ANÁLISIS FUNCIONAL, GRADO EN MATEMÁTICAS

Cuarto curso, 26/01/2015

- 1. Teorema de Banach-Steinhaus (Principio de la acotación uniforme)
- 2. Sea $(E, \|\cdot\|)$ un espacio normado real. Pruébese que las siguientes aplicaciones son continuas:
 - (a) $R \times E \to E$, $(\lambda, x) \to \lambda x$
 - (b) $E \times E \to E$, $(x, y) \to x + y$
 - (c) $E \to \mathbb{R}, x \to ||x||$
- 3. Sea el espacio normado c_0 , formado por las sucesiones de números reales con límite cero, con la norma del supremo de los valores absolutos de los términos de la sucesión. Demuéstrese que la aplicación $L: E \to \mathbb{R}$, definida por $L\{a_n\} = \sum_{n=1}^{\infty} \frac{a_n}{3^n}, \ \forall \ \{a_n\} \in c_0$, es lineal y continua. Calcúlese $\|L\|_{E'}$. ¿Se alcanza tal norma?
- 4. Sea H un espacio de Hilbert separable de dimensión infinita y $B = \{f_n, n \in \mathbb{N}\}$ un subconjunto ortonormal (no necesariamente base hilbertiana). Si $\{\lambda_n\}$ es una sucesión dada de números reales, pruébese que la serie $\sum_{n=1}^{\infty} \lambda_n f_n$ es convergente en H si y solamente si la serie de números reales $\sum_{n=1}^{\infty} \lambda_n^2$ es convergente.