Part 6: Structured Prediction and Energy Minimization (1/2)

Sebastian Nowozin and Christoph H. Lampert

Providence, 21st June 2012

Prediction Problem

$$y^* = f(x) = \underset{y \in \mathcal{Y}}{\operatorname{argmax}} g(x, y)$$

- g(x,y) = p(y|x), factor graphs/MRF/CRF,
- g(x, y) = -E(y; x, w), factor graphs/MRF/CRF,
- $g(x,y) = \langle w, \psi(x,y) \rangle$, linear model (e.g. multiclass SVM),

ightarrow difficulty: ${\mathcal Y}$ finite but very large

Prediction Problem

$$y^* = f(x) = \underset{y \in \mathcal{Y}}{\operatorname{argmax}} g(x, y)$$

- g(x, y) = p(y|x), factor graphs/MRF/CRF,
- g(x, y) = -E(y; x, w), factor graphs/MRF/CRF,
- ▶ $g(x,y) = \langle w, \psi(x,y) \rangle$, linear model (e.g. multiclass SVM),
- ightarrow difficulty: ${\cal Y}$ finite but very large

Prediction Prblem (cont)

Definition (Optimization Problem)

Given $(g, \mathcal{Y}, \mathcal{G}, x)$, with feasible set $\mathcal{Y} \subseteq \mathcal{G}$ over decision domain \mathcal{G} , and given an input instance $x \in \mathcal{X}$ and an objective function $g : \mathcal{X} \times \mathcal{G} \to \mathbb{R}$, find the optimal value

$$\alpha = \sup_{y \in \mathcal{Y}} g(x, y),$$

and, if the supremum exists, find an optimal solution $y^* \in \mathcal{Y}$ such that $g(x, y^*) = \alpha$.

The feasible set

Ingredients

- ▶ Decision domain \mathcal{G} , typically simple ($\mathcal{G} = \mathbb{R}^d$, $\mathcal{G} = 2^V$, etc.)
- ▶ Feasible set $\mathcal{Y} \subseteq \mathcal{G}$, defining the problem-specific structure
- ▶ Objective function $g: \mathcal{X} \times \mathcal{G} \rightarrow \mathbb{R}$.

Terminology

- $ightharpoonup \mathcal{Y} = \mathcal{G}$: unconstrained optimization problem,
- G finite: discrete optimization problem,
- $\mathcal{G} = 2^{\Sigma}$ for ground set Σ : combinatorial optimization problem,
- $\triangleright \mathcal{Y} = \emptyset$: *infeasible* problem.

Example: Feasible Sets (cont)

$$\begin{array}{c|c} \hline (Y_i) & J_{ij}y_iy_j & \hline (Y_j) & J_{jk}y_jy_k & \hline (Y_k) \\ \hline \uparrow (+1) & & \downarrow (-1) & & \downarrow (-1) \\ h_iy_i & & h_jy_j & & h_ky_k \\ \hline \end{array}$$

- Ising model with external field
- ▶ Graph G = (V, E)
- "External field": $h \in \mathbb{R}^V$
- ▶ Interaction matrix: $J \in \mathbb{R}^{V \times V}$
- ▶ Objective, defined on $y_i \in \{-1, 1\}$

$$g(y) = h_i y_i + h_j y_j + h_k y_k + \frac{1}{2} J_{ij} y_i y_j + \frac{1}{2} J_{jk} y_j y_k$$

Example: Feasible Sets (cont)

Ising model with external field

$$\mathcal{Y} = \mathcal{G} = \{-1, +1\}^{V}$$

$$g(y) = \frac{1}{2} \sum_{(i,j) \in E} J_{i,j} y_{i} y_{j} + \sum_{i \in V} h_{i} y_{i}$$

- Unconstrained
- Objective function contains quadratic terms

Example: Feasible Sets (cont)

$$\mathcal{G} = \{0,1\}^{(V \times \{-1,+1\}) \cup (E \times \{-1,+1\} \times \{-1,+1\})},$$

$$\mathcal{Y} = \{y \in \mathcal{G} : \forall i \in V : y_{i,-1} + y_{i,+1} = 1,$$

$$\forall (i,j) \in E : y_{i,j,+1,+1} + y_{i,j,+1,-1} = y_{i,+1},$$

$$\forall (i,j) \in E : y_{i,j,-1,+1} + y_{i,j,-1,-1} = y_{i,-1}\},$$

$$g(y) = \frac{1}{2} \sum_{(i,j) \in E} J_{i,j}(y_{i,j,+1,+1} + y_{i,j,-1,-1})$$

$$-\frac{1}{2} \sum_{(i,j) \in E} J_{i,j}(y_{i,j,+1,-1} + y_{i,j,-1,+1})$$

$$+ \sum_{i \in V} h_i(y_{i,+1} - y_{i,-1})$$

- Constrained, more variables
- ► Objective function contains linear terms only

Evaluating f: what do we want?

$$f(x) = \operatorname*{argmax}_{y \in \mathcal{Y}} g(x, y)$$

For evaluating f(x) we want an algorithm that

- 1. is general: applicable to all instances of the problem,
- 2. is *optimal*: provides an optimal y^* ,
- has good worst-case complexity: for all instances the runtime and space is acceptably bounded,
- 4. is *integral*: its solutions are restricted to \mathcal{Y} ,
- 5. is *deterministic*: its results and runtime are reproducible and depend on the input data only.

Evaluating f: what do we want?

$$f(x) = \operatorname*{argmax}_{y \in \mathcal{Y}} g(x, y)$$

For evaluating f(x) we want an algorithm that

- 1. is general: applicable to all instances of the problem,
- 2. is *optimal*: provides an optimal y^* ,
- has good worst-case complexity: for all instances the runtime and space is acceptably bounded,
- 4. is *integral*: its solutions are restricted to \mathcal{Y} ,
- 5. is *deterministic*: its results and runtime are reproducible and depend on the input data only.

wanting all of them \rightarrow impossible

Giving up some properties

- \rightarrow giving up one or more properties
 - $\,\blacktriangleright\,$ allows us to design algorithms satisfying the remaining properties
 - might be sufficient for the task at hand

Giving up Generality

▶ Identify an interesting and tractable subset of instances

Example: MAP Inference in Markov Random Fields

Although NP-hard in general, it is tractable...

- ▶ with low tree-width (Lauritzen, Spiegelhalter, 1988)
- with binary states, pairwise submodular interactions (Boykov, Jolly, 2001)
- with binary states, pairwise interactions (only), planar graph structure (Globerson, Jaakkola, 2006)
- with submodular pairwise interactions (Schlesinger, 2006)
- with \mathcal{P}^n -Potts higher order factors (Kohli, Kumar, Torr, 2007)
- with perfect graph structure (Jebara, 2009)

Binary Graph-Cuts

► Energy function: unary and pairwise

$$E(y; x, w) = \sum_{F \in \mathcal{F}_1} E_F(y_F; x, w_{t_F}) + \sum_{F \in \mathcal{F}_2} E_F(y_F; x, w_{t_F})$$

► Restriction 1 (wlog)

$$E_F(y_i; x, w_{t_F}) \geq 0$$

$$E_F(y_i, y_j; x, w_{t_F}) = 0,$$
 if $y_i = y_j$
 $E_F(y_i, y_j; x, w_{t_F}) = E_F(y_j, y_i; x, w_{t_F}) \ge 0,$ otherwise

Binary Graph-Cuts

► Energy function: unary and pairwise

$$E(y; x, w) = \sum_{F \in \mathcal{F}_1} E_F(y_F; x, w_{t_F}) + \sum_{F \in \mathcal{F}_2} E_F(y_F; x, w_{t_F})$$

Restriction 1 (wlog)

$$E_F(y_i; x, w_{t_F}) \geq 0$$

$$E_F(y_i, y_j; x, w_{t_F}) = 0,$$
 if $y_i = y_j,$ $E_F(y_i, y_j; x, w_{t_F}) = E_F(y_j, y_i; x, w_{t_F}) \ge 0,$ otherwise.

Binary Graph-Cuts (cont)

- ► Construct auxiliary undirected graph
- ▶ One node $\{i\}_{i \in V}$ per variable
- ► Two extra nodes: source s, sink t
- Edges

Edge	Graph cut weight
$\{i,j\}$	$E_F(y_i = 0, y_j = 1; x, w_{t_F})$
$\{i,s\}$	$E_F(y_i=1;x,w_{t_F})$
$\{i,t\}$	$E_F(y_i=0;x,w_{t_F})$

- ► Find linear s-t-mincut
- Solution defines optimal binary labeling of the original energy minimization problem

Input image (http://pdphoto.org)

Color model log-odds

Independent decisions

$$g(x, y, w) = \sum_{i \in V} \log p(y_i|x_i) + w \sum_{(i,j) \in E} C(x_i, x_j) I(y_i \neq y_j)$$

Gradient strength

$$C(x_i, x_j) = \exp(\gamma ||x_i - x_j||^2)$$

 γ estimated from mean edge strength (Blake et al, 2004)

• $w \ge 0$ controls smoothing

Small w > 0

Medium w > 0

Large w > 0

- Is there a larger class of energies for which binary graph cuts are applicable?
- ► (Kolmogorov and Zabih, 2004), (Freedman and Drineas, 2005)

Theorem (Regular Binary Energies)

$$E(y; x, w) = \sum_{F \in \mathcal{F}_1} E_F(y_F; x, w_{t_F}) + \sum_{F \in \mathcal{F}_2} E_F(y_F; x, w_{t_F})$$

is a energy function of binary variables containing only unary and pairwise factors. The discrete energy minimization problem $\operatorname{argmin}_y E(y; x, w)$ is representable as a graph cut problem if and only if all pairwise energy functions E_F for $F \in \mathcal{F}_2$ with $F = \{i, j\}$ satisfy

$$E_{i,j}(0,0) + E_{i,j}(1,1) \le E_{i,j}(0,1) + E_{i,j}(1,0).$$

General Binary Case

- Is there a larger class of energies for which binary graph cuts are applicable?
- ► (Kolmogorov and Zabih, 2004), (Freedman and Drineas, 2005)

Theorem (Regular Binary Energies)

$$E(y; x, w) = \sum_{F \in \mathcal{F}_1} E_F(y_F; x, w_{t_F}) + \sum_{F \in \mathcal{F}_2} E_F(y_F; x, w_{t_F})$$

is a energy function of binary variables containing only unary and pairwise factors. The discrete energy minimization problem $\operatorname{argmin}_y E(y; x, w)$ is representable as a graph cut problem if and only if all pairwise energy functions E_F for $F \in \mathcal{F}_2$ with $F = \{i, j\}$ satisfy

$$E_{i,j}(0,0) + E_{i,j}(1,1) \le E_{i,j}(0,1) + E_{i,j}(1,0).$$

- ► (Carreira and Sminchisescu, 2010) PASCAL VOC 2009/2010 segmentation winner
- ► Generate class-independent object hypotheses
- ► Energy (almost) as before

$$g(x, y, w) = \sum_{i \in V} E_i(y_i) + w \sum_{(i,j) \in E} C(x_i, x_j) I(y_i \neq y_j)$$

Fixed unaries

$$E_i(y_i) = \begin{cases} \infty & \text{if } i \in V_{fg} \text{ and } y_i = 0\\ \infty & \text{if } i \in V_{bg} \text{ and } y_i = 1\\ 0 & \text{otherwise} \end{cases}$$

► Test all $w \ge 0$ using parametric max-flow (Picard and Queyranne, 1980), (Kolmogorov et al., 2007)

Example: Class-independent Object Hypotheses

- ► (Carreira and Sminchisescu, 2010) PASCAL VOC 2009/2010 segmentation winner
- Generate class-independent object hypotheses
- ► Energy (almost) as before

$$g(x, y, w) = \sum_{i \in V} E_i(y_i) + w \sum_{(i,j) \in E} C(x_i, x_j) I(y_i \neq y_j)$$

Fixed unaries

$$E_i(y_i) = \begin{cases} \infty & \text{if } i \in V_{fg} \text{ and } y_i = 0\\ \infty & \text{if } i \in V_{bg} \text{ and } y_i = 1\\ 0 & \text{otherwise} \end{cases}$$

► Test all $w \ge 0$ using parametric max-flow (Picard and Queyranne, 1980), (Kolmogorov et al., 2007)

Example: Class-independent Object Hypotheses

- ► (Carreira and Sminchisescu, 2010) PASCAL VOC 2009/2010 segmentation winner
- Generate class-independent object hypotheses
- ► Energy (almost) as before

$$g(x, y, w) = \sum_{i \in V} E_i(y_i) + w \sum_{(i,j) \in E} C(x_i, x_j) I(y_i \neq y_j)$$

Fixed unaries

$$E_i(y_i) = \begin{cases} \infty & \text{if } i \in V_{fg} \text{ and } y_i = 0\\ \infty & \text{if } i \in V_{bg} \text{ and } y_i = 1\\ 0 & \text{otherwise} \end{cases}$$

► Test all $w \ge 0$ using parametric max-flow (Picard and Queyranne, 1980), (Kolmogorov et al., 2007)

Example: Class-independent Object Hypotheses (cont)

Input image (http://pdphoto.org)

Example: Class-independent Object Hypotheses (cont)

CPMC proposal segmentations (Carreira and Sminchisescu, 2010)

Giving up Optimality

Solving for y^* is hard, but is it necessary?

- pragmatic motivation: in many applications a close-to-optimal solution is good enough
- computational motivation: set of "good" solutions might be large and finding just one element can be easy

For machine learning models

- modeling error: we always use the wrong model
- ightharpoonup estimation error: preference for y^* might be an artifact

Solving for y^* is hard, but is it necessary?

- pragmatic motivation: in many applications a close-to-optimal solution is good enough
- computational motivation: set of "good" solutions might be large and finding just one element can be easy

For machine learning models

- modeling error: we always use the wrong model
- ightharpoonup estimation error: preference for y^* might be an artifact

Local Search

- $\triangleright \mathcal{N}_t : \mathcal{Y} \to 2^{\mathcal{Y}}$, neighborhood system
- ▶ Optimization with respect to $\mathcal{N}_t(y)$ must be tractable:

$$y^{t+1} = \operatorname*{argmax}_{y \in \mathcal{N}_t(y^t)} g(x, y)$$

Example: Iterated Conditional Modes (ICM)

Iterated Conditional Modes (ICM), (Besag, 1986)

$$g(x,y) = \log p(y|x)$$

$$y^* = \operatorname*{argmax}_{y \in \mathcal{Y}} \log p(y|x)$$

 $lackbox{ Neighborhoods } \mathcal{N}_s(y) = \{(y_1,\ldots,y_{s-1},z_s,y_{s+1},\ldots,y_S)|z_s \in \mathcal{Y}_s\}$

Example: Iterated Conditional Modes (ICM)

Iterated Conditional Modes (ICM), (Besag, 1986)

Example: Iterated Conditional Modes (ICM)

Iterated Conditional Modes (ICM), (Besag, 1986)

Neighborhood Size

- ▶ ICM neighborhood $\mathcal{N}_t(y^t)$: all states reachable from y^t by changing a single variable (Besag, 1986)
- ▶ Neighborhood size: in general, larger is better (VLSN, Ahuja, 2000)
- ► Example: neighborhood along chains

Example: Block ICM

Block Iterated Conditional Modes (ICM) (Kelm et al., 2006), (Kittler and Föglein, 1984)

Example: Block ICM

Block Iterated Conditional Modes (ICM) (Kelm et al., 2006), (Kittler and Föglein, 1984)

- Binary graph-cuts are not applicable to multilabel energy minimization problems
- ▶ (Boykov et al., 2001): two local search algorithms for multilabel problems
- Sequence of binary directed s-t-mincut problems
- Iteratively improve multilabel solution

α - β Swap Neighborhood

- ightharpoonup Select two different labels lpha and eta
- ▶ Fix all variables *i* for which $y_i \notin \{\alpha, \beta\}$
- ▶ Optimize over remaining i with $y_i \in \{\alpha, \beta\}$

$$\mathcal{N}_{\alpha,\beta}: \mathcal{Y} \times \mathbb{N} \times \mathbb{N} \to 2^{\mathcal{Y}},$$

$$\mathcal{N}_{\alpha,\beta}(y,\alpha,\beta) := \{ z \in \mathcal{Y}: z_i = y_i \text{ if } y_i \notin \{\alpha,\beta\},$$
otherwise $z_i \in \{\alpha,\beta\}\}.$

- ▶ 5-label problem
- ▶ $\alpha \beta$ -swap

α - β -swap illustrated

- ▶ 5-label problem
- ▶ $\alpha \beta$ -swap

α - β -swap illustrated

- ▶ 5-label problem
- ▶ $\alpha \beta$ -swap

α - β -swap illustrated

- ▶ 5-label problem
- ▶ $\alpha \beta$ -swap

- ▶ 5-label problem
- ▶ $\alpha \beta$ -swap

$$y^{t+1} = \underset{y \in \mathcal{N}_{\alpha,\beta}(y^t,\alpha,\beta)}{\operatorname{argmin}} E(y;x)$$

- ► Constant: drop out
- ► Unary: combine
- ▶ Pairwise: binary pairwise

$$y^{t+1} = \underset{y \in \mathcal{N}_{\alpha,\beta}(y^t,\alpha,\beta)}{\operatorname{argmin}} \sum_{i \in V} E_i(y_i;x) + \sum_{(i,j) \in E} E_{i,j}(y_i,y_j;x)$$

- Constant: drop out
- ► Unary: combine
- ▶ Pairwise: binary pairwise

$$\begin{array}{ll} y^{t+1} & = & \underset{y \in \mathcal{N}_{\alpha,\beta}(y^t,\alpha,\beta)}{\operatorname{argmin}} \left[\sum_{\substack{i \in V, \\ y_i^t \notin \{\alpha,\beta\}}} E_i(y_i^t;x) + \sum_{\substack{i \in V, \\ y_i^t \in \{\alpha,\beta\}}} E_i(y_i;x) \right. \\ & + \sum_{\substack{(i,j) \in E, \\ y_i^t \notin \{\alpha,\beta\}, y_j^t \notin \{\alpha,\beta\}}} E_{i,j}(y_i^t,y_j^t;x) + \sum_{\substack{(i,j) \in E, \\ y_i^t \in \{\alpha,\beta\}, y_j^t \notin \{\alpha,\beta\}}} E_{i,j}(y_i,y_j^t;x) \\ & + \sum_{\substack{(i,j) \in E, \\ y_i^t \notin \{\alpha,\beta\}, y_j^t \in \{\alpha,\beta\}}} E_{i,j}(y_i^t,y_j;x) + \sum_{\substack{(i,j) \in E, \\ y_i^t \in \{\alpha,\beta\}, y_j^t \in \{\alpha,\beta\}}} E_{i,j}(y_i,y_j;x) \right]. \end{array}$$

- ► Constant: drop out
- ▶ Unary: combine
- ► Pairwise: binary pairwise

$$\begin{array}{ll} y^{t+1} & = & \underset{y \in \mathcal{N}_{\alpha,\beta}(y^t,\alpha,\beta)}{\operatorname{argmin}} \left[\sum_{\substack{i \in V, \\ y_i^t \notin \{\alpha,\beta\}}} E_i(y_i^t;x) + \sum_{\substack{i \in V, \\ y_i^t \in \{\alpha,\beta\}}} E_i(y_i;x) \right. \\ & + \sum_{\substack{(i,j) \in E, \\ y_i^t \notin \{\alpha,\beta\}, y_j^t \notin \{\alpha,\beta\}}} E_{i,j}(y_i^t,y_j^t;x) + \sum_{\substack{(i,j) \in E, \\ y_i^t \in \{\alpha,\beta\}, y_j^t \notin \{\alpha,\beta\}}} E_{i,j}(y_i^t,y_j;x) + \\ & + \sum_{\substack{(i,j) \in E, \\ y_i^t \notin \{\alpha,\beta\}, y_j^t \in \{\alpha,\beta\}}} E_{i,j}(y_i^t,y_j;x) + \sum_{\substack{(i,j) \in E, \\ y_i^t \in \{\alpha,\beta\}, y_j^t \in \{\alpha,\beta\}}} E_{i,j}(y_i,y_j;x) \right]. \end{array}$$

- Constant: drop out
- ▶ Unary: combine
- ► Pairwise: binary pairwise

α - β -swap graph construction

▶ Directed graph $G' = (V', \mathcal{E}')$

$$V' = \{\alpha, \beta\} \cup \{i \in V : y_i \in \{\alpha, \beta\}\},$$

$$E' = \{(\alpha, i, t_i^{\alpha}) : \forall i \in V : y_i \in \{\alpha, \beta\}\} \cup$$

$$\{(i, \beta, t_i^{\beta}) : \forall i \in V : y_i \in \{\alpha, \beta\}\} \cup$$

$$\{(i, j, n_{i,j}) : \forall (i, j), (j, i) \in E : y_i, y_j \in \{\alpha, \beta\}\}.$$

$$t_i^{\alpha}$$

▶ Edge weights t_i^{α} , t_i^{β} , and $n_{i,j}$

$$n_{i,j} = E_{i,j}(\alpha, \beta; x)$$

$$t_i^{\alpha} = E_i(\alpha; x) + \sum_{\substack{(i,j) \in \mathcal{E}, \\ y_j \notin \{\alpha, \beta\}}} E_{i,j}(\alpha, y_j; x)$$

$$t_i^{\beta} = E_i(\beta; x) + \sum_{\substack{(i,j) \in \mathcal{E}, \\ y_i \notin \{\alpha, \beta\}}} E_{i,j}(\beta, y_j; x)$$

α - β -swap graph construction

▶ Directed graph $G' = (V', \mathcal{E}')$

$$V' = \{\alpha, \beta\} \cup \{i \in V : y_i \in \{\alpha, \beta\}\},$$

$$E' = \{(\alpha, i, t_i^{\alpha}) : \forall i \in V : y_i \in \{\alpha, \beta\}\} \cup$$

$$\{(i, \beta, t_i^{\beta}) : \forall i \in V : y_i \in \{\alpha, \beta\}\} \cup$$

$$\{(i, j, n_{i,j}) : \forall (i, j), (j, i) \in E : y_i, y_j \in \{\alpha, \beta\}\},$$

$$t_i^{\alpha}$$

▶ Edge weights t_i^{α} , t_i^{β} , and $n_{i,j}$

$$n_{i,j} = E_{i,j}(\alpha, \beta; x)$$

$$t_i^{\alpha} = E_i(\alpha; x) + \sum_{\substack{(i,j) \in \mathcal{E}, \\ y_j \notin \{\alpha, \beta\}}} E_{i,j}(\alpha, y_j; x)$$

$$t_i^{\beta} = E_i(\beta; x) + \sum_{\substack{(i,j) \in \mathcal{E}, \\ y_i \notin \{\alpha, \beta\}}} E_{i,j}(\beta, y_j; x)$$

α - β -swap move

- ▶ Side of cut determines $y_i \in \{\alpha, \beta\}$
- ► Semi-metric requirement on pairwise energies

$$E_{i,j}(y_i, y_j; x) = 0 \Leftrightarrow y_i = y_j$$

$$E_{i,j}(y_i, y_j; x) = E_{i,j}(y_j, y_i; x) \ge 0$$

α - β -swap move

- ▶ Side of cut determines $y_i \in \{\alpha, \beta\}$
- Iterate all possible (α, β) combinations

$$E_{i,j}(y_i, y_j; x) = 0 \Leftrightarrow y_i = y_j$$

$$E_{i,j}(y_i, y_j; x) = E_{i,j}(y_j, y_i; x) \ge 0$$

α - β -swap move

- ▶ Side of cut determines $y_i \in \{\alpha, \beta\}$
- ▶ Iterate all possible (α, β) combinations
- ► Semi-metric requirement on pairwise energies

$$E_{i,j}(y_i, y_j; x) = 0 \Leftrightarrow y_i = y_j$$

 $E_{i,j}(y_i, y_j; x) = E_{i,j}(y_i, y_i; x) \ge 0$

Example: Stereo Disparity Estimation

- ▶ Infer depth from two images
- Discretized multi-label problem
- lacktriangledown α -expansion solution close to optimal

Example: Stereo Disparity Estimation

- ▶ Infer depth from two images
- Discretized multi-label problem
- lacktriangledown α -expansion solution close to optimal

Model Reduction

- ► Energy minimization problem: many decision to make jointly
- Model reduction
 - 1. Fix a subset of decisions
 - 2. Optimize the smaller remaining model
- ▶ Example: forcing $y_i = y_j$ for pairs (i, j)

Example: Superpixels in Labeling Problems

Input image: 500-by-375 pixels (187,500 decisions)

Example: Superpixels in Labeling Problems

Image with 149 superpixels (149 decisions)