

Defects in emerging inorganic semiconductors for solar cells

Zhenkun Yuan

Dartmouth College

Defects in Semiconductors, 2024 Gordon Research Seminar

PV technologies at various maturity levels

Earth-abundant material Cu₂ZnSnS₄ (CZTS)

CZTS has serious defect issues

- Many different defects can form
- Cu-Zn antisites (Cu_{Zn} acceptors and Cu_{Zn}+Zn_{Cu} complexes) are easy to form
 - uncontrolled p-type doping and disorder

ionic size

29 ² S _{1/2}	30 ¹ S ₀
Cu	Zn
Copper	Zinc
63.546	65.38
[Ar]3d ¹⁰ 4s	[Ar]3d ¹⁰ 4s ²
7.7264	9.3942

Reproduced from: S. Chen, A. Walsh, X. G. Gong, S. H. Wei, Adv. Mater. **25**, 1522 (2013)

ionic size

 Ag_2ZnSnS_4 (AZTS)

Reproduced from: S. Chen, A. Walsh, X. G. Gong, S. H. Wei, Adv. Mater. **25**, 1522 (2013)

ionic size

Ag₂ZnSnS₄ (AZTS)

d valence orbital

Reproduced from:

S. Chen, A. Walsh, X. G. Gong, S. H. Wei, *Adv. Mater.* **25**, 1522 (2013)

Reproduced from: S. Chen, A. Walsh, X. G. Gong, S. H. Wei, Adv. Mater. **25**, 1522 (2013)

Defect dissimilarity between CZTS and AZTS

29 ² S _{1/2}	30 ¹ S ₀
Cu	Zn
Copper	Zinc
63.546	65.38
[Ar]3d ¹⁰ 4s	[Ar]3d ¹⁰ 4s ²
7.7264	9.3942
47 ² S _{1/2}	48 ¹ S ₀
Ag	Cd
Silver	Cadmium
107.87	112.41
[Kr]4d ¹⁰ 5s	[Kr]4d ¹⁰ 5s ²
7.5762	8.9938

Reproduced from: S. Chen, A. Walsh, X. G. Gong, S. H. Wei, Adv. Mater. **25**, 1522 (2013)

Z.-K. Yuan, S. Chen, H. Xiang, X.-G. Gong, A. Walsh, J.-S. Park, I. Repins, S.-H. Wei, *Adv. Funct. Mater.* **25**, 6733 (2015)

Ag alloying makes CZTS rise again

Identify new solar absorbers from inorganic materials database

All 153,235 materials

Search for materials as exceptional as perovskites

"Defect tolerance" in perovskites

K. Ye et al., Faraday Discuss., 239, 146 (2022)

Our approach — High-throughput computational screening

Thermodynamic stability

Band gap, carrier effective mass, ...

Intrinsic defects

F_{PV}, cost

High-throughput defect workflow

Input

DFT calculations MongoDB document

Defect data MongoDB document

"mp-8279"

```
_id: ObjectId('65f5aa34d13c239302d8d97a')
> links: Object
> parent_links: Object
> nodes: Array (113)
> metadata: Object
    state: "COMPLETED"
    name: "mp-8279_Ba(CdP)2_defects_GGA"
    created_on: 2024-03-16T14:18:27.981+00:00
    updated_on: 2024-03-17T11:03:47.252+00:00
> fw_states: Object
```

```
_id: ObjectId('66636dfd28308bc46a4e932f')
uuid: "93ecc23d-7747-4ff2-98ad-5ace1e7a0c74"
index: 1
name: "mp-8279_Ba(CdP)2_defects_data"
parsed_data: Object
▶ conventional_unitcell : Object
▶ bulk_supercell : Object
dropbox_links: Object
▶ band_edges : Object
dielectric tensor: Object
density_of_states: Object
delta_Qs: Object
chemical_potentials : Object
▶ formation_energies : Object
▶ defect_thermo : Object
▶ transition_levels_PBE : Object
▶ carrier_lifetime : Object
units_log: Object
created_on: "2024-06-07 16:30:53"
```

HT software infrastructure:

PyCDT, Atomate, Fireworks, Pymatgen, py-sc-fermi,...

Screen materials on intrinsic defects

BaCd₂P₂ identified as a long carrier lifetime solar absorber

~40,000 known inorganic materials

Thermodynamic stability

Band gap, carrier effective mass, ...

Defects

Exceptional candidate: BaCd₂P₂

 η_{\max} , cos

measured carrier lifetime in BaCd₂P₂ powder samples

Z. Yuan, D. Dahliah, M. R. Hasan, G. Kassa, A. Pike, S. Quadir, R. Claes, C. Chandler, Y. Xiong, V. Kyveryga, P. Yox, G.-M. Rignanese, I. Dabo, A. Zakutayev, D. P. Fenning, O. G. Reid, S. Bauers, J. Liu, K. Kovnir, and G. Hautier, *Joule* **8**, 1412 (2024)

Conclusions

- Chemical intuitive guided defect control to optimize existing solar absorbers
- Identify new exceptional solar absorbers, through highthroughput defect computations

Acknowledgments

