

天降甘霖是否能消滅隱形殺手-pm2.5?

指導教授: 林良靖 教授

組員: 陳育婷 H24034019

楊珍妮 H24035049

曾麗娟 H24035015

目錄

壹、研究動機與目的	 P.3
貳、資料介紹	P.4
參、建模流程	P.5
肆、模型建立	P.6
✓ Pm2.5 模型建立	P.6
a.模型判定P.10)
b.參數估計	<u>)</u>
c.殘差診斷P.1	2
d.其他候選模型的 aic 及殘差診斷結果P.1	4
✓ 雨水模型建立	.P.15
a.模型判定P.18	3
b.參數估計)
c.殘差診斷P.19)
d.其他候選模型的 aic 及殘差診斷結果	2
伍、模型預測	 P.23
陸、相關性檢定	P.24
柒、結論	P.31
捌、感想	 P.33
玖、建議	 P.34
拾、引用	 P.35

壹、 研究動機與目的

在以前,pm2.5 對很多人來說應該是一個相當陌生的名詞。因為大家對於空氣汙染日趨重視,以及政府推廣並廣設偵測站,才讓越來越多人認識這個隱形殺手。身為大學生的我們,也是大概從今年才真正意識到 pm2.5 是甚麼、以及它的危險性。

pm2.5 是漂浮在空氣中,粒徑大小小於或等於 2.5 微米(μm)的粒子,單位以微克/立方公尺(μg/m3)表示。pm2.5 的可怕之處是它非常微細,可穿透肺部氣泡,並直接進入血管中隨著血液循環全身,故對人體及生態所造成之影響是不容忽視的,可能會導致人體器官不同的危害。

今年秋冬,社交軟體或網路新聞上一直出現南台灣紫爆(pm2.5 濃度最高段落)的新聞,戴口罩的人越來越多。身為學生的我們,出入也開始戴上口罩,注意即時 pm2.5 濃度。一時之間,pm2.5 讓大家人心惶惶、小心防範,出門第一件事就是戴上口罩。因此當要選擇時序報告主題時,我們毫不猶豫地選擇了最近影響台南甚遽的 pm2.5。

另外,我們同時也想到,今年九月時三個颱風接連襲及全台,那陣子似乎 pm2.5 濃度警告比較少,且 AQI(空氣汙染指數)沒有那麼高。因此,我們產生了一個假設:下雨是否會洗淨空氣中汙染物,降低 pm2.5 濃度呢?

將此兩議題一結合,就產生了我們此份報告的研究主題:探討降雨量對 pm2.5 的影響。

貳、 資料介紹

資料說明: pm2.5 拿到的資料是以小時為單位,而且包含所有空汙物。因此我們在 excel 中先將 pm2.5 資料挑出,將檢測值為無效值刪除。 刪完後,一天中若資料<18 筆即刪除該天資料,清完資料後再算日平均,月平均。

目的: 分析台南月均降雨量是否會影響月均 pm2.5 濃度

分析軟體: R軟體、Excel

資料來源: 行政院環境保護署以及交通部中央氣象局資料庫

資料期間: 2007年1月之2015年12月

資料間隔: 以月為單位

資料型態: 台南市 pm2.5 月均量(單位: μg/m3)、台南市降雨量月均量(單位:

毫米)

成功大學圖書館正門口的室內空氣品質檢驗報告,大家越來越重視空氣汙染

參、建模流程

33

透過 pm2.5 即時值讓我們知道空汙程度

臭氧

単位: 1μg/m³。 施力位方公尺 2 p0ウ・十億分之一 ②:指標方染物 空车所換機構形型の制度、減差追奪 延振予機性P02 g排機燃料。減差追募 「20小級事業・0.5×前 12小級事業・0.5×前 12小級事業・0.5×前 12小級事業・0.5×前 12小級事業・0.5×前 12小級事業・0.5×前 12小級事業・0.5×前 12小級事業・0.5×前 12小級事業・11小級

肆、模型建立

(一)pm2.5 模型建立

首先·觀察台南市 pm2.5 從 2007 年到 2015 年月平均濃度的時間序列圖。

pm2.5 2007-2015 monthly average

可以看到此筆時間序列似乎有往下降的趨勢,並且有季節效應,十二月到三 月濃度似乎比較高,五到八月濃度比較低。

我們先將資料做 Box-Cox 轉換,並且繪製λ與對數概似估計值圖。

可以看到,最大概似估計量 λ 的 95%信賴區間介於[0.2,0.8],最大值發生在 λ =0.5 時。因此我們決定將資料做根號轉換。

sqrt(pm2.5) 2007-2015 monthly average

上圖為原始時間序列,月跟月之間的變動程度較大。下圖為經過根號轉換後的時間序列,月跟月之間的變異減少且趨於穩定。但還是可以看到序列有往下降的趨勢,因此我們決定先配適一次項的時間趨勢。

因此我們的模型為: $\sqrt{Yt} = \mu_t + Zt$ where $\mu_t = \beta_0 + \beta_1 t$

	Estimated	S.E.	t value	P value
eta_0	391.7253	86.4842	4.529	<0.0001
eta_1	-0.1918	0.0430	-4.461	<0.0001

常數項和一次項的係數皆顯著,代表此模型有一個顯著向下時間趨勢。

下圖為去除掉一次項時間趨勢後的時間序列圖。

de-trended time series

(圖四)

可以發現時間序列已沒有往下的趨勢,在零的上下穩定跳動。

接著我們觀察去除一次項時間趨勢後時間序列的 acf。

acf 圖可以看出,此序列尚未平穩,acf 呈現波浪狀,且有明顯的季節效應存在,大約是以十二個月為一周期,因此我們決定先對去除一次項後的時間序列做一階季節差分。

sqrt(pm2.5) 2007-2015 monthly average

上圖為經過一階季節差分後的 acf 圖,可以發現季節效應已去除,序列已經平穩,所以可以進行模型判定。

a. 模型判定

(圖七)左圖為 acf 圖,右圖為 pacf 圖

- 從 acf 圖中·在 lag=12 時 acf 明顯突出信賴線·lag1、lag2 也有突出信賴線。因此先判斷為 SARIMA(0,0,2)X(0,1,1)₁₂
- 從 pacf 圖中·看到有可能是 SARIMA(1,0,0)X(1,1,0)₁₂或
 SARIMA(12,0,0)X(1,1,0)₁₂·但合理推測後者步數太大·係數一定會有許 多項不顯著。

eacf

AR/MA	0	1	2	3	4	5	6	7	8	9	10	11	12	13
0	0	x ¬	<u></u>	0	0	0	0	0	0	0	0	Х	0	0
1	Х	0	0	0	0	0	0	0	0	О	0	х	0	0
2	0	О	0	0	0	0	0	О	0	О	0	х	0	0
3	0	х	0	0	0	0	0	0	0	О	О	х	0	0
4	0	х	0	0	0	0	0	0	0	О	0	х	0	0
5	х	О	х	О	О	0	0	0	О	О	О	х	О	О

圖(八)

eacf 顯示可能的模型為 $SARIMA(0,0,2)X(0,1,0)_{s=12}$ 。

候選模型整理成表格如下圖。

根據圖表	可能模型
acf	SARIMA(0,0,2)X(0,1,1) $_{s=12}$
pacf	SARIMA(1,0,0)X(0,1,0) ₁₂ SARIMA(12,0,0)X(0,1,0) ₁₂
eacf	SARIMA(0,0,2)X(0,1,0) $_{s=12}$

b. 參數估計

模型: SARIMA(0,0,2)X(0,1,1)_{s=12}

$$(1 - B^{12})Z_t = (1 - \Theta_1 B^{12})(1 - \theta_1 B - \theta_2 B^2) e_t$$
 et~wn(0,0.2443) for all t

	ma1	ma2	sma1
估計值	0.3362	0.1872	-0.7481
標準差	0.1021	0.0914	0.1343
是否顯著?	是	是	是

sigma^2	log likelihood	aic
0.2443	-73.57	153.14

係數皆顯著,因此可以進行殘差診斷。

c. 殘差診斷

由上而下分別為殘差時間序列圖、殘差的直方圖、殘差的常態機率圖及 殘差的 acf 圖。

One sample t test	Shapiro-wilk	Box-Ljung test
P-value = 0.4264	P-value = 0.1187	P-value = 0.6741
符合 mean=0	符合 normality	第 23 步沒有相關

(1)殘差的變異數是否為常數

從殘差時間序列圖,可以發現除了因為經過一階季節差分,第一年的預測值無法求得只好設為 0 之外,殘差大致上在 0 上下跳動,沒有特定趨勢。

(2)殘差的平均是否為 0

從殘差直方圖可以發現其呈現以 0 為中心的對稱分佈,<0 那半邊次數似乎比較多一點,但經過 t-test 檢 定後仍接受殘差平均為 0。

(3)殘差是否與時間序列無關

殘差的 ACF 圖,可以發現第 23 步很靠近信賴線,但經過 Box-Ljung test 檢定後顯示我們仍可以接受 lag23 的 acf 為 0。

(4)殘差是否為常態分配

殘差的 QQ-plot·可以發現點大多數都落在直線上·且經過 Shapiro-Wilk test·其 p-value=0.1187 > 0.05,顯示殘差符合常態分布。

由於此模型殘差的四個性質都符合,因此判斷模型通過殘差診斷。最後選定的完整模型如下:

$$\sqrt{Yt} = 391.7253 - 0.1918t + Zt$$

$$(1 - B^{12})Z_t = (1 - 0.7481B^{12})(1 - 0.3362B - 0.1872B^2) e_t$$

$$e_t \sim N(0, 0.2443)$$

d. 其他候選模型的 aic 及殘差診斷結果

上面過程是呈現 AIC 最小的模型的建模流程,但其實過程中我們也有試了其他模型,下面呈現其他配適模型的 aic 及殘差診斷結果。

$$X_t = \sqrt{Yt}$$

模型	aic	殘差診斷
$X_t \sim \text{SARIMA}(0,1,1)*(0,1,1)$	178	有通過
$X_t = Bt + \mu_t + Z_t,$ $\mu_t = B_{1}B_{12} Z_t = (1 - \theta_1 B_1) e_t$	296	有通過
$X_t = Bt + \mu_t + Z_t,$ $\mu_t = B_{1}B_{12} (1 - \emptyset B)Z_t = e_t$	292	有通過

(二)月平均雨量模型建立

首先,觀察台南市從 2007 年到 2015 年月平均降雨量的時間序列圖。

rain 2007-2015 monthly average

可以發現此筆時間序列月跟月之間的變異很大,但平均似乎維持在某一常數,

(圖十)

並沒有往上升或往下降的趨勢。此序列有明顯的季節趨勢,在夏天時雨量較高,

尤其是在7-9月雨量會達到高峰,冬天雨量最低。

我們先將資料做 Box-Cox 轉換,並且繪製λ與對數概似估計值圖。

可以看到,最大概似估計量 λ 的 95%信賴區間介於約[0.1,0.36],最大值發生 在 λ =0.25 時。因此我們決定將資料做雙重根號轉換。

轉換後的時間序列圖如下

可以看到月跟月之間變異減少了,沒有往上升或往下降的趨勢,但是仍然有

明顯的季節效應。所以我們決定配一次項季節趨勢。
$$B_1$$
 For t=1,13,25,.... B_2 For t=2,14,26,.... $Y_t = \mu_t + X_t$ $\mu_t = \begin{bmatrix} B_1 & \text{For t=1,13,25,....} \\ B_2 & \text{For t=2,14,26,....} \\ \vdots & B_{12} & \text{For t=12,24,36,....} \end{bmatrix}$

month	estimate	Standard error	P value
January	1.16697	0.09584	<0.0001
February	1.35703	0.09584	<0.0001
March	1.31315	0.09584	<0.0001
April	1.38365	0.09584	<0.0001
May	1.64691	0.09584	<0.0001
June	1.82869	0.09584	<0.0001
July	1.57500	0.09584	<0.0001
August	1.90696	0.09584	<0.0001
September	1.58435	0.09584	<0.0001
October	1.39482	0.09584	<0.0001
November	1.27351	0.09584	<0.0001
December	1.23512	0.09584	<0.0001

sigma^2 estimated	R square	Adjusted R square
0.2875	96.79%	96.39%

可以看到季節趨勢項每一項皆顯著,且季節趨勢模型可以解釋序列約97%的變異。接下來我們檢查配適完季節趨勢項後的時間序列 $\{X_t\}$,進入模型選擇。 先看 $\{X_t\}$ 的 acf 、pacf、eacf 圖。

a.模型判定

AR/MA	0	1	2	3	4	5	6	7	8	9	10	11	12	13
0	9	0	0	0	0	0	0	0	0	0	0	0	0	0
1	x	0	0	0	0	0	0	0	0	О	0	0	0	0
2	Х	x	0	0	0	0	0	0	0	0	0	0	0	0
3	0	0	x	0	0	0	0	0	0	0	0	0	0	0
4	Х	О	x	0	0	0	О	0	0	0	0	0	0	0

(圖十四)

從 acf 跟 pacf 圖可以看到,除了 acf 圖中的 lag35 和 pacf 圖中的 lag25, acf 跟 pacf 值都在信賴線,但 MA(35)及 AR(25)步數太大,不考慮。另外檢查 eacf,也同樣得到 ARMA(0,0)的結論。因此從 acf、pacf、eacf 圖,我們得出共同結論,時間序列 $\{X_t\}$ 為白噪音。

b.參數估計

 $X_t \sim wn(0, 0.2875)$

c.殘差診斷

進一步 我們檢查 $\{X_t\}$ 是否通過符合下面幾個必要條件。

由上而下分別為 $\{X_t\}$ 時間序列圖、 $\{X_t\}$ 的直方圖、 $\{X_t\}$ 的常態機率圖及 $\{X_t\}$ 的 acf 圖。

One sample t test	Shapiro-wilk normality	Box-Ljung test
P-value = 0.9887	P-value = 0.4485	P-value = 0. 2511
符合 mean=0	符合 normality	第 35 步沒有相關

(1)殘差的變異數是否為常數

從殘差時間序列圖,可以發現殘差大致上在0上下跳動,沒有特定趨勢。

(2)殘差的平均是否為 0

從殘差直方圖可以發現其呈現以 0 為中心的對稱分佈,且經過 t-test 檢定後接受殘差平均為 0。

(3)殘差是否與時間序列無關

殘差的 ACF 圖,可以發現第 35 步很靠近信賴線,但經過 Box-Ljung test 檢定後顯示我們仍可以接受 lag35 的 acf 為 0。

(4)殘差是否為常態分配

殘差的 QQ-plot,可以發現點大多數都落在直線上,且經過 Shapiro-Wilk test,其 p-value=0.4485 > 0.05,顯示殘差符合常態分布。

由於此模型殘差的四個性質都符合,因此判斷模型通過殘差診斷。最後選定

B_1	B_2	B_3	B_4	B_5	B_6
1.16697	1.35703	1.31315	1.38365	1.64691	1.82869
B_7	B_8	B_9	B_{10}	B_{11}	B_{12}
1.57500	1.90696	1.58435	1.39482	1.27351	1.23512

d. 其他候選模型的 aic 及殘差診斷結果

除了配適上面的季節趨勢項模型外·其實我們也有配 SARIMA(0,1,1)-用季節差分後的時間序列去配 SMA(1)·此模型預測表現跟我們最後選定的季節趨勢模型差不多,通過殘差檢定,也有顧到季節性。原本應該可用 aic 去比較兩模型孰優孰劣,但因為季節趨勢項模型殘差為白噪音,沒有 aic,所以我們用預測均方差(MSPE)來做判斷。它的原理是先去掉一年資料,用剩下資料分別配適兩模型,分別預測一年的資料,再計算真實值跟預測值的均方差,哪個小我們就選定哪一個,最後得到的結果如下:

模型	MSE	殘差診斷	
$\sqrt[4]{Y_t} \sim \text{SARIMA (0,1,1)}$	2.011366	有通過	
我們最終選定的季節趨勢項 模型	1.863035	有通過	

因此最後我們選定季節趨勢項的模型。

伍、模型預測

以下是經過轉換後的 pm2.5 與雨量 2016 年每月之預測值,因為此份報告主題是探討相關性,預測不是最重要的,故不須轉換回原始值。

(圖十六) 2016 年台南 pm2.5 濃度月平均預測圖

由預測圖可知·2016年的實際觀測值和配適出來的預測值差異不大·甚至有幾個預測值落在觀察值點上。大部分預測值皆落於模型 2 倍信賴區間內·故此模型的預測能力佳。

(圖十七)2016 年台南雨量月平均預測圖

根據預測圖可知·2016年的實際觀測值和模型配適出來的預測值差異不大· 僅有9月可能因為接連來三個颱風·觀測值沒有落於預測值的2倍信賴區間內 之外·其他預測值都落於2倍信賴區間內。故此模型的預測能力佳。

陸、相關性分析

(一)比較殘差時間序列圖

Pm2.5 and Rain Residual Plot

(圖十八)pm2.5 與雨量的殘差時間序列圖

由此圖可以看出 pm2.5 與雨量的殘差跳動的趨勢似乎不同,相關性不大,

且兩序列都沒有極端值出現。

(二) 分析兩個模型殘差的 CCF

以 pm2.5 為 X · 降雨量為 Y · 差距為 k 期的相關係數。從 CCF 圖發現在正負第 7 期值稍微超出信賴線一點 · 代表現在的雨量與 7 個月後的 pm2.5 有正相關。雖然感覺不太合理 · 因為照理說雨量多 · pm2.5 濃度會減少 · 但我們還是按照 ccf 圖結果檢驗看看。

經過d=7移動,pm2.5月均濃度和月均雨量的殘差時間序列

圖(二十)

雨量殘差維持不變·pm2.5 殘差往後平移7個月的兩模型殘差時間序列圖中· pm2.5 與雨量的殘差跳動的趨勢看起來沒有明顯的一致性。

(三)對移動後的殘差配適迴歸模型

	Estimate	Std. Erro	or	t-value	Pr(> t)
(Intercept)	0.03183	0.04735	l	0.672	0.5030
降雨量	0.35459	0.17236		2.057	0.0423
Adjusted R-sc		Stand	dard error: 0.47	59	

	Estimate	Std. Erro	or	t-value	Pr(> t)
降雨量	0.3533	0.1719		2.056	0.0424
Adjusted R-squared: 0.04054			Stand	dard error: 0.47	45

迴歸模型截距項係數不顯著,一次項係數稍顯著(type I error rate=0.05 時顯著),可建立迴歸模型。係數為 0.3533,符合 ccf 圖顯示此兩序列為正相關的結果。照理來說,降雨量應該不會影響 7 個月後的 pm2.5 濃度,也不會呈現正相關,但我們還是接受模型配適結果。但要注意,兩者之間相關性不高,係數也並沒有很顯著。且此模型雨量只能解釋 pm2.5 濃度不到 5%的變異。

(四)模型配適

(圖二十一)殘差的時間序列圖

此序列模型並沒有特定趨勢,隨機跳動,彼此之間看起來沒有關係。

(圖二十二)殘差的 acf 及 pacf 圖

殘差的 acf、pacf、eacf 圖皆顯示此模型的殘差為白噪音。

(五)殘差診斷

由上而下分別為殘差時間序列圖、殘差的直方圖、殘差的常態機率圖及

殘差的 acf 圖。

One sample t test	Shapiro-wilk	Box-Ljung test	
P-value = 0.5009	P-value = 0.7714	P-value = 0.3408	
符合 mean=0	符合 normality	第 7 步沒有相關	

(1)殘差的變異數是否為常數

從殘差時間序列圖,殘差大致上在0上下跳動,沒有特定趨勢。

(2)殘差的平均是否為 0

從殘差直方圖可以發現其呈現以 0 為中心的對稱分佈,<0 那半邊次數似乎比較多一點,但經過 t-test 檢 定後仍接受殘差平均為 0。

(3)殘差是否與時間序列無關

殘差的 ACF 圖,可以發現第 7 步很靠近信賴線,但經過 Box-Ljung test 檢定後顯示我們仍可以接受 lag7 的 acf 為 0 。

(4)殘差是否為常態分配

殘差的 QQ-plot·可以發現點大多數都落在直線上·且經過 Shapiro-Wilk test·其 p-value=0.5009 > 0.05·顯示殘差符合常態分布。

由於此模型殘差的四個性質都符合·因此判斷模型通過殘差診斷。最後選定的完整模型如下:

$$e_t = 0.3553X_{t-7} + \varepsilon_t$$
$$\varepsilon_t \sim N(0, 0.4857)$$

 e_t : pm2.5 模型的殘差 X_t : 雨量模型的殘差

 ε_t : 回歸模型的殘差

(六) 比較原始資料及配適資料相關性圖

(右)原始資料 pm2.5 和雨量散布圖 (中)pm2.5 往後移動 7 步後和雨量殘差散布圖 (左)pm2.5 和雨量殘差散布圖

原始資料表示 Pm2.5 和降雨量呈現明顯的負相關·相關係數=-0.47。但考慮時間效應後·透過殘差相關性檢驗及建立迴歸模型過程·發現當月的雨量其實並不會影響當月的 pm2.5 濃度;且用殘差繪製的雨量、pm2.5 散布圖看起來沒有特定的趨勢·相當分散·相關係數只有約-0.15。而將 pm2.5 往後移動 7 個月後的兩序列相關係數也只有約 0.2 · 為正相關·並非負相關。由此可知·兩筆資料皆有時間效應存在,若用原始資料看相關性,會得到虛偽相關,就如同很多中小學科展的做法一樣,會得到錯誤的結果。

柒、結論

根據 2007 年到 2015 年 pm2.5 及降雨量的資料,分析後得到以下結果:

● Pm2.5 模型:

$$\sqrt{\text{Yt}} = 391.7253 - 0.1918t + Zt$$
 $e_t \sim N(0, 0.2443)$
$$(1 - B^{12})Z_t = (1 - 0.7481B^{12})(1 - 0.3362B - 0.1872B^2) e_t$$

● 降雨量模型:

$$\sqrt[4]{Y_t} = \mu_t + X_t, \ \mu_t = \begin{cases} \beta_1, t = 1,13,25,... \\ \beta_2, t = 2,14,26,... \\ \beta_{12}, t = 12,24,36,... \end{cases}, \ X_t \sim N(0,0.2875)$$

B_1	B_2	B_3	B_4	B_5	B_6
1.16697	1.35703	1.31315	1.38365	1.64691	1.82869
B 7	B_8	B_9	B ₁₀	B ₁₁	B ₁₂
1.57500	1.90696	1.58435	1.39482	1.27351	1.23512

● Pm2.5 及降雨量的預測

大部分原始資料皆落在預測模型的 2 倍信賴區間內,但雨量預測圖中,

2016/9 月值超出信賴線·可能因那月有三個颱風·導致實際數值超出 2 倍信賴區間。

● Pm2.5 及降雨量相關性模型:

$$e_t = 0.3553X_{t-7} + X_t$$

 $X_t \sim N(0,0.4857)$

 e_t : pm2.5 模型的殘差 X_t : 雨量模型的殘差

 ε_t : 回歸模型的殘差

雖然很多媒體報導·還有很多中小學科展都認為降雨量及 pm2.5 是負相關、當月降雨量會使當月 pm2.5 濃度變低等等·但是根據 2007 年到 2015 年資料分析的得知:其實當月降雨量不會影響當月 pm2.5 濃度·反而是當月雨量會影響七個月後 pm2.5 濃度·而且還是正相關。雖然最後結果是正相關,但其實回歸模型係數只有稍微顯著·相關係數也只有約 0.2,且回歸模型只能解釋不到 5%的變異·所以其實 pm2.5 跟雨量之間的相關性還是很低的。

此份分析結果是用 2007~2015 年資料分析得到的結果,其中中央氣象局提供的觀測值可能有誤差,或是清理資料的時候把一些重要的關鍵點刪掉(但因為儀器檢測無效值過多,也沒有辦法)。總之,有時間效應的模型,如果直接看原始資料的相關性,很容易得到虛偽相關,進而導出錯誤結論,所以一定要建立時間序列模型後,才能用殘差進行相關性分析。

捌、感想

(1) 育婷:

一開始選修時間序列分析這堂課,只是想到迴歸分析有提到:有時間效應的資料分析法會在大三此堂課教,所以想說多學一種資料分析法,沒想到變成我這學期最充實的課。老師一開始介紹理論,教導我們模型背後的原因及計算若干統計量的方法等等;看似無聊,但其實最重要。理論打底可讓我們不是只會表面功夫,在遇到非傳統時間序列或是變化多端的問題時,靠著這些基礎,我們可以想出應變方式,而不是只會依樣畫葫蘆。後面的運用,讓我們知道了吸收大量理論的意義,並且能將此技能運用在實際生活、改善問題,對我的幫助超乎我想像。

此份報告,讓我實際做了一份完整研究,從一開始想題目、找尋資料、篩選及清理資料、寫程式、建立模型、預測、找尋相關性、解釋程式跑出的結果及目的、最後寫成報告。此份報告讓我訓練做一份研究所需要的所有能力,每個環節都在訓練我不同方面的技術,並且是做我覺得很有意義的主題。謝謝老師的教導及訓練,此份機會不可多得,難能可貴!

(2)珍妮:

本來修這堂課沒有任何目的及期待。但是接近期末考回顧這學期所修的課才 真正發現這堂課比起其他課收穫最多。透過每個禮拜的作業及這次報告讓我更了 解如何在實務上運用所學的東西,並真的去了解我做出來的東西是甚麼,不只是 單純照課本或課堂上所教的東西去套用就結束。 其實我很想做匯率方面的報告·但是因為之前學長姊都有做了所以無法再做。 做報告過程最難的部份是在選擇模型的時候。因為模型有很多可以用·但選擇最 適合的模型很難。有的模型預測的比較好,有的模型 AIC 比較小。建立模型才 是這次報告的挑戰,因為應用了這學期所學到的東西。

(3)麗娟:

整個上課時間都需要不斷地抄筆記,可能每個人的讀書方式不一樣,我自己吸收比較慢,所以無法真正領悟時間序列分析其中的奧妙。但是,整體來說,此課程對統計系的我們是非常重要的一項課程,可以訓練我們的邏輯思考還有分析能力,是我少數覺得很有用的課程,有點慶幸自己有選到該課程。

覺得老師的配分方式不錯合理,包含 1 次考試成績,作業分數,期末報告成績。作業的分標準與其他老師不一樣,從 12 份作業中抽取幾份分數最高的作業成績,還有團隊作業分數,讓我們互相配合,大家可減少功課題數,更快更有效完成作業,因為自己寫作業影響整個小組的分數,所以自己寫時也會謹慎一些。

玖、 建議

- 建議每個禮拜還是有作業,因為有作業我們才會每個禮拜複習當週上的課。
- 期中考後的作業還是自己做比較好。這樣大家才會學到一樣的份量。如果作業分工的話有的東西沒有學到很可惜。如果要減輕作業量,建議減少作業題數。每個禮拜的作業如果,分組的話,平均一個人作業只寫一題,分組做感覺大家學的東西不均等,有的會漏掉。

拾、引用

● 行政院環保署-空氣品質監測網

http://taqm.epa.gov.tw/taqm/tw/YearlyDataDownload.aspx

● 交通部中央氣象局-每日雨量

http://www.cwb.gov.tw/V7/climate/dailyPrecipitation/dP.htm

● 原始資料整理方法的報告依據

http://www.marcopolo-panda.eu/wp/wp-content/uploads/2015/06/

AirINFORM_D2.3_API_Evaluation_Report_part3_cn.pdf