Magasabb rendű nemlineáris kvantumprotokollok

Portik Attila

2020. március 10.

Jelen jegyzetben a BSc szakdolgozatom elkészítéséhez, és az ezen túlmutató munkámat szeretném összefoglalni, melyet Kiss Tamás és Kálmán Orsolya témavezetésével végeztem.

Tartalomjegyzék

Bevezetés és néhány alapfogalom

A vizsgálódásunk célpontjában egy olyan kvantuminformatikai protokoll szerepel, melyben egy nemlineáris leképezés szerepel, ezt az unitér transzformáció, mérés és posztszelekció egymásutáni alkalmazása alakítja ki. A vizsgálódásunk során, a fent leírt módon előállított nemlineáris, diszkrét idejű, leképezés hatását vizsgáljuk egy homogén állapotú qubit sokaságra, tiszta és kevert kezdőállapot esetén.

A kiinduló problémánk a következő: veszünk három azonos állapotú qubitet, végrehajtunk rajtuk egy unitér transzformációt, majd kettőt közülük megmérünk, a mérés eredményétől függően vagy megtartjuk vagy eldobjuk az adott qubiteket.

1. ábra. Nemlineáris transzformáció három qubites rendszere. Az ábra jelölései: ψ_0 a qubitek kezdeti állapota, U unitér transzformáció amely összefonja a qubiteket, P_0 a mérés.

A három qubites rendszer kezdeti állapota, az azt alkotó qubitek állapotának diádja adja:

$$\mathbf{S}_{\mathbf{0}} = \psi_{\mathbf{0}} \otimes \psi_{\mathbf{0}} \otimes \psi_{\mathbf{0}} \tag{0.1}$$

Ahol $\psi_0 \in \mathcal{H}^(2)$, kétdimenziós Hilbert térbeli állapotvektor, melyben a szokásos bázis a $\{|0\rangle, |1\rangle\}$, ekkor ψ_0 megadható a következő módon:

$$\psi_0 = \alpha |0\rangle + \beta |1\rangle$$
, ahol: $\alpha, \beta \in \mathbf{R}$ (0.2)

Ha normált állapotokról beszélünk akkor α és β teljesíti a következő feltételt:

$$\alpha^2 + \beta^2 = 1 \tag{0.3}$$

Hasonló módon megadható az állapot két valós paraméter helyett egy komplex paraméterrel:

$$\psi_0 = N(|0\rangle + z|1\rangle), \ , z \in \hat{\mathbf{C}} \text{ ahol: } \hat{\mathbf{C}} \text{a Riemann g\"{o}mb}, \hat{\mathbf{C}} = \mathbf{C} \cup \infty$$
 (0.4)

Ahol N normáltságból származó tagot, $\frac{1}{\sqrt{1+z^2}}$ és a globális fázist tömörítő faktort tartalmazza, hiszen az lényegtelen az állapot leírásának szemszögéből.

Az ábra jelöléseit használva a rendszeren végzett mérés

$$\mathbf{P} = \mathbf{1} \otimes \mathbf{P_0} \otimes \mathbf{P_0} \tag{0.5}$$

ahol:

$$\mathbf{P_0} = |0\rangle\langle 0| = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$$

vagyis a $|0\rangle$ érték mérése, ami egy projekció az adott bázis vektorra.

A qubitek összefonására alkalmazott transzformáció legyen:

ahol a $J^{(4)}$ mátrix nem teljesen definiált de szimmetriai okok miatt a fenti módon vezetjük be.

Ekkor a fenti elrendezés a következő leképezést valósítja meg:

$$\mathbf{S} = \mathbf{P} \circ \mathbf{U} : N(1|0\rangle + z^3|1\rangle) \to N'(1|0\rangle + z|1\rangle) \tag{0.7}$$

A rendszer állapota bázisvektorokkal, azaz a szorzat alakú Hilbert térben bázist alkotó állapotokkal is megadható.

$$\psi_{\mathbf{0}} = N(|0\rangle + z|1\rangle) \Rightarrow \mathbf{S}_{\mathbf{0}} = N'(|000\rangle + z|001\rangle + z|010\rangle + z^{2}|011\rangle) + z|100\rangle + z^{2}|110\rangle + z^{3}|111\rangle$$
 (0.8)

Látható, hogy, a rendszer állapotát egy 8×1 vektorként is megadhatjuk, melyben minden érték a megfelelő bázisvektor együtthatója.

$$\mathbf{S_0} = \begin{pmatrix} 1\\z\\z\\z^2\\z^2\\z^2\\z^2\\z^3 \end{pmatrix} \tag{0.9}$$

Ezt a formalizmust használva könnyen látható fenti leképezést kapjuk a mátrix szorzások elvégzése után. Fontos megjegyzés, hogy a továbbiakban gyakran a leképezés többszöri ismétléséről, iterálásáról lesz szó, ekkor nem egy három qubitből álló rendszerre hattatjuk a leképezést, hanem, ahogy már említettem, egy homogén állapotú rendszerre, ahol a qubiteket hármasával csoportosítjuk és a leírt módon összefonjuk őket. Könnyen belátható, hogy ezzel a módszerrel általános, n qubitre ható transzformációt vizsgálhatunk, szem előtt tartva hogy minél nagyobb n annál több qubitet kell eldobni lépésenként, és a qubitek száma az iterálással exponenciálisan csökken. A fenti leképezést értelmezve azt a fontos észrevételt tehetjük, hogy ennek iterálása során végig csak egy qubites állapotokat kell leírnunk ami lényegesen könnyíti a helyzetünket.

Hogy teljesen általános legyen az általunk vizsgált transzformáció még hattatnunk kell egy tetszőleges unitér operációt ($\mathbf{U_0}$), ahogy fentebb is szerepel. Tetszőleges unitér transzformációt három paraméter segítségevel adhatunk meg

$$\mathbf{U_0}(r,\varphi,\omega) = \begin{pmatrix} \cos(r)e^{-i\omega} & \sin(r)e^{-i\varphi} \\ -\sin(r)e^{i\varphi} & \cos(r)e^{i\omega} \end{pmatrix}$$
(0.10)

Itt mindhárom paraméter valós, de a kifejezés egyszerűsítésére bevezethetjük a következő jelölést:

$$p = \tan(r)e^{-i\varphi} \tag{0.11}$$

Az általam vizsgált problémák esetén az $\omega \in [0, 2\pi]$ megválasztása fizikai szempontból irreleváns, csak a számítási bázis kijelölésének erejéig különböznek, ezért választhatjuk az értékét 0-nak.

Ekkor:

$$\mathbf{U_0}(\mathbf{r}, \varphi, \omega = \mathbf{0}) = \begin{pmatrix} \cos(r) & \sin(r)e^{-i\varphi} \\ -\sin(r)e^{i\varphi} & \cos(r) \end{pmatrix} = \cos(r) \begin{pmatrix} 1 & \tan(r)e^{-i\varphi} \\ -\tan(r)e^{i\varphi} & 1 \end{pmatrix}$$
(0.12)

$$\mathbf{U_0}(p) = N \begin{pmatrix} 1 & p \\ -\bar{p} & 1 \end{pmatrix} \text{ ahol: } p \in \mathbf{C}, \text{ \'es a p komplex konjug\'altja}. \tag{0.13}$$

$$\mathbf{U_0}: z \to \frac{z+p}{1-\bar{p}z} \tag{0.14}$$

Ekkor S és U_0 kompozícióját véve, megkapjuk a vizsgált leképezést:

$$f_p := \mathbf{U_0} \circ \mathbf{S} : z \to \frac{z^3 + p}{1 - \bar{p}z^3} \tag{0.15}$$

A fenti rendszerben szereplő U operátornak lehetséges az értelmezése mint két egymás után alkalmazott CNOT operátor, először az első és az utolsó majd a második és az utolsó qubitet kapcsolja össze.

2. ábra. A qubiteken alkalmazott CNOT kapuk.

q_1	q_2	q_3	P	q_1	q_2	q_3	P
0	0	0	1	0	0	0	1
0	0	1	z	0	0	1	z
0	1	0	z	0	1	0	z
0	1	1	z^2	0	1	1	z^2
1	0	0	z	1	1	1	z^3
1	0	1	z^2	1	1	0	z^2
1	1	0	z^2	1	1	0	z^2
1	1	1	z^3	1	0	0	z

1. táblázat. Az U transzformáció értéktáblázata.

Álltalános számú qubit esetén

Az elözőekben felvázolt rendszer egyszerűen általánosíháromnál több azonos állapotban lévő quibitre. n quibit esetén az utólsó n-1 qubit értékét mérjük és ez alapján hatjuk végre a szelekciót. Ekkor az ${\bf U}$ mátrix általános alakjának, egy lehetséges választása

$$\mathbf{U} = egin{pmatrix} \mathbf{1}^{(n)} & \mathbf{0}^{(n)} \ \mathbf{0}^{(n)} & \mathbf{J}^{(n)} \end{pmatrix}$$

ahol $\mathbf{1}^{(n)}$ a n dimenziós egységmátrix, $\mathbf{0}^{(n)}$ az n dimenziós nullmátrix, $\mathbf{J}^{(n)}$ pedig az n dimenziós egy csak 1-seket tartalmazó anti diagonáliss mátrix.

A rendszeren állapota és a rajta végzett mérés ekkor

$$\mathbf{S_0} = \psi_\mathbf{0} \otimes \psi_\mathbf{0} \otimes \cdots \otimes \psi_\mathbf{0}$$

$$\mathbf{P} = 1 \otimes \mathbf{P_0} \otimes \cdots \otimes \mathbf{P_0}$$

A eredő leképezés

$$S = P \circ U$$

Erre pedig még hatatjuk a fentieknek megfelelő általános transzformációt az így a kapott leképezés

$$f_{n,p} := \mathbf{U_0} \circ \mathbf{S} : z \to \frac{p+z^n}{1-\bar{p}z^n}$$

Qubitek állapotterének reprezentálása

Bloch gömb

A Bloch gömb a kétállapotú kvantumrendszerek geometriai reprezentálása. A globális fázis faktorban lévő szabadság miatt mindig fel lehet írni egy qubit állapotát, úgy hogy a $|0\rangle$ -hoz tartozó valószínűségi együttható valós szám legyen. Tehát egy qubit tetszőleges állapota leírható a következő alakban

$$\psi = \cos(\theta/2)|0\rangle + e^{i\varphi}\sin(\theta/2)|1\rangle = \cos(\theta/2)|0\rangle + (\cos(\varphi) + i\sin(\varphi))\sin(\theta/2)|1\rangle \tag{0.16}$$

ahol: $\theta \in [0, \pi]$ és $\varphi \in [0, 2\pi]$.

Itt θ és φ paraméterek értelmezhetők mint gömbi koordináták. A qubit minden lehetséges állapotának megfelel egy pont az egység sugarú gömb felszínén, az ezt leíró vektor

$$\mathbf{a} = (\sin(\theta)\cos(\varphi), \sin(\theta)\sin(\varphi), \cos(\theta)) \tag{0.17}$$

A Bloch gömböt el láthatjuk metrikával, érdemes ezt a metrikát a gömbi metrikának válasz, azaz két pont távolság legyen egyenlő az őket összekötő legrövidebb út hosszával.(a kijelölt görbe ívhossza) Ez a választás azért előnyös a számunkra mivel a Hilbert térbeli állapotok esetén a Bures metrikának felel meg: $d(|\psi_1\langle,|\psi_2\langle)|) = 2*arc\cos(|\psi_1|\psi_2\langle|), \text{ és ekkor a Bloch gömb izometriái megegyeznek az alatta fekvő Hilbert tér izometriáival, vagyis a Bloch gömb izometriái megfeleltethető a Hilbert tér unitér transzformációinak.}$

3. ábra. Bloch gömb vizualizációja

A Riemann gömb vagy komplex számgömb

4. ábra. Riemann-gömb

A komplex számtest kibővíthető a $z=\infty$ szimbólummal jelölt végtelennel. A komplex számokon értelmezett műveletek értelmezhetőek erre az értékre az alábbi módon:

•
$$z + \infty = \infty + z = \infty$$

•
$$z \cdot \infty = \infty \cdot z = \infty$$
, ha $z \neq 0$

•
$$z/\infty = 0$$
, ha $z \neq \infty$

•
$$\infty/z =$$
, ha $z \neq \infty$

•
$$z/0 = \infty$$
, ha $z \neq 0$

Az így kiterjesztett objektuma komplex számgömb.

A $z=\infty$ értéknek létezik geometria értelmezése is. A véges komplex számok azaz a komplex számtest elemei, kölcsönosen egyértelmüen megfeleltethetők egy sík pontjaival, ez az úgynevezett komplex számsík(\mathbf{C}). A végtelennel kibővítve a komplex számok pedig egy gömb pontjainak feleltethetőek meg, ez a Riemann gömb.($\mathbf{C} \cup \{\infty\} = \hat{\mathbf{C}}$)(vagyis a komplex számsík lezártja.)

A véges komplex számok és a sík pontjai között a megfeleltetésére a síkban Descartes-féle koordináta rendszert rögzítünk, amelynek egyik tengelye a valós tengely, a másik tengelye képzetes temgely. Ekkor a sík minden (x, y) pontjának egyértelműen megfeleltetjük a $z = x + i \cdot y$ komplex számot.

$$(x,y) \iff z = x + i \cdot y$$

A C és $\hat{\mathbf{C}}$ közötti megfeleltetés a komplex számgömb és azt egy pontban érintő komplex számsík közötti sztereografikus leképezéssel adható meg. A sztereografikus leképezés során a gömb síkkal való érintkezési pontjával, ami a komplex számsík origója, átellenes pontjából induló félegyenesek által a síkból kimetszett $z \in \mathbf{C}$ pontot és a gömbből kimetszett $z' \in \hat{\mathbf{C}}$ megfeleltetjük egymásnak. (A 4 ábra.) Ekkor 0 és ∞ pontok rendre az érintkezési pontok és az azzal átellenes pontnak.

A $z \in \mathbf{C}$ komplex szám a gömb kordinátái közötti kapcsolat:

Legyen most a gömb középpontja most (0,0,0) és sugara R=1. A komplex szám göbön ξ_i koordináták ekkor kielégítik a gömb egyenletét

$$\sum_{i=1}^{3} \xi_i^2 = R^2 = 1$$

Most használjuk ki a sztereografikus leképezés definícióját: A (0,0,1) pont, a (ξ_1,ξ_2,ξ_2) pont és a (x,y,0) egy egyenesen vannak, ekkor igaz a következő egyenlet:

$$\frac{\xi_1 - 0}{x - 0} = \frac{\xi_2 - 0}{y - 0} = \frac{\xi_3 - 1}{0 - 1}$$

Amiből következik

$$x = \frac{\xi_1}{1 - \xi_3} \; ; \; y = \frac{\xi_2}{1 - \xi_3} \; ; \; z = \frac{\xi_1 + i \cdot \xi_2}{1 - \xi_3} \; .$$

Így tehát megkaptuk a Riemann-gömbről a számsíkra történő leképezést. A gömbegyenletét használva megkapjuk az inverz leképezéseket is.

$$\xi_1 = \frac{2x}{x^2 + y^2 + 1}$$
; $\xi_2 = \frac{2y}{x^2 + y^2 + 1}$; $\xi_3 = \frac{x^2 + y^2 - 1}{x^2 + y^2 + 1}$.

z-vel kifejezve:

$$\xi_1 = \frac{z + \bar{z}}{|z|^2 + 1}$$
; $\xi_2 = -i \cdot \frac{z - \bar{z}}{|z|^2 + 1}$; $\xi_1 = \frac{|z|^2 - 1}{|z|^2 + 1}$.

A komplex számsíkon és komplex számgöbön történő vizsgálodásaink során szükségünk lehet egy megfelelő metrika definiálására.

A komplex sík:

A $d: \mathbb{C} \times \mathbb{C} \to \mathbb{R}^+$ függvény, tetszőleges $z_1, z_2 \in \mathbb{C}$ esetén eleget tesz a

$$d(z_1, z_2) = |z_2 - z_1|$$

relációt. Mivel az abszolutérték tulajdonsága miatt tetszöleges $z_1, z_2 \in \mathbf{C}$ esetén a $|z_2 - z_1| \ge 0, |z_2 - z_1| = |z_1 - z_2|$ illetve ha $|z_2 - z_1| = 0$ akkor $z_1 = z_2$, valamint d tudja a háromszög egyenlőtlenséget, d valóban metrika.

Riemann gömb:

Először definiáljuk a $g: \hat{\mathbf{C}} \to \mathbf{S}$, ahol **S** a gömb felülete. Legyen a g(z) a következő hozzárendeléssel adott

$$g(z) := egin{cases} h(z) & ext{ha } z \in \mathbf{C} \ \infty & ext{ha } z = \infty \end{cases}$$

ez kölcsönösen egyértelmű leképezés a $\mathbf{C} \cup \infty$ és a Riemann gömb között.

Ekkor legyen a $\eta: \hat{\mathbf{C}} \times \hat{\mathbf{C}} \to R^+$ függvény tetszőleges z_1, z_2 esetén

$$\eta(z_1, z_2) = d(g(z_1), g(z_2))$$

ahol d az S-en értelmezett metrika.

Az így definiált metrika néhány tulajdonsága:

•
$$\eta(z_1, z_2) = \frac{|z_1 - z_2|}{(1 + |z_1|^2)(1 + |z_2|^2)}$$

•
$$\eta(z, \infty) = \eta(\infty, z) = \frac{1}{(1+|z|^2)}$$

•
$$\eta(\infty,\infty)=0$$

•
$$\eta(0,z) = \frac{|z|}{\sqrt{1+|z|^2}}$$

•
$$\eta(0,\infty)=1$$

A Riemann-gömb bevezetése után bevezethetjük az általános *Riemann-felületet* ami nem más mint egy egy dimenziós, összefüggő komplex sokaság, a komplex sík deformált változata. A Riemann-felületek egy fontos tulajdonsága, hogy holomorf függvények határozhatók meg közöttük.

Legyenek az S és S' Riemann-felületek konform izomorfak, ha létezik a kettő között egy homeomorfia, amely holomorf és létezik holomorf inverze.

A Riemann-felületek fontos tulajdonságát adhatjuk meg *Poincaré és Koebe* alapján : Bármely egyszeresen összefüggő Riemann-felület konform izomorf a következőkkel:

- C komplex síkkal, mely tartalmazza az összes komplex számot
- C-beli egy sugarú nyílt körlappal (U), $\mathbf{U} \subset \mathbf{C}$, $\mathbf{U} = z : z \in \mathbf{C}, |z|^2 < 1$
- a Riemann-gömbbel, $\hat{\mathbf{C}} = \mathbf{C} \cup \{\infty\}$

Ez a tulajdonság sokszor egyszerűtési lehetőséget jelent, mivel tetszőleges egyszeresen összefüggő Riemannfelületről áttérhetünk a fentiek valamelyikére ha az jobban illeszkedik a vizsgált problémához. A komplex számgömbnek is ismert egy fontos tulajdonsága amelyet, az [1] alapján így fogalmazhatunk meg: Ĉ minden konform automorfizmusa, azaz bijektív, művelettartó, önmagára történő leképezése, kifejezhető mint egy lineáris tört függvénnyel megadott transzformáció vagy mint egy Möbius transzformáció.

Möbius transzformáció: A $g(z)=\frac{az+b}{cz+d}$ hozzárendeléssel adott függvény Möbius transzformáció, ha a benne szereplő együtthatók komplexek és $ad-bc\neq 0$

Egy qubit vizualizációja

5. ábra. A $N \cdot (|0\rangle + |1\rangle)$ vizualizációja.

A fenti ábrának megfelelően ábrázolhatunk egy qubitet grafikusan egy egységnyi oldalhosszúságú téglalap két részre osztásával. Ekkor a kétrész aránya megegyezik a $|0\rangle$ és $|1\rangle$ együtthatói arányának a négyzetével, vagy is a mérési valószínűségek arányával. A téglalap kétrészeinek az árnyalatbeli különbsége kodolja az együtthatók fázis különbségét.

Dinamikai rendszerek elmélete:

az állapottérrel leírt rendszerek időbeli fejlődésével foglalkozik. Egy ilyen rendszert állapot jelzőkkel írhatunk le, ezek kezelhetjük úgy mint egy geometria teret vagy sokaságot leíró koordináták. A rendszer időfejlődése valamilyen szabályszerűség határozza meg, ez lehet egy folytonos vagy valamely diszkrét változás. Általában ezt egy leképezés vagy differenciál egyenlettel szokták megadni. Az időfejlődés fontos tulajdonsága, hogy determinisztikus, azaz a jelenlegi állapotról, adott időintervallum elteltével, diszkrét időfejlődés esetén adott számú lépés után, csak egyetlen jövőbeli állapot következhet be.

A dinamikai rendszer teljes általánosságal egy $(\mathbf{T}, \mathbf{M}, \varphi)$ rendezett 3-as, ahol \mathbf{T} egy egységelemes félcsoport, \mathbf{M} egy nem üres halmaz, $\varphi : \mathbf{U} \subseteq (\mathbf{T} \times \mathbf{M} \to \mathbf{M})$ függvény.

Az általunk vizsgált rendszerekben az állapot jelzők tipikusan komplex mennyiségek, az időfejlődés diszkrét idejű, komplex leképezéssel adott $f: \hat{\mathbf{C}} \to \hat{\mathbf{C}}$.

A $z_0 \in \hat{\mathbf{C}}$ kezdeti állapot időfejlödése:

$$z_0$$

$$\downarrow$$

$$z_1 = f(z_0)$$

$$\downarrow$$

$$z_2 = f(z_1) = f^{\circ 2}(z_0)$$

$$\downarrow$$

$$\vdots$$

$$z_n = f(f) = f^{\circ n}(z_0)$$

A időfejlődést megadó leképezés csak a közvetlen következő állapotot adja meg, vagyis a rendszert leíró állapotot egy nagyon rövid idő elteltével. Ha a rendszer állapotára hosszú idő elteltével vagyunk kíváncsiak, akkor értelemszerűen a több egymás utáni kis időlépést kell tenni, vagyis a leképezést kell iterálni, ez az eljárás a dinamikai rendszer integrálása vagy megoldása. Ha egy rendszer megoldható akkor adott kezdeti állapotból valamenyi jövőbeli állapot meghatározható, ezt pedig az állapottérbeli trajektóriák vagy orbitnak nevezzük.

A tiszta kezdőállapotok esete

A bevezető rész alapján elmondhatjuk, hogy az eredeti problémát sikerült reprezentálni a Riemann gömbön, itt minden állapotnak megfelel egy komplex szám, a transzformációnak egy komplex leképezés, melynek két valós szabadsági foka helyett bevezetünk egy komplex szabadsági fokot, a p paraméter által. A Riemann gömb feletti, fent meghatározott komplex leképezés, mint időfejlődés, által generált dinamika vizsgálatával foglalkozik. A egy adott dinamikai tulajdonságainak meghatározása nagyon bonyolult feladat, szerentsére adott nevezetes pontok, és a hozzájuk tartozó trajektóriák vizsgálatával fontos, a teljes dinamikára vonatkozó tulajdonságot határozhatunk meg. A mérés és posztszelekció által, a fenti módon, meghatározott transzformáció Riemann gömbi reprezentációja

$$f_p: \mathbf{C} \to \mathbf{C} , \ f_p(z) = \frac{z^3 + p}{1 - \bar{p}z^3}$$
 (0.18)

dinamikai rendszer időfejlődése.

Fix pontok

Első lépésben a dinamika rendszer fixpontjait határozzuk meg. Az $f: \hat{\mathbf{C}} \to \hat{\mathbf{C}}$ leképezés fixpontjai, azok a $z \in \hat{\mathbf{C}}$ pontok amelyekre igaz, hogy f(z) = z, azaz 1 hosszúságú periodikus orbit. Az [1] alapján a

fixpontok számáról a következőket mondhatjuk:

Ĉ minden automorfizmusának, kivéve az identitást, létezik két különböző fixpontja, vagy egy dubla fixpontja C-ben. Tehát biztos van a leképezésünk, komplexsíkon legalább egy fixpontja.

Minden d fokú racionális leképezésnek ami nem azonosan a z, pontosan d+1 fixpontja van. Vagyis a mi esetünkben 4 darab fixpontnak kell léteznie.

<u>Bizonyítás</u>: Feltételezhetjük, hogy a végtelen nem fixpontja f-nek, mivel ha az lenne át térhetnénk a egy dinamikailag ekvivalens leképezésre. Felírhatjuk a leképezést az f(z) = p(z)/q(z) alakban, azaz mint két polinom aránya. Itt q(z) egy d fokú, p(z) egy legfeljebb d fokú polinom. A fixpontok definiciója alapján, ekkot azok meghatározásához a p(z)/q(z) = z egyenletet kell megoldani. Kissé átalakítva kapjuk p(z) = zq(z) egyenletet, mely egy d+1 fokú polinom egyenlet, melynek a komplex számok körében mindig van d+1 megoldása.

Ezek meg is határozhatóak az alábbi módon.

$$f(z) = \frac{z^3 + p}{1 - \bar{p}z^3} = z \Rightarrow \bar{p}z^4 + z^3 - z + p = 0$$
(0.19)

Ez egy komplex együtthatós negyedfokú polinom egyenlet, amelynek négy komplex megoldása van. A megoldásait általános p esetén meghatározhatjuk, de $p \in \mathbf{C}$, $\Re(p) = 0$ esetben lényegesen egyszerűbb megoldás adodik.

Elöször vizsgáljuk a $p \in \mathbf{C}$, $\Re(p) = 0$, ekkor $\bar{p} = -p$, így a (0.19) egyenlet

$$-pz^4 + z^3 - z + p = 0$$

alakot ölti, mely azzal az egyszerű észrevételel, hogy minden p esetén, az 1 és a -1 gyöke, visszavezethető egy másodfokú egyenletet amelynek melynek megoldása, könnyen megadható.

$$(z-1)(z+1)(-pz^2 + z - p) = 0$$

Tehát

$$z_1 = 1$$
 , $z_2 = -1$, $z_3 = \frac{1 + \sqrt{1 - 4p^2}}{2p}$, $z_4 = \frac{1 - \sqrt{1 - 4p^2}}{2p}$

Most legyen $\Im(p) = 0$ ekkor $\bar{p} = p$, vagyis a (0.19) egyenlet

$$pz^4 + z^3 - z + p = 0$$

Hasonlóan az előző esethez itt is könnyen megadhatók analitikusan az egyenlet gyökei, viszont itt nem jelennek meg olyan gyökök melyek minden p esetén azonosak. Vizsgáljuk a fixpontok komplexsíkon való elhelyezkedését a p paraméter függvényében. A megoldásokat analitikusan meghatározhatjuk a p függvényében, ezek túl hosszúak és kevésbé érdekesek ahhoz, hogy itt feltüntessem őket. A fixpontok ábrázolása a p függvényébben nehézkes, mert négy komplex mennyiség és egy komplex paraméter kapcsolatát kellene vizualizálni, erre egy lehetőség az alábbi ábrázolás.

6. ábra. Az $f(z)=\frac{p+z^3}{1-\bar{p}z^3}$ leképezés fixpontjai, a paraméter sík egy 0 körüli a=4 oldalhosszúságú, négyzet alakú tartományból, egyenletesen vett 100~p értékek esetén.

7. ábra. Az $f(z)=rac{p+z^3}{1-ar pz^3}$ leképezés fixpontjai, a paraméter sík egy 0 körüli a=4 oldalhosszúságú, négyzet alakú tartományból, egyenletesen vett 1600~p értékek esetén.

A fenti ábrákon a paraméter téből kiválasztott részeket felosztottam egyenletesen kisebb tartományokra, melyeket az elhelyezkedésük szerint elláttam színekkel. Majd minden tartomány kiválasztva egy p értéket meghatároztam a hozzá tartozó fixpontokat, ezek lettek ábrázolva a jobb oldali ábrán, ezen minden pont egy fixpontnak felel meg a színe pedig azt mutatja melyik p értékhez tartozik. A fenti ábrák alapján megfigyelhető a fixpontok eloszlása, a paraméter változtatásával a fixpontok elmozdulása a komplex síkon és az így kialakult összetett komplikált geometria. Megfigyelhető egyfajta szimmetria a leképezésben, ha teljesül

$$\bar{p}z^4 + z^3 - z + p = 0$$

az egyenlet akkor teljesülnek az alábbi relációk

$$p \to \bar{p} \Rightarrow z \to \bar{z}$$

$$p \to -\bar{p} \Rightarrow z \to -\bar{z}$$

Ez formálisan azt jelenti, hogy a fentebb reprezentált fixpontok által alkotott rendszer szimmetrikus mind a valós, mind a képzetes tengelyre. A leképezés ezen tulajdonságai már a (0.19) egyenlet alakjából látszik.

$$\bar{p}z_p^4 + z_p^3 - z_p + p = 0 \Rightarrow \overline{p}z_p^4 + z_p^3 - z_p + p = 0 \Rightarrow p\bar{z}_p^4 + \bar{z}_p^3 - \bar{z}_p + \bar{p} = 0$$

$$\bar{p}z_p^4 + z_p^3 - z_p + p = 0 \Rightarrow \overline{-\bar{p}(-z_p)^4 + (-z_p)^3 - (-z_p) - p} = 0 \Rightarrow -p(-\bar{z}_p)^4 + (-\bar{z}_p)^3 - (-\bar{z}_p) - \bar{p} = 0$$

 $z_{ar p}=ar z_p$, $z_{-ar p}=-ar z_p$

ahonnan

A fentiekben csak a 0 értékhez közeli p esetén néztük meg a fixpontokat, de az ezeket meghatározó egyenletet vizsgálva

$$\bar{p}z^4 + z^3 - z + p = 0 \to z^4 = \frac{(-z^3 + z - p)}{\bar{p}} = -\frac{z^3}{\bar{p}} + \frac{z}{\bar{p}} - \frac{p}{\bar{p}}$$

$$|p| \to \infty \Rightarrow z \to \sqrt[4]{-rac{p}{\bar{p}}}$$

A számolásaim során során általában a $p \in \{1, i, 1+i\}$ értéket használjuk példának, mert ugyan nem adnak teljes képet a leképezésről a p paraméter függvényben, de mégis jól szemléltetik a leképezés, és az általa generált leképezés tulajdonságait különböző típusú p esetén.

p	z_1	z_2	z_3	z_4	
1	0.566 + 0.459i	0.566 - 0.459i	-1.066+0.864i	-1.066 -0.864i	
i	1	-1	0,618i	-1.618i	
1+i	0.305 +0.662i	0.830 - 0.306	-0.575-1.246i	-1.060 +0.391i	

2. táblázat. A kiválasztott p értékéhez tartozó fixpontok.

A fentiekben az $\frac{p+z^3}{1-\bar{p}z^3}$ leképezést vizsgáltuk de nagyon hasonlóan járhatnánk el, általános $f_{n,z}$ leképezés esetén is. Ekkor a

$$f_{n,z}(z) = \frac{z^n + p}{1 - \bar{p}z^n} = z \Rightarrow \bar{p}z^{n+1} + z^n - z + p = 0$$
(0.20)

egyenlet határozza meg dinamika fixpontjait. A fenti tételek összhangban ennek az egyenletnek is n+1 megoldása van a komplex számok körében, így n+1 fixpontja van.

A fixpontok tulajdonságai

Adott $f: \mathbf{S} \to \mathbf{\hat{C}}$, függvény esetén, ahol $\mathbf{S} \subseteq \mathbf{\hat{C}}$ bevezethetjük a fixpontok egy klasszifikációját, a viselkedésük alapján.

A $z_0 \in \mathbf{S}$ véges fixpont, ha $z_0 \in \mathbf{C} = \hat{\mathbf{C}} \setminus \{\infty\}$.

A $z_0 \in \mathbf{S}$ pont, taszító fixpont, ha $f(z_0) = z_0$ és létezik olyan $\mathbf{B}(\mathbf{z_0}) \subset \mathbf{S}$ környezete, hogy minden $z \in \mathbf{S} \cap \mathbf{B}(\mathbf{z_0}) \setminus \{z_0\}$ esetén $|f(z) - z_0| > |z - z_0|$. A fenti tulajdonság a ∞ pontra is kiterjeszthető. A ∞ pont taszító fixpont, ha $f(\infty) = \infty$ és minden $z \in \mathbf{S} \cap \mathbf{B}(\infty) \setminus \{\infty\}$ esetén |f(z)| < |z|.

A $z_0 \in \mathbf{S}$ pont vonzó fixpont, ha $f(z_0) = z_0$ és létezik olyan $\mathbf{B}(\mathbf{z_0})$ nyílt környezete, hogy minden $z \in \mathbf{S} \cap \mathbf{B}(\mathbf{z_0})$ esetén az $f(z) \in \mathbf{B}(\mathbf{z_0})$ és $\lim_{n \to \infty} f^{\circ n}(z) = z_0$, vagy is tetszőleges $\epsilon > 0$ esetén létezik N, hogy ha n > N akkor $|f^{\circ n}(z) - z_0| < \epsilon$.

Egy $z_0 \in \mathbf{S}$ vonzó fixpont esetén definiálhatjuk a pont $\mathbf{A}(\mathbf{z_0}) \subset \mathbf{S}$ vonzási tartományát $A(z_0) = \{z \in \hat{\mathbf{C}} : \lim_{n \to \infty f^{\circ n}} = z_0\}$. Ugyanez függ az f függvénytől de amikor nem szükséges ezt nem tüntetjük fel.

8. ábra. Caption

A [1] és a [5] alapján kiegészíthetjük a fent bevezetett klasszifikáció és kapcsolatot teremthetünk a függvény fixpontjainak tulajdonságai és a deriváltjának a fixpontbeli értéke között.

Legyen most az $f: \mathbf{S} \to \hat{\mathbf{C}}$ függvény differenciálható, és z_0 ennek egy fixpomtja, a $\lambda_{z_0} = \left. \frac{\partial f}{\partial z} \right|_{z_0}$ érték alapján:

- taszító, ha $|\lambda| > 1$
- semleges, ha $|\lambda| = 1$
- vonzó, ha $|\lambda| < 1$
- szuper vonzó, ha $|\lambda| = 0$

A semleges pontok általánosítása a parabolikus pontok, ekkor λ egy egységyök.

Ennek az osztályozásának később lesz jelentősége, adott pont iteráljának, azaz az $z_n = f^{\circ n}(z_0)$ pontok viselkedésének leírásában.

9. ábra. Az a pont vonzási tartománya a p paraméterhez tartozó leképezés esetén

Vonzó fixpontok

A megvizsgálhatjuk a paramétertér szerkezetét aszerint is, hogy milyen típusú fixpontok tartoznak hozzá. Vizsgáljuk a vonzó fixpontokat. A paramétertér vizsgálatához először fel kell vennünk a paraméter térnek egy felosztását, ebben az esetben a $p=0+0\cdot i$ körüli, 1 oldalhosszúságú tartományt vizsgáljuk, és itt felveszünk egy 1000×1000 rácsot, melyben szereplő p értékekre meghatározuk fixpontokat és kiválasztjuk közülük a vonzóak.

10. ábra. A paramétertér origó körüli részének a szerkezete p paraméterhez tartozó vonzó fixpontok száma szerint.

Észrevehető a sajátos szerkezete a paramétertérnek, szimmetrikus mind a valós mind a képzetes tengelye és jól elkülönülő tartományokat találtunk. Csak olyan p értéket találtunk, melyeknél a 0 vagy 2 fixpont van. Az [1] ban a racionális törtfüggvényekre kimondott tétel alapján kijelenthetjük, hogy :

Tétel:

Egy $d \geq 2$ fokú racionális leképezésnek legfeljebb 2d-2 vonzó vagy parabolikus fixpontja lehet. Amivel nem tartalmaz fontos információkat a vizsgálatunk szemszögéből így nem részletezük a tétel bizonyítását, a bizonyítás szerepel a megjelölt forrásban, ennek alapja a kritikus pontok maximális száma, amelyre a definíciója alapján lehet következtetni.

Tehát esetünkben d=3, vagyis maximum 2d-2=4 darab vonzó fixpontja van a leképezésünk nek, melyből a fenti tartomány belsejében lévő p értékek esetén megtaláltunk 2 darabot. Viszont nem teszteltük a teljes paraméter teret, at is igaz ugyanakkor, hogy mivel a leképezések ∞ körülis viselkedését a másik térképre történő áttéréssel tudjuk vizsgálni, de ekkor

$$\frac{1}{z} \circ f_p \circ \frac{1}{z} = \frac{1}{z} \circ \frac{p+z^3}{1-\bar{p}z^3} \circ \frac{1}{z} = \frac{-\bar{p}+z^3}{1+pz^3} = f_{-\bar{p}}$$
 (0.21)

tehát, ha olyan 0 körüli részt választunk a parmétertérből ami szimetrikus a képzetes tengelyre, azaz minden p esetén ami benne van, tartalmazza a $-\bar{p}$ is, akkor egyben a ∞ környezetét is vizsgáljuk.

Az elvégzett műveleteket általános esetben is elvégezhetjük. Ahogy már említettük az n rendű leképezések esetén az

$$\bar{p}z^{n+1} + z^n - z + p = 0$$

egyenletett kell megoldani, magasabb n értékek esetén ezt a polinom Frobenius kísérő mátrixának sajátértékei meghatározásával lehet megteni. Egy polinom kísérő mátrixa, az a mátrix melynek a polinom a minimál polinomja. Ez a módszer részletesen ismertetve van a [3] könyvben. A lényege, hogy a polinomhoz rendelt speciális mátrix sajátértékei megadják annak gyökeit, a mátrix sajátértékeinek meghatározása, lineáris algebrai módszerrel sokkal hatékonyabb mint a legtöbb más gyökkereső algoritmus. Általános $p(z) = c_0 + c_1 z + c_2 z^2 \dots c_{n-1} z^{n-1} + z^n = 0$ polinomhoz tartozó kísérő mátrix

$$\begin{pmatrix}
0 & 0 & \cdots & 0 & -c_0 \\
1 & 0 & \cdots & 0 & -c_1 \\
0 & 1 & \cdots & 0 & -c_2 \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & \cdots & 1 & -c_{n-1}
\end{pmatrix}$$

Tehát a $\bar{p}z^{n+1} + z^n - z + p$ polinom esetén a

$$\begin{pmatrix} 0 & 0 & \cdots & 0 & -\frac{p}{\bar{p}} \\ 1 & 0 & \cdots & 0 & \frac{1}{\bar{p}} \\ 0 & 1 & \cdots & 0 & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & \cdots & 1 & -\frac{1}{\bar{p}} \end{pmatrix}$$

mátrix sajátértéke a polinom gyökei, vagyis a keresett fixpontok.

Az általánosításhoz, még a λ értéket kell meghatároznunk ami nem jelent problémát, hiszen csak egy deriváltat kell kiszámolni, majd kiértékelni.

$$\lambda_{z_0} = \left. \frac{n|(1+|p|^2)z^{n-1|}}{|(1-\bar{p}z^n)^2|} \right|_{z_0}$$

A fenti általánositásokkal kiegészítve az eredeti módszerünket, az $n \in \{2, 3, 4, 5, 6, 7, 8, 9, 10\}$ esetekben a következőt kapjuk.

11. ábra. A páratlan n értékekhez tartozó ábrák ábrák.

12. ábra. A páros n értékekhez tartozó ábrák ábrák.

11. ábrán minden n esetén hasonló viselkedés figyelhető meg. Megfigyelhető, hogy az n-től függetlenül csak olyan p értékeket találtunk ahol 0 vagy 2 vonzó fixpontja van leképezésnek. És jellegzetes formák megjelenik meg a paramétertér szerkezetében. Minden páratlan n esetén, n-1 darab "szirom" jelenik meg ahol a vonzó fixpontok száma 2, ezt pedig körbe fogja egy tér rész ahol nicsenek vonzó fixpontok.

12. ábra alapján: a páratlan n-ek esetéhez hasonlóan itt is megjelentek jellegzetes alakzatok a paraméter térben. Itt minden n esetén 2(n-1) darab olyan "szirmot" találtunk, ahol a 2 vonzó fixpont van, a másik szembetűnő különbség, hogy itt megjelen egy ezeket körülölelő tartomány ahol 1 vonzó fixpont van és ennek is 2(n-1) tagolódása van. Az előző esethez teljesen hasonlóan itt is körbe veszi az egész egy tartomány ahol nincsenek vonzó fixpontok.

A fenti ábrákan megjelenő struktúrák szimmetriát megmagyarázhatjuk a ha megvizsgáljuk a függvényt melyet vizsgálunk. A minden a fixpontok meghatározásának módja mind a leképezés deriváltja ismert. A fixpontok meghatározásához a fent felírt polinomegyenletet kell megoldani, ennek egy $\mathbf{Z}(p)$ függvény a megoldása, ez egy $\mathbf{Z}: \mathbf{C} \to \mathbf{V}^{n+1}(\mathbf{C})$ típusú függvény, azaz egy vektor értékű függvény, ahol a függvény értéke a fent definiált kísérő mátrix sajátértékei. A legyen a $\lambda: \mathbf{V}^{n+1}(\mathbf{C})) \to \mathbf{V}^{n+1}(\mathbf{R}^+)$ függvény amit a λ gyökökön történő kiértékelése ként értelmezünk. Ekkor az általunk vizsgált függvény

$$\mathbf{F}(p) = (\lambda \circ \mathbf{Z})(p)$$

és legyen $F(p)_i$ ennek az i. komponense.

És a fenti tulajdonságát pedig úgy vizsgálhatjuk, hogy megnézzük a definiált függvény adott p pontban vett értékének, hány komponense nagyobb mint egy. Tételezük fel, hogy találunk egy vonzó fixpontot valamely

p esetén, azaz valamely $i \in \{1, 2, 3, \dots n+1\}$ az $F_i < 1$. A továbbiakban, mivel eltérő viselkedést mutatnak az n páros, és páratlan értékéhez tartozó leképezések, külön vizsgáljuk a leképezéseket a fokaik szerint.

Elsőként nézzük a páratlan fokú leképezéseket. A következő lépés előtt álltalánosíkell fixpontokat definiáló polinom egyenlet szimmetria tulajdonságait, amelyekről n=3 esetén már ejtettünk néhány szót.

Vegyük az n-ed fokú leképezéshez tartozó polinom egyenletet

$$\bar{p}z^{n+1} + z^n - z + p = 0$$

Egyértelmű ekkor, hogy $p=\bar{p}$ esetén a bármely n-re az egyenlet megoldása a \bar{z} érték, ez a komplex konjugált tulajdonságaiból következik. Geometriailag gondolkodva ez azt jelenti, hogy egy a valós tengelyre szimmetrikus p térbeli tartomány képe, is szimmetrikus kell legyen a valós tengelyre tengelyre, ha fixpontok fázis tere szimmetrikus akkor a vonzó fixpontokét is érdemes vizsgálni. Ehhez a következő értéket kell kiszámolni.

$$F_i(\bar{p}) = \frac{n|(1+|\bar{p}|^2)Z(\bar{p})_i^{n-1}|}{|(1-pZ(\bar{p})_i^n)^2|}$$

Kihasználva, hogy $|p| = |\bar{p}|$, és fent leírtak miatt, hogy $Z(\bar{p})_i = \overline{Z(p)}_i$

$$F_i(\bar{p}) = \frac{n|(1+|\bar{p}|^2)\overline{Z(p)_i^{n-1}}|}{|(1-p\overline{Z(p)_i^n})^2|}$$

Az abszolút érték és komplex konjugálás tulajdonságait kihasználva,

$$F_i(\bar{p}) = \frac{n(1+|\bar{p}|^2)|Z(p)_i^{n-1}|}{|(1-\bar{p}Z(p)_i^n)^2|} = F_i(p)$$

Tehát ha p-hez tartozó z vonzó fixpont akkor a \bar{p} -hez \bar{z} is, vagy is a fonzó fixpontok tere szimnetrikus a valós tengelyre.

Ebből kiindulva más szimmetria tulajdonságokat is vizsgálhatunk. Nézzük a képzetes tengelyre vett tükrözést mint szimmetriát, azaz $p \to -\bar{p}$ áttérést, ekkor a fixpontokat definiáló egyenlet

$$-pz^{n+1} + z^n - z - \bar{p} = 0$$

Néhány algebrai átalakítás és az egyenlet komplex konjugálása után

$$\bar{p}(-\bar{z})^{n+1} + (-\bar{z})^n - (-\bar{z}) + p = 0$$

Vagy is az áttérés esetén az egyenlet gyökei $-\bar{z}$ értékek, ahol a z a p-hez tartozó egyenlet gyökei. Az előző esethez hasonlóan a itt is kiszámolhatjuk az $F_i(-\bar{p})$ értékét.

$$F_{i}(-\bar{p}) = \frac{n|(1+|\bar{p}|^{2})Z(-\bar{p})_{i}^{n-1}|}{|(1+pZ(-\bar{p})_{i}^{n})^{2}|} = \frac{n|(1+|\bar{p}|^{2})\overline{Z(p)}_{i}^{n-1}|}{|(1-pZ(p)_{i}^{n})^{2}|} = \frac{n(1+|\bar{p}|^{2})|Z(p)_{i}^{n-1}|}{|(1-\bar{p}Z(p)_{i}^{n})^{2}|} = F_{i}(p)$$

Tehát a paraméter térbeli tartományok olyan, hogy minden benne lévő p esetén tartalmazza a $-\bar{p}$ is, más szavakkal szimmetrikus a képzetes tengelyre, akkor a vonzó fixpontok tartománya is. A fenti két tulajdonság következmény, hogy ha a paraméter szimterikus a középpontra akkor a vonzó fixpontok tere is.

13. ábra. A dinamika fixpontjainak és a paraméter térnek a kapcsolata páros n esetén

Nézzük most a páros fokú leképezéseket. Ekkor fixpontokat definiáló egyenlete tulajdonságai miatt, ami most egy páratlan fokszámú polinom egyenlet, csak a valós tengelyre vett szimmetria teljesül, ami a numerikus számítások is tükröznek. Itt marad egy nyitott kérdés, a fenti számítások esetén mégis azt tapasztaltuk, hogy fixpontok tere minden n esetén szimmetrikus a középpontra. Ez azért van mert a polinom összes gyökét vizsgáltuk együtt.

14. ábra. A dinamika fixpontjainak és a paraméter térnek a kapcsolata páros n esetén

A két eset, páros és páratlan, között is felfedezhető kapcsolat, a paraméter tér nagyon hasonló. A numerikus számítások azt sugallják, hogy minden n esetén van két olyan z fixpont amely adott p-térbeli tartományokon vonzók, ezek alakja azonos, viszont egymáshoz képest $\pi(n+1)$ szöggel el vannak forgatva, azaz $e^{i\pi(n+1)}$ -vel szorozva, ekkor páratlan n esetén pontosan fedésbe kerülnek, így egy tartomány jelenik meg,

ahol két vonzó fixpont van, míg páratlan n esetén előfordulnak olyan tartományok ahol az adott gyökhöz tartozó tartományok nem fedik egymást, így itt csak egy vonzó fixpont tartozik.

15. ábra. Az f_2 leképezés két gyökéhez tartozó vonzó fixpontok, harmadik gyök esetén nem találtunk vonzó fixpontokat.

16. ábra. Az f_3 leképezés két gyökéhez tartozó vonzó fixpontok, a további gyökök esetén nem találtunk vonzó fixpontokat.

A taszító fixpontok olyan, a vonzó fixpontokéhoz hasonló analizíst nem végeztem mert a deffinicióból következően számuk eloszlása pont ellentétes mint a vonzó fixpontoké.

Kritikus pontok

A komplex dinamikák lényeges tulajdonságai ismerhetők meg a kritikus pontjai viselkedésén keresztül. A dinamika kritikus pontjai azok, ahol az idő fejlődést adó leképezés deriváltja nullát vesz fel.

Esetünkben a leképezés deriváltja

$$\frac{\partial f(z)}{\partial z} = \frac{3(1+|p|^2)z^2}{(1-pz^3)^2}$$
(0.22)

A kritikus pontok meghatározása a következő egyenletet kell megoldanunk:

$$\frac{3(1+|p|^2)z^2}{(1-pz^3)^2} = 0 \Rightarrow (1+|p|^2)z^2 = 0, \text{ ha } (1-pz^3)^2 \neq 0$$
 (0.23)

Ennek megoldásaiz=0 ha $(1-pz^3)^2\neq 0$, 2 multiplicitással. A további gyökök meghatározáshoz, a derivált értékét a végtelen helyen is meg kell határoznunk, ehhez pedig a $\hat{\bf C}$ másik térképét kell használnunk. A leképezések ekkor:

$$\frac{1}{z} \circ f_p \circ \frac{1}{z} = \frac{1}{z} \circ \frac{p+z^3}{1-\bar{p}z^3} \circ \frac{1}{z} = \frac{-\bar{p}+z^3}{1+pz^3} = f_{-\bar{p}}$$
 (0.24)

Ekkor a leképezés deriváltja

$$\left. \frac{\partial f_p(z)}{\partial z} \right|_{\infty} = \left. \frac{\partial f_{-\bar{p}}(z)}{\partial z} \right|_{0} = \left. \frac{3\left(p^2 + 1\right)z^2}{\left(pz^3 + 1\right)^2} \right|_{0} = 0 \tag{0.25}$$

Tehát a leképezésnek a is kritikus szintén 2 multiplicitással. Ezek alapján a leképezésnek megtaláltuk a kritikus pontjait, szám szerint négyet, melyek közül kettő-kettő azonos, más megfogalmazásban két 2 multiplicitású fixpontot.

A kritikus pontok viselkedésének, és ezzel a dinamika vizsgálathoz be kell fizetnünk néhány fogalmat.

Fázistérbeli orbitok

A bevezetőben már említésre került ugyan, de nem kapott definíciót az adott pontból induló trajektória vagy orbit, gyakrabban az utóbbi elnevezést használjuk.

Definició: Az $\Omega(z,f):=\{z_0,f(z_0),f^{\circ 2}(z_0)...f^{\circ n-1}(z_0)\}\subseteq \hat{\mathbf{C}}$ halmazt a z_0 pontból induló orbitnak nevezzük, melynek hossza n. Ha $f^{\circ n}(z_0)=z_0$ akkor $\Omega(z,f)$ egy n hosszú vagy periódusú periodikus orbit, vagy ciklus, és pontjai periodikus pontok.

Felhasználva a bevezetőben a qubitek vizualizációjára leírt modszet, ábrázolhatunk orbitokat.

17. ábra. Az $f_{3,1}$ leképezéshez tartozó z=1 induló periodikus orbit.

Egyértelműen definiálható a z_0 pontból induló periodikus orbit sajátértéke, amit nyújtásnak (multiplier) nevezünk, és a következő komplex mennyiséggel adható meg

$$\lambda = \left. \frac{\partial f^{\circ n}(z)}{\partial z} \right|_{z_0} = f'(z_0) \cdot f'(z_1) \cdot f'(z_2) \cdots f'(z_n)$$

A λ értéke szerint a periodikus orbit lehet:

- taszító, ha $|\lambda| > 1$
- semleges, ha $|\lambda| = 1$
- vonzó, ha $|\lambda| < 1$

• szuper vonzó, ha $|\lambda| = 0$

Észrevehető, hogy a fenti tulajdonságok a fixpontokra bevezet tulajdonságok általánosítása, ami nem meglepő hiszen a fix pontok az 1 hosszúságú periodikus orbitok. Abban az esetben ha a ∞ is része a ciklusnak, akkor a λ nem egyenlő a $z \to \infty$ határesettel. Ebben az esetben be kell vezetni a ∞ pont körül a w=1/z paramétert, ekkor a $w \to 1/f(1/w)$ hozzárendeléshez 0 körüli orbit nyujtása azonos lesz az f-hez tartozó ∞ körüli orbit nyújtásával. Ez igazából az előző pontban is használt másik térképre való áttérésnek felel meg.

Vonzó periodikus orbitok esetén definiálható, egy \mathbf{S} $in\hat{\mathbf{C}}$ nyilt halmaz, mely tartalmaz minden olyan $z \in \hat{\mathbf{C}}$ pontot melynek iterálja a periodikus orbit valamely pontjához tart, ez a periodikus orbit tbfvonzási tartománya.

Egy $z_0 \in \hat{\mathbf{C}}$ pont fő orbitja, az $\hat{\mathbf{\Omega}}(z_0, f)$ halmaz, amely tartalmazza az összes $z \in \hat{\mathbf{C}}$ pontot amelyet érinthet az z_0 -ból induló orbit. A definíció értelmében ha z-nek és z'-nek akkor és csakis akkor azonos a fő orbitjuk ha van olyan $n \geqslant 0$ és $m \geqslant 0$, hogy

$$f^{\circ n}(z) = f^{\circ m}(z')$$

18. ábra. Az $f_{3,1}$ leképezéshez tartozó $z_0=1+i$ -ből induló orbit. Látható, hogy konvergál a z=1 ponthoz tartozó periodikus orbithoz, tehát benne van a vonzási tartományában.

Hivatkozások

- [1] John Milnor DYNAMICS IN ONE COMPLEX VARIABLE
- [2] John Milnor ON LATT'ES MAPS
- [3] ROGER A. HORN, CHARLES R. JOHNSON MATRIX ANALYSIS
- $\label{eq:charge} \begin{tabular}{ll} [4] Pach Zs. Pálné KOMPLEX FÜGGVÉNYtan $Kathleen T. Alligood, Tim D. Sauer, James A. Yorke: $CHAOS-An Introduction to Dynamical Systems. Springer, 1996 \\ \end{tabular}$