Frühjahr 15 Themennummer 3 Aufgabe 1 im Bayerischen Staatsexamen Analysis (vertieftes Lehramt)

Seien $f, g: \mathbb{R} \to \mathbb{R}$ stetig. Wir betrachten das Anfangswertproblem

$$\dot{x}(t) = g(t)f(x(t)), \quad x(t_0) = x_0,$$
 (1)

wobei $t_0, x_0 \in \mathbb{R}$.

- (a) Geben Sie ein Beispiel eines Anfangswertproblems der Form (1) an, sowie ein zugehöriges Intervall, so dass es zwei verschiedene Lösungen besitzt.
- (b) Wir nehmen nun zusätzlich an, dass $f, g : \mathbb{R} \to (0, \infty)$. Zeigen Sie, dass das Problem (1) dann lokal eindeutig lösbar ist.

Hinweis: Es sind hier Existenz und Eindeutigkeit zu zeigen.

Lösungsvorschlag:

- (a) Wir betrachten $g(t) \equiv 1$ und $f(t) = \sqrt{|t|}$ sowie $t_0 = 0 = x_0$ auf dem Intervall \mathbb{R} . Natürlich ist $x \equiv 0$ eine Lösung. Eine andere Lösung ist z. B. $x(t) = \begin{cases} \frac{t^2}{4}, & t \geq 0, \\ 0, & t < 0. \end{cases}$ Dass diese Funktion für $t \neq 0$ differenzierbar ist, ist klar. In 0 ist x linksseitig differenzierbar mit Ableitung 0 und rechtsseitig differenzierbar mit $x'_+(0) = \lim_{h \to 0} \frac{h}{4} = 0$, also ist x auch in 0 differenzierbar mit $x'(0) = 0 = \frac{0}{2}$. Also ist $x'(t) = \begin{cases} \frac{t}{2}, & t \geq 0, \\ 0, & t < 0, \end{cases}$ $\frac{t}{|x(t)|}$. Wegen x(0) = 0 handelt es sich um eine weitere Lösung des Problems.
- (b) Die Existenz einer lokalen Lösung ist durch den Existenzsatz von Peano gesichert, wir müssen also lediglich die Eindeutigkeit der Lösung beweisen. Wegen $f(\cdot) > 0$ ist diese Gleichung äquivalent zur Gleichung $\frac{x'}{f(x)} = g$ mit getrennten Variablen. Die Funktion $\mathbb{R} \ni t \mapsto \frac{1}{f(t)}$ ist stetig und strikt positiv, besitzt also eine streng monoton wachsende Stammfunktion F. Diese ist injektiv, besitzt also eine Umkehrfunktion F^{-1} . Analoge Argumente zeigen, dass g eine Stammfunktion G mit den gleichen Eigenschaften besitzt. Ist x nun eine Lösung des Anfangswertproblems, so folgt

$$F(x(t)) - F(x_0) = \int_{t_0}^t \frac{x'(s)}{f(x(s))} ds = \int_{t_0}^t g(s) ds = G(t) - G(t_0).$$

Daraus folgt direkt $x(t) = F^{-1}(G(t) - G(t_0) + F(x_0))$. Wir müssen nur noch zeigen, dass verschiedene Wahlen der Stammfunktionen F, G zur gleichen Funktion x führen. Sind \hat{F}, \hat{G} weitere Stammfunktionen von $\frac{1}{f}$, bzw. g, so gibt es $c_1, c_2 \in \mathbb{R}$ mit $F - \hat{F} \equiv c_1, G - \hat{G} \equiv c_2$. Also gilt $G(t) - G(t_0) = \hat{G}(t) - \hat{G}(t_0)$. Wegen $F^{-1}(y) = x \iff F(x) = y \iff \hat{F}(x) - c_1 = y \iff \hat{F}(x) = y + c_1$ folgt außerdem $F^{-1}(y) = \hat{F}^{-1}(y + c_1)$ für alle y im Bild von F und daher $F^{-1}(G(t) - G(t_0) + F(x_0)) = F^{-1}(\hat{G}(t) - \hat{G}(t_0) + \hat{F}(x_0) + c_1) = \hat{F}^{-1}(\hat{G}(t) - \hat{G}(t_0) + \hat{F}(x_0))$, die Lösung hängt also nicht von den Wahlen der Stammfunktionen ab, ist also eindeutig. Das Ergebnis und der Beweis gelten sogar für $g : \mathbb{R} \to \mathbb{R}$.

 $\mathcal{J}.\mathcal{F}.\mathcal{B}.$