A.Write a program for obtaining descriptive statistics of data.

Step 1: Open your data in excel

A2	1	- i >	< _/	fx		
	Α	В	С	D	E	F
1	Height					
2	179					
3	155					
4	158					
5	180					
6	160					
7	150					
8	169					
9	155					
10	155					
11	155					
12	150					
13	162					
14	158					
15	161					
16	179					

Step 2: From the Data Tool in the ribbon choose Data Analysis.

Step 3: Select the option of descriptive statistics

Step 4: Select an input range, output range, and check summary statistics and confidence level.

Step 5: The output may appear as follows.

	J 11			
1	Height			
2	179	Column1		
3	155			
4	158	Mean	162.5789474	
5	180	Standard Error	2.212822533	
6	160	Median	160	
7	150	Mode	155	
8	169	Standard Deviation	9.645469803	
9	155	Sample Variance	93.03508772	
10	155	Kurtosis	-0.561004927	
11	155	Skewness	0.753286117	
12	150	Range	30	
13	162	Minimum	150	
14	158	Maximum	180	
15	161	Sum	3089	
16	179	Count	19	
17	165	Confidence Level(95.0%)	4.648967631	
18	176			
19	160			
20	162			

Conclusion: we have successfully obtained the descriptive statistics in data.

B.Import data from different data sources (from Excel, csv, mysql, sql server, oracle to R /Python /Excel)

Code:

1 - SQLite3

```
import sqlite3 as sq
import pandas as pd
Base='C:/VKHCG'
sDatabaseName=Base + '/01-Vermeulen/04-
Transform//SOLite/vermeulen.db'
conn = sq.connect(sDatabaseName)
sFileName='C:/VKHCG/01-Vermeulen/01-Retrieve/01-EDS/02-
Python/Retrieve IP DATA.csv'
print('Loading :',sFileName)
IP DATA ALL FIX=pd.read csv(sFileName, header=0, low memory=False)
IP DATA ALL FIX.index.names = ['RowIDCSV']
sTable='IP DATA ALL'
print('Storing :',sDatabaseName,' Table:',sTable)
IP DATA ALL FIX.to sql(sTable, conn, if exists="replace")
print('Loading :',sDatabaseName,' Table:',sTable)
TestData=pd.read sql query("select * from IP DATA ALL;", conn)
print('## Data Values')
print(TestData)
print('## Data Profile')
```

```
print('Rows :',TestData.shape[0])
print('Columns :',TestData.shape[1])
print('Successful')1
```

```
Loading : C:/VKHCG/01-Vermeulen/01-Retrieve/01-EDS/02-Python/
Retrieve_IP_DATA.csv
Storing : C:/VKHCG/01-Vermeulen/04-Transform//SQLite/
vermeulen.db Table: IP_DATA_ALL
Loading : C:/VKHCG/01-Vermeulen/04-Transform//SQLite/
vermeulen.db Table: IP_DATA_ALL
## Data Values
        RowIDCSV
                    RowID ... First.IP.Number
Last.IP.Number
                                      692781056
692781567
                                      692781824
692783103
                                      692909056
               2
692909311
                                      692909568
692910079
                                      693051392
               4
693052415
1247497 1247497 1247497 ...
                                     1068157850
1068157850
1247498 1247498 1247498 ...
                                     1334409600
1334409607
1247499 1247499 ...
                                     1596886528
1596886783
1247500 1247500 1247500 ...
                                     1742189568
1742190591
1247501 1247501 1247501 ...
                                     1905782573
1905782573
[1247502 rows x 11 columns]
## Data Profile
Rows: 1247502
```

```
2-Excel
import os
import pandas as pd
Base='C:/VKHCG'
sFileDir=Base + '/01-Vermeulen/01-Retrieve/01-EDS/02-Python'
```

```
CurrencyRawData = pd.read excel('C:/VKHCG/01-Vermeulen/00-
RawData/Country Currency.xlsx')
sColumns = ['Country or territory', 'Currency', 'ISO-4217']
CurrencyData = CurrencyRawData[sColumns]
CurrencyData.rename(columns={'Country or territory': 'Country',
'ISO-4217':
'CurrencyCode'}, inplace=True)
CurrencyData.dropna(subset=['Currency'],inplace=True)
CurrencyData['Country'] = CurrencyData['Country'].map(lambda x:
x.strip())
CurrencyData['Currency'] = CurrencyData['Currency'].map(lambda
х:
x.strip())
CurrencyData['CurrencyCode'] =
CurrencyData['CurrencyCode'].map(lambda x:
x.strip())
print(CurrencyData)
print('~~~~ Data from Excel Sheet Retrived Successfully
~~~~~ ')
sFileName=sFileDir + '/Retrieve-Country-Currency.csv'
CurrencyData.to csv(sFileName, index = False)
```


Conclusion: we have successfully imported data from SQLite3 and Excel in this program.

A.Design a survey form for a given case study, collect the primary data and analyse it.

Step 1: In order to make a survey we used Google forms. Our case study's aim was to find out which age group did Shopping in festive seasons.

Step 2: The questions and options entered were as follows.

- Q1. Which group do you belong to?
- (a)10-20 (b)21-30 (c)31-40 (d)41-50 (e)51 Above
- Q2. What is your Gender?
- (a)Male (b)Female
- Q3. What is your Occupation?
- (a)Business (b)Student (c)Employee (d)Retired (e)Self Employed (f)Household
- Q4. What's your Monthly Income?
- (a)10,000 20,000 (b)21,000 30,000 (c)31,000 40,000 (d)41,000 and above (e)N/A
- Q5. How often do you shop?

(a)Monthly (b)Occasionaly (c)Festive Seasons (d)Rarely

Q6.Purpose of Shopping?

(a)Personal Use (b)Gifting

- Q7. Where do you get to know about the festive sales?
- (a) Newspaper (b) Advertisement (c) Whats App (d) Through a person

Q8. How would you rate your overall shopping experience during festive season?

(a)Excellent (b)Good (c)Average (d)Poor

Step 3: Google forms tool was chosen because analysis becomes easier on Google forms.

Conclusion: we have successfully made the survey form for the given case study.

B.Perform analysis of given secondary data.

Step 1: Open Data in excel

1	age	male	female	total	
2	0 to 4	328759	307079	635838	
3	4 to 9	315119	293664	608783	
4	10 to 14	311456	290598	602054	
5	15 to 19	312831	293313	606144	
6	20 to 24	311077	295739	606816	
7	25 to 29	284258	273379	557637	
8	30 to 34	255596	247383	502979	
9	35 to 39	248575	241938	490513	
10	40 to 44	232217	226914	459131	
11	45 to 49	202633	201142	403775	
12	50 to 54	176241	176440	352681	
13	55 to 59	153494	156283	309777	
14	60 to 64	114194	121200	235394	
15	65 to 69	83129	92071	175200	
16	70 to 74	65266	77990	143256	
17	75 to 79	43761	56895	100656	
18	80 to 84	25060	37873	62933	
19	85+	14164	28156	42320	
20					
21		3477830	3418057	6895887	

Step 2: Calculate the total sum of each column. Select the cell for Sum→ add formula SUM in formula bar→ select the range.

1	0.70	male	female	total	
	age		romaio		
2	0 to 4	328759	307079	635838	
3	4 to 9	315119	293664	608783	
4	10 to 14	311456	290598	602054	
5	15 to 19	312831	293313	606144	
6	20 to 24	311077	295739	606816	
7	25 to 29	284258	273379	557637	
8	30 to 34	255596	247383	502979	
9	35 to 39	248575	241938	490513	
10	40 to 44	232217	226914	459131	
11	45 to 49	202633	201142	403775	
12	50 to 54	176241	176440	352681	
13	55 to 59	153494	156283	309777	
14	60 to 64	114194	121200	235394	
15	65 to 69	83129	92071	175200	
16	70 to 74	65266	77990	143256	
17	75 to 79	43761	56895	100656	
18	80 to 84	25060	37873	62933	
19	85+	14164	28156	42320	
20					
21		3477830	3418057	6895887	

Step 3: Calculate the percentage of male in cell E. Use formula -1*100*B2/\$D\$21

SU	М	-	>	< 🗸	f _x	=-1*	*100*B2/\$[)\$21
4	Α	В		С	D		Е	F
1	age	male		female	total		Male(%)	
2	0 to 4	328	759	307079	63	5838	=-1*100*B	2/\$D\$21
3	4 to 9	315	119	293664	60	8783		
4	10 to 14	3114	456	290598	60	2054		
5	15 to 19	3128	331	293313	606144			
6	20 to 24	3110	077	295739	606816			
7	25 to 29	2842	258	273379	55	7637		
8	30 to 34	255	596	247383	50	2979		
9	35 to 39	248	575	241938	49	0513		
10	40 to 44	2322	217	226914	45	9131		
11	45 to 49	2020	533	201142	40	3775		
12	50 to 54	1762	241	176440	35	2681		

Step 4: Calculate the percentage female in cell F. Use formula 100*C2/\$D\$21

				0		
F2		T >	< 4	fx =10	0*C2/\$D\$2	1
	Α	В	С	D	Е	F
1	age	male	female	total	Male(%)	female(%)
2	0 to 4	328759	307079	635838	-4.76747	4.453075
3	4 to 9	315119	293664	608783	-4.56967	4.258538
4	10 to 14	311456	290598	602054	-4.51655	4.214077
5	15 to 19	312831	293313	606144	-4.53649	4.253448
6	20 to 24	311077	295739	606816	-4.51105	4.288629
7	25 to 29	284258	273379	557637	-4.12214	3.964378
8	30 to 34	255596	247383	502979	-3.7065	3.587399
9	35 to 39	248575	241938	490513	-3.60468	3.508439
10	40 to 44	232217	226914	459131	-3.36747	3.29057
11	45 to 49	202633	201142	403775	-2.93846	2.91684
12	50 to 54	176241	176440	352681	-2.55574	2.558627
13	55 to 59	153494	156283	309777	-2.22588	2.266322
14	60 to 64	114194	121200	235394	-1.65597	1.757569
15	65 to 69	83129	92071	175200	-1.20549	1.335158

Step 5: The modified data may seem as follows.

4	Α	В	С	D	Е	F
1	age	male	female	total	Male(%)	female(%)
2	0 to 4	328759	307079	635838	-4.76747	4.453075
3	4 to 9	315119	293664	608783	-4.56967	4.258538
4	10 to 14	311456	290598	602054	-4.51655	4.214077
5	15 to 19	312831	293313	606144	-4.53649	4.253448
6	20 to 24	311077	295739	606816	-4.51105	4.288629
7	25 to 29	284258	273379	557637	-4.12214	3.964378
8	30 to 34	255596	247383	502979	-3.7065	3.587399
9	35 to 39	248575	241938	490513	-3.60468	3.508439
10	40 to 44	232217	226914	459131	-3.36747	3.29057
11	45 to 49	202633	201142	403775	-2.93846	2.91684
12	50 to 54	176241	176440	352681	-2.55574	2.558627
13	55 to 59	153494	156283	309777	-2.22588	2.266322

Step 6: For analysis go to Insert \rightarrow Bar \rightarrow 2D

Step 7: Drag the data and set the graph for analysis.

Conclusion: we have successfully performed the analysis for the given secondary data.

A.Perform testing of hypothesis using one sample t-test.

Code:

```
from scipy.stats import ttest_1samp
import numpy as np
ages=np.genfromtxt('H:/ages.csv')
print(ages)
ages_mean=np.mean(ages)
print(ages_mean)
tset,pval=ttest_1samp(ages,30)
print('p-values-',pval)
if pval<0.05:#alpha value is 0.05
        print("we are rejecting null hypothesis")
else:
        print("we are accepeting null hypothesis")</pre>
```

Output:

```
In [3]: runfile('H:/3a.py', wdir='H:')
[20. 30. 25. 13. 16. 17. 34. 35. 38. 42. 43. 45. 48. 49. 50. 51. 54. 55. 56. 59. 61. 62. 18. 22. 29. 30. 31. 39. 52. 53. 67. 36. 47. 54. 40. 40. 35. 22. 59. 58. 30. 43. 22. 45. 21. 59. 51. 47. 25. 58. 50. 23. 24. 45. 37. 59. 28. 28. 48. 42. 54. 36. 36. 24. 26. 24. 50. 48. 34. 44. 56. 55. 35. 33. 39. 53. 34. 28. 56. 24. 21. 29. 28. 58. 35. 57. 26. 25. 59. 56. 22. 57. 48. 33. 23. 26. 57. 32. 53. 31. 35. 44. 54. 25. 31. 58. 26. 32. 26. 50. 41. 49. 26. 33. 34. 24. 43. 42. 51. 36. 38. 38. 40. 38. 56. 39. 23. 33. 53. 30. 38.]
39.47328244274809
p-values- 5.362905195437013e-14
we are rejecting null hypothesis
```

Conclusion: we have successfully performed testing of hypothesis using one sample t-test.

B.Write a program for t-test comparing two means for independent samples.

Step 1: Calculate the mean of the samples (Total /Count)

SUM	UM \rightarrow : \times \checkmark f_x =C8/7										
	Α	В	С	D	Е		Α	В	С	D	E
1			Female	Male		1			Female	Male	
2			26	23		2			26	23	
3			25	30		3			25	30	
4			43	18		4			43	18	
5			34	25		5			34	25	
6			18	28		6			18	28	
7			52	0		7			52	0	
8		Total	198	124		8		Total	198	124	
9		Mean	=C8/7			9		Mean	28.28571	17.71429	
10						10					

Step 2: Calculate the SD of samples STDEV(range)

A B C II 1 Female Male 2 26 3 25 4 43	=STDE
2 26 3 25	D
3 25	9
	23
4 43	30
	18
5 34	25
6 18	28
7 52	0
8 Total 198	124
9 Mean 28.28571 17.7	71429
10 SD =STDEV(C2:C7	

Step 3: Calculate the t-test

	·	· : ;	× •	<i>f</i> x =(C9)-D9)/SQR	Γ((C10*C10)/COUNT(- C2:C9)+(D10	0*D10)/CO	UNT(D2:D6))	
4	Α	В	С	D	Е	F	G	Н	1	J	K
1			Female	Male							
2			26	23							
3			25	30		Calculated T test					
4			43	18		=(C9-D9)/SQRT((C10	*C10)/COU	NT(C2:C9)-	+(D10*D10)	/COUNT(D	2:D6))
5			34	25							
6			18	28							
7			52	0							
8		Total	198	124							
9		Mean	28.28571	17.71429							
10		SD	12.64911	10.94836							
11											

Step 4: Apply t-test paired two Samples for Means.

Step 5: Apply input Range and Output range.

Step 6: Hence we reject null hypothesis.

H15		-	× ✓	fx t Cri	tical two-	tail					
4	Α	В	С	D	Е	F	G	Н	1	J	K
1			Female	Male							
2			26	23				t-Test: Paired Two Sample for Means			
3			25	30		Calculated T test					
4			43	18		1.594185981			Variable 1	Variable 2	
5			34	25				Mean	33	20.66666667	
6			18	28				Variance	160	119.8666667	
7			52	0				Observations	6	6	
8		Total	198	124				Pearson Correlation	-0.889613782		
9		Mean	28.28571	17.71429				Hypothesized Mean Difference	0		
10		SD	12.64911	10.94836				df	5		
11								t Stat	1.316901108		
12								P(T<=t) one-tail	0.122498157		
13								t Critical one-tail	2.015048373		
14								P(T<=t) two-tail	0.244996315		
15								t Critical two-tail	2.570581836		

Conclusion: we have successfully compared the two means of independent samples for a t-test.

C.Perform testing of Hypothesis using paired t-test.

Step 1: Load the Data

L1	3	- : >	< 🗸	fx		
4	Α	В	С	D	Е	F
1	patient	gender	agegrp	bp_before	bp_after	
2	1	Male	30-45	143	153	
3	2	Male	30-45	163	170	
4	3	Male	30-45	153	168	
5	4	Male	30-45	153	142	
6	5	Male	30-45	146	141	
7	6	Male	30-45	150	147	
8	7	Male	30-45	148	133	
9	8	Male	30-45	153	141	
10	9	Male	30-45	153	131	
11	10	Male	30-45	158	125	
12	11	Male	30-45	149	164	
13	12	Male	30-45	173	159	

Step 2: Data -> Data Analysis -> t-test between samples for means.

Step 3: Choose the Input and Output range.

t-Test: Paired Two Sample for Me	eans	? ×
Input Variable 1 Range: Variable 2 Range: Hypothesized Mean Difference: Labels	\$D\$2:\$D\$121 1 \$E\$2:\$E\$121 1	OK Cancel Help
△ Output options Output Range: New Worksheet Ply: New Workbook	\$H\$2 1	

Step 4: Since the samples Means of the Data samples are not equal we reject the null hypothesis that they might be equal.

H2	21	· :	× <	fx							
4	Α	В	С	D	Е	F	G	Н	1	J	K
1	patient	gender	agegrp	bp_before b	p_after						
2	1	Male	30-45	143	153			t-Test: Paired Two Sample for N	1eans		
3	2	Male	30-45	163	170						
4	3	Male	30-45	153	168				143	153	
5	4	Male	30-45	153	142			Mean	156.5630252	151.3445378	
6	5	Male	30-45	146	141			Variance	129.2820111	202.6853725	
7	6	Male	30-45	150	147			Observations	119	119	
8	7	Male	30-45	148	133			Pearson Correlation	0.161241417		
9	8	Male	30-45	153	141			Hypothesized Mean Difference	0		
10	9	Male	30-45	153	131			df	118		
11	10	Male	30-45	158	125			t Stat	3.403463555		
12	11	Male	30-45	149	164			P(T<=t) one-tail	0.000454744		
13	12	Male	30-45	173	159			t Critical one-tail	1.657869522		
14	13	Male	30-45	165	135			P(T<=t) two-tail	0.000909488		
15	14	Male	30-45	145	159			t Critical two-tail	1.980272249		
16	15	Male	30-45	143	153						
17	16	Male	30-45	152	126						
18	17	Male	30-45	141	162						
19	18	Male	30-45	176	134						
20	19	Male	30-45	143	136						
21	20	Mala	20-45	162	150						

Conclusion: we have performed the testing of hypothesis using paired t-test.

A.Perform testing of hypothesis using chi-squared goodness-of-fit test.

Step 1: Load the data.

D2		-	< 🗸	fx
	Α	В	С	D
1	0	E		
2	29	21.33		
3	24	21.33		
4	22	21.33		
5	19	21.33		
6	21	21.33		
7	18	21.33		
8	19	21.33		
9	20	21.33		
10	21	21.33		
11	18	21.33		
12	20	21.33		
13	23	21.33		
14				

Step 2: Type CHITEST and select Actual(observed value range) and Expected value range.

F5		+	× ✓	fx =CH	ITEST(A2:A	\13,B2:B13		
4	Α	В	С	D	Е	F	G	Н
1	0	E	O-E	(O-E)^2				
2	29	21.3	7.67	58.8289				
3	24	21.3	3 2.67	7.1289				
4	22	21.3	0.67	0.4489				
5	19	21.3	-2.33	5.4289		=CHITEST	(A2:A13,B2:	B13)
6	21	21.3	-0.33	0.1089				
7	18	21.3	-3.33	11.0889				
8	19	21.3	-2.33	5.4289				
9	20	21.3	-1.33	1.7689				
10	21	21.3	-0.33	0.1089				
11	18	21.3	-3.33	11.0889				
12	20	21.3	-1.33	1.7689				
13	23	21.3	3 1.67	2.7889				
14								

Step 3: This calculated value is less than table value which is 19.68. Hence we accept null hypothesis.

i.e 0.932663 < 19.68. H0 accepted.

F6		- i >	< ~	fx		
	Α	В	С	D	Е	F
1	0	E	O-E	(O-E)^2		
2	29	21.33	7.67	58.8289		
3	24	21.33	2.67	7.1289		
4	22	21.33	0.67	0.4489		
5	19	21.33	-2.33	5.4289		0.932663
6	21	21.33	-0.33	0.1089		
7	18	21.33	-3.33	11.0889		
8	19	21.33	-2.33	5.4289		
9	20	21.33	-1.33	1.7689		
10	21	21.33	-0.33	0.1089		
11	18	21.33	-3.33	11.0889		
12	20	21.33	-1.33	1.7689		
13	23	21.33	1.67	2.7889		
14						

B.Perform testing of hypothesis using chi-squared test of independence.

Step 1: Load the data

u (ши	Ciippoar	a		1	71			Font	
		·								
	D8		*	:	>	<	~	f_{x}		
	4	Α		В			С		D	
	1	System	0			Ε				
	2	Windows			20		33.33			
	3	Mac			60		33.33			
	4	Linux			20		33.33			
	5									

Step 2: Calculate the value of $(O-E)^2/E$

SU	М	*	: >	<	~	fx	=(B2	-C2)^	2/C2
4	Α		В	(С	D			E
1	System	O		E		(O-E)^	2 /E		
2	Windows		20		33.33	=(B2-C	2)^2	/C2	
3	Mac		60	;	33.33				
4	Linux		20	;	33.33				
5									

Step 3: Calculate Chi square at 5% confidence and degree of freedom n-1=2(in our case)

	ciipocai	u	-		1011		
F2		-	>	< 🗸	f_x =CHIINV(0).05,2)	
4	Α	В		С	D	Е	F
1	System	0		E	(O-E)^2 /E		
2	Windows		20	33.33	5.33120012		5.991465
3	Mac		60	33.33	21.34080108		
4	Linux		20	33.33	5.33120012		
5	5			Total	32.00320132		

Conclusion: we have successfully performed the chi-squared test.

Practical 5

Perform testing of hypothesis using Z-test.

Step 1: Load the data

Н1	H14 • [X 🗸 fx									
4	Α	В	С	D	Е	F				
1	patient	gender	agegrp	bp_before	bp_after					
2	1	Male	30-45	143	153					
3	2	Male	30-45	163	170					
4	3	Male	30-45	153	168					
5	4	Male	30-45	153	142					
6	5	Male	30-45	146	141					
7	6	Male	30-45	150	147					
8	7	Male	30-45	148	133					
9	8	Male	30-45	153	141					
10	9	Male	30-45	153	131					
11	10	Mala	20 4E	100	175					

Step 2: To apply Z test we need a sample size over 30. Here our sample size is 120 data points, so to apply Z-test go to Data -> Data analysis.

Step 3: Select Z-Test: Two Sample for means.

Step 4: Varience can be calculated using VAR.S (range)

G2			- i >	< 🗸	fx =VA	R.S(D2:D12	1)		
	Α		В	С	D	Е	F	G	Н
1	patient		gender	agegrp	bp_before	bp_after			
2		1	Male	30-45	143	153		129.7286	
3		2	Male	30-45	163	170			
4		3	Male	30-45	153	168		201.005	
5		4	Male	30-45	153	142			
6		5	Male	30-45	146	141			
7		6	Male	30-45	150	147			
8		7	Male	30-45	148	133			
9		8	Male	30-45	153	141			

Step 5: Set the Variable 1 and 2 range.

Step 6: Output

	Α	В	С	D	E	F	G	Н	1	J	K	L
1 p	atient	gender	agegrp	bp_before	bp_after							
2	1	Male	30-45	143	153		129.7286			z-Test: Two Sample for Means		
3	2	Male	30-45	163	170							
4	3	Male	30-45	153	168		201.005				143	153
5	4	Male	30-45	153	142					Mean	156.5630252	151.3445378
6	5	Male	30-45	146	141					Known Variance	129.7286	201.005
7	6	Male	30-45	150	147					Observations	119	119
8	7	Male	30-45	148	133					Hypothesized Mean Difference	0	
9	8	Male	30-45	153	141					z	3.13024954	
10	9	Male	30-45	153	131					P(Z<=z) one-tail	0.000873289	
11	10	Male	30-45	158	125					z Critical one-tail	1.644853627	
12	11	Male	30-45	149	164					P(Z<=z) two-tail	0.001746579	
13	12	Male	30-45	173	159					z Critical two-tail	1.959963985	
14	13	Male	30-45	165	135							
4.5			20.45		450							

Conclusion: we have successfully performed the Z-Test hypothesis.

A.Perform testing of hypothesis using One-way ANOVA.

Step 1: Load the data

Step 2: To Calculate Single factor(one-way) anova we use cells S,T,U.

Data -> Data Analysis.

Step 3: Select Anova: Single Factor

Step 4: Select the cells of S-T-U for input range

Step 5: Output

Conclusion: we have successfully performed one-way ANOVA.

B.Perform testing of hypothesis using Two-way ANOVA.

Step 1: Load the data.

E18	8	- : >	< _/	fx		
	Α	В	С	D	Е	F
1		len	supp	dose		
2	1	4.2	VC	0.5		
3	2	11.5	VC	0.5		
4	3	7.3	VC	0.5		
5	4	5.8	VC	0.5		
6	5	6.4	VC	0.5		
7	6	10	VC	0.5		
8	7	11.2	VC	0.5		
9	8	11.2	VC	0.5		
10	9	5.2		0.5		
11	10	7	VC	0.5		
12	11	16.5	VC	1		
13	12	16.5	VC	1		
14	13	15.2	VC	1		
4.5	4.4	47.0	110			

Step 2: Data -> Data Analysis

Step 3: Select Anova: Two Factor with Replication

Step 4: Select input and output range

Anova: Two-Factor With Repl	ication	? ×
Input Input Range:	\$A\$1:\$C\$61	OK Cancel
Rows per sample: Alpha:	0.05	<u>H</u> elp
Output options Output Range: New Worksheet Ply: New Workbook	\$F\$1:\$M\$24 1	

Step 5: Output

	Anova: Two	D-ractor W	ini nepiica	ILIOII			
	SUMMAR' len		dose	dose Total			
	1						
	Count	30	30	60			
	Sum	508.9	35	543.9			
	Average	16.9633	1.16667	9.065			
	Variance	68.3272	0.4023	97.2233			
	31						
	Count	30	30	60			
	Sum	619.9	35	654.9			
	Average	20.6633	1.16667	10.915			
	Variance	43.6334	0.4023	118.285			
	Total						
	Count	60	60				
	Sum	1128.8	70				
	Average	18.8133	1.16667				
	Variance	58.512	0.39548				
	ANOVA						
Soul	rce of Varia	SS	df	MS	F	P-value	F crit
	Sample	102.675	1	102.675	3.64208	0.05881	3.92288
	Columns	9342.15	1	9342.15	331.384	8.5E-36	3.92288
	Interaction	102.675	1	102.675	3.64208	0.05881	3.92288
	Within	3270.19	116	28.1913			
	Total	12817.7	119				

Conclusion: we have successfully performed two way ANOVA.

C.Perform testing of hypothesis using MANOVA.

Step 1: Load the Data.

Step 2: Install Add-in in excel.

Select **File -> Help | Options -> Add-Ins** and click on the **Go** button at the bottom of the window.

Step 3: Click on browse and select XrealStats file. Check the following check boxes.

Step 4: Once loaded, CTRL+M to perform MANOVA. Click Multivar -> Manova: two factor -> OK.

Step 5: Select the data excluding column names. Select a cell for output

Manova: Two Factors	×
Input Range Sheet1!\$A\$2:\$D\$27	ОК
Analysis type Regular Repeated Measures	Cancel
Options —	Help
Significance Analysis	
▼ Sum of Squares and Cross Product Matrices	
✓ Covariance Matrices	
✓ Outliers ✓ Box's Test	
✓ Group Means Contrast	
Alpha 0.05	
Output Range H6 New	

Step 6: Output

Two-Way	MANOVA						SSCP Matr	ices
fact A	stat	df1	df2	F	p-value	part eta-sq	Tot	
Pillai Traci	0.214135	2	18	2.452347	0.114323	0.214135	130	64
Wilk's Lan	0.785865	2	18	2.452347	0.114323	0.214135	64	142
Hotelling	0.272483	2	18	2.452347	0.114323	0.214135		
Roy's Lg R	0.272483						Row (A)	
							27.08333	17.5
fact B	stat	df1	df2	F	p-value	oart eta-sq	17.5	11.30769
Pillai Trac	0.339044	4	38	1.939195	0.123777	0.169522		
Wilk's Lan	0.820428	4	36	1.969888	0.120034	0.179572	Column (B)
Hotelling	0.467615	4	34	1.987365	0.118648	0.189501	31.90278	28.18056
Roy's Lg R	0.425176						28.18056	30.36111
fact AB	stat	df1	df2	F	p-value	part eta-sq	Interaction	n (AB)
Pillai Traci	0.249126	4	38	1.35172	0.268831	0.124563	5.963889	0.019444
Wilk's Lan	0.871554	4	36	1.326381	0.278864	0.128446	0.019444	21.0312
Hotelling	0.304976	4	34	1.296146	0.291053	0.132312		
Roy's Lg R	0.260917						Res	
							65.05	18.3
							18.3	79.3

Conclusion: we have successfully performed MANOVA.

A.Perform the Random sampling for the given data and analyse it.

Step 1: Load the data.

116	5	- i >	< 4	f_{x} sfe							
4	Α	В	С	D	E	F	G	Н	1	J	K
1	Sr. No.	Roll No.	Name	Gender	Grade		Sr. No.	Roll No.	Name	Gender	Grade
2	1	1	xyz	Male	0		24	3	add	Female	Α
3	2	2	mno	Male	A		25	7	sd	Female	Α
4	3	5	pqr	Male	O		26	9	hg	Female	C
5	4	13	abc	Male	В		27	11	dg	Female	D
6	5	16	xyz	Male	O		28	14	pgu	Female	F
7	6	17	mno	Male	O		29	25	yt	Female	О
8	7	34	pqr	Male	D		30	36	f	Female	С
9	8	35	abc	Male	O		31	40	gh	Female	C
10	9	38	xyz	Male	O		32	41	t	Female	В
11	10	42	mno	Male	С		33	46	es	Female	Α
12	11	43	pqr	Male	O		34	47	gg	Female	В
13	12	45	abc	Male	O		35	10	gfh	Female	D
14	13	48	xyz	Male	В		36	20	ghy	Female	C
15	14	49	mno	Male	O		37	21	tgs	Female	В
16	15	50	pqr	Male	D		38	72	sfe	Female	O
17	16	51	abc	Male	O		39	73	sgg	Female	D
18	17	54	xyz	Male	Α		40	75	dgt	Female	Α
19	18	55	mno	Male	В		41	77	dgt	Female	В
20	19	56	pqr	Male	D		42	82	jgt	Female	D
21	20	59	abc	Male	O		43	84	ghh	Female	D
22	21	61	xyz	Male	F		44	91	fer	Female	D
23	22	62	mno	Male	A		45	95	gyd	Female	D
24	23	63	pqr	Male	С		46	4	gtt	Female	С

Step 2: Set Cell O1= Male and Cell P2= Female

To generate a random sample for male students from given population go to Cell O1 and type =INDEX(E\$2:E\$62,RANK(B2,B\$2:B\$62))

SUM • : \times \checkmark f_x =INDEX(E\$2:E\$62,RANK(B2,B\$2:B\$62))											
4	Н	1	J	K	L	М	N	0	Р	Q	R
1	Roll No.	Name	Gender	Grade				=INDEX(E\$	2:E\$62,RA	NK(B2,B\$2:	B\$62))
2	3	add	Female	Α							
3	7	sd	Female	Α							
4	9	hg	Female	С							
5	11	dg	Female	D							
6	14	pgu	Female	F							
7	25	yt	Female	0							
8	36	f	Female	С							
9	40	gh	Female	С							
10	41	t	Female	В							
11	46	es	Female	Α							
12	47	gg	Female	В							
13	10	gfh	Female	D							
1 /	30		rl-	_							

Step 3: Repeat the step to perform random sampling on Female data.

Step 4: Output

Conclusion: we have successfully performed Random sampling and analyze it.

B.Perform the Stratified sampling for the given data and analyse it

Step 1: Load the data.

D2		· >	< _/	fx	
4	Α	В	С	D	Е
1	Cost	Product	Status	Random	
2	485	book	new		
3	697	bag	old		
4	225	bag	new		
5	256	bag	old		
6	562	book	old		
7	743	book	old		
8	985	bag	old		
9	321	bag	new		
10	954	book	new		

Step 2: Assign Random values using RAND() function.

D2		- i >	< 🗸	fx =RA	ND()
4	Α	В	С	D	Е
1	Cost	Product	Status	Random	
2	485	book	new	0.250817	
3	697	bag	old		

Step 3: Copy the entire column D and paste only values

Step 4: To perform stratified sampling and obtain data where we get 2 new books cost, 2 old books cost, 2 new bags cost, 2 old bags cost. Select the data and click on sort.

Step 5: Sort the data by product, status and random.

Step 6: the output obtained will be as follows.

02	1	+ >		fx					
02	021 J. J.								
	Α	В	C	D	E				
1	Cost	Product	Status	Random					
2	125	bag	new	0.017235					
3	225	bag	new	0.471366					
4	321	bag	new	0.969015					
5	256	bag	old	0.185464					
6	870	bag	old	0.194029					
7	697	bag	old	0.296495					
8	985	bag	old	0.823398					
9	985	bag	old	0.851558					
10	415	bag	old	0.941389					
11	632	book	new	0.060707					
12	416	book	new	0.132045					
13	485	book	new	0.27945					
14	857	book	new	0.910547					
15	954	book	new	0.969434					
16	743	book	old	0.312694					

Conclusion: we have successfully performed stratified sampling and analyse it.

Write a program for computing different correlation

A.Positive Correlation.

```
Code: import matplotlib
import numpy as np
import matplotlib.pyplot as plt
np.random.seed(1)
# 1000 random integers between 0 and 50
x = np.random.randint(0, 50, 1000)
# Positive Correlation with some noise
```

```
y = x + np.random.normal(0, 10, 1000)
np.corrcoef(x, y)
matplotlib.style.use('ggplot')
plt.scatter(x, y)
plt.show()
```


Conclusion: we have successfully computed positive correlation.

B.Negative Correlation.

```
import matplotlib
import numpy as np
import matplotlib.pyplot as plt
np.random.seed(1)
# 1000 random integers between 0 and 50
x = np.random.randint(0, 50, 1000)
# Negative Correlation with some noise
y = 100 - x + np.random.normal(0, 5, 1000)
```

```
np.corrcoef(x, y)
plt.scatter(x, y)
plt.show()
```


Conclusion: we have successfully computed negative correlation.

C.No/Weak Correlation.

```
import numpy as np
import matplotlib.pyplot as plt
np.random.seed(1)
x = np.random.randint(0, 50, 1000)
y = np.random.randint(0, 50, 1000)
np.corrcoef(x, y)
plt.scatter(x, y)
plt.show()
```


Conclusion: we have successfully computed no/weak correlation.

Practical 9

A.Write a program to Perform linear regression for prediction.

```
> #Perform linear regression
> m<-c(1,2,3,4,5,6)
> t<-c(25,22,30,34,45,52)
> #Label the chart
> png(file="Linear Regression")
> plot(t,m,col="red",main="Months and
Temperature",abline(lm(m~t)),cex=1.6,pch=10,xlab="Months",ylab="Temperature")
```

```
> dev.off()
null device

1
> plot(t,m,col="red",main="Months and
Temperature",abline(lm(m~t)),cex=1.6,pch=10,xlab="Months",ylab="
Temperature")
```


Conclusion: we have successfully performed linear regression for predicted.

B.Polynomial Regression.

Code:

```
> #Polynomial Regression
> set.seed(16)
> x<-0:50
> y<-2.3-15.1*x+1.2*x^2+rnorm(length(x),20,50)
> plot(x,y)
> fit <- lm(y ~ 1 + x + I(x^2))
> points(x, predict(fit), type="l")
> summary(fit)
```

Output:

Conclusion: we have successfully performed polynomial regression in R.

A.Multiple linear regression.

Code:

```
> #Multiple linear regression
>ip<-mtcars[,c("mpg","disp","hp")]
> print(head(ip))
> m<-lm(mpg~disp+hp,data=ip)
> print(m)
> a<-coef(m)
>Xdisp<-coef(m)[1]
> print(Xdisp)
>Xhp<-coef(m)[2]
> print(Xhp)
```

Output:

```
- - X
R Console
Mazda RX4
                     21.0 160 110
Mazda RX4 Wag
                     21.0 160 110
Datsun 710 22.8 108 93
Hornet 4 Drive 21.4 258 110
Hornet Sportabout 18.7 360 175
Valiant 18.1 225 105
> m<-lm(mpg~disp+hp,data=ip)
> print(m)
Call:
lm(formula = mpg ~ disp + hp, data = ip)
Coefficients:
(Intercept) disp hp
30.73590 -0.03035 -0.02484
> a<-coef(m)
> Xdisp<-coef(m)[1]
> print(Xdisp)
    30.7359
> Xhp<-coef(m)[2]
> print(Xhp)
       disp
-0.03034628
```

Conclusion: we have successfully performed multiple linear regression.

B.Logistic Regression.

```
> #Logistic regression
>ip<-mtcars[,c("am","wt","mpg")]
> print(head(ip))
>am.data<-glm(formula=am~wt+mpg,data=ip,family=binomial)
> summary(am.data)
```

```
R Console
Call:
glm(formula = am ~ wt + mpg, family = binomial, data = ip)
Deviance Residuals:
    Min 1Q Median
                               3Q
                                       Max
-2.50806 -0.45191 -0.04684 0.24664 2.01168
Coefficients:
          Estimate Std. Error z value Pr(>|z|)
(Intercept) 25.8866 12.1935 2.123 0.0338 *
           -6.4162 2.5466 -2.519 0.0118 *
           -0.3242
                     0.2395 -1.354 0.1759
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
(Dispersion parameter for binomial family taken to be 1)
   Null deviance: 43.230 on 31 degrees of freedom
Residual deviance: 17.184 on 29 degrees of freedom
AIC: 23.184
Number of Fisher Scoring iterations: 7
>
<
```

Conclusion: we have successfully performed logistic regression.