ELEC-H-301 : Électronique appliquée Séance 6 : Problèmes contextualisés

Cette séance d'exercices a pour objectifs de vous apprendre à :

- Bien contextualiser les problèmes d'électronique vus cette année.
- Sélectionner les bonnes méthodes de résolution de circuits électroniques.

Transistor – Janvier 2019

On désire dimensionner un étage amplificateur à l'aide du circuit suivant. Le gain à vide de cet étage est de 50 dB. On dispose d'une alimentation continue V_{DC} de 10 V et d'un transistor BSH105. La résistance R_d vaut 90 Ω .

Exercice 1. Dessinez le schéma équivalent à petits signaux pour des fréquences telles que les effets dûs aux condensateurs ne sont pas négligeables.

Exercice 2. Donnez l'expression du gain à vide de ce montage à très haute fréquence tel que les effets dûs aux condensateurs soient négligeables. Déduisez-en la valeur de la transconductance pour le gain donné.

Exercice 3. Trouvez le V_{gs} correspondant. Justifiez graphiquement.

Exercice 4. Déterminez l'expression de la résistance d'entrée, en négligeant l'effet du condensateur.

Exercice 5. Dimensionnez R_1 et R_2 pour avoir une résistance d'entrée de 5 $k\Omega$. Si vous n'avez pas trouvé V_{gs} considérez $V_{gs} = 1.7 \ V$.

Fig.5. Typical output characteristics, T_j = 25 °C. I_D = $f(V_{DS})$; parameter V_{GS}

Fig.7. Typical transfer characteristics. $I_D = f(V_{GS})$

Fig.8. Typical transconductance, $T_j = 25$ °C. $g_{fs} = f(I_D)$ (c)

FIGURE 1 – Extrait datasheet BSH105.

Analyse fréquentielle – Janvier 2019

Exercice 6. Réalisez le tracé asymptotique des courbes de Bode de la fonction de transfert suivante. Listez clairement les pôles et zéros identifiés, ainsi que leur degré respectif. Légendez clairement les repères.

$$H(p) = \frac{10^3 \cdot (p+10^2)^3 \cdot (p+10^4)}{p \cdot (p+10^3) \cdot (p+10^5)^3}$$

Accordeur électronique – Janvier 2020

Nous aimerions réaliser un accordeur électronique fonctionnant de la manière suivante : une note est jouée devant le micro du système qui indique ensuite à l'aide de trois LED à l'utilisateur si elle est trop basse, trop aiguë ou juste. Pour y parvenir, le signal est d'abord séparé selon deux pistes : l'une au travers d'un filtre passe-bas réglé à la fréquence de référence, l'autre passe-haut à la même fréquence. Le bloc de lissage adjacent permet ensuite de conserver le valeur maximale de la sinusoïde entre deux période du signal. Le schéma suivant vous donne quelques indications quant à sa conception :

Votre tâche consiste à comprendre, concevoir et dimensionner ce système et les blocs le composant.

Exercice 7. Notre accordeur utilise comme note de référence le la_3 à 440 Hz. Dessinez et dimensionnez les deux filtres passe-haut et passe-bas d'ordre 1 à l'entrée du montage.

Exercice 8. Dessinez un montage effectuant l'opération de lissage décrite dans l'introduction.

Exercice 9. Comment appelle-t-on le bloc A? Quel est son rôle et quelle serait une valeur pertinente pour V_{Ref} , si V_{in} a une amplitude maximale de 1 V? Justifiez votre réponse.

Exercice 10. Le bloc de contrôle numérique permet de déterminer quand la LED3 est allumée ou non. Il est composé de deux entrées et d'une sortie, et doit fonctionner de la façon suivante : La LED ne doit s'allumer que si les deux autres sont éteintes et si l'une des deux autres est allumée, la LED3 doit être éteinte. Une fois que la LED3 a été allumée, elle doit le rester même si la note n'est plus jouée à l'entrée du diapason.

Dessinez le montage répondant à ce cahier des charges en utilisant des portes logiques et des organes mémoires si nécessaire.

Les trois LED ont les mêmes caractéristiques dont vous pouvez trouver un extrait au travers des courbes suivantes :

Exercice 11.

- 1. Dimensionnez la résistance connectée à l'anode de la LED afin qu'elle s'illumine avec une intensité lumineuse relative (*Relative Intensity*) de 1 lorsqu'on applique une tension de 5 V à l'autre borne de la résistance.
- 2. Vous n'avez malheureusement sous la main qu'une résistance de $1k\Omega$. Sachant que la puissance maximale que la diode peut dissiper est de 100 mW, la LED ...
 - \square ... s'allume normalement. Déterminez sa nouvelle intensité lumineuse.
 - \square ... s'allume brièvement avant de brûler. Déterminez la puissance qu'elle dissipe brièvement avant d'être inutilisable.
 - \square ... se transforme spontanément en or. Déterminez comment reproduire ce phénomène à l'échelle industrielle.

Note : Cochez la bonne réponse et ne répondez qu'à la sous-question correspondante.

Dimensionnement d'une amplification – Janvier 2020

On souhaite créer un circuit d'amplification pour un signal sinusoïdal dont la plage de fréquence s'étend de $20 \mathrm{kHz}$ à $40 \mathrm{kHz}$. Ce signal peut être représenté par une sinusoïde d'amplitude $1 \mathrm{mV}$ centré sur zéro produite par un générateur dont la résistance de sortie est $1 \mathrm{k}\Omega$. En sortie, le signal amplifié doit avoir une amplitude de $12 \mathrm{V}$ et sera connecté à une charge de 200Ω . Le signal de sortie peut être déphasé par rapport au signal d'entré.

Ampli-op	$I_{out,max}[mA]$	$A.B_W[MHz]$	Alimentation [V]	Prix [€]
MCP6V36T	21	0.3	1,8 à 5,5	0,71
OPA548T	5000	1	±4 à ±30	13,76
UA741CD	25	1	±9 à ±15	0,3
AD8021ARZ	75	200	$\pm 2,25 \ \text{à} \ \pm 12$	3,52

Exercice 12. Dimensionnez le circuit d'amplification de la manière la plus économique possible. Vous ne devez considérer que le prix des ampli-op listés ci-dessus. Le prix de tous autres composants (résistances,...) est négligeable. Proposez des valeurs de résistance réalistes et dessinez le schéma de ce circuit.

Remarque : Commencez par établir la liste des contraintes du problème.

1 Diodes – Janvier 2018

Exercice 13. En considérant les diodes comme idéales $(V_{TH}=0\ V)$, calculez la tension v_3 et le courant i_2 sachant que $R_1=3k\Omega,\ R_2=2k\Omega,\ R_3=4k\Omega$ et $R_4=6k\Omega$.

Diodes – Janvier 2019

Soit le circuit suivant composé de deux diodes IN4736A. $R_1=1$ $k\Omega$ et $R_{ch}=9$ $k\Omega$

Exercice 14. À l'aide des datasheet fournies en annexe déterminez les tensions de seuil et d'avalanche de ces diodes.

Exercice 15. Pour $V_{in} = 10 V$, déterminez les états des diodes.

Exercice 16. Représentez V_{out} sur le graphique suivant pour V_{in} sinusoïdale d'amplitude 12 V.

Exercice 17. À quoi sert ce circuit?

Datasheet diode 1N4740A

1N4728A to 1N4764A

Vishay Semiconductors

Zener Diodes

FEATURES

AEC-Q101 qualified

 Material categorization: for definitions of compliance please see www.vishay.com/doc?99912

DESIGN SUPPORT TOOLS | click logo to get started

PRIMARY CHARACTERISTICS					
PARAMETER	VALUE	UNIT			
V _Z range nom.	3.3 to 100	V			
Test current I _{ZT}	2.5 to 76	mA			
V _Z specification	Thermal equilibrium				
Circuit configuration	Single				

APPLICATIONS

Voltage stabilization

ORDERING INFORMATION							
DEVICE NAME	ORDERING CODE	TAPED UNITS PER REEL	MINIMUM ORDER QUANTITY				
1N4728A to 1N4764A	1N4728A to 1N4764A -series-TR	5000 per 13" reel	25 000/box				
1N4728A to 1N4764A	1N4728A to 1N4764A-series-TAP	5000 per ammopack (52 mm tape)	25 000/box				

PACKAGE				
PACKAGE NAME	WEIGHT	MOLDING COMPOUND FLAMMABILITY RATING	MOISTURE SENSITIVITY LEVEL	SOLDERING CONDITIONS
DO-41	310 mg	UL 94 V-0	MSL level 1 (according J-STD-020)	260 °C/10 s at terminals

ABSOLUTE MAXIMUM RATINGS (T _{amb} = 25 °C, unless otherwise specified)						
PARAMETER	TEST CONDITION	SYMBOL	VALUE	UNIT		
Power dissipation	Valid provided that leads at a distance of 4 mm from case are kept at ambient temperature	P _{tot}	1300	mW		
Zener current		Iz	P _V /V _Z	mA		
Thermal resistance junction to ambient air	Valid provided that leads at a distance of 4 mm from case are kept at ambient temperature	R _{thJA}	110	K/W		
Junction temperature		Tj	175	°C		
Storage temperature range		T _{stg}	-65 to +175	°C		
Forward voltage (max.)	I _F = 200 mA	V _F	1.2	V		

Rev. 2.4. 16-Feb-18 Document Number: 85816

For technical questions within your region: DiodesAmericas@vishay.com, DiodesEurope@vishay.com, DiodesEurop

1N4728A to 1N4764A

Vishay Semiconductors

PART NUMBER	ZENER VOLTAGE RANGE (1)	TEST CURRENT		REVERSE LEAKAGE CURRENT		DYNAMIC RESISTANCE f = 1 kHz		SURGE CURRENT (3)	REGULATOR CURRENT (2)
	V _Z at I _{ZT1}	I _{ZT1}	I _{ZT2}	I _R at V _R		Z _{ZT} at I _{ZT1} Z _{ZK} at I _{ZT2}		I _R	I _{ZM} mA
	٧	mA	mA	μA V		Ω			
	NOM.			MAX.		TYP.	MAX.		MAX.
1N4728A	3.3	76	1	100	1	10	400	1380	276
1N4729A	3.6	69	1	100	1	10	400	1260	252
1N4730A	3.9	64	1	50	1	9	400	1190	234
1N4731A	4.3	58	1	10	1	9	400	1070	217
1N4732A	4.7	53	1	10	1	8	500	970	193
1N4733A	5.1	49	1	10	1	7	550	890	178
1N4734A	5.6	45	1	10	2	5	600	810	162
1N4735A	6.2	41	1	10	3	2	700	730	146
1N4736A	6.8	37	1	10	4	3.5	700	660	133
1N4737A	7.5	34	0.5	10	5	4	700	605	121
1N4738A	8.2	31	0.5	10	6	4.5	700	550	110
1N4739A	9.1	28	0.5	10	7	5	700	500	100
1N4740A	10	25	0.25	10	7.6	7	700	454	91
1N4741A	11	23	0.25	5	8.4	8	700	414	83
1N4742A	12	21	0.25	5	9.1	9	700	380	76
1N4743A	13	19	0.25	5	9.9	10	700	344	69
1N4744A	15	17	0.25	5	11.4	14	700	304	61
1N4745A	16	15.5	0.25	5	12.2	16	700	285	57
1N4746A	18	14	0.25	5	13.7	20	750	250	50
1N4747A	20	12.5	0.25	5	15.2	22	750	225	45
1N4748A	22	11.5	0.25	5	16.7	23	750	205	41
1N4749A	24	10.5	0.25	5	18.2	25	750	190	38
1N4750A	27	9.5	0.25	5	20.6	35	750	170	34
1N4751A	30	8.5	0.25	5	22.8	40	1000	150	30
1N4752A	33	7.5	0.25	5	25.1	45	1000	135	27
1N4753A	36	7	0.25	5	27.4	50	1000	125	25
1N4754A	39	6.5	0.25	5	29.7	60	1000	115	23
1N4755A	43	6	0.25	5	32.7	70	1500	110	22
1N4756A	47	5.5	0.25	5	35.8	80	1500	95	19
1N4757A	51	5	0.25	5	38.8	95	1500	90	18
1N4758A	56	4.5	0.25	5	42.6	110	2000	80	16
1N4759A	62	4	0.25	5	47.1	125	2000	70	14
1N4760A	68	3.7	0.25	5	51.7	150	2000	65	13
1N4761A	75	3.3	0.25	5	56	175	2000	60	12
1N4762A	82	3	0.25	5	62.2	200	3000	55	11
1N4763A	91	2.8	0.25	5	69.2	250	3000	50	10
1N4764A	100	2.5	0.25	5	76	350	3000	45	9

Notes

Rev. 2.4. 16-Feb-18 Document Number: 85816

 ⁽a) Based on DC measurement at thermal equilibrium while maintaining the lead temperature (T_L) at 30 °C + 1 °C, 9.5 mm (3/8") from the diode body
 (a) Valid provided that electrodes at a distance of 4 mm from case are kept at ambient temperature

 $^{^{(3)}}$ $t_p = 10 \text{ ms.}$