Package 'GWlasso'

November 22, 2024

```
Title Geographically Weighted Lasso
```

Version 1.0.1

Description Performs geographically weighted Lasso regressions. Find optimal bandwidth, fit a geographically weighted lasso or ridge regression, and make predictions.

These methods are specially well suited for ecological inferences. Bandwidth selection algo-

rithm is from A. Comber and P. Harris (2018) <doi:10.1007/s10109-018-0280-7>.

Depends R (>= 3.5.0)

LazyData true

URL https://github.com/nibortolum/GWlasso,
 https://nibortolum.github.io/GWlasso/

BugReports https://github.com/nibortolum/GWlasso/issues

Repository CRAN

Date/Publication 2024-11-22 09:30:07 UTC

2 Amesbury

Contents

	Amesbury	2
	compute_distance_matrix	3
	gwl_bw_estimation	3
	gwl_fit	5
	plot.gwlfit	6
	plot_gwl_map	7
	predict.gwlfit	
	print.gwlest	
	print.gwlfit	10
Index		12

Amesbury

Amesbury Testate Amoebae dataset

Description

Dataset from Amesbury (2016) in Development of a new pan-European testate amoeba transfer function for reconstructing peatland palaeohydrology

Usage

Amesbury

Format

Amesbury:

This dataset contains the data from Amesbury (2016). In essence, it's a Testate amoebae community table (45 broad TA taxa and 1103 samples)

spe.df A species x sites dataframe with stites as rows and species in column

WTD A vector od Water table depth associated with each samples

coords a dataframe containing the coordinates of each sample

Source

doi:10.1016/j.quascirev.2016.09.024

References

Matthew J. Amesbury, Graeme T. Swindles, Anatoly Bobrov, Dan J. Charman, Joseph Holden, Mariusz Lamentowicz, Gunnar Mallon, Yuri Mazei, Edward A.D. Mitchell, Richard J. Payne, Thomas P. Roland, T. Edward Turner, Barry G. Warner, *Development of a new pan-European testate amoeba transfer function for reconstructing peatland palaeohydrology. Quaternary Science Reviews, vol.* 152, 2016, pages 132-151. doi:10.1016/j.quascirev.2016.09.024.

compute_distance_matrix

Compute distance matrix

Description

compute_distance_matrix() is a small helper function to help you compute a distance matrix. For the geographically method to work, is is important that distances between points are not zero. This function allows to add a small random noise to avoid zero distances.

Usage

```
compute_distance_matrix(data, method = "euclidean", add.noise = FALSE)
```

Arguments

data A dataframe or matrix containing at least two numerical columns.

method method to compute the distance matrix. Ultimately passed to stats::dist().

Can be euclidean, maximum, manhattan, canberra, binary or minkowski.

add.noise TRUE/FALSE set to TRUE to add a small noise to the distance matrix. Noise

U is generated as $U \sim (1 \times 10^{-6}, 5 \times 10^{-6})$. Noise is added only for pairs for

which distance is zero.

Value

```
a distance matrix, usable in gwl_bw_estimation()
```

Examples

```
coords <- data.frame("Lat" = rnorm(200), "Long" = rnorm(200))
distance_matrix <- compute_distance_matrix(coords)</pre>
```

gwl_bw_estimation

Bandwidth estimation for Geographically Weighted Lasso

Description

This function performs a bruteforce selection of the optimal bandwidth for the selected kernel to perform a geographically weighted lasso. The user should be aware that this function could be really long to run depending of the settings. We recommend starting with nbw = 5 and nfolds = 5 at first to ensure that the function is running properly and producing the desired output.

4 gwl_bw_estimation

Usage

```
gwl_bw_estimation(
    x.var,
    y.var,
    dist.mat,
    adaptive = TRUE,
    adptbwd.thresh = 0.1,
    kernel = "bisquare",
    alpha = 1,
    progress = TRUE,
    nbw = 100,
    nfolds = 5
)
```

Arguments

x.var input matrix, of dimension nobs x nvars; each row is an observation vector. x

should have 2 or more columns.

y.var response variable for the lasso

dist.mat a distance matrix. can be generated by compute_distance_matrix()

adaptive TRUE or FALSE Whether to perform an adaptive bandwidth search or not. A

fixed bandwidth means that than samples are selected if they fit a determined fixed radius around a location. in a aptative bandwidth, the radius around a location varies to gather a fixed number of samples around the investigated lo-

cation

adptbwd. thresh the lowest fraction of samples to take into account for local regression. Must be

0 < adptbwd.thresh < 1

kernel the geographical kernel shape to compute the weight. passed to GWmodel::gw.weight()

Can be gaussian, exponential, bisquare, tricube, boxcar

alpha the elasticnet mixing parameter. set 1 for lasso, 0 for ridge. see glmnet::glmnet()

progress if TRUE, print a progress bar

nbw the number of bandwidth to test

nfolds the number f folds for the glmnet cross validation

Value

a gwlest object. It is a list with rmspe (the RMSPE of the model with the associated badwidth), NA (the number of NA in the dataset), bw (the optimal bandwidth), bwd.vec (the vector of tested bandwidth)

References

A. Comber and P. Harris. *Geographically weighted elastic net logistic regression* (2018). *Journal of Geographical Systems, vol.* 20, no. 4, pages 317–341. doi:10.1007/s1010901802807.

gwl_fit 5

Examples

gwl_fit

Fit a geographically weighted lasso with the selected bandwidth

Description

Fit a geographically weighted lasso with the selected bandwidth

Usage

```
gwl_fit(
   bw,
   x.var,
   y.var,
   kernel,
   dist.mat,
   alpha,
   adaptive,
   progress = TRUE,
   nfolds = 5
)
```

Arguments

bw

Bandwidth

6 plot.gwlfit

x.var	input matrix, of dimension nobs x nvars; each row is an observation vector. x should have 2 or more columns.
y.var	response variable for the lasso
kernel	the geographical kernel shape to compute the weight. passed to GWmodel::gw.weight() Can be gaussian, exponential, bisquare, tricube, boxcar
dist.mat	a distance matrix. can be generated by compute_distance_matrix()
alpha	the elasticnet mixing parameter. set 1 for lasso, 0 for ridge. see glmnet::glmnet()
adaptive	TRUE or FALSE Whether to perform an adaptive bandwidth search or not. A fixed bandwidth means that samples are selected if they fit a determined fixed radius around a location. In a adaptive bandwidth, the radius around a location varies to gather a fixed number of samples around the investigated location
progress	TRUE/FALSE whether to display a progress bar or not
nfolds	the number f folds for the glmnet cross validation

Value

a gwlfit object containing a fitted Geographically weighted Lasso.

Examples

plot.gwlfit

Plot method for gwlfit object

Description

Plot method for gwlfit object

plot_gwl_map 7

Usage

```
## S3 method for class 'gwlfit' plot(x, ...)
```

Arguments

```
x a gwlfit object returned by gwl_fit()
... ellipsis for S3 method compatibility
```

Value

a ggplot

Examples

plot_gwl_map

Plot a map of beta coefficient for gwlfit object

Description

this function plots a map of the beta coefficients for a selected column (aka species). For this function to work, the coordinates supplied to <code>gwl_fit()</code> must be named "Lat" and "Long". The function is not bulletproof yet but is added here to reproduce the maps from the original publication.

[Experimental]

Usage

```
plot_gwl_map(x, column, crs = 4326)
```

8 predict.gwlfit

Arguments

x a gwlfit object returned by gwl_fit().
column the name of a variable to be plotted on the map. Must be quoted. for instance
"NEB.MIN"
crs the crs projection for the map (default is mercator WGS84). See sf::st_crs()

Value

a ggplot object

Examples

predict.gwlfit

Predict method for gwlfit objects

Description

Predict method for gwlfit objects

Usage

```
## S3 method for class 'gwlfit'
predict(object, newdata, newcoords, type = "response", verbose = FALSE, ...)
```

Arguments

object Object of class inheriting from "gwlfit"

newdata a data.frame or matrix with the same columns as the training dataset

newcoords a dataframe or matrix of coordinates of the new data

print.gwlest 9

Value

a vector of predicted values

Examples

```
predictors <- matrix(data = rnorm(2500), 50,50)</pre>
y_value <- sample(1:1000, 50)</pre>
coords <- data.frame("Lat" = rnorm(50), "Long" = rnorm(50))</pre>
distance_matrix <- compute_distance_matrix(coords)</pre>
my.gwl.fit <- gwl_fit(bw = 20,</pre>
                        x.var = predictors,
                        y.var = y_value,
                        kernel = "bisquare",
                        dist.mat = distance_matrix,
                        alpha = 1,
                        adaptive = TRUE,
                        progress = TRUE,
                        nfolds = 5)
my.gwl.fit
new_predictors <- matrix(data = rnorm(500), 10,50)</pre>
new_coords <- data.frame("Lat" = rnorm(10), "Long" = rnorm(10))</pre>
predicted_values <- predict(my.gwl.fit,</pre>
                               newdata = new_predictors,
                               newcoords = new_coords)
```

print.gwlest

Printing gwlest objects

Description

Printing gwlest objects

Usage

```
## S3 method for class 'gwlest'
print(x, ...)
```

print.gwlfit

Arguments

```
x an object of class gwlest... ellipsis for S3 method compatibility
```

Value

this function print key elements of a gwlest object

Examples

print.gwlfit

Printing gwlfit objects

Description

Printing gwlfit objects

Usage

```
## S3 method for class 'gwlfit' print(x, ...)
```

Arguments

```
x a gwlfit object
```

... ellipsis for S3 method compatibility

print.gwlfit 11

Value

this function print key elements of a gwlfit object

Examples

Index

```
\ast datasets
    Amesbury, 2
{\it Amesbury}, {\color{red} 2}
compute_distance_matrix, 3
compute\_distance\_matrix(), 4, 6
glmnet::glmnet(), 4, 6
glmnet::predict.glmnet(), 9
gwl_bw_estimation, 3
gwl_bw_estimation(), 3
gwl_fit,5
gwl_fit(), 7, 8
GWmodel::gw.weight(), 4, 6
plot.gwlfit,6
plot_gwl_map, 7
predict.gwlfit, 8
print.gwlest,9
\verb|print.gwlfit|, 10
sf::st\_crs(), 8
stats::dist(), 3
```