Лабораторная работа № 1 Интерполяционные многочлены Лагранжа и Ньютона

Задание. Получить таблицу значений аналитически заданной функции f(x) на отрезке $[x_0;x_n]$ с заданным шагом h. Построить интерполяционный многочлен Лагранжа степени n_1 и многочлен Ньютона степени n_2 . Найти значение интерполяционных многочленов в 3-х заданных точках x_1, x_2, x_3 , оценить погрешность интерполяции (по формуле для $R_n(x)$) и вычислить погрешность (используя аналитическое задание функции f(x)). Построить график функции f(x) и полученных интерполяционных многочленов.

Входные параметры: x_0 , x_n — начало и конец промежутка интерполирования; h — шаг интерполирования; n_1 , n_2 — степени многочленов Лагранжа и Ньютона (≤ 5); x_1 , x_2 , x_3 — точки для вычисления значений интерполяционных многочленов.

Замечания

- 1. График функции и полученных интерполяционных многочленов необходимо построить в одной системе координат (по графикам должно быть видно в каких точках пересекаются построенный многочлен и функция). Для построения графиков можно использовать соответствующий веб-сервис.
- 2. При оценке погрешности интерполяции (по формуле для $R_n(x)$) необходимо аналитически вычислить производную функции f(x) и использовать её свойства (возрастание, убывание) для нахождения максимума.

	f(x)	$[x_0;x_n]$	h	n_1	n_2	Точки x_1, x_2, x_3 для вычисления значений интерполяционных многочленов
1	$\ln(x) + (x+1)^3$	[1; 2]	0.2	2	3	1.27 1.55 1.94
2	$x \cdot 2^x - 1$	[1; 2]	0.2	3	2	1.17 1.34 1.74
3	$x - \cos(x)$	[0; π]	π/5	4	3	0.71 1.54 3.01
4	$x + \ln(x) - 0.5$	[1; 11]	2.0	2	3	2.24 4.63 7.94
5	$x^2 + 4\sin(x)$	$[0; \pi]$	$\pi/5$	4	2	0.71 1.54 3.01
6	$3x - e^x$	[1; 2]	0.2	3	4	1.27 1.55 1.94
7	$5x - 8\ln(x) - 8$	[1; 11]	2.0	2	3	1.24 5.23 8.94
8	$\sin(0.5x) - x^2 + 1$	$[0;\pi]$	$\pi/5$	2	3	0.81 1.44 2.81
9	$x + \cos(x) - 1$	[0; π]	π/5	3	2	0.71 1.54 3.01
10	$(x+1)^2 + \sin(x)$	$[0; \pi]$	$\pi/5$	3	2	0.67 1.49 3.05
11	$x - \sqrt{\ln(x+2)}$	[0; 1]	0.2	2	3	0.27 0.62 0.89
12	$(x-1)^2 - \frac{1}{2} \cdot e^x$	[0; 5]	1.0	2	3	1.24 2.63 3.94
13	$x^3 - \sin(x)$	$[0; 2\pi]$	0.4 π	3	2	0.41 3.54 5.74
14	$2.2x-2^{x}$	[0; 5]	0.5	2	3	2.24 4.63 4.94
15	$(2-x)\cdot e^x - 0.5$	[0; 2]	0.2	4	2	0.27 1.62 1.89