Creating an ML Open-source Tool for Estimating Transit Ridership Based on Network and Operation Data

Jorge M. Diaz-Gutierrez, Helia Mohammadi-Mavi, Andisheh Ranjbari

The Pennsylvania State University

2025 Modeling Mobility Conference

Slide: 1 of 51

Background and Research Motivation

- Transit agencies have limited resources
- To efficiently allocate these resources, agencies must analyze the outputs of ridership demand models
- Ridership Machine Learning models (ML) deemed useful for dealing with large amounts of data

Background and Research Motivation

Benefits of ML models	Limitations of ML models
✓ Offer accurate predictions	× Low interpretability
✓ Manage large datasets	× <u>Overfitting</u>
✓ No manual adjustments	× Lack of generalization
✓ No data assumptions	× <u>Data consuming</u>

Slide: 3 of 51

Background and Research Motivation

Objective

ML limitations

- 1.Overfitting and lack of generalization
- 2. High data consumption

ML problem

- 1.Predictions on unseen data may lack accuracy
- 2.ML is limited by funding and data availability

Solutions

- 1.Two-Step ML approach: clustering agencies and modeling
- 2.Create publicly available ML model

Objective

Develop an ML-based open-source tool for estimating transit ridership based on large sets of network and service data

What we did?

Slide: 7 of 51

Data Sources

- 2022-2023 data from multiple sources
- <u>64 transit agencies</u>, 69 variables, and 1,754 monthly observations
- 3 public data sources

Data Sources

- General Transit Feed
 Specification: Stop spacing, coordinates, frequencies and speeds:
 - Intersectivity, connectivity, and directness
- National Transit Database: UPT, VRM, VRH, VOMS, fare, service area
- 5-year American Community Service: Sociodemographic data

Clustering results

Slide: 10 of 51

Evaluation of the ML Models

Slide: 11 of 51

Variable Importance

Slide: 12 of 51

Conclusions

- The results showed acceptable to very high performance values for all the models with clusters compared to those without clusters.
- The variable importance results corroborated that different clusters showed distinct important predictors for ridership.
- Our models are publicly available on GitHUB.
- Transit agencies can use this tool by simply inputting their network and service data

Slide: 13 of 51