Université de La Manouba		Ecole Supérieure de l'Economie Numérique	
Niveau		L3 TSI	A.U : 2020/2021
Matière	Business Intelligence		1 ^{er} semestre

Série 1 : Modélisation d'un Data Warehouse

<u>Corrigé</u>

Exercice 1

Première solution : en étoile

Mesures	Dimensions	
1* Solution	-	
Nb d'articles	Type article	
Chiffre d'Affaire	Magasin	
	Période	

Deuxième solution : Flocon de neige

Mesures	Dimensions	Hiérarchie		1
2" Solution		**		1
Nb d'articles	Type article			
Chiffre d'Affaire	Magasin	→ Département —	> Région	ļ
	Période -	Mois	Trimestre -	Année

Exercice 2

1.

Mesures	Dimensions	
1° Solution	**	
Qtés vendues	Jour	
Bénfices	Restaurant	
	Aliment	

2.

Mesures Dimensions		Hiérarchie		
2* Solution				
Qtés vendues	Jour	Semaine -	→ Mois	Année
Bénfices	Restaurant -	> Ville -	> Pays	
	Aliment			

<u>Schéma en flocon</u>: provient la normalisation des tables de dimensions.

Avantages : - Petite économie d'espace

- Plus facile de mettre à jour les tables de dimensions en cas de changement

Inconvénients : - Schéma moins intuitif aux utilisateurs d'affaires

- --> Généralement, on préfère ne pas normaliser les tables de dimensions
 - Dégradation de la performance à cause des jointures additionnelles

3.

Mesures	Dimensions		Hiérarchie	
2° Solution			ev	555
Qtés vendues	Jour	Semaine -	> Mois	Année
Bénfices	Restaurant -	> Ville	> Pays	
Nbre de Cdes	Aliment			Ü

Exercice 3

1. La plupart des attributs dimensionnels ont un ID ainsi qu'un champ descriptif.

Par exemple, dans la table **Date**, le mot *novembre*, n'est pas suffisant pour identifier avec précision ce mois, car on le retrouve dans chacune des années. Il faut donc un attribut *idMois* (ex : '11/2010') ainsi qu'un attribut descriptif *descrMois* (ex : 'Novembre'). C'est la même chose pour l'attribut *ville* : le même nom de ville peut se trouver dans plusieurs pays ou même plusieurs fois dans le même pays.

La table **TypeClient** a été créée selon la stratégie de <u>mini-dimension</u>. L'avantage est que la table **TypeClient** peut être pré-générée (toutes les combinaisons possibles de sexe, ville, groupe d'âge, etc.). De même, les tables **Destination**, **Date**, **Forfait**, **Promotion** et **CanalVentes** peuvent également être pré-générées et ne sont (presque) jamais modifiées. Seule la table de dimension **Client** est modifiée à chaque fois qu'un client s'ajoute au système.

La clé primaire de la table de faits **Ventes** est une clé composée car il est très rare que l'on accède individuellement les lignes de cette table. En revanche, les clés primaires des tables de dimension sont toujours des clés artificielles simples (ex : NUMBER)

2. Les niveaux d'une hiérarchie doivent avoir une relation 1 à plusieurs : un parent peut avoir plusieurs enfants (ex : une année à plusieurs mois) mais chaque enfant n'a qu'un seul parent (ex : le mois '11/2010' appartient uniquement à l'année 2010).

Table de dimension	Hiérarchies	
Destination	idDestination → idVille → idPays → idRégion → tous	
Date	idDate → idMois → année → tous	
Forfait	idForfait → tous	
Client	idClient →tous	
TypeClient	idTypeClient → idVille → idProvince → idPays →tous	
CanalVente	idCanal→ tous	
Promotion	idPromotion → tous	
ModePaiement	idModePaiement → tous	