ISOMORPHISM AND PLANARITY

ABOUT

Trees are a handy structure in Data Structures, and are also a part of Graph Theory.

Topics

1. Isomorphism

2. Planarity

3. Spanning Tree Algorithms

ISOMORPHISM

Definition: Simple graphs G and H are called **isomorphic** if there is a one-to-one and onto function f from the nodes of G to the nodes of H such that $\{v, w\}$ is an edge of G if and only if $\{f(v), f(w)\}$ is an edge of H.

From Discrete Mathematics, Ensley & Crawley, page 534

Notes

In other words, two graphs are **isomorphic** if you can rearrange the location of the nodes to match each other.

We talk about $\{v, w\}$ and $\{f(v), f(w)\}$ because we think of it in terms of having a function that transforms our graph from one graph G to some other graph H.

Notes

an **isomorphism** of graphs G and H is a bijection between the vertex sets of G and H

 $f: V(G) \rightarrow V(H)$

such that any two vertices u and v of G are adjacent in G if and only if f(u) and f(v) are adjacent in H.

Transforming this graph...

Into this graph:

Notes

an **isomorphism** of graphs G and H is a bijection between the vertex sets of G and H

$$f: V(G) \rightarrow V(H)$$

such that any two vertices u and v of G are adjacent in G if and only if f(u) and f(v) are adjacent in H.

The two graphs that are related don't need to have the same vertex names, either. It just has to have some sort of relation where a vertex from G is "equivalent" to a vertex from H.

Nodes in G	Α	В	С	D	Е	F
Nodes in H	3	6	1	2	5	4

Notes

an **isomorphism** of graphs G and H is a bijection between the vertex sets of G and H

 $f: V(G) \rightarrow V(H)$

such that any two vertices u and v of G are adjacent in G if and only if f(u) and f(v) are adjacent in H.

I. ISOMORPHISM

We can also write these transformations as:

 $A \mapsto 3$, $B \mapsto 6$, $C \mapsto 1$, $D \mapsto 2$, $E \mapsto 5$, $F \mapsto 4$

Nodes in G	Α	В	С	D	Е	F
Nodes in H	3	6	1	2	5	4

Notes

an **isomorphism** of graphs G and H is a bijection between the vertex sets of G and H

 $f: V(G) \rightarrow V(H)$

such that any two vertices u and v of G are adjacent in G if and only if f(u) and f(v) are adjacent in H.

We can also investigate the edges between two nodes, and show the relationships.

Edges in G	{C,D}	{A,D}	{A,B}	{B,E}	{E,F}	{D,E}
Edges in H	{1,2}	{3,2}	{3,6}	{6,5}	{5,4}	{2,5}

Notes

an **isomorphism** of graphs G and H is a bijection between the vertex sets of G and H

$$f: V(G) \rightarrow V(H)$$

such that any two vertices u and v of G are adjacent in G if and only if f(u) and f(v) are adjacent in H.

Proposition 1: Two graphs that are isomorphic to one another must have...

- 1) The same # of nodes
- 2) The same # of edges
- 3) The same # of nodes of any given degree
- 4) The same # of cycles
- 5) The same # of cycles of any given size

Notes

an **isomorphism** of graphs G and H is a bijection between the vertex sets of G and H

 $f: V(G) \rightarrow V(H)$

such that any two vertices u and v of G are adjacent in G if and only if f(u) and f(v) are adjacent in H.

(From https://en.wikipedia.org/wiki/Graph_iso morphism)

PLANARITY

Definitions:

- 1. A simple, connected graph is called **planar** if there is a way to draw it (on a plane) so that no edges cross.
- 2. A graph is called **bipartite** if its set of nodes can be partitioned into two disjoint sets S_1 and S_2 so that every edge in the graph has one endpoint in S_1 and one endpoint in S_2 .

From Discrete Mathematics, Ensley & Crawley, page 536

Notes

Planar: A simple, connected graph is called **planar** if there is a way to draw it (on a plane) so that no edges cross.

Notes

Planar: A simple, connected graph is called **planar** if there is a way to draw it (on a plane) so that no edges cross.

Definitions:

- 3. The **complete graph** on n nodes, denoted by K_n , is the simple graph with nodes $\{1, ..., n\}$ and an edge between every pair of distinct nodes.
- 4. A **complete bipartite graph** on n,m nodes, denoted by $K_{n,m}$, is the simple bipartite graph with nodes $S_1 = \{a_1, a_2, ..., a_n\}$ and $S_2 = \{b_1, b_2, ..., b_m\}$ and with edges connecting each node in S_1 to every node in S_2 .

From Discrete Mathematics, Ensley & Crawley, page 536

Notes

The **complete graph** on n nodes, denoted by K_n , is the simple graph with nodes $\{1, ..., n\}$ and an edge between every pair of distinct nodes.

Example: Draw the diagram K_4 .

- Should have nodes {1, 2, 3, 4}.
- Each node is connected to every other node.

Notes

The **complete graph** on n nodes, denoted by K_n , is the simple graph with nodes $\{1, ..., n\}$ and an edge between every pair of distinct nodes.

Example: Draw the diagram K_4 .

Notes

The **complete graph** on n nodes, denoted by K_n , is the simple graph with nodes $\{1, ..., n\}$ and an edge between every pair of distinct nodes.

Example: Draw the diagram $K_{3,2}$.

•
$$S_1 = \{1, 2, 3\}$$

•
$$S_2 = \{1, 2\}$$

Each node from S₁ is connected to every node in S₂.

Notes

The **complete graph** on n nodes, denoted by K_n , is the simple graph with nodes $\{1, ..., n\}$ and an edge between every pair of distinct nodes.

Notes

The **complete graph** on n nodes, denoted by K_n , is the simple graph with nodes $\{1, ..., n\}$ and an edge between every pair of distinct nodes.

A complete bipartite graph on n,m nodes, denoted by $K_{n,m}$, is the simple bipartite graph with nodes $S_1 = \{a_1, a_2, ..., a_n\}$ and $S_2 = \{b_1, b_2, ..., b_m\}$ and with edges connecting each node in S_1 to every node in S_2 .

Example: Draw the diagram $K_{3,2}$.

Notes

The **complete graph** on n nodes, denoted by K_n , is the simple graph with nodes $\{1, ..., n\}$ and an edge between every pair of distinct nodes.

A complete bipartite graph on n,m nodes, denoted by $K_{n,m}$, is the simple bipartite graph with nodes $S_1 = \{a_1, a_2, ..., a_n\}$ and $S_2 = \{b_1, b_2, ..., b_m\}$ and with edges connecting each node in S_1 to every node in S_2 .

Example: Draw the diagram $K_{3,2}$.

Notes

The **complete graph** on n nodes, denoted by K_n , is the simple graph with nodes $\{1, ..., n\}$ and an edge between every pair of distinct nodes.

A complete bipartite graph on n,m nodes, denoted by $K_{n,m}$, is the simple bipartite graph with nodes $S_1 = \{a_1, a_2, ..., a_n\}$ and $S_2 = \{b_1, b_2, ..., b_m\}$ and with edges connecting each node in S_1 to every node in S_2 .

No connections in-

between nodes

from S, and

themselves,

Example: Draw the diagram $K_{3,2}$.

or from S₂ and themselves.

Notes

The **complete graph** on n nodes, denoted by K_n , is the simple graph with nodes $\{1, ..., n\}$ and an edge between every pair of distinct nodes.

A complete bipartite graph on n,m nodes, denoted by $K_{n,m}$, is the simple bipartite graph with nodes $S_1 = \{a_1, a_2, ..., a_n\}$ and $S_2 = \{b_1, b_2, ..., b_m\}$ and with edges connecting each node in S_1 to every node in S_2 .

The only two (base) nonplanar graphs are K_5 and $K_{3,3}$.

From Discrete Mathematics, Ensley & Crawley, page 537

Notes

The **complete graph** on n nodes, denoted by K_n , is the simple graph with nodes $\{1, ..., n\}$ and an edge between every pair of distinct nodes.

Theorem 3: A graph G is planar if and only if it contains no "copies" of $K_{3,3}$ or K_5 as subgraphs.

Notes

The **complete graph** on n nodes, denoted by K_n , is the simple graph with nodes $\{1, ..., n\}$ and an edge between every pair of distinct nodes.

A complete bipartite graph on n,m nodes, denoted by $K_{n,m}$, is the simple bipartite graph with nodes $S_1 = \{a_1, a_2, ..., a_n\}$ and $S_2 = \{b_1, b_2, ..., b_m\}$ and with edges connecting each node in S_1 to every node in S_2 .

2. Planarity

Definition: For a planar graph *G* embedded in the plane, a **face** of the graph is a region of the plane created by the drawing. Since the plane is an unbounded surface, every embedding of a finite planar graph will have exactly one unbound face.

Notes

Notes

Faces:

1, 2, 4, 1

Notes

Notes

Faces:

- 1, 2, 4, 1
- 1, 3, 5, 1
- 2, 3, 4, 2

Notes

2. Planarity

Faces:

- 1, 2, 4, 1
- 1, 3, 5, 1
- 2, 3, 4, 2
- 1, 2, 3, 1

Notes

Faces:

- 1, 2, 4, 1
- 1, 3, 5, 1
- 2, 3, 4, 2
- 1, 2, 3, 1
- 1, 4, 3, 5, 1 (Unbounded)

Notes

For a planar graph *G* embedded in the plane, a **face** of the graph is a region of the plane created by the drawing. Since the plane is an unbounded surface, every embedding of a finite planar graph will have exactly one unbound face.

Conclusion

Graphs...