Workflows of Manual Analysis Helper (MAH)

Yijian ZHOU

2022-01 V0

Outline

- Manual phase picking
- Repeater detection
- CC clustering
- Source spectrum analysis
- EGF deconvolution

Manual Phase Picking

- Large earthquakes are complete in the public catalogs, while may be missed by matched filter because of poor waveform coherence (e.g. Shelly 2019)
- The S arrivals of a large earthquake can be hard to pick, due to the contamination of P tails
- Thus, it may require manual phase picking to complement the microseismic catalog, and to test the location uncertainty with different combination of phase picks.

Manual Phase Picking

- Input
 - fctlg: catalog file, just rough location would be enough
 - fsta (station_eg.csv): station file
 - data_dir: directory of continuous waveform
- Output
 - fpha_hyp: manually picked and located phase file

Input	Operation	Output	Notes	
fctlg & fsta	ctlg2pha.py	fpha_org	predicted phase arrival	
fpha_org	cut_events.py	events/[event_name] /[net.sta.chn]		
	SAC <i>ppk</i> P/S/N in t0/1/2/3		only use <i>wh</i>	
events & fpha_org	head2pha.py	fpha_man	only phase lines change	
fpha_man	cut_events.py	events/[event_name] /[net.sta.chn]	may repeat the manual picking process	
fpha_man	event location	fpha_hyp	use Hypo-Interface-Py	

References

- Douglas, A., Bowers, D., & Young, J. B. (1997). On the onset of P seismograms. *Geophysical Journal International*, 129(3), 681-690. https://doi.org/10.1111/j.1365-246X.1997.tb04503.x
- Diehl, T., Kissling, E., Bormann, P. (2012): Tutorial for consistent phase picking at local to regional distances. - In: Bormann, P. (Ed.), New Manual of Seismological Observatory Practice 2 (NMSOP-2), Potsdam: Deutsches GeoForschungsZentrum GFZ, 1-21. https://doi.org/10.2312/GFZ.NMSOP-2_IS_11.4
- Lomax, A. (2020). Absolute location of 2019 Ridgecrest seismicity reveals a shallow M w 7.1 hypocenter, migrating and pulsing M w 7.1 foreshocks, and duplex M w 6.4 ruptures. *Bulletin of the Seismological Society of America*, 110(4), 1845–1858. https://doi.org/10.1785/0120200006

Repeater Detection

- Repeaters indicate aseismic fault slip (Uchida & Burgmann, 2019)
- This helper implement the repeater detection method in Zhou et al. (2022), which utilize both waveform similarity and location:
 - Waveform similarity is measured by CC of long window, covering both P
 & S waves
 - The location separation is constraint by d(S-P), which is measure by CC of short windows separately for P & S.
 - A strict detection of repeating earthquakes would adopt parameters like (1) average CC>0.9, and (2) dt_sp≤0.01s for at least 3 stations, under a proper frequency band (Uchida, 2019)

Repeater Detection

- Input
 - eg_mess.pha: initial MESS detection
 - fpha_pal (eg_pal_hyp_full.pha): PAL phase file (templates for MESS)
 - eg_mess_cc.ctlg: final relocated MESS catalog
 - fsta (station_eg.csv): station file
- Output
 - eg_rep.clust: repeater sequences
 - eg_rep.pha: all repeaters

Input	Operation	Output	Notes
fpha_pal & fsta	run MESS	eg_mess.pha eg_mess_cc.ctlg	i.e. run PALM
eg_mess.pha	run_clustering.py	eg_rep-org_full.pha	find repeater candidates in MESS detections
eg_rep-org_full.pha	run MESS	eg_mess-rep.pha	detect with high CC threshold, e.g. 0.8
eg_mess-rep.pha	run_clustering.py	eg_rep.clust eg_rep.pha	using strict criteria, e.g. cc>0.9, dt_sp≤0.01s

References

- Uchida, N. (2019). Detection of repeating earthquakes and their application in characterizing slow fault slip. *Progress in Earth and Planetary Science*, 6(1), 1-21. https://doi.org/10.1186/s40645-019-0284-z
- **Zhou, Y.**, H. Yue, L. Fang et al. (2021). An Earthquake Detection and Location Architecture for Continuous Seismograms: Phase Picking, Association, Location, and Matched Filter (PALM). *Seismological Research Letters*, 93(1): 413–425. https://doi.org/10.1785/0220210111
- **Zhou, Y.**, H. Yue, S. Zhou et al. (2022). Microseismicity along Xiaojiang Fault Zone (Southeastern Tibetan Plateau) and the Characterization of Interseismic Fault Behavior. *Tectonophysics*, 833: 229364. doi: 10.1016/j.tecto.2022.229364

Source Spectrum

- EGF-based spectral ratio contain information on the source parameters, e.g. stress drop, rupture area etc.
- Rupture directivity can be inferred from azimuthal variation of the corner frequency and high/low frequency component (e.g. Zhou et al 2022)

Calderoni et al., GJI 2015

Source Spectrum

- Inputs
 - fpha_tar: phases for the target events
 - fctlg_all: catalog that contain all available events
 - fsta (station_eg.csv): station file
- Outputs
 - spectrum of target & EGFs
 - comparison of spectral ratio on different stations
 - stacked spectral ratio and estimated source parameters

Input	Operation	Output	Notes
fctlg_all & fsta	select_egf_loc.py	fpha_egf_org	select EGF by time, location, & magnitude
fpha_tar & fpha_egf_org	cut_events.py	input/events_tar input/events_egf	cut raw data
fpha_egf_org & input/events_egf	pick_events.py	fpha_egf_org	refine original pick with STA/LTA
fpha_egf_org	calc_egf-cc.py & plot_egf-cc.py	eg_tar-egf.cc & eg_tar-egf-cc.pdf	
eg_tar-egf.cc	select_egf_cc.py	fpha_egf	select with CC (not strict criteria as well)
fpha_egf	plot_waveform- events.py	evid_name.pdf	inspect selected events

Event Waveform: 4 20190709060548.71 M2.55 Z 1-20Hz

Spectral Ratio Calculation and Analysis

Input	Operation	Output	Notes
fpha_egf & fpha_tar	plot_spec-s.py	eg_spec-s_name.pdf	check the consistency between spectrum of EGFs
fpha_egf & fpha_tar	plot_spec-ratio- compare.py	eg_spec-ratio- compare_name.pdf	resolve rupture directivity first to determine the fault plane
fpha_egf & fpha_tar	plot_spec-ratio- stack.py	eg_spec-ratio- stack_name.pdf	use fault-normal stations to estimate source parameters

Aftershocks show two fault trends, thus two possible rupture directivity exists

Compare spectral ratio on two sets of stations: along Fault_1 (NE) & along Fault_2 (NW)

→ the direction with more significant contrast indicate the ruptured fault

Stacked Spectral Ratio: 20190704195600.50 (MI 4.16) $f_c = 1.00 \; Hz$ $A = 1.61 \; km^2$ $D = 3.78 \; cm$ $\Delta \sigma = 2.32 \; MPa$ 10² S Spectral Ratio 10¹ 10⁰ Single station Stacked Best fit 10° 101

Frequency (Hz)

2. PLD for Source Time Function

- Input
 - fctlg_tar: catalog that contains target events
 - fctlg_all: catalog that contains all available events
 - fsta: station file
 - data_dir: directory of continuous data
- Output
 - pld_stf_pha.npy

2.1 Prepare Target & EGF Event Data

Input	Operation	Command	Output	Notes
fctlg_tar & fsta	select EGF & make phase file	ctlg2pha.py	fpha_tar_org	predicted phase arrival, need manual repick
fpha_tar_org	cut Target events	cut_events- small.py	input/events_tar	cut raw data
	SAC ppk	head2pha.py	fpha_tar	mark P/S/N in t0/1/2, only use <i>wh</i>
fpha_tar	cut Target events	cut_events- small.py	input/events_tar	optional
fpha_tar	event location		fpha_tar_hyp	optional

Input	Operation	Command	Output	Notes
fctlg_all & fsta	make phase file	ctlg2pha.py	fpha_all_org	predicted phase arrival, not accurate
fpha_all_org	cut events (filtered)	cut_events- big.py	bigdata/events	low freq_band, e.g. [0.5,5]
events_tar & events_all	CC selection	calc_egf-cc.py	fcc_tar-egf	no filter here
		select_egf.py	fpha_egf_org	should remain <20 EGF candidates
fpha_egf_org	inspect event waveform	plot_waveform- events.py	evid_name.pdf	check overall SNR of each candidate EGF
	inspect CC	plot_egf-cc.py	egf_cc.pdf	check overall CC of each candidate EGF
fpha_egf_org	cut events (raw data)	cut_events- small.py	input/events_egf	no filter here
	SAC ppk	head2pha.py	fpha_egf	optional

Event Waveform: 1 20210521213733.80 M3.1 Z 1-20Hz

2.2 Perform PLD (for the best EGF)

Input	Operation	Command	Output	Notes
events_tar & events_egf	CC alignment	pick_cc.py	tar/egf/ cc_sta_egf.pdf & sta/cc_pha.sac	
	manual pick CC to align tar & egf	SAC <i>ppk</i>	<i>t0</i> marks to calc <i>t1</i> marks not to calc	pick the first backward amin near global amax
cc_pha.sac	calc PLD misfit	calc_pld- misfit.py	tar/egf/sta pld_err_pha.sac & pld_stf_pha.sac	use SAC to pick the end time on misfit curve
	plot final PLD result	plot_pld.py	tar/egf/ pld_sta_pha.pdf & sta/pld_stf_pha.npy	

