MA2202: Probability I

Random vectors

Spring 2021

Satvik Saha 19MS154

Indian Institute of Science Education and Research, Kolkata, Mohanpur, West Bengal, 741246, India.

Definition 4.1 (Random vector). A random vector $X : \Omega \to \mathbb{R}^n$ is a tuple of random variables $X_i : \Omega \to \mathbb{R}$.

Definition 4.2 (Joint cumulative distribution function). The joint cumulative distribution function of a random vector X is the map $F_X : \mathbb{R}^n \to [0,1]$, given as

$$F_{\boldsymbol{X}}(\boldsymbol{s}) = P(X_1 \leq s_1, \dots, X_n \leq s_n).$$

Definition 4.3 (Joint probability mass function). If X_i are discrete random variables, their joint probability mass function is the map $p_X : \mathbb{R}^n \to [0,1]$,

$$p_{\mathbf{X}}(\mathbf{s}) = P(X_1 = s_1, \dots, X_n = s_n).$$

Definition 4.4 (Joint probability density function). Suppose that

$$F_{\boldsymbol{X}}(\boldsymbol{s}) = \int_{-\infty}^{s_n} \cdots \int_{-\infty}^{s_1} f_{\boldsymbol{X}}(t_1, \dots, t_n) dt_1 \dots dt_n,$$

then $f_X : \mathbb{R}^n \to [0, 1]$ is the probability density function corresponding to the joint cumulative distribution function F_X .

Remark. If $f_{\mathbf{X}}$ is continuous, then

$$f_{\mathbf{X}} = \frac{\partial F_{\mathbf{X}}(t_1, \dots, t_n)}{\partial t_1 \dots \partial t_n}.$$

Definition 4.5 (Joint moment generating function). Let X be a random vector. Then, its joint moment generating function is defined as

$$M_{\boldsymbol{X}}(\boldsymbol{t}) = E\left[e^{\boldsymbol{t}^{\top}\boldsymbol{X}}\right] = E\left[e^{t_1X_1 + \dots + t_nX_n}\right].$$

Remark. If X_1, \ldots, X_n are independent, then

$$M_{\mathbf{X}}(\mathbf{t}) = \prod M_{X_i}(t_i).$$

Theorem 4.1. If X and Y are independent continuous random variables, then the probability density function of their sum is the convolution $f_{X+Y} = f_X * f_Y$,

$$f_{X+Y}(x) = \int_{\mathbb{R}} f_X(x-t) f_Y(t) dt.$$

Example. When X and Y are identical and uniform on [0,1], then

$$f_{X+Y}(x) = \int_0^1 f(x-t) dt = \begin{cases} x, & \text{if } a \in [0,1], \\ 2-x, & \text{if } a \in [1,2], \\ 0, & \text{otherwise}. \end{cases}$$

Also,

$$M_{X+Y}(t) = (M(t))^2 = \frac{1}{t^2}(e^t - 1)^2.$$

Definition 4.6 (Conditional distribution). Let X and Y be two discrete random variables. We write

$$P(X = s | Y = t) = \frac{P(X = s, Y = t)}{P(Y = t)}$$

for P(Y = t) > 0. We also have

$$P(X \le s \mid Y = t) = \sum_{r \le s} P(X = r \mid Y = t).$$