Asymptotic Notations...

Big-Oh Notation (O)

➤ It describes the worst case scenerio, it represents the upper bound running time complexity of an algorithm .

ightharpoonup if $f(n) \le cg(n) \ \forall \ n \ge n_0$ where c > 0 and $n_0 > = 1$ then we can say that f(n) = O(g(n)).

Asymptotic Notations...

ightharpoonup Big-Omega Notation(Ω)

It describes the best case scenerio, it represents the lower bound running time complexity of an algorithm.

 \rightarrow if $f(n) >= c.g(n) \forall n \ge n_0$ where c > 0 and $n_0 >= 1$ then we can say that $f(n) = \Omega(g(n))$.

Asymptotic Notations...

\triangleright Big -Theta Notation (Θ)

It describes the average case scenerio, it represents the lower bound and upper bound of an algorithm.

if $c1g(n) <= c2.g(n) \forall n \ge n_0$ where c1,c2 > 0 and $n_0 >= 1$ then we can say that $f(n) = \Theta(g(n)).$

Linear & Non-linear Data Structure

≻Linear Data Structure:

- ➤ In this data elements are arranged sequentially or in linear fashion.
- ➤ It involves single level ,therefore we can traverse all the elements in single run only.
- Linear data structures are easy to implement because computer memory is arranged in a linear way.

➤Non -Linear Data Structure:

- ➤ In this data elements are not arranged sequentially or linearly.
- It does not involve single level, therefore, we can't traverse all the elements in single run.
- They are not easy to implement in comparison to linear data structure.
- ➤ It utilizes computer memory efficiently in comparison to a linear data structure.

