Power Amplifiers (2/2)

ZHAO BO

Institute of VLSI Design

Zhejiang University

Email: zhaobo@zju.edu.cn

Web: <u>person.zju.edu.cn/zhaobo</u>

Problem of Single-Transistor PA

- □To maximize the efficiency, the drain waveform is assumed to have a peak-to-peak swing of nearly 2V_{DD}
- \Box If V_{DD} is chosen equal to the nominal supply voltage of the process, the output transistor experiences breakdown or substantial stress
- □Cascode transistors somewhat relaxes the breakdown or substantial stress [B. Razavi, RF Microelectronics]

Parasitic Oscillator

- □Due to the large device size, the parasitic gate-to-drain capacitance is substantial, providing a negative resistance
- □The gate inductance is usually utilized for biasing or to tune out the input cap

Matching Networks

□The network transfers the antenna resistance (usually 500hm) to an impedance which is preferred by the power amplifier

Q Factor

$$Q_S = \frac{\frac{1}{C\omega}}{R_S}$$

$$Q_P = \frac{R_P}{\frac{1}{C\omega}}$$

$$Q_S = \frac{L\omega}{R_S}$$

$$Q_P = \frac{R_P}{L\omega}$$

□Series to parallel conversion:

$$R_P = (Q_S^2 + 1)R_S$$

$$C_P = \frac{Q_S^2}{Q_S^2 + 1} C_S$$

□So long as $Q_S^2 >> 1$

$$R_P \approx Q_S^2 R_S$$

$$C_P \approx C_S$$

Impedance Transformation

$$Z_{in}(j\omega) = \frac{R_L(1 - L_1C_1\omega^2) + jL_1\omega}{1 + jR_LC_1\omega}$$

$$Re\{Z_{in}\} = \frac{R_L}{1 + R_L^2 C_1^2 \omega^2} = \frac{R_L}{1 + Q_P^2}$$
$$L_1 = \frac{R_L^2 C_1}{1 + Q_P^2} = \frac{1}{C_1 \omega^2}$$

 $R_P = Q_S^2 R_L$

L Matching Networks

$$\frac{V_{out}}{V_{in}} = \sqrt{\frac{R_L}{Re\{Z_{in}\}}}$$

$$\frac{I_{out}}{I_{in}} = \sqrt{\frac{Re\{Z_{in}\}}{R_L}}$$

Transformer Matching

$$V_{in}^2/R_{in} = n^2 V_{in}^2/R_L$$
$$R_{in} = R_L/n^2$$

Scattering Parameters

Large-Signal Matching

- □ The transistor exhibits an output resistance (r_{O1}) and parasitic capacitance (C_{DB2}) , and both vary significantly with signal
- □Thus, a nonlinear complex output impedance must be matched to a linear load

Load-Pull Measurement

Peak Output Power

□The peak output power determines the range for two-way communications
 □The peak power is often specified at the 1-dB compression point
 □Need about ~1W for cellular handsets (~1 km distance)
 □Need about ~100mW for W-LAN (100 m)
 □Need about ~10mW for W-PAN (Bluetooth) (1-10 m)

□In practice, the average power transmitted may be much lower

than the peak output power due to power control (slow time

□Need about ~1mW for UWB and sensor networks

scale) or various modulations (fast time scale)

Power Combining

- □Power combining can be performed to emit a big power
- ☐ The pressure on each PA can be alleviated

Source of Nonlinearity

- □PAs exhibit nonlinear distortion in amplitude and phase
- □For a modulated signal, both sources of distortion are significant
- □The dominant sources are AM-to-AM and AM-to-PM
- □Amplitude distortion: AM-to-AM conversion
- □Phase distortion: AM-to-PM conversion
- □ For input: $x(t)=A(t)\cos(\omega t+\varphi(t))$, the corresponding output:
- $y(t)=g[A(t)]cos(\omega t+\phi(t)+\psi(A(t)))$
- □AM-to-AM conversion dominated by g_m non-linearity
- □AM-to-PM conversion dominated by non-linear capacitors

Modulation Schemes

System	Bandwidth (MHz)	Modulation	Duplex	TX Duty Cycle	Peak- Average Power Ratio (dB)	Peak- Minimum Power Ratio (dB)	Antenna Power (dBm)	Power Control Range (dB)
lG (AMPS)	0.03	FM	full	100%	0	0	28	25
ANSI-136	0.03	p/4-DQPSK	half	33%	3.5	19	28	35
GSM	0.20	GMSK	half	13%	0	0	33	30
GPRS	0.20	GMSK	half	13-50%	0	0	33	30
EDGE	0.20	3p/8-8PSK	half	13-50%	3.2	17	27	30
UMTS	3.84	HPSK	full	100%	3.5-7	infinite	24	80
IS-95B	1.23	OQPSK	full	100%	5.5-12	26-infinite	24	73
edma2000	1.23	HPSK	full	100%	4-9	infinite	24	80
Bluetooth	1.0	GFSK	half	variable	0	0	20	_
802.11b	11.0	QPSK	half	variable	3	infinite	20	_
802.11a/g	18.0	OFDM	half	variable	6-17	infinite	20	_

□PA designs for constant modulation schemes are much easier (GSM, AMPS)

□OFDM PAs are very hard!

Power Linearization

- □Power backoff
- □ Forward linearization
- **□Feedback**
- **□**Predistortion
- □Envelop Feedback
- □Polar Modulation
- **□**Outphasing
- **□Doherty PA**

Power Backoff

- □An OFDM 802.11g system needs 20 dBm at antenna and has a power-to-average ratio of about 17 dB. That means to transmit 20 dBm average power, the PA should be capable of transmitting 37 dBm !!!
- □In applications requiring a linear PA due to PAR (Peak-to-Average Rate), we must back-off from the peak power point to avoid clipping the waveform, but compromising the efficiency

PA Forward Linearization

□A nonlinear PA generates an output voltage waveform that can be viewed as the sum of a linear replica of the desired signal and an "error" signal

- $\Box V_{M} = A_{V}V_{in} + V_{D}$, where V_{D} represents the distortion content
- □The delay cells Δ_1 and Δ_2 are inserted to compensate the delays of $1/A_V$ and A_V

PA Forward Linearization

□A nonlinear transistor acts a switch, and then the PA removes the envelope of the signal, retaining only the phase/frequency modulation part

Cartesion Feedback

□A mixer can help to convert the signals into low frequency, and then the phase shift is easier to compensate

- \Box The loop attempts to make V_{PA} an accurate replica of V_{in} , enhancing the linearity
- \Box The phase θ is added so as to ensure stability

Predistortion

□If the PA expressed as y=g(x), predistortion subjects the input to a characteristic $y=g^{-1}(x)$, resembling an ideal linearity

- □There will be mismatch between predistorter and PA, where the PA transfer curve is affected by PVT variations and different antennas
- □ Predistortion can also be realized in the digital domain to allow a more accurate cancellation

Predistortion with Feedback

□The performance of predistortion can be improved if the predistorter is continuously informed of the PA nonlinearity

□The feedback signal produced by the low-frequency ADCs "adjusts" the predistortion

Envelop Feedback

□ In order to reduce envelope nonlinearity of PAs, it is possible to apply negative feedback only to the envelope of the signal

 \square With a high loop gain, the signals at A and B are nearly identical, thus forcing V_{out} to track V_{in} with a gain factor of $1/\alpha$

Polar Modulation

 \square We can decompose $V_{in}(t)$ into an envelope signal and a phase signal, amplify each separately and combine them

- □ A switching PA can be used to improve the efficiency
- ☐The linearity is guaranteed by the envelop detector

Polar Modulation Realization

☐ The envelope signal directly can drive the supply of PA

- □In this "open-loop" control, V_{DD,PA} is a function of various device parameters
- □The "closed-loop" control introduce a high gain of amplifier A_1 so that $V_{DD.PA} \approx A_0 V_{env}(t)$

AM-PM Conversion

 \Box As $V_{DD,PA}$ swings up and down to track $A_0V_{env}(t)$, the parasitic capacitance C_{DB} varies, so the phase signal is corrupted by the envelope signal

Polar Modulation Realization

- \square We can applying the phase information to the control line of a VCO, where the integration performed by the VCO requires that $\phi(t)$ be first differentiated
- □Consider a quadrature modulator:

$$V_{phase}(t) = V_0 \cos \omega_0 t \cos \phi - V_0 \sin \omega_0 t \sin \phi$$

PLL Based Polar Modulation

□ The DAC output frequency $ω_{IF}$ must be low enough to avoid imposing severe speed power trade-offs on the baseband DAC □ The DAC output frequency must be high enough to avoid aliasing

PLL Based Polar Modulation

□Quadrature upconversion is performed to a certain IF, extract the envelope component, and apply it to the PA

Envelop Feedback

□The feedback loop thus forces a faithful (scaled) replica of the IF envelope at the PA output

Phase & Envelop Feedback

- □If PA introduces AM-to-PM conversion, the PLL still guarantees that the phase at X tracks the baseband phase modulation
- □The two feedback loops can interact and cause instability,
 requiring careful choice of their bandwidths

 [Behzad Razavi, RF Microelectronics]

Outphasing

- □If the signal to be emitted is constant-envelop, a nonlinear PA can be adopted to maximize the efficiency (such as Class-E)
- □If the signal to be emitted is variable-envelop, a linear PA is required to keep the information on the envelop, while linear PA usually results in low efficiency (such as Class-A)
- □A variable-envelop signal can be expressed by:

$$V_{in}(t) = V_{env}(t)\cos[\omega_0 t + \phi(t)] = V_1(t) + V_2(t)$$

$$V_1(t) = \frac{V_0}{2}\sin[\omega_0 t + \phi(t) + \theta(t)]$$

$$V_2(t) = -\frac{V_0}{2}\sin[\omega_0 t + \phi(t) - \theta(t)]$$

$$\theta(t) = \sin^{-1}\frac{V_{env}(t)}{V_0}$$

Outphasing

□It is possible to avoid envelope variations in a PA by decomposing a variable-envelope signal into two constant-envelope waveforms, which is called "outphasing"

An Outphasing Transmitter

$$V_{in}(t) = V_{env}(t)\cos[\omega_0 t + \phi(t)] = V_1(t) + V_2(t)$$

$$V_1(t) = \frac{V_0}{2}\cos[\phi(t) + \theta(t)]\sin\omega_0 t + \frac{V_0}{2}\sin[\phi(t) + \theta(t)]\cos\omega_0 t$$

$$V_2(t) = -\frac{V_0}{2}\cos[\phi(t) - \theta(t)]\sin\omega_0 t - \frac{V_0}{2}\sin[\phi(t) - \theta(t)]\cos\omega_0 t$$

Outphasing: Advantages and Issues

- □A critical advantage of outphasing is that it does not require supply modulation, saving the efficiency and headroom lost in the envelope buffer necessary in polar modulation
- □The summation of the outputs in the outphasing technique entails power loss (as in the feedforward topology)
- □The gain and phase mismatches between the two paths in result in signal distortion at the output
- □The signal traveling through one PA may affect that through the other, resulting in spectral regrowth and even corruption
- □As the amplitude modulation is changed into phase modulation, the two signal paths occupy a large bandwidth

Combining Circuits

- □Two transistors of PAs can share the same load to sum the output currents
- □A transformer can be adopted to sum the outputs and drives the load resistance

Doherty PA

□If an auxiliary transistor is introduced that provides gain only when the main transistor begins to compress, then the overall gain can remain relatively constant for higher input and output levels.

Power Transistor

- □Power transistors are typically very large (millimeter size) and the layout is broken into sub-cells, where the gate/drain lines are delay equalized
- □The layout metals introduce significant resistance and capacitance, which needs to be carefully modeled

Package Parasitics

- □In a normal wire-bonding package, long bond wires are required to make the connections, leading to large inductance □The model of the package/chip should include the pads, the
 - bond wires, as well as the package leads

Advanced Packaging

- □In flip-chip technology, the chip is flipped and "bumped" onto a board directly. This results in small inductance connections
- □In an exposed "paddle" package, there is a ground plane inside the package. We use conductive glue to mount the chip onto the package. Short down-bonds then create low inductance ground connections
- □In the extreme case, we can use several down-bonds in parallel surrounding the chip in addition to thinning the die

Parasitic Coupling

□Package: ESD, bias, pins, bond wires

☐Substrate: Devices (passive and active), thermal

■Maximum safe power gain ~ 30 dB