SMPRIMAP_EL2, Streaming Mode Priority Mapping Register

The SMPRIMAP EL2 characteristics are:

Purpose

Maps the value in <u>SMPRI_EL1</u> to a streaming execution priority value for instructions executed at EL1 and EL0 in the same Security states as EL2.

Configuration

This register is present only when FEAT_SME is implemented. Otherwise, direct accesses to SMPRIMAP_EL2 are undefined.

When **SMIDR_EL1**.SMPS is '0', this register is res0.

If EL2 is not implemented, this register is res0 from EL3.

Attributes

SMPRIMAP_EL2 is a 64-bit register.

Field descriptions

63 62 61 60	59 58 57 56	55 54 53 52	51 50 49 48	47 46 45 44	43 42 41 40	39 38 37 36	35 34 33 32
P15	P14	P13	P12	P11	P10	P9	P8
P7	P6	P5	P4	P3	P2	P1	P0
31 30 29 28	27 26 25 24	23 22 21 20	19 18 17 16	15 14 13 12	11 10 9 8	7 6 5 4	3 2 1 0

When all of the following are true, the value in <u>SMPRI_EL1</u> is mapped to a streaming execution priority using this register:

- The current Exception level is EL1 or EL0.
- EL2 is implemented and enabled in the current Security state.
- HCRX EL2.SMPME is '1'.

Otherwise, **SMPRI_EL1** holds the streaming execution priority value.

P15, bits [63:60]

Priority Mapping Entry 15. This entry is used when priority mapping is supported and enabled, and the <u>SMPRI_EL1</u>. Priority value is '15'.

This value is the highest streaming execution priority.

• On a Warm reset, this field resets to an architecturally unknown value.

P14, bits [59:56]

Priority Mapping Entry 14. This entry is used when priority mapping is supported and enabled, and the <u>SMPRI EL1</u>.Priority value is '14'.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally unknown value.

P13, bits [55:52]

Priority Mapping Entry 13. This entry is used when priority mapping is supported and enabled, and the <u>SMPRI_EL1</u>.Priority value is '13'.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally unknown value.

P12, bits [51:48]

Priority Mapping Entry 12. This entry is used when priority mapping is supported and enabled, and the <u>SMPRI EL1</u>.Priority value is '12'.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally unknown value.

P11, bits [47:44]

Priority Mapping Entry 11. This entry is used when priority mapping is supported and enabled, and the <u>SMPRI EL1</u>.Priority value is '11'.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally unknown value.

P10, bits [43:40]

Priority Mapping Entry 10. This entry is used when priority mapping is supported and enabled, and the <u>SMPRI_EL1</u>. Priority value is '10'.

• On a Warm reset, this field resets to an architecturally unknown value.

P9, bits [39:36]

Priority Mapping Entry 9. This entry is used when priority mapping is supported and enabled, and the SMPRI EL1. Priority value is '9'.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally unknown value.

P8, bits [35:32]

Priority Mapping Entry 8. This entry is used when priority mapping is supported and enabled, and the <u>SMPRI EL1</u>.Priority value is '8'.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally unknown value.

P7, bits [31:28]

Priority Mapping Entry 7. This entry is used when priority mapping is supported and enabled, and the <u>SMPRI EL1</u>.Priority value is '7'.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally unknown value.

P6, bits [27:24]

Priority Mapping Entry 6. This entry is used when priority mapping is supported and enabled, and the <u>SMPRI EL1</u>.Priority value is '6'.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally unknown value.

P5, bits [23:20]

Priority Mapping Entry 5. This entry is used when priority mapping is supported and enabled, and the SMPRI_EL1. Priority value is '5'.

• On a Warm reset, this field resets to an architecturally unknown value.

P4, bits [19:16]

Priority Mapping Entry 4. This entry is used when priority mapping is supported and enabled, and the SMPRI EL1. Priority value is '4'.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally unknown value.

P3, bits [15:12]

Priority Mapping Entry 3. This entry is used when priority mapping is supported and enabled, and the <u>SMPRI EL1</u>.Priority value is '3'.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally unknown value.

P2, bits [11:8]

Priority Mapping Entry 2. This entry is used when priority mapping is supported and enabled, and the <u>SMPRI EL1</u>.Priority value is '2'.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally unknown value.

P1, bits [7:4]

Priority Mapping Entry 1. This entry is used when priority mapping is supported and enabled, and the <u>SMPRI EL1</u>.Priority value is '1'.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally unknown value.

P0, bits [3:0]

Priority Mapping Entry 0. This entry is used when priority mapping is supported and enabled, and the SMPRI_EL1. Priority value is '0'.

This value is the lowest streaming execution priority.

• On a Warm reset, this field resets to an architecturally unknown value.

Accessing SMPRIMAP_EL2

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, SMPRIMAP EL2

op0	op1	CRn	CRm	op2
0b11	0b100	0b0001	0b0010	0b101

```
if PSTATE.EL == ELO then
    UNDEFINED;
elsif PSTATE.EL == EL1 then
    if EL2Enabled() && HCR_EL2.<NV2, NV> == '11' then
        X[t, 64] = NVMem[0x1F8];
    elsif EL2Enabled() && HCR_EL2.NV == '1' then
        AArch64.SystemAccessTrap(EL2, 0x18);
    else
        UNDEFINED;
elsif PSTATE.EL == EL2 then
    if Halted() && HaveEL(EL3) && EDSCR.SDD == '1'
&& boolean IMPLEMENTATION DEFINED "EL3 trap priority
when SDD == '1'" && CPTR EL3.ESM == '0' then
        UNDEFINED;
    elsif HaveEL(EL3) && CPTR_EL3.ESM == '0' then
        if Halted() && EDSCR.SDD == '1' then
            UNDEFINED;
        else
            AArch64.SystemAccessTrap(EL3, 0x18);
    else
        X[t, 64] = SMPRIMAP EL2;
elsif PSTATE.EL == EL3 then
    if CPTR_EL3.ESM == '0' then
        AArch64.SystemAccessTrap(EL3, 0x18);
    else
        X[t, 64] = SMPRIMAP_EL2;
```

MSR SMPRIMAP_EL2, <Xt>

op0	op1	CRn	CRm	op2
0b11	0b100	0b0001	0b0010	0b101

```
if PSTATE.EL == ELO then
    UNDEFINED;
elsif PSTATE.EL == EL1 then
    if EL2Enabled() && HCR_EL2.<NV2,NV> == '11' then
        NVMem[0x1F8] = X[t, 64];
    elsif EL2Enabled() && HCR EL2.NV == '1' then
        AArch64.SystemAccessTrap(EL2, 0x18);
    else
        UNDEFINED;
elsif PSTATE.EL == EL2 then
    if Halted() && HaveEL(EL3) && EDSCR.SDD == '1'
&& boolean IMPLEMENTATION DEFINED "EL3 trap priority
when SDD == '1'" && CPTR EL3.ESM == '0' then
        UNDEFINED;
    elsif HaveEL(EL3) && CPTR_EL3.ESM == '0' then
        if Halted() && EDSCR.SDD == '1' then
            UNDEFINED;
        else
            AArch64.SystemAccessTrap(EL3, 0x18);
    else
        SMPRIMAP\_EL2 = X[t, 64];
elsif PSTATE.EL == EL3 then
    if CPTR_EL3.ESM == '0' then
        AArch64.SystemAccessTrap(EL3, 0x18);
    else
        SMPRIMAP\_EL2 = X[t, 64];
```

AArch32 AArch64 AArch32 AArch64 Index by External Registers Instructions Instructions Encoding Registers

28/03/2023 16:02; 72747e43966d6b97dcbd230a1b3f0421d1ea3d94

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.