Clustering des clients du site de e-commerce olist

Open Classroom

Benjamin Bouchard

- 1- Clustering des clients du site olist: travail préparatoire
- 2 Clustering des clients du site olist: modélisation
- 3- Clustering des clients du site olist: interprétation des clusters

4- Clustering des clients du site olist: plan de maintenance

1- Clustering des clients du site olist: travail préparatoire

- Introduction
- Données olist
- Feature engineering
- Exploration

Introduction

- olist site de e-commerce brésilien
- clustering des clients du site olist
 - o définir des groupes de clients homogènes et cohérents :
 - sur la base de critères inconnus
 - en un nombre de groupes *inconnus*
 - si possible de tailles comparables
 - o exhiber les caractéristiques métier de chacun de ces groupes

Données olist

- Données fournies sous la forme d'un dump de base de données:
 - o 2 ans d'historique (de sept 2016 à oct 2018)
 - 96 096 clients (93 349 clients actifs)
 - o 99 441 commandes

Données olist

Feature Engineering

- Méthode retenue pour manipuler les données olist:
 - Chargement des données dans une base de données (postgres)
 - o Création d'une vue (SQL) pour la performance
 - Traitement des données effectués en SQL
 - Définition d'un "moteur" pour définir les caractéristiques client (facilement modifiable) en utilisant la vue précédente (ci-contre)
 - Création de fichiers plats (dataframe) pour les différentes phases de l'étude (clustering, maintenance)
 - Utilisation de l'identifiant client comme index des dataframes

```
lambda t:
       lambda t: (
       lambda t: (
       lambda t: (
```

Exploration

c_customer_unique_id

Commande:

- order value max
 - order_value_min
 - order_value_avg
 - order_value_stddev
 - nb_orders_canceled
 - nb orders
 - nb_orders_canceled
 - o nb_items_order_avg
 - amount_last_order
 - total order
 - o nb orders canceled
 - max_delay_delivery estimée)
 - nb_days_since_last_order
 commande (R)

: identifiant client.

: montant de la commande la plus chère

: montant de la commande la moins chère

: montant moyen de commande

: écart-type du montant de commande

: nombre de commandes annulés

: nombre de commandes (F)

: nombre de commandes annulés

: nombre moyen d'articles par commande

: montant de la dernière commande (M)

: montant total des commandes

: nombre de commandes annulés

: délai de livraison (par rapport à la date

: nombre de jours depuis la dernière

Paiement de la commande:

: nombre de paiements effectués en liquide.

nb_debit_card : nombre de paiements effectués avec une carte à débit.

nb voucher : nombre de paiements effectués avec des bons.

nb_credit_card : nombre de paiements effectués avec une carte de crédit.
 payment type max : type de paiement utilisé pour le plus gros montant.

payment_installments_max : nombre maximum de versements effectués pour un seul

paiement.

payment seauential max :nombre maximum de types de paiement utilisés pour un

Article:

r freight price max : ratio prix article/frais de livraison maximum

product cat total max : catégorie de produit

high_cat_total_max : catégorie de produit (regroupement)

weight_max : poids maximumvolume max : volume maximum

Avis:

review_score_min : note la plus basse
 review_score_avg : note moyenne
 review score max : note la plus haute

Géolocalisation:

o city : ville o state : état

seul paiement.

o distance : distance depuis le siège social d'olist

2 - Clustering des clients du site olist: modélisation

- Exploration des features client
- Pistes de modélisation
- Grille de recherche
- Critères de sélection
- Modèle sélectionné

- Jeu de données très uniforme
 - La très grande majorité des clients n'a passé qu'une seule et unique commande avec un seul article

- Jeu de données très uniforme
 - Montant de commande min, max et moyen égaux et un écart type nul.

- Jeu de données très uniforme
 - L'essentiel des clients paie avec une carte de crédit, une minorité en espèce.

• Le nombre de versements présente une distribution moins uniforme

• L'essentiel des clients fournissent un commentaire sur leur commande.

• Le volume des articles présente la distribution la moins uniforme.

Analyse en composantes principales.

- Analyse en composantes principales.
 - Features prédominantes dans les premières composantes:

Composantes	Features
C1	order_value_min order_value_max order_value_avg total_order
C2	review_score_min review_score_max review_score_avg
C3	nb_voucher payment_sequential_max

Matrice de corrélation

Pistes de modélisation

- Algorithmes de clustering considérés
 - K-means
 - DBScan
- Sélection des features
 - o RFM
 - Sur la base d'un niveau de variance expliquée
 - Sélection manuelle de feature
- Différents prétraitements:
 - Analyse en composantes principales
 - Application de log + 1
- Différents scalers
 - Standard
 - RobustScaler
 - MinMaxScaler

Grille de recherche

- Les algorithmes de clustering ont des hyper-paramètres qu'il faut déterminer:
 - o le nombre de cluster dans le kmeans

- Certains des paramètres des éléments de modélisation précédents peuvent également être considérés comme des "hyper-paramètres"
 - o les features sélectionnés, le niveau de variance expliqué

- Mise en place d'une grille de recherche:
 - o qui permet de définir des pipes sur la base des éléments de modélisation précédents
 - les pipes sont ensuite exécutés avec les différents hyper-paramètres spécifiés dans la configuration

Pistes de modélisation

```
2 low correlated = ['distance','volume max','weight max','nb orders canceled','nb days since last order','review score avg','r freight price max','order value stddev','nb debit card']
                   'fitted params':['dbscan eps','dbscan min samples']
                   pipe': Pipeline([("FS",RuleSelection(rule=lambda X: list(X.select dtypes('number').columns.values))),("SC",FeaturesScaler(scaler=StandardScaler())),
                   'pipe': Pipeline([ ("FS",FeaturesSelection(['nb days since last order','nb orders','amount last order'])) ("k-means",KMeans())]),
                   'pipe': Pipeline([("FS",FeaturesSelection(['nb boleto','nb credit card','order value avg','nb items order avg','review score avg'])),("k-means",KMeans())]),
                   'pipe': Pipeline([("FS",FeaturesSelection(['nb boleto','nb credit card','order value avg','nb items order avg','review score avg','payment installments max'])),("k-means",KMeans())])
                   'pipe': Pipeline([("F5",FeaturesSelection(['nb boleto','nb credit card','order value avg','nb items order avg','review score avg','r freight price max'])),("k-means",(Means())]),
```

Pistes de modélisation

```
'fitted params':['k-means n clusters']
'fitted params':['k-means n clusters']
   ("L".LambdaFeatures(f=Log plus1().features=['order value avg','volume max','weight max','r freight price max'])),
        ['order value avg', 'review score avg', 'volume max'],
       ['order value avg','review score avg','volume max','weight max','r freight price max'],
       ['order value avg', 'review score avg', 'volume max', 'weight max', 'distance'].
       ['order value avg', 'review score avg', 'volume max', 'payment installments max', 'nb credit card'],
       ['order value avg','review score avg','volume max','weight max','r freight price max','payment installments max','nb credit card','distance']
'fitted params':['kM n clusters','FS features']
'pipe': Pipeline([("FS",RuleSelection(rule=lambda X: list(X.select dtypes('number').columns.values))),("SC",FeaturesScaler(scaler=StandardScaler())),
```

Critères de sélection

- Inspiré par cet article: Selecting the number of clusters with silhouette analysis on KMeans clustering
- La sélection est basée sur le score silhouette (par valeur et moyen)
- On s'appuie sur la représentation du score silhouette par valeur:
 - o les formes les plus homogènes possibles
 - o toutes les formes "dépassent" la valeur moyenne

Modèle sélectionné

- Algorithme: K-means
- Nombre de cluster: 4
- Features utilisés:
 - order_value_avg
 - review_score_avg
 - volume_max

3- Clustering des clients du site olist: Interprétation des clusters

- Population des clusters
- Variation par rapport à la moyenne
- Graphe Radar
- Répartition du CA et des commandes par cluster

Population des clusters

Variation par rapport à la moyenne

Graphe Radar

Répartition du CA et des commandes par cluster

Caractéristiques des clusters

Caractéristiques des clusters- Recommandations

- Ne pas modifier la politique des frais de livraison.
- Ne pas modifier la politique d'annulation.
- Ne pas modifier la possibilité de paiement en plusieurs versements.
- Revoir l'attribution/la politique des vouchers.

4- Clustering des clients du site olist: Plan de maintenance

- Nécessité de re-calibrer le modèle à interval de temps régulier
- Indicateur ARI (Ajusted Rand Index) permet de quantifier la qualité du clustering:
 - ARI < 0.8 ⇒ nouvelle calibration nécessaire.
- Critères à définir:
 - o profondeur d'historique (à minimiser moins de consommation de ressource)
 - o interval de mise à jour (à maximiser faire la calibration le moins souvent possible)
 - paramètres étudiés :
 - historiques: 6,9 et 12 mois.
 - intervalles: de 1 à 6 mois.

Plan de maintenance - Conclusion

• historique d'un an avec mise à jour des données tous les trimestres.

