# IT5429E-1-24 (24.1A01)(Fall 2024): Graph Analytics for Big Data

Week 2: Node Embedding, Link Analysis

Instructor: Thanh H. Nguyen

Many slides are adapted from <a href="https://web.stanford.edu/class/cs224w/">https://web.stanford.edu/class/cs224w/</a>

#### Announcement and Reminder

- •Week 3: (Tuesday, August 20<sup>th</sup>, 8 am)
  - Will be held on Zoom
  - Zoom link will be posted on Slack

- Class project
  - Project proposal (deadline: end of week 4)

#### Outline

- •Feature engineering: finish traditional link/graph tasks
- Graph representation learning
  - Shallow node embedding
  - Graph embedding
  - Connection to matrix factorization
- Link analysis
  - PageRank
  - Personalized PageRank
  - Random walk with restarts

#### Link Prediction Task and Features



### Link-level Prediction Task: Recap

- The task is to predict new/missing/unknown links based on the existing links.
- At test time, node pairs (with no existing links) are ranked, and top *K* node pairs are predicted.
- Task: Make a prediction for a pair of nodes.



#### Link Prediction as a Task

- Links missing at random
  - Remove a random set of links and then aim to predict them
- Links over time
  - Given  $G[t_0, t'_0]$  a graph defined by edges up to time  $t'_0$ , output a ranked list L of edges (not in  $G[t_0, t'_0]$ ) that are predicted to appear in time  $G[t_1, t'_1]$
  - Evaluation:
    - $n = |E_{new}|$ : number of edges that appear during the test period  $G[t_1, t_1']$
    - Take top n elements of L and count corrected edges



 $G[t_0,t_0']$ 

$$G[t_1,t_1']$$

# Link Prediction via Proximity

- Methodology:
  - For each pair of nodes (x, y), compute score c(x, y)
    - For example: #common neighbors of *x* and *y*
  - Sort pairs (x, y) by the decreasing score c(x, y)
  - Predict top-n pairs as new links
  - See which of these links actually appear in  $G[t_1, t_1']$



#### Link-Level Feature: Overview

- Distance-based feature
- Local neighborhood overlap
- Global neighborhood overlap



#### Distance-based Feature

- Shortest path distance between two nodes
  - Example



$$S_{BH} = S_{BE} = S_{AB} = 2$$
$$S_{BG} = S_{BF} = 3$$

- However, this does not capture the degree of neighborhood overlap
  - Node pair (B, H) has two shared neighboring nodes
  - Node pair (B, E) and (A, B) only have 1 such nodes

# Local Neighborhood Overlap

- Capture #neighboring nodes shared between two nodes
  - Common neighbors:  $|N(v_1) \cap N(v_2)|$ 
    - Example:  $|N(A) \cap N(B)| = 1$
  - Jaccard's coefficient:  $\frac{|N(v_1) \cap N(v_2)|}{|N(v_1) \cup N(v_2)|}$ 
    - Example:  $\frac{|N(A) \cap N(B)|}{|N(A) \cup N(B)|} = \frac{1}{2}$
  - Adamic-Adar index:  $\sum_{u \in N(v_1) \cap N(v_2)} \frac{1}{\log(k_u)}$ 
    - Example:  $\frac{1}{\log(k_C)} = \frac{1}{\log 4}$



Thanh H. Nguyen

# Global Neighborhood Overlap

- Limitation of local neighborhood overlap
  - Metric is always zero if the two nodes do not have any neighbors in common



$$|N(A) \cap N(E)| = 0$$

- However, the two nodes may still potentially be connected in the future
- Global neighborhood overlap: resolves the limitation by considering the entire graph

# Global Neighborhood Overlap

• Katz index: count the number of walks of all lengths between a given pair of nodes

- Compute #walks:
  - Use powers of the graph adjacency matrix

12

# Intuition: Powers of Adj Matrices

- Compute #walks between two nodes
  - Recall:  $A_{uv} = 1$  if  $u \in N(v)$
  - Let  $P_{uv}^{(k)} = \#walks$  of length k between u and v
  - We will show  $P^{(k)} = A^k$
  - $P_{uv}^{(1)} = A_{uv} = \#walks$  of length 1 (direct neighborhood) between u and v



$$P_{12}^{(1)} = A_{12}$$

$$A = \begin{pmatrix} 0 & 1 & 0 & 1 \\ 1 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 \\ 1 & 1 & 1 & 0 \end{pmatrix}$$

# Intuition: Powers of Adj Matrices

- How to compute  $P_{uv}^{(2)}$ ?
  - Step 1: Compute #walks of length 1 between each neighbor of u and v
  - Step 2: Sum up these #walks across u's neighbors

$$P_{uv}^{(2)} = \sum_{i} A_{ui} * P_{iv}^{(1)} = \sum_{i} A_{ui} * A_{iv} = A_{uv}^{2}$$



Node 1's neighbors

$$A^2 = egin{pmatrix} 0 & 1 & 0 & 1 \ 1 & 0 & 0 & 1 \ 0 & 0 & 0 & 1 \ 1 & 1 & 1 & 0 \end{pmatrix}$$

#walks of length 1 between Node 1's neighbors and Node 2  $P_{12}^{(2)} = A_{12}^2$ 

$$A^2 = \begin{pmatrix} 0 & 1 & 0 & 1 \\ 1 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 \\ 1 & 1 & 1 & 0 \end{pmatrix} \times \begin{pmatrix} 0 & 1 & 0 & 1 \\ 1 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 \\ 1 & 1 & 1 & 0 \end{pmatrix} = \begin{pmatrix} 2 & 1 & 1 & 1 \\ 1 & 2 & 1 & 1 \\ 1 & 1 & 1 & 0 \\ 1 & 1 & 0 & 3 \end{pmatrix}$$
 adjacency

# Global Neighborhood Overlap

• Katz index between  $v_1$  and  $v_2$  is computed as:

#### Sum over all walk lengths

$$S_{v_1v_2} = \sum_{l=1}^{\infty} \beta^l A_{v_1v_2}^l$$
 #walks of length  $l$  between  $v_1$  and  $v_2$   $0 < \beta < 1$ : discount factor

• Katz index matrix is computed in closed-form:

$$S = \sum_{i=1}^{\infty} \beta^i A^i = (I - \beta A)^{-1} - I,$$

$$= \sum_{i=0}^{\infty} \beta^i A^i$$
by geometric series of matrices

15

### Link-Level Features: Summary

- Distance-based feature
  - Use the shortest path length
  - Does not capture how neighborhood overlaps
- Local neighborhood overlap
  - Capture how many neighboring nodes are shared
  - Become zero when no neighbors are shared
- Global neighborhood overlap
  - Use global graph structure to score two nodes
  - Katz index count #walks of all lengths between two nodes



#### Graph-Level Features and Graph Kernels

17

### Graph-Level Features

• Goal: characterize structure of an entire graph

• Example:



#### Graph-Level Features: Overview

- Graph kernels: measure similarity between two graphs
  - Graphlet kernel
  - Weisfeiler-Lehman kernel
  - Other kernels (will not be covered in this lecture)
    - Random-walk kernel
    - Shortest-path graph kernel
    - Many more...



#### Graph Kernel: Ideas

- Goal: design graph feature vector  $\phi(G)$
- Key ideas: Bag-of-Words (BoW) for a graph
  - Recall: BoW uses word counts as features for documents (no ordering)
  - Naïve extension to a graph: consider nodes as words
    - Limitation:

$$\phi(\square) = \phi(\square)$$

• Since both graphs have 4 nodes, we get the same feature vector for two different graphs



# Graph Kernel: Key Ideas

• What if we use Bag of node degrees?



 Both Graphlet kernel and Weisfeier-Lehman (WL) use Bag-of-\* representation of graphs.

- Key idea: count #different graphlets in a graph
  - Note: definition of graphlets here is slightly different from node-level features
  - Two differences:
    - Nodes in graphlets here do not need to be connected
    - Graphlets here are not rooted

- Let  $\mathcal{G}_k = (g_1, g_2, \dots, g_{n_k})$  be a list of graphlets of size k.
- For k=3, there are 4 graphlets



• For k = 4, there are 11 graphlets





• Given graph G, and a graphlet list  $\mathcal{G}_k = (g_1, g_2, ..., g_{n_k})$ , define the graphlet count vector  $f_G \in \mathbb{R}^{n_k}$  as:

$$(f_G)_i = \#(g_i \in G), \forall i = 1, 2, ..., n_k$$

024 (26)

• Example: k = 3



$$f_G = (1, 3, 6,$$





### Graph-Level Graphlet Kernel

• Given two graphs, G and G', graphlet kernel is computed as:

$$K(G,G') = f_G^T f_{G'}$$

- Problem:
  - If G and G' have different sizes, that will greatly skew the value.
- Solution: normalize each feature vector

$$h_G = \frac{f_G}{sum(f_G)} \qquad K(G, G') = h_G^T h_{G'}$$

# The Graphlet Kernel

- •Limitations: counting graphlets is expensive
  - Counting size-k graphlets for a graph of size n by enumeration takes  $n^k$
  - This is unavoidable in worst case since subgraph isomorphism test (judging if a graph is a subgraph of another graph) is NP-hard.
  - If a graph's node degree is bounded by d, an  $O(nd^{k-1})$  algorithm exists to count all graphlets of size k.

• Can we design a more efficient graph kernel?

#### Weisfeiler-Lehman Kernel

• Goal: Design an efficient graph feature description  $\phi(G)$ 

- Key idea: Use neighborhood structure to iteratively enrich node vocabulary.
  - Generalized version of Bag of node degree since node degrees are one-hop neighborhood information

• Algorithm: Color refinement



#### Color Refinement

- Given: A graph G with a set of nodes V.
  - Assign an initial color  $c^{(0)}(v)$  to each node v.
  - Iteratively refine node colors by

$$c^{(k+1)}(v) = HASH\left(\left\{c^{(k)}(v), \left\{c^{(k)}(u)\right\}_{u \in N(v)}\right\}\right)$$

where HASH maps different inputs to different colors

• After K steps of color refinement,  $c^{(K)}(v)$  summarizes the structure of K-hop neighborhood.

#### Color Refinement: Example

Assign initial colors





Aggregate neighboring colors





### Color Refinement: Example

Aggregate neighboring colors



Hash aggregated colors





#### Hash table

| 1,1    | > | 2 |  |
|--------|---|---|--|
| 1,11   | > | 3 |  |
| 1,111  | > | 4 |  |
| 1,1111 | > | 5 |  |

### Color Refinement: Example

Aggregate neighboring colors





Hash aggregated colors



#### Hash table

| 2,4                   | > | 6  |
|-----------------------|---|----|
| 2,5                   | > | 7  |
| 3,44                  | > | 8  |
| 3,45                  | > | 9  |
| 4, <mark>2</mark> 45  | > | 10 |
| 4,345                 | > | 11 |
| 5, <mark>22</mark> 44 | > | 12 |
| 5, <mark>23</mark> 44 | > | 13 |

#### Weisfeiler-Lehman Graph Features

• After color refinement, WL kernel counts #nodes with a given color







#### Weisfeiler-Lehman Kernel

• The WL kernel is computed by the inner product of the color count vectors

$$K(\checkmark, \checkmark, \checkmark)$$

$$= \phi(\checkmark, \checkmark)^{T} \phi(\checkmark, \checkmark)$$

$$= 49$$

#### Weisfeiler-Lehman Kernel

- Computationally efficient
  - Time complexity for color refinement at each step is linear in #edges.
- When computing a kernel value, only colors appeared in the two graphs need to be tracked
  - Thus, #color is at most the total number of nodes.
- Counting colors takes linear time w.r.t #nodes
- In total, time complexity is linear in #edges



# Graph-Level Features: Summary

- Graphlet kernel
  - Graph is represented as Bag-of-graphlets
  - Computationally expensive
- Weisfeiler-Lehman kernel
  - Apply K-step color refinement algorithm to enrich node colors
    - Different colors capture different K-hop neighborhood structures
  - Graph is represented as Bag-of-colors
  - Computationally efficient
  - Closely related to Graph Neural Nets (will study later)

### Summary

- Traditional ML pipeline
  - Hand-crafted (structural) features + ML models
- Hand-crafted features for graph data
  - Node-level: node degree, centrality, clustering coefficient, graphlets
  - Link-level: distance-based features, local/global neighborhood overlap
  - Graph-level: graphlet kernel, WL kernel
- However, we only considered featurizing the graph structure (but not the attribute of nodes and their neighbors)

# Graph Representation Learning



## Recap: Traditional ML for Graphs



2024 41

## Graph Representation Learning

• Alleviate the need to do feature engineering every single time



24 42

# Graph Representation Learning

• Goal: Efficient task-independent feature learning for ML with graphs



# Why Embedding

- Task: Map nodes into an embedding space
  - Similarity of embeddings between nodes implies their similarity in the original graph
    - Both nodes are close to each other (connected by an edge)
  - Encode graph information
  - Potentially used for many downstream predictions



#### Tasks:

- Node classification
- Link prediction
- Graph classification
- Anomalous node detection

Clustering

# Example of Node Embedding

Zachary's Karate Club network



# Node Embeddings: Encoder & Decoder

46

### Setup

- Assume an undirected graph G
  - V: vertex set
  - A: adjacency matrix (assuming binary)
  - For simplicity: No node features or extra information



$$A = \begin{pmatrix} 0 & 1 & 0 & 1 \\ 1 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 \\ 1 & 1 & 1 & 0 \end{pmatrix}$$

8/14/2024

Thanh H. Nguyen

## **Embedding Nodes**

• Goal: encode nodes so that similarity in the embedding space (e.g., dot product) approximates similarity in graph



## Embedding Nodes

• Goal:  $similarity(u, v) \approx z_u^T z_v$ 

Thanh H. Nguyen



8/14/2024

# Learning Node Embedding

- 1. Encoder maps from nodes to embeddings
- 2. Define a node similarity function (e.g., a measure of similarity in the original graph)
- 3. Decoder (DEC) maps from embeddings to the similarity score
- 4. Optimize parameters of the encoder s.t:

$$similarity(u, v) \approx z_v^T z_u$$
  $DEC(z_v^T z_u)$  in original graph similarity of embeddings

## Two Key Components

• Encoder: map each node to a low-dimensional vector

$$ENC(v) = z_v$$
 d-dimensional embedding

•Similarity function: specify mapping of relationships between embedding space and original space

$$similarity(u, v) \approx z_v^T z_u$$
Decoder

### "Shallow" Encoding

•Simplest encoding approach: Encoder is just an embedding-lookup

$$ENC(v) = z_v = Z \cdot v$$

- • $Z \in \mathbb{R}^{d \times |V|}$ : matrix, each column is a node embedding (need to optimize)
- $v \in \mathbb{I}^{|V|}$ : indicator vector, all zeros except a one in column indicating node v

# "Shallow" Encoding

•Simplest encoding approach: Encoder is just an embedding-lookup



# "Shallow" Encoding

•Simplest encoding approach: Encoder is just an embedding-lookup

Each node is assigned a unique embedding vector (i.e., we directly optimize the embedding of each node)

•Many methods: DeepWalk, node2vec

54

### Framework Summary

- Encoder + Decoder Framework
  - Shallow encoder: embedding lookup
  - Parameters to optimize: Z which contains node embeddings  $z_u$  for each node  $u \in V$
  - We will cover deep encoders in the GNNs
  - Decoder: based on node similarity
  - Objective: maximize  $z_v^T z_u$  for node pairs (u, v) that are similar.

### How to Define Node Similarity

- Key choice of methods is how they define similarity
- •Should two nodes have a similar embedding if they:
  - are linked?
  - share neighbors?
  - have similar "structural roles"?
- We will now learn node similarity definition that uses random walk, and how to optimize embeddings for such a similarity measure

### Note on Node Embeddings

- This is unsupervised/supervised way of learning node embeddings
  - We are not utilizing node labels
  - We are not utilizing node features
  - The goal is to directly estimate a set of coordinates (i.e., the embedding) of a node so that some aspect of the network structure (captured by DEC) is preserved
- These embeddings are task independent
  - They are not trained for a specific task but can be used for any task

# Random Walk Approach



### Notations

- Vector  $z_u$ 
  - Embedding of node *u*
- Probability  $P(v \mid z_u)$ :
  - Our model prediction is based on embedding  $z_u$
  - Predicted probability of visiting node v on random walks starting from u
- Functions to predict probabilities
  - Softmax function
  - Sigmoid function

### Random Walk



Given a graph and a starting point, we select a neighbor of it at random, and move to this neighbor; then we select a neighbor of this point at random, and move to it, etc. The random sequence of points visited this way is a random walk on graph.

# Random-Walk Embeddings

Probability that u and v 
$$z_v^T z_u \approx$$
 co-occur on a random walk over the graph

### Random-Walk Embeddings

1. Estimate probability of visiting node v on a random walk starting from node u using some random walk strategy R



2. Optimize embeddings to encode these random walk statistics

Similarity in embedding space encodes random walk similarity



2024 62

### Why Random Walks?

#### 1. Expressivity:

- Flexible stochastic definition of node similarity that incorporates both local and high-order neighborhood information
- Idea: if random walk starting from node u visit v with high probability, u and v are similar (high-order multi-hop information)

#### 2. Efficiency:

- Do not need to consider all node pairs when training
- Only need to consider pairs that co-occur on random walks.

# Unsupervised Feature Learning

 Intuition: find embeddings of nodes in d-dimensional space that preserve similarity

• Idea: learn node embedding such that nearby nodes are close together in the graph.

- Given a node u, how do we define nearby nodes?
  - $N_R(u)$ : neighborhood of u obtained by some random walk strategy R



# Feature Learning as Optimization

- Given G = (V, E)
- •Our goal is to learn a mapping  $f = u \to \mathbb{R}^d$ :  $f(u) = z_u$
- Log-likelihood objective:

$$\max_{z} \sum_{u \in V} \log P(N_R(u) \mid z_u)$$

• Given node u, we want to learn feature representations that are predictive of the nodes in its random walk neighborhood  $N_R(u)$ 



- 1. Run short fixed-length random walks starting from each node u in the graph using some random walk strategy R
- 2. For each node u collect  $N_R(u)$ , the multiset of nodes visited on random walks starting from u
- 3. Optimize embeddings according to: given node u, predict its neighbors  $N_R(u)$

$$\max_{z} \sum_{u \in V} \log P(N_R(u) \mid z_u)$$



Equivalently,

$$\min_{Z} \mathcal{L} = \sum_{u \in V} \sum_{v \in N_{R}(u)} -\log(P(v \mid z_{u}))$$

- •Intuition: optimize embedding  $z_u$  to minimize the negative log-likelihood of random walk neighborhoods  $N_R(u)$
- Parameterize  $P(v \mid z_u)$  using softmax:

$$P(v \mid z_u) = \frac{\exp(z_u^T z_v)}{\sum_{n \in V} \exp(z_u^T z_n)}$$

- Goal: *v* to be most similar to *u* (out of all nodes *n*)
- Intuition:  $\sum_{i} \exp(x_i) \approx \max_{i} \exp(x_i)$

2024 (67)

Putting it all together



• Optimize random walk embeddings = Find embeddings that minimizes  $\mathcal{L}$ 



But doing this naively is too expensive

$$\min_{z} \mathcal{L} = \sum_{u \in V} \sum_{v \in N_{R}(u)} -\log \left( \frac{\exp(z_{u}^{T} z_{v})}{\sum_{n \in V} \exp(z_{u}^{T} z_{n})} \right)$$

Nested sum over nodes gives  $O(|V|^2)$  complexity

But doing this naively is too expensive

$$\min_{z} \mathcal{L} = \sum_{u \in V} \sum_{v \in N_R(u)} -\log \left( \frac{\exp(z_u^T z_v)}{\sum_{n \in V} \exp(z_u^T z_n)} \right)$$

The normalization term from the softmax is the culprit. Can we approximate it?

(70)

# Negative Sampling

Solution: negative sampling

$$-\log\left(\frac{\exp(z_u^T z_v)}{\sum_{n \in V} \exp(z_u^T z_n)}\right)$$

Technically, this is a different objective. But Negative Sampling is a form of Noise Contrastive Estimation (NCE) which approx. maximizes the log probability of softmax. Reference: <a href="https://arxiv.org/pdf/1402.3722">https://arxiv.org/pdf/1402.3722</a>

$$\approx \log(\sigma(z_u^T z_v)) + \sum_{i=1}^{k} \log(\sigma(-z_u^T z_{n_i})), n_i \sim P_V$$

Sigmoid function

Random distribution over nodes

- •Just normalize against k random negative samples  $n_i$ 
  - Quick neighborhood calculation

# Negative Sampling

- Sampling k negative nodes  $n_i$ , each with prob. proportional to its degree
- Two considerations for *k*:
  - Higher k gives more robust estimates
  - Higher *k* corresponds to higher bias on negative events.
  - Typical choice: k = 5 to 20
- Can negative samples be any node or only nodes not on the walk?
  - People often sample any nodes (for efficiency)

### Stochastic Gradient Descent

- Evaluate gradient for each individual training example:
- 1. Initialize  $z_u$  at some randomized value for all nodes u
- 2. Iterate until convergence:  $\mathcal{L}^{(u)} = \sum_{v \in N_R(u)} -\log(P(v \mid z_u))$ 
  - Sample a node u, for all v calculate the gradient  $\frac{\partial \mathcal{L}^{(u)}}{\partial z_v}$
  - For all v, update:  $z_v \leftarrow z_v \eta \frac{\partial \mathcal{L}^{(u)}}{\partial z_v}$

73

### Random Walk Summary

- 1. Run short fixed-length random walks starting from each node in the graph
- 2. For each node u, collect  $N_R(u)$ , the multi-set of nodes visited on random walks starting from u
- 3. Optimize embeddings Z using Stochastic Gradient Descent:

$$\mathcal{L} = \sum_{u \in V} \sum_{v \in N_R(u)} -\log \left( \frac{\exp(z_u^T z_v)}{\sum_{n \in V} \exp(z_u^T z_n)} \right)$$

We can efficiently approximate this using negative sampling

# How Should We Randomly Walk?

- What strategies should we use to run these random walks?
  - Simplest idea: Just run fixed-length, unbiased random walks starting from each node (<u>DeepWalk from Perozzi et al., 2013</u>)
    - The issue is that such notion of similarity is too constrained.

• How can we generalize this?

 $\frac{1}{2024}$  (75)

#### Overview of node2vec

- Goal: Embed nodes with similar network neighborhoods close in embedding space.
- We frame this goal as a maximum likelihood optimization problem, independent to the downstream prediction task.

- Key observation: Flexible notion of network neighborhood  $N_R(u)$  of node u leads to rich node embeddings
- Develop biased random walk R to generate network neighborhood  $N_R(u)$  of node u.

#### node2vec: Biased Walks

• Idea: use flexible, biased random walks that can trade off between local and global views of the network (Grover and Leskovec, 2016)





#### node2vec: Biased Walks

• Two classic strategies to define a neighborhood  $N_R(u)$  of a node u.



- Walk of length 3 ( $N_R(u)$  of size 3)
  - $N_{BFS}(u) = \{s_1, s_2, s_3\}$ : Local microscopic view
  - $N_{DFS}(u) = \{s_4, s_5, s_6\}$ : Global macroscopic view

8/14/2024 (78)

#### BFS versus DFS



BFS:  $N_R(\cdot)$  will provide a micro-view of neighborhood



DFS:  $N_R(\cdot)$  will provide a macro-view of neighborhood

## Interpolating BFS and DFS

- Biased fixed-length random walk R that generates neighborhood  $N_R(u)$  for a given node u.
- Random walk has two parameters:
  - Return parameter *p*:
    - Return to previous node
  - In-out parameter *q* 
    - Moving outwards (DFS) vs inwards (BFS) from previous node
    - Intuitively, q is the ratio of BFS vs DFS
- Next, we specify how a single step of biased random walk is performed
- Random walk is a sequence of these steps



## One Step of Biased Random Walk

- Define the random walk by specifying the walk transition probabilities on edges adjacent to the current node w
  - Random walk just traversed edge  $(s_1, w)$  and is now at w.
  - We specify edge transition probabilities out of node *w*
  - Insight: neighbors of *w* can only be:



## One Step of Biased Random Walk

• Walker came over edge  $(s_1, w)$  and is now at w. How to set edge transition probabilities?



- *p*, *q* model transition probabilities:
  - *p*: return parameter
  - q: walk-away parameter

/2024

# One Step of Biased Random Walk

• Walker came over edge  $(s_1, w)$  and is now at w. How to set edge transition probabilities?



 $N_R(u)$  are the nodes visited by biased walk

- BFS-like walk: low value of p
- DFS-like walk: low value of q

# node2vec Algorithm

- 1. Compute edge transition probabilities
  - For each edge  $(s_1, w)$  we compute edge walk probabilities (based on p and q) of edges  $(w, \cdot)$
- 2. Simulate r random walks of length l starting from each node u
- 3. Optimize node2vec objective using stochastic gradient descent

- Linear-time complexity
- •All 3 steps are individually parallelizable

#### Other Random Walk Ideas

- Different kinds of biased random walks:
  - Based on node attributes (Dong et al., 2017)
  - Based on learnt weights (<u>Abu-El-Haija et al., 2017</u>)
- Alternative optimization schemes
  - Directly optimize based on 1-hop and 2-hop random walk probabilities (LINE from <u>Tang et al. 2015</u>)
- Network preprocessing techniques
  - Random walks on modified versions of original graph (<u>Ribeiro et al. 2017's struct2vec</u>, <u>Chen et al. 2016's HARP</u>)

#### Summary

• Core idea: embed nodes so that distances in embedding space reflect node similarities in the original graph

- Different notions of node similarity
  - Naïve: similar if two nodes are connected
  - Random walk approaches

)24

## Summary

- No method wins in all cases
  - E.g., node2vec performs better on node classification while alternative methods perform better on link prediction (Goyal and Ferrara, 2017 survey)
- Random walk approaches are generally more efficient
- In general, must choose definition of node similarity that matches your application

# Embedding Entire Graphs



# **Embedding Entire Graphs**

•Goal: want to embed a subgraph or an entire graph G. Graph

embedding:  $z_G$ 



- Tasks:
  - Classifying toxic versus non-toxic molecules
  - Identifying anomalous graphs



## Approach 1

Simple but effective approach

- Run a standard node embedding technique on a (sub)-graph G
- Then just sum (or average) the node embeddings in the sub-graph G:

$$z_G = \sum_{v \in G} z_v$$

• Used by <u>Duvenaud et al., 2016</u> to classify molecules based on their graph structure

## Approach 2

•Introduce a virtual node to represent the sub-graph and run the standard node embedding technique



 Proposed by <u>Li et al., 2016</u> as a general technique for subgraph embedding

# Preview: Hierarchical Embeddings

• DiffPool: we can also hierarchically cluster nodes in graphs, and sum/avg the node embeddings according to these clusters



## Matrix Factorization and Node Embeddings



## Embeddings

• Recall: encoder as an embedding lookup



• Objective: maximize  $z_v^T z_u$  for node pairs (u, v) that are similar



#### Connection to Matrix Factorization

- Simplest node similarity: node *u*, *v* are similar if they are connected by an edge.
- This means:  $\mathbf{z}_v^T \mathbf{z}_u = A_{u,v}$  which is the (u,v) entry of the adjacency matrix A
- Therefore,  $Z^TZ = A$



#### Matrix Factorization

- The embedding dimension d (number of rows in Z) is much smaller than #nodes n
- Exact factorization  $A = Z^T Z$  is generally not possible
- However, we can learn Z approximately
- Objective:  $\min_{Z} ||A Z^T Z||_2$ 
  - We optimize Z to minimize the L2 norm of  $A Z^T Z$
  - Note today we used softmax instead of L2. But the goal to approximate A with  $Z^TZ$  is the same.
- Conclusion: inner product decoder with node similarity defined by edge connectivity is equivalent to matrix factorization of A.



## Random Walk-Biased Similarity

- DeepWalk and node2vec have a more complex node similarity definition based on random walks
- DeepWalk is equivalent to matrix factorization of the following complex matrix expression:

$$\log\left(vol(G)\left(\frac{1}{T}\sum_{r=1}^{T}(D^{-1}A)^{r}\right)D^{-1}\right) - \log b$$

## Random Walk-Biased Similarity



 Node2vec can also be formulated as a matrix factorization (albeit a more complex matrix)



## How to Use Embeddings

- Clustering/community detection
- Node classification
- Link prediction: predict edge (i, j) based on  $(z_i, z_j)$ 
  - We can concatenate, avg, product or subtract between the embeddings
    - Concatenate:  $f(z_i, z_j) = g([z_i, z_j])$
    - Hadamard:  $f(z_i, z_j) = g(z_i * z_j)$
    - Sum/avg:  $f(z_i, z_j) = g(z_i + z_j)$
    - Distance:  $f(z_i, z_j) = g(||z_i z_j||_2)$
- Graph classification: predict labels based on graph embedding  $z_G$  via aggregating node embeddings or virtual node



#### Summary

- We discussed graph representation learning, a way to learn node and graph embeddings for downstream tasks, without feature engineering.
- Encoder-decoder framework:
  - Encoder: embedding lookup
  - Decoder: predict score based on embedding to match node similarity
- Node similarity measure: (biased) random walk
  - Example: DeepWalk, node2vec
- Extension to graph embedding:
  - Node embedding aggregation

1/2024

#### Limitations

• Transductive (not inductive) method: cannot obtain embeddings for node not in the training set. Cannot apply to new graphs, evolving graphs



A newly added node 5 at test time (e.g., new user in a social network). Cannot compute its embedding with DeepWalk/node2vec. Need to recompute all node embeddings

101

#### Limitations

Cannot capture structural similarity



- Node 1 and 11 are structurally similar part of one triangle, degree 2, etc.
- However, they have very different embeddings
  - It is unlikely that a random walk will reach node 1 from node 11.

102

#### Limitations

Cannot utilize node, edge, and graph features



 Solution: Deep Representation Learning with Graph Neural Networks

103

# Link Analysis and PageRank (Google Algorithm)



# Example: The Web as a Graph

- Web as a graph
  - Nodes = web pages
  - Edges = hyperlinks
  - Side issue: What is a node
    - Dynamic pages created on the fly
    - "Dark matter" -- inaccessible database generated pages



106

#### What does The Web Look Like?

- How is the Web linked?
- What is the map of the Web?
- Web as a directed graph:
  - Given a node v, what nodes can v reach?
  - What other nodes can reach v?



107

# Ranking Nodes on the Graph

All webpages are not equally important

 There is a large diversity in the webgraph node connectivity

• Goal: rank the pages using the web graph link structure



# Link Analysis Algorithms

- Compute the importance of nodes in a graph
  - PageRank
  - Personalized PageRank (PPR)
  - Random Walk with Restarts

109

#### Links as Votes

- Ideas: Links as votes
  - Page is more important if it has more links
  - In-coming links? Out-coming links?
- Think of in-links as votes

- Are all in-links equal?
  - Links from important pages count more
  - Recursive question!!!



## PageRank: The "Flow" Model

- A vote from an important page is worth more:
  - Each link's vote is proportional to the importance of its source page
  - If page i with importance  $r_i$  has  $d_i$  outlinks, each out-link gets  $\frac{r_i}{d_i}$  votes
  - Page j's own importance  $r_j$  is the sum of votes on its in-links



## PageRank: The "Flow" Model

• A page is important if it is pointed to by other important pages

• Define rank  $r_j$  for node j:

$$r_j = \sum_{i \to j} \frac{r_i}{d_i}$$

 $d_i$ : out-degree of node i



### "Flow" equations:

$$r_y = r_y/2 + r_a/2$$
  
 $r_a = r_y/2 + r_m$   
 $r_m = r_a/2$ 

## PageRank: Matrix Formulation

- Stochastic adjacency matrix M
  - $d_i$ : out-degree of node i
  - If  $i \to j$ , then  $M_{ij} = \frac{1}{d_i}$
  - M is column stochastic matrix
    - Columns sum to 1.
- Rank vector *r*: an entry per page
  - $r_i$ : the importance score of page i
  - $-\sum_{i} r_{i} = 1$
- Flow equations:

$$r = M \cdot r$$



$$r_j = \sum_{i \to j} \frac{r_i}{d_i}$$

### Example: Flow Equations and M



$$r_y = r_y/2 + r_a/2$$

$$r_a = r_y/2 + r_m$$

$$r_m = r_a/2$$

$$\begin{vmatrix} r_y \\ r_a \\ r_m \end{vmatrix} = \begin{bmatrix} \frac{1}{2} & \frac{1}{2} & 0 \\ \frac{1}{2} & 0 & 1 \\ 0 & \frac{1}{2} & 0 \end{bmatrix} \begin{bmatrix} r_y \\ r_a \\ r_m \end{bmatrix}$$

### Connection to Random Walk

- Imagine a random web surfer:
  - At any time t, suffer is on some page i
  - At time t+1, suffer follows an out-link from i uniformly at random
  - Ends up on some page j linked to i
  - Process repeats indefinitely

#### • Let:

- p(t): a vector --- ith coordinate is prob. the suffer is at page i at time t
- Essentially, p(t) is the probability distribution over pages



$$r_j = \sum_{i \to j} \frac{r_i}{d_i}$$

8/14/202

Thanh H. Nguyen

# Connection to Random Walk: Stationary Distribution

• Where is suffer at time t+1?

$$p(t+1) = M \cdot p(t)$$

Suppose the random walk reaches a state

$$p(t+1) = M \cdot p(t) = p(t)$$

- Then p(t) is stationary distribution of random walk
- Our original rank vector r satisfies:  $r = M \cdot r$ 
  - It means r is stationary distribution of random walk



## PageRank: Summary

- Measure importance of nodes in a graph using the link structure of the web
- Model a random web surfer using stochastic adjacency matrix M
- Solve r = Mr where r can be viewed as both the principal eigenvector of M and as the stationary distribution of a random walk over the graph

119

### PageRank: How to Solve?

- Given a graph with n nodes, we use an iterative procedure
  - Assign each node an initial page rank
  - Repeat until convergence:  $\sum_{i} |r_i^{t+1} r_i^t| < \epsilon$ 
    - Calculate the page rank of each node:

$$r_j^{t+1} = \sum_{i \to j} \frac{r_i^t}{d_i}$$

•  $d_i$ : out-degree of node i

### Power Iteration Method

- Given a web graph wit N nodes, where nodes are pages and edges are hyperlinks
- Power iteration: a simple iterative scheme
  - Initialize:  $r^{(0)} = \left[\frac{1}{N}, \frac{1}{N}, \cdots, \frac{1}{N}\right]^T$
  - Iterate:  $r^{(t+1)} = M \cdot r^{(t)}$
  - Stop when:  $\left|r^{(t+1)} r^{(t)}\right|_1 < \epsilon$

$$r_j^{(t+1)} = \sum_{i \to j} \frac{r_i^{(t)}}{d_i}$$

 Note: About 50 iterations is sufficient to estimate the limiting solution

### PageRank: Three Questions

$$r_j^{(t+1)} = \sum_{i o j} \frac{r_i^{(t)}}{d_i}$$
 Or equivalently,  $r = Mr$ 

- Does this converge?
- Does it converge to what we want?
- Are results reasonable?

122

### PageRank: Problems

- Two problems:
  - 1. Some pages are dead ends (have no out-links)
    - These pages cause importance to leak out

- 2. Spider traps (all out-links are within the group)
  - Eventually, spider traps absorb all importance



## Does This Converge?

• The spider trap problem:



$$r_j^{(t+1)} = \sum_{i \to j} \frac{r_i^{(t)}}{d_i}$$

PageRank iteration

| Iteration | 0 | 1 | 2 | 3 |
|-----------|---|---|---|---|
| $r_a$     | 1 | 0 | 0 | 0 |
| $r_b$     | 0 | 1 | 1 | 1 |

## Does It Converge to What We Want?

• The dead-end problem:



$$r_j^{(t+1)} = \sum_{i \to j} \frac{r_i^{(t)}}{d_i}$$

PageRank iteration

| Iteration | 0 | 1 | 2 | 3 |
|-----------|---|---|---|---|
| $r_a$     | 1 | 0 | 0 | 0 |
| $r_b$     | 0 | 1 | 0 | 0 |

### Solution to Spider Traps

- •At each time step, random surfer has two options
  - With prob.  $\beta$ , follow a link at random
  - With prob.  $1 \beta$ , jump to a random page
  - Common values for  $\beta$ : [0.8, 0.9]
- Surfer will teleport out of spider trap within a few steps





### Solution to Dead Ends

- Teleports: Follow random teleport links with total probability 1.0 from dead-ends
  - Adjust adjacency matrix accordingly



(127)

### Why Teleports Solve the Problem

- Why are dead-ends and spider traps a problem and why do teleports solve the problem?
  - Spider-traps are not a problem, but with traps PageRank scores are not what we want.
    - Solution: Never get stuck in a spider trap by teleporting out of it in a finite number of steps
  - Dead-ends are a problem
    - The matrix is not column stochastic so our initial assumptions are not met
    - Solution: Make matrix column stochastic by always teleporting when there is nowhere to go



## Solution: Random Teleports

- Google's solution does it all
- At each step, random surfer has two options
  - With probability  $\beta$ , follow a link at random
  - With probability  $1 \beta$ , jump to some random page
- PageRank equation:

$$r_j^{(t+1)} = \sum_{i \to j} \beta \frac{r_i^{(t)}}{d_i} + (1 - \beta) \frac{1}{N}$$

# The Google Matrix

PageRank equation:

$$r_j^{(t+1)} = \sum_{i \to j} \beta \frac{r_i^{(t)}}{d_i} + (1 - \beta) \frac{1}{N}$$

■ The Google matrix

$$G = \beta M + (1 - \beta) \left[ \frac{1}{N} \right]_{N \times N}$$

- We have a recursive problem: r = Gr
  - The Power method still works
  - In practice,  $\beta \in [0.8, 0.9]$

130

# Random Walk with Restarts and Personalized PageRank



### Example: Recommendation

• Given: a bipartite graph representing user and item interactions



132

### Bipartite User-Item Graph

- Goal: proximity on graphs
  - What items should we recommend to a user who interacts with item Q?
  - Intuition: if items Q and P are interacted by similar users, recommend P to users interacts with Q



1/2024

# Bipartite User-Item Graph

• Which is more related? A, A' or B, B'



### Node Proximity Measurements

• Which is more related A, A' or B, B' or C, C'?



### Node Proximity Measurements

• Which is more related A, A' or B, B' or C, C'?



Personalized Page Rank/Random Walk with Restarts

## Proximity on Graphs

- PageRank:
  - Rank nodes by importance
  - Teleports with uniform probability to any node in network
- Personalized PageRank
  - Ranks proximity of nodes to the teleport nodes S
- Proximity on graphs
  - Q: What is most related item to item Q?
  - Random Walks with Restarts
    - Teleport back to the starting node  $S = \{Q\}$

4 (137)

### Idea: Random Walks

### • Idea:

- Every node has some importance
- Importance gets evenly split among all edges and pushed to neighbors
- Given a set of QUERY\_NODES, we simulate a random walk
  - 1. Make a step to a random neighbor and record the visit (visit count)
  - 2. With probability  $\alpha$ , restart the walk at one of the query nodes in QUERY\_NODES
  - 3. The nodes with highest visit count have the highest proximity to QUERY\_NODES

138

## Random Walk Algorithms

```
item = QUERY_NODES.sample_by_weight()
              for i in range( N_STEPS ):
                 user = item.get_random_neighbor()
                 item = user.get_random_neighbor()
                 item.visit_count += 1
                 if random( ) < ALPHA:</pre>
                     item = QUERY_NODES.sample.by_weight()
Number of
random visits
                            Query Item Q
                                    16
               User 1
                              User 2
                                              User 3
                                                            User 4
```



### Benefits

• Why is this a good solution?

- Because the similarity considers:
  - Multiple connections
  - Multiple paths
  - Direct and undirect connects
  - Degree of the nodes



# Summary: PageRank Variants

### PageRank

- Teleport to any nodes
- Nodes have the same probability of the suffer landing

### Personalized PageRank

- Teleport to a specific set of nodes
- Nodes can have different probabilities of suffer landing

$$S = [0.1, 0, 0, 0.2, 0, 0, 0.5, 0, 0, 0.2]$$

### Random Walk with Restarts

Teleport is always to the same node

$$S = [0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0]$$



### Summary

•A graph is naturally represented as a matrix

- We defined a random walk process over the graph
  - Random surfer moving across the links and with random teleportation
  - Stochastic adjacency matrix M
- PageRank = Limiting distribution of the surfer location represented node importance
  - Corresponds to the leading eigenvector of transformed adjacency matrix M