

Description

These N-Channel enhancement mode power field effect transistors are using trench DMOS technology. This advanced technology has been especially tailored to minimize on-state resistance, provide superior switching performance, and with stand high energy pulse in the avalanche and commutation mode. These devices are well suited for high efficiency fast switching applications.

Features

- $45V,35A,R_{DS(ON).max}=21m\Omega@V_{GS}=10V$
- Improved dv/dt capability
- Fast switching
- ♦ 100% EAS Guaranteed
- Green device available

Applications

- Motor Drives
- UPS
- ◆ DC-DC Converter

Product Summary

 $\begin{array}{ll} V_{DSS} & 45V \\ R_{DS(on).max} @ V_{GS} {=} 10V & 21 m\Omega \\ I_D & 35A \end{array}$

Pin Configuration

Absolute Maximum Ratings Tc = 25°C unless otherwise noted

Parameter	Symbol	Value	Unit
Drain-Source Voltage	V _{DSS}	45	V
Continuous drain current (T _C = 25°C)		35	A
Continuous drain current (T _C = 100°C)	I _D	22	А
Pulsed drain current ¹⁾	I _{DM}	140	Α
Gate-Source voltage	V _{GSS}	±20	V
Avalanche energy ²⁾	Eas	30.2	mJ
Power Dissipation (T _C = 25°C)	P _D	54	W
Storage Temperature Range	T _{STG}	-55 to +150	°C
Operating Junction Temperature Range	TJ	-55 to +150	°C

Thermal Characteristics

Parameter	Symbol	Value	Unit
Thermal Resistance, Junction-to-Case	$R_{ heta JC}$	2.3	°C/W

Package Marking and Ordering Information

Device	Device Package	Marking
VSM35N04-T2	TO-252	VSM35N04-T2
VSM35N04-T1	TO-251	VSM35N04-T1

Electrical Characteristics T_J = 25°C unless otherwise noted

Electrical Characteristics	1	T _J = 25°C unless otherwise noted					
Parameter	Symbol	Test Condition	Min.	Тур.	Max.	Unit	
Static characteristics							
Drain-source breakdown voltage	BV _{DSS}	V _{GS} =0 V, I _D =250uA	45			V	
Gate threshold voltage	V _{GS(th)}	V _{DS} =V _{GS} , I _D =250uA	1.0		2.0	V	
Drain-source leakage current	I _{DSS}	V _{DS} =45 V, V _{GS} =0 V, T _J = 25°C			1	μA	
		V _{DS} =36 V, V _{GS} =0 V, T _J = 125°C			10	μA	
Gate leakage current, Forward	I _{GSSF}	V _{GS} =20 V, V _{DS} =0 V			100	nA	
Gate leakage current, Reverse	I _{GSSR}	V _{GS} =-20 V, V _{DS} =0 V			-100	nA	
		V _{GS} =10 V, I _D =20 A		15	21	mΩ	
Drain-source on-state resistance	R _{DS(on)}	V _{GS} =4.5 V, I _D =10 A		20	25	mΩ	
Forward transconductance	g _{fs}	V _{DS} =5 V , I _D =20A		37		S	
Dynamic characteristics							
Input capacitance	C _{iss}			894			
Output capacitance	Coss	$V_{DS} = 25 \text{ V}, V_{GS} = 0 \text{ V},$		87.3		pF	
Reverse transfer capacitance	C _{rss}	- F = 1MHz		74.1			
Turn-on delay time	t _{d(on)}			8.8		- ns	
Rise time	t _r	V _{DD} = 25V,V _{GS} =10V, I _D =20 A		104.8			
Turn-off delay time	t _{d(off)}			132.8			
Fall time	t _f			41.2			
Gate resistance	Rg	V _{GS} =0V, V _{DS} =0V, F=1MHz		3.4		Ω	
Gate charge characteristics				•			
Gate to source charge	Q _{gs}	.,		5			
Gate to drain charge	Q _{gd}	V _{DS} =25 V, I _D =10A, - V _{GS} = 10 V		2.7		nC	
Gate charge total	Qg			23.4			
Drain-Source diode characteristi	cs and Maxii	num Ratings		•		•	
Continuous Source Current	Is				35	А	
Pulsed Source Current ³⁾	I _{SM}]			140	А	
Diode Forward Voltage	V _{SD}	V _{GS} =0V, I _S =10A, T _J =25°C			1.2	V	
Reverse Recovery Time	t _{rr}			16.9		ns	
Reverse Recovery Charge	Qrr	Is=10A,di/dt=100A/us, Tյ=25℃		8		nC	

Notes

- 1: Repetitive Rating: Pulse width limited by maximum junction temperature.
- 2: V_{DD} =25V, V_{GS} =10V, L=0.5mH, I_{AS} =11A, R_G =25 Ω , Starting T_J =25 $^{\circ}$ C.
- 3: Pulse Test: Pulse Width $\leq 300 \, \mu \, \text{s}$, Duty Cycle $\leq 2\%$.

Electrical Characteristics Diagrams

Figure 1. Typ. Output Characteristics

Figure 2. Transfer Characteristics

Figure 3. Capacitance Characteristics

Figure 4. Gate Charge Waveform

Figure 5. Body-Diode Characteristics

Figure 6. Rdson-Drain Current

Figure 7. Rdson-Junction Temperature(°C) Figure 8. Maximum Safe Operating Area 2.2 100 2.0 1.8 Normalized On-Resistance W_{ds}=10√√ IJ=2020A 10 Drain current I_D (A) 1.6 1.4 1.2 0.1 1.0 0.01 0.8 25 75 100 125 0.1 10 0 150 0.01 100 Drain-Source Voltage $V_{_{\mathrm{DS}}}(V)$ T -Junction Temperation (°c)

Figure 6. Normalized Maximum Transient Thermal Impedance (RthJC)

Test Circuit & Waveform

Figure 8. Gate Charge Test Circuit & Waveform

Figure 9. Resistive Switching Test Circuit & Waveforms

Figure 10. Unclamped Inductive Switching (UIS) Test Circuit & Waveform

Figure 11. Diode Recovery Circuit & Waveform

