112034 Lenguajes y Autómatas

Ejercicios de Lenguajes Regulares

Instrucciones. El marco de sus respuestas son los objetivos de la UEA que transcribo a continuación:

- •
- Describir, interpretar e ilustrar los modelos teóricos de cómputo.
- Describir los conceptos de lenguaje formal y gramática.
- Reconocer y diferenciar las clases de lenguajes formales asociadas con cada modelo teórico de cómputo.

Responda en forma resumida, que su respuesta refleje los objetivos de la UEA, use el sentido común y describa con claridad la explicación o el desarrollo de su solución.

Docente: Dr. Carlos Barrón Romero

- 1. Explicar que son los lenguajes regulares. Son los lenguajes regulares una clase de equivalencia entre la forma sintáctica y la forma funcional.
- 2. Construir un ejemplo de un lenguaje regular tal que $L(AFD) \cup L(AFD)^c = \Sigma^*$ donde $L(AFD)^c = \left\{x \in \Sigma^* | \widehat{\delta}\left(q_0, x\right) \notin F\right\}$.
- 3. Escribir un ejemplo de un lenguaje que no sea regular.
- 4. Escribir 5 ejemplos distintos (finitos o infinitos) de lenguajes regulares, cuyo complemento sea regular.
- 5. Sea $\Sigma = \{0, 1\}$ un alfabeto $L = \{x \in \Sigma^* | x \text{ interpretado como valor de un número binario es un número primo} \}$. Explicar si L es o no un lenguaje regular.
- 6. Sea un tablero de ajedrez 3×3 , construir un AFD que recorra todas las casillas de dicho tablero. ¿Es posible tener un AFD que recorra todos los cuadros de cualquier tablero de ajedrez de tamaño $n \times n$?
- 7. Diseñar y construir un autómata con salida que venda solo dos tipos refrescos en moneda nacional.
- 8. Para la construcción de Sistemas de Computo y Automatización, qué utilidad tiene el método gráfico de contrucción de un AFN-ε a partir de una ER.
- 9. Explicar la relación entre las ER y el análisis estructural de lenguajes.
- 10. Investigar para describir algunos de los comandos de Lex para ER.
- 11. Simplificar:
 - (a) $a(ab^*+ba^*)^*$.
 - (b) $aab^* + (b+a)^{**}$.
 - (c) $abb^* + (b^*a^*b^*)^* + ba + a$.
- 12. Escribir un resumen del Teorema de Kleene con su demostración en sus propias palabras.
- 13. Escribir al menos 5 observaciones del Teorema de Kleene de sus aplicaciones o consecuencias en la Ingeniería de la Computación en sus propias palabras.

1

14. Se tiene el siguiente autómata finito no determinístico, AFN= $(Q, 0, \Sigma, \delta, F)$ donde $Q = \{0, 1, 2\}, 0 \in Q, \Sigma = \{a, b\}, F = \{1\}$ y $\delta : Q \times \Sigma \to 2^Q$ está dada por

Q	Σ	2^Q
0	a	{1}
1	b	$\{0, 1, 2\}$

- (a) [2.0] Diseñar por el método del conjunto potencia el autómata finito determinístico equivalente, es decir, que acepta el mismo lenguaje.
- (b) [1.0] Verificar o explicar con ejemplos que ambos autómatas aceptan el mismo lenguaje.
- 15. [2.0] Sea un $AFN \varepsilon = (Q, q_0, \Sigma, \delta, F)$ tal que $\delta(q, a) = \{q\}, \ q \in Q, q \neq q_0, a \in \Sigma$. Escribir las modificaciones del $AFN \varepsilon$ para que solo se cumpla que $\mathbf{a}^* = L(AFN \varepsilon)$.
- 16. [2.0] Sea $\Sigma = \{0, 1\}$, calcular el conjunto potencia de Σ y el conjunto Σ^* . ¿Cual de los conjuntos anteriores corresponde con un lenguaje sobre Σ ?
- 17. Sea $\Sigma = \{a, b, 0, 1\}$. Escribir 5 elementos de los lenguajes.
 - (a) [2.0] $L_1 = \{x \in \Sigma^* | x \text{ tiene de prefijo una vocal y al menos un dígito}\}.$
 - (b) [1.0] $L_2 = \{x \in \Sigma^* | x \text{ no tiene ninguna consonante}\}.$
 - (c) $[1.0] (\mathbf{0} + \mathbf{1})^* \mathbf{b}^*$.
- 18. Sea $\Sigma = \{a, b, 0, 1\}.$
 - (a) [2.0] Construir una ER para $L_1 = \{x \in \Sigma^* | x \text{ tiene de prefijo una vocal y al menos un dígito}\}$, en caso de no poder explicar.
 - (b) [2.0] Construir un $AFN \varepsilon$ para la ER del inciso anterior, en caso de no poder explicar.