Mid-Term Exam II Microelectronics (III) NCKUEE 12/07/2010

- (20%) 1. Figs. P1(a) and P1(b) are two different types of output stage in the 741 op-amp circuit without the protection circuitry. Assume $V_T=25 mV$, $I_S=3\times 10^{-14} A$ for Q_{14} and Q_{20} , $I_S=10^{-14} A$ for the other BJTs, $R_{10}=40 k\Omega$, and $I_{C13A}=280 \mu A$. Neglect the base currents of all BJTs.
 - (a) In Fig. P1(a), if V_{BE18} is found to be 0.6V iteratively, find I_{C14} , I_{C18} , and I_{C19} . (10%)
 - (b) In Fig. P1(b), if Q_{25} and Q_{26} are used to establish the voltage drop between the bases of Q_{14} and Q_{20} , find I_{C14} . (10%)

- (20%) 2. Fig. P2 shows a 3-bit DAC using R-2R resistor ladder network. Given $V_{REF} = 1.8V$, and $R = 10k\Omega$,
 - (a) If bits $B_2B_1B_0 = (100)_2$, find v_X . (5%)
 - (b) If bits $B_2B_1B_0 = (010)_2$, find v_X . (5%)
 - (c) If bits $B_2B_1B_0 = (001)_2$, find v_X . (5%)
 - (d) Derive $\frac{v_O}{V_{REF}}$ in terms of B_0 , B_1 , B_2 ,

R₁, and R₂. (5%)

(10%) 3. Figs. P3(a) and P3(b) show a 3-bit charge-redistribution ADC, which is operating at hold phase and charge-redistribution phase, respectively.

In Fig. P3(a), switches B_0 through B_2 are connected to GND. Then, switch B_2 is suddenly connected to V_{REF} , as shown in Fig. P3(b). Assume $V_{REF} = 1.8V$ and $v_{IN} = 1.2V$. Find the voltage v_X ' in Fig. P3(b).

(10%) 4. Fig. P4 shows a 14-bit dual-slope ADC. Assume C = 100 pF, $V_{REF} = -1.8 V$, and v_{IN} is in the range of 0V and 1.8V. If the maximum conversion time T is 1ms, find the value of R and the required clock frequency f_{clk} . ($f_{clk} = 1 / T_{clk}$)

- (20%) 5. Fig. P5 shows a class AB push-pull amplifier.
 - (a) Sketch its transfer characteristic v_O vs. v_{IN}. (5%)
 - (b) Briefly explain the benefit of adding the two diodes D_1 and D_2 . (5%)
 - (c) Briefly explain "total harmonic distortion." (5%)
 - (d) Show that for matched devices Q_N and Q_P , the even-order harmonics at v_O are eliminated. (5%)

- (20%) 6. A power BJT is specified to have maximum junction temperature T_{Jmax} of 150°C. Assume the maximum power dissipation is to be derated linearly above 25°C.
 - (a) Briefly explain "thermal resistance." (5%)
 - (b) Assume this transistor has a maximum power dissipation P_{D0} of 2W at an ambient temperature T_{A0} of 25°C. Find the maximum power P_{Dmax} that can be dissipated safely by this transistor in free air (with no special arrangements for cooling) at an ambient temperature $T_A = 40$ °C. (5%)
 - (c) Assume this transistor has a maximum power dissipation $P_{Dmax}(T_{C0})$ of 50W at a case temperature T_{C0} of 25°C, and a heat sink is utilized. The thermal resistance θ_{CS} , between case and heat sink, is 0.5°C/W. θ_{SA} , between heat sink and ambience, is 5°C/W. Find the maximum power P_{Dmax} that can be dissipated safely by this transistor at $T_A = 50$ °C. (5%)
 - (d) Referring to (c), find the maximum power P_{Dmax} that can be dissipated safely by this transistor with an infinite heat sink at $T_A = 50^{\circ}$ C. (5%)