

Fisheries and Oceans Pêches et Océans Canada

Canada

Science

Sciences

CSAS

SCCS

Canadian Science Advisory Secretariat

Secrétariat canadien de consultation scientifique

Research Document 2012/067

Document de recherche 2012/067

Gulf Region

Région du Golfe

Preliminary Results from the September 2010 and 2011 Bottom-trawl chalut de fond de septembre 2010 et Survey of the Southern Gulf of St. Lawrence

Résultats préliminaires des relevés au 2011 dans le sud du golfe du Saint-Laurent

L. Savoie, R. Morin, T. Surette, H.P. Benoît and C. LeBlanc

Fisheries and Oceans Canada / Pêches et Océans Canada Gulf Region / Région du Golfe Sciences Branch / Direction des Sciences P.O. Box 5030 / C.P. 5030 Moncton, NB / N.-B. E1C 9B6

This series documents the scientific basis for the evaluation of aquatic resources and ecosystems in Canada. As such, it addresses the issues of the day in the time frames required and the documents it contains are not intended as definitive statements on the subjects addressed but rather as progress reports on ongoing investigations.

La présente série documente les fondements scientifiques des évaluations des ressources et des écosystèmes aquatiques du Canada. Elle traite des problèmes courants selon les échéanciers dictés. Les documents qu'elle contient ne doivent pas être considérés comme des énoncés définitifs sur les sujets traités, mais plutôt comme des rapports d'étape sur les études en cours.

Research documents are produced in the official language in which they are provided to the Secretariat.

Les documents de recherche sont publiés dans la langue officielle utilisée dans le manuscrit envoyé au Secrétariat.

This document is available on the Internet at

Ce document est disponible sur l'Internet à

www.dfo-mpo.gc.ca/csas-sccs

ISSN 1499-3848 (Printed / Imprimé) ISSN 1919-5044 (Online / En ligne) © Her Majesty the Queen in Right of Canada, 2012 © Sa Majesté la Reine du Chef du Canada, 2012

TABLE OF CONTENTS / TABLE DES MATIÈRES

ABSTRACT / RÉSUMÉ	iii
1. SURVEYS DESCRIPTION / DESCRIPTION DES RELEVÉS	
2. SUMMARY RESULTS / RÉSULTATS SOMMAIRES	
2.1. COD / MORUE	3
2.2. WHITE HAKE / MERLUCHE BLANCHE	4
2.3. AMERICAN PLAICE / PLIE CANADIENNE	5
2.4. WITCH FLOUNDER/ PLIE GRISE	6
2.5. WINTER FLOUNDER / PLIE ROUGE	
2.6. YELLOWTAIL FLOUNDER / LIMANDE À QUEUE JAUNE	8
2.7. HERRING / HARENG	9
2.8. ATLANTIC HALIBUT / FLÉTAN ATLANTIQUE	10
2.9. BOTTOM TEMPERATURE / TEMPÉRATURE AU FOND	
3. ACKNOWLEDGEMENTS / REMERCIEMENTS	11
4. REFERENCES / BIBLIOGRAPHIE	12
TABLES / TABLEAUX	13
FIGURES / FIGURES	22
APPENDICES / ANNEXES	49

Correct citation for this publication: La présente publication doit être citée comme suit :

Savoie, L., Morin, R., Surette, Benoît, H.P., and LeBlanc, C. 2012. Preliminary Results from the September 2010 and 2011 Bottom-trawl Survey of the Southern Gulf of St. Lawrence. DFO Sci. Advis. Sec. Res. Doc. 2012/067. iv + 68 p.

Savoie, L., Morin, R., Surette, T., Benoît, H.P., et LeBlanc C. 2012. Résultats préliminaires des relevés au chalut de fond de septembre 2010 et 2011 dans le sud du golfe du Saint-Laurent. Secr. can. de consult. sci. du MPO. Doc. de rech. 2012/067. iv + 68 p.

ABSTRACT

Each autumn since 1971, a standardized research vessel bottom-trawl survey has been conducted in the southern Gulf of St. Lawrence (NAFO Division 4T). The primary objective of this survey is to obtain abundance indices for the major demersal fish resources in the area. This report presents the preliminary results of the surveys conducted from 7-29 September 2010 and from September 12 to October 2 2011. In 2010 and 2011, the abundance and biomass indices for southern Gulf of St. Lawrence cod were at record-low levels, and indicate that the abundance and biomass of this stock continue to be very low compared to the levels observed in the late 1970s and during the 1980s. Indices from the survey of 2010 and 2011 suggest that the abundance and biomass of white hake remain extremely low compared to the indices observed in the late 1980s and early 1990s. The southern Gulf American plaice stock has declined to its lowest level in the 2000s with the abundance index at record low in 2002. The biomass index reached its lowest point in the 2009 survey. Recent fluctuations in survey indices have occurred for this species. The 2010 and 2011 survey registered an increase in abundance and biomass since 2002. In 2010, the abundance index for witch flounder was near the long-term average whereas the biomass index was about one-half of the long-term average. For 2011, the abundance index was over the long-term average and the biomass index was closer to the long-term average. The survey index for winter flounder abundance has fluctuated in recent years at the level of the long term average; however, since 2006 the biomass index has been well below the long-term average. The abundance of yellowtail flounders in 2010 remains comparable to the global average since 1985 but is lower for 2011. The abundance surrounding the Magdalen Islands (strata 428 and 434 to 436) has increased in the past four years but the biomass in 4T and in the area around the Magdalen Islands has decreased in recent years. Bottom temperatures were coldest over the central Magdalen Shallows and increased shoreward as depth decreased and along the Laurentian Channel as depth increased. No sub-zero bottom temperatures were recorded throughout the survey area in 2010 and 2011 and the area covered by waters colder than 1°C decreased to the lowest level observed since 1988

RÉSUMÉ

Chaque automne depuis 1971, un relevé normalisé au chalut de fond est effectué à bord d'un navire de recherche dans le sud du golfe du Saint-Laurent (division 4T de l'OPANO). Son principal objectif est d'obtenir des indices d'abondance des principales espèces de poisson de fond de la région. Dans le présent rapport, les résultats préliminaires du relevé de septembre, effectué du 7 au 29 septembre 2010 et du 12 septembre au 2 octobre 2011, sont décrits. En 2010 et 2011, les indices d'abondance et de biomasse de la morue du sud du golfe du Saint-Laurent ont atteint les plus bas niveaux enregistrés à ce jour, indiquant que l'abondance de ce stock continue d'être inférieure à celles observées à la fin des années 1970 et durant les années 1980. Les indices d'abondance et de biomasse de la merluche blanche des relevés de 2010 et de 2011 demeurent extrêmement bas en comparaison avec les indices observés à la fin des années 1980 et au début des années 1990. Le stock de la plie canadienne du sud du Golfe a décliné au cours des années 2000. L'indice d'abondance a été à son plus bas niveau en 2002, tandis que l'indice de la biomasse était à son plus bas niveau en 2009. Des fluctuations récentes dans les indices du relevé ont été enregistrées pour cette espèce. Les relevés de 2010 et de 2011 ont enregistré une augmentation de l'abondance et de la biomasse depuis 2002. L'indice d'abondance de la plie grise en 2010 est demeuré près de la moyenne à long terme tandis que l'indice de biomasse était d'environ la moitié de la moyenne à long terme. En 2011, l'indice d'abondance était au-dessus de la moyenne à long terme tandis que l'indice de biomasse était près de la moyenne à long terme. L'indice d'abondance de la plie rouge a fluctué au cours des dernières années au niveau de la moyenne à long terme, mais, depuis 2006, l'indice de biomasse demeure inférieur à la moyenne à long terme. L'abondance de la limande à queue jaune, en 2010, est comparable à la moyenne globale depuis 1985, toutefois, celle de 2011 est plus basse. L'abondance aux environs des Îles-de-la-Madeleine (strates 428 et 434-436) a augmenté au cours des guatre dernières années, mais la biomasse dans la zone 4T et dans la région entourant les Îles-de-la-Madeleine a diminué dans les récentes années. Les plus froides températures au fond ont été enregistrées dans la zone centrale du plateau madelinien et à l'approche de la côte, où la profondeur diminue, ainsi que dans les eaux profondes du chenal Laurentien. Aucune température de fond sous zéro n'a été enregistrée lors des relevés de 2010 et de 2011. La zone couverte par les eaux froides (1°C) a diminué à la plus petite superficie depuis 1988.

1. SURVEYS DESCRIPTION

The 2010 and 2011 autumn bottom-trawl surveys of the southern Gulf of St. Lawrence were conducted from September 7–29 and September 12 to October 2, respectively, aboard the research vessel *CCGS Teleost* (Mission TEL-2010-974 and Mission TEL-2011-094).

During the 2010 survey, 156 standard sets (30 minutes long at a speed of 3.5 knots) were attempted, of which 146 were successful. For the 2011 survey, 145 standard sets were attempted of which 136 were successful. All sets were made in Northwest Atlantic Fisheries Organization (NAFO) Division 4T. The trawl geometry (door-spread, wing-spread, opening, clearance and depth) were monitored during every set with Scanmar acoustic sensors (the data were logged but were not used to adjust net performance)

Conversion factors to account for vessel efficiency differences were derived from the results of the side-by-side comparative fishing sets conducted in conjunction with the 2004 and 2005 surveys and were described by Benoît (2006). These conversion factors were applied to convert all catches (1971-2011, excluding 2003) to CCGS Alfred Needler equivalent catches. The catches made during the 2003 survey by the Wilfred Templeman cannot be converted or interpreted because the fishing efficiency of the Wilfred Templeman has not been calibrated with that of either the Teleost or the Alfred Needler.

Data entry, validation and primary edits were conducted aboard the vessel as in previous years. Basic oceanographic data (profiles of temperature, salinity, dissolved oxygen, fluorescence and irradiance), as well as water samples for salinity, nutrient and

1. DESCRIPTION DES RELEVÉS

Les relevés d'automne au chalut de fond de 2010 et 2011 effectués dans le sud du golfe du Saint-Laurent ont été menés du 7 au 29 septembre et du 12 septembre au 2 octobre, respectivement, à bord du navire de recherche *NGCC Teleost* (Mission TEL-2010-974 et Mission TEL-2011-094).

Au cours du relevé de 2010, 156 traits de chalut normalisés (30 minutes à 3.5 nœuds) ont été tentés et 146 ont été réussis. En 2011, 145 traits de chalut normalisés ont été tentés et 136 ont été réussis. Tous les traits ont été effectués dans la division 4T de l'Organisation des pêches de l'Atlantique Nord-Ouest (OPANO). On a surveillé la géométrie du chalut (écartement entre les ailes, ouverture verticale du chalut, espace libre, profondeur de la colonne d'eau et écartement entre les panneaux) pour chaque trait de chalut au moyen de sondes Scanmar^{MC} (les données ont été enregistrées mais n'ont pas été utilisées pour régler la performance du chalut).

Les facteurs de conversion visant à tenir compte des écarts d'efficacité entre les navires sont tirés des résultats des traits de pêche comparative (côte à côte) effectués en même temps que les relevés de 2004 et de 2005, et ils sont décrits par Benoît (2006). Ces facteurs ont servi à convertir toutes les captures (de 1971 à 2011, sauf 2003) en prises équivalentes au NGCC Alfred Needler. Les prises du Wilfred Templeman durant le relevé de 2003 ne peuvent être converties ni interprétées car l'efficacité de pêche de ce navire n'a pas été étalonnée avec celle du Teleost ou celle du Alfred Needler

À l'instar des années précédentes, la saisie, la validation et la première correction des données ont été faites à bord du navire. Les données océanographiques de base (profils de température, de salinité, d'oxygène dissous, de fluorescence et d'éclairement) et chlorophyll determinations, were collected at each fishing station. Temperature/depth measurements were also made during each fishing set using a sensor attached to the survey trawl. Additional oceanographic sampling was conducted at 16 fishing stations and at the Shediac Valley fixed hydrographic station for the Atlantic Zone Monitoring Program. This sampling included vertical zooplankton and phytoplankton net tows from the bottom to the surface and the collection of samples from a variety of depths with Niskin™ water bottles.

Special collections were made for eleven (11) different projects in 2010 and nine (9) in 2011 including: studies of the condition and growth of Atlantic cod; a study of the diets of various marine mammals (using stable isotopes) which involved the collection of a variety of their potential prey (fish) species; studies of the biology of thorny, smooth and winter skate; stock assessment and biology of Atlantic herring, toad crab (Hyas coarctatus) and Atlantic hagfish; a description of the shrimp and sponge species that occur in the Southern Gulf of St. Lawrence; American plaice for the "Seal worm Index Survey"; observations on the frequency of deformed, diseased or scarred Atlantic cod; a study of the diet of Atlantic halibut, a collection of sea pen for ageing them and collections of ichthyology laboratory specimens for the U. of Moncton and U. of New Brunswick (Saint John). Digital photographs were taken of a variety of fish and invertebrate species and of survey operations.

The location of the fishing sets, stratification scheme and place names cited in the text are shown in Figure 1. Set locations, depths and the catches (standardized to a 30-minute tow) for eight fish species are presented in Annex I and II. Stratified mean catches

les échantillons d'eau (pour déterminer la salinité et les concentrations d'éléments nutritifs et de chlorophylle) ont été recueillis à chaque station de pêche. La température et la profondeur ont été mesurées à chaque trait au moyen d'une sonde fixée au chalut. D'autres échantillons océanographiques ont été pris à 16 stations de pêche et à la station hydrographique fixe de la vallée de Shédiac aux fins du Programme de monitorage de la zone atlantique. Il s'agissait de traits verticaux, du fond à la surface, au moyen d'un filet à zooplancton et phytoplancton, et d'échantillons au moyen de bouteilles Niskin^{MC} à diverses profondeurs.

Des prélèvements spéciaux ont également été collectés pour 11 différents projets en 2010 et 9 en 2011 soient; des études sur la condition et la croissance de la morue atlantique: une étude sur l'alimentation des différents mammifères marins (à l'aide d'isotopes stables) qui impliquait la collecte d'une variété de leurs proies potentielles (poissons), la biologie de la raie épineuse, de la raie lisse et de la raie tachetée, la biologie et l'évaluation des stocks du hareng et du crabe lyre (Hyas coarctatus) et de la myxine du nord; une description des espèces de crevette et d'éponges qui se retrouvent dans le sud du Golfe, un indice des parasites (ver du phoque) retrouvés dans la plie canadienne, l'observation sur la fréquence de morue atlantique déformée, malade ou cicatrisée, une étude du régime alimentaire du flétan atlantique, une collection de plume de mer pour déterminer leur âge et une collection d'échantillons de poissons pour l'Université de Moncton et l'Université du Nouveau-Brunswick (Saint John). Des photographies digitales de diverses espèces de poissons et d'invertébrés ont été prises ainsi que des photos du déroulement et des activités du relevé.

La figure 1 indique l'emplacement des traits, les strates et les lieux géographiques mentionnés dans le texte. La position des traits, la profondeur et les prises (normalisées à un trait de 30 min) de huit espèces de poissons sont présentées à

(numbers and weights) are presented in Annex III and IV, and the total number and weight of each species of fish and invertebrate caught are listed in Annex V and VI.

2. SUMMARY RESULTS

2.1 COD

The mean catch rate of cod in the 2010 survey was 22.9 fish per tow or 13.4 kg per tow and for the 2011 survey was 15.5 fish per tow or 7.1 kg per tow, the lowest levels observed in the 41-year record (Table 1, Fig. 2). These catch rates indicate that the abundance of the southern Gulf of St. Lawrence cod stock remains very low compared to the abundance observed in the late 1970s and during the 1980s. The mean survey catch rates of cod in recent years are also low compared to those observed in the 1990s, indicating that the stock is continuing to decline.

The majority of cod caught in the 2010 and 2011 survey were between 25 and 60 cm in length (Fig. 3). The highest catch rates occurred between lengths of 33 and 43 cm for 2010, consisting largely of cod aged 4 and 5 years (the 2005 and 2006 yearclasses). These year-classes appeared stronger in the 2009 survey than in earlier surveys. For 2011 the highest catch rates occurred between 25 and 30 cm, consisting largely of cod aged 3 years (the 2008 yeaclass). However, consistent with the earlier surveys, the catch rates at these sizes in the 2010 and 2011 survey suggest that these year-classes are weaker than indicated by the 2009 survey. Catch rates of cod larger than the minimum commercial size of 43 cm were very low in 2010 and even lower in 2011.

The geographic distributions of cod in the 2010 and 2011 surveys were generally consistent with that observed in recent years (Fig. 4). Cod densities were highest in the

l'Annexe I et II. Les prises moyennes par strate et les poids par trait figurent à l'annexe III et IV et les prises totales et le poids par espèce sont présentés à l'Annexe V et VI.

2. RÉSULTATS SOMMAIRES

2.1 MORUE

Le taux de capture moyen de la morue en 2010 était de 22,9 poissons par trait ou de 13,4 kg par trait et de 15,5 poissons par trait ou de 7,1 kg par trait en 2011, le plus bas niveau observé au cours des 41 années du relevé (tableau 1, figure 2). Ces estimations indiquent que l'abondance du stock de morue du sud du golfe du Saint-Laurent demeure très basse en comparaison avec l'abondance observée à la fin des années 1970 et durant les années 1980. Dans les récentes années, le taux de capture moyen de la morue du relevé est également demeuré bas en comparaison avec ceux observés dans les années 1990, indiquant que le stock continu à s'affaiblir.

La majorité des morues capturées lors des relevés de 2010 et de 2011 étaient entre 25 et 60 cm (figure 3). En 2010, le mode était entre 33 et 43 cm ce qui correspond à des morues âgées entre 4 et 5 ans (les classes d'âges de 2005 et 2006). Ces classes d'âges semblent être plus présentes dans le relevé de 2009 que dans les relevés précédents. En 2011, le mode était entre 25 et 30 cm ce qui correspond à des morues de 3 ans (la classe d'âges de 2008). Cependant, à l'instar des années précédentes, le taux de capture de ces grosseurs de morue en 2010 et 2011 suggère que ces classes d'âges sont plus faibles que le démontrait le relevé de 2009. La proportion de morues plus grosse que la taille commerciale minimale de 43 cm capturées en 2010 était basse et même davantage en 2011.

Globalement, les distributions géographiques de la morue observées lors des relevés de 2010 et de 2011 étaient comparables à celles observées lors des années Shediac Valley off Miscou Island, to the west of Orphan Bank off the Gaspé Peninsula, north of Prince Edward Island (P.E.I.), and to the north and east of the Magdalen Islands. Cod catches were mostly very low (less than 1-2 kg per tow) in the deepest strata along the offshore margin of the survey in the Laurentian Channel. Relatively few cod were caught on Bradelle Bank (stratum 423) and in the waters off eastern, western and southern Prince Edward Island.

2.2 WHITE HAKE

During September, white hake have tended to exhibit a disjoint distribution, with concentrations occurring in the warmer waters of the survey area: either in shallow inshore areas around the Northumberland Strait or in the deep waters of the Laurentian Channel and Cape Breton Trough. The abundance and biomass indices for white hake use sets from strata 401, 403 and 415 to 439, and extend from 1984 to present (Table 2, Fig. 5). In 2010, the indices of abundance and biomass for white hake in the NAFO 4T survey area (3.8 fish per tow and 1.6 kg per tow) remained below the longterm average (1984-2011; 5.5 fish per tow and 3.6 kg per tow) and were even lower in 2011 (2.9 fish per tow and 1.2 kg per tow) (Table 2, Fig. 5). The increases in abundance that were observed during the 2000 and 2007 surveys were mainly due to a small number of sets in the Cape Breton Trough (Stratum 437) that yielded a relatively large number of small white hake between 28 and 40 cm (ages 2-4) (Hurlbut et al. 2008).

The length frequency distribution for 2010 and 2011 (Fig. 6) shows that the majority of white hake were in the 25-40 cm length range. The 2011 distribution showed some white hake in the 37-43 range. The largest white hake caught in 2010 and 2011,

précédentes (figure 4). La densité de la morue était plus importante dans la Vallée de Shédiac au large de l'Île de Miscou, à l'ouest du banc de l'Orphelin, au large de la péninsule gaspésienne, au nord de l'Île-du-Prince-Édouard (Î.-P.-É.) et au nord et à l'est des Îles-de-la-Madeleine. Les prises de morue capturées dans la strate la plus profonde, dans le chenal Laurentien à la limite du relevé, étaient peu nombreuses (1-2 kg par trait). Peu de morues ont été capturés dans le banc de Bradelle (strate 423) et au large de l'Î.-P.-É. à l'est, à l'ouest et au sud.

2.2 MERLUCHE BLANCHE

En septembre, la merluche blanche a tendance à se retrouver dans les eaux tempérées du sud du Golfe, soit dans les eaux profondes du chenal Laurentien et de la cuvette du Cap-Breton, soit dans les eaux peu profondes des zones côtières du détroit de Northumberland. Les indices d'abondance et de biomasse de la merluche blanche sont basés sur les traits provenant des strates 401, 403 et de 415 à 439, et s'étalent de 1984 à aujourd'hui (tableau 2. figure 5). En 2010, les indices d'abondance et de biomasse de la merluche blanche dans la zone du relevé de l'OPANO 4T (3,8 poissons par trait et 1,6 kg par trait) est resté en dessous de la moyenne à long terme (1984-2011, 5,5 poissons par trait et 3,6 kg par trait) et étaient encore plus faibles en 2011 (2.9 poissons par trait et 1.2 kg par trait) (tableau 2, figure 5). Les augmentations de l'abondance observées au cours des relevés de 2000 et 2007 étaient principalement dues à un petit nombre de traits dans la cuvette du Cap-Breton (strate 437) qui contenait un nombre relativement important de petites merluches blanches mesurant entre 28 et 40 cm (2-4 ans) (Hurlbut et al. 2008).

La distribution des fréquences de longueurs pour 2010 (figure 6) montre que la majorité des merluches blanches était entre 25 et 40 cm de longueur. La distribution de 2011 montre plutôt que la majorité des merluches blanches était entre 37 et 43 cm de longueur. respectively, was only 63 cm and 59 cm long and the proportion of fish larger than the commercial size (greater than or equal to 45 cm) remained very low. The abundance of incoming size-classes (less than or equal to 25 cm) in strata 401, 403 and 415 to 439 was the lowest seen since 2006 but a relatively large quantity were caught in stratum 402 in the Northumberland Strait.

The geographic distributions of white hake catches in 2010 and 2011 were very similar to that seen in recent years (Fig. 7). The main areas of concentration were in the Cape Breton Trough (stratum 437), along the Laurentian Channel (strata 415, 425 and 439) and in St. George's Bay, Nova Scotia (N.S.) (stratum 403). White hake have seldom been caught in the shallow, central zone adjacent to the Magdalen Islands. Few white hake have been caught in the western part of the southern Gulf since 1991, suggesting that there has been a major contraction of the geographic range.

2.3 AMERICAN PLAICE

The mean catch per tow of American plaice reached its highest level in the late 1970s. The stock has since declined and has reached its lowest level in recent years (Table 3, Fig. 8). The lowest mean catch was obtained in 2002 (104 plaice per tow; 12.9 kg per tow). Plaice abundance remained at a low level after 2002, but has fluctuated in recent years. In 2008, the survey index reached 178 plaice per tow or 20.9 kg per tow, dropped to 115 plaice per tow (11.6 kg per tow) in 2009, then increased to 192 plaice per tow (21.1 kg per tow) in 2010 to decreased again to 152 plaice per tow (15.5 kg per tow). The lowest level of the population biomass index since 1971 occurred in 2009

La plus grande merluche blanche capturée en 2010 et 2011 n'était que de 63 cm et 59 cm de long, respectivement. La proportion de poissons supérieure à la taille commerciale (supérieure ou égale à 45 cm) est restée très faible. L'abondance des classes de petite taille (inférieure ou égale à 25 cm) dans les strates 401, 403 et 415 à 439 était la plus faible observée depuis 2006, mais une quantité relativement importante a été capturée dans la strate 402 dans le détroit de Northumberland.

Les distributions géographiques des prises de merluches blanches en 2010 et 2011 sont très semblables à celles observées au cours des dernières années (figure 7). Les principales zones de concentration sont la cuvette du Cap-Breton (strate 437), le long du chenal Laurentien (strates 415, 425 et 439) et la baie Saint-George, en Nouvelle-Écosse (N.-É.) (strate 403). Les prises de merluches sont rares dans la zone centrale, peu profonde et adjacente aux Îles-de-la-Madeleine. De fait, très peu ont été capturées dans la partie ouest du sud du Golfe depuis 1991, suggérant une contraction de l'aire de distribution géographique.

2.3 PLIE CANADIENNE

La prise moyenne par trait de plies canadiennes a atteint son sommet vers la fin des années 1970. Le stock a décliné depuis cette période, atteignant son plus bas niveau au cours des récentes années (tableau 3, figure 8). La plus basse prise movenne a été obtenue en 2002 (104 plies par trait: 12.9 kg par trait). L'abondance de la plie demeure faible depuis 2002, mais elle a subit des fluctuations dans les dernières années. En 2008, l'indice du relevé a atteint 178 plies par trait ou 20,9 kg par trait et a chuté à 115 plies par trait (11,6 kg par trait) en 2009. L'indice a augmenté à 192 plies par trait (21,1 kg par trait) en 2010 et a encore diminué à 152 plies par trait (15,5 kg par trait) en 2011. Depuis 1971, l'indice de biomasse a atteint son plus bas niveau en 2009.

Length frequency distributions for plaice in this survey do not usually indicate strong modes at lengths less than 20 cm and it may be difficult to detect strong incoming recruitment based on length data. However, surveys since 2007 have recorded modes occurring at less than 20 cm (Fig. 9). Despite the occurrence of modes at 15 cm and less in surveys since 2007, there is no clear signal of improved recruitment for this stock. In 2010 and 2011, the modal length of plaice was between 21 and 24 cm, similar to the size distribution in 2008 (mode at 24 cm). The modal length of plaice in this survey has ranged between 21 and 26 cm since 2006 and there have been relatively few plaice (less than 17%) of the legal size (30 cm) since 2006 (Fig. 9).

American plaice are widely distributed in the southern Gulf at intermediate depths. In recent years they appear principally on the Magdalen Shallows, off the north coast of P.E.I., off the west coast of Cape Breton, and between P.E.I. and Nova Scotia (Fig. 10). Plaice abundance was weak in the central Magdalen Shallows, particularly between the Magdalen Islands and P.E.I. during the 2009 survey, but appeared to improve in this area in 2010 and 2011. Two exceptionally large plaice catches occurred east of the northern Gaspe Peninsula in 2010.

2.4 WITCH FLOUNDER

Witch flounder are found primarily in the deep waters of the Laurentian Channel. The southern Gulf of St. Lawrence survey provides an indication of abundance only in 4T, and not for the entire stock area which comprises NAFO 4RST. The northern Gulf survey undertaken by Quebec Region also is used to follow trends in the abundance of this stock (information from that survey will be available separately).

Les distributions des fréquences de longueurs de la plie issues du présent relevé ne montrent généralement pas de mode à des longueurs inférieures à 20 cm. Il peut être difficile de déceler l'arrivée d'un recrutement fort à partir des données de longueurs. On note cependant la présence de modes aux longueurs inférieures à 20 cm dans les relevés depuis 2007 (figure 9). Malgré la présence de modes à 15 cm et moins depuis 2007, nous ne pouvons pas encore déceler une amélioration dans le recrutement de ce stock. En 2010 et 2011, la longueur modale était entre 21 et 24 cm. semblable à la distribution de tailles observée en 2008 (mode à 24 cm). La longueur modale des plies canadiennes capturées dans les relevés depuis 2006 se situe entre 21 et 26 cm. moins de 17% d'entres elles sont de la taille réglementaire de 30 cm.

La plie canadienne a une distribution répandue dans le sud du Golfe à des profondeurs intermédiaires. Lors des dernières années, on les trouve surtout sur le plateau madelinien, au nord de l'Î.-P.-É., à l'ouest de l'Île du Cap-Breton et entre l'Î.-P.-É. et la N.-É. (figure 10). L'abondance de la plie canadienne était faible dans la partie centrale du plateau madelinien, surtout entre les Îles-de-la-Madeleine et l'Î.-P.-É. lors du relevé de 2009, mais elle semble s'être replacé dans ce secteur en 2010 et 2011. Il y a eu deux prises exceptionnellement abondantes en 2010 à l'est de la partie nord de la péninsule de Gaspé.

2.4 PLIE GRISE

La plie grise se capture surtout dans les eaux profondes du chenal Laurentien. Le relevé effectué dans le sud du golfe du Saint Laurent donne seulement l'abondance pour 4T et non la totalité de la zone du stock 4RST de l'OPANO. Le relevé effectué dans le nord du Golfe par la région du Québec est également utilisé pour suivre les tendances dans l'abondance de ce stock (l'information provenant de ce relevé sera présentée dans

The abundance and biomass indices for witch flounder in 4T have fluctuated between relatively low and high values during the 2004-2011 period (Table 4, Fig. 11). In 2010, the abundance index was near the long-term average whereas the biomass index was about one-half of the long-term average. For 2011, the abundance index was over the long-term average and the biomass index was closer to the long-term average.

Juvenile witch flounder tend to be distributed in deep water, mostly outside of the area covered by the September survey. Thus, most of the witch flounder caught in the survey tends to be adult fish (30+ cm). In 2010, 65% of the catches were composed of witch flounder 30 cm and greater and was 78% for 2011. Witch flounder catch rates in the 2010 and 2011 surveys peaked at lengths of 30 to 35 cm (Fig. 12).

The distributions of catches in 2010 and 2011 were similar to those of recent years. Catch rates of witch flounder were highest along the slope of the Laurentian Channel and in the Cape Breton Trough (Fig. 13).

2.5 WINTER FLOUNDER

Winter flounder is found inshore, from the shoreline to approximately 20 fathoms. The abundance index for this species comprises sets from all strata (401-439) and does not cover a large portion of its inshore distribution. Yearly fluctuations in the index are common and confidence intervals on mean estimates are wide (Table 5, Fig. 14). The survey index for winter flounder abundance has fluctuated in recent years at the level of the long term average (since 1984) of 38 fish per tow, but is at the lowest value of the series at 15 fish per tow in 2011. The mean weight per tow in surveys since 2004 has been on a decreasing trend and

un document distinct).

Les indices d'abondance et de biomasse de la plie grise dans la zone 4T ont fluctué; allant de valeurs relativement élevées à des valeurs relativement basses durant la période de 2004 à 2011 (tableau 4, figure 11). En 2010, l'indice d'abondance était près de la moyenne à long terme tandis que l'indice de biomasse équivalait à la moitié de la moyenne à long terme. En 2011, l'indice d'abondance était au-dessus de la moyenne à long terme tandis que l'indice de biomasse était près de la moyenne à long terme.

Les plies grises juvéniles ont tendance à se répartir dans les eaux profondes, surtout à l'extérieur de la zone visée par le relevé de septembre. Par conséquent, la plupart des plies grises capturées sont des adultes (30 cm et plus). En 2010, 65% des captures était composé de plies grises de 30 cm et plus et en 2011, la proportion était de 78%. Les taux de capture de la plie grise des relevés de 2010 et 2011 ont atteint des maximums de longueurs entre 30 et 35 cm (figure 12).

Les distributions des captures en 2010 et 2011 étaient comparables à celles des années précédentes. Le taux de capture de la plie grise a été plus important le long de la pente du chenal Laurentien et dans la cuvette du Cap-Breton (figure 13).

2.5 PLIE ROUGE

On retrouve la plie rouge dans les milieux côtiers; du rivage jusqu'à environ 20 brasses de profondeur. L'indice d'abondance et de biomasse de cette espèce est calculé à partir des traits effectués dans toutes les strates (401-439), mais exclu une grande partie de sa distribution côtière. L'indice a donc tendance à fluctuer d'une année à l'autre et les intervalles de confiance des moyennes sont grands (tableau 5, figure 14). L'indice du relevé sur l'abondance de la plie rouge a fluctué ces dernières années au niveau de la moyenne à long terme (depuis 1984) de 38 poissons par trait, mais il est à la valeur la plus basse de la série à 15 poissons par trait

stand at the lowest in the time series that is 2.2 kg per tow since 1984.

Length frequency distributions of winter flounder in this survey vary from year to year, but they tend to be dome-shaped, composed of fish up to 40 cm, with most ranging between 15 and 30 cm (Fig. 15). Modal size is usually at around 20 cm. For winter flounder in this survey, length frequencies have not provided reliable indicators of recruitment in the past. However, the survey length frequencies of 4T winter flounder indicate a progressive decline in the proportion of fish of commercial size (25 cm+) from approximately 20% in 2006 to about 10% in 2011.

The distribution of winter flounder catches in the 2010 and 2011 surveys were similar to that of most previous years. The stock remains concentrated in coastal waters off north-eastern New Brunswick and western P.E.I., the Magdalen Islands, and between eastern P.E.I. and Cape Breton, including St. George's Bay (Fig. 16).

2.6 YELLOWTAIL FLOUNDER

The abundance of yellowtail flounder at 25.8 fish per tow in 2010 remains comparable to the global average since 1985 but is lower for 2011 at 17.3 fish per tow (Table 6, Fig. 17). The abundance surrounding the Magdalen Islands (strata 428 and 434 to 436) has increased in the past four years, from 32 fish per tow in 2008 to 68 fish per tow in 2011 (The average since 1971 is 43 yellowtail per tow) (Table 7, Fig. 17). The biomass of yellowtail surrounding the Magdalen Islands has similarly decreased in recent years.

The modal length of yellowtail flounder caught in the 2010 and 2011 surveys slightly

en 2011. Le poids moyen par trait des relevés depuis 2004 est en baisse et se situe au plus bas niveau dans la série chronologique à 2,2 kg par trait depuis 1984.

La distribution des fréquences de longueurs de ce relevé varie d'une année à l'autre, mais elle forme généralement un dôme composé de plies rouges allant jusqu'à 40 cm en longueur, la majorité étant de 15 à 30 cm (figure 15). La longueur modale est normalement aux environs de 20 cm. Jusqu'à présent, les fréquences de longueurs de la plie rouge dans ce relevé n'ont pas présenté des indices fiables de recrutement. Cependant, depuis 2006, les fréquences de longueurs de la plie rouge de 4T dans le relevé indiquent un déclin progressif dans la proportion des poissons de taille réglementaire (25 cm+) soit d'environ 20% en 2006 à 10% en 2011.

La répartition géographique des plies rouges capturées lors des relevés de 2010 et de 2011 ressemblaient à celle de la plupart des années précédentes. Le stock se concentre dans les eaux côtières au nord-est du Nouveau-Brunswick et à l'ouest de l'Î.-P.-É., aux Îles-de-la-Madeleine et entre l'est de l'Î.-P.-É. et l'Île du Cap-Breton, y compris la baie Saint-George (figure 16).

2.6 LIMANDE À QUEUE JAUNE

L'abondance de la limande à queue jaune (nombre par trait) à 25,8 poissons par trait en 2010 est comparable à la moyenne globale depuis 1985, mais elle est plus basse en 2011 à 17,3 poissons par trait (tableau 6, figure 17). L'abondance aux environs des Îles-de-la-Madeleine (strates 428 et 434-436) a augmenté au cours des quatre dernières années. Elle est passée de 32 en 2008 à 68 en 2011 (la moyenne étant de 43 limandes à queue jaune par trait depuis 1971) (tableau 7, figure 17). La biomasse de la limande à queue jaune autour des Îles-de-la-Madeleine a chuté au cours des dernières années.

Le mode de la longueur des limandes capturées dans les relevés de 2010 et 2011 decreased to 19 cm, and the proportion of yellowtail below the legal size of 25 cm has increased yearly since 2006, at 81%, to 92% in 2011 (Fig. 18).

As in previous years, yellowtail flounder were concentrated around the Magdalen Islands, off the western and northern coasts of P.E.I. and inshore of the Shediac Valley (Fig. 19).

2.7 HERRING

The 2010 mean number and mean weight per tow were similar to the 2007 values and the 2011 was half of the ones of 2010 (Table 8, Fig. 20). In 2010, there was approximately a 200% increase in the mean number and mean weight per tow from 2009, but the confidence intervals around these estimates were very large, indicative of a few sets with very high catches.

The length frequency distribution in 2010 consisted of a substantial proportion at around 10 cm, mostly spring spawned young of the year and age 1 fall spawned herring, and a large proportion from 19 to 26 cm which would mainly be age 2 and 3 herring (Fig. 21). On the other hand, the 2011 length frequency distribution showed a substantial proportion of fish at 18 cm. For the last two years, the largest proportion at around 24 to 28 cm would be age 4 and older herring. There were very few catches of herring larger than 30 cm.

Herring were caught primarily near shore in waters less than 30 fathoms, mostly north and east of P.E.I., west of Cape Breton, the Northumberland Strait and in St. George's Bay, and southwestern part of Chaleur Bay (Fig. 22).

a légèrement diminué à 19 cm. La proportion de limandes sous la taille réglementaire de 25 cm a augmenté annuellement depuis 2006, passant de 81% à 90% en 2011 (figure 18).

À l'instar des années précédentes, la limande à queue jaune est concentrée près des Îles-de-la- Madeleine, au large des côtes ouest et nord de l'Î.-P.-É. et dans la zone côtière de la vallée de Shédiac (figure 19).

2.7 HARENG

Les indices d'abondance et de biomasse en 2010 étaient semblables à ceux de 2007 et ceux de 2011 étaient la moitié de ceux de 2010 (table 8, figure 20). En 2010, les indices d'abondance et de biomasse étaient approximativement 200% supérieurs à ceux de 2009. Cependant, les intervalles de confiance autour des estimés de 2010 sont très larges, indiquant qu'il y avait certains traits avec des captures considérables de hareng.

La distribution des fréquences de longueurs du relevé de 2010 révélait une petite proportion de harengs mesurant autour de 10 cm (surtout des harengs du printemps de l'année et des harengs d'automne de 1 an), et une proportion de harengs entre 19 et 26 cm (des harengs de 2 et 3 ans) (figure 21). D'autre part, la distribution des fréquences de longueurs de 2011 montre une proportion importante de poissons à 18 cm. Depuis les deux dernières années, la proportion la plus grande est entre 24 et 28 cm et correspond aux harengs de 4 ans et plus. Il y a eu peu de captures de harengs plus âgés et de taille supérieure à 30 cm.

Le hareng a été capturé près des côtes surtout dans les eaux de moins de 30 brasses de profondeur, principalement au nord et à l'est de l'Î.-P.-É., à l'ouest du Cap-Breton, dans le détroit de Northumberland et la baie Saint-George, ainsi que la partie ouest de la baie des Chaleurs (figure 22).

2.8 ATLANTIC HALIBUT

The mean catch abundance and weight per tow are increasing since 2000 (Table 9, Fig. 23). The abundance increased from 0.2 fish per tow in 2000 to 0.6 fish per tow in 2011. The same trend can be observed for the biomass index.

Since the distribution of Atlantic halibut is highly localized, very few are caught in any given year. As a consequence, the length-frequency distributions for halibut are very noisy and so no recruitment patterns are visible (Fig. 24).

In 2010 and 2011, as in previous years, Atlantic halibut catches occurred off northern Cape Breton, along the Laurentian channel, north of P.E.I., the Shediac Valley area and off Gaspé (Fig. 25).

2.9 BOTTOM TEMPERATURE

A Gaussian spatial field model (Diggle & Ribeiro 2007) was fitted to the bottom temperature data which specified the distribution within the study area as being multivariate normal with a non-linear mean and covariance matrix given by a scaled Matern correlation function (which relates the degree of correlation between locations as a function of their separation distance). A fourth-order rational polynomial function was used to model the relationship between temperature and water depth. The mean and covariance parameters were simultaneously estimated using maximum likelihood. Bottom water temperatures were estimated over a fine-meshed (500 x 500) grid over the survey area. We thus obtained an interpolated map based on the fitted model and conditioned on the observed temperature data. Surface areas of cold-water regions below the 0°C and 1°C thresholds were then derived. This method yielded results that were similar to those obtained in previous years with kriging.

2.8 FLÉTAN ATLANTIQUE

L'abondance des captures et le poids moyens par trait sont en hausse depuis 2000 (tableau 9, figure 23). L'abondance a augmenté de 0,2 poissons par trait en 2000 à 0,6 poissons par trait en 2011. La même tendance peut être observée pour l'indice de la biomasse.

Puisque les prises du flétan atlantique sont très restreintes, peu sont capturés pour une année donnée. En conséquence, les distributions des fréquences de longueurs sont irrégulières et aucun modèle de recrutement ne peut en être inférer (figure 24).

En 2010 et 2011, comme les années précédentes, il y a eu des prises du flétan atlantique au nord du Cap-Breton, le long du chenal Laurentien au nord de l'I.-P.-É., dans la région de la vallée de Shédiac et au large de Gaspé (figure 25).

2.9 TEMPÉRATURE AU FOND

Un champ spatial Gaussien (Diggle & Ribeiro 2007) a été ajusté aux données de température au fond de la colonne d'eau. La distribution conjointe des données était une multi-normale ayant une moyenne nonlinéaire et une matrice de covariance suivant un modèle Matèrn (qui décrit le degré de corrélation entre les sites comme étant une fonction de la distance qui les séparent). Un polynôme rationnel de 4e ordre a été utilisé pour modéliser la relation entre la profondeur et la température. Les paramètres de cette fonction et la matrice de covariance ont été estimés simultanément par maximum de vraisemblance. Les températures de fond ont été estimées sur un quadrillage fin (500 x 500) sur toute l'aire d'étude. On a donc obtenu une carte de températures interpolées en fonction des données observées et des paramètres. Les aires des surfaces des eaux se trouvant sous les seuils de 0°C et 1°C ont donc été obtenues. Cette méthode a donné des résultats similaires à ceux des années précédentes

Bottom temperatures were coldest over the central Magdalen Shallows and increased shoreward as depth decreased and along the Laurentian Channel as depth increased (Fig. 26). No sub-zero bottom temperatures were recorded throughout the survey area in 2010 and 2011 and the area covered by waters colder than 1°C decreased to the lowest level observed since 1988 (Fig. 27).

ACKNOWLEDGEMENTS

We wish to thank both crews of the C.C.G.S. Teleost. Appreciation is extended to the following scientific staff from DFO: Éliane Aubry, Doris Daigle, Janice Fennell, Jeff Spry, Kevin Pauley, Megan Best, Sophie LeBlanc, Stéphan LeBlanc and Yves Richard. In addition, the following students participated on those surveys:, Angela Douglas, Anna Magera, Ashley Thibeault, Aurelie Cosandey-Godin, Cassandra Muldoon, Daniel Watts, David Keith, Dean Pelletier, Elise Keppel, Erin Miller, Jennifer Heuvelman, Jesse Kelly, Jessica Ellis, Joe McSheffery, Julie-Lynn Zahavich, Karen Seymour, Lauren Ellis, Lauren Kay, Mark McGraw, Megan Vaughan and William Robbins. Their help was greatly appreciated. We also extend our thanks to Yves Larocque (Biorex Fishery Observer) for his participation on the 2010 second leg of the survey. Scott Wilson, Kevin Pauley and Jeff Spry installed the equipment for the oceanographic monitoring. Robert Nowlan and Pablo Vergara provided valuable assistance with the installation of the Groundfish Survey Entry (GSE) system.

avec le krigeage.

Les températures au fond étaient les plus froides dans la zone centrale du plateau madelinien. et à l'approche de la côte, où la profondeur diminue, ainsi que dans les eaux profondes du chenal Laurentien (figure 26). Aucune température du fond sous zéro n'a été enregistrée lors des relevés de 2010 et de 2011 et Les zones couvertes par les eaux froides (1°C) ont diminué couvrant la plus petite superficie depuis 1988 (figure 27).

REMERCIEMENTS

Nous remercions les deux équipages du NGCC Teleost ainsi que les employés scientifiques suivants du MPO : Éliane Aubry, Doris Daigle, Janice Fennell, Jeff Spry, Kevin Pauley, Megan Best, Sophie LeBlanc, Stéphan LeBlanc et Yves Richard. De plus, les étudiants suivants ont participé au relevé: Angela Douglas, Anna Magera, Ashley Thibeault, Aurelie Cosandey-Godin, Cassandra Muldoon, Daniel Watts, David Keith, Dean Pelletier, Elise Keppel, Erin Miller, Jennifer Heuvelman, Jesse Kelly, Jessica Ellis, Joe McSheffery, Julie-Lynn Zahavich, Karen Seymour, Lauren Ellis, Lauren Kay, Mark McGraw, Megan Vaughan et William Robbins. Leur aide a été grandement appréciée. Nous remercions aussi Yves Larocque, observateur de Biorex. pour avoir participé au deuxième volet du relevé de 2010. Scott Wilson, Kevin Pauley et Jeff Spry ont installé le matériel océanographique. Robert Nowlan et Pablo Vergara ont aussi fourni une aide précieuse en installant le système de saisie des données du relevé (Groundfish Survey Entry).

REFERENCES

BIBLIOGRAPHIE

- Benoît, H.P. 2006. Standardizing the southern Gulf of St. Lawrence bottom-trawl survey time series: Results of the 2004-2005 comparative fishing experiments and other recommendations for the analysis of the survey data. DFO Can. Sci. Advis. Sec. Res. Doc. 2006/008: 80 p.
- Diggle, P.J., and Ribeiro, P.J. 2007. Model-based Geostatistics, Springer, New York.
- Hurlbut, T., Morin, R., Surette, T., Swain, D.P., Benoît, H.P., and LeBlanc, C. 2010. Preliminary results from the September 2009 bottom-trawl survey of the southern Gulf of St. Lawrence. DFO Can. Sci. Advis. Sec. Res. Doc. 2010/044. iv +49 p.

TABLES / TABLEAUX

- Table 1. Mean annual catch abundance and weight per tow of cod in the southern Gulf of St.

 Lawrence September bottom-trawl survey. Strata 415 to 439 are those used for the cod abundance and biomass indices.
- Tableau 1. Nombre moyen par trait et poids moyen en kg par trait de morues dans les relevés au chalut de fond de septembre effectués dans le sud du golfe du Saint-Laurent. Les strates 415 à 439 sont utilisées dans les indices d'abondance et de biomasse de la morue.

	Number	/ Nombre	Weight (kg) / Poids (kg)	
Year / Année	Mean / Moyenne	Variance / Variance	Mean / Moyenne	Variance / Variance
1971	39.16	27.45	50.24	51.84
1972	50.72	33.65	58.32	50.90
1973	47.03	56.19	53.37	86.69
1974	45.83	31.25	51.12	54.05
1975	38.27	50.20	36.24	54.89
1976	75.53	87.71	45.37	63.55
1977	92.66	315.89	64.01	87.50
1978	137.54	1188.06	116.20	1130.78
1979	192.51	407.96	146.89	197.25
1980	188.14	1061.74	158.72	594.21
1981	268.18	1454.64	244.68	1406.12
1982	238.20	1973.67	205.88	1433.56
1983	214.87	446.35	151.95	302.49
1984	162.18	324.78	119.73	143.57
1985	281.08	3160.95	207.07	2134.60
1986	236.10	899.86	163.20	293.64
1987	165.68	243.16	121.27	156.96
1988	301.25	4066.85	200.40	879.04
1989	214.81	727.59	145.93	204.60
1990	125.83	164.63	91.69	78.01
1991	110.25	432.11	70.38	102.52
1992	54.87	47.10	34.61	18.46
1993	66.14	44.24	42.11	11.65
1994	54.67	32.50	40.58	18.43
1995	65.75	50.68	44.86	23.75
1996	67.12	110.80	57.04	80.08
1997	52.85	83.28	43.68	80.93
1998	52.06	38.08	44.12	35.21
1999	69.78	221.75	51.29	139.09
2000	49.67	95.44	42.42	108.68
2001	121.25	6116.36	39.85	105.37
2002	84.46	747.81	58.97	340.74
2003	N/A	N/A	N/A	N/A
2004	68.07	435.49	42.75	199.92
2005	34.03	65.50	18.39	11.47
2006	37.91	75.06	26.23	52.86
2007	33.60	79.62	22.67	39.90
2008	34.04	92.72	26.01	100.34
2009	45.85	428.04	25.22	117.63
2010	22.88	12.61	13.42	8.34
2011	15.54	10.56	7.09	3.31

Table 2. Mean annual catch abundance and weight per tow of white hake in the southern Gulf of St. Lawrence September bottom-trawl survey . Strata 401, 403 and 415 to 439 are those used for the white hake abundance and biomass indices.

Tableau 2. Nombre moyen par trait et poids moyen en kg par trait de merluches blanches dans les relevés au chalut de fond de septembre effectués dans le sud du golfe du Saint-Laurent. Les strates 401, 403 et 415 à 439 sont utilisées dans les indices d'abondance et de biomasse de la merluche blanche.

	Number / Nombre We		Weight (kg) / Poids (kg)
Year / Année	Mean / Moyenne	Variance / Variance	Mean / Moyenne	Variance / Variance
1984	4.35	0.53	5.47	0.88
1985	7.64	5.27	9.09	10.97
1986	11.70	5.12	11.63	3.73
1987	6.09	1.31	5.87	1.17
1988	8.88	3.38	7.18	1.33
1989	11.62	4.45	7.51	1.64
1990	9.14	3.62	6.04	1.03
1991	9.70	13.43	6.64	4.14
1992	7.60	6.06	4.13	1.44
1993	4.37	1.56	2.71	0.65
1994	3.31	1.18	2.17	0.42
1995	3.37	0.23	1.54	0.05
1996	3.17	0.36	1.58	0.09
1997	3.00	0.58	1.52	0.14
1998	3.64	0.35	1.97	0.11
1999	5.40	2.55	2.54	0.57
2000	8.98	8.14	3.65	0.91
2001	3.56	0.58	1.75	0.14
2002	2.98	0.69	1.28	0.11
2003	N/A	N/A	N/A	N/A
2004	1.74	0.13	1.05	0.05
2005	4.07	0.82	1.72	0.18
2006	1.71	0.10	0.75	0.02
2007	9.49	22.50	3.75	3.22
2008	3.26	0.53	1.60	0.12
2009	4.01	1.40	1.58	0.28
2010	3.80	0.61	1.61	0.08
2011	2.86	0.71	1.21	0.09

Table 3. Mean annual catch abundance and weight per tow of American plaice in the southern Gulf of St. Lawrence September bottom-trawl survey. Strata 415 to 439 are those used for the plaice abundance and biomass indices.

Tableau 3. Nombre moyen par trait et poids moyen en kg par trait de la plie canadienne dans les relevés au chalut de fond de septembre effectués dans le sud du golfe du Saint-Laurent. Les strates 415 à 439 sont utilisées dans les indices d'abondance et de biomasse de la plie canadienne.

	Number	/ Nombre	Weight (kg) / Poids (kg)	
Year / Année	Mean / Moyenne	Variance / Variance	Mean / Moyenne	Variance / Variance
1971	199.70	2309.55	40.10	70.07
1972	197.76	2457.87	46.14	147.08
1973	189.52	987.71	52.73	144.04
1974	427.92	2814.84	82.02	119.99
1975	405.67	4477.07	79.72	160.90
1976	711.68	11666.51	135.03	221.16
1977	917.29	39776.41	131.52	498.70
1978	463.86	28217.20	95.47	775.45
1979	695.41	9668.18	134.93	366.60
1980	488.41	7608.20	92.31	284.06
1981	480.31	17571.83	76.73	356.27
1982	264.67	3264.44	54.08	115.95
1983	287.17	2091.72	53.36	54.55
1984	164.02	427.04	33.59	9.60
1985	194.91	457.04	39.84	14.34
1986	233.16	1248.49	45.66	31.41
1987	245.10	1418.80	42.82	31.28
1988	245.17	2396.79	47.64	106.14
1989	202.73	549.58	35.77	15.85
1990	347.09	1662.39	53.37	30.81
1991	357.48	1450.71	61.10	41.38
1992	251.53	606.21	38.51	11.07
1993	209.69	375.97	33.11	16.36
1994	209.12	687.77	32.43	12.63
1995	176.11	212.82	26.05	5.13
1996	170.71	211.02	26.47	5.06
1997	131.44	124.32	18.00	2.04
1998	148.96	175.49	20.66	3.15
1999	130.47	159.12	17.38	2.74
2000	120.56	233.96	16.85	3.96
2001	118.50	299.96	16.42	4.89
2002	104.32	53.19	12.85	0.74
2003	N/A	N/A	N/A	N/A
2004	108.73	100.90	13.50	1.58
2005	128.75	120.80	16.67	1.91
2006	124.16	116.47	15.61	1.87
2007	131.50	120.30	15.73	1.69
2008	177.69	239.79	20.86	4.01
2009	114.64	145.55	11.62	2.03
2010	191.57	2088.80	21.10	37.24
2011	151.68	231.02	15.49	2.39

Table 4. Mean annual catch abundance and weight per tow of witch flounder in the southern Gulf of St. Lawrence September bottom-trawl survey. Strata 415 to 439 are those used for the witch flounder abundance and biomass indices.

Tableau 4. Nombre moyen par trait et poids moyen en kg par trait de la plie grise dans les relevés au chalut de fond de septembre effectués dans le sud du golfe du Saint-Laurent. Les strates 415 à 439 sont utilisées dans les indices d'abondance et de biomasse de la plie grise.

	Number / Nombre		Weight (kg) / Poids (kg)	
rear / Année	Mean / Moyenne	Variance / Variance	Mean / Moyenne	Variance / Variance
1971	4.73	5.38	2.37	1.23
1972	1.73	0.32	1.17	0.27
1973	3.16	2.71	2.22	1.64
1974	3.74	0.47	2.11	0.15
1975	2.96	0.40	1.79	0.17
1976	3.07	0.60	2.54	0.49
1977	4.28	2.46	3.67	2.46
1978	2.32	0.89	1.67	0.46
1979	3.48	1.62	2.39	0.54
1980	1.78	0.24	1.22	0.18
1981	1.28	0.10	1.04	0.06
1982	1.13	0.07	0.83	0.03
1983	1.03	0.05	0.61	0.02
1984	1.09	0.06	0.73	0.03
1985	1.18	0.06	0.87	0.04
1986	2.97	0.38	2.37	0.22
1987	2.37	0.13	1.58	0.07
1988	3.89	0.68	2.06	0.17
1989	2.81	0.25	1.60	0.09
1990	2.51	0.54	1.38	0.14
1991	1.66	0.05	1.07	0.03
1992	1.12	0.05	0.55	0.01
1993	1.93	0.25	0.69	0.03
1994	3.16	0.99	1.06	0.12
1995	2.25	0.24	0.67	0.03
1996	4.77	1.24	1.37	0.13
1997	1.84	0.31	0.57	0.04
1998	5.26	2.69	1.17	0.12
1999	7.37	20.57	2.68	3.51
2000	5.03	3.85	1.54	0.80
2001	4.44	1.31	1.23	0.10
2002	8.59	11.32	2.62	1.78
2003	N/A	N/A	N/A	N/A
2004	2.02	0.55	0.57	0.06
2005	4.28	1.17	1.25	0.12
2006	3.39	1.25	0.75	0.06
2007	1.87	0.16	0.42	0.01
2008	5.39	2.59	1.45	0.24
2009	3.13	0.53	0.77	0.03
2010	3.42	0.84	0.71	0.03
2011	4.62	1.74	1.14	0.07

Table 5. Mean annual catch abundance and weight per tow of winter flounder in the southern Gulf of St. Lawrence September bottom-trawl survey .Strata 401 to 439 are those used for the winter flounder abundance and biomass indices.

Tableau 5. Nombre moyen par trait et poids moyen en kg par trait de la plie rouge dans les relevés au chalut de fond de septembre effectués dans le sud du golfe du Saint-Laurent. Les strates 401 à 439 sont utilisées dans les indices d'abondance et de biomasse de la plie rouge.

	Number / Nombre		Weight (kg) / Poids (kg)
Year / Année	Mean / Moyenne	Variance / Variance	Mean / Moyenne	Variance / Variance
1984	20.39	35.99	5.73	4.57
1985	29.10	55.76	6.90	2.90
1986	40.49	46.97	9.74	2.58
1987	27.42	58.70	5.33	1.20
1988	36.35	110.46	8.58	4.66
1989	46.89	132.09	11.42	6.37
1990	60.25	186.52	11.07	6.39
1991	37.84	215.23	6.53	2.80
1992	47.34	171.64	9.83	5.32
1993	37.73	54.52	8.14	2.47
1994	24.36	27.70	5.61	2.16
1995	65.75	368.55	9.00	4.04
1996	41.72	64.19	6.43	1.11
1997	36.27	71.99	5.08	1.09
1998	27.00	35.87	3.89	0.48
1999	42.23	44.65	6.41	1.18
2000	47.42	93.75	7.10	2.23
2001	33.08	109.60	5.14	1.54
2002	52.65	102.62	9.21	6.25
2003	N/A	N/A	N/A	N/A
2004	37.61	44.73	6.06	1.13
2005	53.32	950.64	5.67	4.94
2006	33.23	48.04	4.62	0.90
2007	35.77	46.80	4.99	1.67
2008	27.02	21.75	3.70	0.42
2009	47.20	332.31	5.00	3.30
2010	32.77	60.92	4.35	0.96
2011	15.39	23.36	2.24	0.53

Table 6. Mean annual catch abundance and weight per tow of yellowtail flounder in the southern Gulf of St. Lawrence September bottom-trawl survey . Strata 401 to 439 are those used for the yellowtail flounder abundance and biomass indices.

Tableau 6. Nombre moyen par trait et poids moyen en kg par trait de la limande à queue jaune dans les relevés au chalut de fond de septembre effectués dans le sud du golfe du Saint-Laurent. Les strates 401 à 439 sont utilisées dans les indices d'abondance et de biomasse de la limande à queue jaune.

		Number	/ Nombre	Weight (kg) / Poids (kg)
Year / Année	Mean / Moyenne	Variance / Variance	Mean / Moyenne	Variance / Variance	
1984	6.41	2.35	1.77	0.15	
1985	15.42	18.65	4.27	1.31	
1986	20.08	23.00	4.97	1.64	
1987	15.44	17.01	3.27	0.72	
1988	19.00	20.46	5.01	2.05	
1989	12.56	9.22	2.47	0.35	
1990	19.95	12.40	3.50	0.37	
1991	20.31	15.98	4.56	0.70	
1992	16.03	5.32	3.01	0.20	
1993	27.94	22.29	5.01	0.68	
1994	18.96	15.75	3.13	0.36	
1995	23.46	13.77	4.57	0.63	
1996	19.08	8.14	3.35	0.23	
1997	14.44	7.03	1.97	0.09	
1998	16.45	8.27	2.43	0.17	
1999	21.71	20.39	3.49	0.49	
2000	20.41	14.89	3.55	0.42	
2001	21.61	14.85	3.57	0.35	
2002	19.09	10.54	2.77	0.21	
2003	N/A	N/A	N/A	N/A	
2004	23.92	28.14	3.54	0.79	
2005	18.32	15.02	2.49	0.30	
2006	28.44	15.51	3.54	0.29	
2007	25.57	25.70	2.74	0.23	
2008	23.45	16.23	2.25	0.15	
2009	19.20	9.24	1.88	0.11	
2010	25.83	11.31	2.49	0.11	
2011	17.30	6.51	1.63	0.06	

Table 7. Mean annual catch abundance and weight per tow of yellowtail flounder in the southern Gulf of St. Lawrence September bottom-trawl survey in the area of the Magdalen Islands that includes strata 428 and 434 to 436.

Tableau 7. Nombre moyen par trait et poids moyen en kg par trait de la limande à queue jaune dans les relevés au chalut de fond de septembre effectués dans le sud du golfe du Saint-Laurent dans la région des Îles-de-la-Madeleine qui inclut les strates 428 et 434 à 436.

Year / Année	Number	/ Nombre	Weight (kg) / Poids (kg)	
	Mean / Moyenne	Variance / Variance	Mean / Moyenne	Variance / Variance
1971	12.87	30.37	3.70	1.96
1972	20.55	115.55	6.97	13.33
1973	9.41	30.00	2.82	3.33
1974	47.53	544.48	10.97	36.08
1975	40.39	599.23	6.98	12.16
1976	14.30	91.30	2.75	3.61
1977	113.82	1615.12	22.76	86.40
1978	23.05	91.76	6.84	7.62
1979	32.48	437.11	6.82	16.39
1980	45.45	259.19	13.77	20.64
1981	72.17	1029.27	18.21	52.95
1982	21.81	7.29	5.98	0.99
1983	25.74	393.31	6.54	30.43
1984	7.36	8.26	2.93	0.97
1985	4.36	7.28	1.22	0.93
1986	9.11	3.35	1.90	0.20
1987	11.23	22.25	2.94	2.34
1988	25.55	176.80	5.70	3.26
1989	7.25	5.75	1.62	0.28
1990	9.77	5.33	2.08	0.15
1991	22.39	23.73	5.30	1.79
1992	29.98	67.58	5.13	2.01
1993	68.54	43.83	11.79	2.08
1994	37.91	126.72	7.66	5.17
1995	55.89	172.26	13.32	18.50
1996	50.74	156.10	9.03	4.66
1997	39.28	61.30	5.57	0.75
1998	46.83	190.99	7.18	3.75
1999	65.39	149.76	11.20	7.89
2000	74.98	239.04	13.71	11.03
2001	56.57	141.88	9.45	3.25
2002	58.11	106.26	8.45	3.53
2003	N/A	N/A	N/A	N/A
2004	83.91	957.04	13.28	31.05
2005	67.76	489.73	8.29	7.71
2006	101.69	254.53	12.07	5.82
2007	75.87	856.59	7.21	5.75
2008	32.21	54.67	3.08	0.54
2009	50.63	93.72	4.72	0.79
2010	64.30	136.42	5.95	1.60
2011	67.58	182.97	6.35	1.97

Table 8. Mean annual catch abundance and weight per tow of herring in the southern Gulf of St. Lawrence September bottom-trawl survey .Strata 401 to 439 are those used for the herring abundance and biomass index.

Tableau 8. Nombre moyen par trait et poids moyen en kg par trait du hareng dans les relevés au chalut de fond de septembre effectués dans le sud du golfe du Saint-Laurent. Les strates 401 à 439 sont utilisées dans les indices d'abondance et de biomasse du hareng.

Year / Année	Number / Nombre		Weight (kg) / Poids (kg)
	Mean / Moyenne	Variance / Variance	Mean / Moyenne	Variance / Variance
1984	34.58	167.31	8.20	9.45
1985	43.61	106.79	11.45	9.56
1986	69.42	647.35	15.47	27.81
1987	84.59	546,48	18.34	24.05
1988	46.41	364.50	13.53	33.62
1989	44.75	195.66	10.58	13.73
1990	125.77	2775.08	30.18	178.35
1991	154.35	2165.88	31.18	67.72
1992	110.55	1402.65	14.53	21.95
1993	42.61	141.56	10.69	9.68
1994	75.34	520.57	14.68	17.87
1995	144.15	2074.44	24.19	74.64
1996	22.20	31.30	3.48	0.70
1997	103.72	829.67	16.62	27.12
1998	40.02	108.76	6.42	3.83
1999	120.44	1091.25	10.46	13.97
2000	77.34	423.33	9.21	9.27
2001	107.72	1713.71	15.29	35.42
2002	146.88	1808.12	18.64	50.68
2003	N/A	N/A	N/A	N/A
2004	195.32	7050.46	30.93	210.08
2005	252.01	5747.16	40.54	168.18
2006	117.57	1997.55	11.34	27.85
2007	1023.16	138490.41	119.56	2758.13
2008	275.72	6293.41	25.79	80.84
2009	361.35	28706.19	42.50	418.28
2010	1070.64	261514.62	106.78	4608.05
2011	565.96	25842.17	56.75	289.82

Table 9. Mean annual catch abundance and weight per tow of Atlantic halibut in the southern Gulf of St. Lawrence September bottom-trawl survey .Strata 401 to 439 are those used for the Atlantic halibut abundance and biomass indices.

Tableau 9. Nombre moyen par trait et poids moyen en kg par trait du flétan atlantique dans les relevés au chalut de fond de septembre effectués dans le sud du golfe du Saint-Laurent. Les strates 401 à 439 sont utilisées dans les indices d'abondance et de biomasse du flétan atlantique.

Year / Année	Number	/ Nombre	Weight (kg) / Poids (kg)
	Mean / Moyenne	Variance / Variance	Mean / Moyenne	Variance / Variance
1984	0.04	0.00	0.09	0.00
1985	0.04	0.00	0.04	0.00
1986	0.02	0.00	0.03	0.00
1987	0.01	0.00	0.14	0.01
1988	0.05	0.00	1.96	2.70
1989	0.00	0.00	0.00	0.00
1990	0.00	0.00	0.00	0.00
1991	0.02	0.00	0.54	0.18
1992	0.04	0.00	1.86	2.15
1993	0.01	0.00	0.03	0.00
1994	0.01	0.00	0.01	0.00
1995	0.05	0.00	0.07	0.00
1996	0.03	0.00	0.13	0.01
1997	0.01	0.00	0.04	0.00
1998	0.05	0.00	0.19	0.01
1999	0.06	0.00	0.22	0.01
2000	0.17	0.00	0.31	0.01
2001	0.13	0.01	0.66	0.11
2002	0.44	0.03	0.71	0.12
2003	N/A	N/A	N/A	N/A
2004	0.30	0.01	0.54	0.04
2005	0.18	0.00	0.41	0.03
2006	0.34	0.01	0.90	0.08
2007	0.52	0.02	1.38	0.21
2008	0.34	0.00	0.78	0.04
2009	0.31	0.01	0.76	0.05
2010	0.45	0.01	1.62	0.20
2011	0.56	0.02	4.38	3.88

FIGURES / FIGURES

Figure 1. Location of the Teleost fishing sets for the 2010 (gray), 2011 (black) survey (left) and the stratification scheme and place names cited in the text (right).

Figure 1. Emplacements des traits de chalut par le Teleost pour le relevé de 2010 (gris), de 2011 (noir) (gauche) et le plan de stratification et lieux mentionnés dans le texte (droite).

Figure 2. Mean annual catch abundance (top) and weight (bottom) per tow of cod in the southern Gulf of St. Lawrence September bottom-trawl survey. Error bars indicate approximate 95% confidence intervals.

Figure 2. Nombre moyen par trait (en haut) et poids moyen en kg par trait (en bas) de morues dans les relevés au chalut de fond de septembre effectués dans le sud du golfe du Saint-Laurent. Les traits verticaux indiquent l'intervalle de confiance approximatif (95 %).

Figure 3. Length frequencies (mean number per tow) of Atlantic cod in the southern Gulf of St. Lawrence bottom-trawl surveys in 4T from 2006-2011. Strata 415 to 439 are those used for the cod abundance index. The vertical line indicates the regulated minimum size in the fishery (43 cm).

Figure 3. Distributions de la fréquence des longueurs (nombre moyen par trait) de la morue dans les relevés au chalut du sud du golfe du Saint Laurent dans 4T de 2006 à 2011. Les strates 415 à 439 sont utilisées dans l'indice d'abondance de la morue. Le trait vertical indique la taille réglementaire minimale (43 cm).

Figure 4. Cod catches (in kilograms) in the southern Gulf of St. Lawrence September bottom-trawl surveys from 2006 to 2011.

Figure 4. Prises de morues (en kilogrammes) dans les relevés au chalut de fond de septembre effectués dans le sud du golfe du Saint-Laurent de 2006 à 2011.

Figure 5. Mean annual catch abundance (top) and weight (bottom) per tow of white hake in the southern Gulf of St. Lawrence September bottom-trawl survey. Error bars indicate approximate 95% confidence intervals.

Figure 5. Nombre moyen par trait (en haut) et poids moyen en kg par trait (en bas) de merluches blanches dans les relevés au chalut de fond de septembre effectués dans le sud du golfe du Saint-Laurent. Les traits verticaux indiquent l'intervalle de confiance approximatif (95 %).

Figure 6. Length frequencies (mean number per tow) of white hake in the southern Gulf of St.

Lawrence bottom-trawl surveys in 4T from 2006-2011. Strata 401, 403 and 415 to 439 are those used for the white hake abundance index. The vertical line indicates the regulated minimum size in the fishery (45 cm).

Figure 6. Distributions de la fréquence des longueurs (nombre moyen par trait) de merluches blanches dans les relevés au chalut de fond de septembre du sud du golfe du Saint Laurent dans 4T de 2006 à 2011. Les strates 401, 403 et 415 à 439 sont utilisées dans l'indice d'abondance de la merluche blanche. Le trait vertical indique la taille réglementaire minimale (45 cm).

Figure 7. White hake catches (in kilograms) in the southern Gulf of St. Lawrence September bottom-trawl surveys from 2006 to 2011.

Figure 7. Prises de merluches blanches (en kilogrammes) dans les relevés au chalut de fond de septembre effectués dans le sud du golfe du Saint-Laurent de 2006 à 2011.

Figure 8. Mean annual catch abundance (top) and weight (bottom) per tow of American plaice in the southern Gulf of St. Lawrence September bottom-trawl survey. Error bars indicate approximate 95% confidence intervals.

Figure 8. Nombre moyen par trait (en haut) et poids moyen en kg par trait (en bas) de plies canadiennes dans les relevés au chalut de fond de septembre effectués dans le sud du golfe du Saint-Laurent. Les traits verticaux indiquent l'intervalle de confiance approximatif (95 %).

Figure 9. Length frequencies (mean number per tow) of American plaice in the southern Gulf of St. Lawrence bottom-trawl surveys in 4T from 2006-2011. Strata 415 to 439 are those used for the plaice abundance index. The vertical line indicates the regulated minimum size in the fishery (30 cm).

Figure 9. Distributions de la fréquence des longueurs (nombre moyen par trait) de la plie canadienne dans les relevés au chalut de fond de septembre du sud du golfe du Saint Laurent dans 4T de 2006 à 2011. Les strates 415 à 439 sont utilisées dans l'indice d'abondance de la plie canadienne. Le trait vertical indique la taille réglementaire minimale (30 cm).

Figure 10. American plaice catches (in kilograms) in the southern Gulf of St. Lawrence September bottom-trawl surveys from 2006 to 2011.

Figure 10. Prises de plies canadiennes (en kilogrammes) dans les relevés au chalut de fond de septembre effectués dans le sud du golfe du Saint-Laurent de 2006 à 2011.

Figure 11. Mean annual catch abundance (top) and weight (bottom) per tow of witch flounder in the southern Gulf of St. Lawrence September bottom-trawl survey. Error bars indicate approximate 95% confidence intervals.

Figure 11. Nombre moyen par trait (en haut) et poids moyen en kg par trait (en bas) de plies grises dans les relevés au chalut de fond de septembre effectués dans le sud du golfe du Saint-Laurent. Les traits verticaux indiquent l'intervalle de confiance approximatif (95 %).

Figure 12. Length frequencies (mean number per tow) of witch flounder in the southern Gulf of St. Lawrence bottom-trawl surveys in 4T from 2006-2011. Strata 415 to 439 are those used for the witch flounder abundance index. The vertical line indicates the regulated minimum size in the fishery (30 cm).

Figure 12. Distributions de la fréquence des longueurs (nombre moyen par trait) de la plie grise dans les relevés au chalut de fond de septembre du sud du golfe du Saint Laurent dans 4T de 2006 à 2011. Les strates 415 à 439 sont utilisées dans l'indice d'abondance de la plie grise. Le trait vertical indique la taille réglementaire minimale (30 cm).

Figure 13. Witch flounder catches (in kilograms) in the southern Gulf of St. Lawrence September bottom-trawl surveys from 2006 to 2011.

Figure 13. Prises de plies grises (en kilogrammes) dans les relevés au chalut de fond de septembre effectués dans le sud du golfe du Saint-Laurent de 2006 à 2011.

Figure 14. Mean annual catch abundance (top) and weight (bottom) per tow of winter flounder in the southern Gulf of St. Lawrence September bottom-trawl survey. Error bars indicate approximate 95% confidence intervals.

Figure 14. Nombre moyen par trait (en haut) et poids moyen en kg par trait (en bas) de plies rouges dans les relevés au chalut de fond de septembre effectués dans le sud du golfe du Saint-Laurent. Les traits verticaux indiquent l'intervalle de confiance approximatif (95 %).

Figure 15. Length frequencies (mean number per tow) of winter flounder in the southern Gulf of St. Lawrence bottom-trawl surveys in 4T from 2006-2011. Strata 401 to 439 are those used for the winter flounder abundance index. The vertical line indicates the regulated minimum size in the fishery (25 cm).

Figure 15. Distributions de la fréquence des longueurs (nombre moyen par trait) de la plie rouge dans les relevés au chalut de fond de septembre du sud du golfe du Saint Laurent dans 4T de 2006 à 2011. Les strates 401 à 439 sont utilisées dans l'indice d'abondance de la plie rouge. Le trait vertical indique la taille réglementaire minimale (25 cm).

Figure 16. Winter flounder catches (in kilograms) in the southern Gulf of St. Lawrence September bottom-trawl surveys from 2006 to 2011.

Figure 16. Prises de plies rouges (en kilogrammes) dans les relevés au chalut de fond de septembre effectués dans le sud du golfe du Saint-Laurent de 2006 à 2011.

Figure 17. Mean annual catch abundance (top) and weight (bottom) per tow of yellowtail flounder in the southern Gulf of St. Lawrence September bottom-trawl survey. The area of the Magdalen Islands includes strata 428 and 434 to 436. Error bars indicate approximate 95% confidence intervals.

Figure 17. Nombre moyen par trait (en haut) et poids moyen en kg par trait (en bas) de la limande à queue jaune dans les relevés au chalut de fond de septembre effectués dans le sud du golfe du Saint-Laurent. La région des Îles-de-la-Madeleine inclut les strates 428 et 434 à 436. Les traits verticaux indiquent l'intervalle de confiance approximatif (95 %).

Figure 18. Length frequencies (mean number per tow) of yellowfail flounder in the southern Gulf of St. Lawrence bottom-trawl surveys in 4T from 2006-2011. Strata 401 to 439 are those used for the yellowfail flounder abundance index. The vertical line indicates the regulated minimum size in the fishery (25 cm).

Figure 18. Distributions de la fréquence des longueurs (nombre moyen par trait) de la limande à queue jaune dans les relevés au chalut de fond de septembre du sud du golfe du Saint Laurent dans 4T de 2006 à 2011. Les strates 401 à 439 sont utilisées dans l'indice d'abondance de la limande à queue jaune. Le trait vertical indique la taille réglementaire minimale (25 cm).

Figure 19. Yellowtail flounder catches (in kilograms) in the southern Gulf of St. Lawrence September bottom-trawl surveys from 2006 to 2011.

Figure 19. Prises de limandes à queue jaune (en kilogrammes) dans les relevés au chalut de fond de septembre effectués dans le sud du golfe du Saint-Laurent de 2006 à 2011.

Figure 20. Mean annual catch abundance (top) and weight (bottom) per tow of herring in the southern Gulf of St. Lawrence September bottom-trawl survey. Error bars indicate approximate 95% confidence intervals.

Figure 20. Nombre moyen par trait (en haut) et poids moyen en kg par trait (en bas) du hareng dans les relevés au chalut de fond de septembre effectués dans le sud du golfe du Saint-Laurent. Les traits verticaux indiquent l'intervalle de confiance approximatif (95 %).

Figure 21. Length frequencies (mean number per tow) of herring in the southern Gulf of St. Lawrence bottom-trawl surveys in 4T from 2006-2011. Strata 401 to 439 are those used for the herring abundance index. The vertical line indicates the regulated minimum size in the fishery (26 cm total length).

Figure 21. Distributions de la fréquence des longueurs (nombre moyen par trait) du hareng dans les relevés au chalut de fond de septembre du sud du golfe du Saint Laurent dans 4T de 2006 à 2011. Les strates 401 à 439 sont utilisées dans l'indice d'abondance du hareng. Le trait vertical indique la taille réglementaire minimale (26 cm longueur totale).

Figure 22. Herring catches (in kilograms) in the southern Gulf of St. Lawrence September bottomtrawl surveys from 2006 to 2011.

Figure 22. Prises de hareng (en kilogrammes) dans les relevés au chalut de fond de septembre effectués dans le sud du golfe du Saint-Laurent de 2006 à 2011.

Figure 23. Mean annual catch abundance (top) and weight (bottom) per tow of Atlantic halibut in the southern Gulf of St. Lawrence September bottom-trawl survey. Error bars indicate approximate 95% confidence intervals.

Figure 23. Nombre moyen par trait (en haut) et poids moyen en kg par trait (en bas) du flétan atlantique dans les relevés au chalut de fond de septembre effectués dans le sud du golfe du Saint-Laurent. Les traits verticaux indiquent l'intervalle de confiance approximatif (95 %).

Figure 24. Length frequencies (mean number per tow) of Atlantic halibut in the southern Gulf of St. Lawrence bottom-trawl surveys in 4T from 2006-2011. Strata 401 to 439 are those used for the Atlantic halibut abundance index. The vertical line indicates the regulated minimum size in the fishery (85 cm).

Figure 24. Distributions de la fréquence des longueurs (nombre moyen par trait) du flétan atlantique dans les relevés au chalut de fond de septembre du sud du golfe du Saint Laurent dans 4T de 2006 à 2011. Les strates 401 à 439 sont utilisées dans l'indice d'abondance du flétan atlantique. Le trait vertical indique la taille réglementaire minimale (85 cm).

Figure 25. Atlantic halibut catches (in kilograms) in the southern Gulf of St. Lawrence September bottom-trawl surveys from 2006 to 2011.

Figure 25. Prises de flétan atlantique (en kilogrammes) dans les relevés au chalut de fond de septembre effectués dans le sud du golfe du Saint-Laurent de 2006 à 2011.

Figure 26. Bottom temperature (°C) in the southern Gulf of St. Lawrence in September 2010 (left) and 2011 (right).

Figure 26. Température au fond (°C) dans le sud du golfe du Saint-Laurent en septembre 2010 (gauche) et 2011 (droite).

Figure 27. Area within the survey region (excluding strata 415, 425 and 439) with bottom temperature below 0°C (top) or 1°C (bottom), 1971-2011.

Figure 27. Superficie de la zone de relevé (à l'exclusion des strates 415, 425 et 439) ayant des températures au fond de moins de 0 °C (en haut) et de 1 °C (en bas), 1971-2011.

APPENDICES / ANNEXES

- Appendix I. Set locations, depths and catches in numbers and weight for cod, white hake, American plaice, winter flounder, witch flounder, yellowtail flounder, Atlantic halibut and herring in the September 2010 bottom-trawl survey of the southern Gulf of St. Lawrence. Ten incomplete sets are excluded; all numbers and weights are adjusted to a standard tow.
- Annexe I. Emplacement des traits, profondeur et captures en nombre et en poids pour la morue, la merluche blanche, la plie canadienne, la plie rouge, la plie grise, la limande à queue jaune, le flétan atlantique et le hareng lors du relevé au chalut de fond de septembre 2010 dans le sud du golfe du Saint-Laurent. Dix traits non complets sont exclus; les nombres et les poids sont normalisés pour un trait standard.

Set/ Trait	Latitude / Latitude	Longitude / Longitude	Depth / Profondeur		od / orue	1	Hake / e blanche		n Plaice / nadienne		lounder / grise		flounder / rouge	Lima	wtail / inde à e jaune	FI	: halibut / étan ntique		rring / ireng
	Deg. Min.	Deg. Min.	Meter / Mètres	No.	kg	No.	kg	No.	kg	No.	kg	No.	kg	No.	kg	No.	kg	No.	kg
2	4604	6322	21	6	0.0	30	1.5	0	0.0	0	0.0	52	2.1	0	0.0	0	0.0	8878	45.5
3	4556	6336	15	1	0.0	110	3.1	0	0.0	0	0.0	23	1.3	0	0.0	0	0.0	16948	138.7
4	4553	6319	18	0	0.0	64	2.6	0	0.0	0	0.0	33	0.8	0	0.0	0	0.0	54436	408.8
5	4557	6305	27	0	0.0	1	0.1	0	0.0	0	0.0	8	0.3	0	0.0	0	0.0	13961	74.4
6	4553	6241	27	2	0.0	1	2.2	0	0.0	0	0.0	191	14.8	2	0.1	0	0.0	12919	240.3
7	4548	6226	21	0	0.0	9	1.4	0	0.0	0	0.0	48	2.5	0	0.0	0	0.0	37442	362.4
8	4554	6227	30	0	0.0	0	0.0	9	0.1	0	0.0	6	0.4	0	0.0	0	0.0	13253	112.3
9	4609	6211	33	3	0.5	0	0.0	16	0.1	0	0.0	413	24.3	4	0.5	0	0.0	28	3.8
10	4606	6201	39	45	8.0	1	0.3	46	3.5	0	0.0	36	4.1	0	0.1	0	0.0	487	56.4
11	4559	6153	48	2	0.0	0	0.0	234	17.3	0	0.0	1	0.0	0	0.0	0	0.0	3165	186.9
12	4551	6151	27	0	0.0	5	0.6	11	1.0	0	0.0	187	28.3	0	0.0	0	0.0	75251	11050.6
13	4543	6146	24	0	0.0	0	0.0	0	0.0	0	0.0	85	9.9	25	2.8	0	0.0	1041	184.0
14	4544	6135	29	0	0.0	5	0.8	0	0.0	0	0.0	894	141.2	0	0.0	0	0.0	224	28.8
16	4557	6138	38	0	0.0	0	0.0	25	4.1	0	0.0	63	10.2	0	0.0	0	0.0	45904	8684.5
17	4604	6137	47	6	0.7	0	0.0	69	6.3	0	0.0	0	0.0	0	0.0	0	0.0	1464	183.0
18	4629	6133	61	0	0.0	0	0.0	302	19.3	0	0.0	0	0.0	0	0.0	0	0.0	22	3.6
19	4639	6114	85	1	0.2	1	0.2	450	54.9	0	0.0	0	0.0	0	0.0	0	0.0	1207	150.9
20	4634	6142	56	27	14.0	0	0.0	284	18.7	0	0.0	0	0.0	44	6.3	0	0.0	11	0.7
21	4646	6147	78	6	4.5	0	0.0	356	41.6	10	0.1	0	0.0	0	0.0	0	0.0	3	0.6
22	4637	6229	53	13	5.3	0	0.0	61	8.6	0	0.0	0	0.0	44	5.3	0	0.0	56	8.5
23	4636	6253	49	8	1.2	0	0.0	69	6.4	0	0.0	0	0.0	50	6.8	0	0.0	3	0.4
24	4634	6323	30	56	21.8	0	0.0	9	1.2	0	0.0	538	81.0	104	11.6	1	14.7	29	4.3
25	4637	6326	32	65	37.5	0	0.0	81	0.6	0	0.0	313	39.7	174	16.9	0	0.0	90	11.4
26	4638	6307	47	93	27.2	0	0.0	207	11.1	0	0.0	0	0.0	114	21.3	0	0.0	11	1.3
27	4706	6303	61	10	11.7	0	0.0	367	37.2	0	0.0	0	0.0	3	0.5	0	0.0	0	0.0
29	4719	6248	48	3	0.8	0	0.0	31	1.5	0	0.0	0	0.0	4	0.2	0	0.0	0	0.0
30	4702	6246	62	8	8.0	0	0.0	358	32.4	0	0.0	0	0.0	11	1.7	0	0.0	0	0.0
31	4700	6240	64	8	4.1	0	0.0	199	12.3	0	0.0	0	0.0	33	5.0	0	0.0	0	0.0

Appendix I. Continued Annexe I. Suite

Set/ Trait	Latitude / Latitude	Longitude / Longitude	Depth / Profondeur		od /		Hake / e blanche		n Plaice / nadienne		ounder / grise		lounder / rouge	Lima	wtail / nde à e jaune	Flé	halibut / etan itique		ring / reng
	Deg. Min.	Deg. Min.	Meter / Metres	No.	kg	No.	kg	No.	kg	No.	kg	No.	kg	No.	kg	No.	kg	No.	kg
33	4651	6231	60	15	9.1	0	0.0	237	24.5	0	0.0	0	0.0	6	1.2	0	0.0	0	0.0
34	4646	6212	64	42	22.8	0	0.0	420	43.0	0	0.0	0	0.0	1	0.2	0	0.0	11	1.6
36	4655	6147	51	3	1.4	0	0.0	28	3.5	0	0.0	0	0.0	2	0.1	0	0.0	0	0.0
37	4654	6133	54	3	1.0	0	0.0	28	3.5	0	0.0	0	0.0	0	0.0	0	0.0	0	0.0
38	4659	6125	46	2	0.5	0	0.0	60	7.8	0	0.0	0	0.0	5	0.5	0	0.0	0	0.0
39	4712	6132	25	0	0.0	0	0.0	5	1.2	0	0.0	573	70.4	208	14.9	2	2.0	212	36.0
40	4722	6124	34	11	7.2	0	0.0	30	2.2	0	0.0	85	12.4	84	4.6	0	0.0	0	0.0
41	4656	6049	134	7	3.3	92	29.1	132	11.3	4	0.9	0	0.0	0	0.0	0	0.0	58	7.1
42	4707	6021	165	1	0.0	92	21.5	8	0.9	31	9.7	0	0.0	0	0.0	0	0.0	0	0.0
43	4718	6014	248	3	4.2	91	57.7	2	0.6	19	6.3	0	0.0	0	0.0	5	30.8	0	0.0
44	4723	6022	78	11	5.5	0	0.0	5	0.7	0	0.0	0	0.0	0	0.0	0	0.0	0	0.0
45	4719	6043	62	42	16.3	0	0.0	25	7.4	0	0.0	0	0.0	0	0.0	0	0.0	0	0.0
46	4733	6040	58	1	0.1	0	0.0	37	4.5	0	0.0	0	0.0	90	8.1	0	0.0	0	0.0
47	4741	6036	109	14	6.5	0	0.0	40	13.9	35	8.3	0	0.0	0	0.0	0	0.0	0	0.0
48	4745	6032	287	0	0.0	98	37.1	1	0.1	0	0.0	0	0.0	0	0.0	0	0.0	0	0.0
49	4738	6048	55	109	30.4	0	0.0	87	11.0	0	0.0	0	0.0	18	2.7	0	0.0	0	0.0
50	4746	6054	61	21	6.8	0	0.0	292	27.4	0	0.0	0	0.0	165	17.5	0	0.0	11	1.5
51	4755	6123	57	10	4.2	0	0.0	27	1.8	0	0.0	0	0.0	1	0.1	0	0.0	0	0.0
52	4807	6128	147	173	54.7	0	0.0	89	13.2	0	0.0	0	0.0	0	0.0	0	0.0	0	0.0
53	4810	6116	343	0	0.0	9	5.2	3	0.5	36	8.2	0	0.0	0	0.0	0	0.0	0	0.0
54	4803	6145	83	0	0.0	0	0.0	11	0.8	0	0.0	0	0.0	0	0.0	0	0.0	0	0.0
55	4759	6151	67	1	0.5	0	0.0	19	2.0	0	0.0	0	0.0	2	0.3	0	0.0	0	0.0
56	4747	6152	48	5	0.8	0	0.0	2	0.0	0	0.0	0	0.0	0	0.0	0	0.0	0	0.0
57	4733	6155	32	27	1.2	0	0.0	2	0.0	0	0.0	57	6.4	51	4.3	0	0.0	11	0.2
58	4728	6205	35	62	2.6	0	0.0	102	1.4	0	0.0	2	0.4	253	24.7	0	0.0	0	0.0
59	4728	6227	63	7	3.6	0	0.0	294	15.8	0	0.0	0	0.0	6	0.7	0	0.0	0	0.0
60	4738	6219	56	4	0.9	0	0.0	160	7.1	1	0.0	0	0.0	1	0.2	0	0.0	0	0.0
61	4753	6211	55	0	0.0	0	0.0	25	2.6	o	0.0	0	0.0	0	0.0	0	0.0	0	0.0
62	4807	6233	72	1	1.1	0	0.0	34	1.6	0	0.0	0	0.0	5	0.2	0	0.0	0	0.0
63	4757	6240	86	2	1.9	0	0.0	30	4.1	0	0.0	0	0.0	0	0.0	0	0.0	0	0.0
64	4748	6227	71	2	1.3	0	0.0	41	1.9	0	0.0	0	0.0	0	0.0	0	0.0	0	0.0
65	4740		75	0	0.0		0.0	242	22.3	0	0.0		0.0	0	0.0	0	0.0	0	0.0
66	4754	6245 6305	65	2	2.8	0	0.0	371	22.8	0	0.0	0	0.0	1	0.0	0	0.0	0	0.0
67	4744	6303	73	4	0.1	0	0.0	329	25.5	0	0.0	0	0.0	0	0.0	0	0.0	0	0.0

Appendix I. Continued Annexe I. Suite

Set/ Trait	Latitude / Latitude	Longitude / Longitude	Depth / Profondeur		od / orue		Hake / e blanche	America Plie can	n Plaice / nadienne		ounder / grise		lounder / rouge		wtail / nde à jaune	Flé	halibut / tan itique		ring / reng
	Deg. Min.	Deg. Min.	Meter / Mètres	No.	kg	No.	kg	No.	kg	No.	kg	No.	kg	No.	kg	No.	kg	No.	kg
68	4751	6329	65	13	10.3	0	0.0	250	17.3	0	0.0	0	0.0	1	0.1	0	0.0	0	0.0
69	4739	6346	64	15	17.3	0	0.0	95	9.7	0	0.0	0	0.0	5	0.8	0	0.0	0	0.0
70	4725	6346	66	5	6.4	0	0.0	58	5.4	2	0.0	0	0.0	0	0.0	0	0.0	0	0.0
71	4729	6327	69	4	4.8	0	0.0	212	23.5	0	0.0	0	0.0	1	0.1	0	0.0	0	0.0
72	4702	6334	50	11	4.1	0	0.0	3	0.2	0	0.0	0	0.0	0	0.0	0	0.0	22	3.3
73	4652	6352	28	0	0.0	0	0.0	0	0.0	0	0.0	118	23.1	120	11.7	6	4.1	3	0.2
74	4705	6345	51	67	8.6	0	0.0	279	16.5	0	0.0	0	0.3	55	6.7	0	0.0	849	105.5
75	4713	6405	39	10	0.6	0	0.0	48	0.4	0	0.0	0	0.0	18	1.8	0	0.0	75	10.8
76	4709	6420	43	5	0.2	0	0.0	95	3.2	0	0.0	1	0.1	14	1.4	0	0.0	0	0.0
77	4711	6435	30	19	0.3	2	1.2	4	0.0	0	0.0	89	8.9	68	3.3	0	0.0	271	25.7
78	4703	6425	39	0	0.0	0	0.0	79	0.7	0	0.0	138	16.6	69	5.1	0	0.0	23569	1442.1
79	4653	6424	30	1	0.0	0	0.0	8	0.1	0	0.0	163	12.4	11	0.5	0	0.0	472	22.4
80	4703	6414	40	2	0.1	0	0.0	17	0.2	0	0.0	30	3.4	76	4.0	1	0.9	7420	515.8
81	4708	6413	42	9	0.3	0	0.0	29	0.8	0	0.0	15	2.6	41	2.6	0	0.0	23057	3329.4
82	4737	6404	77	7	8.8	0	0.0	50	7.8	0	0.0	0	0.0	0	0.0	0	0.0	0	0.0
83	4745	6423	34	5	0.1	1	0.3	1	0.0	0	0.0	492	69.1	149	10.0	0	0.0	65	6.1
84	4755	6415	29	26	1.9	0	0.0	0	0.0	0	0.0	131	37.1	153	9.7	7	4.7	22	1.9
86	4759	6356	91	11	16.8	0	0.0	203	30.2	0	0.0	0	0.0	0	0.0	0	0.0	41	6.2
87	4801	6346	99	22	27.4	0	0.0	319	47.2	0	0.0	0	0.0	0	0.0	0	0.0	0	0.0
88	4811	6329	94	11	13.8	0	0.0	137	17.2	0	0.0	0	0.0	0	0.0	0	0.0	0	0.0
89	4825	6318	98	361	219.1	0	0.0	617	53.0	0	0.0	0	0.0	0	0.0	0	0.0	0	0.0
90	4819	6316	63	1	0.6	0	0.0	36	1.4	0	0.0	0	0.0	0	0.0	0	0.0	0	0.0
91	4817	6256	77	6	7.3	0	0.0	198	17.0	0	0.0	0	0.0	2	0.3	0	0.0	0	0.0
92	4823	6249	122	213	136.4	0	0.0	4008	499.2	27	6.7	0	0.0	0	0.0	0	0.0	11	2.0
93	4828	6248	317	0	0.0	4	3.5	3	0.5	14	4.2	0	0.0	0	0.0	0	0.0	11	2.5
94	4842	6311	284	1	0.0	5	3.5	34	5.3	5	1.3	0	0.0	0	0.0	5	19.6	0	0.0
95	4836	6333	155	115	123.3	0	0.0	5900	803.4	15	3.1	0	0.0	0	0.0	3	3.2	8	1.3
96	4848	6340	216	48	47.8	18	7.5	997	184.3	60	9.7	0	0.0	0	0.0	13	62.4	4	0.9
97	4852	6348	245	4	6.0	5	1.7	360	58.9	106	14.0	0	0.0	0	0.0	7	33.5	3	0.5
98	4833	6343	150	96	125.3	0	0.0	362	49.6	0	0.0	0	0.0	0	0.0	4	28.0	0	0.0
99	4821	6405	86	6	0.2	0	0.0	37	3.1	0	0.0	0	0.0	0	0.0	0	0.0	0	0.0
100	4809	6414	43	10	0.2	0	0.0	0	0.0	0	0.0	0	0.0	0	0.0	0	0.0	120	14.7
101	4758	6451	65	24	4.7	0	0.0	189	14.6	0	0.0	9	2.2	0	0.0	0	0.0	0	0.0
102	4758	6509	75	4	4.1	0	0.0	33	3.6	0	0.0	0	0.0	0	0.0	0	0.0	0	0.0

Appendix I. Continued Annexe I. Suite

Set/ Trait	Latitude / Latitude	Longitude / Longitude	Depth / Profondeur		od / orue		Hake / e blanche		n Plaice / nadienne		ounder / grise		lounder / rouge	Lima	wtail / nde à jaune	Flé	halibut / etan ntique		ring / reng
	Deg. Min.	Deg. Min.	Meter / Mètres	No.	kg	No.	kg	No.	kg	No.	kg	No.	kg	No.	kg	No.	kg	No.	kg
103	4751	6507	42	7	0.2	0	0.0	1	0.0	0	0.0	23	4.2	0	0.0	0	0.0	53	7.7
104	4743	6529	26	2	0.0	0	0.0	0	0.0	0	0.0	196	18.2	8	0.5	0	0.0	4354	609.1
105	4753	6531	52	5	1.8	0	0.0	25	2.6	0	0.0	0	0.0	0	0.0	0	0.0	3458	396.0
106	4807	6436	85	0	0.0	0	0.0	166	18.1	0	0.0	8	3.7	0	0.0	0	0.0	0	0.0
107	4818	6421	118	6	4.1	0	0.0	110	16.2	0	0.0	0	0.0	0	0.0	0	0.0	1	0.5
109	4820	6354	109	9	6.3	0	0.0	25	2.4	0	0.0	0	0.0	0	0.0	0	0.0	0	0.0
110	4839	6352	133	96	34.4	0	0.0	64	4.3	0	0.0	0	0.0	0	0.0	0	0.0	8	1.1
111	4857	6359	269	0	0.0	11	7.5	38	5.9	9	1.4	0	0.0	0	0.0	3	7.7	22	3.4
112	4850	6324	299	0	0.0	5	4.2	140	16.1	7	1.3	0	0.0	0	0.0	1	9.4	54	10.6
113	4842	6339	139	122	88.2	0	0.0	934	141.9	51	13.6	0	0.0	0	0.0	2	2.2	0	0.0
114	4817	6342	82	4	5.2	0	0.0	29	3.0	0	0.0	0	0.0	0	0.0	1	1.6	0	0.0
115	4811	6308	71	0	0.0	0	0.0	37	2.3	0	0.0	0	0.0	0	0.0	0	0.0	0	0.0
116	4758	6320	74	1	0.1	0	0.0	10	1.1	0	0.0	0	0.0	0	0.0	0	0.0	2	0.4
117	4757	6350	90	4	3.7	0	0.0	130	15.4	0	0.0	0	0.0	0	0.0	0	0.0	0	0.0
119	4752	6344	81	3	3.5	0	0.0	193	20.2	0	0.0	0	0.0	0	0.0	0	0.0	0	0.0
120	4738	6418	53	65	16.3	0	0.0	127	4.3	0	0.0	7	1.1	296	29.2	0	0.0	193	24.1
121	4728	6439	26	29	0.9	0	0.0	0	0.0	0	0.0	27	5.9	6	0.6	0	0.0	0	0.0
122	4724	6424	47	0	0.0	0	0.0	108	2.2	0	0.0	0	0.0	269	14.8	0	0.0	0	0.0
123	4715	6428	41	1	0.0	0	0.0	21	0.2	0	0.0	14	1.9	51	2.5	0	0.0	53	1.0
124	4706	6406	35	4	0.5	0	0.0	2	0.0	0	0.0	62	5.8	11	0.5	0	0.0	4188	401.2
125	4649	6341	39	228	221.2	0	0.0	93	2.4	0	0.0	220	51.4	122	12.3	1	8.8	121	14.4
126	4644	6310	48	18	20.9	0	0.0	186	13.3	0	0.0	1	0.3	48	8.0	0	0.0	826	93.7
127	4644	6247	52	30	11.1	0	0.0	179	10.3	0	0.0	1	0.1	3	0.5	0	0.0	356	49.4
129	4641	6230	58	17	7.0	0	0.0	261	20.8	0	0.0	0	0.0	24	3.6	0	0.0	3097	462.5
130	4651	6249	61	10	5.9	0	0.0	202	14.7	0	0.0	0	0.0	28	3.7	0	0.0	3	0.4
131	4655	6323	53	40	15.0	0	0.0	292	10.8	0	0.0	0	0.0	102	13.1	0	0.0	89	12.1
132	4710	6327	57	9	1.7	0	0.0	64	4.6	0	0.0	0	0.0	14	2.1	0	0.0	0	0.0
133	4733	6309	66	5	1.5	0	0.0	232	16.1	0	0.0	0	0.0	0	0.0	0	0.0	0	0.0
134	4719	6257	60	2	1.0	0	0.0	92	5.6	0	0.0	0	0.0	1	0.1	0	0.0	0	0.0
135	4714	6233	61	0	0.0	0	0.0	16	0.7	0	0.0	0	0.0	0	0.0	0	0.0	0	0.0
136	4736	6152	32	0	0.0	0	0.0	0	0.0	0	0.0	4	0.4	34	1.8	0	0.0	314	5.0
137	4752	6142	58	0	0.0	0	0.0	2	0.0	0	0.0	0	0.0	1	0.1	0	0.0	3	0.1
138	4808	6135	105	50	11.6	0	0.0	76	10.4	0	0.0	0	0.0	0	0.0	0	0.0	0	0.0
139	4811	6124	315	0	0.0	34	16.8	7	1.1	10	2.4	0	0.0	0	0.0	0	0.0	0	0.0

Appendix I. Continued Annexe I. Suite

Set/ Trait	Latitude / Latitude	Longitude / Longitude	Depth / Profondeur		od / orue		Hake / e blanche		n Plaice / nadienne		ounder / grise		flounder / rouge	Lima	wtail / nde à jaune	Flé	halibut / tan itique		ring / reng
	Deg. Min.	Deg. Min.	Meter / Mètres	No.	kg	No.	kg	No.	kg	No.	kg	No.	kg	No.	kg	No.	kg	No.	kg
141	4804	6126	74	19	5.7	0	0.0	73	6.5	0	0.0	0	0.0	0	0.0	0	0.0	0	0.0
142	4756	6050	282	0	0.0	152	48.8	0	0.0	2	0.4	0	0.0	0	0.0	0	0.0	0	0.0
143	4754	6052	95	116	46.9	0	0.0	50	5.0	4	1.2	0	0.0	6	1.1	0	0.0	0	0.0
144	4726	6112	35	5	0.8	0	0.0	0	0.0	2	0.0	9	1.5	93	6.9	0	0.0	0	0.0
145	4723	6107	44	0	0.0	0	0.0	10	0.8	0	0.0	0	0.0	112	8.6	0	0.0	0	0.0
147	4716	6103	57	88	25.2	0	0.0	323	24.9	0	0.0	0	0.0	182	24.6	0	0.0	0	0.0
148	4723	6033	72	36	15.5	0	0.0	183	19.4	3	1.1	0	0.0	33	5.9	0	0.0	0	0.0
149	4712	6033	160	299	299.7	0	0.0	7	0.6	1	0.2	0	0.0	0	0.0	1	1.0	0	0.0
150	4705	6054	111	22	11.8	0	0.0	279	37.9	29	9.7	0	0.0	2	0.2	1	1.5	0	0.0
151	4701	6105	77	7	5.3	0	0.0	118	13.8	0	0.0	0	0.0	4	0.4	0	0.0	3	0.2
152	4702	6130	34	2	1.0	0	0.0	0	0.0	0	0.0	18	2.5	126	9.0	0	0.0	0	0.0
153	4654	6119	66	4	3.5	0	0.0	12	0.9	0	0.0	0	0.0	0	0.0	0	0.0	1	0.3
154	4642	6126	68	1	0.0	0	0.0	168	10.3	0	0.0	0	0.0	0	0.0	0	0.0	322	34.2
155	4627	6115	56	49	2.6	0	0.0	53	4.3	0	0.0	0	0.0	0	0.0	0	0.0	111238	15291.9
156	4618	6155	43	1	0.0	3	0.4	307	48.3	0	0.0	136	23.9	13	3.3	0	0.0	76	2.5
157	4617	6141	58	1	2.6	0	0.0	296	26.8	0	0.0	1	0.1	0	0.0	0	0.0	3143	247.6

Appendix II. Set locations, depths and catches in numbers and weight for cod, white hake, American plaice, winter flounder, witch flounder, yellowtail flounder, Atlantic halibut and herring in the September 2011 bottom-trawl survey of the southern Gulf of St. Lawrence. Nine incomplete sets are excluded; all numbers and weights are adjusted to a standard tow.

Annexe II. Emplacement des traits, profondeur et captures en nombre et en poids pour la morue, la merluche blanche, la plie canadienne, la plie rouge, la plie grise, la limande à queue jaune, le flétan atlantique et le hareng lors du relevé au chalut de fond de septembre 2011 dans le sud du golfe du Saint-Laurent. Neuf traits non complets sont exclus; les nombres et les poids sont normalisés pour un trait standard.

Set/ Trait	Latitude / Latitude	Longitude / Longitude	Depth / Profondeur		od / orue		Hake / e blanche		n Plaice / nadienne	A STREET A	lounder / grise	Naccione o	lounder / rouge	Lima	wtail / inde à e jaune	Fk	halibut / étan ntique		ring / reng
	Deg. Min.	Deg. Min.	Meter / Mètres	No.	kg	No.	kg	No.	kg	No.	kg	No.	kg	No.	kg	No.	kg	No.	kg
2	4600	6319	22	0	0.0	7	1.2	0	0.0	0	0.0	25	1.3	0	0.0	0	0.0	10138	219.0
3	4601	6336	14	0	0.0	3	0.0	0	0.0	0	0.0	23	2.5	0	0.0	0	0.0	86	1.9
4	4552	6314	21	7	0.1	3	0.3	0	0.0	0	0.0	15	0.5	0	0.0	0	0.0	1938	29.5
5	4556	6258	27	0	0.0	3	0.3	0	0.0	0	0.0	13	0.7	0	0.0	0	0.0	3253	86.1
6	4549	6252	29	0	0.0	1	0.3	0	0.0	0	0.0	1	0.1	0	0.0	0	0.0	2428	78.6
7	4555	6227	37	16	0.1	0	0.0	13	0.6	0	0.0	10	1.0	0	0.0	0	0.0	11512	1400.3
8	4551	6204	36	0	0.0	0	0.0	82	9.9	0	0.0	37	7.3	1	0.1	0	0.0	15040	2227.8
9	4559	6206	42	0	0.0	0	0.0	60	6.4	0	0.0	1	0.2	1	0.1	0	0.0	29666	2521.4
10	4556	6152	42	0	0.0	0	0.0	377	30.4	0	0.0	0	0.0	0	0.0	0	0.0	2041	122.1
11	4547	6142	34	2	0.0	12	3.4	87	9.9	0	0.0	198	37.6	3	0.9	0	0.0	23878	3617.9
12	4546	6139	32	0	0.0	28	3.7	109	11.6	0	0.0	334	47.0	11	1.6	0	0.0	19004	2841.1
13	4543	6136	28	0	0.0	15	2.2	18	1.3	0	0.0	561	87.7	4	0.7	0	0.0	3424	499.3
14	4552	6143	39	0	0.0	3	0.4	140	17.8	0	0.0	40	9.8	2	0.3	0	0.0	14886	2173.8
15	4559	6139	42	2	0.0	0	0.0	41	7.2	0	0.0	2	1.1	0	0.0	0	0.0	10361	1046.1
16	4611	6159	43	0	0.0	0	0.0	54	7.8	0	0.0	3	0.3	0	0.0	0	0.0	9071	427.3
17	4625	6133	58	7	4.6	0	0.0	190	14.8	0	0.0	0	0.0	0	0.0	0	0.0	1363	70.9
18	4637	6140	65	23	8.1	0	0.0	254	22.7	1	0.3	0	0.0	18	2.8	0	0.0	3102	266.7
19	4648	6150	71	11	3.4	0	0.0	536	56.4	0	0.0	0	0.0	0	0.0	0	0.0	0	0.0
20	4656	6144	48	28	7.8	0	0.0	141	12.1	0	0.0	0	0.0	38	4.8	0	0.0	11	2.1
21	4706	6201	39	12	0.9	0	0.0	1	0.2	0	0.0	0	0.0	4	0.6	0	0.0	0	0.0
22	4701	6205	50	18	4.5	0	0.0	5	0.2	0	0.0	0	0.0	1	0.2	0	0.0	0	0.0
23	4640	6159	56	38	15.1	0	0.0	38	7.9	0	0.0	0	0.0	1	0.1	0	0.0	0	0.0
24	4634	6221	49	19	6.4	0	0.0	18	2.9	0	0.0	0	0.0	6	0.5	0	0.0	0	0.0
25	4630	6243	28	9	7.2	0	0.0	0	0.0	0	0.0	0	0.0	0	0.0	0	0.0	0	0.0
26	4642	6221	62	35	17.2	0	0.0	609	47.6	0	0.0	0	0.0	16	2.9	0	0.0	495	55.1
27	4656	6224	52	12	1.4	0	0.0	524	41.6	0	0.0	0	0.0	14	2.1	0	0.0	0	0.0
28	4656	6243	64	27	12.5	0	0.0	240	21.7	0	0.0	0	0.0	57	5.8	0	0.0	41	4.7
29	4644	6244	54	17	7.4	0	0.0	100	12.3	0	0.0	0	0.0	18	2.2	0	0.0	127	13.3

Appendix II. Continued Annexe II. Suite

Set/ Trait	Latitude / Latitude	Longitude / Longitude	Depth / Profondeur	1	od / orue		Hake / e blanche	America Plie car	n Plaice / nadienne		ounder / grise		lounder / rouge	Lima	wtail / inde à e jaune	Fle	halibut / itan itique		ring / reng
	Deg. Min.	Deg. Min.	Meter / Mètres	No.	kg	No.	kg	No.	kg	No.	kg	No.	kg	No.	kg	No.	kg	No.	kg
32	4640	6335	31	3	2.1	0	0.0	15	1.5	0	0.0	60	10.5	53	5.4	0	0.0	4326	636.0
33	4640	6341	28	0	0.0	0	0.0	0	0.0	0	0.0	43	11.4	63	6.4	0	0.0	6	0.4
34	4645	6336	35	13	12.1	0	0.0	1	0.0	0	0.0	7	2.2	17	1.4	0	0.0	1942	307.5
35	4652	6323	46	22	18.9	0	0.0	7	1.0	0	0.0	0	0.0	8	0.6	0	0.0	649	81.2
36	4657	6315	56	6	1.9	0	0.0	182	17.0	0	0.0	0	0.0	36	2.9	0	0.0	5	0.7
37	4702	6330	54	39	39.1	0	0.0	25	3.2	0	0.0	0	0.0	10	1.0	0	0.0	6	0.7
38	4652	6352	28	18	5.2	5	1.7	0	0.0	0	0.0	133	17.5	72	6.7	2	9.7	0	0.0
39	4712	6355	32	39	5.8	0	0.0	0	0.0	0	0.0	17	5.3	0	0.0	1	21.3	424	62.9
40	4709	6405	34	37	1.9	0	0.0	0	0.0	0	0.0	78	18.1	17	1.3	0	0.0	743	94.4
41	4649	6433	26	20	0.1	1	0.1	0	0.0	0	0.0	29	3.2	2	0.1	0	0.0	6	0.1
42	4654	6434	28	2	0.0	0	0.0	0	0.0	0	0.0	21	2.8	10	0.5	0	0.0	0	0.0
43	4656	6427	35	1	0.0	0	0.0	0	0.0	0	0.0	46	3.9	5	0.4	1	34.2	710	139.4
44	4707	6428	34	1	0.0	0	0.0	0	0.0	0	0.0	4	0.6	6	0.6	0	0.0	0	0.0
45	4725	6425	46	0	0.0	0	0.0	3	0.1	0	0.0	3	0.3	29	1.7	0	0.0	4133	559.1
46	4730	6439	26	2	0.2	0	0.0	0	0.0	0	0.0	6	1.5	8	0.9	0	0.0	25	1.9
47	4740	6431	29	10	7.6	8	1.4	0	0.0	0	0.0	212	23.1	181	15.6	3	1.8	928	86.2
48	4743	6422	35	17	10.2	0	0.0	2	0.0	0	0.0	520	77.7	53	4.6	3	52.4	617	96.2
49	4744	6402	80	12	17.3	0	0.0	642	83.5	0	0.0	7	0.9	1	0.1	0	0.0	11	2.7
50	4751	6355	69	14	5.4	0	0.0	253	28.7	0	0.0	0	0.0	6	0.8	0	0.0	0	0.0
51	4801	6345	98	32	43.8	0	0.0	630	92.1	0	0.0	0	0.0	0	0.0	0	0.0	0	0.0
52	4803	6401	44	27	16.2	0	0.0	11	1.5	0	0.0	0	0.0	0	0.0	0	0.0	108	14.5
53	4810	6429	87	4	2.4	0	0.0	80	6.6	0	0.0	0	0.0	0	0.0	0	0.0	0	0.0
54	4756	6455	70	5	0.5	0	0.0	207	16.8	0	0.0	0	0.0	0	0.0	0	0.0	0	0.0
55	4753	6515	70	14	8.3	0	0.0	148	25.1	0	0.0	0	0.0	0	0.0	0	0.0	0	0.0
56	4756	6552	27	29	1.7	1	0.4	16	0.3	0	0.0	150	7.3	0	0.0	0	0.0	238	15.6
57	4756	6539	37	63	5.9	0	0.0	82	8.3	0	0.0	38	4.3	0	0.0	0	0.0	671	56.4
58	4809	6437	86	15	8.6	0	0.0	123	16.7	0	0.0	0	0.0	0	0.0	0	0.0	0	0.0
59	4817	6430	104	7	3.5	0	0.0	86	10.6	0	0.0	0	0.0	0	0.0	0	0.0	0	0.0
60	4818	6414	112	1	1.3	0	0.0	233	29.5	0	0.0	0	0.0	0	0.0	0	0.0	129	17.9
61	4816	6407	105	8	7.4	0	0.0	335	34.6	0	0.0	0	0.0	0	0.0	0	0.0	379	49.9
62	4825	6348	119	34	9.5	0	0.0	224	23.1	0	0.0	0	0.0	0	0.0	0	0.0	0	0.0
63	4831	6406	102	7	0.6	0	0.0	153	15.2	0	0.0	0	0.0	0	0.0	0	0.0	0	0.0
64	4859	6359	284	Ó	0.0	6	4.3	0	0.0	42	12.9	0	0.0	0	0.0	4	9.7	0	0.0
65	4855	6345	298	0	0.0	9	9.6	2	0.8	8	1.1	0	0.0	0	0.0	4	23.6	2	0.2

Appendix II. Continued Annexe II. Suite

Set/ Trait	Latitude / Latitude	Longitude / Longitude	Depth / Profondeur		od / orue		Hake / e blanche	America Plie car	n Plaice / nadienne	Witch fl Plie	ounder / grise		lounder / rouge	7000000	wtail / nde à jaune	Fk	halibut / etan htique		ring / reng
	Deg. Min.	Deg. Min.	Meter / Mètres	No.	kg	No.	kg	No.	kg	No.	kg	No.	kg	No.	kg	No.	kg	No.	kg
66	4849	6336	227	0	0.0	1	0.3	111	34.7	128	19.3	0	0.0	0	0.0	10	38.2	0	0.0
67	4837	6323	148	77	53.9	0	0.0	200	31.4	17	4.9	0	0.0	0	0.0	7	219.0	0	0.0
68	4843	6316	243	7	4.8	13	10.9	30	8.4	12	2.8	0	0.0	0	0.0	18	64.0	0	0.0
69	4836	6259	343	0	0.0	1	1.4	10	2.3	19	5.9	0	0.0	0	0.0	0	0.0	0	0.0
71	4824	6323	108	39	36.7	0	0.0	384	44.5	2	0.6	0	0.0	0	0.0	0	0.0	0	0.0
72	4823	6314	74	8	6.9	0	0.0	101	8.9	0	0.0	0	0.0	0	0.0	0	0.0	0	0.0
74	4823	6305	53	3	1.1	0	0.0	52	7.0	0	0.0	0	0.0	3	0.3	0	0.0	0	0.0
75	4809	6253	73	2	1.2	0	0.0	126	13.4	0	0.0	0	0.0	1	0.1	0	0.0	2	0.4
76	4810	6305	75	4	2.4	0	0.0	414	24.4	0	0.0	0	0.0	3	0.3	0	0.0	0	0.0
77	4800	6310	65	4	1.6	0	0.0	343	26.6	0	0.0	0	0.0	0	0.0	0	0.0	0	0.0
78	4800	6322	92	2	0.5	0	0.0	447	52.0	0	0.0	0	0.0	0	0.0	0	0.0	11	2.6
79	4801	6346	98	5	5.5	0	0.0	531	80.1	0	0.0	0	0.0	0	0.0	0	0.0	0	0.0
80	4751	6321	78	0	0.0	0	0.0	523	50.4	0	0.0	0	0.0	0	0.0	0	0.0	0	0.0
81	4737	6256	56	1	0.6	0	0.0	71	5.7	0	0.0	0	0.0	9	0.6	0	0.0	0	0.0
82	4736	6311	66	0	0.0	0	0.0	185	17.1	0	0.0	0	0.0	0	0.0	0	0.0	0	0.0
84	4741	6320	74	3	0.2	0	0.0	298	27.4	0	0.0	0	0.0	0	0.0	0	0.0	0	0.0
85	4731	6416	57	13	0.8	0	0.0	242	15.7	0	0.0	0	0.0	0	0.0	0	0.0	11	1.8
86	4716	6411	46	9	0.8	0	0.0	80	5.2	0	0.0	0	0.0	2	0.2	1	2.8	11	1.8
87	4718	6402	36	39	6.5	0	0.0	13	0.0	0	0.0	2	0.5	31	2.6	0	0.0	53	6.3
88	4721	6344	67	13	5.1	0	0.0	160	10.4	0	0.0	1	0.5	6	0.3	0	0.0	0	0.0
89	4714	6310	65	6	5.4	0	0.0	327	26.4	0	0.0	0	0.0	0	0.0	0	0.0	0	0.0
90	4702	6320	55	9	0.8	0	0.0	107	6.1	0	0.0	0	0.0	58	5.0	0	0.0	0	0.0
91	4701	6254	58	10	4.8	0	0.0	106	11.3	0	0.0	0	0.0	36	3.2	0	0.0	3	0.6
92	4659	6246	62	1	0.0	0	0.0	264	14.1	0	0.0	0	0.0	21	3.5	0	0.0	0	0.0
94	4715	6238	66	0	0.0	0	0.0	378	25.8	0	0.0	0	0.0	3	0.4	0	0.0	0	0.0
95	4726	6224	61	4	0.6	0	0.0	126	5.3	0	0.0	0	0.0	1	0.1	0	0.0	0	0.0
96	4730	6239	62	0	0.0	0	0.0	813	44.6	0	0.0	0	0.0	14	1.6	0	0.0	0	0.0
97	4737	6232	75	1	0.5	0	0.0	117	6.9	0	0.0	0	0.0	5	0.4	0	0.0	0	0.0
98	4733	6211	49	0	0.0	0	0.0	23	0.8	0	0.0	0	0.0	22	1.5	0	0.0	0	0.0
99	4728	6205	35	2	0.1	0	0.0	0	0.0	0	0.0	0	0.0	37	2.4	0	0.0	0	0.0
100	4735	6152	31	6	0.7	0	0.0	1	0.2	0	0.0	9	1.0	158	9.7	0	0.0	0	0.0
101	4741	6144	34	4	0.0	0	0.0	0	0.0	0	0.0	0	0.0	81	4.3	0	0.0	0	0.0
102	4748	6206	54	6	0.6	0	0.0	22	1.7	0	0.0	0	0.0	0	0.0	0	0.0	0	0.0
103	4756	6206	57	5	0.0	0	0.0	37	3.7	0	0.0	0	0.0	0	0.0	0	0.0	11	2.3

Appendix II. Continued Annexe II. Suite

Set/ Trait	Latitude / Latitude	Longitude / Longitude	Depth / Profondeur		od / orue	2.00000	Hake / e blanche		n Plaice / nadienne	Witch file	ounder / grise	Winter fi	lounder / rouge	-	wtail / nde à jaune	Flé	halibut / tan rtique		ring / reng
	Deg. Min.	Deg. Min.	Meter / Metres	No.	kg	No.	kg	No.	kg	No.	kg	No.	kg	No.	kg	No.	kg	No.	kg
104	4752	6225	80	0	0.0	0	0.0	325	27.6	0	0.0	0	0.0	0	0.0	0	0.0	11	1.5
105	4758	6246	78	2	1.4	0	0.0	372	37.5	0	0.0	0	0.0	0	0.0	0	0.0	0	0.0
106	4803	6231	62	1	22	0	0.0	78	6.2	0	0.0	0	0.0	0	0.0	1	0.7	0	0.0
108	4803	6213	80	0	0.0	0	0.0	19	1.6	0	0.0	0	0.0	0	0.0	0	0.0	0	0.0
109	4818	6239	96	6	2.8	0	0.0	127	12.1	0	0.0	0	0.0	1	0.1	0	0.0	3	0.2
110	4816	6224	72	0	0.0	0	0.0	7	1.3	0	0.0	0	0.0	0	0.0	0	0.0	0	0.0
111	4826	6219	368	0	0.0	4	3.4	14	4.4	52	12.7	0	0.0	0	0.0	0	0.0	0	0.0
113	4816	6211	114	391	123.1	0	0.0	132	20.4	3	0.6	0	0.0	0	0.0	0	0.0	0	0.0
114	4820	6203	272	0	0.0	37	16.9	42	10.3	22	5.5	0	0.0	0	0.0	0	0.0	32	4.7
115	4812	6119	368	0	0.0	4	3.3	3	0.8	6	1.9	0	0.0	0	0.0	0	0.0	0	0.0
116	4808	6135	96	12	1.8	0	0.0	24	3.9	0	0.0	0	0.0	0	0.0	0	0.0	0	0.0
117	4758	6137	57	3	0.3	0	0.0	2	0.3	0	0.0	0	0.0	0	0.0	0	0.0	0	0.0
119	4756	6050	282	0	0.0	57	29.8	0	0.0	4	1.4	0	0.0	0	0.0	2	42.1	0	0.0
120	4753	6049	138	119	46.8	0	0.0	73	23.3	139	36.7	0	0.0	0	0.0	6	22.3	0	0.0
121	4746	6111	28	0	0.0	0	0.0	1	0.7	0	0.0	18	3.1	228	22.2	0	0.0	0	0.0
122	4745	6107	30	1	0.0	0	0.0	3	0.6	0	0.0	5	0.6	185	18.6	0	0.0	0	0.0
123	4731	6046	52	12	1.4	0	0.0	41	3.1	0	0.0	0	0.0	72	8.6	0	0.0	0	0.0
125	4737	6032	115	7	2.6	0	0.0	14	4.8	9	3.2	0	0.0	3	0.2	0	0.0	0	0.0
126	4723	6020	89	3	0.6	0	0.0	3	1.2	0	0.0	0	0.0	0	0.0	0	0.0	0	0.0
127	4719	6011	288	1	2.4	8	5.1	0	0.0	44	16.3	0	0.0	0	0.0	0	0.0	13	2.3
128	4714	6014	205	0	0.0	20	13.4	1	0.0	1	0.3	0	0.0	0	0.0	0	0.0	0	0.0
129	4705	6031	151	14	4.3	15	5.0	268	26.0	113	29.7	0	0.0	0	0.0	0	0.0	76	13.0
130	4714	6028	151	314	252.4	3	1.7	2	1.6	1	0.3	0	0.0	0	0.0	3	3.7	0	0.0
131	4717	6040	58	46	14.8	0	0.0	35	7.4	0	0.0	0	0.0	0	0.0	0	0.0	11	2.4
132	4723	6107	43	7	1.8	0	0.0	40	6.2	0	0.0	0	0.0	77	5.7	0	0.0	0	0.0
133	4721	6121	34	5	2.1	0	0.0	6	0.9	0	0.0	74	10.1	90	6.7	0	0.0	0	0.0
134	4718	6115	42	9	2.7	0	0.0	47	8.9	0	0.0	150	29.3	95	7.8	0	0.0	1	0.2
135	4718	6111	47	34	11.5	0	0.0	19	3.7	0	0.0	1	0.2	69	5.4	0	0.0	50	6.1
136	4713	6100	62	18	4.7	0	0.0	53	6.8	0	0.0	0	0.0	79	6.3	0	0.0	79	10.9
137	4706	6045	160	6	4.6	65	25.9	101	14.1	57	18.5	0	0.0	0	0.0	4	2.8	165	31.
	4652	6059	123	6	3.8	172	29.1	591	80.3	22	6.7	0	0.0	0	0.0	1	2.4	538	80.
138			59			1/2	0.2	766	79.6	0	0.0	0	0.0	50	6.5	0	0.0	2500	208
139	4700	6110		14	1.6				55.1	0		0	0.0	125	14.9	0	0.0	463	24
140	4659 4653	6117 6115	49 57	37	7.9 5.8	1 0	0.3	453 377	39.1	0	0.0	0	0.0	125	0.6	0	0.0	1001	46.2

Appendix II. Continued Annexe II. Suite

Set/ Trait	Latitude / Latitude	Longitude / Longitude	Depth / Profondeur	1	od /	White Merluche	Hake / blanche	America Plie car	n Plaice / nadienne	Witch fl Plie	ounder / grise	Winter f	lounder / rouge		wtail / nde à jaune	Flé	halibut / etan etique	Herr Har	ring / reng
	Deg. Min.	Deg. Min.	Meter / Mètres	No.	kg	No.	kg	No.	kg	No.	kg	No.	kg	No.	kg	No.	kg	No.	kg
142	4653	6143	55	7	2.4	0	0.0	64	9.2	0	0.0	0	0.0	1	0.1	0	0.0	192	8.9
143	4652	6135	56	0	0.0	0	0.0	74	6.4	0	0.0	0	0.0	0	0.0	0	0.0	127	6.1
144	4639	6131	64	9	5.0	0	0.0	86	11.6	0	0.0	0	0.0	41	3.9	0	0.0	44	2.2
145	4617	6141	57	2	3.7	0	0.0	136	16.8	0	0.0	0	0.0	0	0.0	1	2.9	1	0.2
146	4609	6208	39	10	0.1	0	0.0	62	5.0	0	0.0	24	2.3	0	0.0	0	0.0	43	4.5

Appendix III. Stratum means in numbers and weight for cod, white hake, American plaice, winter flounder, witch flounder, yellowtail flounder, Atlantic halibut and herring in the September 2010 bottom-trawl survey of the southern Gulf of St. Lawrence. Ten incomplete sets are excluded; all numbers and weights are adjusted to a standard tow.

Annexe III. Moyennes des prises par strate, en nombre et en poids, pour la morue, la merluche blanche, la plie canadienne, la plie rouge, la plie grise, la limande à queue jaune, le flétan atlantique et le hareng lors du relevé au chalut de fond de septembre 2010 dans le sud du golfe du Saint-Laurent. Dix traits non complets sont exclus; les nombres et les poids sont normalisés pour un trait standard.

Stratum/ Strate	# of valid sets/ # de traits valides		od / orue		Hake / e blanche		n Plaice / nadienne	Witch fl Plie	ounder / grise		lounder / rouge	Lima	wtail / nde à gaune		halibut /		ring / reng
		No.	kg	No.	kg	No.	kg	No.	kg	No.	kg	No.	kg	No.	kg	No.	kg
401	2	28	10.9	0	0.0	5	0.6	0	0.0	328	52.0	71	9.0	4	9.4	25	2.8
402	3	2	0.0	68	2.4	0	0.0	0	0.0	36	1.4	0	0.0	0	0.0	26754	197.6
403	4	0	0.0	3	0.4	9	1.3	0	0.0	307	47.4	2	0.4	0	0.0	102780	18601.3
415	5	11	10.8	9	4.9	314	54.1	15	2.3	0	0.0	0	0.0	6	26.5	26	4.8
416	8	104	79.7	0	0.0	1045	139.9	7	1.8	0	0.0	0	0.0	1	4.2	14	2.1
417	4	6	2.4	0	0.0	44	5.6	0	0.0	0	0.0	0	0.0	0	0.4	33	4.6
418	3	9	2.9	0	0.0	129	12.1	0	0.0	6	2.0	0	0.0	0	0.0	0	0.0
419	3	5	0.7	0	0.0	9	0.9	0	0.0	73	7.5	1	0.1	0	0.0	18669	2403.9
420	5	16	0.7	1	0.3	17	0.2	0	0.0	175	27.5	88	5.7	1	0.9	4785	295.2
421	3	2	0.2	0	0.0	9	0.1	0	0.0	85	7.2	11	0.9	0	0.3	28671	2229.8
422	9	12	5.2	0	0.0	90	7.2	0	0.0	4	0.6	49	4.8	0	0.0	18347	2643.7
423	16	4	2.6	0	0.0	120	9.2	0	0.0	0	0.0	2	0.3	0	0.0	0	0.0
424	7	4	3.5	0	0.0	157	11.7	0	0.0	0	0.0	1	0.1	0	0.0	2	0.4
425	3	0	0.0	16	8.5	4	0.7	12	3.1	0	0.0	0	0.0	0	0.0	4	0.8
426	3	145	67.6	0	0.0	1391	174.2	9	2.2	0	0.0	0	0.0	0	0.0	4	0.7
427	6	5	1.9	0	0.0	28	2.1	0	0.0	0	0.0	1	0.1	0	0.0	4	0.1
428	3	30	1.3	0	0.0	35	0.5	0	0.0	21	2.4	105	10.0	0	0.0	748	12.0
429	11	51	33.1	0	0.0	206	13.8	0	0.0	49	8.3	60	7.9	0	0.8	197	24.1
431	8	17	7.8	0	0.0	201	19.8	0	0.0	0	0.0	6	1.3	0	0.0	2858	426.4
432	4	0	0.0	3	0.9	2	0.0	0	0.0	63	4.5	0	0.0	0	0.0	138098	1405.4
433	6	10	2.0	1	0.1	161	17.1	0	0.0	98	8.7	3	0.6	0	0.0	1394	113.4
434	9	10	3.0	0	0.0	164	14.8	0	0.0	0	0.0	5	0.8	0	0.0	12756	1743.7
435	4	4	2.3	0	0.0	9	0.9	0	0.0	171	21.7	41	4.8	0	0.5	377	64.0
436	7	42	13.5	0	0.0	137	13.6	0	0.2	0	0.0	66	8.5	0	0.0	2	0.2
437	4	82	78.7	46	12.6	106	12.7	11	3.5	0	0.0	0	0.0	1	0.6	14	1.8
438	3	47	19.7	0	0.0	32	6.6	4	1.0	0	0.0	1	0.2	0	0.0	0	0.0
439	3	1	1.4	113	47.9	1	0.2	2	0.7	0	0.0	0	0.0	2	10.3	0	0.0

Appendix IV. Stratum means in numbers and weight for cod, white hake, American plaice, winter flounder, witch flounder, yellowtail flounder, Atlantic halibut and herring in the September 2011 bottom-trawl survey of the southern Gulf of St. Lawrence. Nine incomplete sets are excluded; all numbers and weights are adjusted to a standard tow.

Annexe IV. Moyennes des prises par strate, en nombre et en poids, pour la morue, la merluche blanche, la plie canadienne, la plie rouge, la plie grise, la limande à queue jaune, le flétan atlantique et le hareng lors du relevé au chalut de fond de septembre 2011 dans le sud du golfe du Saint-Laurent. Neuf traits non complets sont exclus; les nombres et les poids sont normalisés pour un trait standard.

Stratum/ Strate	# of valid sets/ # de traits valides		od / orue		Hake / e blanche		n Plaice / nadienne		lounder / grise		lounder / rouge	Lima	wtail / nde à : jaune		halibut / itlantique		ring / reng
		No.	kg	No.	kg	No.	kg	No.	kg	No.	kg	No.	kg	No.	kg	No.	kg
401	3	9	4.1	2	0.6	0	0.0	0	0.0	59	9.7	31	3.4	1	3.2	14	1.0
402	3	2	0.0	4	0.5	0	0.0	0	0.0	21	1.5	0	0.0	0	0.0	4054	83.5
403	4	0	0.0	14	2.4	88	10.1	0	0.0	283	45.5	4	0.8	0	0.0	43314	6373.4
415	4	2	1.2	7	6.3	36	11.0	17	3.3	0	0.0	0	0.0	9	33.9	3	0.4
416	6	32	25.0	0	0.0	354	47.7	3	0.8	0	0.0	0	0.0	1	36.5	0	0.0
417	3	5	4.0	0	0.0	218	24.9	0	0.0	0	0.0	0	0.0	0	0.0	431	59.2
418	3	8	3.8	0	0.0	137	13.4	0	0.0	0	0.0	0	0.0	0	0.0	0	0.0
419	3	35	5.3	0	0.1	82	11.2	0	0.0	63	3.9	0	0.0	0	0.0	303	24.0
420	4	7	4.5	2	0.3	1	0.0	0	0.0	185	25.7	60	5.3	2	13.5	432	48.9
421	3	8	0.0	0	0.0	0	0.0	0	0.0	32	3.3	2	0.2	0	11.4	1699	331.1
422	8	19	6.1	0	0.0	155	16.8	0	0.0	11	2.5	8	0.7	0	0.4	3878	523.9
423	14	5	1.4	0	0.0	230	16.9	0	0.0	1	0.4	2	0.3	0	1.5	31	4.6
424	7	3	1.9	0	0.0	286	26.1	0	0.0	0	0.0	0	0.1	0	0.0	3	0.8
425	4	0	0.0	12	6.2	18	4.5	16	4.3	0	0.0	0	0.0	0	0.0	8	1.2
426	3	137	42.5	0	0.0	94	12.2	1	0.2	0	0.0	0	0.0	0	0.0	7	0.5
427	6	1	0.4	0	0.0	24	2.2	0	0.0	0	0.0	0	0.0	0	0.1	2	0.4
428	3	4	0.3	0	0.0	0	0.1	0	0.0	3	0.3	30	3.0	0	0.0	0	0.0
429	9	14	10.3	0	0.0	105	8.4	0	0.0	7	1.4	16	2.2	0	0.0	2574	383.5
431	9	20	7.3	0	0.0	226	21.1	0	0.0	0	0.0	9	1.3	0	0.0	308	23.9
432	3	5	0.0	1	0.2	4	0.2	0	0.0	8	0.6	0	0.0	0	0.0	40809	3714.6
433	7	2	0.5	0	0.0	116	11.9	0	0.0	10	1.6	0	0.0	0	0.4	39602	4143.3
434	7	19	4.7	0	0.1	314	32.7	0	0.0	0	0.0	30	3.8	0	0.0	2570	158.6
435	4	4	0.8	0	0.0	3	0.6	0	0.0	24	3.5	112	11.3	0	0.0	0	0.0
436	6	21	6.1	0	0.0	39	6.0	0	0.0	25	4.9	29	3.7	0	0.0	156	20.9
437	4	85	66.3	64	15.5	241	30.5	48	13.8	0	0.0	0	0.0	2	2.2	195	31.2
438	3	43	16.7	0	0.0	30	9.7	47	12.6	0	0.0	0	0.0	2	7.4	0	0.0
439	3	0	0.8	28	16.1	0	0.0	5	1.9	0	0.0	0	0.0	1	14.0	31	5.6

Appendix V. Total catches by species in numbers and weight during the Teleost during the September 2010 southern Gulf of St. Lawrence bottom-trawl survey.

Annexe V. Prises totales, en nombre et en poids par espèce, réalisées par le Teleost lors du relevé au chalut de fond de septembre 2010 dans le sud du golfe du Saint-Laurent.

Scientific Name Nom scientifique	English Name Nom anglais	French Name Nom français	Number Nombre	Weight Poids (kg)
Vertebrates / Vertébrés				
Alosa pseudoharengus	Alewife	Gasperau	284	22.9
Alosa sapidissima	American shad	Alose savoureuse	72	6.2
Amblyraja radiata	Thorny skate	Raie épineuse	599	80.5
Ammodytes dubius	Northern sand lance	Lançon du Nord	9167	73.2
Anarchida denticulatus	Northern wolfish	Loup à tête large	1	0.5
Anarhichas lupus	Striped / Atlantic wolffish	Loup atlantique	12	1.6
Anarhichas minor	Spotted wolfish	Loup tacheté	1	4.3
Artediellus atlanticus	Atlantic hookhear sculpin	Hameçon atlantique	145	0.3
Artediellus uncinatus	Arctic hookhear sculpin	Hameçon neigeux	95	0.3
Aspidophoroides monopterygius	Alligatorfish	Poisson alligator atlantique	385	3.1
Careproctus reinhardi	Sea tadpole	Petite limace de mer	4	trace
Clupea harengus	Atlantic herring	Hareng atlantique	132997	11551.1
Cryptacanthodes maculatus	Wrymouth	Terrassier tacheté	6	1.7
Cyclopterus lumpus	Lumpfish	Grosse poule de mer	2	1.4
Enchelyopus cimbrius	Fourbeard rockling	Motelle à quatre barbillons	27	0.7
Eumesogrammus praecisus	Fourline snake blenny	Quatre-lignes atlantique	207	6.5
Eumicrotremus spinosus	Atlantic spiny lumpsucker	Petite poule de mer atlantique	38	0.8
Gadus morhua	Atlantic cod	Morue franche	3148	1795.7
Gadus mornua Gadus ogac	Greenland cod	Ogac	36	14.9
Gaidropsarus ensis	Threebeard rockling	Mustèle Arctique à trois barbillons	1	trace
Gasterosteus aculeatus aculeatus	Threespine stickleback	Épinoche à trois épines	4420	5.1
Glyptocephalus cynoglossus	Witch flounder		395	92.5
		Plie grise	19	0.2
Gymnelis viridis	Fish doctor	Anguille de mer	1131	35.2
Gymnocanthus tricuspis	Arctic staghorn sculpin	Tricorne arctique	66	28.7
Hemitripterus americanus	Sea raven American plaice	Hémitriptère atlantique	21096	2355.3
Hippoglossoides platessoides		Plie canadienne		2333.3
Hippoglossus hippoglossus	Atlantic halibut	Flétan atlantique	63	
Icelus bicomis	Twohorn sculpin	Icèle à deux cornes	3	trace
Icelus spatula	Spatulate sculpin	lcèle spatulée	162	0.9
Leptagonus decagonus	Atlantic sea poacher	Agone atlantique	2252	2.7
Leptoclinus maculatus	Daubed shanny	Lompénie tachetée	3726	12.4
Leucoraja ocellata	Winter skate	Raie tachetée	12	9.6
Limanda ferruginea	Yellowtail flounder	Limande à queue jaune	8150	538.4
Liparis fabricii	Gelatinous seasnail	Limace gélatineuse	1	0.1
Liparis gibbus	Dusky seasnail	Limace marbrée	283	24.7
Lophius americanus	Monkfish,goosefish,angler	Baudroie d'Amérique	1	0.4
Lumpenus fabricii	Slender eel blenny	Lompénie élancée	2	trace
Lumpenus lumpretaeformis	Snakeblenny	Lompénie serpent	38	0.7
Lumpenus medius	Stout eelblenny	Lompénie naine	586	3.3
Lycenchelys verrilli	Wolf eelpout	Lycode à tête longue	1	trace
Lycodes sp.	Eelpout unspecified	Lycode non spécifiée	354	45.2
Malacoraja senta	Smooth skate	Raie lisse	61	19.1
Mallotus villosus	Capelin	Capelan	137171	920.4
Melanostigma atlanticum	Atlantic soft pout	Molasse Atlantique	56	0.2
Menidia menidia	Atlantic silverside	Capucette	5	trace
Merluccius bilinearis	Silver hake	Merluche argenté	2	trace
Myoxocephalus aeneus	Grubby	Chaboisseau bronzé	2	0.1
Myoxocephalus octodecemspinosus	Longhorn sculpin	Chaboisseau à dix-huit-épines	323	45.5
Myoxocephalus scorpius	Shorthorn sculpin	Chaboisseau à épines courtes	114	54.6
Myxine glutinosa	Atlantic hagfish	Myxine du nord	39	2.2
Nezumia bairdii	Marlin-spike grenadier	Grenadier du grand banc	45	0.9

Appendix V. Continued Annexe V. Suite

Scientific Name Nom scientifique	English Name Nom anglais	French Name Nom français	Number Nombre	Weight Poids (kg)
Vertebrates / Vertébrés				
Notolepis rissoi	White barracudina	Lussion blanc	159	1.8
Ophichthidae (family)	Snake eel unspecified	Serpents de mer non spécifié	N/A	trace
Osmerus mordax mordax	Rainbow smelt	Éperlan d'amérique	10312	194.7
Paraliparis calidus	Sea snail	Limace ardente	1	trace
Phycis chesteri	Longfin hake	Merluche à longues nageoires	10	1.3
Pseudopleuronectes americanus	Winter flounder	Plie rouge	5023	683.1
Reinhardtius hippoglossoides	Turbot / Greenland halibut	Flétan du Groenland	2037	1057.3
Salmo salar	Atlantic salmon	Saumon Atlantique	1	2.1
Scomber scombrus	Atlantic mackerel	Maquereau bleu	3522	204.1
Scophthalmus aquosus	Brill / windowpane	Turbot de sable	268	19.0
Sebastes sp.	Redfish unspecified	Sébaste non spécifié	928	270.9
Squalus acanthias	Spiny dogfish	Aiguillat commun	1	2.5
Stomias boa ferox	Boa dragonfish	Dragon-boa	2	trace
Tautogolabrus adspersus	Cunner	Tanche-tautogue	19	1.0
Triglops murrayi	Moustache / mailed sculpin	Faux-trigle armé	486	4.0
Uleina olrikii	Arctic alligatorfish	Poisson-alligator Arctique	158	0.2
Urophycis tenuis	White hake	Merluche blanche	611	189.1
Zoarces americanus	Ocean pout	Loquette d'amérique	4	0.8
Invertebrates / Invertébrés	Occum pour	Loquette a amerique	-	0.0
Amphipoda (order)	Amphipods (order)	Amphipodes (ordre)	N/A	0.1
	Annelids (segmented worms)	Annelides	N/A	trace
Annelida (phylum)	Sea anemone unspecified	Anémone de mer non spécifiée	N/A	55.7
Anthozoa (class)			N/A	1.1
Aphrodita sp.	Sea mouse unspecified	Sourie de mer non spécifiée	N/A	trace
Aporrhais sp.	Duck or pelican foot	Apporais non spécifié	N/A	1.2
Artica islandica	Ocean quahaug	Quahog nordique	N/A	0.1
Ascidia sp.	Sea squirts (tunicates)	Tuniciers		0.1
Astarte sp.	Astarte sp.	Astartes sp.	N/A	
Asterias sp.	Starfish unspecified	Étoile de mer non spécifiée	N/A	4.0
Asterias vulgaris	Northern / Purple starfish	Étoile de mer pourpre	N/A	2.7
Asteroidea (class)	Starfish unspecified (class)	Étoile de mer non spécifiée (classe)	N/A	1.5
Biemna variantia	Sponge sp.	Eponge sp.	N/A	31.3
Bivalvia (class)	Bivalve unspecified (class)	Bivalve non spécifié (classe)	N/A	18.2
Boltenia sp.	Sea potato unspecified	Patate de mer non spécifiée	N/A	113.9
Brachiopoda (phylum)	Lampshells unspecified (phylum)	Brachiopode non spécifié (phylum)	N/A	0.1
Brisaster fragilis	Heart urchin	Spatangue	N/A	0.5
Bryozoa /Ectoprocta (phylum)	Bryozoans	Bryozoaires	N/A	0.5
Buccinidae (family) Eggs	Whelk eggs unspecified	Œufs de buccin non spécifiés	N/A	6.4
Buccinum sp,	Whelk unspecified	Buccin non spécifié	N/A	6.5
Buccinidae (family)	Whelk (family)	Buccins (famille)	N/A	trace
Buccinum undatum	Wave whelk / common	Buccin commun	N/A	5.1
Cancer irroratus	Atlantic rock crab	Crabe tourteau commun	244	26.4
Cardinae (family)	Cockle unspecified (family)	Bucarde non spécifiée (famille)	N/A	0.2
Chionoecetes opilio	Snow crab (queen)	Crabe des neiges	6129	661.0
Chlamys islandicus	Iceland scallop	Pétoncle d'Islande	83	4.0
Cirripedia (sub-class / infra-class)	Barnacle unspecified	Balane non spécifié	N/A	0.1
Clinocardium ciliatum	Iceland cockle	Coque d'Islande	N/A	0.4
Clypeasteroida (order)	Sand dollar unspecified	Clypéastre non spécifié	N/A	31.6
Coelenterata / Cnidaria (phylum)	Coelenterate / Cnidarian unspecified	Cœlentéré / cnidaire non spécifié	N/A	0.2
Ctenodiscus crispatus	Mud star	Étoile de vase	N/A	3.2
Cryptodonta (super order)	Bivalve clams unspecified	Bivalves palourde non spécifié	N/A	trace
Cuspidaria glacialis	Glacial dipper clam		N/A	trace
Cyrtodaria siliqua	Bank clam	Mye / couteau de Banks (pitot)	N/A	trace
Decapoda (order)	Decapod unspecified (order)	Décapode non spécifié (ordre)	N/A	725.9

Appendix V. Continued Annexe V. Suite

Scientific Name Nom scientifique	English Name Nom anglais	French Name Nom français	Number Nombre	Weight Poids (kg)
Invertebrates / Invertébrés				
Dendronotus sp.	Bushy backslug	Dendronotus non spécifiée	N/A	0.1
Duva multiflora	Sea cauliflower / Soft coral	Main de mer	N/A	2.0
Gastropoda eggs	Gastropod (snail/slug) eggs unspecified	Oeufs de gastropode non spécifiés	N/A	0.5
Gastropoda (class)	Gastropod unspecified (class)	Gastropode non spécifié (classe)	N/A	trace
Gorgonocephalus sp.	Basket stars sp.	Gorgonocéphales sp.	N/A	176.5
Halichondria panacea	Breadcrumb sponge	Éponge mie de pain	N/A	62.2
Halichondria sitiens	Sponge sp.	Éponge sp.	N/A	trace
Haliclona oculata	Eyed sponge	Éponge digitée	N/A	5.3
Halocynthia pyriformis	Sea peach	Pêche de mer	N/A	trace
Henricia sanguinolenta	Blood star	Petite étoile rouge sang	N/A	2.9
Hiatella arctica	Soft shell or long neck clam	Saxicave Arctique	N/A	trace
Hippasteria phrygiana	Horse star	Étoile de mer sp.	N/A	8.6
Holothuroidea (class)	Sea cucumber unspecified	Holothurie non spécifié	N/A	100.0
Homarus americanus	American lobster	Homard américain	2614	863.2
Hormathia sp.	Sea anemone unspecified	Anémone de mer non spécifiée	N/A	trace
Hyas araneus	Toad crab	Crabe lyre (araignée)	493	34.1
Hyas coarctatus	Lesser toad crab	Crabe lyre (arctique)	1149	59.4
Hyas sp.	Toad crab unspecified	Crabe lyre non spécifié	582	0.3
Hydrozoa (class)	Hydrozoans (class)	Hydrozoaire (classe)	N/A	1.0
lophon sp.	Sponge sp.	Éponge sp.	N/A	6.4
Illex illecebrosus	Short-fin squid	Encornet rouge nordique	72	14.2
Isopoda (Order)	Isopod (order)	Isopod (ordre)	N/A	trace
Leptasterias polaris	Polar starfish	Étoile de mer polaire	N/A	29.0
Leptasterias tenera	Slender armed sea star	Étoile de mer sp.	N/A	trace
Lithodes maja	Northern stone crab	Crabe épineux du nord	12	2.7
Lunatia heros	Moonshell	Lunatie (natice de l'Atlantique)	N/A	0.2
Margarites costalis	Boreal rosy margarite	Mollusque sp.	N/A	trace
Modiolus modiolus	Horse mussel	Moule géante	N/A	0.2
Mollusca (phylum)	Mollusks (phylum)	Mollusques (phylum)	N/A	30.0
Munidopsis curvirostra	Squat lobster	Galatée	N/A	trace
Musculus niger	Black mussel	Moule noir	N/A	trace
Mya arenaria	Soft shell clam	Mye commune	N/A	trace
Mycale lingua	Mycale lingua (sponge)	Mycale lingua (Éponge)	N/A	3.4
Mytilidae (family)	Mussel unspecified (family)	Moule non spécifiée (famille)	N/A	0.5
Nuculana sp.	Nut clam sp. unspecified	Nuculidae sp. non spécifié	N/A	trace
Nudibranchia (order)	Seaslug unspecified (order)	Nudibranche non spécifiée (ordre)	N/A	0.2
Octopoda (Order)	Octopus (order) unspecified	Pieuvre (ordre)non spécifiée	19	0.2
Ophiuroidae (sub-class)	Brittle star unspecified	Ophiure no spécifié	N/A	24.5
Paguroidea (super family)	Paguroidea (super family)	Paguroidea (Super-famille)	N/A	6.4
Pennatula borealis	Sea pen	Plume de mer	N/A	129.1
Phakellia ventilabrum	Sponge sp.	Éponge sp.	N/A	0.5
Placopecten magellanicus	Giant sea scallop	Pétoncle géant	25	2.5
Pleurobrachia sp.	Sea gooseberry sp.	Cténaire sp.	N/A	trace
Polychaeta (class)	Bristle worm unspecified (class)	Polychète non spécifié (classe)	N/A	0.4
Polymastia mammilaris	Sponge sp.	Éponge sp.	N/A	0.3
Polyplacophora (class)	Chiton unspecified (class)	Chiton non spécifiée (classe)	N/A	trace
Poraniomorpha hispida	Sea star sp.	Étoile de mer sp.	N/A	0.1

Appendix V. Continued Annexe V. Suite

Scientific Name Nom scientifique	English Name Nom anglais	French Name Nom français	Number Nombre	Weight Poids (kg)
Invertebrates / Invertébrés				
Porifera (Phylum)	Sponge unspecified	Éponge non spécifiée	N/A	9.1
Psolus fabricii	Scarlett psolus	Psolus écarlate	N/A	4.7
Psolus phantapus	Sea cucumber sp.	Concombre de mer sp.	N/A	1.2
Pteraster militaris	Sea star sp.	Étoile de mer sp.	N/A	0.2
Pycnogonida (class)	Sea spider unspecified	Araignée de mer non spécifiée	N/A	trace
Raja eggs	Skates eggs unspecified	Œufs de raie non spécifié	N/A	0.8
Scyphozoa (class)	Jellyfish unspecified	Méduse non spécifiée	N/A	57.7
Semirossia tenera	Lesser bobtail squid	Sépiole calamarette	6	0.1
Solaster sp.	Sunstar unspecified	Soleil de mer non spécifiée	N/A	7.7
Solaster endeca	Smooth / purple sunstar	Soleil de mer pourpre	N/A	39.4
Solaster papposus	Spiny sun star	Soleil de mer épineux	N/A	179.5
Spisula polynyma	Arctic surf clam	Mactre de Stimpson	N/A	0.2
Strongylocentrotus sp.	Sea urchin unspecified	Oursin non spécifié	N/A	485.4
Suberites ficus	Fig sponge	Éponge sp.	N/A	2.1
Tentorium semisuberites	Sponge sp.	Éponge sp.	N/A	1.5
Trochidae (family)	Sea snails unspecified	Limace de mer	N/A	trace
Tunicata sp.	Tunicate / Sea squirt unspecified	Tuniqués sessiles non spécifiés	N/A	2.5
Other / Autres				
Foreign articles / garbage	Foreign articles / garbage	Déchets / résidus domestiques	N/A	2.7
Rhodophyceae (family)	Red seaweeds	Algues rouges	N/A	0.4
Stones and rocks	Stones and rocks	Pierres et roches	N/A	59.8
Thallophyta (class)	Seaweed, algae, kelp	Géornon, algues, varech	N/A	65.2
Unidentified / Digested remains	Unidentified / Digested remains	Restes non identifié / pourri	N/A	1.3
Unidentified fish and/or invertebrates	Unidentified fish and/or invertebrates	Poisson ou invertébré non identifié	N/A	1.0
Wood	Wood	Bois	N/A	46.1

Appendix VI. Total catches by species in numbers and weight during the Teleost during the September 2011 southern Gulf of St. Lawrence bottom-trawl survey.

Annexe VI. Prises totales, en nombre et en poids par espèce, réalisées par le Teleost lors du relevé au chalut de fond de septembre 2011 dans le sud du golfe du Saint-Laurent.

Scientific Name Nom scientifique	English Name Nom anglais	French Name Nom français	Number Nombre	Weight Poids (kg)
Vertebrates / Vertébrés				
Alosa pseudoharengus	Alewife	Gasperau	928	96.3
Alosa sapidissima	American shad	Alose savoureuse	9	6.8
Amblyraja radiata	Thorny skate	Raie épineuse	488	117.0
Ammodytes dubius	Northern sand lance	Lançon du Nord	9950	153.1
Anarhichas lupus	Striped / Atlantic wolffish	Loup atlantique	6	8.4
Artediellus atlanticus	Atlantic hookhear sculpin	Hameçon atlantique	32	0.1
Artediellus uncinatus	Arctic hookhear sculpin	Hameçon neigeux	17	0.1
Aspidophoroides monopterygius	Alligatorfish	Poisson alligator atlantique	136	1.1
Bathyraja spinicauda	Spinytail skate	Raie à queue épineuse	1	3.3
Boreogadus saida	Arctic cod	Morue arctique	2	trace
Careproctus reinhardi	Sea tadpole	Petite limace de mer	2	0.2
Centroscyllium fabricii	Black dogfish	Aiguillat noir	1	0.7
Clupea harengus	Atlantic herring	Hareng atlantique	60035	6882.2
Cryptacanthodes maculatus	Wrymouth	Terrassier tacheté	5	1.5
Cyclopterus lumpus	Lumpfish	Grosse poule de mer	2	0.2
Cyclothone microdon	Veiled angle mouth	Cyclothone à petites dents	8	trace
Enchelyopus cimbrius	Fourbeard rockling	Motelle à quatre barbillons	27	0.8
Eumesogrammus praecisus	Fourline snake blenny	Quatre-lignes atlantique	52	1.8
Eumicrotremus spinosus	Atlantic spiny lumpsucker	Petite poule de mer atlantique	15	0.1
Gadus morhua	Atlantic cod	Morue franche	2030	930.4
Gadus ogac	Greenland cod	Ogac	41	14.2
Gaidropsarus ensis	Threebeard rockling	Mustèle Arctique à trois barbillons	2	trace
Gasterosteus aculeatus aculeatus	Threespine stickleback		37	0.1
Glyptocephalus cynoglossus	Witch flounder	Epinoche à trois épines Plie grise	738	196.3
		Tricorne arctique	184	9.3
Gymnocanthus tricuspis	Arctic staghorn sculpin			
Hemitripterus americanus	Sea raven	Hémitriptère atlantique	29 15698	17.6 1646.1
Hippoglossoides platessoides	American plaice	Plie canadienne		
Hippoglossus hippoglossus	Atlantic halibut	Flétan atlantique	70	545.0
Icelus bicomis	Twohorn sculpin	loèle à deux cornes	1.0	trace
Icelus spatula	Spatulate sculpin	Icèle spatulée	24	0.2
Lampadena speculigera	Mirror lanterfish	Lanterne-mirroir	5	Trace
Leptagonus decagonus	Atlantic sea poacher	Agone atlantique	109	3.6
Leptodinus maculatus	Daubed shanny	Lompénie tachetée	1286	5.3
Leucoraja ocellata	Winter skate	Raie tachetée	3	1.7
Limanda ferruginea	Yellowfail flounder	Limande à queue jaune	4804	320.2
Lipans fabricii	Gelatinous seasnail	Limace gélatineuse	1	0.1
Lipans gibbus	Dusky seasnail	Limace marbrée	54	6.2
Lumpenus fabricii	Slender eel blenny	Lompénie élancée	1	trace
Lumpenus lumpretaeformis	Snakeblenny	Lompenie serpent	127	2.3
Lumpenus medius	Stout eelblenny	Lompénie naine	287	1.6
Lycodes sp.	Eelpout unspecified	Lycode non spécifiée	118	23.9
Malacoraja senta	Smooth skate	Raie lisse	249	53.6
Mallotus villosus	Capelin	Capelan	102868	741.4
Melanostigma atlanticum	Atlantic soft pout	Molasse atlantique	33	0.1
Meduccius bilinearis	Silver hake	Merluche argenté	9	1.7
Myoxocephalus octodecemspinosus	Longhorn sculpin	Chaboisseau à dix-huit-épines	217	41
Myoxocephalus scorpius	Shorthorn sculpin	Chaboisseau à épines courtes	42	22.3
Myxine glutinosa	Atlantic hagfish	Myxine du nord	59	3.2
Naucrates ductor	Pilotfish	Fanfre	1	0.2
Nezumia bairdii	Marlin-spike grenadier	Grenadier du grand banc	27	0.8
Notolepis rissoi	White barracudina	Lussion blanc	45	0.7

Appendix VI. Continued Annexe VI. Suite

Scientific Name Nom scientifique	English Name Nom anglais	French Name Nom français	Number Nombre	Weight Poids (kg)
Vertebrates / Vertébrés				
Osmerus mordax mordax	Rainbow smelt	Éperlan d'Amérique	2594	83.5
Phycis chesteri	Longfin hake	Merluche à longues nageoires	16	1.8
Pollachius virens	Pollock	Goberge	1	2.3
Pseudopleuronectes americanus	Winter flounder	Plie rouge	2855	427
Reinhardtius hippoglossoides	Turbot / Greenland halibut	Flétan du Groenland	1958	1058.4
Scomber scombrus	Atlantic mackerel	Maquereau bleu	4424	218.2
Scomberesox saurus	Atlantic saury / needlefish	Balaou	1	trace
Scophthalmus aquosus	Brill / windowpane	Turbot de sable	103	10.2
Sebastes sp	Redfish unspecified	Sébaste non spécifié	5484	2305.4
Tautogolabrus adspersus	Cunner	Tanche-tautogue	31	3.8
Triglops murrayi	Moustache / mailed sculpin	Faux-trigle armé	80	1.2
Uleina olrikii	Arctic alligatorfish	Poisson-alligator Arctique	40	0.1
Urophycis tenuis	White hake	Merluche blanche	372	128.6
Zoarces americanus	Ocean pout	Loquette d'Amérique	2	0.6
Invertebrates / Invertébrés				
Amphipoda (order)	Amphipods (order)	Amphipodes (ordre)	N/A	trace
Annelida (phylum)	Annelids (segmented worms)	Annelides	N/A	trace
Anthozoa (class)	Sea anemone unspecified	Anémone de mer non spécifiée	N/A	35.5
Aphrodita sp.	Sea mouse unspecified	Sourie de mer non spécifiée	N/A	1.0
Artica islandica	Ocean quahaug	Quahog nordique	1	0.3
Ascidia sp	Sea squirts (tunicates)	Tuniciers	N/A	22
Astarte sp	Astarte sp.	Astartes sp.	6	0.2
Asterias sp	Starfish unspecified	Étoile de mer non spécifiée	N/A	0.9
	Northern / Purple starfish	Étoile de mer pourpre	N/A	trace
Asterials vulgaris	Starfish unspecified (class)	Étoile de mer non spécifiée (classe)	N/A	2.0
Asteroidea (class)	Deep sea octopus	Poulpe boréal	5	0.2
Bathypolypus arcticus		Éponge sp.	N/A	trace
Biemna variantia	Sponge sp.		N/A	19.6
Bivalvia (class)	Bivalve unspecified (class)	Bivalve non spécifié (classe)	N/A	152.3
Boltenia sp.	Sea potato unspecified	Patate de mer non spécifiée	N/A	
Brachiopoda (phylum)	Lampshells unspecified (phylum)	Brachiopode non spécifié (phylum)		Trace
Brisaster fragilis	Heart urchin	Spatangue	N/A	0.1
Bryozoa /Ectoprocta (phylum)	Bryozoans	Bryozoaires	N/A	0.1
Buccinidae (family) Eggs	Whelk eggs unspecified	Œufs de buccin non spécifiés	N/A	9.2
Buccinum sp.	Whelk unspecified	Buccin non spécifié	22	3.4
Buccinidae (family)	Whelk (family)	Buccins (famille)	N/A	0.3
Buccinum undatum	Wave whelk / common	Buccin commun	17	5.1
Cancer irroratus	Atlantic rock crab	Crabe tourteau commun	346	28.3
Cardinae (family)	Cockle unspecified (family)	Bucarde non spécifiée (famille)	N/A	trace
Chionoecetes opilio	Snow crab (queen)	Crabe des neiges	5497	836.3
Chlamys islandicus	Iceland scallop	Pétoncle d'Islande	53	2.4
Cimpedia (sub-class / infra-class)	Barnacle unspecified	Balane non spécifié	N/A	Trace
Clinocardium ciliatum	Iceland cockle	Coque d'Islande	1	0.4
Clypeasteroida (order)	Sand dollar unspecified	Clypéastre non spécifié	N/A	9.4
Coelenterata / Cnidaria (phylum)	Coelenterate / Cnidarian unspecified	Cœlentéré / cnidaire non spécifié	N/A	trace
Ctenodiscus crispatus	Mud star	Étoile de vase	N/A	4.4
Cyrtodaria siliqua	Bank clam	Mye / couteau de Banks (pitot)	1	0.1
Decapoda (order)	Decapod unspecified (order)	Décapode non spécifié (ordre)	N/A	634.8
Duva multiflora	Sea cauliflower / Soft coral	Main de mer	N/A	6.2
Gastropoda eggs	Gastropod (snail/slug) eggs unspecified	Œufs de gastropode non specificis	N/A	0.7
Gastropoda (class)	Gastropod unspecified (class)	Gastropode non spécifié (classe)	N/A	0.6
Gorgonocephalus sp.	Basket stars sp.	Gorgonocéphales sp.	N/A	168.5
Halichondria panacea	Breadcrumb sponge	Éponge mie de pain	N/A	5.4
Halichondria sitiens	Sponge sp.	Éponge sp	N/A	3.3

Appendix VI. Continued Annexe VI. Suite

Scientific Name Nom scientifique	English Name Nom anglais	French Name Nom français	Number Nombre	Weight Poids (kg)
Invertebrates / Invertébrés				
Haliclona oculata	Eyed sponge	Éponge digitée	N/A	1.8
Halocynthia pyriformis	Sea peach	Pêche de mer	N/A	0.7
Henricia sanguinolenta	Blood star	Petite étoile rouge sang	N/A	1.1
Hiatella arctica	Soft shell or long neck clam	Saxicave Arctique	N/A	Trace
Hippasteria phrygiana	Horse star	Étoile de mer sp.	N/A	3.4
Holothuroidea (class)	Sea cucumber unspecified	Holothurie non spécifié	N/A	254.7
Homarus americanus	American lobster	Homard américain	1729	581.6
Hormathia sp.	Sea anemone unspecified	Anémone de mer non spécifiée	N/A	Trace
Hyas araneus	Toad crab	Crabe lyre (araignée)	243	20.4
Hyas coarctatus	Lesser toad crab	Crabe lyre (arctique)	935	42.2
Hydrozoa (class)	Hydrozoans (class)	Hydrozoaire (classe)	N/A	0.3
Illex illecebrosus	Short-fin squid	Encornet rouge nordique	39	9.5
Isopoda (Order)	Isopod (order)	Isopod (ordre)	N/A	trace
Leptasterias polaris	Polar starfish	Étoile de mer polaire	N/A	16.6
Lithodes maja	Northern stone crab	Crabe épineux du nord	30	8.1
Loligo pealei	Long-finned squid	Calmar totam (longues nageoires)	1	0.2
Lunatia heros	Moonshell	Lunatie (natice de l'Atlantique)	N/A	0.1
Margarites costalis	Boreal rosy margarite	Mollusque sp.	N/A	Trace
Margantes groenlandica	Mollusc sp.	Mollusque sp.	N/A	Trace
Modiolus modiolus	Horse mussel	Moule géante	N/A	0.1
Mollusca (phylum)	Mollusks (phylum)	Mollusques (phylum)	N/A	14.7
Musculus niger	Black mussel	Moule noir	N/A	Trace
Mycale lingua	Mycale lingua (sponge)	Mycale lingua (Éponge)	N/A	3.9
Mytilidae (family)	Mussel unspecified (family)	Moule non spécifiée (famille)	N/A	trace
Neptunea decemcostata	Wrinkle whelk	Neptunée à dix côtes	8	0.6
Nudibranchia (order)	Seasing unspecified (order)	Nudibranche non spécifiée (ordre)	9	0.2
Octopoda (Order)	Octopus (order) unspecified	Pieuvre (ordre) non spécifiée	4	0.1
Ophiuroidae (sub-class)	Brittle star unspecified	Ophiure no spécifié	N/A	45.3
Paguroidea (super family)	Paguroidea (super family)	Paguroidea (Super-famille)	161	4.9
Pennatula borealis	Sea pen	Plume de mer	N/A	70.8
Phakellia ventilabrum	Sponge sp.	Éponge sp.	N/A	0.3
Placopecten magellanicus	Giant sea scallop	Pétoncle géant	6	0.8
Polychaeta (class)	Bristle worm unspecified (class)	Polychète non spécifié (classe)	N/A	1.5
Polymastia mammilans	Sponge sp.	Éponge sp.	N/A	trace
Psolus fabricii	Scarlett psolus	Psolus écarlate	N/A	0.9
Psolus phantapus	Sea cucumber sp.	Concombre de mer sp.	N/A	0.2
Pteraster militaris	Sea star sp.	Étoile de mer sp.	N/A	0.2
Pycnogonida (class)	Sea spider unspecified	Araignée de mer non spécifiée	N/A	Trace
Raja eggs	Skates eggs unspecified	Œufs de raie non spécifiés	N/A	0.8
Scyphozoa (class)	Jellyfish unspecified	Méduse non spécifiée	N/A	91.0
Semirossia tenera	Lesser bobtail squid	Sépiole calamarette	12	0.1
Solaster sp.	Sunstar unspecified	Soleil de mer non spécifiée	N/A	0.2
Solaster endeca	Smooth / purple sunstar	Soleil de mer pourpre	N/A	72.2
Solaster papposus	Spiny sun star	Soleil de mer épineux	N/A	123.5
Spisula polynyma	Arctic surf clam	Mactre de Stimpson	N/A	0.2
Spisula solidissima	Atlantic surf clam	Mactre solide	2	0.2
Strongylocentrotus sp.	Sea urchin unspecified	Oursin non spécifié	N/A	422.7

Appendix VI. Continued Annexe VI. Suite

Scientific Name Nom scientifique	English Name Nom anglais	French Name Nom français	Number Nombre	Weight Poids (kg)
Invertebrates / Invertébrés				
Suberites ficus	Fig sponge	Éponge sp.	N/A	1.5
Tentonum semisubentes	Sponge sp.	Éponge sp.	N/A	trace
Tunicata sp.	Tunicate / Sea squirt unspecified	Tuniqués sessiles non spécifiés	N/A	7.3
Other / Autres				
Foreign articles / garbage	Foreign articles / garbage	Déchets / résidus domestiques	N/A	2.7
Phaeophyceae (class)	Brown seeweeds	Algues brunes	N/A	7.2
Rhodophyceae (family)	Red seaweeds	Algues rouges	N/A	1.8
Stones and rocks	Stones and rocks	Pierres et roches	N/A	56.7
Thallophyta (class)	Seaweed, algae, kelp	Géomon, algues, varech	N/A	31.3
Unidentified / Digested remains	Unidentified / Digested remains	Restes non identifié / pourri	N/A	0.3
Unidentified fish and/or invertebrates	Unidentified fish and/or invertebrates	Poisson ou invertébré non identifié	N/A	12.3
Wood	Wood	Bois	N/A	54.2