Assignment One

Name	
Student number	

Direction:

Please answer all the questions below and hand in your answers before the due day. All work, must be handed in ON TIME.

Due Date:

April 7, 2022. Please hand it in by the class time.

Questions:

- 1. Please write the pseudocode of *Quick Sort*.
- 2. Which of the following statements is/are valid? (more than one answer is possible)
 - A. Time Complexity of Quick Sort is $\Theta(n^2)$
 - B. Time Complexity of Quick Sort is $O(n^2)$
 - C. For any two functions f(n) and g(n), we have $f(n) = \Theta(g(n))$ if and only if

$$f(n) = O(g(n))$$
 and $f(n) = \Omega(g(n))$.

D. Time complexity of all computer algorithms can be written as $\Omega(1)$

3.

(a) The 1-D Discrete Fourier Transform (**DFT**) of N samples of a signal f(x) sampled at x = 0,1,2...N-1 is:

$$F(u) = \frac{1}{N} \sum_{x=0}^{N-1} (x) e^{\frac{-j2\pi ux}{N}}$$

for u=0,1,...,N-1, and $j=\sqrt{-1}$. If f(x) is generally complex, how many complex multiplications are needed to compute the Fourier Transform of the given sample?

(b) A significantly more efficient algorithm for computing the DFT is called the Fast Fourier Transform (FFT). The FFT algorithm has the following recurrence relation:

$$T(n) = 2T\left(\frac{n}{2}\right) + n$$
, for $n > 1$ with $T(1) = 1$, n is a power of 2

Find the complexity of the FFT.