Methods and Tools ▼

Datamonkey

A Collection of State of the Art Statistical Models and Bioinformatics Tools

What evolutionary process would you like to detect?

Selection		Recombination	
Would you like to detect selection across branches, individual sites, or an entire gene?			
Branches	Sites	Gene	
Do you want to detect episodic or pervasive selection?			
Episodic		Pervasive	
Is your dataset small (less than this many sequences/sizes) or large?			
Small		Large	

Do you want to contrast selection pressures between two or more groups of branches?

No	Yes
----	-----

Datamonkey recommends that you use...

FEL (Fixed EffectsLikelihood) uses a maximum-likelihood (ML) approach to infer nonsynoymous (dN) and synonymous (dS) substitution rates on a per-site basis for a given coding alignment and corresponding phylogeny. This method assumes that the selection pressure for each site is constant along the entire phylogeny.

For more information, please see the <u>summary on hyphy.org</u> or see <u>Kosakovsky Pond, SL and Frost, SDW. "Not So Different After All: A Comparison of Methods for Detecting Amino Acid Sites Under Selection." Mol. Biol. Evol. 22, 1208--1222 (2005).</u>

https://datamonkey.org

<u>Job Queue</u>

<u>Usage statistics</u>

<u>Citations</u>

<u>Help</u>

Classic

https://datamonkey.org