Lecture 1

Remarks: Basic ordering properties are assumed to be true.

Definition 1. Boundedness: The subset $A \in R$ is said to be bounded above if $\exists M$ such that $M > x \ \forall x \in A$. And it is bounded below if $\exists m$ such that $m < x \ \forall x \in A$. If A has both then it is called bounded.

Definition 2. Least Upper Bound (lub) Axiom: If A is nonempty subset of R and it is bounded above, then A has a least upper bound in R.

Theorem 1. If A is nonempty subset in R and it is bounded below, then it has a greatest lower bound in R.

Proof. We first create a set T of lower bounds of A

$$T = \{ m \mid m < x \ \forall x \in A \}$$

T is non-empty since A is bounded below. Now, we need to prove that there exits a supremum of T which is also a lower bound of A.

Since, set T is bounded above by all the elements of set A, it should have a least upper bound, say M such that $M > m \quad \forall m \in T$. Also, every element of A is an upper bound of T hence by definition of supremum, we can say $M \leq x \quad \forall x \in A$ hence M is the lower bound of A. This makes it the greatest lower bound.

Lemma 2. Suppose $A \neq \phi$ and s = lub(A) then for any $y \in A$ such that y < s, $\exists a \in A \text{ such that } y < a \leq s$.

Proof. Suppose for contradiction, \nexists any element a such that y < a. This means that $y \ge a, \forall a \in A \implies y$ is upper bound of set A. But y is already less than least upper bound of set A. Hence contradiction.

Therefore, $\exists a \in A \text{ such that } y < a \leq s$.

Theorem 3. Archimedean Property: Given any positive real numbers $x, y \exists n \in N$ such that nx > y.

Proof. Let a set $A = \{nx \mid n \in \mathbb{N}\}$. Suppose for contradiction $nx \leq y$. Then y is the upper bound of the set A.

Let a x > 0, then y - x < y hence y - x is not the upper bound of the set A. This means that $\exists m \in \mathbb{N}$ such that $y - x < mx \implies y < mx + x \implies y < (m+1)x$ which is impossible since $(m+1)x \in A$ and y is upper bound of the A. nx > y is true.

Theorem 4. If A and B are the two non empty bounded subsets of R, such that

Theorem 4. If A and B are the two non empty bounded subsets of R, such that $x \leq y \ \forall x \in A \ and \ \forall y \in B \ then \ sup(A) \leq inf(B)$

Proof. Let a be the supremum of A and b be the infimum of B. Therefore, $a \ge x \ \forall x \in A$ and $b \le y \ \forall y \in B$. Also, A is bounded above by B and elements of B are the upper bound for A. Hence, $a \le y \ \forall y \in B$. This means that a is the lower bound of B and a is sup(A). In other words, $sup(A) \le inf(B)$. \square

Theorem 5. Given any two real number a, b with $a < b, \exists \mathbb{Q}$ between a and b.

Proof. Since b-a>0. Take two positive number b-a and $1 \exists n \in \mathbb{Z}$ such that n(b-a)>1.

TBD \square

Theorem 6. Any monotone increasing sequence of real numbers that is bounded above converges to some real number.

Proof. Let x_n be a monotone increasing sequence in \mathbb{R} that is bounded above by s i.e. $s = lub\{x_n \mid n \in \mathbb{N}\}$

Suppose $\epsilon > 0 \implies s - \epsilon < s$ and $s - \epsilon$ is not the upper bound of the x_n .

Using lemma 1, we can say that $\exists x_{\epsilon} \in x_n$ such that $s - \epsilon < x_{\epsilon} < s$.

Using monotone condition, for some $n_0 \in \mathbb{N}$, we have,

$$s - \epsilon < x_n < s < s + \epsilon \quad \forall n > n_0 \in \mathbb{N}$$

Hence $|x_n - s| < \epsilon$. x_n converges to $s \ \forall n > n_0$.

Remark. Nested Interval theorem $\approx lub \approx theorem 4$

Theorem 7. Nested Interval theorem: Suppose $\{I_n\}$ is the sequence of closed and bounded non-empty intervals such that $I_1 \supset I_2 \supset I_3 \ldots$ then:

1.
$$\bigcap_{n>1} I_n \neq \phi.$$

2. If the sequence of the length of the intervals goes to 0 then $\bigcap_{n>1} I_n = \{x\}$.

Proof. Let I_n be an interval $[a_n, b_n]$ with $a_m < b_n \forall m, n \in \mathbb{N}$. Then $\forall n \in \mathbb{N}$, a_n is the increasing sequence and b_n is the decreasing sequence. b_n is upper bound of a_n hence, $a_n < \inf(b_n)$.

For b_n , a_n is the lower bound of b_n i.e. $sup(a_n) < b_n$. If we combine all inequalities, we get

$$a_n \le \sup(a_n) \le \inf(b_n) \le b_n \ \forall n \in \mathbb{N}$$

Using density theorem, we can say that \exists some \mathbb{Q} between $sup(a_n)$ and $inf(b_n)$. Hence, $\bigcap_{n\geq 1} I_n \neq \phi$.

Let the length of the interval to be $L = |b_n - a_n|$. Suppose for contradiction, we have two elements in $\bigcap_{n \ge 1} I_n$ instead of one, say x and y.

The distance between x and y is |y-x|. Since, $L \to 0$ hence $\exists n \in \mathbb{N}$ such that for some $n_0 \ge n$, $|L| = |b_{n_0} - a_{n_0}| < \epsilon$ for some $\epsilon > 0$. Since $|L| \to 0$, we can choose ϵ such that it is smaller than |y-x|. Then, if interval contains any one of the point, it can not contain the other.

Lecture 2

Definition 3. Decimals representation of Real numbers: Let $z \in \mathbb{R}^+$ be given. Let n_0 be the largest integer such that $n_0 \leq z$. Let n_1 be the largest integer such that $n_0 + \frac{n_1}{10} \leq z$. As such, say n_k is defined for some k. Let n_{k+1} be the largest integer

such that $n_0 + \frac{n_1}{10^1} + \frac{n_1}{10^2} + \cdots + \frac{n_k}{10^k} + \frac{n_{k+1}}{10^{k+1}} \le z$. Consider the set of all such finite sums, i.e. the set of all

$$z_k = n_0 + \frac{n_1}{10^1} + \frac{n_1}{10^2} + \dots + \frac{n_k}{10^k} + \frac{n_{k+1}}{10^{k+1}} \le z$$

This set has a supremum and that is z itself. We symbolically write $z = n_0.n_1n_2...$

Lemma 8. Let p be an integer ≥ 2 . If $0 \leq a_n \leq p-1$, where a_n is an integer then $\sum_{n=0}^{\infty} \frac{a_n}{p_n}$ converges to some x in [0,1].

Proof. Since $0 \le a_n \le p-1$, we can replace all a_n with p-1 and then we have

$$\sum_{n=1}^{\infty} \frac{a_n}{p_n} \le (p-1) \sum_{n=1}^{\infty} \frac{1}{p_n} = 1$$

Therefore, the sequence is bounded, and it is monotonic increasing this means it converges to some $x \leq 1$ and x is already positive. Hence it converges to some x in [0,1].

Lemma 9. Conversely, given any $0 \le x \le 1, \exists a_n \in \mathbb{Z}$ and $0 \le a_n \le p-1$ such that $x = \sum_{n=0}^{\infty} \frac{a_n}{p_n}$.

Proof. Suppose we have $0 < x \le 1$ and a_1 is the largest integer such that $\frac{a_1}{p} < x \le 1$. Since x is bounded above by 1, we have $a_1 since <math>a_1$ is an integer. Similarly, find a_2 such that $\frac{a_1}{p} + \frac{a_2}{p^2} < x$. This can be achieved by Archimedean property. Also, note that $a_2 \le p-1$, since we have

$$\frac{a_1}{p} + \frac{a_2}{p^2} < x < 1$$

$$\frac{a_1}{p} + \frac{a_2}{p^2} \le \frac{p-1}{p} + \frac{a_2}{p^2} < 1 \quad (a_1 \le p-1)$$

$$1 - \frac{1}{p} + \frac{a_2}{p^2} < 1$$

$$\frac{a_2}{p^2} < \frac{1}{p}$$

$$a_2 < p$$

$$a_2 \le p - 1$$

Inductively, we can define a_n as the largest integer with $a_n \leq p-1$ such that $\sum_{i=1}^n \frac{a_i}{p_i} < x$. Since $a_n < p$ TBD

Suppose $\{a_n\}$ is the bounded sequence in \mathbb{R} , we define two sets:

$$s_n := \inf\{a_n, a_{n+1}, \dots\}$$

$$S_n := \sup\{a_n, a_{n+1}, \dots\}$$

Notice that $\inf_{k}(\{a_n\}) \leq s_n \leq S_n \leq \sup_{k}(\{s_n\})$

Definition 4. Lim superior and limit inferior: Let a_n be the bounded sequence of real numbers then

$$\lim \inf (a_n) = \lim_{n \to \infty} s_n$$
$$\lim \sup (a_n) = \lim_{n \to \infty} S_n$$

Limit superior is the supremum of all subsequential limits of $\{a_n\}$. Similarly, limit inferior is the infimum of all subsequential limits of $\{a_n\}$.

Note that s_n is the increasing sequence and S_n is the decreasing sequence and they are bounded on both sides. Hence, we can also say that using monotone convergence theorem

$$\lim \inf (a_n) = \lim_{n \to \infty} s_n = \sup(s_n)$$
$$\lim \sup (a_n) = \lim_{n \to \infty} S_n = \inf(S_n)$$

Theorem 10. A sequence $\{a_n\}$ is bounded above iff limsup $a_n < \infty$ (is finite).

Proof.