Engineering of correlated photon pairs via interaction between Rydberg atoms during the storage of slow light

Julius Ruseckas¹ Ite A. Yu² Gediminas Juzeliūnas¹

¹Institute of Theoretical Physics and Astronomy, Vilnius University, Lithuania ²National Tsing Hua University, Hsinchu, Taiwan

September 24, 2016

Rydberg atoms

Rydberg atoms

Rydberg atom

A Rydberg atom is an excited atom with an electron in a state with a very high principal quantum number $n \gtrsim 50$.

Rydberg atom

Distinctive properties of Rydberg states:

- an enhanced response to electric and magnetic field
- long decay times
- electron wavepackets move along classical orbits
- excited electron experiences Coulomb electric potential
- radius of an orbit scales as n^2
- energy level spacing decreases as $1/n^3$

Interactions between Rydberg atoms

- Transition dipole moment to nearby states scales as n^2
- Strong dipole-dipole interactions
- The interaction strength rapidly increases with n;
- The strength of interactions for $n \ge 100$ can be comparable to the strength of the Coulomb interaction between ions.
- Can be used for engineering of desired many-particle states.

Dipole blockade

- If one atom is excited into the Rydberg state
 - strong interaction shifts the resonance frequencies of all the surrounding atoms
 - suppressing their excitation.
- Rydberg blockade can be applied in
 - quantum information processing
 - non-linear quantum optics using Rydberg EIT

Slow light

Three level Λ system

Probe beam: $\Omega_{\rm p}=\mu_{\it ge}E_{\rm p}$ Control beam: $\Omega_{\rm c}=\mu_{\it ge}E_{\rm c}$

Three level Λ system

Dark state

$$|D
angle \sim \Omega_{
m c}|g
angle - \Omega_{
m p}|s
angle$$

- ullet Transitions g o e and s o e interfere destructively
- Cancelation of absorbtion
- Electromagnetically induced transparency—EIT
- Very fragile
- Very narrow transparency window

Slow light

- Narrow transparency window $\Delta\omega\sim 1\,\mathrm{MHz}$
- Very dispersive medium
- Small group velocity slow light

Rydberg EIT

- EIT → atom-light interactions without absorption
- ullet Rydberg states o strong long-range ${\color{red} atom-atom}$ interactions
- As a result → photon-photon interactions.

Rydberg EIT

For a single incident probe photon

- the control field induces a transparency in a narrow spectral window via EIT
- probe photon is coupled to Rydberg excitation forming a combined quasiparticle — Rydberg polariton
- Rydberg polariton propagates at a reduced speed
 « c

Rydberg EIT

When two probe photons propagate in the Rydberg medium

- strong interaction between two Rydberg atoms tunes the transition out of the resonance
- destroying the transparency and leading to absorption.

Experimental realization of quantum nonlinear optics

A. V. Gorshkov et al, Phys. Rev. Lett. 107, 133602 (2011).

T. Peyronel et al, Nature 488, 57 (2012).

 $46 \le n \le 100$

Disadvantage of Rydberg EIT

Only one photon propagates without absorption in the Rydberg blockade region. All additional photons are absorbed leading to losses

Our proposal

To use atom-atom interactions during light storage.

Storing of slow light

Hau et al, Nature, 2001

Storing of slow light

Dark state

$$|D
angle \sim |g
angle - rac{\Omega_{
m p}}{\Omega_{
m c}}|s
angle$$

- Information on probe beam is contained in the atomic coherence
- Storing of light switching off control beam; information about light is retained in the atomic coherence
- Releasing switch on control beam

Storing slow light using two Rydberg states

J. Ruseckas, I. A. Yu, and G. Juzeliūnas, arXiv:1606.00562

- Ladder scheme with the Rydberg state s
- Storing procedure:
 - Probe field is stored in a coherence between ground state g and Rydberg state s
 - 2 $\pi/2$ pulse is applied converting the Rydberg state $|s\rangle$ to a supperposition of s and p Rydberg states

$$|+\rangle = \frac{1}{\sqrt{2}}(|s\rangle + |p\rangle)$$

Stored Rydberg slow light

- Resonance dipole-dipole interaction between Rydberg atoms V
- Exchange of the s and p
 Rydberg states.
- During the storage correlated pairs of atoms are created in the initially not populated state

$$|-\rangle = \frac{1}{\sqrt{2}}(|s\rangle - |p\rangle)$$

State of atoms at the end of storage period

- o atom in state g
- atom in state +atom in state -

Stored Rydberg slow light

- At the end of the sorage a second $\pi/2$ pulse is applied, converting the state $|-\rangle$ into Rydberg state $|s\rangle$ and state $|+\rangle$ into state $|p\rangle$.
- Excitations in the s state are converted into the probe photons,
- p state excitations remain in the medium.

Consequences

- No regenerated slow light without interaction between the atoms
- Restored probe beam contains correlated pairs of photons

Second-order correlation function

Second-order correlation function:

$$g^{(2)}(\tau) = \frac{\langle \mathcal{E}^{\dagger}(t)\mathcal{E}^{\dagger}(t+\tau)\mathcal{E}(t+\tau)\mathcal{E}(t)\rangle}{\langle \mathcal{E}^{\dagger}(t)\mathcal{E}(t)\rangle\langle \mathcal{E}^{\dagger}(t+\tau)\mathcal{E}(t+\tau)\rangle}$$

Can be measured using the Hanbury-Brown and Twiss detection scheme

Second-order correlation function of the restored light

We assume

$$r_{\rm c} \lesssim r_{\rm Ry}$$
,

where

- r_c is a characteristic interaction distance: $V(r_c)T=1$
- ullet $r_{
 m Ry}$ is a mean distance between Rydberg atoms

Second order correlation function of the restored light

$$g_{\mathrm{out}}^{(2)}(au) \sim 1 - \cos[V(v_{g0} au)T]$$

For small storage time T

$$g_{\mathrm{out}}^{(2)}(\tau) \sim [V(v_{g0}\tau)T]^2$$

Second-order correlation function of the restored light

$$g_{\text{out}}^{(2)}(\tau) \sim [V(v_{Q0}\tau)T]^2$$

- Allows to measure interaction potential
- Corrections due to the finite spectral width of EIT (see red dashed curve)

Influence of slow light losses

The restored light acquires a finite spectral width $\Delta\omega_{\rm out}\sim v_{g0}/r_{\rm c}$, which leads to a finite life-time of the Rydberg polariton, $\tau_{\rm pol}^{-1}=2\Gamma(\Delta\omega_{\rm out}/\Omega_{\rm c})^2$. This distorts short time behaviour of $g_{\rm out}^{(2)}(\tau)$.

Summary

- Two-photon states can be created by properly storing and retrieving the slow light in the medium of Rydberg atoms
- The second-order correlation function of the restored light is determined by the atom-atom interactions during the storage.
- Measurement of the restored light allows one to probe interactions in many-body systems using optical means.
- Sensitivity of such measurements can be increased by increasing the storage time.

Thank you for your attention!