Notation 1 (*Preliminaries*). Let \mathcal{L} be a countable language and let T be a stable theory in \mathcal{L} which permits infinite models. We will also let \mathcal{A} and \mathcal{B} denote \mathcal{L} -structures with universes A and B respectively. When relevant, let $\mathcal{A} \models T$. We will also be using the monster model $\mathbb{M} \succeq \mathcal{A}$ for many of the following results.

- Let S be the set of all \mathcal{L} -formulas. Throughout this write-up, we will let Δ be a set of \mathcal{L} -formulas, so $\Delta \subseteq S$.
- Let Σ_n be the set of all \mathcal{L} -formulas with at most one free variable x.
- For any set X, let $\mathcal{L}_X = \mathcal{L} \cup \{c_x : x \in X\}$, where we augment \mathcal{L} with constant symbols for every element of X.
- Let S(X) be the set of all \mathcal{L}_X formulas.
- Let $\Sigma_1(X)$ be defined similarly.
- If $X \subseteq A$, we define Th(A, X) to be the theory of A interpreted as an \mathcal{L}_X -structure. In particular, Th(A, A) is the elementary diagram of A.
- An *A-instance* of a formula φ is any formula obtained from φ by substituting $c_a \in \mathcal{L}_A$ for each variable.

Definition 1 (*Boolean closure*). Let Δ be a set of \mathcal{L} -formulas and let X be a set. We define $\Delta^b(X)$ to be the set of formulas in $\Sigma_1(X)$ obtained from formulas in Δ using conjunction, disjunction, negation, and substituting instances of c_x for a variable. Trivially, $S^b(A) = S(A)$.

Definition 2 (*Partitioning*). Let $\varphi \in \Sigma_1(B)$ and $\Gamma = \{\psi_1, \dots, \psi_n\} \subset \Sigma_1(B)$. We say that Γ *partitions* φ if we have the following.

$$\mathcal{B} \vDash \forall x (\psi_1(x) \lor \dots \lor \psi_n(x) \lor \neg \varphi(x))$$

$$\mathcal{B} \vDash \forall x ((\psi_i(x) \land \psi_j(x)) \to \neg \varphi(x)) \quad \text{for all } i \neq j$$

$$\mathcal{B} \vDash \exists x (\varphi(x) \land \psi_i(x)) \quad \text{for all } i$$

In other words, whenever $\varphi(x)$ is true in \mathcal{B} , exactly one of the $\psi_i(x)$'s is true.

Definition 3 (*Generalized rank and degree*). Let $\Delta \subseteq A$. In order to define a generalized version of Morley rank and degree, we will need to define two sets $S^{\alpha}(\mathcal{A}, \Delta)$ and $\operatorname{Tr}^{\alpha}(\mathcal{A}, \Delta)$ for any ordinal α inductively.

- Let $S^0(\mathcal{A}, \Delta) = \{ \varphi \in \Sigma_1(A) : \mathcal{A} \models \exists x \varphi(x) \}$, i.e. the set of all \mathcal{L} -formulas that have witnesses in \mathcal{A} .
- If $S^{\alpha}(\mathcal{A}, \Delta)$ is already defined, we may define $\operatorname{Tr}^{\alpha}(\mathcal{A}, \Delta)$ as follows. Given a formula

 φ , we say that $\varphi \in \operatorname{Tr}^{\alpha}(\mathcal{A}, \Delta)$ if and only if there exists a finite k such that for all $\mathcal{B} \succeq \mathcal{A}$ and any finite $\Gamma \subset \Delta^b(B)$ partitioning φ , there are no more than k formulas ψ in Γ such that $(\varphi \land \psi) \in S^{\alpha}(\mathcal{B}, \Delta)$.

- Let $S^{\alpha+1}(\mathcal{A}, \Delta) = S^{\alpha}(\mathcal{A}, \Delta) \setminus \operatorname{Tr}^{\alpha}(\mathcal{A}, \Delta)$.
- For α limit, let $S^{\alpha}(\mathcal{A}, \Delta) = \bigcap_{\beta < \alpha} S^{\beta}(\mathcal{A}, \Delta)$.
- The Δ -rank of φ in \mathcal{A} is the least (and unique) ordinal α such that $\varphi \in \operatorname{Tr}^{\alpha}(\mathcal{A}, \Delta)$. In general we denote this as $\operatorname{rank}_{\mathcal{A}, \Delta}(\varphi)$.
- The Δ -degree of φ in \mathcal{A} is the least number k witnessing that $\varphi \in \operatorname{Tr}^{\alpha}(\mathcal{A}, \Delta)$. In general we denote this as $\deg_{A, \Lambda}(\varphi)$.
- When A or Δ are unambiguous, we may omit them when writing rank and deg.
- For a set of formulas Γ (often when Γ is a type), we define the Δ -rank of Γ to be $\inf\{\operatorname{rank}(\varphi): \Gamma \vDash \varphi\}$.

Proposition 1 (Δ -rank generalizes Morley rank). Let p be a 1-type in Th(\mathcal{A} , A). The Morley rank of p is the least p such that $p \cap \operatorname{Tr}^{\alpha}(\mathcal{A}, S) \neq \emptyset$. The Morley degree of p is the minimum of the S-degrees of the formulas in $p \cap \operatorname{Tr}^{\alpha}(\mathcal{A}, S)$.

Proof. Let $\mathcal{B} \succeq \mathcal{A}$ be an \aleph_0 -saturated model, so p is realized in \mathcal{B} . To prove the first part, we show by induction on α that for all $\varphi \in p$,

$$RM(\varphi) = RM^{\mathcal{B}}(\varphi) \ge \alpha \Leftrightarrow \varphi \in S^{\alpha}(\mathcal{A}, S).$$

If $\alpha = 0$, we clearly have by definition that $\mathcal{A} \models \exists x \varphi(x)$ if and only if $\varphi(\mathcal{A})$ is nonempty. The limit case follows easily by induction.

As for the successor case, we need to show that $RM(\varphi) \ge \alpha + 1$ if and only if φ is in $S^{\alpha}(\mathcal{A},S) \setminus Tr^{\alpha}(\mathcal{A},S)$. First suppose that $RM(\varphi) \ge \alpha + 1$, so there exist infinitely many \mathcal{L}_{B} -formulas ψ_1,ψ_2,\ldots defining pairwise disjoint subsets of $\varphi(\mathcal{B})$ such that $RM(\psi_i) \ge \alpha$ for all $i < \omega$. Let k be any finite number. Then, define the following finite set of formulas $\Gamma \subset S^b(B)$.

$$\Gamma = \left\{ \psi_1, \dots, \psi_{k+1}, \left(\varphi \wedge \bigwedge_{i=1}^{k+1} \neg \psi_i \right) \right\}$$

This set clearly partitions φ . We can see that for at least k+1 formulas $\psi_i \in \Gamma$, $\psi_i \wedge \varphi = \psi_i$ has rank α , which by induction means $\psi_i \in S^{\alpha}(\mathcal{B}, S)$. Thus, we conclude that φ cannot be in $\mathrm{Tr}^{\alpha}(\mathcal{A}, S)$.

Now suppose that $RM(\varphi) = \alpha$. Then, we can see that the Morley degree of φ as an

 \mathcal{L}_B -formula is a k witnessing that $\varphi \in \operatorname{Tr}^{\alpha}(\mathcal{A}, S)$. In fact, by the definition of the Morley degree of a type, the second part of the proposition is trivial.

Definition 4 (*Minimality*). A formula φ is *minimal* in \mathcal{A} if $\varphi \in \operatorname{Tr}^{\alpha}(\mathcal{A}, \Delta)$ and there is no $\psi \in \Delta$ with some A-instance ψ' such that $(\varphi \wedge \psi')$ and $(\varphi \wedge \neg \psi')$ are both in $\operatorname{Tr}^{\alpha}(\mathcal{A}, \Delta)$.

Lemma 1 (*Properties of rank*). Let φ , φ_0 , φ_1 , and ψ be formulas in $\Sigma_1(A)$.

- (i) Suppose $\varphi(A) \subseteq \psi(A)$. Then $\operatorname{rank}_{A}(\varphi) \leq \operatorname{rank}_{A}(\psi)$ and, if $\operatorname{rank}_{A}(\varphi) = \operatorname{rank}_{A}(\psi)$, then $\deg_{A}(\varphi) \leq \deg_{A}(\psi)$.
- (ii) If $\mathcal{B} \succeq \mathcal{A}$, then $\operatorname{rank}_{\mathcal{A}}(\varphi) = \operatorname{rank}_{\mathcal{B}}(\varphi)$.
- (iii) If $(\varphi_0 \vee \varphi_1)(\mathcal{A}) \supseteq \varphi(\mathcal{A})$ and $\mathrm{rank}_{\mathcal{A}}(\varphi) \ge \alpha$, then at least one of φ_0 and φ_1 has a Δ -rank of at least α . In particular, if $\mathrm{rank}_{\mathcal{A}}(\varphi) = \alpha$ for any ordinal α , then $\deg_{\mathcal{A}}(\varphi) \ge 1$.

Proof. (i) Clearly $\varphi \in S^0(\mathcal{A}, \Delta)$ implies that $\psi(\mathcal{A}) \supseteq \varphi(\mathcal{A}) \neq \emptyset$, so $\psi \in S^0(\mathcal{A}, \Delta)$. For the successor case, given a set which partitions φ with k formulas in $S^{\alpha}(\mathcal{A}, \Delta)$, we easily also have a set which partitions ψ with k formulas in $S^{\alpha}(\mathcal{A}, \Delta)$. Thus, if $\varphi \notin \operatorname{Tr}^{\alpha}(\mathcal{A}, \Delta)$, then $\psi \notin \operatorname{Tr}^{\alpha}(\mathcal{A}, \Delta)$. The limit case follows easily from induction. Also, if k formulas of rank k partition k, then these same formulas partition k, giving the second part of the statement easily.

- (ii) Since $\mathcal{A} \vDash \exists x \varphi(x)$ if and only if $\mathcal{B} \vDash \exists x \varphi(x)$, we immediately have the case of $\alpha = 0$. In fact, since the property of a set partitioning a formula depends only on the satisfaction of finitely many sentences, a set partitioning φ in \mathcal{A} with k formulas in $S^{\alpha}(\mathcal{A}, \Delta)$ will also be a set partitioning φ in \mathcal{B} with k formulas in $S^{\alpha}(\mathcal{B}, \Delta)$ and vice versa by induction. The limit case also follows easily.
 - (iii) We have the following deduction to show that this holds for the case of $\alpha = 0$.

$$\mathcal{A} \vDash \exists x \varphi(x) \Rightarrow \mathcal{A} \vDash \exists x (\varphi_0(x) \lor \varphi_1(x)) \Rightarrow \mathcal{A} \vDash \exists x \varphi_0(x) \lor \exists x \varphi_1(x)$$

Suppose the lemma holds for α , suppose $\varphi \in S^{\alpha+1}(\mathcal{A}, \Delta)$, and let $k \in \omega$. There exists a set Γ which partitions φ with formulas $\psi_1, \ldots, \psi_{2k} \in \Gamma$ such that each ψ_i is in $S^{\alpha}(\mathcal{A}, \Delta)$. For each ψ_i , at least one of $(\psi_i \wedge \varphi_0)$ and $(\psi_i \wedge \varphi_1)$ is in $S^{\alpha}(\mathcal{A}, \Delta)$ by induction. Since we have 2k formulas, for at least one of the φ_j 's there are at least k formulas of the form $(\psi_i \wedge \varphi_j)$ in $S^{\alpha}(\mathcal{A}, \Delta)$. Then we can easily construct a partitioning set showing that φ_j cannot have degree k. We are able to show that for any $k \in \omega$ one of φ_0 and φ_1 is unable to have degree k. Thus, for one of the φ_j 's, φ_j fails to have degree k for infinitely many k, meaning $\varphi_j \in S^{\alpha+1}(\mathcal{A}, \Delta)$.

Finally, for the limit case, assuming the lemma holds for all $\beta < \alpha$, it is true for at least

one of the φ_j 's that there is a cofinal sequence of ordinals in α where for each entry β , $\varphi_j \in S^{\beta}(\mathcal{A}, \Delta)$. Thus, $\varphi_j \in S^{\alpha}(\mathcal{A}, \Delta)$.

In light of Lemma 1(ii), we can always assume we are working in the monster M and omit M from our notation of rank and deg.

Lemma 2 (*Definability of* Δ -*rank*). Let Δ be finite, $n \in \omega$, and let ψ have Δ -rank n and Δ -degree 1. For each $\varphi \in (\Delta \cup \Delta^-) \cap \Sigma_{k+1}$ and for any $\mathcal{B} \succeq \mathcal{A}$, the set

$$D = \{ \overline{b} \in \mathcal{B}^k : \operatorname{rank}_{\mathcal{B}}(\psi(x) \land \varphi(x, \overline{b})) = n \}$$

is definable over *A*.

Proof. We may first suppose that \mathcal{B} is the monster model \mathbb{M} . We assume that each $\varphi \in \Delta$ is stable since the theory T is stable. Letting φ be any formula in Δ or Δ^- with k+1 free variables, we define the following global φ -type.

$$p = \{ \varphi(x, \overline{b}) : \overline{b} \in D \} \cup \{ \neg \varphi(x, \overline{c}) : \overline{c} \in \mathbb{M}^k \setminus D \}$$

First, we show that this type is consistent, i.e. that $\operatorname{Diag}_{\mathrm{el}}(\mathcal{A}) \cup p$ is satisfiable. Let $p_0 \subset p$ be finite; we'll write this partial φ -type as

$$\left\{\varphi(x,\overline{b}_1),\ldots,\varphi(x,\overline{b}_r),\neg\varphi(x,\overline{c}_1),\ldots,\neg\varphi(x,\overline{c}_s)\right\}$$

where $\bar{b}_1, \dots, \bar{b}_r \in D$ and $\bar{c}_1, \dots, \bar{c}_s \in \mathbb{M}^k \setminus D$. We will show that

$$\theta_i(x) = \psi(x) \wedge \varphi(x, \overline{b}_1) \wedge \cdots \wedge \varphi(x, \overline{b}_i)$$

has Δ-rank n for every $i \in \{1, \ldots, r\}$. It will follow, since $n \ge 0$, that this formula has a witness. First, we have that $\operatorname{rank}(\psi(x) \land \varphi(x, \overline{b}_1)) = n$ by definition. Now, let $i \ge 2$ and suppose $\operatorname{rank}(\theta_{i-1}(x)) = n$. We know that $\deg(\theta_{i-1}(x)) = 1$ by Lemma 1(i) and (iii). Thus, if $\operatorname{rank}(\theta_{i-1}(x) \land \varphi(x, \overline{b}_i)) < n$, then it must be the case that $\operatorname{rank}(\theta_{i-1}(x) \land \neg \varphi(x, \overline{b}_i)) = n$. However, by Lemma 1(i), this means that $\operatorname{rank}(\psi(x) \land \neg \varphi(x, \overline{b}_i)) = n$, contradicting that ψ has Δ-degree 1. So, it can only be the case that $\operatorname{rank}(\theta_i(x)) = n$. This along with analogous logic for each $\neg \varphi(x, \overline{c}_i)$ shows that

$$\operatorname{rank}_{\mathbb{M}}\left(\psi(x)\wedge\bigwedge\varphi(x,\overline{b}_i)\wedge\bigwedge\neg\varphi(x,\overline{c}_i)\right)=n$$

In particular, since $n \ge 0$, the formula has a witness in \mathbb{M} , meaning that p_0 is satisfiable and so p is realized in \mathbb{M} .

Since φ is stable, the φ -type p is definable by some formula $\theta(\overline{y})$ with parameters in the monster. This formula also defines D. To finish our proof, we only need to show that D is A-invariant. Let σ be any automorphism on \mathbb{M} which fixes A pointwise. We must show that for any $\overline{b} \in D$, $\sigma(\overline{b}) \in D$. Since the only names in ψ are names of elements of A and the only names in $\varphi(x,\overline{b})$ are \overline{b} , we obtain the following.

$$rank(\sigma(\psi(x) \land \varphi(x, \overline{b}))) = rank(\sigma(\psi(x)) \land \sigma(\varphi(x, \overline{b})))$$
$$= rank(\psi(x) \land \varphi(x, \sigma(\overline{b}))) = n$$

Thus, $\sigma(\bar{b}) \in D$, meaning D is A-invariant. Thus, D is A-definable. Since we are working in the monster model, whatever formula defines D in \mathbb{M} will also define any \mathcal{B} extending \mathcal{A} , completing our proof.

Proposition 2 (*Encoding formulas*). Let A and B be sets with A containing at least two elements. Given finitely many formulas $\varphi_1(x, \overline{b}_1), \ldots, \varphi_n(x, \overline{b}_n)$ with fixed parameters in B, there exists a formula $\varphi(x, \overline{b}_1, \ldots, \overline{b}_n, \overline{z})$ such that each φ_i is equivalent to an A-instance of φ .

Proof. We can define φ explicitly as the conjunction of the following formulas.

$$\left(\bigwedge_{i=2}^{n} z_{1} \neq z_{i}\right) \rightarrow \varphi_{1}(x, \overline{y}_{1})$$

$$(z_{1} = z_{2}) \rightarrow \varphi_{2}(x, \overline{y}_{2})$$

$$(z_{1} = z_{3} \wedge z_{1} \neq z_{2}) \rightarrow \varphi_{3}(x, \overline{y}_{3})$$

$$\vdots$$

$$\left(z_{1} = z_{n} \wedge \left(\bigwedge_{i=2}^{n-1} z_{1} \neq z_{i}\right)\right) \rightarrow \varphi_{n}(x, \overline{y}_{n})$$

This formula works like a switch-case statement, checking for the leftmost z_i which is equal to z_1 , where $2 \le i \le n$. If z_1 is not equal to any of the z_i 's, then we default to evaluating φ_1 . Taking two distinct elements $a_1, a_2 \in A$, we can easily express any of the φ_i 's as an A-instance of φ .

Corollary 1. If φ encodes each formula in Δ as in Proposition 2, then for any \mathcal{L}_A formula ψ ,

$$\operatorname{rank}_{\Delta}(\psi) = \operatorname{rank}_{\{\varphi\}}(\psi) \text{ and } \operatorname{deg}_{\Delta}(\psi) = \operatorname{deg}_{\{\varphi\}}(\psi).$$

Lemma 3. If Δ is finite then the Δ -rank of any formula is finite.

Proof. First, we define a version of Shelah 2-rank for a formula $\varphi(x)$ given a finite set of \mathcal{L} -formulas Δ .

- $R_{\Lambda}(\varphi) \geq 0$ if φ is consistent.
- $R_{\Lambda}(\varphi) \ge \alpha + 1$ if, for some $\psi(x, y) \in \Delta$ and $a \in \mathbb{M}^y$, we have both of the following.

$$R_{\Lambda}(\varphi(x) \wedge \psi(x,a)) \ge \alpha R_{\Lambda}(\varphi(x) \wedge \neg \psi(x,a)) \ge \alpha$$

• For a limit ordinal γ , $R_{\Delta}(\varphi) \ge \gamma$ if $R_{\Delta}(\varphi) \ge \gamma$ for all $\alpha < \gamma$.

By dint of Corollary 1, we may assume that $\Delta = \{\psi(x,y)\}$, where ψ is a stable \mathcal{L} -formula. It should be clear that for any φ , $\mathrm{rank}(\varphi) \leq \mathrm{R}(\varphi)$. Now, we show that $\mathrm{R}(\varphi)$ must be finite. Assume for the sake of contradiction that $\mathrm{R}(x=x) \geq \omega$. Then, using compactness, we can construct a binary tree with countably many parameters where each branch of the tree is a distinct and satisfiable ψ -type. But then ψ isn't stable, contradicting our assumption. \square

Lemma 4. If Δ is finite and φ is minimal in A, then the Δ -degree of φ is 1.

Proof. Using Corollary 1, we can assume that $\Delta = \{\varphi(x, \overline{y})\}$ contains one stable \mathcal{L} -formula. Suppose ψ is minimal in \mathcal{A} and has rank n. Then, using logic similar to the proof in Lemma 2, we can see that the following φ -type is consistent and complete in \mathcal{A} .

$$p = \{ \varphi(x, \overline{a})^e : a \in A \text{ and } \operatorname{rank}(\varphi(x, \overline{a})^e) = n \text{ where } e = \pm 1 \}$$

Note that $\operatorname{rank}(p) = n$. Suppose for the sake of contradiction that $\deg(\varphi) \geq 2$, so we can partition it into two formulas ψ_0 and ψ_1 , each of which being in $\Delta^b(\mathbb{M})$ and having degree 1. Then, we may define the following global φ -type which extends p for i = 0, 1.

$$q_i = \{ \varphi(x, \overline{a})^e : a \in A \text{ and } \operatorname{rank}(\psi_i(x) \wedge \varphi(x, \overline{a})^e) = n \text{ where } e = \pm 1 \}$$

Note that each q_i also has rank n and that $q_i \upharpoonright A = p$. This means that q_0 and q_1 are both nondividing extensions of p. However, a nondividing extension of p must be unique, meaning $q_0 = q_1$, a contradiction. Therefore, p cannot have degree larger than 1.