Distributed by:

JAMECO

ELECTRONICS

www.Jameco.com + 1-800-831-4242

The content and copyrights of the attached material are the property of its owner.

Jameco Part Number 1345692

SLOS068P - JUNE 1976 - REVISED SEPTEMBER 2004

- Wide Supply Range:
 - Single Supply . . . 3 V to 32 V (26 V for LM2904)
 - or Dual Supplies . . . ±1.5 V to ±16 V (±13 V for LM2904)
- Low Supply-Current Drain, Independent of Supply Voltage . . . 0.7 mA Typ
- Common-Mode Input Voltage Range Includes Ground, Allowing Direct Sensing **Near Ground**
- **Low Input Bias and Offset Parameters:**
 - Input Offset Voltage . . . 3 mV Typ A Versions . . . 2 mV Typ
 - Input Offset Current . . . 2 nA Typ
 - Input Bias Current . . . 20 nA Typ A Versions . . . 15 nA Typ
- Differential Input Voltage Range Equal to Maximum-Rated Supply Voltage . . . 32 V (26 V for LM2904)
- **Open-Loop Differential Voltage** Amplification . . . 100 V/mV Typ
- **Internal Frequency Compensation**

description/ordering information

These devices consist of two independent, high-gain, frequency-compensated operational amplifiers designed to operate from a single

LM158, LM158A . . . JG PACKAGE LM258, LM258A . . . D, DGK, OR P PACKAGE LM358...D, DGK, P, PS, OR PW PACKAGE LM358A . . . D, DGK, P, OR PW PACKAGE LM2904...D, DGK, P, PS, OR PW PACKAGE (TOP VIEW)

LM158, LM158A . . . FK PACKAGE (TOP VIEW)

NC - No internal connection

supply over a wide range of voltages. Operation from split supplies also is possible if the difference between the two supplies is 3 V to 32 V (3 V to 26 V for the LM2904), and V_{CC} is at least 1.5 V more positive than the input common-mode voltage. The low supply-current drain is independent of the magnitude of the supply voltage.

Applications include transducer amplifiers, dc amplification blocks, and all the conventional operational amplifier circuits that now can be implemented more easily in single-supply-voltage systems. For example, these devices can be operated directly from the standard 5-V supply used in digital systems and easily can provide the required interface electronics without additional ±5-V supplies.

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

SLOS068P - JUNE 1976 - REVISED SEPTEMBER 2004

description/ordering information (continued)

ORDERING INFORMATION

TA	V _{IO} max AT 25°C	MAX TESTED VCC	PACKAGE	<u>:</u> †	ORDERABLE PART NUMBER	TOP-SIDE MARKING
			PDIP (P)	Tube of 50	LM358P	LM358P
				Tube of 75	LM358D	
			SOIC (D)	Reel of 2500	LM358DR	LM358
	7 mV	30 V	SOP (PS)	Reel of 2000	LM358PSR	L358
		TOCOD (DIA)		Tube of 150	LM358PW	1.050
			TSSOP (PW)	Reel of 2000	LM358PWR	L358
0°C to 70°C			MSOP/VSSOP (DGK)	Reel of 2500	LM358DGKR	M5_‡
			PDIP (P)	Tube of 50	LM358AP	LM358AP
			2010 (5)	Tube of 75	LM358AD	1110504
	_ ,,		SOIC (D)	Reel of 2500	LM358ADR	LM358A
l	3 mV	30 V		Tube of 150	LM358APW	
			TSSOP (PW)	Reel of 2000	LM358APWR	L358A
			MSOP/VSSOP (DGK)	Reel of 2500	LM358ADGKR	M6_‡
			PDIP (P)	Tube of 50	LM258P	LM258P
	,		2010 (2)	Tube of 75	LM258D	
	5 mV	30 V	SOIC (D)	Reel of 2500	LM258DR	LM258
			MSOP/VSSOP (DGK)	Reel of 2500	LM258DGKR	M2_‡
–25°C to 85°C			PDIP (P)	Tube of 50	LM258AP	LM258AP
	_ ,,		2010 (2)	Tube of 75	LM258AD	
	3 mV	30 V	SOIC (D)	Reel of 2500	LM258ADR	LM258A
			MSOP/VSSOP (DGK)	Reel of 2500	LM258ADGKR	M3_‡
			PDIP (P)	Tube of 50	LM2904P	LM2904P
			2010 (5)	Tube of 75	LM2904D	1110001
1			SOIC (D)	Reel of 2500	LM2904DR	LM2904
	7 mV	26 V	SOP (PS)	Reel of 2000	LM2904PSR	L2904
			T0000 (D)40	Tube of 150	LM2904PW	1,000.4
-40°C to 125°C			TSSOP (PW)	Reel of 2000	LM2904PWR	L2904
			MSOP/VSSOP (DGK)	Reel of 2500	LM2904DGKR	MB_‡
	,		SOIC (D)	Reel of 2500	LM2904VQDR	L2904V
	7 mV	32 V	TSSOP (PW)	Reel of 2000	LM2904VQPWR	L2904V
		95.7	SOIC (D)	Reel of 2500	LM2904AVQDR	L2904AV
	2 mV	32 V	TSSOP (PW)	Reel of 2000	LM2904AVQPWR	L2904AV
		95.7	CDIP (JG)	Tube of 50	LM158JG	LM158JG
FF00 / 40F00	5 mV	30 V	LCCC (FK)	Tube of 55	LM158FK	LM158FK
–55°C to 125°C	0. \(\(\)	0617	CDIP (JG)	Tube of 50	LM158AJG	LM158AJG
	2 mV	30 V	LCCC (FK)	Tube of 55	LM158AFK	LM158AFK

[†]Package drawings, standard packing quantities, thermal data, symbolization, and PCB design guidelines are available at www.ti.com/sc/package.

[‡] The actual top-side marking has one additional character that designates the assembly/test site.

symbol (each amplifier)

schematic (each amplifier)

COMPONENT COUNT								
Epi-FET	1							
Diodes	2							
Resistors	7							
Transistors	51							
Capacitors	2							

LM158, LM158A, LM258, LM258A LM358, LM358A, LM2904, LM2904V DUAL OPERATIONAL AMPLIFIERS

SLOS068P - JUNE 1976 - REVISED SEPTEMBER 2004

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)†

		LM158, LM158A LM258, LM258A LM358, LM358A LM2904V	LM2904	UNIT	
Supply voltage, V _{CC} (see Note 1)		±16 or 32	±13 or 26	V	
Differential input voltage, V _{ID} (see Note 2)	±32	±26	V		
Input voltage, V _I (either input)	-0.3 to 32	-0.3 to 26	V		
Duration of output short circuit (one amplifier) to ground at (or below) 25°C free-air temperature ($V_{CC} \le 15 \text{ V}$) (see Note 3)		Unlimited	Unlimited		
	D package	97	97		
	DGK package	172	172		
Package thermal impedance, θ_{JA} (see Notes 4 and 5)	P package	85	85	°C/W	
	PS package	95	95		
	PW package	149	149		
Parkers the small beautiful advers 0 (see Notes 0 and 7)	FK package	5.61		0000	
Package thermal impedance, $\theta_{\mbox{\scriptsize JC}}$ (see Notes 6 and 7)	JG package	14.5		°C/W	
	LM158, LM158A	-55 to 125			
On anothing from all to an another and an T	LM258, LM258A	-25 to 85		°C	
Operating free-air temperature range, T _A	LM358, LM358A	0 to 70		°C	
	LM2904	-40 to 125	-40 to 125		
Operating virtual junction temperature, TJ		150	150	°C	
Case temperature for 60 seconds	FK package	260		°C	
Lead temperature 1,6 mm (1/16 inch) from case for 60 seconds	JG package	300	300	°C	
Storage temperature range, T _{Stg}		-65 to 150	-65 to 150	°C	

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

NOTES: 1. All voltage values, except differential voltages and V_{CC} specified for measurement of I_{OS}, are with respect to the network ground terminal.

- 2. Differential voltages are at IN+ with respect to IN-.
- 3. Short circuits from outputs to $V_{\hbox{\footnotesize{CC}}}$ can cause excessive heating and eventual destruction.
- Maximum power dissipation is a function of T_J(max), θ_{JA}, and T_A. The maximum allowable power dissipation at any allowable ambient temperature is P_D = (T_J(max) – T_A)/θ_{JA}. Operating at the absolute maximum T_J of 150°C can affect reliability.
- 5. The package thermal impedance is calculated in accordance with JESD 51-7.
- 6. Maximum power dissipation is a function of $T_J(max)$, θ_{JC} , and T_C . The maximum allowable power dissipation at any allowable case temperature is $P_D = (T_J(max) T_C)/\theta_{JC}$. Operating at the absolute maximum T_J of 150°C can affect reliability.
- 7. The package thermal impedance is calculated in accordance with MIL-STD-883.

P	PARAMETER	TEST CON	DITIONST	T _A ‡		LM158 LM258			LM358		UNIT
					MIN	TYP§	MAX	MIN	TYP§	MAX	
.,		$V_{CC} = 5 \text{ V to}$		25°C		3	5		3	7	.,
VIO	Input offset voltage	$V_{IC} = V_{ICR}(n)$ $V_{O} = 1.4 \text{ V}$	nin) [,]	Full range			7			9	mV
$\alpha_{V_{IO}}$	Average temperature coefficient of input offset voltage			Full range		7			7		μV/°C
IIO	Input offset current	V _O = 1.4 V		25°C		2	30		2	50	nA
10		VO = 1.1 V		Full range			100			150	
$\alpha_{I_{IO}}$	Average temperature coefficient of input offset current			Full range		10			10		pA/°C
I _{IB}	Input bias current	V _O = 1.4 V		25°C		-20	-150		-20	-250	nA
'IB	input blub builtent	VO = 1.4 V		Full range			-300			-500	117 (
VICR	Common-mode	V _{CC} = 5 V to	MAX	25°C	0 to	1.5		0 to VCC -	1.5		V
TICK	input voltage range			Full range	0 to			0 to V _{CC} -			•
		$R_L \ge 2 k\Omega$		25°C	VCC -	1.5		VCC -	1.5		
V _{OH}	High-level	R _L ≥ 10 kΩ		25°C							V
OH	output voltage	V _{CC} = MAX	$R_L = 2 k\Omega$	Full range	26			26			
	Low-level		$R_L \ge 10 \text{ k}\Omega$	Full range	27	28		27	28		
VOL	output voltage	$R_L \le 10 \text{ k}\Omega$		Full range		5	20		5	20	mV
۸. ه	Large-signal differential	V _{CC} = 15 V, V _O = 1 V to 1	1 \/	25°C	50	100		25	100		V/mV
AVD	voltage amplification	R _L ≥ 2 kΩ		Full range	25			15			V/IIIV
CMRR	Common-mode rejection ratio	$V_{CC} = 5 \text{ V to}$ $V_{IC} = V_{ICR}(n)$		25°C	70	80		65	80		dB
ksvr	Supply-voltage rejection ratio (∆VDD/∆VIO)	V _{CC} = 5 V to	MAX	25°C	65	100		65	100		dB
V _{O1} /V _{O2}	Crosstalk attenuation	f = 1 kHz to 2	0 kHz	25°C		120			120		dB
		V _C C = 15 V,	Course	25°C	-20	-30		-20	-30		
	Outract comment	$V_{ID} = 1 V, V_{O} = 0$	Source	Full range	-10			-10			4
Ю	Output current	V _{CC} = 15 V,	0: 1	25°C	10	20		10	20		mA
		$V_{ID} = -1 \text{ V},$ $V_{O} = 15 \text{ V}$	Sink	Full range	5			5			
IO	Output current	V _{ID} = −1 V, V		25°C	12	30		12	30		μΑ
los	Short-circuit output current	V_{CC} at 5 V, Q_{CC}	SND at -5 V,	25°C		±40	±60		±40	±60	mA
	Supply current	_	V _O = 2.5 V, No load			0.7	1.2		0.7	1.2	
ICC	(two amplifiers)	V _{CC} = MAX, No load	$V_0 = 0.5 V_0$	Full range		1	2		1	2	mA

[†] All characteristics are measured under open-loop conditions, with zero common-mode input voltage, unless otherwise specified. MAX V_{CC} for testing purposes is 26 V for the LM2904 and 30 V for others.

[‡] Full range is -55° C to 125°C for LM158, -25° C to 85°C for LM258, 0°C to 70°C for LM358, and -40° C to 125°C for LM2904. § All typical values are at $T_A = 25^{\circ}$ C.

LM158, LM158A, LM258, LM258A LM358, LM358A, LM2904, LM2904V DUAL OPERATIONAL AMPLIFIERS SLOS068P - JUNE 1976 - REVISED SEPTEMBER 2004

	DADAMETED	TEST COME	NITIONS!	T. T	L	M2904		
	PARAMETER	TEST COND	JIIONS	T _A ‡	MIN	TYP§	MAX	UNIT
			Non A dovisoo	25°C		3	7	
V	lanut offeet voltege	$V_{CC} = 5 \text{ V to MAX},$	Non-A devices	Full range			10	\/
V _{IO}	Input offset voltage	$V_{IC} = V_{ICR(min)},$ $V_{O} = 1.4 \text{ V}$	A cuffix dovices	25°C		1	2	mV
		Ŭ	A-suffix devices	Full range			4	
$\alpha_{V_{\text{IO}}}$	Average temperature coefficient of input offset voltage			Full range		7		μV/°C
			Non-V device			2	50	
				Full range			300	
liO	Input offset current	V _O = 1.4 V		25°C		2	50	nA
		V-suffix device		Full range			150	
α _I IO	Average temperature coefficient of input offset current			Full range		10		pA/°C
				25°C		-20	-250	
I _{IB}	Input bias current	V _O = 1.4 V		Full range			-500	nA
	Common-mode input voltage				0 to V _{CC} – 1.	5		
VICR	range	$V_{CC} = 5 \text{ V to MAX}$	ACC = 2 A TO INVEX					V
		R _L ≥ 10 kΩ		25°C	V _{CC} – 1	.5		
		V _C C = MAX,	$R_L = 2 k\Omega$	Full range	22			
Vон	High-level output voltage	Non-V device	R _L ≥ 10 kΩ	Full range	23	24		V
		V _{CC} = MAX,	$R_L = 2 k\Omega$	Full range	26			
		V-suffix device	R _L ≥ 10 kΩ	Full range	27	28		
VOL	Low-level output voltage	R _L ≤ 10 kΩ	•	Full range		5	20	mV
	Large-signal differential	V _{CC} = 15 V, V _O = 1	V to 11 V,	25°C	25	100		.,,
AVD	voltage amplification	$R_L \ge 2 k\Omega$		Full range	15			V/m\
OMBB	Occasion and described and	$V_{CC} = 5 \text{ V to MAX},$	Non-V device	25°C	50	80		-15
CMRR	Common-mode rejection ratio	V _{IC} = V _{ICR} (min)	V-suffix device	25°C	65	80		dB
ksvr	Supply-voltage rejection ratio (ΔV _{DD} /ΔV _{IO})	V _{CC} = 5 V to MAX		25°C	65	100		dB
V _{O1} /V _{O2}	Crosstalk attenuation	f = 1 kHz to 20 kHz		25°C		120		dB
		V _{CC} = 15 V,		25°C	-20	-30		mA
		$V_{ID} = 1 \text{ V}, V_{O} = 0$	Source	Full range	-10			mA
		V _{CC} = 15 V,		25°C	10	20		mA
lO	Output current	$V_{ID} = -1 \text{ V},$ $V_{O} = 15 \text{ V}$	Sink	Full range	5			mA
		V _{ID} = −1 V,	Non-V device	25°C		30		
		V _O = 200 mV V-suffix device		25°C	12	40		μA
los	Short-circuit output current	V _{CC} at 5 V, GND at	-5 V, V _O = 0	25°C		±40	±60	mA
	Cupply ourrant (two amplifiers)	$V_O = 2.5 \text{ V}$, No load	Full range		0.7	1.2	, A	
ICC	Supply current (two amplifiers)	$V_{CC} = MAX, V_O = 0$.5 V, No load	Full range		1	2	mA

[†] All characteristics are measured under open-loop conditions, with zero common-mode input voltage, unless otherwise specified. MAX V_{CC} for testing purposes is 26 V for the LM2904, 32 V for the LM2904V, and 30 V for others.

[‡] Full range is –55°C to 125°C for LM158, –25°C to 85°C for LM258, 0°C to 70°C for LM358, and –40°C to 125°C for LM2904.

[§] All typical values are at $T_A = 25$ °C.

SLOS068P - JUNE 1976 - REVISED SEPTEMBER 2004

D	DAMETER	TEST COM	DITIONET	 +		LM158A			LM258A		LINIT	
Ρ/	ARAMETER	TEST CON	DITIONS	T _A ‡	MIN	TYP§	MAX	MIN	TYP§	MAX	UNIT	
V _{IO}	Input offset voltage	$V_{CC} = 5 \text{ V to}$ $V_{IC} = V_{ICR(r)}$	30 V,	25°C			2		2	3	mV	
	A	V _O = 1.4 V		Full range			4			4		
$\alpha_{V_{\text{IO}}}$	Average temperature coefficient of input offset voltage			Full range		7	15*		7	15	μV/°C	
lio	Input offset current	V _O = 1.4 V		25°C		2	10		2	15	nA	
	Average			Full range			30			30		
$\alpha_{I_{IO}}$	temperature coefficient of input offset current			Full range		10	200		10	200	pA/°C	
I _{IB}	Input bias current	V _O = 1.4 V		25°C		-15	-50		-15	-80	nA	
'ID	input blub burrent	VO = 1.4 V		Full range			-100			-100	10.	
V _{ICR}	Common-mode	V _{CC} = 30 V		25°C	0 to	1.5		0 to	1.5		V	
*ICK	input voltage range	VCC = 00 V		Full range	0 to V _{CC} -	2		0 to V _{CC} -	2		v	
	I Pak Jawal	$R_L \ge 2 k\Omega$		25°C	V _{CC} -	1.5		Vcc -	1.5			
VOH	High-level output voltage	V _{CC} = 30 V	$R_L = 2 k\Omega$ $R_L \ge 10 k\Omega$	Full range Full range	26 27	28		26 27	28		V	
VOL	Low-level output voltage	R _L ≤ 10 kΩ		Full range		5	20		5	20	mV	
	Large-signal	V _{CC} = 15 V,		25°C	50	100		50	100			
AVD	differential voltage amplification	$V_O = 1 \text{ V to } 1$ $R_L \ge 2 \text{ k}\Omega$	1 V,	Full range	25			25			V/mV	
CMRR	Common-mode rejection ratio			25°C	70	80		70	80		dB	
k _{SVR}	Supply-voltage rejection ratio (∆V _{DD} /∆V _{IO})			25°C	65	100		65	100		dB	
V _{O1} /V _{O2}	Crosstalk attenuation	f = 1 kHz to 2	0 kHz	25°C		120			120		dB	
		V _{CC} = 15 V,	Source	25°C	-20	-30	-60	-20	-30	-60		
		$V_{ID} = 1 V$, $V_{O} = 0$	Source	Full range	-10			-10			A	
IO	Output current	V _{CC} = 15 V,	Cink	25°C	10	20		10	20		mA	
		$V_{ID} = -1 V,$ $V_{O} = 15$	Sink	Full range	5			5				
		V _{ID} = -1 V, V	O = 200 mV	25°C	12	30		12	30		μΑ	
Ios	Short-circuit output current	V_{CC} at 5 V, 0 $V_{O} = 0$	GND at -5 V,	25°C		±40	±60		±40	±60	mA	
	Cumply ourroat (to-	V _O = 2.5 V, N	lo load	Full range		0.7	1.2		0.7	1.2		
ICC	Supply current (two amplifiers)	V _{CC} = MAX, No load	$V_0 = 0.5 V$,	Full range		1	2		1	2	mA	

^{*}On products compliant to MIL-PRF-38535, this parameter is not production tested.

[†] All characteristics are measured under open-loop conditions, with zero common-mode input voltage, unless otherwise specified. MAX V_{CC} for testing purposes is 26 V for LM2904 and 30 V for others.

[‡] Full range is -55°C to 125°C for LM158A, -25°C to 85°C for LM258A, and 0°C to 70°C for LM358A.

[§] All typical values are at $T_A = 25$ °C.

LM158, LM158A, LM258, LM258A LM358, LM358A, LM2904, LM2904V DUAL OPERATIONAL AMPLIFIERS SLOS068P - JUNE 1976 - REVISED SEPTEMBER 2004

	DADAMETED	TEST COM	DITIONST	T. 1	L	M358A		
	PARAMETER	TEST CONDITIONS [†]		T _A ‡	MIN	TYP§	MAX	UNIT
V _{IO}	Input offset voltage	V _{CC} = 5 V to 30 \	/,	25°C		2	3	mV
VЮ	input onset voltage	VIC = VICR(min)	V _O = 1.4 V	Full range			5	IIIV
$\alpha_{V_{IO}}$	Average temperature coefficient of input offset voltage					7	20	μV/°C
1	locate offers at assument	V 44V		25°C		2	30	A
lio	Input offset current	V _O = 1.4 V		Full range			75	nA
α_{I} 10	Average temperature coefficient of input offset current			Full range		10	300	pA/°C
	Leaved biles assument	V 44V		25°C		-15	-100	A
I _{IB}	Input bias current	V _O = 1.4 V		Full range			-200	nA
.,	O			25°C	0 to V _{CC} – 1.	5		.,
VICR	Common-mode input voltage range	V _{CC} = 30 V		Full range	0 to V _{CC} -2			V
		$R_L \ge 2 k\Omega$		25°C	V _{CC} – 1	.5		
Vон	High-level output voltage	V 20 V	$R_L = 2 k\Omega$	Full range	26			V
		VCC = 30 V	$R_L \ge 10 \text{ k}\Omega$	Full range	27	28		
VOL	Low-level output voltage	R _L ≤ 10 kΩ		Full range		5	20	mV
AVD	Large-signal differential	V _{CC} = 15 V, V _O =	= 1 V to 11 V,	25°C	25	100		V/mV
~VD	voltage amplification	$R_L \ge 2 k\Omega$		Full range	15			V/IIIV
CMRR	Common-mode rejection ratio			25°C	65	80		dB
ksvr	Supply-voltage rejection ratio $(\Delta V_{DD}/\Delta V_{IO})$			25°C	65	100		dB
V _{O1} /V _{O2}	Crosstalk attenuation	f = 1 kHz to 20 kH	lz	25°C		120		dB
		V _{CC} = 15 V, V _{ID} = 1 V,	Source	25°C	-20	-30	-60	
		$V_O = 0$	Godrec	Full range	-10			
IO	Output current	V _{CC} = 15 V, V _{ID} = -1 V,	Sink	25°C	10	20		mA
		V _O = 15 V		Full range	5			
		$V_{ID} = -1 \text{ V}, V_{O} = 200 \text{ mV}$		25°C		30		μΑ
los	Short-circuit output current	V _{CC} at 5 V, GND	at $-5 \text{ V}, \text{ V}_{\text{O}} = 0$	25°C		±40	±60	mA
^I cc	Supply current (two amplifiers)	$V_O = 2.5 \text{ V}$, No loa		Full range		0.7	1.2	mA
.00	Supply surront (two unpinions)	V _{CC} = MAX, V _O :	= 0.5 V, No load	Full range		1	2	11171

[†] All characteristics are measured under open-loop conditions, with zero common-mode input voltage, unless otherwise specified. MAX V_{CC} for testing purposes is 26 V for LM2904 and 30 V for others.

Full range is -55°C to 125°C for LM158A, -25°C to 85°C for LM258A, and 0°C to 70°C for LM358A.

[§] All typical values are at $T_A = 25$ °C.

operating conditions, V_{CC} = ± 15 V, T_A = $25^{\circ}C$

	PARAMETER	TEST CONDITIONS	TYP	UNIT
SR	Slew rate at unity gain	$R_L = 1 \text{ M}\Omega$, $C_L = 30 \text{ pF}$, $V_I = \pm 10 \text{ V}$ (see Figure 1)	0.3	V/μs
В1	Unity-gain bandwidth	$R_L = 1 M\Omega$, $C_L = 20 pF$ (see Figure 1)	0.7	MHz
Vn	Equivalent input noise voltage	R _S = 100 Ω , V _I = 0 V, f = 1 kHz (see Figure 2)	40	nV/√ Hz

Figure 1. Unity-Gain Amplifier

Figure 2. Noise-Test Circuit

PACKAGING INFORMATION

Orderable Device	Status ⁽¹⁾	Package Type	Package Drawing	Pins	Package Qty	e Eco Plan ⁽²⁾	Lead/Ball Finish	MSL Peak Temp ⁽³⁾
5962-87710012A	ACTIVE	LCCC	FK	20	1	TBD	POST-PLATE	N / A for Pkg Type
5962-8771001PA	ACTIVE	CDIP	JG	8	1	TBD	A42 SNPB	N / A for Pkg Type
5962-87710022A	ACTIVE	LCCC	FK	20	1	TBD	POST-PLATE	N / A for Pkg Type
5962-8771002PA	ACTIVE	CDIP	JG	8	1	TBD	A42 SNPB	N / A for Pkg Type
LM158AFKB	ACTIVE	LCCC	FK	20	1	TBD	POST-PLATE	N / A for Pkg Type
LM158AJG	ACTIVE	CDIP	JG	8	1	TBD	A42 SNPB	N / A for Pkg Type
LM158AJGB	ACTIVE	CDIP	JG	8	1	TBD	A42 SNPB	N / A for Pkg Type
LM158FKB	ACTIVE	LCCC	FK	20	1	TBD	POST-PLATE	N / A for Pkg Type
LM158JG	ACTIVE	CDIP	JG	8	1	TBD	A42 SNPB	N / A for Pkg Type
LM158JGB	ACTIVE	CDIP	JG	8	1	TBD	A42 SNPB	N / A for Pkg Type
LM258AD	ACTIVE	SOIC	D	8	75	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
LM258ADE4	ACTIVE	SOIC	D	8	75	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
LM258ADG4	ACTIVE	SOIC	D	8	75	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
LM258ADGKR	ACTIVE	MSOP	DGK	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
LM258ADGKRG4	ACTIVE	MSOP	DGK	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
LM258ADR	ACTIVE	SOIC	D	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
LM258ADRE4	ACTIVE	SOIC	D	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
LM258ADRG4	ACTIVE	SOIC	D	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
LM258AP	ACTIVE	PDIP	Р	8	50	Pb-Free (RoHS)	CU NIPDAU	N / A for Pkg Type
LM258APE4	ACTIVE	PDIP	Р	8	50	Pb-Free (RoHS)	CU NIPDAU	N / A for Pkg Type
LM258D	ACTIVE	SOIC	D	8	75	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
LM258DE4	ACTIVE	SOIC	D	8	75	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
LM258DG4	ACTIVE	SOIC	D	8	75	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
LM258DGKR	ACTIVE	MSOP	DGK	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
LM258DGKRG4	ACTIVE	MSOP	DGK	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
LM258DR	ACTIVE	SOIC	D	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
LM258DRE4	ACTIVE	SOIC	D	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
LM258DRG4	ACTIVE	SOIC	D	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
LM258P	ACTIVE	PDIP	Р	8	50	Pb-Free (RoHS)	CU NIPDAU	N / A for Pkg Type

om 9-Oct-2007

Orderable Device	Status ⁽¹⁾	Package Type	Package Drawing	Pins	Package Qty	e Eco Plan ⁽²⁾	Lead/Ball Finish	MSL Peak Temp ⁽³⁾
LM258PE4	ACTIVE	PDIP	Р	8	50	Pb-Free (RoHS)	CU NIPDAU	N / A for Pkg Type
LM2904AVQDR	NRND	SOIC	D	8	2500	Pb-Free (RoHS)	CU NIPDAU	Level-2-250C-1 YEAR Level-1-235C-UNLIM
LM2904AVQDRG4	ACTIVE	SOIC	D	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
LM2904AVQPWR	ACTIVE	TSSOP	PW	8	2000	TBD	CU NIPDAU	Level-1-250C-UNLIM
LM2904AVQPWRG4	ACTIVE	TSSOP	PW	8	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
LM2904D	ACTIVE	SOIC	D	8	75	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
LM2904DE4	ACTIVE	SOIC	D	8	75	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
LM2904DG4	ACTIVE	SOIC	D	8	75	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
LM2904DGKR	ACTIVE	MSOP	DGK	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
LM2904DGKRG4	ACTIVE	MSOP	DGK	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
LM2904DR	ACTIVE	SOIC	D	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
LM2904DRE4	ACTIVE	SOIC	D	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
LM2904DRG4	ACTIVE	SOIC	D	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
LM2904P	ACTIVE	PDIP	Р	8	50	Pb-Free (RoHS)	CU NIPDAU	N / A for Pkg Type
LM2904PE4	ACTIVE	PDIP	Р	8	50	Pb-Free (RoHS)	CU NIPDAU	N / A for Pkg Type
LM2904PSR	ACTIVE	SO	PS	8	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
LM2904PSRE4	ACTIVE	SO	PS	8	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
LM2904PSRG4	ACTIVE	SO	PS	8	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
LM2904PW	ACTIVE	TSSOP	PW	8	150	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
LM2904PWE4	ACTIVE	TSSOP	PW	8	150	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
LM2904PWG4	ACTIVE	TSSOP	PW	8	150	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
LM2904PWLE	OBSOLETE	TSSOP	PW	8		TBD	Call TI	Call TI
LM2904PWR	ACTIVE	TSSOP	PW	8	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
LM2904PWRE4	ACTIVE	TSSOP	PW	8	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
LM2904PWRG4	ACTIVE	TSSOP	PW	8	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
LM2904QD	OBSOLETE	SOIC	D	8		TBD	Call TI	Call TI
LM2904QDR	OBSOLETE	SOIC	D	8		Pb-Free (RoHS)	CU NIPDAU	Level-2-250C-1 YEAR Level-1-235C-UNLIM

9-Oct-2007

Orderable Device	Status ⁽¹⁾	Package Type	Package Drawing	Pins	Package Qty	e Eco Plan ⁽²⁾	Lead/Ball Finish	MSL Peak Temp ⁽³⁾
LM2904QDRG4	ACTIVE	SOIC	D	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
LM2904QP	OBSOLETE	PDIP	Р	8		TBD	Call TI	Call TI
LM2904VQDR	NRND	SOIC	D	8	2500	Pb-Free (RoHS)	CU NIPDAU	Level-2-250C-1 YEAR Level-1-235C-UNLIM
LM2904VQDRG4	ACTIVE	SOIC	D	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
LM2904VQPWR	ACTIVE	TSSOP	PW	8	2000	TBD	CU NIPDAU	Level-1-250C-UNLIM
LM2904VQPWRG4	ACTIVE	TSSOP	PW	8	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
LM358AD	ACTIVE	SOIC	D	8	75	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
LM358ADE4	ACTIVE	SOIC	D	8	75	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
LM358ADG4	ACTIVE	SOIC	D	8	75	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
LM358ADGKR	ACTIVE	MSOP	DGK	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
LM358ADGKRG4	ACTIVE	MSOP	DGK	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
LM358ADR	ACTIVE	SOIC	D	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
LM358ADRE4	ACTIVE	SOIC	D	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
LM358ADRG4	ACTIVE	SOIC	D	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
LM358AP	ACTIVE	PDIP	Р	8	50	Pb-Free (RoHS)	CU NIPDAU	N / A for Pkg Type
LM358APE4	ACTIVE	PDIP	Р	8	50	Pb-Free (RoHS)	CU NIPDAU	N / A for Pkg Type
LM358APW	ACTIVE	TSSOP	PW	8	150	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
LM358APWE4	ACTIVE	TSSOP	PW	8	150	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
LM358APWG4	ACTIVE	TSSOP	PW	8	150	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
LM358APWR	ACTIVE	TSSOP	PW	8	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
LM358APWRE4	ACTIVE	TSSOP	PW	8	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
LM358APWRG4	ACTIVE	TSSOP	PW	8	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
LM358D	ACTIVE	SOIC	D	8	75	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
LM358DE4	ACTIVE	SOIC	D	8	75	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
LM358DG4	ACTIVE	SOIC	D	8	75	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
LM358DGKR	ACTIVE	MSOP	DGK	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
LM358DGKRG4	ACTIVE	MSOP	DGK	8	2500	Green (RoHS &	CU NIPDAU	Level-1-260C-UNLIM

.com 9-Oct-2007

Orderable Device	Status ⁽¹⁾	Package Type	Package Drawing	Pins	Packag Qty		Lead/Ball Finis	h MSL Peak Temp ⁽³⁾
						no Sb/Br)		
LM358DR	ACTIVE	SOIC	D	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
LM358DRE4	ACTIVE	SOIC	D	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
LM358DRG4	ACTIVE	SOIC	D	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
LM358P	ACTIVE	PDIP	Р	8	50	Pb-Free (RoHS)	CU NIPDAU	N / A for Pkg Type
LM358PE4	ACTIVE	PDIP	Р	8	50	Pb-Free (RoHS)	CU NIPDAU	N / A for Pkg Type
LM358PSLE	OBSOLETE	SO	PS	8		TBD	Call TI	Call TI
LM358PSR	ACTIVE	SO	PS	8	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
LM358PSRE4	ACTIVE	SO	PS	8	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
LM358PSRG4	ACTIVE	SO	PS	8	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
LM358PW	ACTIVE	TSSOP	PW	8	150	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
LM358PWE4	ACTIVE	TSSOP	PW	8	150	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
LM358PWG4	ACTIVE	TSSOP	PW	8	150	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
LM358PWLE	OBSOLETE	TSSOP	PW	8		TBD	Call TI	Call TI
LM358PWR	ACTIVE	TSSOP	PW	8	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
LM358PWRE4	ACTIVE	TSSOP	PW	8	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
LM358PWRG4	ACTIVE	TSSOP	PW	8	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM

(1) The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

TBD: The Pb-Free/Green conversion plan has not been defined.

Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.

Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

(3) MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

PACKAGE OPTION ADDENDUM

9-Oct-2007

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

TAPE AND REEL BOX INFORMATION

	Dimension designed to accommodate the component width
B0	Dimension designed to accommodate the component length
	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

Device	Package	Pins	Site	Reel Diameter (mm)	Reel Width (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
LM258ADGKR	DGK	8	SITE 35	330	13	5.3	3.4	1.4	8	12	Q1
LM258ADR	D	8	SITE 27	330	12	6.4	5.2	2.1	8	12	Q1
LM258ADR	D	8	SITE 41	330	12	6.4	5.2	2.1	8	12	Q1
LM258DGKR	DGK	8	SITE 35	330	13	5.3	3.4	1.4	8	12	Q1
LM258DR	D	8	SITE 27	330	12	6.4	5.2	2.1	8	12	Q1
LM258DR	D	8	SITE 41	330	12	6.4	5.2	2.1	8	12	Q1
LM2904DGKR	DGK	8	SITE 35	330	13	5.3	3.4	1.4	8	12	Q1
LM2904DR	D	8	SITE 27	330	12	6.4	5.2	2.1	8	12	Q1
LM2904DR	D	8	SITE 41	330	12	6.4	5.2	2.1	8	12	Q1
LM2904PSR	PS	8	SITE 41	330	16	8.2	6.6	2.5	12	16	Q1
LM2904PWR	PW	8	SITE 41	330	12	7.0	3.6	1.6	8	12	Q1
LM358ADGKR	DGK	8	SITE 35	330	13	5.3	3.4	1.4	8	12	Q1
LM358ADR	D	8	SITE 27	330	12	6.4	5.2	2.1	8	12	Q1
LM358ADR	D	8	SITE 41	330	12	6.4	5.2	2.1	8	12	Q1
LM358APWR	PW	8	SITE 41	330	12	7.0	3.6	1.6	8	12	Q1
LM358DGKR	DGK	8	SITE 35	330	13	5.3	3.4	1.4	8	12	Q1
LM358DR	D	8	SITE 27	330	12	6.4	5.2	2.1	8	12	Q1
LM358DR	D	8	SITE 41	330	12	6.4	5.2	2.1	8	12	Q1
LM358PSR	PS	8	SITE 41	330	16	8.2	6.6	2.5	12	16	Q1

om 12-Jan-2008

Device	Package	Pins	Site	Reel Diameter (mm)	Reel Width (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
LM358PWR	PW	8	SITE 41	330	12	7.0	3.6	1.6	8	12	Q1

Device	Package	Pins	Site	Length (mm)	Width (mm)	Height (mm)
LM258ADGKR	DGK	8	SITE 35	358.0	335.0	35.0
LM258ADR	D	8	SITE 27	342.9	338.1	20.64
LM258ADR	D	8	SITE 41	346.0	346.0	29.0
LM258DGKR	DGK	8	SITE 35	358.0	335.0	35.0
LM258DR	D	8	SITE 27	342.9	338.1	20.64
LM258DR	D	8	SITE 41	346.0	346.0	29.0
LM2904DGKR	DGK	8	SITE 35	358.0	335.0	35.0
LM2904DR	D	8	SITE 27	342.9	338.1	20.64
LM2904DR	D	8	SITE 41	346.0	346.0	29.0
LM2904PSR	PS	8	SITE 41	346.0	346.0	33.0
LM2904PWR	PW	8	SITE 41	346.0	346.0	29.0
LM358ADGKR	DGK	8	SITE 35	358.0	335.0	35.0
LM358ADR	D	8	SITE 27	342.9	338.1	20.64
LM358ADR	D	8	SITE 41	346.0	346.0	29.0
LM358APWR	PW	8	SITE 41	346.0	346.0	29.0
LM358DGKR	DGK	8	SITE 35	358.0	335.0	35.0

PACKAGE MATERIALS INFORMATION

12-Jan-2008

Device	Package	Pins	Site	Length (mm)	Width (mm)	Height (mm)
LM358DR	D	8	SITE 27	342.9	338.1	20.64
LM358DR	D	8	SITE 41	346.0	346.0	29.0
LM358PSR	PS	8	SITE 41	346.0	346.0	33.0
LM358PWR	PW	8	SITE 41	346.0	346.0	29.0

JG (R-GDIP-T8)

CERAMIC DUAL-IN-LINE

NOTES: A. All linear dimensions are in inches (millimeters).

- B. This drawing is subject to change without notice.
- C. This package can be hermetically sealed with a ceramic lid using glass frit.
- D. Index point is provided on cap for terminal identification.
- E. Falls within MIL STD 1835 GDIP1-T8

FK (S-CQCC-N**)

28 TERMINAL SHOWN

LEADLESS CERAMIC CHIP CARRIER

NOTES: A. All linear dimensions are in inches (millimeters).

- B. This drawing is subject to change without notice.
- C. This package can be hermetically sealed with a metal lid.
- D. The terminals are gold plated.
- E. Falls within JEDEC MS-004

P (R-PDIP-T8)

PLASTIC DUAL-IN-LINE

NOTES: A. All linear dimensions are in inches (millimeters).

- B. This drawing is subject to change without notice.
- C. Falls within JEDEC MS-001

For the latest package information, go to $http://www.ti.com/sc/docs/package/pkg_info.htm$

DGK (S-PDSO-G8)

PLASTIC SMALL-OUTLINE PACKAGE

NOTES:

- A. All linear dimensions are in millimeters.
- B. This drawing is subject to change without notice.
- Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.15 per end.
- Body width does not include interlead flash. Interlead flash shall not exceed 0.50 per side.
- E. Falls within JEDEC MO-187 variation AA, except interlead flash.

D (R-PDSO-G8)

PLASTIC SMALL-OUTLINE PACKAGE

NOTES:

- A. All linear dimensions are in inches (millimeters).
- B. This drawing is subject to change without notice.
- Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed .006 (0,15) per end.
- Body width does not include interlead flash. Interlead flash shall not exceed .017 (0,43) per side.
- E. Reference JEDEC MS-012 variation AA.

NOTES: A. All linear dimensions are in millimeters.

B. This drawing is subject to change without notice.

C. Body dimensions do not include mold flash or protrusion, not to exceed 0,15.

PW (R-PDSO-G**)

14 PINS SHOWN

PLASTIC SMALL-OUTLINE PACKAGE

NOTES: A. All linear dimensions are in millimeters.

B. This drawing is subject to change without notice.

C. Body dimensions do not include mold flash or protrusion not to exceed 0,15.

D. Falls within JEDEC MO-153

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in such safety-critical applications.

TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated products in automotive applications, TI will not be responsible for any failure to meet such requirements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Products Amplifiers amplifier.ti.com Data Converters dataconverter.ti.com DSP dsp.ti.com Clocks and Timers www.ti.com/clocks Interface interface.ti.com Logic logic.ti.com Power Mgmt power.ti.com microcontroller.ti.com Microcontrollers www.ti-rfid.com RF/IF and ZigBee® Solutions www.ti.com/lprf

Applications	
Audio	www.ti.com/audio
Automotive	www.ti.com/automotive
Broadband	www.ti.com/broadband
Digital Control	www.ti.com/digitalcontrol
Medical	www.ti.com/medical
Military	www.ti.com/military
Optical Networking	www.ti.com/opticalnetwork
Security	www.ti.com/security
Telephony	www.ti.com/telephony
Video & Imaging	www.ti.com/video
Wireless	www.ti.com/wireless

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright 2008, Texas Instruments Incorporated