water fluoridation ~ caries 12 years_1990_2003_2012_2019

Namhuynh

Preapre data from sav file

```
## re-encoding from latin1
data 12a <- data 12[-c(1,15,20,22,23,24)]
colnames(data 12a)[c(3,13,14,15,16,17,18)] <- c("fluoride condition", "caries", "fluorosis teeth", "DEANincolnames(data 12a)[c(5:12)] <- c("DT", "MT", "FT", "DMFT", "DS", "MS", "FS", "DMFS")
data 12a$code <- as.character(data 12a$code)
data 12a$year <- as.factor(data 12a$year)
firstup <- function(x) {</pre>
   x <- tolower(x)
   substr(x, 1, 1) \leftarrow toupper(substr(x, 1, 1))
data 12a$DEANindex <- firstup(data 12a$DEANindex)

#data 12a$DEANindex[is.na(data 12a$DEANindex)] <- c("Normal")

data 12a$DEANindex <- recode factor(data 12a$DEANindex, "Normal" = "Normal", "Questinable" = "Questiona"

"Moderate" = "Moderate", "Serve" = "Severe")
#data 12a$fluoride condition[is.na(data 12a$fluoride condition)] <- c("khong fluor hoa")

data 12a$fluoride condition <- recode factor(data 12a$fluoride condition, `khong fluor hoa` = "none fluor hoa khong on dinh` = "unstable fluoridation",
                                                               `Fluor hoa on dinh` = "stable fluoridation")
data 12a$gender <- recode factor(data 12a$gender, `NAM` = "male", `NU` = "female")
data 12a$age <- c("12")
data 12a$age <- as.factor(data 12a$age)
# There were F+ i\underline{n} 1990
data 12a$fluoride concentration <- as.factor(ifelse(data 12a$year == 2012 & data 12a$area == "F+", "0. ifelse(data 12a$year == 2003 & data 12a$area == "F
```

```
# 2019
data_2019 <- read.spss ("~/Library/Mobile Documents/com~apple~CloudDocs/Nam/New project/20 years of wat
## Warning in read.spss("~/Library/Mobile Documents/com~apple~CloudDocs/Nam/New
## project/20 years of water fluoridation/Data/DATA2019/DATATPHCM1215tuoi2019-
## Phantich-WFProject.sav", : ~/Library/Mobile Documents/com~apple~CloudDocs/Nam/
## New project/20 years of water fluoridation/Data/DATA2019/DATATPHCM1215tuoi2019-
## Phantich-WFProject.sav: Long string value labels record found (record type 7,
## subtype 21), but ignored
## re-encoding from latin1
data_2019 \leftarrow data_2019[-c(1,3,6)]
colnames(data_2019)[c(4,5,9,10)] <- c("DEANindex","fluorosis_teeth","DMFT","caries")</pre>
data_2019$DEANindex <- firstup(data_2019$DEANindex)</pre>
data_2019$DEANindex <- recode_factor(data_2019$DEANindex, "Normal" = "Normal", "Questionnable" = "Quest
                                    "Moderate" = "Moderate", "Serve" = "Severe")
data_2019$district <- NA
data_2019$fluoride_condition <- NA
data_2019$year <- 2019
data_2019$year <- as.factor(data_2019$year)</pre>
data_2019$fluorosis <- as.factor(ifelse(data_2019$DEANindex == "Normal", "FALSE", "TRUE"))%>%as.logical()
data_2019$fluoride_concentration <- as.factor(ifelse(data_2019$area == "F+", "0.5_ppm","0_ppm"))
data_2019 \leftarrow data_2019[c(1,16,17,2,6:9,11:14,10,5,4,18,15,19,3,20)]
data_2019$age <- recode_factor(data_2019$age, "12 year-old" = 12, "15 year-old" = 15)
data_2019$gender <- recode_factor(data_2019$gender, "NAM
                                                              " = "male","Nam
                                                                                       "="male",
                                              " = "female","2
                                                                       "="female")
                                   "NU
data_2019$caries <- recode_factor(data_2019$caries,</pre>
                      `Yes`="TRUE", No`="FALSE")%>%as.logical()
data_2019$fluorosis_teeth <- ifelse(data_2019$DEANindex == "Normal",0,data_2019$fluorosis_teeth)
# 12 year old, 2019
data_12_2019 <- subset(data_2019, data_2019$age == "12")
# merge data
data <- rbind(data_12a, data_12_2019)</pre>
write.table(data, "~/Library/Mobile Documents/com~apple~CloudDocs/Nam/New project/20 years of water fluo
```

bar_missing

```
bar_missing <- function(x){
  require(reshape2)
  x %>%
    is.na %>%
    melt %>%
    ggplot(data = .,
        aes(x = Var2)) +
    geom_bar(aes(y=(..count..),fill=value),alpha=0.7)+
```

```
## Loading required package: reshape2
##
## Attaching package: 'reshape2'
## The following object is masked from 'package:tidyr':
##
## smiths
```


Prepare data w/o NA or unnecessary variables

```
\label{eq:cont_percent} $$\operatorname{c-list}()$ for $(i$ in $1:ncol(data\_b))$ {$\operatorname{percent}[[i]]$ $<-$ tabyl(data\_b[[i]], sort $=$ F)$ print(i) print(percent[[i]]) $$}
```

```
library(janitor)
```

```
##
## Attaching package: 'janitor'

## The following objects are masked from 'package:stats':
##
## chisq.test, fisher.test

data_b <- data[-c(1:3,14:15,18)]
bar_missing(data_b)</pre>
```


Fluoride condition

k

```
#FS, FT, MS, MT are too low -> remove
#area is the same with fluoride_concentration -> remove
#remove age
data_b1 \leftarrow data_b[-c(3,4,7,8,12,13)]
#transformation
data_b2 <- data_b1</pre>
data_b2[,c(2:5)] \leftarrow log10(data_b1[,c(2:5)]+1)
scaled_data_b <- data_b2 %>%as.data.frame()
scaled_data_b[,c(2:5)] <- scale(scaled_data_b[,c(2:5)])</pre>
#remove the diagnosis variables
X_mat <- scaled_data_b %>% select(-c("caries"))
Es <- numeric(10)
for(i in 1:10){
  kpres <- kproto(X_mat,</pre>
                   k = i, nstart = 5,
                   lambda = lambdaest(X_mat),
                   verbose = FALSE)
  Es[i] <- kpres$tot.withinss}</pre>
```

```
## Numeric variances:
## DT DMFT DS DMFS
```

```
1 1 1 1
## Average numeric variance: 1
## Heuristic for categorical variables: (method = 1)
                  gender
##
                                            year fluoride_concentration
##
               0.4987253
                                      0.6857270
                                                            0.6418736
## Average categorical variation: 0.6087753
##
## Estimated lambda: 1.642642
##
## Numeric variances:
   DT DMFT DS DMFS
##
          1
              1
## Average numeric variance: 1
## Heuristic for categorical variables: (method = 1)
##
                  gender
                                           year fluoride_concentration
                0.4987253
##
                                       0.6857270
                                                            0.6418736
## Average categorical variation: 0.6087753
## Estimated lambda: 1.642642
##
## Numeric variances:
    DT DMFT DS DMFS
     1
              1
##
          1
## Average numeric variance: 1
## Heuristic for categorical variables: (method = 1)
                  gender
##
                                           year fluoride_concentration
                0.4987253
                                      0.6857270
                                                              0.6418736
## Average categorical variation: 0.6087753
## Estimated lambda: 1.642642
##
## Numeric variances:
   DT DMFT DS DMFS
     1
          1
               1
## Average numeric variance: 1
## Heuristic for categorical variables: (method = 1)
##
                                           year fluoride_concentration
                   gender
##
               0.4987253
                                      0.6857270
                                                              0.6418736
## Average categorical variation: 0.6087753
##
## Estimated lambda: 1.642642
##
## Numeric variances:
    DT DMFT DS DMFS
          1
               1
## Average numeric variance: 1
## Heuristic for categorical variables: (method = 1)
##
                  gender
                                            year fluoride_concentration
               0.4987253
                                      0.6857270
##
                                                              0.6418736
```

```
## Average categorical variation: 0.6087753
##
## Estimated lambda: 1.642642
##
## Numeric variances:
##
   DT DMFT DS DMFS
          1
              1
## Average numeric variance: 1
##
## Heuristic for categorical variables: (method = 1)
                   gender
                                           year fluoride_concentration
                0.4987253
##
                                       0.6857270
                                                              0.6418736
## Average categorical variation: 0.6087753
##
## Estimated lambda: 1.642642
##
## Numeric variances:
    DT DMFT DS DMFS
##
          1
               1
## Average numeric variance: 1
## Heuristic for categorical variables: (method = 1)
##
                   gender
                                            year fluoride_concentration
                0.4987253
                                       0.6857270
##
## Average categorical variation: 0.6087753
## Estimated lambda: 1.642642
## Numeric variances:
    DT DMFT DS DMFS
##
      1
         1
              1 1
## Average numeric variance: 1
## Heuristic for categorical variables: (method = 1)
##
                   gender
                                            year fluoride_concentration
##
                0.4987253
                                       0.6857270
                                                            0.6418736
## Average categorical variation: 0.6087753
##
## Estimated lambda: 1.642642
##
## Numeric variances:
##
    DT DMFT DS DMFS
          1
               1
## Average numeric variance: 1
## Heuristic for categorical variables: (method = 1)
##
                   gender
                                            year fluoride_concentration
##
                0.4987253
                                       0.6857270
                                                              0.6418736
## Average categorical variation: 0.6087753
## Estimated lambda: 1.642642
##
## Numeric variances:
## DT DMFT DS DMFS
```

```
1 1 1 1
## Average numeric variance: 1
## Heuristic for categorical variables: (method = 1)
##
                   gender
                                            year fluoride_concentration
##
                0.4987253
                                       0.6857270
                                                             0.6418736
## Average categorical variation: 0.6087753
##
## Estimated lambda: 1.642642
tibble(Cluster = c(1:10), Es = Es) %>%
  ggplot(aes(x = Cluster, y = Es)) +
  geom_point(size = 3,
             col = "red3") +
  geom_path() +
  geom_vline(xintercept = 3,
             linetype = 2)+
  scale_x_continuous(breaks = c(1:10))
```


Clustering

```
## Numeric variances:
   DT DMFT DS DMFS
##
##
          1
              1
## Average numeric variance: 1
## Heuristic for categorical variables: (method = 1)
                   gender
                                            year fluoride_concentration
                0.4987253
##
                                       0.6857270
                                                             0.6418736
## Average categorical variation: 0.6087753
##
## Estimated lambda: 1.642642
saveRDS(k_opt1,"~/Library/Mobile Documents/com~apple~CloudDocs/Nam/New project/20 years of water fluoric
k_opt1 <- readRDS("~/Library/Mobile Documents/com~apple~CloudDocs/Nam/New project/20 years of water flu
tibble(Cluster = c(2:5),
       Metric = as.vector(k_opt1$indices)) %>%
  ggplot(aes(x = Cluster,
            y = Metric)) +
  geom_point(size = 3,
             col = "red3") +
  geom_path() +
  geom_vline(xintercept = 3,
             linetype = 2)+
  scale_x_continuous(breaks = c(2:5))
```



```
kpres \leftarrow kproto(x = X_mat,
                 k = 3,
                 lambda = lambdaest(X_mat), nstart = 5)
## Numeric variances:
     DT DMFT DS DMFS
##
##
          1
               1 1
## Average numeric variance: 1
## Heuristic for categorical variables: (method = 1)
##
                   gender
                                             year fluoride_concentration
                0.4987253
                                        0.6857270
                                                               0.6418736
##
## Average categorical variation: 0.6087753
##
## Estimated lambda: 1.642642
##
## # NAs in variables:
##
                   gender
                                               DT
                                                                     DMFT
##
                        0
                                                0
                                                                        0
                       DS
                                             DMFS
                                                                     year
##
##
                        0
                                                0
                                                                        0
## fluoride_concentration
##
## 0 observation(s) with NAs.
##
```

```
## # NAs in variables:
                   gender
                                               DТ
                                                                     DMFT
##
##
                        0
                                                0
                                                                        0
##
                       DS
                                             DMFS
                                                                     year
                        0
                                                0
                                                                        0
## fluoride_concentration
## 0 observation(s) with NAs.
##
## # NAs in variables:
                   gender
                                               DT
                                                                     DMFT
##
                        0
                                                0
                                                                        0
##
                       DS
                                             DMFS
                                                                     year
##
                        0
                                                0
                                                                        0
## fluoride_concentration
##
                        0
## 0 observation(s) with NAs.
##
## # NAs in variables:
                   gender
##
                                               DT
                                                                     DMFT
##
                        Λ
                                                0
                                                                        0
##
                       DS
                                             DMFS
                                                                     year
##
                                                0
                                                                        0
                        0
## fluoride concentration
##
## 0 observation(s) with NAs.
##
## # NAs in variables:
##
                   gender
                                               DT
                                                                     DMFT
##
                        0
                                                0
                                                                        0
##
                                             DMFS
                       DS
                                                                     year
##
                        0
                                                0
                                                                        0
## fluoride_concentration
## 0 observation(s) with NAs.
kpres
## Numeric predictors: 4
## Categorical predictors: 3
## Lambda: 1.642642
##
## Number of Clusters: 3
## Cluster sizes: 1764 1244 1765
## Within cluster error: 3594.863 2781.844 6718.473
##
## Cluster prototypes:
   gender DT
##
                             DMFT
                                                   DMFS year fluoride_concentration
                                           DS
## 1 male -0.6657260 -0.6294098 -0.6577884 -0.622106 2012
                                                                             0.5_ppm
## 2 female -0.6748476 -0.6918046 -0.6713487 -0.687082 2003
                                                                             0.7_ppm
```

0_ppm

3 female 1.1409921 1.1166481 1.1305929 1.106020 2012

summary(kpres)

```
## gender
##
## cluster male female
      1 0.620 0.380
##
       2 0.356 0.644
##
##
      3 0.414 0.586
## DT
##
       Min. 1st Qu. Median
                                  Mean
                                          3rd Qu.
## 1 -0.8470149 -0.8470149 -0.8470149 -0.6657260 -0.8470149 1.1774777
## 2 -0.8470149 -0.8470149 -0.8470149 -0.6748476 -0.8470149 0.7573575
## 3 -0.8470149 0.7573575 1.1774777 1.1409921 1.5033482 3.2905042
## DMFT
##
       Min. 1st Qu. Median Mean 3rd Qu.
## 1 -0.9298146 -0.9298146 -0.9298146 -0.6294098 0.04668298 1.594395
## 2 -0.9298146 -0.9298146 -0.9298146 -0.6918046 -0.92981460 1.337543
## 3 -0.9298146 0.6178974 1.0231806 1.1166481 1.33754256 3.061583
##
## DS
             1st Qu. Median Mean 3rd Qu.
       Min.
## 1 -0.826115 -0.8261150 -0.8261150 -0.6577884 -0.826115 1.4291039
## 2 -0.826115 -0.8261150 -0.8261150 -0.6713487 -0.826115 0.9187606
## DMFS
        Min. 1st Qu. Median Mean 3rd Qu.
## 1 -0.90239862 -0.9023986 -0.9023986 -0.622106 -0.07058007 1.432811
## 2 -0.90239862 -0.9023986 -0.9023986 -0.687082 -0.90239862 2.424876
## 3 -0.07058007 0.7612385 1.0290242 1.106020 1.43281129 3.329447
## -----
## year
##
## cluster 1990 2003 2012 2019
## 1 0.049 0.011 0.782 0.158
      2 0.056 0.760 0.047 0.137
##
      3 0.239 0.224 0.380 0.156
## -----
## fluoride_concentration
## cluster 0_ppm 0.5_ppm 0.7_ppm
## 1 0.154 0.846 0.000
##
      2 0.264 0.092 0.645
      3 0.642 0.244 0.114
##
##
```

saveRDS(kpres,"~/Library/Mobile Documents/com~apple~CloudDocs/Nam/New project/20 years of water fluorid
kpres <- readRDS("~/Library/Mobile Documents/com~apple~CloudDocs/Nam/New project/20 years of water fluorid</pre>

Plot


```
ggplot(aes(x = Cluster, y=log10(Value+1), fill = Cluster))+
geom_boxplot(alpha=0.5,col="black")+
facet_wrap(~Parameter,ncol=2,scales = "free")+
coord_flip()+
scale_fill_manual(values = brewer.pal(n = 4, name = "Set2"))+ theme_classic()
```


Plot

they will be dropped

#grid.col = c(1 = "#f7286d", 2 = "#1faae0", TRUE = "#2968c2", FALSE = "#97c425",)

library(circlize)

```
## ===============
## circlize version 0.4.13
## CRAN page: https://cran.r-project.org/package=circlize
## Github page: https://github.com/jokergoo/circlize
## Documentation: https://jokergoo.github.io/circlize_book/book/
## If you use it in published research, please cite:
## Gu, Z. circlize implements and enhances circular visualization
    in R. Bioinformatics 2014.
##
## This message can be suppressed by:
    suppressPackageStartupMessages(library(circlize))
#caries, fluoride_concentration
xtb_y <- valid_df %>%
   mutate(Id=rownames(valid_df))%>%
   gather(caries,
          key="Pathology",
          value="Diagnosis")%>%
 group_by(fluoride_concentration,Diagnosis,Pathology)%>%
 summarise(frequency = n())
```

'summarise()' has grouped output by 'fluoride_concentration', 'Diagnosis'. You can override using th

'summarise()' has grouped output by 'Cluster', 'Diagnosis'. You can override using the '.groups' arg

'summarise()' has grouped output by 'Cluster', 'Dose'. You can override using the '.groups' argument

```
xtb_y <- xtb_y%>%.[,c(1,2,4)]
chordDiagram(as.data.frame(xtb_y),
```

```
# transparency = 0.4,
grid.col = grid.col,
column.col ="black")
```



```
library(ggalluvial)
library(pals)
#
xtb_y2 <- valid_df %>%
    dplyr::group_by(caries, fluoride_concentration)%>%
    summarise(frequency = n())
```

'summarise()' has grouped output by 'caries'. You can override using the '.groups' argument.

```
labels = c("Fluoride concentration", "Caries")) +
scale_fill_gradientn(colours = pals::parula(n=500))+
theme_bw()+theme(legend.position="bottom") +
ggtitle("Fluoride concentration by caries diagnosis")
```

```
## Warning: The parameter 'infer.label' is deprecated.
## Use 'aes(label = after_stat(stratum))'.
```

Fluoride concentration by caries diagnosis


```
labels = c("Fluoride concentration", "Caries")) +
scale_fill_gradientn(colours = pals::parula(n=500))+
theme_bw()+theme(legend.position="bottom") +
ggtitle("% Fluoride concentration by caries diagnosis")
```

```
## Warning: The parameter 'infer.label' is deprecated.
## Use 'aes(label = after_stat(stratum))'.
```

% Fluoride concentration by caries diagnosis


```
#
xtb_y3 <- valid_df %>%
dplyr::group_by(caries, fluoride_concentration, Cluster)%>%
summarise(frequency = n())
```

'summarise()' has grouped output by 'caries', 'fluoride_concentration'. You can override using the '

```
## Warning: The parameter 'infer.label' is deprecated.
## Use 'aes(label = after_stat(stratum))'.
```

Clusters by fluoride concentration and caries diagnosis


```
## Warning: The parameter 'infer.label' is deprecated.
## Use 'aes(label = after_stat(stratum))'.
```

% Clusters by fluoride concentration and caries diagnosis

