

Option « Programmation en Python »

numpy: librairie pour le calcul scientifique

- ► Le module numpy est l'outil de base utilisé dans tous calculs scientifiques et donc numériques en Python
- numpy fournit en particulier des objets de type vecteurs, matrices et plus généralement tableaux à n dimensions
- ► numpy facilite et optimise[†] les opérations de stockage et de manipulation des données numériques notamment lorsque la taille des tableaux devient importante → array oriented computing

Installation & importation de numpy

► Installation *via* pip

>_ pip install numpy

► Convention d'importation

In [1]: import numpy as np

Installation & importation de numpy

► Installation *via* pip

```
>_ pip install numpy
```

► Convention d'importation

```
In [1]: import numpy as np
```

Documentation numpy

- ▶ Documentation de référence du module http://docs.scipy.org/
- ► Aide interactive

```
In [1]: np.array?
    1 Docstring:
    2 array(object, dtype=None, copy=True, order=None, subok=False, ndmin=0)
3
    4 Create an array.
5 ...
```

Documentation numpy

- ▶ Documentation de référence du module http://docs.scipy.org/
- ► Aide interactive

```
In [1]: np.array?
1 Docstring:
2 array(object, dtype=None, copy=True, order=None, subok=False, ndmin=0)
3
4 Create an array.
5 ...
```

```
In [2]: np.lookfor("create array")
   1 Search results for 'create array'
   2 ------
   3 numpy.array
   4    Create an array.
   5 numpy.memmap
   6    Create a memory-map to an array stored in a *binary* file on disk.
```

Création de vecteurs, matrices

- ▶ À partir d'une liste de valeurs
 - Vecteur

```
In [2]: v = np.array([0, 1, 2, 3])
In [3]: v
Out[3]: array([0, 1, 2, 3])
```

► Matrice 2×2

```
In [6]: type(v), type(M)
Out[6]: (numpy.ndarray, numpy.ndarray)

In [7]: v.ndim, M.ndim
Out[7]: (1, 2)

In [8]: v.shape, M.shape
Out[8]: ((4,), (2, 2))
```

Création de vecteurs, matrices

- ▶ À partir d'une liste de valeurs
 - Vecteur

```
In [2]: v = np.array([0, 1, 2, 3])
In [3]: v
Out[3]: array([0, 1, 2, 3])
```

► Matrice 2×2

```
In [6]: type(v), type(M)
Out[6]: (numpy.ndarray, numpy.ndarray)
In [7]: v.ndim, M.ndim
Out[7]: (1, 2)
In [8]: v.shape, M.shape
Out[8]: ((4,), (2, 2))
```

Création de vecteurs, matrices

▶ À partir d'une liste de valeurs

Vecteur

```
In [2]: v = np.array([0, 1, 2, 3])
In [3]: v
Out[3]: array([0, 1, 2, 3])
```

► Matrice 2×2

```
In [6]: type(v), type(M)
Out[6]: (numpy.ndarray, numpy.ndarray)
In [7]: v.ndim, M.ndim
Out[7]: (1, 2)
In [8]: v.shape, M.shape
Out[8]: ((4,), (2, 2))
```

- ► Les objets de type numpy.ndarray ≡ à une liste Python (ou liste de listes)
- ▶ Pourquoi ne pas simplement utiliser les listes Python pour les calculs au lieu de créer un nouveau type de tableau ?

- ► Les listes Python sont très générales (on parle également d'objet de haut niveau). Elles peuvent contenir n'importe quel objet → typage dynamique. Elles ne supportent pas les opérations mathématiques.
- ▶ Les tableaux ou *array* de numpy sont **statiquement typées et homogènes**[†]
 - ▶ Le type des éléments est déterminé lorsque le tableau est créé → plus de typage dynamique
 - ▶ De même la taille du tableau est fixée à la création → stockage en mémoire optimisée
- ► En raison du typage statique, les fonctions mathématiques telles que la multiplication et l'addition de matrices peuvent être mises en œuvre via un langage compilé (C et Fortran)

- ▶ Les listes Python sont très générales (on parle également d'objet de haut niveau). **Elles peuvent contenir n'importe quel objet** → **typage dynamique**. Elles ne supportent pas les opérations mathématiques.
- ► Les tableaux ou *array* de numpy sont **statiquement typées et homogènes**[†]
 - ▶ Le type des éléments est déterminé lorsque le tableau est créé → plus de typage dynamique
 - ▶ De même la taille du tableau est fixée à la création → stockage en mémoire optimisée
- ▶ En raison du typage statique, les fonctions mathématiques telles que la multiplication et l'addition de matrices peuvent être mises en œuvre via un langage compilé (C et Fortran)

- ▶ Les listes Python sont très générales (on parle également d'objet de haut niveau). Elles peuvent contenir n'importe quel objet → typage dynamique. Elles ne supportent pas les opérations mathématiques.
- ► Les tableaux ou *array* de numpy sont **statiquement typées et homogènes**[†]
 - ▶ Le type des éléments est déterminé lorsque le tableau est créé → plus de typage dynamique
 - ▶ De même la taille du tableau est fixée à la création → stockage en mémoire optimisée
- ► En raison du typage statique, les fonctions mathématiques telles que la multiplication et l'addition de matrices peuvent être mises en œuvre *via* un langage compilé (C et Fortran)

- Les listes Python sont très générales (on parle également d'objet de haut niveau). Elles peuvent contenir n'importe quel objet → typage dynamique. Elles ne supportent pas les opérations mathématiques.
- ► Les tableaux ou *array* de numpy sont **statiquement typées et homogènes**[†]
 - ▶ Le type des éléments est déterminé lorsque le tableau est créé → plus de typage dynamique
 - ▶ De même la taille du tableau est fixée à la création → stockage en mémoire optimisée
- ► En raison du typage statique, les fonctions mathématiques telles que la multiplication et l'addition de matrices peuvent être mises en œuvre *via* un langage compilé (C et Fortran)

- ▶ Les listes Python sont très générales (on parle également d'objet de haut niveau). Elles peuvent contenir n'importe quel objet → typage dynamique. Elles ne supportent pas les opérations mathématiques.
- ► Les tableaux ou *array* de numpy sont **statiquement typées et homogènes**[†]
 - ▶ Le type des éléments est déterminé lorsque le tableau est créé → plus de typage dynamique
 - ▶ De même la taille du tableau est fixée à la création → stockage en mémoire optimisée
- ► En raison du typage statique, les fonctions mathématiques telles que la multiplication et l'addition de matrices peuvent être mises en œuvre *via* un langage compilé (C et Fortran)

▶ Démonstration

```
In [1]: %timeit [i**2 for i in range(1000)]
1000 loops, best of 3: 403 us per loop
```

```
In [3]: a = np.arange(1000)
In [4]: %timeit a**2
100000 loops, best of 3: 12.7 us per loop
```

▶ Démonstration

```
In [1]: %timeit [i**2 for i in range(1000)]
1000 loops, best of 3: 403 us per loop
```

```
In [3]: a = np.arange(1000)
In [4]: %timeit a**2
100000 loops, best of 3: 12.7 us per loop
```

- ▶ Le type de données numériques est défini à la création du tableau
- ▶ Vecteur d'entiers

```
In [1]: v = np.array([0, 1, 2, 3])
In [2]: v
Out[2]: array([0, 1, 2, 3])
In [3]: v.dtype
Out[3]: dtype('int64')
```

► Vecteur de nombres flottants

```
In [1]: v = np.array([0., 1., 2., 3.])
In [2]: v.dtype
Out[2]: dtype('float64')
```

```
In [1]: v = np.array([0, 1, 2, 3], dtype=np.float)
In [2]: v.dtype
Out[2]: dtype('float64')
```

- ▶ Le type de données numériques est défini à la création du tableau
- ► Vecteur d'entiers

```
In [1]: v = np.array([0, 1, 2, 3])
In [2]: v
Out[2]: array([0, 1, 2, 3])
In [3]: v.dtype
Out[3]: dtype('int64')
```

▶ Vecteur de nombres flottants

```
In [1]: v = np.array([0., 1., 2., 3.])
In [2]: v.dtype
Out[2]: dtype('float64')
```

```
In [1]: v = np.array([0, 1, 2, 3], dtype=np.float)
In [2]: v.dtype
Out[2]: dtype('float64')
```

- ▶ Le type de données numériques est défini à la création du tableau
- ► Vecteur d'entiers

```
In [1]: v = np.array([0, 1, 2, 3])
In [2]: v
Out[2]: array([0, 1, 2, 3])
In [3]: v.dtype
Out[3]: dtype('int64')
```

▶ Vecteur de nombres flottants

```
In [1]: v = np.array([0., 1., 2., 3.])
In [2]: v.dtype
Out[2]: dtype('float64')
```

```
In [1]: v = np.array([0, 1, 2, 3], dtype=np.float)
In [2]: v.dtype
Out[2]: dtype('float64')
```

- ▶ Le type de données numériques est défini à la création du tableau
- ► Vecteur d'entiers

```
In [1]: v = np.array([0, 1, 2, 3])
In [2]: v
Out[2]: array([0, 1, 2, 3])
In [3]: v.dtype
Out[3]: dtype('int64')
```

Vecteur de nombres flottants

```
In [1]: v = np.array([0., 1., 2., 3.])
In [2]: v.dtype
Out[2]: dtype('float64')
```

```
In [1]: v = np.array([0, 1, 2, 3], dtype=np.float)
In [2]: v.dtype
Out[2]: dtype('float64')
```

Dans la pratique, les valeurs d'un tableau sont rarement saisies une par une

► Fonction arange ≡ range

```
In [1]: np.arange(10)
Out[1]: array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])
In [2]: np.arange(0, 10, step=2)
Out[2]: array([0, 2, 4, 6, 8])
```

► Fonctions linspace/logspace

```
In [1]: np.linspace(0, 10, num=5)
Out[1: array([ 0. , 2.5, 5. , 7.5, 10. ])
In [2]: np.logspace(0, 10, num=5)
Out[2]:
array([ 1.00000000e+00, 3.16227766e+02, 1.00000000e+05, 3.16227766e+07, 1.00000000e+10])
```

Dans la pratique, les valeurs d'un tableau sont rarement saisies une par une

► Fonction arange ≡ range

```
In [1]: np.arange(10)
Out[1]: array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])
In [2]: np.arange(0, 10, step=2)
Out[2]: array([0, 2, 4, 6, 8])
```

► Fonctions linspace/logspace

```
In [1]: np.linspace(0, 10, num=5)
Out[1: array([ 0. , 2.5, 5. , 7.5, 10. ])
In [2]: np.logspace(0, 10, num=5)
Out[2]:
array([ 1.00000000e+00, 3.16227766e+02, 1.00000000e+05, 3.16227766e+07, 1.00000000e+10])
```

▶ Vecteurs, matrices avec valeurs par défaut

```
In [1]: np.zeros(10)
Out[1]: array([0, 0, 0, 0, 0, 0, 0, 0, 0])
In [2]: np.ones(shape=(3,3))
Out[2]:
array([[ 1., 1., 1.],
      [ 1., 1., 1.],
      [ 1., 1., 1.]])
In [3]: np.full((3,3), 666, dtype=np.int)
Out[3]:
arrav([[666, 666, 666],
      [666, 666, 666].
       Γ666, 666, 66611)
In [4]: np.eve((3,3))
Out[4]:
array([[ 1., 0., 0.],
      [ 0., 1., 0.],
    [ 0., 0., 1.]])
```

► Générateurs aléatoires rand/randint/randn

```
In [1]: np.random.rand(3)
Out[1]: array([ 0.21401051,  0.19514481,  0.92647823])
In [2]: np.random.randint(0, 10, 3)
Out[2]: array([8, 8, 3])
In [3]: np.random.randn(3)
Out[3]: array([-0.4829445 , -1.05459848, -1.30539831])
```

Un générateur aléatoire n'est par définition pas aléatoire dans un machine déterministe qu'est un ordinateur!

In [1]: np.random.seed(1234)

► Générateurs aléatoires rand/randint/randn

⚠ Un générateur aléatoire n'est par définition pas aléatoire dans une machine déterministe qu'est un ordinateur !

In [1]: np.random.seed(1234)

Création de tableau : intermède graphique

▶ L'utilisation de l'opérateur [] est similaire à celle des listes

```
In [1]: x = np.random.randint(10, size=5)
In [2]: x
Out[2]: array([8, 0, 1, 6, 0])
In [3]: x[0], x[3], x[-1]
Out[3]: (8, 6, 0)
```

▶ Pour les tableaux à *n* dimensions

▶ L'utilisation de l'opérateur [] est similaire à celle des listes

```
In [1]: x = np.random.randint(10, size=5)
In [2]: x
Out[2]: array([8, 0, 1, 6, 0])
In [3]: x[0], x[3], x[-1]
Out[3]: (8, 6, 0)
```

▶ Pour les tableaux à *n* dimensions

► Comme pour les listes qui sont des objets *mutables*, il est possible d'assigner une valeur en spécifiant l'indice

► Comme pour les listes qui sont des objets *mutables*, il est possible d'assigner une valeur en spécifiant l'indice

► Comme pour les listes, il est possible d'utiliser la syntaxe [start:stop:step] pour sélectionner un sous espace vectoriel

► Sélection d'une ligne

```
In [2]: x[0]
Out[2]: array([[3, 3, 6, 4])
```

► Sélection d'une colonne

```
In [2]: x[:, 0], x[:, 1]
Out[2]: (array([3, 9, 0]), array([3, 8, 5]))
```

► Comme pour les listes, il est possible d'utiliser la syntaxe [start:stop:step] pour sélectionner un sous espace vectoriel

► Sélection d'une ligne

```
In [2]: x[0]
Out[2]: array([[3, 3, 6, 4])
```

► Sélection d'une colonne

```
In [2]: x[:, 0], x[:, 1]
Out[2]: (array([3, 9, 0]), array([3, 8, 5]))
```

- À la différence des listes, les sous espaces vectoriels sélectionnés ne sont pas des copies mais une vue réduite de la matrice globale
- ➤ Toute modification opérée sur le sous espace vectoriel est reportée dans la matrice globale

- À la différence des listes, les sous espaces vectoriels sélectionnés ne sont pas des copies mais une vue réduite de la matrice globale
- ➤ Toute modification opérée sur le sous espace vectoriel est reportée dans la matrice globale

```
In [1]: x
Out[1]:
array([[3, 3, 6, 4],
       [9, 8, 2, 0],
        Γ0. 5. 5. 471)
In [2]: xx = x[:2, :2]
In Γ37: xx
Out[3]:
array([[3, 3],
        [9, 8]])
In \lceil 4 \rceil: xx\lceil 0. 0 \rceil = 0
In [5]: x
Out[5]:
array([[0, 3, 6, 4],
       [9, 8, 2, 0],
        [0, 5, 5, 4]])
```

 Pour réaliser une copie d'un sous espace vectoriel, on utilisera la méthode copy()

► Grâce à l'homogénéité des tableaux de numpy, il est possible de réaliser des opérations mathématiques ≠ listes Python

- Grâce à l'homogénéité des tableaux de numpy, il est possible de réaliser des opérations mathématiques
- Opérateurs binaires

```
In [1]: x = np.arange(4)
In [2]: x
Out[2]: array([0, 1, 2, 3])

In [3]: x+5
Out[3]: array([5, 6, 7, 8])

In [4]: x-5
Out[4]: array([-5, -4, -3, -2])

In [5]: x*5
Out[5]: array([ 0,  5, 10, 15])

In [5]: x/5
Out[5]: array([ 0. ,  0.2,  0.4,  0.6]))
```

- Grâce à l'homogénéité des tableaux de numpy, il est possible de réaliser des opérations mathématiques
- ► Opérateurs unaires

```
In [1]: x = np.arange(4)
In [2]: -x
Out[2]: array([0, -1, -2, -3])
In [3]: x**2
Out[3]: array([0, 1, 4, 9])
In [4]: x%2
Out[4]: array([0, 1, 0, 1])
```

- ► En plus des opérateurs usuels, numpy fournit un ensemble de fonctions dites universelles (ou *ufuncs*) opérant sur des tableaux
- ► Fonctions trigonométriques

```
In [1]: theta = np.linspace(0, np.pi, 3)
In [2]: np.cos(theta)
Out[2]: array([ 1.000000000e+00, 6.12323400e-17, -1.000000000e+00])
In [3]: np.sin(theta)
Out[3]: array([ 0.00000000e+00, 1.00000000e+00, 1.22464680e-16])
In [4]: np.tan(theta)
Out[4]: array([ 0.000000000e+00, 1.63312394e+16, -1.22464680e-16])
```

► Autres fonctions : np.exp(), np.power(), np.log(), np.log10(),...

- ► En plus des opérateurs usuels, numpy fournit un ensemble de fonctions dites universelles (ou *ufuncs*) opérant sur des tableaux
- ► Fonctions trigonométriques

```
In [1]: theta = np.linspace(0, np.pi, 3)
In [2]: np.cos(theta)
Out[2]: array([ 1.000000000e+00,  6.12323400e-17, -1.000000000e+00])
In [3]: np.sin(theta)
Out[3]: array([ 0.00000000e+00,  1.00000000e+00,  1.22464680e-16])
In [4]: np.tan(theta)
Out[4]: array([ 0.000000000e+00,  1.63312394e+16, -1.22464680e-16])
```

► Autres fonctions : np.exp(), np.power(), np.log(), np.log10(),...

- ► En plus des opérateurs usuels, numpy fournit un ensemble de fonctions dites universelles (ou *ufuncs*) opérant sur des tableaux
- ► Fonctions trigonométriques

```
In [1]: theta = np.linspace(0, np.pi, 3)
In [2]: np.cos(theta)
Out[2]: array([ 1.000000000e+00,  6.12323400e-17, -1.000000000e+00])
In [3]: np.sin(theta)
Out[3]: array([ 0.00000000e+00,  1.00000000e+00,  1.22464680e-16])
In [4]: np.tan(theta)
Out[4]: array([ 0.000000000e+00,  1.63312394e+16, -1.22464680e-16])
```

► Autres fonctions : np.exp(), np.power(), np.log(), np.log10(),...

► Somme des éléments d'un tableau

```
In [1]: x = np.random.rand(100)
In [2]: sum(x)
Out[2]: 50.394482884150314
In [3]: np.sum(x)
Out[3]: 50.394482884150314
```

► Toutefois, la formulation np. sum() propre à numpy présente l'avantage d'être nettement plus rapide (code compilé) en plus d'être plus générale

```
In [4]: big_array = np.random.rand(1000000)

In [5]: %timeit sum(big_array)
10 loops, best of 3: 82.9 ms per loop

In [6]: %timeit np.sum(big_array)
1000 loops, best of 3: 467 µs per loop
```

► Somme des éléments d'un tableau

```
In [1]: x = np.random.rand(100)
In [2]: sum(x)
Out[2]: 50.394482884150314
In [3]: np.sum(x)
Out[3]: 50.394482884150314
```

► Toutefois, la formulation np.sum() propre à numpy présente l'avantage d'être nettement plus rapide (code compilé) en plus d'être plus générale

```
In [4]: big_array = np.random.rand(1000000)

In [5]: %timeit sum(big_array)
10 loops, best of 3: 82.9 ms per loop

In [6]: %timeit np.sum(big_array)
1000 loops, best of 3: 467 µs per loop
```

► Somme des éléments d'un tableau : méthode sum

► Somme colonne par colonne

```
In [4]: M.sum(axis=0)
Out[4]: array([18, 7, 15, 15])
```

► Somme ligne par ligne

```
In [5]: M.sum(axis=1)
Out[5]: array([19, 16, 20])
```

► Somme des éléments d'un tableau : méthode sum

► Somme colonne par colonne

```
In [4]: M.sum(axis=0)
Out[4]: array([18, 7, 15, 15])
```

► Somme ligne par ligne

```
In [5]: M.sum(axis=1)
Out[5]: array([19, 16, 20])
```

▶ Somme des éléments d'un tableau : méthode sum

► Somme colonne par colonne

```
In [4]: M.sum(axis=0)
Out[4]: array([18, 7, 15, 15])
```

► Somme ligne par ligne

```
In [5]: M.sum(axis=1)
Out[5]: array([19, 16, 20])
```

Fonction	Description
np.sum	Somme des éléments
np.prod	Produit des éléments
np.mean	Valeur moyenne
np.std	Standard déviation
np.var	Variance
np.min	Valeur minimale
np.max	Valeur maximale
np.argmin	Indice de la valeur minimale
np.argmax	Indice de la valeur maximale
np.median	Valeur médiane
np.percentile	Quantiles

Opérations algébriques

► Multiplication de matrices

```
In [1]: M = np.ones(shape=(3,3))
In [2]: M
Out[2]:
array([[ 1., 1., 1.],
     [ 1., 1., 1.],
      [ 1., 1., 1.]])
In [3]: M*M
Out[3]:
array([[ 1., 1., 1.],
    [ 1., 1., 1.],
      [ 1., 1., 1.]])
In [4]: M.dot(M)
Out[4]:
array([[ 3., 3., 3.],
  [ 3., 3., 3.],
      [ 3., 3., 3.]])
```

Opérations algébriques

► Transposition de matrices

Opérations algébriques

► Conversion d'un vecteur vers une matrice

Opérations algébriques : intermède graphique

$$z = f(x, y) = \sin^{10} x + \cos(x \cdot y) \cdot \cos x$$
$$= \sin^{10} \begin{bmatrix} x_0 & \cdots \end{bmatrix} + \cos \left(\begin{bmatrix} x_0 & \cdots \end{bmatrix} \cdot \begin{bmatrix} y_0 \\ \vdots \end{bmatrix} \right) \cdot \cos \begin{bmatrix} x_0 & \cdots \end{bmatrix}$$

Opérations algébriques : intermède graphique

$$z = f(x, y) = \sin^{10} x + \cos(x \cdot y) \cdot \cos x$$
$$= \sin^{10} \begin{bmatrix} x_0 & \cdots \end{bmatrix} + \cos \left(\begin{bmatrix} x_0 & \cdots \end{bmatrix} \cdot \begin{bmatrix} y_0 \\ \vdots \end{bmatrix} \right) \cdot \cos \begin{bmatrix} x_0 & \cdots \end{bmatrix}$$

Opérations logiques

► En plus des opérateurs et fonctions mathématiques, numpy fournit également les opérateurs de comparaison opérant sur les éléments d'un tableau

Opérations logiques

▶ numpy fournit également les méthodes any et all

```
In [5]: np.any(x > 10)
Out[5]: False
In [6]: np.all(x < 10)
Out[6]: True</pre>
```

Opérations logiques

► Il est finalement possible de dénombrer le nombre de valeurs d'un tableau satisfaisant à une ou des conditions

```
In [7]: np.sum(x > 3)
Out[7]: 2
In [8]: np.sum((x > 3) & (x < 5))
Out[8]: 1</pre>
```

Sélection par masque

► Les opérations de comparaison sur des tableaux retournent un tableau de booléens qui peut servir à la sélection d'éléments du tableau

```
In [1]: x = np.random.randint(0, 10, 10)
In [2]: x
Out[2]: array([8, 9, 6, 2, 4, 5, 9, 4, 0, 7])
In [3]: x < 5
Out[3]: array([False, False, False, True, True, False, False, True, True, False], dtype=bool)
In [4]: x[x < 5]
Out[4]: array([2, 4, 4, 0])</pre>
```

Sélection par masque : intermède graphique

```
In [1]: import numpy as np
In [2]: import matplotlib.pyplot as plt
In [3]: %matplotlib

In [4]: x = np.random.rand(1000)
In [5]: y = np.random.rand(1000)
In [6]: plt.scatter(x, y, alpha=0.3)
In [7]: plt.axis("scaled"); plt.axis([0, 1, 0, 1])

In [8]: mask = (x*y > 0.5)
In [9]: plt.scatter(x[mask], y[mask], alpha=0.6, edgecolors="orange", c="none", s=200)
```


Entrées/sorties de numpy

▶ numpy permet de charger un fichier texte dans un objet de type ndarray

Entrées/sorties de numpy

▶ numpy permet également de sauvegarder un tableau dans un fichier texte

```
In [4]: np.savetxt("/tmp/results2.tsv", results)
```

▶ le module pandas ☑ est toutefois bien mieux adapté à la lecture de fichier contenant des données numériques

Entrées/sorties de numpy

▶ numpy permet également de sauvegarder un tableau dans un fichier texte

```
In [4]: np.savetxt("/tmp/results2.tsv", results)
```

▶ le module pandas ☑ est toutefois bien mieux adapté à la lecture de fichier contenant des données numériques

Annexes

Opérations algébriques : Broadcasting[†]

[†] pour plus de détails, cf. discussion ☑