Wie kann man prüfen, ob eine affine Transformation des \mathbb{R}^2 kontrahierend ist?

Eine affine Abbildung $f(\vec{x}) = M \cdot \vec{x} + \vec{v}$, $M \in \mathbb{R}^{2 \times 2}$ ist (nach Definition) genau dann kontrahierend, wenn es eine Konstante $0 \le s < 1$ gibt, sodass für alle $\vec{x}, \vec{y} \in \mathbb{R}^2$ gilt:

$$||f(\vec{x}) - f(\vec{y})|| = ||M \cdot (\vec{x} - \vec{y})|| \le s \cdot ||\vec{x} - \vec{y}||$$

(es kommt also nur auf die Matrix an, die Translation ist egal!)

Man kann zeigen, dass sich die Eigenschaft "kontrahierend" wie folgt an der Matrix ablesen lässt:

Eine affine Abbildung $f(\vec{x}) = M \cdot \vec{x} + \vec{v}$ mit Matrix $M \in \mathbb{R}^{2\times 2}$ ist genau dann kontrahierend, wenn für die Spalten(-vektoren) \vec{m}_1 , \vec{m}_2 der Matrix M die folgende Bedingung erfüllt ist:

$$\left\|\vec{m}_{\!\scriptscriptstyle 1}\right\|^2 < 1 \quad \text{und} \qquad \left\|\vec{m}_{\!\scriptscriptstyle 2}\right\|^2 < 1 \qquad \quad \text{und} \qquad \left\|\vec{m}_{\!\scriptscriptstyle 1}\right\|^2 + \left\|\vec{m}_{\!\scriptscriptstyle 2}\right\|^2 + \left(\vec{m}_{\!\scriptscriptstyle 1} \circ \vec{m}_{\!\scriptscriptstyle 2}\right)^2 < 1 + \left\|\vec{m}_{\!\scriptscriptstyle 1}\right\|^2 \cdot \left\|\vec{m}_{\!\scriptscriptstyle 2}\right\|^2$$

Dabei bezeichnet $\|\vec{m}_i\|$ den Betrag (die Länge) eines Spaltenvektors und $\vec{m}_1 \circ \vec{m}_2$ das Skalarprodukt der beiden Spaltenvektoren.