Automates et langages

mai 2009

Construction d'un automate à partir d'une expression rationnelle

Le chercheur russe Victor Glushkov a défini en 1961 un algorithme de construction d'un automate à partir d'une expression rationnelle.

1 Principe de la construction

- \bullet On associe à chaque lettre de l'expression rationnelle e une position.
- \bullet On définit un état pour chaque position i de l'expression, et on ajoute un état initial 0.
- On place une transition de i vers j étiquetée par α_j si et seulement si la lettre α_j peut suivre la lettre α_i dans un mot du langage L(e).
- On place une transition de 0 vers i si et seulement si la lettre α_i peut être la première lettre d'un mot du langage L(e).
- L'état i (i > 0) est final si et seulement si α_i peut être la dernière lettre d'un mot du langage L(e).
- L'état 0 est final si et seulement si ε est dans le langage.

Exemple 1 $(ab+c)^*ab$ est traduite en $(a_1b_2+c_3)^*a_4b_5$. L'automate de Glushkov de cette expression possède 6 états. L'état 0 est initial, l'état 5 est final. Sa table de transition est la suivante :

	a	b	c
0	$\{1,4\}$	Ø	{3}
1	Ø	{2}	Ø
2	$\{1, 4\}$	Ø	{3}
3	$\{1, 4\}$	Ø	{3}
4	Ø	$\{5\}$	Ø
5	Ø	Ø	Ø

2 Construction de l'automate

Pour construire l'automate de Glushkov associé à une expression rationnelle E, on va définir plusieurs fonctions relatives à la notion de position dans E.

- 1. first(E) est l'ensemble des positions dont les lettres peuvent commencer un mot de L(E)
- 2. last(E) est l'ensemble des positions dont les lettres peuvent terminer un mot de L(E)
- 3. nullable(E) est un prédicat indiquant si L(E) contient le mot vide.
- 4. follow(E, x) où x est une position est l'ensemble des positions qui peuvent suivre la position x dans un mot de E. Cette fonction définit la fonction de transition de l'automate de Glushkov.

L'expression rationnelle peut être vue comme un arbre, où les feuilles sont étiquetées par \emptyset , ε , ou les positions des symboles, et les noeuds internes sont étiquetés par les opérateurs union (+), étoile (*), et concaténation (.). A chaque noeud de l'arbre, on associe quatre attributs :

- nullable de type boolean
- first et last qui sont des ensembles de positions
- follow qui est un ensemble de couples (position, ensemble de positions)

et voici comment les calculer en fonction du noeud ν considéré :

• si ν est un noeud \emptyset

```
nullable = false ,
first, last et follow sont des ensembles vides.
```

• si ν est un noeud ε

```
nullable = true
first, last et follow sont des ensembles vides
```

• si ν est un noeud x

```
nullable = false ,
first et last vallent {x},
follow(x) est l'ensemble vide.
```

 \bullet si ν est un noeud +

• si ν est un noeud .

 $\bullet\,$ si ν est un noeud *

Vous trouverez une synthèse des différents algorithmes de construction des automates de Glushkov, et l'étude de leur complexité dans :

D. Ziadi, J.-L. Ponty et J.-M. Champarnaud, Passage d'une expression rationnelle à un automate fini non-déterministe, Bulletin of the Belgian Mathematical Society Simon Stevin, 4-2(1997), pages 177-203