Package 'CBN2Path'

Title Conjunctive Bayesian Networks
Title Conjunctive Bujesian rectivories
Version 0.1.0
Description A family of R functions based on the CBN family of functions created at ETH-Zurich.
<pre>URL https://github.com/rockwillck/CBN2Path,</pre>
http://dx.doi.org/10.1093/biomet/asp023,
http://dx.doi.org/10.1093/bioinformatics/btp505
License MIT + file LICENSE
Encoding UTF-8
Roxygen list(markdown = TRUE)
RoxygenNote 7.3.2
Imports R6, foreach, doMC, ggraph, tidygraph, ggplot2, patchwork, cowplot, magrittr, igraph, rlang, grDevices, coda, graphics, stats
Suggests testthat (>= 3.0.0), BiocStyle, knitr, rmarkdown
Depends R (>= $3.5.0$)
Config/testthat/edition 3
biocViews Software, StatisticalMethod, GraphAndNetwork
VignetteBuilder knitr
NeedsCompilation yes
Author William Choi-Kim [aut, cre] (https://orcid.org/0009-0000-3902-4745), Sayed-Rzgar Hosseini [aut] (https://orcid.org/0000-0002-2308-6754)
Maintainer William Choi-Kim <william@williamck.com></william@williamck.com>
Contents
CBN2Path-package
Base2Indexing
Base2IndVec
bcbn
combinations
ctcbn
EdgeMarginalized

2 CBN2Path-package

generate_data
generate_matrix_genotypes
GenotypeMatrix_Mutator
Genotype_Feasibility
get_examples
hcbn
hcbn_single
Jensen_Shannon_Divergence
lambda_example_data
PathProb_CBN
PathProb_Quartet_BCBN
PathProb_Quartet_CTCBN
PathProb_Quartet_HCBN
PathProb_Quartet_RCBN
PathProb_SSWM
Pathway_Compatibility_Quartet
Pathway_Feasibility
Pathway_Genotype_Compatibility
Pathway_Weighting_RCBN
Path_Edge_Mapper
Path_Normalization
pat_example_data
permutations
poset_example_data
Poset_Weighting_RCBN
Predictability
read_lambda
read_pattern
read_poset
read_time
Spock
transitive_closure
visualize_cbn_model
visualize_fitness_landscape
visualize probabilities 29

CBN2Path-package

CBN2Path: Conjunctive Bayesian Networks

Description

A family of R functions based on the CBN family of functions created at ETH-Zurich.

A family of R functions based on the CBN family of functions created at ETH-Zurich.

Author(s)

Maintainer: William Choi-Kim <william@williamck.com> (ORCID)

Authors:

• Sayed-Rzgar Hosseini <rzgar.hosseini@indstate.edu> (ORCID)

Base2Indexing 3

See Also

Useful links:

```
• https://github.com/rockwillck/CBN2Path
```

- http://dx.doi.org/10.1093/biomet/asp023
- http://dx.doi.org/10.1093/bioinformatics/btp505

Useful links:

- https://github.com/rockwillck/CBN2Path
- http://dx.doi.org/10.1093/biomet/asp023
- http://dx.doi.org/10.1093/bioinformatics/btp505

Base2Indexing

Base2Indexing

Description

Base2Indexing

Usage

Base2Indexing(mat)

Arguments

mat

A given poset represented by a binary matrix (in B-CBN)

Value

#Poset weight vectors based on the frequency of occurence in the BCBN MCMC-sampling scheme.

```
set.seed(100)
mat<-matrix(sample(c(0,1),16,replace=TRUE),4,4)
Index<-Base2Indexing(mat)</pre>
```

4 bcbn

 ${\tt Base2IndVec}$

Base 2 Ind Vec

Description

Base2IndVec

Usage

```
Base2IndVec(vec)
```

Arguments

vec

a binary genotype vector

Value

a number used for indexing a given genotype

Examples

```
vec<-c(0,1,0,1)
Base2IndVec(vec)</pre>
```

bcbn

B-CBN

Description

B-CBN

Usage

```
bcbn(
  data = default_data(),
  n_samples = 25000,
  theta = 0,
  epsilon = 0.05,
  n_chains = 4,
  thin = 10,
  Max_L = 1000,
  n_cores = 1
)
```

combinations 5

Arguments

data Generated data

n_samples Number of samples <def: 25000>

theta Theta <def: 0>
epsilon Epsilon <def: 0.05>
n_chains N-Chains <def: 4>
thin Thin <def: 10>

Max_L The maximum number of iteration <def: 1000>

n_cores Number of parallelized cores <def: 1>

Value

A matrix

Examples

bcbn()

combinations combinations

Description

combinations

Usage

```
combinations(n, r, v = 1:n, set = TRUE, repeats.allowed = FALSE)
```

Arguments

n total number of elements in the set

r subset size v 1:n

set Logical flag indicating whether duplicates should be removed from the source

vector v. Defaults to TRUE.

repeats.allowed

Logical flag indicating whether the constructed vectors may include duplicated

values. Defaults to FALSE.

Value

a matrix with (n choose r) rows and r columns

```
COMB<-combinations(10,4)
```

6 ctcbn

ctcbn

CT-CBN

Description

CT-CBN

Usage

```
ctcbn(
  datasets,
  bootstrap_samples = 0,
  random_seed = 1,
  sampling_rate = 1,
  epsilon = 2,
  num_drawn_samples = 0,
  num_em_runs = 1,
  n_cores = 1
)
```

Arguments

datasets

Vector of Spock objects with poset and pattern/lambda data or a Spock object

(alias of ctcbn_single).

bootstrap_samples

Number of bootstrap samples (requires epsilon > 0, num_drawn_samples = 0)

random_seed

Random seed.

sampling_rate

Sampling rate.

epsilon

If between 0 and 1, the fraction of violations allowed per edge. If negative, the

interval 0 to 0.5 will be sampled equidistantly with N points.

num_drawn_samples

If > 0, the number of samples to draw from the model. If zero (default), the

model will be learned from data.

num_em_runs

Number of em runs.

n_cores

Maximum number of threads to use to parallelize.

Value

A matrix of results.

```
example_path <- get_examples()[1]
bc <- Spock$new(
    poset = read_poset(example_path)$sets,
    numMutations = read_poset(example_path)$mutations,
    genotypeMatrix = read_pattern(example_path)
)
ctcbn(bc)</pre>
```

ctcbn_single 7

ctcbn_single

CT-CBN Single Batch

Description

CT-CBN Single Batch

Usage

```
ctcbn_single(
  dataset,
  bootstrap_samples = 0,
  random_seed = 1,
  sampling_rate = 1,
  epsilon = 0,
  num_drawn_samples = 0,
  num_em_runs = 1
)
```

Arguments

dataset Spock object with poset and pattern/lambda data.

bootstrap_samples

Number of bootstrap samples (requires epsilon > 0, num_drawn_samples = 0)

random_seed Random seed.
sampling_rate Sampling_rate.

epsilon If between 0 and 1, the fraction of violations allowed per edge. If negative, the

interval 0 to 0.5 will be sampled equidistantly with N points.

num_drawn_samples

If > 0, the number of samples to draw from the model. If zero (default), the

model will be learned from data.

num_em_runs Number of em runs.

Value

A list of output data.

```
example_path <- get_examples()[1]
bc <- Spock$new(
    poset = read_poset(example_path)$sets,
    numMutations = read_poset(example_path)$mutations,
    genotypeMatrix = read_pattern(example_path)
)
ctcbn_single(bc)</pre>
```

8 generate_data

 ${\sf EdgeMarginalized}$

EdgeMarginalized

Description

EdgeMarginalized

Usage

```
EdgeMarginalized(PathProb, x)
```

Arguments

PathProb The pathway probabilities returned in the step 3 of the R-CBN algorithm

x The number of mutations to consider

Value

returns the marginal probability of all the potential edges

Examples

```
DAG<-matrix(c(2,2,4,1,3,3),3,2)

LAMBDA<-c(1,4,3,2.5,2)

x<-4

PathP<-PathProb_CBN(DAG, LAMBDA, x)

EdgeProb<-EdgeMarginalized(PathP,x)
```

generate_data

Generate Data

Description

Generate Data

Usage

```
generate_data(poset, thetas, eps, N)
```

Arguments

poset Poset matrix

thetas Vector of theta values

 $\begin{array}{ccc} \text{eps} & & \text{Epsilon} \\ \text{N} & & \text{N} \end{array}$

Value

A matrix

Examples

```
poset <- matrix(0, 10, 10)

poset[1, 2] <- 1
poset[2, 3] <- 1
poset[3, 4] <- 1
poset[5, 4] <- 1
poset[6, 7] <- 1
poset[8, 9] <- 1
poset[8, 9] <- 1

tr <- transitive_closure(poset)
theta <- c(0.8, 0.7, 0.6, 0.7, 0.4, 0.25, 0.6, 0.75, 0.5, 0.2)
eps <- 0.1
N <- 400

generate_data(tr, theta, eps, N)</pre>
```

Description

```
generate_matrix_genotypes
```

Usage

```
generate_matrix_genotypes(g)
```

Arguments

g genotype length

Value

a genotype matrix with ncol=g and nrow=2^g

```
Geno4<-generate_matrix_genotypes(4)</pre>
```

GenotypeMatrix_Mutator

GenotypeMatrix_Mutator

Description

GenotypeMatrix_Mutator

Usage

```
GenotypeMatrix_Mutator(mat, FP, FN)
```

Arguments

mat The genotype matrix including sampled genotypes, which need to be muatated.

FP False positive rate
FN False negative rate

Value

The mutated version of the genotype matrix

Examples

```
set.seed(100)
gMat<-matrix(sample(c(0,1),800,replace = TRUE),200,4)
gMat_mut<-GenotypeMatrix_Mutator(gMat,0.2,0.2)</pre>
```

Genotype_Feasibility Genotype_Feasibility

Description

Genotype_Feasibility

Usage

```
Genotype\_Feasibility(genotypes, DAG, x)
```

Arguments

genotypes the full set of potential binary genotypes of a given length.

DAG matrix representing the DAG of restrictions.

x the number of mutations considered.

Value

a binary vector, which indicates feasibility or infeasibility of a set of genotypes

get_examples 11

Examples

```
Geno4<-generate_matrix_genotypes(4)
DAG<-matrix(c(4,4,4,1,2,3),3,2)
x<-4
GenoF4<-Genotype_Feasibility(Geno4,DAG,x)</pre>
```

get_examples

Get paths to examples

Description

Get paths to examples

Usage

```
get_examples()
```

Value

A vector of paths

Examples

```
get_examples()
```

hcbn

H-CBN

Description

H-CBN

Usage

```
hcbn(
  datasets,
  anneal = FALSE,
  temp = 0,
  annealing_steps = 0,
  epsilon = 2,
  n_cores = 1
)
```

12 hcbn_single

Arguments

datasets Vector of Spock objects with poset and pattern/lambda data or a Spock object

(alias of hcbn_single).

anneal If TRUE, performes a simulated annealing run starting from the poset

temp Temperature of simulated annealing.

annealing_steps

Number of simulated annealing steps.

epsilon Value of eps for CT-CBN model selection. Requires both pattern and lambda

data in input Spock.

n_cores Maximum number of threads to use to parallelize.

Value

A matrix of results.

Examples

```
example_path <- get_examples()[1]
bc <- Spock$new(
    poset = read_poset(example_path)$sets,
    numMutations = read_poset(example_path)$mutations,
    genotypeMatrix = read_pattern(example_path)
)
hcbn(bc)
hcbn(c(bc, bc, bc))</pre>
```

hcbn_single

H-CBN Single Batch

Description

H-CBN Single Batch

Usage

```
hcbn_single(
  datasetObj,
  anneal = FALSE,
  temp = 0,
  annealing_steps = 0,
  epsilon = 2
)
```

Arguments

dataset0bj Spock object with poset and pattern/lambda data.

anneal If TRUE, performes a simulated annealing run starting from the poset

temp Temperature of simulated annealing.

annealing_steps

Number of simulated annealing steps.

epsilon Value of eps for CT-CBN model selection. Requires both pattern and lambda

data in input Spock.

Value

A list of output data.

Examples

```
example_path <- get_examples()[1]
bc <- Spock$new(
    poset = read_poset(example_path)$sets,
    numMutations = read_poset(example_path)$mutations,
    genotypeMatrix = read_pattern(example_path)
)
hcbn_single(bc)</pre>
```

Jensen_Shannon_Divergence

Jensen_Shannon_Divergence

Description

Jensen_Shannon_Divergence

Usage

```
Jensen_Shannon_Divergence(Prob1, Prob2)
```

Arguments

Prob1 The first (discrete) probability distribution (vector)

Prob2 The second (discrete) probability distribution (vector)

Value

Jensen Shannon Divergence between the two (discrete) probability distributions

```
set.seed(100)
gMat<-matrix(sample(c(0,1),800,replace = TRUE),200,4)
PathCT<-PathProb_Quartet_CTCBN(gMat)
PathH<-PathProb_Quartet_HCBN(gMat)
JSD<-Jensen_Shannon_Divergence(PathCT,PathH)</pre>
```

14 PathProb_CBN

 ${\tt lambda_example_data} \quad \textit{ Example . lambda files}$

Description

Model parameters, if N > 0

Details

These files are included in the package under inst/extdata/ and can be accessed using system.file() or get_examples(). They are unchanged from their original source.

Source

https://bsse.ethz.ch/cbg/software/ct-cbn.html

PathProb_CBN: quantifies pathway probabilities using the output of CT-CBN or H-CBN

Description

PathProb_CBN: quantifies pathway probabilities using the output of CT-CBN or H-CBN

Usage

```
PathProb_CBN(DAG, LAMBDA, x)
```

Arguments

DAG matrix representing the DAG of restrictions.

LAMBDA the lambda values, which are produced by the CBN model.

x the number of mutations considered.

Value

vector of probabilities assigned to all potential pathways of length x

```
DAG<-matrix(c(2,2,4,1,3,3),3,2)
LAMBDA<-c(1,4,3,2.5,2)
x<-4
PathP<-PathProb_CBN(DAG, LAMBDA, x)
```

 ${\tt PathProb_Quartet_BCBN} \quad \textit{PathProb_Quartet_BCBN}$

Description

PathProb_Quartet_BCBN

Usage

```
PathProb_Quartet_BCBN(gMat)
```

Arguments

gMat The n by 4 binary genotype matrix representing a given quartet for a sample of

n genotypes.

Value

The probability distribution (returned by the B-CBN model), which is represented as a vector of length 24.

Examples

```
set.seed(100)
gMat<-matrix(sample(c(0,1),800,replace = TRUE),200,4)
PathB<-PathProb_Quartet_BCBN(gMat)</pre>
```

PathProb_Quartet_CTCBN

PathProb_Quartet_CTCBN

Description

PathProb_Quartet_CTCBN

Usage

```
PathProb_Quartet_CTCBN(gMat)
```

Arguments

gMat The n by 4 binary genotype matrix representing a given quartet for a sample of

n genotypes.

Value

The probability distribution (returned by the CT-CBN model), which is represented as a vector of length 24.

Examples

```
set.seed(100)
gMat<-matrix(sample(c(0,1),800,replace = TRUE),200,4)
PathCT<-PathProb_Quartet_CTCBN(gMat)</pre>
```

 ${\tt PathProb_Quartet_HCBN} \quad \textit{PathProb_Quartet_HCBN}$

Description

PathProb_Quartet_HCBN

Usage

```
PathProb_Quartet_HCBN(gMat)
```

Arguments

gMat

The n by 4 binary genotype matrix representing a given quartet for a sample of n genotypes.

Value

The probability distribution (returned by the H-CBN model), which is represented as a vector of length 24.

Examples

```
set.seed(100)
gMat<-matrix(sample(c(0,1),800,replace = TRUE),200,4)
PathH<-PathProb_Quartet_HCBN(gMat)</pre>
```

 ${\tt PathProb_Quartet_RCBN} \quad \textit{PathProb_Quartet_RCBN}$

Description

PathProb_Quartet_RCBN

Usage

```
PathProb_Quartet_RCBN(gMat)
```

Arguments

gMat

The n by 4 binary genotype matrix representing a given quartet for a sample of n genotypes.

PathProb_SSWM 17

Value

The probability distribution (returned by the R-CBN model), which is represented as a vector of length 24

Examples

```
set.seed(100)
gMat<-matrix(sample(c(0,1),800,replace = TRUE),200,4)
PathR<-PathProb_Quartet_RCBN(gMat)</pre>
```

PathProb_SSWM

PathProb_SSWM

Description

PathProb_SSWM

Usage

```
PathProb_SSWM(FITNESS, x)
```

Arguments

FITNESS

A vector of length 2^x, each element of which representing the fitness assigned

to one of the 2^x genotypes.

Х

The number of mutations considered.

Value

vector of probabilities assigned to all potential pathways of length x

Examples

```
Pathway_Compatibility_Quartet
```

 $Pathway_Compatibility_Quartet$

Description

Pathway_Compatibility_Quartet

Usage

```
Pathway_Compatibility_Quartet(gMat)
```

18 Pathway_Feasibility

Arguments

gMat

The n by 4 binary genotype matrix representing a given quartet for a sample of n genotypes.

Value

The compatibility score, which is represented as a vector of length 24, each element of which corresponds to one of the 24 pathways of length 4.

Examples

```
set.seed(100)
gMat<-matrix(sample(c(0,1),800,replace = TRUE),200,4)
Pathway_Compatibility_Quartet(gMat)</pre>
```

Pathway_Feasibility

Pathway_Feasibility

Description

Pathway_Feasibility

Usage

```
Pathway_Feasibility(DAG, x)
```

Arguments

DAG matrix representing the DAG of restrictions.

x the number of mutations considered.

Value

a binary vector, which indicates feasibility or infeasibility of a set of pathways

```
DAG<-matrix(c(4,4,4,1,2,3),3,2)
x<-4
PathF<-Pathway_Feasibility(DAG, x)</pre>
```

Pathway_Genotype_Compatiblility

Pathway_Genotype_Compatiblility

Description

Pathway_Genotype_Compatiblility

Usage

Pathway_Genotype_Compatiblility(Pathway, Genotype)

Arguments

Pathway a vector representing the given pathway.

Genotype a binary vector representing the given genotype.

Value

returns 1 (if the given genotype is compatible with the given pathway), and 0 otherwise

Examples

```
Geno1<-c(1,0,1,0)
Geno2<-c(1,1,0,0)
Path<-c(1,2,3,4)
Pathway_Genotype_Compatiblility(Path,Geno1)
Pathway_Genotype_Compatiblility(Path,Geno2)</pre>
```

Pathway_Weighting_RCBN

Pathway Weighting RCBN

Description

Pathway_Weighting_RCBN

Usage

Pathway_Weighting_RCBN(EdgeProb, PEmap)

Arguments

EdgeProb Marginal edge probabilities

PEmap Pathway-edge compatibility matrix

Value

The pathway weights (step 4 of the R-CBN algorithm)

20 Path_Normalization

Examples

```
DAG<-matrix(c(2,2,4,1,3,3),3,2)
LAMBDA<-c(1,4,3,2.5,2)
x<-4
PathP<-PathProb_CBN(DAG, LAMBDA, x)
EdgeProb<-EdgeMarginalized(PathP,x)
PEmap<-Path_Edge_Mapper(4)
W2<-Pathway_Weighting_RCBN(EdgeProb,PEmap)
```

Path_Edge_Mapper

Path_Edge_Mapper

Description

Path_Edge_Mapper

Usage

```
Path_Edge_Mapper(x)
```

Arguments

x

number of mutations to consider

Value

Pathway to edge compatibility matrix, each element of which indicates whether a given edge is included in the transitive closure of a given pathway (1) or not (0).

Examples

```
PEmap<-Path_Edge_Mapper(4)
```

 ${\tt Path_Normalization}$

Path_Normalization

Description

Path_Normalization

Usage

```
Path_Normalization(PathProb, x)
```

Arguments

PathProb The pathway probabilities returned in the step 3 of the R-CBN algorithm

x The number of mutations to consider

pat_example_data 21

Value

The updated pathway probabilities (the step 5 of the R-CBN algorithm)

Examples

```
DAG<-matrix(c(2,2,4,1,3,3),3,2)
LAMBDA<-c(1,4,3,2.5,2)
x<-4
PathP<-PathProb_CBN(DAG, LAMBDA, x)
PathN<-Path_Normalization(PathP, x)
```

pat_example_data

Example .pat and .sim.pat files

Description

Mutational patterns (genotypes), unless N > 0

Details

These files are included in the package under inst/extdata/ and can be accessed using system.file() or get_examples(). They are unchanged from their original source.

Source

```
https://bsse.ethz.ch/cbg/software/ct-cbn.html
```

permutations

permutations

Description

permutations

Usage

```
permutations(n, r, v = 1:n, set = TRUE, repeats.allowed = FALSE)
```

Arguments

n total number of elements in the set

r subset size

v 1:n

set Logical flag indicating whether duplicates should be removed from the source

vector v. Defaults to TRUE.

repeats.allowed

Logical flag indicating whether the constructed vectors may include duplicated

values. Defaults to FALSE.

Value

```
a matrix with (n!/(n-r)!) rows and r columns
```

Examples

```
PERM<-permutations(4,4)
```

poset_example_data

Example .poset files

Description

Event poset used if -e is not set; if -e is set, the file is used for determining the number of events as specified in the first row

Details

These files are included in the package under inst/extdata/ and can be accessed using system.file() or get_examples(). They are unchanged from their original source.

Source

```
https://bsse.ethz.ch/cbg/software/ct-cbn.html
```

Description

Poset_Weighting_RCBN

Usage

```
Poset_Weighting_RCBN(vec)
```

Arguments

vec

The likelihood vector corresponding to a given set of posets

Value

The poset weight vector determined using the reciprocal ranking method

```
set.seed(100)
LogLik<-runif(219)
W1<-Poset_Weighting_RCBN(LogLik)</pre>
```

Predictability 23

Predictability

Predictability

Description

Predictability

Usage

```
Predictability(Prob, x)
```

Arguments

Prob Pathway probability vector x The length of genotype vectors

Value

Predictability

Examples

```
set.seed(100)
gMat<-matrix(sample(c(0,1),800,replace = TRUE),200,4)
PathCT<-PathProb_Quartet_CTCBN(gMat)
PathH<-PathProb_Quartet_HCBN(gMat)
PredC<-Predictability(PathCT,4)
PredH<-Predictability(PathH,4)</pre>
```

read_lambda

Read a .lambda file

Description

Read a .lambda file

Usage

```
read_lambda(filestem)
```

Arguments

filestem

The filename of the .lambda file without the .lambda suffix.

Value

A matrix.

```
bcPath <- get_examples()[1]
read_lambda(bcPath)</pre>
```

24 read_poset

read_pattern

Read a .pat file

Description

Read a .pat file

Usage

```
read_pattern(filestem)
```

Arguments

filestem

The filename of the .pat file without the .pat suffix.

Value

A matrix.

Examples

```
bcPath <- get_examples()[1]
read_pattern(bcPath)</pre>
```

read_poset

Read a .poset file

Description

Read a .poset file

Usage

```
read_poset(filestem)
```

Arguments

filestem

The filename of the .poset file without the .poset suffix.

Value

A list containing the number of mutations and a matrix.

```
bcPath <- get_examples()[1]
read_poset(bcPath)</pre>
```

read_time 25

read_time

Read a .time file

Description

Read a .time file

Usage

```
read_time(filestem)
```

Arguments

filestem

The filename of the .time file without the .time suffix.

Value

A matrix.

Examples

```
bcPath <- get_examples()[1]
read_pattern(bcPath)</pre>
```

Spock

Poset and pattern/lambda data

Description

A data class containing poset and pattern/lambda matrices.

Details

Use the read_ methods to feed data from files.

Public fields

```
poset Poset matrix.

numMutations Number of mutations.

genotypeMatrix Genotype matrix.

lambda Lambda list.
```

26 Spock

Methods

```
Public methods:
  • Spock$new()
  • Spock$getSize()
  • Spock$getPoset()
  • Spock$getSecond()
  • Spock$getPattern()
  • Spock$getLambda()
  • Spock$clone()
Method new(): Create a new Spock object.
 Spock$new(poset, numMutations, genotypeMatrix, lambda = NULL)
 Arguments:
 poset Poset matrix or list of poset matrices.
 numMutations Number of mutations.
 genotypeMatrix Genotype matrix.
 lambda Lambda list.
 Returns: A new Spock object.
Method getSize(): Get the number of posets.
 Usage:
 Spock$getSize()
 Returns: Number of posets.
Method getPoset(): Write poset data to a tempfile.
 Usage:
 Spock$getPoset(index = 1)
 Arguments:
 index Index of poset.
 Returns: File path to tempfile.
Method getSecond(): Write pattern/lambda data to a tempfile.
 Usage:
 Spock$getSecond(n)
 Arguments:
 n Number of drawn samples.
 Returns: File path to tempfile.
Method getPattern(): Write pattern data to a tempfile.
 Usage:
 Spock$getPattern()
```

Returns: File path to tempfile.

Method getLambda(): Write lambda data to a tempfile.

transitive_closure 27

```
Usage:
Spock$getLambda()
```

Returns: File path to tempfile.

Method clone(): The objects of this class are cloneable with this method.

Usage:

```
Spock$clone(deep = FALSE)
```

Arguments:

deep Whether to make a deep clone.

transitive_closure

Transitive Closure

Description

Transitive Closure

Usage

```
transitive_closure(poset)
```

Arguments

poset

Poset matrix

Value

Poset matrix

```
poset <- matrix(0, 10, 10)

poset[1, 2] <- 1
poset[2, 3] <- 1
poset[3, 4] <- 1
poset[5, 4] <- 1
poset[6, 7] <- 1
poset[8, 9] <- 1
poset[8, 10] <- 1
poset[6, 9] <- 1
transitive_closure(poset)</pre>
```

Description

Visualize CBN Model

Usage

```
visualize_cbn_model(poset, nodeColor = "darkgreen")
```

Arguments

poset Poset object to visualize

nodeColor Color of nodes in resulting graph

Value

Plot (gg object) visualization of CBN model

Examples

```
poset <- read_poset(get_examples()[1])
visualize_cbn_model(poset$sets)</pre>
```

```
visualize_fitness_landscape
```

Visualize Fitness Landscape

Description

Visualize Fitness Landscape

Usage

```
visualize_fitness_landscape(
  fitness,
  selectNodes = NULL,
  nGenes = 4,
  lowColor = "white",
  highColor = "blue"
)
```

Arguments

fitness Fitness vectors for each genotype provided in selectNodes or for all genotypes

if none selected

selectNodes Select genotypes to visualize

nGenes Length of each genotype

lowColor Color for wild type genotype

highColor Color for fully mutated genotype

visualize_probabilities 29

Value

Plot (gg object) visualization of fitness landscape

Examples

```
Genotypes <- c(</pre>
    "0000",
    "1000",
    "0100",
    "0010",
    "0001",
    "1100",
    "1010",
    "1001",
    "0110",
    "0101",
    "0011",
    "1110",
    "1101",
    "1011",
    "0111",
    "1111"
)
#
COLintensity <- c(0, rep(0.25, 4), rep(0.5, 6), rep(0.75, 4), 1)
visualize\_fitness\_landscape(\texttt{COLintensity})
```

visualize_probabilities

Visualize Pathway Probabilities

Description

Visualize Pathway Probabilities

Usage

```
visualize_probabilities(
  probabilities,
  outputFile = NULL,
  geneNames = as.character(1:inverse_factorial(length(probabilities))),
  geneColors = rainbow(length(geneNames), v = 0.5),
  columnTitles = TRUE
)
```

Arguments

```
probabilities List or matrix of probabilities for each pathway (matrix if multiple models)
outputFile File to output to; if none provided, a plot will be returned
geneNames Gene names; if single character, rendered in circles
geneColors Gene colors
columnTitles Include column titles
```

Value

Plot or file name

```
visualize_probabilities(c(0.05, 0.03, 0.12, 0.04, 0.02, 0, 0.05, 0.04, 0.05, 0.06, 0.04, 0.02, 0.03, 0.02, 0.05
visualize_probabilities(c(0.05, 0.03, 0.12, 0.04, 0.02, 0, 0.05, 0.04, 0.05, 0.06, 0.04, 0.02, 0.03, 0.02, 0.05
mat <- matrix(c(0.1, 0.3, 0, 0.2, 0.4, 0, 0.2, 0.2, 0.1, 0, 0.2, 0.3), ncol = 2)
visualize_probabilities(mat, columnTitles = TRUE)</pre>
```