

Tabelle physikalischer Konstanten

Grösse	Symbol	\mathbf{Wert}		Einheit
Gravitationsbeschleunigung der Erde	g	9.81		${\rm ms^{-2}}$
Avogadro-Konstante:	N_A	6.022	$\cdot 10^{23}$	mol^{-1}
Boltzmann-Konstante:	k	1.381	$\cdot 10^{-23}$	$ m JK^{-1}$
Universelle Gaskonstante:	R	8.315		$\mathrm{J}\mathrm{mol^{-1}}\mathrm{K^{-1}}$
Dichte von Wasser	ρ_{Wasser}	1.00	$\cdot10^3$	${ m kg}{ m m}^{-3}$
spezifische Wärmekapazität von Luft	$c_{ m Luft}$	1.01	$\cdot10^3$	$J (kg)^{-1} K^{-1}$
molare Masse von Luft	$M_{ m Luft}$	29	$\cdot10^{-3}$	${\rm kgmol}^{-1}$
Schallgeschwindigkeit in Luft	$v_{ m S~Luft}$	343		${ m ms^{-1}}$

1. Schwingung $\left[\sum 16 \right]$

Wir betrachten den folgenden Versuchsaufbau aus einem Holzwürfel der Kantenlänge $l=10\,\mathrm{cm}$ und Dichte $\rho_{\mathrm{H}}=650\,\mathrm{kg}\,\mathrm{m}^{-3}$ in einem Wasserbecken. Durch eine Führungsstange, deren Masse und Volumen vernachlässigt werden kann, wird sichergestellt, dass sich das Holz nur in vertikaler Richtung bewegen kann (in grau dargestellt). Das Wasserbecken sei ausreichend gross, so dass Änderungen des Wasserstandes vernachlässigt werden können. Die Position der Unterseite des Würfels relativ zur Wasseroberfläche werde mit y(t) bezeichnet.

Wir betrachten den Fall, dass der Würfel stets teilweise ins Wasser eintaucht, also nie komplett auftaucht und nie komplett untertaucht.

Zunächst soll Reibung vernachlässigt werden.

- (a) Drücken Sie die beiden Kräfte, die auf den Holzwürfel wirken, durch gegebene Grössen und/oder bekannte Konstanten aus. [2]
 - **Hinweis:** Die Auftriebskraft entspricht der Gewichtskraft des verdrängten Wassers und ist eine Funktion von y.
- (b) Stellen Sie für die Position der Unterseite des Holzwürfels y(t) eine Differentialgleichung in der Form $\ddot{y} = -\alpha y - \beta$ auf. Berechnen Sie α und β für die gegebenen Zahlenwerte. [2]
- (c) Geben Sie einen Ausdruck für die Kreisfrequenz ω_0 des Oszillators an und berechnen Sie die zugehörige Periodendauer T_0 . [1.5]
- (d) Berechnen Sie die y-Koordinate der Ruhelage $y_{\rm gg}$. [1.5]
- (e) Der Holzwürfel wird aus einer Anfangsposition $y(0) = y_0$ mit der Anfangsgeschwindigkeit $\dot{y}(0) = 0$ losgelassen. In welchem Intervall muss y_0 liegen, damit die Annahme erfüllt ist, dass der Würfel stets teilweise ins Wasser eintaucht, also nie komplett auftaucht und nie komplett untertaucht? Begründen Sie Ihre Antwort. [2]

(f) Es soll nun eine neue Koordinate \tilde{y} eingeführt werden, so dass wir eine homogene Differentialgleichung erhalten. Geben Sie an, wie \tilde{y} hierzu definiert werden muss. [0.5]

Um von nun an die Reibung zu berücksichtigen, modifizieren wir die Differentialgleichung zu $\ddot{\tilde{y}} = -\alpha \tilde{y} - \gamma \dot{\tilde{y}}$.

- (g) Für welche Werte von γ liegt ein schwach gedämpfter Oszillator vor? [2]
- (h) Geben Sie $\tilde{y}(t)$ für den Fall von schwacher Dämpfung an. Verwenden Sie den Anfangszustand $\tilde{y}(0) = \tilde{y}_0$ und $\dot{\tilde{y}}(0) = 0$ und drücken Sie Ihr Ergebnis durch \tilde{y}_0 , α und γ aus. [4.5]

2. Stehende Welle $[\sum 10]$

Auf einer Baustelle lagert ein mit Luft gefülltes Stahlrohr der Länge $L=10\,\mathrm{m},$ in dem der Wind eine Schallwelle der Luft anregt. Die Schallauslenkung werde durch die Wellengleichung

$$\xi(x,t) = A\cos(kx)\cos(2\pi ft - \psi)$$

beschrieben, wobei x=0 und x=L die beiden Enden des Stahlrohres bezeichnen.

- (a) Welche Randbedingungen muss eine stehende Welle erfüllen, wenn das Stahlrohr an beiden Enden geöffnet ist? Leiten Sie daraus eine Bedingung an k her. [1.5]
- (b) Bestimmen Sie f zunächst allgemein in Abhängigkeit von k und dann als Zahlenwert für den Fall $k = 2\pi/L$. [2]
- (c) Skizzieren Sie die Einhüllende der Schallauslenkung der stehenden Schallwelle im Fall $k = 3\pi/L$. Achten Sie auf korrekte Achsenbeschriftungen. [2]
- (d) Eine Katze, die nur Töne mit Frequenzen grösser als 45 Hz wahrnehmen kann, setzt sich in das an beiden Enden geöffnete Stahlrohr. Der Wind regt
 - i. nur die Grundschwingung oder
 - ii. nur die erste Oberschwingung oder
 - iii. nur die zweite Oberschwingung
 - an. Beantworten Sie für jeden der drei Fälle mit kurzer Begründung, ob das Katzengehör einen Ton wahrnimmt, und falls ja, an welcher/n Stelle/n im Rohr der Ton am lautesten ist. Nehmen Sie idealisiert an, dass das Katzengehör nur auf Schalldruck sensitiv ist. [4.5]

Hinweis: Sie können annehmen, dass der Rohrdurchmesser ausreichend gross ist, so dass die Anwesenheit der Katze die Ausbreitung der Schallwelle nicht behindert.

ORNAME:	LEGI NR.:

3. Brechung und Reflexion [$\sum 10$]

Wir betrachten die folgende Anordnung mit zwei Grenzflächen zwischen verschiedenen Ausbreitungsmedien. Für einen einfallenden Lichtstrahl (schwarze Linie), der im Bereich 1 den Winkel α_1 (von der Vertikalen gemessen) und die Wellenlänge $\lambda_1 = 510 \text{ nm}$ hat, tritt an den Grenzflächen sowohl Reflexion als auch Transmission auf (nicht abgebildet).

Entsprechend bezeichnen α_2 und α_3 die (von der Vertikalen gemessenen) Winkel des transmittierten Lichtstrahls in den Bereichen 2 und 3.

Im Bereich 1 und 3 sei die Lichtgeschwindigkeit $c_1 = c_3 = 2 \cdot 10^8 \,\mathrm{m\,s^{-1}}$, im Bereich 2 sei sie $c_2 = 3 \cdot 10^8 \,\mathrm{m\,s^{-1}}$.

Kreuzen Sie in jeder Teilaufgabe die richtige Aussage an. In allen Teilaufgaben ist jeweils nur eine der möglichen Aussagen richtig!

Bewertung der Aufgabe: Multiple Choice. Jede richtig beantwortete Teilaufgabe wird mit 2 Punkten bewertet, jede falsch beantwortete Teilaufgabe mit 0 Punkten.

(a)	Was gilt für de	en Winkel α_2	des	Lichtstrahls	im	${\bf Bereich}$	2	und	für	${\rm den}$	${\bf Winkel}$	α_3
	im Bereich 3?											

- $\square \ \alpha_2 < \alpha_1 \text{ und } \alpha_3 < \alpha_1$
- $\square \ \alpha_2 < \alpha_1 \text{ und } \alpha_3 = \alpha_1$
- $\square \ \alpha_2 < \alpha_1 \text{ und } \alpha_3 > \alpha_1$
- $\square \ \alpha_2 = \alpha_1 \text{ und } \alpha_3 < \alpha_1$
- $\square \ \alpha_2 = \alpha_1 \text{ und } \alpha_3 = \alpha_1$
- $\square \ \alpha_2 = \alpha_1 \text{ und } \alpha_3 > \alpha_1$
- $\square \ \alpha_2 > \alpha_1 \text{ und } \alpha_3 < \alpha_1$
- $\square \ \alpha_2 > \alpha_1 \text{ und } \alpha_3 = \alpha_1$
- $\square \ \alpha_2 > \alpha_1 \text{ und } \alpha_3 > \alpha_1$

NAME:	VORNAME:	LEGI NR.:

(b)	Ab welchem Winkel tritt an der Grenzfläche zwischen Bereich 1 und Bereich 2
	Totalreflexion auf?
	$\square \ \alpha_1 = 30^{\circ}$ $\square \ \alpha_2 \approx 42^{\circ}$
	$\square \ \alpha_1 \approx 42^{\circ}$
	$\square \ \alpha_1 = 45^{\circ}$
	$\square \ \alpha_1 \approx 48^{\circ}$
	$\square \ \alpha_1 = 60^{\circ}$ $\square \ Fe int being Tetalized entire model in the second of the se$
	☐ Es ist keine Totalreflexion möglich.
(c)	Welche Wellenlänge λ_2 hat das Licht im Bereich 2?
	$\square \ \lambda_2 = 255 \text{nm}$
	$\square \ \lambda_2 = 340 \text{nm}$
	\square $\lambda_2 = 510 \mathrm{nm}$
	\square $\lambda_2 = 612 \mathrm{nm}$
	$\square \ \lambda_2 = 765 \mathrm{nm}$
	$\square \ \lambda_2 = 1020 \mathrm{nm}$
(d)	
	im Fall $\alpha_1 = 0$ gleich 20% des Betrages der Amplitude der einfallenden Welle.
	Geben Sie für diesen Fall die Leistung der reflektierten Welle in dB bezogen auf
	die ursprüngliche Leistung an. \square ungefähr $-28\mathrm{dB}$
	□ ungefähr −14 dB
	□ ungefähr −7 dB
	□ ungefähr −3 dB
	□ ungefähr 7 dB
	o
	□ ungefähr 14 dB
	□ ungefähr 28 dB
Von	nun an werde eine modifizierte Anordnung betrachtet, bei der $c_1=c_3=3\cdot 10^8\mathrm{ms^{-1}}$
und	$c_2 = 2 \cdot 10^8 \mathrm{m s^{-1}}$ gilt. Der Lichtstrahl falle wie zuvor aus dem Bereich 1 kommend
mit	einem Winkel α_1 ein.
(e)	Wo und wann kann bei dieser modifizierten Anordnung Totalreflexion auftreten?
(0)	\square An der Grenzfläche zwischen 1 und 2, wenn α_1 ausreichend klein ist.
	\square An der Grenzfläche zwischen 1 und 2, wenn α_1 ausreichend gross ist.
	\square An der Grenzfläche zwischen 2 und 3, wenn α_1 ausreichend klein ist.
	\square An der Grenzfläche zwischen 2 und 3, wenn α_1 ausreichend gross ist.
	Es ist keine Totalreflexion möglich Es ist keine Totalreflexion möglich

4. Heissluftballon $\left[\sum 11.5 \right]$

Wir betrachten einen Heissluftballon. Die Masse von Ballonhülle (ohne Luftfüllung), Korb und Beladung sei insgesamt m. Das Volumen der Luftfüllung sei V. Das Volumen von Ballonhülle, Korb und Beladung soll vernachlässigt werden.

- (a) Welcher Zusammenhang muss zwischen der Dichte der Luft in der Umgebung ρ und im Ballon ρ' gelten, damit der Ballon gerade schwebt? [2]
 - **Hinweis:** Die Auftriebskraft entspricht der Gewichtskraft der verdrängten Umgebungsluft.
- (b) Bestimmen Sie die Dichte der Luft ρ als Funktion des Drucks p und der Temperatur T. [2.5]
 - **Hinweis:** Verwenden Sie die molare Masse der Luft M_{Luft} und die Näherung, dass sich Luft wie ein ideales Gas verhält.
- (c) Berechnen Sie die Temperatur T', welche die Luft im Inneren des Ballons haben muss, damit der Ballon gerade schwebt. Geben Sie das Ergebnis zunächst allgemein an, und anschliessend für den folgenden Spezialfall: [4]
 - Masse von Ballonhülle (ohne Luftfüllung), Korb und Beladung: $m = 800 \,\mathrm{kg}$,
 - Volumen der Luftfüllung: $V = 4000 \,\mathrm{m}^3$,
 - Umgebungstemperatur: $T = 293 \,\mathrm{K}$,
 - Luftdruck in der Umgebung: $p = 1020 \,\mathrm{mbar}$.

Hinweis: Die Ballonhülle hat unten eine Öffnung. Überlegen Sie zunächst, was dies für den Druck im Ballon bedeutet.

(d) Wie viel Energie ist nötig, um den Ballon mit Luft mit der Temperatur $T'' = 360 \,\mathrm{K}$ zu füllen, wenn die erforderliche Luftmenge von Umgebungstemperatur T erwärmt werden muss? Verwenden Sie die in der vorigen Teilaufgabe gegebenen Zahlenwerte und vernachlässigen Sie Wärmeverluste an die Umgebung. [3]

5. Druckluftspeicher [$\sum 9.5$]

Wir betrachten eine Energiespeicherung durch Kompression eines idealen Gases mit 5 Freiheitsgraden.

(a) Welche Aussagen über die Art der Freiheitsgrade und über die Anzahl von Atomen pro Gasmolekül können Sie treffen? [1]

Wir nehmen an, dass das komprimierte Gas im Speicher die Temperatur $T_1 = 300 \,\mathrm{K}$ und den Druck $p_1 = 10 p_0$ hat, wobei $p_0 = 10^5 \,\mathrm{Pa}$ den Umgebungsdruck bezeichnet. Um dem Speicher Energie zu entnehmen, lassen wir das Gas expandieren, wobei es mechanische Arbeit verrichtet, wie im folgenden vereinfachten Modell dargestellt.

Im Verlauf der Aufgabe bestimmen Sie in zwei verschiedenen Szenarien die Gesamtenergie, die dem Energiespeicher während dieses Vorgangs entnommen wird.

Zunächst soll der Fall betrachtet werden, dass das Gas isotherm expandiert, bis es den Umgebungsdruck erreicht, d.h. $p_2 = p_0$.

- (b) Wie viel mechanische Arbeit pro Kubikmeter Anfangsvolumen verrichtet das Gas während der isothermen Expansion? [2]
- (c) Wie viel Wärme pro Kubikmeter Anfangsvolumen muss dem Gas während der Expansion zugeführt werden, um die Temperatur konstant zu halten? Diskutieren Sie kurz, was dies für den Betrieb des Systems als Energiespeicher bedeutet. [2]

Im Folgenden soll das Gas stattdessen adiabatisch expandieren, bis es den Umgebungsdruck erreicht, d.h. $p_2 = p_0$.

- (d) Berechnen Sie die Temperatur nach der adiabatischen Expansion. [2.5]
- (e) Bestimmen Sie durch Betrachtung der inneren Energie, wie viel Energie pro Kubikmeter Anfangsvolumen das Gas während der adiabatischen Expansion abgibt. [2]