

数字电子技术基础实验

计算机专业实践中心

实验五 FPGA下载

实验内容

- 一、设计并下载带清零功能的十进制计数器。
- 二、设计并下载自循环移位寄存器。

要求:将两个设计内容同时下载到FPGA模块,并连好电路,要求可以同时查看两个题目的结果。

下载过程

- 1. 选择芯片型号: EP4CE10E22C8。 菜单: Assignments ⇒ Device⇒'Cyclone IV E'...
- 2. 编译。
- 3. 指定引脚。菜单: Assignments ⇒ Pin Planner(为'Node'指定'Location')
- 4. 编译。
- 5. 连线。(根据3指定的引脚连接输入输出端。)
- 6. 下载。菜单: Tools⇒ Programmer
- 7. 测试结果。

下载过程

- 1. 选择芯片型号: EP4CE10E22C8。
 - 菜单: Assignments ⇒ Device⇒'Cyclone IV E'...
- 2. 编译。
- 3. 指定引脚。

菜单: Assignments ⇒ Pin Planner

(为'Node'指定'Location')

4. 编译。

5. 连线。(根据3指定的引脚连接轴

6. 下载。菜单: Tools⇒ Program

7. 测试结果。

Node Name	Direction	Location	
bout	Output	PIN_1	
n_ clk	Input	PIN_24	
data[7]	Output	PIN_141	
data[6]	Output	PIN_138	
data[5]	Output	PIN_137	
data[4]	Output	PIN_136	
data[3]	Output	PIN_135	
data[2]	Output	PIN_133	
data[1]	Output	PIN_132	
data[0]	Output	PIN_129	
	100	0.000	

带清零功能的十进制计数器

- 任务要求:
 - ◆ 用D触发器构成4位的二进制计数器,在此基础上 将其改造成一个十进制计数器;
 - ◆ 用单脉冲输出按键作为十进制计数器的时钟输入;
 - ◆ 清零用拨动开关(或单脉冲)控制;1-
 - ◆ 将计数值在数码管上显示。
- 实验内容:
 - ◆ 原理图输入,波形仿真;
 - ◆ 将设计下载到FPGA中,连线,按键观察实验结果。

实验箱上的单脉冲输出模块

单脉冲正负脉冲四组, 单脉冲进行消抖处理, 正脉冲带有指示灯。按下按钮产生对应的正负 脉冲。

实验箱上的独立数码管模块

四组数码管为共阴独立数码管,译码驱动采用 CD4511驱动,LED1~LED4为共公端,低电平 有效,A(1-4)~D(1-4)为数据输入,高电平有效,A是数据低位。

自循环寄存器

用D触发器DFF构成一个4位的自循环寄存器。

- 1. 原理图输入: 第一级的 Q端接第二级的 D端, 依次 类推,最后第四级的Q端接第一级的D端。四个D触 发器的CLK端连接在一起,然后接单脉冲时钟。
- 2. 波形仿真:将触发器Q0置1(即PRN0输入一个负脉冲),Q1、Q2、Q3清0(即CLR1、CLR2、CLR3输入一个负脉冲),用拨动开关(或单脉冲)作为输入。
- 3. 器件编程(下载):
 - ① 指定器件型号;编译。
 - ② 指定引脚;编译。
 - ③ 电路板加电,下载。
- 4. 连线: 验证所设计电路的正确性。

4位自循环移位寄存器仿真波形:

扩展→将4位扩展到N位

利用实验箱上交通灯模块的12个LED 灯来显示实验结果。

实验箱上的单脉冲输出模块

单脉冲正负脉冲四组, 单脉冲进行消抖处理, 正脉冲带有指示灯。按下按钮产生对应的正负 脉冲。

实验箱上的12个交通灯状排列LED模块

排线接口,当输入高电平时,指示灯亮。

FPGA系统模块

核心芯片 EP4CE10E22, FLASH 配置芯片 EPCS16(16M), 所有端口引出。 对应的数字为引脚 编号。板载50M晶 振。

注: JP7为特殊功能脚, JP10为时钟输入。

下载器硬件选择和模式选择

Lardware Set	up USB-Blaste	r [USB-0]		Mode:	JTAG	•
Enable real-time	ISP to allow back	ground program	nmina (for MA)	X II and M	IAX V devices)	