ESP32-S2-WROVER

User Manual

Copyright © 2019

About This Document

This document provides the specifications for the ESP32-S2-WROVER module.

Revision History

For revision history of this document, please refer to the last page.

Documentation Change Notification

Espressif provides email notifications to keep customers updated on changes to technical documentation. Please subscribe at www.espressif.com/en/subscribe.

Certification

Download certificates for Espressif products from www.espressif.com/en/certificates.

Disclaimer and Copyright Notice

Information in this document, including URL references, is subject to change without notice. THIS DOCUMENT IS PROVIDED AS IS WITH NO WARRANTIES WHATSOEVER, INCLUDING ANY WARRANTY OF MERCHANTABILITY, NON-INFRINGEMENT, FITNESS FOR ANY PARTICULAR PURPOSE, OR ANY WARRANTY OTHERWISE ARISING OUT OF ANY PROPOSAL, SPECIFICATION OR SAMPLE.

All liability, including liability for infringement of any proprietary rights, relating to use of information in this document is disclaimed. No licenses express or implied, by estoppel or otherwise, to any intellectual property rights are granted herein. The Wi-Fi Alliance Member logo is a trademark of the Wi-Fi Alliance. The Bluetooth logo is a registered trademark of Bluetooth SIG.

All trade names, trademarks and registered trademarks mentioned in this document are property of their respective owners, and are hereby acknowledged.

Copyright © 2019 Espressif Inc. All rights reserved.

1. Module Overview

1.1 Features

MCU

- ESP32-S2 embedded, Xtensa[®] single-core 32-bit LX7 microprocessor, up to 240 MHz
- 128 KB ROM
- 320 KB SRAM
- 16 KB SRAM in RTC

Wi-Fi

- 802.11 b/g/n
- Bit rate: 802.11n up to 150 Mbps
- A-MPDU and A-MSDU aggregation
- 0.4 μs guard interval support
- Operating frequency range: 2412 ~ 2462 MHz

Hardware

- Interfaces: GPIO, SPI, LCD, UART, I²C, I²S, Camera interface, IR, pulse counter, LED PWM, USB OTG 1.1, ADC, DAC, touch sensor, temperature sensor
- 40 MHz crystal oscillator
- 4 MB SPI flash
- 2 MB PSRAM
- Operating voltage/Power supply: 3.0 ~ 3.6 V
- Operating temperature range: -40 ~ 85 °C
- Dimensions: (18 × 31 × 3.3) mm

Certification

• Green certification: RoHS/REACH

Test

HTOL/HTSL/uHAST/TCT/ESD

1.2 Description

ESP32-S2-WROVER is a powerful, generic Wi-Fi MCU module that has a rich set of peripherals. This module is an ideal choice for a wide variety of application scenarios relating to Internet of Things (IoT), wearable electronics and smart home.

This module is provided in two versions: one with a PCB antenna, the other with an Dipole antenna. ESP32-S2-WROVER features a 4 MB external SPI flash and an additional 2 MB SPI Pseudo static RAM (PSRAM). The information in this datasheet is applicable to both modules.

The ordering information on the two variants of ESP32-S2-WROVER is listed as follows:

Table 1: ESP32-S2-WROVER Ordering Information

	,				
Module	Chip embedded	Flash	PSRAM	Module dimensions (mm)	
ESP32-S2-WROVER (PCB)	FSP32-S2	4 MB	2 MB	(18.00±0.10)×(31.00±0.10)×(3.30±0.10)	
ESP32-S2-WROVER-I (Dipole)		4 1010		(18.00±0.10)×(31.00±0.10)×(3.30±0.10)	
Notes:					
The module with various capacities of flash or flash is available for custom order.					

At the core of this module is ESP32-S2*, an Xtensa® 32-bit LX7 CPU that operates at up to 240 MHz. The user

can power off the CPU and make use of the low-power co-processor to constantly monitor the peripherals for changes or crossing of thresholds. ESP32-S2 integrates a rich set of peripherals, ranging from SPI, I2S, UART, I2C, LED PWM, ADC, DAC, touch sensor, temperature sensor, as well as up to 43 GPIOs. It also includes a full-speed USB On-The-Go (OTG) interface to enable USB communication.

Note:

* For more information on ESP32-S2, please refer to ESP32-S2 Datasheet.

1.3 Applications

- Generic Low-power IoT Sensor Hub
- Generic Low-power IoT Data Loggers
- Cameras for Video Streaming
- Over-the-top (OTT) Devices
- USB Devices
- Speech Recognition
- Image Recognition
- Mesh Network
- Home Automation
- Smart Home Control Panel

- Smart Building
- Industrial Automation
- Smart Agriculture
- Audio Applications
- Health Care Applications
- Wi-Fi-enabled Toys
- Wearable Electronics
- Retail & Catering Applications
- Smart POS Machines

List of Tables

1	ESP32-S2-WROVER Ordering Information		3
2	Pin Definitions	1	C
3	Strapping Pins	1	1
4	Absolute Maximum Ratings	1	3
5	Recommended Operating Conditions	1	3
6	DC Characteristics (3.3 V, 25 °C)	1	3
7	Current Consumption Depending on RF Modes	1	4
8	Current Consumption Depending on Work Modes	1	4
9	Wi-Fi RF Standards	1	5
10	Transmitter Characteristics	1	5
11	Receiver Characteristics	1	_

List of Figures

1	Block Diagram	8
2	Pin Layout of ESP32-S2-WROVER (Top View)	9
3	ESP32-S2-WROVER Schematics	17
4	ESP32-S2-WROVER Peripheral Schematics	18
5	ESP32-S2-WROVER Physical Dimensions	19
6	Recommended PCB Land Pattern	20
7	Reflow Profile	21

3. Pin Definitions

3.1 Pin Layout

Figure 2: Pin Layout of ESP32-S2-WROVER (Top View)

Note

The pin diagram shows the approximate location of pins on the module. For the actual mechanical diagram, please refer to Figure 7.1 *Physical Dimensions*.

3.2 Pin Description

ESP32-S2-WROVER has 42 pins. See pin definitions in Table 2.

Table 2: Pin Definitions

Name	No.	Туре	Function
GND	1	Р	Ground
3V3	2	Р	Power supply
100	3	I/O/T	RTC_GPIO0, GPIO0
IO1	4	I/O/T	RTC_GPIO1, GPIO1, TOUCH1, ADC1_CH0
IO2	5	I/O/T	RTC_GPIO2, GPIO2, TOUCH2, ADC1_CH1
IO3	6	I/O/T	RTC_GPIO3, GPIO3, TOUCH3, ADC1_CH2
IO4	7	I/O/T	RTC_GPIO4, GPIO4, TOUCH4, ADC1_CH3
IO5	8	I/O/T	RTC_GPIO5, GPIO5, TOUCH5, ADC1_CH4
106	9	I/O/T	RTC_GPIO6, GPIO6, TOUCH6, ADC1_CH5
IO7	10	I/O/T	RTC_GPIO7, GPIO7, TOUCH7, ADC1_CH6
IO8	11	I/O/T	RTC_GPIO8, GPIO8, TOUCH8, ADC1_CH7
IO9	12	I/O/T	RTC_GPIO9, GPIO9, TOUCH9, ADC1_CH8, FSPIHD
IO10	13	I/O/T	RTC_GPIO10, GPIO10, TOUCH10, ADC1_CH9, FSPICS0, FSPIIO4
IO11	14	I/O/T	RTC_GPIO11, GPIO11, TOUCH11, ADC2_CH0, FSPID, FSPIIO5
IO12	15	I/O/T	RTC_GPIO12, GPIO12, TOUCH12, ADC2_CH1, FSPICLK, FSPIIO6
IO13	16	I/O/T	RTC_GPIO13, GPIO13, TOUCH13, ADC2_CH2, FSPIQ, FSPIIO7
IO14	17	I/O/T	RTC_GPIO14, GPIO14, TOUCH14, ADC2_CH3, FSPIWP, FSPIDQS
IO15	18	I/O/T	RTC_GPIO15, GPIO15, U0RTS, ADC2_CH4, XTAL_32K_P
IO16	19	I/O/T	RTC_GPIO16, GPIO16, U0CTS, ADC2_CH5, XTAL_32K_N
IO17	20	I/O/T	RTC_GPIO17, GPIO17, U1TXD, ADC2_CH6, DAC_1
IO18	21	I/O/T	RTC_GPIO18, GPIO18, U1RXD, ADC2_CH7, DAC_2, CLK_OUT3
IO19	22	I/O/T	RTC_GPIO19, GPIO19, U1RTS, ADC2_CH8, CLK_OUT2, USB_D-
IO20	23	I/O/T	RTC_GPIO20, GPIO20, U1CTS, ADC2_CH9, CLK_OUT1, USB_D+
IO21	24	I/O/T	RTC_GPIO21, GPIO21
IO26	25	I/O/T	SPICS1, GPIO26
GND	26	Р	Ground
IO33	27	I/O/T	SPIIO4, GPIO33, FSPIHD
IO34	28	I/O/T	SPIIO5, GPIO34, FSPICS0
IO35	29	I/O/T	SPIIO6, GPIO35, FSPID
IO36	30	I/O/T	SPIIO7, GPIO36, FSPICLK
IO37	31	I/O/T	SPIDQS, GPIO37, FSPIQ
IO38	32	I/O/T	GPIO38, FSPIWP
IO39	33	I/O/T	MTCK, GPIO39, CLK_OUT3
IO40	34	I/O/T	MTDO, GPIO40, CLK_OUT2
IO41	35	I/O/T	MTDI, GPIO41, CLK_OUT1
1042	36	I/O/T	MTMS, GPIO42
TXD0	37	I/O/T	U0TXD, GPIO43, CLK_OUT1
RXD0	38	I/O/T	U0RXD, GPIO44, CLK_OUT2
IO45	39	I/O/T	GPIO45
IO46	40	I	GPIO46
			High: on, enables the chip.
EN	41		Low: off, the chip powers off.
-''			, !!

Name	No.	Туре	Function
GND	42	Р	Ground

Notice:

- By default, IO26 is connected to the CS side of the PSRAM. If PSRAM is not a must, IO26 can be used as a regular GPIO.
- For peripheral pin configurations, please refer to ESP32-S2 Datasheet.

3.3 Strapping Pins

ESP32-S2 has three strapping pins: GPIO0, GPIO45, GPIO46. The pin-pin mapping between ESP32-S2 and the module is as follows, which can be seen in Chapter 5 *Schematics*:

- GPIO0 = IO0
- GPIO45 = IO45
- GPIO46 = IO46

Software can read the values of corresponding bits from register "GPIO_STRAPPING".

During the chip's system reset (power-on-reset, RTC watchdog reset, brownout reset, analog super watchdog reset, and crystal clock glitch detection reset), the latches of the strapping pins sample the voltage level as strapping bits of "0" or "1", and hold these bits until the chip is powered down or shut down.

IO0, IO45 and IO46 are connected to the internal pull-up/pull-down. If they are unconnected or the connected external circuit is high-impedance, the internal weak pull-up/pull-down will determine the default input level of these strapping pins.

To change the strapping bit values, users can apply the external pull-down/pull-up resistances, or use the host MCU's GPIOs to control the voltage level of these pins when powering on ESP32-S2.

After reset, the strapping pins work as normal-function pins.

Refer to Table 3 for a detailed boot-mode configuration of the strapping pins.

Table 3: Strapping Pins

VDD_SPI Voltage ¹						
Pin	Default	Default 3.3 V				
IO45 ²	Pull-down	0	1			
Booting Mode						
Pin	Default	SPI Boot	Download Boot			
100	Pull-up	1	0			
IO46	Pull-down	Don't-care	0			
	Enabling/Disabling ROM	1 Code Print During Booting 3	4			
Pin	Default	Enabled	Disabled			
IO46	Pull-down	See the fourth note	See the fourth note			

Note:

- 1. Firmware can configure register bits to change the settings of "VDD_SDIO Voltage".
- 2. Internal pull-up resistor (R1) for IO45 is not populated in the module, as the flash and SRAM in ESP32-S2-WROVER work at 3.3 V by default (output by VDD_SPI). Please make sure IO45 will not be pulled high when the module is powered up by external circuit.
- 3. ROM code can be printed over TXD0 (by default) or DAC_1 (IO17), depending on the eFuse bit.
- 4. When eFuse UART_PRINT_CONTROL value is:
 - 0, print is normal during boot and not controlled by IO46.
 - 1 and IO46 is 0, print is normal during boot; but if IO46 is 1, print is disabled.
 - 2 and IO46 is 0, print is disabled; but if IO46 is 1, print is normal.
 - 3, print is disabled and not controlled by IO46.

4. Electrical Characteristics

4.1 Absolute Maximum Ratings

Table 4: Absolute Maximum Ratings

Symbol	Parameter	Min	Max	Unit
VDD33	Power supply voltage	-0.3	3.6	V
T_{STORE}	Storage temperature	-40	150	°C

4.2 Recommended Operating Conditions

Table 5: Recommended Operating Conditions

Symbol	Parameter	Min	Тур	Max	Unit
VDD33	Power supply voltage	3.0	3.3	3.6	V
I_{VDD}	Current delivered by external power supply	0.5		_	А
Т	Operating temperature	-40	_	8 5	°C
Humidity	Humidity condition	_	85	_	%RH

4.3 DC Characteristics (3.3 V, 25 °C)

Table 6: DC Characteristics (3.3 V, 25 °C)

Symbol	Parameter	Min	Тур	Max	Unit
C_{IN}	Pin capacitance	_	2	_	рF
V_{IH}	High-level input voltage	0.75 × VDD	_	VDD + 0.3	V
V_{IL}	Low-level input voltage	-0.3	_	0.25 × VDD	V
$ _{IH}$	High-level input current	_	_	50	nA
I_{IL}	Low-level input current	_	_	50	nA
V_{OH}	High-level output voltage	0.8 × VDD	_	_	V
V_{OL}	Low-level output voltage	_	_	0.1 × VDD	V
Lasa	High-level source current (VDD = 3.3 V , $\text{V}_{OH} >=$	_	40	_	mA
I_{OH}	2.64 V, PAD_DRIVER = 3)		70		ША
$ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $	Low-level sink current (VDD = 3.3 V, V_{OL} =	_	28	_	mA
IOL	0.495 V, PAD_DRIVER = 3)				111/-1
R_{PU}	Pull-up resistor	_	45	_	kΩ
R_{PD}	Pull-down resistor	_	45	_	kΩ
V_{IH_nRST}	Chip reset release voltage	0.75 × VDD	_	VDD + 0.3	V
V_{IL_nRST}	Chip reset voltage	-0.3	_	0.25 × VDD	V

Note:

VDD is the I/O voltage for a particular power domain of pins.

4.4 Current Consumption Characteristics

With the use of advanced power-management technologies, ESP32-S2-WROVER can switch between different power modes. For details on different power modes, please refer to Section RTC and Low-Power Management in ESP32-S2 Datasheet.

The current consumption measurements are taken with a 3.3 V supply at 25 °C of ambient temperature at the RF port. All transmitters' measurements are based on a 50% duty cycle.

Table 7: Current Consumption Depending on RF Modes

Work mode		Description	Average	Peak
Active (RF working)		802.11b, 20 MHz, 1 Mbps, @21.14 dBm		310 mA
	TX	802.11g, 20 MHz, 54 Mbps, @22.75dBm	145 mA	220 mA
	RX	802.11n, 20 MHz, MCS7, @23.06dBm	135 mA	200 mA
		802.11n, 40 MHz, MCS7, @22.53 dBm	120 mA	160 mA
		802.11b/g/n, 20 MHz	63 mA	63 mA
		802.11n, 40 MHz	68 mA	68 mA

Note:

The current consumption figures for in RX mode are for cases when the peripherals are disabled and the CPU idle.

Table 8: Current Consumption Depending on Work Modes

Work mode		Description	Power consumption (Typ)
Modem-sleep	The CPU is	240 MHz	21 mA
	powered on	160 MHz	17 mA
	powered on	Normal speed: 80 MHz	14 mA
Light-sleep		_	550 μA
	The UL	220 μΑ	
Deep-sleep	ULI	7 μA @1% duty	
Deep-sleep	F	10 μΑ	
		5 μΑ	
Power off	CHIP_PU is se	0.5 μΑ	

Note:

- The current consumption figures in Modem-sleep mode are for cases where the CPU is powered on and the cache idle
- When Wi-Fi is enabled, the chip switches between Active and Modem-sleep modes. Therefore, current consumption changes accordingly.
- In Modem-sleep mode, the CPU frequency changes automatically. The frequency depends on the CPU load and the peripherals used.
- During Deep-sleep, when the ULP co-processor is powered on, peripherals such as GPIO and I²C are able to operate.
- The "ULP sensor-monitored pattern" refers to the mode where the ULP coprocessor or the sensor works periodically. When touch sensors work with a duty cycle of 1%, the typical current consumption is 7 μ A.

4.5 Wi-Fi RF Characteristics

4.5.1 Wi-Fi RF Standards

Table 9: Wi-Fi RF Standards

Name		Description	
Operating frequency range note1		2412 ~ 2462 MHz	
Wi-Fi wireless standard		IEEE 802.11b/g/n	
		11b: 1, 2, 5.5 and 11 Mbps	
Data rate	20 MHz	11g: 6, 9, 12, 18, 24, 36, 48, 54 Mbps	
Data rate		11n: MCS0-7, 72.2 Mbps (Max)	
	40 MHz	11n: MCS0-7, 150 Mbps (Max)	
Antenna type		PCB antenna, Dipole antenna	

^{1.} Device should operate in the frequency range allocated by regional regulatory authorities. Target operating frequency range is configurable by software.

4.5.2 Transmitter Characteristics

Table 10: Transmitter Characteristics

Parameter	Rate	Тур	Unit
TX Power note1	11b, 1 Mbps	21.14	
	11g, 6 Mbps	22.75	dBm
	11n, HT20, MCS0	23.06	
	11n, HT40, MCS0	22.53	

^{1.} Target TX power is configurable based on device or certification requirements.

4.5.3 Receiver Characteristics

Table 11: Receiver Characteristics

Parameter	Rate	Тур	Unit
RX Sensitivity	1 Mbps	-97	dBm
	2 Mbps	-95	
	5.5 Mbps	-93	
	11 Mbps	-88	
	6 Mbps	-92	
	9 Mbps	-91	

^{2.} For the modules that use Dipole antennas, the output impedance is 50 Ω . For other modules without Dipole antennas, users do not need to concern about the output impedance.

Parameter	Rate	Тур	Unit
	12 Mbps	-89	
	18 Mbps	-87	
	24 Mbps	-84	
	36 Mbps	-80	
	48 Mbps	-76	
	54 Mbps	-75	
	11n, HT20, MCS0	-92	
	11n, HT20, MCS1	-88	
	11n, HT20, MCS2	-85	
	11n, HT20, MCS3	-83	
	11n, HT20, MCS4	-79	
	11n, HT20, MCS5	-75	
	11n, HT20, MCS6	-74	
	11n, HT20, MCS7	-72	
	11n, HT40, MCS0	-89	
	11n, HT40, MCS1	-86	
	11n, HT40, MCS2	-83	
	11n, HT40, MCS3	-80	
	11n, HT40, MCS4	-76	
	11n, HT40, MCS5	-72	
	11n, HT40, MCS6	-71	
	11n, HT40, MCS7	-69	
RX Maximum Input Level	11b, 1 Mbps	5	dBm
	11b, 11 Mbps	5	
	11g, 6 Mbps	5	
	11g, 54 Mbps	0	
	11n, HT20, MCS0	5	
	11n, HT20, MCS7	0	
	11n, HT40, MCS0	5	
	11n, HT40, MCS7	0	
Adjacent Channel Rejection	11b, 11 Mbps	35	dB
	11g, 6 Mbps	31	
	11g, 54 Mbps	14	
	11n, HT20, MCS0	31	
	11n, HT20, MCS7	13	
	11n, HT40, MCS0	19	
	11n, HT40, MCS7	8	

7. Physical Dimensions and PCB Land Pattern

7.1 Physical Dimensions

Figure 5: ESP32-S2-WROVER Physical Dimensions

Note:

- Soldering the EPAD to the ground of the base board is not a must, though doing so can get optimized thermal performance. If users do want to solder it, they need to ensure that the correct quantity of soldering paste is applied.
- To ensure the power supply to the ESP32-S2 chip during power-up, it is advised to add an RC delay circuit at the EN pin. The recommended setting for the RC delay circuit is usually R = 10 k Ω and C = 0.1 μ F. However, specific parameters should be adjusted based on the power-up timing of the module and the power-up and reset sequence timing of the chip. For ESP32-S2's power-up and reset sequence timing diagram, please refer to Section *Power Scheme* in *ESP32-S2 Datasheet*.

7.2 Recommended PCB Land Pattern

Figure 6: Recommended PCB Land Pattern

8. Product Handling

8.1 Storage Condition

The products sealed in Moisture Barrier Bag (MBB) should be stored in a noncondensing atmospheric environment of < 40 °C/90%RH.

MSL 3 and floorlife: 168 hrs 30 °C/60%RH

8.2 **ESD**

• Human body model (HBM): 2000 V

• Charged-device model (CDM): 500 V

• Air discharge: 8000 V

• Contact discharge: 6000 V

8.3 Reflow Profile

Figure 7: Reflow Profile

9. MAC Addresses and eFuse

The eFuse in ESP32-S2 has been burnt into 48-bit mac_address. The actual addresses the chip uses in station and AP modes correspond to mac_address in the following way:

• Station mode: mac_address

• AP mode: mac_address + 1

There are seven blocks in eFuse for users to use. Each block is 256 bits in size and has independent write/read disable controller. Six of them can be used to store encrypted key or user data, and one is only used to store user data.

Revision History

Date	Version	Release notes
2019.09	V0.1	Preliminary release

FCC Statement

Any Changes or modifications not expressly approved by the party responsible for compliance could void the user's authority to operate the equipment.

This device complies with part 15 of the FCC Rules. Operation is subject to the following two conditions:

(1) This device may not cause harmful interference, and (2) This device must accept any interference received, including interference that may cause undesired operation.

FCC Radiation Exposure Statement:

This equipment complies with FCC radiation exposure limits set forth for an uncontrolled environment. This equipment should be installed and operated with minimum distance 20cm between the radiator your body.

Regulatory Module Integration Instructions

2.2 List of applicable FCC rules

This device complies with part 15.247 of the FCC Rules.

2.3 Summarize the specific operational use conditions

This module can be used in household electrical appliances as well as lighting equipments. The input voltage to the module should be nominally $3.0 \sim 3.6 \ V_{DC}$, typical value $3.3 V_{DC}$ and the ambient temperature of the module should not exceed $85^{\circ}C$. This module using two kinds of antennas ,PCB antenan with maximum gain is $3.40 \, \text{dBi}$. Dipole antenan with maximum gain is $2.33 \, \text{dBi}$. Other antenna arrangement is not covered by this certification. The antenna is not field replaceable. If the antenna needs to be changed, the certification should be re-applied.

2.4 Limited module procedures

Not applicable

2.5 Trace antenna designs

Not applicable

2.6 RF exposure considerations

This equipment complies with FCC radiation exposure limits set forth for an uncontrolled environment. This equipment should be installed and operated with minimum distance 20cm between the radiator your body. If the device built into a host as a portable usage, the additional RF exposure evaluation may be required as specified by \$2.1093.

2.7 Antennas

Module contains one PCB antenna and Dipole antenna.

2.8 Label and compliance information

The outside of final products that contains this module device must display a label referring to the enclosed module. This exterior label can use wording such as: "Contains Transmitter Module FCC ID: 2AC7Z-ESP32S2WROVER",or "Contains

FCC ID: 2AC7Z-ESP32S2WROVER ", Any similar wording that expresses the same meaning may be used.

2.9 Information on test modes and additional testing requirements

- a) The modular transmitter has been fully tested by the module grantee on the required number of channels, modulation types, and modes, it should not be necessary for the host installer to re-test all the available transmitter modes or settings. It is recommended that the host product manufacturer, installing the modular transmitter, perform some investigative measurements to confirm that the resulting composite system does not exceed the spurious emissions limits or band edge limits (e.g., where a different antenna may be causing additional emissions).
- b) The testing should check for emissions that may occur due to the intermixing of emissions with the other transmitters, digital circuitry, or due to physical properties of the host product (enclosure). This investigation is especially important when integrating multiple modular transmitters where the certification is based on testing each of them in a stand-alone configuration. It is important to note that host product manufacturers should not assume that because the modular transmitter is certified that they do not

have any responsibility for final product compliance.

c) If the investigation indicates a compliance concern the host product manufacturer is obligated to mitigate the issue. Host products using a modular transmitter are subject to all the applicable individual technical rules as well as to the general conditions of operation in Sections 15.5, 15.15, and 15.29 to not cause interference. The operator of the host product will be obligated to stop operating the device until the interference has been corrected

Below are steps for TX verification:

wpriv mp_start //enter MP mode

iwpriv mp_channel 1 //set channel to 1 . 2, 3, 4~11 etc.

iwpriv mp_bandwidth 40M=0,shortGI=0 //40M=0 set 20M mode and long GI,

40M=1 set 40M mode

iwpriv mp_ant_tx a //select antenna A for operation

iwpriv mp_txpower patha=44,pathb=44 //set path A and path B Tx power level

iwpriv mp_rate 108 //set OFDM data rate to 54Mbps,ex:

CCK 1M = 2, CCK 5.5M = 11, KK, OFDM54M = 108 N Mode: MCS0 = 128, MCS1

= 129.....etc.

iwpriv mp_ctx background,pkt //start packet continuous Tx

iwpriv mp_ctx stop //stop continuous Tx

2.10 Additional testing, Part 15 subpart B disclaimer

The final host / module combination need to be evaluated against the FCC Part 15B criteria for unintentional radiators in order to be properly authorized for operation as a Part 15 digital device.

The host integrator installing this module into their product must ensure that the final composite product complies with the FCC requirements by a technical assessment or evaluation to the FCC rules, including the transmitter operation and should refer to guidance in KDB 996369.

Frequency spectrum to be investigated

For host products with certified modular transmitter, the frequency range of investigation of the composite system is specified by rule in Sections 15.33(a)(1) through (a)(3), or the range applicable to the digital device, as shown in Section 15.33(b)(1), whichever is the higher frequency range of investigation.

Operating the host product

When testing the host product, all the transmitters must be operating. The transmitters can be enabled by using publicly-available drivers and turned on, so the transmitters are active. In certain conditions it might be appropriate to use a technology-specific call box (test set) where accessory devices or drivers are not available.

When testing for emissions from the unintentional radiator, the transmitter shall be placed in the receive mode or idle mode, if possible. If receive mode only is not possible then, the radio shall be passive (preferred) and/or active scanning. In these cases, this would need to enable activity on the communication BUS (i.e., PCIe, SDIO, USB) to ensure the unintentional radiator circuitry is enabled. Testing laboratories may need to add attenuation or filters depending on the signal strength of any active beacons (if applicable) from the enabled radio(s). See ANSI C63.4, ANSI C63.10 and ANSI C63.26 for further

general testing details.