$12a_{0330} (K12a_{0330})$

Ideals for irreducible components² of X_{par}

$$I_1^u = \langle u^{47} + u^{46} + \dots + 2u - 1 \rangle$$

* 1 irreducible components of $\dim_{\mathbb{C}} = 0$, with total 47 representations.

¹The image of knot diagram is generated by the software "**Draw programme**" developed by Andrew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modified some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).

² All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated in decimal forms when there is not enough margin.

I.
$$I_1^u = \langle u^{47} + u^{46} + \dots + 2u - 1 \rangle$$

(i) Arc colorings

$$a_{2} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} 1 \\ u^{2} \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} u \\ u^{3} + u \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} u^{2} + 1 \\ u^{2} \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} u^{4} + u^{2} + 1 \\ u^{4} \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} -u^{11} - 2u^{9} - 4u^{7} - 4u^{5} - 3u^{3} \\ -u^{11} - u^{9} - 2u^{7} - u^{5} + u^{3} + u \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} u^{12} + u^{10} + 3u^{8} + 2u^{6} + 2u^{4} + u^{2} + 1 \\ u^{14} + 2u^{12} + 5u^{10} + 6u^{8} + 6u^{6} + 4u^{4} + u^{2} \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} u^{21} + 2u^{19} + \dots + 4u^{3} + u \\ u^{23} + 3u^{21} + \dots + 2u^{3} + u \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} u^{30} + 3u^{28} + \dots + 2u^{2} + 1 \\ u^{32} + 4u^{30} + \dots + 8u^{4} + 2u^{2} \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} u^{39} + 4u^{37} + \dots + 8u^{3} + 2u \\ u^{41} + 5u^{39} + \dots + 4u^{3} + u \end{pmatrix}$$

- (ii) Obstruction class = -1
- (iii) Cusp Shapes = $-4u^{46} 20u^{44} + \cdots + 20u 14$

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1, c_5, c_7	$u^{47} + 11u^{46} + \dots + 16u^2 - 1$
c_2, c_6	$u^{47} - u^{46} + \dots + 2u + 1$
<i>c</i> ₃	$u^{47} - u^{46} + \dots - 6060u + 3361$
c_4, c_{10}	$u^{47} - u^{46} + \dots + 2u + 1$
c_8, c_9, c_{11} c_{12}	$u^{47} + 9u^{46} + \dots + 4u^2 + 1$

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
c_1, c_5, c_7	$y^{47} + 51y^{46} + \dots + 32y - 1$
c_2, c_6	$y^{47} + 11y^{46} + \dots + 16y^2 - 1$
c_3	$y^{47} + 31y^{46} + \dots + 5775512y - 11296321$
c_4, c_{10}	$y^{47} - 9y^{46} + \dots - 4y^2 - 1$
c_8, c_9, c_{11} c_{12}	$y^{47} + 59y^{46} + \dots - 8y - 1$

(vi) Complex Volumes and Cusp Shapes

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.382879 + 0.913206I	-0.08570 + 6.28148I	-8.16298 - 10.47100I
u = 0.382879 - 0.913206I	-0.08570 - 6.28148I	-8.16298 + 10.47100I
u = 0.008475 + 0.965301I	6.38651 - 3.25280I	-8.46380 + 2.37401I
u = 0.008475 - 0.965301I	6.38651 + 3.25280I	-8.46380 - 2.37401I
u = -0.413985 + 0.853429I	0.89586 - 2.03383I	-4.23793 + 3.81818I
u = -0.413985 - 0.853429I	0.89586 + 2.03383I	-4.23793 - 3.81818I
u = -0.456667 + 0.956333I	9.00501 - 2.08590I	-4.31423 + 3.31096I
u = -0.456667 - 0.956333I	9.00501 + 2.08590I	-4.31423 - 3.31096I
u = 0.446885 + 0.962913I	8.85349 + 8.66849I	-4.72563 - 8.03831I
u = 0.446885 - 0.962913I	8.85349 - 8.66849I	-4.72563 + 8.03831I
u = 0.276872 + 0.873166I	-3.20238 + 2.30452I	-16.3116 - 5.9470I
u = 0.276872 - 0.873166I	-3.20238 - 2.30452I	-16.3116 + 5.9470I
u = 0.112869 + 0.850703I	-1.52782 - 1.56803I	-12.46880 + 3.57703I
u = 0.112869 - 0.850703I	-1.52782 + 1.56803I	-12.46880 - 3.57703I
u = -0.820103 + 0.872946I	3.33252 - 0.63798I	-8.00000 - 1.61055I
u = -0.820103 - 0.872946I	3.33252 + 0.63798I	-8.00000 + 1.61055I
u = -0.866477 + 0.852451I	7.76984 + 3.47355I	-2.51866 - 3.95961I
u = -0.866477 - 0.852451I	7.76984 - 3.47355I	-2.51866 + 3.95961I
u = -0.808162 + 0.922528I	3.18030 - 5.45437I	-8.00000 + 6.66748I
u = -0.808162 - 0.922528I	3.18030 + 5.45437I	-8.00000 - 6.66748I
u = -0.680659 + 0.361501I	10.90210 - 2.07362I	0.04088 + 2.30391I
u = -0.680659 - 0.361501I	10.90210 + 2.07362I	0.04088 - 2.30391I
u = 0.867742 + 0.871991I	8.77828 + 1.40174I	0 2.33106I
u = 0.867742 - 0.871991I	8.77828 - 1.40174I	0. + 2.33106I
u = 0.835618 + 0.904887I	6.11156 + 3.11267I	0 2.66928I
u = 0.835618 - 0.904887I	6.11156 - 3.11267I	0. + 2.66928I
u = 0.681301 + 0.344571I	10.82780 - 4.54766I	-0.10220 + 2.48977I
u = 0.681301 - 0.344571I	10.82780 + 4.54766I	-0.10220 - 2.48977I
u = -0.284938 + 0.707717I	-0.343803 - 1.199580I	-4.23003 + 5.53729I
u = -0.284938 - 0.707717I	-0.343803 + 1.199580I	-4.23003 - 5.53729I

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.900013 + 0.851367I	17.6045 + 6.0118I	0 2.53476I
u = -0.900013 - 0.851367I	17.6045 - 6.0118I	0. + 2.53476I
u = 0.900037 + 0.855771I	17.8006 + 0.6918I	02.07521I
u = 0.900037 - 0.855771I	17.8006 - 0.6918I	0. + 2.07521I
u = 0.838574 + 0.946010I	8.54527 + 4.93007I	0
u = 0.838574 - 0.946010I	8.54527 - 4.93007I	0
u = -0.826944 + 0.956994I	7.44238 - 9.76256I	0. + 8.96106I
u = -0.826944 - 0.956994I	7.44238 + 9.76256I	0 8.96106I
u = -0.844018 + 0.977145I	17.2039 - 12.4586I	-8.00000 + 7.31264I
u = -0.844018 - 0.977145I	17.2039 + 12.4586I	-8.00000 - 7.31264I
u = 0.846803 + 0.974825I	17.4212 + 5.7646I	0
u = 0.846803 - 0.974825I	17.4212 - 5.7646I	0
u = -0.522799 + 0.418058I	2.21181 - 1.52903I	-0.12044 + 3.94143I
u = -0.522799 - 0.418058I	2.21181 + 1.52903I	-0.12044 - 3.94143I
u = 0.542166 + 0.291549I	1.78563 - 2.82233I	-1.69698 + 4.51706I
u = 0.542166 - 0.291549I	1.78563 + 2.82233I	-1.69698 - 4.51706I
u = 0.369088	-1.03563	-9.31600

II. u-Polynomials

Crossings	u-Polynomials at each crossing
c_1,c_5,c_7	$u^{47} + 11u^{46} + \dots + 16u^2 - 1$
c_2,c_6	$u^{47} - u^{46} + \dots + 2u + 1$
<i>c</i> 3	$u^{47} - u^{46} + \dots - 6060u + 3361$
c_4, c_{10}	$u^{47} - u^{46} + \dots + 2u + 1$
c_8, c_9, c_{11} c_{12}	$u^{47} + 9u^{46} + \dots + 4u^2 + 1$

III. Riley Polynomials

Crossings	Riley Polynomials at each crossing
c_1, c_5, c_7	$y^{47} + 51y^{46} + \dots + 32y - 1$
c_2, c_6	$y^{47} + 11y^{46} + \dots + 16y^2 - 1$
<i>C</i> ₃	$y^{47} + 31y^{46} + \dots + 5775512y - 11296321$
c_4, c_{10}	$y^{47} - 9y^{46} + \dots - 4y^2 - 1$
c_8, c_9, c_{11} c_{12}	$y^{47} + 59y^{46} + \dots - 8y - 1$