МИНОБРНАУКИ РОССИИ САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ ЭЛЕКТРОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ «ЛЭТИ» ИМ. В.И. УЛЬЯНОВА (ЛЕНИНА)

Кафедра САУ

ОТЧЕТ

по практической работе № 2

по дисциплине «Проектирование и конструирование электромеханических

систем автономных сервисных роботов»

Тема: МЕХАНИЧЕСКИЕ ХАРАКТЕРИСТИКИ ДВИГАТЕЛЯ ПОСТОЯННОГО ТОКА

Вариант 1

Студент гр. 9492	 Викторов А.Д.
Преподаватель	 Бельский Г.В.

Задание на работу

Необходимо построить естественную механическую характеристику и семейство искусственных, полученных путем изменения напряжения питания двигателя постоянного тока. Объяснить полученные результаты. Параметры двигателя заданы вариантом согласно таблице.

Вариант	1
$P_{\rm H}$, кВт	3,67
$n_{\rm H}$, об/мин	1750
$U_{\text{ян}}$, B	240
$I_{\text{ян}}$, A	19,41
$R_{\mathfrak{A}}$, Om	2,581
$L_{\rm g}$, Гн	0,028
<i>J</i> , кг·м ²	0,0221

Ход работы

На рисунке 1 представлена схема для получения механической характеристики двигателя постоянного тока.

Figure 1 - Схема для получения механической характеристики

Для получения корректных результатов необходимо задать характеристики ДПТ. В данном случае использовались характеристики эквивалентной электрической схемы, а именно индуктивность и сопротивление якоря, коэффициент обратной ЭДС и момент инерции якоря (см. рис.2).

Figure 2 - Электрические характеристики ДПТ

Постоянная противоЭДС вычисляется по следующей формуле:

$$k_e = \frac{(U_{_{\mathit{SH}}} - R_{_{\mathit{S}}}I_{_{\mathit{SH}}})}{\omega_{_{\mathit{n}}}} \tag{1.1}$$

Приведение скорости вращения в СИ производится по следующей формуле:

$$\omega_{H} = \frac{\pi n_{H}}{30} \tag{1.2}$$

Таким образом номинальная частота вращения составляет 183.26 рад/с. Постоянная противо ЭДС -1.036. Номинальный момент вычисляется по формуле 1.3 и составляет 20 Hm.

$$M_{H} = \frac{P_{H}}{\omega_{H}} \tag{1.3}$$

Искусственные механические характеристики получены при напряжениях $1.2 \cdot V_{\rm H}$, $0.8 \cdot V_{\rm H}$, $0.6 \cdot V_{\rm H}$ и $0.4 \cdot V_{\rm H}$ и представлены на рисунке 3.

Figure 3 - Механические характеристики ДПТ

С учетом того, что возбуждение происходит благодаря постоянным магнитам (частный случай независимого возбуждения) графики механических характеристик — прямые. Из-за того, что разница напряжений одинакова — расстояние между прямыми на графике одинаковое.

Вывод

В ходе выполнения данной практической работы были получены естественная и искусственные механические характеристики двигателя постоянного тока с независимым возбуждением постоянными магнитами.

Было доказано, что при регулировании скорости вращения ДПТ с независимым возбуждением, жесткость механической характеристики не изменяется.

Исходя из совпадения номинальной частоты вращения с номинальным нагрузочным моментом можно сделать вывод о корректности эксперимента.