Report on Assignment-1

Wine Quality Prediction using Logistic Regression

1. Introduction

This assignment focuses on predicting wine quality using Logistic Regression. The dataset contains physicochemical tests of wine samples, and the target is to classify the wine quality.

2. Methodology

The steps followed include data preprocessing, exploratory data analysis, splitting the dataset into training and testing sets, training a Logistic Regression model, and evaluating performance using accuracy, confusion matrix, and visualization.

3. Implementation

```
0
    print("Classification Report:\n")
    print(classification_report(y_test, y_pred, digits=4))
    Classification Report:
                  precision
                               recall f1-score
                                                   support
               0
                     0.9091
                               0.9747
                                         0.9408
                                                       277
                                         0.4848
               1
                     0.6957
                               0.3721
                                                        43
                                         0.8938
                                                       320
        accuracy
                                         0.7128
                               0.6734
                                                       320
       macro avg
                     0.8024
    weighted avg
                     0.8804
                               0.8938
                                         0.8795
                                                       320
```

```
cm = confusion_matrix(y_test, y_pred)
fig, ax = plt.subplots()
im = ax.imshow(cm, cmap="Blues")

ax.set_xticks([0,1]); ax.set_yticks([0,1])
ax.set_xticklabels(["Not Good","Good"])
ax.set_yticklabels(["Not Good","Good"])
ax.set_xlabel("Predicted"); ax.set_ylabel("True")
plt.title("Confusion Matrix")

for (i, j), val in np.ndenumerate(cm):
    ax.text(j, i, f"{val}", ha="center", va="center", color="red")

plt.colorbar(im)
plt.show()
```



```
roc_auc = auc(fpr, tpr)
0
    plt.figure()
    plt.plot(fpr, tpr, label=f"AUC={roc_auc:.3f}")
    plt.plot([0,1],[0,1],'--', color='gray')
    plt.xlabel("False Positive Rate")
    plt.ylabel("True Positive Rate")
    plt.title("ROC Curve - Logistic Regression")
    plt.legend()
    plt.show()
_
                             ROC Curve - Logistic Regression
                    AUC=0.880
         1.0
         0.8
     True Positive Rate
         0.6
         0.4
         0.2
         0.0
                           0.2
               0.0
                                                                0.8
                                                                            1.0
                                       0.4
                                                    0.6
                                      False Positive Rate
```