TOUCH PANEL AND IMAGE INPUT TYPE DISPLAY DEVICE

Patent number:

JP2002182854 -

Publication date:

2002-06-28

Inventor:

KONO MASAO; CHIBA SHINSAKU; KONDO YASUAKI;

OTSUKA HARUHISA

Applicant:

HITACHI LTD; HITACHI DEVICE ENG

Classification:

- international:

G06F3/03; G06F3/033; G09F9/00; H01H11/00; H01H13/70; G06F3/03; G06F3/033; G09F9/00; H01H11/00; H01H13/70; (IPC1-7): G06F3/033; G06F3/03; G09F9/00; H01H11/00; H01H13/70

- european:

Application number: JP20000383815 20001218 Priority number(s): JP20000383815 20001218

Report a data error here

Abstract of JP2002182854

PROBLEM TO BE SOLVED: To provide a reliable liquid crystal display device with a touch panel which solves problems like an input error and disabled input, for easily making a frame narrower. SOLUTION: The terminal parts 31a to 31d of a coupling cable 30 being an interface part with an external circuit are formed on both upper and lower faces, terminal parts 15a to 15d formed on the upper base 11 and the lower base 21 respectively of the touch panel are connected to the terminal parts 31a to 31d of the coupling cable 30, and at least a part of adhesives 33a and 33b adhered to the upper and lower bases 11 and 21 of the touch panel also intervenes up to a position where the part is superimposed in an area including a part with no terminals in a direction perpendicularly to the face of the cable 30 constituting the cable 30.

Data supplied from the esp@cenet database - Worldwide

(19)日本国特許庁 (JP) (12) 公開特許公報 (A)

(11)特許出願公開番号 特開2002-182854 (P2002-182854A)

(43)公開日 平成14年6月28日(2002.6.28)

(51) Int.Cl.7		識別記号	FΙ			テーマコード(参考)
G06F	3/033	360	G06F 3	3/033	360H	5B068
	3/03	3 2 0	3	3/03	320G	5B087
G09F	9/00	366	G09F 9	/00	366A	5 G O O 6
H01H	11/00		H01H 11	/00	С	5 G O 2 3
	13/70		13/70		E 5G435	
			农簡査審	未請求	請求項の数18	OL (全 17 頁)
(21)出願番号		特顧2000-383815(P2000-383815)	(71)出顧人	000005108 株式会社日立製作所		
(22)出顧日		平成12年12月18日 (2000. 12. 18)			F代田区神田駿河 ⁻	台四丁目6番地
(,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	(71) 出願人 000233088			
			. ,	日立デバイスエンジニアリング株式会社		
				千葉県市	支原市早野3681番	也
			(72)発明者	河野 昌	基雄	
				千葉県方	支原市早野3681番	电 日立デバイス

最終頁に続く

(54) 【発明の名称】 タッチパネルおよび画面入力型表示装置

(57)【要約】

【課題】入力エラーや入力不能を解消し、かつ信頼性の 高い狭額縁化が容易なタッチパネル付き液晶表示装置を

【解決手段】外部回路とのインターフェース部である接 続ケーブル30の端子部31a~31dを上下両面に形 成し、タッチパネルの上基板11と下基板21のそれぞ れの形成した端子部15a~15dと接続ケーブル30 の端子部31a~31dを接続すると共にタッチパネル の上下基板11、21に接着する接着材33a, 33b の少なくとも一部が当該接続ケーブル30を構成する接 続ケーブル30の面と直角な方向で端子の無い部分も含 む領域で重畳する位置にまで介在させた。

エンジニアリング株式会社内

弁理士 小野寺 洋二

(74)代理人 100093506

【特許請求の範囲】

【請求項1】上抵抗膜を有する上基板と、下抵抗膜を有 する下基板と、前記上抵抗膜及び前記下抵抗膜から検知 出力を取り出す接続ケーブルとを備えたタッチパネルで あって、

前記上基板は、前記上抵抗膜に電気的に接続された少な くとも一の上端子部を有し、

前記下基板は、前記下抵抗膜に電気的に接続された少な くとも一の下端子部を有し、

前記接続ケーブルは、一端の上面及び下面にそれぞれ前 記上端子部及び前記下端子部と接続される少なくとも一 の上ケーブル端子部及び少なくとも一の下ケーブル端子 部を有し、

前記接続ケーブルは、前記接続ケーブルの両面で前記上 基板及び前記下基板に接続材により接着されているとと もに、前記接続ケーブルの上面と前記上基板とが前記接 続材により接着された領域である上接着領域及び前記接 続ケーブルの下面と前記下基板とが前記接続材により接 着された領域である下接着領域が、前記接続ケーブルの 上面に垂直な方向から見たときに少なくとも一部が重畳 20 していることを特徴とするタッチパネル。

【請求項2】前記上基板と前記下基板とが粘着により貼 り合わされていることを特徴とする請求項1に記載のタ ッチパネル。

【請求項3】前記上基板の熱膨張率と前記下基板の熱膨 張率とが異なることを特徴とする請求項1又は2に記載 のタッチパネル。

【請求項4】前記上接着領域及び前記下接着領域が、前 記接続ケーブルの幅方向全域にわたることを特徴とする 請求項1から3の何れかに記載のタッチパネル。

【請求項5】前記上基板は、前記上抵抗膜と前記上端子 部とを電気的に接続する少なくとも一の上配線を有し、 前記下基板は、前記下抵抗膜と前記下端子部とを電気的 に接続する少なくとも一の下配線を有し、

前記上配線と前記下配線とが前記上基板の面に垂直な方 向から見たときに交差領域を有しないことを特徴とする 請求項1から4の何れかに記載のタッチパネル。

【請求項6】前記上ケーブル端子部及び前記下ケーブル 端子部が、前記接続ケーブルの上面に垂直な方向から見 たときに少なくとも一部が重畳していることを特徴とす 40 る請求項1から5の何れかに記載のタッチパネル。

【請求項7】前記上ケーブル端子部及び前記下ケーブル 端子部が、前記接続ケーブルの上面に垂直な方向から見 たときに重畳していないことを特徴とする請求項1から 5の何れかに記載のタッチパネル。

【請求項8】前記上基板は軟質フィルムであり、前記下 基板は硬質板であり、前記上基板と前記下基板とが所定 の間隙をもって貼り合わせされ、前記上抵抗膜側を前記 下抵抗膜側に押圧することによる前記上抵抗膜と前記下 得ることを特徴とする請求項1から7の何れかに記載の タッチパネル。

【請求項9】上抵抗膜を有する上基板と、下抵抗膜を有 する下基板と、前記上抵抗膜及び前記下抵抗膜から検知 出力を取り出す接続ケーブルとを備えたタッチパネルで あって、

前記上基板は、少なくとも一の上端子部と、前記上抵抗 膜と前記上端子部とを電気的に接続する少なくとも一の 上配線とを有し、

前記下基板は、少なくとも一の下端子部と、前記下抵抗 10 膜と前記下端子部とを電気的に接続する少なくとも一の 下配線とを有し、

> 前記接続ケーブルは、一端の上面及び下面にそれぞれ前 記上端子部及び前記下端子部と接続される少なくとも一 の上ケーブル端子部及び少なくとも一の下ケーブル端子 部を有し、

> 前記上配線と前記下配線とが前記上基板の面に垂直な方 向から見たときに交差領域を有しないことを特徴とする タッチパネル。

【請求項10】前記上ケーブル端子部及び前記下ケーブ ル端子部が、前記接続ケーブルの上面に垂直な方向から 見たときに少なくとも一部が重畳していることを特徴と する請求項9に記載のタッチパネル。

【請求項11】前記上ケーブル端子部及び前記下ケーブ ル端子部が、前記接続ケーブルの上面に垂直な方向から 見たときに重畳していないことを特徴とする請求項9に 記載のタッチパネル。

【請求項12】前記接続ケーブルは、前記接続ケーブル の両面で前記上基板及び前記下基板に接続材により接着 されているとともに、前記接続ケーブルの上面と前記上 基板とが前記接続材により接着された領域である上接着 領域及び前記接続ケーブルの下面と前記下基板とが前記 接続材により接着された領域である下接着領域が、前記 接続ケーブルの上面に垂直な方向から見たときに少なく とも一部が重畳していることを特徴とする請求項9から 11の何れかに記載のタッチパネル。

【請求項13】前記上基板と前記下基板とが粘着により 貼り合わされていることを特徴とする請求項12に記載 のタッチパネル。

【請求項14】前記上基板の熱膨張率と前記下基板の熱 膨張率とが異なることを特徴とする請求項12又は13 に記載のタッチパネル。

【請求項15】前記上接着領域及び前記下接着領域が、 前記接続ケーブルの幅方向全域にわたることを特徴とす る請求項12から14の何れかに記載のタッチパネル。

【請求項16】前記上基板は軟質フィルムであり、前記 下基板は硬質板であり、前記上基板と前記下基板とが所 定の間隙をもって貼り合わせされ、前記上抵抗膜側を前 記下抵抗膜側に押圧することによる前記上抵抗膜と前記 抵抗膜の接触位置を2次元座標値とした入力検知出力を 50 下抵抗膜の接触位置を2次元座標値とした入力検知出力

を得ることを特徴とする請求項9から15の何れかに記載のタッチパネル。

【請求項17】表示パネルと、前記表示パネルの表示面 側にタッチパネルを重ねて設置した画面入力型表示装置 において、

前記タッチパネルは、上抵抗膜を有する上基板と、下抵抗膜を有する下基板と、前記上抵抗膜及び前記下抵抗膜から検知出力を取り出す接続ケーブルとを備えたタッチパネルであって、

前記上基板は、前記上抵抗膜に電気的に接続された少な くとも一の上端子部を有し、

前記下基板は、前記下抵抗膜に電気的に接続された少な くとも一の下端子部を有し、

前記接続ケーブルは、一端の上面及び下面にそれぞれ前記上端子部及び前記下端子部と接続される少なくとも一の上ケーブル端子部及び少なくとも一の下ケーブル端子部を有し、

前記接続ケーブルは、前記接続ケーブルの両面で前記上 基板及び前記下基板に接続材により接着されているとと もに、前記接続ケーブルの上面と前記上基板とが前記接 20 続材により接着された領域である上接着領域及び前記接 続ケーブルの下面と前記下基板とが前記接続材により接 着された領域である下接着領域が、前記接続ケーブルの 上面に垂直な方向から見たときに少なくとも一部が重畳 していることを特徴とする画面入力型表示装置。

【請求項18】表示パネルと、前記表示パネルの表示面 側にタッチパネルを重ねて設置した画面入力型表示装置 において

前記タッチパネルは、上抵抗膜を有する上基板と、下抵抗膜を有する下基板と、前記上抵抗膜及び前記下抵抗膜 30 から検知出力を取り出す接続ケーブルとを備えたタッチパネルであって、

前記上基板は、少なくとも一の上端子部と、前記上抵抗 膜と前記上端子部とを電気的に接続する少なくとも一の 上配線とを有し、

前記下基板は、少なくとも一の下端子部と、前記下抵抗 膜と前記下端子部とを電気的に接続する少なくとも一の 下配線とを有し、

前記接続ケーブルは、一端の上面及び下面にそれぞれ前 記上端子部及び前記下端子部と接続される少なくとも一 40 の上ケーブル端子部及び少なくとも一の下ケーブル端子 部を有し、

前記上配線と前記下配線とが前記上基板の面に垂直な方向から見たときに交差領域を有しないことを特徴とする 画面入力型表示装置。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、押圧力による抵抗 変化で入力座標を検知するタッチパネルと、このタッチ パネルを積層して構成した画面入力型表示装置に関す る。

[0002]

【従来の技術】近年、パソコンの表示手段、その他のモニターとして液晶パネルやELパネル、プラズマパネル等のパネル型の表示装置に、その表示画面から文字や図形、あるいは当該画面上の表示の選択を直接行う、所謂タッチパネルを重ねて設置した画面入力型表示装置が多用されるようになってきた。

【0003】タッチパネルには、その動作原理から種々 10 の方式があるが、その中で最もポピュラーなものが抵抗 変化量で入力座標を検知する方式、所謂アナログ抵抗膜 方式である。

【0004】このアナログ抵抗膜方式のタッチパネルは、情報入力側である一方の基板を透明な軟質フィルムで構成し、他方の基板をガラスを好適とする透明な硬質基板で構成し、2枚の透明基板の対向面にITO等の透明材料からなる抵抗膜を備え、上記一方の基板表面から印加される押圧力で接触した各抵抗膜と出力端子間の抵抗値で2次元の座標値を検出するものである。

【0005】このようなタッチパネルを用いた画面入力型表示装置の典型例としては、表示装置に液晶パネルを用いたものが広く採用されている。

【0006】図15液晶パネルにタッチパネルを積層した画面入力型表示装置の構成例を説明する概略断面図である。この種の画面入力型表示装置は、基本的には液晶パネル300の上にタッチパネル100を積層して構成される。

【0007】図示の画面入力型表示装置では、液晶パネル300とタッチパネル100の間に補助光源装置200を構成する導光板201を介挿している。なお、補助光源装置200は、導光板201のサイドエッジに線状ランプ等の光源202と、この光源200からの出射光を有効利用するためのランプ反射シート203から構成なれる

【0008】図16は従来のアナログ抵抗膜方式のタッチパネルの第1の構成例を説明する展開斜視図、図17は図16の電気的配線図である。このタッチパネル100は2枚の透明基板で構成されている。上側の基板(上基板)11はポリエチレンテレフタレート(PET)フィルムを好適とする透明な軟質フィルムの内面にインジウムチンオキサイド(ITO)を好適とする抵抗膜12を全面ベタで成膜してある。同様に、下側の基板(下基板)21はガラスを好適とする透明な硬質基板の内面にITOを好適とする抵抗膜22を全面ベタで成膜してある。

【0009】さらに、上基板11の上記抵抗膜12の一方の平行辺対には当該抵抗膜12と電気的に接続した一対の電極 (Y軸電極)13 (Y軸Y1電極131とY軸Y2電極132)が形成され、配線部 (Y軸Y1配線141とY軸Y2配線142)を介して他方の平行辺対の

一つに位置する外部回路(接続ケーブル、ここではフレ キシブルプリント基板 (FPC) 30) との接続部 (イ ンターフェース部)36に端子を形成してある。

【0010】また、下基板21の抵抗膜22の上記一方 の平行辺対と隣接する他方の平行辺対には当該抵抗膜2 2と電気的に接続した一対の電極 (X軸電極) 23 (X 軸X1電極231とX軸X2電極232)が形成され、 配線部(X軸X1配線241とX軸X2配線242)を 介して上記FPC30との接続部であるインターフェー ス部36に端子を形成してある。

【0011】FPC30にはY軸配線Y1, Y2とX軸 配線 X1, X2を有し、Y軸配線 Y1, Y2の端部には 上基板側に端子部を有し、X軸配線X1, X2の端部に は下基板側に端子部を有し、Y軸Y1配線141とY軸 Y2配線142およびX軸X1配線241とX軸X2配 線242の端子部と熱圧着等で電気的に接続され、図1 7に示したように配線されている。

【0012】ここで、FPC30と上基板11との間で 熱圧着により接着されている領域は、Y軸Y1配線14 1及びY軸Y2配線142の端子部の付近だけであり、 下基板21に設けられたX軸X1配線241及びX軸X 2配線242の端子部に対向する位置では、上基板11 とFPC30とは接着されていない。また、FPC30 と下基板21との間で熱圧着により接着されている領域 は、X軸X1配線241及びX軸X2配線242の端子 部の付近だけであり、上基板11に設けられたY軸Y1 配線141及びY軸Y2配線142の端子部に対向する 位置では、下基板21とFPC30とは接着されていな い。従って、上基板11の面に垂直な方向から見た場 合、FPC30と上基板11が接着されている領域と、 FPC30と下基板21が接着されている領域は重畳し ていない。

【0013】なお、Y軸Y1電極131とY軸Y2電極 132やX軸X1電極231とX軸X2電極232は銀 ペースト等の導電性スラリのスクリーン印刷等で形成さ れている。図17に示したように、Y軸配線とX軸配線 (図示の構成では、Y軸Y1配線142とX軸X1配線 242) は接続部36で交差している。

【0014】図18は従来のアナログ抵抗膜方式のタッ チパネルの第2の構成例を説明する展開斜視図、図19 は図18の電気的配線図である。このタッチパネルの基 板材料や抵抗膜の構成は図16に示したものと略同様で あり、同一機能部分には同一符号を付してある。この構 成例は、FPC30の端子部が全て上基板側に形成され ている点で前記のタッチパネルと異なる。

【0015】すなわち、上基板11の内面にはY軸電極 13と上下接続部41とX軸配線(X軸X1配線、X軸 X2配線) とその端子が形成され、上基板11の接続部 でFPC30の端子に片面接続されている。FPC30 の上基板11側に全ての端子が形成されている。

【0016】上下接続部41は銀ペーストを好適とする 導電材料の印刷による導電膜に形成したスルーホールに 銀ペーストを好適とする導電材料を充填することで下基 板のX軸電極を上基板側に形成したX軸配線に接続して

【0017】この構成では、図19に示したように、Y 軸配線とX軸配線は接続部36で交差していない。

【0018】このようにして、上下の基板に形成した抵 抗膜11、22で2次元座標を形成し、押圧点(入力) 10 点)の座標値を外部回路で検出する。

【0019】なお、この種のタッチパネルの第1の構成 例を開示したものとしては、例えば特開平11-219 259号公報を挙げることができる。

[0020]

20

【発明が解決しようとする課題】上記した従来のタッチ パネルでは、以下で説明するような課題を有していた。 まず、図16と図17に示した構成のタッチパネルでは FPCとの接続部付近で配線が交差する。この交差によ り、所謂マイグレーションが発生する場合がある。

【0021】図20はタッチパネルのFPCとの接続部 付近で配線が交差することによるマイグレーション発生 を説明する模式図である。図中、142は上基板11に 形成したY軸Y2電極からの配線部(Y軸Y2配線)、 241は下基板21に形成したX軸X1電極からの配線 部(X軸Y1配線)である。

【0022】Y軸Y2配線142には絶縁材16が被覆 され、下基板21と粘着材17で貼り合わせてある。 Y 軸Y2配線142とY軸Y1配線241は共に銀ペース ト等の導電材の印刷で形成されているため、この交差部 では、動作中の電圧印加で絶縁剤16及び粘着材17を 貫通して上記両配線を短絡するマイグレーションMSが 発生することがある。

【0023】このマイグレーションMSの発生はタッチ パネルの入力エラーや入力不能等をもたらし、信頼性を 低下させてしまう。

【0024】また、図16及び図17に示した構成のタ ッチパネルでは、接着領域がFPC30の上面と下面で 重畳していないことから、上下基板の熱膨張率の違いに よりFPC30を引き裂く方向に応力が加わり、FPC 30がねじれるような応力が加わる。これにより、FP C 3 0 の接続が外れるなどの接続不良を引き起こす場合 がある。これらの応力は上下基板の熱膨張率の違いを原 因とするものだけではなく、その他の外力による場合も ある。

【0025】また、図21は図18に示したFPCとの 接続を上基板側とした場合の断面構造を説明する模式断 面図であり、FPC30の端子部が全て上基板11側に 形成され、下基板21のX軸電極23をスルーホールに 充填した銀ペーストを用いた上下接続部41で上基板1 50 1のX軸電極23に接続したものである。FPC30は

-4-

7

ケーブル接続材33を介して接続ケーブル配線部32の 端部の端子部と共に上基板11側に固定されている。

【0026】そして、図22はFPCとの接続部を下基板側とした場合の断面構造を説明する模式断面図であり、FPC30の端子部が全て下基板21側に形成され、上基板11のX軸電極23をスルーホールに充填した銀ペーストを用いた上下接続部41で下基板21のX軸電極23に接続したものである。FPC30はケーブル接続材33を介して接続ケーブル配線部32の端部の端子部と共に下基板21側に固定されている。

【0027】図21、図22で説明したように、上下基板の一方にFPCとの接続端子を設けたものでは、タッチパネルの上下抵抗膜とFPCとの接続は、FPCのケーブル配線部の端部の端子部で上基板または下基板と固定されている。そのため、タッチパネルの端子部を形成する辺縁には、図21、図22に示した上下接続用の電極(X軸電極23)を形成する必要がある。そして、上下接続部41は上下基板がずれた場合でも上下の接続を確保するために所要の大きさが必要となる。

【0028】このような上下接続用の電極を形成するた 20 めには、タッチパネルの当該位置に所要のスペースを確保しなければならず、実効的な入力領域が制限され、狭額緑化を阻害する要因の一つとなっていた。

【0029】このように、上下接続を行うタイプの図18および図19で説明した形式のタッチパネルでは、上下接続のための領域を必要とするため、実効的な入力領域の面積が制限され、所謂狭額縁化が困難である。さらに、上下接続をスルーホールに充填した銀ペーストを介して行っているため、粘着材で粘着した上下基板のずれで接続不良が発生し、信頼性を低下させてしまうと共に、この形式のタッチパネルの製造では、上下接続用の配線形成やスルーホールへの銀ペーストの充填など、工数が多くなり、コスト削減を支障する原因の一つとなっていた。

【0030】本発明の目的は、上記従来技術の課題を解決し、入力エラーや入力不能を解消し、狭額縁化を向上させると共に製造コストを削減して信頼性の高いタッチパネルとこのタッチパネルを用いた画面入力型表示装置を提供することにある。

[0031]

【課題を解決するための手段】上記目的を達成するために、本発明によるタッチパネルは、外部回路とのインターフェース部である接続ケーブル(フレキシブルプリント基板(FPC)等のプリント基板)の端子部を上下両面に形成し、各端子部とタッチパネルの各基板とを接着する接着領域を、少なくともその一部が当該接続ケーブルを構成するプリント基板の面と垂直な方向からみたときに重畳する位置(端子の無い領域も含む)とした。

【0032】このような構成としたことにより、前記し ルの上面にたスルーホールに導電性ペーストを充填した上下接続部 50 成とした。

8

を不要とし、額縁寸法を縮小して実効的な入力領域の拡大が図られ、また上下基板の熱膨張率の違いなどによる接続ケーブルへの応力印加に起因する接続不良が回避される。さらに、上下の配線が交差しないような配置とすることで、図20で説明したようなマイグレーションの発生を防止して入力不良を防止できる。

【0033】本発明の代表的な構成を記述すれば、次のとおりである。すなわち、上抵抗膜側を下抵抗膜側に押圧することによる上抵抗膜と下抵抗膜の接触位置を2次元座標値とした入力検知出力を得る本発明によるタッチパネルは、下記の構成としたことを特徴とする。

(1) 上抵抗膜を有する上基板と、下抵抗膜を有する下 基板と、前記上抵抗膜及び前記下抵抗膜から検知出力を 取り出す接続ケーブルとを備え、前記上基板は、前記上 抵抗膜に電気的に接続された少なくとも一の上端子部を 有し、前記下基板は、前記下抵抗膜に電気的に接続され た少なくとも一の下端子部を有し、前記接続ケーブル は、一端の上面及び下面にそれぞれ前記上端子部及び前 記下端子部と接続される少なくとも一の上ケーブル端子 部及び少なくとも一の下ケーブル端子部を有し、前記接 続ケーブルは、前記接続ケーブルの両面で前記上基板及 び前記下基板に接続材により接着されているとともに、 前記接続ケーブルの上面と前記上基板とが前記接続材に より接着された領域である上接着領域及び前記接続ケー ブルの下面と前記下基板とが前記接続材により接着され た領域である下接着領域が、前記接続ケーブルの上面に 垂直な方向から見たときに少なくとも一部が重畳してい る構成とした。

(2): (1) における前記上基板と前記下基板とを粘 30 着により貼り合わせた。

(3): (1) または (2) における前記上基板の熱膨 張率と前記下基板の熱膨張率とが異なる構成とした。

(4): $(1) \sim (3)$ の何れかにおける前記上接着領域及び前記下接着領域を、前記接続ケーブルの幅方向全域にわたって設けた。

(5): (1)~(4)の何れかにおける前記上基板に、前記上抵抗膜と前記上端子部とを電気的に接続する少なくとも一の上配線を有し、前記下基板に、前記下抵抗膜と前記下端子部とを電気的に接続する少なくとも一の下配線を有し、前記上配線と前記下配線とが前記上基板の面に垂直な方向から見たときに交差領域を有しない配置とした。

(6): (1)~(5)の何れかにおける前記上ケーブル端子部及び前記下ケーブル端子部が、前記接続ケーブルの上面に垂直な方向から見たときに少なくとも一部が重畳している構成とした。

(7): (1)~(5)の何れかにおける前記上ケーブル端子部及び前記下ケーブル端子部が、前記接続ケーブルの上面に垂直な方向から見たときに重畳していない構成とした。

30

9

(8): (1)~(7)の何れかにおける前記上基板が 軟質フィルムで、前記下基板が硬質板であり、前記上基 板と前記下基板とを所定の間隙をもって貼り合わせ、前 記上抵抗膜側を前記下抵抗膜側に押圧することによる前 記上抵抗膜と前記下抵抗膜の接触位置を2次元座標値と した入力検知出力を構成とした。

(9):上抵抗膜を有する上基板と、下抵抗膜を有する下基板と、前記上抵抗膜及び前記下抵抗膜から検知出力を取り出す接続ケーブルとを備えた、前記上基板は、少なくとも一の上端子部と、前記上抵抗膜と前記上端子部とを電気的に接続する少なくとも一の上配線とを有し、前記下基板は、少なくとも一の下端子部と、前記下端子部とを電気的に接続する少なくとも一の下配線とを有し、前記接続ケーブルは、一端の上面及び下面にそれぞれ前記上端子部及び前記下端子部と接続される少なくとも一の上ケーブル端子部及び少なくとも一の下ケーブル端子部及び少なくともっの下ケーブル端子部を有し、前記上配線と前記下配線とが前記上基板の面に垂直な方向から見たときに交差領域を有しない構成とした。

(10): (9) における前記上ケーブル端子部及び前記下ケーブル端子部が、前記接続ケーブルの上面に垂直な方向から見たときに少なくとも一部が重畳している構成とした。

(11): (9) における前記上ケーブル端子部及び前記下ケーブル端子部が、前記接続ケーブルの上面に垂直な方向から見たときに重畳していない構成とした。

(12): (9)~(11)の何れかにおける前記接続ケーブルを、前記接続ケーブルの両面で前記上基板及び前記下基板に接続材により接着するとともに、前記接続ケーブルの上面と前記上基板とを前記接続材により接着された領域である上接着領域及び前記接続ケーブルの下面と前記下基板とが前記接続材により接着された領域である下接着領域が、前記接続ケーブルの上面に垂直な方向から見たときに少なくとも一部が重畳している構成とした。

(13): (12) における前記上基板と前記下基板と を粘着により貼り合わせた。

(14): (12) または (13) における前記上基板の熱膨張率と前記下基板の熱膨張率とが異なる構成とした。

(15): (12) ~ (14) の何れかにおける前記上接着領域及び前記下接着領域を、前記接続ケーブルの幅方向全域にわたって設けた。

(16): (9)~(15)の何れかにおける前記上基板は軟質フィルムであり、前記下基板は硬質板であり、前記上基板と前記下基板とが所定の間隙をもって貼り合わせされ、前記上抵抗膜側を前記下抵抗膜側に押圧することによる前記上抵抗膜と前記下抵抗膜の接触位置を2次元座標値とした入力検知出力を得る構成とした。

【0034】また、表示パネルの表示面側にタッチパネ

ルを重ねて設置した本発明による画面入力方表示装置 は、下記の構成としたことを特徴とする。

(17):表示パネルと、前記表示パネルの表示面側に タッチパネルを重ねて設置し、前記タッチパネルは、上 抵抗膜を有する上基板と、下抵抗膜を有する下基板と、 前記上抵抗膜及び前記下抵抗膜から検知出力を取り出す 接続ケーブルとを備え、前記上基板は、前記上抵抗膜に 電気的に接続された少なくとも一の上端子部を有し、前の 記下基板は、前記下抵抗膜に電気的に接続された少なく とも一の下端子部を有し、前記接続ケーブルは、一端の 上面及び下面にそれぞれ前記上端子部及び前記下端子部 と接続される少なくとも一の上ケーブル端子部及び少な くとも一の下ケーブル端子部を有し、前記接続ケーブル は、前記接続ケーブルの両面で前記上基板及び前記下基 板に接続材により接着されているとともに、前記接続ケ ーブルの上面と前記上基板とが前記接続材により接着さ れた領域である上接着領域及び前記接続ケーブルの下面 と前記下基板とが前記接続材により接着された領域であ る下接着領域が、前記接続ケーブルの上面に垂直な方向 から見たときに少なくとも一部が重畳している構成とし た。

(18):表示パネルと、前記表示パネルの表示面側に タッチパネルを重ねて設置し、前記タッチパネルは、上 抵抗膜を有する上基板と、下抵抗膜を有する下基板と、 前記上抵抗膜及び前記下抵抗膜から検知出力を取り出す 接続ケーブルとを備え、前記上基板は、少なくとも一の 上端子部と、前記上抵抗膜と前記上端子部とを電気的に 接続する少なくとも一の上配線とを有し、前記下基板 は、少なくとも一の下端子部と、前記下抵抗膜と前記下基板 は、少なくとも一の下端子部と、前記下抵抗膜とを 有し、前記接続ケーブルは、一端の上面及び下面にそれ ぞれ前記上端子部及び前記下端子部と接続される少なく とも一の上ケーブル端子部及び少なくとも一の下ケーブル端子部及び少なくとも一の下ケーブル端子部及びかなくとも一の下ケーブル端子部及び少なくとも一の下ケーブル端子部を有し、前記上配線と前記下配線とが前記上基板の面に垂直な方向から見たときに交差領域を有しない 構成とした。

(19): (18) におけるタッチパネルの構成として 前記(1)乃至(16) に開示した構成を持たせた。

【0035】上記の構成としたことにより、入力エラーや入力不能を解消し、狭額緑化を向上させると共に製造コストを削減して信頼性の高いタッチパネルとこのタッチパネルを用いた画面入力型表示装置を提供することができる。

【0036】なお、本発明の画面入力型表示装置に用いる表示パネルは液晶パネルに限るものではなく、ELパネル、プラズマパネル等のパネル型の表示装置を用いることができる。また、用いる液晶パネルとしては、所謂単純マトリクス型、アクティブマトリクス型、その他の既知の形式の液晶パネルを用いることができ、さらに反射型に限らず、透過型の液晶表示装置にも適用できる。

【0037】また、本発明は、上記の構成に限定される ものではなく、本発明の技術思想を逸脱することなく、 種々の変更が可能である。

[0038]

【発明の実施の形態】以下、本発明の実施の形態につ き、実施例の図面を参照して詳細に説明する。

【0039】図1は本発明によるタッチパネルの第1実 施例を説明する接続ケーブルとの接続部分の模式的な展 開図である。図中、11はPETフィルムからなる上基 板、21はガラスからなる下基板、141は上基板11 の内面に形成した一方の抵抗膜に接続する一方の配線

(Y軸Y1配線)、142は同他方の配線(Y軸Y2配 線)、241は下基板21の内面に形成した他方の抵抗 膜に接続する一方の配線(X軸X1配線)、242は同 他方の配線(X軸X2配線)、15aはY軸Y1端子 部、15bはY軸Y2端子部、15cはX軸X1端子 部、15dはX軸X2端子部である。

【0040】また、30はフレキシブルプリント基板 (以下、FPCとも称する)で構成した接続ケーブル、 記Y軸Y1端子部15aと15b、15cと15dにそ れぞれ接続される

また、33aはFPC30をタッチパネルの上基板11 の端子部および当該上基板11とFPCを接続し接着す る上側ケーブル接続材、33bはFPC30をタッチパ ネルの下基板21の端子部および当該下基板21とFP Cを接着する下側ケーブル接続材である。なお、33は 接続ケーブル30の配線部(ケーブル配線部)である。 なお、前記図16乃至図22と同一符号は同一機能部分 に対応する。接続材として異方性導電膜等の導電性の粒 子の入った接着剤を用いた。

【0041】また、図2は本発明によるタッチパネルの 第1 実施例を模式的に説明する展開斜視図、図3は同第 1 実施例のFPC接続部分の断面図である。図中、12 はITOからなる上抵抗膜、22は同じく下抵抗膜、1 3はY軸電極(131はY軸Y1電極、132はY軸Y 2電極)、23はX軸電極(231はX軸X1電極、2 32はX軸X2電極) である。

【0042】本実施例によれば、図1乃至図3に示した ように、FPC30の上基板11側FPC端子部31a と31b、および下基板端子部31cと31dは、FP C30の両面にそれぞれ形成され、これらの端子部を含 む上基板11および下基板21との間の全域で上側ケー プル接続材33aと下側ケーブル接続材33bによりF PC30を上下基板間に接着している。接着は熱圧着に より行った。

【0043】このような構成としたことにより、上下接 統部が不要となり、狭額縁化を向上させると共に製造コ ストを削減して信頼性の高いタッチパネルとこのタッチ パネルを用いた画面入力型表示装置を提供することがで 50

きる。

【0044】また、一の端子群の中で上下に端子を振り 分けて設けているので、一括で接続が可能となってい

【0045】なお、図1では上側ケーブル接続材33a と下側ケーブル接続材33bにより、FPC30の幅方 向全域にわたって接着領域を重畳させて接着している が、少なくとも一部が重畳していれば、熱膨張率の違い により応力が発生した時や上下基板がずれる方向に外力 10 が加わった時でもFPC30には引き裂く方向の応力が 加わらなくなり、FPC30がねじれる応力が加わらな くなるため、これを原因とする接続不良が回避される。 さらに、接着領域を重畳させない場合に比べて接着領域 が広くなるため、強固な接続が可能となり、より接続が 外れにくくなる。したがって、FPC30の幅方向全域 にわたって接着領域を重畳させて接着する方がより強固 な接続が可能になり好ましい。

【0046】さらに接続を外れにくくするためには、F PC30を強固に両面で接着するとともに、FPC30 31aと31b、31cと31dはFPC端子部で、上 20 の接着部分を起点として応力を外側に逃がせばよい。そ のために、本実施例では上基板11と下基板21とを接 着ではなく粘着により貼り合わせている。これによっ て、FPC30に応力が加わっても上下基板がずれて応 力を外に逃がすことができ、接続が外れにくくなる。

> 【0047】尚、粘着もせず、上基板11と下基板21 とを重ねるだけとしても応力を外に逃がすことは可能で ある。

> 【0048】図4は本発明によるタッチパネルの第2実 施例に用いられる接続ケープルの説明図であり、(a) は上基板側から見た平面図(表面図)、(b)は(a) の端子部前面図、(c)は(a)のA-A'線に沿った 断面図である。図1乃至図4における同一符号は同一部 分に対応する。

> 【0049】接続ケーブル(FPC)30はベースフィ ルム30aと上カバーフィルム30bおよび下カバーフ ィルム30c、およびベースフィルム30aと上カバー フィルム30bの間に配線したCu箔の4列の接続ケー ブル配線部32で構成されるフレキシブルプリント基板 である。

【0050】そして、一端にタッチパネルの配線に繋が る端子部に接続するケーブル端子部を有し、他端に外部 回路と接続するコネクタ端子35を有している。

【0051】FPC30の一端において、上基板側に当 該上基板の端子部に接続する2つの端子部31aと31 bが露出し、下基板側に当該下基板の端子部に接続する 2つの端子部31cと31dが露出している。

【0052】これらの端子部の内の上基板側の端子部3 1aと31bはCu箔の上に半田メッキし、さらに銀ペ ーストの印刷層を有し、下基板側の端子部31cと31 dはベースフィルム30aに貫通させたスルーホール3

13

4を介して導通した銀メッキで構成されている。

【0053】図5は本発明によるタッチパネルの第2実 施例を説明する接続ケーブルとの接続部分の模式的な展 開図である。図5において、前記実施例の図面と同一符 号は同一機能部分に対応する。

【0054】本実施例は、FPC30の一端の表裏に形 成した上基板側のケーブル端子部31a、31bと、下 基板側のケーブル端子部31c、31dを上下交互に配 置し、タッチパネルの上基板側から見たときに、31 a、31c、31b、31dのように配列したものであ る。

【0055】本実施例によれば、前記実施例の効果に加 え、図5に示したようなケーブル端子部およびタッチパ ネルの上下基板の端子配列の組合せとしたことで、タッ チパネル側の端子部15a乃至15dに繋がるY軸Y1 配線141、Y軸Y2配線142、X軸X1配線24 1、X軸X2配線242が交差を有しない構成とするこ とができる。

【0056】前記実施例の図1では、Y軸Y2配線14 2とX軸X1配線241とが交差する領域を有するため 絶縁をしなければならないが、絶縁をした場合でもマイ グレーションが発生する可能性があるため、マイグレー ションが発生しないような絶縁対策を施す必要がある。 これに対して、本実施例では配線が交差する領域を有し ないため、マイグレーションが回避でき、絶縁による対 策が不要となる。

【0057】図6は本発明によるタッチパネルの第3実 施例を説明する接続ケーブルとの接続部分の模式的な展 開図である。また、図7は本発明によるタッチパネルの 第3 実施例を模式的に説明する上基板側から見た透視平 30 面図である。

【0058】図8は本発明によるタッチパネルの第3実 施例に用いられる接続ケーブルの説明図であり、(a) は上基板側から見た平面図(表面図)、(b)は(a) の端子部前面図を示す。前記実施例の図面と同一符号は 同一機能部分に対応する。

【0059】本実施例では、タッチパネルの上基板11 と下基板21に形成する端子部を上基板側からみて少な くとも一部が重なる位置に配置し、FPC30のケーブ ル端子部31a、31b、31c、31dを、端子部3 1aと31c、31bと31dがそれぞれFPC30の 両面で少なくとも一部が重なる位置となるように配列し た。

【0060】このような端子配列としたことで、接続ケ ーブル30は図8に示したように、図4のようなFPC の端子部分の広がりを少なくすることができ、端子部に 必要な幅を小さくできる。

【0061】図9は本発明によるタッチパネルの第4実 施例を説明する接続ケーブルとの接続部分の模式的な展 開図である。本実施例では、第3実施例に示したタッチ 50 14

パネルの上基板11と下基板21に形成する端子部を上 基板側からみて少なくとも一部が重なる位置に配置し、 FPC30のケーブル端子部31a、31b、31c、 31dを、端子部31aと31c、31bと31dがそ れぞれFPC30の両面で少なくとも一部が重なる位置 となるように配列したことに加え、さらに第2実施例の ようにY軸Y1配線141、Y軸Y2配線142、X軸 X1配線241、X軸X2配線242が交差を有しない 構成とした。

【0062】そのために、上下の位置で対応している上 基板11の端子15aと下基板21の端子15cにそれ ぞれ接続されているY軸Y1配線141とX軸X1配線 ´241について、各端子からの始点及び最初に引き回す . 方向を互いに異ならせている。本実施例では端子15a をT字型としているが、これに限るものではなく、端子 15cと同じ矩形のまま、Y軸Y1配線141の始点を 端子15aの中心付近とし、最初の引き回し方向をX軸 X1配線241とは異なる方向、例えば直交する方向と してもよい。また、始点さえ異なっていれば、最初の延 長方向が同じでも交差しない構成とすることは可能であ 20 る。例えば、図9の端子15aのT字型を更に延長する ことにより実現可能である。

【0063】次に、上記で説明した構造をもつ本発明に よるタッチパネルを組み込んだ本発明の画面入力型表示 装置の1実施例とその応用例について説明する。ここで は、表示パネルとして液晶パネルを用いた例を説明する が、他の表示デバイスの表示面に上記本発明によるタッ チパネルを組み込むことができることは言うまでもな

【0064】図10は本発明による画面入力型表示装置 の第1実施例を説明する断面図である。本実施例は、表 示パネルとして反射型の液晶パネル300に導光体20 1と線状ランプ202からなる補助光源装置200とタ ッチパネル100を設置したものである。この画面入力 型表示装置400では単純マトリクス型の液晶パネルを 使用したものを例として説明する

液晶パネル300の下部基板である第1の基板301の 内面にはアルミニウム薄膜からなる反射層302、Si O2 等の反射防止膜からなる保護膜303、ITO等の 透明導電膜からなる下側電極(信号電極)304が形成 されている。

【0065】また、上部ガラス基板である第2の基板3 05の内面には、有機樹脂膜に染料あるいは顔料を添加 した3色(R, G, B) のカラーフィルタ306、カラ ーフィルタ306から液晶層309に不純物が混入する のを防止し、第2の基板305の内面を平坦化するため の有機材料からなる保護膜307、ITO等の透明導電 膜からなる上側電極(走査電極)308が形成されてい

【0066】なお、カラーフィルタ306を構成する各

15

色R, G, Bの間には必要に応じて格子状またはストライプ状の遮光膜(ブラックマトリクス)を形成し、その上に保護膜307を形成する。

【0067】これら第1および第2の基板301と305の間には液晶組成物からなる液晶層309が注入され、エポキシ樹脂等のシール材310で封止されて液晶表示パネルが構成されている。

【0068】液晶パネルの第2の基板305の表面には、偏光板312b、第1の位相差板312cおよび第2の位相差板312dが積層されている。第2の基板305、偏光板312b、第1の位相差板312c及び第2の位相差板312dの間には、接着剤(例えば、エポキシ系やアクリル系の接着剤)や粘着材等を用いた接着層311、311aが設けられ、各部材が固定されている。

【0069】なお、ここで、上記の粘着材とは、各種の 光学フィルム312同志を一度貼り付けた後に剥がして も、再度光学フィルム312同志を貼り付けることがで きる接着剤を意味する。このような粘着材を用いて各種 光学フィルム312や液晶パネルを固定することによ り、誤って光学フィルム312や液晶パネルを固定した 場合に、その再生が可能となり、製造歩留りを改善する ことができるため、このような再生が困難となる、所謂 接着材より粘着材の方が好ましい。以下、特に必要がな い場合には接着材として説明する。接着材(粘着材)の 塗布で形成した層を接着層(粘着層)と称する。

【0070】反射層302は反射率の点から鏡面反射性を有するものがよく、本実施形態では、アルミニウム膜を蒸着法で形成してある。この反射層302の表面には反射率を向上させるための多層膜を施してもよく、その 30上に反射層302の腐食保護と表面の平坦化を行う目的で保護膜303を形成する。

【0071】なお、この反射層はアルミニウムに限らず、鏡面反射性を有する膜であればクロムや銀等の金属膜、あるいは非金属膜を用いてもよい。

【0072】また、保護膜303はSiO2 膜に限らず、反射層302を保護する絶縁膜であれば良く、シリコンの窒化膜等の無機膜や有機チタニウム膜等の有機金属膜、あるいはポリイミドやエポキシ等の有機膜でもよい。特に、ポリイミドやエポキシ等の有機膜は平坦性に優れ、保護膜303上に形成される下側電極304を容易に形成することができる。また、保護膜303に有機チタニウム膜等の有機金属膜を用いると、下側電極304の配線抵抗を下げることができる。

【0073】多層光学フィルム312を設置した液晶パネルに上方には、外部光が少ないときに使用する補助照明装置200として導光体201と光源202からなる照明装置が設けられている。

【0074】導光板201はアクリル樹脂などの透明樹 50 拡散材として有機物の粒子を用いることにより、熱膨張

16

脂からなり、観測者側の面(上面)には光源202の光 Lを液晶パネル側に出射するための印刷パターンや凹凸 の加工が施されている。

【0075】さらに、補助照明装置200の上には、前記した本発明によるタッチパネル100が設けられている。このタッチパネル100は、ペン先のような先の尖った棒状体、あるいは指先などでタッチパネル100の表面を押すことによって、押された部分の位置座標を検出し、フレキシブルプリント基板(FPC)で外部回路である情報処理装置(後述する図14の547)のホスト(同550)に送るためのデータ信号を出力するものである。

【0076】液晶パネル300の第2の基板305、補助光源装置200の導光体201およびタッチパネル100は、両面粘着テープ(例えば、不織布に粘着材を染み込ませたもの)等により固定される。

【0077】両面粘着テープを用いることにより、一度 貼り付けた後に剥がすことが可能なので、液晶パネル3 00、補助照明装置200およびタッチパネル100を 誤って固定した場合でも、再生することができる。

【0078】なお、この補助照明装置200は必須構成ではなく、常に明るい環境で使用するものでは不要であり、その場合は液晶パネル300の画面上にタッチパネル100を直接載置した構成とする。また、図10の液晶パネルに代えて半透過型の液晶パネルを用いることもできる。

【0079】さらに、透過型の液晶パネルを表示デバイスとして用いた場合には、この液晶パネルの背面(タッチパネル100と反対側)に補助照明装置200を設置することで、液晶パネル300に形成した画像をタッチパネル100側に出射させ、その画面から文字等を直接入力するように構成する。

【0080】なお、図10に示した実施例では、第1の位相差板312cと第2の位相差板312dの間に設ける接着層311aに光拡散機能を持たせている。具体的には、当該接着材の中にこの接着材とは屈折率の異なる光拡散材を混入する。接着材としてエポキシ系やアクリル系を用いた場合は、光拡散材にポリエチレン、ポリスチレン、ジビニルベンゼンなどの透明な有機物の粒子、シリカ等の透明は無機物の粒子を用いることができる。

【0081】また、上記接着材として光拡散材と異なる 屈折率の粘着材を用いてもよい。その場合は第1の位相 差板312cと第2の位相差板312dを誤って貼り付 けても再生が可能である。

【0082】光拡散材に透明な有機物の粒子や無機物の 粒子を用いることにより、可視光領域の吸収が少ないの で、液晶パネルの反射率や分光置特性を改善することが できる。

【0083】さらに、接着材が有機系物質の場合に、光 拡散材として有機物の粒子を用いることにより、熱膨張

率の差を少なくでき、接着層311aでクラックが発生 することもない。

【0084】なお、接着材の中に光拡散材を混入することで、接着材のみの場合に比べて当該接着層にクラックが入り易いが、熱膨張率が実質的に同じ第1の位相差板312aと第2の位相差板312dの間に光拡散材入りの接着層311aを介挿したことで接着層311aにクラックが発生する問題を回避できる。

【0085】次に、図10の構成の表示原理を説明す る。様々な方向から液晶パネル300に入射する入射光 10 L1は、タッチパネル100、補助照明装置200の導 光板201、偏光板312b、第1の位相差板312c に偏光板312bを固定するための接着層311、第1 の位相差板312c、第2の位相差板312dに第1の 位相差板312cを固定するための光拡散機能を有する 接着層311a、第2の位相差板312d、第2の基板 305に第2の位相差板312 dを固定するための接着 層311、第2の基板305、カラーフィルタ306、 上側電極308、液晶層309及び特定の画素電極(ま たは、特定の信号線)を通って反射層302に達する。 【0086】反射層302に達した外部光L1は反射さ れて反射光L2となり、入射光L1とは逆の経路を通っ て光拡散機能を有する接着層311aに達する。接着層 3 1 1 a に入った反射光L 2 は様々な方向に散乱されて 散乱光し3を生じる。

【0087】接着層311aから出た直接反射光L2や 散乱光L3は、液晶層309を光が通過するときに生じ る位相差を複屈折効果を利用して補償する第1の位相差 板312c、接着層311、偏光板312b、導光板2 01およびタッチパネル100を通って画面入力型液晶 表示装置400の外に放出される。

【0088】観測者は、液晶表示装置の外部に放出された直接反射光L3を見ることで特定の画素304aにより制御される表示を認識できる。

【0089】図11は本発明による液晶表示装置の第2 実施例を説明する断面図であり、図10と同一符号は同 一機能部分に対応する。本実施例では、液晶パネル30 0の上に図10で説明したものと同様の補助光源装置2 00を積層し、その上にタッチパネル100を設置して 画面入力型の液晶表示装置400を構成してある。

【0090】液晶パネル300はアクティブ・マトリクス型の典型である薄膜トランジスタ(TFT)型の液晶パネルである。液晶パネル300を構成する第1基板301の内側に薄膜トランジスタTFT1および画素電極304aを有する画素が複数形成されている。

【0091】各画素は、隣接する2本の走査信号線と隣接する2本の映像信号線との交差領域内に配置されている。薄膜トランジスタTFT1は第1の基板301上に設けた第1の半導体層(チャネル層)AS、その上に設けた第2の半導体層(不純物を含んだ半導体層) r 0、

さらにその上に設けたソース電極SD1とドレイン電極 SD2から構成されている。ここでは、ソース電極SD 1とドレイン電極SD2を導電膜 r 1と r 2 の多層膜で形成しているが、 r 1 のみの単層導電膜でもよい。

【0092】なお、電圧の加え方によりソース電極とドレイン電極の関係が逆になり、SD2がソース電極に、SD1がドレイン電極になるが、以下の説明では、便宜上SD1をソース電極、SD2をドレイン電極とする。

【0093】PSV1は薄膜トランジスタTFT1を保護する絶縁膜(保護膜)、304aは画素電極、ORI 1とORI2はそれぞれ第1の基板301側と第2の基板305側に接する液晶層309を配向させるための配向膜、308は上側電極(共通電極)である。

【0094】BMはブラックマトリクスとも呼ばれる遮光膜で、隣接する画素電極304aの間を遮光し、コントラストを向上させる機能を有する。310は上側電極308と第1の基板301上に設けた端子(g1, g2, r1, r2およびr3の多層金属の導電膜)を電気的に接続する導電膜である。

20 【0095】薄膜トランジスタTFT1は、絶縁ゲート型の電解効果型トランジスタと同様に、ゲート線電極GTに選択電圧を印加するとソース電極SD1とドレイン電極SD2の間が導通し、スィッチとして機能する。

【0096】画素電極304aはソース電極SD1に接続され、映像信号線はドレイン電極SD2に接続され、走査信号線はゲート電極GTに接続され、走査信号線に加える選択電圧で特定の画素電極304aを選択し、映像信号線に加えた階調電圧を特定の画素電極304aに供給する。導電膜g1で形成したCSTは容量電極であり、画素電極304aに供給した階調電圧を次の選択期間まで保持する機能を有する。

【0097】この種のアクティブマトリクス型の液晶バネル300は画素毎に薄膜トランジスタ等のスイッチング素子を設けているため、異なる画素間でクロストークが発生するという問題がなく、電圧平均化法などの特殊な駆動でクロストークを抑制する必要がないため、簡単に多階調表示を実現できる。また、走査線数を増やしてもコントラストが低下しない等の特徴がある。

【0098】本実施例では、画素電極304aはアルミニウム、クロム、チタン、タンタル、モリブデン銀等の反射性金属膜で構成してある。また、画素電極304aと薄膜トランジスタTFT1の間には保護膜PSV1を設けているため、画素電極304aを大きくして薄膜トランジスタTFT1と重なっても誤動作することがなく、反射率が高い液晶パネルを実現できる。

【0099】さらに、この液晶パネルでは、図10で説明した形式の液晶パネルにおける第1の位相差板は設けられず、視野角特性を改善するための第3の位相差板312eは視50野角拡大フィルムとも呼ばれ、複屈折特性を利用して液

-10-

30

晶パネルの表示特性の角度依存性を改善するものである。

【0100】第3の位相差板312eは、ポリカーボネート、ポリアクリレート、ポリサルフィン等の有機樹脂フィルムで構成できるので、第2の位相差板312dに第3の位相差板312eを固定する接着層(好ましくは粘着層)に光拡散接着層311aを用いることで光拡散接着層311aにクラックが発生するのを防止できる。

【0101】図12は本発明による画面入力型表示装置の外観を説明する5面図であり、表示パネルに図11で説明したものと同等の液晶パネルを用いたものである。図12の(a)は表示面側から見た正面図、(b)は上側側面図、(c)は下側側面図、(d)は左側側面図、(e)は右側側面図を示す。

【0102】図12の(a)~(e)において、318はステンレス、鉄、アルミニウム等の金属板からなる上側ケース(シールドケース)、320は上側ケースに設けた表示窓となる第1の開口である。319はステンレス、鉄、アルミニウム等の金属板またはポリカーボネート、ABS樹脂等のプラスチックからなる下側ケースで20ある。

【0103】321は上側ケース318に設けた爪、322は同じくフックであり、上側ケース318は爪321とフック322とで下側ケース319を押さえて下側ケース319と結合される。

【0104】201はアクリル樹脂あるいはガラス等の透明な材質からなる導光板、202は蛍光灯やLED等の光源(ランプ)であり、外部光が少ないときに液晶パネル300を照明する補助光源装置200(ここでは、フロントライト)を構成する。100は画面入力型表示 30装置400に接続するホスト(情報処理部)に送るデータを入力するためのタッチパネルである。

【0105】312は画面入力型表示装置400の表示 部に設けた光拡散層、偏光板、位相差板、等の光学フィ ルムであり、画面入力型表示装置400の全体の厚さを 薄くするために上側ケース318の開口の領域内に収ま るように設けられる。

【0106】図13は図12の要部断面図であり、

- (a) は図12 (a) のA-A線に沿った断面図、
- (b) は同B-B線に沿った断面図、(c) は同C-C線に沿った断面図、(d) は同D-D線に沿った断面図を示す。

【0107】液晶パネルは第1の基板301と第2の基板305を貼り合わせ、貼り合わせ間隙に液晶を注入した後、注入口を封止材331で封止してある。封止材331に対応する部分の上側ケース318には開口323が設けてあり、封止材が突出しても液晶パネルの外形寸法が大きくならないようになっている。

【0108】第1の基板301と第2の基板305の周辺には走査線駆動ICチップ328を搭載した走査線駆 50

動用のプリント基板(走査線駆動用PCB)330が設置され、フレキシブルプリント基板329で液晶パネルに接続している。

【0109】また、第1の基板301と第2の基板305の周辺には信号線駆動ICチップ332を搭載して液晶パネルと接続するフレキシブルプリント基板329を有する信号線駆動用のプリント基板(信号線駆動用PCB)333が設置されている。

【0110】 走査線駆動用PCB330と信号線駆動用PCB333には、外部回路(ホスト)からインターフェースコネクタ324を介して表示のための各種信号、電圧が供給される。なお、インターフェースコネクタ324は走査線駆動用PCB3330に設けているが、信号線駆動用PCB333に設けてもよい。

【0111】326は走査線駆動用PCB330を固定するためのスペーサ、327は走査線駆動用PCB330と信号線駆動用PCB333および液晶パネルとの接続部を押さえるためのスペーサで、ゴム等の絶縁性弾性材で構成される。

【0112】325は両面粘着テープであり、例えば不織布にエポキシ系接着剤を染み込ませたものが使用できる。この両面粘着テープ325で上側ケース318と液晶パネル、液晶パネルの上側ケースと補助光源装置200の導光板201とタッチパネル100を固定している。

【0113】このように、液晶パネルと補助光源装置およびタッチパネルを両面粘着テープ325で固定することで、組立作業が簡素化され、かつ誤って組立た場合の再生が容易となり、製造歩留りが向上する。

【0114】上側ケース318と共に液晶パネルを一体 化する下側ケース319には、内側に突出する凸形状部 319aが形成されており、この凸形状部319aで液 晶パネルを弾圧的に保持している。

【0115】図14は本発明による画面入力型表示装置を用いた情報処理装置の一例の説明図である。この情報処理装置は、所謂携帯型情報端末とも称するもので、本体部547と表示部548で構成される。本体部547にはキーボード549、マイクロコンピュータ551を持つホスト(情報処理部)550、バッテリー552を40 有する。

【0116】表示部548には前記した液晶パネルを用いた押圧入力型の画面入力型表示装置400が搭載され、ペン収納部557に収納されているペン556で表示部に露呈しているタッチパネルに文字や図形558を入力し、あるいは表示部に表示されているアイコン559を選択する。

【0117】また、表示部548には補助光源装置にケーブル555を介して点灯電力を供給するためのインバータ電源554が搭載されている。

【0118】本体部からの表示のための信号や電圧は、

インターフェースケーブル553を介して表示部548 に搭載した画面入力型表示装置400を構成する前記液 晶パネルのインターフェースコネクタ324に供給され

【0119】さらにこの情報処理装置には、ケーブル5 61で携帯電話機560と接続可能となっており、イン ターネット等の情報通信網に接続して通信ができるよう になっている。

【0120】このように、本発明による液晶表示装置を 用いることによって情報処理装置が小型かつ軽量化さ れ、使い勝手を向上することができる。

【0121】なお、この種の携帯型情報端末の形状や構 造は図示したものに限るものではなく、この他に多様な 形状、構造および機能を具備したものが考えられる。

【0122】なお、この種の携帯型情報端末(PDA) の形状や構造は図示したものに限るものではなく、この 他に多様な形状、構造および機能を具備したものが考え られる。

[0123]

【発明の効果】以上説明したように、本発明によれば、 入力エラーや入力不能を解消すると共に、狭額縁化が容 易で製造コストを削減した信頼性の高いタッチパネルと このタッチパネルを用いた画面入力型表示装置を提供す ることができる。

【図面の簡単な説明】

【図1】本発明によるタッチパネルの第1実施例を説明 する接続ケーブルとの接続部分の模式的に展開図であ る。

【図2】本発明によるタッチパネルの第1実施例を模式 的に説明する展開斜視図である。

【図3】本発明によるタッチパネルの第1実施例のFP C接続部分の断面図である。

【図4】本発明によるタッチパネルの第2実施例に用い られる接続ケーブルの説明図である。

【図5】本発明によるタッチパネルの第2実施例を説明 する接続ケーブルとの接続部分の模式的な展開図であ

【図6】本発明によるタッチパネルの第3実施例を説明 する接続ケーブルとの接続部分の模式的な展開図であ

【図7】本発明によるタッチパネルの第3実施例を模式 的に説明する上基板側から見た透視平面図である。

【図8】本発明によるタッチパネルの第3実施例に用い られる接続ケーブルの説明図である。

【図9】本発明によるタッチパネルの第4 実施例を説明 する接続ケーブルとの接続部分の模式的な展開図であ

【図10】本発明による画面入力型表示装置の第1実施 例を説明する断面図である。

【図11】本発明による液晶表示装置の第2実施例を説 50

明する断面図である。

【図12】本発明による画面入力型表示装置の外観を説 明する5面図である。

22

【図13】図12の要部断面図である。

【図14】 本発明による画面入力型表示装置を用いた情 報処理装置の一例の説明図である。

【図15】液晶パネルにタッチパネルを積層した画面入 力型表示装置の構成例を説明する概略断面図である。

【図16】従来のアナログ抵抗膜方式のタッチパネルの 10 第1の構成例を説明する展開斜視図である。

【図17】図16の電気的配線図である。

【図18】従来のアナログ抵抗膜方式のタッチパネルの 第2の構成例を説明する展開斜視図である。

【図19】図18の電気的配線図である。

【図20】タッチパネルの接続ケーブルとの接続部付近 で配線が交差することによるマイグレーション発生を説 明する模式図である。

【図21】図18に示した接続ケーブルとの接続を上基 板側とした場合の断面構造を説明する模式断面図であ

【図22】接続ケーブルとの接続部を下基板側とした場 合の断面構造を説明する模式断面図である。

【符号の説明】

11 PETフィルムからなる上基板

21 ガラスからなる下基板

141 上基板11の内面に形成した一方の抵抗膜に接 続する一方の配線 (Y軸Y1配線)

142 上基板11の内面に形成した一方の抵抗膜に接 続する他方の配線 (Y軸Y2配線)

241 下基板21の内面に形成した他方の抵抗膜に接 30 続する一方の配線 (X軸X1配線)

242 下基板21の内面に形成した他方の抵抗膜に接 続する他方の配線 (X軸X2配線)

15a Y軸Y1端子部

15b Y軸Y2端子部

15c X軸X1端子部

15d X軸X2端子部

30 フレキシブルプリント基板(以下、FPCとも称 する)で構成した接続ケーブル

31a, 31b, 31c, 31d Y軸Y1端子部15 aと15b、15cと15dにそれぞれ接続されるFP C端子部

33a FPC30をタッチパネルの上基板11の端子 部および当該上基板11とFPCを接続し接着する上側 ケーブル接続材

33b FPC30をタッチパネルの下基板21の端子 部および当該下基板21とFPCを接着する下側ケーブ ル接続材

33 接続ケーブル30の配線部(ケーブル配線部)。

【図22】

22

フロントページの続き

(72)発明者 千葉 眞作

千葉県茂原市早野3300番地 株式会社日立 製作所ディスプレイグループ内

(72)発明者 近藤 恭章

千葉県茂原市早野3681番地 日立デバイス エンジニアリング株式会社内

(72)発明者 大塚 晴久

千葉県茂原市早野3300番地 株式会社日立

製作所ディスプレイグループ内

F ターム(参考) 5B068 AA01 AA22 AA32 BB06 BC07

BE08

5B087 AA00 CC12 CC26 CC37

5G006 AA01 BA01 CD06 DD01 FB17

FD02 HB02 JA01 JC01 JD01

LG02

5G023 AA01 BA04

5G435 AA00 AA17 BB12 BB15 BB16

CC09 CC12 DD01 EE22 EE25

EE33 EE42 EE47 FF01 FF03

FF05 FF06 FF08 GG12 HH02

HH12 HH14 HH15 LL07