

Министерство науки и высшего образования Российской Федерации

Федеральное государственное бюджетное образовательное учреждение высшего образования

"Московский государственный технический университет имени Н.Э. Баумана

(национальный исследовательский университет)" (МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ <u>ИН</u>	ФОРМАТИКА, ИСКУССТВЕННЫЙ ИНТЕЛЛЕІ	КТ И СИСТЕМЫ УПРАВЛЕНИЯ
КАФЕДРА	СИСТЕМЫ ОБРАБОТКИ ИНФОРМАЦИИ И	УПРАВЛЕНИЯ (ИУ5)
	ОТЧЕТ	
	Лабораторная работа Л «Обучение на основе временных	
	по курсу «Методы машинного с	обучения»
	ИСПОЛНИТЕЛЬ:	Рабцевич К.Р.
	группа ИV5_21М	ФИО
	группа ИУ5-21М	<u> </u>
	группа ИУ5-21М	ФИО
	группа ИУ5-21М ПРЕПОДАВАТЕЛЬ:	подпись
		тодпись ""2023 г. Гапанюк Ю.Е.

Цель работы

Ознакомление с базовыми методами обучения с подкреплением на основе временных различий.

Задание

На основе рассмотренного на лекции примера реализуйте следующие алгоритмы:

- SARSA
- Q-обучение
- Двойное Q-обучение

для любой среды обучения с подкреплением (кроме рассмотренной на лекции среды Toy Text / Frozen Lake) из библиотеки Gym (или аналогичной библиотеки).

Выполнение

Для реализации алгоритмов была выбрана среда Тахі из библиотеки Gym. Агент может находится в 25 позициях, пассажир может находится в 5 позициях, и 4 позиции для места назначения = 25*5*4= 500 состояний системы.

Текст программы:

```
self.nA = env.action_space.n
        self.nS = env.observation_space.n
        #и сама матрица
        self.Q = np.zeros((self.nS, self.nA))
        # Значения коэффициентов
        # Порог выбора случайного действия
        self.eps=eps
        # Награды по эпизодам
        self.episodes_reward = []
    def print_q(self):
        print('Вывод Q-матрицы для алгоритма ', self.ALGO_NAME)
        print(self.Q)
    def get_state(self, state):
        Возвращает правильное начальное состояние
        if type(state) is tuple:
            # Если состояние вернулось с виде кортежа, то вернуть только номер
состояния
            return state[0]
        else:
            return state
    def greedy(self, state):
        <<Жадное>> текущее действие
        Возвращает действие, соответствующее максимальному Q-значению
        для состояния state
        100
        return np.argmax(self.Q[state])
    def make_action(self, state):
        Выбор действия агентом
        if np.random.uniform(0,1) < self.eps:</pre>
            # Если вероятность меньше ерѕ
            # то выбирается случайное действие
            return self.env.action_space.sample()
        else:
            # иначе действие, соответствующее максимальному Q-значению
            return self.greedy(state)
```

```
def draw_episodes_reward(self):
       # Построение графика наград по эпизодам
       fig, ax = plt.subplots(figsize = (15,10))
       y = self.episodes_reward
       x = list(range(1, len(y)+1))
       plt.plot(x, y, '-', linewidth=1, color='green')
       plt.title('Награды по эпизодам')
       plt.xlabel('Номер эпизода')
       plt.ylabel('Награда')
       plt.show()
   def learn():
       Реализация алгоритма обучения
       pass
# ******* SARSA
************
class SARSA_Agent(BasicAgent):
   Реализация алгоритма SARSA
   # Наименование алгоритма
   ALGO NAME = 'SARSA'
   def __init__(self, env, eps=0.4, lr=0.1, gamma=0.98, num_episodes=20000):
       # Вызов конструктора верхнего уровня
       super().__init__(env, eps)
       # Learning rate
       self.lr=lr
       # Коэффициент дисконтирования
       self.gamma = gamma
       # Количество эпизодов
       self.num episodes=num episodes
       # Постепенное уменьшение ерѕ
       self.eps_decay=0.00005
       self.eps threshold=0.01
   def learn(self):
       Обучение на основе алгоритма SARSA
       self.episodes reward = []
       # Цикл по эпизодам
       for ep in tqdm(list(range(self.num_episodes))):
           # Начальное состояние среды
```

```
state = self.get_state(self.env.reset())
           # Флаг штатного завершения эпизода
           done = False
           # Флаг нештатного завершения эпизода
           truncated = False
           # Суммарная награда по эпизоду
           tot rew = 0
           # По мере заполнения Q-матрицы уменьшаем вероятность случайного
выбора действия
           if self.eps > self.eps threshold:
               self.eps -= self.eps_decay
           # Выбор действия
           action = self.make_action(state)
           # Проигрывание одного эпизода до финального состояния
           while not (done or truncated):
               # Выполняем шаг в среде
               next_state, rew, done, truncated, _ = self.env.step(action)
               # Выполняем следующее действие
               next_action = self.make_action(next_state)
               # Правило обновления Q для SARSA
               self.Q[state][action] = self.Q[state][action] + self.lr * \
                   (rew + self.gamma * self.Q[next_state][next_action] -
self.Q[state][action])
               # Следующее состояние считаем текущим
               state = next_state
               action = next action
               # Суммарная награда за эпизод
               tot rew += rew
               if (done or truncated):
                   self.episodes_reward.append(tot_rew)
# ******* 0-обучение
************
class QLearning_Agent(BasicAgent):
   Реализация алгоритма Q-Learning
   # Наименование алгоритма
   ALGO NAME = 'Q-обучение'
   def __init__(self, env, eps=0.4, lr=0.1, gamma=0.98, num_episodes=20000):
       # Вызов конструктора верхнего уровня
```

```
super().__init__(env, eps)
        # Learning rate
        self.lr=lr
        # Коэффициент дисконтирования
        self.gamma = gamma
        # Количество эпизодов
        self.num_episodes=num_episodes
        # Постепенное уменьшение ерѕ
        self.eps_decay=0.00005
        self.eps_threshold=0.01
   def learn(self):
        Обучение на основе алгоритма Q-Learning
        self.episodes_reward = []
        # Цикл по эпизодам
        for ep in tqdm(list(range(self.num_episodes))):
            # Начальное состояние среды
            state = self.get_state(self.env.reset())
            # Флаг штатного завершения эпизода
            done = False
            # Флаг нештатного завершения эпизода
            truncated = False
            # Суммарная награда по эпизоду
            tot rew = 0
            # По мере заполнения Q-матрицы уменьшаем вероятность случайного
выбора действия
            if self.eps > self.eps_threshold:
                self.eps -= self.eps_decay
            # Проигрывание одного эпизода до финального состояния
            while not (done or truncated):
                # Выбор действия
                # B SARSA следующее действие выбиралось после шага в среде
                action = self.make_action(state)
                # Выполняем шаг в среде
                next_state, rew, done, truncated, _ = self.env.step(action)
                # Правило обновления Q для SARSA (для сравнения)
                # self.Q[state][action] = self.Q[state][action] + self.lr * \
                      (rew + self.gamma * self.Q[next_state][next_action] -
self.Q[state][action])
                # Правило обновления для Q-обучения
                self.Q[state][action] = self.Q[state][action] + self.lr * \
```

```
(rew + self.gamma * np.max(self.Q[next_state]) -
self.Q[state][action])
               # Следующее состояние считаем текущим
               state = next_state
               # Суммарная награда за эпизод
               tot_rew += rew
               if (done or truncated):
                   self.episodes_reward.append(tot_rew)
# ***** Двойное О-обучение
**************
class DoubleQLearning_Agent(BasicAgent):
   Реализация алгоритма Double Q-Learning
   # Наименование алгоритма
   ALGO_NAME = 'Двойное Q-обучение'
   def __init__(self, env, eps=0.4, lr=0.1, gamma=0.98, num_episodes=20000):
       # Вызов конструктора верхнего уровня
       super().__init__(env, eps)
       # Вторая матрица
       self.Q2 = np.zeros((self.nS, self.nA))
       # Learning rate
       self.lr=lr
       # Коэффициент дисконтирования
       self.gamma = gamma
       # Количество эпизодов
       self.num_episodes=num_episodes
       # Постепенное уменьшение ерѕ
       self.eps decay=0.00005
       self.eps_threshold=0.01
   def greedy(self, state):
       <<Жадное>> текущее действие
       Возвращает действие, соответствующее максимальному Q-значению
       для состояния state
       1.1.1
       temp_q = self.Q[state] + self.Q2[state]
       return np.argmax(temp_q)
   def print q(self):
       print('Вывод Q-матриц для алгоритма ', self.ALGO_NAME)
       print('Q1')
       print(self.Q)
```

```
print('Q2')
        print(self.Q2)
   def learn(self):
        Обучение на основе алгоритма Double Q-Learning
        self.episodes_reward = []
        # Цикл по эпизодам
        for ep in tqdm(list(range(self.num_episodes))):
            # Начальное состояние среды
            state = self.get_state(self.env.reset())
            # Флаг штатного завершения эпизода
            done = False
            # Флаг нештатного завершения эпизода
            truncated = False
            # Суммарная награда по эпизоду
            tot_rew = 0
            # По мере заполнения Q-матрицы уменьшаем вероятность случайного
выбора действия
            if self.eps > self.eps_threshold:
                self.eps -= self.eps decay
            # Проигрывание одного эпизода до финального состояния
            while not (done or truncated):
                # Выбор действия
                # B SARSA следующее действие выбиралось после шага в среде
                action = self.make action(state)
                # Выполняем шаг в среде
                next_state, rew, done, truncated, _ = self.env.step(action)
                if np.random.rand() < 0.5:</pre>
                    # Обновление первой таблицы
                    self.Q[state][action] = self.Q[state][action] + self.lr * \
                        (rew + self.gamma *
self.Q2[next_state][np.argmax(self.Q[next_state])] - self.Q[state][action])
                else:
                    # Обновление второй таблицы
                    self.Q2[state][action] = self.Q2[state][action] + self.lr * \
                        (rew + self.gamma *
self.Q[next_state][np.argmax(self.Q2[next_state])] - self.Q2[state][action])
                # Следующее состояние считаем текущим
                state = next_state
                # Суммарная награда за эпизод
                tot rew += rew
                if (done or truncated):
```

```
self.episodes_reward.append(tot_rew)
```

```
def play_agent(agent):
    Проигрывание сессии для обученного агента
    env2 = gym.make('Taxi-v3', render_mode='human')
    state = env2.reset()[0]
    done = False
    while not done:
        action = agent.greedy(state)
        next_state, reward, terminated, truncated, _ = env2.step(action)
        env2.render()
        state = next_state
        if terminated or truncated:
            done = True
def run_sarsa():
    env = gym.make('Taxi-v3')
    agent = SARSA_Agent(env)
    agent.learn()
    agent.print_q()
    agent.draw_episodes_reward()
    play_agent(agent)
def run q learning():
    env = gym.make('Taxi-v3')
    agent = QLearning_Agent(env)
    agent.learn()
    agent.print_q()
    agent.draw_episodes_reward()
    play_agent(agent)
def run_double_q_learning():
    env = gym.make('Taxi-v3')
    agent = DoubleQLearning Agent(env)
    agent.learn()
    agent.print q()
    agent.draw_episodes_reward()
    play_agent(agent)
def main():
    run sarsa()
    #run_q_learning()
    #run double q learning()
```

```
if __name__ == '__main__':
    main()
```

Результат выполнения

Алгоритм SARSA

```
Вывод Q-матрицы для алгоритма SARSA
                 0.
                                                       0.
                                          0.
                             0.
    0.
 [ -7.21253293
               -5.52965781 -8.32184702 -7.81722066
                                                       8.23591415
  -10.79235364]
                3.01086911 1.17921886
 [ 2.85385617
                                          3.283334
                                                      13.1100137
   -3.48551645]
 [-2.29815054]
                7.23607832 - 2.53886278 - 2.6828966
                                                      -5.91462164
   -5.6040925 ]
 [ -7.95087932 -7.86176175 -7.91306024 1.23651618 -13.64943576 ]
  -13.56327907]
                1.11399395 2.5149983
 [ 3.25578131
                                         18.36665666 -1.53488857
    0.88146156]]
```

Алгоритм Q-обучение

Алгоритм двойное О-обучение

```
Вывод О-матриц для алгоритма Двойное О-обучение
Q1
[[
   0.
                 0.
                             0.
                                          0.
                                                       0.
   0.
                2.03511462 -2.52967576
                                          0.66739653
                                                       8.36234335
  0.03879444
   -5.04727032]
                             3.02390899
 [ 5.47475381
                8.77669818
                                          7.3278276
                                                      13.27445578
   -1.16827727]
 [ 6.76930641 14.5657712
                             4.5083121
                                          5.45931852
                                                       2.66374495
    2.21038481]
                2.26457269 -3.38031277 -2.60041054 -10.54557724
 [ -3.46186265
   -5.15309731]
 [ 3.72224538
                4.42100656 1.87083552 18.17822734
                                                       0.48799718
   -1.96400176]]
                          0.
[[ 0.
                                                              0.
                                      0.
                                                  0.
 [ 1.25301708  3.65355552  -3.24639715  2.62026556  8.36234335  -7.49386278]
 [ 4.8311577     4.06482313     2.93888801     6.84052853     13.27445578     -1.90779817]
 [ 9.6762051 14.5657712 7.45221976 5.15329804 1.87985424 1.41236416]
 [-3.97515029 3.83260412 -4.12713239 -0.91614667 -8.2192125 -8.15621667]
  2.38757838 2.59278084 2.98911653 18.15425271 -0.1895167 -2.92785128]]
```

Вывод

В ходе выполнения лабораторной работы мы ознакомились с базовыми методами обучения с подкреплением на основе временных различий, а именно алгоритмами SARSA, Q-Learning, Double Q-Learning.