This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

MAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.

(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平7-240277

(43)公開日 平成7年(1995)9月12日

(51) Int.Cl. ⁶		識別記号	庁内整理番号	FI.	技術表示箇所
H05B	33/12				
C09K	11/06	Z	9280-4H		
H 0 5 B	33/14			•	
	33/22				
	33/26				
			審査請求	未請求 請求項	頁の数15 OL (全 35 頁) 最終頁に続く
(21)出願番号		特願平6-27853		(71)出願人	000183646
					出光興産株式会社
(22)出願日		平成6年(1994)2月25日			東京都千代田区丸の内3丁目1番1号
				(72)発明者	細川 地潮
					千葉県袖ケ浦市上泉1280番地 出光興産株
					式会社内
				(72)発明者	松浦 正英
				1	千葉県袖ケ浦市上泉1280番地 出光興産株
					式会社内
		•	,	(74)代理人	弁理士 大谷 保
			• ,		

(54) 【発明の名称】 有機エレクトロルミネッセンス素子

(57)【要約】

【目的】 構成が簡単で、特に青色純度を高めた有機エレクトロルミネッセンス素子(有機EL素子)を提供すること。

【構成】 (1) 基板/高屈折性透明電極/有機多層部/陰極の構成において、該透明電極と有機多層部との合計光学膜厚が、(2) 基板/高屈折性下地層/透明電極/有機多層部/陰極の構成において、該下地層と透明電極と有機多層部との合計光学膜厚、又は透明電極と有機多層部との合計光学膜厚が、(3) 基板/低屈折性下地層/透明電極/有機多層部/陰極の構成において、透明電極と有機多層部との合計光学膜厚が、屈折率1.6~1.8の有機多層部より発生するEL光の中心波長λ(λは440~490nm,500~550nm及び600~650nmより選択される。)における強度を増強するように設定されている有機EL素子である。

30

【特許請求の範囲】

【請求項1】 基板/高屈折性透明電極/有機多層部/陰極からなる有機エレクトロルミネッセンス素子であって、高屈折性透明電極と有機多層部との合計光学膜厚が、屈折率1.6~1.8の有機多層部より発生するエレクトロルミネッセンスの中心波長λ(ここで、λは440~490nm,500~550nm及び600~650nmより選択される。)における強度を増強するように設定されていることを特徴とする有機エレクトロルミネッセンス素子。

【請求項2】 合計光学膜厚が〔 $(nd)_1 + (nd)_2$ 〕で表され、かつ式 $4\pi/\lambda$ [$(nd)_1 + (nd)_2$] $= 2m\pi$ 又は(2m-1) π [ただし、 $(nd)_1$ は有機多層部の光学膜厚、 $(nd)_2$ は高屈折性透明電極の光学膜厚、 $mk1\sim10$ の整数、nk圧折率、dk 以厚である。〕の関係を満たすように設定されている請求項1記載の有機エレクトロルミネッセンス素子。

【請求項3】 高屈折性透明電極の屈折率が1.8以上である請求項1記載の有機エレクトロルミネッセンス素子。

【請求項4】 基板/高屈折性下地層/透明電極/有機多層部/陰極からなる有機エレクトロルミネッセンス素子であって、高屈折性下地層と透明電極と有機多層部との合計光学膜厚が、屈折率1.6~1.8の有機多層部より発生するエレクトロルミネッセンスの中心波長ん(ここで、んは440~490nm,500~550nm及び600~650nmより選択される。)における強度を増強するように設定されていることを特徴とする有機エレクトロルミネッセンス素子。

【請求項5】 合計光学膜厚が〔 $(nd)_1 + (nd)_3 + (nd)_4$ 〕で表され、かつ式 $4\pi/\lambda$ 〔 $(nd)_1 + (nd)_3 + (nd)_4$ 〕= $2m\pi$ 又は(2m-1) π 〔ただし、 $(nd)_1$ は有機多層部の光学膜厚、 $(nd)_4$ は高屈折性下地層の光学膜厚、 $mt1\sim10$ の整数、nt品折率、dt以膜厚である。〕の関係を満たすように設定されている請求項4記載の有機エレクトロルミネッセンス素子。

【請求項6】 高屈折性下地層の屈折率が1.8以上であり、かつ透明電極の屈折率が1.8以上である請求項4記載の有機エレクトロルミネッセンス素子。

【請求項7】 基板/高屈折性下地層/透明電極/有機 多層部/陰極からなる有機エレクトロルミネッセンス素子であって、透明電極と有機多層部との合計光学膜厚が、屈折率1.6~1.8の有機多層部より発生するエレクトロルミネッセンスの中心波長入(ここで、入は440~490mn,500~550nm及び600~650nmより選択される。)における強度を増強するように設定されていることを特徴とする有機エレクトロルミネ 50

ッセンス素子。

【請求項8】 合計光学膜厚が〔 $(nd)_1 + (nd)_3$ 〕で表され、かつ式 $4\pi/\lambda$ [$(nd)_1 + (nd)_3$] $= 2m\pi$ 又は (2m-1) π [ただし、 $(nd)_1$ は有機多層部の光学膜厚、 $(nd)_3$ は透明電極の光学膜厚、 $mは1\sim10$ の整数、nは屈折率、dは膜厚である。〕の関係を満たすように設定されている請求項7記載の有機エレクトロルミネッセンス素子。

【請求項9】 高屈折性下地層の屈折率が1.8以上であ 10 り、かつ透明電極の屈折率が1.8以上である請求項7記 載の有機エレクトロルミネッセンス素子。

【請求項10】 基板/低屈折性下地層/透明電極/有機多層部/陰極からなる有機エレクトロルミネッセンス素子であって、透明電極と有機多層部との合計光学膜厚が、屈折率1.6~1.8の有機多層部より発生するエレクトロルミネッセンスの中心波長λ(ここで、λは440~490nm,500~550nm及び600~650nmより選択される。)における強度を増強するように設定されていることを特徴とする有機エレクトロルミネッセンス素子。

【請求項11】 合計光学膜厚が〔(nd):+(nd): +(nd): 3〕で表され、かつ式 4π/λ [(nd): +(nd): 3〕=2mπ又は(2m-1)π [ただし、(nd): は有機多層部の光学膜厚、(nd): は透明電極の光学膜厚、mは1~10の整数、nは屈折率、dは膜厚である。〕の関係を満たすように設定されている請求項10記載の有機エレクトロルミネッセンス素子。 【請求項12】 低屈折性下地層の屈折率が1.4以下であり、かつ透明電極の屈折率が1.8以上である請求項1

【請求項13】 陰極が、有機多層部より発生するエレクトロルミネッセンスを50%以上反射するものである請求項1,4,7又は10記載の有機エレクトロルミネッセンス素子。

0記載の有機エレクトロルミネッセンス素子。

【請求項14】 有機多層部が、(a) 正孔輸送領域層と発光層とからなるもの、(b) 正孔輸送領域層と発光層と電子注入層とからなるもの、又は(c) 正孔輸送領域層と発光層と付着改善層とからなるものである請求項1,4,7又は10記載の有機エレクトロルミネッセンス素子。

【請求項15】 有機多層部中の正孔輸送領域層又は発光層の膜厚を選定することにより、有機多層部より発生するエレクトロルミネッセンスの中心波長 λ (ここで、 λ は440~490nm,500~550nm及び600~650nm) における強度を増強させた請求項14記載の有機エレクトロルミネッセンス素子。

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は有機エレクトロルミネッセンス素子(以下、有機EL素子と略記する。) に関

30

し、さらに詳しくは、特定の構成の素子において、陽極から陰極までの光学膜厚を制御し、特に青色発光の色純度を高めた有機 E L 素子に関するものである。

[0002]

【従来の技術】一般に、EL素子は自己発光性であるた め視認性が高く、かつ完全固体素子であるため、耐衝撃 性に優れるとともに、取扱いが容易であることから、各 種表示装置における発光素子としての利用が注目されて いる。EL素子には、発光材料に無機化合物を用いた無 機EL素子と有機化合物を用いた有機EL素子とがあ り、このうち、有機EL素子は、印加電圧を大幅に低く しうるために、その実用化研究が積極的になされてい る。上記有機EL素子の構成については、陽極/発光層 /陰極の構成を基本とし、これに正孔注入輸送層や電子 注入輸送層を適宜設けたもの、例えば陽極/正孔注入輸 送層/発光層/陰極や、陽極/正孔注入輸送層/発光層 /電子注入輸送層/陰極などの構成のものが知られてい る。該正孔注入輸送層は、陽極より注入された正孔を発 光層に伝達する機能を有し、また、電子注入輸送層は陰 極より注入された電子を発光層に伝達する機能を有して いる。そして、該正孔注入輸送層を発光層と陽極との間 に介在させることによって、より低い電界で多くの正孔 が発光層に注入され、さらに、発光層に陰極又は電子注 入輸送層より注入された電子は、正孔注入輸送層が電子 を輸送しないので、正孔注入輸送層と発光層との界面に 蓄積され発光効率が上がることが知られている。

【0003】このような有機EL素子においては、陽極と陰極との間に介在する有機多層部における各層の膜厚、例えば正孔注入輸送層,発光層,電子注入層の各膜厚を制御し、最大の効率及び最高の輝度を得る試みが多くなされている。例えば、陽極/正孔輸送性発光層/電子輸送層/陰極の構成において、電子輸送層の膜厚を30~60nmに制御して、発光効率の向上を図った技術が開示されている(特開平4-137485号公報)。これは、発光層と陰極間の距離が重要な因子であることを示している。また、電子輸送層の膜厚を制御し、発光層から生じる光と陰極から反射してくる光とが干渉する際に、実質的に増強されるようにした技術が開示されている(特開平4-328295号公報)。

【0004】しかしながら、これらの技術においては、 40 2つの反射性界面で挟まれている有機多層部を含む層の 光学膜厚を選定することにより、素子の色純度が改善できることは、何ら示されていない。さらに、これらの技術では、電子輸送層の膜厚を制御することが必要であるが、この場合、電子注入層が発光に関与し、色純度が劣化したり、効率が低下するなどの好ましくない事態を招来し、その改善が求められていた。また、陽極と陰極との間に、金属酸化物を挿入した構成のEL素子が開示されている(特開平4-334895号公報)。しかしながら、この技術においては、有機層の劣化をもたらす紫 50

外線を遮断する目的で金属酸化物層が設けられており、 本発明の技術を示唆するものではない。さらに、陽極/ 正孔注入層/発光層/電子注入層/陰極の構成であっ て、該電子注入層として、特定の金属錯体とこれ以外の

有機化合物との混合層を用いたEL素子が提案されている(特願平5-96407号)。しかしながら、この技術においては、有機多層部の光学膜厚を、発生するEL光の選定された波長における強度を増強するように設定

していないし、またなんらこれについて示されていない。また、基板/誘電体多層膜/透明電極/有機多層部 /陰極からなる素子において、透明電極と有機多層部と の合計光学膜厚を制御することにより、色純度を向上さ せる技術が知られている。しかしながら、この技術にお

せる技術が知られている。しかしなから、この技術においては、誘電体多層膜を用いる必要があり、コスト高になるのを免れない。

【0005】他方、透明電極/誘電体層/蛍光体層/誘 電体層/背面電極の構成において、蛍光体層又は蛍光体 層と誘電体層との積層構造体の膜厚(d)と、その屈折 率 (η) とが、 $d=k\cdot\eta\cdot\lambda/2$ (ここで、 λ は発光 波長である。)の関係式を満たすようにした技術が開示 されている(特開平2-46695号公報)。この技術 においては、該蛍光体層にZnSなどの無機蛍光体が、 また誘電体層には酸化物などからなる絶縁膜が用いられ ており、そして、蛍光体層又は蛍光体層と誘電体層との 積層構造体の膜厚を、その屈折率に応じて設定すること により、透明電極と誘電体層との界面と、誘電体層と背 面電極との界面の間を、蛍光体層から発せられる光を多 重反射後、干渉するようにしている。しかしながら、こ の構成では、誘電体層や蛍光体層の屈折率は2.0以上で ある一方、透明電極の屈折率が1.8程度以下であるた め、該透明電極と誘電体層との界面を反射性として取扱 っている。これに対し、本発明で開示している透明電極 /有機多層部/陰極の構成においては、有機多層部の屈 折率が1.6~1.8であって、透明電極と有機多層部との 界面は反射性であるとはいえない。上記特開平2-46 695号公報では、本発明のように、透明電極と基板と の界面、又は透明電極と高屈折性下地層との界面、又は 透明電極と低屈折性下地層との界面を反射性として取扱 い、かつ透明電極と有機多層部との合計光学膜厚を制御

[0006]

【発明が解決しようとする課題】本発明は、このような事情のもとで、特定の構成の素子において、陽極から陰極までの光学膜厚を制御し、特に青色発光の色純度を高めた有機 E L 素子を提供することを目的としてなされたものである。

することについては、なんら示されていない。

[0007]

【課題を解決するための手段】本発明者らは、光学膜厚を制御し、青色発光の色純度を高めた有機EL素子を開発すべく鋭意研究を重ねた結果、(1)基板/高屈折性

透明電極/有機多層部/陰極の構成において、該高屈折性透明電極と有機多層部との合計光学膜厚を、(2)基板/高屈折性下地層/透明電極/有機多層部/陰極の構成において、該高屈折性下地層と透明電極と有機多層部との合計光学膜厚を、又は、透明電極と有機多層部との合計光学膜厚を、(3)基板/低屈折性下地層/透明電極/有機多層部/陰極の構成において、該透明電極と有機多層部との合計光学膜厚を、特定の屈折率をもつ有機多層部より発光されるEL光の選定された波長における強度が増強されるように設定することにより、その目的10を達成しうることを見出した。本発明は、かかる知見に基づいて完成したものである。

【0008】すなわち、本発明は、(1)基板/高屈折 性透明電極/有機多層部/陰極からなる有機EL素子で あって、高屈折性透明電極と有機多層部との合計光学膜 厚が、屈折率1.6~1.8の有機多層部より発生するEL ~550nm及び600~650nmより選択され る。) における強度を増強するように設定されているこ とを特徴とする有機EL素子[1]、(2) 基板/高屈 20 折性下地層/透明電極/有機多層部/陰極からなる有機 EL素子であって、高屈折性下地層と透明電極と有機多 層部との合計光学膜厚が、屈折率1.6~1.8の有機多層 部より発生するEL光の波長λ(ここで、λは上記と同 じである。)における強度を増強するように設定されて いることを特徴とする有機EL素子〔2〕、(3)基板 /高屈折性下地層/透明電極/有機多層部/陰極からな る有機EL素子であって、透明電極と有機多層部との合 計光学膜厚が、屈折率1.6~1.8の有機多層部より発生 するEL光の波長λ(ここで、λは上記と同じであ る。) における強度を増強するように設定されているこ とを特徴とする有機EL素子 [3] 及び(4) 基板/低 屈折性下地層/透明電極/有機多層部/陰極からなる有 機EL素子であって、透明電極と有機多層部との合計光 学膜厚が、屈折率1.6~1.8の有機多層部より発生する EL光の波長 \(\(\alpha\) (ここで、\(\lambda\) は上記と同じである。) に おける強度を増強するように設定されていることを特徴 とする有機EL素子〔4〕を提供するものである。

【0009】本発明の有機EL素子〔1〕は、基板/高 屈折性透明電極/有機多層部/陰極から構成されてい る。該基板としては、透明性を有するもの、例えばガラ ス、石英、有機高分子化合物などが挙げられるが、これ*

 $4\pi/\lambda ((nd)_1 + (nd)_2) = 2m\pi$ · · · (I)

又は

 $4\pi/\lambda ((nd)_1 + (nd)_2) = (2m-1)\pi \cdot \cdot (II)$

の関係を満たすように設定される。上記式(I)及び(II)において、 $mは1\sim10$ の整数、nは屈折率、dは膜厚、 λ は前記と同じである。該式(I)、(II)は陰極金属の屈折率により選ばれる。例えば、(有機多層部の屈折率) <(陰極金属の屈折率)の場合は式(II)

*らの中では、屈折率1.6以下のものが好適である。ま た、高屈折性透明電極は、上記の屈折率1.6以下の低屈 折性基板と該透明電極との界面で光の反射が起こるよう に、できるだけ高い屈折率を有するものが望ましく、好 ましい屈折率は1.8以上、特に好ましくは1.9以上であ る。このような高屈折性透明電極としては、仕事関数の 大きい (4 e V以上) 誘電性透明材料、例えばIT〇, ZnO, SnO2, CuIなどの中から、屈折率が1.8 以上、好ましくは1.9以上のものを適宜選び、電極物質 とするものが好ましく用いられる。該高屈折性透明電極 は、上記電極物質を蒸着やスパッタリングなどの方法に より、基板上に薄膜を形成させることにより、作製する ことできる。この電極より発光を取り出す場合には、透 過率を10%より大きくすることが望ましく、また、電 極としてのシート抵抗は数百Ω/口以下が好ましい。さ らに、有機多層部としては、後述するように従来公知の 種々のものを用いることができる。一方、陰極は鏡面性 の膜であり、有機多層部より発生するEL光を、好まし くは50%以上、より好ましくは70%以上反射するも のが好適である。このような陰極としては、仕事関数の 小さい(4 e V以下)金属,合金,電気伝導性化合物及 びこれらの混合物の中から適宜選び、電極物質とするも のが用いられる。このような電極物質の具体例として は、ナトリウム、ナトリウムーカリウム合金、マグネシ ウム, リチウム, マグネシウム-銀合金, A1/A12 O3 , インジウム, 希土類金属などが挙げられる。 該陰 極はこれらの電極物質を蒸着やスパッタリングなどの方 法により、薄膜を形成させることにより、作製すること ができる。また、電極としてのシート抵抗は数百Ω/□ 以下が好ましく、膜厚は通常10nm~1 µm,特に5 0~200 nmの範囲が好ましい。

【0010】本発明の有機EL素子〔1〕においては、上記高屈折性透明電極と有機多層部との合計光学膜厚を、屈折率1.6~1.8の有機多層部より発生するEL光の中心波長えにおける強度が増強されるように設定することが必要である。ここで、えは、青色発光を望む場合は440~490nm、緑色の場合は500~550nm、赤色の場合は600~650nmから選択される。すなわち、一般に、有機多層部の光学膜厚を(nd)2とした場合、これらの合計光学膜厚〔(nd)1+(nd)2〕が、式

が、その逆の場合には式(I)が選ばれるが、必ずし も、初めから陰極金属の屈折率が判明しない場合には、 素子を実際に作製して試験を行い、調整するのがよい。 なお、各層の光学膜厚は、その層の膜厚と屈折率との積 で求めることができる。上記条件を満たすように高屈折 性透明電極と有機多層部との合計光学膜厚を設定した場 合、素子より出るEL光は、その中心波長が増強され、 色純度が向上するという顕著な効果を奏する。この効果 が優れている場合、有機EL素子の色は鮮明となり、フ ルカラーのためのR, G, Bのいずれを実現する場合に も利用することができる。

【0011】次に、本発明の有機EL素子〔2〕及び [3] は、基板/高屈折性下地層/透明電極/有機多層 部/陰極から構成されている。該基板、有機多層部及び 陰極としては、前記有機EL素子[1]で説明したもの 10 と同じものを用いることができる。また、高屈折性下地 層は、屈折率1.8以上の高い屈折率を有する実質上透明 な層であり、好ましくは屈折率が2.0以上の酸化物層、 例えばTiO2, ZrO2, ZnO, SiO, Sc2 O 3 , HfO2 , CeO2 など、従来知られている光学的 に透明な誘電体からなる層である。さらに、 ZnS, Z nSSe, ZnTe, GaN, InGaN, AlN, B*

*eNなどからなる層も好適である。一方、透明電極とし ては、前記有機EL素子〔1〕の高屈折性透明電極の説 明において例示した誘電性透明材料を電極物質とするも のを用いることができるが、その屈折率は1.8以上であ るのが有利である。

【0012】本発明の有機EL素子〔2〕においては、 基板と高屈折性下地層との界面で光の反射が生じる場合 であり、したがって、高屈折性下地層と透明電極と有機 -多層部との合計光学膜厚を、屈折率1.6~1.8の有機多 層部より発生する E L 光の中心波長 λ (ここで、 λ は上 記と同じである。) における強度が増強されるように設 定することが必要である。すなわち、一般に、有機多層 部の光学膜厚を (nd) 1,透明電極の光学膜厚を (n d) 3 , 高屈折性下地層の光学膜厚を(nd) 4 とした 場合、これらの合計光学膜厚〔(nd)ι +(nd)3 + (nd) 4) が、式

※光学膜厚を、屈折率1.6~1.8の有機多層部より発生す

るEL光の中心波長λ(ここで、λは上記と同じであ

る。) における強度が増強されるように設定することが

必要である。すなわち、一般に、有機多層部の光学膜厚

を (nd) 1 , 透明電極の光学膜厚を (nd) 3 とした

場合、これらの合計光学膜厚〔(nd) 1+(n

$$4\pi/\lambda$$
 [(nd) 1 + (nd) 3 + (nd) 4] = $2m\pi$ · · · (III)

又は

$$4\pi/\lambda$$
 [(nd) 1 + (nd) 3 + (nd) 4] = (2m-1) π
... (IV)

[ただし、λ, m, n及びdは、上記と同じである。] の関係を満たすように設定される。上記式(III), (I V) は有機EL素子〔1〕の場合と同様に陰極金属の屈 折率により選ばれる。

【0013】一方、有機EL素子〔3〕においては、高 屈折性下地層と透明電極との界面で光の反射が生じる場 合であり、したがって、透明電極と有機多層部との合計※

$$4 \pi / \lambda$$
 ((n d) 1 + (n d) 3) = 2 m π · · · (V)

又は

$$4\pi/\lambda$$
 [(nd) 1 + (nd) 3] = (2m-1) π ···(VI)

d) 3] が、式

〔ただし、λ, m, n及びdは、上記と同じである。〕 の関係を満たすように設定される。上記式(V), (V I) は、有機EL素子〔1〕の場合と同様に陰極金属の 屈折率により選ばれる。但し、(有機多層部の屈折率) < (金属の屈折率) の場合は式(V)が、またその逆の 場合は式(VI)が選ばれる。

★【0014】また、高屈折性下地層と透明電極との界 面、及び基板と高屈折性下地層との界面の両界面で反射 が生じる場合がある。例えば、透明電極の屈折率<髙屈 折性下地層の屈折率>基板の屈折率であって、それぞれ の屈折率差が大きい場合である。このような場合には、 光学膜厚を、式

$$4\pi/\lambda_1$$
 [(nd) 1 + (nd) 3] = (2m-1) π · · (VII) $4\pi/\lambda_2$ [(nd) 1 + (nd) 3 + (nd) 4] = 2m π · · (VIII)

係を満たすように設定する。上記式(VII), (VIII) にお いて、λ₁ 及びλ₂は、青色の場合は440~490 n m, 緑色の場合は500~550nm, 赤色の場合は6 00~650nmより選択されるが、必ずしも一致しな☆

[ただし、m, n及びdは、上記と同じである。] の関 40☆くてもよい。また、式 (VII),(VIII) は、前記有機EL 素子 [1] の場合と同様に、(有機多層部の屈折率) > (陰極の屈折率) の場合であるが、この逆の場合には、 式

$$4\pi/\lambda_1$$
 [(nd) 1 + (nd) 3] = $2m\pi$ ··· (IX)
 $4\pi/\lambda_2$ [(nd) 1 + (nd) 3 + (nd) 4] = (2m+1) π
··· (X)

の関係を満たすように設定する。このように、上記式 (VII)/(VIII) 又は式(IX)/(X) を選択するのは、低屈 折率側より髙屈折率側は入射する場合には光の位相が、

π変化するが、その逆の場合には変化量は0であるから である。この位相の変化は、上記の光学膜厚の設定に 50 は、当然考慮する必要がある。特に、 $\lambda_1 = \lambda_2$ のとき

*である。さらに、低屈折性下地層には、従来公知の誘電

材料の中から、低屈折率のものを適宜選び用いることが

できるが、例えばCaF2, MgF2, LiFなどの金

属フッ化物からなる層は、屈折率が1.4以下となり、好

適である。また、フッ素化アクリル樹脂やテフロン系共

重合体などの含フッ素ポリマーからなる層も好ましい。

この有機EL素子〔4〕においては、低屈折性下地層と

透明電極との界面で光の反射が生じる。したがって、透

明電極と有機多層部との合計光学膜厚を、屈折率1.6~

1.8の有機多層部より発生するEL光の中心波長 λ (こ

こで、 λは前記と同じである。) における強度が増強さ

れるように設定することが必要である。すなわち、一般 に、有機多層部の光学膜厚を (nd) i,透明電極の光

学膜厚を (nd) 3 とした場合、それらの合計光学膜厚

[(nd) + (nd) 3]が、式

には、 $(nd)_4 = \lambda / 4$ となるが、この場合、EL光 の中心波長における強度の増強が特に大きく、従来、公 知の色純度を改善する技術、例えば(1)カラーフィル ターにより色純度を改善する方法、(2)誘電体多層膜 と陰極鏡面とで有機多層部を挟み、色純度を改善する方 法などを用いる必要がない。本発明の有機EL素子

[2] 及び[3] の構成は、上記(1) 及び(2) で用 いられる構成より簡易であることは明らかである。

【0015】さらに、本発明の有機EL素子〔4〕は、 基板/低屈折性下地層/透明電極/有機多層部/陰極か 10 ら構成されている。該基板、有機多層部及び陰極として は、前記有機EL素子〔1〕で説明したものと同じもの を用いることができる。また、透明電極としては、前記 有機EL素子〔1〕の高屈折性透明電極の説明において 例示した誘電性透明材料を電極物質とするものを用いる ことができるが、その屈折率は1.8以上であるのが有利*

 $4\pi/\lambda$ [(nd) 1 + (nd) 3] = $2m\pi$

又は

$4\pi/\lambda$ ((nd)₁ + (nd)₃) = (2m-1) π · · (VI)

[ただし、λ, m, n及びdは、上記と同じである。] の関係を満たすように設定される。上記式(V), (V I) は、有機EL素子[1] の場合と同様に陰極金属の 屈折率により選ばれる。

【0016】次に、本発明の有機EL素子〔1〕~

[4] の原理について説明する。陰極から注入された電 子と陽極から注入された正孔はたがいに結合して、発光 材料である分子又はポリマーの励起状態を作り出し、こ の励起状態は光を出して基底状態に戻る。この光は、図 1で示すように、②透明である界面Bの方から放出され る場合、②界面Aで反射され、放出される場合、さらに 30 ③界面Bで反射され、続いて界面Aで反射されたのち、 放出される場合など、様々な放出光が存在する。実際に は、これらが干渉し、いわゆるファブリペロー干渉にお ける多重干渉が生じる。このような干渉の結果、前記の 光学膜厚の条件を満たす素子においては、波長 A (ここ で、入は前記と同じである。)の光が増強された形で放 出され、色純度が向上する。ここで、界面Aは、金属鏡 面を有する陰極と有機多層部との界面であるが、界面B は素子の構成により次の種類がある。

(1)素子〔1〕の場合、基板と高屈折性透明電極との 40 界面、(2)素子(2)の場合、基板と高屈折性下地層 との界面、(3)素子[3]の場合、高屈折性下地層と 透明電極との界面、(4)素子 [4]の場合、低屈折性 下地層と透明電極との界面、

この界面Bにおける屈折率の差(界面Bを挟む層間の屈 折率の差) は大きい方が好ましいが、実質上選択できる 幅は、好ましくは0.2~1.5である。なお、本発明は、 高屈折率層/低屈折率層の繰り返し多層構成を界面Bに 用いることを意味するものではない。このような構成は 複雑であって、均一に作製するのが困難である上、髙い 50 本発明では利用しない。上記有機多層部における発光層

20 波長選択をもたらし、色純度向上に寄与するものの、同 時に視野角により急激にEL光の中心波長が変化すると いう不利な点をもたらし、したがって、大面積表示素子 には用いられにくい。

【0017】これに対し、本発明の有機EL素子は、視 野角依存性が小さいという注目すべき性質を有するとと もに、色純度を高めることができるという有用な性質も 有している。本発明の有機EL素子〔1〕~〔4〕にお ける有機多層部の構成としては、例えば透明電極側から 陰極側にかけて、

- (1) 正孔輸送領域層/発光層
 - (2) 正孔輸送領域層/発光層/電子注入層
 - (3) 発光層/電子注入層
 - (4) 有機半導体層/発光層
 - (5) 有機半導体層/電子障壁層/発光層
 - (6) 正孔輸送領域層/発光層/付着改善層

である構成を挙げることができる。これらの構成の中 で、正孔輸送領域層/発光層,正孔輸送領域層/発光層 /電子注入層及び正孔輸送領域層/発光層/付着改善層 の構成が好適である。

【0018】本発明においては、このような構成の有機 多層部において、特に正孔輸送領域層又は発光層の膜厚 を選定することにより、該有機多層部より発生するEL 光の中心波長λ (ここで、λは前記と同じである。) に おける強度を増強させるのが有利である。本発明におい ては、上記有機多層部における各層の屈折率は、それぞ れ異なっていてもよいが、その値は1.6~1.8の範囲に あることが必要である。なお、透明電極と有機多層部と の界面での反射は、該透明電極と有機多層部の屈折率差 が小さいため少なく、したがって、この界面での反射を

としては、通常の発光層と同様に、(a) 注入機能(電圧印加時に、陽極又は正孔輸送領域層より正孔を注入可能であり、かつ陰極又は電子注入層より電子を注入可能である。),(b) 輸送機能(正孔及び電子を電界の力により移動させることが可能である。),(c) 発光機能(正孔と電子の再結合の場を提供し、発光させることが可能である。) を有するものである。この層の厚さ **

12

$$Y \stackrel{!}{\sim} C = C H - A r - C H = C \qquad Y \stackrel{?}{\sim} \qquad (XI)$$

【0020】〔式中、Y¹~Y⁴は、それぞれ水素原 子, 炭素数1~6のアルキル基, 炭素数1~6のアルコ キシ基、炭素数7~8のアラルキル基、置換あるいは無 置換の炭素数6~18のアリール基、置換あるいは無置 換のシクロヘキシル基、置換あるいは無置換の炭素数6 ~18のアリールオキシ基、炭素数1~6のアルコキシ 基を示す。ここで、置換基は炭素数1~6のアルキル 基, 炭素数1~6のアルコキシ基, 炭素数7~8のアラ 20 ルキル基、炭素数6~18のアリールオキシ基、炭素数 1~6のアシル基、炭素数1~6のアシルオキシ基、カ ルボキシル基、スチリル基、炭素数6~20のアリール カルボニル基、炭素数6~20のアリールオキシカルボ ニル基、炭素数1~6のアルコキシカルボニル基、ビニ ル基、アニリノカルボニル基、カルバモイル基、フェニ ル基、ニトロ基、水酸基あるいはハロゲンを示す。これ らの置換基は単一でも複数でもよい。また、Y! ~Y4 は、同一でも、また互いに異なっていてもよく、Y1 と Y² 及びY³ とY⁴ は、互いに置換している基と結合し※30

※て、置換あるいは無置換の飽和五員環又は置換あるいは無置換の飽和六員環を形成してもよい。A r は置換あるいは無置換の炭素数6~20のアリーレン基を表し、単一置換されていても、複数置換されていてもよく、また結合部位は、オルト、パラ、メタいずれでもよい。但し、A r が無置換フェニレン基の場合、Y¹~Y⁴は、それぞれ炭素数1~6のアルコキシ基、炭素数7~8のアラルキル基、置換あるいは無置換のナフチル基、ビフェニル基、シクロヘキシル基、アリールオキシ基より選ばれたものである。〕一般式(XII)

A-Q-B · · · (XII)

〔式中、A及びBは、それぞれ上記一般式(XI)で表される化合物から1つの水素原子を除いた一価基を示し、同一であっても異なってもよく、Qは共役系を切る二価基を示す。〕又は一般式(XIII)

[0021] 【化2】

$$Y^{6} Y^{5}$$
 $Y^{5} Y^{6}$
 $A^{2}-C=C-A^{1}-Q-A^{1}-C=C-A^{2}$ · · · (X111)

【0022】(式中、 A^1 は置換あるいは無置換の炭素数6 \sim 20のアリーレン基又は二価の芳香族複素環式基を示す。結合位置はオルト,メタ,パラのいずれでもよい。 A^2 は置換あるいは無置換の炭素数6 \sim 20のアリール基又は一価の芳香族複素環式基を示す。 Y^5 及びY 6 は、それぞれ水素原子,置換あるいは無置換の炭素数6 \sim 20のアリール基,シクロヘキシル基,一価の芳香 6 な複素環式基,炭素数 $1\sim$ 10のアルキル基,炭素数 $1\sim$ 20のアラルキル基又は炭素数 $1\sim$ 10のアルコキシ基を示す。なお、 $1\sim$ 20のアラルキル基又は炭素数 $1\sim$ 10のアルコキシ基を示す。なお、 $1\sim$ 20のアラルキル基又は炭素数 $1\sim$ 10のアルコキシ基、アシールオキシ基、アシー基又は置換基を有する若

しくは有しないフェニル基である。Y⁵ の各置換基はA¹ と結合して、飽和若しくは不飽和の五員環又は六員環を形成してもよく、同様にY⁶ の各置換基はA² と結合して、飽和若しくは不飽和の五員環又は六員環を形成してもよい。また、Qは、共役を切る二価基を表す。〕で表される化合物が挙げられる。なお、一般式(XII)及び(XIII)におけるQは共役系を切る二価基を示すが、ここで共役とは、π電子の非極在性によるもので、共役二重結合あるいは不対電子又は孤立電子対によるものも含む。Qの具体例としては、

[0023] 【化3】

【0024】などを挙げることができる。このように共 あるいはBを形成する化合物〔すなわち、一般式 (XI) の化合物〕を、単独で本発明の有機EL素子として用い た場合に得られるEL発光色と、一般式 (XII)で表され るる化合物を本発明の有機EL素子として用いた場合に 得られるEL発光色とが変わらぬようにするためであ る。つまり、一般式(XI)又は一般式(XII)で表される 化合物を用いた発光層が、短波長化あるいは長波長化し たりすることはないようにするためである。また、共役 系を切る二価基で接続するとガラス転移温度(Tg) は、上昇することが確認でき、均一なピンホールフリー 40 の微結晶あるいはアモルファス性薄膜が得られることが*

*でき、発光均一性を向上させている。さらに、共役系を 役系を切る二価の基を用いる理由は、上記で示されるA 30 切る二価基で結合していることにより、EL発光が長波 長化することなく、また、合成あるいは精製が容易にで きる長所を備えている。さらに、発光材料(ホスト材 料)の好ましいものとして、8-ヒドロキシキノリン、 又はその誘導体の金属錯体を挙げることができる。具体 的には、オキシン(一般に8-キノリノール又は8-ヒ ドロキシキノリン)のキレートを含む金属キレートオキ シノイド化合物である。このような化合物は高水準の性 能を示し、容易に薄膜形態に成形される。オキシノイド 化合物の例は下記構造式を満たするものである。

> [0025]【化4】

【0026】〔式中、Mtは金属を表し、pは1~3の 整数であり、かつ、乙はそのそれぞれの位置が独立であ って、少なくとも2以上の縮合芳香族環を完成させるた 50 トリウム又はカリウムなどのアルカリ金属、マグネシウ

めに必要な原子を示す。〕ここで、Mtで表される金属 は、一価、二価又は三価の金属、例えば、リチウム、ナ

ム又はカルシウムなどのアルカリ土類金属、あるいはホ ウ素又はアルミニウムなどの土類金属である。一般に有 用なキレート化合物であると知られている一価、二価又 は三価の金属はいずれも使用することができる。また、 乙は、少なくとも2以上の縮合芳香族環の一方がアゾー ル又はアジンからなる複素環を形成させる原子を示す。 ここで、もし必要であれば、上記縮合芳香族環に他の異 なる環を付加することが可能である。また、機能上の改 善がないまま嵩ばった分子を付加することを回避するた め、Zで示される原子の数は18以下にすることが好ま 10 しい。さらに、具体的にキレート化オキシノイド化合物 を例示すると、トリス(8-キノリノール)アルミニウ ム,ビス(8-キノリノール)マグネシウム,ビス(ベ ンゾー8ーキノリノール) 亜鉛, ビス(2-メチルー8 ーキノリラート) アルミニウムオキシド, トリス (8-キノリノール) インジウム,トリス(5-メチル-8-キノリノール) アルミニウム, 8-キノリノールリチウ ム, トリス(5-クロロー8-キノリノール) ガリウ ム, ビス(5-クロロ-8-キノリノール) カルシウ

ム、5、7-ジクロロ-8-キノリノールアルミニウム、トリス(5、7-ジブロモ-8-ヒドロキシキノリノール)アルミニウムなどがある。

【0027】上記発光層の形成方法としては、例えば蒸着法、スピンコート法、キャスト法、LB法などの公知の方法により薄膜化することにより形成することができるが、特に分子堆積膜であることが好ましい。ここで、分子堆積膜とは、該化合物の気相状態から沈着され形成された薄膜や、該化合物の溶融状態又は液相状態から固体化され形成された膜のことである。通常、この分子堆積膜はLB法により形成された薄膜(分子累積膜)と凝集構造、高次構造の相違や、それに起因する機能的な相違により区別することができる。また、上記発光層は樹脂などの結着材と共に溶剤に溶かして溶液としたのち、これをスピンコート法などにより薄膜化して形成することができる。前記一般式(XI)~(XIII)で表される発光層の材料としては以下の化合物が挙げられる。

[0028]

【化5】

$$C = C H \xrightarrow{C \cdot H 3} C H = C$$

$$C = C H \xrightarrow{C} C H = C \xrightarrow{C} C H$$

$$C = C H \longrightarrow C H = C H$$

$$H \circ C \longrightarrow C = C H \longrightarrow C H \circ C H$$

[0029]

【化6】

$$t-Bu$$
 $C=CH$ $CH=C$ $t-Bu$ $t-Bu$ $(t-Bu:9-シャリープチル基)$

[0030]

【化7】

[0031]

40 【化8】

[0032]

[化9]

$$C = C H - \bigcirc - O - \bigcirc - C H = C$$

[0033]

【化10】

【0034】 【化11】

40

$$H_1CH_1$$
 CH_2 $C=CH$ $CH=C$ CH_2 CH_3 CH_4 $C=CH$ $CH=C$ CH_2 CH_3 CH_4 CH_4 CH_4 CH_4 CH_5 CH_6 CH_6 CH_6 CH_6 CH_7 CH_8 CH_8

【0035】次に、正孔輸送領域層は、必ずしも該素子に必要なものではないが、発光性能の向上のため用いた方が好ましいものである。この正孔輸送領域層としては、より低い電界で正孔を発光層に輸送する材料が好ましく、さらに正孔の移動度が、例えば $10^4\sim10^6$ V/cmの電界印加時に、少なくとも 10^{-6} c m² /V・秒であればなお好ましい。また、電子を発光層内に留め

ておくため、発光層と陽極 (透明電極) の間には電子障 壁層を用いることができる。このような正孔輸送材料に ついては、前記の好ましい性質を有するものであれば特 に制限はなく、従来、光導伝材料において、正孔の電荷 輸送材として慣用されているものやEL素子の正孔輸送 領域層に使用される公知のものの中から任意のものを選 択して用いることができる。

【0036】該正孔輸送材料としては、例えばトリアゾ ール誘導体(米国特許第3,112,197号明細書等参照), 10 オキサジアゾール誘導体 (米国特許第3,189,447 号明細 書等参照),イミダゾール誘導体(特公昭37-160 96号公報等参照),ポリアリールアルカン誘導体(米 国特許第3,615,402 号明細書,同3,820,989 号明細書。 同3,542,544 号明細書,特公昭45-555号公報,同 51-10983号公報,特開昭51-93224号公 _ 報,同55-17105号公報,同56-4148号公 報,同55-108667号公報,同55-15695 3号公報, 同56-36656号公報等参照), ピラゾリ ン誘導体およびピラゾロン誘導体(米国特許第3,180,72 20 9 号明細書。同4,278,746 号明細書。特開昭55-88 064号公報, 同55-88065号公報, 同49-1 05537号公報, 同55-51086号公報, 同56 -80051号公報, 同56-88141号公報, 同5 7-45545号公報, 同54-112637号公報, 同55-74546号公報等参照), フェニレンジアミ ン誘導体(米国特許第3,615,404 号明細書,特公昭51 -10105号公報, 同46-3712号公報, 同47 -25336号公報,特開昭54-53435号公報, 同54-110536号公報、同54-119925号 30 公報等参照), アリールアミン誘導体(米国特許第3,56 7,450 号明細書,同3,180,703 号明細書,同3,240,597 号明細書, 同3,658,520 号明細書, 同4,232,103 号明細 書, 同4,175,961 号明細書, 同4,012,376 号明細書, 特 公昭49-35702号公報, 同39-27577号公 報,特開昭55-144250号公報,同56-119 132号公報, 同56-22437号公報, 西独特許第 1,110,518 号明細書等参照), アミノ置換カルコン誘導 体 (米国特許第3,526,501 号明細書等参照) , オキサゾ ール誘導体 (米国特許第3,257,203 号明細書などに記載 40 のもの),スチリルアントラセン誘導体(特開昭56-46234号公報等参照),フルオレノン誘導体(特開 昭54-110837号公報等参照), ヒドラゾン誘導 体 (米国特許第3,717,462 号明細書,特開昭54-59 143号公報,同55-52063号公報,同55-5 2064号公報, 同55-46760号公報, 同55-85495号公報, 同57-11350号公報, 同57 -148749号公報等参照), スチルベン誘導体(特 開昭61-210363号公報。同61-228451 号公報, 同61-14642号公報, 同61-7225 5号公報, 同62-47646号公報, 同62-366

74号公報,同62-10652号公報,同62-30 255号公報,同60-93445号公報,同60-9 4462号公報,同60-174749号公報,同60-175052号公報等参照)などを挙げることができる。さらに、シラザン誘導体(米国特許第4,950,950号明細書),ポリシラン系(特開平2-204996号公報),アニリン系共重合体(特開平2-282263号公報),導電性高分子オリゴマー(特開平1-211399号公報),特に含チオフェンオリゴマーなどが挙げられる。

【0037】本発明においては、これらの化合物を正孔 輸送材料として使用することができるが、次に示すポリ フィリン化合物(特開昭63-2956965号公報な どに記載のもの)、芳香族第三級アミン化合物およびス チリルアミン化合物 (米国特許第4,127,412 号明細書, 特開昭53-27033号公報,同54-58445号 公報, 同54-149634号公報, 同54-6429 9号公報, 同55-79450号公報, 同55-144 250号公報, 同56-119132号公報, 同61-295558号公報, 同61-98353号公報, 同6 20 3-295695号公報等参照),特に該芳香族第三級 アミン化合物を用いることが好ましい。該ポリフィリン 化合物の代表例としては、ポルフィン、1、10、1 5, 20-テトラフェニル-21H, 23H-ポルフィ ン銅(II);1,10,15,20-テトラフェニル2 1H, 23H-ポルフィン亜鉛(II);5,10,1 5,20-テトラキス(ペンタフルオロフェニル)-2 1H, 23H-ポルフィン;シリコンフタロシアニンオ キシド:アルミニウムフタロシアニンクロリド:フタロ シアニン (無金属) ; ジリチウムフタロシアニン ; 銅テ 30 トラメチルフタロシアニン;銅フタロシアニン;クロム フタロシアニン; 亜鉛フタロシアニン; 鉛フタロシアニ ン;チタニウムフタロシアニンオキシド;マグネシウム フタロシアニン;銅オクタメチルフタロシアニンなどが 挙げられる。

【0038】また該芳香族第三級アミン化合物及びスチ

リルアミン化合物の代表例としては、N.N,N', N'ーテトラフェニルー4, 4'ージアミノフェニル, N, N' -ジフェニル-N, N' -ジ(3-メチルフェ ニル) -4, 4' -ジアミノビフェニル, 2, 2-ビス (4-ジ-p-トリルアミノフェニル) プロパン, 1,1-ビス(4-ジーpートリルアミノフェニル)シクロ ヘキサン, N, N, N', N'ーテトラーpートリルー 4, 4'ージアミノビフェニル, 1, 1ービス(4ージ -p-トリルアミノフェニル) -4-フェニルシクロへ キサン, ビス (4-ジメチルアミノ-2-メチルフェニ ル) フェニルメタン, ビス (4-ジーp-トリルアミノ フェニル) フェニルメタン, N, N' -ジフェニルー N, N' -ジ (4-メトキシフェニル) -4, 4' -ジ アミノビフェニル, N, N, N', N'-テトラフェニ ルー4、4'ージアミノジフェニルエーテル、4、4' ービス(ジフェニルアミノ) クオードリフェニル, N, N, N-トリ (P-トリル) アミン, 4- (ジーp-ト リルアミノ) -4' - (4 (ジ-p-トリルアミノ) ス チリル) スチルベン, 4-N, N-ジフェニルアミノー (2-ジフェニルビニル) ベンゼン、3-メトキシー 4'-N, N-ジフェニルアミノスチルベンゼン, N-フェニルカルバゾール、芳香族ジメチリディン系化合物 などが挙げられる。

【0039】本発明のEL素子における該正孔輸送領域層は、上記化合物を、例えば真空蒸着法、スピンコート法、LB法などの公知の薄膜法により製膜して形成することができる。この正孔輸送領域層の膜厚は、特に制限はないが、通常は5nm~5μmである。この正孔輸送領域層は、上記正孔輸送材料一種又は二種以上からなる一層で構成されていてもよいし、あるいは、前記正孔輸送領域層とは別種の化合物からなる正孔輸送領域層を積層したものであってもよい。

【0040】さらに、有機半導体層の材料としては、例えば、

[0041]

【化12】

- (2) [5][5][5][5]
- (3)
- (4) \$15\0\0\515
- (5)

- (9) (SISISING HC=CH (SISIS)
- (10) H S S S S S H

[0042] * * [化13]

- (12) ISTHC=CHISTHC-CHIST

C H s O C H s C H s

【0043】などを挙げることができる。

[0045]

【0044】一方、電子障壁層の材料としては、例えば 50 【化14】

(2)

(3)

$$t - B u$$
 $t - B u$
 $t - B u$
 $t - B u$
 $t - B u$
 $t - B u$

(4)

(5)

(6)

$$t-Bu \longrightarrow N - N$$

$$(t-Bu PBD)$$

(7)

(8)

[0046]

【化15】

【0049】また、該有機多層部における電子注入層は、電子注入材料からなるものであって、陰極より注入された電子を発光層にで伝達する機能を有している。このような電子注入材料について特に制限はなく、従来公*

【0051】などの二トロ置換フルオレノン誘導体、特開昭57-149259号,同58-55450号,同 1063-104061号公報等に記載されているアントラキノジメタン誘導体、「ポリマー・プレプリンツ,ジャパン (Polymer Preprints, Japan)」第37巻,第3号,第681ページ (1988年) などに記載されている

【0052】 【化18】

【0053】 などのジフェニルキノン誘導体 【0054】 【化19】

【0055】などのチオピランジオキシド誘導体 【0056】 【化20】

$$0 = \overset{\circ}{\overset{\circ}{\overset{\circ}{\circ}}} = 0$$

$$0 = \overset{\circ}{\overset{\circ}{\overset{\circ}{\circ}}} = 0$$

【0057】などのナフタレンペリレンなど、複素環テ 40トラカルボン酸無水物、あるいはカルボジイミドが挙げられる。さらに、「ジャーナル・オブ・アプライド・フィジクス (J. Appl. Phys.)」第27巻、第269ページ(1988年)などに記載されている

【0058】 【化21】 *知の化合物の中から任意のものを選択して用いることが できる。該電子注入材料の好ましい例としては、

【0050】 【化17】

【0059】で表される化合物、特開昭60-69657号,同61-143784号,同61-148159号公報などに記載されているフレオレニリデンメタン誘導体、特開昭61-225151号,同61-233750号公報などに記載されているアントラキノジメタン誘導体及びアントロン誘導体、「アプライド・フィジクス・レターズ(Appl. Phys. Lett.)」第55巻,第1489ページ(1989年)に記載されている下記のオキサジアゾール誘導体

[0060] 【化22】

【0061】などを挙げることができる。また、特開昭59-194393号公報に記載されている一連の電子 伝達性化合物は、該公報では発光層を形成する材料として開示されているが、本発明者らが検討の結果、電子注入層を形成する材料として用いうることが分かった。特に

[0062] 【化23]

BBOT

【0063】で表される化合物が好適である。本発明の有機EL素子における電子注入層は、上記化合物を、例えば真空蒸着法、スピンコート法、キャスト法、LB法などの公知の薄膜化法により製膜して形成することができる。電子注入層としての膜厚は、通常は5nm~5μmの範囲で選ばれる。この電子注入層は、これらの電子

注入材料一種又は二種以上からなる一層で構成されても よいし、あるいは、該層とは別種の化合物からなる電子 注入層を積層したものであってもよい。

【0064】さらに、該有機多層部における付着改善層 としては、電子伝達性に優れ、かつ発光層及び陰極に対 して付着性の高い材料を含有するものが好ましい。この ような材料としては、例えば8-ヒドロキシキノリン又 はその誘導体の金属錯体、例えばオキシン (一般に8-キノリノール又は8-ヒドロキシキノリン)のキレート を含む金属キレートオキシノイド化合物が挙げられる。 具体的には、トリス(8ーキノリノール)アルミニウ *

*ム.トリス(5,7-ジクロロ-8-キノリノール)ア ルミニウム・トリス(5. 7ージブロモー8ーキノリノ ール)アルミニウム、トリス(2-メチル-8-キノリ ノール)アルミニウム、並びにアルミニウム以外のイン ジウム、マグネシウム、銅、ガリウム、スズ、鉛の錯体 などを挙げることができる。また、オキサジアゾール誘 導体も好適であり、このオキサジアゾール誘導体として は、一般式 (XIV)及び (XV)

· • (XIV)

[0065] 【化24】

$$\begin{array}{c|c}
N - N \\
A & \Gamma & \downarrow \downarrow \downarrow \\
O & \downarrow \downarrow \downarrow A & \Gamma & \downarrow \downarrow 2
\end{array}$$

【0066】〔式中、Ar¹¹~Ar¹⁴は、それぞれ置換 又は無置換のアリール基を示し、Aェ11とAェ12及びA r¹³とAr¹⁴は、それぞれにおいてたがいに同一であっ ても異なっていてもよく、Ar¹⁵は置換又は無置換のア リーレン基を示す。〕で表される電子伝達化合物が挙げ られる。ここで、アリール基としてはフェニル基、ビフ エニル基、アントラニル基、ペリレニル基、ピレニル基 などが挙げられ、アリーレン基としてはフェニレン基、 ナフチレン基, ビフェニレン基, アントラセニレン基, ※

※ペリレニレン基、ピレニレン基などが挙げられる。ま た、置換基としては炭素数1~10のアルキル基、炭素 数1~10のアルコキシ基又はシアノ基などが挙げられ る。この電子伝達化合物は、薄膜形成性のものが好まし い。該電子伝達化合物の具体例としては、前記したPB Dをはじめ、

 $\{0067\}$ 【化25】

$$(CH_{\bullet}), C \longrightarrow \bigcup_{N \to N} \bigcup_{0} \bigcup_{N \to N} \bigcup_{0} \bigcup_{N \to N} \bigcup_{0} \bigcup_{N \to N} C(CH_{\bullet});$$

【0068】で表される化合物などが挙げられる。本発 明の有機EL素子における付着改善層は、上記化合物 を、例えば真空蒸着法,スピンコート法,キャスト法. LB法などの公知の薄膜化法により製膜して形成するこ とができる。付着改善層としての膜厚は、通常5 nm~ 5 μ m の範囲で選ばれる。この付着改善層は、これらの 付着性材料一種又は二種以上からなる一層で構成されて いてもよいし、あるいは該層とは別種の化合物からなる 付着改善性を積層したものであってもよい。このような 付着改善層は、付着性の高い電子伝達化合物からなるも 50 においては、有機多層部に代えて、この技術による有機

のであって、電子注入層としての役割を果たすことはも ちろんのことである。なお、有機多層部を単層化する技 術は公知であり、この技術においては、例えばポリスチ レン,ポリカーボネート,ポリビニルカルバゾールなど の結着剤の中に、正孔輸送材料、発光材料、電子注入材 料などを混合して均一化し、このものからなる単層を陽 極(透明電極)と陰極との間に形成させる。この単層化 技術は、例えば「日本高分子学会予稿集」1991年. 第40巻,第3591ページに記載されている。本発明

単層部を用いることができる。

【0069】本発明の有機多層部に外層部より正孔を注入する際、同じ電界強度でより電荷注入性を向上させ、より多くの電荷量を注入するために電荷注入補助材を使用してもよい。この電荷注入補助材の有機多層部の各層への添加量は、好ましくは各層の重量の19重量%以下、特に好ましくは0.05~9重量%である。ここで、電荷注入補助材の機能等の説明は、国際出願PCT/J*

* P93/01198に記載されている通りである。電荷 注入補助材として用いられる電子供与性スチルベン誘導 体,ジスチリルアリーレン誘導体あるいはトリススチリ ルアリーレン誘導体は、具体的には、次の化合物が挙げ られる。

[0070] 【化26】

$$C = C H \longrightarrow N \longrightarrow O C H$$

$$O C H = C H \longrightarrow N \longrightarrow C H = C H$$

$$C H = C H \longrightarrow N \longrightarrow C H = C H$$

$$C H = C H \longrightarrow N \longrightarrow C H = C H$$

$$C H = C H \longrightarrow N \longrightarrow C H = C H$$

[0071]

【化27】

$$C H = C H$$

$$C H = C H$$

$$C _{2}H _{5}$$

$$C _{2}H _{5}$$

$$C _{4}H _{5}$$

$$C _{4}H _{5}$$

$$C H = C H$$

$$C H = C H$$

$$O = C H = C H - O + C H = C H -$$

$$\bigcirc -N - \bigcirc -C H = C H - \bigcirc -C H = C H - \bigcirc -N - \bigcirc$$

$$\bigcirc - N - \bigcirc - C H = C H - \bigcirc - C H = C H - \bigcirc - N - \bigcirc$$

$$\bigcirc -N - \bigcirc -C = C H - \bigcirc -C H = C - \bigcirc -N - \bigcirc -C H$$

$$C H_{3} \longrightarrow C H = C H \longrightarrow C H \longrightarrow C H = C H \longrightarrow C H \longrightarrow C H = C H \longrightarrow C H \longrightarrow C H = C H \longrightarrow C H \longrightarrow$$

[0072]

【化28】

$$\bigcirc -N - \bigcirc -C H = C H - \bigcirc -N - \bigcirc$$

$$C H = C H - N - N$$

$$C H = C H$$

$$C H = C H$$

$$\bigcirc C H = C H - \bigcirc C H = C H - \bigcirc N - \bigcirc N$$

[0073]

【化29】

$$C H = C H$$

$$C H = C H$$

$$C H = C H$$

$$C H \cdot O - C H = C H - C H - C H = C H$$

$$\langle {}_{0}^{0} \bigcirc C H = C H - \bigcirc C H = C H - \bigcirc {}_{0}^{0} \rangle$$

$$\bigcirc -O - \bigcirc -C H = C H - \bigcirc -C H = C H - \bigcirc -O C H$$

$$H \cdot C$$
 $H \cdot C$
 $N - C \cdot H = C \cdot H - C \cdot H - C \cdot H = C \cdot H - C \cdot H = C \cdot H - C \cdot H - C \cdot H = C \cdot H - C \cdot H - C \cdot H - C \cdot H = C \cdot H - C \cdot H -$

[0074]

【化30】

$$\bigcirc - N - \bigcirc - C = C H - \bigcirc - C H = C - \bigcirc - N - \bigcirc$$

$$\bigcirc -N - \bigcirc -C = C H - \bigcirc -N - \bigcirc$$

$$\bigcirc -C H = C H$$

$$\bigcirc -C H = C H$$

$$C H = C H - O - N - O$$

$$C H = C H - O - N - O$$

$$H \circ C$$

$$H \circ C$$

$$H \circ C$$

$$C H = C H - \bigcirc V - \bigvee_{C H \circ C} H \circ C$$

$$C H \circ C$$

$$C$$

[0075]

$$C H = C H$$

$$C H = C H$$

$$C H = C H$$

$$\bigcirc -C H = C H$$

$$\bigcirc -C H = C H$$

$$\bigcirc -C H = C H$$

$$\bigcirc - N - \bigcirc - C H = C H - \bigcirc - C H = C H - \bigcirc - N - \bigcirc$$

[0076]

$$C H = C H - C$$

$$(S T A).$$

$$H \cdot C - C H = C H - C H$$

$$H : C \longrightarrow C H = C H \longrightarrow C H = C H \longrightarrow$$

$$C H = C H$$

$$(S T P y)$$

$$C H = C H \longrightarrow C H = C H \longrightarrow (S T S T P Y)$$

$$C H = C H \longrightarrow C H$$

$$(MeSTPy)$$

[0077]

40 【化33】

[0078] [化34]

25mm×75mm×1.1mmのガラス基板 [日本板ガ

【0079】次に、本発明のEL素子の好適な作製法 を、基板/透明電極/正孔輸送領域層/発光層/電子注 20 入層/陰極の構成を例に挙げて説明すると、まず適当な 基板上に、陽極用物質を、所望の膜厚になるように、蒸 着やスパッタリングなどの方法により形成させ、透明電 極(陽極)を作製したのち、この上に、正孔輸送材料、 発光材料及び電子注入材料からなる各薄膜を形成させ る。この薄膜化の方法としては、スピンコート法、キャ スト法、蒸着法などがあるが、均質な膜が得られやす く、かつピンホールが生成しにくいなどの点から、真空 蒸着法が好ましい。該薄膜化に、この蒸着法を採用する 場合、その蒸着条件は、使用する化合物の種類、分子堆 30 積膜の目的とする結晶構造、会合構造などにより異なる が、一般にボート加熱温度50~450℃, 真空度10 -5~10-8Pa, 蒸着速度0.01~50nm/sec, 基板温度-50~300℃, 膜厚5nm~5μmの範囲 で適宜選ぶことが望ましい。次にこれらの層の形成後、 その上に陰極用物質からなる薄膜を、10~500nm 好ましくは、50~200 n mの範囲の膜厚になるよう に、例えば蒸着やスパッタリングなどの方法により形成 させ、陰極を設けることにより、所望のEL素子が得ら れる。このようにして得られたEL素子に、直流電圧を 印加する場合には、陽極を+, 陰極を-の極性として電 圧5~40V程度を印加すると、色純度の高い発光が観 測できる。また、逆の極性で電圧を印加しても電流は流 れずに発光は全く生じない。さらに、交流電圧を印加す る場合には、陽極が+, 陰極が-の状態になったときの み発光する。なお、印加する交流の波形は任意でよい。 [0080]

【実施例】更に、実施例により本発明を詳細に説明するが、本発明はこれらの例によってなんら限定されるものではない。

実施例1~3及び比較例1~3

(1) E L素子の作製

ラス(株) 製, OA-2]上に、ITOを蒸着法にてa nmの厚さで製膜したもの〔ジオマティック社製〕を透 明支持基板とした。なお、この基板は、イソプロピルア ルコール中で5分間超音波洗浄後、窒素を吹きつけて乾 燥し、UVオゾン洗浄(UV300、サムコインターナ ショナル社製〕を10分間行ったものである。この透明 支持基板を市販の蒸着装置〔日本真空技術(株) 製〕の 基板ホルダーに固定し、モリブデン製抵抗加熱ボートに N, N' ービス (3-メチルフェニル) -N, N' ージ フェニル(1,1'ービフェニル)-4,4'ージアミ ン(TPD)を200mg入れ、他のモリブデン製抵抗 加熱ボートに4, 4'ービス(2, 2'ージフェニルビ ニル) ビフェニル (DPVBi) を200mg入れ、さ らに他のモリブデン製抵抗加熱ボートに電荷注入補助材 である化合物(A) (第1表に示す。)を200mg入 れ、真空槽を1×10⁻⁴Paまで減圧した。その後TP Dの入った前記ボートを215~220℃まで加熱し、 蒸着速度0.1~0.3 n m/秒で透明支持基板上に蒸着し て、膜厚bnmの正孔注入層を製膜させた。このとき、 基板の温度は室温であった。これを真空槽より取り出す ことなく、正孔注入層にDPVBiをホスト材料として c n m積層した。このとき同時に化合物 (A) のボート を加熱し、発光層に化合物(A)を混合した。このとき の蒸着速度はDPVBiの蒸着速度〔第1表に示す (B)〕に対して、(A)の蒸着速度を(C)(第1表 に示す。)とした。その後、真空槽を大気圧に戻し、新 たにモリブデン製抵抗加熱ボートに接着層の材料である 8-ヒドロキシキノリン・アルミニウム錯体(A1 g) を入れ、さらにモリブデン製抵抗加熱ボートにマグネシ ウムリボン1gを入れタングステン製バスケットに銀ワ イヤーを500mg入れて、真空槽を1×10-4Paま で減圧した。次いで、蒸着速度0.01~0.03 nm/秒 で8-ヒドロキシキノリン・アルミニウム錯体(A1 q)を蒸着し接着層をdnm形成した。さらに、銀を蒸 着速度0.1 nm/秒, マグネシウムを蒸着速度1.4 nm /秒で同時蒸着して銀:マグネシウム混合電極を陰極と した。膜厚は150nmであった。なお、陰極の反射率 は85%であった。第2表に各層の膜厚を示す。また、 各層の屈折率を別個に、その蒸着膜に対してエリプソメ ーターにより計測したところ、ITO, TPD, DPV Bi (ドーピングした層)及びAlq層の屈折率は、そ れぞれ1.86,1.7,1.75及び1.7であり、この値に

基づいて、上記素子の (nd) 1, (nd) 2, [(n

d)₁ + (nd)₂] を求めた。これらの結果を λ 及び

[0081]

mと共に第3表に示す。

50 【表1】

-		
93	•	悪
弱		202

	(A)	(B)	(C)
		(nm/f9)	(nm/19)
実施例1	PAVBi	2. 8 ~ 3. 5	0.075
実施例2	PAVB	3. 2 ~ 3. 4	0. 1 0
実施例3	PAVTP	2. 7~3. 5	0. 1 3
比較例1	PAVBi	2. 5 ~ 3. 0	0. 0 9
比較例 2	PAVB	3. 0~4. 0	0. 0 9
比較例3	PAVTP	2. 7~3. 5	0. 1 3

[0082]

PAVBi:

_ P A V B :

PAVTP:

[0083]

※ ※【表2】

第 2 表

	各層の膜厚(nm)						
	a	a b c d					
実施例1	1 2 0	8 0	4 0	2 0			
実施例2	1 2 0	8 0	4 0	2 0			
実施例3	1 0 0	110	4 0	2 0			
比較例1	1 0 0	6 0	4 0	2 0			
比較例 2	1 0 0	6 0	4 0	2 0			
比較例3	1 0 0	8 0	4 0	2 0			

[0084]

【表3】

第 3 表-1

	光	学 膜	厚
	有機多層部	透明電極	((nd) ₁ + (nd) ₂)
	(nd) ₁	(nd) ₂	
実施例1	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	120 ×1.86	4 6 3
実施例 2	$\begin{array}{c} 80 \times 1.7 + 40 \times 1.75 \\ +20 \times 1.7 \end{array}$	120 × 1.86	4 6 3
実施例3	110 × 1.7 + 40 × 1.75 + 20 × 1.7	100 × 1.86	477
比較例1	60 × 1.7 + 40× 1.75 + 20× 1.7	100 × 1.86	3 9 2
比較例 2	60 × 1.7 + 40 × 1.75 + 20 × 1.7	100 ×1.86	3 9 2
比較例3	80 ×1.7 +40×1.75 +20×1.7	100 × 1.86	4 2 6

【0085】 【表4】

第 3 表 - 2

λ	m				
(n m)	1				
4 6 3	2				
4 6 3	2				
4 7 7	2				
3 9 2	2				
3.9 2	2				
4 2 6	2				
	(nm) 463 463 477 392 392				

【0086】実施例 $1\sim3$ では、 $4\pi/\lambda$ [$(nd)_1+(nd)_2$] = $2m\pi$ (m=2) の式を、 λ が青色波長に対して満たしているが、比較例 $1\sim3$ では、 λ は青色波長よりずれている(青色波長: $\lambda=440\sim490$ nm)。

(2) 素子の輝度, 色度の測定

上記(1)で得られた素子に、第4表に示す電圧を印加 30 し、電流量、輝度及び色度を求めた。その結果を第4表 に示す。

【0087】 【表5】

第 表

	電圧	電流量	輝度	色度
	(V)	(mA/cm²)	(cd/m²)	
実施例1	8	5. 1 4	2 1 5	(0.159, 0.192)
実施例 2	8	3. 0	1 9 4	(0. 180, 0. 275)
実施例3	8	3. 3 8	1 0 2	(0.173, 0.181)
比較例1	6	6. 9	1 1 9	(0. 157. 0. 242)
比較例2	8	2. 5 8	160	(0.179, 0.326)
比較例3	8	6. 6 7	2 5 3	(0.181, 0.215)

【0088】対応する実施例1と比較例1、実施例2と 比較例2、実施例3と比較例3とを比較して分かるよう に、実施例のものは、比較例のものに比べて、y座標 た光学膜厚が青色の中心波長 (λ) であるため、 $4\pi/$ λ [(nd) 1 + (nd) 2] = 2mπ (m=2) の式 を満足し、青色純度が髙くなっていることを示してい る。

(3) 素子のELスペクトル

実施例1及び比較例1で得られた素子のELスペクトル を計測した。その結果を図2に示す。図2から明らか に、実施例1では460nmのピークが増強され、大き くなっていることが分かる。これにより、本発明の素子 の構成により、青色純度が高くなっていることが示され 30 た。

*【0089】実施例4~6

(1) EL素子の作製

実施例1と同様にして、各層の膜厚が第5表に示すよう (色度) が小さくなっている。これは、実施例で規定し 20 なEL素子を作製した。ただし、実施例4では、実施例 1で用いたITOの代わりに、髙屈折率1.92のITO を用いた。また、実施例5では基板とITO膜との間に 高屈折性下地層である屈折率2.4のTiO2層を、真空 蒸着法により膜厚48nmで設けた。さらに、実施例6 では基板とITO膜との間に低屈折性下地層である屈折 率1.38のMgF2層を、真空蒸着法により膜厚80n mで設けた。各層の膜厚を第5表に、光学膜厚、λ及び mを第6表に示す。

> [0090] 【表6】

第 5 表

	各層の膜厚(nm)						
	a	b	С	d	TiOz層	MgF2層	
実施例 4	1 1 6	8 0	4 0	2 0	-	_	
実施例 5	6 0	8 0	4 0	2 0	4 8	-	
実施例 6	1 2 0	8 0	4 0	2 0		8 0	

[0091]

第 6 表-1

	光 学 膜 厚				
	有機多層部 (n d)。	透明電極 (nd) ₂ 又は(nd)。	TiOz層 (nd),	[(nd), +(nd),] 又は[(nd), +(nd),]	
実施例 4	80×1.7 +40×1.75 +20×1.7	116×1.92	_	4 6 3	
実施例 5	80×1.7 +40×1.75 +20×1.7	60×1.86	48× 2. 4	3 5 1	
実施例6	80×1.7 +40×1.75 +20×1.7	120×1.86	-	4 6 3	

【0092】 【表8】

【0093】実施例5では、高屈折性下地層と透明電極 との界面での反射が生じるので、光学膜厚は $[(nd)_1 + (nd)_3]$ であり、界面で位相は π 変化するので $4\pi/\lambda$ $[(nd)_1 + (nd)_3] = (2m-1)\pi*$

* (m=2) を満足する場合となっている。上述のように、 $4\pi/\lambda \times [(nd)_1 + (nd)_3 + (nd)_4] = 2m\pi (m=2)$ 及び $4\pi/\lambda \times [(nd)_1 + (nd)_3] = (2m-1)\pi (m=2)$ (ここで、 $\lambda = 466nm$)を実施例5は満たしている。従って、実施例5では、特に青色純度が高まっていること が示されている。

(2)素子の輝度, 色度の測定

上記(1)で得られた素子に、第7表に示す電圧を印加し、電流量、輝度及び色度を求めた。その結果を第7表に示す。

[0094]

【表9】

第一次表

·				
	電圧	電流量	輝度	色度
	(V)	(mA/cm²)	(cd/m²)	
実施例 4	8	5	2 0 0	(0.159, 0.170)
実施例 5	8	4. 5	1 7 0	(0.151, 0.134)
実施例 6	8	4. 6	2 1 0	(0. 158, 0. 175)

【0095】実施例4~6は、いずれも比較例1に比べて青色純度が高くなっている。なお、実施例1~6の結 40 果より、本発明のEL素子の効率はほぼ変化がないか、むしろ優れている。これは、色純度を高めるため、カラーフィルターを用いた構成では、効率が1/2~1/3になるのに対し、著しい技術の優位性を示している。さらに、本発明の構成のEL素子は極めて簡易であり、作製が容易である。

[0096]

【発明の効果】本発明によると、特定の構成の素子にお

いて、陽極から陰極までの光学膜厚を制御することにより、特に青色発光の色純度を高めた有機EL素子を容易に得ることができる。このような本発明の有機EL素子は、例えば情報用ディスプレイや数文字表示素子として好適に用いられる。

【図面の簡単な説明】

【図1】 有機多層部で発生したEL光が放出される場合の各種形態を示す説明図である。

【図2】 実施例1及び比較例1で得られた素子のELスペクトルの計測図である。

【図1】

【図2】

フロントページの続き

(51) Int. Cl. ⁶ H O 5 B 33/28

識別記号 庁内整理番号

FΙ

技術表示箇所