Section 2.5

- 7. If A has row 1 + row 2 = row 3, show that A is not invertible:
 - a. Explain why Ax = (1, 0, 0) cannot have a solution.

If row 1 = 1 and row 2 = 0, then row 3 must follow suit and row 3 = 0 + 1 = 1. Because this is not the case in (1, 0, 0), there must be no solution.

b. Which right sides (b_1, b_2, b_3) might allow a solution to Ax = b?

There will be a solution in any case where b 1 + b 2 = b 3.

c. What happens to row 3 in elimination?

The entire row is eliminated, becoming $[0, 0, 0 \mid 0]$.

12. If the product C = AB is invertible (A and B are square), then A itself is invertible. Find a formula for A^-1 that involves C^-1 and B.

 $C = AB \text{ where } (AB)^{-1} \text{ exists.}$

 $C^{-1} = (AB)^{-1}$

 $C^{-1} = (B^{-1})(A^{-1})$

(B) $(C^{-1}) = (B) (B^{-1}) (A^{-1})$

 $B(C^{-1}) = I(A^{-1})$

 $A^{-1} = B(C^{-1})$

18. If B is the inverse of A^2 , show that AB is the inverse of A.

 $B = (A^2)^{-1}$

 $B = (A^{-1})(A^{-1})$

 $AB = A(A^{-1})(A^{-1})$

 $AB = I(A^{-1})$

 $AB = A^{-1}$

27. Invert these matrices A by the Gauss-Jordan method starting with [A I].

a. $A = \begin{array}{c} 1 & 0 & 0 \\ 2 & 1 & 3 \\ 0 & 0 & 1 \end{array}$

b. $A = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 2 & 2 \\ 1 & 2 & 3 \end{bmatrix}$

- a. [1 0 0 1 0 0] [2 1 3 0 1 0] [0 0 1 0 0 1]
- * [1 0 0] * [-2 1 0] [0 0 1]

[1 0 0 1 0 0] [0 1 3 -2 1 0] [0 0 1 0 0 1] [1 0 0] [0 1 -3] [0 0 1]

[1 0 0 1 0 0] [0 1 0 -2 1 -3] [0 0 1 0 0 1] => [1 0 0] [-2 1 -3] [0 0 1]

= A^-1

29. True or false (with a counterexample if false and a reason if true):
a. A 4 by 4 matrix with a row of zeroes is not invertible.

True, because at the pivot of the given row must be 0, and there must be no zero pivots in order to invert a matrix.

b. Every matrix with 1's down the main diagonal is invertible.

False. Consider [1 -1 2 1] While there are 1's down the main [-1 1 -1 0] diagonal, the matrix is still a [0 0 1 0] singular case, as row 3 = row 1 + [1 -1 2 1] row 2 and row 4 = row 1.

c. If A is invertible, then A^-1 and A^2 are invertible.

True.

Section 2.6

5. What matrix E puts A into triangular form EA = U? Multiply by $E^{-1} = L$ to factor A into LU:

$$A = \begin{array}{cccc} 2 & 1 & 0 \\ 0 & 4 & 2 \\ 6 & 3 & 5 \end{array}$$

$$E = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 3 & 0 & 1 \end{bmatrix}$$

6. What two elimination matrices E_21 and E_32 put A into upper triangular form E_32 * E_21 * A = U? Multiply by E_32^-1 and E_21^-1 to factor A into LU = E 21^-1 * E 32^-1 * U

Section 2.7

1. Find A^T and A^{-1} and $(A^{-1})^T$ and $(A^T)^{-1}$ for

$$A = 1 \ 0 \\ 9 \ 3$$

$$A^{T} = \begin{bmatrix} 1 \ 9 \ \\ [0 \ 3 \] \end{bmatrix}$$

$$A^{T} = \begin{bmatrix} 1 \ c \ \\ [c \ 0 \] \end{bmatrix}$$

$$A^{T} = \begin{bmatrix} 1 \ c \ \\ [c \ 0 \] \end{bmatrix}$$

$$A^{T} = \begin{bmatrix} 1 \ c \ \\ [c \ 0 \] \end{bmatrix}$$

$$A^{T} = \begin{bmatrix} 1 \ c \ \\ [c \ 0 \] \end{bmatrix}$$

$$A^{T} = \begin{bmatrix} 1 \ c \ \\ [c \ 0 \] \end{bmatrix}$$

$$A^{T} = \begin{bmatrix} 1 \ c \ \\ [c \ 0 \] \end{bmatrix}$$

$$A^{T} = \begin{bmatrix} 1 \ c \ \\ [c \ 0 \] \end{bmatrix}$$

$$A^{T} = \begin{bmatrix} 1 \ c \ \\ [c \ 0 \] \end{bmatrix}$$

$$A^{T} = \begin{bmatrix} 1 \ c \ \\ [c \ 0 \] \end{bmatrix}$$

$$A^{T} = \begin{bmatrix} 1 \ c \ \\ [c \ 0 \] \end{bmatrix}$$

$$A^{T} = \begin{bmatrix} 1 \ c \ \\ [c \ 0 \] \end{bmatrix}$$

$$A^{T} = \begin{bmatrix} 1 \ c \ \\ [c \ 0 \] \end{bmatrix}$$

$$A^{T} = \begin{bmatrix} 1 \ c \ \\ [c \ 0 \] \end{bmatrix}$$

$$A^{T} = \begin{bmatrix} 1 \ c \ \\ [c \ 0 \] \end{bmatrix}$$

$$A^{T} = \begin{bmatrix} 1 \ c \ \\ [c \ 0 \] \end{bmatrix}$$

$$A^{T} = \begin{bmatrix} 1 \ c \ \\ [c \ 0 \] \end{bmatrix}$$

$$A^{T} = \begin{bmatrix} 1 \ c \ \\ [c \ 0 \] \end{bmatrix}$$

$$A^{T} = \begin{bmatrix} 1 \ c \ \\ [c \ 0 \] \end{bmatrix}$$

$$A^{T} = \begin{bmatrix} 1 \ c \ \\ [c \ 0 \] \end{bmatrix}$$

$$A^{T} = \begin{bmatrix} 1 \ c \ \\ [c \ 0 \] \end{bmatrix}$$

$$A^{T} = \begin{bmatrix} 1 \ c \ \\ [c \ 0 \] \end{bmatrix}$$

$$A^{T} = \begin{bmatrix} 1 \ c \ \\ [c \ 0 \] \end{bmatrix}$$

$$A^{T} = \begin{bmatrix} 1 \ c \ \\ [c \ 0 \] \end{bmatrix}$$

$$A^{T} = \begin{bmatrix} 1 \ c \ \\ [c \ 0 \] \end{bmatrix}$$

$$A^{T} = \begin{bmatrix} 1 \ c \ \\ [c \ 0 \] \end{bmatrix}$$

$$A^{T} = \begin{bmatrix} 1 \ c \ \\ [c \ 0 \] \end{bmatrix}$$

$$A^{T} = \begin{bmatrix} 1 \ c \ \\ [c \ 0 \] \end{bmatrix}$$

$$A^{T} = \begin{bmatrix} 1 \ c \ \\ [c \ 0 \] \end{bmatrix}$$

$$A^{T} = \begin{bmatrix} 1 \ c \ \\ [c \ 0 \] \end{bmatrix}$$

$$A^{T} = \begin{bmatrix} 1 \ c \ \\ [c \ 0 \] \end{bmatrix}$$

$$A^{T} = \begin{bmatrix} 1 \ c \ \\ [c \ 0 \] \end{bmatrix}$$

$$A^{T} = \begin{bmatrix} 1 \ c \ \\ [c \ 0 \] \end{bmatrix}$$

$$A^{T} = \begin{bmatrix} 1 \ c \ \\ [c \ 0 \] \end{bmatrix}$$

$$A^{T} = \begin{bmatrix} 1 \ c \ \\ [c \ 0 \] \end{bmatrix}$$

$$A^{T} = \begin{bmatrix} 1 \ c \ \\ [c \ 0 \] \end{bmatrix}$$

$$A^{T} = \begin{bmatrix} 1 \ c \ \\ [c \ 0 \] \end{bmatrix}$$

$$A^{T} = \begin{bmatrix} 1 \ c \ \\ [c \ 0 \] \end{bmatrix}$$

$$A^{T} = \begin{bmatrix} 1 \ c \ \\ [c \ 0 \] \end{bmatrix}$$

$$A^{T} = \begin{bmatrix} 1 \ c \ \\ [c \ 0 \] \end{bmatrix}$$

$$A^{T} = \begin{bmatrix} 1 \ c \ \\ [c \ 0 \] \end{bmatrix}$$

$$A^{T} = \begin{bmatrix} 1 \ c \ \\ [c \ 0 \] \end{bmatrix}$$

$$A^{T} = \begin{bmatrix} 1 \ c \ \\ [c \ 0 \] \end{bmatrix}$$

$$A^{T} = \begin{bmatrix} 1 \ c \ \\ [c \ 0 \] \end{bmatrix}$$

$$A^{T} = \begin{bmatrix} 1 \ c \ \\ [c \ 0 \] \end{bmatrix}$$

$$A^{T} = \begin{bmatrix} 1 \ c \ \\ [c \ 0 \] \end{bmatrix}$$

$$A^{T} = \begin{bmatrix} 1 \ c \ \\ [c \ 0 \] \end{bmatrix}$$

$$A^{T} = \begin{bmatrix} 1 \ c \ \\ [c \ 0 \] \end{bmatrix}$$

$$A^{T} = \begin{bmatrix} 1 \ c \ \\ [c \ 0 \] \end{bmatrix}$$

$$A^{T} = \begin{bmatrix} 1 \ c \ \\ [c \ 0 \] \end{bmatrix}$$

$$A^{T} = \begin{bmatrix} 1 \ c \ \\ [c \ 0 \] \end{bmatrix}$$

$$A^{T} = \begin{bmatrix} 1 \ c \ \\ [c \ 0 \] \end{bmatrix}$$

$$A^{T} = \begin{bmatrix} 1 \ c \ \\ [c \ 0 \] \end{bmatrix}$$

$$A^{T} = \begin{bmatrix} 1 \ c \ \\ [c \ 0 \] \end{bmatrix}$$

$$A^{T} = \begin{bmatrix} 1 \ c \ \\ [c \ 0 \] \end{bmatrix}$$

$$A^{T} = \begin{bmatrix} 1 \ c \ \\ [c \ 0 \] \end{bmatrix}$$

$$A^{T} = \begin{bmatrix} 1 \ c \ \\ [c \ 0 \] \end{bmatrix}$$

$$A^{T} = \begin{bmatrix} 1 \ c \ \\ [c \ 0 \$$

4. Show that $A^2 = 0$ is possible, but $A^T * A = 0$ is not possible (Unless A = zero matrix):

[0 1]

Consider A = [0 4] Then A^2 = [(0 + 0) (0 + 0)] In other words, [0 0].

In order for $(A^T)A = 0$ to be valid, there must exist some matrix such that the rows of A^T

times the columns of A = 0 for every element. Or, since A^T is the transpose of A, there must

exist some matrix A where the columns of A (Which are the rows of A^T) times the columns of A $\,$

is zero. Obviously, this cannot be true unless the column of ${\tt A}$ is entirely 0, as there exists no

number x other than 0 such that x * x = 0. Therefore, (A^T)A must be nonzero unless A is a zero matrix.

- 7. True or False:
 - a. The block matrix A = 0 A is automatically symmetric.

True.

- c. If A is not symmetric then A^-1 is not symmetric. True.
- d. When A, B, C are symmetric, The transpose of ABC = CBA. True.
- 16. If $A = A^T$ and $B = B^T$, which of the following are certainly symmetric? a. $A^2 B^2$

 ${\tt Symmetric.}$

- b. (A + B) (A B)Symmetric.
- c. ABA

Not certainly symmetric.

d. ABAB

Symmetric.