Задача 58.39(б). Доказать, что в группе \mathbb{Q}/\mathbb{Z} для каждого натурального n имеется в точности одна подгруппа порядка n.

Решение. 1) Заметим, что для несократимой дроби $\frac{a}{b}$ (где $a \neq 0, b > 0$) выполнено: $\operatorname{ord}(\frac{a}{b} + \mathbb{Z}) = b$. Поэтому все элементы порядка b группы \mathbb{Q}/\mathbb{Z} содержатся в подгруппе $\{\mathbb{Z}, \frac{1}{b} + \mathbb{Z}, \frac{2}{b} + \mathbb{Z}, \dots, \frac{b-1}{b} + \mathbb{Z}\} = \langle \frac{1}{b} + \mathbb{Z} \rangle_b$. Отсюда следует, что для каждого натурального b в группе \mathbb{Q}/\mathbb{Z} имеется в точности одна $uu\kappa nu$ ческая подгруппа порядка b.

2) Рассмотрим произвольную подгруппу $H \subset \mathbb{Q}/\mathbb{Z}$ порядка n. По следствию из теоремы Лагранжа, порядок любого элемента $h \in H$ является делителем n: $\mathrm{ord}(h) \mid n$. Тогда (выбирая подходящего представителя смежного класса) можно считать, что $h = \frac{x}{y} + \mathbb{Z}$, где $\frac{x}{y}$ — правильная несократимая дробь, знаменатель y которой делит n (либо x = 0). Но таких дробей ровно n (каждая получена путем сокращения в точности одной из дробей $0, \frac{1}{n}, \frac{2}{n}, \ldots, \frac{n-1}{n}$) — столько же, сколько элементов в H. Значит.

$$H = \left\{ \mathbb{Z}, \frac{1}{n} + \mathbb{Z}, \frac{2}{n} + \mathbb{Z}, \dots, \frac{n-1}{n} + \mathbb{Z} \right\} = \left\langle \frac{1}{n} + \mathbb{Z} \right\rangle_n$$

Альтернативный (арифметический) способ

2') Согласно пункту 1, достаточно доказать, что любая конечная подгруппа в \mathbb{Q}/\mathbb{Z} является циклической.

Предположим, что это не так, тогда рассмотрим нециклическую подгруппу $H \subset \mathbb{Q}/\mathbb{Z}$ и элемент $\frac{a}{b} + \mathbb{Z} = h \in H$ такой, что дробь $\frac{a}{b}$ несократима (и $a \neq 0$), а ее знаменатель b > 1 максимален. В силу пункта 1, $\langle \frac{a}{b} + \mathbb{Z} \rangle_b = \langle \frac{1}{b} + \mathbb{Z} \rangle_b$, поэтому можно считать, что $h = \frac{1}{b} + \mathbb{Z}$.

Поскольку H нециклическая, найдется элемент $\frac{c}{d}+\mathbb{Z}=h'\in H$, где дробь $\frac{c}{d}$ несократима $(c\neq 0)$ и ее знаменатель d не делит b. Аналогично рассуждениям выше можно считать, что $h'=\frac{1}{d}+\mathbb{Z}$, где $d\nmid b$. Следовательно, d делится на бо́льшую степень некоторого простого числа p, чем b, т. е. для некоторого натурального α выполнено: $p^{\alpha}\mid d$ и $p^{\alpha}\nmid b$. Пусть $d=p^{\alpha}\cdot m$. Тогда $\frac{1}{p^{\alpha}}=\frac{m}{d}$, откуда $\frac{1}{p^{\alpha}}+\mathbb{Z}=mh'\in H$. Вспоминая, что $h\in H$, получаем:

$$H\ni h+h'=\left(\frac{1}{b}+\mathbb{Z}\right)+\left(\frac{1}{p^\alpha}+\mathbb{Z}\right)=\left(\frac{1}{b}+\frac{1}{p^\alpha}\right)+\mathbb{Z}=\frac{p^\alpha+b}{bp^\alpha}+\mathbb{Z}.$$

Однако ясно, что дробь $\frac{p^{\alpha}+b}{bp^{\alpha}}$ не может быть сократима на простое число q, не равное p (в противном случае $q\mid b$, но тогда числитель не делится на q), поэтому ее можно сократить только на p^{β} , где $\beta<\alpha$ (поскольку числитель не делится на p^{α}). Следовательно, после сокращения знаменатель будет превосходить b — это противоречит изначальному предположению! Значит, нециклической конечной подгруппы $H\subset \mathbb{Q}/\mathbb{Z}$ не существует.

Замечание. В альтернативном способе были важны ухищрения с p^{α} , поскольку может случиться так, что дробь $\frac{1}{h}+\frac{1}{d}=\frac{b+d}{hd}$ может "сильно" сократиться. Например, 1/70+1/30=1/21.