Sheet 4: Revenge of \mathbb{Q}

Let $\mathbb Z$ denote the integers. Let

$$P = \{(a, b) \mid a, b \in \mathbb{Z}, b \neq 0\}$$

and let the relation \sim be defined on P by

$$(a_1,b_1) \sim (a_2,b_2)$$
 if $a_1b_2 = a_2b_1$

Theorem 1 \sim is an equivalence relation on P.

Proof. Let $(a,b) \in P$. Then ab = ab and so $(a,b) \sim (a,b)$. Hence, reflexivity applies to \sim . Now let $(a_1,b_1), (a_2,b_2) \in P$ such that $(a_1,b_1) \sim (a_2,b_2)$. Then $a_1b_2 = a_2b_1$ and so $a_2b_1 = a_1b_2$. Thus $(a_2,b_2) \sim (a_1,b_1)$ and so symmetry holds for \sim . Now suppose $(a_1,b_1), (a_2,b_2), (a_3,b_3) \in P$ such that $(a_1,b_1) \sim (a_2,b_2)$ and $(a_2,b_2) \sim (a_3,b_3)$. Then $a_1b_2 = a_2b_1$ and $a_2b_3 = a_3b_2$. Multiplying the first equation by b_3 we have $a_1b_2b_3 = a_2b_1b_3$. But then since $a_2b_3 = a_3b_2$ we have $a_1b_2b_3 = a_3b_1b_2$ and dividing by $b_2 \neq 0$ we have $a_1b_3 = a_3b_1$. Therefore $(a_1,b_1) \sim (a_3,b_3)$ implying transitivity and since all three conditions have been met, \sim is an equivalence relation on P.

Now let \mathbb{Q} denote the set of \sim -equivalence classes of P. We now define two operators, + and \cdot as follows. For $X,Y\in\mathbb{Q}$ let $(a_1,b_2)\in X$ and $(a_2,b_2)\in Y$. Let

$$X + Y = \overline{(a_1b_2 + a_2b_1, b_1b_2)}$$

and let

$$X \cdot Y = \overline{(a_1 a_2, b_1 b_2)}.$$

We now show that these definitions are well-defined.

Theorem 2 If $(a_1, b_1) \sim (c_1, d_1)$ and $(a_2, b_2) \sim (c_2, d_2)$ then

$$(a_1b_2 + a_2b_1, b_1b_2) \sim (c_1d_2 + c_2d_1, d_1d_2)$$

and

$$(a_1a_2, b_1b_2) \sim (c_1c_2, d_1d_2).$$

Proof. Let $(a_1,b_1) \sim (c_1,d_1)$ and $(a_2,b_2) \sim (c_2,d_2)$. Then we have $a_1d_1 = b_1c_1$ and $a_2d_2 = b_2c_2$. We multiply the first equation by b_2d_2 so we have $a_1b_2d_1d_2 = b_1b_2c_1d_2$ and we multiply the second equation by b_1d_1 so we have $a_2b_1d_1d_2 = b_1b_2c_2d_1$. Now we add the two new equations together so we have $a_1b_2d_1d_2 + a_2b_1d_1d_2 = b_1b_2c_1d_2 + b_1b_2c_2d_1$ and so $(a_1b_2 + a_2b_1)d_1d_2 = (c_1d_2 + c_2d_1)b_1b_2$ which implies $(a_1b_2 + a_2b_1, b_1b_2) \sim (c_1d_2 + c_2d_1, d_1d_2)$. Similarly, if we multiply $a_1d_1 = b_1c_1$ and $a_2d_2 = b_2c_2$ together we have $a_1a_2d_1d_2 = b_1b_2c_1c_2$ and so $(a_1a_2, b_1b_2) \sim (c_1c_2, d_1d_2)$.

Theorem 3 (Associativity of Addition) For all $p, q, r \in \mathbb{Q}$ we have (p+q) + r = p + (q+r).

Proof. Let $p,q,r\in\mathbb{Q}$ such that $(p_1,p_2)\in p,\ (q_1,q_2)\in q$ and $(r_1,r_2)\in r$. Then we see that

$$\begin{split} (p+q)+r &= \left(\overline{(p_1,p_2)}+\overline{(q_1,q_2)}\right)+\overline{(r_1,r_2)} \\ &= \overline{(p_1q_2+p_2q_1,p_2q_2)}+\overline{(r_1,r_2)} \\ &= \overline{((p_1q_2+p_2q_1)r_2+p_2q_2r_1,p_2q_2r_2)} \\ &= \overline{(p_1q_2r_2+p_2q_1r_2+p_2q_2r_1,p_2q_2r_2)} \\ &= \overline{((q_1r_2+q_2r_1)p_2+p_1q_2r_2,p_2q_2r_2)} \\ &= p+\overline{(q_1r_2+q_2r_1,q_2r_2)} \\ &= p+(q+r). \end{split}$$

Theorem 4 (Commutativity of Addition) For all $p, q \in \mathbb{Q}$ we have p + q = q + p.

Proof. Let
$$p, q \in \mathbb{Q}$$
 such that $(p_1, p_2) \in p$ and $(q_1, q_2) \in q$. Then we have $p + q = \overline{(p_1, p_2)} + \overline{(q_1, q_2)} = \overline{(p_1 q_2 + p_2 q_1, p_2 q_2)} = \overline{(q_1 p_2 + q_2 p_1, q_2 p_2)} = \overline{(q_1, q_2)} + \overline{(p_1, p_2)} = q + p$.

Theorem 5 (Additive Identity) There exists an $n \in \mathbb{Q}$ such that for all $p \in \mathbb{Q}$ we have n + p = p. Show that n is unique.

Proof. We see that if we let $n \in \mathbb{Q}$ such that $n = \overline{(0,1)}$ and if we let $(p_1,p_2) \in p$ for some $p \in \mathbb{Q}$ then we have $n+p=\overline{(0,1)}+\overline{(p_1,p_2)}=\overline{((0)p_2+(1)p_1,(1)p_2)}=\overline{(p_1,p_2)}=p$. Now suppose there exist two additive identities such that for all $p \in \mathbb{Q}$ we have $n_1+p=p$ and $n_2+p=p$. Then we have $n_2=n_1+n_2=n_2+n_1=n_1$ and so $n_1=n_2$. Thus, the additive identity is unique.

From now on we will call the additive identity 0.

Theorem 6 (Additive Inverse) For all $p \in \mathbb{Q}$ there exists $q \in \mathbb{Q}$ such that p + q = 0. Show that q is unique.

Proof. Let $p \in \mathbb{Q}$ such that $(p_1, p_2) \in p$. Then we choose $q = \overline{(-p_1, p_2)}$ for $q \in \mathbb{Q}$. Then we have $p + q = \overline{(p_1, p_2)} + \overline{(-p_1, p_2)} = \overline{(p_1p_2 + -p_1p_2, p_2p_2)} = \overline{(0, p_2p_2)} = \overline{(0, 1)} = 0$ since $(0)p_2p_2 = (0)(1)$. Now suppose there exist two additive inverses so that $p + n_1 = 0$ and $p + n_2 = 0$. Then we have $p + n_1 = p + n_2$ and adding $\overline{(-p_1, p_2)}$ to both sides we have

$$\overline{(-p_1, p_2)} + \overline{(p_1, p_2)} + n_1 = \overline{(-p_1p_2 + p_1p_2, p_2p_2)} + n_1 = 0 + n_1 = n_1$$

on the left and

$$\overline{(-p_1,p_2)} + \overline{(p_1,p_2)} + n_2 = \overline{(-p_1p_2 + p_1p_2, p_2p_2)} + n_2 = 0 + n_2 = n_2$$

on the right. So $n_1 = n_2$ and the additive inverse is unique.

From now on we will call the additive inverse for p, -p.

Theorem 7 (Associativity of Multiplication) For all $p, q, r \in \mathbb{Q}$ we have $(p \cdot q) \cdot r = p \cdot (q \cdot r)$.

$$\begin{array}{l} \textit{Proof.} \ \ \text{Let} \ p,q,r \in \mathbb{Q} \ \text{such that} \ (p_1,p_2) \in p, \ (q_1,q_2) \in q \ \text{and} \ (r_1,r_2) \in r. \ \ \text{Then we have} \\ (p \cdot q) \cdot r = \left(\overline{(p_1,p_2)} \cdot \overline{(q_1,q_2)} \right) \cdot \overline{(r_1,r_2)} = \overline{(p_1q_1,p_2q_2) \cdot \overline{(r_1,r_2)}} = \overline{(p_1q_1r_1,p_2q_2r_2)} = p \cdot \overline{(q_1r_1,q_2r_2)} = p \cdot$$

Theorem 8 (Commutativity of Multiplication) For all $p, q \in \mathbb{Q}$ we have $p \cdot q = q \cdot p$.

Proof. Let
$$p, q \in \mathbb{Q}$$
 such that $(p_1, p_2) \in p$ and $(q_1, q_2) \in q$. Then $p \cdot q = \overline{(p_1, p_2)} \cdot \overline{(q_1, q_2)} = \overline{(p_1q_1, p_2q_2)} = \overline{(q_1p_1, q_2p_2)} = \overline{(q_1, q_2)} \cdot \overline{(p_1, p_2)} = q \cdot p$.

Theorem 9 (Multiplicative Identity) There exists $e \in \mathbb{Q}$ such that for all $p \in \mathbb{Q}$ we have $e \cdot p = p$.

Proof. Let $p \in \mathbb{Q}$ such that $(p_1, p_2) \in p$ and let $e \in \mathbb{Q}$ such that e = (1, 1). Then we have $e \cdot p = \overline{(1, 1)} \cdot \overline{(p_1, p_2)} = \overline{(p_1(1), p_2(1))} = p$. Suppose there exist two multiplicative identities e_1 and e_2 such that for all $p \in \mathbb{Q}$, $e_1 \cdot p = p$ and $e_2 \cdot p = p$. Then we have $e_1 = e_2 \cdot e_1$ and $e_2 = e_1 \cdot e_2 = e_2 \cdot e_1$. So we have $e_1 = e_2$ and so the multiplicative identity is unique.

From now on we will call the multiplicative identity 1.

Theorem 10 (Multiplicative Inverse) For all $p \in \mathbb{Q}$ with $p \neq 0$ there exists $q \in \mathbb{Q}$ such that $p \cdot q = 1$.

Proof. Let $p \in \mathbb{Q}$ such that $(p_1, p_2) \in p$ and since $p_1 \neq 0$ let $q \in \mathbb{Q}$ such that $(p_2, p_1) \in q$. Then we see that $p \cdot q = \overline{(p_1, p_2)} \cdot \overline{(p_2, p_1)} = \overline{(p_1 p_2, p_1 p_2)} = \overline{(1, 1)} = 1$. Now suppose there are two multiplicative inverses for some $p \in \mathbb{Q}$ such that $p \cdot q_1 = 1$ and $p \cdot q_2 = 1$. Then, multiplying both equations by $\overline{(p_2, p_1)}$, we have $q_1 = \overline{(1, 1)} \cdot q_1 = \overline{(p_1 p_2, p_1 p_2)} \cdot q_1 = \overline{(p_2, p_1)} \cdot \overline{(p_1, p_2)} \cdot q_1 = \overline{(p_2, p_1)} \cdot \overline{(p_1, p_2)} \cdot q_2 = \overline{(p_1 p_2, p_1 p_2)} \cdot q_2 = \overline{(1, 1)} \cdot q_2 = q_2$. So the multiplicative inverse is unique.

From now on we will call the multiplicative inverse for p, p^{-1} .

Theorem 11 (Distributivity) For all $p, q, r \in \mathbb{Q}$ we have $p \cdot (q+r) = p \cdot q + p \cdot r$.

Proof. Let $p,q,r \in \mathbb{Q}$ such that $(p_1,p_2) \in p$, $(q_1,q_2) \in q$ and $(r_1,r_2) \in r$. Then we have

$$\begin{split} p \cdot (q+r) &= \overline{(p_1,p_2)} \cdot \left(\overline{(q_1,q_2)} + \overline{(r_1,r_2)} \right) \\ &= \overline{(p_1,p_2)} \cdot \overline{(q_1r_2 + q_2r_1,q_2r_2)} \\ &= \overline{(p_1q_1r_2 + p_1q_2r_1,p_2q_2r_2)} \\ &= \overline{(p_1q_1r_2 + p_1q_2r_1,p_2q_2r_2)} \cdot \overline{(p_2,p_2)} \\ &= \overline{(p_1p_2q_1r_2 + p_1p_2q_2r_1,p_2p_2q_2r_2)} \\ &= \overline{(p_1q_1,p_2q_2)} + \overline{(p_1r_1,p_2r_2)} \\ &= \overline{(p_1,p_2)} \cdot \overline{(q_1,q_2)} + \overline{(p_1,p_2)} \cdot \overline{(r_1,r_2)} \\ &= p \cdot q + p \cdot r. \end{split}$$

Theorem 12 The function $f: \mathbb{Z} \to \mathbb{Q}$ where $f(n) = \overline{(n,1)}$ is injective.

Proof. Let $a, b \in \mathbb{Z}$ such that f(a) = f(b). Then we have $\overline{(a,1)} = \overline{(b,1)}$ and so $(a,1) \sim (b,1)$ which implies a = b.

Theorem 13 For all $m, n \in \mathbb{Z}$ we have

$$f(m+n) = f(m) + f(n)$$
 and $f(mn) = f(m) \cdot f(n)$.

Proof. Let $\underline{m}, n \in \mathbb{Z}$. Then we have

$$f(m+n) = \overline{(m+n,1)} = \overline{(m(1)+n(1),(1)(1))} = \overline{(m,1)} + \overline{(n,1)} = f(m) + f(n). \text{ Additionally we see that } f(mn) = \overline{(mn,(1)(1))} = \overline{(m,1)} \cdot \overline{(n,1)} = f(m) \cdot f(n).$$

Theorem 14 For every rational number $r \in \mathbb{Q}$ there exist $m, n \in \mathbb{Z}$ such that $n \neq 0$ and $r = mn^{-1}$.

Proof. Let $r \in \mathbb{Q}$ such that $(m,n) \in r$ (since r is nonempty). Then we see $m,n \in \mathbb{Z}$. Thus we can write $m = \overline{(m,1)}$ and $n = \overline{(n,1)}$. And so $n^{-1} = \overline{(1,n)}$ since $n \neq 0$ and we have $m \cdot n^{-1} = \overline{(m,1)} \cdot \overline{(1,n)} = \overline{(m,n)} = r$.

Lemma 15 Any element in \mathbb{Q} can be written as $\overline{(a,b)}$ with b>0.

Proof. Let $\overline{(a,b)} \in \mathbb{Q}$. There are two cases:

Case 1: If b > 0 then we are done.

Case 2: If b < 0 then we have a(-b) = -ab = (-a)b and so $(a,b) \sim (-a,-b)$. Thus $\overline{(a,b)} = \overline{(-a,-b)}$ and -b > 0.

We now define a relation < on \mathbb{Q} . For $p, q \in \mathbb{Q}$ let $(a_1, b_1) \in p$ such that $b_1 > 0$ and let $(a_2, b_2) \in q$ such that $b_2 > 0$. Then we define

$$p < q \text{ if } a_1 b_2 < a_2 b_1$$

Theorem 16 Show that < is a well-defined relation on \mathbb{Q} .

Proof. Let $\overline{(a_1,b_1)}, \overline{(a_2,b_2)}, \overline{(c_1,d_1)}, \overline{(c_2,d_2)} \in \mathbb{Q}$ such that $\overline{(a_1,b_1)} < \overline{(a_2,b_2)}$ and $(a_1,b_1) \sim (c_1,d_1)$ and $(a_2,b_2) \sim (c_2,d_2)$. We take b_1,b_2,d_1 and d_2 to all be greater than 0 by Lemma 15. Then we have $a_1b_2 < a_2b_1$ and so $a_1b_2d_1d_2 < a_2b_1d_1d_2$. But we also know that $a_1d_1 = b_1c_1$ and $a_2d_2 = b_2c_2$. Making the appropriate substitutions we see $b_1b_2c_1d_2 < b_1b_2c_2d_1$. Since $b_1b_2 > 0$ we have $c_1d_2 < c_2d_1$ and so $\overline{(c_1,c_2)} < \overline{(d_1,d_2)}$. This shows that $c_1d_2 < c_2d_1$ and so

Theorem 17 The relation < is an ordering on \mathbb{Q} .

Proof. Let $p,q,r \in \mathbb{Q}$ such that $(p_1,p_2) \in p$, $(q_1,q_2) \in q$ and $(r_1,r_2) \in r$. By Lemma 15 we let p_2, q_2 and r_2 all be greater than 0. If $p \neq q$ then we see that $(p_1,p_2) \nsim (q_1,q_2)$ and so $p_1q_2 \neq p_2q_1$. Then we have either $p_1q_2 < p_2q_1$ and so p < q or $p_2q_1 < p_1q_2$ and so q < p. Secondly if p < q then we have $p_1q_2 < p_2q_1$ and so $p_1q_2 \neq p_2q_1$. Therefore $(p_1,p_2) \nsim (q_1,q_2)$. Thus $p \neq q$. Finally, if p < q and q < r then $p_1q_2 < p_2q_1$ and $q_1r_2 < q_2r_1$. Multiplying the first inequality by r_2 and the second by p_2 we have $p_1q_2r_2 < p_2q_1r_2$ and $p_2q_1r_2 < p_2q_2r_1$ since $p_2 > 0$ and $p_2 > 0$. This implies $p_1q_2r_2 < p_2q_2r_1$ and since $p_2 > 0$ we have $p_1r_2 < p_2r_1$ and so p < r. Since all three conditions are satisfied, we see that $p_1q_2r_2 < p_2r_2$ and $p_2r_2 < p_2r_2$.

Exercise 18 Is $(\mathbb{Q}, <)$ a model of C? That is, which axioms does it satisfy?

Proof. Since the integers are a subset of \mathbb{Q} and there exists at least one integer and since we showed that < was and ordering on \mathbb{Q} , we see that axioms 1 and 2 are satisfied. Theorem 20 shows that there is no last point of \mathbb{Q} . To show that there is no first point we use a similar argument. Let $\overline{(a,b)} \in \mathbb{Q}$ such that b>0. We consider three cases:

Case 1: Let a > 0. Then a(1) > (0)b and so $\overline{(a,b)} > \overline{(0,1)} = 0$.

Case 2: Let a < 0. Then since b > 0, a > ab - b which means $\overline{(a,b)} > \overline{(a-1,1)} = a-1$.

Case 3: Let a=0 then $\overline{(a,b)}=\overline{(0,b)}=0$ and since -1<0 we see $\overline{(a,b)}>\overline{(-1,1)}=-1$.

So we see that for any element of \mathbb{Q} there is always an element greater than it and an element less than it which means it can have no first or last point and so it satisfies axiom 3.

Theorem 19 For every $p, q \in \mathbb{Q}$ such that p < q there exists $r \in \mathbb{Q}$ such that p < r < q.

Proof. Let $p, q, r \in \mathbb{Q}$ such that $(p_1, p_2) \in p$, $(q_1, q_2) \in q$ and $r = \overline{(p_1q_2 + p_2q_1, 2p_2q_2)}$. Let p < q and by Lemma 15 let $p_2 > 0$ and $q_2 > 0$. Then we have $p_1q_2 < p_2q_1$ and so $p_1p_2q_2 < p_2p_2q_1$ which implies $2p_1p_2q_2 < p_1p_2q_2 + p_2p_2q_1$. We see that this implies $(p_1, p_2) < \overline{(p_1q_2 + p_2q_1, 2p_2q_2)}$ which means p < r. Similarly, we have $p_1q_2 < p_2q_1$ which means $p_1q_2q_2 < p_2q_1q_2$ and $p_1q_2q_2 + p_2q_1q_2 < 2p_2q_1q_2$. This implies $\overline{(p_1q_2 + p_2q_1, 2p_2q_2)} < \overline{(q_1, q_2)}$ which means r < q. Thus p < r < q. □

Theorem 20 (Archimedean Property) For every $p \in \mathbb{Q}$ there exists $n \in \mathbb{Z}$ such that p < n.

Proof. Let $p \in \mathbb{Q}$ such that $(a,b) \in p$. Let b > 0 by Lemma 15. We have to consider three cases:

Case 1: Let a > 0. Then a < ab + b and so $\overline{(a,b)} < \overline{(a+1,1)} = a+1$.

Case 2: Let a < 0. Then a(1) < b(0) and so $\overline{(a,b)} < \overline{(0,1)} = 0$.

Case 3: Let a=0. Then $\overline{(a,b)}=\overline{(0,b)}=\overline{(0,1)}=0$ and since 0<1 we see $\overline{(a,b)}<\overline{(1,1)}=1$.