Jay's Bank Security Assessment Findings Report

Business Confidential

Date: June 1st, 2024 Project: DC-001

Version 1.0

Table of Contents

Table of Contents	2
Confidentiality Statement	4
Disclaimer	4
Contact Information	4
Assessment Overview	5
Assessment Components	5
Internal Penetration Test	5
Finding Severity Ratings	6
Risk Factors	6
Likelihood	6
Impact	6
Scope	7
Scope Exclusions	7
Client Allowances	7
Executive Summary	8
Scoping and Time Limitations	8
Testing Summary	8
Tester Notes and Recommendations	9
Key Strengths and Weaknesses	10
Vulnerability Summary & Report Card	11
Internal Penetration Test Findings	11
Technical Findings	13
Internal Penetration Test Findings	13
Finding IPT-001: Insufficient LLMNR Configuration (Critical)	13
Finding IPT-002: Security Misconfiguration – Local Admin Password Reuse (Critical)	14
Finding IPT-003: Security Misconfiguration – WDigest (Critical)	15
Finding IPT-004: Insufficient Hardening – Token Impersonation (Critical)	16
Finding IPT-005: Insufficient Password Complexity (Critical)	17
Finding IPT-006: Security Misconfiguration – IPv6 (Critical)	18
Finding IPT-007: Insufficient Hardening – SMB Signing Disabled (Critical)	19
Finding IPT-008: Insufficient Patch Management – Software (Critical)	20
Finding IPT-009: Insufficient Patch Management – Operating Systems (Critical)	21
Finding IPT-010: Insufficient Patching – MS08-067 - ECLIPSEDWING/NETAPI (Critical)	22
Finding IPT-011: Insufficient Patching – MS12-020 – Remote Desktop RCE (Critical)	23

	Finding IPT-012: Insufficient Patching – MS17-010 - EternalBlue (Critical)	24
	Finding IPT-013: Insufficient Patching – CVE-2019-0708 - BlueKeep (Critical)	25
	Finding IPT-014: Insufficient Privileged Account Management – Kerberoasting (High)	26
	Finding IPT-015: Security Misconfiguration – GPP Credentials (High)	27
	Finding IPT-016: Insufficient Authentication - VNC (High)	28
	Finding IPT-017: Default Credentials on Web Services (High)	29
	Finding IPT-018: Insufficient Hardening – Listable Directories (High)	30
	Finding IPT-019: Unauthenticated SMB Share Access (Moderate)	31
	Finding IPT-020: Insufficient Patch Management – SMBv1 (Moderate)	32
	Finding IPT-021: IPMI Hash Disclosure (Moderate)	33
	Finding IPT-022: Insufficient SNMP Community String Complexity (Moderate)	34
	Finding IPT-023: Insufficient Data in Transit Encryption - Telnet (Moderate)	35
	Finding IPT-024: Insufficient Terminal Services Configuration (Moderate)	36
	Finding IPT-025: Steps to Domain Admin (Informational)	37
A	Additional Scans and Reports	37

Confidentiality Statement

This document is the exclusive property of Jay's Bank and SafeGuard Solutions. This document contains proprietary and confidential information. Duplication, redistribution, or use, in whole or in part, in any form, requires consent of both Jay's Bank and SafeGuard.

Jay's Bank may share this document with auditors under non-disclosure agreements to demonstrate penetration test requirement compliance.

Disclaimer

A penetration test is considered a snapshot in time. The findings and recommendations reflect the information gathered during the assessment and not any changes or modifications made outside of that period.

Time-limited engagements do not allow for a full evaluation of all security controls. SafeGuard prioritized the assessment to identify the weakest security controls an attacker would exploit. SafeGuard recommends conducting similar assessments on an annual basis by internal or third-party assessors to ensure the continued success of the controls.

Contact Information

Name Title		Contact Information		
Jay's Bank				
John Smith Global Information Security Manager		Email: jsmith@jaysbank.com		
SafeGuard Solutions				
Muhammad Harvian Dito Syahputra	Lead Penetration Tester	Email: harviandito20@gmail.com		

Assessment Overview

From May 28th, 2024 to March 1st, 2024, Jay's Bank engaged SafeGuard to evaluate the security posture of its infrastructure compared to current industry best practices that included an internal network penetration test. All testing performed is based on the NIST SP 800-115 Technical Guide to Information Security Testing and Assessment, OWASP Testing Guide (v4), and customized testing frameworks.

Phases of penetration testing activities include the following:

- Planning Customer goals are gathered and rules of engagement obtained.
- Discovery Perform scanning and enumeration to identify potential vulnerabilities, weak areas, and exploits.
- Attack Confirm potential vulnerabilities through exploitation and perform additional discovery upon new access.
- Reporting Document all found vulnerabilities and exploits, failed attempts, and company strengths and weaknesses.

Assessment Components

Internal Penetration Test

An internal penetration test emulates the role of an attacker from inside the network. An engineer will scan the network to identify potential host vulnerabilities and perform common and advanced internal network attacks, such as: LLMNR/NBT-NS poisoning and other man- in-the-middle attacks, token impersonation, kerberoasting, pass-the-hash, golden ticket, and more. The engineer will seek to gain access to hosts through lateral movement, compromise domain user and admin accounts, and exfiltrate sensitive data.

Finding Severity Ratings

The following table defines levels of severity and corresponding CVSS score range that are used throughout the document to assess vulnerability and risk impact.

Severity	CVSS V3 Score Range	Definition
Critical	9.0-10.0	Exploitation is straightforward and usually results in system-level compromise. It is advised to form a plan of action and patch immediately.
High	7.0-8.9	Exploitation is more difficult but could cause elevated privileges and potentially a loss of data or downtime. It is advised to form a plan of action and patch as soon as possible.
Moderate	4.0-6.9	Vulnerabilities exist but are not exploitable or require extra steps such as social engineering. It is advised to form a plan of action and patch after high-priority issues have been resolved.
Low	0.1-3.9	Vulnerabilities are non-exploitable but would reduce an organization's attack surface. It is advised to form a plan of action and patch during the next maintenance window.
Information al	N/A	No vulnerability exists. Additional information is provided regarding items noticed during testing, strong controls, and additional documentation.

Risk Factors

Risk is measured by two factors: Likelihood and Impact:

Likelihood

Likelihood measures the potential of a vulnerability being exploited. Ratings are given based on the difficulty of the attack, the available tools, attacker skill level, and client environment.

Impact

Impact measures the potential vulnerability's effect on operations, including confidentiality, integrity, and availability of client systems and/or data, reputational harm, and financial loss.

Scope

Assessment	Details
Internal Penetration Test	167.172.75.216

Scope Exclusions

Per client request, SafeGuard did not perform any of the following attacks during testing:

- Denial of Service (DoS)
- Phishing/Social Engineering

All other attacks not specified above were permitted by Jay's Bank.

Client Allowances

Demo Corp provided TCMS the following allowances:

• Internal access to network via dropbox and port allowances

Executive Summary

SafeGuard evaluated Jay's Bank internal security posture through penetration testing from May 28th, 2024 to June 1st, 2024. The following sections provide a high-level overview of vulnerabilities discovered, successful and unsuccessful attempts, and strengths and weaknesses.

Scoping and Time Limitations

Scoping during the engagement did not permit denial of service or social engineering across all testing components.

Time limitations were in place for testing. Internal network penetration testing was permitted for four (4) business days.

Testing Summary

The SafeGuard team has completed evaluating the internal network security of Jay's Bank. From an internal perspective, the SafeGuard team conducted vulnerability scanning against all IPs provided by Jay's Bank to assess the overall patching health of the network. The team performed scanning by conducting reconnaissance, vulnerability testing, and searching for public exploits or CVEs.

From the scanning conducted, the SafeGuard team discovered a database access after doing SQLi using sqlmap (IPT-001). The SafeGuard team also found a Broken Access Control after getting the database (IPT-002).

The remainder of the findings were high, moderate, low, or informational. For further information on findings, please review the Technical Findings section.

Tester Notes and Recommendations

The SafeGuard team has completed an internal network security assessment for Jay's Bank, focusing on evaluating the network's patching health through reconnaissance, vulnerability scanning, and testing for public exploits or CVEs.

During the testing, SafeGuard team has successfully performed SQL injection using sqlmap, and gained unauthorized access to the database. After accessing the database, the team discovered broken access control mechanisms that allowed further unauthorized access and manipulation.

Based on that, we recommend that Jay's Bank should implement input validation and parameterized queries to prevent SQL injection, use ORM (Object-Relational Mapping) frameworks that inherently protect against SQL injection, and conduct thorough code reviews and implement automated testing to identify and mitigate SQLi vulnerabilities to prevent database access via sql injection. We also recommend reviewing and update access control policies to ensure proper implementation and enforcement and conduct a comprehensive audit of access controls across all systems and databases to prevent broken access control.

For long-term actions, we recommend to doing regularly update and patch database management systems, educate developers on secure coding practices and the risks of SQL injection, integrate a Web Application Firewall (WAF) to detect and block SQL injection attempts, implement role-based access control (RBAC) to ensure users have the minimum necessary permissions, regularly review and update access controls to adapt to changes in the organization's structure and technology, and perform regular security training for employees to understand the importance of proper access control to prevent from penetration testing.

Key Strengths and Weaknesses

The following identifies the key strengths identified during the assessment:

- 1. The database is vulnerable to SQL Injection
- 2. Account control and authorization is easily breached

The following identifies the key weaknesses identified during the assessment:

- 1. Use framework for the website application to protect it more safely, especially ORM frameworks
- 2. Use user input sanitation
- 3. Use another way for the account authorization

Vulnerability Summary & Report Card

The following tables illustrate the vulnerabilities found by impact and recommended remediations:

Internal Penetration Test Findings

0	1	1	0	0
Critical	High	Moderat	Low	Information
		е		al

Finding	Severity	Recommendation
Internal Penetration Test		
IPT-001: Get the database	High	Implement input validation and
access using SQL Injection		parameterized queries
IPT-002: Can change password after getting the database	Moderate	Using email as an authorization for changing password
(Broken Access Control)		

Technical Findings

Internal Penetration Test Findings

Finding IPT-001: Get the database access using SQL Injection

Description:	Doing SQL Injection using sqlmap tool. The result is all user account database information.
Risk:	Likelihood: High – SQL Injection is one of the many popular penetration method Impact: Very High – All user account data can be leaked and may even include admin account data
System:	All
Tools Used:	Burp Suite, Sqlmap
References:	

Evidence

Figure 1: Successful changing another account password

Remediation

Using ORM (Object-Relational Mapping) frameworks that inherently protect against SQL injection, and conduct thorough code reviews and implement automated testing to identify and mitigate SQLi vulnerability to prevent database access via sql injection.

Finding IPT-002: Can change password after getting the database (Broken Access Control)

Description:	After getting the database, the attacker might be using the information
	that they get from it, especially the user account. When changing
	password, the authorization is using Secret Answer which is easily get
	from the database that got breached before.
Risk:	Likelihood: Very High – After getting the database, the chance is very high for attacker to try to access the account and changing it password Impact: Very High – Users can lose their account and even have admin access
System:	All
Tools Used:	Burp Suite
References:	

Evidence

```
[06:21:48] [INFO] testing 'Generic UNION query (random number) - 21 to 40 columns'
[06:23:30] [INFO] testing 'Generic UNION query (NULL) - 41 to 60 columns'
          [INFO] testing 'Generic UNION query (random number) - 41 to 60 columns'
          [INFO] testing 'Generic UNION query (NULL) - 61 to 80 columns'
          [INFO] testing 'Generic UNION query (random number) - 61 to 80 columns'
[06:30:14] [INFO] testing 'Generic UNION query (NULL) - 81 to 100 columns'
[06:31:56] [INFO] testing 'Generic UNION query (random number) - 81 to 100 columns'
          [INFO] testing 'MySQL UNION query (NULL) - 1 to 20 columns'
[06:35:23] [INFO] testing 'MySQL UNION query (random number) - 1 to 20 columns'
[06:37:10] [INFO] testing 'MySQL UNION query (NULL) - 21 to 40 columns'
[06:38:51] [INFO] testing 'MySQL UNION query (random number) - 21 to 40 columns'
[06:40:32] [INFO] testing 'MySQL UNION query (NULL) - 41 to 60 columns'
[06:42:13] [INFO] testing 'MySQL UNION query (random number) - 41 to 60 columns'
[06:43:54] [INFO] testing 'MySQL UNION query (NULL) - 61 to 80 columns'
[06:45:36] [INFO] testing 'MySQL UNION query (random number) - 61 to 80 columns'
[06:47:17] [INFO] testing 'MySQL UNION query (NULL) - 81 to 100 columns'
[06:48:58] [INFO] testing 'MySQL UNION query (random number) - 81 to 100 columns'
```

Figure 2: sqlmap process

Remediation

Using email as an authorization for changing password

Last Page