Algorithm analysis

William Hendrix

Today

- Syllabus
- Proof review
- RAM model of computation
- Big-Oh notation
 - Motivation
 - Formal definitions
 - Properties
- Analyzing algorithms
- Summations
- Recursive analysis

Syllabus

- Read at: sit.instructure.com
- Contact: whendrix@stevens.edu
- Office hours:
 - TR 12:30-1:30 pm
 - GS 251
- CAs: TBD
- Office hours: TBD
- Course objectives, grading scale, exams, etc.
- Class participation
- Feedback form
- Slides

What will we learn in this class?

- How to determine if an algorithm is efficient
 - RAM model
 - Big-Oh definition and properties
- How to improve your algorithms by organizing data
 - Stacks and queues
 - Binary search trees
 - Balanced BSTs
 - Priority queues and heaps
 - Hash tables
- How to develop your own algorithms
 - Greedy algorithms
 - Divide-and-conquer
 - Dynamic programming
 - Graph traversals
- Classical sort, search, and graph algorithms

RAM model of computation

Set of assumptions that make analysis more reasonable

Assumptions

- 1. All "basic" operations (assignment, arithmetic, branching, memory access, etc.) take 1 operation
 - Loops and functions do not qualify
- 2. We have "infinite" memory

Cons

- Different operations take different number of clock cycles
 - Cache locality has significant impact
- Virtual memory can slow performance

Pros

Can actually analyze algorithms

RAM model example

```
Input: data: array of integers
  Input: n: size of data
  Output: index min such that
           data[min] \leq data[j], for all j from
           1 to n
1 Algorithm: FindMin
2 min = 1;
3 for i=2 to n do
     if data[i] < data[min] then
        min = i;
5
     end
7 end
s return min;
```

Big-Oh notation

- Technique for *abstracting away details* of complexity
 - Can be used for time complexity, space complexity, etc.
- **Main idea:** most important aspect of complexity is *how fast it grows* relative to input size
 - Focus on asymptotic (eventual) growth rate
 - "Fast" functions will eventually pass "slow" functions for large n
 - Coefficients only matter if growth rate is similar
 - Predicting behavior for small n is difficult and often pointless
- Big-Oh notation
 - Organizes growth rates into classes
 - Three main symbols: $O(f(n)), \Omega(f(n)), \Theta(f(n))$
 - Analogous to "at most", "at least", and "similar to" f(n)

Justification of Big-Oh

• Algorithm runtime with c=1, running at 1 GHz:

n=	$\lg(n)$	n	$n \lg(n)$	n^2	n^3	2 ⁿ	n!
10	3 ns	10 ns	33 ns	100 ns	1 μs	1 μs	3.6 ms
20	4 ns	20 ns	86 ns	400 ns	8 μs	1 ms	77 yrs
30	5 ns	30 ns	147 ns	900 ns	27 μs	1 S	
40	5 ns	40 ns	213 ns	1.6 μs	64 μs	18.3 min	
50	6 ns	50 ns	282 ns	2.5 μs	125 µs	13 days	
100	7 ns	100 ns	644 ns	10 μs	1 ms		
1,000	10 ns	1 μs	9.97 μs	1 ms	1 S		
1,000,000	20 ns	1 ms	19.9 ms	16.7 min	31.7 yrs		
1,000,000,000	30 ns	1 S	29.9 s	31.7 yrs			

"Fails" at: Never! billions millions 10k 40ish 16ish

Lesson: on large data, coefficients not as important

Big-Oh

• Upper bound ("at most")

f(n) = O(g(n)) if and only if there exist positive constants c and n_0 such that $f(n) \leq cg(n)$ for all $n \geq n_0$.

Big-Oh in pictures

• Upper bound ("at most")

f(n) = O(g(n)) if and only if there exist positive constants c and n_0 such that $f(n) \leq cg(n)$ for all $n \geq n_0$.

Translation: f is smaller than some multiple of g eventually (and stays smaller)

Small values of *n* don't matter

f isn't growing faster than g

Big-Oh

• Upper bound ("at most")

f(n) = O(g(n)) if and only if there exist positive constants c and n_0 such that $f(n) \le cg(n)$ for all $n \ge n_0$.

- We say "g(n) dominates f(n)" when f(n) = O(g(n))
- Notation weirdness:
 - O, Ω , and Θ are classes (sets) of functions
 - BUT: we use = to assign class, not ∈
- Example
 - Prove that $7n^2 + 19n 4444 = O(n^2)$.

Big-Omega picture

• Lower bound ("at least")

 $f(n) = \Omega(g(n))$ if and only if there exist positive constants c and n_0 such that $f(n) \ge cg(n)$ for all $n \ge n_0$.

Translation: f is bigger than some multiple of g eventually (and stays bigger)

Small values of *n* don't matter

g isn't growing faster than f

Big-Omega

• Lower bound ("at least")

 $f(n) = \Omega(g(n))$ if and only if there exist positive constants c and n_0 such that $f(n) \ge cg(n)$ for all $n \ge n_0$.

Example

- Prove that $7n^2 + 19n - 4444 = \Omega(n^2)$.

Big-Theta picture

• Upper *and* lower bound ("same rate as")

 $f(n) = \Theta(g(n))$ if and only if there exist positive constants c_1, c_2 , and n_0 such that $c_1g(n) \leq f(n) \leq c_2g(n)$ for all $n \geq n_0$.

Translation: f can be sandwiched between two multiples of g <u>eventually</u> (and <u>stays between them</u>)

f and g are growing at the same rate

Small values of *n* don't matter

Big-Theta

• Upper *and* lower bound ("same rate as")

 $f(n) = \Theta(g(n))$ if and only if there exist positive constants c_1, c_2 , and n_0 such that $c_1g(n) \leq f(n) \leq c_2g(n)$ for all $n \geq n_0$.

Example

- Prove that $7n^2 + 19n - 4444 = \Theta(n^2)$.

Big-Theta picture

• Upper *and* lower bound ("same rate as")

 $f(n) = \Theta(g(n))$ if and only if there exist positive constants c_1, c_2 , and n_0 such that $c_1g(n) \leq f(n) \leq c_2g(n)$ for all $n \geq n_0$.

Translation: *f* can be sandwiched between two multiples of *g* eventually (and stays between them)

f and g are growing at the same rate

Small values of *n* don't matter

Big-Oh example

• Use the *formal definition* of Big-Oh to prove:

$$\sum_{i=1}^{n} i = O(n^2)$$

Big-Oh example (series)

• Prove that
$$\sum_{i=1}^{n} i = \Omega(n^2)$$
.

Analysis of Big-Oh

Pros

- Provides a useful summary of the growth rate of the complexity
- Compact
- Simple: eight classes cover most useful algorithms $O(1) \ll O(\lg n) \ll O(n) \ll O(n \lg n) \ll O(n^2) \ll O(n^3) \ll O(2^n) \ll O(n!)$

Cons

- Ignores contributions from coefficients and lower-order terms
- Doesn't rank algorithms with same growth rate
- Doesn't rank algorithms on small inputs
- Some of the "best" algorithms have extremely large coefficients, making them impractical for many purposes

Connection to calculus

• You can also determine O, Ω , and Θ by limits:

$$g \text{ grows faster} \longrightarrow \lim_{n \to \infty} \frac{f(n)}{g(n)} = 0 \qquad \to f(n) = O(g(n))$$
 Actually $f(n) = o(g(n))$ Same growth rate
$$\longrightarrow \lim_{n \to \infty} \frac{f(n)}{g(n)} \in (0, \infty) \to f(n) = \Theta(g(n))$$

$$\lim_{n \to \infty} \frac{f(n)}{g(n)} = \infty \qquad \to f(n) = \Omega(g(n))$$
 Actually $f(n) = \omega(g(n))$

- Standard rules for taking limits apply
 - Including L'Hôpital's Rule

Formal definition extra practice

• Use the *formal definition* of Big-Theta to prove:

For any
$$x > 0$$
, if $f(n) = \Theta(g(n))$, then $xf(n) = \Theta(g(n))$

Properties of Big-Oh notation

Reflexivity

$$f(n) = O(f(n)), f(n) = \Omega(f(n)), \text{ and } f(n) = \Theta(f(n))$$

Antisymmetry

$$f(n) = O(g(n)) \Leftrightarrow g(n) = \Omega(f(n))$$

 $f(n) = O(g(n)) \text{ and } f(n) = \Omega(g(n)) \Leftrightarrow f(n) = \Theta(g(n))$

• Symmetry (Θ only)

$$f(n) = \Theta(g(n)) \Leftrightarrow g(n) = \Theta(f(n))$$

Transitivity

$$f(n) = O(g(n))$$
 and $g(n) = O(h(n)) \rightarrow f(n) = O(h(n))$
 $f(n) = \Omega(g(n))$ and $g(n) = \Omega(h(n)) \rightarrow f(n) = \Omega(h(n))$
 $f(n) = \Theta(g(n))$ and $g(n) = \Theta(h(n)) \rightarrow f(n) = \Theta(h(n))$

• Alternately:

$$O(O(h(n))) = O(h(n))$$

$$\Omega(\Omega(h(n))) = \Omega(h(n))$$

$$\Theta(\Theta(h(n))) = \Theta(h(n))$$

Combination properties

- Envelopment
 - Addition

$$\begin{aligned} O(f(n)) + O(g(n)) &= O(f(n) + g(n)) \\ \Omega(f(n)) + \Omega(g(n)) &= \Omega(f(n) + g(n)) \\ \Theta(f(n)) + \Theta(g(n)) &= \Theta(f(n) + g(n)) \end{aligned}$$

Multiplication

$$O(f(n))O(g(n)) = O(f(n)g(n))$$

$$\Omega(f(n))\Omega(g(n)) = \Omega(f(n)g(n))$$

$$\Theta(f(n))\Theta(g(n)) = \Theta(f(n)g(n))$$

All three ignore constant coefficients

$$f(n) = O(g(n)) \to xf(n) = O(g(n))$$

$$\forall x > 0, \quad f(n) = \Omega(g(n)) \to xf(n) = \Omega(g(n))$$

$$f(n) = \Theta(g(n)) \to xf(n) = \Theta(g(n))$$

Only the largest term matters

$$f(n) = O(g(n)) \to O(f(n) + g(n)) = O(g(n))$$

$$f(n) = O(g(n)) \to \Omega(f(n) + g(n)) = \Omega(g(n))$$

$$f(n) = O(g(n)) \to \Theta(f(n) + g(n)) = \Theta(g(n))$$

Big-Oh properties example

- Use Big-Oh properties to establish the following:
- 1. If $f(n) = 13n^2 + 1234n + 91.2n\sqrt{n}$, then $f(n) = \Theta(n^2)$. Use the facts that $n = O(n^2)$ and $\sqrt{n} = O(n)$.

Revenge of the logarithms

• Logarithm: inverse exponential function

$$y = \ln x \Leftrightarrow x = e^y$$

- Natural log (ln): inverse of e^x
- Logarithms of other base: $\log_b(x)$
 - $-\log_{2}(x)$ is very common in algorithms
- Computing logs of other bases

$$-\log_b(x) = \frac{\ln x}{\ln b}$$

- All logs are *scalar multiples* of one another

Log vs. exp

y=In(x)

v=exp(x)

Log properties

Base 2
$$\rightarrow \lg(ab) = \lg(a) + \lg(b)$$

$$\lg(a^b) = b \lg(a)$$

$$\sum_{i=1}^{n} \frac{1}{i} = \Theta(\lg n)$$

Because

$$2^{A}2^{B} = 2^{A+B}$$
$$(2^{A})^{b} = 2^{Ab}$$
$$\int_{1}^{n} \frac{1}{x} dx = \ln n$$

Logarithm property example

Coming up

- Big-Oh properties
- Algorithm analysis
- Recursive analysis
- Data structures
- Recommended reading (today): Sections 1.1 and 1.2
 - Practice problems: R-1.3, R-1.7, R-1.19, R-1.21, C-1.8
- Recommended reading (next week): Section 1.3
 - Practice problems: R-1.11, R-1.15, R-1.26, C-1.3, A-1.4