12 - digital system design

IR = instructions are placed in instruction register

PC = program counter holds the memory address of the next instruction by a

AR = address register keeps track of what locations in the memory that is being address

DR = when operand is found, it is placed in data register (then processer uses)

this value as data for)

its operation

AC = the basic computer has a single general purpose register, the accumulator TR = temporary register holds the intermediate/temporary results INPR = input register holds data gother from an input device OUTR = output register holds dato to be send to an output device

common bus system = the registers are connected using a bus

basic computer instructions - fernat

	Hex Code		7
Symbol	I=0 $I=1$	Description	
AND	0xxx 8xxx	AND memory word to AC	
ADD	1xxx 9xxx	Add memory word to AC	memory
LDA	2xxx Axxx	Load AC from memory	reference
STA	3xxx Bxxx	Store content of AC into memory	reference instructions
BUN	4xxx Cxxx	Branch unconditionally	instructions
BSA	5xxx Dxxx	Branch and save return address	
ISZ	6xxx Exxx	Increment and skip if zero	
CLA	7800	Clear AC	
CLE	7400	Clear E	Ceaster
CMA	7200	Complement AC	103.5
CME	7100	Complement E	reference instructions
CIR	7080	Circulate right AC and E	entructions
CIL	7040	Circulate left AC and E	
INC	7020	Increment AC	
SPA	7010	Skip next instr. if AC is positive	
SNA	7008	Skip next instr. if AC is negative	
SZA	7004	Skip next instr. if AC is zero	
SZE	7002	Skip next instr. if E is zero	
HLT	7001	Halt computer	
INP	F800	Input character to AC	in out-
OUT	F400	Output character from AC	input- output instructions
SKI	F200	Skip on input flag	OUTPUL
SKO	F100	Skip on output flag	instructions
ION	F080	Interrupt on	
IOF	F040	Interrupt off	

interrupt initiated input-output = the device does not check input at each clock cycle, there is just another interrupt signal that shows if there is an input or not

von Neumann architecture = program instructions and dorta in one mememory

(most of the computers)

horourd architecture = storage of instructions and data are separated in

different manaries (in embaded systems)

when you write a program in high level language, it works in all processors, is if you compile it, convert it to a machine language, it would be specific to the processor.

- **5.1** A computer uses a memory unit with 256K words of 32 bits each. A binary instruction code is stored in one word of memory. The instruction has four parts: indirect bit, an operation code, a register code part to specify one of 64 registers, and an address part.
- a. How many bits are there in the operation code, the register code part, and the address part.
- b. Draw the instruction word format and indicate the number of bits in each part.
- c. How many bits are there in the data and address inputs of the memory?

opc revister code address $\rightarrow JZ$ bits $254 \pm 2.200 \rightarrow 2.10$ indirect 7 bits 18 32-25 = 7

@ data -> 32 Lits
address >> 256K = 2 n-318

