MOWNIT laboratorium 7

Kwadratury adaptacyjne

Zadanie 1

Obliczyć całkę $\int_0^1 \frac{4}{1+x^2} \mathrm{d}x$ korzystając z:

- kwadratur adaptacyjnych trapezów
- kwadratur adaptacyjnych Gaussa Kronroda

Dla każdej z metod narysować wykres wartości bezwzględnej błędu względnego, w zależności od liczby ewaluacji funkcji. Obliczenia wykonać dla wartości tolerancji 10^i , gdzie i=0,-1,...,-14. Wyniki porównać na jednym wykresie z wynikami z poprzedniego laboratorium.

Metody

Jak w poprzednim laboratorium, do obliczania całek użyłem funkcji z biblioteki scipy: quad_vec, simpson, trapezoid. Do liczenia całek metodą prostokątów zaimplementowałem własną funkcję.

Wyniki obliczeń

Rysunek 1: Porównanie błędów metody adaptacyjnej trapezów i Gaussa – Kronroda. Tych drugich nie widać, bo dla każdej liczby ewaluacji wyniosły zero, a stosuję tu skalę logarytmiczną.

Porównanie z poprzednim laboratorium

Rysunek 2: Błędy wszystkich kwadratur dla funkcji $\frac{4}{1+x^2}$

Zadanie 2

Powtórzyć obliczenia z poprzedniego laboratorium oraz z zadania 1 dla poniższych całek:

$$\int_0^1 \sqrt{x} \log(x) dx = -\frac{4}{9}$$

$$\int_0^1 \left(\frac{1}{(x - 0.3)^2 + a} + \frac{1}{(x - 0.9)^2 + b} - 6 \right) dx$$

gdzie a = 0.001, b = 0.004

Funkcja z logarytmem

Logarytm jest niezdefiniowany w punkcie 0, więc w przypadku tej funkcji całki są liczone w zakresie $[10^{-13},1]$.

Wyniki obliczeń

Rysunek 3: Błędy w obliczeniach pierwszej całki

Błąd każdej z 4 nieadaptacyjnych kwadratur maleje liniowo, a błędy kwadratur adaptacyjnych są równe zero, więc też niewidoczne na tym wykresie (przez skalę logarytmiczną).

Rysunek 4: Błędy w obliczeniach drugiej całki

Wykresy błędów zachowują się w tym przypadku już inaczej, warto zwrócić uwagę na to, że kwadratura adaptacyjna trapezów wypada tu gorzej niż kwadratury nieadaptacyjne.

Wnioski

Ćwiczenie dało możliwość porównania dużej liczby kwadratur oraz porównania metod adaptacyjnych z nieadaptacyjnymi. Z reguły kwadratury adaptacyjne okazywały się lepsze, za wyjątkiem ostatniej funkcji i kwadratury adaptacyjnej trapezów. Z konkretnych metod najlepiej wypadła kwadratura Gaussa–Kroneckera, a z metod nieadaptacyjnych kwadratura Gaussa–Legendre'a. Jednak w przypadku prostszych funkcji te kwadratury mogą okazać się niekorzystne, ponieważ dadzą niedużo mniejszy błąd niż prostsze metody, a ich koszt obliczeniowy jest znacznie wyższy.

Źródła

• Plik lab7-intro.pdf na teamsach