Teaching Learning Based Optimization

Prakash Kotecha

Debasis Maharana & Remya Kommadath

Department of Chemical Engineering

Indian Institute of Technology Guwahati

Outline

- ➤ Generic framework of metaheuristic algorithms
- Sanitized Teaching Learning Based Optimization (s-TLBO)
- Detailed working of s-TLBO with an example
- ➤ Various types of convergence curves
- Statistical analysis of multiple runs
- ➤ Preliminary comparison of algorithms
- ➤ Issues in TLBO
- ➤ Variants of TLBO

Terminologies

Optimization	Metaheuristic techniques
Decision variables	marks, subjects, position, gene
Solution	population member, learner, chromosome, child, parent, particle, bee, moth, flame, stream
Set of Solutions	population, class, moths, flames, water body, swarm
Objective function value	nectar amount, energy, fitness*
Iteration	generation, cycles

Metaheuristic techniques and optimization problem

Metaheuristic techniques

- 1) Generate **randomly** a single solution/a set of solutions
- 2) Based on the fitness of the current solution/set of solutions, suggests other solutions with the help of "intelligent" operators

$$X = \begin{bmatrix} 5 & 2 & 3 \end{bmatrix}$$

Decision Variables

Fitness f = -52

Optimization problem

Evaluate fitness function $f = x_1^2 - 8x_1x_2 + x_3$

Generalized Scheme for metaheuristic techniques

Performance of metaheuristic techniques

Rastrigin functions

 $\min_{x \in \mathcal{X}} f(x) = \sum_{i=1}^{D} \left[x_i^2 - 10\cos(2\pi x_i) + 10 \right]$

 $-5.12 \le x_i \le 5.12$

Number of decision variables, D = 2

Teaching Learning Based Optimization (TLBO)

- Teaching-learning-based optimization: A novel method for constrained mechanical design optimization problems, *Computer-Aided Design*, Volume 43, Issue 3, 2011
- Teaching-learning-based optimization algorithm for unconstrained and constrained real-parameter optimization problems, *Engineering Optimization*, Volume 44, 2012
- Teaching-learning-based optimization: An optimization method for continuous non-linear large scale problems, *Information Sciences*, Volume 183, Issue 1, 2012
- Codes of TLBO: https://drive.google.com/file/d/0B96X2BLz4rx-VUQ3OERMZGFhUjg/view?usp=sharing

Teaching Learning Based Optimization (TLBO)

- Stochastic population based technique proposed by Rao et. al. in 2011
- >Inspiration: Knowledge transfer in a classroom environment
- Required parameters: Population size and number of iterations
- Algorithm constitutes of two phases

■ Teacher Phase

- New solution is generated using the best solution and mean of the population
- Greedy selection: Accept new solution if better than the current solution

Learner Phase

- New solution is generated using a partner solution
- Greedy selection
- Each solution undergoes teacher phase followed by learner phase

I	Iteration 1		I	Iteration 2			Iteration 3			Iteration T		
T_1L_1	T_2L_2	T_3L_3	T_1L_1	T_2L_2	T_3L_3	T_1L_1	T_2L_2	T_3L_3	••••	T_1L_1	T_2L_2	T_3L_3

Working of sanitized TLBO: Sphere function

Consider

min
$$f(x) = \sum_{i=1}^{4} x_i^2$$
; $0 \le x_i \le 10$, $i = 1, 2, 3, 4$
variables: x_1, x_2, x_3 and x_4
$$f(x) = x_1^2 + x_2^2 + x_3^2 + x_4^2$$
In the population size, $N_D = 5$

■ Decision variables: x_1 , x_2 , x_3 and x_4

- Step 1: Fix the population size, $N_p = 5$
- Step 2: Fix the maximum iterations, T = 10
- Step 3: Generate random solutions within the domain of the decision variables

$$P = \begin{bmatrix} 4 & 0 & 0 & 8 \\ 3 & 1 & 9 & 7 \\ 0 & 3 & 1 & 5 \\ 2 & 1 & 4 & 9 \\ 6 & 2 & 8 & 3 \end{bmatrix} \qquad f = \begin{bmatrix} 80 \\ 140 \\ 35 \\ 102 \\ 113 \end{bmatrix}$$

$$f = \begin{bmatrix} 80 \\ 140 \\ 35 \\ 102 \\ 113 \end{bmatrix}$$

Teacher Phase: Generation of new solution

- New solution is generated with the help of teacher and mean of the population
- Teacher: Solution corresponding to the best fitness value
- Each variable in a solution (X) is modified as

$$X_{new} = X + r \left(X_{best} - T_f X_{mean} \right)$$

- \blacksquare T_f is the same for all variables of a solution
- r to be selected for each variable

X Current solution

X_{new} New solution

X_{best} Teacher

X_{mean} Mean of the population

T_f Teaching factor, either 1 or 2

r Random number between 0 and 1

Teacher Phase

- Step 4: Select Teacher, $X_{\text{best}} = [0 \ 3 \ 1 \ 5]$
- Step 5: Determine mean of the class,

$$X_{\text{mean}} = [3.0 \ 1.4 \ 4.4 \ 6.4]$$

Let $r = [0.8 \ 0.2 \ 0.7 \ 0.4]$, and $T_f = 2$

Step 6: Teacher phase of first student, ([4 0 0 8])

$$P = \begin{bmatrix} 4 & 0 & 0 & 8 \\ 3 & 1 & 9 & 7 \\ 0 & 3 & 1 & 5 \\ 2 & 1 & 4 & 9 \\ 6 & 2 & 8 & 3 \end{bmatrix} \qquad f = \begin{bmatrix} 80 \\ 140 \\ 35 \\ 102 \\ 113 \end{bmatrix}$$

$$Mean = \begin{bmatrix} 15 & 7 & 22 & 32 \\ \hline 5 \end{bmatrix} = [3.0 & 1.4 & 4.4 & 6.4]$$

$$X_{new} = X + r \left(X_{best} - T_f X_{mean} \right)$$

Current solution Random number Best solution Mean
$$X_{\text{new}}^1 = \begin{bmatrix} 4 & 0 & 0 & 8 \end{bmatrix} + \begin{bmatrix} 0.8 & 0.2 & 0.7 & 0.4 \end{bmatrix} \times (\begin{bmatrix} 0 & 3 & 1 & 5 \end{bmatrix} - 2 \times \begin{bmatrix} 3.0 & 1.4 & 4.4 & 6.4 \end{bmatrix})$$

$$X_{new}^1 = \begin{bmatrix} -0.80 & 0.04 & -5.46 & 4.88 \end{bmatrix}$$

Teacher Phase: Bounding of solution

Teacher Phase

$$X_{new}^{1} = \begin{bmatrix} -0.80 & 0.04 & -5.46 & 4.88 \end{bmatrix}$$

$$X_{new}^1 = \max\left(X_{new}^1, lb\right)$$

$$X_{new}^1 = \max([-0.80) \ 0.04 \ -5.46) \ 4.88], [0 \ 0 \ 0]$$

$$\max(-0.80,0) = 0 \quad \max(-5.46,0) = 0$$

$$X_{new}^1 = \begin{bmatrix} 0 & 0.04 & 0 & 4.88 \end{bmatrix}$$

$$0 \le x_i \le 10$$

$$X_{new}^{1} = \begin{bmatrix} -0.80 & 0.04 & -5.46 & 4.88 \end{bmatrix}$$

$$Step 7: x_{1} \text{ and } x_{3} \text{ violates lower bound}$$

$$X_{new}^{1} = \max \left(X_{new}^{1}, lb \right)$$

$$X_{new}^{1} = \max \left(\begin{bmatrix} -0.80 & 0.04 & -5.46 & 4.88 \end{bmatrix}, \begin{bmatrix} 0 & 0 & 0 & 0 \end{bmatrix} \right)$$

$$\max \left(-0.80, 0 \right) = 0 \quad \max \left(-5.46, 0 \right) = 0$$

$$\max \left(-5.46, 0 \right) = 0$$

Teacher Phase: Selection of solution

- Evaluate fitness (f_{new}) of the new solution (X_{new}) generated in teacher phase
- Perform greedy selection to update the population

$$\left. \begin{array}{l} X = X_{new} \\ f = f_{new} \end{array} \right\} \ if \ f_{new} < f$$

X and f remains the same if $f_{new} > f$

Teacher Phase

Step 8: Evaluate the fitness of bounded solution

$$X_{new}^1 = \begin{bmatrix} 0 & 0.04 & 0 & 4.88 \end{bmatrix}$$

$$f(X_{new}^1) = 0 + 0.04^2 + 0 + 4.88^2 = 23.82$$

$$f(x) = \sum_{i=1}^{4} x_i^2$$

$$P = \begin{bmatrix} 4 & 0 & 0 & 8 \\ 3 & 1 & 9 & 7 \\ 0 & 3 & 1 & 5 \\ 2 & 1 & 4 & 9 \\ 6 & 2 & 8 & 3 \end{bmatrix}$$

$$f = \begin{bmatrix} 80 \\ 140 \\ 35 \\ 102 \\ 113 \end{bmatrix}$$

Step 9: Perform greedy selection to update the population

$$X^{1} = [4 \quad 0 \quad 0 \quad 8], \quad f^{1} = 80$$

$$X_{new}^1 = \begin{bmatrix} 0 & 0.04 & 0 & 4.88 \end{bmatrix}, f_{new}^1 = 23.82$$

$$f_{new}^1 < f^1$$

$$X^{1} = X_{new}^{1} = \begin{bmatrix} 0 & 0.04 & 0 & 4.88 \end{bmatrix}$$

 $f^{1} = f_{new}^{1} = 23.82$

$$P = \begin{bmatrix} 0 & 0.04 & 0 & 4.88 \\ 3 & 1 & 9 & 7 \\ 0 & 3 & 1 & 5 \\ 2 & 1 & 4 & 9 \\ 6 & 2 & 8 & 3 \end{bmatrix}$$

$$f = \begin{bmatrix} 23.82 \\ 140 \\ 35 \\ 102 \\ 113 \end{bmatrix}$$

Learner Phase: Generation of new solution

- New solution is generated with the help of a partner solution
- Partner solution: Randomly selected solution from the population
- Each variable of solution is modified as

$$X_{new} = X + r(X - X_p)$$
 if $f < f_p$
 $X_{new} = X - r(X - X_p)$ if $f \ge f_p$

X Current solution

X_{new} New solution

X_p Partner solution

f Fitness of current solution

f_{new} Fitness of partner solution

r Random number between 0 and 1

Learner Phase

• Step 10: Select the partner solution for X^1

Let the partner be X^4

$$r = [0.9 \ 0.1 \ 0.2 \ 0.5]$$

$$X^{1} = \begin{bmatrix} 0 & 0.04 & 0 & 4.88 \end{bmatrix}$$
 and $X^{4} = \begin{bmatrix} 2 & 1 & 4 & 9 \end{bmatrix}$

• Step 11: Learner phase of X^1

$$P = \begin{bmatrix} 0 & 0.04 & 0 & 4.88 \\ 3 & 1 & 9 & 7 \\ 0 & 3 & 1 & 5 \\ 2 & 1 & 4 & 9 \\ 6 & 2 & 8 & 3 \end{bmatrix} \qquad f = \begin{bmatrix} 23.82 \\ 140 \\ 35 \\ 102 \\ 113 \end{bmatrix}$$

$$X_{new} = X + r(X - X_p) \quad if \quad f < f_p \quad -(1)$$

$$X_{new} = X - r(X - X_p)$$
 if $f \ge f_p$ -(2)

$$f(X^1) = 23.82 < f(X^4) = 102$$
 Equation 1 is selected

Current solution Random number Current solution Partner solution
$$X_{\text{new}}^1 = [0 \ 0.04 \ 0 \ 4.88] + [0.9 \ 0.1 \ 0.2 \ 0.5] \times ([0 \ 0.04 \ 0 \ 4.88] - [2 \ 1 \ 4 \ 9])$$

$$X_{\text{new}}^{1} = [-1.80 -0.06 -0.80 2.82]$$

Learner Phase: Bounding and selection of solution

➤ Bound the newly generated variables, if required

$$x = lb$$
 if $x < lb$
 $x = ub$ if $x > ub$

- Evaluate fitness of new solution (f_{new}) generated using learner phase equation
- Perform greedy selection to update the population member

$$X = X_{new}$$

$$f = f_{new}$$

$$if f_{new} < f$$

X and f remains the same if $f_{new} > f$

Learner Phase

$$X_{new}^{1} = \begin{bmatrix} -1.8 & -0.056 & -0.8 & 2.82 \end{bmatrix}$$

• Step 12: x_1 , x_2 and x_3 violates lower bound

$$X_{new}^1 = \max\left(X_{new}^1, lb\right)$$

$$X_{new}^1 = \max([-1.8], -0.056) \quad (-0.8) \quad [-0.8], [0 \quad 0 \quad 0]$$

$$X_{new}^1 = [0 \quad 0 \quad 0 \quad 2.82]$$

$$0 \le x_i \le 10$$

$$P = \begin{bmatrix} 0 & 0.04 & 0 & 4.88 \\ 3 & 1 & 9 & 7 \\ 0 & 3 & 1 & 5 \\ 2 & 1 & 4 & 9 \\ 6 & 2 & 8 & 3 \end{bmatrix} \qquad f = \begin{bmatrix} 23.82 \\ 140 \\ 35 \\ 102 \\ 113 \end{bmatrix}$$

Learner Phase

Step 13: Evaluate the fitness of bounded solution

$$X_{new}^{1} = [0 \ 0 \ 0 \ 2.82]$$

 $f(X_{new}^{1}) = 0 + 0 + 0 + 2.82^{2} = 7.95$

$$f(x) = \sum_{i=1}^4 x_i^2$$

ed solution
$$f(x) = \sum_{i=1}^{4} x_i^2$$

$$P = \begin{bmatrix} 0 & 0.04 & 0 & 4.88 \\ 3 & 1 & 9 & 7 \\ 0 & 3 & 1 & 5 \\ 2 & 1 & 4 & 9 \\ 6 & 2 & 8 & 3 \end{bmatrix}$$

$$f = \begin{bmatrix} 0 & 0.04 & 0 & 4.88 \\ 3 & 1 & 9 & 7 \\ 0 & 3 & 1 & 5 \\ 2 & 1 & 4 & 9 \\ 6 & 2 & 8 & 3 \end{bmatrix}$$

$$f = \begin{bmatrix} 23.82 \\ 140 \\ 35 \\ 102 \\ 113 \end{bmatrix}$$

Step 14: Perform greedy selection to update the population

$$X^{1} = [0 \quad 0.04 \quad 0 \quad 4.88], \quad f^{1} = 23.82$$

$$X_{new}^1 = [0 \quad 0 \quad 0 \quad 2.82], \quad f_{new}^1 = 7.95$$

$$f_{new}^1 < f^1$$

$$X^{1} = X_{new}^{1} = \begin{bmatrix} 0 & 0 & 0 & 2.82 \end{bmatrix}$$

 $f^{1} = f_{new}^{1} = 7.95$

$$P = \begin{bmatrix} 0 & 0 & 0 & 2.82 \\ 3 & 1 & 9 & 7 \\ 0 & 3 & 1 & 5 \\ 2 & 1 & 4 & 9 \\ 6 & 2 & 8 & 3 \end{bmatrix}$$

Teacher Phase: Second solution

- Step 1: Select Teacher, $X_{\text{best}} = [0 \ 0 \ 0 \ 2.82]$
- Step 2: Determine mean of the population

$$X_{\text{mean}} = [2.2 \ 1.4 \ 4.4 \ 5.36]$$

$$P = \begin{bmatrix} 0 & 0 & 0 & 2.82 \\ 3 & 1 & 9 & 7 \\ 0 & 3 & 1 & 5 \\ 2 & 1 & 4 & 9 \\ 6 & 2 & 8 & 3 \end{bmatrix} \qquad f = \begin{bmatrix} 7.95 \\ 140 \\ 35 \\ 102 \\ 113 \end{bmatrix}$$

Step 3: Teacher phase of second student, ([3 1 9 7])

$$X_{new} = X + r \left(X_{best} - T_f X_{mean} \right)$$

Let
$$r = [0.9 \ 0.3 \ 0.8 \ 0.4]$$
 and $T_f = 1$

$$X_{\text{new}}^2 = [3\ 1\ 9\ 7] + [0.9\ 0.3\ 0.8\ 0.4] \times ([0\ 0\ 0\ 2.82] - 1 \times [2.2\ 1.4\ 4.4\ 5.36])$$

= $[1.02\ 0.58\ 5.48\ 5.98]$

Teacher Phase: Second solution

Step 4: Evaluate the fitness of bounded solution

$$X_{new}^2 = [1.02 \ 0.58 \ 5.48 \ 5.98]$$

$$f(x) = \sum_{i=1}^{4} x_i^2$$

I solution
$$f(x) = \sum_{i=1}^{4} x_i^2$$

$$P = \begin{bmatrix} 0 & 0 & 0 & 2.82 \\ 3 & 1 & 9 & 7 \\ 0 & 3 & 1 & 5 \\ 2 & 1 & 4 & 9 \\ 6 & 2 & 8 & 3 \end{bmatrix}$$

$$f = \begin{bmatrix} 0 & 0 & 0 & 2.82 \\ 3 & 1 & 9 & 7 \\ 0 & 3 & 1 & 5 \\ 2 & 1 & 4 & 9 \\ 6 & 2 & 8 & 3 \end{bmatrix}$$

$$f = \begin{bmatrix} 7.95 \\ 140 \\ 35 \\ 102 \\ 113 \end{bmatrix}$$

Step 5: Perform greedy selection to update the population

$$X^2 = [3 \quad 1 \quad 9 \quad 7], \quad f^2 = 140$$

 $f(X_{new}^2) = 1.02^2 + 0.58^2 + 5.48^2 + 5.98^2 = 67.17$

$$X^{2} = \begin{bmatrix} 3 & 1 & 9 & 7 \end{bmatrix}, f^{2} = 140$$

 $X_{new}^{2} = \begin{bmatrix} 1.02 & 0.58 & 5.48 & 5.98 \end{bmatrix}, f_{new}^{2} = 67.17$

$$f_{new}^2 < f^2$$

$$X^{2} = X_{new}^{2} = [1.02 \quad 0.58 \quad 5.48 \quad 5.98]$$

 $f^{2} = f_{new}^{2} = 67.17$

$$P = \begin{bmatrix} 0 & 0 & 0 & 2.82 \\ 1.02 & 0.58 & 5.48 & 5.98 \\ 0 & 3 & 1 & 5 \\ 2 & 1 & 4 & 9 \\ 6 & 2 & 8 & 3 \end{bmatrix}$$

$$f = \begin{bmatrix} 0 & 0 & 0 & 2.82 \\ 1.02 & 0.58 & 5.48 & 5.98 \\ 0 & 3 & 1 & 5 \\ 2 & 1 & 4 & 9 \\ 6 & 2 & 8 & 3 \end{bmatrix}$$

$$f = \begin{bmatrix} 7.95 \\ 67.17 \\ 35 \\ 102 \\ 113 \end{bmatrix}$$

Learner Phase: Second solution

• Step 6: Select the partner solution for X^2

Let the partner be X^5

$$r = [0.09 \ 0.7 \ 0.1 \ 0.6]$$

$$X^{2} = \begin{bmatrix} 1.02 & 0.58 & 5.48 & 5.98 \end{bmatrix}$$
 and $X^{5} = \begin{bmatrix} 6 & 2 & 8 & 3 \end{bmatrix}$

• Step 7: Learner phase of X^2

$$f(X^2) = 67.17 < f(X^5) = 113$$

$$P = \begin{bmatrix} 0 & 0 & 0 & 2.82 \\ 1.02 & 0.58 & 5.48 & 5.98 \\ 0 & 3 & 1 & 5 \\ 2 & 1 & 4 & 9 \\ 6 & 2 & 8 & 3 \end{bmatrix} \qquad f = \begin{bmatrix} 7.95 \\ 67.17 \\ 35 \\ 102 \\ 113 \end{bmatrix}$$

$$X_{new} = X + r(X - X_p) \quad if \quad f < f_p \quad -(1)$$

$$X_{new} = X - r(X - X_p)$$
 if $f \ge f_p$ -(2)

$$X_{\text{new}}^2 = [1.02 \ 0.58 \ 5.48 \ 5.98] + [0.09 \ 0.7 \ 0.1 \ 0.6] \times ([1.02 \ 0.58 \ 5.48 \ 5.98] - [6 \ 2 \ 8 \ 3])$$

$$X_{\text{new}}^2 = [0.57 - 0.41 \ 5.23 \ 7.77]$$
 Bounding $X_{\text{new}}^2 = [0.57 \ 0 \ 5.23 \ 7.77]$

$$X_{\text{new}}^2 = [0.57 \ 0 \ 5.23 \ 7.77]$$

Learner Phase: Second solution

Step 8: Evaluate the fitness of bounded solution

$$X_{new}^2 = [0.57 \quad 0 \quad 5.23 \quad 7.77]$$

 $f(X_{new}^2) = 0.57^2 + 0 + 5.23^2 + 7.77^2 = 88.05$

$$P = \begin{bmatrix} 0 & 0 & 0 & 2.82 \\ 1.02 & 0.58 & 5.48 & 5.98 \\ 0 & 3 & 1 & 5 \\ 2 & 1 & 4 & 9 \\ 6 & 2 & 8 & 3 \end{bmatrix} \qquad f = \begin{bmatrix} 7.95 \\ 67.17 \\ 35 \\ 102 \\ 113 \end{bmatrix}$$

$$f = \begin{bmatrix} 7.95 \\ 67.17 \\ 35 \\ 102 \\ 113 \end{bmatrix}$$

Step 9: Perform greedy selection to update the population

$$X^2 = [1.02 \quad 0.58 \quad 5.48 \quad 5.98], \quad f^2 = 67.17$$

$$X_{new}^2 = [1.02 \quad 0 \quad 4.26 \quad 7.77], \quad f_{new}^2 = 88.05$$

$$f_{new}^1 > f^1$$

$$P = \begin{bmatrix} 0 & 0 & 0 & 2.82 \\ 1.02 & 0.58 & 5.48 & 5.98 \\ 0 & 3 & 1 & 5 \\ 2 & 1 & 4 & 9 \\ 6 & 2 & 8 & 3 \end{bmatrix} \qquad f = \begin{bmatrix} 7.95 \\ 67.17 \\ 35 \\ 102 \\ 113 \end{bmatrix}$$

$$f = \begin{bmatrix} 7.95 \\ 67.17 \\ 35 \\ 102 \\ 113 \end{bmatrix}$$

Learner phase does not yield a better solution

Teacher Phase: Third solution

- Step 1: Select Teacher, $X_{\text{best}} = [0 \ 0 \ 0 \ 2.82]$
- Step 2: Determine mean of the class $X_{\text{mean}} = [1.80 \ 1.32 \ 3.7 \ 5.16]$

$$P = \begin{bmatrix} 0 & 0 & 0 & 2.82 \\ 1.02 & 0.58 & 5.48 & 5.98 \\ 0 & 3 & 1 & 5 \\ 2 & 1 & 4 & 9 \\ 6 & 2 & 8 & 3 \end{bmatrix} \qquad f = \begin{bmatrix} 7.95 \\ 67.17 \\ 35 \\ 102 \\ 113 \end{bmatrix}$$

• Step 3: Teacher phase of third solution, ([0 3 1 5])

Let
$$r = [0.8 \ 0.41 \ 0.02 \ 0.1]$$
 and $T_f = 2$

$$X_{\text{new}}^3 = [-2.88 \ 1.92 \ 0.85 \ 4.25] \longrightarrow \text{Bounding} \longrightarrow X_{\text{new}}^3 = [0 \ 1.92 \ 0.85 \ 4.25]$$

$$f(X_{new}^3) = 22.47$$

$$f_{new}^3 < f^3 \qquad X^3 = X_{new}^3 = \begin{bmatrix} 0 & 1.92 & 0.85 & 4.25 \end{bmatrix}$$

$$f^3 = f_{new}^3 = 22.47$$

$$X_{new}^{3} = 22.47$$

$$f_{new}^{3} < f^{3}$$

$$X^{3} = X_{new}^{3} = \begin{bmatrix} 0 & 1.92 & 0.85 & 4.25 \end{bmatrix}$$

$$f_{new}^{3} < f^{3}$$

$$f^{3} = f_{new}^{3} = 22.47$$

$$P = \begin{bmatrix} 0 & 0 & 0 & 2.82 \\ 1.02 & 0.58 & 5.48 & 5.98 \\ 0 & 1.92 & 0.85 & 4.25 \\ 2 & 1 & 4 & 9 \\ 6 & 2 & 8 & 3 \end{bmatrix}$$

$$f = \begin{bmatrix} 7.95 \\ 67.17 \\ 22.47 \\ 102 \\ 113 \end{bmatrix}$$

Learner Phase: Third solution

• Step 4: Select the partner solution for X^3 Let the partner be X^{l}

Let
$$r = [0.8 \ 0.4 \ 0.3 \ 0.3]$$

$$X^3 = \begin{bmatrix} 0 & 1.92 & 0.85 & 4.25 \end{bmatrix}$$
 and $X^1 = \begin{bmatrix} 0 & 0 & 0 & 2.82 \end{bmatrix}$

• Step 5: Learner phase of X^3

$$f(X^3) = 22.47 > f(X^1) = 7.95$$

$$X_{\text{new}}^3 = [0 \ 1.92 \ 0.85 \ 4.25] - [0.8 \ 0.4 \ 0.3 \ 0.3] \times ([0 \ 1.92 \ 0.85 \ 4.25] - [0 \ 0 \ 0 \ 2.82])$$

$$X_{\text{new}}^3 = [0 \ 1.15 \ 0.6 \ 3.82]$$

$$f\left(X_{new}^3\right) = 16.27$$

Step 4: Select the partner solution for
$$X^3$$
Let the partner be X^I
Let $\mathbf{r} = \begin{bmatrix} 0.8 & 0.4 & 0.3 & 0.3 \end{bmatrix}$

$$X^3 = \begin{bmatrix} 0 & 0 & 0 & 2.82 \\ 1.02 & 0.58 & 5.48 & 5.98 \\ 0 & 1.92 & 0.85 & 4.25 \\ 2 & 1 & 4 & 9 \\ 6 & 2 & 8 & 3 \end{bmatrix} f = \begin{bmatrix} 7.95 \\ 67.17 \\ 22.47 \\ 102 \\ 113 \end{bmatrix}$$

$$X_{new} = X + r(X - X_p) \quad if \quad f < f_p \quad -(1)$$

$$X_{new} = X - r(X - X_p) \quad if \ f \ge f_p \quad -(2)$$

$$P = \begin{bmatrix} 0 & 0 & 0 & 2.82 \\ 1.02 & 0.58 & 5.48 & 5.98 \\ 0 & 1.15 & 0.6 & 3.82 \\ 2 & 1 & 4 & 9 \\ 6 & 2 & 8 & 3 \end{bmatrix} \qquad f = \begin{bmatrix} 7.95 \\ 67.17 \\ 16.27 \\ 102 \\ 113 \end{bmatrix}$$

Fourth solution

$$P = \begin{bmatrix} 0 & 0 & 0 & 2.82 \\ 1.02 & 0.58 & 5.48 & 5.98 \\ 0 & 1.15 & 0.6 & 3.82 \\ \hline 2 & 1 & 4 & 9 \\ 6 & 2 & 8 & 3 \end{bmatrix}$$

$$f = \begin{bmatrix} 7.95 \\ 67.17 \\ 16.27 \\ \hline 102 \\ 113 \end{bmatrix}$$

$$P = \begin{bmatrix} 0 & 0 & 0 & 2.82 \\ 1.02 & 0.58 & 5.48 & 5.98 \\ 0 & 1.15 & 0.6 & 3.82 \\ \hline 0 & 0 & 0 & 1.82 \\ \hline 6 & 2 & 8 & 3 \end{bmatrix}$$

$$f = \begin{bmatrix} 7.95 \\ 67.17 \\ 16.27 \\ \hline 3.31 \\ 113 \end{bmatrix}$$

Teacher phase:

$$r = [0.9 \ 0.95 \ 0.5 \ 0.8]$$

 $T_f = 2$

Determine the population and fitness (round to two decimal places)

Learner phase:

$$r = [0.9 \ 0.7 \ 0.1 \ 0.6]$$

Partner = 2

Fifth Solution

$$P = \begin{bmatrix} 0 & 0 & 0 & 2.82 \\ 1.02 & 0.58 & 5.48 & 5.98 \\ 0 & 1.15 & 0.6 & 3.82 \\ 0 & 0 & 0 & 1.82 \\ \hline 6 & 2 & 8 & 3 \end{bmatrix}$$

$$f = \begin{bmatrix} 7.95 \\ 67.17 \\ 16.27 \\ 3.31 \\ \boxed{113} \end{bmatrix}$$

$$P = \begin{bmatrix} 0 & 0 & 0 & 2.82 \\ 1.02 & 0.58 & 5.48 & 5.98 \\ 0 & 1.15 & 0.6 & 3.82 \\ 0 & 0 & 0 & 1.82 \\ \hline 1.55 & 1.32 & 5.23 & 2.21 \end{bmatrix}$$

$$f = \begin{bmatrix} 7.95 \\ 67.17 \\ 16.27 \\ 3.31 \\ \hline 36.39 \end{bmatrix}$$

Teacher phase:

$$r = [0.6 \ 0.85 \ 0.8 \ 0.89]$$

 $T_f = 1$

Determine the population and fitness (round to two decimal places)

Learner phase:

$$r = [0.7 \ 0.2 \ 0.1 \ 0.3]$$

Partner = 3

Satisfaction of termination condition

min
$$f(x) = \sum_{i=1}^{4} x_i^2$$
; $0 \le x_i \le 10$, $i = 1, 2, 3, 4$

After completion of 10 iterations

$$P = \begin{bmatrix} 0 & 0 & 0 & 0 \\ 0.01 & 0 & 0 & 0.05 \\ 0 & 0.01 & 0 & 0.06 \\ 0 & 0 & 0 & 0 \\ 0.01 & 0.02 & 0.11 & 0.04 \end{bmatrix}$$

$$f = \begin{bmatrix} 0 \\ 0.0026 \\ 0.0037 \\ \hline 0 \\ 0.0142 \end{bmatrix}$$

The minimum value of the function is **0**

Performance of s-TLBO

Pseudocode

Generalized Scheme for metaheuristic techniques

Convergence curve: Iteration vs. Best fitness

Iteration 0

$$P_{0} = \begin{bmatrix} 14 & -9 \\ 19 & 6 \\ 8 & 12 \end{bmatrix} \qquad f = \begin{bmatrix} 277 \\ 397 \\ 208 \end{bmatrix}$$

$$f = \begin{bmatrix} 277 \\ 397 \end{bmatrix}$$

$$208$$

Iteration 1

$$P_{1} = \begin{bmatrix} 10 & -4 \\ 13 & 10 \\ 6 & 11 \end{bmatrix} \qquad f = \begin{bmatrix} 116 \\ 269 \\ 157 \end{bmatrix}$$

$$f = \begin{bmatrix} 116 \\ 269 \\ 157 \end{bmatrix}$$

Iteration 2

$$P_2 = \begin{bmatrix} 10 & -4 \\ 8 & 2 \\ 5 & 8 \end{bmatrix} \qquad f = \begin{bmatrix} 116 \\ 68 \\ 89 \end{bmatrix}$$

$$f = \begin{bmatrix} 116 \\ 68 \\ 89 \end{bmatrix}$$

Iteration 10

$$P_{10} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \\ 0 & -1 \end{bmatrix}$$

$$f = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$

Cases of convergence

Convergence curve: # FE vs. Best fitness value

# FE	Fitness value	Best fitness value
1	8	8
2	12	8
3	9	8
4	5	5
5	11	5
6	4	4
7	6	4
8	1	1
9	8	1
10	3	1
11	2	1
12	6	1
13	4	1
14	1	1
15	2	1
16	8	1

Multiple runs and statistical table

Run	Best fitness after 10 iterations
1	0
2	0
3	0
4	1
5	0
6	0
7	1
8	0
9	1
10	0
11	4
12	0
13	1
14	0
15	0

Mean convergence curve

#	Run 1		Run 2		Run 3		Run 4		
FE	F	Best	F	Best	F	Best	F	Best	Mean
	value								
1	8	8	12	12	20	20	16	16	14
2	12	8	8	8	12	12	14	14	10.5
3	9	8	9	8	9	9	14	14	9.75
4	5	5	6	6	5	5	5	5	5.25
5	11	5	11	6	11	5	11	5	5.25
6	4	4	5	5	5	5	5	5	4.75
7	6	4	6	5	6	5	6	5	4.75
8	1	1	7	5	7	5	7	5	4
9	8	1	8	5	8	5	8	5	4
10	3	1	5	5	6	5	7	5	4
11	2	1	3	3	5	2	5	5	2.75
12	6	1	6	3	6	2	6	5	2.75
13	4	1	4	3	4	2	4	4	2.5
14	1	1	6	3	1	1	4	4	2.25
15	2	1	4	3	2	1	1	1	1.5
16	8	1	3	3	8	1	8	1	1.5

Comparison of algorithms

Algorithm 1

			<u> </u>		
Function	Best	Worst	Mean	Median	Standard Deviation
Function 1	26	30	27.2	28	1.46
Function 2	18	21	18.12	18	0.6
Function 3	60	137	120.68	131	27.08
Function 4	46	51	47.24	47	1.36
Function 5	235	250	239.24	238	4.21

Algorithm 2

Function	Best	Worst	Mean	Median	Standard Deviation
Function 1	26	58	43.4	57	15.78
Function 2	18	21	20.6	21	0.99
Function 3	136	141	139	139	1.43
Function 4	46	50	48.4	48	1.00
Function 5	254	263	259	259	2.54

	Algorithm 1	Algorithm 2	Identical
Best	2	0	3
Worst	3	1	1
Mean	5	0	0
Median	5	0	0
Std. Dev.	2	3	0

Function	Best Solution
Function 1	26
Function 2	18
Function 3	60
Function 4	46
Function 5	235

Issues in the implementation of TLBO

Issues in the implementation of TLBO

Issues in Implementation of TLBO

- 1. Input: Fitness function, lb, ub, N_p , T
- 2. Initialize a random population (P)
- 3. Evaluate fitness of P
- for i = 1 to N_p Choose X_{best} for t = 1 to TDetermine X_{mean} $X_{new} = X_i + r \left(X_{best} - T_f X_{mean} \right)$ Bound X_{new} and evaluate its fitness f_{new} Accept X_{new} if it is better than X_i Choose any solution randomly, X_n Determine X_{new} as if $f_i < f_p$ $X_{new} = X_i + r \left(X_i - X_p \right)$ else $X_{new} = X_i + r \left(X_i - X_p \right)$ end Bound X_{new} and evaluate its fitness f_{new} Accept X_{new} if it is better than X_i end end

Duplicates

Two solutions with identical set of decision variables

S1 and S2 are identical solutions if the values of decision variables are identical. Comparison of S1 and S2 should **NOT** be done after sort the variables

Tag	Solution	f	Tag	Solution	f
S1	[2 5 4]	-7	Sorted S1	[2 4 5]	-7
S2	[4 2 5]	-3	Sorted S2	[2 4 5]	-7

$$f = x_1 - x_2 - x_3$$

➤S1 and S3 are not identical solutions if the decision variables are not identical but their objective function values are identical. S1 and S3 are realizations

Tag	Solution	f
S1	[2 5 4]	-7
S3	[0 5 2]	-7

$$f = x_1 - x_2 - x_3$$

Cocurrence of duplicates can be very rare, especially in higher dimension problems

Difference between TLBO and s-TLBO

- Duplicate removal
 - Included in TLBO. Duplicates identified by sorting the solutions. · uwahati
 - No duplicate removal in sanitized TLBO
- Number of times the fitness function is evaluated
 - Is stochastic in TLBO as it depends on the duplicates
 - Deterministic in Sanitized TLBO (2N_pT + N_p)
- > Partners
 - Multiple solutions can have the same partner in TLBO
 - Every member has an unique partner

Elitist TLBO (ETLBO): Variant of TLBO

- Elitism: replacement of worst solutions with the elite solutions.
- > Incorporated in every iteration at the end of learner phase.
- ➤ Procedure to generate new solutions is same as in TLBO.
- Algorithm parameters: population size, number of iterations and elite size.
- Elite size specifies the number of worst solutions which have to be replaced.
- Duplicate removal is performed after replacing worst solutions with elite solutions.

Improved TLBO: Variant of TLBO

- Divides the population into groups.
- >Incorporates tutorial learning in teacher phase.
- >Incorporates self-learning in learner phase.
- Number of teachers in the population is equal to number of groups.
- Solution corresponding to best fitness value is chief teacher.
- Deter teachers are selected based on the fitness value of chief teacher and their fitness.
- An adaptive teaching factor is introduced.
- Elitism and duplicate removal are incorporated.

TLBO Codes

- MATLAB Code: by inventors https://sites.google.com/site/tlborao/tlbo-code (includes duplicate removal, duplicates identified after sorting)
- ➤ MATLAB Code of Sanitized TLBO:

 https://in.mathworks.com/matlabcentral/fileexchange/65628-teaching-learning-based-optimization
- MATLAB Code: https://yarpiz.com/83/ypea111-teaching-learning-based-optimization (entire class undergoes teacher phase first)
- ► JAVA Code: https://github.com/maciejj04/TLBO

Further reading

- Teaching-learning-based optimization: An optimization method for continuous non-linear large scale problems, *Information Sciences*, Volume 183, Issue 1, 2012
- A note on teaching-learning-based optimization algorithm, *Information Sciences*, Volume 212, Pages 79-93, 2012
- Comments on "A note on teaching-learning-based optimization algorithm", *Information Sciences*, Volume 229, Pages 159-169, 2013
- Teaching-Learning-Based Optimization (TLBO) Algorithm and its engineering applications. Springer International Publishing, Switzerland, 2016
- A survey of teaching-learning-based optimization, *Neurocomputing*, Volume 335, Pages 366-383, 2019
- Multi-objective optimization using teaching-learning-based optimization algorithm, Engineering Applications of Artificial Intelligence, Volume 26, Issue 4, Pages 1291-1300, 2013

Closure

- ➤ Generic framework of metaheuristic algorithms
- Sanitized Teaching Learning Based Optimization (s-TLBO)
- Detailed working of s-TLBO with an example
- ➤ Various types of convergence curves
- Statistical analysis of multiple runs
- ➤ Preliminary comparison of algorithms
- ► Issues in TLBO
- ➤ Variants of TLBO
- ➤ Implementation of s-TLBO in MATLAB

Thank You!!!