Tutorato di Automi e Linguaggi Formali

Homework 10: Riducibilità mediante Funzione e Classe P

Gabriel Rovesti

Corso di Laurea in Informatica - Università degli Studi di Padova

Tutorato 10 - 26-05-2025

1 Riducibilità mediante Funzione

Esercizio 1. Sia $HALF_{TM} = \{\langle M \rangle \mid M \text{ è una TM che accetta almeno la metà delle stringhe di lunghezza } n \text{ per qualche } n \geq 1\}.$

- a) Dimostrare che $A_{TM} \leq_m HALF_{TM}$ fornendo una funzione di riduzione esplicita f tale che per ogni coppia $\langle M, w \rangle$, si ha $\langle M, w \rangle \in A_{TM}$ se e solo se $f(\langle M, w \rangle) \in HALF_{TM}$.
- b) Utilizzare la riduzione precedente per dimostrare che $HALF_{TM}$ è indecidibile.
- c) Analizzare se $HALF_{TM}$ è Turing-riconoscibile o co-Turing-riconoscibile. Giustificare la risposta.

Esercizio 2. Consideriamo il problema $REGULAR_{TM} = \{\langle M \rangle \mid M \text{ è una TM tale che } L(M) \text{ è un linguaggio regolare}\}.$

- a) Costruire una riduzione da A_{TM} a $\overline{REGULAR_{TM}}$ (il complemento di $REGULAR_{TM}$). Specificare la funzione di riduzione e dimostrare la sua correttezza.
- b) Utilizzare il teorema di Rice per fornire una dimostrazione alternativa dell'indecidibilità di $REGULAR_{TM}$.
- c) Confrontare le due dimostrazioni: quale fornisce più informazioni sulla natura computazionale del problema?

Esercizio 3. Sia $PREFIX_{TM} = \{\langle M_1, M_2 \rangle \mid M_1, M_2 \}$ sono TM tali che $L(M_1)$ è un prefisso proprio di $L(M_2)$, dove A è un prefisso proprio di B se $A \subset B$ e per ogni $w \in A$, nessuna estensione propria di w appartiene ad A.

- a) Dimostrare che $E_{TM} \leq_m PREFIX_{TM}$ costruendo una riduzione appropriata.
- b) Dimostrare che $PREFIX_{TM}$ è indecidibile utilizzando la riduzione precedente.
- c) Spiegare perché questo risultato è significativo nel contesto dell'analisi delle relazioni tra linguaggi.

2 Classe P e Algoritmi Polinomiali

Esercizio 4. Sia $MODEXP = \{\langle a, b, c, p \rangle \mid a, b, c, p \text{ sono numeri interi positivi in rappresentazione binaria tali che <math>a^b \equiv c \pmod{p} \}.$

- a) Dimostrare che $MODEXP \in P$ fornendo un algoritmo polinomiale esplicito. Analizzare attentamente la complessità temporale considerando la rappresentazione binaria degli input.
- b) Spiegare perché un approccio naive di calcolare a^b e poi ridurre modulo p non è polinomiale nella dimensione dell'input.
- c) Descrivere l'algoritmo di esponenziazione modulare veloce e dimostrare formalmente che la sua complessità temporale è $O((\log b)^3)$.

Esercizio 5. Considerare il problema $COMPOSITE = \{n \mid n \text{ è un numero composto rappresentato in binario } \}.$

a) Fornire un algoritmo deterministico polinomiale per *COMPOSITE* o una variante deterministica appropriata. Analizzare la complessità temporale.

Esercizio 6. Sia $BIPARTITE = \{ \langle G \rangle \mid G \text{ è un grafo non diretto bipartito } \}.$

a) Dimostrare che $BIPARTITE \in P$ fornendo un algoritmo basato sulla colorazione a 2 colori. Analizzare la complessità temporale in termini del numero di vertici |V| e archi |E|.

3 Problemi Avanzati su P e Riducibilità

Esercizio 7. Consideriamo il problema della equivalenza di DFA: $EQDFA = \{\langle A, B \rangle \mid A, B \text{ sono DFA tali che } L(A) = L(B)\}.$

- a) Dimostrare che $EQDFA \in P$ utilizzando l'algoritmo di minimizzazione dei DFA. Fornire un'analisi dettagliata della complessità temporale.
- b) Fornire un algoritmo alternativo basato sulla costruzione del prodotto cartesiano dei due automi e sulla verifica della vuotezza di linguaggi derivati. Confrontare le complessità.

c) Spiegare perché EQNFA (equivalenza di NFA) è considerato significativamente più difficile e discutere lo stato attuale della conoscenza su questo problema.

Esercizio 8. Un linguaggio A è star-closed se $A=A^*$. Sia $STAR-CLOSED_{DFA}=\{\langle M\rangle \mid M$ è un DFA che riconosce un linguaggio star-closed $\}$.

- a) Caratterizzare algebraicamente quando un linguaggio regolare è star-closed in termini delle proprietà del suo automa minimo.
- b) Utilizzare questa caratterizzazione per fornire un algoritmo polinomiale che decide se un DFA riconosce un linguaggio star-closed.
- c) Analizzare la complessità temporale dell'algoritmo e dimostrare che $STAR\text{-}CLOSED_{DFA} \in P$.

4 Problemi di Sintesi e Approfondimento

Esercizio 9. Consideriamo la relazione tra riducibilità mediante funzione e riducibilità in tempo polinomiale.

- a) Dimostrare che se $A \leq_p B$ (riducibilità polinomiale) e $B \in P$, allora $A \in P$. Confrontare questo risultato con il teorema analogo per la decidibilità.
- b) Fornire un esempio di linguaggi A e B tali che $A \leq_m B$ ma non necessariamente $A \leq_p B$. Spiegare la differenza fondamentale tra i due tipi di riducibilità.
- c) Discutere l'importanza della riducibilità polinomiale nella definizione delle classi di complessità come NP e l'ipotesi P vs NP.