Файловые системы Архитектура

Объект

- Объект: единица информации (страница, файл, ...)
- Поиск:
 - Имя
 - Содержимое
- Структура:
 - Одноуровневая
 - Иерархическая
- Примеры:
 - Файлы (на текущий момент): имя + иерархия
 - Wiki: структура чаще всего одноуровневая, содержимое

Хранение объекта

- Файловая система:
 - inode (индексный дескриптор)/кластер
 - Размер кратен физическому сектору
 - Особенности 4k-дисков
 - Служебные области
 - Пользовательские области

Потоки файла

- Данные (поток данных)
- Служебные данные (например, размер, владелец, время модификации, ...)
- Служебный поток (например, ACL)

Хранение объекта: структура

- Директория:
 - Хранение имен файлов
 - Организация в виде списка/дерева/...
- Поток данных:
 - Основное содержимое (без имени)
 - Организация хранения в виде:
 - Одного «куска» (раздела)
 - Списка
 - Дерева

Устройства хранения и организация хранения

- Ленты:
 - Последовательный доступ
- Жесткие диски (HDD):
 - Произвольный доступ
 - Быстрые операции чтения/записи в пределах одной дорожки
- Flash-диски (SDD):
 - Произвольный быстрый доступ
 - Запись может быть медленнее чтения
 - Ограниченность циклов перезаписи

Примеры организации данных

- Одним «куском»:
 - Лента (tar)
 - CD/DVD (mkisofs)
- Списком (дискеты, жесткие диски):
 - FAT
 - NTFS
- Деревом (HDD, SDD):
 - UFS1-2/EXT2-4: жесткие диски BTRFS/ZFS: flash-память

Хранение целым объектом

- Плюсы:
 - За один проход получаем все данные объекта
- Минусы:
 - Изменять файл очень сложно (зажат в своих границах),
 если на это пойти большая фрагментация
- Вывод: подходит для архивации
- ISO: служебные данные в конце можно «эмулировать» перезапись файла/добавление/удаление на RO-дисках

Файл А	Файл В	Файл С

Хранение списком

Файл:

- Сектор 5
- Сектор 7
- Сектор 6
- Сектор 3
- Сектор 100

– ...

Плюсы:

- Файлы могут меняться (расти/уменьшаться)
- Фрагментация данных меньше (если использовали 1Mb, а потом стали 10Kb, то оставшееся место легче использовать)

Минусы (в основном FAT):

- Чтобы дойти до конца, надо знать всю цепочку страдаем при большой фрагментации
- нельзя создать «дырявые» файлы

NTFS: сжатие цепочек

Хранение деревом (UFS)

Директории и файлы

• FAT/NTFS:

Хранение информации о файле в самой директории (файле директории)

• UFS:

- Директория хранит только имя и inode (для ссылки: имя и ссылку)
- Информация о файле хранится в самом файле
- Жесткие/мягкие ссылки (In)

Особенности ФС из-за носителей

- Жесткие диски:
 - Выгодно размещать данные «рядом», на одной дорожке
 - B FFS: есть цилиндр-группы
- Flash-диски:
 - Перед записью блок надо подготовить (очистить): команда TRIM (ATA)

Скорость/отказоустойчивость

- mount -o sync/async
- Проблема: начали копировать/создавать файл, пропало питание:
 - Образовались кластеры, которые должны быть свободны, но помечены как занятые
 - Аналогично при удалении файла (успели «удалить» из директории, но не освободить место)

Решение

- Журналирование:
 - NTFS
 - Ext3
- Softupdate + фоновый fsck:
 - FFS
- Транзакционые ФС:
 - ZFS/BTRFS

Журналирование

- B NTFS и Ext3 (по умолчанию) применяется частичное журналирование
- Операция записи:
 - Записать в журнал, что хотим писать в кластеры a,b,c
 - Пометить кластеры как занятые (если были свободны)
 - Записать
 - Удалить запись из журнала
- Сохранность данных не гарантируется (был 1Mb 0, выполнили запись 1Mb 1, часть кластеров записалась, часть нет).

Транзакционные ФС

- Стратегия COW (Copy On Write)
- Пусть у нас есть узлы a,b,c,d и мы делаем запись в b и с
- Операция записи:
 - Находим свободные узлы (b', c') и помечаем в памяти как занятые
 - Пишем в b',c' новые данные
 - Меняем ссылки в файле (одна запись) на a,b',c',d
 - Помечаем b и с как свободные
- Сохранность данных: либо на момент до записи, либо на момент после записи

Следующая лекция

- Размещение ФС на устройстве:
 - MBR
 - GPT
- «Виртуальные» устройства:
 - Устройство = файл, Файл = устройство
 - RAID (объединение нескольких устройств в одно):
 - Увеличить объем
 - Увеличить надежность