M1 UE2 Probabilités

Corrigés des exercices du Chapitre 9

1. * Déterminer la fonction génératrice d'une v.a. Z de loi de Poisson $\mathcal{P}(\lambda)$ et d'une v.a. X_n de loi Binomiale $\mathcal{B}(n, p_n)$.

Montrer que, si $\lim_{n} p_n = 0$ et si $\lim_{n} np_n = \lambda$, la suite $(X_n)_n$ converge en loi vers Z.

Application : Une entreprise fabrique des produits dont 1% sont défectueux ; les produits sont vendus par paquets de 100 et garantis à 98%. Quelle est la probabilité p que cette garantie tombe en défaut ?

•
$$G_Z(s) = \mathbb{E}\left(s^Z\right) = \sum_{k=0}^{+\infty} s^k e^{-\lambda} \frac{\lambda^k}{k!} = e^{-\lambda} \sum_{k=0}^{+\infty} \frac{(\lambda s)^k}{k!} = e^{-\lambda} e^{\lambda s}$$
, soit
$$\overline{G_Z(s) = e^{\lambda(s-1)}}.$$

•
$$G_{X_n}(s) = \mathbb{E}\left(s^{X_n}\right) = \sum_{k=0}^n C_n^k p_n^k (1 - p_n)^{n-k} s^k = (sp_n + 1 - p_n)^n$$
, soit
$$\boxed{G_{X_n}(s) = (1 - p_n(1 - s))^n}.$$

•
$$G_{X_n}(s) = e^{n \ln(1-p_n(1-s))}$$
.
 $p_n \to 0 \text{ donc } \ln(1-p_n(1-s)) \sim -p_n(1-s) \text{ et } n \ln(1-p_n(1-s)) \underset{n \to +\infty}{\to} -\lambda(1-s) \text{ car}$

$$np_n \underset{n \to +\infty}{\to} \lambda, \text{ donc } G_{X_n}(s) \underset{n \to +\infty}{\to} e^{\lambda(s-1)} = G_Z(s) \text{ et } \boxed{X_n \overset{L}{\to} Z}.$$

Application : La garantie tombe en défaut si le nombre X de produits défectueux est > 2. On a :

$$P([X=k]) = C_{100}^k \left(\frac{1}{100}\right)^k \left(\frac{99}{100}\right)^{100-k}$$

c'est-à-dire $P_X = \mathcal{B}\left(100, \frac{1}{100}\right)$. On a alors

$$P([X > 2]) = 1 - [P([X = 0]) + P([X = 1]) + P([X = 2])]$$

$$= 1 - \left[\left(\frac{99}{100} \right)^{100} + 100 \times \frac{1}{100} \times \left(\frac{99}{100} \right)^{99} + \frac{100 \times 99}{2} \left(\frac{1}{100} \right)^{2} \left(\frac{99}{100} \right)^{98} \right]$$

expression qui s'avère compliquée!

En appliquant l'approximation qui précède, on a, comme $\frac{1}{100}$ est petit et $100 \times \frac{1}{100} = 1$, $\mathcal{B}\left(100, \frac{1}{100}\right) \approx \mathcal{P}(1)$ et alors :

$$P([X > 2]) \approx 1 - e^{-1} \left(\frac{1^0}{0!} + \frac{1^1}{1!} + \frac{1^2}{2!} \right) = 1 - \frac{5}{2e} \approx 1 - 0,926 \approx 7,4\%.$$

2. (**) Soit X_n une v.a.r. de loi binomiale négative de paramètres n et p_n définie, pour tout $k \in \mathbb{N}$, par:

$$P([X_n = k]) = C_{n+k}^k p_n^n (1 - p_n)^k$$

On suppose que $\lim_{n\to\infty} n(1-p_n) = \lambda > 0$.

Montrer que la suite $(X_n)_{n\in\mathbb{N}^*}$ converge en loi vers une v.a.r. de loi de Poisson $\mathcal{P}(\lambda)$.

$$P([X_n = k]) = \frac{(n+k)!}{k!n!} p_n^n (1-p_n)^k \text{ avec } 1-p_n \sim \frac{\lambda}{n} \text{ donc}$$

$$P([X_n = k]) = \frac{1}{k!}(n+1)\cdots(n+k)p_n^n(1-p_n)^k \sim \frac{1}{k!}n^k \left(1 + \frac{1}{n}\right)\cdots\left(1 + \frac{k}{n}\right)\left(1 - \frac{\lambda}{n}\right)^n \frac{\lambda^k}{n^k}.$$

Or, pour k fixé, $\lim_{n\to+\infty} \left(1+\frac{1}{n}\right)\cdots\left(1+\frac{k}{n}\right) = 1$ et $\lim_{n\to+\infty} \left(1-\frac{\lambda}{n}\right)^n = \lim_{n\to+\infty} e^{n\ln\left(1-\frac{\lambda}{n}\right)} = e^{-\lambda}$ donc $\lim_{n\to+\infty} P([X_n=k]) = e^{-\lambda} \frac{\lambda^k}{k!}$.

Pour tout $x \notin \mathbb{N}$, $F_{X_n}(x) = \sum_{k=0}^{[x]} P([X_n = k]) \to \sum_{k=0}^{[x]} e^{-\lambda} \frac{\lambda^k}{k!} = F_X(x)$ où X suit la loi de Poisson $\mathcal{P}(\lambda)$ donc $(X_n) \xrightarrow{L} X$ de loi $\mathcal{P}(\lambda)$.

3. ** Déterminer la fonction caractéristique d'une v.a. Z de loi uniforme sur [0,1] et d'une v.a. discrète X_n de loi équiprobable sur $\left\{0,\frac{1}{n},\cdots,\frac{n-1}{n},1\right\}$.

Montrer que la suite $(X_n)_n$ converge en loi vers Z.

•
$$\Phi_Z(t) = \int e^{itz} \mathbb{I}_{]0,1[}(z) dz = \left[\frac{e^{itz}}{it}\right]_{z=0}^{z=1}$$
, soit $\Phi_Z(t) = \frac{e^{it}-1}{it}$.

•
$$\Phi_{X_n}(t) = \sum_{k=0}^n e^{it\frac{k}{n}} \times \frac{1}{n+1}$$
, soit $\Phi_{X_n}(t) = \frac{1}{n+1} \frac{1 - e^{\frac{it(n+1)}{n}}}{1 - e^{\frac{it}{n}}}$.

$$1 - e^{\frac{it}{n}} = -\frac{it}{n} + o\left(\frac{1}{n}\right); 1 - e^{it\left(1 + \frac{1}{n}\right)} = 1 - e^{it}\left(1 + \frac{it}{n} + o\left(\frac{1}{n}\right)\right) \xrightarrow[n \to +\infty]{} 1 - e^{it}$$
 et

$$\frac{1}{n+1} \times \frac{1}{1 - e^{\frac{it}{n}}} = \frac{1}{1 + \frac{1}{n}} \frac{1}{n\left(1 - e^{\frac{it}{n}}\right)} \xrightarrow[n \to +\infty]{} -\frac{1}{it}.$$

Finalement,
$$\Phi_{X_n}(t) \underset{n \to +\infty}{\longrightarrow} \frac{e^{it}-1}{it} = \Phi_Z(t)$$
 et $X_n \xrightarrow{L} Z$

On voit donc ici qu'une suite de v.a.r. discrètes peut converger vers une v.a.r. absolument continue.

4. * Soit f la densité d'une v.a.r. absolument continue X et soit f_n la fonction définie sur $\mathbb R$ par :

$$f_n(t) = nf(nt)$$

- (a) Montrer que f_n est une densité.
- (b) Soit X_n une v.a.r. absolument continue de densité f_n . Montrer que la suite de v.a.r. $(X_n)_{n\geq 1}$ converge en loi vers la v.a.r. nulle.

1. $f_n \ge 0 \text{ car } f \ge 0$;

 $t \mapsto nt$ est continue, f est continue (sauf éventuellement en un nombre fini ou dénombrable de points) donc, par composition, $t \mapsto nf(nt)$ est continue (sauf éventuellement en un nombre fini ou dénombrable de points);

en posant u = nt, on obtient $\int_{-\infty}^{+\infty} nf(nt)dt = \int_{-\infty}^{+\infty} f(u)du = 1$ car f est une densité. Ainsi, f_n est bien la densité d'une v.a.r. absolument continue X_n .

- 2. Toujours avec u=nt, on a $F_n(x)=P([X_n\leq x])=\int_{-\infty}^x f_n(t)dt=\int_{-\infty}^{nx} f(u)du=F(nx)$ où F est la fonction de répartition d'une v.a.r. de densité f. On a donc :
 - si x < 0, $nx \to -\infty$ et $F_n(x) \to 0$;
 - si x > 0, $nx \to +\infty$ et $F_n(x) \to 1$.

Ainsi, pour tout $x \neq 0$, $(F_n(x))_n$ converge vers la valeur de la fonction de répartition de la variable constante égale à 0. C'est donc que $X_n \stackrel{L}{\longrightarrow} 0$.

5. ** Soit $\alpha \in]0,1[$ et $(X_n)_{n\geq 1}$ une suite de v.a.r. de lois géométriques $\mathcal{G}(\alpha/n)$.

Montrer que la suite $(\frac{X_n}{n})_{n\geq 1}$ converge en loi vers une v.a.r. dont on précisera la loi.

$$P([X_n = k]) = \frac{\alpha}{n} \left(1 - \frac{\alpha}{n}\right)^{k-1} \text{ pour } k \in \mathbb{N}^*.$$

$$P([X_n > k]) = \sum_{j=k+1}^{+\infty} \frac{\alpha}{n} \left(1 - \frac{\alpha}{n}\right)^{j-1} \underset{i=j-k}{=} \left(1 - \frac{\alpha}{n}\right)^k \sum_{j=1}^{+\infty} \left(\frac{\alpha}{n}\right) \left(1 - \frac{\alpha}{n}\right)^{j-1} = \left(1 - \frac{\alpha}{n}\right)^k$$

et $P([X_n \le k]) = 1 - P([X_n > k]) = 1 - \left(1 - \frac{\alpha}{n}\right)^k$ donc, si E(x) est la partie entière de x, on a, pour tout x > 0

$$F_n(x) = P([X_n \le E(x)]) = 1 - \left(1 - \frac{\alpha}{n}\right)^{E(x)}$$

puis, $F_{\frac{X_n}{n}}(x) = P\left(\left\lceil \frac{X_n}{n} \le x \right\rceil\right) = P([X_n \le nx]) = 1 - \left(1 - \frac{\alpha}{n}\right)^{E(nx)}$ avec

$$1 - \left(1 - \frac{\alpha}{n}\right)^{E(nx)} = 1 - e^{E(nx)\ln\left(1 - \frac{\alpha}{n}\right)}.$$

On a $E(nx) \le nx < E(nx) + 1$, donc $nx - 1 < E(nx) \le nx$ et, comme $\ln \left(1 - \frac{\alpha}{n}\right) \sim -\frac{\alpha}{n}$, on obtient, par encadrement,

$$\lim_{n \to +\infty} E(nx) \left(1 - \frac{\alpha}{n} \right) = -\alpha x$$

et $\left[\lim_{n\to+\infty} F_{\frac{X_n}{n}}(x) = 1 - e^{-\alpha x} \text{ pour tout } x>0\right]$ (et $F_{\frac{X_n}{n}}(x) = 0$ pout x<0). On reconnait

la fonction de répartition de la loi exponentielle $\mathcal{E}(\alpha)$ donc $\left(\frac{X_n}{n}\right)_n$ converge en loi vers une v.a.r. de loi exponentielle $\mathcal{E}(\alpha)$.

6. ** Soit $(X_n)_{n\geq 1}$ une suite de v.a.r. indépendantes de même loi de Poisson $\mathcal{P}(\lambda)$.

- (a) Déterminer la loi de $U_n = X_1 + \cdots + X_n$ et calculer $P([U_n \le n])$.
- (b) On pose $Z_n = \frac{U_n \lambda n}{\sqrt{\lambda n}}$. Montrer que la suite $(Z_n)_{n \geq 1}$ converge en loi vers une v.a.r. dont on précisera la loi. En remarquant que l'on a :

$$P([U_n \le n]) = P\left(\left[Z_n \le \frac{(1-\lambda)n}{\sqrt{\lambda n}}\right]\right)$$

en déduire :

$$\lim_{n \to \infty} e^{-n} \sum_{k=0}^{n} \frac{n^k}{k!} = \frac{1}{2}$$

(a) Puisque les X_i sont indépendantes et de même loi $\mathcal{P}(\lambda)$, la v.a. U_n est de loi de Poisson de paramètre $n\lambda$ (cf. cours), et, par suite,

$$P([U_n \le n]) = \sum_{k=0}^{n} P([U_n = k]) = \sum_{k=0}^{n} \frac{n^k \lambda^k e^{-n\lambda}}{k!}.$$

(b) Les X_k étant des v.a. indépendantes de même loi, de moyenne et variance λ , le théorème de la limite centrale s'applique et montre que $(P_{Z_n})_n$ converge vers la loi normale $\mathcal{N}(0,1)$.

De l'égalité indiquée (qui est évidente), on déduit :

$$e^{-n\lambda} \sum_{k=0}^{n} \frac{n^k \lambda^k}{k!} = P\left(\left[Z_n \le \frac{n(1-\lambda)}{\sqrt{n\lambda}}\right]\right).$$

Il vient alors, pour λ égal à 1, puisque $\lim_{n\to+\infty} P([Z_n\leq 0]) = \int_{-\infty}^0 \frac{1}{\sqrt{2\pi}} e^{-x^2/2} dx = \frac{1}{2}$,

$$\lim_{n \to +\infty} e^{-n} \sum_{k=0}^{n} \frac{n^k}{k!} = \lim_{n \to +\infty} P([Z_n \le 0]) = \frac{1}{2}.$$

- 7. * Soit X une v.a.r. à valeurs dans $[1, +\infty[$. On suppose qu'il existe un réel λ strictement positif tel que, pour tout $x \ge 1$, on ait $P([X \ge x]) = x^{-\lambda}$.
 - (a) Montrer que les v.a.r. X et $Y = \ln X$ sont absolument continues et déterminer leur densité.
 - (b) Soit $(X_n)_{n\geq 1}$ une suite de v.a.r. indépendantes de même loi que X et soit

$$U_n = (X_1 X_2 \cdots X_n)^{1/n}.$$

Montrer que les suites $(\ln U_n)_{n\geq 1}$ et $(U_n)_{n\geq 1}$ convergent en loi.

(a) L'application $F_X: x \in \mathbb{R} \mapsto P([X \leq x]) = (1-x^{-\lambda})\mathbb{I}_{[1,+\infty[}(x)$ vérifie les propriétés d'une fonction de répartition. C'est de plus une fonction dérivable sauf en 1 et sa dérivée coïncide sauf en ce point avec la fonction $f_X: x \in \mathbb{R} \mapsto \lambda x^{-\lambda-1}\,\mathbb{I}_{[1,+\infty[}(x))$. Or, cette dernière fonction est clairement une densité de probabilité et on a : pour tout $x \in \mathbb{R}$, $F_X(x) = \int_{-\infty}^x f_X(u) du$.

La variable aléatoire X est donc absolument continue de densité f_X . La variable aléatoire $Y = \ln X$ est elle aussi absolument continue. On peut le voir en utilisant le théorème de changement de variable ou directement :

$$F_Y(y) = P([X \le e^y]) = \begin{cases} 0 & \text{si } y \le 0\\ 1 - e^{-\lambda y} & \text{si } y > 0 \end{cases}$$
.

On reconnait la fonction de répartition d'une loi exponentielle $\mathcal{E}(\lambda)$.

- (b) Les variables X_i étant indépendantes et de même loi, il en est de même pour les v.a. $\ln X_i$ qui admettent donc comme espérance mathématique $\frac{1}{\lambda}$ et ont une variance. La loi faible des grands nombres permet donc de conclure que $\left(\ln U_n = \frac{1}{n}\sum_{i=1}^n \ln X_i\right)_n$ converge en loi vers $\frac{1}{\lambda}$. Comme on passe de $\ln U_n$ à U_n par l'application continue strictement croissante $x \mapsto e^x$, on peut en déduire que $(U_n)_n$ converge en loi vers $e^{1/\lambda}$.
- 8. ** Soit $(X_n)_{n\geq 1}$ une suite de v.a.r. indépendantes de même loi de Bernoulli $\mathcal{B}(1/2)$. On pose:

$$T_n = \sum_{i=1}^n \frac{X_i}{2^i}$$

Montrer que $(T_n)_{n\geq 1}$ converge en loi vers une v.a.r. de loi uniforme sur [0,1].

$$T_1 = \frac{X_1}{2}, T_1(\Omega) = \{0, \frac{1}{2}\}, P([T_1 = 0]) = P([T_1 = \frac{1}{2}]) = \frac{1}{2}.$$

$$T_2 = \frac{X_1}{2} + \frac{X_2}{4}, T_2(\Omega) = \{0, \frac{1}{4}, \frac{1}{2}, \frac{3}{4}\}, P([T_2 = t_i]) = \frac{1}{4} \text{ pour } t_i \in T_2(\Omega).$$

$$T_3 = \frac{X_1}{2} + \frac{X_2}{4} + \frac{X_3}{8}, T_3(\Omega) = \{0, \frac{1}{8}, \frac{1}{4}, \frac{3}{8}, \frac{1}{2}, \frac{5}{8}, \frac{3}{4}, \frac{7}{8}\}, P([T_3 = t_i]) = \frac{1}{8} \text{ pour } t_i \in T_3(\Omega).$$

Par récurrence, on montre que $T_n(\Omega) = \{\frac{k}{2^n} ; k \in [0, 2^n - 1]\}$ avec $P([T_n = \frac{k}{2^n}]) = \frac{1}{2^n}$ et donc $P([T_n \le \frac{k}{2^n}]) = \frac{k+1}{2^n}$. Dans tous les cas,

- si $x < 0, P([T_n \le x]) = 0$;
- si $x \ge 1$, $P([T_n \le x]) = 1$;
- si $x \in [0,1[$, il existe k tel que $\frac{k}{2^n} \le x < \frac{k+1}{2^n}$ $(k=E(2^nx))$ et alors

$$P([T_n \le x]) = P([T_n \le \frac{k}{2^n}]) = \frac{k+1}{2^n} = \frac{E(2^n x) + 1}{2^n}$$

et donc $F_{T_n}(x) = \frac{E(2^n x) + 1}{2^n} \mathbb{I}_{[0,1[}(x) + \mathbb{I}_{[1,+\infty[}(x).$

On a $E(2^n x) \le 2^n x < E(2^n x) + 1$, donc $2^n x - 1 < E(2^n x) \le 2^n x$ et $x < \frac{E(2^n x) + 1}{2^n} \le x + \frac{1}{2^n}$

et
$$\lim_{n \to +\infty} \frac{E(2^n x) + 1}{2^n} = x$$
 et finalement $\lim_{n \to +\infty} F_{T_n}(x) = \begin{cases} 0 & \text{si } x < 0 \\ x & \text{si } x \in [0, 1[\text{ qui est la fonction } 1 & \text{si } x \ge 1 \end{cases}$

de répartition de la loi uniforme $\mathcal{U}(]0,1[)$ donc (T_n) converge en loi vers une v.a.r. de loi uniforme sur]0,1[.

- **9.** * Soit $(X_n)_{n\geq 1}$ une suite de v.a.r. telles que $X_n(\Omega)=[1,n]$ et $P([X_n=k])=\lambda_n k$.
- (a) Déterminer λ_n .

(b) Quelle est la limite en loi de la suite $(Y_n)_{n\geq 1}$ où $Y_n=\frac{X_n}{n}$?

(a)
$$\sum_{k=1}^{n} P([X_n = k]) = 1 = \lambda_n \sum_{k=1}^{n} k = \lambda_n \frac{n(n+1)}{2} \operatorname{donc} \left[\lambda_n = \frac{2}{n(n+1)} \right]$$

(b)
$$F_{X_n}(k) = \lambda_n \sum_{i=1}^k i = \lambda_n \frac{k(k+1)}{2} = \frac{k(k+1)}{n(n+1)}$$
 et

$$F_{Y_n}(y) = P\left(\left[\frac{X_n}{n} \le y\right]\right) = P([X_n \le ny]) = \begin{cases} 0 & \text{si } y \le 0\\ \frac{E(ny)(E(ny)+1)}{n(n+1)} & \text{si } y \in]0,1]\\ 1 & \text{si } y > 1 \end{cases}.$$

Or $E(ny) \le ny < E(ny) + 1$ donc $ny - 1 < E(ny) \le ny$ et $ny < E(ny) + 1 \le ny + 1$ donc

$$\frac{y(ny-1)}{n+1} < \frac{E(ny)(E(ny)+1)}{n(n+1)} < \frac{y(ny+1)}{n+1}$$

d'où $\lim_{n\to+\infty}\frac{E(ny)(E(ny)+1)}{n(n+1)}=y^2$ pour $y\in]0,1[$. On a donc $\lim_{n\to+\infty}F_{Y_n}(y)=F(y)$ pour tout $y\in\mathbb{R}\setminus\{0,1\}$ où $F(y)=y^2\mathbb{I}_{]0,1[}(y)+\mathbb{I}_{[1,+\infty[}(y))$ qui est la fonction de répartition de la v.a.r. de densité $f:y\mapsto 2y\mathbb{I}_{]0,1[}(y):[(Y_n)]$ converge en loi vers une v.a.r. de densité f.

10. (**) Un sac contient 100 billes dont 36 sont rouges et les autres sont bleues. Une épreuve consiste à tirer 16 fois de suite une bille avec remise. Soit X la v.a.r. égale au nombre de boules rouges tirées.

Estimer $P([|X - \mathbb{E}(X)| \ge 2\sqrt{\operatorname{var}(X)}]).$

 $X = \sum_{i=1}^{16} X_i$ où $X_i = 1$ si la boule tirée au *i*-ième tirage est rouge et $X_i = 0$ sinon. La loi de X_i est la loi de Bernoulli $\mathcal{B}(0.36)$ et les X_i sont indépendantes, avec $\mathbb{E}(X_i) = 0.36$ et $\text{var}(X_i) = 0.36 \times 0.64$, donc $\mathbb{E}(X) = m = 16 \times 0.36$ et $\text{var}(X) = 16 \times 0.36 \times 0.64$.

On ne peut pas appliquer le théorème central limite car 16 < 30, mais on peut utiliser l'inégalité de Bienaymé-Tchebytchev :

$$P([|X - \mathbb{E}(X)| \ge 2\sqrt{\text{var}(X)}]) = P([|X - m| \ge 2\sigma) \le \frac{1}{4\sigma^2} \text{var}(X) = \frac{1}{4}.$$

C'est tout ce qu'on peut dire.

11. (**) Une urne contient 3 boules numérotées 1, 2, 3. On effectue une suite de 100 tirages indépendants avec remise. On note X_i le numéro de la boule tirée au *i*-ème tirage et on pose $S = \sum_{i=1}^{100} X_i$.

Indiquer le plus petit nombre s que l'on peut trouver au moyen du théorème de la limite centrale tel que:

$$P([200 - s \le S \le 200 + s]) \ge 0.9$$

$$P([X_i=1]) = P([X_i=2]) = P([X_i=3]) = \frac{1}{3}, \mathbb{E}(X) = 2, \mathbb{E}(X^2) = \frac{1}{3}[1+4+9] = \frac{14}{3} \text{ et } \text{var}(X) = \frac{14}{3} - \frac{12}{3} = \frac{2}{3} \text{ (ou directement, } \text{var}(X) = (1-2)^2 \times \frac{1}{3} + (2-2)^2 \times \frac{1}{3} + (3-2)^2 \times \frac{1}{3}).$$
 On pose $S = \sum_{i=1}^{10} X_i$. On a alors $\mathbb{E}(S) = 200$ et $\text{var}S = \frac{200}{3}$.

100 > 30 donc on peut appliquer le théorème central limite qui donne ici :

$$P([200 - s \le S \le 200 + s]) = P\left(\left\lceil \left| \frac{S - \mathbb{E}(S)}{\sqrt{\operatorname{var}(X)}} \right| \le \frac{s}{\sqrt{\operatorname{var}(X)}} \right\rceil\right) \approx 2\Phi\left(\frac{s}{\sqrt{\operatorname{var}(X)}}\right) - 1$$

où Φ est la fonction de répartition de la loi Normale $\mathcal{N}(0,1)$.

On cherche s tel que $2\Phi\left(\frac{s}{\sqrt{\text{var}(X)}}\right) - 1 \approx 0.9$,

soit
$$\Phi\left(\frac{s}{\sqrt{\text{var}(X)}}\right) \approx 0.95 \text{ d'où } \frac{s}{\sqrt{\frac{200}{3}}} \approx 1.645 \text{ et } [s \approx 13.4].$$

12. * Une enquète statistique portant sur $100\ 000$ automobilistes débutants a révélé que 10 d'entre eux avaient provoqué un accident mortel dans leur première année de conduite. On choisit 100 débutants au hasard et on désigne par X le nombre d'entre eux qui ont provoqué un accident mortel au cours de leur première année de conduite.

Calculer
$$P([X=0])$$
 et $P([X=2])$.

 $X_i=1$ si le *i*-ième débutant a un accident mortel. $X=\sum_{i=1}^{100}X_i$ avec $P([X_i=1])=\frac{10}{10\ 000}=0.001$. X suit la loi Binomiale $\mathcal{B}(100,0.001)$ avec $\begin{cases} n=100>50\\ p=0.001\\ np=0.1<5 \end{cases}$ On peut donc approximer la loi de X par la loi de Poisson $\mathcal{P}(0.1)$ donc

$$P([X=0]) \approx e^{-0.1} \frac{0.1^{0}}{0!} \approx 0.9$$

 $P([X=2]) \approx e^{-0.1} \frac{0.1^{2}}{2!} \approx 0.0045$

13. ** Un joueur lance une pièce équilibrée. Lorsqu'il obtient "pile", il gagne 1 euro et lorsqu'il obtient "face", il perd 1 euro.

Quel est le nombre maximal de lancers à effectuer pour que le joueur ait 95% de chances de perdre au plus 20 euros ?

 $X_i = 1$ si pile (proba $\frac{1}{2}$) et $X_i = -1$ si face (proba $\frac{1}{2}$), $\mathbb{E}(X_i) = 0$, et $\mathrm{var}(X_i) = 1$. Le gain relatif (il peut être négatif!) après n parties est $S_n = \sum_{i=1}^n X_i$ et on cherche n tel que $P([S_n \ge -20]) \ge 0.95$ ou plutôt, avec la correction de continuité, $P([S_n > -20.5]) \ge 0.95$. Or, $\frac{S_n}{\sqrt{n}}$ suit approximativement la loi $\mathcal{N}(0,1)$ et

$$P([S_n > -20.5]) = P\left(\left[\frac{S_n}{\sqrt{n}} > -\frac{20.5}{\sqrt{n}}\right]\right) = 1 - \Phi\left(-\frac{20.5}{\sqrt{n}}\right) = \Phi\left(\frac{20.5}{\sqrt{n}}\right)$$

où Φ est la fonction de répartition de la loi Normale $\mathcal{N}(0,1)$.

On trouve donc $\frac{20.5}{\sqrt{n}} \approx 1.645$, d'où $n \approx 154 \geq 30$ donc l'approximation est justifiée. Il faut donc $n \leq 154$ pour avoir au moins 95% des chances de perdre au plus 20 euros (avec $n \geq 30$).

- 14. *** À la veille d'une élection, 49% de la population votent pour A et 51% votent pour B. On effectue une enquète sur 2n+1 personnes afin de pouvoir faire un pronostic sur le résultat des élections.
 - (a) Quelle est la probabilité p_n pour que le pronostic soit faux?
 - (b) Montrer que pour n assez grand, il existe a_n tel que $p_n \simeq \Phi(a_n)$.
 - (c) Déterminer n pour que $p_n \ge 0, 1$.

On suppose les tirages faits avec remise (une personne peut être sondée plusieurs fois). Il y a 2n+1 tirage et on pose $X_i=1$ si la i-ième personne sondée vote pour B et $X_i=0$ si elle vote pour A. Ainsi, $X=\sum_{i=1}^{2n+1}X_i$ et X suit la loi binomiale $\mathcal{B}(2n+1,0.51)$.

(a) Le pronostic est faux si
$$X \le n$$
 donc $p_n = P([X \le n]) = \sum_{i=0}^n C_{2n+1}^i 0.51^i \ 0.49^{2n+1-i}$

(b) $\mathbb{E}(X) = (2n+1) \times 0.51$ et $\text{var}(X) = (2n+1) \times 0.51 \times 0.49$. Avec l'hypothèse de correction de continuité,

$$p_n = P\left(\left[\frac{X - \mathbb{E}(X)}{\sqrt{\operatorname{var}(X)}} \le \frac{n + 0.5 - \mathbb{E}(X)}{\sqrt{\operatorname{var}(X)}}\right]\right) \approx \Phi(a_n)$$

où Φ est la fonction de répartition de la loi Normale $\mathcal{N}(0,1)$. On prend

$$a_n = \frac{n + 0.5 - \mathbb{E}(X)}{\sqrt{\text{var}(X)}} = \frac{\frac{1}{2}(2n+1) - (2n+1) \times 0.51}{\sqrt{2n+1}\sqrt{0.51 \times 0.49}},$$

soit
$$a_n = -\frac{\sqrt{2n+1} \times 0.01}{\sqrt{0.51 \times 0.49}}$$

(c) $\Phi(a_n) \ge 0.1$ donne $1-\Phi(a_n) \le 0.9$ avec $1-\Phi(a_n) = \Phi(-a_n)$, donc $\frac{\sqrt{2n+1}\times0.01}{\sqrt{0.51\times0.49}} \le 1.29$ et $n \le 2078.79$. On doit aussi avoir $n \ge 30$ pour que l'approximation soit légitime d'où, si $30 \le n \le 2078$, $p_n \ge 0.1$.

15. * Un dé régulier est lancé 9000 fois.

Déterminer la probabilité d'obtenir entre 1400 et 1600 fois la face 6.

Si X est le nombre de 6, $X = \sum_{i=1}^{9000} X_i$ où X_i suit la loi de Bernoulli $\mathcal{B}\left(\frac{1}{6}\right)$, donc $\mathbb{E}(X) = \frac{9000}{6} = 1500$ et $\text{var}(X) = 9000 \times \frac{1}{6} \times \frac{5}{6} = 250 \times 5 = 1250$.

$$\begin{split} P([1400 \le X \le 1600]) &= P([|X - \mathbb{E}(X)| \le 100]) = P\left(\left[\left|\frac{X - \mathbb{E}(X)}{\sqrt{\mathrm{var}(X)}}\right| \le \frac{100.5}{\sqrt{1250}}\right]\right) \\ &= 2\Phi\left(\frac{100.5}{\sqrt{1250}}\right) - 1 \approx 0.9954 \end{split}$$

où Φ est la fonction de répartition de la loi Normale $\mathcal{N}(0,1)$. (On a pris 100.5 au lieu de 100 pour appliquer la correction de continuité).

D'où
$$P([1400 \le X \le 1600]) \approx 0.9954$$
.

16. * On dispose de 1000 pots de peinture. La probabilité qu'un pot soit défectueux est de 0.2%.

Donner la probabilité qu'au moins 4 pots soient défectueux.

Le nombre de pots défectueux X suit la loi Binomiale $\mathcal{B}\left(1000; \frac{0.2}{100}\right)$ avec

$$\begin{cases} 1000 \ge 30\\ \frac{0.2}{100} \le 0, 1\\ 1000 \times \frac{0.2}{100} = 2 < 15 \end{cases},$$

donc on peut approximer la loi de X par la loi $\mathcal{P}(2)$. On cherche $P([X \ge 4])$ qui est aussi $1-P([X \le 3]) \approx 0,1429$ d'après la table de la loi de Poisson. Ainsi, $P([X \ge 4]) \approx 0,1429$.

17. * On fait n parties de "pile ou face".

A l'aide de l'approximation Normale de la loi Binomiale, déterminer n pour que l'on puisse affirmer que la fréquence d'apparition de "pile" soit comprise entre 0,45 et 0,55 avec une probabilité au moins égale à 0,9.

Si X est le nombre de piles, $X = \sum_{i=1}^{n} X_i$ où X_i suit la loi de Bernoulli $\mathcal{B}\left(\frac{1}{2}\right)$. La fréquence des piles est $\frac{X}{n}$. $\mathbb{E}\left(\frac{X}{n}\right) = \frac{1}{2} = 0.5$, var $\left(\frac{X}{n}\right) = \frac{1}{n} \frac{1}{4}$.

$$P\left(\left[0.45 \le \frac{X}{n} \le 0.55\right]\right) = P\left(\left[-0.05 \le \frac{X}{n} - \mathbb{E}\left(\frac{X}{n}\right) \le 0.05\right]\right)$$
$$= P\left(\left[\left|\frac{X}{n} - \mathbb{E}\left(\frac{X}{n}\right)\right| \le 0.05\right]\right)$$
$$= 1 - P\left(\left[\left|\frac{X}{n} - \mathbb{E}\left(\frac{X}{n}\right)\right| > 0.05\right]\right)$$

et, par l'inégalité de Bienaymé-Tchebytchev, $P\left(\left[\left|\frac{X}{n} - \mathbb{E}\left(\frac{X}{n}\right)\right| > 0,05\right]\right) \leq \frac{1}{(0,05)^2} \text{var}\left(\frac{X}{n}\right)$ Pour avoir n tel que $P\left(\left[0.45 \leq \frac{X}{n} \leq 0.55\right]\right)$, il suffit donc de trouver n tel que

$$\frac{1}{(0.05)^2} \operatorname{var}\left(\frac{X}{n}\right) \le 0.1,$$

soit
$$\frac{1}{4n} \le (0.05)^2 \times 0.1$$
 et $n \ge \frac{1}{4 \times 25.10^{-5}}$, soit $n \ge 1000$.

 ${\bf 18.}$ ** Une entreprise compte 300 employés. Chacun d'eux téléphone en moyenne 6 minutes par heure.

Quelle est le nombre de lignes que l'entreprise doit installer pour que la probabilité que toutes les lignes soient utilisées au même instant soit au plus égale à 0,025 ?

Soit n le nombre de ligne à installer et X le nombre d'employés qui téléphonent à l'instant t. On cherche n tel que $P([X \le n]) \le 0.025$. Les appels étant indépendants X suit la loi Binomiale $\mathcal{B}\left(300;\frac{1}{10}\right)$. $\begin{cases} 300 \ge 30 \\ 300 \times \frac{1}{10} = 30 \ge 15 \\ 300 \times \frac{1}{10} \times \frac{9}{10} = 27 > 5 \end{cases}$ loi de X par la loi Normale $\mathcal{N}(m,\sigma^2)$ où m=30 et $\sigma^2=27$.

On cherche n tel que $P([X > n]) \le 0.025$, c'est-à-dire

$$P\left(\left[\frac{X-m}{\sigma} > \frac{n-m}{\sigma}\right]\right) = 1 - \Phi\left(\frac{n-30}{\sqrt{27}}\right) \le 0.025$$

où Φ est la fonction de répartition de la loi Normale $\mathcal{N}(0,1)$.

On cherche donc n tel que $\Phi\left(\frac{n-30}{\sqrt{27}}\right) \ge 0.975 = \Phi(1.96)$.

Donc
$$n \ge 30 + 1.96 \times \sqrt{27}$$
, soit $n \ge 41$

19. *** On procède à des lancers successifs d'une paire de dés non pipés. Soit X_i la v.a.r. égale à la somme des 2 numéros obtenus à la suite du i-ème lancer.

Combien de lancers sont nécessaires pour obtenir avec une probabilité supérieure à 0.95 une moyenne des résultats X_i différant de 7 de moins de 0.1?

 $X_i = U_i + V_i \text{ où } U_i \text{ (resp. } V_i) \text{ est le résultat du premier (resp. deuxième) dé au } i\text{-ième lancer}: X_i = U_i + V_i \text{ où } U_i \text{ et } V_i \text{ sont indépendantes de loi l'équiprobabilité sur } \llbracket 1, 6 \rrbracket.$ $X_i(\Omega) = \llbracket 2, 12 \rrbracket, \ \mathbb{E}(X_i) = 2\mathbb{E}(U_i) \text{ et } \mathrm{var}(X_i) = 2\mathrm{var}(U_i) \text{ avec } \mathbb{E}(U_i) = \frac{1}{6} \left(\sum_{k=1}^6 k\right) = \frac{7}{2},$ et $\mathbb{E}(U_i^2) = \frac{1}{6} \left(\sum_{k=1}^6 k^2\right) = \frac{6\times7\times13}{6\times6} = \frac{91}{6} \text{ et } \mathrm{var}(U_i) = \frac{91}{6} - \frac{49}{4} = \frac{182-147}{12} = \frac{35}{12}. \text{ Ainsi,}$ $\mathbb{E}(X_i) = 7 \text{ et } \mathrm{var}(X_i) = \frac{35}{6} \text{ et si } Z_n = \frac{1}{n} \sum_{i=1}^n X_i, Z_n \text{ suit approximativement la loi normale}$ $\mathcal{N}(\mathbb{E}(Z_n), \mathrm{var}(Z_n)) \text{ où } \mathbb{E}(Z_n) = \mathbb{E}(X_i) = 7 = m \text{ et } \mathrm{var}(Z_n) = \frac{1}{n} \mathrm{var}(X_i) = \frac{35}{6n} = \sigma^2.$

On cherche n tel que $P([|Z_n-7|>0,1])\leq 0,05$. Or Par l'inégalité de Bienaymé-Tchebytchev, $P([|Z_n-\mathbb{E}(Z_n)|>0,1])\leq 100 \mathrm{var}(Z_n)=\frac{3500}{6n}$. Il suffit donc de prendre n tel que $\frac{3500}{6n}\leq 0.05$, soit $n\geq \frac{70\,000}{6}\approx 11\,667$.

Plus précisément, $P([|Z_n-7|\leq 0.1])=P\left(\left|\frac{Z_n-\mathbb{E}(Z_n)}{\sqrt{\mathrm{var}Z_n}}\right|\leq \frac{0.1}{\sqrt{\mathrm{var}Z_n}}\right)\approx 2\Phi\left(0,1\sqrt{\frac{6n}{35}}\right)-1$ où Φ est la fonction de répartition de la loi normale $\mathcal{N}(0,1)$. On cherche n tel que $2\Phi\left(0.1\sqrt{\frac{6n}{35}}\right)-1\geq 0.95$, soit $\Phi\left(0.1\sqrt{\frac{6n}{35}}\right)\geq 0.975=\Phi(1.96)$, d'où $0.1\sqrt{\frac{6n}{35}}\geq 1.96$ et $\frac{6n}{35}\geq 19.6^2$, soit $n\geq \frac{19.6^2\times 35}{6}$, soit $n\geq 2240$. On a bien $n\geq 30$ et donc, l'approximation

20. * Dans un programme de calcul, on décide d'utiliser k chiffres significatifs après la virgule et d'arrondir tous les résultats à $\frac{1}{2}10^{-k}$ près. On suppose que l'on effectue 10^6 opérations successives, que les erreurs commises pour chacune sont indépendantes, de loi uniforme sur [-a,a], où $a=\frac{1}{2}10^{-k}$. On note S l'erreur commise sur le résultat final et on veut calculer $P([|S| \le 10^3 a]).$

Soit X_i l'erreur commise à la *i*-ème opération (donc $S = \sum_{i=1}^{10^{\circ}} X_i$).

En considérant 10^6 comme "grand", montrer que $\frac{\sqrt{3}S}{10^3a}$ suit approximativement la loi Normale $\mathcal{N}(0,1)$ et conclure.

 X_i erreur à la *i*-ème opération, $S = \sum_{i=1}^{10^6} X_i$. Les X_i étant indépendantes, de même loi, d'après le théorème central limite,

$$P_{\left(\frac{S-\mathbb{E}(S)}{\sqrt{\operatorname{var}(S)}}\right)} pprox \mathcal{N}(0,1).$$

Or $\mathbb{E}(S) = 10^6 \mathbb{E}(X_i)$, avec $\mathbb{E}(X_i) = 0$ car X_i , erreur due à l'arrondi à $\frac{1}{2} 10^{-k}$ près, suit la loi uniforme sur $\left] -\frac{1}{2} 10^{-k}, \frac{1}{2} 10^{-k} \right[$, *i.e.* $\left] -a, a\right[$.

 $var(S) = 10^6 var(X_i)$ (variables indépendantes), et $var(X_i) = \mathbb{E}(X_i^2) = \frac{1}{2a} \int_{-a}^a x^2 dx = \frac{a^2}{3}$ donc $\sqrt{\operatorname{var}(S)} = 10^3 \frac{a}{\sqrt{3}} \text{ et } \left[P_{\frac{\sqrt{3}S}{10^3a}} \approx \mathcal{N}(0,1) \right].$

On a alors

$$\begin{split} P([|S| \leq 10^3 a]) &= P\left(\left[\frac{|S|}{10^3 a} \leq 1\right]\right) = P\left(\left[\frac{|S\sqrt{3}|}{10^3 a} \leq \sqrt{3}\right]\right) \\ &= \Phi(\sqrt{3}) - \Phi(-\sqrt{3}) = 2\Phi(\sqrt{3}) - 1. \end{split}$$

or
$$\Phi(\sqrt{3}) \approx \Phi(1,732) \approx 0,958$$
, donc $P([|S| \le 10^3 a]) \approx 0,916$

21. ** Soit f définie sur [a,b], à valeurs dans $[m,M] \subset \mathbb{R}_+$.

On note $D = [a, b] \times [m, M]$, $A = \{(x, y) \in D : f(x) \ge y\}$ et $p = \frac{aire \ de \ A}{aire \ de \ D}$. Pour $k \in \mathbb{N}^*$, on considère un couple de v.a. (X_k, Y_k) de loi uniforme sur D, et on définit Z_k $\operatorname{par}: Z_k = \left\{ \begin{array}{l} 1 \text{ si } Y_k \leq f(X_k) \\ 0 \text{ sinon.} \end{array} \right. \text{ On pose } \overline{Z_n} = \frac{Z_1 + \dots + Z_n}{n}.$ Les v.a. $X_1, \dots, X_n, \dots, Y_1, \dots, Y_n, \dots$ sont supposées indépendantes.

- (a) Calculer $\mathbb{E}(Z_k)$, $\operatorname{var}(Z_k)$, $\mathbb{E}(\overline{Z_n})$, $\operatorname{var}(\overline{Z_n})$.
- (b) En utilisant la loi des grands nombres, montrer que $\overline{Z_n} \to p$.
- Avec l'inégalité de Bienaymé-Tchebychev, trouver n tel que $P\left(\left[\left|\overline{Z_n}-p\right|>\frac{1}{100}\right]\right)<\frac{5}{100}$.
- Avec le théorème central limite, déterminer pour n "grand" la loi approximative de Z_n .

(a) $Z_k = 1$ si $f(X_k) \ge Y_k$, soit (X_k, Y_k) au dessous de la courbe (dans A).

$$P([Z_k = 1]) = \frac{\text{aire de } A}{\text{aire de } D} = p$$

avec aire de $D = (M - m) \times (b - a)$ et

aire de
$$A = \int_a^b (f(x) - m) dx = \int_a^b f(x) dx - m(b - a).$$

 $\mathbb{E}(Z_k) = p \text{ et } \operatorname{var}(Z_k) = p(1-p) \text{ car } P_{Z_k} = \mathcal{B}(p) \text{ et}$

 $\mathbb{E}(\bar{Z}_n) = \frac{\sum_{i=1}^n \mathbb{E}(Z_i)}{n} = p \text{ et } \operatorname{var}(\bar{Z}_n) = \frac{1}{n^2} \operatorname{var}\left(\sum_{i=1}^n Z_i\right) = \frac{1}{n} \operatorname{var}(Z_i) = \frac{p(1-p)}{n} \text{ car les } Z_i \text{ sont}$ indépendantes. D'où, finalement

$$\mathbb{E}(\bar{Z}_n) = p \text{ et } \operatorname{var}(\bar{Z}_n) = \frac{1}{n}p(1-p).$$

(b) Par la loi des grands nombres, $|\bar{Z}_n \xrightarrow{P} \mathbb{E}(\overline{Z_i}) = p|$

(c)
$$P([|\bar{Z}_n - p| \le 10^{-2}]) \ge 0.95$$
 équivaut à $P([|\bar{Z}_n - p| > 10^{-2}]) < 0.05 = 5.10^{-2}$.

Or
$$P([|\bar{Z}_n - p| > 10^{-2}]) \le \frac{1}{10^{-4}} \mathbb{E}((\bar{Z}_n - p)^2) = \frac{\operatorname{var}(\bar{Z}_n)}{10^{-4}} = \frac{p(1-p)}{10^{-4}n}$$
.

On cherche n tel que $\frac{p(1-p)}{10^{-4}n} < 5.10^{-2}$, soit $n > \frac{p(1-p)}{5.10^{-6}}$. Si $\varphi(p) = p(1-p) = p - p^2$, $\varphi'(p) = 1 - 2p$ donc φ admet un maximum en p = 1/2avec $\varphi(1/2) = 1/4$.

Ainsi, pour avoir $n>\frac{p(1-p)}{5.10^{-6}}$ avec p quelconque, il suffit de prendre $n>\frac{1}{4}\frac{1}{5.10^{-6}}$, soit $n>\frac{10^6}{20}=5.10^4:\boxed{n>50\,000}$.

- (d) D'après le théorème central limite, \bar{Z}_n suit approximativement la loi $\mathcal{N}\left(p; \frac{p(1-p)}{n}\right)$.
- **22.** *** Un point matériel se déplace dans \mathbb{R}^2 en effectuant à chaque instant n, un trajet de longueur a fixée dans une direction choisie arbitrairement. Ainsi, si les v.a. X_n et Y_n sont les coordonnées du point à l'instant n, on a $\begin{cases} X_{n+1} - X_n = a\cos\Theta_{n+1} \\ Y_{n+1} - Y_n = a\sin\Theta_{n+1} \end{cases}$, où les v.a. Θ_n sont indépendantes de loi uniforme sur $[0,2\pi[$. On suppose que $X_0=Y_0=0$.
 - Calculer $\mathbb{E}(\cos\Theta_k)$, $\mathbb{E}(\sin\Theta_k)$, $\mathbb{E}(\cos^2\Theta_k)$, $\operatorname{var}(\cos\Theta_k)$. En déduire $\mathbb{E}(X_n)$, $\mathbb{E}(Y_n)$, $\operatorname{var}(X_n)$, $\operatorname{var}(Y_n), \operatorname{cov}(X_n, Y_n).$
 - (b) On suppose maintenant n "grand", et on pose $\left\{ \begin{array}{l} X_n = R_n \cos T_n \\ Y_n = R_n \sin T_n \end{array} \right.$ Déterminer la loi approximative de (X_n,Y_n) [On généralisera le Théorème Central Limite]. En déduire celle de (R_n, T_n) , celle de R_n et celle de T_n . Calculer $\mathbb{E}(R_n)$, $\text{var}(R_n)$ et $P([R_n > r])$.

$$P_{\Theta_k} = \mathcal{U}([0, 2\pi[) \text{ donc } f_{\Theta_k}(\theta) = \frac{1}{2\pi} \mathbb{I}_{[0, 2\pi[}(\theta)$$

(a)
$$\mathbb{E}(\cos\Theta_k) = \int \cos\theta \, f_{\Theta_k}(\theta) \, d\theta = \frac{1}{2\pi} \int_0^{2\pi} \cos\theta \, d\theta = 0$$
. De même,

$$\mathbb{E}(\sin\Theta_k) = \int \sin\theta \, f_{\Theta_k}(\theta) \, d\theta = \frac{1}{2\pi} \int_0^{2\pi} \sin\theta \, d\theta = 0,$$

$$\mathbb{E}(\cos^2\Theta_k) = \int \cos^2\theta \, f_{\Theta_k}(\theta) \, d\theta = \frac{1}{2\pi} \int_0^{2\pi} \cos^2\theta \, d\theta = \frac{1}{2\pi} \int_0^{2\pi} \frac{\cos 2\theta + 1}{2} \, d\theta = \frac{1}{2},$$

$$\operatorname{var}(\cos \Theta_k) = \mathbb{E}(\cos^2 \Theta_k) - \mathbb{E}(\cos \Theta_k)^2 = \frac{1}{2},$$

$$\mathbb{E}(\sin^2 \Theta_k) = \mathbb{E}(1 - \cos^2 \Theta_k) = \frac{1}{2} \text{ et var}(\sin \Theta_k) = \frac{1}{2}.$$

$$\mathbb{E}(\cos \Theta_k) = \mathbb{E}(\sin \Theta_k) = 0, \, \operatorname{var}(\cos \Theta_k) = \operatorname{var}(\sin \Theta_k) = \frac{1}{2}.$$

 $X_0 = 0, X_1 = a\cos\Theta_1, X_2 = a\cos\Theta_1 + a\cos\Theta_2$, soit, par récurrence, $X_n = a\sum_{k=1}^n\cos\Theta_k$ et $Y_n = a\sum_{k=1}^n\sin\Theta_k$.

Par linéarité de l'espérance, on en déduit $\mathbb{E}(X) = \mathbb{E}(Y) = 0$

Puis $\operatorname{var}(X_n) = a^2 \operatorname{var}\left(\sum_{k=1}^n \cos \Theta_k\right) = a^2 \sum_{k=1}^n \operatorname{var}(\cos \Theta_k) = a^2 \frac{n}{2} \operatorname{car} \operatorname{les} \Theta_k \operatorname{sont} \operatorname{indépendantes}$ donc les $\cos \Theta_k$ aussi et de même, $\operatorname{var}(Y_n) = a^2 \frac{n}{2}$, d'où $\operatorname{var}(X_n) = \operatorname{var}(Y_n) = \frac{a^2 n}{2}$. $X_n Y_n = \sum_{1 \leq i,j \leq n} a^2 \cos \Theta_i \sin \Theta_j$, avec

- $\operatorname{si} i \neq j$, $\mathbb{E}(\cos \Theta_i \sin \Theta_j) = \mathbb{E}(\cos \Theta_i)\mathbb{E}(\sin \Theta_j) = 0$;
- $\mathbb{E}(\cos\Theta_i\sin\Theta_i) = \mathbb{E}\left(\frac{1}{2}\sin 2\Theta_i\right) = \frac{1}{2\pi} \int_0^{2\pi} \sin\theta\cos\theta \,d\theta = \frac{1}{2\pi} \left[\frac{\sin^2\theta}{2}\right]_0^{2\pi} = 0$ donc $\mathbb{E}(X_n Y_n) = 0$ et comme $\mathbb{E}(X_n) = 0$, $\boxed{\cot(X_n, Y_n) = 0}$.

(b) On applique le théorème central limite généralisé à \mathbb{R}^2 à la suite $(X_n, Y_n) = \left(\sum_{k=1}^n a\cos\Theta_k, \sum_{k=1}^n a\sin\Theta_k\right)$:

$$P_{(X_n,Y_n)} \approx \mathcal{N}\left((\mathbb{E}(X_n), \mathbb{E}(Y_n)), \ \Gamma_{X_n,Y_n} = \begin{pmatrix} \operatorname{var}(X_n) & \operatorname{cov}(X_n, Y_n) \\ \operatorname{cov}(X_n, Y_n) & \operatorname{var}(Y_n) \end{pmatrix} \right)$$

donc ici $P_{(X_n,Y_n)} \approx \mathcal{N}\left((0,0), \quad \left(\begin{array}{cc} \frac{na^2}{2} & 0 \\ 0 & \frac{na^2}{2} \end{array}\right)\right)$ de densité

$$f_n: (x,y) \mapsto \frac{1}{\sqrt{2\pi}} \frac{1}{\sqrt{\frac{na^2}{2}}} e^{-\frac{x^2}{2\frac{na^2}{2}}} \times \frac{1}{\sqrt{2\pi}} \frac{1}{\sqrt{\frac{na^2}{2}}} e^{-\frac{y^2}{2\frac{na^2}{2}}} = \frac{1}{\pi na^2} e^{-\frac{(x^2+y^2)}{na^2}}.$$

On utilise les coordonnées polaires classiques. Soit $h:(x,y)\mapsto (r,t)$ la bijection de $\mathbb{R}^2\setminus\{(0,0)\}$ sur $]0,+\infty[\times[0,2\pi[$, de bijection réciproque $h^{-1}:(r,t)\mapsto(x,y)=(r\cos t,r\sin t)$. $J_{h^{-1}}(r,t)=\begin{vmatrix}\cos t & -r\sin t\\\sin t & r\cos t\end{vmatrix}=r$ et

$$f_{R_n,T_n}(r,t) = f_{X_n,Y_n}(r\cos t, r\sin t) \times r \,\mathbb{I}_{]0,+\infty[}(r)\,\mathbb{I}_{]0,2\pi[}(t),$$

soit $f_{R_n,T_n}(r,t) = \frac{1}{\pi na^2} e^{-\frac{r^2}{na^2}} r \mathbb{I}_{]0,+\infty[}(r) \mathbb{I}_{]0,2\pi[}(t)$, puis $f_{R_n}(r) = \int f_{R_n,T_n}(r,t) dt$, soit

$$f_{R_n}(r) = \frac{2}{na^2} r e^{-\frac{r^2}{na^2}} \mathbb{I}_{]0,+\infty[}(r).$$

 $f_{T_n}(t) = \int f_{R_n,T_n}(r,t) dr = \frac{1}{2\pi} \left[-e^{-\frac{r^2}{na^2}} \right]_0^{+\infty} \mathbb{I}_{]0,2\pi[}(t), \text{ soit } f_{T_n}(t) = \frac{1}{2\pi} \mathbb{I}_{]0,2\pi[}(t) :$

$$P_{T_n} = \mathcal{U}(]0, 2\pi[).$$

 $\mathbb{E}(R_n) = \int r f_{R_n}(r) \, dr = \frac{2}{na^2} \int_0^{+\infty} r^2 e^{-\frac{r^2}{na^2}} \, dr = \frac{2}{na^2} \times \frac{1}{2} \int_{-\infty}^{+\infty} r^2 e^{-\frac{r^2}{na^2}} \, dr. \text{ Or, si } Z$ est une v.a.r. de loi $\mathcal{N}\left(0, \frac{na^2}{2}\right)$, on a $\text{var}(Z) = \frac{na^2}{2} = \frac{1}{\sqrt{2\pi}\sqrt{\frac{na^2}{2}}} \int_{-\infty}^{+\infty} z^2 e^{-\frac{z^2}{na^2}} \, dz$, d'où $\int_{-\infty}^{+\infty} z^2 e^{-\frac{z^2}{na^2}} \, dz = \frac{na^2}{2} \times a\sqrt{\pi n} \text{ et } \left[\mathbb{E}(R_n) = \frac{a}{2}\sqrt{n\pi}\right].$

$$\mathbb{E}(R_n^2) = \int r^2 f_{R_n}(r) \, dr = \frac{2}{na^2} \int_0^{+\infty} r^3 e^{-\frac{r^2}{na^2}} \, dr = \int_0^{+\infty} na^2 u e^{-u} \, du = na^2 \, \Gamma(2) = na^2$$

et $\mathbb{E}(X_n^2) = \text{var}(X_n) = \frac{na^2}{2}$ (on retrouve ainsi que $\mathbb{E}(R_n^2) = \mathbb{E}(X_n^2) + \mathbb{E}(Y_n^2) = na^2$). On a alors $\text{var}(R_n) = na^2 - \frac{a^2}{4}n\pi$, soit $\sqrt{\text{var}(R_n) = na^2 \left(1 - \frac{\pi}{4}\right)}$.

$$P([R_n > r]) = \int_r^{+\infty} f_{R_n}(u) du = \left[-e^{-\frac{u^2}{na^2}} \right]_r^{+\infty}$$
, soit $P([R_n > r]) = e^{-\frac{r^2}{na^2}}$.