# Análise das séries temporais de estações GPS presentes na região Norte e Leste do Brasil

#### Wesley Furriel e André F. B. Menezes

Universidade Estadual de Maringá, Departamento de Estatística, PR, Brasil

Séries Temporais

25 de Março de 2018

# Organização

- 1 Introdução
- 2 Metodologia
- Resultados
   Resumo geral
   Resultados predominantes
- 4 Resultados para série ROJI
- 6 Considerações finais

# Introdução

### Introdução

- Estrutura de dados em que as observações são feitas sequencialmente ao longo do tempo são classificados como séries temporais.
- ➤ O presente trabalha analisou as séries temporais de coordenadas provenientes do processamento dos dados coletados pelo receptor o GPS (Global Positioning System), ao longo do tempo.
- Os dados referem-se a média semanais durante o período de 2008 a 2017.
- As componentes EAST e NORTH das estações NAUS, POVE, ROJI, MAPA, SALU, BRFT, RECF e SAVO foram consideradas.
- ► Portanto, 16 séries temporais foram analisadas .

# Metodologia

#### Modelos de Box-Jenkins

- Os modelos autorregressivos integrados de média moveis (ARIMA) foram popularizados por Box e Jenkins 1976 e são usualmente referidos como modelos de Box-Jenkins.
- ► Segundo os autores as três etapas para modelagem de uma ARIMA podem ser sucintamente definidas a seguir:

#### Modelos de Box-Jenkins

#### Etapas

- Identificação: avalia se a variável é estacionaria, identificar tendências e sazonalidades. Analisa os gráficos das funções de autocorrelação (FAC) e autocorrelação parcial (FACP)
- 2. Estimação e diagnóstico: estima-se os parâmetros e obtém os erros padrões assintóticos. As suposições de que o modelo ajustado está em conformidade com as especificações de um processo estacionário é avaliada por meio dos resíduos.
- 3. *Previsão:* o modelo validado e adotado é usado para realizar previsões de valores futuros da série e obter seus respectivos intervalos de confiança.

#### Modelos de Box-Jenkins

Um modelo ARIMA é denotado por ARIMA(p,d,q). Matematicamente, pode ser escrito como:

$$W_t = \mu + \frac{\theta(B)}{\phi(B)} \, \epsilon_t \tag{1}$$

#### sendo:

- t denota o índice do tempo;
- ▶  $W_t$  é a série  $Y_t$  ou a diferenciação da série;
- $\blacktriangleright \mu$  é o termo da média;
- ▶ B é o operador de retardo, isto é,  $BX_t = X_{t-1}$ ;
- $\phi(B)$  é o operador autorregressivo, representado como um polinômio do operador de retardo:  $\phi(B)=1-\phi_1B-\ldots-\phi_pB^p;$
- ▶  $\theta(B)$  é o operador de médias móveis, representado como um polinômio do operador de retardo:  $\theta(B) = 1 \theta_1 B \ldots \theta_q B^q$ ;
- $ightharpoonup \epsilon_t$  é um ruído aleatório.

### Modelos de Suavização Exponencial

De acordo como Ehlers (2007) o modelo de suaviazação com um termo de tendência,  $T_t$  pode ser expresso pelas equações a seguir

$$L_t = \alpha x_t + (1 - \alpha) (L_{t-1} + T_{t-1}),$$
 (2)

$$T_t = \beta(L_t - L_{t-1}) + (1 - \beta)T_{t-1}$$
 (3)

em que  $\alpha, \beta \in (0,1)$ . A previsão h-passos a frente no tempo t é obtida por:

$$\widehat{x}_t(h) = L_t + h T_t \tag{4}$$

### Etapas da modelagem

Para modelar as séries temporais consideradas no trabalho, as seguintes etapas foram empregadas:

- 1. Análise descritiva, FAC e FACP. Em que verificaram-se tendências.
- Diferenciação para obter estacionariedade e analise das FAC e FACP para modelagem dos componentes MA e AR, respectivamente.
- 3. Modelos encaixados propostos para todas as séries.
  - Teste Jarque Bera para certificar a normalidade dos resíduos.
  - ► Teste Ljung-Box para analisar as autocorrelações nos lags residuais.
  - ► AICc e o teste da razão de verossimilhança para discriminar e selecionar um modelo.

### Etapas da modelagem

- 4. Obtenção das estimativas e os intervalos de confiança assintóticos para os parâmetros do modelo selecionados.
- 5. Análise dos resíduos via gráfico dos resíduos, **Q–Q plot** e **as FACs** residuais.
- Ajustes por meio do método da Suavização Exponencial (SE), bem como previsões para comparação com ARIMA.
- Utilização das medidas de MAE, MASE, MdAE e RMSE para comparação dos modelos ARIMA e SE em termos de previsão.

### Teste de normalidade Jarque-Bera

A estatística do teste de Jarque-Bera é dada por:

$$JB = n \left[ \frac{S^2}{6} + \frac{(K-3)^2}{24} \right] \sim \chi_2^2 \tag{5}$$

em que S é a medida de *skewness*(assimetria) e K a de *kurtosis* (achatamento).

- ▶ A estatística JB segue assintoticamente uma distribuição de quiquadrado com dois graus de liberdade.
- ▶ A hipótese nula, de normalidade dos dados, é rejeitada quando o valor calculado do teste excede o valor crítico de  $\chi_2^2$ .

# Teste de autocorrelação Ljung-Box

Uma alternativa a análise gráfica das autocorrelações é o teste proposto por Ljung e Box (1978). Tal teste pode ser calculado a partir da estatística

$$Q^* = T(T+2) \sum_{h=0}^{k=1} (T-k)^{-1} r_k^2$$
 (6)

na qual h é a maior defasagem a ser considerada e T o número de observações.

- lackbox Observa-se que se os  $r_k$  calculados forem próximo a 0, o valor de  $Q^*$  será pequeno, indicando a inexistência de autocorrelação.
- ▶ Hyndman e Athanasopoulos (2017) sugerem h=10 para séries não sazonais e h=2m para sazonais, considerando que m representa o período de sazonalidade.
- A estatística  $Q^*$  segue uma  $\chi^2$  com (m-h-p) graus de liberdade, em que p representa o número de parâmetros do modelo.
- ► Rejeita-se a hipotese nula se  $Q^* > \chi^2_{(m-h-P)}$ .

### Comparação dos modelos encaixados

A versão corrigida do AIC é definida como:

$$AICc = -2\log(L) + \frac{2np}{n-p-1}$$
 (7)

em que L é o valor da função de verossimilhança avaliada nas estimativas de máxima verossimilhança, n é o número de observações e p é o número de parâmetros.

► Teste da Razão de verossmilhanças dado por:

$$S_{LR} = -2\left(\ell_c - \ell_r\right) \tag{8}$$

em que  $\ell_c$  representa o modelo completo e  $\ell_r$  o modelo reduzido (PAWITAN, 2001).

# Medidas para comparação de previsões

Medidas baseadas no erro de previsão  $e_t = Y_t - F_t$  (HYNDMAN & KOEHLER, 2006).

$$RMSE = \sqrt{\sum_{t=1}^{n} \frac{e_t^2}{n}}$$
 (9)

$$MAE = m\acute{e}dia(|e_t|)$$
 (10)

$$MdAE = mediana(|e_t|)$$
 (11)

$$\mathrm{MASE} = \mathsf{m\'edia}(|q_t|), \quad \mathsf{em} \ \mathsf{que} \quad q_t = \frac{e_t}{\frac{1}{n-1}\sum_{i=2}^n |Y_i - Y_{i-1}|}, \tag{12}$$

# Recursos Computacionais

#### Software R, versão 3.3.2 e SAS® 9.4

- ► tsoutliers: identificação de outliers;
- forecast e tseries: visualização e ajuste dos modelos;
- ggplot2: recursos gráficos;
- zoo, knitr, lmtest e dplyr: auxílios pontuais;
- ► PROC ARIMA: verificação dos resultados.

- ▶ É preciso destacar que todas as séries apresentaram tendências lineares, no caso das presentes no componente *NORTH* todas apresentaram tendências crescentes, já no *EAST* tal comportamento foi decrescente.
- ► Logo ocorreu a necessidade de efetuar uma única diferenciação para todos os casos afim de obter uma série estacionária.

De forma geral, as seguintes conclusões foram observadas:

- ► A partir da série diferenciada alguns modelos da classe ARIMA foram propostos. O modelos mais ajustado foi o ARIMA(0, 1, 1).
- ► As estimativas dos termos autorregressivos e de médias moveis foram estatisticamente significativas para todos os modelos considerados e seus erros padrões, estiveram bem comportados.
- Os resíduos dos modelos ajustados apresentaram bom comportamento.
- Os ajustes dos modelos ARIMA e SE apresentaram-se boas alternativas para descrever as séries temporais.
- ► Comparando as previsões do modelo ARIMA e SE foi possível observar que a classe de modelos ARIMA obteve melhor previsão, de acordo com as bandas de confiança observadas e as métricas utilizadas.



| Região | Estação | ARIMA | SE    |
|--------|---------|-------|-------|
|        | NAUS    | 4.00  | 8.00  |
|        | POVE    | 4.00  | 8.00  |
|        | ROJI    | 4.00  | 8.00  |
|        | MAPA    | 4.00  | 8.00  |
| EAST   | SALU    | 4.00  | 8.00  |
|        | BRFT    | 4.00  | 8.00  |
|        | RECF    | 4.00  | 8.00  |
|        | SAVO    | 8.00  | 4.00  |
|        | Total   | 36.00 | 60.00 |
|        | NAUS    | 4.00  | 8.00  |
| NORTH  | POVE    | 4.00  | 8.00  |
|        | ROJI    | 4.00  | 8.00  |
|        | MAPA    | 8.00  | 4.00  |
|        | SALU    | 8.00  | 4.00  |
|        | BRFT    | 4.00  | 8.00  |
|        | RECF    | 4.00  | 8.00  |
|        | SAVO    | 8.00  | 4.00  |
|        | Total   | 44.00 | 52.00 |

# Resultados predominantes

### Resultados predominantes

- ➤ O modelo ARIMA(0,1,1) foi o mais ajustado seguido pelo modelo ARIMA(2, 1, 1)
- Vamos mostrar os resultados das séries BRTF e ROJI.

# Série BRFT





#### Discriminação entre os modelos BRFT considerados

| Região | Modelo                       | J.Bera valor-p   | Lj.Box valor-p   | AICc                     | TRV    |
|--------|------------------------------|------------------|------------------|--------------------------|--------|
| EAST   | ARIMA(0,1,1)<br>ARIMA(0,1,2) | 0.1299<br>0.1364 | 0.9764<br>0.9810 | -4025.5409<br>-4023.7058 | 0.6483 |
| NORTH  | ARIMA(0,1,1)<br>ARIMA(0,1,2) | 0.0815<br>0.1128 | 0.0921<br>0.2102 | -4109.7908<br>-4109.5609 | 0.1781 |

### Resumos inferências do modelo ARIMA(0,1,1).

| Região        | Parâmetro                                      | Estimativa         | E.P. | I.C. 2.5%          | I.C 97.5%          |
|---------------|------------------------------------------------|--------------------|------|--------------------|--------------------|
| EAST<br>NORTH | $egin{array}{c} 	heta_1 \ 	heta_1 \end{array}$ | -0.4878<br>-0.3672 |      | -0.5778<br>-0.4677 | -0.3978<br>-0.2667 |











# Série ROJI componete *EAST*





Discriminação entre os modelos considerados.

|                                       | Modelo       | J.Bera valor-p | Lj.Box valor-p | AICc       | TRV    |
|---------------------------------------|--------------|----------------|----------------|------------|--------|
| ARIMA(4.1.3) 0.2846 0.8780 -5150.8635 | ARIMA(2,1,1) | 0.2362         | 0.2095         | -5152.2096 | 0.1428 |
| ( , , , - ,                           | ARIMA(4,1,3) | 0.2846         | 0.8780         | -5150.8635 |        |

#### Modelo selecionado

$$X_{t} = (1 + \phi_{1}) X_{t-1} + (\phi_{2} - \phi_{1}) X_{t-2} - \phi_{2} X_{t-3} + \theta_{1} \epsilon_{t-1} + \epsilon_{t}.$$

#### sendo que:

| Parâmetro           | Est.     | E.P.   | I.C. 2.5% | I.C 97.5% |
|---------------------|----------|--------|-----------|-----------|
| $\overline{\phi_1}$ | 0.4103   | 0.0637 | 0.2854    | 0.5353    |
| $\phi_2$            | 0.1253   | 0.0535 | 0.0203    | 0.2302    |
| $	heta_1$           | -0.8549  | 0.0428 | -0.9389   | -0.7709   |
| $\sigma^2$          | 1.41e-06 |        |           |           |









# Considerações finais

# Considerações finais

- ➤ Os modelos ARIMA foram discutidos no trabalho e as três etapas propostas por Box e Jenkins (1976) foram empregadas e sutilmente modicadas para modelagem das séries.
- ► Tendo em vista que as séries investigadas apresentaram comportamentos bastante similares, em sua maioria, um algoritmo genérico foi desenvolvido em linguagem R para automatizar o processo.
- ► O modelo ARIMA(0, 1, 1) se ajustou na maioria das séries consideradas, em 13 séries das 16 modeladas.
- ▶ Os modelos da classe ARIMA atingiram melhores previsões, isto é, em 12 das 16 séries os modelos ARIMA ganharam dos modelos SE em termos de previsão.

#### Referências

- [1] BOX, G. E. P.; JENKINS, G. M. Time Series Analysis: Forecasting and Control. Rev. ed. San Francisco: Holden-Day, 1976.
- [2] CHATFIELD, C. The Analysis of Time Aeries: An Introduction. Fifth. Chapman & Hall/CRC, 2016.
- [3] EHLERS, R. S. Análise de Séries Temporais. 4th. ed. Laboratorio de Estatstica e Geoinformação Universidade Federal do Parana, 2007.
- [4] HYNDMAN, R.; KHANDAKAR, Y. Automatic time series forecasting: The forecast package for R. Journal of Statistical Software, Articles, v. 27, n. 3, p. 1–22, 2008.

#### Referências

- [5] HYNDMAN, R. J.; ATHANASOPOULOS, G. Forecasting: Principles and Practice. OTexts, 2017.
- [6] HYNDMAN, R. J.; KOEHLER, A. B. Another look at measures of forecast accuracy. International Journal of Forecasting, v. 22, n. 4, p. 679–688, 2006.
- [7] JARQUE, C. M.; BERA, A. K. A test for normality of observations and regression residuals. International Statistical Review, v. 55, n. 2, p. 163–172, 1987.
- [8] LACALLE, J. L. de. tsoutliers: Detection of Outliers in Time Series. 2017. R package version 0.6-6. Disponvel em: https://CRAN.R-project.org/package=tsoutliers.

#### Referências

- [9] LJUNG, G. M.; BOX, G. E. P. On a measure of lack of t in time series models. Biometrika, v. 65, n. 2, p. 297–303, 1978.
- [10] PAWITAN, Y. In All Likelihood: Statistical Modelling and Inference Using Likelihood. Oxford University Press, 2001.
- [11] JARQUE, C. M.; BERA, A. K. A test for normality of observations and regression residuals. International Statistical Review, v. 55, n. 2, p. 163–172, 1987.
- [12] TRAPLETTI, A.; HORNIK, K. tseries: Time Series Analysis and Computational Finance. 2017. R package version 0.10-42. Disponvel em: https://CRAN.R-project.org/package=tseries.

# Muito obrigado!