

TD 1 DE CHIMIE I (STRUCTURE DE LA MATIÈRE)

Questions

- 1) Définir: a) Corps pur composé, b) Mélange hétérogène, c) La molarité, e) La molalité,
- d) La normalité
- 2) Quels sont les indices d'un changement chimique?

Exercice N°1:

Calculer le nombre de moles et le nombre d'atomes dans les cas suivants :

- 1) Un clou, en fer de masse, m = 6.3 g ($M_{Fe} = 56$ g/mol).
- 2) 0,5 kg de silicium ($M_{Si} = 28 \text{ g/mol}$).
- 3) 4,48 Litres de dinitrogène (N2).

Exercice N°2:

On dispose d'1 ml d'eau (H2O) liquide, Calculer : -* la masse d'eau correspondante,

- -* le nombre de moles d'atomes d'oxygène, -* le nombre de mole d'atome d'hydrogène,
- -* le nombre de molécules d'eau, -* le nombre de molécules d'eau, -* le nombre d'atome d'hydrogène, * le nombre d'atome d'oxygène.

Données : masse volumique de l'eau ρ_{eau} = 1g/cm³ , M (H2O)=18 g.mol-¹; le nombre d'Avogadro N= 6,023 10^{23}

Exercice N° 3:

- 1) On représente une molécule par ${}_{Z}^{A}X$, que représente A et Z?
- 2) Parmi les éléments suivants, indiquer les groupes d'isotopes :

$$^{206}_{82}X$$
; $^{238}_{92}X$; $^{45}_{21}X$; $^{207}_{82}X$; $^{48}_{21}X$; $^{237}_{92}X$;

3) Quel est le nombre de neutrons, de protons et d'électrons pour chacun des atomes et des ions suivants : ${}^{18}_{8}O$, ${}^{18}_{17}O^{2-}$, ${}^{35}_{17}Cl^{-}$, ${}^{56}_{26}Fe^{-2}$, ${}^{40}_{20}Ca$, ${}^{40}_{20}Ca^{+2}$, ${}^{32}_{16}S^{-2}$, ${}^{27}_{13}Al^{+3}$, ${}^{59}_{28}Ni$

Exercice N° 4:

Le chlore naturel est composé de deux isotopes :

 35 Cl et 37 Cl dont les masses atomiques sont respectivement 34.97g et 36.97 g. Sachant que la masse molaire atomique du mélange isotopique est 35.45 g/mol.

- Calculer la proportion relative de ces deux isotopes.

Exercice N° 5:

Soit 1,007278 u.m.a la masse du proton et 1,008665 u.m.a la masse du neutron

- 1) Calculer la masse théorique d'un noyau de ⁷₃Li.
- 2) Sachant que la masse réel d'un noyau de Li est égale à 7.01001 u.m.a . Calculer son défaut de masse ?
- 3) Calculer en MeV l'énergie de liaison de ce noyau?
- 4) Calculer son énergie de liaison moyenne par nucléon.
- 5) Sachant que l'énergie moyenne de liaison par nucléon du Fer (Fe) est de 8.5 MeV/nucléon. Comparer sa stabilité avec celle du Li ?

Solution de TD 1:

Réponses:

- a) Un corps pur composé est la combinaison de deux ou plusieurs éléments différents exp: H₂O, CO₂, H₂SO₄.
 b) Un mélange hétérogène est un mélange qu'est composé d'au moins de deux couches.
 c) La molarité = n Soluté/V solvant;
 D) La molalité = n Soluté / m Solvant;
 E) la normalité = nbr d'équivalent.
 grammes/V soluté.
- 2) Les indices d'un changement chimique : Changement de couleur, dégagement d'un gaz, formation d'un précipité et production d'énergie.

Exercice N°: 1

- 1) n. =m/M = 6.3/56 = 0.11 mol; N_{atom}=n. $\mathcal{N}_A = 6.62 .10^{22} \text{ atomes}$
- 2) $n = 0.5 \cdot 10^3 / 28 = 17,85 \text{ mol}$; $N_{atom} = n \cdot N_A = 1,07 \cdot 10^{25} \text{ atomes}$
- 3) $n = V/V_m = 4,48/22,4 = 0,2$; $N_{atom} = n.N_A = 1,20.10^{23}$ atomes

Exercice N°: 2

- $\rho_{eau} = 1g/cm^3$, on a 1 ml = 1 cm³, Donc 1 ml_{eau} = 1g
- $n_0 = ? = m_0/M_0?$

$$n_{H20} = \frac{m H20}{M H20} = \frac{1 g}{18 g} = 0.055 mole$$

- $n_H = ? = m_H/M_H = ?$
 - $n_H = 2 \times 0.0055 \text{ mol} = 0.11 \text{ mole}$
- $n_{H20} = 0.055$ mole
- $N_{H20} = 0.055 \times 6.02 \cdot 10^{23} = 0.33 \cdot 10^{23} \text{ mole.}$

Dans une mole de molécule de H2O on trouve 6.023 .10²³ molécules d'eau

- $N_H = 2 N_{H20} = 0.66 . 10^{23}$ atomes de H
- N_0 = 1 N_{H20} = 0.33 . 10²³ atomes de 0

Exercice N°: 3

1) Un nucléide = noyau ; Un nucléon = particule de noyau (neutron ou proton) ;

A= Nombre de masse = N+Z; N= Nombre de neutrons.; Z= Numéro atomique (nbr de protons).

3)

	A	Z	N	Nbr é
¹⁸ ₈ 0	18	08	10	8
¹⁸ ₈ 0 ²⁻	18	08	10	10
³⁵ ₁₇ Cl ⁻	35	17	18	18
18 ₀ 2- 35 ₁₇ Cl- 56Fe-2	56	26	30	24
$ \begin{array}{r} $	40	20	20	20
$^{40}_{20}Ca^{+2}$	40	20	20	18
$^{32}_{16}S^{-2}$	32	16	16	18
$^{27}_{13}Al^{+3}$	27	13	14	10
⁵⁹ ₂₈ Ni	59	28	31	27

Exercice N°: 4

$$x_1 + x_2 = 1$$

$$(M_1 x_1 + M_2 x_2) = 35,45$$

$$x_1 = 1 - x_2$$

$$(M_1 (1-x_2) + M_2 x_2) = 0.3545$$

 $x_2 = 0.24$ (24 % d'abondance de ³⁷ Cl) et $x_1 = 0.76$ (76 % d'abondance de ³⁵ Cl)

Exercice N°: 5

1. La masse théorique d'un 7_3Li : masse de 3 P + masse de 4 N = la masse de noyau 7_3Li .

$$m_{\text{theo}}({}_{3}^{7}Li.) = 3(1.007278) + 4(1.008665) = 7.05649 \text{ uma}$$

- 2. Défaut de masse(Δm): $\Delta m = m_{th} m_{ré} = 7.05649 7.01001 = 0.04648$ uma
- 3. L'énergie de liaison (l'énergie du molécule) : $\Delta E = \Delta m.C^2 = 43.2728$ Mev
- 4. Energie de laision moyenne par nucléon : $E_m = E/A = 43.2828 / 7 = 6.18 \text{ Mev} / \text{nucléon}$
- 5. 8.5 E_m (Fe) > 6.18 E_m (Li) \rightarrow le Fer plus stable que Li.