

Advanced mathematical strategies to speed up energy-efficient microelectronic device modeling

Nia Maheshwari¹, *Prabhat Kumar², Andy Nonaka² ¹University of Tennessee, Knoxville, ²Lawrence Berkeley National Laboratory

ABSTRACT

Ferroelectric-based transistors can exhibit negative capacitance, a property that allows for lower operating voltages. FerroX is a 3D simulation framework that enables investigation of the energy dynamics within ferroelectric heterostructures. FerroX performs differential-equation based calculations, and is currently limited by inadequate time integration capabilities. A successful implementation of the SUite of Nonlinear and DIfferential/ALgebraic equation Solvers (SUNDIALS) support doubled the time step length, and helps overcome this restriction.

Energy inefficiency of computers is the limiting factor in future global computing capacity. Image credit: Semiconductor Research Corporation, Semiconductor Industry Association.

With the current structure of transistors, Information and Communication Technology (ICT) is predicted to account for nearly one quarter of all energy consumption by in 2030.

BACKGROUND NCFET FET Transistor Microelectronic structure devices function **Metal Gate** shows the gate Fe (HZO) due to the presence **Dielectric** semiconductor of billions of channel, transistors. source, and However, the drain. Image NCFET credit: Kumar operating voltage of et al. 2024. modern transistors Negative Capacitance Field Effect Transistor (NCFET) requires lower is unsustainably voltage than Field Effect Transistor (FET) to overcome off-on high. threshold. Image credit: P. Kumar, CSA Postdoc Symposium 2023 **METAL** $ho\left(\mathbf{r} ight)=e\left[n_{p}-n_{e}+N_{d}^{+}-N_{a}^{-} ight]$ **FERROELECTRIC** Charge equation for the free charge density of semiconductor **DIELECTRIC** $oldsymbol{ar{\delta P}(\mathbf{r},t)}$ Δt SEMICONDUCTOR Time-Dependent Ginzburg-Landau equation for ferroelectric polarization **METAL** The scalable, massively parallel, $abla \cdot arepsilon \, abla \Phi = \, abla \cdot {f P} - ho$ 3D simulation program FerroX models the complex physical properties of multi-material stacks (illustrated above) by self-consistently solving Poisson's equation for electric potential coupled differential equations (left).

OUR QUESTION

How can we improve the performance and accuracy of FerroX to simulate ferroelectric-material-based microelectronic devices?

PROCEDURE

Establishing Baseline FerroX Performance				
Internal FerroX Method	Max Supported Timestep	Vislt Output		
First Order	4.0e-13			
Second Order	4.0e-13			

Data from stability testing to determine largest allowable time step length without the support of external math libraries. The right-most column depicts stable simulation output as visualized through the VisIt software.

Verification and Validation of SUNDIALS **Explicit Runge Kutta (ERK) Native Runge** Order of Kutta **Accuracy** ARKODE_FORWARD_EULER_1_1 Forward Euler 1.00 ARKODE_HEUN_EULER_2_1_2 2.11 Trapezoid ARKODE_ARK324L2SA_ERK_4_2_3* 3.05 SSPRK3 ARKODE_ARK436L2SA_ERK_6_3_4* 4.07 RK4

The convergence rates for SUNDIALS ERK methods correspond to the order of accuracy of each respective Native Runge Kutta method, effectively validating the SUNDIALS implementation.

EXPLORING ADVANCED METHODS

Diagonally Implicit Runge Kutta (DIRK)	Time step	Runtime
ARKODE_IMPLICIT_TRAPEZOID_2_2	6.0e-13	~700 sec
ARKODE_BILLINGTON_3_3_2	9.0e-13	~630 sec
ARKODE_IMPLICIT_MIDPOINT_1_2	6.0e-13	~600 sec

SUNDIALS offers a different types of time integration methods. The table above shows a few examples of Diagonally Implicit Runge-Kutta (DIRK) methods with their maximum time step. We observe a doubling of the allowable time step.

CONCLUSIONS

Time Integration Method	Time step		
	Order	Stable	Unstable
Forward Euler	1	4.0e-13	5.0e-13
Trapezoid	2	4.0e-13	5.0e-13
SSPRK3	3	5.0e-13	6.0e-13
RK4	4	5.0e-13	6.0e-13
ARKODE_BILLINGTON_3_3_2	2	9.0e-13	10.0e-13

Having validated the SUNDIALS library implementation with convergence tests, we determined the maximum time step supported by several methods.

FUTURE STEPS

Refactor source code

Implement multi-rate functions

Reduce simulation runtime

ACKNOWLEDGEMENTS

My mentors, Prabhat Kumar and Andy Applied Mathematics & Nonaka, for involving me in their breakthrough research on low-power technology. This work was supported in part by the US Department of Energy, Office of Science, Office of SCIENCES Workforce Development for Teachers and Scientists (WDTS) under the Science Undergraduate Laboratory Internship (SULI) program. This poster template was inspired by Workforce Development & Education at Berkeley Lab.

Contact: PrabhatKumar@lbl.gov

Computational Research COMPUTING

