Lecture 12

Lai Zehua 2014012668 2017??12??12??

For $\gamma \in (0,1)$, define

$$d(v, v') = \max_{s \in S} |v(s) - v'(s)|$$

then Bellman Expectation Operator is a contraction mapping with respect to l_{∞} -norm. So by iteration we can simply calculate $v_{\pi}(s)$ by Bellman Operator. Also, q_{π} can be computed by the equation.

$$q_{\pi}(s, a) = R(s, a) + \gamma \sum_{s'} P(s'|s, a) v_{\pi}(s')$$

We would like to find a policy π^* , such that $v_{\pi^*}(s) \geq v_{\pi}(s), \forall \pi, s$, or $v_{\pi^*} \succ v_{\pi}$. From now on, assume R(s, a) is bounded.

Algorithm:

$$v'(s) = \max_{a}[R(s,a) + \gamma \sum P(s'|s,a)v(s')]$$

Exercise 1: Prove: $\phi: R^{|S|} \to R^{|S|}, \forall s \in S, \phi(v(s)) = v'(s)$ is a contraction mapping with respect to l_{∞} -norm (but its value might not be a value of any policy). It is called the Bellman Optimality Operator.

Exercise 2: Prove: $v_{\pi'}(s) \geq v_{\pi}(s)$.

The fixed point for $\phi(v_{\pi})$ must be the value function of a policy π^* .

It is clear that $\phi(v_{\pi}) \geq v_{\pi}$. And if $v, v' \in R^{|S|}$ (not necessarily a value function), $v \succ v'$, then $\phi(v) \succ \phi(v')$. Thus, $\phi^{(n+1)}(v_{\pi}) \geq \phi^{(n)}(v_{\pi})$. So the policy π^* is indeed the optimal policy.

In reinforce learning, this algorithm is called the value iteration. Another algorithm is called the policy iteration. For a initial policy π_0 . $\pi_{n+1}(s) = \arg\max_a [R(s,a) + \gamma \sum P(s'|s,a)v_{\pi}(s')]$. $v_{\pi}(s)$ can be evaluated by using Bellman expectation operator.