Machine Learning (2017, Fall)

Assignment 4 – Text Sentiment Classification

學號:b03901086 系級:電機四 姓名:楊正彥

1 請說明你實作的 RNN model,其模型架構、訓練過程和準確率為何?(1%)

Layer (type)	Output Shape	Param #
embedding_1 (Embedding)	(None, 30, 200)	25868200
gru_1 (GRU)	(None, 30, 512)	1095168
gru_2 (GRU)	(None, 256)	590592
dense_1 (Dense)	(None, 256)	65792
dropout_1 (Dropout)	(None, 256)	0
dense_2 (Dense)	(None, 1)	257

Total params: 27,620,009 Trainable params: 1,751,809 Non-trainable params: 25,868,200

...

這次作業的 RNN model 架構如上圖,一共疊了兩層 GRU、兩層 dense 和一層 dropout,而所選用的 batch size 為 512、optimizer 為 Adam、loss function 為 binary cross-entropy、除了最後一層 dense 的 activation 選用 sigmoid 以外,其 他層皆使用 relu。使用 gensim 所 pretrained 的 Word2Vec 為 200-dim 的 word embedding model,所使用之 training data 為這次作業所提供的所有 txt 檔。

最後模型在 epoch=10 時即得到 val acc 最高的 model,其準確度如下表:

D T D T D T D T D T D T D T D T D T D T		** * *	, , , , , , , , , , , , , , , , , , ,
Validation Accuracy	Testing Accuracy	Public Score	Private Score
0.82450	0.81850	0.82478	0.82334

2 請說明你實作的 BOW model,其模型架構、訓練過程和準確率為何?(1%)

Layer (type)	Output Shape	Param #
dense_1 (Dense)	(None, 1024)	10241024
dense_2 (Dense)	(None, 512)	524800
dropout_1 (Dropout)	(None, 512)	0
dense_3 (Dense)	(None, 1)	513
Tabal 2007		

Total params: 10,766,337 Trainable params: 10,766,337 Non-trainable params: 0

這次作業的 BOW model 架構如上圖,一共疊了三層 dense 以及一層 dropout,其餘的訓練相關設定如 batch size、loss function、activation、optimizer 設定皆與 RNN model 相同。而此 BOW model 的 input 為一個 20000-dim 的 BOW vector,僅記錄前 20000 個出現頻率最高的單字出現次數。

最後模型在 epoch=12 時即得到 val acc 最高的 model, 其準確度如下表:

Validation Accuracy	Testing Accuracy	Public Score	Private Score
0.77050	0.76788	0.76737	0.76602

3 請比較 BOW 與 RNN 兩種不同 model 對於"today is a good day, but it is hot" 與"today is hot, but it is a good day"這兩句的情緒分數,並討論造成差異的原因。(1%)

Testing Sentences	BOW Model	RNN Model
today is a good day, but it is hot	0.81553212	0.63922944
today is hot, but it is a good day	0.81553212	0.94836336

這兩句話在 BOW model 中所得到的 prediction score 會是一樣的因為其各個單字出現的次數完全一樣,所以轉換成 BOW vector 會得到一樣的結果。而如果透過 RNN model 則能夠透過語句前後不同順序來判斷,得到較精準的情緒分數(這裡以 prediction score 作為情緒分數,為最後一層 sigmoid 的 output)。

4 請比較"有無"包含標點符號兩種不同 tokenize 的方式,並討論兩者對準確率的影響。(1%)

為了比較有無標點符號兩種 tokenize 方式,在本題將 Tokenize 中的 filters 做修改,因為其 default 為拿掉大部分的標點符號,得出的結果如下表,雖然說 差距仍在 1%但仍可以看出來保留標點符號能夠得到較為精準的 classification 結果。

M- 1-1	Validation	Testing	Public	Private
Model	Accuracy	Accuracy	Score	Score
w/ Punctuation	0.82960	0.83000	0.82874	0.82741
w/o Punctuation	0.82105	0.82900	0.82147	0.82192

5 請描述在你的 semi-supervised 方法是如何標記 label,並比較有無 semi-supervised training 對準確率的影響。(1%)

在 semi-supervised learning 的部份我們分別嘗試了三種 threshold value,用 pretrained 好的 RNN model(所使用的為 w/o 標點符號的 model)對所有的 unlabeled data 做預測,當 prediction score 大於 $0.5+V_{th}$ 或者小於 $0.5-V_{th}$ 才會將 這些 data 加進 labeled data 中 shuffle 後重新 train 一個新的 RNN model。

			Newly Labeled
V_{th}	Public Score	Private Score	Data Numbers
			(positive/negative)
0.00	0.82147	0.82192	-/-
0.05	0.81927	0.81919	20899/17032
0.10	0.81836	0.81693	43415/36761

可以看出來在本次作業中進行 semi-supervised training 所達到的效果不是非常好,可能是因為 twitter 的 corpus 太大太雜而且 oov 太多所以以致於準確率沒辦法進步,也有可能因為 V_{th} 取得太小導致 semi-supervised training 時 RNN 沒有太多新的 info 可以更新自己的 model。