Security Level: 内部公开

Hi3559A/C V100、Hi3519AV100与 Hi3519V101 ISP算法差异说明

> HiSilicon HiISP组 2018-04-25

www.hisilicon.com

HiSilicon Confidential

HiSilicon Technologies Co., Ltd.

版权申明

版权所有 © 深圳市海思半导体有限公司2018。保留一切权利。

非经本公司书面许可,任何单位和个人不得擅自摘抄、复制本文档内容的部分或全部,并不得以任何形式传播。

HISILICON

商标声明

海思和其他海思商标均为深圳市海思半导体有限公司的商标。

本文档提及的其他所有商标或注册商标,由各自的所有人拥有。

注意

您购买的产品、服务或特性等应受海思公司商业合同和条款的约束,本文档中描述的全部或部分产品、服务或特性可能不在您的购买或使用范围之内。除非合同另有约定,海思公司对本文档内容不做任何明示或默示的声明或保证。由于产品版本升级或其他原因,本文档内容会不定期进行更新。除非另有约定,本文档仅作为使用指导,本文档中的所有陈述、信息和建议不构成任何明示或暗示的担保。

本文介绍针对Hi3559A/C V100、Hi3519AV100 与Hi3519V101 ISP算法 差异进行说明。本文档不涉及接口改动。

本文适用于以下版本:

- Hi3559AV100
- Hi3559CV100
- Hi3519AV100

修订记录

NO.	Description	Version	Date
1	Hi3559A/C V100相对于Hi3519V101的算法差异文档	00B01	2018-1-25
2	新增Hi3519AV100算法差异描述	00B02	2018-4-15
		A TOP OF THE PARTY	

Sensor和镜头相关

- 1 AF
- 2 LSC
- 3 CAC
- 4 DPC
- 5 GE

MISILICON

AF差异

【差异概述】

主要提升WDR场景AF的效果,以及增加横向IIR滤波器的延迟补偿。

差异点	Hi3559A/C V100 / Hi3519AV100	Hi3519V101
	改善由于IIR滤波器响应延迟导致的统计信息偏移问题	N/A
规格	支持Gamma可调	Gamma固定
	增加DRC后RAW域统计信息	N/A
	支持获取FE处Raw域的统计信息,离线模式延时小	N/A
並田 羊目	追加DRC后RAW 域统计信息,提升WDR场景AF的效果,	N/A
效果差异	横向IIR滤波器的延迟补偿,提升AF各分格统计对齐画面中物体的精确度	N/A

Mesh LSC和Radial LSC差异

【**差异概述**】 主要在规格上的差异

差异点	Hi3559A/C V100 / Hi3519AV100	Hi3519V101
	增益位宽10bit , 精度可调	增益位宽8bit,精度可调
Mesh LSC规格	2组增益表,分区32*32, 可在软件中设置多组光源增益表,选择合适的两组光源进行配置	根据光源数量选择分区: 1种光源增益表,分区64*64; 2种光源增益表,分区64*32; 4种光源增益表,分区32*32
	采用R, Gr, Gb, B四通道校正	采用R, G, B三通道校正
	3组光源增益表,根据色温联动进行校正增益表的插值	一组光源增益表
Radial LSC规格	采用R, Gr, Gb, B四通道校正	采用R, G, B三通道校正
	增益位宽16bit , 精度可调	N/A

CAC算法差异

【差异概述】

相比Hi3519V101, Hi3559A/C V100及Hi3519AV100芯片新增CAC功能,用以减弱镜头带来的紫边和色差现象。

差异点	Hi3559A/C V100 / Hi3519AV100	Hi3519V101
	CAC分为GCAC和LCAC模块 GCAC用以处理镜头横向色差产生的边界色偏问题; LCAC用以处理镜头紫边问题;	N/A
CAC规格	GCAC和LCAC可矫正的最大色偏宽度为4个像素以内	N/A
	不同镜头的GCAC参数,需要通过HiPQTool中的离线标定工具得到	N/A

HISILICON

GCAC开启/关闭对比图

对比图

结论

GCAC开启后,画面强边缘由于横向色差导致的色彩边缘(绿、紫)可以得到消除,但是对于较宽的像素色彩边缘,只能做到减弱,不能完全消除。

LCAC开启/关闭对比图

对比图

LCAC开启

结论

Page 10

LCAC开启后,树枝、树叶等强对比区域周围的紫边现象可以得到好转。

DPC差异

【差异概述】

Hi3559A/C V100及Hi3519AV100静态DPC相同颜色通道可校正2*2坏点簇。

差异点	Hi3559A/C V100 / Hi3519AV100	Hi3519V101
+111+67	静态DPC相同颜色通道可校正2*2坏点簇	静态DPC相同颜色通道可校正尺寸为2的坏点簇
规格	动态DPC相同颜色通道可校正2个坏点	动态DPC相同颜色通道可校正1个坏点
效果差异	N/A	N/A

GE差异

【差异概述】

主要在控制Crosstalk产生的格子现象,Hi3559A/C V100及Hi3519AV100作用的强度更大,可以在格子去除和边缘伪彩色(副作用)下取得PQ的权衡。

差异点	Hi3559A/C V100 / Hi3519AV100	Hi3519V101
规格	无差异	N/A
效果差异	GE去伪彩色强度,增强。强度调强能基本去除格状噪声。	N/A

清晰度噪声领域

- 1 3DNR
- 2 Sharpen
- 3 Demosaic
- 4 2DNR
- 5 LDCI/DCI

MISILICON

3DNR差异

【差异概述】

Hi3559A/C V100及Hi3519AV100主要体现在细节更加丰富,噪声自然无pattern。PQ调节的灵活性增加,可以根据绝对亮度调整去噪强度,也可以配置不同的PQ调试风格。

差异点	Hi3559A/C V100 / Hi3519AV100	Hi3519V101
规格	无差异	无差异
	运动物体(包含人脸)上的噪声更加自然,无pattern。	N/A
效果差异	整理残留噪声颗粒感小,更加细腻,细碎。	N/A
	可以绝对亮度调整去噪强度,可以调试更加灵活的PQ效果	N/A
	细节保留能力更强	N/A
	去除低频色噪能力增强	N/A
	可以通过配置比较灵活的调整噪声形态,和细节做权衡,达到PQ效果。	N/A

3DNR差异

图像细节保留能力提升,图像更加细腻。

Sharpen差异

【差异概述】

用于增加对图像不同区域的锐化能力控制,比如图像弱边缘、高饱和度的深红和深蓝区域、肤色区域等等,支持更多的细节锐化风格,并提升了对shoot的抑制能 Hi3559A/C V100及Hi3519AV100主要力

差异点	Hi3559A/C V100 / Hi3519AV100	Hi3519V101
规格	无差异	无差异
	支持更多锐化后的细节的细碎度风格	N/A
	增强对弱边缘的锯齿、锐度的平衡控制	N/A
か田羊巳	支持高饱和度的深红和深蓝色区域的锐化单独可调	N/A
效果差异	支持肤色区域的锐化强度的单独可调	N/A
	提升overshoot/undershoot的抑制能力	N/A
	改善边缘毛刺	N/A

Sharpen差异

锯齿、锐度的平 衡控制

提升overshoot、 undershoot的抑制能力

Sharpen差异

的锐化强度的 单独可调

支持深红区域 的锐化强度的 单独可调

支持深蓝区域 的锐化强度的 单独可调

HISILICON Page 18 www.hisilicon.com HiSilicon Confidential

Demosaic差异

【差异概述】

Hi3559A/C V100及Hi3519AV100主要增加细节细碎度可控功能,改善细节蠕虫状表现。

差异点	Hi3559A/C V100 / Hi3519AV100	Hi3519V101
规格	无差异	N/A
效果差异	树叶等细节细碎度表现较自然	N/A

2DNR差异

【差异概述】

Hi3559A/C V100及Hi3519AV100 主要增加降噪强度参考LSC增益影响,提升Shading严重区域去噪强度。

差异点	Hi3559A/C V100 / Hi3519AV100	Hi3519V101
规格	支持降噪强度参考LSC增益影响	N/A
效果差异	镜头Shading严重区域,参考LSC增益,增大去噪强度	N/A

Page 20

MHSILICON

LDCI与DCI差异

【差异概述】

Hi3559A/C V100、Hi3519AV100采用LDCI进行对比度增强,用于替换Hi3519V101对比度增强模块DCI。

差异点	Hi3559A/C V100 / Hi3519AV100	Hi3519V101
规格	LDCI基于局部直方图进行对比度增强,局部程度可调;	DCI基于全局直方图对比度增强,局部程度不可调;
效果差异	LDCI有效提升亮暗区对比度时,能够同时保留亮暗区细节;	DCI提升亮暗区对比度时,可能损失亮暗区细节;

色彩领域

- 1 AWB
- 2 CLUT
- 3 CA

4 HISILICON

Page 22

AWB差异

【差异概述】

Hi3559A/C V100及Hi3519AV100统计信息部分支持分不同亮度进行统计。

			* '\
	差异点	Hi3559A/C V100 / Hi3519AV100	Hi3519V101
		统计信息最大支持亮度分4组	统计信息不支持亮度分组
	规格差异	统计信息最大支持32*32输出	统计信息最大支持32*32*4输出
	MIRŒ#	统计信息模块输入数据精度较低,在RGB域额外有一个统计信息弥补精度不足	统计信息模块输入数据精度提升,删除RGB域统计信息模块
		色度判断参数支持六边形配置	色度判断参数不支持六边形配置

CLUT算法差异

【差异概述】

相比Hi3519V101,Hi3559A/C V100及Hi3519AV100芯片新增CLUT功能,利用线性RGB数据上的查找表,实现复杂的颜色调整,达到用户的颜色调节需求。

差异点	Hi3559A/C V100	Hi3519AV100	Hi3519V101
CLUT规格	RGB的LUT表大小为27x27x27	RGB的LUT表大小为17x17x17	N/A

Page 24

CLUT开启/关闭对比图

对比图

结论

Page 25

CLUT开启后,画面颜色的整体风格可以发生变化,左图是未使用CLUT,中图是增加一些暖色调,右图是增加一些冷色调。

CA算法差异

【差异概述】

相比Hi3519V101, Hi3559A/C V100及Hi3519AV100芯片新增CA功能,支持根据亮度调整色度的功能。相比Hi3519V101, Hi3559A/C V100及Hi3519AV100芯片支持热成像图像上色(CP)功能。

差异点	Hi3559A/C V100 / Hi3519AV100	Hi3519V101
CA规格	支持根据亮度调整色度的功能	N/A
	支持热成像sensor图像上色	N/A

CA开启/关闭对比图

对比图

结论

CA开启后,可以根据亮度调整饱和度,做到局部 增强饱和度的功能。

CP开启/关闭对比图

对比图

1000

Grayscale (White hot

Grayscale (Black hot)

High Contrast

Ironbow

Rainbow

色板(左图使用了Rainbow)

CP开启后,可以根据用户喜好色给热成像sensor上颜色。

动态范围

- 1 AE
- 2 WDR
- 3 DRC

HISILICON

Page 29

AE差异

【差异概述】

差异点	Hi3559A/C V100 / Hi3519AV100	Hi3519V101
	不支持全局五段直方图。	支持全局五段直方图。
支持WDR合成前1024段直方图。 规格		支持WDR合成前256段直方图。
が行	支持WDR合成前分块均值。	不支持WDR合成前分块均值。
支持DRC后8bit分块均值(LA模块)。		无此模块。
效果差异	N/A	N/A

【差异概述】

(1)新增fusion模式,当检测到工频闪时可切换到fusion模式(2)WDR增加降噪算法,改善运动区域的噪声(3)改善运动手臂断裂问题

差异点	Hi3559A/C V100	Hi3519AV100	Hi3519V101
1=16	支持WDR模式和Fusion模式	支持WDR模式和Fusion模式	仅支持WDR模式
规格	支持降噪可调	支持降噪可调,WDR模式支持短帧降噪	N/A
	N/A	WDR模式支持强制输出长帧	N/A
沙田羊 B	Fusion模式工频闪较弱	Fusion模式LED频闪效果表现更佳	N/A
效果差异	改善运动手臂断裂和运动区域噪声	进一步改善运动手臂断裂和运动区域噪声	N/A

结论

Fusion模式下Hi3519AV100相比Hi3559A/C V100 在LED灯场景下频闪效果表现进一步改进。

ORONCOL

MISILICON

对比图

结论

WDR模式Hi3519AV100相比Hi3559A/C V100新增短帧降噪功能,短帧区域噪声效果表现更好。

对比图

结论

WDR模式Hi3519AV100相比Hi3559A/C V100新增强制输出长帧功能,运动区域噪声效果表现更好。

DRC差异

【差异概述】

主要提升WDR场景室外细节和背光小脸的亮度。新增Cubic、用户自定义Tone Mapping曲线。新增非线性细节增强。

差异点	Hi3559A/C V100	Hi3519AV100	Hi3519V101
规格	支持Asymmetry, Cubic,用户自定义 Tone Mapping曲线	支持Asymmetry,用户自定义Tone Mapping曲线	仅支持Asymmetry曲线
观情	新增非线性细节增强	N/A	N/A
か田羊巳	提升背光小脸的亮度和细节	提升背光小脸的亮度和细节	N/A
效果差异	改善室外亮区细节	改善室外亮区细节	N/A

离线算法

- 1 DIS
- 2 GDC
- 3 AVSP

MHSILICON

DIS 差异

差异点	Hi3559A/C V100	Hi3519AV100	Hi3519V101
	最大性能支持7680x4320@30fps; 3840x2160@120fps	最大性能支持3840x2160@60fps;	最大性能支持3840x2160@30fps;
	单路CPU占用率下降至:	单路CPU占用率下降至:	2
规格	7680x4320/3840x2160@30fps:~ 2%	3840x2160@30fps:~ 2%	N/A
	3840x2160@60fps: 5%~6%	3840x2160@60fps : 5%~6%	
	IPC场景支持6-DOF矫正	IPC场景支持6-DOF矫正	N/A
か田羊巳	防抖稳定性提升	基于GYRO的防抖效果进一步提升	N/A
效果差异	防拖拽能力提升	基于GYRO的防抖无拖拽问题	N/A

GDC 差异

差异点	Hi3559A/C V100 / Hi3519AV100	Hi3519V101
	59A支持YUV422及10bit图像输入,19A支持YUV420及8bit图像输入	支持YUV420及8bit图像输入
	LDC及鱼眼矫正模式下,图像中心点偏移配置扩展至[-511,511]	N/A
+111+65	鱼眼矫正Radius配置最大值扩展至Max(height,width)*0.75	N/A
规格 ————————————————————————————————————	增加自由角度旋转功能	N/A
	增加LDC+固定角度旋转组合功能	N/A
	增加图像透视投影(PMF)变换功能	N/A
	LDC 解决Ratio连续调整跳变问题;	N/A
效果差异	LDC解决小畸变大分辨率下图像毛刺问题	N/A
	LDC解决枕型畸变某些场景下边线黑线问题	N/A

GDC差异 (LDC)

Hi3559A/C V100 / Hi3519AV100

Hi3519V101

改善小角度边缘毛刺

AVSP差异

【差异概述】

将多路图像拼接成高分辨率或者大视野的全景图,满足全景拼接需求。典型应用为双鱼眼背靠背拼接、4目非鱼眼水平拼接等。

差异点	Hi3559A/C V100 / Hi3519AV100	Hi3519V101
	59A支持最多8目鱼眼或非鱼眼拼接,19A支持最多4目	仅支持两目非鱼眼水平拼接
规格	支持等距柱面投影,柱面投影,平面投影及立方体投影共四种投影模式	支持柱面投影及平面投影
Ажта	支持实时调整输出投影图像的yaw, pitch, roll 姿态角	N/A
	基于图像内容的融合方式	Alpha融合

Hi3559AV100 / Hi3519AV100

拼接前

Hi3519V101

拼接口

THANK YOU, THORNER OF THE THANK YOU

www.hisilicon.com

A THE PARTY OF THE

MISILICON

Page 41