

Space Exploration

Unconventional Methods in Propulsion

Mubashshir UddinSunny K. BhagatVarun Singh

Contents

Near Future:

- Explosion Powered
- Fission Powered Rockets

Far Future:

- Fusion Powered
- Antimatter Powered
- Solar sails
- Beam Powered Propulsion

Impossible under Current laws of PHYSICS:

- Alcubierre Drive
- EM drive

Near Future

Explosion Powered Rockets:

PROJECT ORION

Using the currently most destructive form of atomic energy utilisation:

- Uses A- Bombs or H- Bombs
- Can Easily attain 1% of Speed of Light
- 44 years to Alpha Century
- Feasible even by current technology
- Bound only by lack of motivation

NUCLEAR SALT WATER ROCKET (NSWR)

Fission Powered Rockets:

- Incredibly Efficient (10,000s of ISP)
- Uses uranium salts dissolved in water
- 66Km/s of Exaust Velocity
- Cannot be used as a first stage
- Possible to accelerate a conventional spacecraft to 7% of speed of light

NUCLEAR ENGINE FOR ROCKET VEHICLE APPLICATION (NERVA)

Fission Powered Rockets:

- Only tested type of Nuclear Propulsion System
- Cancelled By political fuss
- 3 months to Mars @ ⅓g for a 220t spacecraft
- Very High Specific Impulse

"The AEC, SNPO, and NASA considered NERVA to be a highly successful program"

Reactor 💠	Test date ◆	Starts 💠	Average full power (MW)	Time at full power (s)	Propellant temperature (chamber) (K)	Propellant temperature ◆ (exit) (K)	Chamber pressure ♦ (kPa)	Flow rate ♦ (kg/s)	Vacuum specific impulse (s)
NERVA A2	September 1964	2	1096	40	2119	2229	4006	34.3	811
NERVA A3	April 1965	3	1093	990	2189	>2400	3930	33.3	>841
NRX EST	February 1966	11	1144	830	2292	>2400	4047	39.3	>841
NRX A5	June 1966	2	1120	580	2287	>2400	4047	32.6	>841
NRX A6	November 1967	2	1199	3623	2406	2558	4151	32.7	869
XE PRIME	March 1969	28	1137	1680	2267	>2400	3806	32.8	>841

Far Future

Fusion Powered Engines:

Entirely Theoretical Concept

Broadly of Two Types:

- Inertial Confinement
- Magnetic Confinement

JR-15 'Discovery' Spherical Tokamak Fusion Engine

Thrust

Size 3.75m

Notes Magnetically confined fusion engine. Good all-arounder, with integrated power reactor and an additional higher

Isp

JR-45 'Fresnel' Mirror Cell Fusion Engine

Thrust

Size 3.75m

Notes Magnetically confined fusion engine with a high power and low power mode. Increasing reaction chamber length increases capabilities.

Thrust

Notes Magnetically confined entry-level fusion pulse engine.
Delivers the capabilities of high end ion engine without the power generation needs

Size

Manley, S. (2021, January 15). Far Future Rocket Engine Technologies - Fission, Fusion & Antimatter [Video]. YouTube.

https://www.youtube.com/watch?v=QEZv_OXA_NI&feature=youtu.be

Antimatter Powered Rocket Engine:

Three types:

- Antimatter Drive
- Thermal Antimatter Rocket
- Antimatter catalysed Fission/Fusion Engine

Solar Sails

Incredibly Inefficient:

800x800 sq.m foil => 5 Newtons

At 1 AU

Might be good for certain non-manned missions

Require Infrastructure and Tech well beyond what is currently available.

Beam Powered Propulsion:

- A far future technology
- Available only if efficient laser technologies arrive in future.
- Still requires assistance from earth, thus not feasible for interstellar travel.

Beam Powered Propulsion:

DYSON BEAM

Only available once humanity becomes a type 2 Kardashev scale civilisation

Exotic Propulsion

Impossible under Current laws of PHYSICS

Alcubierre Drive:

- FTL
- Impossible
- Impossible
- Impossible
- Requires negative energy Density
- Works on the principle of Alcubierre Metric

EM drive

- Flawed Design
- Challenges the Principle of conservation of momentum

