e.g., $B \to D^\pm$ anything, the treatment of multiple D's in the final state must be defined. One possiblity would be to count the number of events with one-or-more D's and divide by the total number of B's. Another possibility would be to count the total number of D's and divide by the total number of B's, which is the definition of average multiplicity. The two definitions are identical when only one of the specified particles is allowed in the final state. Even though the "one-or-more" definition seems sensible, for practical reasons inclusive branching fractions are almost always measured using the multiplicity definition. For heavy final state particles, authors call their results inclusive branching fractions while for light particles some authors call their results multiplicities. In the B sections, we list all results as inclusive branching fractions, adopting a multiplicity definition. This means that inclusive branching fractions can exceed 100% and that inclusive partial widths can exceed total widths, just as inclusive cross sections can exceed total cross sections.

The modes below are listed for a \overline{b} initial state. b modes are their charge conjugates. Reactions indicate the weak decay vertex and do not include mixing.

HTTP://PDG.LBL.GOV

PRODUCTION FRACTIONS

The production fractions for weakly decaying b-hadrons at high energy have been calculated from the best values of mean lives, mixing parameters, and branching fractions in this edition by the LEP B Oscillation Working Group as described in the note " B^0 - \overline{B}^0 Mixing" in the B^0 Particle Listings. Values assume

$$\begin{array}{ll} \mathsf{B}(\overline{b} \to B^+) = \mathsf{B}(\overline{b} \to B^0) \\ \mathsf{B}(\overline{b} \to B^+) + \mathsf{B}(\overline{b} \to B^0) + \mathsf{B}(\overline{b} \to B^0) + \mathsf{B}(b \to b\text{-baryon}) = 100 \ \%. \end{array}$$

The notation for production fractions varies in the literature $(f_d, d_{B^0}, f(b \to \overline{B}^0))$, $Br(b \to \overline{B}^0)$). We use our own branching fraction notation here, $B(\overline{b} \to B^0)$.

B^+	(38.8 ± 1.3) %	_
B^0	$(38.8 \pm 1.3)\%$	_
B_s^0	(10.6 ± 1.3) %	_
<i>b</i> -baryon	(11.8 ± 2.0) %	_
B_c	<u> </u>	_

DECAY MODES

Semileptonic and leptonic modes

u anything		(23.1 ± 1.5) %	_
$\ell^+ u_\ell$ anything	[qq]	(10.59± 0.22) %	_
$e^+ \stackrel{\sim}{ u_e}$ anything	1	(10.86± 0.35) %	_
$\mu^+ u_\mu$ anything		$(\ 10.95 ^{+}_{-}\ 0.25 ^{+})\ \%$	_
$D^-\ell^+ u_\ell$ anything	[qq]	(2.31± 0.35) % S=1.6	_
$D^-\pi^+\ell^+ u_\ell$ anything		$(4.9 \pm 1.9) \times 10^{-3}$	_
$D^-\pi^-\ell^+ u_\ell$ anything		$(2.6 \pm 1.6) \times 10^{-3}$	_
$\overline{D}{}^0\ell^+\nu_\ell$ anything	[qq]	(6.90 ± 0.35) %	_
$\overline{D}{}^0\pi^-\ell^+ u_\ell$ anything		(1.07± 0.27) %	_
$\overline{D}{}^0\pi^+\ell^+ u_\ell$ anything		$(2.3 \pm 1.6) \times 10^{-3}$	_
$D^{*-}\ell^+\nu_\ell$ anything	[qq]	(2.75± 0.19) %	_
$D^{*-}\pi^{+}\ell^{+} u_{\ell}$ anything		$(4.8 \pm 1.0) \times 10^{-3}$	_
$D^{*-}\pi^-\ell^+ u_\ell$ anything		$(6 \pm 7) \times 10^{-4}$	_
- 0 . l	[qq,hhh]	seen	_
$D_i^-\ell^+ u_\ell$ anything	[qq,hhh]	seen	_
$\overline{D}_2^*(2460)^0\ell^+ u_\ell$ anything	3	seen	_
$D_2^*(2460)^-\ell^+ u_\ell$ anythin	g	seen	_
charmless $\ell \overline{ u}_\ell$	[99]	$(1.7 \pm 0.5) \times 10^{-3}$	_
$ au^+ u_ au$ anything		(2.48 ± 0.26) %	_
$D^{*-} au u_ au$ anything		$(9 \pm 4) \times 10^{-3}$	_
$\overline{c} ightarrow \ \ell^- \overline{ u}_\ell$ anything	[qq]	(8.0 ± 0.4) %	_
$c ightarrow \ell^+ u$ anything		$(1.6 + 0.4 \atop -0.5)\%$	_

HTTP://PDG.LBL.GOV

Page 68

Charmed meson and baryon modes

Charinea ii	163011	all	u vai	yu		Jues	
$\overline{D}{}^0$ anything		(60.9	\pm	3.2) %	_
$D^0D_s^\pm$ anything	[<i>ff</i>]	(9.1	+	3.9 2.8) %	_
$D^{\mp}D_s^{\pm}$ anything	[<i>ff</i>]	(4.0	+	2.3 1.8) %	_
$\overline{D}{}^0 D^0$ anything	[ff]	(5.1	+	2.0 1.8) %	_
D^0D^\pm anything	[ff]	(2.7	+	1.8 1.6) %	_
D^\pmD^\mp anything	[<i>ff</i>]	<	9			$\times 10^{-3} \text{ CL}=90\%$	_
D^- anything		(23.5	\pm	2.2) %	_ _ _ _
$D^*(2010)^+$ anything		(17.3	\pm	2.0) %	-
$D_1(2420)^0$ anything		(5.0	\pm	1.5) %	-
$D^*(2010)^{\mp}D_s^{\pm}$ anything	[<i>ff</i>]	(3.3	+	1.6 1.3) %	_
$D^0D^*(2010)^\pm$ anything	[ff]	(3.0	+	1.1 0.9) %	_
$D^*(2010)^\pmD^\mp$ anything	[ff]	(2.5	+	1.2 1.0) %	- - - -
$D^*(2010)^{\pm} D^*(2010)^{\mp}$ anything	[<i>ff</i>]	(1.2	\pm	0.4) %	_
$D_2^*(2460)^0$ anything			4.7				_
\overline{D}_s anything		(18	\pm	5) %	_
Λ_c anything		(9.7	\pm	2.9) %	_
\overline{c}/c anything	[ggg]	(1	116.6	\pm	3.3) %	-

Charmonium modes

$J/\psi(1S)$ anything	(1.16± 0.10) %	_
$\psi(2S)$ anything	($4.8 \pm 2.4) \times 10^{-3}$	_
$\chi_{c1}(1P)$ anything	(1.5 \pm 0.5) %	-

K or K* modes

$\overline{s}\gamma$	$(3.1 \pm 1.1) \times 10^{-4}$	_
$\overline{s}\overline{\nu}\nu$	$<$ 6.4 $\times 10^{-4}$ CL=90%	_
K^\pm anything	$(74 \pm 6)\%$	_
K_S^0 anything	(29.0 ± 2.9) %	-

Pion modes

π^{\pm} anything		$(397 \pm 21)\%$	_
π^0 anything	[ggg]	$(278 \pm 60)\%$	_
ϕ anything		(2.82± 0.23) %	_

Baryon modes

$$p/\overline{p}$$
 anything (13.1 \pm 1.1) % -

Other modes

charged anything
$$[ggg] \quad (497 \quad \pm \ 7 \quad) \ \% \qquad \qquad -$$
 hadron $^+$ hadron $^-$
$$(\quad 1.7 \ ^+ \ ^{1.0}_{-0.7} \) \times 10^{-5} \qquad \qquad -$$
 charmless
$$(\quad 7 \quad \pm 21 \quad) \times 10^{-3} \qquad \qquad -$$

HTTP://PDG.LBL.GOV

Page 69

Baryon modes

$$\Lambda/\overline{\Lambda}$$
 anything (5.9 \pm 0.6)% - b-baryon anything (10.2 \pm 2.8)%

 $\Delta B = 1$ weak neutral current (B1) modes

$$\mu^+\mu^-$$
 anything B1 < 3.2 \times 10⁻⁴ CL=90%

$$I(J^P) = \frac{1}{2}(1^-)$$

 \it{I} , \it{J} , \it{P} need confirmation. Quantum numbers shown are quark-model predictions.

Mass
$$m_{B^*} = 5325.0 \pm 0.6 \; {\rm MeV}$$
 $m_{B^*} - m_B = 45.78 \pm 0.35 \; {\rm MeV}$

B* DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)	
$\overline{B\gamma}$	dominant	46	

BOTTOM, STRANGE MESONS $(B = \pm 1, S = \mp 1)$

 $B_s^0 = s\overline{b}, \ \overline{B}_s^0 = \overline{s}\,b, \quad \text{similarly for } B_s^*\text{'s}$

 B_s^0

$$I(J^P) = 0(0^-)$$

I, J, P need confirmation. Quantum numbers shown are quark-model predictions.

Mass
$$m_{B_s^0}=5369.6\pm2.4$$
 MeV Mean life $au=(1.461\pm0.057) imes10^{-12}$ s $c au=438~\mu{
m m}$

$B_s^0 - \overline{B}_s^0$ mixing parameters

$$\Delta m_{B_s^0} = m_{B_{sH}^0} - m_{B_{sL}^0} > 13.1 \times 10^{12} \ \hbar \ \text{s}^{-1}, \ \text{CL} = 95\%$$

$$x_s = \Delta m_{B_s^0} / \Gamma_{B_s^0} > 19.0, \ \text{CL} = 95\%$$

$$\chi_s > 0.49862, \ \text{CL} = 95\%$$

These branching fractions all scale with B($\overline{b} \to B_s^0$), the LEP B_s^0 production fraction. The first four were evaluated using B($\overline{b} \to B_s^0$) = (10.7 \pm 1.4)% and the rest assume B($\overline{b} \to B_s^0$) = 12%.

The branching fraction ${\sf B}(B_s^0\to D_s^-\ell^+\nu_\ell\,{\sf anything})$ is not a pure measurement since the measured product branching fraction ${\sf B}(\overline{b}\to B_s^0)\times {\sf B}(B_s^0\to D_s^-\ell^+\nu_\ell\,{\sf anything})$ was used to determine ${\sf B}(\overline{b}\to B_s^0)$, as described in the note on "Production and Decay of b-Flavored Hadrons."

B _s ⁰ DECAY MODES	Fraction	(Γ_i/Γ)	Confidence level	<i>p</i> (MeV/ <i>c</i>)
D_s^- anything	(94	±30)%		
$D_s^-\ell^+ u_\ell$ anything	[iii] (7.9	\pm 2.4) %		_
$D_s^-\pi^+$	< 13	%		2321
$D_{s}^{(*)+}D_{s}^{(*)-}$	(23	$^{+21}_{-13}$)%		_
$J/\psi(1S)\phi$	(9.3	\pm 3.3) \times 10	₀ -4	1590
$J/\psi(1S)\pi^0$	< 1.2	× 10	0^{-3} 90%	1788
$J/\psi(1S)\eta$	< 3.8	× 10	0^{-3} 90%	1735
$\psi(2S)\phi$	seen			1122
$\pi^+\pi^-$	< 1.7	\times 10	0^{-4} 90%	2681
$\pi^0 \pi^0$	< 2.1	\times 10	0^{-4} 90%	2681
$\eta\pi^0$	< 1.0	× 10	90%	2655
HTTP://PDG.LBL.GOV	Page 71	Creat	ed: 10/8/200	2 11:05

$\eta\eta$	< 1.5	$\times 10^{-3}$	90%	2628
$\frac{\eta \eta}{ ho^0 ho^0}$	< 3.20	$\times10^{-4}$	90%	_
$\phi ho^{f 0}$	< 6.17	$\times 10^{-4}$	90%	_
$\phi\phi$	< 1.183	$\times 10^{-3}$	90%	_
π^+ K $^-$	< 2.1	$\times10^{-4}$	90%	2660
K^+K^-	< 5.9	$\times10^{-5}$	90%	2639
$\overline{K}^*(892)^0 \rho^0$	< 7.67	$\times 10^{-4}$	90%	_
$\overline{K}^*(892)^0 K^*(892)^0$	< 1.681	$\times 10^{-3}$	90%	_
$\phi K^*(892)^0$	< 1.013	$\times 10^{-3}$	90%	_
$p\overline{p}$	< 5.9	$\times10^{-5}$	90%	2515
$\gamma\gamma$	< 1.48	$\times 10^{-4}$	90%	2685
$\phi\gamma$	< 7	$\times 10^{-4}$	90%	2588

Lepton Family number (LF) violating modes or $\Delta B = 1$ weak neutral current (B1) modes

$\mu^+\mu^-$	B1	<	2.0	\times 10 ⁻⁶	90%	2682
e^+e^-	B1	<	5.4	$\times10^{-5}$	90%	2864
$e^{\pm}\mu^{\mp}$	LF	[ff] <	6.1	$\times 10^{-6}$	90%	2864
$\phi u \overline{ u}$	B1	<	5.4	$\times 10^{-3}$	90%	_

BOTTOM, CHARMED MESONS $(B=C=\pm 1)$

 $B_c^+ = c\overline{b}, B_c^- = \overline{c}b,$ similarly for B_c^* 's

$$I(J^P) = 0(0^-)$$

I, J, P need confirmation.

Quantum numbers shown are quark-model predicitions.

Mass
$$m = 6.4 \pm 0.4 \; \mathrm{GeV}$$

Mean life $\tau = (0.46^{+0.18}_{-0.16}) \times 10^{-12} \; \mathrm{s}$

 B_c^- modes are charge conjugates of the modes below.

 B_c^+ DECAY MODES \times B($\overline{b} \rightarrow B_c$) Fraction (Γ_i/Γ)

Confidence level (MeV/c)

Created: 10/8/2002 11:05

The following quanities are not pure branching ratios; rather the fraction $\Gamma_i/\Gamma \times B(\overline{b} \rightarrow B_c).$

cc MESONS

$$\eta_c(1S)$$

$$I^{G}(J^{PC}) = 0^{+}(0^{-}+)$$

Mass $m = 2979.7 \pm 1.5 \; \text{MeV} \quad (\text{S} = 1.8)$ Full width $\Gamma = 16.0^{+3.6}_{-3.2} \; \text{MeV} \quad (\text{S} = 1.2)$

$\eta_c(15)$	DECAY	MODES
		_
	_	L

Fraction (Γ_i/Γ)

Confidence level (MeV/c)

		` ','	•	,	
	Decays involving I	hadronic re	sonances		
$\eta'(958)\pi\pi$		(4.1 ± 1.7)) %		1319
ho ho		(2.6 ± 0.9)) %		1275
$K^*(892)^0 K^- \pi^+ +$	- C.C.	(2.0 ± 0.7)) %		1273
$K^*(892)\overline{K}^*(892)$		(8.5 ± 3.1)	$) \times 10^{-3}$		1193
$\phi\phi$		(7.1 ± 2.8)	$) \times 10^{-3}$		1086
$a_0(980)\pi$		< 2	%	90%	1323
$a_2(1320)\pi$		< 2	%	90%	1193
$K^*(892)\overline{K} + \text{c.c.}$		< 1.28	%	90%	1307
$f_2(1270)\eta$		< 1.1	%	90%	1142
$\omega \omega$		< 3.1	\times 10 ⁻³	90%	1268
	Decays into	stable had	rons		
$K\overline{K}\pi$		(5.5 ± 1.7)) %		1378
$\eta \pi \pi$		(4.9 ± 1.8)) %		1425
$\pi^+\pi^-$ K ⁺ K ⁻		$(2.0 \begin{array}{c} +0.7 \\ -0.6 \end{array})$) %		1342
$2(K^+K^-)$		(2.1 ± 1.2)) %		1053
$2(\pi^{+}\pi^{-})$		(1.2 ± 0.4)			1457
ρ <u>-</u> <u> </u>		(1.2 ± 0.4)	$) \times 10^{-3}$		1157

Radiative decays

< 3.1

< 1.2

< 2

 $\Lambda \overline{\Lambda}$

 $K\overline{K}\eta$

 $\pi^+\pi^-p\overline{p}$

 $(3.0 \pm 1.2) \times 10^{-4}$

%

 $\times 10^{-3}$

1489

1262

1023

987

90%

90%

90%

$J/\psi(1S)$

$$I^{G}(J^{PC}) = 0^{-}(1^{-})$$

Mass $m = 3096.87 \pm 0.04 \text{ MeV}$ Full width $\Gamma=87\pm5~\text{keV}$ $\Gamma_{e\,e}=5.26\pm0.37~\text{keV}$

1/a//15) DECAY MODES	ı	Exaction (F /F)	Scale factor/	
$J/\psi(1S)$ DECAY MODES		Fraction (Γ_i/Γ)	Confidence level	(MeV/ <i>c</i>)
hadrons		$(87.7 \pm 0.5)\%$		_
virtual $\gamma ightarrow $ hadrons		$(17.0 \pm 2.0)\%$		_
$e^{+}e^{-}$		(5.93±0.10) %		1548
$\mu^+\mu^-$		$(5.88\pm0.10)\%$		1545
Decays involv	ing l	hadronic resonan	ces	
$ ho\pi$		$(1.27\pm0.09)\%$		1449
$ ho^{0}\pi^{0}$		(4.2 \pm 0.5) $ imes$ 1	0-3	1449
$a_2(1320) \rho$		$(1.09\pm0.22)\%$		1125
$\omega \pi^+ \pi^+ \pi^- \pi^-$		(8.5 ± 3.4) \times 1	0-3	1392
$\omega \pi^+ \pi^-$		(7.2 ± 1.0) $ imes 1$	0-3	1435
$\omega f_2(1270)$		(4.3 \pm 0.6) $ imes$ 1		1143
$K^*(892)^0\overline{K}_2^*(1430)^0+$ c.c.		($6.7~\pm2.6$) \times 1		1005
$\omega K^*(892)\overline{K} + \text{c.c.}$		(5.3 ± 2.0) \times 1		1098
$K^{+}\overline{K}^{*}(892)^{-}$ + c.c.		(5.0 \pm 0.4) $ imes$ 1	0-3	1373
$K^{0}\overline{K}^{*}(892)^{0}$ + c.c.		(4.2 \pm 0.4) $ imes$ 1		1371
$K_1(1400)^{\pm} K^{\mp}$		(3.8 ± 1.4) \times 1		_
$\omega \pi^0 \pi^0$		(3.4 \pm 0.8) \times 1		1436
$b_1(1235)^{\pm}\pi^{\mp}$	[<i>ff</i>]	($3.0~\pm0.5$) \times 1		1299
$\omega K^{\pm} K_{S}^{0} \pi^{\mp}$	[<i>ff</i>]	($2.9~\pm0.7$) \times 1		1210
$b_1(1235)^0 \underline{\pi^0}$		(2.3 ± 0.6) \times 1		1299
$\phi K^*(892)\overline{K} + \text{c.c.}$		$(2.04\pm0.28)\times1$		969
$\omega K \overline{K}$		($1.9~\pm0.4$) $\times1$		1268
$\omega f_0(1710) \rightarrow \omega K \overline{K}$		(4.8 ± 1.1) $ imes 1$		878
$\phi 2(\pi^{+}\pi^{-})$		$(1.60\pm0.32)\times1$		1318
$\Delta(1232)^{++}\overline{p}\pi^-$		($1.6~\pm0.5$) $ imes1$		1030
$\omega\eta$		$(1.58\pm0.16)\times1$		1394
$\phi K \overline{K}$		$(1.48\pm0.22)\times1$		1179
$\phi f_0(1710) \rightarrow \phi K \overline{K}$		(3.6 ± 0.6) \times 1		875
$p\overline{p}\omega$		$(1.30\pm0.25)\times1$		769
$\Delta(1232)^{++} \overline{\Delta}(1232)^{}$		$(1.10\pm0.29)\times1$		938
$\Sigma(1385)^{-}\overline{\Sigma}(1385)^{+}$ (or c.c.)	[<i>ff</i>]	$(1.03\pm0.13)\times1$		692
$p\overline{p}\eta'(958)$		$(9 \pm 4) \times 1$		596
$\phi f_2'(1525)$		$(8 \pm 4) \times 1$		871
$\phi \pi^{+} \pi^{-}$		(8.0 ± 1.2) \times 1	0-4	1365

$\phi K^{\pm} K^0_S \pi^{\mp}$	[ff] (7.2 =	$\pm 0.9 \) \times 10^{-4}$		1114
$\omega f_1(1420)$	(6.8 =	$\pm 2.4) \times 10^{-4}$		1062
$\phi\eta$	(6.5 =	$\pm 0.7 \) \times 10^{-4}$		1320
$\Xi(1530)^{-}\overline{\Xi}^{+}$	(5.9 =	± 1.5) $\times 10^{-4}$		597
$\rho K^{-} \overline{\Sigma} (1385)^{0}$	(5.1 =	$\pm 3.2\) \times 10^{-4}$		645
$\omega \pi^0$	•	$\pm 0.6 \) \times 10^{-4}$	S=1.4	1447
$\phi \eta'(958)$	(3.3 =	± 0.4) $\times 10^{-4}$		1192
$\phi f_0(980)$	`	$\pm 0.9 \) \times 10^{-4}$	S=1.9	1182
$\Xi(1530)^0\overline{\Xi^0}$		$\pm 1.4) \times 10^{-4}$		608
$\Sigma(1385)^{-}\overline{\Sigma}^{+}$ (or c.c.)	`	± 0.5) $\times 10^{-4}$		857
$\phi f_1(1285)$	•	± 0.5) $\times 10^{-4}$	S=1.1	1032
$\rho\eta$		$\pm 0.23) \times 10^{-4}$		1398
$\omega \eta'(958)$	`	$\pm 0.25) \times 10^{-4}$		1279
$\omega f_0(980)$	•	$\pm 0.5 \) \times 10^{-4}$		1271
$\rho\eta'(958)$		$\pm 0.18) \times 10^{-4}$		1283
$p\overline{p}\phi$		± 1.5) $\times 10^{-5}$		527
$a_2(1320)^{\pm}\pi^{\mp}$	[ff] < 4.3	\times 10 ⁻³	CL=90%	1263
$K\overline{K}_{2}^{*}(1430) + \text{c.c.}$	< 4.0	$\times 10^{-3}$	CL=90%	1159
$K_1(1270)^{\pm}K^{\mp}$	< 3.0	\times 10 ⁻³	CL=90%	_
$K_2^*(1430)^0 \overline{K}_2^*(1430)^0$	< 2.9	× 10 ⁻³	CL=90%	588
$K^*(892)^0\overline{K}^*(892)^0$	< 5	× 10 ⁻⁴	CL=90%	1263
$\phi f_2(1270)$	< 3.7	× 10 ⁻⁴	CL=90%	1036
$p\overline{p}\rho$	< 3.1	× 10 ⁻⁴	CL=90%	779
$\phi \eta (1440) \rightarrow \phi \eta \pi \pi$	< 2.5	× 10 ⁻⁴	CL=90%	946
$\omega f_2'(1525)$	< 2.2	× 10 ⁻⁴	CL=90%	1003
$\Sigma(1385)^{0}\overline{\Lambda}$	< 2	× 10 ⁻⁴	CL=90%	911
$\Delta(1232)^{+}\overline{p}$	< 1	× 10 ⁻⁴	CL=90%	1100
$\Sigma^0 \overline{\Lambda}$	< 9	\times 10 ⁻⁵	CL=90%	1032
$\phi \pi^0$	< 6.8	\times 10 ⁻⁶	CL=90%	1377

Decays into stable hadrons

	Decays into stable fladions		
$2(\pi^+\pi^-)\pi^0$	(3.37±0.26) %		1496
$3(\pi^+\pi^-)\pi^0$	(2.9 ± 0.6) %		1433
$\pi^+\pi^-\pi^0$	$(~1.50\pm0.20)~\%$		1533
$\pi^{+}\pi^{-}\pi^{0}K^{+}K^{-}$	(1.20±0.30) %		1368
$4(\pi^+\pi^-)\pi^0$	$(9.0 \pm 3.0) \times 10^{-3}$		1345
$\pi^+\pi^-$ K $^+$ K $^-$	$(7.2 \pm 2.3) \times 10^{-3}$		1407
$K\overline{K}\pi$	$(6.1 \pm 1.0) \times 10^{-3}$		1440
$ ho \overline{ ho} \pi^+ \pi^-$	$(6.0 \pm 0.5) \times 10^{-3}$	S=1.3	1107
$2(\pi^+\pi^-)$	$(4.0 \pm 1.0) \times 10^{-3}$		1517
$3(\pi^+\pi^-)$	$(4.0 \pm 2.0) \times 10^{-3}$		1466
$n\overline{n}\pi^+\pi^-$	$(4 \pm 4) \times 10^{-3}$		1106
$\Sigma^0 \overline{\Sigma}{}^0$	$(1.27\pm0.17)\times10^{-3}$		992
$2(\pi^+\pi^-)K^+K^-$	$(3.1 \pm 1.3) \times 10^{-3}$		1320

$ ho \overline{ ho} \pi^+ \pi^- \pi^0$	[<i>jiji</i>]	(2.3 ± 0.9	$) \times 10^{-3}$	S=1.9	1033
$p\overline{p}$		(2.12 ± 0.10	$) \times 10^{-3}$		1232
$p\overline{p}\eta$		$(2.09\pm0.18$	$) \times 10^{-3}$		948
$ ho\overline{n}\pi^-$		$(2.00\pm0.10$	$) \times 10^{-3}$		1174
n n		(2.2 ± 0.4	$) \times 10^{-3}$		1231
三豆		(1.8 ± 0.4	$) \times 10^{-3}$	S=1.8	818
$\Lambda \overline{\Lambda}$		$(1.30\pm0.12$	$) \times 10^{-3}$	S=1.1	1074
$ ho \overline{ ho} \pi^0$		$(1.09\pm0.09$	$) \times 10^{-3}$		1176
$\Lambda \overline{\Sigma}{}^- \pi^+ ext{(or c.c.)}$	[<i>ff</i>]	$(1.06\pm0.12$	$) \times 10^{-3}$		945
$pK^{-}\overline{\Lambda}$		(8.9 ± 1.6	$) \times 10^{-4}$		876
$2(K^+K^-)$		(7.0 ± 3.0	$) \times 10^{-4}$		1131
$pK^{-}\overline{\Sigma}^{0}$		(2.9 ± 0.8	$) \times 10^{-4}$		820
K^+K^-		$(2.37\pm0.31$	$) \times 10^{-4}$		1468
$A\overline{A}\pi^0$		(2.2 ± 0.6	$) \times 10^{-4}$		998
$\pi^+\pi^-$		$(1.47\pm0.23$	$) \times 10^{-4}$		1542
$K_S^0 K_L^0$		(1.08 ± 0.14)	$) \times 10^{-4}$		1466
$\Lambda \frac{\Sigma}{\Sigma} + \text{c.c.}$		< 1.5	$\times10^{-4}$	CL=90%	1032
$K_{S}^{0}K_{S}^{0}$		< 5.2	$\times 10^{-6}$	CL=90%	1466
5 5					

Radiative decays

	Naciative decays		
$\gamma \eta_c(1S)$	(1.3 ± 0.4) %		116
$\gamma \pi^+ \pi^- 2\pi^0$	$(8.3 \pm 3.1) \times 10^{-3}$		1518
$\gamma \eta \pi \pi$	$(6.1 \pm 1.0) \times 10^{-3}$		1487
$\gamma \eta(1440) \rightarrow \gamma K \overline{K} \pi$	[p] (9.7 ± 1.7) $\times 10^{-4}$		1223
$\gamma \eta (1440) \rightarrow \gamma \gamma \rho^0$	(6.4 ± 1.4) $ imes 10^{-5}$		1223
$\gamma \eta (1440) ightarrow \gamma \eta \pi^+ \pi^-$	$(3.0 \pm 0.5) \times 10^{-4}$		_
$\gamma \rho \rho$	$(4.5 \pm 0.8) \times 10^{-3}$		1343
$\gamma \eta_2(1870) \rightarrow \gamma \pi^+ \pi^-$	$(6.2 \pm 2.4) \times 10^{-4}$		_
$\gamma \eta'(958)$	$(4.31\pm0.30)\times10^{-3}$		1400
$\gamma 2\pi^+ 2\pi^-$	$(2.8 \pm 0.5) \times 10^{-3}$	S=1.9	1517
γ K ⁺ K ⁻ π ⁺ π ⁻	$(2.1 \pm 0.6) \times 10^{-3}$		_
$\gamma f_4(2050)$	$(2.7 \pm 0.7) \times 10^{-3}$		874
$\gamma \omega \omega$	$(1.59\pm0.33)\times10^{-3}$		1337
$\gamma \eta(1440) \rightarrow \gamma \rho^0 \rho^0$	$(1.7 \pm 0.4) \times 10^{-3}$	S=1.3	1223
$\gamma f_2(1270)$	$(1.38\pm0.14)\times10^{-3}$		1286
$\gamma f_0(1710) \rightarrow \gamma K \overline{K}$	($8.5 \ ^{+1.2}_{-0.9}$) \times 10^{-4}	S=1.2	1075
$\gamma \eta$	(8.6 ± 0.8) $\times 10^{-4}$		1500
$\gamma f_1(1420) \rightarrow \gamma K \overline{K} \pi$	$(7.9 \pm 1.3) \times 10^{-4}$		1220
$\gamma f_1(1285)$	$(6.1 \pm 0.8) \times 10^{-4}$		1283
$\gamma f_1(1510) \rightarrow \gamma \eta \pi^+ \pi^-$	$(4.5 \pm 1.2) \times 10^{-4}$		_
$\gamma f_2'(1525)$	$(4.7 \begin{array}{c} +0.7 \\ -0.5 \end{array}) \times 10^{-4}$		1173

$(7.0 \pm 2.2) \times 10^{-4}$		_
$(4.0 \pm 1.3) \times 10^{-3}$		_
$(4.0 \pm 1.2) \times 10^{-4}$	S=2.1	1166
$(3.8 \pm 1.0) \times 10^{-4}$		1232
$(2.9 \pm 0.6) \times 10^{-4}$		834
$(1.3 \pm 0.9) \times 10^{-4}$		1048
$(7 \pm 4) \times 10^{-4}$	S=2.1	_
(3.9 ± 1.3) $\times 10^{-5}$		1546
$< 7.9 \times 10^{-4}$	CL=90%	1107
$< 5 \times 10^{-4}$	CL=90%	1548
$< 1.3 \times 10^{-4}$	CL=90%	1074
$< 5.5 \times 10^{-5}$	CL=90%	1548
$> 2.50 \times 10^{-3}$	CL=99.9%	_
$(8 \pm 4) \times 10^{-5}$		_
$(8.1 \pm 3.0) \times 10^{-5}$		_
$(1.5 \pm 0.8) \times 10^{-5}$		_
$< (5.7 \pm 0.8) \times 10^{-4}$		1184
$(8.8 \pm 1.4) \times 10^{-3}$		_
	$ \begin{array}{c} (\ 4.0\ \pm 1.3\)\times 10^{-3} \\ (\ 4.0\ \pm 1.2\)\times 10^{-4} \\ (\ 3.8\ \pm 1.0\)\times 10^{-4} \\ (\ 2.9\ \pm 0.6\)\times 10^{-4} \\ (\ 1.3\ \pm 0.9\)\times 10^{-4} \\ (\ 7\ \pm 4\)\times 10^{-4} \\ (\ 3.9\ \pm 1.3\)\times 10^{-5} \\ <\ 7.9\ &\times 10^{-4} \\ <\ 5\ &\times 10^{-4} \\ <\ 1.3\ &\times 10^{-4} \\ <\ 5.5\ &\times 10^{-5} \\ >\ 2.50\ &\times 10^{-3} \\ (\ 8\ \pm 4\)\times 10^{-5} \\ (\ 8.1\ \pm 3.0\)\times 10^{-5} \\ (\ 1.5\ \pm 0.8\)\times 10^{-5} \\ <\ 5.7\ \pm 0.8\)\times 10^{-4} \end{array} $	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$

$\chi_{c0}(1P)$

$$I^{G}(J^{PC}) = 0^{+}(0^{+})$$

Mass $m=3415.1\pm0.8~{\rm MeV}$ Full width $\Gamma=16.2\pm2.3~{\rm MeV}$

$\chi_{c0}(1P)$ DECAY MODES	Fraction (Γ_i/Γ)	Scale factor/ Confidence level	-
Had	ronic decays		
$2(\pi^+\pi^-)$	(2.44 ± 0.33) %		1679
$\pi^+\pi^-K^+K^-$	(1.8 ± 0.6) %	S=1.9	1580
$ ho^0 \pi^+ \pi^-$	(1.6 ± 0.5) %		1608
$3(\pi^+\pi^-)$	$(1.24\pm0.22)~\%$		1633
$K^{+}\overline{K}^{*}(892)^{0}\pi^{-}+{ m c.c.}$	(1.2 \pm 0.4) %		1522
K^+K^-	$(5.9 \pm 0.9) \times 10^{-2}$	₀ –3	1635
$\pi^+\pi^-$	$(5.0 \pm 0.7) \times 10^{-2}$	₀ –3	1702
$K^+K^-K^+K^-$	$(2.1 \pm 0.5) \times 10$	₀ –3	_
$K_S^0 K_S^0 \\ \pi^+ \pi^- \rho \overline{\rho}$	$(2.0 \pm 0.6) \times 10^{-2}$	₀ –3	_
$\pi^{+}\pi^{-}p\overline{p}$	$(1.8 \pm 0.9) \times 10^{-2}$	0^{-3} S=1.6	1320
$\phi \phi$	$(9 \pm 5) \times 10$	0-4	_
p <u></u> p	$(2.2 \pm 0.5) \times 10^{-2}$	0-4	1427
$K_S^0 K^+ \pi^- + \text{c.c.}$	< 7.1 × 10	0^{-4} CL=90%	_

Radiative decays

	_	
$\gamma J/\psi(1S)$	$(1.02\pm0.17)~\%$	303
$\gamma \gamma$	$(1.9 \pm 0.4) \times 10^{-4}$	1708

$$\chi_{c1}(1P)$$

$$I^{G}(J^{PC}) = 0^{+}(1^{+})$$

Mass $m=3510.51\pm0.12$ MeV Full width $\Gamma=0.92\pm0.13$ MeV

$\chi_{c1}(1P)$ DECAY MODES	Fraction (Γ_i/Γ)	Scale factor	<i>p</i> (MeV/ <i>c</i>)	
	Hadronic decays			
$3(\pi^{+}\pi^{-})$	$(6.3\pm1.4)\times10^{-3}$		1683	
$2(\pi^{+}\pi^{-})$	$(5.6\pm2.6)\times10^{-3}$	2.2	1727	
$\pi^+\pi^-K^+K^-$	$(4.9\pm1.2)\times10^{-3}$	1.1	1632	
$ ho^0\pi^+\pi^-$	$(3.9\pm3.5)\times10^{-3}$		1659	
$K^{+}\overline{K}^{*}(892)^{0}\pi^{-}+\text{c.c.}$	$(3.2\pm2.1)\times10^{-3}$		1576	
$K_S^0 K^+ \pi^- \pi^+ \pi^- \rho \overline{\rho}$	$(2.5\pm0.8)\times10^{-3}$		_	
$\pi^{+}\pi^{-}\rho\overline{ ho}$	$(5.4\pm2.1)\times10^{-4}$		1381	
$K^+K^-K^+K^-$	$(4.2\pm1.9)\times10^{-4}$		_	
$\rho \overline{p}$	$(7.2\pm1.3)\times10^{-5}$		1483	
$\pi^{+}\pi^{-} + K^{+}K^{-}$	$< 2.1 \times 10^{-3}$		_	
Radiative decays				
$\gamma J/\psi(1S)$	(31.6±3.2) %		389	

$\chi_{c2}(1P)$

$$I^{G}(J^{PC}) = 0^{+}(2^{+})$$

Created: 10/8/2002 11:05

Mass $m=3556.18\pm0.13~{\rm MeV}$ Full width $\Gamma=2.08\pm0.17~{\rm MeV}$

$\chi_{c2}(1P)$ DECAY MODES	Fraction (Γ_i/Γ)	Scale factor/ Confidence level	<i>p</i> (MeV/ <i>c</i>)
	· · · ·		
	Hadronic decays		
$2(\pi^{+}\pi^{-})$	$(1.41\pm0.20)\%$		1751
$\pi^+\pi^-$ K $^+$ K $^-$	(10 ± 4) $ imes$	10^{-3} S=2.0	1656
$3(\pi^+\pi^-) \ ho^0\pi^+\pi^-$	(9.2 \pm 2.2) $ imes$	10^{-3}	1707
	$(7 \pm 4) \times$	10^{-3}	1683
$K^+\overline{K}^*$ (892) $^0\pi^-+$ c.c.	(4.8 \pm 2.8) \times	10^{-3}	1601
$\phi\phi$	($2.0~\pm0.8$) $ imes$	10^{-3}	_
$\pi^+\pi^-$	$(1.52\pm0.25) imes$	10 ⁻³	1773

$K^+K^-K^+K^-$	(1.5 ± 0.4	$) \times 10^{-3}$		_
$\pi^+\pi^- ho\overline{ ho}$	(1.4 ± 0.6)	$) \times 10^{-3}$	S=1.5	1410
K^+K^-	($8.1~\pm1.9$	$) \times 10^{-4}$		1708
$K_S^0 K_S^0$	($6.1~\pm2.3$	$) \times 10^{-4}$		_
p p	(7.4 ± 1.0	$) \times 10^{-5}$		1510
$J/\psi(1S)\pi^{+}\pi^{-}\pi^{0}$	< 1.5	%	CL=90%	185
$K_S^0 K^+ \pi^- + \text{c.c.}$	< 1.06	$\times 10^{-3}$	CL=90%	_
	Radiative decays			
$\gamma J/\psi(1\mathcal{S})$	(18.7 ± 2.0)) %		430
$\gamma\gamma$	(2.19 ± 0.3)	$(2) \times 10^{-4}$		1778

ψ (25)

$$I^{G}(J^{PC}) = 0^{-}(1^{-})$$

Mass $m=3685.96\pm0.09$ MeV Full width $\Gamma=300\pm25$ keV $\Gamma_{e\,e}=2.19\pm0.15$ keV

$\psi(2S)$ DECAY MODES	Fraction (Γ_i/Γ_j)) Confi	idence level	<i>p</i> (MeV/ <i>c</i>)
hadrons	(98.10 ± 0.30)) %		_
virtual $\gamma ightarrow $ hadrons	(2.9 ± 0.4)) %		_
e^+e^-	(7.3 ± 0.4	$) \times 10^{-3}$		1843
$\mu^+\mu^-$	(7.0 ± 0.9			1840
$\tau^+\tau^-$	(2.7 ± 0.7	$) \times 10^{-3}$		_
Decays into J_{j}	$\psi(1S)$ and any	ything		
$J/\psi(1S)$ anything	(55.7 ± 2.6)) %		_
$J/\psi(1S)$ neutrals	(23.9 ± 1.2)) %		_
$J/\psi(1S)\pi^+\pi^-$	(30.5 ± 1.6)) %		477
$J/\psi(1S)\pi^0\pi^0$	(18.2 ± 1.2)) %		481
$J/\psi(1S)\eta$	$(3.13\pm0.21$) %		200
$J/\psi(1S)\pi^0$	(9.6 ± 2.1	$) \times 10^{-4}$		527
	onic decays			
$3(\pi^{+}\pi^{-})\pi^{0}$	(3.5 ± 1.6	$) \times 10^{-3}$		1746
$2(\pi^{+}\pi^{-})\pi^{0}$	(3.0 ± 0.8	$) \times 10^{-3}$		1799
$\omega f_2(1270)$	< 1.7		90%	_
$\rho a_2(1320)$	< 2.3		90%	_
$\pi^+\pi^-K^+K^-$	(1.6 ± 0.4			1726
$K^*(892)\overline{K}_2^*(1430)^0$	< 1.2		90%	_
$K_1(1270)^\pmK^\mp$	$(1.00\pm0.28$			_
$\pi^+ \pi^- \rho \overline{\rho}$	(8.0 ± 2.0			1491
$K^{+}\overline{K}^{*}(892)^{0}\pi^{-}+\text{c.c.}$	(6.7 ± 2.5			1673
$b_1^\pm\pi^\mp$	(5.2 ± 1.3	$) \times 10^{-4}$		-
HTTP://PDG.LBL.GOV Pa	age 80	Created:	10/8/200	2 11:05

$2(\pi^{+}\pi^{-})$	($4.5~\pm1.0$	$) \times 10^{-4}$		1817
$\rho^{0} \pi^{+} \pi^{-}$	(4.2 ± 1.5)			1751
<u>p</u> p	(2.07 ± 0.3)			1586
$\frac{PP}{AA}$	(1.81±0.3	· 1		1467
$3(\pi^{+}\pi^{-})$	(1.51 ± 0.3)			1774
$\frac{\overline{p}p\pi^0}{\overline{p}}$				
$\rho \rho \pi^{-}$ $\Delta^{++} \overline{\Delta}^{}$	(1.4 ± 0.5)			1543
	(1.28±0.3			_
$\sum_{i=1}^{\infty} \overline{\sum_{i=1}^{\infty}} 0$	(1.2 ± 0.6			_
$\sum_{*} + \sum_{*} -$	(1.1 ± 0.4	$) \times 10^{-4}$		_
K^+K^-	(1.0 ± 0.7	$) \times 10^{-4}$		1776
$\pi^+\pi^-\pi^0$	(8 ± 5	$) \times 10^{-5}$		1830
$ ho\pi$	< 8.3	$\times10^{-5}$	90%	1760
$\pi^+\pi^-$	(8 ±5	$) \times 10^{-5}$		1838
<u>=-=</u> +	(9.4 ±3.1	_		1285
$K_1(1400)^\pm K^\mp$	< 3.1	\times 10 ⁻⁴	90%	_
<u>=</u> *0 <u>=</u> *0′	< 8.1	$\times10^{-5}$	90%	_
$\Omega^- \overline{\Omega}{}^+$	< 7.3	$\times10^{-5}$	90%	_
$K^+K^-\pi^0$	< 2.96	$\times10^{-5}$	90%	1754
$K^{+}\overline{K}^{*}(892)^{-}+$ c.c.	< 5.4	$\times10^{-5}$	90%	1698
$\phi f_2'(1525)$	< 4.5	$\times 10^{-5}$	90%	_
	B 11 41 1			

Radiative decays

	_			
$\gamma \chi_{c0}(1P)$	(8.7 ± 0	0.8)%		261
$\gamma \chi_{c1}(1P)$	(8.4 ± 0	0.7) %		171
$\gamma \chi_{c2}(1P)$	(6.8 ± 0	0.6) %		127
$\gamma \eta_c(1S)$	(2.8 ± 0)	$0.6) \times 10^{-3}$		639
$\gamma \eta'$ (958)	(1.5 ± 0	$0.4) \times 10^{-4}$		1719
$\gamma \gamma$	< 1.4	\times 10 ⁻⁴	90%	1843
$\gamma \eta$	< 9	\times 10 ⁻⁵	90%	1802
$\gamma \eta(1440) \rightarrow \ \gamma K \overline{K} \pi$	< 1.2	\times 10 ⁻⁴	90%	1569

ψ (3770)

$$I^{G}(J^{PC}) = 0^{-}(1^{-})$$

Created: 10/8/2002 11:05

Mass $m=3769.9\pm2.5$ MeV (S = 1.8) Full width $\Gamma=23.6\pm2.7$ MeV (S = 1.1) $\Gamma_{ee}=0.26\pm0.04$ keV (S = 1.2)

ψ (3770) DECAY MODES	Fraction (Γ_i/Γ)	Scale factor	<i>p</i> (MeV/ <i>c</i>)
$\overline{D}\overline{D}$	dominant		242
e^+e^-	$(1.12\pm0.17)\times10^{-5}$	1.2	1885

 ψ (4040) [kkk]

$$I^{G}(J^{PC}) = 0^{-}(1^{-})$$

Mass $m=4040\pm 10$ MeV Full width $\Gamma=52\pm 10$ MeV $\Gamma_{ee}=0.75\pm 0.15$ keV

ψ (4040) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
e^+e^-	$(1.4\pm0.4)\times10^{-5}$	2020
$D^0 \overline{D}{}^0$	seen	777
$D^*(2007)^0 \overline{D}{}^0 + { m c.c.}$	seen	578
$D^*(2007)^0 \overline{D}^*(2007)^0$	seen	232

ψ**(4160)** [kkk]

$$I^{G}(J^{PC}) = 0^{-}(1^{-})$$

Mass $m=4159\pm20$ MeV Full width $\Gamma=78\pm20$ MeV $\Gamma_{ee}=0.77\pm0.23$ keV

ψ (4160) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
e^+e^-	$(10\pm4)\times10^{-6}$	2079

ψ(4415) [kkk]

$$I^{G}(J^{PC}) = 0^{-}(1^{-})$$

Created: 10/8/2002 11:05

Mass $m=4415\pm 6$ MeV Full width $\Gamma=43\pm 15$ MeV (S = 1.8) $\Gamma_{\rm ee}=0.47\pm 0.10$ keV

ψ (4415) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
hadrons	dominant	_
e^+e^-	$(1.1\pm0.4)\times10^{-5}$	2207

bb MESONS

T(15)

$$I^{G}(J^{PC}) = 0^{-}(1^{-})$$

Mass $m=9460.30\pm0.26$ MeV (S = 3.3) Full width $\Gamma=52.5\pm1.8$ keV $\Gamma_{ee}=1.32\pm0.05$ keV

au(1S) DECAY MODES	Fraction (Γ	$_i/\Gamma)$	Confidence level	<i>p</i> (MeV/ <i>c</i>)
$\tau^+\tau^-$	(2.67^{+0}_{-0})	·14 ·16) %		4384
e^+e^-	(2.38±0	.11) %		4730
$\mu^+\mu^-$	(2.48±0	,		4729
Hadı	ronic decays	5		
$J/\psi(1S)$ anything	(1.1 ± 0)	.4) × 10	-3	4223
$ ho\pi$	< 2	\times 10 ⁻	-4 90%	4698
$\pi^+\pi^-$	< 5		-4 90%	4728
K^+K^-	< 5			4704
$p\overline{p}$	< 5	\times 10 $^{-}$		4636
$\pi^{0}\pi^{+}\pi^{-}$	< 1.84	× 10 ⁻	-5 90%	_
Radi	ative decays	6		
$\gamma \pi^+ \pi^-$	(6.3 ± 1)	.8) × 10	-5	_
$\gamma \pi^0 \pi^0$	(1.7 ± 0)	.7) × 10	-5	_
$\gamma 2h^+2h^-$	(7.0 ± 1)	.5) × 10 ⁻¹	-4	4720
$\gamma 3h^+3h^-$	(5.4 ± 2)	.0) × 10	-4	4703
γ 4 h^+ 4 h^-	(7.4 ± 3)	$.5) \times 10^{-1}$	-4	4679
$\gamma \pi^+ \pi^- K^+ K^-$.9) × 10		4686
$\gamma 2\pi^+ 2\pi^-$.9) × 10		4720
$\gamma 3\pi^+ 3\pi^-$		$.2) \times 10^{-1}$		4703
γ 2 π^+ 2 π^- K $^+$ K $^-$		$.2) \times 10^{-1}$		4658
$\gamma \pi^+ \pi^- \rho \overline{\rho}$.6) × 10		4604
$\gamma 2\pi^+ 2\pi^- \rho \overline{\rho}$) × 10 ⁻		4563
$\gamma 2K^+2K^-$.0) × 10		4601
$\gamma \eta'$ (958)	< 1.6			4682
$\gamma\eta$	< 3.5			4714
$\gamma f_2'(1525)$	< 1.4	× 10	-4 90%	4607

$$\chi_{b0}(1P)^{[///]}$$

$$I^G(J^{PC}) = 0^+(0^{++})$$

J needs confirmation.

Mass $m=9859.9\pm1.0~{
m MeV}$

$\chi_{b0}(1P)$ DECAY MODES	Fraction (Γ_i/Γ)	Confidence level	<i>p</i> (MeV/ <i>c</i>)
$\gamma \Upsilon(1S)$	<6 %	90%	391

$$\chi_{b1}(1P)^{[///]}$$

$$I^G(J^{PC}) = 0^+(1^{++})$$

J needs confirmation.

Mass
$$m = 9892.7 \pm 0.6 \text{ MeV}$$
 (S = 1.1)

$\chi_{b1}(1P)$ DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$\gamma \Upsilon(1S)$	(35±8) %	422

$$\chi_{b2}(1P)^{[//]}$$

$$I^G(J^{PC}) = 0^+(2^{++})$$

J needs confirmation.

Created: 10/8/2002 11:05

Mass $m = 9912.6 \pm 0.5 \text{ MeV}$ (S = 1.1)

$\chi_{b2}(1P)$ DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)	
$\gamma \gamma \gamma (1S)$	(22±4) %	443	

T(2S)

$$I^{G}(J^{PC}) = 0^{-}(1^{-})$$

Mass $m=10.02326\pm0.00031$ GeV Full width $\Gamma=44\pm7$ keV $\Gamma_{ee}=0.520\pm0.032$ keV

r(2 s) decay modes	Fraction (Γ_i/Γ)	Confide	nce level	<i>p</i> (MeV/ <i>c</i>)
$\gamma(1S)\pi^+\pi^-$	(18.8 ± 0.6)	%		475
$\Upsilon(1S)\pi^0\pi^0$	(9.0 ± 0.8)	%		480
$ au^+ au^-$	(1.7 ± 1.6)	%		4686
$\mu^+\mu^-$	$(1.31\pm0.21)^{\circ}$	%		5011
e^+e^-	$(1.18\pm0.20)^{\circ}$	%		5012
$\Upsilon(1S)\pi^0$	< 1.1	$\times 10^{-3}$	90%	531
$\Upsilon(1S)\eta$	< 2	$\times 10^{-3}$	90%	127
$J/\psi(1S)$ anything	< 6	$\times 10^{-3}$	90%	4533
	Radiative decays			
$\gamma \chi_{b1}(1P)$	(6.8 ± 0.7)	%		131
$\gamma \chi_{b2}(1P)$	(7.0 ± 0.6)	%		110
$\gamma \chi_{b0}(1P)$	(3.8 ± 0.6)	%		162
$\gamma f_0(1710)$	< 5.9	$\times 10^{-4}$	90%	4866
$\gamma f_2'(1525)$	< 5.3	$\times 10^{-4}$	90%	4896
$\gamma f_2(1270)$	< 2.41	× 10 ⁻⁴	90%	4931

$\chi_{b0}(2P)^{[///]}$

$$I^{G}(J^{PC}) = 0^{+}(0^{+})$$

J needs confirmation.

Mass $m = 10.2321 \pm 0.0006$ GeV

$\chi_{b0}(2P)$ DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$\gamma \gamma (2S)$	(4.6±2.1) %	210
$\gamma \ \varUpsilon(1S)$	$(9 \pm 6) \times 10^{-3}$	746

$$\chi_{b1}(2P)^{[///]}$$

$$I^{G}(J^{PC}) = 0^{+}(1^{+})$$

Created: 10/8/2002 11:05

J needs confirmation.

Mass $m=10.2552\pm 0.0005~{
m GeV}$ $m_{\chi_{b1}(2P)}-m_{\chi_{b0}(2P)}=23.5\pm 1.0~{
m MeV}$

$\chi_{b1}(2P)$ DECAY MODES	Fraction (Γ_i/Γ)	Scale factor	<i>p</i> (MeV/ <i>c</i>)
$\gamma \Upsilon(2S)$	(21 ±4)%	1.5	229
$\gamma \ \varUpsilon(1S)$	(8.5 ± 1.3) %	1.3	764

$$\chi_{b2}(2P)^{[///]}$$

$$I^G(J^{PC}) = 0^+(2^{++})$$

J needs confirmation.

Mass $m=10.2685\pm 0.0004~{
m GeV}$ $m_{\chi_{b2}(2P)}-m_{\chi_{b1}(2P)}=13.5\pm 0.6~{
m MeV}$

$\chi_{b2}(2P)$ DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$\gamma \ \Upsilon(2S)$	(16.2±2.4) %	242
$\gamma \ \varUpsilon(1S)$	(7.1±1.0) %	776

T(35)

$$I^{G}(J^{PC}) = 0^{-}(1^{-})$$

Mass $m=10.3552\pm0.0005~{\rm GeV}$ Full width $\Gamma=26.3\pm3.5~{\rm keV}$

		Scale factor/	=
$rac{ au(3S)}{ ext{ DECAY MODES}}$	Fraction (Γ_i/Γ)	Confidence level	(MeV/ <i>c</i>)
$\varUpsilon(2S)$ anything	(10.6 \pm 0.8) %		296
$\Upsilon(2S)\pi^+\pi^-$	(2.8 ± 0.6) %	S=2.2	177
$\varUpsilon(2S)\pi^0\pi^0$	(2.00±0.32) %		190
\varUpsilon (2 S) $\gamma\gamma$	(5.0 ± 0.7)%		327
$\Upsilon(1S)\pi^+\pi^-$	(4.48±0.21) %		814
$\Upsilon(1S)\pi^0\pi^0$	(2.06±0.28) %		816
$\Upsilon(1S)\eta$	< 2.2 × 1	0^{-3} CL=90%	_
$\mu^+\mu^-$	$(1.81\pm0.17)\%$		5177
e^+e^-	seen		5177
	Radiative decays		
$\gamma \chi_{b2}(2P)$	(11.4 ± 0.8) %	S=1.3	87
$\gamma \chi_{b1}(2P)$	(11.3 ± 0.6) %		100
$\gamma \chi_{b0}(2P)$	(5.4 \pm 0.6)%	S=1.1	123

$\Upsilon(4S)$ or $\Upsilon(10580)$

$$I^{G}(J^{PC}) = 0^{-}(1^{-})$$

Mass $m=10.5800\pm0.0035$ GeV Full width $\Gamma=14\pm5$ MeV (S = 1.7) $\Gamma_{ee}=0.248\pm0.031$ keV (S = 1.3)

Υ (4 S) DECAY MODES	Fraction (I	Γ_i/Γ) Co	onfidence level	<i>p</i> (MeV/ <i>c</i>)
\overline{BB}	> 96	%	95%	_
non- $B\overline{B}$	< 4	%	95%	_
e^+e^-	(2.8±0	$(0.7) \times 10^{-5}$		5290
$J/\psi(1S)$ anything	< 1.9	$\times 10^{-4}$	95%	_
HTTP://PDG.LBL.GOV	Page 86	Create	d: 10/8/2002	2 11:05

D^{*+} anything $+$ c.c.	< 7.4	%	90%	5099
ϕ anything	< 2.3	$\times 10^{-3}$	90%	5240
$\varUpsilon(1S)$ anything	< 4	$\times 10^{-3}$	90%	1053
$\varUpsilon(1S)\pi^+\pi^-$	< 1.2	$\times 10^{-4}$	90%	_
\varUpsilon (2S) $\pi^+\pi^-$	< 3.9	$\times 10^{-4}$	90%	_

γ(10860)

$$I^{G}(J^{PC}) = 0^{-}(1^{-})$$

Mass $m=10.865\pm0.008$ GeV (S = 1.1) Full width $\Gamma=110\pm13$ MeV $\Gamma_{ee}=0.31\pm0.07$ keV (S = 1.3)

$\Upsilon(10860)$ DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
e^+e^-	$(2.8\pm0.7)\times10^{-6}$	5432

T(11020)

$$I^{G}(J^{PC}) = 0^{-}(1^{-})$$

Mass $m=11.019\pm0.008$ GeV Full width $\Gamma=79\pm16$ MeV $\Gamma_{ee}=0.130\pm0.030$ keV

au(11020) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
e ⁺ e ⁻	$(1.6\pm0.5)\times10^{-6}$	5509

NOTES

- [a] See the "Note on $\pi^{\pm} \to \ell^{\pm} \nu \gamma$ and $K^{\pm} \to \ell^{\pm} \nu \gamma$ Form Factors" in the π^{\pm} Particle Listings for definitions and details.
- [b] Measurements of $\Gamma(e^+\nu_e)/\Gamma(\mu^+\nu_\mu)$ always include decays with γ 's, and measurements of $\Gamma(e^+\nu_e\gamma)$ and $\Gamma(\mu^+\nu_\mu\gamma)$ never include low-energy γ 's. Therefore, since no clean separation is possible, we consider the modes with γ 's to be subreactions of the modes without them, and let $[\Gamma(e^+\nu_e) + \Gamma(\mu^+\nu_\mu)]/\Gamma_{\rm total} = 100\%$.
- [c] See the π^{\pm} Particle Listings for the energy limits used in this measurement; low-energy γ 's are not included.
- [d] Derived from an analysis of neutrino-oscillation experiments.
- [e] Astrophysical and cosmological arguments give limits of order 10^{-13} ; see the π^0 Particle Listings.
- [f] See the "Note on the Decay Width $\Gamma(\eta \to \gamma \gamma)$ " in our 1994 edition, Phys. Rev. **D50**, 1 August 1994, Part I, p. 1451.
- [g] C parity forbids this to occur as a single-photon process.
- [h] See the "Note on scalar mesons" in the $f_0(1370)$ Particle Listings . The interpretation of this entry as a particle is controversial.
- [i] See the "Note on $\rho(770)$ " in the $\rho(770)$ Particle Listings .
- [j] The e^+e^- branching fraction is from $e^+e^- \to \pi^+\pi^-$ experiments only. The $\omega \, \rho$ interference is then due to $\omega \, \rho$ mixing only, and is expected to be small. If $e \, \mu$ universality holds, $\Gamma(\rho^0 \to \mu^+\mu^-) = \Gamma(\rho^0 \to e^+e^-) \times 0.99785$.
- [k] See the "Note on scalar mesons" in the $f_0(1370)$ Particle Listings .
- [/] See the "Note on $a_1(1260)$ " in the $a_1(1260)$ Particle Listings .
- [m] This is only an educated guess; the error given is larger than the error on the average of the published values. See the Particle Listings for details.
- [n] See the "Note on the $f_1(1420)$ " in the $\eta(1440)$ Particle Listings.
- [o] See also the $\omega(1650)$ Particle Listings.
- [p] See the "Note on the $\eta(1440)$ " in the $\eta(1440)$ Particle Listings.
- [q] See the "Note on the $\rho(1450)$ and the $\rho(1700)$ " in the $\rho(1700)$ Particle Listings.
- [r] See the "Note on non- $q\overline{q}$ mesons" in the Particle Listings (see the index for the page number).
- [s] See also the $\omega(1420)$ Particle Listings.
- [t] See the "Note on $f_0(1710)$ " in the $f_0(1710)$ Particle Listings .
- [u] See the note in the K^{\pm} Particle Listings.

[v] The definition of the slope parameter g of the $K \to 3\pi$ Dalitz plot is as follows (see also "Note on Dalitz Plot Parameters for $K \to 3\pi$ Decays" in the K^{\pm} Particle Listings):

$$|M|^2 = 1 + g(s_3 - s_0)/m_{\pi^+}^2 + \cdots$$

- [w] For more details and definitions of parameters see the Particle Listings.
- [x] Most of this radiative mode, the low-momentum γ part, is also included in the parent mode listed without γ 's.
- [y] See the K^{\pm} Particle Listings for the energy limits used in this measurement.
- [z] Structure-dependent part.
- [aa] Direct-emission branching fraction.
- [bb] Violates angular-momentum conservation.
- [cc] Derived from measured values of ϕ_{+-} , ϕ_{00} , $|\eta|$, $|m_{K_L^0} m_{K_S^0}|$, and $\tau_{K_S^0}$, as described in the introduction to "Tests of Conservation Laws."
- [dd] The CP-violation parameters are defined as follows (see also "Note on CP Violation in $K_S \to 3\pi$ " and "Note on CP Violation in K_L^0 Decay" in the Particle Listings):

$$\begin{split} \eta_{+-} &= \left| \eta_{+-} \right| \mathrm{e}^{i\phi_{+-}} = \frac{A(K_L^0 \to \pi^+ \pi^-)}{A(K_S^0 \to \pi^+ \pi^-)} = \epsilon \; + \; \epsilon' \\ \eta_{00} &= \left| \eta_{00} \right| \mathrm{e}^{i\phi_{00}} = \frac{A(K_L^0 \to \pi^0 \pi^0)}{A(K_S^0 \to \pi^0 \pi^0)} = \epsilon \; - \; 2\epsilon' \\ \delta &= \frac{\Gamma(K_L^0 \to \pi^- \ell^+ \nu) - \Gamma(K_L^0 \to \pi^+ \ell^- \nu)}{\Gamma(K_L^0 \to \pi^- \ell^+ \nu) + \Gamma(K_L^0 \to \pi^+ \ell^- \nu)} \; , \\ \mathrm{Im}(\eta_{+-0})^2 &= \frac{\Gamma(K_S^0 \to \pi^+ \pi^- \pi^0)^{CP \; \mathrm{viol.}}}{\Gamma(K_L^0 \to \pi^+ \pi^- \pi^0)} \; , \\ \mathrm{Im}(\eta_{000})^2 &= \frac{\Gamma(K_S^0 \to \pi^0 \pi^0 \pi^0)}{\Gamma(K_S^0 \to \pi^0 \pi^0 \pi^0)} \; . \end{split}$$

where for the last two relations *CPT* is assumed valid, *i.e.*, $\text{Re}(\eta_{+-0}) \simeq 0$ and $\text{Re}(\eta_{000}) \simeq 0$.

- [ee] See the K_S^0 Particle Listings for the energy limits used in this measurement.
- [ff] The value is for the sum of the charge states or particle/antiparticle states indicated.
- [gg] Re(ϵ'/ϵ) = ϵ'/ϵ to a very good approximation provided the phases satisfy *CPT* invariance.

- [hh] See the K_L^0 Particle Listings for the energy limits used in this measurement.
- [ii] Allowed by higher-order electroweak interactions.
- [*ij*] Violates *CP* in leading order. Test of direct *CP* violation since the indirect *CP*-violating and *CP*-conserving contributions are expected to be suppressed.
- [kk] See the "Note on $f_0(1370)$ " in the $f_0(1370)$ Particle Listings and in the 1994 edition.
- [//] See the note in the L(1770) Particle Listings in Reviews of Modern Physics **56** No. 2 Pt. II (1984), p. S200. See also the "Note on $K_2(1770)$ and the $K_2(1820)$ " in the $K_2(1770)$ Particle Listings .
- [mm] See the "Note on $K_2(1770)$ and the $K_2(1820)$ " in the $K_2(1770)$ Particle Listings .
- [nn] This result applies to $Z^0 \to c \overline{c}$ decays only. Here ℓ^+ is an average (not a sum) of e^+ and μ^+ decays.
- [oo] This is a weighted average of D^{\pm} (44%) and D^0 (56%) branching fractions. See " D^+ and $D^0 \to (\eta \text{ anything}) / (\text{total } D^+ \text{ and } D^0)$ " under " D^+ Branching Ratios" in the Particle Listings.
- [pp] This value averages the e^+ and μ^+ branching fractions, after making a small phase-space adjustment to the μ^+ fraction to be able to use it as an e^+ fraction; hence our ℓ^+ here is really an e^+ .
- [qq] An ℓ indicates an e or a μ mode, not a sum over these modes.
- [rr] The branching fraction for this mode may differ from the sum of the submodes that contribute to it, due to interference effects. See the relevant papers in the Particle Listings.
- [ss] The two experiments measuring this fraction are in serious disagreement. See the Particle Listings.
- [tt] This value includes only $\pi^+\pi^-$ decays of the intermediate resonance, because branching fractions of this resonance are not known.
- [uu] This mode is not a useful test for a $\Delta C=1$ weak neutral current because both quarks must change flavor in this decay.
- [vv] This D_1^0 - D_2^0 limit is inferred from the D^0 - \overline{D}^0 mixing ratio $\Gamma(K^+\pi^-)$ (via \overline{D}^0)) / $\Gamma(K^-\pi^+)$ near the end of the D^0 Listings.
- [ww] The exclusive e^+ modes $K^-e^+\nu_e$, $K^-\pi^0e^+\nu_e$, $\overline{K}^0\pi^-e^+\nu_e$ and $\pi^-e^+\nu_e$ are constrained to equal this (well-measured) inclusive fraction.
- [xx] The experiments on the division of this charge mode amongst its submodes disagree, and the submode branching fractions here add up to considerably more than the charged-mode fraction.
- [yy] However, these upper limits are in serious disagreement with values obtained in another experiment.

- [zz] For now, we average together measurements of the $X\,e^+\,\nu_e$ and $X\,\mu^+\,\nu_\mu$ branching fractions. This is the average, not the sum.
- [aaa] This branching fraction includes all the decay modes of the final-state resonance.
- [bbb] This value includes only K^+K^- decays of the intermediate resonance, because branching fractions of this resonance are not known.
- [ccc] B^0 and B^0_s contributions not separated. Limit is on weighted average of the two decay rates.
- [ddd] These values are model dependent. See 'Note on Semileptonic Decays' in the B^+ Particle Listings.
- [eee] D^{**} stands for the sum of the $D(1\,^1\!P_1)$, $D(1\,^3\!P_0)$, $D(1\,^3\!P_1)$, $D(1\,^3\!P_2)$, $D(2\,^1\!S_0)$, and $D(2\,^1\!S_1)$ resonances.
- [fff] $D^{(*)}\overline{D}^{(*)}$ stands for the sum of $D^*\overline{D}^*$, $D^*\overline{D}$, $D\overline{D}^*$, and $D\overline{D}$.
- [ggg] Inclusive branching fractions have a multiplicity definition and can be greater than 100%.
- [hhh] D_j represents an unresolved mixture of pseudoscalar and tensor D^{**} (P-wave) states.
 - [iii] Not a pure measurement. See note at head of B_s^0 Decay Modes.
 - [jjj] Includes $p\overline{p}\pi^+\pi^-\gamma$ and excludes $p\overline{p}\eta$, $p\overline{p}\omega$, $p\overline{p}\eta'$.
- [kkk] J^{PC} known by production in e^+e^- via single photon annihilation. I^G is not known; interpretation of this state as a single resonance is unclear because of the expectation of substantial threshold effects in this energy region.
 - [///] Spectroscopic labeling for these states is theoretical, pending experimental information.