ASSIGNMENT 1

EE24BTECH11005 - Arjun Pavanje*

E: Subjective Questions

6. Without using tables prove that $(\sin 12^\circ)(\sin 48^\circ)(\sin 54^\circ) = \frac{1}{8}$

(1982 - 2Marks)

7. Show that $16(\cos\frac{2\pi}{15})(\cos\frac{4\pi}{15})(\cos\frac{8\pi}{15})(\cos\frac{16\pi}{15}) = 1$

(1983 - 2Marks)

8. Find all the solution of $4\cos^2 x \sin x - 2\sin^2 x = 3\sin x$

(1983-2 Marks)

9. Find the values of $x \in (-\pi, +\pi)$ which satisfy the equation $8^{(1+|\cos x|+|\cos^2 x|+|\cos^3 x|+...)} = 4^3$

(1984 - 2Marks)

10. Prove that $\tan \alpha + 2 \tan 2\alpha + 4 \tan 4\alpha + 8 \cot 8\alpha = \cot \alpha$

(1988 - 2Marks)

11. ABC is a triangle such that $\sin(2A + B) = \sin(C - A) = -\sin(B + 2C) = \frac{1}{2}$ If A, B and C are in arithmetic progression, determine the values of A, B and C.

(1990 - 5Marks)

12. If $exp\{(\sin^2 x + \sin^4 x + \sin^6 x + ... \infty)ln2\}$ satisfies the equation $x^2 - 9x + 8$, find the value of $\frac{\cos x}{\cos x + \sin x}$, $0 < x < \frac{\pi}{2}$

(1991 - 4Marks)

13. Show that the value of $\frac{\tan x}{\tan 3x}$, wherever defined never lies between $\frac{1}{3}$ and 3

(1992 - 4Marks)

14. Determine the smallest positive value of x (in degrees) for which $\tan(x + 100^\circ) = \tan(x + 50^\circ)\tan x \tan(x - 50^\circ)$

(1993 - 5Marks)

15. Find the smallest positive number p for which the equation $\cos(p \sin x) = \sin(p \cos x)$ has a solution $x \in [0, \pi]$

(1995 - 5Marks))

16. Find all values of θ in the interval $(-\frac{\pi}{2}, \frac{\pi}{2})$ satisfying the equation $(1 - \tan \theta)(1 + \tan \theta) \sec^2 \theta + 2^{\tan^2 \theta} = 0$

(1996 - 2Marks)

17. Prove that the values of the function $\frac{\sin x \cos 3x}{\sin 3x \cos x}$ does not lie between $\frac{1}{3}$ and 3 for any real x

(1997 - 5Marks)

18. Prove that $\sum_{k=1}^{n-1} (n-k) \cos \frac{2k\pi}{n} = -\frac{n}{2}$, where $n \ge 3$ (1997 – 5*Marks*)

19. In any triangle ABC, prove that $\cot \frac{A}{2} + \cot \frac{B}{2} + \cot \frac{C}{2} = \cot \frac{A}{2} \cot \frac{B}{2} \cot \frac{C}{2}$

(2000 - 3Marks)

20. Find the range of values oft for which $2 \sin t = \frac{1-2x+5x^2}{3x^2-2x-1}$, $t \in \left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$

(2005 - 2Marks)