TCP/IP – A hálózat-hozzáférési réteg

A hálózat-hozzáférési réteg

- Az "első" réteg, a legalsó réteg
- Azt a problémát dolgozza fel, hogy a fizikai közegen hogyan történjen az adatok átvitele
- Közvetlenül a hálózati hardverhez való hozzáférést, illetve az ezen a szinten zajló folyamatok szabályozását teszi lehetővé
- Mi a hálózati hardver? A hálózati kártya, a kábel portja, a kábel, illetve az antenna és a vezeték nélküli jelek – és maga az adat, amelynek ezeken meg kell jelennie
- Ezt a kérdéskört járja körbe és oldja meg ez a réteg

Az anyag tartalma:

- Mik a hálózat-hozzáférési réteg feladatai?
- Hogyan viszonyul a TCP/IP hálózat-hozzáférési rétege az OSImodell megfelelő részéhez? (Ez csak érdekesség)
- Mik a feladatai egy hálózati architektúrának?
- Milyen részekből áll egy Ethernet-keret?

Protokollok és a hardver

- Előkészíti és kezeli az adatokat úgy, hogy azok alkalmasak legyenek a fizikai közegen való átvitelre
- Interfészt biztosít a számítógép hálózati hardveréhez (szorgalmi kérdés: mi az "interfész"?)
- Koordinálja az adatok átvitelét
- Olyan alakra hozza az adatokat, amelyeket át lehet küldeni a közegen (digitális vagy analóg jelekként)
- Hibaellenőrzést végez, és erről szóló információt fűz hozzá az adatokhoz a túloldali ellenőrzés végett

Rejtett folyamatok

- Mindezeket a folyamatokat már a tényleges hardver szintjén kell végezni
- Ezek az egyszeri felhasználó számára rejtve maradnak (ki tudja egyáltalán, mi a hálózati kártyája MAC-címe?)
- Igazából az operációs rendszernek kell kezelnie az átmenetet a programok szintjén kezelt adatok (weboldal, e-mail, chatüzenet) és ezek "kábelre küldése" között
- Még az IP-címek sem látszanak ténylegesen ezen a szinten, azt is csak a felhasználók tudják (illetve ők már azt sem)

A probléma két része

- Közeg hozzáférésének vezérlése (Media Access Control = MAC)
 biztosítani kell az interfészt a hálózati adapter felé
- Logikai kapcsolat vezérlése (Logical Link Control = LLC) el kell végezni a továbbított adatok hibaellenőrzését, és kapcsolatot kell tartani az egymással kommunikáló számítógépek között

A hálózati architektúra

- A hálózat topológiáját már ismerjük ezt rakjuk össze Packet Tracerben – egy helyi hálózat topológiája legtöbbször csillag, vagy kiterjesztett csillag
- A hálózat architektúrája ezzel szemben olyan eljárásokat jelent, amelyek az előbbiekben felsorolt problémákat oldják meg
- Amikor hálózati architektúrát választunk, tulajdonképpen arról döntünk, milyen hálózat-hozzáférési réteget használunk a hálózatunkban
- A fizikai hálózat egyfajta terve

A hálózati architektúra

- Hozzáférési módszer a gépek miként osztoznak a közegen (a kábelen vagy a WiFi-n)
- Az adatkeretek formátuma az adatok darabokban jutnak el a címzetthez, ezt a programok szintjén csomagnak, ezen a szinten keretnek nevezzük
- A kábelezés típusa ez a rajtuk átmenő elektromos jeleket (azaz az adatok fizikai formáját) is meghatározzák
- A kábelezéssel kapcsolatos szabványok

A hálózati architektúra

- Ez tehát teljes egészében a hálózati hardver, a fizikai eszközök problémáiról szól
- A "réteges" megoldásnak köszönhető, hogy a számítógépeken futó programoknak erről semmit nem kell tudniuk
- Egy böngésző nem tud arról, hogy kábelen vagy wifin kapja-e meg a lekért weboldalt!
- Ezek szabványok, azaz protokollok!

Néhány protokoll ezen a szinten:

- IEEE 802.3 az Ethernet szabványának azonosítószáma a kábelezett hálózat, amelyet a legtöbb irodában, iskolában használnak
- IEEE 802.11 drótnélküli hálózatok a közönséges vezeték nélküli hálózatok (nézzetek utána, milyen betűjelű szabványai vannak 11-es szám után, ha a WiFi-re rákerestek!)
- IEEE 802.16 WiMAX nagy távolságú mobil vezeték nélküli kapcsolatok
- PPP Point to Point Protocol telefonvonalon, modem segítségével megvalósított kapcsolattípus

A barbatrükk:

 A gépeken futó programoknak nem kell tudniuk róla, hogy milyen fizikai közegen szállítódnak az adatok

3.2. ábra

Mivel a hálózathozzáférési réteg elrejti a külvilág elől a hálózati hardver működésének részleteit, a verem felsőbb rétegei gyakorlatilag hardverfüggetlen módon működhetnek.

3.3. ábra

A legtöbb hálózati operációs rendszer lehetővé teszi, hogy több különböző architektúrát rendeljünk a TCP/IP veremhez.

IP-címek és MAC-címek

- A mezei felhasználó semmit nem tud az IP-címekről, azonban a számítógépen futó hálózati programok és az operációs rendszerek IP-címek szerint azonosítják egymást
- A fizikai közegen azonban az IP-címek egyáltalán nem látszanak, helyettük a hálózati kártyák címei, a MAC-címek alapján irányítják a címzetthez az üzeneteket
- A programok szintjén létező IP-címeket meg kell feleltetni a MACcímeknek, ezt egy protokoll, egy eljárás oldja meg: az ARP (Address Resolution Protocol) – de erről most ennyit

Az Ethernet

- Hogyan kommunikál két gép a fizikai közegen? Ez jelentéktelen kérdés, mert minden közegen több gép osztozik! Mi van, ha egyszerre akarnak küldeni üzenetet ugyanarra a kábelre?
- Erre kitaláltak egy protokollt, amely olyan, amit egy teremnyi udvarias ember követ, ha beszélgetni akarnak:
- Aki szólni akar, előbb fülel, hogy jelenleg beszél-e valaki más ez a vivőérzékelés, Carrier Sense (CS)
- Ha ketten egyszerre szólalnak meg, mindketten elhallgatnak, majd később újra szólnak – ez az ütközés-érzékelés, Collision Detection (CD)

CSMA/CD

- Ez az Ethernet kommunikációs protokollja
- Carrier Sense Multiple Access with Collision Detection
- Vivőérzékelésen alapulú többszörös hozzáférés ütközésérzékeléssel
- Lényege tehát, hogy a számítógépek folyamatosan figyelik a közeg foglaltságát, és várnak, amíg az szabaddá nem válik
- Ha két gép mégis egyszerre kezdene sugározni, ütközés (collision) keletkezik – ekkor megállnak, várakoznak egy ideig, majd újra próbálkoznak

Hub és switch

 A csillag-topológiák központja a hub és a switch – nekik köszönhető, hogy a gépek nem sorba vannak kötve, ezáltal közvetlenebbül kommunikálhatnak

Az Ethernet korai változatainál valamennyi számítógép egyetlen közös koaxiális kábelre csatlakozott.

3.5. ábra

Egy kis darab adat

 Itt látható egy egyszerre átküldhető adatdarab (Ethernet keret, Ethernet frame) felépítése – weboldal, e-mail, chatüzenet, fájl ilyen darabokban jut át egyik gépről a másikra

8ВҮТЕ	6BYTE	6BYTE	2BYTE	46-1500BYTE	4ВҮТЕ
Előtag / Preamble	CÉL MAC CÍME	FORRÁS MAC CÍME	Tipus/ Hossz	Adatok	CRC