Zvukový podsystém PC

Zvukové karty

Hlavní funkce – vstup a výstup zvukového signálu, ovládaná softwarově

Barva	Funkce
Pink	Analogový mikrofonní vstup.
Light blue	Analogový vstup.
Lime green	Analogový výstup pro hlavní stereo signál (přední reproduktory nebo sluchátka).
Black	Analogový výstup pro zadní reproduktory.
Silver	Analogový výstup pro boční reproduktory.
Orange	S/PDIF digitální výstup.

Typicky obsahuje zvukový čip, který provádí D-A převod zvukového záznamu

Mikrofon

Mikrofon je zařízení pro přeměnu akustického (zvukového) signálu na signál elektrický. První mikrofon vynalezl tvůrce gramofonu Emile Berliner 4. března 1877.

Principy mikrofonů

- Kondenzátorový mikrofon
 - Akustické kmity rozechvívají membránu která je jednou z elektrod kondenzátoru
 - Tím se mění kapacita kondenzátoru
 - Vyžaduje napájení
 - Při vhodné konstrukci mikrofonní vložky je možné polarizačním napětím měnit směrové charakteristiky mikrofonu
 - Nejkvalitnější, profesionální mikrofony
- Elektretový mikrofon
 - Je to typ kondenzátorového mikrofonu který vyžaduje elektrické pole (tvořené permanentně nabitou nevodivou hmotou)
 - Vyžaduje předzesilovač
 - o Jednoduchá konstrukce → miniaturizace rozměrů (do telefonů apod.)
- Dynamický/Membránový mikrofon
 - o Membrána pohybuje s cívkou v magnetickém poli (permanentní magnet)
 - o Méně citlivé → lepší zpracování hlasitého zpěvu při konzertech
 - Odolné vůči mechanickému poškození
 - Nevyžadují napájení
- Páskový mikrofon
 - Typ dynamického mikrofonu
 - Membránou je kovový pásek (proužek hliníkové fólie v magnetickém poli)
 - Náchylný k mechanickému poškození
- Uhlíkový mikrofon
 - Byl 1. prakticky použitelný mikrofon
 - o Membrána stlačuje uhlíková zrna a tím mění jejich odpor

11 Zvukový podsystém PC – zvukové karty, mikrofony, reproduktory, zvukové formáty, vzorkovací frekvence, datový tok, bitová hloubka, Shannonův-Nyquistův-Kotělnikovův teorém

• Piezoelektrický mikrofon

o Pracuje na principu piezoelektrického jevu (stlačováním krystal generuje signál)

Vlastnosti mikrofonů

Směrové vlastnosti mikrofonů

V závislosti na velikosti a konstrukci pouzdra mikrofonu může tento přijímat zvuk z různých směrů v různé intenzitě. Konstruktéři mikrofony záměrně navrhují s různými charakteristikami v závislosti na předpokládaném použití. Směrová charakteristika je frekvenčně závislá – projevuje se zpravidla u vysokých tónů, zatímco hluboké zůstávají nepoznamenány.

Frekvenční charakteristiky

Fyzikálním ideálem by byl mikrofon, který by akustický podnět přeměnil vždy na odpovídající elektrický signál bez ohledu na jeho frekvenci. Tak tomu však není a nejen proto, že by takový mikrofon byl mj. současně i barometrem. Dosažení vyrovnané charakteristiky alespoň ve slyšitelné oblasti vyžaduje nákladná opatření, např. velmi malé rozměry mikrofonu. Z nedostatku se však časem stala ctnost a frekvenční nevyrovnanosti jednotlivých výrobků začaly být využívány tak, aby pomohly vyzdvihnout či potlačit některé charakteristické zvukové odstíny snímaných objektů. Např. všechny mikrofony kromě kulových pracují jako převodníky gradientu tlaku, s přibližováním ke zdroji signálu zesilují hluboké kmitočty – tzv. **proximity efekt**. Toho využívají někteří zpěváci k dosažení teplé barvy hlasu v některých pasážích zpěvu přibližováním a oddalováním mikrofonu.

Pro speciálnější účely se vyrábějí mikrofony s potlačenou částí kmitočtové charakteristiky (např. pro reportážní snímání řeči nebo pro komunikační zařízení v hlučném prostředí), v některých případech jsou vybaveny i přepínatelnými korekcemi přímo ve vlastním tělese mikrofonu, nebo mají zdůrazněnu určitou část spektra, a jsou určeny třeba ke snímání určitých hudebních nástrojů.

11 Zvukový podsystém PC – zvukové karty, mikrofony, reproduktory, zvukové formáty, vzorkovací frekvence, datový tok, bitová hloubka, Shannonův-Nyquistův-Kotělnikovův teorém

Reproduktory

- Elektrodynamické
 - o Základem je cívka a permanentní magnet
 - o Vodičem protéká elektrický proud a tím se pohybuje v magnetickém poli
- Elektromagnetické
 - o Pevná cívka přitahuje membránu (např. železný plíšek)
 - Dnes již moc nevyužíváno
 - o Jednoduchá konstrukce, značné zkreslení
- Elektrostatické
 - Membrána z tenké fólie s vodivou vrstvou bývá umístěna mezi dvě pevné elektrody (ve tvaru sítěk), pracuje na principu vzájemného přitahování a odpuzování elektricky nabitých desek
 - Velké rozměry
- Piezoelektrické
 - Využívá se piezoelektrického jevu
 - Využití jako bzučák
 - o Jednoduchá konstrukce, nízká cena
- Plazmové
 - o Nemají membránu, využívají změn tlaku vzduchu vyvolaných obloukovým vývojem
 - Využívá se velmi málo

Zvukové formáty

Formát – popis dat, popis uložení do souboru

Kodek (Kodér + dekodér) – konkrétní program

Bezeztrátové

Bezeztrátový formát zvuku ukládá digitální zvuk způsobem zachovávajícím veškeré originální digitální informace nebo způsobem umožňujícím rekonstruovat tyto informace během přehrávání.

- WAVE (.wav) Microsoft
- AIFF (.aiff) Apple

Ztrátové

Ztrátový formát zvuku maže některé informace z originálního digitálního záznamu pro úsporu místa a současně se snaží při přehrávání zachovat maximum kvality originálního zvuku. Jednotlivé formáty se vyznačují různým vyvážením mezi kompresídat pro úsporu místa a zachováním informací pro udržení kvality zvuku.MP3 (.mp3)

• AAC (.mp4) – následovník mp3, využívá se například v iPodech

Další

- MIDI (.midi) neukládá zvuk ale noty, velmi nízký objem dat, užití: vyzváněcí tóny, staré PC hry
- WMA (.wma) požívá se výhradně ve Windows Media Player
- AC3, Dolby Digital prostorový formát 5.1

11 Zvukový podsystém PC – zvukové karty, mikrofony, reproduktory, zvukové formáty, vzorkovací frekvence, datový tok, bitová hloubka, Shannonův-Nyquistův-Kotělnikovův teorém

Vzorkovací frekvence

Analogový signál protíná v čase vzorkování úrovně signálu vyznačené červenými body, které jsou v převodníku kvantovány na zelené body, odpovídající nejbližšímu číselnému vyjádření

Datový tok

Datový tok neboli bit rate je množství dat přenesených za určitou časovou jednotku.

Bitová hloubka

Je počet číslic použitých k uložení každého vzorku analogového signálu. Standardní bitová hloubka pro zvukové disky CD je 16 bitů při vzorkovací frekvenci 44,1 kHz – to znamená, že každou sekundu je načteno 44 100 vzorků a že každý vzorek ukládá 16 bitů informace. Obecně platí, že vyšší bitová hloubka znamená vyšší kvalitu zvuku a rovněž větší velikost souboru.

Shannonův-Nyquistův-Kotělnikovův teorém

Shannonův-Nyquistův-Kotělnikovův teorém je fyzikální tvrzení o tom, že "přesná rekonstrukce spojitého, frekvenčně omezeného signálu z jeho vzorků je možná tehdy, pokud byla vzorkovací frekvence vyšší než dvojnásobek nejvyšší harmonické složky vzorkovaného signálu."