Chapter 6 Bootstrapping

- Let X be a random sample. We want to know the distribution of some statistic T(X) without making strong assumptions on the distribution of X.
 - **Example:** Let X_1, \dots, X_n be i.i.d. samples. We can estimate $\theta = E(X_i)$ by the sample mean $\overline{X}_n := \frac{1}{n} \sum_{i=1}^n X_i$. We want to know the distribution of \overline{X}_n (or $\overline{X}_n \theta$).
 - If we know the distribution of $T(X) \theta$, we can compute the bias and variance of T(X) as an estimator of θ .
 - If we know the distribution of $T(X) \theta$, we can construct confidence interval for θ .
 - Let T(X) be some test statistic. If we know the distribution of T(X) under H_0 , we can perform test.

- Example (Efron and Tibshirani, 1993): A study was done to see if small aspirin doses would prevent strokes and heart attacks in healthy middle-aged men. The data were collected by a controlled, randomized, double-blind study:
 - One half of the subjects received aspirin and the other half received placebo, with no active ingredients.
 - The subjects were randomly assigned to the aspirin or placebo groups.
 - Both the subjects and the supervising physicians were blinded to the assignments.
 - Summary statistics for strokes:

strokes subjects

aspirin group: 119 11037

placebo group: 98 11034

• Assume that the number of strokes in the aspirin group follows a Binomial (n_1, p_1) distribution, and the number of strokes in the placebo group follows a Binomial (n_2, p_2) distribution. Then we can estimate $\theta_s := p_1/p_2$ by

$$\hat{\theta}_s = \frac{119/11037}{98/11034} = 1.21 > 1.$$

- Summary statistics for heart attacks:

heart attacks subjects

aspirin group: 104 11037

placebo group: 189 11034

The ratio of heart attack rates in the two groups can be estimate by

$$\hat{\theta}_h = \frac{104/11037}{189/11034} = 0.55 < 1.$$

– How to access the distributions of $\hat{\theta}_s$ and $\hat{\theta}_h$?

- \bullet **Bootstrap:** Consider the ratio for stroke rates in the two groups.
 - * Create two populations (data sets): the first consisting of 119 ones and 10918(=11037-119) zeros, and the second consisting of 98 ones and 10936(=11034-98) zeros.
 - * For $b = 1, 2, \dots, B$, e.g., B = 1000,
 - · Randomly draw with replacement a sample of 11037 items from the first population, and a sample of 11034 items from the second population. Each of these is called a *bootstrap sample*.
 - · Compute

$$\theta_s^{(b)} = \frac{\text{Proportion of ones in bootstrap sample } \# 1}{\text{Proportion of ones in bootstrap sample } \# 2}$$

* We can use $\{\theta_s^{(1)}, \cdots, \theta_s^{(B)}\}$ to approximate the distribution of $\widehat{\theta}_s$.

- **Principle of Bootstrap:** Suppose we have one realization x_1, \dots, x_n of i.i.d. random variables X_1, \dots, X_n following a population P. We are interested in the distribution of a statistic $T(X_{1:n})$.
 - Assume that the true population P is known.
 - * Compute the exact distribution of $T(X_{1:n})$ using P.
 - * Draw new sample sets $\{x_{1:n}^{(b)}\}$, $b=1,\dots,B$, from P, compute $T(x_{1:n}^{(b)})$, and use $T(x_{1:n}^{(1)}),\dots,T(x_{1:n}^{(B)})$ to estimate the distribution of $T(X_{1:n})$.
 - The true population P is unknown in most cases.
 - * Use limiting theories to develop the asymptotic distribution of $T(X_{1:n})$.
 - * **Bootstrap:** Consider $\{x_1, \dots, x_n\}$ as the "true" population. Draw new sample sets $\{x_1^{*(b)}, \dots, x_n^{*(b)}\}$, $b = 1, \dots, B$, from $\{x_1, \dots, x_n\}$ randomly with replacement, compute $T(x_{1:n}^{*(b)})$, and use $T(x_{1:n}^{*(1)}), \dots, T(x_{1:n}^{*(B)})$ to estimate the distribution of $T(X_{1:n})$.

- **Example:** Suppose that X_1, \dots, X_n are i.i.d. with $Var(X_i) = \sigma_X^2$ and Y_1, \dots, Y_m are i.i.d. with $Var(Y_i) = \sigma_Y^2$. We want to estimate $r = \sigma_X^2/\sigma_Y^2$.
 - We can estimate r by

$$\hat{r} = \frac{\frac{1}{n-1} \sum_{i=1}^{n} (X_i - \overline{X}_n)^2}{\frac{1}{m-1} \sum_{i=1}^{m} (Y_i - \overline{Y}_m)^2},$$

where $\overline{X}_n = \frac{1}{n} \sum_{i=1}^n X_i$ and $\overline{Y}_m = \frac{1}{m} \sum_{i=1}^m Y_i$.

- How to determine the bias and variance of \hat{r} ?
- -Bootstrap: For $b = 1, \dots, B$,
 - * Randomly draw $\{X_1^{*(b)}, \dots, X_n^{*(b)}\}$ with replacement from $\{X_1, \dots, X_n\}$ and draw $\{Y_1^{*(b)}, \dots, Y_m^{*(b)}\}$ with replacement from $\{Y_1, \dots, Y_m\}$.
 - * Compute

$$\tilde{r}^{(b)} = \frac{\frac{1}{n-1} \sum_{i=1}^{n} (X_i^* - \overline{X}_n^*)^2}{\frac{1}{m-1} \sum_{i=1}^{m} (Y_i^* - \overline{Y}_m^*)^2}.$$

• - We can show that given X_1, \dots, X_n and Y_1, \dots, Y_m , the distribution of $\tilde{r}^{(b)} - \hat{r}$ is approximately the same as the distribution of $\hat{r} - r$. So we have

bias
$$(\hat{r}) = E(\hat{r}) - r \approx \frac{1}{B} \sum_{b=1}^{B} (\tilde{r}^{(b)} - \hat{r})$$

and

$$\operatorname{Var}(\hat{r}) \approx \frac{1}{B-1} \sum_{b=1}^{B} (\tilde{r}^{(b)} - \overline{r})^2,$$

where $\overline{r} = \frac{1}{B} \sum_{b=1}^{B} \widetilde{r}^{(b)}$.

- Jackknife (Quenouille, 1949, 1956): Suppose that X_1, \dots, X_n are i.i.d. samples. We want to estimate the *bias and variance* of an estimator $T(X_{1:n})$ for θ .
 - Define $X_{(-i)} = (X_1, \dots, X_{i-1}, X_{i+1}, \dots, X_n)$ and $\tilde{\theta}_{(-i)} = T(X_{(-i)})$

for $i = 1, 2, \dots, n$.

– We can use $\tilde{\theta}_{(-i)}$, $i=1,\cdots,n$, to estimate the bias and variance of $\hat{\theta}=T(X_{1:n})$.

• Jackknife for Bias:

$$\operatorname{bias}(\hat{\theta}) \approx (n-1) \cdot \left[\frac{1}{n} \sum_{i=1}^{n} (\tilde{\theta}_{(-i)} - \hat{\theta}) \right] \stackrel{\triangle}{=} \widehat{\operatorname{bias}}_{Jack}(\hat{\theta}).$$

- Example: Suppose X_1, \dots, X_n are i.i.d. with $Var(X_i) = \sigma^2 < \infty$. Consider $\hat{\sigma}^2 = \frac{1}{n} \sum_{i=1}^n (X_i - \overline{X}_n)^2$.
 - The true bias is $E(\hat{\sigma}^2) \sigma^2 = (n-1)\sigma^2/n \sigma^2 = -\sigma^2/n$.
 - Note that

$$E(\tilde{\sigma}_{(-i)}^{2} - \hat{\sigma}^{2}) = E(\tilde{\sigma}_{(-i)}^{2} - \sigma^{2}) + E(\sigma^{2} - \hat{\sigma}^{2})$$

= $-\sigma^{2}/(n-1) + \sigma^{2}/n = -\sigma^{2}/[n(n-1)].$

Then

$$E\left[\widehat{\text{bias}}_{Jack}(\hat{\theta})\right] = (n-1) \cdot (-\sigma^2)/[n(n-1)] = -\sigma^2/n = E(\hat{\sigma}^2) - \sigma^2.$$

• Jackknife for Variance:

$$\operatorname{Var}(\hat{\theta}) \approx (n-1) \cdot \left[\frac{1}{n} \sum_{i=1}^{n} \left(\tilde{\theta}_{(-i)} - \overline{\tilde{\theta}} \right)^{2} \right] \stackrel{\triangle}{=} \widehat{\operatorname{Var}}_{Jack}(\hat{\theta}),$$

where $\overline{\tilde{\theta}} = \frac{1}{n} \sum_{i=1}^{n} \tilde{\theta}_{(-i)}$.

- **Example:** Suppose X_1, \dots, X_n are i.i.d. with $E(X_i) = \theta$ and $Var(X_i) = \sigma^2 < \infty$. Consider $\hat{\theta} = \overline{X}_n = \frac{1}{n} \sum_{i=1}^n X_i$.
 - The true variance of $\hat{\theta} = \overline{X}_n$ is σ^2/n .

– Note that
$$\tilde{\theta}_{(-i)} = \frac{1}{n-1} \sum_{j \neq i} X_i = \frac{1}{n-1} (n \overline{X}_n - X_i)$$
 and $\overline{\tilde{\theta}} = \overline{X}_n$. Then

$$E\left[\widehat{\operatorname{Var}}_{Jack}(\widehat{\theta})\right] = \frac{n-1}{n} E\left[\sum_{i=1}^{n} \left(\frac{n\overline{X}_n - X_i}{n-1} - \overline{X}_n\right)^2\right]$$
$$= \frac{n-1}{n} E\left[\sum_{i=1}^{n} \left(\frac{\overline{X}_n - X_i}{n-1}\right)^2\right] = \frac{n-1}{n} \cdot \frac{\sigma^2}{n-1} = \sigma^2/n.$$

- **Example:** Let X_1, \dots, X_n be i.i.d. samples with finite expectation. We can write $X_i = \theta + \varepsilon_i$, where $\theta = E(X_i)$ and $\varepsilon_i = X_i E(X_i)$.
 - We can estimate θ by $\hat{\theta} := \overline{X}_n = \frac{1}{n} \sum_{i=1}^n X_i$. How to find a 95% confidence interval for θ ?
 - Confidence Interval (CI): A pair of statistics $L(X_{1:n}) < U(X_{1:n})$ construct a level $100(1-\alpha)\%$ confidence interval for the parameter θ if $P_{\theta}(L(X_{1:n}) < \theta < U(X_{1:n})) > 1-\alpha$ for all θ .
 - * Note that θ is deterministic, but the interval $(L(X_{1:n}), U(X_{1:n}))$ is random.
 - * When a realization $x_{1:n} = (x_1, \dots, x_n)$ is observed, θ is either in $(L(x_{1:n}), U(x_{1:n}))$ or not. There is no uncertainty.
 - * For a given confidence level, there are many different CI's. Usually, we want to find the CI with the shortest length.

• Given that $\varepsilon_i \sim N(0,1)$, then $\hat{\theta} - \theta = \frac{1}{n} \sum_{i=1}^n \varepsilon_i \sim N(0,1/n)$. We have $P(-1.96/\sqrt{n} < \hat{\theta} - \theta < 1.96/\sqrt{n}) = 0.95$ $\Rightarrow P(\hat{\theta} - 1.96/\sqrt{n} < \theta < \hat{\theta} + 1.96/\sqrt{n}) = 0.95.$

So a level 95% confidence interval for θ is $(\overline{X}_n - 1.96/\sqrt{n}, \overline{X}_n + 1.96/\sqrt{n})$.

- Usually, the distribution of ε_i is unknown. We consider using the bootstrap to construct a level 95% confidence interval for θ , especially when the sample size n is not very large.
- **Bootstrap:** For $b = 1, \dots, B$,
 - * Randomly draw $\{X_1^{*(b)}, \dots, X_n^{*(b)}\}$ with replacement from $\{X_1, \dots, X_n\}$.
 - * Compute $\tilde{\theta}^{(b)} = \frac{1}{n} \sum_{i=1}^{n} X_i^{*(b)}$.
- We can show that given X_1, \dots, X_n , the distribution of $\tilde{\theta}^{(b)} \hat{\theta}$ is approximately the same as the distribution of $\hat{\theta} \theta$. So we can use $\tilde{\theta}^{(1)} \hat{\theta}$, \dots , $\tilde{\theta}^{(B)} \hat{\theta}$ to estimate the distribution of $\hat{\theta} \theta$.

• Let $\tilde{q}_{0.025}$ and $\tilde{q}_{0.975}$ be the 2.5% and 97.5% quantiles of the set $\{\tilde{\theta}^{(1)}, \dots, \tilde{\theta}^{(B)}\}$, respectively. We have

$$0.95 \approx P(\hat{q}_{0.025} < \tilde{\theta}^{(b)} < \hat{q}_{0.975} | X_1, \cdots, X_n)$$

$$= P(\hat{q}_{0.025} - \hat{\theta} < \tilde{\theta}^{(b)} - \hat{\theta} < \hat{q}_{0.975} - \hat{\theta} | X_1, \cdots, X_n)$$

$$\approx P(\hat{q}_{0.025} - \hat{\theta} < \hat{\theta} - \theta < \hat{q}_{0.975} - \hat{\theta})$$

$$= P(\hat{\theta} - (\hat{q}_{0.975} - \hat{\theta}) < \theta < \hat{\theta} - (\hat{q}_{0.025} - \hat{\theta})).$$

The level 95% bootstrap confidence interval for θ is

$$(2\hat{\theta} - \hat{q}_{0.975}, 2\hat{\theta} - \hat{q}_{0.025}).$$

- Note that $(2\hat{\theta} - \hat{q}_{0.975}, 2\hat{\theta} - \hat{q}_{0.025})$ may not be the same as $(\hat{q}_{0.025}, \hat{q}_{0.975})$, unless $\hat{\theta} = (\hat{q}_{0.025} + \hat{q}_{0.975})/2$.

- If $\hat{q}_{0.975} \hat{\theta} \approx \hat{\theta} \hat{q}_{0.025}$ (or when $\hat{\theta}$ is an unbiased estimator for θ), we can also use $(\hat{q}_{0.025}, \hat{q}_{0.975})$ as the confidence interval for θ .
 - When the sample size n is large, we can often obtain that

$$\sqrt{n}(\hat{\theta}-\theta) \xrightarrow{d} N(0,\sigma^2),$$

where σ^2/n is the (asymptotic) variance of $\hat{\theta}$, which can be estimated by

$$\hat{\sigma}^2/n \approx \frac{1}{B-1} \sum_{b=1}^{B} (\tilde{\theta}^{(b)} - \overline{\theta})^2,$$

where $\overline{\theta} = \frac{1}{B} \sum_{b=1}^{B} \widetilde{\theta}^{(b)}$. A level 95% confidence interval can also be constructed as

$$(\hat{\theta} - 1.96 \sqrt{\hat{\sigma}^2/n}, \, \hat{\theta} + 1.96 \sqrt{\hat{\sigma}^2/n}).$$

• Linear Regression: Consider a linear regression model

$$Y_i = \beta_0 + \beta_1 X_{i,1} + \cdots + \beta_p X_{i,p} + \varepsilon_i = X_i' \beta + \varepsilon_i,$$

where Y_i is the response variable and $X_i = (1, X_{i,1}, \dots, X_{i,p})$ are the corresponding covariates. The error ε_i satisfies $E(\varepsilon_i \mid X_i) = 0$ and $Var(\varepsilon_i \mid X_i) < \infty$. Given the observations (Y_i, X_i') , $i = 1, \dots, n$, we want to make inference of the linear coefficients $\beta = (\beta_0, \beta_1, \dots, \beta_p)'$.

- Ordinary Least Square (OLS) Estimator: We can estimate β by

$$\hat{\beta} = \arg\min_{\beta} \sum_{i=1}^{n} (Y_i - X_i'\beta)^2$$

$$= \arg\min_{\beta} (\mathbf{Y} - \mathbf{X}\beta)'(\mathbf{Y} - \mathbf{X}\beta)$$

$$= (\mathbf{X}'\mathbf{X})^{-1}(\mathbf{X}'\mathbf{Y}),$$

where $\mathbf{Y} := (Y_1, \dots, Y_n)'$ is a $n \times 1$ vector and $\mathbf{X} := (X_1, \dots, X_n)'$ is a $n \times (p+1)$ matrix (We consider the case $n \gg p$).

• Note that $\mathbf{Y} = \mathbf{X}\beta + \boldsymbol{\varepsilon}$, where $\boldsymbol{\varepsilon} = (\varepsilon_1, \dots, \varepsilon_p)'$. We have

$$\hat{\beta} - \beta = (\mathbf{X}'\mathbf{X})^{-1} [\mathbf{X}'(\mathbf{X}\beta + \boldsymbol{\varepsilon})] - \beta$$
$$= (\mathbf{X}'\mathbf{X})^{-1} \mathbf{X}' \boldsymbol{\varepsilon}.$$

– If we consider X as a constant matrix, and assume that $\varepsilon_1, \dots, \varepsilon_p$ are i.i.d. following the $N(0, \sigma^2)$ distribution, then

$$\hat{\beta} - \beta \sim N(0, \sigma^2(\mathbf{X}'\mathbf{X})^{-1}).$$

We can use this distribution (with an estimated $\hat{\sigma}^2$) to construct confidence interval for each β_j , $j = 0, 1, \dots, p$.

– If we don't know the distribution of ε_i , we can use the bootstrap method (or limiting theories) to construct confidence interval for β_j .

- Empirical Bootstrap: Assume that $(Y_1, X_1), \dots, (Y_n, X_n)$ are i.i.d., and ε_i is independent of X_i .
 - $For b = 1, \cdots, B,$
 - * Randomly draw $\{(Y_i^{*(b)}, X_i^{*(b)})\}_{i=1}^n$ with replacement from $\{(Y_i, X_i)\}_{i=1}^n$.
 - * Compute

$$\tilde{eta}^{(b)} = \left[\left(\boldsymbol{X}^{*(b)} \right)' \boldsymbol{X}^{*(b)} \right]^{-1} \left[\left(\boldsymbol{X}^{*(b)} \right)' \boldsymbol{Y}^{*(b)} \right],$$

where
$$\mathbf{X}^{*(b)} := (X_1^{*(b)}, \dots, X_n^{*(b)})'$$
 and $\mathbf{Y}^{*(b)} := (Y_1^{*(b)}, \dots, Y_n^{*(b)})'$.

- A 95% confidence interval for β_j is constructed as

$$(2\hat{\beta}_j - \tilde{q}_{j,0.975}, 2\hat{\beta}_j - \tilde{q}_{j,0.025}),$$

where $\tilde{q}_{j,0.025}$ and $\tilde{q}_{j,0.975}$ are the 2.5% and 97.5% quantiles of the set $\{\tilde{\beta}_{j}^{(1)}, \dots, \tilde{\beta}_{j}^{(B)}\}$, respectively.

- **Residual Bootstrap:** When there are some influential observations (outliers) in X_i 's, the empirical bootstrap may lead to a bad result (we can not assume that X_i 's are i.i.d.). Define $\hat{\varepsilon}_i := Y_i X_i'\hat{\beta}$.
 - $For b = 1, \cdots, B,$
 - * Randomly draw $\{\hat{\varepsilon}_i^{*(b)}\}_{i=1}^n$ with replacement from $\{\hat{\varepsilon}_i\}_{i=1}^n$.
 - * Calculate $Y_i^{*(b)} = X_i \hat{\beta} + \hat{\varepsilon}_i^{*(b)}, i = 1, \dots, n.$
 - * Compute

$$\tilde{\beta}^{(b)} = (\boldsymbol{X}'\boldsymbol{X})^{-1}(\boldsymbol{X}'\boldsymbol{Y}^*),$$
 where $\boldsymbol{Y}^{*(b)} = (Y_1^{*(b)}, \cdots, Y_n^{*(b)})'.$

- A 95% confidence interval for β_i is constructed as

$$(2\hat{\beta}_j - \tilde{q}_{j,0.975}, 2\hat{\beta}_j - \tilde{q}_{j,0.025}),$$

where $\tilde{q}_{j,0.025}$ and $\tilde{q}_{j,0.975}$ are the 2.5% and 97.5% quantiles of the set $\{\tilde{\beta}_j^{(1)}, \dots, \tilde{\beta}_j^{(B)}\}$, respectively.

- Wild Bootstrap: When ε_i is not independent of X_i , for example, $E(\varepsilon_i \mid X_i) = 0$, but $Var(\varepsilon_i \mid X_i)$ depends on X_i , we need to use the wild bootstrap method.
 - For $b = 1, \dots, B$,
 - * Draw R_1, \dots, R_n i.i.d. from a distribution with zero mean and unit variance, for example, N(0,1).
 - * Calculate $Y_i^{*(b)} = X_i \hat{\beta} + R_i \hat{\varepsilon}_i, i = 1, \dots, n.$
 - * Compute

$$\tilde{\beta}^{(b)} = (\boldsymbol{X}'\boldsymbol{X})^{-1}(\boldsymbol{X}'\boldsymbol{Y}^*),$$
 where $\boldsymbol{Y}^{*(b)} = (Y_1^{*(b)}, \cdots, Y_n^{*(b)})'.$

- A 95% confidence interval for β_j is constructed as

$$(2\hat{\beta}_j - \tilde{q}_{j,0.975}, 2\hat{\beta}_j - \tilde{q}_{j,0.025}),$$

where $\tilde{q}_{j,0.025}$ and $\tilde{q}_{j,0.975}$ are the 2.5% and 97.5% quantiles of the set $\{\tilde{\beta}_j^{(1)}, \dots, \tilde{\beta}_j^{(B)}\}$, respectively.

• Remarks:

- When ε_i is not independent of X_i , we can not break the (X_i, ε_i) pairs in the bootstrap.
- It is easy to verify that

$$E(R_i\varepsilon_i | X_i) = E(R_i | X_i)E(\varepsilon_i | X_i) = 0$$

and

$$\operatorname{Var}(R_{i}\varepsilon_{i} \mid X_{i}) = E(R_{i}^{2}\varepsilon_{i}^{2} \mid X_{i}) - 0$$

$$= E(R_{i}^{2} \mid X_{i})E(\varepsilon_{i}^{2} \mid X_{i})$$

$$= E(\varepsilon_{i}^{2} \mid X_{i})$$

$$= \operatorname{Var}(\varepsilon_{i} \mid X_{i}).$$

• Bootstrap for Logistic Regression: Consider a logistic regression model

$$P(Y_i = 1; X_i, \beta) = \frac{\exp\{X_i^T \beta\}}{1 + \exp\{X_i^T \beta\}},$$

where $Y_i \in \{0, 1\}$ and X_i , $i = 1, \dots, n$, are p-dimensional covariates. We can use the bootstrap to make inference of β .

- We can find the MLE $\hat{\beta}$ using the observed data (Y_i, X_i) , $n = 1, \dots, n$.
- We can define

$$\hat{\varepsilon}_i := Y_i - \hat{E}(Y_i | X_i)$$

$$= Y_i - \frac{\exp\{X_i^T \hat{\beta}\}}{1 + \exp\{X_i^T \hat{\beta}\}}.$$

However, we can not use $\hat{\varepsilon}_1, \dots, \hat{\varepsilon}_n$ for the bootstrap. (Why?)

• - Bootstrap: For $b = 1, \dots, B$,

* For $i = 1, \dots, n$, draw $Y_i^{*(b)}$ from the distribution with

$$Y_i^{*(b)} = \begin{cases} 1, & \text{with probability } \frac{\exp\{X_i^T \hat{\beta}\}}{1 + \exp\{X_i^T \hat{\beta}\}}; \\ 0, & \text{with probability } \frac{1}{1 + \exp\{X_i^T \hat{\beta}\}}. \end{cases}$$

- * Calculate the MLE $\tilde{\beta}^{(b)}$ using the data $\{(Y_i^*, X_i)\}_{i=1}^n$.
- Then we can use $\{\tilde{\beta}^{(1)} \hat{\beta}, \dots, \tilde{\beta}^{(B)} \hat{\beta}\}$ to approximate the distribution of $\hat{\beta} \beta$ and make inference of β .

• **Hypothesis Test:** Suppose X_1, \dots, X_n are i.i.d. from a population $P \in \mathcal{P}$, where \mathcal{P} is a family of populations. Let \mathcal{P}_0 and \mathcal{P}_1 be two complementary subsets of \mathcal{P} , i.e., $\mathcal{P}_0 \cup \mathcal{P}_1 = \mathcal{P}$ and $\mathcal{P}_0 \cap \mathcal{P}_1 = \emptyset$. We want to test

$$H_0: P \in \mathcal{P}_0$$
 versus $H_1: P \in \mathcal{P}_1$

based on the observations $X_1 = x_1, \dots, X_n = x_n$.

- Test Statistic: Usually, we perform test through a test statistic $T(X_{1:n})$, that is, we reject the null hypothesis H_0 if $T(X_{1:n}) \in C$ and accept H_0 if $T(X_{1:n}) \notin C$. Here C is called the critical region or rejection region.
- -p-Value: The p-value for the observed $T(x_{1:n})$ is the **probability** that the test statistic $T(X_{1:n})$ is **more extreme** than $T(x_{1:n})$ **under** H_0 . For example, if we reject H_0 when $T(X_{1:n}) > c$, then the p-value is $P(T(X_{1:n}) > T(x_{1:n}))$ when $P \in \mathcal{P}_0$.
- Given a significance level α , we reject H_0 if the p-value is less than α .

- One-Sample Mean Test: Suppose X_1, \dots, X_n are i.i.d with $E(X_i) = \mu$. We want to test $H_0: \mu = \mu_0$ versus $H_1: \mu > \mu_0$ using the observed data x_1, \dots, x_n .
 - Consider the test statistic

$$T_n := T(X_{1:n}) = \frac{\sqrt{n}(\overline{X}_n - \mu_0)}{S_n},$$

where $S_n = \left[\frac{1}{n-1}\sum_{i=1}^n (X_i - \overline{X}_n)^2\right]^{1/2}$ is the sample standard deviation.

- We reject H_0 if $T_n > c$ and accept H_0 if $T_n \le c$, where c is called the critical value.
- The p-value is $P(T_n > T(x_{1:n}))$ when $H_0 : \mu = \mu_0$ is true.
- If $X_i \sim N(\mu, \sigma^2)$, then $T_n \sim t(n-1)$ under H_0 . Here t(n-1) denotes the Student's t distribution with degrees of freedom n-1. We can use the t(n-1) distribution to compute $P(T_n > T(x_{1:n}))$.

- - When we don't know the distribution of X_i , we can use the bootstrap to compute the p-value for $T(x_{1:n})$.
 - Note that we need to know the **distribution of** T_n **under** H_0 , however, the observe data x_1, \dots, x_n may not satisfy $E(X_i) = \mu_0$.
 - Let $\tilde{x}_i = x_i \overline{x}_n + \mu_0$, then $\tilde{x}_1, \dots, \tilde{x}_n$ satisfies $E(\tilde{X}_i) = \mu_0$.
 - **Bootstrap:** For $b = 1, \dots, B$,
 - * Randomly draw $\{\tilde{x}_1^{*(b)}, \cdots, \tilde{x}_n^{*(b)}\}$ with replacement from $\{\tilde{x}_1, \cdots, \tilde{x}_n\}$.
 - * Compute $\tilde{T}_n^{(b)} = T(\tilde{x}_{1:n}^{*(b)})$.
 - The bootstrap p-value is

$$\hat{P}(T_n > T(x_{1:n})) = \frac{1}{B} \sum_{b=1}^{B} I(\tilde{T}_n^{(b)} > T(x_{1:n})),$$

where $I(\cdot)$ is the indicator function. Note that we compare $\tilde{T}_n^{(b)}$ with $T(x_{1:n})$, but not $T(\tilde{x}_{1:n})$.

- Two-Sample Mean Test: Suppose that X_1, \dots, X_n are i.i.d. with $E(X_i) = \mu_X$, $Var(X_i) = \sigma_X^2$, and Y_1, \dots, Y_m are i.i.d. with $E(Y_i) = \mu_Y$, $Var(Y_i) = \sigma_Y^2$, . We want to test $H_0: \mu_X = \mu_Y$ versus $H_1: \mu_X \neq \mu_Y$ based on observed x_1, \dots, x_n and y_1, \dots, y_m .
 - Case 1: $\sigma_X^2 = \sigma_Y^2$. Consider the test statistic

$$T_{n,m} := T(X_{1:n}, Y_{1:m}) = \frac{(\overline{X}_n - \overline{Y}_m)/\sqrt{1/m + 1/n}}{\sqrt{\frac{1}{m+n-2} \left[\sum_{i=1}^m (X_i - \overline{X}_n)^2 + \sum_{i=1}^n (Y_i - \overline{Y}_m)^2\right]}}.$$

- We reject H_0 when $|T(x_{1:n}, y_{1:m})| > c$. The *p*-value for $\{x_{1:n}, y_{1:m}\}$ is $P(|T_{n,m}| > |T(x_{1:n}, y_{1:m})|)$ when H_0 is true.
- If $X_i \sim N(\mu_X, \sigma^2)$ and $Y_j \sim N(\mu_Y, \sigma^2)$, $T_{n,m}$ follows a t(n+m-2) distribution when $H_0: \mu_X = \mu_Y$ holds. We can use the t(n+m-2) distribution to compute the p-value $P(|T_{n,m}| > |T(x_{1:n}, y_{1:m})|)$.

- **Bootstrap:** Consider the distribution of $T_{n,m}$ under H_0 . Let $\widetilde{x}_i = x_i \overline{x}_n$ and $\widetilde{y}_j = y_j \overline{y}_m$. Then $E(\widetilde{X}_i) = E(\widetilde{Y}_j)$ (H_0 holds).
 - * For $b = 1, \dots, B$,
 - · Randomly draw $\{\tilde{x}_1^{*(b)}, \dots, \tilde{x}_n^{*(b)}\}$ with replacement from $\{\tilde{x}_1, \dots, \tilde{x}_n\}$ and $\{\tilde{y}_1^{*(b)}, \dots, \tilde{y}_m^{*(b)}\}$ with replacement from $\{\tilde{y}_1, \dots, \tilde{y}_m\}$.
 - · Compute $\tilde{T}_{n,m}^{(b)} = T(\tilde{x}_{1:n}^{*(b)}, \tilde{y}_{1:m}^{*(b)})$.
 - * The bootstrap p-value is

$$\hat{P}(|T_{n,m}| > |T(x_{1:n}, y_{1:m})|) = \frac{1}{B} \sum_{b=1}^{B} I(|\tilde{T}_{n,m}^{(b)}| > |T(x_{1:n}, y_{1:m})|).$$

Note that we compare $\tilde{T}_{n,m}^{(b)}$ with $T(x_{1:n}, y_{1:m})$, but not $T(\tilde{x}_{1:n}, \tilde{y}_{1:m})$.

• - Case 2: $\sigma_X^2 \neq \sigma_Y^2$. Consider the test statistic

$$R_{n,m} := R(X_{1:n}, Y_{1:m}) = \frac{\overline{X}_n - \overline{Y}_m}{\sqrt{S_X^2/n + S_Y^2/m}},$$

where
$$S_X^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i - \bar{X}_n)^2$$
 and $S_Y^2 = \frac{1}{m-1} \sum_{j=1}^m (Y_j - \bar{Y}_m)^2$.

- We reject H_0 when $|R(x_{1:n}, y_{1:m})|$ is large. The *p*-value for $\{x_{1:n}, y_{1:m}\}$ is $P(|R_{n,m}| > |R(x_{1:n}, y_{1:m})|)$ when H_0 is true.
- Note that even when X_i and Y_j are normally distributed, $R_{n,m}$ no longer follows a t-distribution.

- **Bootstrap:** Consider the distribution of $R_{n,m}$ under H_0 . Let $\tilde{x}_i = x_i \overline{x}_n$ and $\tilde{y}_j = y_j \overline{y}_m$. Then $E(\tilde{X}_i) = E(\tilde{Y}_j)$ (H_0 holds).
 - * For $b = 1, \dots, B$,
 - · Randomly draw $\{\tilde{x}_1^{*(b)}, \dots, \tilde{x}_n^{*(b)}\}$ with replacement from $\{\tilde{x}_1, \dots, \tilde{x}_n\}$ and $\{\tilde{y}_1^{*(b)}, \dots, \tilde{y}_m^{*(b)}\}$ with replacement from $\{\tilde{y}_1, \dots, \tilde{y}_m\}$.
 - · Compute $\tilde{R}_{n,m}^{(b)} = R(\tilde{x}_{1:n}^{*(b)}, \tilde{y}_{1:m}^{*(b)}).$
 - * The bootstrap p-value is

$$\hat{P}(|R_{n,m}| > |R(x_{1:n}, y_{1:m})|) = \frac{1}{B} \sum_{b=1}^{B} I(|\tilde{R}_{n,m}^{(b)}| > |R(x_{1:n}, y_{1:m})|).$$

Note that we compare $\tilde{R}_{n,m}^{(b)}$ with $R(x_{1:n}, y_{1:m})$, but not $R(\tilde{x}_{1:n}, \tilde{y}_{1:m})$.

Homework

- 1. Let X_1, \dots, X_{100} be i.i.d. from the Bernoulli(p) distribution. Suppose that we observed 24 ones and 76 zeros in one realization of X_1, \dots, X_{100} and estimated p by $\hat{p} = 0.24$.
 - (1) Use the bootstrap to find the variance of $\hat{p} p$.
 - (2) Use the bootstrap to construct a 95% confidence interval for p.
- 2. Suppose that (X_{1i}, X_{2i}, Y_i) , $i = 1, \dots, n$ are i.i.d. following the logistic model

$$P(Y_i = 1 \mid X_{1i}, X_{2i}; \beta) = \frac{\exp\{\beta_0 + \beta_1 X_{1i} + \beta_2 X_{2i}\}}{1 + \exp\{\beta_0 + \beta_1 X_{1i} + \beta_2 X_{2i}\}}.$$

Use the bootstrap to find the 95% confidence intervals for β_0 , β_1 and β_2 , respectively.