本動画講義のファイルを

- データとして保存すること
- ・外部に動画講義を拡散すること

を固く禁じます。

約30秒後に 動画講義は自動的に始まります。

CaF₂(蛍石) + H₂SO₄ → 2HF + CaSO₄(石膏) 中国から輸入

化学基礎 I

本日から酸塩基の話しとなります。

蛍石型構造を有する無機固体が、フッ化物イオン伝導性の固体電解質として機能するという話しを前回しました。ところで、蛍石型構造を有するCaF2は、フッ化水素酸の原料として重要です。

このフッ化水素酸、国内では超高純度(>99.99%)で生産することが可能です。フッ化水素酸は集積回路やディスプレイ製造過程におけるエッチング剤、洗浄剤として用いられ、製品の歩留まりを高めるためには超高純度であることが極めて重要です。

工学研究科 マテリアル工学科 入山 恭寿 エ・9号館 519号室 iriyama@numse.nagoya-u.ac.jp

1. ダイヤモンドは大きなバンドギャップ (5.47 eV) を持つ絶縁体であるが、ホウ素をドープすると電気伝導率が大幅に増大する。ホウ素がドープされたダイヤモンドのバンド構造の模式図を右図に追記して、この理由を説明せよ。また、この

場合の電気伝導の主なキャリアーを答えよ.

伝導帯

アクセプター準位

価電子帯

Cの一部がBに置換すると価電子帯より 少しエネルギーが高い位置にアクセプ ター準位が形成されるため。

電気伝導の主なキャリアー: ホール

15 13 C→B 電子不足 14.01 5 B 7 N 容素 ホウ素 [Hel2s2p] [Hel2s2p2 [Hel2s2p3 30.97 26.98 28.09 13 A 14 **Si** 15 P アルミニウム リン [Nel3s2n1 [Nel3s2p2 [Nel3s2p3 1.6 8.15 1.9 10.49 69.72 72.61 74.92

32 **Ge**

ガリウム ゲルマニウム ヒ素
[Ar]3d¹⁰4s²p¹ [Ar]3d¹⁰4s²p² [Ar]3d¹⁰4s²p³

31 **Ga**

33 **As**

2. 格子エネルギーに寄与する因子を簡単に説明し、それを元に LiF MgO NaCl AIN CsI を格子エネルギーが増大する順に並べよ。これらは全て塩化ナトリウム 型構造をとる(つまりマーデルング定数は同じ)。

AIN>MgO>LiF>NaCl>CsI

$$-U_0 = \frac{N_{\rm A}AZ^2 z^2}{4\pi\varepsilon_0 r_{\rm c}} \left(1 - \frac{1}{n}\right)$$

ボルン・ランデ の式

n:ボルンの指数 (n:6~12)

*反発の指数を考慮

表2.7 典型元素のイオン半径(Å)

Li ⁺ 0.90 0.73(4)	Be ²⁺ 0.59 0.41(4)	B ³⁺ 0.41 0.25(4)	C ⁴⁺ 0.30 0.29(4)	$\frac{N^{3+} \ 0.30}{N^{3-} \ 1.32(4)}$ $\frac{N^{5+} \ 0.27}$	O ²⁻ 1.26 1.24(4)	F-1.19 1.17(4)
Na+ 1.16 1.13(4)	Mg ²⁺ 0.86 0.71(4)	Al ³⁺ 0.675 0.53(4)	Si ⁴⁺ 0.540 0.40(4)	P ³⁺ 0.58 P ⁵⁺ 0.52 0.31(4)	S ²⁻ 1.70 S ⁴⁺ 0.51 S ⁶⁺ 0.43	Cl ⁻ 1.67 Cl ⁷⁺ 0.22(4)
K+ 1.52 1.65(8)	Ca ²⁺ 1.14 1.26(8)	Ga ³⁺ 0.760 0.61(4)	Ge ⁴⁺ 0.670 0.530(4)	As ³⁺ 0.72 As ⁵⁺ 0.60	Se ²⁻ 1.84 Se ⁴⁺ 0.64	Br ⁻ 1.82 Br ⁷⁺ 0.39(4)
Rb ⁺ 1.66 1.75(8)	Sr ²⁺ 1.32 1.40(8)	In ³⁺ 0.94 0.76(4)	Sn ⁴⁺ 0.83 0.69(4)	Sb ³⁺ 0.90 Sb ⁵⁺ 0.74	Te ²⁻ 2.07 Te ⁴⁺ 1.11	I ⁻ 2.06 I ⁷⁺ 0.56(4)
Cs+ 1.81 1.88(8)	Ba ²⁺ 1.49 1.56(8)	Tl ³⁺ 1.025 Tl ⁺ 1.64	Pb ⁴⁺ 0.915 Pb ²⁺ 1.33	Bi ³⁺ 1.17 Bi ⁵⁺ 0.90	Po ⁴⁺ 1.08 Po ⁶⁺ 0.81	At ⁷⁺ 0.76

カッコ内の数値は配位数を示す。 カッコがついていない場合は6配位

理論的な考え方によると、 格子エネルギーは

- イオンの価数(Z)
- イオン間の距離(r_c)

に依存する。

マーデルング定数(A)は構造に依存するが、 この場合全て塩化ナトリウム型構造であるので 一定値と考えることができる。 nもこの場合定数として考えればよい。 LiF: 0.90+1.19 = 2.09

MgO: 0.86+1.26=2.12

NaCl: 1.16+1.67=2.83

AIN: 0.675+1.32(?)~2

CsI: 1.81+2.06 = 3.87

► r。は変わったとして2倍未満

Z=1 と 2 の場合の差 : 4倍 Z=2 と 3 の場合の差 : 2倍

Z=1 LiF>NaCl>Csl

Z=2 MgO

7 = 3

r。はの差はほぼない

3. 下記の数値を用いて臭化マグネシウムの格子エネルギーを計算せよ。

	kJ/mol		kJ/mol
Mg(s)の昇華①	+148	Br ₂ (g)の解離E④	+193
Mg(g)からMg ²⁺ (g)へ のイオン化E②	+2187	Br(g)の電子親和力⑤	+331
Br ₂ (I)の蒸発E③	+31	MgBr ₂ の標準モル生成 エンタルピー⑥	- 524

各エネルギーにおいて基準とする側を矢印の根本にしてます。その結果、下側は負、上側は正として図を完成させています。

6章 平衡と反応 ※ 6.1、6.2、6.4 は試験範囲に含めません

6.3 酸と塩基

6.3.1 ブレンステッドの酸・塩基

6.3.4 ブレンステッド酸・塩基の強さ

ブレンステッドの定義

ブレンステッド酸:プロトン(H+)供与体

ブレンステッド塩基:プロトン受容体

$$HA + H_2O \rightleftharpoons A^- + H_3O^+$$

※ 塩基は電子対を持ち、H*を受け取る

※ 高校の時は H+を放出する物質が 酸 OHを放出物質が 塩基 と考えました。 これはアレニウスの酸・塩基の定義です。 ここで学ぶ ブレンステッドの酸・塩基の定義とは、塩基の定義が異なります。

$$HCl + H_2O \implies H_3O^+ + Cl^-$$
 酸 塩基 共役酸 共役塩基

$$NH_3 + H_2O \longrightarrow NH_4^+ + OH^-(1)$$

塩基 酸 共役態 共役塩基

H₂O は、酸にも塩基にもなる: 両性

$$HC1 + H_2O \longrightarrow$$

$$H_3O^+ + Cl^-$$

酸

塩基

共役酸

共役塩基

$$K_a = \frac{[H_3O^+][Cl^-]}{[HCl]}$$

酸解離定数 $pK_a = -\log K_a$

$$C1- + H_2O$$

 \longrightarrow HCl + OH-

共役塩基

酸

$$K_b = \frac{[HCl][OH^-]}{[Cl^-]}$$

 $(共役塩基の)_{pK_b} = -\log K_b$ 塩基解離定数

$$K_a = \frac{[H_3O^+][Cl^-]}{[HCl]}$$

$$K_b = \frac{[HCl][OH^-]}{[Cl^-]}$$

14

$$K_a K_b = [H_3 O^+][OH^-] = K_w$$

$$2 \text{ H}_2\text{O(l)} \rightleftharpoons \text{H}_3\text{O}^+\text{(l)} + \text{OH}^-\text{(l)}$$

$$Kw = [H_3O^+][OH^-] = 1.00 \times 10^{-14} (at 25^{\circ}C)$$

$$\log K_a + \log K_b = \log K_w \implies pK_a + pK_b = pK_w$$

※水を溶媒にしている場合。水とは異なる溶媒(HSol)の場合は、その溶媒における [H₂Sol+][Sol-]の積で決まる。

表6.3 ブレンステッド酸の pK_a値(25℃)

	$\log K_a + \log K_b$	$=\log K_{w}$	$\Rightarrow p$	K_a +	pK_b	$= pK_w$
--	-----------------------	---------------	-----------------	---------	--------	----------

	pK_a		pK_a		pK_a		pK_{a1}	pK_{a2}
HNO ₃	-1.32	PhOH	9.9	Al³+	5.1	H ₂ SO ₄		1.99
HNO_2	3.15	H ₃ BO ₃	9.2	Fe³+	2.2	H ₂ CO ₃	6.35	10.3
HF	3.17	CH ₃ NH ₂	10.7	Cr³+	3.95	H ₂ SO ₃	1.9	7.2
HCl	-7	PhNH ₂	4.60	ギ酸	3.75	H ₂ S	7.0	13.9
HBr	-9	ピリジン・	5.22	酢酸	4.76	(COOH) ₂	1.25	4.29

$$K_a = \frac{[H_3O^+][Cl^-]}{[HCl]}$$

pK_a 小 → 酸として強い

$$K_a > 1$$
 (p $K_a < 0$),
 $K_b > 1$ (p $K_b = 14 - pK_a < 0$ 14 < p K_a)

強酸・強塩基 (完全解離しており、酸・塩基の強度が比較できない)

$$HC1 + H_2O \longrightarrow H_3O^+ + C1^-$$

(参考) 溶媒の水平化効果 p148

$$HSol + HCI \longrightarrow H_2Sol^+ + Cl^-$$

$$K_a = \frac{[H_3O^+][Cl^-]}{[HCl]}$$

 $pK_a < 0$ $(K_a > 1)$ の場合、いずれも $H_2 Sol^+$ の酸性度を示す。 従って、 pK_a が0より小さくなる物質の酸の強度は比較できない

HBr、HIの酸の強度は 例えばギ酸中で比較可能

酸・塩基の強さを比較できるのは、 $pK_a=0$ から pK_{Hsol} まで。

$$HSol(1) + HSol(1) \longrightarrow H_2Sol^+(1) + Sol^-(1) \qquad K_{sol} = H$$

$$K_{sol} = \left[H_2^+ Sol \right] Sol^-$$

表6.3 ブレンステッド酸の pK_a値(25℃)

	pK_a		pK_a		pK_a		pK_{a1}	$\mathrm{p}K_{\mathrm{a}2}$
HNO ₃	-1.32	PhOH	9.9	Al ³⁺	5.1	H ₂ SO ₄		1.99
HNO_2	3.15	H ₃ BO ₃	9.2	Fe³+	2.2	H ₂ CO ₃	6.35	10.3
HF	3.17	CH₃NH₂	10.7	Cr³+	3.95	H ₂ SO ₃	1.9	7.2
HCl	-7	PhNH ₂	4.60	ギ酸	3.75	H ₂ S	7.0	13.9
HBr	- 9	ピリジン・	5.22	酢酸	4.76	(COOH) ₂	1.25	4.29

HX (X = I, Br, Cl, F) の pK_a の序列について

アニオンサイズ : F-<Cl-<Br-<l-

電荷密度 : F->CI->Br->I-

H⁺との相互作用の強さ : F⁻>Cl⁻>Br⁻>l⁻

ブレンステッド酸としての強さ: F-<CI-<Br-<I-

表2.7 典型元素のイオン半径(Å)

Li ⁺ 0.90 0.73(4)	Be ²⁺ 0.59 0.41(4)	B ³⁺ 0.41 0.25(4)	C ⁴⁺ 0.30 0.29(4)	N ³⁺ 0.30 N ³⁻ 1.32(4) N ⁵⁺ 0.27	O ²⁻ 1.26 1.24(4)	F-1.19 1.17(4)
Na+ 1.16 1.13(4)	Mg ²⁺ 0.86 0.71(4)	Al ³⁺ 0.675 0.53(4)	Si ⁴⁺ 0.540 0.40(4)	P ³⁺ 0.58 P ⁵⁺ 0.52 0.31(4)	S ²⁻ 1.70 S ⁴⁺ 0.51 S ⁶⁺ 0.43	Cl ⁻ 1.67 Cl ⁷⁺ 0.22(4)
K ⁺ 1.52	Ca ²⁺ 1.14	Ga ³⁺ 0.760	Ge ⁴⁺ 0.670	As ³⁺ 0.72	Se ²⁻ 1.84	Br ⁻ 1.82
1.65(8)	1.26(8)	0.61(4)	0.530(4)	As ⁵⁺ 0.60	Se ⁴⁺ 0.64	Br ⁷⁺ 0.39(4)
Rb ⁺ 1.66	Sr ²⁺ 1.32	In ³⁺ 0.94	Sn ⁴⁺ 0.83	Sb ³⁺ 0.90	Te ²⁻ 2.07	I ⁻ 2.06
1.75(8)	1.40(8)	0.76(4)	0.69(4)	Sb ⁵⁺ 0.74	Te ⁴⁺ 1.11	I ⁷⁺ 0.56(4)
Cs+ 1.81	Ba ²⁺ 1.49	Tl ³⁺ 1.025	Pb ⁴⁺ 0.915	Bi ³⁺ 1.17	Po ⁴⁺ 1.08	At ⁷⁺ 0.76
1.88(8)	1.56(8)	Tl ⁺ 1.64	Pb ²⁺ 1.33	Bi ⁵⁺ 0.90	Po ⁶⁺ 0.81	

カッコ内の数値は配位数を示す。カッコがついていない場合は6配位。

表6.3 ブレンステッド酸の pK_a値(25℃)

	pK_a		pK_a		pK_a		pK_{al}	pK_{a2}
HNO ₃	-1.32	PhOH	9.9	Al ³⁺	5.1	H ₂ SO ₄		1.99
HNO_2	3.15	H ₃ BO ₃	9.2	Fe³+	2.2	H ₂ CO ₃	6.35	10.3
HF	3.17	CH ₃ NH ₂	10.7	Cr³+	3.95	H ₂ SO ₃	1.9	7.2
HCl	-7	PhNH ₂	4.60	ギ酸	3.75	H ₂ S	7.0	13.9
HBr	- 9	ピリジン・	5.22	酢酸	4.76	(COOH) ₂	1.25	4.29

表2.7 典型元素のイオン半径(Å)

Li+ 0.90 0.73(4)	Be ²⁺ 0.59 0.41(4)	B ³⁺ 0.41 0.25(4)	C ⁴⁺ 0.30 0.29(4)	N ³⁺ 0.30 N ³⁻ 1.32(4) N ⁵⁺ 0.27	O ²⁻ 1.26 1.24(4)	F-1.19 1.17(4)
Na+ 1.16 1.13(4)	Mg ²⁺ 0.86 0.71(4)	Al ³⁺ 0.675 0.53(4)	Si ⁴⁺ 0.540 0.40(4)	P ³⁺ 0.58 P ⁵⁺ 0.52 0.31(4)	S ²⁻ 1.70 S ⁴⁺ 0.51 S ⁶⁺ 0.43	Cl ⁻ 1.67 Cl ⁷⁺ 0.22(4)
K+ 1.52	Ca ²⁺ 1.14	Ga ³⁺ 0.760	Ge ⁴⁺ 0.670	As ³⁺ 0.72	Se ²⁻ 1.84	Br ⁻ 1.82
1.65(8)	1.26(8)	0.61(4)	0.530(4)	As ⁵⁺ 0.60	Se ⁴⁺ 0.64	Br ⁷⁺ 0.39(4)
Rb ⁺ 1.66	Sr ²⁺ 1.32	In ³⁺ 0.94	Sn ⁴⁺ 0.83	Sb ³⁺ 0.90	Te ²⁻ 2.07	I ⁻ 2.06
1.75(8)	1.40(8)	0.76(4)	0.69(4)	Sb ⁵⁺ 0.74	Te ⁴⁺ 1.11	I ⁷⁺ 0.56(4)
Cs+ 1.81	Ba ²⁺ 1.49	Tl ³⁺ 1.025	Pb ⁴⁺ 0.915	Bi ³⁺ 1.17	Po ⁴⁺ 1.08	At ⁷⁺ 0.76
1.88(8)	1.56(8)	Tl ⁺ 1.64	Pb ²⁺ 1.33	Bi ⁵⁺ 0.90	Po ⁶⁺ 0.81	

カッコ内の数値は配位数を示す。カッコがついていない場合は6配位。

HOX (X = I, Br, Cl) の pK_a の序列について

電気陰性度 : CI->Br->I-

H-O におけるOの負電荷密度 : I->Br->Cl-

H+との相互作用の強さ: I->Br->CI-

ブレンステッド酸としての強さ: Cl->Br->I-

表6.3 ブレンステッド酸の pK_a値(25℃)

	pK_a	***************************************	pK_a		pK_a		pK_{a1}	pK_{a2}
HNO ₃	-1.32	PhOH	9.9	Al³+	5.1	H ₂ SO ₄		1.99
HNO_2	3.15	H ₃ BO ₃	9.2	Fe³+	2.2	H_2CO_3	6.35	10.3
HF	3.17	CH ₃ NH ₂	10.7	Cr³+	3.95	H_2SO_3	1.9	7.2
HC l	-7	PhNH ₂	4.60	ギ酸	3.75	H ₂ S	7.0	13.9
HBr	-9	ピリジン・	5.22	酢酸	4.76	(COOH) ₂	1.25	4.29

アクア酸(水分子が配位。 $H_2O \rightarrow H^+ + OH^-$)

 $[Fe(OH_2)_6]^{3+}(aq) + H_2O(I) \rightarrow [Fe(OH)(OH_2)_5]^{2+}(aq) + H_3O^{+}(aq)$

中心イオンの 半径小、価数大

- → dが小、Zが大
- → 静電反発により酸として強くなる

$$\xi = \frac{|z_A z_B|}{d_0}$$
 $d_0: イオン間の距離(r^+ + r^-)$

表6.3 ブレンステッド酸の pK_a値(25℃)

	pK_a		pK_a		pK_a		$pK_{ m al}$	$\mathrm{p}K_{\mathrm{a}2}$
HNO ₃	-1.32	PhOH	9.9	Al ³⁺	5.1	H ₂ SO ₄		1.99
HNO_2	3.15	H ₃ BO ₃	9.2	Fe³+	2.2	H ₂ CO ₃	6.35	10.3
HF	3.17	CH ₃ NH ₂	10.7	Cr³+	3.95	H ₂ SO ₃	1.9	7.2
HCl	-7	PhNH ₂	4.60	ギ酸	3.75	H ₂ S	7.0	13.9
HBr	-9	ピリジン・	5.22	酢酸	4.76	(COOH) ₂	1.25	4.29

電子吸引・電子供与基の影響

CH₃COOH

HCOOH

 CH_3 : 電子供与基 \rightarrow δ^- が増加 \rightarrow Hが解離しにくくなる \rightarrow pK_a は増大(酸として弱くなる)

 CF_3 : 電子吸引基 \rightarrow δ -が減少 \rightarrow Hが解離しやすくなる \rightarrow pK_a は減少(酸として強くなる)

表6.3 ブレンステッド酸の pK_a値(25℃)

	pK_a		pK_a		pK_a		$pK_{ m al}$	$\mathrm{p}K_{\mathrm{a2}}$
HNO ₃	-1.32	PhOH	9.9	Al³+	5.1	H ₂ SO ₄		1.99
HNO_2	3.15	H ₃ BO ₃	9.2	Fe³+	2.2	H_2CO_3	6.35	10.3
HF	3.17	CH ₃ NH ₂	10.7	Cr³+	3.95	H_2SO_3	1.9	7.2
HC1	-7	PhNH ₂	4.60	ギ酸	3.75	H ₂ S	7.0	13.9
HBr	-9	ピリジン・	5.22	酢酸	4.76	(COOH) ₂	1.25	4.29

多塩基酸

$$\begin{split} & \text{H}_{3}\text{PO}_{4} \, + \text{H}_{2}\text{O} & \Longrightarrow & \text{H}_{2}\text{PO}_{4}^{-} + \text{H}_{3}\text{O}^{+} & K_{a1} = \frac{[H_{2}PO_{4}^{-}][H_{3}O^{+}]}{[H_{3}PO_{4}]} \\ & \text{H}_{2}\text{PO}_{4}^{-} + \text{H}_{2}\text{O} & \Longrightarrow & \text{HPO}_{4}^{2-} + \text{H}_{3}\text{O}^{+} & K_{a2} = \frac{[HPO_{4}^{2-}][H_{3}O^{+}]}{[H_{2}PO_{4}^{-}]} \\ & \text{HPO}_{4}^{2-} + \text{H}_{2}\text{O} & \Longrightarrow & \text{PO}_{4}^{3-} + \text{H}_{3}\text{O}^{+} & K_{a3} = \frac{[PO_{4}^{3-}][H_{3}O^{+}]}{[HPO_{4}^{2-}]} \end{split}$$

逐次酸解離定数

表6.3 ブレンステッド酸の pK₂値(25℃)

				Service and the service				
	pK_a		pK_a		pK_a		pK_{a1}	p $K_{ m a2}$
HNO ₃	-1.32	PhOH	9.9	Al³+	5.1	H ₂ SO ₄		1.99
HNO_2	3.15	H ₃ BO ₃	9.2	Fe³+	2.2	H₂CO₃	6.35	10.3
HF	3.17	CH ₃ NH ₂	10.7	Cr ³⁺	3.95	H_2SO_3	1.9	7.2
HC1	-7	PhNH ₂	4.60	ギ酸	3.75	H ₂ S	7.0	13.9
HBr	-9	ピリジン・	5.22	酢酸	4.76	(COOH) ₂	1.25	4.29

オキソ酸

	表 4・2	オキソ酸の構造とp		
p = 0	p = 1		p = 2	p = 3
но—сі	но с он		о о о о о о о о о о 	
7.2	3.6		-1.4	
HO Si MOH	но Решион	O CI OH	S.MOH	O CLIMOH
10	2.1, 7.4, 12.7	2.0	-2.0, 1.9	-10
HO/II, Te OH HO OH	HOIIIII OH HO OH	HO PHINOH	СГитон	
7.8, 11.2	1.6, 7.0	1.8, 6.6	-1.0	
HO B OH	HO AS WOH	o Se. ∕OH OH		
9.1 *2	2.3, 6.9, 11.5	2.6, 8.0		

†1 pはプロトンが付加していない O原子の数. †2 ホウ酸は特別な例である。§ 12·5参照。

オキソ酸の強度(ポーリングの規則) p151

 \cdot O_pE(OH)_qで表されるオキソ酸ではp K_a =8-5p

・ポリプロトン酸(q>1)の逐次酸解離定数(pKa)は、引き続いてプロトン解離が 一回起こるごとに5単位づつ増加する。

例: H_2SO_4 : $O_2S(OH)_2$ p = 2, q = 2

第14回

- 1. 次の組み合わせのうち より強いブレンステッド酸に○をつけよ。
- (a) $[Fe(OH_2)_6]^{3+} \succeq [Fe(OH_2)_6]^{2+}$
- (b) $H_3PO_4 \geq H_2SO_4$
- 2. H₂SO₄、HSO₃F、HSO₃ (NH₂) を酸性度の強い順に並べよ。 また、その理由を簡単に答えよ。
- (※ Fは電子吸引基、NHっは電子供与基である)
- 3. シュウ酸 (H_2O_x) は 下記のように二段階で H^+ を解離する。

$$H_2O_x + H_2O \longrightarrow HO_{x^-} + H_3O^+ K_{a1} = 6.5 \times 10^{-2}$$

 $HO_{x^-} + H_2O \longrightarrow O_{x^{2-}} + H_3O^+ K_{a2} = 6.1 \times 10^{-5}$

 K_{a1} , K_{a2} は各反応の酸解離定数である。シュウ酸の濃度がCであり、 $H_{2}O_{2}$, HO_{2} , O_{3} 濃度をそれぞれ[H_2O_x], [HO_x -], [O_x 2-]とすると、

$$C = [H_2O_X] + [HO_X^-] + [O_X^{2-}]$$

の関係がある。このとき、H₂O_x、HO_x⁻、O_x²-がそれぞれ溶液中で占める分率 時に、 H_2O_x , HO_x^- , O_x^2 -の中で最も分率が高いものを答えよ。

