Departamento de Engenharia Informática da Universidade de Coimbra

Estruturas Discretas 2022/23

Folha 1 - TP

Lógica proposicional

- 6. Use os símbolos proposicionais p e q para formalizar os seguintes argumentos lógicos:
 - (a) Se 10 é um número primo, 10 não pode ser igual a 2 vezes 5. 10 é igual a 2 vezes 5. Logo, 10 não pode ser um número primo.

(b) Se chove frequentemente, os agricultores queixam-se. Se não chove frequentemente, os agricultores queixam-se. Consequentemente, os agricultores queixam-se.

$$\begin{array}{c}
1. p \rightarrow q \\
2. 7p \rightarrow q \\
3. q \\
0u \\
(p \rightarrow q) \wedge (7p \rightarrow q) \rightarrow q
\end{array}$$

(c) O António almoça na cantina ou o António almoça em casa. O António não almoça na cantina. Logo, o António almoça em casa.

c)
$$p = 0$$
 António almosa na cantina

 $q = \frac{1}{2} - \frac{1}{2} - \frac{1}{2}$

1. $p \neq \frac{1}{2} - \frac{1}{2}$
 $q = \frac{1}{2} - \frac{1}{$

- 8. Coloque parênteses nas expressões seguintes de tal modo que sejam indicadas as regras de prioridade estabelecidas para os conectivos envolvidos.
 - (a) $p \wedge q \wedge r \rightarrow p$.
 - (b) $p \wedge r \vee q \rightarrow \neg r$.
 - (c) $\neg (p_1 \land p_2) \rightarrow \neg q \lor p_1$.
 - (d) $p \rightarrow q \rightarrow \neg q \rightarrow \neg q$.

a)
$$((p \land q) \land \pi) \longrightarrow p$$

b) $((p \land q) \lor q) \longrightarrow (\tau \pi)$

c)
$$(\tau(\rho_1 \wedge \rho_2)) \rightarrow (\tau q) \vee \rho_1)$$

d) $((\rho \rightarrow q) \rightarrow (\tau q)) \rightarrow (\tau q)$

9. Escreva as tabelas de verdade para:

(a) $\neg(\neg p \lor \neg q)$.

Q)	P	9	70	79	7P V 79	7 (7079)
/	V	\vee	F	F	F	\checkmark
	V	F	F	>	\vee	F
	F	V	V	F	\vee	F
	F	F	V	V	\vee	F

(b) $(\neg p \land (\neg q \land r)) \lor (q \land r) \lor (p \land r)$.

b) Feito no Boole:

=1=	=2=	=3=	(1)								
P	Q	R	(¬P ^ (¬Q ^ R)) v (Q ^ R)v(P^R)								
T T T T F F	T T F F F F	TFTFTF	F F F T T	FFFFFFF	F T T F T T	F F F F F	T F F T F	T F F T F F	T F T F i(i)	T F F F F	

(c) $(p \lor (q \land r)) \lor \neg ((p \lor q) \land (r \lor s))$.

=1= P	=2= Q	=3= R	=4= S	(P v	(Q ^ F	(I) R)) v ¬((<u>)</u>) ^ (RvS	5))
T T T T T T T F F F F F F F F F F F F F	T T T T F F F F F F F F F F F F F F F F	T T F F T T T T F F T T T T F F T T T T F F T T T T F F T T T T F F T T T T F F T T T T F F T T T T F F T T T T F F T T T T F F T T T T F F T T T T F F T T T T T F F T T T T T F F T T T T T F F T T T T T F F T T T T T T F F T	T F T F T F T F T F T F T F T F T F T F	T T T T T T T T F F F F F	T T F F F F F F F F F F F F F F F F F F	T F T F T F T F T F T F T F T F T F T F	T T T T T T T T T T F F F	T T T F F F F F	T T T T T T T T T T T T T T T T T T T	
F	F	F	F	F	F	T T	F	F	F	

(d) $(p \rightarrow \neg q) \land (q \rightarrow p)$.

=1= P	=2= Q	$(P \rightarrow \neg Q) \land (Q \rightarrow P)$
T T F	T F T F	F F F T T T T T F F F T T T T

(e) $((p \rightarrow q) \rightarrow q) \lor \neg p$.

l) Feito no Boole:

=1= P	=2= Q	((F) → ((1) Q) → I	Q) v ¬P
T T F	T F T F		T F T	T T T F	T F T F T T T T (1)

10. O conectivo lógico conhecido por "ou exclusivo", e denotado por $\dot{\vee}$, é definido pela tabela de verdade

p	q	$p \stackrel{\cdot}{\lor} q$	pva
V	٧	F	V
V	F	V	V
F	٧	V	V
F	F	F	F

- (a) Mostre que $\dot{\lor}$ é equivalente a $\neg(p \leftrightarrow q)$.
- (b) Construa a tabela de verdade para $(p \lor q) \lor r$.

a)	PVVFF	9 > 4 > 4	pe-	39	T (P		si la	PV 9 F V F Sinvalu	ntes
b)	0 >>>>her	7 7 1 1) (F) (F) (F) (F) (F) (F) (F) (F) (F) (F	(P	FFVVVVF	9)	> > + + > + > > > > > > > > > > > > > >	Л	

11. Determine valores de verdade para as variáveis proposicionais p, q e r para os quais o valor de verdade da fbf $(p \lor q \rightarrow r) \land p \rightarrow (r \rightarrow q)$ seja falso.

$$(\rho \vee q \rightarrow \pi) \wedge \rho \rightarrow (\pi \rightarrow q) \equiv F$$

$$\Leftrightarrow \lambda(\rho \vee q \rightarrow \pi) \wedge \rho \equiv V$$

$$(9 \vee q \rightarrow \pi) \wedge \rho \equiv V$$

$$(9 \vee q \rightarrow q \equiv F)$$

$$|\mathcal{H} = \sqrt{\Lambda} \quad A = F$$

$$|(\rho \vee F \rightarrow \vee) \wedge \rho = \sqrt{\Lambda}$$

$$|\mathcal{H} = \sqrt{\Lambda} \quad A = F$$

$$|(\rho \vee F \rightarrow \vee) \wedge \rho = \sqrt{\Lambda}$$

$$|(\rho \vee F \rightarrow \vee) \wedge \rho = \sqrt{\Lambda}$$

$$|(\rho \vee F \rightarrow \vee) \wedge \rho = \sqrt{\Lambda}$$

$$|(\rho \vee F \rightarrow \vee) \wedge \rho = \sqrt{\Lambda}$$

$$|(\rho \vee F \rightarrow \vee) \wedge \rho = \sqrt{\Lambda}$$

$$|(\rho \vee F \rightarrow \vee) \wedge \rho = \sqrt{\Lambda}$$

$$|(\rho \vee F \rightarrow \vee) \wedge \rho = \sqrt{\Lambda}$$

$$|(\rho \vee F \rightarrow \vee) \wedge \rho = \sqrt{\Lambda}$$

$$|(\rho \vee F \rightarrow \vee) \wedge \rho = \sqrt{\Lambda}$$

$$|(\rho \vee F \rightarrow \vee) \wedge \rho = \sqrt{\Lambda}$$

$$|(\rho \vee F \rightarrow \vee) \wedge \rho = \sqrt{\Lambda}$$

$$|(\rho \vee F \rightarrow \vee) \wedge \rho = \sqrt{\Lambda}$$

$$|(\rho \vee F \rightarrow \vee) \wedge \rho = \sqrt{\Lambda}$$

$$|(\rho \vee F \rightarrow \vee) \wedge \rho = \sqrt{\Lambda}$$

$$|(\rho \vee F \rightarrow \vee) \wedge \rho = \sqrt{\Lambda}$$

$$|(\rho \vee F \rightarrow \vee) \wedge \rho = \sqrt{\Lambda}$$

$$|(\rho \vee F \rightarrow \vee) \wedge \rho = \sqrt{\Lambda}$$

$$|(\rho \vee F \rightarrow \vee) \wedge \rho = \sqrt{\Lambda}$$

$$|(\rho \vee F \rightarrow \vee) \wedge \rho = \sqrt{\Lambda}$$

$$|(\rho \vee F \rightarrow \vee) \wedge \rho = \sqrt{\Lambda}$$

$$|(\rho \vee F \rightarrow \vee) \wedge \rho = \sqrt{\Lambda}$$

$$|(\rho \vee F \rightarrow \vee) \wedge \rho = \sqrt{\Lambda}$$

$$|(\rho \vee F \rightarrow \vee) \wedge \rho = \sqrt{\Lambda}$$

$$|(\rho \vee F \rightarrow \vee) \wedge \rho = \sqrt{\Lambda}$$

NOTA:

$$P \rightarrow V \equiv V$$
 $V \rightarrow P \equiv P$
 $P \rightarrow F \equiv P$
 $F \rightarrow P \equiv V$

$$P = V$$

$$\pi = V$$

$$q = F$$

- 12. Qual é o valor de verdade das seguintes proposições?
 - (a) O número 2 é primo ou 4 é ímpar.

(b) O número 2 não é primo e 4 é ímpar.

(c) O número 2 é primo e 4 é ímpar.

(d) O número 2 não é primo ou 4 é ímpar.

(e) Se 2 não for primo então 4 é ímpar.

(f) Se 2 não for primo então 4 é par.

(g) Se 2 não for primo e 4 for par então 4 < 2.

g)
$$(F_{NV}) \rightarrow F = F \rightarrow F = V$$