本

课程名称	线性		天 字 ^老 考试学期			得 分	
适用专业	全	校	•			试时间长度	120 分钟
题号				四	五	六	enalitamenta in constante en en
得分						Acceptance of the state of the	* Paralles of the American Sec.
一. (30%) 均 1. 设 2 阶矩阵 2. 设向量 α_1 , 3. 设 $A = \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}$	$A = (\alpha_1, \alpha_2, \alpha_3)$ 线 2 1 1 a a 0	(β) , $B=$ 性无关,若 (2) , 若 (4) , 若 (4) 基 (4) 。	(α_2, eta) ,若 $f(\alpha_1 + lpha_2, klpha_3)$,若 $f(\alpha_1 + lpha_2, klpha_3)$ 的基础 $f(eta_1, eta_2)$ 的 这	$oldsymbol{eta}_2-lpha_3,lpha_1$ 出解系中只 $oldsymbol{eta}$	$+\alpha_3$ 线性和含两个向量 $\begin{pmatrix} 2 & 3 \\ 1 & 1 \end{pmatrix}$,	目关,则 <i>k</i> = _ 量,则 <i>a</i> = 向量 η 在基 <i>α</i>	; ; $lpha_{_1},lpha_{_2}$ 下的
生	A 的第 的矩阵 <i>I</i>	二行的2倍 ?=	加到第一行	,再将第一	一行和第二		库 <i>B</i> ,则满 ;
7. 若 $A = \begin{pmatrix} 1 \\ 2 \end{pmatrix}$	$\binom{2}{x}$ $\Rightarrow E$	$B = \begin{pmatrix} 1 & 3 \\ y & 4 \end{pmatrix}$	合同,则参	数 <i>x</i> , <i>y</i> 的	取值范围是	<u>.</u>	;
8. 己知 A, P $Q = (2\beta, 3)$						$^{1}AP = \begin{pmatrix} 1 & 0 \\ 0 & 2 \end{pmatrix}$	/
9. 线性方程组							
10. 矩阵 $A = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix}$	$ \begin{pmatrix} 2 & -1 \\ 0 & 1 \\ 0 & 0 \end{pmatrix} $	1 2 的若当 1	有标准形是				·

二. **(10%)** 计算
$$n$$
阶行列式 $D_n = \begin{vmatrix} 3 & 1 \\ 2 & 3 & 1 \\ & \ddots & \ddots & \\ & & 2 & 3 & 1 \\ & & & 2 & 3 \end{vmatrix}$.

三. (12%) 已知向量
$$\beta_1 = \begin{pmatrix} 1 \\ 4 \\ -3 \end{pmatrix}$$
, $\beta_2 = \begin{pmatrix} a \\ 3 \\ 0 \end{pmatrix}$ 可以由 $\alpha_1 = \begin{pmatrix} 1 \\ 2 \\ 1 \end{pmatrix}$, $\alpha_2 = \begin{pmatrix} 1 \\ 3 \\ -1 \end{pmatrix}$, $\alpha_3 = \begin{pmatrix} 0 \\ 1 \\ b \end{pmatrix}$ 线

性表示,且表达式不唯一,求参数a,b的值及表达式.

四. (13%) 设
$$A = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 2 & 0 \\ -1 & 0 & 1 \end{pmatrix}$$
, 求矩阵方程 $XA - AXA = E - A^2$ 的解.

五. **(12%)** 设矩阵
$$A = \begin{pmatrix} 3 & 2 & -2 \\ -a & -1 & a \\ 4 & 2 & -3 \end{pmatrix}$$
 相似于对角阵,求 a ,并求可逆矩阵 P 及对角阵

$$\Lambda$$
,使得 $P^{-1}AP = \Lambda$.

六. (13%) 设二次型 $f(x_1,x_2,x_3)=2x_1^2+ax_2^2+2x_3^2+2x_1x_2+2x_1x_3-2x_2x_3$ 的秩为2,求参数a,并求一正交变换x=Qy,把 f 化为标准形,并给出相应的标准形.

七. (10%) 证明题:

1. 设A为 $s \times n$ 矩阵. 证明: r(A) = n的充分必要条件是存在 $n \times s$ 矩阵 B,使得 BA = E.

2. 设矩阵 $A = (a_{ij})$ 是 n 阶正定矩阵, $b_{i} \neq 0$ $(i = 1, 2, \dots, n)$ 为实数.记 $B = (b_{i}b_{j}a_{ij})$.证明: B 也是正定矩阵.