Feuille d'exercices n°10

Exercice 1 **A**: petites questions

- 1. Soit f une fonction différentiable de \mathbb{R}^2 dans \mathbb{R} , dériver les fonctions u(x) = f(x, -x) et g(x, y) = f(y, x).
- 2. Soit q une forme quadratique sur \mathbb{R}^n , quelle est sa différentielle en un point donné?
- 3. a) On considère le changement de variable des coordonnées polaires : $(x, y) = (r \cos \theta, r \sin \theta)$ défini sur $\mathbb{R}^2 \setminus \{(x, y) : x \leq 0, y = 0\}$, montrer qu'il s'agit d'un difféomorphisme sur son image.
- b) Soit f une fonction définie sur $\mathbb{R}^2 \setminus \{(x,y) : x \leq 0, y = 0\}$, on pose $g(r,\theta) := f(r\cos\theta, r\sin\theta)$, relier les dérivées partielles en fonction de x et y à celles en fonction de x et θ .
- c) On pose maintenant $f(x,y) = h(x,\theta)$, calculer les dérivées partielles par rapport à x et expliquer la différence.

Exercice 2 🖈 🎢 : différentielle du déterminant

Soit $n \in \mathbb{N}^*$.

- 1. Montrer que l'application $M \in \mathcal{M}_n(\mathbb{R}) \to \det(M)$ est différentiable en tout point.
- 2. Calculer sa différentielle en Id.
- 3. Soit $M_0 \in \mathrm{GL}_n(\mathbb{R})$. Calculer la différentielle de det en M_0 .
- 4. Soit $M_0 \in \mathcal{M}_n(\mathbb{R})$. Calculer la différentielle de det en M_0 en fonction de la comatrice de M_0 .
- 5. En déduire les points critiques du déterminant.

Exercice 3 ##: différentielle chez les matrices

On se place sur $\mathcal{M}_n(\mathbb{R})$.

- 1. Calculer la différentielle de $A \in GL_n(\mathbb{R}) \mapsto A^{-1}$. (On pourra commencer par la calculer en l'identité)
- 2. Faire de même avec l'exponentielle. (La formule est moins jolie) Montrer que la différentielle s'écrit

$$d_A \exp \cdot H = \int_0^1 e^{tA} H e^{(1-t)A} dt.$$

3. Montrer les formules de Lie-Trotter-Kato : si $A, B \in \mathcal{M}_n(\mathbb{R})$, alors

$$\left(e^{\frac{A}{n}}e^{\frac{B}{n}}\right)^n \longrightarrow e^{A+B}$$

et

$$\left(e^{\frac{A}{n}}e^{\frac{B}{n}}e^{-\frac{A}{n}}e^{-\frac{B}{n}}\right)^n \longrightarrow e^{AB-BA}.$$

Exercice 4 $\mathscr{I}\mathscr{I}\mathscr{I}$: isométries de \mathbb{R}^n

On munit \mathbb{R}^n de sa norme euclidienne. Rappelons que $f: \mathbb{R}^n \to \mathbb{R}^n$ est une isométrie si, pour tous $x, y \in \mathbb{R}^n$, on a ||f(y) - f(x)|| = ||y - x||.

Soit f une application de classe C^2 de \mathbb{R}^n dans lui-même. On va montrer que f est une isométrie si et seulement si sa différentielle est une isométrie en tout point.

- 1. Si f est une isométrie différentiable, démontrer que sa différentielle l'est également.
- 2. À partir de maintenant, on suppose que la différentielle de f est une isométrie en tout point. Montrer que, pour tous $h, k, l \in \mathbb{R}^n$ et pour tout $x \in \mathbb{R}^n$, on a :

$$\langle d^{(2)}f(x).(h,l), df(x).k \rangle + \langle df(x).h, d^{(2)}f(x).(k,l) \rangle = 0.$$

- 3. On note $g(h, k, l) = \langle d^{(2)}f(x).(h, l), df(x).k \rangle$. Déduire de la question précédente que g(h, k, l) = -g(k, h, l) puis montrer que g(h, k, l) = 0.
- 4. Conclure.

Exercice 5 \mathscr{VHH} : lois de groupe sur \mathbb{R}

Soit * une loi de groupe sur \mathbb{R} telle que l'application f(x,y) := x * y soit \mathcal{C}^1 .

1. Montrer que pour tous $x, y \in \mathbb{R}$,

$$\partial_2(x * y, e) = \partial_2 f(x, y) \cdot \partial_2 f(y, e)$$

et en déduire que $\partial_2 f(y,e) > 0$. (dériver en la troisième variable la formule d'associativité et utiliser l'inverse de y.)

2. On cherche à construire une fonction φ de classe \mathcal{C}^1 telle que $\varphi(x * y) = \varphi(x) + \varphi(y)$. En dérivant par rapport à y montrer que l'on a nécessairement

$$\varphi(x) = a \int_{e}^{x} \frac{\mathrm{d}t}{\partial_2 f(t, e)}$$

où a est une constante.

3. Montrer réciproquement que pour chaque constante a cette formule définit un difféomorphisme de classe \mathcal{C}^1 qui transforme * en +.

Exercice 6 VIII: fonction à dérivées successives prescrites

On rappelle que le support d'une fonction $f: \mathbb{R} \to \mathbb{R}$ est l'adhérence de $f^{-1}(\mathbb{R} - \{0\})$. Dans cet exercice, on souhaite montrer le résultat suivant, dû à Borel :

Soient $(c_n)_{n\in\mathbb{N}}$ une suite de réels et I un voisinage ouvert de 0 dans \mathbb{R} . Il existe $f\in\mathcal{C}^{\infty}(\mathbb{R})$, à support dans I, tel que : $\forall n\in\mathbb{N},\ f^{(n)}(0)=c_n$.

- 1. Montrer qu'il existe une fonction $\varphi \in \mathcal{C}^{\infty}(\mathbb{R})$, à support dans]-1,1[, qui vaut 1 au voisinage de 0.
- 2. On introduit, pour ε_n suffisamment petit pour que $]-\varepsilon_n, \varepsilon_n[\subset I]$, la fonction

$$g_n(x) = c_n \varphi\left(\frac{x}{\varepsilon_n}\right) \frac{x^n}{n!}.$$

Montrer que si ε_n est assez petit, on a $\left|g_n^{(\alpha)}(x)\right| \leq 2^{-n}$ sur \mathbb{R} , pour tout $\alpha \in \{0, \dots, n-1\}$.

3. Conclure, en utilisant la fonction $f(x) := \sum_{n=0}^{+\infty} g_n(x)$.

Exercice 7 All: fonctions homogènes

Soit $k \in \mathbb{N}$. Soient E et F deux espaces de Banach réels. Une application $f: E \to F$ est homogène de degré k si, pour tout $x \in E$ et tout $t \in \mathbb{R}$, on a $f(tx) = t^k f(x)$.

1. On suppose que f est homogène de degré k et différentiable en-dehors de 0. Montrer que, pour tout $x \neq 0$ et $t \in \mathbb{R}^*$, on a :

$$df(x).x = kf(x)$$

$$df(tx) = t^{k-1}df(x)$$

2. Montrer qu'une application f homogène de degré k et de classe \mathcal{C}^k vérifie :

$$\forall h \in E, f(h) = \frac{1}{k!} d^k f(0).(h, ..., h)$$

[c'est-à-dire que f est induite par une application k-multilinéaire.]

3. Cela reste-t-il vrai si f n'est pas de classe C^k ?

Exercice 8 ////: descente de gradient

Soit $n \in \mathbb{N}^*$. On munit \mathbb{R}^n de sa norme euclidienne usuelle.

Soit $f: \mathbb{R}^n \to \mathbb{R}$ une fonction strictement convexe telle que $f(x) \to +\infty$ lorsque $||x|| \to +\infty$.

1. Montrer que f atteint son minimum sur \mathbb{R}^n et que le minimum est atteint en un point unique, qu'on note x^* .

[Indication : on pourra admettre qu'une fonction convexe de \mathbb{R}^n vers \mathbb{R} est nécessairement continue.]

On suppose maintenant que f est différentiable en tout point de \mathbb{R}^n . On fixe $x_0 \in \mathbb{R}^n$ et $\alpha \in \mathbb{R}_+^*$. On définit récursivement, pour tout $n \geq 0$:

$$x_{n+1} = x_n - \alpha \nabla f(x_n)$$

2. On suppose que l'application $x \to \nabla f(x)$ est L-lipschitzienne pour un certain L > 0:

$$\forall x, y \in \mathbb{R}^n, \qquad ||\nabla f(x) - \nabla f(y)|| \le L||x - y||$$

- a) Montrer que, pour tout $n, f(x_{n+1}) \leq f(x_n) ||\nabla f(x_n)||^2 \alpha (1 \frac{L\alpha}{2})$. [Indication : écrire $f(x_{n+1}) f(x_n)$ comme une intégrale.]
- b) On suppose maintenant que $\alpha \leq 1/L$. Déduire de l'inégalité précédente que :

$$f(x_{n+1}) \le f(x^*) + \langle \nabla f(x_n), x_n - x^* \rangle - \frac{\alpha}{2} ||\nabla f(x_n)||^2$$
$$= f(x^*) + \frac{1}{2\alpha} \left(||x_n - x^*||^2 - ||x_{n+1} - x^*||^2 \right)$$

c) Montrer que, pour tout $n \in \mathbb{N}^*$, $f(x_n) - f(x^*) \le \frac{1}{2n\alpha} ||x_0 - x^*||^2$.

[Indication : Montrer d'abord que $(f(x_n))_{n\in\mathbb{N}}$ est décroissante puis sommer les inégalités obtenues à la question précédente.]

- 3. On suppose toujours que $x \to \nabla f(x)$ est L-lipschitzienne mais on suppose de plus que f est m-fortement convexe pour un certain m > 0, c'est-à-dire que la fonction $x \to f(x) \frac{m}{2}||x||^2$ est convexe.
- a) Montrer que, pour tous x, y:

$$f(y) \ge f(x) + \langle \nabla f(x), y - x \rangle + \frac{m}{2} ||x - y||^2$$

b) Montrer que, si α est plus petit qu'une certaine constante ne dépendant que de m et L, alors il existe $c \in]0;1[$ tel que :

$$\forall n \in \mathbb{N}, \qquad ||x_n - x^*|| \le c^n ||x_0 - x^*||$$