Regression Model Evaluation: A Deep Dive into R-Values and Fit

R-Squared (R^2) – Coefficient of Determination

R-Squared (R^2) is a statistical measure that explains how well the independent variable(s) predict the dependent variable in a regression model. It represents the proportion of the variance in the dependent variable that is explained by the independent variable(s).

Formula:

$$R^2 = 1 - rac{SS_{res}}{SS_{tot}}$$

Where:

- SS_{res} (Residual Sum of Squares) = $\sum (Y_i \hat{Y}_i)^2 \rightarrow$ Measures unexplained variance (errors).
- SS_{tot} (Total Sum of Squares) = $\sum (Y_i \bar{Y})^2$ \rightarrow Measures total variance in Y.
- Y_i = Actual values, $\hat{Y}i$ = Predicted values, \bar{Y} = Mean of actual values.

Key Properties of R^2 :

- 1. Ranges from 0 to 1:
 - $R^2=1$ \Rightarrow Perfect model (100% variance explained).
 - $R^2=0$ \rightarrow Model does not explain variance.
 - Can be **negative** if the model performs worse than just predicting the mean \bar{Y}
- 2. Higher \mathbb{R}^2 Means Better Fit:

• A higher value indicates that the model explains more variability in the data.

3. Does Not Detect Overfitting:

- A high ${\cal R}^2$ does ${\bf not}$ guarantee a good model, as it does not consider the number of predictors.

Why Use R^2 ?

- **Easy Interpretation** \rightarrow It shows how much of the variation in Y is explained by X.
- **Compares Different Models** → Helps compare the goodness-of-fit for different regression models.
- \checkmark Works Well for Simple Linear Regression \rightarrow Provides a clear measure of how well the independent variable explains the dependent variable.

When NOT to Use R^2 ?

- **X** For Non-Linear Models $\rightarrow R^2$ assumes a linear relationship.
- **X** When You Need Adjusted R^2 for Multiple Predictors \rightarrow Adjusted R^2 accounts for extra predictors.

Adjusted R-Squared ($R^2_{ad\,i}$)

Adjusted R-Squared is an improved version of **R-Squared** (\mathbb{R}^2) that accounts for the number of predictors in a regression model. It adjusts for overfitting by penalizing the addition of unnecessary independent variables.

Formula:

$$R_{adj}^2 = 1 - \left(rac{(1-R^2)(N-1)}{N-k-1}
ight)$$

where:

- N = Total number of observations (data points)
- k = Number of independent variables (predictors)
- R^2 = Regular R-Squared value

Key Differences Between R^2 and Adjusted R^2

Feature	R-Squared (R^2)	Adjusted R-Squared (R^2_{adj})
Formula Accounts for Predictors?	➤ No, increases with more variables	Yes, penalizes unnecessary variables
Overfitting Risk?	✓ Higher risk	X Lower risk
Value Can Decrease?	➤ No, always increases with more predictors	Yes, if an added variable does not improve the model

Why Use Adjusted \mathbb{R}^2 ?

- ightharpoonup Prevents Overfitting ightharpoonup Avoids misleading high R^2 values when unnecessary variables are added.
- ightharpoonup Better for Multiple Regression ightharpoonup More reliable when working with multiple predictors.
- **Compares Models Fairly** → Helps choose the best model without bias toward complexity.

When NOT to Use Adjusted R^2 ?

- **X** For Simple Linear Regression \rightarrow Adjusted R^2 is unnecessary when there's only one predictor.
- If Model Selection Uses Other Criteria (AIC/BIC) → Some methods use different evaluation metrics for model selection.

What is Multiple R?

Multiple R (also known as the **multiple correlation coefficient**) is a statistical measure used in **multiple regression analysis** to indicate how well the independent variables collectively predict the dependent variable.

Formula for Multiple R

In multiple regression, the equation is:

$$Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + ... + \beta_n X_n + \epsilon$$

Multiple R is the correlation between the observed values of Y and the predicted values (\hat{Y}) from the regression model:

$$R=\operatorname{Corr}(Y,\hat{Y})$$

Interpretation of Multiple R

- **R = 1** → Perfect positive correlation (model predicts perfectly).
- R = 0 → No correlation (model predictions have no relationship with actual values).
- **R = -1** → Perfect negative correlation (very rare in regression).

Higher R values indicate that the independent variables together explain a strong relationship with the dependent variable.

Difference Between Multiple R and R²

Metric	Definition	Interpretation	
Multiple R	Correlation between actual Y and predicted \hat{Y}	Measures the strength of the relationship between dependent and independent variables	
R ² (R-Squared)	Proportion of variance in Y explained by independent variables	Shows how well the model explains the variability in the data	

⊀ Note:

- Multiple R is just the square root of R² (but it does not indicate the direction of the relationship).
- Unlike R², Multiple R doesn't measure the proportion of variance explained.

Explaining Multiple R and R-Squared in Simple Words

Multiple R (Correlation Between Actual and Predicted Values)

Think of **Multiple R** as a measure of **how strong the relationship** is between the independent variables (inputs) and the dependent variable (output).

- ◆ If Multiple R is close to 1, it means the model's predictions are very close to the actual values.
- ♦ If Multiple R is close to 0, it means the model is bad at predicting the target.

Example:

Imagine you're trying to predict someone's weight based on height and age. If **Multiple R = 0.9**, it means height and age **strongly** predict weight. But if **Multiple R = 0.2**, height and age are **weak predictors** of weight.

R-Squared (How Well the Model Explains the Data)

R-squared (\mathbb{R}^2) tells you how much of the variation in the target variable is explained by the model.

- ♦ If R^2 = 0.8 → The model explains 80% of the variations in the data.
- ♦ If $R^2 = 0.3$ → The model explains only 30%, so it's not very reliable.

Example:

- If we are predicting house prices and R^2 = 0.85, it means 85% of the price variation is explained by factors like location, size, etc.
- If R^2 = 0.2, it means 80% of price changes are due to unknown or missing factors.

Key Difference

Metric	Meaning	Good Value?
Multiple R	Measures how strong the overall relationship is between independent and dependent variables	Closer to 1 is better
R-Squared (R^2	Measures how well the model explains the variation in the target variable	Higher R^2 (closer to 1) is better

Multiple R is just the correlation, while R-Squared tells how much of the data the model explains.