Représentation des entiers - exercices Correction

Christophe Viroulaud

Première - NSI

DonRep 03

Représentation des entiers - exercices Correction

ivorcico 2

xercice 3

......

er cice 3

1. Exercice 1

Représentation des

entiers - exercices Correction

décimal	binaire				
0	0000				
1	0001				
2	0010				
3	0011				
4	0100				
5	0101				
6	0110				
7	0111				
8	1000				
9	1001				
10	1010				

vorcion 2

xercice 4

ercice 5

xercice 6

Kercice 1

Représentation des entiers - exercices Correction

- Exercice 1
 - cercice 2
 - ercice 3

 - kercice s

 - xercice 9

Représentation des entiers - exercices Correction

- Exercice 1
 - ercice 2
 - rcice 3

 - orcico O
 - xercice 9

- $ightharpoonup 14_{10} o 00001110_2$
- $ightharpoonup 42_{10} o 00101010_2$
- $ightharpoonup 79_{10} o 01001111_2$

- rcice 1
- 2. Exercice 2
- 3. Exercice 3

- J. 10. 0. 0.
- 6. Exercice
- O Evension

- - Exer
 - Exercic Exercic

Représentation des

entiers - exercices

```
Exercice 3

Exercice 4

Exercice 5

Exercice 6
```

```
kercice /
```

```
kercice 9
```

```
1  n = int(input("Entrer un entier positif: "))
2  res = ""
3  while (n > 0):
4   res = str(n % 2)+res
5   n = n//2
6  print(res)
```

Code 1 – Conversion décimal \rightarrow binaire

- roico 1
- 2. Exercice 2
- 3. Exercice 3
- 4 Evercice
- 5 Evereice F

- o **-** .

- ce 3

 - 4
 - 5
 - 6
- ice 7
- cice

- Exercise 4
 - ice 4

Représentation des

entiers - exercices

- cice 5
- rcice 7
- rcice 8
- cice 9

$$1 \times 2^3 + 0 \times 2^2 + 1 \times 2^1 + 0 \times 2^0 = 10$$

- ► $1010_2 \rightarrow 10_{10}$
- $ightharpoonup 1111110_2 o 62_{10}$
- $ightharpoonup 100101001_2
 ightharpoonup 297_{10}$

Exercice 3

or cicc -

ercice 5

.....

-vercice 0

- 4. Exercice 4

Exercice 4

Représentation des

entiers - exercices Correction

Exercise 1

On décompose en blocs de 4 bits :

$$1001_2 \ 0101_2 = 9_{16} \ 5_{16}$$

- $ightharpoonup 10010101_2 o 95_{16}$
- $ightharpoonup 11010101_2 o D5_{16}$
- $ightharpoonup 100010001_2 o 111_{16}$
- $ightharpoonup 11001101001010_2
 ightharpoonup 334A_{16}$

Exercice 3

Exercice 4

xercice 5

arcice o

rercice 0

- 5. Exercice 5

Représentation des

entiers - exercices Correction

$$AA = 1010_21010_2 = 10101010$$

- \triangleright BB8 = $1011_21011_21000_2 = 101110111000$
- ► $B \times 16^3 + E \times 16^2 + E \times 16^1 + F \times 16^0 = 11 \times 16^3 + 14 \times 16^2 + 14 \times 16^1 + 15 \times 16^0 = 48879$

ercice 3

......

Exercice 5

kercice b

ercice 7

ercice 8

6. Exercice 6

Exercice 6

Représentation des

entiers - exercices Correction

- $ightharpoonup 10_{10} = 00001010_2 \ donc \ -10_{10} = 11110101 + 1 = 11110110_2$
- ▶ $128_{10} = 10000000_2$ donc $-128_{10} = 011111111 + 1 = 10000000_2$

Remarque

Nous remarquons qu'il s'agit de la même représentation que 128 : sur 8 bits, nous ne pouvons pas représenter l'entier positif 128!!!

- $42_{10} = 00101010_2 donc 42_{10} = 11010101 + 1 = 11010110_2$
- $ightharpoonup 97_{10} = 01100001_2$

- 2. Exercice 2
- 3. Exercice 3

- 6. Exercice
- 7. Exercice 7
 - kercice

;

Exercice 7

Exercice 8

Représentation des

entiers - exercices

rcice 8

Représentation des entiers - exercices Correction

- Première méthode :
 - ► $11100111_2 = 231_{10}$ et $231 2^8 = -25$
 - $ightharpoonup 11000001_2 = 193_{10} \text{ et } 193 2^8 = -63$

- exercice 1
- ercice 3
- .0.0.00
- rei cice 3
- vercice o
- Exercice 7
 - xercice 9

Deuxième méthode :

- ► Le complément à 2 de 11100111₂ vaut 00011000₂. Ensuite $00011000_2 + 1_2 = 00011001_2 = 25_{10}$ donc $11100111_2 = -25_{10}$.
- ► Le complément à 2 de 11000001₂ vaut 00111110₂. Ensuite $001111110_2 + 1_2 = 001111111_2 = 63_{10}$ donc $11000001_2 = -63_{10}$.

- 8. Exercice 8

- - Exercice 8

Représentation des

entiers - exercices Correction

Exercice 8

39 + 110 =	= 001	.001	11_2	+0	110	1110) ₂ =	= 10	0101	.012	= 1	49
		1	1		1	1	1					
		0	0	1	0	0	1	1	1			
	+	0	1	1	0	1	1	1	0			
		1	$\overline{}$	$\overline{}$	1	$\overline{}$	1	$\overline{}$	1			

1.
$$39 + 110 = 00100111_2 + 011011110_2 = 10010101_2 = 149$$

2.
$$-53 + 35 = 11001011_2 + 00100011_2 = 111011110_2 = -18(238 - 256)$$

3.
$$119 - 8 = 01110111_2 + 11111000_2 = 01101111_2 = 111$$

Remarque

Les chiffres au-delà de 8 bits sont tronqués.

4.
$$19 - 93 = 00010011_2 + 10100011_2 = 10110110_2 = -74(182 - 256)$$

xercice 2

xercice 3

.

vercice 6

...... 7

Exercice 8

Représentation des

entiers - exercices Correction

$$500\mathit{Go} = 5 \times 10^{11}\mathit{o}$$

gibioctet (Gio)	1	?		
octet (o)	1 073 741 824	5×10^{11}		

$$\frac{5 \times 10^{11} \times 1}{1073741824} = 465$$

Le système d'exploitation affiche la capacité en Gio et non en Go.

kercice 3

.......

varcica

xercice 8