EQUILIBRIO QUÍMICO EN FASE GAS

Con datos del equilibrio

- En un recipiente de 2,0 dm³ se introducen 0,043 moles de NOCl(g) y 0,010 moles de Cl₂(g). Se cierra, se calienta hasta una temperatura de 30 °C y se deja que alcance el equilibrio, en el que hay 0,031 moles de NOCl(g). Para el equilibrio: NOCl(g) $\rightleftharpoons \frac{1}{2}$ Cl₂(g) + NO(g), calcula:
 - a) El grado de disociación.
 - b) La concentración de cada gas.
 - c) El valor de la constante K_c .
 - d) La presiones parcial de cada gas.
 - e) La presión total.
 - f) El valor de la constante $K\square$

Dato: $R = 0.082 \text{ atm} \cdot \text{L} \cdot \text{K}^{-1} \cdot \text{mol}^{-1} = 8.31 \text{ J} \cdot \text{K}^{-1} \cdot \text{mol}^{-1}$

Problema modelo basado na P.A.U. jun. 15

Rta.: a) $\alpha = 27.9 \%$; b) ([NOCl]_e = 0.0155; [Cl₂]_e = 0.00800; [NO]_e = 0.00600) mol/dm³;

c) $K_c = 0.035$; d) (p(NOCl) = 39; $p(Cl_2) = 20$; p(NO) = 15) kPa; y) p = 74 kPa; f) $K_p = 0.173$

Datos Cifras significativas: 3

 $V = 2.00 \text{ dm}^3$ Gas: Volumen

 $T = 30 \, ^{\circ}\text{C} = 303 \, \text{K}$ **Temperatura**

Cantidad inicial de NOCl $n_0(NOCl) = 0.0430 \text{ mol NOCl}$

Cantidad inicial de Cl₂ $n_0(Cl_2) = 0.0100 \text{ mol } Cl_2$

Cantidad de NOCl en el equilibrio $n_{\rm e}({\rm NOCl}) = 0.0310 \; {\rm mol} \; {\rm NOCl}$

Incógnitas

[NOCl]_e, [Cl₂]_e, [NO]_e Concentración de cada gas en el equilibrio

Constante del equilibrio de las concentraciones K_c

Presiones parciales de cada gas en el equilibrio $p(NOCl), p(Cl_2), p(NO)$

Presión total en el equilibrio

Constante del equilibrio de las presiones K_{p}

Otros símbolos

Cantidad de gas que reaccionó $n_{\rm r}$

Ecuaciones

 $p \cdot V = n \cdot R \cdot T \Longrightarrow p = \frac{n \cdot R \cdot T}{V}$ Ecuación de estado de los gases ideales

Ley de Dalton de las presiones parciales $p_t = \sum p_i$

[X] = n(X) / VConcentración de la substancia X

 $\alpha = \frac{n_{\rm d}}{n_{\rm o}}$ Grado de disociación

 $K_c = \frac{\left[\mathbf{C}\right]_{c}^{c}\left[\mathbf{D}\right]_{c}^{d}}{\left[\mathbf{A}\right]_{a}^{d}\left[\mathbf{B}\right]_{a}^{d}} \quad K_p = \frac{p_{e}^{c}(\mathbf{C}) \cdot p_{e}^{d}(\mathbf{D})}{p_{e}^{d}(\mathbf{A}) \cdot p_{e}^{d}(\mathbf{B})}$ Constantes del equilibrio: $a A + b B \rightleftharpoons c C + d D$

Solución:

a) Se calcula la cantidad de NOCl que reaccionó

$$n_{\rm r} = n_{\rm e} - n_{\rm o} = 0.0310 - 0.0430 = -0.0120 \text{ mol NOCl}$$

El grado de disociación vale:

$$\alpha = \frac{n_{\rm d}}{n_0} = \frac{0.012 \text{ 0mol reacc.}}{0.043 \text{ 0mol inic.}} = 0.279 = 27.9 \%$$

b) Se construye una tabla para calcular las cantidades de productos y reactivos en el equilibrio a partir de la estequiometría de la reacción

$$NOCl(g) \rightleftharpoons \frac{1}{2} Cl_2(g) + NO(g)$$

		NOCl	\Rightarrow	½ Cl ₂	NO	
Cantidad inicial	n_0	0,0430		0,0100	0	mol
Cantidad que reacciona o se forma	$n_{ m r}$	0,0120	\rightarrow	$\frac{0,012}{2} = 0,00600$	0,0120	mol
Cantidad en el equilibrio	$n_{\rm e}$	0,0310		0,0160	0,0120	mol
Concentración en el equilibrio	[]e	$\frac{0,031}{2}0$ =0,0155		$\frac{0,016 \ 0}{2}$ =0,00800	$\frac{0,012}{2}0$ =0,00600	mol/dm³

Las concentraciones en el equilibrio son:

$$\begin{split} [NOCl]_e &= 0,0155 \ mol/dm^3 \\ [Cl_2]_e &= 0,00800 \ mol/dm^3 \\ [NO]_e &= 0,00600 \ mol/dm^3 \end{split}$$

c) Se calcula la constante de equilibrio:

K_c =
$$\frac{[\text{NO}]_{\text{e}} \cdot [\text{Cl}_{2}]_{\text{e}}^{1/2}}{[\text{NOCl}]_{\text{e}}} = \frac{0.00600 \cdot \sqrt{0.00800}}{0.015 \cdot 5} = 0.034 \cdot (\text{concentraciones en mol/dm}^{3})$$

d) Se calculan las presiones parciales de cada gas a partir de las cantidades en el equilibrio. Suponiendo comportamiento ideal para los gases:

$$p(\text{NOCl}) = \frac{n(\text{NOCl}) \cdot R \cdot T}{V} = \frac{0,031 \cdot 0 \text{mol} \cdot 8,31 \cdot J \cdot \text{mol}^{-1} \cdot K^{-1} \cdot 303 \cdot K}{2,00 \cdot 10^{-3} \cdot \text{m}^3} = 3,91 \cdot 10^4 \cdot Pa = 39,1 \cdot kPa = 0,386 \cdot atm$$

$$p(\text{Cl}_2) = \frac{n(\text{Cl}_2) \cdot R \cdot T}{V} = \frac{0.016 \text{ 0mol} \cdot 8.31 \text{ J} \cdot \text{mol}^{-1} \cdot \text{K}^{-1} \cdot 303 \text{ K}}{2.00 \cdot 10^{-3} \text{ m}^3} = 2.02 \cdot 10^4 \text{ Pa} = 20.2 \text{ kPa} = 0.199 \text{ atm}$$

$$p(\text{NO}) = \frac{n(\text{NO}) \cdot R \cdot T}{V} = \frac{0.012 \text{ 0mol} \cdot 8.31 \text{ J} \cdot \text{mol}^{-1} \cdot \text{K}^{-1} \cdot 303 \text{ K}}{2.00 \cdot 10^{-3} \text{ m}^3} = 1.51 \cdot 10^4 \text{ Pa} = 15.1 \text{ kPa} = 0.149 \text{ atm}$$

e) Se calcula la presión total por la ley de Dalton:

$$p = p(NOCl) + p(Cl_2) + p(NO) = 39.1 \text{ [kPa]} + 20.2 \text{ [kPa]} + 15.1 \text{ [kPa]} = 74.4 \text{ kPa} = 0.734 \text{ atm}$$

f) Se calcula la constante de equilibrio de las presiones K_p a partir de las presiones parciales:

$$K_p = \frac{p_e(\text{NO}) \cdot p_e^{1/2}(\text{Cl}_2)}{p_e(\text{NOCl})} = \frac{0.149 \cdot \sqrt{0.199}}{0.386} = 0.173 \text{ (presiones en atm)}$$

También podemos calcularla de la relación con la constante K_c :

$$K_{p} = \frac{p_{e}(\text{NO}) \cdot p_{e}^{1/2}(\text{Cl}_{2})}{p_{e}(\text{NOCl})} = \frac{[\text{NO}]_{e} \cdot R \cdot T \cdot ([\text{Cl}_{2}] \cdot R \cdot T)_{e}^{1/2}}{[\text{NOCl}]_{e} \cdot R \cdot T} = \frac{[\text{NO}]_{e} \cdot [\text{Cl}_{2}]_{e}^{1/2}}{[\text{NOCl}]_{e}} \cdot (R \cdot T)^{1/2} = K_{c} \cdot \sqrt{R \cdot T}$$

$$K_{p} = K_{c} \sqrt{R \cdot T} = 0.034 \quad 6\sqrt{0.082 \cdot 303} = 0.173 \text{ (presiones en atm)}$$

La mayor parte de las respuestas puede calcularse con la hoja de cálculo <u>Quimica (es)</u>
Cuando esté en el índice, mantenga pulsada la tecla «♠» (mayúsculas) mientras hace clic en la celda:

Equilibrio en fase gas

del capítulo:

Equilibrio químico Equilibrio en fase gas

Escriba las fórmulas químicas en las celdas blancas con borde verde, los datos en las celdas blancas con borde azul, y pulse en las celdas de color salmón para elegir entre las opciones que se presentan.

serve agas,) pulse of the certain are certain participated entire the episteries que se presentant											
	Reactivo A	+	Reactivo B	\rightleftharpoons	Producto C	+	Producto D				
	NOCl			0,5	Cl_2		NO				
dad inicial	0,04				0,01			mol			
equilibrio	0,03							mol			
·											
	Volumen		Presión total								
°C	2	dm³									
Calcular: Presión total											
	dad inicial equilibrio	NOCl dad inicial 0,04 equilibrio 0,03 Volumen CC 2	NOCl dad inicial 0,04 equilibrio 0,03 Volumen CC 2 dm³	NOCl dad inicial 0,04 equilibrio 0,03 Volumen Presión total CC 2 dm³	NOCl 0,5 dad inicial 0,04 equilibrio 0,03 Volumen Presión total CC 2 dm³	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	dad inicial 0,04 equilibrio 0,03 Volumen Presión total C 2 dm³			

Podrá ver:

	RESULTADOS												
	Cifras significativas: 3												
Cantidad			NOCl(g))	⇌ 0,5	$Cl_2(g)$ +	NO(g)						
	inicial		0,0430			0,0100	0	mol					
	reacciona	reacciona 0,0120					0,0120	mol					
	equilibrio		0,0310			0,0160	0,0120	mol					
	Constantes	$K_c =$	0,0346	(Conc. en mol/L)								
		$K_p =$	0,173	(p en atm.)									
	Presión	(total) =	0,734	atm en equilibri	0	Grado de di	sociación α =	27,9 %					

2. En un matraz de 1,5 dm³, en el que se hizo el vacío, se introducen 0,08 moles de N_2O_4 y se calienta a 35 °C. Parte del N_2O_4 se disocian según la reacción: $N_2O_4(g) \rightleftharpoons 2\ NO_2(g)$ y cuando se alcanza el equilibrio la presión total es de 2,27 atm. Calcula el porcentaje de N_2O_4 disociado.

Datos: $R = 8,31 \text{ J} \cdot \text{K}^{-1} \cdot \text{mol}^{-1} = 0,082 \text{ atm} \cdot \text{dm}^{3} \cdot \text{K}^{-1} \cdot \text{mol}^{-1}$; 1 atm = 101,3 kPa

(A.B.A.U. extr. 19)

Rta.: $\alpha = 69 \%$

Datos

Volumen

Temperatura

Cantidad inicial de tetraóxido de dinitrógeno

Presión en el equilibrio

Incógnitas

Porcentaje de N₂O₄ disociado

Ecuaciones

Concentración de la substancia X

Ecuación de estado de los gases ideales

Constante del equilibrio: $a A + b B \rightleftharpoons c C + d D$

Cifras significativas: 3

 $V = 1,50 \text{ dm}^3 = 1,50 \cdot 10^{-3} \text{ m}^3$

 $T = 35 \,^{\circ}\text{C} = 308 \,^{\circ}\text{K}$

 $n_0(N_2O_4) = 0.0800 \text{ mol}$

 $p = 2,27 \text{ atm} = 2,30 \cdot 10^5 \text{ Pa}$

α

[X] = n(X) / V

 $p \cdot V = n \cdot R \cdot T \Longrightarrow p = \frac{n \cdot R \cdot T}{V}$

 $K_c = \frac{\left[\mathbf{C}\right]_{e}^{c} \cdot \left[\mathbf{D}\right]_{e}^{d}}{\left[\mathbf{A}\right]_{e}^{a} \cdot \left[\mathbf{B}\right]_{e}^{b}}$

Solución:

b) La ecuación química es:

$$N_2O_4(g) \rightleftharpoons 2 NO_2(g)$$

Llamando x a la cantidad de N₂O₄ que se disocia hasta llegar al equilibrio, se puede escribir:

		N_2O_4	\rightleftharpoons	2 NO ₂	
Cantidad inicial	n_0	0,0800		0	mol
Cantidad que reacciona o se forma	$n_{\rm r}$	x	\rightarrow	2 x	mol
Cantidad en el equilibrio	$n_{\rm e}$	0,0800 - x		2 x	mol

La cantidad total de gas en el equilibrio será

$$n_{\rm t} = 0.0800 - x + 2 \ x = 0.0800 + x$$

Por otra parte, se puede calcular la cantidad de gas a partir de la presión total

$$n_{\rm t} = \frac{p \cdot V}{R \cdot T} = \frac{2,30 \cdot 10^5 \text{ Pa} \cdot 1,50 \cdot 10^{-3} \text{ dm}^3}{8.31 \text{ J} \cdot \text{K}^{-1} \cdot \text{mol}^{-1} \cdot 308 \text{ K}} = 0,135 \text{ mol gas}$$

Despejando

$$x = 0.135 - 0.080 = 0.055$$
 mol de N₂O₄ que se disocian

El porcentaje de N₂O₄ disociado es:

$$\alpha = \frac{n_{\rm r}}{n_0} = \frac{0.055}{0.080} = 0.69 = 69 \%$$

La mayor parte de las respuestas puede calcularse con la hoja de cálculo <u>Quimica (es)</u> Cuando esté en el índice, mantenga pulsada la tecla «♠» (mayúsculas) mientras hace clic en la celda:

Equilibrio en fase gas

del capítulo:

Equilibrio químico Equilibrio en fase gas

Escriba las fórmulas químicas en las celdas blancas con borde verde, los datos en las celdas blancas con borde azul, y pulse en las celdas de color salmón para elegir entre las opciones que se presentan.

7 7 1									
]	DATOS					
		Reactivo A +		Reactivo B	\rightleftharpoons	Producto C	+ P	roducto D	
Reacción ajustada		N_2O_4			2	NO_2			
Cantid	ad inicial	0,08							mol
Cantidad en d	equilibrio								
Temperatura		Volumen		Presión total					
35	°C	1,5	dm³	2,27	atm				
D 1 /							,		

Podrá ver:

i oura ver.													
		RESULTADOS											
				•	Cifras s	ignificativas: 3							
Cantidad			$N_2O_4(g)$		⇌ 2	NO ₂ (g)							
	inicial		0,0800			0		mol					
	reacciona		0,0547		\rightarrow	0,109		mol					
	equilibrio		0,0253			0,109		mol					
	Constantes	$K_c =$	0,314	(Conc. en mol/I	_)								
		$K_p =$	7,95	(p en atm.)									
						Grado de di	sociación α =	68,3 %					

- 3. A La temperatura de 35 °C disponemos, en un recipiente de 310 cm³ de capacidad, de una mezcla gaseosa que contiene 1,660 g de N₂O₄ en equilibrio con 0,385 g de NO₂.
 - a) Calcula la K_c de la reacción de disociación del tetraóxido de dinitrógeno a la temperatura de 35 °C.

b) A 150 °C, el valor numérico de K_c es de 3,20. ¿Cuál debe ser el volumen del recipiente para que estén en equilibrio 1 mol de tetraóxido y dos moles de dióxido de nitrógeno?

Dato: R = 0.082 atm·dm³/(K·mol)

(P.A.U. jun. 07)

Rta.: a) $K_c = 0.0125$; b) $V = 1.25 \text{ dm}^3$

Datos Cifras significativas: 3

Volumen $V = 310 \text{ cm}^3 = 0.310 \text{ dm}^3$

Temperatura apartado a) $T = 35 \text{ }^{\circ}\text{C} = 308 \text{ K}$

Masa en el equilibrio N_2O_4 a 35 °C $m_e(N_2O_4) = 1,660 \text{ g } N_2O_4$

Masa en el equilibrio NO_2 la 35 °C $m_e(NO_2) = 0.385$ g NO_2

Constante del equilibrio K_c a 150 °C K_c = 3,20

Cantidad en el equilibrio N_2O_4 a 150 °C $n_e(N_2O_4) = 1,00 \text{ mol } N_2O_4$

Cantidad en el equilibrio NO₂ la 150 °C $n_e(NO_2) = 2,00 \text{ mol NO}_2$

Masa molar: dióxido de nitrógeno $M(NO_2) = 46,0 \text{ g/mol}$

tetraóxido de dinitrógeno $M(N_2O_4) = 92,0 \text{ g/mol}$

Incógnitas

Constante del equilibrio K_c a 35 °C K_c

Volumen del recipiente V

Ecuaciones

Cantidad (número de moles) n = m / M

Concentración de la substancia X [X] = n(X) / V

Constante del equilibrio: $a \, A + b \, B \rightleftharpoons c \, C + d \, D$ $K_c = \frac{\left[C\right]_e^c \cdot \left[D\right]_e^a}{\left[A\right]^a \cdot \left[B\right]^b}$

Solución:

La ecuación química es:

$$N_2O_4(g) \rightleftharpoons 2 NO_2(g)$$

La expresión de la constante de equilibrio:

$$K_c = \frac{[NO_2]_e^2}{[N_2O_4]_e}$$

Las concentraciones de las especies en el equilibrio son:

$$[NO_{2}]_{e} = \frac{0,385 \text{ g } NO_{2}}{0,310 \text{ dm}^{3}} \frac{1 \text{ mol } NO_{2}}{46,0 \text{ g } NO_{2}} = 0,027 \text{ 0mol/dm}^{3}$$
$$[N_{2}O_{4}]_{e} = \frac{1,660 \text{ g } N_{2}O_{4}}{0,310 \text{ dm}^{3}} \frac{1 \text{ mol } N_{2}O_{4}}{92,0 \text{ g } N_{2}O_{4}} = 0,058 \text{ 2mol/dm}^{3}$$

y el valor de la constante de equilibrio a 35 °C es

$$K_c = \frac{[NO_2]_e^2}{[N_2O_4]_e} = \frac{(0.027)^2}{0.058 \ 2} = 0.012 \ 5$$

b) Al variar la temperatura, varía la constante de equilibrio. Volviendo a escribir la expresión de la constante a la temperatura de 150 °C

$$K_c' = 3,20 = \frac{[NO_2]_e^2}{[N_2O_4]_e} = \frac{\left(\frac{2,00}{V}\right)^2}{\left(\frac{1,00}{V}\right)} = \frac{4,00}{V}$$

de donde:

$$V = 4.00 / 3.20 = 1.25 \text{ dm}^3$$

La mayor parte de las respuestas puede calcularse con la hoja de cálculo <u>Quimica (es)</u>
Cuando esté en el índice, mantenga pulsada la tecla « • (mayúsculas) mientras hace clic en la celda:
Equilibrio en fase gas

del capítulo:

Equilibrio químico Equilibrio en fase gas

Escriba las fórmulas químicas en las celdas blancas con borde verde, los datos en las celdas blancas con borde azul, y pulse en las celdas de color salmón para elegir entre las opciones que se presentan.

, , , 1						1 1		1	
		Reactivo A	+	Reactivo B	\rightleftharpoons	Producto C	+	Producto D	
Reacción ajustada		N_2O_4			2	NO_2			
Cant	idad inicial								
Masa ei	n equilibrio	1,66				0,39			g
Temperatura		Volumen		Presión total					
35	°C	310	cm³						
r 1 1, 1 ,									

En los resultados verá:

Constantes $K_c = 0.0125$ (Conc. en mol/L) $K_p = 0.317$ (p en atm.)

Para el apartado b) borre los datos numéricos y sus unidades (seleccione con el ratón desde la celda bajo «Ecuación ajustada» hasta la celda donde se cruzan «Calcular» y «g» y haga clic en el botón

Borrar datos,) y escriba los nuevos datos

Ahora verá:

Volumen(total) = 1,25 dm³ en equilibrio

- 4. En un recipiente cerrado se introducen 2,0 moles de CH_4 y 1,0 mol de H_2S a la temperatura de 727 °C, estableciéndose el siguiente equilibrio: $CH_4(g) + 2$ $H_2S(g) \rightleftharpoons CS_2(g) + 4$ $H_2(g)$. Una vez alcanzado el equilibrio, la presión parcial del H_2 es 0,20 atm y la presión total es de 0,85 atm. Calcula:
 - a) Los moles de cada substancia en el equilibrio y el volumen del recipiente.
 - b) El valor de K_c y K_p .

(A.B.A.U. ord. 20)

Rta.: a) $n_e(CH_4) = 1.80 \text{ mol}$; $n_e(H_2S) = 0.60 \text{ mol}$; $n_e(CS_2) = 0.200 \text{ mol}$; $n_e(H_2) = 0.800 \text{ mol}$; $V = 328 \text{ dm}^3$; b) $K_p = 0.0079$; $K_c = 1.2 \cdot 10^{-6}$

Datos Cifras significativas: 3

Temperatura $T = 727 \,^{\circ}\text{C} = 1000 \,^{\circ}\text{K}$ Cantidad inicial de metano $n_0(\text{CH}_4) = 2,00 \,^{\circ}\text{mol CH}_4$ Cantidad inicial de sulfuro de hidrógeno $n_0(\text{H}_2\text{S}) = 1,00 \,^{\circ}\text{mol H}_2\text{S}$

Datos Cifras significativas: 3

Presión parcial del hidrógeno en el equilibrio $p_e(H_2) = 0,200$ atm

Presión total en el equilibrio $p_e = 0.850$ atm

Incógnitas

Cantidad en el equilibrio de cada substancia $n_e(CH_4)$, $n_e(H_2S)$, $n_e(CS_2)$, $n_e(H_2)$

Volumen del recipiente VConstante del equilibrio K_c K_c Constante del equilibrio K_p K_p

Ecuaciones

Ecuación de estado de los gases ideales $p \cdot V = n \cdot R \cdot T \implies p = \frac{n \cdot R \cdot T}{V}$

Concentración de la substancia X [X] = n(X) / V

Constantes del equilibrio: $la \text{ La} + b \text{ B} \rightleftharpoons c \text{ C} + d \text{ D}$ $K_c = \frac{\left[\text{C}\right]_e^c \cdot \left[\text{D}\right]_e^d}{\left[\text{A}\right]_e^b \cdot \left[\text{B}\right]_e^b} \quad K_p = \frac{p_e^c(\text{C}) \cdot p_e^d(\text{D})}{p_e^d(\text{A}) \cdot p_e^b(\text{B})}$

Solución:

La) La ecuación química es:

$$CH_4(g) + 2 H_2S(g) \rightleftharpoons CS_2(g) + 4 H_2(g)$$

Llamando x a la cantidad de metano que reaccionó hasta conseguir el equilibrio podemos escribir

		CH ₄	$2 H_2 S$	\Rightarrow	CS ₂	4 H ₂	
Cantidad inicial	n_0	2,00	1,00		0,0	0,0	mol
Cantidad que reacciona o se forma	$n_{ m r}$	x	2 x		x	4 x	mol
Cantidad en el equilibrio	$n_{\rm e}$	2,00 - x	1,00 - 2 <i>x</i>		x	4 x	mol

En el equilibrio habrá en total:

$$n_e = (2.00 - x) + (1.00 - 2 x) + x + 4 x = 3.00 + 2 x$$

De la presión parcial del hidrógeno podemos deducir:

$$p \cdot V = n \cdot R \cdot T \implies n_{e}(H_{2}) = \frac{p_{e}(H_{2}) \cdot V}{R \cdot T} = \frac{0,200 \text{ atm} \cdot V}{0,082 \text{ atm} \cdot \text{dm}^{3} \cdot \text{mol}^{-1} \cdot \text{K}^{-1} \cdot 1000 \text{ K}} = 0,00244 \cdot V \text{ mol } H_{2}$$

$$4 x = 0.0244 \cdot V$$

De la presión total podemos deducir:

$$n_{\rm e} = \frac{p_{\rm e} \cdot V}{R \cdot T} = \frac{0.850 \text{ atm} \cdot V}{0.082 \text{ atm} \cdot \text{dm}^2 \cdot \text{mol}^{-1} \cdot \text{K}^{-1} \cdot 1000 \text{ K}} = 0.010 \text{ 4V mol}$$

$$3,00 + 2 x = 0,104 \cdot V$$

Del sistema de dos ecuaciones con dos incógnitas,

$$4 x = 0,00244 \cdot V 3,00+2 x = 0,010 \ 4V$$

deducimos el volumen V del recipiente y la cantidad x de metano que reaccionó hasta conseguir el equilibrio.

$$\frac{3,00+2x}{4x} = \frac{0,010 \ 4V}{0,00244 \cdot V} = 4,25$$

$$3,00 + 2 x = 17,0 x$$

 $x = 0,200 \text{ mol}$

 $V = 328 \text{ dm}^3$

Las cantidades de las substancias en el equilibrio son:

$$n_{\rm e}({\rm CH_4}) = 2,00 - x = 2,00 - 0,200 = 1,80 \; {\rm mol} \; {\rm CH_4}$$
 $n_{\rm e}({\rm H_2S}) = 1,00 - 2 \; x = 1,00 - 2 \cdot 0,200 = 0,60 \; {\rm mol} \; {\rm H_2S}$
 $n_{\rm e}({\rm CS_2}) = x = 0,200 \; {\rm mol} \; {\rm CS_2}$
 $n_{\rm e}({\rm H_2}) = 4 \cdot x = 0,800 \; {\rm mol} \; {\rm H_2}$

La constante de equilibrio en función de las concentraciones es:

$$K_{c} = \frac{\left[\text{CS}_{2}\right]_{e} \cdot \left[\text{H}_{2}\right]_{e}^{4}}{\left[\text{CH}_{4}\right]_{e} \cdot \left[\text{H}_{2}\text{S}\right]_{e}^{2}} = \frac{\frac{n_{e}(\text{CS}_{2})}{V} \cdot \left(\frac{n_{e}(\text{H}_{2})}{V}\right)^{4}}{\frac{n_{e}(\text{CH}_{4})}{V} \cdot \left(\frac{n_{e}(\text{H}_{2}\text{S})}{V}\right)^{2}} = \frac{n_{e}(\text{CS}_{2}) \cdot n_{e}^{4}(\text{H}_{2})}{n_{e}(\text{CH}_{4}) \cdot n_{e}^{2}(\text{H}_{2}\text{S})} \cdot \frac{1}{V^{2}} = \frac{0,200 \cdot 0,800^{4}}{1,80 \cdot 0,60^{2}} \cdot \frac{1}{328^{2}} = 1,2 \cdot 10^{-6}$$
(concentraciones en mol/dm³)

Se consideramos comportamiento ideal para los gases, podemos escribir:

$$K_{p} = \frac{p_{e}(CS_{2}) \cdot p_{e}^{4}(H_{2})}{p_{e}(CH_{4}) \cdot p_{e}^{2}(H_{2}S)} = \frac{[CS_{2}]_{e} \cdot R \cdot T \cdot ([H_{2}]_{e} \cdot R \cdot T)^{4}}{[CH_{4}]_{e} \cdot R \cdot T \cdot ([H_{2}S]_{e} \cdot R \cdot T)^{2}} = \frac{[CS_{2}]_{e} \cdot ([H_{2}]_{e})^{4}}{[CH_{4}]_{e} \cdot ([H_{2}S]_{e})^{2}} \cdot (R \cdot T)^{2} = K_{c} \cdot (R \cdot T)^{2}$$

$$K_{p} = 1, 2 \cdot 10^{-6} \cdot (0,082 \cdot 1000)^{2} = 0,007 \quad \text{((presiones en atm))}$$

Este problema no puede resolverse con la hoja de cálculo.

Con la constante como dato

Considerla lo siguiente proceso en equilibrio a 686 °C: $CO_2(g) + H_2(g) \rightleftharpoons CO(g) + H_2O(g)$. Las concentraciones en equilibrio de las especies son:

 $[CO_2] = 0.086 \text{ mol/dm}^3; [H_2] = 0.045 \text{ mol/dm}^3; [CO] = 0.050 \text{ mol/dm}^3 \text{ y } [H_2O] = 0.040 \text{ mol/dm}^3.$

- a) Calcula K_c para la reacción a 686 °C.
- b) Si se añadiese CO₂ para aumentar su concentración a 0,50 mol/dm³, ¿cuáles serían las concentraciones de todos los gases una vez restablecido el equilibrio?

Cifus simuif satings, 2

Rta.: a)
$$K_c = 0.517$$
; b) $[CO_2] = 0.47$; $[H_2] = 0.020$; $[CO] = 0.075$ y $[H_2O] = 0.065$ mol/dm³

Datos	Cifras significativas: 2
Temperatura	$T = 686 ^{\circ}\text{C} = 959 ^{\circ}\text{K}$
Concentración en el equilibrio de H ₂	$[H_2]_e = 0.045 \text{ mol/dm}^3 H_2$
Concentración en el equilibrio de CO ₂	$[CO_2]_e = 0,086 \text{ mol/dm}^3 CO_2$
Concentración en el equilibrio de H₂O	$[H_2O]_e = 0,040 \text{ mol/dm}^3 H_2O$
Concentración en el equilibrio de CO	$[CO]_e = 0.050 \text{ mol/dm}^3 CO$
Concentración inicial de CO ₂ en el apartado b)	$[CO_2]_0 = 0.50 \text{ mol/dm}^3 CO_2$
Incógnitas	
Constante de equilibrio	K_c

Incógnitas

Concentraciones en el nuevo equilibrio

 $[H_2]_{eb}$, $[CO_2]_{eb}$, $[H_2O]_{eb}$, $[CO]_{eb}$

Ecuaciones

Concentración de la substancia X

[X] = n(X) / V

Constante del equilibrio: $a A + b B \rightleftharpoons c C + d D$

$$K_c = \frac{\left[C\right]_e^c \cdot \left[D\right]_e^d}{\left[A\right]_e^a \cdot \left[B\right]_e^b}$$

Solución:

a) La constante de equilibrio K_c vale

$$K_{c} = \frac{[\text{H}_{2}\text{O}]_{e} \cdot [\text{CO}]_{e}}{[\text{H}_{2}]_{e} \cdot [\text{CO}_{2}]_{e}} = \frac{0,040 \text{ mol/dm}^{3} \cdot 0,050 \text{ mol/dm}^{3}}{0,045 \text{ mol/dm}^{3} \cdot 0,086 \text{ mol/dm}^{3}} = 0,52 \text{ (concentraciones en mol/dm}^{3})$$

b) Llamando x a las concentraciones en mol/dm³ de CO₂ que reaccionan desde que la concentración de CO₂ es 0,50 mol/dm³ hasta alcanzar el equilibrio, se puede escribir:

		CO ₂	H_2	=	СО	H ₂ O	
Concentración inicial	[X] ₀	0,50	0,045		0,050	0,040	mol/dm³
Concentración que reacciona o se forma	[X] _r	x	х	\rightarrow	x	x	mol/dm³
Concentración en el equilibrio	[X] _{eb}	0,50 - x	0,045 - x		0,050 + x	0.040 + x	mol/dm³

La expresión de la constante de equilibrio en función de las concentraciones es:

$$K_c = \frac{[H_2O]_{eb} \cdot [CO]_{eb}}{[CO_2]_{eb} \cdot [H_2]_{eb}} = \frac{(0.040 + x) \cdot (0.050 + x)}{(0.50 - x) \cdot (0.045 - x)} = 0.52$$

Resolviendo la ecuación de segundo grado da dos soluciones. Una de ellas (-0.79) no es válida, ya que supondría la existencia de concentraciones negativas en el equilibrio. La otra solución es $x = 0.025 \text{ mol/dm}^3$. Las concentraciones en el equilibrio son:

$$[CO_2]_{eb} = 0.475 \text{ mol/dm}^3$$

$$[H_2]_{eb} = 0.020 \text{ mol/dm}^3$$

$$[CO]_{eb} = 0.075 \text{ mol/dm}^3$$

$$[H_2O]_{eb} = 0.065 \text{ mol/dm}^3$$

La mayor parte de las respuestas puede calcularse con la hoja de cálculo Quimica (es)

Cuando esté en el índice, mantenga pulsada la tecla «♠» (mayúsculas) mientras hace clic en la celda:

Equilibrio en fase gas

del capítulo:

Equilibrio químico Equilibrio en fase gas

Escriba las fórmulas químicas en las celdas blancas con borde verde, los datos en las celdas blancas con borde azul, y pulse en las celdas de color salmón para elegir entre las opciones que se presentan.

			Ι	O A T O S					
		Reactivo A		Reactivo B	\rightleftharpoons	Producto C	+	Producto D	
Reacción		CO_2		H_2		CO		H ₂ O	
	Cantidad inicial								
Concentrac	ión en equilibrio	0,086		0,05		0,05		0,04	mol/dm³

Química AB.A.U. Problemas Tipo	EQUILIE	BRIO QUÍMICO	EN FASE G	AS			10
Temperatura	Volumen	Presión t	total				
686 °C							
Calcular:							
Escriba 6 en «Cifras significativ	zac» nara meio	rar el recult	ado del a	nartado b) y	v ohtend	rá los rec	eultadoe:
Escriba o en «Cirras significativ		ESULTA		partado b),	y obtenu	Ta los les	suriauos.
				nificativas:	6		
Concentración CO ₂ ((g) +	$H_2(g)$		CO(g) +	Н	$I_2O(g)$	
inicial							mol/dm³
reacciona							mol/dm³
equilibrio 0,086	0000	0,0450000	0,	0500000	0,0	400000	mol/dm³
Constantes $K_c = 0.516$	796 (Conc. en	mol/L)					
	796 (p en atm	•					
Para el apartado b) borre las co					s concen		
Cantidad inicial	0,5		0,05	0,05		0,04	mol/dm³
Concentración en equilibrio							
					l _	_	
Temperatura	Volumen	Presión t	total	K_c	Constan nes	ite de cor	ncentracio-
686 °C				0,516796			
					l		
Calcular:							
Los resultados son:							
	R	ESULTA	DOS				
		S C	ifras sigı	nificativas:	3		
Concentración CO ₂ (g) +	$H_2(g)$	⇌ (CO(g) +	Н	$I_2O(g)$	
inicial 0,5	00	0,0450		0,0500	0	,0400	mol/dm³

reacciona 0,0251 0,0251 0,0251 0,0251 mol/dm³ equilibrio 0,0199 0,0751 0,0651 mol/dm³ 0,475 Constantes $K_c = 0.517$ (Conc. en mol/L) $K_p = 0,517$ (p en atm.)

Cuestiones y problemas de las Pruebas de evaluación de Bachillerato para el acceso a la Universidad (A.B.A.U. y P.A.U.) en Galicia.

Respuestas y composición de Alfonso J. Barbadillo Marán.

Algunos cálculos se hicieron con una hoja de cálculo de LibreOffice del mismo autor.

Algunas ecuaciones y las fórmulas orgánicas se construyeron con la extensión CLC09 de Charles Lalanne-Cassou.

La traducción al/desde el gallego se realizó con la ayuda de *traducindote*, de Óscar Hermida López.

Se procuró seguir las recomendaciones del Centro Español de Metrología (CEM).

Se consultó al Copilot de Microsoft Edge y se tuvieron en cuenta algunas de sus respuestas en las cuestiones.

Actualizado: 15/03/24

Sumario

EQUILIBRIO QUÍMICO EN FASE GAS

	datos del equilibrio1
1.	En un recipiente de 2,0 dm³ se introducen 0,043 moles de NOCl(g) y 0,010 moles de Cl₂(g). Se cierra, se calienta hasta una temperatura de 30 $^{\circ}$ C y se deja que alcance el equilibrio, en el que hay 0,031
	moles de NOCl(g). Para el equilibrio: NOCl(g) $\rightleftharpoons \frac{1}{2}$ Cl ₂ (g) + NO(g), calcula:1
	a) El grado de disociación
	b) La concentración de cada gas
	c) El valor de la constante K _c
	d) La presiones parcial de cada gas
	e) La presión total
	f) El valor de la constante K _p
2.	En un matraz de 1,5 dm³, en el que se hizo el vacío, se introducen 0,08 moles de N_2O_4 y se calienta a
	35 °C. Parte del N_2O_4 se disocian según la reacción: $N_2O_4(g)$ \rightleftharpoons 2 $NO_2(g)$ y cuando se alcanza el
	equilibrio la presión total es de 2,27 atm. Calcula el porcentaje de N_2O_4 disociado3
3.	A La temperatura de 35 °C disponemos, en un recipiente de 310 cm³ de capacidad, de una mezcla
	gaseosa que contiene 1,660 g de N_2O_4 en equilibrio con 0,385 g de NO_2 4
	a) Calcula la K _c de la reacción de disociación del tetraóxido de dinitrógeno a la temperatura de
	35 ℃
	b) A 150 °C, el valor numérico de K_c es de 3,20. ¿Cuál debe ser el volumen del recipiente para que
	estén en equilibrio 1 mol de tetraóxido y dos moles de dióxido de nitrógeno?
4.	En un recipiente cerrado se introducen 2,0 moles de CH_4 y 1,0 mol de H_2S a la temperatura de 727
	$^{\circ}$ C, estableciéndose el siguiente equilibrio: CH ₄ (g) + 2 H ₂ S(g) \rightleftharpoons CS ₂ (g) + 4 H ₂ (g). Una vez alcanzado
	el equilibrio, la presión parcial del H_2 es 0,20 atm y la presión total es de 0,85 atm. Calcula:6
	a) Los moles de cada substancia en el equilibrio y el volumen del recipiente
	b) El valor de K _c y K _p
	la constante como dato8
1.	Considerla lo siguiente proceso en equilibrio a 686 °C: $CO_2(g) + H_2(g) \rightleftharpoons CO(g) + H_2O(g)$. Las con-
	centraciones en equilibrio de las especies son: $[CO_2] = 0,086 \text{ mol/dm}^3; [H_2] = 0,045 \text{ mol/dm}^3; [CO] = 0,086 \text{ mol/dm}^3;$
	$0.050 \text{ mol/dm}^3 \text{ y } [H_2O] = 0.040 \text{ mol/dm}^38$
	a) Calcula K _c para la reacción a 686 °C
	b) Si se añadiese CO ₂ para aumentar su concentración a 0,50 mol/dm³, ¿cuáles serían las concen-
	traciones de todos los gases una vez restablecido el equilibrio?