Inhoudstafel modelleren & simuleren van biosystemen

- 1. Inleiding
 - 1.1. Wat is modelleren & simuleren?
 - = Discipline van het begrijpen en evalueren van de interactie van delen van een reëel of theoretisch systeem
 - 1.2. Begrippen
 - 1.2.1. Systeem = een geïsoleerd deel van het universum waarin we geïnteresseerd zijn
 - Hebben een doel of functie
 - Interageert met zijn omgeving via systeemgrenzen
 - Kunnen verschillen op basis van schaal
 - 1.2.2. Model = benaderende beschrijving of voorstelling van een systeemModelleren = vertalen van een systeem in een set van wiskundige vergelijkingenSimuleren = het doorrekenen van een model (oplossen)
 - 1.3. Waarom modelleren en simuleren?
 - 1.3.1. (Bio)systeemanalyse
 - 1.3.2. (Bio)systeemevaluatie
 - 1.3.3. (Bio)systeemoptimalisatie
 - 1.3.4. (Bio)systemen voorspellen
 - 1.3.5. Gevoeligheidsanalyses

1.4. Modeltypes

1.4.1. Input/outputmodel = transferfunctiemodel

Model = vertaling van een systeem in een set van wiskundige vergelijkingen (vaak differentiaalvergelijkingen)

- Via een set van wiskundige vergelijkingen worden inputvariabelen omgezet naar outputvariabelen
- Output is enkel afhankelijk van input en een evenredigheidsconstante
- Vergelijking kan opgelost worden zonder bijkomende vergelijkingen
- 1.4.2. Toestandsmodel

Bevat toestandsvariabelen: hulp-variabelen die de toestand van het systeem beschrijven

- Output kan niet afzonderlijk worden opgelost maar is afhankelijk van een 2^e vergelijking die de dynamica van het systeem beschrijft
- 1.5. Waaruit bestaat een model?
 - 1.5.1. Vergelijkingen
 - 1.5.2. Variabelen
 - 1.5.3. Constanten
 - 1.5.4. Parameters

1.6. Modelkarakteristieken

- 1.6.1. Statisch of dynamisch
 - Statisch houdt geen rekening met de tijd
 - Dynamisch beschrijft de evolutie van een systeem in tijd (heeft een geheugen)
- 1.6.2. Deterministisch of stochastisch
 - Deterministisch heeft geen onzekerheid
 - Stochastisch gebruikt regels van de statistiek om onzekerheid van een systeem te beschrijven
- 1.6.3. Lineair of niet-lineair
 - Een model is niet-lineair in de variabelen zodra 1 vd partiële afgeleiden naar de variabelen functie is van 1 of meerdere variabelen
 - Een model is niet-lineair in een parameter als de partiële afgeleide naar de parameterfunctie is van deze parameter
- 1.6.4. Mechanistisch of empirisch
 - Mechanistisch gebaseerd op wetenschappelijke modellen
 - Empirisch gebaseerd op empirische kennis
 - Hybride modellen een mengeling van beide
- 1.7. Modelbouw
 - 1.7.1. Definieer een doel
 - 1.7.2. Verzamel kennis
 - 1.7.3. Stel het model op
 - 1.7.4. Valideer het model
- 2. Modelleren van (bio)systemen
 - 2.1. Modelvergelijkingen
 - 2.1.1. Lineaire algebraïsche vergelijkingen
 - 2.1.2. Dynamische systemen: differentiaalvergelijkingen
 - 2.1.3. Dynamische systemen: balansvergelijkingen
 - 2.2. Input/outputmodellen
 - 2.2.1. SISO model (single input single output)
 - Output is enkel afhankelijk van input en zichzelf
 - Voorgestel door n^{de} orde differentiaalvergelijkingen met een set van initiële condities om de vergelijking op te lossen voor een gegeven input
 - 2.2.2. MIMO model (multiple inputs multiple outputs)
 - Outputs zijn enkel afhankelijk van zichzelf en van de inputs
 - De vergelijkingen zijn niet gekoppeld!
 - Ook tussenvormen MISO mogelijk (multiple inputs single output)
 - 2.3. Eerste orde systemen (beschreven door (set van) 1e orde differentiaalvergelijking(en))
 - Dynamica wordt typisch geanalyseerd door respons te bestuderen op eenvoudige inputs

- 2.3.1. Typevoorbeeld: y = ky
 - Lineaire 1^e orde differentiaalvergelijking met constante coëfficiënten
 - Oplossing: $y = y_0 e^{kt}$
- 2.3.2. Typevoorbeeld: y + by = c

Lineaire 1e orde differentiaalvergelijking met constante coëfficiënten

2.3.3. Niet-lineaire eerste orde systemen of modellen

2.4. De Laplacetransformaties

2.4.1. Definitie

- = wiskundige oplossingsmethode voor lineaire differentiaalvergelijkingen
 - Ze transformeert een functie in het tijdsdomein naar een functie in het complex domein
 - De Laplace transformatie is enkel zinvol indien de integraal convergeert
 - Kan enkel worden toegepast indien de functie f(t) bestaat en gedefinieerd is voor alle positieve waarden van t
 - De Laplace-getransformeerde functie is niet langer een functie van t, maar wel van s

2.4.2. Laplace-getransformeerden van elementaire functies

Laplace Transforms	
f(t)	$F(s) = L\{f(t)\}\$
$C_1f(t) + C_2g(t)$	$C_1F(s) + C_2G(s)$
$e^{it}f(t)$	F(s-k)
f(kt)	$\frac{1}{k}F\left(\frac{s}{k}\right)$
tf(t)	$-\frac{dF(s)}{ds}$
$t^n f(t)$	$(-1)^n \frac{d^n F(s)}{ds^n}$
$\frac{1}{t}f(t)$	$\int_{s}^{\infty} F(s) ds$
$\frac{1}{t}f(t)$ $\int_{0}^{t}f(t)dt$	$\frac{1}{s}F(s)$
1	<u>1</u> s
$t^a, a > -1$	$\frac{\Gamma(a+1)}{s^{a+1}}$
t ^{-1/2}	$\sqrt{\frac{\pi}{s}}$
t	$\frac{1}{s^2}$
t ²	$\frac{2}{s^3}$
$t^n, n = 1, 2, 3,$	$\frac{n!}{s^{n+1}}$
e ^a	$\frac{1}{s-a}$

$t^n e^{tt}$, $n = 1, 2, 3,$	n!
	$(s-a)^{n+1}$
sinat	$\frac{a}{s^2 + a^2}$
e ^{la} sin <i>at</i>	$\frac{a}{(s-k)^2 + a^2}$
t sin at	$\frac{2as}{(s^2 + a^2)^2}$
cos at	$\frac{s}{s^2 + a^2}$
e ^{kt} cos at	$\frac{s-k}{(s-k)^2+a^2}$
teosat	$\frac{s^2 - a^2}{(s^2 + a^2)^2}$
sinh at	$\frac{a}{s^2 - a^2}$ $\frac{s}{s^2 - a^2}$
cosh at	$\frac{s}{s^2-a^2}$
$u(t-t_0)$	$e^{-i\phi}$
$u(t-t_0)f(t-t_0)$	$e^{-t_0 x} F(s)$
$\delta(t - t_0)$	$e^{-t_0 r}$
f(t), periodic of period p	$\frac{1}{1 - e^{-ps}} \int_{0}^{p} e^{-st} f(t) dt$
f'(t)	sF(s) - f(0)
$f^{\sigma}(t)$	$s^2F(s) - sf(0) - f'(0)$
$f^{(n)}(t)$	$s^{n}F(s) - s^{n-1}f(0) - \cdots - f^{(n-1)}(0)$
$\int_{0}^{t} f(\tau)g(t-\tau)d\tau$	F(s)G(s)

- 2.4.3. Eigenschappen van Laplacetransormatie
- 2.4.4. Laplace-getransformeerden van afgeleiden
- 2.4.5. De inverse Laplacetransformatie
- 2.4.6. Oplossen van differentiaalvergelijkingen met de Laplacetransformatie
 - Stap 1: transformeer de differntiaalvergelijking
 - Stap 2: Bepaal de oplossing Y(s) van de Laplace-getransformeerde vergelijking
 - Stap 3: Bepaal de functie y(t) die Y(s) als Laplace-getransformeerd heeft

- 2.5. Dynamisch gedrag van 1e orde systemen
 - 2.5.1. Algemene wiskundige beschrijving van 1^e orde systemen

$$\tau \frac{dy(t)}{dt} + y(t) = k * u(t)$$

Met tau de snelheidsconstante en k de versterkingfactor

- 2.5.2. Laplacetransformatie en respons van een eerste orde systeem
 - Vrije respons = zero inputs respons
 - Is het gedeelte vd respons dat veroorzaakt wordt door de initiële condities (er treden geen externe krachten op)
 - De oplossing als input U(s) = 0
 - Geforceerde respons = zero state respons
 - Is het gedeelte vd respons veroorzaakt door de input (er treden wel externe krachten op bij zero intiële condities)
 - De oplossing als de initiële conditie y(0)= 0
 - De respons van een lineaire differentiaalvergelijking is steeds de som van een vrije en een geforceerde respons
- 2.5.3. De transferfunctie H(s) van de differnetiaalvergelijking bekomen we door de initiële conditie(s) y(0) = 0 te stellen, en de verhouding te nemen van Y(s) en U(s)
 - H(s) is dus de verhouding vd Laplace-getransformeerde vd geforceerde respons tot de Laplace-getransformeerde vd input
 - Nuttig voor de analyse van effecten vd input ve systeem en dus voor het analyseren vd dynamica van systemen
 - Concept transferfunctie vormt de basis voor een grafische beschrijving van systeemdynamica: blokdiagrammen
- 2.5.4. Systeemdynamica van eerste orde systemen
 - 1. De eenstapsrespons
 - De éénstapsfunctie is de eenvouidgste discontinue functie
 - 2. De impulsrespons
 - Wanneer de input een functie is met een hoge waarden over een zeer korte tijd
 - Voorgesteld door de Dirac deltafunctie
 - 3. De hellingsrespons
 - De eenheidhellingsunctie (unit ramp function)
 - 4. De frequentierespons
 - Respons op een sinusoïdale functie

2.6. Tweede orde systemen

- 2.6.1. Het mechanisch massa-veer-demper systeem
 - Systeem massa-veer: Wet van Hooke
 - $F_{veer} = k*s$
 - Bij evenwicht: W = m*g = F_{veer} = k*L
 - Bij verstoring: F_{veer} = -k(L+x)
 - Demper: $F_{demper} = -c*v$
 - Netto kracht
- 2.6.2. Dynamische gedrag van het massa-veer-demper systeem
- 2.6.3. Biosysteemtoepassingen

2.7. Blokdiagrammen

- 2.7.1. Transferfuncties voor complexere systemen
 - Voor systemen met meerdere inputs en outputs, is er 1 transferfunctie per input/outputpaar
 - Bij stelsels differentiaalvergelijkingen: de vergelijkingen eerst transformeren en algebraïsch de variabelen elimineren, behalve de gewenste input en output
- 2.7.2. De transferfunctie en blokdiagrammen
 - Visuele interpretatie vd dynamica ve model
 - Blokdiagrammen tonen hoe de componenten ve systeem interageren met elkaar: ze tonen relaties (oorzaak – effect) tussen de componenten
 - Kunnen gebruikt worden om transferfuncties van systemen te achterhalen,
 wanneer differentiaalvergelijkingen niet gegeven zijn
 - Equivalente blokdiagrammen = hetzelfde model kan worden voorgesteld door meerdere blokdiagrammen
 - Systeem- of modelreductie
- 2.8. Toestandsmodellen = modellen die bestaan uit meerdere gekoppelde $\mathbf{1}^{e}$ orde differentiaalvergelijkingen
 - Bevat toestandsvariabelen: hulp-variabelen die de toestand vh systeem beschrijven
 - 2.8.1. Transitie van input/outputmodel naar toestandsmodel
 - Elk input/outputmodel kan steeds getransformeerd worden naar een toestandsmodel
 - Algemeen voorbeeld: een stationair, lineair SISO model zonder afgeleiden vd inputvariabelen
 - 2.8.2. De toestandsvergelijkingen
 - = Set of stelsel van 1e orde differentiaalvergelijkingen die toestandsmodellen beschrijven
 - Vergelijkingen zijn hier wel onderling afhankelijk (gekoppeld)!
 - Vector-matrixnotatie laat toe meerdere vergelijkingen als 1 enkele matrixvergelijking te schrijven

- 2.8.3. Het begrip "toestand van een dynamisch systeem"
 - Voor een gegeven dynamisch systeem bestaat er een minimum set van variabelen die, indien gekend, het systeem op een bepaald tijdstip volledig beschrijven
 - De set van toestandsvariabelen kan worden voorgesteld door een vector, de toestandsvector in de toestandsruimte
 - Het systeem kan worden beschouwd als een punt in de tijd beweegt doorheen de toestandsruimte via een continu pad, het toestandstraject
 - De vorm vh toestandstraject wordt bepaald door initiële condities, de inputs en de dynamica vh systeem
- 2.8.4. De outputvergelijkingen

Statische, algebraïsche vergelijkingen

- 2.8.5. Algemene wiskundige beschrijving van een toestandsmodel
- 2.8.6. Voorbeeld: de invertasereactor
- 3. Simuleren van (bio)systemen
 - 3.1. Modelsimulatie
 - 3.1.1. Analytische oplossingen
 Oplosbaar zijn van de differentiaalvergelijkingen
 - 3.1.2. Numerieke oplossingen Indien geen analytische oplossingen gevonden kunnen worden
 - 3.2. Parameterschatting
 - = Bepalen van de optimale waarden voor de parameters door het model te vergelijken met experimentele data
 - Modelkalibratie of fitten van een model
 - Statistische context
 - 3.2.1. De doelfunctie
 - Om de parameterschatting uit te voeren wordt eerst een doelfunctie j(theta)
 gedefinieerd die de afwijking vd modelpredictie en de experimentele data, voor
 een bepaalde parameter set theta kwantificeert
 - Minimalisatie vd doelfunctie gebeurt mbv een optimalisatiealgoritme
 - Som van de kwadratische afwijkingen
 - Gewogen som van de kwadratische afwijkingen
 - 3.2.2. Polynomiale modellen
 - Worden vaak gebruikt om data te fitten maar zijn vaak onbetrouwbaar bij extrapolatie!
 - 3.2.3. Identificeerbaarheid van een model

Een model is identificeerbaar voor een bepaalde experimentele dataset indien aan alle parameters een unieke waarde kan worden toegekend

- Theoretische of structurele identificeerbaarheid
- Praktische identificeerbaarheid

3.2.4. Voorbereidende stappen voor parameterschatting

- 1. Dataset selecteren
- 2. Parameters selecteren
- 3. Initiële schatting
- 4. Opgeven van grenzen voor parameterwaarden

3.2.5. Minimaliseren van de doelfunctie

- Lineaire parameterschatting (algebraïsch)
- Niet-lineaire parameterschatting (numerieke methode)

3.2.6. Minimalisatiealgoritmen

- Vertrekken van een intitiële schatting θ_0 vanwaar iteratief gezocht wordt naar de waarde θ die de doelfunctie minimaliseert
- Minimalisatiealgoritmen op basis van de gradiënt
 - 1. Methode van de steilste helling
 - 2. Methode van Newton
 - 3. Levenberg-Marquardt
- Minimalisatiealgoritmen niet op basis van de gradiënt
 - 1. Powell en Brent methodes
 - 2. Het Simplex algoritme

4. Modelevaluatie en -validatie

4.1. Inleiding

4.1.1. Modelevaluatie vs modelvalidatie

- Modelevaluatie = nagaan of het model een goede weergave is van de experimentele data
- Goodness-of-fit: beschrijft hoe goed het model overeenkomt met de observaties
- Modelvalidatie = nagaan of het model nieuwe waarnemingen met grote waarschijnlijkheid kan beschrijven

4.2. Modelevaluatie

4.2.1. Grafische methodes

- Visuele interpretatie van modeloutput
- Scatter plots (eliminatie tijdscomponent)
 - Bij goed model liggen de datapunten op de bissectrice
- Plotten van residuals
 - Als de residuals random verdeeld zijn

4.2.2. Kwantitatieve methodes

- Absolute methodes: verschil tussen geobserveerde en gemeten waarde
- Genormaliseerde methodes: genormaliseerd tov een standaardwaarde

Bv. Nashstutcliffe coëfficiënt voor modelefficiëntie

4.3. Modelvalidatie

- 4.3.1. Crossvalidatie
 - Zelfde systeem, verschillende metingen
 - Nodige voorwaarde: onafhankelijke dataset voorhanden
- 4.3.2. Extrapolatie
 - Zelfde systeem, verschillende omstandigheden
- 4.3.3. Verschillende systemen
 - Ander systeem, zelfde of verschillende omstandigheden
- 5. Modelanalyse
 - 5.1. Inleiding
 - 5.2. Gevoeligheidsanalyse = studie naar de invloed van variaties in modelparameters op de modelresultaten
 - Lokale gevoeligheidsanalyse
 - Globale gevoeligheidsanalyse
 - 5.2.1. Differentiële gevoeligheidsanalyse
 - Invloed van een parameter in 1 bepaald punt van de parameterruimte
 - Gevoeligheidsfunctie voor dynamische modellen
 - 5.2.2. Relatieve gevoeligheid
 - Laat toe de gevoeligheid van eenzelfde variabel tov verschillende parameters onderling te vergelijken
 - Relatieve gevoeligheid tov een parameter
 - Relatieve gevoeligheid tov een variabele
 - Totale relatieve gevoeligheid
 - 5.2.3. Lokaal karakter van de gevoeligheidsfunctie
 - Berekend door een parameter te perturberen rond een bepaalde waarde
 - Lineaire functie
 - Niet-lineaire functie
 - 5.2.4. Globale gevoeligheidsanalyse
 - Gevoeligheid van de volledige parameterruimte
 - 5.2.5. De Monte-Carlo simulatietechniek = fysiek proces waarbij vele malen wordt gesimuleerd, telkens met verschillende startcondities
 - Resultaat: verdelingsfunctie
 - Stap 1: Preprocessing
 - Stap 2: Simulatie
 - Stap 3: Postprocessing
 - 5.2.6. De methode van de gestandaardiseerde regressie-coëfficiënten
 - Globale gevoeligheidsanalyse gebaseerd op Monte-Carlo en regressie analyse

- 5.3. Onzekerheidsanalyse = studie naar de onzekere aspecten ve model en naar hun invloed op de inherente onzekerheid vd modelresultaten
 - 5.3.1. Toepassingen
 - Validatie modellen
 - Besluitvorming
 - Voorspellingen
 - 5.3.2. Bronnen van onzekerheid
 - Onzekerheid in de modelstructuur
 - Onzekerheid in de programmering
 - Meetfouten
 - Onzekerheid in de modelinput
 - Onzekerheid in de modelparameters
 - 5.3.3. Onzekerheidspropagatie
 - Onzekerheidsanalyse behandelt vaak de voortgang of voortplanting van de onzekerheid doorheen het model
 - Fouten en afwijkingen: begrippen
 - De absolute fout of afwijking
 - De relatieve fout of afwijking
 - De standaardafwijking
 - De variantie
 - Onzekerheidspropagatie: algemene rekenregels
 - Lineaire onzekerheidspropagatie
 - Monte-Carlo onzekerheidspropagatie