MACHINE LEARNING MODEL

COMPARISON BASED ON SOME METRICS

Safa ORHAN Eyüp USTA

Computer Engineering Student Computer Engineering Student

Istanbul Kultur University

Istanbul Kultur University

Istanbul, Turkey Istanbul, Turkey

I. SUPPORT VECTOR MACHINE

Kernels = linear, poly, rbf, sigmoid

C = 1, 2, 3, 4, 5

Degree = 1, 2, 3, 4, 5, 6

Gamma = scale, auto

Decision function shape = ovo, ovr

A. Results of SVM:

Test Size: 15%

Best Accuracy = 96.44%

Best Combination = "poly, 5, 5, scale, ovo"

Worst Accuracy = 82.64%

Worst Combination = "sigmoid, 5, 1, scale, ovo"

Average Accuracy = 91.42%

Test Size: 30%

Best Accuracy = 98.10%

Best Combination = "poly, 5, 6, scale, ovo"

Worst Accuracy = 83.78%

Worst Combination = "sigmoid, 3, 1, scale, ovo"

Average Accuracy = 92.42%

Test Size: 35%

Best Accuracy = 98.03%

Best Combination = "poly, 5, 6, scale, ovo"

Worst Accuracy = 82.79%

Worst Combination = "sigmoid, 3, 1, scale, ovo"

Average Accuracy = 91.98%

II. LINEAR SUPPORT VECTOR MACHINE

Losses = hinge, squared hinge

Penalty = 12

C = 1, 2, 3, 4, 5

Multi Class = ovr, crammer singer

A. Resultf of Linear SVC:

Test Size: 15%

Best Accuracy = 92.40%

Best Combination = "squared hinge, 12, 1, ovr"

Worst Accuracy = 92.22%

Worst Combination = "hinge, 12, 1, ovr"

Average Accuracy = 92.33%

Test Size: 30%

Best Accuracy = 93.15%

Best Combination = "hinge, 12, 5, ovr"

Worst Accuracy = 93.03%

Worst Combination = "hinge, 12, 4, ovr"

Average Accuracy = 93.08%

Test Size: 35%

Best Accuracy = 92.97%

Best Combination = "squared hinge, 12, 1, ovr"

Worst Accuracy = 92.79%

Worst Combination = "hinge, 12, 1, ovr"

Average Accuracy = 92.83%

III. K – NEAREST NEIGHBORS

K = 1,2,3,4,5,6,7,8,9,10

Weights = uniform, distance

Metric = euclidean, manhattan, chebyshev, minkowski

A. Results of KNN:

Test Size: 15%

Best Accuracy = 96.14%

Best Combination = "8, disctance, brute, manhattan"

Worst Accuracy = 71.18%

Worst Combination = "8, uniform, auto, chebyshev"

Average Accuracy = 91.86%

Test Size: 30%

Best Accuracy = 98.52%

Best Combination = "5, distance, auto, manhattan"

Worst Accuracy = 78.17%

Worst Combination = "8, uniform, auto, chebyshev"

Average Accuracy = 95.99%

Test Size: 35%

Best Accuracy = 98.44%

Best Combination = "5, distance, auto, manhattan"

Worst Accuracy = 77.08%

Worst Combination = "8, uniform, auto, chebyshev"

Average Accuracy = 95.85%

IV. DECISION TREE CLASSIFIER

Max features = None, auto, sqrt, log2

Criterion = gini, entropy

Splitter = best, random

A. Result of Decision Tree Classifier:

Test Size: 15%

Best Accuracy = 96.92%

Best Combination = "None, None, entropy, random"

Worst Accuracy = 93.91%

Worst Combination = "None, log2, gini, random"

Average Accuracy = 95.64%

Test Size: 30%

Best Accuracy = 95.96%

Best Combination = "None, None, entropy, random"

Worst Accuracy = 94.33%

Worst Combination = "None, log2, gini, random"

Average Accuracy = 95.37%

Test Size: 35%

Best Accuracy = 95.86%

Best Combination = "default parameter"

Worst Accuracy = 94.03%

Worst Combination = "balanced, log2, entropy, random"

Average Accuracy = 95.18%

V. GAUSSIAN NAIVE BAYES CLASSIFIER

Test Size: 15%

Accuracy = 59.25%

Test Size: 30%

Accuracy = 60.47%

Test Size: 35%

Accuracy = 59.94%

VI. BERNOULLI NAIVE BAYES CLASSIFIER

The accuracy score of our Naive Bayes classifier is 56.54%.

A. Bernoulli Naive Bayes Classifier:

Alpha = 0, 1, 2, 3, 4, 5, 7, 9, 11

Binarize = 0, 1, 2, 3, 4, 5, 7, 9, 11

Fit prior = True, False

B. Results of BernoulliNB:

Test Size: 15%

Best Accuracy = 89.93%

Best Combination = "0, 0, true"

Worst Accuracy = 56.60%

Worst Combination = "0 1.0 true"

Average Accuracy = 60.07%

Test Size: 35%

Best Accuracy = 90.86%

Best Combination = "0, 0, false"

Worst Accuracy = 56.01%

Worst Combination = "0, 1.0, true"

Average Accuracy = 60.07%

Test Size: 35%

Best Accuracy = 90.08%

Best Combination = "3.0, 0, true"

Worst Accuracy = 55.50%

Worst Combination = "0, 1.0, true"

Average Accuracy = 59.61%

VII. RANDOM FOREST CLASSIFIER

Max features = None, auto, sqrt, log2

Criterion = gini, entropy

Class_weight = None, balanced, balanced_subsample

Warm start = True, False

A. Result of Random Forest Classifier:

Test Size: 15%

Best Accuracy = 97.34%

Best Combination = "None, auto, entropy, false"

Worst Accuracy = 96.68%

Worst Combination = "balanced, none, entropy, true"

Average Accuracy = 97.00%

Test Size: 30%

Best Accuracy = 96.95%

Best Combination = "None, log2, entropy, false"

Worst Accuracy = 96.50%

Worst Combination = "balanced_subsample, none, entropy, true"

Average Accuracy = 96.72%

Test Size: 35%

Best Accuracy = 96.89%

Best Combination = "None, log2, gini, true"

Worst Accuracy = 96.50%

Worst Combination = "None, None, gini, true"

Average Accuracy = 96.72%

VIII. DEEP LEARNING WITH TENSORFLOW

Optimizers = 'sgd', 'rmsprop', 'adam', 'adadelta', 'adagrad', 'adamax', 'nadam', 'ftrl'

Loss = 'binary_crossentropy', 'categorical_crossentropy', 'hinge', 'squared_hinge', 'huber'

Activation = 'softplus', 'softsign', 'selu', 'elu', 'exponential', 'tanh', 'sigmoid', 'relu'

A. Results of the Deep Network:

Input Layer: Dense (32, , activation = relu, input_shape = (30,2))

Deep Layers: Dense (64, activation = relu), Dense (32, activation = relu)

Output Layer: Dense (1, activation=softplus)

Test Size: 15%

Best Accuracy = 55.98%

Best Combination = "softplus, adamax, huber"

Worst Accuracy = 44.04%

Worst Combination = "softplus, sgd, huber"

Average Accuracy = 52.92%

Input Layer: Dense (64, kernel_regularizer=12, activation = relu, input_shape = (30,2))

Deep Layers: Dense (128, kernel_regularizer=12, activation = relu), Dense (256, kernel_regularizer=12,

activation = relu), Dense (512, kernel_regularizer=12, activation = relu), Dropout(0.3)

Output Layer: Dense (1, activation=softplus)

Test Size: 15%

Best Accuracy = 54.74%

Best Combination = "softplus, adagrad, huber"

Worst Accuracy = 45.12%

Worst Combination = "softplus, sgd, huber"

Average Accuracy = 50.73%

Input Layer: Dense (64, activation = relu, input_shape = (30,2))

Deep Layers: Dense (128, activation = relu), Dense (128, activation = relu),

Output Layer: Dense (1, activation=softplus)

Test Size: 15%

Best Accuracy = 75.76%

Best Combination = "softplus, adamax, binary_crossentropy"

Worst Accuracy = 44.35%

Worst Combination = "softplus, sgd, huber"

Average Accuracy = 69.04%

Test Size: 35%

Best Accuracy = 75.54%

Best Combination = "softplus, adamax, binary crossentropy"

Worst Accuracy = 44.31%

Worst Combination = "softplus, sgd, huber"

Average Accuracy = 69.19%

Input Layer: Dense (64, kernel_regularizer=12, activation = relu, input_shape = (30,2))

Deep Layers: Dense (128, kernel_regularizer=12, activation = relu), Dense (128, kernel_regularizer=12,

activation = relu),

Output Layer: Dense (1, activation=softplus)

Test Size: 35%

Best Accuracy = 76.20%

Best Combination = "softplus, nadam, huber"

Worst Accuracy = 44.55%

Worst Combination = "softplus, sgd, huber"

Average Accuracy = 69.62%

Input Layer: Dense (64, kernel_regularizer=12, activation = relu, input_shape = (30,2))

Deep Layers: Dense (128, kernel_regularizer=12, activation = relu), Dense (128, kernel_regularizer=12, activation = relu), Dense (128, kernel_regularizer=12, activation = relu), Dense (256, kernel_regularizer=12, activation = relu),

Output Layer: Dense (1, activation=softplus)

Test Size: 35%

Best Accuracy = 75.40%

Best Combination = "softplus, adamx, binary_crossentropy"

Worst Accuracy = 44.34%

Worst Combination = "softplus, sgd, huber"

Average Accuracy = 68.96%

Input Layer: Dense (64, kernel_regularizer=12, activation = relu, input_shape = (30,2))

Deep Layers: Dense (128, kernel_regularizer=12, activation = relu), Dense (128, kernel_regularizer=12, activation = relu), Dense (128, kernel_regularizer=12, activation = relu), Dense (256, kernel_regularizer=12, activation = relu),

Output Layer: Dense (1, activation=softplus)

Test Size: 15%

Best Accuracy = 75.79%

Best Combination = "softplus, adam, huber"

Worst Accuracy = 44.16%

Worst Combination = "softplus, sgd, huber"

Average Accuracy = 69.29%

Input Layer: Dense (64, kernel_regularizer=12, activation = relu, input_shape = (30,))

Deep Layers: Dense (128, kernel_regularizer=12, activation = relu), Dense (128, kernel_regularizer=12,

activation = relu), Dense (128, kernel_regularizer=12, activation = relu),

Output Layer: Dense (1, activation=softplus)

Test Size: 15%

Best Accuracy = 98.78%

Best Combination = "softplus, adamax, huber"

Worst Accuracy = 44.65%

Worst Combination = "softplus, sgd, hinge"

Average Accuracy = 82.89%

Best Optimizers = rmsprop, adam, adamax, adadelta, adagrad, nadam

Worst Optimizers = SGD, ftrl

Best Activation Functions = softplus, sigmoid, selu, elu, exponential, tanh, softsign

Worst Activation Functions = relu

Best Combinations = selu, adamax, binary_crossentropy; %98.86

Worst Combinations = softplus, sgd, huber; %44.41

Average Accuracy = %81.42

IX. DATA SET FEATURES

1. Using the IP Address

2. Long URL to Hide the Suspicious Part

$$\textit{Rule: IF} \begin{cases} \textit{URL length} < 54 \ \rightarrow \ \textit{feature} = \texttt{Legitimate} \\ \textit{else if URL length} \geq 54 \ \textit{and} \ \leq 75 \ \rightarrow \ \textit{feature} = \textit{Suspicious} \\ \textit{otherwise} \ \rightarrow \ \textit{feature} = \texttt{Phishing} \end{cases}$$

3. Using URL Shortening Services "TinyURL"

$$\underline{\mathit{Rule}} \colon \mathsf{IF} \begin{cases} \mathsf{TinyURL} \to \mathsf{Phishing} \\ \mathsf{Otherwise} \to \mathsf{Legitimate} \end{cases}$$

4. URL's having "@" Symbol

 $\label{eq:Rule: IF and Symbol of Phishing Question} \begin{aligned} \text{Rule: IF} & \{ \text{Url Having @ Symbol} \rightarrow \text{Phishing} \\ & \text{Otherwise} \rightarrow \text{Legitimate} \end{aligned}$

5. Redirecting using "//"

Rule: IF $\left\{ egin{array}{ll} \mbox{ThePosition of the Last Occurrence of "//" in the URL > 7
ightarrow \mbox{Phishing} \\ \mbox{Otherwise}
ightarrow \mbox{Legitimate} \end{array}
ight.$

6. Adding Prefix or Suffix Separated by (-) to the Domain

7. Sub Domain and Multi Sub Domains

Rule: IF
$$\begin{cases} \text{Dots In Domain Part} = 1 & \rightarrow \text{ Legitimate} \\ \text{Dots In Domain Part} = 2 & \rightarrow \text{ Suspicious} \\ \text{Otherwise} & \rightarrow \text{ Phishing} \end{cases}$$

8. HTTPS (Hyper Text Transfer Protocol with Secure Sockets Layer)

9. Domain Registration Length

10. Favicon

 $Rule: IF \begin{cases} Favicon \ Loaded \ From \ External \ Domain \rightarrow \ Phishing \\ Otherwise \rightarrow \ Legitimate \end{cases}$

11. Using Non-Standard Port

12. The Existence of "HTTPS" Token in the Domain Part of the URL

Rule: IF $\{ \begin{array}{c} \text{Using HTTP Token in Domain Part of The URL} \rightarrow \text{ Phishing } \\ \text{Otherwise} \rightarrow \text{ Legitimate} \ \end{array} \}$

13. Request URL

$$\label{eq:Rule: IF and Superior} \begin{aligned} \text{Rule: IF} & \{ \% \text{ of Request URL} < 22\% \ \rightarrow \ \text{Legitimate} \\ \text{\% of Request URL} \geq 22\% \text{ and } 61\% \rightarrow \ \text{Suspicious} \\ \text{Otherwise} \rightarrow \ \text{feature} = \text{Phishing} \end{aligned}$$

14. URL of Anchor

$$\underline{\textit{Rule}} \colon \text{IF} \begin{cases} \text{\% of URL Of Anchor} < 31\% & \rightarrow \textit{Legitimate} \\ \text{\% of URL Of Anchor} \geq 31\% \text{ And} \leq 67\% & \rightarrow \text{Suspicious} \\ \text{Otherwise} & \rightarrow \text{Phishing} \end{cases}$$

15. Links in <Meta>, <Script> and <Link> tags

| West of Links in " < Meta > ", " < Script > " and " < Link>" < 17%
$$\rightarrow$$
 Legitimate | West of Links in < Meta > ", " < Script > " and " < Link>" \geq 17% And \leq 81% \rightarrow Suspicious Otherwise \rightarrow Phishing

16. Server Form Handler (SFH)

Rule: IF SFH is "about: blank" Or Is Empty → Phishing SFH Refers To A Different Domain → Suspicious Otherwise → Legitimate

17. Submitting Information to Email

Rule: IF
$$\{ \text{Using "mail}() \text{" or "mailto:" Function to Submit User Information} \rightarrow \text{Phishing Otherwise} \rightarrow \text{Legitimate} \}$$

18. Abnormal URL

This feature can be extracted from WHOIS database. For a legitimate website, identity is typically part of its URL.

Rule: IF
$$\begin{cases} \text{The Host Name Is Not Included In URL} & \to \text{ Phishing} \\ & \text{Otherwise} \to \text{ Legitimate} \end{cases}$$

19. Website Forwarding

$$\text{Rule: IF} \begin{cases} & \text{ofRedirect Page} \leq 1 \ \rightarrow \ \text{Legitimate} \\ & \text{of Redirect Page} \geq 2 \ \text{And} < 4 \ \rightarrow \ \text{Suspicious} \\ & \text{Otherwise} \ \rightarrow \ \text{Phishing} \end{cases}$$

20. Status Bar Customization

 $Rule: IF \begin{cases} onMouseOver\ Changes\ Status\ Bar \to\ Phishing \\ It\ Does't\ Change\ Status\ Bar \to\ Legitimate \end{cases}$

21. Disabling Right Click

 $Rule: IF \begin{cases} Right \ Click \ Disabled \ \rightarrow \ Phishing \\ Otherwise \ \rightarrow \ Legitimate \end{cases}$

22. Using Pop-up Window

Rule: IF $\begin{cases} \text{Popoup Window Contains Text Fields} \rightarrow \text{Phishing} \\ & \text{Otherwise} \rightarrow \text{Legitimate} \end{cases}$

23. IFrame Redirection

24. Age of Domain

Rule: IF
$$\begin{cases} Age \ Of \ Domain \geq 6 \ months \ \rightarrow \ Legitimate \\ Otherwise \ \rightarrow \ Phishing \end{cases}$$

25. DNS Record

26. Website Traffic

Rule: IF
$$\{ \begin{array}{ll} \mbox{Website Rank} < 100,\!000 \rightarrow \mbox{Legitimate} \\ \mbox{Website Rank} > 100,\!000 \rightarrow \mbox{Suspicious} \\ \mbox{Otherwise} \rightarrow \mbox{Phish} \\ \end{array}$$

27. PageRank

 $Rule: IF \begin{cases} PageRank < 0.2 \ \rightarrow \ Phishing \\ Otherwise \ \rightarrow \ Legitimate \end{cases}$

28. Google Index

29. Number of Links Pointing to Page

$$\text{Rule: IF} \begin{cases} & \text{Of Link Pointing to The Webpage} = 0 \ \rightarrow \ \text{Phishing} \\ & \text{Of Link Pointing to The Webpage} > 0 \ \text{and} \le 2 \ \rightarrow \ \text{Suspicious} \\ & \text{Otherwise} \ \rightarrow \ \text{Legitimate} \end{cases}$$

30. Statistical-Reports Based Feature

Rule: $\mathsf{IF} \Big\{ egin{array}{ll} \mathsf{Host} \ \mathsf{Belongs} \ \mathsf{to} \ \mathsf{Top} \ \mathsf{Phishing} \ \mathsf{IPs} \ \mathsf{or} \ \mathsf{Top} \ \mathsf{Phishing} \ \mathsf{Domains} \ \to \ \mathsf{Phishing} \ \mathsf{Otherwise} \ \to \ \mathsf{Legitimate} \\ \Big\}$

