Παρουσίαση για χρήση με το σύγγραμμα, Αλγόριθμοι Σχεδίαση και Εφαρμογές, των Μ. Τ. Goodrich and R. Tamassia, Wiley, 2015 (στα ελληνικά από εκδόσεις Μ. Γκιούρδας)

Κάτω όριο ταξινόμησης (με συγκρίσεις)

Ταξινόμηση βάσει σύγκρισης

- Πολλοί αλγόριθμοι ταξινόμησης βασίζονται σε συγκρίσεις
 - Ταξινομούν κάνοντας συγκρίσεις μεταξύ ζευγών αντικειμένων
 - Παραδείγματα: bubble-sort, selection-sort, insertion-sort, heap-sort, merge-sort, quick-sort, ...
- Συνεπώς, είναι χρήσιμο να εντοπιστεί ένα κάτω όριο για το χρόνο εκτέλεσης οποιουδήποτε αλγορίθμου που χρησιμοποιεί συγκρίσεις για να ταξινομήσει η στοιχεία, x₁, x₂, ..., x_n.

Μέτρηση συγκρίσεων

Ας μετρήσουμε τις συγκρίσεις.

 Κάθε πιθανή εκτέλεση του αλγόριθμου αντιστοιχεί σε ένα μονοπάτι από τη ρίζα ως τα φύλλα σε ένα δένδρο

αποφάσεων

Ύψος δένδρου αποφάσεων

- Το ύψος του δένδρου αποφάσεων είναι ένα κάτω όριο του χρόνου εκτέλεσης
- Κάθε μετάθεση της εισόδου πρέπει να οδηγεί σε ένα διαφορετικό φύλλο εξόδου
- Αν όχι, κάποια εἰσοδος ...4...5... θα έχει την ίδια διάταξη εξόδου όπως ...5...4..., που θα ἡταν λάθος
- ★ Καθώς υπάρχουν n!=1·2 · ... ·n φύλλα, το ύψος είναι τουλάχιστον log(n!)

4

Το κάτω όριο

- Κάθε αλγόριθμος ταξινόμησης που βασίζεται σε συγκρίσεις απαιτεί τουλάχιστον log(n!) χρόνο
- Έτσι, οποιοσδήποτε αλγόριθμος που βασίζεται σε συγκρίσεις θέλει χρόνο τουλάχιστον

$$\log (n!) \ge \log \left(\frac{n}{2}\right)^{\frac{n}{2}} = (n/2)\log(n/2).$$

 Οπότε, ο χρόνος εκτέλεσης οποιοδήποτε αλγορίθμου ταξινόμησης που βασίζεται στην σύγκριση είναι Ω(n log n).