Kapitel 1

Affine Varietäten

§ 1 Polynomringe

Sei k ein Körper, $n \geq 1, k[X_1, \ldots, X_n]$ Polynomring

Bemerkung + Erinnerung 1.1

a) Für $a_1, \ldots, a_n \in k$ ist

$$\phi_{a_1,\dots,a_n}: k[X_1,\dots,X_n] \rightarrow k$$

$$f \mapsto f(a_1,\dots,a_n)$$

ein Homomorphismus von Ringen

- b) Ist A eine k-Algebra, $a_1, \ldots, a_n \in A$, so ist $f \mapsto f(a_1, \ldots, a_n)$ ein k-Algebra Homomorphismus $k[X_1, \ldots, x_n] \to A$
- c) (UAE des Polynomrings)

Sei A eine k-Algebra, $a_1, \ldots, a_n \in A$. Dann gibt es genau einen k-Algebra Homomorphismus $\phi: k[X_1, \ldots X_n] \to A$ mit $\phi(X_i) = a_i$

Folgerung 1.2

Jede endlich erzeugte k-Algebra ist Faktorring eines Polynomrings.

Denn: Seien a_1, \ldots, a_n Erzeuger von A als k-Algebra. Sei $\phi : k[X_1, \ldots, X_n] \to A$ der k-Algebra Homomorphismus mit $\phi(X_i) = a_i$. (Bem. + Erinn. 1.1 c)) ϕ ist surjektiv

$$\stackrel{\text{Homomorphiesatz}}{\Longrightarrow} A \cong k[X_1, \dots, X_n] / \operatorname{Kern}(\phi)$$

Erinnerung 1.3 (Euklidischer Algorithmus)

Für $f, g \in k[X]$ mit $g \neq 0$ gibt es (eindeutige!) $q, r \in k[X]$ mit f = qg + r und $\deg(r) < \deg(g)$ oder r = 0.

Folgerung 1.4

k[X] ist Hauptidealring

Beweis

Sei $I \subset [X]$ Ideal. I = (0) wird von 0 erzeugt. Sei also $I \neq 0$. Wähle: $g \in I - \{0\}$ mit kleinstem Grad.

Beh.:
$$I=(g)$$
, $denn$: Sei $f \in I-\{0\}$. Schreibe $f=q\cdot g+r$. $\deg(r)<\deg(g)$ und $r=f-qg\in I$. $\Rightarrow r=0$

Folgerung 1.5

k[X] ist faktoriell (eindeutige Zerlegung in Primfaktoren).

Erinnerung: R Ring, $f \in R$ keine Einheit

f unzerlegbar \Leftrightarrow Aus $f = g \cdot h$ folgt $g \in \mathbb{R}^x$ oder $h \in \mathbb{R}^x$

Proposition 1.6

 $k[X_1,\ldots,X_n]$ ist faktoriell für jedes $n\geq 1$.

Beweis (Beweisidee)

Induktion über n, n = 1 ist Folgerung 1.5.

Für Induktionsschritt: $k[X_1, \dots, X_n] = k[X_1, \dots, X_{n-1}][X_n]$

Satz 1 (Hilbertscher Basissatz)

Jedes Ideal in $k[X, ..., X_n]$ ist endlich erzeugbar. Kurz: $k[X_1, ..., X_n]$ ist noethersch

Definition 1.7

Ein Ring R heißt **noethersch**, wenn jedes Ideal in R endlich erzeugbar ist.

Satz 1'

R noethersch $\Rightarrow R[X]$ noethersch. Daraus folgt Satz 1: $k[X_1, \ldots, X_n]$ ist noethersch mit Induktion über n.

Beweis (Beweis von Satz 1)

Annnahme: Es gibt Ideal $I \subset R[X]$, das sich nicht von endlich vielen Elementen erzeugen lässt. Wähle $f_0 \in I - \{0\}$ vom kleinsten Grad. Wähle $f_1 \in I - \{f_0\}$ vom kleinsten Grad. Wähle für $i \geq 2 \in I - \{f_0, f_1, \ldots, f_{i-1}\}$ vom kleinsten Grad. Sei a_i der Leitkoeffizient von f_i , sei $J \subset R$ das von den $a_i, i \in \mathbb{N}$ erzeugte Ideal.

J ist endlich erzeugt. Œ J wird erzeugt von $a_1, \ldots, a_n \Rightarrow$ es gilt $\lambda_0, \ldots, \lambda_n \in \mathbb{R}$ mit $a_{n+1} = \sum_{i=0}^n \lambda_i a_i$

Sei

$$g := f_{n+1} - \sum_{i=0}^{n} \lambda_i f_i X^{d_{n+1} - d_i}$$

 $\Rightarrow \deg(g) < \deg(f_{n+1})$ Aber: $g \notin (f_0, \dots, f_n)$, da sonst auch $f_{n+1} \in (f_0, \dots, f_n)$ wäre. \not

Bemerkung 1.8

Sei R ein noetherscher Ring, $I \subset R$ Ideal. Dann ist auch R/I noethersch.

Beweis

Sei $J \subset R/I$ ein ideal. Sei $\Pi: R \to R/I$ die Restklassenabbildung. $\tilde{J} := \Pi^{-1}(J)$ ist nach Voraussetzung endlich erzeugbar. Die Bilder der Erzeuger von \tilde{J} in J erzeugen J.

Folgerung 1.9

Jede endlich erzeugbare k-Algebra ist noethersch.

Beweis

Siehe Folgerung 1.2, Bemerkung 1.8 und Satz 1

Proposition 1.10

Ein Ring R ist genau dann noethersch, wenn jede aufsteigende Kette $I_0 \subseteq I_1 \subseteq \ldots$ von Idealen in R stationär wird. (Das heißt es gibt n_0 mit $I_n = I_{n_0}$ für alle $n \ge n_0$)

Beweis

- "⇒": Sei $I_0 \subseteq I_1 \subseteq \ldots$ Kette von Idealen. Sei $I := \bigcup_{d=0}^{\infty} I_d$. I ist Ideal. I ist endlich erzeugbar, $I = (a_1, \ldots, a_r), a_i \in I_{n_1}, n_0 = \max_{i=1}^r n_i \Rightarrow I_n = I_{n_0}$ für $n \ge n_0$
- "⇐": Sei I Ideal, $\mathcal{I} := \{J \subset I \mid J \text{ Ideal in } R, J \text{ endlich erzeugt}\}. \mathcal{I} \neq \emptyset$, da $(0) \in \mathcal{I}$.

Behauptung: \mathcal{I} enthält ein maximales Element I_0 .

Wäre $I_0 \neq I$, so gäbe es $a \in I - I_0$. Dann wäre auch $(I_0, a) \in \mathcal{I}_{\not z}$ zu I_0 maximal.

Beweis der Behauptung: Ist (0) nicht maximal, so gibt es (0) $\subsetneq I_1 \subset \mathcal{I}$. Ist auch I_1 nicht maximal, so gibt es $I_1 \subsetneq I_2 \in \mathcal{I}$. \Rightarrow erhalte Kette (0) $\subsetneq I_1 \subsetneq I_2 \subsetneq \ldots$

Nach Voraussetzung wird diese Kette stationär ab einem $n_0. \Rightarrow I_0$ ist maximal in I.

§ 2 Nullstellenmengen und Verschwindungsideale

Sei k ein Körper.

Definition 2.1

Eine Teilmenge $V \subseteq k^n$ heißt **affine Varietät**, wenn es eine Menge $F \subseteq k[X_1, \dots, X_n]$ von Polynomen gibt, sodass

$$V = V(F) = \{x = (x_1, \dots, x_n) \in k : f(x) = 0 \text{ für alle } f \in F\}$$

Beispiel

$$\emptyset = V(1) = V(k[X_1, \dots, X_n])$$

$$k^n = V(0) = V(\emptyset)$$

V(X(X-1)(Y-1)) affine Varietät

Bemerkung 2.2

- i) Für $F_1 \subseteq F_2 \subseteq k[X_1, \dots, X_n]$ ist $V(F_1) \supseteq V(F_2)$
- ii) $V(f_1 \cdot f_2) = V(f_1) \cup V(f_2)$
- iii) für $F \subseteq k[X_1, \dots, X_n]$ ist

$$V(F) = V((F))$$

wobei (F) das von F erzeugte Ideal ist.

iv) Für jede affine Varietä
t $V\subseteq k^n$ gibt es endlich viele Polynome f_1,\ldots,f_r mit

$$V = V(f_1, \ldots, f_r)$$

Beweis

iii) jedes $f \in (F)$ hat die Form $f = \sum_{i=1}^r r_i f_f$ mit $r_i \in k[X_1, \dots, X_n], f_i \in F$.

$$x \in V(F) \Rightarrow f_i(x) = 0, i = 1, \dots, r$$

$$\Rightarrow f(x) = 0 \Rightarrow x \in V((F))$$

Definition 2.3

Für eine Teilmenge $V \subset k^n$ heißt

$$I(V) = \{ f \in k[X_1, \dots, X_n] | f(x) = 0 \text{ für alle } x \in V \}$$

das Verschwindungsideal.

Beispiel

- i) $I(\emptyset) = k[X_1, \dots, X_n]$ $I(k^n) = (0)$ falls k unendlich ist
- ii) I((0,0)) = (X,Y)

Bemerkung 2.4

Für jede Teilmenge $V \subseteq k^n$ gilt:

- i) I(V) ist Radikalideal
- ii) $V \subseteq V(I(V))$

- iii) $\bar{V} := V(I(V))$ ist die kleinste Varietät, die V enthält. Insbesondere: V = V(I(V)), falls V affine Varietät.
- iv) für affine Varietäten V_1, V_2 gilt:

$$V_1 \subseteq V_2 \Leftrightarrow I(V_1) \supseteq I(V_2)$$

Also insbesondere: $V_1 = V_2 \Leftrightarrow I(V_1) = I(V_2)$

Definition 2.5

Ein Ideal I in einem Ring R heißt Radikalideal, wenn gilt: Ist $f \in R$ und gibt es $n \ge 0$ mit $f^n \in I$, so ist $f \in I$

Beweis (von Bemerkung 2.4)

- iii) Folgt aus (iv)
- iv) Sei V' affine Varietät mit $V \subseteq V'$. Sei V' = V(I') für ein Ideal I'.

Behauptung: $I' \subseteq I(V)$

Dann ist
$$V' = V(I') \supseteq V(I(V)) = \bar{V}$$

Beweis der Behauptung: $f \in I' \Rightarrow$ für alle $x \in V'$ ist $f(x) = 0 \Rightarrow f(x) = 0$ für alle $x \in V \Rightarrow f \in I(V)$

Beispiel

$$f = X^2 + 1 \in \mathbb{R}[X], I = (f), V(I) = \emptyset \Rightarrow I(V(I)) = \mathbb{R}[X]$$

Definition + Bemerkung 2.6

Für eine affine Varietät $V\subseteq k^n$ sei

$$A(V) := k[X_1, \dots, X_n]/I(V)$$

- i) A(V) ist die reduzierte k-Algebra (d. h. ohne nilpotente Elemente)
- ii) Ist $V \subseteq V'$, so gibt es **surjektiven** k-Algebra Homomorphismus $A(V') \to A(V)$

Beweis

i) Sei $g \in A(V)$ mit $g^d = 0$ für ein d > 0, sei $\bar{f} \in k[X_1, \dots, X_n]$ mit $\bar{f} = g$

$$\Rightarrow f^d \in I(V)$$

$$\overset{I(V) \text{Radikalideal}}{\Rightarrow} f \in I(V) \Rightarrow g = 0$$

ii) Es ist $I(V') \subseteq I(V)$.

§ 3 Zariski Topologie

Sei k ein Körper

Definition + Bemerkung 3.1

Die affinen Varietäten in k^n bilden die abgeschlossenen Mengen einer Topologie. Diese Topologie heißt Zariski-Topologie.

Schreibweise: $\mathbb{A}^n(k)$ sei k^n mit dieser Topologie

Beweis

- i) $k^n = V(0), \emptyset = V(k[X_1, \dots, X_n])$ sind affine Varietäten
- ii) Seien $V_1 = V(I_1)$ und $V_2 = V(I_2)$ affine Verietäten.

Behauptung: $V_1 \cup V_2 = V(I_1 \cdot I_2) = V(I_1 \cap I_2)$

Zeige genauer: $V(I_1 \cdot I_2) \stackrel{a)}{\subseteq} V_1 \cup V_2 \stackrel{b)}{\subseteq} V(I_1 \cap I_2) \stackrel{c)}{\subseteq} V(I_1 \cdot I_2)$

- c) folgt aus $I_1 \cdot I_2 \subseteq I_1 \cap I_2$
- b) folgt aus $I_1 \cap I_2 \subset I_1$ und $I_1 \cap I_2 \subset I_2$
- a) Sei $x \in V(I_1 \cdot I_2), x \notin V_1$ Dann gibt es $f \in I_1$ mit $f(x) \neq 0 \Rightarrow g(x) \stackrel{x \in V(I_1 \cdot I_2)}{=} 0$ für alle $g \in I_2 \Rightarrow x \in V(I_2) = V_2$
- iii) Seien $V_i = V(I_i), i \in J$ (J beliebige Menge), affine Verietäten. Behauptung:

$$\bigcap_{i \in J} V_i = V(\bigcup_{i \in J} I_i)$$

$$= \sum_{i \in J} I_i$$

Beispiel 3.2

$$n = 1, V \subseteq \mathbb{A}^n(k) \Leftrightarrow V$$
 endlich oder $V = k$

Bemerkung 3.3

Jeder Punkt $x = (x_1, \dots, x_n) \in k^n$ ist abgeschlossen in $\mathbb{A}^n(k)$.

Beweis

$$\{x\} = V(X_1 - x_1, X_2 - x_2, \dots, X_n - x_n)$$

Folgerung 3.4

Ist k endlicher Körper, so ist die Zariski-Topologie auf k^n die diskrete Topologie.

Bemerkung 3.5

Ist k unendlich, so ist $\mathbb{A}^n(k)$ nicht hausdorffsch.

Beweis

n=1: \checkmark

 $n \ge 2$: $x, y \in \mathbb{A}^n(k)$

 \times und y liegen auf der X_1 -Achse, das heißt

$$x, y \in V(X_2, \dots, X_n) =: W$$

Seien U_x, U_y offene Umgebungen von x bzw. y. Dann sind

$$V_x = V(I_x) = \mathbb{A}^n(k) - U_x$$
 und
$$V_x = V(I_x) = \mathbb{A}^n(k) - U_x$$
 affine Verietäten

Da $x \in W$ gibt es $f \in I_x$ mit $f(x) \neq 0 \Rightarrow f \notin I(W) \Rightarrow V(f) \cap W$ endlich $\Rightarrow V_x \cap W$ endlich.

Genauso $V_y \cap W$ endlich $\Rightarrow (V_x \cup V_y) \cap W$ endlich.

$$\Rightarrow U_x \cap U_y \cap W \neq \emptyset$$

Bemerkung 3.6

Sei k unendlicher Körper.

- i) Für jedes $f \in k[X_1, ..., X_n] k$ (nicht-konstante Polynome) ist $D(f) := \mathbb{A}^n(k) V(f)$ offene Teilmenge.
- ii) Die D(f) bilden eine Basis der Zariski-Topologie.

Beweis

ii) Sei $U \subseteq \mathbb{A}^n(k)$ offen.

Zeige: Zu jedem $x \in U$ gibt es $f \in k[X_1, \dots, X_n]$ mit $x \in D(f) \subseteq U$ denn: Sei $V := \mathbb{A}^n(k) - U, V = V(I)$ für ein Ideal $I \subseteq k[X_1, \dots, X_n]$. Da $x \notin V$ gibt es $f \in I$ mit $f(x) \neq 0 \Rightarrow x \in D(f)$ und $D(f) \subseteq U$, da $V(f) \supseteq V(I) = V$

Definition + Erinnerung 3.7

a) Sei X ein topologischer Raum, $Y \subseteq X$. Definiere Topologie auf Y durch:

$$U\subseteq Y$$
 offen $\Leftrightarrow \exists \tilde{U}\subseteq X$ offen mit $U=\tilde{U}\cap Y$

Diese Topologie heißt *Spurtopologie*.

- b) Sei $V \subseteq \mathbb{A}^n(k)$ affine Varietät. Dann heißt die Spurtopologie auf V auch Zariski-Topologie.
- c) Seien X_1, X_2 topologische Räume, $X_1 \times X_2$ das kartesische Produkt (als Mengen),

$$p_i: X_1 \times X_2 \to X_i (i = 1, 2)$$

die Projektionen. Definiere die **Produkttopologie** auf $X_1 \times X_2$ als die gröbste Topologie, sodass p_1 und p_2 stetig sind. Das ist die kleinste Topologie, in der alle Mengen $p_1^{-1}(U_1) \cap p_2^{-1}(U_2)$ offen sind, wobei $U_i \subseteq X_i$ offen ist.

Frage Ist die Zariski-Topologie auf k^2 die Produkttopologie auf $\mathbb{A}^1(k) \times \mathbb{A}^1(k)$?

§ 4 Irreduzible Komponenten

Definition + Bemerkung 4.1

Sei X ein topologischer Raum.

- a) X heißt reduzibel, wenn es abgeschlossene Teilmengen $A, B \subseteq X$ gibt mit $A \cup B = X$ und $A \neq X \neq B$. Eine Teilmenge von X heißt irreduzibel, wenn sie mit der induzierten Topologie irreduzibel ist.
- b) Eine (bezüglich Inklusion) maximale irreduzibel Teilmenge von X heißt irreduzible Komponente von X
- c) Irreduzible Komponenten sind abgeschlossen (Übung)

Beispiel 4.2

Sei X nichtleerer Hausdorffraum. Dann sind die einelementigen Teilmengen die irreduziblen Komponenten.

Denn: Sei X hausdorffsch, $x \neq y \in X$, zeige: X ist irreduzibel

Seien U_x, U_y offene Umgebungen von x bzw. y mit $U_x \cap U_y = \emptyset$

$$\Rightarrow V_x \cup V_y = X, V_x = X - U_x, V_y = X - U_y$$
$$x \notin V_x \neq X \neq V_y \not\ni y$$

Beispiel 4.3

 $\mathbb{A}^1(k)$ ist irreduzibel, wenn k unendlich ist. *Denn:* echte abgeschlossene Teilmengen von $\mathbb{A}^1(k)$ sind endlich.

Frage

Ist $\mathbb{A}^2(k)$ irreduzibel? Sei $\mathbb{A}^2(k) = V_1 \cup V_2, V_i = V(I)$. Seien $f_1, f_2 \in I_1$ bzw. $I_2, f_i \neq 0$. $\Rightarrow V_i \subset V(f_i), i = 1, 2$

$$\Rightarrow \underbrace{V(f_1) \cup V(f_2)}_{=V(f_1 \cdot f_2)} = \mathbb{A}^2$$

$$V(f) \cup V(Y) = V(f(X,0)) \subset \mathbb{A}^1(k)$$

Entweder V(f(X,0)) ist endlich oder f(X,0)=0, dann ist durch Y teilbar. **Genauso:** f ist durch $Y-\alpha X$ teilbar für jedes $\alpha \in k \Rightarrow f=0$. **Antwort auf die Frage:** ja!

Proposition 4.4

Eine affine Varietät $V \subseteq \mathbb{A}^n(k)$ ist genau dann irreduzibel, wenn I(V) ein Primideal ist.

Beweis

"⇒": Seien $f, g \in k[X_1, \ldots, X_n]$ mit $f \cdot g \in I(V)$. Sei $f \notin I(V)$, zu zeigen: $g \in I(V)$

 $f \notin I(V) \Rightarrow \exists x \in V \text{ mit } f(x) \neq 0$

Nach Voraussetzung ist $V \subseteq V(f \cdot g) = V(f) \cup V(g)$

$$\Rightarrow V = (V(f) \cap V) \cup (V(g) \cap V) \overset{V \text{ irred.}}{\Rightarrow} V(g) \cap V = V$$

$$\Rightarrow V \subseteq V(g) \Rightarrow g \in I(V)$$

" \Leftarrow ": Sei I(V) Primideal, $V=V_1\cup V_2$ mit abgeschlossenen Teilmengen V_1,V_2 , also $V_i=V(I_i), i=1,2$, für Ideale I_1,I_2 . Sei $V\neq V_1$, also $V\subsetneq V(I_1)$.

$$\Rightarrow \exists x \in V, f \in I_1 \text{ mit } f(x) \neq 0 \Rightarrow f \notin I(V)$$

Wegen $V = V_1 \cup V_2 = V(I_1) \cup V(I_2) \stackrel{3.1}{=} V(I_1 \cdot I_2)$ ist $I_1 \cdot I_2 \subseteq I(V) \Rightarrow f \cdot g \in I(V)$ für jedes $g \in I_2$

$$\overset{f \notin I(V)}{\Rightarrow} \underset{I(V) \text{ prim}}{\overset{f \notin I(V)}{\Rightarrow}} g \in I(V) \text{ für jedes } g \in I_2$$

$$\Rightarrow I_2 \subseteq I(V) \Rightarrow \underbrace{V(I_2)}_{=V_2} \supseteq \underbrace{V(I(V))}_{=V}$$

Folgerung 4.5

Eine affine Varietät $V \subset \mathbb{A}^n(k)$ ist irreduzibel $\Leftrightarrow A(V) = k[X_1, \dots X_n]/I(V)$ ist nullteilerfrei.

Satz 2

Sei $V \subseteq \mathbb{A}^n(k)$ affine Varietät. Dann gilt:

- a) V ist endliche Vereinigung von irreduziblen affinen Varietäten.
- b) V hat nur endlich viele irreduzible Komponenten, diese sind eindeutig bestimmt.

Beweis

a) Sei $\mathcal{B} = \{V \subseteq \mathbb{A}^n(k) \text{ affine Varietät, } V \text{ ist } nicht \text{ endliche Vereinigung von irreduziblen affinen Varietäten} \}$

$$\mathcal{I} = \{ I(V) : V \in \mathcal{B} \}$$

zu zeigen: $\mathcal{B} = \emptyset$, also auch $\mathcal{I} = \emptyset$

Wäre $\mathcal{I} \neq \emptyset$, so enthielte \mathcal{I} ein maximales Element $I_0 = I(V_0)$ für ein $V_0 \in \mathcal{B}$. (denn: $k[X_1, \ldots, X_n]$ ist noethersch, jede aufsteigende Kette von Elementen in \mathcal{I} wird also stationär.) Da $V_0 \in \mathcal{B}$ ist V_0 reduzibel.

Sei also $V_0 = V_1 \cup V_2$ mit abgeschlossenen Teilmengen $V_1 \neq V_0 \neq V_2$ von V_0 . Aus $V_i \subsetneq V_0$ folgt $I(V_i) \supsetneq \underbrace{I(V_0)}_{=I_0}$ (Bem. 2.4 iv))

$$\Rightarrow I(V_i) \notin \mathcal{I} \Rightarrow V_i \notin \mathcal{B}, i = 1, 2$$

 $\Rightarrow V_i$ ist endliche Vereinigung von irreduziblen Varietäten, also auch $V_0 \notin \mathcal{B}_{\ell}$

b) Sei $V = V_1, \ldots, V_r$ mit irreduziblen Varietäten V_1, \ldots, V_r . Œ $V_i \not\subseteq V_j$ für $i \neq j$ (sonst lasse V_i weg)

Behauptung: Dann ist jedes V_i irreduzible Komponente.

denn: Sei $W \subseteq V$ irreduzible Komponente mit $V_i \subseteq W$. Es gilt

$$W = \bigcup_{j=1}^{r} (V_i \cap W)$$

 $\stackrel{W \text{ irred.}}{\Longrightarrow} \exists j \text{ mit } V_j \cap W = W, \text{ also } W \subseteq V_j \Rightarrow V_i \subseteq V_j \Rightarrow i = j \Rightarrow W = V_i$

Eindeutigkeit: Sei
$$W$$
 irreduzible Komponente von V . Aus $W=\bigcup_{j=1}^r(V_j\cap W)$ folgt $W\cap V_j=W$ für ein $Y_j\Rightarrow W\subseteq V_j \overset{W \text{ irred. Komp.}}{\Longrightarrow} W=V_j$

Proposition 4.6

Die irreduzible Teilmenge eines topologischen Raumes X ist enthalten in einer irreduziblen Komponente von X.

§ 5 Der Hilbertsche Raum

V affine Varietät in $\mathbb{A}^n(k) \Rightarrow V(I(V)) = V; I \subseteq k[X_1, \dots, X_n] \text{ Ideal } \Rightarrow I(V(I)) \supseteq I$

Beispiel

$$I = (X^2 + 1) \subset \mathbb{R}[X]$$
$$V(I) = \emptyset \Rightarrow I(V(I)) = \mathbb{R}[X]$$

Satz 3

Sei k algebraisch abgeschlossener Körper.

- a) Ist $I \subsetneq k[X_1, \dots, X_n]$ Ideal, so ist $V(I) \neq \emptyset$.
- b) Für jedes Ideal $I \subseteq k[X_1, \dots, X_n]$ gilt

$$I(V(I)) = \sqrt{I}$$

Der Beweise benutzt

Satz 3'

Ist k Körper, $n \geq 1, m \subset k[X_1, \ldots, X_n]$ maximales Ideal, so ist $L := k[X_1, \ldots, X_n]/m$ algebraische Körpererweiterung von k. Das heißt für jedes $\alpha \in L$ gibt es ein $f \in k[X]$ mit $f(\alpha) = 0$, also gibt es $d \geq 1$ und $b_0, \ldots, b_{d-1} \in k$ mit

$$\alpha^d + b_{d-1}\alpha^{d-1} + \dots + b_1\alpha + b_0 = 0$$

 $k(\alpha) := k[X]/(f)$ ist Körper, der kleinste Teilkörper von L, der k und α enthält.

Folgerung 5.1

Ist k algebraisch abgeschlossen, so gibt es Bijektion zwischen den Mengen der

- i) Punke $x = (x_1, \dots, x_n)$ in k^n
- ii) Ideale $m_x = (X_1 x_1, \dots, X_n x_n)$ in $k[X_1, \dots, X_n]$
- iii) maximalen Ideale in $k[X_1, \ldots, X_n]$

Beweis

- (i)⇒(ii): ✓
- (ii) \Rightarrow (iii): m_x ist maximales Ideal. Die Abbildung $\varphi_x : k[X_1, \dots, X_n] \to k, X_i \mapsto x_i, f \mapsto f(x)$ ist der Einsetzungshomomorphismus. Kern $(\varphi_x) = m_x$
- (iii) \Rightarrow (i): Sei m maximales Ideal, $\varphi: k[X_1, \dots, X_n] \to k[X_1, \dots, X_n]/m \xrightarrow{\sim}_{\text{Satz 3'}} k \Rightarrow m = \text{Kern}(\varphi)$

Sei
$$x_i = \varphi(X_i)$$
, dann ist $\varphi = \varphi_x$ für $x = (x_1, \dots, x_n) \Rightarrow m = m_x$

Beweis (Beweis von Satz 3)

a) Sei $I \subsetneq k[X_1, \ldots, X_n]$ echtes Ideal. Sei m maximales Ideal mit $I \subseteq m$ (gibt es!) $\Rightarrow V(I) \supseteq V(m) \neq \emptyset$, da $m = m_x$ für ein $x \in k^n$ und $\{x\} = V(m_x)$

Beweis (von Satz 3')

Sei $x_i \in L$ die Restklasse von X_i . Zu zeigen: x_1, \ldots, x_n sind algebraisch über k. Induktion über n:

n=1: m=(f) für ein irreduzibles Polynom $f \Rightarrow L=k[X]/(f)$ ist k-Verktorraum der Dimension $d = \deg(f)$

 $n \geq 2$: Annahme: x_1 ist transzendent.

Dann ist $k' = k(x_1) \cong \underbrace{k(X_1)}_{=\text{Quot}(k[X_1])}$ Teilkörpererweiterung von L. L wird über k' von x_2, \ldots, x_n erzeugt $\Rightarrow L \cong k'[X_2, \ldots, X_n]/m'$ für ein maximales Ideal m' in Dann ist $k' = k(x_1) \cong$

 $k'[X_2,\ldots,X_n]$

Nach Induktionsvoraussetzung ist L algebraisch über k', das heißt:

$$x_{i}^{d_{i}} + \sum_{j=0}^{d_{i}-1} a_{ij} x_{i}^{j} = 0 \qquad i = 2, \dots, n, d_{i} \ge 1 \qquad a_{ij} \in k'$$

$$a_{ij} = \frac{c_{ij}}{b_{ij}} \qquad b_{ij}, c_{ij} \in k[X_{1}]$$

- (1) Sei $R \subset k'$ die von den a_{ij} erzeugte k-Algebra.
- (2) Dann sind x_1, \ldots, x_n ganz über $R \Rightarrow L$ ist ganze Ringerweiterung von R
- (3) $\Rightarrow R = k \text{ oder } R \text{ ist kein K\"{o}rper}.$
 - $(1) \Rightarrow R = k \text{ oder } R \text{ ist kein K\"{o}rper}.$ $R = k \Rightarrow$ für $\tilde{k} = k(x_2, \dots, x_n)$ ist $L = \tilde{k}[X_1]/m$, also algebraisch abgeschlossen. $R \neq k \Rightarrow k(X_1)$ ist nicht endlich erzeugbar als k-Algebra.
 - $(2) \Rightarrow R$ ist Körper: Sei $a \in R \setminus \{0\}$. In L gibt es $\frac{1}{a}$

$$\Rightarrow \left(\frac{1}{a}\right)^d + \sum_{j=0}^{d-1} b_j \left(\frac{1}{a}\right)^j \text{ für ein } d \geq 1, b_j \in R$$

$$\Rightarrow 1 + \sum_{j=0}^{d-1} b_j a^{d-j} = 0, 1 = a \left(-\sum_{j=0}^{d-1} b_j a^{d-1-j} \right)$$

b) Sei $I \subseteq k[X_1, \dots, X_n], g \in I(V(I))$.

Zu zeigen: es gibt d > 0 mit $q^d \in I$.

Wähle Erzeuger f_1, \ldots, f_n von I (geht nach Satz 1). Betrachte in $k[X_1, \ldots, X_n, Y]$ das von f_1, \ldots, f_n und $g \cdot Y - 1$ erzeugte Ideal J.

Behauptung: $V(J) = \emptyset$

denn: Sei $x = (x_1, \ldots, x_n, y) \in V(J)$

Dann ist $f_i(x) = 0$ für i = 1, ..., m. \Rightarrow für $x' = (x_1, ..., x_n)$ ist $f_i(x') = 0 \Rightarrow x' \in V(I)$ $\Rightarrow g(x') = 0 \Rightarrow g(x) = 0 \Rightarrow (gY - 1)(x) = g(x) \cdot y - 1 = -1 \neq 0$

Dann ist nach Satz 3 a) $J = k[X_1, \dots, X_n, Y]$

$$\Rightarrow 1 = \sum_{i=1}^{m} b_i f_i + b(gY - 1)$$
 für geeignete $b_i, b \in k[X_1, \dots, X_n, Y]$

Sei $R = k[X_1, ..., X_n, Y]/(gY - 1)$

$$\Rightarrow 1 = \sum_{i=1}^{m} \bar{b}_i f_i \text{ für } \bar{b}_i = b_i \mod(gY - 1)$$

Es gilt:

$$R \cong k[X_1, \dots, X_n][\frac{1}{g}]$$

$$\bar{b}_i = \frac{a_i}{g^{d_i}}, a_i \in k[X_1, \dots, X_n], d_i \ge 0$$

 \Rightarrow Für $d = \max d_i$ gilt

$$g^d = \sum_{i=1}^n \underbrace{\left(g^d \bar{b}_i\right)}_{\in k[X_1, \dots, X_n]} \cdot f_i \in I$$

Folgerung 5.2

Sei k algebraisch abgeschlossen, $n \geq 1$,

$$\mathcal{V}_n := \{ V \subseteq k^n : V \text{ affine Varietät} \}$$

 $\mathcal{I}_n := \{ I \subseteq k[X_1, \dots, X_n] : I \text{ Radikalideal} \}$

Dann sind

$$I: \mathcal{V}_n \to \mathcal{I}_n, \quad V \mapsto I(V)$$

 $V: \mathcal{I}_n \to \mathcal{V}_n, \quad I \mapsto V(I)$

bijektiv und zueinander invers.

Bemerkung 5.3

Sei k algebraisch abgeschlossen, $V \subseteq \mathbb{A}^n(k)$ affine Varietät. Dann entsprechen die Punkte in V bijektiv den maximalen Idealen in

$$k(V) = A(V) := k[X_1, \dots, X_n]/I(V)$$

Beweis

Die maximalen Ideale in A(V) entsprechen bijektiv den maximalen Idealen in $k[X_1, \ldots, X_n]$, die I(V) enthalten, also (Folgerung 5.1) den Punkten in k^n , die in V liegen.

$$x = (x_1, \dots, x_n), m_x = (X_1 - x_1, \dots, X_n - x_n) = I(\{x\})$$

$$I(V) \subseteq I(\{x\})$$

$$V = V(I(V)) \supseteq V(I(\{x\})) = \{x\}$$

§ 6 Morphismen affiner Varietäten

Definition + Bemerkung 6.1

Sei k ein Körper, $V \subseteq \mathbb{A}^n(k)$, $W \subseteq \mathbb{A}^m(k)$ affine Varietäten.

a) Eine Abbildung $f:V\to W$ heißt $\pmb{Morphismus}$, wenn es Polynome $f_1,\ldots,f_m\in k[X_1,\ldots,X_n]$ gibt mit

$$f(x) = (f_1(x), \dots, f_n(x))$$

für alle $x \in V$.

b) Ein Morphismus $f:V\to W$ heißt **Isomorphismus**, wenn es einen Morphismus $g:W\to V$ gibt mit

$$g \circ f = \mathrm{id}_W$$
 und $f \circ g = \mathrm{id}_V$

- c) Die affinen Varietäten über k bilden mit den Morphismen aus a) eine Kategorie Aff(k).
- d) Jeder Morphismus $f: V \to W$ ist Einschränkung eines Morphismus $\tilde{f}: \mathbb{A}^n(k) \to \mathbb{A}^m(k)$

Beispiel 6.2

1) • Einbettungen

$$\begin{array}{ccc} \mathbb{A}^n(k) & \to & \mathbb{A}^m(k) (n \le m) \\ (x_1, \dots, x_n) & \mapsto & (x_1, \dots, x_n, 0, \dots, 0) \end{array}$$

• Projektionen

$$\begin{array}{ccc} \mathbb{A}^n(k) & \to & \mathbb{A}^m(k) (n \ge m) \\ (x_1, \dots, x_n) & \mapsto & (x_1, \dots, x_m) \end{array}$$

• Permutation der Komponenten

$$(x_1,\ldots,x_n) \mapsto (x_{\sigma(1)},\ldots,x_{\sigma(n)})$$

2) Jedes $f \in k[X_1, \dots, X_n]$ definert einen Morphismus

$$f: \mathbb{A}^n(k) \to A^1(k), x \mapsto f(x)$$

3) Sei $V = \mathbb{A}^{1}(k)$, $W = V(Y^{2} - X^{3}) \subseteq \mathbb{A}^{2}(k)$.

 $f:V\to W,\,x\mapsto (x^2,x^3)$ ist Morphismus. fist bijektiv mit Umkehrabbildung

$$g(x,y) = \begin{cases} 0 & \text{falls } (x,y) = (0,0) \\ \frac{y}{x} & \text{falls } (x,y) \neq (0,0) \end{cases}$$

$$g(f(x))=g(x^2,x^3)=\frac{x^3}{x^2}=x$$
 (für $x\neq 0)$

$$f(g(x,y)) = f(\frac{y}{x}) = (\frac{y^2}{x^2}, \frac{y^3}{x^3}) = (\frac{x^3}{x^2}, \frac{y^3}{y^2})$$

Ist k unendlich, so ist g kein Morphismus!

4) Sei char(k) = p > 0

$$f: \mathbb{A}^n(k) \to \mathbb{A}^n(k), (x_1, \dots, x_n) \mapsto (x_1^p, \dots, x_n^p)$$

heißt Frobenius-Homomorphismus.

Die Fixpunkte von f sind genau die Punkte, deren Koordninaten alle in \mathbb{F}_p liegen (" \mathbb{F}_p -wertige Punkte")

$$(a^p = a \Leftrightarrow a \text{ Nullstelle von } X^p - X \Leftrightarrow a \in \mathbb{F}_p)$$

Bemerkung 6.3

Morphismen affiner Varietäten sind stetig bezüglich der Zariski-Topologie.

Beweis

Seien $V \subseteq \mathbb{A}^n(k)$, $W \subseteq \mathbb{A}^m(k)$ affine Varietäten, $f: V \to W$ Morphismus. Sei $Z \subseteq W$ abgeschlossen, also Z = V(J) für ein Ideal $J \subseteq k[X_1, \ldots, X_n]$. Sei $I = \{g \circ f \in k[X_1, \ldots, X_n] : g \in J\}$.

Behauptung: $V(I) = f^{-1}(Z)$

denn:

$$x \in f^{-1}(Z) \Leftrightarrow f(x) \in Z \Leftrightarrow f(x) \in V(J) \Leftrightarrow g(f(x)) = 0 \forall g \in J \Leftrightarrow x \in V(I)$$

Definition + Bemerkung 6.4

Sei $V \subseteq \mathbb{A}^n(k)$ affine Varietät.

- a) $k[V] := \{f : V \to \mathbb{A}^1(k) : f \text{ ist Morphismus}\}\ \text{heißt } \textbf{affiner Koordinatenring} \ \text{von V}.$
- b)

$$k[V] \cong A(V) = k[X_1, \dots, X_n]/I(V)$$

Beweis

b) Sei $\varphi: k[X_1,\ldots,X_n] \to k[V], f \mapsto f_{|V}$ Einschränkungshomomorphismus. φ ist surjektiv (Bemerkung 6.1 d))

$$\operatorname{Kern}(\varphi) = I(V) \stackrel{\operatorname{Homomorphiesatz}}{\Longrightarrow} \operatorname{Behauptung}$$

Proposition 6.5

Seien $V \subseteq \mathbb{A}^n(k), W \subseteq \mathbb{A}^m(k)$ affine Varietät.

a) Jeder Morphismus $\varphi = f: V \to W$ induziert k-Algebrahomomorphismus

$$f^{\#}: k[W] \to k[V], g \mapsto g \circ f$$

b) Die Abbildung $\operatorname{Mor}(V, W) \to \operatorname{Hom}_k(k[W], k[V]), f \mapsto f^{\#}$ ist bijektiv.

Beweis

- a) 🗸
- b) injektiv: Seien $f, \tilde{f}: V \to W$ Morphismen mit $f^{\#} = \tilde{f}^{\#}$ $\Rightarrow q \circ f = q \circ \tilde{f}$ für alle $q \in k[W]$

Insbesondere ist $\underbrace{p_i \circ f}_{=f_i} = \underbrace{p_i \circ \tilde{f}}_{=\tilde{f}_i}$ für die Projektion

$$p_i: W \to \mathbb{A}^1(k), (x_1, \dots, x_n) \mapsto x_i$$

$$\Rightarrow f = \tilde{f}$$

 $surjektiv\colon$ Sei $\varphi:k[W]\to k[V]$ k-Algebra-Homomorphismus.

Definiere $f: V \to \mathbb{A}^m(k)$ durch $f(x) = (\varphi(p_1)(x), \dots, \varphi(p_n)(x))$

Behauptung:

(i)
$$f^{\#} = \varphi$$

(ii) $f(V) \subset W$

Zu (i): für $i = 1, \ldots, m$ gilt:

$$f^{\#}(p_i) = p_i \circ f = \varphi(p_i)$$

Da die p_i k[V] erzeugen (als k-Algebra), folgt $f^{\#} = \varphi$

Zu (ii): Sei $g \in I(W), x \in V$

Zu zeigen: g(f(x)) = 0

$$k[X_1, \dots, X_n] \xrightarrow{\tilde{\varphi}} k[X_1, \dots, X_n]$$

$$\downarrow \qquad \qquad \downarrow$$

$$k[W] \xrightarrow{\varphi} k[V]$$

Lifte φ zu $\tilde{\varphi}$. Wähle dazu für jedes i ein Urbild von $\varphi(p_i)$. Dann ist $\tilde{\varphi}(I(W)) \subseteq I(V)$ $\Rightarrow g(f(x)) = g(\varphi(p_1)(x), \dots, \varphi(p_m)(x)) = \tilde{\varphi}(g)(x) = 0$

Bemerkung 6.6

Seien V, W affine Varietäten über $k, \varphi : k[W] \to k[V]$ k-Algebra-Homomorphismus und $f = f_{\varphi} : V \to W$ mit $f^{\#} = \varphi$. Dann gilt für jedes $x \in V$:

$$m_{f(x)} = \varphi^{-1}(m_x)$$

Beweis

$$m_x = \{ f \in k[V] : g(x) = 0 \}$$

$$\varphi^{-1}(m_x) = (f^{\#})^{-1}(m_x) = \{h \in k[W] : h \circ f \in m_x\} = \{h \in k[W] : h(f(x)) = 0\} = m_{f(x)} \quad \Box$$

Beispiel 6.7

$$V = V(Y^2 - X^3) \subseteq \mathbb{A}^2(k)$$

$$f: \mathbb{A}^1(k) \to V, x \mapsto (x^2, x^3)$$

$$f^{\#}: \underbrace{k[V]}_{=k[X,Y]/(Y^2-X^3)} \to k[\mathbb{A}^1(k)] = k[T]$$

$$f^{\#}(\overline{X}) = T^2$$

$$f^{\#}(\overline{Y}) = T^3$$

 $f^{\#}$ ist injektiv, aber nicht nicht surjektiv! ($T\notin \mathrm{Bild}(f^{\#}))$

Es gilt aber: der von $f^{\#}$ auf dem Quotientenkörper induzierte Homomorphismus ist ein Isomorphismus $f^{\#}(\frac{Y}{X})=T.$

Satz 4

a) Die Zuordnung $V \mapsto k[V]$ induziert einen volltreuen kontravarianten Funktor

$$\Phi:\underline{\mathrm{Aff}(k)}\to\underline{k\text{-}}\underline{\mathrm{Alg}^{\mathrm{red}}}$$
 (endl. erzeugte $k\text{-}\underline{\mathrm{Alg.}})$

b) Ist k algebraisch abgeschlossen, so ist Φ eine Äquivalenz von Kategorien.

Beweis

- a) 🗸
- b) Noch zu zeigen: zu jeder k-Algebra $A \in k$ Alg^{red} gibt es affine Varietät V über k mit $k[V] \cong A$. A werde als k-Algebra erzeugt von a_1, \ldots, a_n . Sei $\varphi : k[X_1, \ldots, X_n] \to A$ der durch $\varphi(X_i) = a_i$ definierte k-Algebra-Homomophismus. φ ist surjektiv, da A von den a_i erzeugt wird.

$$\Rightarrow A \cong k[X_1,\ldots,X_n]/\operatorname{Kern}(\varphi)$$
 Sei $V = V(\operatorname{Kern}(\varphi)) \Rightarrow I(V) \stackrel{\operatorname{HNS}}{=} \sqrt{\operatorname{Kern}(\varphi)} = \operatorname{Kern}(\varphi) \Rightarrow k[V] = k[X_1,\ldots,X_n]/I(V) \cong A$ \square

§ 7 Die Garbe der regulären Funktionen

Sei k algebraisch abgeschlossener Körper

Bemerkung 7.1

Sei $V \subset \mathbb{A}^n(k)$ affine Varietät über $k, h \in k[X_1, \dots, X_n]$. Dann gilt: \overline{h} ist Einheit in $k[V] \Leftrightarrow V(h) \cap V = \emptyset$

Beweis

$$V \cap V(h) = V(I(V) + (h)) = \emptyset \stackrel{\text{HNS}}{\Longleftrightarrow} I(V) + (h) = k[X_1, \dots, X_n]$$

 $\Leftrightarrow 1 = f + gh \text{ für gewisse } f \in I(V), g \in k[X_1, \dots, X_n]$
 $\Leftrightarrow \overline{1} = \overline{g} \cdot h \text{ in } k[V]$

Definition + Bemerkung 7.2

Sei $V \subseteq \mathbb{A}^n(k)$ affine Varietät, $U \subseteq V$ offen, $p \in U$.

- a) Eine Abbildung $f: U \to \mathbb{A}^1(k)$ heißt **regulär in** p, wenn es eine Umgebung $U_p \subseteq U$ von p gibt und $g, h \in k[V]$ mit $h(x) \neq 0$ für alle $x \in U_p$ und $f(x) = \frac{g(x)}{h(x)}$ für alle $x \in U_p$.
- b) $f: U \to \mathbb{A}^1(k)$ heißt **regulär**, wenn f in jedem $p \in U$ regulär ist.
- c) $\mathcal{O}(U) := \{f: U \to \mathbb{A}^1(k): f \text{ regul\"ar}\}$ heißt k-Algebra (oder Ring) der **regul\"aren Funktionen** auf U.
- d) Für jedes offene $U \subseteq V$ ist

$$\alpha_U: k[V] \to \mathcal{O}_V(U), f \mapsto f_{|U}$$

ein k-Algebra-Homomophismus.

Zusatz: Ist U dicht, so ist α_U injektiv (Übung?)

Beispiel

- 1) $V = \mathbb{A}^{1}(k), U = \mathbb{A}^{1}(k) \{0\}, f(x) = \frac{1}{x}$
- 2) $V = V(Y^2 X^3) \subset \mathbb{A}^2(k), U = V \{0, 0\} \Rightarrow g = \frac{y}{x} \in \mathcal{O}_V(U)$
- 3) $f \in k[X_1, \dots, X_n] \Rightarrow \frac{1}{f} \in \mathcal{O}_{\mathbb{A}^n(k)}(D(f))$

Bemerkung 7.3

Sei $V \subseteq \mathbb{A}^n(k)$ affine Varietät, $U \subseteq V$ offen.

- a) Für offene Teilmengen $U'' \subseteq U' \subseteq U$ gilt:
 - (i) $\varrho^U_{U'}: \mathcal{O}_V(U) \to \mathcal{O}_V(U'), f \mapsto f_{|_{U'}}$ ist k-Algebra Homomorphismus
 - (ii) $\varrho_{U''}^U = \varrho_{U''}^{U'} \circ \varrho_{U'}^U$
- b) Sei $(U_i)_{i\in I}$ offene Überdeckung von U (mit Indexmenge I).Dann gilt:
 - (i) Für $f \in \mathcal{O}_V(U)$ ist $f = 0 \Leftrightarrow f_{|U_i} = 0 \forall i \in I$
 - (ii) Für jedes $i \in I$ sei $f_i \in \mathcal{O}_V(U_i)$ gegeben. Ist $f_{i|U_i \cap U_j} = f_{j|U_i \cap U_j}$ für alle i, j, so gibt es $f \in \mathcal{O}_V(U)$ mit $f_{|U_i} = f_i$ für alle $i \in I$.

Folgerung + Definition 7.4

Die Zuordnung $U \mapsto \mathcal{O}_V(U)$ ist eine Garbe von Ringen auf dem topologischen Raum V. Allgemeiner:

- a) ist **Prägarbe**
- b) ist die Garbeneigenschaft

Beispiel

X topologisher Raum, R ein Ring. Für $U \subseteq X$ offen sei $\mathcal{F}(U) = R$, $\varrho_{U'}^U = \mathrm{id}_R$. Ist \mathcal{F} Garbe? Prägarbe: JA! Garbe nein, falls es disjunkte offene Mengen gibt!

Bemerkung 7.5

Sei $V \subseteq \mathbb{A}^n(k)$ affine Varietät, $U \subseteq V$ offen.

- a) Jede absteigene Kette $V_1 \supseteq V_2 \supseteq \dots$ von abgeschlossenen Teilmengen von V wird stationär ("V ist noetherscher topologischer Raum")
- b) U ist quasikompakt, das heißt jede offene Überdeckung von U hat endliche Teilüberdeckung.

Beweis

a) $V_i = V(I_i)$, I_i Ideal in k[V]

$$V_i \supseteq V_{i+1} \Rightarrow I_{i+1} \supseteq I_i$$

k[V] ist noethersch \Rightarrow Behauptung

b) Sei $(U_i)_{i \in I}$ offene Überdeckung von U.

Besitzt (U_i) keine endliche Teilüberdeckung, so gibt es Folge $(U_{I_k})_{k=1,2,\dots}$ mit $U_{i_{k+1}} \nsubseteq \bigcup_{j=1}^k U_{i_j}$.

$$W_k := \bigcup_{i=1}^k U_{i_i}$$
 ist offen in $V \stackrel{a)}{\Rightarrow} (W_k)$ wird stationär.

Satz 5

Sei $V \subseteq \mathbb{A}^n(k)$ affine Varietät.

a)
$$\mathcal{O}_v(V) \cong k[V]$$

b)
$$\mathcal{O}_v(\underbrace{D(f)}_{=\mathbb{A}^n(k)\backslash V(f)}) \cong k[V]_f = k[f]_{\{f^d: d \geq 0\}}$$
 für alle $f \in k[V]\backslash \{0\}$

Beweis

- a) Ist ein Spezielfall von b) für f = 1.
- b) Definiere

$$\alpha: k[V]_f \to \mathcal{O}_V(D(f))$$

$$\frac{g}{f^d} \mapsto (x \mapsto \frac{g(x)}{f(x)^d}) \qquad (x \in D(f))$$

$$\alpha$$
 wohlde
finiert: Sei $\frac{g_1}{f^{d_1}} = \frac{g_2}{f^{d_2}}$ in $k[V]_f$

$$\Rightarrow f^d(g_1 \cdot f^{d_2} - g_2 \cdot f^{d_1}) = 0$$
 für ein $d \ge 0$

für
$$x \in D(f)$$
 ist $g_1(x)f(x)^{d_2} - g_2(x)f(x)^{d_1} = 0$

$$\Rightarrow \frac{g_1(x)}{f(x)^{d_1}} = \frac{g_2(x)}{f(x)^{d_2}}$$

 α injektiv: Sei $\frac{g(x)}{f(x)^d} = 0$ für alle $x \in D(f)$

$$\Rightarrow g(x) = 0$$
 für alle $x \in V$

$$\Rightarrow f \cdot g = 0 \text{ in } k[V]$$

$$\Rightarrow g = 0 \text{ in } k[V]_f$$

 α surjektiv: Sei $g \in \mathcal{O}_V(D(f))$

 \Rightarrow für jedes $p \in D(f)$ gibt es Umgebung $U_p \subseteq D(f)$ und $g_p, h_p \in k[V]$ mit $g(x) = \frac{g_p(x)}{h_p(x)} \forall x \in U_p$

Behauptung 1: Œ $U_p = D(h_p)$

denn: es gibt $\tilde{h}_p \in k[V]$ mit $D(\tilde{h}_p) \subseteq U_p(\subseteq D(h_p))$

$$\Rightarrow V(\tilde{h}_p) \supset V(h_p) \Rightarrow \tilde{h}_p \in I(V(h_p)) \stackrel{HNS}{=} \sqrt{(h_p)}$$

$$\Rightarrow \exists d \geq 0, h \in k[V] \text{ mit } \tilde{h}_p^d = h \cdot h_p$$

Setze
$$\hat{g}_p = hg_p, \hat{h} = \tilde{h}_p^d = h \cdot h_p$$

Dann gilt für jedes $x \in D(\hat{h}_p) = D(\tilde{h}_p)$

$$g(x) = \frac{g_p(x)}{h_p(x)} = \frac{g_p(x) \cdot h(x)}{h_p(x) \cdot h(x)} = \frac{\hat{g}_p(x)}{\hat{h}_p(x)}$$

$$7.5 \Rightarrow D(f) = \boxed{D(h_1) \cup \cdots \cup D(h_r)}$$
 (1) für geeignete $h_i := h_{p_i}, 1 = 1, \dots, r$

Nach Behauptung 1 ist Œ $g = \frac{g_i}{h_i}$ auf $D(h_i)$

Behauptung 2: $g_i h_j = g_j h_i$ in k[V] für alle i, j

denn: es ist $g_i h_i = g_j h_i$ auf $D(h_i) \cap D(h_j) = D(h_i h_j)$

$$\Rightarrow h_i h_j (g_i h_j - g_j h_i) = 0 \text{ in } k[V] (*)$$

setze $\tilde{g}_i = g_i h_i$, $\tilde{h}_i = h_i^2$. Dann wird aus (*)

$$\tilde{g}_i \tilde{h}_j - \tilde{g}_j \tilde{h}_i = 0$$

$$(1) \Rightarrow V(f) = \bigcup_{i=1}^{r} V(h_i) \Rightarrow f \in I(V(h_1, \dots, h_r)) \stackrel{HNS}{\Rightarrow} f \in \sqrt{(h_1, \dots, h_n)}$$

$$\Rightarrow \exists d \geq 0, b_i \in k[V] \text{ mit } f^d = \sum_{i=1}^r b_i h_i$$

Setze $\tilde{g} := \sum_{i=1}^{r} b_i g_i \in k[V]$

Dan gilt für alle i = 1, ..., r und alle $x \in D(h_j)$:

$$g(x) = \frac{g_j(x)}{h_j(x)} = \frac{g_j(x)f(x)^d}{h_j(x)f(x)^d} = \frac{(g_j \sum_{i=1}^r b_i h_i)(x)}{(h_j f^d)(x)} \stackrel{\text{Beh. 2}}{=} \frac{h_j(\sum_{i=1}^r b_i g_i)}{h_j f^d}(x) = \frac{\tilde{g}(x)}{f(x)^d} \qquad \Box$$

Proposition 7.6

Seien $V \subseteq \mathbb{A}^n(k), W \subseteq \mathbb{A}^m(k)$ affine Varietäten. Dann gilt: $f: V \to W$ ist Morphismus $\Leftrightarrow f$ stetig und für jedes offene $U \subseteq W$ und jedes $g \in \mathcal{O}_W(U)$ ist $g \circ f \in \mathcal{O}_V(f^{-1}(U))$

Beweis

"⇒": f stetig nach Bemerkung 6.3. Sei $g \in \mathcal{O}_W(U), p \in f^{-1}(U)$. In einer Umgebung U' von p' = f(p) ist $g(y) = \frac{g_{p'}(y)}{h_{p'}(y)}$ für geeignete $g_{p'}, h_{p'} \in k[W]$. Für $x \in f^{-1}(U')$ ist also $g(f(x)) = \frac{g_{p'}(f(x))}{h_{p'}(f(x))}$. Dabei ist

$$g'_p \circ f = f^{\#}(g'_p) \in k[V]$$

 $h'_p \circ f = f^{\#}(h'_p) \in k[V]$

"
—": Zu zeigen: für $i=1,\ldots,m$ ist $p_i\circ f$ ein Polynom, wobe
i $p_i\in k[W]$ die Restklasse von X_i ist.

Nach Satz 5 a) ist
$$k[W] = \mathcal{O}_W(W) \Rightarrow p_i \circ f \in \mathcal{O}_V(V) = k[V]$$

Definition + Bemerkung 7.7

- a) Eine Teilmenge $U \subseteq \mathbb{A}^{n}(k)$ heißt **quasi-affine Varietät**, wenn U Zariski-offen in einer affinen Varietät V ist.
- b) Eine Abbildung $f: U_1 \to U_2$ zwischen quasi-affinen Varietäten U_1, U_2 heißt **Morphismus** (oder **reguläre Abbildung**), wenn f stetig ist und für jedes offene $U \subseteq U_2$ und jedes $g \in \mathcal{O}_{U_2}(U)$ gilt:

$$g \circ f \in \mathcal{O}_{U_1}(f^{-1}(U))$$

(hier sei $\mathcal{O}_{U_2} := \mathcal{O}_{\bar{U}_2}, \, \bar{U}_2$ der Z-Abschluss von U_2)

$$\subseteq \mathbb{A}^n(k)$$
 $\subseteq \mathbb{A}^m(k)$

- c) $f: \widehat{U_1} \to \widehat{U_2}$ ist genau dann regulär, wenn es reguläre Funktionen f_1, \ldots, f_n auf U_1 gibt mit $f(x) = (f_1(x), \ldots, n_m(x))$ für alle $x \in U_1$
- d) Die quasi-affinen Varietäten über k bilden eine Kategorie, die $\underline{\mathrm{Aff}(k)}$ als volle Unterkategorie enthält.
- e) Eine quasi-affine Varietät heißt **affin** (als abstrakte Varietät), wenn sie isomorph ist zu einer affinen Varietät.

Bemerkung 7.8

Für $f \in k[X_1, ..., X_n]$ ist D(f) (abstrakt) affin.

Beispiel: $n = 1, f(x) = x, D(f) = \mathbb{A}^{1}(k) - \{0\}$

Beweis

Sei $g = f \cdot X_{n+1} - 1 \in k[X_1, \dots, X_{n-1}]$ und $V = V(g) \subseteq \mathbb{A}^{n+1}(k)$, V ist affine Varietät, $\varphi : D(f) \to V, x \mapsto (x, \frac{1}{f(x)})$ ist Morphismus mit Umkehrabbildung $\Psi : V(g) \to D(f), (x_1, \dots, x_n) + (x_1, \dots, x_n)$.

§ 8 Rational Abbildungen und Funktionenkörper

k sei wieder algebraisch abgeschlossen

Definition + Bemerkung 8.1

Sei $V \subseteq \mathbb{A}^n(k)$ (quasi-)affine Varietät.

- a) Eine **rationale Funktion** auf V ist eine Äquivalenzklasse von Paaren (U, f), wobei $U \subseteq V$ offen und dicht und $f \in \mathcal{O}(U)$ ist. Dabei ist $(U, f) \sim (U', f') :\Leftrightarrow f|_{U \cap U'} = f'|_{U \cap U'}$
- b) In jeder Äquivalenzklasse gibt es ein maximales Element $(U_{\text{max}}, f_{\text{max}}), U_{\text{max}} =: \text{Def}(f)$ heißt **Definitionsbereich** der natürlichen Funktion. $V \setminus \text{Def}(V)$ heißt **Polstellenmenge** der rationalen Funktion.
- c) Die rationalen Funktionen auf V bilden eine k-Algebra Rat(V).
- d) Ist V irreduzibel, so ist Rat(V) = Quot(k[V]) =: k(V). k(V) heißt **Funktionenkörper**.

Beweis

- a) \sim ist transitiv: Sei $(U_1, f_1) \sim (U_2, f_2), (U_2, f_2) \sim (U_3, f_3) \Rightarrow f_1|_{U_1 \cap U_2 \cap U_3} = f_3|_{U_1 \cap U_2 \cap U_3}$ $U_1 \cap U_2 \cap U_3$ ist (offen und) dicht in $V \Rightarrow f_1|_{U_1 \cap U_3} = f_3|_{U_1 \cap U_3}$ (Ü4, A5) b)
 - $U_{\max} = \bigcup_{\substack{\exists f \in \mathcal{O}_V(U) \\ \text{mit}(U, f) \in \text{Klasse}}} U$
- c) $f \pm g, f \cdot g$ sind auf $Def(f) \cap Def(g)$ regulär
- d) V irreduzibel $\Leftrightarrow I(V)$ Primideal $\Leftrightarrow k[V]$ ist nullteilerfrei Definiere:

$$\alpha: k(V) \to \operatorname{Rat}(V)$$

$$\frac{g}{h} \mapsto (D(h), \frac{g}{h}) \qquad \Box$$

 α ist wohldefiniert, weil D(h) dicht (V irreduzibel)

 α ist injekiv: \checkmark

 α ist surjektiv: Sei $[(U, f)] \in \text{Rat}(V)$, also $f \in \mathcal{O}_V(U) \Rightarrow \exists U' \subseteq U$ offen, $g, h \in k[V]$ mit $f = \frac{g}{h}$ auf U'. V irreduzibel, also U' dicht $\Rightarrow (U, f) \sim (U', \frac{g}{h}) \sim (D(h), \frac{g}{h}) \Rightarrow \alpha(\frac{g}{h}) = [(U, f)]$

Definition + Bemerkung 8.2

Seien V, W affine Varietäten.

- a) Eine *rationale Abbildung* $f: V \dashrightarrow W$ ist eine Äquivalenzklasse von Paaren (U, f_U) , wobei $U \subseteq V$ offen und dicht, $f_U: U \longrightarrow W$ regulär. Es ist $(U, f_U) \sim (U', f'_U) :\Leftrightarrow f_U|_{U \cap U'} = f_{U'}|_{U \cap U'}$.
- b) Rationale Funktionen auf V sind rationale Abbildungen $V \dashrightarrow \mathbb{A}^1(k)$.
- c) Jede rationale Abbildung hat einen maximalen Definitionsbereich.

Warnung: $V \xrightarrow{f} W \xrightarrow{g} Z$ ist im Allgemeinen keine rationale Abbildung, denn $Def(g) \cap f(Def(f)) = \emptyset$ ist möglich.

Definition 8.3

Ein Morphismus $f: V \to W$ (von quasi-affinen Varietät) heißt **dominant**, wenn f(V) dicht in W ist.

Bemerkung + Definition 8.4

- a) Die irreduziblen affinen Varietät bilden mit den dominanten rationalen Abbildungen eine Kategorie.
- b) Die Isomorphismen in dieser Kategorie heißen birationale Abbildungen. Explizit: $f: V \longrightarrow W$ birational $\Leftrightarrow \exists g: W \longrightarrow V$, sodass $g \circ f$ und $f \circ g$ die Identität auf ihren Definitionsbereichen sind.
- c) "birational" lässt sich auch für reduzible Varietäten definieren.

Beispiel 8.5

- a) Sei $V = V(X,Y) \subseteq \mathbb{A}^2(k)$, $f: V \to \mathbb{A}^1(k)$, $(x,y) \mapsto x$ $g: \mathbb{A}^1(k) \longrightarrow \mathbb{A}^1(k)$, $x \mapsto \frac{1}{x}$ beide dominant $g \circ f$ ist auf $f^{-1}(D(g))$ regulär. Das ist nicht dicht in $\mathbb{A}^1(k)$!
- b) $\sigma: \mathbb{A}^2(k) \longrightarrow \mathbb{A}^2(k)$ $(x,y) \mapsto (\frac{1}{x}, \frac{1}{y})$ ist rationale Abbildung mit

$$Def(\sigma) = \mathbb{A}^2(k) - V(XY)$$

$$\sigma^2 = \mathrm{id}_{\mathrm{Def}(\sigma)}$$

c)
$$V = V(Y^2 - X^3)$$
, $\varphi : \mathbb{A}^1(k) \to V$, $x \mapsto (x^2, x^3)$ bijektiver Morphismus φ ist birational $(\psi \text{ auch!})$

Beweis

a) Sei $f: V \longrightarrow W$ und $g: W \longrightarrow Z$ dominante rationale Abbildung. Dann ist $f^{-1}(\operatorname{Def}(g)) \subset$ V nichtleer, offen und damit dicht $\Rightarrow g \circ f$ ist rationale Abbildung $V \dashrightarrow Z$ $Bild(g \circ f) = g(\underbrace{f(Def(f))}_{\text{dicht in } W}) \text{ ist dicht in } Z.$

Proposition 8.6

Sei $f:V\to W$ Morphismus affiner Varietäten und $f^{\#}:k[W]\to k[V]$ der zugehörige k-Algebren-Homomophismus. Dann gilt:

$$f^{\#}$$
 injektiv $\Leftrightarrow f$ dominant

Folgerung 8.7

Jede dominante rationale Abbildung $f:V \longrightarrow W$ zwischen irreduziblen affinen Varietäten induziert einen Körperhomomorphismus

$$f^{\#}: k(W) \to k(V)$$

Satz 6

Sei k algebraisch abgeschlossener Körper. Dann ist die Kategorie der irreduziblen affinen Varietäten über k mit dominanten rationalen Abbildungen äquivalent zur Kategorie der endlich erzeugten Körpererweiterungen von k mit k-Algebrenhomomorphismus.

Beweis

Die Zuordnung $V \to k(V), f \mapsto f^{\#}$ ist Funktor. Zu zeigen bleibt:

- i) zu jeder endlich erzeugten Körpererweiterung $K|k\exists V$ mit $k(V)\cong K$
- ii) $f \mapsto f^{\#}$ ist Projektion $\Phi : \operatorname{Rat}(V, W) \to \operatorname{Hom}_k(k(W), k(V))$ Beweis:
 - i) Seien g_1, \ldots, g_n Erzeuger von K über k, sei $A := k[g_1, \ldots, g_n]$. Dann ist $K = \operatorname{Quot}(A)$ Sei $\varphi : k[X_1, \ldots, X_n] \to A$ gegeben durch $\varphi(X_i) = g_i$ und $V := K(\operatorname{Kern}(\varphi))$ $\Rightarrow V \subseteq \mathbb{A}^n(k)$ ist affine Varietät mit $k[V] \cong A$ $\Rightarrow k(V) \cong K$
- ii) Φ injektiv: Seien $f,g:V\dashrightarrow W$ mit $f^\#=g^\#$. Wähle $U=D(h)\subseteq \mathrm{Def}(f)\cap \mathrm{Def}(g)$ offen, affin. $f|_U$ und $g|_U$ sind Morphismen $U\to W$.

 Die induzierten k-Algebren-Homomophismen $g_U^\#, f_U^\#: k[W] \to k[U] \subset k(V)$. Es gilt: $f_{U'}^\#=f^\#|_{k[U]}$
 - Φ surjektiv: Sei $\alpha: k(W) \to k(V)$ k-Algebren-Homomophismus. Wähle Erzeuger g_1, \ldots, g_n von k[W] (als k-Algebra). Für jedes $i = 1, \ldots, n$ ist $\alpha(g_i)$ rationale Funktion auf V.

Da V irreduzibel, ist $\bigcap_{i=1}^{n} Def(\alpha(g_i))$ offen, affin (für geeignetes $g \in k[V]$). Nach Konstruktion induziert α einen k-Algebren-Homomophismus

$$\alpha: k \to \mathcal{O}_U(U) = k[U]$$

 $\overset{\operatorname{Satz}}{\Rightarrow}^4\alpha=f^{\#}$ für einen Morphismus $f:U\to W$

Außerdem U dicht in $V \Rightarrow (U, f)$ ist rationale Abbildung (f ist dominant, da $f^{\#}$ injektiv, dann α Homomophismus zwischen Körpern)