Algorithmique 1

L3 RI

Table des matières

1 Algorithmes

	1.2	Arbres binaires	1
	1.3	Graphes	2
	1.4	Algorithmes gloutons	2
	1.5	Programmation dynamique	2
	1.6	Flots	3
	1.7	Programmation linéaire	3
2	Str	uctures de données	3
	2.1	Files de priorité	3
	2.2	Tables de hachage	3
	2.3	Structure Union-Find	4
3	Aut	res	4
L		Algorithmes Tris	
L.	1 '	1118	
L.	⊳ Tr	ri par insertion : $O(n^2)$ onsidérer chaque élément un à un pour l'insérer à sa bonne place (per	ıser
L	⊳ Tr C à	ri par insertion : $O(n^2)$	nser
L	▷ Tri Co à ▷ Tri	ri par insertion : $O(n^2)$ onsidérer chaque élément un à un pour l'insérer à sa bonne place (per un jeu de cartes)	nser
L	▷ The Control of the Contro	ri par insertion : $O(n^2)$ onsidérer chaque élément un à un pour l'insérer à sa bonne place (per un jeu de cartes) ri fusion : $O(n \log n)$	nser
L	 ▷ The Color is a color in the colo	ri par insertion : $O(n^2)$ onsidérer chaque élément un à un pour l'insérer à sa bonne place (per un jeu de cartes) ri fusion : $O(n \log n)$ aradigme diviser pour régner, diviser en deux sous-problèmes	
L	 ▷ Tr Co à ▷ Tr Pr St Ы 	ri par insertion : $O(n^2)$ onsidérer chaque élément un à un pour l'insérer à sa bonne place (per un jeu de cartes) ri fusion : $O(n \log n)$ aradigme diviser pour régner, diviser en deux sous-problèmes ri Shell : $O(n^2)$ uite de tris par insertion sur chaque constituant d'une partition du	
L	 ▷ Tr C à ▷ Tr St ▷ bl ▷ Tr 	ri par insertion : $O(n^2)$ onsidérer chaque élément un à un pour l'insérer à sa bonne place (per un jeu de cartes) ri fusion : $O(n \log n)$ aradigme diviser pour régner, diviser en deux sous-problèmes ri Shell : $O(n^2)$ nite de tris par insertion sur chaque constituant d'une partition du eau	
l,	 ▷ Tr Co à ▷ Tr Pr Su bl ▷ Tr U 	ri par insertion : $O(n^2)$ onsidérer chaque élément un à un pour l'insérer à sa bonne place (per un jeu de cartes) ri fusion : $O(n \log n)$ aradigme diviser pour régner, diviser en deux sous-problèmes ri Shell : $O(n^2)$ uite de tris par insertion sur chaque constituant d'une partition du eau ri par tas : $O(n \log n)$	
	 ▷ Tr Color À Color Properties ▷ Tr U ▷ Tr M 	ri par insertion : $O(n^2)$ onsidérer chaque élément un à un pour l'insérer à sa bonne place (per un jeu de cartes) ri fusion : $O(n \log n)$ aradigme diviser pour régner, diviser en deux sous-problèmes ri Shell : $O(n^2)$ uite de tris par insertion sur chaque constituant d'une partition du eau ri par tas : $O(n \log n)$ tiliser une structure de file de priorité, ici un tas	ta-
	 ▷ Trong ▷ Trong ▷ Trong ▷ Trong ▷ Trong ▷ Trong ⋈ M po 	ri par insertion : $O(n^2)$ considérer chaque élément un à un pour l'insérer à sa bonne place (per un jeu de cartes) ri fusion : $O(n \log n)$ caradigme diviser pour régner, diviser en deux sous-problèmes ri Shell : $O(n^2)$ nite de tris par insertion sur chaque constituant d'une partition du eau ri par tas : $O(n \log n)$ tiliser une structure de file de priorité, ici un tas ri sélection : $O(n^2)$ fettre le plus grand à sa place, puis le suivant Peu d'écritures. Uti	ta-

1.2 Arbres binaires

 $\,\rhd\,$ Arbre binaire : $1+h \le n \le 2^{h+1}-1$

- \triangleright Arbre binaire presque complet : $2^h \le n \le 2^{h+1} 1$
- \triangleright Tas
- ▷ Arbre binaire de recherche (ABR) La recherche d'un élément ne suit qu'une branche, problème si arbre non équilibré
- ightharpoonup Arbre AVL Rééquilibrage d'un arbre par des rotations : $\log_2(n+1) \le h \le 1.44 \log_2 n$

1.3 Graphes

- $\,\rhd\,$ Graphes orientés, pondérés
- > Implémentations par liste d'adjacence ou matrice d'adjacence
- ▷ Parcours en profondeur

Valeurs de pre et post traitement, types d'arc, détection de cycles, tri topologique

Composantes fortement connexes, Algorithme de Kosaraju (un premier PP, puis un second PP dans l'ordre décroissant des temps de post sur le graphe transposé), graphe quotient

▷ Parcours en largeur

Recherche d'un plus court chemin

Algorithme de Dijkstra (mise à jour de distances, et considérer le sommet qui minimise)

Algorithme A* (même principe, mais le choix se base en plus sur une heuristique)

> Arbre couvrant de poids minimal

Algorithme de Kruskal (utiliser une structure Union-Find, trier les arêtes par poids croissants, et les considérer toute une à une, si pas dans la même classe, on fusionne)

Algorithme de Prim (similaire à Dijkstra, tant qu'il reste des sommets non traités, on prend l'arête qui minimise à partir d'un sommet traité)

1.4 Algorithmes gloutons

- > Prendre un choix localement meilleur
- → Algorithmes de Kruskal, de Prim
- $\,\rhd\,$ Rendu de monnaie

1.5 Programmation dynamique

- > Paradigme de conception d'algorithmes
- $\,\rhd\,$ Définir les sous-problèmes, en revoyant à la baisse l'objectif si nécessaire
- > Trouver une relation de récurrence
- ▷ Écrire l'algorithme (mémoïzation)
- ▷ Exemples

Recherche plus court chemin dans un graphe

— Algorithme de Floyd-Warshall $d_{i,j,k} = \text{distance minimale d'un chemin allant de i à j passant par les k premiers sommets}$

— Algorithme de Bellman-Ford $d_{i,j,k}$ = distance minimale d'un chemin allant de i à j contenant au plus k arcs

Recherche plus longue sous-suite croissante Problème du sac à dos

1.6 Flots

- ▷ Problème du flot maximal
- ➤ Algorithme de Ford-Fulkerson (Tant qu'il existe un chemin de la source à la cible dans le graphe résiduel, maximiser les flux sur ce chemin)
- ▷ L'algorithme se termine si les poids sont entiers (ou rationnels), sinon ne termine pas forcément
- ▷ Réduction du problème de couplage maximal au problème de flot maximal

1.7 Programmation linéaire

```
MAX expression x_1 = \dots

\vdots

x_n = \dots

x_1 \dots x_n \ge 0
```

▷ Algorithme du simplexe (Tant qu'on peut maximiser la solution, échanger deux variables en utilisant l'expression la plus contraignante)

2 Structures de données

2.1 Files de priorité

Implémentées par exemple avec un tas.

Méthodes:

- \triangleright Enfiler
- ▷ Défiler un élément maximal
- \triangleright Est vide?
- $\,\rhd\,$ Construire file vide

2.2 Tables de hachage

Méthodes :

- ⊳ Ajout d'un élément
- $\,\rhd\,$ Suppression d'un élément
- \triangleright Contient x?

Risque de collisions, n'est pas rare (idem paradoxe des anniversaires)

2.3 Structure Union-Find

Méthodes :

- \triangleright Créer partition
- > Fusionner deux classes (union)
- → Obtenir un représentant (find)

Implémentation par une forêt d'arbres. Complexité améliorée en utilisant la compression de chemin.

3 Complexité

Master Theorem Soit $a \geq 1$, $b \geq 0$ et $d \geq 2$. Si $T \in \mathbb{R}^{\mathbb{N}}$ vérifie

$$T(n) = a \cdot T\left(\frac{n}{d}\right) + O\left(n^b\right)$$

alors

$$T(n) = \begin{cases} O\left(n^b\right) & \text{si } b > \log_d(a) \\ O\left(n^b log_d(n)\right) & \text{si } b = \log_d(a) \\ O\left(n^{log_d(a)}\right) & \text{si } b < \log_d(a) \end{cases}$$

4 Autres

- $\,\rhd\,$ Encodage de Huffman
- ⊳ Formules de Horn
- \triangleright FFT
- \triangleright Classes P, NP, EXPTIME
- ⊳ Classe NP : Réduction à SAT, Branch&Bound, Local Search