TFAWS Passive Thermal Paper Session

Characterization of thermal conductivity and thermal transport in lithium-ion battery

Prof. Amy Marconnet Rajath Kantharaj Yexin Sun

Presented By Yexin Sun

Thermal & Fluids Analysis Workshop TFAWS 2018 August 20-24, 2018 NASA Johnson Space Center Houston, TX

Motivation

Global warming → Paris
Agreement, 2015 → Reduce
greenhouse gases

How to go "green"?

- Electric vehicles
- Solar + wind energy and electrochemical energy storage
- Lithium-ion battery (LIB) most promising
 - Safety of LIBs is a major issue

U.S. Greenhouse Gas Emissions in 2015

U.S. Environmental Protection Agency (2017). Inventory of U.S. Greenhouse Gas Emissions and Sinks: 1990-2015.

Thermal Runaway in LIBs

Samsung Galaxy Note 7

http://www.techionix.com/articles/ why-are-samsungs-galaxy-note-7-phones-exploding/

Boeing 787 battery pack

http://www.ntsb.gov/investigations/2013/boeing_787/photos/1-7-12_JAL787_APU_Battery_s.jpg

Tesla Model S

https://greentransportation.info/ ev-ownership/safer/ tesla-model-s-2013.html

TFAWS 2018 - August 20-24, 2018

Battery Thermal Characterization

_ength Scale [m]

- Thermocouples can short the electrodes and disturb the battery operation
- IR imaging is a surface measurement and there can be large gradients within the cells
- Electrolyte can degrade in air and cause toxic fumes

Currently, we are working on methods to improve our thermal imaging capabilities to overcome these challenges in two types of experiments:

- Thermal Property characterization
 - **In Situ Thermal Measurements**

Working Principle of LIB

CHARGE MECHANISM

DISCHARGE MECHANISM

Noshin Omar, Mohamed Daowd, Peter van den Bossche, Omar Hegazy, Jelle Smekens, Thierry Coosemans and Joeri van Mierlo F, "Rechargeable Energy Storage Systems for Plug-in Hybrid Electric Vehicles—Assessment of Electrical Characteristics" Energies 2012, 5, 2952-2988; doi:10.3390/en508295

Prior thermal property measurements

Cell geometry	Cell specific heat capacity $[J kg^{-1}K^{-1}]$			
	LFP	LCO	LMO	NMC
Cylindrical	1700 [3]	1300 [4]	837.4 [8]	
Prismatic		850 [7]		1000 [7]
Pouch	1400 [5]			1090 [7]

Electrolyte	Material specific heat capacity [J kg ⁻¹ K ⁻¹]				
content	LFP	LCO	LMO	NMC	Graphite
Dry	700 [9]	601 [4]	830 [10]	775 [6,7]	632 [1,11]
Wet	1260* [2]	1269 [10]	1321* [12]		1437 [4]

- Cell-level specific heat capacity measurements exist for a few electrode material combinations
- At the electrode level, more experiments need to be done for a better estimate of electrode specific heat capacity
- Electrolyte increases specific heat capacity as the electrolyte fills in voids

^[11]B. Koo, P. Goli, A. V. Sumant, P.C. Dos Santos Claro, T. Rajh, C.S. Johnson, A.A. Balandin, and E. V. Shevchenko, "Toward lithium ion batteries with enhanced thermal conductivity," ACS Nano, vol. 8, 2014, pp. 7202–7207, DOI:10.1021/nn502212b. [12]S. Jin, J. Li, C. Daniel, D. Mohanty, S. Nagpure, and D.L. Wood, "The state of understanding of the lithium-ion-battery graphite solid electrolyte interphase (SEI) and its relationship to formation cycling *," Carbon, vol. 105, 2016, pp. 52–76, DOI:10.1016/j.carbon.2016.04.008.

^[1] R. Spotnitz and J. Franklin, "Abuse behavior of high-power, lithium-ion cells," vol. 113, 2003, pp. 81-100.

^{[2] 3}Y. Lai, S. Du, L. Ai, and Y. Cheng, "Insight into heat generation of lithium ion batteries based on the electrochemical-thermal model at high discharge rates," International Journal of Hydrogen Energy, vol. 40, 2015, pp. 13039–13049, DOI:10.1016/j.ijhydene.2015.07.079.

^[3] K. Shah, V. Vishwakarma, and A. Jain, "Measurement of Multiscale Thermal Transport Phenomena in Li-Ion Cells: A Review," Journal of Electrochemical Energy Conversion and Storage, vol. 13, 2016, p. 030801, DOI:10.1115/1.4034413.

^[4] S.J. Drake, D.A. Wetz, J.K. Ostanek, S.P. Miller, J.M. Heinzel, and A. Jain, "Measurement of anisotropic thermophysical properties of cylindrical Li-ion cells," Journal of Power Sources, vol. 252, 2014, pp. 298–304, DOI:10.1016/j.jpowsour.2013.11.107.

^[5] H. Maleki, S. Al Hallaj, J.R. Selman, R.B. Dinwiddie, and H. Wang, "Thermal Properties of Lithium-Ion Battery and Components," Journal of The Electrochemical Society, vol. 146, 1999, p. 947, DOI:10.1149/1.1391704

^[6] F. Richter, S. Kjelstrup, P.J.S. Vie, and O.S. Burheim, "Thermal conductivity and internal temperature profiles of Li-ion secondary batteries," Journal of Power Sources, vol. 359, 2017, pp. 592–600, DOI:10.1016/j.jpowsour.2017.05.045.

^[7]U. Nanda, S.K. Martha, W.D. Porter, H. Wang, N.J. Dudney, M.D. Radin, and D.J. Siegel, "Thermophysical properties of LiFePO4 cathodes with carbonized pitch coatings and organic binders: Experiments and first-principles modeling," Journal of Power Sources, vol. 251, Apr. 2014, pp. 8–13, DOI:10.1016/j.jpowsour.2013.11.022.

^[8] P. Gotcu and H.J. Seifert, "Thermophysical properties of LiCoO 2 -LiMn 2 O 4 blended electrode materials for Li-ion batteries," Phys. Chem. Phys., vol. 18, 2016, pp. 10550-10562, DOI:10.1039/C6CP00887A.

^[9] G. Guo, B. Long, B. Cheng, S. Zhou, P. Xu, and B. Cao, "Three-dimensional thermal finite element modeling of lithium-ion battery in thermal abuse application," Journal of Power Sources, vol. 195, Apr. 2010, pp. 2393–2398, DOI:10.1016/j.jpowsour.2009.10.090.

^[10] C. Lin, K. Chen, F. Sun, P. Tang, and H. Zhao, "Research on thermo-physical properties identification and thermal analysis of EV Li-ion battery," 5th IEEE Vehicle Power and Propulsion Conference, VPPC '09, 2009, pp. 1643–1648, DOI:10.1109/VPPC.2009.5289653.

Missing literature on thermal conductivity

Cell geometry	Cross-plane thermal conductivity [Wm ⁻¹ K ⁻¹]			
	LFP	LCO	NMC	
Cylindrical	0.15 [14]	3.4 [15]		
Prismatic		1.4 [13]		
Pouch	0.4 [16]		0.6 [18]	

Cell geometry	In-plane thermal conductivity [Wm ⁻¹ K ⁻¹]		
	LFP	LCO	
Cylindrical	30 [14]	20 [15]	
Prismatic		24 [13]	
Pouch	35 [19]		

- Prior cell-level thermal conductivity measurements exist only for a few cathode materials and graphite anode combinations
- More measurements are needed to accurately quantify the cross-plane conductivity that can be used as inputs for thermal modeling of the battery systems

^[19] A.J. Stershic, S. Simunovic, and J. Nanda, "Modeling the evolution of lithium-ion particle contact distributions using a fabric tensor approach," Journal of Power Sources, vol. 297, 2015, pp. 540–550, DOI:10.1016/j.jpowsour.2015.07.088.

^[13] D. Werner, A. Loges, D.J. Becker, and T. Wetzel, "Thermal conductivity of Li-ion batteries and their electrode configurations – A novel combination of modelling and experimental approach," Journal of Power Sources, vol. 364, 2017, pp. 72–83, DOI:10.1016/j.jpowsour.2017.07.105.

^[14] K. Shah, V. Vishwakarma, and A. Jain, "Measurement of Multiscale Thermal Transport Phenomena in Li-Ion Cells: A Review," *Journal of Electrochemical Energy Conversion and Storage*, vol. 13, 2016, p. 030801, DOI:10.1115/1.4034413.

^[15] S.J. Drake, D.A. Wetz, J.K. Ostanek, S.P. Miller, J.M. Heinzel, and A. Jain, "Measurement of anisotropic thermophysical properties of cylindrical Li-ion cells," Journal of Power Sources, vol. 252, 2014, pp. 298–304, DOI:10.1016/j.jpowsour.2013.11.107.

^[16] H. Maleki, S. Al Hallaj, J.R. Selman, R.B. Dinwiddie, and H. Wang, "Thermal Properties of Lithium-Ion Battery and Components," Journal of The Electrochemical Society, vol. 146, 1999, p. 947, DOI:10.1149/1.1391704.

^[18] J. Cho, M.D. Losego, H.G. Zhang, H. Kim, J. Zuo, I. Petrov, D.G. Cahill, and P. V. Braun, "Electrochemically tunable thermal conductivity of lithium cobalt oxide," Nature Communications, vol. 5, Jun. 2014, pp. 1–6, DOI:10.1038/ncomms5035.

Interface Resistances

Mean Thermal Conductance: 670 W/(m²K) Standard Deviation: 275 W/(m²K)

Gaitonde, Nimmagadda, Marconnet: "Measurement of Thermal Conductance in Li-ion Batteries" *Journal of Power Sources* (2017).

Conventional Thermal Characterization

ASTM D5470 Reference Bar Method

X. Hu, et al., "Thermal conductance enhancement of particle-filled thermal interface materials using carbon nanotube inclusions," in *The Ninth Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems* (ITHERM '04), 2004, pp. 63-69 Vol.1.

$$q_x = G_{th,s} \Delta T_s = \frac{k_s A}{L_s} \Delta T_s \rightarrow k_s = \frac{q_x'' L_s}{\Delta T_s}$$

Experiment Setup

Thermal Imaging

Thermal map of reference-sample-reference

1D Temperature Profile

Extracting Thermal Conductivity

$$|q_{in}| = \left[k\frac{\partial T}{\partial x}\right]_{PTFE}$$

$$k_{Sample} = \frac{|q_{in}|}{\left[\frac{\partial T}{\partial x}\right]_{Sample}}$$

Varying Heat Flux

- Experiment temperature range: $40\sim70$ °C
- Six varying heat flux for each sample.

Result

Sample	Component	k(W/mK)	
		Dry	Wet
Cathode (~15 layers)	Cu Foil double side coated by LiMn ₂ O ₄	0.16 ± 0.06	0.45 ± 0.09
Anode (~15 layers)	AL Foil double side coated by CMS Graphite	0.57± 0.12	1.35 ± 0.49
Separator (~34 layers)	Ceramic Coated Membrane	0.10 ± 0.01	0.11 ± 0.01
Stack (~12 layers)	Cathode +Separator + Anode	0.20 ± 0.04	0.44 ± 0.09

Result

Mimic electrolyte: 1:1 volumetric ratio of ethylene carbonate (EC), propylene carbonate(PC)

Measurement Device

IR Lens

Thermal Transport during Charging

Estimating Local Heat Generation

$$Q_{in} - Q_{out} + Q_g = \rho C_p A \frac{\partial T}{\partial t}$$

$$\left[\left(-k\frac{T_{i,j}-T_{i-1,j}}{\Delta x}\Delta y\Delta z\right)+\left(-k\frac{T_{i,j}-T_{i,j-1}}{\Delta x}\Delta x\Delta z\right)\right]-\left[\left(-k\frac{T_{i+1,j}-T_{i,j}}{\Delta x}\Delta y\Delta z\right)+\right.$$

Conclusions

Aalok Gaitonde (now at 3D Systems)

Bhagyashree Ganore (now at Intel)

Amulya Nimmagadda (now at UIUC)

Swagata Kalve

Rajath Kantaraj

Yexin Sun

QUESTIONS & COMMENTS

APPENDIX

During charging process

