Память и ПЛИС

Луцив Дмитрий Вадимович Кафедра системного программирования СПбГУ

Содержание

Динамическая память

2 плис

Динамическая память

Динамическая память 3 / 14

TODO: Тут лукавство!

Технологически конденсатор выполняется вместе с транзистором и почти не требует

Динамическая память 4 / 14

Flash-память: элементная база

- Транзистор с плавающим затвором ☑ Эти транзисторы могут при подаче достаточно высокого или достаточно низкого потенциалов (т.е. заметно больше 1 или заметно меньше 0) на управляющий вход запоминать своё состояние. После нескольких миллионов срабатываний транзистор необратимо портится (поэтому у Flash ограничено количество перезаписей). Этим эффектом, так же как и широкой петлёй гистерезиса (хотя природа этого совершенно иная), можно пользоваться для хранения данных.
- На основе таких транзисторов делается флэш-память 🗹

Динамическая память 5 / 14

Flash-память: реализация NAND

- Для чтения на все слова, кроме читаемого, подаётся небольшой «приоткрывающий» потенциал. Ток течёт с соответствующих открытым транзисторам битовых линий в землю.
- Для программирования (открытия затвора, установки в бита 0) надо небольшим потенциалом «приоткрыть» все линии слов и подать сильный сигнал на пересечения нужных слова и бита.

Динамическая память 6 / 14

Flash-память: особенности NAND, альтернативы

- Из-за особенностей изготовления транзисторов, сброс (в 1) по словам или ещё большим блокам
- Для SSD введена операция TRIM ☐, которая говорит накопителю, что блок памяти свободен и может использоваться для оптимизации с целью увеличения ресурса перезаписи

Динамическая память 7 / 14

Flash-память: особенности NAND, альтернативы

- Из-за особенностей изготовления транзисторов, сброс (в 1) по словам или ещё большим блокам
- Для SSD введена операция TRIM ☐, которая говорит накопителю, что блок памяти свободен и может использоваться для оптимизации с целью увеличения ресурса перезаписи
- Альтернативная технология память на основе изменений фазового состояния халькогенидов ☐ — обладает потенциально лучшими характеристиками, уже используется коммерчески (Например, кэш для ФС Intel Optane™), но тоже со временем деградирует

Динамическая память 7 / 14

ПЛИС

ПЛИС 8/14

Что это и зачем?

Что это?

- Программируемые логические интегральные схемы (Programmable Logic Device) — интегральные схемы, физический уровень которых (реализующий логику) можно задавать программно
 - программируются связи между компонентами схемы

Зачем?

- Применяются для эффективной реализации (быстродействие заметно медленнее серийных микросхем, существенно быстрее микропрограмм, принципиально быстрее обычной программной реализации) специфических задач
 - прототипирование, единичное или мелкосерийное производство
 - микропроцессоры встроенных ЭВМ

ПЛИС 9/14

Какие бывают ПЛИС?

- Простые ПЛИС логические функции, в т.ч. довольно сложная логика, но явно задаются через вентили «и», «или», «не»
- CPLD (Complex Programmable Logic Device) несколько более высокоуровневые, содержат внутренние шины, более сложные элементы
- Программируемая пользователем вентильная матрица (Field-Programmable Gate Array, FPGA) — содержит готовые регистры, компоненты АЛУ и т.д.

ПЛИС 10 / 14

Пример: ПЛИС типа GAL (Gateway Array Logic)

Схема

- Схема на примере вычисляет функции, представленные в ДНФ:
 - $F_0 = B \land \neg C \lor A \land C$
 - $F_1 = B \land \neg C \lor \neg A \land \neg B$
 - $F_2 = A \wedge C \vee \neg A \wedge B$
- Входов у вентилей обычно больше
- Как реализуются перемычки в полях OR и AND?
 - «пережиганием» (одноразовое программирование)
 - мультиплексором с управлением статической памятью (на основе D-триггера, будет позже)
 - транзистором с плавающим затвором

ПЛИС 11 / 14

Как программировать ПЛИС и чего можно добиться?

- Специальные языки, например Verilog Hardware Definition Language
- CAПР (даже Logism)
 - Т.е. почти всё, что есть (было и будет) в данном курсе, можно сделать на ПЛИС
- Hardware-Software CoDesign подход, подразумевающий совместную разработку специализированных ПО и оборудования
 - На кафедре системного программирования СПбГУ Булычев, Медведев, Терехов: https://scholar.google.com/scholar?q=HasCOL+SPbU

ПЛИС 12 / 14

Вопросы

- Как организована динамическая память?
- Как организована NAND-память?
- Что такое ПЛИС? Зачем они нужны и какие бывают?
- Опишите структуру ПЛИС типа GAL с полями AND и OR
- Как программируются ПЛИС?

Вопросы

EDU.DLUCIV.NAME □