Package

March 25, 2019

Title Difference between Varying Distributions Test (DVDtest)

Type Package

Index

Version 0.1		
Date 2019-03-24		
Author Meng Xu, Philip Reiss		
Maintainer Meng Xu <mxu@campus.haifa.ac.il></mxu@campus.haifa.ac.il>		
Description See DVDtest.		
RoxygenNote 6.1.1		
License GPL (>= 2)		
Encoding UTF-8		
Imports gamlss, mgcv, ggplot2, reshape2, parallel, gamlss.dist		
R topics documented:		
DVDtest-package		
DVDtest		
get.params		
get.pval		
get.realdist		
get_params		

2456

8

9 9

12

 qfuncs2wass2
 9

 wass.perm
 10

 wass_perm
 11

DVDtest DVDtest

DVDtest-package

Difference between Varying Distributions Test (DVDtest)

Description

This package contains functions of a test on the difference between varying distributions.

Author(s)

Meng Xu, Philip Reiss

References

reiss-EMR18.pdf

See Also

DVDtest

DVDtest

Difference between Varying Distributions Test (DVDtest)

Description

Testing the difference of two varying distributions.

Usage

```
DVDtest(ydata1, ydata2, nperm, eval.index.grid, dist.method = "wass",
  mgcv.gam = TRUE, ..., exclude = NULL, permadj = FALSE,
  mc.cores = 1)
```

Arguments

ydata1 a data.frame or a list of data.frame containing at least 3 columns called

'.obs','.index','.value' which specify which curve the point belongs to (.obs) at which ('.index') it was observed and the observed value ('.value'). Other

variables are available for modelling the varying distribution as well.

ydata2 same type as ydata1. If the type of ydata1 and ydata2 is a list of data. frame,

the lenghs of two lists must be the same.

nperm a scalar, number of permutation

eval.index.grid

a vector, evaluation grid of .index

dist.method the methods, Wasserstein('wass'), L2(L2), L1('L1') and Hellinger('Hellinger')

to calculate the distances between distributions. Defaults to 'wass'.

mgcv.gam a logical variable, whether to apply mgcv::gam for eastimating distributions,

whose parameters are a smooth function of a continuous variable. If FALSE,

gamlss::gamlss is adopted.

DVDtest 3

•••	If mgcv.gam = TRUE, should include formula and family(=gaulss()) and other arguments in mgcv::gam. Otherwise, the arguments in gamlss::gamlss are included.
exclude	works only in the case of mgcv.gam = TRUE, to exclude the random effect
permadj	a logical variable, whether to adjust the permutated data to cover the entire range, esp. working in case of sparsity. Defaults to FALSE
mc.cores	the same argument in mclapply (not work on Windows). Defaults to 1.

Details

This is the Details section

Value

.indexa vector, evaluation grid

Note

• If mgcv.gamis TRUE and exclue is NULL (default settings), then formula. <- list(.value~s(.index)+s(.obs and exclude. <- "s(.obs)"

Author(s)

Meng Xu, Philip Reiss

References

reiss-EMR18.pdf

Examples

```
mu1 < -function(t) 0.2*(p-1)*sin(pi*t)+t+1
mu2 < -function(t) -0.2*(p-1)*sin(pi*t)+t+1
sig1 <- function(t) t+1</pre>
sig2 <- sig1
nperson=10
fun1<-function(t) rnorm(nperson,mu1(t),sig1(t))</pre>
fun2 < -function(t) rnorm(nperson, mu2(t), sig2(t))
tp<-seq(0,1,,10)
data1<-sapply(tp,fun1)</pre>
data2<-sapply(tp,fun2)</pre>
library(reshape2)
colnames(data1)<-tp</pre>
dg1<-melt(data1)</pre>
colnames(dg1)<-c('.obs','.index','.value')</pre>
dg1$.obs<-as.factor(dg1$.obs)
colnames(data2)<-tp</pre>
rownames(data2)<-1:nperson+2*nperson</pre>
dg2<-melt(data2)
colnames(dg2)<-c('.obs','.index','.value')</pre>
dg2$.obs<-as.factor(dg2$.obs)
```

4 get.params

```
# library(ggplot2)
# ggplot()+geom_line(data=dg1,aes(x=.index,y=.value,col=factor(.obs)))+
    geom_line(data=dg2,aes(x=.index,y=.value,col=factor(.obs)))
ngrid=50
ev.grid <- seq(0, 1, , ngrid)</pre>
nperm. <- 50
simu.test<-DVDtest(dg1,dg2,nperm.,ev.grid)</pre>
#ggplot(data.frame(simu.test),aes(x=.index,y=pval))+geom_line()+
# geom_hline(yintercept=0.05,linetype=2,col="red")
```

get.params

Fitting the generalized gamma (Pearson type III) distribution for each

Description

Fitting by the permuted-data distances

Usage

```
get.params(k, nperm, permarray, eval.index.grid)
```

Arguments

```
a scalar, kth data.frame in ydata1&2
                  a scalar, number of permutation
nperm
                  an array, permuted-data distances from wass_perm
permarray
eval.index.grid
                  a vector, evaluation grid of .index
```

Value

mu

a vector of mean sigma a vector of sigma nu a vector of nu

aic

the Akaike information criterion in gamlss

Author(s)

Philip Reiss, Meng Xu

See Also

```
get_params
```

get.pval 5

get.pval

Calculate the corrected P values

Description

Calculate the corrected P values

Usage

```
get.pval(permarray, param.array, realdists, nroi, eval.index.grid, nperm)
```

Arguments

permarray an array, permuted-data distances from wass_perm
param.array an array, permuted-data distances from get_params
realdists a matrix or vector, the value from get_realdist
nroi a scalar, the length of ydata1

eval.index.grid

a vector, evaluation grid of .index

nperm a scalar, number of permutation

Value

a vector or matrix of p value

Author(s)

Philip Reiss, Meng Xu

See Also

DVDtest

get.realdist

Calculating the distances under the null hypothesis for each roi

Description

Calculating the distances under the null hypothesis for each roi

Usage

```
get.realdist(k, vdFun, ydata1, ydata2, ind.grid, ..., excl, dist.method)
```

6 get_params

Arguments

k a scalar, kth data.frame in ydata1&2

vdFun a function, gam or gamlss, for fitting the varying distributions

ydata1 see DVDtest ydata2 see DVDtest

ind.grid see eval.index.grid in DVDtest

... arguments of vdFun

excl an argument of predict for gam

dist.method see DVDtest

Value

a vector of the distances

Author(s)

Philip Reiss, Meng Xu

See Also

DVDtest

get_params

Fitting the generalized gamma (Pearson type III) distribution

Description

Fitting the generalized gamma (Pearson type III) distribution

Usage

```
get_params(nroi, nperm, permarray, eval.index.grid)
```

Arguments

nroi a scalar, the length of ydata1 or ydata2

nperm a scalar, number of permutation

permarray an array, permuted-data distances from wass_perm

eval.index.grid

a vector, evaluation grid of .index

Value

 $an \ array, \verb"param.array"$

Author(s)

Meng Xu, Philip Reiss

See Also

DVDtest

get_realdist 7

get_realdist

Calculating the distances under the null hypothesis

Description

Calculating the distances under the null hypothesis

Usage

```
get_realdist(vdFun, ydata1, ydata2, ind.grid, ..., excl, mc.cores,
   dist.method)
```

Arguments

vdFun a function, gam or gamlss, for fitting the varying distributions

ydata1 see DVDtest ydata2 see DVDtest

ind.grid see eval.index.grid in DVDtest

... arguments of vdFun

excl an argument of predict for gam mc.cores a scalar, an argument in mclapply

 ${\tt dist.method} \qquad {\tt see} \; {\tt DVDtest}$

Value

a vector or matrix of the distances

Author(s)

Meng Xu, Philip Reiss

See Also

DVDtest

make.perms

Making permutated index

Description

Making permutated index

Usage

```
make.perms(dat1, dat2, nperm, .index, adj)
```

8 multiwass

Arguments

dat1 an element of ydata1 dat2 an element of ydata2

nperm a scalar, number of permutation
.index see eval.index.grid in DVDtest

adj see permadj in DVDtest

Value

a matrix, permuted indices

Author(s)

Philip Reiss, Meng Xu

See Also

DVDtest

multiwass

Calculating the distances between two gam/gamlss objects

Description

Calculating the distances between two gam/gamlss objects

Usage

```
multiwass(obj1, obj2, newdata1, newdata2, dist.method, ...)
```

Arguments

obj1 a gam/gamlss object obj2 another gam/gamlss object

newdata1 related evaluation grids newdata2 related evaluation grids

dist.method see DVDtest

... partial arguments in predict

Value

a vector, distances

Author(s)

Philip Reiss, Meng Xu

params2qfunc 9

params2qfunc

Getting the quantile/density function via parameters

Description

Getting the quantile/density function via parameters

Usage

```
params2qfunc(params, family, dist.method)
```

Arguments

params a vector, parameters for certain distributions family a specific distribution from gam or gamlss

dist.method see DVDtest

Value

quantile or density functions

Author(s)

Meng Xu, Philip Reiss

qfuncs2wass2

Distance functions

Description

Distance functions

Usage

```
qfuncs2wass2(qfunc1, qfunc2, dist.method = dist.method, ...)
```

Arguments

qfunc1 quantile or density functions from params2qfunc qfunc2 quantile or density functions from params2qfunc

 ${\tt dist.method} \qquad {\tt see} \; {\tt DVDtest}$

... extra arguments in integrate

Value

distance functions

Author(s)

Meng Xu, Philip Reiss

10 wass.perm

wass.perm

Calculating the distances via permuted data for each k

Description

Calculating the distances via permuted data for each k

Usage

```
wass.perm(k, vdFun, dat1, dat2, ..., permat, .index, report.every = 10,
  exclude, dist.method)
```

Arguments

k a scalar, kth data.frame of ydata1&2

vdFun a function, gam or gamlss, for fitting the varying distributions

... arguments of vdFun

 $permat \hspace{1cm} a \hspace{1cm} result \hspace{1cm} of \hspace{1cm} make.\hspace{1cm} perm$

.index see eval.index.grid in DVDtest

report.every a scalar, reporting the number permutation

exclude an argument of predict

dist.method see DVDtest

Value

a matrix of permuted-data distances

Author(s)

Philip Reiss, Meng Xu

See Also

wass_perm

wass_perm 11

wass_perm

Calculating the distances via permuted data

Description

Calculating the distances via permuted data

Usage

```
wass_perm(vdFun, nperm, ydata1, ydata2, eval.index.grid, permat, ...,
  exclude, mc.cores, dist.method)
```

Arguments

vdFun a function, gam or gamlss, for fitting the varying distributions

nperm a scalar, number of permutation

ydata1 see DVDtest ydata2 see DVDtest

eval.index.grid

see DVDtest

permat a result of make.perm
... partial arguments of vdFun
exclude an argument of predict

mc.cores a scalar, an argument of mclapply

dist.method see DVDtest

Value

an array of distances

Author(s)

Meng Xu, Philip Reiss

See Also

wass.perm

Index

```
*Topic minp
     DVDtest, 2
*Topic permutation
     DVDtest, 2
DVDtest, 2, 2
DVDtest-package, 2
{\tt get.params}, {\tt 4}
get.pval, 5
get.realdist,5
get_params, 4, 6
get_realdist, 7
make.perms, 7
{\sf multiwass}, {\color{red} 8}
params2qfunc,9
{\tt qfuncs2wass2}, {\color{red}9}
{\it wass.perm},\, {\color{red}10}
{\tt wass\_perm},\, 11
```