

"Pay As You Park" Smart Parking Solution 2021-198

Student Information

Student ID	Student Name	Presentation Slides
IT18012552	M.D.S.M. Antany	Validate the parking yards standard and suggest the solution for parking yards
IT18154672	Priyankara A.D.D	Introduction and Find the availability of free spaces inside parking yard
IT18013092	Aadil M.R.M	Suggest and direct to most suitable parking yard for user
IT18013924	Ferreira L.V	Internal navigation in parking yards

Introduction

WHAT IS SMART PARKING?

DOES CURRENT SOCIETY NEED A SMART PARKING SOLUTION?

Research Problem

• Existing payment process in parking systems

- Hardness to find a parking yard to park
- Difficulty of navigation inside parking yards

Difficulty of measuring parking yards standard without human interaction

Objectives

- Introduce "pay as you park" concept to the parking system.
- Support users to find the most suitable parking yard
- Provide the best experience in parking using smart technology

Research Components

- Find the availability of free spaces inside parking yard
- Suggest and direct to most suitable parking yard for user
- Internal navigation in parking yards
- Measuring parking yards standard and validate suitability before the yard registration

System Diagram

IT18154672 | PRIYANKARA A. D. D.

Software Engineering

INTRODUCTION

- Research Problem
- Research Gap
- Objectives

RESEARCH QUESTION

 What is the cost-friendly and accurate alternative to identify car parking spaces in a parking slot?

OBJECTIVES

Identifying vacant parking slots in a parking lot.

SUB OBJECTIVES

• Save time of the user by pre-identifying vacant spaces.

Send the processed data for the further process.

RESEARCH METHODOLOGY

- System Diagram
- Technologies to be used

SYSTEM DIAGRAM

TECHNOLOGIES TO BE USED

- Identifying vacant/available parking spaces
- Number of vehicles detection
 - ➤ Mask RCNN (Region Based Convolutional Neural Networks)
- REST APIs
 - Express JS with MongoDB

EVIDENCE OF COMPLETION

REFERENCES

- [1] Sukumar, M. B., Sireesha, G., Ashok, A., Mounish, G., & Prathap, D. Real Time Image Processing Based Vacant Car Parking Occupancy Information System.
- [2] Nwave, (2021), Advantages and Disadvantages of Smart Parking Sensors | Nwave [Online] Available: https://www.nwave.io/news/pros-and-cons-of-smart-parking-systems/ [Accessed 20 Feb 2021]
- [3] Paidi, V., Fleyeh, H., Håkansson, J., & Nyberg, R. G. (2018). Smart parking sensors, technologies and applications for open parking lots: a review. *IET Intelligent Transport Systems*, *12*(8), 735-741.
- [4] PcMag, (2021), Definition of smart parking | PCMag [Online] Available: https://www.pcmag.com/encyclopedia/term/smart-parking#:~:text=A%20vehicle%20parking%20system%20that,incoming%20drivers%20to%20available%20locat ions.&text=With%20the%20Smart%20Park%20system,car%2C%20smart%20home%20and%20smart [Accessed 20 Feb 2021]
- [5] Gunasekara, G. G. Y. U., Gunasekara, A. D. A. I., & Kathriarachchi, R. P. S. (2015). A Smart Vehicle Parking Management Solution.
- [6] Karunarathne, M. S., & Nanayakkara, L. D. J. F. (2014). A Prototype to Identify Availability of a Car in a Smart Car Park with Aid of Programmable Chip and Infrared Sensors. *Journal of Emerging Trends in Computing and Information Sciences*, 5(2).
- [7] Nandyal, S., Sultana, S., & Anjum, S. (2017). Smart car parking system using arduino uno. *International Journal of Computer Applications*, 975(169), 1.

[8] Bachani, M., Qureshi, U. M., & Shaikh, F. K. (2016). Performance analysis of proximity and light sensors for smart parking. Procedia Computer Science, 83, 385-392.

[9] Britannica, (2021), Image processing | computer science | Britannica [Online] Available: https://www.britannica.com/technology/image-processing [Accessed 21 Feb 2021]

[10] True, N. (2007). Vacant parking space detection in static images. University of California, San Diego, 17, 659-662.

[11] Ichihashi, H., Notsu, A., Honda, K., Katada, T., & Fujiyoshi, M. (2009, August). Vacant parking space detector for outdoor parking lot by using surveillance camera and FCM classifier. In 2009 IEEE International Conference on Fuzzy Systems (pp. 127-134). IEEE.

IT18013092 | AADIL M.R.M

Software Engineering

INTRODUCTION

- Research Question
- Specific and Sub Objectives

RESEARCH PROBLEM

- Problems faced by the drivers when finding a parking yard.
- How does it affect the society?
- How does it affect the environment?

Objectives

· Identify the nearest parking yard around user/user destination.

Suggest optimal parking yard to park the vehicle based on key factors.

Provide a cross platform mobile app to perform the task

RESEARCH METHODOLOGY

SYSTEM DAIGARM
TECHNOLOGY AND TECHNIQUES TO BE USED

SYSTEM DIAGRAM

TECHNOLOGY AND TECHNIQUES TO BE USED

- Retrieving the current location of user
 - > GPS related technology
 - ➤ Google Map API visualize the location
- Suggest optimal parking yard to park the vehicle based on key factors
 - ➤ Machine learning algorithms : SARIMA
 - ➤ Haversine Algorithm
 - Google Map API visualize the locations and directions

EVIDENCE FOR THE COMPLETION

Haversine Imp

Dataset Pattern Overview

26

EVIDENCE FOR THE COMPLETION

SARIMA Model

EVIDENCE FOR THE COMPLETION

SARIMA Forecasting

IT18013924 | FERREIRA L.V. Software Engineering

INTERNAL PARKING NAVIGATION INSIDE A **PARKING AREA**

INTRODUCTION

- What is a parking and an Internal Navigation inside a parking area?
- Indoor/outdoor parking areas.
- Why use Beacon technology and its advantages.

OBJECTIVES

Identify the user's position

View user's position in a map

Show users path to free parking slots

05-Nov-

METHODOLOGY

Models Created

Accuracy of these Models

How to show predicted location in a map

SLIIT

FACULTY OF COMPUTING

SYSTEM DIAGRAM

05-Nov-

TECHNOLOGY AND TECHNIQUES TO BE USED

- Identify the User's Position
 - > Beacons
 - ➤ Calculate Distance of the Beacons(by getting RSSI values)
 - ➤ Machine learning algorithms : Nural Network(Sequential)
 - > Pass image of the map and show user's position
 - > Show path to the destination(free slot)

COMPLETION OF THE COMPONENT

- Trained the Model
- Dummy Map which can show User Position
- Implemented a method to get position of a user when give three beacon distances to user as input parameters

TO-DO...

- Implement a Code to calculate the distance by using Beacon Bluetooth Signal Values
- Design All the UIs and Databases
- Implement a way to show the path from user to the destination

localhost 8889/notebooks/Desktop/Lahinu/620Ver/creating/620the/620mode/620for/620Yipynb


```
Upyter creating the model for Y Last Checkpoint, 4 hours ago. (autosaved)
          Insert Cell Kernel Widgets
                                                                    Python 3 O
      202/202 [============] - 0s 79us/step - loss: 0.9524 - acc: 0.5941 - val loss: 0.7917 - val acc: 0.7391
      Epoch 9/200
      Epoch 14/288
      In [7]: I import numpy as np
        predicted_target:model.predict(test_data)
       print(np.argmax(predicted_target,axis=1))
      [180 180 137 223 223 180 223 180 180 180 180 223 180 137 137 137 180 180
       223 180 180 223 180 137 137]
  In [8]: 1 print(np.argmax(test_target,axis=1))
      [180 190 137 223 223 180 223 223 180 223 180 223 180 223 180 137 137 137 223 180
       223 180 180 223 180 137 137]
  In [9]: | from sklearn.metrics import accuracy score
        accuracy=accuracy_score(np.argmax(test_target,axis=1),np.argmax(predicted_target,axis=1))
       4 print(accuracy)
      0.88
  In [10]: I model.save_weights('y_weights.h5') #to sove only wrights.
       ? model.save('y.model') #to save the whole model
```


Implemented method to get position

Dummy Map to view user's position

FACULTY OF COMPUTING

IT18012552 | M.D.S.M. ANTANY

Software Engineering

MEASURING PARKING YARDS STANDARD AND VALIDATE SUITAB BEFORE THE YARD REGISTRATION

RESEARCH QUESTION

How to identify a standard parking yard without time wasting and a without human interaction before registration?

- Reviewing thousands of parking registration forms by a human is time consuming
- Registration process is too complicated
- Inability to audit the parking yard condition without man power (monthly or annually)

MAIN OBJECTIVE

Identify the parking yard surface type and Quality of the surface before registering to the system as a valid parking yard

SUB OBJECTIVES

- Identify the parking yard surface type
- Identify the quality of the parking yard surface under the surface type

Research Methodology

- SYSTEM DAIGARM
- TECHNOLOGY AND TECHNIQUES USED

SLIIT

FACULTY OF COMPUTING

SYSTEM OVERVIEW DIAGRAM

SYSTEM FLOWCHART DIAGRAM

TECHNOLOGY AND TECHNIQUES

- Used Road Traversing Knowledge (RTK) Dataset
- Region of Interest (ROI) is defined as a pre-processing step for each input frame
- The data augmentation consists of increasing and decreasing the brightness in each frame
- Input images are passed to the CNN structure containing three convolution layers and two fully connected layers.
- The flatten layer is used to transform the convolution multidimensional tensor into a one-dimensional tensor.
- Model training divided to two parts
 - Parking surface type model
 - Parking surface quality model

Model accuracy : ∼93%

FACULTY OF COMPUTING

₩₩ SLIIT

EVIDENCE FOR COMPLETION

Surface and quality measurement image output

UPCOMING DEVELOPMENTS

- Implement the mobile app to the parking lot registration and management section for the parking lot owner
- Implement the web app to manage newly registered parking lots for the moderator
- Implement parking mapping design toolkit inbuild to the webapp for the moderator of the application

REFERENCES

[1]. M. M. Forrest, Z. Chen, S. Hassan, I. O. Raymond and K. Alinani, "Cost Effective Surface Disruption Detection System for Paved and Unpaved Roads," in IEEE Access, vol. 6, pp. 48634-48644, 2018, doi: 10.1109/ACCESS.2018.2867207.

[2]. Nienaber, S & Booysen, M.J. (Thinus) & Kroon, Rs. (2015). Detecting Potholes Using Simple Image Processing Techniques and Real-World Footage. 10.13140/RG.2.1.3121.8408.

[3]. Taluja, Chandan & Thakur, Ritula. (2018). An Intelligent Model for Indian Soil Classification using various Machine Learning Techniques. 2250-3005.

[4]. Mahmoodi-Eshkaftaki, M., Haghighi, A., & Houshyar, E. (2019). Land Suitability Evaluation using Image Processing based on Determination of Soil Texture-Structure and Soil Features. Soil Use and Management. doi:10.1111/sum.12572

[5]. Bennett, Jordan. (2019). Smart (Ai) Pothole Detector (Powered by "Tensorflow/TensorRT" on "Google Colab" and or "Jetson Nano" via a Convolutional Artificial Neural Network).

Thank You!

55

Q & A