Global QCQP Solver

Chuwen Zhang

May 2, 2021

Contents

1	Semidefinite Relaxation			1
	1.1	Method I		
		1.1.1	Vector case	2
		1.1.2	Matrix case	2
		1.1.3	Inhomogeneous	3
	1.2	Metho	od II: The Many-Small-Cone	3
		1.2.1	Partition a Matrix into Positive and Negative Parts	3
		1.2.2	Many-small-cone Relaxation	4
		1.2.3	Bounds	4
	1.3	Rema	rk	5
		1.3.1	Extending to matrix and tensor case	5
	1.4	Tests		5
2	Branch and Cut Algorithm			5
	2.1	Root		6
R	eferer	1000		7

1 Semidefinite Relaxation

We consider two types of SDP relaxation for canonical QCQP. We first consider for the case where x is a vector, i.e., $x \in \mathbb{R}^n$.

Maximize
$$x^T Q x$$

s.t. $x^T A_i x (\leq, =, \geq) b_i, \forall i = 1, ..., m$ (1.1)

And for inhomogeneous QCQP,

Maximize
$$x^T Q x + 2q^T x$$

s.t. $x^T A_i x + 2a_i^T x (\leq, =, \geq) b_i$ (1.2)

for inhomogeneous case, we notice:

$$\begin{aligned} x^TQx + 2q^Tx \\ &= \begin{bmatrix} x^T & t \end{bmatrix} \begin{bmatrix} Q & q \\ q^T & o \end{bmatrix} \begin{bmatrix} x \\ t \end{bmatrix} \\ \text{s.t.} & -1 \leq t \leq 1 \end{aligned}$$

we can use a homogeneous reformulation where the size of problem by 1.

1.1 Method I

1.1.1 Vector case

for $X \in \mathbb{R}^n$, we have: $x^T A_i x = A_i \bullet (xx^T)$

Maximize
$$Q \bullet Y$$

s.t. $Y - xx^T \succeq 0$ or $\begin{bmatrix} 1 & x^T \\ x & Y \end{bmatrix} \succeq 0$ (1.3)
 $A_i \bullet Y (\leq, =, \geq) b_i, \forall i$

1.1.2 Matrix case

for $X \in \mathbb{R}^{n \times d},$ we have: $X^T A_i X = A_i \bullet (XX^T)$

Maximize
$$Q \bullet Y$$

s.t. $Y - XX^T \succeq 0$ or $\begin{bmatrix} I_d & X^T \\ X & Y \end{bmatrix} \succeq 0$ (1.4)
 $A_i \bullet Y \ (\leq, =, \geq) \ b_i, \forall i$

1.1.3 Inhomogeneous

SDP relaxation,

Maximize
$$Q \bullet Y + 2q^T x$$

s.t. $Y - xx^T \succeq 0$ or $\begin{bmatrix} 1 & x^T \\ x & Y \end{bmatrix} \succeq 0$ (1.5)
 $A_i \bullet Y + 2a_i^T x \ (\leq, =, \geq) \ b_i, \forall i$

Alternative

The above formulation could be unbounded. We homogenize by letting y = (x; t),

Maximize
$$y^T \begin{bmatrix} Q & q \\ q^T & 0 \end{bmatrix} y$$

s.t. $y^T \begin{bmatrix} A_i & a_i \\ a_i^T & 0 \end{bmatrix} y \ (\leq, =, \geq) \ b_i, \forall i$ (1.6)

1.2 Method II: The Many-Small-Cone

Let $A = A^+ + A_-$ be symmetric where $A_-, A^+ \succeq 0$, which allows Cholesky decomposition,

$$U^+(U^+)^T = A^+$$

since U^+ may be low-rank, we can define z^+ accordingly,

$$(U^{+})^{T}x = z^{+}$$

$$x^{T}A^{+}x = ||z^{+}||^{2} = \sum_{i} (z^{+})_{i}^{2}$$

$$y_{i} = (z_{i}^{+})^{2}, \begin{bmatrix} 1 & z_{i}^{+} \\ z_{i}^{+} & y_{i} \end{bmatrix} \succeq 0, \forall i$$

$$(1.7)$$

This is the so-called "many-small-cone" method.

1.2.1 Partition a Matrix into Positive and Negative Parts

We first compute the eigenvalues for $Q, A_i, i = 1, ..., m$ beforehand, then we decompose each matrix by sign of the eigenvalues. One way to do this is:

- Symmetrize: re-define $Q:=\frac{Q+Q^T}{2},$ by the fact that $x^TQx=x^T(\frac{Q+Q^T}{2})x$
- Compute eigenvalue decomposition:

$$Q = U\Gamma U^T$$

- Partition columns of U by $I^+ \in \mathbb{R}^{n \times n}, I^+_{ii} = 1$ if $\Gamma_i > 0$
- We define $U^+ = U \cdot \sqrt{(I^+) \cdot \Gamma}, \ U^- = U \cdot \sqrt{-(I^-) \cdot \Gamma}$
- We have:

$$Q = U^+(U^+)^T - U^-(U^-)^T$$

1.2.2 Many-small-cone Relaxation

Now we conclude the many-small-cone relaxation,

$$\begin{aligned} & \text{Maximize} \quad (y^{+})^{T}e - (y^{-})^{T}e + q^{T}x \\ & \text{s.t.} \quad \begin{bmatrix} y^{+}_{i} & z^{+}_{i} \\ z^{+}_{i} & 1 \end{bmatrix} \succeq 0, \begin{bmatrix} y^{-}_{i} & z^{-}_{i} \\ z^{-}_{i} & 1 \end{bmatrix} \succeq 0 & \forall i \\ & (U^{+})^{T}x = z^{+}, (U^{-})^{T}x = z^{-} \\ & \begin{bmatrix} Y^{+}_{j,i} & Z^{+}_{j,i} \\ Z^{+}_{j,i} & 1 \end{bmatrix} \succeq 0, \begin{bmatrix} Y^{-}_{j,i} & Z^{-}_{j,i} \\ Z^{-}_{j,i} & 1 \end{bmatrix} \succeq 0 & \forall j, \forall i \\ & (U^{+}_{j})^{T}x = Z^{+}_{j}, (U^{-}_{j})^{T}x = Z^{-}_{j} & \forall j \\ & (Y^{+}_{j})^{T}e - (Y^{-}_{j})^{T}e + a^{T}_{j}x (\leq, =, \geq) b_{j} & \forall j \end{aligned}$$

where
$$Q = U^+(U^+)^T - U^-(U^-)^T, A_j = U_j^+(U_j^+)^T - U_j^-(U_j^-)^T, j = 1, ..., m$$

1.2.3 Bounds

To avoid unboundedness (the above is unbounded above), for example,

$$(U^+)^T x = z^+, y^+ = (U^+)^T$$

1.3 Remark

1.3.1 Extending to matrix and tensor case

We first develop for the vector case: $x \in \mathbb{R}^n$, whereas QCQP is not limited to vector case:

- vectors, $x \in \mathbb{R}^n$, max-cut, quadratic knapsack problem
- matrices, $x \in \mathbb{R}^{n \times d}$, quadratic assignment problem, SNL, kissing number.

For example, SNL uses $X \in \mathbb{R}^{n \times d}$ for d-dimensional coordinates. For higher dimensional case, followings can be done:

- One may however using the vectorized method, i.e., x = vec(X) to reformulate the matrix-based optimization problem, given the SDP bounds by original and vectorized relaxations are equivalent with mild assumptions. (see Ding et al. (2011))
- the above method may create a matrix of very large dimension resulted from Kronecker product.
- ultimately, the solver should provide an option to use user specified relaxations.

1.4 Tests

We test on specific applications:

- vectors, $x \in \mathbb{R}^n$, max-cut, quadratic knapsack problem
- matrices, $x \in \mathbb{R}^{n \times d}$, QAP, SNL, kissing number.

and a recent general new library as present in qplib, http://qplib.zib.de/instances.html, see Furini et al. (2019).

2 Branch and Cut Algorithm

For $x \in \mathbb{R}^n$, we have: $x^T A_i x = A_i \bullet (xx^T)$

Maximize
$$Q \bullet Y$$

s.t. $Y - xx^T \succeq 0$ or $\begin{bmatrix} 1 & x^T \\ x & Y \end{bmatrix} \succeq 0$ (2.1)
 $A_i \bullet Y \ (\leq, =, \geq) \ b_i, \forall i$

For MINLP and more specifically for QP, see Belotti et al. (2013), Misener and Floudas (2013). More recently, spacial branch-and-cut method Chen et al. (2017) for QP with complex variables.

Branching node and value selection, namely, select which $x_i, i = 1, ..., N$ and value α , for left and right children, for example:

$$x_i \le \alpha, x_i \ge \alpha$$

- Audet et al. (2000) using RLT relaxation and LP, literally, $W_{ij} \approx x_i x_j, v_i \approx x_i^2$. The branching is essentially based on $||W_{ij} x_i x_j||$, $||v_i x_i^2||$, at each node we solve a linear programming relaxation.
- Linderoth (2005) a B-B based on subdividing the feasible region into the Cartesian product of triangles and rectangles.

Branching value:

Some source code to look at:

• Couenne: https://www.coin-or.org/Couenne/

•

2.1 Root

The root of the problem can selected from different SDPs as we discussed before. It is a question to answer whether we should use the SDP with the tightest bound.

References

- Audet C, Hansen P, Jaumard B, Savard G (2000) A branch and cut algorithm for nonconvex quadratically constrained quadratic programming. *Mathematical Programming* 87(1):131–152, publisher: Springer.
- Belotti P, Kirches C, Leyffer S, Linderoth J, Luedtke J, Mahajan A (2013) Mixed-integer nonlinear optimization. *Acta Numerica* 22:1, publisher: Cambridge University Press.
- Chen C, Atamtürk A, Oren SS (2017) A spatial branch-and-cut method for nonconvex QCQP with bounded complex variables. *Mathematical Programming* 165(2):549–577, publisher: Springer.
- Ding Y, Ge D, Wolkowicz H (2011) On equivalence of semidefinite relaxations for quadratic matrix programming. *Mathematics of Operations Research* 36(1):88–104, publisher: INFORMS.
- Furini F, Traversi E, Belotti P, Frangioni A, Gleixner A, Gould N, Liberti L, Lodi A, Misener R, Mittelmann H, Sahinidis NV, Vigerske S, Wiegele A (2019) QPLIB: a library of quadratic

Linderoth J (2005) A simplicial branch-and-bound algorithm for solving quadratically constrained quadratic programs. $Mathematical\ programming\ 103(2):251-282$, publisher: Springer.

Misener R, Floudas CA (2013) Glo
MIQO: Global mixed-integer quadratic optimizer.
 Journal of Global Optimization 57(1):3–50, publisher: Springer.

Appendix