МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

ПЕНЗЕНСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ

Кафедра «Информационная безопасность систем и технологий»

Отчет

по Заданию 1

на тему «Преобразование аналогового сигнала в цифровой сигнал»

Дисциплина: СиСПИ

Группа: 21ПТ1

Выполнил: Кабанов Д. А.

Количество баллов:

Дата сдачи:

Принял: Иванов А. П.

1 Цель работы: изучение преобразования аналогового сигнала в цифровой сигнал.

2 Задание. Осуществить преобразование аналогового сигнала, приведенного на рисунке 1 в цифровую кодовую последовательность. Определить шумы квантования. Результаты привести на временной диаграмме и в таблице по шаблону таблицы 1. Вид аналогового сигнала, его максимальную амплитуду и частотный диапазон взять из таблицы 2 в соответствии с вариантом.

Рисунок 1 — Вариант задания (сигнал)

3 Выполнение работы.

- 3.1 В соответсвии с рисунком и 4 вариантом задания были определены:
- $U_{MAX} = 2 B$ и U_{MIN} : -2 B;
- в соотвествии с заданием $U_{O\Gamma P} = U_{MAX} = 2 B;$
- в соотвествии с вариантом 4 f_{MIN} = 0,5 к Γ ц и f_{MAX} = 4,0 к Γ ц;
- в соответсвии с заданием $\Delta_{\text{илоп}} = 0.25 \text{ B}$;

Было расчитано минимальное число уровней квантования N_{MIN} по формуле $(U_{MAX}-U_{MIN})/\Delta_{u_{JOI}}$. $N_{MIN}=4$ / 0.25=16

Было определено число уровней N_{KB} из условия $N_{\text{KB}} > N_{\text{MIN}}$. $N_{\text{KB}} = 32$.

Было определено количество разрядов n в коде. $n = log_2 32 = 5$ бит.

Было расчитан шаг квантования по формуле $\delta = U_{O\Gamma P}/2^n = 2/2^5 = 0,0625$ В.

Была рассчитана частота дискретизации в соотвествии с теоремой Котельникова (любой непрерывный сигнал, ограниченный по спектру верхней частотой FB, полностью определяется последовательностью своих дискретных отсчетов, взятых через промежуток времени $T_{\pi} \leq 1/2F_B$) должна удовлетворять условию $F_{\pi} \geq 2F_B$). $F_{\pi} = F_{MAX} * 2 = 8 \ \kappa \Gamma \mu$

3.2 При частоте дескритизации 9к Γ ц длина одного отсчета будет равна 1000 мс / 9000 Γ ц = 0,11мс \rightarrow количесвто отсчетов за 1мс будет равно 1мс / 0,13мс ≈ 8 отсчетов, для 6мс количество отсчетов равняется 48. Было определено Ubx(t), UkB(t), Δ KB(t) и N. Результат представлен в таблице 1.

Таблица 1 — Результаты измерений

Отсчет сигнала	UBX(t), B	UKB(t),B	ΔKB(t)	N	Двоичный код
1	1,02	1,06	-0,04	17	10001
2	1,08	1,13	-0,04	18	10010
3	1,02	1,06	-0,04	17	10001
4	0,90	0,94	-0,04	15	01111
5	0,65	0,69	-0,04	11	01011
6	0,40	0,44	-0,04	7	00111
7	0,15	0,19	-0,04	3	00011
8	0,04	0,06	-0,02	1	00001
9	0,12	0,13	-0,01	2	00010
10	0,06	0,13	-0,06	2	00010
11	0,07	0,13	-0,05	2	00010
12	0,33	0,38	-0,04	6	00110
13	0,71	0,75	-0,04	12	01100
14	1,02	1,06	-0,04	17	10001
15	1,40	1,44	-0,04	23	10111
16	1,71	1,75	-0,04	28	11100
17	1,85	1,88	-0,02	30	11110
18	1,85	1,88	-0,02	30	11110
19	1,70	1,75	-0,05	28	11100
20	1,45	1,50	-0,05	24	11000
21	1,02	1,06	-0,04	17	10001
22	0,58	0,63	-0,04	10	01010
23	0,08	0,13	-0,04	2	00010
24	0,36	0,38	-0,02	6	00110
25	0,73	0,75	-0,02	12	01100
26	0,97	1,00	-0,03	16	10000
27	1,05	1,06	-0,01	17	10001

28	1,01	1,06	-0,05	17	10001
29	0,86	0,88	-0,02	14	01110
30	0,64	0,69	-0,05	11	01011
31	0,39	0,44	-0,05	7	00111
32	0,15	0,19	-0,04	3	00011
33	0,05	0,06	-0,01	1	00001
34	0,15	0,19	-0,04	3	00011
35	0,04	0,06	-0,02	1	00001
36	0,29	0,31	-0,02	5	00101
37	0,67	0,69	-0,02	11	01011
38	1,05	1,06	-0,01	17	10001
39	1,39	1,44	-0,05	23	10111
40	1,67	1,69	-0,02	27	11011
41	1,83	1,88	-0,05	30	11110
42	1,83	1,88	-0,05	30	11110
43	1,73	1,75	-0,02	28	11100
44	1,42	1,44	-0,02	23	10111
45	1,04	1,06	-0,02	17	10001
46	0,61	0,63	-0,02	10	01010
47	0,09	0,13	-0,04	2	00010
48	0,32	0,38	-0,05	6	00110

 $3.3~~{
m B}$ соответствии с вариантом задания кодовая последовательность была записана с помощью AMI. Результат приведен на рисунке 2 — 7.

Рисунок 2 — Коды с 1 по 8

Рисунок 3 — Коды с 9 по 16

Рисунок 4 — Коды с 17 по 24

Рисунок 5 — Коды с 25 по 32

Рисунок 6 — Коды с 33 по 40

Рисунок 7 — Коды с 41 по 48

4 Вывод: было изучено преобразование аналогового сигнала в цифровой сигнал.