Verifica di leggi logiche

Con le tavole di verità è possibile verificare la validità delle leggi logiche già viste.

Esempio: La legge della disgiunzione.

$$P \lor Q, \neg P \models Q$$

Ρ	Q	$P \lor Q$	$\neg P$
0	0	0	1
0	1	1	1
1	0	1	0
1	1	1	0

L'unica riga in cui $P \lor Q$ e $\neg P$ sono vere entrambe è la seconda. In questa riga anche Q è vera.

La legge della disgiunzione è valida.

Nota

In questo caso, $P \in Q$ non sono necessariamente lettere, ma proposizioni qualsiasi. Quindi non è detto che tutte le combinazioni di valori di verità per $P \in Q$ possano verificarsi. Per esempio, P potrebbe essere una tautologia, nel qual caso le prime due righe della tavola di verità non si verificano mai; oppure Q potrebbe essere la negazione di P, nel qual caso la prima e la quarta riga non possono verificarsi.

L'importante è che ogni volta che le ipotesi $P \lor Q, \neg P$ sono vere sia vera anche la conseguenza Q.

Esercizio

Verificare la validità del modus ponens:

$$P,P\to Q\models Q$$

Tavole di verità ed equivalenza logica

Le proposizioni P,Q sono logicamente equivalenti, in simboli

$$P \equiv Q$$

se in ogni contesto in cui una delle due è vera è vera anche l'altra; cioè se e solo se per ogni assegnazione di valori di verità alle lettere A_1, \ldots, A_k occorrenti in P e Q, le due proposizioni risultano entrambe vere o entrambe false; cioè se e solo se nella tavola di verità costruita per entrambe le proposizioni P e Q, in ogni riga P e Q hanno lo stesso valore di verità.

Tavole di verità e conseguenza logica

Pertanto un algoritmo per verificare se $P \equiv Q$ è il seguente:

- Si costruisce una tavola di verità, con 2^k righe, che fornisca i valori di verità di delle proposizioni $P \in Q$, in funzione dei valori di verità delle lettere A_1, \ldots, A_k .
- Se in tutte le righe i valori di verità di P e di Q sono i medesimi (cioè sono entrambe vere o entrambe false), si conclude che $P \equiv Q$.
- Se invece c'è qualche riga in cui i valori di verità di P e Q differiscono (cioè una è vera e l'altra è falsa), si conclude che P ≠ Q.

Per verificare se

$$\underbrace{(A \to B) \land \neg B}_{P} \equiv \underbrace{\neg (A \lor B)}_{Q}$$

si calcolano le tavole di verità di P e Q in un'unica tabella:

				P		Q
Α	В	$A \rightarrow B$	$\neg B$	$(A \rightarrow B) \land \neg B$	$A \vee B$	$\neg (A \lor B)$
0	0	1	1	1	0	1
0	1	1	0	0	1	0
1	0	0	1	0	1	0
1	1	1	0	0	1	0

Poiché in tutte le righe della tabella le proposizioni P e Q assumono i medesimi valori di verità, si può concludere che $P \equiv Q$.

Per verificare se

$$\underbrace{A \leftrightarrow B}_{P} \equiv \underbrace{(A \to B) \lor (B \to A)}_{Q}$$

si calcolano le tavole di verità di P e Q in un'unica tabella:

		P			Q
Α	В	$A \leftrightarrow B$	$A \rightarrow B$	$B \rightarrow A$	$(A \rightarrow B) \lor (B \rightarrow A)$
0	0	1	1	1	1
0	1	0	1	0	1
1	0	0	0	1	1
1	1	1	1	1	1

Poiché ci sono delle righe in cui P, Q assumono valori di verità differenti, si conclude

$$P \not\equiv Q$$

Si può osservare dalla tavola di verità che

$$A \leftrightarrow B \models (A \rightarrow B) \lor (B \rightarrow A)$$

(in effetti $(A o B) \lor (B o A)$ è una tautologia), ma che

Verifica di leggi logiche

Le tavole di verità permettono di verificare altre equivalenze logiche notevoli.

Esempio: Distributività di \lor rispetto a \land .

$$P \lor (Q \land R) \equiv (P \lor Q) \land (P \lor R)$$

Infatti

P	Q	R	$Q \wedge R$	$P \lor (Q \land R)$	$P \vee Q$	$P \vee R$	$(P \lor Q) \land (P \lor R)$
0	0	0	0	0	0	0	0
0	0	1	0	0	0	1	0
0	1	0	0	0	1	0	0
0	1	1	1	1	1	1	1
1	0	0	0	1	1	1	1
1	0	1	0	1	1	1	1
1	1	0	0	1	1	1	1
1	1	1	1	1	1	1	1

Verifica di leggi logiche

Similmente si dimostra la distributività di \land rispetto a \lor :

$$P \wedge (Q \vee R) \equiv (P \wedge Q) \vee (P \wedge R)$$

Esempio: Associatività di ↔:

$$(P \leftrightarrow Q) \leftrightarrow R \equiv P \leftrightarrow (Q \leftrightarrow R)$$

La tavola di verità è:

Ρ	Q	R	$P \leftrightarrow Q$	$(P \leftrightarrow Q) \leftrightarrow R$	$Q \leftrightarrow R$	$P \leftrightarrow (Q \leftrightarrow R)$
0	0	0	1	0	1	0
0	0	1	1	1	0	1
0	1	0	0	1	0	1
0	1	1	0	0	1	0
1	0	0	0	1	1	1
1	0	1	0	0	0	0
1	1	0	1	0	0	0
1	1	1	1	1	1	1

Tautologie

Una proposizione P si dice valida, o una tautologia, in simboli

$$\models P$$

se P è vera qualunque sia l'assegnazione di valori di verità alle sue lettere. Questo equivale ad avere una tavola di verità con valore di verità di P uguale a 1 in ogni riga.

Esempio.

$$A \vee \neg A$$

Infatti:

$$\begin{array}{c|cccc} A & \neg A & A \lor \neg A \\ \hline 0 & 1 & 1 \\ 1 & 0 & 1 \\ \end{array}$$

• Legge di Peirce: $\models ((A \rightarrow B) \rightarrow A) \rightarrow A$

Α	В	$A \rightarrow B$	$(A \rightarrow B) \rightarrow A$	$((A \rightarrow B) \rightarrow A) \rightarrow A$
0	0	1	0	1
0	1	1	0	1
1	0	0	1	1
1	1	1	1	1

• Legge di Dummett: $\models (A \rightarrow B) \lor (B \rightarrow A)$

Α	В	$A \rightarrow B$	$B \rightarrow A$	$(A \to B) \lor (B \to A)$
0	0	1	1	1
0	1	1	0	1
1	0	0	1	1
1	1	1	1	1

Osservazione

Si è già visto che

$$P_1, P_2, \dots, P_n \models Q$$

se e solo se
 $\models P_1 \land P_2 \land \dots \land P_n \rightarrow Q$

Pertanto, per controllare se P_1, \ldots, P_n hanno come conseguenza logica Q si può anche calcolare la tavola di verità di $P_1 \wedge P_2 \wedge \ldots \wedge P_n \to Q$ e verificare se questa proposizione sia una tautologia controllando che in tutte le righe il valore di verità sia 1.

Per verificare se

$$\underbrace{A \lor B}_{P}, C \models \underbrace{(A \lor B) \leftrightarrow C}_{Q}$$

si può calcolare la seguente tavola di verità:

			P	Q		$P \wedge C \rightarrow Q$
Α	В	C	$A \vee B$	$(A \lor B) \leftrightarrow C$	$(A \lor B) \land C$	$(A \lor B) \land C \rightarrow Q$
0	0	0	0	1	0	1
0	0	1	0	0	0	1
0	1	0	1	0	0	1
0	1	1	1	1	1	1
1	0	0	1	0	0	1
1	0	1	1	1	1	1
1	1	0	1	0	0	1
1	1	1	1	1	1	1

Poiché l'implicazione finale è una tautologia, segue che efffettivamente $A \vee B$, C hanno come conseguenza logica $(A \vee B) \leftrightarrow C$.

Osservazione

Similmente, le proposizioni P e Q sono logicamente equivalenti, in simboli

$$P \equiv Q$$

se e solo se $P \leftrightarrow Q$ è una tautologia, in simboli

$$\models P \leftrightarrow Q$$

Quindi per verificare se P e Q sono logicamente equivalenti, si può costruire la tavola di verità di $P \leftrightarrow Q$ e controllare se su tutte le righe il valore di verità di questa proposizione è 1.

Per verificare se

$$A \wedge B \equiv \neg (A \rightarrow \neg B)$$

si può calcolare la seguente tavola di verità:

Α	В	$A \wedge B$	$\neg B$	$A \rightarrow \neg B$	$\mid \neg (A \rightarrow \neg B)$	$A \land B \leftrightarrow \neg (A \rightarrow \neg B)$
0	0	0	1	1	0	1
0	1	0	0	1	0	1
1	0	0	1	1	0	1
1	1	1	0	0	1	1

Poiché la biimplicazione finale $A \wedge B \leftrightarrow \neg (A \to \neg B)$ è una tautologia, segue che effettivamente $A \wedge B$ e $\neg (A \to \neg B)$ sono logicamente equivalenti.

Contraddizioni

Una proposizione P è insoddisfacibile, o una contraddizione, se è falsa qualunque sia l'assegnazione di valori di verità alle lettere che contiene. Questo significa che nella sua tavola di verità P ha valore 0 in tutte le righe.

Osservazione. P è una contraddizione se e solo se $\neg P$ è una tautologia.

Esempio. La proposizione $A \land \neg A$ è una contraddizione. Infatti:

Α	$\neg A$	$A \wedge \neg A$
0	1	0
1	0	0

La proposizione

$$P:\underbrace{(\neg A\leftrightarrow B)\land (A\to B)}_{Q}\land (B\to A)$$

è una contraddizione. Infatti:

Α	В	$\neg A$	$\neg A \leftrightarrow B$	$A \rightarrow B$	Q	$B \rightarrow A$	P
0	0	1	0	1	0	1	0
0	1	1	1	1	1	0	0
1	0	0	1	0	0	1	0
1	1	0	0	1	0	1	0

Proposizioni soddisfacibili

Una proposizione P è soddisfacibile se è vera per qualche assegnazione di valori di verità alle lettere che la costituiscono.

Quindi P è soddisfacibile se e solo se nella sua tavola di verità c'è almeno una riga in cui il valore di verità di P è 1.

Pertanto P è soddisfacibile se e solo se non è una contraddizione.

Ogni tautologia è soddisfacibile, ma vi sono proposizioni soddisfacibili che non sono tautologie.

La proposizione

$$A \vee \neg A \rightarrow (A \rightarrow B)$$

è soddisfacibile, ma non è una tautologia. Infatti:

Α	В	$\neg A$	$A \lor \neg A$	$A \rightarrow B$	$A \vee \neg A \to (A \to B)$
0	0	1	1	1	1
0	1	1	1	1	1
1	0	0	1	0	0
1	1	0	1	1	1

Domanda

Sapendo che:

- Nè Pino nè Gino sono mancini.
- (Pino è mancino se Mino lo è) oppure (se Mino o Lino sono mancini allora (Gino è mancino se e solo se Mino lo è))

Domanda: Mino è mancino?

Si introducano le proposizioni elementari:

- P: Pino è mancino
- G: Gino è mancino
- M: Mino è mancino
- L: Lino è mancino

Le assunzioni sono quindi:

•
$$R_1 : \neg P \wedge \neg G$$

•
$$R_2: (M \to P) \lor (\underbrace{M \lor L \to (G \leftrightarrow M)}_{Q})$$

Risposta

Se si stabilisce che

$$R_1, R_2 \models M$$

allora (sotto i dati R_1, R_2) si conclude che Mino è mancino.

Se invece si stabilisce che

$$R_1, R_2 \models \neg M$$

allora (sotto i dati R_1, R_2) si conclude che Mino non è mancino.

• Se nessuna delle due conseguenze logiche è verificata, vuol dire che i dati R_1, R_2 non sono sufficienti a determinare se Mino sia mancino.

Nota. Potrebbe succedere che entrambe le conseguenze logiche siano verificate. Ciò vorrebbe dire che i dati R_1 , R_2 sono contradditori; quindi sotto tali ipotesi Mino è sia mancino che no (e la luna è fatta di formaggio). Questo succede se non c'è alcuna riga della tavola di verità comune in cui entrambe le proposizioni R_1 , R_2 siano vere.

Risposta

					R_1					R_2
Ρ	G	Μ	L	$\neg M$	$\neg P \land \neg G$	$M \rightarrow P$	$M \vee L$	$G \leftrightarrow M$	Q	$(M \rightarrow P) \lor Q$
0	0	0	0	1	1	1	0	1	1	1
0	0	0	1	1	1	1	1	1	1	1
0	0	1	0	0	1	0	1	0	0	0
0	0	1	1	0	1	0	1	0	0	0
0	1	0	0	1	0	1	0	0	1	1
0	1	0	1	1	0	1	1	0	0	1
0	1	1	0	0	0	0	1	1	1	1
0	1	1	1	0	0	0	1	1	1	1
1	0	0	0	1	0	1	0	1	1	1
1	0	0	1	1	0	1	1	1	1	1
1	0	1	0	0	0	1	1	0	0	1
1	0	1	1	0	0	1	1	0	0	1
1	1	0	0	1	0	1	0	0	1	1
1	1	0	1	1	0	1	1	0	0	1
1	1	1	0	0	0	1	1	1	1	1
1	1	1	1	0	0	1	1	1	1	1

In corrispondenza delle righe in cui R_1, R_2 sono entrambe vere, cioè le prime due righe, la formula $\neg M$ è vera. Quindi $R_1, R_2 \models \neg M$: Mino non è mancino.

Domanda

Sapendo che

- Se Pino va a Parigi, ci va anche Gino.
- Al più uno tra Gino e Lino va a Parigi.
- Almeno uno tra Pino e Lino va a Parigi.
- Se Lino va a Parigi, ci va anche Pino.

Domanda: chi va a Parigi?

Siano:

- P: Pino va a Parigi.
- G: Gino va a Parigi.
- L: Lino va a Parigi.

Le assunzioni sono quindi:

- $R_1: P \rightarrow G$
- $R_2 : \neg (G \wedge L)$
- $R_3: P \vee L$
- $R_4:L\to P$

Risposta

			R_1		R_2	R_3	R_4
Ρ	G	L	P o G	$G \wedge L$	$\neg (G \wedge L)$	$P \vee L$	$L \rightarrow P$
0	0	0	1	0	1	0	1
0	0	1	1	0	1	1	0
0	1	0	1	0	1	0	1
0	1	1	1	1	0	1	0
1	0	0	0	0	1	1	1
1	0	1	0	0	1	1	1
1	1	0	1	0	1	1	1
1	1	1	1	1	0	1	1

L'unica riga in cui tutte le assunzioni sono vere \grave{e} la settima. Si conclude che Pino e Gino vanno a Parigi, ma Lino non ci va.