

Modul ke:

Fakultas
ILMU
KOMPUTER

Program Studi Sistem Informasi

RELASI DAN FUNGSI

Relasi Fungsi dan Bentuk-bentuk Fungsi

Drs. Sapto Prayogo. M.Kom

Komposisi Dua Fungsi Dan Fungsi Invers

Pengertian Fungsi

Relasi dimana setiap unsur dari daerah asalnya dipasangkan dengan tepat satu unsur dari dari dari daerah hasilakærah asal Kodomain = daerah kawan Range = daerah hasil

Contoh Soal:

Diketahui fungsi $f:D\rightarrow R$ dan $f(x)=x^2-1$ Hitunglah f(-3), f(-1), dan f(3)

Jawab:

$$f(x) = x^{2}-1$$

$$f(-3) = (-3)^{2}-1=9-1=8$$

$$f(-1) = (-1)^{2}-1=0$$

$$f(3) = (3)^{2}-1=9-1=8$$

Contoh Soal:

Diketahui fungsi $f:D\rightarrow R$ dan $f(x)=x^2-1$ Jika f(a)=15, tentukan nilai a yang memenuhi!

Jawab:

$$f(a) = a^2-1$$

 $15 = a^2-1$
 $a^2 = 15 + 1$
 $a^2 = 16$
 $a = \pm 4$

Jadi nilai a yang memenuhi adalah a = 4 atau a = -4

Sifat-sifat Fungsi

Fungsi surjektif

Fungsi $f:A \rightarrow B$ disebut Onto (surjektif) ika setiap anggota B mempunyai pasangan anggota A.

Sifat Satu-Satu (Injektif)

Fungsi $f:A \to B$ disebut satusatu, jihnggota B yang mempunyai pasangan dengan anggota A, maka pasangannya hanya tepat satu.

Fungsi Korespondensi Satu-Satu (Bijektif)

Fungsi $f: A \rightarrow B$ disebut Korespondensi Satu-Satu, jika fungsi tersebut surjektif dan sekaligus injektif

FUNGSI KOMPOSISI

Misalkan f dan g dua fungsi sembarang maka fungsi komposisi f dan g ditulis $g \circ f$, didefinisikan sebagai $(g \circ f)(x)$ =g(f(x)) untuk setiap $x \in D_q$

Sifat-Sifat Komposisi Fungsi

a. Tidak Komutatif

Komposisi fungsi tidak bersifat komutatif $f: A \rightarrow B$ dan

 $g: B \rightarrow C$, maka $f \circ g \neq g \circ f$

Contoh Soal:

Diketahui:
$$f(x)=2x+1$$
 dan $g(x)=x^2-3$.
Periksalah apakah $(g\circ f)(x)=(f\circ g)$

Jawab:

$$(g \circ f)(x) = g(f(x))$$
 $(f \circ g)(x) = f(g(x))$
 $= g(2x+1)$ $= f(x^2-3)$
 $= (2x+1)^2-3$ $= 2(x^2-3)+1$
 $= 4x^2+4x-2$ $= 2x^2-6+1$
 $= 2x^2-5$

Dari contoh di atas ditunjukkan bahwa $(g \circ f) \neq (f \circ g) (x)$

b. Asosiatif

Komposisi Fungsi bersifat asosiatif, yaitu

jika $f: A \rightarrow B$ dan $g: B \rightarrow C$, dan $h: C \rightarrow D$, maka $h \circ (g \circ f) = (h \circ g) \circ f$

Contoh:

```
Fungsi f,g,dan h didefinisikan sebagai berikut:
f(x) = x + 2,
g(x) = 3x, dan
h(x) = x.
Tentukan: h \circ (g \circ f) dan (h \circ g) \circ f(x)
```

```
jawab:
(g \circ f)(x) = g(f(x))
             =g(x+2)
             =3(x+2)
             =3x + 6
 h \circ (g \circ f) (x) = h(3x + 6)
                =(3x+6)^2
                =9x^2 + 36x + 36 \dots 1
```

$$(h \circ g) (x) = h(g(x))$$

$$= h(3x)$$

$$= (3x)^{2}$$

$$= 9x^{2}$$

$$(h \circ g) \circ f(x) = (h \circ g)(f(x))$$

$$= (h \circ g)(x + 2)$$

$$= 9(x + 2)^{2}$$

$$= 9(x^{2} + 4x + 4)$$

$$= 9x^{2} + 36x + 36 \dots 2)$$

Dari persamaan 1) dan 2) disimpulkan bahwa: $h \circ (g \circ f)(x) = ((h \circ g) \circ f)(x)$

c. Sifat Identitas

Jika /(x)=x, dan f(x) adalah suatu fungsi, maka $/\circ f=f\circ /=f$

Contoh:

Diketahui : $I(x) = x dan f(x) = x^2 + 1$. Carilah:

- a. (I ○f)(x)
- b. (f○l) (x)
- c. Kesimpulan apakah yang dapat kamu kemukakan?

Jawab:

a.
$$(I \circ f)(x) = I(f(x))$$

 $= I(x^2 + 1)$
 $= x^2 + 1$
b. $(f \circ I)(x) = f(I(x))$
 $= f(x)$
 $= x^2 + 1$

c. $l \circ f = f \circ l = f$ untuk setiap f

Fungsi Invers

Suatu fungsi f : A → B mempunyai fungsi invers f⁻¹ : B → A,jika dan hanya jika merupakan fungsi *bijektif* (korespondensi satu satu)

Contoh:

Diketahui fungsi f sebagai berikut:

Ditanyakan:

- 1. Apakah f^{-1} ada? Mengapa?
- 2. Carilah $(f^{-1} \circ f)(a)$, dan $(f^{-1} \circ f)(b)$
- 3. Apakah $f^{-1} \circ f = I$? Mengapa?

Jawab:

a. f⁻¹ ada, sebab f berada dalam korespondensi satu-satu

b.
$$(f^{-1} \circ f)(a) = f^{-1}(f(a)) = f^{-1}(2) = a$$

 $(f^{-1} \circ f)(b) = f^{-1}(f(b)) = f^{-1}(3) = b$

c. benar $f^{-1} \circ f = I$, sebab $(f^{-1} \circ f)(x) = x$ untuk setiap x

Fungsi Invers Dari Fungsi Komposisi

1.
$$(g \circ f)^{-1} = f^{-1} \circ g^{-1}$$

2.
$$(f \circ g)^{-1} = g^{-1} \circ f^{-1}$$

Latihan Soal

Diketahui f(x) = 2x - 1 untuk 0 < x < 1 dan $f(x) = x^2 + 1$ untuk x yang lain. Tentukan nilai $f(2).f(-4)+f(\frac{1}{2}).f(3)!$

A 75

C

Ε

95

85

B 80

D

90

LATIHAN

Diketahui
$$f(x) = 2x - 3$$

 $(g \circ f)(x) = 2x + 1, g(x) =$

A
$$4x + 1$$
 C $4x + 4$ E $x + 4$

$$4x + 4$$

$$x + 4$$

Terima Kasih

Drs. Sapto Prayogo. M.Kom