PHY 303: Classical Electrodynamics MONSOON SEMESTER 2022 TUTORIAL 05

1. A sphere of radius R carries a polarization

$$\mathbf{P}(\mathbf{r}) = kr\,\mathbf{r},$$

where k is a constant, \mathbf{r} is the vector from the center, and $r = |\mathbf{r}|$. Calculate the bound charges σ_b and ρ_b .

2. Calculate the electric potential produced by a uniformly polarized sphere of radius a and center at the origin with electric polarization (dipole moment per unit volume) given by $P_0 \hat{\mathbf{z}}$, using the result

$$\Phi(\mathbf{r}) = \frac{1}{4\pi\epsilon_0} \int_{\mathcal{V}} \frac{\left(\rho(\mathbf{r}') - \mathbf{\nabla}' \cdot \mathbf{P}(\mathbf{r}')\right)}{|\mathbf{r} - \mathbf{r}'|} d^3r' + \frac{1}{4\pi\epsilon_0} \oint_{\mathcal{S}} \frac{\mathbf{P}(\mathbf{r}') \cdot d\mathbf{a}'}{|\mathbf{r} - \mathbf{r}'|}.$$

Note that for this problem there is no (free) charge involved and outside the given sphere the polarization is zero. Obtain results for both interior ($|\mathbf{r}| < a$) and exterior ($|\mathbf{r}| > a$) regions using the following three approaches:

- (a) Consider the volume (\mathcal{V}) and the enclosing surface (\mathcal{S}) used in the integrals above as the ones approaching the surface and volume of the polarized sphere from inside, i.e., surface and volume same as the given sphere in a limiting sense, approaching from inside.
- (b) Consider \mathcal{V} and \mathcal{S} as the ones approaching the surface and volume of the polarized sphere from outside.
- (c) Consider \mathcal{V} to be infinite.