June 15, 2022

Figure 1: Chiral condensate as a function of the degenerate fermion mass for different flavors.

Figure 2: Chiral condensate as a function of the degenerate fermion mass for different flavors. We compare with the prediction by Hosotani.

Figure 3: Chiral condensate as a function of the degenerate fermion mass for different flavors. We compare with the prediction by Hosotani.

Figure 4: Chiral condensate as a function of the degenerate fermion mass for different flavors. We compare with the prediction by Hosotani.

Figure 5: Chiral condensate as a function of the degenerate fermion mass for different flavors. We compare with the prediction by Hosotani.

Figure 6: Chiral condensate as a function of the degenerate fermion mass for different flavors. We compare with the prediction by Hosotani.

References

[1] J. E. Hetrick, Y. Hosotani, and S. Iso. Interplay between mass, volume, vacuum angle and chiral condensate in N avor QED in two-dimensions. *Phys. Rev. D*, **53**, 1996. arXiv:hep-th/9510090.