Assignment Project Exam 1

https://power-general Research Group to the Arthur St. // power-general Research Group to the Arthur Group

College of Engineering and Computer Science
The Australian National University

Add Wechat powcode

Semester One, 2020.

Statistical Machine Learning

Ong & Walder & Webers
Data61 | CSIRO
The Australian National
University

Overview Introduction

Linear Algebra
Probability
Probability
Linear Regression 1
Linear Regression 1
Linear Classification 1
Linear Classification 2
Remel Methods
Square Kernel Methods
Misture Models and EM 1
Neural Networks 1
Painal Networks 2
Principal Component Analysis
Automorbooks 1

Graphical Models 1 Graphical Models 2 Graphical Models 3 Sampling

Sequential Data 1 Sequential Data 2

(Many figures from C. M. Bishop, "Pattern Recognition and Machine Learning")

© 2020
Ong & Walder & Webers
Data61 | CSIRO
The Australian National
University

Assignment Project Exam Hel

https:///pawiooder.com

Probability Theory

Probability Densities

Expectations ar Covariances

Add WeChat powcoder

- Use language of mathematics to express models
- Geometry, vectors, linear algebra for reasoning
- Design and analysis of algorithms
- Numerical algorithms in python
- reconception of the concept of the c methods

Assignment Project Exam I

Definition (Mitchell, 1998)

A computer program is said to learn from experience E with respect to some class of tasks T and performance measure I, if its performance at tasks in T, as measured by P, improves with experience E.

Add WeChat powcoder

0

Ong & Walder & Webers
Data61 | CSIRO
The Australian National

some artificial data created from the function

Assignment Project Exam https://powcoder.com dd WeChat po

x

© 2020
Ong & Walder & Webers
Data61 | CSIRO
The Australian National
University

Assignment Project Exam I

Add WeChat powcoder

Assignment Project Exam I

Ong & Walder & Webers Data61 | CSIRO The Australian National

Assignment Project Exam

$$y(x, \mathbf{w}) = w_0 + w_1 x + w_2 x^2 + \dots + w_M x^M$$

$$= \underbrace{\mathbf{h}_{m=0}^M \mathbf{tps://powcoder.com}}_{\mathbf{m}}$$

- nonlinear function of x

Learning is Improving Performance

Statistical Machine Learning

Ong & Walder & Webers Data61 | CSIRO The Australian National

Assignment Project Exam He

https://powcoder.com

Add WeChat powcoder

© 2020
Ong & Walder & Webers
Data61 | CSIRO
The Australian National
University

Assignment Project Exam Health Probability Probability

Probability Densities
Expectations and

Performance measure: Error between target and prediction of the majoring data WCOGET

$$E(\mathbf{w}) = \frac{1}{2} \sum_{n=1}^{N} (y(x_n, \mathbf{w}) - t_n)^2$$

• unique minimum of $E(\mathbf{w})$ for argument \mathbf{w}^* under certain conditions (what are they?)

Model Comparison or Model Selection

Statistical Machine Learning

Ong & Walder & Webers
Data61 | CSIRO
The Australian National
University

Assignment Project Exam I

 $= w_0$

Polynomial Curv Fitting

Probability Theor

T TODADINI Dens

https://powcoder.com
Add WeChat powcode

0

Statistical Machine Learning

Ong & Walder & Webers Data61 | CSIRO The Australian National University

Assignment Project Exam I

 $= w_0 + w_1 x$

https://powcoder.com

Add Wechat powcoder

Probability Dens

Fynectations and

78of 825

Model Comparison or Model Selection

Statistical Machine Learning

Ong & Walder & Webers Data61 | CSIRO The Australian National University

Assignment Project Exam $F_{m=0}^{M} Project Exam F_{m=0}^{M} Project$

Polynomial Curv Fitting

Probability Theory

Expectations an

79of 825

Model Comparison or Model Selection

Statistical Machine Learning

Ong & Walder & Webers
Data61 | CSIRO
The Australian National

Assignment Project Exam]

Polynomial Curv Fitting

Probability Theory

Expectations and

Ong & Walder & Webers
Data61 | CSIRO
The Australian National

 \bullet Train the model and get w^\star

Assignment Peroject Exam

 $E_{\mathsf{RMS}} = \sqrt{2E(\mathbf{w}^{\star})/N}$

M

https://powcoder.com

Add WeChat powcoder

robability Theory

F-----

Table: Coefficients \mathbf{w}^* for polynomials of various order.

Assignment Project Exam F

Ong & Walder & Webers The Australian National

- N = 100
- heuristics: have no less than 5 to 10 times as many data
- points than parameters but ramber of parameters is not necessarily the mos appropriate measure of model complexity!

 later; Bayesian approach owcoder.com

© 2020
Ong & Walder & Webers
Data61 | CSIRO
The Australian National
University

As sower parsmicting troving the coefficients w?am • Add a regularisation term to the error function

https://powcoder.com

Expectations and

Squared norm of the parameter vector w

Add We Chat powcoder

• unique minimum of $E(\mathbf{w})$ for argument $\overline{\mathbf{w}}^*$ under certain conditions (what are they for $\lambda = 0$? for $\lambda > 0$?)

Ong & Walder & Webers Data61 | CSIRO The Australian National University

Assignment Project Exam F

Ong & Walder & Webers
Data61 | CSIRO
The Australian National
University

Assignment Project Exam

© 2020 Ong & Walder & Webers Data61 | CSIRO The Australian National University

Assignment Project Exam L

© 2020 Ong & Walder & Webers Data61 | CSIRO The Australian National University

Perinition (Mitchell, 1998) A computer program is said to learn from experience E with respect to some class of tasks T and performance measure P, if its performance at tasks in T, as measured by P, improves with experience E.

- Task: regression
- Experience: x input examples, t output labels
- Performent squared enter hat powcoder
- Model choice
- Regularisation
- do not train on the test set!

Probability Theory

Probability Densit

Ong & Walder & Webers
Data61 | CSIRO
The Australian National

Assignment Project Exam F

https://poweder.com

Probability Theory

Probability Densities

Expectations an

Probability Theory

Y vs. X

Statistical Machine Learning

Ong & Walder & Webers Data61 | CSIRO The Australian National

sum

26

60

Probability Theory

8 6

Ong & Walder & Webers Data61 | CSIRO The Australian National

	Y vs. X	a	b	c	d	e	f	g	h	i	sum	
Ass	Y vs. X Sign sum	17	6	n\t	. 1 8)	$\frac{5}{0}$	8	6	7	\mathbf{x}_{2}^{2}	n
	sum	3	6	8	9	9	8	9	6	2	60	_

Probability Theory

p(https://powcoder.com

$$p(X = d) = p(X = d, Y = 2) + p(X = d, Y = 1)$$

= 1/60 + 8/60

Add WeChat powcoder $p(X = d) = \sum_{p(X = d, Y)} p(X = d, Y)$

$$p(X = d) = \sum_{Y} p(X = d, Y)$$

$$p(X) = \sum_{Y} p(X, Y)$$

© 2020 Ong & Walder & Webers Data61 | CSIRO The Australian National University

Probability Densitie

Expectations and Covariances

phttps://powcoder.com

Product Rule

Statistical Machine Learning

© 2020 Ong & Walder & Webers Data61 | CSIRO The Australian National

Help

Polynomial Cury Fi

obability Theory

Expectations and

Conditional Probability

 $\underset{\text{Calculate }p(Y)=1):}{\underset{\text{Calculate }p(Y)}{\text{https:}}} \overset{p(X)=d}{\underset{\text{Colorion}}{\overset{Y}=1)}=8/34} der.com$

$$Add W = 0$$

$$Add W = 0$$

$$P(X = d, Y = 1) = p(X = d | Y = 1) = 34/60$$

$$P(X = d, Y = 1) = p(X = d | Y = 1) = 34/60$$

$$P(X = d, Y = 1) = p(X = d | Y = 1) = 34/60$$

$$p(X, Y) = p(X \mid Y) p(Y)$$

Another intuitive view is renormalisation of relative frequencies:

$$p(X \mid Y) = \frac{p(X, Y)}{p(Y)}$$

Sum and Product Rules

Statistical Machine Learning

© 2020
Ong & Walder & Webers
Data61 | CSIRO
The Australian National

https://powcoder.com

One & Walder & Webers Data61 | CSIRO The Australian National

Assignment Project Exam He

 $p(X) = \sum_{Y} p(X, Y)$ • Production $p(X) = \sum_{Y} p(X, Y)$ $p(X) = \sum_{Y} p(X, Y)$ $p(X) = \sum_{Y} p(X, Y)$ $p(X) = \sum_{Y} p(X, Y)$

Probability Theory

These rules for the last of layesian machine learning, and this course. The last of layesian machine learning and er

Ong & Walder & Webers Data61 | CSIRO The Australian National

Use product rule

Assignment Project Exam He

Bayes Theorem

and

p(Y | http://poweoder.eom

PAdd WeChat powcoder

 $= \sum p(X \mid Y) \, p(Y)$

(product rule)

Probability Theory

Probability Densities

Statistical Machine Learning

Ong & Walder & Webers
Data61 | CSIRO
The Australian National
University

• Real valued variable $x \in \mathbb{R}$ Solution of the interest of δx is equivariable p(x) for infinitesimal small δx .

Probability Theory

Probability Densit

Expectations an

https://powcoder.com

Add WeChat powcoder

Ong & Walder & Webers
Data61 | CSIRO
The Australian National

Assignment Project Exam He

Normalisation

https://powcoder.com

Add WeChat powcoder

Probability Theory

Covariances

Ong & Walder & Webers
Data61 | CSIRO
The Australian National
University

Assignment-Project Exam F

Polynomial Cury Fittin

https://powcoder.com

Probability Densities

Add WeChat powcoder

One & Walder & Webers The Australian National

Assignment Project Exam Help

Nonnegative

https://powcoder.com

$$\int_{-\infty}^{\infty} p(\mathbf{x}) \, \mathrm{d}\mathbf{x} = 1.$$

• This mand We^{∞} $p(\mathbf{x}) d\mathbf{x} = 1$.

$$\int_{-\infty}^{\infty} \cdots \int_{-\infty}^{\infty} p(\mathbf{x}) \, dx_1 \ldots \, dx_D = 1.$$

Ong & Walder & Webers
Data61 | CSIRO
The Australian National
University

Assignment Project Exam Hel

Sum Rule

https://powcoder.com

Product Rule

 $p(x, y) = p(y \mid x) \ p(x)$

Add WeChat powcoder

Probability Theory

...., _

Assignment Project Exam He

• Weighted average of a function f(x) under the probability distribution p(x)

https://powicadericom

 $\overset{\mathbb{E}}{\text{Add}} \overset{[f]}{\text{WeChat powcoder}}$

Probability Theory

Probability Densities

Expectations and

Assignment Project Exam Given a finite number N of points Indian from the

Approximate the expectation by a finite sum:

https://pow.coder.com

 $\mathbb{E}[f] \simeq \frac{1}{N} \sum_{n=1}^{\infty} f(x_n)$

How to draw oin to the proposition of the prop

Probability Theory

Probability Densities

Ong & Walder & Webers
Data61 | CSIRO
The Australian National
University

Assignment Project Exam He

• arbitrary function f(x, y)

• Note And Ox, We excitat powcoder

Probability Theory

Probability Densities

Expectations and

Ong & Walder & Webers The Australian National

• arbitrary function f(x)

discrete distribution p(x)probability density p(x)

- Note that E_x [f | y] is a function of y.
 Other hoter on seed in the stead of the seed in the s
- What is $\mathbb{E}\left[\mathbb{E}\left[f(x)\mid y\right]\right]$? Can we simplify it?
- This must mean $\mathbb{E}_{y} [\mathbb{E}_{x} [f(x) \mid y]]$. (Why?)

$$\mathbb{E}_{y} \left[\mathbb{E}_{x} \left[\mathbf{x} \right] \right] = \sum_{y} p(\mathbf{x}) \left[\mathbf{x} \right] \left[$$

One & Walder & Webers Data61 | CSIRO The Australian National

Assignment Project Exam Hel

• arbitrary function f(x)

(c) 2020 Ong & Walder & Webers Data61 | CSIRO The Australian National University

• Two random variables $x \in \mathbb{R}$ and $y \in \mathbb{R}$

Assignment Project Exam I

• With $\mathbb{E}[x] = a$ and $\mathbb{E}[y] = b$ https://kpowjcoder.com

 $= \mathbb{E}_{x,y} [xy] - \mathbb{E}_{x,y} [xb] - \mathbb{E}_{x,y} [ay] + \mathbb{E}_{x,y} [ab]$ $= \mathbb{E}_{x,y} [xy] - b \mathbb{E}_{x,y} [x] - a \mathbb{E}_{x,y} [y] + ab \mathbb{E}_{x,y} [1]$

 $= \mathbb{E}_{x,y}[xy] - ab - ab + ab \stackrel{\blacktriangle}{=} \mathbb{E}_{x,y}[xy] - ab$ $= \mathbb{E}_{x,y}[xy] - \mathbb{E}[x] \mathbb{E}[y]$

 Expresses how strongly x and y vary together. If x and y are independent, their covariance vanishes. Probability Theory

Ong & Walder & Webers
Data61 | CSIRO
The Australian National
University

Assignment Project Exam H

Prohynomial Curv Fitting

Expectations and Covariances

Add WeChat powcoder

One & Walder & Webers Data61 | CSIRO The Australian National

Assignment i Project i Exam He

 $\mathcal{N}(x | \mu, \sigma^2) = \frac{1}{(2\pi\sigma^2)^{\frac{1}{2}}} \exp\{-\frac{1}{2\sigma^2}(x - \mu)^2\}$ **https://powcoder.com**

Expectations and Covariances

Add WeChat powcoder

One & Walder & Webers Data61 | CSIRO The Australian National

 $\bullet \ \mathcal{N}(\!\!\!\!\! x \,|\, \mu,\sigma^2) > 0$

Assignment Project Exam Help

 $https: \sqrt[n]{powcoder.com}$

Expectations and Covariances

• Expectation over x^2

Add We Chat powcoder

Variance of x

$$\operatorname{var}[x] = \mathbb{E}[x^2] - \mathbb{E}[x]^2 = \sigma^2$$

Assignment Project Exam I

• Estimate best predictor = training = learning Given data $(x_1, y_1), \ldots, (x_n, y_n)$, find a predictor $f_{\mathbf{w}}(\cdot)$.

• dentify the type of input x and output y data

- Design an objective function or likelihood
- Calculate the optimal parameter (w)
- Model uncertainty using the Bayesian approach
- In plendent and compute (the algorithm in python) COCCT