Metoda klasyfikacji k-nn

Algorytm k-najbliższych sąsiadów (k-NN - k – nearest neighbors) głosowanie proste

- 1. Wyznacz wartość k, oznaczającą liczbę sąsiadów, z którymi nowy przykład będzie porównywany w celu wyznaczenia klasy
- 2. Porównać nowy przykład do k najbliższych sąsiadów, czyli tych które mają najmniejszą odległość w przyjętej metryce
- 3. Wyznacz klasę przez określenie największej liczby wzorców wyznaczających daną klasę

Przykład

k = 3

• Klasa 2

Klasa 2

Klasa?

Algorytm k-najbliższych sąsiadów (k-NN - k – nearest neighbors) głosowanie ważone

1. Wyznaczyć wartość k, oznaczającą liczbę sąsiadów, z którymi nowy przykład n będzie porównywany w celu wyznaczenia klasy

2. Porównać nowy przykład do k najbliższych sąsiadów x_i, czyli tych które mają najmniejszą odległość w przyjętej metryce

3. Wyznaczyć klasę przez określenie funkcji decyzyjnej bazującej na wyznaczonej odległości d od poszczególnych wzorców, np.:

$$p_i\left(\boldsymbol{x}_i,\boldsymbol{n}\right) = \frac{1}{1 + d(\boldsymbol{x}_i,\boldsymbol{n})^2}$$

Przykład

Klasa 2

Klasa 2

Algorytm k-najbliższych sąsiadów (k-NN - k – nearest neighbors) głosowanie ważone

1. Wyznaczyć wartość k, oznaczającą liczbę sąsiadów, z którymi nowy przykład n będzie porównywany w celu wyznaczenia klasy

2. Porównać nowy przykład do k najbliższych sąsiadów x_i, czyli tych które mają najmniejszą odległość w przyjętej metryce

3. Wyznaczyć klasę przez określenie funkcji decyzyjnej bazującej na wyznaczonej odległości d od poszczególnych wzorców, np.:

$$p_i\left(\boldsymbol{x}_i,\boldsymbol{n}\right) = \frac{1}{1 + |d(\boldsymbol{x}_i,\boldsymbol{n})|}$$

Wybór wartości k

- Wybór małej wartości k :
 - Może uwidocznić się wpływ wzorców oddalonych od środka danej klasy (może być to szum lub błąd w danych)
 - Dla k = 1 algorytm zwróci kasę najbliższego punktu (wzorca)
- Wybór bardzo dużej wartości k:
 - Utrata informacji o lokalnym wpływie poszczególnych wzorców, zbyt duże uogólnienie danych zawartych w przykładach

Przykład

x1	x2	Klasa
1	. 1	1
1	. 5	3
1		3 3 1
1,5	1,5	1
2	1	1
2	. 2	1
2	. 4	. 3
2	. 5	3
2	. 6	3
3	1	1
3	6	3
5	3	2
5	4	2
ϵ		3 3 3 1 3 2 2 2 2 2
ϵ	6	
7	5	2

Pseudokod programu

Funkcja zlicz klasy maxk = 0, klasa max = 0For i = 1 To k klasa = todI(i, 3)If wariant = 1 Then tklas(klasa) = tklas(klasa) + 1**Elself** wariant = 2 **Then** $tklas(klasa) += 1 / (1 + tod/(i, 1)^2)$ **Elself** wariant = 3 **Then** tklas(klasa) += 1 / (1+|todl(i, 1)|)End If If maxk < tklas(klasa) Then klasa_max = klasa maxk = tklas(klasa)End If Next i return klasa max