Two Variables

Why 2

San Diego version

6 are better than 1

6 pack

LA version of SD version

Probabilistic Reasons

Outcomes often result from multiple factors

Rain temperature and humidity

Economy unemployment and inflation

Hiring experience and salary

Student # classes GPA

Human condition profession age happiness salary location dinner plans

Joint Distribution

Simple extension of one variable

# Variables	Variable Names	Sample Space	Probability	Abbreviation	properties
One	X	$\boldsymbol{\chi}$	p(X=x)	p(x)	$p(x) \ge 0$ $\sum_{x} p(x) = 1$
Two	X, Y	χ_{χ}	p((X,Y)=(x,y))	p(x,y)	$p(x,y) \ge 0$ $\sum_{x,y} p(x,y) = 1$

Specification

State probability of every possible (x,y) pair

Table

1-d

X	y	P(x,y)
0	0	.1
0	2	.2
1	2	.3
1	3	.4

Shows structure

2-d

Structured distributions

More natural options

Coins

Story Two independent fair coins

Explicit
$$P(u,v) \stackrel{\text{def}}{=} P(U=u, V=v) = \frac{1}{4} \quad \forall \{u,v\} \in \{0,1\}$$

Table 1-d

u	V	P(u,v)
0	0	1/4
0	1	1/4
1	0	1/4
1	1	1/4

2-d

0
 1
 1/4
 1/4
 1/4
 1/4

Biased Coins

Independent B(p) and B(q) coins

(1-d)

u	V	P(u,v)	
0	0	(1-p)(1-q)	
0	1	(1-p)q	
1	0	p(1-q)	
1	1	pq	

2-d

	0	1	V
0	1/4	1/4	
	1/4	pq	

Fair & Rigged

Two coins

Fair

B(1/2)

Rigged

B(0)

Randomly choose fair or rigged

Flip chosen coin

	0	
fair	1/4	1/4
rigged	1/2	0

Event Probability

Joint distribution determines probabilities of all events

Quiz

Find a simple description of following events

And their probability

Show shape, ask for description

$$X+Y=1$$
 $X\cdot Y=0$

$$min(X,Y)=1$$
 $max(X,Y)=1$

Marginals

Special events Value of X, or Y

Marginal of X
$$P(x) = P_X(x) = P(X = x) = \sum_{y} p(x,y)$$
 Event that X=x Rule of total probability

Rule of total probability

Marginal of Y
$$P(y) = P_Y(y) = P(Y = y) = \sum_{x} p(x,y)$$
 Event that Y=y

O 1 y

0 0.1 0.2
$$\leftarrow$$
 P(X = 0) = .3 Write on "Margins"
1 0.3 0.4 \leftarrow P(X = 1) = .7

$$P(X = 0) = P(X = 0, Y = 0) + P(X = 0, Y = 1)$$
 Total probability
= $P(0,0)+P(0,1) = .1 + .2 = .3$

Joint Matters

Very different joint distributions can have the same marginals

In all following, X, Y \sim B(.5), but very different joint distributions

Y=X

0.5

0.5 0 Y=1-X

0.25	0.25
0.25	0.25

0.5

0.4	0.1
0.1	0.4

Consider contents, not just marginals

$$P(X=x \mid Y=y)$$

$$P(x | y) = \frac{p(x,y)}{p(y)}$$

Conditionals of 1 y

$$P(y \mid x) = \frac{p(x,y)}{p(x)}$$

$$0 \mid 0.1 \mid 0.2 \mid -P(X=0) = 0.3$$

$$P(Y = 0 | X = 0) = \frac{P(X = 0, Y = 0)}{P(X = 0)} = \frac{0.1}{0.3} = \frac{1}{3}$$
 $P(Y = 0) = 0.4$

$$P(Y = 0) = 0.4$$

$$P(Y = 1 | X = 0) = \frac{P(X = 0, Y = 1)}{P(X = 0)} = \frac{0.2}{0.3} = \frac{2}{3}$$

$$P(X = 0 | Y = 0) = \frac{P(X = 0, Y = 0)}{P(Y = 0)} = \frac{0.1}{0.4} = \frac{1}{4}$$

$$P(X = 1 | Y = 0) = 1 - P(X = 0, Y = 0) = 1 - \frac{1}{4} = \frac{3}{4}$$

Independence

X, Y independent

Intuitive

$$\forall x,y \qquad p(y \mid x) = p(y)$$

Value of X does not affect distribution of Y

$$p(x | y) = p(x)$$

Value of Y does not affect distribution of X

$$p(x,y) = p(x) \cdot p(y) \leftarrow more robust$$

Formal

		0.2	0.8	V	
P(x)	0.6	0.12	0.48		
	0.4	0.08	0.32		
	X	<u></u>		1	

Independence Checks

Independent → rows proportional to each other

-- columns proportional to each other

$$X \sim B(\frac{1}{2})$$
 $Y = X$ $Y = 1 - X$ y y $0 1$ $0 1$ $0 1$ $0 1$ $0 1$ $0 1$ $0 1$ $0 1$

 $X \perp \!\!\!\perp Y$ For all x and all y Events $X = x \perp \!\!\!\!\perp Y = y$

Marginal Events

X-event Defined on X

Y-event Similar

If $X \perp \!\!\!\perp Y$, then all X-events are $\perp \!\!\!\perp$ of all Y-events

Two Variables

