CS 383

Lecture 10 - Chomsky Normal Form

Stephen Checkoway

Spring 2024

More CFLs

- $A = \{a^i b^j c^k \mid i \le j \text{ or } i = k\}$
- $B = \{w \mid w \in \{a, b, c\}^* \text{ contains the same number of as as bs and cs combined}\}$
- $C = \{1^m + 1^n = 1^{m+n} \mid m, n \ge 1\}; \Sigma = \{1, +, =\}$
- $D = (abb^* | bbaa)^*$
- $E = \{w \mid w \in \{0,1\}^* \text{ and } w^{\mathcal{R}} \text{ is a binary number not divisible by 5} \}$

We can encode the computation of a DFA on a string using a CFG

Give a DFA $M=(Q,\Sigma,\delta,q_0,F)$, we can construct an equivalent CFG $G=(V,\Sigma,R,S)$ where

We can encode the computation of a DFA on a string using a CFG

Give a DFA $M=(Q,\Sigma,\delta,q_0,F)$, we can construct an equivalent CFG $G=(V,\Sigma,R,S)$ where

ullet states of M are variables in G

We can encode the computation of a DFA on a string using a CFG

Give a DFA $M=(Q,\Sigma,\delta,q_0,F)$, we can construct an equivalent CFG $G=(V,\Sigma,R,S)$ where

- ullet states of M are variables in G
- ullet q_0 is the start variable, and

We can encode the computation of a DFA on a string using a CFG

Give a DFA $M=(Q,\Sigma,\delta,q_0,F)$, we can construct an equivalent CFG $G=(V,\Sigma,R,S)$ where

- ullet states of M are variables in G
- q_0 is the start variable, and
- transitions $\delta(q,t) = r$ become rules $q \to tr$

We can encode the computation of a DFA on a string using a CFG

Give a DFA $M=(Q,\Sigma,\delta,q_0,F)$, we can construct an equivalent CFG $G=(V,\Sigma,R,S)$ where

- states of M are variables in G
- q_0 is the start variable, and
- transitions $\delta(q,t) = r$ become rules $q \to tr$

If on input $w = w_1 w_2 \cdots w_n$, M goes through states r_0, r_1, \dots, r_n , then

$$r_0 \Rightarrow w_1 r_1 \Rightarrow w_1 w_2 r_2 \Rightarrow \cdots \Rightarrow w_1 w_2 \cdots w_n r_n$$

We can encode the computation of a DFA on a string using a CFG

Give a DFA $M=(Q,\Sigma,\delta,q_0,F)$, we can construct an equivalent CFG $G=(V,\Sigma,R,S)$ where

- states of M are variables in G
- q_0 is the start variable, and
- transitions $\delta(q,t) = r$ become rules $q \to tr$

If on input $w = w_1 w_2 \cdots w_n$, M goes through states r_0, r_1, \dots, r_n , then

$$r_0 \Rightarrow w_1 r_1 \Rightarrow w_1 w_2 r_2 \Rightarrow \cdots \Rightarrow w_1 w_2 \cdots w_n r_n$$

So G has derived the string wr_n but this still has a variable

What additional rules should we add to end up with a string of terminals?

We can encode the computation of a DFA on a string using a CFG

Give a DFA $M=(Q,\Sigma,\delta,q_0,F)$, we can construct an equivalent CFG $G=(V,\Sigma,R,S)$ where

- ullet states of M are variables in G
- q_0 is the start variable, and
- transitions $\delta(q,t) = r$ become rules $q \to tr$

If on input $w = w_1 w_2 \cdots w_n$, M goes through states r_0, r_1, \dots, r_n , then

$$r_0 \Rightarrow w_1 r_1 \Rightarrow w_1 w_2 r_2 \Rightarrow \cdots \Rightarrow w_1 w_2 \cdots w_n r_n$$

So G has derived the string wr_n but this still has a variable

What additional rules should we add to end up with a string of terminals? For each state $q \in F$, add a rule $q \to \varepsilon$

Formally

```
Proof. Given a DFA M=(Q,\Sigma,\delta,q_0,F), we can construct an equivalent CFG G=(V,\Sigma,R,S) where V=Q S=q_0 R=\{q\to tr\ :\ \delta(q,t)=r\}\cup\{q\to\varepsilon\ :\ q\in F\}
```

Formally

Proof.

Given a DFA M = (Q,Σ,δ,q_0,F) , we can construct an equivalent CFG G = (V,Σ,R,S) where

$$V = Q$$

$$S = q_0$$

$$R = \{q \to tr \ : \ \delta(q,t) = r\} \cup \{q \to \varepsilon \ : \ q \in F\}$$

If r_0,r_1,\ldots,r_n is the computation of M on input $w=w_1w_2\cdots w_n$, then $r_0=q_0$ and $\delta(r_{i-1},w_i)=r_i$ for $1\leq i\leq n$

By construction $r_0 \Rightarrow w_1 r_1 \Rightarrow w_1 w_2 r_2 \stackrel{*}{\Rightarrow} w_1 w_2 \cdots w_n r_n$

Therefore, $w \in L(M)$ iff $r_n \in F$ iff $r_n \Rightarrow \varepsilon$ iff $q_0 \stackrel{*}{\Rightarrow} w$ iff $w \in L(G)$

Returning to our language

 $E = \{ w \mid w \in \{ \texttt{0,1} \}^* \text{ and } w^{\mathcal{R}} \text{ is a binary number not divisible by 5} \}$

Returning to our language

 $E = \{w \mid w \in \{0,1\}^* \text{ and } w^{\mathcal{R}} \text{ is a binary number not divisible by 5} \}$

$$\begin{split} Q_0 &\rightarrow 0Q_0 \mid 1Q_2 \\ Q_1 &\rightarrow 0Q_3 \mid 1Q_0 \mid \varepsilon \\ Q_2 &\rightarrow 0Q_1 \mid 1Q_3 \mid \varepsilon \\ Q_3 &\rightarrow 0Q_4 \mid 1Q_1 \mid \varepsilon \\ Q_4 &\rightarrow 0Q_2 \mid 1Q_4 \mid \varepsilon \end{split}$$

Chomsky Normal Form (CNF)

A CFG $G = (V, \Sigma, R, S)$ is in Chomsky Normal Form if all rules have one of these forms

- $S \rightarrow \varepsilon$ where S is the start variable
- $A \to BC$ where $A \in V$ and $B, C \in V \setminus \{S\}$
- $A \to t$ where $A \in V$ and $t \in \Sigma$

Note

- ullet The only rule with arepsilon on the right has the start variable on the left
- The start variable doesn't appear on the right hand side of any rule

Let
$$A = \{w \mid w \in \{a, b\}^* \text{ and } w = w^{\mathcal{R}}\}.$$

CFG in CNF

$$S \rightarrow AU \mid BV \mid \mathbf{a} \mid \mathbf{b} \mid \varepsilon$$

$$T \rightarrow AU \mid BV \mid \mathbf{a} \mid \mathbf{b}$$

$$U \rightarrow TA \mid \mathbf{a}$$

$$V \rightarrow TB \mid \mathbf{b}$$

$$A \rightarrow \mathbf{a}$$

$$B \rightarrow \mathbf{b}$$

Let
$$A = \{w \mid w \in \{a, b\}^* \text{ and } w = w^{\mathcal{R}}\}.$$

CFG in CNF

$$S \to AU \mid BV \mid \mathbf{a} \mid \mathbf{b} \mid \varepsilon$$

$$T \to AU \mid BV \mid \mathbf{a} \mid \mathbf{b}$$

$$U \to TA \mid \mathbf{a}$$

$$V \to TB \mid \mathbf{b}$$

$$A \to a$$

$$B \to \mathbf{b}$$

$$S \Rightarrow BV$$

Let
$$A = \{ w \mid w \in \{a, b\}^* \text{ and } w = w^{\mathcal{R}} \}.$$

CFG in CNF

 $B \rightarrow b$

$$S \to AU \mid BV \mid \mathbf{a} \mid \mathbf{b} \mid \varepsilon$$

$$T \to AU \mid BV \mid \mathbf{a} \mid \mathbf{b}$$

$$U \to TA \mid \mathbf{a}$$

$$V \to TB \mid \mathbf{b}$$

$$A \to \mathbf{a}$$

$$S \Rightarrow BV$$
$$\Rightarrow \mathbf{b}V$$

Let
$$A = \{w \mid w \in \{a, b\}^* \text{ and } w = w^{\mathcal{R}}\}.$$

CFG in CNF

$$S \rightarrow AU \mid BV \mid a \mid b \mid \varepsilon$$
 $T \rightarrow AU \mid BV \mid a \mid b$
 $U \rightarrow TA \mid a$
 $V \rightarrow TB \mid b$
 $A \rightarrow a$
 $B \rightarrow b$

$$S \Rightarrow BV$$

$$\Rightarrow {\rm b} V$$

$$\Rightarrow$$
 b TB

Let
$$A = \{w \mid w \in \{a, b\}^* \text{ and } w = w^{\mathcal{R}}\}.$$

CFG in CNF

$$S \rightarrow AU \mid BV \mid a \mid b \mid \varepsilon$$
 $T \rightarrow AU \mid BV \mid a \mid b$
 $U \rightarrow TA \mid a$
 $V \rightarrow TB \mid b$
 $A \rightarrow a$
 $B \rightarrow b$

$$S \Rightarrow BV$$

$$\Rightarrow bV$$

$$\Rightarrow bTB$$

$$\Rightarrow bAUB$$

Let
$$A = \{w \mid w \in \{a, b\}^* \text{ and } w = w^{\mathcal{R}}\}.$$

CFG in CNF

$$S \rightarrow AU \mid BV \mid \mathbf{a} \mid \mathbf{b} \mid \varepsilon$$
 $T \rightarrow AU \mid BV \mid \mathbf{a} \mid \mathbf{b}$
 $U \rightarrow TA \mid \mathbf{a}$
 $V \rightarrow TB \mid \mathbf{b}$
 $A \rightarrow \mathbf{a}$
 $B \rightarrow \mathbf{b}$

$$S \Rightarrow BV$$

$$\Rightarrow bV$$

$$\Rightarrow bTB$$

$$\Rightarrow bAUB$$

$$\Rightarrow baUB$$

Let
$$A = \{w \mid w \in \{a, b\}^* \text{ and } w = w^{\mathcal{R}}\}.$$

CFG in CNF

$$S \rightarrow AU \mid BV \mid \mathbf{a} \mid \mathbf{b} \mid \varepsilon$$

$$T \rightarrow AU \mid BV \mid \mathbf{a} \mid \mathbf{b}$$

$$U \rightarrow TA \mid \mathbf{a}$$

$$V \rightarrow TB \mid \mathbf{b}$$

$$A \rightarrow \mathbf{a}$$

$$B \rightarrow \mathbf{b}$$

$$S \Rightarrow BV$$

$$\Rightarrow bV$$

$$\Rightarrow bTB$$

$$\Rightarrow bAUB$$

$$\Rightarrow baUB$$

$$\Rightarrow baTAB$$

Let
$$A = \{w \mid w \in \{a, b\}^* \text{ and } w = w^{\mathcal{R}}\}.$$

CFG in CNF

$$S \rightarrow AU \mid BV \mid a \mid b \mid \varepsilon$$
 $T \rightarrow AU \mid BV \mid a \mid b$
 $U \rightarrow TA \mid a$
 $V \rightarrow TB \mid b$
 $A \rightarrow a$
 $B \rightarrow b$

$$S \Rightarrow BV$$

$$\Rightarrow bV$$

$$\Rightarrow bTB$$

$$\Rightarrow bAUB$$

$$\Rightarrow baUB$$

$$\Rightarrow baTAB$$

$$\Rightarrow baAB$$

Let
$$A = \{w \mid w \in \{a, b\}^* \text{ and } w = w^{\mathcal{R}}\}.$$

CFG in CNF

$$S \rightarrow AU \mid BV \mid \mathbf{a} \mid \mathbf{b} \mid \varepsilon$$

$$T \rightarrow AU \mid BV \mid \mathbf{a} \mid \mathbf{b}$$

$$U \rightarrow TA \mid \mathbf{a}$$

$$V \rightarrow TB \mid \mathbf{b}$$

$$A \rightarrow \mathbf{a}$$

$$B \rightarrow \mathbf{b}$$

$$S \Rightarrow BV$$

$$\Rightarrow bV$$

$$\Rightarrow bTB$$

$$\Rightarrow bAUB$$

$$\Rightarrow baUB$$

$$\Rightarrow baAB$$

$$\Rightarrow baAB$$

$$\Rightarrow baAB$$

Let
$$A = \{w \mid w \in \{a, b\}^* \text{ and } w = w^{\mathcal{R}}\}.$$

CFG in CNF

$$S \rightarrow AU \mid BV \mid \mathbf{a} \mid \mathbf{b} \mid \varepsilon$$

$$T \rightarrow AU \mid BV \mid \mathbf{a} \mid \mathbf{b}$$

$$U \rightarrow TA \mid \mathbf{a}$$

$$V \rightarrow TB \mid \mathbf{b}$$

$$A \rightarrow \mathbf{a}$$

$$B \rightarrow \mathbf{b}$$

Derivation of baaab

$$S \Rightarrow BV$$

$$\Rightarrow bV$$

$$\Rightarrow bTB$$

$$\Rightarrow bAUB$$

$$\Rightarrow baUB$$

$$\Rightarrow baAB$$

$$\Rightarrow baAB$$

$$\Rightarrow baaB$$

⇒ baaab

Converting to CNF

Theorem

Every context-free language A is generated by some CFG in CNF.

Proof.

Given a CFG $G = (V, \Sigma, R, S)$ generating A, we construct a new CFG $G' = (V', \Sigma, R', S')$ in CNF generating A.

There are five steps.

START Add a new start variable

BIN Replace rules with RHS longer than two with multiple rules each of which has a RHS of length two

DEL- ε Remove all ε -rules $(A \to \varepsilon)$

UNIT Remove all unit-rules $(A \rightarrow B)$

TERM Add a variable and rule for each terminal $(T \to t)$ and replace terminals on the RHS of rules

In the following $x \in V \cup \Sigma$ and $u \in (\Sigma \cup V)^+$ START Add a new start variable S' and a rule $S' \to S$

In the following $x \in V \cup \Sigma$ and $u \in (\Sigma \cup V)^+$

START Add a new start variable S' and a rule $S' \to S$

BIN Replace each rule $A \to xu$ with the rules $A \to xA_1$ and $A_1 \to u$ and repeat until the RHS of every rule has length at most two

In the following $x \in V \cup \Sigma$ and $u \in (\Sigma \cup V)^+$

START Add a new start variable S' and a rule $S' \to S$

BIN Replace each rule $A\to xu$ with the rules $A\to xA_1$ and $A_1\to u$ and repeat until the RHS of every rule has length at most two

DEL- ε For each rule of the form $A \to \varepsilon$ other than $S' \to \varepsilon$ remove $A \to \varepsilon$ and update all rules with A in the RHS

In the following $x \in V \cup \Sigma$ and $u \in (\Sigma \cup V)^+$

START Add a new start variable S' and a rule $S' \to S$

BIN Replace each rule $A\to xu$ with the rules $A\to xA_1$ and $A_1\to u$ and repeat until the RHS of every rule has length at most two

DEL- ε For each rule of the form $A \to \varepsilon$ other than $S^I \to \varepsilon$ remove $A \to \varepsilon$ and update all rules with A in the RHS

• $B \to A$. Add rule $B \to \varepsilon$ unless $B \to \varepsilon$ has already been removed

In the following $x \in V \cup \Sigma$ and $u \in (\Sigma \cup V)^+$

START Add a new start variable S' and a rule $S' \to S$

BIN Replace each rule $A\to xu$ with the rules $A\to xA_1$ and $A_1\to u$ and repeat until the RHS of every rule has length at most two

DEL- ε For each rule of the form $A \to \varepsilon$ other than $S^I \to \varepsilon$ remove $A \to \varepsilon$ and update all rules with A in the RHS

- $B \to A$. Add rule $B \to \varepsilon$ unless $B \to \varepsilon$ has already been removed
- $B \to AA$. Add rule $B \to A$ and if $B \to \varepsilon$ has not already been removed, add it

In the following $x \in V \cup \Sigma$ and $u \in (\Sigma \cup V)^+$

START Add a new start variable S' and a rule $S' \to S$

- BIN Replace each rule $A\to xu$ with the rules $A\to xA_1$ and $A_1\to u$ and repeat until the RHS of every rule has length at most two
- DEL- ε For each rule of the form $A \to \varepsilon$ other than $S^I \to \varepsilon$ remove $A \to \varepsilon$ and update all rules with A in the RHS
 - $B \to A$. Add rule $B \to \varepsilon$ unless $B \to \varepsilon$ has already been removed
 - $B \to AA$. Add rule $B \to A$ and if $B \to \varepsilon$ has not already been removed, add it
 - $B \to xA$ or $B \to Ax$. Add rule $B \to x$

In the following $x \in V \cup \Sigma$ and $u \in (\Sigma \cup V)^+$

START Add a new start variable S' and a rule $S' \to S$

- BIN Replace each rule $A\to xu$ with the rules $A\to xA_1$ and $A_1\to u$ and repeat until the RHS of every rule has length at most two
- DEL- ε For each rule of the form $A \to \varepsilon$ other than $S^I \to \varepsilon$ remove $A \to \varepsilon$ and update all rules with A in the RHS
 - $B \to A$. Add rule $B \to \varepsilon$ unless $B \to \varepsilon$ has already been removed
 - $B \to AA$. Add rule $B \to A$ and if $B \to \varepsilon$ has not already been removed, add it
 - $B \to xA$ or $B \to Ax$. Add rule $B \to x$
- UNIT For each rule $A \to B$, remove it and add rules $A \to u$ for each $B \to u$ unless $A \to u$ is a unit rule already removed

In the following $x \in V \cup \Sigma$ and $u \in (\Sigma \cup V)^+$

START Add a new start variable S' and a rule $S' \to S$

- BIN Replace each rule $A\to xu$ with the rules $A\to xA_1$ and $A_1\to u$ and repeat until the RHS of every rule has length at most two
- DEL- ε For each rule of the form $A \to \varepsilon$ other than $S^I \to \varepsilon$ remove $A \to \varepsilon$ and update all rules with A in the RHS
 - $B \to A$. Add rule $B \to \varepsilon$ unless $B \to \varepsilon$ has already been removed
 - $B \to AA$. Add rule $B \to A$ and if $B \to \varepsilon$ has not already been removed, add it
 - $B \to xA$ or $B \to Ax$. Add rule $B \to x$
- UNIT For each rule $A \to B$, remove it and add rules $A \to u$ for each $B \to u$ unless $A \to u$ is a unit rule already removed
- TERM For each $t \in \Sigma$, add a new variable T and a rule $T \to t$; replace each t in the RHS of nonunit rules with T

In the following $x \in V \cup \Sigma$ and $u \in (\Sigma \cup V)^+$

START Add a new start variable S' and a rule $S' \to S$

- BIN Replace each rule $A\to xu$ with the rules $A\to xA_1$ and $A_1\to u$ and repeat until the RHS of every rule has length at most two
- DEL- ε For each rule of the form $A \to \varepsilon$ other than $S^I \to \varepsilon$ remove $A \to \varepsilon$ and update all rules with A in the RHS
 - $B \to A$. Add rule $B \to \varepsilon$ unless $B \to \varepsilon$ has already been removed
 - $B \to AA$. Add rule $B \to A$ and if $B \to \varepsilon$ has not already been removed, add it
 - $B \to xA$ or $B \to Ax$. Add rule $B \to x$
- UNIT For each rule $A \to B$, remove it and add rules $A \to u$ for each $B \to u$ unless $A \to u$ is a unit rule already removed
- TERM For each $t \in \Sigma$, add a new variable T and a rule $T \to t$; replace each t in the RHS of nonunit rules with T

Each of the five steps preserves the language generated by the grammar so L(G') = A.

Example

Convert to CNF $A \rightarrow BAB \mid B \mid \varepsilon$ $B \rightarrow \text{00} \mid \varepsilon$

START:

Example

Convert to CNF

$$A \to BAB \mid B \mid \varepsilon$$

$$B \rightarrow 00 \mid \varepsilon$$

START:

$$S \to A$$

$$A \rightarrow BAB \mid B \mid \varepsilon$$

$$B \to \mathsf{00} \mid \varepsilon$$

Convert to CNF

$$A \to BAB \mid B \mid \varepsilon$$

$$B \rightarrow 00 \mid \varepsilon$$

START:

$$S \to A$$

$$A \rightarrow BAB \mid B \mid \varepsilon$$

$$B \to \mathsf{00} \mid \varepsilon$$

BIN: Replace $A \rightarrow BAB$:

Convert to CNF $A \rightarrow BAB \mid B \mid \varepsilon$ $B \rightarrow 00 \mid \varepsilon$ START: $S \to A$ $A \rightarrow BAB \mid B \mid \varepsilon$ $B \rightarrow 00 \mid \varepsilon$ BIN: Replace $A \rightarrow BAB$: $S \to A$ $A \to BA_1 \mid B \mid \varepsilon$ $B \rightarrow 00 \mid \varepsilon$ $A_1 \rightarrow AB$

Convert to CNF $A \rightarrow BAB \mid B \mid \varepsilon$ $B \rightarrow 00 \mid \varepsilon$ START: $S \to A$ $A \rightarrow BAB \mid B \mid \varepsilon$ $B \rightarrow 00 \mid \varepsilon$ BIN: Replace $A \rightarrow BAB$: $S \to A$ $A \rightarrow BA_1 \mid B \mid \varepsilon$

 $B \to 00 \mid \varepsilon$ $A_1 \to AB$

DEL- ε : Remove $A \to \varepsilon$:

$$A \rightarrow BAB \mid B \mid \varepsilon$$
$$B \rightarrow 00 \mid \varepsilon$$

_ ...

START:

$$S \to A$$

$$A \to BAB \mid B \mid \varepsilon$$

$$B \rightarrow 00 \mid \varepsilon$$

BIN: Replace $A \rightarrow BAB$:

$$S \to A$$

$$A \to BA_1 \mid B \mid \varepsilon$$

$$B \rightarrow 00 \mid \varepsilon$$

$$A_1 \to AB$$

DEL- ε : Remove $A \to \varepsilon$:

$$S \to A \mid \varepsilon$$

$$A \to BA_1 \mid B$$

$$B o exttt{00} \mid \varepsilon$$

$$A_1 \to AB \mid B$$

Convert to CNF $A \rightarrow BAB \mid B \mid \varepsilon$ $B \rightarrow \text{00} \mid \varepsilon$

START:

$$S \to A$$

$$A \to BAB \mid B \mid \varepsilon$$

$$B \rightarrow 00 \mid \varepsilon$$

BIN: Replace $A \rightarrow BAB$:

$$S \to A$$

$$A \to BA_1 \mid B \mid \varepsilon$$

$$B \rightarrow 00 \mid \varepsilon$$

$$A_1 \to AB$$

DEL-
$$\varepsilon$$
: Remove $A \to \varepsilon$:

$$S \to A \mid \varepsilon$$

$$A \rightarrow BA_1 \mid B$$

$$B \rightarrow 00 \mid \varepsilon$$

$$A_1 \rightarrow AB \mid B$$

Remove $B \to \varepsilon$:

Convert to CNF $A \rightarrow BAB \mid B \mid \varepsilon$ $B \rightarrow 00 \mid \varepsilon$ START:

$$S \to A$$

$$A \to BAB \mid B \mid \varepsilon$$

$$B \to \mathtt{00} \mid \varepsilon$$

BIN: Replace
$$A \rightarrow BAB$$
: $S \rightarrow A$
$$A \rightarrow BA_1 \mid B \mid \varepsilon$$

$$B \rightarrow 00 \mid \varepsilon$$

$$A_1 \rightarrow AB$$

DEL-
$$\varepsilon$$
: Remove $A \to \varepsilon$:
 $S \to A \mid \varepsilon$
 $A \to BA_1 \mid B$
 $B \to 00 \mid \varepsilon$
 $A_1 \to AB \mid B$

Remove
$$B \to \varepsilon$$
:
$$S \to A \mid \varepsilon$$

$$A \to BA_1 \mid B \mid A_1$$

$$B \to 00$$

$$A_1 \to AB \mid B \mid A \mid \varepsilon$$

Don't add
$$A\to \varepsilon$$
 because we already removed it

Remove
$$A_1 \rightarrow \varepsilon$$
:
 $S \rightarrow A \mid \varepsilon$
 $A \rightarrow BA_1 \mid B \mid A_1$
 $B \rightarrow 00$
 $A_1 \rightarrow AB \mid B \mid A$

Don't add $A \to \varepsilon$ because we already removed it

Convert to CNF $A \rightarrow BAB \mid B \mid \varepsilon$ $B \rightarrow 00 \mid \varepsilon$ START: $S \rightarrow A$

$$S \to A$$

$$A \to BAB \mid B \mid \varepsilon$$

$$B \to 00 \mid \varepsilon$$

BIN: Replace
$$A \rightarrow BAB$$
:
 $S \rightarrow A$
 $A \rightarrow BA_1 \mid B \mid \varepsilon$
 $B \rightarrow 00 \mid \varepsilon$
 $A_1 \rightarrow AB$

DEL-
$$\varepsilon$$
: Remove $A \to \varepsilon$:
 $S \to A \mid \varepsilon$
 $A \to BA_1 \mid B$
 $B \to 00 \mid \varepsilon$
 $A_1 \to AB \mid B$

Remove
$$B \rightarrow \varepsilon$$
:
 $S \rightarrow A \mid \varepsilon$
 $A \rightarrow BA_1 \mid B \mid A_1$
 $B \rightarrow 00$
 $A_1 \rightarrow AB \mid B \mid A \mid \varepsilon$

Don't add $A\to \varepsilon$ because we already removed it

Remove
$$A_1 \rightarrow \varepsilon$$
:
 $S \rightarrow A \mid \varepsilon$
 $A \rightarrow BA_1 \mid B \mid A_1$
 $B \rightarrow 00$
 $A_1 \rightarrow AB \mid B \mid A$

Don't add $A \to \varepsilon$ because we already removed it

UNIT: Remove $S \to A$

From previous slide $S \rightarrow BA_1 \mid B \mid A_1 \mid \varepsilon$ $A \rightarrow BA_1 \mid B \mid A_1$ $B \rightarrow 00$

 $A_1 \to AB \mid B \mid A$

From previous slide $S \to BA_1 \mid B \mid A_1 \mid \varepsilon$ $A \to BA_1 \mid B \mid A_1$

 $B \rightarrow 00$

 $A_1 \rightarrow AB \mid B \mid A$

Remove $S \rightarrow B$

```
From previous slide
     S \to BA_1 \mid B \mid A_1 \mid \varepsilon
     A \rightarrow BA_1 \mid B \mid A_1
     B \rightarrow 00
   A_1 \rightarrow AB \mid B \mid A
Remove S \to B
     S \rightarrow BA_1 \mid A_1 \mid \varepsilon \mid 00
     A \rightarrow BA_1 \mid B \mid A_1
     B \rightarrow 00
   A_1 \rightarrow AB \mid B \mid A
```

From previous slide $S \to BA_1 \mid B \mid A_1 \mid \varepsilon$ $A \rightarrow BA_1 \mid B \mid A_1$ $B \rightarrow 00$ $A_1 \rightarrow AB \mid B \mid A$ Remove $S \to B$ $S \rightarrow BA_1 \mid A_1 \mid \varepsilon \mid 00$ $A \rightarrow BA_1 \mid B \mid A_1$ $B \rightarrow 00$

 $A_1 \rightarrow AB \mid B \mid A$

Remove $S \to A_1$

From previous slide
$$S \rightarrow BA_1 \mid B \mid A_1 \mid B$$

$$A \rightarrow BA_1 \mid B \mid A_1$$

$$B \rightarrow 00$$

$$A_1 \rightarrow AB \mid B \mid A$$

m previous slide Remove
$$S \rightarrow A_1$$

$$S \rightarrow BA_1 \mid B \mid A_1 \mid \varepsilon \qquad S \rightarrow BA_1 \mid \varepsilon \mid 00 \mid AB$$

$$A \rightarrow BA_1 \mid B \mid A_1 \qquad A \rightarrow BA_1 \mid B \mid A_1$$

$$B \rightarrow 00 \qquad B \rightarrow 00$$

$$A_1 \rightarrow AB \mid B \mid A \qquad A_1 \rightarrow AB \mid B \mid A$$

Remove
$$S \rightarrow B$$

 $S \rightarrow BA_1 \mid A_1 \mid \varepsilon$
 $A \rightarrow BA_1 \mid B \mid A_1$
 $B \rightarrow 00$
 $A_1 \rightarrow AB \mid B \mid A$

Don't add $S \to B$ or $S \to A$ $S \to BA_1 \mid A_1 \mid \varepsilon \mid 00$ because we removed them

From previous slide
$$S \rightarrow BA_1 \mid B \mid A_1 \mid \varepsilon \\ A \rightarrow BA_1 \mid B \mid A_1 \mid \varepsilon \\ A \rightarrow BA_1 \mid B \mid A_1 \\ B \rightarrow 00 \\ A_1 \rightarrow AB \mid B \mid A \\ A \rightarrow BA_1 \mid B \mid A_1 \\ B \rightarrow 00 \\ A_1 \rightarrow AB \mid B \mid A \\ A \rightarrow BA_1 \mid B \mid A_1 \\ B \rightarrow 00 \\ A \rightarrow BA_1 \mid A_1 \mid \varepsilon \mid 00 \\ A \rightarrow BA_1 \mid B \mid A_1 \\ B \rightarrow 00 \\ A_1 \rightarrow AB \mid B \mid A \\ Remove $A \rightarrow B$ because we removed them
$$A \rightarrow BA_1 \mid B \mid A_1 \\ B \rightarrow 00 \\ A_1 \rightarrow AB \mid B \mid A$$$$

From previous slide
$$S \rightarrow BA_1 \mid B \mid A_1 \mid \varepsilon \qquad \qquad S \rightarrow BA_1 \mid \varepsilon \mid 00 \mid AB$$

$$A \rightarrow BA_1 \mid B \mid A_1 \qquad \qquad A \rightarrow BA_1 \mid B \mid A_1$$

$$B \rightarrow 00 \qquad \qquad B \rightarrow 00$$

$$A_1 \rightarrow AB \mid B \mid A \qquad \qquad A_1 \rightarrow AB \mid B \mid A$$

$$A \rightarrow BA_1 \mid A_1 \mid \varepsilon \mid 00 \qquad A_1 \rightarrow AB \mid B \mid A$$

$$A \rightarrow BA_1 \mid B \mid A_1 \qquad \qquad B \rightarrow 00$$

$$A_1 \rightarrow AB \mid B \mid A \qquad \qquad BA_1 \mid \varepsilon \mid 00 \mid AB \qquad \qquad A \rightarrow BA_1 \mid \varepsilon \mid 00 \mid AB \qquad \qquad A \rightarrow BA_1 \mid \varepsilon \mid 00 \mid AB \qquad \qquad A \rightarrow BA_1 \mid \varepsilon \mid 00 \mid AB \qquad \qquad A \rightarrow BA_1 \mid \delta \mid 00 \qquad \qquad B \rightarrow 00$$

$$A_1 \rightarrow AB \mid B \mid A \qquad \qquad AB \mid B \mid A$$

From previous slide
$$S \rightarrow BA_1 \mid B \mid A_1 \mid \varepsilon \\ A \rightarrow BA_1 \mid B \mid A_1 \\ B \rightarrow 00 \\ A_1 \rightarrow AB \mid B \mid A \\ A \rightarrow BA_1 \mid B \mid A_1 \\ B \rightarrow 00 \\ A_1 \rightarrow AB \mid B \mid A \\ Remove $S \rightarrow B \\ S \rightarrow BA_1 \mid A_1 \mid \varepsilon \mid 00 \\ A \rightarrow BA_1 \mid A_1 \mid \varepsilon \mid 00 \\ A \rightarrow BA_1 \mid B \mid A_1 \\ B \rightarrow 00 \\ A_1 \rightarrow AB \mid B \mid A \\ Remove $A \rightarrow A_1 \\ B \rightarrow BA_1 \mid B \mid A_1 \\ A \rightarrow BA_1 \mid B \mid A_1 \\ A \rightarrow BA_1 \mid A_1 \mid B \mid A_1 \\ A \rightarrow BA_1 \mid A_1 \mid B \mid A_1 \\ A \rightarrow BA_1 \mid A_1 \mid B \mid A_1 \\ A \rightarrow BA_1 \mid A_1 \mid B \mid A_1 \\ A \rightarrow BA_1 \mid A_1 \mid B \mid A_1 \\ A \rightarrow BA_1 \mid A_1 \mid B \mid A_1 \\ A \rightarrow BA_1 \mid A_1 \mid B \mid A_1 \\ A \rightarrow BA_1 \mid A_1 \mid A_1$$$$

From previous slide
$$S \rightarrow BA_1 \mid B \mid A_1 \mid \varepsilon$$
 Remove $S \rightarrow A_1$ Remove $A \rightarrow A_1$ $S \rightarrow BA_1 \mid B \mid A_1 \mid \varepsilon \mid 00 \mid AB$ $S \rightarrow BA_1 \mid \varepsilon \mid 00 \mid AB$ $A \rightarrow BA_1 \mid B \mid A_1$ $A \rightarrow BA_1 \mid B \mid A_1$ $A \rightarrow BA_1 \mid 00 \mid AB$ $A \rightarrow BA_1 \mid B \mid A$ $A \rightarrow BA_1 \mid B \mid A$ $A \rightarrow BA_1 \mid B \mid A$ Remove $A \rightarrow A_1 \mid A \rightarrow BA_1 \mid B \mid A_1$ $A \rightarrow BA_1 \mid B \mid A$ $A \rightarrow BA_1 \mid B \mid A$ $A \rightarrow BA_1 \mid B \mid A$ $A \rightarrow BA_1 \mid B \mid A$ Don't add $A \rightarrow B$ because $A \rightarrow B$ becaus

 $A_1 \rightarrow AB \mid B \mid A$

From previous slide
$$S \rightarrow BA_1 \mid B \mid A_1 \mid \varepsilon \\ S \rightarrow BA_1 \mid B \mid A_1 \mid \varepsilon \\ A \rightarrow BA_1 \mid B \mid A_1 \\ B \rightarrow 00 \\ A_1 \rightarrow AB \mid B \mid A \\ Remove $S \rightarrow A_1$ Remove $A \rightarrow A_1$
$$A \rightarrow BA_1 \mid B \mid A_1 \\ B \rightarrow 00 \\ A_1 \rightarrow AB \mid B \mid A \\ Remove $S \rightarrow B$ Don't add $S \rightarrow B$ or $S \rightarrow A$ Don't add $A \rightarrow B$ because
$$S \rightarrow BA_1 \mid A_1 \mid \varepsilon \mid 00 \\ A \rightarrow BA_1 \mid B \mid A_1 \\ B \rightarrow 00 \\ A_1 \rightarrow AB \mid B \mid A \\ Remove $A \rightarrow B$ it's useless
$$S \rightarrow BA_1 \mid A_1 \mid \varepsilon \mid 00 \mid AB \\ A \rightarrow BA_1 \mid B \mid A_1 \\ B \rightarrow 00 \\ A_1 \rightarrow AB \mid B \mid A \\ A \rightarrow BA_1 \mid A_1 \mid 00 \\ Remove $A \rightarrow B$ it's useless
$$S \rightarrow BA_1 \mid A_1 \mid 00 \\ A \rightarrow BA_1 \mid A_1 \mid 00 \\ Remove $A \rightarrow B$ Remove $A_1 \rightarrow B$$$$$$$$$$$

From previous slide
$$S \rightarrow BA_1 \mid B \mid A_1 \mid \varepsilon$$

$$A \rightarrow BA_1 \mid B \mid A_1$$

$$B \rightarrow 00$$

$$A_1 \rightarrow AB \mid B \mid A$$
 Remove
$$S \rightarrow B$$

$$S \rightarrow BA_1 \mid A_1 \mid \varepsilon \mid 00$$

$$A \rightarrow BA_1 \mid B \mid A_1$$

$$B \rightarrow 00$$

$$A_1 \rightarrow AB \mid B \mid A$$

 $B \rightarrow 00$

 $A_1 \rightarrow AB \mid B \mid A$

$$S
ightarrow BA_1 \mid \varepsilon \mid 00 \mid AB$$

 $A
ightarrow BA_1 \mid 00 \mid AB$
 $B
ightarrow 00$
 $A_1
ightarrow AB \mid B \mid A$
ADon't add $A
ightarrow B$ because we removed it
Don't add $A
ightarrow A$ because it's useless
 B
Remove $A_1
ightarrow B$
 $S
ightarrow BA_1 \mid \varepsilon \mid 00 \mid AB$
 $A
ightarrow BA_1 \mid 00 \mid AB$
 $B
ightarrow 00$

 $A_1 \rightarrow AB \mid A \mid 00$

Copied from the previous slide

$$S \to BA_1 \mid \varepsilon \mid 00 \mid AB$$

$$A \rightarrow BA_1 \mid 00 \mid AB$$

$$B \rightarrow 00$$

$$A_1 \rightarrow AB \mid A \mid 00$$

Remove $A_1 \rightarrow A$

Copied from the previous slide

$$S \to BA_1 \mid \varepsilon \mid 00 \mid AB$$

$$A \to BA_1 \mid 00 \mid AB$$
$$B \to 00$$

$$A_1 \rightarrow AB \mid A \mid 00$$

Remove
$$A_1 \rightarrow A$$

$$S \rightarrow BA_1 \mid \varepsilon \mid 00 \mid AB$$

$$A \rightarrow BA_1 \mid 00 \mid AB$$

$$B \rightarrow 00$$

$$A_1 \rightarrow AB \mid 00 \mid BA_1$$

Copied from the previous slide

$$S \to BA_1 \mid \varepsilon \mid 00 \mid AB$$

$$A \rightarrow BA_1 \mid 00 \mid AB$$

$$B \rightarrow 00$$

$$A_1 \rightarrow AB \mid A \mid 00$$

Remove $A_1 \rightarrow A$

$$S \rightarrow BA_1 \mid \varepsilon \mid 00 \mid AB$$

$$A \rightarrow BA_1 \mid 00 \mid AB$$

$$B \rightarrow 00$$

$$A_1 \rightarrow AB \mid 00 \mid BA_1$$

TERM: Add $Z \rightarrow 0$

Copied from the previous slide
$$S \rightarrow BA_1 \mid \varepsilon \mid 00 \mid AB$$
 $A \rightarrow BA_1 \mid 00 \mid AB$ $B \rightarrow 00$ $A_1 \rightarrow AB \mid A \mid 00$

Remove
$$A_1 \rightarrow A$$

$$S \rightarrow BA_1 \mid \varepsilon \mid 00 \mid AB$$

$$A \rightarrow BA_1 \mid 00 \mid AB$$

$$B \rightarrow 00$$

$$A_1 \rightarrow AB \mid 00 \mid BA_1$$

TERM: Add
$$Z \rightarrow 0$$

 $S \rightarrow BA_1 \mid \varepsilon \mid ZZ \mid AB$
 $A \rightarrow BA_1 \mid ZZ \mid AB$
 $B \rightarrow ZZ$
 $A_1 \rightarrow AB \mid ZZ \mid BA_1$
 $Z \rightarrow 0$

Caution

Sipser gives a different procedure

- START
- $\mathbf{2}$ DEL- ε
- UNIT
- 4 BIN
- **5** TERM

This procedure works but can lead to an exponential blow up in the number of rules!

In general, if DEL- ε comes before BIN, then |G'| is $O(2^{2|G|})$; if BIN comes before DEL- ε , then |G'| is $O(|G|^2)$

UNIT is responsible for the quadratic blow up

So use whichever procedure you'd like, but Sipser's can be very bad (Sipser's is bad if you have long rules with lots of variables with ε -rules)

Example blow up

$$A \rightarrow BCDEEDCB \mid CBEDDEBC$$

- $B \to 0 \mid \varepsilon$
- $C \rightarrow 1 \mid \varepsilon$
- $D \rightarrow 2 \mid \varepsilon$
- $E \rightarrow 3 \mid \varepsilon$

has five variables and 10 rules

Converting using START, BIN, DEL- ε , UNIT, TERM gives a CFG with 18 variables and 125 rules

Example blow up

$$A \rightarrow BCDEEDCB \mid CBEDDEBC$$

- $B \rightarrow 0 \mid \varepsilon$
- $C \rightarrow 1 \mid \varepsilon$
- $D \rightarrow 2 \mid \varepsilon$
- $E \rightarrow 3 \mid \varepsilon$

has five variables and 10 rules

Converting using START, BIN, DEL- ε , UNIT, TERM gives a CFG with 18 variables and 125 rules

Converting using START, DEL- ε , UNIT, BIN, TERM gives a CFG with 1394 variables and 1953 rules

Recall PREFIX(L) = { $w \mid \text{ for some } x \in \Sigma^*, wx \in L$ }

Theorem

The class of context-free languages is closed under PREFIX.

Recall Prefix(L) = { $w \mid \text{for some } x \in \Sigma^*, wx \in L$ }

Theorem

The class of context-free languages is closed under PREFIX.

Proof idea

Consider the language $\{w \# w^{\mathcal{R}} \mid w \in \{a, b\}^*\}$ generated by

$$T \rightarrow aTa \mid bTb \mid #$$

Recall Prefix(L) = { $w \mid \text{for some } x \in \Sigma^*, wx \in L$ }

Theorem

The class of context-free languages is closed under PREFIX.

Proof idea

Consider the language $\{w \# w^{\mathcal{R}} \mid w \in \{a, b\}^*\}$ generated by

 $T \rightarrow aTa \mid bTb \mid #$

Let's convert to CNF

Recall PREFIX(L) = { $w \mid \text{for some } x \in \Sigma^*, wx \in L$ }

Theorem

The class of context-free languages is closed under PREFIX.

Proof idea

Consider the language $\{w \# w^{\mathcal{R}} \mid w \in \{a, b\}^*\}$ generated by

$$T \rightarrow \mathtt{a} T \mathtt{a} \mid \mathtt{b} T \mathtt{b} \mid \mathtt{\#}$$

Let's convert to CNF

$$S \rightarrow AU \mid BV \mid \#$$

$$T \rightarrow AU \mid BV \mid \#$$

$$U \to TA$$

$$V \to TB$$

$$A \to a$$

$$B \rightarrow b$$

Derivation of ab#ba

The prefix ab# includes

- all terminals from subtrees with a blue root;
- some terminals from subtrees with a violet root;
- no terminals from subtrees with a red root

Desired derivation for the prefix

We would like a derivation like this

- $S \Rightarrow AU$
 - $\Rightarrow aU$
 - \Rightarrow aTA
 - $\Rightarrow aBVA$
 - \Rightarrow abVA
 - \Rightarrow abTBA
 - \Rightarrow ab#BA
 - \Rightarrow ab# εA
 - \Rightarrow ab# $\varepsilon\varepsilon$

Everything left of the violet path is produced Everything right of the violet path becomes ε The leaf connected to the violet path is produced

The proof idea

The violet path corresponds to the point where we "split" the prefix from the remainder of the string

We want to construct a CFG that keeps track of whether a given variable in the derivation is

- L left of the split,
- ${\cal S}\,$ part of the split, or
- R right of the split

We can construct a new CFG whose variables are $\langle A, L \rangle$, $\langle A, S \rangle$, or $\langle A, R \rangle$ where A is a variable in the original CFG

We have to deal with the three types of rules

- $S \to \varepsilon$
- $A \rightarrow BC$
- $A \rightarrow t$

and produce new rules corresponding to the variable on the LHS being left of, right of, or on the split

Proof

If $L = \emptyset$, then $PREFIX(L) = \emptyset$ which is CF.

Otherwise, let L be CF and generated by the CFG $G = (V, \Sigma, R, S)$ in CNF.

Construct a new CFG (not in CNF) $G' = (V', \Sigma, R', S')$ where

$$V = \{ \langle A, D \rangle \mid A \in V \text{ and } D \in \{L, S, R\} \}$$

$$S' = \langle S, S \rangle$$

Now we just need to specify R'. We'll start with $R' = \emptyset$ and add rules to it

Proof continued

Since L is nonempty, $\varepsilon \in \text{PREFIX}(L)$ so add the rule $\langle S, S \rangle \to \varepsilon$ to R'

For each rule of the form $A \to BC$ in R, add the following rules to R' $\langle A, L \rangle \to \langle B, L \rangle \langle C, L \rangle$ left of the split $\langle A, S \rangle \to \langle B, L \rangle \langle C, S \rangle \mid \langle B, S \rangle \langle C, R \rangle$ one of B or C is on the split $\langle A, R \rangle \to \langle B, R \rangle \langle C, R \rangle$ right of the split

For each rule of the form $A \to t$ in R, add the following rules to R' $\langle A, L \rangle \to t$ $\langle A, S \rangle \to t$ $\langle A, R \rangle \to \varepsilon$

Proof continued

For each $w=w_1w_2\cdots w_n\in L$, $S\overset{*}{\Rightarrow}A_1A_2\cdots A_n$ where $A_i\Rightarrow w_i$ By construction,

$$\langle S, S \rangle \stackrel{*}{\Rightarrow} \langle A_1, L \rangle \cdots \langle A_{i-1}, L \rangle \langle A_i, S \rangle \langle A_{i+1}, R \rangle \cdots \langle A_n, R \rangle$$

$$\stackrel{*}{\Rightarrow} w_1 w_2 \cdots w_i$$

for each $1 \le i \le n$

I.e., G' derives the prefix of every string in L

A similar argument works to show that if G^{\prime} derives a string then it's a prefix of some string in L

Applying the construction

Deriving ab# $\langle S, S \rangle \Rightarrow \langle A, L \rangle \langle U, S \rangle$ $\Rightarrow a\langle U, S \rangle$ $\Rightarrow a\langle T, S\rangle\langle A, R\rangle$ $\Rightarrow a\langle B, L\rangle\langle V, S\rangle\langle A, R\rangle$ $\Rightarrow ab\langle V, S \rangle \langle A, R \rangle$ \Rightarrow ab $\langle T, S \rangle \langle BA, R \rangle$ \Rightarrow ab# $\langle B, R \rangle \langle A, R \rangle$ \Rightarrow ab# $\langle A, R \rangle$ \Rightarrow ab#

Similarities with regular expression

Proving things about

- Regular languages. Assume there exists a regular expression that generates the language and consider the six cases
- Context-free languages. Assume there exists a CFG that generates the language and consider the three types of rules