Conferencias del Taller de Análisis Complejo y Geometría Algebraica

V Coloquio del Departamento de Matemáticas CENTRO DE INVESTIGACION Y DE ESTUDIOS AVANZADOS DEL IPN Pátzcuaro, Michoacán. Agosto de 1987

Editor

Enrique Ramirez de Arellano, CINVESTAV-IPN

Comité Editorial del Taller
Leticia Brambila Paz, UAM-IZT
Entire Pamérez de Arellano, CINVESTAV-IF

Enrique Ramírez de Arellano, CINVESTAV-IPN Sevin Recillas P., IM-UNAM

DEPARTAMENTO DE MATEMATICAS
CENTRO DE INVESTIGACION Y DE ESTUDIOS AVANZADOS DEL IPN

MEXICO, D.F.

1990

PRIMERAS INTEGRALES DE FOLIACIONES HOLOMORFAS

Jesús Muciño R.

El objetivo de esta plática es estudiar ciertos tipos de foliaciones holomorfas. Con ello se muestran algunas relaciones entre la Geometría Algebraica y la teoría de Sistemas Dinámicos.

Las referencias principales son [4] y [8].

Nuestro objeto de estudio son las foliaciones holomorfas con singula ridades. Geométricamente una foliación holomorfa F en una variedad compleja M es una descomposición de M en subconjuntos disjuntos Y conexos, lla mados las hojas de la foliación, tal que localmente existen biholomorfismos $Y : Y \subset M \to U \subset \mathbb{C}^{r+s}$ con Y, U abiertos, que hacen corresponder las hojas de Y con los planos "horizontales" Y (pto.), se dice que Y es la dimensión de la foliación Y se es su codimensión.

Decimos que F es una foliación con singularidades si está bien definida en M-S donde S es una subvariedad analítica de M con codimensión mayor que uno y tal que F no puede extenderse a algún punto de S como foliación holomorfa. S es llamado el conjunto singular de F en M.

Como veremos en los siguientes ejemplos es natural considerar foliaciones con singularidades.

Dada M y X un campo vectorial meromorfo en M. Las curvas integrales del campo producen una foliación con singularidades donde el conjunto singular F esta dado por los ceros de X (que naturalmente supondremos tienen codimensión mayor que uno).

Sin embargo las foliaciones más sencillas que pueden construirse son las siguientes.

Dada M, si admite una aplicación racional $f: M \to \mathbb{C}$ \mathbb{P}^1 (esto es una aplicación meromorfa definida en M-V, donde V es una subvariedad analítica de codimensión mayor que uno, ver [5] pag. 491).

Entonces las fibras $f^{-1}(\lambda)$ $\lambda \in \mathbb{CP}^1$, son las hojas de una foliación F con singularidades, donde el conjunto singular de F en este caso esta

compuesto por V (el locus de indeterminación de f) unión el conjunto de puntos críticos de f en M-V (el cual supondremos es de codimensión mayor que uno).

Una foliación F holomorfa con singularidades en M, decimos que tiene una primera integral meromorfa f, si F puede ser descrita mediante una aplicación racional f como en el ejemplo anterior. f es una buena primera integral meromorfa si además para todo punto en el locus de indeterminación existen coordenadas locales (z_1,\ldots,z_n) de M tal que f está descrita $como z_1z_2^{-1}$.

Ejemplos de tales foliaciones son los "pinceles de Lefschetz"; dada $M\subset EP^N$ una variedad proyectiva, si consideramos el haz de hiperplanos da do por $\{\lambda H+\mu Q=0\}$ donde H y Q son las ecuaciones de dos hiperplanos en EP^N y $\{\lambda,\mu\}$ e EP^1 , tal que $\{H=Q=0\}$ intersecta transversalmente a M y los hiperplanos del haz no contienen tangencias degeneradas con M. Entonces las intersecciones de los hiperplanos del haz con M determinan una foliación en M con una buena primera integral meromorfa, ver [1].

El problema que nos interesa discutir es el siguiente: caracterízar las foliaciones holomorfas con singularidades que admiten una buena primera integral meromorfa.

El problema de hallar primeras integrales ha sido extensamente estudiado para foliaciones en \mathbb{C}^N con singularidad en 0, ver por ejemplo [3]. [7].

La forma de atacar el problema utiliza la herramienta desarrollada en [4]. Para mayor simplicidad trabajaremos aquí con $M = \mathbb{C} \mathbb{P}^2$.

Dada una foliación F holomorfa con singularidades en \mathbb{CP}^2 , enton ces le corresponde una aplicación holomorfa $\omega\colon H(-e)\to T^*\mathbb{CP}^2$, donde H(-e) es el haz de línea en \mathbb{CP}^2 con clase de Chern -e y $T^*\mathbb{CP}^2$ es el haz cotangente, ω puede interpretarse como una 1-forma en \mathbb{CP}^2 integrable en el sentido de Frobenius, esto es el núcleo de ω determina las direcciones tangentes a las hojas de F y en los puntos singulares de F ω = 0. Inversamente dos aplicaciones ω , $\omega^1\colon H(-e)\to T^*\mathbb{CP}^2$ determinan la misma foliación si y solo si $\omega=\lambda\omega'$ con $\lambda\in\mathbb{C}^*$. Es posible mostrar que el conjunto de tales aplicaciones forma un espacio vectorial de dimensión finita sobre

C. Con todo lo anterior se tiene el siguiente:

Teorema. Existe una correspondencia entre foliaciones holomorfas con singularidades en \mathbb{CP}^2 y los espacios proyectivos asociados a $\{\omega: H(-e) \to T^*\mathbb{CP}^2\}$. Si $Fol(\mathbb{CP}^2, H(-e))$ son las foliaciones con clase de Chern -e entonces $\dim\{Fol(\mathbb{CP}^2, H(-e))\} = e^2 - 2$.

Hemos asociado a cada foliación F un invariante, su clase de Chern e y una familia $Fol(\mathbb{CP}^2, \mathbb{H}(-e))$. Estas familias son naturales ya que si pensamos a F como un tipo de estructura analítica compleja en \mathbb{M} entonces su familia de deformaciones en el sentido de Kuranishi corresponde con $Fol(\mathbb{CP}^2, \mathbb{H}(-e))$.

Por otra parte es fácil describir el conjunto de foliaciones con primera integral en \mathbb{CP}^2 ya que están en correspondencia con las funciones racionales $\{\mathbb{R}\colon\mathbb{CP}^2 \to \mathbb{CP}^1\}$, salvo cambios de coordenadas en el contradominio y tienen como invariante su grado. Es posible mostrar que el espacio de foliaciones que tienen como primera integral una aplicación racional de grado d está identificado con la variedad grassmaniana de 2-planos en el espacio de polinomios homogéneos de grado d en las tres variables de coordenadas homogeneas. Con ello se tiene el siguiente:

Teorema. La familia de foliaciones holomorfas con primera integral de grado d en \mathbb{CP}^2 está naturalmente encajada como subvariedad proyectiva de $Fol(\mathbb{CP}^2, H(-2d))$ con dimensión $d^2 + 3d - 2$.

Por ejemplo para foliaciones con primera integral de grado 2, la clase de Chern es -4, la dimensión de la subvariedad asociada es 8 y la dimensión del espacio total $Fol(\mathbb{CP}^2, H(-4))$ es 14.

Con todo lo anterior se obtiene una solución parcial a nuestro problema. Otra forma de estudiar las foliaciones con buene primera integral meromorfa, es caracterizarlas en términos de sus propiedades como sistema dinámico (por ejemplo la holonomía) con respecto a sus deformaciones en $Fol(CP^2, H(-2d))$.

Para esto recordemos el concepto de holonomía para foliaciones. Fija una foliación F holomorfa, dada una hoja L un punto base p en L y una subvariedad T transversal a las hojas de F y que pasa por p. Se tiene una aplicación de holonomía Hol: $\Pi_1(L,p) \to Bihol(T,p)$, tal que a cada lazo γ en $\Pi_1(L,p)$ le asocia el germen de biholomorfismo de T, Hol(γ), determinado por la aplicación de primer retorno de las hojas de F en una vecindad de γ , ver figura.

En particular; F tiene en una vecindad de γ una estructura de producto L × T si y solo si Hol(γ) es el germen de la identidad. Decimos que la foliación F tiene holonomía trivial si para todas las posibles elecciones de L y γ sucede que Hol(γ) es el germen de la identidad.

Por otra parte una propiedad de las foliaciones con una buena primera integral meromorfa f es que si quitamos las hojas $L=f^{-1}(\lambda)$, tal que λ es valor crítico de f, entonces tiene holonomía trivial.

Si Δ es el disco unitario en C, entonces dada una curva analítica $D: \Delta \to Fol(\mathbb{CP}^2, H(-e))$ puede interpretarse como una familia monoparamétrica de foliaciones. En particular D es una deformación de la foliación D(0) = F(0) y su derivada D'(0) es una deformación infinitesimal de F(0).

Si F(0) es una foliación con primera integral P/Q de grado d en tonces podemos preguntarnos; ¿Que deformaciones infinitesimales de F(0) son tangentes al espacio de foliaciones con primera integral? Que como sabemos en este caso es una variedad grassmaniana en $Fo2(LP^2, H(-2d))$.

Intuitivamente si $\omega(0)$ es la 1-forma asociada a F(0), entonces $\{\omega(0) + \tau\omega\}$ con $t \in \Delta$ y ω representando otra foliación en $Fol(\mathbf{CP}^2, H(-2d))$, puede interpretarse como una deformación de F(0).

Teorema. La deformación $\{\omega(0)+\tau\omega\}$ es tangente al espacio de folia ciones con primera integral si y solo si todos los periódos de la 1-forma ω/Q^2 restringuida a las superficies de Riemann $\{P-\lambda Q=0\}$, que son las hojas de F(0), son cero.

La idea de la demostración se b**a**sa primeramente en la interpretación de que la anulación de los períodos de ω/Q^2 , restringuída a las hojas de F(0), significa que la holonomía de las foliaciones $\{\omega(0)+t_\omega\}$ es trivial, ver [4]. Por otra parte se usan las ideas de J. Iliashenko en [6], para el caso de foliaciones en \mathbb{C}^2 con primera integral polinomial. Una versión detallada de este último teorema aparecerá en [8]. Esta investigación ha sido elaborado conjuntamente con X. Gómez-Mont.