CLOSURE PROPERTIES OF SYNCHRONIZED RELATIONS

María Emilia Descotte ¹ LaBRI, Université de Bordeaux

DeLTA Meeting LaBRI, Université de Bordeaux December 6th 2018

¹Joint work with D. Figueira and S. Figueira

Synchronized pairs of words over A

SYNCHRONIZING PAIRS OF WORDS

A synchronization of $(w_1, w_2) \in \mathbb{A}^{*2}$ is a word over $\{1, 2\} \times \mathbb{A}$ so that the projection on \mathbb{A} of positions labeled i is exactly w_i for i = 1, 2.

SYNCHRONIZED PAIRS OF WORDS OVER A

SYNCHRONIZING PAIRS OF WORDS

A synchronization of $(w_1, w_2) \in \mathbb{A}^{*2}$ is a word over $\{1, 2\} \times \mathbb{A}$ so that the projection on \mathbb{A} of positions labeled i is exactly w_i for i = 1, 2.

EXAMPLE

(1, a)(1, b)(2, a) and (1, a)(2, a)(1, b) synchronize (ab, a).

SYNCHRONIZED PAIRS OF WORDS OVER A

SYNCHRONIZING PAIRS OF WORDS

A synchronization of $(w_1, w_2) \in \mathbb{A}^{*2}$ is a word over $\{1, 2\} \times \mathbb{A}$ so that the projection on \mathbb{A} of positions labeled i is exactly w_i for i = 1, 2.

EXAMPLE

(1, a)(1, b)(2, a) and (1, a)(2, a)(1, b) synchronize (ab, a).

Every word $w \in (\{1,2\} \times \mathbb{A})^*$ is a synchronization of a unique pair (w_1, w_2) that we denote $[\![w]\!]$.

$$[(1,a)(1,b)(2,a)] = [(1,a)(2,a)(1,b)] = (ab,a).$$

SYNCHRONIZED RELATIONS

SYNCHRONIZING RELATIONS

We lift this notion to languages $L \subseteq (\{1,2\} \times \mathbb{A})^*$

$$[\![L]\!] = \{[\![w]\!] \mid w \in L\}$$

SYNCHRONIZED RELATIONS

SYNCHRONIZING RELATIONS

We lift this notion to languages $L \subseteq (\{1,2\} \times \mathbb{A})^*$

$$[\![L]\!] = \{[\![w]\!] \mid w \in L\}$$

EXAMPLE

$$\mathbb{A} = \{a, b\}, \ L = ((1, a)(2, a) \cup (1, a)(2, b) \cup (1, b)(2, a) \cup (1, b)(2, b))^*,$$
$$\mathbb{L} = \{(w_1, w_2) \mid |w_1| = |w_2|\}.$$

Restrictions on the shape of the projection over $\{1,2\}$

Infinitely many different classes of relations.

Restrictions on the shape of the projection over $\{1,2\}$

Infinitely many different classes of relations.

C-CONTROLLED LANGUAGES

 $C \subseteq_{reg} \{1,2\}^*$ $-w \in (\{1,2\} \times \mathbb{A})^*$ is C-controlled if its projection over $\{1,2\}$ lies in C. $-L \subseteq (\{1,2\} \times \mathbb{A})^*$ is C-controlled if all its words are.

Restrictions on the shape of the projection over $\{1,2\}$

Infinitely many different classes of relations.

C-CONTROLLED LANGUAGES

 $C \subseteq_{reg} \{1,2\}^*$ - $w \in (\{1,2\} \times \mathbb{A})^*$ is C-controlled if its projection over $\{1,2\}$ lies in C. - $L \subseteq (\{1,2\} \times \mathbb{A})^*$ is C-controlled if all its words are.

EXAMPLES

-Everything is $\{1,2\}^*$ -controlled, -(1,a)(1,b)(2,a) is 1^*2^* -controlled, -(1,a)(2,a)(1,b) isn't 1^*2^* -controlled, -L (previous slide) is $(12)^*$ -controlled.

Restrictions on the shape of the projection over $\{1,2\}$

Infinitely many different classes of relations.

C-CONTROLLED LANGUAGES

 $C \subseteq_{reg} \{1,2\}^*$ - $w \in (\{1,2\} \times \mathbb{A})^*$ is C-controlled if its projection over $\{1,2\}$ lies in C. - $L \subseteq (\{1,2\} \times \mathbb{A})^*$ is C-controlled if all its words are.

EXAMPLES

-Everything is $\{1,2\}^*$ -controlled, -(1,a)(1,b)(2,a) is 1^*2^* -controlled, -(1,a)(2,a)(1,b) isn't 1^*2^* -controlled,

-L (previous slide) is $(12)^*$ -controlled.

C-CONTROLLED RELATIONS

Given $C \subseteq_{reg} \{1, 2\}^*$

 $Rel(C) = \{ \llbracket L \rrbracket \mid L \text{ is reg. and } C\text{-controlled} \}$

Restrictions on the shape of the projection over $\{1,2\}$

Infinitely many different classes of relations.

C-CONTROLLED LANGUAGES

 $C \subseteq_{re\sigma} \{1,2\}^*$ $-w \in (\{1,2\} \times \mathbb{A})^*$ is C-controlled if its projection over $\{1,2\}$ lies in C. $-L \subseteq (\{1,2\} \times \mathbb{A})^*$ is *C*-controlled if all its words are.

EXAMPLES

-Everything is $\{1,2\}^*$ -controlled, -(1, a)(1, b)(2, a) is 1*2*-controlled, -(1, a)(2, a)(1, b) isn't 1*2*-controlled,

-L (previous slide) is (12)*-controlled.

C-CONTROLLED RELATIONS

Given $C \subseteq_{reg} \{1, 2\}^*$

 $Rel(C) = \{ \llbracket L \rrbracket \mid L \text{ is reg. and } C\text{-controlled} \}$

EXAMPLES

 $-\text{Rel}(1^*2^*) = \text{REC},$

 $-\text{Rel}((12)^*(1^* \cup 2^*)) = \mathsf{REG},$

 $-\text{Rel}(\{1,2\}^*) = \text{RAT}.$

CLOSURE UNDER UNION PROBLEM

Input: $C \subseteq_{reg} \{1, 2\}^*$

Question: Is Rel(C) closed under union?

CLOSURE UNDER INTERSECTION PROBLEM

Input: $C \subseteq_{reg} \{1,2\}^*$

Question: Is Rel(C) closed under intersection?

CLOSURE UNDER COMPLEMENT PROBLEM

Input: $C \subseteq_{reg} \{1, 2\}^*$

Question: Is Rel(C) closed under complement?

CLOSURE UNDER CONCATENAT. PROBLEM

Input: $C \subseteq_{reg} \{1, 2\}^*$

Question: Is Rel(C) closed under concatenat.?

CLOSURE UNDER KLEENE STAR PROBLEM

Input: $C \subseteq_{reg} \{1,2\}^*$

Question: Is Rel(C) closed under Kleene star?

CLOSURE UNDER UNION PROBLEM

Input: $C \subseteq_{reg} \{1, 2\}^*$

Question: Is Rel(C) closed under union?

- ReL(C) is closed under union for all $C \subseteq_{reg} \{1,2\}^*$.

CLOSURE UNDER CONCATENAT. PROBLEM

Input: $C \subseteq_{reg} \{1,2\}^*$

Question: Is Rel(C) closed under concatenat.?

- ReL(C) is closed under union for all C ⊆_{reg} $\{1,2\}^*$.
- $-\operatorname{Rel}(C)$ is closed under concatenation if, and only if $C \cdot C \subseteq_{\operatorname{Rel}} C$.

CLOSURE UNDER KLEENE STAR PROBLEM

Input: $C \subseteq_{reg} \{1, 2\}^*$

Question: Is Rel(C) closed under Kleene star?

- ReL(C) is closed under union for all $C \subseteq_{reg} \{1, 2\}^*$.
- $\operatorname{Rel}(C)$ is closed under concatenation if, and only if $C \cdot C \subseteq_{\operatorname{Rel}} C$.
- $-\operatorname{Rel}(C)$ is closed under Kleene star if, and only if $C^*\subseteq_{\operatorname{Rel}} C$.

CLOSURE UNDER INTERSECTION PROBLEM

Input: $C \subseteq_{reg} \{1, 2\}^*$

Question: Is Rel(C) closed under intersection?

- ReL(C) is closed under union for all C \subseteq_{reg} {1,2}*.
- $\operatorname{Rel}(C)$ is closed under concatenation if, and only if $C \cdot C \subseteq_{\operatorname{Rel}} C$.
- $\operatorname{REL}(C)$ is closed under Kleene star if, and only if $C^* \subseteq_{\operatorname{REL}} C$.
- Closure under intersection is more difficult.

CLOSURE UNDER COMPLEMENT PROBLEM

Input: $C \subseteq_{reg} \{1, 2\}^*$

Question: Is Rel(C) closed under complement?

- ReL(C) is closed under union for all C \subseteq_{reg} {1,2}*.
- $\operatorname{Rel}(C)$ is closed under concatenation if, and only if $C \cdot C \subseteq_{\operatorname{Rel}} C$.
- $\operatorname{REL}(C)$ is closed under Kleene star if, and only if $C^* \subseteq_{\operatorname{REL}} C$.
- Closure under intersection is more difficult.
- Closure under complement follows from closure under intersection.

 $\operatorname{Rel}(1^*2^*)$ is closed under intersection.

 $Rel(1^*2^*)$ is closed under intersection.

Parikh-image

$$| -u \in \{1,2\}^*, \ \pi(u) = (|u|_1,|u|_2).$$

-C \sum \{1,2\}*, \pi(C) = \{\pi(u) \ | \ u \in C\}.

$Rel(1^*2^*)$ is closed under intersection.

Parikh-image

$$-u \in \{1,2\}^*, \ \pi(u) = (|u|_1, |u|_2).$$

$$-C \subseteq \{1,2\}^*, \ \pi(C) = \{\pi(u) \mid u \in C\}.$$

$$C \subseteq \{1,2\}^*$$
 is

-Parikh-injective if

$$\forall u \neq v \in C, \pi(u) \neq \pi(v).$$

-Parikh-surjective if

$$\pi(C) = \mathbb{N}^2$$
.

 $\operatorname{Rel}(1^*2^*)$ is closed under intersection.

REL(C) is closed under intersection $\forall C$ such that $\exists D$ Parikh-injective with $C =_{\text{REL}} D$.

Parikh-image

$$-u \in \{1,2\}^*, \ \pi(u) = (|u|_1, |u|_2).$$

-C \(\int \{1,2\}^*, \pi(C) = \{\pi(u) \ | \ u \in C\}.

$$C \subseteq \{1,2\}^*$$
 is

-Parikh-injective if

$$\forall u \neq v \in C, \pi(u) \neq \pi(v).$$

-Parikh-surjective if

$$\pi(C) = \mathbb{N}^2$$
.

 $\operatorname{Rel}(1^*2^*)$ is closed under intersection.

 $\operatorname{REL}(C)$ is closed under intersection $\forall C$ such that $\exists D$ Parikh-injective with $C =_{\operatorname{REL}} D$.

- -Rel((12)*1*2*) is closed under intersection;
- -Rel $((12)^*(1122)^*)$ is closed under intersection.

Parikh-image

 $-u \in \{1,2\}^*, \ \pi(u) = (|u|_1, |u|_2).$ -C \(\int \{1,2\}^*, \pi(C) = \{\pi(u) \ | \ u \in C\}.

$$C \subseteq \{1,2\}$$
, $\pi(C) = \{\pi(u) \mid u \in C\}$

 $C \subseteq \{1,2\}^*$ is

-Parikh-injective if

$$\forall u \neq v \in C, \pi(u) \neq \pi(v).$$

-Parikh-surjective if

$$\pi(C) = \mathbb{N}^2$$
.

 $Rel(1^*2^*)$ is closed under intersection.

 $\operatorname{REL}(C)$ is closed under intersection $\forall C$ such that $\exists D$ Parikh-injective with $C =_{\operatorname{REL}} D$.

- -Rel((12)*1*2*) is closed under intersection:
- -Rel $((12)^*(1122)^*)$ is closed under intersection.

 $Rel((12)^* \cup 1^*2^*)$ is closed under intersection.

Parikh-image

 $-u \in \{1,2\}^*, \ \pi(u) = (|u|_1, |u|_2).$ -C \(\int \{1,2\}^*, \pi(C) = \{\pi(u) \| u \in C\}.

 $C \subseteq \{1,2\}^*$ is

-Parikh-injective if

$$\forall u \neq v \in C, \pi(u) \neq \pi(v).$$

-Parikh-surjective if

$$\pi(C) = \mathbb{N}^2$$
.

 $\operatorname{Rel}(1^*2^*)$ is closed under intersection.

 $\operatorname{REL}(C)$ is closed under intersection $\forall C$ such that $\exists D$ Parikh-injective with $C =_{\operatorname{REL}} D$.

- -Rel((12)*1*2*) is closed under intersection:
- -Rel $((12)^*(1122)^*)$ is closed under intersection.

 $Rel((12)^* \cup 1^*2^*)$ is closed under intersection.

Parikh-image

 $-u \in \{1,2\}^*, \ \pi(u) = (|u|_1, |u|_2).$ -C \(\left\) \(\left\) \(\pi \) \(\pi \)

$$C \subseteq \{1,2\}^*$$
 is

-Parikh-injective if

$$\forall u \neq v \in C, \pi(u) \neq \pi(v).$$

-Parikh-surjective if

$$\pi(C) = \mathbb{N}^2$$
.

-Parikh-bijective if it is both.

 $\operatorname{Rel}(C)$ is closed under intersection $\forall C$ such that $\exists D, X$ Parikh-injective with $X \subseteq_{\operatorname{Rel}} 1^*2^*$ and $C =_{\operatorname{Rel}} D \cup X$.

NEGATIVE EXAMPLES

 $Rel(1^*(12)^*2^*)$ is not closed under intersection.

NEGATIVE EXAMPLES

 $Rel(1^*(12)^*2^*)$ is not closed under intersection.

 $\mathrm{Rel}((12)^*1^* \cup (112)^*)$ is not closed under intersection.

NEGATIVE EXAMPLES

 $Rel(1^*(12)^*2^*)$ is not closed under intersection.

Rel($(12)^*1^* \cup (112)^*$) is not closed under intersection.

 $\operatorname{Rel}((12)^*1^* \cup 1^*(12)^*)$ is not closed under intersection.

CHARACTERIZATION

CHARACTERIZATION OF CLOSURE UNDER INTERSECTION

Given $C \subseteq_{reg} \{1,2\}^*$, the following are equivalent:

- **1.** ReL(C) is closed under intersection;
- 2. for all $R, S \in \text{Rel}(C)$, $R \cap S \in \text{RAT}$;
- 3. there exist Parikh-injective languages $X, D \subseteq_{reg} \{1, 2\}^*$ such that $X \subseteq_{REL} 1^*2^*$ and $C =_{REL} D \cup X$;
- 4. there exists a Parikh-injective language $D \subseteq_{reg} \{1,2\}^*$ such that $C \subseteq_{REL} D$.

EXAMPLES

 $Rel(1^*2^*)$ is closed under complement.

EXAMPLES

 $Rel(1^*2^*)$ is closed under complement.

Rel(C) is closed under complement for every C such that there exists a Parikh-bijective D with $C =_{Rel} D$.

CHARACTERIZATION

Characterization of closure under complement

Given $C \subseteq_{reg} \{1,2\}^*$, the following are equivalent:

- 1. Rel(C) is closed under complement;
- 2. there exists a Parikh-bijective language $D\subseteq_{reg}\{1,2\}^*$ such that $C=_{\text{Rel.}}D$.

SUMMARY OF RESULTS

The closure under intersection (resp. complement, concatenation, Kleene star) problem is decidable.

SUMMARY OF RESULTS

The closure under intersection (resp. complement, concatenation, Kleene star) problem is decidable.

Classes that are closed under complement have decidable containment and universality problems.

SUMMARY OF RESULTS

The closure under intersection (resp. complement, concatenation, Kleene star) problem is decidable.

Classes that are closed under complement have decidable containment and universality problems.

For $C \subseteq_{reg} \{1,2\}^*$, if $\operatorname{REL}(C)$ is closed under intersection, for all $R,S \in \operatorname{REL}(C)$, we can effectively construct a language $L \subseteq_{reg} (\{1,2\} \times \mathbb{A})^*$ such that $[\![L]\!] = R \cap S$. Similarly for complement, concatenation and Kleene star.

— Complexity of all the procedures described before?

- Complexity of all the procedures described before?
- What about k-ary relations?

- Complexity of all the procedures described before?
- What about k-ary relations?
- Composition?

- Complexity of all the procedures described before?
- What about k-ary relations?
- Composition?
- Extended CRPQ's?

Thanks for your attention!