Práctica 2: Búsquedas con trayectorias múltiples

Antonio Álvarez Caballero 15457968-J 5º Doble Grado Ingeniería Informática y Matemáticas Grupo de prácticas del Viernes 17:30-19:30 analca3@correo.ugr.es

15 de abril de 2016

Índice

1.	Descripción del problema	2
2.	Descripción de aplicación de los algoritmos al problema	2
3.	Descripción de la estructura del método de búsqueda	2
4.	Descripción del algoritmo de comparación	5
5.	Desarrollo de la práctica	5
6.	Experimentos	6
7.	Referencias	8

1. Descripción del problema

El problema a resolver es el problema de Selección de características. En el ámbito de la Ciencia de Datos, la cantidad de datos a evaluar para obtener buenos resultados es excesivamente grande. Esto nos lleva a la siguiente cuestión: ¿Son todos ellos realmente importantes? ¿Podemos establecer dependencias para eliminar los que no nos aportan información relevante? La respuesta es que sí: en muchas ocasiones, no todos los datos son importantes, o no lo son demasiado. Por ello, se intentará filtrar las características relevantes de un conjunto de datos.

La selección de características tiene varias ventajas: se reduce la complejidad del problema, disminuyendo el tiempo de ejecución. También se aumenta la capacidad de generalización puesto que tenemos menos variables que tener en cuenta, además de conseguir resultados más simples y fáciles de entender e interpretar.

Para conseguir este propósito se deben usar técnicas probabilísticas, ya que es un problema *NP-hard*. Una técnica exhaustiva sería totalmente inviable para cualquier caso de búsqueda medianamente grande. Usaremos metaheurísticas para resolver este problema, aunque también podríamos intentar resolverlo utilizando estadísticos (correlación entre características, medidas de separabilidad o basadas en teoría de información o consistencia, etc).

2. Descripción de aplicación de los algoritmos al problema

Los elementos comunes de los algoritmos son:

■ Representación de las soluciones: Se representan las soluciones como vectores 1-dimensionales binarios (los llamaremos *bits* para poder hacer uso de términos como *darle la vuelta a un bit*):

$$s = (x_1, x_2, \dots, x_{n-1}, x_n); \ x_i \in \{True, False\} \ \forall i \in \{1, 2, \dots, n\}$$

• Función objetivo: La función a maximizar es la tasa de clasificación de los datos de entrada:

$$tasa_clas = 100 \cdot \frac{instancias\ bien\ clasificadas}{instancias\ totales}$$

 Generación de vecino: La función generadora de vecinos es bien simple. Se toma una solución y se le da la vuelta a uno de sus bits, el cual se escoge aleatoriamente.

```
Tomar una solución
indice = generarAleatorio(0, numero_caracteristicas)
caracteristicas[indice] = not caracteristicas[indice]
```

3. Descripción de la estructura del método de búsqueda

Veamos los esquemas de cada algoritmo en pseudocódigo:

Búsqueda Multiarranque Básica:

```
mejor_solucion = [False,False,...,False]
mejor_tasa = 0
numero_busquedas = 25
```

Desde 1 hasta numero_busquedas

```
caracteristicas_seleccionadas, tasa = LS(datos_entrenamiento,
                    etiquetas_entrenamiento, clasificador)
                Si tasa > mejor_tasa:
                    mejor_tasa = tasa
                    mejor_solucion = caracteristicas_seleccionadas
            return mejor_solucion, mejor_tasa
• GRASP:
          mejor_solucion = [False,False,...,False]
          mejor_tasa = 0
          numero_busquedas = 25
          Desde 1 hasta numero_busquedas
              caracteristicas_seleccionadas, tasa = SFSrandom(datos_entrenamiento,
                  etiquetas_entrenamiento, clasificador)
              caracteristicas_seleccionadas, tasa = LS(datos_entrenamiento,
                  etiquetas_entrenamiento, clasificador, caracteristicas_seleccionadas)
              Si tasa > mejor_tasa:
                  mejor_tasa = tasa
                  mejor_solucion = caracteristicas_seleccionadas
          return mejor_solucion, mejor_tasa
■ Iterated Local Search:
          solucion_inicial = solucionAleatoria()
          mejor_solucion = solucion_inicial
          num_searchs = 25
          mejor_tasa = 0
          caracteristicas_seleccionadas, _ = LS(datos_entrenamiento,
              etiquetas_entrenamiento, clasificador, solucion_inicial)
          Desde 1 hasta numero_busquedas-1
              nuevas_caracteristicas, nueva_tasa = LS(datos_entrenamiento,
                  etiquetas_entrenamiento, clasificador,
                   mutacion(caracteristicas_seleccionadas))
              Si nueva_tasa > mejor_tasa:
                  mejor_tasa = nueva_tasa
                  mejor_solucion = nuevas_caracteristicas
          return mejor_solucion, mejor_tasa
```

Para el GRASP se ha tenido que implementar una versión aleatorizada del SFS, la cual mostramos aquí:

```
caracteristicas_seleccionadas = [False,False,...,False]
mejor_tasa_temporal = 0
peor tasa temporal = 0
mejor caracteristica = 0
mejor_tasa = 0
alpha = 0.3
Mientras mejor_caracteristica no sea None
    mejor_caracteristica = None
    caracteristicas_disponibles = Índices de caracteristicas de
      caracteristicas_seleccionadas que están a False
    tasas = [0,0,...,0]
    caracteristicas_restringidas = ListaVacía
    ### Enumeración devuelve las características con su índice en el vector
    Para idx,data_idx en enumeración(caracteristicas_disponibles)
        caracteristicas_seleccionadas[data_idx] = True
        tasas[idx] = clasificador.tasarSolucion(caracteristicas_seleccionadas)
        caracteristicas_seleccionadas[data_idx] = False
        Si tasas[idx] > mejor_tasa_temporal
            mejor_tasa_temporal = tasas[idx]
        Si no tasas[idx] < peor_tasa_temporal
            peor_tasa_temporal = tasas[idx]
    Para idx,data_idx en enumeración(caracteristicas_disponibles)
        Si tasas[idx] > umbral
            caracteristicas_restringidas.añadir(data_idx)
    caracteristica_aleatoria = aleatorio de caracteristicas_restringidas
    caracteristicas_seleccionadas[caracteristica_aleatoria] = True
    tasa = clasificador.tasarSolucion(caracteristicas_seleccionadas)
    Si tasa > mejor_tasa
        mejor_tasa = tasa
        mejor_caracteristica = caracteristica_aleatoria
    En otro caso
        caracteristicas_seleccionadas[caracteristica_aleatoria] = False
return caracteristicas_seleccionadas, mejor_tasa
```

Para el ILS el operador de mutación es darle la vuelta al $10\,\%$ de los bits de la máscara. Se ha implementado así:

```
cambios = EnteroPorArriba(0.1 * longitud(caracteristicas))
mascara = repetir(True, cambios)
intactos = repetir(False, longitud(caracteristicas) - cambios)
mascara_completa = concatenar((mascara,intactos))
```

```
Shuffle(mascara_completa)
caracteristicas_mutadas = np.logical_xor(caracteristicas,mascara_completa)
return caracteristicas mutadas
```

4. Descripción del algoritmo de comparación

El algoritmo de comparación es un algoritmo greedy: el Sequential Forward Selection(SFS). La idea es muy simple: se parte del conjunto vacío de características (todos los bits a 0) y se recorren todas las características, evaluando la función de coste. La característica que más mejora ofrezca, se coje. Y se vuelve a empezar. Así hasta que ninguna de las características mejore el coste.

```
caracteristicas = (1,2,...,n)
caracteristicas_seleccionadas = (0,0,...,0,0)
fin = falso
mejor_caracteristica = 0

Mientras mejor_caracteristica != -1
    mejor_tasa = 0
    mejor_caracteristica = -1
Para cada característica
    tasa = coste(característica)
    Si tasa > mejor_tasa
        mejor_tasa = tasa
        mejor_caracteristica != -1
    caracteristicas_seleccionadas.añadir(mejor_caracteristica)
```

5. Desarrollo de la práctica

En primer lugar, comentar que las bases de datos han sido modificadas en su estructura (que no en sus datos) para que sean homogéneas. Así, se han puesto todas las clases como numéricas (en Wdbc no lo estaban) y se han colocado en la última columna.

La práctica se ha desarrollado usando el lenguage de programación Python, ya que su velocidad de desarrollo es bastante alta. Para intentar lidiar con la lentitud que puede suponer usar un lenguaje interpretado, utilizaremos las librerías NumPy, SciPy y Scikit-Learn, que tienen módulos implementados en C (sobre todo NumPy) y agilizan bastante los cálculos y el manejo de vectores grandes.

Usaremos alguna funcionalidad directa de estas bibliotecas:

- NumPy: Generación de números aleatorios y operaciones rápidas sobre vectores.
- SciPy: Lectura de ficheros ARFF de WEKA.
- Scikit-Learn: Particionamiento de los datos, tanto las particiones estratificadas de la validación cruzada 5x2 como las de Leave One Out para calcular la función de coste. También se ha tomado un clasificador KNN, ya que está implementado usando estructuras de datos complejas como Ball Tree y lo hace muy rápido.

Esta elección se ha hecho para poder preocuparme sólo y exclusivamente de la implementación de las metaheurísticas.

Los requisitos para ejecutar mis prácticas son *Python3* (importante que sea la 3), *NumPy*, *SciPy* y *Scikit-Learn*. En mi plataforma (Archlinux) están disponibles desde su gestor de paquetes.

Una vez instalados los paquetes, sólo hay que ejecutar la práctica diciéndole al programa los algoritmos que queremos ejecutar. La semilla aleatoria está fijada dentro del código como 12345678 para no inducir a errores. Veamos algunos ejemplos de llamadas a la práctica. Primero notamos que los algoritmos disponibles son:

- SFS: Ejecuta el algoritmo greedy SFS.
- -LS: Ejecuta la Local Search.
- SA: Ejecuta el Simulated Annealing.
- -TS: Ejecuta la Tabu Search.
- -TSext: Ejecuta la Tabu Search extendida.
- BMB: Ejecuta la Búsqueda Multiarranque Básica.
- -GRASP: Ejecuta el GRASP.
- ILS: Ejecuta la Iterated Local Search

```
$ python featureSelection.py -TS
```

Se ejecutará la Tabu Search. Pero no sólo se limita el programa a un algoritmo. Si le pasamos varios, los ejecutará en serie uno detrás de otro. Esto ha cambiado desde la práctica anterior por la entrada de CUDA, que hay que iniciarlo debidamente y no es tan sencillo de ejecutar cosas en paralelo.

```
$ python featureSelection.py -BMB -GRASP -ILS
```

Se ejecutarán en paralelo BMB, GRASP e ILS en serie.

Una vez ejecutado, irán saliendo por pantalla mensajes de este tipo, que proporcionan datos en tiempo real del estado de la ejecución:

```
INFO:__main__:W - TS - Time elapsed: 2265.526112794876.
Score: 98.2394337654. Score out: 95.0877192982 Selected features: 15
```

Este mensaje nos dice todo lo necesario: W es la base de datos (Wdbc), TS el algoritmo, el tiempo transcurrido para esta iteración (recordemos que hay 10), el score de entrenamiento, el score de validación y las características seleccionadas.

6. Experimentos

Como se ha comentado antes, la semilla está fija a 12345678 para no tener problemas de aleatoriedad. El número de evaluaciones máxima de todos los algoritmos es de 15000. Por lo demás, todos los demás parámetros propios de cada algoritmo están tal y como se explica en el guión ($\mu = 0.3$, los valores de vecinos máximos, soluciones máximas aceptadas, etc).

κ	N	N
11	l N	IN

		Wdbc			N	Iovement_Lil	oras	Arrhythmia				
	% clas in	% clas out	% red	Т	% clas in	% clas out	% red	Т	% clas in	% clas out	% red	Т
Partición 1-1	96.12676	96.84211	0.0	0.0	66.66667	65.0	0.0	0.0	62.5	66.49485	0.0	0.0
Partición 1-2	96.49123	96.83099	0.0	0.0	65.55556	80.55556	0.0	0.0	61.85567	62.5	0.0	0.0
Partición 2-1	96.12676	96.49123	0.0	0.0	68.88889	74.44444	0.0	0.0	64.0625	64.43299	0.0	0.0
Partición 2-2	95.78947	96.12676	0.0	0.0	75.55556	68.88889	0.0	0.0	61.34021	64.58333	0.0	0.0
Partición 3-1	96.47887	95.4386	0.0	0.0	75.55556	71.66667	0.0	0.0	63.02083	63.91753	0.0	0.0
Partición 3-2	96.84211	96.83099	0.0	0.0	68.88889	65.55556	0.0	0.0	62.37113	64.58333	0.0	0.0
Partición 4-1	97.53521	96.14035	0.0	0.0	66.66667	66.11111	0.0	0.0	65.625	64.43299	0.0	0.0
Partición 4-2	93.33333	97.88732	0.0	0.0	72.77778	72.77778	0.0	0.0	60.30928	64.58333	0.0	0.0
Partición 5-1	96.47887	96.84211	0.0	0.0	75.0	71.11111	0.0	0.0	65.625	65.97938	0.0	0.0
Partición 5-2	97.89474	95.42254	0.0	0.0	70.0	70.0	0.0	0.0	61.85567	63.54167	0.0	0.0
Media	96.30974	96.48530	0.0	0.0	70.55556	70.61111	0.0	0.0	62.85653	64.50494	0.0	0.0

SFS
Movement_Libras Wdbo Arrhythmia % clas in % clas in % clas in % clas out % red % clas out % clas out | % red % red Partición 1-1 97.53521 0.15793 72.22222 93.33333 0.50295 2.41429 92.2807 83.33333 66.66667 80.20833 70.61856 96.76259 0.12852 77.22222 Partición 1-2 96.84211 94.01408 86.66667 66.66667 87.77778 0.91927 73.19588 67.1875 97.48201 1.84876 95.42254 0.15797 79.16667 97.48201 Partición 2-1 91.22807 83.33333 84.44444 68.88889 85.55556 1.0978 69.58763 1.83412 Partición 2-2 97.5438692.6056386.66667 0.12911 77.77778 61.6666793.33333 0.4963774.226864.5833397.48201 1.88374 Partición 3-1 96.12676 92.98246 90.0 0.0998283.33333 71.66667 87.77778 0.92519 76.562568.5567 98.20144 1.30598 97.54386 72 22222 Partición 3-2 96.47887 86.66667 0.12927 60.0 93.33333 0.50101 71.64948 66.14583 98.20144 1.33008 70.55556 Partición 4-1 98.23944 96.49123 86.66667 0.12883 62.22222 91.11111 0.66223 76.04167 69.58763 97.84173 1.55438 97.1223 2.16781 97.48201 1.85395 Partición 4-2 94.73684 94.366290.0 0.10095 80.55556 65.55556 90.0 0.7493482.98969 73.95833 92.22222 Partición 5-1 94.71831 91.92982 90.0 0.09997 78.88889 66.11111 0.5786577.08333 68.04124 76.66667 76.66667 96.40288 2.75023 Partición 5-2 98.94737 93.66197 0.21516 66.66667 90.0 0.74815 82.98969 71.35417 77.38889 Media 96.76563 93.60390 86.00000 0.13475 65.61111 90.44444 0.71810 77.41140 68.96209 97.44604 1.89433

BMB

		Wdb	С			Movement	Libras		Arrhythmia				
	% clas in	% clas out	% red	Т	% clas in	% clas out	% red	Т	% clas in	% clas out	% red	Т	
Partición 1-1	98.23944	97.19298	26.66667	1.09317	73.33333	66.11111	47.77778	4.67327	70.83333	67.01031	44.96403	76.77209	
Partición 1-2	97.89474	94.71831	46.66667	1.1125	72.77778	76.11111	58.88889	4.2988	69.58763	62.5	47.84173	58.7279	
Partición 2-1	97.53521	96.49123	36.66667	1.12211	80.55556	63.33333	57.77778	4.23303	70.3125	63.91753	49.64029	71.94003	
Partición 2-2	97.89474	95.42254	43.33333	1.15543	74.44444	73.88889	47.77778	4.35542	70.61856	65.10417	46.76259	64.8806	
Partición 3-1	98.23944	97.19298	20.0	1.05712	83.33333	64.44444	45.55556	4.49277	73.4375	64.43299	51.07914	73.12431	
Partición 3-2	97.19298	95.77465	36.66667	1.11297	75.55556	74.44444	46.66667	4.18188	69.58763	66.14583	46.40288	51.61347	
Partición 4-1	97.88732	94.38596	30.0	1.00256	77.22222	70.0	45.55556	4.36173	72.39583	65.46392	50.0	64.6652	
Partición 4-2	98.24561	94.71831	46.66667	1.12321	76.11111	73.88889	50.0	4.23004	72.16495	63.02083	43.16547	58.72289	
Partición 5-1	98.23944	94.73684	43.33333	1.06779	75.55556	75.55556	43.33333	4.44234	69.79167	68.04124	49.28058	72.01491	
Partición 5-2	97.89474	96.12676	30.0	1.01396	77.77778	73.88889	36.66667	4.53782	71.64948	69.27083	48.56115	63.70405	
Media	97.92637	95.67606	36.00000	1.08608	76.66667	71.16667	48.00000	4.38071	71.03791	65.49077	47.76979	65.61655	

GRASP

		Wdb	С		Movement_Libras							
	% clas in	% clas out	% red	Т	% clas in	% clas out	% red	Т	% clas in	% clas out	% red	Т
Partición 1-1	98.94366	95.4386	73.33333	3.98865	79.44444	64.44444	77.77778	16.76893	83.85417	71.64948	90.28777	34.72313
Partición 1-2	98.24561	94.01408	63.33333	4.27796	80.0	75.0	83.33333	18.80953	79.38144	65.625	89.56835	35.53936
Partición 2-1	97.88732	95.4386	63.33333	3.50936	80.0	66.66667	83.33333	18.35082	84.89583	72.16495	92.80576	38.62313
Partición 2-2	97.89474	95.42254	63.33333	4.38636	78.33333	74.44444	84.44444	15.97769	80.41237	65.10417	90.28777	32.59107
Partición 3-1	97.88732	95.78947	60.0	3.92915	80.0	72.77778	82.22222	16.57817	82.8125	70.61856	93.88489	32.69675
Partición 3-2	98.94737	96.47887	66.66667	3.79875	80.55556	67.22222	84.44444	16.91686	82.98969	75.0	94.60432	38.04095
Partición 4-1	98.59155	97.19298	53.33333	4.41095	81.66667	70.0	80.0	17.73081	83.85417	78.86598	94.60432	32.34913
Partición 4-2	97.89474	90.84507	73.33333	3.79967	79.44444	72.77778	74.44444	18.55319	82.47423	70.83333	90.64748	39.76852
Partición 5-1	98.94366	94.38596	53.33333	4.36444	81.11111	71.11111	75.55556	18.24805	79.16667	70.10309	94.60432	28.78097
Partición 5-2	97.54386	97.53521	66.66667	4.04095	78.33333	72.77778	77.77778	17.80669	83.50515	75.0	93.88489	31.6475
Media	98.27798	95.25414	63.66667	4.05062	79.88889	70.72222	80.33333	17.57407	82.33462	71.49646	92.51799	34.47605

ILS

		Wdb	С			Movement	Libras		Arrhythmia				
	% clas in	% clas out	% red	Т	% clas in	% clas out	% red	Т	% clas in	% clas out	% red	T	
Partición 1-1	98.23944	95.08772	33.33333	0.77292	72.77778	67.22222	32.22222	3.94738	70.3125	66.49485	47.48201	65.84449	
Partición 1-2	98.24561	95.07042	26.66667	0.76103	73.88889	79.44444	30.0	3.87924	72.16495	64.58333	46.04317	53.80122	
Partición 2-1	98.59155	96.49123	26.66667	0.63845	74.44444	73.33333	33.33333	3.40064	71.35417	61.85567	44.2446	65.20772	
Partición 2-2	97.89474	94.71831	30.0	0.92644	78.88889	67.22222	31.11111	3.58569	72.16495	66.14583	39.20863	51.60524	
Partición 3-1	98.59155	95.78947	36.66667	0.83369	74.44444	71.66667	34.44444	3.53887	69.27083	62.8866	41.00719	67.1191	
Partición 3-2	97.19298	95.77465	20.0	0.79227	78.88889	72.77778	35.55556	3.43846	70.61856	63.54167	36.69065	45.98239	
Partición 4-1	97.53521	96.49123	36.66667	0.80104	79.44444	65.55556	32.22222	3.23774	72.91667	65.46392	45.68345	58.95593	
Partición 4-2	98.24561	95.42254	30.0	0.72032	77.22222	67.22222	36.66667	4.11545	69.07216	63.54167	47.48201	44.77526	
Partición 5-1	98.94366	95.4386	43.33333	1.03361	76.11111	65.55556	38.88889	3.96121	69.27083	62.37113	40.64748	65.60647	
Partición 5-2	98.24561	95.77465	26.66667	0.72109	73.88889	73.88889	24.44444	3.02972	73.71134	64.0625	43.52518	53.01683	
Media	98.17260	95.60588	31.00000	0.80009	76.00000	70.38889	32.88889	3.61344	71.08570	64.09472	43.20144	57.19147	

Media														
		Wdb	с			Movement	Libras		Arrhythmia					
	% clas in	% clas out	% red	Т	% clas in	% clas out	% red	Т	% clas in	% clas out	% red	Т		
KNN	96.30974	96.48530	0.0	0.0	70.55556	70.61111	0.0	0.0	62.85653	64.50494	0.0	0.0		
SFS	96.76563	93.60390	86.00000	0.13475	77.38889	65.61111	90.44444	0.71810	77.41140	68.96209	97.44604	1.89433		
BMB	97.92637	95.67606	36.00000	1.08608	76.66667	71.16667	48.00000	4.38071	71.03791	65.49077	47.76979	65.61655		
GRASP	98.27798	95.25414	63.66667	4.05062	79.88889	70.72222	80.33333	17.57407	82.33462	71.49646	92.51799	34.47605		
ILS	98.17260	95.60588	31.00000	0.80009	76.00000	70.38889	32.88889	3.61344	71.08570	64.09472	43.20144	57.19147		

Meter conclusiones.

7. Referencias

Las referencias utilizadas han sido:

- Scikit-Learn: La propia documentación de la biblioteca.
- \bullet SciPy : La propia documentación 2 de la biblioteca.

http://scikit-learn.org/stable/modules/classes.html thtp://docs.scipy.org/doc/scipy/reference/