2.5 EJERCICIOS

- **1.** Escriba una ecuación que exprese el hecho de que una función *f* es continua en el número 4.
- **2.** Si f es continua en $(-\infty, \infty)$, ¿qué puede decir acerca de su gráfica?
- **3.** (a) A partir de la gráfica de *f*, establezca el número en el cual *f* es discontinua y explique por qué.
 - (b) Para cada uno de los números que se obtuvieron en el inciso (a), determine si f es continua por la derecha, por la izquierda o por ninguno de los dos lados.

4. A partir de la gráfica de g, establezca los intervalos sobre los que g es continua.

- **5–8** Trace la gráfica de una función *f* que es continua, a excepción de la discontinuidad indicada.
- 5. Discontinua, pero continua por la derecha, en 2.
- **6.** Discontinuidades en − 1 y 4, pero continuas por la izquierda en −1 y por la derecha en 4.
- 7. Discontinuidad removible en 3, discontinuidad de salto en 5.
- **8.** Ni por la izquierda ni por la derecha es continua en −2, continua solo por la izquierda en 2.
- **9.** El peaje *T* que se cobra por conducir en un determinado tramo de una carretera es de \$5, excepto durante las horas pico (entre las 7 y las 10 y entre las 16 y 19 horas) cuando el peaje es de \$7.
 - (a) Trace una gráfica de *T* como una función del tiempo *t*, medido en horas pasada la medianoche.

(b) Analice las discontinuidades de esta función y su significado para alguien que utiliza la carretera.

- **10.** Explique por qué cada una de las funciones siguientes es continua o discontinua.
 - (a) La temperatura en una localidad específica como una función del tiempo.
 - (b) La temperatura en un tiempo dado como una función de la distancia al oeste de París.
 - (c) La altitud sobre el nivel del mar como una función de la distancia al oeste de París.
 - (d) El costo de transportarse en taxi como una función de la distancia de traslado.
 - (e) La corriente en un circuito de iluminación en una habitación como una función del tiempo.
- **11–14** Utilice la definición de continuidad y las propiedades de los límites para demostrar que cada una de las funciones siguientes es continua en el número dado *a*.

11.
$$f(x) = x^2 + \sqrt{7 - x}$$
, $a = 4$

12.
$$g(t) = \frac{t^2 + 5t}{2t + 1}$$
, $a = 2$

13.
$$p(v) = 2\sqrt{3v^2 + 1}, \quad a = 1$$

14.
$$f(x) = 3x^4 - 5x + \sqrt[3]{x^2 + 4}, \quad a = 2$$

15–16 Utilice la definición de continuidad y las propiedades de los límites para demostrar que cada una de las funciones siguientes es continua en el intervalo dado.

15.
$$f(x) = x + \sqrt{x-4}$$
, $[4, \infty)$

16.
$$g(x) = \frac{x-1}{3x+6}$$
, $(-\infty, -2)$

17–22 Explique por qué cada una de las funciones siguientes es discontinua en el número dado *a*. Trace la gráfica de la función.

17.
$$f(x) = \frac{1}{x+2}$$
 $a = -2$

18.
$$f(x) = \begin{cases} \frac{1}{x+2} & \text{si } x \neq -2\\ 1 & \text{si } x = -2 \end{cases}$$
 $a = -2$

19.
$$f(x) = \begin{cases} x + 3 & \text{si } x \le -1 \\ 2^x & \text{si } x > -1 \end{cases}$$
 $a = -1$

20.
$$f(x) = \begin{cases} \frac{x^2 - x}{x^2 - 1} & \text{si } x \neq 1 \\ 1 & \text{si } x = 1 \end{cases}$$
 $a = 1$

21.
$$f(x) = \begin{cases} \cos x & \text{si } x < 0 \\ 0 & \text{si } x = 0 \\ 1 - x^2 & \text{si } x > 0 \end{cases}$$
 $a = 0$

22.
$$f(x) = \begin{cases} \frac{2x^2 - 5x - 3}{x - 3} & \text{si } x \neq 3\\ 6 & \text{si } x = 3 \end{cases}$$
 $a = 3$

125

23.
$$f(x) = \frac{x^2 - x - 2}{x - 2}$$

24.
$$f(x) = \frac{x^2 - 3x + 2}{x^2 + x - 6}$$

25-32 Utilizando los teoremas 4, 5, 7 y 9, explique por qué cada una de las funciones siguientes es continua en todo número de su dominio. Determine el dominio.

25.
$$F(x) = \frac{2x^2 - x - 1}{x^2 + 1}$$

25.
$$F(x) = \frac{2x^2 - x - 1}{x^2 + 1}$$
 26. $G(x) = \frac{x^2 + 1}{2x^2 - x - 1}$

27.
$$Q(x) = \frac{\sqrt[3]{x-2}}{x^3-2}$$
 28. $R(t) = \frac{e^{\sin t}}{2 + \cos \pi t}$

$$\mathbf{28.}\ R(t) = \frac{e^{\sin t}}{2 + \cos \pi t}$$

29.
$$A(t) = \arcsin(1 + 2t)$$

30.
$$B(x) = \frac{\tan x}{\sqrt{4 - x^2}}$$

31.
$$M(x) = \sqrt{1 + \frac{1}{x}}$$

32.
$$N(r) = \tan^{-1}(1 + e^{-r^2})$$

₹ 33-34 Identifique las discontinuidades de cada una de las funciones siguientes e ilústrelas con una gráfica.

33.
$$y = \frac{1}{1 + e^{1/x}}$$

34.
$$y = \ln(\tan^2 x)$$

35–38 Utilice la continuidad para evaluar cada uno de los límites siguientes.

35.
$$\lim_{x \to 2} x \sqrt{20 - x^2}$$

$$\mathbf{36.} \lim_{x \to \pi} \operatorname{sen}(x + \operatorname{sen} x)$$

37.
$$\lim_{x \to 1} \ln \left(\frac{5 - x^2}{1 + x} \right)$$

38.
$$\lim_{x\to 4} 3^{\sqrt{x^2-2x-4}}$$

39–40 Demuestre que f es continua en $(-\infty, \infty)$.

39.
$$f(x) = \begin{cases} 1 - x^2 & \text{si } x \le 1 \\ \ln x & \text{si } x > 1 \end{cases}$$

40.
$$f(x) = \begin{cases} \sin x & \text{si } x < \pi/4 \\ \cos x & \text{si } x \ge \pi/4 \end{cases}$$

41–43 Encuentre los números en los que f es discontinua. ¿En cuáles de estos números f es continua por la derecha, por la izquierda o por ninguna de las dos? Trace la gráfica de f.

41.
$$f(x) = \begin{cases} x^2 & \text{si } x < -1 \\ x & \text{si } -1 \le x < 1 \\ 1/x & \text{si } x \ge 1 \end{cases}$$

42.
$$f(x) = \begin{cases} 2^x & \text{si } x \le 1\\ 3 - x & \text{si } 1 < x \le 4\\ \sqrt{x} & \text{si } x > 4 \end{cases}$$

43.
$$f(x) = \begin{cases} 1 + x^2 & \text{si } x \le 0 \\ 2 - x & \text{si } 0 < x \le 2 \\ (x - 2)^2 & \text{si } x > 2 \end{cases}$$

44. La fuerza gravitacional ejercida por la Tierra sobre una masa unitaria a una distancia r del centro del planeta es

$$F(r) = \begin{cases} \frac{GMr}{R^3} & \text{si } r < R \\ \frac{GM}{r^2} & \text{si } r \ge R \end{cases}$$

donde M es la masa de la Tierra, R su radio y G la constante gravitacional. ¿Es F una función continua de r?

45. ¿Para qué valor de la constante c la función f es continua en $(-\infty, \infty)$?

$$f(x) = \begin{cases} cx^2 + 2x & \text{si } x < 2\\ x^3 - cx & \text{si } x \ge 2 \end{cases}$$

46. Encuentre los valores de *a* y *b* que hacen a *f* continua para

$$f(x) = \begin{cases} \frac{x^2 - 4}{x - 2} & \text{si } x < 2\\ ax^2 - bx + 3 & \text{si } 2 \le x < 3\\ 2x - a + b & \text{si } x \ge 3 \end{cases}$$

47. Suponga que f y g son funciones continuas tales que g(2) = 6y $\lim_{x\to 2} [3f(x) + f(x)g(x)] = 36$. Encuentre f(2).

48. Sea f(x) = 1/x y $g(x) = 1/x^2$.

- (a) Encuentre $(f \circ g)(x)$.
- (b) ¿Es $f \circ g$ continua para todo x? Explique.

49. ¿Cuál de las funciones f siguientes tiene discontinuidad removible en a? Si la discontinuidad es removible, determine una función g que concuerde con f para $x \neq a$ y sea continua en a.

(a)
$$f(x) = \frac{x^4 - 1}{x - 1}$$
, $a = 1$

(b)
$$f(x) = \frac{x^3 - x^2 - 2x}{x - 2}$$
, $a = 2$

(c)
$$f(x) = [\![sen x]\!], \quad a = \pi$$

50. Suponga que una función f es continua en [0, 1], excepto en 0.25 y que f(0) = 1 y f(1) = 3. Sea N = 2. Trace dos posibles graficas de f, una en que se muestre que f podría no satisfacer la conclusión del teorema del valor intermedio y la otra que muestre que f todavía podría satisfacer ese teorema (aun cuando no satisfaga la hipótesis).

51. Si $f(x) = x^2 + 10$ sen x, demuestre que existe un número c tal que f(c) = 1000.

52. Suponga que f es continua sobre [1, 5] y las únicas soluciones de la ecuación f(x) = 6 son x = 1 y x = 4. Si f(2) = 8, explique por qué f(3) > 6.

53–56 Utilice el teorema del valor intermedio para demostrar que existe una raíz en cada una de las ecuaciones dadas en el intervalo especificado.

53.
$$x^4 + x - 3 = 0$$
, $(1, 2)$

54.
$$\ln x = x - \sqrt{x}$$
, (2, 3)

55.
$$\sqrt[3]{x} = 1 - x$$
, $(0, 1)$

56. sen
$$x = x^2 - x$$
, (1, 2)

57–58 Demuestre que cada una de las ecuaciones siguientes tiene cuando menos una raíz real. (b) Utilice su calculadora para encontrar un intervalo de longitud 0.01 que contenga una raíz.

57.
$$\cos x = x^3$$

58.
$$\ln x = 3 - 2x$$

59–60 (a) Demuestre que cada una de las ecuaciones siguientes tiene cuando menos una raíz real. (b) Utilice un dispositivo de graficación para encontrar la raíz redondeada hasta tres cifras decimales.

59.
$$100e^{-x/100} = 0.01x^2$$

60.
$$\arctan x = 1 - x$$

61–62 Demuestre sin hacer la gráfica que la función tiene al menos dos intersecciones con el eje *x* en el intervalo dado.

61.
$$y = \sin x^3$$
, (1, 2)

62.
$$y = x^2 - 3 + 1/x$$
, (0, 2)

63. Demuestre que f es continua en a si y solo si

$$\lim_{h \to 0} f(a+h) = f(a)$$

64. Para demostrar que la función seno es continua necesita demostrar que $\lim_{x\to a} \operatorname{sen} x = \operatorname{sen} a$ para todo número real a. Por el ejercicio 63, un enunciado equivalente es

$$\lim_{h \to 0} \operatorname{sen}(a + h) = \operatorname{sen} a$$

Utilice 6 para demostrar que esto es verdadero.

65. Demuestre que la función coseno es continua.

66. (a) Demuestre el teorema 4, inciso 3.

(b) Demuestre el teorema 4, inciso 5.

67. ¿Para qué valores de *x* es *f* continua?

$$f(x) = \begin{cases} 0 & \text{si } x \text{ es racional} \\ 1 & \text{si } x \text{ es irracional} \end{cases}$$

68. ¿Para qué valores de x es g continua?

$$g(x) = \begin{cases} 0 & \text{si } x \text{ es racional} \\ x & \text{si } x \text{ es irracional} \end{cases}$$

69. ¿Existe un número que es exactamente 1 más que su cubo?

70. Si a y b son números positivos, demuestre que la ecuación

$$\frac{a}{x^3 + 2x^2 - 1} + \frac{b}{x^3 + x - 2} = 0$$

tiene por lo menos una solución en el intervalo (-1, 1).

71. Demuestre que la función

$$f(x) = \begin{cases} x^4 \sec(1/x) & \text{si } x \neq 0 \\ 0 & \text{si } x = 0 \end{cases}$$

es continua en $(-\infty, \infty)$

72. (a) Demuestre que la función valor absoluto F(x) = |x| es continua para toda x.

(b) Demuestre que si f es una función continua en un intervalo, entonces también lo es |f|.

(c) ¿Lo inverso del enunciado del inciso (b) también es verdadero? En otras palabras, si |f| es continua, ¿se deduce que f es continua? Si es así, demuéstrelo. Si no, encuentre un contraejemplo.

73. Un monje tibetano sale del monasterio a las 7:00 y emprende su camino habitual hacia la cima de la montaña, adonde llega a las 19:00. La mañana siguiente inicia el regreso desde la cima por la misma ruta a las 7:00 y llega al monasterio a las 19:00. Utilice el teorema del valor intermedio para demostrar que existe un punto a lo largo de la ruta que el monje cruzará exactamente a la misma hora en ambos días.

2.6 Límites al infinito; asíntotas horizontales

En las secciones 2.2 y 2.4 se trataron los límites infinitos y las asíntotas verticales. Ahí se hizo tender *x* a un número y se vio que los valores de *y* se volvían arbitrariamente grandes (ya fueran positivos o negativos). En esta sección se hará a *x* arbitrariamente grande (positivo y negativo) y observe qué ocurre con *y*.

Inicie por investigar el comportamiento de la función f definida por

$$f(x) = \frac{x^2 - 1}{x^2 + 1}$$