

Model Optimization and Tuning Phase Report

Date	12 JULY 2024
ID	740036
Project Title	Lymphography Classification using ML
Maximum Marks	10 Marks

Model Optimization and Tuning Phase

The Model Optimization and Tuning Phase involves refining machine learning models for peak performance. It includes optimized model code, fine-tuning hyperparameters, comparing performance metrics, and justifying the final model selection for enhanced predictive accuracy and efficiency.

Model	Tuned Hyperparameters	Optimal Values
Logistic Regression	<pre>i model_ir = LogisticRegression()</pre>	# foliate the private of the head and Money - access private [act, peel modification in the foliation of the preed of priof factors in the factors of the preed of the factors in the factors of the preed of the

SVM	<pre>if from skiearn.swm import swt import.swm.fit(x train,y_train) swm.pred_train-model_swm.predict(x test) swm.pred_train-model_swm.predict(x_train) sets_mct_www.coracy_score(y_train,swm_pred_train) test_mct_www.coracy_score(y_train,swm_pred_train) print('SWM lest_Accuracy', test_acc_svm) print('SWM lest_accuracy', test_acc_svm) print(classification_report(y_test,svm_pred_test))</pre>	# Sealants the performance of the tomat model according a corner, somety, feet, p. pred) provide "According to Test Services (Sert, parametr) provide "According to Test Services (Services)") Optional Representations: "Cortical Control (Services)", "and Jungth' C. M., "also prompted (Series)"; "As pumping policies 1, "a performance of test Services (Services)"; "Assume that Services (Services)";
-----	---	--

Hyperparameter Tuning Documentation (6 Marks):

Performance Metrics Comparison Report (2 Marks):

Model	Optimized Metric

Logistic Regression	∑ } L	ogistic Regre	ssion test			support		
	W	2.0 3.0	0.71 1.00 0.00	1.00 0.71 0.00	0.83 0.83 0.00 0.80 0.55 0.80	12 17 1 30 30 30		
		1 confusion_m array([[12, 0 [4, 12 [1, 0	, 0], , 1],	t,lr_pred	_test)			

SVM	[*]	SVM Test Accura	acy: 0.8				
		ţ	precision	recall	f1-score	support	
		2.0	0.73	0.92	0.81	12	
		3.0	0.87	0.76	0.81	17	
		4.0	0.00	0.00	0.00	1	
		accuracy			0.80	30	
		macro avg			0.54	30	
		weighted avg	0.78	0.80	0.79	30	
	[]	1 confusion_ma	atrix(y_tes	st,svm_pre	ed_test)		
		array([[11, 1, [4, 13, [0, 1,	, 0],				

KNN										
	₹ 81.35593220338984 Regular Training Set Used Classification report for KNeighborsClassifier():									
			pr	ecision	n reca	all f	1-score	support		
			2.0	0.87	7 0	.93	0.90	14		
			3.0	0.80	9 0	.86	0.83	14		
			4.0	0.00	0	.00	0.00	2		
		acc	uracy				0.83	30		
		macr	o avg	0.56	5 0	.60	0.57	30		
		weighte	d avg	0.78	3 0	.83	0.80	30		
Gradient Boosting	=	GB accuracy i	s: 0.83333 precision			support	t			
_		2.0	0.73	0.92	0.81	12	2			
		3.0		0.82		17				
		4.0	0.00	0.00	0.00	1	L			
		accuracy			0.83	36	3			
		macro avg				36				
		weighted avg	0.82	0.83	0.82	36)			
	0	1 GBC.predic	t([[4.0,2.0	,1.0,1.0,1	1.0,1.0,1.0	,2.0,1.0	,2.0,2.0,2.	0,4.0,8.0,1.0	,1.0,2.0,2.0]	1)
	F	array([3.])								
	[†]	array([3.])								

Final Model Selection Justification (2 Marks):

Final Model	Reasoning

KNN	The KNN model was selected for its superior performance, exhibiting high accuracy during hyperparameter tuning. Its ability to handle complex relationships, minimize overfitting, and optimize predictive accuracy aligns with project objectives, justifying its selection as the final model.
-----	--