112 臺南一中學科能力競賽校內複選

題解

Sep 28 2023

Overview - 預期解出人數

Overview - 實際解出人數

Overview

- 1 A 圖論 + 一些 case
- 2 B 資料結構
- 3 C 數學
- 4 D DP
- 5 E 簽到題

1 E. 宗教戰爭 (religion)

2 A. 網路連線 (connection)

3 B. 批量種田 (farming)

4 D. 森林道路 (pathway)

5 C. 老舊鍵盤 (keyboard)

E. 宗教戰爭 (religion)

E. 宗教戰爭 (religion) – 題目敘述

給定由 b, p, d, q 組成的字串,問是否能夠在數次旋轉或翻轉之後一樣。

E. 宗教戰爭 (religion) – 子任務

- 字串長度為 1
- 2 無額外限制

E. 宗教戰爭 (religion) – 子任務 1 — 字串長度為 1

無論如何都是 Yes。

E. 宗教戰爭 (religion) - 子任務 2 — 無額外限制

旋轉:b 與 q 互換、d 與 p 互換並反轉順序

上下翻轉:b與p互換、d與q互換

左右翻轉:旋轉與上下翻轉。

只有四種可能,全部暴力檢查。

1 E. 宗教戰爭 (religion)

2 A. 網路連線 (connection)

3 B. 批量種田 (farming)

4 D. 森林道路 (pathway)

5 C. 老舊鍵盤 (keyboard)

A. 網路連線 (connection)

A. 網路連線 (connection) – 題目敘述

給定一張簡單圖,問有多少加k條邊的組合滿足

- ■圖連通
- ■圖仍為簡單

A. 網路連線 (connection) – 子任務

- 1 k = 1
- $N \le 20$
- $N \leq 160$
- 4 無額外限制

A. 網路連線 (connection) – 子任務 1 - k = 1

假設圖的連通塊只有 1 個,答案是 $\frac{N(N-1)}{2}-M$ \circ 小心 $\frac{N(N-1)}{2}\approx 3.2\times 10^9$,注意 overflow \circ

假設圖的連通塊有 2 個,大小分別為 c_1, c_2 ,答案是 $c_1 \times c_2$ 。

假設圖的連通塊有 3 個以上,不可能滿足,答案為 0。

A. 網路連線 (connection) – 子任務 2 — N < 20

枚舉所有邊的組合: $O(N^4)$

求連通狀態:DFS O(N)

總時間複雜度 $O(N^5)$ 。

A. 網路連線 (connection) – 子任務 3 — N ≤ 160

假設圖的連通塊只有 1 個,答案是
$$\frac{1}{2} \left(\frac{N(N-1)}{2} - M \right) \left(\frac{N(N-1)}{2} - M - 1 \right) \circ$$

假設圖的連通塊有 2 個,大小分別為 c_1, c_2 ,考慮有兩條連接兩個連通塊的邊,是 $\frac{1}{2}(c_1 \times c_2)(c_1 \times c_2 - 1)$ 。有一個連通兩個連通塊的邊,另一個不是: $c_1 \times c_2 \times (M - \frac{1}{2}c_1(c_1 - 1) - \frac{1}{2}c_2(c_2 - 1))$ 。

假設圖的連通塊有 3 個,大小分別為 c_1, c_2, c_3 ,答案為 $(c_1 + c_2 + c_3)c_1c_2c_3$ 。

假設圖的連通塊有 3 個以上,不可能滿足,答案為 0。

A. 網路連線 (connection) - 子任務 4 — 無額外限制

$$rac{1}{2}\left(rac{N(N-1)}{2}-M
ight)\left(rac{N(N-1)}{2}-M-1
ight)pprox 5 imes 10^{18}$$

善用 (unsigned) long long!

1 E. 宗教戰爭 (religion)

2 A. 網路連線 (connection)

3 B. 批量種田 (farming)

4 D. 森林道路 (pathway)

5 C. 老舊鍵盤 (keyboard)

B. 批量種田 (farming)

B. 批量種田 (farming) – 題目敘述

給一個長度為 N 的序列每個值各自 c_i ,然後進行多次操作。 每次操作給 l_i,r_i,x_i 詢問區間 $[l_i,r_i]$ 有幾個不同數字 並把 $[l_i,r_i]$ 都改成 x_i 。

B. 批量種田 (farming) – 子任務

- 1 只需要驗證輸入是不是合法的道路
- $N, Q \leq 5000$
- $\forall x_i, c_i \leq 10$
- $\forall x_i = 1$
- **5** $N, Q \leq 300000$

B. 批量種田 (farming) - 子任務 1 — N, Q < 5000

さ... 純粹暴力拿分

自己加油 ><

B. 批量種田 (farming) – 子任務 2 — $\forall x_i, c_i \leq 10$

發現值域全部都不會超過 10

B. 批量種田 (farming) – 子任務 2 — $\forall x_i, c_i \leq 10$

發現值域全部都不會超過 10

可以開一個線段樹每個節點第i個 bit 表示區間有沒有出現i

B. 批量種田 (farming) – 子任務 2 — $\forall x_i, c_i \leq 10$

發現值域全部都不會超過 10

可以開一個線段樹每個節點第i個 bit 表示區間有沒有出現i

query 區間直接把所有區間 or 起來算幾個 bit 是 1

modify 可以直接用懶標處理

複雜度 $O(N \log N)$

B. 批量種田 (farming) – 子任務 3 — $\forall x_i = 1$

每次詢問一段區間的同時也會把那段區間全部改成一樣的

B. 批量種田 (farming) – 子任務 3 — $\forall x_i = 1$

每次詢問一段區間的同時也會把那段區間全部改成一樣的

改成 1 之後就不會再改變了

那就可以直接不用理

每次都直接暴力修改每個值都只被改到一次

B. 批量種田 (farming) $\overline{-}$ 子任務 3 $\overline{-}$ $\forall x_i=1$

每次詢問一段區間的同時也會把那段區間全部改成一樣的

改成 1 之後就不會再改變了

那就可以直接不用理

每次都直接暴力修改每個值都只被改到一次

每次 query 就直接暴力查詢還沒被改成 1 的點

修改就把它改成 1,暴力查詢的部分可以用 set, dsu, map... 維護

複雜度在均攤下是 $O(N \log N)$ or $O(N\alpha(N))$

B. 批量種田 (farming) – 子任務 4 — 無額外限制

考慮結合子題二跟子題三的做法

考慮相鄰不一樣的數量

B. 批量種田 (farming) – 子任務 4 — 無額外限制

考慮結合子題二跟子題三的做法

考慮相鄰不一樣的數量

每一次操作最多讓兩個相鄰不一樣的次數 +2

總共的相鄰不一樣的次數最多 N+2Q

B. 批量種田 (farming) - 子任務 4 — 無額外限制

考慮結合子題二跟子題三的做法

考慮相鄰不一樣的數量

每一次操作最多讓兩個相鄰不一樣的次數 +2

總共的相鄰不一樣的次數最多 N+2Q

如果每個相鄰不同的情況都用線段樹 or set 去做修改和查詢的話

總複雜度 $O((N+Q)\log N)$

1 E. 宗教戰爭 (religion)

2 A. 網路連線 (connection)

3 B. 批量種田 (farming)

4 D. 森林道路 (pathway)

5 C. 老舊鍵盤 (keyboard)

D. 森林道路 (pathway)

D. 森林道路 (pathway) – 題目敘述

給定一個 $N \times M$ 的網格,求出最大權的道路。

道路的條件是:

- (1,1),(N, M) 要在道路上
- 對於任意兩個左上 右下分布的兩個格子,道路要包含他們的最短路。

D. 森林道路 (pathway) – 子任務

- 1 只需要驗證輸入是不是合法的道路
- $2 NM \le 50$
- **3** $NM \le 5000$
- 10^5 10^5

D. 森林道路 (pathway) – 子任務 1 — 驗證

首先 (1,1) 至 (N, M) 連通。

D. 森林道路 (pathway) - 子任務 1 — 驗證

首先 (1,1) 至 (N, M) 連通。

對於同一列的兩個格子,中間的格子都必須存在。 對於同一行的兩個格子,中間的格子都必須存在。

D. 森林道路 (pathway) - 子任務 1 — 驗證

首先 (1,1) 至 (N, M) 連通。

對於同一列的兩個格子,中間的格子都必須存在。 對於同一行的兩個格子,中間的格子都必須存在。

假設相鄰兩列的格子是 (i,L_i) 至 (i,R_i) 以及 $(i+1,L_{i+1})$ 至 $(i+1,R_{i+1})$,則

 $L_i \leq L_{i+1}$,否則 (1,1) 至 $(i+1,L_{i+1})$ 沒有最短路被包含。 $R_i \leq R_{i+1}$,否則 (i,R_i) 至 (N,M) 沒有最短路被包含。 $R_i \leq L_{i+1}$,否則不連通。

D. 森林道路 (pathway) - 子任務 1 — 驗證

這樣的條件就合法嗎?

容易驗證最短路的條件一定滿足。

複雜度 O(NM)。

D. 森林道路 (pathway) – 子任務 2 — NM \leq 50

定義 $dp_{i,l,r}$ 表示考慮到第 i 列取了 [l,r] 的所有格子,最大的權重可能。

初始值 $dp_{0,1,1}=0$ 而剩餘的狀態都是 $-\infty$ 。

轉移直接按照剛剛的條件並枚舉,最後答案是 $\max_l dp_{n,l,m}$ 。

總時間複雜度 $O(NM^2 \times M^2)$ 。

D. 森林道路 (pathway) - 子任務 3 — NM < 5000

 $dp_{i,l,r}$ 的轉移來源:

$$\max_{\substack{1 \leq l' \leq l \ l \leq r' \leq r}} dp_{i-1,l',r'} + \sum_{j=l}^r a_{i,j}$$

當 i,l 固定的時候,能夠轉移的上一個狀態左界 $1 \le l' \le l$ 是固定的,右界依序遞增。

因此我們只需要對 l' 預處理前綴最大值,轉移的時候逐漸加入 r 即可只花 O(1) 轉移。

總時間複雜度 $O(NM^2)$ 。

D. 森林道路 (pathway) – 子任務 4 — NM $\leq 10^5$

$$\min(N, M) \leq \sqrt{NM}$$

假如 M>N 將網格轉置,可以發現條件是相同的,所以直接做一樣的 DP 。

總時間複雜度

$$O(\min(NM^2, N^2M)) = O(NM\min(N, M)) = O(NM\sqrt{NM}) \circ$$

1 E. 宗教戰爭 (religion)

2 A. 網路連線 (connection)

3 B. 批量種田 (farming)

4 D. 森林道路 (pathway)

5 C. 老舊鍵盤 (keyboard)

C. 老舊鍵盤 (keyboard)

C. 老舊鍵盤 (keyboard) – 題目敘述

找到最小的**正整數** M 使得 N 整除 $11\cdots 1$ 。

C. 老舊鍵盤 (keyboard) – 子任務

- 1 $N \le 10$
- 2 $N \le 2 \times 10^5$
- $N \leq 10^9$

C. 老舊鍵盤 (keyboard) – 子任務 1 — N < 10

手算,答案表:

N	1	2	3	4	5	6	7	8	9	10
\overline{M}	1	-1	3	-1	-1	-1	6	-1	9	-1

C. 老舊鍵盤 (keyboard) – 子任務 2 — <u>N ≤ 2 × 10⁵</u>

我們沒有辦法計算太大的數字,要怎麼搜索?

C. 老舊鍵盤 (keyboard) – 子任務 2 — $N \le 2 \times 10^5$

我們沒有辦法計算太大的數字,要怎麼搜索?

$$\overbrace{11\cdots 1}^{k+1} = 10\cdot \overbrace{11\cdots 1}^{k} + 1$$

定義 $f(x) \equiv 10x + 1 \mod N$,我們想知道 0 套幾次 0 會變回 0 \circ

搜索到 N 以下就能找到答案(或者無解)了,為什麼?

引理 (無解條件)

如果 N 是 2 或 5 的倍數則無解。

考慮尾數一直都是 1,所以這件事情顯然會無解。

考慮由 0, 1, ..., N-1,當這些數字 $x \to x+1$ 的時候,不難發現是一對一對應,也就是說他是一個排列。

考慮由 0, 1, ..., N-1,當這些數字 $x \to 10x$ 的時候,也是一對一對應,因為:

假設 $10a\equiv 10b\mod N$,則 N|10(a-b),因為 $\gcd(N,10)=1$ 所以 N|(a-b) 但不可能發生。

所以說, $f(x) \equiv 10x + 1 \mod N$ 是兩個排列的合成函數,仍然是一個排列,在這些數字跟 f 作為有向邊構成的圖每個數字 in, out degree 都是 1,是由一堆環組成的,因此答案一定 $\leq N$ 。

找環長度可以由下列的作法在 $O(\sqrt{N} \log N)$ 內做到:

假設 $x_0=0, x_i=f(x_{i-1})$,先找到 $x_0, x_1, \cdots, x_{K-1}$ 。

因為 f(x)=10x+1,所以 $\overbrace{f(f(f(f(f(\cdots f(x)\cdots)))))}$ 也可以被寫成一個線性函數,也就是 $x_{i+K}=ax_i+b$ 。

這時候可以一直計算 $x_K, x_{2K}, x_{3K}\cdots, x_{\lceil \frac{N}{K} \rceil K}$,一定會有其中一個與 $x_0, x_1, \cdots, x_{K-1}$ 對應到,當找到就能夠計算環的長度=iK-j。

開一個 map 紀錄 $x_0, x_1, \cdots, x_{K-1}$,所以總時間複雜度是 $O((K + \frac{N}{K}) \log N)$,取 $K = O(\sqrt{N})$ 有 $O(\sqrt{N} \log N)$ 。

Alternative Solution: 考慮

$$\overbrace{11\cdots 1}^{M} \equiv 0 \mod N \Rightarrow \overbrace{99\cdots 9}^{M} \equiv 0 \mod 9N \Rightarrow 10^{M} \equiv 1 \mod 9N$$

因為

$$10^{\phi(9N)} \equiv 1 \mod 9N$$

所以只需要對 9N 因式分解求出 $\phi(9N)$,接著對 $\phi(9N)$ 的質因數 p 不斷嘗試 $\frac{\phi(9N)}{p}$ 是否是更好的解就好,使用 Pollard Rho 可以做到 $O(\sqrt[4]{N})$ 。