Title Subtitle

Authors

2025-07-02

University of Copenhagen

First section

First slide

Wow, this is a slide.

Second slide

The music experience has been cancelled.

This quote is from the Severance TV-show

Animations

Touying equation with pause:

$$f(x) =$$

Touying equation is very simple.

Animations

Touying equation with pause:

$$f(x) = x^2 + 2x + 1 =$$

Touying equation is very simple.

Animations

Touying equation with pause:

$$f(x) = x^2 + 2x + 1 = (x+1)^2$$

Touying equation is very simple.

Complex Animations

At subslide 1, we can

use

for reserving space,

use for not reserving space,

call #only multiple times on for choosing one of the alternatives.

Complex Animations

At subslide 2, we can

use #uncover function for reserving space,

use #only function for not reserving space,

use #alternatives function
 for choosing one of the alternatives.

Complex Animations

At subslide 3, we can

use #uncover function for reserving space,

use #only function for not reserving space,

use #alternatives function
 for choosing one of the alternatives.

Intermezzo[†]

If you have "animations" in your presentation, you can set "handout" to "true" in the config and only include the last subslide.

```
#import "@preview/ucph-nielsine-touying" as uc
#import "@preview/touying:0.6.1" as ty
show: uc.ucph-metropolis-theme.with(
    // ...
,
ty.config-common(handout: true)
)
```

Slide with columns

First column.

Second column. Schelling (1971)¹

¹a footnote

The OLS estimator

For a multiple linear regression model, the equation can be written in matrix form as:

$$y = X\beta + \varepsilon$$

where:

- y is an $n \times 1$ vector of observed dependent variables.
- X is an $k \times (k+1)$ matrix of independent variables (including a column of ones for the intercept).
- β is a vector of unknown coefficients.
- ε is an $n \times 1$ vector of error terms.

Implying we have a vector of residuals given by:

$$arepsilon = y - Xeta$$

Our objective is to minimize the sum of squared residuals:

$$egin{aligned} \min_{eta} oldsymbol{arepsilon}^T oldsymbol{arepsilon} &= (oldsymbol{y} - oldsymbol{X}eta)^T (oldsymbol{y} - oldsymbol{X}eta) &+ eta^T oldsymbol{X}^T oldsymbol{X} + eta^T oldsymbol{X}^T oldsymbol{X} eta) &+ eta^T oldsymbol{X}^T oldsymbol{X} oldsymbol{Y} oldsymbol{X} &+ eta^T oldsymbol{X}^T oldsymbol{X} oldsymbol{Y} &+ eta^T oldsymbol{X} oldsymbol{Y} oldsymbol{X} oldsymbol{Y} &+ oldsymbol{X} oldsymbol{Y} oldsymbol{X} oldsymbol{Y} &+ oldsymbol{Y} oldsymbol{X} oldsymbol{Y} oldsymbol{X} oldsymbol{Y} &+ oldsymbol{Y} oldsymbol{X} oldsymbol{Y} oldsymbol{Y} &+ oldsymbol{Y} oldsymbol{Y} oldsymbol{Y} oldsymbol{Y} &+ oldsymbol{Y} oldsymbol{Y} oldsymbol{Y} oldsymbol{Y} oldsymbol{Y} &+ oldsymbol{Y} oldsymbol{Y} oldsymbol{Y} oldsymbol{Y} &+ oldsymbol{Y} oldsymbol{Y} oldsymbol{Y} oldsymbol{Y} oldsymbol{Y} &+ oldsymbol{Y} oldsymbol{Y} oldsymbol{Y} oldsymbol{Y} &+ oldsymbol{Y} oldsymbol{Y} oldsymbol{Y} oldsymbol{Y} oldsymbol{Y} oldsymbol{Y} &+ oldsymbol{Y} oldsymbol{Y} oldsymbol{Y} oldsymbol{Y} &+ oldsymbol{Y} oldsymbol{Y} oldsymbol{Y} oldsymbol{Y} oldsymbol{Y} &+ oldsymbol{Y} oldsymbol{Y} oldsy$$

Note: By multiple a vector with itself transposed with just a scalar, or in this case $\varepsilon^T \varepsilon$ which is the sum of squared error terms.

$$egin{aligned} rac{\partial}{\partialoldsymbol{eta}}(-2oldsymbol{eta}^Toldsymbol{X}^Toldsymbol{y}+oldsymbol{eta}^Toldsymbol{X}^Toldsymbol{X}oldsymbol{eta}=0 \leftrightarrow \ & 2oldsymbol{X}^Toldsymbol{X}oldsymbol{eta}=2oldsymbol{X}^Toldsymbol{y} \leftrightarrow \ & oldsymbol{X}^Toldsymbol{X}oldsymbol{eta}=oldsymbol{X}^Toldsymbol{y} \leftrightarrow \ & oldsymbol{X}^Toldsymbol{X}oldsymbol{eta}=oldsymbol{X}^Toldsymbol{y} \leftrightarrow \ & oldsymbol{X}^Toldsymbol{A}oldsymbol{eta}=oldsymbol{X}^Toldsymbol{y} \leftrightarrow \ & oldsymbol{X}^Toldsymbol{A}oldsymbol{eta}=oldsymbol{X}^Toldsymbol{y} \leftrightarrow \ & oldsymbol{X}^Toldsymbol{A}oldsymbol{eta}=oldsymbol{X}^Toldsymbol{Y} oldsymbol{\phi} + oldsymbol{eta} oldsymbol{A}oldsymbol{A}oldsymbol{A}oldsymbol{\phi} + oldsymbol{A}oldsymbol{A}oldsymbol{A}oldsymbol{A}oldsymbol{\phi} + oldsymbol{A} + oldsymbol{A} + oldsymbol{A}oldsymbol{A}oldsymbol{A}oldsymbol{A}oldsymbol{A}oldsymbol{A} + oldsymbol{A}oldsymbol{A}oldsymbol{A}oldsymbol{A}oldsymbol{A} + oldsymbol{A}oldsymbol{A}oldsymbol{A}oldsymbol{A} + oldsymbol{A}oldsymbol{A}oldsymbol{A} + oldsymbol{A}oldsymbol{A}oldsymbol{A} + oldsymbol{A}oldsymbol{A} + oldsymbol{A}oldsymbol{A} + oldsymbol{A}oldsymbol{A} + oldsymbol{A} +$$

Multiply both sides with $(\mathbf{X}^T\mathbf{X})^{-1}$:

$$\underbrace{\left(oldsymbol{X}^T oldsymbol{X}
ight)^{-1} oldsymbol{X}^T oldsymbol{X}}_{=oldsymbol{I}} eta = \left(oldsymbol{X}^T oldsymbol{X}
ight)^{-1} oldsymbol{X}^T oldsymbol{y} \ \hat{eta} = \left(oldsymbol{X}^T oldsymbol{X}
ight)^{-1} oldsymbol{X}^T oldsymbol{y}$$

The OLS estimator

$$\hat{\boldsymbol{\beta}} = (\boldsymbol{X}^T \boldsymbol{X})^{-1} \boldsymbol{X}^T \boldsymbol{y}$$

- This is very important.
- Remember this.

Colors

Let me show you the colors

Dark red	Dark blue	Dark petroleum	Dark green	Dark grey
#901a1e	#122947	#0a5963	#39641c	#3d3d3d
Red	Blue	Petroleum	Green	Grey
#c73028	#425570	#197f8e	#4b8325	#666666
Light red	Light blue	Light petroleum	Light green	Light grey
#db3b0a	#bac7d9	#b7d7de	#becaa8	#e1dfdf

Wake up!

Wake up with a gradient!

References

Schelling, T.C. (1971) "Dynamic models of segregation," Journal of mathematical sociology, 1(2), pp. 143–186.

Appendix

Appendix

123

Page layout

Header Margin→ Content Footer