AVL Tree

Motivation: Unbalanced Tree

- Various binary search trees
 - The time complexity of binary search trees is so different.

Motivation: Unbalanced Tree

- The time complexity of binary search tree
 - Average case: $O(\log n)$
 - Worst case: O(n)
 - Note: The time complexity highly depends on **the order of elements to be inserted**.

- How to improve the worst case of the BST?
 - Maintain the BST as a **balanced** binary tree for every insertion.

What is AVL Tree?

Description

- Invented by Georgy Adelson-Velsky and Evgenii Landis in 1962
- **■** The first self-balancing tree
 - It guarantees that the heights of two child subtrees of any node differ by at most one.
 - If the height of two child subtrees differs by more than one, the rebalancing operation is performed.

What is AVL Tree?

Definition

- The balance factor of a node *N* is defined to be the height difference:
 - Balance(N) = Height(RightSubtree(N)) Height(LeftSubtree(N))
 - A binary tree is defined to be an AVL tree if $Balance(N) \in \{-1, 0, +1\}$ holds for every node N in the tree.

What is AVL Tree?

Examples

Searching in AVL Tree

- Description: This is the same way in the BST.
 - 1. Begin by examining the root node.
 - 1.1. If the node is NULL, the element does not exist.
 - 2. Compare the key of the root with the element.
 - 2.1 If the element is equal to the key, the element is found.
 - 2.2 If the element is less than the key, search a left subtree.
 - 2.3 If the element is greater than the key, search a right subtree.
 - 3. Repeat steps 1-2 until the element is found or the root is NULL.

Searching in AVL Tree

- Searching 8 in the AVL Tree
 - Compare 8 with 10. Because 8 < 10, traverse a left subtree.
 - Compare 8 with 7. Because 8 > 7, traverse a right subtree.
 - Compare 8 with 9, Because 8 < 9, traverse a left subtree.

Insertion in AVL Tree

Description

- Insert a node in the AVL tree in the same way as the insertion in the BST.
- Unlike the BST, check the balance factor of every node.
- If the tree becomes **unbalanced**, the rebalancing operation is performed.

When is Balancing Violated?

- Four possible cases to be unbalanced:
 - Outside cases (requiring single rotation):
 - Insertion into **left subtree of left child** of α .
 - Insertion into **right subtree of right child** of α .
 - Inside cases (requiring **double rotation**):
 - Insertion into **right subtree** of left child of α .
 - Insertion into **left subtree of right child** of α .

■ Insertion into left subtree of left child of α

Tree is imbalanced.

To make balanced, we use right-right rotation which moves node one position to right.

After right-right rotation, tree is balanced.

■ Two nodes A and B is rotated to the right from the current position.

Inserting a node to T1

- Description: Rotate A and B to the right.
 - To rotate A, the link of its left subtree is disconnected.
 - To rotate B, the link of its right subtree is disconnected.
 - T2 is linked as the left subtree of A.
 - A is linked as the right subtree of B.

■ Insertion into right subtree of right child of α

Tree is imbalanced.

To make balanced, we use left-left rotation which moves node one position to left.

After left-left rotation, tree is balanced.

■ Two nodes A and B is rotated to the left from the current position.

- Description: Rotate A and B to the left.
 - To rotate A, the link of its right subtree is disconnected.
 - To rotate B, the link of its left subtree is disconnected.
 - T2 is linked as the right subtree of A.
 - A is linked as the left subtree of B.

■ Insertion into right subtree of left child of α .

Tree is imbalanced

LL rotation

RR rotation

After left-right rotation, tree is balanced.

■ First, rotate B and C to the left from the current position, and then rotate A an C to the right.

Description

- Perform LL rotation for B and C, then you get RR case.
- Perform RR rotation for A and C.

■ Insertion into left subtree of right child of α .

Tree imbalanced

is

RR rotation

This is an LL problem

After right-left rotation, tree is balanced.

■ First, rotate B and C to the right from the current position, and then rotate A an C to the left.

Description

- Perform RR rotation for B and C, then you get LL case
- Perform LL rotation for A and C.

28

Insertion Example in AVL Tree

- Inserting 1, 2, 3, 4, 5, 6, 7, 8, and 9
 - https://visualgo.net/en/bst
 - https://www.cs.usfca.edu/~galles/visualization/AVLtree.html

Insertion Example in AVL Tree

- Inserting 3, 1, 4, 8, 6, 9, 7, and 5
 - https://visualgo.net/en/bst
 - https://www.cs.usfca.edu/~galles/visualization/AVLtree.html

Alternative - RL Case

- 1. Find top three nodes from the unbalancing point, i.e., A, B, C
- 2. remember the order -T1 < A < T2 < C < T3 < B < T4
- 3. sort A, B, C
- 4. attach subtrees

RR Case

Deletion in AVL Tree – R0 rotation

when B has 0 balance factor

AVL Tree

Non AVL Tree

This is an RR case when insertion at T1

R0 Rotated Tree

Deletion in AVL Tree – R1 rotation

when B has 1 balance factor

AVL Tree

Non AVL Tree

This is an RR case when insertion at T1

R1 Rotated Tree

Deletion in AVL Tree – R-1 rotation

when B has -1 balance factor

This is an LR case when insertion at T2

Summary of AVL Tree

- Time complexity of AVL tree
 - The operations for searching, insertion, and deletion are bound by O(h), where h is the height of AVL tree.

Algorithm	Average case	Worst case
Searching	$O(\log n)$	$O(\log n)$
Insertion	$O(\log n)$	$O(\log n)$
Deletion	$O(\log n)$	$O(\log n)$

 \blacksquare where *n* is the number of nodes in the AVL tree.