Indagine della struttura atomica

Ha un ruolo essenziale l'interazione tra radiazioni e materia. Visto nei casi:

- 1) Radiazione da decadimento radioattivo (e.g. esperimenti di Rutherford con particelle $\alpha = \text{He}^{2+}$)
- 2) Raggi catodici (elettroni, da a + in tubo catodico)
- 3) Legge Mosley ($Z = cost(\lambda)^{-1/2}$) radiazione e.m. X

Vedremo esperimenti in cui si ha:

interazione radiazione elettromagnetica (e.m.) - materia

Comportamento degli atomi dipende da disposizione in essi degli elettroni (specialmente quelli periferici) e dalla energia di interazione degli e- con il nucleo e tra di loro. Le energie in gioco sono quelle della radiazione e.m. (visibile, U.V., raggi X) tipicamente qualche eV.

Unità SI

Dal 2019 le unità di misura del sistema internazionale (SI) non sono più definite in base a «oggetti» fisici (ad es. il blocchetto di Pt-Ir a Parigi, per il kg). Vengono invece <u>assegnati</u> (definiti, senza incertezze) i valori di 7 costanti fisiche:

- · La frequenza di una specifica transizione dell'atomo ¹³³Cs: Δv_{Cs} = 9192631770 Hz,
- · La velocità della luce nel vuoto: c = 299792458 m/s,
- La costante di Planck: $h = 6.62607015 \times 10^{-34} \text{ J s}$,
- La carica elementare : $e = 1.602176634 \times 10^{-19} C$,
- La costante di Boltzmann: $k = 1.380649 \times 10^{-23} \text{ J/K}$
- La costante di Avogadro: $N_A = 6.02214076 \times 10^{23} \text{ mol}^{-1}$,
- La efficienza luminosa di una certa radiazione (540x10 12 Hz): $K_{\rm cd}$ = 683 lm/W.

Le definizioni delle 7 unità di misura fondamentali (s, m, kg, A, K, mol, cd) consequono dai valori di queste costanti fisiche. Prima era il contrario!

https://www.bipm.org/

Radiazione elettromagnetica

$$c = v = \lambda / \tau = \lambda v = 2.9979 \times 10^8 \text{ m s}^{-1}$$

Vettore campo elettrico **E**

 λ = lunghezza d'onda (distanza tra massimi successivi)

 τ = periodo (tempo t tra massimi successivi)

 $v = frequenza = 1/\tau$

In termini classici l'energia della radiazione è associata all'intensità: E_{max}^2

velocità della luce nel vuoto

Empiricamente: l'energia associata a radiazione cresce al crescere della frequenza ν (al diminuire di λ): raggi UV, raggi X etc. pericolosi

Problemi irrisolti, correlati alla struttura elettronica degli atomi, della fisica all'inizio del XX° secolo:

- Stabilità atomi (modello planetario)?!
- Radiazione emessa dal corpo nero
- Effetto fotoeletterico
- Spettri atomici (di emissione e di assorbimento) a righe

Emissione del "corpo nero"

Corpo nero: assorbe tutta la radiazione e.m. incidente; emette radiazione e.m. con ν la cui distribuzione dipende da T.

Distribuzione sperimentale di λ radiazione emessa ha un max a λ decrescente al crescere di T. Legge di Wien:

$$T \cdot \lambda_{max} = cost = 2.9 \cdot 10^{-3} \text{ K} \cdot \text{m}$$

Legge di Stefan-Boltzmann

$$I = \sigma \ T^4$$
 σ =5.67·10⁻⁸ W·m⁻²K⁻⁴ (W= J s⁻¹)

Emissione del "corpo nero"

Modello classico: oscillatore armonico che può assumere qualsiasi energia

$$F = 1/2 \cdot k(x - x_0)^2$$

Frequenze oscillazioni degli e- $v = \frac{1}{2\pi} \left(\frac{k}{m}\right)^{1/2}$

$$v = \frac{1}{2\pi} \left(\frac{k}{m}\right)^{1/2}$$

 $\rightarrow \nu$ radiazione emessa

Previsione classica: OK a λ grandi - ma non si ha massimo sperimentale descritto da legge di Wien! Catastrofe UV \Rightarrow per tutte le T > 0 K sovrastimata radiazione con λ piccola!

Curve sperimentali ben riproducibili ammettendo che "oscillatore" e- a frequenza ν possa scambiare energia solo se $\Delta \varepsilon_{\rm osc} = nh\nu$ con $h = 6.62607 \cdot 10^{-34} \, \rm J \, s$

La probabilità p di avere oscillatori con almeno la minima energia consentita ϵ = hv è: $p=e^{-hv/k_BT}$ con $k_B = \cos t$. di Boltzmann = 1.38065 · 10⁻²³ J K⁻¹

p decresce aumentando v (e quindi al diminuire di λ) ed è \approx 0 con $hv/k_BT >>1$

I quanti: l'ipotesi di Planck

L'energia trasferita da radiazione elettromagnetica è quantizzata: se la frequenza è ν , si ha

```
E = h \nu o meglio \Delta E = h \nu
con h = 6.62607 \times 10^{-34} \text{ J s}
Quanto = fotone = h\nu =
minima quantità di energia trasferibile con una radiazione di frequenza v
Per fotone visibile con \lambda = 600 nm v=c/\lambda = 5 \cdot 10^{14}s^{-1}
E = h v = 3.3 \cdot 10^{-19} J I quanti sono rilevanti per trasferimenti
d'energia molto piccoli: ordine di grandezza ≈ energia elettroni in atomi
(1eV = 1.602 \ 10^{-19} \ J; \ 1 \ eV \ part^{-1} = 96.5 \ kJ \ mol^{-1}_{(part)})
```

Effetto fotoelettrico

Catodo (-) di un dato metallo illuminato da radiazione e.m. monocromatica. Sopra una certa ν soglia vengono emessi e^- .

Effetto fotoelettrico 5.44 \times 10¹⁴ Hz (551 nm) Kinetic energy of ejected electron, $E_{ m K}$ **Energia** $5.05 \times 10^{14} \, \text{Hz} \, (593 \, \text{nm})$ Na cinetica E_K Slope = hdell'elettrone = Energy 1/2 mv² brought by Energia ϕ photon, necessaria a Φ/h rimuovere -Ф l'elettrone **Frequency of incident radiation,** \vee

Quando
$$E = hv > E_0 = hv_0$$
 $E_{cin} = h(v - v_0)$

- · Flusso elettroni emessi proporzionale ad intensità illuminazione (nr fotoni nell'unità di tempo)
- Energia cinetica elettroni emessi proporzionale a $(v-v_0)$
- · Radiazione e.m. incidente è formata da "quanti"

Spettro di emissione dell'idrogeno

Spettri emissione atomo d'idrogeno

(a)

$$\mathscr{R} = 3.29 \times 10^{15} Hz$$
 con $n_f = 1$ si ha: $\left(\frac{1}{n_f^2} - \frac{1}{n_i^2}\right) = 3/4, 8/9, 15/16 \dots$

Atomo di Bohr: "planetario" (1913)

- 1. L'elettrone orbita intorno al nucleo atomico
- 2. Sono permesse solo orbite con ben precisa energia e raggio (stati stazionari, momento angolare mvr_n quantizzato).
- 3. Emissione o assorbimento di energia solo passando da uno stato stazionario quantico ad un altro. In questi casi $\Delta E = h\nu$, con ΔE differenza di energia tra le due orbite e ν frequenza della radiazione emessa.

Energia «orbite elettroniche» atomo d'idrogeno

$$E_n = -h v = -\Re h \frac{1}{n^2} = 3.29 \times 10^{15} \,\mathrm{s}^{-1} \times 6.63 \times 10^{-34} \,\mathrm{J} \,\mathrm{s} \frac{1}{n^2} = -(2.18 \times 10^{-18} \,\mathrm{J}) \frac{1}{n^2}$$

Riferimento = 0 di E per $n = \infty$, elettrone a distanza infinita dal nucleo

Possibli emissioni

$$E_{pot} = \frac{q_1 \times q_2}{4\pi \varepsilon_0 r}$$

$$E_{pot} = -\frac{Z \times e^2}{4\pi \varepsilon_0 r}$$

$E_{pot} = \frac{q_1 \times q_2}{4\pi\varepsilon_0 r}$ Energia potenziale coulombiana

 $E_{pot} = -\frac{Z \times e^2}{4\pi \varepsilon_0 r}$ Per atomo con nr atomico Z (carica nucleo Ze) e 1 elettrone $\varepsilon_0 = 8.854 \times 10^{-12} C \text{ V}^{-1} \text{ m}^{-1} \text{ permittività vuoto}$

$$E_{tot}=E_{pot}+E_{cin}=-\frac{Z\times e^2}{4\pi\varepsilon_0 r}+\frac{1}{2}m_e {v_e}^2 \qquad \text{(1)}$$

$$v_e=\text{velocit\'a dell'elettrone}$$

Per elettrone ruotante a v costante intorno al nucleo si ha equilibrio tra forza elettrica e forza centrifuga

$$F_{Coul} = \frac{Z \times e^2}{4\pi\varepsilon_0 r^2} = m_e a = \frac{m_e v_e^2}{r} \quad (2) \quad \text{da cui} \quad \frac{1}{2} m_e v_e^2 = \frac{Z \times e^2}{8\pi\varepsilon_0 r}$$

quantizzato

Ipotesi Bohr:
momento angolare
$$m_e v_e r_n = \frac{nh}{2\pi}$$
 $n = 1, 2, 3 \dots$ (3)

Ricaviamo la velocità v_e da (3): $v_e = \frac{nh}{2rm_e\pi}$ e sostituiamo in (2): $r = \frac{Z \times e^2}{4\pi\varepsilon_0 m_e v_e^2}$

$$r_n = \frac{\varepsilon_0 n^2 h^2}{\pi Z e^2 m_e}$$
 (4) Con Z = 1 e n = 1 si ottiene lo stato fondamentale dell'atomo H r funzione solo di Z e n!

$$a_0 = \frac{\varepsilon_0 h^2}{\pi e^2 m_s} = 0.053 \,\mathrm{nm}$$
 raggio di Bohr

Dalle equazioni (1) e (2) l'energia totale è data da:

$$E_{tot(n)} = -\frac{Ze^2}{4\pi\varepsilon_0 r_n} + \frac{Ze^2}{8\pi\varepsilon_0 r_n} = -\frac{Ze^2}{8\pi\varepsilon_0 r_n}$$
 (5) e sostituendo $r_n \operatorname{da}$ (4):

$$E_n = -\frac{Z^2 e^4 m_e}{8\varepsilon_0^2 n^2 h^2} = -(2.18 \times 10^{-18} \text{J}) \frac{Z^2}{n^2}$$
 (6) Livelli energetici permessi atomo idrogenoide

$$n = 1, 2, 3 \dots$$
 1eV = 1.602 10⁻¹⁹ J

$$\Delta E_{H} = -\frac{Z^{2}e^{4}m_{e}}{8\varepsilon_{0}^{2}h^{2}} \left(\frac{1}{n_{f}^{2}} - \frac{1}{n_{i}^{2}}\right) = -(2.18 \times 10^{-18} \,\mathrm{J}) \left(\frac{1}{n_{f}^{2}} - \frac{1}{n_{i}^{2}}\right)$$

Spettri d'emissione: (nf < ni)

$$v = \frac{\Delta E_H}{h} = \frac{Z^2 e^4 m_e}{8\varepsilon_0^2 h^3} \left(\frac{1}{n_f^2} - \frac{1}{n_i^2} \right) = \frac{(2.18 \times 10^{-18} \,\text{J})}{6.626 \times 10^{-34} \,\text{J s}} \left(\frac{1}{n_f^2} - \frac{1}{n_i^2} \right)$$
$$= (3.29 \times 10^{15} \,\text{s}^{-1}) \left(\frac{1}{n_f^2} - \frac{1}{n_i^2} \right)$$

Spettri d'assorbimento:
$$(n_f > n_i) \ \nu = (3.29 \times 10^{15} \text{ s}^{-1}) \left(\frac{1}{n_i^2} - \frac{1}{n_f^2} \right)$$

Energia elettrone in atomo d'idrogeno e idrogenoidi (1 e-)

$$E_{n} = -\frac{Z^{2}e^{4}m_{e}}{8\varepsilon_{0}^{2}n^{2}h^{2}} = -(2.18 \times 10^{-18} \text{J})\frac{Z^{2}}{n^{2}}$$
$$= -R_{H}\frac{Z^{2}}{n^{2}} \qquad (6) \quad \text{con} \quad R_{H} = \Re h$$

D'altra parte, da (5) si ha anche:

$$E_n = -\cot \frac{Z}{r_n}$$
 con $r_n = \frac{\varepsilon_0 n^2 h^2}{\pi Z e^2 m_e}$

La equaz.(6) ~ razionalizza legge Moseley: $Z = cost (\lambda)^{-1/2}$ se vengono strappati elettroni dal livello n= 1, il più stabile dell'atomo: $\Delta E = hv = hc/\lambda = cost' Z^2$ con cost = $(hc/cost')^{1/2}$

Limiti modello Bohr

- 1. E' un modello "ad hoc" costruito per spiegare unicamente gli spettri dell'atomo di H (e idrogenoidi = monoelettronici)
- 2. Viola le leggi della fisica classica (e- cadrebbe sul nucleo).
- 3. Tiene conto solo parzialmente della scoperta della doppia natura: particellare ed ondulatoria di materia e radiazioni.

Meccanica quantistica

Radiazione e.m. ha anche una natura discreta, « particellare »: ⇒ fotoni (quanti)

Louis de Broglie (1924)

A ogni particella è associata un'onda, di lunghezza d'onda λ :

$$\lambda = h/mv = h/p \Rightarrow p = h/\lambda$$

 h_{1} cost. di **Planck** = $6.626 \times 10^{-34} \, \text{J s}$

Principio di indeterminazione

$$\Delta x \Delta p \geq \frac{1}{2}(h/2\pi)$$

Erwin Schrödinger (1926) ψ = FUNZIONE D'ONDA

la materia, su scala atomica, ha proprietà ondulatorie

Dualismo onda particella

Sia il comportamento della luce che quello della materia può essere spiegato in alcuni considerandole come particelle in altri come onde.

luce

Comportamento ondulatorio:

Elettromagnetismo ed ottica in generale

Comportamento particellare:

Effetto fotoelettrico

Effetto Compton

materia

Comportamento particellare:

In tutti i casi di aggregati di più atomi

a) costruttiva

Comportamento ondulatorio:

Diffrazione di raggi di elettroni

La descrizione ondulatoria implica l'interferenza ⇒ diffrazione

b) distruttiva

Fenomeni ondulatori: interferenza di onde

per osservare interferenza e quindi diffrazione, sono necessarie più fenditure e la loro la distanza deve essere ~ la lunghezza d'onda.

Dualismo onda-particella

Diffrazione di fotoni: radiazione e.m. da reticolo con periodicità $\approx \lambda$

Fascio di fotoni

Radiazione elettromagnetica (luce)

Diffrazione di elettroni da reticolo cristallino (e.g. lamina oro, periodicità $\sim \lambda$) was a literature in microscopio elettronico

Principio d'indeterminazione di Heisenberg

Sfera m=
$$10^{-5} g$$

 $h = 6.62608 \times 10^{-34} J s$
 $\Delta x \cdot \Delta v_x \cong \frac{h}{m} = \frac{6.6 \cdot 10^{-27} erg \cdot s}{10^{-5} g} = 6.6 \cdot 10^{-22} cm^2 \cdot s^{-1}$
 $\Delta x = 10^{-10} cm$ $\Delta v_x = 6.6 \cdot 10^{-12} cm \cdot s^{-1}$ Incertezza trascurabile

 $1\text{\AA} = 10^{-10} \text{ m}$

Elettrone $m_e \approx 10^{-27}g$

$$\Delta X \cdot \Delta V_X \cong \frac{h}{m} = \frac{6.6 \cdot 10^{-27} erg \cdot s}{10^{-27} g} = 6.6 cm^2 \cdot s^{-1}$$

$$\Delta x = 10^{-10} cm$$
 $\Delta v_x = 6.6 \cdot 10^{10} cm \cdot s^{-1}$ V_x indeterminata

massa e 9.109 x 10^{-28} g $c = \lambda v = 2.9979 \times 10^{10}$ cm s⁻¹

Quantizzazione

Si ha quando una proprietà fisica può assumere solo certi valori discreti:

Ad esempio l'energia di un sistema microscopico (e.g. elettrone in un atomo) può assumere solo certi valori, associati alle funzioni d'onda ψ , ottenute risolvendo la:

equazione di Schrödinger, 1926

$$\begin{split} -h^2/(8\pi^2 m) \; \partial^2 \psi/\partial x^2 + V(x)\psi &= E_{\text{TOT}} \psi \quad \text{(1D)} \\ -h^2/(8\pi^2 m) \nabla^2 \psi + V \psi &= E_{\text{TOT}} \psi \quad \text{(3D)} \\ \text{con} \; \nabla^2 = &(\partial^2/\partial x^2 + \partial^2/\partial y^2 \; + \partial^2/\partial z^2 \;) \; \text{operatore "del^2"} \\ \text{dove} \; E_K + V &= E_{TOT} \end{split}$$

Le $\Psi(n, l, m_l)$ sono funzioni dei tre numeri quantici n, l, e m_l che possono solo assumere precisi valori discreti

Quantizzazione in onde stazionarie

Secondo De Broglie l'elettrone nell'atomo si comporta come una onda stazionaria vincolata intorno al nucleo:

Funzione d'onda dell'e in un atomo deve essere: $\lambda = 2\pi r/n$ Dall'ipotesi di De Broglie $\lambda = h/mv$ e quindi $2\pi r/n = h/mv$

Da cui si ha la quantizzazione del momento angolare: $m_e v_e r_n = \frac{n h}{2\pi}$

Prime 4 funzioni d'onda con: $\lambda = 2L$, $\lambda = L$, $\lambda = 2/3$ L, $\lambda = 1/2L$.

Quantizzazione dell'Energia.

Esempio: moto particella in una scatola (lunghezza L) descritto con onde stazionarie

Energia potenziale V = 0 all'interno; $V = \infty$ all'esterno (solo energia cinetica)

$$-(h^2/8\pi^2 m) \partial^2 \psi/\partial x^2 + V(x)\psi = E_{TOT} \psi$$

Funzioni d'onda: deve essere $L = n \lambda/2$

Soluzioni: $\psi_n(x) = (2/L)^{1/2} \sin(n\pi x/L)$ con

$$\lambda = 2L/n, \quad n=1,2,... \quad 0 \le x \le L$$

Se
$$p = h/\lambda = nh/2L$$
, da $E_K = p^2/2m$ \Rightarrow

$$E_{tot} = E_K = n^2h^2/8mL^2$$
 $n = 1,2,...$ e il numero di nodi (O della funzione) = n -1

La quantizzazione deriva dal fatto che la particella è vincolata (entro L) altrimenti valori «continui» di λ e dell'energia sarebbero accettabili. $\mathbf{E}_{\mathbf{K}} \div \mathbf{n}^2$!

Risoluzione dell'equazione di Schrödinger per atomi di idrogeno

Risoluzione esatta possibile per l'atomo d'idrogeno ed altri sistemi monoelettronici. Soluzioni accettabili solo per certi valori dell'energia (autovalori): si determinano valori di E_n coincidenti con risultati di Bohr

$$-h^2/(8\pi^2m)\nabla^2\psi + (-Ze^2/4\pi\epsilon_0r)\psi = E_{TOT}\psi$$

$$E_n = -\frac{Z^2 e^4 m_e}{8\varepsilon_0^2 n^2 h^2} = -(2.18 \times 10^{-18} \text{J}) \frac{Z^2}{n^2}$$

n = nr quantico principale

Quantizzazione dell'energia non arbitraria ma conseguenza di vincoli che la ψ deve soddisfare e attrazione di e^- dal nucleo

Interpretazione di ψ (Born)

 $\psi(x,y,z)$ non ha significato fisico in sé:

tuttavia consente di valutare la probabilità di $\mbox{trovare una}$ particella in un volumetto $d\tau = dxdydz$

Probabilità = $\psi \psi^* d\tau$ è sempre reale ≥ 0 e soggetta a normalizzazione: Σ probabilità = certezza, ovvero: $\int \psi \psi^* d\tau = 1$

Orbitali Atomici (Atomi idrogeno e idrogenoidimonoelettronici)

ψ soluzioni esatte equazione di Schrödinger per un campo centrale di carica +Z caratterizzate da 3 numeri quantici (sistema 3D):

```
n = numero quantico principale n = 1, 2, ... determina l'energia: orbitali con lo stesso n sono degeneri
```

```
\it l = nr quantico del momento angolare orbitale \it l = 0, 1,.., n-1 determina la forma ( e la simmetria) di \psi 0 1 2 3 4 ... s p d f g
```

 m_l = numero quantico magnetico orbitale m_l = l, l -1,..., -l+1, -l determina l'orientazione nello spazio di ψ

Orbitali atomici dell'idrogeno

 Ψ funzioni spesso complesse, più comprensibili se trasformate in coordinate polari sferiche.

Possono essere scomposte in una componente radiale ed una angolare

$$\psi_{n,l,m}(x, y, z) \rightarrow$$

$$\rightarrow \psi_{n,l,m}(r, \theta, \phi) = R_{n,l}(r) \cdot Y_{l,m}(\theta, \phi)$$

Orbitali atomici dell'idrogeno

(a) Funzioni d'onda radiali			(b) Fun	(b) Funzioni d'onda angolari		
n	1	$R_{nl}(r)^{\dagger}$	1	m_l^{\ddagger}	Yl , ml (θ, ϕ)	
1	0	$2\left(\frac{Z}{a_0}\right)^{3/2} e^{-Zr/a_0}$	0	0	$\left(\frac{1}{4\pi}\right)^{1/2}$	
2	0	$\frac{1}{2\sqrt{2}} \left(\frac{Z}{a_0}\right)^{3/2} \left(2 - \frac{Zr}{a_0}\right) e^{-Zr/2a_0}$	1	x	$\left(\frac{3}{4\pi}\right)^{1/2} \operatorname{sen} \theta \cos \phi$	
2	1	$\frac{1}{2\sqrt{6}} \left(\frac{Z}{a_0}\right)^{3/2} \left(\frac{Zr}{a_0}\right) e^{-Zr/2a_0}$	1	γ	$\left(\frac{3}{4\pi}\right)^{1/2}$ sen θ sen ϕ	
3	0	$\frac{2}{9\sqrt{3}} \left(\frac{Z}{a_0}\right)^{3/2} \left(3 - \frac{2Zr}{a_0} + \frac{2Z^2r^2}{9a_0^2}\right) e^{-Zr/3a_0}$	1	z	$\left(\frac{3}{4\pi}\right)^{1/2}\cos\theta$	
3	1	$\frac{2}{9\sqrt{6}} \left(\frac{Z}{a_0}\right)^{3/2} \left(\frac{Zr}{a_0}\right) \left(2 - \frac{Zr}{3a_0}\right) e^{-Zr/3a_0}$	2	xy	$\left(\frac{15}{16\pi}\right)^{1/2} \operatorname{sen}^2 \theta \operatorname{sen} 2\phi$	
3	2	$\frac{4}{81\sqrt{30}} \left(\frac{Z}{a_0}\right)^{3/2} \left(\frac{Zr}{a_0}\right)^2 e^{-Zr/3a_0}$	2	γz	$\left(\frac{15}{4\pi}\right)^{1/2}\cos\theta\sin\theta\sin\phi$	
			2	zx	$\left(\frac{15}{4\pi}\right)^{1/2}\cos\theta\sin\theta\cos\phi$	
			2	$x^2 - y^2$	$\left(\frac{15}{16\pi}\right)^{1/2} \operatorname{sen}^2 \theta \cos 2\phi$	
		ı	2	z ²	$\left(\frac{5}{16\pi}\right)^{1/2} (3\cos^2\theta - 1)$	

$$a_0 = \frac{\varepsilon_0 h^2}{\pi e^2 m_e} = 0.053 \,\text{nm} = \text{raggio di Bohr}$$

In tutti i casi, meno che per $m_l = 0$, gli orbitali sono combinazioni lineari di quelli ottenuti con specifici valori di m_l

Orbitali s

Orbitali s

$$(l=0)$$

Le superfici di equiprobabilità sono sferiche. Superfici nodali (pure sferiche) = superfici su cui ψ = 0. Loro nr. varia con n: sono n-1 \Rightarrow E cresce con nr di nodi.

Funzioni di distribuzione radiale

Orbitali p

(l = 1, dan = 2)

Superficie di «contorno» di orbitali p. Cambiamento di colore: Y ha segno (o fase) diversi.

A parità del nr. quantico princ. n, gli orbitali s sono più penetranti dei p: hanno un massimo più vicino al nucleo.

Contorni di equiprobabilità di densità elettronica per orbitali $2p_z$ e $3p_z$

Electron density contours for $2p_z$ and $3p_z$ orbitals. The contour values are relative to the electron density maxima (indicated as dots). In the case of the $3p_z$ orbital, the xy plane and a sphere of radius 0.52 Å are nodal surfaces.

Le linee rappresentano valori costanti di densità elettronica Ψ^2 , supposto 1 il valore sul max indicato con un punto centrale nella zona. I segni sono invece quelli della Ψ , i nodi i punti dove Ψ = 0.

Orbitali d

$$(l = 2, n \ge 3)$$

Cambiamento di colore: Y ha segno (o fase) diversi.

Particolarmente importanti per la chimica dei metalli di transizione

Orbitali $f(l=3, n \ge 4)$

(importanti per la chimica dei Lantanidi e Attinidi)

