Pytania z wykładów 2-7 do zaliczenia

Jan Ściga

1. Wymień elementy, które powinna zawierać specyfikacja przełącznika (switcha) dla sieci Ethernet.

Specyfikacja przełącznika powinna zawierać:

- Obszar przeznaczenia przełączników (np. małe lub średnia przedsiębiorstwa)
- Liczbę i rodzaje posiadanych portów, wymiary oraz wagę przełącznika
- Realizowane techniki przełączania i funkcje zarządzania przełącznikami
- Rodzaj zasilania, właściwości sprzętowe (hardware) i ewentualna możliwość obsługi technologii PoE/PoE+
- Realizowane zadania warstwy drugiej i trzeciej (np. możliwość rutingu)
- Obsługa IPv6, wypełniane zadania Quality of Service (QoS)
- Convergence i oferowane funkcjonalności z zakresu bezpieczeństwa
- Rodzaje posiadanej pamięci i możliwości procesora, wartość parametru MTBF
- Pobór mocy, wsparcie różnych systemów, opóźnienia
- Switching/ Forwarding capacity i wielkości związane z dostępnością (Availibility)
- Warunki środowiskowe do pracy przełącznika (Environmental)
- Zgodność ze standardami RFC

2. Porównanie RAID0 oraz RAID5

RAID0:

- Kontroler dzieli dane na małe fragmenty i zapisuje każdy na innym dysku
- Brak odporności na awarię dysków.
- Utrata wszystkich danych gdy dowolny dysk ulegnie uszkodzeniu
- Przestrzeń: N * (rozmiar najmniejszego z dysków)
- Dane są przeplecione między dyskami
- Szansa na awarię jednego z N dysków rośnie wraz z N

RAID5:

- Dane zapisywane są na wszystkich dostępnych dyskach
- Częściowe sumy kontrolne są rozłożone na wszystkie dyski (bity parzystości są rozpraszane po całej strukturze macierzy)
- W przypadku awarii jednego z dysków, macierz musi odbudować sumy kontrolne obciążając system.
- W przypadku chęci dodania dodatkowego dysku cała macierz musi zostać przebudowana
- Odporność na awarię tylko jednego dysku

- Umożliwienie odzysku danych przy wykorzystaniu danych i kodów korekcyjnych zapisanych na innych dyskach (przy tymczasowym zmniejszeniu bieżącej wydajności macierzy)
- Przestrzeń: (pojemność najmniejszego dysku) * (N-1)
- Szybkość odczytu porównywalna do macierzy RAIDO złożonej z N-1 dysków

	RAID0	RAID5
Minimalna ilość dysków	2	3
Odporność na awarię	brak	jednego dysku
Wydajność odczytu	wysoka	wysoka
Wydajność zapisu	wysoka	niska
Wydajność odczytu przy	Brak możliwości	Niska (ale możliwa)
stanie degradacji		
Wydajność zapisu przy	Brak możliwości	Niska (ale możliwa)
stanie degradacji		
Wykorzystanie	100%	67-94%
pojemności		
Przeznaczenie	Stacje końcowe, data	Web serving, archiving
	logging, real- time	
	rendering	

3. Porównanie USB 2.0 oraz USB 3.2

	USB 2.0	USB 3.2
Rok ogłoszenia specyfikacji	2000	2017
Szybkość transmisji	do 480 Mbit/s	do 20 Gbit/s
Connector types	USB-A , USB-B, USB Micro	USB-C
	A, USB Micro B, USB Mini	
	A, USB Mini B	
Ilość zużywanego prądu	Do 500mA	Do 1500mA
Tryb pracy	Half-duplex	Full-duplex
Długość kabla	Do 5 metrów	Do 3m
Architektura	Transmisja danych musi	Przesyłanie danych
komunikacyjna	być zainicjowana przez	urządzeniem gdy są na to
	hosta (polling)	gotowe, a nie kiedy o to
		pytają. (minimalizacja
		poolingu)

Standard USB 3.2 jest ponadto kompatybilny z USB 3.1/3.0 oraz USB 2.0 i definiuje kilka trybów (Gen 1, Gen 2, Gen 1x2, Gen 2x2).

Najpełniej różnicę pomiędzy USB 3.2 i 2.0 można odczuć przy dużych plikach , które w przypadku USB 3.2 można skopiować o wiele szybciej.

Oznaczenia różnymi symbolami:

