Топологический анализ данных и операторы Ходжа (теория)

Владимир Латыпов donrumata03@gmail.com Vladimir Latypov donrumata03@gmail.com

Содержание

1 Общая топология	8
1.1 Сумма топологических пространств	3
1.2 Произведение топологических пространств	3
1.3 Симплициальные гомологии	3
2 Гомологии	2

1 Общая топология

1.1 Сумма топологических пространств

1.2 Произведение топологических пространств

Произведение, поддерживающее бесконечный случай: элементы имеют вид

$$f:S\to\bigcup_{s\in S}X_s\quad f(s)\in X_s$$

Т.е. для каждого пространства выдаёт один элемент из него.

Определение 1.2.1 (Произведение Тихонова) Самая слабая топология, на которой проекторы непрерывны (предбаза $\{p^{-1}(U), U \in \tau_i\}$).

Эквивалентно: Открытые множества — все наборы из открытых, $\{i \mid U_i \neq X_i\}$ — конечно.

Коробочная топология — более сильная, там нет требования про конечность количества не совпадающих со всем пространством множеств. Но для конечного случая они эквивалентны.

Теорема 1.2.2 (*Тихонов*) Если пространства компактны, то их тихоновское произведение — тоже.

Определение 1.2.3 (Универсальное свойство) для класса пространств, обладающим свойством — пространство, обладающее свойством, т.ч. любое другое из этого класса вкладывается в него (вложение — непрерывная инъекция).

Теорема 1.2.4 (*Тихоновский куб*) $[0,1]^M$ — универсально для Тихоновских пространств с базой мощности M (где M — ординал).

1.3 Симплициальные гомологии

Абстрактный симплициальный комплекс— это как матроид без аксиомы замены. И частный случай гиперграфа.

- · Тривиальная геометрическая реализация комплекса в пространстве $\mathbb{R}^{|V|}$: $v_0\mapsto \mathbb{0}, v_i\mapsto e_i$
- \cdot Т.: Можно уложить комплекс в \mathbb{R}^{2k+1} без самопересечений

2 Гомологии

Интуитивное описание гомологичных циклов: https://math.stackexchange.com/questions/880841/motivation-behind-definition-of-homologous-cycles

∆-комплекс: обобщение триангуляции. Теперь симплексы могут быть не только треугольниками. Как и многообразие, набор отображений из тривиальных пространств (симплексов на сей раз). Теперь пространство строится как факторизация по совпадающим частям комплексов (тех, где образ ограничения симплекса на его face сопвпадает с образом другого отображения размерности на 1 меньше).

Сингулярные гомологии: берутся вообще все возможные симплициальные комплексы, а не только из триангуляции. И тоже факторизуются циклы по границам.