86 marks in University Exam

UNIT-1

10 marks guaranty

1. Prove that following matrices are unitary: $A = \frac{1}{2} \begin{bmatrix} i & \sqrt{3} \\ \sqrt{3} & i \end{bmatrix}$.

(i)
$$\frac{1}{\sqrt{3}}\begin{bmatrix} 1 & 1 & 1 \\ 1 & \omega & \omega^2 \\ 1 & \omega^2 & \omega \end{bmatrix}$$
 (.

- 2. The Eigen values of matrix A are 2,3,1, then eigen values of $A^{-1} + A^2$.
- 3. Find inverse employing elementary transformation of the matrix

(i)
$$\begin{bmatrix} 3 & -3 & 4 \\ 2 & -3 & 4 \\ 0 & -1 & 1 \end{bmatrix}$$

4. Find rank and nullity of following matrices reducing them in to normal form

(i)
$$\begin{bmatrix} 1 & 2 & 3 \\ 2 & 4 & 6 \\ 4 & 8 & 12 \\ 5 & 10 & 15 \end{bmatrix}$$
 (ii)
$$\begin{bmatrix} 2 & -4 & 3 & -1 \\ 1 & -2 & -1 & -4 \\ 0 & 1 & -1 & 3 \\ 4 & -7 & 4 & -4 \end{bmatrix}$$
 (iii)

5. (i) Find value of λ for which the vectors $(1,-2,\lambda)$, (2,-1,5) and $(3,-5,7\lambda)$ are linearly dependent.

10 marks guaranty

6. Find the eigen values and corresponding eigen vectors of the matrix $\begin{bmatrix} 8 & -6 & 2 \\ -6 & 7 & -4 \\ 2 & -4 & 3 \end{bmatrix}$

7. Verify Cayley-Hamilton theorem for the matrix
$$A = \begin{bmatrix} 2 & -1 & 1 \\ -1 & 2 & -1 \\ 1 & -1 & 2 \end{bmatrix}$$
. Hence compute A^{-1} . Also evaluate $A^{6} - 6A^{5} + 9A^{4} - 2A^{3} - 12A^{2} + 23A - 9I$.

10 marks guaranty

- 8. Investigate for what values of λ and μ , the system of equations x + y + z = 6, x + 2y + 3z = 10 and $x + 2y + \lambda z = \mu$ has
 - (i) no solution (ii) unique solution (iii) infinite solution.
- 9. For what values of λ , the equations x + y + z = 1, $x + 2y + 4z = \lambda$, $x + 4y + 10z = \lambda^2$ have a solution? Solve completely in each case.

UNIT-2

10 marks any one of Five

- 1. Verify Lagrange's mean value theorem for following function, $f(x) = x^3$ in [-1,1].
- 2 State: (i) Cauchy's mean value theorem (ii) Lagrange,s mean value theorem (iii) Rolle's theorem
- 3. Verify Rolle's theorem for the function $f(x) = e^x (\sin x \cos x)$ in $\left[\frac{\pi}{4}, \frac{5\pi}{4}\right]$.
- 4. Verify Rolle's theorem for following function $f(x) = x(x+3)e^{-\frac{x}{2}}$ in [-3,0]
- 5. Find 'C' of Cauchy's mean value theorem for the following pairs functions in [a,b]: $f(x) = e^x, g(x) = e^{-x}.$

10 marks any one of six

- 6. If $\mu = \sin nx + \cos nx$, prove that $\mu_r = n^r \left[1 + (-1)^r \sin 2nx \right]^{\frac{1}{2}}$, where μ_r denotes the r^{th} differential coefficient of μ w.r.t. x. Hence show that $\mu_8(\pi) = \left(\frac{1}{2}\right)^{\frac{31}{2}}$ when $n = \frac{1}{4}$.
- 7. If $x = \cos\left(\frac{1}{m}\log y\right)$, find value of y_n at x = 0.
- 8. $y = (\sin^{-1}x)^2$ or If $x = \sin \sqrt{y}$, find the value of y_n at x = 0.
- 9. If $y = \sin(m \sin^{-1} x)$, find the value of y_n at x = 0.

10. If
$$y = (x + \sqrt{1 + x^2})^m$$
, prove that $(1 + x^2)y_{n+2} + (2n+1)xy_{n+1} + (n^2 - m^2)y_n = 0$. Hence find y_n at $x = 0$.

11. If
$$y^{1/m} + y^{-1/m} = 2x$$
, Prove that $(x^2 - 1)y_{n+2} + (2n+1)xy_{n+1} + (n^2 - m^2)y_n = 0$

UNIT-3

10 marks any one of these

1. If
$$u = f(2x - 3y, 3y - 4z, 4z - 2x)$$
, prove that $\frac{1}{2} \frac{\partial u}{\partial x} + \frac{1}{3} \frac{\partial u}{\partial y} + \frac{1}{4} \frac{\partial u}{\partial z} = 0$.

2. If
$$u = f(r)$$
 where $r^2 = x^2 + y^2$, prove that $\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = f''(r) + \frac{1}{r}f'(r)$

3. If
$$u = \cos ec^{-1} \left(\frac{x^{1/2} + y^{1/2}}{x^{1/3} + y^{1/3}} \right)^{1/2}$$
, evaluate $x^2 \frac{\partial^2 u}{\partial x^2} + 2xy \frac{\partial^2 u}{\partial x \partial y} + y^2 \frac{\partial^2 u}{\partial y^2}$.

- 4. Find approximate value of $\left[(0.98)^2 + (2.01)^2 + (1.94)^2 \right]^{\frac{1}{2}}$.
- 5. Compute an approximate value of $(2.98)^3 + (1.01)^2$.
- 6. Expand $f(x, y) = x^2 + 3y^2 9x 9y + 26$ as Taylor's series expansion about the point (1,2).
- 7. Expand $\tan^{-1}\left(\frac{y}{x}\right)$ in the neighborhood of (1,1) up to and inclusive of second degree terms. Hence compute f(1.1,0.9).
- 8. Find the stationary point of $f(x, y) = x^3 + y^3 + 3axy, a > 0$

10 marks any one of Four

Maximize sinA sinB sinC A,B,C is angle of Triangle

- 9. Find the dimensions of a rectangular box of maximum capacity whose surface area is given when (i) box is open at the top (ii) box is closed.
- 10. Find the maximum and minimum distance of the point (1,2,-1) from the sphere $x^2 + y^2 + z^2 = 24$.
- 11. Divide a number into three parts such that the product of first, square of second and cube of third is maximum.

10 marks any one of three

12. If
$$u, v, w$$
 are the roots of equations $(x - \lambda)^3 + (y - \lambda)^3 + (z - \lambda)^3 = 0$, then find $\frac{\partial (u, v, w)}{\partial (x, y, z)}$.

- 13. If $u_1 = \frac{x_2 x_3}{x_1}$, $u_2 = \frac{x_3 x_1}{x_2}$, $u_3 = \frac{x_1 x_2}{x_3}$ find the value of $\frac{\partial (u_1, u_2, u_3)}{\partial (x_1, x_2, x_3)}$
- 14. If u = x + y + z, $v = x^2 + y^2 + z^2$, $w = x^3 + y^3 + z^3 3xyz$, prove that u, v, w are not independent and hence find the relation between them.

UNIT-5

2 marks any two of three

- 1. If $\phi = 3x^2y y^3z^2$, find grad ϕ at point (2,0,-2).
- 2. For the scalar field $u = \frac{x^2}{2} + \frac{y^2}{3} + \frac{z^2}{4}$, find the greatest directional derivative at (1,2,1).
- 3. State: (i) Gauss divergence theorem (ii) Green's theorem (iii) Stoke,s Theorem.

10 marks any one of Four

- 4. Find the value of 'b' for a Solenoidal vector $\vec{F} = (bx)\hat{i} (5y)\hat{j} + (2z)\hat{k}$.
- 5. Show that the vector field (y + z) i+(z + x) j + (x + y) k is irrotational and find velocity potential
- 6. A vector field is given by $\vec{A} = (x^2 + xy^2)\hat{i} + (y^2 + x^2y)\hat{j}$. Show that the field is irrotational and find the scalar potential.
- 7. If $\overrightarrow{r} = x \hat{i} + y \hat{j} + z \hat{k}, r = |\overrightarrow{r}|, \phi$ be any scalar then show that $div(gradr^n) = \nabla^2 r^n = n(n+1)r^{n-2}$. Hence show that $\nabla^2 \left(\frac{1}{r}\right) = 0$.
- 8. Show that the vector field $\vec{F} = \frac{r}{r^3}$ is irrotational as well as solenoidal.

10 marks any one of three

- 9. Find the directional derivative of $\phi = (x^2 + y^2 + z^2)^{-\frac{1}{2}}$ at the point P(3,1,2) in the direction of the vector $yz \hat{i} + zx \hat{j} + xy \hat{k}$.
- 10. Find the directional derivative of $\varphi(x,y) = 5x^2y 5y^2z + \frac{5}{2}z^2x$ at the point (1,1,1) in the direction of line $\frac{x-1}{2} = \frac{y-3}{-2} = \frac{z}{1}$.
- 11. Find the directional derivative of $xy^2 + zy^2 + xz^2$ at the point (2, 0, 3) in the direction of the outward normal to the sphere $x^2 + y^2 + z^2 = 14$ at the point (3, 2, 1).