UNCLASSIFIED

AD 267 325

Reproduced by the

ARMED SERVICES TECHNICAL INFORMATION AGENCY
ARLINGTON HALL STATION
ARLINGTON 12, VIRGINIA

UNCLASSIFIED

THE TANK AND DESCRIPTION OF THE PARTY OF THE

NOTICE: When government or other drawings, specifications or other data are used for any purpose other than in connection with a definitely related government procurement operation, the U. S. Government thereby incurs no responsibility, nor any obligation whatsoever; and the fact that the Government may have formulated, furnished, or in any way supplied the said drawings, specifications, or other data is not to be regarded by implication or otherwise as in any manner licensing the holder or any other person or corporation, or conveying any rights or permission to manufacture, use or sell any patented invention that may in any way be related thereto.

n land meester een een daaren arregen arregen daar

E TOTAL TO A CONTROL OF THE PROPERTY OF THE PR

3

WADD TECHNICAL REPORT 61-133

VOLUME III

PASSIVE AERODYNAMIC ATTITUDE STABILIZATION OF NEAR EARTH SATELLITES

Volume III MATHEMATICAL TECHNIQUES AND COMPUTER PROGRAM

O. C. JUELICH

NORTH AMERICAN AVIATION, INC. COLUMBUS, OHIO

JULY 1961

400

AERONAUTICAL SYSTEMS DIVISION

PASSIVE AERODYNAMIC ATTITUDE STABILIZATION OF NEAR EARTH SATELLITES

Volume III MATHEMATICAL TECHNIQUES AND COMPUTER PROGRAM

O. C. JUELICH

NORTH AMERICAN AVIATION, INC. COLUMBUS, OHIO

IULY 1961

FLIGHT DYNAMICS LABORATORY CONTRACT Nr. AF 33(616)-7100 PROJECT Nr. 1366 TASK Nr. 13967

AERONAUTICAL SYSTEMS DIVISION
AIR FORCE SYSTEMS COMMAND
UNITED STATES AIR FORCE
WRIGHT-PATTERSON AIR FORCE BASE, OHIO

McGregor & Werner, Inc., Dayton, O. 400 - November 1961 - 10-342

FOREWORD

The research reported herein was performed by North American Aviation, Inc., Columbus, Ohio for the Hypersonic Flight Section, Flight Branch of the Flight Dynamics Laboratory, Wright Air Development Division. The work was accomplished under Air Force Contract No. AF 33(616)-7100, Project No. 1366, Task No. 13967, "A Study of Aerodynamically Oriented and Stabilized Satellites." This research was carried out by the Engineering Research and Aerothermodynamics Development Groups of the Columbus Division, North American Aviation, Inc., with Dr. D. M. Schrello, Engineering Research Group, as Project Engineer. Mr. Joseph Ondrejka, Flight Dynamics Laboratory, was WADD Project Engineer.

The results of this study are reported in a series of three volumes of which this is Volume III. The other reports in this series are:

VOLUME I: "Librations due to Combined Aerodynamic

and Gravitational Torques, "by D. M. Schrello

VOLUME II: "Aerodynamic Analysis," by Paul H. Davison

ABSTRACT

A computer program is presented which integrates numerically the pitch equation of an aerodynamically stabilized satellite. The mathematical theory of the linear second order equation with periodic coefficients and the integration procedure are discussed to clarify the structure and application of the program.

PUBLICATION REVIEW

This report has been reviewed and is approved.

FOR THE COMMANDER:

WILLIAM C. NIELSEN

Colonel, USAF

Chief, Flight Dynamics Laboratory

William C. Strelan

TABLE OF CONTENTS

	Page No
INTRODUCTION	1
DISCUSSION	
1. DISCUSSION OF THE LINEAR SECOND ORDER DIFFERENTIAL EQUATION WITH PERIODIC COEFFICIENTS	3
1.1 General Case	3 6 9 10
Integration	11
2. INTEGRATION PROCEDURE	12
2.1 Derivation of Predictor Formula	12 14 15
3. COMPUTER PROGRAM	17
3.1 Integration Portion of the Program	17 18 19 19
APPENDIX A - PROGRAM DESCRIPTION - PITCHING MOTION OF A SATELLITE	21
APPENDIX B - PROGRAM DESCRIPTION - ATMOSPHERE SUBROUTINE	51
APPENDIX C - PROGRAM DESCRIPTION - FIXED DECIMAL CARD READ ROUTINE WITH ERROR DETECTION	57
APPENDIX D - PROGRAM DESCRIPTION - PUNCH SCALING FUNCTION	61
APPENDIX E - PROGRAM DESCRIPTION - OUTPUT TAPE WRITE ROUTINE	65
APPENDIX F - SUMMARY OF LIBRARY ROUTINES	68
APPENDIX G - SAMPLE INPUT AND OUTPUT	6 9
BIBLIOGRAPHY	88

WADD TR 61-133 Vol. III

LIST OF SYMBOLS

A, B, C, D	Coefficients used in the derivation of Eq. (32)	
a,b	Initial condition constants	
an	The nth coefficient of Taylor's Series	
F	Number of a card field	
f	Function generated in the card-punch program	
L	Altitude, increment in t	
I	Identity matrix	
i	Orbit inclination, Counting index	
М	Inertia parameter	
n	Counting index, integral multiplier	
P, P, , Q, Q,	Aerodynamic parameters	
r	Distance from center of earth	
rE	Mean radius of earth	
S _n	Matrix defined in Eq. (22)	
<i>§</i>	Constant appearing in error term of Taylor's series	
t	Independent variable	
V	Velocity of vehicle in inertial space	
√ _R	Velocity of vehicle relative to atmosphere	
v	True anomaly of vehicle	
W	Matrix whose determinant is the Wronskian of the system (y_1, y_1)	
w	Wronskian of the system (y_1, y_1)	
w	Eigenvalue bound for W , defined in Eq. (23)	
ω _φ , ω _ι , ω _λ , ω	Weighting constants in card-punch program	
У	Solution of differential equation, Eqs. (5) or (6)	
, ex	Angle of attack	
WADD TR 61-133 Vol. III v		

```
Periodic functions of t
     г, г,
                Aerodynamic parameters
                 Inclination of orbit to local horizontal
                Eccentricity, error
                 Pitch angle relative to local horizontal
                Atmospheric density
                 Eigenvalues of matrix S_n
                 Earth rotation rate
     WE
     w
                 Eigenvalue of the matrix W
Subscripts (except counting indices)
                 even part
                 operator defined in Eq. (13)
                 odd part
                 perigee
                 periodic, calculated from predictor formula
                 calculated from Simpson's rule
                 particular solution
     1, 2
                 homogeneous solution
Notation
     ż
                 Derivative with respect to t
     x,
                 Derivative with respect to v
     \overline{z}
                 Maximum magnitude, see Eq. (11)
     x*
                 An instance of X
     Δχ
                 An increment of X
                 Differentiation
                 Approximate equality
                 Identity
WADD TR 61-133 Vol. III
                                       vi
```

The equation of satellite pitching motion derived in Volume I of this series of reports is:

$$\theta'' + 2Q\theta' + \{3M[1 - \epsilon \cos y] + P\}\theta = 2Q + \gamma P$$
 (1)

where v , the true anomaly, is the independent variable,

 θ is the pitch angle from the local horizontal,

€ is the orbital eccentricity,

M is the inertia ratio parameter,

and the remaining quantities are defined by the following relations:

$$\gamma = \frac{\epsilon \sin v}{1 + \epsilon \cos v} , \qquad (2)$$

$$P = \mathcal{O}_{P} (\rho/\rho_{P}) (V_{R}/V)^{2} [1 + 2 \in (1 - \cos v)],$$

$$Q = Q_p(p/p_p)(V_R/V)[1-\epsilon(1-coar)] - \epsilon \sin v$$
,

in which

$$(V_R/V) = 1 - (\omega_E/\dot{v}_P) \cos i,$$

$$\dot{v}_P = \frac{1}{r_P} \sqrt{\frac{M(1+\epsilon)}{r_P}},$$
(3)

the subscript P denotes perigee conditions,

is the product of the universal gravitational constant and the mass of the earth,

 ω_{ϵ} is the Earth's rotation rate,

i is the orbit inclination,

ho , the atmospheric density, is a tabular function of the altitude h , see for instance Minzner, (Ref. 1). The altitude h in turn is defined by

Manuscript released by the author February 1961 for publication as a WADD Technical Report.

WADD TR 61-133 Vol. III

$$h = r - r_g \tag{4}$$

with r_{E} the mean earth radius, and

$$r = r_{\bullet} (1+\epsilon) / (1+\epsilon \cos v).$$

The quantities P_{ρ} , Q_{ρ} are defined by

where Γ is a pitching moment parameter, and

To is a damping in pitch parameter.

These parameters are defined and discussed in Volume I of this series of reports. It is desired to calculate θ and possibly the angle of attack $\alpha = \theta - \gamma$ for "all values" of the true anomaly.

Even though the differential equation is a linear second order equation it does not lend itself readily to solution in terms of elementary or tabulated functions particularly since the variation of density with altitude is a tabulated function. Direct numeric integration appears to offer a rather straightforward approach, provided its limitation to a finite range of \boldsymbol{v} can be circumvented.

The means used to obtain results valid for all v constitute the first section of this report. The second section describes the method of numeric integration adopted. The final section discusses the computer program written to implement these results while the program itself is given in the appendices.

1. DISCUSSION OF THE LINEAR SECOND ORDER DIFFERENTIAL EQUATION WITH PERIODIC COEFFICIENTS

It is the purpose of this section of the report to show that three integrations carried out over one orbital period suffice to furnish information about the boundedness or stability of solutions of Eq. (1). Equations with arbitrary periodic coefficients are discussed to insure independence of the tabulated atmospheric density function. In this form the presentation is an amplification of the concise discussion given by Coddington and Levinson, (Ref. 2) and a minor extension as well since the reference discusses homogeneous equations only.

1.1 General Case

Let

$$\ddot{y} + \alpha \dot{y} + \beta y = \gamma \tag{5}$$

be a linear differential equation in which $c\ell$, β , and γ are periodic functions of t, with common period of 2π . The dots denote differentiation with respect to t. Eq. (1) is of this type. Let

$$\ddot{y} + \alpha \dot{y} + \beta y = 0 \tag{6}$$

be the associated homogeneous equation. Now let γ_o be that solution of Eq. (5) that has

$$y_0(0) = 0, \dot{y}(0) = 0$$

and let y_1 , y_2 be solutions of Eq. (6) that have respectively

$$y_{i}(0) = 1, \quad \dot{y}_{i}(0) = 0,$$

$$y_1(0) = 0, \quad \dot{y}_2(0) = 1.$$

Since these solutions are obviously linearly independent, any solution of Eq. (5) may be written

$$y = y_0 + ay_1 + by_2$$
 (7)

For $t = 0, 2\pi$ Eq. (7) yields

$$y(0) = y_0(0) + a y_1(0) + b y_1(0) = a$$

 $\dot{y}(0) = \dot{y}_0(0) + a \dot{y}_1(0) + b \dot{y}_1(0) = b$

$$y(2\pi) = y_{0}(2\pi) + \alpha y_{1}(2\pi) + b y_{2}(2\pi)$$

$$\dot{y}(2\pi) = \dot{y}(2\pi) + \alpha \dot{y}(2\pi) + b \dot{y}(2\pi)$$
(8)

If it is now required that y have period 2π ,

$$y(2\pi) = y(0), \dot{y}(2\pi) = \dot{y}(0)$$
 (9)

Eqs.(8) may be combined to yield

$$y_{o}(2\pi) = a \left[1 - y_{1}(2\pi) \right] - b y_{2}(2\pi)$$

$$\dot{y}_{o}(2\pi) = -a \dot{y}_{1}(2\pi) + b \left[1 - \dot{y}_{1}(2\pi) \right]$$
(10)

Let

$$W = \begin{bmatrix} y_1 & (2\pi) & y_2 & (2\pi) \\ \dot{y}_1 & (2\pi) & \dot{y}_2 & (2\pi) \end{bmatrix}$$

then Eq. (10) may be written

$$\begin{bmatrix} y_{o} & (2\pi) \\ \dot{y}_{o} & (2\pi) \end{bmatrix} = \begin{pmatrix} I - W \end{pmatrix} \begin{bmatrix} a \\ b \end{bmatrix}$$

A unique periodic solution to Eq. (5) is thus seen to exist if (I-W) is non-singular. It will be shown below that

implies a resonance in the conventional sense. In the non-resonant case let the periodic particular solution be denoted by the subscript *:

where A and b are the solution to the system of equations given by Eqs. (10).

Now define the notation

$$\overline{y} = \max_{0 \le t \le 2\pi} (|y|). \tag{11}$$

Then

$$\overline{y}_{p} \leq \overline{y}_{p} + |a|\overline{y}_{p} + |b|\overline{y}_{p}$$

and y_0 exists and is bounded whenever y_0 , y_1 , y_2 , exist on the interval $[0,2\pi]^p$, and $\det(1-W)\neq 0$.

Under these conditions, any solution of Eq. (5) may be written

$$y = y_p + a_0 y_1 + b_0 y_2$$
 (12)

where a_o and b_o are initial condition constants. The only change from Eq. (7) is the choice of the particular solution. The notation

$$t_n = t - 2n\pi \tag{13}$$

will be useful. In terms of the conditions at $t = 2 n \pi$ Eq. (12) becomes

$$y(t) = y_{p}(t_{n}) + a_{n} y_{i}(t_{n}) + b_{n} y_{2}(t_{n})$$

and in turn, when $t_n = 2\pi$,

$$y(2\pi + 2n\pi) = y_0(2\pi) + a_n y_1(2\pi) + b_n y_2(2\pi)$$

$$= y_{p}(0) + a_{n+1} y_{1}(0) + b_{n+1} y_{2}(0) = y_{p}(0) + a_{n+1}.$$

Since $y_{7}(2\pi) = y_{7}(0)$,

$$a_{n+1} = a_n y_1(2\pi) + b_n y_2(2\pi).$$

Similarly

$$b_{n+1} = a_n \dot{y}_i (2\pi) + b_n \dot{y}_2 (2\pi).$$

Thus

$$\begin{bmatrix} a_{n+1} \\ b_{n+1} \end{bmatrix} = W \begin{bmatrix} a_n \\ b_n \end{bmatrix} = W^{n+1} \begin{bmatrix} a_0 \\ b_0 \end{bmatrix}.$$

The solutions of Eq. (5) remain bounded if W^n remains bounded for all n. This in turn is the case if the magnitudes of the eigenvalues of W are at most 1. In this case an upper bound on the amplitude of solutions is

$$\bar{y} = \bar{y}_{+} + \sqrt{a_{0}^{2} + b_{0}^{2}} (\bar{y}_{1} + \bar{y}_{2}).$$
 (14)

1.2 Resonant Case

If (I-W) is singular, the system of equations

$$0 = (I - W) \begin{bmatrix} a \\ b \end{bmatrix} \tag{15}$$

has an infinity of non-trivial solutions. Let one of these be

$$a = a^*, b = b^*$$
 (16)

and let

$$y'' = a'' y_1 + b'' y_2 . (17)$$

Then Eq. (15) may be rewritten

$$0 = (1-w) \begin{bmatrix} a^* \\ b^* \end{bmatrix}$$

or

$$I\begin{bmatrix} a^* \\ b^* \end{bmatrix} = W\begin{bmatrix} a^* \\ b^* \end{bmatrix}$$

whence

$$\begin{bmatrix} y_{1} & (0) & y_{2} & (0) \\ \dot{y}_{1} & (0) & \dot{y}_{2} & (0) \end{bmatrix} \begin{bmatrix} a^{*} \\ b^{*} \end{bmatrix} = \begin{bmatrix} y_{1} & (2\pi) & y_{2} & (2\pi) \\ \dot{y}_{1} & (2\pi) & \dot{y}_{2} & (2\pi) \end{bmatrix} \begin{bmatrix} a^{*} \\ b^{*} \end{bmatrix},$$

so that

$$\begin{bmatrix} y^*(0) \\ \dot{y}^*(0) \end{bmatrix} = \begin{bmatrix} y^*(2\pi) \\ \dot{y}^*(2\pi) \end{bmatrix} . \tag{18}$$

Thus y^* is a non-trivial solution of period 2π of the homogeneous equation, Eq. (6). Since the period of y^* matches that of the forcing term of Eq. (5) this meets the accepted notions of resonance.

Conversely, if a solution of the homogeneous Eq. (6) satisfies Eq. (18) the argument may be reversed to show that Eq. (15) is valid.

In the resonant case, the system of equations, Eqs. (10), may or may not have a solution. If it does, the analysis for the non-resonant case applies, except that y, is no longer unique. If, however, the system of equations, Eqs. (10) is inconsistent, no periodic solution of Eq. (5) exists. In this case let

$$y = y_0 + a_0 y_1 + b_0 y_2$$
 (19)

be some solution of Eq. (5), where a, and b, are again initial condition constants. By suitable choice of the initial condition constants Eq. (19) may be written

$$y(t) = y_0(t_n) + a_n y_1(t_n) + b_n y_2(t_n)$$
 (20)

where t, is defined in Eq. (13). Now

$$y(2\pi + 2n\pi) = y_0(2\pi) + a_n y_1(2\pi) + b_n y_2(2\pi)$$

$$= y_0(0) + a_{n+1} y_1(0) + b_{n+1} y_2(0) = a_{n+1},$$

and

$$\dot{y} (2\pi + 2n\pi) = \dot{y}_0 (2\pi) + a_n \dot{y}_1 (2\pi) + b_n \dot{y}_2 (2\pi)$$

$$= \dot{y}_0 (0) + a_{n+1} \dot{y}_1 (0) + b_{n+1} \dot{y}_2 (0) = b_{n+1}.$$

Thus

$$\begin{bmatrix} a_{n\pi i} \\ b_{n\pi i} \end{bmatrix} = \begin{bmatrix} y_o & (2\pi) \\ \dot{y}_o & (2\pi) \end{bmatrix} + W \begin{bmatrix} a_n \\ b_n \end{bmatrix},$$

and, proceeding recursively

$$\begin{bmatrix} a_{n+1} \\ b_{n+1} \end{bmatrix} = \begin{bmatrix} y_{\bullet} (2\pi) \\ \dot{y}_{\bullet} (2\pi) \end{bmatrix} + W \begin{pmatrix} y_{\bullet} (2\pi) \\ \dot{y}_{\bullet} (2\pi) \end{bmatrix} + W \begin{bmatrix} a_{n-1} \\ b_{n-1} \end{bmatrix}$$

$$= (I + W) \begin{bmatrix} y_{\bullet} (2\pi) \\ \dot{y}_{\bullet} (2\pi) \end{bmatrix} + W^{2} \begin{bmatrix} a_{n-1} \\ b_{n-1} \end{bmatrix}$$

$$= \cdots = \left(\sum_{i=0}^{n} W^{i} \right) \begin{bmatrix} y_{\bullet} (2\pi) \\ \dot{y}_{\bullet} (2\pi) \end{bmatrix} + W^{n+i} \begin{bmatrix} a_{\bullet} \\ b_{\bullet} \end{bmatrix} .$$

$$(21)$$

Now the vector $\begin{bmatrix} a_{n+1} & b_{n+1} \end{bmatrix}$ can remain bounded as n increases only if the sum

$$S_n = \sum_{i=0}^{n-1} W^i$$
 (22)

remains bounded.

Let σ_{ni} be the eigenvalues of S_n and ω_i be those of W, where i:1,2. The eigenvalues of the matric polynomial, Eq. (22) have the relation

$$\sigma_{ni} = (1 - \omega_i^n) / (1 - \omega_i), \quad \omega_i \neq 0, 1$$

$$= 0, \quad \omega_i = 0$$

$$= n, \quad \omega_i = 1$$

Thus, the definition

$$w = \max(|\omega_i|, |\omega_i|) \tag{23}$$

and relation

$$0 < w < l \tag{24}$$

imply

But if the relation, Eq. (24), is satisfied the second term of Eq. (21) is also bounded, and the amplitude of y is limited to

$$|y| \le \frac{1}{1-w} \sqrt{y_{s}(2\pi)^{2} + \dot{y}_{s}(2\pi)^{2}} + (\bar{y}_{1} + \bar{y}_{2}) \sqrt{a_{s}^{2} + b_{s}^{2}}$$
 (25)

where the bars are defined in Eq. (11).

The derivation of the bound, given by Eq. (25), did not use the fact of resonance, thus it is applicable even to the non-resonant case, although in the latter case the bound given by Eq. (14) will usually be sharper. (It should be borne in mind that the symbols a and b have different significances in the two expressions.)

1.3 Stability Criteria

The eigenvalues of the matrix W satisfy the equation

$$0 = \left| \omega - y_{1}(2\pi) - y_{2}(2\pi) \right| = \omega^{2} - \left[y_{1}(2\pi) + \dot{y}_{2}(2\pi) \right] \omega + \det W$$
$$-\dot{y}_{1}(2\pi) - \dot{y}_{2}(2\pi)$$

so that

$$\omega = \frac{y_1(2\pi) + \dot{y}_2(2\pi)}{2} \pm \sqrt{\left[\frac{y_1(2\pi) + \dot{y}_2(2\pi)}{2}\right]^2 - \det W}. \quad (26)$$

When the eigenvalues are complex, they are conjugates, so

$$w_1 w_2 = \left[\frac{y_1(2\pi) + \dot{y}_2(2\pi)}{2} \right]^2 + \det W - \left[\frac{y_1(2\pi) + \dot{y}_2(2\pi)}{2} \right]^2$$

$$= \det W_1$$

and thus

When the eigenvalues are real, let the one larger in absolute value be ω_i . Then

$$|w_i| \ge \left| \frac{y_i(2\pi) + \dot{y}_2(2\pi)}{2} \right| \ge \sqrt{det W}$$

For bounded motions, therefore, it is necessary that

It is to be noted that $\det W$ is the Wronskian of the system (y_1, y_2) , evaluated at $t = 2\pi$. Abel's formula for the Wronskian is:

$$W(x) = W(0) e^{\int_0^x \alpha(t) dt},$$

Thus

$$det W = W(2\pi) = \begin{vmatrix} y_1(0) & y_2(0) \\ \dot{y}_1(0) & \dot{y}_2(0) \end{vmatrix} e^{\int_0^{2\pi} d(t) dt} = e^{\int_0^{2\pi} d(t) dt}.$$

Now if α is identically zero, or even if it has an average value of zero on the interval $(0,2\pi)$,

Then, referring to Eq. (23),

It may be concluded, therefore, that in the absence of the damping term, the resonant solutions are unbounded unless Eqs. (10) happen to be dependent. The non-resonant solutions were shown above, Eq. (14), to be bounded, unless w > 1.

1.4 Short Term Boundedness

In the application of the results obtained above to Eq. (1) it must be recalled from Volume I, Appendix C of this series of reports, that the constants (or elements) describing the orbit are themselves subject to drift as the orbit decays. Thus the results are applicable to some large but finite number of periods. Under such a limitation an ultimately unbounded motion

may still be acceptable if its rate of growth is small. For the nth period the bound expressed by Eq. (25) may be written:

$$\overline{y}(t_{n-1}) \leq \frac{w^{n}-1}{w-1} \sqrt{y_0(2\pi)^2 + \dot{y}_0(2\pi)^2} + w^{n-1}(\overline{y}_1 + \overline{y}_2) \sqrt{y(0)^2 + \dot{y}(0)^2}$$
 (27)

while in the non-resonant case the bound given by Eq. (14) becomes

$$\overline{y}(t_{n-1}) \le \overline{y}_p + w^{n-1} \sqrt{[y_p(0) - y(0)]^2 + [\dot{y}_p(0) - \dot{y}(0)]^2}.$$
 (28)

Now the total lifetime of the satellite may be divided into regions during each of which the parameters of the orbit may be considered constant, and during each of which the growth or decay of the pitch amplitude may be estimated by means of Eq. (27), or in a non-resonant case by Eq. (28).

1.5 . A "Built-In" Check on the Accuracy of the Numeric Integration

Let Eq. (5) have a unique periodic solution y and let

where y_{\bullet} is the even part of y_{\bullet} and y_{\bullet} is the odd part of y_{\bullet} . Further, suppose that in Eq. (5) the functions α and γ are odd functions of t, and β is an even function of t. Then Eq. (5) becomes

$$(\ddot{y}_e + \alpha \dot{y}_e + \beta \dot{y}_e) + (\ddot{y}_o + \alpha \dot{y}_o + \beta \dot{y}_e) = \gamma.$$

The parity properties of functions guarantee that the first parenthesis on the left is an even function of t, while the second parenthesis is an odd function. Since the right member is an odd function, the first parenthesis must vanish. If there existed a non-trivial even function y_{ϵ} the uniqueness of y_{ϵ} would be destroyed. Thus

and y_p is an odd function, so that $y_p(0) = 0$. Then in the solution of Eqs. (10):

and

This situation arises in Eq. (1) when the damping in pitch parameter, Γ_{\P} , vanishes. In this case the size of a computed from Eqs. (10) becomes a measure of the accuracy of the numeric integration used to obtain the coefficients in these equations.

2. INTEGRATION PROCEDURE

The choice of integration procedure involves a balance between accuracy, speed, stability, and auxiliary "housekeeping" requirements. Gill, (Ref. 3) has derived a very elegant version of the Runge-Kutta fourth order procedure in which the housekeeping is minimized, in that only one storage cell need be assigned to each variable to be integrated. Milne (Ref. 4, Section 38) earlier gave a predictor-corrector method which obtains the same accuracy with half as many substitutions into the differential equation, but requires that a history of past values of the variables be kept. Milne's predictor formula requires a history of four previous values of the derivative, and if it is desired to double the step-size in the course of the integration a history of seven previous values must be available, along with a record of the time at which the step size was last doubled. The starting procedure for the predictorcorrector method is necessarily relatively involved. Since the corrector formula, Simpson's Rule, requires a history of only two previous values, it would be desirable to have a predictor formula with an equally short time-base, even at the cost of some accuracy and stability. Milne (Ref. 4, Sections 30 and 31) gives a procedure for deriving such formulas to arbitrary specifications and for estimating their accuracy. The procedure is here used to obtain the desired formula.

2.1 Derivation of Predictor Formula

In the identity:

$$y(t_{o}+k)-y(t_{o}-k)=\int_{t_{o}-k}^{t_{o}+k}\dot{y}\ dt$$
 (29)

the assumption that the second term on the right is a linear combination of $y(t_{\bullet})$, $y(t_{\bullet}-k)$, $k \dot{y}(t_{\bullet})$ and $k \dot{y}(t_{\bullet}-k)$, may be written

$$\int_{t_{\bullet}-k}^{t_{\bullet}+k} \dot{y} dt = A y(t_{\bullet}) + B y(t_{\bullet}-k) + C k \dot{y}(t_{\bullet}) + D k \dot{y}(t_{\bullet}-k).$$
 (30)

The coefficients A, B, C, D may be determined by requiring that Eq. (30) be exact for the first four terms of the Taylor expansion of about . Thus, let

$$y(t) = a_0 + a_1(t-t_0) + a_2 \frac{(t-t_0)^2}{2} + a_3 \frac{(t-t_0)^3}{6} + \cdots$$
 (31)

where

$$a_n = \frac{d^n y(t_0)}{dt^n}$$
.

Substitution of Eq. (31) into Eq. (29) and Eq. (30) gives respectively

$$\int_{t_0-R}^{t_0+h} \dot{y} dt \approx 2a_1 h + \frac{1}{3} a_3 h^3,$$

$$\int_{1.-R}^{t_0+h} \dot{y} dt \cong Aa_0 + B(a_0 - a_1h + \frac{a_1}{2}h^2 - \frac{a_2}{6}h^3)$$

$$+ Ca_1h + D(a_1h - a_2h^2 + a_3h^3)$$
.

Equating the coefficients of a_0 , $a_{11}a_{2}$, and a_{3} respectively, yields:

$$A + B = 0$$

$$C + D - B = 2$$

$$\frac{1}{2}B - D = 0$$

$$\frac{1}{2}D - \frac{1}{6}B = \frac{1}{3}$$

The solution to this system is

$$A = -4$$
, $B = 4$, $C = 4$, $D = 2$.

Then Eq. (30) becomes

$$\int_{t_{\circ}-h}^{t_{\circ}+h} \dot{y} dt \cong -4y(t_{\circ}) + 4y(t_{\circ}-h) + 4h\dot{y}(t_{\circ}) + 2h\dot{y}(t_{\circ}-h),$$

which yields in Eq. (29):

$$y(t_{o}+h) \cong y(t_{o}-h)+4\{y(t_{o}-h)-y(t_{o})+\frac{1}{2}[\dot{y}(t_{o}-h)+2\dot{y}(t_{o})]\}$$

$$=y_{p}(t_{o}+h)$$
(32)

where the subscript p stands for "predicted value". Its derivation insures that Eq. (32) is exact to third order terms.

The Taylor series, Eq. (31) may be made exact by including the residue term:

$$y(t) = a_0 + a_1(t-t_0) + a_2 \frac{(t-t_0)^2}{2} + a_3 \frac{(t-t_0)^3}{6} + \frac{d^4y(s)}{dt^4} \cdot \frac{(t-t_0)^4}{24}$$
 (33)

where s is on the interval [to, t].

Now the error committed by the use of $y_{\bullet}(t_{\bullet}+h)$ in place of $y_{\bullet}(t_{\bullet}+h)$ may be obtained by subtracting the right member of Eq. (32) from its left member. If each term in this difference is expressed in terms of Eq. (33) or its first derivative, the coefficients of a_{\bullet} , a_{\bullet} , a_{\bullet} , and a_{\bullet} will be zero because Eq. (32) is accurate to third order terms. The residue terms will remain:

$$y(t_0+h)-y_p(t_0+h)=\frac{h^+}{2+}\left[\frac{d^+y(s_1)}{dt^+}-5\frac{d^+y(s_2)}{dt^+}+8\frac{d^+y(s_3)}{dt^+}\right],$$

where s_i is between t_o and $t_o + f_o$, while s_2 and s_3 are between t_o and $t_o - f_o$. The three distinct values arise from the fact that s_o in Taylor's Theorem, Eq. (33), cannot be expected to be the same for the expansions of $y(t_o + f_o)$, $y(t_o - f_o)$. However, Eq. (32) may be shown to satisfy Milne's Theorem 2, (Ref. 4, Section 31) which in effect permits the replacement of s_i , s_o , and s_o by a single s_o between $t_o - f_o$ and $t_o + f_o$. The error becomes

$$\frac{d^4y(s)}{dt^4}\cdot\frac{k^4}{6}$$

and Eq. (32) may be rewritten:

$$y(t_{o}+h) = y(t_{o}-h) + 4\{y(t_{o}-h) - y(t_{o}) + \frac{h}{2}[\dot{y}(t_{o}-h) + 2\ddot{y}(t_{o})]\} + \frac{d^{4}y}{dt^{4}} \cdot \frac{h^{4}}{6}$$
(34)

2.2 Corrector Formula

Simpson's rule is

$$y(t_{o}+h) = y(t_{o}-h) + \frac{h}{3} [\dot{y}(t_{o}-h) + 4\dot{y}(t_{o}) + \dot{y}(t_{o}+h)] = y_{o}(t_{o}+h)$$
(35)

where the subscript s denotes "calculated from Simpson's rule". An error analysis for Simpson's rule yields

$$y(t_{\bullet}+k) = y(t_{\bullet}-k) + \frac{h}{3} \left[\dot{y}(t_{\bullet}-k) + \dot{y}(t_{\bullet}) + \dot{y}(t_{\bullet}+k) \right] - \frac{d^{5}y}{dt^{5}} \cdot \frac{h^{5}}{90} \quad . \quad (36)$$

In the derivation of the error term in Eq. (35) the assumption was made that the other terms on the right-hand side are known precisely. If this assumption

is replaced by the assumption that $\dot{y}(t_0+1)$ was itself computed by Eq. (32) the error term is larger, in fact

$$y(t_{o}+h) = y(t_{o}-h) + \frac{h}{3}[\dot{y}(t_{o}-h) + 4\dot{y}(t_{o}) + \dot{y}_{p}(t_{o}+h)] + 4\frac{d^{5}y}{dt^{5}} \cdot \frac{h^{5}}{90} .$$
(37)

If, however, $\dot{y}_s(t_o + h)$ is used in place of $\dot{y}(t_o + h)$ the error term is about

$$\frac{6}{5} \cdot \frac{d^5 y}{dt^5} \cdot \frac{h^5}{90} \cdot$$

2.3 Integration Scheme

The predictor-corrector scheme is then:

- a) With $y = \theta$ ' use Eq. (34) to predict $\theta'(v + \Delta v)$ from $\theta'(v)$, $\theta'(v \Delta v)$, $\theta''(v)$, $\theta''(v \Delta v)$.
- b) With $y = \theta$ use Eq. (36) to predict $\theta(v + \Delta v)$ from $\theta(v \Delta v)$, $\theta'(v \Delta v)$, $\theta'(v)$ and the predicted $\theta'(v + \Delta v)$.
- c) Use the predicted $\theta(v+\Delta v)$ and $\theta'(v+\Delta v)$ in Eq. (1) to predict $\theta''(v+\Delta v)$.
- d) Use the predicted $\theta''(v+\Delta v)$ in Eq. (35) with $y=\theta'$ to calculate the corrected $\theta'(v+\Delta v)$.
- e) Use the corrected $\theta'(v + \Delta v)$ in Eq. (35) with $y = \theta$ to calculate the corrected $\theta(v + \Delta v)$.
- f) Use the corrected $\theta(v + \Delta v)$ and $\theta'(v + \Delta v)$ in Eq. (1) to calculate the corrected $\theta''(v + \Delta v)$.

The small size of the error term in Eq. (36) makes it unlikely that an iteration of steps d, e, f would improve the result, if the prediction of steps a, b, c is at all adequate. This adequacy may be tested by comparing the predicted and corrected values of $\theta''(v + \Delta v)$. Since the error estimates for the prediction exceed those for the correction the difference between predicted and corrected values is a pessimistic estimate of the error incurred at each step of the integration. Let $\epsilon(\Delta v)$ be the magnitude of the difference between the predicted and corrected values of $\theta''(v + \Delta v)$, and let $\overline{\epsilon}$ be the maximum tolerable difference. Then if

the error estimates for Eq. (35) suggest that

E(2 DV) SE.

Thus a sufficiently small ϵ justifies a doubling of the step size. If, however

the integration must be restarted with a smaller value of ΔV .

Starting, as well as restarting may be accomplished by Taylor's formulas

$$\theta'(v + \Delta v) = \theta'(v) + \theta''(v)\Delta v + \frac{d^3\theta(s)}{dv^3} \cdot \frac{(\Delta v)^2}{2} , \qquad (38)$$

$$\theta(v + \Delta v) = \theta(v) + \theta'(v)\Delta v + \theta''(v)(\Delta v)^{2} + \frac{d^{3}\theta(s)(\Delta v)^{3}}{dv^{3}}, \qquad (39)$$

where s is between v and $v + \Delta v$. The relatively low powers of Δv appearing in the error terms of Eq. (38) and (39) suggest that small values of Δv be used to retain accuracy. Since the predictor-corrector scheme makes it easy to double the step size there is but small penalty for setting the initial value of Δv too small.

Computational experiments have been conducted comparing the procedure presented above with Gill's version (Ref. 3) of the Runge-Kutta fourth order procedure and with the Kutta fourth order formula as quoted by Milne (Ref. 5). All three processes gave essentially the same accuracy for the same step size; as mentioned above, the present process requires half as many substitutions into the differential equation. It should, however, be noted that the relatively large coefficients appearing in Eq. (34) tend to favor the build up of "inherited" errors, so that the present method cannot be expected to be as stable as the Runge-Kutta process for differential equations with unstable solutions.

The potential build-up of inherited error is not of concern in the present study for three reasons. Firstly, the range of integration is relatively short so that inherited error cannot build up very far. Secondly, the most critical cases are the most unstable cases, but in these the demonstration of instability is obvious. Thirdly, application of the accuracy criterion developed in Section 1.5 to the computer results justifies, a posteriori, the assertion that the error build-up was nil to four decimal places.

3. COMPUTER PROGRAM

Program Descriptions of the various components of the Computer Program written to calculate solutions of Eq. (1) are included in Appendices A to F. Sample input and output data are in Appendix G. The program has been checked out and used at the North American Aviation, Inc. Columbus IBM 704 computing installation to generate the numerical results discussed in Volume I of this series of reports. Certain systems features of this program, such as the choice of input medium (magnetic tape or punch-cards), assignment of magnetic tape unit numbers, labelling of library routines, etc. may have to be varied if this program is to operate successfully at other installations or on other computing machines. It is believed that the information furnished is adequate to enable anyone familiar with the IBM Fortran Manuals (for instance Ref. 6 and 7), and the operating system of his installation to adapt the source language deck to that installation.

The program was written in two portions. The first portion integrates the differential equation, Eq. (1), and its homogeneous part, and records the results on a magnetic tape as well as on the output medium. The second portion reads the magnetic tape and produces punched cards suitable for automatic plotting. The portions are discussed separately below and a brief discussion of the atmosphere table look-up routine is also given. This section concludes with some remarks on a potential application of the computer program.

3.1 Integration Portion of the Program

All input data is read by means of a "sparse data" routine so that information unchanged from one case to the next need not be written or key-punched repetitively. The only item of input data modified by the program is the identification number used to identify records on the intermediate storage tape, which is automatically advanced from record to record. To further facilitate the preparation of input data the primary input variables are presented in lists; the program systematically uses each combination of list entries. All angles in input and output are expressed in degrees; however, inside the computer and on the intermediate storage tape they are carried in radian units.

In the integration of the differential equations care is taken to provide common abscissas from one integration to the next. This is accomplished by using a computing interval obtained from the print interval by successive halving, and by not doubling the step size (when doubling is permitted by the criteria of Section 2) if this would cause the end of the print interval to fall inside a computing interval. The accuracy of the integration is further insured by a test which aborts the calculation if the step size does not expand in the first three intervals. If the step size fails to expand, the accuracy of the starting formulas Eqs. (38), (39) is less than that implied by the predictor-corrector method. The calculation should be attempted again with a smaller minimum step size. The integration is also aborted if the magnitude of any of the 9's exceeds 107, such an event would imply a gross data error, or a machine failure. The number of computing steps taken during

each print interval is printed out so that the step size used may be deduced, the total number of steps for each integration is printed out as an aid to future computing time estimates. As compiled for the IBM 704, the program will integrate about 8.5 steps per second.

3.2 Card-Punching Portion of the Program

This section may be combined with the first section in a single computer run, or it may be used separately if the intermediate storage tape is saved from run to run. The second option permits inspection and editing of the curves to be punched into cards. Since the on-line punching of cards is a relatively expensive process the card format was designed to admit up to fifteen curves per card deck, while retaining complete flexibility as to size and placement of the plots. This portion also reads its input data (specifying the editing information) with the "sparse data" routine. The only input item modified by the program is the card deck identification number which serves as a signal that all information to be punched has been accumulated. This number is reset to zero after the card deck has been punched to indicate that the store of information is again incomplete.

The punched-card output for automatic plotting assumes a plotting device capable of accepting one coordinate pair per card. Abscissa and ordinate may be placed in any of sixteen four digit fields, or the abscissa may be suppressed in favor of an abscissa punched for another curve. The abscissa field will contain the independent variable \boldsymbol{v} . The ordinate may contain any function of the form

where θ_0 is the particular solution of Eq. (1) corresponding to γ_0 of Section 1,

 θ_1 , θ_1 are the solutions of the homogeneous part of Eq. (2) corresponding to y_1 , y_2 of Section 1,

 γ is defined in Eq. (2)

and the w's are input data.

For $w_{p} = 0$, $w_{p} = 1$, f will be a solution of the differential equation, Eq. (1). When $w_{p} = -1$, f will be the angle of attack, α . When $w_{p} = -1$, the input values of w_{1} and w_{2} will be ignored, instead the program will use the precomputed values needed to make f periodic, of orbital period.

The card decks produced will contain, in addition to the abscissa-ordinate pairs, four terminating cards. The first two of these are calibration check cards which will position the plotting head to the lower left hand and upper right hand corners of the plot respectively, the third contains an 11-punch in Column 1 which may be used to stop the plotting device, and the fourth is completely blank, serving as a separator between decks. The body of the deck, and the first two terminating cards have a O-punch in Column 1, sequence number in Columns 5-8, and a deck identification number in Columns 2-4. The four

digit fields consisting of Columns 9-12, 13-16, etc to 69-72 are numbered $F = 1, 2, \ldots, 16$ respectively and are the data fields proper (Columns 73-80 are not readily accessible to the IBM 704 computer).

The tape file of data is searched completely for the record required by the input data, so that in principle these records could be demanded in any order. The search is most efficient however if the records are demanded in the order in which they are stored on the tape.

3.3 Atmospheric Properties Subroutine

The atmospheric properties routine used in the program is capable of simulating atmosphere tables based on the ideal gas law and on linear variations of temperature, gas constant, and specific heat ratio with geopotential altitude. In the present program the routine was used to obtain the density distribution of the 1959 ARDC (Minzner) Atmosphere, (Ref. 1), which was represented by use of the Molecular Scale Temperature in place of the usual temperature. The detail input data are given in Appendix G.

3.4 A Potential Application

In its present form the program can furnish information about the stability in pitch of a given satellite in a given orbit. If the detailed motion is not of interest, only the first portion of the program is required. For a design study, knowledge of the stability boundaries in various parameter planes of the differential equation, Eq. (1), would be desirable. These occur when the magnitude of the larger eigenvalue ω given by Eq. (26) passes through the value 1. With minor modifications the subroutine INTEG of the first part of the present computer program could be used as the basis of a program to search iteratively for these stability boundaries. Points of departure for these searches could be obtained from the eigenvalues of the sine problem to which the present problem reduces itself when the orbital eccentricity is zero.

A NOTE ON THE APPENDICES

Appendices A to E are presented in the format of a standard SHARE program description.

APPENDIX A

PROGRAM DESCRIPTION - PITCHING MOTION OF A SATELLITE NORTH AMERICAN AVIATION, INC. COLUMBUS ENGINEERING PROGRAM DESCRIPTION

1. Identification

- a. Pitching Motion of a Satellite, IM 091
- b. O. C. Juelich, December 1960
- c. Research Group 350d. Fortran Source Deck is up to date.

Purpose

Numerically integrates one particular and two homogeneous solutions of the pitch-equation. Solutions are printed, and optionally punched into cards in scaled form suitable for automatic plotting.

Restrictions

- Uses Tape 5 as input tape Tape 6 as printer output tape Tape 2 for intermediate storage of results Tape 7 to store part of the program
- Operates in N.A.A. monitor for IBM 704 Fortran

Method

- a. The mathematical method is described in Report WADD TR 61-133 Vol. III, of which this description is a part.
- b. The program is designed to terminate calculations if the step size has not adequately expanded in the first three print intervals or if any of the solutions exceed 10 million degrees in amplitude.
- c. Punched Card output is described in Section 3.2 of this report.

5. Use

The program consists of two parts. The first part generates solutions of the differential equation and records these on magnetic tape. The second part retrieves selected solutions and scales them for automatic plotting. The two parts can be combined in one machine run or they can be used on separate occasions if the intermediate storage tape (tape 2) is preserved. The latter alternative permits inspection of the printed results before card-punching is undertaken.

6. Coding Information

a. The first part consists of a main program and two subroutines labeled INTEG. DIFFC. In addition subroutine ATMOS (1F113) and Utility File

- subroutine FXRCH are used, as well as Library subroutines SQRT, C\$\omega\$S, SIN, CHAIN, and Fortran system routines.
- b. The second part is Chain 1 on Tape 7. It consists of a main program and a subroutine labelled SCALE. In addition Utility File Subroutines FXRCH, NPSCL, WRITE, are used, along with Fortran system routines.
- c. Descriptions of subroutines ATMOS, FXRCH, NPSCL, and WRITE are given separately.

7. Input Data

- a. All input data to both parts of the program is read by the Uility File Routine FXRCH into the Fortran COMMON Data Region.
- b. Part one requires the following data:

Location	Symbol	Designation, Description
7	d v min	Minimum computing step size bound, degrees The minimum computing step size is the largest number of the form $dv_{print}/2^n$ (n integral) and $\leq dv_{min}$
9	duprint	Print Interval, degrees Should be a factor of 360°.
28	RECID	Record Identification Number or Control Number. If this number is negative or zero the remaining data set is ignored. If RECID is negative part II is loaded and given control. If RECID is zero tape 2 is rewound and computation ends. If RECID is positive it becomes the identification number of the data case, if it is omitted the value of RECID from the previous data case increased by 1. is used.
30	r _E	Radius of Earth, feet Used in Éq. (4), but not in subroutine ATMØS.
31	ш	Product of Universal gravitational constant and mass of earth, ft3/sec2 Used in Eq. (3).
32	TEL	Table used for routine ATMOS (1F113) See Appendix B.

Location	Symbol	Designation, Description
201	h <u>i</u>	Number of orbit inclinations,
202	i	first orbit inclination, degrees
203	i 2	second orbit inclination
et seq.	•	
211	n ₄	Number of perigee altitudes,
212	4,"	first perigee altitude, feet
213	h.	second perigee altitude
et seq.		- 0
221	ne	Number of eccentricities,
222	6,	first eccentricity, dimensionless
223	€ 1	second eccentricity
et seq.	· •	·
231	ኤ ը	Number of pitching moment parameters,
232	\mathcal{L}_{i}^{l}	first pitching moment parameter
233	r'z	second pitching moment parameter
et seq.	-	
241	hr.	Number of damping in pitch parameters
242	<u>_</u> 41_	first damping in pitch parameter
243	Γ 42	second damping in pitch parameter
et seq.	4 -	
251	n _M	Number of inertia ratio parameters
252	M,	first inertia ratio parameter
253	M ₁	second inertia ratio parameter
et seq.	-	
		The n_i n_A n_c n_{Γ_c} n_M combinations of the listed values of i , h , ϵ , Γ , Γ_a , M
		will be used systematically. The results
		will be identified by successive values of RECID.

c. Part two requires the following data:

Location	Symbol	Designation, Description
1.	RECID	Identification number of tape record to be plotted.
2.	wp	Weight of function θ_o in curve to be plotted Should be 1, 0, or -1.
3•	wy	Weight of $\gamma(v)$ in curve to be plotted Should be 0 or -1.
4.	w,	Weight of function θ_i in curve to be plotted Ignored when $\omega_{p} = -1$.
5.	ω_1	Weight of function θ_{ℓ} in curve to be plotted Ignored when $\omega_{\ell} = -1$.

Location	Symbol	Designation, Description
6.	f min	Minimum value of function in plotting interval, degrees If f is less than this value the point will be plotted on the bottom margin of the paper.
7•	C min	Plotter counts for f_{min} .
8.	f man	Maximum value of function in plotting interval, degrees If f exceeds this value the point will be plotted on the top margin of the paper.
9•	C mex	Plotter counts for f_{max} .
10.	C salge	Plotter counts for top margin of the paper. The bottom margin is at zero counts.
11.	F _f	Number of the card field in which f is to appear. Should be between 1. and 16.
12.	V _{min}	Minimum value of v in plotting interval, degrees If v is less than this value the point will be plotted on the left margin of the paper.
13.	d min	Plotter counts for V
14.	V mole	Maximum value of v in plotting interval, degrees. If v exceeds this value the point will be plotted on the right margin of the paper.
15.	dmax	Plotter counts for Vmov
16.	d adje	Plotter counts for right margin of the paper. The left margin is at zero counts.
17.	F∿	Number of the card field in which v is to appear, or control number. If F_v is zero, v will not be entered on the punched cards.
18.	CID	Identification number for card deck to be punched, or control number. If CID is zero the scaled data are accumulated in core storage for later punching.

Location

Symbol

Designation, Description

If CID is not zero the accumulated information is punched into cards and CID becomes an identification number in columns 2 to 4 of each card. After punching CID is reset to zero.

d. Sample Input Data with resulting output follow the compiled listings of the components of this program.

Note: The program symbol for w is PHI, for Let (I-W) is DELITA.

Main Program for Part I

Subroutine INTEG - (concluded)

Subroutine DIFFC

Main Program for Part 11

33
Subroutine SCALE - (concluded)

	DIMENSION C(260) D(260)	1M091302
	COMMON C	1M091304
	IF DIVIOR CHECK 1.4	1MO91307
4	·	IM091308
	:	1M091309
	NS#1	1M091310
-	CALL FXRCH(D)	1M091312
	IF (C(28)) 6,5,2	1M091314
7	CONTINUE	1M091316
	IM=D(201)	1M091318
	JM*D(211)	1M091320
	KM=D(221)	1M091322
	LM=D(231)	1M091324
	MM*D(241)	1M091326
		1M091328
	E OUTPUT TAPE	1M091330
	TE OUTPUT TAPE 6,12, (D(1+211),1=1	1M091332
	E OUTPUT TAPE 6,13,(D(1	
	OUTPUT TAPE 6.1	1M091336
	OUTPUT TAPE 6,15,(D(I	1M091338
	11E	1M091340
		1M091342
	DO 3 J=1,0JM	1M091344
	m	1M091346
	m	1M091348
	- 1	1M091350
	DO 3 N=1,NM	1M091352
	C(1)=D(1+201)	1M091354
	C(2)=D(J+211)	1M091356
	C(3)=D(K+221)	1M091358
	C(4)=D(L+231) .	1M091360
	C(5)=D(M+241)	1M091362
	C(6)=D(N+251)	1M091364
	CALL INTEG	1M091366
	C(28)=C(28)+1.	1M091367
9	CONTINUE	1M091368
	GO TO 1	1M091370
11	(18H1	1M091372
12	(7H0 HP = (9F10.0	1M091374
7	FORMAT (7HO FC = (9F10+6))	1MO01274

1M091378 1M091380	1M091382 1M091384	1M091385 1M091388	1M091390 1M091392	1M091394		35						
14 FORMAT (7HO GAM = (9F10.3)) 15 FORMAT (7HOSAMO = (9F10.3)) 14 FORMAT (7HO OM = (9F10.3))	WRIT TAN TAN TAN TAN TAN TAN TAN TAN TAN TA	REWIND 2	60 10 1 6 C(8)=CHAINF(1,7)	STOP END(0,0,0,0,0,0)								

OCT DEC OCT	FORMULA NUMBERS AND OCTAL LOCATIONS			00405	явам		VECTOR	00.7	00000 (FIL) 3 0	OR COMMON S	u d	100	URCE PROGRAM	t t	00313 D120K 199	00464 C)G4	00444 8) C 280	00417 6) 272	FROM LIBRARY
EC 0CT DEC	UNDING INTERNAL	EFN IFN	11 7	9	AGE NOT USED BY PROGRAM	56	OF NAMES IN TRANSFER	DEC	CHAIN (RTN)	MENSI	. DEC	NS.	SYMBOLS NOT APPEARIN	DEC	D) 20L	1 C)61 304	810	3)	TINES NOT PUNCHED
DEC OCT	NUMBERS WITH	EFN IFN LOC 4 5 00012	3 68 00343	82	STORAGE	DEC OCT 32302 77056	LOCATIONS OF	DEC	FXRCH 7 00007 (LEV) 6 00006	FOR VARIABLES NOT AF	DEC OCT	JM 315 00473 NM 311 00467	STORAGE LOCATIONS FOR S	DEC OCT	E)10J 191 00277	305	288	2) 269 00415	SUBROU (10H)O
DEC OCT D 32562 77462	EXTERNAL	IF	2 11 00027 13 72 00000	76		DEC OCT 317 00475		- 1	IOH)0 5 00005	STORAGE LOCATIONS	DEC	IM 316 00474 MM 312 00470	STC	DEC	D)20J 192 00300	306	202 00434	7 6 700 606	FXRCH (LEV)

```
M091458
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               M091470
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      M091474
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  .M091480
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  M091482
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    M091484
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    M091490
                 M091418
                                        LM091420
                                                                                                    M091426
                                                                                                                                                                                                                                                            M091440
                                                                                                                                                                                                                                                                                                                                           M091448
                                                                                                                                                                                                                                                                                                                                                               .M091450
                                                                                                                                                                                                                                                                                                                                                                                                                      M091456
                                                                                                                                                                                                                                                                                                                                                                                                                                                               M091460
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                M091462
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     M091464
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         M091466
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            .M091468
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   M091472
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            M091476
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               M091478
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            M091486
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                .M091488
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      M091492
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         1M091494
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            1M091496
M091416
                                                                                 MC91424
                                                                                                                                        M091428
                                                                                                                                                         M091430
                                                                                                                                                                                                                         M091436
                                                                                                                                                                                                                                           M091438
                                                                                                                                                                                                                                                                                                     M091444
                                                                                                                                                                                                                                                                                                                        M091446
                                                                                                                                                                                                                                                                                                                                                                                  .M091452
                                                                                                                                                                                                                                                                                                                                                                                                     M091454
                                                           M091422
                                                                                                                     M091427
                                                                                                                                                                               M091432
                                                                                                                                                                                                    M091434
                                                                                                                                                                                                                                                                                 M091442
                                                                                                                                                       EQUIVALENCE (C(32), TBL(1), SIG(14), R(15), H(16), QP(17), 2 PP(18), VRVV(19), SIGP(20), THPC(21), THO(22), PHIO(23), 3 EC(30), HP(31), OI(32), PHMAX(5), OM(27), GAMQ(28), GAM(29), 4 , (GAMMA(4), RE(3), OMU(2), C(32), (N, PRBL(8)), WRITE OUTPUT TAPE 6,1, (C(1), I=1,7), C(9), C(28), FORMAT (1H18X2HOI3X2HHP13X2HEC13X3HGAM11X4HGAMQ12X, 2 2HOM/F13, 2, F15, 0, F15, 0, 1Pc 17, 4, E15, 4, OPF 13, 0, 1HO, 3, 4X9HD, PHI MIN5X11HD, PHI PRINT51X9HRECORD, ID/
                                                                                                                                                                                                                                                                                                                   4 1P2E15.4.0PF60.0/1H08X3HPHI12X1HH7X3HRH016X5HGAMMA
                                                     SIMPF(YL,YPL,YPO,YPN)=YL+UPC*(YPL+4.*YPO+YPN)/3.
RELERF(A,6)=AbSF(A-b)/MAX1F(AbSF(A),ABSF(B),1.6-7)
DIMENSION C(200).VMAX(2.3),PHI(3).V(3.4.3),CU(3),
2 SAV(2.4.360).PRBL(B)
COMMON C
                     PREUF(YL,YO,YPL,YPQ)=YL+4.*(YL-YU+UPC*(YPL+YPO
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          PP=GAM*SIGP*RP**2*1.1884585E-3
VRVV=1.-7.292 1151E-5*COSF(01/57.295780)/PHDP
                                                                                                                                                                                                                                                                                                                                        5 6X8HALPHA H16X8HALPHA H2 6X8LALPHA PA6X1HN)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  PHDP=SORTF(CMU*(1.+EC)/RP)/RP
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            QP=GAMQ*SIGP*RP*2.9711463E-4
                                                                                                                                                                                                                                                                                                                                                                                                                                             IF (DPMIN-DPLIM) 22,22,21
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          V(1,2,1)=1,7453293E-2
VMAX(1,1)=1,7453293E-2
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  CALL ATMOS (HP.TBL.R)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         PHEND=6.2831853-DPTST
FNRAT=DPPR/DPTST
                                                                                                                                                                                                                                                                                                                                                               DPPR=C(9)/57.295780
DPLIM=C(7)/57.295780
     SUBROUTINE INTEG
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        PHPR=DPPR-DPTST
                                                                                                                                                                                                                                                                                                                                                                                                                           DPTST=DPMIN/2.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                DPMIN*DPMIN/2.
                                                                                                                                                                                                                                                                                                                                                                                                      DPMIN=DPPR
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  NRAT=FNRAT
                                          2 +YP01/2•1
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          SIGP=51G
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     60 TO 23
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                RP=HP+RE
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          OFLN
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               NS#1
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         O N Z
                                                                                                                                                                                                                                                                                                                                                                                                                            23
                                                                                                                                                                                                                                                                                                                                                                                                                                                                  21
```

	77.2.2.170	1MOO1498
		O O O O O O O O
	VMAX [192]=U.	COCTACET
	V(1,2,3)=0.	1M091502
	VMAX(1,93)=0.	1MG91504
	V{2 # 2 # 1 } = 0 •	1M091506
	VMAX(2*1)=0.	1M091508
	V(2,2,2,2)=1.	1M091510
	VMAX(2,2)=1.	1M091512
	V(2,2,3)=0.	1M091514
	VMAX(2,3)=0.	1M091516
6	CALL DIFFC(PHI(2),CO)	1M091518
	DO 31 I=1,3	1M091520
31	V(3,2,1)=-V(2,2,1)*CO(1)-V(1,2,1)*CO(2)	1M091522
	V(3,2,3) = V(3,2,3) + CO(3)	1M091524
	DPC=DPMIN	1M091526
	Ma]	1M091528
	PHI(3)=PHI(2)+UPC	1M091530
		1M091532
	DO 32 I=1,3	1M091534
	V(1,3,1)=V(1,2,1)+DPMIN*(V(2,2,1)+DPMIN*V(3,2,1)/2.)	1M091536
	V(2,3,1)=V(2,2,1)+DPMIN*V(3,2,1)	1M091538
32	V(3*3*1)=-V(2*3*1)*CO(1)-V(1*3*1)*CO(2)	1M091540
	V(3,3,3,3)=V(3,3,3)+CO(3)	1M091542
'n	DO 51 J=M•2	1M091544
	PHI(()=PHI((+1)	1M091546
	DO 51 K=1+3	1M091548
	00 51 I=1,3	1M091550
51	V{i • J • J • V { I • J + I • K }	1M091552
	DO 52 J=1,3	1M091554
	00 52 I=1,2	1M091556
52		1M091558
	IF (MAXIF(VMAX(1,1),VMAX(1,2),VMAX(1,3))-174532,93) 53,13,13	1M091560
53	[+X#Z	1M091562
	1+1N:	1M091564
	(PHI (2)-3	1M091566
54		1M091568
9	IF (PHI(2)-PHPR) 7,61,61	1M091570
61	PRBL(1)=57.295780*PHI(2)	1M091572
	PRBL(2)=H	1M091574
	PRGL(4)=57.295780*GAMMA	1M091576
	ന	1M091578
	DO 62 1=1,3	1M091580

	62	62 PRBL(I+4)=57.295780*V(1,2,1)-FRBL(4)	1M091582
		WRITE OUTPUT TAPE 6,2,(PRBL(I),I=1,8)	58
	7	FORMAT (F14.3.F14.0.1PE14.4.0P4F14.3.17)	1M091586
		IF (SENSELIGHT 1) 14,15	1M091588
	14	WRITE OUTPUT TAPE 6,17	1M091590
!	117	FORMAT (16HODATA UNSUITABLE)	1M091592
		60 10 9	1M091594
	15	SAV(1,1,NS) = PHI(2)	1M091596
•		SAV(2,1,NS)=GAMMA	1M091598
		DO 63 J=1+3	1M091600
		DO 63 I=1,2	1M091602
!	63	SAV(1,0+1,0NS)=V(1,02,0)	1M091604
		ONZ	1M091606
		NS=NS+1	1M091608
i 1		PHPR≈PHPR+DPPR	1M091610
		IF (PHI(2)-PHEND) 7,77,64	1M091612
	49	PRBL(1)=(1,-57.295780*V(1,2,1))*(1V(2,2,2))	1M091614
		2 -V(2,2,1)*V(1,2,2)/1.7453293E-2	1M091616
		PRBL(2)=0.	1M091618
		PRBL(3) ±0.◆	1M091620
		PRBL(4) ≈0.	1M091622
		IF (ABSF(PRBL(1))-1.E-6) 66,66,65	1M091624
	65	PRBL(2)=57.295780*(V(1,2,3)*(1V(2,2,2))+V(2,2,3)	1M091626
		2 *V(1,2,2))/PRBL(1)	1M091628
		PRBL(3)=((1.0-570,295780*V(1,02,1))*V(2,02,3)+V(2,02,1)	1M091630
		2 *V(1,2,3)/1.7453293E-2)/PRBL(1)	1M091632
		PRBL(4)=VMAX(1,3)+ABSF(PRBL(2))*VMAX(1,1)	1M091634
		2 +ABSF(PRBL(3))*VMAX(1,2)	1M091636
	99	DO 67 I=1,3	1M091638
, ;	67	PRBL(1+4)=VMAX(1,1)	1M091640
,		Z28#8*Z2-8	1M091642
,	,	DIMENSION SAVI (2000)	1M091643
		EQUIVALENCE (SAV1.SAV)	1M091646
J	, .		1M091647
:		WRITE TAPE 2,C(28),NS8,(SAV1(I),[=1,NS8),(PRBL(I),1=1,7)	1M091648
		DO 68 I=194	1M091650
	89	PRBL(1+3)=57.295780*PRBL(1+3)	1M091652
		WRITE OUTPUT TAPE 6,1, (C(I), I=1,7),C(9)	1M091654
		19329	S
1	, 69	Z NIPPRBL(4/)PRBL(Z)+(PRBL(1+4/)1=1+5/)PRBL(3/+(VMAK(Z)1)+1=1+5/ Format (1H+F89+0/1H031x5HDELT423x15HEND DERIVATIVES28x2Hnt/	1M091660
)

またのとの、 対対対域の

```
1M091690
1M091692
                                                                                                                                                                                                                                                                                                                                                                                                                     1M091710
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       1M091720
                                                                       LM091670
                                                                                                                       1M091676
                                                                                                                                       1M091678
                                                                                                                                                        1M091680
                                                                                                                                                                                                                           1M091688
                                                                                                                                                                                                                                                                         1M091694
                                                                                                                                                                                                                                                                                                                                1M091700
                                                                                                                                                                                                                                                                                                                                                               1M091704
                                                                                                                                                                                                                                                                                                                                                                                   1M091706
                                                                                                                                                                                                                                                                                                                                                                                                    1M091708
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       1M091716
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      1M091718
   1M091662
                     1M091664
                                     LM091666
                                                     1M091668
                                                                                       1M091672
                                                                                                       LM091674
                                                                                                                                                                         1M091682
                                                                                                                                                                                         1M091684
                                                                                                                                                                                                           1M091686
                                                                                                                                                                                                                                                                                             1M091696
                                                                                                                                                                                                                                                                                                              1M091698
                                                                                                                                                                                                                                                                                                                                               1M091702
                                                                                                                                                                                                                                                                                                                                                                                                                                   1M091711
                                                                                                                                                                                                                                                                                                                                                                                                                                                  1M091712
                                                                                                                                                                                                                                                                                                                                                                                                                                                                     1M091714
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       1M091722
   WEIGHT THETA HI
                                                                                                                                    V(2,4,1)=PREDF(V(2,1,1),V(2,2,1),V(3,1,1),V(3,2,1))
V(1,4,1)=SIMPF(V(1,1,1,1),V(2,1,1),V(2,2,1),V(2,4,1))
V(3,4,1)=-V(2,4,1)*LO(1)-V(1,4,1)*LO(2)
2 1PE42.4.0PI4X3FI4.3.17//20X27HTH PER BD WEIGHT TH.
3 13X10HMAX THETAS/16X1P2E12.4.14X0P3F14.3//32X
4 15HWEIGHT THETA H213X15HMAX DERIVATIVE.S/1PE42.4.14X
                                                                                                                                                                                                                        V(2,3,1)=SIMPF(V(2,1,1,1),V(3,1,1),V(3,2,1),V(3,4,1)
V(1,3,1)=SIMPF(V(1,1,1,1),V(2,1,1),V(2,2,1),V(2,3,1)
V(3,3,1)=-V(2,3,1)*CO(1,1-V(1,3,1)*CO(2)
                                                                                                                                                                                                                                                                                                                                                                                               IF (INTF((TEST-INTF(TEST+.5) )*FNKAT) ) 4.16.4
                                                                                                                                                                                                                                                                                                                             ERR=MAX1F(ERR, RELERF(V(3,4,1),V(3,3,1)))
                                                                                                                                                                                                                                                                                                                                            IF (ERR-1.E-6) 10.10.12
IF (DPC+DPC-DPPR) 11.11.4
TEST=.5*(PHPR+DPTST-PHI(3) )/DPC
                                                                                                                                                                                         V(3,4,3)=V(3,4,3)+CO(3)
                                                                                                                                                                                                                                                                         V(3,3,3)=V(3,3,3)+CO(3)
                                                                                                    CALL DIFFC(PHI(3),CO)
DO 71 I=1,3
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       IF (ERR-1.E-4) 4,443
                                                                                       PHI (3) = PHI (2) + DPC
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        SENSEL I GHT 1
                                                                                                                                                                                                        DO 72 I=1+3
                                                                                                                                                                                                                                                                                                             DO 73 IR193
                                                                                                                                                                                                                                                                                                                                                                                                                                   DPC=UPC+DPC
                                                      OP3F14.3)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        TO 61
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       60 70 5
                                                                                                                                                                                                                                                                                                                                                                                                                                                  60 10 5
                                                                                                                                                                                                                                                                                              ERR=0.
                                                                                                                                                                                                                                                                                                                                                                                                                   X # 2
                                                                                                                                                                                                                                                                                                                                                                                                                                                                      ¥=1
                                                                                                                                                                                                                                                           72
                                                                                                                                                                                                                                                                                                                               73
                                                                                                                                                                                                                                                                                                                                                                 10
                                                                                                                                                                          71
                                                                                                                                                                                                                                                                                                                                                                                  11
                                                                                                                                                                                                                                                                                                                                                                                                                     16
                                                                       9 1
```

END (0.0.0.0.0)

	OCTAL LOCATIONS LOC	41 တ္	
OCT 77456 77462 77427 77441 77450	OCTAL L	LOCATIONS LOC 00067 00313 00432 00644 00644 00644 01165	00000 00000 00000
DEC 32558 32562 32535 32545 32545	A N N N N N N N N N N N N N N N N N N N	OCTAL L IFN 22 633 74 84 95 111 152 166 175	DEC 4 0
GAMG OI PHMAX	LA NUMBERS	E F N D S S S S S S S S S S S S S S S S S S	SORT (RTN)
OCT 9 77457 2 7/462 3 77451 3 77425 1 77423	CORRESPONDING INTERNAL FORMULA NUMBERS IFN LOC IFN LOC 3 RELER 4 01543	L FORMULA NUMBERS IFN LOC 20 00063 53 00244 72 00377 79 00457 94 00534 106 00610 130 00753 161 01117 173 01235 181 01277 PROGRAY	0CT 00003 00010
DEC 32559 32562 32553 32533	S INTE	IFN 20 53 72 72 79 106 130 161 173 181 181	DEC 3 8
GAM C PHIO RE TBL	RRESPONDING RELER	EFN IFN 20 20 20 31 20 31 72 20 31 72 20 31 72 20 20 20 20 20 20 20 20 20 20 20 20 20	ATMOS (LEV)
0CT 77461 77460 77424 77443 77440	WITH LOC 01533	ESPO 053 053 055 155 155 155 155 155 155 155	00002 00007
DEC 32561 32560 32550 32547 32547	TIONS IFN	MITH CORRE 1FN L(18 000 51 000 78 000 92 000 101 000 115 000 172 010 180 013 STOP STOP STOP	DEC 2
HP OMU SIG VRVV	ARITHMETIC STATEMENT FUNCTIONS IFN LOC IFN 2 01517 SIMP 3	<pre>mmuo4mrrou</pre>	0(HOI)
0CT 77442 77426 77455 77444 77444	ETIC STATE LOC 01517	LOC EFN 00000 2 00236 00330 00446 00000 1 00537 00537 01262 01267 1	0CT 000001 00005 00006
DEC 32546 32534 32557 32557 32550 32550	RITHME IFN 2	EXTERNAL 1 14 3 50 5 65 4 77 5 91 6 114 6 116 9 178 178 178 178 178	DEC 1 5 6
GAMMA OM SIGP THPO	NAMES OF AL	E E N P P P P P P P P P P P P P P P P P	DIFFC (FIL) (STH)

The STORY C (200) * V (3)	1M091176 1M091178
COUTWLENCE (C(32)*TBL(1)*SIG(14)*R(15)*H(16)*QP(17)* PP(18)*PREV(19)*SIGF(20)*PHMAX(5)*PHMAX(6)*PHMAX(
PP (18) *VRV(19) SIGP (20) *THPO(21) *THO(22) *PHIO(23) *PHIO(23) *PHIO(23) *PHIO(23) *PHIO(23) *PHIO(23) *PHIO(23) *PHIO(23) *PHIO(23) *PHIO(24) *PHIO(24) *PHIO(24) *PHIO(24) *PHIO(24) *PHIO(25)	1M091180
(200) #PP 31) #01 (32) #PHMAX (5) *OM (27) *GAMG (28) *GAM (29)) * (GAMMA(4) *RE (3) *OMU(2) *C (32) *DMU(2)	1M091182
Note	1M091184
COSP) C*SINP CPEOMCP) 3-3333+PIIL 3-3333+PIIL	18091186
C*SINP CP+EOMCP) 3 3333+PIIL	1M091188
C*SINP CP+EOMCP) 3 3333+PIIL	1MOS1190
C*SINP CP+EOMCP) 3 3333+PIIL	IM091192
C*SINP CP+EOMCP) 3 3333+PIIL	1M091194
C*SINP CP+EOMCP) 3 3333+PIIL	1M091196
C*SINP CP+EOMCP) 3 3333+PT1L	1,M091198
C*SINP CP+EOMCP) 3-3334-PTIL	1M091200
C*SINP CP+EOMCP) 3-3333+PIIL	202190ML
CP+EOMCP) 3 3333+PIIL 3 3333+PIIL	14001204
2 3333+PTIL	#02160#T
2 3333+PTIL	1M091206
3 3333+PT1L	1M091208
	1M091210
	1M091212
END(0,0,0,0,0)	1M091214
	:

	NOT PUNCHED FROM LIBRARY	SUBROUTINES ATMOS	SIN COS
DEC OCT 116 00164	3) DEC OCT 3) 114,00162 6)	DEC OCT 1) 123 00173	DEC OCT 9) 121 00171 7) 122 00172
ROGRAM	SYMBOLS NOT APPEARING IN SOURCE PROGRAM	STORAGE LOCATIONS FOR SYMBOLS	
RRVV 129 00201	PTIL 130 00202 TWOQ 126 00176	00	0 0
			100 030
	SIN 2 00002	ATMOS 0 00000	1 00001
DEC OCT	DEC OCT	DEC	DEC
	OCATIONS OF NAMES IN TRANSFER VECTOR	LOCATIONS OF NAME	
		DEC OCT 32362 77152	DEC 0CT 133 00205
	T USED BY PROGRAM	STORAGE NOT	
		VRVV 32549 77445	THPO 32551 77447
R 32545 77441 THO 32552 77450	RE 32533 77425 TBL 32531 77423	SIG 32544 77440	32550
32535	32553	32532	32557
32562	32562	32560	
	GAM 32559 77457	`]	32546

1M091800	108 [60WI	18091802	1M091803	708100WL	, acatocat	18001806	2001/074	
SCALE FOR PUNCHING	•							
CHAIN(1) PROGRAM TO SCALE FOR PUNCHING	DIMENSION C(20)	COMMON C	IF DIVIDE CHECK 1,2	C(20)=0•	CALL FXRCH(C)	CALL SCALE	GO TO 1	END(0,0,0,0,0)

		S				•	46			
	00.1	LOCATION	L 0C				001		0CT	
	DEC	CTAL	IFN				DEC		DEC	
		AND 0	E T					ROGRAM		
INCES	DEC OCT	NUMBERS WITH CORRESPONDING INTERNAL FORMULA NUMBERS AND OCTAL LOCATIONS	EFN IFN LOC 1 6 00006	STORAGE NOT USED BY PROGRAM		LOCATIONS OF NAMES IN TRANSFER VECTOR	DEC OCT	AGE LUCATIONS FUR SYMBOLS NOT APPEARING IN SOURCE PROGRAM	DEC OCT	SUBROUTINES NOT PUNCHED FROM LIBRARY
APPEARING IN COMMON SENTENCES	DEC OCT	RS WITH CORRESPONDING	EFN IFN LOC 1 5 00006	STORAGE NOT	DEC OCT 32542 77436	LOCATIONS OF NAMES	DEC OCT SCALE 0 00000	OCATIONS FOR SYMBOLS	DEC OCT 15 00017	SUBROUTINES
_			ш				SC	RAGE L	(9	
STORAGE FOR VARIABLES	DEC OCT C 32562 77462	EXTERNAL FORMULA	IFN LOC 4 00004		DEC OCT 20 00024		DEC OCT 1 00001	STOR	DEC OCT 14 00016	SCALE
STORAGE	Ü	EX1	EFN 2				FXRCH		3)	FXRCH

	SUBROUTINE SCALE	1M001822	
⊃	C (20) 95AV (89120) 9	IM091824	
		IM091826	
EQUIV.	LENCE (SAV.	1M091827	
WRITE	9 I = I + I B)	1M091828	
4	FORMAT (1H16X11HTAPE RECORD5X26HWEIGHT PAR WEIGHT GAMMA	1M091830 1M091832	
- 1	4-ASTMELEGIT TIEGASTMELEGIT IEZITEGOSOFILETASEGOSOFICAS. 4-ASTMELEGOT TIEGASTMELEGIT IEZITEGOSOFILETASEGOSOFICAS. AND INC. MAIN AND AND AND AND AND AND AND AND AND AN	1M001834	
S SOHWAX	OUNTS	1M091836	
1	CTIONOPF11.3,F13.0,F14.3,F16.0,	1M091838	
	ARGUMENT F11.3.F13.0.F14.3.F16.0.F15.0.F14.0/	1M091840	
S	ID -F7.0)	1M091842	
J#C(11)+•5	 	1M091844	
IF (I	(20)+.5)-INTF(C(1)+.5))	1M091846	
READ TAPE	2,C(20),NS8,(SAV1(I),I=1,	1M091848	
IF (C	(C(20)) 4,3,3	1M091850	
~~	0.2	1M091852	1
IF (S	(SENSELIGHT 1) 5,6	1M091854	47
SPNCH	SPNCH(1,))=SPNCH(3,))	1M091856	
GO TO 69		1M091858	
SENSEL IGHT	LIGHT 1	1M091860	
60 TO	2	IM091862	
60 IF (SI	(SENSELIGHT 1) 61961	1M091864	
61 WH1=C(4)	(4)	1M091866	
WH2=C(5)	(5)	1M091868	
WP=AB.	WP=ABSF(C(2))	1M091870	
1F (C(2)	(2)) 62,63,63	1M091872	
62 WHI=PRBL(2	RBL(2)	1M091874	
WHZ=PRBL(RBL(3)	1M091876	
63 NS=NS8/8	8/8	1M091878	
CALL	WRITE(6HOD WHS,PRBL,3)	1M091879	
-3	64 1=1+5	1M091880	
SPNCH SPNCH	T 1 1 1 1 1 1 1 1 1	1M091882	
	DNCH(1, ∪) ₩WH1	1M091884	
DO 65	I=1.NS	1M091886	
65 PNCH(PNCH(I+1,))=(C(3)*SAV(2,1)+WP*SAV(7,1)+WH1*SAV(3,1)	1M091888	
7	+WH2*SAV(5 • 1)) *57 • 295780	1M091890	
1		1M091892	
CALL	CALL WRITE (6HOFNCTN, PNCH(1, J), N)	1M091894	
17	(C(17)) 69.69.66	1M091896	
	•	,	

IM091904 IM091906 IM091908 IM091910 IM091914 IM091916 IM091920 IM091922 IM091922 IM091922
IM091904 IM091908 IM091910 IM091912 IM091916 IM091918 IM091920 IM091922 IM091924 IM091926
1M091908 1M091910 1M091912 1M091914 1M091918 1M091920 1M091922 1M091923 1M091924
IMO91910 IMO91912 IMO91914 IMO91916 IMO91920 IMO91922 IMO91923 IMO91924
IM091912 IM091914 IM091916 IM091920 IM091922 IM091923 IM091924 IM091924
IM091914 IM091916 IM091920 IM091922 IM091923 IM091924 IM091924
1M091916 1M091918 1M091920 1M091922 1M091923 1M091924
1M091918 1M091920 1M091922 1M091923 1M091924 1M091924
1M091920 1M091922 1M091923 1M091924 1M091926
1M091922 1M091923 1M091924 1M091926
1M091923 1M091924 1M091926
1M091924 1M091926
1M091926
1
1M091928
1M091930
1M091932
1M091934
1M091938
1M091940
1M091942

STS62 77462 STS62 77662 STS62 77462 STS62 77662 STS62 77462 STS62 77462 STS62 77462 STS62 77462 STS62 77662		DEC OCT	DEC OCT	DEC	OCT
Name Color Color	C 32562 77462				
15N LOC		M.	INTERNAL	AND OCTAL	OCATIONS
11 00000	I FIN	NHI	NHI	EFN IFN	L0C
25 00116	11 1	3 13	2 14	2 23	00111
31 00127 61 32 00131 62 36 00143 63 38 00147 42 00175 65 45 00222 6 6 50 00270 71 63 00421 64 00432 72 66 00455 73 85 00000 74 89 00000 91 00574 52 00346 73 85 00000 74 89 00000 91 00574 52 00345 73 85 00000 74 89 00000 92 00574 52 00345 74 80 DEC	25	25	27	6 29	00125
10001 1000	31	32	36	63 38	00147
SE 00343 69 58 00363 7 59 00367 74 89 00000	745	45	20	791	00316
64 00432 72 66 00455 73 85 00000 74 89 00000 91 00574 SIORAGE NOT USED BY PROGRAM DEC OCT 32542 77436 1 DEC OCT DEC OCT 1 00001 WRITE 2 00002 (FIL) 4 00004 (IOH)0 6 00005 7 00007 (RTN) 3 00003 (SCH) 0 00000 (STH) 5 00005 STORAGE LOCATIONS FOR VARIABLES APPEARING IN DIMENSION AND EQUIVALENCE SENTENCES DEC OCT DEC OCT OCT DEC OCT	55	58	59	1	00461
DEC	91	2 66	82	47	00000
DEC OCT DEC OCT		STORAGE			
DEC		l			49
DEC OCT OCT	١,	ליין מיין מיין			
DEC OCT		SO ONOTHAN	TA TOANGERD	0	
DEC OCT DEC OCT DEC OCT DEC OCT DEC OCT DEC OCT OCT OCT OCT OCT OCT DEC OCT <td></td> <td>10 SNOT 147</td> <td>AN ICAMOI EN</td> <td></td> <td></td>		10 SNOT 147	AN ICAMOI EN		
TO0007 (RTN) 3 00003 (SCH) 0 00000 (STH) 5	DEC	DEC 2	DEC 4	DEC (10H)0	00006 00006
STORAGE LOCATIONS FOR VARIABLES APPEARING IN DIMENSION AND EQUIVALENCE SENTENC DEC OCT DEC OCT DEC OCT DEC OCT DEC DEC OCT DEC DEC DEC DEC OCT DEC DEC DEC OCT DEC <td>7</td> <td>m</td> <td>0</td> <td>(STH)</td> <td>90000</td>	7	m	0	(STH)	90000
DEC OCT DEC OCT DEC OCT DEC OCT DEC OCT DEC DEC DEC OCT DEC DEC OCT NI 511 512 510 OCT DEC OCT NI 511 512 510 OCT DEC OCT NI 551 512 510 OCT NI 551 551 551 552	1	FOR VARIABLES	IN DIMENSION	EQUIVALENCE	S
601 01131	DEC	DEC	DEC	0	00.7
3497 06651 SAV 3497 06651 SPNCH 601 01131 RAGE LOCATIONS FOR VARIABLES NOT APPEARING IN DIMENSION•EQUIVALENCE OR COMMON DEC OCT DEC OCT DEC OCT 514 01002 ID 513 01001 J 512 01000 NI 511 510 00776 N 509 30775 NS8 508 00774 NS 507	601	2537	2537	PRBL	01011
RAGE LOCATIONS FOR VARIABLES NOT APPEARING IN DIMENSION•EQUIVALENCE OR COMMON DEC OCT DEC OCT DEC 514 01002 ID 513 01001 J 512 01000 NI 511 510 00775 N 509 00775 NS 507 NS 507	3497	3497	601	31	
DEC OCT DEC OCT DEC 514 01002 ID 513 01001 J 512 01000 N1 511 510 00776 N 509 00775 NS 508 00774 NS 507 504 00777 MS 506 00777 MS 507 507 507	LOCATIONS	VARIABLES NOT	Z	OR COMMON	SENTENCES
510 00776 N 509 30775 NS8 508 00774 NS 507	DEC 514	DEC 513	DEC 512	D IN	0CT 00777
100 CO VIII VIII VIII VIII	510	N 509 30775 WH2 505 30771		NS	- 1

									-	i					
00.1	0	00900		(SCH)			50	0							
DEC	502	384													
	C)100	2)	4RY	NPSCL						:					
	00		FROM LIBRA	WRITE											
DEC	503	497	CHED												
	C) 102	1)	S NOT PUN	(RTN)											
- 1	1 00121 2 00742	2 00730 3 00611	SUBROUTINE	(FIL) (RTN) WRITE											
۵		8)1 472 6) 393		(STH)											
	Q (A	8)		٥											
		403 00623 390 00606		0 (10H) 0							•				
	8)	8129		(LEV)											

APPENDIX B

PROGRAM DESCRIPTION - ATMOSPHERE SUBROUTINE NORTH AMERICAN AVIATION, INC. COLUMBUS ENGINEERING PROGRAM DESCRIPTION

1. Identification

- a. Atmosphere Subroutine, 1F113
- b. Sarah Crooke, August 1959
- c. Aero Advanced Design Group 214
- d. Fortran Source Deck is up to date.

2. Purpose

Calculates standard atmosphere properties at a specified altitude.

3. Restrictions

Fortran 2 subroutine subprogram.

4. Method

Table look-up of properties at base geopotentials followed by application of the ideal gas law.

5. Use

Subroutine is reached by Fortran Statement

CALL ATMOS (H, TEL, R)

where H is the input altitude
TBL is the table of base geopotentials and properties
R is the results array.

6. Coding Information

- a. This routine occupies 309 Locations.
- b. Inferior Subroutines are Library routines DUMP, EXP, SQRT, and the Fortran system routine EXP(3.

7. Data Arrangement

a. The array TBL must contain the following data:

Location	Description	Symbol
1	Sea Level Temperature, OR	т,
2	Sea Level Pressure, 1b/ft ²	P.

Location	Description	Symbol
3	Sea Level Gas Constant, ft ² /sec ² OR	R.
4	Sea Level Density, slugs/ft ³	Po
5	Number of Base Geopotentials in Table	n
6 : 5 + n	Base Geopotentials, ft	he
6 + n : 5 + 2n	Base Gas Constants, ft ² /sec ²⁰ R	R &
6 + 2 n : 5 + 3 n	Base Temperatures, OR	T ₆
6 + 3 n : 5 + 4 n	Base Specific Heat Ratios, dimension- less	γ ₈
$6 + 4n A_1$ $7 + 4n B_1$ \vdots $4 + 6n A_n$ $5 + 6n B_n$	A; *10 bi is the ith Base Pressure Ratio, dimensionless	6 &

b. On return the array R will contain the following data:

Location	Description	Symbol
1	Geopotential Altitude, ft	4
2	Density Ratio, dimensionless	r
3	Speed of Sound, ft/sec	a
4	Speed of Sound, knots	Α
5	Pressure Ratio, dimensionless	δ
6	Local Acceleration of Gravity, ft/sec ²	g

Location	<u>Description</u>	Symbol
7	Temperature, OR	T
8	Gas Constant, ft ² /sec ²⁰ R	A
9	Incompressible Dynamic Pressure at Mach 1, 1b/ft ²	G
10	Ratio of Specific Heats, dimensionless	y

8. Formulas

In the formulas below H is the input altitude. The remaining symbols are those listed in 7 above. The subscript ${\bf 8}$ refers to the value of the quantity at the ith base geopotential altitude, where

$$i = 1$$
 if $h < h_2$,
 $i = j$ if $h_j \le h < h_{j+1}$, $j = 2,..., n-1$,
 $i = n-1$ if $h_n \le h$.

The prefix Δ denotes the increment of the quantity from the ith to the (i+l)th base geopotential altitude.

$$R = \frac{20891000 \, H}{H + 20891000}$$

$$T = T_8 + (R - R_8) \frac{\Delta T}{\Delta R}$$

$$R = R_8 + (R - R_8) \frac{\Delta R}{\Delta R}$$

$$S = S_8 \left[\frac{R_8}{R} \frac{T}{T_8} \right]^{32.17 + 0 + 9 \, \Delta R / (T_8 \, \Delta R - R_8 \, \Delta T)}$$
if $T_8 \, \Delta R - R_8 \, \Delta T \neq 0$

$$= S_8 e^{-32.17 + 0 + 9 \, (R - R_8) / \Delta R},$$
if $T_8 \, \Delta R - R_8 \, \Delta T = 0$

$$\sigma = \delta \frac{T_o}{T} \frac{R_o}{R}$$

$$\gamma = \gamma_{8} + (L - L_{8}) \Delta \gamma \Delta S$$

$$g = 32.174049 \left[\frac{20891000}{H + 20891000} \right]^2$$

$$a = \sqrt{\frac{\gamma P_o \delta}{\rho_o \sigma}}$$

$$A = \frac{a}{1.6878099}$$

$$G = \frac{1}{2} (\rho_{\bullet} \sigma) a^2$$

```
1,040155
1,040160
                                                                                                                                                                                                                                                                                                                            F040220
                                                                                                                                                                                                                                                                                                                                                       1F040230
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   F040290
                                      F040115
                                                                 F040125
                                                                                            F040135
                                                                                                                                                                                                                              F040185
                                                                                                                                                                                                                                                                                                                                                                                             F040245
                                                                                                                                                                                                                                                                                                                                                                                                                                                              F040270
                                                                                                                                                                                                                                                                                                                                                                                                                                                                             F040275
F040100
            F040105
                           F040110
                                                      F040120
                                                                               F040130
                                                                                                          F040140
                                                                                                                       F040145
                                                                                                                                    F040150
                                                                                                                                                                            F040165
                                                                                                                                                                                         F040170
                                                                                                                                                                                                     F040175
                                                                                                                                                                                                                  F040180
                                                                                                                                                                                                                                             F040190
                                                                                                                                                                                                                                                          F040195
                                                                                                                                                                                                                                                                       F040200
                                                                                                                                                                                                                                                                                     F040205
                                                                                                                                                                                                                                                                                                   F040210
                                                                                                                                                                                                                                                                                                                F040215
                                                                                                                                                                                                                                                                                                                                                                                 F040240
                                                                                                                                                                                                                                                                                                                                                                                                            F040250
                                                                                                                                                                                                                                                                                                                                                                                                                          F040255
                                                                                                                                                                                                                                                                                                                                                                                                                                      F040260
                                                                                                                                                                                                                                                                                                                                                                                                                                                    F040265
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          F040280
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        F040285
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               1F040300
                                                                                                                                                                                                                                                                                                                                                                                                         R(2)=(RB*R(7)/(R(8)*TB))**(32*174049/R(10))
R(5)=R(2)*PBPO
R(2)=R(5)*TABLE(1)*TABLE(3)/(R(7)*R(8))
R(10)=GAMB+DGDH*R(9)
R(10)=SAB174049*(20891000*/(20891000*H))**2
R(5)=32*174049*(20891000*/(20891000*H))**2
R(5)=32*174049*(20891000*/(20891000*H))**2
R(5)=3*R(3)*R(3)*TABLE(4)*R(2)
                                                                                                                                                                                                                                                                                                                                                                                  R(2)=EXPF(-32.174049*R(9)/(R(7)*R(8)))
SUBROUTINE ATMOS(H.TABLE.RES)
DIMENSION TABLE(100).RES(10).R(10)
                                                                                                                                                                                                                                                                                                PBPO=TABLE(J+2)*10.**TABLE(J+3)
R(9)=R(1)-HB
R(7)=TB+DTDH*R(9)
R(8)=RB+DRDH*R(9)
R(10)=TB*DRDH*R(9)
IF(R(10))30,25,30
                          R(1)=H*20891000./(H+20891000.)
                                                                                            IF(TABLE(K+5)-R(1))20,15,15
CONTINUE
                                                                                                                                                                                                                                                                       DGDH=(TABLE(J.5)-GAMB)/R(3)
                                                                                                                                                                           RB#TABLE(J+4)
DRDH=(TABLE(J+5)-RB)/R(3)
                                                                                                                                                                                                                 TB=TABLE(J+4)
DTDH=(TABLE(J+5)-TB)/R(3)
                                                                                                                                                 R(3)=TABLE(K+5)-HB
                                                                                                                                                                                                                                                           GAMB=TABLE (J+4)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              END (0.0.0.0.0.0)
                                                      IF(I-1)5,5,10
                                                                                                                                  HB=TABLE(K+4)
                                                                    R(1)=DUMPF(1)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   RES(1)=R(1)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      D040I=1910
                                          (=TABLE(5)
                                                                               D020K=2+1
                                                                                                                                                                                                                                                                                        J=J+I+K
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               RETURN
                                                                                                                                                                                                                                                                                                                                                                                                GOT035
                                                                                                                                                                                                      1+7=7
                                                                                                                                                                 J=1+K
                                                                                                                                                                                                                                                1+0=0
                                                                                                                          (=)
                                                                               10
                                                                                                            50
                                                                                                                                                                                                                                                                                                                                                                                                            35
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  04
                                                                                                                                                                                                                                                                                                                                                                                   25
```

とは

NUMBERS AND OCTAL LOCATIONS EFN IFN LOC 15 11 00141 40 40 00401		DEC OCT SORT 0 00000	AND EQUIVALENCE SENTENCES OCT DEC OCT	ALENCE OR COMMON SENTENCES DEC OCT DTDH 295 00447 K 291 00443	JRCE PROGRAM DEC OCT C161 286 00436 3) 267 00413	BRARY
INTERNAL FORMULA NUMBERS EFN IFN LOC 20 9 00132 35 32 00312	TKOGRAĐ MANA	SFER VECTOR DEC OCT 3 00003	SION AND E	DIMENSION•EGUIVALENCE DEC OCT MB 296 00450 J 292 00444 TB 288 00440	ARING IN SOURCE DEC OCT 287 00437 265 00411	D FROM LI
	OSED BY	NAMES IN TRANSFER DEC DUMP 3	IN DIMEN	IN GA	NOT APPE C)62 2)	SUBROUTINES NOT PUNCHED FROM LIBRARY SORT
WITH CORRESPONDING IFN LOC 7 00113 31 00272 STORAGE NOT 19		DEC OCT 1 00001	IABLES APPEARING DEC OCT	LES NOT APPEARING DEC OCT 297 00451 293 00445 289 00441	IONS FOR SYMBOLS DEC OCT 86 00126 283 00433 282 00432	SUBROUTI _! SORT
NUMBERS EFN 10	-	Ж	ONS FOR VARIABLES DEC	FOR VARIAB HB DGDH RB	STORAGE LOCATIONS E)5 B6 1) 283 7)	EXP
EXTERNAL FORMULA 1FN LOC 5 6 00106 5 29 00254	DEC OCT 309 00465	DEC OCT 2 00002	STORAGE LOCATIONS DEC OCT 308 00464	STORAGE LOCATIONS FOR VARIABLES NOT DEC OCT 1 298 00452 HB 297 00 RDH 294 00446 DGDH 293 00 BPO 290 00442 RB 289 00	STOI DEC OCT 170 00252 277 00425 272 00420	EXP (3
EFN EFN 25 25		EXP(3	S 8	STORAG DRDH PBPO	Q 6 6 6 9	DUMP

APPENDIX C

PROGRAM DESCRIPTION - FIXED DECIMAL CARD READ ROUTINE WITH ERROR DETECTION NORTH AMERICAN AVIATION, INC. COLUMBUS ENGINEERING PROGRAM DESCRIPTION

1. Identification

- a. Fixed Decimal Card Read Routine with Error Detection Deck NCF-FXRCH
- b. 0. C. Juelich, March 1960
- c. Aero Advanced Design Group 214
- d. Fortran Source Deck is up to date.

2. Purpose

- a. Load Input Data for Fortran II programs.
- b. Permit resumption of loading after cards with zero or fractional origin are found.
- c. List such error cards in the print-out.

3. Restrictions

- a. Reads input tape 5, writes output tape 6 in case of error.
- b. Data cards are written on Form 114-C-17 (Fortran Fixed 10 Digit Decimal Data).
- c. Uses Fortran II Error Procedure.

4. Method

- a. Card images are read from the input tape. The first word specifies the location to which the data is to be transmitted, and whether the data set is complete.
- b. Filled-in card fields are transmitted to the calling program, blank fields are not transmitted.
- c. Error Card images are written on the output tape. If error cards are found the error procedure is invoked at the end of the data set.

5. Use

a. Subroutine is reached by the Fortran Statement:

CALL FXRCH (D) .

b. A card image is read. The first word on the card is the subscript h, written with decimal point. The (i+2)th word on the card; i = 0, 1, 2, 3, 4; is transmitted to location D(ini+i) as a floating point number unless it is blank or -0. If the (i+2)th word is blank or -0 location D(ini+i) is unmodified. If h is positive this procedure is repeated. If h is negative control returns to the calling program. (Subscripting as in EQUIVALENCE statements.)

6. Coding Information

- a. This routine requires 174 locations.
- b. Inferior subroutines are the Library routine ERRØR and Fortran System Subroutines.

J		15126000	
		1612600	
	DIMENSION A(2),C(6),D(6)	18126020	
		1.15050 15125020	
-	READ INPUT TAPE 5-101-(C(J)-J=1-61-A(1)-A(2)	1612666	
		15136050	
*	IF (J) 2,99,2	1612404	
7	<u> </u>	15126030	
6	13 K=2,6	1513600	
	IF (C(K)) 12,11,12	15136000	
11		16124100	
12		16126110	
13	_	16126120	
14	IF (SIGNF(1 C(1))) 20,20,1	16126120	
50	301,1	15126140	
30	CALL ERROR	JE126140	
04	RETURN	15126160	
99	GO TO (97.98).1	1 1104100	
97	1 4 2		
	OUTPUT	59	
86	1		
	14	16126210	
101	(6F12.0%)	15126220	
102	- 1	1F126230	
103	16-8+5E16-8+A6+A2)	1F126240	
	FREUDENCY 4 (0.00.1) .2 (0.1.0) .11(1.00.1) .14(1.00.5) .20(1.0) .	1F126245	
	(0.1) 96 S	1F126248	
	END(0,0,0,0,0)		

APPENDIX D

PROGRAM DESCRIPTION - PUNCH SCALING FUNCTION NORTH AMERICAN AVIATION, INC. COLUMBUS ENGINEERING PROGRAM DESCRIPTION

1. Identification

- a. Punch Scaling Function, Deck NCF NPSCL.
- b. J. B. Burnett, May 1960.
- c. Digital Computing Group 331.
- d. Source Deck is up to date.

2. Purpose

Converts floating point data to fixed point data which is scaled suitably for automatic plotting equipment.

3. Restrictions

Operates as a Fortran II Function Subprogram.

4. Method

Linear Scaling.

5. Use

a. Reached through a Fortran Statement such as

IPNCH = NPSCL (A, S)

where A is the number to be scaled

- S is an array of dimension 4 containing the scale table.
 - S(2) holds the plotter counts corresponding to the left or bottom edge of the graph
 - S(4) holds the plotter counts corresponding to the right or top edge of the graph
 - S(1) holds the value of A corresponding to S(2)
 - S(3) holds the value of A corresponding to S(4)
- b. S(2) and S(4) must be between 0.0 and 999.0,
 S(3) must exceed S(1). If the array S does not meet these specifications IPNCH will be set to -0.
- c. If A is less than S(1), IPNCH will be set to 0.
 If A exceeds S(3) IPNCH will be set to 999.
 (The user must make provision to confine the plotting head to the plotting bed.)

d. It is expected that the plotting machine be set to 20 counts per centimeter, with (0, 0) counts at the lower left hand corner of the grid.

6. Coding Information

- a. This routine occupies 119 locations.
- b. There are no inferior subroutines.

DIMENSION S(4)	NPSCL305
17 (3(3)10(1)) Y09Y891	
IF (S(4)) 98-2-2	
1F (S(2))	J
1F (S(4)-9	NPSCL330
-9666-	NPSCL332
10-1410-ENDER	NOCT 34.0
7.4.0.4. LT	0+0-10-0-2 0+0-10-0-2
5 IF (A-3(3)) 6:66100 A NDCC = (A-C(1) 1+FNID/DENAC(2)4.5	NDCC 250
	いまで JOON
101 O O O O O O O O O O O O O O O O O O	NO TO DO
	SOCIOSIA NACIOSIA
101 01 09 00 10301 00	NOCT 1370
	ひょうしゅく こうりょう
1	NESCHADA
1100 011	
1	,

BERS AND CCTAL LOCATIONS	EFN IFN LOC	98 14 00131			ENCE OR COMMON SENTENCES	DEC OCT	E PROGRAM	6) DEC OCT 106 00152					
ITH CORRESPONDING INTERNAL FORMULA NUMBERS	EFN IFN LOC 3 7 00070	6 12 00114 101 19 00141	STORAGE NOT USED BY PROGRAM		IG IN DIMENSION, EQUIVALENCE	DEC OCT NPSCL 116 00164	ONS FUR SYMBOLS NOT APPEARING IN SOURCE PROGRAM	3) DEC OCT 104 00150					
3	7 7 7 7 7 Y	100 11 0010	STORAGE NOT	32562 77462	FOR VARIABLES NOT APPEARING	DEA 117 00165	STORAGE LOCATIONS FUR SYMBOLS	2) DEC OCT 102 U0146					
EFN 1FN LOC SEE	40	99 16 00134		DEC OCT 119 00167	DCAT I ONS	DEC OCT ENUM 118 00166		9) DEC OCT 111 00157 2					

APPENDIX E

PROGRAM DESCRIPTION - OUTPUT TAPE WRITE ROUTINE NORTH AMERICAN AVIATION, INC. COLUMBUS ENGINEERING PROGRAM DESCRIPTION

1. Identification

- a. Output Tape Write Routine, Deck NCF WRITE.
- b. O. C. Juelich, June 1960.
- c. Research Group 330.
- d. Fortran Source Deck is up to date.

2. Purpose

Writes up to ten floating point numbers per line retaining seven digit accuracy for most numbers.

3. Restrictions

- a. Writes output tape 6.
- b. Intended primarily for numbers between 10⁻³ and 10⁷ in magnitude. Seven digit accuracy is retained for numbers between 1 and 10⁷.
- c. Source Deck includes 704 SAP instructions.

4. Method

A Format Statement is generated, using F conversion for numbers less than 10^7 and E conversion for numbers 10^7 or larger in magnitude.

5. Use

Reached through a Fortran Statement such as

CALL WRITE (6Hildent, A, N)

where i is the pre-print space control character

IDENT is the indicative word for the first line of print.

(The second line, if any, will be identified by an 11, the third by 21, etc.)

A is the first word to be printed.

N is the number of words to be printed, N>0.

6. Coding Information

- a. This routine requires 171 locations.
- b. All inferior subroutines are part of the Fortran System.

ALF (A6.	
	WRITEOIO
	WRITEO20
	WOTTEO.0
ALF)	EXT-FO40
DIMENSION F(25) FMT(12)	WRITE060
ENGIVALENCE (DAID)	WRITE070
A E C E C E C E C E C E C E C E C E C E	WRITEOBO
	WRITE090
N. OF. TRONEXEX	WRITE100
00.0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	WRITEIIO
<u>.</u> +	WRITE120
Yelocalett	WRITE130
	WRITE140
1	WRITE150
7 M=1 / / / / / / / / / / / / / / / / / / /	WRITE160
	WRITE170
*******************	WRITE180
:כ	WRITE200
_	WRITEZIO
	WRITE220
-	WRITE230
ARD IZ	WRITE240
	WRITE250
	WRITE260
XIELH-1-1-EL	WRITE270
	WRITE280
-1	WRITE290
11 (7-17) VOLCOV 14-14)	WRITE300
071010	WRITE310
	-
	WRITE330
- 7	WRITE340
CARDS	WRITE350
	0 × 0 L + 10 T

EXTERNAL	FORMULA NUMBERS	WITH CORRESPONDING	INTERNAL	FORMULA NUMBERS AND	AND OCTAL LOCATIONS
I FN	EFN 4	IFN LOC 19 00077	EFN IFN	LOC EFN	I FN LOC
22 00117 9 38 00165	01	24 00122 42 00175	8 28	00126	2 29 00130
		STORAGE	STORAGE NOT USED BY PROGRAM	хам	
DEC 0CT 171 00253		DEC OCT 32562 77462			
		LOCATIONS OF N.	NAMES IN TRANSFER	VECTOR	
DEC OCT (FIL) 0 00000	(1 0 H)0	DEC 0CT 2 00002	DEC		DEC
STORAGE LOCATIONS	TONS FOR VARIAB	IABLES APPEAR	ENSIO	AND EQUIVALENCE S	SENTENCES
DEC OCT 18 170 00252	FMT	DEC OCT 169 00251	DEC B 170	EC OCT	DEC OCT
STORAGE LOCATIONS	S FOR VARIABLES	LES NOT APPEARING IN		VALENCE OR	COMMON SENTENCES
DEC OCT 17 157 00235 L 153 00231	•= E	DEC OCT 156 00234 152 00230	DEC J 155 X 151	0CT 00233 00227	1 34
S	STORAGE LOCATIONS	IONS FOR SYMBOLS	LS NOT APPEARING	IN SOURCE PROGRAM	¥.
E)B 91 00133 D)407 73 00111	E)8	~ 0	DEC 71	OCT D1601	DEC OCT
148	(9)	145 00221 140 00214	C)200 150 (1 1
(LEV) (10H)O	(STH)	SUBROUTINES (FIL)	ES NOT PUNCHED FROM LIBRARY	OM LIBRARY	
					!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

APPENDIX F

SUMMARY OF LIBRARY ROUTINES

SQRT	Evaluates the square root of a non-negative floating-point number. Invokes ERROR if argument is less than zero.
cøs	Evaluates the cosine of an angle expressed in radians in floating-point form.
SIN	Evaluates the sine of an angle expressed in radians in floating-point form.
EXP	Evaluates the exponential function (e^{x}) of a floating-point number less than 88. Invokes ERRØR is the argument exceeds 88.
errør	a. Produces a "back-trace" through the program, listing the point and subroutine at which the error was detected, the point at which the subroutine was called, up to the main program.
	b. Turns on the Divide Check indicator and tests the first instruction of the main program. If this is "IF DIVIDE CHECK" control goes to this statement, otherwise DUMP is invoked.
CHAIN	Loads a program identified by Record and Tape Number from Tape to Core and gives it control.
DUMP	Gives a full Memory Print-out and invokes EXIT.
EXIT	Returns control to the Monitor to end the job. (This function is also performed by the input tape reading system routine if an "End of File" is encountered on the input tape.)

APPENDIX G

SAMPLE INPUT AND OUTPUT

"	
	DATA
	DECIMAL
٦,	DIGIT
	9
	SXIX SXIX
	FOR TRAIN

467°

, 4 , 77.

	JOB 140.			80	11/1/1	M . 3	×11/17	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		#	#	7/	T	#		#	M	4	11	Di.		T	14	th the	At 1 / Man OR	pt 2/ Mr. "R
•	ראטג מו	DO NOT KEY PUNCH										,														
t t	2.4.5	DESCRIPTION	TBL (1)	7,	بر م	Re	. 00	່ ເ	T8L (6)	hai	her	hes	he t	ho s	(11) 18]	ho 6	h 1	he s	he o	ha 10	TBL (16)	he !!	A 12	A 13	RA	Rp 2
ARMER	NOTA A DISTRIBUTION	IDENTIFICATION					73 80	,					73 80	2					73 . 80	3					73 EC	4
DECK NO. PROSRABIN	Mere		3.2.	518.688	7	1716.4827	. 002376917	13.	7.	-500.0119	36089.238	8 7	- (173884.514	42.	259186.	29 295275.590	344488.	524934.3	557742.781	147.	656167.978	23 1283000.	2 2 6 2 3 2 8 9 . 0 6 3	1716.4827	17.16.4827

FORTRAN FIXED 10 DIGIT DECIMAL DATA

T I I	108 NO.	Į,		Nt 2/10, 2 0R	1 46.1	1 96		1]]	No 1. 14/1. 10	700	1	1.	1		04 2 00 72 10	80	O e	80	*		G _O	0	α.	Ø≥	
	11	DESCRIPTION DO NOT KEY PUNCH	21)	3	+	5	9	7	76)	Đ	<i>5</i> -	10	11	12	3()	13	1	1	3	.	(36)	5	9	7	90	0
	VOLUE OF THE		(17)	R	RB	R	73 80 RB	5 RB	TBL (26	R	Re	RA	73 go R.b.	6 RB	TBL (31)	Ba	7.6	Ta	73 80 Ta	7 T ₈	<u> </u>	T	Ta	TA	- 12	K &
DECK NO. PROCESSIEN	NUMBER	$\ \cdot\ $	5 2.	48	16.482	. 482	16.48	11	7	16.482	. 9	16.482	16.4827	- 11	62.	7 / 6.	70.4	84.48	4 8 8	- ₹1	1	508.788	8 . 1	298.188	06.188	23.8.6. 1.8.8

FORTRAN FIXED 10 DIGIT DECIMAL DATA

FORTRAN FIXED 10 DIGIT DECIMAL DATA

•				dime. "		//	Mary Cracker		ding		dimen in los		dimension for			dine of Pers		dompour les			die	Comparation of the Control	things is Des		
the contract of the contract o	DESCRIPTION DO NOT KEY PUNCH	TBL (61)	8 01 x	8s 3 A	× 10 B	Sa + A		731 (66)	8	×108	88 6 A	80/x	8 ₈ 7 A	TBL (71)	×108	δ 8 8 Α	×108	68 1 A	× 10 B	T8L (76)	S& 10 A		δ Β 11 A		ν ,)
SHER	IDENTIFICATION					7.3 80	1 3					7.3 80	4					73. 80	1.5					2	9 /
DECK NO. PROCESSIN	NUMBER	92.	0.	. 2 4 5 6 0 5 2 3 1	•	. 1 1 8 8 6 5 7 6	- 2.	97.	. 57 557334		. 99623335		.10306942	102.		. 73550492		35726255	- 80	107.	.27866476	80	. 14067391	. 8	. 4452/087

FORTRAN FIXED 10 DIGIT DECIMAL DATA

Ţ	DESCRIPTION DO	TBL (81)	× (0 B	58 13 A L.	x 10 B	ဝန	1.7		RECID		74.11	80 M = 1.407 698 × 10 16			d v in		of y grint	6		ъ:	7	Ca	20
Page Samen	IDEKTIFICATION					73				Ţ		6 73		T								 2	
DECK NO. PROC	tumaen	112.		. 36222	12.		- 41	00	22230100.		0213	1.407698+1	-	•	. 0.5	\.			201.	•	0		

FLATER TO DIGIT DECIMAL DATA

JOB 110.				H.						dimension														A CAMPAGE AND A	
DATE PAGE of	ON DO NOT KEY		7.8	A = 1.6 × 106					7. e	9	4				2	د					n.r.	2			The state of the s
Y331	IDENTIFICATION					73. 80	2 1					080	2		1			73 80	2.3						
DECK RO	MEER	2 .		1.6 + 06		2		2 2 1	1		6 7 5	3 3		7 2 1	1					2 4	4	C			A CONTROL OF THE PROPERTY OF T
			2	2	ह्य	द्या	ق			<u>[2]</u>	5	9	[ق	II_E		2	5	\$	آق		1	<u>[8]</u>	Ty)	iii	ا: ا

F. C. 15 E.C. 19

FORTELL FIXED TO DIGIT DECIMAL DATA

DATE PACE of JOB NO.	ION DO NOT KEY PUNCH	Last Card of First Data Set.	чи	\geq			Last Card of Second Data Set.	D=O, Mark "end on to				Last Card of Third Data Set.	exit to Cord-P				RECID	W ₉	1W. Y.	w.	100 - 100 -	
PADGNAMMER	IDENTIFICATION				73 80	2.5					7					73 80				12	2.8	
DECK NO. PAGGE	NUMBER	2.5.1.	İ	37	693	(61)	- 28.	0 .	52] [52	69	19	1 - 28.	[1]	52] [5	67	19	13 22230101.	25	0	65 0 .	0	FORE 114-0-47

FORTRAN FIXED 10 DIGIT DECIMAL DATA

	3			f have	C. Protes	f my	C mex	44		THE STATE OF THE S		No.	Last Card 21 2 4 Cat			(, 1, 1, 1, 1)	(not ready to purch cards)									
Fact. miss	IDENTIFICATION DE							2 4 2		Viene	73 80 Th	30 dm				3 4 4	12.2	2			27.78	72.74		3	3.2	AND THE CONTRACT OF THE CONTRACT WAS ARRESTED FOR THE CONTRACT OF THE CONTRACT
DECK R.D.	KUKSER	9	13 - 3 0	1	7 6	1 -	90 00	∤	13 2	37 1 0 0	0 0	• -	1 6 .	850.	. / 52	37 0.	49	19	-	[13]	- / 52	87	45		The statement was a series of the series of	· 114-C-17

FIXED TO DIGIT DECIMAL DATA

4 × × same argument field as before 4. 4. JOS 110. Set PAGE DO NOT KEY PUNCH do not punch v DESCRIPTION CATE F 3.3 3.4 .60 **IDENTIFICATION** PROSESSIMEN RUMBER DECK NO. Foto: 114-C-17 ı द्यां 自認為 一回船馬電區

dans is a die Gebene dans de les Milles de les milles de les de les de les des de les des de les de

PARAMETER LIST -

01 = 0°

HP = 1600000.

EC = 0. 0.025000

GAM ≠ 1.000

GAMQ = 0.

• 0 = W0

		2 .	80	, 1	m	-	,- 1	-	m	,	-	-	- 1	8	o,	- -	-	-		7	-		-1	~	rH	-	-	- 1	,	-	-1	- 1	٦	- 1	-	-1	m	-4
	OI (0	ALPHA PA	•	ô	•0-	•0	•0-	•	•0-	•0	•0-	•	•0-	•	• O	•	•	•	•	ô	•0-	ċ	•0-	•	•0-	•	•	•	•0-	•	•0-	•	-0-	ô	•0-	•	•0-	•
	RECORD ID 22230100•	ALPHA H2	666*4		•81	9.55	1	8 • 49	2.6	4	40.022	43.227	9	48.512	L	201	53.323	4.0	4	4.0	3.4	52.313	ō	•	613	ñ		ō	_	œ	4.63	000	5,35	10.505	•	•57	-40454	
GAMO • 0		ALPHA H1	•	•	•	0.933	•	•	•	•	•	0.605	•	6550	•	•	•	0°097	0.005	-0.087	•	•	•		-0.520	-0.597	-0.658	-0.734	-0.793	-0.846	-0.891	-0.929	-0. 959	-0.981	-0.995	-1.000	-0.997	-0.985
GAM 1.0000E 00		GAMMA	•0	•	•0	•	•0	•	•0	•	ę Ŏ	•	•0	•0	•0	•0	*0	•	°,	•	•0	•0	•	•	•	•	•	•	• 0	•	•	•	•0	•	•	•0	•	•
0•		ВНО	.0380E-1	7	•038	-	• 038	\$0380E-1	.0380E-1	•0380E-1	.0380E-1	.0380E-1	•03	.0380E-1	.0380E-1	1	.0380E-1	ī	.0380E-1	.0380E-1	.0380E-1	.1.	•0380É-1	.0380E-1	1	.0380E-1	•0380E-1	.0380E-1	5.0380E-15	•0380E-1	•0380E-1	5.0380E-15	•0380E-1	•0380	7	.0380E-1		80E-1
HP 1600000•	D PHI PRINT 5.0000E 00	I	1600000	16000004	16000004	1600000	1600000	1600000	1600000	1600000	1600000	1600000	1600000	1600000	1600000	1600000	1600000	1600000	1600000	1600000	1600000	1600000	70000091	1600000	1600000	1600000	1600000	1600000	1600000	1600000	1600000	1600000		1600000	1600000	1600000	1600000	1600000
0 0	5.0000E-02	IHd	2.000	8		20,000		30 € 000		000 • 0 •	45.000	20 •000	55.000	000.09	65 •000	10 •000	15.000	80.000	85.000	000•06	95,000	100,000	105.000	110,000	115.000	120,000	125,000	130.000	135,000	140-000	145.000	150,000	155,000	160.000	165.000	170,000	175.000	œ

Ka.

; ; £

н напын	⁴ लल लललललल ललल	81 ศ ศ ศ ศ ศ ศ ศ ศ ศ	
00000			
61 61 61 61 61 61 61	, m 4 4 4 M M M M M M M M M M M M M M M M	500 440 440 440 400 400 400 400	50 14 50 00 00 00 00 00 00 00 00 00 00 00 00 0
00000000000000000000000000000000000000	00000000000000000000000000000000000000	4 6 1 8 9 1 8 4 6 1 8 4 6 1 8 9	8 Q 9 Q 9 Q 9 Q 9 Q 9 Q 9 Q 9 Q 9 Q 9 Q
00000			
00380E-1 00380E-1 00380E-1 00380E-1		00000000000000000000000000000000000000	0380E-1 0380E-1 0380E-1 0380E-1 0380E-1 0380E-1 0380E-1
16000000 16000000 16000000 16000000	16000000000000000000000000000000000000	1600000 1600000 1600000 1600000 1600000 1600000	1600000. 1600000. 1600000. 1600000. 1600000. 1600000.
W O W O W C		W C W C W C W C W	9915 9926 9926 9926 9926 9946 9956 9956 9956 9956 9956

		0	.	ć
₩ 0	RECORD ID 22230100*	0+6•0	54.294	1,000
GAMG 0•		END DERIVATIVES -0.006	MAX THETAS 1.000	MAX DERIVATIVES
0		END	MAX	M X
GAM 1.0000E 00				
EC		-01	WEIGHT THETA H1 0.	WEIGHT THETA H2
•		DELTA 1.1942E-01	WEIGHT 0.	WEIGHT
HP 1600000	D PHI PRINT 5.0000E 00		TH PER BD	•
100	D PHI MIN 5.0000E-02	· ·		

		Z	6 0	7	-	-	~	-	~	~	-	~	~	a:	3 <u></u>	-	-	-	-	-	٦	~	-1		~	-	-	~	-	œ	8	-	~	~	-	-	٦	-
	1D 01•	ALPHA PA		-0.244	Ø	40	7	-0.734	-0.859	• 98	~	-10247	-1.384	-1.525	-1.672	•82	-1.985	-20152	•32	•51	• 70	-2.907	• 11	•33	-3.565	-3.802	•04	-4.300	Q	•82	600	~	•65	-5.943	6.3	~	.81	-7.099
•0	RECORD II 222301014	ALPHA H2	4.871	90106	4	š	234621	-	2	•	•	•	÷	ö	9	•	•	2	ŝ	8	ä	•	•	78.830	_	83,844	Š			*	96 69	8.36	3.72	3.06	5.38	•	96 • 6	2422
GAMQ 0.		ALPHA H1	.87	47.	960	•45	0.307	•15	900	•14	•29	43	151	171	83	95	-1.063	16	•25	4)	•40	-1.460	•50	-1.546	•57	•58	\$59	•59	• 58	-1.564	•53	.50	-1.463	•41	-1.369		•26	•20
GAM 1.0000E 00		GAMMA	•	•	0.362	•	0.592	•	•	•	•	1.080	•	1.225	•		1.375	•	•	1.432	•	•	•	1.358	•	•	•	•	•	•	•	0.732	•	0.502	0.380	•	•	000 • 0
EC 0.025000		жно	.9958	.8720E-	•6739	4132	10	•7625	4034	•0412	•6879	•3527	.0423	■7606E	960	889	•0975E-1	.3334E-1	366	7569E-1	•7662E-1	.9379	478E-1	.6743E-1	.1985	9	•4785	•2094	.9877	058	.6574E-1	.5375	1.4420E-16	.3677	1.3123E-16	.2739	.2514	. 2439E-1
HP 1600000	D PHI PRINT 5.0000E 00	I	\sim	334	3	314	153	377	9	913	061	177	549	780	141	701	427	285	240	255	291	311	276	146	2408844.	151	309	924	762	2612891.	476	962	2697260.	2717431.	2733305.	174	164	
100	D PHI MIN 5.0000E-02	D H1	2.000	10,000	15.000	20.000	25.000	30.000	35.000	40.000	45.000	20.000	55.000	000•09	000-59	10.000	75.000	80.000	85.000	000 • 06	95.000	100.000	105.000	110.000	115.000	120.000	125.000	130.000	135.000	140.000	145.000	150.000	155.000	160.000	65.	70.	75.	ċ

TO SERVICE STATE OF THE PARTY O

rd r	۹,	••∫•	- 4	-	-	_	- 1	-1	H	H	-4	-1	-	~	-		~	8.	4_	-1	-		~		-	, ~4 	-	rd	H	7	-	-1	-	-1	~1
9	ָ ס		•25	640	• 76	10.	•26	640	•71	•92	•12	0.30	0.47	0.61	0.74	0.85	96.0	1.00	1.03	1.04	1.01	0.95	-10.353	0.71	0.52	0.28	66•6	•63	•22	•75	•21	99	.93	•21	643
404	0 0	70.0	0.0	3.05	5.11	1270124	9.0	6.0	2.8	9	6.31	7.9	9.45	0.86	2015	3.30	4.29	5.10	5.68	•02	6.07	5.78	1450114	3.99	42.37	40.17	37.34	3.79	29.49	24.36	18,39	11.54	03.82	5.25	5.89
-1.150	֓֞֝֜֝֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֡֓֓֓֓֓֡֓֓֡֓֡֓֡	• C 4	660	• 94	•89	•86	•83	.80	• 78	•77	.77	•78	.80	•82	•86	960	•95	•01	•07	•15	•22	•31	9	-41	•56	464	•72	• 78	4	9	ū	Ū	Ó	ŝ	N
-0.128		9	• 20	•6]	•73	•83	.93	• 03	1.11	Q,	1.25	.31	.35	6 39	.41	• 43	•43	• 42	640	•37	•33	•28	8	• 15	608	66•	90	88	• 70	• 59	647	9 3 6	4	• 12	00
2514	1 36612	1-367160	•3677E-1	.4420E-1	•5375E-1	•6574	.8058E-1	.9877E-1	•2094E-1	•4785	-8044E-1	•1985E-1	•6742E-1	.2478E-1	•9379E-1	•7662E-1	•7569E-1	•9366E-1	•3333E-1	.0975E-1	•2889E-1	.5095E-1	-7606E-	.0423E-1	+3527E-1	•6879E-1	*0412E-1	•4034E-1	.7624E-1	.1042E-1	•4132E-1	•6739E-1	.8720E-1	.9958E-1	.0380E-1
2751647	\$ 0000F	(1000)	71743	69726	67296	64476	61289	57762	53924	49809	45451	40884	36146	31276	26311	21291	16255	112408	06285	01427	96701	921412	87780	83649	79777	76190	72914	69669	67377	65153	63314	61871	60834	60208	60000
185.000	֓֞֜֜֜֜֜֜֝֓֓֓֓֓֜֜֜֓֓֓֓֓֓֓֡֓֜֜֡֓֡֓֡֓֜֜֜֡֓֡֓֡֓֡֡֡֡֡֡	7	င္ပို	92	10.	15.	20.	25.	30.	35.	0	45.	20.	53.	9	65.	6	75.	90	85.	90.	95.	90	05.	10.	15.	20.	25.	30.	35.	ģ		50.	52.	909

		0.185	12.440	781.00
ο • ο	RECORD ID 22230101.	*1.923	144.739	1,923
GAMQ 0.		END DERIVATIVES 0.031	MAX THETAS 2.643	MAX DERIVATIVES
GAM 1.0000E 00		END	MAX	MAX
EC 0.025000		DELTA 5.8469E OC	WEIGHT THETA HI -8.7613E-07	WEIGHT THETA H2
HP 1600000•	D PHI PRINT 5.0000E 00		TH PER BD WEIGHT THEN 2.1596E 01 -8.7613E-07	
 00	D PHI MIN 5.0000E-02			· · · · · · · · · · · · · · · · · · ·

N 78

	•			-0-119653	-1.02 (4652 -4.0259852	.331587	-11-61814	-7.966612	86	45.00000	95.00000	145 40000	195.0000	245,0000	95.0000	344 = 9999	
	FIELD 2. 1.	•		-0.082365 -0	-100/9/42 -1	-7.925817 -8	-11.38085 -1 -12.24028 -1							240,0000 2			
	CARD FIELD 2.0				-0.904235	7.514138	-11011858			35.00000	85.00000	135.0000	185.C000	235 00000	285.0000	334,9999	
WEIGHT H2	EDGE COUNTS 850• 850•				-0.747910 - -3.184539 -	-7.098686	-10.83298 -	-12.44016		30.0000	80 • 00000	130.0000	180.0000				
WEIGHT HI	MAX COUNTS 800• 820•				-0.610158 -2.856563	-6.681594	-10.52577	-10:44445		25.00000	75.00000	125.0000	175.0000		275.0000		
0	MAX			-0.009561	-2.545762	-6.264979	-10,19871	-12.3/254		20.00000	10,00000	120.0000	170,0000	220.0000	270.0000	320,0000	
WEIGHT GAMMA 0.	MAX VALUE 30.000 360.000				-0,357090 -2,253047 -			-12.28485 -		15.00000	000000 • 59	115,0000	165.0000	215.0000	265,0000	315,0000	
WEIGHT PAR 1.000000E 00	MIN COUNTS 200• 100•		0.063257	-0.001167	-0.299741	-5.44146		-12.16383	-5.433610	10,00000	00000 09	110,0000	160,0000	210.0000	240.000	310,0000	35949999
WE16			00000	-0.000145	-0.226938	038556	-9.116940	-12.01126	-6+333826	5.000000	55.00000	105,0000	155,0000	205,0000	255.0000	305-0000	354.9999
TAPE RECORD 22230101.	SCALING - MIN VALUE FUNCTION -30.000 ARGUMENT 0.	DECK 10 - 0.	T'WHS 5.846886 -0.000001		-0.167370	31 -4.644092 -5.		51 -11-82881 -12	-12.0/62/	ABG 0.	50,00000	100,0000	150,000	200-000			349.9999

_	_
	7
3	,
•	•

	EDGE COUNTS CARD FIELD 3.0 850.00			1111
WEIGHT GAMMA WEIGHT HI WE 1.0000000 00 0.	MAX VALUE MAX COUNTS EDO \$0.000 800. 360.000 820.			0.478663 0.591944 1.334599 1.374692 1.256192 1.190419 0.255012 0.128031 -0.938702 -1.031032 -1.432394 -1.4423842 -0.903425 -0.805101
WEIGHT PAR WEIGH	MIN COUNTS MAX 2000 36		0001 0.063257	0.242756 1.225175 1.357619 0.501694 -0.732046 -1.416784 -1.079925
TAPE RECORD 22230101• (SCALING - MIN VALUE FUNCTION -30.000 ARGUMENT 0.	DECK 10 - 0.	D WHS 5.846886 -0.000001	FNCTN 0. 0.121808 11 1.079924 1.156762 21 1.416784 1.392598 31 0.732047 0.619390 41 -0.501693 -0.619389 51 -1.357619 -1.392597 61 -1.225176 -1.156762 71 -0.242757 -0.121809

BIBLIOGRAPHY

- 1. Minzner, R. A., "Higher Atmospheric Densities and Temperatures Demanded by Satellite and Recent Rocket Measurements", American Rocket Society Preprint Number 781-59.
- 2. Coddington, E. A. and Levinson, N., Theory of Ordinary Differential Equations, McGraw-Hill, New York, 1955, pp. 218-220.
- 3. Gill, S., "A Process for the Step-by-Step Integration of Differential Equations in an Automatic Digital Computing Machine", Proceedings of the Cambridge Philosophical Society, Volume 47, 1951, pp. 96 to 108.
- 4. Milne, W. E., <u>Mumerical Calculus</u>, <u>Princeton University Press</u>, <u>Princeton</u>, 1949.
- 5. Milne, W. E., Numerical Solution of Differential Equations, John Wiley & Sons, Inc., New York, 1953.
- 6. The Fortran Automatic Coding System for the IBM 704 EDPM, International Business Machines Corporation, New York, 1956.
- 7. Reference Manual Fortran II for the IBM 704 Data Processing System, International Business Machines Corporation, New York, 1958.