Compiling Faust with Ondemand (https://github.com/orlarey/ondemand-ifc22-slides/blob/master/slides.pdf)

Yann Orlarey – Emeraude Team (INRIA-INSA-GRAME)

June 2022

Ondemand: Traditional Approach

Ondemand: Faust Approach

The Faust Compiler

Faust Circuits as Formal Expressions

Faust circuits (evaluated Faust programs) are defined recursively by the following grammar:

Circuits Definition

```
\begin{split} C \in \mathbb{C} ::= & k \mid u \mid \star \mid @ \mid ! \mid \bot \\ & \mid C_1 : C_2 \mid C_1, C_2 \\ & \mid C_1 <: C_2 \mid C_1 :> C_2 \\ & \mid C_1 \sim C_2 \mid \mathrm{od}(C) \end{split}
```

Primitives

- k numbers (integer or real);
- *u* user interface elements (sliders, buttons, etc.);
- ★ any numerical operation;
- @ the delay operation;
- _ underscore, the identity circuit (a perfect cable);
- ! cut, the termination circuit.

Faust Circuits as Formal Expressions

Circuits Composition

- $C_1 <: C_2$ split composition, the outputs of C_1 are distributed over the inputs of C_2 ;
- ullet $C_1:>C_2$ merge composition, the outputs of C_1 are summed to form the inputs of C_2 ;
- $C_1: C_2$ sequential composition, the outputs of C_1 are propagated to the inputs of C_2 ;
- C_1, C_2 parallel composition, the inputs are those of C_1 and C_2 and so are the outputs;
- $C_1 \sim C_2$ recursive composition, the outputs of C_1 are fed back to the inputs of C_2 and vice versa;
- \bullet od(C) ondemand version of C.

Well Formed Circuits

Number of Inputs and Outputs

$$(\operatorname{seq}) \cfrac{\operatorname{io} \llbracket C_1 \rrbracket : m \to n \quad \operatorname{io} \llbracket C_2 \rrbracket : n \to p}{\operatorname{io} \llbracket C_1 \rrbracket : m \to n \quad \operatorname{io} \llbracket C_2 \rrbracket : p \to q}$$

$$(\operatorname{par}) \cfrac{\operatorname{io} \llbracket C_1 \rrbracket : m \to n \quad \operatorname{io} \llbracket C_2 \rrbracket : p \to q}{\operatorname{io} \llbracket C_1 \rrbracket : m \to n \quad \operatorname{io} \llbracket C_2 \rrbracket : n.k \to p}$$

$$(\operatorname{split}) \cfrac{\operatorname{io} \llbracket C_1 \rrbracket : m \to n \quad \operatorname{io} \llbracket C_2 \rrbracket : n.k \to p}{\operatorname{io} \llbracket C_1 \rrbracket : m \to k.n \quad \operatorname{io} \llbracket C_2 \rrbracket : n \to p}$$

$$(\operatorname{merge}) \cfrac{\operatorname{io} \llbracket C_1 \rrbracket : m \to k.n \quad \operatorname{io} \llbracket C_2 \rrbracket : n \to p}{\operatorname{io} \llbracket C_1 \rrbracket : r + n \to q + m \quad \operatorname{io} \llbracket C_2 \rrbracket : q \to r}$$

$$(\operatorname{rec}) \cfrac{\operatorname{io} \llbracket C_1 \rrbracket : r + n \to q + m \quad \operatorname{io} \llbracket C_2 \rrbracket : n \to q + m}{\operatorname{io} \llbracket C_1 \rrbracket : m \to n}$$

$$(\operatorname{od}) \cfrac{\operatorname{io} \llbracket C \rrbracket : m \to n}{\operatorname{io} \llbracket \operatorname{od} (C) \rrbracket : m \to n}$$

Semantics of Well Formed Circuits

Signal Processor Semantics

An audio circuit $C\in\mathbb{C}$ denotes to a signal processor $[\![C]\!]\in\mathbb{P}=\mathbb{S}^n\to\mathbb{S}^m$ that takes input signals and produces output signals.

Notation

- $(S_1,...,S_n)$ a tuple of signals,
- () the empty tuple and
- $(S_1,...,S_n,**k)$ an n*k tuple $(S_1,...,S_n,S_1,...,S_n,...)$ obtained by concatenating k times the tuple $(S_1,...,S_n)$.

Primitives Semantics (1)

Constant

A number k denotes an elementary circuit with no input, that produces a constant signal k.

$$(\mathsf{num}) \overline{\hspace{0.1cm} [\![k]\!] () = (k)}$$

Control

A user interface element u denotes an elementary circuit with no input and one output, the signal u produced by the user interface element.

$$(\mathsf{ctrl}) \overline{\hspace{0.1in} [\![u]\!]() = (u)}$$

Primitives Semantics (2)

Numeric operation

The \star symbol denotes a *generic* numerical operation on signals. It represents a circuit with n inputs (typically 1 or 2 depending on the nature of the operation) and one output.

$$(\mathsf{nop}) \overline{\hspace{0.2in} \llbracket \star \rrbracket (S_1, S_2, \ldots) = (\star (S_1, S_2, \ldots))}$$

Delay

A delay primitive @ denotes a circuit with two inputs and one output.

Primitives Semantics (3)

Cable

The cable has one input and one output.

$$\begin{array}{c} \text{(cable)} \\ \hline & \text{[\![_]\!]}(S) = (S) \end{array}$$

Cut

The cut has one input and no output.

$$(\operatorname{cut}) \overline{\quad [\![!]\!](S) = ()}$$

Circuit Compositions Semantics (1)

Sequential Composition Semantics

$$\begin{split} & & & \mathbb{ [} [C_1] \mathbb{ [} (S_1,...,S_n) = (Y_1,...,Y_m) \\ & & & \mathbb{ [} [C_2] \mathbb{ [} (Y_1,...,Y_m) = (Z_1,...,Z_p) \\ & & & \mathbb{ [} [C_1:C_2] \mathbb{ [} (S_1,...,S_n) = (Z_1,...,Z_p) \end{split}$$

Parallel Composition Semantics

$$\begin{split} & & & \mathbb{[\![}C_1\mathbb{]\!]}(S_1,...,S_n) = (U_1,...,U_m) \\ & & & & \mathbb{[\![}C_2\mathbb{]\!]}(Y_1,...,Y_p) = (V_1,...,V_q) \\ & & & & \mathbb{[\![}C_1,C_2\mathbb{]\!]}(S_1,...,S_n,Y_1,...,Y_p) = (U_1,...,U_m,V_1,...,V_q) \end{split}$$

Circuit Compositions Semantics (2)

Split Composition Semantics

$$\begin{split} & & [\![C_1]\!](S_1,...,S_n) = (Y_1,...,Y_m) \\ & & [\![C_2]\!](Y_1,...,Y_m,**k) = (Z_1,...,Z_p) \\ & & & [\![C_1]\!](S_1,...,S_n) = (Z_1,...,Z_p) \end{split}$$

Merge Composition Semantics

$$\text{(merge)} \frac{ \begin{bmatrix} \mathbb{C}_1 \end{bmatrix} (S_1,...,S_n) = (Y_{1,1},...,Y_{1,m},...,Y_{k,1,},...,Y_{k,m}) \\ & \mathbb{[}C_2 \end{bmatrix} (Y_{1,1}+...+Y_{k,1},...,Y_{1,m}+...+Y_{k,m}) = (Z_1,...,Z_p) \\ & \mathbb{[}C_1 :> C_2 \end{bmatrix} (S_1,...,S_n) = (Z_1,...,Z_p)$$

Circuit Compositions Semantics (3)

Recursive Composition Semantics

$$W = \text{fresh recursive symbol} \\ [\![C_2]\!](W_1@1,...,W_q@1) = (Z_1,...,Z_r) \\ (\text{rec}) \\ \hline [\![C_1]\!](Z_1,...,Z_r,S_1,...,S_n) = (Y_1,...,Y_q,Y_{q+1},...,Y_{q+m}) \\ \hline [\![C_1\sim C_2]\!](S_1,...,S_n) = (Y_1,...,Y_q,Y_{q+1},...,Y_{q+m}) \\ \text{with def}[\![W]\!] = (Y_1,...,Y_q).$$

Ondemand Semantics

Ondemand

$$(\operatorname{od}) \frac{[\![C]\!](S_1 \!\downarrow\! H, ..., S_n \!\downarrow\! H) = (Y_1, ..., Y_m)}{[\![\operatorname{od}(C)]\!](H, S_1, ..., S_n) = (Y_1 \!\uparrow\! H, ..., Y_m \!\uparrow\! H)}$$

Faust Signals as Formal Expressions

Faust signals are defined by the following grammar:

$$S \in \mathbb{S} ::= k \mid u \mid \mathbf{I}_c \mid X_i \mid \star(S_1, S_2, ...) \mid S_1 @ S_2 \mid S_1 \downarrow S_2 \mid S_1 \uparrow S_2$$

- k is a number (integer or real)
- ullet u is a user interface element (slider, button, etc.)
- ullet I is the input channel c
- $\star(S_1, S_2, ...)$ is a numerical operation on signals
- $ullet X_i$: is the i-th signal of a group of mutually recursive signals associated to symbol X
- ullet $S_1@S_2$ is S_1 delayed by S_2
- $S_1 \downarrow S_2$ is S_1 downsampled by S_2
- $S_1 \uparrow S_2$ is S_1 up-sampled by S_2 .

The semantics of Faust Signals as a function of time

A Faust signal $S \in \mathbb{S}$ denotes a function of time, notated $[S]: \mathbb{Z} \to \mathbb{R}$. The value of this function at time t is notated [S](t).

By definition in Faust, the value of any signal before time 0 is always 0. Therefore we have:

$$\forall S \in \mathbb{S}, \forall t < 0, [S](t) = 0$$

The semantics of Faust Signals as a function of time

For $t \ge 0$ we have:

- $\bullet \ \llbracket k \rrbracket(t) = k$
- $[\![u]\!](t) = \text{value of the user interface controller } u$ at time t
- $[\![\mathbf{I}_c]\!](t) = \text{value of the audio input channel } c \text{ at time } t$
- $[\![X_i]\!](t) = [\![S_i]\!](t)$ with definitions $\mathsf{def}[\![X]\!] = (S_1,..,S_i,..,S_n)$
- $[\![\star(S_1, S_2, \dots)]\!](t) = \star([\![S_1]\!](t), [\![S_2]\!](t), \dots)$
- $\bullet \ [S_1@S_2](t) = [S_1](t [S_2](t))$
- $[S_1 \downarrow S_2](t) = [S_1](\text{down}[S_2](t))$
- $\bullet \ [\![S_1 \!\uparrow\! S_2]\!](t) = [\![S_1]\!](\mathsf{up}[\![S_2]\!](t))$

Signal Downsampling

 $S_1 \downarrow S_2$ is the downsampling of S_1 , based on the clock signal S_2 .

S_1	S_2	$S_1 \downarrow S_2$	$down \llbracket S_2 \rrbracket$
a	1	а	0
b	0		
С	0		
d	1	d	3
f	1	f	4
g	0		

Table 1: Example of downsampling

$$(\mathsf{down}) \quad \frac{\mathsf{down}[\![S_2]\!] = \{n \in \mathbb{N} \mid [\![S_2]\!](n) = 1\}}{[\![S_1\rfloor\!] \cup S_2]\!](t) = [\![S_1]\!](\mathsf{down}[\![S_2]\!](t))}$$

Signal Upsampling

 $S_1 \uparrow S_2$ is the upsampling of S_1 according to clock signal S_2 .

$\overline{S_1}$	S_2	$S_1 \uparrow S_2$	$up\llbracket S_2 rbracket$
a	1	a	0
d	0	a	0
f	0	a	0
	1	d	1
	1	f	2
	0	f	2

Table 2: Example of upsampling

$$(\operatorname{up}) - \frac{\operatorname{up}[\![S_2]\!](t) = \sum_{i=0}^t [\![S_2]\!](i) - 1}{[\![S_1 \!\uparrow\! S_2]\!](t) = [\![S_1]\!](\operatorname{up}[\![S_2]\!](t))}$$

Memory Signals

Memory signals are like signals seen before, but using *memory references* to implement delay lines, recursions, and sharing of common subexpressions. During the compilation signals are translated to *memory signals*.

Definition

$$M \in \mathbb{M} ::= k \mid u \mid I_c \mid \star(M_1, M_2, ...) \mid t \mid m \mid v[M_1, M_2]$$

Where

- k is a number (integer or real)
- u is a user interface element (slider, button, etc.)
- I_c is the input channel c
- $\star(M_1, M_2, ...)$ is a numerical operation on signals
- t: is a scalar memory reference corresponding to the current time
- m: is a scalar memory reference corresponding to a signal
- $v[M_1, M_2]$ is a vector memory reference where M_1 is the time and M_2 the delay.

Instructions

An *instruction* is an intermediate representation, of type SSA, for signals.

Definition

$$\begin{split} I \in \mathbb{I} ::= & T \vdash d {:=} M \\ & \mid T \vdash v[M_1, M_2] {:=} M_3 \\ & \mid T \vdash t {:=} t + 1 \end{split}$$

Where

- T is a time reference indicates when this instruction must be executed;
- ullet d and v are memory references;
- M is a signal in memory that is computed;
- ullet is a memory reference for the current value of the time reference.

Time reference

A *time reference* is a non empty list of clock signals that indicates when an instruction should be executed.

Definition

$$T \in \mathbb{T} ::= 1 \mid S.T$$

Where

- $S \in \mathbb{M}$ is a clock signal $S : \mathbb{Z} \to \{0, 1\}$
- 1 is the top level clock signal (execution every sample)

Memory Destinations

A memory destination indicates where the writing of the result should take place. This can be an output buffer, a scalar variable, or a vector in the case of delay lines for example.

Definition

$$D \in \mathbb{D} ::= \mathbf{0}_n \mid t \mid m \mid v[M, M]$$

where \mathbf{O}_n represents the audio buffer of the nth output channel, t, m and v are identifiers allocated at compile time.

Identifiers and Marking

Fresh identifier representing memory locations

- $id_s[S.T] = m$ unique scalar identifier for S in time context T;
- \bullet id_v[[S.T]] = v unique vector identifier for S in time context T ;
- $id_t[T] = t$ unique scalar identifier representing the current time in time context T.

Marking recursive definitions

- $mark[Xi.T] = \varnothing$: not yet marked;
- $\max \|Xi.T\| \leftarrow v$: mark it with identifier v;
- ullet mark $[\![Xi.T]\!]=v$: already marked with v.

Function cs[[.]] : $\mathbb{S} \times \mathbb{T} \to \mathbb{M} \times \mathcal{P}(\mathbb{I})$

Number

$$(\text{num}) \overline{ \quad \text{cs} \llbracket k.T \rrbracket = k \times \varnothing }$$

User interface

$$(\mathsf{ctrl}) \overline{\hspace{0.2cm}} \mathsf{cs} \llbracket u.T \rrbracket = u \times \varnothing$$

Inputs

$$\begin{array}{c} \text{(input)} \\ \hline \quad \text{cs} \llbracket \mathbf{I}_c.T \rrbracket = \mathbf{I}_c \times \varnothing \end{array}$$

Numerical Operation

$$\begin{split} \operatorname{cs}[\![S_1.T]\!] &= M_1 \times J_1 \\ \operatorname{cs}[\![S_2.T]\!] &= M_1 \times J_2 \\ &\vdots \\ \operatorname{id}_{\mathsf{V}}[\![\star(M_1,M_2,\ldots)]\!] &= m \\ \\ (\operatorname{nop}) & \overline{ \text{ cs}[\![\star(S_1,S_2,\ldots).T]\!] = m \times \{T \vdash m := \star (M_1,M_2,\ldots)\} \bigcup_i J_i } \end{split}$$

Downsampling

The downsampling $S_1 \downarrow S_2$ appears at the entrance of an ondemand. This means that compiling $S_1 \downarrow S_2$ into the $M_2.T$ time environment (where M_2 is the compiled version of S_2) is like compiling S_1 into the T time environment and using a variable to do the downsampling.

$$\begin{split} \operatorname{cs}[\![S_1.T]\!] &= M_1 \times J_1 \\ \operatorname{cs}[\![S_2.T]\!] &= M_2 \times J_2 \\ \operatorname{id}_{\operatorname{s}}[\![M_1.T]\!] &= m \\ J_3 &= \{T \vdash m {:=} M_1\} \\ \hline \operatorname{cs}[\![(S_1 {\downarrow} S_2).M_2.T]\!] &= m \times J_3 \cup J_1 \cup J_2 \end{split}$$

Upsampling

The $S_1 \uparrow S_2$ upsampling appears at the output of an ondemand. It is necessary to compile S_1 into the clock time reference S_2 (which is added to the current time reference). The signal S_1 must also be stored in a variable to do the upsampling.

$$\begin{split} \cos[\![S_2.T]\!] &= M_2 \times J_2 \\ \cos[\![S_1.M_2.T]\!] &= M_1 \times J_1 \\ \operatorname{id}_{\mathbf{S}}[\![M_1.M_2.T]\!] &= m \\ J_3 &= \{M_2.T \vdash m {:=} M_1\} \\ \hline \cos[\![(S_1 {\uparrow} S_2).T]\!] &= m \times J_1 \cup J_1 \cup J_2 \\ \end{split}$$

Delay

Signal Compilation: recursion

First visit

If it is the first visit, we have $\max[X_i.T] = 0$:

```
\begin{split} \operatorname{id_v}[\![X_i.T]\!] &= v \\ \operatorname{mark}[\![X_i.T]\!] &\leftarrow v \\ \operatorname{def}[\![X]\!] &= (...,S_i,...) \\ \operatorname{cs}[\![S_i.T]\!] &= M_i \times J_i \\ \operatorname{cs}[\![S_d.T]\!] &= M_d \times J_d \\ \operatorname{id_t}[\![T]\!] &= t \\ (\operatorname{r1}) &\frac{J_3 = \{T \vdash v[t,0] {:=} M_i\} \cup \{T \vdash t {:=} t+1\}}{\operatorname{cs}[\![(X_i@S_d).T]\!] &= v[t,M_d] \times J_3 \cup J_i \cup J_d} \end{split}
```

Signal Compilation: recursion

Next visits

If it is not the first visit, we have $mark[X_i.T] = v$:

$$\begin{split} \operatorname{cs}[\![S_d.T]\!] &= M_d \times J_d \\ \operatorname{id_t}[\![T]\!] &= t \\ \hline \operatorname{cs}[\![(X_i@S_d).T]\!] &= v[t,M_d] \times J_d \end{split}$$

Global compilation

```
\begin{split} \mathsf{Global} & \mathsf{comp}[\![.]\!] : \mathbb{S}^n \to \mathcal{P}(\mathbb{I}) \\ & \qquad \qquad \vdots \\ & \qquad \qquad \mathsf{cs}[\![S_i.1]\!] = M_i \times J_i \\ & \qquad \qquad J_i' = \{1 \vdash \mathsf{0}_i := M_i\} \cup J_i \\ & \qquad \qquad \vdots \\ & \qquad \qquad (\mathsf{comp}) \overline{\qquad \qquad } \vdots \\ & \qquad \qquad (\mathsf{comp}) \overline{\qquad \qquad } = \ldots \cup J_i' \cup \ldots \end{split}
```

Example 1, block-diagram

```
process = button("play"), _ : ondemand(_);
     process
                               ondemand
             button(play)
                              → run
```

Example 1, instruction graph

Example 2, block-diagram

```
process = _ <: ondemand(_)(button("play1")), ondemand(_)(button(</pre>
```


Example 2, instruction graph

Example 3, block-diagram

```
process = _ <: ondemand(_)(button("play")), ondemand(_)(button(")</pre>
```


Example 3, instruction graph

Example 4, block-diagram

```
foo = 1:+~_;
process = ondemand(foo)(button("play"));
```


Example 4, instruction graph

Example 5, block-diagram

```
foo = 1:+~_;
process = ondemand(foo)(button("play1")), ondemand(foo)(button(")
```


Example 5, instruction graph

Example 6, block-diagram

```
foo = 1:+~_;
process = ondemand(foo)(button("play")), ondemand(foo)(button("play"))
```


Example 6, instruction graph

Example 7, block-diagram

```
process = ondemand(@(10))(button("play"));
```


Example 7, instruction graph

Example 8, block-diagram

```
process = _ <: ondemand(@(10))(button("play")), ondemand(@(20))(</pre>
```


Example 8, instruction graph

Conclusion

What's missing?

- Several primitives like tables, waveforms, etc. are missing
- Replace current interval computation
- Proper C++ code generation
- Merge with dev branch
- Future extensions:
 - interleave(P)
 - upsample(N,P)
 - downsample(N,P)
 - modulation
- Code génération improvements:
 - Data Parallelism