Optimization Algorithms

Applied ML in Engineering - Exercise 10

TU Berlin, Summer Term 2023

Prof. Dr.-Ing. Merten Stender – merten.stender@tu-berlin.de

Students are asked to implement different optimization algorithms and test their performance on a non-convex objective function $f(x) = 0.3 * x^4 - 0.1x^3 - 2x^2 - 0.8x$ as shown in Figure 1. Choose x = -2.8 as initial point for all optimizers.

Figure 1: Objective function

Problem 1: Gradient Descent with Momentum

- (a) Extent the provided implementation of gradient descent (gradient_descent.py) and include the momentum term as shown in the lecture
- (b) Test how different values for the hyperparameter β will affect the optimization result and convergence when tested on the non-convex objective function.
- (c) Find the optimal value for β that achieves the fastest convergence to the global minimum for the given function

Problem 2: Adagrad

- (a) Extent the existing implementations by an adaptive learning rate as proposed in the Adagrad algorithm
- (b) Test how Adagrad performs on the given sample function and compare against gradient descent and the momentum extension.

Problem 3: adam

(a) Extent the existing implementations by an adaptive learning rate and moment as proposed in the adam algorithm

2

(b) Test how adam performs on the given sample function and compare against gradient descent and Adagrad.