ARHITECTURA SISTEMELOR DE CALCUL

UB, FMI, CTI, ANUL III, 2022-2023

Memorii electronice

Memorii electronice

Caracteristici

- Capacitatea memoriei: in multipli de biţi/octeti etc
- Geometria: lungimea unui cuvânt (locatie); aranjarea si modul de adresare al cuvintelor
- Timpul de acces: timpul dupa care se obțin datele la iesire in raport cu momentul aplicarii adresei la intrare
- Ciclul memoriei; timpul necesar pentru scrierea sau citirea unei locatii
- Puterea consumata, totala (W) sau specifica (µW/bit)
- Tehnologia de realizare: bipolara, MOS, etc

Memorii ROM electronice

- Tipuri
 - ROM
 - Informația este inclusa in designul circuitului electronic al memoriei
 - PROM (Programmable Read-Only Memory)
 - Memoria poate fi scrisa o singura data
 - EPROM (Erasable Programmable Read Only Memory)
 - Inregistrari repetate
 - Tipuri
 - UVEPROM
 - Stergere totala prin iradiere cu UV (~100 cicluri)
 - EEPROM
 - Stergere totala prin aplicarea unui semnal electric (~100 000 cicluri)

Memoria RAM electronica

TIPURI

- Statica (SRAM)
 - Informația se conserva atat timp cat memoria este alimentata cu energie
- Dinamica (DRAM)
 - Informația dispare dupa un anumit interval de timp, si de aceea trebuie regenerate (timp tipic de regenerare: 2 ms)

comparaţie

SRAM	DRAM	Unit. tipica
Mai rapida	Mai lenta	MB/s
Densitate mai mica	Densitate mai mare	MB/cm ²
Mai scumpa	Mai ieftina	\$/MB
Consum energetic mai mare	Consum energetic mai mic	W/MB

Tipuri/tehnologi de memorii DRAM

- FPM DRAM (fast page mode)
 - Memorie matriceala paginata
 - Descarca rapid o pagina
- EDO DRAM (extended data output)
 - Timp de acces redus la citire
- SDRAM (syncronous)
 - Este organizata in blocuri care pot lucra in paralel
 - Sincronizare cu semnalul de ceas (magistrala)
- DDR SDRAM (double data rate)
 - La un ciclu ceas au loc doua transferuri

DDR SDRAM

DDR SDRAM Standard	Bus clock (MHz)	Internal rate (MHz)	Transfer Rate (MT/s)	Voltage	DIMM pins	SO-DIMM pins	MicroDIMM pins
DDR (2001)	100-200	100-200	200-400	2.5/2.6	184	200	172
DDR2 (2006)	200-533	100-266	400-1066	1.8	240	200	214
DDR3 (2011)	400-1066	100-266	800-2133	1.5	240	204	214
DDR4 (2016)	800-1600	200-400	1600-3200	1.2	288	256	-
DDR5 (2021)	1600-3200	200-400	3200-6400	1.1	288	262	-
DDR5 (2025?)							

MegaTransfers per second (MT/s)

SO-DIMM: small outline dual in-line memory module (laptops/notebooks)

MicroDIMM: (tablets)

Memoria Flash

Combinație intre RAM si EEPROM

- Este un ansamblu de blocuri EEPROM (ce contin tranzistori MOS cu poarta flotanta)
- Nu se poate sterge o locație, ci numai un bloc
- Performanțe intre HDD si RAM
- Numar limitat de rescrieri
- Este implementat un mecanism de protectie (ascuns) care scoate din uz blocurile cu numarul de cicluri epuizat sau defecte

- Inlocuiesc HDD sub numele HDD SSD (solid state devices)
- Au depasit 16 TB
- Microcarduri pentru telefoane si aparate foto
- Stick-uri USB

Solid State Drive SSD

- SSD este un dispozitiv de stocare nevolatilă a informaţiei construit cu memorii semiconductoare.
- Pentru a putea fi utilizat în loc de HDD dimensiunile carcasei şi interfaţa sunt standard.
- SSD este mai silenţios şi mai fiabil decât un HDD datorită faptului că nu are piese în mişcare.

Solid State Drive SSD-structura

O variantă este cu memorii Flash, varianta NAND Flash fiind prezentată în figură.

Analiza comparativă

Device	Critical feature-size F	Area (F²)	Density (Gbit/sq. in)	
Hard Disk	50 nm (MR width)	1.0	250	
DRAM	45 nm (half pitch)	6.0	50	
NAND (2 bit)	43 nm (half pitch)	2.0	175	
NAND (1 bit)	43 nm (half pitch)	4.0	87	
Blue Ray	210 nm (λ/2)	1.5	10	

Această analiză comparativă arată unitatea modurilor de stocare a informaţiei. Principiile de stocare cu semiconductori, optice şi magnetice pot fi comparate prin densitate şi preţ.

