$$\hat{\mu}'_A \longrightarrow \bar{\mu}'_{\hat{R}}^{*'} \longrightarrow \bar{\mu}'_{\hat{R}}^{*'} \longrightarrow \bar{\mu}'_{\hat{B}}$$

$$\hat{\mu}_B \longrightarrow \bar{\mu}_B$$

$$\hat{\mu}_A \longrightarrow \bar{\mu}_B \longrightarrow \bar{\mu}_B$$

$$\hat{\mu}^{***} \longrightarrow \bar{\mu}^{***}$$
Figure 1: Visualizing the optimistic $\bar{\mu} = \bar{\theta}_0$. μ^* represents the true θ_0^* . Suppose A and B have different estimates of θ_0 , where μ^* lies between $[\hat{\mu}, \bar{\mu}]$ with probability $1 - \delta$. The orange lines for $[\hat{\mu}'_A, \bar{\mu}'_A]$ and $[\hat{\mu}'_B, \bar{\mu}'_B]$ denote the worst case scenario for $\Delta_{\mu} = \bar{\mu}'_B - \hat{\mu}'_A$ due to misspecification.