Long Title

Cason Konzer

casonk@umich.edu

January 18, 2023

Simple List

Simple List

▶ Item.

Simple List

- ▶ Item.
 - * Sub Item.

Simple List

- ▶ Item.
 - * Sub Item.

Image

$$\sum_{i,j}^{n} \mathbb{E}_{i,j} = \sum_{i,j\neq i}^{n} \mathbb{E}_{i,j} + \sum_{i}^{n} \mathbb{E}_{i,i}$$

$$\sum_{i,j}^{n} \mathbb{E}_{i,j} = \sum_{i,j\neq i}^{n} \mathbb{E}_{i,j} + \sum_{i}^{n} \mathbb{E}_{i,i}$$
$$= \sum_{i,j\neq i}^{n} \frac{k_{i}k_{j}}{s-1} + \sum_{i}^{n} \frac{k_{i}(k_{i}-1)}{s-1}$$

$$\sum_{i,j}^{n} \mathbb{E}_{i,j} = \sum_{i,j\neq i}^{n} \mathbb{E}_{i,j} + \sum_{i}^{n} \mathbb{E}_{i,i}$$

$$= \sum_{i,j\neq i}^{n} \frac{k_{i}k_{j}}{s-1} + \sum_{i}^{n} \frac{k_{i}(k_{i}-1)}{s-1}$$

$$= \frac{1}{s-1} \left[\sum_{i}^{n} k_{i} \sum_{j\neq i}^{n} k_{j} + \sum_{i}^{n} k_{i} \sum_{i}^{n} k_{i} - \sum_{i}^{n} k_{i} \right]$$

$$\sum_{i,j}^{n} \mathbb{E}_{i,j} = \sum_{i,j\neq i}^{n} \mathbb{E}_{i,j} + \sum_{i}^{n} \mathbb{E}_{i,i}$$

$$= \sum_{i,j\neq i}^{n} \frac{k_{i}k_{j}}{s-1} + \sum_{i}^{n} \frac{k_{i}(k_{i}-1)}{s-1}$$

$$= \frac{1}{s-1} \left[\sum_{i}^{n} k_{i} \sum_{j\neq i}^{n} k_{j} + \sum_{i}^{n} k_{i} \sum_{i}^{n} k_{i} - \sum_{i}^{n} k_{i} \right]$$

$$= \frac{1}{s-1} \left[\sum_{i}^{n} k_{i} \sum_{j}^{n} k_{j} - s \right]$$

$$\sum_{i,j}^{n} \mathbb{E}_{i,j} = \sum_{i,j\neq i}^{n} \mathbb{E}_{i,j} + \sum_{i}^{n} \mathbb{E}_{i,i}$$

$$= \sum_{i,j\neq i}^{n} \frac{k_{i}k_{j}}{s-1} + \sum_{i}^{n} \frac{k_{i}(k_{i}-1)}{s-1}$$

$$= \frac{1}{s-1} \left[\sum_{i}^{n} k_{i} \sum_{j\neq i}^{n} k_{j} + \sum_{i}^{n} k_{i} \sum_{i}^{n} k_{i} - \sum_{i}^{n} k_{i} \right]$$

$$= \frac{1}{s-1} \left[\sum_{i}^{n} k_{i} \sum_{j\neq i}^{n} k_{j} - s \right]$$

$$= \frac{s^{2}-s}{s-1}$$

$$\sum_{i,j}^{n} \mathbb{E}_{i,j} = \sum_{i,j\neq i}^{n} \mathbb{E}_{i,j} + \sum_{i}^{n} \mathbb{E}_{i,i}$$

$$= \sum_{i,j\neq i}^{n} \frac{k_{i}k_{j}}{s-1} + \sum_{i}^{n} \frac{k_{i}(k_{i}-1)}{s-1}$$

$$= \frac{1}{s-1} \left[\sum_{i}^{n} k_{i} \sum_{j\neq i}^{n} k_{j} + \sum_{i}^{n} k_{i} \sum_{i}^{n} k_{i} - \sum_{i}^{n} k_{i} \right]$$

$$= \frac{1}{s-1} \left[\sum_{i}^{n} k_{i} \sum_{j\neq i}^{n} k_{j} - s \right]$$

$$= \frac{s^{2}-s}{s-1} = \frac{s(s-1)}{s-1}$$

$$\sum_{i,j}^{n} \mathbb{E}_{i,j} = \sum_{i,j\neq i}^{n} \mathbb{E}_{i,j} + \sum_{i}^{n} \mathbb{E}_{i,i}$$

$$= \sum_{i,j\neq i}^{n} \frac{k_{i}k_{j}}{s-1} + \sum_{i}^{n} \frac{k_{i}(k_{i}-1)}{s-1}$$

$$= \frac{1}{s-1} \left[\sum_{i}^{n} k_{i} \sum_{j\neq i}^{n} k_{j} + \sum_{i}^{n} k_{i} \sum_{i}^{n} k_{i} - \sum_{i}^{n} k_{i} \right]$$

$$= \frac{1}{s-1} \left[\sum_{i}^{n} k_{i} \sum_{j\neq i}^{n} k_{j} - s \right]$$

$$= \frac{s^{2}-s}{s-1} = \frac{s(s-1)}{s-1} = s$$

$$\sum_{i,j}^{n} \vec{\mathbb{E}}_{i,j} = \sum_{i,j}^{n} \frac{k_i^{out} k_j^{in}}{m}$$

$$\sum_{i,j}^{n} \vec{\mathbb{E}}_{i,j} = \sum_{i,j}^{n} \frac{k_i^{out} k_j^{in}}{m}$$
$$= \frac{1}{m} \left[\sum_{i}^{n} k_i^{out} \sum_{j}^{n} k_j^{in} \right]$$

$$\sum_{i,j}^{n} \vec{\mathbb{E}}_{i,j} = \sum_{i,j}^{n} \frac{k_i^{out} k_j^{in}}{m}$$

$$= \frac{1}{m} \left[\sum_{i}^{n} k_i^{out} \sum_{j}^{n} k_j^{in} \right]$$

$$= \frac{m^2}{m}$$

$$\sum_{i,j}^{n} \vec{\mathbb{E}}_{i,j} = \sum_{i,j}^{n} \frac{k_i^{out} k_j^{in}}{m}$$

$$= \frac{1}{m} \left[\sum_{i}^{n} k_i^{out} \sum_{j}^{n} k_j^{in} \right]$$

$$= \frac{m^2}{m} = m$$

 $\blacktriangleright \ \ Q = \% \ internal \ edges - Expected \ \% \ internal \ edges.$

- ightharpoonup Q = % internal edges Expected % internal edges.

- ightharpoonup Q = % internal edges Expected % internal edges.
- $\delta(c_i, c_j) = \begin{cases} 1 & i \& j \text{ are in the same community} \\ 0 & else \end{cases}.$

- $\blacktriangleright \ \ Q = \% \ internal \ edges Expected \ \% \ internal \ edges.$
- $\delta(c_i, c_j) = \begin{cases} 1 & i \& j \text{ are in the same community} \\ 0 & else \end{cases}.$
- ▶ Note: $\delta(c_i, c_i) = 1$.

- ightharpoonup Q = % internal edges Expected % internal edges.
- $\delta(c_i, c_j) = \begin{cases} 1 & i \& j \text{ are in the same community} \\ 0 & else \end{cases}.$
- ▶ Note: $\delta(c_i, c_i) = 1$.

$$Q = \frac{1}{s} \left[\sum_{i,j\neq i}^{n} \left(A_{i,j} - \frac{k_i k_j}{s-1} \right) \delta(c_i, c_j) + \sum_{i=1}^{n} \left(A_{i,i} - \frac{k_i (k_i - 1)}{s-1} \right) \right].$$

Algorithms

$\mathsf{Tik}\mathsf{Z}$

Matrix

	a				e
$a \\ b$	1	0	0	1	1
b	0	1	1	0	0
$c \\ d$	0	1	2	0	1
d	1	0 1 1 0	0	1	0
e	1	0	0	1	0

Matrix

\vec{A}	$\mid a \mid$	b	c	d	e
a	1	0	0	1	1
b	0	1	1	0	0
c	0	1	2	0	1
d	1	0	0	1	0
e	1 0 0 1 1	0	0	1	0

The adjacency matrix is the expected form computers will store networks in.

Colored Table

Colored Table

merge	$\partial ec{Q}_i$	$\partial ec{Q}_j$	$\partial ec{Q}_{i'}$	$\Delta ec{Q}$
$\{a,d\}$	4/13	7/13	22/13	11/169
$\{a,e\}$	4/13	-4/13	14/13	14/169
$\{b,c\}$	9/13	14/13	35/13	12/169
$\{c,e\}$	14/13	-4/13	9/13	-1/169
$\{d,e\}$	7/13	-4/13	6/13	3/169

Colored Table

Colored Table

merge	$\partial ec{Q}_i$	$\partial ec{Q}_j$	$\partial ec{Q}_{i'}$	$\Delta ec{Q}$
$\{a,d\}$	4/13	7/13	22/13	11/169
$\{a,e\}$	4/13	-4/13	14/13	14/169
$\{b,c\}$	9/13	14/13	35/13	12/169
$\{c,e\}$	14/13	-4/13	9/13	-1/169
$\{d,e\}$	7/13	-4/13	6/13	3/169

The best merge for nodes a, and e, is to merge them together, similarly, the best for b, and c, is to merge them together, last, the best merge for d is to merge it with a.

Conclusion

We truly covered a lot, and yet this is only a glimpse.

Conclusion

We truly covered a lot, and yet this is only a glimpse.

QUESTIONS?

casonk@umich.edu

References [1/4]

- [1] Arenas, A., Fernández, A., and Gómez, S. Analysis of the structure of complex networks at different resolution levels. New Journal of Physics 10, 5 (May 2008).
- [2] Barabási, A. L. Network Science. Cambridge University Press, 2016.
- [3] Blondel, V. D., Guillaume, J.-L., Lambiotte, R., and Lefebvre, E. Fast unfolding of communities in large networks. Journal of Statistical Mechanics: Theory and Experiment (Oct. 2008).
- [4] Dugué, N., and Perez, A. Directed Louvain: maximizing modularity in directed networks. Research report, Université d'Orléans, Nov. 2015.
- [5] Girvan, M., and Newman, M. E. J. Community structure in social and biological networks. Proceedings of the National Academy of Sciences 99, 12 (2002), 7821–7826.