Tables

Table 1: Estimated parameters of robust linear regression models explaining fish species richness in Hokkaido (Japan) and Midwest (US) regions. Dependent variables were log-10 transformed. Environmental variables (air temperature, precipitation, logit % forest) are deviations from the regional averages and were standardized to a mean of zero and a standard deviation of one.

	Dependent variable:		
	α richness	β richness	γ richness
log_{10} Watershed area	0.07***	0.10***	0.16***
	(0.02, 0.11)	(0.04, 0.15)	(0.11, 0.21)
log_{10} Branching probability	-0.25	0.88**	0.63**
	(-0.82, 0.32)	(0.19, 1.57)	(0.03, 1.24)
Region (Midwest vs. Hokkaido)	0.45***	-0.10***	0.35***
	(0.40, 0.50)	(-0.16, -0.04)	(0.30, 0.40)
Air temperature	0.10***	-0.09^{***}	0.01
	(0.07, 0.13)	(-0.12, -0.05)	(-0.02, 0.04)
Precipitation	-0.04***	0.07***	0.03**
	(-0.06, -0.01)	(0.04, 0.10)	(0.004, 0.06)
Logit % forest	-0.003	-0.02	-0.02*
	(-0.03, 0.02)	(-0.05, 0.01)	(-0.05, 0.004)
Intercept	0.32**	0.81***	1.13***
	(0.02, 0.61)	(0.46, 1.17)	(0.82, 1.44)
$ m R^2$	0.80	0.27	0.77
Note:	*p<0.1; **p<0.05; ***p<0.01		