

Shenzhen Zhongjian Nanfang Testing Co., Ltd.

Report No: CCIS15070055102

FCC REPORT (BLE)

Applicant: Verykool USA Inc

Address of Applicant: 3636 Nobel Drive, Suite 325, San Diego, CA92122 USA

Equipment Under Test (EUT)

Product Name: Mobile Phone

Model No.: s4006

FCC ID: WA6S4006

Applicable standards: FCC CFR Title 47 Part 15 Subpart C Section 15.247

Date of sample receipt: 09 Jul., 2015

Date of Test: 09 Jul., to 21 Jul., 2015

Date of report issued: 21 Jul., 2015

Test Result: PASS *

* In the configuration tested, the EUT complied with the standards specified above.

Authorized Signature:

Bruce Zhang Laboratory Manager

This report details the results of the testing carried out on one sample. The results contained in this test report do not relate to other samples of the same product and does not permit the use of the CCIS product certification mark. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report.

This report may only be reproduced and distributed in full. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards.

This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only.

2 Version

Version No.	Date	Description
00	21 Jul., 2015	Original

Prepared by: Date: 21 Jul., 2015

Report Clerk

Reviewed by: 21 Jul., 2015

Project Engineer

3 Contents

			Page
1	COV	/ER PAGE	1
2	VER	SION	2
3		ITENTS	
4		T SUMMARY	
5		IERAL INFORMATION	
9			
	5.1	CLIENT INFORMATION	
	5.2	GENERAL DESCRIPTION OF E.U.T.	
	5.3	TEST ENVIRONMENT AND MODE	
	5.4	DESCRIPTION OF SUPPORT UNITS	
	5.5	LABORATORY FACILITY	
	5.6	LABORATORY LOCATION	
	5.7	TEST INSTRUMENTS LIST	8
6	TES	T RESULTS AND MEASUREMENT DATA	9
	6.1	ANTENNA REQUIREMENT:	9
	6.2	CONDUCTED EMISSION	10
	6.3	CONDUCTED OUTPUT POWER	13
	6.4	OCCUPY BANDWIDTH	15
	6.5	Power Spectral Density	18
	6.6	BAND EDGE	20
	6.6.1	Conducted Emission Method	20
	6.6.2		
	6.7	Spurious Emission	
	6.7.1		
	6.7.2		
7	TES	T SETUP PHOTO	35
R	FUT	CONSTRUCTIONAL DETAILS	36

4 Test Summary

Test Item	Section in CFR 47	Result
Antenna requirement	15.203/15.247 (c)	Pass
AC Power Line Conducted Emission	15.207	Pass
Conducted Peak Output Power	15.247 (b)(3)	Pass
6dB Emission Bandwidth	15.247 (a)(2)	Pass
Power Spectral Density	15.247 (e)	Pass
Band Edge	15.247(d)	Pass
Spurious Emission	15.205/15.209	Pass

Pass: The EUT complies with the essential requirements in the standard.

5 General Information

5.1 Client Information

Applicant:	Verykool USA Inc
Address of Applicant:	3636 Nobel Drive, Suite 325, San Diego, CA92122 USA
Manufacturer:	Verykool USA Inc
Address of Manufacturer:	3636 Nobel Drive, Suite 325, San Diego, CA92122 USA

5.2 General Description of E.U.T.

Product Name:	Mobile Phone
Model No.:	s4006
Operation Frequency:	2402-2480 MHz
Channel numbers:	40
Channel separation:	2 MHz
Modulation technology:	GFSK
Data speed :	1Mbps
Antenna Type:	Internal Antenna
Antenna gain:	3 dBi
Power supply:	Rechargeable Li-ion Battery DC3.8V-1450mAh
AC adapter:	Model: SC050075-US
	Input:100-240V AC,50/60Hz 0.4A
	Output:5.5V DC MAX 750mA

Operation Frequency each of channel								
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency	
0	2402MHz	10	2422MHz	20	2442MHz	30	2462MHz	
1	2404MHz	11	2424MHz	21	2444MHz	31	2464MHz	
2	2406MHz	12	2426MHz	22	2446MHz	32	2466MHz	
3	2408MHz	13	2428MHz	23	2448MHz	33	2468MHz	
4	2410MHz	14	2430MHz	24	2450MHz	34	2470MHz	
5	2412MHz	15	2432MHz	25	2452MHz	35	2472MHz	
6	2414MHz	16	2434MHz	26	2454MHz	36	2474MHz	
7	2416MHz	17	2436MHz	27	2456MHz	37	2476MHz	
8	2418MHz	18	2438MHz	28	2458MHz	38	2478MHz	
9	2420MHz	19	2440MHz	29	2460MHz	39	2480MHz	

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

Channel	Frequency			
The lowest channel	2402MHz			
The middle channel	2442MHz			
The Highest channel	2480MHz			

Report No: CCIS15070055102

5.3 Test environment and mode

Operating Environment:					
Temperature:	24.0 °C				
Humidity:	54 % RH				
Atmospheric Pressure:	1010 mbar				
Test mode:	Test mode:				
Operation mode	Keep the EUT in continuous transmitting with modulation				

The sample was placed 0.8m above the ground plane of 3m chamber. Measurements in both horizontal and vertical polarities were performed. During the test, each emission was maximized by: having the EUT continuously working, investigated all operating modes, rotated about all 3 axis (X, Y & Z) and considered typical configuration to obtain worst position, manipulating interconnecting cables, rotating the turntable, varying antenna height from 1m to 4m in both horizontal and vertical polarizations. The emissions worst-case are shown in Test Results of the following pages. Duty cycle setting during the transmission is 100% with maximum power setting for all modulations.

5.4 Description of Support Units

N/A

5.5 Laboratory Facility

The test facility is recognized, certified, or accredited by the following organizations:

• FCC - Registration No.: 817957

Shenzhen Zhongjian Nanfang Testing Co., Ltd. EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in out files. Registration 817957, February 27, 2012.

• IC - Registration No.: 10106A-1

The 3m Semi-anechoic chamber of Shenzhen Zhongjian Nanfang Testing Co., Ltd. has been Registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 10106A-1.

• CNAS - Registration No.: CNAS L6048

Shenzhen Zhongjian Nanfang Testing Co., Ltd. is accredited to ISO/IEC 17025:2005 General Requirements for the Competence of Testing and Calibration laboratories for the competence of testing. The Registration No. is CNAS L6048.

5.6 Laboratory Location

Shenzhen Zhongjian Nanfang Testing Co., Ltd.

Address: No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road,

Bao'an District, Shenzhen, Guangdong, China

Tel: +86-755-23118282 Fax: +86-755-23116366

Shenzhen Zhongjian Nanfang Testing Co., Ltd.
No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road, Bao'an District, Shenzhen, Guangdong, China
Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

5.7 Test Instruments list

Radiated Emission:								
Item	Test Equipment	Manufacturer Model No. Inventory No.		Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)			
1	3m Semi- Anechoic Chamber	SAEMC	9(L)*6(W)* 6(H)	CCIS0001	08-23-2014	08-22-2017		
2	BiConiLog Antenna	SCHWARZBECK MESS-ELEKTRONIK	VULB9163	CCIS0005	03-28-2015	03-28-2016		
3	Double -ridged waveguide horn	SCHWARZBECK MESS-ELEKTRONIK	BBHA9120D	CCIS0006	03-28-2015	03-28-2016		
4	EMI Test Software	AUDIX	E3	N/A	N/A	N/A		
5	Amplifier (10kHz-1.3GHz)	HP	8447D	CCIS0003	04-01-2015	03-31-2016		
6	Amplifier (1GHz-18GHz)	Compliance Direction Systems Inc.	PAP-1G18	CCIS0011	04-01-2015	03-31-2016		
7	Pre-amplifier (18-26GHz)	Rohde & Schwarz	AFS33-18002 650-30-8P-44	GTS218	04-01-2015	03-31-2016		
8	Horn Antenna	ETS-LINDGREN	3160	GTS217	04-01-2015	03-31-2016		
9	Printer	HP	HP LaserJet P1007	N/A	N/A	N/A		
10	Positioning Controller	UC	UC3000	CCIS0015	N/A	N/A		
11	Spectrum analyzer 9k-30GHz	Rohde & Schwarz	FSP	CCIS0023	03-28-2015	03-28-2016		
12	EMI Test Receiver	Rohde & Schwarz	ESPI	CCIS0022	03-28-2015	03-28-2016		
13	Loop antenna	Laplace instrument	RF300	EMC0701	04-01-2015	03-31-2016		
14	Universal radio communication tester	Rhode & Schwarz	CMU200	CCIS0069	03-28-2015	03-28-2016		
15	Signal Analyzer	Rohde & Schwarz	FSIQ3	CCIS0088	04-08-2015	04-08-2016		

Conducted Emission:									
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)			
1	Shielding Room	ZhongShuo Electron	11.0(L)x4.0(W)x3.0(H)	CCIS0061	11-10-2012	11-09-2015			
2	EMI Test Receiver	Rohde & Schwarz	ESCI	CCIS0002	03-28-2015	03-28-2016			
3	LISN	CHASE	MN2050D	CCIS0074	03-28-2015	03-28-2016			
4	Coaxial Cable	CCIS	N/A	CCIS0086	04-01-2015	03-31-2016			
5	EMI Test Software	AUDIX	E3	N/A	N/A	N/A			

6 Test results and Measurement Data

6.1 Antenna requirement:

Standard requirement: FC

FCC Part 15 C Section 15.203 /247(c)

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(c) (1)(i) requirement:

(i) Systems operating in the 2400-2483.5 MHz band that is used exclusively for fixed. Point-to-point operations may employ transmitting antennas with directional gain greater than 6dBi provided the maximum conducted output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6dBi.

E.U.T Antenna:

The BLE antenna is an internal antenna which cannot replace by end-user, the best case gain of the antenna is 3 dBi.

6.2 Conducted Emission

To at Do avino as out	500 Dart 45 0 Caption 45 005	7							
Test Requirement:	FCC Part 15 C Section 15.207								
Test Method:	ANSI C63.4: 2009								
Test Frequency Range:	150 kHz to 30 MHz								
Class / Severity:	Class B								
Receiver setup:	RBW=9kHz, VBW=30kHz								
Limit:	Frequency range (MHz)	Limit (d Quasi-peak	dBuV) Average						
	0.15-0.5								
	0.5-5	56	46						
	5-30	60	50						
	* Decreases with the logarithm	n of the frequency.							
Test procedure	 The E.U.T and simulators a line impedance stabiliz 50ohm/50uH coupling impound in the peripheral devices through a LISN that prowith 50ohm termination. test setup and photograph interference. In order to positions of equipment changed according to measurement. 	zation network (L.I.S.Network) pedance for the measure are also connected ovides a 500hm/50uH (Please refer to the hs). The are checked for a find the maximum of and all of the interface.	N.), which provides a uring equipment. to the main power coupling impedance block diagram of the maximum conducted emission, the relative						
Test setup:		ence Plane							
	AUX Equipment Test table/Insulation pla Remark: EU.T. Equipment Under Test LISN: Line Impedence Stabilization Test table height=0.8m		er — AC power						
Test Instruments:	Refer to section 5.7 for details								
Test mode:	Refer to section 5.3 for details								
Test results:	Passed								

Measurement Data

Neutral:

Trace: 12

Site

: CCIS Shielding Room : FCC CLASS-B QP LISN NEUTRAL Condition

EUT : Mobile Phone \$4006

Model : S4006 Test Mode : BLE mode

Power Rating: AC120/60Hz Environment: Temp: 23 °C Huni:56% Atmos:101KPa Test Engineer: Colin

Remark

	Freq	Read Level	LISN Factor	Cable Loss	Level	Limit Line	Over Limit	Remark
	MHz	dBu∜	<u>dB</u>	dB	dBu∛	dBu∜	<u>dB</u>	
1	0.299	28.51	0.26	10.74	39.51	60.28	-20.77	QP
2	0.299	23.86	0.26	10.74	34.86	50.28	-15.42	Average
3	0.720	28.59	0.18	10.78	39.55	56.00	-16.45	QP
1 2 3 4 5 6 7 8 9	0.727	19.90	0.18	10.78	30.86	46.00	-15.14	Average
5	1.016	15.67	0.22	10.87	26.76			Average
6	1.054	25.73	0.22	10.88	36.83	56.00	-19.17	QP
7	2.664	19.17	0.29	10.93	30.39	56.00	-25.61	QP
8	2.824	12.19	0.29	10.93	23.41	46.00	-22.59	Average
9	9.107	6.28	0.25	10.90	17.43	50.00	-32.57	Average
10	11.198	17.00	0.25	10.93	28.18	60.00	-31.82	QP
11	17.944	9.22	0.26	10.90	20.38	50.00	-29.62	Average
12	23.762	20.81	0.45	10.88	32.14	60.00	-27.86	QP

Line:

Trace: 10

Site : CCIS Shielding Room Condition : FCC CLASS-B QP LISN LINE EUT : Mobile Phone s4006

Model : S4006
Test Mode : BLE mode
Power Reting : AC120/604g

Power Rating : AC120/60Hz Environment : Temp: 23 °C Huni:56% Atmos:101KPa

Test Engineer: Colin

Remark :

Kemark	Freq	Read Level	LISN Factor	Cable Loss	Level	Limit Line	Over Limit	Remark	
	MHz	dBu∜	<u>dB</u>	dB	dBu₹	dBu√	<u>dB</u>		
1	0.166	47.18	0.27	10.77	58.22	65.16	-6.94	QP	
2	0.206	45.13	0.28	10.76	56.17	63.36	-7.19	QP	
3	0.206	32.35	0.25	10.76	43.36	53.36	-10.00	Average	
1 2 3 4 5 6 7 8 9	0.242	42.47	0.27	10.75	53.49	62.04	-8.55	QP	
5	0.529	26.28	0.27	10.76	37.31	46.00	-8.69	Average	
6	0.561	34.73	0.27	10.77	45.77	56.00	-10.23	QP	
7	0.570	25.26	0.25	10.77	36.28	46.00	-9.72	Average	
8	1.464	16.36	0.26	10.92	27.54	46.00	-18.46	Average	
9	3.759	28.03	0.28	10.90	39.21	56.00	-16.79	QP	
10	4.269	15.06	0.29	10.88	26.23	46.00	-19.77	Average	
11	9.059	14.49	0.25	10.90	25.64	50.00	-24.36	Average	
12	23.387	21.78	0.46	10.89	33.13	60.00	-26.87	QP	

Notes:

- 1. An initial pre-scan was performed on the live and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level = Receiver Read level + LISN Factor + Cable Loss

6.3 Conducted Output Power

Test Requirement:	FCC Part 15 C Section 15.247 (b)(3)				
Test Method:	ANSI C63.4:2009 and KDB558074				
Limit:	30dBm				
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane				
Test Instruments:	Refer to section 5.7 for details				
Test mode:	Refer to section 5.3 for details				
Test results:	Passed				
Remark:	Test method refer to KDB558074 v03r01 (DTS Measure Guidance) section 9.2.2.2				

Measurement Data

Test CH	Maximum Conducted Output Power (dBm)	Limit(dBm)	Result
Lowest	-1.71		
Middle	-1.65	30.00	Pass
Highest	-2.18		

Test plot as follows:

Date: 10.JUL.2015 20:31:31 Lowest channel

Date: 10.JUL.2015 20:31:52 Middle channel

Highest channel

6.4 Occupy Bandwidth

Test Requirement:	FCC Part 15 C Section 15.247 (a)(2)					
Test Method:	ANSI C63.4:2009 and KDB558074					
Limit:	>500kHz					
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane					
Test Instruments:	Refer to section 5.7 for details					
Test mode:	Refer to section 5.3 for details					
Test results:	Passed					

Measurement Data

Test CH	6dB Emission Bandwidth (MHz)	Limit(kHz)	Result	
Lowest	0.720			
Middle	0.720	>500	Pass	
Highest	0.720			

Test CH	99% Occupy Bandwidth (MHz)	Limit(kHz)	Result
Lowest	1.032		
Middle	1.032	N/A	N/A
Highest	1.038		

Test plot as follows:

6dB EBW

Date: 10.JUL.2015 20:36:02

Lowest channel

Date: 10.JUT.2015 20:34:49

Middle channel

Date: 10.JUL.2015 20:34:02

Highest channel

99% OBW

Date: 10.JUL.2015 20:36:34

Lowest channel

Date: 10..TIIT..2015 20:36:54

Middle channel

Date: 10.JUL.2015 20:37:15

Highest channel

6.5 Power Spectral Density

Test Requirement:	FCC Part 15 C Section 15.247 (e)					
Test Method:	ANSI C63.4:2009 and KDB558074					
Limit:	8 dBm					
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane					
Test Instruments:	Refer to section 5.7 for details					
Test mode:	Refer to section 5.3 for details					
Test results:	Passed					

Measurement Data

Test CH	Power Spectral Density (dBm)	Limit(dBm)	Result
Lowest	-2.59		
Middle	-2.46	8.00	Pass
Highest	-2.99		

Test plots as follow:

Date: 10.JUL.2015 20:40:17

Lowest channel

Date: 10.JUL.2015 20:40:36

Middle channel

Date: 10..TIIT..2015 20:40:54

Highest channel

6.6 Band Edge

6.6.1 Conducted Emission Method

Test Requirement:	FCC Part 15 C Section 15.247 (d)					
Test Method:	ANSI C63.4:2009 and KDB558074					
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.					
Test setup:						
	Spectrum Analyzer					
	E.U.T					
	Non-Conducted Table					
	Ground Reference Plane					
Test Instruments:	Refer to section 5.7 for details					
Test mode:	Refer to section 5.3 for details					
Test results:	Passed					

Test plots as follow:

Date: 10.JUT..2015 20:39:47

Lowest channel

Date: 10.JUT.2015 20:38:40

Highest channel

6.6.2 Radiated Emission Method

Test Requirement:	FCC Part 15 C Section 15.209 and 15.205					
Test Method:	ANSI C63.4: 20		7 4114 10.200			
Test Frequency Range:	2.3GHz to 2.5G					
	Measurement D					
Test site:	ivieasurement L	istance: 3m				
Receiver setup:	FrequencyDetectorRBWVBWRenAbove 1GHzPeak1MHz3MHzPeakPeak1MHz10HzAverage					
Limit:					_	
	Freque	ency	Limit (dBuV/		Remark	
	Above 1	GHz	54.0		Average Value	
Test Procedure:	1. The EUT w	vaa plaaad on t	74.0		Peak Value	
Test setup:	 The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter camber. The table was rotated 360 degrees to determine the position of the highest radiation. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rota table was turned from 0 degrees to 360 degrees to find the maximum reading. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode. If the emission level of the EUT in peak mode was 10 dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10 dB margin would be re-tested one by one using peak, quasipeak or average method as specified and then reported in a data sheet. 					
	Antenna Tower Horn Antenna Spectrum Analyzer Turn Table Amplifier					
Test Instruments:	Refer to section 5.7 for details					
Test mode:	Refer to section	5.3 for details				
Test results:	Passed					

Test channel: Lowest

Horizontal:

Site : 3m chamber

Condition : FCC PART 15 (PK) 3m BBHA9120(1G18) HORIZONTAL

EUT : Mobile Phone s4006

Model : S4006 Test mode : BLE -L

Power Rating : AC120V/60Hz Environment : Temp:25.5°C Huni:55%

Test Engineer: Colin

REMARK

PHETE		Read	Antenna	Cable	Preamp		Limit	Over	
	Freq		Factor						Remark
	MHz	dBu∜	dB/m	dB	<u>dB</u>	dBuV/m	dBuV/m	<u>dB</u>	
1	2390.000	18.46	27.58	6.63	0.00	52.67	74.00	-21.33	Peak
2	2390.000	7.60	27.58	6.63	0.00	41.81	54.00	-12.19	Average

Test channel: Lowest

Vertical:

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) VERTICAL : Mobile Phone s4006 Condition

EUT

: S4006 Model Test mode : BLE- L Power Rating : AC120V/60Hz

Environment : Temp: 25.5°C Huni: 55%

Test Engineer: Colin REMARK :

EJIKAN	W 1850		Antenna Factor						
	MHz	dBu₹	<u>d</u> B/m	<u>d</u> B	<u>d</u> B	dBuV/m	dBuV/m	<u>dB</u>	
1 2	2390.000 2390.000								

Test channel: Highest

Horizontal:

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) HORIZONTAL : Mobile Phone s4006 Condition

EUT

: S4006 Model Test mode : BLE- H Power Rating: AC120V/60Hz Environment: Temp:25.5°C Huni:55% Test Engineer: Colin

REMARK

1 2

ומו	in :	D 3	A 4	C-11-	D		7 3 - 3 4	A	
	Freq		Antenna Factor						
	MHz	dBu∜	<u>dB</u> /m	d <u>B</u>	<u>dB</u>	dBuV/m	dBuV/m	dB	
2	2483.504 2483.504								

Test channel: Highest

Vertical:

Site : 3m chamber

Condition : FCC PART 15 (PK) 3m BBHA9120(1G18) VERTICAL

: Mobile Phone s4006 EUT

Model : S4006 : BLE- H Test mode

Power Rating: AC120V/60Hz
Environment: Temp:25.5°C Huni:55%
Test Engineer: Colin
REMARK:

טומוונט	475		Antenna Factor				Limit Line	Over Limit	Remark
	MHz	dBu∜	<u>dB</u> /m	dB	<u>dB</u>	$\overline{dBuV/m}$	$\overline{dBuV/m}$	<u>dB</u>	
1 2	2483.500 2483.500								

6.7 Spurious Emission

6.7.1 Conducted Emission Method

Test Requirement:	FCC Part 15 C Section 15.247 (d)					
Test Method:	ANSI C63.4:2009 and KDB558074					
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.					
Test setup:						
	Spectrum Analyzer E.U.T Non-Conducted Table					
Test Instruments:	Refer to section 5.7 for details					
Test mode:	Refer to section 5.3 for details					
Test results:	Passed					

Test plot as follows:

Lowest channel

Date: 10.JUL.2015 23:23:06

30MHz~25GHz

Middle channel

Date: 10.JUT.12015 23:24:02

30MHz~25GHz

Highest channel

Date: 10.JUL.2015 23:25:33

30MHz~25GHz

6.7.2 Radiated Emission Method

Test Requirement:	FCC Part 15 C	Section 15.20	9 and 15.205							
Test Method:	ANSI C63.4:2009									
Test Frequency Range:	9KHz to 25GHz Measurement Distance: 3m									
Test site:	Measurement D	istance: 3m								
Receiver setup:										
·	Frequency Detector RBW VBW Remark 30MHz-1GHz Quasi-peak 120KHz 300KHz Quasi-peak Value									
	30MHz-1GHz Quasi-peak 120KHz 300KHz Quasi-peak Value									
	Above 1GHz Peak 1MHz 3MHz Peak Value									
	Above 1GHz Peak 1MHz 10Hz Average									
Limit:										
	Frequency Limit (dBuV/m @3m) Remark									
	30MHz-88MHz 40.0 Quasi-peak Value									
	88MHz-216MHz		43.5		Quasi-peak Value					
	216MHz-960MH		46.0		Quasi-peak Value					
	960MHz-1GHz		54.0		Quasi-peak Value					
	Above 1GHz	-	54.0 74.0		Average Value					
Test Procedure:	1. The EUT w			rotating tah	Peak Value le 0.8 meters above					
	the ground to determin 2. The EUT of antenna, we tower. 3. The antenry the ground Both horizon make the make the make the make the make sand to find the meters and to find the make the limit specified B. 6. If the emission the limit specified EUT have 10 dB.	at a 3 meter e the position was set 3 m hich was mount a height is voto determine ontal and vertical and vertical the rota table maximum reaction level of the cified, then to would be reparation would set to the margin would set to the set of the cified, then to would be reparation in the set of the cified, then to would be reparation would set to the set of the cified, then to would set of the cified	camber. The of the highes eters away funted on the taried from or the maximulation polarization was turned awas turned ding. In Maximum Hame EUT in peresting could be ported. Other did be re-tested.	table was stradiation. Tom the in op of a variance meter to um value of ions of the EUT was and to height from 0 deg to Peak Dold Mode. The ak mode was stopped wise the end one by on	rotated 360 degrees					

Below 1GHz

Horizontal:

Site

: 3m chamber : FCC PART15 CLASS B 3m VULB9163(30M1G) HORIZONTAL Condition

EUT : Mobile Phone s4006

: S4006 Model Test mode : BLE mode Power Rating : AC120V/60Hz Environment : Temp:25.5°C

Huni:55%

Test Engineer: Colin REMARK

$r_{11}r_{01}r_{01}$									
	Freq		Antenna Factor				Limit Line	Over Limit	Remark
-	MHz	dBu∜	dB/m		<u>dB</u>	$\overline{dBuV/m}$	dBuV/m	dB	
1	71.832	43.37	8.32	0.80	29.71	22.78	40.00	-17.22	QP
2	110.182	43.59	12.25	1.05	29.46	27.43	43.50	-16.07	QP
3	163.182	49.53	8.77	1.34	29.11	30.53	43.50	-12.97	QP
4	187.096	49.70	10.32	1.37	28.92	32.47	43.50	-11.03	QP
5	325.596	39.94	13.59	1.86	28.51	26.88	46.00	-19.12	QP
4 5 6	672.845	36.83	18.72	2.85	28.73	29.67	46.00	-16.33	QP

Vertical:

Site

: 3m chamber : FCC PART15 CLASS B 3m VULB9163(30M1G) VERTICAL : Mobile Phone s4006 Condition

EUT

Model : S4006 Test mode : BLE mode Power Rating : AC120V/60Hz Environment : Temp:25.5°C

Huni:55%

Test Engineer: Colin REMARK :

Freq						Limit Line	Over Limit	Remark
MHz	dBu∜	$-\overline{dB}/\overline{m}$	dB	dB	dBu√/m	dBuV/m	dB	
63.983	40.87	11.11	0.74	29.76	22.96	40.00	-17.04	QP
91.495	39.78	12.24	0.92	29.56	23.38	43.50	-20.12	QP
163.755	48.45	8.77	1.34	29.10	29.46	43.50	-14.04	QP
182.559	47.31	9.92	1.36	28.95	29.64	43.50	-13.86	QP
312.179	38.47	13.22	1.81	28.48	25.02	46.00	-20.98	QP
416.179	36.83	15.39	2.16	28.81	25.57	46.00	-20.43	QP
	MHz 63.983 91.495 163.755 182.559 312.179	Freq Level MHz dBuV 63.983 40.87 91.495 39.78 163.755 48.45 182.559 47.31 312.179 38.47	Freq Level Factor MHz dBuV dB/m 63.983 40.87 11.11 91.495 39.78 12.24 163.755 48.45 8.77 182.559 47.31 9.92 312.179 38.47 13.22	Freq Level Factor Loss MHz dBuV dB/m dB 63.983 40.87 11.11 0.74 91.495 39.78 12.24 0.92 163.755 48.45 8.77 1.34 182.559 47.31 9.92 1.36 312.179 38.47 13.22 1.81	MHz dBuV dB/m dB dB 63.983 40.87 11.11 0.74 29.76 91.495 39.78 12.24 0.92 29.56 163.755 48.45 8.77 1.34 29.10 182.559 47.31 9.92 1.36 28.95 312.179 38.47 13.22 1.81 28.48	MHz dBuV dB/m dB dB dBuV/m 63.983 40.87 11.11 0.74 29.76 22.96 91.495 39.78 12.24 0.92 29.56 23.38 163.755 48.45 8.77 1.34 29.10 29.46 182.559 47.31 9.92 1.36 28.95 29.64 312.179 38.47 13.22 1.81 28.48 25.02	MHz dBuV dB/m dB dB dBuV/m dBuV/m dBuV/m 63.983 40.87 11.11 0.74 29.76 22.96 40.00 91.495 39.78 12.24 0.92 29.56 23.38 43.50 163.755 48.45 8.77 1.34 29.10 29.46 43.50 182.559 47.31 9.92 1.36 28.95 29.64 43.50 312.179 38.47 13.22 1.81 28.48 25.02 46.00	MHz dBuV dB/m dB dB dBuV/m dBuV/m <t< td=""></t<>

Above 1GHz

Т	est channel	:	Lowest		Le	vel:	Peak	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4804.00	44.81	31.53	8.90	40.24	45.00	74.00	-29.00	Vertical
4804.00	45.16	31.53	8.90	40.24	45.35	74.00	-28.65	Horizontal

Т	Test channel:			Lowest		vel:	Average	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4804.00	39.67	31.53	8.90	40.24	39.86	54.00	-14.14	Vertical
4804.00	41.00	31.53	8.90	40.24	41.19	54.00	-12.81	Horizontal

Т	est channel	:	Middle		Le	vel:	Peak	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4882.00	44.85	31.58	8.98	40.15	45.26	74.00	-28.74	Vertical
4882.00	43.85	31.58	8.98	40.15	44.26	74.00	-29.74	Horizontal

Т	Test channel:			Middle		vel:	Average	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4882.00	38.12	31.58	8.98	40.15	38.53	54.00	-15.47	Vertical
4882.00	36.24	31.58	8.98	40.15	36.65	54.00	-17.35	Horizontal

Т	Test channel:			Highest		vel:	Peak	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4960.00	44.33	31.69	9.08	40.03	45.07	74.00	-28.93	Vertical
4960.00	45.38	31.69	9.08	40.03	46.12	74.00	-27.88	Horizontal

Т	est channel	:	Highest		Le	vel:	Average	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4960.00	35.25	31.69	9.08	40.03	35.99	54.00	-18.01	Vertical
4960.00	37.25	31.69	9.08	40.03	37.99	54.00	-16.01	Horizontal

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Shenzhen Zhongjian Nanfang Testing Co., Ltd.
No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road, Bao'an District, Shenzhen, Guangdong, China
Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366