Machine Learning models for more Green, Sustainable, Clean Renewable Energy

Application to Wave Energy Convertors (WECs)

Angela Maria Castañeda Oviedo

Imperial College London

September 14th 2022

Under the Wave off Kanagawa*

- Wave Energy
 - Tidal Energy
 - Thermal Energy

Wave Energy Converters (WECs)

Renewable Energy

September 14th 2022

WavE-Suite project

Task: Discover numerical tools for assessing the survivability of WECs under extreme marine conditions.

 mini-task: apply Machine Learning Methods to the CFD simulations produced so far (WaveSuite dataset).

WaveSuite dataset samples

WavE-Suite project

WaveSuite Dataset:

- Feature of interest: dynamic viscosity
- Entries are graphs
- 850 000 nodes per graph
- Same adjacency matrix

AutoEncoders

- Graph Convolutional Networks (GCN)
- Different combinations of activation functions

GCN: CNN vs GCN

Convolutional Networks (CNN)

Convolutional layer (or CNN layer)

Graph Convolutional Networks (GCN)

Graph Convolutional layer (or GCN layers)

$$H^{(k)} = AH^{(k-1)}W_{neigh}^{(k)} + H^{(k-1)}W_{self}^{(k)}$$

- $H^{(k)}$ is the feature matrix at step k.
- A is the adjacency matrix
- W matrices are the weights

Other ways to generalize CNN to graphs

- Graph Convolutional layers (GCN)
- Graph Attention Networks (GAT)
- Message Passing Neural Network (MPNN)

$${}^{*}H^{(k)} = AH^{(k-1)}W_{neigh}^{(k)} + H^{(k-1)}W_{self}^{(k)}$$

...pooling

^{*} William L. Hamilton. Graph representation learning. chapter 5. Synthesis Lectures on Artificial Intelligence and Machine Learning, 14(3):1–159.

Graph AutoEncoders

Graphs can have:

- node features
- adjacency matrix
- different number of nodes
- edges features.

WaveSuite graphs have the same adjacency matrix

- Instead of predicting adjacency matrix, keep a copy of one entry
- Predict node features instead

September 14th 2022

Proposed AutoEncoders

Classic AutoEncoder Module

Principles:

- Use powers of 2
- Decoder should be a mirror of the Encoder

Proposed AutoEncoder Designs

^{*} None means No activation function at all

Smaller Datasets

- WaveSuite dataset requires additional coding.
- It is not possible to generalize the behaviour of an AutoEncoder in one dataset to another dataset.

- Use smaller datasets to gain knowledge on how to design better AutoEncoders
- Apply that knowledge to the final AutoEncoder design

Smaller Datasets

edges_included edges_included

edges_included

MNIST samples

air-pollution samples

Smaller Datasets

Datasets Distributions

Smaller Datasets: Results

air-pollution results - Sigmoid function

MNIST results – Sigmoid function

Smaller Datasets: Results and Discussion

The activation functions at the output are very important, whereas the others not so much.

Best activation functions:

- air-pollution: Sigmoid
- MNIST: None *

Possible cause: datasets

distributions?

^{*} None is slightly better than Sigmoid, but Sigmoid also produces very good results

Smaller Datasets: Discussion

- Before trying to incorporate GCN layers, it is important to identify the best activation function at the output, for a particular dataset.
- ADAM optimizer is better than SGD

Hyperparameters:

- Latent space dimension
- Embedding sequence of the GCN layers (number of channels)
- Batch size

WaveSuite Dataset: Results

Model 1 with NO activation function at the output using different latent space dimensions

Model 1, NO act-func, 10 epochs:

- 16 points: 0.008728 MSE, 99 s
- 32 points: 0.008728 MSE, 116 s
- 64 points: 0.002214 MSE, 153 s
- 128 points: 0.004290 MSE, 217 s
- 256 points: 0.001160 MSE, 413 s
- 512 points: 0.000819 MSE, 3145 s.

WaveSuite Dataset: Results and Discussion

Latent space 256 points, 10 epochs

- Model 1: 0.00116 MSE, 413 s
- Model 2: 0.00278 MSE, 6526 s.
- Model 3: 0.000586 MSE, 12345 s.

Model 1, 256 latent space dimension:

- 10 epochs: 0.001160 MSE, 413 s
- 20 epochs: 0.000663 MSE, 800 s.
- 50 epochs: 0.000798 MSE, 2008 s.
- Extra hidden layer, 10 epochs:
 0.000755 MSE, 2939 s.

WaveSuite Dataset: Results and Discussion

Model 1, 256 latent space dimension, using 50 epochs

Conclusions

- ADAM optimizer is better than SGD
- Finding the right dimension for the latent space is important.
- The activation function at the output is important.
- Adding GCN-layers to the AutoEncoders improves the results, but there is a tradeoff on execution time and computational resources.
- This project can be expanded to a Variational AutoEncoder to produce more samples for the WaveSuite dataset.

September 14th 2022

Thank You,

Rossella, Cesar, Lluis, Marijan and Yves,

And anyone that helped me during this project.

Suggested Questions

- Why do you think the best activation function at the output of the AutoEncoder is related to the distribution of the dataset?
- Can you mention something about how you implemented the code?
- Why did you had to do more coding to make WaveSuite work compared to the smaller datasets?

Suggested Questions

Angela, can you...

- explain now the formula of GCN?
- explain now the other ways to generalize CNN to graphs? Do you think they can improve the results even more?
- tell us how many GCN layers are you using in each GCN module and why?
- comment something on the number of channels used in the GCN layers?