Matemáticas

Roberto Cadena Vega

22 de diciembre de 2014

Índice general

Definiciones

1. Álgebra abstracta

2. Álgebra lineal

3. Ecuaciones diferenciales

	Subgrupos	10
	Subgrupo Normal	11
	Homomorfismos de grupo	11
1.2.	Anillos	12
	Definiciones	12
	Homomorfismos de anillo	12
	Ideales	12
1.3.	Dominios Enteros	13
	Definiciones	13
	Máximo Común Divisor	13
	mínimo común multiplo	13

13

15

17

Todo list

Capítulo 1

Álgebra abstracta

1.1. Grupos

Definiciones

Definición 1.1.1. Un grupo es un conjunto no vacio G en el que esta definida la operacion \star , tal que:

$$\begin{array}{ccc} \star \colon \mathsf{G},\mathsf{G} & \to & \mathsf{G} \\ (\mathfrak{a},\mathfrak{b}) & \to & (\mathfrak{a}\star\mathfrak{b}) \end{array} \tag{1.1.1}$$

Existen definiciones parciales de grupo dependiendo de las propiedades que cumple su operación:

Cerradura $a \star b \in G \quad \forall a, b \in G$

Asociatividad $a \star (b \star c) = (a \star b) \star c \quad \forall a, b, c, \in G$

Identidad $\exists e \in G \ni a \star e = e \star a = a \quad \forall a \in G$ **Inverso** $\exists b \in G \ni a \star b = b \star a = e \quad \forall a \in G$

Cuando se cumplen las propiedades de *cerradura* y *asociatividad* se le llama *semigrupo*; si adicionalmente se cumple la propiedad de *existencia de identidad* se le llama *monoide*; si adicionalmente se cumple la propiedad de *existencia de inverso* se le llama *grupo*.

Ejercicio 1.1.1. Demostrar que el grupo cimpuesto por las matrices de la forma:

$$\begin{pmatrix} \cos\theta & \sin\theta \\ -\sin\theta & \cos\theta \end{pmatrix}, \quad \forall\, \theta \in \mathbb{R}$$

es un grupo.

(1.1.2)

 $a \star b = b \star a$

Ejercicio 1.1.2. Consideremos a \mathbb{Z} con el producto usual ¿Es este un grupo?

Ejemplo 1.1.1. El conjunto $\mathbb{Z}/n\mathbb{Z}$

Ejercicio 1.1.3. Consideremos a \mathbb{Z}^+ con el producto usual ¿Es este un grupo?

Ejercicio 1.1.4. Sea $G = \mathbb{R} \setminus \{0\}$. Si definimos $a \star b = a^2b$ ¿G es un grupo?

Definición 1.1.3. Orden de un grupo es el numero de elementos que tiene dicho grupo y se denota por |G|. Un grupo G será finito si tiene orden finito, de lo contrario será infinito.

Ejemplo 1.1.2. Si $G = \{e\}$, su orden será $|G = \{e\}| = 1$

Proposición 1.1.1. *Si* G *es un grupo, entonces:*

 $(a^{-1})^{-1} = a \quad \forall a \in G.$

1. El elemento identidad es único.

Ejemplo 1.1.3. El orden del conjunto de numeros reales es infinito $|\mathbb{R}| = \infty$.

- 2. El elemento inverso $a^{-1} \quad \forall a \in G$ es único.
- 3. El elemento inverso del inverso del un elemento del grupo es el mismo elemento
- 4. El elemento inverso de la operación de dos elementos del grupo es la operacion de los inversos de los elementos en orden inverso $(a \star b)^{-1} = b^{-1} \star a^{-1}$
- 5. En general lo anterior se cumple para cualquier numero de elementos ($a_1 \star a_2 \star ... \star$ $(a_n)^{-1} = a_n^{-1} \star ... \star a_2^{-1} \star a_1^{-1}.$

Demostración.

1. Dados e_1 y e_2 identidades del grupo, son identicos. Si aplicamos la identidad e_2 a e_1 , tenemos como resultado e_1 , y si aplicamos la identidad e_1 a e_2 obtenemos como resultado e₂:

$$e_1 = e_2 \star e_1 = e_1 \star e_2 = e_2$$

por lo que podemos ver que ambas identidades son la misma.

2. Sean b, c inversos de a, entonces:

$$b \star a = e$$

 $a \star c = e$

por lo que podemos ver que:

$$b = b \star e = b \star (a \star c) = (b \star a) \star c = e \star c = c$$

3. Sabemos que existe un inverso a^{-1} tal que:

$$a \star a^{-1} = a^{-1} \star a = e \quad \forall a \in G$$

asi pues, se sigue que:

$$\left(\alpha^{-1}\right)^{-1} \star \alpha^{-1} = e$$

y como sabemos que el elemento que operado con el inverso sea la identidad es el elemento mismo tenemos que:

$$\left(a^{-1}\right)^{-1} = a$$

4. Si operamos por la izquierda el termino $b^{-1} \star a^{-1}$ con $a \star b$:

$$(b^{-1} \star a^{-1}) \star (a \star b) = b^{-1} \star (a^{-1} \star a) b = b^{-1} \star e \star b = b^{-1} \star b = e$$

de la misma manera si operamos por la derecha:

$$(a \star b) \star \left(b^{-1} \star a^{-1}\right) = a^{-1} \star \left(b^{-1} \star b\right) a = a^{-1} \star e \star a = a^{-1} \star a = e$$

por lo tanto:

$$b^{-1} \star a^{-1} = (a \star b)^{-1}$$

Reglas de cancelación

Proposición 1.1.2. Sea G un grupo y a, b, $c \in G$, tendremos que:

$$a \star b = a \star c \implies b = c$$

 $b \star a = c \star a \implies b = c$

Demostración. Si tomamos en cuenta que $a \star b = a \star c$:

$$b = e \star b = \left(a^{-1} \star a\right) \star b = a^{-1} \star (a \star b) = a^{-1} \star (a \star c) = \left(a^{-1} \star a\right) \star c = e \star c = c$$
 de la misma manera para $b \star a = c \star a$:

$$b = b \star e = b \star \left(a \star a^{-1}\right) = (b \star a) \star a^{-1} = (c \star a) \star a^{-1} = c \star \left(a \star a^{-1}\right) = c \star e = c$$

Subgrupos

Definición 1.1.4. Un subconjunto no vacio H de un grupo G se llama subgrupo si H mismo forma un grupo respecto a la operación de G. Cuando H es subgrupo de G se denota H < G o G > H.

Observación 1.1.1. Todo grupo G tiene automaticamente dos subconjuntos triviales, el mismo G y la identidad {e}.

Proposición 1.1.3. *Un subconjunto no vacio* H ⊂ G *es un subgrupo de* G *si y solo si* H *es* cerrado respecto a la operación de G y $a \in H \implies a^{-1} \in H$.

debido a que H es cerrado. Ademas para $a,b,c \in H$ sabemos que $a \star (b \star c) = (a \star b) \star c$ debido a que se cumple en G y H hereda esta propiedad. Por lo que H es un grupo, y por lo tanto subgrupo de G.

Demostración. Teniendo que H es un subgrupo de G tenemos que H es un grupo, por lo que automaticamente se cumple la cerradura y la existencia del inverso dentro del subgrupo.

Teniendo que H es cerrado, no vacio y $a^{-1} \in H$ $\forall a \in H$. Sabemos que $a^{-1} \star a = e \in H$

Ejemplo 1.1.4. Sea $G = \mathbb{Z}$ con la suma usual y sea H el conjunto de los enteros pares, es decir:

$$\mathsf{H} = \{2\mathsf{n} | \mathsf{n} \in \mathbb{Z}\}$$

¿Es H un subgrupo de G? Emperemos con dos elementos $a, b \in H$, por lo que tenemos que:

$$egin{array}{lll} \mathfrak{a} &=& 2\mathfrak{q} & \mathfrak{q} \in \mathbb{Z} \ \mathfrak{b} &=& 2\mathfrak{q}' & \mathfrak{q}' \in \mathbb{Z} \end{array}$$

y al sumarlos tenemos que:

$$a+b=2q+2q'=2(q+q')=2q''\quad q''\in\mathbb{Z}$$

por lo que $a + b \in H$.

Por otro lado, para $a \in H$ existe un $q \in \mathbb{Z}$ tal que a = 2q. Su inverso será:

$$-a = -2q = 2(-q)$$

por lo que existe $q' = -q \in \mathbb{Z}$ tal que:

$$2\mathfrak{q}' = -\mathfrak{a} \in H$$

y por lo tanto $H < \mathbb{Z}$.

Ejemplo 1.1.5. Consideremos $G=\mathbb{C}^*=\mathbb{C}\setminus\{0\}$ con el producto usual, y un subconjunto $\mathcal U$

$$\mathcal{U} = \{ z \in \mathbb{C}^* \, ||z| = 1 \}$$

¿Es U un subgrupo de G?

Dados dos elementos $z_1, z_2 \in \mathcal{U}$ sabemos que $|z_1| = |z_2| = 1$, por lo tanto:

$$|z_1z_2| = |z_1||z_2| = 1$$

por lo que $z_1z_2 \in \mathcal{U}$.

Por otro lado, para $z \in \mathcal{U}$ tenemos que |z| = 1, y por lo tanto:

$$|z^{-1}| = |z|^{-1} = \frac{\alpha}{|z|} = 1$$

por lo que $z^{-1} \in \mathcal{U}$ y $\mathcal{U} < \mathbb{C}^*$

Subgrupo Normal

Homomorfismos de grupo

1.2. Anillos

Definiciones

Homomorfismos de anillo

Ideales

1.3. Dominios Enteros

Definiciones

Máximo Común Divisor

mínimo común multiplo

Algoritmo de la división de Euclides

Álgebra lineal

Capítulo 2

Capítulo 3

Ecuaciones diferenciales