Sadržaj

1.	Uvod	2
2.	Coq	3
	2.1. Osnovno o Coqu	3
	2.2. Programiranje u Coqu	3
	2.3. Kumulativna hijerarhija tipova	3
	2.4. Propozicije i tipovi, dokazi i programi	3
	2.5. Ograničenja u programiranju i dokazivanju	4
3.	Logika prvog reda s induktivnim definicijama	5
	3.1. Sintaksa	5
	3.2. Semantika	5
	3.3. Standardni modeli	5
	3.4. Sistem sekvenata s induktivnim definicijama	5
	3.5. Adekvatnost	5
4.	Ciklički dokazi	6
5.	Zaključak	7
Li	eratura	8
Sa	žetak	9
A 1	straat	10

1. Uvod

2. Coq

2.1. Osnovno o Coqu

povijest ukratko

Programski sustav type checker, kompajler

Skup jezika Vernacular, Gallina, Ltac, Ltac2...

Teorija tipova CoC, CIC, PCUIC, pravila "izvoda" i redukcije

usporedba s ostalim zavisnim jezicima

2.2. Programiranje u Coqu

Funkcijsko programiranje neki jednostavni primjer

Definiranje funkcija Definition, Fixpoint, CoFixpoint

Definiranje tipova Inductive, CoInductive

Ekstrakcija OCaml, Haskell, spomenuti da se radi na verificiranoj ekstrakciji

2.3. Kumulativna hijerarhija tipova

Ukratko objasniti. Lijepa skica koja prikazuje gdje su nat, nat -> nat, nat -> Set, Prop -> Prop, i njima srodni.

2.4. Propozicije i tipovi, dokazi i programi

Ukratko objasniti što je to Curry-Howard, možda najlakše pomoću BHK interpretacije.

Primjeri dokaznih terma, recimo ručno napisan dokazni term za komutiranje univerzalnih kvantifikacija, pa neki jednostavni induktivni dokaz.

Principi indukcije kao rekurzivne funkcije.

2.5. Ograničenja u programiranju i dokazivanju

Tu prvenstveno mislim na uvjete pozitivnosti i produktivnosti za induktivne i koinduktivne tipove, te na eliminaciju propozicija kod definiranja nečega u Type.

3. Logika prvog reda s induktivnim definicijama

3.1. Sintaksa

Signatura. Term. Formula.

3.2. Semantika

Struktura. Okolina. Evaluacija. Relacija ispunjivosti. Substitution sanity leme.

3.3. Standardni modeli

Produkcije. Skup induktivnih definicija. Operator φ_{Φ} . Aproksimanti. Standardni model.

3.4. Sistem sekvenata s induktivnim definicijama

LKID. Dopustiva pravila. Primjeri dokaza.

3.5. Adekvatnost

Lokalne adekvatnosti za pravila izvoda. Glavni teorem.

4. Ciklički dokazi

Koinduktivni tip podatka i koinduktivna propozicija. Jedan primjer su Streamovi i predikat Infinite. Jednostavniji primjer bi možda bio koinduktivni nat i koinduktivni le.

Kako bi izgledali ciklički dokazi u LKID? Ono što je tamo "repeat funkcija" je u Coqu cof ix.

5. Zaključak

Literatura

Sažetak

Primjene Coq alata za dokazivanje u matematici i računarstvu

Miho Hren

Unesite sažetak na hrvatskom.

Ključne riječ: prva ključna riječ; druga ključna riječ; treća ključna riječ

Abstract

Applications of the Coq Proof Assistant in mathematics and computer science

Miho Hren

Enter the abstract in English.

Keywords: the first keyword; the second keyword; the third keyword