Problem 1. Suppose Y_t is the return on an equity portfolio at month t, and X_t is the market return. Their sample means are, respectively, 0.003 and 0.005. Suppose we run an OLS regression

$$Y_t = a + b X_t + e_t.$$

(a) Find the estimates for a and b given that

$$\sum_{t=1}^{60} X_t Y_t = 0.005; \qquad \sum_{t=1}^{60} X_t^2 = 0.004.$$

Answer. We find the value of *b* estimate as follows:

$$\hat{b} = \frac{\sum_{t=1}^{60} X_t Y_t - 60\overline{X}\overline{Y}}{\sum_{t=1}^{60} X_t^2 - 60\overline{X}^2} = \mathbf{1.64}.$$

Since $\hat{a} = \overline{Y} - \hat{b}\overline{X}$, we compute to find $\hat{a} = -0.0052$.

(b) Given that the residual sum of squares (RSS) is 5.8×10^{-5} , compute the t statistic of the a estimate under the hypothesis that $H_0: a = 0$. What inference can be drawn?

Answer. We need to find $\hat{\sigma}_e^2$ by

$$\widehat{\sigma}_e^2 = \frac{\text{RSS}}{60 - 2} = 1.00 \times 10^{-6}$$

Now,

$$\mathbb{V}(\widehat{a}) = \widehat{\sigma}_e^2 \left(\frac{1}{60} + \frac{\overline{X}^2}{\sum_{i=1}^{60} X_t^2 - 60 \overline{X}^2} \right) = \mathbf{2.67} \times \mathbf{10^{-8}}$$

Under the null hypothesis,

$$t_{58} = \frac{-0.0052}{\sqrt{2.67 \times 10^{-8}}} = -31.84.$$

Hence, the hypothesis must be rejected, as the *p* value is almost zero.

(c) Do likewise under the null hypothesis that $H_0: b = 1$. What inference can be drawn?

Answer.

$$\mathbb{V}(\widehat{b}) = \widehat{\sigma}_e^2 \left(\frac{1}{\sum_{i=1}^{60} X_t^2 - 60\overline{X}^2} \right) = 0.0004.$$

The hypothesis is b = 1. Hence,

$$t_{58} = \frac{1.64 - 1}{\sqrt{0.0004}} = 32.00.$$

The inference is that the hypothesis must be rejected, as the p value is almost zero.

Problem 2. A student runs the following regression of stock i's return r_{it} on market portfolio return r_{mt} based on the market model:

$$r_{it} = a + br_{mt} + e_{it},$$

where e_{it} is a residual noise that is i.i.d. and independent of r_{mt} .

(a) Is e_{it} independent of r_{it} ?

Answer. It is sufficient to examine the covariance:

$$\mathbb{C}(e_{it}, r_{it}) = \mathbb{C}\left(r_{it} - a - br_{mt}, r_{it}\right) = \mathbb{V}(r_{it}) - b\,\mathbb{C}\left(r_{mt}, r_{it}\right)$$

In general, $\mathbb{C}(e_{it}, r_{it})$, the covariance is non-zero. Thus, e_{it} is generally correlated with the dependent variable r_{it} . It follows that e_{it} is not independent of r_{it} .

(b) He performs OLS regression and obtains OLS estimates \hat{a} and \hat{b} . He interprets \hat{b} as a parameter estimate that is proportionate to CAPM's notion of systematic risk of stock i, and determines \hat{a} as Jensen's alpha. Comment if his interpretation is sound.

Answer. \widehat{b} is an estimate of stock i's beta since it is an estimate of $\frac{\mathbb{C}\left(r_{it}, r_{mt}\right)}{\mathbb{V}r_{mt}}$. But $\widehat{a} \approx r_f (1-\widehat{b})$ according to CAPM, where r_f is the risk-free rate. This is NOT the Jensen's alpha. Hence, **his** interpretation about the \widehat{b} is correct but incorrect for \widehat{a} .

(c) The student selects all stocks with positive \hat{a} and forms a portfolio. Is this portfolio likely to outperform the market index on average? Provide an explanation for your answer.

Answer. Since $\hat{a} \approx r_f(1-\hat{b})$ and the risk-less rate is positive, $\hat{a} > 0$ implies that $\hat{b} < 1$. Thus the portfolio beta b_p must also be less than 1. Moreover, according to CAPM,

$$\mathbb{E}(r_p) = r_f + b_p \big(\mathbb{E}(r_m) - r_f \big) < r_f + \big(\mathbb{E}(r_m) - r_f \big) = \mathbb{E}(r_{mt}).$$

Therefore, the portfolio return is likely to underperform the market on average.

Problem 3. Let $\mathbf{X}'\mathbf{X} = \begin{pmatrix} 6 & 45 \\ 45 & 355 \end{pmatrix}$ and $\mathbf{X}'\mathbf{y} = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$. The covariance between the intercept estimate and the slope estimate is $-\frac{3}{28}$.

(a) What is the dimension of matrix X?

Answer. The column 1 row 1 element of X'X is the number of observations. Therefore, the dimension of X is 6 by 2 (6 rows and 2 columns).

(b) What is the slope of the simple linear regression (as an irreducible fraction, e.g., 11/21)?

Answer. The inverse of X'X is computed as

$$(X'X)^{-1} = \begin{pmatrix} \frac{71}{21} & -\frac{3}{7} \\ -\frac{3}{7} & \frac{2}{35} \end{pmatrix}.$$

Thus,

$$\widehat{m{eta}} = \left(m{X}'m{X}
ight)^{-1}m{X}'m{y} = \begin{pmatrix} rac{80}{21} \\ -rac{17}{35} \end{pmatrix}.$$

Therefore, the slope estimate is $-\frac{17}{35}$.

(c) What is the average of the explanatory variable (as an irreducible fraction, e.g., 11/21)?

Answer. The row 1 column 2 element of the X'X is the sum of X_i , i.e., $\sum_{i=1}^{6} X_i = 45$. Hence, the average of the explanatory variable is

$$\frac{45}{6} = \frac{15}{2}$$
.

(d) What is the unbiased variance of the explanatory variable (as an irreducible fraction, e.g., 11/21)?

Answer. The row 2 column 2 element of the X'X is the sum of squared X_i , i.e., $\sum_{i=1}^{6} X_i^2 = 355$. Thus,

$$\widehat{\sigma}_X^2 = \frac{\sum_{i=1}^6 \left(X_i - \overline{X} \right)^2}{6 - 1} = \frac{\sum_{i=1}^6 X_i^2 - 6\overline{X}^2}{5} = \frac{355 - 6 \times \left(\frac{15}{2} \right)^2}{5} = \frac{\frac{35}{2}}{5} = \frac{7}{2}.$$

(e) What is the unbiased variance of the residuals (as an irreducible fraction, e.g., 11/21)?

Answer. The covariance between the intercept and the slope estimate is $-\frac{3}{28}$. From the off-diagonal element of $(X'X)^{-1}$, which is $-\frac{3}{7}$, we have

$$\widehat{\sigma}_e^2 \left(-\frac{3}{7} \right) = -\frac{3}{28}.$$

Consequently, the unbiased variance of the residuals is

$$\widehat{\sigma}_e^2 = \frac{1}{4}.$$

(f) What is the t statistic of the y-intercept estimate (rounded to 2 decimal places)?

Answer. The estimate of the *y*-intercept is $\frac{80}{21}$. From the first diagonal element of $(X'X)^{-1}$, which is $\frac{71}{21}$. It follows that the standard error of the *y*-intercept estimate is

$$\sqrt{\frac{1}{4} \times \frac{71}{21}} = \sqrt{\frac{71}{84}},$$

and the t statistic of the y-intercept is

$$\frac{80}{\frac{21}{\sqrt{\frac{71}{84}}}} = 4.14.$$

(g) Suppose a new observation of the explanatory variable is obtained and its value is 1.5.

(i) What is the point forecast for *y* (rounded to 2 decimal places)?

Answer. The point forecast is

$$\widehat{y}_7 = \frac{80}{21} - \frac{17}{35} \times 1.5 =$$
3.08.

(ii) What is the upper bound of the prediction interval at the 5% level of significance (rounded to 2 decimal places)? (Hint: You need to set $\mathbf{x} = \begin{pmatrix} 1 & 1.5 \end{pmatrix}'$ and apply your understanding about Slide 31 of S4_2_MLR.pdf)

Answer. First we compute

$$\boldsymbol{x}'(\boldsymbol{X}'\boldsymbol{X})\boldsymbol{x} = \begin{pmatrix} 1 & 1.5 \end{pmatrix} \begin{pmatrix} \frac{71}{21} & -\frac{3}{7} \\ -\frac{3}{7} & \frac{2}{35} \end{pmatrix} \begin{pmatrix} 1 \\ 1.5 \end{pmatrix} = 2.2238$$

Now we need $t_{4,97.5\%} = 2.776$. Consequently, the upper bound of the prediction interval is

$$3.08 + 2.776 \times \sqrt{\frac{1}{4}}\sqrt{1 + 2.2238} =$$
5.57.

© Christopher Ting Page 4 of 4 November 8, 2018