1. Heap

จงเขียนโปรแกรมที่สามารถสร้างฮีปในอาเรย์ได้ทั้ง min heap และ Max heap ตามแต่ต้องการ เมื่อ ใส่ข้อมูลเป็นตัวเลขจำนวนเต็ม N จำนวน

รูปแบบอินพุท

บรรทัดที่ 1 จำนวนข้อมูล N (10 <= N <= 100)

บรรทัดที่ 2 จำนวนเต็มบวก N จำนวน ที่แต่ละจำนวนคั่นด้วยเครื่องหมายช่องว่าง (มี

ค่าไม่เกิน 10,000)

บรรทัดที่ 3 รูปแบบฮีปที่ต้องการ (1 หมายถึง min heap, 2 หมายถึง max heap)

ข้อมูลเอาท์พุท

บรรทัดที่ 1 ให้แสดงข้อมูลฮีปในอาเรย์ที่สร้างจากจำนวนเต็มทั้ง N จำนวนออกมา ตาม

รูปแบบที่ต้องการ

ตัวอย่าง

Input	Output
10 12 34 5 62 7 1 52 3 4 5 1	1 3 5 4 5 12 52 62 34 7
10 12 34 5 62 7 1 52 3 4 5 2	62 34 52 12 7 1 5 3 4 5

2. Heap2

จงเขียนโปรแกรมที่สามารถสร้างฮีปในอาเรย์ได้ทั้ง min heap และ Max heap ตามแต่ต้องการ เมื่อ ใส่ข้อมูลเป็นตัวเลขจำนวนเต็ม N จำนวน นอกจากนี้โปรแกรมยังสามารถแสดงผลการเพิ่มหรือลบข้อมูลได้อีก ด้วย

- 1	. 9
รๆ	lแบบอินพุท
• •	
9.1	٩

-	บรรทัดที่ 1	จำนวนข้อมูล N (10 <= N <= 100)
	บรรทัดที่ 2	จำนวนเต็มบวก N จำนวน ที่แต่ละจำนวนคั่นด้วยเครื่องหมายช่องว่าง (มี
		ค่าไม่เกิน 10,000)
	บรรทัดที่ 3	รูปแบบฮีปที่ต้องการ (1 หมายถึง min heap, 2 หมายถึง max heap)
	บรรทัดที่ 4	คือโอเปอเรชันที่ต้องการทำบนฮีปที่สร้างจากข้อมูล N จำนวน โดยจะมี
		เพียง 2 โอเปอเรชันเท่านั้น คือ "+" และ "-" โอเปอร์เรชัน "+" หมายถึงเพิ่ม
		ข้อมูล จะตามด้วยตัวเลขที่ต้องการเพิ่ม 1 จำนวน ส่วนโอเปอเรชั่น "-"
		หมายถึงลบข้อมูลออกจากฮีป 1 จำนวน

ข้อมูลเอาท์พุท

บรรทัดที่ 1 ให้แสดงข้อมูลฮีปในอาเรย์ที่สร้างจากจำนวนเต็มทั้ง N จำนวนออกมา ตาม

รูปแบบที่ต้องการ

บรรทัดต่อไป ให้แสดงฮีปที่าเป็นผลลัพธ์ของโอเปอเรชัน

ตัวอย่าง

Input	Output
10 12 34 5 62 7 1 52 3 4 5 1 + 11	1 3 5 4 5 12 52 62 34 7 1 3 5 4 5 12 52 62 34 7 11
10 12 34 5 62 7 1 52 3 4 5 2 + 11	62 34 52 12 7 1 5 3 4 5 62 34 52 12 11 1 5 3 4 5 7
10 12 34 5 62 7 1 52 3 4 5 1	1 3 5 4 5 12 52 62 34 7 3 4 5 7 5 12 52 62 34

3. กำหนดให้ตาราง Hash (Hash table) แบบ 1 มิติเพื่อเก็บข้อมูล x โดยใช้อาร์เรย์ 1 มิติและมีฟังก์ชันแฮช คือ

$$H_1(x) = x \mod n$$

โดยข้อมูล x จะถูกจัดเก็บลงใน Table[H₁(x)] และ n คือจำนวนอาร์เรย์ของ Table[] ในกรณีที่เกิดการชนกัน ให้ใช้วิธีการ rehashing เพื่อหาตำแหน่งใหม่ ด้วยฟังก์ชัน H₂(x) = (x mod n) + 1 โดยจะจัดเก็บลงใน Table[H₁(x + i*H₂(x))] เมื่อ i คือจำนวนครั้งที่เกิดการชนกัน จงเขียนโปรแกรมบอกตำแหน่งของข้อมูล k ว่าตกที่ตำแหน่งใด

ตัวอย่างเช่น อาร์เรย์ขนาด n = 10 และมีข้อมูลที่จะต้องเก็บ m จำนวน ดังนี้ m = {5, 15, 25, 4, 2, 35} โดย $H_1(x) = x$ mod 10 , $H_2(x) = (x \mod 10) + 1$ และผลลัพธ์ของ Table[]

Table[]=	0	15	2	35	4	5	0	25	0	0
index	0	1	2	3	4	5	6	7	8	9

รูปแบบอินพุท

บรรทัดที่ 1

n m โดย

n คือ ขนาดของอาร์เรย์ (10 <= n <= 100)

m คือ จำนวนข้อมูล

บรรทัดที่ 2

จำนวนเต็มบวก m จำนวน ที่แต่ละจำนวนคั่นด้วยเครื่องหมายช่องว่าง

(1 <= m <= 100) และไม่ซ้ำกัน

บรรทัดที่ 3

k

ข้อมูลเอาท์พุท

แสดงตำแหน่งของข้อมูล k และถ้า ข้อมูล k ไม่มีที่ลงให้ตอบ -1

ตัวอย่าง

Input	Output
10 6 5 15 25 4 2 35 35	3
10 6 15 25 35 3 4 5 35	9
10 6 5 15 25 4 2 35 2	2
10 6 5 15 25 9 3 35 35	-1