Vizualizace elektrických signálů mozku Brain Signals Visualization

Ivan Ševčík Vedúci: Ing. Michal Košík

Ciele práce

- Vizualizácia EEG signálov formou
 - Grafu
 - 2D a 3D modelu
- Uľahčiť analýzu nameraných dát
- Umožniť spracovanie signálov priamo v aplikácii

EEG signály

- Predstavujú vstup aplikácie
- EEG elektroencefalografia
- Elektrický potenciál meraný na povrchu kože hlavy
- Reprezentujú mozgovú aktivitu

Vizualizácia formou grafu

- Zobzrazuje priebeh viacerých signálov súčasne
- Má funkciu prehrávača

Vizualizácia formou modelu

- Animácia v čase
 - možné spomaliť, zrýchliť, pretočiť
- Zafarbenie elektródy odpovedá miere mozgovej aktivity v danej oblasti
- Rozmiestnenie elektród
 - v 2D odpovedajúc modelom v odbornej literatúre
 - v 3D podľa štandardného modelu 10-10
 - Pozície je možné predefinovať
- Určenie farby elektródy
 - Priamo na základe úrovne signálu
 - Podľa zastúpenia frekvencie

2D model

Modelom je možné posúvať a približovať ho

3D model

Modelom je možné posúvať, približovať ho a navyše rotovať

Modul pre spracovanie signálov

- Základné metódy pre spracovanie signálu sú súčasťou aplikácie
- Nie je nutná samostatná aplikácia a aktualizácia vstupu
- Implementuje
 - FIR filtre
 - Dolnú priepusť
 - Hornú priepusť
 - Váhovacie okná
 - Hammingovo
 - Blackmanovo
- Testované voči programu MATLAB v rôznych konfiguráciach

Video ukážka aplikácie

Použité technológie

- Qt 5
- OpenGL (nutná podpora verzie 3.3 grafickou kartou)
- Knižnice
 - UniShader
 - KissFFT
 - TinyObjLoader
 - EDFlib
 - GLEW
 - ...

Výsledky

- Aplikácia testovaná na skupine voľne dostupných EEG nahrávok
- Multiplatformová podpora
 - Operačné systémy Window 7 a 8, Linux (distribúcia Lubuntu)
 - Grafickě karty od Intel, AMD, NVidia

Zhrnutie

- Aplikácia pre vizualizáciu mozgových signálov formou grafu a modelov
- Uľahčuje analýzu nameraných dát
- Vizualizácie hardvérovo akcelerované
- Obsahuje modul pre spracovanie signálov
- Multiplatformová podpora
- Využitie v rámci výskumnej skupiny STRaDe

Otázky oponenta

Ako je možné vizualizovať prípad, ak má pacient poruchu mozgovej aktivity patologickej povahy.

Pacient s poruchou mozgovej aktivity sa od zdravého človeka odlišuje najmä v priebehu nameraného signálu – napríklad abnormálne vysoká úroveň nízkych frekvencií. To sa prejaví pri vizualizácii zvýraznením aktivity pri danej frekvencii, čo upozorní užívateľa na danú abnormalitu. Nakoľko však aplikácia signál sama neanalyzuje, nebude z jej pohľadu tento prípad výnimočným.