Input:

C: regularization parameter tol: numerical tolerance max_passes : max # of times to iterate over α 's without changing $(x^{(1)}, y^{(1)}), \dots, (x^{(m)}, y^{(m)})$: training data

Output:

 $\alpha \in \mathbb{R}^m$: Lagrange multipliers for solution

 $b \in \mathbb{R}$: threshold for solution

- \circ Initialize $\alpha_i = 0, \forall i, b = 0.$
- \circ Initialize passes = 0.

$$f(x) = \langle \omega, x \rangle + b$$
$$\omega = \sum_{i=1}^{m} \alpha_i y^{(i)} x^{(i)}$$

$$\omega = \sum_{i=1}^{m} \alpha_i y^{(i)} x^{(i)}$$

- \circ for i = 1, ..., m,
 - \circ Calculate $E_i = f(x^{(i)}) y^{(i)}$ using (2).
 - \circ if $((y^{(i)}E_i < -tol \&\& \alpha_i < C) || (y^{(i)}E_i > tol \&\& \alpha_i > 0))$
 - \circ Select $i \neq i$ randomly.
 - \circ Calculate $E_j = f(x^{(j)}) y^{(j)}$ using (2).
 - Save old α 's: $\alpha_i^{\text{(old)}} = \alpha_i$, $\alpha_j^{\text{(old)}} = \alpha_j$.
 - \circ Compute L and H by (10) or (11).
 - \circ if (L == H)

continue to next i.

- \circ Compute and clip new value for α_i
- \circ if $(|\alpha_j \alpha_j^{\text{(old)}}| < 10^{-5})$

continue to next i.

 \circ Determine value for α_i

$$\sum_{i=1}^{m} \alpha_i y^{(i)} = 0$$