Gov 50: 11. Tidying and Joining Data

Matthew Blackwell

Harvard University

Roadmap

- 1. Causality review
- 2. Pivoting data longer
- 3. Joining data sets

1/ Causality review

Potential outcomes

Potential outcomes:

- Y_i(1) is the value that the outcome would take if gave unit i treatment
 and changed nothing else about them.
- Y_i(0) is the value that the outcome would take if gave unit i no
 treatment and changed nothing else about them.
- Not the **possible values** of the outcome

COVID-19 vaccine trials

Treatment: $T_i = 1$ if vaccinated, $T_i = 0$ if not

Outcome: $Y_i = 1$ if acquired COVID after 12 weeks, $Y_i = 0$ if not

- 1. What are the potential outcomes $Y_i(1)$ and $Y_i(0)$?
- 2. Why not compare early volunteers for the vaccine to the overall population?

2/ Pivoting data longer

Mortality data

library(tidyverse)
library(gov50data)
mortality

```
## # A tibble: 217 x 52
##
     country code indicator `1972` `1973` `1974`
                             <chr>
##
     <chr>
                 <chr>
                                      <dbl>
                                             <dbl>
                                                   <dbl>
##
   1 Aruba
                 ABW
                             Mortalit~
                                       NA
                                              NA
                                                    NA
##
   2 Afghanistan AFG
                             Mortalit~ 291
                                             285.
                                                   280.
##
   3 Angola
                 AG0
                             Mortalit~
                                       NA
                                              NA
                                                    NA
   4 Albania
                             Mortalit~
##
                 ALB
                                       NA
                                             NA
                                                    NA
   5 Andorra
                             Mortalit~
                                       NA
##
                 AND
                                              NA
                                                    NA
##
   6 United Arab ~ ARE
                             Mortalit~ 80.1
                                             72.6 65.7
                             Mortalit~
##
   7 Argentina ARG
                                       69.7
                                             68.2 66.1
   8 Armenia
                 ARM
                             Mortalit~
                                       NA
                                              NA
##
                                                    NA
##
   9 American Sam~ ASM
                            Mortalit~
                                       NA
                                             NA
                                                    NA
  10 Antigua and ~ ATG
                             Mortalit~ 26.9
                                             25.1
                                                   23.5
  # i 207 more rows
##
  # i 46 more variables: `1975` <dbl>, `1976` <dbl>,
  # `1977` <dbl>, `1978` <dbl>, `1979` <dbl>, `1980` <dbl>,
##
##
    `1981` <dbl>, `1982` <dbl>, `1983` <dbl>, `1984` <dbl>,
## #
     `1985` <dbl>, `1986` <dbl>, `1987` <dbl>, `1988` <dbl>,
```

Pivoting longer

Mortality data in a "wide" format (years in columns).

We can convert this to country-year rows with pivot_longer().

```
mydata |>
  pivot_longer(
    cols = <<variables to pivot>>,
    names_to = <<new variable to put column names>>,
    values_to = <<new variable to put column values>>
)
```

Pivoting the mortality data

```
mortality |>
  select(-indicator) |>
  pivot_longer(
    cols = `1972`:`2020`,
    names_to = "year",
    values_to = "child_mortality"
)
```

```
## # A tibble: 10,633 x 4
##
      country country code year child mortality
     <chr> <chr>
                                            <fdh>>
##
                           <chr>>
##
    1 Aruba ABW
                           1972
                                               NA
##
    2 Aruba
            ABW
                           1973
                                               NA
##
   3 Aruba
           ABW
                           1974
                                               NA
##
    4 Aruba
            ABW
                           1975
                                               NA
##
    5 Aruba
            ABW
                           1976
                                               NA
##
    6 Aruba
            ABW
                           1977
                                               NA
##
    7 Aruba
            ABW
                           1978
                                               NA
##
   8 Aruba
            ABW
                           1979
                                               NA
##
    9 Aruba
            ABW
                           1980
                                               NA
##
  10 Aruba
              ABW
                           1981
                                               NA
  # i 10,623 more rows
```

Let's do line plots!

```
mortality |>
  select(-indicator) |>
  pivot_longer(
    cols = `1972`: `2020`,
    names_to = "year",
    values_to = "child_mortality"
  ) |>
  ggplot(mapping = aes(x = year, y = child_mortality, group = country))
  geom_line(alpha = 0.25)
```

Hmm, what's going on?

Making sure year is numeric

By default, pivoted column names are characters, but we can transform them:

```
mortality_long <- mortality |>
  select(-indicator) |>
  pivot_longer(
    cols = `1972`:`2020`,
    names_to = "year",
    values_to = "child_mortality"
    ) |>
  mutate(year = as.integer(year))
mortality_long
```

```
## # A tibble: 10,633 x 4
     country country_code year child_mortality
##
     <chr> <chr>
                                          <fdh>>
##
                          <int>
                           1972
##
   1 Aruba ABW
                                             NA
##
   2 Aruba ABW
                           1973
                                             NA
##
   3 Aruba ABW
                           1974
                                             NA
##
   4 Aruba ABW
                           1975
                                             NA
##
   5 Aruba
           ABW
                           1976
                                             NA
##
   6 Aruba
           ABW
                           1977
                                             NA
```

Let's (re)do line plots!

```
mortality_long |>
  ggplot(mapping = aes(x = year, y = child_mortality, group = country)) +
  geom_line(alpha = 0.25)
```

There we go

Spotify data

spotify

```
## # A tibble: 490 x 54
##
     `Track Name`
                    Artist week1 week2 week3 week4 week5 week6
                     <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <
##
     <chr>
##
   1 The Box
                     Roddv~
                               1
                                      1
                                            1
                                                  1
                                                        1
##
   2 ROXANNE
                    Arizo~
                                      4
                                                        4
##
   3 Yummy
                    Justi~
                                      6
                                           17
                                                 17
                                                       17
                                                             24
##
   4 Circles
                     Post ~
                                4
                                      7
                                           9
                                                 10
                                                       7
                                                             10
                                5
                                      5
                                                  5
##
   5 BOP
                    DaBaby
                                                       11
                                                             12
   6 Falling
##
                    Trevo~
                                6
                                     8
                                           10
                                                       6
                                                             8
##
   7 Dance Monkey Tones~
                               7
                                    13
                                           13
                                                 12
                                                       12
                                                             13
   8 Bandit (with ~ Juice~
                               8
                                                       15
##
                                     11
                                           14
                                                 14
                                                             20
   9 Futsal Shuffl~ Lil U~
                                9
                                     9
                                           19
                                                 21
                                                             32
##
                                                       24
  10 everything i ~ Billi~
                                                       8
                              10
                                     17
                                           28
                                                  9
                                                             11
##
  # i 480 more rows
    i 46 more variables: week7 <dbl>, week8 <dbl>,
##
##
      week9 <dbl>, week10 <dbl>, week11 <dbl>, week12 <dbl>,
##
      week13 <dbl>, week14 <dbl>, week15 <dbl>, week16 <dbl>,
##
  #
      week17 <dbl>, week18 <dbl>, week19 <dbl>, week20 <dbl>,
## #
      week21 <dbl>, week22 <dbl>, week23 <dbl>, week24 <dbl>,
## #
      week25 <dbl>, week26 <dbl>, week27 <dbl>, ...
```

Pivoting not ideal

Last approach isn't ideal because of the week prefix:

```
spotify |>
  pivot_longer(
   cols = c(-`Track Name`, -Artist),
   names_to = "week_of_year",
   values_to = "rank"
)
```

```
## # A tibble: 25,480 x 4
## `Track Name` Artist week_of_year rank
## <chr> <chr> <chr>
                                     <dbl>
##
  1 The Box Roddy Ricch week1
## 2 The Box Roddy Ricch week2
## 3 The Box
               Roddy Ricch week3
               Roddy Ricch week4
## 4 The Box
## 5 The Box
               Roddy Ricch week5
##
  6 The Box
                Roddy Ricch week6
## 7 The Box
                Roddy Ricch week7
## 8 The Box
                Roddy Ricch week8
                Roddy Ricch week9
## 9 The Box
## 10 The Box
                Roddy Ricch week10
```

Removing a column name prefix

When the data in the column name has a fixed prefix, we can use the names_prefix to remove it when moving the data to rows

```
spotify |>
  pivot_longer(
    cols = c(-`Track Name`, -Artist),
    names_to = "week_of_year",
    values_to = "rank",
    names_prefix = "week"
) |>
  mutate(
    week_of_year = as.integer(week_of_year)
)
```

Removing a column name prefix

```
## # A tibble: 25,480 x 4
  `Track Name` Artist week_of_year rank
##
## <chr> <chr>
                            <int> <dbl>
  1 The Box Roddy Ricch
##
  2 The Box Roddy Ricch
##
##
  3 The Box Roddy Ricch
## 4 The Box Roddy Ricch
## 5 The Box Roddy Ricch
##
  6 The Box Roddy Ricch
## 7 The Box Roddy Ricch
## 8 The Box Roddy Ricch
## 9 The Box Roddy Ricch
## 10 The Box
           Roddy Ricch
                                  10
## # i 25,470 more rows
```

3/ Joining data sets

Gapminder data

library(gapminder) gapminder

```
## # A tibble: 1,704 x 6
##
     country
                 continent
                            vear lifeExp
                                              pop gdpPercap
##
     <fct>
                 <fct>
                           <int>
                                   <dbl>
                                            <int>
                                                      <dbl>
##
   1 Afghanistan Asia
                            1952
                                    28.8 8425333
                                                       779.
##
   2 Afghanistan Asia
                            1957
                                    30.3 9240934
                                                       821.
##
   3 Afghanistan Asia
                            1962
                                    32.0 10267083
                                                       853.
##
   4 Afghanistan Asia
                            1967
                                    34.0 11537966
                                                       836.
##
   5 Afghanistan Asia
                            1972
                                    36.1 13079460
                                                       740.
##
   6 Afghanistan Asia
                            1977
                                    38.4 14880372
                                                       786.
##
   7 Afghanistan Asia
                            1982
                                    39.9 12881816
                                                       978.
##
   8 Afghanistan Asia
                            1987
                                    40.8 13867957
                                                       852.
   9 Afghanistan Asia
##
                            1992
                                    41.7 16317921
                                                       649.
  10 Afghanistan Asia
                                    41.8 22227415
                                                       635.
                            1997
  # i 1,694 more rows
```

Joining data sets

What if we want to add the child_mortality variable to the gampinder data?

Just add the columns? Rows are not aligned properly!

```
gapminder |>
  select(country, year) |>
  head()
## # A tibble: 6 x 2
##
     country
                  vear
##
     <fct>
             <int>
  1 Afghanistan
                 1952
  2 Afghanistan
                 1957
##
  3 Afghanistan
##
                 1962
  4 Afghanistan
                 1967
##
  5 Afghanistan
                 1972
  6 Afghanistan
                  1977
```

```
mortality_long |>
  select(country, year) |>
  head()
```

```
## # A tibble: 6 x 2
##
    country
             vear
    <chr>>
            <int>
##
## 1 Aruba
             1972
             1973
##
  2 Aruba
  3 Aruba
             1974
  4 Aruba
             1975
## 5 Aruba
             1976
## 6 Aruba
             1977
```

Key variables

A **primary key** is a variable or set of variables that uniquely identifies rows in the data.

· {country, year} in the gapminder data

A **foreign key** is the corresponding variable(s) in another table.

{country, year} in the mortality_long data

If we align the two tables based on these variables, we can add variables from one to the other.

Checking that the keys are unique

Things get weird if these keys are not unique. Let's check.

Checking primary key is unique:

```
gapminder |>
  count(country, year) |>
  filter(n > 1)
```

A tibble: 0 x 3

Checking foreign key:

```
mortality_long |>
  count(country, year) |>
  filter(n > 1)
```

A tibble: 0 x 3

left_join(): add variables to primary table

left_join() keeps all rows from the first argument/piped data:

```
gapminder |>
 left_join(mortality_long) |>
 select(country, year, lifeExp, pop, gdpPercap, child mortality) |>
 head(n = 6)
## Joining with `by = join_by(country, year)`
## # A tibble: 6 x 6
##
    country year lifeExp pop gdpPercap child mortality
##
  <chr> <int> <dbl> <int>
                                     <dbl>
                                                   <dbl>
## 1 Afghanistan 1952 28.8 8.43e6
                                     779.
                                                     NΑ
## 2 Afghanistan 1957 30.3 9.24e6 821.
                                                     NΑ
## 3 Afghanistan 1962 32.0 1.03e7 853.
                                                     NA
## 4 Afghanistan 1967 34.0 1.15e7 836.
                                                    NA
## 5 Afghanistan 1972 36.1 1.31e7 740.
                                                    291
## 6 Afghanistan 1977
                      38.4 1.49e7 786.
                                                    262.
```

Rows in primary table not in foreign table: new values are NA.

inner_join(): add and filter

inner_join() adds the variables from the foreign table and filters to rows
in both tables:

```
gapminder |>
 inner join(mortality long) |>
 select(country, year, lifeExp, pop, gdpPercap, child mortality) |>
 head(n = 6)
## Joining with `by = join by(country, year)`
## # A tibble: 6 x 6
    country year lifeExp pop gdpPercap child mortality
##
    <chr> <int> <dbl> <int>
##
                                     <dbl>
                                                   <dbl>
  1 Afghanistan 1972 36.1 1.31e7
                                     740.
                                                    291
  2 Afghanistan 1977 38.4 1.49e7 786.
                                                    262.
  3 Afghanistan 1982 39.9 1.29e7 978.
                                                    231.
  4 Afghanistan 1987 40.8 1.39e7 852.
                                                   198.
  5 Afghanistan 1992 41.7 1.63e7 649.
                                                   166.
  6 Afghanistan 1997 41.8 2.22e7
                                      635.
                                                   142.
```

How inner joins work

Two data sets:

Find matching keys:

Credit: R for Data Science 23 / 29

How left joins work

Two data sets:

Keep all x keys:

Credit: R for Data Science 24/29

More complicated example

```
library(nycflights13)
flights2 <- flights |>
  select(year, time_hour, origin, dest, tailnum, carrier)
flights2
```

```
# A tibble: 336,776 x 6
                              origin dest tailnum carrier
##
      vear time hour
     <int> <dttm>
                                     <chr> <chr> <chr>
##
                               <chr>
##
   1 2013 2013-01-01 05:00:00 FWR
                                     TAH
                                           N14228
                                                   IJΑ
##
   2 2013 2013-01-01 05:00:00 LGA
                                     IAH
                                          N24211
                                                   UA
##
   3 2013 2013-01-01 05:00:00 JFK
                                     MTA
                                           N619AA
                                                   AΑ
##
    4 2013 2013-01-01 05:00:00 JFK
                                     BQN
                                           N804JB
                                                   B6
##
    5 2013 2013-01-01 06:00:00 LGA
                                     ATL
                                           N668DN
                                                   DI
##
      2013 2013-01-01 05:00:00 FWR
                                     ORD
                                           N39463
                                                   IJΑ
##
      2013 2013-01-01 06:00:00 EWR
                                     FLL
                                           N516JB
                                                   B6
##
    8 2013 2013-01-01 06:00:00 LGA
                                     TAD
                                           N829AS
                                                   FV
                                     MCO
##
      2013 2013-01-01 06:00:00 JFK
                                           N593JB
                                                   B6
##
  10
      2013 2013-01-01 06:00:00 LGA
                                     ORD
                                           N3ALAA
                                                   AA
  # i 336,766 more rows
```

Planes data

```
planes2 <- planes |>
   select(tailnum, year, type, engine, seats)
planes2
```

```
# A tibble: 3,322 x 5
##
     tailnum year type
##
                                           engine seats
   <chr> <int> <chr>
                                           <chr> <int>
##
   1 N10156 2004 Fixed wing multi engine Turbo-fan
                                                       55
##
##
   2 N102UW 1998 Fixed wing multi engine Turbo-fan
                                                      182
##
   3 N103US
              1999 Fixed wing multi engine Turbo-fan
                                                     182
##
   4 N104UW
              1999 Fixed wing multi engine Turbo-fan
                                                     182
              2002 Fixed wing multi engine Turbo-fan
                                                     55
##
   5 N10575
##
   6 N105UW
              1999 Fixed wing multi engine Turbo-fan
                                                      182
##
   7 N107US
              1999 Fixed wing multi engine Turbo-fan
                                                      182
              1999 Fixed wing multi engine Turbo-fan
                                                      182
##
   8 N108UW
##
   9 N109UW
              1999 Fixed wing multi engine Turbo-fan
                                                      182
  10 N110UW
              1999 Fixed wing multi engine Turbo-fan
                                                      182
  # i 3,312 more rows
```

year here is manufacture year.

What happens with naive join?

```
flights2 |>
  left_join(planes2)
```

```
## Joining with `by = join by(year, tailnum)`
  # A tibble: 336,776 x 9
##
      year time hour origin dest tailnum carrier type engine
##
     <int> <dttm>
                             <chr>
                                    <chr> <chr>
                                                  <chr>
                                                          <chr> <chr>
##
   1 2013 2013-01-01 05:00:00 EWR IAH
                                           N14228
                                                   UA
                                                           <NA> <NA>
##
   2 2013 2013-01-01 05:00:00 LGA
                                     IAH
                                           N24211
                                                   IJΑ
                                                           <NA> <NA>
##
   3 2013 2013-01-01 05:00:00 JFK
                                     MIA
                                           N619AA AA
                                                           <NA> <NA>
##
   4 2013 2013-01-01 05:00:00 JFK
                                      BON
                                           N804JB
                                                   B6
                                                           <NA> <NA>
##
      2013 2013-01-01 06:00:00 LGA
                                     ATI
                                           N668DN
                                                   DI
                                                           <NA> <NA>
##
      2013 2013-01-01 05:00:00 EWR
                                      ORD
                                           N39463
                                                   UA
                                                           <NA> <NA>
##
      2013 2013-01-01 06:00:00 FWR
                                      FILE
                                           N516 JB
                                                   B6
                                                           <NA> <NA>
##
   8
      2013 2013-01-01 06:00:00 LGA
                                      IAD
                                           N829AS
                                                   EV
                                                           <NA> <NA>
##
      2013 2013-01-01 06:00:00 JFK
                                     MCO
                                           N593JB
                                                   B6
                                                           <NA> <NA>
  10
      2013 2013-01-01 06:00:00 LGA
                                      ORD
                                           N3ALAA
                                                   AA
                                                           <NA>
                                                                 <NA>
##
  # i 336,766 more rows
    i 1 more variable: seats <int>
```

Specify the joining variables

```
flights2 |>
left_join(planes2, by = "tailnum")
```

```
##
    A tibble: 336,776 x 10
##
     year.x time_hour
                                origin dest tailnum carrier year.y
##
      <int> <dttm>
                                <chr>
                                       <chr> <chr>
                                                     <chr>
                                                              <int>
##
   1
       2013 2013-01-01 05:00:00 EWR
                                       IAH
                                             N14228
                                                     UA
                                                               1999
##
       2013 2013-01-01 05:00:00 LGA
                                       TAH
                                             N24211
                                                     IJΑ
                                                               1998
       2013 2013-01-01 05:00:00 JFK
##
   3
                                       MIA
                                             N619AA
                                                     AA
                                                               1990
       2013 2013-01-01 05:00:00 JFK
                                       BQN
                                             N804JB
                                                     B6
                                                               2012
##
##
       2013 2013-01-01 06:00:00 LGA
                                       ATI
                                             N668DN
                                                     DI
                                                               1991
       2013 2013-01-01 05:00:00 EWR
                                       ORD
                                                     UA
                                                               2012
##
   6
                                             N39463
       2013 2013-01-01 06:00:00 FWR
                                       FLL
                                             N516 JB
                                                     B6
                                                               2000
##
##
       2013 2013-01-01 06:00:00 LGA
                                       TAD
                                             N829AS
                                                     FV
                                                               1998
   8
       2013 2013-01-01 06:00:00 JFK
                                       MCO
##
                                             N593JB
                                                     B6
                                                               2004
##
  10
       2013 2013-01-01 06:00:00 LGA
                                       ORD
                                             N3ALAA AA
                                                                NA
##
    i 336,766 more rows
    i 3 more variables: type <chr>, engine <chr>, seats <int>
```

Change variables names

```
flights2 |>
  left_join(planes2 |> rename(manufacture_year = year))
## Joining with `by = join_by(tailnum)`
## # A tibble: 336,776 x 10
##
    year time hour
                             origin dest tailnum carrier
##
   <int> <dttm>
                  <chr> <chr> <chr> <chr> <chr>
##
   1 2013 2013-01-01 05:00:00 EWR IAH
                                         N14228
                                                  IJΑ
##
   2 2013 2013-01-01 05:00:00 LGA IAH
                                         N24211
                                                  UA
##
   3 2013 2013-01-01 05:00:00 JFK
                                    MIA
                                         N619AA
                                                  AA
##
   4 2013 2013-01-01 05:00:00 JFK
                                    BON
                                          N804 JB
                                                  B6
##
   5 2013 2013-01-01 06:00:00 LGA
                                    ATL
                                         N668DN
                                                  DL
##
   6 2013 2013-01-01 05:00:00 FWR
                                    ORD
                                          N39463
                                                  IJΑ
   7 2013 2013-01-01 06:00:00 EWR
                                    FLL
                                          N516JB
##
                                                  B6
   8 2013 2013-01-01 06:00:00 LGA
                                    IAD
##
                                          N829AS EV
##
   9 2013 2013-01-01 06:00:00 JFK
                                    MCO
                                          N593 JB
                                                 B6
##
  10 2013 2013-01-01 06:00:00 LGA
                                    ORD
                                          N3ALAA AA
  # i 336.766 more rows
##
##
  # i 4 more variables: manufacture year <int>, type <chr>,
## #
      engine <chr>, seats <int>
```