TODO: Move Vec3 related functions to CowbotVector?

1 cap_magnitude(x, magnitude = 1)

Returns sgn(x)*max(abs(x), magnitude). The output and both arguments are floats.

2 rotate_to_range(theta, interval)

2.1 theta

Float.

2.2 interval

List or tuple of two floats. interval[0] should be strictly less than interval[1].

This function is primarily used to find an angle equivalent to theta but is between $-\pi$ and π . Add and subtract multiples of the length of interval to theta until theta is between interval [0] and interval [1]. Return the final theta.

3 car coordinates 2d(current state, direction)

Throws out the z-component and rotates the x and y components to the car-basis. Returns a Vec3 with zero z-component.

3.1 current_state

CarState. The state of the car we're working with.

3.2 direction

Vec3. The direction vector from the car to the target.

4 angles_are_close(angle1, angle2, epsilon)

Returns a Boolean, True if angle1 (float) and angle2 (float) are within epsilon (float) of each other.

5 left_or_right(current_state, target_pos)

Check if the car should turn left or right to face towards the target. Returns +1 for right and -1 for left.

5.1 current_state

CarState. The current state of the car.

5.2 target_pos

Vec3. The point on the field we are trying to point towards.

6 rot_to_mat3(rot

Takes rot, an Orientation object, and returns the corresponding RLU mat3 object.

7 pyr_to_matrix(pyr)

TODO: Change all "pyr" notation to "ypr" to match the convention used by RL.

Takes an Euler angle orientation (pitch, yaw, roll) and returns the orientation matrix [front, left, up].

8 Vec3_to_Vector3(vector)

Takes a Vec3 (CowBot) and returns the corresponding Vector3 (framework).

9 Vec3_to_vec3(vector)

Takes a Vec3 (CowBot) and returns the corresponding vec3 (RLU).

10 vec3_to_Vec3(vector)

Takes a vec3 (RLU) and returns the corresponding Vec3 (CowBot).

11 is_in_map(location)

Takes location (Vec3) and returns a Boolean, True if location is inside the game map. Rudimentary for now, can definitly be improved over time.

12 angle_to(target, start, initial_angle)

Takes a target location target (Vec3), a starting location start (Vec3), and a starting yaw initial_angle (float between $-\pi$ and π).

Returns the angle between the initial yaw and the angle needed to face the target.

13 min_radius(speed)

Returns the minimum radius (float) possible given an input speed (float). Comes from Chip's notes on ground handling. Data was taken for an Octane, turns in a plank body will likely be slightly wider.

14 max_speed(radius)

Returns the maximum speed (float) possible given an input radius (float). Comes from Chip's notes on ground handling. Data was taken for an Octane, turns in a plank body will likely be slightly wider.