HOW WE RUN AGL ON I.MX PROCESSORS?

SCALABLE I.MX PROCESSOR OVERVIEW AND INSTRUCTION TO BUILD AGL

TATSUYA KOBAYASHI

TATSUYA.KOBAYASHI@NXP.COM

NXP SEMICONDUCTORS JAPAN
25, FEBRUARY, 2016

I.MX PROCESSORS

i.MX Application Processors Core Values

Scalability

- CPU (single/dual/quad, asymmetric), GPU, I/O
- Software: Linux, Android, QNX, Windowsembedded, RTOS
- Industry-leading ecosystem and partnerships
- Pin compatibility and software portability

Integration

- Automotive/Industrial/Consumer peripheral sets
- Qualifications: AEC-Q100, JEDEC Industrial and Consumer

Trust

- Market knowledge/expertise in industrial, consumer and automotive
- Longevity: minimum of 10-15 years in all markets
- Consistency of supply, product availability
- Quality, robustness, zero-defect methodology
- Security and safety

Ease of Adoption

- Communities, innovation, support
- Design collateral, distribution
- System solutions: SoC, sensors, PMIC, IoT comms,
 SBC

i.MX 6 Series: Supreme Scalability and Flexibility

Leverage One Design Into Diverse Product Portfolio

i.MX 6 At a Glance

Red indicates change from column to the left

i.MX6Ultral ite

- Single ARM® Cortex®-A7 up to 528 MHz
- 128 KB L2 cache. NEON™, VFP, TrustZone®
- X16 LPDDR2. DDR3/LV-DDR3
- 2X 10/100 Mb/s + **IEEE 1588**
- 2X 12-bit ADC (1 with resistance touch control)
- 10/100 Ethernet MAC

i.MX6SoloLite

- · Single ARM, Cortex-A9 up to 1.0 GHz
- 256 KB L2 cache, NEON, VFPvd16 TrustZone
- · 2D graphics
- 32-bit DDR3 and LPDDR2 at 400 MHz
- Integrated EPD controller
- 10/100 Ethernet MAC
 - PCle[®] controller plus PHY
 - LVDS controller plus PHY

i.MX6SoloX

Single Cortex-A9

Single Cortex®-M4

up to 1.0 GHz

up to 200 MHz

256 KB L2 cache.

3D and 2D graphics

· Dual Gigabit Ethernet

MAC w/ hardware

NEON, VFP.

TrustZone

32-bit DDR3

and LPDDR2

at 400 MHz

AVB support

- Analog camera interface
- 8-channel, 12-bit ADC
- MLB and FlexCAN controllers

i.MX6Solo

- Single Cortex-A9 up to 1.0 GHz
- 512 KB L2 cache. NEON, VFPvd16 TrustZone
- 3D graphics with one shader
- 2D graphics
- 32-bit DDR3 and LPDDR2 at 400 MHz
- Gigabit Ethernet MAC
- Integrated EPD controller
- HDMlv1.4 controller plus PHY
- LVDS controller plus PHY
- PCle controller plus PHY
- MLB and FlexCAN controllers

i.MX6DualLite

- Dual Cortex-A9 up to 1.0 GHz
- 512 KB L2 cache. NEON, VFPvd16 TrustZone
- 3D graphics with one shader
- 2D graphics
- 64-bit DDR3 and 2-channel 32-bit LPDDR2 at 400 MHz
- Gigabit Ethernet MAC
- Integrated EPD controller
- HDMlv1.4 controller plus PHY
- LVDS controller plus PHY
- PCle controller plus PHY
- MLB and FlexCAN controllers

i.MX 6Dual

- Dual Cortex-A9 up to 1.2 GHz
- 1 MB L2 cache. NEON, VFPvd16 TrustZone
- 3D graphics with four shaders
- Two 2D graphics engines
- 64-bit DDR3 and 2-channel 32-bit LPDDR2 at 533 MHz
- Gigabit Ethernet
- Integrated SATA-II
- HDMlv1.4 controller plus PHY
- LVDS controller plus PHY
- PCle controller plus PHY
- MLB and FlexCAN controllers

i.MX6DualPlus

- Dual Cortex-A9 up to 1.2 GHz*
- 1 MB L2 cache. NEON, VFPvd16 TrustZone
- Enhanced 3D graphics with four shaders
- Enhanced Two 2D graphics engines
- Prefetch & Resolve Engine
- Gigabit Ethernet MĂC
- Optimized 64-bit DDR3 and 2-channel 32-bit LPDDR2 at 533 MHz
- Integrated SATA-II
- HDMlv1.4 controller plus PHY
- LVDS controller plus
- PCle controller plus PHY
- MLB and FlexCAN controllers

i.MX6Quad

- · Quad ARM. Cortex-A9 up to 1.2 GHz
- · 1 MB L2 cache. NEON, VFPvd16 TrustZone
- 3D graphics with four shaders
- Two 2D graphics engines
- 64-bit DDR3 and 2-channel 32-bit LPDDR2 at 533 MHz
- · Gigabit Ethernet MAC
- Integrated SATA-II
- HDMlv1.4 controller plus PHY
- LVDS controller plus PHY
- PCle controller plus PHY
- MLB and FlexCAN controllers

- Quad Cortex-A9 up to 1.2 GHz*
- 1 MB L2 cache. NEON, VFPvd16 TrustZone
- Enhanced 3D graphics with four shaders
- Enhanced Two 2D graphics engines
- · Prefetch & Resolve Engine
- Gigabit Ethernet MĂC
- Optimized 64-bit DDR3 and 2-channel 32-bit LPDDR2 at 533 MHz
- Integrated SATA-II
- HDMlv1.4 controller plus PHY
- LVDS controller plus PHY
- PCle controller plus PHY
- MLB and FlexCAN controllers

Consumer

i.MX 6QuadPlus / i.MX 6Dual Plus Applications Processor

Multiple fabric and IP changes to improve the overall memory and graphics performance while minimizing software changes.

Key Features:

- Updated 3D, 2D and OpenVG GPUs
- New pre-fetch and resolve modules to improve IPU / display efficiency
- Fabric modifications to improve memory bandwidth
- Pin compatible with existing i.MX 6Dual/6Quad processors
- Multiple i.MX 6Dual/6Quad errata fixes

i.MX 6QuadPlus/DualPlus Block Diagram

Specifications

· CPU:

i.MX 6QuadPlus: 4x Cortex-A9 @ 800MHz/852MHz/1GHz/1.2 GHz* i.MX 6DualPlus: 2x Cortex-A9 @ 800MHz/852MHz/1GHz/1.2 GHz*

• Process: 40nm

• Package: 21x21 0.8mm Flip-chip BGA

Temp Range (Tj):

Auto -40 to 125C

Industrial -40 to 105C

Extended Commercial -20 to 105C

• Qual Tiers: Commercial, Automotive, Industrial

Pin compatible with i.MX 6Quad and i.MX 6Dual

• Up to 11,520 DMIPS

^{* 1.0} GHz available now. For 1.2 GHz, contact NXP for availability

i.MX 6DualPlus/i.MX 6QuadPlus Target Applications

Automotive

- Infotainment
- Instrument Clusters

Smart Devices

- Aerospace / Defense
- Digital Signage
- Health Care patient monitoring, fitness equipment
- Factory, process and building automation (gateways, surveillance, HMI)
- Home entertainment, appliances
- Media Streaming
- Transportation industrial vehicle with control & HMI, e.g. tractor, train, ship, heavy equipment

REFERENCE BOARD AND BSP

SABRE Platform for Auto Infotainment (AI)

CPU Card Details

Power and Memory

- NXP PF-Series PMIC
- 2 GB DDR3 memory (i.MX 6Dual/Quad/DualPlus/QuadPlus)
- 1GB DDR3 memory (i.MX 6Solo)
- 32GB Parallel NOR Flash
- NAND Socket

Display

- · LVDS connector
- Compatible with MCIMX-LVDS1
- Parallel RGB display interface
- HDMI output connector

Debug

- JTAG connector
- Debug UART connector

Connectivity and Expansion

- SD Card Slot
- High Speed USB OTG
- Ethernet
- SATA
- MIPI CSI
- PCle
- MLB150 INIC connector
- 281-pin MXM card edge connector for main board expansion

Part Numbers

Base Board: MCIMXABASEV1 (\$699)
CPU Cards: MCIMX6DLAICPU2 (\$799)

MCIMX6QAICPU2 (\$799)

MCIMX6QPAICPU3 (\$799)

Display: MCIMX-LVDS1 (\$499)

Base Board Details

Connectivity and Expansion

- SD card slot (WiFi module or SD)
- Bluetooth or Bluetooth+WiFi header
- AM/FM tuner header
- Sirius XM Module header (de-pop"d)
- · GPS (UART) module connector
- 2x CAN
- Dual High Speed USB Host connectors
- MLB 25/50 INIC connector
- SPI NOR flash

Display I/O

- LVDS connector
- Compatible with MCIMX-LVDS1
- Analog Video Input
- LVDS Input

Audio

- Cirrus multichannel audio codec
- Up to 8 outputs
- Dual microphone inputs
- Stereo Line Level Input
- SPDIF receiver

OS Support

- Linux, Android (internal)
- Others: future support by 3rd parties

SABRE AI boards will only be supported at automotive customers

i.MX6 Single Board Computers

There are many choices to use i.MX based SBC, with development environments

Leadership Software - i.MX Linux Enablement

- Silver Member of Linux Foundation
- AGL Working Group Bronze Member

Over the past 15 years shipping i.MX application processors...

39,000+ Linux Downloads

Multiple i.MX 6 Series customer engagements are using GENIVI Solutions

Freescale has more compliant platforms than ANY semiconductor vendor

Reference: http://www.genivi.org/compliant-products

BUILDING AGL BSP

Download the NXP BSP source

- I use "imx-3.14.38-6QP_ga" tags for build.
 - With this release, BSP uses weston 1.8.0 and less compatibility issues.

```
$: mkdir fsl-arm-yocto-agl
$: cd fsl-arm-yocto-agl
$: repo init -u git://git.freescale.com/imx/fsl-arm-yocto-bsp.git -b imx-3.14.38-6QP_ga
$: repo sync
```

Checkout meta-agl layers under sources directory

```
$: cd sources/
$: git clone -b albacore <a href="https://git.automotivelinux.org/gerrit/AGL/meta-agl">https://git.automotivelinux.org/gerrit/AGL/meta-agl</a>
$: git clone -b albacore <a href="https://git.automotivelinux.org/gerrit/AGL/meta-agl-demo">https://git.automotivelinux.org/gerrit/AGL/meta-agl-demo</a>
```

- To minimize compatibility issue, I use "albacore" branch when checking out
- Some bbappend would cause issue while bitbake, and need to rename/remove these files

Set up directory and configuration files

- To set up directory and configuration files for SABREAICPU3(i.MX 6QP) board
 - To use wayland, add "-e wayland" to use wayland backend for frame buffers

\$: MACHINE=imx6qpsabreauto source ./fsl-setup-release.sh -b build-agl-wayland -e wayland

Fixing missing layers

- Need to add meta-agl layers besides NXP's layers
 - Modify "bblayers.conf" under conf directory as below

```
--- bblayers.conf.org 2016-02-16 11:42:43.867306944 +0900
+++ bblayers.conf 2016-02-03 19:03:48.996044538 +0900
@@ -25,3 +25,9 @@
BBLAYERS += " ${BSPDIR}/sources/meta-openembedded/meta-ruby "
BBLAYERS += " ${BSPDIR}/sources/meta-openembedded/meta-filesystems "
BBLAYERS += " ${BSPDIR}/sources/meta-qt5 "
+##AGL layers
+BBLAYERS += " ${BSPDIR}/sources/meta-agl/meta-agl "
+BBLAYERS += " ${BSPDIR}/sources/meta-agl/meta-agl-bsp "
+BBLAYERS += " ${BSPDIR}/sources/meta-agl/meta-ivi-common "
+BBLAYERS += " ${BSPDIR}/sources/meta-agl-demo "
```


Tuning configuration for AGL build

- Need to add some configuration at local.conf
 - Add necessary information from meta-agl/meta-agl/conf/distro/poky-agl.conf to local.conf (under investigation, not fully verified)

```
+# To use systemd as init mamanger
+PREFERRED PROVIDER udev ?= "systemd"
+PREFFERED PROVIDER udev-utils ?= "systemd"
+VIRTUAL-RUNTIME_init_manager = "systemd"
+VIRTUAL-RUNTIME initscripts =
+# Need to add to fix parse error while bitbake. Need to investigate right settings
+export systemd system unitdir = "${nonarch base libdir}/systemd/system'
+export nonarch libdir = "${exec prefix}/lib"
+export systemd user unitdir = "\$\{nonarch libdir\}\/systemd\/user"
+# Override these in poky based distros
+AGL DEFAULT DISTRO_FEATURES = "systemd opengl wayland pam bluetooth bluez5"
+AGL_DEFAULT_EXTRA_RDEPENDS = "packagegroup-core-boot"
+AGL_DEFAULT_EXTRA_RRECOMMENDS = "kernel-module-af-packet"
+DISTRO FEATURES ?= "${DISTRO FEATURES DEFAULT} ${DISTRO FEATURES LIBC} ${AGL DEFAULT DISTRO FEATURES}"
+DISTRO FEATURES remove = "x11"
+DISTRO FEATURES BACKFILL CONSIDERED = "sysvinit"
+DISTRO EXTRA RDEPENDS += " ${AGL_DEFAULT_EXTRA_RDEPENDS}"
+DISTRO EXTRA RRECOMMENDS += " ${AGL DEFAULT EXTRA RRECOMMENDS}"
+# To fix missing files under rootfs
+IMAGE INSTALL append = " weston-init weston-ivi-shell-config"
+# set the perferred version to GST1.4
+PREFERRED VERSION gstreamer1.0 ?= "1.4.%"
+PREFERRED VERSION gstreamer1.0-plugins-bad ?= "1.4.%"
+PREFERRED VERSION gstreamer1.0-plugins-base ?= "1.4.%"
+PREFERRED VERSION gstreamer1.0-plugins-good ?= "1.4.%"
+PREFERRED_VERSION_gstreamer1.0-plugins-ugly ?= "1.4.%"
+PREFERRED VERSION gstreamer1.0-libav ?= "1.4.%"
+PREFERRED VERSION gstreamer1.0-omx ?= "1.2.%"
```


To fix error while bitbake

- Need to rename/remove or BBMASK in conf below files to avoid error with AA AGL layer
 - meta-agl/meta-agl/recipes-graphics/wayland/weston_1.5.0.bbappend
 - meta-agl/meta-ivi-common/recipes-graphics/wayland/weston_1.5.0.bbappend
 - meta-agl-demo/recipes-graphics/wayland/weston_1.5.0.bbappend
 - meta-agl-demo/recipes-qt/qt5/qtwayland_%.bbappend(Need to regenerate patch)
 - meta-agl-demo/recipes-connectivity/bluez5/bluez5_%.bbappend
- Need to modify header files to avoid error while wayland-ivi-extension compilation
 - Need to add -DLINUX -DEGL_API_FB -DWL_EGL_PLATFORM to fix unrecognized platform error while compilation
 - Currently manually modified while do_compile, but need to create patch for bb file

bitbake! and flashing images to SD card

Building AGL images

```
$: bitbake agl-image-minimal
$: bitbake agl-image-ivi
$: bitbake agl-image-weston
$: bitbake agl-demo-platform
```

Flashing an SD card image resides in <build dir>/tmp/deploy/images

\$: dd if=<image name>.sdcard of=/dev/sd<partition> bs=1M && sync

Current status and observations at this point

- Qt3D(QML), and wayland/weston with 3D GPU works fine.
 - CES2016 demo works well without any modification with desktop-shell
- Multimedia functions has not been fully checked. (lightmediascanner, rygel, etc)
- "systemd" has not fully verified with current NXP BSP?
 - serial-getty doesn't run after boot (due to recent systemd libudev-monitor.c changes?)
- Most of issues are around Wayland/Weston, and ivi-shell
 - Compilation error at ivi-shell-integration of qtwayland (under investigation, currently masked)
 - Compilation error while compile ivi-shell examples (Need to add patch to cmake configuration, and also manually patched to some files, due to vivante egl header files specific requirements)
 - Ivi-shell and its demos works, but need to investigate further for running CES demo on ivi-shell
 - I used to use AGL master branch, but currently to use albacore branch to minimize these issues.

Demo movies

- Boot console (<u>asciinema1</u> as of end of Dec 2015/<u>asciinema2</u> as of mid of Feb 2016)
- CES2016 AGL demo (on i.MX 6QP, 1080x1920 portrait screen)
- IVI shell and example applications (on i.MX6 QP, 1920x1080 landscape screen)
- 3D IVI demo (on i.MX 6QP, 1920x1080, Wayland backend w/OpenGLES+2D GPU)
 - 3D IVI application preview, designing with authoring tool which supports wayland
- 3D graphic cluster demo (on i.MX 6QP, 1920x1080, frame buffer backend w/OpenGLES)
 - 3D graphic cluster application preview, designing with authoring tool
- AGL boot on (on i.MX 6SoloX, 1024x768)
 - Built AGL with same BSP for low-end device, GPU shader performance is 1/8 of 6QP. Running same application with low resolution, low frame rate

Conclusion and future support plan for AGL

- NXP start to investigate AGL on i.MX 6 series and continue to work
 - NXP already provided Yocto based BSP to all i.MX processors
 - NXP provides reference boards for automotive customers, also many SBCs with i.MX processors
 - We can support AGL on i.MX processors with relatively small effort, but...
 - Currently, NXP BSP uses Yocto 1.8(fido), but AGL expects Yocto 1.7(dizzy), and it would cause some issues.

- NXP are discussing how to broaden AGL involvement for next generation i.MX
 - Both NXP and AGL layers will move to Yocto 2.0(Jethro)
 - This would make easy to support AGL with NXP BSP

SECURE CONNECTIONS FOR A SMARTER WORLD