令和5年度第2学年3組 夏の課題 $(+\alpha)$

取り組みチェック表

提出締め切り日 →

問題	取り組み日	$\bigcirc \cdot \triangle \cdot \times$	イベドロ
1			
2			
3			
4			
5			
6			
7			
8			
9			
10			
10			

- **2** 以下の問いに答えよ.
 - (1) 関数 $y = |x^2 x 6|$ のグラフを描け.
 - (2) c を実数とするとき, 方程式 $|x^2-x-6|=c$ の実数解の個数を調べよ.

- **3** 以下の問いに答えよ.
 - (1) $x^4 2x^2 8x 3 = (x^2 + a)^2 + b(x + c)^2$ が恒等式となるような整数 a, b, c を求めよ.
 - (2) 方程式 $x^4 2x^2 8x 3 = 0$ を複素数の範囲で解け.

- **4** 関数 $f(x) = 8^x + 4^x + 4^{-x} + 8^{-x}$ について, 次の問いに答えよ.
 - (1) $t = 2^x + 2^{-x}$ とおくとき, $4^x + 4^{-x}$ および $8^x + 8^{-x}$ を t を用いて表せ.
 - (2) tのとりうる値の範囲を求めよ.
 - (3) f(x) の最小値と、そのときの x の値を求めよ.

5
$$a_1 = 3, a_2 = 2$$
 とし, $n \ge 2$ のとき,

$$a_{n+1} = a_n^2 + a_n - 1$$

として数列 $\{a_n\}$ を定める.

- (1) $n \geq 2$ のとき, $a_{n+1} = a_1 a_2 \cdots a_n 1$ が成り立つことを証明せよ.
- (2) $\sum_{i=1}^{n} a_i^2 = a_1 a_2 \cdots a_n + 100$ が成り立つような自然数 n を求めよ.

$$S_n = \sum_{k=1}^n a_k$$

で定める. $n=1,2,3,\cdots$ に対し, $S_n=2a_n+n$ が成り立つとき, 次の問いに答えよ.

- (1) a_1 および a_2 を求めよ.
- (2) a_{n+1} を a_n の式で表せ.
- (3) a_n を n の式で表せ.

 $\boxed{7}$ 以下の 2 条件によって定められる数列 $\{a_n\}$ がある.

1.
$$a_1 > 0, \ a_{n+1} \neq a_n \ (n = 1, 2, 3, \dots)$$

2.
$$S_n = a_1 + \cdots + a_n$$
 とするとき, $S_n = a_n^2 + na_n - 4$ $(n = 1, 2, 3, \cdots)$

- (1) 初項 a_1 を求めよ.
- (2) $b_n=a_{2n-1}, c_n=a_{2n} \ (n=1,2,3,\cdots)$ とするとき、数列 $\{b_n\},\{c_n\}$ の一般項をそれぞれ求めよ.
- (3) $a_k = 0$ を満たす k を求めよ.

- 8 1, 2, 3, 4, 5 の数字を左から並べて n 桁の数を作る. 同じ数字を何回用いてもよいが, 作った n 桁の数の中に次の 6 種類の数字の並び 12, 13, 21, 23, 31, 32 のいずれも現れてはいけない.
 - このルールのもとで作ることができる n 桁の数全体の集合を A_n とし, A_n の要素の個数を a_n で表す.例えば $a_1=5$ である. A_n の中で,末尾が 4 または 5 であるものの全体の集合を B_n とし, B_n の要素の個数を b_n で表す.
 - (1) a_2 を求めよ.
 - (2) b_{n+1} を a_n を用いて表せ.
 - (3) a_{n+2} を a_{n+1} と a_n を用いて表せ.
 - (4) 数列 $\{a_n\}$ の一般項を求めよ.

- 9 自然数 $n=1,2,3,\cdots$ に対して、座標が $(\cos\theta_n,\sin\theta_n)$ である単位円上の点 P_n が、以下の規則 (i), (ii) で定められている。
 - (i) $\theta_1 = 0, \theta_2 = \frac{1}{3}\pi$ とし、各 n について、

$$\theta_n < \theta_{n+1} < \theta_{n+2} < \theta + 2\pi$$

が成り立つ.

(ii) 各 n について, P_{n+2} は, P_n , P_{n+1} を両端とする弧のうち, P_{n+2} を含む弧を 2 等分する点である.

このように定めるとき, $\theta_3 = \frac{7}{6}\pi$ であることがわかる. 以下の問いに答えよ.

- (1) θ_4, θ_5 を求めよ.
- (2) $\theta_{n+1}-\theta_n=\beta_n$ とおくとき, $\beta_{n+1}=-\frac{1}{2}\beta_n+\pi$ を示し, 数列 $\{\beta_n\}$ の一般項を求めよ.
- (3) 数列 $\{\theta_n\}$ の一般項を求めよ.

10 数列 $\{a_n\}$ を次のように定める.

$$a_1 = 2, a_{n+1} = a_n^3 4^n \ (n = 1, 2, 3, \dots)$$

このとき, 次の問いに答えよ.

- (1) $b_n = \log_2 a_n$ とするとき, b_{n+1} を b_n を用いて表せ.
- (2) α, β を定数とし $f(n)=\alpha n+\beta$ とする. このとき, $b_{n+1}-f(n+1)=3\{b_n-f(n)\}$ が成り立つように α, β を定めよ.
- (3) 数列 $\{a_n\}$, $\{b_n\}$ の一般項をそれぞれ求めよ.

11

(1)

(2)