Assignment 2

Problem 1 (1.5 points) (Show all intermediate steps. No intermediate steps will receive 0 point)

Convert integer -3 to 8 digit TC Binary. (0.5 point)

```
First, convert 3 to binary: 3=2^1+2^0=9 b 0000 0011 .
```

Then negate it:

```
0b 0000 0011 (3 in binary)
0b 1111 1100 (flip bits)
+ 0b 0000 0001 (add one)
-----
0b 1111 1101 (-3)
```

-3 in an 8-bit two's complement binary is 0b 1111 1101.

Convert decimal -1 to 8 digit TC Hex. (0.5 point)

First, convert 1 to hexadecimal: $1=1(16^0)=1$ 0x 0000 0001.

Then, negate it:

```
0x FFFF FFFF
- 0x 0000 0001 (1 in hex)
-----
0x FFFF FFFE (subtract from 0x FFFF FFFF)
+ 0x 0000 0001 (add one)
-----
0x FFFF FFFF (-255)
```

-1 in an 8-digit two's complement hexadecimal is 0×10^{-2} FFFF FFFF.

Convert integer -255 to 8 digit Hex (Hint: You can either convert 255 to Hex then negate with TC Hex rule, or you can convert -255 to TC Bin, then convert it to Hex) (0.5 point)

I'm doing the former, so: $255 = 15(16^1) + 15(16^0) = 100$ 0000 00FF .

```
0x FFFF FFFF
- 0x 0000 00FF (255 in hex)
```

-255 in an 8-digit two's complement hexadecimal is 0×10^{-2} FFFF FF01 .

Problem 2 Convert the 2-digit two's complement hexadecimal integer 0x6e to decimal. Show all intermediate steps clearly. (0.5 point)

First, we note that 0x6e is a positive integer because the leading digit here is less than eight. So, we can just convert it to decimal where E correspond to 14.

As such,
$$0x6e = 6(16^1) + 14(16^0) = 110$$
.

Problem 3 Convert the decimal integer -61 to an 8-bit two's complement binary integer. Show all intermediate steps clearly. (0.5 point)

First, convert 61 into hexadecimal: $61=3(16^1)+13(16^0)=$ 0x 0000 003D .

Using a reference table, we convert 0x 0000 003D to binary: 0b 0011 1101.

Dec	Bin	Hex
3	0011	3
13	1101	D

Then, negate it.

```
0b 0011 1101 (61 in binary)
0b 1100 0010 (flip bits)
+ 0b 0000 0001 (add one)
-----
0b 1100 0011 (-61)
```

-61 in an 8-bit two's complement binary is $\,$ 0b $\,$ 1100 $\,$ 0011 $\,$.

Problem 4 You're given two 4-digit, 2's complement hexadecimal numbers X = 0xa731 and Y = 0xe6a2. Compute X-Y. Remember to indicate overflow if it

occurs. Show all intermediate steps clearly. (1 point)

First, negate Y to find -Y.

```
0x FFFF
- 0x E6A2 (Y)
-----
0x 195D (subtract from 0x FFFF)
+ 0x 0001 (add one)
-----
0x 195E (-Y)
```

Then, X-Y=X+(-Y). So:

```
1
0x A731 (X)
+ 0x 195E (-Y)
-----
0x C08F
```

In a 4-digit two's complement hexadecimal system, $X-Y={ t 0x t C08F}$.

Sanity check

	X	Y	-Y	X - Y
Нех	A731	E6A2	195E	C08F
Dec	-22735	-6494	6494	-16241

$$X - Y = -22735 - (-6494)$$
 $= -22735 + 6494$
 $= X + (-Y)$
 $= -22735 + 6494$
 $= -16241$