Homework #1

Deep Learning for Computer Vision

Due: 110/11/2 (Tue.) 03:00 AM

電機所 R09921102 曾翊維

Problem 1

1. (2%) Print the network architecture of your model.

I chose ResNet152, and set the last fully connected layer to be nn.Linear(2048, 50) to do the 50-class classification task. The detailed architecture is listed in appendix.

The basic architecture of Resnet152.

2. Report accuracy of model on the validation set. (TA will reproduce your results, error $\pm 0.5\%$)

Accuracy on validation set = 0.846

3. Visualize the classification result on validation set by implementing t-SNE on output features of the second last layer. Briefly explain your result of the tSNE visualization.

可以看到相同顏色的點聚在一起,代表有著相同label的影像經過模型,到倒數第二層的輸出,再被映射到二維空間後,是會群聚的。而相同顏色的點有很多群,可能代表著原來某個類別(e.g. 鳥)影像有很多個特徵(e.g. 鳥嘴、翅膀等等)。

Problem 2

1. (5%) Print the network architecture of your VGG16-FCN32s model.

FCN32s(

```
(vgg): VGG(
 (features): Sequential(
  (0): Conv2d(3, 64, kernel\_size=(3, 3), stride=(1, 1), padding=(1, 1))
  (1): ReLU(inplace=True)
  (2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
  (3): ReLU(inplace=True)
  (4): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
  (5): Conv2d(64, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
  (6): ReLU(inplace=True)
  (7): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
  (8): ReLU(inplace=True)
  (9): MaxPool2d(kernel size=2, stride=2, padding=0, dilation=1, ceil mode=False)
  (10): Conv2d(128, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
  (11): ReLU(inplace=True)
  (12): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
  (13): ReLU(inplace=True)
  (14): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
  (15): ReLU(inplace=True)
  (16): MaxPool2d(kernel size=2, stride=2, padding=0, dilation=1, ceil mode=False)
  (17): Conv2d(256, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
  (18): ReLU(inplace=True)
  (19): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
  (20): ReLU(inplace=True)
  (21): Conv2d(512, 512, kernel size=(3, 3), stride=(1, 1), padding=(1, 1))
  (22): ReLU(inplace=True)
  (23): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
  (24): Conv2d(512, 512, kernel size=(3, 3), stride=(1, 1), padding=(1, 1))
  (25): ReLU(inplace=True)
  (26): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
  (27): ReLU(inplace=True)
  (28): Conv2d(512, 512, kernel size=(3, 3), stride=(1, 1), padding=(1, 1))
  (29): ReLU(inplace=True)
  (30): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
 (avgpool): AdaptiveAvgPool2d(output_size=(7, 7))
 (classifier): Sequential(
  (0): Conv2d(512, 4096, kernel size=(2, 2), stride=(1, 1))
  (1): ReLU(inplace=True)
  (2): Dropout2d(p=0.5, inplace=False)
  (3): Conv2d(4096, 4096, kernel_size=(1, 1), stride=(1, 1))
  (4): ReLU(inplace=True)
  (5): Dropout2d(p=0.5, inplace=False)
  (6): Conv2d(4096, 7, kernel size=(1, 1), stride=(1, 1))
  (7): ConvTranspose2d(7, 7, kernel_size=(64, 64), stride=(32, 32), bias=False)
```

```
)
```

2. (5%) Implement an improved model which performs better than your baseline model. Print the network architecture of this model. FCN8s(

```
(vgg): VGG(
  (features): Sequential(
   (0): Conv2d(3, 64, kernel\_size=(3, 3), stride=(1, 1), padding=(1, 1))
   (1): ReLU(inplace=True)
   (2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
   (3): ReLU(inplace=True)
   (4): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
   (5): Conv2d(64, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
   (6): ReLU(inplace=True)
   (7): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
   (8): ReLU(inplace=True)
   (9): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
   (10): Conv2d(128, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
   (11): ReLU(inplace=True)
   (12): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
   (13): ReLU(inplace=True)
   (14): Conv2d(256, 256, kernel size=(3, 3), stride=(1, 1), padding=(1, 1))
   (15): ReLU(inplace=True)
   (16): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
   (17): Conv2d(256, 512, kernel size=(3, 3), stride=(1, 1), padding=(1, 1))
   (18): ReLU(inplace=True)
   (19): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
   (20): ReLU(inplace=True)
   (21): Conv2d(512, 512, kernel size=(3, 3), stride=(1, 1), padding=(1, 1))
   (22): ReLU(inplace=True)
   (23): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
   (24): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
   (25): ReLU(inplace=True)
   (26): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
   (27): ReLU(inplace=True)
   (28): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
   (29): ReLU(inplace=True)
   (30): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
  (avgpool): AdaptiveAvgPool2d(output size=(7, 7))
  (classifier): Sequential(
   (0): Conv2d(512, 4096, kernel_size=(2, 2), stride=(1, 1))
   (1): ReLU(inplace=True)
   (2): BatchNorm2d(4096, eps=1e-05, momentum=0.1, affine=True,
track_running_stats=True)
   (3): Dropout2d(p=0.5, inplace=False)
   (4): Conv2d(4096, 4096, kernel size=(2, 2), stride=(1, 1))
   (5): ReLU(inplace=True)
```

```
(6): BatchNorm2d(4096, eps=1e-05, momentum=0.1, affine=True,
track running stats=True)
   (7): Dropout2d(p=0.5, inplace=False)
   (8): Conv2d(4096, 7, kernel size=(1, 1), stride=(1, 1))
   (9): ConvTranspose2d(7, 256, kernel_size=(8, 8), stride=(4, 4))
  )
 (to_pool3): Sequential(
  (0): Conv2d(3, 64, kernel\_size=(3, 3), stride=(1, 1), padding=(1, 1))
  (1): ReLU(inplace=True)
  (2): Conv2d(64, 64, kernel size=(3, 3), stride=(1, 1), padding=(1, 1))
  (3): ReLU(inplace=True)
  (4): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
  (5): Conv2d(64, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
  (6): ReLU(inplace=True)
  (7): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
  (8): ReLU(inplace=True)
  (9): MaxPool2d(kernel size=2, stride=2, padding=0, dilation=1, ceil mode=False)
  (10): Conv2d(128, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
  (11): ReLU(inplace=True)
  (12): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
  (13): ReLU(inplace=True)
  (14): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
  (15): ReLU(inplace=True)
  (16): MaxPool2d(kernel size=2, stride=2, padding=0, dilation=1, ceil mode=False)
 (to_pool4): Sequential(
  (0): Conv2d(256, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
  (1): ReLU(inplace=True)
  (2): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
  (3): ReLU(inplace=True)
  (4): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
  (5): ReLU(inplace=True)
  (6): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
 (to pool5): Sequential(
  (0): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
  (1): ReLU(inplace=True)
  (2): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
  (3): ReLU(inplace=True)
  (4): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
  (5): ReLU(inplace=True)
  (6): MaxPool2d(kernel size=2, stride=2, padding=0, dilation=1, ceil mode=False)
 (poo4_upsample2): ConvTranspose2d(512, 256, kernel_size=(2, 2), stride=(2, 2))
 (upsample8): ConvTranspose2d(256, 7, kernel_size=(8, 8), stride=(8, 8))
```

3. Report mIoU of the improved model on the validation set. (TA will reproduce your results, error $\pm 0.5\%$)

FCN32s: mean_iou = 0.6667 FCN8s: mean_iou = 0.6882

4. Show the predicted segmentation mask of "validation/0010_sat.jpg", "validation/0097_sat.jpg", "validation/0107_sat.jpg" during the early, middle, and the final stage during the training process of this improved

Appendix:

ResNet152 Architecture

```
ResNet(
 (conv1): Conv2d(3, 64, kernel_size=(7, 7), stride=(2, 2), padding=(3, 3), bias=False)
 (bn1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track running stats=True)
 (relu): ReLU(inplace=True)
 (maxpool): MaxPool2d(kernel_size=3, stride=2, padding=1, dilation=1, ceil_mode=False)
 (layer1): Sequential(
  (0): Bottleneck(
   (conv1): Conv2d(64, 64, kernel_size=(1, 1), stride=(1, 1), bias=False)
   (bn1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
   (conv2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
   (bn2): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
   (conv3): Conv2d(64, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
   (bn3): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
   (relu): ReLU(inplace=True)
   (downsample): Sequential(
    (0): Conv2d(64, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
    (1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
   )
  )
  (1): Bottleneck(
   (conv1): Conv2d(256, 64, kernel_size=(1, 1), stride=(1, 1), bias=False)
   (bn1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
   (conv2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
   (bn2): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
   (conv3): Conv2d(64, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
   (bn3): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
   (relu): ReLU(inplace=True)
  )
  (2): Bottleneck(
   (conv1): Conv2d(256, 64, kernel_size=(1, 1), stride=(1, 1), bias=False)
   (bn1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
   (conv2): Conv2d(64, 64, kernel size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
   (bn2): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
   (conv3): Conv2d(64, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
   (bn3): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track running stats=True)
   (relu): ReLU(inplace=True)
  )
 (layer2): Sequential(
  (0): Bottleneck(
   (conv1): Conv2d(256, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)
   (bn1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
   (conv2): Conv2d(128, 128, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False)
   (bn2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
   (conv3): Conv2d(128, 512, kernel_size=(1, 1), stride=(1, 1), bias=False)
   (bn3): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
   (relu): ReLU(inplace=True)
```

```
(downsample): Sequential(
  (0): Conv2d(256, 512, kernel_size=(1, 1), stride=(2, 2), bias=False)
  (1): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
)
(1): Bottleneck(
 (conv1): Conv2d(512, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)
 (bn1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
 (conv2): Conv2d(128, 128, kernel size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
 (bn2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
 (conv3): Conv2d(128, 512, kernel size=(1, 1), stride=(1, 1), bias=False)
 (bn3): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track running stats=True)
 (relu): ReLU(inplace=True)
(2): Bottleneck(
 (conv1): Conv2d(512, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)
 (bn1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
 (conv2): Conv2d(128, 128, kernel size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
 (bn2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
 (conv3): Conv2d(128, 512, kernel_size=(1, 1), stride=(1, 1), bias=False)
 (bn3): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
 (relu): ReLU(inplace=True)
(3): Bottleneck(
 (conv1): Conv2d(512, 128, kernel size=(1, 1), stride=(1, 1), bias=False)
 (bn1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
 (conv2): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
 (bn2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
 (conv3): Conv2d(128, 512, kernel_size=(1, 1), stride=(1, 1), bias=False)
 (bn3): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
 (relu): ReLU(inplace=True)
(4): Bottleneck(
 (conv1): Conv2d(512, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)
 (bn1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
 (conv2): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
 (bn2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
 (conv3): Conv2d(128, 512, kernel_size=(1, 1), stride=(1, 1), bias=False)
 (bn3): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
 (relu): ReLU(inplace=True)
(5): Bottleneck(
 (conv1): Conv2d(512, 128, kernel size=(1, 1), stride=(1, 1), bias=False)
 (bn1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
 (conv2): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
 (bn2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
 (conv3): Conv2d(128, 512, kernel_size=(1, 1), stride=(1, 1), bias=False)
 (bn3): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
 (relu): ReLU(inplace=True)
)
(6): Bottleneck(
 (conv1): Conv2d(512, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)
```

```
(bn1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
  (conv2): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
  (bn2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track running stats=True)
  (conv3): Conv2d(128, 512, kernel_size=(1, 1), stride=(1, 1), bias=False)
  (bn3): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
  (relu): ReLU(inplace=True)
 (7): Bottleneck(
  (conv1): Conv2d(512, 128, kernel size=(1, 1), stride=(1, 1), bias=False)
  (bn1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
  (conv2): Conv2d(128, 128, kernel size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
  (bn2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track running stats=True)
  (conv3): Conv2d(128, 512, kernel_size=(1, 1), stride=(1, 1), bias=False)
  (bn3): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
  (relu): ReLU(inplace=True)
(layer3): Sequential(
 (0): Bottleneck(
  (conv1): Conv2d(512, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
  (bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
  (conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False)
  (bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
  (conv3): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)
  (bn3): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track running stats=True)
  (relu): ReLU(inplace=True)
  (downsample): Sequential(
   (0): Conv2d(512, 1024, kernel_size=(1, 1), stride=(2, 2), bias=False)
   (1): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
  )
 (1): Bottleneck(
  (conv1): Conv2d(1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
  (bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
  (conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
  (bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track running stats=True)
  (conv3): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)
  (bn3): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
  (relu): ReLU(inplace=True)
 (2): Bottleneck(
  (conv1): Conv2d(1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
  (bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track running stats=True)
  (conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
  (bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
  (conv3): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)
  (bn3): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
  (relu): ReLU(inplace=True)
 (3): Bottleneck(
  (conv1): Conv2d(1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
  (bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
```

```
(conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
 (bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
 (conv3): Conv2d(256, 1024, kernel size=(1, 1), stride=(1, 1), bias=False)
 (bn3): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
 (relu): ReLU(inplace=True)
(4): Bottleneck(
 (conv1): Conv2d(1024, 256, kernel size=(1, 1), stride=(1, 1), bias=False)
 (bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track running stats=True)
 (conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
 (bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track running stats=True)
 (conv3): Conv2d(256, 1024, kernel size=(1, 1), stride=(1, 1), bias=False)
 (bn3): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
 (relu): ReLU(inplace=True)
(5): Bottleneck(
 (conv1): Conv2d(1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
 (bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track running stats=True)
 (conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
 (bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
 (conv3): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)
 (bn3): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
 (relu): ReLU(inplace=True)
)
(6): Bottleneck(
 (conv1): Conv2d(1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
 (bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
 (conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
 (bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
 (conv3): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)
 (bn3): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
 (relu): ReLU(inplace=True)
(7): Bottleneck(
 (conv1): Conv2d(1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
 (bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track running stats=True)
 (conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
 (bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
 (conv3): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)
 (bn3): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track running stats=True)
 (relu): ReLU(inplace=True)
)
(8): Bottleneck(
 (conv1): Conv2d(1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
 (bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
 (conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
 (bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
 (conv3): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)
 (bn3): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
 (relu): ReLU(inplace=True)
(9): Bottleneck(
```

```
(conv1): Conv2d(1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
 (bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
 (conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
 (bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
 (conv3): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)
 (bn3): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
 (relu): ReLU(inplace=True)
(10): Bottleneck(
 (conv1): Conv2d(1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
 (bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track running stats=True)
 (conv2): Conv2d(256, 256, kernel size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
 (bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
 (conv3): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)
 (bn3): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track running stats=True)
 (relu): ReLU(inplace=True)
(11): Bottleneck(
 (conv1): Conv2d(1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
 (bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
 (conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
 (bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
 (conv3): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)
 (bn3): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
 (relu): ReLU(inplace=True)
)
(12): Bottleneck(
 (conv1): Conv2d(1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
 (bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
 (conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
 (bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
 (conv3): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)
 (bn3): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
 (relu): ReLU(inplace=True)
(13): Bottleneck(
 (conv1): Conv2d(1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
 (bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
 (conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
 (bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track running stats=True)
 (conv3): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)
 (bn3): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
 (relu): ReLU(inplace=True)
(14): Bottleneck(
 (conv1): Conv2d(1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
 (bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
 (conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
 (bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
 (conv3): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)
 (bn3): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
 (relu): ReLU(inplace=True)
```

```
(15): Bottleneck(
 (conv1): Conv2d(1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
 (bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
 (conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
 (bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
 (conv3): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)
 (bn3): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
 (relu): ReLU(inplace=True)
(16): Bottleneck(
 (conv1): Conv2d(1024, 256, kernel size=(1, 1), stride=(1, 1), bias=False)
 (bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
 (conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
 (bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track running stats=True)
 (conv3): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)
 (bn3): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
 (relu): ReLU(inplace=True)
(17): Bottleneck(
 (conv1): Conv2d(1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
 (bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
 (conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
 (bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
 (conv3): Conv2d(256, 1024, kernel size=(1, 1), stride=(1, 1), bias=False)
 (bn3): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
 (relu): ReLU(inplace=True)
(18): Bottleneck(
 (conv1): Conv2d(1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
 (bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
 (conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
 (bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
 (conv3): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)
 (bn3): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
 (relu): ReLU(inplace=True)
(19): Bottleneck(
 (conv1): Conv2d(1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
 (bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track running stats=True)
 (conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
 (bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
 (conv3): Conv2d(256, 1024, kernel size=(1, 1), stride=(1, 1), bias=False)
 (bn3): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
 (relu): ReLU(inplace=True)
)
(20): Bottleneck(
 (conv1): Conv2d(1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
 (bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
 (conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
 (bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
 (conv3): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)
```

```
(bn3): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
 (relu): ReLU(inplace=True)
(21): Bottleneck(
 (conv1): Conv2d(1024, 256, kernel size=(1, 1), stride=(1, 1), bias=False)
 (bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
 (conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
 (bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track running stats=True)
 (conv3): Conv2d(256, 1024, kernel size=(1, 1), stride=(1, 1), bias=False)
 (bn3): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
 (relu): ReLU(inplace=True)
(22): Bottleneck(
 (conv1): Conv2d(1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
 (bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track running stats=True)
 (conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
 (bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
 (conv3): Conv2d(256, 1024, kernel size=(1, 1), stride=(1, 1), bias=False)
 (bn3): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
 (relu): ReLU(inplace=True)
(23): Bottleneck(
 (conv1): Conv2d(1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
 (bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
 (conv2): Conv2d(256, 256, kernel size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
 (bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
 (conv3): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)
 (bn3): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
 (relu): ReLU(inplace=True)
(24): Bottleneck(
 (conv1): Conv2d(1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
 (bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
 (conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
 (bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
 (conv3): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)
 (bn3): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
 (relu): ReLU(inplace=True)
(25): Bottleneck(
 (conv1): Conv2d(1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
 (bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
 (conv2): Conv2d(256, 256, kernel size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
 (bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
 (conv3): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)
 (bn3): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
 (relu): ReLU(inplace=True)
(26): Bottleneck(
 (conv1): Conv2d(1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
 (bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
 (conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
```

```
(bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
 (conv3): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)
 (bn3): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
 (relu): ReLU(inplace=True)
(27): Bottleneck(
 (conv1): Conv2d(1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
 (bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track running stats=True)
 (conv2): Conv2d(256, 256, kernel size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
 (bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
 (conv3): Conv2d(256, 1024, kernel size=(1, 1), stride=(1, 1), bias=False)
 (bn3): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track running stats=True)
 (relu): ReLU(inplace=True)
(28): Bottleneck(
 (conv1): Conv2d(1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
 (bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
 (conv2): Conv2d(256, 256, kernel size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
 (bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
 (conv3): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)
 (bn3): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
 (relu): ReLU(inplace=True)
(29): Bottleneck(
 (conv1): Conv2d(1024, 256, kernel size=(1, 1), stride=(1, 1), bias=False)
 (bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
 (conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
 (bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
 (conv3): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)
 (bn3): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
 (relu): ReLU(inplace=True)
(30): Bottleneck(
 (conv1): Conv2d(1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
 (bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
 (conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
 (bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
 (conv3): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)
 (bn3): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
 (relu): ReLU(inplace=True)
(31): Bottleneck(
 (conv1): Conv2d(1024, 256, kernel size=(1, 1), stride=(1, 1), bias=False)
 (bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
 (conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
 (bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
 (conv3): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)
 (bn3): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
 (relu): ReLU(inplace=True)
)
(32): Bottleneck(
 (conv1): Conv2d(1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
```

```
(bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
  (conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
  (bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track running stats=True)
  (conv3): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)
  (bn3): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
  (relu): ReLU(inplace=True)
 (33): Bottleneck(
  (conv1): Conv2d(1024, 256, kernel size=(1, 1), stride=(1, 1), bias=False)
  (bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
  (conv2): Conv2d(256, 256, kernel size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
  (bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track running stats=True)
  (conv3): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)
  (bn3): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
  (relu): ReLU(inplace=True)
 (34): Bottleneck(
  (conv1): Conv2d(1024, 256, kernel size=(1, 1), stride=(1, 1), bias=False)
  (bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
  (conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
  (bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
  (conv3): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)
  (bn3): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
  (relu): ReLU(inplace=True)
 (35): Bottleneck(
  (conv1): Conv2d(1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
  (bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
  (conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
  (bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
  (conv3): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)
  (bn3): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
  (relu): ReLU(inplace=True)
)
(layer4): Sequential(
 (0): Bottleneck(
  (conv1): Conv2d(1024, 512, kernel_size=(1, 1), stride=(1, 1), bias=False)
  (bn1): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
  (conv2): Conv2d(512, 512, kernel size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False)
  (bn2): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
  (conv3): Conv2d(512, 2048, kernel_size=(1, 1), stride=(1, 1), bias=False)
  (bn3): BatchNorm2d(2048, eps=1e-05, momentum=0.1, affine=True, track running stats=True)
  (relu): ReLU(inplace=True)
  (downsample): Sequential(
   (0): Conv2d(1024, 2048, kernel_size=(1, 1), stride=(2, 2), bias=False)
   (1): BatchNorm2d(2048, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
  )
 )
 (1): Bottleneck(
  (conv1): Conv2d(2048, 512, kernel_size=(1, 1), stride=(1, 1), bias=False)
  (bn1): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
```

```
(conv2): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(bn2): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv3): Conv2d(512, 2048, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn3): BatchNorm2d(2048, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu): ReLU(inplace=True)
)
(2): Bottleneck(
(conv1): Conv2d(2048, 512, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn1): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv2): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(bn2): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv3): Conv2d(512, 2048, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn3): BatchNorm2d(2048, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu): ReLU(inplace=True)
)
(avgpool): AdaptiveAvgPool2d(output_size=(1, 1))
(fc): Linear(in_features=2048, out_features=50, bias=True)
```