

Bayesian Inference and Neural Estimation of Acoustic Wave Propagation

Yongchao Huang¹, Yuhang He², Hong Ge³

Summary

We present a novel framework integrating physics and machine learning to estimate frequency-domain acoustic wave propagation coefficients [1]. Using acoustic waveforms captured at speaker-receiver pairs, we estimate attenuation and wavenumber via: (1) Bayesian inference for uncertainty-aware learning from small and noisy data, (2) a neural-physical model trained with forward-backward physical losses, and (3) non-linear least squares as baseline. With inferred propagation coefficients, room impulse responses (RIRs) are derived, enabling robot relocalisation with uncertainty quantification.

Acoustic Wave Propagation

The frequency-domain wave equation:

$$\frac{\partial^2}{\partial x^2}\tilde{P}(x,\omega) + \frac{\omega^2}{c^2}\tilde{P}(x,\omega) = 0$$

One-way solution: $\tilde{P}(x,\omega) = \tilde{P}(x_0,\omega)e^{-\gamma(x-x_0)}$, with $\gamma(\omega) = \alpha(\omega) + i\kappa(\omega)$. Goal: infer $\gamma(\omega)$ from signal pairs (x_1,x_2) .

Bayesian Inference

Prior distributions:

$$\alpha \sim \mathcal{N}(\mathbf{1}, \mathbf{1}), \kappa \sim \mathcal{N}(\mathbf{0}, 10^2 \mathbf{1}), \sigma \sim HalfNormal(std = 1)$$

Likelihood:

$$\begin{bmatrix} \tilde{P}^m(x_2,\omega) - \tilde{P}^m(x_1,\omega)e^{-\gamma(\omega)(x_2-x_1)} \\ \tilde{P}^m(x_1,\omega) - \tilde{P}^m(x_2,\omega)e^{\gamma(\omega)(x_2-x_1)} \end{bmatrix} \sim \mathcal{N}(\begin{bmatrix} 0 \\ 0 \end{bmatrix}, \begin{bmatrix} \sigma^2 \\ \sigma^2 \end{bmatrix})$$

where $\tilde{P}^m(x_1,\omega)$ and $\tilde{P}^m(x_2,\omega)$ are the measured waves at speaker x_1 and receiver x_2 . σ^2 is noise variance.

Posterior distributions are approximated via Hamiltonian Monte Carlo sampling, enabling prediction and uncertainty quantification.

Neural Estimation

A neural network learns (α, κ) from measured waves $\tilde{P}^m(x_1, \omega)$, with a loss function comprised of:

- Forward loss: measured $\tilde{P}^m(x_2,\omega)$ vs predicted $\tilde{P}(x_2,\omega)$
- Backward loss: $P^m(x_1,\omega)$ vs reversed prediction $P(x_1,\omega)$
- Entropy regularisation: promotes coefficient consistency across instances

Non-linear Least Squares Estimation

Log-transform the measured waves at the speaker x_1 and receiver x_2 : $\log \tilde{P}^m(x_2,\omega) - \log \tilde{P}^m(x_1,\omega) \approx -\gamma(\omega)(x_2-x_1)$. Stacking N wave pairs and n frequencies yields the matrix form: $\Delta \log \tilde{P}^m_{N\times n} \approx -\Delta X_{N\times N}\Gamma_{N\times n}$, where $\Delta X = \mathrm{diag}(x_{i2}-x_{i1})$, and Γ contains γ duplicated row-wise.

Solving the least squares problem: $\hat{\gamma} = \arg\min_{\gamma} \|\Delta \log \tilde{P}_{N \times n} - (-\Delta X_{N \times N} \Gamma_{N \times n})\|_2^2$ yields the closed-form solution: $\hat{\Gamma} = -(\Delta X)^{-1} \Delta \log \tilde{P}^m$.

Rows of Γ should ideally be equal in noise-free settings. Variability across rows reflects noise-induced uncertainty.

Conclusion & Future Work

We propose a physics-informed framework for inferring acoustic wave propagation in frequency domain. All methods effectively infer $\gamma(\omega)$, offer RIR estimation and relocalisation using acoustic signals alone. Specifically: **Bayesian inference** learns from small and noisy data, provides data efficiency and principled uncertainty quantification; **Neural estimation** is fast, generalisable, and learns physics-consistent estimates; **Non-linear least squares** is efficient and interpretable. **Future work**: Extend to complex wave models, online inference, and real-world deployment.

RIR Estimation and Relocalisation

The room impulse response RIR(x,t) characterises how a wave propagates between two locations in time domain: $P^m(x_1,t) \otimes RIR(x_2-x_1,t) = P^m(x_2,t)$.

Applying Fourier transform yields the frequency-domain $R\tilde{I}R$: $\tilde{P}^m(x_1,\omega)\odot R\tilde{I}R(x_2-x_1,\omega)=\tilde{P}^m(x_2,\omega)$.

Solving for $R\widetilde{I}R$: $R\widetilde{I}R(x_2-x_1,\omega)=\frac{\widetilde{P}^m(x_2,\omega)}{\widetilde{P}^m(x_1,\omega)}=e^{-\gamma(x_2-x_1)}$.

This allows estimation of $R\tilde{I}R$ from estimated γ . Specially, if $\tilde{P}^m(x_1,\omega)$ is a Dirac delta (i.e. flat in frequency), then $R\tilde{I}R(x_2-x_1,\omega)$ equals $\tilde{P}^m(x_2,\omega)$. The time domain $RIR(x_2-x_1,t)$ can be obtained by inverting the frequency domain $R\tilde{I}R$.

Relocalisation: Distance can be recovered via $\Delta x = -\frac{1}{\gamma(\omega)} \log \left(\frac{P^m(x_2,\omega)}{\tilde{P}^m(x_1,\omega)} \right)$

Averaging over n frequencies gives a robust estimate: $\widehat{\Delta x} = \frac{1}{n} \sum_{i=1}^n -\frac{1}{\gamma(\omega_i)} \log \left(\frac{\widetilde{P}^m(x_2,\omega_i)}{\widetilde{P}^m(x_1,\omega_i)} \right)$.

In 2D/3D, intersecting circular shells from multiple fixed-position speakers localises the receiver position:

Experimental validations

Simulation setup: We use the *SoundSpaces 2.0* simulator with the *Matterport3D* dataset. A fixed-position speaker emits 16kHz signals captured by 9 spatially distributed receivers. Bayesian inference and non-linear least squares use 1 speaker-receiver pair; the neural model trains on 8 pairs and tests on 1.

Neural results: Example speaker and receiver signals are shown below (left 2 figures). The neural-physical model estimates the propagation coefficients and predicts waveforms (middle 2 figures) using MLP / auto-encoder architectures. The distance between speaker and receiver is estimated (right 2 figures).

Bayesian results: HMC (NUTS) is used to sample α , κ , and σ (Fig.1-3). Given the posterior samples of γ , we predict the waveform at the test receiver (Fig.4-5) and estimate the speaker-receiver distance (Fig.6-7). The predicted waveform shows credible intervals; the relocalisation results demonstrate consistency across receivers.

Performance comparison: Distance estimations across all methods. Bayesian MAP yields the most accurate and stable estimates:

Statistics	Test receiver 1			Test receiver 2		
	Mean	Mode	Std	Mean	Mode	Std
Bayesian MAP	7.319	7.407	0.466	0.936	1.425	1.715
Bayesian mean	2.749	2.896	1.311	0.416	0.487	0.855
Neural (MLP)	6.290	7.883	3.955	0.986	1.509	2.395
Neural (Autoencoder)	6.308	7.623	3.880	0.961	1.869	2.375
Least squares	5.458	4.998	2.968	0.854	1.318	2.016
Ground truth	7.407	_	-	0.943	-	-

References