

Introduction

- Definition
- Need of an Operating System
- Computer-System Organization
- Computer-System Architecture
- Operating-System Structure
- Operating-System Operations
- Process Management
- Memory Management
- Storage Management
- Protection and Security

What is an Operating System?

- A program that acts as an intermediary between a user of a computer and the computer hardware.
- Operating system goals:
 - Execute user programs and make solving user problems easier.
 - Make the computer system convenient to use.
- Use the computer hardware in an efficient manner.

Computer System Structure

- Computer system can be divided into four components
 - Hardware provides basic computing resources
 - ▶ CPU, memory, I/O devices
 - Operating system
 - Controls and coordinates use of hardware among various applications and users
 - Application programs define the ways in which the system resources are used to solve the computing problems of the users
 - Word processors, compilers, web browsers, database systems, games
 - Users
 - People, machines, other computers

Four Components of a Computer System

Operating System Definition

- OS is a resource allocator
 - Manages all resources (Manager)
 - Decides between conflicting requests for efficient and fair resource use
- OS is a control program
 - Controls execution of programs to prevent errors and improper use of the computer

Operating System Definition (Cont.)

- No universally accepted definition
- "Everything a vendor ships when you order an operating system" is a good approximation.
- "The one program running at all times on the computer" is the **Kernel.** Everything else is either a system program (ships with the operating system) or an application program.
- Kernel + System Programs = Operating System

Computer Startup

- Power-up
- Soft reboot vs Hard reboot
- Bootstrap program/Bootstrap Loader is loaded at power-up or reboot
 - Typically stored in ROM, generally known as firmware
 - Loads operating system kernel and starts execution
 - Initializes all aspects of the system

Computer System Organization

- Computer-system operation
 - One or more CPUs, device controllers connect through common bus providing access to shared memory
 - Concurrent execution of CPUs and devices competing for memory cycles

Computer-System Operation

- I/O devices and CPU can execute concurrently.
- Each device controller is in charge of a particular device type.
- Each device controller has a local buffer.
- CPU moves data from/to main memory to/from local buffers
- I/O is from the device to local buffer of controller.
- Device controller informs CPU that it has finished its operation by causing an *interrupt*.
- Trap/ Exception/ Interrupt
- System Call/ Monitor Call

Common Functions of Interrupts

- Interrupt transfers control to the interrupt service routine (ISR) generally, through the interrupt vector, which contains the addresses of all the service routines.
- Interrupt architecture must save the address of the interrupted instruction.
- A trap is a software-generated interrupt caused either by an error or a user request.
- An operating system is *interrupt* driven.

Storage Structure

- Main memory only large storage media that the CPU can access directly.
- Secondary storage extension of main memory that provides large nonvolatile storage capacity.

Magnetic disks – rigid metal or glass platters covered with magnetic recording material

- Disk surface is logically divided into tracks, which are subdivided into sectors.
- The *disk controller* determines the logical interaction between the device and the computer.

Storage Hierarchy

- Storage systems organized in hierarchy.
 - Speed
 - Cost
 - Size
 - Volatility

Storage-Device Hierarchy

Performance of Various Levels of Storage

Level	1	2	3	4
Name	registers	cache	main memory	disk storage
Typical size	< 1 KB	> 16 MB	> 16 GB	> 100 GB
Implementation technology	custom memory with multiple ports, CMOS	on-chip or off-chip CMOS SRAM	CMOS DRAM	magnetic disk
Access time (ns)	0.25 – 0.5	0.5 – 25	80 – 250	5,000.000
Bandwidth (MB/sec)	20,000 - 100,000	5000 - 10,000	1000 – 5000	20 – 150
Managed by	compiler	hardware	operating system	operating system
Backed by	cache	main memory	disk	CD or tape

Operating-System Operations

- Interrupt driven by hardware
- Software error or request creates exception or trap
 - Division by zero, array index out of bounds, request for operating system service
- Other process problems include infinite loop, processes modifying each other or the operating system
- Dual-mode operation allows OS to protect itself and other system components
 - User mode and Kernel mode
 - Mode bit provided by hardware
 - Provides ability to distinguish when system is running user code or kernel code
 - Some instructions designated as privileged, only executable in kernel mode
 - System call changes mode to kernel, return from call resets it to user mode

Transition from User to Kernel Mode

- Timer to prevent infinite loop/ process hogging resources
 - Set interrupt after specific period
 - Initialize counter with a specific value
 - Operating system decrements counter
 - When counter zero, generate an interrupt

Functions of OS

- Process Management
- Memory Management
- Storage Management
- Mass-storage Management
- Protection & Security

Process Management

- A process is a program in execution. It is a unit of work within the system. Program is a passive entity, process is an active entity.
- Process needs resources to accomplish its task
 - CPU, memory, I/O, files
 - Initialization data
- Process termination requires reclaim of any reusable resources

Process Management Activities

The operating system is responsible for the following activities in connection with process management:

- Creating and deleting both user and system processes
- Suspending and resuming processes
- Providing mechanisms for process synchronization
- Providing mechanisms for process communication
- Providing mechanisms for deadlock handling

Memory Management

- All instructions & data should be in memory in order to execute
- Memory management determines what is in memory & when
 - Optimizing CPU utilization and computer response to users
- Memory management activities:
 - Keeping track of which parts of memory are currently being used and by whom
 - Deciding which processes (or parts thereof) and data to move into and out of memory
 - Allocating and deallocating memory space as needed

Storage Management

- OS provides uniform, logical view of information storage
 - Logical storage unit file
 - Each medium is controlled by device (i.e., disk drive, tape drive)
 - Varying properties include access speed, capacity, datatransfer rate, access method (sequential or random)
- File-System management
 - Files usually organized into directories
 - Access control on most systems to determine who can access what
 - OS activities include
 - Creating and deleting files and directories
 - Mapping files onto secondary storage
 - Backup files onto stable (non-volatile) storage media

Mass-Storage Management

- Usually disks are used to store data that does not fit in main memory or data that must be kept for a "long" period of time.
- Proper management of disk space is of central importance
- Entire speed of computer operation hinges on disk subsystem and its algorithms
- OS activities
 - Free-space management
 - Storage allocation
 - Disk scheduling

Protection and Security

- Protection provides mechanism for controlling access of processes or users to resources defined by the OS
- **Security** defense of the system against internal and external attacks
 - Huge range, including denial-of-service, worms, viruses, identity theft, theft
 of service
- Systems generally first distinguish among users, to determine who can do what
 - User identities (user IDs, security IDs) include name and associated number/id; one per user
 - User ID then associated with all files, processes of that user to determine access control
 - Group identifier (group ID) allows set of users to be defined and controls access rights; also associated with each process, file to determine the access permissions
 - Privilege escalation allows user to change to effective ID with more rights & permissions