	Cost	# of Times
sum = 0;	C ₁	1
for (i = 0; i < n; i++)	C_2	(n - 0 -1 +1)+1 = n+1
sum++;	C_3	n

$$T(n) = C_1 + C_2(n+1) + C_3(n)$$

II.

	Cost	# of Times
sum = 0;	C ₁	1
for (i = 0; i < n; i++)	C ₂	(n - 0 -1 +1)+1 = n+1
for (j = 0; j < n; j++)	C ₃	$(n)(n + 1) = n^2 + n$
sum++;	C ₄	n ²

$$T(n) = C_1 + C_2(n + 1) + C_3(n^2 + n) + C_4(n^2)$$

III.

	Cost	# of Times
sum = 0;	C ₁	1
for (i = 0; i < n; i++)	C_2	(n - 0 -1 +1)+1 = n+1
for (j = 0; j < n * n; j++)	C ₃	$(n)(n^2 + 1) = n^3 + n$

$$T(n) = C_1 + C_2(n + 1) + C_3(n^3 + n) + C_4(n^3)$$

IV.

	Cost	# of Times
sum = 0;	C ₁	1
for (i = 0; i < n; i++)	C_2	(n - 0 -1 +1)+1 = n+1
for(j = 0; j < i; j++)	C ₃	1+2++(n+1) = n((n+1)/2)
sum++;	C ₄	1+2++n = n(((n+1)/2) - 1)

$$T(n) = C_1 + C_2(n + 1) + C_3n((n+1)/2) + C_4n(((n+1)/2) - 1)$$
V.

	Cost	# of Times
sum = 0;	C ₁	1
for (i = 0; i < n; i++)	C ₂	(n - 0 -1 +1)+1 = n+1
for(j = 0; j < i * i; j++)	C ₃	$1^2+2^2++(n+1)^2 = (n((n+1)/2))^2$
for(k = 0; k < j; k++)	C ₄	(n)((n((n)/2)) ²)(n+2)
sum++;	C ₅	(n)((n((n)/2)) ²)(n+1)

$$T(n) = C_1 + C_2(n+1) + C_3(n((n+1)/2))^2 + C_4(n)((n((n)/2))^2)(n+2) + C_5(n)((n((n)/2))^2)(n+1)$$

Question 3 part f:

The plots do not appear to correspond with my answers for part A for the most part. Plot 1 is linear, plot 2 appears to be quadratic, but afterwards they all begin to resemble each other, with the same quadratic-looking line. Graph 6 looks to similar to the previous graphs to call it anything but quadratic.