```
In [6]:
```

```
1
                                       #Q1 reverse number
2
   {
3
       n = as.integer(readline(prompt = "Enter a number :"))
 4
 6
       while (n!=0) {
        r = n %% 10
7
8
         s = (s*10) + r
9
         n = n\%/\%10
10
       print(paste("Reverse no is", s))
11
12 }
13
```

Enter a number :123654 [1] "Reverse no is 456321"

In [1]:

```
1
   #calculate sum of digit of that number
 2
   {
3
       n = as.integer(readline(prompt = "Enter a number :"))
4
 5
 6
       while (n > 0) {
        r = n %% 10
 7
8
         s = s + r
         n = n %/% 10
9
10
       print(paste("Sum of the digits is :", s))
11
12 }
```

Enter a number :12321

[1] "Sum of the digits is : 9"

In [8]:

```
1
                                    #Q2 Sum of two matrix
2
3 m1=matrix(c(1,2,78,78,8,8),nrow=2)
4 m2=matrix(c(1,2,78,78,8,8),nrow=2)
5 print(m1+m2)
```

[,1] [,2] [,3] 2 156 16 4 156 16 [1,] [2,]

In [19]:

```
#Q4 create dataframe using vector and display duplicate
1
d=data.frame(a=c(1,2,3,1),b=c('pradnya','pratiksha','aarti','pradnya'))
3 d[duplicated(d),]
```

а b 4 1 pradnya

In [14]:

```
1 a<-c(1,2,3,4,5)
 2 b<-c(6,7,8,9)
3 f1<-factor(a)
4 f2<-factor(b)
5 | 11<-levels(f1)[f1]
6 | 12<-levels(f2)[f2]
8
9 f3<-factor(c(l1,l2))
10 print(f3)
11
```

[1] 1 2 3 4 5 6 7 8 9 Levels: 1 2 3 4 5 6 7 8 9

In [17]:

```
#Q5 perform operation on women dataset

ans<-women[women$weight>120,]

ans

4

5

6
```

	height	weight
4	61	123
5	62	126
6	63	129
7	64	132
8	65	135
9	66	139
10	67	142
11	68	146
12	69	150
13	70	154
14	71	159
15	72	164

In [33]:

```
data=women
a=data[order(data$weight),]
a
4
5
```

height	weight
58	115
59	117
60	120
61	123
62	126
63	129
64	132
65	135
66	139
67	142
68	146
69	150
70	154
71	159
72	164

```
In [45]:
```

```
#Q6 perform operation on mtcars
d<-mtcars[mtcars$mpg>20,]
d
4
```

```
mpg cyl disp hp drat
                                     wt qsec vs am gear carb
   Mazda RX4 21.0 6 160.0 110 3.90 2.620 16.46
                                                            4
Mazda RX4 Wag 21.0 6 160.0 110 3.90 2.875 17.02 0
   Datsun 710 22.8 4 108.0 93 3.85 2.320 18.61
 Hornet 4 Drive 21.4 6 258.0 110 3.08 3.215 19.44
                                               1 0
    Merc 240D 24.4 4 146.7 62 3.69 3.190 20.00
                                              1 0
     Merc 230 22.8 4 140.8 95 3.92 3.150 22.90
     Fiat 128 32.4 4 78.7 66 4.08 2.200 19.47
  Honda Civic 30.4 4 75.7 52 4.93 1.615 18.52
 Toyota Corolla 33.9 4 71.1 65 4.22 1.835 19.90
 Toyota Corona 21.5 4 120.1 97 3.70 2.465 20.01
                                               1 0
                                                        3
     Fiat X1-9 27.3 4 79.0 66 4.08 1.935 18.90
 Porsche 914-2 26.0 4 120.3 91 4.43 2.140 16.70 0 1
 Lotus Europa 30.4 4 95.1 113 3.77 1.513 16.90
                                                     5
   Volvo 142E 21.4 4 121.0 109 4.11 2.780 18.60 1 1
```

In [49]:

```
1 d<-mtcars[(mtcars$mpg>15.0),1] d
```

21 21 22.8 21.4 18.7 18.1 24.4 22.8 19.2 17.8 16.4 17.3 15.2 32.4 30.4 33.9 21.5 15.5 15.2 19.2 27.3 26 30.4 15.8 19.7 21.4

In [63]:

```
1 d<-mtcars[(mtcars$gears=4),]
2 d
```

```
        Hornet 4 Drive
        21.4
        6
        258
        110
        3.08
        3.215
        19.44
        1
        0
        4
        1
        4
```

In []: