جلسه دوازدهم داده کاوی –

import numpy as np
import pandas as pd
from sklearn.preprocessing import OneHotEncoder

Sample dataset
data = pd.DataFrame({'Color': ['Red', 'Blue', 'Green', 'Red',
'Blue']})

Initialize OneHotEncoder encoder = OneHotEncoder(sparse=False) # Set sparse=False to get a NumPy array

Transform the data encoded_data = encoder.fit_transform(data[['Color']])

Convert to DataFrame for better readability
encoded_df = pd.DataFrame(encoded_data,
columns=encoder.get_feature_names_out(['Color']))

ابرای label-encoding

from sklearn.preprocessing import LabelEncoder

Sample dataset
data = pd.DataFrame({'Size': ['Small', 'Medium', 'Large',
 'Medium', 'Small']})

Initialize LabelEncoder
label_encoder = LabelEncoder()

Transform the data
data['Size_Encoded'] =
label_encoder.fit_transform(data['Size'])

شما تا به حال تفاوت یادگیری supervised و unsupervised را آموخته اید. همچنین می دانید که خوشه بندی (clustering) یک مسئله unsupervised learning است و برخی از الگوریتم های خوشه بندی مانند DBSCAN ،k-means را آموخته اید. این الگوریتم ها نساز دارند تا مجموعه داده ای عددی باشند.

برای supervised learning و مسئله classification الگوریتم هایی هستند که نیازی به تبدیل ندارند، مثلا: Decision Tree.

همانطور که مشاهده کردید اکثر الگوریتم های داده کاوی صرفا قادر به پردازش مجموعه های داده ای عددی هستند. حال فرض کنید یک مجموعه داده ای مانند یک گونه های یک گل خاص علاوه بر سایز طول و عرض گلبرگ و کاسبرگ ویژگی دیگری بنام رنگ دارد که می تواند قرمز، زرد یا نارنجی باشد. این نوع مجموعه های داده ای کتگوریال (Categorial Datasets) نامیده می شود.

Sepal	Sepal	Petal	Petal	Colour
length	width	length	width	
5.1	3.5	1.4	0.2	Red
3	4.9	3	1.4	Red
4	4.7	3.2	1.3	Orange
5	4.6	3.1	1.5	Yellow

برای این ستون در این مجموعه داده ای روش one-hot) one-Hot مناسب است:

Sepal	Sepal	Petal	Petal	Red	Orange	Yellow
length	width	length	width			
5.1	3.5	1.4	0.2	1	0	0
3	4.9	3	1.4	1	0	0
4	4.7	3.2	1.3	0	1	0
5	4.6	3.1	1.5	0	0	1

برای ستونِ رنگِ مجموعه فوق، روش One-Hot مناسب بود چراکه تعداد رنگ کم بود و هیچ رنگی اولویت خاصی بر دیگری نداشت.

اما حال حساب کنید که برای مجموعه داده ای در مورد خانه سایز آن که به صورت کتگوری (کوچک، متوسط و بزرگ) ثبت شده است در قیمت تاثیر دارد.

 #beds	Size-Type	Price
	Small	1.2
	medium	2
	Small	1.5
	Large	3

در این صورت می توان برای سایز از روش Label Encoding استفاده کرد. در این روش به هر نوع از ستون مربوطه یک عدد اختصاص داده می شود مثلا \cdot برای medium و ۲ برای large.

 #beds	Size-Type	Price
	0	1.2
	1	2
	0	1.5
	2	3