Exercice 1 SABCD est une pyramide régulière à base carrée ABCD dont toutes les arêtes ont la même longueur. Le point I est le centre du carré ABCD.

On suppose que : IC = IB = IS = 1.

Les points K, L et M sont les milieux respectifs des arêtes [SD], [SC] et [SB].

- 1. Parmi les couples de droites suivantes, lequelles ne sont pas coplanaires :
 - **a.** (DK) et (SD)
- **b.** (AS) et (IC)
- **c.** (AC) et (SB)
- **d.** (LM) et (AD)

2. Calculer \overrightarrow{IM} en fonction des vecteurs \overrightarrow{IC} , \overrightarrow{IB} et \overrightarrow{IS} .

$$\overrightarrow{IM} = \overrightarrow{IB} + \overrightarrow{BM} = \overrightarrow{IB} + \frac{1}{2}\overrightarrow{BS} = \overrightarrow{IB} + \frac{1}{2}\left(\overrightarrow{BI} + \overrightarrow{IS}\right) = \frac{1}{2}\overrightarrow{IB} + \frac{1}{2}\overrightarrow{IS}$$

3. Calculer \overrightarrow{IK} en fonction des vecteurs \overrightarrow{IC} , \overrightarrow{IB} et \overrightarrow{IS} .

$$\overrightarrow{IK} = \overrightarrow{ID} + \overrightarrow{DK} = \overrightarrow{ID} + \frac{1}{2}\overrightarrow{DS} = \overrightarrow{ID} + \frac{1}{2}\left(\overrightarrow{DI} + \overrightarrow{IS}\right) = \frac{1}{2}\overrightarrow{ID} + \frac{1}{2}\overrightarrow{IS} = -\frac{1}{2}\overrightarrow{IB} + \frac{1}{2}\overrightarrow{IS}$$

4. Calculer \overrightarrow{IL} en fonction des vecteurs \overrightarrow{IC} , \overrightarrow{IB} et \overrightarrow{IS} .

$$\overrightarrow{IL} = \overrightarrow{IC} + \overrightarrow{CL} = \overrightarrow{IC} + \frac{1}{2}\overrightarrow{CS} = \overrightarrow{IC} + \frac{1}{2}\left(\overrightarrow{CI} + \overrightarrow{IS}\right) = \frac{1}{2}\overrightarrow{IC} + \frac{1}{2}\overrightarrow{IS}$$

5. Pour les questions suivantes, on se place dans le repère orthonormé de l'espace $(I; \overrightarrow{IC}, \overrightarrow{IB}, \overrightarrow{IS})$.

a. Donner les coordonnées de chacun des points du dessin.

$$A(-1;0;0)$$

 $B(0;1;0)$
 $C(1;0;0)$
 $D(0;-1;0)$
 $S(0;0;1)$
 $K(0;-0.5;0.5)$
 $L(0.5;0;0.5)$
 $M(0;0.5;0.5)$
 $I(0;0;0)$

b. Déterminer les coordonnées du milieu N de [KL].

$$N(x_N; y_N; z_N) = \left(\frac{1}{2}(x_K + x_L); \frac{1}{2}(y_K + y_L); \frac{1}{2}(z_K + z_L)\right) = \left(\frac{1}{4}; -\frac{1}{4}; \frac{1}{2}\right)$$

c. Déterminer les coordonnées du vecteur \overrightarrow{AS} .

$$\overrightarrow{AS} = (x_S - x_A; y_S - y_A; z_S - z_A) = (1;0;1)$$

d. Montrer ques les vecteurs \overrightarrow{IC} et \overrightarrow{IC} son colinéaires. Que peut-on en déduire sur les droites (KM) et (DB)?

$$\overrightarrow{KM} = (x_M - x_K; y_M - y_K; z_M - z_K) = (0; 1; 0)$$

$$\overrightarrow{DB} = (x_B - x_D; y_B - y_D; z_B - z_D) = (0; 2; 0)$$

On en déduit que $\overrightarrow{DB} = 2\overrightarrow{KM}$: les deux vecteurs sont donc colinéaires. Par conséquent, les droites (KM) et (DB) sont parallèles.

Exercice 2 1. La limite en $+\infty$ de la fonction $f(x) = \frac{2x^2+3}{x+3}$ est :

a. 0

b, $+\infty$

c. $-\infty$

d. 2

2. La limite en $+\infty$ de la fonction $f(x) = \frac{2x^2+3}{x^2+3}$ est :

a. 0 **b.**
$$+\infty$$
 c. $-\infty$ **d.** 2

3. Déterminer la limite en $+\infty$ de $f(x) = \sqrt{x+1} - \sqrt{x}$. Justifier.

Si on détermine la limite de $\sqrt{x+1}$ et de \sqrt{x} en $+\infty$, on trouve $+\infty$ et finalement, la limite de f en $+\infty$ est une forme indéterminée du type $+\infty -\infty$.

Pour lever l'indétermination, on va multiplier f(x) par sa quantitée conjuguée :

$$\frac{(\sqrt{x+1} - \sqrt{x})(\sqrt{x+1} + \sqrt{x})}{\sqrt{x+1} + \sqrt{x}} = \frac{\sqrt{x+1}^2 - \sqrt{x}^2}{\sqrt{x+1} + \sqrt{x}} = \frac{x+1-x}{\sqrt{x+1} + \sqrt{x}} = \frac{1}{\sqrt{x+1} + \sqrt{x}}$$

On sait que:

$$\lim_{x \to +\infty} = \sqrt{x+1} + \sqrt{x} = +\infty \text{ par somme de limites}$$

On en déduit, par quotient de limite que :

$$\lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} \frac{1}{\sqrt{x+1} + \sqrt{x}} = 0$$

Exercice 3 La suite (u_n) est définie sur \mathbb{N} par $u_0 = 1$ et pour tout entier naturel n,

$$u_{n+1} = \frac{3}{4}u_n + \frac{1}{4}n + 1.$$

1. Calculer, en détaillant les calculs, u_1 et u_2 sous forme de fraction irréductible.

$$u_1 = \frac{3}{4} \times u_0 + \frac{1}{4} \times 0 + 1 = \frac{3}{4} \times 1 + 0 + 1 = \frac{7}{4}$$

$$u_2 = \frac{3}{4} \times u_1 + \frac{1}{4} \times 1 + 1 = \frac{3}{4} \times \frac{7}{4} + \frac{1}{4} + 1 = \frac{21}{16} + \frac{4}{16} + \frac{16}{16} = \frac{41}{16}$$

L'extrait, reproduit ci-contre, d'une feuille de calcul réalisée avec un tableur présente les valeurs des premiers termes de la suite (u_n) .

	A	B
1	n	u_n
2	0	1
3	1	1,75
4	2	2,5625
5	3	3,421875
6	4	4,31640625

2. a. Quelle formule, étirée ensuite vers le bas, peut-on écrire dans la cellule B3 de la feuille de calcul pour obtenir les termes successifs de (u_n) dans la colonne B?

On peut rentrer la formule :

$$\frac{3}{4} * B2 + \frac{1}{4} * A2 + 1$$

- **b.** Conjecturer le sens de variation de la suite (u_n) . D'après les valeurs du tableau, on peut en conjecturer que la suite est croissante.
- **3.** *a.* Démontrer par récurrence que, pour tout entier naturel n, on $a: n \le u_n \le n+1$.

Initialisation:

On a $u_0 = 1$ *, donc* $0 \le u_0 \le 0 + 1$ *.*

L'initialisation est établie.

Hérédité:

On suppose que la propriété est vraie pour un certain rang n :

$$n \le u_n \le n+1$$
 c'est l'hypothèse de récurrence

On va regarder si la propriété reste vraie au rang n + 1:

$$u_{n+1} = \frac{3}{4}u_n + \frac{1}{4}n + 1 \le \frac{3}{4}(n+1) + \frac{1}{4}n + 1 = \frac{3}{4}n + \frac{3}{4} + \frac{1}{4}n + 1 = n+1 + \frac{3}{4} \le n+2$$

$$u_{n+1} = \frac{3}{4}u_n + \frac{1}{4}n + 1 \ge \frac{3}{4}n + \frac{1}{4}n + 1 = n+1$$

Finalement, $n+1 \le u_{n+1} \le n+2$: l'hérédité est établie.

On vient donc de montrer que $\forall n \in \mathbb{N}$, $n \leq u_n \leq n+1$

b. En déduire, en justifiant la réponse, le sens de variation et la limite de la suite (u_n) . On sait que pour $n \in \mathbb{N}$:

$$n \leqslant u_n \leqslant n+1$$

$$donc - n-1 \leqslant -u_n \leqslant -n$$

$$n+1 \leqslant u_{n+1} \leqslant n+2$$

$$donc n+1-n-1 \leqslant u_{n+1}-u_n \leqslant n+2-n \Leftrightarrow 0 \leqslant u_{n+1}-u_n \leqslant 2$$

Par conséquent, on en déduit que $\forall n \in \mathbb{N}$, $u_{n+1} \ge u_n$: la suite est donc croissante. On sait que :

$$\lim_{n \to +\infty} n = \lim_{n \to +\infty} n + 1 = +\infty$$

Donc, d'après le théorème d'encadrement des limites, on en déduit que : $\lim_{n \to +\infty} u_n = +\infty$.

c. Démontrer que :

$$\lim_{n\to+\infty}\frac{u_n}{n}=1.$$

On sait que pour $n \in \mathbb{N}$:

$$n\leqslant u_n\leqslant n+1$$
 on divise par $n\frac{n}{n}\leq \frac{u_n}{n}\leq \frac{n+1}{n}$ pas de changement de sens des inégalités car $n\geq 0$
$$donc\ 1\leq \frac{u_n}{n}\leq 1+\frac{1}{n}$$

On sait également que :

$$\lim_{n \to +\infty} 1 = \lim_{n \to +\infty} 1 + \frac{1}{n} = 1$$

Donc, d'après le théorème d'encadrement des limites, on en déduit que : $\lim_{n \to +\infty} \frac{u_n}{n} = 1$.

- **4.** On désigne par (v_n) la suite définie sur \mathbb{N} par $v_n = u_n n$
 - **a.** Démontrer que la suite (v_n) est géométrique de raison $\frac{3}{4}$. Pour $n \in \mathbb{N}$:

$$v_{n+1} = u_{n+1} - (n+1) = \frac{3}{4}u_n + \frac{1}{4}n + 1 - n - 1 = \frac{3}{4}u_n - \frac{3}{4}n = \frac{3}{4}(u_n - n)$$

La suite (v_n) est donc géométrique de raison $\frac{3}{4}$ et de premier terme $v_0 = u_0 - 0 = 1 - 0$.

b. En déduire que, pour tout entier naturel n, on $a: u_n = \left(\frac{3}{4}\right)^n + n$. Pour $n \in \mathbb{N}$:

$$v_n = v_0 \times q^n = 1 \times \left(\frac{3}{4}\right)^n$$
$$u_n = v_n + n = \left(\frac{3}{4}\right)^n + n$$