Homework#2

Root finding

- 1. Find the root of the following function using the bisection method:
 - a) $x^3 4x 9 = 0$ in the interval [2,3]
 - b) $x^3 4 = 0$ in the interval [1, 2]
- 2. Suppose we used the bisection method on f(x) with an initial interval of [2,5]. How many iterations would it take before the maximum error would be less than 0.01 units?
- 3. Use the bisection method to approximate the value of $\sqrt{71}$ by solving the equations $x^2 71 = 0$ in the interval [8,9]. Find the 4th approximation.
- 4. Find a root for the equation $2e^x \sin(x) = 3$ in the interval [0,2] using the <u>false position</u> method and with three iterations.
- 5. Use the <u>false position method</u> to approximate the value of $\sqrt{3}$ start with the interval [1,2] to find the 3rd approximation.
- 6. Find the root of the following function using the secant method:
 - a) $x^3 4x 9 = 0$ in the interval [2,3]
 - b) $x^3 4 = 0$ in the interval [1,2]
- 7. Use the Newton's method to approximate the value of $\sqrt{71}$ by solving the equations $x^2 71 = 0$ in the interval [8,9]. Find the 4th approximation.
- 8. Find a root for the equation $2e^x \sin(x) = 3$ in the interval [0,2] using the <u>Newton's method</u> and with three iterations.