Visual Question Answering for Medical Images with Explainable AI

Deepananth K 195001027 Jayakrishnan S V 195001040

Under the Guidance of Dr. S. Kavitha

SSN College of Engineering, Chennai

First Review February 10, 2023

What is Visual Question Answering

- Visual Question Answering(VQA) is an emerging approach under the domains of Computer Vision and Natural Language processing, which aims to answer the user's question by analysing the given input image.
- VQA can be applied to several types of images like Natural Images,
 Medical Images and Cartoon Images.

(g) **Q**: which organ system is shown in the ct scan? **A**: lung, mediastinum, pleura

(h) **Q**: what is abnormal in the gastrointestinal image? **A**: gastric volvulus (organoaxial)

Figure: Sample Images and Questions with Corresponding Answers from ImageCLEF 2019 VQA-Med Dataset

Problem Statement

- The aim of this project is to build an efficient VQA model that generates answers to questions related to medical images using deep learning techniques
- In addition, the reason behind the generated answer has to be analyzed using Explainable AI(XAI) tools such as LIME or SHAP to provide explanations on the outcome.

Objectives

- To collect and analyze the dataset of Visual Question Answering from the CLEF Forum.
- To compare and validate different transformer models for text feature extraction.
- To build an efficient VQA model that generates the answers to the questions related to the given Medical Image.
- To analyze the generated answer, Explainable AI tools have to be used for more explanations.

System Design

Module Split-up

The system design is split into four modules as follows:

- Dataset Collection and Analysis
- Feature Extraction
- VQA Model Building
- Performance Analysis and XAI

Timeline

Review	Module	Jan	Feb	Mar	Apr
Review 1	Data Collection and				
Review 1	Analysis				
	Image Feature				
	Extraction				
Review 2	Text Feature				
	Extraction				
	VQA Model				
	Building				
Review 3	Performance Analysis				
	(BLEU Score, WBSS)				
	and XAI (LIME, SHAP)				

Dataset

For this project, ImageClef 2019 VQA-Med dataset is used.

Dataset	Question	No. of	No. of
	Category	Questions	Classes
Training Dataset	Modality	3200	44
	Plane	3200	15
	Organ System	3200	10
	Abnormality	3192	1484
Testing Dataset	All	500	-

Table: Dataset Analysis

Image Feature Extraction

- In this project, CNN and pre-trained VGGNet are used for Image feature extraction
- CNN performs better without loss of information and reduced dimensionality of the image
- The training parameters for a CNN is lesser than other neural network
- VGGNet is a pre-trained CNN architecture, which is one of the best and most widely used architecture
- VGGNet extract better features from the images, which gives better results in various situations

Transformer Models for Text Processing

- A transformer model is a neural network that learns the context of the sequence of data like sentences which is a sequence of words
- They handle long-range dependencies in the sequence of data
- There are various pre-trained transformer models like BERT, XLNet, GPT, etc.,
- In this project, BERT is to be used for feature extraction and also for answer generation

Explainable AI (XAI)

- Explainable AI(XAI) is a rapidly emerging research idea which refers to methods and techniques that helps us understand and interpret predictions made by AI models.
- There are many XAI tools available like LIME, What-If, SHAP, ELI5, etc.,
- In this project, LIME (Local Interpretable Model-Agnostic Explanations) and SHAP (SHapley Additive exPlanations) tools are to be used
- **LIME** outputs a list of explanations, reflecting the contribution of each feature to the prediction of a data sample
- **SHAP** explains how the different features affect the output or what contribution do they have in the outcome of the model

Implementation & Result

DNN	Training	Testing
Techniques	Accuracy	Accuracy
Custom CNN	0.9906	0.512
Pre-trained VGGNet	0.7125	0.681
VGGNet Trained with our Dataset	0.5706	0.586

Table: Comparison of various feature extraction techniques

Visualization

To develop an efficient feature extraction model and to choose the correct number of layers, visualization(using heatmap) techniques are used.

Figure: Custom CNN

Visualization contd.

Figure: Pre-trained VGGNet

Visualization contd.

Figure: VGGNet weights Trained with our Dataset

Implementation Challenges

- Dataset Complexity
- Text Present in Images

Conclusion

- The dataset for the task of Visual Question Answering is collected and it is analyzed.
- To extract features that best represents the images, Deep Learning techniques such as CNN, pre-trained VGGNet and VGGNet trained on ImageClef 2019 VQA-Med datset are implemented.
- The performance of these models are compared in terms of accuracy and visualization(heatmap).
- The comparison shows that VGGNet with pre-trained weights perform better in terms of accuracy and also visualization.

References

- [1] A. Lubna, S. Kalady and A. Lijiya, MoBVQA: A Modality based Medical Image Visual Question Answering System, TENCON 2019 -2019 IEEE Region 10 Conference (TENCON), Kochi, India, 2019, pp. 727-732, doi: 10.1109/TENCON.2019.8929456.
- [2] Allaouzi, Imane et al. An Encoder-Decoder Model for Visual Question Answering in the Medical Domain, Conference and Labs of the Evaluation Forum (2019).
- [3] Al-Sadi, Aisha & Al-Ayyoub, Mahmoud & Jararweh, Yaser & Costen, F.. (2021). Visual Question Answering in the Medical Domain Based on Deep Learning Approaches: A Comprehensive Study. Pattern Recognition Letters. 150. 10.1016/j.patrec.2021.07.002.
- [4] Sharma, D., Purushotham, S. & Reddy, C.K. *MedFuseNet: An attention-based multimodal deep learning model for visual question answering in the medical domain.* Sci Rep 11, 19826 (2021).

References contd.

- [5] Yangyang Zhou, Xin Kang, Fuji Ren. Employing Inception-Resnet-v2 and Bi-LSTM for Medical Domain Visual Question Answering. CLEF (Working Notes) 2018.
- [6] Knapič S, Malhi A, Saluja R, Främling K. Explainable Artificial Intelligence for Human Decision Support System in the Medical Domain. Machine Learning and Knowledge Extraction. 2021; 3(3):740-770.
- [7] S. H. P. Abeyagunasekera, Y. Perera, K. Chamara, U. Kaushalya, P. Sumathipala and O. Senaweera, LISA: Enhance the explainability of medical images unifying current XAI techniques. 2022 IEEE 7th International conference for Convergence in Technology (I2CT), Mumbai, India, 2022, pp. 1-9, doi: 10.1109/I2CT54291.2022.9824840.
- [8] Lin Z, Zhang D, Tac Q, Shi D, Haffari G, Wu Q, He M, Ge Z. *Medical visual question answering: A survey.* arXiv preprint arXiv:2111.10056. 2021 Nov 19.

Thank You

Literature Survey

Paper Title	Methodology	Limitations
MoBVQA: A Modality based Medical Image Vi- sual Question Answering System [MoBVQA]	A CNN is trained for the different modalities like X-Ray, MRI, CT, Ultrasound Dataset: ImageCLEF 2019 VQA-Med Answer Generation: CNN Classifier Analysis: Accuracy-60.8, BLEU Score-63.4	Only modality based questions are considered
Visual question answering in the medical domain based on deep learning approaches: A comprehensive study [Al-Sadi]	The Questions are classified into 4 categories and multiple models are trained for each type of question Dataset: ImageCLEF 2019 VQA-Med Image Feature Extraction: VGGNet16 Answer Generation: Ensemble of Classification models Analysis: Accuracy-60.8, BLEU Score-63.4	All models built for each question cate- gories are classification models which is com- pletely a black-box ap- proach

Literature Survey Contd.

Paper Title	Methodology		
Explainable Artificial Intelli-	Dataset: Red Lesion Endoscopy data		
gence for Human Decision	XAI tools: LIME, SHAP, CIU		
Support System in the Medical	A CNN is trained using the dataset.		
Domain [XAI-CNN]	XAI tools are then used for visualiza-		
	tion in terms of heatmap. The result		
	of visualization is then compared		
LISA : Enhance the explain-	Dataset: COVID-19 Dataset		
ability of medical images uni-	XAI tools: LIME, SHAP, Anchors		
fying current XAI techniques	Other XAI techniques: Integrated		
[XAI-LISA]	Gradients Transfer Learning is used		
	for the detection of COVID-19. The		
	XAI tools LIME, SHAP Anchor and		
	Integrated Gradient techniques' re-		
	sults are combined to give explana-		
	tions.		