Introducción Estimaciones Inestables Ausencia de normalidad Datos reale

# Estimaciones inestables y ausencia de normalidad en el modelo de regresión lineal

#### Román Salmerón Gómez

romansg@ugr.es

#### Víctor Blanco Izquierdo

vblanco@ugr.es

Universidad de Granada Departamento de Métodos Cuantitativos para la Economía y la Empresa

I Jornadas de Análisis Cuantitativo en Economía 9 y 10 de Mayo 2018

# Índice

- Introducción
- 2 Estimaciones Inestables
- 3 Ausencia de normalidad
- 4 Datos reales

#### Introducción

#### Econometría

Econometría es una rama de la Economía que proporciona una base para refinar o refutar conocimiento teórico y conseguir signos y magnitudes de las relaciones de variables que se desean analizar.

Con tal objetivo se han de estimar los coeficientes del modelo lineal general:

$$Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \dots + \beta_i X_i + \dots + \beta_p X_p + u = X\beta + u$$
 (1)

Aplicando MCO se llega al sistema de ecuaciones normales:

$$(X'X)\beta = X'Y$$

Para que tenga solución única debe existir  $(X'X)^{-1}$ :

$$\widehat{\beta} = (X'X)^{-1}X'Y$$

Si las variables que forman X son linealmente dependientes, entonces no existe  $(X'X)^{-1}$  (multicolinealidad perfecta).

Introducción Estimaciones Inestables Ausencia de normalidad Datos reale

#### Introducción

¿Qué ocurre si son casi linealmente independientes? (multicolinealidad aproximada): resultados inestables y contradictorios.

- Pequeños cambios en los datos pueden suponer cambios sustanciales en las estimaciones de los coeficientes de los regresores.
- Tendencia a no rechazar que los coeficientes de los regresores son cero.
- Coeficiente de determinación alto y, en consecuencia, tendencia a rechazar que todos los coeficientes son cero de forma simultánea.

#### Posibles soluciones:

- Mejora del diseño muestral, aumento del tamaño de la muestra o usar información a priori.
- Eliminar variables que se consideran problemáticas.
- Usar métodos de estimación alternativos a MCO.

# Índice

- 1 Introducción
- 2 Estimaciones Inestables
- 3 Ausencia de normalidad
- 4 Datos reales

#### Estimaciones Inestables: simulación de datos

Inicialmente genero 50 observaciones para  $X \sim N(1,100)$  y  $Z \sim N(1,100)$  (corr(X,Z) = -0.1186327).

A continuación, genero  $Z^*$  perturbando ligeramente  $Z: Z^*(i) = Z(i) + 0.5 \cdot (-1)^i$ . Finalmente, genero la variable dependiente como  $Y = 5 + 2 \cdot X - 4 \cdot Z + u$  donde  $u \sim N(0,4)$ .

$$Y = \beta_0 + \beta_1 \cdot X + \beta_2 Z + u \quad \rightarrow \quad \widehat{\beta}_0 = 4,9451, \widehat{\beta}_1 = 1,9997, \widehat{\beta}_2 = -3,9761$$

$$Y = \beta_0 + \beta_1 \cdot X + \beta_2 Z^* + u \quad \rightarrow \quad \widehat{\beta}_0 = 4,8872, \widehat{\beta}_1 = 1,9485, \widehat{\beta}_2 = -3,9491$$

#### Estimaciones Inestables: simulación de datos

Inicialmente genero 50 observaciones para  $X \sim N(1,100)$  y  $Z \sim N(1,100)$  (corr(X,Z) = -0.1186327).

A continuación, genero  $Z^*$  perturbando ligeramente  $Z: Z^*(i) = Z(i) + 0.5 \cdot (-1)^i$ . Finalmente, genero la variable dependiente como  $Y = 5 + 2 \cdot X - 4 \cdot Z + u$  donde  $u \sim N(0,4)$ .

$$Y = \beta_0 + \beta_1 \cdot X + \beta_2 Z + u \rightarrow \hat{\beta}_0 = 4,9451, \hat{\beta}_1 = 1,9997, \hat{\beta}_2 = -3,9761$$

$$Y = \beta_0 + \beta_1 \cdot X + \beta_2 Z^* + u \rightarrow \hat{\beta}_0 = 4,8872, \hat{\beta}_1 = 1,9485, \hat{\beta}_2 = -3,9491$$

Si en cambio genero Z como  $Z(i) = 1+5\cdot X(i)+(-1)^i$  (corr(X,Z) = 0.9998075) y lo demás igual:

$$Y = \beta_0 + \beta_1 \cdot X + \beta_2 Z + u \quad \rightarrow \quad \widehat{\beta}_0 = 5,2036, \ \widehat{\beta}_1 = 3,5849, \ \widehat{\beta}_2 = -4,3172$$

$$Y = \beta_0 + \beta_1 \cdot X + \beta_2 Z^* + u \quad \rightarrow \quad \widehat{\beta}_0 = 3,7645, \ \widehat{\beta}_1 = -3,6104, \ \widehat{\beta}_2 = -2,9782$$

Coeficientes significativos, modelo globalmente válido y  $R^2 = 0.9999$ .

# Estimaciones Inestables: regresión simple

Las estimaciones inestables se deben a la relación lineal entre X y Z. Solución: la regresión simple, ya que mide la relación entre variables en ausencia de multicolinealidad (esencial).

### Estimaciones Inestables: regresión simple

Las estimaciones inestables se deben a la relación lineal entre X y Z.

Solución: la regresión simple, ya que mide la relación entre variables en ausencia de multicolinealidad (esencial).

Un poquito de teoría, si estandarizamos las variables:

$$y = \beta_1 x + \beta_2 z + u$$
,  $\widehat{\beta}_1 = \frac{\gamma_1 - \rho \gamma_2}{1 - \rho^2}$ ,  $\widehat{\beta}_2 = \frac{\gamma_2 - \rho \gamma_1}{1 - \rho^2}$ ,

donde  $\rho = corr(x, z)$ ,  $\gamma_1 = corr(x, y)$ ,  $\gamma_2 = corr(z, y)$ . Además:

$$y = \alpha_1 \cdot x + v \to \widehat{\alpha}_1 = \gamma_1, \quad y = \delta_1 \cdot z + w \to \widehat{\delta}_1 = \gamma_2$$

### Estimaciones Inestables: regresión simple

Las estimaciones inestables se deben a la relación lineal entre X y Z.

Solución: la regresión simple, ya que mide la relación entre variables en ausencia de multicolinealidad (esencial).

Un poquito de teoría, si estandarizamos las variables:

$$y = \beta_1 x + \beta_2 z + u$$
,  $\widehat{\beta}_1 = \frac{\gamma_1 - \rho \gamma_2}{1 - \rho^2}$ ,  $\widehat{\beta}_2 = \frac{\gamma_2 - \rho \gamma_1}{1 - \rho^2}$ ,

donde  $\rho = corr(x, z), \ \gamma_1 = corr(x, y), \ \gamma_2 = corr(z, y).$  Además:

$$y = \alpha_1 \cdot x + v \to \widehat{\alpha}_1 = \gamma_1, \quad y = \delta_1 \cdot z + w \to \widehat{\delta}_1 = \gamma_2$$

En nuestros ejemplos ( $Y = 5 + 2 \cdot X - 4 \cdot Z + u$ ):

-17.9728 marca la relación lineal existente entre X e Y libre de la relación lineal entre X y Z o  $Z^*$ 

Si me empeño en la regresión múltiple, una alternativa a los MCO es hacer que las estimaciones de  $Y=X\beta+u$  se parezcan a las obtenidas a partir de las regresiones auxiliares  $Y=\alpha_0+\alpha_1X_i+v$ :

$$min \ c_1 \cdot SCR + c_2 \cdot ||\widehat{\beta}_{-0} - \widehat{\alpha}||^2, \quad c_1, c_2 \geq 0$$

donde:

• 
$$SCR = Y^t Y - 2 \cdot \widehat{\beta}^t X^t Y + \widehat{\beta}^t X^t X \widehat{\beta}$$
 donde  $\beta = (\beta_0 \ \beta_1 \ \dots \ \beta_p)^t = (\beta_0 \ \beta_{-0})^t$ ,

• 
$$||\widehat{\beta}_{-0} - \widehat{\alpha}||^2 = \widehat{\beta}_{-0}^t \widehat{\beta}_{-0} - 2 \cdot \widehat{\beta}_{-0}^t \widehat{\alpha} + \widehat{\alpha}^t \widehat{\alpha}$$
 siendo  $\widehat{\alpha} = (\widehat{\alpha}_1 \dots \widehat{\alpha}_p)$  con  $\widehat{\alpha}_i = \frac{cov(X_i, Y)}{var(X_i)}$ .

Si me empeño en la regresión múltiple, una alternativa a los MCO es hacer que las estimaciones de  $Y=X\beta+u$  se parezcan a las obtenidas a partir de las regresiones auxiliares  $Y=\alpha_0+\alpha_1X_i+v$ :

$$min \ c_1 \cdot SCR + c_2 \cdot ||\widehat{\beta}_{-0} - \widehat{\alpha}||^2, \quad c_1, c_2 \geq 0$$

donde:

• 
$$SCR = Y^t Y - 2 \cdot \widehat{\beta}^t X^t Y + \widehat{\beta}^t X^t X \widehat{\beta}$$
 donde  $\beta = (\beta_0 \ \beta_1 \ \dots \ \beta_p)^t = (\beta_0 \ \beta_{-0})^t$ ,

• 
$$||\widehat{\beta}_{-0} - \widehat{\alpha}||^2 = \widehat{\beta}_{-0}^t \widehat{\beta}_{-0} - 2 \cdot \widehat{\beta}_{-0}^t \widehat{\alpha} + \widehat{\alpha}^t \widehat{\alpha}$$
 siendo  $\widehat{\alpha} = (\widehat{\alpha}_1 \dots \widehat{\alpha}_p)$  con  $\widehat{\alpha}_i = \frac{cov(X_i, Y)}{var(X_i)}$ .

<u>Problema</u>: derivamos respecto a  $\widehat{\beta}$  y tenemos  $\widehat{\beta}_{-0}$ .

Si me empeño en la regresión múltiple, una alternativa a los MCO es hacer que las estimaciones de  $Y=X\beta+u$  se parezcan a las obtenidas a partir de las regresiones auxiliares  $Y=\alpha_0+\alpha_1X_i+v$ :

$$min \ c_1 \cdot SCR + c_2 \cdot ||\widehat{\beta}_{-0} - \widehat{\alpha}||^2, \quad c_1, c_2 \geq 0$$

donde:

• 
$$SCR = Y^t Y - 2 \cdot \widehat{\beta}^t X^t Y + \widehat{\beta}^t X^t X \widehat{\beta}$$
 donde  $\beta = (\beta_0 \ \beta_1 \ \dots \ \beta_p)^t = (\beta_0 \ \beta_{-0})^t$ ,

• 
$$||\widehat{\beta}_{-0} - \widehat{\alpha}||^2 = \widehat{\beta}_{-0}^t \widehat{\beta}_{-0} - 2 \cdot \widehat{\beta}_{-0}^t \widehat{\alpha} + \widehat{\alpha}^t \widehat{\alpha}$$
 siendo  $\widehat{\alpha} = (\widehat{\alpha}_1 \dots \widehat{\alpha}_p)$  con  $\widehat{\alpha}_i = \frac{cov(X_i, Y)}{var(X_i)}$ .

<u>Problema</u>: derivamos respecto a  $\widehat{\beta}$  y tenemos  $\widehat{\beta}_{-0}$ . Solución: consideramos el modelo en desviaciones:

$$y = \beta_1 x_1 + \dots + \beta_p x_p + u = x \cdot \beta_{-0} + u, \quad y = Y - \overline{Y}, \ x_i = X_i - \overline{X}$$

Objetivo:

$$min \ c_1 \cdot SCR_{-0} + c_2 \cdot ||\widehat{\beta}_{-0} - \widehat{\alpha}||^2, \quad c_1, c_2 \ge 0$$

donde 
$$SCR_{-0} = Y^t Y - 2 \cdot \widehat{\beta}_{-0}^t X^t Y + \widehat{\beta}_{-0}^t X^t X \widehat{\beta}_{-0}$$

Derivando respecto a  $\widehat{\beta}_{-0}$ :

$$\widehat{\beta}_{-0}(c_1, c_2) = (c_1 \cdot x^t x + c_2 I_p)^{-1} \cdot (c_1 \cdot I_p + c_2 \cdot V) \cdot x^t y$$

donde 
$$V = diag(\sum x_{1t}^2 \cdots \sum x_{pt}^2)^{-1}$$
.

Estimamos la constante: 
$$\widehat{\beta_0} = \overline{Y} - \sum_{i=1}^p \widehat{\beta}_{-0}(c_1, c_2)(i) \cdot \overline{X}_i$$

Derivando respecto a  $\widehat{\beta}_{-0}$ :

$$\widehat{\beta}_{-0}(c_1, c_2) = (c_1 \cdot x^t x + c_2 I_p)^{-1} \cdot (c_1 \cdot I_p + c_2 \cdot V) \cdot x^t y$$

donde 
$$V = diag(\sum x_{1t}^2 \cdots \sum x_{pt}^2)^{-1}$$
.

Estimamos la constante: 
$$\widehat{\beta_0} = \overline{Y} - \sum_{i=1}^p \widehat{\beta}_{-0}(c_1, c_2)(i) \cdot \overline{X}_i$$

$$c_1 = 1, c_2 = 0$$
 tenemos MCC

$$c_1=1, c_2=0$$
 tenemos MCO  $c_1=0, c_2=1$  tenemos que  $\widehat{\beta}_{-0}(0,1)=\widehat{\alpha}$ 

Derivando respecto a  $\widehat{\beta}_{-0}$ :

$$\widehat{\beta}_{-0}(c_1, c_2) = (c_1 \cdot x^t x + c_2 I_p)^{-1} \cdot (c_1 \cdot I_p + c_2 \cdot V) \cdot x^t y$$

donde  $V = diag(\sum x_{1t}^2 \cdots \sum x_{nt}^2)^{-1}$ .

Estimamos la constante:  $\widehat{\beta_0} = \overline{Y} - \sum_{i=1}^{p} \widehat{\beta}_{i-1}(c_1, c_2)(i) \cdot \overline{X}_i$ 

 $c_1=1, c_2=0$  tenemos MCO  $c_1=0, c_2=1$  tenemos que  $\widehat{\beta}_{-0}(0,1)=\widehat{\alpha}$ Similitud con el estimador cresta:

$$\widehat{\beta}_{-0}(c) = (x^{t}x + c \cdot I_{p})^{-1} \cdot (I_{p} + c \cdot V) \cdot x^{t}y, \quad c = \frac{c_{2}}{c_{1}}, c_{1} > 0$$

$$\widehat{\beta}(k) = (x^{t}x + k \cdot I_{p})^{-1} x^{t}y, \quad k \ge 0$$

Derivando respecto a  $\widehat{\beta}_{-0}$ :

$$\widehat{\beta}_{-0}(c_1, c_2) = (c_1 \cdot x^t x + c_2 I_p)^{-1} \cdot (c_1 \cdot I_p + c_2 \cdot V) \cdot x^t y$$

donde  $V = diag(\sum x_{1t}^2 \cdots \sum x_{nt}^2)^{-1}$ .

Estimamos la constante:  $\widehat{\beta_0} = \overline{Y} - \sum_{i=1}^{p} \widehat{\beta}_{-0}(c_1, c_2)(i) \cdot \overline{X}_i$ 

 $c_1=1, c_2=0$  tenemos MCO  $c_1=0, c_2=1$  tenemos que  $\widehat{\beta}_{-0}(0,1)=\widehat{\alpha}$ Similitud con el estimador cresta:

$$\widehat{\beta}_{-0}(c) = (x^{t}x + c \cdot I_{p})^{-1} \cdot (I_{p} + c \cdot V) \cdot x^{t}y, \quad c = \frac{c_{2}}{c_{1}}, c_{1} > 0$$

$$\widehat{\beta}(k) = (x^{t}x + k \cdot I_{p})^{-1}x^{t}y, \quad k \geq 0$$

¿Cómo determinar los valores de  $c_1$  y  $c_2$ ? Para simplificar interpretación  $c_1>0$  y  $c_1+c_2=1 \rightarrow c_2=1-c_1<1$  $c_1 = 0.2, c_2 = 0.8$ : 20 % de importancia a  $SCR_{-0}$  y un 80 % a  $||\widehat{\beta}_{-0} - \widehat{\alpha}||^2$ 

# Estimaciones Inestables: elección de $c_1$ y $c_2$

Traza de los estimadores del ejemplo problemático: cte rojo, X verde, Z azul. ¿Las estimaciones se estabilizan para algún valor de  $c_1$  y  $c_2$ ?



# Estimaciones Inestables: elección de $c_1$ y $c_2$

Traza de los estimadores del ejemplo problemático: cte rojo, X verde, Z azul. ¿Las estimaciones se estabilizan para algún valor de  $c_1$  y  $c_2$ ?



## Estimaciones Inestables: elección de $c_1$ y $c_2$

Analizar condicionamiento de la matriz  $c_1 \cdot x^t x + c_2 I_p$ . El número de condición es menor que 20 para  $c_1 = 0.015$  y  $c_2 = 0.985$ .



#### Estimaciones Inestables: $c_1 = 0.015$ y $c_2 = 0.985$

Ejemplo problemático:

Introducción

$$Y = \beta_0 + \beta_1 \cdot X + \beta_2 Z + u \rightarrow \widehat{\beta}_0 = 1,1106, \widehat{\beta}_1 = -16,6883,$$

$$\widehat{\beta}_2 = -0,2605,$$

$$Y = \beta_0 + \beta_1 \cdot X + \beta_2 Z^* + u \rightarrow \widehat{\beta}_0 = 1,177855, \widehat{\beta}_1 = -16,436553,$$

$$\widehat{\beta}_2 = -0,311766,$$

### Estimaciones Inestables: $c_1 = 0.015$ y $c_2 = 0.985$

Ejemplo problemático:

$$Y = \beta_0 + \beta_1 \cdot X + \beta_2 Z + u \rightarrow \widehat{\beta}_0 = 1,1106, \widehat{\beta}_1 = -16,6883,$$

$$\widehat{\beta}_2 = -0,2605, \quad R^2 = 0,9994121$$

$$Y = \beta_0 + \beta_1 \cdot X + \beta_2 Z^* + u \rightarrow \widehat{\beta}_0 = 1,177855, \widehat{\beta}_1 = -16,436553,$$

$$\widehat{\beta}_2 = -0,311766, \quad R^2 = 0,9994239$$

Bondad de ajuste:

$$R^{2} = 1 - \frac{(y - x \cdot \widehat{\beta}(c_{1}, c_{2}))^{t} \cdot (y - x \cdot \widehat{\beta}(c_{1}, c_{2}))}{SCT}$$

¡Ojo! no tiene por qué verificarse que  $R^2 > 0$ 

# Estimaciones Inestables: bondad de ajuste (SCR)



## Estimaciones Inestables: bondad de ajuste (SCR)



# Estimaciones Inestables: bondad de ajuste $(R^2)$



| $c_2=1-c_1$ | $R^2$        |
|-------------|--------------|
| 0           | 0.9999018135 |
| 0.1         | 0.9999002597 |
| 0.2         | 0.9998949226 |
| 0.3         | 0.9998845268 |
| 0.4         | 0.9998673337 |
| 0.5         | 0.9998409424 |
| 0.6         | 0.9998019863 |
| 0.7         | 0.9997456618 |
| 8.0         | 0.9996649752 |
| 0.9         | 0.9995495006 |
| 1           | 0.0003849483 |

# Estimaciones Inestables: bondad de ajuste $(R^2)$



| $c_2=1-c_1$ | $R^2$        |
|-------------|--------------|
| 0           | 0.9999018135 |
| 0.1         | 0.9999002597 |
| 0.2         | 0.9998949226 |
| 0.3         | 0.9998845268 |
| 0.4         | 0.9998673337 |
| 0.5         | 0.9998409424 |
| 0.6         | 0.9998019863 |
| 0.7         | 0.9997456618 |
| 0.8         | 0.9996649752 |
| 0.9         | 0.9995495006 |
| 1           | 0.0003849483 |

# Índice

- Introducción
- 2 Estimaciones Inestables
- 3 Ausencia de normalidad
- 4 Datos reales

Llamando  $H = (c_1 \cdot x^t x + c_2 I_p)^{-1} \cdot (c_1 \cdot I_p + c_2 \cdot V)$  se verifica que:

$$\widehat{\beta}_{-0}(c_1, c_2) = H \cdot x^t y = H \cdot x^t x \cdot \widehat{\beta} 
\hookrightarrow E[\widehat{\beta}_{-0}(c_1, c_2)] = H \cdot x^t x \cdot \beta 
\hookrightarrow var(\widehat{\beta}_{-0}(c_1, c_2)) = \sigma^2 \cdot H \cdot x^t x \cdot H^t 
\widehat{\beta}_{-0}(c_1, c_2) = H \cdot x^t y = H \cdot x^t x \cdot \beta + H \cdot x^t \cdot u$$

Llamando  $H = (c_1 \cdot x^t x + c_2 I_p)^{-1} \cdot (c_1 \cdot I_p + c_2 \cdot V)$  se verifica que:

$$\begin{split} \widehat{\beta}_{-0}(c_1,c_2) &= H \cdot x^t y = H \cdot x^t x \cdot \widehat{\beta} \\ &\hookrightarrow E[\widehat{\beta}_{-0}(c_1,c_2)] = H \cdot x^t x \cdot \beta \\ &\hookrightarrow var(\widehat{\beta}_{-0}(c_1,c_2)) = \sigma^2 \cdot H \cdot x^t x \cdot H^t \\ \widehat{\beta}_{-0}(c_1,c_2) &= H \cdot x^t y = H \cdot x^t x \cdot \beta + H \cdot x^t \cdot u \end{split}$$

Considerando que  $u \sim N(0, \sigma^2 I)$ :

$$\widehat{\beta}_{-0}(c_1, c_2) \sim N\left(H \cdot x^t x \cdot \beta, \sigma^2 \cdot H \cdot x^t x \cdot H^t\right)$$

Ahora bien, no es válido para hacer inferencia ya que depende del parámetro desconocido  $\beta$ .

Llamando  $H = (c_1 \cdot x^t x + c_2 I_p)^{-1} \cdot (c_1 \cdot I_p + c_2 \cdot V)$  se verifica que:

$$\begin{split} \widehat{\beta}_{-0}(c_1,c_2) &= H \cdot x^t y = H \cdot x^t x \cdot \widehat{\beta} \\ &\hookrightarrow E[\widehat{\beta}_{-0}(c_1,c_2)] = H \cdot x^t x \cdot \beta \\ &\hookrightarrow var(\widehat{\beta}_{-0}(c_1,c_2)) = \sigma^2 \cdot H \cdot x^t x \cdot H^t \\ \widehat{\beta}_{-0}(c_1,c_2) &= H \cdot x^t y = H \cdot x^t x \cdot \beta + H \cdot x^t \cdot u \end{split}$$

Considerando que  $u \sim N(0, \sigma^2 I)$ :

$$\widehat{\beta}_{-0}(c_1, c_2) \sim N\left(H \cdot x^t x \cdot \beta, \sigma^2 \cdot H \cdot x^t x \cdot H^t\right)$$

Ahora bien, no es válido para hacer inferencia ya que depende del parámetro desconocido  $\beta$ .

Otra opción: Para 
$$y_A = \begin{pmatrix} \sqrt{c_1} \cdot y \\ \sqrt{c_2} \cdot V \cdot x^t y \end{pmatrix}$$
 y  $x_A = \begin{pmatrix} \sqrt{c_1} \cdot x \\ \sqrt{c_2} \cdot I_p \end{pmatrix}$  entonces  $y_A = x_A \beta_A + u_A$  verifica  $\widehat{\beta}_A = \widehat{\beta}_{-0}(c_1, c_2)$  si bien  $var(\widehat{\beta}_A) \neq var(\widehat{\beta}_{-0}(c_1, c_2))$ .

Llamando  $H = (c_1 \cdot x^t x + c_2 I_p)^{-1} \cdot (c_1 \cdot I_p + c_2 \cdot V)$  se verifica que:

$$\widehat{\beta}_{-0}(c_1, c_2) = H \cdot x^t y = H \cdot x^t x \cdot \widehat{\beta}$$

$$\hookrightarrow E[\widehat{\beta}_{-0}(c_1, c_2)] = H \cdot x^t x \cdot \beta$$

$$\hookrightarrow var(\widehat{\beta}_{-0}(c_1, c_2)) = \sigma^2 \cdot H \cdot x^t x \cdot H^t$$

$$\widehat{\beta}_{-0}(c_1, c_2) = H \cdot x^t y = H \cdot x^t x \cdot \beta + H \cdot x^t \cdot u$$

Considerando que  $u \sim N(0, \sigma^2 I)$ :

$$\widehat{\beta}_{-0}(c_1, c_2) \sim N\left(H \cdot x^t x \cdot \beta, \sigma^2 \cdot H \cdot x^t x \cdot H^t\right)$$

Ahora bien, no es válido para hacer inferencia ya que depende del parámetro desconocido  $\beta$ .

Otra opción: Para  $y_A = \begin{pmatrix} \sqrt{c_1} \cdot y \\ \sqrt{c_2} \cdot V \cdot x^t y \end{pmatrix}$  y  $x_A = \begin{pmatrix} \sqrt{c_1} \cdot x \\ \sqrt{c_2} \cdot I_p \end{pmatrix}$  entonces  $y_A = x_A \beta_A + u_A$  verifica  $\widehat{\beta}_A = \widehat{\beta}_{-0}(c_1, c_2)$  si bien  $var(\widehat{\beta}_A) \neq var(\widehat{\beta}_{-0}(c_1, c_2))$ . Mientras que se avanza por este camino, ¿qué hacer?

### Bootstrap

#### Bootstrap según Wikipedia

El bootstrapping (o bootstrap) es un método de remuestreo propuesto por Bradley Efron en 1979. Se utiliza para aproximar la distribución en el muestreo de un estadístico. Se usa frecuentemente para aproximar el sesgo o la varianza de un análisis estadístico, así como para construir intervalos de confianza.....

$$1, 2, 5, 4, 9, 3 \longrightarrow (1,031748, 6,968252)$$

### Bootstrap

#### Bootstrap según Wikipedia

El bootstrapping (o bootstrap) es un método de remuestreo propuesto por Bradley Efron en 1979. Se utiliza para aproximar la distribución en el muestreo de un estadístico. Se usa frecuentemente para aproximar el sesgo o la varianza de un análisis estadístico, así como para construir intervalos de confianza.....

$$1, 2, 5, 4, 9, 3 \longrightarrow (1,031748, 6,968252)$$

### Bootstrap

#### Bootstrap según Wikipedia

El bootstrapping (o bootstrap) es un método de remuestreo propuesto por Bradley Efron en 1979. Se utiliza para aproximar la distribución en el muestreo de un estadístico. Se usa frecuentemente para aproximar el sesgo o la varianza de un análisis estadístico, así como para construir intervalos de confianza.....

$$1,2,5,4,9,3 \longrightarrow (1,031748,6,968252)$$

10000 repeticiones

$$(P_{2,5},\ P_{97,5})=(2{,}166667,\ 6{,}333333)$$

Teorema Central del Límite

$$media_{rep} \pm 1,96 \cdot desv.tip_{rep} =$$
 $= (1.907400, 6.088767)$ 

Son incluso más finos!!! (9)

troducción Estimaciones Inestables Ausencia de normalidad Datos reales

### Bootstrap

¡ojo! Kolmogorov-Smirnoff,  $H_0$ : normalidad, p-value < 2,2e-16 Shapiro no funciona en R para muestras superiores a 5000 (dudas de la utilidad de estas pruebas para tamaños muestrales tan elevados)



# Volviendo a nuestro ejemplo problemático

$$Y = \beta_0 + \beta_1 \cdot X + \beta_2 Z + u$$

10000 repeticiones = 7 segundos aproximadamente

| estimador   | desv.tip estimada | intervalo                  |
|-------------|-------------------|----------------------------|
| 1.1411141   | 0.67056703        | (-0.1731973, 2.4554255)    |
| -16.7141945 | 0.07182645        | (-16.8549743, -16.5734147) |
| -0.2560827  | 0.00872478        | (-0.2731833, -0.2389821)   |

La constante no es significativamente distinta de cero

# Volviendo a nuestro ejemplo problemático

$$Y = \beta_0 + \beta_1 \cdot X + \beta_2 Z + u$$

10000 repeticiones = 7 segundos aproximadamente

| estimador   | desv.tip estimada | intervalo                  |
|-------------|-------------------|----------------------------|
| 1.1411141   | 0.67056703        | (-0.1731973, 2.4554255)    |
| -16.7141945 | 0.07182645        | (-16.8549743, -16.5734147) |
| -0.2560827  | 0.00872478        | (-0.2731833, -0.2389821)   |

La constante no es significativamente distinta de cero

$$\frac{(P_{2,5}, P_{97,5})}{(-0.1443570, 2.4673888)} R^2$$

$$(-16.8781300, -16.5963682)$$

$$(-0.2725277, -0.2381248) (P_{2,5}, P_{97,5}) = (0.9991075, 0.9996142)$$

¿Cómo saber si tenemos estimaciones inestables?

$$Y = \beta_0 + \beta_1 \cdot X + \beta_2 Z + u, \quad Y = \beta_0 + \beta_1 \cdot X + u, \quad Y = \beta_0 + \beta_2 Z + u$$

¿Cómo saber si tenemos estimaciones inestables?

$$Y = \beta_0 + \beta_1 \cdot X + \beta_2 Z + u, \quad Y = \beta_0 + \beta_1 \cdot X + u, \quad Y = \beta_0 + \beta_2 Z + u$$

$$(-18,093,5,795) = (P_{2,5}, P_{97,5})$$



¿Cómo saber si tenemos estimaciones inestables?

$$Y = \beta_0 + \beta_1 \cdot X + \beta_2 Z + u, \quad Y = \beta_0 + \beta_1 \cdot X + u, \quad Y = \beta_0 + \beta_2 Z + u$$

$$(-18,093,5,795) = (P_{2,5}, P_{97,5})$$



#### $(P_{2,5}, P_{97,5}) = (-4,762, -3,5906)$



$$Y = \beta_0 + \beta_1 \cdot X + \beta_2 Z + u, \quad Y = \beta_0 + \beta_1 \cdot X + u, \quad Y = \beta_0 + \beta_2 Z + u$$

$$(1,568,3,292)=(P_{2,5},P_{97,5})$$
Histogram of beta 1

#### $(P_{2,5}, P_{97,5}) = (-4,728 - 3,664)$



# Índice

- 1 Introducción
- 2 Estimaciones Inestables
- 3 Ausencia de normalidad
- 4 Datos reales

Introducción Estimaciones Inestables Ausencia de normalidad Datos reales

### Manpower data

The hospital manpower data, taken from Myers (1990), are a well-known example of highly collinear data to which ridge regression and various shrinkage and selection methods are often applied.

The data consist of measures taken at 17 U.S. Naval Hospitals and the goal is to predict the required monthly man hours for staffing purposes.

$$H = \beta_0 + \beta_1 \cdot L + \beta_2 \cdot X + \beta_3 \cdot B + \beta_4 \cdot A + \beta_5 \cdot S + u$$

Hours: horas mensuales por hombre (monthly man hours).

Load: carga diaria promedio del paciente (average daily patient load).

Xray: exposiciones mensuales a rayos X (monthly X-ray exposures).

BedDays: habitaciones diarias ocupadas mensualmente (monthly occupied

bed days).

AreaPop: población elegible en el área (en miles) (eligible population in

the area in thousands).

Stay: duración promedio de la estancia del paciente en días (average length of patient's stay in days).

¿Inestabilidad en las estimaciones? Bootstrap para  $\beta_1$  en:

$$H = \beta_0 + \beta_1 \cdot L + \beta_2 \cdot X + \beta_3 \cdot B + \beta_4 \cdot A + \beta_5 \cdot S + u$$
 
$$(P_{2,5}, P_{97,5}) = (-330,0086, 2185, 8051), \ \textit{min} = -4980, 894, \ \textit{max} = 12833, 13$$



Traza de los estimadores:  $\widehat{\beta}_1(c_1,c_2)$  rojo,  $\widehat{\beta}_6(c_1,c_2)$  verde.



MCO NC = 278,8721

|                | $\widehat{eta}$ | $\sqrt{\mathit{var}(\widehat{eta})}$ |
|----------------|-----------------|--------------------------------------|
|                | 1962.94         | 1071.361                             |
| carga paciente | -15.851         | 97.652                               |
| expo. rayos X  | 0.055           | 0.021                                |
| hab. ocupadas  | 1.589           | 3.092                                |
| población      | -4.218          | 7.176                                |
| estancia media | -394.314        | 209.639                              |

$$||\widehat{\beta}_0 - \widehat{\alpha}||^2 = 2426,373$$
  
 $R^2 = 0.990833$ 

Metodología alternativa  $c_2 = 0.99988$ 

$$NC = 19,65125$$

$$||\widehat{\beta}_0 - \widehat{\alpha}||^2 = 14,79423$$

$$R^2 = 0.8423752$$

MCO NC = 278.8721

Metodología alternativa  $c_2 = 0.99988$ 

$$NC = 19,65125$$

Datos reales

|                                                         | $\widehat{eta}$ | $\sqrt{\mathit{var}(\widehat{eta})}$ |  |  |  |
|---------------------------------------------------------|-----------------|--------------------------------------|--|--|--|
|                                                         | 1962.94         | 1071.361                             |  |  |  |
| carga paciente                                          | -15.851         | 97.652                               |  |  |  |
| expo. rayos X                                           | 0.055           | 0.021                                |  |  |  |
| hab. ocupadas                                           | 1.589           | 3.092                                |  |  |  |
| población                                               | -4.218          | 7.176                                |  |  |  |
| estancia media                                          | -394.314        | 209.639                              |  |  |  |
| $  \widehat{\beta}_0 - \widehat{\alpha}  ^2 = 2426,373$ |                 |                                      |  |  |  |
| _ 2                                                     |                 |                                      |  |  |  |

$$R^2 = 0.990833$$

$$||\widehat{\beta}_0 - \widehat{\alpha}||^2 = 14,79423$$

$$R^2 = 0.8423752$$

 $\widehat{\alpha} = (34'033, 0'246, 1'117, 48'436, 2030'974)$ 

$$c = 0.9999999 \rightarrow \widehat{\beta}_4 = -1.236346 \ (-1'993, \ 0'087), \quad NC = 4.366702$$

troducción Estimaciones Inestables Ausencia de normalidad Datos reales

#### Manpower data

¿Como afecta la disminución del  $R^2$  (de 0.990833 a 0.8423752) a la predicción?

| Obs. | H según MCO | H según alternativa | Н        |
|------|-------------|---------------------|----------|
| 1    | 775.0251    | -902.6030           | 566.52   |
| 2    | 740.6702    | 3205.9981           | 696.82   |
| 3    | 1103.9234   | -1301.1400          | 1033.15  |
| 4    | 1240.4956   | -821.9650           | 1603.62  |
| 5    | 1564.4217   | 1690.1287           | 1611.37  |
| 6    | 2151.2717   | 401.0485            | 1613.27  |
| 7    | 1689.7004   | 2091.1631           | 1854.17  |
| 8    | 1736.2355   | 1473.4803           | 2160.55  |
| 9    | 2736.9890   | 4123.2179           | 2305.58  |
| 10   | 3681.8534   | 9098.7043           | 3503.93  |
| 11   | 3239.2889   | 3597.9314           | 3571.89  |
| 12   | 4353.3330   | 2127.7420           | 3741.40  |
| 13   | 4257.0884   | 4864.7385           | 4026.52  |
| 14   | 8767.7485   | 9682.8557           | 10343.81 |
| 15   | 12237.0274  | 14563.4461          | 1732.17  |
| 16   | 15038.3909  | 12309.7002          | 15414.94 |
| 17   | 19320.6970  | 18429.7132          | 18854.45 |

Evidentemente peor ajuste, quizás si nuestro objetivo es la predicción mejor no hacer nada.

Si queremos evitar estimaciones/predicciones negativas se podría plantear:

minimizar

$$c_1 \cdot SCR_{-0} + c_2 \cdot \left|\left|\widehat{\beta}_{-0} - \widehat{\alpha}\right|\right|^2$$

sujeto a

$$\widehat{y}_i = \overline{Y} + x_i \cdot \widehat{\beta}_{-0} \ge 0, \quad i = 1, \cdots, p$$

$$SCR_{-0} = Y^{t}Y - 2 \cdot \widehat{\beta}_{-0}^{t}X^{t}Y + \widehat{\beta}_{-0}^{t}X^{t}X\widehat{\beta}_{-0}$$

$$||\widehat{\beta}_{-0} - \widehat{\alpha}||^2 = \widehat{\beta}_{-0}^t \widehat{\beta}_{-0} - 2 \cdot \widehat{\beta}_{-0}^t \widehat{\alpha} + \widehat{\alpha}^t \widehat{\alpha}$$

$$\widehat{\alpha} = (\widehat{\alpha}_i)_{i=1,\dots,p} = \left(\frac{\sum\limits_{t=1}^n x_{it} y_t}{\sum\limits_{t=1}^n x_{it}^2}\right)_{i=1,\dots,p}$$

Introducción Estimaciones Inestables Ausencia de normalidad Datos reales

# ESTIMACIONES INESTABLES Y AUSENCIA DE NORMALIDAD EN EL MODELO DE REGRESIÓN LINEAL

Román Salmerón Gómez romansg@ugr.es Víctor Blanco Izquierdo vblanco@ugr.es

Universidad de Granada Departamento de Métodos Cuantitativos para la Economía y la Empresa

> I Jornadas de Análisis Cuantitativo en Economía 9 y 10 de Mayo 2018