Learning to Fly in Seconds (Parameters)

1 Dynamics

$$\begin{aligned} \mathbf{s} &:= \{\mathbf{p}, \mathbf{q}, \mathbf{v}, \boldsymbol{\omega}, \boldsymbol{\omega}_m\} \quad (\text{motor state: } \boldsymbol{\omega}_m \in R^4) \\ \dot{\mathbf{p}} &= \mathbf{v} \\ \dot{\mathbf{q}} &= \mathbf{q} \circ [0 \ \boldsymbol{\omega}/2]^\top \\ \dot{\mathbf{v}} &= \frac{1}{m} \left(\mathbf{R}(\mathbf{q}) \left(\sum_{i=1}^4 \mathbf{r}_{f_i} f_i \right) + \mathbf{f}_r + \mathbf{g} \right) \\ f_i &= \sum_{j=0}^2 K_{f_j} \omega_{m_i}^j \\ \dot{\boldsymbol{\omega}} &= \mathbf{J}^{-1} \left(\boldsymbol{\tau} + \boldsymbol{\tau}_r + \mathbf{J} \boldsymbol{\omega} \times \boldsymbol{\omega} \right) \\ \boldsymbol{\tau} &= \sum_{i=1}^4 \left(\mathbf{r}_{p_i} \times \mathbf{r}_{f_i} \right) f_i + \mathbf{r}_{\tau_i} K_d f_i \\ \dot{\boldsymbol{\omega}}_m &= T_m^{-1} \left(\boldsymbol{\omega}_{sp} - \boldsymbol{\omega}_m \right) \\ \boldsymbol{\omega}_{sp} &:= \mathbf{a} \end{aligned}$$

Parameter	Value
Integration Δt	$0.01\mathrm{s}$
Rotor 1 position \mathbf{r}_{p_1}	$[0.028\mathrm{m},-0.028\mathrm{m},0\mathrm{m}]$
Rotor 2 position \mathbf{r}_{p_2}	$[-0.028\mathrm{m},-0.028\mathrm{m},0\mathrm{m}]$
Rotor 3 position \mathbf{r}_{p_3}	$[-0.028\mathrm{m},0.028\mathrm{m},0\mathrm{m}]$
Rotor 4 position \mathbf{r}_{p_4}	$[0.028\mathrm{m},0.028\mathrm{m},0\mathrm{m}]$
Rotor 1 thrust direction \mathbf{r}_{f_1}	[0,0,1]
Rotor 2 thrust direction \mathbf{r}_{f_2}	[0, 0, 1]
Rotor 3 thrust direction \mathbf{r}_{f_3}	[0, 0, 1]
Rotor 4 thrust direction \mathbf{r}_{f_4}	[0,0,1]
Rotor 1 torque direction \mathbf{r}_{τ_1}	[0, 0, -1]
Rotor 2 torque direction \mathbf{r}_{τ_2}	[0,0,1]
Rotor 3 torque direction \mathbf{r}_{τ_3}	[0, 0, -1]
Rotor 4 torque direction \mathbf{r}_{τ_4}	[0, 0, 1]
$[K_{f_0} \ K_{f_1} \ K_{f_2}]$	$[0\ 0\ 3.16\times 10^{-10}]$
K_d	0.005964552
Vehicle mass m	$0.027\mathrm{kg}$
Gravity \mathbf{g}	$[0, 0, -9.81 \mathrm{ms^{-2}}]$
I_{xx}	$3.85 \times 10^{-6} \mathrm{kg} \mathrm{m}^2$
I_{yy}	$3.85 \times 10^{-6} \mathrm{kg} \mathrm{m}^2$
I_{zz}	$5.9675 \times 10^{-6} \mathrm{kg} \mathrm{m}^2$
J	$\mathrm{diag}\left(I_{xx},I_{yy},I_{zz}\right)$
T_m (RPM time constant)	$0.15\mathrm{s}$
RPM range	$\omega_{m_i} \in [0, 21702]$

Table 1: Parameters: Quadrotor dynamics (Crazyflie)

Parameter	Value	Description		
$C_{ m init,*}$				
C_{rs}	2	Reward bonus for survival		
C_{rp}	2.5	Position weight		
C_{rq}	2.5	Orientation weight		
C_{rv}	0.005	Linear velocity weight		
$C_{r\omega}$	0	Angular velocity weight		
C_{ra}	0.005	Action weight		
C_{rab}	0.334	Action baseline		
$C_{ m target,*}$				
C_{rs}	2	Reward bonus for survival		
C_{rp}	20	Position weight		
C_{rq}	2.5	Orientation weight		
C_{rv}	0.5	Linear velocity weight		
$C_{r\omega}$	0	Angular velocity weight		
C_{ra}	0.5	Action weight		
C_{rab}	0.334	Action baseline		
Curriculum Parameters				
N_C	100000	interval of the application of multiplicative steps (curriculum)		
C_{cp}	1.2	curriculum: position factor		
C_{cpl}	20	curriculum: position weight limit		
C_{cv}	1.4	curriculum: linear velocity factor		
C_{cvl}	0.5	curriculum: linear velocity weight limit		
C_{ca}	1.4	curriculum: action factor		
C_{cal}	0.5	curriculum: action weight limit		

Table 2: Parameters: Reward function and curriculum

Parameter	Value	Description
Guidance	0.1	probability of spawning at the origin position and
		at zero angle but with random linear and angular velocity
Position \mathbf{p}	$\mathrm{Uniform}(-0.2\mathrm{m},0.2\mathrm{m})$	
Orientation \mathbf{q}	Uniform(SO3) s.t. $\alpha \leq 90^{\circ}$	
Linear Velocity ${\bf v}$	$Uniform(-1 m s^{-1}, 1 m s^{-1})$	
Angular Velocity $\boldsymbol{\omega}$	$Uniform(-1 rad s^{-1}, 1 rad s^{-1})$	
RPM $\boldsymbol{\omega}_m$	$Uniform(\frac{21702}{2}, \frac{21702}{2})$	
Force disturbance \mathbf{f}_r	Uniform $\left(\frac{-0.027 \cdot 9.81}{20}, \frac{0.027 \cdot 9.81}{20}\right)$	$\frac{1}{20}$ of the hovering thrust
Torque disturbance $\boldsymbol{\tau}_r$	Uniform $(\frac{-0.027 \cdot 9.81}{10000}, \frac{0.027 \cdot 9.81}{10000})$	$\frac{1}{10000}$ of the hovering thrust

Table 3: Parameters: Initial state distribution

Parameter	Value
Observation noise position (std)	0.001
Observation noise orientation (std)	0.001
Observation noise linear velocity (std)	0.002
Observation noise angular velocity (std)	0.002

Table 4: Parameters: Observation noise

Parameter	Value
Max position error	$0.6\mathrm{m}$
Max linear velocity error	$1000{\rm ms^{-1}}$
Max angular velocity error	$1000{\rm rads^{-1}}$

Table 5: Parameters: Termination conditions

Parameter	Value
Actor layers	[64, 64]
Actor activation function	Tanh
Actor output activation function	Tanh
Actor batch size	256
Actor warmup steps (before training)	30 000
Actor training interval	20
Actor Polyak factor	0.995
N_H (action history length in the actor observation)	32
Critic layers	[64, 64]
Critic activation function	Tanh
Critic output activation function	Identity
Critic batch size	256
Critic training interval	20
Critic warmup steps (before training)	15000
Actor Polyak factor	0.995
Target action noise clip	0.5
Target action noise	0.5
γ	0.99
Replay buffer capacity	300000,3000000
Environment step limit	500
Exploration noise std	0.5
Exploration noise decay start (step)	500 000
Exploration noise decay interval (steps)	100000
Exploration noise decay factor	0.9

Table 6: Parameters: Asymmetric Actor-Critic RL setup