Guía Práctica Final

Procesamiento Digital de Señales

Juan José Torres Patiño

2023-1

- Enviar el informe de la práctica final con el siguiente nombre:
 PDS_Proyectofinal_Apellido_Nombre.ipynb
- Enviar junto con el informe los archivos necesarios para que el notebook corra. Todo esto debe ir en un archivo comprimido con el siguiente nombre: PDS_Proyectofinal_Apellido_Nombre.zip
- OJO! Recuerde tener cuidado con la indentación y caracteres como el guión bajo y las llaves cuando copie y pegue el código dado entregado en esta guía.
- Las preguntas deberán ser resueltas en el notebook indicando sus respectivos numerales.

1. Diseño de filtros con respuesta finita al impulso (FIR) y aplicación mediante ventanas.

- 1. Inicialmente se normalizan las frecuencias de corte y se pasan a rad/s de acuerdo con las expresiones $w_c = 2\pi \cdot fc/fs$
- 2. Se realiza el mismo procedimiento para el ancho de banda de transición $BW_n = 2\pi \cdot \frac{BW}{fs}$
- 3. Una regla práctica para determinar el orden del filtro es dividir 4 por el ancho de banda normalizado y tomar la parte entera del resultado, así: $M = int(\frac{4}{BW_n})$.
- 4. Se implementa la respuesta al impulso del filtro ideal de acuerdo con las siguientes ecuaciones:

Respuesta filtro ideal	Tipo de filtro
$h_1 = \frac{w_c}{\pi} S_a \left(\frac{w_c n}{\pi} \right)$	Pasa-bajas
$h_2 = -\frac{w_c}{\pi} S_a \left(\frac{w_c n}{\pi} \right)$	Pasa-altas
$h_3 = \frac{w_{c_2}}{\pi} S_a \left(\frac{w_{c_2} n}{\pi} \right) - \frac{w_{c_1}}{\pi} S_a \left(\frac{w_{c_1} n}{\pi} \right)$	Pasa-banda
$h_4 = \frac{w_{c_1}}{\pi} S_a \left(\frac{w_{c_1} n}{\pi} \right) - \frac{w_{c_2}}{\pi} S_a \left(\frac{w_{c_2} n}{\pi} \right)$	Rechaza-banda

1.1 Procedimiento

1. Cargue 2 audios de diferente frecuencia y ámbito de una duración adecuada. Posteriormente, analice su comportamiento temporal y frecuencial. ¿Qué puede observar al respecto?

- 2. Teniendo en cuenta el último dígito de su cédula aplique las 4 ventanas en cada uno de los audios cargados anteriormente. Nota: Puede apoyarse del script que contiene el diseño de un filtro pasa-bajas.
- 0,2,4: Pasa-bajas
- 1,3,6: Pasa-altas
- 5,7: Pasa-banda
- 8,9: Rechaza-banda

```
def pasa_bajas_rectangular(F_Corte,BW):
    # FILTRO PASA BAJAS RECTANGULAR
    F_muestreo = 44100 #Frecuencia de muestreo del audio
    ripple = 0.1 #Ripple permitido para estimar el orden del filtro
    atenuacion = 20*log10(ripple) #Cálculo de la atenuación en base al ripple.
    print ("Atenuación calculada = {}".format(atenuacion))
    M = int((2*F_muestreo)/(BW) - 1) #Calculo del orden del filtro como se vió
en clase.
    print('Orden del filtro: ', int(M))
    N = 512 # Numero de puntos de la FFT
    W_Corte = 2*np.pi*F_Corte/F_muestreo # Frecuencia de corte normalizada en
    BW_Norm = 2*np.pi*BW/F_muestreo # Ancho de banda normalizado en radianes
    n = np.arange(-M/2, M/2) #Vector de muestras
    h1 = W_Corte/np.pi * np.sinc(W_Corte*(n)/np.pi) # Respuesta del filtro
ideal
    w1,Hh1 = sp.freqz(h1,1,whole=True, worN=N) # Respuesta en frecuencia del
filtro ideal
```

- 3. Gráfique la señal filtrada y muestre el espectro. Nota: Elija la frecuencia de corte y el tamaño del filtro.
- 4. Varíe el tamaño del filtro. Observe que sucede. Nota: Elija solo una ventana y audio.
- 5. Si se incrementa la frecuencia de corte. ¿Qué espera escuchar? ¿Mayor o menor calidad? Indique por qué.

2. Conclusiones

Realice conclusiones generales sobre la práctica. Recuerde que las conclusiones son parte fundamental de su evaluación en la práctica. Tómese el tiempo de pensar las conclusiones.