Intro to Proofs: HW05

Aamod Varma

September 25, 2024

9.4

Proof. If the polynomial is prime $\forall n \in \mathbb{N}$ then $n^2 + 17n + 17$ has only 1 and itself as its factors.

However let us take n=17 we have, $17^2+17^2+17=17(17+17+1)=17\times35$ We see that the polynomial has factors 17 and 35 in this case (also note that 35 can be further factored). So this shows us that $n^2+17n+17$ is not prime $\forall n\in\mathbb{N}$

So the statement is false.

9.9

Proof. Let $A = \{1, 2\}$ and $B = \{2\}$. With this we have $A - B = \{1\}$.

$$P(A) = \{\{1\}, \{2\}, \{1, 2\}, \phi\}$$

$$P(B) = \{\{2\}, \phi\}$$

$$P(A) - P(B) = \{\{1\}, \{1, 2\}\}$$

$$P(A - B) = \{\{1\}, \phi\}$$

It is easy to see that $P(A) - P(B) \not\subseteq P(A - B)$ So the statement is false.

9.23

Proof. We have $x^3 < y^3$. We can write this as,

$$x^{3} - y^{3} < 0$$
$$(x - y)(x^{2} + xy + y^{2}) < 0$$

We know that $x^2 + xy + y^2$ is always positive as we can write it as, $(x + \frac{y}{2})^2 + \frac{3y^2}{4}$ so we can divide both sides by it.

$$(x - y) < 0 \Rightarrow x < y$$

9.34

Proof. We use a counter example to disprove this statement. Consider $A = \{1, 2, 3\}$ and $B = \{3, 4, 5\}$ where $A \cup B = \{1, 2, 3, 4, 5\}$ We can take $X = \{2, 3, 4\}$. We see that $X \subseteq A \cup B$. However it is not true that either $X \subseteq A$ as $4 \notin A$ and not true that $X \subseteq B$ as $2 \notin B$

10.2

Proof. First let us consider n = 1, we have,

$$1^2 = \frac{1(1+1)(2+1)}{6} = \frac{6}{6} = 1$$

Now let us assume the statement is true for an arbitrary n = k, we have,

$$1^{2} + 2^{2} + \dots + k^{2} = \frac{k(k+1)(2k+1)}{6}$$

We need to show just using this result that the statement holds true for n = k + 1 or that,

$$1^{2} + \dots + k^{2} + (k+1)^{2} = \frac{(k+1)(k+2)(2(k+1)+1)}{6} = \frac{(k+1)(2k^{2} + 7k + 6)}{6}$$

We can replace the first k terms in the left with the formula above and we get,

$$\frac{k(k+1)(2k+1)}{6} + (k+1)^2 = \frac{k(k+1)(2k+1) + 6(k+1)^2}{6}$$
$$\frac{(k+1)(k(2k+1) + 6(k+1))}{6} = \frac{(k+1)(2k^2 + 7k + 6)}{6}$$

We see that this is the same formula for the sum of k + 1 terms that we had to show.

Hence we showed that if the staement holds true for n = k then it will also hold true for n = k + 1 and by inductino we can say that the statement is true for every positive integer n.

10.8

Proof. First let us consider the case when n = 1. We get,

$$\frac{1}{2!} = 1 - \frac{1}{(n+1)!}$$

The left hand side evaluates to $\frac{1}{2!} = \frac{1}{2}$. And the right hand side evaluates to,

$$1 - \frac{1}{2!} = 1 - \frac{1}{2} = \frac{1}{2}$$

So we have $\frac{1}{2!} = 1 - \frac{1}{(1+1)!} = \frac{1}{2}$ so the equality holds for n = 1.

Now let us assume the equality holds for an arbitreary n = k, we get,

$$\frac{1}{2!} + \dots + \frac{k}{(k+1)!} = 1 - \frac{1}{(k+1)!}$$

We need to show that the following equality is true given this,

$$\frac{1}{2!} + \dots + \frac{k}{(k+1)!} + \frac{k+1}{(k+2)!} = 1 - \frac{1}{(k+2)!}$$

Using the righthand side from the equality we assumed for n = k we have the lefthand side of what we want to prove as,

$$1 - \frac{1}{(k+1)!} + \frac{k+1}{(k+2)!}$$

$$=1+\frac{k+1}{(k+2)!}-\frac{k+2}{(k+1)!}=1-\frac{1}{(k+2)!}$$

Which is the righthand side of what we want to prove.

Hence by inductino we showed that the statement holds for all $n \in N$

10.14

Proof. We need to show $5|2^n a \Rightarrow 5|a, \forall n \in N \text{ If } n=1 \text{ we see that}$

$$5|2^n a = 5|a \text{ as } 2^n = 1$$

For an arbitrary n = k we have,

$$5|2^k a \Rightarrow 5|a$$

We have to show that given this, the statemeth holds for n = k + 1 or,

$$5|2^{k+1}a \Rightarrow 5|a$$

If the statement holds for k then we know that $2^k a = 5m_0 \Rightarrow a = 5n_0$ for some $m \in \mathbb{Z}$

Taking the lefthand side of what we have to prove we see,

$$2^{k+1}a = 5m_1$$

First we start with $2^k a = 5m_0$. Multiplifying both sides by 2 we get,

$$2^{k+1}a = 10m_0 = 5(2m_0) = 5m_1$$

However notice that we have the same a that we already assumed is divisbile in the case where n=k. Hence we show that even in the case where n=k+1 a is still divisbile by 5.

10.17

Proof. Let us first check for n=2. We have,

$$\overline{A_1 \cap A_2} = \overline{A_1} \cup \overline{A_2}$$

which is true by using demoragans law.

Or in other words if $x \notin A_1 \cap A_2$ means that $x \notin A_1$ or $x \notin A_2$ which means that $x \in \overline{A_1} \cup \overline{A_2}$

Let us now assume it is true for an arbitrary n = k we have,

$$\overline{A_1 \cap \cdots \cap A_k} = \overline{A_1} \cup \cdots \cup \overline{A_k}$$

we need to show that the following follows,

$$\overline{A_1 \cap \cdots \cap A_k \cap A_{k+1}} = \overline{A_1} \cup \cdots \cup \overline{A_k} \cup \overline{A_{k+1}}$$

Consider the intersectino of $A_1 \cap \cdots \cap A_k = A_0$. Now we have because of demorgans law (we also just showed it above for the case of n = 2),

$$= \overline{A_0 \cap A_{k_1}} = \overline{A_0} \cup \overline{A_{k+1}}$$
$$= \overline{A_1 \cap \dots \cap A_k} \cup \overline{A_{k+1}}$$

Now from our assumption we can write this as,

$$=\overline{A_1}\cup\cdots\cup\overline{A_k}\cup\overline{A_{k+1}}$$

Which is the right hand side for the case of n = k + 1.

Hence by induction we have shown that the satement is true for all $n \ge 2$

10.21

First lets consider the base case wher n = 1 we get,

$$\frac{1}{1} + \frac{1}{2} \ge 1 + \frac{1}{2}$$

Assume the case for n = k we get,

$$\frac{1}{1} + \dots + \frac{1}{2^k - 1} + \frac{1}{2^k} \ge 1 + \frac{k}{2}$$

We need to shwo the case for n = k + 1. Which is,

$$\frac{1}{1} + \dots + \frac{1}{2^k - 1} + \frac{1}{2^k} + \dots + \frac{1}{2 \times 2^k} \ge 1 + \frac{k+1}{2}$$

We can easily see that $\frac{1}{2^k+1}+\cdots+\frac{1}{2^{k+1}}$ is lowerboukded by $\frac{1}{2}$ because $2^k\frac{1}{2\times 2^k}=\frac{1}{2}$ So we can write,

$$\frac{1}{1} + \dots + \frac{1}{2^k - 1} + \frac{1}{2^k} + \dots + \frac{1}{2 \times 2^k} \ge 1 + \frac{k}{2} + \frac{1}{2} = 1 + \frac{k+1}{2}$$

10.30

Proof. Let us start with the case for n = 1. We have,

$$F_{1} = \frac{\left(\frac{1+\sqrt{5}}{2}\right)^{1} - \left(\frac{1-\sqrt{5}}{2}\right)^{1}}{\sqrt{5}}$$
$$= \frac{2\sqrt{5}}{\sqrt{5}} = 2$$

which is true.

Now let us assume the case for n = k this means that, $F_{n-2} + F_{n-1} = F_n$ or that,

$$F_k = \frac{\left(\frac{1+\sqrt{5}}{2}\right)^{k-2} - \left(\frac{1-\sqrt{5}}{2}\right)^{k-2}}{\sqrt{5}} + \frac{\left(\frac{1+\sqrt{5}}{2}\right)^{k-1} - \left(\frac{1-\sqrt{5}}{2}\right)^{k-1}}{\sqrt{5}} = \frac{\left(\frac{1+\sqrt{5}}{2}\right)^k - \left(\frac{1-\sqrt{5}}{2}\right)^k}{\sqrt{5}}$$

Now we need to show that it holds for n = k + 1 or that,

$$F_{k+1} = \frac{\left(\frac{1+\sqrt{5}}{2}\right)^{k-1} - \left(\frac{1-\sqrt{5}}{2}\right)^{k-1}}{\sqrt{5}} + \frac{\left(\frac{1+\sqrt{5}}{2}\right)^k - \left(\frac{1-\sqrt{5}}{2}\right)^k}{\sqrt{5}} = \frac{\left(\frac{1+\sqrt{5}}{2}\right)^{k+1} - \left(\frac{1-\sqrt{5}}{2}\right)^{k+1}}{\sqrt{5}}$$

We have $F_{k+1} = F_k + F_{k-1}$. But we have an expression for F_k from our assumption. Putting that in here we get,

$$\begin{split} &=\frac{\left(\frac{1+\sqrt{5}}{2}\right)^{k-2}-\left(\frac{1-\sqrt{5}}{2}\right)^{k-2}}{\sqrt{5}}+\frac{\left(\frac{1+\sqrt{5}}{2}\right)^{k-1}-\left(\frac{1-\sqrt{5}}{2}\right)^{k-1}}{\sqrt{5}}+\frac{\left(\frac{1+\sqrt{5}}{2}\right)^{k-1}-\left(\frac{1-\sqrt{5}}{2}\right)^{k-1}}{\sqrt{5}}\\ &=\frac{\left(\frac{1+\sqrt{5}}{2}\right)^{k-2}-\left(\frac{1-\sqrt{5}}{2}\right)^{k-2}}{\sqrt{5}}+\frac{2\left(\frac{1+\sqrt{5}}{2}\right)^{k-1}-2\left(\frac{1-\sqrt{5}}{2}\right)^{k-1}}{\sqrt{5}}\\ &=\frac{1}{\sqrt{5}}\left(\left(\frac{1+\sqrt{5}}{2}\right)^{k-2}-\left(\frac{1-\sqrt{5}}{2}\right)^{k-2}+2\left(\frac{1+\sqrt{5}}{2}\right)^{k-1}-2\left(\frac{1-\sqrt{5}}{2}\right)^{k-1}\right)\\ &=\frac{1}{\sqrt{5}}\left(\frac{\left(\frac{1+\sqrt{5}}{2}\right)^{k+1}}{\frac{(1+\sqrt{5})^3}{2^3}}+\frac{2\left(\frac{1+\sqrt{5}}{2}\right)^{k+1}}{\frac{(1+\sqrt{5})^2}{2^2}}-\frac{\left(\frac{1-\sqrt{5}}{2}\right)^{k+1}}{\frac{(1-\sqrt{5})^3}{2^3}}-\frac{2\left(\frac{1-\sqrt{5}}{2}\right)^{k+1}}{\frac{(1-\sqrt{5})^2}{2^2}}\right)\\ &=\frac{1}{\sqrt{5}}\left(\left(\frac{1+\sqrt{5}}{2}\right)^{k+1}\left(\frac{1}{\left(\frac{1+\sqrt{5}}{2}\right)^3}+\frac{2}{\left(\frac{1+\sqrt{5}}{2}\right)^2}\right)-\left(\frac{1-\sqrt{5}}{2}\right)^{k+1}\left(\frac{1}{\left(\frac{1-\sqrt{5}}{2}\right)^3}+\frac{2}{\left(\frac{1-\sqrt{5}}{2}\right)^2}\right)\right) \end{split}$$

Simplfying this expression we have,

$$= \frac{1}{\sqrt{5}} \left(\left(\frac{1 + \sqrt{5}}{2} \right)^{k+1} \left(\frac{8(2 + \sqrt{5})}{(1 + \sqrt{5})^3} \right) - \left(\frac{1 - \sqrt{5}}{2} \right)^{k+1} \left(\frac{8(2 - \sqrt{5})}{(1 - \sqrt{5})^3} \right) \right)$$

$$= \frac{1}{\sqrt{5}} \left(\left(\frac{1 + \sqrt{5}}{2} \right)^{k+1} \left(1 \right) - \left(\frac{1 - \sqrt{5}}{2} \right)^{k+1} \left(1 \right) \right)$$

$$= \frac{\left(\frac{1 + \sqrt{5}}{2} \right)^{k+1} - \left(\frac{1 - \sqrt{5}}{2} \right)^{k+1}}{\sqrt{5}}$$

Which is what we had to show for the case of n = k + 1

10.35

Let us consider the base cases of n=2,4 and k=1,3. For n=2,k=1 we have 2 which is even. For n=4,k=3 we have 4 which is even. For n=2,k=3 we have 0 which is even. And laslty for n=4,k=1 we have, 4 which is even. Now for our base case, assume that $\binom{n-2a}{k-2b}$ is even for some even n and odd k and $a,b\in N$. We can write,

$$\binom{n}{k} = \binom{n-1}{k-1} + \binom{n-1}{k}$$
$$= \binom{n-2}{k-2} + \binom{n-2}{k-1} + \binom{n-2}{k-1} + \binom{n-2}{k}$$
$$= \binom{n-2}{k-2} + 2\binom{n-2}{k-1} + \binom{n-2}{k}$$

We know that this term is even because based on our assumption we know the first and last term is even. And because the second term is multiplied by 2 we know that is evne anyways. Hence by induction we showed that the statement is true.