Exercice 17.5

Soit γ le cercle de centre C et tangent à la droite d. Construire les deux projections du cercle γ . Déterminer les axes de γ_1 et des diamètres conjugués de γ_2 .

Pour faire apparaître le cercle γ en vraie grandeur, on rabat le plan α défini par C et d sur un plan horizontal. Pour cela, on construit une horizontale de ce plan.

Pour construire le rabattement de la droite d, on se sert du point invariant de d et d'un point arbitraire D de d.

Le cercle γ_0 est en vraie grandeur dans le plan α rabattu. Le diamètre AB est sur la charnière. C'est le grand axe de γ_1 . Le diamètre EF est perpendiculaire à la charnière. Il définit le petit axe de γ_1 .

On construit la première projection de E par affinité à l'aide de la droite (DE). On obtient alors la première projection de F par symétrie. On peut également relever le point de tangence.

On esquisse alors précisément $\gamma_1,$ la première projection du cercle.

En deuxième projection, on obtient immédiatement A_2 , B_2 et T_2 . On construit E_2 et F_2 en exploitant l'intersection entre la droite d et la droite (EF).

On trace alors l'ellipse γ_2 à l'aide du parallé logramme circonscrit et de la tangente d.

