Notes on Gravity as a Quantum Theory

Aditya Vijaykumar

International Centre for Theoretical Sciences, Bengaluru, India.

E-mail: aditya.vijaykumar@icts.res.in

Contents

1 Classical Fields 1

Contents

1 Classical Fields

 $\phi(\vec{\mathbf{x}},t)$ gives the value of the classical field at every point in spacetime. The simplest classical field is the *real scalar field*, which is characterized only by real numbers. The Klein-Gordon equation governs a free massive scalar field.

$$\frac{\partial^2 \phi}{\partial t^2} - \sum_{x_i} \frac{\partial^2 \phi}{\partial x_j^2} + m^2 \phi = 0$$

An interesting part about the free scalar field is that one can describe it as an infinite set of decoupled harmonic oscillators. Put this field into a box of length L and volume $V = L^3$, and having periodic boundary conditions. One can Fourier decompose this as,

$$\phi(\vec{\mathbf{x}},t) = \frac{1}{\sqrt{V}} \sum_{\vec{\mathbf{k}}} \phi_{\mathbf{k}}(t) \exp\left(i\vec{\mathbf{k}} \cdot \vec{\mathbf{x}}\right) \text{ where } k_x = \frac{2\pi n_x}{L}, \dots$$

Substituting this into the first equation, we find that the harmonic oscillators get nicely decoupled into an infinite set of ODEs of the form,

$$\ddot{\phi_{\mathbf{k}}} + (k^2 + m^2)\phi_{\mathbf{k}} = 0$$

which is basically the harmonic oscillator equation with frequency $\omega_k = \sqrt{k^2 + m^2}$. The energy of oscillators in simply equal to the sum of individual energies of the oscillators,

$$E = \sum_{\mathbf{k}} \left[\frac{1}{2} \dot{\phi_{\mathbf{k}}}^2 + \frac{1}{2} \omega_k^2 \phi_{\mathbf{k}}^2 \right]$$