为什么需要一定的测试方法?

• 因为:"彻底地测试"是不可能的。

• 穷举测试的例子:

假设一个程序P有输入量X和Y及输出量Z。在字长为32位的计算机上运行。若X、Y取整数,按黑盒方法进行穷举测试,请问需要多少时间?(假设1毫秒钟执行一组数据)

 $2^{32} \times 2^{32}$ 毫秒 = 5亿年

测试人员的数学基础

- 离散数学(书)
 - 集合;函数;关系;命题逻辑
- 图论(书)
 - 图;有向图
 - 用于测试的图 (程序图, 有限状态机, Petri网, 状态图)
- 概率论

测试的几个常用例子

(书)

- 三角形问题
- NextDate问题
- 佣金问题
- •

第二部分 黑盒测试

- 1. 边界值测试(书)
- 2. 等价类测试(书)
- 3. 基于决策表测试(书)

边界值测试

- 针对各种边界情况设计测试用例,可以查出更多的错误。
 - 在程序的设计和编码中,常常对规格说明中的输入域边界或输出域 边界不够注意
 - 例:应为x≤10,而实现为x<10,计数器少计了一次
- 依据: (测试经验) 大量的错误是发生在输入或输出范围的边界上,而不是在范围的内部。
 - 例:美国陆军对其软件进行研究,发现:大量缺陷都是边界值缺陷。
 - 输入的边界值附近

- 边界值测试,是最基本的测试方法。
 - 基于输入(最常见) <书: 三角形问题; NextDate问题>
 - 基于输出 <书: 佣金问题>
- 程序可看作是函数
 - 输入: 函数的定义域例:

$$a \le x1 \le b$$

$$c \le x2 \le d$$

- 输出: 函数的值域

边界值分析

- •变量的边界值(极值)
 - •最小值、略高于最小值、正常值、略低于最大值、最大值 (即: min, min+, nor, max-, max) 注: "正常值nor"通常为: 中点
 - •例 [1,200]的整型变量的边界值: 1,2,100,199,200
- •基于"单缺陷"假设
 - 大部分失效是由单个缺陷引起的。(即:失效的极少是由两个或多个缺陷同时发生引起的。)
- •边界值分析的测试用例的生成方法:
 - •以基于输入空间的边界值分析为例,假设有n个输入变量
 - ●每次只对一个变量取极值(即: min, min+, nor, max-, max)而对 其它所有变量取正常值。对每个变量都重复进行。
 - •n个变量 4n+1个测试用例。

边界值分析的测试用例

例:两变量的测试用例集:

```
\langle X1_{nom}, X2_{min} \rangle
 <X1_{nom}, X2_{min+}>,
 \langle X1_{nom}, X2_{nom} \rangle
 \langle X1_{nom}, X2_{max} \rangle
 \langle X1_{nom}, X2_{max} \rangle
 \langle X1_{\min}, X2_{\max} \rangle
 \langle X1_{\min}, X2_{nom} \rangle
\prec X1_{\text{nom}}, X2_{\text{nom}}
 <X1_{\text{max}}, X2_{\text{nom}}>,
 < X1_{\text{max}}, X2_{\text{nom}} >
```


举例1: 三角形问题

· 输入:

三个整数a、b、c,作为三角形三边的边长,边长的取值范围是[1,200]。

输入条件的改进:

 $1 \le a \le 200$; $1 \le b \le 200$; $1 \le c \le 200$

a < b + c; b < a + c; c < a + b

• 输出:

由这三条边所确定的三角形类型:等边三角形、等腰三角形、普通三角形或非三角形。

三角形问题的边界值分析

三个输入变量,其取值范围为:

```
1 \le a \le 200

1 \le b \le 200

1 \le c \le 200
```

变量的边界值:

```
a = {1, 2, 100, 199, 200}
b = {1, 2, 100, 199, 200}
c = {1, 2, 100, 199, 200}
```

三角形问题 边界值分析一测试用例

用例	a	b	c	预期输出
1	100	100	1	等腰三角形
2	100	100	2	等腰三角形
3	100	100	100	等边三角形
4	100	100	199	等腰三角形
5	100	100	200	非三角形
6	100	1	100	等腰三角形
7	100	2	100	等腰三角形
8	100	100	100	等边三角形
9	100	199	100	等腰三角形
10	100	200	100	非三角形
11	1	100	100	等腰三角形
12	2	100	100	等腰三角形
13	100	100	100	等边三角形
14	199	100	100	等腰三角形
15	200	100	100	非三角形

举例2: NextDate问题

问题陈述: NextDate是一个函数,函数的输入参数是一个日期,包括三个变量(月份、日和年);函数的输出返回值是此日期的下一天的日期。变量的年、月、日都是整数,且满足以下条件:

1 ≤ 月份 ≤ 12 1 ≤ 日期 ≤ 31 1812 ≤ 年 ≤ 2012

边界值分析:

各变量的边界值:

月份 = {1, 2, 6, 11, 12} 日期 = {1, 2, 15, 30, 31} 年 = {1812, 1813, 1912, 2011, 2012}

测试用例:???

举例3: 基于输出域的边界值分析一佣金问题

问题陈述:一位步枪销售商销售某步枪制造商生产的枪机、枪托和枪管。一个月内的生产限额是70个枪机、80个枪托和90个枪管。枪机卖45美元,枪托卖30美元,枪管卖25美元,且销售商每月至少要售出一支完整的步枪。销售商的佣金计算如下:销售额不到(含)1000美元的部分为10%,1000(不含)1800(含)关元的部分为15%,超过1800美元的部分为20%。"佣金程序"生成月份销售报告,汇总售出的枪机、枪托和枪管总数,销售商的总销售额以及佣金。

分析:

- 1. 售出的: $1 \le$ 枪机数 ≤ 70 , $1 \le$ 枪托数 ≤ 80 , $1 \le$ 枪管数 ≤ 90
- 2. 100美元≤销售额≤7800美元

- 基于"输入域的边界值"生成测试用例
 - 绝大部分测试用例都**使得:输出集中在某个区间** "佣金为[1800,7800]"
- 基于"输出域的边界值"生成测试用例
 - "佣金"的边界值 取决于 "销售额"的边界值
 - 对"销售额"进行边界值分析边界值
- 如何找出输出域"销售额"的边界值对应的输入变量组合?
 - 可利用电子表格,从而简化大量的计算工作.
 - 本例:
 - 对于"<u>输出</u>的最小值和最大值"很容易,正好对应"<u>输入</u>的最小值组合和最大值组合".
 - 在"<u>输入</u>的最小值"的基础上进行调整,可使得输出值略高于"<u>输出</u>的最小值".
 - 在"<u>输出</u>的最大值"的基础上进行调整,可使得输出值略低于"<u>输入</u>的最大值".

表5-4 输出边界值分析测试用例

用例	枪机	枪托	枪管	销售額	佣金	注释 430天的
III (CPP) 20:	0 张子辛3	州智慧 1970	THE TOTAL	100	10	输出最小值
显示 2 時	思本 基始的	国域机制国	2	125	12.5	输出略大于最小值
	as at la see	2	1 .	130	13	输出略大于最小值
HISTORY 4	2	T	T I	145	14.5	输出略大于最小值
5	大量 5	5 111	5	500	50	国。中点出然器郑主发形器
6	10	10	9	975	97.5	略低于边界点
7	10	9	10	970	97	略低于边界点
NEW 8 401	9 8	10	10	955	95.5	略低于边界点
9	10	10 7 9	10	1000	15 100 Isual V	边界点
10	10	10	11	1025	103.75	略高于边界点
11	10	50 H	# 105mS	1030 - (1)	104.5	略高于边界点
12	11	10	10	1045	106.75	略高于边界点
主发作13.第	1 214 181	14	14	1400	160	企业中点外国家加入 第一年,其
14	18	18	17	1775	216.25	略低于边界点
15.	18	17	18	1770	215.5	略低于边界点
16	17	18	18	1755	213.25	略低于边界点
17	18	18	18	1800	220	边界点
218	18	18	19	1825	225	略高于边界点
19	18	19	18	1830	226	略高于边界点
20	19	18	18	1845	229	略高于边界点
21	48	48	48	4800	820	中点
22	70	80	89	7775	. 1415	输出略小于最大值
23	70	79	90	7770	1414	输出略小于最大值
24	69	80	90	7755	1411	输出略小于最大值
25	70	80	90	7800	1420	输出最大值
		27.1		-03774	1917	7754

边界值分析的特点

- 局限性: 较适用于变量之间没有依赖的情况。
 - 例: 年月日的关系则不容易用边界值分析,因为年月日相关联(大小月的天数,闰年的二月天数)。
 - 如果被测程序是多个独立变量的函数,则很适合边界值分析。
- 不适用于布尔变量
 - 每个变量只有两个边界值: T, F。(无其它三个边界值)
- 如果没有显式地给出边界,则需要分析规格说明,找出其它可能的边界条件。
- 如果输入或输出域是一个有序集,则可将有序集的第一个元素 和最后一个元素作为边界。
- 还可基于"输出异常"进行测试,以观察系统的错误处理功能。

健壮性测试

- 用于测试: 超过极值时的系统表现,即"例外情况处理"。
- 是边界值分析的扩展,增加两个极值:略超过最大值的取值 (max+),略小于最小值的取值(min-)。
 - 每个变量的边界值: (即: min-, min, min+, nor, max-, max, max+)

如果有一个n变量函数,健壮性测试会产生多少个测试用例?

例: 三角形问题 的健壮性测试

三角形问题有三个输入,即三条边a、b、c, 其取值范围为:

```
1 \le a \le 200

1 \le b \le 200

1 \le c \le 200
```

变量极值:

```
a = \{0, 1, 2, 100, 199, 200, 201\}

b = \{0, 1, 2, 100, 199, 200, 201\}

c = \{0, 1, 2, 100, 199, 200, 201\}
```

测试用例:????

最坏情况测试

- 当多个变量取极值时,系统如何?
- 测试用例的生成:
 - 1. 对每个变量进行边界值分析,生成一个五元素的边界值集合
 - 2. 对所有变量的边界值集合进行笛卡儿积计算
- 例如 程序的两个变量是 X_1 和 X_2 ,

$$X_1 = \{X_{1min}, X_{1min+}, X_{1nom}, X_{1max-}, X_{1max}\}$$
 $X_2 = \{X_{2min}, X_{2min+}, X_{2nom}, X_{2max-}, X_{2max}\}$ 则最坏情况测试的测试用例集合 = $X_1 \times X_2$

= $\{X1min, X1min+, X1nom, X1max-, X1max\} \times \{X2min, X2min+, X2nom, X2max-, X2max\}$

最坏情况测试用例

(红色:是比"边界值分析"多出来的测试用例)

如果有一个n变量函数,最坏情况测试会产生多少个测试用例? 5^n

例: 三角形问题 的最坏情况测试

三角形问题有三个输入,即三条边a、b、c, 其取值范围为:

```
1 \le a \le 200
1 \le b \le 200
1 \le c \le 200
a = \{1, 2, 100, 199, 200\}
b = \{1, 2, 100, 199, 200\}
```

 $c = \{1, 2, 100, 199, 200\}$

最坏情况测试用例集合 = a × b × c = $\{1, 2, 100, 199, 200\}$ × $\{1, 2, 100, 199, 200\}$ × $\{1, 2, 100, 199, 200\}$

健壮最坏情况测试

- •测试用例的生成:
 - -1. 对每个变量进行健壮性测试,生成一个七元素集
 - 2. 对所有变量的七元素集进行笛卡儿积计算

•例如 程序的两个变量是 X_1 和 X_2 ,

$$X_1 = \{X_{1min-}, \ X_{1min}, \ X_{1min+}, \ X_{1nom}, \ X_{1max-}, \ X_{1max}, \ X_{1max+}\}$$
 $X_2 = \{X_{2min-}, \ X_{2min}, \ X_{2min+}, \ X_{2nom}, \ X_{2max-}, \ X_{2max}, \ X_{2max+}\}$ 则最坏情况测试的测试用例集合 = $X_1 \times X_2$

$$= \{X_{1\min-}, X_{1\min}, X_{1\min+}, X_{1\min}, X_{1\min-}, X_{1\max-}, X_{1\max}, X_{1\max+}\} \times \{X_{2\min-}, X_{2\min}, X_{2\min+}, X_{2\min}, X_{2\min-}, X_{2\max-}, X_{2\max-}, X_{2\max+}\}$$

健壮最坏情况测试用例

(红色: 是比"最坏情况测试"多出来的测试用例)

如果有一个n变量函数,健壮最坏情况测试会产生多少个测试用例?

例: NextDate函数 的健壮最坏情况测试

NextDate是一个有三个变量(月份、日期和年)的函数,函数返回输入日期后面的那个日期。变量月份、日期和年都具有整数值,且满足以下条件:

```
1 ≤ 月份 ≤ 12
1 ≤ 日期 ≤ 31
1812 ≤ 年 ≤ 2012
```

```
月份 = \{0, 1, 2, 6, 11, 12, 13\}
日期 = \{0, 1, 2, 15, 30, 31, 32\}
年 = \{1811, 1812, 1813, 1912, 2011, 2012, 2013\}
```

NextDate函数健壮最坏情况测试用例集合 = 月份 × 日期 × 年 = $\{0, 1, 2, 6, 11, 12, 13\}$ × $\{0, 1, 2, 15, 30, 31, 32\}$ × $\{1811, 1812, 1813, 1912, 2011, 2012, 2013\}$

特殊值测试

- "错误猜测法"的一种,运用十分广泛。
- 特别依赖于测试人员的经验。
 - 主观性
 - 有效性: 尽管有高度的主观性,但是所产生的测试用例集, 常常比用那些研究过的方法生成的测试用例集,更能有效地发现缺陷。
 - 这也说明了软件测试的工艺性质。
- 例如:让测试人员为*NextDate*函数设计特殊值测试用例。其中,不少的测试用例都会涉及:闰年和2月28日,2月29日。

随机测试

基本思想: 使用随机数生成器选出测试用例。

例如:对于输入变量x ($a \le x \le b$),可以用程序来生成x的测试用例。

x = Int (b-a+1) * Rnd + a (其中,函数Rnd用于生成区间[0,1]内的随机数),

该程序利用上述语句可以不断地生成x的随机值,直到<u>所关注</u> <u>的</u>每种<u>输出</u>至少出现一次。

随机测试的优缺点

优点:避免出现测试偏见。

缺点: 生成多少随机测试用例才是充分的?

- 一 "不充分的测试是愚蠢的,而过度的测试则是一种罪孽"
- 一 白盒测试 测试覆盖率

总结

- 边界值测试
 - 边界值分析
 - 健壮性测试
 - 最坏情况测试
 - 健壮最坏情况测试
- 特殊值测试
- 随机测试

