GET-Aufgaben 1

GET Aufgabenblatt 2

Aufgabe 3 Temperaturabhängigkeit

Ein Kupferdraht mit einem kreisrunden Querschnitt von 1,75 mm² weist bei 20° C einen Widerstand von 10 Ω auf. Der spezifische Widerstand von Kupfer bei 20° C beträgt $\varrho_R = 0.0175 \,\Omega \,\mathrm{mm^2/m}$. Die Temperaturkoeffizienten sind $\alpha = 0.004 \,/\mathrm{K}$ und $\beta = 0.6 \cdot 10^{-6} \,/\mathrm{K^2}$.

- a) Wie lang ist der Draht?
- b) Welche Spannung muss an den Draht angelegt werden, damit durch diesen innerhalb einer Stunde die Ladung 72 C transportiert wird?
- c) Bei welcher Temperatur verdoppelt sich der spezifische Widerstand von Kupfer bezogen auf Zimmertemperatur (20° C). Verwenden Sie zur Berechnung die quadratische Näherung.

Aufgabe 4 Komplexe Amplituden und Reaktanzen

Eine Reihenschaltung aus einem ohmschen Widerstand $R=5\,\Omega$, einer Induktivität $L=1\,\mathrm{mH}$ und einer Kapazität $C=10\,\mathrm{\mu F}$ ist an eine Spannungsquelle mit der Quellspannung

$$u_0(t) = \hat{u} \cdot \cos(2\pi f t + \pi/4)$$

angeschlossen, wobei $f = 1 \,\mathrm{kHz}$ und $\hat{u} = 10 \,\mathrm{V}$ betragen.

- a) Skizzieren Sie die Schaltung. Tragen Sie auch die komplexe Amplitude $\underline{\hat{U}}_0$ der Quellspannung sowie die komplexen Amplituden der Spannungen an den jeweiligen Bauelementen $\underline{\hat{U}}_R$, $\underline{\hat{U}}_L$ und $\underline{\hat{U}}_C$ in die Schaltung ein.
- b) Berechnen Sie die komplexe Amplitude der Quellspannung $\hat{\underline{U}}_0$.

Lösung:
$$\underline{\hat{U}}_0 = 10 \,\mathrm{V} \cdot \mathrm{e}^{\mathrm{j}\,\pi/4}$$

c) Berechnen Sie die Reaktanzen X_L und X_C sowie die Impedanz \underline{Z} der Reihenschaltung.

Lösung:
$$X_L = 6.28 \,\Omega$$
, $X_C = -15.9 \,\Omega$, $\underline{Z} = (5 - j \, 9.6) \,\Omega$

d) Berechnen Sie die komplexe Amplitude $\hat{\underline{I}}$ sowie den zeitlichen Verlauf i(t) des Stromes.

Lösung:
$$\hat{I} = 926 \,\mathrm{mA} \cdot \mathrm{e}^{\mathrm{j}\,107,5^{\circ}}$$

e) Bestimmen Sie die Spannungen $\underline{\hat{U}}_R$, $\underline{\hat{U}}_L$ und $\underline{\hat{U}}_C$.

Losung:
$$\underline{\hat{U}}_R = 4,632 \,\mathrm{V} \cdot \mathrm{e}^{\mathrm{j}\,107,5^\circ}, \ \ \underline{\hat{U}}_L = 5,817 \,\mathrm{V} \cdot \mathrm{e}^{-\mathrm{j}\,162,5^\circ}, \ \ \underline{\hat{U}}_C = 14,72 \,\mathrm{V} \cdot \mathrm{e}^{\mathrm{j}\,17,5^\circ}$$

f) Bei welcher Frequenz f_0 sind die Reaktanzen X_L und X_C betragsmäßig gleich groß? Welchen Wert nimmt dann der Strom $\hat{\underline{I}}$ an?

Lösung:
$$f_0 = 1591,55 \,\text{Hz}$$