Whitepaper: Elements based on the Lagrange shape-functions

October, 2023 Rev 1.0

Jan I.C. Vermaak^{1,2}

¹Idaho National Laboratory, Idaho Falls, Idaho, USA. ²Center for Large Scale Scientific Simulations, Texas A&M Engineering Experiment Station, College Station, Texas, USA.

Abstract

The family of Lagrange finite elements shape functions are applied to the elements in ChiTech. This document details the mathematical formulations used in the code.

Keywords: Lagrange finite element shape functions

Contents

A	bstra	ict		i Page
1	Nee	ed-to-k	now information	1
	1.1	The re	ecipe for each element	1
	1.2	Transf	formation of shape function gradients	1
	1.3		e integrations	
	1.4		e integrations	
		1.4.1	1D elements	3
		1.4.2	2D elements	3
		1.4.3	3D elements	4
		1.4.4	Computing the surface quadrature point data	4
2	Ele	ment d	lefinitions	6
	2.1	One di	imensional Slab elements	6
	2.2	Two d	limensional Triangle elements	7
	2.3	Two d	limensional Quadrilateral elements	8
	2.4	Three	dimensional Tetrahedral elements	9
	2.5	Three	dimensional Hexahedral elements	10
	2.6	Three	dimensional Wedge elements	11
${f L}$	ist o	of Fig	gures	
	Figure 1.1		Orientations for 2D surface integrals. \hat{k} is pointing out of the page	3
	Figu	ire 1.2	Orientations for 3D surface integrals	4
	Figu	ire 2.1	Reference coordinates for a slab	6
	Figu	ire 2.2	Reference coordinates for a triangle	7
	Figu	ire 2.3	Reference coordinates for a quadrilateral	8
	Figu	ire 2.4	Reference coordinates for a tetrahedron	9
	Figu	ire 2.5	Reference coordinates of a hexahedron	10
	Figu	re 2.6	Reference coordinates for a wedge	11

1 Need-to-know information

In the section that follows we define each element mapping we support. We refer to **world coordinates** with the vector \mathbf{x} where $\mathbf{x} = [x, y, z]$, and subsequently **node coordinates** with \mathbf{x}_i for the respective i-th node on an element where $\mathbf{x}_i = [x_i, y_i, z_i]$. We refer to **natural coordinates** with the $\bar{x}, \bar{y}, \bar{z}$ and element shape functions $N_i(\bar{x})$, $N_i(\bar{x}, \bar{y})$ or $N_i(\bar{x}, \bar{y}, \bar{z})$ depending on the element dimension. Shape function derivatives, $\frac{\partial N_i}{\partial \bar{x}}$ etc. are denoted with $\partial N_{i,\bar{x}}$.

1.1 The recipe for each element

For element definitions we follow the same recipe on each element, i.e.,

- Define the coordinate system in both natural- and world coordinates
- Define the spatial interpolation function
- Define the shape functions in natural coordinates
- Define the shape function derivatives in natural coordinates
- Define Jacobian entries
- Define the Jacobian (not explicitly)

1.2 Transformation of shape function gradients

Finite Element weak forms often require the shape function gradients, i.e.,

$$\int_{V} \nabla N_{i} \cdot \nabla N_{j} dV \quad \text{or} \quad \int_{V} N_{i} \nabla N_{j} dV, \tag{1.1}$$

however these gradients are needed in world coordinates. For the components of the gradient we use the chain rule to write

$$\frac{\partial N_{i}}{\partial \bar{x}} = \frac{\partial x}{\partial \bar{x}} \frac{\partial N_{i}}{\partial x} + \frac{\partial y}{\partial \bar{x}} \frac{\partial N_{i}}{\partial y} + \frac{\partial z}{\partial \bar{x}} \frac{\partial N_{i}}{\partial z}
\frac{\partial N_{i}}{\partial \bar{y}} = \frac{\partial x}{\partial \bar{y}} \frac{\partial N_{i}}{\partial x} + \frac{\partial y}{\partial \bar{y}} \frac{\partial N_{i}}{\partial y} + \frac{\partial z}{\partial \bar{y}} \frac{\partial N_{i}}{\partial z}
\frac{\partial N_{i}}{\partial \bar{z}} = \frac{\partial x}{\partial \bar{z}} \frac{\partial N_{i}}{\partial x} + \frac{\partial y}{\partial \bar{z}} \frac{\partial N_{i}}{\partial y} + \frac{\partial z}{\partial \bar{z}} \frac{\partial N_{i}}{\partial z}$$
(1.2)

which can be written in vector and matrix format as

$$\begin{bmatrix} \frac{\partial N_{i}}{\partial \bar{x}} \\ \frac{\partial N_{i}}{\partial \bar{y}} \\ \frac{\partial N_{i}}{\partial \bar{z}} \end{bmatrix} = \begin{bmatrix} \frac{\partial x}{\partial \bar{x}} & \frac{\partial y}{\partial \bar{x}} & \frac{\partial z}{\partial \bar{x}} \\ \frac{\partial x}{\partial \bar{y}} & \frac{\partial y}{\partial \bar{y}} & \frac{\partial z}{\partial \bar{y}} \\ \frac{\partial x}{\partial \bar{z}} & \frac{\partial y}{\partial \bar{z}} & \frac{\partial z}{\partial \bar{z}} \end{bmatrix} \begin{bmatrix} \frac{\partial N_{i}}{\partial x} \\ \frac{\partial N_{i}}{\partial y} \\ \frac{\partial N_{i}}{\partial z} \end{bmatrix}$$
(1.3)

Moreover, the Jacobian matrix is fundamentally defined as

$$J = \begin{bmatrix} \frac{\partial x}{\partial \bar{x}} & \frac{\partial x}{\partial \bar{y}} & \frac{\partial x}{\partial \bar{z}} \\ \frac{\partial y}{\partial \bar{x}} & \frac{\partial y}{\partial \bar{y}} & \frac{\partial y}{\partial \bar{z}} \\ \frac{\partial z}{\partial \bar{x}} & \frac{\partial z}{\partial \bar{y}} & \frac{\partial z}{\partial \bar{z}} \end{bmatrix}$$
(1.4)

and therefore we can see that the following identity holds

$$\nabla N_{i} = \begin{bmatrix} \partial N_{i,x} \\ \partial N_{i,y} \\ \partial N_{i,z} \end{bmatrix} = (J^{T})^{-1} \begin{bmatrix} \partial N_{i,\bar{x}} \\ \partial N_{i,\bar{y}} \\ \partial N_{i,\bar{z}} \end{bmatrix}. \tag{1.5}$$

1.3 Volume integrations

When computing volume integrals on an element we follow the quadrature-rule integration paradigm:

$$\int_{V} g_{i}(\mathbf{x}) f(\mathbf{x}) dV = \int_{V} g_{i}(\bar{\mathbf{x}}_{q}) f(\mathbf{x}_{q}) |J(\bar{\mathbf{x}}_{q})| d\bar{x} d\bar{y} d\bar{z} = \sum_{q} \bar{w}_{q} |J(\bar{\mathbf{x}}_{q})| g_{i}(\bar{\mathbf{x}}_{q}) f(\mathbf{x}_{q}),$$
(1.6)

where \bar{w}_q is the quadrature weight, $|J(\bar{\mathbf{x}}_q)|$ is the determinant of the Jacobian at the quadrature point, $\bar{\mathbf{x}}_q$ is the quadrature point in natural coordinates, \mathbf{x}_q is the quadrature point in world coordinates, and g_i is either the shape function N_i or its gradient ∇N_i . We can precompute the following values at each quadrature point:

- The effictive quadrature weight, w_q , which is the product of the quadrature weight and the Jacobian's determinant, $w_q = \bar{w}_q |J(\bar{\mathbf{x}}_q)|$
- The shape function values, N_i
- The shape function gradient values, ∇N_i
- The quadrature point world coordinates, \mathbf{x}_q

In order to compute the necessary values at the quadrature points we apply the following procedure:

```
for qp in qp_indices:
    qpoint = volume_quadrature.qpoints[qp]
    J = element.GetJacobian(qpoint)
    JT = Transpose(J)
    JTinv = Inverse(JT)
    detJ = Determinant(J)

weight = quadrature.weight * detJ

qpoint_world = [0,0,0]
    for i in node_indices:
        shape_i = element.Shape(i, qpoint)
        grad_shape_i = MatMult(JTinv, element.GradShape(i, qpoint))
        qpoint_world += shape_i * x_i
```

1.4 Surface integrations

Dealing with surface integrals on elements can be a confusing endeavour. Firstly, the surface integrals are performed per face of an element. On such faces the quadrature-rule is very much different from the volumetric quadrature-rule because it has one less dimension, consequently the transformation involves a different Jacobian-determinant, i.e., from the surface Jacobian, J_s . The paradigm is as follows:

$$\int_{S} \mathbf{n} \ g_{i}(\mathbf{x}) f(\mathbf{x}) dA = \int_{S} \mathbf{n} \ g_{i}(\bar{\mathbf{x}}) f(\mathbf{x}) \ |J_{s}(\bar{\mathbf{x}})| d\bar{x} d\bar{y} = \sum_{q} \mathbf{n}_{q} \bar{w}_{q} |J_{s}(\bar{\mathbf{x}}_{q})| g_{i}(\bar{\mathbf{x}}) f(\mathbf{x}_{q}). \tag{1.7}$$

Here we need the same quantities that we needed for the volume integration (N_i are now the surface shape functions), however, in addition we need, \mathbf{n}_q , the normal at the quadrature point, and $|J_s(\bar{\mathbf{x}}_q)|$, the determinant of the **surface** Jacobian at the quadrature point.

1.4.1 1D elements

For 1D elements the faces are points and therefore no transformation is required, i.e., $|J_s| = 1$ and the face normal is constant.

1.4.2 2D elements

Figure 1.1: Orientations for 2D surface integrals. \hat{k} is pointing out of the page.

For 2D elements the faces are 1D and we need

$$\frac{\partial \mathbf{x}}{\partial \bar{x}} = \sum_{i} \frac{\partial N_{i}}{\partial \bar{x}} \mathbf{x}_{i}, \tag{1.8}$$

as shown in Figure 1.1, from which $|J_s|$ is the magnitude of this vector at the quadrature point,

$$|J_s| = ||\frac{\partial \mathbf{x}}{\partial \bar{x}}||. \tag{1.9}$$

As a byproduct the normal can be computed using the upward (out of the page) point \hat{k} as

$$\mathbf{n}_{q} = \frac{\frac{\partial \mathbf{x}}{\partial \bar{x}} \times \hat{k}}{\left|\left|\frac{\partial \mathbf{x}}{\partial \bar{x}} \times \hat{k}\right|\right|}$$
(1.10)

1.4.3 3D elements

Figure 1.2: Orientations for 3D surface integrals.

For 3D elements the faces are 2D and we need the two vectors

$$\frac{\partial \mathbf{x}}{\partial \bar{x}} = \sum_{i} \frac{\partial N_{i}}{\partial \bar{x}} \mathbf{x}_{i}$$

$$\frac{\partial \mathbf{x}}{\partial \bar{y}} = \sum_{i} \frac{\partial N_{i}}{\partial \bar{y}} \mathbf{x}_{i}$$
(1.11)

after which the surface jacobian is the magnitude of the cross product of these two vectors

$$|J_s| = ||\frac{\partial \mathbf{x}}{\partial \bar{x}} \times \frac{\partial \mathbf{x}}{\partial \bar{y}}||. \tag{1.12}$$

As a byproduct this cross-product can also be used to compute the normal at that point,

$$\mathbf{n}_{q} = \frac{\frac{\partial \mathbf{x}}{\partial \bar{x}} \times \frac{\partial \mathbf{x}}{\partial \bar{y}}}{\left|\left|\frac{\partial \mathbf{x}}{\partial \bar{x}} \times \frac{\partial \mathbf{x}}{\partial \bar{y}}\right|\right|} = \frac{1}{|J_{s}|} \frac{\partial \mathbf{x}}{\partial \bar{x}} \times \frac{\partial \mathbf{x}}{\partial \bar{y}}$$
(1.13)

1.4.4 Computing the surface quadrature point data

In order to compute the necessary values at the surface quadrature points we apply the following procedure:

```
f = face_index
for qp in qp_indices:
    qpoint_face = surface_quadrature.qpoints[qp]
    qpoint = element.ConvertFaceQPToElement(qpoint_face)
    J = element.GetJacobian(qpoint)
    JT = Transpose(J)
    JTinv = Inverse(JT)

detJ, normal_q = element.GetFaceDetJandNormal(f, qpoint_face)
    weight = quadrature.weight * detJ

qpoint_world = [0,0,0]
```

```
for i in node_indices:
shape_i = element.Shape(i, qpoint)
grad_shape_i = MatMult(JTinv, element.GradShape(i, qpoint))

qpoint_world += shape_i * x_i
```

2 Element definitions

2.1 One dimensional Slab elements

Figure 2.1: Reference coordinates for a slab.

Fundamental interpolation function:

$$\mathbf{x} = \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} x \\ y \\ \sum_{i} N_{i}(\bar{x})z_{i} \end{bmatrix}$$
 (2.1)

Shape function definitions:

$$N_0(\bar{x}) = \frac{1-\bar{x}}{2}, \quad N_1(\bar{x}) = \frac{1+\bar{x}}{2}$$
 (2.2)

Derivatives:

$$\partial N_{0,\bar{x}} = -\frac{1}{2}, \quad \partial N_{1,\bar{x}} = \frac{1}{2}$$
 (2.3)

Jacobian entries:

$$\frac{\partial z}{\partial \bar{x}} = \sum_{i} \partial N_{i,\bar{x}} z_i = -\frac{1}{2} z_0 + \frac{1}{2} z_1 \tag{2.4}$$

$$J = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & \frac{\partial z}{\partial \bar{x}} \end{bmatrix}$$
 (2.5)

2.2 Two dimensional Triangle elements

Figure 2.2: Reference coordinates for a triangle

Fundamental interpolation function:

$$\mathbf{x} = \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} \sum_{i} N_{i}(\bar{x}, \bar{y})x_{i} \\ \sum_{i} N_{i}(\bar{x}, \bar{y})y_{i} \\ z \end{bmatrix}$$
(2.6)

Shape function definitions:

$$N_0(\bar{x}, \bar{y}) = 1 - \bar{x} - \bar{y}$$

$$N_1(\bar{x}, \bar{y}) = \bar{x}$$

$$N_2(\bar{x}, \bar{y}) = \bar{y}$$

$$(2.7)$$

Derivatives:

$$\partial N_{0,\bar{x}} = -1, \quad \partial N_{0,\bar{y}} = -1$$

$$\partial N_{1,\bar{x}} = 1, \quad \partial N_{1,\bar{y}} = 0$$

$$\partial N_{2,\bar{x}} = 0, \quad \partial N_{2,\bar{y}} = 1$$

$$(2.8)$$

Jacobian entries, $d = [x, y], \bar{d} = [\bar{x}, \bar{y}]$:

$$\frac{\partial d}{\partial \bar{d}} = \sum_{i} \partial N_{i,\bar{d}} \ d_i \tag{2.9}$$

$$\frac{\partial x}{\partial \bar{x}} = x_1 - x_0, \quad \frac{\partial x}{\partial \bar{y}} = x_2 - x_0
\frac{\partial y}{\partial \bar{x}} = y_1 - y_0, \quad \frac{\partial y}{\partial \bar{y}} = y_2 - y_0$$
(2.10)

$$J = \begin{bmatrix} \frac{\partial x}{\partial \bar{x}} & \frac{\partial x}{\partial \bar{y}} & 0\\ \frac{\partial y}{\partial \bar{x}} & \frac{\partial y}{\partial \bar{y}} & 0\\ 0 & 0 & 1 \end{bmatrix}$$
 (2.11)

2.3 Two dimensional Quadrilateral elements

Figure 2.3: Reference coordinates for a quadrilateral

Fundamental interpolation function:

$$\mathbf{x} = \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} \sum_{i} N_{i}(\bar{x}, \bar{y})x_{i} \\ \sum_{i} N_{i}(\bar{x}, \bar{y})y_{i} \\ z \end{bmatrix}$$
(2.12)

Shape function definitions:

$$a, b = \bar{x}_i, \bar{y}_i$$

 $N_i(\bar{x}, \bar{y}) = \frac{1}{4} (1 + a\bar{x})(1 + b\bar{y})$ (2.13)

Derivatives:

$$\partial N_{i,\bar{x}} = \frac{1}{4}(a+ab\bar{y})
\partial N_{i,\bar{y}} = \frac{1}{4}(b+ab\bar{x})$$
(2.14)

Jacobian entries, $d = [x, y], \bar{d} = [\bar{x}, \bar{y}]$:

$$\frac{\partial d}{\partial \bar{d}} = \sum_{i} \partial N_{i,\bar{d}} \ d_i \tag{2.15}$$

$$J = \begin{bmatrix} \frac{\partial x}{\partial \bar{x}} & \frac{\partial x}{\partial \bar{y}} & 0\\ \frac{\partial y}{\partial \bar{x}} & \frac{\partial y}{\partial \bar{y}} & 0\\ 0 & 0 & 1 \end{bmatrix}$$
 (2.16)

2.4 Three dimensional Tetrahedral elements

Figure 2.4: Reference coordinates for a tetrahedron

Fundamental interpolation function: Fundamental interpolation function:

$$\mathbf{x} = \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} \sum_{i} N_{i}(\bar{x}, \bar{y}, \bar{z})x_{i} \\ \sum_{i} N_{i}(\bar{x}, \bar{y}, \bar{z})y_{i} \\ \sum_{i} N_{i}(\bar{x}, \bar{y}, \bar{z})z_{i} \end{bmatrix}$$
(2.17)

Shape function definitions:

$$N_{0}(\bar{x}, \bar{y}, \bar{z}) = 1 - \bar{x} - \bar{y} - \bar{z}$$

$$N_{1}(\bar{x}, \bar{y}, \bar{z}) = \bar{x}$$

$$N_{2}(\bar{x}, \bar{y}, \bar{z}) = \bar{y}$$

$$N_{3}(\bar{x}, \bar{y}, \bar{z}) = \bar{z}$$
(2.18)

Derivatives:

$$\partial N_{0,\bar{x}} = -1 \quad \partial N_{0,\bar{y}} = -1 \quad \partial N_{0,\bar{z}} = -1
 \partial N_{1,\bar{x}} = 1 \quad \partial N_{1,\bar{y}} = 0 \quad \partial N_{1,\bar{z}} = 0
 \partial N_{2,\bar{x}} = 0 \quad \partial N_{2,\bar{y}} = 1 \quad \partial N_{2,\bar{z}} = 0
 \partial N_{3,\bar{x}} = 0 \quad \partial N_{3,\bar{y}} = 0 \quad \partial N_{3,\bar{z}} = 1$$
(2.19)

Jacobian entries, $d=[x,y,z],\,\bar{d}=[\bar{x},\bar{y},\bar{z}]$:

$$\frac{\partial d}{\partial \bar{d}} = \sum_{i} \partial N_{i,\bar{d}} \ d_i \tag{2.20}$$

$$J = \begin{bmatrix} \frac{\partial x}{\partial \bar{x}} & \frac{\partial x}{\partial \bar{y}} & \frac{\partial x}{\partial \bar{z}} \\ \frac{\partial y}{\partial \bar{x}} & \frac{\partial y}{\partial \bar{y}} & \frac{\partial y}{\partial \bar{z}} \\ \frac{\partial z}{\partial \bar{x}} & \frac{\partial z}{\partial \bar{y}} & \frac{\partial z}{\partial \bar{z}} \end{bmatrix}$$
(2.21)

2.5 Three dimensional Hexahedral elements

Figure 2.5: Reference coordinates of a hexahedron

Fundamental interpolation function:

$$\mathbf{x} = \sum_{i} N_i(\bar{x}) \mathbf{x}_i \tag{2.22}$$

Shape function definitions:

$$a, b, c = \bar{x}_i, \bar{y}_i, \bar{z}_i$$

$$N_i(\bar{x}, \bar{y}, \bar{z}) = \frac{1}{8} (1 + a\bar{x})(1 + b\bar{y})(1 + c\bar{z})$$

$$= \frac{1}{8} (1 + a\bar{x} + b\bar{y} + c\bar{z} + ab\bar{x}\bar{y} + bc\bar{y}\bar{z} + ac\bar{x}\bar{z} + abc\bar{x}\bar{y}\bar{z})$$

$$(2.23)$$

Derivatives:

$$\partial N_{i,\bar{x}} = \frac{1}{8}(a + ab\bar{y} + ac\bar{z} + abc\bar{y}\bar{z})
\partial N_{i,\bar{y}} = \frac{1}{8}(b + ab\bar{x} + bc\bar{z} + abc\bar{x}\bar{z})
\partial N_{i,\bar{z}} = \frac{1}{8}(c + bc\bar{y} + ac\bar{x} + abc\bar{x}\bar{y})$$
(2.24)

Jacobian entries, d=[x,y,z], $\bar{d}=[\bar{x},\bar{y},\bar{z}]$:

$$\frac{\partial d}{\partial \bar{d}} = \sum_{i} \partial N_{i,\bar{d}} \ d_{i} \tag{2.25}$$

$$J = \begin{bmatrix} \frac{\partial x}{\partial \bar{x}} & \frac{\partial x}{\partial \bar{y}} & \frac{\partial x}{\partial \bar{z}} \\ \frac{\partial y}{\partial \bar{x}} & \frac{\partial y}{\partial \bar{y}} & \frac{\partial y}{\partial \bar{z}} \\ \frac{\partial z}{\partial \bar{x}} & \frac{\partial z}{\partial \bar{y}} & \frac{\partial z}{\partial \bar{z}} \end{bmatrix}$$
(2.26)

2.6 Three dimensional Wedge elements

Figure 2.6: Reference coordinates for a wedge.

Shape function definitions:

$$N_{0}(\bar{x}, \bar{y}, \bar{z}) = (1 - \bar{x} - \bar{y}) \left(\frac{1 - \bar{z}}{2}\right)$$

$$N_{1}(\bar{x}, \bar{y}, \bar{z}) = \bar{x} \left(\frac{1 - \bar{z}}{2}\right)$$

$$N_{2}(\bar{x}, \bar{y}, \bar{z}) = \bar{y} \left(\frac{1 - \bar{z}}{2}\right)$$

$$N_{3}(\bar{x}, \bar{y}, \bar{z}) = (1 - \bar{x} - \bar{y}) \left(\frac{1 + \bar{z}}{2}\right)$$

$$N_{4}(\bar{x}, \bar{y}, \bar{z}) = \bar{x} \left(\frac{1 + \bar{z}}{2}\right)$$

$$N_{5}(\bar{x}, \bar{y}, \bar{z}) = \bar{y} \left(\frac{1 + \bar{z}}{2}\right)$$

Jacobian entries, $d=[x,y,z],\, \bar{d}=[\bar{x},\bar{y},\bar{z}]$:

$$\frac{\partial d}{\partial \bar{d}} = \sum_{i} \partial N_{i,\bar{d}} \ d_i \tag{2.28}$$

$$J = \begin{bmatrix} \frac{\partial x}{\partial \bar{x}} & \frac{\partial x}{\partial \bar{y}} & \frac{\partial x}{\partial \bar{z}} \\ \frac{\partial y}{\partial \bar{x}} & \frac{\partial y}{\partial \bar{y}} & \frac{\partial y}{\partial \bar{z}} \\ \frac{\partial z}{\partial \bar{x}} & \frac{\partial z}{\partial \bar{y}} & \frac{\partial z}{\partial \bar{z}} \end{bmatrix}$$
(2.29)

References

