Exercise 1: Let's look in more detail at division. We will use the octal numbers in the following table.

	A	В
A	40	21
В	25	44

1. Calculate A divided by B using the hardware described in Figure 1 and the algorithm shown in Figure 2. You should show the contents of each register on each step. Assume A and B are unsigned 6-bit integers.

2. Calculate A divided by B using the hardware described in Figure 3. You should show the contents of each register on each step. Assume A and B are unsigned 6-bit integers.

Exercise 2: The following table shows decimal numbers

a	-1609.5
b	-938.8125

1. Write down the binary representation of the decimal number, assuming the IEEE 754 **single** precision format.

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
s	s exponent						fraction																								
1 bit	bit 8 bits															2	3 bit	s													

2. Write down the binary representation of the decimal number, assuming the IEEE 754 **double** precision format.

1 bit	1 bit 11 bits							20 bits																							
s exponent							fraction																								
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

32 bits

Exercise 3: Let's look in more detail at division. We will use the decimal numbers in the following table.

	A	В
A	13	20
В	30	9

- 1. Calculate A divided by B using the hardware described in Figure 1 and the algorithm shown in Figure 2. You should show the contents of each register on each step. Assume A and B are unsigned 6-bit integers.
- 2. Calculate A divided by B using the hardware described in Figure 3. You should show the contents of each register on each step. Assume A and B are unsigned 6-bit integers.

Exercise 4: The following table shows decimal numbers

a	5.00736125 x 10 ⁵
b	-2.691650390625 x 10 ⁻²

- 3. Write down the binary representation of the decimal number, assuming the IEEE 754 **single** precision format.
- 4. Write down the binary representation of the decimal number, assuming the IEEE 754 **double** precision format.

Exercise 5: The following table shows bit patterns expressed in hexademical notation.

a	0x24A60004
b	0xAFBF0000

- 1. What decimal number does the bit pattern represent if it is a two's complement integer? An unsigned integer?
- 2. If this bit pattern is placed into the Instruction Register, what MIPS instruction will be executed?
- 3. What decimal number does the bit pattern represent if it is a floating point number? Use the IEEE 754 standard.

Exercise 6:

The following table shows pairs of decimal numbers

	A	B
a.	-1278 x 10 ³	-3.90625 x 10 ⁻¹
b.	2.3109375 x 10 ¹	6.391601562 x 10 ⁻¹

- 1. Calculate the sum of A and B by hand, assuming that we keep 11 bits of significand and 5 bits of the exponent. (Rounding rule: add 1 if the bits to the right of the desired point is larger or equal to $100_{(2)}$). Show all the steps.
- 2. Calculate the sum of A and B by hand, assuming A and B are stored in the IEEE-754 single precision format. Show all the steps.
- 3. Write MIPS assembly language program to calculate the sum of A and B, assuming that the memory address of A is 0x04 and of B is 0x08

Exercise 7:

The following table shows pairs of decimal numbers

	A CONTRACTOR	В
a.	5.66015625 x 10 ⁰	8.59375 x 10 ⁰
b.	6.18 x 10 ²	5.796875 x 10 ¹

- 1. Calculate the A x B by hand, assuming that we keep 11 bits of significand and 5 bits of the exponent. (Rounding rule: add 1 if the bits to the right of the desired point is larger or equal to 100₍₂₎). Show all the steps.
- 2. Calculate the sum of A and B by hand, assuming A and B are stored in the IEEE-754 single precision format. Show all the steps.
- 3. Write MIPS assembly language program to calculate the product of A x B, assuming that the memory address of A is 0x04 and of B is 0x08

Exercise 8:

Explain and give an example for each of the following MIPS instructions to distinguish the difference between them

- mult, multu, mul.s, mul.d
- div, divu, div.s, div.d