ChBE 2120, Numerical Methods, Paravastu Section, Fall 2015 Quiz 6: 20 points possible

1) (10 points) Setup the matrix equation necessary to perform a second order polynomial regression $(y = a_0 + a_1 x + a_2 x^2)$ on the following data. Use the General least squares regression approach. You do not need to solve this question. $\rightarrow = 1$ $\rightarrow = 2$ $\rightarrow = 2$

X	v	X2	1	_	Q	, 41	\(\frac{1}{2} \)	_ (5		
2	1	}			\supset	47		$\lceil 1 \rceil$		1	17
4	50	G	[]_	1	11	10	Γ	7	(1)		
6	100 3	6	Z -	'	7	10		_	7	6	8
8	200 6	;4		1	6	36	(47)	1,	10	30	CII
l Least Squares				8	64	(12)	14	16	26	64]	

General

Best-fit function: $y = a_0 z_0 + a_1 z_1 + a_2 z_2 + \dots + a_m z_m$, where z_i 's are any functions of x. Minimization of S_r : $[Z]^T[Z][A] = [Z]^T[Y]$

$$[Z] = \begin{bmatrix} z_{01} & \cdots & z_{m1} \\ \vdots & \ddots & \vdots \\ z_{0n} & \cdots & z_{mn} \end{bmatrix}, z_{ij} = z_i(x_j), [Y] = \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{bmatrix}, [A] = \begin{bmatrix} a_1 \\ a_2 \\ \vdots \\ a_m \end{bmatrix} \quad \begin{bmatrix} A \end{bmatrix} = \begin{bmatrix} A \\ a_1 \\ a_2 \end{bmatrix} \quad \begin{bmatrix} A \end{bmatrix} = \begin{bmatrix} A \\ a_1 \\ a_2 \end{bmatrix} \quad \begin{bmatrix} A \end{bmatrix} = \begin{bmatrix} A \\ a_1 \\ a_2 \end{bmatrix} \quad \begin{bmatrix} A \\ a_2 \end{bmatrix} \quad \begin{bmatrix} A \\ a_2 \end{bmatrix} \quad \begin{bmatrix} A \\ a_1 \\ a_2 \end{bmatrix} \quad \begin{bmatrix} A \\ a_2 \end{bmatrix} \quad \begin{bmatrix}$$

$$\begin{bmatrix} 1 & 1 & 1 & 1 \\ 2 & 4 & 6 & 8 \\ 1 & 4 & 16 \\ 1 & 6 & 36 \\ 1 & 8 & 64 \end{bmatrix} \begin{bmatrix} 1 & 2 & 4 & 6 & 8 \\ 1 & 2 & 4 & 6 & 8 \\ 1 & 6 & 36 & 64 \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 & 1 \\ 50 & 100 \\ 200 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 1 & 1 & 1 \\ 2 & 4 & 6 & 8 \\ 1 & 8 & 64 \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 & 1 \\ 2 & 4 & 6 & 8 \\ 1 & 8 & 64 \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 & 1 \\ 2 & 4 & 6 & 8 \\ 1 & 100 & 2 \end{bmatrix}$$

2) (10 points) Derive the matrix equation used to calculate the slope and intercept of the least-squares bestfit line for a data set. Recall that least-squares regression involves minimizing $S_r = \sum_{i=1}^n e_i^2 =$

The first a data set. Recease that reast-squares regression involves infinitelying
$$S_r = Z_{i=1}e_i = \sum_{i=1}^n (y_i - a_0 - a_1 x_i)^2$$
.
$$\frac{\partial S_r}{\partial \alpha_0} = 0 = -2 \sum_{i=1}^n (y_i - \alpha_0 - \alpha_1 x_i) = \sum_i (y_i - \alpha_0 - \alpha_1 x_i) = \sum_i (y_i - \alpha_0 \sum_i x_i)$$

$$\frac{\partial x}{\partial \alpha_{1}} = 0 = -2 \sum_{i=1}^{2} x_{i} (y_{i} - \alpha_{0} - \alpha_{1} x_{i}) = \sum_{i=1}^{2} x_{i} y_{i} - \alpha_{0} \sum_{i=1}^{2} x_{i}^{2}$$

$$(2x_{i}) \alpha_{0} + (2x_{i}^{2}) \alpha_{1} = 2 x_{i} y_{i}$$

$$(2x_{i}) \alpha_{0} + (2x_{i}^{2}) \alpha_{1} = 2 x_{i} y_{i}$$

$$(2x_{i}) \alpha_{0} + (2x_{i}^{2}) \alpha_{1} = 2 x_{i} y_{i}$$

$$(2x_{i}) \alpha_{0} + (2x_{i}^{2}) \alpha_{1} = 2 x_{i} y_{i}$$

$$(2x_{i}) \alpha_{0} + (2x_{i}^{2}) \alpha_{1} = 2 x_{i} y_{i}$$

$$(2x_{i}) \alpha_{0} + (2x_{i}^{2}) \alpha_{1} = 2 x_{i} y_{i}$$

$$(2x_{i}) \alpha_{0} + (2x_{i}^{2}) \alpha_{1} = 2 x_{i} y_{i}$$