CSC373S: Algorithm Design, Analysis & Complexity

Lecture 17

Monday February 13, 2017

based on notes by Denis Pankratov

Network Flows

Input: G = (V, E) directed graphs $c: E \to \mathbb{R}_{>0}$ capacities $s, t \in V$

- no back edges
- \bullet edges into S
- \bullet no edges out of t

Output: $f - \max$ -flow

Residual Graph: Assume G, s, t, c- flow graph.

f – some feasible flow on G.

Residual capacities:

$$c_f(u,v) = \begin{cases} c(u,v) - f(u,v), & (u,v) \in E \\ f(v,u), & (v,u) \in E \end{cases}$$

Meaning: Case 1: $(u, v) \in E$

We can potentially add at most c(u, v) - f(u, v) to the flow

Case 2: $(v, u) \in E$

We can undo at most f(v, u) flow

Residual graph $G_f = (V, E_f)$

$$E_f = \{(u, v) | c_f(u; v) > 0\}$$

Augmenting Path: A path P from s to t in G_f

Capacity of P:

$$C_f(P) = \min\{c_f(e)|e \in P\}$$

Augmenting the flow f by pushing more flow along P

$$f \uparrow f_p(u,v) = \begin{cases} f(u,v), & (u,v), (v,u) \notin P, (u,v) \in E \\ f(u,v) + c_f(P) & (u,v) \in P \\ f(u,v) - c_f(P) & (v,u) \in P \end{cases}$$

Algorithm:

1 def Ford-Fulkerson(G,s,t,c):
2 init flow f to all 0 flow
3 while some P - augmenting path - in G_f:
4 f = f_uparrow_f_p
5 return f

 $\underline{\text{Lemma:}} |f \uparrow f_p| = |f| + c_P(f)$

Example:

Figure 1: Initial graph

Figure 2: Steps 1-2

Figure 3: Steps 3-4

No agumenting path (caption last pic) \Rightarrow FF terminates w/ f so that |f|=2

 $\underline{\text{Lemma:}} |E_f| \le 2|E|$

Assuming FF terminates, we will show it finds the max flow.

<u>Definition:</u> Let G, s, t be given then an (s, t)-cut, whic is a partition (S, T) of V so that:

- $\bullet \ S \cap T = \varnothing, S \cup T = V$
- $s \in S, t \in T$

Figure 4: Visualization of S, T

Notation: $U \subseteq V$

$$out(U) = \{(u, v) \in E | u \in U, v \not\in U\}$$
$$in(U) = \{(v, u) \in E | u \in U, v \not\in U\}$$

<u>Definition:</u> Capacity of cut (S,T) is c(S,T) $sum_{e \in out(S)}c(e)$

Flow across cut (S,T). Given some flow f:

$$f(S,T) = \sum_{e \in out(S)} f(e) - \sum_{e \in in(S)} f(e)$$

Figure 5: Visualization of S, T with in(S), out(S)

<u>Lemma:</u> for any flow f and for any cut $(S,T), f(S,T) \leq c(S,T)$

Proof:

$$f(S,T) = \sum_{e \in out(S)} f(e) - \sum_{e \in in(S)} f(e)$$

$$\leq \sum_{e \in out(s)} f(e)$$

$$\leq \sum_{e \in out(s)} c(e) = c(S,T)$$

<u>Lemma:</u> for any cut (S,T), f(S,T) = |f|

Proof:

$$|f| = f^{out}(s)$$

$$= f^{out}(s) - f^{in}(s) \text{ (the latter is equal to 0)}$$

$$= \sum_{v \in S} f^{out}(v) - f^{in}(v) (*)$$

Case 1: $(u, v) \in E, u \in S, v \in S$

f(u, v) appears exactly twice in (*), once positively for $f^{out}(u)$, once negatively for $f^{in}(v)$ $\Rightarrow f(u, v)$ disappears from (*)

Case 2: $u \in S, v \in T$

f(u, v) appears exactly once positively in $f^{out}(u)$

Case 3: $u \in T, v \in S$

f(u, v) appears exactly once positively in $f^{in}(v)$

Case 4: $u \in T, v \in T, f(u, v)$ does not appear in (*)

see (*) =
$$\sum_{e \in out(S)} f(e)(\underline{\text{Case 2}}) - \sum_{e \in in(S)} f(e)(\underline{\text{Case 3}}) = f(S, T)$$

Corollary: for any flow f for any cut $(S,T), |f| \leq c(S,T)$. In particular, max-flow \leq min-cut.

0.1 Max-Flow Min-Cut Theorem

The following are equivalent:

- 1. f is a max-flow
- 2. no augmenting path in G_f
- 3. there exist a cut (S,T) so that |f|=c(S,T)

Proof:

 $(1) \Rightarrow (2)$: By contrapositive:

$$[\neg(2) \Rightarrow \neg(1)]$$

Suppose P is an augmenting path in G_f $\Rightarrow |f \uparrow f_p| = |f| + c_f(P) > |f|$ $\Rightarrow f$ is not max

(2) \Rightarrow (3): Let $S = \{v \in V | \text{ there is a path from } s \text{ to } v \text{ in } G_f \}$ T := V S

Note: $t \in T$ because no augmenting path exists

Let $(u, v) \in out(S), v \not inS$, then f(u, v) = c(u, v). Otherwise, $c_f(u, v) > 0$ $\Rightarrow v \in S$

Let $(v, u) \in in(S)$, then f(v, u) = 0. Otherwise, $\Rightarrow c_f(u, v) > 0$ and $v \in S$

Figure 6: Visualization of S, T with f(e) = c(e), f(e) = 0

$$f(S,T) = \sum_{e \in out(S)} f(e) - \sum_{e \in in(S)} f(e)$$
$$= \sum_{e \in out(S)} c(e) - O$$
$$= c(S,T)$$

 $(3) \Rightarrow (1)$: It was already done in previous lemmas.