PACE-IIT & MEDICAL

MUMBAI / AKOLA / DELHI / KOLKATA / GHAZIABAD / NASHIK / GOA / BOKARO / PUNE

IIT - JEE: 2022-24 TIME: 1 Hrs.

TWT

DATE: 26/05/22 **MARKS: 100**

TOPIC: MOLE CONCEPT

Single choice 25 question (+4-1)

- If 'STUDENT' is written by a graphite pencil, it weights 3.0×10^{-10} g. How many 1. carbon atoms are present in it? $(N_A = 6 \times 10^{23})$
 - (A) 1.5×10^{13}
 - (B) 5×10¹²
 - (C) 2×10³³
 - (D) 1.5×10¹⁰

- 12 3/18×10/3 12 3/18×10/3
- The atomic masses of two elements P and Q are 20 and 40, respectively. If 'a' g 2. of P contains 'b' atoms, then how many atoms are present in '2a' g of Q?
 - (A) a
 - (B) b
 - (C) 2a
 - (D) 2b

- The molecular formula of a compound is X_4O_9 . If the compound contains 40% X3. by mass, then what is the atomic mass of X?
 - (A) 24
 - (B) 12
 - (C) 26
 - (D) 13
- If isotopic distribution of C12 and C14 is 98.0% and 2.0%, respectively, then the 4. number of C14 atoms in 12 g of carbon is
 - (A) 1.032×10²²
 - (B) 1.20×10²²
 - (C) 5.88×10^{23}
 - (D) 6.02×10²³

	5. 44	Vapour density of a volatile substance 1.2 is. Its molecular mass would be (A) 1.2 (B) 2.4 (C) 36 (D) 72
2 88 28 3 417. 26.417.	6.	Out of 1.0 g dioxygen, 1.0 g atomic oxygen and 1.0 g ozone, the maximum number of oxygen atoms are contained in (A) 1.0 g of atomic oxygen (B) 1.0 g of ozone (C) 1.0 g of oxygen gas (D) All contain the same number of atoms 10 02 19 0 16
	7.	Total number of electrons present in 4.4 g oxalate ion $(C_2O_4^{2-})$ (A) $0.05N_A$ (B) $2.3N_A$ $88 + 0.3 \times NA$ $\frac{2.4}{6.4} \times NA$ (C) $2.2N_A$ (D) $2.0N_A$ $26.4 \times \frac{90}{8.8} \times NA$ (O
	8.	The number of F ⁻ ions in 4.2 g AIF ₃ is (AI = 27,F = 19) (A) 0.05 (B) 9.03×10^{22} (C) 3.01×10^{22} (D) 0.15 0.3 MA 0.3 MA $0.3 \text$
	9.	A quantity of 13.5 g of aluminium when changes to Al^{3+} ion in solution will lose $(Al = 27)$ (A) 18.0×10^{23} electrons (B) 6.02×10^{23} electrons (C) 3.01×10^{23} electrons (D) 9.03×0^{23} electrons
	10.	The volume of one mole of water at 277 K is 18 ml. One ml of water contains 20 drops. The number of molecules in one drop of water will be $(N_A = 6 \times 10^{23})$ (A) 1.07×10^{21} (B) 1.67×10^{21} (C) 2.67×10^{21} (C) 2.67×10^{21} (D) 1.67×10^{20}
		120 90

- (A) 2.7×10¹⁸
- (B) 6×10²³
- (C) 2.7×10²²
- (D) 1.3×10²⁸

s anna 45° andelit	success A ST.
6 ×1023	CX1023 X
22.4	6x1023 22.4
LINE DE	1344 x 10°5
	1344 x 1023

- From 2 mg calcium, 1.2×1019 atoms are removed. The number of g-atoms of calcium left is (Ca = 40)

- 13.

 - (B) 0.5 g-molecule
 - (C) 5 g-molecules
 - (D) 10 g-molecules

- Equal masses of oxygen, hydrogen and methane are taken in identical 14. conditions. What is the ratio of the volumes of the gases under identical conditions? 32:2:26
 - (A) 16:1:8
 - (B) 1:16:2
 - (C) 1:16:8
 - (D) 2:16:1
- A pre-weighed vessel was filled with oxygen at NTP and weighed. It was then 15. evacuated, filled with SO2 at the same temperature and pressure, and again weighed. The weight of oxygen is
 - (A) the same as that of SO₂
- 502 → 32g

16:1:9

- (B) $\frac{1}{2}$ that of SO₂
- (C) twice that of SO2
- (D) $\frac{1}{4}$ that of SO₂
- Molecular mass of dry air is 16.
 - (A) less than moist air
 - (B) greater than moist air
 - (C) equal to moist air
 - (D) may be greater or less than moist air

(C) XY, (D) X,Y 910.0

- 23. A compound contains equal masses of the elements A, B and C. If the atomic masses of A, B and C are 20, 40 and 60, respectively, then the empirical formula

 - (B) AB₂C₃ (C) ABC
 - (D) A₆B₃C₂
- 24. A gaseous mixture contains 40% $\rm H_2$ and 60% He by volume. What is the total number of moles of gases present in 10 g of such mixture?
 - (B) 2.5(C) 3.33(D) 3.125
 - $\frac{40 \times 2 + 60 \times 4}{100} = \frac{80 + 240}{100}$ $\frac{100}{100} = \frac{3.2}{100} = 3.2$
- 25. If the mass of neutron is doubled and that of proton is halved, the molecular mass of H₂O containing only H¹ and O¹⁶ atoms will
 - (A) increase by about 25%
 - (B) decrease by about 25%
 - (C) increase by about 16.67%
 - (D) decrease by about 16.67%

SPACE FOR ROUGH WORK