Combinatorial Solving with Provably Correct Results

Jakob Nordström

University of Copenhagen and Lund University

25th International Symposium on Mathematical Programming Montréal, Canada July 21–26, 2024

Based on joint work with Jeremias Berg, Bart Bogaerts, Ernir Demirović, Jan Elffers, Ambros Gleixner, Stephan Gocht, Alexander Hoen, Hannes Ihalainen, Matti Järvisalo, Ciaran McCreesh, Matthew McIlree, Magnus O. Myreen, Andy Oertel, Tobias Paxian, Konstantin Sidorov, Yong Kiam Tan, and Dieter Vandesande

The Success of Combinatorial Solving (and the Dirty Little Secret)

- Astounding progress last couple of decades on combinatorial solvers for, e.g.:
 - Boolean satisfiability (SAT) solving and optimization [BHvMW21]
 - Constraint programming [RvBW06]
 - Mixed integer linear programming [AW13, BR07]
 - Satisfiability modulo theories (SMT) solving [BHvMW21]
- Solvers very fast, but sometimes wrong (even best commercial ones) [BLB10, CKSW13, AGJ⁺18, GSD19, GS19, BMN22, BBN⁺23]
- Even get feasibility of solutions wrong (though this should be straightforward!)
- How can we claims of infeasibility?
- Or that a solution is optimal? (Even off-by-one mistakes can snowball into large errors if solver used as subroutine)

What Can Be Done About Solver Bugs?

Software testing

Hard to get good test coverage for sophisticated solvers

Progress using fuzzing and delta debugging [BB09, BLB10, KB22, NPB22, PB23]

But inherently can only detect presence of bugs, not absence

What Can Be Done About Solver Bugs?

Software testing

Hard to get good test coverage for sophisticated solvers Progress using fuzzing and delta debugging [BB09, BLB10, KB22, NPB22, PB23] But inherently can only detect presence of bugs, not absence

Formal verification

Prove that solver implementation adheres to formal specification Current techniques cannot scale to level of complexity in modern solvers

What Can Be Done About Solver Bugs?

Software testing

Hard to get good test coverage for sophisticated solvers Progress using fuzzing and delta debugging [BB09, BLB10, KB22, NPB22, PB23] But inherently can only detect presence of bugs, not absence

Formal verification

Prove that solver implementation adheres to formal specification Current techniques cannot scale to level of complexity in modern solvers

Proof logging

Make solver certifying [ABM+11, MMNS11] by adding code so that it outputs

- not only answer but also
- simple, machine-verifiable proof that answer is correct

• Run combinatorial solving algorithm on problem input

- Run combinatorial solving algorithm on problem input
- Get as output not only answer but also proof

- Get as output not only answer but also proof
- Feed input + answer + proof to proof checker

- Get as output not only answer but also proof
- Feed input + answer + proof to proof checker
- Verify that proof checker says answer is correct

Proof format for certifying solver should be

Proof format for certifying solver should be

• very powerful: minimal overhead for sophisticated reasoning

Proof format for certifying solver should be

- very powerful: minimal overhead for sophisticated reasoning
- dead simple: checking correctness of proofs should be (almost) trivial

Proof format for certifying solver should be

- very powerful: minimal overhead for sophisticated reasoning
- dead simple: checking correctness of proofs should be (almost) trivial

Clear conflict expressivity vs. simplicity!

Proof format for certifying solver should be

- very powerful: minimal overhead for sophisticated reasoning
- dead simple: checking correctness of proofs should be (almost) trivial

Clear conflict expressivity vs. simplicity!

Asking for both perhaps a little bit too good to be true?

Some Previous Proof Logging Work

Boolean satisfiability (SAT) solving

- Well established since over decade with several proof formats such as
 - DRAT [HHW13a, HHW13b, WHH14]
 - GRIT [CMS17]
 - LRAT [CHH+17]
- But no efficient support for most advanced techniques such as Gaussian elimination and symmetry breaking

Some Previous Proof Logging Work

Boolean satisfiability (SAT) solving

- Well established since over decade with several proof formats such as
 - DRAT [HHW13a, HHW13b, WHH14]
 - GRIT [CMS17]
 - LRAT [CHH+17]
- But no efficient support for most advanced techniques such as Gaussian elimination and symmetry breaking

Constraint programming

- Either have to trust that propagations done correctly [DFS12, OSC09, VS10]
- Or suffer from exponential slow-down to generate verifiable proofs [GS19]

Some Previous Proof Logging Work

Boolean satisfiability (SAT) solving

- Well established since over decade with several proof formats such as
 - DRAT [HHW13a, HHW13b, WHH14]
 - GRIT [CMS17]
 - LRAT [CHH+17]
- But no efficient support for most advanced techniques such as Gaussian elimination and symmetry breaking

Constraint programming

- Either have to trust that propagations done correctly [DFS12, OSC09, VS10]
- Or suffer from exponential slow-down to generate verifiable proofs [GS19]

Mixed integer linear programming

- Work on proof format VIPR [CGS17, EG23]
- But only for exact solving and without support for advanced techniques

Proof logging for combinatorial optimization is possible with single, unified method!

Proof logging for combinatorial optimization is possible with single, unified method!

- Build on successes in proof logging for SAT solving
- But represent constraints as 0-1 integer linear inequalities
- Formalize reasoning using cutting planes [CCT87] proof system
- Add well-chosen strengthening rules [Goc22, GN21, BGMN23]
- Implemented in VERIPB (https://gitlab.com/MIAOresearch/software/VeriPB)

Proof logging for combinatorial optimization is possible with single, unified method!

- Build on successes in proof logging for SAT solving
- ullet But represent constraints as 0-1 integer linear inequalities
- Formalize reasoning using cutting planes [CCT87] proof system
- Add well-chosen strengthening rules [Goc22, GN21, BGMN23]
- Implemented in VERIPB (https://gitlab.com/MIAOresearch/software/VeriPB)

Purpose of this talk:

■ Marketing pitch ©

Proof logging for combinatorial optimization is possible with single, unified method!

- Build on successes in proof logging for SAT solving
- But represent constraints as 0-1 integer linear inequalities
- Formalize reasoning using cutting planes [CCT87] proof system
- Add well-chosen strengthening rules [Goc22, GN21, BGMN23]
- Implemented in VERIPB (https://gitlab.com/MIAOresearch/software/VeriPB)

Purpose of this talk:

- Marketing pitch ©
- Overview of what solving paradigms have been covered so far (including SAT solving, constraint programming, and 0-1 ILP presolving)

Proof logging for combinatorial optimization is possible with single, unified method!

- Build on successes in proof logging for SAT solving
- But represent constraints as 0-1 integer linear inequalities
- Formalize reasoning using cutting planes [CCT87] proof system
- Add well-chosen strengthening rules [Goc22, GN21, BGMN23]
- Implemented in VERIPB (https://gitlab.com/MIAOresearch/software/VeriPB)

Purpose of this talk:

- Marketing pitch ©
- Overview of what solving paradigms have been covered so far (including SAT solving, constraint programming, and 0-1 ILP presolving)
- Oiscuss future challenges and directions

The Sales Pitch For Proof Logging

- Ocertifies correctness of computed results
- Detects errors even if due to compiler bugs, hardware failures, or cosmic rays
- Provides debugging support during software development [GMM⁺20, KM21, BBN⁺23, EG23]
- Facilitates performance analysis
- Helps identify potential for further improvements
- © Enables auditability
- Serves as stepping stone towards explainability

Design Principles for Proof Logging

Proof logging implementation

- Don't change solver
- Just add proof logging print statements (plus some book-keeping) to solver code

Design Principles for Proof Logging

Proof logging implementation

- Don't change solver
- Just add proof logging print statements (plus some book-keeping) to solver code

Performance goals

- Proof logging overhead small constant fraction of running time ($\lesssim 10\%$)
- Proof checking time within constant factor of solving time (current aim $\lesssim \times 10$)

Design Principles for Proof Logging

Proof logging implementation

- Don't change solver
- Just add proof logging print statements (plus some book-keeping) to solver code

Performance goals

- ullet Proof logging overhead small constant fraction of running time ($\lessapprox 10\%$)
- Proof checking time within constant factor of solving time (current aim $\lesssim \times 10$)

Proof system

- Keep language simple no XOR constraints, CP propagators, symmetries, . . .
- Reason about such notions using power of proof system
- Combine proof logging with formally verified proof checker

Proof Language: Pseudo-Boolean Constraints

Proof consists of 0-1 integer linear inequalities or pseudo-Boolean constraints:

$$\sum_{i} a_i \ell_i \ge A$$

- $a_i, A \in \mathbb{Z}$
- literals ℓ_i : x_i or \overline{x}_i (where $x_i + \overline{x}_i = 1$)
- variables x_i take values 0 = false or 1 = true

Proof Language: Pseudo-Boolean Constraints

Proof consists of 0-1 integer linear inequalities or pseudo-Boolean constraints:

$$\sum_{i} a_i \ell_i \ge A$$

- \bullet $a_i, A \in \mathbb{Z}$
- literals ℓ_i : x_i or \overline{x}_i (where $x_i + \overline{x}_i = 1$)
- variables x_i take values 0 = false or 1 = true

Sometimes convenient to use normalized form [Bar95] with all a_i , A positive (without loss of generality)

Some Types of Pseudo-Boolean Constraints

Disjunctive clauses

$$x \vee \overline{y} \vee z \quad \Leftrightarrow \quad x + \overline{y} + z \ge 1$$

Cardinality constraints

$$x_1 + x_2 + x_3 + x_4 \ge 2$$

General pseudo-Boolean constraints

$$x_1 + 2\overline{x}_2 + 3x_3 + 4\overline{x}_4 + 5x_5 \ge 7$$

Paradigms

- Boolean satisfiability (SAT) solving
- (linear) pseudo-Boolean solving
- graph solving
- constraint programming
- automated planning
- mixed integer linear programming
- SMT solving

Problem types

- decision / feasibility
- optimization
- multi-objective optimization
- projected model enumeration
- projected model counting
- preprocessing / problem reformulation

Paradigms

- Boolean satisfiability (SAT) solving
- (linear) pseudo-Boolean solving
- graph solving
- constraint programming
- automated planning
- mixed integer linear programming
- SMT solving

Supported in VeriPB presently

Problem types

- decision / feasibility
- optimization
- multi-objective optimization
- projected model enumeration
- projected model counting
- preprocessing / problem reformulation

Paradigms

- Boolean satisfiability (SAT) solving
- (linear) pseudo-Boolean solving
- graph solving
- constraint programming
- automated planning
- mixed integer linear programming
- SMT solving

Problem types

- decision / feasibility
- optimization
- multi-objective optimization
- projected model enumeration
- projected model counting
- preprocessing / problem reformulation

Supported in VeriPB presently, Real Soon Now™

Paradigms

- Boolean satisfiability (SAT) solving
- (linear) pseudo-Boolean solving
- graph solving
- constraint programming
- automated planning
- mixed integer linear programming
- SMT solving

Problem types

- decision / feasibility
- optimization
- multi-objective optimization
- projected model enumeration
- projected model counting
- preprocessing / problem reformulation

Supported in VeriPB presently, Real Soon NowTM, or hopefully in future extensions

Pseudo-Boolean Proof Logging — How and Why?

If problem is (special case of) 0-1 integer linear program

• just do proof logging [basically: add print statements to solver code]

Pseudo-Boolean Proof Logging — How and Why?

If problem is (special case of) 0-1 integer linear program

• just do proof logging [basically: add print statements to solver code]

Otherwise

- do trusted or verified translation to 0-1 ILP
- do proof logging for 0-1 ILP formulation [but solver still works with original input]

Pseudo-Boolean Proof Logging — How and Why?

If problem is (special case of) 0-1 integer linear program

• just do proof logging [basically: add print statements to solver code]

Otherwise

- do trusted or verified translation to 0-1 ILP
- do proof logging for 0-1 ILP formulation [but solver still works with original input]

Goldilocks compromise between expressivity and simplicity:

- **1** 0-1 ILP expressive formalism for combinatorial problems (including objective)
- Powerful reasoning capturing many combinatorial arguments

Proof Logging with Formally Verified Checking: Full Workflow

Proof Logging with Formally Verified Checking: Full Workflow

Proof Logging with Formally Verified Checking: Full Workflow

VERIPB Proof Structure

- Preamble Load input formula Specify settings
- Derivation section
 Derivations of new constraints
 Logging of solutions

- Output section
 Listing of constraints currently in database
 Input to next stage (or for debugging)
- Conclusions section
 Specification of what was established
 - satisfiability / unsatisfiability
 - optimality (or upper and lower bounds)
 - other types of conclusions

VERIPB Proof Configuration (Slightly Simplified)

Core set C

- Contains input formula at the start
- Maintains "equivalence" with input formula

Derived set \mathcal{D}

- All constraints derived during search
- Also intermediate constraints used in proof logging [but not used by solver]

VERIPB Proof Configuration (Slightly Simplified)

Core set C

- Contains input formula at the start
- Maintains "equivalence" with input formula

Objective
$$f = \sum_i w_i \ell_i + k$$

- 0-1 linear function to minimize
- Or f = 0 for decision problem
- Keep track of best known bound;
 initialize to ∞

Derived set \mathcal{D}

- All constraints derived during search
- Also intermediate constraints used in proof logging [but not used by solver]

Input axioms

Input axioms

Literal axioms

$$\ell_i \ge 0$$

Input axioms

Literal axioms

Addition

$$\frac{\ell_i \ge 0}{\sum_i a_i \ell_i \ge A \qquad \sum_i b_i \ell_i \ge B}$$
$$\sum_i (a_i + b_i) \ell_i \ge A + B$$

Input axioms

Literal axioms

Addition

Multiplication for any $c \in \mathbb{N}^+$

$$\frac{\overline{\ell_i \ge 0}}{\overline{\ell_i \ge A}}$$

$$\frac{\sum_i a_i \ell_i \ge A}{\sum_i (a_i + b_i) \ell_i \ge A + B}$$

$$\frac{\sum_i a_i \ell_i \ge A}{\sum_i ca_i \ell_i \ge cA}$$

Input axioms

Literal axioms

Addition

Division for any $c \in \mathbb{N}^+$ (constraint in normalized form)

$$\frac{\overline{\ell_i \ge 0}}{\sum_i a_i \ell_i \ge A} \frac{\sum_i b_i \ell_i \ge B}{\sum_i (a_i + b_i) \ell_i \ge A + B}$$

$$\frac{\sum_i a_i \ell_i \ge A}{\sum_i ca_i \ell_i \ge cA}$$

$$\frac{\sum_i a_i \ell_i \ge A}{\sum_i c_i \ell_i \ge A}$$

$$\frac{\sum_i a_i \ell_i \ge A}{\sum_i \left[\frac{a_i}{c}\right] \ell_i \ge \left[\frac{A}{c}\right]}$$

Input axioms

Literal axioms

Addition

Multiplication for any $c \in \mathbb{N}^+$

Division for any $c \in \mathbb{N}^+$ (constraint in normalized form)

Saturation

(constraint in normalized form)

$$\frac{\overline{\ell_i \ge 0}}{\sum_i a_i \ell_i \ge A} \frac{\sum_i b_i \ell_i \ge B}{\sum_i (a_i + b_i) \ell_i \ge A + B}$$

$$\frac{\sum_i a_i \ell_i \ge A}{\sum_i ca_i \ell_i \ge cA}$$

$$\frac{\sum_i a_i \ell_i \ge A}{\sum_i \left[\frac{a_i}{c}\right] \ell_i \ge \left[\frac{A}{c}\right]}$$

$$\frac{\sum_i a_i \ell_i \ge A}{\sum_i \min(a_i, A) \cdot \ell_i \ge A}$$

$$w + 2x + y \ge 2$$

Multiply by 2
$$\frac{w + 2x + y \ge 2}{2w + 4x + 2y > 4}$$

Multiply by 2
$$\cfrac{w+2x+y\geq 2}{2w+4x+2y\geq 4} \qquad \cfrac{w+2x+4y+2z\geq 5}{}$$

$$\text{Multiply by 2} \quad \frac{w+2x+y\geq 2}{2w+4x+2y\geq 4} \qquad \frac{w+2x+4y+2z\geq 5}{3w+6x+6y+2z\geq 9}$$

$$\begin{array}{c} \text{Multiply by 2} \\ \text{Add} \end{array} \frac{\frac{w+2x+y\geq 2}{2w+4x+2y\geq 4}}{3w+6x+6y+2z\geq 9} \qquad \overline{z}\geq 0 \end{array}$$

$$\begin{array}{c} \text{Multiply by 2} \\ \text{Add} \end{array} \begin{array}{c} \frac{w+2x+y \geq 2}{2w+4x+2y \geq 4} \\ \hline 3w+6x+6y+2z \geq 9 \end{array} \qquad \frac{\overline{z} \geq 0}{2\overline{z} \geq 0} \end{array} \text{ Multiply by 2}$$

$$\begin{array}{c} \text{Multiply by 2} \\ \text{Add} \end{array} \frac{\frac{w+2x+y\geq 2}{2w+4x+2y\geq 4}}{\frac{3w+6x+6y+2z\geq 9}{3w+6x+6y+2z+2\overline{z}\geq 9}} \qquad \frac{\overline{z}\geq 0}{2\overline{z}\geq 0} \end{array} \text{ Multiply by 2}$$

$$\begin{array}{c} \text{Multiply by 2} \\ \text{Add} \end{array} \xrightarrow[\text{Add}]{ \begin{array}{c} w+2x+y\geq 2 \\ \hline 2w+4x+2y\geq 4 \\ \hline \\ \text{Add} \end{array}} \xrightarrow[3w+6x+6y+2z\geq 9]{ \begin{array}{c} \overline{z}\geq 0 \\ \hline 2\overline{z}\geq 0 \\ \hline \\ 3w+6x+6y+2 \\ \hline \end{array}} \xrightarrow[3w+6x+6y+2]{ \begin{array}{c} \overline{z}\geq 0 \\ \hline \\ 2\overline{z}\geq 0 \\ \hline \end{array}} \text{ Multiply by 2} \end{array}$$

$$\begin{array}{c} \text{Multiply by 2} \\ \text{Add} \end{array} \begin{array}{c} \frac{w+2x+y \geq 2}{2w+4x+2y \geq 4} & w+2x+4y+2z \geq 5 \\ \\ \text{Add} \end{array} \begin{array}{c} \frac{\overline{z} \geq 0}{2\overline{z} \geq 0} \end{array} \end{array} \begin{array}{c} \text{Multiply by 2} \\ \\ 3w+6x+6y+2z \geq 9 \\ \hline 3w+6x+6y \end{array} \begin{array}{c} \geq 7 \end{array}$$

$$\begin{array}{c} \text{Multiply by 2} \\ \text{Add} \end{array} \frac{\frac{w+2x+y\geq 2}{2w+4x+2y\geq 4}}{\frac{3w+6x+6y+2z\geq 9}{\text{Divide by 3}}} \frac{\frac{\overline{z}\geq 0}{2\overline{z}\geq 0}}{\frac{3w+6x+6y}{2\overline{z}} \geq 7} \\ \text{Multiply by 2} \end{array}$$

Multiply by 2
$$\frac{w+2x+y\geq 2}{2w+4x+2y\geq 4} \qquad w+2x+4y+2z\geq 5 \qquad \overline{z}\geq 0 \\ \frac{3w+6x+6y+2z\geq 9}{2\overline{z}\geq 0} \qquad \frac{3w+6x+6y}{2\overline{z}\geq 0} \qquad \text{Multiply by 2}$$
 Divide by 3
$$\frac{3w+6x+6y}{w+2x+2y\geq 3} \geq 3$$

By naming constraints by integers and literal axioms by the literal involved as

Constraint 1
$$\doteq$$
 $2x + y + w \ge 2$
Constraint 2 \doteq $2x + 4y + 2z + w \ge 5$
 $\sim \mathbf{z} \doteq \overline{z} \ge 0$

Multiply by 2
$$\frac{w+2x+y\geq 2}{2w+4x+2y\geq 4} \qquad w+2x+4y+2z\geq 5 \qquad \overline{z}\geq 0 \\ \frac{3w+6x+6y+2z\geq 9}{2\overline{z}\geq 0} \qquad \frac{3w+6x+6y}{2\overline{z}\geq 0} \qquad \text{Multiply by 2}$$
 Divide by 3
$$\frac{3w+6x+6y}{w+2x+2y\geq 3} \geq 3$$

By naming constraints by integers and literal axioms by the literal involved as

Constraint 1
$$\doteq$$
 $2x + y + w \geq 2$
Constraint 2 \doteq $2x + 4y + 2z + w \geq 5$
 \sim z \doteq $\overline{z} \geq 0$

such a calculation is written in the proof log in reverse Polish notation as

pol 1 2 * 2 +
$$\sim$$
z 2 * + 3 d

C is said to be "redundant" with respect to F if F and $F \cup \{C\}$ are equisatisfiable Want to allow adding such "redundant" constraints

C is said to be "redundant" with respect to F if F and $F \cup \{C\}$ are equisatisfiable Want to allow adding such "redundant" constraints

Redundance-based strengthening ([BT19, GN21], inspired by [JHB12])

 ${\it C}$ is redundant with respect to F if and only if there is a substitution ω (mapping variables to truth values or literals), called a witness, for which

$$F \cup \{\neg C\} \models (F \cup \{C\}) \upharpoonright_{\omega}$$

C is said to be "redundant" with respect to F if F and $F \cup \{C\}$ are equisatisfiable Want to allow adding such "redundant" constraints

Redundance-based strengthening ([BT19, GN21], inspired by [JHB12])

 ${\it C}$ is redundant with respect to F if and only if there is a substitution ω (mapping variables to truth values or literals), called a witness, for which

$$F \cup \{\neg C\} \models (F \cup \{C\}) \upharpoonright_{\omega}$$

ullet Proof sketch for interesting direction: If lpha satisfies F but falsifies C, then $lpha\circ\omega$ satisfies $F\cup\{C\}$

C is said to be "redundant" with respect to F if F and $F \cup \{C\}$ are equisatisfiable Want to allow adding such "redundant" constraints

Redundance-based strengthening ([BT19, GN21], inspired by [JHB12])

 ${\it C}$ is redundant with respect to F if and only if there is a substitution ω (mapping variables to truth values or literals), called a witness, for which

$$F \cup \{\neg C\} \models (F \cup \{C\}) \upharpoonright_{\omega}$$

- Proof sketch for interesting direction: If α satisfies F but falsifies C, then $\alpha \circ \omega$ satisfies $F \cup \{C\}$
- In a proof, the implication needs to be efficiently verifiable every $D \in (F \cup \{C\})|_{\omega}$ should follow from $F \cup \{\neg C\}$ either
 - 1 "obviously" or
 - 2 by explicitly presented derivation

Redundance-based strengthening, optimization version [BGMN23]

Add constraint C to derived set \mathcal{D} if exists witness substitution ω such that

$$\mathcal{C} \cup \mathcal{D} \cup \{\neg C\} \models (\mathcal{C} \cup \mathcal{D} \cup \{C\}) \upharpoonright_{\omega} \cup \{f \upharpoonright_{\omega} \leq f\}$$

Redundance-based strengthening, optimization version [BGMN23]

Add constraint C to derived set \mathcal{D} if exists witness substitution ω such that

$$\mathcal{C} \cup \mathcal{D} \cup \{\neg C\} \models (\mathcal{C} \cup \mathcal{D} \cup \{C\}) \upharpoonright_{\omega} \cup \{f \upharpoonright_{\omega} \leq f\}$$

Can be more aggressive if witness ω strictly improves solution

ISMP '24 20/35

Redundance-based strengthening, optimization version [BGMN23]

Add constraint C to derived set \mathcal{D} if exists witness substitution ω such that

$$\mathcal{C} \cup \mathcal{D} \cup \{\neg C\} \models (\mathcal{C} \cup \mathcal{D} \cup \{C\}) \upharpoonright_{\omega} \cup \{f \upharpoonright_{\omega} \leq f\}$$

Can be more aggressive if witness ω strictly improves solution

Dominance-based strengthening [BGMN23]

Add constraint C to derived set $\mathcal D$ if exists witness substitution ω such that

$$\mathcal{C} \cup \mathcal{D} \cup \{\neg C\} \models \mathcal{C} \upharpoonright_{\omega} \cup \{f \upharpoonright_{\omega} < f\}$$

Redundance-based strengthening, optimization version [BGMN23]

Add constraint C to derived set \mathcal{D} if exists witness substitution ω such that

$$\mathcal{C} \cup \mathcal{D} \cup \{\neg C\} \models (\mathcal{C} \cup \mathcal{D} \cup \{C\}) \upharpoonright_{\omega} \cup \{f \upharpoonright_{\omega} \leq f\}$$

Can be more aggressive if witness ω strictly improves solution

Dominance-based strengthening [BGMN23]

Add constraint C to derived set $\mathcal D$ if exists witness substitution ω such that

$$\mathcal{C} \cup \mathcal{D} \cup \{\neg C\} \models \mathcal{C} \upharpoonright_{\omega} \cup \{f \upharpoonright_{\omega} < f\}$$

- ullet Applying ω should strictly decrease f
- If so, don't need to show that $(\mathcal{D} \cup \{C\})|_{\omega}$ implied!

Soundness of Dominance Rule

Dominance-based strengthening

Add constraint C to derived set \mathcal{D} if exists witness substitution ω such that

$$\mathcal{C} \cup \mathcal{D} \cup \{\neg C\} \models \mathcal{C} \upharpoonright_{\omega} \cup \{f \upharpoonright_{\omega} < f\}$$

Why is this sound? Let $\mathcal{D} = \emptyset$ for simplicity

Soundness of Dominance Rule

Dominance-based strengthening

Add constraint C to derived set \mathcal{D} if exists witness substitution ω such that

$$\mathcal{C} \cup \mathcal{D} \cup \{\neg C\} \models \mathcal{C} \upharpoonright_{\omega} \cup \{f \upharpoonright_{\omega} < f\}$$

Why is this sound? Let $\mathcal{D} = \emptyset$ for simplicity

1 Suppose α satisfies \mathcal{C} but falsifies C (i.e., satisfies $\neg C$)

ISMP '24 21/35

Soundness of Dominance Rule

Dominance-based strengthening

Add constraint C to derived set \mathcal{D} if exists witness substitution ω such that

$$\mathcal{C} \cup \mathcal{D} \cup \{\neg C\} \models \mathcal{C} \upharpoonright_{\omega} \cup \{f \upharpoonright_{\omega} < f\}$$

Why is this sound? Let $\mathcal{D} = \emptyset$ for simplicity

- **1** Suppose α satisfies \mathcal{C} but falsifies C (i.e., satisfies $\neg C$)
- ② Then $\alpha \circ \omega$ satisfies \mathcal{C} and $f(\alpha \circ \omega) < f(\alpha)$

Dominance-based strengthening

Add constraint C to derived set \mathcal{D} if exists witness substitution ω such that

$$\mathcal{C} \cup \mathcal{D} \cup \{\neg C\} \models \mathcal{C} \upharpoonright_{\omega} \cup \{f \upharpoonright_{\omega} < f\}$$

- **1** Suppose α satisfies \mathcal{C} but falsifies C (i.e., satisfies $\neg C$)
- ② Then $\alpha \circ \omega$ satisfies $\mathcal C$ and $f(\alpha \circ \omega) < f(\alpha)$
- **1** If $\alpha \circ \omega$ satisfies C, we're done

Dominance-based strengthening

Add constraint C to derived set \mathcal{D} if exists witness substitution ω such that

$$\mathcal{C} \cup \mathcal{D} \cup \{\neg C\} \models \mathcal{C} \upharpoonright_{\omega} \cup \{f \upharpoonright_{\omega} < f\}$$

- Suppose α satisfies \mathcal{C} but falsifies C (i.e., satisfies $\neg C$)
- ② Then $\alpha \circ \omega$ satisfies $\mathcal C$ and $f(\alpha \circ \omega) < f(\alpha)$
- **3** If $\alpha \circ \omega$ satisfies C, we're done

Dominance-based strengthening

Add constraint C to derived set \mathcal{D} if exists witness substitution ω such that

$$\mathcal{C} \cup \mathcal{D} \cup \{\neg C\} \models \mathcal{C} \upharpoonright_{\omega} \cup \{f \upharpoonright_{\omega} < f\}$$

- Suppose α satisfies \mathcal{C} but falsifies C (i.e., satisfies $\neg C$)
- ② Then $\alpha \circ \omega$ satisfies $\mathcal C$ and $f(\alpha \circ \omega) < f(\alpha)$
- **3** If $\alpha \circ \omega$ satisfies C, we're done
- Otherwise $(\alpha \circ \omega) \circ \omega$ satisfies \mathcal{C} and $f((\alpha \circ \omega) \circ \omega) < f(\alpha \circ \omega)$
- **5** If $(\alpha \circ \omega) \circ \omega$ satisfies C, we're done

Dominance-based strengthening

Add constraint C to derived set \mathcal{D} if exists witness substitution ω such that

$$\mathcal{C} \cup \mathcal{D} \cup \{\neg C\} \models \mathcal{C} \upharpoonright_{\omega} \cup \{f \upharpoonright_{\omega} < f\}$$

- **1** Suppose α satisfies \mathcal{C} but falsifies C (i.e., satisfies $\neg C$)
- ② Then $\alpha \circ \omega$ satisfies $\mathcal C$ and $f(\alpha \circ \omega) < f(\alpha)$
- **3** If $\alpha \circ \omega$ satisfies C, we're done
- Otherwise $(\alpha \circ \omega) \circ \omega$ satisfies \mathcal{C} and $f((\alpha \circ \omega) \circ \omega) < f(\alpha \circ \omega)$
- **5** If $(\alpha \circ \omega) \circ \omega$ satisfies C, we're done
- $\bullet \text{ Otherwise } ((\alpha \circ \omega) \circ \omega) \circ \omega \text{ satisfies } \mathcal{C} \text{ and } f(((\alpha \circ \omega) \circ \omega) \circ \omega) < f((\alpha \circ \omega) \circ \omega)$

Dominance-based strengthening

Add constraint C to derived set \mathcal{D} if exists witness substitution ω such that

$$\mathcal{C} \cup \mathcal{D} \cup \{\neg C\} \models \mathcal{C} \upharpoonright_{\omega} \cup \{f \upharpoonright_{\omega} < f\}$$

- **1** Suppose α satisfies \mathcal{C} but falsifies C (i.e., satisfies $\neg C$)
- ② Then $\alpha \circ \omega$ satisfies $\mathcal C$ and $f(\alpha \circ \omega) < f(\alpha)$
- **1** If $\alpha \circ \omega$ satisfies C, we're done
- Otherwise $(\alpha \circ \omega) \circ \omega$ satisfies $\mathcal C$ and $f((\alpha \circ \omega) \circ \omega) < f(\alpha \circ \omega)$
- **5** If $(\alpha \circ \omega) \circ \omega$ satisfies C, we're done
- **7** . . .

Dominance-based strengthening

Add constraint C to derived set \mathcal{D} if exists witness substitution ω such that

$$\mathcal{C} \cup \mathcal{D} \cup \{\neg C\} \models \mathcal{C} \upharpoonright_{\omega} \cup \{f \upharpoonright_{\omega} < f\}$$

- **1** Suppose α satisfies C but falsifies C (i.e., satisfies $\neg C$)
- ② Then $\alpha \circ \omega$ satisfies \mathcal{C} and $f(\alpha \circ \omega) < f(\alpha)$
- **3** If $\alpha \circ \omega$ satisfies C, we're done
- Otherwise $(\alpha \circ \omega) \circ \omega$ satisfies $\mathcal C$ and $f((\alpha \circ \omega) \circ \omega) < f(\alpha \circ \omega)$
- **5** If $(\alpha \circ \omega) \circ \omega$ satisfies C, we're done
- Ø ...
- lacktriangle Can't go on forever, so finally reach lpha' satisfying $\mathcal{C} \cup \{C\}$

Soundness of Dominance Rule (Continued)

Dominance-based strengthening

Add constraint C to derived set \mathcal{D} if exists witness substitution ω such that

$$\mathcal{C} \cup \mathcal{D} \cup \{\neg C\} \models \mathcal{C} \upharpoonright_{\omega} \cup \{f \upharpoonright_{\omega} < f\}$$

Soundness of Dominance Rule (Continued)

Dominance-based strengthening

Add constraint C to derived set \mathcal{D} if exists witness substitution ω such that

$$\mathcal{C} \cup \mathcal{D} \cup \{\neg C\} \models \mathcal{C} \upharpoonright_{\omega} \cup \{f \upharpoonright_{\omega} < f\}$$

Suppose now that $\mathcal{D} \neq \emptyset$

- Same inductive proof as before, but also nested forward induction over derivation
- ullet Or pick lpha satisfying $\mathcal{C} \cup \mathcal{D}$ and minimizing f and argue by contradiction

Soundness of Dominance Rule (Continued)

Dominance-based strengthening

Add constraint C to derived set \mathcal{D} if exists witness substitution ω such that

$$\mathcal{C} \cup \mathcal{D} \cup \{\neg C\} \models \mathcal{C} \upharpoonright_{\omega} \cup \{f \upharpoonright_{\omega} < f\}$$

Suppose now that $\mathcal{D} \neq \emptyset$

- Same inductive proof as before, but also nested forward induction over derivation
- \bullet Or pick α satisfying $\mathcal{C} \cup \mathcal{D}$ and minimizing f and argue by contradiction

Further extensions:

- ullet Define dominance rule with respect to order ${\cal O}$ independent of objective function
- Switch between different orders in same proof
- See [BGMN23] for details

Three Pseudo-Boolean Proof Logging Vignettes

- Symmetry breaking [BGMN23]
- Graph solving (subgraph isomorphism) [GMN20, GMM+20, GMM+24]
- Constraint programming [EGMN20, GMN22, MM23, MMN24]

• Pretend to solve optimisation problem minimizing $f \doteq \sum_{i=1}^{n} 2^{n-i} \cdot x_i$ (search for lexicographically smallest assignment satisfying formula)

- Pretend to solve optimisation problem minimizing $f \doteq \sum_{i=1}^{n} 2^{n-i} \cdot x_i$ (search for lexicographically smallest assignment satisfying formula)
- Derive (for proof log only) pseudo-Boolean version of lex-leader constraint

$$f \le f \upharpoonright_{\sigma} \quad \doteq \quad \sum_{i=1}^{n} 2^{n-i} \cdot (\sigma(x_i) - x_i) \ge 0$$

- Pretend to solve optimisation problem minimizing $f \doteq \sum_{i=1}^{n} 2^{n-i} \cdot x_i$ (search for lexicographically smallest assignment satisfying formula)
- Derive (for proof log only) pseudo-Boolean version of lex-leader constraint

$$f \le f \upharpoonright_{\sigma} \quad \doteq \quad \sum_{i=1}^{n} 2^{n-i} \cdot (\sigma(x_i) - x_i) \ge 0$$

Derive symmetry breaking clauses from this PB constraint:

$$\begin{array}{ccc} y_0 & & \overline{y}_j \vee \overline{\sigma(x_j)} \vee x_j \\ \overline{y}_{j-1} \vee \overline{x}_j \vee \sigma(x_j) & & y_j \vee \overline{y}_{j-1} \vee \overline{x}_j \\ \overline{y}_j \vee y_{j-1} & & y_j \vee \overline{y}_{j-1} \vee \sigma(x_j) \end{array}$$

- Pretend to solve optimisation problem minimizing $f \doteq \sum_{i=1}^{n} 2^{n-i} \cdot x_i$ (search for lexicographically smallest assignment satisfying formula)
- Oerive (for proof log only) pseudo-Boolean version of lex-leader constraint

$$f \le f \upharpoonright_{\sigma} \quad \doteq \quad \sum_{i=1}^{n} 2^{n-i} \cdot (\sigma(x_i) - x_i) \ge 0$$

Oerive symmetry breaking clauses from this PB constraint:

$$y_0 \ge 1$$

$$\overline{y}_j + \overline{\sigma(x_j)} + x_j \ge 1$$

$$\overline{y}_{j-1} + \overline{x}_j + \sigma(x_j) \ge 1$$

$$y_j + \overline{y}_{j-1} + \overline{x}_j \ge 1$$

$$y_j + \overline{y}_{j-1} + \sigma(x_j) \ge 1$$

- Pretend to solve optimisation problem minimizing $f \doteq \sum_{i=1}^{n} 2^{n-i} \cdot x_i$ (search for lexicographically smallest assignment satisfying formula)
- Derive (for proof log only) pseudo-Boolean version of lex-leader constraint

$$f \le f \upharpoonright_{\sigma} \quad \doteq \quad \sum_{i=1}^{n} 2^{n-i} \cdot (\sigma(x_i) - x_i) \ge 0$$

Oerive symmetry breaking clauses from this PB constraint:

$$\begin{aligned} y_0 &\geq 1 & \overline{y}_j + \overline{\sigma(x_j)} + x_j &\geq 1 \\ \overline{y}_{j-1} + \overline{x}_j + \sigma(x_j) &\geq 1 & y_j + \overline{y}_{j-1} + \overline{x}_j &\geq 1 \\ \overline{y}_j + y_{j-1} &\geq 1 & y_j + \overline{y}_{j-1} + \sigma(x_j) &\geq 1 \end{aligned}$$

VERIPB can certify fully general SAT symmetry breaking [BGMN23]

The Subgraph Isomorphism Problem

Input

- ullet Pattern graph ${\mathcal P}$ with vertices $V({\mathcal P})=\{a,b,c,\ldots\}$
- Target graph \mathcal{T} with vertices $V(\mathcal{T}) = \{u, v, w, \ldots\}$

The Subgraph Isomorphism Problem

Input

- Pattern graph \mathcal{P} with vertices $V(\mathcal{P}) = \{a, b, c, \ldots\}$
- Target graph \mathcal{T} with vertices $V(\mathcal{T}) = \{u, v, w, \ldots\}$

Task

- Find all subgraph isomorphisms $\varphi:V(\mathcal{P})\to V(\mathcal{T})$
- I.e., if

 - $(a,b) \in E(\mathcal{P})$

then must have $(u, v) \in E(\mathcal{T})$

Pseudo-Boolean Proof Logging for Subgraph Isomorphism Solving

All reasoning steps in Glasgow Subgraph Solver [ADH+19, GSS] can be formalized efficiently in the cutting planes proof system [GMN20]

Pseudo-Boolean Proof Logging for Subgraph Isomorphism Solving

All reasoning steps in Glasgow Subgraph Solver [ADH+19, GSS] can be formalized efficiently in the cutting planes proof system [GMN20]

Means that

- Solver can justify each step by writing local formal derivation
- 2 Local derivations can be chained into global correctness proof
- Proof checkable by stand-alone verifier that knows nothing about graphs
- With end-to-end fully formally verified result [GMM⁺24]

Subgraph Isomorphism as a Pseudo-Boolean Formula

- Pattern graph \mathcal{P} with $V(\mathcal{P}) = \{a, b, c, \ldots\}$
- Target graph \mathcal{T} with $V(\mathcal{T}) = \{u, v, w, \ldots\}$
- No loops (for simplicity)

Pseudo-Boolean encoding

$$\sum_{v \in V(\mathcal{T})} x_{a,v} = 1 \qquad \qquad \text{[every a maps somewhere]}$$

$$\sum_{b \in V(\mathcal{P})} \overline{x}_{b,u} \geq |V(\mathcal{P})| - 1 \qquad \qquad \text{[mapping is one-to-one]}$$

$$\overline{x}_{a,u} + \sum_{v \in N(u)} x_{b,v} \geq 1 \qquad \qquad \text{[edge (a,b) maps to edge (u,v)]}$$

$$\overline{x}_{a,u} + x_{b,v} + x_{b,w} \ge 1$$

$$\overline{x}_{a,u} + x_{c,v} + x_{c,w} \ge 1$$

$$\overline{x}_{a,u} + x_{d,v} + x_{d,w} \ge 1$$

$$\overline{x}_{a,u} + x_{b,v} + x_{b,w} \ge 1$$

$$\overline{x}_{a,u} + x_{c,v} + x_{c,w} \ge 1$$

$$\overline{x}_{a,u} + x_{d,v} + x_{d,w} \ge 1$$

$$\overline{x}_{a,v} + \overline{x}_{b,v} + \overline{x}_{c,v} + \overline{x}_{d,v} + \overline{x}_{e,v} \ge 4$$

$$\overline{x}_{a,w} + \overline{x}_{b,w} + \overline{x}_{c,w} + \overline{x}_{d,w} + \overline{x}_{e,w} \ge 4$$

$$\overline{x}_{a,u} + x_{b,v} + x_{b,w} \ge 1$$

$$\overline{x}_{a,u} + x_{c,v} + x_{c,w} \ge 1$$

$$\overline{x}_{a,u} + x_{d,v} + x_{d,w} \ge 1$$

$$\overline{x}_{a,v} + \overline{x}_{b,v} + \overline{x}_{c,v} + \overline{x}_{d,v} + \overline{x}_{e,v} \ge 4$$

$$\overline{x}_{a,w} + \overline{x}_{b,w} + \overline{x}_{c,w} + \overline{x}_{d,w} + \overline{x}_{e,w} \ge 4$$

$$x_{a,v} \ge 0$$

$$x_{a,v} \ge 0$$

$$x_{e,v} \ge 0$$

$$x_{e,v} \ge 0$$

$$\overline{x}_{a,u} + x_{b,v} + x_{b,w} \ge 1$$

$$\overline{x}_{a,u} + x_{c,v} + x_{c,w} \ge 1$$

$$\overline{x}_{a,u} + x_{d,v} + x_{d,w} \ge 1$$

$$\overline{x}_{a,v} + \overline{x}_{b,v} + \overline{x}_{c,v} + \overline{x}_{d,v} + \overline{x}_{e,v} \ge 4$$

$$\overline{x}_{a,w} + \overline{x}_{b,w} + \overline{x}_{c,w} + \overline{x}_{d,w} + \overline{x}_{e,w} \ge 4$$

$$x_{a,v} \ge 0$$

$$x_{a,v} \ge 0$$

$$x_{e,v} \ge 0$$

$$x_{e,v} \ge 0$$

$$\begin{aligned} \overline{x}_{a,u} + x_{b,v} + x_{b,w} &\geq 1 \\ \overline{x}_{a,u} + x_{c,v} + x_{c,w} &\geq 1 \\ \overline{x}_{a,u} + x_{d,v} + x_{d,w} &\geq 1 \\ \overline{x}_{a,v} + \overline{x}_{b,v} + \overline{x}_{c,v} + \overline{x}_{d,v} + \overline{x}_{e,v} &\geq 4 \\ \overline{x}_{a,w} + \overline{x}_{b,w} + \overline{x}_{c,w} + \overline{x}_{d,w} + \overline{x}_{e,w} &\geq 4 \\ x_{a,v} &\geq 0 \\ x_{a,v} &\geq 0 \\ x_{e,v} &\geq 0 \\ x_{e,v} &\geq 0 \end{aligned}$$

$$3\overline{x}_{a,u} + 10 \ge 11$$

$$\overline{x}_{a,u} + x_{b,v} + x_{b,w} \ge 1$$

$$\overline{x}_{a,u} + x_{c,v} + x_{c,w} \ge 1$$

$$\overline{x}_{a,u} + x_{d,v} + x_{d,w} \ge 1$$

$$\overline{x}_{a,v} + \overline{x}_{b,v} + \overline{x}_{c,v} + \overline{x}_{d,v} + \overline{x}_{e,v} \ge 4$$

$$\overline{x}_{a,w} + \overline{x}_{b,w} + \overline{x}_{c,w} + \overline{x}_{d,w} + \overline{x}_{e,w} \ge 4$$

$$x_{a,v} \ge 0$$

$$x_{a,v} \ge 0$$

$$x_{e,v} \ge 0$$

$$x_{e,v} \ge 0$$

$$3\overline{x}_{a,u} \geq 1$$

$$\overline{x}_{a,u} + x_{b,v} + x_{b,w} \ge 1$$

$$\overline{x}_{a,u} + x_{c,v} + x_{c,w} \ge 1$$

$$\overline{x}_{a,u} + x_{d,v} + x_{d,w} \ge 1$$

$$\overline{x}_{a,v} + \overline{x}_{b,v} + \overline{x}_{c,v} + \overline{x}_{d,v} + \overline{x}_{e,v} \ge 4$$

$$\overline{x}_{a,w} + \overline{x}_{b,w} + \overline{x}_{c,w} + \overline{x}_{d,w} + \overline{x}_{e,w} \ge 4$$

$$x_{a,v} \ge 0$$

$$x_{a,v} \ge 0$$

$$x_{e,v} \ge 0$$

$$x_{e,v} \ge 0$$

$$3\overline{x}_{a,u} \geq 1$$
 $\overline{x}_{a,u} \geq 1$

Integer Variables in Constraint Programming (1/2)

How to deal with integer variables?

Given $A \in \{-3...9\}$, the direct encoding is:

$$a_{=-3} + a_{=-2} + a_{=-1} + a_{=0} + a_{=1} + a_{=2} + a_{=3}$$

 $+ a_{=4} + a_{=5} + a_{=6} + a_{=7} + a_{=8} + a_{=9} = 1$

Integer Variables in Constraint Programming (1/2)

How to deal with integer variables?

Given $A \in \{-3...9\}$, the direct encoding is:

$$a_{=-3} + a_{=-2} + a_{=-1} + a_{=0} + a_{=1} + a_{=2} + a_{=3}$$

 $+ a_{=4} + a_{=5} + a_{=6} + a_{=7} + a_{=8} + a_{=9} = 1$

This doesn't work for large domains...

Integer Variables in Constraint Programming (1/2)

How to deal with integer variables?

Given $A \in \{-3...9\}$, the direct encoding is:

$$a_{=-3} + a_{=-2} + a_{=-1} + a_{=0} + a_{=1} + a_{=2} + a_{=3}$$

 $+ a_{=4} + a_{=5} + a_{=6} + a_{=7} + a_{=8} + a_{=9} = 1$

This doesn't work for large domains...

We can instead use a binary encoding:

$$-16a_{\rm neg}+1a_{\rm b0}+2a_{\rm b1}+4a_{\rm b2}+8a_{\rm b3}\geq -3 \qquad \text{ and}$$

$$16a_{\rm neg}+-1a_{\rm b0}+-2a_{\rm b1}+-4a_{\rm b2}+-8a_{\rm b3}\geq -9$$

Doesn't propagate much, but that isn't a problem for proof logging

Integer Variables in Constraint Programming (2/2)

We can mix binary and order encodings! Define big-M linear inequalities encoding

$$a_{\geq 4} \Leftrightarrow -16a_{\text{neg}} + 1a_{\text{b0}} + 2a_{\text{b1}} + 4a_{\text{b2}} + 8a_{\text{b3}} \geq 4$$

 $a_{\geq 5} \Leftrightarrow -16a_{\text{neg}} + 1a_{\text{b0}} + 2a_{\text{b1}} + 4a_{\text{b2}} + 8a_{\text{b3}} \geq 5$
 $a_{=4} \Leftrightarrow a_{\geq 4} \wedge \overline{a}_{\geq 5}$

Integer Variables in Constraint Programming (2/2)

We can mix binary and order encodings! Define big-M linear inequalities encoding

$$a_{\geq 4} \Leftrightarrow -16a_{\text{neg}} + 1a_{\text{b0}} + 2a_{\text{b1}} + 4a_{\text{b2}} + 8a_{\text{b3}} \geq 4$$

 $a_{\geq 5} \Leftrightarrow -16a_{\text{neg}} + 1a_{\text{b0}} + 2a_{\text{b1}} + 4a_{\text{b2}} + 8a_{\text{b3}} \geq 5$
 $a_{=4} \Leftrightarrow a_{\geq 4} \wedge \overline{a}_{\geq 5}$

When creating $a_{\geq i}$, also introduce pseudo-Boolean constraints encoding

$$a_{\geq i} \Rightarrow a_{\geq j}$$
 and $a_{\geq h} \Rightarrow a_{\geq i}$

for the closest values j < i < h that already exist

Integer Variables in Constraint Programming (2/2)

We can mix binary and order encodings! Define big-M linear inequalities encoding

$$a_{\geq 4} \Leftrightarrow -16a_{\text{neg}} + 1a_{\text{b0}} + 2a_{\text{b1}} + 4a_{\text{b2}} + 8a_{\text{b3}} \geq 4$$

 $a_{\geq 5} \Leftrightarrow -16a_{\text{neg}} + 1a_{\text{b0}} + 2a_{\text{b1}} + 4a_{\text{b2}} + 8a_{\text{b3}} \geq 5$
 $a_{=4} \Leftrightarrow a_{\geq 4} \wedge \overline{a}_{\geq 5}$

When creating $a_{\geq i}$, also introduce pseudo-Boolean constraints encoding

$$a_{\geq i} \Rightarrow a_{\geq j}$$
 and $a_{\geq h} \Rightarrow a_{\geq i}$

for the closest values j < i < h that already exist

We can do this:

- Inside the pseudo-Boolean model where needed
- Otherwise lazily during proof logging

Table Constraints

Constraints can be specified extensionally as list of feasible tuples, called a table Variable assignments must match some row in table

Table Constraints

Constraints can be specified extensionally as list of feasible tuples, called a table Variable assignments must match some row in table

Given table constraint

$$(A, B, C) \in [(1, 2, 3), (1, 3, 4), (2, 2, 5)]$$

define

$$\begin{array}{lll} 3\bar{t}_1+a_{=1}+b_{=2}+c_{=3}\geq 3 & \text{i.e.,} & t_1\Rightarrow (a_{=1}\wedge b_{=2}\wedge c_{=3})\\ 3\bar{t}_2+a_{=1}+b_{=4}+c_{=4}\geq 3 & \text{i.e.,} & t_2\Rightarrow (a_{=1}\wedge b_{=4}\wedge c_{=4})\\ 3\bar{t}_3+a_{=2}+b_{=2}+c_{=5}\geq 3 & \text{i.e.,} & t_3\Rightarrow (a_{=2}\wedge b_{=2}\wedge c_{=5}) \end{array}$$

using tuple selector variables

$$t_1 + t_2 + t_3 = 1$$

A Constraint Programming Solver with Pseudo-Boolean Proof Logging

Proof-of-concept constraint programming solver at

https://github.com/ciaranm/glasgow-constraint-solver

Supports proof logging for global constraints including:

- All-different
- Integer linear inequality (including for very large domains)
- Smart table and regular
- Minimum / maximum of an array
- Element (kind of array indexing)
- Absolute value
- (Hamiltonian) Circuit

Details in [EGMN20, GMN22, MM23, MMN24]

Performance of pseudo-Boolean proof logging and checking with VeriPB

- Trim proof while verifying (as in DRAT-TRIM [HHW13a])
- Compress proof file using binary format
- More careful software engineering in proof checker (such as faster propagation)

Performance of pseudo-Boolean proof logging and checking with VeriPB

- Trim proof while verifying (as in DRAT-TRIM [HHW13a])
- Compress proof file using binary format
- More careful software engineering in proof checker (such as faster propagation)

Proof logging for other combinatorial problems and techniques

- Model enumeration and counting
- SMT solving (work on solvers CVC5, SMTINTERPOL, Z3, ... [BBC+23, HS22])
- Mixed integer linear programming (suggested extension of VeriPB in [DEGH23])

Performance of pseudo-Boolean proof logging and checking with VeriPB

- Trim proof while verifying (as in DRAT-TRIM [HHW13a])
- Compress proof file using binary format
- More careful software engineering in proof checker (such as faster propagation)

Proof logging for other combinatorial problems and techniques

- Model enumeration and counting
- SMT solving (work on solvers CVC5, SMTINTERPOL, Z3, ... [BBC+23, HS22])
- Mixed integer linear programming (suggested extension of VERIPB in [DEGH23])

And more...

- Use proof logs for algorithm analysis or explainability purposes
- Lots of other challenging problems and interesting ideas

Performance of pseudo-Boolean proof logging and checking with VeriPB

- Trim proof while verifying (as in DRAT-TRIM [HHW13a])
- Compress proof file using binary format
- More careful software engineering in proof checker (such as faster propagation)

Proof logging for other combinatorial problems and techniques

- Model enumeration and counting
- SMT solving (work on solvers CVC5, SMTINTERPOL, Z3, ... [BBC+23, HS22])
- Mixed integer linear programming (suggested extension of VERIPB in [DEGH23])

And more...

- Use proof logs for algorithm analysis or explainability purposes
- Lots of other challenging problems and interesting ideas
- We're hiring! Talk to me to join the pseudo-Boolean proof logging revolution!

VERIPB Documentation

VERIPB tutorial at CP '22 [BMN22]

- video at youtu.be/s_5BIi4I22w
- updated slides for *IJCAI '23* tutorial [BMN23]

Description of VeriPB and CakePB [BMM+23] for SAT 2023 competition

• Available at satcompetition.github.io/2023/checkers.html

Specific details on different proof logging techniques covered in research papers [EGMN20, GMN20, GMM+20, GN21, GMN22, GMN022, VDB22, BBN+23, BGMN23, MM23, BBN+24, DMM+24, GMM+24, HOGN24, IOT+24, MMN24]

Lots of concrete example files at gitlab.com/MIAOresearch/software/VeriPB

Summing up

- Combinatorial solving and optimization is a true success story
- But ensuring correctness is a crucial, and not yet satisfactorily addressed, concern
- Certifying solvers producing machine-verifiable proofs of correctness seems like most promising approach
- Cutting planes reasoning with pseudo-Boolean constraints seems to hit a sweet spot between simplicity and expressivity
- ullet Action point: What problems can VERIPB solve for you? ullet

Summing up

- Combinatorial solving and optimization is a true success story
- But ensuring correctness is a crucial, and not yet satisfactorily addressed, concern
- Certifying solvers producing machine-verifiable proofs of correctness seems like most promising approach
- Cutting planes reasoning with pseudo-Boolean constraints seems to hit a sweet spot between simplicity and expressivity
- ullet Action point: What problems can VERIPB solve for you? ullet

Thank you for your attention!

References I

- [ABM+11] Eyad Alkassar, Sascha Böhme, Kurt Mehlhorn, Christine Rizkallah, and Pascal Schweitzer. An introduction to certifying algorithms. it Information Technology Methoden und innovative Anwendungen der Informatik und Informationstechnik, 53(6):287–293, December 2011.
- [ADH+19] Blair Archibald, Fraser Dunlop, Ruth Hoffmann, Ciaran McCreesh, Patrick Prosser, and James Trimble. Sequential and parallel solution-biased search for subgraph algorithms. In Proceedings of the 16th International Conference on the Integration of Constraint Programming, Artificial Intelligence, and Operations Research (CPAIOR '19), volume 11494 of Lecture Notes in Computer Science, pages 20–38. Springer, June 2019.
- [AGJ+18] Özgür Akgün, Ian P. Gent, Christopher Jefferson, Ian Miguel, and Peter Nightingale. Metamorphic testing of constraint solvers. In Proceedings of the 24th International Conference on Principles and Practice of Constraint Programming (CP '18), volume 11008 of Lecture Notes in Computer Science, pages 727–736. Springer, August 2018.
- [AW13] Tobias Achterberg and Roland Wunderling. Mixed integer programming: Analyzing 12 years of progress. In Michael Jünger and Gerhard Reinelt, editors, Facets of Combinatorial Optimization, pages 449–481. Springer, 2013.

References II

- [Bar95] Peter Barth. A Davis-Putnam based enumeration algorithm for linear pseudo-Boolean optimization. Technical Report MPI-I-95-2-003, Max-Planck-Institut für Informatik, January 1995.
- [BB09] Robert Brummayer and Armin Biere. Fuzzing and delta-debugging SMT solvers. In *Proceedings of the 7th International Workshop on Satisfiability Modulo Theories (SMT '09)*, pages 1–5, August 2009.
- [BBC⁺23] Haniel Barbosa, Clark Barrett, Byron Cook, Bruno Dutertre, Gereon Kremer, Hanna Lachnitt, Aina Niemetz, Andres Nötzli, Alex Ozdemir, Mathias Preiner, Andrew Reynolds, Cesare Tinelli, and Yoni Zohar. Generating and exploiting automated reasoning proof certificates.

 Communications of the ACM, 66(10):86—95, October 2023.
- [BBN+23] Jeremias Berg, Bart Bogaerts, Jakob Nordström, Andy Oertel, and Dieter Vandesande. Certified core-guided MaxSAT solving. In Proceedings of the 29th International Conference on Automated Deduction (CADE-29), volume 14132 of Lecture Notes in Computer Science, pages 1–22. Springer, July 2023.

References III

- [BBN+24] Jeremias Berg, Bart Bogaerts, Jakob Nordström, Andy Oertel, Tobias Paxian, and Dieter Vandesande. Certifying without loss of generality reasoning in solution-improving maximum satisfiability. In Proceedings of the 30th International Conference on Principles and Practice of Constraint Programming (CP '24), September 2024. To appear.
- [BGMN23] Bart Bogaerts, Stephan Gocht, Ciaran McCreesh, and Jakob Nordström. Certified dominance and symmetry breaking for combinatorial optimisation. Journal of Artificial Intelligence Research, 77:1539–1589, August 2023. Preliminary version in AAAI '22.
- [BHvMW21] Armin Biere, Marijn J. H. Heule, Hans van Maaren, and Toby Walsh, editors. Handbook of Satisfiability, volume 336 of Frontiers in Artificial Intelligence and Applications. IOS Press, 2nd edition, February 2021.
- [BLB10] Robert Brummayer, Florian Lonsing, and Armin Biere. Automated testing and debugging of SAT and QBF solvers. In *Proceedings of the 13th International Conference on Theory and Applications of Satisfiability Testing (SAT '10)*, volume 6175 of *Lecture Notes in Computer Science*, pages 44–57. Springer, July 2010.

References IV

- [BMM⁺23] Bart Bogaerts, Ciaran McCreesh, Magnus O. Myreen, Jakob Nordström, Andy Oertel, and Yong Kiam Tan. Documentation of VeriPB and CakePB for the SAT competition 2023. Available at https://satcompetition.github.io/2023/checkers.html, March 2023.
- [BMN22] Bart Bogaerts, Ciaran McCreesh, and Jakob Nordström. Solving with provably correct results: Beyond satisfiability, and towards constraint programming. Tutorial at the 28th International Conference on Principles and Practice of Constraint Programming. Slides available at http://www.jakobnordstrom.se/presentations/, August 2022.
- [BMN23] Bart Bogaerts, Ciaran McCreesh, and Jakob Nordström. Combinatorial solving with provably correct results. Tutorial at the 32nd International Joint Conference on Artificial Intelligence. Slides available at http://www.jakobnordstrom.se/presentations/, August 2023.
- [BR07] Robert Bixby and Edward Rothberg. Progress in computational mixed integer programming—A look back from the other side of the tipping point. *Annals of Operations Research*, 149(1):37–41, February 2007.

References V

- [BT19] Samuel R. Buss and Neil Thapen. DRAT proofs, propagation redundancy, and extended resolution. In Proceedings of the 22nd International Conference on Theory and Applications of Satisfiability Testing (SAT '19), volume 11628 of Lecture Notes in Computer Science, pages 71–89. Springer, July 2019.
- [CCT87] William Cook, Collette Rene Coullard, and György Turán. On the complexity of cutting-plane proofs. Discrete Applied Mathematics, 18(1):25–38, November 1987.
- [CGS17] Kevin K. H. Cheung, Ambros M. Gleixner, and Daniel E. Steffy. Verifying integer programming results. In Proceedings of the 19th International Conference on Integer Programming and Combinatorial Optimization (IPCO '17), volume 10328 of Lecture Notes in Computer Science, pages 148–160. Springer, June 2017.
- [CHH+17] Luís Cruz-Filipe, Marijn J. H. Heule, Warren A. Hunt Jr., Matt Kaufmann, and Peter Schneider-Kamp. Efficient certified RAT verification. In Proceedings of the 26th International Conference on Automated Deduction (CADE-26), volume 10395 of Lecture Notes in Computer Science, pages 220–236. Springer, August 2017.

References VI

- [CKSW13] William Cook, Thorsten Koch, Daniel E. Steffy, and Kati Wolter. A hybrid branch-and-bound approach for exact rational mixed-integer programming. Mathematical Programming Computation, 5(3):305–344, September 2013.
- [CMS17] Luís Cruz-Filipe, João P. Marques-Silva, and Peter Schneider-Kamp. Efficient certified resolution proof checking. In Proceedings of the 23rd International Conference on Tools and Algorithms for the Construction and Analysis of Systems (TACAS '17), volume 10205 of Lecture Notes in Computer Science, pages 118–135. Springer, April 2017.
- [DEGH23] Jasper van Doornmalen, Leon Eifler, Ambros Gleixner, and Christopher Hojny. A proof system for certifying symmetry and optimality reasoning in integer programming. Technical Report 2311.03877, arXiv.org, November 2023.
- [DFS12] Nicholas Downing, Thibaut Feydy, and Peter J. Stuckey. Explaining alldifferent. In Proceedings of the 35th Australasian Computer Science Conference (ACSC '12), pages 115–124, January 2012.

References VII

- [DMM⁺24] Emir Demirović, Ciaran McCreesh, Matthew McIlree, Jakob Nordström, Andy Oertel, and Konstantin Sidorov. Pseudo-Boolean reasoning about states and transitions to certify dynamic programming and decision diagram algorithms. In *Proceedings of the 30th International Conference on Principles and Practice of Constraint Programming (CP '24*), September 2024. To appear.
- [EG23] Leon Eifler and Ambros Gleixner. A computational status update for exact rational mixed integer programming. *Mathematical Programming*, 197(2):793–812, February 2023.
- [EGMN20] Jan Elffers, Stephan Gocht, Ciaran McCreesh, and Jakob Nordström. Justifying all differences using pseudo-Boolean reasoning. In Proceedings of the 34th AAAI Conference on Artificial Intelligence (AAAI '20), pages 1486–1494, February 2020.
- [GMM+20] Stephan Gocht, Ross McBride, Ciaran McCreesh, Jakob Nordström, Patrick Prosser, and James Trimble. Certifying solvers for clique and maximum common (connected) subgraph problems. In Proceedings of the 26th International Conference on Principles and Practice of Constraint Programming (CP '20), volume 12333 of Lecture Notes in Computer Science, pages 338–357. Springer, September 2020.

References VIII

- [GMM⁺24] Stephan Gocht, Ciaran McCreesh, Magnus O. Myreen, Jakob Nordström, Andy Oertel, and Yong Kiam Tan. End-to-end verification for subgraph solving. In *Proceedings of the 368h AAAI Conference on Artificial Intelligence (AAAI '24)*, pages 8038–8047, February 2024.
- [GMN20] Stephan Gocht, Ciaran McCreesh, and Jakob Nordström. Subgraph isomorphism meets cutting planes: Solving with certified solutions. In Proceedings of the 29th International Joint Conference on Artificial Intelligence (IJCAI '20), pages 1134–1140, July 2020.
- [GMN22] Stephan Gocht, Ciaran McCreesh, and Jakob Nordström. An auditable constraint programming solver. In Proceedings of the 28th International Conference on Principles and Practice of Constraint Programming (CP '22), volume 235 of Leibniz International Proceedings in Informatics (LIPIcs), pages 25:1–25:18, August 2022.
- [GMNO22] Stephan Gocht, Ruben Martins, Jakob Nordström, and Andy Oertel. Certified CNF translations for pseudo-Boolean solving. In Proceedings of the 25th International Conference on Theory and Applications of Satisfiability Testing (SAT '22), volume 236 of Leibniz International Proceedings in Informatics (LIPIcs), pages 16:1–16:25, August 2022.

ISMP '24 43/35

References IX

- [GN21] Stephan Gocht and Jakob Nordström. Certifying parity reasoning efficiently using pseudo-Boolean proofs. In *Proceedings of the 35th AAAI Conference on Artificial Intelligence (AAAI '21)*, pages 3768–3777, February 2021.
- [Goc22] Stephan Gocht. Certifying Correctness for Combinatorial Algorithms by Using Pseudo-Boolean Reasoning. PhD thesis, Lund University, June 2022. Available at https://portal.research.lu.se/en/publications/certifying-correctness-for-combinatorial-algorithms-by-using-pseu.
- [GS19] Graeme Gange and Peter Stuckey. Certifying optimality in constraint programming. Presentation at KTH Royal Institute of Technology. Slides available at https://www.kth.se/polopoly_fs/1.879851.1550484700!/CertifiedCP.pdf, February 2019.
- [GSD19] Xavier Gillard, Pierre Schaus, and Yves Deville. SolverCheck: Declarative testing of constraints. In Proceedings of the 25th International Conference on Principles and Practice of Constraint Programming (CP '19), volume 11802 of Lecture Notes in Computer Science, pages 565–582. Springer, October 2019.
- [GSS] The Glasgow subgraph solver. https://github.com/ciaranm/glasgow-subgraph-solver.

References X

- [HHW13a] Marijn J. H. Heule, Warren A. Hunt Jr., and Nathan Wetzler. Trimming while checking clausal proofs. In Proceedings of the 13th International Conference on Formal Methods in Computer-Aided Design (FMCAD '13), pages 181–188, October 2013.
- [HHW13b] Marijn J. H. Heule, Warren A. Hunt Jr., and Nathan Wetzler. Verifying refutations with extended resolution. In Proceedings of the 24th International Conference on Automated Deduction (CADE-24), volume 7898 of Lecture Notes in Computer Science, pages 345–359. Springer, June 2013.
- [HOGN24] Alexander Hoen, Andy Oertel, Ambros Gleixner, and Jakob Nordström. Certifying MIP-based presolve reductions for 0–1 integer linear programs. In Proceedings of the 21st International Conference on the Integration of Constraint Programming, Artificial Intelligence, and Operations Research (CPAIOR '24), volume 14742 of Lecture Notes in Computer Science, pages 310–328. Springer, May 2024.
- [HS22] Jochen Hoenicke and Tanja Schindler. A simple proof format for SMT. In *Proceedings of the 20th Internal Workshop on Satisfiability Modulo Theories (SMT '22)*, volume 3185 of *CEUR Workshop Proceedings*, pages 54–70, August 2022.

References XI

- [IOT+24] Hannes Ihalainen, Andy Oertel, Yong Kiam Tan, Jeremias Berg, Matti Järvisalo, Magnus O. Myreen, and Jakob Nordström. Certified MaxSAT preprocessing. In Proceedings of the 12th International Joint Conference on Automated Reasoning (IJCAR '24), volume 14739 of Lecture Notes in Computer Science, pages 396–418. Springer, July 2024.
- [JHB12] Matti Järvisalo, Marijn J. H. Heule, and Armin Biere. Inprocessing rules. In *Proceedings of the 6th International Joint Conference on Automated Reasoning (IJCAR '12)*, volume 7364 of *Lecture Notes in Computer Science*, pages 355–370. Springer, June 2012.
- [KB22] Daniela Kaufmann and Armin Biere. Fuzzing and delta debugging and-inverter graph verification tools. In Proceedings of the 16th International Conference on Tests and Proofs (TAP '22), volume 13361 of Lecture Notes in Computer Science, pages 69–88. Springer, July 2022.
- [KM21] Sonja Kraiczy and Ciaran McCreesh. Solving graph homomorphism and subgraph isomorphism problems faster through clique neighbourhood constraints. In Proceedings of the 30th International Joint Conference on Artificial Intelligence (IJCAI '21), pages 1396–1402, August 2021.

References XII

- [MM23] Matthew McIlree and Ciaran McCreesh. Proof logging for smart extensional constraints. In Proceedings of the 29th International Conference on Principles and Practice of Constraint Programming (CP '23), volume 280 of Leibniz International Proceedings in Informatics (LIPIcs), pages 26:1–26:17, August 2023.
- [MMN24] Matthew McIlree, Ciaran McCreesh, and Jakob Nordström. Proof logging for the circuit constraint. In Proceedings of the 21st International Conference on the Integration of Constraint Programming, Artificial Intelligence, and Operations Research (CPAIOR '24), volume 14743 of Lecture Notes in Computer Science, pages 38–55. Springer, May 2024.
- [MMNS11] Ross M. McConnell, Kurt Mehlhorn, Stefan N\u00e4her, and Pascal Schweitzer. Certifying algorithms. Computer Science Review, 5(2):119–161, May 2011.
- [NPB22] Aina Niemetz, Mathias Preiner, and Clark W. Barrett. Murxla: A modular and highly extensible API fuzzer for SMT solvers. In Proceedings of the 34th International Conference on Computer Aided Verification (CAV '22), volume 13372 of Lecture Notes in Computer Science, pages 92–106. Springer, August 2022.
- [OSC09] Olga Ohrimenko, Peter J. Stuckey, and Michael Codish. Propagation via lazy clause generation. Constraints, 14(3):357–391, January 2009.

References XIII

- [PB23] Tobias Paxian and Armin Biere. Uncovering and classifying bugs in MaxSAT solvers through fuzzing and delta debugging. In *Proceedings of the 14th International Workshop on Pragmatics of SAT*, volume 3545 of *CEUR Workshop Proceedings*, pages 59–71. CEUR-WS.org, July 2023.
- [RvBW06] Francesca Rossi, Peter van Beek, and Toby Walsh, editors. *Handbook of Constraint Programming*, volume 2 of *Foundations of Artificial Intelligence*. Elsevier, 2006.
- [VDB22] Dieter Vandesande, Wolf De Wulf, and Bart Bogaerts. QMaxSATpb: A certified MaxSAT solver. In Proceedings of the 16th International Conference on Logic Programming and Non-monotonic Reasoning (LPNMR '22), volume 13416 of Lecture Notes in Computer Science, pages 429–442. Springer, September 2022.
- [VS10] Michael Veksler and Ofer Strichman. A proof-producing CSP solver. In Proceedings of the 24th AAAI Conference on Artificial Intelligence (AAAI '10), pages 204–209, July 2010.
- [WHH14] Nathan Wetzler, Marijn J. H. Heule, and Warren A. Hunt Jr. DRAT-trim: Efficient checking and trimming using expressive clausal proofs. In Proceedings of the 17th International Conference on Theory and Applications of Satisfiability Testing (SAT '14), volume 8561 of Lecture Notes in Computer Science, pages 422–429. Springer, July 2014.