Name:	
J#:	Dr. Clontz
Date:	

MASTERY QUIZ DAY 24

Math 237 – Linear Algebra Fall 2017

Version 2

Show all work. Answers without work will not receive credit. You may use a calculator, but you must show all relevant work to receive credit for a standard.

Standard A1.

Mark:

Let $T: \mathbb{R}^3 \to \mathbb{R}^4$ be the linear transformation given by

$$T\left(\begin{bmatrix} x \\ y \\ z \end{bmatrix}\right) = \begin{bmatrix} -3x + y \\ -8x + 2y - z \\ 7x + 2y + 3z \\ 0 \end{bmatrix}.$$

Write the matrix for T with respect to the standard bases of \mathbb{R}^3 and \mathbb{R}^4 .

Standard A2.

Mark:

Determine if the map $T: \mathcal{P}^3 \to \mathcal{P}^4$ given by T(f(x)) = xf(x) - f(x) is a linear transformation or not.

Standard M1.

Mark:

Let

$$A = \begin{bmatrix} 2 & 3 \\ 0 & 1 \end{bmatrix} \qquad B = \begin{bmatrix} 3 & 1 & 0 \end{bmatrix} \qquad C = \begin{bmatrix} 0 & -1 & 4 \\ 1 & -1 & 2 \end{bmatrix}$$

Exactly one of the six products AB, AC, BA, BC, CA, CB can be computed. Determine which one, and compute it.

Standard M2.	Ма	rk:		
Determine if the matrix	$\begin{bmatrix} 3 \\ 2 \\ 0 \end{bmatrix}$	-1 1 1	$\begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix}$	is invertible.

Additional Notes/Marks