CSC358: Principles of Computer Networks Week 3 Practical:

Network Sharing and Encoding

Winter 2025, University of Toronto, Mississauga

EXO: True or False

- For most networks, the peak of aggregate demand for resources is greater than the aggregate of peak demands → False
- Circuit switching is easier to implement than packet switching → False
- How does Manchester Encoding make clock recovery easier?
 - By sending a sequence of alternating 0s and 1s before the main frame.
 - By sending a sequence of 1s at the beginning of each frame.
 - By embedding the clock cycle in the signal. → Answer
 - By sending the clock signal as a separate signal.
- Which encoding scheme do you suggest in order to provide high bandwidth?
 - Manchester
 - 4B/5B → Answer
- What is the maximum overhead in byte-stuffing algorithm (excluding the flags marking the start and end of the frame)? \rightarrow 100%

EX1: Encoding

- Fill out the blank in the following statement. Justify your answer.
 - In 4B/5B Encoding that we discussed in the lecture, which uses NRZI encoding as part of its procedure, a signal transition will occur at least every _____ bit times (i.e., clock cycle).
 - Answer: 4
 - Every 4 bits is first encoded as 5 bits. Then, the transformed digital data is transmitted with NRZI.
 - 4B/5B carefully selects 16 5-bit chips such that no more than one leading 0 and no more than two trailing 0s in each 5-bit.
 - Hence, no pair of 5-bit codes results in more than three consecutive 0's. Hence, after encoding as 5 bit chips, there will be a bit of 1 in at least every 4 bits. Since it uses NRZI, it means that a signal transition will occur at least every 4 bit times.

EX2: Circuit Switching vs Packet

- Suppose several users share a 3 Mbps link and each user requires 150 Kbps when transmitting, but each user transmits only 10 percent of the time. Answer the following questions.
 - a) When circuit switching is used, how many users can be supported?
 - Answer: 3Mbps / 150 Kpbs = 20
 - b) For the remainder of this question, suppose packet switching is used.
 - 1. Find the probability that a given user is transmitting at any given point in time.
 - Answer: p = 0.1
 - 2. Suppose there are 120 users. Find the probability that at any given time, exactly n users are transmitting simultaneously.
 - Answer: $Pr(n) = {120 \choose n} p^n (1-p)^{(120-n)}$
 - 3. Find the probability that there are 21 or more users transmitting simultaneously. How do you interpret the meaning of this probability?
 - Answer: $\sum_{n=21}^{120} \Pr(n) \approx 0.0079$

EX3: Statistical Multi-What?

- Consider three flows (F1,F2,F3) sending packets over a link.
- The sending pattern of each flow is described by how many packets it sends within each one-second interval
- This table shows their pattern for the first ten intervals.
 - Our three flows are very bursty,
 - with highly varying numbers of packets in each interval.

Time (s)	1	2	3	4	5	6	7	8	9	10
F_1	1	8	3	15	2	1	1	34	3	4
F_2	6	2	5	5	7	40	21	3	34	5
F_3	45	34	15	5	7	9	21	5	3	34

EX3: Statistical Multi-What? — Part 1

Time (s)	1	2	3	4	5	6	7	8	9	10
F_1	1	8	3	15	2	1	1	34	3	4
F_2	6	2	5	5	7	40	21	3	34	5
F_3	45	34	15	5	7	9	21	5	3	34

- What is the peak rate of F1? F2? F3? What is the sum of the peak rates?
 - F1 \rightarrow 34, F2 \rightarrow 40, F3 \rightarrow 45
 - Sum of peak rates \rightarrow 34+40+45=119

EX3: Statistical Multi-What? — Part 2

Time (s)	1	2	3	4	5	6	7	8	9	10
F_1	1	8	3	15	2	1	1	34	3	4
F_2	6	2	5	5	7	40	21	3	34	5
F_3	45	34	15	5	7	9	21	5	3	34

Now consider all packets to be in the same aggregate flow. What is the peak rate of this aggregate flow?

Time (s)	1	2	3	4	5	6	7	8	9	10
Aggregate Flow	52	44	23	25	16	50	43	42	40	43

■ The peak happens at 1s, where it is 52.

EX3: Statistical Multi-What? — Part 3

- Which is higher the sum of the peaks, or the peak of the aggregate?
 - The sum of the peaks is 119, whereas the peak of the aggregate is 52.
 - The sum of the peaks is much higher.
- This is the insight from Statistical Multiplexing!
 - The peak of the aggregate can only be at most the sum of the peaks,
 - but that only happens in the case that all of the peaks happen at the same time.
 - This is very unlikely. See the next example for a statistical analysis of this phenomenon.
 - So, usually, the peak of the aggregate is much lower than the sum of the peaks.

EX4: Statistical Multiplexing

- Consider N traffic flows. The arrivals from each flow are governed by a random variable X with a geometric distribution.
- ullet Specifically, in any time slot, the probability that the number of arrivals from a single flow are equal to k kilobytes (kB) is given by

$$P(X = k) = \begin{cases} 0, & k = 0 \\ (1-p)^{k-1}p, & k = 1,2,... \end{cases}, \text{ where } 0$$

Assume that the N flows are i.i.d..

EX4: Statistical Multiplexing, cont'd

- In every time slot, the arrivals are entered into a buffer with a given size.
- If arrivals to the buffer exceed the buffer size, the excess traffic is lost.
- The buffered data is removed from the buffer before the start of the next time slot.
 - Hence, the buffer is empty at the beginning of each time slot.
- The objective is to design the size of the buffer such that the probability that a loss occurs does not exceed a given threshold value.

EX4: Statistical Multiplexing – Some Notes

A random variable with Geometric distribution

$$P(X = k) = \begin{cases} 0, & k = 0 \\ (1 - p)^{k-1}p, & k = 1, 2, \dots \end{cases}, \text{ where } 0$$

has
$$E[X] = 1/p$$
 and $VAR[X] = (1 - p)/p^2$

- Let $\Phi(.)$ denote the cumulative distribution function of the standard normal distribution.
 - To get $1 \Phi(z) \approx \epsilon$, you may use the approximation $z = \sqrt{|\ln(2\pi\epsilon)|}$

EX4: Statistical Multiplexing – Part 1

- Consider that there is one buffer for each flow, i.e., we have N buffers.
 - This is similar to circuit switching resource sharing.
- Express the total size of all N buffers needed so that the loss probability of each flow does not exceed ϵ .
 - Consider flow *i*.
 - $P(X_i > k) \le \epsilon \Rightarrow \sum_{l=k+1}^{\infty} P(X_i = l) \le \epsilon \Rightarrow \sum_{l=k+1}^{\infty} (1-p)^{l-1} p \le \epsilon$
 - Hence, $p \sum_{l=k+1}^{\infty} (1-p)^{l-1} = p \frac{(1-p)^k}{p} = (1-p)^k \le \epsilon \Rightarrow k \ge \frac{\ln \epsilon}{\ln(1-p)}$.
 - With this approach, the minimum total buffer size needed for N flows so that the loss probability of each flow does not exceed ϵ is $\frac{N \ln \epsilon}{\ln(1-p)}$.

EX4: Statistical Multiplexing – Part 2

- Consider that there is a single buffer that is shared by all N flows.
 - This is similar to packet switching resource sharing.
- Use the Central Limit Theorem (CLT) to derive the buffer size needed so that the loss probability does not exceed ϵ .
 - Let X_i 's be i.i.d. random variables with $E[X] = \mu$ and $VAR[X] = \sigma^2$.
 - By CLT, the random variable $Z_N = \frac{X_1 + \cdots + X_N N\mu}{\sigma\sqrt{N}}$ converges in distribution to the standard normal random variable.
 - In our problem, $\mu = \frac{1}{p}$ and $\sigma = \frac{\sqrt{1-p}}{p}$. $P(X_1 + \dots + X_N > k) \le \epsilon \Rightarrow$ $P(X_1 + \dots + X_N N\mu > k N\mu) \le \epsilon \Rightarrow$ $P\left(Z_N = \frac{X_1 + \dots + X_N N\mu}{\sigma\sqrt{N}} > \frac{k N\mu}{\sigma\sqrt{N}}\right) = 1 \Phi\left(\frac{k N\mu}{\sigma\sqrt{N}}\right) \le \epsilon \Rightarrow$ $\frac{k N\mu}{\sigma\sqrt{N}} \ge \sqrt{|\ln(2\pi\epsilon)|} \Rightarrow k > \frac{N + \sqrt{(1-p)N|\ln(2\pi\epsilon)|}}{p}$
 - With this approach, the minimum total buffer size needed is $\frac{N+\sqrt{(1-p)N|\ln(2\pi\epsilon)|}}{p}$

EX4: Statistical Multiplexing – Part 3

- Considering parts (a) and (b),
- using p = 0.25, $\epsilon = 10^{-3}$, and N = 1000.

$$SMG = \frac{\frac{N \ln \epsilon}{\ln(1-p)}}{\frac{N+\sqrt{(1-p)N|\ln(2\pi\epsilon)|}}{p}} \approx 5.65$$