1. The area of the region bounded by the curves y = |x-2|, x = 1, x = 3 and the x—axis is

d) 1

DPP- AREAS-MAINS MODEL

c) 3

b) 2(e-1) c) 2e-1

2. The area of the region bounded by y = |x-1| and y = 1 is

MATHS-2B

a) 4

a) e-1

b) 2

	a) 2	b) 1	c) $\frac{1}{2}$	d) none of those					
3.	Area bound by lines $y = 2 + x$, $y = 2 - x$ and $x = 2$ is								
	a) 3	b) 4	c) 8	d) 16					
4.				$(x) = x^3$ and line $x = 2a$ above x-axis is					
	a) πa^2	b) $\frac{3\pi a^2}{2}$	c) $2\pi a^2$	d) $3\pi a^2$					
5.	Area bounded	d by the curve	xy - 3x - 2y - 1	0 = 0, x-axis and the lines $x = 3, x = 4$ is					
	a) 16 log 2-3			c) $16 \log 2 + 3$ d) none of these					
6.	The area of the	ne triangle form	ned by the tange	ent to the hyperbola $xy = a^2$ and coordinate axes is					
	a) a^2	b) $2a^2$	c) 3 <i>a</i>	d) $4a^2$					
7.	If a curve $y =$	$= a\sqrt{x} + bx$ pass	ses through the	point $(1, 2)$ and the area bound by the curve, line $x = 4$ and					
		uare units, then							
	a) $a = 3, b =$	-1	b) $a = 3, b = 1$	c) $a = -3, b = 1$ d) $a = -3, b = -1$					
8.	Let m be the	area of the sma	ller region bou	nded by the curve $y^2 = 4x$ and the lines $y = -x$ and $x = 4$,					
		the IV quadrat,	then the value	of 3m is					
	a) 16	b) 8		,					
9.				and the straight line $y = 2ax$, is					
	a) $\frac{a^2}{3}$ sq.unit	ts b) $\frac{1}{3a}$	$\frac{1}{2}$ sq.units	c) $\frac{1}{3a}$ sq.units d) $\frac{2}{3a}$ sq.units					
10	. The area bour	nded by the cu	$ve x = at^2, y =$	$2at$ and the x-axis in $1 \le t \le 3$ is					
	a) 26a ²	b) 8 <i>a</i> ²	c) $\frac{26a^2}{3}$	d) $\frac{104a^2}{3}$					
11	. Let A be the	area bounded b	y the curve $y =$	=(x-1) x , the x-axis and the ordinates $x=-1$ and $x=1$					
	41								
	a) -1	b) 0	c) 1	d) 2					
12	. The area betv	ween the curve	$y = 2x^4 - x^2$, the	he axis and the ordinates of 2 minima of the curve is					
	a) $\frac{7}{120}$	b) $\frac{9}{120}$	c) $\frac{11}{120}$	d) None of these					
			rea bounded by the curve $y = (x-1) x $, the x-axis and the ordinates $x = -1$ and $x = 1$ b) 0 c) 1 d) 2 een the curve $y = 2x^4 - x^2$, the axis and the ordinates of 2 minima of the curve is b) $\frac{9}{120}$ c) $\frac{11}{120}$ d) None of these he tangent to a curve $y = f(x)$ at $(x, f(x))$ is $2x + 1$. If the curve passes through the en the area of the region bounded be the curve, the x-axis and the line $x = 1$ is						
	a) $\frac{5}{6}$	3	c) 6	O .					
14	. The area bour	$nded by y = e^{ x }$, y-axis and y	= e is					

d) 2*e*

a) $\frac{1}{2}$ b) $\frac{1}{3}$ c) $\frac{2}{3}$ d) 1 16. The area bounded by the curves $x = a\cos^3 t, y = a\sin^3 t$ is a) $\frac{3\pi a^2}{8}$ b) $\frac{3\pi a^2}{16}$ c) $\frac{3\pi a^2}{32}$ d) $3\pi a^2$ 17. For which of the following values of m, the area of the region bounded by the curve $y = x - x^2$ and the line $y = nx$ equals $= \frac{9}{2}$ a) -4 b) -2 c) 2 d) 4 18. If the ordinate $x = a$ divide the area bounded by the curve $y = \left[1 + \frac{8y}{x^2}\right]$, x-axis and the ordinates $x = 2$, $x = 4$ into 2 equal parts, then $a = a$ a) 8 b) $2\sqrt{2}$ c) 2 d) $\sqrt{2}$ 19. The area of the region lying inside $x^2 + (y - 1)^2 = 1$ and out side $c^2x^2 + y^2 = c^2$, where $c = (\sqrt{2} - 1)$ is a) $(4 - \sqrt{2})\frac{\pi}{4} + \frac{1}{\sqrt{2}}$ b) $(4 + \sqrt{2})\frac{\pi}{4} - \frac{1}{\sqrt{2}}$ c) $(4 + \sqrt{2})\frac{\pi}{4} + \frac{1}{\sqrt{2}}$ d) None of these 20. Let a and b respectively be the points of local maximum and minimum of the function $f(x) = 2x^2 - 3x^2 - 12$. If A is the total area of the region bounded by $y = f(x)$, the x-axis and the lines $x = a$ and $x = b$, then 4A is equal to	15.		Ratio of the area cut off a parabola by any double ordinate is that of the corresponding rectangle contained by that double ordinate and its distance from the vertex is								
a) $\frac{3\pi a^2}{8}$ b) $\frac{3\pi a^2}{16}$ c) $\frac{3\pi a^2}{32}$ d) $3\pi a^2$ 17. For which of the following values of m, the area of the region bounded by the curve $y = x - x^2$ and the linc $y = nx$ equals $= \frac{9}{2}$ a) -4 b) -2 c) 2 d) 4 18. If the ordinate $x = a$ divide the area bounded by the curve $y = \left[1 + \frac{8y}{x^2}\right]$, x -axis and the ordinates $x = 2$, $x = 4$ into 2 equal parts, then $a = a$) 8 b) $2\sqrt{2}$ c) 2 d) $\sqrt{2}$ 19. The area of the region lying inside $x^2 + (y - 1)^2 = 1$ and out side $c^2x^2 + y^2 = c^2$, where $c = \left(\sqrt{2} - 1\right)$ is a) $\left(4 - \sqrt{2}\right)\frac{\pi}{4} + \frac{1}{\sqrt{2}}$ b) $\left(4 + \sqrt{2}\right)\frac{\pi}{4} - \frac{1}{\sqrt{2}}$ c) $\left(4 + \sqrt{2}\right)\frac{\pi}{4} + \frac{1}{\sqrt{2}}$ d) None of these $x = a$ and $x = b$, then $4A$ is equal to $x = a$ and $x = b$, then $4A$ is equal to $x = a$ and $x = b$. The area of the region formed by $x^2 + y^2 - 6x - 4x + 12 \le 0$, $y \le x$ and $x \le \frac{5}{2}$ is $x = \frac{\pi}{6} - \frac{\sqrt{3} + 1}{8}$ b) $\frac{\pi}{6} + \frac{\sqrt{3} - 1}{8}$ c) $\frac{\pi}{6} - \frac{\sqrt{3} - 1}{8}$ d) None of these $x = a$ and $x = b$. Let $x = a$ and $x = b$ b) $x = a$ b) $x = a$ and $x = b$ c) $x = a$ and $x = b$ b) $x = a$ and $x = b$ c) $x = a$ and $x = b$. Where $a = a$ and $a = b$ b) $a = a$ b) $a = a$ b) $a = a$ b) $a = a$ c) $a = a$ d) None of these $a = a$ d) $a = a$ d) $a = a$ d) $a = a$ d) None of these $a = a$ d) None of these $a = a$ d) $a = a$ d) $a = a$ d) $a = a$ d) None of these $a = a$ d) $a = a$ d) $a = a$ d) $a = a$ d) None of these $a = a$ d) None of these $a = a$ d) $a = a$		a)	$\frac{1}{2}$	b) $\frac{1}{3}$	c) $\frac{2}{3}$	d) 1					
17. For which of the following values of m, the area of the region bounded by the curve $y = x - x^2$ and the line $y = nx$ equals $= \frac{9}{2}$ a) -4 b) -2 c) 2 d) 4 18. If the ordinate $x = a$ divide the area bounded by the curve $y = \left[1 + \frac{8y}{x^2}\right]$, x-axis and the ordinates $x = 2, x = 4$ into 2 equal parts, then $a = a$) 8 b) $2\sqrt{2}$ c) 2 d) $\sqrt{2}$ 19. The area of the region lying inside $x^2 + (y - 1)^2 = 1$ and out side $c^2x^2 + y^2 = c^2$, where $c = \left(\sqrt{2} - 1\right)$ is a) $\left(4 - \sqrt{2}\right) \frac{\pi}{4} + \frac{1}{\sqrt{2}}$ b) $\left(4 + \sqrt{2}\right) \frac{\pi}{4} - \frac{1}{\sqrt{2}}$ c) $\left(4 + \sqrt{2}\right) \frac{\pi}{4} + \frac{1}{\sqrt{2}}$ d) None of these 20. Let a and b respectively be the points of local maximum and minimum of the function $f(x) = 2x^3 - 3x^2 - 12$. If A is the total area of the region bounded by $y = f(x)$, the x-axis and the lines $x = a$ and $x = b$, then 4A is equal to a) 114 b) 124 c) 116 d) none of these 21. The area of the region formed by $x^2 + y^2 - 6x - 4x + 12 \le 0$, $y \le x$ and $x \le \frac{5}{2}$ is a) $\frac{\pi}{6} - \frac{\sqrt{3} + 1}{8}$ b) $\frac{\pi}{6} + \frac{\sqrt{3} - 1}{8}$ c) $\frac{\pi}{6} - \frac{\sqrt{3} - 1}{8}$ d) None of these 22. If the area bounded by the curves $y = x - bx^2$ and $y = \frac{1}{b}x^2$, where $b > 0$ is maximum, then $b = a$) 0 b) 1 3) 2 4) None of these 23. Let $f(x) = \max iminm \left[x^2, (1 - x^2), 2x(1 - x)\right]$ where $0 \le x \le 1$. The area of the region bounded by the curves $y = f(x)$, x-axis, $x = 0$ and $x = 1$ is a) $\frac{17}{27}$ b) $\frac{14}{27}$ c) $\frac{19}{27}$ d) None of these 24. The area of the closed figure bounded by $x = -1$ and $x = 2$ and $y = \begin{cases} -x^2 + 2, & x \le 1 \\ 2x - 1, & x > 1 \end{cases}$ and the abscissa axis is a) $\frac{16}{3} squmits$ b) $\frac{10}{3} squmits$ c) $\frac{13}{3} squmits$ d) $\frac{7}{3} squmits$ 25. The area of the region $S = \{(x, y): y^2 \le 4x \le y + 2\}$ is A then $24A = \frac{1}{2}$ 26. The area (in Sq. units) of the region enclosed between the parabola $y^2 = 4x$ and line $x - y = 3$ is $\frac{1}{2}$	16.	16. The area bounded by the curves $x = a \cos^3 t$, $y = a \sin^3 t$ is									
line $y = nx$ equals $= \frac{9}{2}$ a) -4 b) -2 c) 2 d) 4 18. If the ordinate $x = a$ divide the area bounded by the curve $y = \left[1 + \frac{8y}{x^2}\right]$, x-axis and the ordinates $x = 2, x = 4$ into 2 equal parts, then $a = a$) 8 b) $2\sqrt{2}$ c) 2 d) $\sqrt{2}$ 19. The area of the region lying inside $x^2 + (y - 1)^2 = 1$ and out side $c^2x^2 + y^2 = c^2$, where $c = \left(\sqrt{2} - 1\right)$ is a) $\left(4 - \sqrt{2}\right)\frac{\pi}{4} + \frac{1}{\sqrt{2}}$ b) $\left(4 + \sqrt{2}\right)\frac{\pi}{4} - \frac{1}{\sqrt{2}}$ c) $\left(4 + \sqrt{2}\right)\frac{\pi}{4} + \frac{1}{\sqrt{2}}$ d) None of these 20. Let a and b respectively be the points of local maximum and minimum of the function $f(x) = 2x^3 - 3x^2 - 12$. If A is the total area of the region bounded by $y = f(x)$, the x-axis and the lines $x = a$ and $x = b$, then AA is equal to a) 114 b) 124 c) 116 d) none of these 21. The area of the region formed by $x^2 + y^2 - 6x - 4x + 12 \le 0$, $y \le x$ and $x \le \frac{5}{2}$ is a) $\frac{\pi}{6} - \frac{\sqrt{3} + 1}{8}$ b) $\frac{\pi}{6} + \frac{\sqrt{3} - 1}{8}$ c) $\frac{\pi}{6} - \frac{\sqrt{3} - 1}{8}$ d) None of these 22. If the area bounded by the curves $y = x - bx^2$ and $y = \frac{1}{b}x^2$, where $b > 0$ is maximum, then $b = a$) 0 b) 1 3) 2 4) None of these 23. Let $f(x) = \max imum \left[x^2, (1 - x^2), 2x(1 - x)\right]$ where $0 \le x \le 1$. The area of the region bounded by the curves $y = f(x)$, x -axis, $x = 0$ and $x = 1$ is a) $\frac{17}{27}$ b) $\frac{14}{27}$ c) $\frac{19}{27}$ d) None of these 24. The area of the closed figure bounded by $x = -1$ and $x = 2$ and $y = \begin{cases} -x^2 + 2, & x \le 1 \\ 2x - 1, & x > 1 \end{cases}$ and the abscissa axis is a) $\frac{16}{3}squmits$ b) $\frac{10}{3}squmits$ c) $\frac{13}{3}squmits$ d) $\frac{7}{3}squmits$ 25. The area of the region $S = \{(x, y): y^2 \le 4x \le y + 2\}$ is A then 24A= 26. The area (in Sq. units) of the region enclosed between the parabola $y^2 = 4x$ and line $x - y = 3$ is $\frac{1}{2}$		a)	$\frac{3\pi a^2}{8}$	b) $\frac{3\pi a^2}{16}$	c) $\frac{3\pi a^2}{32}$	d) $3\pi a^2$					
a) -4 b) -2 c) 2 d) 4 18. If the ordinate $x = a$ divide the area bounded by the curve $y = \left[1 + \frac{8y}{x^2}\right]$, x -axis and the ordinates $x = 2, x = 4$ into 2 equal parts, then $a = a$ a) 8 b) $2\sqrt{2}$ c) 2 d) $\sqrt{2}$ 19. The area of the region lying inside $x^2 + (y - 1)^2 = 1$ and out side $c^2x^2 + y^2 = c^2$, where $c = \left(\sqrt{2} - 1\right)$ is a) $\left(4 - \sqrt{2}\right)\frac{\pi}{4} + \frac{1}{\sqrt{2}}$ b) $\left(4 + \sqrt{2}\right)\frac{\pi}{4} - \frac{1}{\sqrt{2}}$ c) $\left(4 + \sqrt{2}\right)\frac{\pi}{4} + \frac{1}{\sqrt{2}}$ d) None of these 20. Let a and b respectively be the points of local maximum and minimum of the function $f(x) = 2x^3 - 3x^2 - 12$. If A is the total area of the region bounded by $y = f(x)$, the x -axis and the lines $x = a$ and $x = b$, then $4A$ is equal to a) 114 b) 124 c) 116 d) none of these 21. The area of the region formed by $x^2 + y^2 - 6x - 4x + 12 \le 0, y \le x$ and $x \le \frac{5}{2}$ is a) $\frac{\pi}{6} - \frac{\sqrt{3} + 1}{8}$ b) $\frac{\pi}{6} + \frac{\sqrt{3} - 1}{8}$ c) $\frac{\pi}{6} - \frac{\sqrt{3} - 1}{8}$ d) None of these 22. If the area bounded by the curves $y = x - bx^2$ and $y = \frac{1}{b}x^2$, where $b > 0$ is maximum, then $b = a$) 0 b) 1 3) 2 4) None of these 23. Let $f(x) = \max imm \left[x^2, (1 - x^2), 2x(1 - x)\right]$ where $0 \le x \le 1$. The area of the region bounded by the curves $y = f(x)$, x -axis, $x = 0$ and $x = 1$ is a) $\frac{17}{27}$ b) $\frac{14}{27}$ c) $\frac{19}{27}$ d) None of these 24. The are of the closed figure bounded by $x = -1$ and $x = 2$ and $y = \begin{cases} -x^2 + 2, & x \le 1 \\ 2x - 1, & x > 1 \end{cases}$ and the abscissa axis is a) $\frac{16}{3}squmits$ b) $\frac{10}{3}squmits$ c) $\frac{13}{3}squmits$ d) $\frac{7}{3}squmits$ 25. The area of the region $S = \{(x, y): y^2 \le 4x \le y + 2\}$ is A then $24A = \frac{1}{2}$ and A and line A and lin	17.	For	For which of the following values of m, the area of the region bounded by the curve $y = x - x^2$ and the								
18. If the ordinate $x=a$ divide the area bounded by the curve $y=\left[1+\frac{8y}{x^2}\right]$, x-axis and the ordinates $x=2, x=4$ into 2 equal parts, then $a=a$) 8 b) $2\sqrt{2}$ c) 2 d) $\sqrt{2}$ 19. The area of the region lying inside $x^2+(y-1)^2=1$ and out side $c^2x^2+y^2=c^2$, where $c=\left(\sqrt{2}-1\right)$ is a) $\left(4-\sqrt{2}\right)\frac{\pi}{4}+\frac{1}{\sqrt{2}}\right)$ b) $\left(4+\sqrt{2}\right)\frac{\pi}{4}-\frac{1}{\sqrt{2}}\right)$ c) $\left(4+\sqrt{2}\right)\frac{\pi}{4}+\frac{1}{\sqrt{2}}\right)$ None of these 20. Let a and b respectively be the points of local maximum and minimum of the function $f(x)=2x^3-3x^2-12$. If A is the total area of the region bounded by $y=f(x)$, the x-axis and the lines $x=a$ and $x=b$, then 4A is equal to		line	$e y = nx \text{ equals } = \frac{9}{2}$								
$x = 2, x = 4 \text{ into 2 equal parts, then a} = a) 8 \qquad b) 2\sqrt{2} \qquad c) 2 \qquad d) \sqrt{2}$ 19. The area of the region lying inside $x^2 + (y-1)^2 = 1$ and out side $c^2x^2 + y^2 = c^2$, where $c = (\sqrt{2}-1)$ is a) $(4-\sqrt{2})\frac{\pi}{4}+\frac{1}{\sqrt{2}}$ b) $(4+\sqrt{2})\frac{\pi}{4}-\frac{1}{\sqrt{2}}$ c) $(4+\sqrt{2})\frac{\pi}{4}+\frac{1}{\sqrt{2}}$ d) None of these 20. Let a and b respectively be the points of local maximum and minimum of the function $f(x) = 2x^3 - 3x^2 - 12$. If A is the total area of the region bounded by $y = f(x)$, the x-axis and the lines $x = a$ and $x = b$, then 4A is equal to a) 114 b) 124 c) 116 d) none of these 21. The area of the region formed by $x^2 + y^2 - 6x - 4x + 12 \le 0, y \le x$ and $x \le \frac{5}{2}$ is a) $\frac{\pi}{6} - \frac{\sqrt{3} + 1}{8}$ b) $\frac{\pi}{6} + \frac{\sqrt{3} - 1}{8}$ c) $\frac{\pi}{6} - \frac{\sqrt{3} - 1}{8}$ d) None of these 22. If the area bounded by the curves $y = x - bx^2$ and $y = \frac{1}{b}x^2$, where $b > 0$ is maximum, then $b = a$) 0 b) 1 3) 2 4) None of these 23. Let $f(x) = \max imum[x^2, (1-x^2), 2x(1-x)]$ where $0 \le x \le 1$. The area of the region bounded by the curves $y = f(x)$, x-axis, $x = 0$ and $x = 1$ is a) $\frac{17}{27}$ b) $\frac{14}{27}$ c) $\frac{19}{27}$ d) None of these 24. The area of the closed figure bounded by $x = -1$ and $x = 2$ and $y = \begin{cases} -x^2 + 2, & x \le 1 \\ 2x - 1, & x > 1 \end{cases}$ and the abscissa axis is a) $\frac{16}{3} squnits$ b) $\frac{10}{3} squnits$ c) $\frac{13}{3} squnits$ d) $\frac{7}{3} squnits$ 25. The area of the region $S = \{(x, y): y^2 \le 4x \le y + 2\}$ is A then $24A = $ 26. The area (in Sq. units) of the region enclosed between the parabola $y^2 = 4x$ and line $x - y = 3$ is											
a) 8 b) $2\sqrt{2}$ c) 2 d) $\sqrt{2}$ 19. The area of the region lying inside $x^2 + (y-1)^2 = 1$ and out side $c^2x^2 + y^2 = c^2$, where $c = (\sqrt{2}-1)$ is a) $(4-\sqrt{2})\frac{\pi}{4}+\frac{1}{\sqrt{2}}$ b) $(4+\sqrt{2})\frac{\pi}{4}-\frac{1}{\sqrt{2}}$ c) $(4+\sqrt{2})\frac{\pi}{4}+\frac{1}{\sqrt{2}}$ d) None of these 20. Let a and b respectively be the points of local maximum and minimum of the function $f(x) = 2x^3 - 3x^2 - 12$. If A is the total area of the region bounded by $y = f(x)$, the x-axis and the lines $x = a$ and $x = b$, then 4A is equal to a) 114 b) 124 c) 116 d) none of these 21. The area of the region formed by $x^2 + y^2 - 6x - 4x + 12 \le 0, y \le x$ and $x \le \frac{5}{2}$ is a) $\frac{\pi}{6} - \frac{\sqrt{3} + 1}{8}$ b) $\frac{\pi}{6} + \frac{\sqrt{3} - 1}{8}$ c) $\frac{\pi}{6} - \frac{\sqrt{3} - 1}{8}$ d) None of these 22. If the area bounded by the curves $y = x - bx^2$ and $y = \frac{1}{b}x^2$, where $b > 0$ is maximum, then $b = a$) 0 b) 1 3) 2 4) None of these 23. Let $f(x) = \max imum[x^2, (1-x^2), 2x(1-x)]$ where $0 \le x \le 1$. The area of the region bounded by the curves $y = f(x)$, x-axis, $x = 0$ and $x = 1$ is a) $\frac{17}{27}$ b) $\frac{14}{27}$ c) $\frac{19}{27}$ d) None of these 24. The area of the closed figure bounded by $x = -1$ and $x = 2$ and $y = \begin{cases} -x^2 + 2, & x \le 1 \\ 2x - 1, & x > 1 \end{cases}$ and the abscissa axis is a) $\frac{16}{3} squmits$ b) $\frac{10}{3} squmits$ c) $\frac{13}{3} squmits$ d) $\frac{7}{3} squmits$ 25. The area of the region $S = \{(x,y): y^2 \le 4x \le y + 2\}$ is A then $24A = \frac{1}{2}$ 26. The area (in Sq. units) of the region enclosed between the parabola $y^2 = 4x$ and line $x - y = 3$ is $\frac{1}{2}$	18.	If t	he ordinate $x = a$	divide the area bounde	ed by the curve $y = \begin{bmatrix} 1 + \frac{1}{2} \end{bmatrix}$	$\left[\frac{8y}{x^2}\right]$, x-axis and the ordinates					
19. The area of the region lying inside $x^2 + (y-1)^2 = 1$ and out side $c^2x^2 + y^2 = c^2$, where $c = (\sqrt{2} - 1)$ is a) $(4 - \sqrt{2})\frac{\pi}{4} + \frac{1}{\sqrt{2}}$ b) $(4 + \sqrt{2})\frac{\pi}{4} - \frac{1}{\sqrt{2}}$ c) $(4 + \sqrt{2})\frac{\pi}{4} + \frac{1}{\sqrt{2}}$ d) None of these 20. Let a and b respectively be the points of local maximum and minimum of the function $f(x) = 2x^3 - 3x^2 - 12$. If A is the total area of the region bounded by $y = f(x)$, the x-axis and the lines $x = a$ and $x = b$, then 4A is equal to a) 114 b) 124 c) 116 d) none of these 21. The area of the region formed by $x^2 + y^2 - 6x - 4x + 12 \le 0$, $y \le x$ and $x \le \frac{5}{2}$ is a) $\frac{\pi}{6} - \frac{\sqrt{3} + 1}{8}$ b) $\frac{\pi}{6} + \frac{\sqrt{3} - 1}{8}$ c) $\frac{\pi}{6} - \frac{\sqrt{3} - 1}{8}$ d) None of these 22. If the area bounded by the curves $y = x - bx^2$ and $y = \frac{1}{b}x^2$, where $b > 0$ is maximum, then $b = a$) 0 b) 1 3) 2 4) None of these 23. Let $f(x) = \max imum[x^2, (1 - x^2), 2x(1 - x)]$ where $0 \le x \le 1$. The area of the region bounded by the curves $y = f(x)$, x-axis, $x = 0$ and $x = 1$ is a) $\frac{17}{27}$ b) $\frac{14}{27}$ c) $\frac{19}{27}$ d) None of these 24. The are of the closed figure bounded by $x = -1$ and $x = 2$ and $y = \begin{cases} -x^2 + 2, & x \le 1 \\ 2x - 1, & x > 1 \end{cases}$ and the abscissa axis is a) $\frac{16}{3}squnits$ b) $\frac{10}{3}squnits$ c) $\frac{13}{3}squnits$ d) $\frac{7}{3}squnits$ 25. The area of the region $S = \{(x,y): y^2 \le 4x \le y + 2\}$ is A then $24A = $ 26. The area (in Sq. units) of the region enclosed between the parabola $y^2 = 4x$ and line $x - y = 3$ is		<i>x</i> =	= 2, x = 4 into 2 equ	_		_					
a) $(4-\sqrt{2})\frac{\pi}{4}+\frac{1}{\sqrt{2}}$ b) $(4+\sqrt{2})\frac{\pi}{4}-\frac{1}{\sqrt{2}}$ c) $(4+\sqrt{2})\frac{\pi}{4}+\frac{1}{\sqrt{2}}$ d) None of these 20. Let a and b respectively be the points of local maximum and minimum of the function $f(x)=2x^3-3x^2-12$. If A is the total area of the region bounded by $y=f(x)$, the x-axis and the lines $x=a$ and $x=b$, then 4A is equal to				, ,	,	, .					
20. Let a and b respectively be the points of local maximum and minimum of the function $f(x) = 2x^3 - 3x^2 - 12$. If A is the total area of the region bounded by $y = f(x)$, the x-axis and the lines $x = a$ and $x = b$, then 4A is equal to a) 114	19.	The	e area of the region	1 lying inside $x^2 + (y - y)$	$(-1)^2 = 1$ and out side c^2	$d^{2}x^{2} + y^{2} = c^{2}$, where $c = (\sqrt{2} - 1)$ is					
$f(x) = 2x^3 - 3x^2 - 12. \text{ If A is the total area of the region bounded by } y = f(x), \text{ the x-axis and the lines } x = a \text{ and } x = b, \text{ then 4A is equal to } \underline{\hspace{1cm}}$ a) 114 b) 124 c) 116 d) none of these 21. The area of the region formed by $x^2 + y^2 - 6x - 4x + 12 \le 0, y \le x$ and $x \le \frac{5}{2}$ is a) $\frac{\pi}{6} - \frac{\sqrt{3} + 1}{8}$ b) $\frac{\pi}{6} + \frac{\sqrt{3} - 1}{8}$ c) $\frac{\pi}{6} - \frac{\sqrt{3} - 1}{8}$ d) None of these 22. If the area bounded by the curves $y = x - bx^2$ and $y = \frac{1}{b}x^2$, where $b > 0$ is maximum, then $b = a$ a) 0 b) 1 3) 2 4) None of these 23. Let $f(x) = \max imum[x^2, (1 - x^2), 2x(1 - x)]$ where $0 \le x \le 1$. The area of the region bounded by the curves $y = f(x)$, x-axis, $x = 0$ and $x = 1$ is a) $\frac{17}{27}$ b) $\frac{14}{27}$ c) $\frac{19}{27}$ d) None of these 24. The are of the closed figure bounded by $x = -1$ and $x = 2$ and $y = \begin{cases} -x^2 + 2, & x \le 1 \\ 2x - 1, & x > 1 \end{cases}$ and the abscissa axis is a) $\frac{16}{3} sq.units$ b) $\frac{10}{3} sq.units$ c) $\frac{13}{3} sq.units$ d) $\frac{7}{3} sq.units$ 25. The area of the region $S = \{(x,y): y^2 \le 4x \le y + 2\}$ is A then $24A = \frac{1}{2}$ 26. The area (in Sq. units) of the region enclosed between the parabola $y^2 = 4x$ and line $x - y = 3$ is $\frac{1}{2}$		a)	$\left(4-\sqrt{2}\right)\frac{\pi}{4}+\frac{1}{\sqrt{2}}$	b) $\left(4+\sqrt{2}\right)\frac{\pi}{4}$	$-\frac{1}{\sqrt{2}} c) \left(4 + \sqrt{2}\right) \frac{\pi}{4}$	$+\frac{1}{\sqrt{2}}$ d) None of these					
$x=a$ and $x=b$, then 4A is equal to a) 114 b) 124 c) 116 d) none of these 21. The area of the region formed by $x^2+y^2-6x-4x+12 \le 0$, $y \le x$ and $x \le \frac{5}{2}$ is a) $\frac{\pi}{6} - \frac{\sqrt{3}+1}{8}$ b) $\frac{\pi}{6} + \frac{\sqrt{3}-1}{8}$ c) $\frac{\pi}{6} - \frac{\sqrt{3}-1}{8}$ d) None of these 22. If the area bounded by the curves $y=x-bx^2$ and $y=\frac{1}{b}x^2$, where $b>0$ is maximum, then $b=a$) 0 b) 1 3) 2 4) None of these 23. Let $f(x) = \max imum[x^2, (1-x^2), 2x(1-x)]$ where $0 \le x \le 1$. The area of the region bounded by the curves $y=f(x)$, x -axis, $x=0$ and $x=1$ is a) $\frac{17}{27}$ b) $\frac{14}{27}$ c) $\frac{19}{27}$ d) None of these 24. The are of the closed figure bounded by $x=-1$ and $x=2$ and $y=\begin{cases} -x^2+2, & x \le 1\\ 2x-1, & x>1 \end{cases}$ and the abscissa axis is a) $\frac{16}{3} sq.units$ b) $\frac{10}{3} sq.units$ c) $\frac{13}{3} sq.units$ d) $\frac{7}{3} sq.units$ 25. The area of the region $S=\{(x,y): y^2 \le 4x \le y+2\}$ is A then $24A=$	20.										
21. The area of the region formed by $x^2 + y^2 - 6x - 4x + 12 \le 0$, $y \le x$ and $x \le \frac{5}{2}$ is a) $\frac{\pi}{6} - \frac{\sqrt{3} + 1}{8}$ b) $\frac{\pi}{6} + \frac{\sqrt{3} - 1}{8}$ c) $\frac{\pi}{6} - \frac{\sqrt{3} - 1}{8}$ d) None of these 22. If the area bounded by the curves $y = x - bx^2$ and $y = \frac{1}{b}x^2$, where b>0 is maximum, then b= a) 0 b) 1 3) 2 4) None of these 23. Let $f(x) = \max imum[x^2, (1-x^2), 2x(1-x)]$ where $0 \le x \le 1$. The area of the region bounded by the curves $y = f(x)$, x-axis, $x = 0$ and $x = 1$ is a) $\frac{17}{27}$ b) $\frac{14}{27}$ c) $\frac{19}{27}$ d) None of these 24. The are of the closed figure bounded by $x = -1$ and $x = 2$ and $y = \begin{cases} -x^2 + 2, & x \le 1 \\ 2x - 1, & x > 1 \end{cases}$ and the abscissa axis is a) $\frac{16}{3} sq.units$ b) $\frac{10}{3} sq.units$ c) $\frac{13}{3} sq.units$ d) $\frac{7}{3} sq.units$ 25. The area of the region $S = \{(x,y): y^2 \le 4x \le y + 2\}$ is A then $24A = $ 26. The area (in Sq. units) of the region enclosed between the parabola $y^2 = 4x$ and line $x - y = 3$ is		f(.	$(x) = 2x^3 - 3x^2 - 12.$	If A is the total area	of the region bounded b	by $y = f(x)$, the x-axis and the lines					
a) $\frac{\pi}{6} - \frac{\sqrt{3} + 1}{8}$ b) $\frac{\pi}{6} + \frac{\sqrt{3} - 1}{8}$ c) $\frac{\pi}{6} - \frac{\sqrt{3} - 1}{8}$ d) None of these 22. If the area bounded by the curves $y = x - bx^2$ and $y = \frac{1}{b}x^2$, where b>0 is maximum, then b= a) 0 b) 1 3) 2 4) None of these 23. Let $f(x) = \max imum \left[x^2, (1 - x^2), 2x(1 - x)\right]$ where $0 \le x \le 1$. The area of the region bounded by the curves $y = f(x)$, x-axis, $x = 0$ and $x = 1$ is a) $\frac{17}{27}$ b) $\frac{14}{27}$ c) $\frac{19}{27}$ d) None of these 24. The area of the closed figure bounded by $x = -1$ and $x = 2$ and $y = \begin{cases} -x^2 + 2, & x \le 1 \\ 2x - 1, & x > 1 \end{cases}$ and the abscissa axis is a) $\frac{16}{3}$ sq.units b) $\frac{10}{3}$ sq.units c) $\frac{13}{3}$ sq.units d) $\frac{7}{3}$ sq.units 25. The area of the region $S = \{(x, y): y^2 \le 4x \le y + 2\}$ is A then $24A = \frac{1}{2}$ 26. The area (in Sq. units) of the region enclosed between the parabola $y^2 = 4x$ and line $x - y = 3$ is $\frac{1}{2}$						· · · · · · · · · · · · · · · · · · ·					
a) $\frac{\pi}{6} - \frac{\sqrt{3} + 1}{8}$ b) $\frac{\pi}{6} + \frac{\sqrt{3} - 1}{8}$ c) $\frac{\pi}{6} - \frac{\sqrt{3} - 1}{8}$ d) None of these 22. If the area bounded by the curves $y = x - bx^2$ and $y = \frac{1}{b}x^2$, where b>0 is maximum, then b= a) 0 b) 1 3) 2 4) None of these 23. Let $f(x) = \max imum \left[x^2, (1 - x^2), 2x(1 - x)\right]$ where $0 \le x \le 1$. The area of the region bounded by the curves $y = f(x)$, x-axis, $x = 0$ and $x = 1$ is a) $\frac{17}{27}$ b) $\frac{14}{27}$ c) $\frac{19}{27}$ d) None of these 24. The area of the closed figure bounded by $x = -1$ and $x = 2$ and $y = \begin{cases} -x^2 + 2, & x \le 1 \\ 2x - 1, & x > 1 \end{cases}$ and the abscissa axis is a) $\frac{16}{3}$ sq.units b) $\frac{10}{3}$ sq.units c) $\frac{13}{3}$ sq.units d) $\frac{7}{3}$ sq.units 25. The area of the region $S = \{(x, y): y^2 \le 4x \le y + 2\}$ is A then $24A = \frac{1}{2}$ 26. The area (in Sq. units) of the region enclosed between the parabola $y^2 = 4x$ and line $x - y = 3$ is $\frac{1}{2}$	21.	The	e area of the region	formed by $x^2 + y^2 - 6$	$6x - 4x + 12 \le 0, y \le x \ a$	and $x \le \frac{5}{2}$ is					
a) 0 b) 1 3) 2 4) None of these 23. Let $f(x) = \max imum \left[x^2, (1-x^2), 2x(1-x) \right]$ where $0 \le x \le 1$. The area of the region bounded by the curves $y = f(x)$, x-axis, $x = 0$ and $x = 1$ is a) $\frac{17}{27}$ b) $\frac{14}{27}$ c) $\frac{19}{27}$ d) None of these 24. The area of the closed figure bounded by $x = -1$ and $x = 2$ and $y = \begin{cases} -x^2 + 2, & x \le 1 \\ 2x - 1, & x > 1 \end{cases}$ and the abscissa axis is a) $\frac{16}{3}$ sq.units b) $\frac{10}{3}$ sq.units c) $\frac{13}{3}$ sq.units d) $\frac{7}{3}$ sq.units 25. The area of the region $S = \{(x,y): y^2 \le 4x \le y + 2\}$ is A then $24A = $ 26. The area (in Sq. units) of the region enclosed between the parabola $y^2 = 4x$ and line $x - y = 3$ is			_	_	_	_					
a) 0 b) 1 3) 2 4) None of these 23. Let $f(x) = \max imum \left[x^2, (1-x^2), 2x(1-x) \right]$ where $0 \le x \le 1$. The area of the region bounded by the curves $y = f(x)$, x-axis, $x = 0$ and $x = 1$ is a) $\frac{17}{27}$ b) $\frac{14}{27}$ c) $\frac{19}{27}$ d) None of these 24. The area of the closed figure bounded by $x = -1$ and $x = 2$ and $y = \begin{cases} -x^2 + 2, & x \le 1 \\ 2x - 1, & x > 1 \end{cases}$ and the abscissa axis is a) $\frac{16}{3}$ sq.units b) $\frac{10}{3}$ sq.units c) $\frac{13}{3}$ sq.units d) $\frac{7}{3}$ sq.units 25. The area of the region $S = \{(x,y): y^2 \le 4x \le y + 2\}$ is A then $24A = $ 26. The area (in Sq. units) of the region enclosed between the parabola $y^2 = 4x$ and line $x - y = 3$ is	22.	2. If the area bounded by the curves $y = x - bx^2$ and $y = \frac{1}{L}x^2$, where b>0 is maximum, then b=									
23. Let $f(x) = \max imum \left[x^2, (1-x^2), 2x(1-x) \right]$ where $0 \le x \le 1$. The area of the region bounded by the curves $y = f(x)$, x -axis, $x = 0$ and $x = 1$ is a) $\frac{17}{27}$ b) $\frac{14}{27}$ c) $\frac{19}{27}$ d) None of these 24. The are of the closed figure bounded by $x = -1$ and $x = 2$ and $y = \begin{cases} -x^2 + 2, & x \le 1 \\ 2x - 1, & x > 1 \end{cases}$ and the abscissa axis is a) $\frac{16}{3}$ sq.units b) $\frac{10}{3}$ sq.units c) $\frac{13}{3}$ sq.units d) $\frac{7}{3}$ sq.units 25. The area of the region $S = \{(x, y): y^2 \le 4x \le y + 2\}$ is A then $24A = $ 26. The area (in Sq. units) of the region enclosed between the parabola $y^2 = 4x$ and line $x - y = 3$ is											
curves $y = f(x)$, x-axis, $x=0$ and $x=1$ is a) $\frac{17}{27}$ b) $\frac{14}{27}$ c) $\frac{19}{27}$ d) None of these 24. The are of the closed figure bounded by $x = -1$ and $x = 2$ and $y = \begin{cases} -x^2 + 2, & x \le 1 \\ 2x - 1, & x > 1 \end{cases}$ and the abscissa axis is a) $\frac{16}{3}$ sq.units b) $\frac{10}{3}$ sq.units c) $\frac{13}{3}$ sq.units d) $\frac{7}{3}$ sq.units 25. The area of the region $S = \{(x, y): y^2 \le 4x \le y + 2\}$ is A then $24A = $ 26. The area (in Sq. units) of the region enclosed between the parabola $y^2 = 4x$ and line $x - y = 3$ is	23.										
24. The are of the closed figure bounded by $x = -1$ and $x = 2$ and $y = \begin{cases} -x^2 + 2, & x \le 1 \\ 2x - 1, & x > 1 \end{cases}$ and the abscissa axis is a) $\frac{16}{3}$ sq.units b) $\frac{10}{3}$ sq.units c) $\frac{13}{3}$ sq.units d) $\frac{7}{3}$ sq.units 25. The area of the region $S = \{(x, y): y^2 \le 4x \le y + 2\}$ is A then $24A = $ 26. The area (in Sq. units) of the region enclosed between the parabola $y^2 = 4x$ and line $x - y = 3$ is											
axis is a) $\frac{16}{3}$ sq.units b) $\frac{10}{3}$ sq.units c) $\frac{13}{3}$ sq.units d) $\frac{7}{3}$ sq.units 25. The area of the region $S = \{(x, y): y^2 \le 4x \le y + 2\}$ is A then $24A = $ 26. The area (in Sq. units) of the region enclosed between the parabola $y^2 = 4x$ and line $x - y = 3$ is		a)	$\frac{17}{27}$	b) $\frac{14}{27}$	c) $\frac{19}{27}$	d) None of these					
a) $\frac{16}{3}$ sq.units b) $\frac{10}{3}$ sq.units c) $\frac{13}{3}$ sq.units d) $\frac{7}{3}$ sq.units 25. The area of the region $S = \{(x, y): y^2 \le 4x \le y + 2\}$ is A then $24A = $ 26. The area (in Sq. units) of the region enclosed between the parabola $y^2 = 4x$ and line $x - y = 3$ is	24.	The	e are of the closed	figure bounded by $x =$	=-1 and $x=2$ and $y=$	$=\begin{cases} -x^2 + 2, & x \le 1 \\ 2x - 1, & x > 1 \end{cases}$ and the abscissa					
25. The area of the region $S = \{(x, y): y^2 \le 4x \le y + 2\}$ is A then $24A = $		axi	s is								
26. The area (in Sq. units) of the region enclosed between the parabola $y^2 = 4x$ and line $x - y = 3$ is		a)	$\frac{16}{3}$ sq.units	b) $\frac{10}{3}$ sq.units	c) $\frac{13}{3}$ sq.units	d) $\frac{7}{3}$ sq.units					
	25.	The	e area of the region	$S = \{(x, y) : y^2 \le 4x$	$\leq y + 2$ is A then 24A	.=					
27. The area bounded by the lines $y = x-1 -2 $ and $y = 2$ is	26.										
28. The area (in Sq. units of the region $\{(x,y): x \ge 0, x+y \le 3, x^2 \le 4y \text{ and } y \le 1+\sqrt{x}\}$ is											
29. The area bounded curve $y^2 = 2x - 1$ and $y^2 = 4x - 3$ is	29.										
30. The area bounded by the curve $y = \frac{1}{\sqrt{x}}$ and $x = 4, x = 9$ is											

MATHS-2A key

1	2	3	4	5	6	7	8	9	10
d	ь	ь	ь	С	ь	a	b	С	d
11	12	13	14	15	16	17	18	19	20
С	a	a	b	С	a	b	b	a	a
21	22	23	24	25	26	27	28	29	30
С	b	a	a	343	64/3	8	5/2	1/3	2

AREAS-HINTS

MATHS-2B

1

$$x = 1$$

$$y = 2 - x = 2 - 1 = 1$$

$$y = 1 A(1,1)$$

$$x = 3$$

$$y = x - 2 = 3 - 2 = 1$$

$$y = 1$$
 $B(3,1)$

Area =
$$\frac{1}{2} \times 1 \times 1 + \frac{1}{2} \times 1 \times 1 = 1$$

2. The point of integration

$$2x^2 = x + 3$$

$$2x^2 - x - 3 = 0$$

$$x = -1, \frac{3}{2}$$

$$A = \int_{-1}^{3/2} (x+3-2x^2) dx = \left(\frac{x^2}{2} + 3x - \frac{2x^3}{3}\right)_{-1}^{3/2}$$

$$A = \frac{19}{13}$$

$$3A = 19$$

3.

$$\frac{1}{\cancel{2}} \times \cancel{2} \times 4 = 4$$

x = 2a is an asymptote

$$A = 2\int_{0}^{2a} \frac{x^{3/2}}{\sqrt{2a - x}} dx$$

Put
$$x = 2a \sin^2 \theta$$

 $dx = 4a \sin \theta \cos \theta d\theta$

$$dx = 4a \sin \theta \cos \theta d\theta$$

$$A = \frac{3\pi a^2}{2}$$

5.

$$xy - 3x - 2y - 10 = 0$$

$$(x-2)y = 3x+10$$

$$y = \frac{3x+10}{x-2}$$

$$x = 3, x = 4$$

$$x - axis$$

$$\int_{3}^{4} \frac{3x+10}{x-2} dx = 16\log 2 + 3$$

6. xy=16 and coordinate axes area is = 2(16) = 32

$$7. \quad y = a\sqrt{x} + bx$$

$$x = 4$$

$$x - axis$$

$$\int_{0}^{4} (a\sqrt{x} + bx)dx = 8$$

$$2a + 3b = 3$$

Line passing
$$(1,2) \Rightarrow a+b=2$$

By solving
$$a = 3$$

$$b = -1$$

$$\int_{0}^{4} 2\sqrt{x} dx = \frac{32}{3}$$

Area =
$$\frac{32}{3} - \frac{1}{\cancel{2}} \times \cancel{4}^2 \times 4 = \frac{8}{3}$$

$$3A = 8$$

9. Conceptual
$$y^2 = 4ax$$
, $y = mx$

Area =
$$\frac{8a^2}{3m^3}$$

Area = $\frac{1}{3a}$

$$t = 1 x = a, y = 2a$$

$$t = 3 x = 9a, y = 6a y^2 = 4ax$$

$$\int_{a}^{9a} \sqrt{4ax} . dx = \frac{104a^2}{3}$$

11.
$$\left| \int_{-1}^{0} (x-1)(-x) \, dx \right| + \left| \int_{-1}^{0} (x-1)x \, dx \right| = \frac{5}{3 \times 2} + \frac{1}{6} = 1$$

12.
$$y = 2x^4 - x^2$$

$$\frac{dy}{dx} = 8x^3 - 2x = 0$$

$$x = 0, \qquad x = \pm \frac{1}{2}$$

$$A = \int_{-\frac{1}{2}}^{\frac{1}{2}} (2x^2 - x^2) dx$$

$$= \int_{0}^{\frac{1}{2}} (2x^2 - x^2) dx$$

$$=\frac{7}{120}$$

$$\frac{dy}{dx} = 2x+1$$

$$\int dy = \int (2x+1)dx$$

$$y = x^2 + x + c$$

$$(1,2) \qquad c = 0$$

14.
$$\int_{-1}^{0} e^{-x} dx + \int_{0}^{1} e^{x} dx = 2(e-1)$$

$$v = x^2 + x$$

$$\int_{0}^{1} (x^{2} + x) dx = \frac{5}{6}$$

$$(:: y = e^{|x|}, y = e$$
$$|x| = 1$$

$$x = \pm 1$$

$$A_1 = \text{area b/w } y^2 = 4ax \text{ and } x = b$$

$$= 2\int_{0}^{b} \sqrt{4ax} \ dx$$
$$= \frac{8}{3} a^{1/2} b^{3/2}$$

$$A_2$$
 = Area of ABCD

$$= 2\sqrt{4ab} \times b$$
$$= 4a^{\frac{1}{2}}b^{\frac{3}{2}}$$

$$A_1: A_2 = \frac{8}{3}: 4$$

$$= 2:3$$

16. Conceptual
$$x^{\frac{2}{3}} + y^{\frac{2}{3}} = a^{\frac{2}{3}}$$
 area = $\frac{3\pi a^2}{8}$

17. By substitution m values from options and verify

18.
$$\int_{2}^{4} y \, dx = \int_{2}^{4} (1 + \frac{8}{x^{2}}) \, dx = 4$$

$$\therefore A = 2 \int_{2}^{a} y \, dx$$

$$4 = 2 \int_{2}^{a} (1 + \frac{8}{x^2}) dx$$

$$a = 2\sqrt{2}$$

19.
$$x^2 + (y-1)^2 = 1$$

$$c^2x^2 + y^2 = c^2$$
 $(y-1)^2 = \frac{y^2}{c^2}$

$$y = \frac{c}{1+c}, \frac{c}{c-1}$$

$$x^2 = 1 - \frac{y^2}{c^2}$$

$$x^2 = \frac{1}{2} \implies x = \pm \frac{1}{\sqrt{2}}$$

Area =
$$2 \left[\int_{0}^{1/\sqrt{2}} c\sqrt{1-x^2} dx - \int_{0}^{1/\sqrt{2}} (1-\sqrt{1-x^2}) dx \right]$$

= $\frac{\sqrt{2}\pi}{4} - \frac{\sqrt{2}}{2}$

$$\therefore \text{ Hence required area} = \pi - \frac{\sqrt{2}\pi}{4} + \frac{\sqrt{2}}{2}$$

20.

$$f(x) = 2x^3 + 3x^2 + 12x$$

$$f'(x) = 0$$

$$6x^2 - 6x - 12 = 0$$

$$x = 2, -1$$

$$f''(2) > 0$$
 $b = 2$

$$f''(-1) < 0$$
 $a = -1$

$$A = \left| \int_{-1}^{0} (2x^3 - 3x^2 - 12x) dx \right| + \left| \int_{0}^{2} (2x^3 - 3x^2 - 12x) dx \right|$$

$$4A = 114$$

Given
$$(x-3)^2 + (y-2)^2 = 1$$

$$(y-2)^2 = 1 - (x-3)^2$$

$$y = 2 + \sqrt{1 - (x - 3)^2}$$

$$y = 2 + \sqrt{1 - (x - 3)^2}$$

$$\int_{2}^{\frac{5}{2}} (line - circle) dx$$

$$= \int_{2}^{5/2} x - (2 + \sqrt{1 - (x - 3)^2})$$

$$=\frac{\pi}{6}-\frac{\sqrt{3}-1}{8}$$

22.
$$y = x - bx^2$$
, $y = \frac{1}{b}x^2$

$$x - bx^2 = \frac{x^2}{b}$$

Simplify
$$x = 0$$
, $\frac{b}{b^2 + 1}$

$$\int_{0}^{\frac{b}{b^{2}+1}} \left(x - bx^{2} - \frac{x^{2}}{b} \right) dx = \left(\frac{x^{2}}{2} - \frac{bx^{3}}{3} - \frac{x^{3}}{3b} \right)_{0}^{\frac{b}{b^{2}+1}}$$

$$= \frac{b^2}{6(1+b^2)^2} = \frac{1}{6\left(\frac{1}{b}+b\right)^2}$$

$$b + \frac{1}{b} \ge 2 \Longrightarrow \left(b + \frac{1}{b}\right)^2 \ge 4$$

Here area in max when $\left(b + \frac{1}{b}\right)^2$ is min so $\left(b + \frac{1}{b}\right)^2 = 4 \implies b = 1$ (:b > 0)

23.
$$y = x^2 - - - - (1)$$

$$y = (1 - x^2) - - - - (2)$$

$$y = 2x(1-x) - - - - (3)$$

Solving (1) & (3) $\Rightarrow x = 0, \frac{2}{3}$

" (2) & (3)
$$\Rightarrow x = \frac{1}{3}, 1$$

$$f(x) = \begin{cases} (1-x)^2, & 0 \le x \le \frac{1}{3} \\ 2x(1-x), & \frac{1}{3} \le x \le \frac{2}{3} \\ x^2, & \frac{2}{3} \le x \le 1 \end{cases}$$

$$\therefore A = \int_{0}^{\frac{1}{3}} (1-x)^{2} dx + \int_{\frac{1}{3}}^{\frac{2}{3}} 2x(1-x) dx + \int_{\frac{2}{3}}^{1} x^{2} dx = \frac{17}{27}$$

24.
$$f(x) = \int_{-1}^{1} (-x^2 + 2) dx + \int_{1}^{2} (2x - 1) dx = \frac{16}{3}$$

25.
$$y^2 = 4x$$
, $4x = y + 2$

$$y^2 = y + 2$$

$$y^2 - y - 2 = 0$$

$$y = -1, 2$$

$$\int_{-1}^{2} \left(\frac{y+2}{4} - \frac{y^2}{4} \right) dy = \frac{27}{24}$$

$$24A = 27$$

26.
$$y^2 = 4x$$
, $x - y = 3$

Simplify
$$y = -2, 6$$

$$\int_{-2}^{6} (y+3-\frac{y^2}{4})dy = \frac{64}{3}$$

$$A = \frac{1}{2} \times \cancel{2} \times 4 + \frac{1}{\cancel{2}} \times \cancel{2} \times 4 = 8$$

28. Give $x + y \le 3 - - - (1)$, $x^2 \le 4y - - - (2)$, $y \le 1 + \sqrt{x} - - - (3)$, $x \ge 0 - - - (4)$ Solving above equation to get point of intesseition

Area =
$$\int_{0}^{1} (1 + \sqrt{x}) dx + \int_{1}^{2} (3 - x) dx + \int_{0}^{2} (x^{2}) dx = \frac{5}{2}$$

29.
$$y^2 = 2x - 1$$
, $y^2 = 4x - 3$ $x = 1$, $y = \pm 1$

$$x = 1, y = \pm 1$$

$$\int_{-1}^{1} \left(\frac{y^2 + 3}{4} - \frac{y^2 + 1}{2} \right) dx = \frac{1}{3}$$

$$30. \int_{4}^{9} \left(\frac{1}{\sqrt{x}} \right) dx = \left(2\sqrt{x} \right)_{4}^{9} = 2$$