CEG ZOGBO COTONOU

ANNEE - SCOLAIRE: 2018-2019

PREMIERE SERIE DE DEVOIRS SURVEILLES DU SECOND SEMESTRE: MARS 2019

<u>Epreuve</u>: Mathématiques <u>Classe</u>: 2nde C <u>Durée</u>: 03H

Contexte: La maladie de la vache folle.

Le laboratoire Lokéto du comté de Poto-Poto a été sollicité pour étudier l'influence ou non de la maladie de la vache folle sur un échantillon de bovins. Une enquête a été réalisée à cet effet au parc de bovins de Bana-Bana à 300 km de Poto-Poto sur 150 vaches selon l'âge. Les résultats se présentent comme suit :

Ages (en année)	4	5	6	8	10	20
effectifs	40	35	15	10	10	40

Pontivi Ponti, le chef de ce laboratoire décide d'étudier quelques caractéristiques statistiques de ces données avant de procéder à une analyse scientifique de l'influence ou non de cette maladie sur l'âge des bovins.

Tâche: Tu es invité (e) à résoudre les trois problèmes suivants:

Problème 1

- 1) Quel est le caractère étudié ? précise sa nature.
- 2) a- Dresse le tableau des effectifs cumulés croissants et décroissants de cette série statistique.
 - b- Précise le mode, la médiane et l'étendue de cette série statistique.
- 3) Calcule la moyenne, l'écart-moyen, la variance et l'écart-type de cette série.
- 4) Construis le diagramme cumulatif de cette série.
- 5) Construis le polygone des effectifs cumulés croissant et décroissants.

Problème 2

Une prise de vue aérienne de la route principale de Poto-Poto à Bana-Bana, montre une

trajectoire rectiligne matérialisée par la droite (**D**) de représentation paramétrique : $\begin{cases} x = -2 + 2t \\ y = 4 + 3t \end{cases}$ ($t \in \mathbb{R}$), ainsi qu'un repère (0; \vec{i} , \vec{j}) du plan d'eau dans lequel on place trois

SUITE 1 EPREUVE DE MATHEMATIQUES 2nde C

piquets aux points A(8, 10); B(4, 13) et C(2, 10) – On considère la droite (Δ_m) une autre voie d'accès d'équation cartésienne (m+1)x + my - 3 = 0

(où m est un paramètre réel) et $\vec{v} \binom{-2}{m}$ un vecteur du plan vectoriel.

- 6) a) Détermine les coordonnées du vecteur \overrightarrow{AB} .
 - b) Détermine une représentation paramétrique de la droite (AB).
 - c) Donne un repère de la droite (AB).
- 7) a) Justifie que \overrightarrow{BC} est un vecteur directeur de la droite (D).
 - b) Détermine une équation cartésienne de la droite (AB).
 - c) Détermine une équation cartésienne de la droite (D).
- 8) a) Calcule la distance du point C à la droite (AB).
 - b) Démontre que $(\overrightarrow{BA}, \overrightarrow{CB})$ est une base du plan vectoriel.
- 9) a) Détermine les coordonnées du point D pour que ABCD soit un parallélogramme.
 - b) Ecris une équation cartésienne du cercle 'C') de diamètre [AB]
 - -c) Détermine les intersections du cercle (C)) et la droite (D).
- 10) Détermine en fonction de m, les coordonnées de \vec{u} , vecteur directeur (Δ_m) .
 - a) Détermine m pour que \vec{u} et \vec{v} soient colinéaires puis précise selon la valeur de m leur sens.
 - b) Détermine m pour \vec{u} et \vec{v} soient orthogonaux.

Problème 3

L'équipe chargée de l'enquête a inoculé le virus aux 150 vaches.

Après quelques minutes, on observe différents déplacements dans le parc muni d'un repère orthonormé $(\mathbf{O}, \vec{\mathbf{i}}, \vec{\mathbf{j}})$.

11)-On considère trois directions choisies par des groupes de vaches :

$$\vec{e}_1 = 5\vec{\iota} + 6\vec{j}$$
; $\vec{e}_2 = (\alpha + 1)\vec{\iota} + (3\alpha + 2)\vec{j}$ et $\vec{e}_3 = -7\vec{\iota} + 9\vec{j}$ où α est un nombre réel.

- a- Justifie que $(\vec{e}_1; \vec{e}_3)$ est une base de ϑ .
- b- Trouve la valeur de α pour laquelle \vec{e}_1 et \vec{e}_2 soient colinéaires.
- c- Trouve deux vecteurs unitaires colinéaires à \vec{e}_1 .
- 12) E, F et G sont trois positions fixes de lampadaires non alignés du parc de Bana-Bana.

Détermine l'ensemble des points M décrit part d'autres groupes de vaches tel que :

a-
$$\overrightarrow{ME} - 3\overrightarrow{MF} + 4\overrightarrow{MG} = 4\overrightarrow{EG}$$

b-
$$||-4\overrightarrow{MG}|| = ||4\overrightarrow{MF}||$$
.