CS503 | Machine Learning | Quiz-2 [2022]

Total points 16.5/25

- + There are a total of 9 questions.
- + There is 1 subjective question whose answer is to be written on paper and the PDF of answer script is to be uploaded in this form itself. Naming convention YourName_RollNo.pdf
- + The total time for the quiz is 45 min.
- + This quiz is for 25 marks.
- + Keep a pen and paper for rough work.
- + Some responses are for information and not graded.

All the Best!!

Name *
Ashish Sharma
Department *
Mathematics and Computing
Roll No *
2019MCB1213

Honour Code/Declaration: *

I declare that I will be fair and honest during the online examination. I will neither give nor receive unauthorized aid on any question in this quiz/exam. I also understand that it is my obligation to report violations of this honour code to the instructor. If I have been found/discovered in violation of the honour code then I accept that I will be liable to receive the 'Fail' grade in this course.

I Agree

Choose the most appropriate response:

/	Suppose the number of nodes in the input layer is 5 and in the hidden layer 2/2
	it is 10. The maximum number of connections from the input layer to the
	hidden layer would be-

- More than 50
- Less than 50
- 50
- 5^10

A perceptron model can represent which of the following functions: 2/2

- ✓ А∧В
- $(A \land \neg B) \lor (\neg A \land B)$
- $A \wedge B \wedge \neg C$
- None of the above

Adding the sum of all weight parameters to the Error function E helps in: 2/2 (Choose all that apply)

- Improving the generalization accuracy of the model
- Improving the training accuracy of the model over the given dataset
- Forces gradient descent to find weight vectors with small magnitude
- Avoids overfitting the datatset

×	Which of the following are true about gradient descent? (select all statements that are true.)	1/2				
	After each iteration, we modify the weight vector in the direction of the gradient.					
	We have to choose a non-variable learning rate.					
✓	After each iteration, we modify the weight vector in the direction of the negative gradient.					
	In the gradient descent algorithm each update of the weight vector depends on a the training examples.	all				
Corr	Correct answer					
~	After each iteration, we modify the weight vector in the direction of the negative gradient.					
~	In the gradient descent algorithm each update of the weight vector depends on a the training examples.	all				
✓	Parameter Sharing is a feature of	2/2				
MLP						
	CNN	×				
	RNN	×				
	None of the above					
No c	orrect answers					

	Consider a 10-class prediction problem. Which of the following 2 configuration must be used in the output layer of an ANN?	2/2
	Activation function = softmax, Error function = cross entropy Activation function = sigmoid, Error function = cross entropy Activation function = softmax, Error function = mean squared error Activation function = sigmoid, Error function = mean squared error	,
vector	a dataset having 1000 instances. The target label is binary while the input r has 5 features. Assuming you train an ANN on this dataset for 50 epochs, nany weight updates will be applied in case of :	

\sim	Ctacha	otio I	Cradiant	Descent
_	Stocha	SHC	Gradieni	Descem

0/2

500000

X

Correct answer

50000

Solve

✓ Consider the following: (Write your answer as comma separated values in 3/3 order as [w_1, w_2, w_3])

Assume you have three training instances in dataset D, each with 3 features:

Instance 1: [1, 0, 1] Target Label: 1

Instance 2: [0, 1, 1] Target Label: 0

Instance 3: [1,0,0] Target Label: 1

Consider the initial weight vector as w = [0, 0, 0] (one weight parameter for each feature). Using gradient descent with Least Squared error $E(w) = \frac{1}{2} \sum_{d} (y_d - w^T x_d)^2$ and

learning rate $\eta = 1$, calculate the first update vector ∇w to be added to w = [0, 0, 0].

[2, 0, 1]

Subjective: Answer this question on paper and upload using the upload button at the bottom of this form

X

Consider the following 1-dimensional ConvNet, where all variables are scalars:

$$L = \frac{1}{2}(y - \hat{y})^2$$

$$\hat{y} = \left[\begin{array}{cc} w_1 & w_2 \end{array} \right] \left[\begin{array}{c} v_1 \\ v_2 \end{array} \right] + a$$

$$\left[\begin{array}{c} v_1 \\ v_2 \end{array}\right] = \left[\begin{array}{c} \max\{z_1,z_2,0\} \\ \max\{z_2,z_3,0\} \end{array}\right]$$

$$\left[\begin{array}{c} z_1 \\ z_2 \\ z_3 \end{array}\right] = \left[\begin{array}{cccc} k_1 & k_2 & k_3 & 0 & 0 \\ 0 & k_1 & k_2 & k_3 & 0 \\ 0 & 0 & k_1 & k_2 & k_3 \end{array}\right] \left[\begin{array}{c} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \end{array}\right] + \left[\begin{array}{c} b \\ b \\ b \end{array}\right]$$

Given,
$$\frac{\partial L}{\partial v_1}=\delta_1$$
 and $\frac{\partial L}{\partial v_2}=\delta_2$

Show the calculation for:

$$\frac{\partial L}{\partial z_1}$$
, $\frac{\partial L}{\partial z_2}$, $\frac{\partial L}{\partial z_3}$

Attempted

2.5/4

Not Attempted

No correct answers

Upload your pdf

ASHISH_SHARM...

This form was created inside of Indian Institute of Technology Ropar.

Google Forms