

32 位微控制器

AES 模块

适用对象

系列	产品型号	系列	产品型号
HC32L13	HC32L130E8PA	HC32F03	HC32F030E8PA
	HC32L130F8UA		HC32F030F8UA
	HC32L130J8TA		HC32F030F8TA
	HC32L136J8TA		HC32F030H8TA
	HC32L136K8TA		HC32F030J8TA
			HC32F030K8TA
HC32L07	HC32L072PATA	HC32F07	HC32F072PATA
	HC32L072KATA		HC32F072KATA
	HC32L072JATA		HC32F072JATA
	HC32L073PATA		
	HC32L073KATA		
	HC32L073JATA		
HC32L17	HC32L176PATA	HC32F17	HC32F176PATA
	HC32L176MATA		HC32F176MATA
	HC32L176KATA		HC32F176KATA
	HC32L176JATA		HC32F176JATA
	HC32L170JATA		HC32F170JATA
	HC32L170FAUA		HC32F170FAUA
HC32L19	HC32L196PCTA	HC32F19	HC32F196PCTA
	HC32L196MCTA		HC32F196MCTA
	HC32L196KCTA		HC32F196KCTA
	HC32L196JCTA		HC32F196JCTA
	HC32L190JCTA		HC32F190JCTA
	HC32L190FCUA		HC32F190FCUA

目 录

1	摘要		. 3
		介绍	
		模块	
		寄存器操作	
		加密	
	3.3	解密	. 5
	3.4	注意事项	. 5
	3.5	异常机制	. 6
	3.6	性能	. 6
4	参考	样例及驱动	6
5	总结		. 6
6	其他	信息	. 7
7	版本	信息 & 联系方式	. 8

1 摘要

本篇应用笔记主要介绍华大半导体 MCU*的 AES 模块的使用。

本应用笔记主要包括:

- 寄存器操作
- 加密
- 解密
- 注意事项
- 异常机制
- 性能

注意:

一本应用笔记为华大半导体 MCU*的应用补充材料,不能代替用户手册,具体功能及寄存器的操作等相关事项请以用户手册为准。

2 功能介绍

通过本篇可以了解到华大半导体 MCU*的 AES 模块的应用。

- 执行 AES 算法标准的加密流程和解密流程,其执行结果完全符合《FIPS PUB 197》对算法原理的描述;
- 仅支持 128 位密钥。

* 支持型号见封面。

应用笔记 Page 3 of 8

3 AES 模块

3.1 寄存器操作

数据寄存器由四个 32 位的寄存器组成 128 位数据。

用于在模块运算前存放需要被加密的明文或者需要被解密的密文,并且运算完成后存放加密后的密文或者解密后的明文。

加密运算		解密运算	
运算前	运算后	运算前	运算后
128 位明文	128 位密文	128 位密文	128 位明文

四个 32 位寄存器连接在一起组成一个 128 位的数据,读写操作时需要分别对四个寄存器进行操作。数据寄存器对应的操作顺序如下:

数据举例: 0x00112233445566778899AABBCCDDEEFF

Data0	0x33221100
Data1	0x77665544
Data2	0xBBAA9988
Data3	0xFFEEDDCC

密钥寄存器由 4 个 32 位的寄存器组成, 存放输入的初始密钥。

写操作时需要分别对 4 个 32 位的寄存器进行操作。对应的操作顺序如下:

数据举例: 0x000102030405060708090A0B0C0D0E0F

Key0	0x03020100
Key1	0x07060504
Key2	0x0B0A0908
Key3	0x0F0E0D0C

- 对于数据和密钥寄存器的写入只能在本模块没有处于运算状态时(即 CR.Start = 0 时) 才能进行,否则硬件将自动忽略对本寄存器的写操作。
- 对于数据和密钥寄存器的读取只能在本模块没有处于运算状态时(即 CR.Start = 0 时) 才能进行,否则对本寄存器的读取将得到全 0。

应用笔记 Page 4 of 8

3.2 加密

- 将待加密的 128 位数据写入数据寄存器(DATA)中。
- 将加密密钥写入密钥寄存器(KEY)中。
- 将 CR.Mode 设置为 0。
- 向控制寄存器中的 CR.Start 写入 1, 启动模块进行运算。
- 等待 CR.Start 的值恢复位 0,模块运算结束。
- CR.Mode CR.Start 可同时进行配置。
- 读取数据寄存器(DATA),获得128位密文。

3.3 解密

- 将待解密的 128 位数据写入数据寄存器(DATA)中。
- 将解密密钥写入密钥寄存器(KEY)中。
- 将 CR.Mode 设置为 1。
- 向控制寄存器中的 CR.Start 写入 1, 启动模块进行运算。
- CR.Mode CR.Start 可同时进行配置。
- 等待 CR.Start 的值恢复位 0,模块运算结束。

3.4 注意事项

- 上电后,时钟 hclk 必须在复位脱离前稳定有效,并且在后续运行中持续稳定。
- 在 AES 加解密过程中,数据寄存器会改变,如果下次运算的被操作数据就是本次运算的结果,那么就无需重新写入数据了。
- 密钥仅支持 128 位,密钥写入偏移地址 0x20-0x2C。
- 判断模块运算结束的方法:不断读取 CR.Start,如果其值变为 0,则表示运算结束。

应用笔记 Page 5 of 8

3.5 异常机制

- 只支持 32 位访问,其它位宽的访问返回硬件异常(HardFault)。
- 数据和密钥访问偏移大于 0x0F 的地址, 返回硬件异常(HardFault)。

3.6 性能

本模块从启动一次运算(CR.Start 写入1)到该次运算结束(CR.Start 恢复到0)所需时间。

加密	216 cycles
解密	286 cycles

4 参考样例及驱动

通过上述介绍,配合本系列的用户手册,我们对华大半导体 MCU*的 AES 模块功能及操作方法有了进一步的掌握。

华大半导体(HDSC)官方同时提供了该模块的应用样例及驱动库,用户可通过打开样例的 工程进一步直观地熟悉该模块以及驱动库的应用,在实际开发中也可以直接参考样例和使用 驱动库来快速实现对该模块的操作。

5 总结

以上章节简要介绍了华大半导体 MCU*的 AES 模块,详细说明了 AES 模块的使用。用户在实际的应用开发过程中,如果需要更深一步了解该模块的使用方法及操作事项,应以相应的用户手册为准。本篇中提到的样例及驱动库,既可以作为用户进一步的实验与学习,也可以在实际开发中直接应用。

* 支持型号见封面。

应用笔记 Page 6 of 8

6 其他信息

技术支持信息: www.hdsc.com.cn

应用笔记 Page 7 of 8

7 版本信息 & 联系方式

日期	版本	修改记录
2018/6/20	Rev1.0	初版发布。
2018/9/3	Rev1.1	更新支持的产品型号。
2019/6/24	Rev1.2	更新支持的产品型号。

如果您在购买与使用过程中有任何意见或建议,请随时与我们联系。

Email: mcu@hdsc.com.cn

网址: www.hdsc.com.cn

通信地址: 上海市张江高科园区碧波路 572 弄 39 号

邮编: 201203

应用笔记 AN0060005C