

Tidy Time Series & Forecasting in R

2. Time series graphics

robjhyndman.com/workshop2020

Outline

- 1 Time plots
- 2 Lab Session 2
- 3 Seasonal plots
- 4 Lab Session 3
- 5 Decompositions
- 6 Lab Session 4

Outline

- 1 Time plots
- 2 Lab Session 2
- 3 Seasonal plots
- 4 Lab Session 3
- 5 Decompositions
- 6 Lab Session 4

```
maxtemp <- vic_elec %>%
  index_by(Day = date(Time)) %>%
  summarise(Temperature = max(Temperature))
maxtemp %>%
  autoplot(Temperature) +
  xlab("Week") + ylab("Max temperature")
```



```
maxtemp %>%
  ggplot(aes(x = Day, y = Temperature)) +
  geom_point() +
  xlab("Week") + ylab("Max temperature")
```


ansett %>% autoplot(Passengers)


```
ansett %>%
  filter(Class=="Economy") %>%
  autoplot(Passengers)
```



```
ansett %>%
  filter(Airports=="MEL-SYD") %>%
  autoplot(Passengers)
```



```
ansett %>%
  filter(Airports=="MEL-SYD") %>%
  autoplot(Passengers)
```


Australian holidays

```
holidays <- tourism %>%
  filter(Purpose=="Holiday") %>%
  group_by(State) %>%
  summarise(Trips = sum(Trips))
```

```
## # A tsibble: 640 x 3 [10]
## # Key: State [8]
## State Quarter Trips
##
     <chr> <qtr> <dbl>
##
  1 ACT 1998 Q1 196.
##
   2 ACT 1998 Q2 127.
##
   3 ACT 1998 Q3 111.
   4 ACT 1998 Q4 170.
##
##
   5 ACT 1999 01 108.
##
   6 ACT 1999 Q2 125.
   7 ACT
          1999 Q3 178.
##
##
  8 ACT
          1999 04 218.
##
   9 ACT
           2000 01 158.
## 10 ACT
           2000 Q2 155.
```

Australian holidays

```
holidays %>% autoplot(Trips) +
ylab("thousands of trips") + xlab("Year") +
ggtitle("Australian domestic holiday nights")
```


Year

Outline

- 1 Time plots
- 2 Lab Session 2
- 3 Seasonal plots
- 4 Lab Session 3
- 5 Decompositions
- 6 Lab Session 4

Lab Session 2

- Create time plots of the following time series: Beer from aus_production, Lynx from pelt, Close from gafa_stock
- Use help() to find out about the data in each series.
- For the last plot, modify the axis labels and title.

Outline

- 1 Time plots
- 2 Lab Session 2
- 3 Seasonal plots
- 4 Lab Session 3
- 5 Decompositions
- 6 Lab Session 4

The seasonal period

- Seasonal period = no. observations before seasonal pattern repeats.
- Usually automatically detected using time index.
- Daily & sub-daily time series can have multiple periods.

Data	Minute	Hour	Day	Week	Year
Quarters					4
Months					12
Weeks					52
Days				7	365.25
Hours			24	168	8766
Minutes		60	1440	10080	525960
Seconds	60	3600	86400	604800	31557600

Seasonal plots

- Data plotted against the individual "seasons" in which the data were observed. (In this case a "season" is a month.)
- Something like a time plot except that the data from each season are overlapped.
- Enables the underlying seasonal pattern to be seen more clearly, and also allows any substantial departures from the seasonal pattern to be easily identified.
- In R: gg_season()

Quarterly Australian Beer Production

```
beer <- aus_production %>%
   select(Quarter, Beer) %>%
   filter(year(Quarter) >= 1992)
beer %>% autoplot(Beer)
```


Quarterly Australian Beer Production

Seasonal subseries plots

- Data for each season collected together in time plot as separate time series.
- Enables the underlying seasonal pattern to be seen clearly, and changes in seasonality over time to be visualized.
- In R: gg_subseries()

Quarterly Australian Beer Production

Seasonal plots

```
holidays %>% gg_season(Trips) +
ylab("thousands of trips") +
ggtitle("Australian domestic holiday nights")
```


Seasonal subseries plots

```
holidays %>%
   gg_subseries(Trips) + ylab("thousands of trips") +
   ggtitle("Australian domestic holiday nights")
```


Outline

- 1 Time plots
- 2 Lab Session 2
- 3 Seasonal plots
- 4 Lab Session 3
- 5 Decompositions
- 6 Lab Session 4

Lab Session 3

Look at the quarterly tourism data for the Snowy Mountains

```
snowy <- filter(tourism,
  Region == "Snowy Mountains")</pre>
```

- Use autoplot(), gg_season() and gg_subseries() to explore the data.
- What do you learn?

Outline

- 1 Time plots
- 2 Lab Session 2
- 3 Seasonal plots
- 4 Lab Session 3
- 5 Decompositions
- 6 Lab Session 4

Time series decomposition

Trend-Cycle aperiodic changes in level over time.

Seasonal (almost) periodic changes in level due to seasonal factors (e.g., the quarter of the year, the month, or day of the week).

Additive decomposition

$$y_t = S_t + T_t + R_t$$

where y_t = data at period t

 T_t = trend-cycle component at period t

 S_t = seasonal component at period t

 R_t = remainder component at period t

STL decomposition

- STL: "Seasonal and Trend decomposition using Loess"
- Very versatile and robust.
- Seasonal component allowed to change over time, and rate of change controlled by user.
- Smoothness of trend-cycle also controlled by user.
- Optionally robust to outliers
- Not trading day or calendar adjustments.
- Only additive.
- Take logs to get multiplicative decomposition.
- Use Box-Cox transformations to get other decompositions.

Australian holidays

```
holidays %>% autoplot(Trips) +
  ylab("thousands of trips") + xlab("Year") +
  ggtitle("Australian domestic holiday nights")
```


Year

```
holidays %>%
   STL(Trips ~ season(window="periodic"), robust=TRUE) %>%
   autoplot()
     STL decomposition
     Trips = trend + season_year + remainder
4000 -
3000 -
2000 -
1000 -
                                                                                            State
  0 -
3000 -
                                                                                                ACT
2000 -
                                                                                                New South Wales
1000 -
                                                                                                Northern Territory
  0 -
                                                                                                Queensland
 500 -
                                                                                                South Australia
 250 -
                                                                                                Tasmania
  0 -
-250 -
                                                                                                Victoria
                                                                                                Western Australia
 500 -
                                                                                      remainder
 250 -
  0 -
-250 -
-500 -
                                                                      2015
               2000
                                 2005
                                                   2010
                                         Quarter
```

```
holidays %>%
   STL(Trips ~ season(window = 5), robust = TRUE) %>%
   autoplot()
     STL decomposition
     Trips = trend + season_year + remainder
4000 -
3000 -
2000 -
1000 -
                                                                                             State
  0 -
3000 -
                                                                                                 ACT
2000 -
                                                                                                 New South Wales
1000 -
                                                                                                 Northern Territory
  0 -
                                                                                                 Queensland
 500 -
                                                                                                 South Australia
 250 -
                                                                                                 Tasmania
  0 -
-250 -
                                                                                                 Victoria
-500 -
                                                                                                 Western Australia
 500 -
                                                                                       remainder
 250 -
  0 -
-250 -
-500 -
                                                                      2015
               2000
                                  2005
                                                    2010
                                         Quarter
```

STL decomposition

```
holidays %>%
STL(Trips ~ trend(window=15) + season(window=13),
    robust = TRUE)
```

- trend(window = ?) controls wiggliness of trend component.
- season(window = ?) controls variation on seasonal component.
- STL() chooses season(window=13) by default
- A large seasonal window is equivalent to setting window="periodic".
- Odd numbers should be used for symmetry.

```
dcmp <- holidays %>% STL(Trips)
dcmp
```

```
## # A dable:
                    640 x 7 [10]
                     State [8]
## # Kev:
## # STL Decomposition: Trips = trend + season_year +
      remainder
## #
##
     State
             Quarter Trips trend season_year remainder
##
     <chr>
               <atr> <dbl> <dbl>
                                     <fdb1>
                                              <fdb>>
##
   1 ACT
             1998 01 196. 171.
                                     -6.60
                                              32.3
##
   2 ACT
             1998 Q2 127. 156.
                                     10.3
                                             -39.7
##
   3 ACT
             1998 03 111. 142. -13.9
                                             -17.2
             1998 Q4 170.
                                     9.76
                                              30.3
##
   4 ACT
                           130.
##
   5 ACT
             1999 01
                     108.
                           135.
                                     -6.35
                                             -20.7
##
   6 ACT
             1999 02
                     125.
                           148.
                                     10.5
                                             -33.9
   7 ACT
             1999 03
                     178.
                           166.
                                    -13.2
                                              25.5
##
##
   8 ACT
             1999 04
                     218.
                           177.
                                     8.56
                                              32.0
##
   9 ACT
             2000 01
                     158.
                           169.
                                     -6.09
                                              -4.74
## 10 ACT
             2000 02
                     155.
                           151.
                                     10.7
                                              -7.00
```

dcmp %>% gg_subseries(season_year)


```
autoplot(dcmp, trend, scale_bars=FALSE) +
autolayer(holidays, alpha=0.4)
```


Outline

- 1 Time plots
- 2 Lab Session 2
- 3 Seasonal plots
- 4 Lab Session 3
- 5 Decompositions
- 6 Lab Session 4

Lab Session 4

Repeat the decomposition using

```
holidays %>%
STL(Trips ~ season(window=7) + trend(window=11)) %>%
autoplot()
```

```
What happens as you change season(window = ???) and trend(window = ???)?
```