Biomedicinska informatika (vnago)

Procjena umora miši a

- Posljedice ozljede koljena:
 - o atrofija miši a kvadricepsa(vastus medialis prvi i sporije reagira na rehab od vastus lateralis te djeluje manjom silom na patelu koljena)
 - o Disfunkcija vo enja patele(kao rezultat neravnoteže zbog atrofije)
- Ciljevi rehabilitacije:
 - o Ja anje miši a koji okružuju koljeno
 - o uspostava **ravnoteže(neuromuskularne koordinacije)** izme u vaskus medialis i vastus lateralis
- **Miši ni umor** stanje privremenog smanjenja sposobnosti obavljanja rada odre enog intenziteta uzrokovano upravo tim radom(Heimer)
 - Stati ko umaranje ne mijenja se duljina miši a, kod kontrakcija ve eg intenziteta smanjen protok krvi kroz miši
 - o **Dinami ko umaranje** mijenjaju se dimenzije miši a, promjenjiva sila kontrakcije koja opada s brzinom kontrakcije, pove an protok krvi kroz miši
- Procjena miši nog umora:
 - o Pra enjem sniženja sposobnosti obavljanja rada odre enog intenziteta
 - o Odre ivanjem koncentracije laktata u miši u
 - o Analiza mioelektri kih signala

Površinska elektromiografija:

- Prednosti: neinvazivna, stvarno vrijeme, mogu nost pra enja pojedinih miši a, ovise o biokemijskim i fiziološkim promjenama
- o Nedostatci: samo površinski miši i, preslušavanje signala sa susjednih miši a
- Stati ko umaranje: smanjuje se brzina provodljivosti vlakna, pove ava se trajanje akcijskog potencijala, spektar snage signala se pomi e prema nižim frekvencijama, raste amplituda signala

Vremensko-frekvencijska analiza:

- Spektrogram(temeljen na STFT)
- Pseudo Wigner-Ville distribucija (PWVD)
- o Kontinuirana wavelet transformacija(CWT)
- Fourierova transformacija ne daje informaciju o prisutnosti odre enih frekvencijskih komponenti u odre enim trenucima
- Spektar signala ne može dati informaciju o komponentama signala te trajanju odre enih komponenti, predstavlja projekciju t-f prikaza na frekv. Os
- Mjerenje mioelektri kog signala: Fiziološki signal -> tkivo -> su elje koža-elektroda -> bipolarne elektrode -> EMG poja alo -> izmjereni signal

Analiza EEG signala

- Centralni živ ani sustav:
 - o Izdvaja zna ajne informacije, uspore uje pohranjene informacije s dolaze im uzorcima
 - o Klasificira i upisuje neke podatke u memoriju, vrši svjesno upravljanje izlaznim sustavima
- Autonomni živ ani sustav:
 - o Održava homeostazu održavanje ravnotežnog stanja organizma
 - o Simpati ki parasimpati ki sustav(usporavanje ubrzavanje organizma)
 - o Agonisti ki antagonisti ki sustav
 - o Glatki miši i(probava,izlu ivanje)
 - o Lu enje žlijezda
 - o Srce(puls+pritisak+pH krvi)
 - o Disanje, temperatura, ravnoteža
- Periferni živ ani sustav:
 - o Aferentni(senzori ka vlakna od osjetila mozgu) ascedentni trakt
 - o Eferentni (motori ka vlakna-od mozga miši ima) descedentni trakt
- Retikularna formacija:
 - o Mali, vrlo razgranati neuroni koji prožimaju moždano stablo
 - o Primaju i integriraju informacije iz mnogih aferentnih putova i dijelova mozga
- Naponi mozga Elektroencefalografija (EEG)
 - o Elektrodama postavljenim na glavu pacijenta
 - o Posljedica su koordinirane depolarizacije i repolarizacije živ anih stanica u mozgu
- Sinapti ke veze neuronsko-neuronske i neuromuskularne
- Živ ana vlakna mijelinizirana(tanja, velika brzina) i nemijelinizirana(debela, manja brzina)
- Depolarizacija živ ane stanice predstavlja elektri ni dipol
- Karakteristi ni signali mozga:
 - o -valovi budno, opušteno stanje, ne misli se na ništa koncentrirano, nestaju pri spavanju i rješavanju problema, frekv. 8-13 Hz, okcipitalna regija
 - -valovi duševne aktivnosti, duševne napetosti, za vrijeme snimanja otvori
 - o i(blokiranje -valova),14-30 Hz, frontalne i parijentalne regije
 - -valovi u dubokom snu,pri težim bolestima mozga,kora velikog mozga,0,5-3,5 Hz
 - -valovi kod djece,kod odraslih za vrijeme stresa,razo aranje,frustracija, 4-7 Hz, parijentalne i temporalne regije, nagli prekid ugodnog doživljaja
- Aktivacijske tehnike fizikalne, kemijske i psihološke
- Snimanje evociranih signala registrirani signal suma:
 - Podražajem izazvana elektri ka aktivnost mozga(EP)
 - Unutarnji šum(aktivnost neovisna o podražaju-EEG)
 - Vanjski šum(miogena elek. aktivnost, djelovanje elek. i mag. polja,šum instrumentacije)
- Evocirani potencijali
 - o Funkcionalna dijagnostika motornih i osjetnih putova živ anog sustava
 - o Niže amplitude(neuralne lezije) i duže latencije(lezije provo enja)
 - Vidni podražaj: bljeskalica ili oblikovani podražaj
 - Slušni -klik, ton pip, ton burst, maskirani šum
 - § Intenzitet: SPL,HL,nHL)

- o somatosenzorni monopolarni strujni impulsi
- o motorni strujna,magnetska stimulacija
 - § mjesto: transkranijska, intrakranijska, kralješn. moždina
- o kognitivni

Analiza EKG signala

EKG:

- o Medicinski nalaz, grafi ki prikaz promjene elektri kog potencijala srca u vremenu
- o Najvažniji dijelovi: P,Q,R,S i T
- o P kompleks depolarizacija predklijetki
- o QRS kompleks(R zubac) depolarizacija klijetki i repolarizacija predklijetki
- o T kompleks repolarizacija klijetki

• QRS kompleks:

- o Najuo Ijiviji(max. omjer signal/šum), dio signala izme u 2 R zupca perioda
- o Broj R valova u minuti = puls
- o Heart Rate Variability(HRV) analiza analizira sr ani ritam
- o Korisno za velik broj pretraga
- Smetnje: elektri na mreža, kontaktni šum elektroda, pomak elektroda, miši na aktivnost, respiracija, pomak nulte linije
- QRS detektori odre uju trenutak kad se pojavio R zubac
 - Hardverski(analogni) i softverski(digitalni)
 - o Online i offline
 - o Neadaptivni i adaptivni
 - o Netransformiraju i i transformiraju i
 - Struktura: analogni stupanj + stupanj za uzorkovanje(nisu dijelovi detektora), stupanj za predobradu(linearno i nelinearno filtriranje,transformacija), stupanj za odlu ivanje(logika za detekciju, logika za odlu ivanje)
- Standardne baze podataka EKG signala:
 - o Evaluacija radnih zna ajki softverskih detektora, u enje, evaluacija drugih algoritama
 - o Omogu uju ponovljivost i usporedbu rezultata
 - o Npr. MIT-BIH database(referentna), AHA DB, CSE DB
- Pan-Tompkins algoritam:
 - o Korišten u TWA analizi
 - o $x[n] -> Niski propust -> visoki propust -> d(.)/dt -> (.)^2 -> 1/58 * sum(1,58) -> z[n]$
- Adaptivni:
 - o Whitening filtri uklanjaju koreliraju e šumove
 - o Matched filtri uklanjaju bijeli šum
- Neuronske mreže:
 - o Mreža jednog ili više neurona spojenih me usobno ili na signal
 - o Koristi se u stupnju za predobradu ili za odlu ivanje, rješava odre eni problem nakon što nau i težinske koeficijente
 - o Može se nau iti da predvi a sljede i uzorak, ali nikada savršeno

- Analiza T-vala:
 - o T-val upu uje na sr anu elektri ku nestabilnost i omogu ava procjenu rizika sr ane aritmije
 - o TWA test utvr uje rizik od Sudden Cardiac Death sindroma, nakon infarkta ili kod sr anih bolesti, ra una se iz EKG-a
 - o Makroskopski(golim okom) i mikroskopski(digitalnom obradbom) TWA
 - o Dvije metode ra unanja TWA spektralna i Modified Moving Average

Kompresija EKG signala

- Vrednovanje algoritama:
 - o Stupanj sažimanja omjer broja bitova za pohranu kompresirani/izvorni oblik
 - o Dobrota obnovljenog signala lije ni ka ocjena i matemati ki pokazatelji
- Podjela algoritama:
 - o Online/offline
 - o Lossy/lossless
 - Sa/bez primjene linearnih transformacija
 - o Vrste:
 - § Skalarna kvantizacija
 - § Vektorska kvantizacija
 - § Prediktivna kvantizacija
 - § Huffman-ovo kodiranje
 - § Turning point samo oni uzorci koji zna e promjenu smjera kretanja vrijednosti u signalu
 - § FAN
 - § AZTEC

Komunikacijski protokoli i norme u zdravstvu

- Mjere: cijena, kvaliteta, pristup, kontinuitet, kolaboracija
- Vrste zdravstvenih normi:
 - o Informacijsko komunikacijske norme(HL7, CEN/TC 251 ENV 13606, DICOM, IEEE 1073)
 - Šifrarnici i kodne knjige(ICD, ICPC, SNOMED, LOINC,...)
 - o Normizacijski profili i preporuke(ISO/TC 215, IHE)
- HL7:
 - o Najnaprednija ICT norma na podru ju medicinske informatike
 - o 27 podružnica i HQ izrada norme i promocija primjene u odgovornoj domeni
 - o Omogu uje razmjenu klini kih i administrativnih podataka izme u raspodijeljenih aplikacija, aplikacijski sloj
 - o HL7 v2.x, HL7v3
 - HL7 RIM stati ki model koji obuhva a zdravstvene informacije u podru ju normizacije HL7 norme, modeliran koriste i UML notaciju, bazira se na radnji, sudjelovanju, entitetu i ulozi

- o HL7 v3 informacijski modeli DMIM(Domain),RMIM(Refined) i HMD(tabli no RMIM)
- o HLT interakcija: Trigger event, Composite Message Type i Receiver Responsibility
- CEN/TC 251 EN 13606:
 - o Arhitektura i komunikacija elektroni kog zdravstvenog kartona pacijenta
 - o 5 dijelova:
 - § Reference model
 - § Archetype specification
 - § Reference archetypes and term lists
 - § Security
 - § Exchange models
 - o Službena hrv. norma HRN ENV 13606
- Sigurnost u zdravstvenim sustavima:
 - o Klju ni parametar kvalitete, rješenja bazirana na PKI tehnologijama
 - o Integritet podataka, zaštita od neovlaštenog korištenja, privatnost i povjerljivost