10 класс 12-летней школы.

Задача 1. Плавкий предохранитель.

Необходимо определить какая из проволок быстрее достигнет температуры плавления. При последовательном соединении сила тока через все проволоки одинакова. Время, необходимое для достижения температуры плавления, рассчитывается с помощью цепочки очевидных формул:

$$\tau = \frac{cmt_{nn}}{I^2R} = \frac{c\gamma lSt_{nn}}{I^2\rho \frac{l}{S}} = \frac{S^2}{I^2l} \frac{c\gamma t_{nn}}{\rho}.$$
 (1)

Первый сомножитель одинаков для всех проволок, поэтому время до начала плавления меньше у той из проволок, для которой второй сомножитель меньше. Расчет этого значения для всех проволок дает

$$\left(\frac{c\gamma t_{nn}}{\rho}\right)_{AI} = 5,60 \cdot 10^{16}; \quad \left(\frac{c\gamma t_{nn}}{\rho}\right)_{Cu} = 2,15 \cdot 10^{17}; \quad \left(\frac{c\gamma t_{nn}}{\rho}\right)_{Fe} = 5,62 \cdot 10^{16};$$

Следовательно, первой перегорит алюминиевая проволока.

При параллельном соединении постоянно напряжение, поэтому в этом случае время до начала плавления рассчитывается по формулам

$$\tau = \frac{cmt_{nn}R}{U^2} = \frac{c\gamma lSt_{nn}\rho \frac{l}{S}}{U^2} = \frac{l^2}{U^2}c\gamma t_{nn}\rho.$$
 (2)

Расчет вариативного параметра в этом случае дает

$$(c\gamma t_{nn}\rho)_{Al} = 43.9; \quad (c\gamma t_{nn}\rho)_{Cu} = 62.3; \quad (c\gamma t_{nn}\rho)_{Fe} = 540;$$

В этом случае также быстрее перегорит алюминиевая проволока.

Задача 2. «Баскетбол»

1. Закон движения мячика имеет вид

$$x = V_x t$$

$$y = V_y t - \frac{gt^2}{2}$$
(1)

- 2. Чтобы мячик попал в корзину, необходимо, чтобы находясь на высоте $h = h_2 h_1$, его координата x лежала в диапазонах
- а) прямым броском [l-2r, l];
- б) отразившись от стены [l, l+2r].

Из закона движения определяем координату x, когда y = h.

$$V_{y}t - \frac{gt^{2}}{2} = h \quad \Rightarrow \quad t = \frac{V_{y} + \sqrt{V_{y}^{2} - 2gh}}{g}$$
 (2)

Выбранный знак соответствует спадающей ветви траектории.

Для того, в этот момент координата x равна

$$x = V_{x}t = V_{x} \frac{V_{y} + \sqrt{V_{y}^{2} - 2gh}}{g}.$$
 (3)

Отсюда определяем требуемое значение горизонтальной проекции скорости

$$V_{x} = \frac{gx}{V_{y} + \sqrt{V_{y}^{2} - 2gh}},$$
(4)

Подставляя границы диапазонов x можем рассчитать границы диапазонов нужной проекции скорости. Вычисления легко провести с помощью калькулятора. Полученные диапазоны наносятся на диаграмму.

1- мячик попадает передний край дужки; 2- мячик попадает в точку крепления; 3 – мячик попадает в дужку, отразившись от стенки.

Проводя дугу окружности, так чтобы она касалась кривой 1, получим минимальную скорость $V_{\min} \approx 7.5 \frac{M}{c}$.

Проводя дугу, так чтобы она касалась кривой 3, получаем значение скорости, при котором диапазон углов попадания максимален $V_{onm.} \approx 7.9 \frac{M}{c}$. Диапазон углов также определяем по графику (в пределах дуги AB) По графику определяем значения предельных углов: $39^{\circ} \div 62^{\circ}$.