Course Introduction

What (and how) are we going to learn?

Yordan Darakchiev

Technical Trainer iordan93@gmail.com

Table of Contents

- Course objectives
- Prerequisites
- Curriculum
- Course schedule
- Trainer
- Lecture format
- Final exam
- Some learning resources

Course Objectives

Working with data in a disciplined way

Course Objectives

- Learn how to apply the scientific method to
 - Ask the right questions
 - Obtain and clean up data
 - Explore and analyze data
 - Make the correct conclusions
- Write your own research
 - Learn how to create evidence-based, reproducible research
- Learn how to create a complete solution
 - Incorporate best practices in software design and science
- Communicate and compare results with the community

Prerequisites

Programming Basics

- Some familiarity with Python is required
- Software development experience is a plus

Math Concepts

- Know some algebra and statistics (and a little bit of calculus)
- Have basic logic and intuition

Intermediate English

• Understand what is written on the slides

Scientific Mindset

• Be open to (and not afraid of) challenges

Course Format Details

Curriculum, schedule, trainer, lecture format, exam

Curriculum

- Course introduction
- Data acquisition
- Data tidying and cleaning
- Data visualization. Exploratory data analysis
- Case studies, part 1: Images and text
- Case studies, part 2: Spatial data and networks
- Modelling basics: regression models
- Best practices in software and science
- Exam preparation: end-to-end project

Course Schedule

- Lessons
 - 8 lectures x 4 hours each on-site
- Homework
 - 4 hours+ the more, the better
 - Quiz 0.25-0.5 hours
 - Questions to check your understanding
 - Lab 1-6 hours
 - Problems related to real-life data science
- Extracurricular activities: 0+ hours
- Practical exam
 - Preparation at home 3+ hours
 - On-site defense: 10 minutes

Final Exam

- Practical project
 - Work on your own
 - No teams allowed
 - Present your results (documentation, code, etc.)
 in a limited amount of time
- Work on a given assignment
 - Assignment release time: at second lecture
 - Perform research
 - Scientific papers, community forums, etc.
 - Analyze the data
 - Write code
 - Communicate the results

Grading Scheme

- Quizzes: up to 10%
 - Due at the end of the course (29 July 2018, 23:59:59 GMT+3)
 - Most questions: 3 tries per quiz
- Labs: up to 20%
 - Due at the end of the course
- Final exam: up to 70%
 - Develop at your own pace
 - Upload deadline: 27 July 2018, 12:00 GMT+3
 - On-site defense: 29 July 2018, 9:00 GMT+3
 - To qualify: at least 5/30 points from quizzes and labs
- Forum activity: bonus up to 10%

Grading and Course Certificate

- All students will be graded on a scale from 2,00 to 6,00
 - The same way the standard grading in Bulgaria works
- Everyone who scores ≥ 5,00 (total) on the course will get a certificate from SoftUni
 - Starting point for a new career or continuing education in your current field
 - Career assistance
 - The SoftUni career center will help you find work
 - Official and recognizable
 - Employers value certificates
 - Proof of hard work :)
 - Shareable and verifiable

Who Am I?

- Programmer
 - .NET / full-stack Web developer
- Trainer
 - Various programming courses
 - To beginners and experienced developers
 - Scientific (and popular) lectures
- Scientist / Enthusiast
 - BSc (July 2016), MSc (February 2018) in Astrophysics
- Overall nerd
 - Curious and skeptical

Learning Resources

Learn more and share your knowledge

SoftUni Course Pages

- Official Web page of this course
 - https://softuni.bg/trainings/1919/data-science-june-2018
- Forum category
 - https://softuni.bg/forum/categories/96/data-science
 - Ask and answer questions
 - I will try to answer your questions as well
 - Post what you've learned
 - Links to resources, code snippets, ideas, tips and tricks
 - Share your problems (homework or not) and help solve them
 - Create and maintain a community
 - A critical part of doing science

Online Resources

- Books
 - "How not to be wrong" Jordan Ellenberg
 - "Learning Data Mining with Python" Robert Layton
 - ... and anything else you can find
- Websites
 - Khan Academy
 - Communities: <u>Kaggle</u>, <u>Quora</u>, <u>Stack Exchange</u>
 - Online courses: <u>Coursera</u>, <u>edX</u>, <u>MIT OCW</u>, <u>Stanford</u>, etc.
- YouTube
 - <u>FunFunFunction</u>, <u>Daniel Shiffman</u>, <u>Siraj Raval</u>, <u>AsapSCIENCE</u>,
 <u>Veritasium</u>, <u>Vsauce</u>, <u>TedEd</u>, <u>CrashCourse</u>, <u>Mind Your Decisions</u>,
 <u>Infinite Series</u>, <u>Numberphile</u>, <u>Computerphile</u>, <u>Vi Hart</u>, <u>3Blue1Brown</u>,
 <u>blackpenredpen</u>, <u>Mathologer</u>, and many more

Questions?