Метод сжатия видео на основе кратномасштабного анализа

Студент: Стройкова Ксения Александровна

Руководитель: Рогозин Олег Викторович

Цель и задачи работы

Целью работы является разработка метода сжатия видео на основе кратномасштабного анализа.

Решаемые задачи

- 1. Провести анализ существующих методов сжатия видео
- 2. Разработать метод сжатия видео на основе кратномасштабного анализа
- 3. Создать приложение, позволяющее применять разработанный метод к видео
- 4. Разработать модель для оценки предложенного метода
- 5. Провести исследование работы метода

Сравнение алгоритмов сжатия видео без потерь

Алгоритм	Сжатие	Достоинства	Недостатки
HuffYUV	каждый кадр, алгоритм	сжатие видео с	не использует
	Хаффмана	наличием областей одного цвета на кадрах	избыточность информации между кадрами
CorePNG	каждый кадр, алгоритм	наличие прозрачности,	не использует
	PNG	возможность гамма коррекции	избыточность информации между кадрами
Lagarith	основан на	хорошее сжатие при	не использует
	Huffyuv, использует предыдущий кадр при отсутствии изменений	отсутствии движения	избыточность информации между кадрами
Motion JPEG 2000	каждый кадр, алгоритм JPEG 2000	задается степень сжатия, нет дробления	сложность алгоритма, не использует
		изображения на блоки	избыточность информации между кадрами

Сравнение алгоритмов сжатия видео с потерями

Алгоритм	Сжатие	Достоинства	Недостатки
M-JPEG	каждый кадр, алгоритм	простота реализации	не использует
	JPEG		избыточность информации между
			кадрами, артефакты сжатия
MPEG-1	разбивает кадры по типам, сжимает группы кадров	может использоваться при любом разрешении	поддерживает только прогрессивную развертку
MPEG-2	схож с MPEG-1	поддерживает видео и в прогрессивной, и в чересстрочной развёртке	требует значительные ресурсы для декомпрессии, плохое качество при малом разрешении видео
MPEG-4	схож с MPEG-1	улучшен по сравнению с MPEG-1 и MPEG-2	ступенчатость при медленном цветовом переходе, артефакты при наличии ошибочных кадров
DV	схож с MJPEG	наложение титров, специальный способ синхронизации аудио и видео информации	специализирован для цифровых камер

Создание слайда

- 1. Добавление нового слайда: \section{Заголовок}.
- 2. Можно использовать множество команд:
 - нумерованные и ненумерованые списки;
 - -формул ($e = mc^2$);
 - -моноширный текст (\section);
 - разные размеры шрифтов: scriptsize, tiny, small, normalsize, large, Large, LARGE ...;
 - таблицы и фигуры.
- 3. Latex регулирует интервалы между абзацами и перечислениями для улучшения вида страницы.

Вёрстка слайда в две колонки

Результаты

Для вёрстки отдельных слайдов в две колонки используется окружение minipage. Здесь использован \raggedright для временного выравнвиания влево. Пример кода с неравномерными колонками (для равномерных используйте 49 и 49):

```
\begin{minipage} [m] { .34\textwidth}
  \includegraphics...
\end{minipage}
\begin{minipage} [m] { .64\textwidth}
  TexcT
\end{minipage}
```

Выводы

- 1. Шаблон презентации в целом отвечает поставленным требованиям.
- 2. У шаблона в настоящий момент имеются следующие недостатки:
 - при использовании minipage исчезает межабзацный интервал;
 - -формулы по-умолчанию несколько меньше текста (при использовании cyrtimes);
 - используется выравнивание «по ширине».