Simulación

0.1 Presentación del Curso0.2 Sistemas, modelos y simulación0.3 Ejemplos de simulación

Jorge de la Vega Góngora

Departamento de Estadística Instituto Tecnológico Autónomo de México

Clase 1 (1a semana de clase)

- Conocimiento general pero sólido, de conceptos estadísticos y probabilísticos.
- Diseño de Algoritmos. Principios generales de programación.
- Conocimiento de R, Matlab, Java, etc. no es fundamental, pero muy conveniente.
- Conocimientos de:

- Conocimiento general pero sólido, de conceptos estadísticos y probabilísticos.
- Diseño de Algoritmos. Principios generales de programación.
- Conocimiento de R, Matlab, Java, etc. no es fundamental, perc muy conveniente.
- Conocimientos de:

- Conocimiento general pero sólido, de conceptos estadísticos y probabilísticos.
- Diseño de Algoritmos. Principios generales de programación.
- Conocimiento de R, Matlab, Java, etc. no es fundamental, pero muy conveniente.
- Conocimientos de:

- Conocimiento general pero sólido, de conceptos estadísticos y probabilísticos.
- Diseño de Algoritmos. Principios generales de programación.
- Conocimiento de R, Matlab, Java, etc. no es fundamental, pero muy conveniente.
- Conocimientos de:
 - Distribuciones de variables aleatorias y sus momentos.
 - Cálculo (integración, diferenciación y convergencia).
 - Bases de procesos estocásticos: cadenas de Markov, procesos de Wiener, procesos Poisson.
 - Estimación de parámetros
 - Para las aplicaciones: no requerido pero conveniente: inferencia Bayesiana, Derivados financieros.

- Conocimiento general pero sólido, de conceptos estadísticos y probabilísticos.
- Diseño de Algoritmos. Principios generales de programación.
- Conocimiento de R, Matlab, Java, etc. no es fundamental, pero muy conveniente.
- Conocimientos de:
 - Distribuciones de variables aleatorias y sus momentos.
 - Cálculo (integración, diferenciación y convergencia).
 - Bases de procesos estocásticos: cadenas de Markov, procesos de Wiener, procesos Poisson.
 - Estimación de parámetros
 - Para las aplicaciones: no requerido pero conveniente: inferencia Bayesiana, Derivados financieros.

- Conocimiento general pero sólido, de conceptos estadísticos y probabilísticos.
- Diseño de Algoritmos. Principios generales de programación.
- Conocimiento de R, Matlab, Java, etc. no es fundamental, pero muy conveniente.
- Conocimientos de:
 - Distribuciones de variables aleatorias y sus momentos.
 - Cálculo (integración, diferenciación y convergencia).
 - Bases de procesos estocásticos: cadenas de Markov, procesos de Wiener, procesos Poisson.
 - Estimación de parámetros
 - Para las aplicaciones: no requerido pero conveniente: inferencia Bayesiana, Derivados financieros.

- Conocimiento general pero sólido, de conceptos estadísticos y probabilísticos.
- Diseño de Algoritmos. Principios generales de programación.
- Conocimiento de R, Matlab, Java, etc. no es fundamental, pero muy conveniente.
- Conocimientos de:
 - Distribuciones de variables aleatorias y sus momentos.
 - Cálculo (integración, diferenciación y convergencia).
 - Bases de procesos estocásticos: cadenas de Markov, procesos de Wiener, procesos Poisson.
 - Estimación de parámetros
 - Para las aplicaciones: no requerido pero conveniente: inferencia Bayesiana, Derivados financieros.

- Conocimiento general pero sólido, de conceptos estadísticos y probabilísticos.
- Diseño de Algoritmos. Principios generales de programación.
- Conocimiento de R, Matlab, Java, etc. no es fundamental, pero muy conveniente.
- Conocimientos de:
 - Distribuciones de variables aleatorias y sus momentos.
 - Cálculo (integración, diferenciación y convergencia).
 - Bases de procesos estocásticos: cadenas de Markov, procesos de Wiener, procesos Poisson.
 - Estimación de parámetros.
 - Para las aplicaciones: no requerido pero conveniente: inferencia Bayesiana, Derivados financieros.

- Conocimiento general pero sólido, de conceptos estadísticos y probabilísticos.
- Diseño de Algoritmos. Principios generales de programación.
- Conocimiento de R, Matlab, Java, etc. no es fundamental, pero muy conveniente.
- Conocimientos de:
 - Distribuciones de variables aleatorias y sus momentos.
 - Cálculo (integración, diferenciación y convergencia).
 - Bases de procesos estocásticos: cadenas de Markov, procesos de Wiener, procesos Poisson.
 - Estimación de parámetros.
 - Para las aplicaciones: no requerido pero conveniente: inferencia Bayesiana, Derivados financieros.

Plataforma para el curso

- La plataforma para toda la documentación del curso será Piazza.
 Ahí encontrarán:
 - Programa del curso
 - Lecturas complementarias
 - Tareas y sus soluciones.
- La evaluación considera:
 - dos exámenes parciales: 30 %
 - tareas: 30%
 - asistencia y participación en clase: 10%
 - proyecto final (documento y su exposición por equipos) 30 %
 - La fecha del examen final es la fecha de la presentación del proyecto
 - $\bullet\,$ El proyecto será evaluado por el grupo y por el profesor (40 % y 60 % respectivamente), pero...
 - A mi criterio, dependiendo del desempeño del grupo, el proyecto final puede sustituirse por un examen final.

- Reforzar los conceptos estadísticos básicos para ser aplicados adecuada y correctamente en un análisis de simulación.
- Desarrollar competencias para la adecuada modelación matemática de fenómenos empíricos.
- Interpretar y reportar adecuadamente los resultados y las conclusiones de una investigación, análisis, mediante el uso de tablas y gráficas apropiadas.
- Sembrar en ustedes la curiosidad de conocer más acerca de las técnicas de simulación y que desarrollen habilidades para aplicar los métodos y las técnicas en sus vidas profesionales y personales

- Reforzar los conceptos estadísticos básicos para ser aplicados adecuada y correctamente en un análisis de simulación.
- Desarrollar competencias para la adecuada modelación matemática de fenómenos empíricos.
- Interpretar y reportar adecuadamente los resultados y las conclusiones de una investigación, análisis, mediante el uso de tablas y gráficas apropiadas.
- Sembrar en ustedes la curiosidad de conocer más acerca de las técnicas de simulación y que desarrollen habilidades para aplicar los métodos y las técnicas en sus vidas profesionales y personales

- Reforzar los conceptos estadísticos básicos para ser aplicados adecuada y correctamente en un análisis de simulación.
- Desarrollar competencias para la adecuada modelación matemática de fenómenos empíricos.
- Interpretar y reportar adecuadamente los resultados y las conclusiones de una investigación, análisis, mediante el uso de tablas y gráficas apropiadas.
- Sembrar en ustedes la curiosidad de conocer más acerca de las técnicas de simulación y que desarrollen habilidades para aplicar los métodos y las técnicas en sus vidas profesionales y personales

- Reforzar los conceptos estadísticos básicos para ser aplicados adecuada y correctamente en un análisis de simulación.
- Desarrollar competencias para la adecuada modelación matemática de fenómenos empíricos.
- Interpretar y reportar adecuadamente los resultados y las conclusiones de una investigación, análisis, mediante el uso de tablas y gráficas apropiadas.
- Sembrar en ustedes la curiosidad de conocer más acerca de las técnicas de simulación y que desarrollen habilidades para aplicar los métodos y las técnicas en sus vidas profesionales y personales.

Simulación

- Simulación Monte Carlo o estocástica: modela fenómenos sujetos a incertidumbre. El modelo probabilístico puede ser parametrizado o ajustado usando datos reales.
- Simulación de Eventos Discretos: modela la operación de un sistema como una sucesión de eventos en el tiempo. Cada evento ocurre en un instante particular del tiempo y marca un cambio de estado en el sistema.
- El énfasis de este curso es en las técnicas de simulación estocástica.
- Campos de aplicación: sistemas físicos, biológicos, sociales, industriales, financieros, económicos, etc.
- Otro nombre para este curso en varios programas: Statistical Computing.

Simulación

- Simulación Monte Carlo o estocástica: modela fenómenos sujetos a incertidumbre. El modelo probabilístico puede ser parametrizado o ajustado usando datos reales.
- Simulación de Eventos Discretos: modela la operación de un sistema como una sucesión de eventos en el tiempo. Cada evento ocurre en un instante particular del tiempo y marca un cambio de estado en el sistema.
- El énfasis de este curso es en las técnicas de simulación estocástica.
- Campos de aplicación: sistemas físicos, biológicos, sociales, industriales, financieros, económicos, etc.
- Otro nombre para este curso en varios programas: Statistical Computing.

Simulación

- Simulación Monte Carlo o estocástica: modela fenómenos sujetos a incertidumbre. El modelo probabilístico puede ser parametrizado o ajustado usando datos reales.
- Simulación de Eventos Discretos: modela la operación de un sistema como una sucesión de eventos en el tiempo. Cada evento ocurre en un instante particular del tiempo y marca un cambio de estado en el sistema.
- El énfasis de este curso es en las técnicas de simulación estocástica.
- Campos de aplicación: sistemas físicos, biológicos, sociales, industriales, financieros, económicos, etc.
- Otro nombre para este curso en varios programas: Statistical Computing,

Simulación

- Simulación Monte Carlo o estocástica: modela fenómenos sujetos a incertidumbre. El modelo probabilístico puede ser parametrizado o ajustado usando datos reales.
- Simulación de Eventos Discretos: modela la operación de un sistema como una sucesión de eventos en el tiempo. Cada evento ocurre en un instante particular del tiempo y marca un cambio de estado en el sistema.
- El énfasis de este curso es en las técnicas de simulación estocástica.
- Campos de aplicación: sistemas físicos, biológicos, sociales, industriales, financieros, económicos, etc.
- Otro nombre para este curso en varios programas: Statistical Computing.

Simulación

- Simulación Monte Carlo o estocástica: modela fenómenos sujetos a incertidumbre. El modelo probabilístico puede ser parametrizado o ajustado usando datos reales.
- Simulación de Eventos Discretos: modela la operación de un sistema como una sucesión de eventos en el tiempo. Cada evento ocurre en un instante particular del tiempo y marca un cambio de estado en el sistema.
- El énfasis de este curso es en las técnicas de simulación estocástica.
- Campos de aplicación: sistemas físicos, biológicos, sociales, industriales, financieros, económicos, etc.
- Otro nombre para este curso en varios programas: Statistical Computing.

Simulación

- Simulación Monte Carlo o estocástica: modela fenómenos sujetos a incertidumbre. El modelo probabilístico puede ser parametrizado o ajustado usando datos reales.
- Simulación de Eventos Discretos: modela la operación de un sistema como una sucesión de eventos en el tiempo. Cada evento ocurre en un instante particular del tiempo y marca un cambio de estado en el sistema.
- El énfasis de este curso es en las técnicas de simulación estocástica.
- Campos de aplicación: sistemas físicos, biológicos, sociales, industriales, financieros, económicos, etc.
- Otro nombre para este curso en varios programas: Statistical Computing.

Ejemplos de aplicaciones de la simulación I

- Aplicaciones típicas de la simulación estocástica en Finanzas y economía:
 - Valuación de instrumentos financieros bajo escenarios económicos, eg. valuación de bonos carreteros, opciones y derivados en general, cálculo de valores esperados, etc.
 - Estimación de trayectorias de indicadores económicos o índices (inflación, PIB, IPC, curvas de volatilidad implícita, curvas de tasas) usando modelos econométricos, bajo la presencia de shocks exógenos.
 - Comportamiento esperado de ciertos instrumentos sujetos a riesgo de crédito, basados en las probabilidades de incumplimiento asociadas.
- Aplicaciones de la teoría de valores extremos (EVT):
 - Distribución de las pérdidas máximas de compañías de seguros.
 - Variaciones en rendimientos en portafolios de inversión.
 - Escenarios con cálculos de valores en riesgo (VaR).
 - Modelos Bayesianos jerárquicos de riesgos. Ayuda al cálculo de integrales complicadas de las distribuciones posteriores.

Ejemplos de aplicaciones de la simulación II

- Aplicaciones a los Negocios:
 - Diseño de procesos de Negocio
 - Medición de la eficiencia de un proceso
 - Comparación de configuraciones de procesos (costo, eficacia)
 - Modelos de líneas de espera, inventarios
- Aplicaciones relevantes a la estadística:
 - Estimación de integrales (probabilidades, valores esperados, etc.)
 - Valores extremos
 - Pruebas de hipótesis e intervalos de confianza
 - Estadística Bayesiana
 - Optimización

Ventajas

- Sustituye el desarrollo de modelos analíticos muy complicados o incluso imposibles.
- Permite visualizar el comportamiento de un sistema
- Usualmente los costos de la simulación son menores a los ahorros que genera.
- A process cannot be understood by stopping it. Understanding must move with the flow of the process, must join it and flow with it (Frank Herbert, *Dune*)

- Sustituye el desarrollo de modelos analíticos muy complicados o incluso imposibles.
- Permite visualizar el comportamiento de un sistema
- Usualmente los costos de la simulación son menores a los ahorros que genera.
- A process cannot be understood by stopping it. Understanding must move with the flow of the process, must join it and flow with it (Frank Herbert, *Dune*)
- Desventajas

- Sustituye el desarrollo de modelos analíticos muy complicados o incluso imposibles.
- Permite visualizar el comportamiento de un sistema.
- Usualmente los costos de la simulación son menores a los ahorros que genera.
- A process cannot be understood by stopping it. Understanding must move with the flow of the process, must join it and flow with it (Frank Herbert, *Dune*)
- Desventajas

- Sustituye el desarrollo de modelos analíticos muy complicados o incluso imposibles.
- Permite visualizar el comportamiento de un sistema.
- Usualmente los costos de la simulación son menores a los ahorros que genera.
- A process cannot be understood by stopping it. Understanding must move with the flow of the process, must join it and flow with it (Frank Herbert, *Dune*)
- Desventajas

- Sustituye el desarrollo de modelos analíticos muy complicados o incluso imposibles.
- Permite visualizar el comportamiento de un sistema.
- Usualmente los costos de la simulación son menores a los ahorros que genera.
- A process cannot be understood by stopping it. Understanding must move with the flow of the process, must join it and flow with it (Frank Herbert, *Dune*)
- Desventajas

Ventajas

- Sustituye el desarrollo de modelos analíticos muy complicados o incluso imposibles.
- Permite visualizar el comportamiento de un sistema.
- Usualmente los costos de la simulación son menores a los ahorros que genera.
- A process cannot be understood by stopping it. Understanding must move with the flow of the process, must join it and flow with it (Frank Herbert, *Dune*)

- En ocasiones se utiliza como sustituto del pensamiento analítico
- Aplica el principio: "garbish in, garbish out"
- Necesita aplicar correctamente conceptos estadísticos (como diseño de experimentos), así como de experiencia, para obtener las conclusiones correctas.
- Run it again! (Star Trek)

Ventajas

- Sustituye el desarrollo de modelos analíticos muy complicados o incluso imposibles.
- Permite visualizar el comportamiento de un sistema.
- Usualmente los costos de la simulación son menores a los ahorros que genera.
- A process cannot be understood by stopping it. Understanding must move with the flow of the process, must join it and flow with it (Frank Herbert, *Dune*)

- En ocasiones se utiliza como sustituto del pensamiento analítico.
- Aplica el principio: "garbish in, garbish out".
- Necesita aplicar correctamente conceptos estadísticos (como diseño de experimentos), así como de experiencia, para obtener las conclusiones correctas.
- Run it again! (Star Trek)

Ventajas

- Sustituye el desarrollo de modelos analíticos muy complicados o incluso imposibles.
- Permite visualizar el comportamiento de un sistema.
- Usualmente los costos de la simulación son menores a los ahorros que genera.
- A process cannot be understood by stopping it. Understanding must move with the flow of the process, must join it and flow with it (Frank Herbert, *Dune*)

- En ocasiones se utiliza como sustituto del pensamiento analítico.
- Aplica el principio: "garbish in, garbish out".
- Necesita aplicar correctamente conceptos estadísticos (como diseño de experimentos), así como de experiencia, para obtener las conclusiones correctas.
- Run it again! (Star Trek)

Ventajas

- Sustituye el desarrollo de modelos analíticos muy complicados o incluso imposibles.
- Permite visualizar el comportamiento de un sistema.
- Usualmente los costos de la simulación son menores a los ahorros que genera.
- A process cannot be understood by stopping it. Understanding must move with the flow of the process, must join it and flow with it (Frank Herbert, *Dune*)

- En ocasiones se utiliza como sustituto del pensamiento analítico.
- Aplica el principio: "garbish in, garbish out".
- Necesita aplicar correctamente conceptos estadísticos (como diseño de experimentos), así como de experiencia, para obtener las conclusiones correctas.
- Run it again! (Star Trek)

Ventajas

- Sustituye el desarrollo de modelos analíticos muy complicados o incluso imposibles.
- Permite visualizar el comportamiento de un sistema.
- Usualmente los costos de la simulación son menores a los ahorros que genera.
- A process cannot be understood by stopping it. Understanding must move with the flow of the process, must join it and flow with it (Frank Herbert, *Dune*)

- En ocasiones se utiliza como sustituto del pensamiento analítico.
- Aplica el principio: "garbish in, garbish out".
- Necesita aplicar correctamente conceptos estadísticos (como diseño de experimentos), así como de experiencia, para obtener las conclusiones correctas.
- Run it again! (Star Trek)

Sistemas, modelos y simulación.

Sistema

Sistema

Es un conjunto de objetos que interaccionan de manera conjunta para alcanzar un fin.

Un sistema se compone de:

- Entidades: los objetos de interés en el sistema
- Atributos: las propiedades o características de una entidad
- **Actividades**: acciones que ocupan un periodo de tiempo de longitud específica
- **Estados**: una colección de variables que describen el sistema en cualquier momento
- **Eventos**: ocurrencias instantáneas que puede cambiar el estado del sistema. Pueden ser endógenos o exógenos

Sistema

Factores no Controlables

Ejemplo Sistema

Ejemplo de Sistema: Bolsa de Valores

- Entidades: Agentes que participan en la Bolsa: compradores, vendedores y sus acciones.
- Atributos: Comprador, vendedor, posición corta, posición larga, tipo de instrumento, etc.
- Actividad: Un día de operación ordinario (compra-venta de valores).
- Estado: Valor del Índice, posiciones cerradas, abiertas, cortas y largas a las 10:00am.
- Evento: Compra de acciones de Bimbo al doble de precio.
- Evento endógeno: Compras, ventas.
- Evento exógeno: Entrada de Wonder Bread al mercado mexicano.

- Un modelo se puede considerar como una teoría que representa de manera abstracta la realidad.
- El proceso de modelación consta de:
 - Proceso de abstracción: proponer una representación de la realidad, basado en experiencia y en la observación.

Pablo Picasso: Guernica, 1937

- Deducción a partir del modelo.
- Verificación, predicción y aplicaciones.
- Los modelos no son únicos
- No hay modelo perfecto

Relevancia de los modelos

Un modelo de simulación busca reproducir lo más fielmente posible las condiciones reales de un fenómeno. Pero siempre hay un intercambio entre complejidad y fidelidad.

"All models are wrong, but some of them are useful"

— George Box

Modelo

Modelos

Un Modelo es una construcción conceptual que describe un sistema.

El siguiente esquema describe maneras de estudiar un sistema.

Tipos de simulación

De acuerdo a ciertas características de un modelo, el tipo de simulación puede ser diferente.

- Determinístico o estocástico
 - ¿El modelo contiene componentes estocásticos?
 - Modelos determinísticos: flujo de pagos de una hipoteca o un credito a tasa fija (bajo un escenario fijo).
 - Modelos estocásticos: Línea de espera.
- ¿Estático o dinámico?
 - ¿Es el tiempo una variable significativa?
 - Modelos Estáticos: juegos de azar, integración Monte Carlo.
 - Modelos Dinámicos: Modelos de inventario.
- ¿Continuo o discreto?
 - ¿El sistema cambia de manera continua o sólo en puntos discretos del tiempo?
 - Ejemplos de modelos discretos: modelos de inventarios, colas.
 - Ejemplos de modelos continuos: crecimiento de poblaciones, precios de mercado.

Clasificación de modelos/simulación

Ejemplos de simulación

Simulación de eventos discretos

Simulación de eventos discretos

Este tipo de simulación describe cómo evoluciona en el tiempo un sistema con eventos que ocurren de manera discreta. Las variables de estado cambian debido a la ocurrencia de estos eventos.

Ejemplos comunes de simulación de eventos discretos incluyen:

- Cadenas de Markov
 - Lineas de espera
 - Modelos de inventario
- Flujo en procesos organizacionales
- Toma de decisiones bajo condiciones de incertidumbre
- Evaluación de robustez de políticas públicas.

Ejemplo 1: Línea de espera

- Consideren una unidad de servicio con un sólo servidor (cajero, taquilla, etc.)
- Los clientes se forman para recibir el servicio

Se desea estimar el tiempo promedio de permanencia en la fila, medido como el tiempo que transcurre desde que llega a la fila hasta que comienza a recibir el servicio.

Las variables de estado del sistema son:

- Estado del servidor (libre, ocupado)
- El número de clientes esperando en la fila $\{0,1,2,\ldots\}$
- El tiempo de llegada de cada persona a la fila
- El tiempo de servicio a cada persona

En este sistema hay dos tipos de eventos relevantes:

- Llegada de un cliente
- Completar el servicio (Partida de un cliente)

Ejemplo de linea de espera

Ejemplo 1: Línea de espera

Definiciones:

 t_i = Tiempo de llegada del i-ésimo cliente.

 $T_i = t_i - t_{i-1} =$ tiempo de interarribo entre las llegadas del i-1 e i cliente.

 S_i = tiempo de servicio del cliente i

 D_i = espera en cola del cliente i

 $c_i = t_i + D_i + S_i =$ tiempo en que el cliente i completa su servicio y se va.

 e_i = tiempo de ocurrencia del i-ésimo evento de cualquier tipo.

Más adelante continuaremos con este modelo.

Tenemos un mapa de México con cierta escala 1:N en una hoja de papel con área A_{rec} . ¿Cómo determinamos el área de la superficie de México?

$$A_{Mx} = R \times A_{Rec} \times e_{Mapa} = R \times A_{rec} \times N$$

donde

$$R = {
m raz\acute{o}n} \; {
m entre} \; {
m \acute{a}reas} = rac{A_{Mx}}{A_{rec}}$$

 $e_{Mapa} =$ escala del mapa

 A_{rec} = Área de rectángulo (conocida)

Al menos dos posibles alternativas:

- Solución destructiva
 - Corta el mapa en m pequeñas piezas al azar. De acuerdo al color dominante del trozo, se clasifica en blanco o en gris.
 - Mezcla las piezas
 - Extrae una muestra al azar con reemplazo y registra el número de piezas grises (m_{Mx}) Con probabilidad 1, cuando $m \to \infty$

$$\frac{m_{Mx}}{m} \to R = \frac{A_{Mx}}{A_{rec}}$$

Tenemos un mapa de México con cierta escala 1:N en una hoja de papel con área A_{rec} . ¿Cómo determinamos el área de la superficie de México?

$$A_{Mx} = R \times A_{Rec} \times e_{Mapa} = R \times A_{rec} \times N$$

donde

$$R = \text{raz\'on entre \'areas} = rac{A_{Mx}}{A_{rec}}$$

 $e_{Mapa} =$ escala del mapa

 A_{rec} = Área de rectángulo (conocida)

Al menos dos posibles alternativas:

- Solución destructiva
 - \bullet Corta el mapa en m pequeñas piezas al azar. De acuerdo al color dominante del trozo, se clasifica en blanco o en gris.
 - Mezcla las piezas
 - Extrae una muestra al azar con reemplazo y registra el número de piezas grises (m_{Mx} . Con probabilidad 1, cuando $m \to \infty$

$$\frac{m_{Mx}}{m} \to R = \frac{A_{Mx}}{A_{rec}}$$

Tenemos un mapa de México con cierta escala 1:N en una hoja de papel con área A_{rec} . ¿Cómo determinamos el área de la superficie de México?

$$A_{Mx} = R \times A_{Rec} \times e_{Mapa} = R \times A_{rec} \times N$$

donde

$$R = {
m raz\acute{o}n} \; {
m entre} \; {
m \acute{a}reas} = rac{A_{Mx}}{A_{rec}}$$

 $e_{Mapa} =$ escala del mapa

 A_{rec} = Área de rectángulo (conocida)

Al menos dos posibles alternativas:

- Solución destructiva
 - \bullet Corta el mapa en m pequeñas piezas al azar. De acuerdo al color dominante del trozo, se clasifica en blanco o en gris.
 - Mezcla las piezas
 - Extrae una muestra al azar con reemplazo y registra el número de piezas grises (m_{Mx}) Con probabilidad 1, cuando $m\to\infty$

$$\frac{m_{Mx}}{m} \to R = \frac{A_{Mx}}{A_{rec}}$$

Solución no destructiva: ..

Tenemos un mapa de México con cierta escala 1:N en una hoja de papel con área A_{rec} . ¿Cómo determinamos el área de la superficie de México?

$$A_{Mx} = R \times A_{Rec} \times e_{Mapa} = R \times A_{rec} \times N$$

donde

$$R = \text{raz\'on entre \'areas} = \frac{A_{Mx}}{A_{rec}}$$

 $e_{Mapa} \;\; = \;\; {
m escala} \; {
m del} \; {
m mapa}$

 A_{rec} = Área de rectángulo (conocida)

Al menos dos posibles alternativas:

- Solución destructiva
 - ullet Corta el mapa en m pequeñas piezas al azar. De acuerdo al color dominante del trozo, se clasifica en blanco o en gris.
 - Mezcla las piezas
 - Extrae una muestra al azar con reemplazo y registra el número de piezas grises (m_{Mx}) Con probabilidad 1, cuando $m\to\infty$

$$\frac{m_{Mx}}{m} \to R = \frac{A_{Mx}}{A_{rec}}$$

Solución no destructiva: ..

Tenemos un mapa de México con cierta escala 1:N en una hoja de papel con área A_{rec} . ¿Cómo determinamos el área de la superficie de México?

$$A_{Mx} = R \times A_{Rec} \times e_{Mapa} = R \times A_{rec} \times N$$

donde

$$R={
m raz\acute{o}n}$$
 entre áreas $=rac{A_{Mx}}{A_{rec}}$ $e_{Mapa}={
m escala}$ del mapa

 A_{rec} = Área de rectángulo (conocida)

Al menos dos posibles alternativas:

- Solución destructiva
 - ullet Corta el mapa en m pequeñas piezas al azar. De acuerdo al color dominante del trozo, se clasifica en blanco o en gris.
 - Mezcla las piezas
 - Extrae una muestra al azar con reemplazo y registra el número de piezas grises (m_{Mx}) Con probabilidad 1, cuando $m\to\infty$

$$\frac{m_{Mx}}{m} \to R = \frac{A_{Mx}}{A_{rec}}$$

Solución no destructiva: ...

Ejemplo 3. Estimación de π : Problema de la aguja de Buffon (1733)

Una aguja de longitud r se lanza en un piso con duelas, que son de ancho d ($r \le d$). ¿Cuál es la probabilidad de que la aguja "lanzada al azar" intersecte una orilla de la duela?

$$d = 2r$$

Ejemplo 3. Buffon

- Sea c la distancia del centro de la aguja a la orilla de la duela más cercana.
- Noten que con largo de aguja $r, \ 0 \le c \le d/2 \ y \ 0 \le \phi \le \pi/2$. Podemos suponer que ambas son variables aleatorias uniformes e independientes.
- $sen\phi = \frac{c}{r/2} \implies c = \frac{r}{2} sen\phi$
- La aguja cruza si y sólo si $c \leq \frac{r}{2} sen \phi$
- Entonces $P[\text{cruce}] = \int_0^{\pi/2} \int_0^{\frac{r}{2}sen\phi} \frac{4}{d\pi} dc d\phi = \frac{2r}{\pi d} = \frac{1}{\pi}$

Ejemplo 3. Buffon

El problema de las agujas de Buffon puede ser utilizado como un mecanismo para estimar el valor de π . Un posible mecanismo de estimación:

- ullet Lanza una aguja "aleatoriamente" N veces.
- Sea X=No. de cruces. Entonces $\hat{p}_N=\frac{X}{N}$, y por lo tanto $\hat{\pi}=\frac{1}{\hat{p}_N}$.

Además, sabemos que $X|N \sim Bin(N,p)$, así que $Var(\hat{p}_N|N) = \frac{p(1-p)}{N}$. Para N grande, por el teorema del límite central:

$$\sqrt{N}(\hat{p}_N - p) \xrightarrow{N \to \infty} \mathcal{N}(0, p(1-p))$$

Un estimador de la varianza de \hat{p}_N es $\frac{\hat{p}_N(1-\hat{p}_N)}{N}$ y un intervalo de confianza para p es:

$$\hat{p}_N \pm z_{1-\alpha/2} \left(\frac{\hat{p}_N (1 - \hat{p}_N)}{N} \right)^{1/2}$$

Ejemplo 3. Aguja de Buffon: simulación

Ejemplo 3. Aguja de Buffon: simulación

```
N <- 2000 #Número de simulaciones
alfa <- 0.05 #nivel de significancia
z <- qnorm(1-alfa/2) #cuantil de la distribución normal
NI <- rep(1,N) #indicadora para las agujas que tocan el límite de la duela
d <- 15 #ancho de la duela
u1 \leftarrow runif(N, min = 0, max = d/2)
u2 <- runif(N, min = 0, max = pi/ 2)
prob <- ifelse(r/2*cos(u2) >= u1,1,0)
prob <- cumsum (prob) /1:N
lim.inf <- prob - z*sqrt(prob*(1-prob)/1:N)
lim.sup <- prob + z*sqrt(prob*(1-prob)/1:N)
plot(1:N, prob, type = "1", ylim = c(0,1), xlab = "No. de simulaciones",
main = "Cálculo de probabilidad con N=2000 lanzamientos")
lines(1:N, lim.inf, col = "red", lty = 2)
lines(1:N, lim.sup, col = "red", ltv = 2)
abline (h = 2*r/(pi*d), col = "blue", lwd = 2)
text (100, 2*r/(pi*d) +1, as.character(2*r/(pi*d)))
```

Ejemplo 3. Aguja de Buffon: simulación

Cálculo de probabilidad con N=2000 lanzamientos

Ejemplo 4. Dados de Galileo

Simulador de agujas de Buffon

 Si se lanzan tres dados, ¿qué suma es más probable, un 9 o un 10?