AD-A112 205

ERTEC WESTERN INC LONG BEACH CA
MX SITING INVESTIGATION, GRAVITY SURVEY - DELAMAR VALLEY, NEVAD--ETC(U)
JUL 81
E-TR-33-DM

E-

DTIC FORM 70A

DOCUMENT PROCESSING SHEFT

Ertec

The Earth Technology Corporation

Ertec Western Inc.

3777 Long Beach Boulevard - Long Beach, California 90807

Telephone: (213) 595-6611

23011 Moutton Parkway, Suite G10 • Lagune Hills, California 92653

Telephone: (714) 951-0926

3116 West Thomas Road, Suite 601 • P.O. Box 14570 • Phoenix, Arizona 85063

Telephone: (602) 200-7501

MX SITING INVESTIGATION

GRAVITY SURVEY - DELAMAR VALLEY NEVADA

Prepared for:

U.S Department of the Air Force Ballistic Missile Office (BMO) Norton Air Force Base, California 92409

Prepared by:

Ertec Western, Inc. 3777 Long Beach Boulevard Long Beach, California 90807

20 July 1981

SECURITY	CLASS	FICATION (OF THIS	PAGE	(When	Data	Entered)
		DEDART	DOCH		* A * I	\sim	DACE

يعن والأنفادات

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)	, 			
REPORT DOCUMENTATION PAGE	READ INSTRUCTIONS BEFORE COMPLETING FORM			
1. REPORT NUMBER E.TR-33-DM 2. GOVT ACCESSION NO.	3. RECIPIENT'S CATALOG NUMBER			
ETR-53-04				
4. TITLE (and Subtitle)	5. TYPE OF REPORT & PERIOD COVERED			
. Un Signify interst. Side ite Suc.				
Delamor Colley L'V	Final			
	6. PERFORMING ORG. REPORT NUMBER			
7. AUTHOR(s)	B. CONTRACT OR GRANT NUMBER(s)			
Ertre	FC47C4-80-C-CCCL			
9. PERFORMING ORGANIZATION NAME AND ADDRESS	10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS			
Ertec Western Inc. Germerly Furro National,) PC. 13CX 7765				
	64312 F			
Long Beach Ca 90507	12. REPORT DATE			
5pace and Missile Systems Cognition	20 JOI SI			
2 bace and missing silvery of colours	13. NUMBER OF PAGES			
10 C+CO1 AFIS (O SQUE 9 (SAMSC)	15. SECURITY CLASS. (of this report)			
	15a. DECLASSIFICATION DOWNGRADING SCHEDULE			
15 DISTRIBUTION STATEMENT (A) No. Borrow				
16. DISTRIBUTION STATEMENT (of this Report)	ł			
Distribution Unlimited				
17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from	m Report)			
pistribution Unlimited				
18. SUPPLEMENTARY NOTES				
	[
19. KEY WORDS (Continue on reverse side if necessary and identify by block number)				

DEPTH TO ROCK, VALLEY FILL, FAULTS, GRAVITY PROFILE, GRABEN

20. ABSTRACT (Continue on reverse side if necessary and identify by block number)

Gravity data from Delamar Valley and Pahroc Valley were studied together for the purpose of making a geological interpretation which includes estimates of the overall shape of the structural basin, the thickness of alluvial fill, and the location of concealed faults. The estimates will be useful in modeling the dynamic response of ground motion in the basin and in evaluating groundwater resources. Gravity data and interpretation covering the part of Pahroc Valley referred to as "Eastern Pahroc Valley" (that part east of South Pahroc Range) in our ttion report (Ertee; 1981b) are included in this report

DD 1 JAN 73 1473 EDITION OF 1 NOV 65 IS OBSOLETE

FOREWORD

Methodology and Characterization studies during Fiscal Years 1977 and 1978 (FY 77 and 78) included gravity surveys in ten valleys in Arizona (five), Nevada (two), New Mexico (two), and California (one). The gravity data were obtained for the purpose of estimating the gross structure and shape of the basins and the thickness of the valley fill. There was also the possibility of detecting shallow rock in areas between boring locations. Generalized interpretations from these surveys were included in Ertec Western's (formerly Fugro National) Characterization Reports (FN-TR-26a through e).

During the FY 77 surveys, measurements were made to form an approximate 1-mile grid over the study areas, and contour maps showing interpreted depth to bedrock were made. In FY 79, the decision was made to concentrate on verifying and refining suitable area boundaries. This decision resulted in a reduction in the gravity program. Instead of obtaining gravity data on a grid, the reduced program consisted of obtaining gravity measurements along profiles across the valleys where Verification studies were also performed.

The Defense Mapping Agency (DMA), St. Louis, Missouri, was requested to provide gravity data from their library to supplement the gravity profiles. For Big Smoky, Hot Creek, and Big Sand Springs valleys, a sufficient density of library data was available to permit construction of interpreted contour maps instead of just two-dimensional cross sections.

In late summer of FY 79, supplementary funds became available to begin data reduction. At that time, inner zone terrain corrections were begun on the library data and the profiles from Big Smoky Valley, Nevada, and Butler and La Posa valleys, Arizona. The profile data from Whirlwind, Hamlin, Snake East, White River, Garden, and Coal valleys, Nevada, became available from the field in early October 1979.

A continuation of gravity interpretations has been incorporated into the FY 80-81 program, and the results are being summarized in a series of valley reports. Reports covering Nevada-Utah gravity studies are numbered "E-TR-33-" followed by the abbreviation for the subject valley. In addition, more detailed reports of the results of FY 77 surveys in Dry Lake and Ralston valleys, Nevada, were prepared. Verification studies were continued in FY 80 and 81, and gravity studies were included in the program. DMA continued to obtain the field measurements, and there was a return to the grid pattern. The interpretation of the grid data allows the production of contour maps which are valuable in the deep basin structural analysis needed for computer modeling in the water resources program. The

gravity interpretations will also be useful in Nuclear Hardness and Survivability (NH&S) evaluations.

The basic decisions governing the gravity program are made by BMO following consultation with TRW, Inc., Ertec Western, and the DMA. Conduct of the gravity studies is a joint effort between DMA and Ertec Western. The field work, including planning, logistics, surveying, and meter operation is done by the Defense Mapping Agency Hydrographic/Topographic Center (DMAHTC), headquartered in Cheyenne, Wyoming. DMAHTC reduces the data to Simple Bouguer Anomaly (see Section Al.4, Appendix Al.0). The Defense Mapping Agency Aerospace Center (DMAAC), St. Louis, Missouri, calculates outer zone terrain corrections.

Ertec Western provides DMA with schedules showing the valleys with the highest priorities. Ertec Western also recommended locations for the profiles in the FY 79 studies with the provision that they should follow existing roads or trails. Any required inner zone terrain corrections are calculated by Ertec Western prior to making geologic interpretations.

TABLE OF CONTENTS

		Page
FOREW	ORD	i
1.0	INTRODUCTION	1
	1.1 Objective	1 1 4
2.0	GRAVITY DATA REDUCTION	6
3.0	GEOLOGIC SUMMARY	7
4.0	INTERPRETATION	9
	4.1 Regional-Residual Separation 4.2 Density Selection	9 10 11 12
5.0	CONCLUSIONS	15
REFER	ENCES	16
	APPENDICES	
APPEN	DIX	
A1.		A1.1
A2.		A2.1
	LIST OF FIGURES	
Figur Numbe		
1 2	Location Map, Delamar Valley, Nevada Topographic Setting, Delamar Valley, Nevada	2

TABLE OF CONTENTS (cont.)

LIST OF DRAWINGS

Drawing Number

Complete Bouguer Anomaly Contours
Depth to Rock - Interpreted from
Gravity Data

In Pocket at End of Report

1.0 INTRODUCTION

1.1 OBJECTIVE

Gravity data from Delamar Valley and Pahroc Valley were studied together for the purpose of making a geological interpretation which includes estimates of the overall shape of the structural basin, the thickness of alluvial fill, and the location of concealed faults. The estimates will be useful in modeling the dynamic response of ground motion in the basin and in evaluating ground-water resources. Gravity data and interpretation covering the part of Pahroc Valley referred to as "Eastern Pahroc Valley" (that part east of South Pahroc Range) in our Verification report (Ertec, 1981b) are included in this report.

1.2 LOCATION

Delamar Valley is located in the southeastern part of Nevada (Figure 1) in Lincoln County. The town of Caliente, Nevada, is approximately 15 miles (24 km) east on U.S. Highway 93. Access throughout the valley is good due to an extensive network of well-maintained, unpaved roads. The valley is primarily undeveloped desert rangeland.

Delamar Valley is bounded on the east and southeast by the Delamar Mountains and on the west by the South Pahroc Range (Figure 2). U.S. Highway 93 forms the northern boundary and also separates Delamar Valley from Dry Lake Valley.

The area covered by this report l'es between North latitudes 37°10' and 37°45' and West report les 114°40' and 115°05'. The

EErtec

valley is approximately 22 miles (35 km) long and the width varies from 8 to 12 miles (13 to 19 km).

1.3 SCOPE OF WORK

Five primary work elements were completed during this study. They are:

- 1. Computation and merging of terrain corrections;
- 2. Synthesis of regional and valley-specific geological data;
- 3. Evaluation of the regional field and residual separation;
- 4. Inverse modeling to estimate depth to bed rock; and
- 5. Interpretation of structural relationships.

The gravitational field within Delamar Valley was defined by measurements from 418 stations. The principal facts for these stations are listed in Appendix A2.0, and their distribution is shown in Drawing 1.0. The Defense Mapping Agency Aerospace Center (DMAAC) supplied 246 gravity stations from its library, and 172 new gravity measurements were made by the Defense Mapping Agency Hydrographic Topographic Center/Geodetic Survey Squardon (DMAHTC/GSS).

Delamar Valley and Pahroc Valley were studied together, with the results presented in separate reports. The rectangular region containing both valleys is the area between North latitudes 37° 10' and 37° 45' and West longitudes 114° 40' and 115° 15'. There are 516 gravity stations in the region. All were used to establish a common regional gravity trend for the two valleys.

Following residual separation, the geologic modeling of the two valleys was done independently. This report includes Delamar

Valley and Eastern Pahroc Valley (east of the South Pahroc Range).

2.0 GRAVITY DATA REDUCTION

DMAHTC/GSS obtained the basic observations for the new stations and reduced them to Simple Bouguer Anomalies (SBA) as described in Appendix A1.0. Up to three levels of terrain corrections were applied to the new stations to convert the SBA to the Complete Bouguer Anomaly (CBA). Only the first two levels of terrain corrections described below were applied to the library stations.

First, the DMAAC, St. Louis, Missouri, used its library of digitized terrain data and a computer program to calculate corrections out to 104 miles (167 km) from each station. When the program could not calculate the terrain effects near a station, a ring template was used to estimate the effect of terrain within approximately 3000 feet (914 m) of the station. The third level of terrain corrections was applied to those stations where relief of 10 feet (3 m) or more was observed within 130 feet (40 m). In these cases, the elevation differences were measured in the field at a distance of 130 feet (40 m) along six directions from the stations. These data were used to calculate the effect of the very near relief.

The principal facts and CBA values for the Delamar Valley stations are listed in Appendix A2.0.

3.0 GEOLOGIC SUMMARY

Delamar Valley is located within the Great Basin section of the Basin and Range physiographic province.

The Delamar Mountains, east of the valley, are composed primarily of middle Tertiary lavas (andesite and dacite) overlain by late Tertiary tuffs (Tschanz and Pampeyan, 1970; and Ekren and others, 1977). Some carbonates and siliceous clastic rocks (shales and quartzites) crop out in the central portion of the range near the Delamar mining district. On the west, the South Pahroc Range and the southern end of the North Pahroc Range are composed mainly of late Tertiary volcanic rocks.

Delamar Valley has a typical Basin and Range fault-block structure which is the result of late Tertiary and Quaternary block faulting due to tensional stresses directed in an east-west or northwest-southeast direction. The Pahroc fault is a zone of normal displacement near the foot of the South Pahroc Range. The scarp formed by the Pahroc fault separates the main part of the South Pahroc Range from alluvial flats and low volcanic hills to the east. Numerous small faults and joints trend both northerly and easterly in these low volcanic hills. This is thought to be an area of small fault blocks of varying and differential separation which step down to the east (Ertec, 1981a).

On the east side of Delamar Valley, a range bounding fault is interpreted in alluvial fans at the base of the Delamar Mountains.

This interpretation is based on a surface scarp in the alluvium (Ertec, 1981a). The northeast trending Buckhorn and Maynard Lake Faults bound the south end of Delamar Valley. They are major faults in the Pahranagat Shear Zone which is postulated to have from 10 to 12 miles (16 to 19 km) of pre-Quaternary left-lateral separation (Tschanz and Pampeyan, 1970).

The valley fill is divided into older and younger deposits. The older deposits consist of non-indurated to partly indurated alluvial-fan deposits containing primarily silt, sand, and gravel derived from adjacent highland areas. These deposits possibly include some rocks of volcanic origin. The younger valley fill includes clay, silt, sand, and gravel and is largely restricted to modern intermittent stream channels and playa areas. Depth to ground water ranges from 300 feet (91 m) in the northern part of the valley to more than 1000 feet (305 m) beneath the playa area in the southwestern part of the valley (Eakin, 1963).

4.0 INTERPRETATION

The basis of interpretation is the Complete Bouguer Anomaly (CBA). Contours of the CBA gravity field and the the gravity station locations are shown in Drawing 1.

Mathematical treatment of irregularly spaced data is inefficient. In order to simplify the computer processing, the station CBA and elevation data are reduced to sets of values at uniformly spaced points (nodes) in a geographic array, or grid. The values at each node are calculated from the station data within a circular area around the node. A bell-shaped weighting function assigns greater weight to the nearer data points. The node spacing is chosen to match the average data spacing. A 1.2-mile (2-km) grid spacing was used for this analysis.

4.1 REGIONAL-RESIDUAL SEPARATION

A fundamental part of the gravity interpretation is the separation of regional effects from the local effects of the valley and its fill. The CBA contains long wavelength components from deep and broad geologic structures extending far beyond the valley. These long wavelength components, called the regional gravity, were approximated by upward continuation of the gravity field. Upward continuations were made to successively higher elevations until the negative anomaly over the valley was essentially smoothed out. The final continuation was calculated for an elevation of 170,000 feet (51,816 m). This regional field was subtracted from the CBA and the resulting residual gravity anomaly was adjusted by a constant -2.0 milligals so

that the zero residual would approximately fit the existing rock outcrops.

4.2 DENSITY SELECTION

The construction of a geologic model from the residual anomaly requires selection of density values representative of the alluvial fill and of the underlying rock. Because only very generalized density information is available, the geologic interpretation of the gravity data can be only a coarse approximation. Five borings were drilled approximately 100 feet (30 m) into the alluvium during Verification studies (Ertec, 1981a). The average of the densities measured at the bottom of these borings was 2.0 g/cm 3 . To account for compaction with depth (Woollard, 1962; and Grant and West, 1965), a density of 2.3 g/cm 3 was used in the modeling process.

The basement rocks underlying the alluvium of Delamar Valley are assumed to be similar to the rocks comprising the adjacent mountain ranges. These ranges are comprised of late Tertiary volcanic rocks unconformably overlying Paleozoic carbonate rocks. Published values for Paleozoic carbonate and clastic rocks typically range between 2.6 to 2.9 g/cm³. The carbonate rocks in Nevada and Utah are commonly reported to be relatively high in density, on the order of 2.8 g/cm³. This value was selected to represent the density of the basement rock. The density of siliceous to intermediate volcanic rocks generally ranges between 2.0 to 2.5 g/cm³ depending on the degree of welding, compaction, and alteration. The older volcanics in the

Delamar Valley area are probably at the higher end of this density range, being approximately equivalent to dense alluvium or between the density of alluvium and the density of bed rock. The information available regarding the volume and characteristics of subsurface volcanic rocks in Delamar Valley is insufficient to make an estimate of their effect on the geologic model. The density contrast used for modeling was $-0.50 \, \mathrm{g/cm^3}$.

4.3 MODELING

Modeling was done with the aid of a computer program which iteratively calculates a three-dimensional solution of gravity anomaly data (Cordell, 1970). The gravity anomaly is represented by discrete values on a two-dimensional grid. The source of the anomaly (the volume of low-density valley fill) is represented by a set of vertical prism elements. The tops of the prisms lie in a common horizontal plane. The bottoms of the prisms collectively represent the bottom of the valley fill. Each prism has a cross-sectional area equal to one grid square and a uniform density. A grid square of 1.2 miles by 1.2 miles (2 km by 2 km) was selected as representative of the gravity station distribution. Computations were made for three iterations of mutually interactive prism adjustments. mean-square error between the observed residual gravity field and the field calculated for the final model of the entire valley was less than 0.3 milligal.

The calculated thickness of the valley fill depends upon the residual anomaly and the density contrast (i.e., fill density

minus rock density) used. Since neither fill nor rock density is perfectly known, nor even uniform, the calculated thickness should be expected to contain a corresponding degree of uncertainty. A source of error in modeling Delamar Valley as a simple alluvium-basement rock system is the widespread volcanic material throughout the valley.

One seismic refraction line (DM-S-13) and one boring (WR-T1) were used as constraints in the modeling process. Their locations are marked in Drawing 2. The refraction line is located near the mountain flank. It found a 10,000 feet per second (3048 mps) velocity at a depth of 55 feet (17 m) which may represent the basement material. The alluvial fill material in the center of the valley is at least 1195 feet (364 m) thick according to the boring. The calculated thickness of fill, or interpreted depth to rock, is contoured in Drawing 2.

4.4 DISCUSSION OF RESULTS

The interpreted geologic structure of Delamar Valley is shown on the depth-to-rock contour map (Drawing 2). The interpretation is based on geologic information from published reports, analysis of aerial photographs, and geologic field reconnaissance as well as gravity data. The analysis of the gravity data included calculation of the second vertical derivative (SVD) of the CBA field. One property of the SVD is that its zero value marks the steepest gradients of the input CBA field. This property was used to guide the placement of faults in the structural interpretation. The interpreted faults represent only the major

fault systems which probably comprise many smaller fault zones. There may be other discrete faults that had a minor role in basin formation but with displacements so small that they were not resolved by the widely spaced gravity data available for this study.

The depth-to-rock contours define an elongate north-south trending basin coincident with the valley physiography. These contours (Drawing 1) define two north-trending subsurface basins. The northern basin is about 2500 feet (762m) deep and the southern basin is about 5000 feet (1524 m) deep.

The subsurface structural configuration of the northern part of Delamar Valley is complex compared to the relatively simple, deeply faulted grabens in the southern part of the valley and in Dry Lake Valley to the north. Structurally, it is a horst between these two grabens. A major fault system is indicated along the base of the Delamar Mountains by the gravity data but the Pahroc fault on the west side of the valley which is so prominent on the surface, is not clearly indicated. The positions of the Pahroc fault on Drawing 2 are based primarily on surface geologic and geomorphic data. The irregular gravity contours between the Pahroc fault and the Delamar Mountains suggest a relatively shallow basement (bed rock) complex of small fault blocks separated by numerous small-displacement, normal These faults are not reflected in the gravity data because their small displacements do not create large density contrasts. This interpretation is consistent with surface

geology which shows numerous normal-faulted bedrock outcrops scattered throughout this part of the valley.

The southern basin contains a graben with a depth of 5000 feet (1524 m). The western side of the graben has a steeper linear gradient separating it from South Pahroc Range than is indicated on the east side along the Delamar Mountains. The eastern margin of the graben appears to be characterized by two major fault systems; one very near the base of the Delamar Range which is probably related to the basin-bounding fault farther to the north, and a shorter basin-ward fault. These north-south bounding faults appear to be terminated against the northeast trending Buckhorn Fault which is part of the Pahranagat Shear Zone.

5.0 CONCLUSIONS

Delamar Valley gravity data indicates the northern half of the valley is a horst buried by about 1500 feet (457 m) of alluvium. A graben about 5000 feet (1524 m) deep forms the southern half of the valley.

The calculated depths to carbonate bed rock are only approximate because little is known about the actual density distribution which has been represented by a simple two-density model. Also, the residual gravity anomaly is necessarily based on an interpreted regional field. An average density contrast of -0.50 g/cm³ between the alluvium and bed rock was used to calculate the thickness of the valley-fill material. Future studies that acquire better density data or measure actual depths to bed rock in deep parts of the valley can be used to refine the gravity interpretation

REFERENCES

- Cordell, Lindreth, 1970, Iterative solution of three-dimensional gravity anomaly data, Geological Survey Computer Contribution No. 10: U.S. Geological Survey, Washington, D.C.
- Eakin, T. E., 1963, Ground water appraisal of Dry Lake and Delaar valleys, U.S. Geological Survey, Ground Water Resources-Reconnaissance Series, Report 16, 24 p.
- Ekren, E. B., Orkild, P. P., Sargent, K. A., and Dixon, G. L., 1977, Geologic map of Tertiary rocks, Lincoln County, Nevada, U.S. Geologic Survey Map I-1041.
- Ertec Western, Inc., 1981a, MX Siting Investigation, Geotechnical Evaluation, Verification Study Delamar Valley, Nevada, E-TR-27-DM.
- ation, Verification Study Pahroc Valley, Nevada, E-TR-27-PA.
- Goguel, Jean, 1954, A universal table for the prediction of the lunar-solar correction in gravimetry (tidal gravity correction), Geophysical Prospecting, v. II, Supplement, March.
- Grant, F. S., and West, G. F., 1965, Interpretation theory in applied geophysics: McGraw-Hill Book Co., New York.
- Howard, E. L., 1978, Geologic map of the Eastern Great Basin, Nevada and Utah: Denver, Colorado, Terra Scan Group Ltd., Scale 1: 250,000.
- Tschanz, C. M., and Pampeyan, E. H., 1970, Geology and mineral deposits of Lincoln County, Nevada; Nevada Bureau of Mines Bulletin 73, 175 p.
- Woollard, G. P., 1962, The relation of gravity anomalies to surface elevation, crustal structure, and geology: University of Wisconsin, Department of Geology, Geophysical and Polar Research Center, Madison, Wisconsin, Report 62-9.

APPENDIX A1.0

GENERAL PRINCIPLES OF THE GRAVITY EXPLORATION METHOD

A1.0 GENERAL PRINCIPLES OF THE GRAVITY EXPLORATION METHOD

A1.1 GENERAL

A gravity survey involves measurement of differences in the gravitational field between various points on the earth's surface. The gravitational field values being measured are the same as those influencing all objects on the surface of the earth. They are generally associated with the force which causes a 1-gm mass to be accelerated at 980 cm/sec². This force is normally referred to as a 1-g force.

Even though in many applications the gravitational field at the earth's surface is assumed to be constant, small but distinguishable differences in gravity occur from point to point. In a gravity survey, the variations are measured in terms of milligals. A milligal is equal to 0.001 cm/sec² or 0.00000102 g. The differences in gravity are caused by geometrical effects, such as differences in elevation and latitude, and by lateral variations in density within the earth. The lateral density variations are a result of changes in geologic conditions. For measurements at the surface of the earth, the largest factor influencing the pull of gravity is the density of all materials between the center of the earth and the point of measurement.

To detect changes produced by differing geological conditions, it is necessary to detect differences in the gravitational field as small as a few milligals. To recognize changes due to

geological conditions, the measurements are "corrected" to account for changes due to differences in elevation and latitude.

Given this background, the basic concept of the gravitational exploration method, the anomaly, can be introduced. If, instead of being an oblate spheroid characterized by complex density variations, the earth were made up of concentric, homogeneous shells, the gravitational field would be the same at all points on the surface of the earth. The complexities in the earth's shape and material distribution are the reason that the pull of gravity is not the same from place to place. A difference in gravity between two points which is not caused by the effects of known geometrical differences, such as in elevation, latitude, and surrounding terrain, is referred to as an "anomaly."

An anomaly reflects lateral differences in material densities. The gravitational attraction is smaller at a place underlain by relatively low density material than it is at a place underlain by a relatively high density material. The term "negative gravity anomaly" describes a situation in which the pull of gravity within a prescribed area is small compared to the area surrounding it. Low-density alluvial deposits in basins such as those in the Nevada-Utah region produce negative gravity anomalies in relation to the gravity values in the surrounding mountains which are formed by more dense rocks.

The objective of gravity exploration is to deduce the variations in geologic conditions that produce the gravity anomalies identified during a gravity survey.

A1.2 INSTRUMENTS

The sensing element of a LaCoste and Romberg gravimeter is a mass suspended by a zero-length spring. Deflections of the mass from a null position are proportional to changes in gravitational attraction. These instruments are sealed and compensated for atmospheric pressure changes. They are maintained at a constant temperature by an internal heater element and thermostat. The absolute value of gravity is not measured directly by a gravimeter. It measures relative values of gravity between one point and the next. Gravitational differences as small as 0.01 milligal can be measured.

A1.3 FIELD PROCEDURES

The gravimeter readings were calibrated in terms of absolute gravity by taking readings twice daily at nearby USGS gravity base stations. Gravimeter readings fluctuate because of small time-related deviations due to the effect of earth tides and instrument drift. Field readings were corrected to account for these deviations. The magnitude of the tidal correction was calculated using an equation suggested by Goguel (1954):

 $C = P + N\cos \phi (\cos \phi + \sin \phi) + S\cos \phi (\cos \phi - \sin \phi)$ where C is the tidal correction factor, P, N, and S are time-related variables, and ϕ is the latitude of the observation point. Tables giving the values of P, N, and S are published annually by the European Association of Exploration Geophysicists.

The meter drift correction was based on readings taken at a designated base station at the start and end of each day. Any difference between these two readings after they were corrected for tidal effects was considered to have been the result of instrumental drift. It was assumed that this drift occurred at a uniform rate between the two readings. Corrections for drift were typically only a few hundredths of a milligal. Readings corrected for tidal effects and instrumental drift represented the observed gravity at each station. The observed gravity values represent the total gravitational pull of the entire earth at the measurement stations.

A1.4 DATA REDUCTION

Several corrections or reductions are made to the observed gravity to isolate the portion of the gravitational pull which is due to the crustal and near-surface materials. The gravity remaining after these reductions is called the "Bouguer Anomaly." Bouguer Anomaly values are the basis for geologic interpretation. To obtain the Bouguer Anomaly, the observed gravity is adjusted to the value it would have had if it had been measured at the geoid, a theoretically defined surface which approximates the surface of mean sea level. The difference between the "adjusted" observed gravity and the gravity at the geoid calculated for a theoretically hemogeneous earth is the Bouguer Anomaly.

Four separate reductions, to account for four geometrical effects, are made to the observed gravity at each station to arrive at its Bouguer Anomaly value.

a. <u>Free-Air Effect</u>: Gravitational attraction varies inversely as the square of the distance from the center of the earth. Thus, corrections must be applied for elevation. Observed gravity levels are corrected for elevation using the normal vertical gradient of:

FA = -0.09406 mg/ft (-0.3086 milligals/meter) where FA is the free-air effect (the rate of change of gravity with distance from the center of the earth). The free-air correction is positive in sign since the correction is opposite the effect.

b. Bouguer Effect: Like the free-air effect, the Bouguer effect is a function of the elevation of the station, but it considers the influence of a slab of earth materials between the observation point on the surface of the earth and the corresponding point on the geoid (sea level). Normal practice, which is to assume that the density of the slab is 2.67 grams per cubic centimeter was followed in these studies. The Bouquer correction ($B_{\rm C}$), which is opposite in sign to the free-air correction, was defined according to the following formula.

 $B_C = 0.01276$ (2.67) h_f (milligals per foot)

 $B_C = 0.04185$ (2.67) h_m (milligals per meter)

where $h_{\mbox{\scriptsize f}}$ is the height above sea level in feet and $h_{\mbox{\scriptsize m}}$ is the height in meters.

c. Latitude Effect: Points at different latitudes will have different "gravities" for two reasons. The earth (and the geoid) is spheroidal, or flattened at the poles. Since points at higher latitudes are closer to the center of the earth than points near the equator, the gravity at the higher latitudes is larger. As the earth spins, the centrifugal acceleration causes a slight decrease in the measured gravity. At the higher latitudes where the earth's circles of latitude are smaller, the centrifugal acceleration diminishes. The gravity formula for the Geodetic Reference System, 1967, gives the theoretical value of gravity at the geoid as a function of latitude. It is:

g=978.0381 (1 + 0.0053204 $\sin^2 \phi$ - 0.0000058 $\sin^2 2\phi$) gals where g is the theoretical acceleration of gravity and ϕ is the latitude in degrees. The positive term accounts for the spheroidal shape of the earth. The negative term adjusts for the centrifugal acceleration.

The previous two corrections (free air and Bouguer) have adjusted the observed gravity to the value it would have had at the geoid (sea level). The theoretical value at the geoid for the latitude of the station is then subtracted from the adjusted observed gravity. The remainder is called the Simple Bouguer Anomaly (SBA). Most of this gravity represents the effect of material beneath the station, but part of it may be due to irregularities in terrain (upper part of the Bouguer slab) away from the station.

d. <u>Terrain Effect</u>: Topographic relief around the station has a negative effect on the gravitational force at the station. A nearby hill has upward gravitational pull and a nearby valley contributes less downward attraction than a nearby material would have. Therefore, the corrections are always positive. Corrections are made to the SBA when the terrain effects were 0.1 milligal or larger. Terrain corrected Bouguer values are called the Complete Bouguer Anomaly (CBA). When the CBA is obtained, the reduction of gravity at individual measurement points (stations) is complete.

A1.5 INTERPRETATION

To interpret the gravity data, the portion of the CBA that might be caused by the light-weight, basin-fill material must be separated from that caused by the heavier bedrock material which forms the surrounding mountains and presumably the basin floor. The first step is to create a regional field. A regional field is an estimation of the values the CBA would have had if the light-weight sediments (the anomaly) had not been there. Since the valley-fill sediments are absent at the stations read in the mountains, one approach is to use the CBA values at bedrock stations as the basis for constructing a second order polynomial surface to represent a regional field over the valley.

Where there are insufficient bedrock stations to define a satisfactory regional trend, another approach is to estimate the regional by the process of upward continuation of the CBA field. In Potential Theory, a field normal to a surface, regardless of its actual source, may be considered as originating in an areal distribution of mass on that surface. If the field strength is known the surface density of mass (grams per square centimeter) can be calculated. The observed gravity field at the surface of the earth approximately fulfills the requirements of this theory: thus the observed (Bouguer anomaly) field can be used to compute a surficial distribution of mass which would reproduce the field, and most importantly, account for the gravity field anywhere above the surface of observation. On this basis, the Bouguer anomaly field is readily "continued" to level surfaces above the ground.

An important property of such "upward continuation" is that the resultant field (which can be represented by a contour map), with increasing altitudes of continuation, changes more with respect to shallow sources than it does with respect to deeper sources. The anomalous parts of the field ascribed to shallow density distribution tend to vanish as the continuation is carried upward whereas the field produced by deeper sources changes only slightly, so that upward continuations produce "regional"—type fields.

The difference between the CBA and the regional field is called the "residual" field or residual anomaly. The residual field is the interpreter's estimation of the gravitational effect of the geologic anomaly. The zero value of the residual anomaly is not exactly at the rock outcrop line but at some distance on the "rock" side of the contact. The reason for this is found in the explanation of the terrain effect. There is a component of gravitational attraction from material which is not directly beneath a point.

If the "regional" is well chosen, the magnitude of the residual anomaly is a function of the thickness of the anomalous (fill) material and the density contrast. The density contrast is the difference in density between the alluvial and bedrock material. If this contrast were known, an accurate calculation of the thickness could be made. In most cases, the densities are not well known and they also vary within the study area. In these cases, it is necessary to use typical densities for materials similar to those in the study area.

If the selected average density contrast is smaller than the actual density contrast, the computed depth to bedrock will be greater than the actual depth and vice-versa. The computed depth is inversely proportional to the density contrast. A ten percent error in density contrast produces a ten percent error in computed depth. An iterative computer program is used to calculate a subsurface model which will yield a gravitational field to match (approximately) the residual gravity anomaly.

The second vertical derivative (SVD) of gravitational field is used to aid the interpreter in evaluating the subsurface mass distribution. Once the CBA field has been projected onto a uniform grid system, its SVD at the grid nodes is readily computed.

In accordance with Laplace's Equation in Free Space, the negative of the second vertical derivative is equal to the sums of the second derivatives in the x-direction and in the ydirection. The second vertical derivative is an indication of the curvature of the Bouquer anomaly field. In particular the zero-value of the SVD indicates the inflection in the field as it changes from "concave-upward" (algebraically negative SVD) to "convex-upward" (algebraically positive SVD). In a general way the zero SVD falls on the tightest contours of the field and where contours are nearly parallel its location can be established by eye. However, where contours diverge, converge, or change direction this is not always so readily done. The zero SVD contour line may be an indicator of a line of faulting, the pinchout of a stratum, truncation of a stratum at an unconformity or merely a marked change in shape or in density of a geologic unit.

APPENDIX A2.0

DELAMAR VALLEY, NEVADA

GRAVITY DATA

	LONG. ELEV.			
IDENI. DEG MI	N DEG MIN +CODE	IN/OUT UTM	UTM GRAV SRAV	+1000
6746 371 371	1144143340391	0 160411697	70503155968192030	-4740 34510
	1144613389017		69836153939192091	
	1144400353127		70118155373192171	
	1145722634991	01815411891	63161138404192225	3070 84275
5745 371214	1144016352791		70684155029192238	
6837 371292	114506356030T		69132143047192351	3390 84627
	1145385566807		63655142694192399	3630 94659
	114473453869T		59500145986192450	1370 34409
	114413539C91T		70499152233192535	
	114513559701T		58940140156192776	3530
	114577550089T		63C6714536C192785	-300 82948
	1144333563317		70193140614192955	1110 92303
	114491550539T		69331144933193035	-410 32523
6909 371763 6908 371907	114564445679T 114574345522T		63254143413193342	
	1145133478411		68102148428193244 69001146853193325	
	114553C45522T		63413147762193376	
	1144723559251		69502142533193476	1710 32941
	1144976498301		69178145951193534	+700 52529
	1145775465507		53047147790193537	
	1144191727791		70385130831193546	5730 82039
	1145410455511		68530146796193733	
0645 372272	114502543425T		69147146010193774	
6349 372396	1144495554997	0 640414135	69924137348193955	5000 83320
6624 372430	114576948179T	0 143414099	68044146364193960	-1770 31943
	114595653369T		67765144373194374	490 32545
	114529446050T		68741146378194034	
6333 372494			69779140370194097	3130 82348
	114497548442T		69211146349194103	
6625 372521			68281147335194136	
6627 372558			63729145626194336	
6640 372631			69870146532194369	
5350 37269J 5643 372596			70045140261194382	
	114437351621T 114553846621T		69353144349194391	-93J 31537
			68371147754194443	
6542 372925			59006146052194665 69557142784194724	
			63094145084194769	
2326 372996			70199134299194827	
1902 373262			70199134299194827	2330 253
51.5102		5 565415154	10007120707173217	

STATION	LAT.	LONG. ELEV.	TER-COR.	NORTH EAS	T CBSV THEC	FAA CBA
IDENT.	DEG MI	DEG MIN +COL	TUCKE E	UTM UT	M GRAV GRAV	+1000
7100		1144105623691			6143093195641	
		1144120623101			4140203195663	
		1144260539571			4142829195783	
		1145371494191			9147126195796	
		1145494499211			7147099195809	
		1145259433091			3147414195812	
		1145225485291			3147413195815	
		1145218486251			3147501195824	
		1145095431331			4147645195831	
		1145540499611			2147027195834	
		114503948091		6511 6399	2147637195841	-2960 80744
		1145019484613		6526 6909	5147555195351	-2710 E0865
		1144918493721		6543 6924	3147254195561	-2430 50937
		1145373495561		6524 6733	3147405195372	-1750 81421
0997	373714	114595549711	r 0 9941	6523 6771	7147950195373	-1160 81939
	373717	1144147538521		5590 7037	7143361195877	2340 32954
		1144814494591		5576 6939	6147395195885	-1960 81285
0424	373724	114404960259	7 3 17941	6607 7052	1142383195883	
		114459649351		5537 6955	9148044195591	-360 82248
		1145273491991		6573 6878	0147414195695	
		1144690500391		6595 6957	3143363195895	-713 33347
3998	373732	1145822508991	0 10341		2147196195899	
		1144500511911		6639 5971	3147775195935	20 32729
		1144567511941	0 17241		8147372195921	
0989	373776	1145036481001	0 10041	6666 5999	3143013195963	
0299	373793	1144314584511			3143453195933	
0301	373832	1144078622901			5141443196001	
0300	373338	1144136614701	0 35541		6141382196010	
		114443756929			614+521196025	
3936	373819	1144556503813			1143213196326	-423 32547
0938	373319	1144722485011			7148553196026	
		1144833480413			4148450196026	
		114499647549			4149713196023	
		1145153483191			5143231195023	
		114464349272			3143247196035	
		114548952110			7147796196031	
		114507348041			9148577196339	
		114407765931			2138779195121	
		11454395268C			9147848195131	
		114460948629			0148718196137	
/		· · · · · · · · · · · · · · · · · · ·				

STATION LAT. LONG. I		-cor. North	EAST DESV	THEC FAA	094 +1000
3915 374170 11446314	6152T 0	101417411	6954514943019	5533 -3640	80721
0916 374170 11445654			6957514722319		80429
7128 374170 11450354	7566T 0	97417397	6935114935119	6538 -2449	81437
3918 374171 11447234			6951014907919		80265
0919 374171 11447534			6946514906519		30254
0920 374171 11447804			6942614910619		80294
0921 374171 11448074 0923 374171 11449024			6933514912219 6924714914219		60335
0931 374171 11449024		-	6894114911319		80543 E1644
0922 374172 11443764		_	6923514914519		60454
0926 374172 11449334			6912814929519		81045
0927 374172 114501041			6928814933719		31245
0933 374172 11451624			6336514837619		31763
0924 374173 11449284			6920914915319		50645
J929 374173 11+50574		99417402	5901914925319	6542 -2340	£1459
0925 374174 11449574	5821T O	93417407	6916614923919	6544 -3290	80833
0930 374174 11450834	•		6898114922019		£1550
7143 374175 11453205			5363214833019		22354
0337 374176 11444714			693501+990419		8 2 2 6 1
0932 374176 11451344			6390614904319		51704
0934 374177 114520449			6380314063019		31571
0935 374177 114523149 0343 374131 114427559			6376314355519 7016314830019		82008 83198
0345 374181 11442785			7033314620519		
1919 374233 11450374			6904714933719		31397
7137 374210 11445604			5974815020719		31547
0949 374211 11445334			6973715322319		91757
0973 374218 11452274			5875714377119		81963
0878 374221 11453435			6359714701119		32347
0950 374232 11446374	5360T 0	99417525	6963414942819	6628 -406C	50399
0355 374251 11440636			7047614286219		52423
2350 374256 11444324			6993415025219		32514
0951 374259 11447214			0953914917919		30004
0971 374262 11449264	-		5923314929119		80595
0354 374265 11441366			7335814381119		82635
0952 374278 11445614 0901 374239 11443284			6974315029419		
0901 374289 11443284 0970 374289 11450254			6933114927919 6906114977219		80202 81419
0881 374310 11452785			6868814903119		32500
7144 374310 11456755			6810514429019		32524
1144 314310 11430133	13341 0	234411033	3013214467517	0142 1700	- 6 - 6 4

STATION	LAT.	LONG. ELEV.	TER	-cor. N	ORTH	EAST	CBSV T	HED FAA	CBA
IDENT.	DEG MIN	DES MIN +COD	E I	TUOLE	UTM	UTM	GRAV 3	RAV	+1000
						,			
	•								
33 g Z	374313	1145376530817	20	150417	650	58544	147212195		0 32476
9371	374323	1144165613991	0	673417	7710	70319	14225+196		0 32833
0372	374324	114426752080T	G	149417	7738	70173	148433196	762 56	0 33059
0374	374345	1144399477101	0	141417	7743	69993	153579195	793 -103	0 82341
9376	374345	1144497460891	2	111417	7739	69334	153649196	793 -279	0 31601
C954	374346	114460745801T	0				149463196		
		114471745801T					149205196		
0966	374343	114494346381T	Э	95417	7729	591831	149547196	777 -363	0 80656
		114510547759T					149855196		
		114515148350T					149656195		
		114501546890T					149904196		00 81300
		114437148159T		140417			153351195		33030
		114417352192T		153417			148636195		20 53180
0351		114423950249T		167417			149688195		30 53117
		114500046765T		95417			153065195		0 31326
		1144521459517		101417			150147196		
		114533051319T		152417			148532196		3 32542
		114473145301T		29417			149233196		79859
		1145062473101		105417			150272195		
		114551456142T			_		145113195		3 33057
		114527250341T		13141			149063196		33 82461
		114433743576T					150009196		0 32960
		11443414355CT		123417			153557196		0 82868
		114409954370T		13141			147171195		0 82971
7151		1144096542817					147155196		0 32399
		1145003466991					150153195		0 81309
		1144443464997		103417			150969196		6 31993
0390		1145379520217					148163196		20 82554
0380		1144255550JOT					146452196		3 82725
0369		1144131596591		521418			143179197	_	
0960		114458845869T		93419			149639197		
		1144785458C1T					149297197		
		1145212491211					149752197		
	371020						158762191		
		115 42032011T					156124192		
		115 40632011T					156137192		
		115 27331450T					156920192		
		115 41395191					152455192		
		115 470319691					156002192		
		115 19045522T					143505198		
30.0	J J U U		•					•	

STATION	LAT.	LONG.	ELEV. TE	R-COR. NORTH	I EAST OBSV THEO	FAA CSA
IDENT.	DEG MIN	N DEG MIN	+ C0 D E	IN/OUT UTM	UTM GRAV SRAV	+1000
		115 4533			67059154324193023	
		115 1214			67546147327193165	
6905	371908	115 3813	9039T	0 113413170	67159152663193245	-3850 32948
6906	372053	115 2924	1880T	0 114413451	67285151074193463	-2980 32844
5621	372201	115 3764	3599T	0 160413712	67156153523193671	-2133 53163
6522	372239	115 164	5801T		67686148619193726	-2010 82485
6619	372308	115 2524	7192T	0 176413914	67335149234193827	-190 33336
6618	372579	115 3975	0030T	0 248414411	67110146971194221	-130 63008
	372804		9521T		67584141190194548	2620 32748
	373158		5 3 4 1 T		67500143601195063	590 52031
	373335		2920T		67593145345195321	-190 81990
		115 2554			67280149549195729	
	373734		8562T		67577148620195902	
		115 1505			57417145574196333	700 82275
		115 1705			67343149246196937	40 82364
		1145037	0		69049149328196541	-2490 31290
	373567				67556142189195659	635 31778
					67477136925195290	2654 81909
	373117				67401123200195004	5376 32217
			4515S		65919150208196197	-2556 31305
					67109138961194545	3561 32954
					57611135:08194132	3265 32855
				6 568414461	59628133875194216	3253 82877
				2 227414301	69532143814194486	593 82284
		1145499			68446147175193809	
		114548C		0 114414295		-3571 80877
		1145500		1 114414459		-3201 81140
		1145877		8 175414040		-989 82C31
			-		69084141549193750	6 31549
				8 259413788	68265144838193712	-1567 32082
		1145687		2 154412767		-1501 32966
	372363	1145356			68667147325193471	-2855 81581
			4624V	0 128413255		-1831 82526
					69822136276193645	3968 82723
		1144326			69453136541193365	3754 83209
	373393			382415976	69779137333195405	2889 81789
				41229417131	67659137133195353	3391 32566
		115 177			67432137446194340	4154 82823
PRV203				5 547415249		3269 32534
PRV 202		115 410			67065142604195209	1437 82219
···• = - =				32		

STATION LAT. LONG.	ELEV.	TER-COR. NORTH	FEAST OBSV THEO	FAA CBA
IDENT. DES MIN DEG MI			UTM GRAV GRAV	+1000
**				
	_			
PRV078 372901 115 178	7950V	482460415013	67421126359194689	6505 81898
PRV043 373195 115 438		30 368415547	66953143499195117	1012 32337
PRV035 373361 115 379		12 261415857	67107145035195359	715 32491
	57925	6 293417458	67550144017196612	1913 32452
PRV020 374134 115 201		20 343417385	67337144336196558	1003 82096
PRVC15 374073 115 313		21 513417176	67170144179196396	527 82143
PRV023 373732 115 103		15 128416645	67497147342195972	-765 82031
PRV022 373952 115 131		6 141416958	67449148323196220	364 83021
DMV153 371845 1145152		12 220413093	68977145409193154	338 53145
DMV151 371537 1145131		19 669412524	69021140409192707	3344 34187
DHV143 371537 1145492		3 170413160	63473147606193215	-1396 82753
DMV126 371592 1145774		17 350412605	68069145363192786	-282 83901
DMV119 372604 1145888		1 404414473	67360142654194257	556 82059
DMV117 372956 1145724		2 152415129	68088144642194769	-1094 31290
DMV113 372403 1145591	4739Y	5 169414111	68306146735193965	-2160 816BC
DMV063 373046 1144537		8 517415335	67333136028194900	4228 31837
DMV065 372793 1144575	7395Y	301033414866	69788133179194532	5430 32348
DMV026 373139 1145495	52580	15 203415475	68418143997195036	-1554 80731
DMV005 373151 115 7	5531 C	33 339415481	57563142994195053	457 81304
DMVD27 373261 1145488		9 93415701	63423145861195213	-2174 80330
DMV032 373181 1145332	49290	5 97415558	68656146133195097	-2526 80764
DMV040 373290 1145193	5131Y	3 134415764	68356145751175256	
DMV058 373596 1144642	6215\$	45 656416349	69654143242195731	3036 82540
DMV061 373156 1144716	6577S	38 754415532	69565136870195060	3715 32374
DMV067 372347 1144544	6339Y	6 402414042	69354133700193883	4480 83268
OMV109 372397 1145587	5345Y		68292143577194633	-752 81350
DMV111 372621 1145650		27 137414512	63210146312194282	-1536 92050
DMV118 372979 1145391		9 223415166	67841143152194803	56 31550
DMV124 372334 1145892		14 340413511	67875144921193501	-855 32203
DMV125 371841 1145910	51825	24 466413061	67858144144193143	-234 32532
DMV130 372215 1145760		14 696413757	65064142690193692	13 32239
DMV132 372095 1145641	49425	28 348413539		
DMV136 371540 1145583		7 415412515		1441 53643
DMV150 371656 1145392		81376412736		3326 83476
DMV172 371860 1144751		5 360413134		2259 82766
DMV173 371646 1144611		372247412744	69735129072192865	5458 82649
DMV401 371539 1144844		28 752412667		3324 82425
DMV003 373255 115 81		0 303415671		571 82156
PRV012 373819 115 484		0 102416701		-3057 81534
PRV016 373980 115 355	4301V	0 103417003	67119149322195261	-1757 31977

STATION LAT.	LONG. ELEV.	TER-COR. NORTH	EAST OBSV THEO	FAA CBA
IDENT. DEG MIN	I DEG MIN +CODE	IN/OUT UTM	UTM GRAV GRAV	+1000
PRV017 373859	115 359 4666V	0 102416779	67118149959196084	-2214 81973
PRV018 373793	115 226 4762V	0 101416670	67316149626195995	-1554 32305
PRV025 373691	115 93 4919V	0 133416477	67515148350195840	-1196 82160
PRV027 373470	115 191 5233V	0 202416065	67380146063195518	-200 82160
PRVC28 373569	115 203 5015V	0 124416247	57351147504195662	-961 32059
PRV029 373077		C 102416446	67295149006195319	
	115 374 4521V	0 103416551	67100149420195905	-2997 81345
	115 360 4714V	0 105416337	57125149161195736	-2211 31816
PRV032 373509	115 331 4950C	0 135416131	67172147803195573	-1135 32367
PRV036 373436	115 444 48290	0 152415994	67009148909195458	-1113 32573
PRV037 373533	115 484 4631C	0 116416182	66946149342195617	-2692 31629
PRV038 373651	115 486 4533C	0 106416391	66939150254195731	-2867 31773
PRV076 372960	115 491 60555	0 623415113	66957140678194775	2920 32831
	1145920 5317Y	0 184415295	57795144576194935	-283 E1761
	1145932 5143Y	0 139415752	67758145068195273	
	1145945 5061Y	0 125415960	67744146385195429	-1413 31450
DMVJC9 373551		0 105416222	67723147357195636	-1571 31606
	1145822 4927Y	0 99416398	67916147343195771	-2050 81235
	1145822 4945Y	0 101416075		-2000 31225
	1145802 5016Y	0 104415870	67957146241195355	-1937 81339
	1145849 5150Y		67393145450195149	
DMVJ14 373130	1145848 5206Y		67593145095195023	-942 81443
DMV015 373045	1145764 5137Y	0 138415292	68025145344194899	-1238 51439
DMV016 373134	1145723 5086Y	0 113415458	68082145580195028	-1639 31153
DMV317 373273	1145723 5018Y	0 103415715	68077145993195231	-2012 80976
DMV018 373407	1145684 4930Y	0 102415964	68129146663195426	-2366 80921
24V019 373555	1145712 4388Y	0 103416237	68031147333195641	-2301 31130
DMV020 373598	1145603 4918Y	0 95416320		-2129 81192
DMV021 373468	1145600 4877Y	0 102416030	63250147253195515	-2363 81105
DMV022 373293	1145601 49399	0 98415756	65255145351195260	-2427 80826
DMV023 373183	1145649 4993Y	0 103415551	69139145021195100	-2041 31015
DMV024 373050	1145649 53250	0 112415305	68175146013174906	-1531 31372
DMV025 373317	1145535 4937Y	0 111415248	68364146276194858	-2119 31153
DMV028 373380	1145490 4865Y	0 110415921	68415146697195387	-2904 30613
DMV029 373555	1145471 4914Y	0 95416244	63407147187195641	-2208 31127
D4V030 37347C	1145381 4950Y	0 109416391	68572147140195518	-2734 80633
DMV031 373293	1145380 4330Y	0 112415763		-2817 50321
DMV033 373059	1145377 4820Y	0 105415331	68595146780194919	
	1145298 48250	0 118415920	68698147090195381	
	1145257 4339Y	0 116415365		

STATION LAT.	LONG. ELEV. T	ER-COR. NORT	HEAST DBSV THEO	FAA CBA
IDENT. DEG MIN	DEG MIN +CODE	MTU TUCKNI	UTM GRAV GRAV	+1000
	-			,
DMV036 373555 1	1145271 4854Y	0 102416251	68730147204195641	-2755 80790
	1145086 48978	0 102416315	59031146941195687	-2659 30740
	1145131 4937V		68940146544195516	-2510 80759
	1145160 4946V	0 105415932		-2458 30778
	1145180 48878	0 113415568	63630146359195101	-2750 30695
	145228 48098	0 109415336		-2939 30713
DMV043 373036 1		0 118415389		-2682 80659
	1145091 50165	0 117415632		-2264 32745
	1145013 5159V	0 124415392		-1962 30566
DMV045 373483 1			69151145522195537	-2092 3055
	1144894 5103V	0 123416305		-1965 23749
	114481353232T	0 153416117		-326 31172
DMV349 373362 1		0 150415903		-380 30856
	1144863 53743	0 152415636		
	114497951119T	0 142415451		-1357 80850
	1144956 51278			-1566 81395
	1144844 53648	0 181415304		-752 81133
	1144835 53778	3 203415536		-310 81547
	1144748 52118		69498145096195723	-585 81792
	1144795 56135		69444143251195235	374 81929
DMV057 373409 1		0 139416001	69561143530195429	1013 82027
DMV059 373483 1		0 193416141	69714143624195537	1555 82363
DMV060 373293 1		0 257415738		2217 82231
	1144667 5970Y	0 307415124		3548 33493
	1144731 5352V	0 245413966		987 82978
DMV069 372429 1		G 253414185		74 82736
	1144836 5105Y	0 206414445		-562 S2233
DMV072 372847 1		0 275414962		1462 22364
DMV073 372927 1			69453143152194727	-76 81458
	1144958 5261V	0 179414912		-1313 83922
DMV075 372595 1		0 177414675		-963 S1623
	1144975 48444	0 153414305		-2173 81463
	1144957 4838Y		69242146356193958	-2031 81579
DMV078 372311 1		J 17c413963		-1471 31743
	1145026 4843Y		69145146005193774	-2191 81440
	1145105 4702V	0 141414038		-3338 83796
	1145130 468CV	0 137414231	68924146277194048	-3727 80448
	1145030 48734	0 140414542		
	1145046 4882V		69097146132194427	
DMV084 372732 1		0 153414532		
Um VUS4 372732 1	1144751 30211	0 173414532	5919314544219+515	-1320 31203

STATION	N LAT.	LONG. ELE	V. TER	-COR. NORTH	H EAST DESV THEO	FAA CBA
IDENT.	DEG MI	N DEG MIN +C	CDE I	MTU TUCK	UTM GRAV GRAV	+1000
DMV085	372902	1144943 514	0 40	159415055	69241144502194671	-1714 30914
080VMQ		11450614956			69064145559194784	
780VMC		11451034871			67006146057194665	-2760 80747
BBCVMC		11451364808			69960146471194555	-2833 50897
		11451764750			63935146612194440	
		1145180 469		143414440	63906146283194214	
2 MV 091		1145196 465			68895146522193757	
D4VG92		1145240 460	-		58826146436193914	-4159 B0285
DMVD93		1145233 474			63814146812194667	
DMV094		1145196 479			63366146437194769	-3187 B0565
D4V095		1145332 476	_			
DMV396		1145310 468			63666146308194763 68705147013194516	-3121 80739
		1145293 465				
D4V095		1145359 461	_		58723146627194336	
04V099		11452944605		145414397	63642146668194194	-4056 30338
		11452944605			63741145377194036	-4369 20064
001VM0				131414125	68697146450193969	
0 YV101		11453724566		144413977	59633145577193554	-4298 80270
		1145467 458		123414126	69489147104193974	-3749 30746
		1145418 465			63547147091194394	-3+94 32757
		1145419 474			63542146951194615	-2980 30943
		1145554 467		132414726	52347147825194443	-2645 81549
211VMC		1145628 469			68243147875194107	
DMV114		1145770 431		143414099	68042145354193960	
D*V115		1145759 486		202414349	68053146909194157	
		1145724 496			68098146799194433	-905 82335
		11459144690			67836147938193725	
		11458454750			57941147404193630	-1523 £2396
DMV127		1145761 453		133412977		-1823 82832
0MV128		1145810 454		109413305	69000145562193337	
DMV129		11457754656	_	114413561	69047147738193537	
D4V133		11456524543		117413386	68232148507193397	
		1145682 453			68192148398193237	
DMV137	-	1145548 433			63401147183192849	327 83965
DMV138		1145505 497		247412948	63459146038193049	-218 93071
		1145613 454			68297148437193133	-1942 52599
DWV141		11455314552			68411147756193376	-2782 31834
DMV142		11454924549	-	127413513	63456147505193492	
DMV143		11454494549			63525147165193628	
DMV144	372247	11454104556		136413828	68590146794193738	-4067 30529
DMV145	372160	1145280 450	00 0	135413708	68774146928193641	-3422 81024

STATION	LAT.	LONG.	ELEV. TER	R-COR. NORTH	LEAST DESV THEO	FAA CBA
IDENT.	DEG MIN	N DEG MI	N +CODE 1	IN/OUT UTM	UTM GRAV GRAV	+1033
			-			
DMV148	371957	1145257	46965	3 141413297	68313147250193317	-1872 82252
DMV149	371823	1145294	4398\$ (188413048	68769147023193122	2 83480
D4V152	371690	1145172	56568 (3 456412836	68954141513192929	1314 82979
DMV154	371963	1145133	47845	0 154413312	69001146353193325	-1450 32387
DMV155	372082	1145195	4592V (0 136413530	68904146890193498	-2452 31681
DMV156	372166	1145119	4755V (0 153413698	69013146429193620	-2442 31493
DMV157	372136	1145005	4958C	0 165413636	69132145893193577	-1023 32232
351VMD	372021	1145017	51288	0 209413423	69169144909193410	-239 82480
D4V159	371826	1145018	49298	0 191413062	69176146159193126	-579 82801
04V160	371586	1145028	5052V	206412803	69167145382192923	5 32980
D4V161	371534	1144994	55938	0 373412616	69222142095192775	1959 33256
DMV163	371671	1144361	5776C (0 404412781	69415140396192901	1857 82551
DMV164	371763	1144915	50698	0 228412949	69331144933193035	-396 82543
DMV165	371935	1144956	5025V	0 205413211	69264145466193241	483 82583
DMV156	372113	1144856	5228V	0 220413598	69358144979193543	633 83027
24V167	372190		5076V	0 184413739	69323145629193655	-255 82616
D4V168		1144762		0 233413707	59539143678193626	422 32401
DMV170	372071	1144725		0 281413526	67578142568193432	1725 32930

END OF LIST

