Методы оптимизации. Теоремы.

Кирилл Захаров

2021 г.

Содержание

1	Лиі	нейное программирование]
	1.1	Базисное решение, допустимое множество, оптимальное решение]
	1.2	Двойственная задача	1
2 Общая постановка задачи оптимизации		2	
	2.1	Задача безусловной оптимизации	2
	2.2	Задача условной оптимизации	Ç
		Задача выпуклой оптимизации	

1 Линейное программирование

1.1 Базисное решение, допустимое множество, оптимальное решение

Теорема 1.1.1. Множество допустимых решений есть выпуклое множество.

Пемма 1.1.1. Базисные решения являются вершинами выпуклой многогранной области.

Теорема 1.1.2. Оптимальное решение является базисным решением. (Оптимальное решение лежит в углах выпуклой многогранной области).

1.2 Двойственная задача

Теорема 1.2.1 (Основное неравенство двойственности). Пусть заданы прямая задача $D: X \ f(X)$ и двойственная $\Omega: \Lambda \ \varphi(\Lambda)$. Тогда для любых допустимых планов прямой и двойственной задачи их целевые функции связаны неравенствами.

$$f(X) \to \min \Rightarrow f(X) \geqslant \varphi(\Lambda)$$

$$f(X) \to \max \Rightarrow f(X) \leqslant \varphi(\Lambda)$$
(1)

Теорема 1.2.2 (Критерий оптимальности Канторович). Если на допустимых планах прямой X и двойственной задачи Λ значения их целевых функций совпадают, то планы X и Λ являются оптимальными и наоборот.

Теорема 1.2.3.

Теорема 1.2.4. Если прямая задача имеет оптимальное решение, то и двойственная имеет оптимальное решение.

Теорема 1.2.5. Если прямая задача не имеет решения из-за неограниченности целевой функции, то система ограничений двойственной задачи противоречива.

Теорема 1.2.6 (О дополняющей нежесткости). *Необходимым и достаточным условием того*, что прямая и двойственная задачи имеют оптимальное решение, является выполнение условий дополняющей нежесткости.

$$\lambda_j \left(\sum_{i=1}^N a_{ji} x_i - b_j \right) = 0$$

$$x_i \left(\sum_{i=1}^M a_{ji} \lambda_i - c_i \right) = 0$$
(2)

2 Общая постановка задачи оптимизации

2.1 Задача безусловной оптимизации

$$x \in O \subseteq \mathbb{R}^N$$

Определение 2.1. $Y=(y_1,...,y_N)$ - точка локального минимума или максимума, если $\exists \ \varepsilon>0$, такое что выполняется

$$f(Y) \leqslant f(Y + \delta X)$$
 или $f(Y) \geqslant f(Y + \delta X)$ (3)

для всех $\delta X = (\delta x_1, ..., \delta x_N) |0 < |\delta x_i| < \varepsilon.$

Определение 2.2. Y - точка строгого экстремума, если неравенства выполняются строго.

Определение 2.3. Y называется точкой глобального экстремума, если неравенства (3) выполняются во всей области.

$$\min f(x) = \max - f(X)$$

Определение 2.4. Функция, имеющая единственный экстремум называется унимодальной.

Лемма 2.1.1. Если область допустимых значений, определяемая системой ограничений равенств, содержит точку Y и ее окрестность, то M < N.

$$Y \subseteq D \land U_{\varepsilon}(Y) \subseteq D \Rightarrow M < N \tag{4}$$

Пемма 2.1.2. Пусть область допустимых значений, определяемая системой ограничений равенств задачи на условный экстремум, содержит хотя бы одну точку Y. Если набор градиентов $\operatorname{grad} \psi_j$ линейно независим u $\operatorname{rank} J = M < N$, то D вместе c каждой точкой X содержит некоторую непустую ее окрестность.

Теорема 2.1.1. Пусть задана функция f(x) и $x \in O = \mathbb{R}^1$. Если в точке Y функция f(x) имеет локальный экстремум, то $\frac{\partial f(Y)}{\partial x} = 0$.

Теорема 2.1.2 (Необходимое условие экстремума 1-го порядка). Пусть задана функция f(X) и $X \in O = \mathbb{R}^N$. Пусть Y точка локального экстремума. Тогда $\operatorname{grad} f(Y) = 0$.

Теорема 2.1.3 (Критерий Сильвестра).

- 1. Матрица A является положительно определенной \iff когда все ее угловые миноры больше 0;
- 2. Матрица A является отрицательно определенной \iff когда все ее угловые миноры образуют знакочередующийся ряд, начиная со знака «—»;
- 3. Матрица A является положительно полуопределенной $\iff A$ вырождена и все ее главные миноры $m_i(A) \geqslant 0$;
- 4. Матрица A является отрицательно полуопределенной \iff $m_i(A)=0$ или $sign\ m_i(A)=sign\ (-1)^i$.

Теорема 2.1.4 (Необходимое условие экстремума 2-го порядка). Пусть задана функция f(X) $X \in \mathbb{R}^N$. Пусть f(X) дважды дифференцируема в окрестности точки Y. Тогда если Y - точка локального минимума (максимума), то $H_f(Y)$ положительно полуопределенная (отрицательно полуопределенная).

Теорема 2.1.5 (Достаточное условие экстремума 2-го порядка). Пусть задана функция f(X) $X \in \mathbb{R}^N$. Пуста f(X) имеет стационарную точку, в которой вторые частные производные существуют и непрерывны. Если $H_f(Y)$ положительно определена (отрицательно определена), то Y точка минимума (максимума).

Теорема 2.1.6.

- 1. Пусть f(X) дифференцируема в точке $Y \in \mathbb{R}^N$. Тогда если $\delta X \in \mathbb{R}^N | \operatorname{grad} f(Y) \cdot \delta X < (>)0 \Rightarrow \delta X \in W_-(Y,f)(W_+(Y,f));$
- 2. Если $\delta X \in W_{-}(Y,f)(W_{+}(Y,f))$. Тогда grad $f(Y) \cdot \delta X \leqslant (\geqslant)0$.

2.2 Задача условной оптимизации

Теорема 2.2.1 (Связь между $W_{+/-}(Y,f)$ и V(Y,f)). Если точка Y точка локального минимума (максимума), то $W_{-}(Y,f) \cap V(Y,f) = \emptyset$ ($W_{+}(Y,f) \cap V(Y,f) = \emptyset$).

Теорема 2.2.2 (Вейерштрасс). Пусть D - компакт u f(X) непрерывная функция определенная на D.

Тогда существует точка Y глобального минимума (максимума).

2.3 Задача выпуклой оптимизации

Лемма 2.3.1. Пересечение конечного или счетного числа выпуклых множеств есть выпуклое множество.

Лемма 2.3.2. Линейная комбинация $\sum_{i=1}^{N} \alpha_i X_i$ конечного числа выпуклых множеств X_i при любых α_i является выпуклым множеством.

Лемма 2.3.3. Если $f_1(X), f_2(X), ..., f_M(X)$ выпуклы (вогнуты) на выпуклом множестве D, то их линейная комбинация c неотрицательными коэффициентами $f(X) = \sum_{i=1}^{M} \alpha_j f_j(X)$ будет выпуклой (вогнутой) функцией на D.

Лемма 2.3.4. Пусть O - выпуклое множество, D - произвольное множество.

 $\Pi ycm \circ g(X,Y): O \in X \times D \in Y.$ $\Pi ycm \circ g$ выпукла по X на O при $\forall Y$ и ограничена сверху по Y при $\forall X.$

Тогда
$$f(X) = \sup_{Y \in D} g(X, Y)$$
 выпукла на O .

Лемма 2.3.5 (Дифференциальный критерий выпуклости). Дважды непрерывно дифференцируемая функция f(X) выпукла (вогнута), если ее матрица Гессе является положительно полуопределенной (отрицательно полуопределенной). Если $H_f(Y)$ положительно (отрицательно) определена, то f(X) строго выпукла (вогнута).

Выпуклая задача оптимизации: (*)

$$f(Y)=extr_D\ f(X)$$

$$D=\left\{X\ \middle|\ X\in P,\psi_j(X)\leqslant(\geqslant,=)0,j=1,...,M\right\}\subseteq\mathbb{R}^N$$
 D - выпуклое множество, $f(x)$ - выпукла на D

Теорема 2.3.1 (Условие выпуклости множества допустимых решений). *Если* $\psi(X)$ выпуклая (вогнутая) функция, то множество допустимых решений удовлетворяющее системе $\psi(X) \leq b, x_i \geq 0$ ($\psi(X) \geq b, x_i \geq 0$) будет выпуклым.

Теорема 2.3.2 (Необходимо условие экстремума). Если в задаче (*) целевая функция задана на выпуклой области определения и дифференцируема в $Y \in D$ и если Y - точка локального минимума (максимума), то grad $f(Y) \cdot \delta X \geqslant (\leqslant) 0$. ($\delta X = X - Y$)

Теорема 2.3.3 (Достаточное условие экстремума). Если в задаче (*) целевая функция задана на выпуклой области определения и дифференцируема в $Y \in D$ и если $\operatorname{grad} f(Y) \cdot \delta X \geqslant (\leqslant) 0$, то Y точка min (max).

Теорема 2.3.4 (Единственность точки экстремума задачи выпуклой оптимизации). Если выпуклая функция f(X) определенная на D имеет точку локального минимума (максимума), то эта точка является точкой глобального минимума (максимума). **Теорема 2.3.5.** Пусть f(X) выпуклая функция определенная на D. Пусть f(X) достигает глобального минимума (максимума) на E.

Тогда E выпуклое множество. (E - множество точек глобального минимума (максимума) функции f(X))

Общая (неклассическая) постановка задачи оптимизации: (**)

$$f(Y) = extr_D f(X)$$

$$D = \left\{ X \middle| X \in P; \psi_j(X) \le 0, j = 1, ..., K; \psi_j(X) = 0, j = K + 1, K + 2, ..., M \right\} \subseteq \mathbb{R}^N$$
(5)

Функция Лагранжа:
$$L(\Lambda, \lambda_0, X) = \lambda_0 f(X) + \sum_{j=1}^M \lambda_j \psi_j(X)$$