大数据分析

Linear Algebra Preliminaries

刘盛华

Vectors

- $\mathbf{x} = (x_1, x_2, ..., x_d) \in \mathbb{R}^d$ (each x_i is a component)
 - A point in d-dimensional space
- Norm or magnitude $\|\mathbf{x}\| = (\mathbf{x}^T \mathbf{x})^{1/2} = (\mathbf{x}_1^2 + \mathbf{x}_2^2 + ... + \mathbf{x}_d^2)^{\frac{1}{2}}$
 - Length of the vector (Pythagorean theorem)
- Zero vector (norm zero), unit vector (norm one)
- Inner product $\langle \mathbf{x}, \mathbf{y} \rangle = x_1 y_1 + ... x_d y_d$
 - Result is a scalar
 - $\|\mathbf{x}\| = (\langle \mathbf{x}, \mathbf{x} \rangle)^{1/2}$
 - $\langle x, y \rangle = 0$ implies $x \perp y$

Vector spaces

- Space where vectors live
- Formally, a collection of vectors which is closed under linear combination
 - If {x, y} are in the space, so is ax+by for any scalars a, b ∈ R
 - Should always contain zero vector
- Examples: {0}, Rd, the line x = 3y in R2

Span and basis

- A set of vectors is said to span a vector space if one can write any vector in the vector space as a linear combination of the set
- $\{\mathbf{x}_1, \mathbf{x}_2, ..., \mathbf{x}_n\}$ span the space $\{\sum a_i \mathbf{x}_i \mid a_i \in R\}$
- This set is called the basis set
- Examples
 - The vectors {(0,1), (1,0)} span R²
 - {(1, 1)} spans x=y which is a subspace of R²
 - The vector {(0,1), (0,1), (1,1)} also span R²

Linear independence and orthonormality

- Linear independence a notion to remove redundancy in the basis
 - $\{x_1, x_2, ..., x_n\}$ are linearly independent iff the only solution to $\sum a_i x_i = 0$ is $a_1 = a_2 = ... = a_n = 0$.
 - Cannot express any vector x_i as a linear combination of the others
- Dimensionality of a vector space is the maximum number of linearly independent basis vectors
- Orthonormal basis
 - $\{\mathbf{x}_1, \mathbf{x}_2, ..., \mathbf{x}_n\}$ is orthonormal basis if $\langle \mathbf{x}_i, \mathbf{x}_i \rangle = 1$ if i=j and 0 otherwise
 - Coordinate axes for the vector space
- Example: The basis {(0, 1), (1,1)} for R² is linear independent but not orthonormal.

Matrices

- Operator which transforms vectors from one vector space to another
 - y = Ax
- The operator is linear, that is

$$A (ax + by) = a(Ax) + b (Ay)$$

- The result of applying the operator is a linear combination of the column vectors
 - Thus, Ax = b has an exact solution iff b is in the column space of A
- Eigen vectors of A are the special vectors are the special vectors **x** which satisfy

$$Ax = \lambda x$$
 for some λ

- λ is called the eigen value and x is the eigen vector
- How do we visualize the transformation geometrically?

Visualizing the matrix operator – special cases

- Identity matrix
 - Square matrix with diagonal elements 1 and non-diagonal elements 0
 - The transformed vector Ax is same x
- Diagonal matrix
 - Square matrix with non-diagonal elements 0
 - ith component in Ax is a scaled version of x_i (scaling = A_{ii})
- Orthonormal (or rotation) matrix
 - Matrix whose columns {a₁, a₂, ..., a_n} are such that < a_i, a_j>= 1 if i=j and 0 otherwise. That is, A^TA = I
 - · Rotates the vector
 - Preserves norms ||Ax|| = ||x|| (why?)

Thank you!