Name: Phuc Nguyen Mat. No.: 1725693

Seminar Literature Current Motivation Algorithms Review

Implementation

of Tabu Search

Agenda

The Model of

Tabu Search

1. Seminar Motivation

Product Line Design: theory refresh from class

Product Line Design: an attempt to answer **simultaneously** the three questions below so that an objective (i.e., profit or market share) is achieved.

Difficult problem: due to (1) a **large** search space (i.e., NP-complete) and (2) a multimodal objective function (i.e., nonconvex & non-linear).

How many different products to offer?

How to differentiate products along their key features?

Maximize total product line profit

How to price them?

Searching is difficult in multimodal functions

We are searching for ways to perform relatively accurate search in economical time

- Managerial implication faster product launch and lower chance of product failure
- **Effective search** approach for the (near) global optimum
- **Improvement** to traditional algorithms

2. Literature Review

Methodology involves the search in various databases

Problem:

Heuristic approaches take root in **different fields**

Different databases required different access

=> Research papers are **scattered** and might be **unaccessible**

Solution:

Scan the abstract for relevancy and expand the search into the field of computer science and artificial intelligence for background knowledge in heuristics

Narrow down which of the articles to focus on (i.e., implemented heuristics in PLD)

Recent implementation of 5 modern heuristics enriched the literature on PLD

Considering

Design Variables

Discrete and Continuous

Both

Modern algorithms outperform tradititional algorithms in accuracy and time

Relatively few research papers (i.e., 5)

- Breath over depth
- Similar problem addressed
- Basis for future research

Modern versus traditional heuristics

- General outperformance
- Adaptability to complex problems
- Possibility to combine heuristics

3. Current Algorithms

Modern algorithms do have advantages and drawbacks

No.	HEURISTICS	ADVANTAGES	DISADVANTAGES
1	Firefly Algorithm (FA)	-Better performance (*)	-Subject to parameter settings
		-Automatic identification of optima	-Potential subperformance
		-Savings on computational cost	
2	Particle Swarm Optimization (PSO)	-Better performance	-Subject to parameter settings
		-High diversity of good solutions	-Higher requirement for computation power
			-Potential subperformance
3	Clonal Selection Algorithm (CSA)	-Speed performance	-Subject to parameter settings
			-Potential subperformance
4	Tabu Search (TS)	-Superior performance on speed and accuracy	-Subject to parameter settings
		-Implementation Simplicity	
5	Differential Evolution (DE)	-Accuracy performance	-Subject to parameter settings

4. The Model of Tabu Search

Tabu Search is a simple memory-based algorithm yet is considerably effective

Distinctive feature

- Tabu List
- Certain moves are forbidden
- Allowance for further exploration

Learning possibilities

- Guided path versus random move
- Adaptive tabu list
- Freedom in parameter settings

Source: Hao/Wu/Boriboonsomsin/Barth (2017, p. 486ff)

Search occurs in the solution space with ease

Because tabu moves (optima) are memorized, further exploration allowed. Thus, we can say which optima is the global optimum.

5. Implementation of Tabu Search

Tabu Search is implemented to solve...

- The **PLD problem** from OPM 682 lecture on 5 14 2021
- The optimal **1-product line** instead of 7-product line
- Choice of environment: **Microsoft Excel**
- **Brute force** search for solution **verification**

$$Max. \sum_{i \in I} \sum_{j \in J} \sum_{s \in P_i} \omega_i (p_{js} - c_{ij}) \pi_{ijs}$$
 (1)

Subject to

$$\pi_{ijs} = \frac{A_{ijs} \chi_{js}}{C_i + \sum_{n \in I} \sum_{c \in P} A_{ins} \chi_{ins}} (i \in I, j \in J, s \in P_j)$$
(2)

$$\sum_{s \in P_i} x_{js} \le 1 \ (j \in J) \tag{3}$$

$$x_j \in \{0,1\} \left(j \in J, s \in P_j \right) \tag{4}$$

Implementation is a 5-step procedure

SOLUTION GENERATION

GENERATION OF ADJACENT SOLUTIONS COLLECTION OF THE BEST SOLUTION

REPETITION OF STEP 1 – 3

SOLUTION GATHERING

 Generate a random move into the solution space

- Generate 10 neighboring solutions to the randomly generated solution (*).
- Identify the best solution out of the ten solutions and put it in the tabu list (*).
- Repeat Step 1 to Step 3. The iteration process is capped at 10 iterations.
- Return the highest solution in all 10 iterations.

Excel Visualization of Step 1 – 3

	Detachable		Pı	Processor		Display Siz		ize	N	Memory			P	rice		Product	Utili	ities	Choice Pr	obabilities	Unit	Unit	Profit by	Segment	Total	Tabu List
Attribute Group	yes	no	i3	i5	i7	S	М	L	16	32	64	1000	1500	2000	2500	ID	Segment 1	Segment 2	Segment 1	Segment 2	Price	Cost	Segment 1	Segment 2	Profit	Check
Random move:	0	1	1	0	0	0	1	0	0	0	1	. 0	(0 0	1	17478										
1st Search:																										
Detachable	1	0	1	0	0	0	1	0	0	0	1	0	(0 0	1	17477	7.5	7	13.04%	6.54%	2500	580	\$ 250,435	\$ 200,972	\$ 451,407	
Processor	0	1	0	1	0	0	1	0	0	0	1	0	(0 0	1	17482	8.5	6.4	14.53%	6.02%	2500	480	\$ 293,504	\$ 194,406	\$ 487,910	
Processor	0	1	0	0	1	0	1	0	0	0	1	. 0	(0 0	1	17490	11	7	18.03%	6.54%	2500	580	\$ 346,230	\$ 200,972	\$ 547,201	
Display Size	0	1	1	0	0	1	0	0	0	0	1	. 0	(0 0	1	17446	4.5	2.5	8.26%	2.44%	2500	330	\$ 179,174	\$ 84,683	\$ 263,857	
Display Size	0	1	1	0	0	0	0	1	0	0	1	. 0	(0 0	1	17542	5.3	5	9.58%	4.76%	2500	430	\$ 198,391	\$ 157,714	\$ 356,105	
Memory	0	1	1	0	0	0	1	0	1	0	0	0	(0 0	1	16710	2	1.5	3.85%	1.48%	2500	300	\$ 84,615	\$ 52,020	\$ 136,635	
Memory	0	1	1	0	0	0	1	0	0	1	0	0	(0 0	1	16966	4	3.5	7.41%	3.38%	2500	340	\$ 160,000	\$ 116,870	\$ 276,870	
Price	0	1	1	0	0	0	1	0	0	0	1	1	(0 0	0	3142	10.5	9	17.36%	8.26%	1000	380	\$ 107,603	\$ 81,908	\$ 189,512	
Price	0	1	1	0	0	0	1	0	0	0	1	. 0	() 1	. 0	9286	7.5	5	13.04%	4.76%	2000	380	\$ 211,304	\$ 123,429	\$ 334,733	
Price	0	1	1	0	0	0	1	0	0	0	1	. 0		1 0	0	5190	8.5	7	14.53%	6.54%	1500	380	\$ 162,735	\$ 117,234	\$ 279,969	
Max Profit/																			-			•		•		
1st Tahu:	0	1	0	0	1	0	1	0	0	0	1	0) (1	17490									\$ 547 201	1

- **Unique** neighboring solutions (per attribute)
- **10 searches** per run, **5 runs** in total
- Coverage of **2.1x** the total number of possible product-price alternatives (at worst)
- Coverage of **2.3x** the total number of possible product-price alternatives (at best)

Excel Visualization of the Tabu List

	Tabu List																
	Detac	hable		Processor		[Display Size	2		Memory			Pri	Product	Product		
Tabu No.	yes	no	i3	i5	i7	S	M	L	16	32	64	1000	1500	2000	2500	ID	No.
1	0	1	0	0	1	0	1	0	0	0	1	0	0	0	1	17490	204
2	0	1	0	0	1	0	0	1	0	0	1	0	0	0	1	17554	216
3	0	1	0	1	0	0	0	1	0	0	1	0	0	0	1	17546	180
4	0	1	0	0	1	0	0	1	0	1	0	0	0	0	1	17042	212
5	1	0	0	0	1	0	0	1	1	0	0	0	0	0	1	16785	100
6	0	1	1	0	0	0	0	1	0	0	1	1	0	0	0	3206	141
7	0	1	0	1	0	0	0	1	0	1	0	0	0	0	1	17034	176
8	0	1	0	0	1	1	0	0	0	1	0	0	0	0	1	16946	188
9	1	0	0	1	0	0	0	1	0	0	1	0	0	0	1	17545	72
10	0	1	1	0	0	0	1	0	0	0	1	0	0	0	1	17478	132

- Control mechanism of forbidden moves
- 10 optima, including the (near) global optimum

Identification of Tabu Moves in Subsequent Searches

1																											
	Detachable Proce		Processor		Di	Display Size		ABT	Memory				Pric	ce		Product	ι Uti/	ilities	Choice Pr	robabilities	Unit	Unit	Profit by	y Segment	Total	Tabu List	
Attribute Group	yes	no	i3	i5	i7	S	М	L	L 16	6 32	32 64	4ذ	1000	1500	2000	2500) ID	Segment 1	Segment 2	Segment 1	1 Segment 2	Price	Cost	Segment 1	Segment 2	Profit	Check
Random move:	ſ	0 1	. 0	1	. 0) C	^ر	1	0	0	0	1	0	0	r	J 1	1 17482	2									
8th Search:																											
Detachable		٥ ر	0	1	. 0) (1 ا	1	0	0	0	1	0	0	C	J 1	1 17481	1 9.5	5 9.4	4 15.97%	8.59%	2500	680	\$ 290,588	\$ 250,208	\$ 540,797	17481
Processor	C	0 1	. 1	0	<i>)</i> 0) נ	1 ا	1	0	0	0	1	0	0	C	J 1	1 17478	8 6.5	, Δ	4 11.50%	3.85%	2500	380	\$ 243,894	\$ 130,462	\$ 374,355	No
Processor		0 1	L O	0	<u>,</u> 1'	ر ر	^ر	1	0	0	0	1	ol	0		1	1 17490	0 11	. 7	7 18.03%	6.54%	2500	580	\$ 346,230	\$ 200,972	\$ 547,201	17490
Display Size	C	0 1	L O	1	. 0	1 ا	₁ r	0	0	0	0	1	0	0	C	1 ر	1 17450	0 6.5	5 4.9	9 11.50%	4.67%	2500	430	\$ 238,142	\$ 154,707	\$ 392,849	No
Display Size	C	0 1	L 0	1	. 0	י) ר	rر	0	1	0	0	1	0	0		11	1 17546	6 7.3	7.4	4 12.74%	6.89%	2500	530	\$ 250,977	\$ 217,177	\$ 468,154	No
Memory	0	J 1	L 0	1	. 0	י) ר	₁ ار	1	0	1	0	0	0	0	0	J 1	1 16714	4 4	4 3.9	9 7.41%	6 3.75%	2500	400	\$ 155,556	\$ 126,121	\$ 281,677	No
Memory	C	J 1	. 0	1	. 0	ر ر	^ر	1	0	0	1	0	0	0		1	1 16970	6 کا	5.9	9 10.71%	5.57%	2500	440	\$ 220,714	\$ 183,630	\$ 404,344	No
Price	C	0 1	L O	1	. 0) (^ ا	1	0	0	0	1	1	0		ى ر	0 3146	6 12.5	5 11.4	4 20.00%	6 10.23%	1000	480	\$ 104,000	\$ 85,142	\$ 189,142	No
Price	C	ر 1	L O	1	. 0	ی ر	^ر	1	0	0	0	1	0	0	1	T C	0 9290	9.5	7.4	4 15.97%	6.89%	2000	480	\$ 242,689	\$ 167,568	\$ 410,257	No
Price	C	0 1	. 0	1	. 0	ی ر	^ر	1	0	0	0	1	0	1 1		ר כ	0 5194	4 10.5	9.4	4 17.36%	8.59%	1500	480	\$ 177,025	\$ 140,227	\$ 317,251	No
Max Profit:																	,										
8th Tahu:	1	0 1	1 0	n 0	1 1	ı r	١	1	0	0	n	1	٥	1 0	n	ء اه	1 17/190	al							,	\$ 547 201	<i>i</i> '

- Only check forbidden moves of **previous** searches
- **Limitation** of Excel in generating **unique** random values in **dynamic arrays**

Impressive results are recorded under Tabu Search

Brute Force Search Optimal Solution	
Product ID:	17489
Profit:	\$583,085

	Tabu Search										
	Run 1	Run 2	Run 3	Run 4	Run 5						
Average Profit:	\$400,398	\$470,265	\$389,662	\$389,662	\$399,314						
Highest Profit:	\$583,085	\$583,085	\$583,085	\$583,085	\$528,084						
% Highest Profit to Optimal Solution:	100%	100%	100%	100%	91%						
Position of Highest Profit Product:	6	7	2	1	7						
Product ID of Highest Profit Product:	17489	17489	17489	17489	17554						

Appendix C: Result comparison between brute force search and tabu search

- Global optimal solution is identified
- General **high fitness** to the optimal solution
- Ability to **getting past local minima**

Implementation is not without drawback

- Implementation of an automatic tabu list checking process was not possible
- Excel can't link the ever changing values
- Excel does not allow for exclusion of a dynamic array
- Small problem

The End

Thank you for listening!

The End

Special thanks to Oliver Vetter for valuable guidance and feedback!

Q&A

Q1 Can we generalize the result from Tabu Search?

Q2 How much reliable is the result from Tabu Search?

03 What are the applications of Tabu Search?

