FUNCIONES VECTORIALES DE VARIABLE REAL O FUNCIONES PARAMÉTRICAS

 $g: R \to R^m$

Son funciones cuyo Dominio es el conjunto de los números reales y cuyo Rango o Imagen es un conjunto de vectores.

En especial interesan las funciones

$$g: R \to R^2 \land g: R \to R^3$$

La gráfica de estas funciones son curvas en el espacio 1 + m

Usualmente se grafica la imagen de g

CONSIDEREMOS
$$g(t) = (g_1(t), g_2(t))$$
 para $a \le t \le b$

Las ecuaciones $x = g_1(t)$ $y = g_2(t)$ se denominan ecuaciones paramétricas, siendo t el parámetro

Ejemplo 1:
$$g(t) = (t^2 - 4, \frac{t}{2}) - 2 \le t \le 3$$

Ejemplo 2:
$$g(t) = (4t^2 - 4, t)$$
 $-2 \le t \le 3$

Podemos eliminar el parámetro de toda función paramétrica, hallando la ecuación cartesiana correspondiente.

Ejemplo:

$$g(t) = \left(t^2 - 4, \frac{t}{2}\right) - 2 \le t \le 3$$

Podemos parametrizar una ecuación cartesiana haciendo, por ejemplo, x = t Ejemplo:

Determinar la ecuación paramétrica de $y = x^2 + 3$

Ejemplo 3: Gráfico de la función

$$g(t) = (\cos(t), sen(t))$$
 $0 \le t \le 2\pi$

CONSIDEREMOS
$$g(t) = (g_1(t), g_2(t))$$

✓ DOMINIO DE g(t): todos los valores de t para los cuales g(t) está definida

EJEMPLO: $g(t) = (t^3, \ln(3-t), \sqrt{t})$

CONSIDEREMOS $g(t) = (g_1(t), g_2(t))$

✓ LÍMITE DE UNA FUNCION VECTORIAL DE VARIABLE REAL

$$\lim_{t \to a} g(t) = (\lim_{t \to a} g_1(t), \lim_{t \to a} g_2(t))$$

El límite de g(t) no existe, si no existe el límite de alguna $g_i(t)$

EJEMPLO:
$$g(t) = (t^3, \ln(3-t), \sqrt{t})$$

CONSIDEREMOS $g(t) = (g_1(t), g_2(t))$

✓ DERIVADA DE UNA FUNCION VECTORIAL DE VARIABLE REAL

La derivada de g(t) se define como $g'(t) = \lim_{\Delta t \to 0} \frac{g(t + \Delta t) - g(t)}{\Delta t}$ si el límite existe

$$g'(t) = (\lim_{\Delta t \to 0} \frac{g_1(t + \Delta t) - g_1(t)}{\Delta t}, \lim_{\Delta t \to 0} \frac{g_2(t + \Delta t) - g_2(t)}{\Delta t}) = (g'_1(t), g'_2(t))$$

EJEMPLO: $g(t) = (t^3, \ln(3-t), \sqrt{t})$

Notar que g'(t) es un vector, cuyas coordenadas son las primeras derivadas de las funciones componentes de g(t)

VELOCIDAD

Es la relación entre el espacio o distancia que recorre un objeto y el tiempo que emplea para hacerlo

$$\vec{v} = \frac{\Delta g(t)}{\Delta t}$$

$$\vec{v} = g'(t)$$

ACELERACIÓN

Es la variación de la velocidad respecto al tiempo

$$\vec{a} = g''(t)$$

RAPIDEZ

Es el módulo de la velocidad

RECTA TANGENTE

La recta tangente a una trayectoria es la recta que contiene al vector tangente

$$r(t) = g(t_0) + tg'(t_0)$$

Ejemplo: determinar la ecuación de la recta tangente a la curva descripta por $g(t) = (t, t^2)$ en $t_0 = 1$.

Longitud de Curva

 $\gamma = g(t)$ es continua, no presenta picos en el intervalo [a,b]

Desplazamiento = $||g(t_{k+1}) - g(t_k)||$ = Longitud del segmento k

 $\sum_{k=0}^{n} ||g(t_{k+1}) - g(t_k)||$ = sumatoria de todos los segmentos k (longitud de la poligonal)

Definición de derivada:
$$g'(t) = \lim_{\Delta t \to 0} \frac{g(t + \Delta t) - g(t)}{\Delta t}$$

Llevamos la definición de derivada al punto t_k :

$$g'(t_k) = \lim_{\Delta t_k \to 0} \frac{g(t_{k+1}) - g(t_k)}{\Delta t_k}$$

Despejando:

$$g'(t_k)\Delta t_k \cong g(t_{k+1}) - g(t_k)$$

Entonces:

$$\sum_{k=0}^{n} ||g(t_{k+1}) - g(t_k)|| = \sum_{k=0}^{n} ||g'(t_k)\Delta t_k|| = \text{sumatoria de todos los}$$
segmento k (longitud de la poligonal)

Longitud de la poligonal= $\sum_{k=0}^{n} ||g'(t_k)|| \Delta t_k$

Esta aproximación es más exacta cuanto más pequeños son los segmentos k

Longitud de la curva =
$$\lim_{\Delta t_k \to 0} \sum_{k=0}^n ||g'(t_k)|| \Delta t_k$$

Sea γ una curva parametrizada por una función continua $g(t): R \to R^m$, definida para $a \le t \le b$, la longitud de la curva está dada por la siguiente expresión:

$$l_c = \int_a^b \|g'(t)\| dt$$