

The Data Behind the Tanzanian Water Crisis

Nick Kachanyuk, M.S. Data Science Candidate

August 11, 2021

Willamette University

Atkinson Graduate School of Management

Agenda

- → Project Research Questions
- → Background
- \rightarrow Data
- → Methods
- → Results
- → Variables of importance
- → Recommendations
- → Takeaways
- \rightarrow Q&A

Project Research Questions

- What machine learning algorithm is suitable for classifying water well functionality?
- What are the important variables for the machine learning approach?
- What are some general things that differentiate a working water well from wells that are non-functional and/or need repair?

Background

- According to Water.org records, about 4 million people lack access to safe water resources in Tanzania [1].
- In 2016, Water.org found that Tanzania is eligible for a "water credit solution".
 - Lending solutions to households, water companies, local government, etc.
- Currently there are no known guidelines established to tackle the issue
- My project attempts to investigate available data and provide actionable guidelines for stakeholders

Data

- Two sources of data were used:
 - DrivenData [2]
 - 39 features + target variable
 - 31 categorical, 8 numeric
 - Multiclassification problem
 - Functional, functional needs repair, nonfunctional
 - 2012 Tanzania census data
 - 7 numeric variables on region specific demographics (population, average household size, unemployment rate, region area, etc.)
 - 2 feature engineered variables
 - Population density
 - Well strain

Methods

- Imputation of missing data (median, mean)
 - Data was not missing at random
- Principal Component Analysis
 - Dimensionality reduction
 - Many categorical variables; even more dummy variables
- 4 XGBoost models
 - Handles outliers well
 - Less prone to overfitting
 - Known for good model performance

Results

- Four final models were selected:
 - Baseline model:
 - 12 predictors, 3 target classes
 - Kappa: 0.599
 - Model 2:
 - 6 predictors, 3 target classes
 - Kappa: 0.600
 - Model 3:
 - 12 predictors, 2 target classes
 - Kappa: 0.598
 - Model 4:
 - 6 predictors, 2 target classes
 - Kappa: 0.594

Variables of Importance

Models w/ 12 predictors

Models w/ 6 predictors

Recommendations

- Use model 4 (or something similar to it)!
 - Comparable Kappa score to other models
 - Only uses 6 predictors (more succinct/interpretable)
 - Target classes are well defined and more balanced

Takeaways

- Functional wells:
 - Don't rely on handpump or "other" extraction methods
 - Tend to be located more in southern and eastern regions of Tanzania
 - Have more water volume available within the well/waterpoint
 - Experience less strain
- Needs attention wells:
 - Rely on handpump or "other" extraction
 - Tend to be located more in northern and western regions of Tanzania
 - Have less water volume available within the well/waterpoint
 - Experience higher well strain

Thank you

Nick Kachanyuk | nick-kachanyuk-website.netlify.app

nkachanyuk123@gmail.com | github.com/nickkachanyuk

References

- [1] Tanzania's water crisis Tanzania's water in 2021. Water.org. (n.d.). https://water.org/our-impact/where-we-work/tanzania/.
- [2] DrivenData. (n.d.). *Pump it Up: Data mining the water table*. DrivenData. https://www.drivendata.org/competitions/7/pump-it-up-data-mining-the-water-table/page/25/.

Backup slides – Missing data graph

Backup slides – Other extraction from rivers, lakes

Backup slides – Medium to large sized, southern and eastern regions principal component variable

Backup slides – Small to medium sized, northern and western regions principal component variable

Backup slides – Handpump groundwater shallow well principal component variable

Backup slides – Well strain variable

Backup slides – Well strain variable formula

Formula:

```
well_strain = ((population/total_region_pop)*region_pop_density)
```

- where population is the number of people living around the well
- total_region_pop is the total number of people living in a given region of Tanzania
- region_pop_density is total_region_pop/region_area_sq_mi

Backup slides – Model 1 (baseline model)

	nrounds	max_depth	eta	gamma	colsample_bytree	min_child_weight	subsample
	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>
61	1000	8	0.05	0	0.9	5	0.5

Backup slides – Model 2 (6 predictors, 3 target classes)

Confusion Matrix and Sta	tistics		
Prediction functional functional needs repai non functional	7160	296	onal 1398 68 4256
Overall Statistics			
Accuracy 95% CI No Information Rate P-Value [Acc > NIR]	: (0.782, 0.7952) : 0.5435		
Карра	: 0.6003		
Mcnemar's Test P-Value	: < 2.2e-16		
Statistics by Class:			
Cla Sensitivity Specificity Pos Pred Value Neg Pred Value Prevalence Detection Rate Detection Prevalence Balanced Accuracy	ss: functional Class: 0.8871 0.7014 0.7796 0.8392 0.5435 0.4822 0.6185 0.7943	functional needs repair C 0.28004 0.98115 0.53237 0.94676 0.07118 0.01993 0.03744 0.63059	lass: non functional 0.7438 0.9064 0.8329 0.8495 0.3853 0.2866 0.3441 0.8251

	nrounds	max_depth	eta	gamma	colsample_bytree	min_child_weight	subsample
	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>
62	1000	8	0.05	0	0.9	5	0.75

Backup slides – Model 3 (12 predictors, 2 target classes)

```
Confusion Matrix and Statistics
                 Reference
Prediction
                  functional needs_attention
  functional
                        6916
                                        1788
  needs_attention
                        1155
                                        4991
               Accuracy : 0.8018
                 95% CI: (0.7953, 0.8082)
    No Information Rate: 0.5435
    P-Value [Acc > NIR] : < 2.2e-16
                  Kappa : 0.5976
Mcnemar's Test P-Value : < 2.2e-16
            Sensitivity: 0.8569
            Specificity: 0.7362
         Pos Pred Value : 0.7946
         Neg Pred Value : 0.8121
             Prevalence: 0.5435
         Detection Rate: 0.4657
   Detection Prevalence: 0.5861
      Balanced Accuracy: 0.7966
       'Positive' Class : functional
```


	nrounds	max_depth	eta	gamma	colsample_bytree	min_child_weight	subsample
	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>
63	1000	8	0.05	0	0.9	5	0.9

Backup slides – Model 4 (6 predictors, 2 target classes)

```
Confusion Matrix and Statistics
                 Reference
                  functional needs_attention
Prediction
  functional
                        6915
                                        1813
  needs attention
                                        4966
                        1156
               Accuracy : 0.8001
                 95% CI : (0.7935, 0.8065)
    No Information Rate: 0.5435
    P-Value [Acc > NIR] : < 2.2e-16
                  Kappa : 0.5939
Mcnemar's Test P-Value : < 2.2e-16
            Sensitivity: 0.8568
            Specificity: 0.7326
         Pos Pred Value : 0.7923
         Neg Pred Value: 0.8112
             Prevalence: 0.5435
         Detection Rate: 0.4657
   Detection Prevalence: 0.5877
      Balanced Accuracy: 0.7947
       'Positive' Class : functional
```


	nrounds	max_depth	eta	gamma	colsample_bytree	min_child_weight	subsample
	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>
63	1000	8	0.05	0	0.9	5	0.9