

Unidad 1

Nicolás Gómez Morgado Gestión Presupuestaria y Financiera

6 de junio de 2024

Índice

1.	Conceptos clave
2.	Tipos de intereses
	2.1. Interés simple
	2.2. Interés compuesto
3.	Costos de oportunidad
	3.1. Criterios de decision
4.	Valor del dinero y Tasas de rendimiento
	4.1. Tasa de rendimiento
	4.2. Valor futuro (VF)
	4.3. Valor presente (VP)
	4.4. Valuación de flujos de efectivo en varios periodos
	4.4.1. Flujo de efectivo descontado(FED)
	4.4.2. Valor actual Neto (VAN/VNA/VPN)
	4.5. Tasa interna de retorno

1. Conceptos clave

- **Presupuesto:** Es un plan financiero que detalla los ingresos y gastos de una organización en un periodo de tiempo determinado.
- Pronostico de ventas: Es una estimación de las ventas futuras de una empresa.
- Estados financieros: Son informes que presentan la situación financiera y los resultados de las operaciones de una empresa.
- Estados financieros proyectados: Son estados financieros que se proyectan en el futuro.
- Bonos y acciones: Son instrumentos financieros que permiten a las empresas obtener financiamiento.
- Valor par, valor sobre la par y valor: Son conceptos relacionados con el valor de los bonos.
- Acciones preferentes: Son acciones que tienen preferencia en el pago de dividendos.
- Dividendos: Son pagos que las empresas hacen a sus accionistas.
- Autofinanciación: Es la capacidad de una empresa para financiar sus operaciones con sus propios recursos.
- Activo financiero: Es un instrumento financiero que representa un derecho de propiedad sobre un activo. Esta determinado por:
 - Utilidad que genera en el futuro.
 - La tasa de interés.
- Valor del dinero: Cambia con el tiempo, por lo que un peso hoy vale más que un peso en el futuro. Se debe distinguir entre:
 - Valor nominal (¿Cuanto dinero hay?)
 - Valor real (¿Cuanto se puede comprar con ese dinero?)
- Criterio por decision: Depende de la rentabilidad del proyecto.
- Riesgo: Es la probabilidad de que un proyecto no se desarrolle como se espera.
- Rentabilidad del proyecto: Lo que el proyecto puede o va a generar con mi inversion inicial.

2. Tipos de intereses

2.1. Interés simple

El interés simple es aquel que se calcula sobre el capital inicial, sin importar si se reinvierte o no. Algunas de las características del interés simple son:

- El capital inicial se mantiene constante durante toda la operación.
- El interés siempre es el mismo para cualquier periodo de la operación.
- La tasa de interés solo se aplica al capital inicial.

Ejemplo

1. Si invierto \$10.000.000 a una tasa de interés simple del 15 % anual, ¿cuánto dinero tendré al cabo de 3 años?

Formula:

$$VF = VP(1 + i \cdot n)$$

VF = Valor futuro

VP = Valor presente

i = Tasa de interés

n = Número de periodos

Solución:

$$VF = VP(1 + i \cdot n)$$

$$VF = \$10,000,000$$

$$VF = \$10,000,000(1 + 0,15 \cdot 3)$$

$$VF = \$10,000,000(1 + 0,45)$$

$$VF = \$10,000,000(1,45)$$

$$VF = \$14,500,000$$

Por lo tanto genere \$4.500.000 en intereses.

2.2. Interés compuesto

El interés compuesto es aquel que se calcula sobre el capital inicial y los intereses generados en periodos anteriores. Algunas de las características del interés compuesto son:

- El capital inicial aumenta en cada periodo de la operación debido a que se suman los intereses.
- La tasa de interés se aplica sobre un capital que va variando.
- Los intereses aumentan en relación con el tiempo.

1. Si invierto \$10.000.000 a una tasa de interés compuesto del 15 % anual, ¿cuánto dinero tendré al cabo de 3 años?

Formula:

$$VF = VP(1+i)^n$$

VF = Valor futuro

VP = Valor presente

i = Tasa de interés

n = Número de periodos

Solución:

$$VF = VP(1+i)^n$$

Datos: VP = \$10,000,000 $VF = \$10,000,000(1+0,15)^3$

i = 0.15 $VF = $10,000,000(1.15)^3$

n = 3 VF = \$10,000,000(1,520875)

VF = \$15,208,750

Por lo tanto genere \$5.208.750 en intereses.

3. Costos de oportunidad

El costo de oportunidad es el valor de la mejor opción que se deja de lado al tomar una decisión.

3.1. Criterios de decision

- Rentabilidad del proyecto > Costo de oportunidad ⇒ Proyecto Rentable.
- ullet Rentabilidad del proyecto < Costo de oportunidad \Rightarrow **Proyecto no Rentable**.
- \blacksquare Rentabilidad del proyecto = Costo de oportunidad \Rightarrow **Proyecto Indiferente**.

Figura 1: Figura representativa criterios

4. Valor del dinero y Tasas de rendimiento

4.1. Tasa de rendimiento

La tasa de rendimiento es la rentabilidad que se obtiene de una inversión. Se puede calcular mediante la siguiente formula:

$$Rendimiento = \frac{Ganancia}{Inversion} \cdot 100 \%$$

4.2. Valor futuro (VF)

Valor que tendrá una inversión en el futuro tomando en cuenta un capital inicial (VP), una tasa de interés (i) y un número de periodos (n). Se puede calcular mediante la siguiente formula:

$$VF = VP(1+i)^n$$

Donde:

VF = Valor futuro

VP = Valor presente

i = Tasa de interés

n = Número de periodos

4.3. Valor presente (VP)

Valor que tiene una inversión en el presente tomando en cuenta un capital futuro (VF), una tasa de interés (i) y un número de periodos (n). Se puede calcular mediante la siguiente formula:

$$VP = \frac{VF}{(1+i)^n}$$

Donde:

VF = Valor futuro

VP = Valor presente

i = Tasa de interés

n = Número de periodos

Usted estima que al realizar un proyecto, en una año podrá venderlo en \$420.000.000. Para lo anterior, usted necesita invertir \$370.000.000. Adicionalmente usted cree que el proyecto es tan riesgoso como una inversion en el mercado de valores que le ofrece un rendimiento esperado del $12\,\%$.

Datos:

$$VF = \$420,000,000$$

 $VP = \$370,000,000$
 $n = 1$

1. Calcule el valor presente del activo (Considere una tasa de interés del 5%).

$$VP = \frac{VF}{(1+i)^n}$$

$$VP = \frac{\$420,000,000}{(1+0,05)^1}$$

$$VP = \frac{\$420,000,000}{1,05}$$

$$VP = \$400,000,000$$

2. Calcule el rendimiento del activo.

$$\begin{split} & \text{Rendimiento} = \frac{\text{Ganancia}}{\text{Inversion}} \cdot 100 \,\% \\ & \text{Rendimiento} = \frac{\$420,000,000 - \$370,000,000}{\$370,000,000} \cdot 100 \,\% \\ & \text{Rendimiento} = \frac{\$50,000,000}{\$370,000,000} \cdot 100 \,\% \\ & \text{Rendimiento} = 13,51 \,\% \\ & \text{Rendimiento} \approx 14 \,\% \end{split}$$

3. ¿Cual seria el costo de oportunidad?

El costo de oportunidad es el valor de la mejor opción que se deja de lado al tomar una decisión. En este caso, el costo de oportunidad es el rendimiento esperado del mercado de valores, que es del 12%.

4. ¿Realizaría la inversion? Si, ya que la rentabilidad del proyecto es mayor al costo de oportunidad (Rendimiento > Costo de Oprtunidad $\rightarrow 14\% > 12\%$).

4.4. Valuación de flujos de efectivo en varios periodos

4.4.1. Flujo de efectivo descontado(FED)

Calculo del valor presente tomando en cuenta varias cantidades de dinero en diferentes periodos. Se calcula mediante la siguiente formula:

$$FED = \sum_{t=1}^{n} \frac{VF_t}{(1+i)^t}$$

Donde:

FED =Flujo de efectivo descontado $VF_t =$ Valor futuro en el periodo t i =Tasa de interés n =Número de periodos

4.4.2. Valor actual Neto (VAN/VNA/VPN)

Son los flujos de efectivo descontados menos la inversión inicial, el cual si posee un valor positivo, el proyecto es rentable. Se calcula mediante la siguiente formula:

$$VAN = \sum_{t=1}^{n} \frac{VF_t}{(1+i)^t} - Inversion$$

$$VAN = FED - Inversion$$

Consideraciones del VAN:

- Si el VAN > 0, el proyecto crea valor.
- Si el VAN < 0, el proyecto destruye valor.
- Si el VAN = 0, el proyecto esta en un punto de equilibrio.

Calcular el valor actual neto de un proyecto que tiene una inversión inicial de

\$2.000 y los siguientes flujos de efectivo:

Datos			
i	10%		
n	4		
Inversion	\$2.000		

Detalle de flujos			
Año 1	Año 2	Año 3	Año 4
800	600	400	900

$$VAN = \sum_{t=1}^{n} \frac{\mathrm{VF}_{t}}{(1+i)^{t}} - \mathrm{Inversion}$$

$$VAN = \frac{800}{(1+0,10)^{1}} + \frac{600}{(1+0,10)^{2}} + \frac{400}{(1+0,10)^{3}} + \frac{900}{(1+0,10)^{4}} - 2000$$

$$VAN = \frac{800}{1,10} + \frac{600}{1,21} + \frac{400}{1,331} + \frac{900}{1,4641} - 2000$$

$$VAN = 727,27 + 495,87 + 300,67 + 614,52 - 2000$$

$$VAN = 2138,33 - 2000$$

$$VAN = 138,33$$

$$VAN \approx 138$$

Por lo tanto el proyecto crea valor y es rentable.

Inconvenientes del VAN:

- No toma en cuenta el cambio del valor del dinero en el tiempo causado por la inflación y tipos de interés.
- No toma en cuenta los ingresos después del plazo de recuperación, lo que puede llevar a decisiones erróneas como priorizar inversiones de corto plazo o con altos flujos de caja iniciales.
- Necesita de una prevision de flujos de caja futuros (estimar los gastos o ingresos en caja), lo que puede llevar a errores en la estimación.
- Prioriza los proyectos que permiten recuperar la inversion inicial en corto plazo antes que los que pueden generan mayor rentabilidad a largo plazo.

4.5. Tasa interna de retorno

Tasa de descuento en la cual el VAN el igual a cero. Se calcula mediante la siguiente formula:

$$VAN = \sum_{t=1}^{n} \frac{VF_t}{(1 + \overline{IIR})^t} - Inversion = 0$$

$$\overline{IIR} = \%$$

TIR 13 %

Datos			
i	10%		
n	4		
Inversion	\$2.000		

$$VAN = \sum_{t=1}^{n} \frac{\text{VF}_t}{(1 + \text{TIR})^t} - \text{Inversion}$$

$$VAN = \frac{800}{(1 + 0.13)^1} + \frac{600}{(1 + 0.13)^2} + \frac{400}{(1 + 0.13)^3} + \frac{900}{(1 + 0.13)^4} - 2000$$