Contents				5.8	Maximum Flow with Edge Demands	
1	Setting	1		5.0	5.8.1 Source Code	
_	1.1 vimrc	1			General Min-cut (Stoer-Wagner)	
	The same services and the same services are same services.	_			General Max Matching	
2	Math	2			Hungarian Algorithm	
	2.1 Basic Arithmetic	2		-	0 0	
	2.2 Sieve Methods : Prime, Divisor, Euler phi	2	6	\mathbf{Geo}	ometry	20
	2.3 Primality Test	2		6.1	Basic Operations	20
	2.4 Integer Factorization (Pollard's rho)	3		6.2	Compare angles	21
	2.5 Chinese Remainder Theorem	3		6.3	Convex Hull	21
	2.6 Modular Equation	3		6.4	Rotating Calipers	22
	2.7 Catalan number	3		6.5	Point in Polygon Test	22
	2.8 Burnside's Lemma	4		6.6	Polygon Cut	22
	2.9 Kirchoff's Theorem	4		6.7	Pick's theorem	23
	2.10 Lucas Theorem	4				
	2.11 Fast Fourier Transform	4	7	Stri		23
	2.12 Number Theoretic FFT	5			KMP	
	2.13 FFT with AVX	5			Z Algorithm	
	2.14 Polynomial Division	6			Aho-Corasick	
	2.15 Gaussian Elimination	6			Suffix Array with LCP	
	2.16 Simplex Algorithm	7		7.5	Manacher's Algorithm	24
	2.17 Nim Game	8	8	Mis	scellaneous	2 5
3	Data Structure	8		8.1	Fast I/O	25
J	3.1 Order statistic tree	8		8.2	Magic Numbers	25
	3.2 Fenwick Tree	8			Java Examples	
	3.3 Segment Tree with Lazy Propagation			8.4	체계적인 접근을 위한 질문들	25
	3.4 Persistent Segment Tree					
	3.5 Splay Tree					
	5.5 Spiay free	3	1	Se	etting	
4	DP	10				
	4.1 Convex Hull Optimization	10	1	1 x	vimr c	
	4.2 Divide & Conquer Optimization	11	т.	T V		
	4.3 Knuth Optimization	11	Se.	t noc	p ai si nu et bs=2 mouse=a	
			set ts=4 sts=4 sw=4 hls showmatch			
5	Graph	11		set ruler rulerformat=%17.(%l:%c%)		
	5.1 SCC		set noswapfile autoread wildmenu wildmode=list:longest syntax on colorscheme evening			
	5.2 2-SAT		эу	iicax (on cotor seneme eventing	
	5.3 BCC, Cut vertex, Bridge			•	> <esc>:w<cr>:!g++ -g -Wallstd=c++0x -02 %:r.cpp -o %:r && %:r < %:</cr></esc>	r.
	5.4 Block-cut Tree				%:r.out <cr></cr>	
	5.5 Heavy-Light Decomposition			p <f6: in<cr:< td=""><td>> <esc>:w<cr>:!g++ -g -Wallstd=c++0x -02 %:r.cpp -o %:r && %:r < %: ></cr></esc></td><td>r.</td></cr:<></f6: 	> <esc>:w<cr>:!g++ -g -Wallstd=c++0x -02 %:r.cpp -o %:r && %:r < %: ></cr></esc>	r.
	5.6 Bipartite Matching (Hopcroft-Karp)		-	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	•	
	5.7 Maximum Flow (Dinic)	14	mai	p <c-< td=""><td>t> :tabnew<cr></cr></td><td></td></c-<>	t> :tabnew <cr></cr>	

command -nargs=1 PS :cd d:/ | :vi <args>.cpp | vs <args>.in | sp <args>.out

2 Math

2.1 Basic Arithmetic

```
// calculate a*b % m
// x86-64 only
11 large_mod_mul(l1 a, l1 b, l1 m) {
    return 11((__int128)a*(__int128)b%m);
}
// calculate a*b % m
// |m| < 2^62, x86 available
// O(Loab)
11 large_mod_mul(l1 a, l1 b, l1 m) {
    a \% = m; b \% = m; 11 r = 0, v = a;
    while (b) {
        if (b & 1) {
            r = r + v;
            if (r >= m) r -= m;
        b >>= 1;
        v <<= 1; if (v >= m) v -= m;
    }
    return r;
}
// calculate n^k % m
11 modpow(11 n, 11 k, 11 m) {
    ll ret = 1;
    n \% = m;
    while (k) {
        if (k & 1) ret = large mod mul(ret, n, m);
        n = large_mod_mul(n, n, m);
        k /= 2;
    }
    return ret;
}
// find a pair (c, d) s.t. ac + bd = gcd(a, b)
pair<ll, ll> extended_gcd(ll a, ll b) {
    if (b == 0) return { 1, 0 };
    auto t = extended_gcd(b, a % b);
    return { t.second, t.first - t.second * (a / b) };
}
// find x in [0,m) s.t. ax === gcd(a, m) (mod m)
11 modinverse(ll a, ll m) {
    return (extended_gcd(a, m).first % m + m) % m;
}
```

```
// calculate modular inverse for 1 ~ n
void calc_range_modinv(int n, int mod, int ret[]) {
    ret[1] = 1;
    for (int i = 2; i <= n; ++i)
        ret[i] = (11)(mod - mod/i) * ret[mod%i] % mod;
}</pre>
```

2.2 Sieve Methods: Prime, Divisor, Euler phi

```
// find prime numbers in 1 ~ n
// ret[x] = false \rightarrow x is prime
// O(n*loglogn)
void sieve(int n, bool ret[]) {
    for (int i = 2; i * i <= n; ++i)
        if (!ret[i])
            for (int j = i * i; j <= n; j += i)
                ret[i] = true:
}
// calculate number of divisors for 1 ~ n
// when you need to calculate sum, change += 1 to += i
// O(n*Loan)
void num of_divisors(int n, int ret[]) {
    for (int i = 1; i <= n; ++i)
        for (int j = i; j <= n; j += i)
            ret[j] += 1;
}
// calculate euler totient function for 1 ~ n
// phi(n) = number of x s.t. 0 < x < n && qcd(n, x) = 1
// O(n*loglogn)
void euler phi(int n, int ret[]) {
    for (int i = 1; i <= n; ++i) ret[i] = i;
    for (int i = 2; i <= n; ++i)
        if (ret[i] == i)
            for (int j = i; j <= n; j += i)
                ret[j] -= ret[j] / i;
}
```

2.3 Primality Test

```
bool test_witness(ull a, ull n, ull s) {
    if (a >= n) a %= n;
    if (a <= 1) return true;
    ull d = n >> s;
    ull x = modpow(a, d, n);
    if (x == 1 || x == n-1) return true;
    while (s-- > 1) {
        x = large_mod_mul(x, x, n);
        if (x == 1) return false;
        if (x == n-1) return true;
    }
    return false;
```

```
}
// test whether n is prime
// based on miller-rabin test
// O(Logn*Logn)
bool is prime(ull n) {
   if (n == 2) return true;
   if (n < 2 || n % 2 == 0) return false;</pre>
    ull d = n \gg 1, s = 1;
    for(; (d&1) == 0; s++) d >>= 1;
#define T(a) test witness(a##ull, n, s)
    if (n < 4759123141ull) return T(2) && T(7) && T(61);</pre>
    return T(2) && T(325) && T(9375) && T(28178)
        && T(450775) && T(9780504) && T(1795265022);
#undef T
}
     Integer Factorization (Pollard's rho)
ll pollard rho(ll n) {
    random device rd;
    mt19937 gen(rd());
    uniform int distribution<ll> dis(1, n - 1);
   11 x = dis(gen);
   11 \ v = x;
   11 c = dis(gen);
   11 g = 1;
    while (g == 1) {
        x = (modmul(x, x, n) + c) % n;
        y = (modmul(y, y, n) + c) % n;
        y = (modmul(y, y, n) + c) \% n;
        g = gcd(abs(x - y), n);
    return g;
}
// integer factorization
// O(n^0.25 * Logn)
void factorize(ll n, vector<ll>& fl) {
   if (n == 1) {
        return;
    if (n % 2 == 0) {
        fl.push back(2);
        factorize(n / 2, fl);
```

else if (is prime(n)) {

fl.push_back(n);

11 f = pollard_rho(n);
factorize(f, fl);

else {

```
factorize(n / f, f1);
}
```

2.5 Chinese Remainder Theorem

```
// find x s.t. x === a[0] \pmod{n[0]}
                  === a[1] \pmod{n[1]}
//
//
// assumption: qcd(n[i], n[j]) = 1
ll chinese_remainder(ll* a, ll* n, int size) {
    if (size == 1) return *a;
    ll tmp = modinverse(n[0], n[1]);
    ll tmp2 = (tmp * (a[1] - a[0]) % n[1] + n[1]) % n[1];
    ll ora = a[1];
    ll tgcd = gcd(n[0], n[1]);
    a[1] = a[0] + n[0] / tgcd * tmp2;
    n[1] *= n[0] / tgcd;
    ll ret = chinese_remainder(a + 1, n + 1, size - 1);
    n[1] /= n[0] / tgcd;
    a[1] = ora;
    return ret;
}
```

2.6 Modular Equation

 $x \equiv a \pmod{m}, x \equiv b \pmod{n}$ 을 만족시키는 x를 구하는 방법.

m과 n을 소인수분해한 후 소수의 제곱꼴의 합동식들로 각각 쪼갠다. 이 때 특정 소수에 대하여 모순이 생기면 불가능한 경우고, 모든 소수에 대해서 모순이 생기지 않으면 전체식을 CRT로 합치면 된다. 이제 $x\equiv x_1\pmod{p^{k_1}}$ 과 $x\equiv x_2\pmod{p^{k_2}}$ 가 모순이 생길조건은 $k_1\leq k_2$ 라고 했을 때, $x_1\not\equiv x_2\pmod{p^{k_1}}$ 인 경우이다. 모순이 생기지 않았을 때답을 구하려면 CRT로 합칠 때 $x\equiv x_2\pmod{p^{k_2}}$ 만을 남기고 합쳐주면 된다.

2.7 Catalan number

다양한 문제의 답이 되는 수열이다.

- 길이가 2n 인 올바른 괄호 수식의 수
- n+1개의 리프를 가진 풀 바이너리 트리의 수
- n+2각형을 n개의 삼각형으로 나누는 방법의 수

$$C_n = \frac{1}{n+1} \binom{2n}{n}$$

$$C_0 = 1$$
 and $C_{n+1} = \sum_{i=0}^{n} C_i C_{n-i}$

$$C_0 = 1$$
 and $C_{n+1} = \frac{2(2n+1)}{n+2}C_n$

2.8 Burnside's Lemma

경우의 수를 세는데, 특정 transform operation(회전, 반사, ..) 해서 같은 경우들은 하나로 친다. 전체 경우의 수는?

- 각 operation마다 이 operation을 했을 때 변하지 않는 경우의 수를 센다 (단, "아무것도 하지 않는다"라는 operation도 있어야 함!)
- 전체 경우의 수를 더한 후, operation의 수로 나눈다. (답이 맞다면 항상 나누어 떨어져야 한다)

2.9 Kirchoff's Theorem

그래프의 스패닝 트리의 개수를 구하는 정리.

무향 그래프의 Laplacian matrix L를 만든다. 이것은 (정점의 차수 대각 행렬) - (인접행렬) 이다. L에서 행과 열을 하나씩 제거한 것을 L'라 하자. 어느 행/열이든 관계 없다. 그래프의 스패닝 트리의 개수는 det(L')이다.

2.10 Lucas Theorem

```
// calculate nCm % p when p is prime
int lucas_theorem(const char *n, const char *m, int p) {
    vector<int> np, mp;
    int i;
    for (i = 0; n[i]; i++) {
        if (n[i] == '0' && np.empty()) continue;
        np.push_back(n[i] - '0');
    for (i = 0; m[i]; i++) {
        if (m[i] == '0' && mp.empty()) continue;
        mp.push back(m[i] - '0');
   }
    int ret = 1;
    int ni = 0, mi = 0;
    while (ni < np.size() || mi < mp.size()) {</pre>
        int nmod = 0, mmod = 0;
        for (i = ni; i < np.size(); i++) {</pre>
```

```
if (i + 1 < np.size())</pre>
                 np[i + 1] += (np[i] \% p) * 10;
                  nmod = np[i] % p;
             np[i] /= p;
         for (i = mi; i < mp.size(); i++) {</pre>
             if (i + 1 < mp.size())</pre>
                 mp[i + 1] += (mp[i] \% p) * 10;
             else
                 mmod = mp[i] \% p;
             mp[i] /= p;
         while (ni < np.size() && np[ni] == 0) ni++;</pre>
         while (mi < mp.size() && mp[mi] == 0) mi++;</pre>
         // implement binomial. binomial(m,n) = 0 if m < n
         ret = (ret * binomial(nmod, mmod)) % p;
    return ret;
}
```

2.11 Fast Fourier Transform

```
const double PI = acos(-1);
void fft(double *r, double *im, int N, bool f) {
    for (int i = 1, j = 0; i < N; i++) {
        int k; for (k = N >> 1; j >= k; k >>= 1) j -= k;
        j += k; if (i < j) swap(r[i], r[j]), swap(im[i], im[j]);
    for (int i = 1; i < N; i <<= 1) {
        double w = PI / i; if (f) w = -w;
        double c = cos(w), s = sin(w);
        for (int j = 0; j < N; j += i << 1) {
            double yr = 1, yi = 0;
            for (int k = 0; k < i; k++) {
                double zr = r[i + j + k] * yr - im[i + j + k] * yi;
                double zi = r[i + j + k] * yi + im[i + j + k] * yr;
                r[i + j + k] = r[j + k] - zr;
                im[i + j + k] = im[j + k] - zi;
                r[j + k] += zr; im[j + k] += zi;
                tie(yr, yi) = make_pair(yr * c - yi * s, yr * s + yi * c);
       }
    }
// Compute Poly(a)*Poly(b), write to r; Indexed from 0
// O(n*Logn)
int mult(int *a, int n, int *b, int m, int *r) {
    const int maxn = 1048576;
    static double ra[maxn], rb[maxn], ia[maxn], ib[maxn];
    int fn = 1;
    while (fn < n + m) fn <<= 1; // n + m: interested length
```

```
for (int i = 0; i < n; ++i) ra[i] = a[i], ia[i] = 0;
for (int i = n; i < fn; ++i) ra[i] = ia[i] = 0;
for (int i = 0; i < m; ++i) rb[i] = b[i], ib[i] = 0;
for (int i = m; i < fn; ++i) rb[i] = ib[i] = 0;
fft(ra, ia, fn, false);
fft(rb, ib, fn, false);
for (int i = 0; i < fn; ++i) {
    double real = ra[i] * rb[i] - ia[i] * ib[i];
    double imag = ra[i] * ib[i] + rb[i] * ia[i];
    ra[i] = real, ia[i] = imag;
}
fft(ra, ia, fn, true);
for (int i = 0; i < fn; ++i) r[i] = (int)floor(ra[i] / fn + 0.5);
return fn;</pre>
```

2.12 Number Theoretic FFT

}

 $p = a \cdot 2^b + 1$ 꼴의 소수 p와 p의 원시근 x에 대하여, $n \le b$ 를 만족하는 모든 2^n 크기의 배열에 대해 법 p로 FFT를 행할 수 있다. 다음은 위를 만족하는 충분히 큰 소수들 목록이다.

```
원시근
                              덧셈
                                              곱셈
3221225473 3
                  30
                      5
                              64-bit signed
                                              64-bit unsigned
2281701377 17
                 27
                      3
                              64-bit signed
                                              64-bit signed
2013265921 15
                 27
                      31
                              32-bit unsigned
                                              64-bit signed
998244353
           119
                 23
                      3
                              32-bit signed
                                              64-bit signed
469762049
                  26 3
                              32-bit signed
                                              64-bit signed
```

NTT 사용 시에 자료형에 유의하여, 덧셈 혹은 곱셈에서 Integer overflow가 나지 않도록 하라.

```
const int A = 7, B = 26, P = A << B | 1, R = 3;
int Pow(int x, int y) {
   int r = 1;
    while (y) {
        if (y & 1) r = r * 111 * x % P;
        x = x * 111 * x % P;
       y >>= 1;
    return r;
}
void fft(int *a, int N, bool f) {
    for (int i = 1, j = 0; i < N; i++) {
        int k; for (k = N >> 1; j >= k; k >>= 1) j -= k;
        j += k; if (i < j) swap(a[i], a[j]);</pre>
    for (int i = 1; i < N; i <<= 1) {
        int x = Pow(f ? Pow(R, P - 2) : R, P / i >> 1);
        for (int j = 0; j < N; j += i << 1) {
```

```
int y = 1;
for (int k = 0; k < i; k++) {
    int z = a[i + j + k] * 111 * y % P;
    a[i + j + k] = a[j + k] - z;
    if (a[i + j + k] < P) a[i + j + k] += P;
    a[j + k] += z;
    if (a[j + k] >= P) a[j + k] -= P;
    y = y * 111 * x % P;
}
}
```

2.13 FFT with AVX

#include <immintrin.h>

실수 배열에 대하여 convolution을 FFT 한 번, Inverse FFT 한 번으로 계산할 수 있다. 새로운 배열 a+bi를 정의하자. 이 배열의 자기 자신과의 convolution의 허수부는 a와 b의 convolution의 2배와 같다.

```
#pragma GCC target("avx2")
#pragma GCC target("fma")
const double PI = acos(-1);
__m256d mult(__m256d a, __m256d b) {
    _{m256d} c = _{mm256} equal (a);
    _{m256d} d = _{mm256\_shuffle\_pd(a, a, 15)};
    m256d cb = mm256 mul pd(c, b);
    _{m256d} db = _{mm256} ul_{pd}(d, b);
    _{m256d} = _{mm256\_shuffle\_pd(db, db, 5)};
    _{m256d} r = _{mm256} addsub_pd(cb, e);
    return r;
}
void fft( m128d a[], int N, bool f) {
    for (int i = 1, j = 0; i < N; i++) {
        int k; for (k = N >> 1; j >= k; k >>= 1) j -= k;
        j += k; if (i < j) swap(a[i], a[j]);
    for (int i = 1; i < N; i <<= 1) {
        double angle = PI / i; if (f) angle = -angle;
         _{m256d} w; w[0] = cos(angle), w[1] = sin(angle);
        for (int j = 0; j < N; j += i << 1) {
             _{m256d} y; y[0] = 1; y[1] = 0;
            for (int k = 0; k < i; k++) {
                y = _mm256_permute2f128_pd(y, y, 0);
                w = _{mm256}insertf128_{pd}(w, a[i + j + k], 1);
                y = mult(y, w);
                _{m128d \ vw = _{mm256} \ extractf128 \ pd(y, 1);}
                  _{m128d\ u\ =\ a[j\ +\ k];}
                a[j + k] = mm \ add \ pd(u, vw);
```

```
a[i + j + k] = mm sub pd(u, vw);
        }
   }
}
int mult(int *a, int n, int *b, int m, int *r) {
    const int maxn = 1048576;
    static m128d fv[maxn];
    int fn = 1;
    while (fn < n + m) fn <<= 1;
    for (int i = 0; i < fn; i++) fv[i][0] = fv[i][1] = 0;
    for (int i = 0; i < n; i++) fv[i][0] = a[i];</pre>
    for (int i = 0; i < m; i++) fv[i][1] = b[i];</pre>
    fft(fv, fn, false);
    for(int i = 0; i < fn; i += 2) {
        __m256d a;
        a = _mm256_insertf128_pd(a, fv[i], 0);
        a = _mm256_insertf128_pd(a, fv[i + 1], 1);
        a = mult(a, a):
        fv[i] = _mm256_extractf128_pd(a, 0);
        fv[i + 1] = mm256 extractf128 pd(a, 1);
    fft(fv, fn, true);
    for (int i = 0; i < fn; i++) r[i] = round(fv[i][1] / fn * 0.5);
    return fn;
}
```

2.14 Polynomial Division

```
vll get inv(const vll& v, int deg){
   if (deg == 1) return vll(1, fastpow(v[0], MOD - 2));
   if (deg & 1){
       vll a = get_inv(v, deg - 1);
       11 c = 0;
        for (int i = 1; i < deg - 1; i++) c = (c + a[i] * v[deg - 1 - i]) % MOD;
       ll h1 = v[deg - 1];
       ll b = MOD - (h1 * a[0] + c) % MOD * a[0] % MOD;
       if (b == MOD) b = 0; a.push_back(b);
        return a;
   }
   vll a = get_inv(v, deg >> 1);
   vll h0(v.begin(), v.begin() + (deg >> 1));
   vll h1(v.begin() + (deg >> 1), v.begin() + deg);
   vll ah0 = mult(a, h0); ah0.push_back(0);
   vll c(ah0.begin() + (deg >> 1), ah0.begin() + deg);
   vll h1a = mult(h1, a);
   vll b_ = mult(a, add(h1a, c));
```

```
vll b(b_.begin(), b_.begin() + (deg >> 1));
    for (ll e : b) a.push_back(e ? MOD - e : 0);
    return a;
}
vll divide(const vll& F, const vll& G, bool newg = false){
    static vll G INV;
    const int N = (int)F.size() - 1, M = (int)G.size() - 1; // deg of F, G
    if (N < M) return vll();</pre>
    if (N == M) return vll(1, F.back()*fastpow(G.back(), MOD - 2) % MOD);
    vll f = F;
    if (G_INV.empty() || newg)
        vll g = G; reverse(g.begin(), g.end());
        while (g.size() < N - M + 1) g.push_back(0);
        G INV = get_inv(g, N - M + 1);
    reverse(f.begin(), f.end());
    vll ret = mult(f, G INV);
    ret.resize(N - M + 1);
    reverse(ret.begin(), ret.end());
    return ret;
}
```

2.15 Gaussian Elimination

```
const double EPS = 1e-10;
typedef vector<vector<double>> VVD;
// Gauss-Jordan elimination with full pivoting.
// solving systems of linear equations (AX=B)
// INPUT:
             a[][] = an n*n matrix
             b[][] = an n*m matrix
//
// OUTPUT: X
                   = an n*m matrix (stored in b[][])
//
             A^{-1} = an n*n matrix (stored in a[][])
// O(n^3)
double gauss_jordan(VVD& a, VVD& b) {
    const int n = a.size();
    const int m = b[0].size();
    vector<int> irow(n), icol(n), ipiv(n);
    double det = 1;
    for (int i = 0; i < n; i++) {</pre>
        int pj = -1, pk = -1;
        for (int j = 0; j < n; j++) if (!ipiv[j])</pre>
            for (int k = 0; k < n; k++) if (!ipiv[k])
                if (pj == -1 || fabs(a[j][k]) > fabs(a[pj][pk])) { pj = j; pk =
                  k; }
        if (fabs(a[pj][pk]) < EPS) return 0; // matrix is singular</pre>
        ipiv[pk]++;
        swap(a[pj], a[pk]);
```

```
swap(b[pj], b[pk]);
    irow[i] = pj;
    icol[i] = pk;
    double c = 1.0 / a[pk][pk];
    det *= a[pk][pk];
    a[pk][pk] = 1.0;
    for (int p = 0; p < n; p++) a[pk][p] *= c;
    for (int p = 0; p < m; p++) b[pk][p] *= c;
    for (int p = 0; p < n; p++) if (p != pk) {
        c = a[p][pk];
        a[p][pk] = 0;
        for (int q = 0; q < n; q++) a[p][q] -= a[pk][q] * c;
        for (int q = 0; q < m; q++) b[p][q] -= b[pk][q] * c;
for (int p = n - 1; p >= 0; p --) if (irow[p] != icol[p]) {
    for (int k = 0; k < n; k++) swap(a[k][irow[p]], a[k][icol[p]]);</pre>
}
return det;
```

2.16 Simplex Algorithm

}

```
// Two-phase simplex algorithm for solving linear programs of the form
       maximize
                    c^T x
//
       subject to Ax <= b
                     x >= 0
// INPUT: A -- an m x n matrix
          b -- an m-dimensional vector
          c -- an n-dimensional vector
          x -- a vector where the optimal solution will be stored
// OUTPUT: value of the optimal solution (infinity if unbounded
          above, nan if infeasible)
// To use this code, create an LPSolver object with A, b, and c as
// arguments. Then, call Solve(x).
typedef vector<double> VD;
typedef vector<VD> VVD;
typedef vector<int> VI;
const double EPS = 1e-9;
struct LPSolver {
    int m, n;
    VI B, N;
   VVD D;
    LPSolver(const VVD& A, const VD& b, const VD& c):
        m(b.size()), n(c.size()), N(n + 1), B(m), D(m + 2, VD(n + 2)) {
        for (int i = 0; i < m; i++) for (int j = 0; j < n; j++) D[i][j] = A[i][j]
         ];
        for (int i = 0; i < m; i++) { B[i] = n + i; D[i][n] = -1; D[i][n + 1] =
         b[i]; }
        for (int j = 0; j < n; j++) { N[j] = j; D[m][j] = -c[j]; }
        N[n] = -1; D[m + 1][n] = 1;
```

```
}
void pivot(int r, int s) {
    double inv = 1.0 / D[r][s];
    for (int i = 0; i < m + 2; i++) if (i != r)
        for (int j = 0; j < n + 2; j++) if (j != s)
            D[i][j] -= D[r][j] * D[i][s] * inv;
    for (int j = 0; j < n + 2; j++) if (j != s) D[r][j] *= inv;
    for (int i = 0; i < m + 2; i++) if (i != r) D[i][s] *= -inv;
    D[r][s] = inv;
    swap(B[r], N[s]);
bool simplex(int phase) {
    int x = phase == 1 ? m + 1 : m;
    while (true) {
        int s = -1;
        for (int j = 0; j <= n; j++) {
            if (phase == 2 && N[j] == -1) continue;
            if (s == -1 \mid | D[x][j] < D[x][s] \mid | D[x][j] == D[x][s] && N[j] <
               N[s]) s = j;
        if (D[x][s] > -EPS) return true;
        int r = -1;
        for (int i = 0; i < m; i++) {</pre>
            if (D[i][s] < EPS) continue;</pre>
            if (r == -1 || D[i][n + 1] / D[i][s] < D[r][n + 1] / D[r][s] ||
                 (D[i][n + 1] / D[i][s]) == (D[r][n + 1] / D[r][s]) && B[i] <
                   B[r]) r = i;
        if (r == -1) return false;
        pivot(r, s);
}
double solve(VD& x) {
    for (int i = 1; i < m; i++) if (D[i][n + 1] < D[r][n + 1]) r = i;
    if (D[r][n + 1] < -EPS) {
        pivot(r, n);
        if (!simplex(1) || D[m + 1][n + 1] < -EPS)
            return -numeric_limits<double>::infinity();
        for (int i = 0; i < m; i++) if (B[i] == -1) {
            int s = -1;
            for (int j = 0; j <= n; j++)
                if (s == -1 || D[i][j] < D[i][s] || D[i][j] == D[i][s] && N[</pre>
                  j] \langle N[s] \rangle s = j;
            pivot(i, s);
        }
    if (!simplex(2))
        return numeric limits<double>::infinity();
    x = VD(n);
    for (int i = 0; i < m; i++) if (B[i] < n) \times [B[i]] = D[i][n + 1];
    return D[m][n + 1];
```

```
};
```

2.17 Nim Game

Nim Game의 해법: 각 더미의 돌의 개수를 모두 XOR했을 때 0이 아니면 첫번째, 0이면 두번째 플레이어가 승리.

Grundy Number: 가능한 다음 state의 Grundy Number를 모두 모은 다음, 그 set에 포함되지 않는 가장 작은 수가 현재 state의 Grundy Number가 된다. 만약 다음 state가 독립된 여러 개의 state들로 나뉠 경우, 각각의 state의 Grundy Number의 XOR 합을 생각한다.

Subtraction Game : 한 번에 k개까지의 돌만 가져갈 수 있는 경우, 각 더미의 돌의 개수를 k+1로 나는 나머지를 XOR 합하여 판단한다.

Index-k Nim : 한 번에 최대 k개의 더미를 골라 각각의 더미에서 아무렇게나 돌을 제거할 수 있을 때, 각 binary digit에 대하여 합을 k+1로 나는 나머지를 계산한다. 만약 이 나머지가 모든 digit에 대하여 0이라면 두번째, 하나라도 0이 아니라면 첫번째 플레이어가 승리.

3 Data Structure

3.1 Order statistic tree

```
#include <ext/pb_ds/assoc_container.hpp>
#include <ext/pb ds/tree policy.hpp>
#include <ext/pb_ds/detail/standard_policies.hpp>
#include <functional>
#include <iostream>
using namespace __gnu_pbds;
using namespace std;
// tree<key_type, value_type(set if null), comparator, ...>
using ordered set = tree<int, null type, less<int>, rb tree tag,
    tree order statistics node update>;
int main()
{
    ordered set X;
    for (int i = 1; i < 10; i += 2) X.insert(i); // 1 3 5 7 9
    cout << boolalpha;</pre>
    cout << *X.find_by_order(2) << endl; // 5</pre>
    cout << *X.find by order(4) << endl; // 9</pre>
    cout << (X.end() == X.find_by_order(5)) << endl; // true</pre>
    cout << X.order_of_key(-1) << endl; // 0</pre>
    cout << X.order of key(1) << endl; // 0</pre>
    cout << X.order_of_key(4) << endl; // 2</pre>
    X.erase(3);
    cout << X.order of key(4) << endl; // 1
```

```
for (int t : X) printf("%d<sub>\(\pi\)</sub>", t); // 1 5 7 9
```

3.2 Fenwick Tree

```
const int TSIZE = 100000;
int tree[TSIZE + 1];
// Returns the sum from index 1 to p, inclusive
int query(int p) {
   int ret = 0;
   for (; p > 0; p -= p & -p) ret += tree[p];
   return ret;
}
// Adds val to element with index pos
void add(int p, int val) {
   for (; p <= TSIZE; p += p & -p) tree[p] += val;
}
```

3.3 Segment Tree with Lazy Propagation

```
// example implementation of sum tree
const int TSIZE = 131072; // always 2^k form && n <= TSIZE</pre>
int segtree[TSIZE * 2], prop[TSIZE * 2];
void seg init(int nod, int 1, int r) {
    if (1 == r) segtree[nod] = dat[1];
    else {
        int m = (1 + r) >> 1;
        seg init(nod << 1, 1, m);</pre>
        seg_init(nod << 1 | 1, m + 1, r);
        segtree[nod] = segtree[nod << 1] + segtree[nod << 1 | 1];</pre>
void seg relax(int nod, int 1, int r) {
    if (prop[nod] == 0) return;
    if (1 < r) {
        int m = (1 + r) >> 1;
        segtree[nod << 1] += (m - 1 + 1) * prop[nod];
        prop[nod << 1] += prop[nod];</pre>
        segtree[nod << 1 | 1] += (r - m) * prop[nod];
        prop[nod << 1 | 1] += prop[nod];</pre>
    prop[nod] = 0;
int seg query(int nod, int 1, int r, int s, int e) {
    if (r < s || e < 1) return 0;
    if (s <= 1 && r <= e) return segtree[nod];</pre>
    seg_relax(nod, 1, r);
    int m = (1 + r) >> 1;
    return seg_query(nod << 1, 1, m, s, e) + seg_query(nod << 1 | 1, m + 1, r, s
      , e);
```

```
void seg_update(int nod, int 1, int r, int s, int e, int val) {
    if (r < s \mid | e < 1) return;
    if (s <= 1 && r <= e) {
        segtree[nod] += (r - l + 1) * val;
        prop[nod] += val;
        return;
    seg_relax(nod, 1, r);
    int m = (1 + r) >> 1;
    seg_update(nod << 1, 1, m, s, e, val);</pre>
    seg update(nod \langle\langle 1 \mid 1, m + 1, r, s, e, val);
    segtree[nod] = segtree[nod << 1] + segtree[nod << 1 | 1];</pre>
// usage:
// seg_update(1, 0, n - 1, qs, qe, val);
// seg_query(1, 0, n - 1, qs, qe);
     Persistent Segment Tree
// persistent segment tree impl: sum tree
// initial tree index is 0
namespace pstree {
    typedef int val t;
    const int DEPTH = 18;
    const int TSIZE = 1 << 18;</pre>
    const int MAX_QUERY = 262144;
    struct node {
        val_t v;
        node *1, *r;
   } npoll[TSIZE * 2 + MAX QUERY * (DEPTH + 1)], *head[MAX QUERY + 1];
   int pptr, last q;
    void init() {
        // zero-initialize, can be changed freely
        memset(&npoll[TSIZE - 1], 0, sizeof(node) * TSIZE);
        for (int i = TSIZE - 2; i >= 0; i--) {
            npoll[i].v = 0;
            npoll[i].l = &npoll[i*2+1];
            npoll[i].r = &npoll[i*2+2];
        head[0] = &npol1[0];
        last_q = 0;
        pptr = 2 * TSIZE - 1;
   // update val to pos
    // 0 <= pos < TSIZE
    // returns updated tree index
    int update(int pos, int val, int prev) {
        head[++last q] = &npoll[pptr++];
```

```
node *old = head[prev], *now = head[last q];
        int flag = 1 << DEPTH;</pre>
        for (;;) {
            now -> v = old -> v + val;
            flag >>= 1;
            if (flag==0) {
                now->1 = now->r = nullptr; break;
            if (flag & pos) {
                now->1 = old->1;
                now->r = &npoll[pptr++];
                now = now ->r, old = old->r;
            } else {
                now->r = old->r;
                now->1 = &npoll[pptr++];
                now = now->1, old = old->1;
            }
        }
        return last q;
    }
    val_t query(int s, int e, int l, int r, node *n) {
        if (s == 1 && e == r) return n->v;
        int m = (1 + r) / 2;
        if (m >= e) return query(s, e, l, m, n->l);
        else if (m < s) return query(s, e, m + 1, r, n->r);
        else return query(s, m, l, m, n->l) + query(m + 1, e, m + 1, r, n->r);
    }
    // query summation of [s, e] at time t
    val_t query(int s, int e, int t) {
        s = max(0, s); e = min(TSIZE - 1, e);
        if (s > e) return 0;
        return query(s, e, 0, TSIZE - 1, head[t]);
}
3.5 Splay Tree
// example : https://www.acmicpc.net/problem/13159
struct node {
    node* 1, * r, * p;
    int cnt, min, max, val;
    long long sum;
    bool inv;
    node(int val) :
        cnt(1), sum(_val), min(_val), max(_val), val(_val), inv(false),
        l(nullptr), r(nullptr), p(nullptr) {
    }
};
node* root;
void update(node* x) {
```

```
x \rightarrow cnt = 1;
     x \rightarrow sum = x \rightarrow min = x \rightarrow max = x \rightarrow val;
     if (x->1) {
           x\rightarrow cnt += x\rightarrow l\rightarrow cnt;
           x \rightarrow sum += x \rightarrow 1 \rightarrow sum;
           x->min = min(x->min, x->l->min);
           x->max = max(x->max, x->l->max);
     if (x->r) {
           x \rightarrow cnt += x \rightarrow r \rightarrow cnt;
           x \rightarrow sum += x \rightarrow r \rightarrow sum;
           x-\min = \min(x-\min, x-r-\min);
           x->max = max(x->max, x->r->max);
     }
}
void rotate(node* x) {
     node* p = x-p;
     node* b = nullptr;
     if (x == p->1) {
           p->1 = b = x->r;
           x \rightarrow r = p;
     }
     else {
           p->r = b = x->1;
           x \rightarrow 1 = p;
     x->p = p->p;
     p \rightarrow p = x;
     if (b) b \rightarrow p = p;
     x \rightarrow p? (p == x \rightarrow p \rightarrow 1 ? x \rightarrow p \rightarrow 1 : x \rightarrow p \rightarrow r) = x : (root = x);
     update(p);
     update(x);
}
// make x into root
void splay(node* x) {
     while (x->p) {
           node* p = x->p;
           node* g = p - p;
           if (g) rotate((x == p->1) == (p == g->1) ? p : x);
           rotate(x);
     }
}
void relax lazy(node* x) {
     if (!x->inv) return;
     swap(x->1, x->r);
     x->inv = false;
     if (x\rightarrow 1) x\rightarrow 1\rightarrow inv = !x\rightarrow 1\rightarrow inv;
     if (x\rightarrow r) x\rightarrow r\rightarrow inv = !x\rightarrow r\rightarrow inv;
}
// find kth node in splay tree
void find_kth(int k) {
```

```
node* x = root;
    relax_lazy(x);
    while (true) {
         while (x->1 && x->1->cnt > k) {
             x = x - > 1;
             relax lazy(x);
         if (x\rightarrow 1) k -= x\rightarrow 1\rightarrow cnt;
         if (!k--) break;
         x = x - r;
         relax lazy(x);
    splay(x);
}
// collect [l, r] nodes into one subtree and return its root
node* interval(int 1, int r) {
    find_kth(1 - 1);
    node* x = root;
    root = x->r:
    root->p = nullptr;
    find kth(r - l + 1);
    x \rightarrow r = root;
    root -> p = x;
    root = x;
    return root->r->l;
}
void traverse(node* x) {
    relax_lazy(x);
    if (x->1) {
         traverse(x->1);
    // do something
    if (x->r) {
         traverse(x->r);
}
void uptree(node* x) {
    if (x->p) {
         uptree(x->p);
    relax_lazy(x);
}
```

4 DP

4.1 Convex Hull Optimization

 $O(n^2) \to O(n \log n)$

 $D[i] = \max_{j < i} (D[j] + b[j] * a[i]) \ (b[k] \le b[k+1])$

```
DP 점화식 꼴
```

```
D[i] = \min_{i < i} (D[j] + b[j] * a[i]) (b[k] > b[k+1])
특수조건) a[i] < a[i+1] 도 만족하는 경우, 마지막 쿼리의 위치를 저장해두면 이분검색이
필요없어지기 때문에 amortized O(n) 에 해결할 수 있음
struct CHTLinear {
    struct Line {
       long long a, b;
       long long y(long long x) const { return a * x + b; }
   };
    vector<Line> stk;
    int qpt;
    CHTLinear() : qpt(0) { }
   // when you need maximum : (previous l).a < (now l).a
   // when you need minimum : (previous L).a > (now L).a
    void pushLine(const Line& 1) {
        while (stk.size() > 1) {
            Line& 10 = stk[stk.size() - 1];
            Line& 11 = stk[stk.size() - 2];
           if ((10.b - 1.b) * (10.a - 11.a) > (11.b - 10.b) * (1.a - 10.a))
             break;
           stk.pop_back();
        stk.push back(1);
    // (previous x) <= (current x)</pre>
    // it calculates max/min at x
   long long query(long long x) {
        while (qpt + 1 < stk.size()) {</pre>
           Line& 10 = stk[qpt];
           Line& 11 = stk[qpt + 1];
           if (l1.a - l0.a > 0 && (l0.b - l1.b) > x * (l1.a - l0.a)) break;
           if (11.a - 10.a < 0 && (10.b - 11.b) < x * (11.a - 10.a)) break;
           ++apt;
        return stk[qpt].y(x);
};
```

4.2 Divide & Conquer Optimization

```
O(kn^2) \to O(kn\log n)
조건 1) DP 점화식 꼴 D[t][i] = \min_{j < i} (D[t-1][j] + C[j][i]) 조건 2) A[t][i]는 D[t][i]의 답이 되는 최소의 j라 할 때, 아래의 부등식을 만족해야 함
```

```
A[t][i] \le A[t][i+1]
조건 2-1) 비용C가 다음의 사각부등식을 만족하는 경우도 조건 2)를 만족하게 됨 C[a][c] + C[b][d] \le C[a][d] + C[b][c] \; (a \le b \le c \le d)
```

4.3 Knuth Optimization

```
O(n^3) 	o O(n^2) 조건 1) DP 점화식 꼴 D[i][j] = \min_{i < k < j} (D[i][k] + D[k][j]) + C[i][j] 조건 2) 사각 부등식 C[a][c] + C[b][d] \le C[a][d] + C[b][c] \ (a \le b \le c \le d) 조건 3) 단조성 C[b][c] \le C[a][d] \ (a \le b \le c \le d) 결론) 조건 2, 3을 만족한다면 A[i][j]를 D[i][j]의 답이 되는 최소의 k라 할 때, 아래의 부등식을 만족하게 됨 A[i][j-1] \le A[i][j] \le A[i+1][j] 3중 루프를 돌릴 때 위 조건을 이용하면 최종적으로 시간복잡도가 O(n^2) 이 됨
```

5 Graph

5.1 SCC

```
const int MAXN = 100;
vector<int> graph[MAXN];
int up[MAXN], visit[MAXN], vtime;
vector<int> stk;
int scc_idx[MAXN], scc_cnt;

void dfs(int nod) {
    up[nod] = visit[nod] = ++vtime;
    stk.push_back(nod);
    for (int next : graph[nod]) {
        if (visit[next] == 0) {
            dfs(next);
            up[nod] = min(up[nod], up[next]);
        }
        else if (scc_idx[next] == 0)
            up[nod] = min(up[nod], visit[next]);
    }
}
```

```
if (up[nod] == visit[nod]) {
        ++scc_cnt;
        int t;
        do {
            t = stk.back();
            stk.pop back();
            scc_idx[t] = scc_cnt;
        } while (!stk.empty() && t != nod);
   }
}
// find SCCs in given directed graph
// O(V+E)
// the order of scc_idx constitutes a reverse topological sort
void get_scc() {
    vtime = 0;
    memset(visit, 0, sizeof(visit));
    scc cnt = 0;
    memset(scc_idx, 0, sizeof(scc_idx));
   for (int i = 0; i < n; ++i)
        if (visit[i] == 0) dfs(i);
}
```

5.2 2-SAT

 $(b_x \lor b_y) \land (\neg b_x \lor b_z) \land (b_z \lor \neg b_x) \land \cdots$ 같은 form을 2-CNF라고 함. 주어진 2-CNF 식을 참으로 하는 $\{b_1,b_2,\cdots\}$ 가 존재하는지, 존재한다면 그 값은 무엇인지 구하는 문제를 2-SAT 이라 함.

boolean variable b_i 마다 b_i 를 나타내는 정점, $\neg b_i$ 를 나타내는 정점 2개를 만듦. 각 clause $b_i \lor b_j$ 마다 $\neg b_i \to b_j$, $\neg b_j \to b_i$ 이렇게 edge를 이어줌. 그렇게 만든 그래프에서 SCC를 다구함. 어떤 SCC 안에 b_i 와 $\neg b_i$ 가 같이 포함되어있다면 해가 존재하지 않음. 아니라면 해가 존재함.

해가 존재할 때 구체적인 해를 구하는 방법. 위에서 SCC를 구하면서 SCC DAG를 만들어 준다. 거기서 위상정렬을 한 후, 앞에서부터 SCC를 하나씩 봐준다. 현재 보고있는 SCC에 b_i 가 속해있는데 얘가 $\neg b_i$ 보다 먼저 등장했다면 b_i = false, 반대의 경우라면 b_i = true, 이미 값이 assign되었다면 pass.

5.3 BCC, Cut vertex, Bridge

```
const int MAXN = 100;
vector<pair<int, int>> graph[MAXN];  // { next vertex id, edge id }
int up[MAXN], visit[MAXN], vtime;
vector<pair<int, int>> stk;

int is_cut[MAXN];  // v is cut vertex if is_cut[v] > 0
vector<int> bridge;  // list of edge ids
vector<int> bcc_idx[MAXN];  // list of bccids for vertex i
int bcc_cnt;
```

```
void dfs(int nod, int par_edge) {
    up[nod] = visit[nod] = ++vtime;
    int child = 0;
    for (const auto& e : graph[nod]) {
        int next = e.first, edge id = e.second;
        if (edge_id == par_edge) continue;
        if (visit[next] == 0) {
            stk.push_back({ nod, next });
            ++child;
            dfs(next, edge id);
            if (up[next] == visit[next]) bridge.push_back(edge_id);
            if (up[next] >= visit[nod]) {
                ++bcc cnt;
                do {
                    auto last = stk.back();
                    stk.pop back();
                    bcc_idx[last.second].push_back(bcc_cnt);
                    if (last == pair<int, int>{ nod, next }) break;
                } while (!stk.empty());
                bcc_idx[nod].push_back(bcc_cnt);
                is cut[nod]++;
            up[nod] = min(up[nod], up[next]);
        else
            up[nod] = min(up[nod], visit[next]);
    if (par_edge == -1 && is_cut[nod] == 1)
        is_cut[nod] = 0;
}
// find BCCs & cut vertexs & bridges in undirected graph
// O(V+E)
void get bcc() {
    vtime = 0:
    memset(visit, 0, sizeof(visit));
    memset(is_cut, 0, sizeof(is_cut));
    bridge.clear();
    for (int i = 0; i < n; ++i) bcc_idx[i].clear();</pre>
    bcc cnt = 0;
    for (int i = 0; i < n; ++i) {
        if (visit[i] == 0)
            dfs(i, -1);
}
```

5.4 Block-cut Tree

각 BCC 및 cut vertex가 block-cut tree의 vertex가 되며, BCC와 그 BCC에 속한 cut vertex 사이에 edge를 이어주면 된다.

5.5 Heavy-Light Decomposition

```
// heavy-light decomposition
//
// hld h;
// insert edges to tree[0~n-1];
// h.init(n, root);
// h.decompose(root);
// h.hldquery(u, v); // edges from u to v
struct hld {
    static const int MAXLN = 18;
    static const int MAXN = 1 << (MAXLN - 1);</pre>
    vector<int> tree[MAXN];
    int subsize[MAXN], depth[MAXN], pa[MAXLN][MAXN];
    int chead[MAXN], cidx[MAXN];
    int lchain;
    int flatpos[MAXN + 1], fptr;
    void dfs(int u, int par) {
        pa[0][u] = par;
        subsize[u] = 1;
        for (int v : tree[u]) {
            if (v == pa[0][u]) continue;
            depth[v] = depth[u] + 1;
            dfs(v, u);
            subsize[u] += subsize[v];
    }
    void init(int size, int root)
        lchain = fptr = 0;
        dfs(root, -1);
        memset(chead, -1, sizeof(chead));
        for (int i = 1; i < MAXLN; i++) {</pre>
            for (int j = 0; j < size; j++) {</pre>
                if (pa[i - 1][j] != -1) {
                    pa[i][j] = pa[i - 1][pa[i - 1][j]];
        }
    void decompose(int u) {
        if (chead[lchain] == -1) chead[lchain] = u;
        cidx[u] = lchain;
        flatpos[u] = ++fptr;
        int maxchd = -1;
        for (int v : tree[u]) {
            if (v == pa[0][u]) continue;
            if (maxchd == -1 || subsize[maxchd] < subsize[v]) maxchd = v;</pre>
        }
```

```
if (maxchd != -1) decompose(maxchd);
    for (int v : tree[u]) {
        if (v == pa[0][u] || v == maxchd) continue;
        ++lchain; decompose(v);
int lca(int u, int v) {
    if (depth[u] < depth[v]) swap(u, v);</pre>
    int logu;
    for (logu = 1; 1 << logu <= depth[u]; logu++);</pre>
    logu--;
    int diff = depth[u] - depth[v];
    for (int i = logu; i >= 0; --i) {
        if ((diff >> i) & 1) u = pa[i][u];
    if (u == v) return u;
    for (int i = logu; i >= 0; --i) {
        if (pa[i][u] != pa[i][v]) {
            u = pa[i][u];
            v = pa[i][v];
        }
    return pa[0][u];
// TODO: implement query functions
inline int query(int s, int e) {
    return 0;
}
int subquery(int u, int v) {
    int uchain, vchain = cidx[v];
    int ret = 0;
    for (;;) {
        uchain = cidx[u];
        if (uchain == vchain) {
            ret += query(flatpos[v], flatpos[u]);
            break;
        ret += query(flatpos[chead[uchain]], flatpos[u]);
        u = pa[0][chead[uchain]];
    return ret;
inline int hldquery(int u, int v) {
    int p = lca(u, v);
    return subquery(u, p) + subquery(v, p) - query(flatpos[p], flatpos[p]);
}
```

};

5.6 Bipartite Matching (Hopcroft-Karp)

```
// in: n, m, graph
// out: match, matched
// vertex cover: (reached[0][left node] == 0) || (reached[1][right node] == 1)
// O(E*sqrt(V))
struct BipartiteMatching {
    int n, m;
    vector<vector<int>> graph;
    vector<int> matched, match, edgeview, level;
    vector<int> reached[2];
    BipartiteMatching(int n, int m): n(n), m(m), graph(n), matched(m, -1),
     match(n, -1) {}
    bool assignLevel() {
        bool reachable = false;
        level.assign(n, -1);
        reached[0].assign(n, 0);
        reached[1].assign(m, 0);
        queue<int> q;
        for (int i = 0; i < n; i++) {
            if (match[i] == -1) {
                level[i] = 0;
                reached[0][i] = 1;
                q.push(i);
            }
        while (!q.empty()) {
            auto cur = q.front(); q.pop();
            for (auto adj : graph[cur]) {
                reached[1][adj] = 1;
                auto next = matched[adj];
                if (next == -1) {
                    reachable = true;
                else if (level[next] == -1) {
                    level[next] = level[cur] + 1;
                    reached[0][next] = 1;
                    q.push(next);
            }
        return reachable;
    int findpath(int nod) {
        for (int &i = edgeview[nod]; i < graph[nod].size(); i++) {</pre>
            int adj = graph[nod][i];
            int next = matched[adj];
            if (next >= 0 && level[next] != level[nod] + 1) continue;
            if (next == -1 || findpath(next)) {
                match[nod] = adj;
```

5.7 Maximum Flow (Dinic)

```
// usage:
// MaxFlowDinic::init(n);
// MaxFlowDinic::add_edge(0, 1, 100, 100); // for bidirectional edge
// MaxFlowDinic::add_edge(1, 2, 100); // directional edge
// result = MaxFlowDinic::solve(0, 2); // source -> sink
// graph[i][edgeIndex].res -> residual
//
// in order to find out the minimum cut, use `l'.
// if \lfloor \lceil i \rceil == 0, i is unrechable.
// O(V*V*E)
// with unit capacities, O(\min(V^{(2/3)}, E^{(1/2)}) * E)
struct MaxFlowDinic {
    typedef int flow_t;
    struct Edge {
        int next;
        size t inv; /* inverse edge index */
        flow t res; /* residual */
    };
    int n;
    vector<vector<Edge>> graph;
    vector<int> q, l, start;
    void init(int _n) {
        n = _n;
        graph.resize(n);
        for (int i = 0; i < n; i++) graph[i].clear();</pre>
    void add_edge(int s, int e, flow_t cap, flow_t caprev = 0) {
        Edge forward{ e, graph[e].size(), cap };
        Edge reverse{ s, graph[s].size(), caprev };
        graph[s].push_back(forward);
        graph[e].push back(reverse);
```

```
bool assign_level(int source, int sink) {
    int t = 0:
    memset(&1[0], 0, sizeof(1[0]) * 1.size());
    l[source] = 1;
    q[t++] = source;
    for (int h = 0; h < t && !1[sink]; h++) {</pre>
        int cur = q[h];
        for (const auto& e : graph[cur]) {
            if (l[e.next] || e.res == 0) continue;
            l[e.next] = l[cur] + 1;
            q[t++] = e.next;
    }
    return l[sink] != 0;
flow t block flow(int cur, int sink, flow t current) {
    if (cur == sink) return current;
    for (int& i = start[cur]; i < graph[cur].size(); i++) {</pre>
        auto& e = graph[cur][i];
        if (e.res == 0 || l[e.next] != l[cur] + 1) continue;
        if (flow t res = block flow(e.next, sink, min(e.res, current))) {
            e.res -= res;
            graph[e.next][e.inv].res += res;
            return res:
    }
    return 0;
flow_t solve(int source, int sink) {
    a.resize(n);
    1.resize(n);
    start.resize(n);
    flow_t = 0;
    while (assign level(source, sink)) {
        memset(&start[0], 0, sizeof(start[0]) * n);
        while (flow_t flow = block_flow(source, sink, numeric_limits<flow_t</pre>
         >::max()))
            ans += flow;
    }
    return ans;
```

5.8 Maximum Flow with Edge Demands

};

그래프 G=(V,E) 가 있고 source s와 sink t가 있다. 각 간선마다 $d(e) \leq f(e) \leq c(e)$ 를 만족하도록 flow f(e)를 흘려야 한다. 이 때의 maximum flow를 구하는 문제다.

먼저 모든 demand를 합한 값 D를 아래와 같이 정의한다.

$$D = \sum_{(u \to v) \in E} d(u \to v)$$

이제 G 에 몇개의 정점과 간선을 추가하여 새로운 그래프 G' = (V', E') 을 만들 것이다. 먼저 새로운 source s' 과 새로운 sink t' 을 추가한다. 그리고 s' 에서 V의 모든 점마다 간선을 이어주고, V의 모든 점에서 t'로 간선을 이어준다.

새로운 capacity function c'을 아래와 같이 정의한다.

- 1. V의 점 v에 대해 $c'(s' \to v) = \sum_{u \in V} d(u \to v)$, $c'(v \to t') = \sum_{w \in V} d(v \to w)$
- 2. E의 간선 $u \rightarrow v$ 에 대해 $c'(u \rightarrow v) = c(u \rightarrow v) d(u \rightarrow v)$
- 3. $c'(t \to s) = \infty$

이렇게 만든 새로운 그래프 G'에서 $\max flow$ 를 구했을 때 그 값이 D라면 원래 문제의 해가 존재하고, 그 값이 D가 아니라면 원래 문제의 해는 존재하지 않는다.

위에서 maximum flow를 구하고 난 상태의 residual graph 에서 s'과 t'을 떼버리고 s에서 t사이의 augument path 를 계속 찾으면 원래 문제의 해를 구할 수 있다.

5.8.1 Source Code

```
struct MaxFlowEdgeDemands
   MaxFlowDinic mf;
   using flow t = MaxFlowDinic::flow t;
   vector<flow_t> ind, outd;
   flow t D; int n;
   void init(int _n) {
        n = n; D = 0; mf.init(n + 2);
        ind.clear(); outd.clear();
        ind.resize(n, 0); outd.resize(n, 0);
   void add_edge(int s, int e, flow_t cap, flow_t demands = 0) {
        mf.add_edge(s, e, cap - demands);
        D += demands; ind[e] += demands; outd[s] += demands;
   // returns { false, 0 } if infeasible
   // { true, maxflow } if feasible
   pair<bool, flow_t> solve(int source, int sink) {
        mf.add edge(sink, source, numeric limits<flow t>::max());
        for (int i = 0; i < n; i++) {
            if (ind[i]) mf.add_edge(n, i, ind[i]);
            if (outd[i]) mf.add_edge(i, n + 1, outd[i]);
```

```
if (mf.solve(n, n + 1) != D) return{ false, 0 };
        for (int i = 0; i < n; i++) {
            if (ind[i]) mf.graph[i].pop_back();
           if (outd[i]) mf.graph[i].pop back();
        return{ true, mf.solve(source, sink) };
};
     Min-cost Maximum Flow
// precondition: there is no negative cycle.
// usage:
// MinCostFlow mcf(n);
// for(each edges) mcf.addEdge(from, to, cost, capacity);
// mcf.solve(source, sink); // min cost max flow
// mcf.solve(source, sink, 0); // min cost flow
// mcf.solve(source, sink, goal_flow); // min cost flow with total_flow >=
 goal flow if possible
struct MinCostFlow {
    typedef int cap_t;
    typedef int cost t;
   bool iszerocap(cap_t cap) { return cap == 0; }
    struct edge {
        int target;
        cost t cost;
        cap_t residual_capacity;
        cap t orig capacity;
        size t revid;
   };
    int n;
    vector<vector<edge>> graph;
    MinCostFlow(int n) : graph(n), n(n) {}
```

void addEdge(int s, int e, cost_t cost, cap_t cap) {

edge forward{ e, cost, cap, cap, graph[e].size() };

auto infinite_cost = numeric_limits<cost_t>::max();
auto infinite flow = numeric limits<cap t>::max();

pair<cost_t, cap_t> augmentShortest(int s, int e, cap_t flow_limit) {

vector<pair<cost_t, cap_t>> dist(n, make_pair(infinite_cost, 0));

edge backward{ s, -cost, 0, 0, graph[s].size() };

if (s == e) return;

}

graph[s].emplace_back(forward);

graph[e].emplace back(backward);

vector<int> from(n, -1), v(n);

```
dist[s] = pair<cost_t, cap_t>(0, infinite_flow);
    queue<int> q;
    v[s] = 1; q.push(s);
    while(!q.empty()) {
        int cur = q.front();
        v[cur] = 0; q.pop();
        for (const auto& e : graph[cur]) {
            if (iszerocap(e.residual capacity)) continue;
            auto next = e.target;
            auto ncost = dist[cur].first + e.cost;
            auto nflow = min(dist[cur].second, e.residual capacity);
            if (dist[next].first > ncost) {
                dist[next] = make pair(ncost, nflow);
                from[next] = e.revid;
                if (v[next]) continue;
                v[next] = 1; q.push(next);
        }
    auto p = e;
    auto pathcost = dist[p].first;
    auto flow = dist[p].second;
    if (iszerocap(flow)|| (flow limit <= 0 && pathcost >= 0)) return pair
     cost_t, cap_t>(0, 0);
    if (flow limit > 0) flow = min(flow, flow limit);
    while (from[p] != -1) {
        auto nedge = from[p];
        auto np = graph[p][nedge].target;
        auto fedge = graph[p][nedge].revid;
        graph[p][nedge].residual capacity += flow;
        graph[np][fedge].residual_capacity -= flow;
        p = np;
    return make_pair(pathcost * flow, flow);
pair<cost_t,cap_t> solve(int s, int e, cap_t flow_minimum = numeric_limits
  cap t>::max()) {
    cost t total cost = 0;
    cap t total flow = 0;
    for(;;) {
        auto res = augmentShortest(s, e, flow_minimum - total_flow);
        if (res.second <= 0) break;</pre>
        total_cost += res.first;
        total flow += res.second;
    return make_pair(total_cost, total_flow);
```

};

5.10 General Min-cut (Stoer-Wagner)

```
// implementation of Stoer-Wagner algorithm
// O(V^3)
//usage
// MinCut mc:
// mc.init(n);
// for (each edge) mc.addEdge(a,b,weight);
// mincut = mc.solve();
// mc.cut = \{0,1\}^n describing which side the vertex belongs to.
struct MinCutMatrix
    typedef int cap_t;
    int n;
    vector<vector<cap t>> graph;
    void init(int _n) {
        n = n;
        graph = vector<vector<cap_t>>(n, vector<cap_t>(n, 0));
    void addEdge(int a, int b, cap t w) {
        if (a == b) return;
        graph[a][b] += w;
        graph[b][a] += w;
    }
    pair<cap_t, pair<int, int>> stMinCut(vector<int> &active) {
        vector<cap t> key(n);
        vector<int> v(n);
        int s = -1, t = -1;
        for (int i = 0; i < active.size(); i++) {</pre>
            cap t maxv = -1;
            int cur = -1;
            for (auto j : active) {
                if (v[j] == 0 \&\& maxv < key[j]) {
                     maxv = key[j];
                     cur = j;
            t = s; s = cur;
            v[cur] = 1;
            for (auto j : active) key[j] += graph[cur][j];
        return make_pair(key[s], make_pair(s, t));
    }
    vector<int> cut;
    cap_t solve() {
        cap t res = numeric limits<cap t>::max();
        vector<vector<int>> grps;
        vector<int> active;
        cut.resize(n):
        for (int i = 0; i < n; i++) grps.emplace_back(1, i);</pre>
        for (int i = 0; i < n; i++) active.push back(i);</pre>
```

```
while (active.size() >= 2) {
            auto stcut = stMinCut(active);
            if (stcut.first < res) {</pre>
                res = stcut.first;
                fill(cut.begin(), cut.end(), 0);
                for (auto v : grps[stcut.second.first]) cut[v] = 1;
            int s = stcut.second.first, t = stcut.second.second;
            if (grps[s].size() < grps[t].size()) swap(s, t);</pre>
            active.erase(find(active.begin(), active.end(), t));
            grps[s].insert(grps[s].end(), grps[t].begin(), grps[t].end());
            for (int i = 0; i < n; i++) { graph[i][s] += graph[i][t]; graph[i][t</pre>
              ] = 0; }
            for (int i = 0; i < n; i++) { graph[s][i] += graph[t][i]; graph[t][i</pre>
              ] = 0; }
            graph[s][s] = 0;
        return res;
};
5.11 General Max Matching
struct DisjointSet
    vector<int> parent, rnk;
    DisjointSet(int n = 0) : rnk(n) {
        parent.reserve(n);
        for (int i = 0; i < n; i++) parent.push_back(i);</pre>
    void reset(int n) {
        parent.clear(); rnk.assign(n, 0);
        for (int i = 0; i < n; i++) parent.push_back(i);</pre>
    }
    void increase(int n) {
        int base = parent.size();
        for (int i = base; i < base + n; i++) {</pre>
            parent.push_back(i);
            rnk.push back(0);
    }
    int find(int p) {
        return parent[p] == p ? p : parent[p] = find(parent[p]);
    }
    void merge(int a, int b) {
        a = find(a), b = find(b);
        if (a == b) return;
```

```
if (rnk[a] < rnk[b]) swap(a, b);</pre>
        else if (rnk[a] == rnk[b]) ++rnk[a];
        parent[b] = a;
   }
};
struct MaxMatching
    int n;
    vector<vector<int>> gnext;
    vector<int> matched;
    int vcnt;
    MaxMatching(int n) : n(n), gnext(n), matched(n, -1) {}
    void AddEdge(int a, int b) {
        gnext[a].push_back(b);
        gnext[b].push back(a);
    }
    int Match() {
        int ans = 0;
        while (findAugment()) ++ans;
        return ans;
   }
    vector<int> parent; // shrunken -> real
    vector<int> forest;
    vector<int> level;
    vector<pair<int,int>> bridge;
    queue<int> q;
    DisjointSet blossomSet;
    vector<int> origin; // blossomSet number to -> origin vertex
    vector<int> ancestorChecker;
    int ancestorCheckerValue:
    vector<int> marker;
    void markBlossomPath(int vv, pair<int, int> vu, int ancestor){
        int p = vv;
        marker.clear();
        while (p != ancestor) {
            int np = origin[blossomSet.find(parent[p])];
            marker.push_back(p); p = np;
            np = origin[blossomSet.find(parent[p])];
            marker.push back(p);
            bridge[p] = vu; // need original vertex number
            q.push(p); // odd level edges were not considered
            p = np;
        for (auto x : marker) blossomSet.merge(ancestor, x);
        origin[blossomSet.find(ancestor)] = ancestor;
    }
```

```
void mergeBlossom(int vv, int uu, int v, int u){
    if (uu == vv) return;
    ++ancestorCheckerValue;
    int p1 = uu, p2 = vv;
    int ancestor = -1;
    for (;;) {
        if (p1 >= 0) {
            if (ancestorChecker[p1] == ancestorCheckerValue) {
                ancestor = p1;
                break;
            ancestorChecker[p1] = ancestorCheckerValue;
            if (parent[p1] >= 0) p1 = origin[blossomSet.find(parent[p1])];
              else p1 = -1;
        if (p2 >= 0) {
            if (ancestorChecker[p2] == ancestorCheckerValue) {
                ancestor = p2;
                break:
            ancestorChecker[p2] = ancestorCheckerValue;
            if (parent[p2] >= 0) p2 = origin[blossomSet.find(parent[p2])];
              else p2 = -1;
       }
    markBlossomPath(uu, make_pair(u, v), ancestor);
    markBlossomPath(vv, make pair(v, u), ancestor);
}
vector<int> augmentPathLink;
void getRootPath(int v, int w, bool reversed){
    if (v == w) return;
    if (level[v] & 1) {
        // odd. use bridge
        int x, y, mate = matched[v];
        tie(x,y) = tie(bridge[v].first, bridge[v].second);
        getRootPath(x, mate, !reversed);
        getRootPath(y, w, reversed);
        if (reversed) {
            augmentPathLink[y] = x;
            augmentPathLink[mate] = v;
        } else {
            augmentPathLink[v] = mate;
            augmentPathLink[x] = y;
    } else {
        // even
        int mate = matched[v];
        getRootPath(parent[mate], w, reversed);
        if (reversed) {
            augmentPathLink[parent[mate]] = mate;
            augmentPathLink[mate] = v;
        } else {
```

```
augmentPathLink[v] = mate;
            augmentPathLink[mate] = parent[mate];
        }
    }
}
void augmentPath(int v, int w) {
    augmentPathLink = vector<int>(n,-1);
    int x = forest[v];
    int y = forest[w];
    getRootPath(v,x,true);
    getRootPath(w,y,false);
    augmentPathLink[v] = w;
    int p = x;
    for(;;) {
        int q = augmentPathLink[p];
        matched[p] = q;
        matched[q] = p;
        if (q == y) break;
        p = augmentPathLink[q];
}
bool findAugment() {
    parent = vector<int>(n,-1);
    forest = vector<int>(n,-1);
    level = vector<int>(n);
    bridge = vector<pair<int,int>>(n,make_pair(-1,-1));
    q = queue<int>();
    blossomSet.reset(n);
    origin = vector<int>(n);
    ancestorChecker = vector<int>(n);
    ancestorCheckerValue = 0;
    for(int i = 0; i < n; i++) {</pre>
        origin[i] = i;
        if (matched[i] == -1) {
            forest[i] = i;
            q.push(i);
        }
    bool foundPath = false;
    while(!q.empty() && !foundPath) {
        int v = q.front(); q.pop();
        for(auto u : gnext[v]) {
            int vv = origin[blossomSet.find(v)];
            int uu = origin[blossomSet.find(u)];
            if (forest[uu] == -1) {
                // assert(u == uu)
                parent[uu] = v;
                forest[uu] = forest[vv];
                level [uu] = level [vv] + 1;
                parent[matched[uu]] = uu;
                forest[matched[uu]] = forest[vv];
                level [matched[uu]] = level [vv] + 2;
```

```
q.push(matched[uu]);
} else if (level[uu]&1) {
    // odd level
} else if (forest[uu] != forest[vv]){
    // found path. both are even level
    foundPath = true;
    augmentPath(v,u);
    break;
} else {
    // blossom formed
    mergeBlossom(vv, uu, v, u);
}
}
return foundPath;
}
```

5.12 Hungarian Algorithm

```
int n, m;
int mat[MAX N + 1][MAX M + 1];
// hungarian method : bipartite min-weighted matching
// O(n^3) or O(m*n^2)
// http://e-maxx.ru/algo/assignment hungary
// mat[1][1] ~ mat[n][m]
// matched[i] : matched column of row i
int hungarian(vector<int>& matched) {
    vector<int> u(n + 1), v(m + 1), p(m + 1), way(m + 1), minv(m + 1);
    vector<char> used(m + 1);
    for (int i = 1; i <= n; ++i) {
        p[0] = i;
        int j0 = 0;
        fill(minv.begin(), minv.end(), INF);
        fill(used.begin(), used.end(), false);
        do {
            used[j0] = true;
            int i0 = p[j0], delta = INF, j1;
            for (int j = 1; j <= m; ++j) {
                if (!used[j]) {
                    int cur = mat[i0][j] - u[i0] - v[j];
                    if (cur < minv[j]) minv[j] = cur, way[j] = j0;</pre>
                    if (minv[j] < delta) delta = minv[j], j1 = j;</pre>
            }
            for (int j = 0; j <= m; ++j) {
                if (used[j])
                    u[p[j]] += delta, v[j] -= delta;
                    minv[j] -= delta;
            j0 = j1;
```

```
} while (p[j0] != 0);
do {
    int j1 = way[j0];
    p[j0] = p[j1];
    j0 = j1;
} while (j0);
}
for (int j = 1; j <= m; ++j) matched[p[j]] = j;
return -v[0];</pre>
```

6 Geometry

6.1 Basic Operations

```
const double eps = 1e-9;
inline int diff(double lhs, double rhs) {
    if (lhs - eps < rhs && rhs < lhs + eps) return 0;
    return (lhs < rhs) ? -1 : 1;</pre>
}
inline bool is between(double check, double a, double b) {
   if (a < b)
        return (a - eps < check && check < b + eps);</pre>
    else
        return (b - eps < check && check < a + eps);</pre>
}
struct Point {
    double x, y;
    bool operator==(const Point& rhs) const {
        return diff(x, rhs.x) == 0 && diff(y, rhs.y) == 0;
    Point operator+(const Point& rhs) const {
        return Point{ x + rhs.x, y + rhs.y };
    Point operator-(const Point& rhs) const {
        return Point{ x - rhs.x, y - rhs.y };
    Point operator*(double t) const {
        return Point{ x * t, y * t };
};
struct Circle {
    Point center;
    double r;
};
struct Line {
    Point pos, dir;
```

```
};
inline double inner(const Point& a, const Point& b) {
    return a.x * b.x + a.y * b.y;
inline double outer(const Point& a, const Point& b) {
    return a.x * b.v - a.v * b.x;
inline int ccw line(const Line& line, const Point& point) {
    return diff(outer(line.dir, point - line.pos), 0);
}
inline int ccw(const Point& a, const Point& b, const Point& c) {
    return diff(outer(b - a, c - a), 0);
inline double dist(const Point& a, const Point& b) {
    return sqrt(inner(a - b, a - b));
}
inline double dist2(const Point &a, const Point &b) {
    return inner(a - b, a - b);
inline double dist(const Line& line, const Point& point, bool segment = false) {
    double c1 = inner(point - line.pos, line.dir);
    if (segment && diff(c1, 0) <= 0) return dist(line.pos, point);</pre>
    double c2 = inner(line.dir, line.dir);
    if (segment && diff(c2, c1) <= 0) return dist(line.pos + line.dir, point);</pre>
    return dist(line.pos + line.dir * (c1 / c2), point);
}
bool get cross(const Line& a, const Line& b, Point& ret) {
    double mdet = outer(b.dir, a.dir);
    if (diff(mdet, 0) == 0) return false;
    double t2 = outer(a.dir, b.pos - a.pos) / mdet;
    ret = b.pos + b.dir * t2;
    return true;
}
bool get segment cross(const Line& a, const Line& b, Point& ret) {
    double mdet = outer(b.dir, a.dir);
    if (diff(mdet, 0) == 0) return false;
    double t1 = -outer(b.pos - a.pos, b.dir) / mdet;
    double t2 = outer(a.dir, b.pos - a.pos) / mdet;
    if (!is between(t1, 0, 1) | !is between(t2, 0, 1)) return false;
    ret = b.pos + b.dir * t2:
    return true;
}
Point inner_center(const Point &a, const Point &b, const Point &c) {
    double wa = dist(b, c), wb = dist(c, a), wc = dist(a, b);
    double w = wa + wb + wc;
```

```
return Point{ (wa * a.x + wb * b.x + wc * c.x) / w, (wa * a.y + wb * b.y +
                                                                                        Point ba = b - a, cb = c - b;
     wc * c.y) / w };
}
                                                                                        Circle circle;
Point outer_center(const Point &a, const Point &b, const Point &c) {
   Point d1 = b - a, d2 = c - a;
                                                                                            circle.r = -1;
    double area = outer(d1, d2);
                                                                                        else
    double dx = d1.x * d1.x * d2.y - d2.x * d2.x * d1.y
        + d1.y * d2.y * (d1.y - d2.y);
                                                                                        return circle;
    double dy = d1.y * d1.y * d2.x - d2.y * d2.y * d1.x
                                                                                    }
       + d1.x * d2.x * (d1.x - d2.y);
    return Point{ a.x + dx / area / 2.0, a.y - dy / area / 2.0 };
}
                                                                                        Circle circle;
vector<Point> circle_line(const Circle& circle, const Line& line) {
                                                                                        if (det < 0)
    vector<Point> result;
                                                                                            circle.r = -1;
    double a = 2 * inner(line.dir, line.dir);
                                                                                        else {
    double b = 2 * (line.dir.x * (line.pos.x - circle.center.x)
                                                                                            double h = sqrt(det);
        + line.dir.y * (line.pos.y - circle.center.y));
    double c = inner(line.pos - circle.center, line.pos - circle.center)
        - circle.r * circle.r;
                                                                                            circle.r = r;
    double det = b * b - 2 * a * c;
    int pred = diff(det, 0);
                                                                                        return circle;
   if (pred == 0)
                                                                                    }
        result.push back(line.pos + line.dir * (-b / a));
   else if (pred > 0) {
                                                                                    6.2 Compare angles
        det = sqrt(det);
        result.push back(line.pos + line.dir * ((-b + det) / a));
        result.push_back(line.pos + line.dir * ((-b - det) / a));
   }
    return result;
}
                                                                                    }
vector<Point> circle_circle(const Circle& a, const Circle& b) {
                                                                                    bool upper(pair<int, int> p) {
    vector<Point> result;
    int pred = diff(dist(a.center, b.center), a.r + b.r);
                                                                                    }
    if (pred > 0) return result;
   if (pred == 0) {
        result.push_back((a.center * b.r + b.center * a.r) * (1 / (a.r + b.r)));
        return result;
    double aa = a.center.x * a.center.x + a.center.y * a.center.y - a.r * a.r;
    double bb = b.center.x * b.center.x + b.center.y * b.center.y - b.r * b.r;
    double tmp = (bb - aa) / 2.0;
    Point cdiff = b.center - a.center;
                                                                                    });
   if (diff(cdiff.x, 0) == 0) {
        if (diff(cdiff.y, 0) == 0)
                                                                                    6.3 Convex Hull
            return result; // if (diff(a.r, b.r) == 0): same circle
        return circle_line(a, Line{ Point{ 0, tmp / cdiff.y }, Point{ 1, 0 } });
                                                                                    // find convex hull
   return circle line(a,
                                                                                    // O(n*Logn)
        Line{ Point{ tmp / cdiff.x, 0 }, Point{ -cdiff.y, cdiff.x } });
}
                                                                                        vector<Point> upper, lower;
Circle circle_from_3pts(const Point& a, const Point& b, const Point& c) {
                                                                                        sort(dat.begin(), dat.end(), [](const Point& a, const Point& b) {
```

```
Line p{ (a + b) * 0.5, Point{ ba.y, -ba.x } };
    Line q\{(b + c) * 0.5, Point\{cb.y, -cb.x\}\};
    if (!get_cross(p, q, circle.center))
        circle.r = dist(circle.center, a);
Circle circle from 2pts rad(const Point& a, const Point& b, double r) {
    double det = r * r / dist2(a, b) - 0.25;
        // center is to the left of a->b
        circle.center = (a + b) * 0.5 + Point{a.y - b.y, b.x - a.x} * h;
int ccw(pair<int, int> p1, pair<int, int> p2) {
    auto ret = p1.first * 1ll * p2.second - p2.first * 1ll * p1.second;
    return ret > 0 ? 1 : (ret < 0 ? -1 : 0);
    return tie(p.second, p.first) > tuple<int, int>();
// sorting criterion: [0 ~ 2 * pi)
sort(dat.begin(), dat.end(), [](pair<int, int> a, pair<int, int> b){
    if (upper(a) != upper(b)) return upper(a) > upper(b);
    if (ccw(a, b)) return ccw(a, b) > 0;
    // optional: closest to farthest
    return hypot(a.first, a.second) < hypot(b.first, b.second);</pre>
vector<Point> convex_hull(vector<Point>& dat) {
    if (dat.size() <= 3) return dat;</pre>
```

```
return (a.x == b.x) ? a.y < b.y : a.x < b.x;</pre>
   });
    for (const auto& p : dat) {
        while (upper.size() >= 2 && ccw(*++upper.rbegin(), *upper.rbegin(), p)
         >= 0) upper.pop_back();
        while (lower.size() >= 2 && ccw(*++lower.rbegin(), *lower.rbegin(), p)
          <= 0) lower.pop_back();
        upper.emplace_back(p);
        lower.emplace back(p);
    upper.insert(upper.end(), ++lower.rbegin(), --lower.rend());
    return upper;
}
     Rotating Calipers
// get all antipodal pairs
// O(n)
void antipodal pairs(vector<Point>& pt) {
   // calculate convex hull
    sort(pt.begin(), pt.end(), [](const Point& a, const Point& b) {
        return (a.x == b.x)? a.y < b.y: a.x < b.x;
   });
    vector<Point> up, lo;
    for (const auto& p : pt) {
        while (up.size() \geq 2 && ccw(*++up.rbegin(), *up.rbegin(), p) \geq 0) up.
          pop back();
        while (lo.size() >= 2 \& ccw(*++lo.rbegin(), *lo.rbegin(), p) <= 0) lo.
         pop_back();
        up.emplace_back(p);
       lo.emplace_back(p);
   }
   for (int i = 0, j = (int)lo.size() - 1; i + 1 < up.size() | | j > 0; ) {
        get_pair(up[i], lo[j]); // DO WHAT YOU WANT
       if (i + 1 == up.size()) --j;
        else if (j == 0) ++i;
        else if ((long long)(up[i + 1].y - up[i].y) * (lo[j].x - lo[j - 1].x)
            > (long long)(up[i + 1].x - up[i].x) * (lo[j].y - lo[j - 1].y)) ++i;
        else --j;
}
     Point in Polygon Test
typedef double coord t;
inline coord t is left(Point p0, Point p1, Point p2) {
    return (p1.x - p0.x) * (p2.y - p0.y) - (p2.x - p0.x) * (p1.y - p0.y);
}
// point in polygon test
// http://geomalgorithms.com/a03-_inclusion.html
```

```
bool is in polygon(Point p, vector<Point>& poly) {
    int wn = 0;
    for (int i = 0; i < poly.size(); ++i) {</pre>
        int ni = (i + 1 == poly.size()) ? 0 : i + 1;
        if (poly[i].y <= p.y) {</pre>
            if (poly[ni].y > p.y) {
                if (is_left(poly[i], poly[ni], p) > 0) {
            }
        }
        else {
            if (poly[ni].y <= p.y) {</pre>
                if (is_left(poly[i], poly[ni], p) < 0) {</pre>
                }
            }
    }
    return wn != 0;
}
    Polygon Cut
// Left side of a->b
vector<Point> cut_polygon(const vector<Point>& polygon, Line line) {
    if (!polygon.size()) return polygon;
    typedef vector<Point>::const_iterator piter;
    piter la, lan, fi, fip, i, j;
    la = lan = fi = fip = polygon.end();
    i = polygon.end() - 1;
    bool lastin = diff(ccw_line(line, polygon[polygon.size() - 1]), 0) > 0;
    for (j = polygon.begin(); j != polygon.end(); j++) {
        bool thisin = diff(ccw_line(line, *j), 0) > 0;
        if (lastin && !thisin) {
            la = i;
            lan = j;
        if (!lastin && thisin) {
            fi = j;
            fip = i;
        i = j;
        lastin = thisin;
    if (fi == polygon.end()) {
        if (!lastin) return vector<Point>();
        return polygon;
    vector<Point> result;
    for (i = fi ; i != lan ; i++) {
        if (i == polygon.end()) {
            i = polygon.begin();
            if (i == lan) break;
```

```
}
    result.push_back(*i);
}
Point lc, fc;
get_cross(Line{ *la, *lan - *la }, line, lc);
get_cross(Line{ *fip, *fi - *fip }, line, fc);
result.push_back(lc);
if (diff(dist2(lc, fc), 0) != 0) result.push_back(fc);
return result;
```

6.7 Pick's theorem

격자점으로 구성된 simple polygon이 주어짐. i는 polygon 내부의 격자점 수, b는 polygon 선분 위 격자점 수, A는 polygon의 넓이라고 할 때, 다음과 같은 식이 성립한다.

```
A = i + \frac{b}{2} - 1
```

}

7 String

7.1 KMP

```
typedef vector<int> seq_t;
void calculate_pi(vector<int>& pi, const seq_t& str) {
   pi[0] = -1;
   for (int i = 1, j = -1; i < str.size(); i++) {
        while (j >= 0 && str[i] != str[j + 1]) j = pi[j];
        if (str[i] == str[j + 1])
            pi[i] = ++j;
        else
            pi[i] = -1;
}
// returns all positions matched
// O(|text|+|pattern|)
vector<int> kmp(const seq_t& text, const seq_t& pattern) {
    vector<int> pi(pattern.size()), ans;
   if (pattern.size() == 0) return ans;
    calculate_pi(pi, pattern);
   for (int i = 0, j = -1; i < text.size(); i++) {
        while (j >= 0 && text[i] != pattern[j + 1]) j = pi[j];
        if (text[i] == pattern[j + 1]) {
            if (j + 1 == pattern.size()) {
                ans.push_back(i - j);
                j = pi[j];
        }
```

```
}
    return ans;
7.2 Z Algorithm
// Z[i] : maximum common prefix Length of &s[0] and &s[i]
// O(|s|)
using seq t = string;
vector<int> z_func(const seq_t &s) {
    vector<int> z(s.size());
    z[0] = s.size();
    int 1 = 0, r = 0;
    for (int i = 1; i < s.size(); i++) {
        if (i > r) {
           int j;
            for (j = 0; i + j < s.size() && s[i + j] == s[j]; j++);
            z[i] = j; l = i; r = i + j - 1;
        else\ if\ (z[i-1] < r-i+1) 
            z[i] = z[i - 1];
        } else {
            for (j = 1; r + j < s.size() && s[r + j] == s[r - i + j]; j++);
            z[i] = r - i + j; l = i; r += j - 1;
    }
    return z;
     Aho-Corasick
struct AhoCorasick
    const int alphabet;
    struct node {
        node() {}
        explicit node(int alphabet) : next(alphabet) {}
        vector<int> next, report;
        int back = 0, output_link = 0;
    };
    int maxid = 0;
    vector<node> dfa;
    explicit AhoCorasick(int alphabet) : alphabet(alphabet), dfa(1, node(
      alphabet)) { }
    template<typename InIt, typename Fn> void add(int id, InIt first, InIt last,
      Fn func) {
        int cur = 0;
        for ( ; first != last; ++first) {
            auto s = func(*first);
            if (auto next = dfa[cur].next[s]) cur = next;
            else {
```

```
cur = dfa[cur].next[s] = (int)dfa.size();
                dfa.emplace_back(alphabet);
            }
        dfa[cur].report.push_back(id);
        maxid = max(maxid, id);
    void build() {
        queue<int> q;
        vector<char> visit(dfa.size());
        visit[0] = 1;
        q.push(0);
        while(!q.empty()) {
            auto cur = q.front(); q.pop();
            dfa[cur].output_link = dfa[cur].back;
            if (dfa[dfa[cur].back].report.empty())
                dfa[cur].output link = dfa[dfa[cur].back].output link;
            for (int s = 0; s < alphabet; s++) {</pre>
                auto &next = dfa[cur].next[s];
                if (next == 0) next = dfa[dfa[cur].back].next[s];
                if (visit[next]) continue;
                if (cur) dfa[next].back = dfa[dfa[cur].back].next[s];
                visit[next] = 1;
                q.push(next);
            }
        }
    }
    template<typename InIt, typename Fn> vector<int> countMatch(InIt first, InIt
      last, Fn func) {
        int cur = 0;
        vector<int> ret(maxid+1);
        for (; first != last; ++first) {
            cur = dfa[cur].next[func(*first)];
            for (int p = cur; p; p = dfa[p].output_link)
                for (auto id : dfa[p].report) ret[id]++;
        return ret;
};
```

7.4 Suffix Array with LCP

```
typedef char T;

// calculates suffix array.

// O(n*logn)
vector<int> suffix_array(const vector<T>& in) {
    int n = (int)in.size(), c = 0;
    vector<int> temp(n), pos2bckt(n), bckt(n), bpos(n), out(n);
    for (int i = 0; i < n; i++) out[i] = i;
    sort(out.begin(), out.end(), [&](int a, int b) { return in[a] < in[b]; });
    for (int i = 0; i < n; i++) {
        bckt[i] = c;
        if (i + 1 == n || in[out[i]] != in[out[i + 1]]) c++;
}</pre>
```

```
for (int h = 1; h < n && c < n; h <<= 1) {
        for (int i = 0; i < n; i++) pos2bckt[out[i]] = bckt[i];</pre>
        for (int i = n - 1; i \ge 0; i--) bpos[bckt[i]] = i;
        for (int i = 0; i < n; i++)</pre>
            if (out[i] >= n - h) temp[bpos[bckt[i]]++] = out[i];
        for (int i = 0; i < n; i++)
            if (out[i] >= h) temp[bpos[pos2bckt[out[i] - h]]++] = out[i] - h;
        c = 0;
        for (int i = 0; i + 1 < n; i++) {
            int a = (bckt[i] != bckt[i + 1]) || (temp[i] >= n - h)
                     || (pos2bckt[temp[i + 1] + h] != pos2bckt[temp[i] + h]);
            bckt[i] = c;
            c += a;
        bckt[n - 1] = c++;
        temp.swap(out);
    return out;
}
// calculates lcp array. it needs suffix array & original sequence.
// O(n)
vector<int> lcp(const vector<T>& in, const vector<int>& sa) {
    int n = (int)in.size();
    if (n == 0) return vector<int>();
    vector<int> rank(n), height(n - 1);
    for (int i = 0; i < n; i++) rank[sa[i]] = i;
    for (int i = 0, h = 0; i < n; i++) {
        if (rank[i] == 0) continue;
        int j = sa[rank[i] - 1];
        while (i + h < n \&\& j + h < n \&\& in[i + h] == in[j + h]) h++;
        height[rank[i] - 1] = h;
        if (h > 0) h--;
    }
    return height;
}
```

7.5 Manacher's Algorithm

```
// find longest palindromic span for each element in str
// O(|str|)
void manacher(const string& str, int plen[]) {
   int r = -1, p = -1;
   for (int i = 0; i < str.length(); ++i) {
      if (i <= r)
            plen[i] = min((2 * p - i >= 0) ? plen[2 * p - i] : 0, r - i);
      else
            plen[i] = 0;
   while (i - plen[i] - 1 >= 0 && i + plen[i] + 1 < str.length()
            && str[i - plen[i] - 1] == str[i + plen[i] + 1]) {
            plen[i] += 1;
        }
      if (i + plen[i] > r) {
```

```
r = i + plen[i];
p = i;
}
}
```

8 Miscellaneous

8.1 Fast I/O

```
namespace fio {
    const int BSIZE = 524288;
    char buffer[BSIZE];
    int p = BSIZE;
   inline char readChar() {
        if(p == BSIZE) {
            fread(buffer, 1, BSIZE, stdin);
            p = 0;
        return buffer[p++];
    int readInt() {
        char c = readChar();
        while ((c < '0' | c > '9') \& c != '-') {
            c = readChar();
        int ret = 0; bool neg = c == '-';
        if (neg) c = readChar();
        while (c >= '0' && c <= '9') {
            ret = ret * 10 + c - '0';
            c = readChar();
        return neg ? -ret : ret;
}
```

8.2 Magic Numbers

소수: 10 007, 10 009, 10 111, 31 567, 70 001, 1 000 003, 1 000 033, 4 000 037, 99 999 989, 999 999 937, 1 000 000 007, 1 000 000 009, 9 999 999 967, 99 999 999 977

8.3 Java Examples

```
import java.util.Scanner;

class example
{
    final static int BSIZE = 524288;
    static byte[] buffer = new byte[BSIZE];
```

```
static int p = BSIZE;
static byte readByte()
    if (p==BSIZE) {
        try {
            System.in.read(buffer); p=0;
        } catch (Exception e) {
            return 'u';
    return buffer[p++];
public static void main(String[] args)
    Scanner in = new Scanner(System.in);
    int T = in.nextInt();
    while (T --> 0) {
        String str = in.next();
        if (str.matches("[A-F]?A+F+C+[A-F]?"))
            System.out.println("Infected!");
        else
            System.out.println("Good");
}
```

8.4 체계적인 접근을 위한 질문들

"알고리즘 문제 해결 전략"에서 발췌함

- 비슷한 문제를 풀어본 적이 있던가?
- 단순한 방법에서 시작할 수 있을까? (brute force)
- 내가 문제를 푸는 과정을 수식화할 수 있을까? (예제를 직접 해결해보면서)
- 문제를 단순화할 수 없을까?
- 그림으로 그려볼 수 있을까?
- 수식으로 표현할 수 있을까?
- 문제를 분해할 수 있을까?
- 뒤에서부터 생각해서 문제를 풀 수 있을까?
- 순서를 강제할 수 있을까?
- 특정 형태의 답만을 고려할 수 있을까? (정규화)

}