The University of Queensland School of Earth and Environmental Sciences

Introduction to geophysical data processing and modeling using Python

Lutz Gross

E-mail: l.gross@uq.edu.au

Zhengguang Zhao

E-mail: zhengguang.zhao@uq.net.au

Aims of the Course

- Hands-on introduce to basic concepts of python as a tool for computational sciences
- Show concepts for geophysical data processing
- Introduction to numerical modeling & inversion in python in Geophysics

Course Outline

- Day 1: Basic Concepts of Python
- Day 2: Arrays and data visualization:
 - matplotlib & numpy
- Day 3: Numerical modeling for Geophysics
 - esys.escript
- Day 4: Seismic Data Processing
- Day 5: Advanced Topics: Inversion

Program (somehow)

	Monday	Tuesday	Wednesday	Thursday	Friday
9:00-10:30	`Prelude`	`Files`	`Numerical Modeling`	`Modeling Waves`	`Advanced topics`
10:30- 11:00	break	break	break	break	
11:00- 12:30	`Basics`	`Data Visualization`	`Geophysical modeling`	`Seismic data processing I`	
12:30- 14:00	lunch	lunch		lunch	lunch
14:00- 15:30	`Programming	`Arrays`	`Geophysical modeling`	`Seismic data processing II`	exercises
15:30- 16:00	break	break	break	break	
16:00- 18:00	exercises	exercises		exercises	

Course Presentation

- Through Jupyter notebook
 - → Hands-on work during lecture
- Course through a Virtual Machine Guest:
 - Debian Linux
 - With Anaconda3 python distribution:

https://www.anaconda.com/

With esys-script package

https://anaconda.org/conda-forge/esys-escript

Virtual Box

Install VM host from

https://www.virtualbox.org/wiki/Downloads

Import OVF file for course

click on OVF file

Or

select file through File->Import

Check Guest Settings

Copy & past between Host & Guest:

Access Host Folder in Guest

- To transfer files between guest and host
- Settings → Shared Folders

Guest System Setting

Guest Display Settings

- You may want to allow more Video Memory
- "\/h

Fire up the guest machine

- Machine → Start → Normal Start
 - Or double click

Login:

Name: student

Password: escript

Start Jupyter Server

Geophysics with Python

OF QUEENSLAND

Jupyter Portal

In the Firefox browser

Jupyter notebook

- web application → use your favorite browser
 - contain live python code
 - includes narrative text
 - contains equations
 - includes visualizations
 - to create and share documents
- See https://jupyter.org/

A jupyter notebook

- is two things:
 - A document containing text and python code
 - Extension: ipynb
 - A session
 - to render the text
 - to run the code/sections of the code

After login

notebook page

Cells after 'run'

Matplotlib output is integrated

```
Out[14]: 2.8284271247461907

# Matplotlib

graphical output is shown in the notebook after run:

In []: 
import numpy as np
import matplotlib.pyplot as plt

# create 100 points from 0 to 2 (including 2)

4 z = np.linspace(0, 2, 100)

5 plt.plot(z, z, label='linear')
6 plt.plot(z, z, label='quadratic')
7 plt.plot(z, z**2, label='cubic')
8 plt.xlabel('z label')
9 plt.ylabel('y label')
10 plt.title("Simple Plot")
11 plt.legend()
12 plt.show()
```

Matplotlib

```
graphical output is shown in the notebook after run:
```


File Menu

Example report

And more

- 'Edit' → copy & past & split & merge
- 'Insert' → add new cell
- 'Run' → run all cells, run cells above/below, ...
- For markdown text see for instance:
 - https://www.datacamp.com/community/tutorials/ markdown-in-jupyter-notebook

