Première partie

Représentations de la position et de l'impulsion en \mathcal{M} écanique \mathcal{Q} uantique

Dans ce chapitre, nous allons de nouveau considérer une particule; en particulier, nous voulons pouvoir définir les notions de position et d'impulsion.

Nous allons travailler dans les espaces de Hilbert $L_2(\mathbb{R})$ ou $L_2(\mathbb{R}^3)$. Nous aurons alors des fonctions de carré sommable. Dans ces espaces, les opérateurs position X et impulsion P n'ont pas de vecteurs propres. Nous pouvons néamoins faire comme si ils en avaient : nous expliqueront ultérieurement comment nous pouvons justifier cette approche.

Dans cette section, nous utiliserons intensément les résultats obtenus en ??.

Introduisons les notations:

- $|x_0\rangle$ Etat propre de l'opérateur X de valeur propre x_0 . Cela correspond à la "fonction d'onde" $\delta(x-x_0)$.
- $|p_0\rangle$ Etat propre de l'opérateur P de valeur propre p_0 . Cela correspond à la "fonction d'onde" $\frac{1}{\sqrt{2\pi\hbar}}e^{i\frac{p_0x}{\hbar}}$

Nous pouvons effectuer plusieurs opérations sur ces objets.

1 Espace vectoriel des opérateurs X et P

1.1 Normalisation

Nous voulons calculer $\langle x_0|x_0'\rangle$ et $\langle p_0|p_0'\rangle$.

$$\langle x_0 | x_0' \rangle = \int dx \delta(x - x_0) \delta(x - x_0') = \delta(x_0 - x_0)$$

$$\langle p_0 | p_0' \rangle = \int dx \frac{e^{-i\frac{p_0 x}{\hbar}}}{\sqrt{2\pi\hbar}} \frac{e^{i\frac{p_0' x}{\hbar}}}{\sqrt{2\pi\hbar}} = \int du \frac{e^{-i(p_0 - p_0')u}}{2\pi} = \delta(p_0 - p_0')$$

$$u = \frac{x}{\hbar}$$

Ce faisant, nous montrons que les deux bases définies par ces opérations sont orthonormées.

1.2 Relation de complétude

A partir de là, nous obtenons les relations fondamentales suivantes :

Nous avons alors deux relations de complétude, ou de fermeture.

1.3 Composante d'un ket

Considérons un état quantique $|\Psi\rangle$, correspondant à la fonction d'onde $\Psi(x)$. En exploitant les relations de fermetures définies ci-dessus, nous pouvons alors écrire l'état quantique sous les deux formes suivantes :

$$|\Psi\rangle = \int d^3x_0 |x_0\rangle \langle x_0| |\Psi\rangle \tag{I.1}$$

$$|\Psi\rangle = \int d^3 p_0 |p_0\rangle \langle p_0| |\Psi\rangle \tag{I.2}$$

On pose $\psi(x) = \langle x | \psi \rangle$. Observons que

$$|\psi\rangle = \int dx |x\rangle \langle x| |\psi\rangle = \int dx |X\rangle \langle x|\psi\rangle$$
 (I.3)

$$= \int \psi(x) |x\rangle. \tag{I.4}$$

En particulier, en prenant $|\psi\rangle = |p\rangle$, nous avons que

$$\langle x|p\rangle = \frac{1}{\sqrt{2\pi\hbar}} e^{i\frac{px}{\hbar}} \tag{I.5}$$

Dès lors,

$$\langle p|\psi\rangle = \langle p|\mathbb{I}|\psi\rangle$$

$$= \langle p|\int dx |x\rangle \langle x||\psi\rangle\rangle$$

$$= \int dx \langle p|x\rangle \langle x|\psi\rangle$$

$$\langle p|\psi\rangle = \frac{1}{\sqrt{2\pi\hbar}} \int dx \ e^{i\frac{px}{\hbar}} \psi(x) = \tilde{\psi}(p)$$
(I.6)

Où $\tilde{\psi}(p)$ est par définition la transformée de Fourier de $\psi(r)$.

Pour résumer, nous avons que

$$\langle \boldsymbol{r} | \psi \rangle = \psi(\boldsymbol{r}) \tag{I.7}$$

$$\langle \boldsymbol{p}|\psi\rangle = \tilde{\psi}(\boldsymbol{p}) \tag{I.8}$$

1.4 Produit scalaire de deux vecteurs

En vertue des relations de complétude 1.2, il est possible de retrouver le produit scalaire (??).

$$\langle \varphi | \psi \rangle = \langle \varphi | \int dx | x \rangle \langle x | | | \psi \rangle \rangle \qquad \langle \varphi | \psi \rangle = \langle \varphi | \int dp | p \rangle \langle p | | \psi \rangle$$

$$= \int dx \langle \varphi | x \rangle \langle x | \psi \rangle \qquad = \int dp \langle \varphi | p \rangle \langle p | \psi \rangle$$

$$\langle \varphi | \psi \rangle = \int dx \varphi^*(x) \psi(x) \qquad \langle \varphi | \psi \rangle = \int dp \tilde{\varphi}^*(p) \tilde{\psi}(p) \qquad (I.9)$$

2 Opérateurs X et P

Soit $|\psi\rangle$ un ket quelconque et $\langle r|\psi\rangle \doteq \psi(x,y,z)$ la fonction d'onde correspondante. On définit l'opérateur X de sorte que

$$|\psi'\rangle = X |\psi\rangle \tag{I.10}$$

soit définit à travers la base $\{r\}$ par la fonction $\langle r|\psi'\rangle=\psi'(r)$, où

$$\psi'(\mathbf{r}) = x\psi(x, y, z). \tag{I.11}$$

Dans cette base, l'opérateur X représente donc la multiplication par x. De manière analogue, nous introduisons les opérateurs Y et Z:

$$\langle \boldsymbol{r}|X|\psi\rangle = x\,\langle \boldsymbol{r}|\psi\rangle \qquad \qquad \langle \boldsymbol{r}|Y|\psi\rangle = y\,\langle \boldsymbol{r}|\psi\rangle \qquad \qquad \langle \boldsymbol{r}|Z|\psi\rangle = z\,\langle \boldsymbol{r}|\psi\rangle \qquad (I.12)$$

Similairement, on définit l'opérateur P, dont l'action dans la base $|p\rangle$ est donnée par

$$\langle \boldsymbol{p}|P_x|\psi\rangle = p_x \langle \boldsymbol{p}|\psi\rangle = p_x \tilde{\psi}(p_x) \qquad \langle \boldsymbol{p}|P_y|\psi\rangle = p_y \langle \boldsymbol{p}|\psi\rangle = p_y \tilde{\psi}(p_y) \qquad \langle \boldsymbol{p}|P_z|\psi\rangle = p_z \langle \boldsymbol{p}|\psi\rangle = p_z \tilde{\psi}(p_z) \qquad (I.13)$$

Proposition 2.1. $\langle x|P|\psi\rangle = -i\hbar\partial_x\,\langle x|\psi\rangle$.

Démonstration.

$$\langle x|P|\psi\rangle = \int dp \ \langle x|p\rangle \langle p|P|\psi\rangle$$

$$= \int dp \ \frac{e^{i\frac{px}{\hbar}}}{\sqrt{2\pi\hbar}} p\tilde{\psi}(p)$$

$$= -i\hbar\partial_x \left(\int dp \ \frac{e^{i\frac{px}{\hbar}}}{\sqrt{2\pi\hbar}} \tilde{\psi}(p)\right)$$

$$\langle x|P|\psi\rangle = -i\hbar\partial_x \psi(x) \tag{I.14}$$

2

Proposition 2.2. $[X, P] = i\hbar \mathbb{I}$

 $D\'{e}monstration$. La preuve est assez simple :

$$\begin{split} \langle \boldsymbol{r}|[X,P]|\psi\rangle &= \langle \boldsymbol{r}|XP - PX|\psi\rangle \\ &= \langle \boldsymbol{r}|XP|\psi\rangle - \langle \boldsymbol{r}|PX|\psi\rangle \\ &= x \, \langle \boldsymbol{r}|P|\psi\rangle - \frac{\hbar}{i} \frac{\partial}{\partial x} \, \langle \boldsymbol{r}|X|\psi\rangle \\ &= \frac{\hbar x}{i} \frac{\partial}{\partial x} \, \langle \boldsymbol{r}|\psi\rangle - \frac{\hbar}{i} \frac{\partial}{\partial x} x \, \langle \boldsymbol{r}|\psi\rangle \\ &= i\hbar \, \langle \boldsymbol{r}|\psi\rangle \end{split}$$

Cela étant vrai pour tout r et tout ψ , il s'ensuit que $[X, P] = i\hbar$.

Nous pouvons en déduire que

$$[R_i, R_j] = 0 [R_i, P_j] = i\hbar \delta_{ij} (I.15)$$

Pour tout i, j = 1, 2, 3.

3 Opérateur translation

Définition 3.1. Soit P, Q, deux observables reliées par la relation $[P, Q] = i\hbar \mathbb{I}$. On définit l'opérateur translation $S(\lambda)$ par

$$S(\lambda) = e^{-i\frac{\lambda P}{\hbar}} \tag{I.16}$$

Pour tout $\lambda \in \mathbb{R}$.

Observons que cet opérateur est unitaire : effectivement, $S^{\dagger}(\lambda) = S(-\lambda)$. De plus, $S(\lambda)S(\lambda') = S(\lambda + \lambda')$.

Nous voulons déterminer la valeur de $[X,S(\lambda)]$. Commecons par remarquer les propriétés suivantes de l'opérateur commutateur.

3.1 Quelques propriétés de l'opétateur commutateur

Proposition 3.2. Pour tout opérateur A,B et C,

$$[A, BC] = [A, B]C + B[A, C]$$
 (I.17)

Proposition 3.3. Pour tout opérateur X et P et tout naturel n,

$$[X, P^n] = i\hbar n P^{n-1} \tag{I.18}$$

 $D\'{e}monstration$. Il s'agit d'une preuve par réccurence. La base se prouve assez facilement ; passons directement à l'étape d'induction :

$$[X, P^{n+1}] = [X, P^n \ P] = [X, P^n]P + P^n[X, P] = i\hbar nP^n + i\hbar P^n = i\hbar (n+1)P^n$$

Généralisons 3.3 à une fonction pouvant être représentée comme une série, supposée convergente.

Proposition 3.4. Soit $F(P) = \sum_{n=0}^{\infty} a_n P^n$ une fonction de P. Alors,

$$[X, F(P)] = i\hbar F'(P) \tag{I.19}$$

Démonstration.

$$[X, F(P)] = \sum_{n} a_n [X, P^n] = \sum_{n} a_n i \hbar n P^{n-} = i \hbar F'(P)$$

Cette dernière proposition permet de répondre à la question posée :

$$[X, S(\lambda)] = \lambda S(\lambda). \tag{I.20}$$

Nous pouvons reformuler cette égalité sous la forme

$$QS(\lambda) = S(\lambda)[Q + \lambda]. \tag{I.21}$$

4 Valeurs propres et vecteurs propres de Q

4.1 Spectre de Q

Proposition 4.1. Soit $|x_0\rangle$ le vecteur propre de X, de valeur propre x_0 . Alors,

$$S(\lambda) |x_0\rangle = |x_0 + \lambda\rangle \tag{I.22}$$

Démonstration.

$$XS(\lambda) |x_0\rangle = (S(\lambda)X + \lambda S(\lambda)) |x_0\rangle$$

= $S(\lambda)x_0 |x_0\rangle + \lambda S(\lambda) |x_0\rangle = (x_0 + \lambda)S(\lambda) |x_0\rangle$

Cette propriété exprime que $S(\lambda)|x_0\rangle$ est un autre vecteur propre non nul de X, de valeur propre $(x_0 + \lambda)$. A partir d'un vecteur propre de X, nous pouvons alors en construire un autre : le spectre de X est continu, composé de toutes les valeurs de l'axe réelle.

Proposition 4.2. Si $|\psi\rangle$ est un vecteur de la fonction d'onde Ψ , alors $S(\lambda)|\psi\rangle$ est un ket d ela fonction d'onde $\Psi(x-\lambda)$.

Remarque 4.3. Nous avons vu que $S(\lambda)|x_0\rangle = |x_0 + \lambda\rangle$. Remarquons que l'expression adjointe s'écrit

$$\langle x_0 | S^{\dagger}(\lambda) = \langle x_0 + \lambda | \tag{I.23}$$

Soit alors,

$$\langle x_0 | S(\lambda) = \langle x_0 - \lambda | \tag{I.24}$$

Proposition 4.4. On remarque alors que si $|\psi\rangle$ est un ket de la fonction d'onde $\Psi(x)$, alors $S(\lambda) |\psi\rangle$ est le ket associé à la fonction d'onde $\Psi(x-\lambda)$.

Démonstration.

$$\langle x|\psi\rangle = \Psi(x)$$
$$\langle x|S(\lambda)|\psi\rangle = \langle x-\lambda|\psi\rangle = \Psi(x-\lambda)$$

Ces propriétés de $S(\lambda)$ lui valent le nom de opérateur de translation.

4.2 Invariance par translation

Supposons que le système est invariant par translation, c'est à dire que, pour tout $t, \lambda, |\psi\rangle$:

$$e^{-i\frac{Ht}{\hbar}}S(\lambda)|\psi\rangle = S(\lambda)e^{-i\frac{Ht}{\hbar}}|\psi\rangle \tag{I.25}$$

Nous pouvons alors montrer que $HP|\psi\rangle = PH|\psi\rangle$, c'est à dire que [H,P]=0.

L'invariance de translation implique la conservation du générateur des translations; c'est à dire la conservation de l'impulsion. Ce résultat (non démontré dans le cadre de ce cours) exploite le Théorème d'Emmy Nöther.

5 Relations d'incertitudes

Soient A,B des observables et $|\psi\rangle$ un état.

Remarque 5.1. Nous notons $\langle A^n \rangle = \langle \psi | A^n | \psi \rangle$, $\Delta A^2 = \langle A^2 \rangle - \langle A \rangle^2$. De plus, on intoduit $A' = A - \langle A \rangle$ afin de pouvoir noter $\Delta A^2 = \langle A'^2 \rangle$. On note que [A, B] = [A', B'].

Théorème 5.2. Soit A,B deux obserables. Alors,

$$\Delta A \Delta B \ge \frac{1}{2} \| \langle [A, B] \rangle \| \tag{I.26}$$

Démonstration. La preuve est laissée en exercice pour le lecteur.

Pour les opérateurs X et P, nous avons alors que [X,P] valent $i\hbar$; il s'ensuit que

$$\Delta X \Delta P \ge \frac{\hbar}{2},$$

ce qui est exactement la relation (??).