```
import pandas as pd
df = pd.read_csv("/content/German_Credit_Card_Dataset.csv")
df.info()
df.shape
df.head()
```

<<class 'pandas.core.frame.DataFrame'>
RangeIndex: 1000 entries, 0 to 999
Data columns (total 14 columns):

#	Column	Non-Null Count	Dtype
0	checkin_acc	1000 non-null	object
1	duration	1000 non-null	int64
2	credit_history	1000 non-null	object
3	amount	1000 non-null	int64
4	savings_acc	1000 non-null	object
5	<pre>present_emp_since</pre>	1000 non-null	object
6	inst_rate	1000 non-null	int64
7	personal_status	1000 non-null	object
8	residing_since	1000 non-null	int64
9	age	1000 non-null	int64
10	inst_plans	1000 non-null	object
11	num_credits	1000 non-null	int64
12	job	1000 non-null	object
13	status	1000 non-null	int64

dtypes: int64(7), object(7)
memory usage: 109.5+ KB

	checkin_acc	duration	<pre>credit_history</pre>	amount	savings_acc	<pre>present_emp_since</pre>	inst_r
0	A11	6	A34	1169	A65	A75	
1	A12	48	A32	5951	A61	A73	
2	A14	12	A34	2096	A61	A74	
3	A11	42	A32	7882	A61	A74	
4	A11	24	A33	4870	A61	A73	

df.iloc[0:5,0:7]

→		checkin_acc	duration	credit_history	amount	savings_acc	<pre>present_emp_since</pre>	inst_r
	0	A11	6	A34	1169	A65	A75	
	1	A12	48	A32	5951	A61	A73	
	2	A14	12	A34	2096	A61	A74	
	3	A11	42	A32	7882	A61	A74	
	4	A11	24	A33	4870	A61	A73	

#print the first five records and rem col
df.iloc[0:5,:]

→		checkin_acc	duration	credit_history	amount	savings_acc	present_emp_since	inst_r
	0	A11	6	A34	1169	A65	A75	
	1	A12	48	A32	5951	A61	A73	
	2	A14	12	A34	2096	A61	A74	
	3	A11	42	A32	7882	A61	A74	
	4	A11	24	A33	4870	A61	A73	

```
df['checkin_acc'].unique()
```

```
→ array(['A11', 'A12', 'A14', 'A13'], dtype=object)
```

```
x_features=list(df.columns)
x_features.remove('status')
encoded_df=pd.get_dummies(df[x_features],drop_first=True)
print(list(encoded_df.columns))
```

['duration', 'amount', 'inst_rate', 'residing_since', 'age', 'num_credits', 'checkin_acc

x=encoded_df
y=df['status']

#Divide data into 78% training and 30% as testing
from sklearn.model_selection import train_test_split
x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.2,random_state=42)

from sklearn.tree import DecisionTreeClassifier
clf=DecisionTreeClassifier(criterion='gini',max_depth=3)

clf.fit(x_train,y_train)

DecisionTreeClassifier
DecisionTreeClassifier(max_depth=3)

pred y=clf.predict(x test)

from sklearn import metrics
print("Confusion Matrix is\n",metrics.accuracy_score(pred_y ,y_test))
print("Accuracy is",metrics.precision_score(pred_y,y_test))
print("AUC Score is",metrics.recall_score(pred_y,y_test))

 $\overline{2}$

Confusion Matrix is 0.76 Accuracy is 0.5084745762711864 AUC Score is 0.6122448979591837

from sklearn.tree import export_graphviz
import pydotplus as pdot
from IPython.display import Image
export_graphviz(clf,out_file='tree.odt',feature_names=x_train.columns,filled=True)
graph=pdot.graphviz.graph_from_dot_file("tree.odt")
graph.write_png("tree.png")
Image(filename="tree.png")

