Hashing

Jonathan Windle

University of East Anglia

J.Windle@uea.ac.uk

June 4, 2017

Overview I

- Intro
- Choosing Hash Function
- Resolving Collisions
 - Chaining/Buckets
 - Open Addressing
 - Linear Probing
 - Clustering
 - Quadratic Probing
 - Must be prime
 - Example
 - Double Hashing
 - Example

Intro

 Technique for performing insertions, deletions and finds in a dictionary in constant average time.

• Hash table:

- An array, T of some fixed size is used to store the keys.
- size referres to the size of *T*.
- $S = \{0, 1, ..., size 1\}$

• Hashing function:

- $h: K \rightarrow S$.
- Suppose K is the set of 6 digit non-negative integers, then a possible (but poor) choce for h is:

$$h(k) = k(mod1000)$$

Collisions:

 A collision occurs when two keys hash to the same location in the hash table:

$$h(k) = h(k').$$

- Want to choose the hash function to minimise the chance of collisions.

Jonathan Windle (UEA) Hashing June 4, 2017 3 / 16

Choosing a Hash Function

- A good hash function maps keys uniformly and randomly into the full range of possible locations.
- A good hash function should depend on all of the characters the characters in a key, but this is not a sufficient condition for a good hash function.
- Must not just depend on all of the characters in a key but must also distribute keys evenly over the table.
- The built in Java function hashCode returns an integer based on the objects reference unless the object is a string then it is based on the string itself.
- The Java class HashTable can be used with keys of any user-defined data type provided an instance method hashCode is defined.

Resolving Collisions

- Use some other location that is open in the table:
 - Open addressing
- Change the structure of the hash table so that each location can correspond to more than one value:
 - Chaining.
 - Buckets.

5 / 16

Chaining/Buckets

Chaining:

- For each location T, keep a list of allthe keys hashed to that location.
- Each entry in T is thus a reference to a linked list of keys.
- To form a search, just hash to find the list and then perform the appropriate operation.

• Buckets:

- Each location in the hash table is a bucket.
- A fixed number, b of locations to store the keys.
- Total space available is thus:
 size × b

Open Addressing

- If a collision occurs, alternative cells in T are tried until an empty cell is found.
- Locating an open loaction in te hash table is called probing
- May be necessary to try more than one alternqative location.
- The locations examined when a new key is inserted is called a probe sequence.
- Let $\langle S_i^k \rangle$ denote the probe sequence then:

$$s_0^k = h(k)$$

 $s_i^k = (s_{i-1}^k + p(j, k))\%$ size, $j \ge 1$.

- Where p(j, k) is called a probe increment.
- In the simplist scheme the probe increment is independant of both j and k. i.e. it is a constant p in particular linear probing, p = 1.

Linear Probing

- If T[h(k)] is occupied, try successive locations in T with wrap-around.
- Retrieval must be able to follow the same path used on insertion.
- Care must be taken over deletion:
 - When searching for the key, if an empty location is encountered before the key is found, this implies that the key is not present in T.
 - Only flag a location for deletion in a delete operation, otherwise a subsequent search might reach an incorrect conclusion.
- When inserting should first check that the given key is not already present in the table:
 - If not, probe sequence ends and is added into the empty location.
 - May encounter flagged locations before hitting the empty location.
 - If we record the position of the first flagged location encountered we can store the entry in that location.
- Been shown that provided load factor is 0.5 (half full table), only 2.5 probes are required onaverage for insertion and only 1.5 on average for a successful search.

Clustering

- Resolving collisions with linear probing leads to clusters of occupied locations.
- Suppose when inserting we hash to a location k in the table and we then have to go through a probe sequence of length r.
- The next time we hash to location k we need to go through a probe sequence of length r+1 at least.
- Each addition to the table, increases the size of some cluster by 1 (at least may also get merging of clusters).
- Known as primary clustering.

Quadratic Probing I

- Some schenes, the probe increment depends on the value of the index, j, in the probe sequence, but is still independent of k.
- In quadratic probing, the probe sequence is given by:

$$s_{j}^{k} = (h(k) + j^{2})\%$$
size

i.e.

$$s_{0}^{k} = h(k)$$

 $s_{j}^{k} = (s_{j-1}^{k} + 2j - 1)\%$ size, $j \ge 1$,

since

$$j^2 = (j-1)^2 + 2j - 1$$

• The increment function for quadratic probing is inc(j, k) = 2j - 1

Quadratic Probing II

```
int i = h(k);
int j = 0;
while (T[i].key != emptyKey) {
   j++;
   i += 2*j - 1%T.size;
}
T[i].key = k;
T[i].data = d;
```

Must be prime

- If size is not prime then there are only p locations that can be generated as alternative loctions when a clash occurs.
- However, if a size is a prime, and T is at least half empty, a key can always be inserted.

Example

- h(k) = k%13
- Insert 8,42,29,51,47,13,26 into table of size 13:

		inc(j,k)=2j-1
	1	1
	2	3
	3	5
	4	7
	5	9
k		h(k)=k%13
K	8	II(K)=K-/613
	8 42	3
	29	3
	51	12
	47	8
	13	0
	34	8
i	T[i]	Probe Sequence
0	13	0
1		
2		
	42	3
3		
4	29	3,4
4		
4 5		
4 5 6		
4 5 6 7	29	3,4
4 5 6 7 8	29	3,4
4 5 6 7 8 9	29	3,4

- 8 straight in position 8.
- 42 stright in position 3.
- 29:
- 929%13 = 3 3 is full.
- (3+1)%13 = 4 inserted into 4.
- 51 straight into 12.
- **47**:
- 47%13 = 8 8 is full,
- (8+1)%13 = 9 inserted into 9.
- 13 straight into 0
- 34:
- 34%13 = 8 8 is full.
- (8+1)%13 = 9 9 is full,
- (9+3)%13 = 12 12 is full,
- (12+5)%13 = 4-4 is full,
- (4+7)%13 = 11 inserted into 11

Double Hashing

- Use another hash functionas the increment function.
- E.g. $h_2(k) = r (k\%r)$
- Same increment is added each stage, but the increment is different for different keys.

```
int i = h(k);
while (T[i].key != emptyKey) {
   i += r-(k%r)%size;
}
T[i].key = k;
T[i].data = d;
```

Example

- h(k) = k%13
- $h_2(k) = 5 (k\%5)$
- Insert 8,42,29,50,47,13,26

k	h(k)=(k ^c / ₀ 13)	h2(k)=5-(k%5)
8	8	2
42	3	3
29	3	1
51	12	4
47	8	3
13	0	2
34	8	1

i	T[i]	Probe Sequence
0	13	0
1		
2		
3	42	3
4	29	3,4
5		
6		
7		
8	8	8
9	34	8, 9
10		
11	47	8,11
12	51	12

- 8 straight into 8
- 42 straight into 3
- 29:
- 29%13 = 3 3 is full.
- (3 + 1)%13 = 4 inserted into 4
- 9 51 straight into 12
- 47:
- 47%13 = 8 8 is full,
- (8+3)%13 = 11 inserted into 11
- 13 inserted into 0
- 34:
- 34%13 = 8 8 is full,
- (8+1) = 9 insert into 9.

Hashing

Rehashing

- If *T* gets too full, the running time for operations increases and for hashing with quadratic probing, inserts may fail.
- A solution is to build another hash table, T2, approximately the size of T e.g. double size and then increase to the next prime number.
- T is then scanned and each (non-deleted) key from T is inserted into T2

The End