	Исходные данные для курсового проектирования:
Дано:	
Основные харал	ктеристики УБР
$L_{max} \coloneqq 6000 \ \textit{km}$	- дальность полета
$n_{\mathit{ББ}} \coloneqq 4$ - числ	по боевых блоков (ББ)
Параметры пор	ажаемых целей
Точечная цель	
$\Delta P_{\phi} \coloneqq 8 \; MPa$	- давление во фронте ударной волны, требуемое для поражения точечной цели
$P_{1mp}' := 0.9$	- требуемая вероятность поражения точечной цели
$\sigma_r = 0.15 \ \textit{km}$	- среднеквадратичное отклонение точки падения боевого блока от точки прицеливания
Площадная цел	ь
$\Delta p_{\phi} \coloneqq 0.03 \; \mathbf{MPc}$	а - давление во фронте ударной волны, требуемое для поражения площадной цели
$M_{1mp}' \coloneqq 0.9$	- требуемое математическое ожидание поражения части площадной цели
$R_u \coloneqq 3 \ \mathbf{km}$	- требуемый радиус поражения площадной цели
$\Delta L \coloneqq 200 \ \textit{km}$	- параметры разведения боевых блоков
$\Delta B \coloneqq 100 \ \textit{km}$	
Требования к У	БР
$ au_{\Sigma} \coloneqq 125 \ \boldsymbol{s}$	- суммарное время работы ДУ маршевых ступеней, не более
$h_{\kappa} = 100 \ km$	- высота окончания АУТ, не более
$n_{x.max} = 20$	- допустимая осевая перегрузка, не более
$T_{\mathfrak{SKCNJ}} \coloneqq 0 {}^{\circ}\mathbf{C}$	$T_{min} \coloneqq -40$ ° $m{C}$ — $T_{max} \coloneqq 40$ ° $m{C}$ — температурный режим эксплуатации
$\Delta T \coloneqq 40$	- man 10 C
Характеристикі	и тоннива
m	- удельный импульс при стандартных условиях.
$\rho_T \coloneqq 1.81 \frac{gm}{cm^3}$	- плотность топлива
$u_{min} \coloneqq 5 \; rac{m{mm}}{m{s}}$	$u_{max} \coloneqq 13 \; rac{mm}{s} \;$ - диапазон скоростей горения топлива при стандартных условиях
$\nu := 0.25$	- показатель степени в законе горения
$K_T = 0.0015$	- коэффициент теплопроводности топлива
$\Delta u_1' = \frac{\Delta u_1}{u_1}$	$\Delta u'_1 \coloneqq 0.02$ - разброс скоростей горения топлива
$\Delta_{c_I} = 0.035$	- случайная составляющая отклонения давления от номинального значения
k = 1.15	- показатель адиабаты продуктов сгорания
z = 0.33	- массовая доля конденсированной фазы в продуктах сгорания
$J_{1 \not \perp 1} := 2100 \frac{m}{s}$	- удельный импульс топлива доводочной ДУ
Базирование:	мобильное (ПГРК)
Материалы:	
- органопластин	
$\sigma_K = 130 \ km$	- удельная прочность материала силовых оболочек корпусов ДУ ступеней
$\rho_{cp} \coloneqq 1.1 \frac{gm}{cm^3}$	- средняя плотность ТЗП силовых оболочек корпусов ДУ ступеней
cm ³	

1. ФОРМИРОВАНИЕ ПОЛЕЗНОЙ НАГРУЗКИ

1.1 Определение требуемых значений параметров боевого оснащения

Стрельба по точечной цели:

$$K_{\mathit{u}} \coloneqq 0.97 \cdot \left(\frac{\Delta P_{\mathit{\phi}}}{\mathit{MPa}}\right)^{-0.37} = 0.449 - \text{коэффициент защищенности точечной цели}$$

$$q_{\mathit{1nomp.my}} \coloneqq \left(\frac{2}{n_{\mathit{bb}}}\right)^{\frac{3}{2}} \cdot \left(\frac{\sigma_{r}}{K_{\mathit{u}}}\right)^{3} \cdot \left(\ln\left(\frac{1}{1-P_{\mathit{1mp}}}\right)\right) \frac{1}{\mathit{km}^{3}} = 0.046$$

$$q_{1nomp.m4} \coloneqq \left(\frac{2}{n_{\mathit{DS}}}\right)^{\frac{3}{2}} \cdot \left(\frac{\sigma_r}{K_{\mathit{4}}}\right)^{3} \cdot \left(\ln\left(\frac{1}{1 - P_{1mp'}}\right)\right)^{\frac{3}{2}} \frac{1}{\mathbf{km}^{3}} = 0.046$$

Стрельба по площадной цели:

$$K_{
m q}\coloneqq 0.78 \cdot \left(rac{\Delta p_{\phi}}{{\it MPa}}
ight)^{-0.5} = 4.503$$
 - коэффициент защищенности площадной цели

$$q_{1nomp.ns} \coloneqq \left(\frac{{M_{1mp}}'}{n_{\mathit{EE}}} \right)^{\frac{3}{2}} \cdot \left(\frac{R_{\mathit{u}}}{K_{\mathit{u}}} \right)^{3} \quad \frac{1}{\mathit{km}^{3}} = 0.032$$

Выберем большее значение потребной мощности:

 $q_{1nomp} \coloneqq 0.046$

Q. Мт	0,1	0,3	0,5	0,8	1,0	1,5
$m_{ m BB}$, кг	100	135	185	270	320	450

Из таблицы выберем ближайшее большее значение массы ББ:

$$m_{\mathit{ББ}} \coloneqq 100 \; \mathit{kg} \qquad \qquad (при \; \mathrm{q} = 0.1)$$

Теперь определим геометрические характеристики ББ:

$$d_{\mathit{Б}\mathit{Б}}\coloneqq 0.037 \boldsymbol{\cdot} \sqrt{\frac{m_{\mathit{Б}\mathit{Б}}}{kg}} \; m{m} = 0.37 \; m{m}$$
 - диаметр ББ

$$l_{\mathit{ББ}} \coloneqq 3.5 \boldsymbol{\cdot} d_{\mathit{ББ}} = 1.3 \ \boldsymbol{m}$$
 - длина ББ

$$R\coloneqq 0.1 \cdot d_{\mathit{ББ}} = 0.037 \; \pmb{m}$$
 - радиус закругления носка ББ

$$m_{\text{БО}} \coloneqq n_{\text{ББ}} \cdot m_{\text{ББ}} = 400 \; \textit{kg}$$
 - масса боевого оснащения

1.2 Боевая ступень

$$m_{\Pi\!\Pi} \coloneqq 10 \; \pmb{kg} \cdot n_{\it{bb}} + 0.1 \cdot m_{\it{bO}} = 80 \; \pmb{kg}$$
 - масса платформы разведения

$$m_{CY} = 95 \ kg + \sqrt[2]{n_{55}} \cdot 5 \ kg = 105 \ kg$$

 $m_{CV} = 95 \ kg + \sqrt[2]{n_{55}} \cdot 5 \ kg = 105 \ kg$ - масса системы управления и приборного отсека

$$m_{KBC} := 45 \ kg + 0.06 \cdot m_{BO} = 69 \ kg$$

- масса конструкции боевой ступени (приборный и агрегатный отсеки)

Параметры доводочной ДУ

В качестве начального значения массы полезной нагрузки примем ее следующее приближенное значение, полученное по алгоритму из пособия [2].

- коэффициент учета затрат массы на защиту УБР от ПФЯВ и ОНФП - коэффициент учета влияния размера зоны разведения УБР с РГЧ

$$K_L \coloneqq \left(rac{10000 \cdot m}{L_{max}}
ight)^{0.15} = 0.383$$
 - коэффициент учета значения максимальной дальности стрельбы

Приближенное значение массы полезной нагрузки:

$$m'_{\mathit{\Pi H}} \coloneqq K_{\mathit{3}} \boldsymbol{\cdot} \left(155 \boldsymbol{\cdot} \boldsymbol{kg} \boldsymbol{\cdot} n_{\mathit{BB}}^{-0.156} + 1.16 \ m_{\mathit{BO}}\right) \left(1 + 0.132 \boldsymbol{\cdot} \left(2 \boldsymbol{\cdot} n_{\mathit{BB}} - 1\right) \boldsymbol{\cdot} \frac{K_{S} \boldsymbol{\cdot} K_{L}}{n_{\mathit{BB}}}\right) = 785.958 \ \boldsymbol{kg}$$

 $m_{\Pi H} \coloneqq m'_{\Pi H}$

Полный запас топлива двухрежимной доводочной ДУ с РГЧ

$$\boldsymbol{\omega} = \Delta \omega_{\textit{zap}} + \sum_{q=1}^{q} \Delta \omega_{\textit{HaB}1} + \sum_{p=1}^{p} \Delta \omega_{\textit{pa3B}1}$$

где $\sum_{q=1}^{q} \Delta \omega_{\text{нав}1}$ и $\sum_{p=1}^{p} \Delta \omega_{\text{разв}1}$ - затраты топлива на участках наведения и разведения (переприцеливания); q и р - число участков наведения и операций разведения

$$L'_{Vk} \coloneqq 2.78 \cdot \frac{km}{\frac{m}{s}}$$
 - производная дальность по конечной скорости

$$L'_{Vk} \coloneqq 2.78 \cdot \frac{km}{m}$$
 - производная дальность по конечной скорости s - производная бокового отклонения по боковой скорости s - производная бокового отклонения по боковой скорости

$$\Delta L_{\it cap} \coloneqq 0.04 \boldsymbol{\cdot} L_{\it max} \! = \! 240 \; \textit{km}$$

$$\Delta V_{eap} \coloneqq \frac{\Delta L_{eap}}{L'_{Vk}} = 86.331 \frac{m}{s}$$
 - He mail

$$\Delta V_{\Delta L1} \coloneqq \frac{\Delta L}{L'_{Vk}} = 71.942 \frac{\textit{m}}{\textit{s}}$$

$$\Delta V_{\Delta B1} \coloneqq \frac{\Delta B}{B_{VB}'} = 103.093 \; \frac{\textit{m}}{\textit{s}}$$

- $\Delta V_{\it zap} := \frac{\Delta L_{\it zap}}{L'_{\it Vk}} = 86.331 \; \frac{\it m}{\it s} \;\;$ потребная величина приращения скорости для компенсации максимального недолета на участке работы маршевых ступеней
 - необходимая величина приращения скорости для единичной операции разведения ББ по дальности на величину ΔL
- $\Delta V_{\Delta B1} \coloneqq \frac{\Delta B}{B'_{VB}} = 103.093 \; \frac{m}{s} \;\;$ необходимая величина приращения скорости для единичной операции разведения ББ в боковом направлении на величину операции разведения ББ в боковом направлении на величину ΔB
 - угол наклона прямых сопел доводочной ДУ к оси БС

Тогда потребные затраты топлива доводочной ДУ на компенсацию погрешностей работы маршевых ступеней:

$$\Delta \omega_{\it rap} \left(m_{\it \Pi H} \right) \coloneqq \Delta V_{\it rap} \cdot \frac{m_{\it \Pi H}}{J_{\it 1 \not 1 \not 1} \cdot \cos \left(lpha
ight)}$$

$$\Delta\omega_{eap}\left(m_{\Pi H}\right)=33.451~kg$$

Единичные операции разведения элементов БО по дальности и в боковом направлении:

$$\Delta\omega_{L1} = \Delta V_{\Delta L1} \cdot \frac{m_{\Pi H \lambda}}{J_{1 Д y} \cdot \cos{(\alpha)}} \hspace{0.5cm} , \text{ где } m_{\Pi H \lambda} \text{ и } m_{\Pi H \rho} \text{ - текущее значение массы полезной нагрузки в начале единичной операции разведения ББ по λ - направлению $\Delta\omega_{B1} = \Delta V_{\Delta B1} \cdot \frac{m_{\Pi H \rho}}{J_{1 Д y} \cdot \cos{(\alpha)}} \hspace{0.5cm}$ (дальности) и по ρ - направлению (по боку)$$

Расчет
$$\sum_{g=1}^{q} \Delta \omega_{{\it H}gg1}$$
 выполняем с учетом четырех участков наведения одного ББ на одну цель

(по числу ББ) $P_{min}\left(m_{ec{ec{ec{H}}}}
ight)\coloneqq 0.5 oldsymbol{\cdot} rac{oldsymbol{m}}{oldsymbol{s}^2}oldsymbol{\cdot} m_{ec{ec{H}}}$ - уровень тяги доводочных ДУ с РГЧ на пониженном режиме $P_{max}\left(m_{\Pi H}\right)\coloneqq 2.5 \boldsymbol{\cdot} \frac{\boldsymbol{m}}{\boldsymbol{s}^2} \boldsymbol{\cdot} m_{\Pi H}$ - уровень тяги доводочных ДУ с РГЧ на повышенном режиме $t_{\mathit{HBB}1}\!\coloneqq\!20\cdot \pmb{s}$ - продолжительность каждого участка $\beta = 25$ ° - угол наклона обратных сопел к оси БС $\Delta \omega_{{\scriptscriptstyle HBB1}} \left(m_{{\scriptscriptstyle \Pi H}} \right) \coloneqq \! P_{min} \left(m_{{\scriptscriptstyle \Pi H}} \right) \cdot \frac{t_{{\scriptscriptstyle HBB1}}}{J_{1,{\scriptscriptstyle L\!\!\! I}\!\! J} \cdot \cos \left(\beta \right)}$ $\sum_{q=1}^4 \Delta \omega_{{\scriptscriptstyle HGB}1} \left(m_{{
m \Pi H}}
ight) = 16.518 \; {m kg}$ Расчет $\sum_{p=1}^{p} \Delta \omega_{pase1}$ проводим для единичных операций разведения по дальности и в боковом

направлении по следующей схеме:

Рис. 7.6. Схема - разведение разведение

$$\sum_{p=1}^{p} \Delta \omega_{pase1} = \sum_{p=1}^{p_L} \Delta \omega_{L1} + \sum_{p=1}^{p_B} \Delta \omega_{B1}$$

, где $\,p_L\,$ и $\,p_B\,$ - число реализуемых операций перенацеливания по дальности и в боковом направлении

Так как $m_{\Pi H \lambda} \left(m_{\Pi H} \right) \coloneqq m_{\Pi H} - \Delta \omega_{\it rap} \left(m_{\Pi H} \right) - m_{\it bb}$

$$\Delta \omega_{L1} \left(m_{\Pi H} \right) \coloneqq \Delta V_{\Delta L1} \cdot \frac{m_{\Pi H \lambda} \left(m_{\Pi H} \right)}{J_{1 \Pi V} \cdot \cos \left(lpha \right)}$$

 $m_{\Pi H \lambda} (m_{\Pi H}) = 652.508 \ kg$ $\Delta\omega_{L1}(m_{\Pi H}) = 23.142 \ kg$

Соответственно $m_{\Pi H \rho}\left(m_{\Pi H}\right)\coloneqq m_{\Pi H \lambda}\left(m_{\Pi H}\right) - \Delta\omega_{L1}\left(m_{\Pi H}\right) - m_{\mathit{ББ}}$

$$\Delta \omega_{B1} \left(m_{\Pi \text{H}} \right) \coloneqq \Delta V_{\Delta B1} \cdot \frac{m_{\Pi \text{H}\rho} \left(m_{\Pi \text{H}} \right)}{J_{1 \angle \!\!\! J y} \cdot \cos \left(\alpha \right)}$$

 $m_{\Pi H \rho} (m_{\Pi H}) = 529.365 \ kg$ $\Delta\omega_{B1}\left(m_{\Pi H}\right) = 26.904 \text{ kg}$

 $\Delta\omega_{\it pase1}\left(m_{\it \Pi H}\right) = 73.189~{\it kg}$

Общий запас топлива доводочной ДУ:

$$\omega\left(m_{\boldsymbol{\Pi}\boldsymbol{H}}\right)\coloneqq\Delta\omega_{\boldsymbol{z}\boldsymbol{a}\boldsymbol{p}}\left(m_{\boldsymbol{\Pi}\boldsymbol{H}}\right)+\sum_{q=1}^{4}\Delta\omega_{\boldsymbol{H}\boldsymbol{a}\boldsymbol{\theta}\boldsymbol{1}}\left(m_{\boldsymbol{\Pi}\boldsymbol{H}}\right)+\sum_{p=1}^{1}\Delta\omega_{\boldsymbol{p}\boldsymbol{a}\boldsymbol{3}\boldsymbol{\theta}\boldsymbol{1}}\left(m_{\boldsymbol{\Pi}\boldsymbol{H}}\right)$$

 $\omega_{\mathit{ДУБC}}\left(m_{\mathit{\Pi H}}\right)\coloneqq\omega\left(m_{\mathit{\Pi H}}\right)$ - масса топлива доводочной ДУ БС

$$m_{\it K}\left(m_{\it \Pi H}
ight)\coloneqq 13.8\,\, {m kg}^{rac{2}{3}}\cdot \sqrt[3]{\omega_{\it ДУБС}\left(m_{\it \Pi H}
ight)}$$

- масса конструкции доводочной ДУ

$$m_{ extit{ДУБС}}\left(m_{ extit{ПH}}
ight)\coloneqq13.8~{\it kg}^{rac{2}{3}}\cdot{}^3\!\sqrt{\omega_{ extit{ДУБС}}\left(m_{ extit{ПH}}
ight)}+\omega_{ extit{ДУБС}}\left(m_{ extit{ПH}}
ight)$$
 - масса доводочной ДУ БС

где $\omega_{\text{ДУБС}}(m_{\Pi H}) = 123.158 \ \textit{kg}$ - масса топлива доводочной ДУ БС

 $m_{\text{ДУБС}} \left(m_{\text{ПH}} \right) = 191.817 \ \textit{kg}$ $m_K(m_{\Pi H}) = 68.659 \ kg$

 $m_{\Pi H n}\left(m_{\Pi H}\right) \coloneqq K_{\mathcal{3}} \cdot \left(m_{\mathsf{BO}} + m_{\Pi \mathsf{J}} + m_{\mathsf{C}\mathsf{Y}} + m_{\mathsf{K}\mathsf{BC}} + m_{\mathsf{Д}\mathsf{Y}\mathsf{BC}}\left(m_{\Pi H}\right)\right)$ $m_{\Pi H_1} := m_{\Pi H_1} (m_{\Pi H}) = 930.399 \ kg$

 $\omega_{\mathcal{D}\mathcal{I}\mathcal{I}\mathcal{I}\mathcal{I}\mathcal{I}}(m_{\Pi H}) = 123.158 \ \boldsymbol{kg}$ - масса полезной нагрузки

Полученное значение массы полезной нагрузки отличается от значения перового приближения $m'_{\Pi H} = 785.958 \; {\it kg} \;$ на $m_{\Pi H1} - m_{\Pi H} = 144.441 \; {\it kg} \;$, поэтому требуется второе приближение.

Второе приближение:

$$m_{\Pi H} \coloneqq 935 \ \mathbf{kg}$$

$$m_{\Pi Hn} (m_{\Pi H}) = 964.737 \ kg$$

$$m_{\Pi H n} (m_{\Pi H}) - m_{\Pi H} = 29.737 \; {\it kg}$$
 , поэтому требуется третье приближение.

Третье приближение:

$$m_{\Pi H} = 970 \ kg$$

$$m_{\Pi Hn} (m_{\Pi H}) = 972.712 \ kg$$

Окончательно примем $m_{\Pi H} \coloneqq 975 \ \textit{kg}$

$$R_{min}$$
ДД $\coloneqq 0.5 \cdot \frac{N}{kg} \cdot m_{\Pi H} = 487.5 \; N$

- тяга двигателя доводки в пониженном режиме

$$R_{max\!A\!J\!A} \coloneqq 2.5 \cdot rac{N}{kg} \cdot m_{\Pi H} = \left(2.438 \cdot 10^3
ight) N$$

- тяга двигателя доводки в повышенном режиме

$egin{array}{c c c c c c c c c c c c c c c c c c c $	m'_{min}	лл:=∶	R_{min}	=0.	232 kg		- секу	ндные	массо	вый ра	сход в	поних	кенном	і реж	име		
2. ПРИБЛИЖЕННОЕ БАЛЛИСТИЧЕСКОЕ ПРОКТИРОВАНИЕ 2.1 Определение требуемого значения скорости в конце АУТ и характеристической скорости п ваданной дальности 6000 км из таблицы 2 следует: актастаческае параметри разот для ракатися дальностей полята 1. $h_{\rm av}$ $I_{\rm av}$ $g_{\rm c}$ $Y_{\rm c}$ 0 $10 / 9 / V_{\rm c}$ 0 0 0 0 0 0 0 0 0 0	,		$J_{1Д}$	′	8												
2. ПРИБЛИЖЕННОЕ БАЛЛИСТИЧЕСКОЕ ПРОКТИРОВАНИЕ 2.1 Определение требуемого значения скорости в конце АУТ и характеристической скорости п ваданной дальности 6000 км из таблицы 2 следует: актастаческае параметри разот для ракатися дальностей полята 1. $h_{\rm av}$ $I_{\rm av}$ $g_{\rm c}$ $Y_{\rm c}$ 0 $10 / 9 / V_{\rm c}$ 0 0 0 0 0 0 0 0 0 0	m'_{max}	лл : =	R_{max_r}	$\frac{dd}{dt} = 1$	161 kg		- секу	ндные	массоі	вый ра	сход в	повыі	ценног	и рез	киме		
2.1 Определение требуемого значения скорости в конце АУТ и характеристической скорости паданной дальности 6000 км из таблицы 2 следует: 1. h_{x_1} l_x θ_{x_1} V_x θ_{x_1} V_x θ_{x_1} V_x θ_{x_2} θ_{x_1} θ_{x_2} θ_{x_1} θ_{x_2} θ_{x_2} θ_{x_2} θ_{x_3} θ_{x_4}	max	24,24	${J}_{1$ Д $)}$	/	8					1	1			Ī			
2.1 Определение требуемого значения скорости в конце АУТ и характеристической скорости паданной дальности 6000 км из таблицы 2 следует: 1. h_{x_1} l_x θ_{x_1} V_x θ_{x_1} V_x θ_{x_1} V_x θ_{x_2} θ_{x_1} θ_{x_2} θ_{x_1} θ_{x_2} θ_{x_2} θ_{x_2} θ_{x_3} θ_{x_4}																	
2.1 Определение требуемого значения скорости в конце АУТ и характеристической скорости паданной дальности 6000 км из таблицы 2 следует: 1. h_{x_1} l_x θ_{x_1} V_x θ_{x_1} V_x θ_{x_1} V_x θ_{x_2} θ_{x_1} θ_{x_2} θ_{x_1} θ_{x_2} θ_{x_2} θ_{x_2} θ_{x_3} θ_{x_4}																	
2.1 Определение требуемого значения скорости в конце АУТ и характеристической скорости паданной дальности 6000 км из таблицы 2 следует: 1. h_{x_1} l_x θ_{x_1} V_x θ_{x_1} V_x θ_{x_1} V_x θ_{x_2} θ_{x_1} θ_{x_2} θ_{x_1} θ_{x_2} θ_{x_2} θ_{x_2} θ_{x_3} θ_{x_4}				2 П	рибли	женноі	Е БАППИ	стич	IECKC	Е ПРО	жти	PORA	ние				
ваданной дальности 6000 км из таблицы 2 следует: альности 6000 км из таблицы 2 след	21.0	прет	тепец											кой	crone	ости	П
Пля дальности 6000 км из таблицы 2 следует: L.					Coycidor	о значен	ии скорос	ли в	конце	A31 K	лара	ктерис	личее	KON	скорс	сти	110
Балистетичностие параметри ракот для разлачим дальноотей полога L_{N} ,					м на та	блин 2 ст	теплет.										
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	для д	альп	ости	0000 1	dvi vis Ta	олицы 2 сл	ісдуст.										
Second	Баллист	COOPES	ине пар	аметры	ракет дл	я различных	дальностей	полета									
Second																	
$egin{array}{c c c c c c c c c c c c c c c c c c c $	L,	ħĸ.	ι,	θ,,	V_{κ} .	OL/OV,	OL/Oh,	ΔV_{c} ,									
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	KM	ю	KOM	град	M/o	KM/M/O	104/104	M/o									
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	500	50	46	43.0	T006	0.42	0.00	7750									
$egin{array}{c c c c c c c c c c c c c c c c c c c $						1	1 1			-						т,	r k
$egin{array}{c c c c c c c c c c c c c c c c c c c $					50000000		1 1		L'_{VkM}	:= 0.66	1.23	2.05	2.78	4.04	5.69	8]	Ŧ.
$egin{array}{c c c c c c c c c c c c c c c c c c c $					1		1										-
$egin{array}{c c c c c c c c c c c c c c c c c c c $	6000	150			100,700,000		1 1										
$egin{array}{c c c c c c c c c c c c c c c c c c c $	8000	I50	300	27.0	6605	1	1 1	1100	$\theta'_{K\!M}$:	= [42.7	38.4	34.9	31.5 2	7 22	.5 1	8] (deg
$L_M \coloneqq \begin{bmatrix} 1000 & 2500 & 4500 & 6000 & 8000 & 10000 & 12000 \end{bmatrix}^T \mathbf{km}$ $h_k \coloneqq 150 \mathbf{km}$ $\Delta V_C \coloneqq 1100 \frac{m}{s}$ $R \coloneqq 6371 \mathbf{km}$ $\mu_0 \coloneqq 3.986 \cdot 10^5 \frac{\mathbf{km}^3}{s^2}$ $V_1 \coloneqq \sqrt[2]{\frac{\mu_0}{r_k}} \cdot \frac{1}{1 + \frac{h_k}{h_{max}}} = \left(7.628 \cdot 10^3\right) \frac{m}{s}$ $V_k \coloneqq V_1 \cdot \left(1 - \tan\left(\frac{\pi}{4} \cdot \left(1 - \frac{L_{max}}{\pi \cdot R}\right)\right)^2\right)^{0.5} = \left(6.026 \cdot 10^3\right) \frac{m}{s}$ $V_V V_K \coloneqq V_k + \Delta V_C = \left(7.126 \cdot 10^3\right) \frac{m}{s}$ $V_C U_C = V_C + \Delta U_C = \left(7.126 \cdot 10^3\right) \frac{m}{s}$ $U_C U_C U_C U_C U_C U_C U_C U_C U_C U_C $	100000	I50	350	22,5	70I2	5,69	5,33	1000									
$h_k \coloneqq 150$ km $\Delta V_C \coloneqq 1100$ $\frac{m}{s}$ $R \coloneqq 6371$ km $\mu_0 \coloneqq 3.986 \cdot 10^5$ $\frac{km^3}{s^2}$ $V_1 \coloneqq \sqrt[2]{\frac{\mu_0}{r_k}} \cdot \frac{1}{1 + \frac{h_k}{L_{max}}} = (7.628 \cdot 10^3) \frac{m}{s}$ $V_2 \coloneqq V_1 \cdot \left(1 - \tan\left(\frac{\pi}{4} \cdot \left(1 - \frac{L_{max}}{\pi \cdot R}\right)^2\right)^{0.5} = (6.026 \cdot 10^3) \frac{m}{s}$ $V_2 \coloneqq V_1 \cdot \left(1 - \tan\left(\frac{\pi}{4} \cdot \left(1 - \frac{L_{max}}{\pi \cdot R}\right)^2\right)^{0.5} = (6.026 \cdot 10^3) \frac{m}{s}$ $V_2 \coloneqq V_2 + \Delta V_C = (7.126 \cdot 10^3) \frac{m}{s}$ $V_3 = (6.026 \cdot 10^3) \frac{m}{s}$ $V_4 \coloneqq V_4 + \Delta V_5 = (7.126 \cdot 10^3) \frac{m}{s}$ $V_5 = (6.026 \cdot $	12000	I5 0	370	18,0	7303	8,0	7,43	1000								т	
$h_k \coloneqq 150$ km $\Delta V_C \coloneqq 1100$ $\frac{m}{s}$ $R \coloneqq 6371$ km $\mu_0 \coloneqq 3.986 \cdot 10^5$ $\frac{km^3}{s^2}$ $V_1 \coloneqq \sqrt[2]{\frac{\mu_0}{r_k}} \cdot \frac{1}{1 + \frac{h_k}{L_{max}}} = (7.628 \cdot 10^3) \frac{m}{s}$ $V_2 \coloneqq V_1 \cdot \left(1 - \tan\left(\frac{\pi}{4} \cdot \left(1 - \frac{L_{max}}{\pi \cdot R}\right)^2\right)^{0.5} = (6.026 \cdot 10^3) \frac{m}{s}$ $V_2 \coloneqq V_1 \cdot \left(1 - \tan\left(\frac{\pi}{4} \cdot \left(1 - \frac{L_{max}}{\pi \cdot R}\right)^2\right)^{0.5} = (6.026 \cdot 10^3) \frac{m}{s}$ $V_2 \coloneqq V_2 + \Delta V_C = (7.126 \cdot 10^3) \frac{m}{s}$ $V_3 = (6.026 \cdot 10^3) \frac{m}{s}$ $V_4 \coloneqq V_4 + \Delta V_5 = (7.126 \cdot 10^3) \frac{m}{s}$ $V_5 = (6.026 \cdot $						'	L_{M}	r≔[10	00 250	0 4500	600	8000	1000	0 12	2000]	kn	n
$\begin{split} & \mu_0 \coloneqq 3.986 \cdot 10^5 \ \frac{km^3}{s^2} \\ & V_1 \coloneqq \sqrt[4]{\frac{\mu_0}{r_k}} \cdot \frac{1}{1 + \frac{h_k}{L_{max}}} = \left(7.628 \cdot 10^3\right) \frac{m}{s} \\ & V_k \coloneqq V_1 \cdot \left(1 - \tan\left(\frac{\pi}{4} \cdot \left(1 - \frac{L_{max}}{\pi \cdot R}\right)\right)^2\right)^{0.5} = \left(6.026 \cdot 10^3\right) \frac{m}{s} \\ & V_k \coloneqq V_k + \Delta V_C = \left(7.126 \cdot 10^3\right) \frac{m}{s} \\ & 2.2 \ \text{Распределение относительных масс топлива по ступеням ракеты:} \\ & \text{Необходимо нулевое приближение:} \\ & \mu_C = \mu_1 = \mu_2 \\ & \text{Из опыта ракетостроения можно принять в рамках приближенного проектирования следующи значения:} \\ & \mu_1 = 0.9 \cdot \mu_C \\ & \mu_2 = 1 - \frac{\exp\left(\frac{K_V V_K}{J_{1cp}}\right)}{(1 - \mu_1)} \\ & \text{Тогда} \\ & J_{171} \coloneqq 1.095 \cdot J_{17.0} = \left(2.759 \cdot 10^3\right) \frac{m}{s} \end{split}$																	
$\begin{split} & \mu_0 \coloneqq 3.986 \cdot 10^5 \ \frac{km^3}{s^2} \\ & V_1 \coloneqq \sqrt[4]{\frac{\mu_0}{r_k}} \cdot \frac{1}{1 + \frac{h_k}{L_{max}}} = \left(7.628 \cdot 10^3\right) \frac{m}{s} \\ & V_k \coloneqq V_1 \cdot \left(1 - \tan\left(\frac{\pi}{4} \cdot \left(1 - \frac{L_{max}}{\pi \cdot R}\right)\right)^2\right)^{0.5} = \left(6.026 \cdot 10^3\right) \frac{m}{s} \\ & V_k \coloneqq V_k + \Delta V_C = \left(7.126 \cdot 10^3\right) \frac{m}{s} \\ & 2.2 \ \text{Распределение относительных масс топлива по ступеням ракеты:} \\ & \text{Необходимо нулевое приближение:} \\ & \mu_C = \mu_1 = \mu_2 \\ & \text{Из опыта ракетостроения можно принять в рамках приближенного проектирования следующи значения:} \\ & \mu_1 = 0.9 \cdot \mu_C \\ & \mu_2 = 1 - \frac{\exp\left(\frac{K_V V_K}{J_{1cp}}\right)}{(1 - \mu_1)} \\ & \text{Тогда} \\ & J_{171} \coloneqq 1.095 \cdot J_{17.0} = \left(2.759 \cdot 10^3\right) \frac{m}{s} \end{split}$	$h_k \coloneqq 1$	50 k	m	Δ	$V_C \coloneqq 11$.00 —	R:	=6371	km								
$V_1 \coloneqq \sqrt[4]{\frac{\mu_0}{r_k}} \cdot \frac{1}{1 + \frac{h_k}{L_{max}}} = (7.628 \cdot 10^3) \frac{m}{s}$ $V_k \coloneqq V_1 \cdot \left(1 - \tan\left(\frac{\pi}{4} \cdot \left(1 - \frac{L_{max}}{\pi \cdot R}\right)\right)^2\right) = (6.026 \cdot 10^3) \frac{m}{s}$ $K_V V_K \coloneqq V_k + \Delta V_C = (7.126 \cdot 10^3) \frac{m}{s}$ 2.2 Распределение относительных масс топлива по ступеням ракеты: Необходимо нулевое приближение: $\mu_{cp} = \mu_1 = \mu_2$ Из опыта ракетостроения можно принять в рамках приближенного проектирования следующи значения: $\mu_1 = 0.9 \cdot \mu_{cp} \qquad \mu_2 = 1 - \frac{\exp\left(\frac{K_V V_K}{J_{1cp}}\right)}{(1 - \mu_1)}$ Погда $I_{171} \coloneqq 1.095 \cdot J_{1T.0} = (2.759 \cdot 10^3) \frac{m}{s}$						U			7 3								
$V_1 \coloneqq \sqrt[4]{\frac{\mu_0}{r_k}} \cdot \frac{1}{1 + \frac{h_k}{L_{max}}} = (7.628 \cdot 10^3) \frac{m}{s}$ $V_k \coloneqq V_1 \cdot \left(1 - \tan\left(\frac{\pi}{4} \cdot \left(1 - \frac{L_{max}}{\pi \cdot R}\right)\right)^2\right) = (6.026 \cdot 10^3) \frac{m}{s}$ $K_V V_K \coloneqq V_k + \Delta V_C = (7.126 \cdot 10^3) \frac{m}{s}$ 2.2 Распределение относительных масс топлива по ступеням ракеты: Необходимо нулевое приближение: $\mu_{cp} = \mu_1 = \mu_2$ Из опыта ракетостроения можно принять в рамках приближенного проектирования следующи значения: $\mu_1 = 0.9 \cdot \mu_{cp} \qquad \mu_2 = 1 - \frac{\exp\left(\frac{K_V V_K}{J_{1cp}}\right)}{(1 - \mu_1)}$ Погда $I_{171} \coloneqq 1.095 \cdot J_{1T.0} = (2.759 \cdot 10^3) \frac{m}{s}$	$r_k := R$	$l+h_k$	= (6.	$521 \cdot 1$	0^3) km		$\mu_0 := 3.986$	$6 \cdot 10^5$	km								
$V_k \coloneqq V_1 \cdot \left(1 - \tan\left(\frac{\pi}{4} \cdot \left(1 - \frac{L_{max}}{\pi \cdot R}\right)\right)^2\right)^{0.5} = (6.026 \cdot 10^3) \frac{m}{s}$ $K_V V_K \coloneqq V_k + \Delta V_C = (7.126 \cdot 10^3) \frac{m}{s}$ 2.2 Распределение относительных масс топлива по ступеням ракеты: Необходимо нулевое приближение: $\mu_{cp} = \mu_1 = \mu_2$ Из опыта ракетостроения можно принять в рамках приближенного проектирования следующи вначения: $\mu_1 = 0.9 \cdot \mu_{cp} \qquad \mu_2 = 1 - \frac{\exp\left(\frac{K_V V_K}{J_{1cp}}\right)}{(1 - \mu_1)}$ Погда $I_{171} \coloneqq 1.095 \cdot J_{1T.0} = (2.759 \cdot 10^3) \frac{m}{s}$									8								
$V_k \coloneqq V_1 \cdot \left(1 - \tan\left(\frac{\pi}{4} \cdot \left(1 - \frac{L_{max}}{\pi \cdot R}\right)\right)^2\right)^{0.5} = (6.026 \cdot 10^3) \frac{m}{s}$ $K_V V_K \coloneqq V_k + \Delta V_C = (7.126 \cdot 10^3) \frac{m}{s}$ 2.2 Распределение относительных масс топлива по ступеням ракеты: Необходимо нулевое приближение: $\mu_{cp} = \mu_1 = \mu_2$ Из опыта ракетостроения можно принять в рамках приближенного проектирования следующи вначения: $\mu_1 = 0.9 \cdot \mu_{cp} \qquad \mu_2 = 1 - \frac{\exp\left(\frac{K_V V_K}{J_{1cp}}\right)}{(1 - \mu_1)}$ Погда $I_{171} \coloneqq 1.095 \cdot J_{1T.0} = (2.759 \cdot 10^3) \frac{m}{s}$	$V_1 \coloneqq \frac{2}{4}$	$\sqrt{\frac{\mu_0}{\mu_0}}$		1	=(7.628	$(\mathbf{3\cdot 10^3})\frac{\mathbf{m}}{}$											
$V_k \coloneqq V_1 \cdot \left(1 - \tan\left(\frac{\pi}{4} \cdot \left(1 - \frac{L_{max}}{\pi \cdot R}\right)\right)^2\right)^{0.5} = (6.026 \cdot 10^3) \frac{m}{s}$ $K_V V_K \coloneqq V_k + \Delta V_C = (7.126 \cdot 10^3) \frac{m}{s}$ 2.2 Распределение относительных масс топлива по ступеням ракеты: Необходимо нулевое приближение: $\mu_{cp} = \mu_1 = \mu_2$ Из опыта ракетостроения можно принять в рамках приближенного проектирования следующи вначения: $\mu_1 = 0.9 \cdot \mu_{cp} \qquad \mu_2 = 1 - \frac{\exp\left(\frac{K_V V_K}{J_{1cp}}\right)}{(1 - \mu_1)}$ Погда $I_{171} \coloneqq 1.095 \cdot J_{1T.0} = (2.759 \cdot 10^3) \frac{m}{s}$		$\mid r_k \mid$	1+	h_k	, i	' 8											
$K_V V_K := V_k + \Delta V_C = \left(7.126 \cdot 10^3\right) \frac{m}{s}$ 2.2 Распределение относительных масс топлива по ступеням ракеты: Необходимо нулевое приближение: $\mu_{cp} = \mu_1 = \mu_2$ Из опыта ракетостроения можно принять в рамках приближенного проектирования следующи вначения: $\mu_1 = 0.9 \cdot \mu_{cp} \qquad \mu_2 = 1 - \frac{\exp\left(-\frac{K_V V_K}{J_{1cp}}\right)}{\left(1 - \mu_1\right)}$ Гогда $J_{1/71} := 1.095 \cdot J_{1T.0} = \left(2.759 \cdot 10^3\right) \frac{m}{s}$				L_{max}													
$K_V V_K := V_k + \Delta V_C = \left(7.126 \cdot 10^3\right) \frac{m}{s}$ 2.2 Распределение относительных масс топлива по ступеням ракеты: Необходимо нулевое приближение: $\mu_{cp} = \mu_1 = \mu_2$ Из опыта ракетостроения можно принять в рамках приближенного проектирования следующи вначения: $\mu_1 = 0.9 \cdot \mu_{cp} \qquad \mu_2 = 1 - \frac{\exp\left(-\frac{K_V V_K}{J_{1cp}}\right)}{\left(1 - \mu_1\right)}$ Гогда $J_{1/71} := 1.095 \cdot J_{1T.0} = \left(2.759 \cdot 10^3\right) \frac{m}{s}$		(,	,	2 \ 0.5											
$K_V V_K := V_k + \Delta V_C = \left(7.126 \cdot 10^3\right) \frac{m}{s}$ 2.2 Распределение относительных масс топлива по ступеням ракеты: Необходимо нулевое приближение: $\mu_{cp} = \mu_1 = \mu_2$ Из опыта ракетостроения можно принять в рамках приближенного проектирования следующи вначения: $\mu_1 = 0.9 \cdot \mu_{cp} \qquad \mu_2 = 1 - \frac{\exp\left(-\frac{K_V V_K}{J_{1cp}}\right)}{\left(1 - \mu_1\right)}$ Гогда $J_{1/71} := 1.095 \cdot J_{1T.0} = \left(2.759 \cdot 10^3\right) \frac{m}{s}$	$V_{\iota_{i}} := V$	7.	1 - ta	$n(\frac{\pi}{2})$	$\begin{pmatrix} 1 - L_m \end{pmatrix}$	$\frac{ax}{}$	(6.026 • 10	3) m									
2.2 Распределение относительных масс топлива по ступеням ракеты: Необходимо нулевое приближение: $\mu_{cp} = \mu_1 = \mu_2$ Из опыта ракетостроения можно принять в рамках приближенного проектирования следующи вначения: $\mu_1 = 0.9 \cdot \mu_{cp} \qquad \mu_2 = 1 - \frac{\exp\left(-\frac{K_V V_K}{J_{1cp}}\right)}{(1-\mu_1)}$ Тогда $I_{1/11} := 1.095 \cdot J_{1T.0} = (2.759 \cdot 10^3) \frac{m}{s}$	κ	1		$\setminus 4$	π .	R))		' s									
2.2 Распределение относительных масс топлива по ступеням ракеты: Необходимо нулевое приближение: $\mu_{cp} = \mu_1 = \mu_2$ Из опыта ракетостроения можно принять в рамках приближенного проектирования следующи вначения: $\mu_1 = 0.9 \cdot \mu_{cp} \qquad \mu_2 = 1 - \frac{\exp\left(-\frac{K_V V_K}{J_{1cp}}\right)}{(1-\mu_1)}$ Тогда $I_{1/11} := 1.095 \cdot J_{1T.0} = (2.759 \cdot 10^3) \frac{m}{s}$	$K_{\nu}V_{\nu}$:=V	+ 11	$V_{ci} = \langle 7 \rangle$.126 • 10	$ m\rangle m\rangle$											
Необходимо нулевое приближение: $\mu_{cp} = \mu_1 = \mu_2$ Из опыта ракетостроения можно принять в рамках приближенного проектирования следующи вначения: $\mu_1 = 0.9 \cdot \mu_{cp} \qquad \mu_2 = 1 - \frac{\exp\left(-\frac{K_V V_K}{J_{1cp}}\right)}{(1-\mu_1)}$ Погда $I_{1/71} := 1.095 \cdot J_{1T.0} = (2.759 \cdot 10^3) \frac{m}{s}$	-v · K			C (' s											
Необходимо нулевое приближение: $\mu_{cp} = \mu_1 = \mu_2$ Из опыта ракетостроения можно принять в рамках приближенного проектирования следующи вначения: $\mu_1 = 0.9 \cdot \mu_{cp} \qquad \mu_2 = 1 - \frac{\exp\left(-\frac{K_V V_K}{J_{1cp}}\right)}{(1-\mu_1)}$ Погда $I_{1/71} := 1.095 \cdot J_{1T.0} = (2.759 \cdot 10^3) \frac{m}{s}$	2 2 Pa	спре	елепе	ние от	носител	ьных масс	топпива і	IO CTV	теням т	акеты							
$\mu_{cp} = \mu_1 = \mu_2$ Из опыта ракетостроения можно принять в рамках приближенного проектирования следующи вначения: $ = \exp\left(\frac{K_V V_K}{J_{1cp}}\right) $ $\mu_1 = 0.9 \cdot \mu_{cp}$ $\mu_2 = 1 - \frac{\left(1 - \mu_1\right)}{\left(1 - \mu_1\right)} $ Погда $ I_{1/71} := 1.095 \cdot J_{1T.0} = \left(2.759 \cdot 10^3\right) \frac{m}{s} $							TOILINDU	no cry	Т	JUNE I BI							
Из опыта ракетостроения можно принять в рамках приближенного проектирования следующи вначения: $\mu_1 = 0.9 \cdot \mu_{cp} \qquad \mu_2 = 1 - \frac{\exp\left(-\frac{K_V V_K}{J_{1cp}}\right)}{(1-\mu_1)}$ Тогда $I_{1/11} := 1.095 \cdot J_{1T.0} = (2.759 \cdot 10^3) \frac{m}{s}$.10000													
вначения: $\mu_1 = 0.9 \cdot \mu_{cp} \qquad \mu_2 = 1 - \frac{\exp\left(-\frac{K_V V_K}{J_{1cp}}\right)}{(1-\mu_1)}$ Погда $J_{1/71} \coloneqq 1.095 \cdot J_{1T.0} = \left(2.759 \cdot 10^3\right) \frac{m}{s}$				ето от	Оента	MOVIIO II	миот в	naviro	v nau	пиже	пого	проде	типова	ппа	СПАТ	MOI	112
$\mu_1 = 0.9 \cdot \mu_{cp} \qquad \qquad \mu_2 = 1 - \frac{\exp\left(-\frac{K_V V_K}{J_{1cp}}\right)}{(1 - \mu_1)}$ Гогда $J_{1/71} \coloneqq 1.095 \cdot J_{1T.0} = \left(2.759 \cdot 10^3\right) \frac{m}{s}$			г рак	crocip	кинэо	можно пр	инять в	рамка	х прис	лижен	ного	проск	тирова	кин	СЛЕД	уюц	цис
Гогда $J_{1771} \coloneqq 1.095 \cdot J_{1T.0} = \left(2.759 \cdot 10^3\right) \frac{m}{s}$						$K_V V$	K										
Гогда $J_{1771} \coloneqq 1.095 \cdot J_{1T.0} = \left(2.759 \cdot 10^3\right) \frac{m}{s}$		0			e	J_{1cp}	_										
Гогда $J_{1771} \coloneqq 1.095 \cdot J_{1T.0} = \left(2.759 \cdot 10^3\right) \frac{m}{s}$	$u_1 = 0$	$.9 \cdot \mu$	ср	μ	₂ = 1	$(1-\mu_1)$											
$J_{1/71} \coloneqq 1.095 \cdot J_{1T.0} = \left(2.759 \cdot 10^3\right) rac{m{m}}{m{s}}$						(7-1)											
8	Тогда			,		. m											
$J_{1/1/2} := 1.135 \cdot J_{1/1/0} = (2.86 \cdot 10^3) \frac{m}{2}$	<i>J</i> _{1/71} :=	1.09	$5 \cdot J_{12}$	$r_{.0} = (2$.759 · 10	3)											
$J_{1/1/2} := 1.135 \cdot J_{1T.0} = (2.86 \cdot 10^3) \frac{m}{2}$						m											
				1/2	00 103	\ 116											

$$J_{1cp} := \frac{J_{1\Pi 1} + J_{1\Pi 2}}{2} = (2.81 \cdot 10^3) \frac{m}{s}$$

$$\mu := 1 - \sqrt[2]{\exp\left(-\frac{K_V V_K}{J_{1cp}}\right)} = 0.719$$

$$\mu_1 := 0.9 \cdot \mu = 0.647$$

$$\mu_2 := 1 - \frac{\exp\left(-\frac{K_V V_K}{J_{1cp}}\right)}{(1 - \mu_1)} = 0.776$$

2.3 Время работы ДУ ступеней, уточнение коэффициентов μ_i

Из рекомендаций: au_{N1} = 55 .. 60 s $\tau_{N2} = 50..55$ 8

Необходимо соблюдение условия в связи с отклонением среднего давления от номинального значения:

$$\Delta pp_{N} \coloneqq \frac{1}{1-\nu} \cdot \sqrt[2]{\left(\Delta u_{1}^{\prime}\right)^{2} + \Delta_{cr}^{2} + \left(K_{T} \cdot \Delta T\right)^{2}} = 0.096$$

$$\Sigma \tau_{Ni} \coloneqq \tau_{\Sigma} \cdot (1 - \Delta p p_N) = 112.953 \ s$$

Примем, что
$$\tau_{N1}\coloneqq 57~{\it s}$$
 $\tau_{N2}\coloneqq 55~{\it s}$

Теперь при принятом времени работы каждой ступени необходимо проверить соответствие коэффициентов μ_i на ограничение осевой перегрузки для 2 ступени:

$$\mu_{i} \! \leq \! \frac{\tau_{Ni} \! \cdot \! g \! \cdot \! n_{x.max} \! \left(1 \! - \! \frac{\Delta p}{p_{N}} \right)}{J_{1 \! \Gamma \! i} \! + \! \tau_{Ni} \! \cdot \! g \! \cdot \! n_{x.max} \! \left(1 \! - \! \frac{\Delta p}{p_{N}} \right)}$$

Тогда для второй ступени

$$\frac{\tau_{N2} \cdot \boldsymbol{g} \cdot \boldsymbol{n}_{x.max} \cdot (1 - \Delta p p_N)}{J_{1 \sqcap 2} + \tau_{N2} \cdot \boldsymbol{g} \cdot \boldsymbol{n}_{x.max} \cdot (1 - \Delta p p_N)} = 0.773 \qquad \qquad \mu_2 = 0.776 \qquad \text{- условие не выполняется}$$

Переопределим μ_2 из полученных условий. Запишем в блок решения необходимые ограничения для μ_2 в виде:

$$\begin{array}{l} \left[\begin{array}{l} \mu_1 \coloneqq 0.647 \\ \hline J_{1/1/2} + \tau_{N2} \cdot g \cdot n_{x.max} \cdot \left(1 - \Delta p p_N\right) \\ \hline J_{1/1/2} + \tau_{N2} \cdot g \cdot n_{x.max} \cdot \left(1 - \Delta p p_N\right) \end{array}\right] \geq \mu_2 \\ \end{array} \qquad \qquad \left(1 - \mu_1\right) \left(1 - \mu_2\right) = \exp\left(-\frac{K_V V_K}{J_{1cp}}\right) \\ \begin{array}{l} \text{Find } \left(\mu_1, \mu_2\right) = \begin{bmatrix} 0.651 \\ 0.773 \end{bmatrix} \end{array}$$

Find
$$(\mu_1, \mu_2) = \begin{bmatrix} 0.651\\ 0.773 \end{bmatrix}$$

Окончательно примем $\mu_1 \coloneqq 0.651$ $\mu_2 = 0.773$ Для справки приведем значения осевых перегрузок

$$n_{xmax1} \coloneqq \frac{J_{1 \sqcap 1} \cdot \mu_1}{\tau_{N1} \cdot \left(1 - \Delta p p_N\right) \cdot g \cdot \left(1 - \mu_1\right)} = 10.19$$

$$n_{xmax2} \coloneqq \frac{J_{1 \sqcap 2} \boldsymbol{\cdot} \mu_2}{\tau_{N2} \boldsymbol{\cdot} \left(1 - \Delta p p_N\right) \boldsymbol{\cdot} \boldsymbol{g} \boldsymbol{\cdot} \left(1 - \mu_2\right)} = 19.984$$

2.3 Величина стартовой массы ракеты и величины ее относительной грузоподъемности

$$\Lambda_0 \coloneqq 1.65$$

$$m_0 \coloneqq A_0 \cdot m_{\Pi H} \cdot \exp\left(rac{K_V V_K}{J_{1co}}
ight) + 0.01 \cdot \left(rac{L_{max}}{m{km}}
ight)^{rac{2}{3}} \cdot m{tonne} = 23.623 \; m{tonne}$$

$$m'_{\Pi H} \coloneqq \frac{m_{\Pi H}}{m_0} = 0.041$$

2.4 Относительные массы конструкций ступеней ракеты Обобщенная относительная масса конструкции

$$\alpha \coloneqq \frac{1 - \mu - \sqrt[2]{m'_{\Pi H}}}{\mu} = 0.109$$

С учетом масштабного эффекта

 $\alpha_1 \coloneqq 0.9 \cdot \alpha = 0.098$

$$\alpha_2 \coloneqq \frac{1 - \mu_2}{\mu_2} - \frac{m'_{\textit{\PiH}}}{\mu_2 \cdot \left(1 - \mu_1 \cdot \left(1 + \alpha_1\right)\right)} = 0.106$$

2.5 Определение других параметров

Среднее давление в камерах сгорания двигателей ступеней

$$egin{aligned} p_{N1} &\coloneqq 12 \ \emph{MPa} & l'_{y1} &\coloneqq 0.15 \\ p_{N2} &\coloneqq 10 \ \emph{MPa} & l'_{y2} &\coloneqq 0.1 \end{aligned}$$

Определим массовые и тяговые характеристики ракеты по ступеням

$$\omega_1 \coloneqq \mu_1 \cdot m_0 = 15.378$$
 tonne

$$m_{K1} \coloneqq \omega_1 \cdot \alpha_1 = 1.506$$
 tonne

$$m'_1 \coloneqq \frac{\omega_1}{\tau_{N1}} = 269.795 \; \frac{\mathbf{kg}}{\mathbf{s}}$$

$$P_{\Pi 1} := m'_1 \cdot J_{1\Pi 1} = 744.473 \ kN$$

Масса второй ступени:

$$m_{02}\coloneqq m_0\boldsymbol{\cdot} \left(1-\mu_1\boldsymbol{\cdot} \left(1+\alpha_1\right)\right)=6.738 \ \textit{tonne}$$

$$\omega_2\coloneqq \mu_2\boldsymbol{\cdot} m_{02}=5.209 \ \textit{tonne}$$

$$\omega_2 = \mu_2 \cdot m_{02} = 3.209$$
 tolline

$$m_{K2}\coloneqq \omega_2 \cdot \alpha_2 = 0.555$$
 tonne

$$m'_2 \coloneqq \frac{\omega_2}{\tau_{N2}} = 94.7 \frac{\mathbf{kg}}{\mathbf{s}}$$

$$P_{\Pi 2} \coloneqq m'_2 \cdot J_{1\Pi 2} = 270.861 \ kN$$

Диаметры ступеней

$$D_1 = 0.52 \cdot \sqrt[3]{\frac{m_0}{tonne}} m = 1.492 m$$

$$D_1 \coloneqq 1.5 \ \boldsymbol{m}$$

- данное значение принимаем в результате уточнения времени работы ДУ ступеней в пункте 2.6. Переопределенные значения времени работы второй ступени в дальнейшем так же удовлетворяют ранее принятому значению au_{N2}

$$D_2 \coloneqq 0.85 \cdot D_1 = 1.275 \ m$$

Размеры сопел

$$d'_{a1} := \sqrt[2]{0.9 \cdot \frac{p_{N1}}{MPa} + 5} = 3.975$$

- степень расширения сопла первой ступени

Диаметры среза сопел второй ступени рассчитаем из условия их размещения в перехоодных отсеках $d_{a2} := 0.85 \cdot D_1 = 1.275 \ m$

Диаметры критических сечений сопел маршевых ДУ ступеней выразим из слудующего соотношения: $m'_i \cdot \beta = p_{Ni} \cdot F_{\kappa pi}$

$$\beta \coloneqq 0.651 \cdot J_{1T.0} = \left(1.641 \cdot 10^3\right) \frac{m}{s}$$
 - расходный комплекс в зависимости от удельного импульса в стандартных условиях

- расходный комплекс в зависимости от теоретического

 $F_{\kappa pi}$ - площадь критического сечения сопла двигателя данной ступени

$$F_{\kappa\rho 1} \coloneqq \frac{m'_1 \cdot \beta}{p_{N_1}} = 0.037 \; \mathbf{m}^2$$

$$d_{\kappa p1} \coloneqq \sqrt[2]{\frac{4 \cdot F_{\kappa p1}}{\pi}} = 21.671 \ cm$$
 $d_{\kappa p1} = 0.217 \ m$

$$d_{\kappa p1} = 0.217 \; m$$

$$F_{\kappa p2} \coloneqq \frac{m'_2 \cdot \beta}{p_{N2}} = 0.016 \; \boldsymbol{m}^2$$

$$F_{\kappa p2} \coloneqq rac{m'_2 \cdot eta}{p_{N2}} = 0.016 \; m{m}^2 \qquad \qquad d_{\kappa p2} \coloneqq \sqrt[2]{rac{4 \cdot F_{\kappa p2}}{\pi}} = 14.064 \; m{cm} \qquad \qquad d_{\kappa p2} = 0.141 \; m{m}$$

$$d_{\kappa p2} = 0.141 \ m$$

Рассчитаем диаметр выходного сечения сопла первой ступени, а также степени расширения сопла второй ступени

$$d_{a1} \coloneqq d'_{a1} \cdot d_{\kappa p1} = 0.861 \ m$$

$$d'_{a2} \coloneqq \frac{d_{a2}}{d_{\kappa \rho 2}} = 9.065$$

Зная значения степеней расширения сопел ДУ каждой ступени, можем рассчитать значение практического удельного импульса в пустоте каждого РДТТ

 $J_{1/7i}$ = $J_{1Ti} \cdot \left(1-\zeta_i\right)$, где $\,\zeta_i$ - суммарные потери удельного импульса

$$\zeta_{i} = 0.025 \cdot \frac{{d'_{ai}}^{1.25} - 1}{{d'_{ai}}} \cdot \left(1 + \frac{11.6 \cdot z}{\sqrt[3]{d_{\kappa pi}}}\right)$$

$$J_{1Ti} = J_{1T.0} \cdot \left(\frac{1.57}{\sqrt[2]{k}} - \frac{0.66}{\sqrt[3]{d'_{ai}}^2} \right)$$

 $J_{1Ti} = J_{1T.0} \cdot \left(\frac{1.57}{\sqrt[2]{k}} - \frac{0.66}{\sqrt[3]{d'_{ai}}^2} \right)$ — теоретичесоке значение удельного импульса в пустоте в зависимости от степени расширения сопла

$$J_{1T1} \coloneqq J_{1T.0} \cdot \left(\frac{1.57}{\sqrt[2]{k}} - \frac{0.66}{\sqrt[3]{d'_{a1}}^2}\right) = 3026.547 \frac{m}{s}$$

$$J_{1T2} := J_{1T.0} \cdot \left(\frac{1.57}{\sqrt[2]{k}} - \frac{0.66}{\sqrt[3]{d'_{a2}}^2} \right) = 3306.815 \frac{m}{s}$$

$$\zeta_1 := 0.025 \cdot \frac{d'_{a1}^{1.25} - 1}{d'_{a1}} \cdot \left(1 + \frac{11.6 \cdot z}{\sqrt[3]{\frac{d_{\kappa \rho 1}}{cm}}}\right) = 0.069$$

$$\zeta_2 := 0.025 \cdot \frac{d'_{a2}^{1.25} - 1}{d'_{a2}} \cdot \left(1 + \frac{11.6 \cdot z}{\sqrt[3]{\frac{d_{\kappa p2}}{cm}}}\right) = 0.105$$

$$J_{1\Pi 1} := J_{1\Pi 1} \cdot (1 - \zeta_1) = (2.818 \cdot 10^3) \frac{m}{s}$$

$$J_{1772} \coloneqq J_{1772} \cdot \left(1 - \zeta_2\right) = \left(2.959 \cdot 10^3\right) \, \frac{\textit{m}}{\textit{s}}$$

2.6 Уточнение времени работы ДУ всех ступеней или их калибров.

Максимальное и минимальное время работы ДУ:

$$\tau_{Nmaxi} = \frac{e'_{\partial oni} \cdot D_i}{u'_{max} \cdot p_{Ni}^{\nu}}$$

$$e^{\prime}_{\partial oni} = \frac{e_i}{D_i}$$
 - относительный свод горения

 u'_{min} и u'_{max} вычиляются по заданным минимальному и максимальному значению скорости горения

$$u_{min} = 0.005 \frac{m}{s}$$
 $p_0 \coloneqq 4 MPa$ $u_{max} = 0.013 \frac{m}{s}$

$$p_0 \coloneqq 4 MPa$$

$$u_{max} = 0.013 \frac{m}{s}$$

$$u_{min}\!\cdot\! oldsymbol{s}$$

$$u_{max} \cdot s$$

$$u'_{min} \coloneqq \frac{u_{min} \cdot s}{\begin{pmatrix} p_0 \\ MPa \end{pmatrix}^{\nu}} = 3.536$$
 $u'_{max} \coloneqq \frac{u_{max} \cdot s}{\begin{pmatrix} mm \\ MPa \end{pmatrix}^{\nu}} = 9.192$

$$u'_{max} := \frac{mm}{\left(\frac{p_0}{1 - r^2}\right)^{\nu}} = 9.192$$

Определим относительный свод горения для каждой ступени из следдующей системы уравнений:

 $(\varepsilon_T + \varepsilon_p) \cdot f \leq \varepsilon_{\partial on}$

$$\varepsilon_T = \frac{\Delta T \cdot \left(\alpha_K - \alpha_T\right) \cdot \left(2 \cdot M^2 - \mu_T\right) \left(M^2 + 1\right)}{\left(M^2 \cdot \left(1 - 2 \ \mu_T\right) + 1\right)}$$

$$\varepsilon_{p} = \frac{p_{maxi} \cdot \left(1 + \mu_{T}\right) \cdot \left(1 - 2 \cdot \mu_{T}\right) \cdot \left(M^{2} - 1\right)}{E_{T} \cdot \left(M^{2} \cdot \left(1 - 2 \cdot \mu_{T}\right) + 1\right)}$$

$$e'_{\partial oni} = \frac{1}{2} \left(1 - \frac{1}{M} \right)$$

$$\frac{p_{maxi}}{E_T} \left(1 + \mu_T \right) \boldsymbol{\cdot} \left(1 - 2 \boldsymbol{\cdot} \mu_T \right) + \Delta T \boldsymbol{\cdot} \left(\alpha_K - \alpha_T \right) \boldsymbol{\cdot} \mu_T + \frac{\varepsilon_{\partial on}}{f}$$

$$M = \frac{\frac{p_{maxi}}{E_T} \left(1 + \mu_T\right) \cdot \left(1 - 2 \cdot \mu_T\right) + \Delta T \cdot \left(\alpha_K - \alpha_T\right) \cdot \mu_T + \frac{\varepsilon_{\partial on}}{f}}{\frac{p_{maxi}}{E_T} \cdot \left(1 + \mu_T\right) \cdot \left(1 - 2 \cdot \mu_T\right) + \Delta T \cdot \left(\alpha_K - \alpha_T\right) \cdot \left(2 - \mu_T\right) - \frac{\varepsilon_{\partial on}}{f} \cdot \left(1 - 2 \cdot \mu_T\right)}{\frac{\varepsilon_{\partial on}}{E_T} \cdot \left(1 - 2 \cdot \mu_T\right)} - \frac{\varepsilon_{\partial on}}{g} \cdot \left(1 - 2 \cdot \mu_T\right) - \frac{\varepsilon_{\partial on}}{g} \cdot \left(1 - 2 \cdot \mu_T\right)}{\frac{\varepsilon_{\partial on}}{E_T} \cdot \left(1 - 2 \cdot \mu_T\right)} - \frac{\varepsilon_{\partial on}}{g} \cdot \left(1 - 2 \cdot \mu_T\right) - \frac{\varepsilon_{\partial on}}{g} \cdot \left(1 - 2 \cdot \mu_T\right)}{\frac{\varepsilon_{\partial on}}{E_T} \cdot \left(1 - 2 \cdot \mu_T\right)} - \frac{\varepsilon_{\partial on}}{g} \cdot \left(1 - 2 \cdot \mu_T\right)}{\frac{\varepsilon_{\partial on}}{E_T} \cdot \left(1 - 2 \cdot \mu_T\right)} - \frac{\varepsilon_{\partial on}}{g} \cdot \left(1 - 2 \cdot \mu_T\right)}{\frac{\varepsilon_{\partial on}}{E_T} \cdot \left(1 - 2 \cdot \mu_T\right)} - \frac{\varepsilon_{\partial on}}{g} \cdot \left(1 - 2 \cdot \mu_T\right)}{\frac{\varepsilon_{\partial on}}{E_T} \cdot \left(1 - 2 \cdot \mu_T\right)} - \frac{\varepsilon_{\partial on}}{g} \cdot \left(1 - 2 \cdot \mu_T\right)}{\frac{\varepsilon_{\partial on}}{E_T} \cdot \left(1 - 2 \cdot \mu_T\right)} - \frac{\varepsilon_{\partial on}}{g} \cdot \left(1 - 2 \cdot \mu_T\right)}{\frac{\varepsilon_{\partial on}}{E_T} \cdot \left(1 - 2 \cdot \mu_T\right)} - \frac{\varepsilon_{\partial on}}{g} \cdot \left(1 - 2 \cdot \mu_T\right)}{\frac{\varepsilon_{\partial on}}{E_T} \cdot \left(1 - 2 \cdot \mu_T\right)} - \frac{\varepsilon_{\partial on}}{g} \cdot \left(1 - 2 \cdot \mu_T\right)}{\frac{\varepsilon_{\partial on}}{E_T} \cdot \left(1 - 2 \cdot \mu_T\right)} - \frac{\varepsilon_{\partial on}}{g} \cdot \left(1 - 2 \cdot \mu_T\right)}{\frac{\varepsilon_{\partial on}}{E_T} \cdot \left(1 - 2 \cdot \mu_T\right)} - \frac{\varepsilon_{\partial on}}{g} \cdot \left(1 - 2 \cdot \mu_T\right)}{\frac{\varepsilon_{\partial on}}{E_T} \cdot \left(1 - 2 \cdot \mu_T\right)} - \frac{\varepsilon_{\partial on}}{g} \cdot \left(1 - 2 \cdot \mu_T\right)}{\frac{\varepsilon_{\partial on}}{E_T} \cdot \left(1 - 2 \cdot \mu_T\right)} - \frac{\varepsilon_{\partial on}}{g} \cdot \left(1 - 2 \cdot \mu_T\right)}{\frac{\varepsilon_{\partial on}}{E_T} \cdot \left(1 - 2 \cdot \mu_T\right)} - \frac{\varepsilon_{\partial on}}{g} \cdot \left(1 - 2 \cdot \mu_T\right)}{\frac{\varepsilon_{\partial on}}{E_T} \cdot \left(1 - 2 \cdot \mu_T\right)} - \frac{\varepsilon_{\partial on}}{g} \cdot \left(1 - 2 \cdot \mu_T\right)}{\frac{\varepsilon_{\partial on}}{E_T} \cdot \left(1 - 2 \cdot \mu_T\right)}{\frac{\varepsilon_{\partial on}}{E_T} \cdot \left(1 - 2 \cdot \mu_T\right)} - \frac{\varepsilon_{\partial on}}{g} \cdot \left(1 - 2 \cdot \mu_T\right)}{\frac{\varepsilon_{\partial on}}{E_T} \cdot \left(1 -$$

 $\alpha_{\!\scriptscriptstyle{K}} \coloneqq 1 \cdot \frac{10^{-5}}{{}^{\!\scriptscriptstyle{K}}}$ - коэффициент температурного расширения конструкции двигателя

 $\alpha_T \coloneqq 1 \cdot \frac{10^{-4}}{V}$ - коэффициент температурного расширения топлива

- коэф. Пуассона топлива $\mu_T = 0.495$

$$T_p = 50 \, {}^{\circ}\mathbf{C}$$

$$\Delta T \coloneqq \left(T_p - T_{min}\right) = 90 \ \mathbf{K}$$

 $E_T := 7.5 \, MPa$ - модуль Юнга топлива

 $\varepsilon_{\partial on} = 0.4$ - допускаемая деформация топлива

 $f \coloneqq 1.35$ - коэф. запаса по деформации

Вычислим М для ДУ первой ступени:

 $p_{max1} \coloneqq 1.31 \cdot p_{N1} = 15.72 \; MPa$

$$M_{1} \coloneqq \sqrt{\frac{\frac{p_{max1}}{E_{T}}\left(1 + \mu_{T}\right) \cdot \left(1 - 2 \cdot \mu_{T}\right) + \Delta T \cdot \left(\alpha_{K} - \alpha_{T}\right) \cdot \mu_{T} + \frac{\varepsilon_{\partial on}}{f}}{\frac{p_{max1}}{E_{T}} \cdot \left(1 + \mu_{T}\right) \cdot \left(1 - 2 \cdot \mu_{T}\right) + \Delta T \cdot \left(\alpha_{K} - \alpha_{T}\right) \cdot \left(2 - \mu_{T}\right) - \frac{\varepsilon_{\partial on}}{f} \cdot \left(1 - 2 \cdot \mu_{T}\right)}} = 4.472$$

Вторая ступень:

 $p_{max2} := 1.31 \cdot p_{N2} = 13.1 \ MPa$

$$M_{2} \coloneqq \sqrt{\frac{\frac{p_{max2}}{E_{T}}\left(1 + \mu_{T}\right) \cdot \left(1 - 2 \cdot \mu_{T}\right) + \Delta T \cdot \left(\alpha_{K} - \alpha_{T}\right) \cdot \mu_{T} + \frac{\varepsilon_{\partial on}}{f}}{\frac{p_{max2}}{E_{T}} \cdot \left(1 + \mu_{T}\right) \cdot \left(1 - 2 \cdot \mu_{T}\right) + \Delta T \cdot \left(\alpha_{K} - \alpha_{T}\right) \cdot \left(2 - \mu_{T}\right) - \frac{\varepsilon_{\partial on}}{f} \cdot \left(1 - 2 \cdot \mu_{T}\right)}} = 5.39$$

Тогда относительные своды горения будут равны:

Диаметры каналов зарядов ДУ:

$$e'_{\partial on1} \coloneqq \frac{1}{2} \left(1 - \frac{1}{M_1} \right) = 0.388 \qquad \qquad d_{\mathit{KAH1}} \coloneqq \frac{D_1}{M_1} = 0.335 \; \textit{m}$$

$$e'_{\partial on2} \coloneqq \frac{1}{2} \left(1 - \frac{1}{M_2} \right) = 0.407 \qquad \qquad d_{\mathit{KAH}2} \coloneqq \frac{D_2}{M_2} = 0.237 \; \mathbf{m}$$

Скорости горения топлива ДУ:

$$u_{1min} \coloneqq u'_{min} \cdot \left(\frac{p_{N1}}{MPa}\right)^{\nu} \cdot \frac{mm}{s} = 6.58 \frac{mm}{s}$$

$$u_{2min} \coloneqq u'_{min} \cdot \left(\frac{p_{N2}}{MPa}\right)^{\nu} \cdot \frac{mm}{s} = 6.287 \frac{mm}{s}$$

$$u_{1max} \coloneqq u'_{max} \cdot \left(\frac{p_{N1}}{MPa}\right)^{\nu} \cdot \frac{mm}{s} = 17.109 \frac{mm}{s}$$

$$u_{2max} \coloneqq u'_{max} \cdot \left(\frac{p_{N2}}{MPa}\right)^{\nu} \cdot \frac{mm}{s} = 16.347 \frac{mm}{s}$$

Тогда максимальное и минимальное время работы ДУ каждой ступени будет равно:

$$au_{Nmax1} \coloneqq \frac{e'_{\partial on1} \cdot D_1}{u_{1min}} = 88.489 \ s$$
 $au_{Nmin1} \coloneqq \frac{e'_{\partial on1} \cdot D_1}{u_{1max}} = 34.034 \ s$

$$\tau_{Nmax1} \coloneqq \frac{e'_{\partial on1} \cdot D_1}{u_{1min}} = 88.489 \, \boldsymbol{s} \qquad \qquad \tau_{Nmin1} \coloneqq \frac{e'_{\partial on1} \cdot D_1}{u_{1max}} = 34.034 \, \boldsymbol{s}$$

$$\tau_{Nmax2} \coloneqq \frac{e'_{\partial on2} \cdot D_2}{u_{2min}} = 82.585 \, \boldsymbol{s} \qquad \qquad \tau_{Nmin2} \coloneqq \frac{e'_{\partial on2} \cdot D_2}{u_{2max}} = 31.764 \, \boldsymbol{s}$$

3. РАСЧЕТНАЯ ОЦЕНКА МАССОВО-ГЕОМЕТРИЧЕСКИХ ПОКАЗАТЕЛЕЙ ЭЛЕМЕНТОВ КОНСТРУКЦИИ УБР

3.1 Расчет массы и размеров элементов корпусов РДТТ маршевых ступеней

Масса корпусов РДТТ

Корпус рассчитывается на максимальное давление. Его предел прочности приведен в начале записки.

$$S_{max}S_{cp} \coloneqq 1.15$$
 $f \coloneqq 1.15$ $K_{\sigma} \coloneqq 1.05$

$$P_{MAX1} := f \cdot p_{N1} \cdot \left(1 + \Delta p p_N\right) \cdot S_{max} S_{cp}^{-\frac{1}{1-\nu}} \cdot K_{\sigma} = 19.141 \ \textbf{MPa}$$

$$P_{MAX2} \coloneqq f \cdot p_{N2} \cdot \left(1 + \Delta p p_N\right) \cdot S_{max} S_{cp} \stackrel{1}{\xrightarrow{1 - \nu}} \cdot K_{\sigma} = 15.951 \, \textbf{MPa}$$

Массу кокона для каждой ступени можно рассчитать по следующей зависимости:

$$m_{CKi} = 3 \cdot K_{CKi} \cdot P_{MAXi} \cdot \frac{\omega_i}{\sigma'_K \cdot \rho_T} \qquad \qquad \sigma'_K \coloneqq \sigma_K \cdot \mathbf{g} = \left(1.275 \cdot 10^6\right) \frac{\mathbf{m}^2}{\mathbf{s}^2}$$

$$K_{CKi} = \frac{K_{ui}}{\eta_{Li}} + \frac{K_{Vi} \cdot \boldsymbol{\pi} \cdot R_i^3}{\omega_i} \cdot \rho_T \qquad \qquad \sigma_K' \cdot 1350 \frac{\boldsymbol{kg}}{\boldsymbol{m}^3} = (1.721 \cdot 10^3) \, \boldsymbol{MPa}$$

$$\eta_{\mathit{L}\!\!/i} = 0.985 \cdot \eta'_{\mathit{L}\!\!/i}$$
 ... $\eta'_{\mathit{L}\!\!/i} = 4 \cdot e'_{\partial oni} \cdot \left(1 - e'_{\partial oni}\right)$ - коэффициент объемного заполнения топливом ДУ i -ой ступени

 R_i - радиус i-ой ступени

Значения K_{ij} , K_{ij} , определяются из таблицы для принятого относительного диаметра заднего полюсного отверстия корпуса ДУ.

Значения коэффициентов

₫ ₀₂	Кц	Kυ	K _l
0,2	1,148	0,505	0,89
0,3	I,I7	0,514	0,902
0.4	1,20	0,533	0,922
0,5	1,26	0,546	0,954
0,6	1,335	0,564	1,012
0,7	I,466	0,601	1,109

$$d'_{02i} = \frac{d_{02i}}{D_i}$$
 - относительный диаметр заднего полюсного отверстия ДУ ступени

Диаметр заднего полюсного отверстия можно определить приближенно из схемы, показанной выше. $d_{02i} = 2 \cdot d_{\kappa\rho i} + 2 \cdot \left(l_{yi} + d_{\kappa\rho i}\right) \cdot \tan\left(30^{\circ}\right) \text{, где } l_{yi}$ - длина утопленной части сопла (его сверхзвуковой части) $l_{yi} = l'_{yi} \cdot l_{ai} \quad \text{, где } l_{ai}$ - длина сверхзвуковой части сопла

Принимаем $l_{ai} = d_{ai}$

$$l_{a1} \coloneqq d_{a1} = 86.139$$
 cm

$$l_{a2} := d_{a2} = 127.5$$
 cm

$$l_{y1} \coloneqq l'_{y1} \cdot l_{a1} = 12.921 \ \textit{cm}$$

 $l_{y2} \coloneqq l'_{y2} \cdot l_{a2} = 12.75 \ \textit{cm}$

$$R_2 = \frac{D_2}{2} = 0.638 \; \mathbf{m}$$

$$K_{\text{CK2}} \coloneqq \frac{K_{\text{U2}}}{\eta_{\text{U2}}} + \frac{K_{\text{V2}} \cdot \pi \cdot {R_2}^3}{\omega_2} \cdot \rho_T = 1.455$$

$$m_{\text{CK2}} \coloneqq 3 \cdot K_{\text{CK2}} \cdot P_{MAX2} \cdot \frac{\omega_2}{\sigma_K' \cdot \rho_T} = 157.138 \; \textit{kg}$$

Размеры силовой оболочки

Коэффициенты объемного заполненияя днищ корпуса РДТТ

Первая ступень $\eta'_{\partial H1} := 1 - 1.5 \cdot (1 - \eta'_{L1}) = 0.925$

$$\eta'_{\partial H1} := 1 - 1.5 \cdot (1 - \eta'_{L1}) = 0.925$$
 $\eta_{\partial H1} := 0.85 \cdot \eta'_{\partial H1} = 0.786$

Вторая ступень

$$\eta'_{\partial H^2} := 1 - 1.5 \cdot (1 - \eta'_{L/2}) = 0.948$$
 $\eta_{\partial H^2} := 0.85 \cdot \eta'_{\partial H^2} = 0.806$

Тогда длины цилиндрических участков ДУ каждой ступени

$$l_{\boldsymbol{\mu}\boldsymbol{1}} \coloneqq \frac{4 \boldsymbol{\cdot} \boldsymbol{\omega}_{\boldsymbol{1}}}{\boldsymbol{\pi} \boldsymbol{\cdot} \boldsymbol{D}_{\boldsymbol{1}}^{2} \boldsymbol{\cdot} \boldsymbol{\rho}_{T} \boldsymbol{\cdot} \boldsymbol{\eta}_{\boldsymbol{U}\boldsymbol{1}}} - K_{l\boldsymbol{1}} \boldsymbol{\cdot} \boldsymbol{R}_{\boldsymbol{1}} \boldsymbol{\cdot} \frac{\eta_{\partial \boldsymbol{H}\boldsymbol{1}}}{\eta_{\boldsymbol{U}\boldsymbol{1}}} = 4.517 \ \boldsymbol{m}$$

$$l_{\mathit{u}2} \coloneqq \frac{4 \cdot \omega_2}{\boldsymbol{\pi} \cdot D_2^{\ 2} \cdot \rho_T \cdot \eta_{\mathit{L}12}} - K_{l2} \cdot R_2 \cdot \frac{\eta_{\mathit{\partial} \mathit{H}2}}{\eta_{\mathit{L}12}} = 1.861 \ \boldsymbol{m}$$

Посчитаем длину переднего и заднего днища для каждой ДУ

Первая ступень

Вторая ступень

$$l_{\partial H nep1} := 0.61 \cdot R_1 = 0.458 \ m$$

$$l_{\partial H nep2} := 0.61 \cdot R_2 = 0.389 \ m$$

$$l_{\partial H3a\partial 1} := (0.305 + 0.1 \cdot 0.2) \cdot 2 \ R_1 = 0.488 \ \boldsymbol{m}$$

$$l_{\partial H_3 a \partial 2} := (0.305 + 0.1 \cdot 0.2) \cdot 2 R_2 = 0.414 \ m$$

Диаметры передних полюсных отверстий:

$$d'_{011} = 0.2$$

$$d_{011} \coloneqq d'_{011} \cdot D_1 = 0.3 \ \mathbf{m}$$

$$d'_{012} = 0.2$$

$$d_{012} = d'_{012} \cdot D_2 = 0.255 \ m$$

$$d_{021} = 0.833 \ m$$

Масса фланцев

$$m_{\phi ni} = K_{\phi n} \cdot \rho_{\phi n} \cdot r'_{cpi}^{3} \cdot D_{i}^{3} \cdot \sqrt{\frac{p_{Ni}}{\sigma_{\phi n}}}$$

Материал фланцев: титановый сплав ВТ-23

 $\sigma_{\phi \sigma} \coloneqq 1400 \, \mathbf{MPa}$

- предел прочности материала фланцев

 $\rho_{Ti} \coloneqq 4540 \frac{\mathbf{kg}}{\mathbf{m}^3}$

- плотность материала фланцев

 $K_{\phi n} \coloneqq 0.894$

- коэффициент согласования для фланцев корпусов ДУ ступеней

Найдем средние относительные диаметры и радиусы полюсных отверстий силовых оболочек корпусов ДУ ступеней:

$$d'_{cp1} \coloneqq \frac{d'_{011} + d'_{021}}{2} = 0.378$$

$$r'_{cp1} = \frac{d'_{cp1}}{2} = 0.189$$

$$d'_{cp2} := \frac{d'_{012} + d'_{022}}{2} = 0.332$$

$$r'_{cp2} := \frac{d'_{cp2}}{2} = 0.166$$

Посчитаем массы фланцев корпусов ДУ ступеней:

$$m_{\phi \beta 1} := K_{\phi \sigma} \cdot \rho_{Ti} \cdot r'_{c\rho 1}^{3} \cdot D_{1}^{3} \cdot \sqrt{\frac{p_{N1}}{\sigma_{\phi \sigma}}} = 8.54 \ \textit{kg}$$

$$m_{\phi extstyle extstyle n_2} \! := \! K_{\phi \hspace{-0.5mm} n} \! \cdot \!
ho_{Ti} \! \cdot \! r'_{cp2}^{ 3} \! \cdot \! D_2^{ 3} \! \cdot \! \sqrt{rac{p_{N2}}{\sigma_{\phi \hspace{-0.5mm} n}}} = \! 3.24 \; extbf{kg}$$

Масса юбок корпуса

$$m_{\omega i} = \frac{K_{\omega} \cdot p_{Ni} \cdot D_i^3}{\sigma'_{V}}$$

$$K_{\omega} \coloneqq 1.61$$

 $m_{\omega i} = \frac{K_{\omega} \cdot p_{Ni} \cdot D_i^{\ 3}}{\sigma'_{K}}$ $K_{\omega} \coloneqq 1.61$ - коэф. согласования размерностей

$$\sigma_{K}' = (1.275 \cdot 10^{6}) \frac{m^{2}}{s^{2}}$$

 $\sigma_K' = \left(1.275 \cdot 10^6\right) \frac{m{m}^2}{m{s}^2}$ — - удельная прочность органопластика

$$\rho_K = 1350 \frac{\mathbf{kg}}{\mathbf{m}^3}$$

$$m_{\wp 1} \coloneqq \frac{K_{\wp} \cdot p_{N1} \cdot D_{1}^{\ 3}}{\sigma'_{K}} = 51.147 \ \textit{kg} \qquad \qquad l_{\wp 1} \coloneqq 0.15 \cdot D_{1} = 0.225 \ \textit{m}$$

$$l_{\wp 1} \coloneqq 0.15 \cdot D_1 = 0.225 \ m$$

$$m_{\wp 2} \coloneqq \frac{K_{\wp} \cdot p_{N2} \cdot D_2^{-3}}{\sigma_K'} = 26.175 \; \textit{kg} \qquad \qquad l_{\wp 2} \coloneqq 0.15 \cdot D_2 = 0.191 \; \textit{m}$$

$$l_{102} \coloneqq 0.15 \cdot D_2 = 0.191 \ m$$

Зная плотность материала юбок, оценим их толщину, считая что вся их масса заключена в объеме полого цилиндра

$$V_{\wp_1} \coloneqq \frac{m_{\wp_1}}{2 \cdot \rho_K} = 0.019 \; \mathbf{m}^3$$
 $V_{\wp_2} \coloneqq \frac{m_{\wp_2}}{2 \cdot \rho_K} = 0.01 \; \mathbf{m}^3$

$$V_{\kappa 2} := \frac{m_{\kappa 2}}{2 \cdot \rho_{\kappa}} = 0.01 \ m^3$$

$$\delta_{\kappa 1} \coloneqq 1 \; \boldsymbol{mm} \qquad \qquad \delta_{\kappa 1}$$

$$V_{\wp 1} = \pi \cdot \left(\left(D_1 + \delta_{\wp 1} \right)^2 - D_1^{\ 2} \right) \cdot l_\wp$$

$$V_{\scriptscriptstyle 102} = \pi \cdot \left(\left(D_2 + \delta_{\scriptscriptstyle 102} \right)^2 - D_2^{\ 2} \right) \cdot l_{\scriptscriptstyle 102}$$

$$V_{io1} := \frac{1}{2 \cdot \rho_K} - 0.019 \, \text{m}$$

$$\delta_{io2} := 1 \, \text{mm}$$

$$\delta_{io2} := 1 \, \text{mm}$$

$$V_{io1} = \pi \cdot \left(\left(D_1 + \delta_{io1} \right)^2 - D_1^{\ 2} \right) \cdot l_{io1}$$

$$V_{io2} = \pi \cdot \left(\left(D_2 + \delta_{io2} \right)^2 - D_2^{\ 2} \right) \cdot l_{io2}$$

$$Find \left(\delta_{io1}, \delta_{io2} \right) = \begin{bmatrix} 8.907 \\ 6.312 \end{bmatrix} \, \text{mm}$$

Масса заряда и крышки воспламенительного устройства

$$m_{\mathit{3BYi}}$$
 = $K_{\mathit{3BY}} \cdot \left(\frac{\omega_i}{\rho_T}\right)^{\frac{2}{3}}$ $K_{\mathit{3BY}} \coloneqq \frac{2.2}{m^2} \cdot kg$ - коэф. согласования размерностей

$$K_{3BY} := \frac{2.2}{m^2} \cdot kg$$

$$m_{3BY1} \coloneqq K_{3BY} \cdot \left(\frac{\omega_1}{\rho_T}\right)^{\frac{2}{3}} = 9.16 \ \textbf{\textit{kg}}$$

$$m_{3BY2} := K_{3BY} \cdot \left(\frac{\omega_2}{\rho_T}\right)^{\frac{2}{3}} = 4.451 \; kg$$

Масса крышки восплменительного устройства (ВУ)

$$m_{\text{By}i} = \frac{K_{\text{By}} \cdot p_{Ni} \cdot d'_{01i}^{3} \cdot D_{i}^{3}}{\sigma'_{2}}$$

 $m_{\mathit{Byi}} = \frac{K_{\mathit{By}} \cdot p_{Ni} \cdot d'_{01i}^3 \cdot D_i^3}{\sigma'_{\mathit{D}}}$ $K_{\mathit{By}} = 5.46$ - коэф. согласования размерностей

$$\sigma_{B}' := \frac{\sigma_{B}}{\rho_{ti}} = \left(3.084 \cdot 10^{5}\right) \frac{\boldsymbol{m}^{2}}{\boldsymbol{s}^{2}} \qquad \qquad \rho_{ti} := 4540 \cdot \frac{\boldsymbol{kg}}{\boldsymbol{m}^{3}} \qquad \sigma_{B} := 1400 \; \boldsymbol{MPa}$$

$$\sigma_{ti} \coloneqq 4540 \cdot \frac{\mathbf{kg}}{\mathbf{m}^3} \qquad \sigma_{B} \coloneqq 1400 \; \mathbf{MI}$$

$$m_{\text{BYI}} := \frac{K_{\text{BY}} \cdot p_{N1} \cdot d'_{011}^{3} \cdot D_{1}^{3}}{\sigma'_{2}} = 5.737 \text{ kg}$$

$$m_{\Pi \Pi} = 80$$
 kg

$$m_{BY1} := \frac{\alpha_{BY} \cdot p_{N1} \cdot \alpha_{011} \cdot D_1}{\sigma_B'} = 5.737 \text{ kg}$$

$$d_{\mathit{\Pi}\mathit{J}}\!\coloneqq\!D_2$$

$$m_{\mathit{BY1}} \coloneqq \frac{K_{\mathit{BY}} \cdot p_{N1} \cdot d'_{011}^{3} \cdot D_{1}^{3}}{\sigma'_{\mathit{B}}} = 5.737 \; \textit{kg} \qquad \qquad m_{\mathit{\Pi\!M}} = 80 \; \textit{kg}$$

$$d_{\mathit{\Pi\!M}} \coloneqq D_{2}$$

$$m_{\mathit{BY2}} \coloneqq \frac{K_{\mathit{BY}} \cdot p_{N2} \cdot d'_{012}^{3} \cdot D_{2}^{3}}{\sigma'_{\mathit{B}}} = 2.936 \; \textit{kg} \qquad \qquad l_{\mathit{\Pi\!M}} \coloneqq \frac{4 \cdot \frac{m_{\mathit{\Pi\!M}}}{\rho_{\mathit{ti}}}}{\pi \cdot d_{\mathit{\Pi\!M}}^{2}} = 0.014 \; \textit{m}$$

$$:= \frac{\rho_{ti}}{\boldsymbol{\tau} \cdot \boldsymbol{d}_{-2}^2} = 0.014 \; \boldsymbol{m}$$

Масса защитно-крепящего слоя

$$m_{\mathit{3KC}i} = \pi \cdot D_i^{\ 2} \cdot \left(\frac{l_{\mathit{q}i}}{D_i} + 0.615\right) \cdot q_{\mathit{3KC}} \qquad \qquad q_{\mathit{3KC}} \coloneqq 2.4 \cdot \frac{\mathit{kg}}{\mathit{m}^2} \qquad \qquad \text{- поверхностная плотность}$$
 материала ЗКС

$$q_{\mathsf{3KC}} \coloneqq 2.4 \cdot \frac{\mathbf{kg}}{\mathbf{m}^2}$$

$$m_{\mathit{3KC1}} \coloneqq \pi \cdot {D_1}^2 \cdot \left(\frac{l_{\mathit{u1}}}{D_1} + 0.615\right) \cdot q_{\mathit{3KC}} = 61.516 \; \textit{kg}$$

$$m_{3\mathit{KC}2} \coloneqq \pi \cdot {D_2}^2 \cdot \left(\frac{l_{\mathit{U}2}}{D_2} + 0.615 \right) \cdot q_{3\mathit{KC}} = 25.424 \; \textit{kg}$$

Масса теплозашитного покрытия

$$m_{T3\Pi} = \frac{K_{T3\Pi} \cdot \omega_i \cdot \sqrt[2]{p_{Ni} \cdot \tau_{Ni}}}{\rho_T \cdot D_i \cdot \left(\frac{l_{ui}}{D_i}\right)^{0.25}} \cdot \rho_{T3\Pi} \qquad K_{T3\Pi} \coloneqq 1.17 \cdot 10^{-3} \cdot \frac{m^{\frac{3}{2}} \cdot s^{\frac{1}{2}}}{s^{\frac{3}{2}}} \cdot kg \qquad \rho_{T3\Pi} \coloneqq 1000 \cdot \frac{kg}{m^3}$$

$$K_{73\Pi} \coloneqq 1.17 \cdot 10^{-3} \cdot \frac{\boldsymbol{m}^{2} \cdot \boldsymbol{s}^{2}}{\frac{3}{2}} \cdot \boldsymbol{kg}$$

$$\rho_{T3\Pi} \coloneqq 1000 \cdot \frac{\mathbf{kg}}{\mathbf{m}^3}$$

$$m_{\textit{T3}\textit{\Pi1}} \coloneqq \frac{K_{\textit{T3}\textit{\Pi}} \cdot \frac{\omega_1}{1000} \cdot \sqrt[2]{p_{N1} \cdot \tau_{N1}}}{\rho_T \cdot D_1 \cdot \left(\frac{l_{\textit{u}1}}{D_1}\right)^{0.25}} \cdot \rho_{\textit{T3}\textit{\Pi}} = 131.574 \; \textit{kg}$$

$$\rho_{73\Pi} = 131.574 \ kg$$

$$\rho_T \cdot D_1 \cdot \left(\frac{l_{u1}}{D_1}\right)^{0.2}$$

$$K_{\it T3\Pi} \cdot \frac{\omega_2}{1000} \cdot \sqrt[2]{p_{N2} \cdot au_{N2}}$$

$$m_{\textit{T3}\textit{\Pi2}} \coloneqq \frac{K_{\textit{T3}\textit{\Pi}} \cdot \frac{\omega_2}{1000} \cdot \sqrt[2]{p_{N2} \cdot \tau_{N2}}}{\rho_T \cdot D_2 \cdot \left(\frac{l_{\textit{µ2}}}{D_2}\right)^{0.25}} \cdot \rho_{\textit{T3}\textit{\Pi}} = 56.345 \; \textit{kg}$$

3.2 Расчет масс сопловых аппаратов

Силовая оболочка утопленной части сопла

$$ho_{Ti} \coloneqq 4500 \cdot \frac{oldsymbol{kg}}{oldsymbol{m}^3}$$

$$m_{yoi} = K_{yo} \cdot \left(\frac{\beta \cdot \omega_{i}}{\tau_{Ni}}\right)^{1.5} \cdot d_{yi}^{2.35} \cdot l_{yi}^{\prime 0.4} \cdot \frac{d_{ai}^{0.4}}{p_{Ni}^{1.1}} \cdot \underbrace{\frac{\rho_{Ti}}{E_{Ti}^{0.4}}}_{E_{Ti}} = 122000 \, \textit{MPa}$$

$$E_{Ti} \coloneqq 122000 \; MPa$$

$$d'_{yi} = \frac{d_{02i}}{2 \cdot d_{\kappa ni}}$$

$$K_{yo} \coloneqq 16.5 \cdot 10^{-9}$$

$$K_{yo} \coloneqq 16.5 \cdot 10^{-9}$$
 - коэф. согласования размерностей

$$d'_{y1} \coloneqq \frac{d_{021}}{2 \cdot d_{\kappa p1}} = 1.922 \qquad d'_{y2} \coloneqq \frac{d_{022}}{2 \cdot d_{\kappa p2}} = 2.101$$

$$m_{yo1} \coloneqq K_{yo} \cdot \left(\frac{\beta \cdot \omega_1}{\tau_{N1}}\right)^{1.5} \cdot d'_{y1}^{2.35} \cdot l'_{y1}^{0.4} \cdot \frac{d'_{a1}^{0.4}}{\left(\frac{p_{N1}}{10^6}\right)^{1.1}} \cdot \frac{\rho_{Ti}}{\left(\frac{E_{Ti}}{10^6}\right)^{0.4}} = 49.528 \text{ kg}$$

$$m_{yo2} \coloneqq K_{yo} \cdot \left(\frac{\beta \cdot \omega_2}{\tau_{N2}}\right)^{1.5} \cdot d'_{y2}^{2.35} \cdot l'_{y2}^{0.4} \cdot \frac{d'_{a2}^{0.4}}{\left(\frac{p_{N2}}{10^6}\right)^{1.1}} \cdot \frac{\rho_{Ti}}{\left(\frac{E_{Ti}}{10^6}\right)^{0.4}} = 18.352 \text{ kg}$$

Тепловая защита утопленной оболочки сопла

$$m_{73yoi}$$
 = K_{73yo} $\cdot \frac{\beta \cdot \omega_i}{\sqrt[2]{p_{Ni} \cdot \tau_{Ni}}} \cdot d'_{yi}^{1.75} \cdot \rho_{73}$ K_{73yo} := $3.7 \cdot 10^{-9} \cdot \frac{m^{\frac{3}{2}} \cdot k^{\frac{1}{2}}}{\sqrt[3]{p_{Ni} \cdot \tau_{Ni}}} \cdot kg$ размерностей

$$ho_{73} \coloneqq 1400 \cdot \frac{\pmb{kg}}{\pmb{m}^3}$$
 - плотность углепластика

$$m_{\textit{T3yo1}}\!\coloneqq\! K_{\textit{T3yo}}\!\cdot\!\frac{\beta \cdot \omega_1}{\sqrt[2]{\frac{p_{N1}}{10^6} \cdot \tau_{N1}}}\!\cdot\! d_{y1}^{\prime}^{\frac{1.75}{1.75}}\!\cdot\! \rho_{\textit{T3}}\!=\!15.671~\textit{kg}$$

$$m_{73yo2} \coloneqq K_{73yo} \cdot \frac{\beta \cdot \omega_2}{\sqrt[2]{\frac{p_{N2}}{10^6} \cdot \tau_{N2}}} \cdot d'_{y2}^{1.75} \cdot \rho_{73} = 6.918 \text{ kg}$$

Силовая оболочка раструба сверхзвуковой части

$$m_{\kappa\rho i}$$
 = $K_{\kappa\rho}$ $\cdot \left(\frac{\beta \cdot \omega_{i}}{\tau_{Ni}}\right)^{1.5}$ $\cdot \left(d'_{\rho i}\right)^{1.75}$ $\cdot \frac{d'_{ai}^{0.2}}{p_{Ni}}$ $\cdot \frac{\rho_{Ti}}{\left(\frac{E_{Ti}}{10^{6}}\right)^{0.5}}$ $k_{\kappa\rho} \coloneqq 11.2 \cdot 10^{-9}$ - коэф. согласования размерностей

$$d'_{p1} \coloneqq d'_{a1} = 3.975$$
 - относительные диаметры раструбов

$$d'_{p2} = 4.5$$

$$E_{Ti} = 1300 \, MPa$$

$$E_{Ti} \coloneqq 1300 \ \textbf{\textit{MPa}} \
ho_{Ti} = \left(4.5 \cdot 10^3\right) rac{\textbf{\textit{kg}}}{ ext{\textit{m}}^3}$$

$$m_{\textit{kp1}} \coloneqq k_{\textit{kp}} \cdot \left(\frac{\beta \cdot \omega_1}{\tau_{N1}}\right)^{1.5} \cdot \left(d_{\textit{p1}}'\right)^{1.75} \cdot \frac{1}{10^6} \cdot \frac{\rho_{Ti}}{\left(\frac{E_{Ti}}{10^6}\right)^{0.5}} = 383.82 \; \textit{kg}$$

$$m_{\kappa p2} \coloneqq k_{\kappa p} \cdot \left(\frac{\beta \cdot \omega_{2}}{\tau_{N2}}\right)^{1.5} \cdot \left(d'_{p2}\right)^{1.75} \cdot \frac{d'_{a2}^{0.2}}{10^{6}} \cdot \frac{\rho_{Ti}}{\left(\frac{E_{Ti}}{10^{6}}\right)^{0.5}} = 184.951 \text{ kg}$$

Горловина сопла с эластичным шарниром

$$m_{\Gamma i} = K_{\Pi} \cdot \frac{\beta \cdot \omega_{i}}{\sqrt[2]{\frac{p_{Ni}}{10^{6}} \cdot \tau_{Ni}}}$$

$$m_{\mathit{Fi}} = K_{\mathit{Fi}} \cdot \frac{\beta \cdot \omega_{i}}{\sqrt[2]{\frac{p_{Ni}}{10^{6}} \cdot \tau_{Ni}}}$$
 $K_{\mathit{Fi}} \coloneqq 6.44 \cdot 10^{-5} \cdot \frac{\frac{1}{s^{2}}}{\frac{1}{2} \cdot m^{\frac{3}{2}}} \cdot kg$ - коэф. согласования размерностей

$$m_{\Gamma 1} \coloneqq K_{\Pi} \cdot \frac{eta \cdot \omega_1}{\sqrt[2]{rac{p_{N1}}{10^6} \cdot au_{N1}}} = 62.122 \; extbf{kg}$$

$$m_{\it \Gamma 2}\!:=\!K_{\it \Pi}\! \cdot\! rac{eta\! \cdot \omega_2}{\sqrt[2]{rac{p_{N2}}{10^6}\! \cdot au_{N2}}}\!=\!23.464\;m{kg}$$

Масса тепловой защиты сверхзвукой части

$$m_{o6i}$$
 = $K_{o6} \cdot
ho_{73} \cdot \frac{\beta \cdot \omega_i}{\sqrt[2]{\frac{p_{Ni}}{10^6}} \cdot au_{Ni}} \cdot d'_{ai}^{1.75}$ $K_{o6} \coloneqq 2.81 \cdot 10^{-9} \cdot \frac{m^{\frac{3}{2}} \cdot s^{\frac{1}{2}}}{s^{\frac{3}{2}}} \cdot kg$ - коэф. согласования размерностей

$$K_{o6} = 2.81 \cdot 10^{-9} \cdot \frac{m^{\frac{3}{2}} \cdot s^{\frac{3}{2}}}{\frac{3}{2}} \cdot kg$$

$$m_{o61} \coloneqq K_{o6} \cdot \rho_{73} \cdot \frac{\beta \cdot \omega_1}{\sqrt[2]{\frac{p_{N1}}{10^6} \cdot \tau_{N1}}} \cdot d'_{a1}^{1.75} = 42.464 \ \textit{kg}$$

$$m_{o62} \coloneqq K_{o6} \cdot \rho_{73} \cdot \frac{\beta \cdot \omega_2}{\sqrt[2]{\frac{p_{N2}}{10^6} \cdot \tau_{N2}}} \cdot d'_{a2}^{1.75} = 67.886 \text{ kg}$$

3.3 Масса органов управления

$$K_{\text{DM}} := 0.65 \cdot m^{\frac{1}{2}} \cdot s$$

$$3.3$$
 Масса органов управления $K_{
ho M1} \coloneqq 0.65 \cdot m{m}^{\frac{1}{2}} \cdot m{s}$ $m_{
ho Mi} = K_{
ho M2} \cdot \sqrt[3]{D_i}$ $K_{
ho M2} \coloneqq 0.57 \cdot m{m}^{\frac{1}{2}} \cdot m{s}$

$$m_{\text{PM1}} := K_{\text{PM1}} \cdot \frac{\omega_1}{\tau_{N1} \cdot \sqrt[2]{D_1}} = 143.187 \text{ kg}$$

$$m_{\text{PM2}} := K_{\text{PM2}} \cdot \frac{\omega_2}{\tau_{\text{NN}} \cdot \sqrt[2]{D_2}} = 47.805 \ kg$$

Масса конструкции ДУ

$$m_{\mathit{A}\!\mathit{Y}\!2} \coloneqq m_{\mathit{C}\!\mathit{K}\!2} + m_{\mathit{\Phi}\!\mathit{f}\!\mathit{I}\!2} + m_{\mathit{t}\!o\!2} + m_{\mathit{3}\!\mathit{B}\!\mathit{Y}\!2} + m_{\mathit{B}\!\mathit{Y}\!2} + m_{\mathit{T}\!\mathsf{3}\!\mathit{f}\!\mathit{I}\!2} + m_{\mathsf{3}\!\mathit{K}\!C\!2} + m_{\mathit{y}\!o\!2} + m_{\mathit{T}\!\mathsf{3}\!\mathit{y}\!o\!2} + m_{\mathit{k}\!p\!2} + m_{\mathit{f}\!2} + m_{\mathit{o}\!6\!2} + m_{\mathit{P}\!M\!2} = 625.09~\textit{kg}$$

3.4 Соотношения для расчета масс элементов ракеты

Необходимо построить предварительный чертеж ракеты, из которого определяются точные значения длин переходных и хвостовых отсеков, длина обтекателя и протяженность БКС ракеты.

Определим длину приборного отсека по его усредненной плотности:

$$m_{\text{CY}} = 105 \text{ kg}$$
 $\rho_{\text{CY}} = 300 \frac{\text{kg}}{\text{m}^3}$

Объем будет равен:

$$V_{\text{CY}} = \frac{m_{\text{CY}}}{\rho_{\text{CV}}} = 0.35 \ m^3$$

Примем диаметр приборного отсека равным диаметру второй ступени:

$$D_{CY} := D_2 = 1.275 \ m$$

$$l_{\text{CY}} = \frac{4 \cdot V_{\text{CY}}}{\boldsymbol{\pi} \cdot D_{\text{CY}}^2} = 0.274 \ \boldsymbol{m}$$

Для расчета масс отсеков, головного обтекателя, а также бортовой кабельной сети приведем предварительную компоновку ракеты

Масса отсеков:

$$m_{OTCi} = \pi \cdot D_i \cdot (K_{\Pi XO} \cdot l_{\Pi XOi} + K_{XO} \cdot l_{XOi})$$

$$K_{XO} \coloneqq 20 \frac{kg}{m^2}$$
 - коэффициент согласования для хвостовых отсеков

$$K_{\Pi XO1} \coloneqq 20 \; \frac{kg}{m^2} \;$$
 - коэффициент согласования для переходных отсеков в случае поперечного деления

$$K_{\text{ПХО2}} \coloneqq 24 \; \frac{kg}{m^2} \;$$
 - коэффициент согласования для переходных отсеков в случае продольно-поперечного деления

В нашем случае разделение первой и второй ступеней происходит по плоскости 1-1, боевая ступень отделяется от третьей ступени по плоскости 2-2. Из чертежа получим следующие длины хвостовых и переходных отсеков. В плоскости 1-1 предполагается продольно-поперечное деление, в плоскости 2-2 поперечное.

Переходные отсеки

$$l1_{\Pi XO1} := 980 \ mm$$
 _____ $l1_{\Pi XO2} := 1278 \ mm$ _____ $l11_{\Pi XO3} := 268 \ mm$

Хвостовые отсеки:

$$l1_{XO1} := 644 \ mm$$
 $l1_{XO2} := 701 \ mm$

Тогда масса отсеков первой ступени будет равна (переходный отсек между первой и второй ступенями относим к первой):

 $m_{\mathit{OTC1}} \coloneqq \pmb{\pi} \boldsymbol{\cdot} D_1 \boldsymbol{\cdot} \left(K_{\mathit{\Pi XO2}} \boldsymbol{\cdot} \boxed{l_{\mathit{\Pi XO1}}} + K_{\mathit{XO}} \boldsymbol{\cdot} l_{\mathit{XO1}} \right) = ?$

Второй ступени:

 $m_{\mathit{OTC2}} \coloneqq \pi \cdot D_2 \cdot \left(K_{\mathit{\Pi XO1}} \cdot \overline{l_{\mathit{\Pi XO2}}} \right) = ?$

Бортовая кабельная сеть

$$m_{\mathit{BKC}i} = (0.8 \cdot l_{cmi} + 2) + (0.8 \cdot l_{mpi} + 2) (i - 1)$$

 l_{cmi} - длина ступени

 l_{mpi} - длина транзитных кабелей

$$l_{mpi} = l_{\Pi XOi} + 2 \cdot l_{\wp i} + l_{\iota \mu i} + l_{XOi}$$

 l_{cmi} измеряется от среза сопла до плоскости разделения

 $l_{cm1} = 5.014 \ m$

 $l_{cm2} = 4.679 \ m$

$$l_{mp2} := l_{\Pi XO2} + 2 \cdot l_{\omega 2} + l_{u2} + l_{XO2} = ?$$

$$m_{ extstyle extstyle KC1} \coloneqq \left(0.8 \cdot l_{cm1} \cdot rac{oldsymbol{kg}}{oldsymbol{m}} + 2 \ oldsymbol{kg}
ight) = 6.011 \ oldsymbol{kg}$$

$$m_{\text{BKC2}} := \left(0.8 \cdot l_{\text{cm2}} \cdot \frac{\mathbf{kg}}{\mathbf{m}} + 2 \cdot \mathbf{kg}\right) + \left(0.8 \cdot l_{\text{mp2}} \cdot \frac{\mathbf{kg}}{\mathbf{m}} + 2 \cdot \mathbf{kg}\right) = ?$$

Масса обтекателя:

 $m_{\text{FO}} = S_{\text{FO}} \cdot K_{\text{FO}} + 10 \text{ kg}$

 $K_{\Gamma O} \coloneqq 20 \cdot \frac{kg}{m^2}$ коэффициент согласования при поперечном отделении ΓO

 $S_{\Gamma {\sf O}}$ определим из чертежа для двух конусов

$$S_{\text{FO}} \coloneqq \boldsymbol{\pi} \boldsymbol{\cdot} \left(\frac{1190}{2} \ \boldsymbol{mm} + \frac{750}{2} \ \boldsymbol{mm} \right) \boldsymbol{\cdot} 1269 \ \boldsymbol{mm} + \boldsymbol{\pi} \boldsymbol{\cdot} \frac{750}{2} \ \boldsymbol{mm} \boldsymbol{\cdot} 794 \ \boldsymbol{mm}$$

$$S_{\Gamma O} \! = \! 4.802 \; m{m}^2$$

 $L_{\Gamma \text{O}} \coloneqq 1950 \ \textit{mm}$

 $L_{\Pi H} \coloneqq 2000 \ \boldsymbol{mm}$

 $m_{ro} := S_{ro} \cdot K_{ro} + 10 \ ka = 106.05 \ ka$

$K_{\Pi 1} \coloneqq \frac{J_{1\Pi 1}}{J_{101}} - 1 = 0.083$
$ heta'_K(L) \coloneqq \operatorname{linterp} \left(L_M, heta'_{K\!M}, L ight)$
$\theta'_K \coloneqq \theta'_K (11000 \cdot km) = 0.353$
$\theta'_1 \coloneqq \operatorname{asin}\left(1 - \underbrace{\mu_1} \cdot \left(1 - \operatorname{sin}\left(\theta'_K\right)^{0.8}\right)\right) = ? \qquad \qquad \theta'_2 \coloneqq 0.25 \cdot \underbrace{\theta'_1} + 0.75 \cdot \theta'_K = ?$
$\theta_{K1} \coloneqq 0.5 \cdot \left(\begin{array}{c} \theta'_{1} + \theta'_{2} \end{array} \right) = ? \qquad \qquad \theta_{K2} \coloneqq \theta'_{K} \qquad \qquad \theta_{K3} \coloneqq \theta'_{K} \qquad \qquad \theta'_{3} \coloneqq \theta'_{K}$
$ \left(12000 \cdot \frac{kg}{}\right)$
$0.3 \cdot K_{\Pi 1} + \frac{4.8 \cdot \mu_{1}}{\frac{\tau_{N1}}{s} \cdot \sqrt[3]{\sin \left(\theta_{K1}\right)^{2}}} \cdot \left(\frac{12000 \cdot \frac{kg}{m^{2}}}{p_{M}}\right)$ $K_{a1} \coloneqq 1 + K_{\Pi 1} - \frac{\ln \left(\frac{1}{1 - \mu_{1}}\right)}{\ln \left(\frac{1}{1 - \mu_{1}}\right)} = ?$
$\frac{ au_{N1}}{e} \cdot \sqrt[3]{\sin\left(heta_{K1} ight)^2} \qquad p_M \qquad f$
$K_{a1} \coloneqq 1 + K_{\Pi 1} - \frac{8}{1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 +$
$\ln\left(\overline{1-\mu_1}\right)$
$K_{a2} \coloneqq 1$ — $K_{a3} \coloneqq 1$ — считаем, что потери отсутствуют
$J_{11} := J_{101} = (2.602 \cdot 10^3) \frac{m}{s}$
$J_{12} \coloneqq J_{1ec{\prime} 12}$
$\Delta V_{g1} \coloneqq g \cdot au_{N1} \cdot \sin \left(\hspace{-0.05cm} \overline{\hspace{-0.05cm} \hspace{-0.05cm} \hspace{-0.05cm} \hspace{-0.05cm} \overline{\hspace{-0.05cm} \hspace{-0.05cm} \hspace{-0.05cm} \hspace{-0.05cm} \overline{\hspace{-0.05cm} \hspace{-0.05cm} \hspace{-0.05cm} \hspace{-0.05cm} \overline{\hspace{-0.05cm} \hspace{-0.05cm} \hspace{-0.05cm} \overline{\hspace{-0.05cm} \hspace{-0.05cm} \hspace{-0.05cm} \hspace{-0.05cm} \overline{\hspace{-0.05cm} \hspace{-0.05cm} \hspace{-0.05cm} \hspace{-0.05cm} \overline{\hspace{-0.05cm} \hspace{-0.05cm} \hspace{-0.05cm} \overline{\hspace{-0.05cm} \hspace{-0.05cm} \hspace{-0.05cm} \overline{\hspace{-0.05cm} \hspace{-0.05cm} \hspace{-0.05cm} \overline{\hspace{-0.05cm} \hspace{-0.05cm} \overline{\hspace{-0.05cm} \hspace{-0.05cm} \hspace{-0.05cm} \overline{\hspace{-0.05cm} \hspace{-0.05cm} \hspace{-0.05cm} \overline{\hspace{-0.05cm} \hspace{-0.05cm} \overline{\hspace{-0.05cm} \hspace{-0.05cm} \hspace{-0.05cm} \overline{\hspace{-0.05cm} \hspace{-0.05cm} \overline{\hspace{-0cm}}\hspace{-0.05cm} \overline{\hspace{-0.05cm} \overline{\hspace{-0.05cm} \hspace{-0.05cm} \overline{\hspace{-0.05cm} \overline{\hspace{-0.05cm} \hspace{-0.05cm} \overline{\hspace{-0.05cm} \overline{\hspace{-0.05cm} \overline{\hspace{-0.05cm} \hspace{-0.05cm} \overline{\hspace{-0.05cm} \overline{\hspace{-0.05cm} \overline{\hspace{-0.05cm} \overline{\hspace{-0.05cm} \overline{\hspace{-0.05cm} \overline{\hspace{-0.05cm} \overline{\hspace{-0.05cm} \overline{\hspace{-0.05cm} \overline{\hspace{-0.05cm} \hspace{-0.05cm} \overline{\hspace{-0.05cm} \overline{\hspace{-0.05cm} \overline{\hspace{-0.05cm} \overline{\hspace{-0.05cm} $
$\Delta V_{g2} \coloneqq g \cdot au_{N2} \cdot \sin \left(\hspace{-0.6cm} \theta'_{2} \hspace{-0.6cm} \right) = ?$ - потери скорости от воздействия гравитации
$V_{\kappa_1} \coloneqq \overline{K_{a1}} \cdot J_{11} \cdot \ln\left(\frac{1}{1-\mu_1}\right) - \Delta V_{g1} = ?$
$V_{\kappa_2} \coloneqq K_{a2} \cdot J_{12} \cdot \ln\left(\frac{1}{1 - \mu_2}\right) - \Delta V_{g2} = ?$
Конечная скорость в конце АУТ:
Telle mes exoposits is kninge 713 1.
$V_K \coloneqq V_{\kappa 1} + V_{\kappa 2} = ?$
Определяем высоту конца активного участка
$S(u) := u + (1-u) \cdot \ln(1-u)$

··· (F·) | F· | · (| F|) | (| F|)

$$\Delta h_{K1} \coloneqq \left(\frac{\mathbf{K}_{a1} \cdot J_{11} \cdot \tau_{N1}}{\mu_{1}} \cdot S\left(\mu_{1}\right) - \frac{g \cdot \tau_{N1}^{2}}{2} \cdot \sin\left(\theta_{1}'\right)\right) \cdot \sin\left(\theta_{1}'\right) = ? \mathbf{km}$$

$$\Delta h_{K2} \coloneqq \left(\underbrace{V_{\text{KI}}}_{\text{N1}} \cdot \tau_{N1} + \frac{K_{a2} \cdot J_{12} \cdot \tau_{N2}}{\mu_{2}} \cdot S\left(\mu_{2}\right) - \frac{g \cdot \tau_{N2}^{2}}{2} \cdot \sin\left(\theta'_{2}\right) \right) \cdot \sin\left(\theta'_{2}\right) = ? \text{ km}$$

$$h_K := \Delta h_{K1} + \Delta h_{K2} = ? km$$

Протяженность активного участка:

$$\Delta l_1 := \Delta h_{K1} \cdot \cot(\theta_{K1}) = ? km$$

$$\Delta l_2 := \Delta h_{K2} \cdot \cot(\theta_{K2}) = ? km$$

$$l_K := \Delta l_1 + \Delta l_2 =$$
? **km**

Определим эллиптическую дальность полета ракеты:

$$R \coloneqq 6371 \hspace{0.1cm} \boldsymbol{km} \qquad \mu_0 \coloneqq 3.988 \cdot 10^5 \cdot \frac{\boldsymbol{km}^3}{\boldsymbol{s}^2} \qquad \qquad r_K \coloneqq R + \overline{\boldsymbol{h}_K} = ? \hspace{0.1cm} \boldsymbol{km}$$

$$v_K = \frac{V_K^2 \cdot r_K}{\mu_0} = ?$$

$$L_{\mathit{\mathit{DA}}\mathit{J}} \coloneqq 2 \cdot R \cdot \operatorname{atan} \left(\frac{v_{\mathit{K}} \cdot \operatorname{tan} \left(heta'_{\mathit{K}}
ight)}{1 - v_{\mathit{K}} + \operatorname{tan} \left(heta'_{\mathit{K}}
ight)^{2}} \right) =$$
? **km**

Тогда дальность полета будет равна:

$$L'_{max} := L_{5AI} + 2 \cdot l_K = ? km$$

Перелет составляет

$$\Delta L := L'_{max} - L_{max} = ? km$$
 $\varepsilon := \frac{\Delta L}{L_{max}} \cdot 100 = ?$

Погрешность составляет 4,1 процента, поэтому дальнейшая корректировка не требуется. Рассчитанные ранее параметры ракеты принимаем за конечные.