Implémentez un modèle de Scoring

Projet 7 – OpenClassrooms Stéphane LUBIN

Sommaire

Problématique et objectifs

Problématique

La société « Prêt à dépenser » souhaite mettre en place un modèle de scoring pour la prise de décision sur l'attribution ou le refus d'un prêt

Objectifs

- Modèle automatique de scoring
- Dashboard interactif
- Mettre place MLOps
- Test Data Drift

Présentation jeu de données

Données antérieur, prêt, paiement et balance

extérieur

Modélisation

Prétraitement des données

- Kernel Kaggle
- Traitement des valeurs aberrantes
- Création de nouvelles variables tels que le taux de paiement
- Création des caractéristiques spécifiques pour les demandes approuvées et refusées
- Création des caractéristiques spécifiques pour les demandes ouvertes et fermées
- Encodage One hot pour les variables de type catégorie
- Fusion des fichiers

	Lignes	Colonnes	Col type float	Col type int	Col type obj	NaN (%)	Double (%)
bureau.csv	1716428	17	8	6	3	13.5	0.0
bureau_balance.csv	27299925	3	0	2	1	0.0	0.0
previous_application.csv	1670214	37	15	6	16	17.98	0.0
POS_CASH_balance.csv	10001358	8	2	5	1	0.07	0.0
installments_payments.csv	13605401	8	5	3	0	0.01	0.0
credit_card_balance.csv	3840312	23	15	7	1	6.65	0.0
application_train.csv	307511	122	65	41	16	24.4	0.0

Before Preprocessing. Train samples: (307511, 122), test samples: (48744, 121)

After Preprocessing. Train shape: (307507, 798), test shape: (48744, 798)

équilibré

SGD Classifier
Random Forest Classifier
XGB Classifier
LGBM Classifier

MLFlow Tracking UI

Features Sélection

Métrique métier

$$TOT = VP * TVP + VN * TVN - FP * TFP - FN * 20 * TFN$$

$$GM = (VP + FP) * TVP + (VN + FN) * TVN$$

$$PM = -(FP + VP) * TFP - (FN + VN) * 20 * TFN$$

$$Score = (TOT - PM)/(GM - PM)$$

Optimisation

Jeu de validation

LightGBM Classifier optimisé

LightGBM avec le seuil

Features Importance

GIT, GITHUB et conception

Dashboard déployé

Data Drift via Evidently

Conclusion

- Les limites de mes connaissances
- Les axes d'amélioration
- L'aspect du dashboard
- Les retours des service clientèle

MERCI POUR VOTRE ATTENTION

