STOCHASTIC PROCESS

1 Preliminaries

Definition 1.1 (stochastic process) For a given probability space (Ω, \mathcal{F}, P) and a measurable space (S, \mathcal{E}) , a *stochastic process* is a collection of S-valued random variables on (Ω, \mathcal{F}, P) indexed by some set T, which can be written as $X = \{X(t) : t \in T\}$ or $X = (X_t)_{t \in T}$ or $X : \Omega \times T \to S$. This mathematical space S is called its state space.

For convenience, we always assume T is a totally ordered set and denote the collection of all finite subsets of T by \mathcal{I}_T , namely

$$\mathcal{I}_T = \{\{t_1, t_2, \cdots, t_n\} : t_1, \cdots, t_n \in T, n \ge 1\}.$$

Definition 1.2 (independent increments) A stochastic process $(X_t)_{t\in T}$ has independent increments if for every $n\in \mathbb{N}_+$ and any $t_1\leq t_2\leq \cdots \leq t_n$, the increments $X_{t_2}-X_{t_1},X_{t_3}-X_{t_2},\cdots,X_{t_n}-X_{t_{n-1}}$ are independent.

Definition 1.3 (independent increments) A stochastic process $(X_t)_{t \in T}$ has independent increments if for every $n \in \mathbb{N}_+$ and any $t_1 \leq t_2 \leq \cdots \leq t_n$, the increments $X_{t_2} - X_{t_1}, X_{t_3} - X_{t_2}, \cdots, X_{t_n} - X_{t_{n-1}}$ are independent.

Definition 1.4 (strictly stationary process) Let $(X_t)_{t\in T}$ be a stochastic process and let $F_X(x_{t_1+\tau},\ldots,x_{t_k+\tau})$ represent the distribution function of the joint distribution of $(X_t)_{t\in T}$ at times $t_1+\tau,\ldots,t_k+\tau$. Then, $(X_t)_{t\in T}$ is said to be strictly stationary if, for all k, for all t, and for all t_1,\ldots,t_k ,

$$F_X(x_{t_1+\tau},\ldots,x_{t_k+\tau}) = F_X(x_{t_1},\ldots,x_{t_k}).$$

2 Poisson Process

Definition 2.1 (Poisson process (I)) A stochastic process $(N_t)_{t\geq 0}$ defined on a probability space (Ω, \mathcal{F}, P) is said to be a *Poisson process* with rate $\lambda > 0$ if

- (i) $N_0 = 0$;
- (ii) $(N_t)_{t\geq 0}$ has independent increments: for any $n\in\mathbb{N}_+$ and any $0\leq t_1\leq t_2\leq \cdots \leq t_n$, the increment $N_{t_2}-N_{t_1},N_{t_3}-N_{t_2},\cdots,N_{t_n}-N_{t_{n-1}}$ are independent;
- (iii) for any $0 \le s < t$, $N_t N_s \sim Pois(\lambda(t-s))$, that is

$$P(N_t - N_s = k) = e^{-\lambda(t-s)} \frac{\lambda(t-s)^k}{k!} \quad (k = 0, 1, 2, \dots).$$

Definition 2.2 (counting process) A counting process is a stochastic process $(N_t)_{t\geq 0}$ with values that are non-negative, integer, and non-decreasing:

- (i) $N_t \ge 0$;
- (ii) N_t is an integer;
- (iii) If $0 \le s \le t$, then $N_s \le N_t$.

For any $0 \le s < t$, the counting process $N_t - N_s$ represents the number of events that occurred on (s,t].

Definition 2.3 (Poisson process (II)) A counting process $(N_t)_{t\geq 0}$ defined on a probability space (Ω, \mathcal{F}, P) is said to be a *Poisson process* with rate $\lambda > 0$ if

- (i) $N_0 = 0$;
- (ii) $(N_t)_{t>0}$ has independent increments;
- (iii) For all $t \geq 0$, $P(N_{t+h} N_t = 1) = \lambda h + o(h)$ when $h \rightarrow 0$;
- (iv) For all $t \ge 0$, $P(N_{t+h} N_t \ge 2) = o(h)$ when $h \to 0$;

Definition 2.4 (Poisson process (III)) A stochastic process $(N_t)_{t\geq 0}$ defined on a probability space (Ω, \mathcal{F}, P) is said to be a *Poisson process* with rate $\lambda > 0$ if

$$N_t = \sum_{n=1}^{\infty} nI_{[T_n, T_{n+1})}(t),$$

where $T_n = X_1 + X_2 + \cdots + X_n$ and X_i i.i.d $\sim Exp(\lambda)$ (Here the pdf of $Exp(\lambda)$ is taken as $\lambda e^{-\lambda x} I_{(0,+\infty)}(x)$).

Proposition 2.1 Definition 2.1, 2.3, 2.4 are equivalent definitions of Poisson process.

Proof.

• Definition 2.1 \Longrightarrow Definition 2.3

Here we are only to show the implication of Definition 2.3(iii) and Definition 2.3(iv). Since $N_{t+h} - N_t \sim Pois(\lambda h)$, when $h \to 0$ we have

$$P(N_{t+h} - N_t = 1) = e^{-\lambda h} \lambda h = (1 - \lambda h + o(h)) \lambda h = \lambda h + o(h),$$

$$P(N_{t+h} - N_t \ge 2) = 1 - P(N_{t+h} - N_t = 0) - P(N_{t+h} - N_t = 1)$$

$$= 1 - e^{-\lambda h} - e^{-\lambda h} \lambda h$$

$$= 1 - (1 - \lambda h + o(h)) - (\lambda h + o(h))$$

$$= o(h).$$

• Definition 2.3 \implies Definition 2.1

Only Definition 2.1(iii) needs to be derived. Given the Laplace transform of the nonnegative random variables N_t and N_{t+h}

$$L_{N_t}(u) = E[e^{-uN_t}], \quad L_{N_{t+h}}(u) = E[e^{-uN_{t+h}}], \quad u \ge 0,$$

according to Definition 2.3(ii) we can obtain

$$L_{N_{t+h}}(u) = \mathbb{E}[e^{-uN_{t+h}}]$$

$$= \mathbb{E}[e^{-uN_t}e^{-u(N_{t+h}-N_t)}]$$

$$= \mathbb{E}[e^{-uN_t}]\mathbb{E}[e^{-u(N_{t+h}-N_t)}]$$

$$= L_{N_t}(u)\mathbb{E}[e^{-u(N_{t+h}-N_t)}].$$

Note that

$$E[e^{-u(N_{t+h}-N_t)}]$$

$$= e^{0}P(N_{t+h} - N_t = 0) + e^{-u}P(N_{t+h} - N_t = 1) + \sum_{j=2}^{\infty} e^{-un}P(N_{t+h} - N_t = j)$$

$$= 1 - \lambda h + o(h) + e^{-u}(\lambda h + o(h)) + o(h)$$

$$= 1 - \lambda h + e^{-u}\lambda h + o(h) \quad (h \to 0).$$

Denote $g(t+h) = L_{N_{t+h}}(u)$ and $g(t) = L_{N_t}(u)$ for some fixed u and then we get

$$\frac{g(t+h) - g(t)}{h} = \frac{g(t)(1 - \lambda h + e^{-u}\lambda h + o(h)) - g(t)}{h} = g(t)\lambda(e^{-u} - 1) + \frac{o(h)}{h}.$$

Letting $h \to 0$ yields the differential equation

$$g'(t) = g(t)\lambda(e^{-u} - 1).$$

The initial condition $g(0) = E[e^{-uN_0}] = 1$ determines a special solution of the equation

$$g(t) = L_{N_t}(u) = e^{\lambda t(e^{-u} - 1)},$$

which coincides with the Laplace transform of Poisson distribution $Pois(\lambda t)$. Since Laplace transform uniquely determines the distribution, we can thus conclude $N_t \sim Pois(\lambda t)$. Given any $r \geq 0$, define a stochastic process $N'_t = N_{r+t} - N_r$ and we can check that $(N'_t)_{t\geq 0}$ is also a counting process satisfying all the contitions in Definition 2.3. Hence by repeating the proof above we can show $N'_t \sim Pois(\lambda t)$, which is equivalent to Definition 2.1(iii).

• Definition $2.1 \implies \text{Definition } 2.4$

Let $T_n = \inf\{t \geq 0 : N_t = n\}$ for $n \in \mathbb{N}_+$. Note that given any $t \geq 0$, $\{N_t = n\} = \{T_n \leq t < T_{n+1}\}$. Thus we have

$$N_t = \sum_{n=1}^{\infty} nI_{N_t=n} = \sum_{n=1}^{\infty} nI_{[T_n, T_{n+1})}(t).$$

Let $X_1 = T_1, X_n = T_n - T_{n-1} (n \ge 2)$. Since $P(X_1 > t) = P(N_t = 0) = e^{-\lambda t}$, we see $X_1 \sim Exp(\lambda)$. Since

$$P(X_2 > t | X_1 = t_1) = P(X_2 > t | X_1 = t_1)$$

When $n \geq 2$, since

$$\begin{split} & P(X_n > t | X_{n-1} = t_{n-1}, \cdots, X_1 = t_1) \\ & = P(T_n - T_{n-1} > t | T_{n-1} - T_{n-2} = t_{n-1}, \cdots, T_1 = t_1) \qquad (\text{let } s_n = t_n + \cdots + t_1) \\ & = P(T_n > s_{n-1} + t | T_{n-1} = s_{n-1}, \cdots, T_1 = s_1) \\ & = P(N_{s_{n-1}+t} = n - 1 | N_{s_{n-1}} = n - 1) \qquad (\text{memoryless property of } (N_t)) \\ & = P(N_{s_{n-1}+t} - N_{s_{n-1}} = 0 | N_s = n - 1) \\ & = P(N_{s_{n-1}+t} - N_{s_{n-1}} = 0) \\ & = e^{-\lambda t}. \end{split}$$

it is plain to show that $\{X_i\}$ is sequence of independent random variable. Furthermore, we have

$$P(X_n > t) = E[P(X_n > t | X_{n-1}, \dots, X_1)] = e^{-\lambda t},$$

which implies X_i i.i.d $\sim Exp(\lambda)$,

• Definition $2.4 \implies \text{Definition } 2.1$

Clearly $N_0 = 0$ holds. Since $T_n = X_1 + X_2 + \cdots + X_n$ and X_i i.i.d $\sim Exp(\lambda)$, we can deduce the jointly probability density function of (T_1, T_2, \cdots, T_m)

$$f_S(y_1, y_2, \dots, y_m) = f_X(y_1, y_2 - y_1, \dots, y_m - y_{m-1}) \left| \frac{\partial (x_1, \dots, x_m)}{\partial (y_1, \dots, y_m)} \right|$$
$$= \lambda^m e^{-\lambda y_m} I_{\{0 \le y_1 < \dots < y_m\}}.$$

Thus for any $1 \le j_1 < j_2 < \cdots < j_n$, the jointly probability density function of $(T_{j_1}, T_{j_2}, \cdots, T_{j_n})$ is

$$\frac{y_1^{j_1-1}}{(j_1-1)!} \frac{(y_2-y_1)^{j_2-j_1-1}}{(j_2-j_1-1)!} \cdots \frac{(y_n-y_{n-1})^{j_n-j_{n-1}-1}}{(j_n-j_{n-1}-1)!} \lambda^{j_n} e^{-\lambda y_n} I_{\{0 \le y_1 < \dots < y_n\}}$$

Note

$$N_t = \sum_{n=1}^{\infty} nI_{[T_n, T_{n+1})}(t)$$

implies $\{N_t = n\} = \{T_n \le t < T_{n+1}\}$. For any $n \in \mathbb{N}_+$ and any $0 \le t_1 < t_2 < \cdots < t_n$, we have

$$\begin{split} &P(N_{t_1} = j_1, N_{t_1} - N_{t_2} = j_2, \cdots, N_{t_n} - N_{t_{n-1}} = j_n) \\ &= P(N_{t_1} = j_1, N_{t_1} = j_1 + j_2, \cdots, N_{t_n} = j_1 + \cdots + j_n) \quad (\text{let } k_n = j_1 + \cdots j_n) \\ &= P(T_{k_1} \leq t_1, T_{k_1 + 1} > t_1, T_{k_2} \leq t_2, T_{k_2 + 1} > t_2, \cdots, T_{k_n} \leq t_n, T_{k_n + 1} > t_n) \\ &= \int_{y_{k_1} \leq t_1 < y_{k_1 + 1} < \cdots < y_{k_n} \leq t_n < y_{k_{n-1}}} \frac{y_{k_1}^{k_1 - 1}}{(k_1 - 1)!} \cdots \frac{(y_{k_n} - y_{k_{n-1} + 1})^{k_n - k_{n-1} - 2}}{(k_n - k_{n-1} - 2)!} \lambda^{k_n} dy_{k_1} \cdots dy_{k_n} \int_{t_n}^{\infty} -de^{-\lambda y_{k_n + 1}} dy_{k_n} \cdots dy_{k_n + 1} \\ &= \int_{y_{k_1} \leq t_1 < y_{k_1 + 1} < \cdots < y_{k_n} \leq t_n} \frac{y_{k_1}^{k_1 - 1}}{(k_1 - 1)!} \cdots \frac{(y_{k_n} - y_{k_{n-1} + 1})^{k_n - k_{n-1} - 2}}{(k_n - k_{n-1} - 2)!} \lambda^{k_n} dy_{k_1} \cdots dy_{k_n} \int_{t_n}^{\infty} -de^{-\lambda y_{k_n + 1}} \\ &= \int_{y_{k_1} \leq t_1 < y_{k_1 + 1} < \cdots < t_{n-1} < y_{k_{n-1} + 1} < t_n} \frac{y_{k_1}^{k_1 - 1}}{(k_1 - 1)!} \cdots \frac{(y_{k_{n-1}} - y_{k_{n-2} + 1})^{k_{n-1} - k_{n-2} - 2}}{(k_n - k_{n-1} - 2)!} \lambda^{k_n} e^{-\lambda t_n} dy_1 \cdots dy_{k_{n-1} + 1} \int_{y_{k_{n-1} + 1}}^{t_n} d\frac{(y_{k_n} - y_{k_{n-1} + 1})^{k_n - k_{n-1} - 1}}{(k_n - k_{n-1} - 1)!} \\ &= \int_{y_{k_1} \leq t_1 < y_{k_1 + 1} < \cdots < t_{n-1} < y_{k_{n-1} + 1} < t_n} (k_n - k_{n-1} - 2)!} \lambda^{k_n} e^{-\lambda t_n} dy_1 \cdots dy_{k_{n-1}} \int_{t_{n-1}}^{t_n} -d\frac{(t_n - y_{k_{n-1} + 1})^{k_n - k_{n-1}}}{(k_n - k_{n-1})!} \\ &= \int_{y_{k_1} \leq t_1 < y_{k_1 + 1} < \cdots < t_{n-1} < y_{k_{n-1} + 1} < t_n}} (k_n - k_{n-1} - 2)!} \lambda^{k_n} e^{-\lambda t_n} dy_1 \cdots dy_{k_{n-1}} \int_{t_{n-1}}^{t_n} -d\frac{(t_n - y_{k_{n-1}})^{k_n - k_{n-1}}}{(k_n - k_{n-1})!} \\ &= \cdots \\ &= \lambda^{k_n} e^{-\lambda t_n} \frac{t_1^{k_1}}{(t_1 \geq t_1)^{k_2}} \cdots \frac{(t_n - t_{n-1})^{k_n - k_{n-1}}}{(k_n - k_{n-1})!} \\ &= e^{-\lambda t_1} \frac{(\lambda t_1)^{j_1}}{(k_1 + t_n)^{j_1}} \int_{t_n}^{t_n} e^{-\lambda (t_2 - t_1)} \frac{(\lambda (t_2 - t_1)^{k_2 - t_1}}{(t_2} \int_{t_1}^{t_2} \frac{(\lambda (t_2 - t_1)^{k_n - k_{n-1}}}{(t_2} \int_{t_1}^{t_2} \frac{(\lambda (t_1 - t_{n-1})^{k_n - k_{n-1}}}{(t_2} \int_{t_1}^{t_2} \frac{(\lambda (t_1 - t_{n-1})^{k_n - k_{n-1}}}{(t_n - k_{n-1})!} \\ &= e^{-\lambda t_1} \frac{(\lambda (t_1 - t_1)^{j_1}}{(t_1 - t_n)^{k_1}} \int_{t_1}^{t_1} e^{-\lambda$$

Therefore, we conclude $N_{t_2}-N_{t_1},N_{t_3}-N_{t_2},\cdots,N_{t_n}-N_{t_{n-1}}$ are independent and for any $0 \le s < t, N_t-N_s \sim Pois(\lambda(t-s))$.

Proposition 2.2 Let $(N_t)_{t\geq 0}$ be a Poisson process.

- 1. $N_t \sim Pois(\lambda t)$, $E[N_t] = Var(N_t) = \lambda t$.
- 2. For 0 < s < t, $E[N_t N_s] = \lambda^2 t s + \lambda s$, $Cov(E_t, E_s) = \lambda s$.
- 3. For $0 \le s \le t$, $E[N_t|N_s] = N_s + \lambda(t-s)$. So Poisson process is a submartingale.
- 4. Poisson process is a Markov process. For $0 \le t_1 < t_2 < \cdots < t_n$ and $0 \le k_1 \le k_2 \le \cdots \le k_n$,

$$\begin{split} & P(N_{t_n} = k_n | N_{t_{n-1}} = k_{n-1}, \cdots, N_{t_1} = k_1) \\ & = P(N_{t_n} = k_n | N_{t_{n-1}} = k_{n-1}) \\ & = P(N_{t_n} - N_{t_{n-1}} = k_n - k_{n-1}) \\ & = e^{-\lambda (t_n - t_{n-1})} \frac{(\lambda (t_n - t_{n-1}))^{k_n - k_{n-1}}}{(k_n - k_{n-1})!}. \end{split}$$

Proof. Apply Definition 2.1(ii) and it is straightforward to show the properties.

3 Compound Poisson Process

Definition 3.1 (compound Poisson distribution) Suppose that $N \sim Pois(\lambda)$ and that Z_1, Z_2, Z_3, \cdots are i.i.d. random variables independent of N with a probability measure v(dy) on \mathbb{R} . Then the probability distribution of the sum of N i.i.d. random variables

$$Y = \sum_{n=1}^{N} Z_n$$

is a compound Poisson distribution.

Definition 3.2 (compound Poisson process) A compound Poisson process, parameterised by a rate $\lambda > 0$ and jump size distribution v(dy), is a process $(Y_t)_{t\geq 0}$ given by

$$Y_t = \sum_{n=1}^{N_t} Z_n,$$

where $(N_t)_{t\geq 0}$ is a Poisson process with rate λ , and $(Z_n)_{n\in\mathbb{N}_+}$ are independent and identically distributed random variables with distribution v(dy), which are also independent of $(N_t)_{t\geq 0}$.

Proposition 3.1 Let $(Y_t)_{t\geq 0}$ be a compound Poisson process with a rate λ and jump $(Z_n)_{n\in\mathbb{N}_+}$. For convenience, assume $Z_n\stackrel{d}{=} Z$ and $\mathrm{E}[Z^2]<+\infty$.

- 1. $E[Y_t] = \lambda t E[Z]$.
- 2. $Var(Y_t) = \lambda t E[Z^2]$.
- 3. The moment generating function $M_{Y_t}(a) = \mathbb{E}[e^{aY_t}] = e^{\lambda t(\mathbb{E}[e^{aZ}]-1)} = e^{\lambda t(M_Z(a)-1)}$

Proof.

1. Since Z_n is independent of N_t , we have

$$\mathrm{E}[Y_t] = \mathrm{E}[\mathrm{E}[Y_t|N_t]] = \mathrm{E}\left[\mathrm{E}\left[\sum_{n=1}^{N_t} Z_n \middle| N_t\right]\right] = \mathrm{E}\left[\sum_{n=1}^{N_t} \mathrm{E}\left[Z_n \middle| N_t\right]\right] = \mathrm{E}[N_t Z] = \mathrm{E}[N_t] = \lambda t E[Z].$$

2. Since Z_n is independent of N_t , by the law of total variance $Var(Y_t)$ can be calculated as

$$Var(Y_t) = E[Var(Y_t|N_t)] + Var(E[Y_t|N_t])$$

$$= E[N_tVar(Z)] + Var(N_tE[Z])$$

$$= Var(Z)E[N_t] + E[Z]^2Var(N_t)$$

$$= \lambda t Var(Z) + \lambda t E[Z]^2$$

$$= \lambda t E[Z^2].$$

3. Make similar use of the dependence of $(Z_n)_{n\in\mathbb{N}_+}$ and N_t to get

$$\begin{split} \mathbf{E}\left[e^{aY_{t}}\right] &= \mathbf{E}\left[e^{a\left(Z_{1}+Z_{2}+\cdots+Z_{N_{t}}\right)}\right] \\ &= \mathbf{E}\left[\mathbf{E}\left[e^{a\left(Z_{1}+Z_{2}+\cdots+Z_{N_{t}}\right)}\right]N_{t}\right] \\ &= \sum_{n=0}^{\infty} \mathbf{E}\left[e^{a\left(Z_{1}+Z_{2}+\cdots+Z_{N_{t}}\right)}\right]N_{t} = n\right]\mathbf{P}\left(N_{t} = n\right) \\ &= \sum_{n=0}^{\infty} \mathbf{E}\left[e^{a\left(Z_{1}+Z_{2}+\cdots+Z_{N_{t}}\right)}\right]N_{t} = n\right]e^{-\lambda t}\frac{(\lambda t)^{n}}{n!} \\ &= \sum_{n=0}^{\infty} \mathbf{E}\left[e^{aZ_{1}}e^{aZ_{2}}\cdots e^{aZ_{n}}\right]e^{-\lambda t}\frac{(\lambda t)^{n}}{n!} \\ &= \sum_{n=0}^{\infty} \mathbf{E}\left[e^{aZ}\right]^{n}e^{-\lambda t}\frac{(\lambda t)^{n}}{n!} \\ &= e^{-\lambda t}\sum_{n=0}^{\infty}\frac{(\lambda t\mathbf{E}\left[e^{aZ}\right])^{n}}{n!} \\ &= e^{\lambda t\left(\mathbf{E}\left[e^{aZ}\right]-1\right)}. \end{split}$$

Let $Y = (Y_t)_{t \geq 0}$ be a compound Poisson process with a rate λ and jump $(Z_n)_{n \in \mathbb{N}_+}$. Let $T_n = \inf\{t \geq 0 : N_t = n\}$ be the time when the *n*th event happens. Then the Itô integral of a stochastic process K with respect to Y is

$$\int_0^t KdY = \sum_{n=0}^{N_t} K_{T_n} (Y_{T_n} - Y_{T_n}) = \sum_{n=0}^{N_t} K_{T_n} Z_n.$$

4 Markov Chain

4.1 Discrete-time Markov Chain

Definition 4.1 (discrete-time Markov chain) A discrete-time Markov chain on a countable state space S is a sequence of random variables X_0, X_1, X_2, \cdots with the Markov property, namely that $\forall n \geq 0, \ \forall j, i_0, i_1, \cdots, i_n \in S$,

$$P(X_{n+1} = j \mid X_0 = i_0, X_1 = i_1, \dots, X_n = i_n) = P(X_{n+1} = j \mid X_n = i_n),$$

if both conditional probabilities are well defined, i.e., if $P(X_0 = i_0, \dots, X_n = i_n) > 0$.

Markov property may be interpreted as stating that the probability of moving to the next state depends only on the present state and not on the previous states.

A discrete-time Markov chain $(X_n)_{n>0}$ is time-homogeneous if

$$P(X_{n+2} = j \mid X_{n+1} = i) = P(X_{n+1} = j \mid X_n = i)$$

for all $n \ge 0$ and all $i, j \in S$. We only focus on the discrete-time time-homogeneous Markov chain on a countable space if nothing is specified.

One can consider the (possibly infinite-dimensional) transition matrix $P = (p_{ij})_{i,j \in S}$, where

$$p_{ij} = P(X_{n+1} = j \mid X_n = i)$$

is called one-step transition probability. By the law of total probability it is clear to see

$$\sum_{i \in S} p_{ij} = 1, \quad \forall i \in S.$$

Similarly we can define n-step transition matrix $P^{(n)} = \left(p_{ij}^{(n)}\right)_{i,j \in S}$, where n-step transition probabilities $p_{ij}^{(n)}$ is the probability that a process in state i will be in state j after n additional transitions. That is,

$$p_{ij}^{(n)} = P(X_{k+n} = j \mid X_k = i).$$

As is shown below, the Chapman–Kolmogorov equation enables us to calculate n-step transition matrix readily.

Proposition 4.1 (Chapman–Kolmogorov equation) Let $(X_n)_{n\geq 0}$ be a discrete-time Markov chain on a countable state space S. The *Chapman–Kolmogorov equation* states that

$$p_{ij}^{(n+m)} = \sum_{k \in S} p_{ik}^{(n)} p_{kj}^{(m)}, \quad \forall i, j \in S,$$

or alternatively in matrix form

$$P^{(n+m)} = P^{(n)}P^{(m)}$$

Proof.

$$\begin{split} p_{ij}^{(n+m)} &= \mathrm{P}(X_{n+m} = j \mid X_0 = i) \\ &= \sum_{k \in S} \mathrm{P}(X_{n+m} = j, X_n = k \mid X_0 = i) \\ &= \sum_{k \in S} \mathrm{P}(X_n = k \mid X_0 = i) \mathrm{P}(X_{n+m} = j \mid X_0 = i, X_n = k) \\ &= \sum_{k \in S} \mathrm{P}(X_n = k \mid X_0 = i) \mathrm{P}(X_{n+m} = j \mid X_n = k) \\ &= \sum_{k \in S} p_{ik}^{(n)} p_{kj}^{(m)} \\ \end{split}$$

Of course $P^{(1)} = P$. Thus by iteration we show $P^{(n)}$ coincides with P^n .

4.2 Continuous-time Markov Chain

Definition 4.2 (continuous-time Markov chain) A continuous-time Markov chain on a countable state space S is a stochastic $(X_t)_{t\geq 0}$ with the Markov property: for all $n\geq 0$, all $0\leq t_0\leq t_1\leq \cdots\leq t_n$, and all $j,i_0,\cdots,i_n\in S$,

$$P(X_{t_{n+1}} = j \mid X_{t_0} = i_1, X_{t_1} = i_2, \dots, X_{t_n} = i_n) = P(X_{t_{n+1}} = j \mid X_{t_n} = i_n),$$

if both conditional probabilities are well defined, i.e., if $P(X_1 = i_1, \dots, X_n = i_n) > 0$.

7

A continuous-time Markov chain $(X_t)_{t\geq 0}$ is time-homogeneous if

$$P(X_{s+t} = j \mid X_s = i) = P(X_t = j \mid X_0 = i) = p_{ij}(t)$$

for all $s, t \geq 0$ and all $i, j \in S$.

Example 4.1 Poisson progress $(N_t)_{t\geq 0}$ is continuous-time time-homogeneous Markov chain.

We only focus on the continuous-time time-homogeneous Markov chain on a countable space if nothing is specified. In this case, transition probability $p_{ij}(t)$ depends on the interarrival t from state i to state j. One can define the transition matrix $P(t) = (p_{ij}(t))_{i,j \in S}$ and we have the similar properties of $p_{ij}(t)$ like the concrete-time case.

Proposition 4.2 Let $(X_t)_{t\geq 0}$ be a continuous-time Markov chain on a countable state space S.

1. For all $t \geq 0$ and all $j \in S$,

$$\sum_{i \in S} p_{ij}(t) = 1.$$

2. The Chapman-Kolmogorov equation states that

$$p_{ij}(t+s) = \sum_{k \in S} p_{ik}(t) p_{kj}(s), \quad \forall i, j \in S,$$

or alternatively in matrix form

$$P(t+s) = P(t)P(s).$$

Proof.

- 1. It follows by the law of total probability.
- 2. Imitate the proof in Proposition 4.1 and the result is straightforward.

Definition 4.3 A continuous-time Markov chain is regular if it satisfy the following condition

$$\lim_{t \to 0} p_{ij}(t) = \delta_{ij} = \begin{cases} 1, & i = j, \\ 0, & i \neq j. \end{cases}$$

Since $p_{ij}(0) = P(X_t = j \mid X_0 = i) = \delta_{ij}$, regularity implies $p_{ij}(t)$ is continuous at t = 0. Furthermore, we have the following stronger results. We always assume continuous-time Markov chain is regular afterwards.

Lemma 4.1 If a continuous-time Markov chain is regular, for any fixed $i, j \in S$, $p_{ij}(t)$ is uniformly continuous with respect to t.

Proof. Since when h > 0

$$\begin{aligned} p_{ij}(t+h) - p_{ij}(t) &= \sum_{k \in S} p_{ik}(h) p_{kj}(t) - p_{ij}(t) \\ &= p_{ii}(h) p_{ij}(t) - p_{ij}(t) + \sum_{k \in S \setminus \{i\}} p_{ik}(h) p_{kj}(t) \\ &= -(1 - p_{ii}(h)) p_{ij}(t) + \sum_{k \in S \setminus \{i\}} p_{ik}(h) p_{kj}(t), \end{aligned}$$

8

we have

$$p_{ij}(t+h) - p_{ij}(t) \ge -(1 - p_{ii}(h))p_{ij}(t) \ge -(1 - p_{ii}(h)),$$

$$p_{ij}(t+h) - p_{ij}(t) \le \sum_{k \in S \setminus \{i\}} p_{ik}(h)p_{kj}(t) \le \sum_{k \in S \setminus \{i\}} p_{ik}(h) = 1 - p_{ii}(h),$$

which implies

$$|p_{ij}(t+h) - p_{ij}(t)| \le 1 - p_{ii}(h).$$

When h < 0 in a similar way we can get

$$|p_{ij}(t) - p_{ij}(t+h)| \le 1 - p_{ii}(-h).$$

In general

$$|p_{ij}(t+h) - p_{ij}(t)| \le 1 - p_{ii}(|h|).$$

According to regular condition we conclude for any $t \geq 0$,

$$\lim_{h \to 0} |p_{ij}(t+h) - p_{ij}(t)| = 0,$$

that is, $p_{ij}(t)$ is uniformly continuous with respect to t on $[0, \infty)$.

If $p_{ij}(t)$ is differentiable, define the transition rate

$$q_{ij} = \frac{dp_{ij}(t)}{dt}\bigg|_{t=0} = \lim_{h\to 0} \frac{p_{ij}(h) - p_{ij}(0)}{h}.$$

The q_{ij} can be seen as measuring how quickly the transition from i to j happens. Then define the transition rate matrix $Q = (q_{ij})_{i,j \in S}$ with dimensions equal to that of the state space. Since P(0) = I, it can be shown that

$$P(X_{t+h} = i \mid X_t = i) = p_{ii}(h) = \delta_{ii} + q_{ii}h + o(h).$$

As an intermediate consequence, if the state space S is finite, we have

$$\sum_{i \in S} q_{ij} = 0,$$

which follows by

$$1 = \sum_{j \in S} p_{ij}(h) = \sum_{j \in S} [\delta_{ij} + q_{ij}h + o(h)] = 1 + \sum_{j \in S} q_{ij}h + o(h).$$

Theorem 4.1 Let $(X_t)_{t>0}$ be a continuous-time Markov chain on a countable state space S.

 $1. \ \ Kolmogorov \ forward \ equation:$

$$p'_{ij}(t) = \sum_{k \in S} p_{ik}(t) q_{kj}$$

or alternatively

$$P'(t) = P(t)Q(t).$$

2. Kolmogorov backward equation:

$$p'_{ij}(t) = \sum_{k \in S} q_{ik} p_{kj}(t)$$

or alternatively

$$P'(t) = Q(t)P(t).$$

5 Martingale

Definition 5.1 (conditional expectation) Let X be a \mathcal{F} -measurable random variable on a probability space (Ω, \mathcal{F}, P) such that $E|X| < \infty$. Given a σ -algebra $\mathcal{G} \subset \mathcal{F}$, a random variable Z that is \mathcal{G} -measurable and satisfies

$$E(XI_A) = E(ZI_A)$$
 for all $A \in \mathcal{G}$

is called the *conditional expectation* of Y given \mathcal{G} and is written as $E(X \mid \mathcal{G})$.

Proposition 5.1 Let X and Y be integrable \mathcal{F} -measurable random variable on a probability space (Ω, \mathcal{F}, P) and $\mathcal{G} \subset \mathcal{F}$ be a σ -algebra.

1. Suppose $X \geq 0$, Prove that $E(X \mid \mathcal{G}) \geq 0$

Definition 5.2 (filtration) Let (Ω, \mathcal{F}, P) be a probability space and let I be a linearly ordered index set such as \mathbb{N} or $\mathbb{R}_{>0}$. For every $i \in I$ let \mathcal{F}_i be a sub- σ -algebra of \mathcal{F} . Then

$$\mathbb{F} = (\mathcal{F}_i)_{i \in I}$$

is called a *filtration* if $\mathcal{F}_k \subset \mathcal{F}_\ell$ for all $k \leq \ell$.

If $\mathbb{F} = (\mathcal{F}_t)_{t \in T}$ is a filtration, then $(\Omega, \mathcal{F}, (\mathcal{F}_t)_{t \in T}, P)$ is called a *filtered probability space*. A stochastic process $(X_t)_{t \in T}$ is said to be defined on a filtered probability space $(\Omega, \mathcal{F}, (\mathcal{F}_t)_{t \in T}, P)$ if $(X_n)_{t \in T}$ is defined on (Ω, \mathcal{F}, P) and adapted to the filtration $\mathbb{F} = (\mathcal{F}_t)_{t \in T}$, that is, $\sigma(X_t) \subset \mathcal{F}_t$ for all $t \in T$.

Example 5.1 Let $X = (X_t)_{t>0}$ be a stochastic process on the probability space (Ω, \mathcal{F}, P) . Then

$$\mathcal{F}_t^X = \sigma(\{X_s : 0 \le s \le t\})$$

is a σ -algebra and $(\mathcal{F}_t^X)_{t\geq 0}$ is a filtration that X is adapted to. And $(\mathcal{F}_t^X)_{t\geq 0}$ is called the filtration induced by the stochastic process X.

Definition 5.3 (stopping time) Let τ be a random variable defined on the filtered probability space $(\Omega, \mathcal{F}, (\mathcal{F}_t)_{t \in T}, P)$ with values in T. Then τ is called a stopping time (with respect to the filtration $(\mathcal{F}_t)_{t \in T}$), if the following condition holds:

$$\forall t \in T, \{\tau \leq t\} \in \mathcal{F}_t.$$

Definition 5.4 (stopping time in discrete-time case) Let τ be a random variable defined on the filtered probability space $(\Omega, \mathcal{F}, (\mathcal{F}_n)_{n\geq 0}, P)$ with values in $\mathbb{N} \cup \{+\infty\}$. Then τ is called a stopping time (with respect to the filtration $(\mathcal{F}_n)_{n\geq 0}$), if the following condition holds:

$$\forall n \in \mathbb{N}, \ \{\tau = n\} \in \mathcal{F}_n.$$

Definition 5.5 (martingale) A discrete-time stochastic process $M = (M_n)_{n\geq 0}$ defined on filtered probability space $(\Omega, \mathcal{F}, (\mathcal{F}_n)_{n\geq 0}, P)$ is a martingale if it satisfies

- 1. For $n \ge 0$, $E[|M_n|] < +\infty$;
- 2. For $n \ge 0$, $E[M_{n+1} | \mathcal{F}_n] = M_n$.

Definition 5.6 (submartingale) A discrete-time submartingale is a stochastic process $M = (M_n)_{n \ge 0}$ consisting of integrable random variables satisfying for $n \ge 0$

$$E[M_{n+1} \mid \mathcal{F}_n] \ge M_n.$$

Definition 5.7 (supermartingale) A discrete-time supermartingale is a stochastic process $M = (M_n)_{n\geq 0}$ consisting of integrable random variables satisfying for $n\geq 0$

$$\mathrm{E}[M_{n+1} \mid \mathcal{F}_n] \leq M_n.$$

6 Brownian Motion

Definition 6.1 A stochastic process $(B_t)_{t\geq 0}$ is called a Brownian motion if

- 1. $B_0 = 0$.
- 2. $(B_t)_{t\geq 0}$ has continuous path, that is $t\mapsto B_t$ is almost surely continuous.
- 3. $(B_t)_{t\geq 0}$ has independent and stationary increments.
- 4. For t > 0, $B_t \sim N(0, t)$.

Appendix

Distribution	pmf P(X = k)	Support	Mean	Variance
Bernoulli $B(1,p)$	$p^k(1-p)^{1-k}$	{0,1}	p	p(1-p)
Binomial $B(n, p)$	$\binom{n}{k} p^k (1-p)^{n-k}$	$\{0,\cdots,n\}$	np	np(1-p)
Negative Binomial $NB(r, p)$	$\binom{k+r-1}{k}(1-p)^r p^k$	N	$\frac{pr}{1-p}$	$\frac{pr}{(1-p)^2}$
Poisson $Pois(\lambda)$	$\frac{\lambda^k e^{-\lambda}}{k!}$	N	λ	λ
Geometric $Geo(p)$	$(1-p)^{k-1}p$	\mathbb{N}_+	$\frac{1}{p}$	$\frac{1-p}{p^2}$
Hypergeometric $H(N, K, n)$	$\frac{\binom{K}{k}\binom{N-K}{n-k}}{\binom{N}{n}}$	$\{0,\cdots,\min\left(n,K\right)\}$	$n\frac{K}{N}$	$n\frac{K}{N}\frac{N-K}{N}\frac{N-n}{N-1}$
Uniform (discrete) $DU(a, b)$	$\frac{1}{n}$	$\left\{a,a+1,\ldots,b\right\}$	$\frac{a+b}{2}$	$\frac{(b-a+1)^2 - 1}{12}$

Distribution	pdf	Mean	Variance
Degenerate δ_a	$I_{\{a\}}(x)$	a	0
Uniform (continuous) $U(a,b)$	$\frac{1}{b-a}I_{[a,b]}(x)$	$\frac{a+b}{2}$	$\frac{(b-a)^2}{12}$
Exponential $Exp(\lambda) = \Gamma(1, \lambda)$	$\lambda e^{-\lambda x} I_{[0,+\infty)}(x)$	λ^{-1}	λ^{-2}
Normal $N(\mu, \sigma^2)$	$\frac{1}{\sqrt{2\pi\sigma^2}}e^{-\frac{(x-\mu)^2}{2\sigma^2}}$	μ	σ^2
Gamma $\Gamma(\alpha, \beta)$	$\frac{\beta^{\alpha}}{\Gamma(\alpha)} x^{\alpha-1} e^{-\beta x} I_{(0,+\infty)}(x)$	$\frac{\alpha}{\beta}$	$\frac{lpha}{eta^2}$
Chi-squared $\chi_k^2 = \Gamma(\frac{k}{2}, \frac{1}{2})$	$\frac{1}{2^{k/2}\Gamma(k/2)} x^{k/2-1} e^{-x/2} I_{(0,+\infty)}(x)$	k	2k
Student's t t_{ν}	$\frac{\Gamma\left(\frac{\nu+1}{2}\right)}{\sqrt{\nu\pi}\Gamma\left(\frac{\nu}{2}\right)}\left(1+\frac{x^2}{\nu}\right)^{-\frac{\nu+1}{2}}$	0	$\frac{\nu}{\nu - 2} \text{ for } \nu > 2$

Distribution	Moment-generating function	Characteristic function		
Degenerate δ_a	e^{ta}	e^{ita}		
Bernoulli $B(1,p)$	$1 - p + pe^t$	$1 - p + pe^{it}$		
Geometric $Geo(p)$	$\frac{pe^t}{1 - (1 - p)e^t},$ $t < -\ln(1 - p)$	$\frac{pe^{it}}{1 - (1 - p)e^{it}}$		
Binomial $B(n, p)$	$(1 - p + pe^t)^n$	$(1 - p + pe^{it})^n$		
Negative Binomial $NB(r, p)$	$\frac{(1-p)^r}{(1-pe^t)^r}$	$\frac{(1-p)^r}{(1-pe^{it})^r}$		
Poisson $Pois(\lambda)$	$e^{\lambda(e^t-1)}$	$e^{\lambda(e^{it}-1)}$		
Uniform (continuous) $U(a, b)$	$\begin{cases} \frac{e^{tb} - e^{ta}}{t(b-a)} & \text{for } t \neq 0\\ 1 & \text{for } t = 0 \end{cases}$	$\begin{cases} \frac{e^{itb} - e^{ita}}{it(b-a)} & \text{for } t \neq 0\\ 1 & \text{for } t = 0 \end{cases}$		
Uniform (discrete) $DU(a, b)$	$\frac{e^{at} - e^{(b+1)t}}{(b-a+1)(1-e^t)}$	$\frac{e^{it\mu}}{(b-a+1)\left(1-e^{it}\right)}$		
Laplace $L(\mu, b)$	$\frac{e^{t\mu}}{1 - b^2 t^2}, \ t < 1/b$	$\frac{e^{it\mu}}{1 + b^2 t^2}$		
Normal $N(\mu, \sigma^2)$	$e^{t\mu + \frac{1}{2}\sigma^2 t^2}$	$e^{it\mu - \frac{1}{2}\sigma^2 t^2}$		
Chi-squared χ_k^2	$(1-2t)^{-\frac{k}{2}}$	$(1-2it)^{-\frac{k}{2}}$		
Noncentral chi-squared $\chi_k^2(\lambda)$	$e^{\lambda t/(1-2t)}(1-2t)^{-\frac{k}{2}}$	$e^{i\lambda t/(1-2it)}(1-2it)^{-\frac{k}{2}}$		
Gamma $\Gamma(\alpha, \beta)$	$\left(1 - \frac{t}{\beta}\right)^{-\alpha}, \ t < \beta$	$\left(1 - \frac{it}{\beta}\right)^{-\alpha}$		
Exponential $Exp(\lambda)$	$\frac{\lambda}{\lambda - t}, t < \lambda$	$\frac{\lambda}{\lambda - it}$		
Multivariate normal $N(\boldsymbol{\mu}, \boldsymbol{\Sigma})$	$e^{\mathbf{t}^T\left(oldsymbol{\mu}+rac{1}{2}oldsymbol{\Sigma}\mathbf{t} ight)}$	$e^{\mathbf{t}^T \left(i\boldsymbol{\mu} - \frac{1}{2}\mathbf{\Sigma}\mathbf{t}\right)}$		
Cauchy $Cauchy(\mu, \theta)$	Does not exist	$e^{it\mu-\theta t }$		
Multivariate Cauchy $MultiCauchy(\boldsymbol{\mu}, \boldsymbol{\Sigma})$	Does not exist	$e^{i\mathbf{t}^{\mathrm{T}}\boldsymbol{\mu} - \sqrt{\mathbf{t}^{\mathrm{T}}\boldsymbol{\Sigma}\mathbf{t}}}$		