FIGURE 1

 ${\tt CGGACGCGTGGGTGCGAGGCGAGGTGACCGGGGACCGAGCATTTCAGATCTGCTCGGTAGA}$ $\verb|CCTGGTGCACCACCACC| \textbf{ATG} \\ \texttt{TTGGCTGCAAGGCTGGTGTGTCTCCGGACACTACCTTCTAGG} \\$ GTTTTCCACCCAGCTTTCACCAAGGCCTCCCCTGTTGTGAAGAATTCCATCACGAAGAATCA ATGGCTGTTAACACCTAGCAGGGAATATGCCACCAAAACAAGAATTGGGATCCGGCGTGGGA GAACTGGCCAAGAACTCAAAGAGGCAGCATTGGAACCATCGATGGAAAAAATATTTAAAATT GATCAGATGGGAAGATGGTTTGTTGCTGGAGGGGCTGCTGTTGGTCTTGGAGCATTGTGCTA CTATGGCTTGGGACTGTCTAATGAGATTGGAGCTATTGAAAAGGCTGTAATTTGGCCTCAGT ATGTCAAGGATAGAATTCATTCCACCTATATGTACTTAGCAGGGAGTATTGGTTTAACAGCT TTGTCTGCCATAGCAATCAGCAGAACGCCTGTTCTCATGAACTTCATGATGAGAGGCTCTTG GGTGACAATTGGTGTGACCTTTGCAGCCATGGTTGGAGCTGGAATGCTGGTACGATCAATAC CATATGACCAGAGCCCAGGCCCAAAGCATCTTGCTTGGTTGCTACATTCTGGTGTGATGGGT GCAGTGGTGGCTCCTCTGACAATATTAGGGGGTCCTCTTCTCATCAGAGCTGCATGGTACAC AGCTGGCATTGTGGGAGGCCTCTCCACTGTGGCCCATGTGTGCGCCCAGTGAAAAGTTTCTGA ACATGGGTGCACCCCTGGGAGTGGGCCTGGGTCTCGTCTTTGTGTCCTCATTGGGATCTATG TTTCTTCCACCTACCACCGTGGCTGGTGCCACTCTTTACTCAGTGGCAATGTACGGTGGATT AGTTCTTTTCAGCATGTTCCTTCTGTATGATACCCAGAAAGTAATCAAGCGTGCAGAAGTAT CACCAATGTATGGAGTTCAAAAATATGATCCCATTAACTCGATGCTGAGTATCTACATGGAT ${f A}$ AGTGACTCAGCTTCTGGCTTCTGCTACATCAAATATCTTGTTTAATGGGGCAGATATGC ATTAAATAGTTTGTACAAGCAGCTTTCGTTGAAGTTTAGAAGATAAGAAACATGTCATCATA TTTAAATGTTCCGGTAATGTGATGCCTCAGGTCTGCCTTTTTTTCTGGAGAATAAATGCAGT AATCCTCTCCCAAATAAGCACACACATTTTCAATTCTCATGTTTGAGTGATTTTAAAATGTT TTGGTGAATGTGAAAACTAAAGTTTGTGTCATGAGAATGTAAGTCTTTTTTCTACTTTAAAA GCAGAATATTGTAATTAATGTCATAAGTGATTTGGAGCTTTGGTAAAGGGACCAGAGAGAAG GAGTCACCTGCAGTCTTTTGTTTTTTTAAATACTTAGAACTTAGCACTTGTGTTATTGATTA GCTGAACTTAACAAAACTGTTCATCCTGAAACAGGCACAGGTGATGCATTCTCCTGCTGTTG CTTCTCAGTGCTCTTTTCCAATATAGATGTGGTCATGTTTGACTTGTACAGAATGTTAATC ATACAGAGAATCCTTGATGGAATTATATATGTGTGTTTTACTTTTGAATGTTACAAAAGGAA ATAACTTTAAAACTATTCTCAAGAGAAAATATTCAAAGCATGAAATATGTTGCTTTTTCCAG AATACAAACAGTATACTCATG

FIGURE 2

MLAARLVCLRTLPSRVFHPAFTKASPVVKNSITKNQWLLTPSREYATKTRIGIRRGRTGQEL KEAALEPSMEKIFKIDQMGRWFVAGGAAVGLGALCYYGLGLSNEIGAIEKAVIWPQYVKDRI HSTYMYLAGSIGLTALSAIAISRTPVLMNFMMRGSWVTIGVTFAAMVGAGMLVRSIPYDQSP GPKHLAWLLHSGVMGAVVAPLTILGGPLLIRAAWYTAGIVGGLSTVAMCAPSEKFLNMGAPL GVGLGLVFVSSLGSMFLPPTTVAGATLYSVAMYGGLVLFSMFLLYDTQKVIKRAEVSPMYGV QKYDPINSMLSIYMDTLNIFMRVATMLATGGNRKK

FIGURE 3

GAAGGCTGCCTCGCTGGTCCGAATTCGGTGGCGCCACGTCCGCCCGTCTCCGCCTTCTGCAT GGTCGGCACGGGGAGTCGGGCGGTCTTGTGCATCTTGGCTACCTGTGGGTCGAAG**ATG**TCGG ACATCGGAGACTGGTTCAGGAGCATCCCGGCGATCACGCGCTATTGGTTCGCCGCCACCGTC GCCGTGCCCTTGGTCGGCAAACTCGGCCTCATCAGCCCGGCCTACCTCTTCCTCTGGCCCGA TGTCAGTACTTTATGTCTGGGCCCAGCTGAACAGAGACATGATTGTATCATTTTGGTTTGGA ACACGATTTAAGGCCTGCTATTTACCCTGGGTTATCCTTGGATTCAACTATATCATCGGAGG CTCGGTAATCAATGAGCTTATTGGAAATCTGGTTGGACATCTTTATTTTTTCCTAATGTTCA GATACCCAATGGACTTGGGAGGAAGAAATTTTCTATCCACACCTCAGTTTTTGTACCGCTGG CTGCCCAGTAGGAGGAGGAGTATCAGGATTTGGTGTGCCCCCTGCTAGCATGAGGCGAGC TGCTGATCAGAATGGCGGAGGCGGGAGACACAACTGGGGCCAGGGCTTTCGACTTGGAGACC AG<u>TGA</u>AGGGGCGCCTCGGGCAGCCGCTCCTCAAGCCACATTTCCTCCCAGTGCTGGGTG CACTTAACAACTGCGTTCTGGCTAACACTGTTGGACCTGACCCACACTGAATGTAGTCTTTC AGTACGAGACAAAGTTTCTTAAATCCCGAAGAAAAATATAAGTGTTCCACAAGTTTCACGAT TCTCATTCAAGTCCTTACTGCTGTGAAGAACAAATACCAACTGTGCAAATTGCAAAACTGAC TACATTTTTTGGTGTCTTCTCTCTCCCTTTCCGTCTGAATAATGGGTTTTAGCGGGTCCT
AATCTGCTGGCATTGAGCTGGGGCTGGGTCACCAAACCCTTCCCAAAAGGACCTTATCTCTT
TCTTGCACACATGCCTCTCCCCACTTTTCCCAACCCCCACATTTGCAACTAGAAAAAGTTG AAGACAGCCACGGATGAAGCGTTTCTCAGCTTTTGGAATTGCTTCGACTGACATCCGTTGTT TCAAGACTGTAGTGGAGTTGCAGCTAACATGGGTTAGGTTTAAACCATGGGGGATGCACCCC TTTGCGTTTCATATGTAGCCCTACTGGCTTTGTGTAGCTGGAGTAGTTGGGTTGCTTTGTGT TAGGAGGATCCAGATCATGTTGGCTACAGGGAGATGCTCTCTTTGAGAGGTCCTGGGCATTG AGGGAATAACATGATTTAAGGTTGAAATGGCTTTAGAATCATTTGGGTTTGAGGGTGTGTTA TTCAGGAAACATTGTGCTCTAACAGTATGACTATTCTTTCCCCCACTCTTAAACAGTGTGAT GTGTGTTATCCTAGGAAATGAGAGTTGGCAAACAACTTCTCATTTTGAATAGAGTTTGTGTGTACTTCTCCATATTTAATTTATATGATAAAATAGGTGGGGAGAGTCTGAACCTTAACTGTCA ATGTTTCTGGAATAATTTTACCAAAACAAGCTATTTGAGTTTTGACTTGACAAGGCAAAACA TGACAGTGGATTCTCTTTACAAATGGAAAAAAAAATCCTTATTTTGTATAAAGGACTTCCC TTTTTGTAAACTAATCCTTTTTATTGGTAAAAATTGTAAAATTAAAATGTGCAACTTG

FIGURE 4

MSDIGDWFRSIPAITRYWFAATVAVPLVGKLGLISPAYLFLWPEAFLYRFQIWRPITATFYF PVGPGTGFLYLVNLYFLYQYSTRLETGAFDGRPADYLFMLLFNWICIVITGLAMDMQLLMIP LIMSVLYVWAQLNRDMIVSFWFGTRFKACYLPWVILGFNYIIGGSVINELIGNLVGHLYFFL MFRYPMDLGGRNFLSTPQFLYRWLPSRRGGVSGFGVPPASMRRAADQNGGGGRHNWGQGFRL GDQ

Transmembrane domain:

amino acids 98-116, 152-172

N-myristoylation site.

amino acids 89-95, 168-174, 176-182, 215-221, 221-227, 237-243

Glycosaminoglycan attachment site.

amino acids 218-222

FIGURE 5

GGGGCCGCGGTCTAGGGCGCTACGTGTTGCCATAGCGACCATTTTGCATTAACTGGTTG GTAGCTTCTATCCTGGGGGCTGAGCGACTGCGGGCCAGCTCTTCCCCTACTCCCTCTCGGCT CCTTGTGGCCCAAAGGCCTAACCGGGGTCCGGCGGTCTGGCCTAGGGATCTTCCCCGTTGCC CCTTTGGGGCGGATGGCTGCGGAAGAAGAAGACGAGGTGGAGTGGGTAGTGGAGAGCATCG CGGGGTTCCTGCGAGGCCCAGACTGGTCCATCCTTGGACTTTGTGGAACAGAAATGT GAAGTTAACTGCAAAGGAGGGCATGTGATAACTCCAGGAAGCCCAGAGCCGGTGATTTTGGT GGCCTGTGTTCCCCTTGTTTTTGATGATGAAGAAGAAAGCAAATTGACCTATACAGAGATTC ATCAGGAATACAAAGAACTAGTTGAAAAGCTGTTAGAAGGTTACCTCAAAGAAATTGGAATT AATGAAGATCAATTTCAAGAAGCATGCACTTCTCCTCTTGCAAAGACCCATACATCACAGGC CATTTTGCAACCTGTGTTGGCAGCAGAAGATTTTACTATCTTTAAAGCAATGATGGTCCAGA AAAACATTGAAATGCAGCTGCAAGCCATTCGAATAATTCAAGAGAAAATGGTGTATTACCT GACTGCTTAACCGATGGCTCTGATGTGGTCAGTGACCTTGAACACGAAGAGATGAAAATCCT GAGGGAAGTTCTTAGAAAATCAAAAGAGGAATATGACCAGGAAGAAGAAAGGAAGAAGAAAA AACAGTTATCAGAGGCTAAAACAGAAGAGCCCACAGTGCATTCCAGTGAAGCTGCAATAATG CACAAAAAGGCCTGAAGATTCCTGGCTTAGAGCATGCGAGCATTGAAGGACCAATAGCAAAC TTATCAGTACTTGGAACAGAAGAACTTCGGCAACGAGAACACTATCTCAAGCAGAAGAGAGA TAAGTTGATGTCCATGAGAAAGGATATGAGGACTAAACAGATACAAAATATGGAGCAGAAAG GAAAACCCACTGGGGAGGTAGAGGAAATGACAGAGAAACCAGAAATGACAGCAGAGGAGAAG CAAACATTACTAAAGAGGAGATTGCTTGCAGAGAAACTCAAAGAAGAAGTTATTAATAAG**TA** CTTACACTG

FIGURE 6

MAAEEEDEVEWVVESIAGFLRGPDWSIPILDFVEQKCEVNCKGGHVITPGSPEPVILVACVP LVFDDEEESKLTYTEIHQEYKELVEKLLEGYLKEIGINEDQFQEACTSPLAKTHTSQAILQP VLAAEDFTIFKAMMVQKNIEMQLQAIRIIQERNGVLPDCLTDGSDVVSDLEHEEMKILREVL RKSKEEYDQEEERKRKKQLSEAKTEEPTVHSSEAAIMNNSQGDGEHFAHPPSEVKMHFANQS IEPLGRKVERSETSSLPQKGLKIPGLEHASIEGPIANLSVLGTEELRQREHYLKQKRDKLMS MRKDMRTKQIQNMEQKGKPTGEVEEMTEKPEMTAEEKQTLLKRRLLAEKLKEEVINK

N-glycosylation sites.

amino acids 224-228, 246-250, 285-289

N-myristoylation site.

amino acids 273-279

Amidation site.

amino acids 252-256

Cytosolic fatty-acid binding proteins.

amino acids 78-108

FIGURE 7

GGGCACAGCACATGTGAAGTTTTTGATGATGAAGAAGAAAGCAAATTGACCTATACAGAGAT
TCATCAGGAATACAAAGAACTAGTTGAAAAAGCTGTTAGAAGGTTACCTCAAAGAAATTGGAA
TTAATGAAGATCAATTTCAAGAAGCATGCACTTCTCCTCTTGCAAAGACCCATACATCACAG
GCCATTTTTGCAACCTGTGTTGGCAGCAGAAGATTTTACTATCTTTAAAGCAATGATGGTCC
AGAAAAACATTGAAATGCAGCTGCAAGCCATTCGAATAATTCAAGAGAGAAAATGGTGTATTA
CCTGACTGCTTAACCGATGGCTCTGATGTGGTCAGTGACCTTGAACACGAAGAGATGAAAAT
CCTGAGGGAAGTTCTTAGAAAATCAAAAGAGGAATATGACCAGGAA

FIGURE 8

GCGTGGTTTTTGTTCTGCAATAGGCGGCTTAGAGGGGAGGGGCTTTTTCGCCTATACCTACTG TAGCTTCTCCACGTATGGACCCTAAAGGCTACTGCTGCTACTACGGGGCTAGACAGTTACTG AGTGGA**ATG**GAAAAACAGTGCTGTAGTCATCCTGTAATATGCTCCTTGTCAACAATGTATAC ATTCCTGCTAGGTGCCATATTCATTGCTTTAAGCTCAAGTCGCATCTTACTAGTGAAGTATT CTGCCAATGAAGAAAACAAGTATGATTATCTTCCAACTACTGTGAATGTGTGCTCAGAACTG AAATTTGAAATATGCTTCCTGGAAGGAATTCTCTGATTTCATGAAGTGGTCCATTCCTGCCT TTCTTTATTTCCTGGATAACTTGATTGTCTTCTATGTCCTGTCCTATCTTCAACCAGCCATG GCTGTTATCTTCTCAAATTTTAGCATTATAACAACAGCTCTTCTATTCAGGATAGTGCTGAA GAGGCGTCTAAACTGGATCCAGTGGGCTTCCCTCCTGACTTTATTTTTGTCTATTGTGGCCT TGACTGCCGGGACTAAAACTTTACAGCACAACTTGGCAGGACGTGGATTTCATCACGATGCC TACAGCAAAGGAATGGACTTTTCCTGAAGCTAAATGGAACACCACAGCCAGAGTTTTCAGTC ACATCCGTCTTGGCATGGGCCATGTTCTTATTATAGTCCAGTGTTTTATTTCTTCAATGGCT AATATCTATAATGAAAAGATACTGAAGGAGGGGAACCAGCTCACTGAAAGCATCTTCATACA GAACAGCAAACTCTATTTCTTTGGCATTCTGTTTAATGGGCTGACTCTGGGCCTTCAGAGGA GTAACCGTGATCAGATTAAGAACTGTGGATTTTTTTATGGCCACAGTGCATTTTCAGTAGCC CTTATTTTTGTAACTGCATTCCAGGGCCTTTCAGTGGCTTTCATTCTGAAGTTCCTGGATAA TCTTTGACTTCAGGCCCTCCCTGGAATTTTTCTTGGAAGCCCCATCAGTCCTTCTCTCTATA TTTATTTATAATGCCAGCAAGCCTCAAGTTCCGGAATACGCACCTAGGCAAGAAAGGATCCG AGATC1'AAGTGGCAATCTTTGGGAGCGTTCCAGTGGGGGATGGAGAAGAACTAGAAAGACTTA CCAAACCCAAGAGTGATGAGTCAGATGAAGATACTTTC**TAA**CTGGTACCCACATAGTTTGCA GCTCTCTTGAACCTTATTTTCACATTTTCAGTGTTTGTAATATTTATCTTTTCACTTTGATA AACCAGAAATGTTTCTAAATCCTAATATTCTTTGCATATATCTAGCTACTCCCTAAATGGTT CCATCCAAGGCTTAGAGTACCCAAAGGCTAAGAAATTCTAAAGAACTGATACAGGAGTAACA ATATGAAGAATTCATTAATATCTCAGTACTTGATAAATCAGAAAGTTATATGTGCAGATTAT TTTCCTTGGCCTTCAAGCTTCCAAAAAACTTGTAATAATCATGTTAGCTATAGCTTGTATAT ACACATAGAGATCAATTTGCCAAATATTCACAATCATGTAGTTCTAGTTTACATGCCAAAGT CTTCCCTTTTTAACATTATAAAAGCTAGGTTGTCTCTTGAATTTTGAGGCCCTAGAGATAGT CTGGCCATACCATAGATTTGGGATGATGTAGTCTGTGCTAAATATTTTGCTGAAGAAGCAGT TTCTCAGACACATCTCAGAATTTTAATTTTTAGAAATTCATGGGAAATTGGATTTTTGT AATAATCTTTTGATGTTTTAAACATTGGTTCCCTAGTCACCATAGTTACCACTTGTATTTTA AGTCATTTAAACAAGCCACGGTGGGGCTTTTTTCTCCTCAGTTTGAGGAGAAAAATCTTGAT AATTCAAGCTGTGACTATTGTATATCTTTCCAAGAGTTGAAATGCTGGCTTCAGAATCATAC CAGATTGTCAGTGAAGCTGATGCCTAGGAACTTTTAAAGGGATCCTTTCAAAAGGATCACTT AGCAAACACATGTTGACTTTTAACTGATGTATGAATATTAATACTCTAAAAATAGAAAGACC AGTAATATAAGTCACTTTACAGTGCTACTTCACACTTAAAAGTGCATGGTATTTTTCATG GTATTTTGCATGCAGCCAGTTAACTCTCGTAGATAGAGAGGTCAGGTGATAGATGATATTAA AAATTAGCAAACAAAAGTGACTTGCTCAGGGTCATGCAGCTGGGTGATGATAGAAGAGTGGG CTTTAACTGGCAGGCCTGTATGTTTACAGACTACCATACTGTAAATATGAGCTTTATGGTGT CATTCTCAGAAACTTATACATTTCTGCTCTCCTTTCTCCTAAGTTTCATGCAGATGAATATA AGGTAATATACTATTATAATTCATTTGTGATATCCACAATAATATGACTGGCAAGAATTG GTGGAAATTTGTAATTAAAATAATTATTAAACCT

FIGURE 9

MEKQCCSHPVICSLSTMYTFLLGAIFIALSSSRILLVKYSANEENKYDYLPTTVNVCSELVK
LVFCVLVSFCVIKKDHQSRNLKYASWKEFSDFMKWSIPAFLYFLDNLIVFYVLSYLQPAMAV
IFSNFSIITTALLFRIVLKRRLNWIQWASLLTLFLSIVALTAGTKTLQHNLAGRGFHHDAFF
SPSNSCLLFRSECPRKDNCTAKEWTFPEAKWNTTARVFSHIRLGMGHVLIIVQCFISSMANI
YNEKILKEGNQLTESIFIQNSKLYFFGILFNGLTLGLQRSNRDQIKNCGFFYGHSAFSVALI
FVTAFQGLSVAFILKFLDNMFHVLMAQVTTVIITTVSVLVFDFRPSLEFFLEAPSVLLSIFI
YNASKPQVPEYAPRQERIRDLSGNLWERSSGDGEELERLTKPKSDESDEDTF

Transmembrane domains:

amino acids 16-36 (type II), 50-74, 147-168, 229-250, 271-293, 298-318, 328-368

N-glycosylation sites.

amino acids 128-132, 204-208, 218-222, 374-378

Glycosaminoglycan attachment site.

amino acids 402-406

N-myristoylation sites.

amino acids 257-263, 275-281, 280-286, 284-290, 317-323

FIGURE 10

FIGURE 11

CGGACGCGTGGGCGGACGCGTGGGCGGCCGGCTTGGCTAGCGCGCGGCGCCC GTGGCTAAGGCTGCTACGAAGCGAGCTTGGGAGGAGCAGCGGCCTGCGGGGCAGAGGAGCAT CCCGTCTACCAGGTCCCAAGCGGCGTGGCCCGCGGGTCATGGCCAAAGGAGAAGGCGCCGAG AGCGGCTCCGCGGGGGCTGCTACCCACCAGCATCCTCCAAAGCACTGAACGCCCGGCCCA GGTGAAGAAGAACCGAAAAAGAAGAACAACAGTTGTCTGTTTGCAACAAGCTTTGCTATG CTATTGG<u>ATG</u>TGGCTCAGGTGGGCCCTTTCTCTGCCTCCATCATCCTGTTTGTGGGCCGAGC CTGGGATGCCATCACAGACCCCCTGGTGGGCCTCTGCATCAGCAAATCCCCCTGGACCTGCC TGGGTCGCCTTATGCCCTGGATCATCTTCTCCACGCCCCTGGCCGTCATTGCCTACTTCCTC ATCTGGTTCGTGCCCGACTTCCCACACGGCCAGACCTATTGGTACCTGCTTTTCTATTGCCT CTTTGAAACAATGGTCACGTGTTTCCATGTTCCCTACTCGGCTCTCACCATGTTCATCAGCA ACCGAGCAGACTGAGCGGGATTCTGCCACCGCCTATCGGATGACTGTGGAAGTGCTGGGCAC AGTGCTGGGCACGGCGATCCAGGGACAAATCGTGGGCCAAGCAGACACGCCTTGTTTCCAGG ACTTCAATAGCTCTACAGTAGCTTCACAAAGTGCCAACCATACACATGGCACCACTTCACAC AGGGAAACGCAAAAGGCATACCTGCTGGCAGCGGGGGTCATTGTCTGTATCTATATAATCTG TGCTGTCATCCTGATCCTGGGCGTGCGGGAGCAGAGAGCCCTATGAAGCCCAGCAGTCTG AGCCAATCGCCTACTTCCGGGGCCTACGGCTGGTCATGAGCCACGGCCCATACATCAAACTT ATTACTGGCTTCCTCTTCACCTCCTTGGCTTTCATGCTGGTGGAGGGGAACTTTGTCTTGTT TTGCACCTACACCTTGGGCTTCCGCAATGAATTCCAGAATCTACTCCTGGCCATCATGCTCT CGGCCACTTTAACCATTCCCATCTGGCAGTGGTTCTTGACCCGGTTTGGCAAGAAGACAGCT GTATATGTTGGGATCTCATCAGCAGTGCCATTTCTCATCTTGGTGGCCCTCATGGAGAGTAA CCTCATCATTACATATGCGGTAGCTGTGGCAGCTGGCATCAGTGTGGCAGCTGCCTTCTTAC TACCCTGGTCCATGCTGCCTGATGTCATTGACGACTTCCATCTGAAGCAGCCCCACTTCCAT GGAACCGAGCCCATCTTCTTCTCCTTCTATGTCTTCTTCACCAAGTTTGCCTCTGGAGTGTC ACTGGGCATTTCTACCCTCAGTCTGGACTTTGCAGGGTACCAGACCCGTGGCTGCTCGCAGC CGGAACGTGTCAAGTTTACACTGAACATGCTCGTGACCATGGCTCCCATAGTTCTCATCCTG GGCCCTGCAGGCACTGAGGGACGAGGCCAGCAGCTCTGGCTGCAGAAACAGACTCCACAG AGCTGGCTAGCATCCTC**TAG**GGCCCGCCACGTTGCCCGAAGCCACCATGCAGAAGGCCACAG AAGGGATCAGGACCTGTCTGCCGGCTTGCTGAGCAGCTGGACTGCAGGTGCTAGGAAGGGAA CTGAAGACTCAAGGAGGTGGCCCAGGACACTTGCTGTGCTCACTGTGGGGCCCGGCTGCTCTG TGGCCTCCTGCCTCCCTGCCTGTGGGGCCAAGCCCTGGGGCTGCCACTGTGAATA TTAATGTTATTAATTTTCATAAAAGCTGGAAAGC

FIGURE 12

MWLRWALSLPPSSCLWAEPGMPSQTPWWASASANPPGPAWVALCPGSSSPRPWPSLPTSSSG
SCPTSHTARPIGTCFSIASLKQWSRVSMFPTRLSPCSSATEQTERDSATAYRMTVEVLGTVL
GTAIQGQIVGQADTPCFQDFNSSTVASQSANHTHGTTSHRETQKAYLLAAGVIVCIYIICAV
ILILGVREQREPYEAQQSEPIAYFRGLRLVMSHGPYIKLITGFLFTSLAFMLVEGNFVLFCT
YTLGFRNEFQNLLLAIMLSATLTIPIWQWFLTRFGKKTAVYVGISSAVPFLILVALMESNLI
ITYAVAVAAGISVAAAFLLPWSMLPDVIDDFHLKQPHFHGTEPIFFSFYVFFTKFASGVSLG
ISTLSLDFAGYQTRGCSQPERVKFTLNMLVTMAPIVLILLGLLLFKMYPIDEERRRQNKKAL
QALRDEASSSGCSETDSTELASIL

FIGURE 13

GGGAAACGCAAAAGGCATACCTGCTGGCAGCGGGGGTCATTGTCTGTATCTATATAATCTGT
GCTGTCATCCTGATCCTGGGCGTGCGGAGCAGAGAGAACCCTATGAAGCCCAGCAGTCTGA
GCCAATCGCCTACTTCCGGGGCCTACGGCTGGTCATGAGCCACGGCCCATACATCAAACTTA
TTACTGGCTTCCTCTTCACCTCCTTGGCTTTCATGCTGGTGGAGGGGAACTTTGTCTTGTTT
TGCACCTACACCTTGGGCTTCCGCAATGAATTCCAGAATCTACTCCTGGCCATCATGCTCTC
GGCCACTTTAACCATTCCCATCTGGCAGTGGTTCTTGACCCGGTTTGGCAAGAAGACAGCTG
TATATGTTGGGATCTCATCAGCAGTGCCATTTCTCATCTTGGTGGCCCTCATGGAGAGTAAC
CTCATCATTACATATGCGGTAGCTGTGGCAGCTGGCATCAGTGTGGCAGCTGCCTTCTTACT
ACCCTGGTCCATGCTGCCTGATGTCATTGACGACTTCCATCTGAAGCAGCCCCACTTCCATG
GAACCGAGCCCAT

FIGURE 14

GGGGCTTCGGCCCAGCGCCAGCGCTAGTCGGTCTGGTAAGGATTTACAAAAGGTGCAGGT GGTGGTTTCAGCAAGGCCTCAGTTTCCTTCCTTCAGCCCTTGTAATTTGGACATCTGCTGCT TTCATATTTTCATACATTACTGCAGTAACACTCCACCATATAGACCCGGCTTTACCTTATAT CAGTGACACTGGTACAGTAGCTCCAGAAAAATGCTTATTTGGGGCCAATGCTAAATATTGCGG CAGTTTTATGCATTGCTACCATTTATGTTCGTTATAAGCAAGTTCATGCTCTGAGTCCTGAA GAGAACGTTATCATCAAATTAAACAAGGCTGGCCTTGTACTTGGAATACTGAGTTGTTTAGG ACTTTCTATTGTGGCAAACTTCCAGAAAACAACCCTTTTTGCTGCACATGTAAGTGGAGCTG TGCTTACCTTTGGTATGGGCTCATTATATATGTTTGTTCAGACCATCCTTTCCTACCAAATG CAGCCCAAAATCCATGGCAAACAAGTCTTCTGGATCAGACTGTTGTTGGTTATCTGGTGTGG AGTAAGTGCACTTAGCATGACTTGCTCATCAGTTTTGCACAGTGGCAATTTTGGGACTG ATTTAGAACAGAAACTCCATTGGAACCCCGAGGACAAAGGTTATGTGCTTCACATGATCACT ACTGCAGCAGAATGGTCTATGTCATTTTCCTTCTTTTGGTTTTTTCCTGACTTACATTCGTGA $\verb|TTTTCAGAAAATTTCTTTACGGGTGGAAGCCAATTTACATGGATTAACCCTCTATGACACTG|$ $\texttt{CACCTTGCCCTATTAACAATGAACGAACACGGCTACTTTCCAGAGATATT} \underline{\textbf{TGA}} \texttt{TGAAAGGAT}$ AAAATATTTCTGTAATGATTATGATTCTCAGGGATTGGGGAAAGGTTCACAGAAGTTGCTTA TTCTTCTCTGAAATTTTCAACCACTTAATCAAGGCTGACAGTAACACTGATGAATGCTGATA ATCAGGAAACATGAAAGAAGCCATTTGATAGATTATTCTAAAGGATATCATCAAGAAGACTA TTAAAAACACCTATGCCTATACTTTTTTATCTCAGAAAATAAAGTCAAAAGACTATG

FIGURE 15

MWWFQQGLSFLPSALVIWTSAAFIFSYITAVTLHHIDPALPYISDTGTVAPEKCLFGAMLNI
AAVLCIATIYVRYKQVHALSPEENVIIKLNKAGLVLGILSCLGLSIVANFQKTTLFAAHVSG
AVLTFGMGSLYMFVQTILSYQMQPKIHGKQVFWIRLLLVIWCGVSALSMLTCSSVLHSGNFG
TDLEQKLHWNPEDKGYVLHMITTAAEWSMSFSFFGFFLTYIRDFQKISLRVEANLHGLTLYD
TAPCPINNERTRLLSRDI

FIGURE 16

FIGURE 17

CCCACGCGTCCGCCGCCGCTGCGTCCCGGAGTGCAAGTGAGCTTCTCGGCTGCCCCGCGGG $\texttt{CCGGGGTGCGGAGCCGAC} \underline{\textbf{ATG}} \texttt{CGCCCGCTTCTCGGCCTCCTTCTGGTCTTCGCCGGCTGCAC}$ CTTCGCCTTGTACTTGCTGTCGACGCGACTGCCCCGCGGGGCGAGACTGGGCTCCACCGAGG AGGCTGGAGGCAGGTCGCTGTGGTTCCCCTCCGACCTGGCAGAGCTGCGGGAGCTCTCTGAG GTCCTTCGAGAGTACCGGAAGGAGCACCAGGCCTACGTGTTCCTGCTCTTCTGCGGCGCCCTA CCTCTACAAACAGGGCTTTGCCATCCCCGGCTCCAGCTTCCTGAATGTTTTAGCTGGTGCCT TGCTACCTGCTCCCAGTATTTTTGGCAAACAGTTGGTGGTGTCCTACTTTCCTGATAAAGT TGAGACTTTTCCCCATGACACCAAACTGGTTCTTGAACCTCTCGGCCCCAATTCTGAACATT CCCATCGTGCAGTTCTTCTCAGTTCTTATCGGTTTGATCCCATATAATTTCATCTGTGT GCAGACAGGGTCCATCCTGTCAACCCTAACCTCTCTGGATGCTCTTTTCTCCTGGGACACTG ${\tt TCTTTAAGCTGTTGGCCATTGCCATGGTGGCATTAATTCCTGGAACCCTCATTAAAAAATTT}$ AGTCAGAAACATCTGCAATTGAATGAAACAAGTACTGCTAATCATATACACAGTAGAAAAGA $\texttt{CACA} \underline{\textbf{TGA}} \\ \texttt{TCTGGATTTTCTGTTTGCCACATCCCTGGACTCAGTTGCTTATTTGTGTAATGGA} \\$ TGTGGTCCTCTAAAGCCCCTCATTGTTTTTGATTGCCTTCTATAGGTGATGTGGACACTGTG CATCAATGTGCAGTGTCTTTTCAGAAAGGACACTCTGCTCTTGAAGGTGTATTACATCAGGT TTTCAAACCAGCCCTGGTGTAGCAGACACTGCAACAGATGCCTCCTAGAAAATGCTGTTTGT GGCCGGGCGCGGTGGCTCACGCCTGTAATCCCAGCACTTTGGGAGGCCGAGGCCGGTGATTC ACAAGGTCAGGAGTTCAAGACCAGCCTGGCCAAGATGGTGAAATCCTGTCTCTAATAAAAAT ACAAAATTAGCCAGGCGTGGTGGCAGGCACCTGTAATCCCAGCTACTCGGGAGGCTGAGGC AGGAGAATTGCTTGAACCAAGGTGGCAGAGGTTGCAGTAAGCCAAGATCACACCACTGCACT CCAGCCTGGGTGATAGAGTGAGACACTGTCTTGAC

FIGURE 18

MRPLLGLLLVFAGCTFALYLLSTRLPRGRRLGSTEEAGGRSLWFPSDLAELRELSEVLREYR KEHQAYVFLLFCGAYLYKQGFAIPGSSFLNVLAGALFGPWLGLLLCCVLTSVGATCCYLLSS IFGKQLVVSYFPDKVALLQRKVEENRNSLFFFLLFLRLFPMTPNWFLNLSAPILNIPIVQFF FSVLIGLIPYNFICVQTGSILSTLTSLDALFSWDTVFKLLAIAMVALIPGTLIKKFSQKHLQ LNETSTANHIHSRKDT

Important features:

Signal peptide:

amino acids 1-17

Transmembrane domains:

amino acids 101-123, 189-211

N-glycosylation sites.

amino acids 172-176, 250-254

cAMP- and cGMP-dependent protein kinase phosphorylation site.

amino acids 240-244, 261-265

N-myristoylation site.

amino acids 13-19, 104-110, 115-121, 204-210

Amidation site.

amino acids 27-31

Prokaryotic membrane lipoprotein lipid attachment site.

amino acids 4-15

Protein splicing proteins.

amino acids 25-31

Sugar transport proteins.

amino acids 162-172

FIGURE 19

CCGAGGCGGGAGGACCCGAGGGGGCCCCGCATGAATCATTGTAGTCAATCATTTT CCAGTTCTCAGCCGCTCAGTTGTGATCAAGGGACACGTGGTTTCCGAACTGCCAGCTCAGAA ${\sf TAGGAAAATAACTTGGGATTTTATATTGGAAGAC} {\sf ATGGATCTTGCTGCCAACGAGATCAGCA}$ TCAGAGAAGGCAATTGAAAAATTTATCAGACAGCTGCTGGAAAAGAATGAACCTCAGAGACC CCCCCGCAGTATCCTCTCTTATAGTTGTGTATAAGGTTCTCGCAACCTTGGGATTAATCT TGCTCACTGCCTACTTTGTGATTCAACCTTTCAGCCCATTAGCACCTGAGCCAGTGCTTTCT GGAGCTCACCCTGGCGCTCACTCATCCATCACATTAGGCTGATGTCCTTGCCCATTGCCAA CAGACTTTGACCCCTGGTGGACAAACGACTGTGAGCAGAATGAGTCAGAGCCCATTCCTGCC AACTGCACTGGCTGTGCCCAGAAACACCTGAAGGTGATGCTCCTGGAAGACGCCCCAAGGAA ATTTGAGAGGCTCCATCCACTGGTGATCAAGACGGGAAAGCCCCTGTTGGAGGAAGAGATTC AGCATTTTTTGTGCCAGTACCCTGAGGCGACAGAAGGCTTCTCTGAAGGGTTTTTCGCCAAG TGGTGGCGCTGCTTTCCTGAGCGGTGGTTCCCATTTCCTTATCCATGGAGGAGACCTCTGAA CCTCTTTAAACAAGTGCTCCTTTCTTCACCCAGAACCTGTTGTGGGGAGTAAGATGCATAAG GTGCCGAAGACATTGTCAGTCTGTGGCCATGCCAATAGAGCCAGGGGATATCGGCTATGTCG ACACCACCACTGGAAGGTCTACGTTATAGCCAGAGGGGTCCAGCCTTTGGTCATCTGCGAT GGAACCGCTTTCTCAGAACTG**TAG**GAAATAGAACTGTGCACAGGAACAGCTTCCAGAGCCGA AAACCAGGTTGAAAGGGGAAAAATAAAAACAAAAACGATGAAACTGCAAAAA

FIGURE 20

MDLAANEISIYDKLSETVDLVRQTGHQCGMSEKAIEKFIRQLLEKNEPQRPPPQYPLLIVVY
KVLATLGLILLTAYFVIQPFSPLAPEPVLSGAHTWRSLIHHIRLMSLPIAKKYMSENKGVPL
HGGDEDRPFPDFDPWWTNDCEQNESEPIPANCTGCAQKHLKVMLLEDAPRKFERLHPLVIKT
GKPLLEEEIQHFLCQYPEATEGFSEGFFAKWWRCFPERWFPFPYPWRRPLNRSQMLRELFPV
FTHLPFPKDASLNKCSFLHPEPVVGSKMHKMPDLFIIGSGEAMLQLIPPFQCRRHCQSVAMP
IEPGDIGYVDTTHWKVYVIARGVQPLVICDGTAFSEL

FIGURE 21

FIGURE 22

CCCACGCGTCCGCCCACGCGTCCGGCTGAACACCTCTTCTTTGGAGTCAGCCACTGATGAGG CACCCGAATGGCGCCACTTCATCGACAAACAGGTACAGCCAACCATCCCAGTTCGAAATG GACACGTATGCTAAGAGCCACGACCTTATGTCAGGTTTCTGGAATGCCTGCTATGACATGCT TATGAGCAGTGGGCAGCGCCCAGTGGGAGCGCCCCAGAGTCGTCGGGCCTTCCAGGAGC TGATGCAACTCAACACCATTGCGGGGCGGACCTACAATGACCTGTCTCAGTACCCTGTGTTCCCCTGGGTCCTGCAGCAACCCAGCCGTCTTCCG GCTGAGGAACTTCCCTGTCAGCTGCTGAAGGAGCCACATCCAACTCGGCTCTCA GCTGAGGAACAGCAGCCCTTGCACGCCTGGACACTAACTCACCTAGCATCTTCCAGCA CCTGGACGAACTCAAGGCATTCTTCGCAGAGGTGACTGTGAGTGCCAGTGGGCTGCTGGGCA CCCACAGCTGGTTGCCCTATGACCGCAACATAAGCAACTACTTCAGCTTCAGCAAAGACCCC ACCATGGGCAGCACAAGACGCAGCGACTGCTGAAGGCCCTTGGTGGCCAGTGGTGT GAGTGGACAAGCACTGCCACTGCAAGAAACCTGCTAATCAGCGGTTGCCACTGGG GAACTTGACATGGCTGTGTCTGGATCTGAGGATGGAACTGTGATCATACACACTGTACGCCG CGGACAGTTTGTAGCGGCACTACGGCCTCTGGGTGCCACATTCCCTGGACCTATTTTCCACC TGGCAAGCTCATCGTGGTGGTCGCGGGGCAGCCCTCTGAGGTGCGCAGCAGCCAGTTCGCGC GGAAGCTGTGGCGGTCCTCGCGGCGCATCTCCCAGGTGTCCTCGGGAGAGACGGAATACAAC GGCGGAAGTCCCGCCCTCGCCGGCTGAGGGGCCCCTGAGGGCCCAGCACTGGCGTCT

FIGURE 23

MSQFEMDTYAKSHDLMSGFWNACYDMLMSSGQRRQWERAQSRRAFQELVLEPAQRRARLEGL RYTAVLKOOATOHSMALLHWGALWROLASPCGAWALRDTPIPRWKLSSAETYSRMRLKLVPN HHFDPHLEASALRDNLGEVPLTPTEEASLPLAVTKEAKVSTPPELLQEDQLGEDELAELETP MEAAELDEQREKLVLSAECQLVTVVAVVPGLLEVTTQNVYFYDGSTERVETEEGIGYDFRRP LAQLREVHLRRFNLRRSALELFFIDQANYFLNFPCKVGTTPVSSPSQTPRPQPGPIPPHTQV RNQVYSWLLRLRPPSQGYLSSRSPQEMLRASGLTOKWVOREISNFEYLMQLNTIAGRTYNDL SQYPVFPWVLQDYVSPTLDLSNPAVFRDLSKPIGVVNPKHAQLVREKYESFEDPAGTIDKFH YGTHYSNAAGVMHYLIRVEPFTSLHVQLQSGRFDCSDRQFHSVAAAWQARLESPADVKELIP EFFYFPDFLENQNGFDLGCLQLTNEKVGDVVLPPWASSPEDFIQQHRQALESEYVSAHLHEW IDLIFGYKORGPAAEEALNVFYYCTYEGAVDLDHVTDERERKALEGIISNFGOTPCOLLKEP HPTRLSAEEAAHRLARLDTNSPSIFQHLDELKAFFAEVTVSASGLLGTHSWLPYDRNISNYF SFSKDPTMGSHKTQRLLSGPWVPGSGVSGQALAVAPDGKLLFSGGHWDGSLRVTALPRGKLL SQLSCHLDVVTCLALDTCGIYLISGSRDTTCMVWRLLHQGGLSVGLAPKPVQVLYGHGAAVS CVAISTELDMAVSGSEDGTVIIHTVRRGQFVAALRPLGATFPGPIFHLALGSEGOIVVOSSA WERPGAQVTYSLHLYSVNGKLRASLPLAEQPTALTVTEDFVLLGTAQCALHILQLNTLLPAA PPLPMKVAIRSVAVTKERSHVLVGLEDGKLIVVVAGQPSEVRSSQFARKLWRSSRRISQVSS GETEYNPTEAR

N-glycosylation site.

amino acids 677-681

cAMP- and cGMP-dependent protein kinase phosphorylation site.

amino acids 985-989

Tyrosine kinase phosphorylation site.

amino acids 56-65, 367-376, 543-551

N-myristoylation site.

amino acids 61-67, 436-442, 604-610, 610-616, 664-670, 691-697, 706-712, 711-717, 769-775, 785-791, 802-808, 820-826, 834-840, 873-879, 912-918, 954-960

FIGURE 24

 $\underline{\textbf{CGG}} \texttt{ACGCGTGGGCGGGCTGTGAGAAAGTGCCAATAAATACATCATGCAACCC}$ ${\tt CACGGCCCACCTTGTGAACTCCTCGTGCCCAGGGCTGATGTGCGTCTTCCAGGGCTACTCAT}$ CCAAAGGCCTAATCCAACGTTCTGTCTTCAATCTGCAAATCTATGGGGTCCTGGGGCTCTTC $\tt TGGACCCTTAACTGGGTACTGGCCCTGGGCCCAATGCGTCCTCGCTGGAGCCTTTGCCTCCTT$ $\tt CTACTGGGCCTTCCACAAGCCCCAGGACATCCCTACCTTCCCCTTAATCTCTGCCTTCATCC$ GCACACTCCGTTACCACACTGGGTCATTGGCATTTGGAGCCCTCATCCTGACCCTTGTGCAG ATAGCCCGGGTCATCTTGGAGTATATTGACCACAAGCTCAGAGGAGTGCAGAACCCTGTAGC CCGCTGCATCATGTGCTGTTTCAAGTGCTGCCTCTGGTGTCTGGAAAAATTTATCAAGTTCC TAAACCGCAATGCATACATCATGATCGCCATCTACGGGAAGAATTTCTGTGTCTCAGCCAAA AATGCGTTCATGCTACTCATGCGAAACATTGTCAGGGTGGTCGTCCTGGACAAAGTCACAGA $\tt CCTGCTGCTGTTCTTTGGGAAGCTGCTGGTGGTGGTGGGGGGTCCTGTCTTTT$ TTTTCTCCGGTCGCATCCCGGGGCTGGGTAAAGACTTTAAGAGCCCCCACCTCAACTATTAC TGGCTGCCCATCATGACCTCCATCCTGGGGGCCTATGTCATCGCCAGCGGCTTCTTCAGCGT TTTCGGCATGTGTGGACACGCTCTTCCTCTGCTTCCTGGAAGACCTGGAGCGGAACAACG GCTCCCTGGACCGGCCCTACTACATGTCCAAGAGCCTTCTAAAGATTCTGGGCAAGAAGAAC ACCCCACCCCACCGTCCAGCCATCCAACCTCACTTCGCCTTACAGGTCTCCATTTTGTGGT AAAAAAAGGTTTTAGGCCAGGCGCGTGGCTCACGCCTGTAATCCAACACTTTGAGAGGCTG AGGCGGGCGGATCACCTGAGTCAGGAGTTCGAGACCAGCCTGGCCAACATGGTGAAACCTCC GTCTCTATTAAAAATACAAAAATTAGCCGAGAGTGGTGGCATGCACCTGTCATCCCAGCTAC TCGGGAGGCTGAGGCAGAATCGCTTGAACCCGGGAGGCAGAGGTTGCAGTGAGCCGAGA AAAGATTTTATTAAAGATATTTTGTTAACTC

FIGURE 25

RTRGRTRGGCEKVPINTSCNPTAHLVNSSCPGLMCVFQGYSSKGLIQRSVFNLQIYGVLGLF
WTLNWVLALGQCVLAGAFASFYWAFHKPQDIPTFPLISAFIRTLRYHTGSLAFGALILTLVQ
IARVILEYIDHKLRGVQNPVARCIMCCFKCCLWCLEKFIKFLNRNAYIMIAIYGKNFCVSAK
NAFMLLMRNIVRVVVLDKVTDLLLFFGKLLVVGGVGVLSFFFFSGRIPGLGKDFKSPHLNYY
WLPIMTSILGAYVIASGFFSVFGMCVDTLFLCFLEDLERNNGSLDRPYYMSKSLLKILGKKN
EAPPDNKKRKK

FIGURE 26

GAGTCTTGACCGCCGCCGGCTCTTGGTACCTCAGCGCGAGCGCCAGGCGTCCGGCCGCCGT GGCT**ATG**TTCGTGTCCGATTTCCGCAAAGAGTTCTACGAGGTGGTCCAGAGCCAGAGGGTCC CAGTGTGACCACGTGCAATATACGCTGGTTCCAGTTTCTGGGTGGCAAGAACTTGAAACTGC ATTTCTTGAGCATAAAGAACAGTTTCATTATTTTATTCTCATAAACTGTGGAGCTAATGTAG CCAGTCAATGTCGTCAATGTATACAACGATACCCAGATCAAATTACTCATTAAACAAGATGA TGACCTTGAAGTTCCCGCCTATGAAGACATCTTCAGGGATGAAGAGGAGGATGAAGAGCATT CAGGAAATGACAGTGATGGGTCAGAGCCTTCTGAGAAGCGCACACGGTTAGAAGAGGAGATA GTGGAGCAAACCATGCGGAGGAGGCGCGGCGAGAGTGGGAGGGCCCGGAGAAGAGACATCCT CTTTGACTACGAGCAGTATGAATATCATGGGACATCGTCAGCCATGGTGATGTTTGAGCTGG CTTGGATGCTGTCCAAGGACCTGAATGACATGCTGTGGTGGGCCATCGTTGGACTAACAGAC CAGTGGGTGCAAGACAAGATCACTCAAATGAAATACGTGACTGATGTTGGTGTCCTGCAGCG CCACGTTTCCCGCCACACCACCGGAACGAGGATGAGGAGAACACACTCTCCGTGGACTGCA CACGGATCTCCTTTGAGTATGACCTCCGCCTGGTGCTCTACCAGCACTGGTCCCTCCATGAC AGCCTGTGCAACACCAGCTATACCGCAGCCAGGTTCAAGCTGTGGTCTGTGCATGGACAGAA GCGGCTCCAGGAGTTCCTTGCAGACATGGGTCTTCCCCTGAAGCAGGTGAAGCAGAAGTTCC AGGCCATGGACATCTCCTTGAAGGAGAATTTGCGGGAAATGATTGAAGAGTCTGCAAATAAA TCTGGCCAGCGACGTGTCTTTGCCACCATGTCTTTGATGGAGAGCCCCGAGAAGGATGGCT CAGGGACAGATCACTTCATCCAGGCTCTGGACAGCCTCTCCAGGAGTAACCTGGACAAGCTG TACCATGGCCTGGAACTCGCCAAGAAGCAGCTGCGAGCCACCCAGCAGACCATTGCCAGCTGC CTTTGCACCAACCTCGTCATCTCCCAGGGGCCTTTCCTGTACTGCTCTCTCATGGAGGGCAC TCCAGATGTCATGCTGTTCTCTAGGCCGGCATCCCTAAGCCTGCTCAGCAAACACCTGCTCA AGTCCTTTGTGTGTTCGACAAAGAACCGGCGCTGCAAACTGCTGCCCCTGGTGATGGCTGCC CCCCTGAGCATGGGCATGGCACAGTGACCGTGGTGGGCATCCCCCAGAGACCGACAGCTC GGACAGGAAGAACTTTTTTGGGAGGGCGTTTGAGAAGGCAGCGGAAAGCACCAGCTCCCGGA TGCTGCACAACCATTTTGACCTCTCAGTAATTGAGCTGAAAGCTGAGGATCGGAGCAAGTTT CTGGACGCACTTATTTCCCTCCTGTCC**TAG**GAATTTGATTCTTCCAGAATGACCTTCTTATT TATGTAACTGGCTTTCATTTAGATTGTAAGTTATGGACATGATTTGAGATGTAGAAGCCATT TTTTATTAAATAAAATGCTTATTTTAGGAAA

FIGURE 27

MFVSDFRKEFYEVVQSQRVLLFVASDVDALCACKILQALFQCDHVQYTLVPVSGWQELETAF
LEHKEQFHYFILINCGANVDLLDILQPDEDTIFFVCDSHRPVNVVNVYNDTQIKLLIKQDDD
LEVPAYEDIFRDEEEDEEHSGNDSDGSEPSEKRTRLEEEIVEQTMRRRQRREWEARRRDILF
DYEQYEYHGTSSAMVMFELAWMLSKDLNDMLWWAIVGLTDQWVQDKITQMKYVTDVGVLQRH
VSRHNHRNEDEENTLSVDCTRISFEYDLRLVLYQHWSLHDSLCNTSYTAARFKLWSVHGQKR
LQEFLADMGLPLKQVKQKFQAMDISLKENLREMIEESANKFGMKDMRVQTFSIHFGFKHKFL
ASDVVFATMSLMESPEKDGSGTDHFIQALDSLSRSNLDKLYHGLELAKKQLRATQQTIASCL
CTNLVISQGPFLYCSLMEGTPDVMLFSRPASLSLLSKHLLKSFVCSTKNRRCKLLPLVMAAP
LSMEHGTVTVVGIPPETDSSDRKNFFGRAFEKAAESTSSRMLHNHFDLSVIELKAEDRSKFL
DALISLLS

FIGURE 28

FIGURE 29

CAGGAACCCTCTCTTTGGGTCTGGATTGGGACCCCTTTCCAGTACCATTTTTTCTAGTGAAC CACGAAGGGACGATACCAGAAAACACCCTCAACCCAAAGGAAATAGACTACAGCCCCAATTG GTCTTCCCTTTATCGAGTCAAGAAACCCCCCCTTCTTGAGCTATTTACAGCTTTTAACAATT $\mathsf{GAGTAAAGTACGCTCCGGTCACC}$ CTGCTCTTTCTCCTGATGTGTGAGATCCGTATGGTGGAGCTCACCTTTGACAGAGCTGTGGC CATGGCGACCGGCCAGTTTGCTGCTCCCCTGCGTGGCATCTACTTCTTCAGCCTCAATGTGC ACAGCTGGAATTACAAGGAGACGTACGTGCACATTATGCATAACCAGAAAGAGGCTGTCATC CTGTACGCGCAGCCAGCGAGCGCAGCATCATGCAGAGCCAGAGTGTGATGCTGGACCTGGCCTACGGGGACCGCGTCTGGGTGCGGCTCTTCAAGCGCCAGCGCGAGAACGCCATCTACAGCA ACGACTTCGACACCTACATCACCTTCAGCGGCCACCTCATCAAGGCCGAGGACGAC**TGA**GGG CCTCTGGGCCACCCTCCCGGCTGGAGAGCTCAGGTGCTGGTCCCGTCCCCTGCAGGGCTCAG TTTGCACTGCTGAAGCAGGAAGGCCAGGGAGGTCCCCGGGGACCTGGCATTCTGGGGAGA GCCTGTGTTCTGGGTGTTCAGGTGCTGGTCCTCATTACCCACTGCTCCCAAGGCTGG TGGGACGGGTCCCGTGGCCAGGGCAGGTATCTCCTTCCCGTTCCTCATCCACCTGCCCAG TGCTCATCGTTACAGCAAACCCCAGGGGGCCTTGGCCAAGGGTTCTGTGAGGAGAGG

FIGURE 30

MVTAALGPVWAALLLFLLMCEIRMVELTFDRAVASGCQRCCDSEDPLDPAHVSSASSSGRPH
ALPEIRPYINITILKGDKGDPGPMGLPGYMGREGPQGEPGPQGSKGDKGEMGSPGAPCQKRF
FAFSVGRKTALHSGEDFQTLLFERVFVNLDGCFDMATGQFAAPLRGIYFFSLNVHSWNYKET
YVHIMHNQKEAVILYAQPSERSIMQSQSVMLDLAYGDRVWVRLFKRQRENAIYSNDFDTYIT
FSGHLIKAEDD

Important features:

Signal peptide:

amino acids 1-20

N-glycosylation site.

amino acids 72-75

Clq domain proteins.

amino acids 144-178, 78-111 and 84-117

FIGURE 31

ACTCGAACGCAGTTGCTTCGGGACCCAGGACCCCCTCGGGCCCGACCCGCCAGGAAAGACTG AGGCCGCGGCCTGCCCGGCCCGGCTCCCTGCGCCGCCGCCTCCCGGGACAGAAGATGTG CTCCAGGGTCCCTCTGCTGCTGCCGCTGCTCTTGCTACTGGCCCTGGGGCCTGGGGTGCAGG GCTGCCCATCCGGCTGCCAGTGCAGCCAGCCACAGACAGTCTTCTGCACTGCCCGCCAGGGG ACCACGGTGCCCCGAGACGTGCCACCCGACACGGTGGGGCTGTACGTCTTTGAGAACGGCAT CACCATGCTCGACGCAGGCAGCTTTGCCGGCCTGCCGGGCCTGCAGCTCCTGGACCTGTCAC AGAACCAGATCGCCAGCCTGCCCAGCGGGGTCTTCCAGCCACTCGCCAACCTCAGCAACCTG GACCTGACGGCCAACAGGCTGCATGAAATCACCAATGAGACCTTCCGTGGCCTGCGGCGCCCT CGAGCGCCTCTACCTGGGCAAGAACCGCATCCGCCACATCCAGCCTGGTGCCTTCGACACGC CTGCCCGCCTGCTGCTGGACCTCAGCCACAACAGCCTCCTGGCCCTGGAGCCCGGCAT CCTGGACACTGCCAACGTGGAGGCGCTGCGGCTGGTCTGGGGCTGCAGCAGCTGGACG AGGGGCTCTTCAGCCGCTTGCGCAACCTCCACGACCTGGATGTGTCCGACAACCAGCTGGAG CGAGTGCCACCTGTGATCCGAGGCCTCCGGGGCCTGACGCCTGCGGCTGGCCGGCAACAC CCGCATTGCCCAGCTGCGGCCCGAGGACCTGGCCGGCCTGCCCTGCAGGAGCTGGATG TGAGCAACCTAAGCCTGCAGGCCCTGCCTGGCGACCTCTCGGGCCTCTTCCCCCGCCTGCGG CTGCTGGCAGCTGCCCGCAACCCCTTCAACTGCGTGTGCCCCCTGAGCTGGTTTGGCCCCTG GGTGCGCGAGAGCCACGTCACACTGGCCAGCCCTGAGGAGACGCGCTGCCACTTCCCGCCCA AGAACGCTGGCCGGCTGCTCCTGGAGCTTGACTACGCCGACTTTGGCTGCCCAGCCACCACC ACCACAGCCACAGTGCCCACCACGAGGCCCGTGGTGCGGGAGCCCACAGCCTTGTCTTCTAG CTGCCCACCGACTGTAGGGCCTGTCCCCCAGCCCCAGGACTGCCCACCGTCCACCTGCCTC AATGGGGGCACATGCCACCTGGGGACACGGCACCTGGCGTGCTTGTGCCCCGAAGGCTT CACGGGCCTGTACTGTGAGAGCCAGATGGGGCAGGGGACACGGCCCAGCCCTACACCAGTCA CGCCGAGGCCACCACGGTCCCTGACCCTGGGCATCGAGCCGGTGAGCCCCACCTCCCTGCGC GTGGGGCTGCAGCGCTACCTCCAGGGGAGCTCCGTGCAGCTCAGGAGCCTCCGTCTCACCTA AGTACACGGTCACCCAGCTGCGGCCCAACGCCACTTACTCCGTCTGTGTCATGCCTTTGGGG CCCGGGCGGTGCCGAGGGCGAGGAGGCCTGCGGGGAGGCCCATACACCCCCAGCCGTCCA CTCCAACCACGCCCCAGTCACCCAGGCCCGCGAGGGCAACCTGCCGCTCCTCATTGCGCCCG GGGCGGGCCATGGCAGCGGCTCAGGACAAAGGGCAGGTGGGGCCAGGGGCTGGGCCCCT GGAACTGGAGGGAGTGAAGGTCCCCTTGGAGCCAGGCCCGAAGGCAACAGAGGCGGTGGAG AGGCCCTGCCCAGCGGGTCTGAGTGTGAGGTGCCACTCATGGGCTTCCCAGGGCCTGGCCTC CAGTCACCCCTCCACGCAAAGCCCTACATC**TAA**GCCAGAGAGAGACAGGGCAGCTGGGGCCG GGCTCTCAGCCAGTGAGATGGCCAGCCCCCTCCTGCTGCCACACCACGTAAGTTCTCAGTCC CAACCTCGGGGATGTGTGCAGACAGGGCTGTGTGACCACAGCTGGGCCCTGTTCCCTCTGGA CCTCGGTCTCCTCATCTGTGAGATGCTGTGGCCCAGCTGACGAGCCCTAACGTCCCCAGAAC CGAGTGCCTATGAGGACAGTGTCCGCCCTGCCCTCCGCAACGTGCAGTCCCTGGGCACGGCG GGCCCTGCCATGTGCTGGTAACGCATGCCTGGGTCCTGCGGGCTCTCCCACTCCAGGCGGA CCCTGGGGGCCAGTGAAGGAAGCTCCCGGAAAGAGCAGAGGGAGAGCGGGTAGGCGGCTGTG TGACTCTAGTCTTGGCCCCAGGAAGCGAAGGAACAAAAGAAACTGGAAAGGAAGATGCTTTA GGAACATGTTTTGCTTTTTTAAAATATATATATTTATAAGAGATCCTTTCCCATTTATTCTG GGAAGATGTTTTTCAAACTCAGAGACAAGGACTTTGGTTTTTGTAAGACAAACGATGATATG AAGGCCTTTTGTAAGAAAAAATAAAAGATGAAGTGTGAAA

FIGURE 32

MCSRVPLLLPLLLLALGPGVQGCPSGCQCSQPQTVFCTARQGTTVPRDVPPDTVGLYVFEN GITMLDAGSFAGLPGLQLLDLSQNQIASLPSGVFQPLANLSNLDLTANRLHEITNETFRGLR RLERLYLGKNRIRHIQPGAFDTLDRLLELKLQDNELRALPPLRLPRLLLLDLSHNSLLALEP GILDTANVEALRLAGLGLQQLDEGLFSRLRNLHDLDVSDNQLERVPPVIRGLRGLTRLRLAG NTRIAQLRPEDLAGLAALQELDVSNLSLQALPGDLSGLFPRLRLLAAARNPFNCVCPLSWFG PWVRESHVTLASPEETRCHFPPKNAGRLLLELDYADFGCPATTTTATVPTTRPVVREPTALS SSLAPTWLSPTAPATEAPSPPSTAPPTVGPVPQPQDCPPSTCLNGGTCHLGTRHHLACLCPE GFTGLYCESQMGQGTRPSPTPVTPRPPRSLTLGIEPVSPTSLRVGLQRYLQGSSVQLRSLRL TYRNLSGPDKRLVTLRLPASLAEYTVTQLRPNATYSVCVMPLGPGRVPEGEEACGEAHTPPA VHSNHAPVTQAREGNLPLLIAPALAAVLLAALAAVGAAYCVRRGRAMAAAAQDKGQVGPGAG PLELEGVKVPLEPGPKATEGGGEALPSGSECEVPLMGFPGPGLQSPLHAKPYI

FIGURE 33

GAATCATCCACGCACCTGCAGCTCTGCTGAGAGAGTGCAAGCCGTGGGGGTTTTGAGCTCAT CTTCATCATTCATATGAGGAAATAAGTGGTAAAATCCTTGGAAATACA**ATG**AGACTCATCAG AAACATTTACATATTTTGTAGTATTGTTATGACAGCAGAGGGTGATGCTCCAGAGCTGCCAG AAGAAAGGGAACTGATGACCAACTGCTCCAACATGTCTCTAAGAAAGGTTCCCGCAGACTTG ACCCCAGCCACAACGACACTGGATTTATCCTATAACCTCCTTTTTCAACTCCAGAGTTCAGATTTCATTCTGTCTCCCAAACTGAGAGTTTTGATTCTATGCCATAACAGAATTCAACAGCTGG ATCTCAAAACCTTTGAATTCAACAAGGAGTTAAGATATTTAGATTTGTCTAATAACAGACTG AAGAGTGTAACTTGGTATTTACTGGCAGGTCTCAGGTATTTAGATCTTTTTTAATGACTT TGACACCATGCCTATCTGTGAGGAAGCTGGCAACATGTCACACCTGGAAATCCTAGGTTTGA GTGGGGCAAAAATACAAAAATCAGATTTCCAGAAAATTGCTCATCTGCATCTAAATACTGTC
TTCTTAGGATTCAGAACTCTTCCTCATTATGAAGAAGGTAGCCTGCCCATCTTAAACACAAC
AAAACTGCACATTGTTTTACCAATGGACACAAATTTCTGGGTTCTTTTTGCGTGATGGAATCA AGACTTCAAAAATATTAGAAATGACAAATATAGATGGCAAAAGCCAATTTGTAAGTTATGAA ATGCAACGAAATCTTAGTTTAGAAAATGCTAAGACATCGGTTCTATTGCTTAATAAAGTTGA ACAGGATAAAATCTATTTGCTTTTGACCAAAATGGACATAGAAAACCTGACAATATCAAATG CACAAATGCCACACATGCTTTTCCCGAATTATCCTACGAAATTCCAATATTTAAATTTTGCC AATAATATCTTAACAGACGAGTTGTTTAAAAGAACTATCCAACTGCCTCACTTGAAAACTCT CATTTTGAATGGCAATAAACTGGAGACACTTTCTTTAGTAAGTTGCTTTGCTAACAACACAC CCTTGGAACACTTGGATCTGAGTCAAAATCTATTACAACATAAAAATGATGAAAAATTGCTCA TGGCCAGAAACTGTGGTCAATATGAATCTGTCATACAATAAATTGTCTGATTCTGTCTTCAG GTGCTTGCCCAAAAGTATTCAAATACTTGACCTAAATAATAACCAAATCCAAACTGTACCTA AAGAGACTATTCATCTGATGGCCTTACGAGAACTAAATATTGCATTTAATTTTCTAACTGAT ${ t CTCCCTGGATGCAGTCATTTCAGTAGACTTTCAGTTCTGAACATTGAAATGAACTTCATTCT$ CAGCCCATCTCTGGATTTTGTTCAGAGCTGCCAGGAAGTTAAAACTCTAAATGCGGGAAGAA ATGATGGTTGGATGGTCAGATTCATACACCTGTGAATACCCTTTAAACCTAAGGGGAACTAG GTTAAAAGACGTTCATCTCCACGAATTATCTTGCAACACAGCTCTGTTGATTGTCACCATTG TTACTGGAACCCATTCCATTCTATTGCATTCCCACCAGGTATCATAAACTGAAAGCTCTCCT GGAAAAAAAGCATACTTGGAATGGCCCAAGGATAGGCGTAAATGTGGGCTTTTCTGGGCAA GCTTATGGAAAAAGGTGTTCATCCCAGGATTGTTTATAATCATGAAAAATGTGGCCAGGTGC AGTGGCTCACTCTTGTAATCCCAGCACTATGGGAGGCCAAGGTGACCCACGAGGTCAA GAGATGGAGACCATCCTGGCCAACATGGTGAAACCCTGTCTCTACTAAAAATACAAAAATTA GCTGGGCGTGATGGTGCACGCCTGTAGTCCCAGCTACTTGGGAGGCTGAGGCAGGAGAATCG CTTGAACCCGGGAGGTGGCAGTTGCAGTGAGCTGAGATCGAGCCACTCCAGCCTGGT TTACAGGGAGCATTTGATTTCTATGTTGTGTATTTCTATAATGTTTGAATTGTTTAGAATGA ATCTGTATTTCTTTTATAAGTAGAAAAAAAAAAAAAAGATAGTTTTTACAGCCT

FIGURE 34

MRLIRNIYIFCSIVMTAEGDAPELPEERELMTNCSNMSLRKVPADLTPATTTLDLSYNLLFQ
LQSSDFHSVSKLRVLILCHNRIQQLDLKTFEFNKELRYLDLSNNRLKSVTWYLLAGLRYLDL
SFNDFDTMPICEEAGNMSHLEILGLSGAKIQKSDFQKIAHLHLNTVFLGFRTLPHYEEGSLP
ILNTTKLHIVLPMDTNFWVLLRDGIKTSKILEMTNIDGKSQFVSYEMQRNLSLENAKTSVLL
LNKVDLLWDDLFLILQFVWHTSVEHFQIRNVTFGGKAYLDHNSFDYSNTVMRTIKLEHVHFR
VFYIQQDKIYLLLTKMDIENLTISNAQMPHMLFPNYPTKFQYLNFANNILTDELFKRTIQLP
HLKTLILNGNKLETLSLVSCFANNTPLEHLDLSQNLLQHKNDENCSWPETVVNMNLSYNKLS
DSVFRCLPKSIQILDLNNNQIQTVPKETIHLMALRELNIAFNFLTDLPGCSHFSRLSVLNIE
MNFILSPSLDFVQSCQEVKTLNAGRNPFRCTCELKNFIQLETYSEVMMVGWSDSYTCEYPLN
LRGTRLKDVHLHELSCNTALLIVTIVVIMLVLGLAVAFCCLHFDLPWYLRMLGQCTQTWHRV
RKTTQEQLKRNVRFHAFISYSEHDSLWVKNELIPNLEKEDGSILICLYESYFDPGKSISENI
VSFIEKSYKSIFVLSPNFVQNEWCHYEFYFAHHNLFHENSDHIILILLEPIPFYCIPTRYHK
LKALLEKKAYLEWPKDRRKCGLFWANLRAAINVNVLATREMYELQTFTELNEESRGSTISLM

FIGURE 35

 ${\tt GGGGGCTTTCTTGGGCTGCTTGGAACACCTGCCTCCAAGGACCGGCCTCGGAGGGGTCGCCGGGAAAGG}$ $\tt GAGGGAAGAAGGGCGGGCCGGCCCCCTGCGCCCCGCGCCCCTGTCGCGCCCCTGTCCGCCCCGGC$ $\tt CTGCTGTGCCCTTGCCCCGCGCGCCAGCTTCTGCGCCCGCAGCCCGGCGCGCCCCGGTGACCGTGA$ CTGGCAGTGACCCTGGCCGGGGTCGGAGCCCAGGGCCGCAGCCCTCGAGGACCCTGATTATTACGGGCAGGAGAT AAGAGGGAGAAGTCGGCTCCGGAGCCGCCTCCACCAGGTAAACACAGCAACAAAAAGTTATGAGAACCAAGAG TTGGTCTGGAAACCTTAAAAATCACAGACTTCCAGCTCCATGCCTCCACGGTGAAGCGCTATGGCCTGGGGGCA CATCGAGGGAGACTCAACATCCAGGCGGGCATTAATGAAAATGATTTTTATGACGGAGCGTGGTGCGCGGGAAG AAATGACCTCCAGCAGTGGATTGAAGTGGATGCTCGGCGCCTGACCAGATTCACTGGTGTCATCACTCAAGGGA GGAACTCCCTCTGGCTGAGTGACTGGGTGACATCCTATAAGGTCATGGTGAGCAATGACAGCCACACGTGGGTC ACTGTTAAGAATGGATCTGGAGACATGATATTTGAGGGAAACAGTGAGAAGGAGATCCCTGTTCTCAATGAGCT ACCCGTCCCCATGGTGGCCCGCTACATCCGCATAAACCCTCAGTCCTGGTTTGATAATGGGAGCATCTGCATGA GAATGGAGATCCTGGGCTGCCCACTGCCAGATCCTAATAATTATTATCACCGCCGGAACGAGATGACCACCACT CAATATCACCAGAATTTACAACATTGGAAAAAGCCACCAGGGCCTGAAGCTGTATGCTGTGGAGATCTCAGATC ACCCTGGGGAGCATGAAGTCGGTGAGCCCGAGTTCCACTACATCGCGGGGGCCCACGGCAATGAGGTGCTGGGC $\tt CGGGAGCTGCTGCTGCTGCTGCTGTGTGTGTGAGGAGTACTTGGCCCGGAATGCGCGCATCGTCCACCT$ CGGAGCTGGGAGGCTGGTCCCTGGGACGCTGGACCCACGATGGAATTGACATCAACAACAACTTTCCTGATTTA AACACGCTGCTCTGGGAGGCAGAGGATCGACAGAATGTCCCCAGGAAAGTTCCCAATCACTATATTGCAATCCC ACACCGCCTCATGACAGACGCCCGGAGGAGGGTGTGCCACACGGAGGACTTCCAGAAGGAGGAGGGCACTGTCA ATGGGGCCTCCTGGCACCCGTCGCTGGAAGTCTGAACGATTTCAGCTACCTTCATACAAACTGCTTCGAACTG TCCATCTACGTGGGCTGTGATAAATACCCACATGAGAGCCAGCTGCCCGAGGAGTGGGAGAATAACCGGGAATC ${ t TCTGATCGTGTTCATGGAGCAGGTTCATCGTGGCATTAAAGGCTTGGTGAGAGATTCACATGGAAAAGGAATCC}$ CAAACGCCATTATCTCCGTAGAAGGCATTAACCATGACATCCGAACAGCCAACGATGGGGGATTACTGGCGCCTC $\tt CTGAACCCTGGAGAGTATGTGGTCACAGCAAAGGCCGAAGGTTTCACTGCATCCACCAAGAACTGTATGGTTGG$ CTATGACATGGGGGCCACAAGGTGTGACTTCACACTTAGCAAAACCAACATGGCCAGGATCCGAGAGATCATGG TGGACTCACTCACTGTTGTTTCCTCTGTAATTCAAGAAGTGCCTGGAAGAGAGGGTGCATTGTGAGGCAGGTCC GCAGAGAAAAGCTGATGGGAGTGAGAGAACTCAGCAAGCCAACCTGGGAATCAGAGAGAAGGAGAAGGAGGAGGAGGA ${\tt GAGCCTGTCCGTTCAGAGCCTCTGGCTGCATAGAAAAGGATTCTGGTGCTTCCCCTGTTTGCGTGGCAGCAAGG}$ $\tt GTTCCACGTGCATTTGCACAGCTAAAATTGCAGCATTTCCCCAGCTGGGCTGTCCCAAATGTTACCA$ TTTGAGATGCTCCCAGGCGTCCTAAGAGAATCCACCCTCTCTGGCCCTGGGACATTGCAAGCTGCTACAAATAA ATTCTGTGTTCTTTTGACAATAGCGTCATTGCCAAGTGCACATCAGTGAGCCTCTTGAATCTGTTTAGTCTCCT $\tt TGGAGCTTCTTGCACAAATTCTGGGTCCATAAACAACCCCCAAAGTCCCTGCTGATCCAGTAGCCCTGGAGGTT$ ${\tt CCCCAGGTAGGGAGAGCCAGAGGTGCCAGCCTTCCTGAAGGGCCAGAAAATTTAGCCTGGATCTCCTCTTTTAC}$ GAATTGAGTGCTCATGGGTTGGCCTCATATCAGCCTGGGAGTTATTTTTGATATGTAGAATGCCAGATCTTCCA GATTAGGCTAAATGTAATGAAAACCTCTTAGGATTATCTGTGGAGCATCAGTTTGGGAAGAATTATTGAATTAT

FIGURE 36

MSRPGTATPALALVLLAVTLAGVGAQGAALEDPDYYGQEIWSREPYYARPEPELETFSPPLP
AGPGEEWERRPQEPRPPKRATKPKKAPKREKSAPEPPPPGKHSNKKVMRTKSSEKAANDDHS
VRVAREDVRESCPPLGLETLKITDFQLHASTVKRYGLGAHRGRLNIQAGINENDFYDGAWCA
GRNDLQQWIEVDARRLTRFTGVITQGRNSLWLSDWVTSYKVMVSNDSHTWVTVKNGSGDMIF
EGNSEKEIPVLNELPVPMVARYIRINPQSWFDNGSICMRMEILGCPLPDPNNYYHRRNEMTT
TDDLDFKHHNYKEMRQLMKVVNEMCPNITRIYNIGKSHQGLKLYAVEISDHPGEHEVGEPEF
HYIAGAHGNEVLGRELLLLLVQFVCQEYLARNARIVHLVEETRIHVLPSLNPDGYEKAYEGG
SELGGWSLGRWTHDGIDINNNFPDLNTLLWEAEDRQNVPRKVPNHYIAIPEWFLSENATVAA
ETRAVIAWMEKIPFVLGGNLQGGELVVAYPYDLVRSPWKTQEHTPTPDDHVFRWLAYSYAST
HRLMTDARRRVCHTEDFQKEEGTVNGASWHTVAGSLNDFSYLHTNCFELSIYVGCDKYPHES
QLPEEWENNRESLIVFMEQVHRGIKGLVRDSHGKGIPNAIISVEGINHDIRTANDGDYWRLL
NPGEYVVTAKAEGFTASTKNCMVGYDMGATRCDFTLSKTNMARIREIMEKFGKQPVSLPARR
LKLRGRKRRQRG

FIGURE 37

ATTTGGGGGATGTGGGACCTCCAATTCCCAGCCCCGGCTTCAGCTCTTTCCCAGGTGTTGACTCCAGCTCCAGC $\tt TTCAGCTCCAGGTCGGGGCTCCAGCTCCAGCCGCAGCTTAGGCAGCGGAGGTTCTGTGTCCCAGTTGTT$ TTCCAATTTCACCGGCTCCGTGGATGACCGTGGGACCTGCCAGTGCTCTTTTCCCTGCCAGACACCACCTTTC GTGAGGGAATATGTCCAATTAATTAGTGTGTATGAAAAGAAACTGTTAAACCTAACTGTCCGAATTGACATCAT GGAGAAGGATACCATTTCTTACACTGAACTGGACTTCGAGCTGATCAAGGTAGAAGTGAAGGAGATGGAAAAAC TGGTCATACAGCTGAAGGAGAGTTTTGGTGGAAGCTCAGAAATTGTTGACCAGCTGGAGGTGGAGATAAGAAAT ATGACTCTCTTGGTAGAGAAGCTTGAGACACTAGACAAAAACAATGTCCTTGCCATTCGCCGAGAAATCGTGGC TCTGAAGACCAAGCTGAAAGAGTGTGAGGCCTCTAAAGATCAAAACACCCCTGTCGTCCACCCTCCCCACTC ${\tt CAGGGAGCTGTGGTGATGGTGAACATCAGCAAACCGTCTGTGGTTCAGCTCAACTGGAGAGGGTTT}$ ATGCTCGAGAGTTGCGGATCACCTATGGCCAAGGTAGTGGTACAGCAGTTTACAACAACAACATGTACGTCAAC ATGTACAACACCGGGAATATTGCCAGAGTTAACCTGACCACCAACACGATTGCTGTGACTCAAACTCTCCCTAA TGCTGCCTATAATAACCGCTTTTCATATGCTAATGTTGCTTGGCAAGATATTGACTTTGCTGTGGATGAGAATG ${ t GATTGTGGGTTATTTATTCAACTGAAGCCAGCACTGGTAACATGGTGATTAGTAAACTCAATGACACCACACTT$ ${\tt CAGGTGCTAAACACTTGGTATACCAAGCAGTATAAACCATCTGCTTCTAACGCCTTCATGGTATGTGGGGTTCT}$ GTATGCCACCCGTACTATGAACACCAGAACAGAAGAGATTTTTTACTATTATGACACAAACACAGGGAAAGAGG GCAAACTAGACATTGTAATGCATAAGATGCAGGAAAAAGTGCAGAGCATTAACTATAACCCTTTTGACCAGAAA $\texttt{CTTTATGTCTATAACGATGGTTACCTTCTGAATTATGATCTTTCTGTCTTGCAGAAGCCCCAG} \textbf{\underline{TAA}} \texttt{GCTGTTTA}$ $\tt CTAAAAGTGTGTTCATTTTGCAGCAATGTTTAGGTGCATAGTTCTACCACACTAGAGATCTAGGACATTTGTCT$ TTGTCAGAGGTCTAGGGGCACTGTGGGGCCTAGTGAAGCCTACTGTGAGGAGGCTTCACTAGAAGCCTTAAATTA GGAATTAAGGAACTTAAAACTCAGTATGGCGTCTAGGGGATTCTTTGTACAGGAAATATTGCCCAATGACTAGTC GGAGCTCCTCGAGGGACCAAATCTCCAACTTTTTTTCCCCTCACTAGCACCTGGAATGATGCTTTGTATGTGG ${\tt CAGATAAGTAAATTTGGCATGCTTATATATTCTACATCTGTAAAGTGCTGAGTTTTATGGAGAGAGGCCTTTTT}$ ATGCATTAAATTGTACATGGCAAATAAATCCCAGAAGGATCTGTAGATGAGGCACCTGCTTTTTCTTTTCTCTC AGACTATAAGAAAATCTGATGGCAGTGACAAAGTGCTAGCATTTATTGTTATCTAATAAAGACCTTGGAGCATA TGTGCAACTTATGAGTGTATCAGTTGTTGCATGTAATTTTTGCCTTTGTTTAAGCCTGGAACTTGTAAGAAAAT GAAAATTTAATTTTTTTTTCTAGGACGAGCTATAGAAAAGCTATTGAGAGTATCTAGTTAATCAGTGCAGTAGT ${\tt TGGAAACCTTGCTGGTGTATGTGTGCTTCTGTGCTTTTGAATGACTTTATCATCTAGTCTTTGTCTATTTT}$

FIGURE 38

FIGURE 39

GCTCTGAAGACCAAGCTGAAAGAGTGTGAGGCCTCTAAAGATCAAACACCCCTGTCGTCCAC
CCTCCTCCCACTCCAGGGAGCTGTGGTCATGGTGGTGGTGAACATCAGCAAACCGTCTGT
GGTTCAGCTCAACTGGAGAGGGTTTTCTTATCTATATGGTGCTTGGGGTAGGGATTACTCTC
CCCAGCATCCAAACAAAGGNATGTATTGGGNGGCGCCATTGAATACAGATGGGAGACTGTTG
GAGTATTATAGACTGTACAACCCACTGGATGATTTGCTATTGTATATAAATGCTCGAGAGTT
GCGGATCACCTATGGCCAAGGTAGTGGTACAGCAGCTTTACAACAACAACATGTACGTCAACA

FIGURE 40

TGTAATGTTGATACCAGGAATGGAAGAACAACTGAATAAGATTCCTGGATTTTGTGAGAATG AGAAAGGTGTTGTCCCTTGTAACATTTTGGTTGGCTATAAAGCTGTATATCGTTTGTGCTTT GGTTTGGCTATGTTCTTCTCTCTCTTTACTAATGATCAAAGTGAAGAGTAGCAGTGA TCCTAGAGCTGCAGTGCACAATGGATTTTGGTTCTTTAAATTTGCTGCAGCAATTGCAATTA TATCAGCTACAGCTCTGAATTATCTGCTGTCTTTAGTTGCTATCGTCCTGTTCTTTGTCTAC TACACTCATCCAGCCAGTTGTTCAGAAAACAAGGCGTTCATCAGTGTCAACATGCTCCTCTG CGTTGGTGCTTCTGTAATGTCTATACTGCCAAAAATCCAAGAATCACAACCAAGATCTGGTT TGTTACAGTCTTCAGTAATTACAGTCTACACAATGTATTTGACATGGTCAGCTATGACCAAT GAACCAGAAACAAATTGCAACCCAAGTCTACTAAGCATAATTGGCTACAATACAACAAGCAC TGTCCCAAAGGAAGGCAGTCAGTCCAGTGGTGGCATGCTCAAGGAATTATAGGACTAATTC TCTTTTTGTTGTGTGTATTTTATTCCAGCATCCGTACTTCAAACAATAGTCAGGTTAATAAA CTGACTCTAACAAGTGATGAATCTACATTAATAGAAGATGGTGGAGCTAGAAGTGATGGATC AATCTCTTCCAGTTGGATTGGCATCGTGCTGTATGTTTGGACACTCGTGGCACCACTTGTTC ${\tt TTACAAATCGTGATTTTGAC} {\tt TGA} {\tt GTGAGACTTCTAGCATGAAAGTCCCACTTTGATTATTGC}$ TTATTTGAAAACAGTATTCCCAACTTTTGTAAAGTTGTGTATGTTTTTGCTTCCCATGTAAC TTCTCCAGTGTTCTGGCATGAATTAGATTTTACTGCTTGTCATTTTGTTATTTTCTTACCAA GTGCATTGATATGTGAAGTAGAATGAATTGCAGAGGAAAGTTTTATGAATATGGTGATGAGT GCAAATGTATGGCTGCCTTTTGAAATATTTGATGTGTTGCCTGGCAGGATACTGCAAAGAAC ATGGTTTATTTTAAAATTTATAAACAAGTCACTTAAATGCCAGTTGTCTGAAAAATCTTATA AGGTTTTACCCTTGATACGGAATTTACACAGGTAGGGAGTGTTTAGTGGACAATAGTGTAGG TTATGGATGGAGTGTCGGTACTAAATTGAATAACGAGTAAATAATCTTACTTGGGTAGAGA TGGCCTTTGCCAACAAAGTGAACTGTTTTGGTTGTTTTAAACTCATGAAGTATGGGTTCAGT GGAAATGTTTGGAACTCTGAAGGATTTAGACAAGGTTTTGAAAAGGATAATCATGGGTTAGA AGGAAGTGTTTTGAAAGTCACTTTGAAAGTTAGTTTTTGGGCCCAGCACGGTAGCTCACCCTT GGTAATCCCAGCACTTTGGGAGCTTAAGTGGGTAGATTACTTGAGCCCAGGAATTCAGACCA GCTTGGCACATGGTGAACCTGTTCTATAAAAATAATCTGGCTTTGAGCATATGCCTGTGGTC CAGCACTGAGAGGCTAGTGAAGATTGCTGAGCCCAGAGCCAAAGGTTGCAGTGAGCAAGTCA AGGCAAAATTTTGACAGGGAAGGAAGTAACTGCAAAACCACTAGGCTTTAGTAGGTACTTAT AGAATAAACTCCTGCTTATAGTATACTACACAGTTCAAAAGATGTTTAAAATGCTTTTGTAT TTACTGCCATGTAATTGAAATATATAGATTATTGTAACCTTTCAACCTGAAAATCAAGCAGT ATGAGAGTTTAGTTATTTGTATGTGTCACTAGTGTCTAATGAAGCTTTTAAAATCTACAATT TCTTCTTTAAAAATATTTATTAATGTGAATGGAATATAACAATTCAGCTTAATTCCCCAACC TTATTCTGTGTGTAGACATTGTATTCCACAATTTTGAATGGCTGTGTTTTACCTCTAAATAA ATGAATTCAGAGAAAAAAAAAAAAA

FIGURE 41

MGSVLGLCSMASWIPCLCGSAPCLLCRCCPSGNNSTVTRLIYALFLLVGVCVACVMLIPGME
EQLNKIPGFCENEKGVVPCNILVGYKAVYRLCFGLAMFYLLLSLLMIKVKSSSDPRAAVHNG
FWFFKFAAAIAIIIGAFFIPEGTFTTVWFYVGMAGAFCFILIQLVLLIDFAHSWNESWVEKM
EEGNSRCWYAALLSATALNYLLSLVAIVLFFVYYTHPASCSENKAFISVNMLLCVGASVMSI
LPKIQESQPRSGLLQSSVITVYTMYLTWSAMTNEPETNCNPSLLSIIGYNTTSTVPKEGQSV
QWWHAQGIIGLILFLLCVFYSSIRTSNNSQVNKLTLTSDESTLIEDGGARSDGSLEDGDDVH
RAVDNERDGVTYSYSFFHFMLFLASLYIMMTLTNWSRYEPSREMKSQWTAVWVKISSSWIGI
VLYVWTLVAPLVLTNRDFD

FIGURE 42

FIGURE 43

GTTATTGTGAACTTTGTGGAGATGGGAGGTCNTGGGGCTGTGTTCCATGGCGAGCTGGATAC
CANGTTTGTGTGGAAGTGCCCCGTGTTTGNTATGCCGATGCTGTCCTAGTGGAAACAANTCC
ACTGTAATTAGATTGATNTATGCACTTTTNTTGCTTGTTGGAGTANGTGTAGCTTGTGTAAT
GTTGATACCAGGAATGGAAGAACAACTGAATAAGATTCCTGGATTTTGTGAGAATGAGAAAG
GTGTTGTCCCTTGTAACATTTTGGTTGGCTATAAAGCTGTATATNGTTTGTGCTTTGGTTTG
GCTANGTTCTATNTTCTTCTCTCTTTTACTAATGATCAAAGTGAAGAGTAGCAGTGATCCTAG
AGCTGCAGTGCACAATGGATTTTGGTTTTTAAATTTTGCTGCAGCAATTGCAATTATTATTG
GGGC

FIGURE 44

FIGURE 45

FIGURE 46

 $\tt GTCGTTTCCAGCCAAGTGGACCTGATCGATGGCCCTCCTGAATTTATCACGATATTTGATTTATTAGCGATGCC$ ${\tt CCCTGGTTTGTGTGTTACGCACACACGTGCACACAAGGCTCTGGCTCGCTTCCCTCGTTTCCAGCTCC}$ AAGAGGGACGAGGGAAAAGAAACAAAGCCACAGACGCAACTTGAGACTCCCGCATCCCAAAAGAAGCACCAGAT TGGAAGCTCGGCCTGTCGTCGCACCACCGCCTGAAAGGCAGGTTTCAGAGGGACCGCAGGAACATCCGCCCCA ACATCATCCTGGTGCTGACGGACGACCAGGATGTGGAGCTGGGTTCCATGCAGGTGATGAACAAGACCCGGCGC $\tt ATCATGGAGCAGGGGGGGGGCACTTCATCAACGCCTTCGTGACCACACCCATGTGCTGCCCCTCACGCTCCTC$ CATCCTCACTGGCAAGTACGTCCACAACCACAACACCTACACCAACAATGAGAACTGCTCCTCGCCCTCCTGGC AGGCACAGCACGAGAGCCGCACCTTTGCCGTGTACCTCAATAGCACTGGCTACCGGACAGCTTTCTTCGGGAAG $\verb|TATCTTAATGAATACAACGGCTCCTACGTGCCACCCGGCTGGAAGGAGTGGGTCGGACTCCTTAAAAACTCCCG|$ CTTTTATAACTACACGCTGTGTCGGAACGGGGTGAAAGAGAAGCACGGCTCCGACTACTCCAAGGATTACCTCA CAGACCTCATCACCAATGACAGCGTGAGCTTCTTCCGCACGTCCAAGAAGATGTACCCGCACAGGCCAGTCCTC ATGGTCATCAGCCATGCAGCCCCCACGGCCCTGAGGATTCAGCCCCACAATATTCACGCCTCTTCCCAAACGC ATCTCAGCACATCACGCCGAGCTACAACTACGCGCCCAACCCGGACAAACACTGGATCATGCGCTACACGGGGC $\verb|CCATGAAGCCCATCCACATGGAATTCACCAACATGCTCCAGCGGAAGCGCTTGCAGACCCTCATGTCGGTGGAC| \\$ GACTCCATGGAGACGATTTACAACATGCTGGTTGAGACGGGCGAGCTGGACAACACGTACATCGTATACACCGC CGACCACGGTTACCACATCGGCCAGTTTGGCCTGGTGAAAGGGAAATCCATGCCATATGAGTTTGACATCAGGG TCCCGTTCTACGTGAGGGGCCCCAACGTGGAAGCCGGCTGTCTGAATCCCCACATCGTCCTCAACATTGACCTG GGACACGGAGCGGCCGGTGAATCGGTTTCACTTGAAAAAGAAGATGAGGGTCTGGCGGGACTCCTTCTTGGTGG ${ t AGAGAGGCAAGCTGCTACACAAGAGAGACAATGACAAGGTGGACGCCCAGGAGGAGAACTTTCTGCCCAAGTAC}$ CAGCGTGTGAAGGACCTGTGTCAGCGTGCTGAGTACCAGACGGCGTGTGAGCAGCTGGGACAGAAGTGGCAGTG TGTGGAGGACGCCACGGGGAAGCTGAAGCTGCATAAGTGCAAGGGCCCCATGCGGCTGGGCGGCAGCAGAGCCC TCTCCAACCTCGTGCCCAAGTACTACGGGCAGGGCAGCGAGGCCTGCACCTGTGACAGCGGGGACTACAAGCTC A G C C T G G C C G G A A A A A A C T C T T C A A G A A G T A C A G G C C T A T G T C C G C T C C T C C G C T A T G T C C G C T C C T C C G C T A T G T C C G C T A T G T C C G C T C C T C C G C T A T G T C C G C T C C T C C T C C G C T A T G T C C G C T A T G T C C G C T A T G T C C G C T A T G T C C G C T A T G T C C G C T C $\tt CTCAGTGGCCATCGAGGTGGACGGCAGGGTGTACCACGTAGGCCTGGGTGATGCCGCCCAGCCCCGAAACCTCA$ ${\tt CCAAGCGGCACTGGGGGCCCCTGAGGACCAAGATGACAAGGATGGTGGGGACTTCAGTGGCACTGGAGGC}$ CTTCCCGACTACTCAGCCGCCAACCCCATTAAAGTGACACATCGGTGCTACATCCTAGAGAACGACACAGTCCA GTGTGACCTGGACCTGTACAAGTCCCTGCAGGCCTGGAAAGACCACAAGCTGCACATCGACCACGAGATTGAAA CCCTGCAGAACAAAATTAAGAACCTGAGGGAAGTCCGAGGTCACCTGAAGAAAAAGCGGCCAGAAGAATGTGAC TGTCACAAAATCAGCTACCACACCCAGCACAAAGGCCGCCTCAAGCACAGAGGCTCCAGTCTGCATCCTTTCAG GAAGGGCCTGCAAGAAGGACAAGGTGTGGCTGTTGCGGGAGCAGAAGCCCAAGAAGAAACTCCGCAAGCTGC $\tt CAGACGGCGCCTTTCTGGGGCCTTTCTGTGCCTGCACCAGCGCCCAACAATAACACGTACTGGTGCAT$ GAGGACCATCAATGAGACTCACAATTTCCTCTTCTGTGAATTTGCAACTGGCTTCCTAGAGTACTTTGATCTCA ACACAGACCCCTACCAGCTGATGAATGCAGTGAACACACTGGACAGGGATGTCCTCAACCAGCTACACGTACAG AAGCTATGAGCAATACAGGCAGTTTCAGCGTCGAAAGTGGCCAGAAATGAAGAGACCTTCTTCCAAATCACTGG GACAACTGTGGGAAGGCTGGGAAGGT<u>TAA</u>GAAACAACAGAGGTGGACCTCCAAAAACATAGAGGCATCACCTGA CTGCACAGGCAATGAAAAACCATGTGGGTGATTTCCAGCAGACCTGTGCTATTGGCCAGGAGGCCTGAGAAAGC AAGCACGCACTCTCAGTCAACATGACAGATTCTGGAGGATAACCAGCAGGAGCAGAGATAACTTCAGGAAGTCC ATTTTTGCCCCTGCTTTTGCTTTGGATTATACCTCACCAGCTGCACAAAATGCATTTTTTCGTATCAAAAAGTC ${\tt TCCCAAGGGCGAAAGTCATTGGAATTTTTAAATCATAGGGGAAAAGCAGTCCTGTTCTAAATCCTCTTATTCTT}$ $\verb|TTTGACAATGAGTCAGTAGCACAAAAGAGATGACATTTACCTAGCACTATAAACCCTGGTTGCCTCTGAAGAAA| \\$ $\tt CTGCCTTCATTGTATATATGTGACTATTTACATGTAATCAACATGGGAACTTTTAGGGGAACCTAATAAGAAAT$ CCCAATTTTCAGGAGTGGTGTCTAATAAACGCTCTGTGGCCAGTGTAAAAGAAAAA

FIGURE 47

MGPPSLVLCLLSATVFSLLGGSSAFLSHHRLKGRFQRDRRNIRPNIILVLTDDQDVELGSMQ
VMNKTRRIMEQGGAHFINAFVTTPMCCPSRSSILTGKYVHNHNTYTNNENCSSPSWQAQHES
RTFAVYLNSTGYRTAFFGKYLNEYNGSYVPPGWKEWVGLLKNSRFYNYTLCRNGVKEKHGSD
YSKDYLTDLITNDSVSFFRTSKKMYPHRPVLMVISHAAPHGPEDSAPQYSRLFPNASQHITP
SYNYAPNPDKHWIMRYTGPMKPIHMEFTNMLQRKRLQTLMSVDDSMETIYNMLVETGELDNT
YIVYTADHGYHIGQFGLVKGKSMPYEFDIRVPFYVRGPNVEAGCLNPHIVLNIDLAPTILDI
AGLDIPADMDGKSILKLLDTERPVNRFHLKKKMRVWRDSFLVERGKLLHKRDNDKVDAQEEN
FLPKYQRVKDLCQRAEYQTACEQLGQKWQCVEDATGKLKLHKCKGPMRLGGSRALSNLVPKY
YGQGSEACTCDSGDYKLSLAGRRKKLFKKKYKASYVRSRSIRSVAIEVDGRVYHVGLGDAAQ
PRNLTKRHWPGAPEDQDDKDGGDFSGTGGLPDYSAANPIKVTHRCYILENDTVQCDLDLYKS
LQAWKDHKLHIDHEIETLQNKIKNLREVRGHLKKKRPEECDCHKISYHTQHKGRLKHRGSSL
HPFRKGLQEKDKVWLLREQKRKKKLRKLLKRLQNNDTCSMPGLTCFTHDNQHWQTAPFWTLG
PFCACTSANNNTYWCMRTINETHNFLFCEFATGFLEYFDLNTDPYQLMNAVNTLDRDVLNQL
HVQLMELRSCKGYKQCNPRTRNMDLDGGSYEQYRQFQRRKWPEMKRPSSKSLGQLWEGWEG

FIGURE 48

AACAAAGTTCAGTGACTGAGGGGCTGAGCGGAGGCTGCTGAAGGGGGAGAAAGGAGTGAGGA $\tt GCTGCTGGGCAGAGGGGACTGTCCGGCTCCCAG{\color{red} \bf ATG} CTGGGCCTCCTGGGGAGCACAGCCC$ ${\tt TGCCTTTTCCACGGACGGCAGGACTGTGACGTGGAGGAGGAACCGTACAGCTGCAGGGGGAAA}$ $\tt CCGAGTCCGCCGGGCCCAGCCTTGGCCCTTCCGGCGGGGGCCACCTGGGAATCTTTCACC$ ATCACCGTCATCCTGGCCACGTATCTCATGTGCCGAATGTGGGCCTCCACCACCACCACCAC $\texttt{CGCTCGC} \underline{\textbf{TGA}} \texttt{GGCTGCTGTCGCCGGTGCCTGTGGACAGCAGCTGCCCTTCCCATCTG}$ TTCCCAGGACAAGTGGACCCCATGTTTCCATGTGGAAGGATGCATCTCTGGGGTGAACGAGG ${\tt GGAACAATAGACTGGGGCTTGCTCCAGCTGCATTTGCATGGCATGCCCCAGTGTACTATGGC}$ AGCAGAGAATGGAGGAACACTGGGTCTGCAGTGCTGAAGGGTTTGGGGAGTGGAGAGCAAGG GTGCTCTTTCGGGGCTGGACAGCCCGTCTTGTGACAGTGACTCCCAGTGAGCCCCAGAAATG ACAAGCGTGTCTTGGCAGAGCCAGCACAAGTGGATGTGAAGTGCCCGTCTTGACCTCCTC ATCAGGCTGCTGCAGGCCTCTGGCGGCAGGGCACTGGGAGAGGCCCTGAGAATGTCCTTTT GGTTTGGAGAAGGCAGTGAGGCTGCACAGTCAATTCATCGGTGCCTTAGTCCAAGAAAAT

FIGURE 49

 ${\tt MLGLLGSTALVGWITGAAVAVLLLLLLLATCLFHGRQDCDVERNRTAAGGNRVRRAQPWPFR} \\ RRGHLGIFHHHRHPGHVSHVPNVGLHHHHHPRHTPHHLHHHHHPHRHHPRHAR}$

FIGURE 50

 ${\tt GGCGGCTGCTGAGCTGCTTGAGGTGCAGTGTTGGGGATCCAGAGCC} \underline{\textbf{ATG}} {\tt TCGGACCTGCTA}$ GTACTCAGGGCTACTGGGTGGAAGTGAGTGCTGGGTCACCCCCCATCCGCAACGTCA $\tt CTGTGGCCTACAAGTTCCACATGGGGGCTCTATGGTGAGACTGGGCGGCTTTTCACTGAGAGC$ TGCAGCATCTCTCCCAAGCTCCGCTCCATCGCTGTCTACTATGACAACCCCCACATGGTGCC $\tt CCCTGATAAGTGCCGATGTGCCGTGGGCAGCATCCTGAGTGAAGGTGAGGAATCGCCCTCCC$ CTGAGCTCATCGACCTCTACCAGAAATTTGGCTTCAAGGTGTTCTCCTTCCCGGCACCCAGC TGTCCATCCTGCCTTGGACACCTACATCAAGGAGCGGAAGCTGTGTGCCTATCCTCGGCTGG AGATCTACCAGGAAGACCAGATCCATTTCATGTGCCCACTGGCACGGCAGGGAGACTTCTAT GTGCCTGAGATGAAGGAGACAGAGTGGAAATGGCGGGGGCTTGTGGAGGCCATTGACACCCA GGTGGATGGCACAGGAGCTGACACAATGAGTGACACGAGTTCTGTAAGCTTGGAAGTGAGCC CTGGCAGCCGGGAGACTTCAGCTGCCACACTGTCACCTGGGGCGAGCAGCCGTGGCTGGGAT GACGGTGACACCCGCAGCGAGCACAGCTACAGCGAGTCAGGTGCCAGCGGCTCCTCTTTTGA GGAGCTGGACTTGGAGGGGGGGCCCTTAGGGGAGTCACGGCTGGACCCTGGGACTGAGC $\verb|CCCTGGGGACTACCAAGTGGCTCTGGGAGCCCACTGCCCCTGAGAAGGGCAAGGAG<math>\texttt{TAA}$ CCC|| ATGGCCTGCACCCTCCTGCAGTGCAGTTGCTGAGGAACTGAGCAGACTCTCCAGCAGACTCT $\tt CCAGCCCTCTTCCTCTGGGGGGGGGGGGGGGTTCCTGAGGGGACCTGACTTCCCCTGC$ TCCAGGCCTCTTGCTAAGCCTTCTCCTCACTGCCCTTTAGGCTCCCAGGGCCAGAGGAGCCA ${\tt GGGACTATTTCTGCACCAGCCCCCAGGGCTGCCGCCCCTGTTGTGTCTTTTTTCAGACTC}$ ACAGTGGAGCTTCCAGGACCCAGAATAAAGCCAATGATTTACTTGTTTCACCTGGAAAAAAA AAAAAAAA

FIGURE 51

MSDLLLLGLIGGLTLLLLTLLAFAGYSGLLAGVEVSAGSPPIRNVTVAYKFHMGLYGETGR LFTESCSISPKLRSIAVYYDNPHMVPPDKCRCAVGSILSEGEESPSPELIDLYQKFGFKVFS FPAPSHVVTATFPYTTILSIWLATRRVHPALDTYIKERKLCAYPRLEIYQEDQIHFMCPLAR QGDFYVPEMKETEWKWRGLVEAIDTQVDGTGADTMSDTSSVSLEVSPGSRETSAATLSPGAS SRGWDDGDTRSEHSYSESGASGSSFEELDLEGEGPLGESRLDPGTEPLGTTKWLWEPTAPEK GKE

FIGURE 52

FIGURE 53

MTLRPSLLPLHLLLLLLSAAVCRAEAGLETESPVRTLQVETLVEPPEPCAEPAAFGDTLHI HYTGSLVDGRIIDTSLTRDPLVIELGQKQVIPGLEQSLLDMCVGEKRRAIIPSHLAYGKRGF PPSVPADAVVQYDVELIALIRANYWLKLVKGILPLVGMAMVPALLGLIGYHLYRKANRPKVS KKKLKEEKRNKSKKK

FIGURE 54

FIGURE 55

CCGAAAGTCCCGTCCGGACCCTCCAAGTGGAGACCCTGGTGGAGCCCCCAGAACCATGTGCC
GAGCCCGCTGCTTTTGGAGACACGCTTCACATACACTACACGGGAAGCTTGGTAGATGGACG
TATTATTGACACCTCCCTGACCAGAGACCCTCTGGTTATAGAACTTGGCCAAAAGCAGGTGA
TTCCAGGTCTGGAGCAGAGTCTTCTCGACATGTGTGTGGGAGAAGCGAAGGGCAATCATT
CCTTCTCACTTGGCCTATGGAAAACGGGGATTTCCACCATCTGTCCCAGCGGATGCAGTGGT
GCAGTATGACGTGGAGCTGATTGCACTAATCCGAGCCAACTACTGGCTAAAGCTGGTGAAGG
GCATTTTGCCTCTGGTAGGGATGGCCATGGTGCCAGCCCTCCTGGGCCTCATTGGGTATCAC
CTATACAGAAAGGCCAATAGACCCAAAGTCTCCAAAAAGAAGCTCAAGGAAGAGAAACGAAA
CAAGAGCAAAAAGAAATAATAAATAATAAATTTTAAAAAACTTAAAA

FIGURE 56

CTGCTGCATCCGGGTGTCTGGAGGCTGTGGCCGTTTTGTTTTCTTGGCTAAAATCGGGGGAG TGAGGCGGGCCGCGCGCGACACCGGGCTCCGGAACCACTGCACGACGGGGCTGGACTG ACCTGAAAAAAAAAAATGTCTGGATTTCTAGAGGGCTTGAGATGCTCAGAATGCATTGACTGGGGG GAAAAGCGCAATACTATTGCTTCCATTGCTGCTGGTGTACTATTTTTTACAGGCTGGTGGAT TATCATAGATGCAGCTGTTATTTATCCCACCATGAAAGATTTCAACCACTCATACCATGCCT GTGGTGTTATAGCAACCATAGCCTTCCTAATGATTAATGCAGTATCGAATGGACAAGTCCGA GGTGATAGTTACAGTGAAGGTTGTCTGGGTCAAACAGGTGCTCGCATTTGGCTTTTCGTTGG TTTCATGTTGGCCTTTGGATCTCTGATTGCATCTATGTGGATTCTTTTTTGGAGGTTATGTTG CTAAAGAAAAGACATAGTATACCCTGGAATTGCTGTATTTTTCCAGAATGCCTTCATCTTT $\tt TTTGGAGGGCTGGTTTTTAAGTTTGGCCGCACTGAAGACTTATGGCAG{\color{red}{\bf TGA}}ACACATCTGAT$ TTGTAATGCCATTTTCTAAACTTATTTCTGAGTGTAGTCTCAGCTTAAAGTTGTGTAATACT AAAATCACGAGAACACCTAAACAACAACCAAAAATCTATTGTGGTATGCACTTGATTAACTT ATAAAATGTTAGAGGAAACTTTCACATGAATAATTTTTGTCAAATTTTATCATGGTATAATT TGTAAAAATAAAAGAAATTACAAAAGAAATTATGGATTTGTCAATGTAAGTATTTGTCATA TCTGAGGTCCAAAACCACAATGAAAGTGCTCTGAAGATTTAATGTGTTTATTCAAATGTGGT CTCTTCTGTGTCAAATGTTAAATGAAATATAAACATTTTTTTAGTTTTTAAAATATTCCGTGG TCAAAATTCTTCCTCACTATAATTGGTATTTACTTTTACCAAAAATTCTGTGAACATGTAAT GTAACTGGCTTTTGAGGGTCTCCCAAGGGGTGAGTGGACGTGTTGGAAGAGAAGCACCAT GGTCCAGCCACCAGGCTCCCTGTGTCCCTTCCATGGGAAGGTCTTCCGCTGTGCCTCTCATT ${\tt CCAAGGGCAGGAAGATGTGACTCAGCCATGACACGTGGTTCTGGTGGGATGCACAGTCACTC}$ CACATCCACCACTG

FIGURE 57

MSGFLEGLRCSECIDWGEKRNTIASIAAGVLFFTGWWIIIDAAVIYPTMKDFNHSYHACGVI ATIAFLMINAVSNGQVRGDSYSEGCLGQTGARIWLFVGFMLAFGSLIASMWILFGGYVAKEK DIVYPGIAVFFQNAFIFFGGLVFKFGRTEDLWQ

FIGURE 58

FIGURE 59

TGGACGGACCTGAAAAAAATGTTTGGATTTNTAGAGGGNTTGAGATGTTCAGAATGCATGAC
TGGGGGAAAAGCGCAAATACTATTGCTTCCATTGCTGCTGGTGTANTATTTTTTTACAGGCTG
GTGGATTATCATAGATGCAGNTGTTATTTATCCCACCATGAAAGATTTCAACCANTCATACC
ATGCCTGTGGTGTTATAGCAACCATAGCCTTCNTAATGATTAATGCAGTATCGAATGGACAA
GTCCGAGGTGATAGTTACAGTGAAGGTTGTTTGGGTCAAACAGGTGCTCGCATTTGGCTTTT
CGTTGGTTTCATGTTGGCCTTTGGATCTCTGATTGCATCTATGTGGATTCTTTTTGGAGGTT
ATGTTGCTAAAGAAAAAGACATAGTATACCCTGGAATTGNTGTATTTTTCCAGAATGCCTTC
ATCTTTTTTGGAGGGCTGGTTTTTAAGTTTGGCCGCACTGAAGANTTATGGCAGTG

FIGURE 60

GGACACCGGGTTCCGGACCAATGCANGACGGGGTGGANTGACCTGAAAAAAATGTTTGGATT
TTTAGAGGGCTTGAGATGNTCAGAATGCATTGACTGGGGGAAAAGCGCAATANTATTGCTTT
CCATTGCTGCTGGTGTACTATTTTTTACAGGGTGGTGGATTATCATAGATGCAGCTGTTATT
TATCCCACCATGAAAGATTTNAACCACTCATACCATGCCTGTGGTGTTATAGCAACCATAGC
CTTCCTAATGATTAATGCAGTATCGAATGGACAAGTCCGAGGTGATAGTTACAGTGAAGGTT
GTTTGGGTCAAACAGGTGNTCGCATTTGGCTTTTCGTTGGTTTCATGTTGGCCTTTTGGATTT
CTGATTGNATTCTATGCGGATTCTTCTTGGAGGTTATGTTGCTAAAGAAAAAGACATAGTAT
ACCCTGGAATTNCTNTATTTTTCCAGAATGCC

FIGURE 61

TAGAGGGCTTGAGATGCTCAGAATGCATTGACTGGGGGGAAAAGCGCAATANTATTGCTTCC
ATTGNTGNTGGTGTANTATTTTTTTACAGGCTGGTGGATTATNATAGATGCAGCTGTTATTT
ATCCCACCATGAAAGATTTNAACCANTCATACCATGCCTGTGGTGTTATAGCAACCATAGCC
TTCCTAATGATTAATGCAGTATNGAATGGACAAGTCCGAGGTGATAGTTACAGTGAAGGTTG
TTTGGGTCAAACAGGTGNTNGCATTTGGCTTTTNGTTGGTTTCATGTTGGCCTTTGGATCTN
TGATTGCATTTATGTGGATTNTTTTTTGGAGGTTATGTTGCTAAAGNAAAAGACATAGTATAC
CCTGT

FIGURE 62

FIGURE 63

 ${\tt CGACGCCGGCGTG}$ GCCTGGCTGCAGCTGCAATTCTAGCTAAAGCTGGCAAGCGAGTCCTGGTGCTGGAACAACAT ACCAAGGCAGGGGGCTGCTGTCATACCTTTGGAAAGAATGGCCTTGAATTTGACACAGGAAT CCATTACATTGGGCGTATGGAAGAGGGCAGCATTGGCCGTTTTATCTTGGACCAGATCACTG AAGGGCAGCTGGACTGGGCTCCCCTGTCCTCTTTTGACATCATGGTACTGGAAGGGCCC AATGGCCGAAAGGAGTACCCCATGTACAGTGGAGAAAAGCCTACATTCAGGGCCTCAAGGA GAAGTTTCCACAGGAGGAAGCTATCATTGACAAGTATATAAAGCTGGTTAAGGTGGTATCCA GTGGAGCCCCTCATGCCATCCTGTTGAAATTCCTCCCATTGCCCGTGGTTCAGCTCCTCGAC AGGTGTGGGCTGACTCGTTTCTCCATTCCTTCAAGCATCCACCCAGAGCCTGGCTGA GGTCCTGCAGCAGCTGGGGGCCTCCTCTGAGCTCCAGGCAGTACTCAGCTACATCTTCCCCA CTTACGGTGTCACCCCAACCACAGTGCCTTTTCCATGCACGCCCTGCTGGTCAACCACTAC AGGACCGATTCCCAGGCCGGTCCACCATGATCATGCTCATACCCACTGCCTACGAGTGGTTT GAGGAGTGGCAGGCGGAGCTGAAGGGAAAGCGGGGCAGTGACTATGAGACCTTCAAAAACTC CTTTGTGGAAGCCTCTATGTCAGTGGTCCTGAAACTGTTCCCACAGCTGGAGGGGAAGGTGG AGAGTGTGACTGCCAGGATCCCACTCACCAACCAGTTCTATCTGGCTGCTCCCCGAGGTGCC TGCTACGGGGCTGACCATGACCTGGGCCGCCTGCACCCTTGTGTGATGGCCTCCTTGAGGGC CCAGAGCCCCATCCCCAACCTCTATCTGACAGGCCAGGATATCTTCACCTGTGGACTGGTCG GGGCCCTGCAAGGTGCCCTGCTGCAGCAGCGCCATCCTGAAGCGGAACTTGTACTCAGAC CTTAAGAATCTTGATTCTAGGATCCGGGCACAGAAGAAAAGAAT**TAG**TTCCATCAGGGAGG AGTCAGAGGAATTTGCCCAATGGCTGGGGCATCTCCCTTGACTTACCCATAATGTCTTTCTG CATTAGTTCCTTGCACGTATAAAGCACTCTAATTTGGTTCTGATGCCTGAAGAGAGGCCTAG TTTAAATCACAATTCCGAATCTGGGGCAATGGAATCACTGCTTCCAGCTGGGGCAGGTGAGA TCTTTACGCCTTTTATAACATGCCATCCCTACTAATAGGATATTGACTTGGATAGCTTGATG TCTCATGACGAGCGGCGCTCTGCATCCCTCACCCATGCCTCCTAACTCAGTGATCAAAGCGA AAGCCACGGAATGTGTGAAGCCCAGAAATGGCATTTGCAGTTAATTAGCACATGTGAGGG TTAGACAGGTAGGTGAATGCAAGGTCTCAAGGTTTGGAAAAATGACTTTTCAGTTATGTCTTTGGTATCAGACATACGAAAAGGTCTCTTTGTAGTTCGTGTTAATGTAACATTAATAAATTTATTG ATTCCATTGCTTTAAAAAAAAAAAAAAA

FIGURE 64

MWLPLVLLLAVLLLAVLCKVYLGLFSGSSPNPFSEDVKRPPAPLVTDKEARKKVLKQAFSAN QVPEKLDVVVIGSGFGGLAAAAILAKAGKRVLVLEQHTKAGGCCHTFGKNGLEFDTGIHYIG RMEEGSIGRFILDQITEGQLDWAPLSSPFDIMVLEGPNGRKEYPMYSGEKAYIQGLKEKFPQ EEAIIDKYIKLVKVVSSGAPHAILLKFLPLPVVQLLDRCGLLTRFSPFLQASTQSLAEVLQQ LGASSELQAVLSYIFPTYGVTPNHSAFSMHALLVNHYMKGGFYPRGGSSEIAFHTIPVIQRA GGAVLTKATVQSVLLDSAGKACGVSVKKGHELVNIYCPIVVSNAGLFNTYEHLLPGNARCLP GVKQQLGTVRPGLGMTSVFICLRGTKEDLHLPSTNYYVYYDTDMDQAMERYVSMPREEAAEH IPLLFFAFPSAKDPTWEDRFPGRSTMIMLIPTAYEWFEEWQAELKGKRGSDYETFKNSFVEA SMSVVLKLFPQLEGKVESVTAGSPLTNQFYLAAPRGACYGADHDLGRLHPCVMASLRAQSPI PNLYLTGQDIFTCGLVGALQGALLCSSAILKRNLYSDLKNLDSRIRAQKKKN

FIGURE 65

GCAGCGGCGAGGCGGTGGTGGCTGAGTCCGTGGTGGCAGAGGCGAAGGCGACAGCTCTA TGCGGTGCTGAGCTTGGCCTCGGCGTCCTCGGATGAAGAAGGCAGCCAGGATGAATCCT GTAGTTGCTGGTCAAATATTTCTTGATTCAGAAGAATCTGAATTAGAATCCTCTATTCAAGA AGAGGAAGACAGCCTCAAGAGCCAAGAGGGGGGAAAGTGTCACAGAAGATATCAGCTTTCTAG ACCGCCATTGAAGGCACAGCACATGGGGAGCCCTGCCACTTCCCTTTTCTTTTCCTAGATAA GGAGTATGATGAATGTACATCAGATGGGAGGGAAGATGGCAGACTGTGGTGTGCTACAACCT ATGACTACAAAGCAGATGAAAAGTGGGGCTTTTGTGAAACTGAAGAAGAGGCTGCTAAGAGA CGGCAGATGCAGGAAGCAGAAATGATGTATCAAACTGGAATGAAAATCCTTAATGGAAGCAA CCAAAGCCCTGGAGAGAGTGTCATATGCTCTTTTATTTGGTGATTACTTGCCACAGAATATC CAGGCAGCGAGAGATGTTTGAGAAGCTGACTGAGGAAGGCTCTCCCAAGGGACAGACTGC TCTTGGCTTTCTGTATGCCTCTGGACTTGGTGTTAATTCAAGTCAGGCAAAGGCTCTTGTAT ATTATACATTTGGAGCTCTTGGGGGCAATCTAATAGCCCACATGGTTTTGGTAAGTAGACTT $\underline{\textbf{TAG}} \texttt{TGGAAGGCTAATAATATTAACATCAGAAGAATTTGTGGTTTATAGCGGCCACAACTTTT}$ ATTCTTGTTAATGGATATAACACATGGAATCTACATGTAAATGAAAGTTGGTGGAGTCCACA ATTTTTCTTTAAAATGATTAGTTTGGCTGATTGCCCCTAAAAAGAGAGATCTGATAAATGGC TCTTTTTAAATTTTCTCTGAGTTGGAATTGTCAGAATCATTTTTTACATTAGATTATCATAA TTTTAAAAATTTTTCTTTAGTTTTTCAAAATTTTGTAAATGGTGGCTATAGAAAAACAACAT GAAATATTATACAATATTTTGCAACAATGCCCTAAGAATTGTTAAAATTCATGGAGTTATTT $\tt GTGCAGAATGACTCCAGAGAGCTCTACTTTCTGTTTTTTACTTTTCATGATTGGCTGTCTTC$ CCATTTATTCTGGTCATTTATTGCTAGTGACACTGTGCCTGCTTCCAGTAGTCTCATTTTCC CTATTTTGCTAATTTGTTACTTTTTCTTTGCTAATTTGGAAGATTAACTCATTTTTAATAAA

FIGURE 66

MRVRIGLTLLLCAVLLSLASASSDEEGSQDESLDSKTTLTSDESVKDHTTAGRVVAGQIFLD SEESELESSIQEEEDSLKSQEGESVTEDISFLESPNPENKDYEEPKKVRKPALTAIEGTAHG EPCHFPFLFLDKEYDECTSDGREDGRLWCATTYDYKADEKWGFCETEEEAAKRRQMQEAEMM YQTGMKILNGSNKKSQKREAYRYLQKAASMNHTKALERVSYALLFGDYLPQNIQAAREMFEK LTEEGSPKGQTALGFLYASGLGVNSSQAKALVYYTFGALGGNLIAHMVLVSRL

FIGURE 67

FIGURE 68

 ${\tt MACRCLSFLLMGTFLSVSQTVLAQLDALLVFPGQVAQLSCTLSPQHVTIRDYGVSWYQQRAGSAPRYLLYYRSEEDHHRPADIPDRFSAAKDEAHNACVLTISPVQPEDDADYYCSVGYGFSP}$

FIGURE 69

CGATGACCGCGGAGCGCACGCCGCGGGCCCTGACCCGCCGCCGCCGCTGAGCCC AAGGTGGTCCCACGGCAGGTGGCCCGGCTGGGCCGCACTGTGCGGCTGCAGTGCA GGGGGACCCGCCGCCGCTGACCATGTGGACCAAGGATGGCCGCACCATCCACAGCGGCTGGA TCGGCCCGACATCACGTGGATGAAGGACGACCAGGCCTTGACGCGCCCAGAGGCCGCTGAGC CCAGGAAGAAGAAGTGGACACTGAGCCTGAAGAACCTGCGGCCGGAGGACAGCGGCAAATAC ACCTGCCGCGTGTCGAACCGCGCGCGCCCATCAACGCCACCTACAAGGTGGATGTGATCCA GCGGACCCGTTCCAAGCCCGTGCTCACAGGCACGCACCCCGTGAACACGACGGTGGACTTCG GGGGGACCACGTCCTTCCAGTGCAAGGTGCGCAGCGACGTGAAGCCGGTGATCCAGTGGCTG AAGCGCGTGGAGTACGGCGCCGAGGGCCGCCACAACTCCACCATCGATGTGGGCGGCCAGAA GTTTGTGGTGCTGCCCACGGGTGACGTGTGGTCGCGGCCCGACGGCTCCTACCTCAATAAGC CAGCGGAGACAAGGACCTTCCCTCGTTGGCCGCCCTCAGCGCTGGCCCTGGTGTGGGGCTGT GTGAGGAGCATGGGTCTCCGGCAGCCCCCAGCACTTACTGGGCCCAGGCCCAGTTGCTGGC ACACTCACACGTGGAGGGCAAGGTCCACCAGCACTCCACTATCAGTGC**TAG**ACGGCACCGT ATCTGCAGTGGGCACGGGGGGCCGGCCAGACAGGCAGACTGGGAGGATGGAGGACGGAGCT GCAGACGAAGGCAGGGGGACCCATGGCGAGGAGGAATGGCCAGCACCCCAGGCAGTCTGTGTG TGAGGCATAGCCCCTGGACACACACACACACACACACACTACCTGGATGCATGTATGCAC ACACATGCGCGCACACGTGCTCCCTGAAGGCACACGCACACGCACACGCACATGCACAGATATG CCGCCTGGGCACACAGATAAGCTGCCCAAATGCACGCACACGCACAGAGACATGCCAGAACA TACAAGGACATGCTGCCTGAACATACACACGCACACCCATGCGCAGATGTGCTGCCTGGACA CACACACACACGGATATGCTGTCTGGACGCACACACGTGCAGATATGGTATCCGGACACA ATATTGCCTGGACACACACACACACGCGTGCACAGATATGCTGTCTGGACACGCACAC TGCTGTCCGGATACACACGCACGCACACATGCAGATATGCTGCCTGGGCACACACTTCCGGA CACACATGCACACAGGTGCAGATATGCTGCCTGGACACGCAGACTGACGTGCTTTTGG GAGGGTGTGCCGTGAAGCCTGCAGTACGTGTGCCGTGAGGCTCATAGTTGATGAGGGACTTT TTTATATTAAGAAATGAAGATAATATTAATAATGATGGAAGGAAGACTGGGTTGCAGGGAC TGTGGTCTCTCTGGGGCCCGGGACCCGCCTGGTCTTTCAGCCATGCTGATGACCACACCCCGTCCAGGCCAGACACCACCCCACCCCACTGTCGTGGTGGCCCCAGATCTCTGTAATTTTA

FIGURE 70

MTPSPLLLLLPPLLLGAFPPAAAARGPPKMADKVVPRQVARLGRTVRLQCPVEGDPPPLTM
WTKDGRTIHSGWSRFRVLPQGLKVKQVEREDAGVYVCKATNGFGSLSVNYTLVVLDDISPGK
ESLGPDSSSGGQEDPASQQWARPRFTQPSKMRRRVIARPVGSSVRLKCVASGHPRPDITWMK
DDQALTRPEAAEPRKKKWTLSLKNLRPEDSGKYTCRVSNRAGAINATYKVDVIQRTRSKPVL
TGTHPVNTTVDFGGTTSFQCKVRSDVKPVIQWLKRVEYGAEGRHNSTIDVGGQKFVVLPTGD
VWSRPDGSYLNKLLITRARQDDAGMYICLGANTMGYSFRSAFLTVLPDPKPPGPPVASSSSA
TSLPWPVVIGIPAGAVFILGTLLLWLCQAQKKPCTPAPAPPLPGHRPPGTARDRSGDKDLPS
LAALSAGPGVGLCEEHGSPAAPQHLLGPGPVAGPKLYPKLYTDIHTHTHTHSHTHSHVEGKV
HQHIHYQC

FIGURE 71

FIGURE 72

MVGTKAWVFSFLVLEVTSVLGRQTMLTQSVRRVQPGKKNPSIFAKPADTLESPGEWTTWFNI DYPGGKGDYERLDAIRFYYGDRVCARPLRLEARTTDWTPAGSTGQVVHGSPREGFWCLNREQ RPGQNCSNYTVRFLCPPGSLRRDTERIWSPWSPWSKCSAACGQTGVQTRTRICLAEMVSLCS EASEEGQHCMGQDCTACDLTCPMGQVNADCDACMCQDFMLHGAVSLPGGAPASGAAIYLLTK TPKLLTQTDSDGRFRIPGLCPDGKSILKITKVKFAPIVLTMPKTSLKAATIKAEFVRAETPY MVMNPETKARRAGQSVSLCCKATGKPRPDKYFWYHNDTLLDPSLYKHESKLVLRKLQQHQAG EYFCKAQSDAGAVKSKVAQLIVTASDETPCNPVPESYLIRLPHDCFQNATNSFYYDVGRCPV $\verb|KTCAGQQDNGIRCRDAVQNCCGISKTEEREIQCSGYTLPTKVAKECSCQRCTETRSIVRGRV|$ ${\tt SAADNGEPMRFGHVYMGNSRVSMTGYKGTFTLHVPQDTERLVLTFVDRLQKFVNTTKVLPFN}$ KKGSAVFHEIKMLRRKEPITLEAMETNIIPLGEVVGEDPMAELEIPSRSFYRQNGEPYIGKV KASVTFLDPRNISTATAAQTDLNFINDEGDTFPLRTYGMFSVDFRDEVTSEPLNAGKVKVHL DSTQVKMPEHISTVKLWSLNPDTGLWEEEGDFKFENQRRNKREDRTFLVGNLEIRERRLFNL DVPESRRCFVKVRAYRSERFLPSEQIQGVVISVINLEPRTGFLSNPRAWGRFDSVITGPNGA CVPAFCDDQSPDAYSAYVLASLAGEELQAVESSPKFNPNAIGVPQPYLNKLNYRRTDHEDPR VKKTAFQISMAKPRPNSAEESNGPIYAFENLRACEEAPPSAAHFRFYQIEGDRYDYNTVPFN EDDPMSWTEDYLAWWPKPMEFRACYIKVKIVGPLEVNVRSRNMGGTHRRTVGKLYGIRDVRS TRDRDQPNVSAACLEFKCSGMLYDQDRVDRTLVKVIPQGSCRRASVNPMLHEYLVNHLPLAV NNDTSEYTMLAPLDPLGHNYGIYTVTDQDPRTAKEIALGRCFDGTSDGSSRIMKSNVGVALT $\verb|FNCVERQVGRQSAFQYLQSTPAQSPAAGTVQGRVPSRRQQRASRGGQRQGGVVASLRFPRVA|$ QQPLIN

FIGURE 73

 $\tt CTGCAAGTTGTTAACGCCTAACACACAAGTATGTTAGGCTTCCACCAAAGTCCTCAATATACCTGAATACGCAC$ ACCTACCTACCCGTACGCATACATACATATGTGTATATATGTAAACTAGACAAAGATCGCAGATCATAAAGC ${\tt AAGCTCTGCTTTAGTTTCCAAGAAGATTACAAAGAATTTAGAG} {\tt TATTTGTCAAGATCCCTGTCGATTCATG}$ ${\tt CCCTTTGGGTTACGGTGTCCTCAGTGATGCAGCCCTACCCTTTGGTTTGGGGACATTATGATTTGTGTAAGACT}$ CAGATTTACACGGAAGAAGGGAAAGTTTGGGATTACATGGCCTGCCAGCCGGAATCCACGGACATGACAAAATA ${\tt TCTGAAAGTGAAACTCGATCCTCCGGATATTACCTGTGGAGACCCTCCTGAGACGTTCTGTGCAATGGGCAATC}$ ${\tt CCTACATGTGCAATAATGAGTGTGATGCGAGTACCCCTGAGCTGGCACACCCCCTGAGCTGATGTTTGATTTT}$ GAAGGAAGACATCCCTCCACATTTTGGCAGTCTGCCACTTGGAAGGAGTATCCCAAGCCTCTCCAGGTTAACAT CACTCTGTCTTGGAGCAAAACCATTGAGCTAACAGACAACATAGTTATTACCTTTGAATCTGGGCGTCCAGACC ${\tt AAATGATCCTGGAGAAGTCTCTCGATTATGGACGAACATGGCAGCCCTATCAGTATTATGCCACAGACTGCTTA}$ GATGCTTTTCACATGGATCCTAAATCCGTGAAGGATTTATCACAGCATACGGTCTTAGAAATCATTTGCACAGA AGAGTACTCAACAGGGTATACAACAAATAGCAAAATAATCCACTTTGAAATCAAAGACAGGTTCGCGCTTTTTG ${ t CTGGACCTCGCCTACGCAATATGGCTTCCCTCTACGGACAGCTGGATACAACCAAGAAACTCAGAGATTTCTTT}$ ${ t ACAGTCACAGACCTGAGGATAAGGCTGTTAAGACCAGCCGTTGGGGAAATATTTGTAGATGAGCTACACTTGGC}$ ACGCTACTTTTACGCGATCTCAGACATAAAGGTGCGAGGAAGGTGCAAGTGTAATCTCCATGCCACTGTATGTG TGTATGACAACAGCAAATTGACATGCGAATGTGAGCACAACACTACAGGTCCAGACTGTGGGGAAATGCAAGAAG AATTATCAGGGCCGACCTTGGAGTCCAGGCTCCTATCTCCCCATCCCCAAAGGCACTGCAAATACCTGTATCCC ${\tt CAGTATTTCCAGTATTGGTACGAATGTCTGCGACAACGAGCTCCTGCACTGCCAGAACGGAGGGACGTGCCACA}$ ${\tt GGGAACCGCCAGCCCCTGGTGTTC}$ $\tt CTAAGAAGGCCTAACTGAACTAAGCCATATTTATCACCCGTGGACAGCACATCCGAGTCAAGACTGTTAATTTC$ ${\tt TGACTCCAGAGGAGTTGGCAGCTGTTGATATTATCACTGCAAATCACATTGCCAGCTGCAGAGCATATTGTGGA}$ TGTGTAACAGCCCCCTCTAAAAGCGCAAGCCAGTCATACCCCTGTATATCTTAGCAGCACTGAGTCCAGTGCGA ATTTTTCTTGAACTACTGTAATATGTAGATTTTTTGTATTATTGCCAATTTGTGTTACCAGACAATCTGTTAAT GATTTCTCTGTAAGGGCAACGAACGTGCTGGCATCAAAGAATATCAGTTTACATATAACAAGTGTAATAAGA TTCCACCAAAGGACATTCTAAATGTTTTCTTGTTGCTTTAACACTGGAAGATTTAAAGAATAAAAACTCCTGCA ${\tt TTACTGATTTCTGTGTGGACTGAGTACATTCAGCTGACGAATTTAGTTCCCAGGAAGATGGATTGATGTTCACT}$ AAAAAA

FIGURE 74

MYLSRSLSIHALWVTVSSVMQPYPLVWGHYDLCKTQIYTEEGKVWDYMACQPESTDMTKYLK VKLDPPDITCGDPPETFCAMGNPYMCNNECDASTPELAHPPELMFDFEGRHPSTFWQSATWK EYPKPLQVNITLSWSKTIELTDNIVITFESGRPDQMILEKSLDYGRTWQPYQYYATDCLDAF HMDPKSVKDLSQHTVLEIICTEEYSTGYTTNSKIIHFEIKDRFALFAGPRLRNMASLYGQLD TTKKLRDFFTVTDLRIRLLRPAVGEIFVDELHLARYFYAISDIKVRGRCKCNLHATVCVYDN SKLTCECEHNTTGPDCGKCKKNYQGRPWSPGSYLPIPKGTANTCIPSISSIGTNVCDNELLH CQNGGTCHNNVRCLCPAAYTGILCEKLRCEEAGSCGSDSGQGAPPHGTPALLLLTTLLGTAS PLVF

FIGURE 75

CCCACGCGTCCGGGTGACCTGGGCCGAGCCCTCCCGGTCGGCTAAGATTGCTGAGGAGGCGG $\tt CGGGTAGCTGGCAGGCCGACTTCCGAAGGCCGCCGTCCGGGCGAGGTGTCCTCATGACTT$ $\tt CTCTTGTGGACC{\color{red} \underline{ATG}} \\ \tt TCCGTGATCTTTTTTGCCTGCGTGGTACGGGTAAGGGATGGACTGCC$ $\tt CCTCTCAGCCTCTACTGATTTTTACCACACCCAAGATTTTTTGGAATGGAGGAGACGGCTCA$ AGAGTTTAGCCTTGCGACTGGCCCAGTATCCAGGTCGAGGTTCTGCAGAAGGTTGTGACTTT AGTATACATTTTTCTTCTTCGGGGACGTGGCCTGCATGGCTATCTGCTCCTGCCAGTGTCC AGCAGCCATGGCCTTCTGCTTCCTGGAGACCCTGTGGTGGGAATTCACAGCTTCCTATGACA CTACCTGCATTGGCCTAGCCTCCAGGCCATACGCTTTTCTTGAGTTTGACAGCATCATTCAG AAAGTGAAGTGGCATTTTAACTATGTAAGTTCCTCTCAGATGGAGTGCAGCTTGGAAAAAAT TCAGGAGGAGCTCAAGTTGCAGCCTCCAGCGGTTCTCACTCTGGAGGACACAGATGTGGCAA ATGGGGTGATGAATGGTCACACACCGATGCACTTGGAGCCTGCTCCTAATTTCCGAATGGAA CCAGTGACAGCCCTGGGTATCCTCTCCCTCATTCTCAACATCATGTGTGCCCTGAATCT CATTCGAGGAGTTCACCTTGCAGAACATTCTTTACAGGATCCAAGGAGCTGGTTCTGCTGGT ${\tt TGGACCAAACCTCG} \underline{{\tt TGA}} {\tt GCCAGCCACCCCTGACCCAAATGAGGAGAGCTCTGATTCTCCCAT}$ CCGGGAGCAGTGATGTCAAACTTCTGCTGCTGGGAAATCTCATCAGCAGGGAGCCTGTGGA AAAGGGCATGTCAGTGAAATCTGGGAATGGCTGGATTCGGAAACATCTGCCCATGTGTATTG ATGGCAGAGCTGTTGCCCACAAGCGCCTTTTATTTAGGGTAAAATTAACAAATCCATTCTAT TCCTCTGACCCATGCTTAGTACATATGACCTTTAACCCTTACATTTATATGATTCTGGGGTT GCTTCAGAAGTGTTATTTCATGAATCATTCATATGATTTGATCCCCCAGGATTCTATTTTGT TTAATGGGCTTTTCTACTAAAAGCATAAAATACTGAGGCTGATTTAGTCAGGGCAAAACCAT TTACTTTACATATTCGTTTTCAATACTTGCTGTTCATGTTACACAAGCTTCTTACGGTTTTC TTGTAACAATAATTTTTGAGTAAATAATGGGTACATTTTAACAAACTCAGTAGTACAACC TAAACTTGTATAAAAGTGTGTAAAAATGTATAGCCATTTATATCCTATGTATAAATTAAATG AAAAG

FIGURE 76

MSVIFFACVVRVRDGLPLSASTDFYHTQDFLEWRRRLKSLALRLAQYPGRGSAEGCDFSIHF SSFGDVACMAICSCQCPAAMAFCFLETLWWEFTASYDTTCIGLASRPYAFLEFDSIIQKVKW HFNYVSSSQMECSLEKIQEELKLQPPAVLTLEDTDVANGVMNGHTPMHLEPAPNFRMEPVTA LGILSLILNIMCAALNLIRGVHLAEHSLQDPRSWFCWLDQTS

FIGURE 77

 ${\tt TGCTTCCTGGAGACCCTGTGGTGGGAATTCACAGCTTCNTATGACACTACCTGCATTGGCNT}\\ AGCCTCCAGGCCATACGCTTTTCTTGAGTTTGACAGCATCATTCAGAAAGTGAAGTGGCATT\\ {\tt TTAACTATGTAAGTTCCTNTCAGATGGAGTGCAGCTTGGAAAAAATTCAGGAGGAGCTCAAG}\\ {\tt TTGCAGCCTCCAGCGGTTCTCANTATGGAGGACACAGATGTGGCCAAATGGGGT}\\ \\$

FIGURE 78

 $\tt CTCAGCGGCGCTTCCTCGTAGCGAGCCTAGTGGCGGGTGTTTGCATTGAAACGTGAGCGCGA$ CCCGACCTTAAAGAGTGGGGAGCAAAGGGAGGACAGAGCCCTTTAAAAACGAGGCGGGTGGTG $\tt CCTGCCCCTTTAAGGGCGGGGGGGCGTCCGGACTGTATCTGAGCCCCAGACTGCCCCGAGTT$ ${\tt TCTGTCGCAGGCTGCGAGGAAAGGCCCCTAGGCTGGGTGCTTGGCGGCGGCGGCTT}$ $\tt CCTCCCCGCTCCTCCCCGGGCCCAGAGGCACCTCGGCTTCAGTCATGCTGAGCAGAGT{\color{red} \underline{\textbf{A}}}$ $\underline{\textbf{TG}} \texttt{GAAGCACCTGACTACGAAGTGCTATCCGTGCGAGAACAGCTATTCCACGAGAGGATCCGC}$ GAGTGTATTATATCAACACTTCTGTTTGCAACACTGTACATCCTCTGCCACATCTTCCTGAC CCGCTTCAAGAAGCCTGCTGAGTTCACCACAGTGGATGATGAAGATGCCACCGTCAACAAGA TTCTCCATCATCAGCAATGAGGTGCTGCTCTCCCTGCCTCGGAACTACATCCAGTGGCT CAACGGCTCCTCATCCATGGCCTCTGGAACCTTGTTTTTCTCTTCCCCAACCTGTCCCTCA TCTTCCTCATGCCCTTTGCATATTTCTTCACTGAGTCTGAGGGCTTTGCTGGCTCCAGAAAG ${\tt GGTGTCCTGGGCCGGGTCTATGAGACAGTGGTGATGTTGATGCTCCTCACTCTGCTGGTGCT}$ ${\tt AGGTATGGTGTGGCATCAGCCATTGTGGACAAGAACAAGGCCAACAGAGAGTCACTCT}$ $\tt CTGCTCCTGGTGTACTCCACTGGGTCTCGCCCGCATGTTCTCCGTCACTGGGAAGCTGCT$ AGTCAAGCCCCGGCTGCTGGAAGACCTGGAGGAGCAGCTGTACTGCTCAGCCTTTGAGGAGG CTACACAGACAGGTCCTGGCTCTGCAGACACAGAGGGTCCTGCTGGAGAAGAGGCGGAAGGC GCCTGTCTGTGCTCATTGTGGCCATCCACATCCTGGAGCTGCTCATCGATGAGGCTGCCATG CCCCGAGGCATGCAGGGTACCTCCTTAGGCCAGGTCTCCTTCTCCAAGCTGGGCTCCTTTGG TGCCGTCATTCAGGTTGTACTCATCTTTTACCTAATGGTGTCCTCAGTTGTGGGCTTCTATA GCTCTCCACTCTTCCGGAGCCTGCGGCCCAGATGGCACACACTGCCATGACGCAGATAATT GGGAACTGTGTCTCTCTGGTCCTAAGCTCAGCACTTCCTGTCTTCTCTCGAACCCTGGG ACTGCAGCTGTGCGGGCAGAGCTGATCCGGGCCTTTGGGCTGGACAGACTGCCGCTGCCCGT $\tt CTCCGGTTTCCCCCAGGCATCTAGGAAGACCCAGCACCAG<math>{f TGA}$ CCTCCAGCTGGGGGTGGGA AGGAAAAAACTGGACACTGCCATCTGCTGCCTAGGCCTGGAGGGAAGCCCAAGGCTACTTGG GCATAATCTGAGCCAGAGTTTGGGACCAGGACCTCCTGCTTTTCCATACTTAACTGTGGCCT ${\tt CAGCATGGGGTAGGGCTGACTGGGTCTAGCCCCTGATCCCAAATCTGTTTACACATCA}$ ATCTGCCTCACTGCTGTTCTGGGCCATCCCCATAGCCATGTTTACATGATTTGATGTGCAAT $\tt CTTGCCTCTGGCCCAGCAGAGCCTAAGCACTGTGCTATCCTGGAGGGGCTTTGGACCACCTG$ AAAGACCAAGGGGATAGGGAGGAGGAGGCTTCAGCCATCAGCAATAAAGTTGATCCCAGGGA AAAAAA

FIGURE 79

MEAPDYEVLSVREQLFHERIRECIISTLLFATLYILCHIFLTRFKKPAEFTTVDDEDATVNK
IALELCTFTLAIALGAVLLLPFSIISNEVLLSLPRNYYIQWLNGSLIHGLWNLVFLFPNLSL
IFLMPFAYFFTESEGFAGSRKGVLGRVYETVVMLMLLTLLVLGMVWVASAIVDKNKANRESL
YDFWEYYLPYLYSCISFLGVLLLLVCTPLGLARMFSVTGKLLVKPRLLEDLEEQLYCSAFEE
AALTRRICNPTSCWLPLDMELLHRQVLALQTQRVLLEKRRKASAWQRNLGYPLAMLCLLVLT
GLSVLIVAIHILELLIDEAAMPRGMQGTSLGQVSFSKLGSFGAVIQVVLIFYLMVSSVVGFY
SSPLFRSLRPRWHDTAMTQIIGNCVCLLVLSSALPVFSRTLGLTRFDLLGDFGRFNWLGNFY
IVFLYNAAFAGLTTLCLVKTFTAAVRAELIRAFGLDRLPLPVSGFPQASRKTQHQ

FIGURE 80

GGCTGCCGAGGGAAGGCCCCTTGGGTTGGTCTTGGTTGCTTGGCGGCGGCGGNTTCNTCCCC
GCTCGTCCTCCCCGGGCCCAGAGGCACCTCGGCTTCAGTCATGCTGAGCAGAGTATGGAAGC
ACCTGACTACGAAGTGCTATCCGTGCGAGAACAGCTATTCCACGAGAGGATCCGCGAGTGTA
TTATATCAACACTTCTGTTTGCAACACTGTACATCCTCTGCCACATCTTCCTGACCCGCTTC
AAGAAGCCTGCTGAGTTCACCACAGTGGATGATGAAGATGCCACCG

FIGURE 81

FIGURE 82

FIGURE 83

 ${\tt MLLWVILLVLAPVSGQFARTPRPIIFLQPPWTTVFQGERVTLTCKGFRFYSPQKTKWYHRYL}\\ {\tt GKEILRETPDNILEVQESGEYRCQAQGSPLSSPVHLDFSSEMGFPHAAQANVELLGSSDLLT}$

FIGURE 84

CAGAAGAGGGGGCTAGCTAGCTGTCTCTGCGGACCAGGGAGACCCCCGCGCCCCCCGGTGT GAGGCGGCCTCACAGGGCCGGGTGGGCTGGCGAGCCGACGCGGCGGCGGAGGAGGCTGTGAG ${\tt GAGTGTGTGGAACAGGACCCGGGACAGAGGAACC} {\color{red} {\bf ATG}} {\tt GCTCCGCAGAACCTGAGCACCTTTT}$ GCCTGTTGCTGCTATACCTCATCGGGGCGGTGATTGCCGGACGAGATTTCTATAAGATCTTG GGGGTGCCTCGAAGTGCCTCTATAAAAGGATATTAAAAAGGCCTATAGGAAACTAGCCCTGCA GCTTCATCCCGACCGGAACCCTGATGATCCACAAGCCCAGGAGAAATTCCAGGATCTGGGTG CTGCTTATGAGGTTCTGTCAGATAGTGAGAAACGGAAACAGTACGATACTTATGGTGAAGAA GGATTAAAAGATGGTCATCAGAGCTCCCATGGAGACATTTTTTCACACTTCTTTGGGGATTT TGGTTTCATGTTTGGAGGAACCCCTCGTCAGCAAGACAGAAATATTCCAAGAGGAAGTGATA TTATTGTAGATCTAGAAGTCACTTTGGAAGAAGTATATGCAGGAAATTTTGTGGAAGTAGTT AGAAACAAACCTGTGGCAAGGCAGGCTCCTGGCAAACGGAAGTGCAATTGTCGGCAAGAGAT GCGGACCACCCAGCTGGGCCCTGGGCGCTTCCAAATGACCCAGGAGGTGGTCTGCGACGAAT GCCCTAATGTCAAACTAGTGAATGAAGAACGAACGCTGGAAGTAGAAATAGAGCCTGGGGTG AGAGACGGCATGGAGTACCCCTTTATTGGAGAAGGTGAGCCTCACGTGGATGGGGAGCCTGG AGATTTACGGTTCCGAATCAAAGTTGTCAAGCACCCAATATTTGAAAGGAGAGGAGATGATT TGTACACAAATGTGACAATCTCATTAGTTGAGTCACTGGTTGGCTTTGAGATGGATATTACT CACTTGGATGGTCACAAGGTACATATTTCCCGGGATAAGATCACCAGGCCAGGAGCGAAGCT ATGGAAGAAAGGGGAAGGGCTCCCCAACTTTGACAACAACAATATCAAGGGCTCTTTGATAA TCACTTTTGATGTGGATTTTCCAAAAGAACAGTTAACAGAGGAAGCGAGAGAAGGTATCAAA ${\tt CAGCTACTGAAACAAGGGTCAGTGCAGAAGGTATACAATGGACTGCAAGGATAT} {\bf \underline{TGA}} {\tt GAGTG}$ TCATCATGAAATGAATAAGAGGGCTTAAGAATTTGTCCATTTGCATTCGGAAAAGAATGACC AGCAAAAGGTTTACTAATACCTCTCCCTTTGGGGATTTAATGTCTGGTGCTGCCGCCTGAGT TTCAAGAATTAAAGCTGCAAGAGGACTCCAGGAGCAAAAGAAACACAATATAGAGGGTTGGA GTTGTTAGCAATTTCAAAATGCCAACTGGAGAAGTCTGTTTTTAAATACATTTTGTTG TTATTTTTA

FIGURE 85

MAPQNLSTFCLLLLYLIGAVIAGRDFYKILGVPRSASIKDIKKAYRKLALQLHPDRNPDDPQ
AQEKFQDLGAAYEVLSDSEKRKQYDTYGEEGLKDGHQSSHGDIFSHFFGDFGFMFGGTPRQQ
DRNIPRGSDIIVDLEVTLEEVYAGNFVEVVRNKPVARQAPGKRKCNCRQEMRTTQLGPGRFQ
MTQEVVCDECPNVKLVNEERTLEVEIEPGVRDGMEYPFIGEGEPHVDGEPGDLRFRIKVVKH
PIFERRGDDLYTNVTISLVESLVGFEMDITHLDGHKVHISRDKITRPGAKLWKKGEGLPNFD
NNNIKGSLIITFDVDFPKEQLTEEAREGIKQLLKQGSVQKVYNGLQGY

Important features:

Signal peptide:

amino acids 1-22

Cell attachment sequence.

amino acids 254-257

Nt-dnaJ domain signature.

amino acids 67-87

Homologous region to Nt-dnaJ domain proteins.

amino acids 26-58

N-glycosylation site.

amino acids 5-9, 261-265

Tyrosine kinase phosphorylation site.

amino acids 253-260

N-myristoylation site.

amino acids 18-24, 31-37, 93-99, 215-221

Amidation site.

amino acids 164-168

FIGURE 86

TGGGACCAGGGAACCCCGGGCCCCCCGGTGGAGNGCCTAACAGGCCGGTGGNTGCGACCGAA
GCGGCGGGCGAGAGGAGTTTTGAGGATTTTTGGAACAGGACCCGGACAGAGGAACCATGGTT
CCGCAGAACNTGAGCACNTTTTGCCTGTTGNTGNTATACTTCATCGGGGCGGTGATTGCCGG
ACGAGATTTNTATAAGATTTTTGGGGTGCCTNGAAGTGCCTTNTATAAAAGGATATTAAAAAGG
CCTATAGGAAACTAGCCCTGCAGNTTTATCCCGACCGGAACCCTGATGATCCACAAGCCCAG
GAGAAATTCCAGGATTTGGGTGCTTATGAGGTTNTGTCAGATAGTGAGAAACGGAAACA
GTACGATAATTATGGTGAAGAAGGATTAAAAGATGGTNATCAGAGCTCCCATGGAGACATTT
TTTCACACTTNTTTGGGGATTTTGGTTTCATGTTTGGAGGAACCCCTNGTCAGCAAGACAGA
AATATTCCAAGAG

FIGURE 87

GGCACGAGGCGGGGGGGGTCGCGGGATGCGCCCGGGAGCCACAGCCTGAGGCCCTCAGGT CTCTGCAGGTGTCGTGGAGGAACCTAGCACCTGCCATCCTCTTCCCCAATTTGCCACTTCCA AGACTGTGGTGATTGTTGCCATAGGTGTGCTGGCCACCATCTTTCTGGCTTCGTTTGCAGCC TTGGTGCTGGTTTGCAGGCAGCGCTACTGCCGGCCGCGAGACCTGCTGCAGCGCTATGATTC ${\tt TAAGCCCATTGTGGACCTCATTGGTGCCATGGAGACCCAGTCTGAGCCCTCTGAGTTAGAAC}$ TGGACGATGTCGTTATCACCAACCCCCACATTGAGGCCCATTCTGGAGAATGAAGACTGGATC GAAGATGCCTCGGGTCTCATGTCCCACTGCATTTGCCATCTTGAAGATTTGTCACACTCTGAC AGAGAAGCTTGTTGCCATGACAATGGGCTCTGGGGCCAAGATGAAGACTTCAGCCAGTGTCA GCGACATCATTGTGGTGGCCCAAGCGGATCAGCCCCAGGGTGGATGATGTTGTGAAGTCGATG TACCCTCCGTTGGACCCCAAACTCCTGGACGCACGGACGACTGCCCTGCTCTGTCAG TCACCTGGTGCTGACAAGGAATGCCTGCCATCTGACGGGAGGCCTGGACTGGATTGACC $\tt CCAGATAAAGGCCTCCCAGGCCCTGAAGGCTTCCTGCAGGAGCAGTCTGCAATT{\color{red}{\textbf{TAG}}} TGCCT$ ACAGGCCAGCAGCTAGCCATGAAGGCCCCTGCCGCCATCCCTGGATGGCTCAGCTTAGCCTT TAAAGCAGGAGATCCCCGTCAGTTTATGCCTCTTTTTGCAGTTGCAAACTGTGGCTGGTGAGT GGCAGTCTAATACTACAGTTAGGGGAGATGCCATTCACTCTCTGCAAGAGGAGTATTGAAAA CTGGTGGACTGTCAGCTTATTTAGCTCACCTAGTGTTTTCAAGAAAATTGAGCCACCGTCT AAGAAATCAAGAGGTTTCACATTAAAATTAGAATTTCTGGCCTCTCTCGATCGGTCAGAATG ${\tt GGTCCCTGAGGCGTCTGGGGTCTCTCCTCTCCCTTGCAGGTTTGGGGTTTGAAGCTGAGGAACT}$ ACAAAGTTGATGATTTTTTTTTTTTTTTTTTTTTTCCTTGCAATTTTACCTAGCTACCACTAGGTG

FIGURE 88

METVVIVAIGVLATIFLASFAALVLVCRQRYCRPRDLLQRYDSKPIVDLIGAMETQSEPSEL ELDDVVITNPHIEAILENEDWIEDASGLMSHCIAILKICHTLTEKLVAMTMGSGAKMKTSAS VSDIIVVAKRISPRVDDVVKSMYPPLDPKLLDARTTALLLSVSHLVLVTRNACHLTGGLDWI DQSLSAAEEHLEVLREAALASEPDKGLPGPEGFLQEQSAI

FIGURE 89

GCTTCATTTCTCCCGACTCAGCTTCCCACCCTGGGCTTTCCGAGGTGCTTTCGCCGCTGTCC $\verb|CCACCACTGCAGCC| \textbf{ATG} | \textbf{ATCTCCTTAACGGACACGCAGAAAATTGGAATGGGATTAACAGGA|$ TTTGGAGTGTTTTTCCTGTTCTTTTGGAATGATTCTCTTTTTTGACAAAGCACTACTGGCTAT TCTTCTCCAAAAACATAAAATGAAAGCTACAGGTTTTTTTCTGGGTGGTGTATTTGTAGTC CTTATTGGTTGGCCTTTGATAGGCATGATCTTCGAAATTTATGGATTTTTTCTCTTGTTCAG GGGCTTCTTTCCTGTCGTTGTTGGCTTTATTAGAAGAGTGCCAGTCCTTGGATCCCTCCTAAAT TTACCTGGAATTAGATCATTTGTAGATAAAGTTGGAGAAAGCAACAATATGGTA**TAA**CAACA GCACAAAATTAAATTACATGAAATAGCTTGTAATGTTCTTTACAGGAGTTTAAAACGTATAG CCTACAAAGTACCAGCAGCAAATTAGCAAAGAAGCAGTGAAAACAGGCTTCTACTCAAGTGA ACTAAGAAGAAGTCAGCAAGCAAACTGAGAGAGGTGAAATCCATGTTAATGATGCTTAAGAA ACTCTTGAAGGCTATTTGTGTTGTTTTTCCACAATGTGCGAAACTCAGCCATCCTTAGAGAA $\tt CTGTGGTGCCTGTTTCTTTTTTTTTTTTTGAAGGCTCAGGAGCATCCATAGGCATTTGCT$ TTTTAGAAGTGTCCACTGCAATGGCAAAAATATTTCCAGTTGCACTGTATCTCTGGAAGTGA TGCATGAATTCGATTGGATTGTCATTTTAAAGTATTAAAACCAAGGAAACCCCAATTTTG ATGTATGGATTACTTTTTTTTTGNGCNCAGGGCC

FIGURE 90

MISLTDTQKIGMGLTGFGVFFLFFGMILFFDKALLAIGNVLFVAGLAFVIGLERTFRFFFQK HKMKATGFFLGGVFVVLIGWPLIGMIFEIYGFFLLFRGFFPVVVGFIRRVPVLGSLLNLPGI RSFVDKVGESNNMV

Important features:

Transmembrane domains:

amino acids 12-30 (typeII), 33-52, 69-89 and 93-109

N-myristoylation sites.

amino acids 11-16, 51-56 and 116-121

Aminoacyl-transfer RNA synthetases class-II protein.

amino acids 49-59

FIGURE 91

FIGURE 92

GGCACGAGGCTGAACCCAGCCGGCTCCATCTCAGCTTCTGGTTTCTAAGTCCATGTGCCAAA $\tt CTGTGGGTAGTTATTTATTTCTGAATAAGAGCGTCCACGCATC \\ \textbf{ATG} \\ \texttt{GACCTCGCGGGACTGC}$ TGAAGTCTCAGTTCCTGTGCCACCTGGTCTTCTGCTACGTCTTTATTGCCTCAGGGCTAATC ATCAACACCATTCAGCTCTTCACTCTCCTCTGGCCCATTAACAAGCAGCTCTTCCGGAA GATCAACTGCAGACTGTCCTATTGCATCTCAAGCCAGCTGGTGATGCTGCTGGAGTGGTGGT GCCATCGTGGTTCTCAACCACAAGTTTGAAATTGACTTTCTGTGTGGGCTGGAGCCTGTCCGA TTATCGGCTGGATGTGGTACTTCACCGAGATGGTCTTCTGTTCGCGCAAGTGGGAGCAGGAT $\tt CGCAAGACGGTTGCCACCAGTTTGCAGCACCTCCGGGACTACCCCGAGAAGTATTTTTTCCT$ GATTCACTGTGAGGGCACACGGTTCACGGAGAAGAAGCATGAGATCAGCATGCAGGTGGCCC GGGCCAAGGGGCTGCCTCGAAGCATCACCTGTTGCCACGAACCAAGGGCTTCGCCATC ACCGTGAGGAGCTTGAGAAATGTAGTTTCAGCTGTATATGACTGTACACTCAATTTCAGAAA ${\tt TTAGGAGGATCCCACTGGAAGACATCCCTGAAGACGATGACGAGTGCTCGGCCTGGCTGCAC}$ AAGCTCTACCAGGAGAAGGATGCCTTTCAGGAGGAGTACTACAGGACGGCACCTTCCCAGA GACGCCCATGGTGCCCCCCGGCGGCCCTGGACCCTCGTGAACTGGCTGTTTTGGGCCTCGC TGGTGCTCTACCCTTTCTTCCAGTTCCTGGTCAGCATGATCAGGAGCGGGTCTTCCCTGACG <u>GA</u>CTCAGGGAGGTGTCACCATCCGAAGGGAACCTTGGGGGAACTGGTGGCCTCTGCATATCCT CCTTAGTGGGACACGGTGACAAAGGCTGGGTGAGCCCCTGCTGGGCACGGCGGAAGTCACGA CCTCTCCAGCCAGGGAGTCTGGTCTCAAGGCCGGATGGGGAGGAAGATGTTTTGTAATCTTT TTTTCCCCATGTGCTTTAGTGGGCTTTGGTTTTCTTTTTGTGCGAGTGTGTGAGAATGGC TGTGTGGTGAGTGTGAACTTTGTTCTGTGATCATAGAAAGGGTATTTTAGGCTGCAGGGGAG ${\tt GGCAGGGCTGGGGACCGAAGGGGACAAGTTCCCCTTTCATCCTTTGGTGCTGAGTTTTCTGT}$ AACCCTTGGTTGCCAGAGATAAAGTGAAAAGTGCTTTAGGTGAGATGACTAAATTATGCCTC

FIGURE 93

MDLAGLLKSQFLCHLVFCYVFIASGLIINTIQLFTLLLWPINKQLFRKINCRLSYCISSQLV
MLLEWWSGTECTIFTDPRAYLKYGKENAIVVLNHKFEIDFLCGWSLSERFGLLGGSKVLAKK
ELAYVPIIGWMWYFTEMVFCSRKWEQDRKTVATSLQHLRDYPEKYFFLIHCEGTRFTEKKHE
ISMQVARAKGLPRLKHHLLPRTKGFAITVRSLRNVVSAVYDCTLNFRNNENPTLLGVLNGKK
YHADLYVRRIPLEDIPEDDDECSAWLHKLYQEKDAFQEEYYRTGTFPETPMVPPRRPWTLVN
WLFWASLVLYPFFQFLVSMIRSGSSLTLASFILVFFVASVGVRWMIGVTEIDKGSAYGNSDS
KQKLND

FIGURE 94

CTGAGGCGGCGGTAGCATGGAGGGGGAGAGTACGTCGGCGGTGCTCTCGGGCTTTTGTGCTCG GCGCACTCGCTTTCCAGCACCTCAACACGGACTCGGACACGGAAGGTTTTCTTCTTGGGGAA GTAAAAGGTGAAGCCAAGAACAGCATTACTGATTCCCAAATGGATGATGTTGAAGTTGTTTA TACAATTGACATTCAGAAATATATTCCATGCTATCAGCTTTTTAGCTTTTATAATTCTTCAG GCGAAGTAAATGAGCAAGCACTGAAGAAAATATTATCAAATGTCAAAAAGAATGTGGTAGGT AAACTTGCAGGAGCATTTTTCAAACCAAGACCTTGTTTTTCTGCTATTAACACCAAGTATAA TAACAGAAAGCTGCTCTACTCATCGACTGGAACATTCCTTATATAAACCTCAAAAAGGACTT TTTCACAGGGTACCTTTAGTGGTTGCCAATCTGGGCATGTCTGAACAACTGGGTTATAAAAC TGTATCAGGTTCCTGTATGTCCACTGGTTTTAGCCGAGCAGTACAAACACACAGCTCTAAAT TTTTTGAAGAAGATGGATCCTTAAAGGAGGTACATAAGATAAATGAAATGTATGCTTCATTA CAAGAGGAATTAAAGAGTATATGCAAAAAAGTGGAAGACAGTGAACAAGCAGTAGATAAACT AGTAAAGGATGTAAACAGATTAAAACGAGAAATTGAGAAAAGGAGAGGAGCACAGATTCAGG CAGCAAGAGAGAACATCCAAAAAGACCCTCAGGAGAACATTTTTCTTTGTCAGGCATTA CGGACCTTTTTTCCAAATTCTGAATTTCTTCATTCATGTGTTATGTCTTTAAAAAATAGACA TGTTTCTAAAAGTAGCTGTAACTACAACCACCATCTCGATGTAGTAGACAATCTGACCTTAA TGGTAGAACACTGACATTCCTGAAGCTAGTCCAGCTAGTACACCACAAATCATTAAGCAT AAAGCCTTAGACTTAGATGACAGATGGCAATTCAAGAGATCTCGGTTGTTAGATACACAAGA CAAACGATCTAAAGCAAATACTGGTAGTAGTAACCAAGATAAAGCATCCAAAATGAGCAGCC CAGAAACAGATGAAGAATTGAAAAGATGAAGGGTTTTGGTGAATATTCACGGTCTCCTACA TTT**TGA**TCCTTTTAACCTTACAAGGAGATTTTTTTTTTTTTGGCTGATGGGTAAAGCCAAACAT TTCTATTGTTTTACTATGTTGAGCTACTTGCAGTAAGTTCATTTGTTTTACTATGTTCAC CTGTTTGCAGTAATACACAGATAACTCTTAGTGCATTTACTTCACAAAGTACTTTTTCAAAC ATCAGATGCTTTTATTTCCAAACCTTTTTTTCACCTTTCACTAAGTTGTTGAGGGGAAGGCT TACACAGACATTCTTTAGAATTGGAAAAGTGAGACCAGGCACAGTGGCTCACACCTGTAA TGGGCAACGTATTGAGACCATGTCTATTAAAAAATAAAATGGAAAAGCAAGAATAGCCTTAT TTTCAAAATATGGAAAGAAATTTATATGAAAATTTATCTGAGTCATTAAAATTCTCCTTAAG TGATACTTTTTTAGAAGTACATTATGGCTAGAGTTGCCAGATAAAATGCTGGATATCATGCA

FIGURE 95

MEGESTSAVLSGFVLGALAFQHLNTDSDTEGFLLGEVKGEAKNSITDSQMDDVEVVYTIDIQ
KYIPCYQLFSFYNSSGEVNEQALKKILSNVKKNVVGWYKFRRHSDQIMTFRERLLHKNLQEH
FSNQDLVFLLLTPSIITESCSTHRLEHSLYKPQKGLFHRVPLVVANLGMSEQLGYKTVSGSC
MSTGFSRAVQTHSSKFFEEDGSLKEVHKINEMYASLQEELKSICKKVEDSEQAVDKLVKDVN
RLKREIEKRRGAQIQAAREKNIQKDPQENIFLCQALRTFFPNSEFLHSCVMSLKNRHVSKSS
CNYNHHLDVVDNLTLMVEHTDIPEASPASTPQIIKHKALDLDDRWQFKRSRLLDTQDKRSKA
NTGSSNQDKASKMSSPETDEEIEKMKGFGEYSRSPTF

FIGURE 96

GGCACAGCCGCGCGGAGGGCAGAGTCAGCCGAGCCGAGTCCAGCCGGACGAGCGACCAGCGCAGGGCAGC $\tt CCTTCCCCGCGTCCCCGCCTCGCCGGCCAGTCAGCTTGCCGGGGTTCGCTGCCCCGCGAAACCCCGAGGTCACCA$ ${\tt GGGGACCGTTGCCTGACGGGGCCCAGCTCTACTTTTCGCCCCGCGTCTCCTCCGCCTGCTCTCCAC}$ AAGTGCGACGTCTTTACGTGTCCAAAGGCTTCAACAAGAACGATGCCCCCCTCCACGAGATCAACGGTGATCAT TTGAAGATCTGTCCCCAGGGTTCTACCTGCTGCTCTCAAGAGATGGAGGAGAAGTACAGCCTGCAAAGTAAAGA TGATTTCAAAAGTGTGGTCAGCGAACAGTGCAATCATTTGCAAGCTGTCTTTGCTTCACGTTACAAGAAGTTTG ${ t ATGAATTCTTCAAAGAACTACTTGAAAATGCAGAGAAATCCCTGAATGATATGTTTTGTGAAGACATATGGCCAT$ ${ t TTATACATGCAAAATTCTGAGCTATTTAAAGATCTCTTCGTAGAGTTGAAACGTTACTACGTGGTGGGAAATGT}$ GAACCTGGAAGAAATGCTAAATGACTTCTGGGCTCGCCTCCTGGAGCGGATGTTCCGCCTGGTGAACTCCCAGT ${ t ACCACTTTACAGATGAGTATCTGGAATGTGTGAGCAAGTATACGGAGCAGCTGAAGCCCTTCGGAGATGTCCCT}$ CGCAAATTGAAGCTCCAGGTTACTCGTGCTTTTGTAGCAGCCCGTACTTTCGCTCAAGGCTTAGCGGTTGCGGG ${ t AGATGTCGTGAGCAAGGTCTCCGTGGTAAACCCCACAGCCCAGTGTACCCATGCCCTGTTGAAGATGATCTACT}$ ${\tt GCTCCCACTGCCGGGGTCTCGTGACTGTGAAGCCATGTTACAACTACTGCTCAAACATCATGAGAGGCTGTTTG}$ GCCAACCAAGGGGATCTCGATTTTGAATGGAACAATTTCATAGATGCTATGCTGATGGTGGCAGAGAGGCTAGA GGGTCCTTTCAACATTGAATCGGTCATGGATCCCATCGATGTGAAGATTTCTGATGCTATTATGAACATGCAGG $\tt ATAATAGTGTTCAAGTGTCTCAGAAGGTTTTCCAGGGATGTGGACCCCCCAAGCCCCTCCCAGCTGGACGAATT$ AGCTGGCACTAGTTTGGACCGACTGGTTACTGATGTCAAGGAGAAACTGAAACAGGCCAAGAAATTCTGGTCCT CCCTTCCGAGCAACGTTTGCAACGATGAGAGGATGGCTGCAGGAAACGGCAATGAGGATGACTGTTGGAATGGG AAAGGCAAAAGCAGGTACCTGTTTGCAGTGACAGGAAATGGATTAGCCAACCAGGGCAACAACCCAGAGGTCCA GGTTGACACCAGCAAACCAGACATACTGATCCTTCGTCAAATCATGGCTCTTCGAGTGATGACCAGCAAGATGA GGCTGTGAGTATCAGCAGTGCCCTTCAGAGTTTGACTACAATGCCACTGACCATGCTGGGAAGAGTGCCAATGA ${\tt GAAAGCCGACAGTGCTGGTGTCCTGGGGGCACAGGCCTACCTCACTGTCTTCTGCATCTTGTTCCTGG}$ ${\tt TTATGCAGAGAGAGTGGAGAGAAAACTCTGAGAAAAAGTGTTCATCAAAAAGTTAAAAGGCACCAGTT}$ $\tt CACTGGTTTAAGAAGTGCTGACTTTGTTTTCTCATTCAGTTTTGGGAGGAAAAGGGACTGTGCATTGAGTTGGT$ CGCCTTGTTTCTTACAAGCAAACCAGGGTCCCTTCTTGGCACGTAACATGTACGTATTTCTGAAATATTAAATA GCTGTACAGAAGCAGGTTTTATTTATCATGTTATCTTATTAAAAGAAAAAGCCCAAAAAGC

FIGURE 97

MARFGLPALLCTLAVLSAALLAAELKSKSCSEVRRLYVSKGFNKNDAPLHEINGDHLKICPQ
GSTCCSQEMEEKYSLQSKDDFKSVVSEQCNHLQAVFASRYKKFDEFFKELLENAEKSLNDMF
VKTYGHLYMQNSELFKDLFVELKRYYVVGNVNLEEMLNDFWARLLERMFRLVNSQYHFTDEY
LECVSKYTEQLKPFGDVPRKLKLQVTRAFVAARTFAQGLAVAGDVVSKVSVVNPTAQCTHAL
LKMIYCSHCRGLVTVKPCYNYCSNIMRGCLANQGDLDFEWNNFIDAMLMVAERLEGPFNIES
VMDPIDVKISDAIMNMQDNSVQVSQKVFQGCGPPKPLPAGRISRSISESAFSARFRPHHPEE
RPTTAAGTSLDRLVTDVKEKLKQAKKFWSSLPSNVCNDERMAAGNGNEDDCWNGKGKSRYLF
AVTGNGLANQGNNPEVQVDTSKPDILILRQIMALRVMTSKMKNAYNGNDVDFFDISDESSGE
GSGSGCEYQQCPSEFDYNATDHAGKSANEKADSAGVRPGAQAYLLTVFCILFLVMQREWR

FIGURE 98

FIGURE 99

MKVLISSLLLLLPLMLMSMVSSSLNPGVARGHRDRGQASRRWLQEGGQECECKDWFLRAPRR KFMTVSGLPKKQCPCDHFKGNVKKTRHQRHHRKPNKHSRACQQFLKQCQLRSFALPL

FIGURE 100

FIGURE 101

MAVLVLRLTVVLGLLVLFLTCYADDKPDKPDDKPDDSGKDPKPDFPKFLSLLGTEIIENAVE FILRSMSRSTGFMEFDDNEGKHSSK

FIGURE 102

GGACGCCAGCGCCTGCAGAGGCTGAGCAGGGAAAAAGCCAGTGCCCCAGCGGAAGCACAGCT CAGAGCTGGTCTGCCATGGACATCCTGGTCCCACTCCTGCAGCTGCTGGTGCTGCTTCTTAC CCTGCCCTGCACCTCATGGCTCTGCTGGGCTGCTGGCAGCCCCTGTGCAAAAGCTACTTCC CCTACCTGATGGCCGTGCTGACTCCCAAGAGCAACCGCAAGATGGAGAGCAAGAAACGGGAG CTCTTCAGCCAGATAAAGGGGCTTACAGGAGCCTCCGGGAAAGTGGCCCTACTGGAGCTGGG CTGCGGAACCGGAGCCAACTTTCAGTTCTACCCACCGGGCTGCAGGGTCACCTGCCTAGACC CAAATCCCCACTTTGAGAAGTTCCTGACAAAGAGCATGGCTGAGAACAGGCACCTCCAATAT GGAGAGTACTGAGACCGGGAGGTGTGCTCTTTTTCTGGGAGCATGTGGCAGAACCATATGGA AGCTGGGCCTTCATGTGGCAGCAAGTTTTCGAGCCCACCTGGAAACACATTGGGGATGGCTG CTGCCTCACCAGAGAGCCTGGAAGGATCTTGAGAACGCCCAGTTCTCCGAAATCCAAATGG AACGACAGCCCCTCCCTTGAAGTGGCTACCTGTTGGGCCCCACATCATGGGAAAGGCTGTC AAACAATCTTTCCCAAGCTCCAAGGCACTCATTTGCTCCTTCCCCAGCCTCCAATTAGAACA AGCCACCACCAGCCTATCTATCTTCCACTGAGAGGGACCTAGCAGAATGAGAGAAGACATT CATGTACCACCTACTAGTCCCTCTCTCCCCAACCTCTGCCAGGGCAATCTCTAACTTCAATC CCGCCTTCGACAGTGAAAAAGCTCTACTTCTACGCTGACCCAGGGAGGAAACACTAGGACCC TGTTGTATCCTCAACTGCAAGTTTCTGGACTAGTCTCCCAACGTTTGCCTCCCAATGTTGTC CCTTTCCTTCGTTCCCATGGTAAAGCTCCTCTCGCTTTCCTCCTGAGGCTACACCCATGCGT CTCTAGGAACTGGTCACAAAAGTCATGGTGCCTGCATCCCTGCCAAGCCCCCCTGACCCTCT CTCCCCACTACCACCTTCTTCCTGAGCTGGGGGCACCAGGGAGAATCAGAGATGCTGGGGAT AACCACG

FIGURE 103

MDILVPLLQLLVLLLTLPLHLMALLGCWQPLCKSYFPYLMAVLTPKSNRKMESKKRELFSQI KGLTGASGKVALLELGCGTGANFQFYPPGCRVTCLDPNPHFEKFLTKSMAENRHLQYERFVV APGEDMRQLADGSMDVVVCTLVLCSVQSPRKVLQEVRRVLRPGGVLFFWEHVAEPYGSWAFM WQQVFEPTWKHIGDGCCLTRETWKDLENAQFSEIQMERQPPPLKWLPVGPHIMGKAVKQSFP SSKALICSFPSLQLEQATHQPIYLPLRGT

FIGURE 104

GTGGGATTTATTTGAGTGCAAGATCGTTTTCTCAGTGGTGGTGGAAGTTGCCTCATCGCAGG CAGATGTTGGGGCTTTGTCCGAACAGCTCCCCTCTGCCAGCTTCTGTAGATAAGGGTTAAAA ACTAATATTTATATGACAGAAGAAAAAG**ATG**TCATTCCGTAAAGTAAACATCATCTTGG TCCTGGCTGTTGCTCTTCTTACTGGTTTTGCACCATAACTTCCTCAGCTTGAGCAGTTTG TTAAGGAATGAGGTTACAGATTCAGGAATTGTAGGGCCTCAACCTATAGACTTTGTCCCAAA TGCTCTCCGACATGCAGTAGATGGGAGACAAGAGGAGATTCCTGTGGTCATCGCTGCATCTG AAGACAGGCTTGGGGGGGCCATTGCAGCTATAAACAGCATTCAGCACAACACTCGCTCCAAT GTGATTTTCTACATTGTTACTCTCAACAATACAGCAGACCATCTCCGGTCCTGGCTCAACAG AAGTAAAGGAGGATCCTGACCAGGGGGAATCCATGAAACCTTTAACCTTTGCAAGGTTCTAC TTGCCAATTCTGGTTCCCAGCGCAAAGAAGGCCATATACATGGATGATGATGTAATTGTGCA AGGTGATATTCTTGCCCTTTACAATACAGCACTGAAGCCAGGACATGCAGCTGCATTTTCAG AAGATTGTGATTCAGCCTCTACTAAAGTTGTCATCCGTGGAGCAGGAAACCAGTACAATTAC ATTGGCTATCTTGACTATAAAAAGGAAAGAATTCGTAAGCTTTCCATGAAAGCCAGCACTTG CTCATTTAATCCTGGAGTTTTTGTTGCAAACCTGACGGAATGGAAACGACAGAATATAACTA ACCAACTGGAAAAATGGATGAAACTCAATGTAGAAGAGGGACTGTATAGCAGAACCCTGGCT GGTAGCATCACAACACCTCCTCTGCTTATCGTATTTTATCAACAGCACTCTACCATCGATCC TATGTGGAATGTCCGCCACCTTGGTTCCAGTGCTGGAAAACGATATTCACCTCAGTTTGTAA AGGCTGCCAAGTTACTCCATTGGAATGGACATTTGAAGCCATGGGGAAGGACTGCTTCATAT ACTGATGTTTGGGAAAAATGGTATATTCCAGACCCAACAGGCAAATTCAACCTAATCCGAAG ATATACCGAGATCTCAAACATAAAG**TGA**AACAGAATTTGAACTGTAAGCAAGCATTTCTCAG GAAGTCCTGGAAGATAGCATGCATGGGAAGTAACAGTTGCTAGGCTTCAATGCCTATCGGTA GCAAGCCATGGAAAAAGATGTGTCAGCTAGGTAAAGATGACAAACTGCCCTGTCTGGCAGTC AGCTTCCCAGACAGACTATAGACTATAAATATGTCTCCATCTGCCTTACCAAGTGTTTTCTT ACATTTTTC

FIGURE 105

MSFRKVNIIILVLAVALFLLVLHHNFLSLSSLLRNEVTDSGIVGPQPIDFVPNALRHAVDGR QEEIPVVIAASEDRLGGAIAAINSIQHNTRSNVIFYIVTLNNTADHLRSWLNSDSLKSIRYK IVNFDPKLLEGKVKEDPDQGESMKPLTFARFYLPILVPSAKKAIYMDDDVIVQGDILALYNT ALKPGHAAAFSEDCDSASTKVVIRGAGNQYNYIGYLDYKKERIRKLSMKASTCSFNPGVFVA NLTEWKRQNITNQLEKWMKLNVEEGLYSRTLAGSITTPPLLIVFYQQHSTIDPMWNVRHLGS SAGKRYSPQFVKAAKLLHWNGHLKPWGRTASYTDVWEKWYIPDPTGKFNLIRRYTEISNIK

FIGURE 106

FIGURE 107

 $\tt CGACGCTCTAGCGGTTACCGCTGCGGGCTGGCTGGGCGTAGTGGGGCTGCCGCGGCTGCCACG$ TCCGCATCTCCTCCATCGCCTGCAGTAAGGGCGGCCGCGGGGGAGCCTTTGAGGGGAACGACT TGTCGGAGCCCTAACCAGGGGTGTCTCTGAGCCTGGTGGGATCCCCGGAGCGTCACATCACT TTCCGATCACTTCAAAGTGGTTAAAAACTAATATTTATATGACAGAAGAAAAAGATGTCATT ${\tt CCGTAAAGTAAACATCATCTTGGTCCTGGGCTGTTGCTCTTTTTTTGCAC}$ CATAACTTCCTCAGCTTGAGGCAGTTTGTTAAGGAATGAGGTTACAGATTCAGGAATTGTAG GGCCTCAACCTATAGGACTTTGTCCCAAATGCTCTCCGACATGCAGTAGATGGGAGACAAGA GGAGATTCCTGTGGTCATCGCTGCATCTGAAGACAGGCTTGGGGGGGCCATTGCAGCTATAA ACAGCATTCAGCACAACACTCGCTCCAATGTGATTTTCTACATTGTTACTCTCAACAATACA GCAGACCATCTCCGGTCCTGGGCTCAACAGTGATTCCCTGAAAAGCATCAGATACAAAATTG TCAATTTTGACCCTAAACTTTTGGAAGGAAAAGTAAAGGAGGATCCTGACCAGGGGGAATCC ATGAAACCTTTAACCTTTGCAAGGTTCTACTTGCCAATTCTGGGTTCCCCAGCGCAAAGAAGG CCATATACATGGATGATGTAATTGTGCAAGGTGATATTCTTGCCCTTTACAATACAGCA CTGAAGCCAGGACATGCAGCTGCATTTTCAGAAGATTGTGATTCAGCCTCTACTAAAGTTGT CATCCGTGGAGCAGGAAACCAGTACAATTACATTGGCTATCTTGACTATAAAAAGGAAAGAA TTCGTAAGCTTTCCATGAAAGCCAGCACTTGCTCATTTAATCCTGGAGTTTTTGTTGCAAAC CTGACGGAATGGAAACGACAGAATATAACTAACCAACTGGAAAAATGGATGAAACTCAATGT AGAAGAGGGACTGTATAGCAGAACCCTGGCTGGTAGCATCACAACACCTCCTCTGCTTATCG TATTTTATCAACAGCACTCTACCATCGATCCTATGTGGAATGTCCGCCACCTTGGTTCCAGT GCTGGAAAACGATATTCACCTCAGTTTGTAAAGGCTGCCAAGTTACTCCATTGGAATGGACA TTTGAAGCCATGGGGAAGGACTGCTTCATATACTGATGTTTTGGGGAAAAATGGTATATTCCA GACCCAACAGGCAAATTCAACCTAATCCGAAGATATACCGAGATCTCAAACATAAAGTGAAA CAGAATTTGAACTGTAAGCAAGCATTTCTCAGGAAGTCCTGGAAGATAGCATGCGTGGGAAG TAACAGTTGCTAGGCTTCAATGCCTATCGGTAGCAAGCCATGGAAAAAGATGTGTCAGCTAG ATGTCTCCATCTGCCTTACCAAGTGTTTTCTTACTACAATGCTGAATGACTGGAAAGAAGAA CTGATATGGCTAGTTCAGCTAGCTGGTACAGATAATTCAAAACTGCTGTTGGTTTTAATTTT AAAAA

FIGURE 108

FIGURE 109

MGAAISQGALIAIVCNGLVGFLLLLLWVILCWACHSRLPTLTLSLNPVPTPALAPVLRRPHH PRSPAMKAATCCSPEGPWPSLEPRT

FIGURE 110

GTTTGAATTCCTTCAACTATACCCACAGTCCAAAAGCAGACTCACTGTGTCCCAGGCTACCA GTTCCTCCAAGCAAGTCATTTCCCTTATTTAACCGATGTGTCCCTCAAACACCTGAGTGCTA CTCCCTATTTGCATCTGTTTTGATAAATGATGTTGACACCCTCCACCGAATTCTAAGTGGAA TC**ATG**TCGGGAAGAGATACAATCCTTGGCCTGTGTATCCTCGCATTAGCCTTGTCTTTGGCC ATGATGTTTACCTTCAGATTCATCACCACCCTTCTGGTTCACATTTTCATTTGGTTAT TTTGGGATTGTTTGTCTGCGGTGTTTTATGGTGGCTGTATTATGACTATACCAACGACC TCCACAGGCATCACGGCAGTGCTGCTCTTGATTTTTGTTCTCAGAAAGAGAATAAAATT GACAGTTGAGCTTTTCCAAATCACAAATAAAGCCATCAGCAGTGCTCCCTTCCTGCTGTTCC AGCCACTGTGGACATTTGCCATCCTCATTTTCTTCTGGGTCCTCTGGGTGGCTGTGCTGCTG AGCCTGGGAACTGCAGGAGCTGCCCAGGTTATGGAAGGCGGCCAAGTGGAATATAAGCCCCT TTCGGGCATTCGGTACATGTGGTCGTACCATTTAATTGGCCTCATCTGGACTAGTGAATTCA TCCTTGCGTGCCAGCAAATGACTATAGCTGGGGCAGTGGTTACTTGTTATTTCAACAGAAGT AAAAATGATCCTCTGATCATCCCATCCTTTCGTCTCTCCCATTCTTCTTCTACCATCA AGGAACCGTTGTGAAAGGGTCATTTTTAATCTCTGTGGTGAGGATTCCGAGAATCATTGTCA TGTACATGCAAAACGCACTGAAAGAACAGCAGCATGGTGCATTGTCCAGGTACCTGTTCCGA TGCTGCTACTGCTGTTTCTGGTGTCTTGACAAATACCTGCTCCATCTCAACCAGAATGCATA TACTACAACTGCTATTAATGGGACAGATTTCTGTACATCAGCAAAAGATGCATTCAAAATCT TGTCCAAGAACTCAAGTCACTTTACATCTATTAACTGCTTTGGAGACTTCATAATTTTTCTA GGAAAGGTGTTAGTGGTGTTTTCACTGTTTTTGGAGGACTCATGGCTTTTAACTACAATCG ATAGTTTTTTATCTGTGTTTGAAACTGTGCTGGATGCACTTTTCCTGTGTTTTGCTGTTGAT CTGGAAACAAATGATGGATCGTCAGAAAAGCCCTACTTTATGGATCAAGAATTTCTGAGTTT CGTAAAAAGGAGCAACAAATTAAACAATGCAAGGGCACAGCAGGACAAGCACTCATTAAGGA $\tt ATGAGGAGGGAACAGAACTCCAGGCCATTGTGAGA{\color{red}{\textbf{TAG}}} ATACCCATTTAGGTATCTGTACCT$ GGAAAACATTTCCTTCTAAGAGCCATTTACAGAATAGAAGATGAGACCACTAGAGAAAAGTT AGTGAATTTTTTTTAAAAGACCTAATAAACCCTATTCTTCCTCAAAA

FIGURE 111

MSGRDTILGLCILALALSLAMMFTFRFITTLLVHIFISLVILGLLFVCGVLWWLYYDYTNDL SIELDTERENMKCVLGFAIVSTGITAVLLVLIFVLRKRIKLTVELFQITNKAISSAPFLLFQ PLWTFAILIFFWVLWVAVLLSLGTAGAAQVMEGGQVEYKPLSGIRYMWSYHLIGLIWTSEFI LACQQMTIAGAVVTCYFNRSKNDPPDHPILSSLSILFFYHQGTVVKGSFLISVVRIPRIIVM YMQNALKEQQHGALSRYLFRCCYCCFWCLDKYLLHLNQNAYTTTAINGTDFCTSAKDAFKIL SKNSSHFTSINCFGDFIIFLGKVLVVCFTVFGGLMAFNYNRAFQVWAVPLLLVAFFAYLVAH SFLSVFETVLDALFLCFAVDLETNDGSSEKPYFMDQEFLSFVKRSNKLNNARAQQDKHSLRN EEGTELQAIVR

FIGURE 112

GTTCGATTAGCTCCTCTGAGAAGAGAGAAAAGGTTCTTGGACCTCTCCCTGTTTCCTT TGTGGTGAAAATTTTTTTGAAAAAAAATTGCCTTCTTCAAACAAGGGTGTCATTCTGATATT $exttt{T} exttt{A} exttt{T} exttt{G} exttt{A} exttt{T} exttt{G} exttt{A} exttt{A} exttt{G} exttt{G} exttt{C} exttt{T} exttt{T} exttt{T} exttt{T} exttt{G} exttt{C} exttt{T} exttt{G} exttt{T} exttt{T} exttt{T} exttt{T} exttt{G} exttt{C} exttt{T} exttt{G} exttt{C} exttt{T} exttt{G} exttt{T} exttt{T} exttt{T} exttt{G} exttt{T} exttt{G} exttt{T} exttt{T} exttt{T} exttt{G} exttt{T} exttt{T} exttt{T} exttt{T} exttt{G} exttt{T} exttt{T} exttt{T} exttt{T} exttt{G} exttt{T} exttt{T} exttt{T} exttt{T} exttt{T} exttt{T} exttt{G} exttt{T} exttt{T}$ TGACTGGAGTACATTCAAACAAAGAAACGGCAAAGAAGATTAAAAAGGCCCAAGTTCACTGTG CCTCAGATCAACTGCGATGTCAAAGCCGGAAAGATCATCGATCCTGAGTTCATTGTGAAATG TCCAGCAGGATGCCAAGACCCCAAATACCATGTTTATGGCACTGACGTGTATGCATCCTACT CCAGTGTGTGTGGCGCTGCCGTACACAGTGGTGTGTTGATAATTCAGGAGGGAAAATACTT GTTCGGAAGGTTGCTGGACAGTCTGGTTACAAAGGGAGTTATTCCAACGGTGTCCAATCGTT ATCCCTACCACGATGGAGAGAATCCTTTATCGTCTTAGAAAGTAAACCCAAAAAGGGTGTAA CCTACCCATCAGCTCTTACATACTCATCATCGAAAAGTCCAGCTGCCCAAGCAGGTGAGACCACAAAAGCCTATCAGAGGCCACCTATTCCAGGGACAACTGCACAGCCGGTCACTCTGATGCA GCTTCTGGCTGTCACTGTAGCTGTGGCCACCCCCACCACCTTGCCAAGGCCATCCCCTTCTGCTGCTTCTACCACCACCACCACCACCACCACCACCAGAGCCACAGGAGCCAGGAGCCACAGGAGCCACAGGAGCCAGGAGCCAGGAGCCACAGGAGCCACAGGAGCCAGGAGCCACAGGAGCCAGGAGATGGAT CTCTGGTCCACTGCCACCTACAAGCAGCCAAAACAGGCCCAGAGCTGATCCAGGTATCCA AAGGCAAGATCCTTCAGGAGCTGCCTTCCAGAAACCTGTTGGAGCGGATGTCAGCCTGGGAC TTGTTCCAAAAGAAGAATTGAGCACACAGTCTTTGGAGCCAGTATCCCTGGGAGATCCAAAC TGCAAAATTGACTTGTCGTTTTTAATTGATGGGAGCACCAGCATTGGCAAACGGCGATTCCG AATCCAGAAGCAGCTCCTGGCTGATGTTGCCCAAGCTCTTGACATTGGCCCTGCCGGTCCAC TGATGGGTGTTGTCCAGTATGGAGACAACCCTGCTACTCACTTTAACCTCAAGACACACG AATTCTCGAGATCTGAAGACAGCCATAGAGAAAATTACTCAGAGAGGAGGACTTTCTAATGT AGGTCGGGCCATCTCCTTTGTGACCAAGAACTTCTTTTCCAAAGCCAATGGAAACAGAAGCG GGGCTCCCAATGTGGTGGTGGTGATGGTGGATGGCTGGCCCACGGACAAAGTGGAGGAGGCTTCAAGACTTGCGAGAGAGTCAGGAATCAACATTTTCTTCATCACCATTGAAGGTGCTGCTGA AAATGAGAAGCAGTATGTGGTGGAGCCCAACTTTTCTTCATCACCATTGAAGGTGCTGCTGCAGAACAAACG GCTTCTACTCGCTCCACGTGCAGAGCTGGTTTGGCCTCCACAAGACCCTGCAGCCTCTGGTG AAGCGGGTCTGCGACACTGCCTGCCTGCAGCAAGACCTTGCAACTCGGCTGACAT TGGCTTCGTCATCGACGATAACAGGTGTGGGGACAGGACAACACCACGACCACGCCCAGGTCCTCAGGT TTGTGACCAACCTCACCAAAGAGTTTGAGATTTCCGACACGGACACGCGCATCGGGGCCGTG ATCACCGACGGGAGGTCCTACGACGACGTCCGGATCCCAGCCATGGCTGCCCATCTGAAGGG AGTGATCACCTATGCGATAGGCGTTGCCTGGGCTGCCCAAGAGGGAGCTAGAAGTCATTGCCA CTCACCCCGCCAGAGACCACTCCTTCTTTGTGGACGAGTTTGACAACCTCCATCAGTATGTC ${\tt CCCAGGATCATCCAGAACATTTGTACAGAGTTCAACTCACAGCCTCGGAAC{\tt TGA}{\tt ATTCAGAG}}$ ATAGAATGAGCCAAAAGGCTACATCATGTTGAGGGTGCTGGAGATTTTACATTTTGACAATT GTTTTCAAAATAATGTTCGGAATACAGTGCAGCCCTTACGACAGGCTTACGTAGAGCTTTT

FIGURE 113

MRTVVLTMKASVIEMFLVLLVTGVHSNKETAKKIKRPKFTVPQINCDVKAGKIIDPEFIVKC
PAGCQDPKYHVYGTDVYASYSSVCGAAVHSGVLDNSGGKILVRKVAGQSGYKGSYSNGVQSL
SLPRWRESFIVLESKPKKGVTYPSALTYSSSKSPAAQAGETTKAYQRPPIPGTTAQPVTLMQ
LLAVTVAVATPTTLPRPSPSAASTTSIPRPQSVGHRSQEMDLWSTATYTSSQNRPRADPGIQ
RQDPSGAAFQKPVGADVSLGLVPKEELSTQSLEPVSLGDPNCKIDLSFLIDGSTSIGKRRFR
IQKQLLADVAQALDIGPAGPLMGVVQYGDNPATHFNLKTHTNSRDLKTAIEKITQRGGLSNV
GRAISFVTKNFFSKANGNRSGAPNVVVVMVDGWPTDKVEEASRLARESGINIFFITIEGAAE
NEKQYVVEPNFANKAVCRTNGFYSLHVQSWFGLHKTLQPLVKRVCDTDRLACSKTCLNSADI
GFVIDGSSSVGTGNFRTVLQFVTNLTKEFEISDTDTRIGAVQYTYEQRLEFGFDKYSSKPDI
LNAIKRVGYWSGGTSTGAAINFALEQLFKKSKPNKRKLMILITDGRSYDDVRIPAMAAHLKG
VITYAIGVAWAAQEELEVIATHPARDHSFFVDEFDNLHQYVPRIIONICTEFNSOPRN

FIGURE 114

CAGGATGAACTGGTTGCAGTGGCTGCTGCTGCGGGGGCGCTGAGAGGACACGAGCTCTA TGCCTTTCCGGCTGCTCATCCCGCTCGGCCTCCTGTGCGCGCTGCTGCCTCAGCACCATGGT GCGCCAGGTCCCGACGGCTCCGCGCCAGATCCCGCCCACTACAGTTTTTCTCTGACTCTAAT TGATGCACTGGACACCTTGCTGATTTTGGGGAATGTCTCAGAATTCCAAAGAGTGGTTGAAG CGAGTGGTAGGAGGACTCCTGTCTGCTCATCTGCTCTCCAAGAAGGCTGGGGTGGAAGTAGA GGCTGGATGGCCCTGTTCCGGGCCTCTCCTGAGAATGGCTGAGGAGGCGGCCCGAAAACTCC AACCCAGGAGAGCCCCTGTCACCTGTACGGCAGGGATTGGGACCTTCATTGTTGAATTTGC CACCCTGAGCAGCCTCACTGGTGACCCGGTGTTCGAAGATGTGGCCAGAGTGGCTTTGATGC GCCTCTGGGAGAGCCGGTCAGATATCGGGCTGGTCGGCAACCACATTGATGTGCTCACTGGC AAGTGGGTGGCCCAGGACGCAGCCATCGGGGCTGGCGTGGACTCCTACTTTGAGTACTTGGT GAAAGGAGCCATCCTGCTTCAGGATAAGAAGCTCATGGCCATGTTCCTAGAGTATAACAAAG CCATCCGGAACTACACCCGCTTCGATGACTGGTACCTGTGGGTTCAGATGTACAAGGGGACT GTGTCCATGCCAGTCTTCCAGTCCTTGGAGGCCTACTGGCCTGGTCTTCAGAGCCTCATTGG AGACATTGACAATGCCATGAGGACCTTCCTCAACTACTACACTGTATGGAAGCAGTTTGGGG GGCTCCCGGAATTCTACAACATTCCTCAGGGATACACAGTGGAGAAGCGAGAGGGCTACCCA CTTCGGCCAGAACTTATTGAAAGCGCAATGTACCTCTACCGTGCCACGGGGGGATCCCACCCT CCTAGAACTCGGAAGAGATGCTGTGGAATCCATTGAAAAAATCAGCAAGGTGGAGTGCGGAT TTGCAACAATCAAAGATCTGCGAGACCACAAGCTGGACAACCGCATGGAGTCGTTCTTCCTG GTCCACCTTCGACGCGGTGATCACCCCCTATGGGGGGTGCATCCTGGGGGGCTGGGGGGTACA TCTTCAACACAGAAGCTCACCCCATCGACCTTGCCGCCCTGCACTGCTGCCAGAGGCTGAAG GAAGAGCAGTGGGAGGTGGAGGACTTGATGAGGGAATTCTACTCTCAAACGGAGCAGGTC GAAATTTCAGAAAAACACTGTTAGTTCGGGGCCATGGGAACCTCCAGCAAGGCCAGGAACAC ${ t CTTCTCAGCTGCCCCAGTCAGCCCTTCACCTCCAAGTTGGCATTACTGGGACAGGTTTTCCT}$ AGACTCCTCA**TAA**CCACTGGATAATTTTTTTTTTTTTTTTTTTTTTTGAGGCTAAACTATAATA AATTGCTTTTGGCTATCATAAAA

FIGURE 115

MPFRLLIPLGLLCALLPQHHGAPGPDGSAPDPAHYSFSLTLIDALDTLLILGNVSEFQRVVE
VLQDSVDFDIDVNASVFETNIRVVGGLLSAHLLSKKAGVEVEAGWPCSGPLLRMAEEAARKL
LPAFQTPTGMPYGTVNLLHGVNPGETPVTCTAGIGTFIVEFATLSSLTGDPVFEDVARVALM
RLWESRSDIGLVGNHIDVLTGKWVAQDAGIGAGVDSYFEYLVKGAILLQDKKLMAMFLEYNK
AIRNYTRFDDWYLWVQMYKGTVSMPVFQSLEAYWPGLQSLIGDIDNAMRTFLNYYTVWKQFG
GLPEFYNIPQGYTVEKREGYPLRPELIESAMYLYRATGDPTLLELGRDAVESIEKISKVECG
FATIKDLRDHKLDNRMESFFLAETVKYLYLLFDPTNFIHNNGSTFDAVITPYGECILGAGGY
IFNTEAHPIDLAALHCCQRLKEEQWEVEDLMREFYSLKRSRSKFQKNTVSSGPWEPPARPGT
LFSPENHDQARERKPAKQKVPLLSCPSQPFTSKLALLGQVFLDSS

FIGURE 116

AAAGTTACATTTCTCTGGAACTCTCCTAGGCCACTCCCTGCTGATGCAACATCTGGGTTTG GGCAGAAAGGAGGGTGCTTCGGAGCCCGCCCTTTCTGAGCTTCCTGGGCCGGCTCTAGAACA GAGATGGACAGAATGCTTTATTTTGGAAAGAAACAATGTTCTAGGTCAAACTGAGTCTACCA $\mathtt{A} \underline{\mathbf{A}} \underline{\mathbf{T}} \underline{\mathbf{G}} \mathtt{CAGACTTTCACAATGGTTCTAGAAGAAATCTGGACAAGTCTTTTCATGTGGTTTTTCT$ TCTGTACTCTCAACCAACATGAAGCATCTCTTGATGTGGAGCCCAGTGATCGCGCCTGGAGA AACAGTGTACTATTCTGTCGAATACCAGGGGGAGTACGAGAGCCTGTACACGAGCCACATCT GGATCCCCAGCAGCTGGTGCTCACTCACTGAAGGTCCTGAGTGTGATGTCACTGATGACATC ACGGCCACTGTGCCATACAACCTTCGTGTCAGGGCCACATTGGGCTCACAGACCTCAGCCTG GAGCATCCTGAAGCATCCCTTTAATAGAAACTCAACCATCCTTACCCGACCTGGGATGGAGA TCACCAAAGATGGCTTCCACCTGGTTATTGAGCTGGAGGACCTGGGGCCCCAGTTTGAGTTC CTTGTGGCCTACTGGAGGAGGGGGCCTGGTGCCGAGGAACATGTCAAAATGGTGAGGAGTGG GGGTATTCCAGTGCACCTAGAAACCATGGAGCCAGGGGCTGCATACTGTGTGAAGGCCCAGA GGAGAGGCCATTCCCCTGGTACTGGCCCTGTTTGCCTTTGTTGGCTTCATGCTGATCCTTGT GGTCGTGCCACTGTTCGTCTGGAAAATGGGCCGGCTGCTCCAGTACTCCTGTTGCCCCGTGG TGGTCCTCCCAGACACCTTGAAAATAACCAATTCACCCCAGAAGTTAATCAGCTGCAGAAGG GAGGAGGTGGATGCCTGTGCCACGCTGTGATGTCTCCTGAGGAACTCCTCAGGGCCTGGAT CTCA**TAG**GTTTGCGGAAGGGCCCAGGTGAAGCCGAGAACCTGGTCTGCATGACATGGAAACC ATGAGGGGACAAGTTGTTTTCTGTTTTCCGCCACGGACAAGGGATGAGAAGAAGTAGGAAGA GCCTGTTGTCTACAAGTCTAGAAGCAACCATCAGAGGCAGGGTGGTTTGTCTAACAGAACAC CTGGGAAAAGTGACTTCATCCCTTCGGTCCTAAGTTTTCTCATCTGTAATGGGGGAATTACC TGTTTCTGGAGAGCAGGACATAAATGTATGATGAGAATGATCAAGGACTCTACACACTGGGT GGCTTGGAGAGCCCACTTTCCCAGAATAATCCTTGAGAGAAAAGGAATCATGGGAGCAATGG TGTTGAGTTCACTTCAAGCCCAATGCCGGTGCAGAGGGGAATGGCTTAGCGAGCTCTACAGT AGGTGACCTGGAGGAAGGTCACAGCCACACTGAAAATGGGATGTGCATGAACACGGAGGATC TGTTGGTAAAGTACAGAATTCAGCAAATAAAAAGGGCCACCCTGGCCAAAAGCGGTAAAAAA AAAAAAAA

FIGURE 117

MQTFTMVLEEIWTSLFMWFFYALIPCLLTDEVAILPAPQNLSVLSTNMKHLLMWSPVIAPGE TVYYSVEYQGEYESLYTSHIWIPSSWCSLTEGPECDVTDDITATVPYNLRVRATLGSQTSAW SILKHPFNRNSTILTRPGMEITKDGFHLVIELEDLGPQFEFLVAYWRREPGAEEHVKMVRSG GIPVHLETMEPGAAYCVKAQTFVKAIGRYSAFSQTECVEVQGEAIPLVLALFAFVGFMLILV VVPLFVWKMGRLLQYSCCPVVVLPDTLKITNSPQKLISCRREEVDACATAVMSPEELLRAWIS

Important features:

Signal peptide:

amino acids 1-29

Transmembrane domain:

amino acids 230-255

N-glycosylation sites.

amino acids 40-43 and 134-137

Tissue factor proteins homology.

amino acids 92-119

Integrins alpha chain protein homology.

amino acids 232-262

FIGURE 118

FIGURE 119

CGGACGCGTGGGCCGCCACCTCCGGAACAAGCCATGCTGGCGGCGGCGACGGTGGCAGCGGCGTG GCTGCTCCTGTGGGCTGCGGCCTGCGCGCAGCAGCAGGACTTCTACGACTTCAAGGCGG TCAACATCCGGGGCAAACTGGTGTCGCTGGAGAAGTACCGCGGATCGGTGTCCCTGGTGGTG AATGTGGCCAGCGAGTGCGGCTTCACAGACCAGCACTACCGAGCCCTGCAGCAGCTGCAGCG AGACCTGGGCCCCACCACTTTAACGTGCTCGCCTTCCCCTGCAACCAGTTTGGCCAACAGG AGCCTGACAGCAACAAGGAGATTGAGAGCTTTGCCCGCCGCACCTACAGTGTCTCATTCCCC ATGTTTAGCAAGATTGCAGTCACCGGTACTGGTGCCCATCCTGCCTTCAAGTACCTGGCCCA GACTTCTGGGAAGGACCCCACCTGGAACTTCTGGAAGTACCTAGTAGCCCCAGATGGAAAGG TGGTAGGGGCTTGGGACCCAACTGTGTCAGTGGAGGGGTCAGACCCCAGATCACAGCGCTC GTGAGGAAGCTCATCCTACTGAAGCGAGAAGACTTA**TAA**CCACCGCGTCTCCTCCTCCACCA CCTCATCCCGCCCACCTGTGTGGGGCTGACCAATGCAAACTCAAATGGTGCTTCAAAGGGAG AGACCCACTGACTCTCCTTTACTCTTATGCCATTGGTCCCATCATTCTTGTGGGGGGAA AAATTCTAGTATTTTGATTATTTGAATCTTACAGCAACAAATAGGAACTCCTGGCCAATGAG AGCTCTTGACCAGTGAATCACCAGCCGATACGAACGTCTTGCCAACAAAAATGTGTGGCAAA TAGAAGTATATCAAGCAATAATCTCCCACCCAAGGCTTCTGTAAACTGGGACCAATGATTAC CTCATAGGGCTGTTGTGAGGATTAGGATGAAATACCTGTGAAAGTGCCTAGGCAGTGCCAGC CAAATAGGAGGCATTCAATGAACATTTTTTGCATATAAACCAAAAAATAACTTGTTATCAAT AAAAACTTGCATCCAACATGAATTTCCAGCCGATGATAATCCAGGCCAAAGGTTTAGTTGTT GTTATTTCCTCTGTATTATTTTCTTCATTACAAAAGAAATGCAAGTTCATTGTAACAATCCA AACAATACCTCACGATATAAAATAAAATGAAAGTATCCTCCTCAAAAA

FIGURE 120

MVAATVAAAWLLLWAAACAQQEQDFYDFKAVNIRGKLVSLEKYRGSVSLVVNVASECGFTDQ HYRALQQLQRDLGPHHFNVLAFPCNQFGQQEPDSNKEIESFARRTYSVSFPMFSKIAVTGTG AHPAFKYLAQTSGKEPTWNFWKYLVAPDGKVVGAWDPTVSVEEVRPQITALVRKLILLKREDL

FIGURE 121

CGGACGCGTGGGCCGGGCCGGGACGCAAAGCGAGCC**ATG**GCTGTCTACGTCGGGATGC TGCGCCTGGGGAGGCTGTGCGCCGGGAGCTCGGGGGTGCTGGGGGCCCGGGCCCCTCTCT CGGAGTTGGCAGGAAGCCAGGTTGCAGGGTGTCCGCTTCCTCAGTTCCAGAGAGGTGGATCG CATGGTCTCCACGCCCATCGGAGGCCTCAGCTACGTTCAGGGGTGCACCAAAAAGCATCTTA ACAGCAAGACTGTGGGCCAGTGCCTGGAGACCACAGCACAGAGGGTCCCAGAACGAGGGCC TTGGTCGTCCTCCATGAAGACGTCAGGTTGACCTTTGCCCAACTCAAGGAGGAGGTGGACAA ${\tt AGCTGCTTCTGGCCTCCTGAGCATTGGCCTCTGCAAAGGTGACCGGCTGGGCATGTGGGGGAC}$ CTAACTCCTATGCATGGGTGCTCATGCAGTTGGCCACCGCCCAGGCGGGCATCATTCTGGTG TCTGTGAACCCAGCCTACCAGGCTATGGAACTGGAGTATGTCCTCAAGAAGGTGGGCTGCAA GGCCCTTGTGTTCCCCAAGCAATTCAAGACCCAGCAATACTACAACGTCCTGAAGCAGATCT GTCCAGAAGTGGAGAATGCCCAGCCAGGGGCCTTGAAGAGTCAGAGGCTCCCAGATCTGACC ACAGTCATCTCGGTGGATGCCCCTTTGCCGGGGACCCTGCTCCTGGATGAAGTGGTGGCGGC TGGCAGCACACGCAGCATCTGGACCAGCTCCAATACAACCAGCAGTTCCTGTCCTGCCATG ACCCCATCAACATCCAGTTCACCTCGGGGACAACAGGCAGCCCCAAGGGGGCCCACCCTCTCC CACTACAACATTGTCAACAACTCCAACATTTTAGGAGAGCGCCTGAAACTGCATGAGAAGAC ACCAGAGCAGTTGCGGATGATCCTGCCCAACCCCCTGTACCATTGCCTGGGTTCCGTGGCAG GCACAATGATGTCTGATGTACGGTGCCACCCTCATCCTGGCCTCTCCCATCTTCAATGGC AAGAAGGCACTGGAGGCCATCAGCAGAGAGAGAGGCACCTTCCTGTATGGTACCCCCACGAT GTTCGTGGACATTCTGAACCAGCCAGACTTCTCCAGTTATGACATCTCGACCATGTGTGGAG GTGTCATTGCTGGGTCCCCTGCACCTCCAGAGTTGATCCGAGCCATCATCAACAAGATAAAT ATGAAGGACCTGGTGGTTGCTTATGGAACCACAGAGAACAGTCCCGTGACATTCGCGCACTT CCCTGAGGACACTGTGGAGCAGAAGGCAGAAAGCGTGGGCAGAATTATGCCTCACACGGAGG CCCGGATCATGAACATGGAGGCAGGGACGCTGGCAAAGCTGAACACGCCCGGGGAGCTGTGC ATCCGAGGGTACTGCGTCATGCTGGGCTACTGGGGTGAGCCTCAGAAGACAGAGGAAGCAGT AGATCGTGGGCCGCTCTAAGGATATGATCATCCGGGGTGGTGAGAACATCTACCCCGCAGAG CTCGAGGACTTCTTTCACACACCCGAAGGTGCAGGAAGTGCAGGTGGTGGGAGTGAAGGA CGATCGGATGGGGGAAGAGATTTGTGCCTGCATTCGGCTGAAGGACGGGGAGGAGACCACGG TGGAGGAGATAAAAGCTTTCTGCAAAGGGAAGATCTCTCACTTCAAGATTCCGAAGTACATC GTGTTTGTCACAAACTACCCCCTCACCATTTCAGGAAAGATCCAGAAATTCAAACTTCGAGA GCAGATGGAACGACATCTAAATCTG**TGA**ATAAAGCAGCAGGCCTGTCCTGGCCGGTTGGCTT GACTCTCTCTGTCAGAATGCAACCTGGCTTTATGCACCTAGATGTCCCCAGCACCCAGTTC TCCATCCCCACATTCCCCTGTCTGTCTTTTTGGCATAAAGAGCTTCTGTTTTCTTT GAAAAAAAAAAAAAA

FIGURE 122

MAVYVGMLRLGRLCAGSSGVLGARAALSRSWQEARLQGVRFLSSREVDRMVSTPIGGLSYVQ
GCTKKHLNSKTVGQCLETTAQRVPEREALVVLHEDVRLTFAQLKEEVDKAASGLLSIGLCKG
DRLGMWGPNSYAWVLMQLATAQAGIILVSVNPAYQAMELEYVLKKVGCKALVFPKQFKTQQY
YNVLKQICPEVENAQPGALKSQRLPDLTTVISVDAPLPGTLLLDEVVAAGSTRQHLDQLQYN
QQFLSCHDPINIQFTSGTTGSPKGATLSHYNIVNNSNILGERLKLHEKTPEQLRMILPNPLY
HCLGSVAGTMMCLMYGATLILASPIFNGKKALEAISRERGTFLYGTPTMFVDILNQPDFSSY
DISTMCGGVIAGSPAPPELIRAIINKINMKDLVVAYGTTENSPVTFAHFPEDTVEQKAESVG
RIMPHTEARIMNMEAGTLAKLNTPGELCIRGYCVMLGYWGEPQKTEEAVDQDKWYWTGDVAT
MNEQGFCKIVGRSKDMIIRGGENIYPAELEDFFHTHPKVQEVQVVGVKDDRMGEEICACIRL
KDGEETTVEEIKAFCKGKISHFKIPKYIVFVTNYPLTISGKIQKFKLREQMERHLNL

Signal Peptide:

amino acids 1-22

Transmembrane Domains:

amino acids 140-161, 213-229, 312-334

Putative AMP-binding Domain Signature:

amino acids 260-271

N-myristoylation Sites:

amino acids 19-24, 22-27, 120-125, 203-208, 268-273, 272-277, 314-319, 318-323, 379-384, 380-385, 409-413

N-glycosylation Site:

amino acids 282-285

FIGURE 123

FIGURE 124

GAGCAGGACGGAGCCATGACCCCGCCAGGAAAGCAGGTGCCCAGGCCATGATCTGGACTGC AGGCTGCTGCTGCTGCTTCGCGGAGGGCGCAGGCCCTGGAGTGCTACAGCTGCG TGCAGAAAGCAGATGACGGATGCTCCCCGAACAAGATGAAGACAGTGAAGTGCGCGCCGGGC GTGGACGTCTGCACCGAGGCCGTGGGGGCGGTGGAGACCATCCACGGACAATTCTCGCTGGC AGTGCGGGGTTGCGGTTCGGGACTCCCCGGCAAGAATGACCGCGGCCTGGATCTTCACGGGC TTCTGGCGTTCATCCAGCTGCAGCAATGCGCTCAGGATCGCTGCAACGCCAAGCTCAACCTC ACCTCGCGGCGCTCGACCCGGCAGGTAATGAGAGTGCATACCCGCCCAACGGCGTGGAGTG CTACAGCTGTGTGGGCCTGAGCCGGGAGGCGTGCCAGGGTACATCGCCGCCGGTCGTGAGCT GCTACAACGCCAGCGATCATGTCTACAAGGGCTGCTTCGACGGCAACGTCACCTTGACGGCA GCTAATGTGACTGTCCTTGCCTGTCCGGGGCTGTGTCCAGGATGAATTCTGCACTCGGGA ${\tt TGGAGTAACAGGCCCAGGGTTCACGCTCAGTGGCTCCTGTTGCCAGGGGTCCCGCTGTAACT}$ CTGACCTCCGCAACAAGACCTACTTCTCCCCTCGAATCCCACCCCTTGTCCGGCTGCCCCCT CCAGAGCCCACGACTGTGGCCTCAACCACATCTGTCACCACTTCTACCTCGGCCCCAGTGAG ACCCACATCCACCACCAAACCCATGCCAGCGCCAACCAGTCAGACTCCGAGACAGGGAGTAG AACACGAGGCCTCCCGGGATGAGGAGCCCAGGTTGACTGGAGGCGCCGCTGGCCACCAGGAC CGCAGCAATTCAGGGCAGTATCCTGCAAAAGGGGGGCCCCAGCAGCCCCCATAATAAAGGCTG ${\tt TGTGGCTCCCACAGCTGGATTGGCAGCCCTTCTGTTGGCCGTGGCTGCTGGTGTCCTACTG{f T}}$ **GA**GCTTCTCCACCTGGAAATTTCCCTCTCACCTACTTCTCTGGCCCTGGGTACCCCTCTTCT CATCACTTCCTGTTCCCACCACTGGACTGGGCTGGCCCAGCCCCTGTTTTTCCAACATTCCC CAGTATCCCCAGCTTCTGCTGCGCTGGTTTGCGGCTTTTGGGAAATAAAATACCGTTGTATAT ATTCTGCCAGGGGTGTTCTAGCTTTTTGAGGACAGCTCCTGTATCCTTCTCATCCTTGTCTC TCCGCTTGTCCTCTTGTGATGTTAGGACAGAGTGAGAGAGTCAGCTGTCACGGGGAAGGTG GGTGGGTGGGACAATGGCTCCCCACTCTAAGCACTGCCTCCCCTACTCCCCGCATCTTTGGG GAATCGGTTCCCCATATGTCTTCCTTACTAGACTGTGAGCTCCTCGAGGGGGGCCCGGTAC CCAATTCGCCCTATAGTGAGTCGTA

FIGURE 125

MDPARKAGAQAMIWTAGWLLLLLRGGAQALECYSCVQKADDGCSPNKMKTVKCAPGVDVCT EAVGAVETIHGQFSLAVRGCGSGLPGKNDRGLDLHGLLAFIQLQQCAQDRCNAKLNLTSRAL DPAGNESAYPPNGVECYSCVGLSREACQGTSPPVVSCYNASDHVYKGCFDGNVTLTAANVTV SLPVRGCVQDEFCTRDGVTGPGFTLSGSCCQGSRCNSDLRNKTYFSPRIPPLVRLPPPEPTT VASTTSVTTSTSAPVRPTSTTKPMPAPTSQTPRQGVEHEASRDEEPRLTGGAAGHQDRSNSG QYPAKGGPQQPHNKGCVAPTAGLAALLLAVAAGVLL

FIGURE 126

CGGGACTCGCCGGTCCTCCTGGGAGTCTCGGAGGGGACCGGCTGTGCAGACGCCATGGAGT TGGTGCTGGTCTTCCTCTGCAGCCTGCTGGCCCCCATGGTCCTGGCCAGTGCAGCTGAAAAG GAGAAGGAAATGGACCCTTTTCATTATGATTACCAGACCCTGAGGATTGGGGGACTGGTGTT CGCTGTGGTCCTCTCTCGGTTGGGATCCTCCTTATCCTAAGTCGCAGGTGCAAGTGCAGTT TCAATCAGAAGCCCCGGGCCCCAGGAGATGAGGAAGCCCAGGTGGAGAACCTCATCACCGCC AATGCAACAGAGCCCCAGAAGCAGAGAACTGAAGTGCAGCCATCAGGTGGAAGCCTCTGGAA CCTGAGGCGGCTGCTTGAACCTTTGGATGCAAATGTCGATGCT**TAA**GAAAACCGGCCACTTC AGCAACAGCCCTTTCCCCAGGAGAAGCCAAGAACTTGTGTGTCCCCCACCCTATCCCCTCTA ACACCATTCCTCCACCTGATGATGCAACTAACACTTGCCTCCCCACTGCAGCCTGCGGTCCT CCCAGGCAGGGGCTGAGCCACATGGCCATCTGCTCCTGCCCCGTGGCCCTCCATCAC GTAGGGTAAGAGCACGGGCAGTGGTCTTCAGTCGTCTTGGGACCTGGGAAGGTTTGCAGCAC TTTGTCATCATTCATGGACTCCTTTCACTCCTTTAACAAAAACCTTGCTTCCTTATCCC ACCTGATCCCAGTCTGAAGGTCTCTTAGCAACTGGAGATACAAAGCAAGGAGCTGGTGAGCC CAGCGTTGACGTCAGGCAGGCTATGCCCTTCCGTGGTTAATTTCTTCCCAGGGGGCTTCCACG AGGAGTCCCCATCTGCCCCGCCCCTTCACAGAGCGCCCGGGGATTCCAGGCCCAGGGCTTCT ACTCTGCCCCTGGGGAATGTGTCCCCTGCATATCTTCTCAGCAATAACTCCATGGGCTCTGG GACCCTACCCCTTCCAACCTTCCCTGCTTCTGAGACTTCAATCTACAGCCCAGCTCATCCAG GTTGGGGCCAGCACACCGGGATGGATGGAGGGAGAGCCAGAGGCCTTTGCTTCTCTGCCTACG TCCCCTTAGATGGGCAGCAGAGGCAACTCCCGCATCCTTTGCTCTGCCTGTCGGTGGTCAGA GCGGTGAGCGAGGTGGGTTGGAGACTCAGCAGGCTCCGTGCAGCCCTTGGGAACAGTGAGAG GTTGAAGGTCATAACGAGAGTGGGAACTCAACCCAGATCCCGCCCCTCCTGTCCTGTGTT CCCGCGGAAACCAACCAAACCGTGCGCTGTGACCCATTGCTGTTCTCTGTATCGTGATCTAT CCTCAACAACAACAGAAAAAAGGAATAAAATATCCTTTGTTTCCT

FIGURE 127

MELVLVFLCSLLAPMVLASAAEKEKEMDPFHYDYQTLRIGGLVFAVVLFSVGILLILSRRCK CSFNQKPRAPGDEEAQVENLITANATEPQKQRTEVQPSGGSLWNLRRLLEPLDANVDA

FIGURE 128

FIGURE 129

 ${\tt MKIPVLPAVVLLSLLVLHSAQGATLGGPEEESTIENYASRPEAFNTPFLNIDKLRSAFKADE}$ ${\tt FLNWHALFESIKRKLPFLNWDAFPKLKGLRSATPDAQ}$

FIGURE 130

FIGURE 131

 ${\tt MGVEIAFASVILTCLSLLAAGVSQVVLLQPVPTQETGPKAMGDLSCGFAGHS}$

FIGURE 132

GGGGAATCTGCAGTAGGTCTGCCGGCG<mark>ATG</mark>GAGTGGTGGGCTAGCTCGCCGCTTCGGCTCTG GCTGCTGTTGTTCCTCCTGCCCTCAGCGCAGGGCCGCCAGAAGGAGTCAGGTTCAAAATGGA AAGTATTTATTGACCAAATTAACAGGTCTTTGGAGAATTACGAACCATGTTCAAGTCAAAAC TGCAGCTGCTACCATGGTGTCATAGAAGAGGGTCTAACTCCTTTCCGAGGAGGCATCTCCAG GAAGATGATGGCAGAGGTAGTCAGACGGAAGCTAGGGACCCACTATCAGATCACTAAGAACA GACTGTACCGGGAAAATGACTGCATGTTCCCCTCAAGGTGTAGTGGTGTTGAGCACTTTATT TTGGAAGTGATCGGGCGTCTCCCTGACATGGAGATGGTGATCAATGTACGAGATTATCCTCA GGTTCCTAAATGGATGGAGCCTGCCATCCCAGTCTTCTCCTTCAGTAAGACATCAGAGTACC ATGATATCATGTATCCTGCTTGGACATTTTGGGAAGGGGGACCTGCTGTTTGGCCAATTTAT CCTACAGGTCTTGGACGGTGGGACCTCTTCAGAGAAGATCTGGTAAGGTCAGCAGCACAGTG GCCATGGAAAAAGAAAACTCTACAGCATATTTCCGAGGATCAAGGACAAGTCCAGAACGAG ATCCTCTCATTCTTCTGTCTCGGAAAAACCCAAAACTTGTTGATGCAGAATACACCAAAAAC CAGGCCTGGAAATCTATGAAAGATACCTTAGGAAAGCCAGCTGCTAAGGATGTCCATCTTGT GGATCACTGCAAATACAAGTATCTGTTTAATTTTCGAGGCGTAGCTGCAAGTTTCCGGTTTA AACACCTCTTCCTGTGTGGCTCACTTGTTTTCCATGTTGGTGATGAGTGGCTAGAATTCTTC TATCCACAGCTGAAGCCATGGGTTCACTATATCCCAGTCAAAACAGATCTCTCCAATGTCCA AGAGCTGTTACAATTTGTAAAAGCAAATGATGATGTAGCTCAAGAGATTGCTGAAAGGGGAA GCCAGTTTATTAGGAACCATTTGCAGATGGATGACATCACCTGTTACTGGGAGAACCTCTTG AGTGAATACTCTAAATTCCTGTCTTATAATGTAACGAGAAGGAAAGGTTATGATCAAATTAT ${\tt TCCCAAAATGTTGAAAACTGAACTA}$ TAGTCATCATAGGACCATAGTCCTCTTTGTGGCA ACAGATCTCAGATATCCTACGGTGAGAAGCTTACCATAAGCTTGGCTCCTATACCTTGAATA TCTGCTATCAAGCCAAATACCTGGTTTTCCTTATCATGCTGCACCCAGAGCAACTCTTGAGA AAGATTTAAAATGTGTCTAATACACTGATATGAAGCAGTTCAACTTTTTGGATGAATAAGGA CCAGAAATCGTGAGATGTGGATTTTGAACCCAACTCTACCTTTCATTTTCTTAAGACCAATC ACAGCTTGTGCCTCAGATCATCCACCTGTGTGAGTCCATCACTGTGAAATTGACTGTGTCCA TGTGATGATGCCCTTTGTCCCATTATTTGGAGCAGAAAATTCGTCATTTGGAAGTAGTACAA CTCATTGCTGGAATTGTGAAATTATTCAAGGCGTGATCTCTGTCACTTTATTTTAATGTAGG AAACCCTATGGGGTTTATGAAAAATACTTGGGGATCATTCTCTGAATGGTCTAAGGAAGCGG TAGCCATGCCATGCAATGATGTAGGAGTTCTCTTTTTGTAAAACCATAAACTCTGTTACTCAG GAGGTTTCTATAATGCCACATAGAAAGAGGCCAATTGCATGAGTAATTATTGCAATTGGATT TCAGGTTCCCTTTTTGTGCCTTCATGCCCTACTTCTTAATGCCTCTCTAAAGCCAAA

FIGURE 133

MEWWASSPLRLWLLLFLLPSAQGRQKESGSKWKVFIDQINRSLENYEPCSSQNCSCYHGVIE EDLTPFRGGISRKMMAEVVRRKLGTHYQITKNRLYRENDCMFPSRCSGVEHFILEVIGRLPD MEMVINVRDYPQVPKWMEPAIPVFSFSKTSEYHDIMYPAWTFWEGGPAVWPIYPTGLGRWDL FREDLVRSAAQWPWKKKNSTAYFRGSRTSPERDPLILLSRKNPKLVDAEYTKNQAWKSMKDT LGKPAAKDVHLVDHCKYKYLFNFRGVAASFRFKHLFLCGSLVFHVGDEWLEFFYPQLKPWVH YIPVKTDLSNVQELLQFVKANDDVAQEIAERGSQFIRNHLQMDDITCYWENLLSEYSKFLSY NVTRRKGYDQIIPKMLKTEL

FIGURE 134

 $\texttt{CACCCCTCCATTTCTCGCC} \underline{\textbf{ATG}} \texttt{GCCCCTGCACTGCTCCTGATCCCTGCTCCTCTT}$ TCATCCTGGCCTTTGGCACCGGAGTGGAGTTCGTGCGCTTTACCTCCCTTCGGCCACTTCTT CCGCAGCATCCTTGCCCCCCTGGCATGGGATCTGGGGCTCCTGCTTCTATTTGTTGGGCAGC ACAGCCTCATGGCAGCTGAAAGAGTGAAGGCATGGACATCCCGGTACTTTGGGGTCCTTCAG AGGTCACTGTATGTGGCCTGCACTGCCCTGGCCTTGCAGCTGGTGATGCGGTACTGGGAGCC CATACCCAAAGGCCCTGTGTTGTGGGAGGCTCGGGCTGAGCCATGGGCCACCTGGGTGCCGC TCCTCTGCTTTGTGCTCCATGTCATCTCCTGGCTCCTCATCTTTAGCATCCTTCTCGTCTTT GACTATGCTGAGCTCATGGGCCTCAAACAGGTATACTACCATGTGCTGGGGCTGGGCGAGCC TCTGGCCCTGAAGTCTCCCCGGGCTCTCAGACTCTTCTCCCACCTGCGCCACCCAGTGTGTG TGGAGCTGCTGACAGTGCTGTGGGTGCCTACCCTGGGCACGGACCGTCTCCTTGCT TTCCTCCTTACCTCTGGGCCTGGCTCACGGGCTTGATCAGCAAGACCTCCGCTACCT $\texttt{CCGGGCCCAGCTACAAAGAAAACTCCACCTGCTCTCTCGGCCCCAGGATGGGGAGGCAGAG} \underline{\textbf{T}}$ **GA**GGAGCTCACTCTGGTTACAAGCCCTGTTCTTCCTCTCCCACTGAATTCTAAATCCTTAAC ATCCAGGCCCTGGCTGCTTCATGCCAGAGGCCCAAATCCATGGACTGAAGGAGATGCCCCTT CTACTACTTGAGACTTTATTCTCTGGGTCCAGCTCCATACCCTAAATTCTGAGTTTCAGCCA $\tt CTGAACTCCAAGGTCCACTTCTCACCAGCAAGGAAGAGTGGGGGTATGGAAGTCATCTGTCCC$ TTCACTGTTTAGAGCATGACACTCTCCCCCTCAACAGCCTCCTGAGAAGGAAAGGATCTGCC CTGACCACTCCCCTGGCACTGTTACTTGCCTCTGCGCCTCAGGGGTCCCCTTCTGCACCGCT GGCTTCCACTCCAAGAAGGTGGACCAGGGTCTGCAAGTTCAACGGTCATAGCTGTCCCTCCA GGCCCCAACCTTGCCTCACCACTCCCGGCCCTAGTCTCTGCACCTCCTTAGGCCCTGCCTCT GGGCTCAGACCCCAACCTAGTCAAGGGGATTCTCCTGCTCTTAACTCGATGACTTGGGGCTC

FIGURE 135

MAPALLIPAALASFILAFGTGVEFVRFTSLRPLLGGIPESGGPDARQGWLAALQDRSILAP LAWDLGLLLLFVGQHSLMAAERVKAWTSRYFGVLQRSLYVACTALALQLVMRYWEPIPKGPV LWEARAEPWATWVPLLCFVLHVISWLLIFSILLVFDYAELMGLKQVYYHVLGLGEPLALKSP RALRLFSHLRHPVCVELLTVLWVVPTLGTDRLLLAFLLTLYLGLAHGLDQQDLRYLRAQLQR KLHLLSRPQDGEAE

Signal sequence:

amino acids 1-13

Transmembrane domains:

amino acids 58-76, 99-113, 141-159, 203-222

N-myristoylation sites:

amino acids 37-43, 42-48, 229-235

FIGURE 136

CCGAGCACAGGAGATTGCCTGCGTTTAGGAGGTGGCTGCGTTGTGGGAAAAGCTATCAAGGA AGAAATTGCCAAACCATGTCTTTTTTTCTGTTTTCAGAGTAGTTCACAACAGATCTGAGTGT TTTAATTAAGCATGGAATACAGAAAACAACAAAAAACTTAAGCTTTAATTTCATCTGGAATT TCACGTGGTGCTCCCGACTACTCACCCCGAGTGTAAAGAACCTTCGGCTCGCGTGCTTCTG AGCTGCTGTGGATGGCCTCTGGGACTGTCCTTCCGAGTAGGATGTCACTGAGATCC $\tt CTCAAATGGAGCCTCCTGCTGTCACTCCTGAGTTTCTTTGTGATGTGGTACCTCAGCCT$ TCCCCACTACAATGTGATAGAACGCGTGAACTGGATGTACTTCTATGAGTATGAGCCGATTT ACAGACAAGACTTCACTTCACACTTCGAGAGCATTCAAACTGCTCTCATCAAAATCCATTT CTGGTCATTCTGGTGACCTCCCACCCTTCAGATGTGAAAGCCAGGCCAGGCCATTAGAGTTAC TTGGGGTGAAAAAAGTCTTGGTGGGGATATGAGGTTCTTACATTTTTCTTATTAGGCCAAG AGGCTGAAAAGGAAGACAAAATGTTGGCATTGTCCTTAGAGGATGAACACCTTCTTTATGGT GACATAATCCGACAAGATTTTTTAGACACATATAATAACCTGACCTTGAAAACCATTATGGC TTTTCATCAATACTGGCAATTTAGTGAAGTATCTTTTAAACCTAAACCACTCAGAGAAGTTT TTCACAGGTTATCCTCTAATTGATAATTATTCCTATAGAGGATTTTACCAAAAAACCCATAT TTCTTACCAGGAGTATCCTTTCAAGGTGTTCCCTCCATACTGCAGTGGGTTGGGTTATATAA TGTCCAGAGATTTGGTGCCAAGGATCTATGAAATGATGGGTCACGTAAAACCCATCAAGTTT GAAGATGTTTATGTCGGGATCTGTTTGAATTTATTAAAAGTGAACATTCATATTCCAGAAGA CAGCCCATGGCTTTTCTTCCAAGGAGATCATCACTTTTTTGGCAGGTCATGCTAAGGAACACC ACATGCCATTAT**TAA**CTTCACATTCTACAAAAAGCCTAGAAGGACAGGATACCTTGTGGAAA GTGTTAAATAAAGTAGGTACTGTGGAAAATTCATGGGGAGGTCAGTGTGCTGGCTTACACTG AACTGAAACTCATGAAAAACCCAGACTGGAGACTGGAGGGTTACACTTGTGATTTATTAGTC AGGCCCTTCAAAGATGATATGTGGAGGAATTAAATATAAAGGAATTGGAGGTTTTTGCTAAA GAAATTAATAGGACCAAACAATTTGGACATGTCATTCTGTAGACTAGAATTTCTTAAAAGGG AACAATGTAGTCACTTGAAGGTTTTGTGTATATCTTATGTGGATTACCAATTTAAAAATATA TGTAGTTCTGTGTCAAAAAACTTCTTCACTGAAGTTATACTGAACAAAATTTTACCTGTTTT TGGTCATTTATAAAGTACTTCAAGATGTTGCAGTATTTCACAGTTATTATTATTAAAATTA CTTCAACTTTGTGTTTTTAAATGTTTTGACGATTTCAATACAAGATAAAAAGGATAGTGAAT CATTCTTTACATGCAAACATTTTCCAGTTACTTAACTGATCAGTTTATTATTGATACATCAC TCCATTAATGTAAAGTCATAGGTCATTATTGCATATCAGTAATCTCTTGGACTTTGTTAAAT ATTTTACTGTGGTAATATAGAGAAGAATTAAAGCAAGAAAATCTGAAAA

FIGURE 137

MASALWTVLPSRMSLRSLKWSLLLLSLLSFFVMWYLSLPHYNVIERVNWMYFYEYEPIYRQD FHFTLREHSNCSHQNPFLVILVTSHPSDVKARQAIRVTWGEKKSWWGYEVLTFFLLGQEAEK EDKMLALSLEDEHLLYGDIIRQDFLDTYNNLTLKTIMAFRWVTEFCPNAKYVMKTDTDVFIN TGNLVKYLLNLNHSEKFFTGYPLIDNYSYRGFYQKTHISYQEYPFKVFPPYCSGLGYIMSRD LVPRIYEMMGHVKPIKFEDVYVGICLNLLKVNIHIPEDTNLFFLYRIHLDVCQLRRVIAAHG FSSKEIITFWQVMLRNTTCHY

FIGURE 138

FIGURE 139

MKFTIVFAGLLGVFLAPALANYNINVNDDNNNAGSGQQSVSVNNEHNVANVDNNNGWDSWNS IWDYGNGFAATRLFQKKTCIVHKMNKEVMPSIQSLDALVKEKKLQGKGPGGPPPKGLMYSVN PNKVDDLSKFGKNIANMCRGIPTYMAEEMQEASLFFYSGTCYTTSVLWIVDISFCGDTVEN

Signal Peptide:

amino acids 1-20

N-myristoylation Sites:

amino acids 67-72, 118-123, 163-168

Flavodoxin protein homology:

amino acids 156-174

FIGURE 140

CATTTCTGAAACTAATCGTGTCAGAATTGACTTTGAAAAGCATTGCTTTTTACAGAAGTATA TTAACTTTTTAGGAGTAATTTCTAGTTTGGATTGTAATATGAAATAATTTAAAAGGGCTTCG CTCATATAGGAAAATCGCATATGGTCCTAGTATTAAATTCTTATTGCTTACTGATTTTTT ${\tt CAAGCTTATAGTTGAAATATTTTTCAGGAATTAC} \underline{\textbf{ATG}} \texttt{AATGACAGTCTTCGAACCAATGTGT}$ TTGTTCGATTTCAACCAGAGACTATAGCATGTGCTTGCATCTACCTTGCAGCTAGAGCACTT CCAGGAAATCTGCATAGAAACACTTAGGCTTTATACCAGAAAAAAGCCAAACTATGAATTAC TGGAAAAAGAAGTAGAAAAAGAAAGTAGCCTTACAAGAAGCCAAATTAAAAGCAAAGGGA TTGAATCCGGATGGAACTCCAGCCTTTCAACCCTGGGTGGATTTTCTCCAGCCTCCAAGCC ATCATCACCAAGAGAAGTAAAAGCTGAAGAGAAATCACCAATCTCCATTAATGTGAAGACAG TCAAAAAAGAACCTGAGGATAGACAACAGGCTTCCAAAAGCCCTTACAATGGTGTAAGAAAA TTCTAGATCACATACTCCAAGAAGACACTATAATAATAGGCGGAGTCGATCTGGAACATACA GCTCGAGATCAAGAAGCAGTCCCGCAGTCACAGTGAAAGCCCTCGAAGACATCATAATCAT GGTTCTCCTCACCTTAAGGCCAAGCATACCAGAGATGATTTAAAAAGTTCAAACAGACATGG TCATAAAAGGAAAAATCTCGTTCTCGATCTCAGAGCAAGTCTCGGGATCACTCAGATGCAG CCAAGAAACACAGGCATGAAAGGGGACATCATAGGGACAGGCGTGAACGATCTCGCTCCTTT Cf TGACTTTCTCTTTGAGCCTGCATCAGTTCTTGGTTTTTGCCTATCTACAGTGTGATGT ATGGACTCAATCAAAAACATTAAACGCAAACTGATTAGGATTTGATTTCTTGAAACCCTCTA GGTCTCTAGAACACTGAGGACAGTTTCTTTTGAAAAGAACTATGTTAATTTTTTTGCACATT AAAATGCCCTAGCAGTATCTAATTAAAAACCATGGTCAGGTTCAATTGTACTTTATTATAGT TGTGTATTGTTTATTGCTATAAGAACTGGAGCGTGAATTCTGTAAAAATGTATCTTATTTTT ATACAGATAAAATTGCAGACACTGTTCTATTTAAGTGGTTATTTGTTTAAATGATGGTGAAT ACTTTCTTAACACTGGTTTGTCTGCATGTGTAAAGATTTTTACAAGGAAATAAAATACAAAT CTTGTTTTTCTAAAAAAAAAAAAAAAAAAAGT

FIGURE 141

MNDSLRTNVFVRFQPETIACACIYLAARALQIPLPTRPHWFLLFGTTEEEIQEICIETLRLY
TRKKPNYELLEKEVEKRKVALQEAKLKAKGLNPDGTPALSTLGGFSPASKPSSPREVKAEEK
SPISINVKTVKKEPEDRQQASKSPYNGVRKDSKRSRNSRSASRSRSRSRSRSRSHTPRRHYN
NRRSRSGTYSSRSRSRSRSHSESPRRHHNHGSPHLKAKHTRDDLKSSNRHGHKRKKSRSRSQ
SKSRDHSDAAKKHRHERGHHRDRRERSRSFERSHKSKHHGGSRSGHGRHRR

FIGURE 142

FIGURE 143

 ${\tt GGCACGAGGCCTCGTGCCAAGCTTGGCACGAGGGTGCACCGCGTTCTCGCACGCGTC} {\bf \underline{ATG}} {\tt GC}$ GGTCCTCGGAGTACAGCTGGTGACCCTGCTCACTGCCACCCTCATGCACAGGCTGGCGC CACACTGCTCCTTCGCGCGCTGGCTGCTCTGTAACGGCAGTTTGTTCCGATACAAGCACCCG TCTGAGGAGGAGCTTCGGGCCCTGGCGGGGAAGCCGAGGCCCAGAGGCAGGAAAGAGCGGTG GGCCAATGGCCTTAGTGAGGAGAAGCCACTGTCTGTGCCCCGAGATGCCCCGTTCCAGCTGG AGACCTGCCCCTCACGACCGTGGATGCCCTGGTCCTGCGCTTCTTCCTGGAGTACCAGTGG TTTGTGGACTTTGCTGTGTACTCGGGCGGCGTGTACCTCTTCACAGAGGCCTACTACAT GCTGGGACCAGCCAAGGAGACTAACATTGCTGTGTTCTGGTGCCTGCTCACGGTGACCTTCT CCATCAAGATGTTCCTGACAGTGACACGGCTGTACTTCAGCGCCGAGGAGGGGGGGTGAGCGC TCTGTCTGCCTCACCTTTGCCTTCCTCTTCCTGCTGCCATGCTGGTGCAAGTGGTGCG GGAGGAGACCCTCGAGCTGGGCCTGGAGCCTGGTCTGGCCAGCATGACCCAGAACTTAGAGC CACTTCTGAAGAAGCAGGGCTGGGACTGGGCGCTTCCTGTGGCCAAGCTGGCTATCCGCGTG GGACTGGCAGTGGTGGGCTGTGCTGGGTGCCTTCCTCACCTTCCCAGGCCTGCGGCTGGC CCAGACCCACCGGGACGCACTGACCATGTCGGAGGACAGACCCATGCTGCAGTTCCTCCTGC ACACCAGCTTCCTGTCTCCCCTGTTCATCCTGTGGCTCTGGACAAAGCCCATTGCACGGGAC TTCCTGCACCAGCCGCCTTTGGGGAGACGCGTTTCTCCCTGCTGTCCGATTCTGCCTTCGA CTCTGGGCGCCTCTGGTTGCTGGTGCTGTGCCTGCGGCTGGCGGTGACCCGGCCCC ACCTGCAGGCCTACCTGTGCCTGGCCAAGGCCCGGGTGGAGCAGCTGCGAAGGGAGGCTGGC CGCATCGAAGCCCGTGAAATCCAGCAGAGGGTGGTCCGAGTCTACTGCTATGTGACCGTGGT GAGCTTGCAGTACCTGACGCCGCTCATCCTCACCCTCAACTGCACACTTCTGCTCAAGACGC TGGGAGGCTATTCCTGGGGCCTGGGCCCAGCTCCTCTACTATCCCCCGACCCATCCTCAGCC AGCGCTGCCCCATCGGCTCTGGGGAGGACGAAGTCCAGCAGACTGCAGCGCGGATTGCCGG GGCCCTGGGTGGCCTTACTCCCCTCTTCCTCCGTGGCGTCCTGGCCTACCTCATCTGGT GGACGGCTGCCAGCTGCTCGCCAGCCTTTTCGGCCTCTACTTCCACCAGCACTTGGCA ${\tt GGCTCC} \underline{\textbf{TAG}} {\tt CTGCCTGCAGACCCTCCTGGGGCCCTGAGGTCTGTTCCTGGGGCCAGCGGGACA}$ GGCGTTCCCTTCACCACAGTGCCTGACCCGCGGCCCCCCTTGGACGCCGAGTTTCTGCCTCA GAACTGTCTCCTGGGCCCAGCAGCATGAGGGTCCCGAGGCCATTGTCTCCGAAGCGTATG TGCCAGGTTTGAGTGGCGAGGGTGATGCTGGCTGCTCTTCTGAACAAATAAAGGAGCATGCC GATTTTTAA

FIGURE 144

MAVLGVQLVVTLLTATLMHRLAPHCSFARWLLCNGSLFRYKHPSEEELRALAGKPRPRGRKE
RWANGLSEEKPLSVPRDAPFQLETCPLTTVDALVLRFFLEYQWFVDFAVYSGGVYLFTEAYY
YMLGPAKETNIAVFWCLLTVTFSIKMFLTVTRLYFSAEEGGERSVCLTFAFLFLLLAMLVQV
VREETLELGLEPGLASMTQNLEPLLKKQGWDWALPVAKLAIRVGLAVVGSVLGAFLTFPGLR
LAQTHRDALTMSEDRPMLQFLLHTSFLSPLFILWLWTKPIARDFLHQPPFGETRFSLLSDSA
FDSGRLWLLVVLCLLRLAVTRPHLQAYLCLAKARVEQLRREAGRIEAREIQQRVVRVYCYVT
VVSLQYLTPLILTLNCTLLLKTLGGYSWGLGPAPLLSPDPSSASAAPIGSGEDEVQQTAARI
AGALGGLLTPLFLRGVLAYLIWWTAACQLLASLFGLYFHQHLAGS

FIGURE 145

FIGURE 146

GGTTCCTACATCCTCATCTGAGAATCAGAGAGCATAATCTTCTTACGGGCCCGTGATTTATTAACGTGGCTT $\verb|AATCTGAAGGTTCTCAGTCAAATTCTTTGTGATCTACTGATTGTGGGGGGGCATGGCAAGGTTTGCTTAAAGGAGC| \\$ $\tt CGCTTCTGTTGCTGGTCTTGCCTTGGCTCAGTCCTAACTACATTGACAATGTGGGCAACCTGCACTTCCTG$ TATTCAGAACTCTGTAAAGGTGCCTCCCACTACGGCCTGACCAAAGATAGGAAGAGGGCGCTCACAAGATGGCTG GTGGACTCTGGCCGGAGCAACCGAACTAGGGCACGGCCCTTTGAGAGATCCACTATTAGAAGCAGATCATTTAA AAAAATAAATCGAGCTTTGAGTGTTCTTCGAAGGACAAAGAGCGGGAGTGCAGTTGCCAACCATGCCGACCAGGGCAGGGAAAATTCTGAAAACACCACTGCCCCTGAAGTCTTTCCAAGGTTGTACCACCTGATTCCAGATGGTGAA ATTACCAGCATCAAGATCAATCGAGTAGATCCCAGTGAAAGCCTCTCTATTAGGCTGGTGGGAGGTAGCGAAAC GAGACATCATTCTAAAGGTCAACGGGATGGACATCAGCAATGTCCCTCACAACTACGCTGTGCGTCTCCTGCGG $\tt CAGCCCTGCCAGGTGCTGTGACTGTGATGCGTGAACAGAGTTCCGCAGCAGGAACAATGGACAGGCCCC$ GGATGCCTACAGACCCCGAGATGACAGCTTTCATGTGATTCTCAACAAAAGTAGCCCCGAGGAGCAGCTTGGAA TAAAACTGGTGCGCAAGGTGGATGAGCCTGGGGTTTTCATCTTCAATGTGCTGGATGGCGGTGTGGCATATCGA CATGGTCAGCTTGAGGAGAATGACCGTGTGTTAGCCATCAATGGACATGATCTTCGATATGGCAGCCCAGAAAG $\tt CTGACATCTTTCAGGAAGCCGGCTGGAACAGCAATGGCAGCTGGTCCCCAGGGCCAGGGGAGAGGAGCAACACT$ CCCAAGCCCCTCCATCCTACAATTACTTGTCATGAGAAGGTGGTAAATATCCAAAAAGACCCCGGTGAATCTCT GAGGAGTCATAAGCAGAGATGGAAGAATAAAAACAGGTGACATTTTGTTGAATGTGGATGGGGTCGAACTGACA ${\tt GAGGTCAGCCGGAGTGAGGCAGTGGCATTATTGAAAAGAACATCATCCTCGATAGTACTCAAAGCTTTGGAAGT}$ $\tt GTGACTGGTCCCCATCCTGGGTCATGTGGCTGGAATTACCACGGTGCTTGTATAACTGTAAAGATATTGTATTA$ TTTCATCAAATCCATTGTTGAAGGAACACCAGCATACAATGATGGAAGAATTAGATGTGGTGATATTCTTCTTG $\textbf{ATTACTCTAACTATTGTTTCTTGGCCTGGCACTTTTTTA} \textbf{\underline{TAG}} \textbf{AATCAATGATGGGTCAGAGGAAAACAGAAAAA}$ ${\tt TCACAAATAGGCTAAGAAGTTGAAACACTATATTTATCTT} {\tt GTCAGTTTTTATATTTAAAGAAAGAATACATTGT}$ AAAAATGTCAGGAAAAGTATGATCATCTAATGAAAGCCAGTTACACCTCAGAAAAATATGATTCCAAAAAAATTA AAACTACTAGTTTTTTTCAGTGTGGAGGATTTCTCATTACTCTACAACATTGTTTATATTTTTTCTATTCAAT AAAAAGCCCTAAAAACAACTAAAATGATTGATTTGTATACCCCACTGAATTCAAGCTGATTTAAATTTAAAATTT GGTATATGCTGAAGTCTGCCAAGGGTACATTATGGCCATTTTTAAATTTACAGCTAAAATATTTTTTAAAATGCA TTGCTGAGAAACGTTGCTTTCATCAAACAAGAATAAATATTTTTCAGAAGTTAAA

FIGURE 147

MKALLLLVLPWLSPANYIDNVGNLHFLYSELCKGASHYGLTKDRKRRSQDGCPDGCASLTAT
APSPEVSAAATISLMTDEPGLDNPAYVSSAEDGQPAISPVDSGRSNRTRARPFERSTIRSRS
FKKINRALSVLRRTKSGSAVANHADQGRENSENTTAPEVFPRLYHLIPDGEITSIKINRVDP
SESLSIRLVGGSETPLVHIIIQHIYRDGVIARDGRLLPGDIILKVNGMDISNVPHNYAVRLL
RQPCQVLWLTVMREQKFRSRNNGQAPDAYRPRDDSFHVILNKSSPEEQLGIKLVRKVDEPGV
FIFNVLDGGVAYRHGQLEENDRVLAINGHDLRYGSPESAAHLIQASERRVHLVVSRQVRQRS
PDIFQEAGWNSNGSWSPGPGERSNTPKPLHPTITCHEKVVNIQKDPGESLGMTVAGGASHRE
WDLPIYVISVEPGGVISRDGRIKTGDILLNVDGVELTEVSRSEAVALLKRTSSSIVLKALEV
KEYEPQEDCSSPAALDSNHNMAPPSDWSPSWVMWLELPRCLYNCKDIVLRRNTAGSLGFCIV
GGYEEYNGNKPFFIKSIVEGTPAYNDGRIRCGDILLAVNGRSTSGMIHACLARLLKELKGRI
TLTIVSWPGTFL

FIGURE 148

CCAAAGTGATCATTTGAAAAAGAGATATCCACATCTTCAAGCCCATATAAAGGATAGAAGCT
GCACAGGGCAGCTTTACTTACTCCAGCACCTTCCTCCCAGGCAAATG
TTGGGATACAATCTCATGGATACGAGGTTTTTAACATCATCAGCCCAAGCAACAATGGTGGC
AATGTTCAGGAGACAGTGACAATTGATAATGAAAAAAATACCGCCATCGTTAACATCCATGC
AGGATCATGCTCTTCTACCACAATTTTTGACTATAAACATGGCTACATTGCATCCAGGGTGC
TCTCCCGAAGAGCCTGCTTTATCCTGAAGATGGACCATCAGAACATCCCTCCTCTGAACAAT
CTCCAATGGTACATCTATGAGAAACAGGCTCTGGACAACATGTTCTCCAACAAATACACCTG
GGTCAAGTACAACCCTCTGGAGTCTCTGATCAAAGACATGGTTCCTGCTTGGGTCAC
CCATTGAGAAACTCTGCAAACATATCCCTTTGTATAAGGGGGAAGTGGTTGAAAAACACACAT
AATGTCGGTGCTGGAGGCTGTGCAAAGGCTGGGCTCCTGGGCATCTTGGAAAATACACCC
TGCAGACATTCATGTTTAGGATGATTAGCCCTCTTGTTTTATCTTTTCAAAGAAAATACATCC
TTGGTTTACACTCAAAAGTCAAATTAAAATTCTTTCCCAATGCCCCAACTAATTTTGAGATTC
AGTCAGAAAATATAAATGCTGTATTTATA

FIGURE 149

MKILVAFLVVLTIFGIQSHGYEVFNIISPSNNGGNVQETVTIDNEKNTAIVNIHAGSCSSTT IFDYKHGYIASRVLSRRACFILKMDHQNIPPLNNLQWYIYEKQALDNMFSNKYTWVKYNPLE SLIKDVDWFLLGSPIEKLCKHIPLYKGEVVENTHNVGAGGCAKAGLLGILGISICADIHV

FIGURE 150

ATGGGGCTCCCTGGGCTGTTCTGCTTGGCCGTGCTGCCAGCAGCTTCTCCAAGGCACG GGAGGAAGAATTACCCCTGTGGTCTCCATTGCCTACAAAGTCCTGGAAGTTTTCCCCAAAG GCCGCTGGGTGCTCATAACCTGCTGTGCACCCCAGCCACCACCGCCCATCACCTATTCCCTC TGTGGAACCAAGAACATCAAGGTGGCCAAGAAGGTGGTGAAGACCCACGAGCCGGCCTCCTT CAACCTCAACGTCACACTCAAGTCCAGTCCAGACCTGCTCACCTACTTCTGCCGGGCGTCCT CCACCTCAGGTGCCCATGTGGACAGTGCCAGGCTACAGATGCACTGGGAGCTGTGGTCCAAG CCAGTGTCTGAGCTGCGGGCCAACTTCACTCTGCAGGACAGAGGGGCAGGCCCCAGGGTGGA GATGATCTGCCAGGCGTCCTCGGGCAGCCCACCTATCACCAACAGCCTGATCGGGAAGGATG AGCCAGACATCGGACTGGTTCTGGTGCCAGGCTGCAAACAACGCCAATGTCCAGCACAGCGC CCTCACAGTGGTGCCCCCAGGTGGTGACCAGAAGATGGAGGACTGGCAGGGTCCCCTGGAGA GCCCCATCCTTGCCGCTCTACAGGAGCACCCGCCGTCTGAGTGAAGAGGAGTTTGGG GGGTTCAGGATAGGGAATGGGGAGGTCAGAGGACGCAAAGCAGCCATG**TAG**AATGAACC GTCCAGAGAGCCAAGCACGGCAGAGGACTGCAGGCCATCAGCGTGCACTGTTCGTATTTGGA

FIGURE 151

MGLPGLFCLAVLAASSFSKAREEEITPVVSIAYKVLEVFPKGRWVLITCCAPQPPPPITYSL CGTKNIKVAKKVVKTHEPASFNLNVTLKSSPDLLTYFCRASSTSGAHVDSARLQMHWELWSK PVSELRANFTLQDRGAGPRVEMICQASSGSPPITNSLIGKDGQVHLQQRPCHRQPANFSFLP SQTSDWFWCQAANNANVQHSALTVVPPGGDQKMEDWQGPLESPILALPLYRSTRRLSEEEFG GFRIGNGEVRGRKAAAM

Signal Peptide:

amino acids 1-18

N-glycosylation Sites:

amino acids 86-89, 132-135, 181-184

FIGURE 152

GGTCCTTAATGGCAGCAGCCGCCGCTACCAAGATCCTTCTGTGCCTCCCGCTTCTGCTCCTG CTGTCCGGCTGGTCCCGGGCTGGGCGAGCCGACCCTCACTCTTTGCTATGACATCACCGT CATCCCTAAGTTCAGACCTGGACCACGGTGGTGTGCGGTTCAAGGCCAGGTGGATGAAAAGA CTTTTCTTCACTATGACTGTGGCAACAAGACAGTCACACCTGTCAGTCCCCTGGGGAAGAAA CTAAATGTCACAACGGCCTGGAAAGCACAGAACCCAGTACTGAGAGAGGTGGTGGACATACT TACAGAGCAACTGCGTGACATTCAGCTGGAGAATTACACACCCAAGGAACCCCTCACCCTGC AGGCAAGGATGTCTTGTGAGCAGAAAGCTGAAGGACACAGCAGTGGATCTTGGCAGTTCAGT TTCGATGGGCAGATCTTCCTCCTCTTTGACTCAGAGAAGAGAATGTGGACAACGGTTCATCC TGGAGCCAGAAAGATGAAAGAAAGTGGGAGAATGACAAGGTTGTGGCCATGTCCTTCCATT ACTTCTCAATGGGAGACTGTATAGGATGGCTTGAGGACTTCTTGATGGGCATGGACACCC CTGGAGCCAAGTGCAGGAGCACCACTCGCCATGTCCTCAGGCCACAACCCAACTCAGGGCCAC AGCCACCACCTCATCCTTTGCTGCCTCCTCATCATCCTCCCCTGCTTCATCCTCCCTGGCA TCTGAGGAGAGTCCTTTAGAGTGACAGGTTAAAGCTGATACCAAAAGGCTCCTGTGAGCACG GTCTTGATCAAACTCGCCCTTCTGTCTGGCCAGCTGCCCACGACCTACGGTGTATGTCCAGT GGCCTCCAGCAGATCATGACATCATGGACCCAATAGCTCATTCACTGCCTTGATTCCTT TTGCCAACAATTTTACCAGCAGTTATACCTAACATATTATGCAATTTTCTCTTGGTGCTACC GTCAGTAAAATAATCACGTTAGACTTCAGACCTCTGGGGGATTCTTTCCGTGTCCTGAAAGAG AATTTTTAAATTAATTAAGAAAAATTTATATTAATGATTGTTTCCTTTAGTAATTTAT

FIGURE 153

MAAAAATKILLCLPLLLLSGWSRAGRADPHSLCYDITVIPKFRPGPRWCAVQGQVDEKTFL HYDCGNKTVTPVSPLGKKLNVTTAWKAQNPVLREVVDILTEQLRDIQLENYTPKEPLTLQAR MSCEQKAEGHSSGSWQFSFDGQIFLLFDSEKRMWTTVHPGARKMKEKWENDKVVAMSFHYFS MGDCIGWLEDFLMGMDSTLEPSAGAPLAMSSGTTQLRATATTLILCCLLIILPCFILPGI

Important features:

Signal peptide:

amino acids 1-25

Transmembrane domain:

amino acids 224-246

N-glycosylation site.

amino acids 68-72, 82-86

N-myristoylation site.

amino acids 200-206, 210-216

Amidation site.

amino acids 77-81

FIGURE 154

FIGURE 155

MELIPTITSWRVLILVVALTQFWCGFLCRGFHLQNHELWLLIKREFGFYSKSQYRTWQKKLA EDSTWPPINRTDYSGDGKNGFYINGGYESHEQIPKRKLKLGGQPTEQHFWARL

FIGURE 156

GTTCTCCTTTCCGAGCCAAAATCCCAGGCGATGGTGAATTATGAACGTGCCACACCATGAAG CTCTTGTGGCAGGTAACTGTGCACCACCACCTGGAATGCCATCCTGCTCCCGTTCGTCTA CCTCACGGCGCAAGTGTGGATTCTGTGTGCAGCCATCGCTGCTGCCGCCTCAGCCGGGCCCC AGAACTGCCCCTCCGTTTGCTCGTGCAGTAACCAGTTCAGCAAGGTGGTGTGCACGCGCCGG GGCCTCTCCGAGGTCCCGCAGGGTATTCCCTCGAACACCCGGTACCTCAACCTCATGGAGAA CAACATCCAGATGATCCAGGCCGACACCTTCCGCCACCTCCACCACCTGGAGGTCCTGCAGT TGGGCAGGAACTCCATCCGGCAGATTGAGGTGGGGGCCTTCAACGGCCTGGCCAGCCTCAAC ACCCTGGAGCTGTTCGACAACTGGCTGACAGTCATCCCTAGCGGGGCCTTTGAATACCTGTC CAAGCTGCGGGAGCTCTGGCAACAACCCCATCGAAAGCATCCCCTCTTACGCCTTCA ACCGGGTGCCCTCATGCGCCTGGACTTGGGGGGAGCTCAAGAAGCTGGAGTATATCTCT GAGGGAGCTTTTGAGGGGCTGTTCAACCTCAAGTATCTGAACTTGGGCATGTGCAACATTAA AGACATGCCCAATCTCACCCCCCTGGTGGGGGCTGGAGGAGCTGGAGATGTCAGGGAACCACT TCCCTGAGATCAGGCCTGGCTCCTTCCATGGCCTGAGCTCCCTCAAGAAGCTCTGGGTCATG AACTCACAGGTCAGCCTGATTGAGCGGAATGCTTTTGACGGGCTTGGCTTCACTTGTGGAACT CAACTTGGCCCACAATAACCTCTCTTCTTTGCCCCATGACCTCTTTACCCCGCTGAGGTACC TGGTGGAGTTGCATCTACACCACAACCCTTGGAACTGTGATTGTGACATTCTGTGGCTAGCC TGGTGGCTTCGAGAGTATATACCCACCAATTCCACCTGCTGTGGCCGCTGTCATGCTCCCAT GCACATGCGAGGCCGCTACCTCGTGGAGGTGGACCAGGCCTCCTTCCAGTGCTCTGCCCCCT TCATCATGGACGCACCTCGAGACCTCAACATTTCTGAGGGTCGGATGGCAGAACTTAAGTGT CGGACTCCCCTATGTCCTCCGTGAAGTGGTTGCTGCCCAATGGGACAGTGCTCAGCCACGC CTCCCGCCACCCAAGGATCTCTGTCCTCAACGACGCCACCTTGAACTTTTCCCACGTGCTGC TTTCAGACACTGGGGTGTACACATGCTGACCAATGTTGCAGGCAACTCCAACGCCTCG GCCTACCTCAATGTGAGCACGGCTGAGCTTAACACCTCCAACTACAGCTTCTTCACCACAGT AACAGTGGAGACCACGGAGATCTCGCCTGAGGACACAACGCGAAAGTACAAGCCTGTTCCTA CCACGTCCACTGGTTACCAGCCGGCATATACCACCTCTACCACGGTGCTCATTCAGACTACC CGTGTGCCCAAGCAGGTGGCAGTACCCGCGACAGACACCACTGACAAGATGCAGACCAGCCT GGATGAAGTCATGAAGACCACCAAGATCATCATTGGCTGCTTTGTGGCAGTGACTCTGCTAG CTGCCGCCATGTTGATTGTCTTCTATAAACTTCGTAAGCGGCACCAGCAGCGGAGTACAGTC ACAGCCGCCCGGACTGTTGAGATAATCCAGGTGGACGAAGACATCCCAGCAGCAACATCCGC AGCAGCAACAGCAGCTCCGTCCGGTGTATCAGGTGAGGGGGGCAGTAGTGCTGCCCACAATTC ATGACCATATTAACTACAACACCTACAAACCAGCACATGGGGCCCACTGGACAGAAAACAGC CTGGGGAACTCTCTGCACCCACAGTCACCACTATCTCTGAACCTTATATAATTCAGACCCA TACCAAGGACAAGGTACAGGAAACTCAAATA**TGA**CTCCCCCCCCAAAAAACTTATAAAAT GCAATAGAATGCACACAAAGACAGCAACTTTTGTACAGAGTGGGGAGAGACTTTTTCTTGTA TATGCTTATATATTAAGTCTATGGGCTGGTTAAAAAAAACAGATTATATTAAAATTTAAAAGA CAAAAAGTCAAAACA

FIGURE 157

MKLLWQVTVHHHTWNAILLPFVYLTAQVWILCAAIAAAASAGPQNCPSVCSCSNQFSKVVCT
RRGLSEVPQGIPSNTRYLNLMENNIQMIQADTFRHLHHLEVLQLGRNSIRQIEVGAFNGLAS
LNTLELFDNWLTVIPSGAFEYLSKLRELWLRNNPIESIPSYAFNRVPSLMRLDLGELKKLEY
ISEGAFEGLFNLKYLNLGMCNIKDMPNLTPLVGLEELEMSGNHFPEIRPGSFHGLSSLKKLW
VMNSQVSLIERNAFDGLASLVELNLAHNNLSSLPHDLFTPLRYLVELHLHHNPWNCDCDILW
LAWWLREYIPTNSTCCGRCHAPMHMRGRYLVEVDQASFQCSAPFIMDAPRDLNISEGRMAEL
KCRTPPMSSVKWLLPNGTVLSHASRHPRISVLNDGTLNFSHVLLSDTGVYTCMVTNVAGNSN
ASAYLNVSTAELNTSNYSFFTTVTVETTEISPEDTTRKYKPVPTTSTGYQPAYTTSTTVLIQ
TTRVPKQVAVPATDTTDKMQTSLDEVMKTTKIIIGCFVAVTLLAAAMLIVFYKLRKRHQQRS
TVTAARTVEIIQVDEDIPAATSAAATAAPSGVSGEGAVVLPTIHDHINYNTYKPAHGAHWTE
NSLGNSLHPTVTTISEPYIIQTHTKDKVQETQI

FIGURE 158

 $\tt CGCTCGGGCACCAGCCGGCAAGG{\color{red} \underline{\textbf{ATG}}} GAGCTGGGTTGCTGGACGCAGTTGGGGCTCACTTTTCTTCAGCTCC$ $\verb|TTCTCATCTCGTCCTTGCCAAGAGAGTACACAGTCATTAATGAAGCCTGCCCTGGAGCAGAGTGGAATATCATG|$ ${ t TGTCGGGAGTGCTGAATATGATCAGATTGAGTGCGTCTGCCCCGGAAAGAGGGGAAGTCGTGGGTTATACCAT}$ GCAAGAGCTGCCGAAATGGCTCATGGGGGGGTACCTTGGATGACTTCTATGTGAAGGGGTTCTACTGTGCAGAG TGCCGAGCAGGCTGGTACGGAGAGACTGCATGCGATGTGGCCAGGTTCTGCGAGCCCCAAAGGGTCAGATTTT GTTGGAAAGCTATCCCCTAAATGCTCACTGTGAATGGACCATTCATGCTAAACCTGGGTTTGTCATCCAACTAA GATTTGTCATGTTGAGTCTGGAGTTTGACTACATGTGCCAGTATGACTATGTTGAGGTTCGTGATGGAGACAAC $\tt CGCGATGGCCAGATCATCAAGCGTGTCTGTGGCAACGAGCGGCCAGCTCCTATCCAGAGCATAGGATCCTCACT$ ${\tt CCACGTCCTTCCACTCCGATGGCTCCAAGAATTTTGACGGTTTCCATGCCATTTATGAGGAGATCACAGCAT}$ GCTCCTCATCCCCTTGTTTCCATGACGGCACGTGCGTCCTTGACAAGGCTGGATCTTACAAGTGTGCCTGCTTG TGGGTACCAGAAAATAACAGGGGGCCCTGGGCTTATCAACGGACGCCATGCTAAAATTGGCACCGTGGTGTCTT ${ t TCTTTTGTAACAACTCCTATGTTCTTAGTGGCAATGAGAAAAGAACTTGCCAGCAGAATGGAGAGTGGTCAGGG$ AAACAGCCCATCTGCATAAAAGCCTGCCGAGAACCAAAGATTTCAGACCTGGTGAGAAGGAGAGTTCTTCCGAT $\verb|CCCCTACCAAGAAGCCAGCCCTTCCCTTTGGAGATCTGCCCATGGGATACCAACATCTGCATACCCAGCTCCAG|$ TATGAGTGCATCTCACCCTTCTACCGCCGCCTGGGCAGCAGCAGGAGGACATGTCTGAGGACTGGGAAGTGGAG TGGGCGGCACCATCCTGCATCCCTATCTGCGGGAAAATTGAGAACATCACTGCTCCAAAGACCCAAGGGTTGC GCTGGCCGTGGCAGCCATCTACAGGAGGACCAGCGGGGTGCATGACGGCAGCCTACACAAGGGAGCGTGG TTCCTAGTCTGCAGCGGTGCCCTGGTGAATGAGCGCACTGTGGTGGTGGCTGCCCACTGTGTTACTGACCTGGG GAAGGTCACCATGATCAAGACAGCAGACCTGAAAGTTGTTTTGGGGAAATTCTACCGGGATGATGACCGGGATG AGAAGACCATCCAGAGCCTACAGATTTCTGCTATCATTCTGCATCCCAACTATGACCCCATCCTGCTTGATGCT GCCCTGGCTTCAAGAACGACACTGCGCTCTGGGGTGGTCAGTGTGGAGCTCGCTGTGTGAGGAGCAG ${\tt CATGAGGACCATGGCATCCCAGTGAGTGTCACTGATAACATGTTCTGTGCCAGCTGGGAACCCACTGCCCCTTC}$ TGATATCTGCACTGCAGAGACAGGAGGCATCGCGGGCTGTGTCCTTCCCGGGACGAGCATCTCCTGAGCCACGCT GGCATCTGATGGGACTGGTCAGCTGGAGCTATGATAAAACATGCAGCCACAGGCTCTCCACTGCCTTCACCAAG ${ t GTGCTGCCTTTTAAAGACTGGATTGAAAGAAATATGAAA}{ t { t TGA}}$ TGTATATCCGTCTGTACGTGTGTCATTGCGTGAAGCAGTGTGGGCCTGAAGTGTGATTTGGCCTGTGAACTTGG ${ t CTGTGCCAGGGCTTCTGACTTCAGGGACAAAACTCAGTGAAGGGTGAGTAGACCTCCATTGCTGGTAGGCTGAT$ ATATACAAAACCTCTCCACTCCACTGACCTGGTGGTCTTCCCCAACTTTCAGTTATACGAATGCCATCAGCTTG ${\tt ACCAGGGAAGATCTGGGCTTCATGAGGCCCCTTTTGAGGCTCTCAAGTTCTAGAGAGCTGCCTGTGGGACAGCC}$

FIGURE 159

MELGCWTQLGLTFLQLLLISSLPREYTVINEACPGAEWNIMCRECCEYDQIECVCPGKREVV
GYTIPCCRNEENECDSCLIHPGCTIFENCKSCRNGSWGGTLDDFYVKGFYCAECRAGWYGGD
CMRCGQVLRAPKGQILLESYPLNAHCEWTIHAKPGFVIQLRFVMLSLEFDYMCQYDYVEVRD
GDNRDGQIIKRVCGNERPAPIQSIGSSLHVLFHSDGSKNFDGFHAIYEEITACSSSPCFHDG
TCVLDKAGSYKCACLAGYTGQRCENLLEERNCSDPGGPVNGYQKITGGPGLINGRHAKIGTV
VSFFCNNSYVLSGNEKRTCQQNGEWSGKQPICIKACREPKISDLVRRRVLPMQVQSRETPLH
QLYSAAFSKQKLQSAPTKKPALPFGDLPMGYQHLHTQLQYECISPFYRRLGSSRRTCLRTGK
WSGRAPSCIPICGKIENITAPKTQGLRWPWQAAIYRRTSGVHDGSLHKGAWFLVCSGALVNE
RTVVVAAHCVTDLGKVTMIKTADLKVVLGKFYRDDDRDEKTIQSLQISAIILHPNYDPILLD
ADIAILKLLDKARISTRVQPICLAASRDLSTSFQESHITVAGWNVLADVRSPGFKNDTLRSG
VVSVVDSLLCEEQHEDHGIPVSVTDNMFCASWEPTAPSDICTAETGGIAAVSFPGRASPEPR
WHLMGLVSWSYDKTCSHRLSTAFTKVLPFKDWIERNMK

FIGURE 160

ACCAGGCATTGTATCTTCAGTTGTCATCAAGTTCGCAATCAGATTGGAAAAGCTCAACTTGA AGCTTTCTTGCCTGCAGTGAAGCAGAGAGATAGATATTATTCACGTAATAAAAAAC**ATG**GGC TTCAACCTGACTTTCCACCTTTCCTACAAATTCCGATTACTGTTGCTGTTGACTTTGTGCCT GACAGTGGTTGGGTGGCCACCAGTAACTACTTCGTGGGTGCCATTCAAGAGATTCCTAAAG CAAAGGAGTTCATGGCTAATTTCCATAAGACCCTCATTTTGGGGAAAGGGAAAAACTCTGACT AATGAAGCATCCACGAAGAAGGTAGAACTTGACAACTGTCCTTCTGTGTCTCCTTACCTCAG AGGCCAGAGCAAGCTCATTTTCAAACCAGATCTCACTTTGGAAGAGGTACAGGCAGAAAATC CCAAAGTGTCCAGAGGCCGGTATCGCCCTCAGGAATGTAAAGCTTTACAGAGGGTCGCCATC CTCGTTCCCCACCGGAACAGAGAGAACACCTGATGTACCTGCTGGAACATCTGCATCCCTT CCTGCAGAGGCAGCTGGATTATGGCATCTACGTCATCCACCAGGCTGAAGGTAAAAAGT TTAATCGAGCCAAACTCTTGAATGTGGGCTATCTAGAAGCCCTCAAGGAAGAAAATTGGGAC TGCTTTATATTCCACGATGTGGACCTGGTACCCGAGAATGACTTTAACCTTTACAAGTGTGA GGAGCATCCCAAGCATCTGGTGGTTGGCAGGAACAGCACTGGGTACAGGTTACGTTACAGTG GATATTTTGGGGGTGTTACTGCCCTAAGCAGAGAGCAGTTTTTCAAGGTGAATGGATTCTCT AACAACTACTGGGGATGGGGAGGCGAAGACGATGACCTCAGACTCAGGGTTGAGCTCCAAAG AATGAAAATTTCCCGGCCCCTGCCTGAAGTGGGTAAATATACAATGGTCTTCCACACTAGAG ACAAAGGCAATGAGGTGAACGCAGAACGGATGAAGCTCTTACACCAAGTGTCACGAGTCTGG AGAACAGATGGGTTGAGTAGTTCTTATAAATTAGTATCTGTGGAACACAATCCTTTATA TATCAACATCACAGTGGATTTCTGGTTTGGTGCA**TGA**CCCTGGATCTTTTGGTGATGTTTGG AAGAACTGATTCTTTGTTTGCAATAATTTTGGCCTAGAGACTTCAAATAGTAGCACACATTA AGAACCTGTTACAGCTCATTGTTGAGCTGAATTTTTCCTTTTTGTATTTTCTTAGCAGAGCT CCTGGTGATGTAGAGATATAAAACAGTTGTAACAAGACAGCTTTCTTAGTCATTTTGATCATG AGGGTTAAATATTGTAATATGGATACTTGAAGGACTTTATATAAAAGGATGACTCAAAGGAT TATGGGATAAAAGGCCACAGGAAATAAGACTGCTGAATGTCTGAGAGAACCAGAGTTGTTCT CGTCCAAGGTAGAAAGGTACGAAGATACAATACTGTTATTCATTTATCCTGTACAATCATCT GTGAAGTGGTGGTCAGGTGAGAAGGCGTCCACAAAAGAGGGGAGAAAAGGCGACGAATCA GGACACAGTGAACTTGGGAATGAAGAGGTAGCAGGAGGGTGGAGTGTCGGCTGCAAAGGCAG CAGTAGCTGAGCTGCTGCTGATAGCCTTCAGGGGAGGACCTGCCCAGGTATGCCT TCCAGTGATGCCCACCAGAGAATACATTCTCTATTAGTTTTTAAAGAGTTTTTGTAAAATGA TTTTGTACAAGTAGGATATGAATTAGCAGTTTACAAGTTTACATATTAACTAATAATAATA TGTCTATCAAATACCTCTGTAGTAAAATGTGAAAAAAGCAAAA

FIGURE 161

MGFNLTFHLSYKFRLLLLTLCLTVVGWATSNYFVGAIQEIPKAKEFMANFHKTLILGKGKT
LTNEASTKKVELDNCPSVSPYLRGQSKLIFKPDLTLEEVQAENPKVSRGRYRPQECKALQRV
AILVPHRNREKHLMYLLEHLHPFLQRQQLDYGIYVIHQAEGKKFNRAKLLNVGYLEALKEEN
WDCFIFHDVDLVPENDFNLYKCEEHPKHLVVGRNSTGYRLRYSGYFGGVTALSREQFFKVNG
FSNNYWGWGGEDDDLRLRVELQRMKISRPLPEVGKYTMVFHTRDKGNEVNAERMKLLHQVSR
VWRTDGLSSCSYKLVSVEHNPLYINITVDFWFGA

Important features:

Signal peptide:

amino acids 1-27

N-glycosylation sites:

amino acids 4-7, 220-223 and 335-338

Xylose isomerase proteins:

amino acids 191-201

FIGURE 162

CGTGGGCCGGGGTCGCGCAGCGGGCTGTGGGCGCCCGGAGGAGCGACCGCCGCAGTTCTC ${\tt GAGCTCCAGCTGCATTCCCTCCGCGTCCGCCCCACGCTTCTCCCGGCTCCGGGCCCCGCA} \underline{{\tt ATG}}$ CCCGGCAGGGCTGCCAGGCCTGTATGAACTCAATCTCACCACCGATAGCCCTGCCACCA CGGGAGCGGTGGTGACCATCTCGGCCAGCCTGGTGGCCAAGGACAACGGCAGCCTGGCCCTG CCCGCTGACGCCCACCTCTACCGCTTCCACTGGATCCACACCCCGCTGGTGCTTACTGGCAA GATGGAGAAGGGTCTCAGCTCCACCATCCGTGTCGGCCACGTGCCCGGGGAATTCCCGG TCTCTGTCTGGGTCACTGCCGCTGACTGCTGGATGTGCCAGCCTGTGGCCAGGGGCTTTGTG GTCCTCCCCATCACAGAGTTCCTCGTGGGGGACCTTGTTGTCACCCAGAACACTTCCCTACC GCAACTTCCTCAAGACCGCCTTGTTTCTCTACAGCTGGGACTTCGGGGACGGGACCCAGATG GTGACTGAAGACTCCGTGGTCTATTATAACTATTCCATCATCGGGACCTTCACCGTGAAGCT CAAAGTGGTGGCGGAGTGGGAAGAGGTGGAGCCGGATGCCACGAGGGCTGTGAAGCAGAAGA $\verb|CCGGGGACTTCTCCGCCTGAAGCTGCAGGAAACCCTTCGAGGCATCCAAGTGTTGGGG|\\$ CCCACCCTAATTCAGACCTTCCAAAAGATGACCGTGACCTTGAACTTCCTGGGGAGCCCTCC TCTGACTGTGTGCTGGCGTCTCAAGCCTGAGTGCCTCCCGCTGGAGGAAGGGGAGTGCCACC $\tt CTGTGTCCGTGGCCAGCACACCTTCAGGGACCCTGGGGACTAC$ TGCTTCAGCATCCGGGCCGAGAATATCATCAGCAAGACACATCAGTACCACAAGATCCAGGT GTGGCCCTCCAGAATCCAGCCGGCTGTCTTTGCTTTCCCATGTGCTACACTTATCACTGTGA TGTTGGCCTTCATCATGTACATGACCCTGCGGAATGCCACTCAGCAAAAGGACATGGTGGAG AACCCGGAGCCACCCTCTGGGGTCAGGTGCTGCTGCCAGATGTGCTGTGGGCCTTTCTTGCT GGAGACTCCATCTGAGTACCTGGAAATTGTTCGTGAGAACCACGGGCTGCTCCCCCCTCT ${\tt ATAAGTCTGTCAAAACTTACACCGTG} {\tt TGA} {\tt GCACTCCCCCTCCCCACCCCATCTCAGTGTTAA}$ CTGACTGCTGACTTGGAGTTTCCAGCAGGGTGGTGTGCACCACTGACCAGGAGGGGTTCATT TGCGTGGGGCTGTTGGCCTGGATCATCCATCTGTACAGTTCAGCCACTGCCACAAGCC CCTCCCTCTCTGTCACCCCTGACCCCAGCCATTCACCCATCTGTACAGTCCAGCCACTGACA TAAGCCCCACTCGGTTACCACCCCCTTGACCCCCTACCTTTGAAGAGGCCTTCGTGCAGGACT $\tt TTGATGCTTGGGGTGTTCCGTGTTGACTCCTAGGTGGGCCTGCCCACTGCCCATTCCT$ CTGTGCCAGAGAGCTAGAAAGAGGTCATAAAGGGTTAAAAATCCATAACTAAAGGTTGTAC CACACACACAGAAATATAAACACATGCGTCACATGGGCATTTCAGATGATCAGCTCTGTA TCTGGTTAAGTCGGTTGCTGGGATGCACCCTGCACTAGAGCTGAAAGGAAATTTGACCTCCA AGCAGCCCTGACAGGTTCTGGGCCCGGGCCCTCCCTTTGTGCTTTGTCTCTGCAGTTCTTGC GCCCTTTATAAGGCCATCCTAGTCCCTGCTGGCTGGCAGGGCCTGGATGGGGGGCAGGACT AATACTGAGTGATTGCAGAGTGCTTTATAAATATCACCTTATTTTATCGAAACCCATCTGTG AAACTTTCACTGAGGAAAAGGCCTTGCAGCGGTAGAAGAGGTTGAGTCAAGGCCGGGCGCG TGGCTCACGCCTGTAATCCCAGCACTTTGGGAGGCCGAGGCGGGTGGATCACGAGATCAGGA AGCCGGGCGTGGTGGGTGCCTGTAGTCCCAGCTACTCGGGAGGCTGAGGCAGGAGAATG GTGCGAACCCGGGAGCGGAGCTTGCAGTGAGCCCAGATGGCGCCACTGCACTCCAGCCTGA GTGACAGAGCGAGACTCTGTCTCCA

FIGURE 163

MAQAVWSRLGRILWLACLLPWAPAGVAAGLYELNLTTDSPATTGAVVTISASLVAKDNGSLA
LPADAHLYRFHWIHTPLVLTGKMEKGLSSTIRVVGHVPGEFPVSVWVTAADCWMCQPVARGF
VVLPITEFLVGDLVVTQNTSLPWPSSYLTKTVLKVSFLLHDPSNFLKTALFLYSWDFGDGTQ
MVTEDSVVYYNYSIIGTFTVKLKVVAEWEEVEPDATRAVKQKTGDFSASLKLQETLRGIQVL
GPTLIQTFQKMTVTLNFLGSPPLTVCWRLKPECLPLEEGECHPVSVASTAYNLTHTFRDPGD
YCFSIRAENIISKTHQYHKIQVWPSRIQPAVFAFPCATLITVMLAFIMYMTLRNATQQKDMV
ENPEPPSGVRCCCQMCCGPFLLETPSEYLEIVRENHGLLPPLYKSVKTYTV

Important features of the protein:

Signal peptide:

amino acids 1-24

Transmembrane domain:

amino acids 339-362

N-glycosylation sites.

amino acids 34-37, 58-61, 142-145, 197-200, 300-303 and 364-367

FIGURE 164

FIGURE 165

 ${\tt MALSSQIWAACLLLLLLASLTSGSVFPQQTGQLAELQPQDRAGARASWMPMFQRRRRRDTH} \\ {\tt FPICIFCCGCCHRSKCGMCCKT}$

FIGURE 166

CTGTCAGGAAGGACCATCTGAAGGCTGCAATTTGTTCTTAGGGAGGCAGGTGCTGGCCTGGC $\tt CTGGATCTTCCACC {\color{red} ATG} {\color{blue} TTCCTGTTGCTGCCTTTTGATAGCCTGATTGTCAACCTTCTGGGC}$ AGTCTCCTTTGGTATCCGCAAACTCTACATGAAAAGTCTGTTAAAAATCTTTGCGTGGGCTA CCTTGAGAATGGAGCGAGGAGCCAAGGAGAAGAACCACCAGCTTTACAAGCCCTACACCAAC GGAATCATTGCAAAGGATCCCACTTCACTAGAAGAAGAGATCAAAGAGATTCGTCGAAGTGG TAGTAGTAAGGCTCTGGACAACACTCCAGAGTTCGAGCTCTCTGACATTTTCTACTTTTGCC GGAAAGGAATGGAGACCATTATGGATGATGAGGTGACAAAGAGATTCTCAGCAGAAGAACTG GAGTCCTGGAACCTGCTGAGCAGAACCAATTATAACTTCCAGTACATCAGCCTTCGGCTCAC GGTCCTGTGGGGGTTAGGAGTGCTGATTCGGTACTGCTTTCTGCTGCCGCTCAGGATAGCAC TGGCTTTCACAGGGATTAGCCTTCTGGTGGTGGGCACAACTGTGGTGGGATACTTGCCAAAT AGCGCTGACAGCCATCACCATACCATGACAGGGAAAACAGACCAAGAAATGGTGGCATCT GTGTGGCCAATCATACCTCACCGATCGATGTGATCATCTTGGCCAGCGATGGCTATTATGCC ATGGTGGGTCAAGTGCACGGGGGACTCATGGGTGTGATTCAGAGAGCCATGGTGAAGGCCTG CCCACACGTCTGGTTTGAGCGCTCGGAAGTGAAGGATCGCCACCTGGTGGCTAAGAGACTGA CTGAACATGTGCAAGATAAAAGCAAGCTGCCTATCCTCATCTTCCCAGAAGGAACCTGCATC AATAATACATCGGTGATGATGTTCAAAAAGGGAAGTTTTGAAATTGGAGCCACAGTTTACCC TGTTGCTATCAAGTATGACCCTCAATTTGGCGATGCCTTCTGGAACAGCAGCAAATACGGGA TGGTGACGTACCTGCGAATGATGACCAGCTGGGCCATTGTCTGCAGCGTGTGGTACCTG CCTCCCATGACTAGAGAGGCAGATGAAGATGCTGTCCAGTTTGCGAATAGGGTGAAATCTGC CATTGCCAGGCAGGAGGACTTGTGGACCTGCTGTGGGATGGGGGCCTGAAGAGGGAGAAGG TGAAGGACACGTTCAAGGAGGAGCAGCAGAAGCTGTACAGCAAGATGATCGTGGGGAACCAC ${\tt AAGGACAGGAGCCGCTCC}{{\tt TGA}}{\tt GCCTGCCTCCAGCTGGGGGGCCACCGTGCGGGGTGCCAA}$ CGGGCTCAGAGCTGCGCCGCCGCCCCCCCCCCTGTTTCCAGACTCCAGGG CTCCCCGGGCTGCTCTGGATCCCAGGACTCCGGCTTTCGCCGAGCCGCAGCGGGATCCCTGT GCACCCGGCGCAGCCTACCCTTGGTGGTCTAAACGGATGCTGCTGGGTGTTGCGACCCAGGA CGAGATGCCTTGTTTCTTTTACAATAAGTCGTTGGAGGAATGCCATTAAAGTGAACTCCCCA CCTTTGCACGCTGTGCGGGCTGAGTGGTTGGGGAGATGTGGCCATGGTCTTGTGCTAGAGAT GGCGGTACAAGAGTCTGTTATGCAAGCCCGTGTGCCAGGGATGTGCTGGGGGGCGGCCACCCG CTCTCCAGGAAAGGCACAGCTGAGGCACTGTGGCTTCGGCCTCAACATCGCCCCCAGC CTTGGAGCTCTGCAGACATGATAGGAAGGAAACTGTCATCTGCAGGGGCTTTCAGCAAAATG GGCCGCTGACTGGGGCCATGGGGAGAACGTGTTTCGTACTCCAGGCTAACCCTGAACTCCCC ATGTGATGĊGCGCTTTGTTGAATGTGTGTCTCGGTTTCCCCATCTGTAATATGAGTCGGGGG AGGACACATCACGTTCAGTGTTTCAAGTACAGGCCCACAAAACGGGGCACGGCAGGCCTGAG TGA

FIGURE 167

MFLLLPFDSLIVNLLGISLTVLFTLLLVFIIVPAIFGVSFGIRKLYMKSLLKIFAWATLRME
RGAKEKNHQLYKPYTNGIIAKDPTSLEEEIKEIRRSGSSKALDNTPEFELSDIFYFCRKGME
TIMDDEVTKRFSAEELESWNLLSRTNYNFQYISLRLTVLWGLGVLIRYCFLLPLRIALAFTG
ISLLVVGTTVVGYLPNGRFKEFMSKHVHLMCYRICVRALTAIITYHDRENRPRNGGICVANH
TSPIDVIILASDGYYAMVGQVHGGLMGVIQRAMVKACPHVWFERSEVKDRHLVAKRLTEHVQ
DKSKLPILIFPEGTCINNTSVMMFKKGSFEIGATVYPVAIKYDPQFGDAFWNSSKYGMVTYL
LRMMTSWAIVCSVWYLPPMTREADEDAVQFANRVKSAIARQGGLVDLLWDGGLKREKVKDTF
KEEQQKLYSKMIVGNHKDRSRS

FIGURE 168

GCCCTCGAAACCAGGACTCCAGCACCTCTGGTCCCGCCCTCACCCGGACCCCTGGCCCTCA ACCTGGCAGGCCCAGGCTGTTCCCACCATCCTGCCCCTGGGCCTGGCTCCAGACACCTTTGA CGATACCTATGTGGGTTGTGCAGAGGAGATGGAGGAGAAGGCAGCCCCCCTGCTAAAGGAGG AAATGGCCCACCATGCCCTGCTGCGGGAATCCTGGGAGGCCACCAGGAGACCTGGGAGGAC AAGCGTCGAGGGCTTACCTTGCCCCCTGGCTTCAAAGCCCAGAATGGAATAGCCATTATGGT CTACACCAACTCATCGAACACCTTGTACTGGGAGTTGAATCAGGCCGTGCGGACGGGCGGAG GCTCCCGGGAGCTCTACATGAGGCACTTTCCCTTCAAGGCCCTGCATTTCTACCTGATCCGG GCCCTGCAGCTGCGAGGCAGTGGGGGGCTGCAGCAGGGGACCTGGGGAGGTGGTTTCCG AGGTGTGGGCAGCCTTCGCTTTGAACCCAAGAGGCTGGGGGGACTCTGTCCGCTTGGGCCAGT TTGCCTCCAGCTCCCTGGATAAGGCAGTGGCCCACAGATTTGGGGAGAAGAGGCGGGGCTGT GTGTCTGCGCCAGGGGTGCAGCTAGGGTCACAATCTGAGGGGGCCTCCTCTCTGCCCCCCTG ${\tt GAAGACTCTGCTCTTGGCCCCTGGAGAGTTCCAGCTCTCAGGGGTTGGGCCC} {\color{blue}{\bf TGA}} {\tt AAGTCCA}$ ACATCTGCCACTTAGGAGCCCTGGGAACGGGTGACCTTCATATGACGAAGAGGCACCTCCAG CAGCCTTGAGAAGCAAGAACATGGTTCCGGACCCAGCCCTAGCAGCCTTCTCCCCAACCAGG ATGTTGGCCTGGGGAGGCCACAGCAGGGCTGAGGGAACTCTGCTATGTGATGGGGACTTCCT TGGAGTTTTATTGAGGTAGCTACGTGATTAAATGGTATTGCAGTGTGGA

FIGURE 169

MALAALMIALGSLGLHTWQAQAVPTILPLGLAPDTFDDTYVGCAEEMEEKAAPLLKEEMAHH ALLRESWEAAQETWEDKRRGLTLPPGFKAQNGIAIMVYTNSSNTLYWELNQAVRTGGGSREL YMRHFPFKALHFYLIRALQLLRGSGGCSRGPGEVVFRGVGSLRFEPKRLGDSVRLGQFASSS LDKAVAHRFGEKRRGCVSAPGVQLGSQSEGASSLPPWKTLLLAPGEFQLSGVGP

FIGURE 170

GTGGCTTCATTTCAGTGGCTGACTTCCAGAGAGCAAT**ATG**GCTGGTTCCCCAACATGCCTCA CCCTCATCTATATCCTTTGGCAGCTCACAGGGTCAGCAGCCTCTGGACCCGTGAAAGAGCTG GTCGGTTCCGTTGGTGGGGCCGTGACTTTCCCCCTGAAGTCCAAAGTAAAGCAAGTTGACTC TATTGTCTGGACCTTCAACACACCCCTCTTGTCACCATACAGCCAGAAGGGGGCACTATCA TAGTGACCCAAAATCGTAATAGGGAGAGAGTAGACTTCCCAGATGGAGGCTACTCCCTGAAG CTCAGCAAACTGAAGAAGAATGACTCAGGGATCTACTATGTGGGGATATACAGCTCATCACT CCAGCAGCCCTCCACCCAGGAGTACGTGCTGCATGTCTACGAGCACCTGTCAAAGCCTAAAG TCACCATGGGTCTGCAGAGCAATAAGAATGGCACCTGTGTGACCAATCTGACATGCTGCATG GAACATGGGGAAGAGGTGTGATTTATACCTGGAAGGCCCTGGGGCAAGCAGCCAATGAGTC CCATAATGGGTCCATCCTCCCCATCTCCTGGAGATGGGGAGAAAGTGATATGACCTTCATCT GCGTTGCCAGGAACCCTGTCAGCAGAAACTTCTCAAGCCCCATCCTTGCCAGGAAGCTCTGT GAAGGTGCTGATGACCCAGATTCCTCCATGGTCCTCCTGTGTCTCCTGTTGGTGCCCCT AGTACATTGAAGAGAAGAGAGAGTGGACATTTGTCGGGAAACTCCTAACATATGCCCCCAT TCTGGAGAGACACAGAGTACGACACAATCCCTCACACTAATAGAACAATCCTAAAGGAAGA TCCAGCAAATACGGTTTACTCCACTGTGGAAATACCGAAAAAGATGGAAAATCCCCACTCAC TGCTCACGATGCCAGACACACCAAGGCTATTTGCCTATGAGAATGTTATC**TAG**ACAGCAGTG CACTCCCCTAAGTCTCTGCTCA

FIGURE 171

MAGSPTCLTLIYILWQLTGSAASGPVKELVGSVGGAVTFPLKSKVKQVDSIVWTFNTTPLVT
IQPEGGTIIVTQNRNRERVDFPDGGYSLKLSKLKKNDSGIYYVGIYSSSLQQPSTQEYVLHV
YEHLSKPKVTMGLQSNKNGTCVTNLTCCMEHGEEDVIYTWKALGQAANESHNGSILPISWRW
GESDMTFICVARNPVSRNFSSPILARKLCEGAADDPDSSMVLLCLLLVPLLLSLFVLGLFLW
FLKRERQEEYIEEKKRVDICRETPNICPHSGENTEYDTIPHTNRTILKEDPANTVYSTVEIP
KKMENPHSLLTMPDTPRLFAYENVI

FIGURE 172

CTGGTTCCCCAACATGCCTCACCCTCATCTATATCCTTTGGCAGCTCACAGGGTCAGCAGCC TCTGGACCCGTGAAAGAGCTGGTCGGTTCCGTTGGTGGGGCCGTGACTTTCCCCCTGAAGTC CAAAGTAAAGCAAGTTGACTCTATTGTCTGGACCTTCAACACCACCCTCTTGTCACCATAC AGCCAGAAGGGGGCACTATCATAGTGACCCAAAATCGTAATAGGGAGAGAGTAGACTTCCCA GATGGAGGCTACTCCCTGAAGCTCAGCAAACTGAAGAATGACTCAGGGATCTACTATGT GGGGATATACAGCTCATCACTCCAGCAGCCCTCCACCCAGGAGTACGTGCTGCATGTCTACG AGCACCTGTCAAAGCCTAAAGTCACCATGGGTCTGCAGAGCAATAAGAATGGCACCTGTGTG ACCAATCTGACATGCTGCATGGAACATGGGGAAGAGGATGTGATTTATACCTGGAAGGCCCT GGGGCAAGCCAATGAGTCCCATAATGGGTCCATCCTCCCCATCTCCTGGAGATGGGGAG AAAGTGATATGACCTTCATCTGCGTTGCCAGGAACCCTGTCAGCAGAAACTTCTCAAGCCCC ATCCTTGCCAGGAAGCTCTGTGAAGGTGCTGCTGATGACCCAGATTCCTCCATGGTCCTCCT GTGTCTCCTGTTGGTGCCCCTCCTGCTCAGTCTCTTTGTACTGGGGCTATTTCTTTGGTTTC ACTCCTAACATATGCCCCCATTCTGGAGAGAACACAGAGTACGACACAATCCCTCACACTAA TAGAACAATCCTAAAGGAAGATCCAGCAAATACGGTTTACTCCACTGTGGAAATACCGAAAA AGATGGAAAATCCCCACTCACTGCTCACGATGCCAGACACACCAAGGCTATTTGCCTATGAG

FIGURE 173

GAAAGACGTGGTCCTGACAGACAGACAATCCTATTCCCTACCAAAATGAAGATGCTGCTGCT
GCTGTGTTTGGGACTGACCCTAGTCTGTGTCCATGCAGAAGAAGCTAGTTCTACGGGAAGGA
ACTTTAATGTAGAAAAGATTAATGGGGAATGGCATACTATTATCCTGGCCTCTGACAAAAGA
GAAAAGATAGAAGAACATGGCAACTTTAGACTTTTTCTGGAGCAAATCCATGTCTTGGAGAA
TTCCTTAGTTCTTAAAGTCCATACTGTAAGAGATGAAGAGTGCTCCGAATTATCTATGGTTG
CTGACAAAACAGAAAAGGCTGGTGAATATTCTGTGACGTATGATGATTCAATACATTTACT
ATACCTAAGACAGACTATGATAACTTTCTTATGGCTCACCTCATTAACGAAAAGGATGGGGA
AACCTTCCAGCTGATGGGGCTCTATGGCCGAGAACCAGATTTGAGTTCAGACATCAAGGAAA
GGTTTGCACAACTATGTGAGGAGCATGGAATCCTTAGAGAAAATATCATTGACCTATCCAAT
GCCAATCGCTGCCTCCAGGCCCGAGAATGAAGAATGGCCTGAGCCTCCAGTGTTGAGTGGAC
ACTTCTCACCAGGACTCCACCATCATCCCTTCCTATCCATACAGCATCCCAGTATAAATTC
TGTGATCTGCATTCCATCCTGTCTCACTGAGAAGTCCAATTCCAGTCTATCAACATGTTACC
TAGGATACCTCATCAAGAATCAAAGACTTCTTTAAATTTCTCTTTGATACACCCTTGACAAT
TTTTCATGAAATTATTCCTCTTTCCTGTTCAATAAATGATTACCCTTGCACTTAA

FIGURE 174

MKMLLLLCLGLTLVCVHAEEASSTGRNFNVEKINGEWHTIILASDKREKIEEHGNFRLFLEQ IHVLENSLVLKVHTVRDEECSELSMVADKTEKAGEYSVTYDGFNTFTIPKTDYDNFLMAHLI NEKDGETFQLMGLYGREPDLSSDIKERFAQLCEEHGILRENIIDLSNANRCLQARE

FIGURE 175

FIGURE 176

MTCCEGWTSCNGFSLLVLLLLGVVLNAIPLIVSLVEEDQFSQNPISCFEWWFPGIIGAGLMA
IPATTMSLTARKRACCNNRTGMFLSSFFSVITVIGALYCMLISIQALLKGPLMCNSPSNSNA
NCEFSLKNISDIHPESFNLQWFFNDSCAPPTGFNKPTSNDTMASGWRASSFHFDSEENKHRL
IHFSVFLGLLLVGILEVLFGLSQIVIGFLGCLCGVSKRRSQIV

FIGURE 177

FIGURE 178

MRLSVCLLMVSLALCCYQAHALVCPAVASEITVFLFLSDAAVNLQVAKLNPPPEALAAKLEV KHCTDQISFKKRLSLKKSWWK

FIGURE 179

FIGURE 180

 ${\tt MERVTLALLLLAGLTALEANDPFANKDDPFYYDWKNLQLSGLICGGLLAIAGIAAVLSGKCK} \\ {\tt YKSSQKQHSPVPEKAIPLITPGSATTC}$

FIGURE 181

GGAGAAGAGGTTGTGTGGGACAAGCTGCTCCCGACAGAAGGATGTCGCTGCTGAGCCTGCCC TGGCTGGGCCTCAGACCGGTGGCAATGTCCCCATGGCTACTCCTGCTGCTGGTTGTGGGCTC CTGGCTACTCGCCCGCATCCTGGCTTGGACCTATGCCTTCTATAACAACTGCCGCCGGCTCC AGTGTTTCCCACAGCCCCCAAAACGGAACTGGTTTTGGGGTCACCTGGGCCTGATCACTCCT ACAGAGGGGCTTGAAGGACTCGACCCAGATGTCGGCCACCTATTCCCAGGGCTTTACGGT ATGGCTGGGTCCCATCATCCCTTCATCGTTTTATGCCACCCTGACACCATCCGGTCTATCA CCAATGCCTCAGCTGCCATTGCACCCAAGGATAATCTCTTCATCAGGTTCCTGAAGCCCTGG CTGGGAGAAGGGATACTGCTGAGTGGCGGTGACAAGTGGAGCCGCCACCGTCGGATGCTGAC GCCCGCCTTCCATTTCAACATCCTGAAGTCCTATATAACGATCTTCAACAAGAGTGCAAACA TCATGCTTGACAAGTGGCAGCACCTGGCCTCAGAGGGCAGCAGTCGTCTGGACATGTTTGAG CACATCAGCCTCATGACCTTGGACAGTCTACAGAAATGCATCTTCAGCTTTGACAGCCATTG TCAGGAGAGGCCCAGTGAATATTTGCCACCATCTTGGAGCTCAGTGCCCTTGTAGAGAAAA GAAGCCAGCATATCCTCCAGCACATGGACTTTCTGTATTACCTCTCCCATGACGGCGCGCCC TTCCACAGGGCCTGCCGCCTGGTGCATGACTTCACAGACGCTGTCATCCGGGAGCGGCGTCG CACCCTCCCCACTCAGGGTATTGATGATTTTTTCAAAGACAAAGCCAAGTCCAAGACTTTGG ATTTCATTGATGTGCTTCTGCTGAGCAAGGATGAAGATGGGAAGGCATTGTCAGATGAGGAT ATAAGAGCAGAGGCTGACACCTTCATGTTTGGAGGCCATGACACCACGGCCAGTGGCCTCTC CTGGGTCCTGTACAACCTTGCGAGGCACCCAGAATACCAGGAGCGCTGCCGACAGGAGGTGC AAGAGCTTCTGAAGGACCGCGATCCTAAAGAGATTGAATGGGACGACCTGGCCCAGCTGCCC TTCCTGACCATGTGCGTGAAGGAGAGCCTGAGGTTACATCCCCCAGCTCCCTTCATCTCCCG ATGCTGCACCCAGGACATTGTTCTCCCAGATGGCCGAGTCATCCCCAAAGGCATTACCTGCC TCATCGATATTATAGGGGTCCATCACAACCCAACTGTGTGGCCGGATCCTGAGGTCTACGAC CCCTTCCGCTTTGACCCAGAGAACAGCAAGGGGAGGTCACCTCTGGCTTTTATTCCTTTCTC $\tt CGCAGGGCCCAGGAACTGCATCGGGCAGGCGTTCGCCATGGCGGAGATGAAAGTGGTCCTGG$ CGTTGATGCTGCACTTCCGGTTCCTGCCAGACCACACTGAGCCCCGCAGGAAGCTGGAA TTGATCATGCGCGCGAGGGCGGGCTTTGGCTGCGGGTGGAGCCCCTGAATGTAGGCTTGCA GTCACCTTTCTGACCCATCCACCTGTTTTTTTGCAGATTGTCATGAATAAAACGGTGCTGTCAAA

FIGURE 182

MSLLSLPWLGLRPVAMSPWLLLLLVVGSWLLARILAWTYAFYNNCRRLQCFPQPPKRNWFWG
HLGLITPTEEGLKDSTQMSATYSQGFTVWLGPIIPFIVLCHPDTIRSITNASAAIAPKDNLF
IRFLKPWLGEGILLSGGDKWSRHRRMLTPAFHFNILKSYITIFNKSANIMLDKWQHLASEGS
SRLDMFEHISLMTLDSLQKCIFSFDSHCQERPSEYIATILELSALVEKRSQHILQHMDFLYY
LSHDGRRFHRACRLVHDFTDAVIRERRRTLPTQGIDDFFKDKAKSKTLDFIDVLLLSKDEDG
KALSDEDIRAEADTFMFGGHDTTASGLSWVLYNLARHPEYQERCRQEVQELLKDRDPKEIEW
DDLAQLPFLTMCVKESLRLHPPAPFISRCCTQDIVLPDGRVIPKGITCLIDIIGVHHNPTVW
PDPEVYDPFRFDPENSKGRSPLAFIPFSAGPRNCIGQAFAMAEMKVVLALMLLHFRFLPDHT
EPRRKLELIMRAEGGLWLRVEPLNVGLQ

FIGURE 183

FIGURE 184

 ${\tt MYKLASCCLLFTGFLNPLLSLPLLDSREISFQLSAPHEDARLTPEELERASLLQILPEMLGA} \\ ERGDILRKADSSTNIFNPRGNLRKFQDFSGQDPNILLSHLLARIWKPYKKRETPDCFWKYCV$

FIGURE 185

FIGURE 186

 ${\tt MPSPGTVCSLLLLGMLWLDLAMAGSSFLSPEHQRVQQRKESKKPPAKLQPRALAGWLRPEDG}$ ${\tt GQAEGAEDELEVRFNAPFDVGIKLSGVQYQQHSQALGKFLQDILWEEAKEAPADKO}$

FIGURE 187

CGGCCACAGCTGGCATGCTCTGATCGCCATCCTGCTGTATGTCCTCGTCCAGTACCTC GTGAACCCCGGGGTGCTCCGCACGGACCCCAGATGTCAAGAAT**ATG**AACACGTGGCTGCTGT TCCTCCCCTGTTCCCGGTGCAGGTGCAGACCCTGATAGTCGTGATCATCGGGATGCTCGTG CTCCTGCTGGACTTTCTTGGCTTGGTGCACCTGGGCCAGCTGCTCATCTTCCACATCTACCT GAGTATGTCCCCCACCCTAAGCCCCCGATCCCCCAAGGCTGGGTGGTCAGAGCTGCTCATC TTACACCTCTACTTGAGTATGTCCCTAACCCTGAGCCCCCACGCCTGGGGCCAGAGTCTTT GTCCCCCGTGTGCGCATGTTCAGGGTCAGCCTCTCCCAGAAGTGAGATCATGGACAAAA GGGCAAATCACAGGAAGAATTAAATCCATGAGGACCCAGCAGGCCCAGCAAGAAGCTGAAC ${\tt TCACGCCGAGACCTGCAGGAGTGCTGCT} \underline{{\tt TGA}} {\tt AGTAACAAGTTTAAAATGTTCAGA}$ GACAATGGAATGGAATCTATTAGGCAAGAACAGGACATTATGAAATAAGGACAGGTGGACTT AACAACTGAAGCGAGAGCTGTGGTCTTGCTTGGTCTCACAGTGGGCACAGCGGTAGGCGGTC AGTCATGTTGCTGAACGACGGAGGGTAAACTCCCCAGCCCCAAGAAAACCTGTGTTGGAAGT AACAACCTCCCTGCTCCTGGCACCAGCCGTTTTGGTCATGGTGGGCCAGCTGCAAAGCG TCTTCCATTCTCTGGGCAGTGGTGGCCCCGAGGCTGTGGCCTCTCAGGGGGGTTTCTGTGGAC ACGGGCAGCAGAGTGTCCAGGCCAGCCCCCAAGAATGCCCTGCTCCTGACAGCTTGGCCA ACCCCTGGTCAGGGCAGAGGGAGTTGGGTGGGTCAGGCTCTGGGCTCACCTCCATCTCCAGA GCATCCCCTGCCTGCAGTTGTGGCAAGAACGCCCAGCTCAGAATGAACACACCCCACCAAGA GCCTCCTTGTTCATAACCACAGGTTACCCTACAAACCACTGTCCCCACACAACCCTGGGGAT GTTTTAAAACACACCTCTAACGCATATCTTACAGTCACTGTTGTCTTGCCTGAGGGTTGA ATTTTTTTTAATGAAAGTGCAATGAAAATCACTGGATTAAATCCTACGGACACAGAGCTGAA

FIGURE 188

MNTWLLFLPLFPVQVQTLIVVIIGMLVLLLDFLGLVHLGQLLIFHIYLSMSPTLSPRSPQGW VVRAAHLTPLLEYVPNPEPPTPGARVFVPRVRMCSGSASPRSEIMDKKGKSQEEIKSMRTQQ AQQEAELTPRPAGVVPGA

FIGURE 189

GGAGTGCAGATGGCATCCTTCGGTTCTTCCAGACAAGCTGCAAGACGCTGACC**ATG**GCCAAG ATGGAGCTCTCGAAGGCCTTCTCTGGCCAGCGGACACTCCTATCTGCCATCCTCAGCATGCT ATCACTCAGCTTCTCCACAACATCCCTGCTCAGCAACTACTGGTTTGTGGGCACACAGAAGG TGCCCAAGCCCCTGTGCGAGAAAGGTCTGGCAGCCAAGTGCTTTGACATGCCAGTGTCCCTG GATGGAGATACCAACACCCACCCAGGAGGTGGTACAATACAACTGGGAGACTGGGGATGA CCGGTTCTCCTTCCGGAGCTTCCGGAGTGGCATGTGGCTATCCTGTGAGGAAACTGTGGAAG AACCAGGGGAGAGTGCCGAAGTTTCATTGAACTTACACCACCAGCCAAGAGAGGTGAGAAA GGACTACTGGAATTTGCCACGTTGCAAGGCCCATGTCACCCCACTCTCCGATTTGGAGGGAA GCGGTTGATGGAGAAGGCTTCCCTCCCCTCCCTTGGGGCTTTGTGGCAAAAATCCTA TGGTTATCCCTGGGAACGCAGATCACCTACATCGGACTTCAATTCATCAGCTTCCTCCTGCT ACTAACAGACTTGCTACTCACTGGGAACCCTGCCTGTGGGCTCAAACTGAGCGCCTTTGCTG CTGTTTCCTCTGTCCAGGTCTCCTGGGGATGGTGGCCCACATGATGTATTCACAAGTC TTCCAAGCGACTGTCAACTTGGGTCCAGAAGACTGGAGACCACATGTTTGGAATTATGGCTG GGCCTTCTACATGGCCTGGCTCTCCTTCACCTGCTGCATGGCGTCGGCTGTCACCACCTTCA ${ t ACACGTACACCAGGATGGTGCTGGAGTTCAAGTGCAAGCA}$ CCGAACTGCCTACCACCATCACCATCAGTGTTTCCCTCGGCGGCTGTCAAGTGCAGCCCCCAC CGTGGGTCCTTTGACCAGCTACCACCAGTATCATAATCAGCCCATCCACTCTGTCTCTGAGG AAAGAAGCAGTTAGGTCATCTGTAGAGGAAGAGCAGTGTTAGGAGTTAAGCGGGTTTGGGGA GTAGGCTTGAGCCCTACCTTACACGTCTGCTGATTATCAACATGTGCTTAAGCCAACATCCG TCTCTTGAGCATGGTTTTTAGAGGCTACGAATAAGGCTATGAATAAGGGTTATCTTTAAGTC CTAAGGGATTCCTGGGTGCCACTGCTCTTTTTCCTCTACAGCTCCATCTTGTTTCACCCAC CCCACATCTCACACATCCAGAATTCCCTTCTTTACTGATAGTTTCTGTGCCAGGTTCTGGGC TAAACCATGGAGATAAAAAGAAGAGTAAAATACACTTCCCGACCTTAAGGATCTGAAA

FIGURE 190

MAKMELSKAFSGQRTLLSAILSMLSLSFSTTSLLSNYWFVGTQKVPKPLCEKGLAAKCFDMP VSLDGDTNTSTQEVVQYNWETGDDRFSFRSFRSGMWLSCEETVEEPGERCRSFIELTPPAKR GEKGLLEFATLQGPCHPTLRFGGKRLMEKASLPSPPLGLCGKNPMVIPGNADHLHRTSIHQL PPATNRLATHWEPCLWAQTERLCCCFLCPVRSPGDGGPHDVFTSLPSDCQLGSRRLETTCLE LWLGLLHGLALLHLLHGVGCHHLQHVHQDGAGVQVQA

FIGURE 191

AACTGGAAGGAAAGAAAGGTCAGCTTTGGCCCAG**ATG**TGGTTACCCCTTGGTCTCCTG TCTTTATGTCTTCTCCTCTTCCTATTCTGTCATCTCCCTCACTTAAGTCTCAGGCCTGTCA GCAGCTCCTGTGGACATTGCCATCCCCTCTGGTAGCCTTCAGAGCAAACAGGACAACCTATG TTATGGATGTTTCCACCAACCAGGGTAGTGGCATGGAGCACCGTAACCATCTGTGCTTCTGT GATCTCTATGACAGAGCCACTTCTCCACCTCTGAAATGTTCCCTGCTCTGAAATCTGGCATG GTCTGTTCTCTTATTGTCAACCTCAGCACAACAGGCTGGCGCCAATGGCATTACAGAGAAAG CAATCTGTGTGGCTAGTGGGCAGATTACCATGCAAGCCCCAGGAGAAATGGAGGAGCTTTGT AGCCACCTCCCTGTCAGCCAGTATTAACATGTCCCCTTCCCCCTGCCCCGCCGTAGATTCAG GACATTCGCCCCTGTGTGCCACCAAACCAGGACTTTCCCCTTGGCTTGGCATCCCTGGCTCT $\mathtt{CTCCTGGTACCCAGCAAGACGTCTGTTCCAGGGCAGTGTAGCATCTTTCAAGCTCCGTTACT}$ ATGGCGATGGCCATGATGTTACAATCCCACTTGCCTGAATAATCAAGTGGGAAGGGGAAGCA GAGGGAAATGGGGCCATGTGAATGCAGCTGCTCTGTTCTCCCTACCCTGAGGAAAAACCAAA TGTTGAAGGGCCACAAGAAATGTAGCTGGAGAAGATTGATGAAAGTGCAGGTGTGTAAGGAA ATAGAACAGTCTGCTGGGAGTCAGACCTGGAATTCTGATTCCAAACTCTTTATTACTTTGGG AAGTCACTCAGCCTCCCGTAGCCATCTCCAGGGTGACGGAACCCAGTGTATTACCTGCTGG AACCAAGGAAACTAACAATGTAGGTTACTAGTGAATACCCCAATGGTTTCTCCAATTATGCC CATGCCACCAAAACAATAAAACAAAATTCTCTAACACTGAAA

FIGURE 192

 ${\tt MWLPLGLLSLCLSPLPILSSPSLKSQACQQLLWTLPSPLVAFRANRTTYVMDVSTNQGSGME} \\ {\tt HRNHLCFCDLYDRATSPPLKCSLL}$

FIGURE 193

 $\texttt{CCGCC} \underline{\textbf{ATG}} \texttt{GCAGGCATCAAAGCTTTGATTAGTTTGTCCTTTGGAGGAGCAATCGGACTGATGTTTTTGATGCTT}$ GGATGTGCCCTTCCAATATACAACAAATACTGGCCCCTCTTTGTTCTATTTTTTTACATCCTTTCACCTATTCC ATACTGCATAGCAAGAAGATTAGTGGATGATACAGATGCTATGAGTAACGCTTGTAAGGAACTTGCCATCTTTC ${\tt TTACAACGGGCATTGTCGTGTCAGCTTTTGGACTCCCTATTGTATTTGCCAGAGCACATCTGATTGAGTGGGGA}$ GCTTGTGCACTTGTTCTCACAGGAAACACAGTCATCTTTGCAACTATACTAGGCTTTTTCTTGGTCTTTGGAAG $\texttt{CAATGACGACTTCAGCTGGCAGCAGTGG} \underline{\textbf{TGA}} \texttt{AAAGAAATTACTGAACTATTGTCAAATGGACTTCCTGTCATTT}$ GTTGGCCATTCACGCACACAGGAGATGGGGCAGTTAATGCTGAATGGTATAGCAAGCCTCTTGGGGGTATTTTA GGTGCTCCCTTCTCACTTTTATTGTAAGCATACTATTTTCACAGAGACTTGCTGAAGGATTAAAAGGATTTTCT CTTTTGGAAAAGCTTGACTGATTTCACACTTATCTATAGTATGCTTTTTTGTGGTGTCCTGCTGAATTTAAATAT TTATGTGTTTTTCCTGTTAGGTTGATTTTTTTTGGAATCAATATGCAATGTTAAACACTTTTTTAATGTAATCA $\tt TTTGCATTGGTTAGGAATTCAGAATTCCGCCGGCTCTATTACTGGTCAAGTACATCTTTTCTCTTAAAATTATT$ CAGACATACAGACGGTTGGCATACGTTATAGACTGTATACTCAGTGCAAATATAGCTGCATTTATACCTCAGAG GGGCCAAGTGTTAATGCCCATGCCCTCCGTTAAGGGTTGTTGGTTTTACTGGTAGACAGATGTTTTGTGGATTG AAAATTATTTTATGGAATTGCTACAGAGGAGTGCTTTTCTTCTCAATTGTTAGAAGAATTTATGTTAAACTTTA AGGTAAGGGTGTAAAAACATTTTTTGAGATAAGGTTTTTTATTTTATGTTTATTATTGTTAGAGTGAGTTGCAATGT GGGAAGAAATGACATTGAAATTCCAGTTTTTGAATCCTGTTTCTATTTATAAGTGAAATTTGTGATCTCCTATC AACCTTTCATGTTTACCCTGTTAAAATGGACATACATGGAACCACTACTGATGAGGGACAGTTGTATGTTTGC ${\tt CAGAGTGCCCCTGCCAAGGCCTTGCCATGATTAACAAGTAACTTGTTAGTCTTACAGATAATTCATGCA}$ TTAACAGTTTAAGATTTAGACCATGGTAATAGTAGTTCTTATTCTCTAAGGTTATATCATATGTAATTTAAAAG TATTTTTAAGACAAGTTTCCTGTATACCTCTGAACTGTTTTGATTTTGAGTTCATCATGATAGATCTGCTGTTT CCTTATAAAAGGCATTTGTTGTGTGAGTTAATGCAAAGTAGCCAAGTCCAGCTATATAGCAGCTTCAGAAACAT ACCTGACCAAAAATTCCCAGTAACCAGGCATGATCAATTTATAGTGGTCGTTTACATCTAATAATTATCAGGA ${ t TTTATGAAGTTTATTTCTCAAGAAAATGGGAATAAATTTGGGATTTGTTCAGCTTTTTTACTAAAGATGCCTAA$ AGCCACAGGTTTTATTGCCTAACTTAAGCCATGACTTTTAGATATGAGATGACGGGAAGCAGGACGAAATATCG GCGTGTGGCTGGAGCCTTCCCACTGGAGGCTGAAAGTGGCTTGTGGTATTATAATGTTCAGATTTCAAGAGGAA GGTGCAGGTACACATGAGTTAGAGAGCTGGTGAGACAGTTGGGAACTCTTTGTGCTTGTGATCTACTGGACTTT TTTTTTGCAGGAAGTGCATTCTCTGGTCCTTCCCTATTTTCTGTTCTGGATGTCAGTGCAGTGCACTGCTACTG TTTTATCCACTTGGCCACAGACTTTTTCTAACAGCTGCGTATTATTTCTATATACTAATTGCATTGGCAGCATT GTGTCTTTGACCTTGTATACTAGCTTGACATAGTGCTGTCTCTGATTTCTAGGCTAGTTACTTGAGATATGAAT AGATTTTAAATATCTATTTTAAAAAAAAAA

FIGURE 194

MAGIKALISLSFGGAIGLMFLMLGCALPIYNKYWPLFVLFFYILSPIPYCIARRLVDDTDAM SNACKELAIFLTTGIVVSAFGLPIVFARAHLIEWGACALVLTGNTVIFATILGFFLVFGSND DFSWQQW

FIGURE 195

FIGURE 196

MDFLLLGLCLYWLLRRPSGVVLCLLGACFQMLPAAPSGCPQLCRCEGRLLYCEALNLTEAPH
NLSGLLGLSLRYNSLSELRAGQFTGLMQLTWLYLDHNHICSVQGDAFQKLRRVKELTLSSNQ
ITQLPNTTFRPMPNLRSVDLSYNKLQALAPDLFHGLRKLTTLHMRANAIQFVPVRIFQDCRS
LKFLDIGYNQLKSLARNSFAGLFKLTELHLEHNDLVKVNFAHFPRLISLHSLCLRRNKVAIV
VSSLDWVWNLEKMDLSGNEIEYMEPHVFETVPHLQSLQLDSNRLTYIEPRILNSWKSLTSIT
LAGNLWDCGRNVCALASWLSNFQGRYDGNLQCASPEYAQGEDVLDAVYAFHLCEDGAEPTSG
HLLSAVTNRSDLGPPASSATTLADGGEGQHDGTFEPATVALPGGEHAENAVQIHKVVTGTMA
LIFSFLIVVLVLYVSWKCFPASLRQLRQCFVTQRRKQKQKQTMHQMAAMSAQEYYVDYKPNH
IEGALVIINEYGSCTCHQQPARECEV

FIGURE 197

FIGURE 198

MGVLGRVLLWLQLCALTQAVSKLWVPNTDFDVAANWSQNRTPCAGGAVEFPADKMVSVLVQE GHAVSDMLLPLDGELVLASGAGFGVSDVGSHLDCGAGEPAVFRDSDRFSWHDPHLWRSGDEA PGLFFVDAERVPCRHDDVFFPPSASFRVGLGPGASPVRVRSISALGRTFTRDEDLAVFLASR AGRLRFHGPGALSVGPEDCADPSGCVCGNAEAQPWICAALLQP

FIGURE 199

FIGURE 200

 ${\tt MGPVKQLKRMFEPTRLIATIMVLLCFALTLCSAFWWHNKGLALIFCILQSLALTWYSLSFIP} \\ {\tt FARDAVKKCFAVCLA}$

FIGURE 201

TTGAGCGCAGGTGAGCTCCTGCGCGTTCCGGGGGCGTTCCTCCAGTCACCCTCCCGCCGTTACCCGCGGCGCGC $\tt CCGAGGGAGTCTCCTCCAGACCCTCCCGTTGCTCCAAACTAATACGGACTGAACGGATCGCTGCGAGGGT$ AACTGATCAAGTACTTTGAAAATGACTTCGAAATTTATCTTGGTGTCCTTCATACTTGCTGCACTGAGTCTTTC AACCACCTTTTCTCTCCAACTAGACCAGCAAAAGGTTCTACTAGTTTCTTTTGATGGATTCCGTTGGGATTACT TATATAAAGTTCCAACGCCCCATTTTCATTATATTATGAAATATGGTGTTCACGTGAAGCAAGTTACTAATGTT TTTATTACAAAAACCTACCCTAACCATTATACTTTGGTAACTGGCCTCTTTGCAGAGAATCATGGGATTGTTGC AAATGATATGTTTGATCCTATTCGGAACAAATCTTTCTCCTTGGATCACATGAATATTTATGATTCCAAGTTTT GGGAAGAAGCGACACCAATATGGATCACAAACCAGAGGGCAGGACATACTAGTGGTGCAGCCATGTGGCCCGGA ACAGATGTAAAAATACATAAGCGCTTTCCTACTCATTACATGCCTTACAATGAGTCAGTTTCATTTGAAGATAG AGTTGCCAAAATTGTTGAATGGTTTACGTCAAAAGAGCCCATAAATCTTGGTCTTCTCTATTGGGAAGACCCTG ATGACATGGGCCACCATTTGGGACCTGACAGTCCGCTCATGGGGCCTGTCATTTCAGATATTGACAAGAAGTTA GGATATCTCATACAAATGCTGAAAAAGGCAAAGTTGTGGAACACTCTGAACCTAATCATCACAAGTGATCATGG AATGACGCAGTGCTCTGAGGAAAGGTTAATAGAACTTGACCAGTACCTGGATAAAGACCACTATACCCTGATTG ATCAATCTCCAGTAGCAGCCATCTTGCCAAAAGAAGGTAAATTTGATGAAGTCTATGAAGCACTAACTCACGCT CATCCTAATCTTACTGTTTACAAAAAAGAAGACGTTCCAGAAAGGTGGCATTACAAATACAACAGTCGAATTCA ACCAATCATAGCAGTGGCTGATGAAGGGTGGCACATTTTACAGAATAAGTCAGATGACTTTCTGTTAGGCAACC TCAAAAGAAGCCATGAACTCCACAGATTTGTACCCACTACTATGCCACCTCCTCAATATCACTGCCATGCCACA CAATGGATCATTCTGGAATGTCCAGGATCTGCTCAATTCAGCAATGCCAAGGGTGGTCCCTTATACACAGAGTA $\tt CTATACTCCTCCCTGGTAGTGTTAAACCAGCAGAATATGACCAAGAGGGGTCATACCCTTATTTCATAGGGGTC$ TCTCTTGGCAGCATTATAGTGATTGTATTTTTTGTAATTTTCATTAAGCATTTAATTCACAGTCAAATACCTGC $\tt CTTACAAGATATGCATGCTGAAATAGCTCAACCATTATTACAAGCC\underline{TAA}TGTTACTTTGAAGTGGATTTGCATA$ TTGAAGTGGAGATTCCATAATTATGTCAGTGTTTAAAGGTTTCAAATTCTGGGAAACCAGTTCCAAACATCTGC ATCCTGCTTTATTTGGACTTGGCGCAGATAATGTATATTTAGCAACTTTGCACTATGTAAAGTACCTTATLT ATTGCACTTTAAATTTCTCTCCTGATGGGTACTTTAATTTGAAATGCACTTTATGGACAGTTATGTCTTATAAC TTGATTGAAAATGACAACTTTTTGCACCCATGTCACAGAATACTTGTTACGCATTGTTCAAACTGAAGGAAATT AAATTAAATGTGATAACCTTTGAACCTTGAATTTTGGAGATGTATTCCCAACAGCAGAATGCAACTGTGGGCAT ATTCGTTCTAAATATATTGTTTCTGTCATAAAATTATTGTGATTTCCTGATGAGTCATATTACTGTGATTTTCA TAATAATGAAGACACCATGAATATACTTTTCTTCTATATAGTTCAGCAATGGCCTGAATAGAAGCAACCAGGCA AAATCAAATTGGATAAAAAAAAAAAAAAAAAAAA

FIGURE 202

MTSKFILVSFILAALSLSTTFSLQLDQQKVLLVSFDGFRWDYLYKVPTPHFHYIMKYGVHVK
QVTNVFITKTYPNHYTLVTGLFAENHGIVANDMFDPIRNKSFSLDHMNIYDSKFWEEATPIW
ITNQRAGHTSGAAMWPGTDVKIHKRFPTHYMPYNESVSFEDRVAKIVEWFTSKEPINLGLLY
WEDPDDMGHHLGPDSPLMGPVISDIDKKLGYLIQMLKKAKLWNTLNLIITSDHGMTQCSEER
LIELDQYLDKDHYTLIDQSPVAAILPKEGKFDEVYEALTHAHPNLTVYKKEDVPERWHYKYN
SRIQPIIAVADEGWHILQNKSDDFLLGNHGYDNALADMHPIFLAHGPAFRKNFSKEAMNSTD
LYPLLCHLLNITAMPHNGSFWNVQDLLNSAMPRVVPYTQSTILLPGSVKPAEYDQEGSYPYF
IGVSLGSIIVIVFFVIFIKHLIHSQIPALQDMHAEIAQPLLQA

Signal Peptide:

amino acids 1-22

Transmembrane Domain:

amino acids 429-452

N-glycosylation sites:

amino acids 101-104, 158-161, 292-295, 329-332, 362-365, 369-372, 382-385, 389-392

Somatomedin B Domain:

amino acids 69-85

Sulfatase protein Region:

amino acids 212-241

FIGURE 203

GGATTTTTGTGATCCGCGATTCGCTCCCACGGGCGGGACCTTTGTAACTGCGGGAGGCCCAG GACAGGCCCACCCTGCGGGGCGGGGGGGCAGCCGGGGTGAGGGGGGGAGAAACCAAGACGC AGAGAGGCCAAGCCCTTGCCTTGGGTCACACAGCCAAAGGAGGCAGAGCCAGAACTCACAA CCAGATCCAGAGGCAACAGGGACATGGCCACCTGGGACGAAAAGGCAGTCACCCGCAGGGCC AAGGTGGCTCCCGCTGAGAGGATGAGCAAGTTCTTAAGGCACTTCACGGTCGTGGGAGACGA AGCAGCCACCACCACCAGTCTCAGGCGAGGAAGGCAGAGCTGCAGCCCCTGACGTTGCC CCTGCCCTGGCCCCGCACCCAGGGCCCCCTTGACTTCAGGGGCATGTTGAGGAAACTGTT CAGCTCCCACAGGTTTCAGGTCATCATCTGCTTGGTGGTTCTGGATGCCCTCCTGGTGC TTGCTGAGCTCATCCTGGACCTGAAGATCATCCAGCCCGACAAGAATAACTATGCTGCCATG GTATTCCACTACATGAGCATCACCATCTTGGTCTTTTTTATGATGGAGATCATCTTTAAATT ATTTGTCTTCCGCCTGAGTTCTTTCACCACAAGTTTGAGATCCTGGATGCCCGTCGTGGTGG TGGTCTCATTCATCCTGGACATTGTCCTCCTGTTCCAGGAGCACCAGTTTGAGGCTCTGGGC CTGCTGATTCTGCTCCGGCTGTGGCGGGTGGCCCGGATCATCAATGGGATTATCATCTCAGT TAAGACACGTTCAGAACGGCAACTCTTAAGGTTAAAACAGATGAATGTACAATTGGCCGCCA AGATTCAACACCTTGAGTTCAGCTGCTCTGAGAAGCCCCTGGAC**TGA**TGAGTTTGCTGTATC AACCTGTAAGGAGAAGCTCTCTCCGGATGGCTATGGGAATGAAAGAATCCGACTTCTACTCT CAGGCTGGCATGTTCACTGGGCTGTGTTACGACAGAGAACCTGACAGTCACTGGCCAGTTA TCACTTCAGATTACAAATCACACAGAGCATCTGCCTGTTTTCAATCACAAGAGAACAAAACC AAAATCTATAAAGATATTCTGAAAATATGACAGAATTTGACAAATAAAAGCATAAACGTGTA

FIGURE 204

MATWDEKAVTRRAKVAPAERMSKFLRHFTVVGDDYHAWNINYKKWENEEEEEEEQPPPTPV SGEEGRAAAPDVAPAPGPAPRAPLDFRGMLRKLFSSHRFQVIIICLVVLDALLVLAELILDL KIIQPDKNNYAAMVFHYMSITILVFFMMEIIFKLFVFRLSSFTTSLRSWMPVVVVVSFILDI VLLFQEHQFEALGLLILLRLWRVARIINGIIISVKTRSERQLLRLKQMNVQLAAKIQHLEFS CSEKPLD

FIGURE 205

CGGCTCGAGCTCGAGCCGAATCGGCTCGAGGGGCAGTGGAGCACCCAGCAGGCCGCCAAC**AT G**CTCTGTCTGTGCCTGTACGTGCCGGTCATCGGGGAAGCCCAGACCGAGTTCCAGTACTTTG AGTCGAAGGGGCTCCCTGCCGAGCTGAAGTCCATTTTCAAGCTCAGTGTCTTCATCCCCTCC CAGGAATTCTCCACCTACCGCCAGTGGAAGCAGAAAATTGTACAAGCTGGAGATAAGGACCT TGATGGGCAGCTAGACTTTGAAGAATTTGTCCATTATCTCCAAGATCATGAGAAGAAGCTGA GGCTGGTGTTTAAGATTTTGGACAAAAAGAATGATGGACGCATTGACGCGCAGGAGATCATG CATGGATAAAAACGGCACGATGACCATCGACTGGAACGAGTGGAGAGACTACCACCTCCTCCACCTGGAAAACATCCCCGAGATCATCCTCTACTGGAAGCATTCCACGATCTTTGATGTG GGCTTCACTCAGATGATTCGAGAAGGAGGGCCAGGTCACTCTGGCGGGGCAATGGCATCAA CGTCCTCAAAATTGCCCCCGAATCAGCCATCAAATTCATGGCCTATGAGCAGATCAAGCGCC TTGTTGGTAGTGACCAGGAGACTCTGAGGATTCACGAGAGGCTTGTGGCAGGGTCCTTGGCA GGGGCCATCGCCCAGAGCAGCATCTACCCAATGGAGGTCCTGAAGACCCGGATGGCGCTGCG GAAGACAGGCCAGTACTCAGGAATGCTGGACTGCCCAGGAGGATCCTGGCCAGAGAGGGGG TGGCCGCCTTCTACAAAGGCTATGTCCCCAACATGCTGGGCATCATCCCCTATGCCGGCATC
GACCTTGCAGTCTACGAGACGCTCAAGAATGCCTGGGCATCATCCCCTATGCCGGCATC
GACCCTGCGGCGTGTTTGTGCTCCTGGCCTGTGGCACCATGTCCAGTACCTGTGGCCAGCTGG
CCAGCTACCCCCTGGCCCTAGTCAGGACCCGGATGCAGCCCCAAGCCTCTATTGAGGGCGCT CCGGAGGTGACCATGAGCAGCCTCTTCAAACATATCCTGCGGACCGAGGGGGCCTTCGGGCT GTACAGGGGGCTGGCCCCCAACTTCATGAAGGTCATCCCAGCTGTGAGCATCAGCTACGTGG GCTCCTTTCCTTTGGCAGGTTGGGGAAGGGCTTGCCCCCAGCCTTAGGATTTCAGGGTTTGA $\tt CTGGGGGCGTGGAGAGAGGGGAGGAACCTCAATAACCTTGAAGGTGGAATCCAGTTATTTCCTGCGCTGCGAGGGTTTCTTTATTTCACTCTTTTCTGAATGTCAAGGCAGTGAGGTGCCTCT$ ATTCCACCAGAATGACCTGATGAGGAAATCTTCAATAGGATGCAAAGATCAATGCAAAAATT

FIGURE 206

MLCLCLYVPVIGEAQTEFQYFESKGLPAELKSIFKLSVFIPSQEFSTYRQWKQKIVQAGDKD LDGQLDFEEFVHYLQDHEKKLRLVFKILDKKNDGRIDAQEIMQSLRDLGVKISEQQAEKILK SMDKNGTMTIDWNEWRDYHLLHPVENIPEIILYWKHSTIFDVGENLTVPDEFTVEERQTGMW WRHLVAGGGAGAVSRTCTAPLDRLKVLMQVHASRSNNMGIVGGFTQMIREGGARSLWRGNGI NVLKIAPESAIKFMAYEQIKRLVGSDQETLRIHERLVAGSLAGAIAQSSIYPMEVLKTRMAL RKTGQYSGMLDCARRILAREGVAAFYKGYVPNMLGIIPYAGIDLAVYETLKNAWLQHYAVNS ADPGVFVLLACGTMSSTCGQLASYPLALVRTRMQAQASIEGAPEVTMSSLFKHILRTEGAFG LYRGLAPNFMKVIPAVSISYVVYENLKITLGVQSR

Important features:

Signal peptide:

amino acids 1-16

Transmembrane domain:

amino acids 284-304, 339-360, 376-394

Mitochondrial energy transfer proteins signature.

amino acids 206-215, 300-309

N-glycosylation site.

amino acids 129-133, 169-173

Elongation Factor-hand calcium-binding protein.

amino acids 54-73, 85-104, 121-140

FIGURE 207

 $\mathsf{GGAAGGCAGCGGCAGCTCAGCCAGTACCCAGATACGCTGGGAACCTTCCCCAGCC}$ CAATTGCACTCATCATTGGCTTTGGTATTTCAGGGAGACACTCCATCACAGTCACTGTC GCCTCAGCTGGGAACATTGGGGAGGATGGAATCCTGAGCTGCACTTTTGAACCTGACATCAA ACTTTCTGATATCGTGATACAATGGCTGAAGGAAGGTGTTTTAGGCTTGGTCCATGAGTTCA AAGAAGGCAAAGATGAGCTGTCGGAGCAGGATGAAATGTTCAGAGGCCGGACAGCAGTGTTT GCTGATCAAGTGATAGTTGGCAATGCCTCTTTGCGGCTGAAAAACGTGCAACTCACAGATGC TGGCACCTACAAATGTTATATCATCACTTCTAAAGGCAAGGGGAATGCTAACCTTGAGTATA AAACTGGAGCCTTCAGCATGCCGGAAGTGAATGTGGACTATAATGCCAGCTCAGAGACCTTG CGGTGTGAGGCTCCCCGATGGTTCCCCCAGCCCACAGTGGTCTGGGCATCCCAAGTTGACCA GGGAGCCAACTTCTCGGAAGTCTCCAATACCAGCTTTGAGCTGAACTCTGAGAATGTGACCA TGAAGGTTGTGTGTGCTCTACAATGTTACGATCAACAACACATACTCCTGTATGATTGAA AATGACATTGCCAAAGCAACAGGGGATATCAAAGTGACAGAATCGGAGATCAAAAGGCGGAG GGGCACTTCTGCCTCTCAGCCCTTACCTGATGCTAAAATATGTGCCTTGGCCACAAAAAG CATGCAAAGTCATTGTTACAACAGGGATCTACAGAACTATTTCACCACCAGATATGACCTAG TTTTATATTTCTGGGAGGAAATGAATTCATATCTAGAAGTCTGGAGTGAGCAAACAAGAGCA GACATATTAGAAGTTGGGAAAATAATTCATGTGAACTAGACAAGTGTGTTAAGAGTGATAAG GGGGAGTGAGAGGACAGGATAGTGCATGTTCTTTGTCTCTGAATTTTTAGTTATATGTGCTG TAATGTTGCTCTGAGGAAGCCCCTGGAAAGTCTATCCCAACATATCCACATCTTATATTCCA CAAATTAAGCTGTAGTATGTACCCTAAGACGCTGCTAATTGACTGCCACTTCGCAACTCAGG GGCGGCTGCATTTTAGTAATGGGTCAAATGATTCACTTTTTATGATGCTTCCAAAGGTGCCT TGGCTTCTCTCCCAACTGACAAATGCCAAAGTTGAGAAAAATGATCATAATTTTAGCATAA ACAGAGCAGTCGGGGACACCGATTTTATAAATAAACTGAGCACCTTCTTTTTAAACAAAAA

FIGURE 208

MASLGQILFWSIISIIIILAGAIALIIGFGISGRHSITVTTVASAGNIGEDGILSCTFEPDI KLSDIVIQWLKEGVLGLVHEFKEGKDELSEQDEMFRGRTAVFADQVIVGNASLRLKNVQLTD AGTYKCYIITSKGKGNANLEYKTGAFSMPEVNVDYNASSETLRCEAPRWFPQPTVVWASQVD QGANFSEVSNTSFELNSENVTMKVVSVLYNVTINNTYSCMIENDIAKATGDIKVTESEIKRR SHLQLLNSKASLCVSSFFAISWALLPLSPYLMLK

FIGURE 209

GAATTTGTAGAAGACAGCGGCGTTGCC**ATG**GCGGCGTCTCTGGGGCAGGTGTTGGCTCTGGT GCTGGTGGCCGCTCTGTGGGGTGGCACGCAGCCGCTGCTGAAGCGGGCCTCCGCCGGCCTGC ${f AGCGGGTTCATGAGCCGACCTGGGCCCAGCAGTTGCTACAGGAGATGAAGACCCTCTTCTTG}$ AATACTGAGTACCTGATGCCCTTTCTCCTCAACCAGTGTGGATCCCTTCTCTATTACCTCAC CTTGGCATCGACAGATCTGACCCTGGCTGTGCCCATCTGTAACTCTCTGGCTATCATCTTCA CACTGATTGTTGGGAAGGCCCTTGGAGAAGATATTGGTGGAAAACGTAAGTTAGACTACTGC CTCCCCAGAGTGGGTGAGGACACGGCCTTTTCCCATCCTGCCCTTTCCTCCAGCTGTTTT GCTTCCTTGTGGCCATCAGAGTTCCCTTCCCCTGGACAGTCTGGAGAAAGACAGAGGCTGGG GTTTGGGAT**TGA**AGACCAGACCCCATCTGAGCCCTTCCTCCAGCCCTGTACCAGCTCCTACT GGCATGGCTGAGCTCAGACCCTCCTGATTTCTGCCTATTATCCCAGGAGCAGTTGCTGGCAT GGTGCTCACCGTGATAGGAATTTCACTCTGCATCACAAGCTCAGTGAGTAAGACCCAGGGGC AACAGTCTACCCTTTGAGTGGGCCGAACCCACTTCCAGCTCTGCTGCCTCCAGGAAGCCCCT GGGCCATGAAGTGCTGGCAGTGAGCGGATGGACCTAGCACTTCCCCTCTCTGGCCTTAGCTT CCTCCTCTTATGGGGATAACAGCTACCTCATGGATCACAATAAGAGAACAAGAGTGAAAG AGTTTTGTAACCTTCAAGTGCTGTTCAGCTGCGGGGATTTAGCACAGGAGACTCTACGCTCA CCCTCAGCAACCTTTCTGCCCCAGCAGCTCTCTTCCTGCTAACATCTCAGGCTCCCAGCCCA GCCACCATTACTGTGGCCTGATCTGGACTATCATGGTGGCAGGTTCCATGGACTGCAGAACT CCAGCTGCATGGAAAGGGCCAGCTGCAGACTTTGAGCCAGAAATGCAAACGGGAGGCCTCTG GGACTCAGTCAGAGCGCTTTGGCTGAATGAGGGGTGGAACCGAGGGAAGAAGGTGCGTCGGA AAATCCTCACTGCCAGCCCCTCTTAAACAGGTAGAGAGCTGTGAGCCCCAGCCCAGCCTGAC

FIGURE 210

MAASLGQVLALVLVAALWGGTQPLLKRASAGLQRVHEPTWAQQLLQEMKTLFLNTEYLMPFL LNQCGSLLYYLTLASTDLTLAVPICNSLAIIFTLIVGKALGEDIGGKRKLDYCECGTQLCGS RHTCVSSFPEPISPEWVRTRPFPILPFPLQLFCFLVAIRVPFPWTVWRKTEAGVWD

FIGURE 211

CTTCTGTAGGACAGTCACCAGGCCAGATCCAGAAGCCTCTCTAGGCTCCAGCTTTCTCTGTG GAAGATGACAGCAATTATAGCAGGACCCTGCCAGGCTGTCGAAAAGATTCCGCAATAAAACT TTGCCAGTGGGAAGTACCTAGTGAAACGGCCTAAGATGCCACTTCTTCTCATGTCCCAGGCT TGAGGCCCTGTGGTCCCCATCCTTGGGAGAAGTCAGCTCCAGCACCATGAAGGGCATCCTCG TTGCTGGTATCACTGCAGTGCTTGTTGCAGCTGTAGAATCTCTGAGCTGCGTGCAGTGTAAT TCATGGGAAAAATCCTGTGTCAACAGCATTGCCTCTGAATGTCCCTCACATGCCAACACCAG CTGTATCAGCTCCTCAGCCAGCTCCTCTCTAGAGACACCAGTCAGATTATACCAGAATATGT TCTGCTCAGCGGAGAACTGCAGTGAGGAGACACACATTACAGCCTTCACTGTCCACGTGTCT GCTGAAGAACACTTTCATTTTGTAAGCCAGTGCTGCCAAGGAAAGGAATGCAGCAACACCAG CGATGCCCTGGACCCTCCCCTGAAGAACGTGTCCAGCAACGCAGAGTGCCCTGCTTGTTATG AATCTAATGGAACTTCCTGTCGTGGGAAGCCCTGGAAATGCTATGAAGAAGAACAGTGTGTC TTTCTAGTTGCAGAACTTAAGAATGACATTGAGTCTAAGAGTCTCGTGCTGAAAGGCTGTTC CAACGTCAGTAACGCCACCTGTCAGTTCCTGTCTGGTGAAAACAAGACTCTTGGAGGAGTCA TCCCACAACGTGGGCTCCAAAGCTTCCCTCTACCTCTTGGCCCTTGCCAGCCTCCTTCTTCG GGGACTGCTGCCCTGAGGTCCTGGGGCTGCACTTTGCCCAGCACCCCATTTCTGCTTCTG AGGTCCAGAGCACCCCTGCGGTGCTGACACCCTCTTTCCCTGCTCTGCCCCGTTTAACTGC CCAGTAAGTGGGAGTCACAGGTCTCCAGGCAATGCCGACAGCTGCCTTGTTCTTCATTATTA

FIGURE 212

MKGILVAGITAVLVAAVESLSCVQCNSWEKSCVNSIASECPSHANTSCISSSASSSLETPVR LYQNMFCSAENCSEETHITAFTVHVSAEEHFHFVSQCCQGKECSNTSDALDPPLKNVSSNAE CPACYESNGTSCRGKPWKCYEEEQCVFLVAELKNDIESKSLVLKGCSNVSNATCQFLSGENK TLGGVIFRKFECANVNSLTPTSAPTTSHNVGSKASLYLLALASLLLRGLLP

FIGURE 213

GGGCTTGCCTCACTGGCCACCCTCCCAACCCCAAGAGCCCAGCCCCATCGTCCCGCCGCCG ACCCAGACTCCGACCGAAATGCAGCGGGTCAGTTTACGCTTTGGGGGCCCCATGACCCGCAG CTACCGGAGCACCGCCCGGACTGGTCTTCCCCGGAAGACAAGGATAATCCTAGAGGACGAGA ATGATGCCATGGCCGACGCCTGGCTGGCCGACCGCCTGCCGAGCTCTTGGCCGCC ACGGTGTCCACCGGCTTTAGCCGGTCGTCCGCCATTAACGAGGAGGATGGGTCTTCAGAAGA GGGGGTTGTGATTAATGCCGGAAAGGATAGCACCAGCAGAGAGCTTCCCAGTGCGACTCCCA ATACAGCGGGGAGTTCCAGCACGAGGTTTATAGCCAATAGTCAGGAGCCTGAAATCAGGCTG ACTTCAAGCCTGCCGCGCTCCCCCGGGAGGTCTACTGAGGACCTGCCAGGCTCGCAGGCCAC CCTGAGCCAGTGGTCCACACCTGGGTCTACCCCGAGCCGGTGGCCGTCACCCTCACCCACAG CCATGCCATCTCCTGAGGATCTGCGGCTGGTGCTGATGCCCTGGGGCCCGTGGCACTGCCAC TGCAAGTCGGGCACCATGAGCCGGAGCCGGTCTGGGAAGCTGCACGGCCTTTCCGGGCGCCT TCGAGTTGGGGCGCTGAGCCAGCTCCGCACGGAGCACAAGCCTTGCACCTATCAACAATGTC CCTGCAACCGACTTCGGGAAGAGTGCCCCCTGGACACAAGTCTCTGTACTGACACCAACTGT GCCTCTCAGAGCACCAGTACCAGGACCACCACTACCCCCTTCCCCACCATCCACCTCAG AAGCAGTCCCAGCCTGCCACCCGCCAGCCCTGCCCAGCCCTGGCTTTTTGGAAACGGGTCA GGATTGGCCTGGAGGATATTTGGAATAGCCTCTCTTCAGTGTTCACAGAGATGCAACCAATA GACAGAAACCAGAGG**TAA**TGGCCACTTCATCCACATGAGGAGATGTCAGTATCTCAACCTCT CTTGCCCTTTCAATCCTAGCACCCACTAGATATTTTTAGTACAGAAAAACAAAACTGGAAAA CACAA

FIGURE 214

MVPAAGALLWVLLLNLGPRAAGAQGLTQTPTEMQRVSLRFGGPMTRSYRSTARTGLPRKTRI ILEDENDAMADADRLAGPAAAELLAATVSTGFSRSSAINEEDGSSEEGVVINAGKDSTSREL PSATPNTAGSSSTRFIANSQEPEIRLTSSLPRSPGRSTEDLPGSQATLSQWSTPGSTPSRWP SPSPTAMPSPEDLRLVLMPWGPWHCHCKSGTMSRSRSGKLHGLSGRLRVGALSQLRTEHKPC TYQQCPCNRLREECPLDTSLCTDTNCASQSTTSTRTTTTPFPTIHLRSSPSLPPASPCPALA FWKRVRIGLEDIWNSLSSVFTEMQPIDRNQR

FIGURE 215

 $\tt CCCGGGTCGACCCACGCGTCCGGGGGAGAAAGG\underline{\textbf{ATG}} \texttt{GCCGGCCTGGCGGCGGGTTGGTCCTGCTAGCTGGGGCCA}$ $\tt GTCGGGACGACTGTAAGTATGAGTGTATGTGGGTCACCGTTGGGCTCTACCTCCAGGAAGGTCACAAAGTGCCT$ ${\tt CAGTTCCATGGCAAGTGGCCCTTCTCCCGGTTCCTGTTCTTCAAGAGCCGGCATCGGCCGTGGCCTCGTTTCT}$ CAATGGCCTGGCCAGCCTGGTGATGCTCTGCCGCTACCGCACCTTCGTGCCAGCCTCCTCCCCCATGTACCACA ${\tt CCTGTGTGGCCTTGGGTGTCCCTCAATGCATGGTTCTGGTCCACAGTCTTCCACACCAGGGACACTGAC}$ $\tt CTCACAGAGAAAATGGACTACTTCTGTGCCTCCACTGTCATCCTACACTCAATCTACCTGTGCTGCGTCAGGAC$ ${\tt CCTACCTGAGCCTCATCCGCTTCGACTATGGCTACAACCTGGTGGCCAACGTGGCTATTGGCCTGGTCAACGTG}$ $\tt GTGTGGTGGCTGGCCTGTGGAACCAGCGGCGGCTGCCTCACGTGCGCAAGTGCGTGGTGGTGTTT$ ${\tt GCTGCTGCAGGGGCTGTCCCAGCTGCTTGACTTCCCACCGCTCTTCTGGGTCCTGGATGCCCATGCCA}$ TCTGGCACATCAGCACCATCCCTGTCCACGTCCTCTTTTTCAGCTTTCTGGAAGATGACAGCCTGTACCTGCTG ${\tt AAGGAATCAGAGGACAAGTTCAAGCTGGAC} \underline{{\tt TGA}} {\tt AGACCTTGGAGCGAGTCTGCCCCAGTGGGGATCCTGCCCCC}$ ${\tt GCCCTGCTGGCCTCCCTTCTCCCCTCAACCCTTGAGATGATTTTCTCTTTTCAACTTCTTGAACTTGGACATGA}$ ${\tt AGGATGTGGGCCCAGATCATGTGGCCCAGCCCAGCCTTGTTGGCCCTCACCAGCCTTGGAGTCTGTTCTAGGG}$ ${\tt AAGGCCTCCCAGCATCTGGGGACTCGAGAGTGGGCAGCCCCTCTACCTCCTGGAGCTGAACTGGGGTGGAACTGA}$ GTGTGTTCTTAGCTCTACCGGGAGGACAGCTGCCTGTTTCCTCCCCACCAGCCTCCCCCACATCCCCAGCTG CCTGGCTGGGTCCTGAAGCCCTCTGTCTACCTGGGAGACCAGGGACCACAGGCCTTAGGGATACAGGGGGTCCC GGTTCACGGCGATTCTCCCCATGGGATCTTGAGGGACCAAGCTGCTGGGATTGGGAAGGAGTTTCACCCTGACC $\tt GTTGCCCTAGCCAGGGTTCCCAGGAGGCCTCACCATACTCCCTTTCAGGGCCAGGGCTCCAGCAAGCCCAGGGCCAGGCCAGGCCAGGGCCAGGCCAGGGCCAGGGCCAGGGCCAGGGCCAGGCCAGGGCCAGGCCAGGGCCAGGCCAGGCCAGGCCAGGGCCAGGCAGGCCAGGCCAGGCCAGGCCAGGCCAGGCCAGGCCAGGCCAGGCCAGGCCAGGCCAGGCCAGGCAGGCCAGGCCAGGCCAGGCCAGGCCAGGCCAGGCCAGGCCAGGCCAGGCCAGGCCAGGCCAGGCAGGCCAGGCCAGGCCAGGCCAGGCCAGGCCAGGCCAGGCCAGGCCAGGCCAGGCCAGGCCAGGCAGGCCAGGCCAGGCCAGGCCAGGCCAGGCCAGGCCAGGCCAGGCCAGGCCAGGCCCAGGCCAGGCCAGGCCAGGCCCAGGCCAGGCCAGGCCCAGGCCAGGCCCCAGGCCCAGGCCCAGGCCCAGGCCA$ AGGATCCTGTGCTGCTGTCTGGTTGAGAGCCTGCCACCGTGTGTCGGGAGTGTGGGCCAGGCTGAGTGCATAGG ${\tt TGACAGGGCCGTGAGCATGGGCCTGGGTGTGTGTGAGCTCAGGCCTAGGTGCGCAGTGTGGAGACGGGTGTTGT}$ GAGGGAATCCTGTCACCATCAATAATCACTTGTGGAGCGCCAGCTCTGCCCAAGACGCCACCTGGGCGGACAGC ${\tt CAGGAGCTCTCCATGGCCAGGCTGCCTGTGTGCATGTTCCCTGTCTGGTGCCCCTTTGCCCGCCTCCTGCAAAC}$ GCTGCCAGCCCCTTTGCCATAGCCTGATTTTGGGGAGGAGGAGGGGGCGATTTGAGGGAGAAGGGGAGAAAGCT ACACTATGCCTGTGCCCTGGTAAAGGTGACCCCTGCCATTTACCAGCAGCCCTGGCATGTTCCTGCCCCACAGG AATAGAATGGAGGGAGCTCCAGAAACTTTCCATCCCAAAGGCAGTCTCCGTGGTTGAAGCAGACTGGATTTTTG $\tt CTCTGCCCCTGACCCCTTGTCCCTCTTTGAGGGAGGGAGCTATGCTAGGACTCCAACCTCAGGGACTCGGGTG$ GCCTGCGCTAGCTTCTTTTGATACTGAAAACTTTTAAGGTGGGAGGGTGGCAAGGGATGTGCTTAATAAATCAA TTCCAAGCCTCAAAAAAAAAAAAAAAAAA

FIGURE 216

MAGLAARLVLLAGAAALASGSQGDREPVYRDCVLQCEEQNCSGGALNHFRSRQPIYMSLAGW
TCRDDCKYECMWVTVGLYLQEGHKVPQFHGKWPFSRFLFFQEPASAVASFLNGLASLVMLCR
YRTFVPASSPMYHTCVAFAWVSLNAWFWSTVFHTRDTDLTEKMDYFCASTVILHSIYLCCVR
TVGLQHPAVVSAFRALLLLMLTVHVSYLSLIRFDYGYNLVANVAIGLVNVVWWLAWCLWNQR
RLPHVRKCVVVVLLLQGLSLLELLDFPPLFWVLDAHAIWHISTIPVHVLFFSFLEDDSLYLL
KESEDKFKLD

Important features:

Signal peptide:

amino acids 1-20

Transmembrane domains:

amino acids 105-123, 138-156, 169-185, 193-209, 221-240, 256-272

N-glycosylation site.

amino acids 40-44

N-myristoylation site.

amino acids 43-49

CUB domain proteins profile.

amino acids 285-302

Amiloride-sensitive sodium channels proteins.

amino acids 162-186

FIGURE 217

GGCCGCCTGGAATTGTGGGAGTTGTCTGCCACTCGGCTGCCGGAGGCCGAAGGTCCGTGA CT**ATG**GCTCCCCAGAGCCTGCCTTCATCTAGGATGGCTCCTCTGGGCATGCTGCTTGGGCTG CTGATGGCCGCCTGCTTCACCTTCTGCCTCAGTCATCAGAACCTGAAGGAGTTTGCCCTGAC TGGATGCCGAAGTCCTGGAGGTGTTCCACCCGACGCATGAGTGGCAGGCCCTTCAGCCAGGG CAGGCTGTCCCTGCAGGATCCCACGTACGGCTGAATCTTCAGACTGGGGAAAGAGAGGCAAA ACTCCAATATGAGGACAAGTTCCGAAATAATTTGAAAGGCAAAAGGCTGGATATCAACACCA ACACCTACACATCTCAGGATCTCAAGAGTGCACTGGCAAAATTCAAGGAGGGGGCAGAGATG GAGAGTTCAAAGGAAGACAAGGCAAGGCAGGCTGAGGTAAAGCGGCTCTTCCGCCCCATTGA GGAACTGAAGAAAGACTTTGATGAGCTGAATGTTGTCATTGAGACTGACATGCAGATCATGG TACGGCTGATCAACAAGTTCAATAGTTCCAGCTCCAGTTTGGAAGAGAAGATTGCTGCGCTC TTTGATCTTGAATATTATGTCCATCAGATGGACAATGCGCAGGACCTGCTTTCCTTTGGTGG TCTTCAAGTGGTGATCAATGGGCTGAACAGCACAGAGCCCCTCGTGAAGGAGTATGCTGCGT TTGTGCTGGGCGCTGCCTTTTCCAGCAACCCCAAGGTCCAGGTGGAGGCCATCGAAGGGGGA GCCCTGCAGAAGCTGCTGGTCATCCTGGCCACGGAGCAGCCGCTCACTGCAAAGAAGAAGAT CCTGTTTGCACTGTGCTCCCTGCTGCGCCACTTCCCCTATGCCCAGCGGCAGTTCCTGAAGC TCGGGGGGCTGCAGGTCCTGAGGACCCTGGTGCAGGAGAAGGGCACGGAGGTGCTCGCCGTG CGCGTGGTCACACTGCTCTACGACCTGGTCACGGAGAAGATGTTCGCCGAGGAGGAGGCTGA GCTGACCCAGGAGATGTCCCCAGAGAAGCTGCAGCAGTATCGCCAGGTACACCTCCTGCCAG GCCTGTGGGGAACAGGCCTGGTGCGAGATCACGGCCCACCTCCTGGCGCTGCCCGAGCATGAT GCCCGTGAGAAGGTGCTGCAGACACTGGGCGTCCTCCTGACCACCTGCCGGGACCGCTACCG TCAGGACCCCCAGCTCGGCAGGACACTGGCCAGCCTGCAGGCTGAGTACCAGGTGCTGGCCA GCCTGGAGCTGCAGGATGGTGAGGACGAGGGCTACTTCCAGGAGCTGCTGGGCTCTGTCAAC AGCTTGCTGAAGGAGCTGAGA**TGA**GGCCCCACACCAGGACTGGGACTGGGATGCCGCTAGTGA GGCTGAGGGTGCCAGCGTGGGTGGCCTTCTCAGGCAGGAGGACATCTTGGCAGTGCTGGCT

FIGURE 218

MAPQSLPSSRMAPLGMLLGLLMAACFTFCLSHQNLKEFALTNPEKSSTKETERKETKAEEEL
DAEVLEVFHPTHEWQALQPGQAVPAGSHVRLNLQTGEREAKLQYEDKFRNNLKGKRLDINTN
TYTSQDLKSALAKFKEGAEMESSKEDKARQAEVKRLFRPIEELKKDFDELNVVIETDMQIMV
RLINKFNSSSSSLEEKIAALFDLEYYVHQMDNAQDLLSFGGLQVVINGLNSTEPLVKEYAAF
VLGAAFSSNPKVQVEAIEGGALQKLLVILATEQPLTAKKKVLFALCSLLRHFPYAQRQFLKL
GGLQVLRTLVQEKGTEVLAVRVVTLLYDLVTEKMFAEEEAELTQEMSPEKLQQYRQVHLLPG
LWEQGWCEITAHLLALPEHDAREKVLQTLGVLLTTCRDRYRQDPQLGRTLASLQAEYQVLAS
LELQDGEDEGYFQELLGSVNSLLKELR

Important features:

Signal peptide:

amino acids 1-29

Hypothetical YJL126w/YLR351c/yhcX family protein.

amino acids 364-373

N-glycosylation site.

amino acids 193-197, 236-240

N-myristoylation site.

amino acids 15-21, 19-25, 234-240, 251-257, 402-408, 451-457

Homologous region SLS1 protein.

amino acids 68-340

FIGURE 219

TTCGGCTTCCGTAGAGGAAGTGGCGCGGACCTTCATTTGGGGTTTCGGTTCCCCCCCTTCCC CGCGGACTCCCCAGCTGGCGCCCCCTCCCATTTGCCTGTCCTGGTCAGGCCCCCACCCCCC ${\tt TTCCCACCTGACCAGCCATG}{\tt GGGGGGTGCGGTTTTTTCGGCTGCACTTTCGTCGCGTTCGGCTTCGGCTTTCGGCTGCACTTTCGTCGCGTTCGGCTGCACTTTCGTCGGCTGCACTTTCGTCGGCTGCACTTTCGGCGTTCGGCGTTTCGGCTGCACTTTCGTCGGCTGCACTTTCGGCGTTCGGCTGCACTTTCGGCGTGTTTTTTCGGCTGCACTTTCGTCGGCTGCACTTTCGGCGTTCGGCGTGCACTTTCGGCTGCACTTTCGGCTGCACTTTCGGCGGTGTTCGGCGCTGCACTTTCGGCGCTGCACTTTCGGCGGTGTTCGGCGCGTGCACTTTCGGCGGTGTTCGGCGCTGCACTTTCGGCGCGTTCGGCGTTCGGCGTTCGGCGTGCACTTTCGGCGCTGCACTTTCGGCGCTGCACTTTCGGCGCGTTCGGCGCGTTCGGCGCGTGCACTTTCGGCGCGTGCACTTTCGGCGCTGCACTTTCGGCGCTGCACTTTCGGCGCTGCACTTTCGGCGCTGCACTTCGGCGCTGCACTTTCGGCGCTGCACTTTCGGCGCTGCACTTTCGGCGCTGCACTTTCGGCGCTGCACTTTCGGCGCTGCACTTTCGGCGCTGCACTTTCGGCGCTGCACTTCGGCGCTGCACTTTCGGCGCTGCACTTTCGGCGCTGCACTTTCGGCGCGTGCACTTTCGGCGCTGCACTTTCGGCGCTGCACTTTCGGCGCTGCACTTCGGCGCTGCACTTTCGGCCTGCACTTTCGGCCGCTGCACTTTCGGCGCTGCACTTCGGCGCTGCACTTCGGCGCTGCACTTTCGGCCGCTGCACTTCACT$ ${\tt CCGGCCTTCGCGCTTTTCTTGATCACTGTGGCTGGGGACCCGCTTCGCGTTATCATCCTGGT}$ CGCAGGGGCATTTTTCTGGCTGGTCTCCCTGCTCCTGGCCTCTGTGGTCTGGTTCATCTTGG TCCATGTGACCGACCGGTCAGATGCCCGGCTCCAGTACGGCCTCCTGATTTTTGGTGCTGCT GTCTCTGTCCTTCTACAGGAGGTGTTCCGCTTTGCCTACTACAAGCTGCTTAAGAAGGCAGA TGAAGGGTTAGCATCGCTGAGTGAGGACGGAAGATCACCCATCTCCATCCGCCAGATGGCCT ATGTTTCTGGTCTCCCTTCGGTATCATCAGTGGTGTCTTCTCTGTTATCAATATTTTGGCT GATGCACTTGGGCCAGGTGTGGTTGGGATCCATGGAGACTCACCCTATTACTTCCTGACTTC AGCCTTTCTGACAGCAGCCATTATCCTGCTCCATACCTTTTGGGGAGTTGTGTTCTTTGATG CCTGTGAGAGGGGCGCTACTGGGCCTTGGGCCTGGTGGTTGGGAGTCACCTACTGACATCG GGACTGACATTCCTGAACCCCTGGTATGAGGCCAGCCTGCTGCCCATCTATGCAGTCACTGT TTCCATGGGGCTCTGGGCCTTCATCACAGCTGGAGGGTCCCTCCGAAGTATTCAGCGCAGCC TCTTGTGTAAGGAC**TGA**CTACCTGGACTGATCGCCTGACAGATCCCACCTGCCTGTCCACTG CCCATGACTGAGCCCAGCCCGGGTCCATTGCCCACATTCTCTGTCTCCTTCTCGTC GGTCTACCCCACTACCTCCAGGGTTTTGCTTTGTCCTTTTGTGACCGTTAGTCTCTAAGCTT TACCAGGAGCAGCCTGGGTTCAGCCAGTCAGTGACTGGTGGGTTTGAATCTGCACTTATCCC CCTGCCCAAGACTCACCTCCCTTCCCCTCTGCAGGCCGACGGCAGGAGGACAGTCGGGTGAT GGTGTATTCTGCCCTGCGCATCCCACCCGAGGACTGAGGGAACCTAGGGGGGACCCCTGGGC CTGGGGTGCCCTCCTGATGTCCTCGCCCTGTAT1TCTCCATCTCCAGTTCTGGACAGTGCAG GTTGCCAAGAAAAGGGACCTAGTTTAGCCATTGCCCTGGAGATGAAATTAATGGAGGCTCAA GGATAGATGAGCTCTGAGTTTCTCAGTACTCCCTCAAGACTGGACATCTTGGTCTTTTTCTC GAGGTGGGGGGGGGGGGGGTATATTGGAACTCTTCTAACCTCCTTGGGCTATATTTTCTC TCCTCGAGTTGCTCCTCATGGCTGGGCTCATTTCGGTCCCTTTCTCCTTGGTCCCAGACCTT GGGGGAAAGGAAGTGCATGTTTGGGAACTGGCATTACTGGAACTAATGGTTTTAACCT ${\tt CCTTAACCACCAGCATCCCTCTCCCCAAGGTGAAGTGGAGGGTGCTGTGGTGAGCTGGC}$ CACTCCAGAGCTGCAGTGCCACTGGAGGAGTCAGACTACCATGACATCGTAGGGAAGGAGGG ATCATTTTCTGCTGAGGGTGGAGTGTCCCATCCTTTTAATCAAGGTGATTGTGATTTTGACT

FIGURE 220

MGAAVFFGCTFVAFGPAFALFLITVAGDPLRVIILVAGAFFWLVSLLLASVVWFILVHVTDR SDARLQYGLLIFGAAVSVLLQEVFRFAYYKLLKKADEGLASLSEDGRSPISIRQMAYVSGLS FGIISGVFSVINILADALGPGVVGIHGDSPYYFLTSAFLTAAIILLHTFWGVVFFDACERRR YWALGLVVGSHLLTSGLTFLNPWYEASLLPIYAVTVSMGLWAFITAGGSLRSIQRSLLCKD

FIGURE 221

FIGURE 222

GACCGACCGTTCAGATGCCCGGTTCCAGTACGGCTTCCTGATTTTTGGTGCTGTNTCTG
TCCTTCTACAGGAGGTGTTCCGCTTTGCCTANTACAAGCTGCTTAAGAAGGCAGATGAGGGG
TTAGCATNGCTGAGTGAGGACGGAAGATCACCCATTTCCATCCGCCAGATGGCCTATGTTTN
TGGTNTTTCCTTCGGTATCATCAGTGGTGTTTTNTCTGTTATCAATATTTTTGGNTGATGCAN
TTGGGCCAGGTGTGGTTGGGATCCATGGAGANTCACCCTATTAATTCCTGAATTCAGCCTTT
NTGACAGCAGCCATTATCCTGNTCCATACCTTTTGGGGAGTTGTGTTTTTTTGATGCCTGTGA
GAGGAG

FIGURE 223

NGTTGGAGAAGTGGCGCGGACNTTCATTTGGGGTTTCCCCCCTTTCCCCTTTCCCCG
GGGTCTGGGGTGACATTGCACGGGCCCCTCGTGGGGTCGCGTTGCCACCCCACGCGGACTCC
CCAGNTGGNGCGCCCTTCCCATTTGCCTGTCCTGGTCAGGCCCCCACCCCCCTTCCCACNTG
ACCAGCCATGGGGGCTGCGGTGTTTTTCGGCTGCACTTTCGTCGCGTTCGGCCCGGCCTTCG
CGCTTTTCTTGATCACTGTGGCTGGGGACCCGCTTCGCGTTATCATCCTGGTCGCAGGGGCA
TTTTTCTGGCTGGTCTCCCTGCCCTCTGTGGTCTGTTCATCTTTGGTCCATGTGAC
CGACCGGTCAGATGCCCGGCTCCAGTACGGCCTCCTGATTTTTTGGTGCTGCTGTCTCTGTCC
TTCTACAGGAGGTGTTCCGCTTTGCCTACTACAAGCTGCTTAAGAAGGCAGATGAGGGGTTA
GCATCGCTGAGTGAGAGACGGAAGATCACCCATCTCCATCCGCCAGATGGCCTATGTTTCTGG
TCTCTCCTTCGGTATCATCAGTGGTGTCTTCTCTGTTATCAATATTTTGGCTGATGCACTTG
GGCCAGGTGTGGTTGGGATCCATCGAGAGCCCCC

FIGURE 224

GTAAAAGAAAGTGGCCGGACCTTCATTGGGGTTTCGGTTCCCCCCTTTCCCNTTCCCCGGGG
TCTGGGGGTGACATTGCACCGCGCCCNTCGTGGGGTCGCGTTGCCACCCCACGCGGACTCCC
CAGNTGGCGCGCCCCTCCCATTTGCCTGTCCTGGTCAGGCCCCCACCCCCCTTCCCACCTGA
CCAGCCATGGGGGCTGCGGTGTTTTTCGGGCTGCACTTTCGTCGCGTTCGGGCCCGGCCTTC
GCGCTTTTCTTGATCACTGTGGCTGGGGACCCGCTTCGCGTTATCATCCTGGTCGCAGGGGC
ATTTTCTGGCTGGTCTCCCTGCTCCTGGCCTCTGTGGTCTCATCTTGGTCCATGTGA
CCGACCGGTCAGATGCCCGGCTCCAGTACGGCCTCCTGATTTTTGGTGCTGCTGTCTCTGTC
CTTCTACAGGAGGTGTTCCGCTTTGCCTACTACAAGCTGCTTAAGAAGGCAGATGAGGGGTT
AGCATCGCTGAGTGAGGACGGAAGATCACCCATCTCCATCCGCCAGATGGCCTATGTTTCTG
GTCTCTCCTTCGGTATCATCAGTGGTGTCTTCTCTGTTATCAATATTTTGGCTGATGCACTT
GGGCCAGGTGTGGTTTGGGATCCATGGAGAC

FIGURE 225

GCCCCAGGGAGCAGTGGGTGGTTATAACTCAGGCCCGGTGCCCAGAGCCCAGGAGGAGGCAG TGGCCAGGAAGGCACAGGCCTGAGAAGTCTGCGGCTGAGCTGGGAGCAAATCCCCCACCCC TGTCTGTGCGTCCTGCACCCACATCTTTCTCTGTCCCCTCCTTGCCCTGTCTGGAGGCTGCT AGACTCCTATCTTCTGAATTCTATAGTGCCTGGGTCTCAGCGCAGTGCCGATGGTGGCCCGT CCTTGTGGTTCCTCTACCTGGGGAAATAAGGTGCAGCGGCC**ATG**GCTACAGCAAGACCCC CCTGGATGTGGGTGCTCTGTGCTCTGATCACAGCCTTGCTTCTGGGGGGTCACAGAGCATGTT CTCGCCAACATGATGTTTCCTGTGACCACCCCTCTAACACCGTGCCCTCTGGGAGCAACCA GGACCTGGGAGCTGGGGCCGGGAAGACGCCCGGTCGGATGACAGCAGCAGCCGCATCATCA ATGGATCCGACTGCGATATGCACACCCAGCCGTGGCAGGCCGCGCTGTTGCTAAGGCCCAAC CAGCTCTACTGCGGGGCGGTGTTGGTGCATCCACAGTGGCTGCTCACGGCCGCCCACTGCAG GAAGAAAGTTTTCAGAGTCCGTCTCGGCCACTACTCCCTGTCACCAGTTTATGAATCTGGGC AGCAGATGTTCCAGGGGGTCAAATCCATCCCCCACCCTGGCTACTCCCACCCTGGCCACTCT AACGACCTCATGCTCATCAAACTGAACAGAAGAATTCGTCCCACTAAAGATGTCAGACCCAT CCAAGAGCCCCCAAGTGCACTTCCCTAAGGTCCTCCAGTGCTTGAATATCAGCGTGCTAAGT CAGAAAAGGTGCGAGGATGCTTACCCGAGACAGATAGATGACACCATGTTCTGCGCCGGTGA CAAAGCAGGTAGAGACTCCTGCCAGGGTGATTCTGGGGGGGCCTGTGGTCTGCAATGGCTCCC TGCAGGGACTCGTGTCCTGGGGAGATTACCCTTGTGCCCGGCCCAACAGACCGGGTGTCTAC ACGAACCTCTGCAAGTTCACCAAGTGGATCCAGGAAACCATCCAGGCCAACTCC**TGA**GTCAT CCCAGGACTCAGCACACCGGCATCCCCACCTGCTGCAGGGACAGCCCTGACACTCCTTTCAG ACCCTCATTCCTTCCCAGAGATGTTGAGAATGTTCATCTCTCCAGCCCCTGACCCCATGTCT $\verb|CCTGGACTCAGGGTCTGCTCCCCCACATTGGGCTGACCGTGTCTCTCTAGTTGAACCCTGG|\\$ GAACAATTTCCAAAACTGTCCAGGGCGGGGGTTGCGTCTCAATCTCCCTGGGGCACTTTCAT CCTCAAGCTCAGGGCCCATCCCTTCTCTGCAGCTCTGACCCAAATTTAGTCCCAGAAATAAA CTGAGAAGTGGAAAAAAAA

FIGURE 226

MATARPPWMWVLCALITALLLGVTEHVLANNDVSCDHPSNTVPSGSNQDLGAGAGEDARSDD SSSRIINGSDCDMHTQPWQAALLLRPNQLYCGAVLVHPQWLLTAAHCRKKVFRVRLGHYSLS PVYESGQQMFQGVKSIPHPGYSHPGHSNDLMLIKLNRRIRPTKDVRPINVSSHCPSAGTKCL VSGWGTTKSPQVHFPKVLQCLNISVLSQKRCEDAYPRQIDDTMFCAGDKAGRDSCQGDSGGP VVCNGSLQGLVSWGDYPCARPNRPGVYTNLCKFTKWIQETIQANS

FIGURE 227

ATGGTCAACGACCGGTGGAAGACCATGGGCGGCGCTGCCCAACTTGAGGACCGGCCGCGCG AAGGGCGGACAGCTCGCACCTCAGCATCCTCATTGACCCGCGCTGCCCCGACCTCACCGACA GCTTCGCACGCCTGGAGAGCGCCCAGGCCTCGGTGCTGCAGGCGCTGACAGAGCACCAGGCC ${ t CAGCCACGGCTGGTGGGCGACCAGGAGCAGGAGCTGCTGGACACGCTGGCCGACCAGCTGCC}$ CCGGCTGCTGGCCCGAGCCTCAGAGCTGCAGACGGAGTGCATGGGGCTGCGGAAGGGGCATG GCACGCTGGGCCAGGGCCTCAGCGCCCTGCAGAGTGAGCAGGGCCGCCTCATCCAGCTTCTC TCTGAGAGCCAGGGCCACATGGCTCACCTGGTGAACTCCGTCAGCGACATCCTGGATGCCCT ACGGCTCCGTGAACTTCTTCCGGGGCTGGGACGCGTACCGAGACGGCTTTGGCAGGCTCACC GGGAGCACTGGAACTTCTTCCGGGGCTGGGACGCGTACCGAGACGCTTTGGCAGGCTCACC GGGGAGCACTGGCTAGGGCTCAAGAGGATCCACGCCCTGACCACACAGGCTGCCTACGAGCT GCACGTGGACCTGGAGCCTTGAGAATGGCACGGCCTATGCCCGCTACGGGAGCTTCGGCG TGGGCTTGTTCTCCGTGGACCCTGAGGAAGACGGGTACCCGCTCACCGTGGCTGACTATTCC GGCACTGCAGGCGACTCCCTCCTGAAGCACAGCGGCATGAGGTTCACCACCAAGGACCGTGA CAGCGACCATTCAGAGAACAACTGTGCCGCCTTCTACCGCGGTGCCTGGTGGTACCGCAACT CCACTCTCCAGTAGGGAGGGCCGGGCCATCCCTGACACGAAGCTCCCTGGGCCGGTGAAGT TGCTGTTTGCCGTCCCTGGCCAGGATGGTGGAGTCTGCCCCAGGCACCCTCTGCCCTGCCCGCCAAATACCCGGCATTATGGGGACAGAGAGCAGGGGGGCAGACACCCCTGGAGTCCTC CTAGCAGATCGTGGGGAATGTCAGGTCTCTCTGAGGTCAGGTCTGAGGCCAGTATCCTCCAG CCTGTGCCCCGGCAGGCCTGGGGTCTGCAGTCCTCTTACCTGCTGTGCCCACCTGCTCTCTG GCTTGTACAACCCCCACCAATTTCCCAGGGACTCCAGGGTCCTGAGGCCTCCCAGGAGG GCCTTGGGGGTGATGACCCCTTCCCTGAGGTGGCTGTCTCCATGAGGAGGCCAACCCTTGCC AACAATAAATTTGACTTGGCACCACTGGGGGGTTGGTGGGGAGAGGCCGTGTGACCTGGCTCTC TGTCCCAGTGCCACCAGGTCATCCACATGCGCAG

FIGURE 228

MVNDRWKTMGGAAQLEDRPRDKPQRPSCGYVLCTVLLALAVLLAVAVTGAVLFLNHAHAPGT
APPPVVSTGAASANSALVTVERADSSHLSILIDPRCPDLTDSFARLESAQASVLQALTEHQA
QPRLVGDQEQELLDTLADQLPRLLARASELQTECMGLRKGHGTLGQGLSALQSEQGRLIQLL
SESQGHMAHLVNSVSDILDALQRDRGLGRPRNKADLQRAPARGTRPRGCATGSRPRDCLDVL
LSGQQDDGVYSVFPTHYPAGFQVYCDMRTDGGGWTVFQRREDGSVNFFRGWDAYRDGFGRLT
GEHWLGLKRIHALTTQAAYELHVDLEDFENGTAYARYGSFGVGLFSVDPEEDGYPLTVADYS
GTAGDSLLKHSGMRFTTKDRDSDHSENNCAAFYRGAWWYRNCHTSNLNGQYLRGAHASYADG
VEWSSWTGWQYSLKFSEMKIRPVREDR

FIGURE 229

GCAGTCAGAGACTTCCCCTGCCCCTCGCTGGGAAAGAACATTAGGAATGCCTTTTAGTGCCT TGCTTCCTGAACTAGCTCACAGTAGCCCGGCGGCCCAGGGCAATCCGACCACATTTCACTCT CACCGCTGTAGGAATCCAGATGCAGGCCAAGTACAGCAGCACGAGGGACATGCTGGATGATG ATGGGGACACCACCATGAGCCTGCATTCTCAAGCCTCTGCCACAACTCGGCATCCAGAGCCC TTTGTGCTTGGTGCTGATAGGGCTGGCAGCCCTGGGGCTTTTGTTTTTCAGTACTACC CAAGAGTTGCAATCTCTTCAAGTCCAGAATATAAAGCTTGCAGGAAGTCTGCAGCATGTGGC TGAAAAACTCTGTCGTGAGCTGTATAACAAAGCTGGAGCACACAGGTGCAGCCCTTGTACAG AACAATGGAAATGGCATGGAGACAATTGCTACCAGTTCTATAAAGACAGCAAAAGTTGGGAG CCTGGAATTTGCCGCGTCTCAGAGCTACTCTGAGTTTTTCTACTCTTATTGGACAGGGCTTT TGCGCCCTGACAGTGGCAAGGCCTGGCTGTGGATGGAACCCCTTTCACTTCTGAACTG TTCCATATTATAATAGATGTCACCAGCCCAAGAAGCAGAGACTGTGTGGCCATCCTCAATGG ${\tt TGGTGAAGCCAGAGAGCCTCCATGTCCCCCTGAAACATTAGGCGAAGGTGAC{\tt TGA}{\tt TTCGCC}}$ CTCTGCAACTACAAATAGCAGAGTGAGCCAGGCGGTGCCAAAGCAAGGGCTAGTTGAGACAT TGGGAAATGGAACATAATCAGGAAAGACTATCTCTCTGACTAGTACAAAATGGGTTCTCGTG TTTCCTGTTCAGGATCACCAGCATTTCTGAGCTTGGGTTTATGCACGTATTTAACAGTCACA AGAAGTCTTATTTACATGCCACCAACCAACCTCAGAAACCCATAATGTCATCTGCCTTCTTG GCTTAGAGATAACTTTTAGCTCTCTTTCTTCTCAATGTCTAATATCACCTCCCTGTTTTCAT GTCTTCCTTACACTTGGTGGAATAAGAAACTTTTTGAAGTAGAGGAAATACATTGAGGTAAC ATCCTTTTCTCTGACAGTCAAGTAGTCCATCAGAAATTGGCAGTCACTTCCCAGATTGTACC AGCAAATACACAAGGAATTCTTTTTGTTTGTTTCAGTTCATACTAGTCCCTTCCCAATCCAT CAGTAAAGACCCCATCTGCCTTGTCCATGCCGTTTCCCAACAGGGATGTCACTTGATATGAG AATCTCAAATCTCAATGCCTTATAAGCATTCCTTCCTGTGTCCATTAAGACTCTGATAATTG TCTCCCCTCCATAGGAATTTCTCCCAGGAAAGAAATATATCCCCATCTCCGTTTCATATCAG AACTACCGTCCCCGATATTCCCTTCAGAGAGATTAAAGACCAGAAAAAAGTGAGCCTCTTCA ${\tt TCTGCACCTGTAATAGTTTCAGTTCCTATTTTCTTCCATTGACCCATATTTATACCTTTCAG}$ GTACTGAAGATTTAATAATAATAATGTAAATACTGTGAAAAA

FIGURE 230

MQAKYSSTRDMLDDDGDTTMSLHSQASATTRHPEPRRTEHRAPSSTWRPVALTLLTLCLVLL
IGLAALGLLFFQYYQLSNTGQDTISQMEERLGNTSQELQSLQVQNIKLAGSLQHVAEKLCRE
LYNKAGAHRCSPCTEQWKWHGDNCYQFYKDSKSWEDCKYFCLSENSTMLKINKQEDLEFAAS
QSYSEFFYSYWTGLLRPDSGKAWLWMDGTPFTSELFHIIIDVTSPRSRDCVAILNGMIFSKD
CKELKRCVCERRAGMVKPESLHVPPETLGEGD

FIGURE 231

AATTTCACCGCTGTAGGAATCCAGATGCAGGCCAAGTACAGCAGCACGAGGGACATGNTGG
ATGATGATGGGACACCACCATGAGCCTGCATTNTCAAGCTTTTGCCACAATTCGGCATCCAG
AGCCCCGGCGCACAGAGCACAGGGNTCCTTTTTCAACGTGGCGACCAGTGGCCCTGACCCTG
CTGACTTTGTGCTTGGTGCTGCTGATAGGGCTGGCAGCCCTGGGGCTTTTGTTTTTTCAGTA
CTACCAGCTCTCCAATACTGGTCAAGACACCATTTCTCAAATGGAAGAAGATTAGGAAATA
CGTCCCAAGAGTTGCAATTTNTTCAAGTCCAGAATATAAAGCTTGCAGGAAGTNTGCAGCAT
GTGGCTGAAAAACTCTGTCGTGAGCTGTATAACAAAGCTGGAGGAACTTTGAAGGAGGGCAA
AGTNTCCTCATNTACTATACACACACCACCTTCCC

FIGURE 232

GCCGAGCGCAAGAACCCTGCGCAGCCCAGAGCAGCTGCTGGAGGGGGAATCGAGGCGCGCTC $\mathtt{CTGGGGGTTCGCCGGGGCCGGGGCCGGGGCGCC}$ ${\tt TCGGTGCTGCGGCCGCAGGGCCCGTGGCCTTGGGCATCTCCCTGGGCTTCACCCTGAGCCT}$ GCTCAGCGTCACCTGGGTGGAGGGCCGTGCGGCCCAGGCCCCAACCTGGAGACTCTG AGCTGCCGCCGCGCGCAACACCCAACGCGGCGCGCCCCAACTCGGTGCAGCCCGGAGCG GAGCGCGAGAAGCCCGGGGGCGAAGGCGCCGGGGAGAATTGGGAGCCGCGTCTTGCC CTACCACCCTGCACAGCCCGGCCAGGCCGCCAAAAAGGCCGTCAGGACCCGCTACATCAGCA CGGAGCTGGCATCAGGCAGAGGCTGCTGGTGGCGGTGCTGACCTCTCAGACCACGCTGCCC CCATTGGACACCTGCACCTGCGCGCCACCTGCTGGAGCACCACGGCGACGACTTTGAC TGGTTCTTCCTGGTGCCTGACACCACCTACACCGAGGCGCACGGCCTGGCACGCCTAACTGG GAGAGCCCACCCCGGCCGCTACTGCCACGGAGGCTTTGGGGGTGCTGCTGTCGCGCATGCTG CTGCAACAACTGCGCCCCCACCTGGAAGGCTGCCGCAACGACATCGTCAGTGCGCGCCCTGA CGAGTGGCTGGGTCGCTTCTCGATGCCACCGGGGTGGGCTGCACTGGTGACCACGAGG GGGTGCACTATAGCCATCTGGAGCTGAGCCCTGGGGAGCCAGTGCAGGAGGGGGACCCTCAT TTCCGAAGTGCCCTGACAGCCCACCCTGTGCGTGACCCTGTGCACATGTACCAGCTGCACAA AGCTTTCGCCCGAGCTGAACTGGAACGCACGTACCAGGAGATCCAGGAGTTACAGTGGGAGA TCCAGAATACCAGCCATCTGGCCGTTGATGGGGGACCGGGCAGCTGCTTGGCCCGTGGGTATT CCAGCACCATCCCGCCCGGCCTCCCGCTTTGAGGTGCTGCGCTGGGACTACTTCACGGAGCA GCACGCTTTCTCCTGCGCCGATGGCTCACCCCGCTGCCCACTGCGTGGGGCTGACCGGGCTG ATGTGGCCGATGTTCTGGGGACAGCTCTAGAGGAGCTGAACCGCCGCCTACCACCCGGCCTTG CGGCTCCAGAAGCAGCTGGTGAATGGCTACCGACGCTTTGATCCGGCCCGGGGTATGGA ATACACGCTGGACTTGCAGCTGGAGGCACTGACCCCCAGGGAGGCCGCCGGCCCCTCACTC GCCGAGTGCAGCTGCCCGCCGCGAGCCGCGTGGAGATCTTGCCTGTGCCCTATGTCACT GAGGCCTCACGTCTCACTGTGCTGCTGCCTCTAGCTGCGGCTGAGCGTGACCTGGCCCCTGG $\verb|CTTCTTGGAGGCCTTTGCCACTGCAGCACTGGAGCCTGATGCTGATGCTGCGGCAGCCCTGACCC| \\$ TGCTGCTACTGTATGAGCCGCGCCAGGCCCAGCGCGTGGCCCATGCAGATGTCTTCGCACCT GTCAAGGCCCACGTGGCAGAGCTGGAGCGGCGTTTCCCCGGTGCCCGGGTGCCATGGCTCAG TGTGCAGACAGCCGCACCCTCACCACTGCGCCTCATGGATCTACTCTCCAAGAAGCACCCGC TGGACACACTGTTCCTGCTGGCCGGGCCAGACACGGTGCTCACGCCTGACTTCCTGAACCGC TGCCGCATGCATGCCATCTCCGGCTGGCAGGCCTTCTTTCCCATGCATTTCCAAGCCTTCCA CCCAGGTGTGGCCCCACACAAGGGCCTGGGCCCCCAGAGCTGGGCCGTGACACTGGCCGCT TTGATCGCCAGGCAGCCAGCGAGGCCTGCTTCTACAACTCCGACTACGTGGCAGCCCGTGGG CGCCTGGCGGCAGCCTCAGAACAAGAAGAGGGGGCTGCTGGAGAGCCTGGATGTGTACGAGCT ACCGGGCCCAGACGTGCAGCGCGAGGCTCAGTGAGGACCTGTACCACCGCTGCCTCCAGAGC GTGCTTGAGGGCCTCGGCTCCCGAACCCAGCTGGCCATGCTACTCTTTGAACAGGAGCAGGG ${\tt CAACAGCACC}$ ${\tt CCACCCTGTCCCCGTGGGCCGTGGCCATGGCCACCCCACCCCACTT}$ CTCCCCAAAACCAGAGCCACCTGCCAGCCTCGCTGGGCAGGGCTGGCCGTAGCCAGACCCC AAGCTGGCCCACTGGTCCCCTCTCTGGCTCTGTGGGTCCCTGGGCTCTGGACAAGCACTGGG GGACGTGCCCCAGAGCCACCTTCTCATCCCAAACCCAGTTTCCCTGCCCCCTGACGCT GCTGATTCGGGCTGTGGCCTCCACGTATTTATGCAGTACAGTCTGCCTGACGCCAGCCCTGC CTCTGGGCCCTGGGGCTGTAGAAGAGTTGTTGGGGAAGGAGGAGCTGAGGAGGG GCATCTCCCAACTTCTCCCTTTTGGACCCTGCCGAAGCTCCCTGCCTTTAATAAACTGGCCA AGTGTGGAAAAA

FIGURE 233

MRASLLLSVLRPAGPVAVGISLGFTLSLLSVTWVEEPCGPGPPQPGDSELPPRGNTNAARRP
NSVQPGAEREKPGAGEGAGENWEPRVLPYHPAQPGQAAKKAVRTRYISTELGIRQRLLVAVL
TSQTTLPTLGVAVNRTLGHRLERVVFLTGARGRRAPPGMAVVTLGEERPIGHLHLALRHLLE
QHGDDFDWFFLVPDTTYTEAHGLARLTGHLSLASAAHLYLGRPQDFIGGEPTPGRYCHGGFG
VLLSRMLLQQLRPHLEGCRNDIVSARPDEWLGRCILDATGVGCTGDHEGVHYSHLELSPGEP
VQEGDPHFRSALTAHPVRDPVHMYQLHKAFARAELERTYQEIQELQWEIQNTSHLAVDGDRA
AAWPVGIPAPSRPASRFEVLRWDYFTEQHAFSCADGSPRCPLRGADRADVADVLGTALEELN
RRYHPALRLQKQQLVNGYRRFDPARGMEYTLDLQLEALTPQGGRRPLTRRVQLLRPLSRVEI
LPVPYVTEASRLTVLLPLAAAERDLAPGFLEAFATAALEPGDAAAALTLLLLYEPRQAQRVA
HADVFAPVKAHVAELERRFPGARVPWLSVQTAAPSPLRLMDLLSKKHPLDTLFLLAGPDTVL
TPDFLNRCRMHAISGWQAFFPMHFQAFHPGVAPPQGPGPPELGRDTGRFDRQAASEACFYNS
DYVAARGRLAAASEQEEELLESLDVYELFLHFSSLHVLRAVEPALLQRYRAQTCSARLSEDL
YHRCLQSVLEGLGSRTQLAMLLFEQEQGNST

FIGURE 234

GCTCTGGCCGGCCGCGATTGGTCACCGCCCGCTAGGGGACAGCCCTGGCCTCCTCTGAT TGGCAAGCGCTGGCCACCTCCCCACACCCCTTGCGAACGCTCCCCTAGTGGAGAAAAGGAGT AGCTATTAGCCAATTCGGCAGGGCCCGCTTTTTAGAAGCTTGATTTCCTTTGAAGATGAAAG ACTAGCGGAAGCTCTGCCTCTTTCCCCAGTGGGCGAGGGAACTCGGGGCGATTGGCTGGGAA CTGTATCCACCCAAATGTCACCGATTTCTTCCTATGCAGGAAATGAGCAGACCCATCAATAA GAAATTTCTCAGCCTGGCCGAAAATGGTTGGCCCCACGAAGCCACGACAACTGGAGGCAAAG AGGGTTGCTCAACGCCCCGCCTCATTGGAAAACCAAATCAGATCTGGGACCTATATAGCGTG GCGGAGCGGGCGATGATTGTCGCGCTCGCACCCACTGCAGCTGCGCACAGTCGCATTTCT TTCCCCGCCCTGAGACCCTGCAGCACCATCTGTC**ATG**GCGGCTGGGCTGTTTGGTTTGAGC GCTCGCCGTCTTTTGGCGCAGCGCGACGCGAGGGCTCCCGGCCCCCCGCGTCCGCTGGGA ATCTAGCTTCTCCAGGACTGTGGTCGCCCCGTCCGCTGTGGCGGGAAAGCGGCCCCCAGAAC CGACCACCGTGGCAAGAGGCCCAGAACCCGAGGACGAAAACTTGTATGAGAAGAACCCA GACTCCCATGGTTATGACAAGGACCCCGTTTTGGACGTCTGGAACATGCGACTTGTCTTCTT CTTTGGCGTCTCCATCATCCTGGTCCTTGGCAGCACCTTTGTGGCCTATCTGCCTGACTACA GGATGAAAGAGTGGTCCCGCCGCGAAGCTGAGAGGCTTGTGAAATACCGAGAGGCCAATGGC $\tt CTTCCCATCATGGAATCCAACTGCTTCGACCCCAGCAAGATCCAGCTGCCAGAGGATGAG{\color{red}{\bf TG}}$ CTCTTCTCAGAGCACCTAATTAAAGGGGCTGAAAGTCTGAA

FIGURE 235

MAAGLFGLSARRLLAAAATRGLPAARVRWESSFSRTVVAPSAVAGKRPPEPTTPWQEDPEPE DENLYEKNPDSHGYDKDPVLDVWNMRLVFFFGVSIILVLGSTFVAYLPDYRMKEWSRREAER LVKYREANGLPIMESNCFDPSKIQLPEDE

FIGURE 236

FIGURE 237

GCGCCGCT**ATG**CCGCTTGCTCTCTCTCTTTGCTCCTGGGGCCCGGCGGCTGGTGCCT TGCAGAACCCCCACGCGACAGCCTGCGGGAGGAACTTGTCATCACCCCGCTGCCTTCCGGGG ACGTAGCCGCCACATTCCAGTTCCGCACGCGCTGGGATTCGGAGCTTCAGCGGGAAGGAGTG TCCCATTACAGGCTCTTTCCCAAAGCCCTGGGGCAGCTGATCTCCAAGTATTCTCTACGGGA GCTGCACCTGTCATTCACACAAGGCTTTTGGAGGACCCGATACTGGGGGGCCACCCTTCCTGC AGGCCCCATCAGGTGCAGAGCTGTGGGTCTGGTTCCAAGACACTGTCACTGATGTGGATAAA TCTTGGAAGGAGCTCAGTAATGTCCTCTCAGGGATCTTCTGCGCCCTCTCTCAACTTCATCGA CTCCACCAACACAGTCACTCCCACTGCCTCCTTCAAACCCCTGGGTCTGGCCAATGACACTG ACCACTACTTTCTGCGCTATGCTGTGCTGCCGCGGGAGGTGGTCTGCACCGAAAACCTCACC CCCTGGAAGAAGCTCTTGCCCTGTAGTTCCAAGGCAGGCCTCTCTGTGCTGCTGAAGGCAGA TCGCTTGTTCCACACCAGCTACCACTCCCAGGCAGTGCATATCCGCCCTGTTTGCAGAAATG CACGCTGTACTAGCATCTCCTGGGAGCTGAGGCAGACCCTGTCAGTTGTATTTGATGCCTTC ATCACGGGCAGGGAAAGAAAGACTGGTCCCTCTTCCGGATGTTCTCCCGAACCCTCACGGA GCCCTGCCCCTGGCTTCAGAGAGCCGAGTCTATGTGGACATCACCACCTACAACCAGGACA ACGAGACATTAGAGGTGCACCCACCCCGACCACTACATATCAGGACGTCATCCTAGGCACT CGGAAGACCTATGCCATCTATGACTTGCTTGACACCGCCATGATCAACAACTCTCGAAACCT CAACATCCAGCTCAAGTGGAAGAGACCCCCAGAGAATGAGGCCCCCCCAGTGCCCTTCCTGC ATGCCCAGCGGTACGTGAGTGGCTATGGGCTGCAGAAGGGGGAGCTGAGCACACTGCTGTAC AACACCCACCATACCGGGCCTTCCCGGTGCTGCTGGTACCCGTACCCTGGTATCTGCG GCTGTATGTGCACACCCTCACCATCACCTCCAAGGGCAAGGAGAACAAACCAAGTTACATCC ACTACCAGCCTGCCCAGGACCGGCTGCAACCCCACCTCCTGGAGATGCTGATTCAGCTGCCG GCCAACTCAGTCACCAAGGTTTCCATCCAGTTTGAGCGGGCGCTGCTGAAGTGGACCGAGTA CACGCCAGATCCTAACCATGGCTTCTATGTCAGCCCATCTGTCCTCAGCGCCCTTGTGCCCA GCATGGTAGCAGCCAAGCCAGTGGACTGGGAAGAGTCCCCTCTTCAACAGCCTGTTCCCA GTCTCTGATGGCTCTAACTACTTTGTGCGGCTCTACACGGAGCCGCTGCTGGTGAACCTGCC GACACCGGACTTCAGCATGCCCTACAACGTGATCTGCCTCACGTGCACTGTGGTGGCCGTGT GCTACGGCTCCTTCTACAATCTCCTCACCCGAACCTTCCACATCGAGGAGCCCCGCACAGGT GGCCTGGCCAAGCGGCTGGCCAACCTTATCCGGCGCGCCCGAGGTGTCCCCCCACTC**TGA**TT CTTGCCCTTTCCAGCAGCTGCAGCTGCCGTTTCTCTCTGGGGAGGGGAGCCCAAGGGCTGTT TCTGCCACTTGCTCTCCTCAGAGTTGGCTTTTGAACCAAAGTGCCCTGGACCAGGTCAGGGC CTACAGCTGTGTTGTCCAGTACAGGAGCCACGAGCCAAATGTGGCATTTGAATTTGAATTAA CTTAGAAATTCATTTCCTCACCTGTAGTGGCCACCTCTATATTGAGGTGCTCAATAAGCAAA AGTGGTCGGTGGCTGCTGTATTGGACAGCACAGAAAAGATTTCCATCACCACAGAAAGGTC GGCTGGCAGCACTGGCCAAGGTGATGGGGTGTGCTACACAGTGTATGTCACTGTGTAGTGGA

FIGURE 238

MPLALLVLLLGPGGWCLAEPPRDSLREELVITPLPSGDVAATFQFRTRWDSELQREGVSHY
RLFPKALGQLISKYSLRELHLSFTQGFWRTRYWGPPFLQAPSGAELWVWFQDTVTDVDKSWK
ELSNVLSGIFCASLNFIDSTNTVTPTASFKPLGLANDTDHYFLRYAVLPREVVCTENLTPWK
KLLPCSSKAGLSVLLKADRLFHTSYHSQAVHIRPVCRNARCTSISWELRQTLSVVFDAFITG
QGKKDWSLFRMFSRTLTEPCPLASESRVYVDITTYNQDNETLEVHPPPTTTYQDVILGTRKT
YAIYDLLDTAMINNSRNLNIQLKWKRPPENEAPPVPFLHAQRYVSGYGLQKGELSTLLYNTH
PYRAFPVLLLDTVPWYLRLYVHTLTITSKGKENKPSYIHYQPAQDRLQPHLLEMLIQLPANS
VTKVSIQFERALLKWTEYTPDPNHGFYVSPSVLSALVPSMVAAKPVDWEESPLFNSLFPVSD
GSNYFVRLYTEPLLVNLPTPDFSMPYNVICLTCTVVAVCYGSFYNLLTRTFHIEEPRTGGLA
KRLANLIRRARGVPPL

FIGURE 239

CAACATGGGGTCCAGCAGCTTCTTGGTCCTCATGGTGTCTCTCGTTCTTGTGACCCTGGTGG
CTGTGGAAGGAGTTAAAGAGGGGTATAGAGAAAGCAGGGGTTTGCCCAGCTGACAACGTACGC
TGCTTCAAGTCCGATCCTCCCCAGTGTCACACAGACCAGGACTGTCTGGGGGAAAGGAAGTG
TTGTTACCTGCACTGTGGCTTCAAGTGTGTGATTCCTGTGAAGGAACTGGAAGAAGGAGGAA
ACAAGGATGAAGATGTGTCAAGGCCATACCCTGAGCCAGGATGGGAGGCCAAGTGTCCAGGC
TCCTCTCTACCAGGTGTCCTCAGAAATGATGCTGGAACTAGCCCAGCC
CCACCAAAGAAAACCTGAGCTTGAAGTCCTTTCCCCAAAAAAGAGGAAGAATACCCAACC
CCACCAAAGAAAACCTGAGCTTGAAGTCCTTTTCCCCAAAAAAGAGGGAAGAGTCACAAAAAG
TCCAGACCCCAGGGACGGTACTTTCCCTCTCTCCCCAAAAGAGCTGCCCTTGCCCTTC
TGCAATGTGTGATCACAGCTAGAAGGCACTGTCAGAAGAGAAACTGGTCCTCACCAGATG
CTGAATCTGCTGGTGCCTTGATCTTCGGACTTCCCAGAACTGTCCTCACCAGATG
TTGCTGTTTATAATCCAA

FIGURE 240

MGSSSFLVLMVSLVLVTLVAVEGVKEGIEKAGVCPADNVRCFKSDPPQCHTDQDCLGERKCC YLHCGFKCVIPVKELEEGGNKDEDVSRPYPEPGWEAKCPGSSSTRCPQK

Signal sequence:

amino acids 1-19

N-myristoylation sites:

amino acids 23-29, 27-33, 32-38, 102-108

WAP-type 'four-disulfide core' domain signature:

amino acids 49-63

FIGURE 241

AAACTCAGCACTTGCCGGAGTGGCTCATTGTTAAGACAAAGGGTGTGCACTTCCTGGCCAGG AAACCTGAGCGGTGAGACTCCCAGCTGCCTACATCAAGGCCCCAGGACATGCAGAACCTTCC TCTAGAACCCGACCCACCATGAGGTCCTGCCTGTGGAGATGCAGGCACCTGAGCCAAGG CTACAGTCCCTGGCAAAGCCTAAGTCCCAGGCACCCACAAGGGCGAGGAGGACCATCTA TGCAGAGCCAGCCCAGAGAACAATGCCCTCAACACACAAACCCAGCCCAAGGCCCACACCA ACAGCACAGAGGGCAGCATGGAAGAGACCCAGAAAAAGAGAAAACCATGGTGAACACTGTC ACCCAGAGGGCAAGATGCAGGGATGGCCTCTGGCAGGACAGAGGCACAATCATGGAAGAGCC AGGACACAAAGACGACCCAAGGAAATGGGGGCCAGACCAGGAAGCTGACGGCCTCCAGGACG GTGTCAGAGAAGCACCAGGGCAAAGCGGCAACCACAGCCAAGACGCTCATTCCCAAAAGTCA GCACAGAATGCTGGCTCCCACAGGAGCAGTGTCAACAAGGACGAGACAGAAAGGAGTGACCA CAGCAGTCATCCCACCTAAGGAGAAGAAACCTCAGGCCACCCCACCCCTGCCCCTTTCCAG AGCCCCACGACGCAGAGAAACCAAAGACTGAAGGCCGCCAACTTCAAATCTGAGCCTCGGTG GGATTTTGAGGAAAAATACAGCTTCGAAATAGGAGGCCTTCAGACGACTTGCCCTGACTCTG TGAAGATCAAAGCCTCCAAGTCGCTGTGGCTCCAGAAACTCTTTCTGCCCAACCTCACTCTC TTCCTGGACTCCAGACACTTCAACCAGAGTGAGTGGGGACCGCCTGGAACACTTTGCACCACC CTTTGGCTTCATGGAGCTCAACTACTCCTTGGTGCAGAAGGTCGTGACACGCTTCCCTCCAG TGCCCCAGCAGCTGCTCCTGGCCAGCCTCCCCGCTGGGAGCCTCCGGTGCATCACCTGT GCCGTGGTGGCCAACGGGGGCATCCTGAACAACTCCCACATGGGCCAGGAGATAGACAGTCA CGACTACGTGTTCCGATTGAGCGGAGCTCTCATTAAAGGCTACGAACAGGATGTGGGGACTC GGACATCC1'TCTACGGCTTTACCGCCTTCTCCCTGACCCAGTCACTCCTTATATTGGGCAAT CGGGGTTTCAAGAACGTGCCTCTTGGGAAGGACGTCCGCTACTTGCACTTCCTGGAAGGCAC CCGGGACTATGAGTGGCTGGAAGCACTGCTTATGAATCAGACGGTGATGTCAAAAAACCTTT TCTGGTTCAGGCACAGACCCCAGGAAGCTTTTCGGGAAGCCCTGCACATGGACAGGTACCTG TTGCTGCACCCAGACTTTCTCCGATACATGAAGAACAGGTTTCTGAGGTCTAAGACCCTGGA TGGTGCCCACTGGAGGATATACCGCCCCACCACTGGGGCCCTCCTGCTGCTCACTGCCCTTC AGCTCTGTGACCAGGTGAGTGCTTATGGCTTCATCACTGAGGGCCCATGAGCGCTTTTCTGAT CACTACTATGATACATCATGGAAGCGGCTGATCTTTTACATAAACCATGACTTCAAGCTGGA GAGAGAAGTCTGGAAGCGGCTACACGATGAAGGGATAATCCGGCTGTACCAGCGTCCTGGTC $\verb|CCGGAACTGCCAAAGCCAAGAAC| \textbf{TGA} | \texttt{CCGGGGGCCAGGGCTGCCATGGTCTCCTTGCCTGCTC}|$ CAAGGCACAGGATACAGTGGGAATCTTGAGACTCTTTGGCCATTTCCCATGGCTCAGACTAA GCTCCAAGCCCTTCAGGAGTTCCAAGGGAACACTTGAACCATGGACAAGACTCTCTCAAGAT GGCAAATGGCTAATTGAGGTTCTGAAGTTCTTCAGTACATTGCTGTAGGTCCTGAGGCCAGG GATTTTTAATTAAATGGGGTGATGGGTGGCCAATACCACAATTCCTGCTGAAAAACACTCTT CCAGTCCAAAAGCTTCTTGATACAGAAAAAAGAGCCTGGATTTACAGAAACATATAGATCTG GTTTGAATTCCAGATCGAGTTTACAGTTGTGAAATCTTGAAGGTATTACTTAACTTCACTAC AGATTGTCTAGAAGACCTTTCTAGGAGTTATCTGATTCTAGAAGGGTCTATACTTGTCCTTG TCTTTAAGCTATTTGACAACTCTACGTGTTGTAGAAAACTGATAATAATACAAATGATTGTT

FIGURE 242

MRSCLWRCRHLSQGVQWSLLLAVLVFFLFALPSFIKEPQTKPSRHQRTENIKERSLQSLAKP KSQAPTRARRTTIYAEPAPENNALNTQTQPKAHTTGDRGKEANQAPPEEQDKVPHTAQRAAW KSPEKEKTMVNTLSPRGQDAGMASGRTEAQSWKSQDTKTTQGNGGQTRKLTASRTVSEKHQG KAATTAKTLIPKSQHRMLAPTGAVSTRTRQKGVTTAVIPPKEKKPQATPPPAPFQSPTTQRN QRLKAANFKSEPRWDFEEKYSFEIGGLQTTCPDSVKIKASKSLWLQKLFLPNLTLFLDSRHF NQSEWDRLEHFAPPFGFMELNYSLVQKVVTRFPPVPQQQLLLASLPAGSLRCITCAVVGNGG ILNNSHMGQEIDSHDYVFRLSGALIKGYEQDVGTRTSFYGFTAFSLTQSLLILGNRGFKNVP LGKDVRYLHFLEGTRDYEWLEALLMNQTVMSKNLFWFRHRPQEAFREALHMDRYLLLHPDFL RYMKNRFLRSKTLDGAHWRIYRPTTGALLLLTALQLCDQVSAYGFITEGHERFSDHYYDTSW KRLIFYINHDFKLEREVWKRLHDEGIIRLYQRPGPGTAKAKN

Cytoplasmic Domain:

amino acids 1-10

Type II Transmembrane Domain:

amino acids 11-35

Lumenal catalytic Domain:

amino acids 36-600

Ribonucleotide Reductase small subunit Signature:

amino acids 481-496

N-glycosylation Sites:

amino acids 300-303, 311-314, 331-334, 375-378, 460-463

FIGURE 243

FIGURE 244

MRGPGHPLLLGLLLVLGPSPEQRVEIVPRDLRMKDKFLKHLTGPLYFSPKCSKHFHRLYHNT RDCTIPAYYKRCARLLTRLAVSPVCMEDK

FIGURE 245

GGGCTGGGCCCGCCGCAGCTCCAGCTGGCCGGCTTGGTCCTGCGGTCCCTTCTCTGGGAGG CCCGACCCGGCCGGCCCACCCACCATGCCACCGCGGGGCCTCCGCCGGGCCGCGCCG CTCACCGCAATCGCTCTGTTGGTGCTGGGGGGCTCCCCTGGTGCTGGCCGGCGAGGACTGCCT GTGGTACCTGGACCGGAATGGCTCCTGGCATCCGGGGTTTAACTGCGAGTTCTTCACCTTCT GCTGCGGGACCTGCTACCATCGGTACTGCTGCAGGGACCTGACCTTGCTTATCACCGAGAGG CAGCAGAAGCACTGCCTGGCCTTCAGCCCCAAGACCATAGCAGGCATCGCCTCAGCTGTGAT CCTCTTTGTTGCTGTGGTTGCCACCACCATCTGCTGCTTCCTCTGTTCCTGTTGCTACCTGT ACCGCCGGCCCAGCAGCTCCAGAGCCCATTTGAAGGCCAGGAGATTCCAATGACAGGCATC CCAGTGCAGCCAGTATACCCATACCCCCAGGACCCCAAAGCTGGCCCTGCACCCCCACAGCC TGGCTTCATGTACCCACCTAGTGGTCCTGCTCCCCAATATCCACTCTACCCAGCTGGGCCCC CAGTCTACAACCCTGCAGCTCCTCCCTATATGCCACCACAGCCCTCTTACCCGGGAGCC **TGA**GGAACCAGCCATGTCTCTGCTGCCCCTTCAGTGATGCCAACCTTGGGAGATGCCCTCAT CCTGTACCTGCATCTGGTCCTGGGGGTGGCAGGAGTCCTCCAGCCACCAGGCCCCAGACCAA GCCAAGCCCTGGGCCCTACTGGGGACAGAGCCCCAGGGAAGTGGAACAGGAGCTGAACTAGA ACTATGAGGGGTTGGGAGGGCTTGGAATTATGGGCTATTTTTACTGGGGCAAGGGAGG GAGATGACAGCCTGGGTCACAGTGCCTGTTTTCAAATAGTCCCTCTGCTCCCAAGATCCCAG TCCGTCAGCAGCTGGCAGTAGCCCTCCTCTCTGGCTGCCCACTGGCCACATCTCTGGCCTG CTAGATTAAAGCTGTAAAGACAAAA

FIGURE 246

MPPAGLRRAAPLTAIALLVLGAPLVLAGEDCLWYLDRNGSWHPGFNCEFFTFCCGTCYHRYC CRDLTLLITERQQKHCLAFSPKTIAGIASAVILFVAVVATTICCFLCSCCYLYRRRQQLQSP FEGQEIPMTGIPVQPVYPYPQDPKAGPAPPQPGFMYPPSGPAPQYPLYPAGPPVYNPAAPPP YMPPQPSYPGA

Transmembrane Domains:

amino acids 10-28, 85-110

N-glycosylation Site:

amino acids 38-41

N-myristoylation Sites:

amino acids 5-10, 88-93

FIGURE 247

GGGGGAGCTAGGCCGGCGGCAGTGGTGGTGGCGCCGCGCGCAAGGGTGAGGGCGCCCCAGAA CCCCAGGTAGGTAGAGCAAGAAGATGGTGTTTCTGCCCCTCAAATGGTCCCTTGCAACCATG TCATTTCTACTTTCCTCACTGTTGGCTCTCTTAACTGTGTCCACTCCTTCATGGTGTCAGAG CACTGAAGCATCTCCAAAACGTAGTGATGGGACACCATTTCCTTGGAATAAAATACGACTTC CTGAGTACGTCATCCCAGTTCATTATGATCTCTTGATCCATGCAAACCTTACCACGCTGACC TTCTGGGGAACCACGAAAGTAGAAATCACAGCCAGTCAGCCCACCAGCACCATCATCCTGCA TAGTCACCACCTGCAGATATCTAGGGCCACCCTCAGGAAGGGAGCCTGGAGAGAGGCTATCGG AAGAACCCCTGCAGGTCCTGGAACACCCCCCTCAGGAGCAAATTGCACTGCTGGCTCCCGAG CCCCTCCTTGTCGGGCTCCCGTACACAGTTGTCATTCACTATGCTGGCAATCTTTCGGAGAC CAACACAATTTGAACCCACTGCAGCTAGAATGGCCTTTCCCTGCTTTGATGAACCTGCCTTC AAAGCAAGTTTCTCAATCAAAATTAGAAGAGAGCCAAGGCACCTAGCCATCTCCAATATGCC ATTGGTGAAATCTGTGACTGTTGCTGAAGGACTCATAGAAGACCATTTTGATGTCACTGTGA AGATGAGCACCTATCTGGTGGCCTTCATCATTTCAGATTTTGAGTCTGTCAGCAAGATAACC AAGAGTGGAGTCAAGGTTTCTGTTTATGCTGTGCCAGACAAGATAAATCAAGCAGATTATGC ACTGGATGCTGCGGTGACTCTTCTAGAATTTTATGAGGATTATTTCAGCATACCGTATCCCC TACCCAAACAAGATCTTGCTGCTATTCCCGACTTTCAGTCTGGTGCTATGGAAAACTGGGGA CTGACAACATATAGAGAATCTGCTCTGTTGTTTGATGCAGAAAAGTCTTCTGCATCAAGTAA GCTTGGCATCACAGTGACTGTGGCCCATGAACTGGCCCACCAGTGGTTTGGGAACCTGGTCA CTATGGAATGGTGGAATGATCTTTGGCTAAATGAAGGATTTGCCAAATTTATGGAGTTTGTG TCTGTCAGTGTGACCCATCCTGAACTGAAAGTTGGAGATTATTTCTTTGGCAAATGTTTTGA CGCAATGGAGGTAGATGCTTTAAATTCCTCACACCCTGTGTCTACACCTGTGGAAAATCCTG CTCAGATCCGGGAGATGTTTGATGATGTTTCTTATGATAAGGGAGCTTGTATTCTGAATATG CTAAGGGAGTATCTTAGCGCTGACGCATTTAAAAGTGGTATTGTACAGTATCTCCAGAAGCA TAGCTATAAAAATACAAAAAACGAGGACCTGTGGGATAGTATGGCAAGTATTTGCCCTACAG ATGGTGTAAAAGGGATGGATGGCTTTTGCTCTAGAAGTCAACATTCATCTTCATCCTCACAT TGGCATCAGGAAGGGGTGGATGTGAAAACCATGATGAACACTTGGACACTGCAGAGGGGTTT TCCCCTAATAACCATCACAGTGAGGGGGGGGAATGTACACATGAAGCAAGAGCACTACATGA AGGGCTCTGACGCCCCCGGACACTGGGTACCTGTGGCATGTTCCATTGACATTCATCACC AGCAAATCCAACATGGTCCATCGATTTTTGCTAAAAACAAAAACAGATGTGCTCATCCTCCC AGAAGAGGTGGAATGGATCAAATTTAATGTGGGCATGAATGGCTATTACATTGTGCATTACG AATGATCGGGCAAGTCTCATTAACAATGCATTTCAGCTCGTCAGCATTGGGAAGCTGTCCAT TGAAAAGGCCTTGGATTTATCCCTGTACTTGAAACATGAAACTGAAATTATGCCCGTGTTTC CACAGAAGGCTGGGATTTTCTTTATAGTAAATATCAGTTTTCTTTGTCCAGTACTGAGAAAA GCCAAATTGAATTTGCCCTCTGCAGAACCCAAAATAAGGAAAAGCTTCAATGGCTACTAGAT GAAAGCTTTAAGGGAGATAAAATAAAAACTCAGGAGTTTCCACAAATTCTTACACTCATTGG CAGGAACCCAGTAGGATACCCACTGGCCTGGCAATTTCTGAGGAAAAACTGGAACAAACTTG TACAAAAGTTTGAACTTGGCTCATCTTCCATAGCCCACATGGTAATGGGTACAACAAATCAA ${ t TTCTCAGCTCCGTTGTGTCCAACAGACAATTGAAACCATTGAAGAAAACATCGGTTGGATGG}$ ATAAGAATTTTGATAAAATCAGAGTGTGGCTGCAAAGTGAAAAGCTTGAACGTATG**TAA**AAA TTCCTCCCTTGCCCGGTTCCTGTTATCTCTAATCACCAACATTTTGTTGAGTGTATTTTCAA ACTAGAGATGGCTGTTTTGGCTCCAACTGGAGATACTTTTTTCCCTTCAACTCATTTTTTGA CTATCCCTGTGAAAAGAATAGCTGTTAGTTTTTCATGAATGGGCTTTTTCATGAATGGGCTA TCGCTACCATGTGTTTTGTTCATCACAGGTGTTGCCCTGCAACGTAAACCCAAGTGTTGGGT

FIGURE 248

MVFLPLKWSLATMSFLLSSLLALLTVSTPSWCQSTEASPKRSDGTPFPWNKIRLPEYVIPVH YDLLIHANLTTLTFWGTTKVEITASQPTSTIILHSHHLQISRATLRKGAGERLSEEPLQVLE HPPQEQIALLAPEPLLVGLPYTVVIHYAGNLSETFHGFYKSTYRTKEGELRILASTQFEPTA ARMAFPCFDEPAFKASFSIKIRREPRHLAISNMPLVKSVTVAEGLIEDHFDVTVKMSTYLVA FIISDFESVSKITKSGVKVSVYAVPDKINQADYALDAAVTLLEFYEDYFSIPYPLPKQDLAA IPDFQSGAMENWGLTTYRESALLFDAEKSSASSKLGITVTVAHELAHQWFGNLVTMEWWNDL WLNEGFAKFMEFVSVSVTHPELKVGDYFFGKCFDAMEVDALNSSHPVSTPVENPAQIREMFD DVSYDKGACILNMLREYLSADAFKSGIVQYLQKHSYKNTKNEDLWDSMASICPTDGVKGMDG FCSRSQHSSSSSHWHQEGVDVKTMMNTWTLQRGFPLITITVRGRNVHMKQEHYMKGSDGAPD TGYLWHVPLTFITSKSNMVHRFLLKTKTDVLILPEEVEWIKFNVGMNGYYIVHYEDDGWDSL TGLLKGTHTAVSSNDRASLINNAFQLVSIGKLSIEKALDLSLYLKHETEIMPVFQGLNELIP MYKLMEKRDMNEVETQFKAFLIRLLRDLIDKQTWTDEGSVSEQMLRSELLLLACVHNYQPCV QRAEGYFRKWKESNGNLSLPVDVTLAVFAVGAQSTEGWDFLYSKYQFSLSSTEKSQIEFALC RTQNKEKLQWLLDESFKGDKIKTQEFPQILTLIGRNPVGYPLAWQFLRKNWNKLVQKFELGS SSIAHMVMGTTNQFSTRTRLEEVKGFFSSLKENGSQLRCVQQTIETIEENIGWMDKNFDKIR VWLQSEKLERM

Signal peptide:

amino acids 1-34

N-glycosylation sites:

amino acids 70-74, 154-158, 414-418, 760-764, 901-905

Neutral zinc metallopeptidases, zinc-binding region signature:

amino acids 350-360

FIGURE 249

 $\texttt{CAGCCACAGACGGGTC} \underline{\textbf{ATG}} \texttt{AGCGCGGTATTACTGCTGGCCCTCCTGGGGTTCATCCTCCCAC}$ $\tt TGCCAGGAGTGCAGGCGCTGCTCTGCCAGTTTGGGACAGTTCAGCATGTGTGGAAGGTGTCC$ GACCTACCCCGGCAATGGACCCCTAAGAACACCAGCTGCGACAGCGGCTTGGGGTGCCAGGA CACGTTGATGCTCATTGAGAGCGGACCCCAAGTGAGCCTGGTGCTCTCCAAGGGCTGCACGG AGGCCAAGGACCAGGAGCCCCGCGTCACTGAGCACCGGATGGGCCCCGGCCTCTCCCTGATC AAGGCTGTCTGGAGGGGACAACAGAAGAGATCTGCCCCAAGGGGACCACACACTGTTATGAT CCAGCCAGGTTGCAACCTGCTCAATGGGACACAGGAAATTGGGCCCGTGGGTATGACTGAGA ACTGCAATAGGAAAGATTTTCTGACCTGTCATCGGGGGACCACCATTATGACACACGGAAAC TTGGCTCAAGAACCCACTGATTGGACCACATCGAATACCGAGATGTGCGAGGTGGGGCAGGT GTGTCAGGAGACGCTGCTGCTCATAGATGTAGGACTCACATCAACCCTGGTGGGGACAAAAG GCTGCAGCACTGTTGGGGGCTCAAAATTCCCAGAAGACCACCATCCACTCAGCCCCTCCTGGG GTGCTTGTGGCCTCCTATACCCACTTCTGCTCCTCGGACCTGTGCAATAGTGCCAGCAGCAG ${\tt CAGCGTTCTGCTGAACTCCCTCCTCAAGCTGCCCCTGTCCCAGGAGACCGGCAGTGTC}$ CTACCTGTGTGCAGCCCCTTGGAACCTGTTCAAGTGGCTCCCCCGAATGACCTGCCCCAGG GGCGCCACTCATTGTTATGATGGGTACATTCATCTCTCAGGAGGTGGGCTGTCCACCAAAAT GAGCATTCAGGGCTGCGTGGCCCAACCTTCCAGCTTCTTGTTGAACCACACCAGACAAATCG GGGGCTGAGGGCCTGGAGTCTCTCACTTGGGGGGTGGGGCTGGCACTGGCCCCAGCGCTGTG $\tt GTGGGGAGTGGTTTGCCCTTCCTGC\underline{TAA} \tt CTCTATTACCCCCACGATTCTTCACCGCTGCTGA$ CCACCCACACTCAACCTCCTCTGACCTCATAACCTAATGGCCTTGGACACCAGATTCTTTC ACACTGGGGAGAGCCTGGAGCATCCGGACTTGCCCTATGGGAGAGGGGACGCTGGAGGAGTG GCTGCATGTATCTGATAATACAGACCCTGTCCTTTCA

FIGURE 250

MSAVLLLALLGFILPLPGVQALLCQFGTVQHVWKVSDLPRQWTPKNTSCDSGLGCQDTLMLI ESGPQVSLVLSKGCTEAKDQEPRVTEHRMGPGLSLISYTFVCRQEDFCNNLVNSLPLWAPQP PADPGSLRCPVCLSMEGCLEGTTEEICPKGTTHCYDGLLRLRGGGIFSNLRVQGCMPQPGCN LLNGTQEIGPVGMTENCNRKDFLTCHRGTTIMTHGNLAQEPTDWTTSNTEMCEVGQVCQETL LLIDVGLTSTLVGTKGCSTVGAQNSQKTTIHSAPPGVLVASYTHFCSSDLCNSASSSSVLLN SLPPQAAPVPGDRQCPTCVQPLGTCSSGSPRMTCPRGATHCYDGYIHLSGGGLSTKMSIQGC VAQPSSFLLNHTRQIGIFSAREKRDVQPPASQHEGGGAEGLESLTWGVGLALAPALWWGVVC PSC

FIGURE 251

 ${\tt CAGG} \underline{\textbf{ATG}} \\ \textbf{AGGGGGGAATCTGGCCCTGGTGGGCGTTCTAATCAGCCTGGCCTTCCTGTCACTGCTG} \\$ CCATCTGGACATCCTCAGCCGGCTGGCGATGACGCCTGCTCTGTGCAGATCCTCGTCCCTGG CCTCAAAGGGGATGCGGGAGAGAGAGGGAGACAAAGGCGCCCCGGACGCCTGGAAGAGTCG GCCCCACGGGAGAAAAGGACATGGGGGGACAAAGGACAGAAAGGCAGTGTGGGTCGTCAT GGAAAAATTGGTCCCATTGGCTCTAAAGGTGAGAAAGGAGATTCCGGTGACATAGGACCCCC AGATGGACAACCAGGTCTCTCAGCTGACCAGCGAGCTCAAGTTCATCAAGAATGCTGTCGCC CGCCCAGCTGTCCTGCCAGGGCCGCGGGGGCACGCTGAGCATGCCCAAGGACGAGGCTGCCA ATGGCCTGATGGCCGCATACCTGGCGCAAGCCGGCCTGGCCCGTGTCTTCATCGGCATCAAC GACCTGGAGAAGGAGGCGCCTTCGTGTACTCTGACCACTCCCCCATGCGGACCTTCAACAA GTGGCGCAGCGTGAGCCCAACAATGCCTACGACGAGGAGGACTGCGTGGAGATGGTGGCCT CGGGCGGCTGGAACGACGTGGCCTGCCACACCACCATGTACTTCATGTGTGAGTTTGACAAG ${\tt GAGAACATG} \underline{{\tt TGA}} {\tt GCCTCAGGCTGGGGGCTGCCCATTGGGGGGCCCCACATGTCCCTGCAGGGTT}$ GGCAGGGACAGACCCAGGCCAGCCAGGGAGCTGTCCCTCTGTGAAGGGTGGAG GCTCACTGAGTAGAGGGCTGTTGTCTAAACTGAGAAAATGGCCTATGCTTAAGAGGAAAATG AAAGTGTTCCTGGGGTGCTCTCTGAAGAAGCAGAGTTTCATTACCTGTATTGTAGCCCCA ATGTCATTATGTAATTATTACCCAGAATTGCTCTTCCATAAAGCTTGTGCCTTTGTCCAAGC

FIGURE 252

MRGNLALVGVLISLAFLSLLPSGHPQPAGDDACSVQILVPGLKGDAGEKGDKGAPGRPGRVG
PTGEKGDMGDKGQKGSVGRHGKIGPIGSKGEKGDSGDIGPPGPNGEPGLPCECSQLRKAIGE
MDNQVSQLTSELKFIKNAVAGVRETESKIYLLVKEEKRYADAQLSCQGRGGTLSMPKDEAAN
GLMAAYLAQAGLARVFIGINDLEKEGAFVYSDHSPMRTFNKWRSGEPNNAYDEEDCVEMVAS
GGWNDVACHTTMYFMCEFDKENM

FIGURE 253

AGTGACTGCAGCCTTCCTAGATCCCCTCCACTCGGTTTCTCTCTTTTGCAGGAGCACCGGCAG CACCAGTGTGTGAGGGGAGCAGGCAGCGGTCCTAGCCAGTTCCTTGATCCTGCCAGACCACC CAGCCCCGGCACAGAGCTGCTCCACAGGCACCATGAGGATCATGCTGCTATTCACAGCCAT TTCCTGGCGGGGGCCGCAGCAAGAGGGATCCAGATCTCTACCAGCTGCTCCAGAGACTCTTC AAAAGCCACTCATCTCTGGAGGGATTGCTCAAAGCCCTGAGCCAGGCTAGCACAGATCCTAA GGAATCAACATCTCCCGAGAAACGTGACATGCATGACTTCTTTGTGGGACTTATGGGCAAGA GGAGCGTCCAGCCAGAGGGAAAGACAGGACCTTTCTTACCTTCAGTGAGGGTTCCTCGGCCC CTTCATCCCAATCAGCTTGGATCCACAGGAAAGTCTTCCCTGGGAACAGAGGAGCAGAGACC ${\tt TTTA} \underline{{\tt TAA}} {\tt GACTCTCCTACGGATGTGAATCAAGAGAACGTCCCCAGCTTTGGCATCCTCAAGT}$ ATCCCCGAGAGCAGAATAGGTACTCCACTTCCGGACTCCTGGACTGCATTAGGAAGACCTC TTTCCCTGTCCCAATCCCCAGGTGCGCACGCTCCTGTTACCCTTTCTCTTCTCTTGT AACATTCTTGTGCTTTGACTCCTTCTCCATCTTTTCTACCTGACCCTGGTGTGGAAACTGCA TAGTGAATATCCCCAACCCCAATGGGCATTGACTGTAGAATACCCTAGAGTTCCTGTAGTGT CCTACATTAAAAATATAATGTCTCTCTATTCCTCAACAATAAAGGATTTTTGCATATGAA

FIGURE 254

 $\label{thm:liafslagsfgavckepqeevvpgggrskrdpdlyqllqrlfkshsslegllk} \\ \text{Alsqastdpkestspekrdmhdffvglmgkrsvqpegktgpflpsvrvprplhpnqlgstgk} \\ \text{sslgteeqrpl}$

Important features:

Signal peptide:

amino acids 1-18

Tyrosine kinase phosphorylation site.

amino acids 36-45

N-myristoylation site.

amino acids 33-39, 59-65

Amidation site.

amino acids 90-94

Leucine zipper pattern.

amino acids 43-65

Tachykinin family signature.

amino acids 86-92

FIGURE 255

GGGCGTCTCCGGCTGCTCTATTGAGCTGTCTGCTCGCTGTGCCCGCTGTGCCTGTGCC CGCGCTGTCGCCGCTGCTACCGCGTCTGCTGGACGCGGGAGACGCCAGCGAGCTGGTGATTG GAGCCCTGCGGAGAGCTCAAGCGCCCAGCTCTGCCCCAGGAGCCCAGGCTGCCCCGTGAGTC TGCTGTTCCTGGTCTGCGGATCCCAAGGCTACCTCCTGCCCAACGTCACTCTCTTAGAGGAG CTGCTCAGCAAATACCAGCACAACGAGTCTCACTCCCGGGTCCGCAGAGCCATCCCCAGGGA GGACAAGGAGGAGATCCTCATGCTGCACAACAAGCTTCGGGGCCCAGGTGCAGCCTCAGGCCT CCAACATGGAGTACATGGTGAGCGCCGGGCTCCGGCCGCAGAGGCTGGCACCGGGGGTGGGGC TTGAGACAGGGTCTCACTCTGCCACTGACGCTGGAGTGCAATGGCACAATCGTCATGCCCTG ${\tt AAACCT} \underline{\textbf{TAG}} {\tt ACTCCCGGGGTTAAGCGATCCTGCTTCAGCCTCCCAAGTAGCTGGAACTACAG}$ GCATGCACCATGGTGCCCAGCTAGATTTTAAATATTTTGTGGAGATGGGGGTCTTGCTACGT TGCCCAGGCTGGTCTTGAACTCCTAGGCTCAAGCAATCCTCCTGCCTCAGCCTCTCAAAGTG CTAGGATTATAGGCATGAGTCACCCTGTCTGGCTCTGGCTCTGTTCTTAACATTCTGCCAAA ACAACACGTGGGTTCCCTGTGCAGAGCCTGCCTCGTTGCCTTCATGTCACTCTTGGTAGC TCCACTGGGAACACAGCTCTCAGCCTTTCCCACCTGGAGGCAGAGTGGGGAGGGGCCCAGGG CTGGGCTTTGCTGATGCTGATCTCAGCTGTGCCACACGCTAGCTGCACCACCCTGACTTCTC GTGAGATAAGTCGAGGCTGTGAAGGGCCCGGCACAGACTGACCTGCCTCCCCAACCCCTAGG CTTTGCTAACCGGGAAAGGACCTAACGGTGACAGAAGACAGCCAAGGTCAACCCTCCCGGGT GATTGTGATGGGTGTTCCAGGTGTGGGTGGGCGATGCTGCTACTTGACCCCAAGCTCCAGTG TGGAAACTTCCTTGCTGGTTTTTCCAGAACTACAGAGGAATGGACCACAGTCTTCCAGG GTCCCTCCTCGTCCACCAACCGGGAGCCTCCACCTTGGCCATCCGTCAGCTATGAATGGCTT TTTAAACAAACCCACGTCCCAGCCTGGGTAACATGGTAAAGCCCCGTCTCTACAAAAAAATC CAAGTTAGCCGGGCATGGTGCGCACCTGTAGTCCCAGCTGCAGTGGGACTGAGGTGGAG GTGGAGGTGGGGGGGGGGGGGAGGGAGGGAGGGAGGCTGC AGTGAGCTGAGATTGCACCACTGCACTCCAGCCTGGGTGACAGAGCCAAGACCCTGTCTCAAAAA

FIGURE 256

MSCVLGGVIPLGLLFLVCGSQGYLLPNVTLLEELLSKYQHNESHSRVRRAIPREDKEEILML HNKLRGQVQPQASNMEYMVSAGSGRRGWHRGWGLGHQPALFPSQLCSPASACDGWLRVSSGR GGSRLCSVLFVCFETGSHSATDAGVQWHNRHALKP

Important features:

Signal peptide:

amino acids 1-22

N-glycosylation site.

amino acids 27-31, 41-45

N-myristoylation site.

amino acids 126-132, 140-146

Amidation site.

amino acids 85-89

FIGURE 257

FIGURE 258

 ${\tt MGSGLPLVLLLTLLGSSHGTGPGMTLQLKLKESFLTNSSYESSFLELLEKLCLLLHLPSGTS} \\ {\tt VTLHHARSQHHVVCNT}$

FIGURE 259

FIGURE 260

MIGYYLILFLMWGSSTVFCVLLIFTIAEASFSVENECLVDLCLLRICYKLSGVPNQCRVPLP SDCSK

Important features:

Signal peptide:

amino acids 1-29 .

FIGURE 261

GAGGATTTGCCACAGCAGCGGATAGAGCAGGAGGAGCACCACCGGAGCCCTTGAGACATCCTT CCAGGACCCAGCCATGGTGCATTACATCTACCAGCGCTTTCGAGTCTTGGAGCAAGGGCTGG AAAAATGTACCCAAGCAACGAGGGCATACATTCAAGAATTCCAAGAGTTCTCAAAAAATATA TCTGTCATGCTGGGAAGATGTCAGACCTACACAAGTGAGTACAAGAGTGCAGTGGGTAACTT ACGAGTGCATCGTATCAGAGGACAAGACACTGGCAGAAATGTTGCTCCAAGAAGCTGAAGAA GAGAAAAAGATCCGGACTCTGCTGAATGCAAGCTGTGACAACATGCTGATGGGCATAAAGTC TTTGAAAATAGTGAAGAAGATGATGGACACACATGGCTCTTGGATGAAAGATGCTGTCTATA ACTCTCCAAAGGTGTACTTATTAATTGGATCCAGAAACAACACTGTTTGGGAATTTGCAAAC ATACGGGCATTCATGGAGGATAACACCAAGCCAGCTCCCCGGAAGCAAATCCTAACACTTTC CTGGCAGGGAACAGGCCAAGTGATCTACAAAGGTTTTCTATTTTTCATAACCAAGCAACTT CTAATGAGATAATCAAATATAACCTGCAGAAGAGGGACTGTGGAAGATCGAATGCTGCTCCCA GGAGGGGTAGGCCGAGCATTGGTTTACCAGCACTCCCCCTCAACTTACATTGACCTGGCTGT GGATGAGCATGGGCCTCTGGGCCATCCACTCTGGGCCAGGCACCCATAGCCATTTGGTTCTCA CAAAGATTGAGCCGGGCACACTGGGAGTGGAGCATTCATGGGATACCCCATGCAGAAGCCAG GATGCTGAAGCCTCATTCCTCTTGTGTGGGGTTCTCTATGTGGTCTACAGTACTGGGGGCCA GGGCCCTCATCGCATCACCTGCATCTATGATCCACTGGGCACTATCAGTGAGGAGGACTTGC CCAACTTGTTCTTCCCCAAGAGACCAAGAAGTCACTCCATGATCCATTACAACCCCAGAGAT AAGCAGCTCTATGCCTGGAATGAAGGAAACCAGATCATTTACAAACTCCAGACAAAGAGAAAA $\texttt{GCTGCCTCTGAAG} \underline{\textbf{TAA}} \texttt{TGCATTACAGCTGTGAGAAAGAGCACTGTGGCAGCTGTTC}$ AGTGTGTAGAAGTGGAAATACGTATGCCTCCTTTCCCAAATGTCACTGCCTTAGGTATCTTC CAAGAGCTTAGATGAGAGCATATCATCAGGAAAGTTTCAACAATGTCCATTACTCCCCCAAA CCTCCTGGCTCTCAAGGATGACCACATTCTGATACAGCCTACTTCAAGCCTTTTGTTTTACT CCCTAATATTCACCACTGGCTTTTCTCTCCCCTGGCCTTTGCTGAAGCTCTTCCCTCTTTT CAAATGTCTATTGATATTCTCCCATTTTCACTGCCCAACTAAAATACTATTAATATTTCTTT CTTTTCTTTTCTTTTTTTGAGACAAGGTCTCACTATGTTGCCCAGGCTGGTCTCAAACTCC AGAGCTCAAGAGATCCTCCTGCCTCAGCCTCCTAAGTACCTGGGATTACAGGCATGTGCCAC ${\tt CACACCTGGCTTAAAAATACTATTTCTTATTGAGGTTTAACCTCTATTTCCCCTAGCCCTGTC}$ CTTCCACTAAGCTTGGTAGATGTAATAATAAAGTGAAAATATTAACATTTGAATATCGCTTT CCAGGTGTGGAGTGTTTGCACATCATTGAATTCTCGTTTCACCTTTGTGAAACATGCACAAG TCTTTACAGCTGTCATTCTAGAGTTTAGGTGAGTAACACAATTACAAAGTGAAAGATACAGC TAGAAAATACTACAAATCCCATAGTTTTTCCATTGCCCAAGGAAGCATCAAATACGTATGTT TGTTCACCTACTCTTATAGTCAATGCGTTCATCGTTTCAGCCTAAAAATAATAGTCTGTCCC TTTAGCCAGTTTTCATGTCTGCACAAGACCTTTCAATAGGCCTTTCAAATGATAATTCCTCC AGAAAACCAGTCTAAGGGTGAGGACCCCAACTCTAGCCTCCTCTTGTCTTGCTGTCCTCTGT

FIGURE 262

MMVALRGASALLVLFLAAFLPPPQCTQDPAMVHYIYQRFRVLEQGLEKCTQATRAYIQEFQE FSKNISVMLGRCQTYTSEYKSAVGNLALRVERAQREIDYIQYLREADECIVSEDKTLAEMLL QEAEEEKKIRTLLNASCDNMLMGIKSLKIVKKMMDTHGSWMKDAVYNSPKVYLLIGSRNNTV WEFANIRAFMEDNTKPAPRKQILTLSWQGTGQVIYKGFLFFHNQATSNEIIKYNLQKRTVED RMLLPGGVGRALVYQHSPSTYIDLAVDEHGLWAIHSGPGTHSHLVLTKIEPGTLGVEHSWDT PCRSQDAEASFLLCGVLYVVYSTGGQGPHRITCIYDPLGTISEEDLPNLFFPKRPRSHSMIH YNPRDKQLYAWNEGNQIIYKLQTKRKLPLK

FIGURE 263

 ${\tt GGGCGCCGCGTACTCACTAGCTGAGGTGGCAGTGGTTCCACCAAC} {\color{red} {\bf ATG}} {\tt GAGCTCTCGCAGA}$ TGTCGGAGCTCATGGGGCTGTTGCTTGGGCTGCTGGCCCTGATGGCGACGGCGGCG GTAGCGCGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGCCGGCCTGCCAAAAAGC AAATGGATTTCCACCTGACAAATCTTCGGGATCCAAGAAGCAGAAACAATATCAGCGGATTC GGAAGGAGAAGCCTCAACAACACAACTTCACCCACCGCCTCCTGGCTGCAGCTCTGAAGAGC CACAGCGGGAACATATCTTGCATGGACTTTAGCAGCAATGGCAAATACCTGGCTACCTGTGC AGATGATCGCACCATCCGCATCTGGAGCACCAAGGACTTCCTGCAGCGAGAGCACCGCAGCA ${\tt TGAGAGCCAACGTGGAGCTGGACCACCCTGGTGCGCTTCAGCCCTGACTGCAGAGCC}$ TTCATCGTCTGGCCAACGGGGACACCCTCCGTGTCTTCAAGATGACCAAGCGGGAGGA TGGGGGCTACACCTTCACAGCCACCCCAGAGGACTTCCCTAAAAAGCACAAGGCGCCTGTCA TCGACATTGGCATTGCTAACACAGGGAAGTTTATCATGACTGCCTCCAGTGACACCACTGTC ACACGCTGCTGTATCTCCCTGTGGCAGATTTGTAGCCTCGTGTGGCTTCACCCCAGATGTGA $\tt CTAAAGGGCCACTCGCGGGTGTGCACTCGTTTGCTTTCTCCAACGACTCACGGAGGATGGC$ TTCTGTCTCCAAGGATGGTACATGGAAACTGTGGGACACAGATGTGGAATACAAGAAGAAGC CTGGCCCTCTCCCCCAACGCCCAGGTCTTGGCCTTGGCCAGTGGCAGTAGTATTCATCTCTA CAATACCCGGCGGGGCGAGAAGGAGGAGTGCTTTGAGCGGGTCCATGGCGAGTGTATCGCCA ACTTGTCCTTTGACATCACTGGCCGCTTTCTGGCCTCCTGTGGGGACCGGGCGGTGCGGCTG TTTCACAACACTCCTGGCCACCGAGCCATGGTGGAGGAGATGCAGGGCCACCTGAAGCGGGC CTCCAACGAGAGCACCCGCCAGAGGCTGCAGCAGCTGACCCAGGCCCAAGAGACCCTGA $\mathtt{AGAGCCTGGGTGCCCTGAAGAAG}$ CTCTGGGAGGGCCCGGCGCAGAGGATTGAGGAGGAG GGATCTGGCCTCCTCATGGCACTGCTGCCATCTTTCCTCCCAGGTGGAAGCCTTTCAGAAGG AGTCTCCTGGTTTCTTACTGGTGGCCCTGCTTCTTCCCATTGAAACTACTCTTGTCTACTT CTCCCAGGCCCAGTGGGTGGAATCTGTCCCCACCTGGCACTGAGGAGAATGGTAGAGAGGAG AGGAGAGAGAGAGATGTGATTTTTGGCCTTGTGGCAGCACATCCTCACACCCAAAGAAG TTTGTAAATGTTCCAGAACAACCTAGAGAACACCTGAGTACTAAGCAGCAGTTTTGCAAGGA TGGGAGACTGGGATAGCTTCCCATCACAGAACTGTGTTCCATCAAAAAGACACTAAGGGATT TCCTTCTGGGCCTCAGTTCTATTTGTAAGATGGAGAATAATCCTCTCTGTGAACTCCTTGCA AAGATGATATGAGGCTAAGAGAATATCAAGTCCCCAGGTCTGGAAGAAAAGTAGAAAAGAGT AGTACTATTGTCCAATGTCATGAAAGTGGTAAAAGTGGGAACCAGTGTGCTTTGAAACCAAA TTAGAAACACATTCCTTGGGAAGGCAAAGTTTTCTGGGACTTGATCATACATTTTATATGGT TGGGACTTCTCTCTCGGGAGATGATATCTTGTTTAAGGAGACCTCTTTTCAGTTCATCAAG

FIGURE 264

MELSQMSELMGLSVLLGLLALMATAAVARGWLRAGEERSGRPACQKANGFPPDKSSGSKKQK
QYQRIRKEKPQQHNFTHRLLAAALKSHSGNISCMDFSSNGKYLATCADDRTIRIWSTKDFLQ
REHRSMRANVELDHATLVRFSPDCRAFIVWLANGDTLRVFKMTKREDGGYTFTATPEDFPKK
HKAPVIDIGIANTGKFIMTASSDTTVLIWSLKGQVLSTINTNQMNNTHAAVSPCGRFVASCG
FTPDVKVWEVCFGKKGEFQEVVRAFELKGHSAAVHSFAFSNDSRRMASVSKDGTWKLWDTDV
EYKKKQDPYLLKTGRFEEAAGAAPCRLALSPNAQVLALASGSSIHLYNTRRGEKEECFERVH
GECIANLSFDITGRFLASCGDRAVRLFHNTPGHRAMVEEMQGHLKRASNESTRQRLQQQLTQ
AQETLKSLGALKK

Important features:

Signal peptide:

amino acids 1-25

N-glycosylation site.

amino acids 76-80, 92-96, 231-235, 289-293, 378-382, 421-425

Beta-transducin family Trp-Asp repeat protein.

amino acids 30-47, 105-118, 107-119, 203-216, 205-217, 296-308

FIGURE 265

TGGCCTCCCCAGCTTGCCAGGCACAAGGCTGAGCGGGAGGAAGCGAGAGGCATCTAAGCAGG CAGTGTTTTGCCTTCACCCCAAGTGACC**ATG**AGAGGTGCCACGCGAGTCTCAATCATGCTCC TCCTAGTAACTGTGTCTGACTGTGCTGTGATCACAGGGGCCTGTGAGCGGGATGTCCAGTGT GGGGCAGGCACCTGCTGCCATCAGCCTGTGGCTTCGAGGGCTGCGGATGTGCACCCCGCT GGGGCGGAAGGCGAGGAGTGCCACCCCGGCAGCCACAAGGTCCCCTTCTTCAGGAAACGCA AGCACCACACCTGTCCTTGCTTGCCCAACCTGCTGTGCTCCAGGTTCCCGGACGGCAGGTAC CGCTGCTCCATGGACTTGAAGAACATCAATTTT**TAG**GCGCTTGCCTGGTCTCAGGATACCCA CCATCCTTTTCCTGAGCACAGCCTGGATTTTTATTTCTGCCATGAAACCCAGCTCCCATGAC TCTCCCAGTCCCTACACTGACTACCCTGATCTCTCTTGTCTAGTACGCACATATGCACACAG GCAGACATACCTCCCATCATGACATGGTCCCCAGGCTGGCCTGAGGATGTCACAGCTTGAGG CTGTGGTGTGAAAGGTGGCCAGCCTGGTTCTCTTCCCTGCTCAGGCTGCCAGAGAGGTGGTA AATGGCAGAAAGGACATTCCCCCTCCCCTCCCCAGGTGACCTGCTCTTTTCCTGGGCCCTG CCCCTCTCCCCACATGTATCCCTCGGTCTGAATTAGACATTCCTGGGCACAGGCTCTTGGGT GCATTGCTCAGAGTCCCAGGTCCTGGCCTGACCCTCAGGCCCTTCACGTGAGGTCTGTGAGG ACCAATTTGTGGGTAGTTCATCTTCCCTCGATTGGTTAACTCCTTAGTTTCAGACCACAGAC TCAAGATTGGCTCTTCCCAGAGGGCAGCAGACAGTCACCCCAAGGCAGGTGTAGGGAGCCCA GGGAGGCCAATCAGCCCCCTGAAGACTCTGGTCCCAGTCAGCCTGTGGCTTGTGGCCTGTGA CCTGTGACCTTCTGCCAGAATTGTCATGCCTCTGAGGCCCCCTCTTACCACACTTTACCAGT TAACCACTGAAGCCCCCAATTCCCACAGCTTTTCCATTAAAATGCAAATGGTGGTGGTTCAA TCTAATCTGATATTGACATATTAGAAGGCAATTAGGGTGTTTCCTTAAACAACTCCTTTCCA AGGATCAGCCCTGAGAGCAGGTTGGTGACTTTGAGGAGGGCAGTCCTCTGTCCAGATTGGGG TGGGAGCAAGGGACAGGGCAGGGCCTGAAAGGGCACTGATTCAGACCAGGGAGG CAACTACACCAACATGCTGGCTTTAGAATAAAAGCACCAACTGAAAAAA

FIGURE 266

MRGATRVSIMLLLVTVSDCAVITGACERDVQCGAGTCCAISLWLRGLRMCTPLGREGEECHP GSHKVPFFRKRKHHTCPCLPNLLCSRFPDGRYRCSMDLKNINF

Signal peptide:

amino acids 1-19

Tyrosine kinase phosphorylation site:

amino acids 88-95

N-myristoylation sites:

amino acids 33-39, 35-41, 46-52

FIGURE 267

AGCGCCCGGGCGTCGGGGGGTAAAAGGCCGGCAGAAGGGAGGCACTTGAGAA**ATG**TCTTTC CTCCAGGACCCAAGTTTCTTCACCATGGGGATGTGGTCCATTGGTGCAGGAGCCCTGGGGGC TGCTGCCTTGGCATTGCTGCCTTGCCAACACAGACGTGTTTCTGTCCAAGCCCCAGAAAGCGG CCCTGGAGTACCTGGAGGATATAGACCTGAAAACACTGGAGAAGGAACCAAGGACTTTCAAA GCAAAGGAGCTATGGGAAAAAAATGGAGCTGTGATTATGGCCGTGCGGAGGCCAGGCTGTTT CCTCTGTCGAGAGGAAGCTGCGGATCTGTCCTCCCTGAAAAGCATGTTGGACCAGCTGGGCG TCCCCCTCTATGCAGTGGTAAAGGAGCACATCAGGACTGAAGTGAAGGATTTCCAGCCTTAT TTCAAAGGAGAAATCTTCCTGGATGAAAAGAAAAGTTCTATGGTCCACAAAGGCGGAAGAT GATGTTTATGGGATTTATCCGTCTGGGAGTGTGGTACAACTTCTTCCGAGCCTGGAACGGAG GCTTCTCTGGAAACCTGGAAGGAGAAGGCTTCATCCTTGGGGGAGTTTTCGTGGTGGGATCA GGAAAGCAGGGCATTCTTCTTGAGCACCGAGAAAAAGAATTTGGAGACAAAGTAAACCTACT TTCTGTTCTGGAAGCTGCTAAGATGATCAAACCACAGACTTTGGCCTCAGAGAAAAAA<mark>TGA</mark>T TGTGTGAAACTGCCCAGCTCAGGGATAACCAGGGACATTCACCTGTGTTCATGGGATGTATT GTTTCCACTCGTGTCCCTAAGGAGTGAGAAACCCATTTATACTCTACTCTCAGTATGGATTA TTAATGTATTTTAATATTCTGTTTAGGCCCACTAAGGCAAAATAGCCCCAAAACAAGACTGA CAAAAATCTGAAAAACTAATGAGGATTATTAAGCTAAAACCTGGGAAATAGGAGGCTTAAAA TTGACTGCCAGGCTGGGTGCAGTGGCTCACACCTGTAATCCCAGCACTTTGGGAGGCCAAGG TGAGCAAGTCACTTGAGGTCGGGAGTTCGAGACCAGCCTGAGCAACATGGCGAAACCCCGTC GGAGGCTGAGGCAGGAGATCACTTGAACCTGGGAGGTGGAGGTTGCGGTGAGCTGAGATCA

FIGURE 268

MSFLQDPSFFTMGMWSIGAGALGAAALALLLANTDVFLSKPQKAALEYLEDIDLKTLEKEPR TFKAKELWEKNGAVIMAVRRPGCFLCREEAADLSSLKSMLDQLGVPLYAVVKEHIRTEVKDF QPYFKGEIFLDEKKKFYGPQRRKMMFMGFIRLGVWYNFFRAWNGGFSGNLEGEGFILGGVFV VGSGKQGILLEHREKEFGDKVNLLSVLEAAKMIKPQTLASEKK

FIGURE 269

FIGURE 270

MANPGLGLLLALGLPFLLARWGRAWGQIQTTSANENSTVLPSSTSSSSDGNLRPEAITAIIV VFSLLAALLLAVGLALLVRKLREKRQTEGTYRPSSEEQFSHAAEARAPQDSKETVQGCLPI

FIGURE 271

FIGURE 272

 ${\tt MTFFLSLLLLLVCEAIWRSNSGSNTLENGYFLSRNKENHSQPTQSSLEDSVTPTKAVKTTGK}\\ {\tt GIVKGRNLDSRGLILGAEAWGRGVKKNT}$

FIGURE 273

GCCAGGAATAACTAGAGAGGAACA**ATG**GGGTTATTCAGAGGTTTTGTTTTCCTCTTAGTTCT GTGCCTGCTGCACCAGTCAAATACTTCCTTCATTAAGCTGAATAATAATGGCTTTGAAGATA TTGTCATTGTTATAGATCCTAGTGTGCCAGAAGATGAAAAAATAATTGAACAAATAGAGGAT TGTATCTATATTAATTCCTGAGAATTGGAAGGAAAATCCTCAGTACAAAAGGCCAAAACATG AAAACCATAAACATGCTGATGTTATAGTTGCACCACCTACACTCCCAGGTAGAGATGAACCA TACACCAAGCAGTTCACAGAATGTGGAGAGAAAGGCGAATACATTCACTTCACCCCTGACCT TCTACTTGGAAAAAACAAAATGAATATGGACCACCAGGCAAACTGTTTGTCCATGAGTGGG CTCACCTCCGGTGGGGAGTGTTTGATGAGTACAATGAAGATCAGCCTTTCTACCGTGCTAAG TCAAAAAAAATCGAAGCAACAAGGTGTTCCGCAGGTATCTCTGGTAGAAATAGAGTTTATAA GTGTCAAGGAGCAGCTGTCTTAGTAGAGCATGCAGAATTGATTCTACAACAAAACTGTATG GAAAAGATTGTCAATTCTTTCCTGATAAAGTACAAACAGAAAAAGCATCCATAATGTTTATG CAAAGTATTGATTCTGTTGAATTTTGTAACGAAAAAACCCATAATCAAGAAGCTCCAAG CCTACAAAACATAAAGTGCAATTTTAGAAGTACATGGGAGGTGATTAGCAATTCTGAGGATT TTAAAAACACCATACCCATGGTGACACCACCTCCTCCACCTGTCTTCTCATTGCTGAAGATC
AGTCAAAGAATTGTGTGCTTAGTTCTTGATAAGTCTGGAAGCATGGGGGGGTAAGGACCGCCT
AAATCGAATGAATCAAGCAGCAAAACATTTCCTGCTGCAGACTGTTGAAAATGGATCCTGGG TGGGGATGGTTCACTTTGATAGTACTGCCACTATTGTAAATAAGCTAATCCAAATAAAAAGC AGTGATGAAAGAAACACACTCATGGCAGGATTACCTACATATCCTCTGGGAGGAACTTCCAT CTGCTCTGGAATTAAATATGCATTTCAGGTGATTGGAGAGCTACATTCCCAACTCGATGGAT CCGAAGTACTGCTGCTGACTGATGGGGAGATAACACTGCAAGTTCTTGTATTGATGAAGTG AAACAAAGTGGGGCCATTGTTCATTTTATTGCTTTTGGGAAGAGCTGCTGATGAAGCAGTAAT AGAGATGAGCAAGATAACAGGAGGAAGTCATTTTTATGTTTCAGATGAAGCTCAGAACAATG GCCTCATTGATGCTTTTGGGGCTCTTACATCAGGAAATACTGATCTCTCCCAGAAGTCCCTT CAGCTCGAAAGTAAGGGATTAACACTGAATAGTAATGCCTGGATGAACGACACTGTCATAAT TGATAGTACAGTGGGAAAGGACACGTTCTTTCTCATCACATGGAACAGTCTGCCTCCCAGTA TTTCTCTCTGGGATCCCAGTGGAACAATAATGGAAAATTTCACAGTGGATGCAACTTCCAAA ATGGCCTATCTCAGTATTCCAGGAACTGCAAAGGTGGGCACTTGGGCATACAATCTTCAAGC CAAAGCGAACCCAGAAACATTAACTATTACAGTAACTTCTCGAGCAGCAAATTCTTCTGTGC CTCCAATCACAGTGAATGCTAAAATGAATAAGGACGTAAACAGTTTCCCCAGCCCAATGATT GTTTACGCAGAAATTCTACAAGGATATGTACCTGTTCTTGGAGCCAATGTGACTGCTTTCAT TGAATCACAGAATGGACATACAGAAGTTTTGGAACTTTTGGATAATGGTGCAGGCGCTGATT CTTTCAAGAATGATGGAGTCTACTCCAGGTATTTTACAGCATATACAGAAAATGGCAGATAT AGCTTAAAAGTTCGGGCTCATGGAGGAGCAAACACTGCCAGGCTAAAATTACGGCCTCCACT GAATAGAGCCGCGTACATACCAGGCTGGGTAGTGAACGGGGAAATTGAAGCAAACCCGCCAA GACCTGAAATTGATGAGGATACTCAGACCACCTTGGAGGATTTCAGCCGAACAGCATCCGGA GGTGCATTTGTGGTATCACAAGTCCCAAGCCTTCCCTTGCCTGACCAATACCCACCAAGTCA AATCACAGACCTTGATGCCACAGTTCATGAGGATAAGATTATTCTTACATGGACAGCACCAG GAGATAATTTTGATGTTGGAAAAGTTCAACGTTATATCATAAGAATAAGTGCAAGTATTCTT GATCTAAGAGACAGTTTTGATGATGCTCTTCAAGTAAATACTACTGATCTGTCACCAAAGGA GGCCAACTCCAAGGAAAGCTTTGCATTTAAACCAGAAAATATCTCAGAAGAAAATGCAACCC ACATATTTATTGCCATTAAAAGTATAGATAAAAGCAATTTGACATCAAAAGTATCCAACATT GCACAAGTAACTTTGTTTATCCCTCAAGCAAATCCTGATGACATTGATCCTACACCTACTCC TACTCCTACTCCTACTCCTGATAAAAGTCATAATTCTGGAGTTAATATTTCTACGCTGGTAT TGTCTGTGATTGGGTCTGTTAATTGTTAACTTTATTTTAAGTACCACCATT**TGA**ACCTTA AAAGGATATTTCTGAATCTTAAAATTCATCCCATGTGTGATCATAAACTCATAAAAATAATT TTAAGATGTCGGAAAAGGATACTTTGATTAAATAAAAACACTCATGGATATGTAAAAACTGT CAAGATTAAAATTTAATAGTTTCATTTATTTGTTATTTTATTTGTAAGAAATAGTGATGAAC AAAGATCCTTTTTCATACTGATACCTGGTTGTATATTATTTGATGCAACAGTTTTCTGAAAT

FIGURE 274

MGLFRGFVFLLVLCLLHQSNTSFIKLNNNGFEDIVIVIDPSVPEDEKIIEQIEDMVTTASTY
LFEATEKRFFFKNVSILIPENWKENPQYKRPKHENHKHADVIVAPPTLPGRDEPYTKQFTEC
GEKGEYIHFTPDLLLGKKQNEYGPPGKLFVHEWAHLRWGVFDEYNEDQPFYRAKSKKIEATR
CSAGISGRNRVYKCQGGSCLSRACRIDSTTKLYGKDCQFFPDKVQTEKASIMFMQSIDSVVE
FCNEKTHNQEAPSLQNIKCNFRSTWEVISNSEDFKNTIPMVTPPPPPVFSLLKISQRIVCLV
LDKSGSMGGKDRLNRMNQAAKHFLLQTVENGSWVGMVHFDSTATIVNKLIQIKSSDERNTLM
AGLPTYPLGGTSICSGIKYAFQVIGELHSQLDGSEVLLLTDGEDNTASSCIDEVKQSGAIVH
FIALGRAADEAVIEMSKITGGSHFYVSDEAQNNGLIDAFGALTSGNTDLSQKSLQLESKGLT
LNSNAWMNDTVIIDSTVGKDTFFLITWNSLPPSISLWDPSGTIMENFTVDATSKMAYLSIPG
TAKVGTWAYNLQAKANPETLTITVTSRAANSSVPPITVNAKMNKDVNSFPSPMIVYAEILQG
YVPVLGANVTAFIESQNGHTEVLELLDNGAGADSFKNDGVYSRYFTAYTENGRYSLKVRAHG
GANTARLKLRPPLNRAAYIPGWVVNGEIEANPPRPEIDEDTQTTLEDFSRTASGGAFVVSQV
PSLPLPDQYPPSQITDLDATVHEDKIILTWTAPGDNFDVGKVQRYIIRISASILDLRDSFDD
ALQVNTTDLSPKEANSKESFAFKPENISEENATHIFIAIKSIDKSNLTSKVSNIAQVTLFIP
QANPDDIDPTPTPTPTPTPDKSHNSGVNISTLVLSVIGSVVIVNFILSTTI

Signal peptide:

amino acids 1-21

Putative transmembrane domains:

amino acids 284-300, 617-633

Leucine zipper pattern.

amino acids 469-491, 476-498

N-glycosylation site.

amino acids 20-24, 75-79, 340-344, 504-508, 542-546, 588-592, 628-632, 811-815, 832-836, 837-841, 852-856, 896-900

275/330

FIGURE 275

CCTTACCCGCCACCCGAGGAGAAGCCTGTGAGGAAGGACAAGCGGGATGAGTTGGTGGAAGCCATT GAATCAGCCTTGGAGACCATCCTGCAGAGAACAGCCCCAATCACCGTCCTTACACGGCCT CTGATTTCATAGAAGGGATCTACCGAACAGAAAGGGACAAAGGGACATTGTATGAGCTCACCTTCAA AGGGGACCACAAACACGAATTCAAACGGCTCATCTTATTTCGACCATTCAGCCCCATCATGAAAGTGAAAATGAAAAACTCAACACGCTCATCATTATTTCGACCATTCAGCCCCATCATGAAAGTGAAAAATGAAAAACTCAACACGCCAACACGCTTATCAATGTTATCGTGCCTCTAGCAAAAAAGGGTGGACAAGTTCCAGCAGAATTTCAGGGAGATGTGCATTTATCAGCAGGATGGGAGAGTCCATCT AGGCCATGAATGGAAGGTGGTATTGCACAGCTAATAAAATATGATTTGTGGATATGAA

FIGURE 276

MMMVRRGLLAWISRVVVLLVLLCCAISVLYMLACTPKGDEEQLALPRANSPTGKEGYQAVLQ
EWEEQHRNYVSSLKRQIAQLKEELQERSEQLRNGQYQASDAAGLGLDRSPPEKTQADLLAFL
HSQVDKAEVNAGVKLATEYAAVPFDSFTLQKVYQLETGLTRHPEEKPVRKDKRDELVEAIES
ALETLNNPAENSPNHRPYTASDFIEGIYRTERDKGTLYELTFKGDHKHEFKRLILFRPFSPI
MKVKNEKLNMANTLINVIVPLAKRVDKFRQFMQNFREMCIEQDGRVHLTVVYFGKEEINEVK
GILENTSKAANFRNFTFIQLNGEFSRGKGLDVGARFWKGSNVLLFFCDVDIYFTSEFLNTCR
LNTQPGKKVFYPVLFSQYNPGIIYGHHDAVPPLEQQLVIKKETGFWRDFGFGMTCQYRSDFI
NIGGFDLDIKGWGGEDVHLYRKYLHSNLIVVRTPVRGLFHLWHEKRCMDELTPEQYKMCMQS
KAMNEASHGQLGMLVFRHEIEAHLRKQKQKTSSKKT

FIGURE 277

 GAAAGA TTGTGGCTGCTCTTTTTTCTGGTGACTGCCATTCATGCTGAACTCTGTCAACC AGGTGCAGAAAATGCTTTTAAAGTGAGACTTAGTATCAGAACAGCTCTGGGAGATAAAGCAT ATGCCTGGGATACCAATGAAGAATACCTCTTCAAAGCGATGGTAGCTTTCTCCATGAGAAAA GTTCCCAACAGAAAGCAACAGAAATTTCCCATGTCCTACTTTGCAATGTAACCCAGAGGGT ATCATTCTGGTTTGTGGTTACAGACCCTTCAAAAAATCACACCCTTCCTGCTGTTGAGGTGC CTGGAATTTTTAAAAATCCCTTCCACACTTGCACCACCCATGGACCCATCTGTGCCCATCTG GATTATTATATTTGGTGTGATATTTTGCATCATCATAGTTGCAATTGCACTACTGATTTTAT CAGGGATCTGGCAACGTAGAAGAAGAACAAAGAACCATCTGAAGTGGATGACGCTGAAGAT AAGTGTGAAAACATGATCACAATTGAAAATGGCATCCCCTCTGATCCCCTGGACATGAAGGG ${\sf GGGCATATTAATGATGCCTTCA}$ TGTTCTGCTTCCTCAAGAAATTAAACATTTGTTTCTGTGTGACTGCTGAGCATCCTGAAATA CCAAGAGCAGATCATATTTTTGTTTCACCATTCTTCTTTTGTAATAATTTTGAATGTGCT TGAAAGTGAAAAGCAATCAATTATACCCACCAACACCCCTGAAATCATAAGCTATTCACGAC TCAAAATATTCTAAAATATTTTTCTGACAGTATAGTGTATAAATGTGGTCATGTGGTATTTG TAGTTATTGATTTAAGCATTTTTAGAAATAAGATCAGGCATATGTATATTTTTCACACTTC AAAGACCTAAGGAAAAATAAATTTTCCAGTGGAGAATACATATAATATGGTGTAGAAATCAT TGAAAATGGATCCTTTTTGACGATCACTTATATCACTCTGTATATGACTAAGTAAACAAAAG TGAGAAGTAATTATTGTAAATGGATGGATAAAAATGGAATTACTCATATACAGGGTGGAATT TTATCCTGTTATCACACCAACAGTTGATTATATATTTTCTGAATATCAGCCCCTAATAGGAC AATTCTATTTGTTGACCATTTCTACAATTTGTAAAAGTCCAATCTGTGCTAACTTAATAAAG

FIGURE 278

MLWLLFFLVTAIHAELCQPGAENAFKVRLSIRTALGDKAYAWDTNEEYLFKAMVÁFSMRKVP NREATEISHVLLCNVTQRVSFWFVVTDPSKNHTLPAVEVQSAIRMNKNRINNAFFLNDQTLE FLKIPSTLAPPMDPSVPIWIIIFGVIFCIIIVAIALLILSGIWQRRRKNKEPSEVDDAEDKC ENMITIENGIPSDPLDMKGGILMMPS

FIGURE 279

AACTCAAACTCCTCTCTGGGAAAACGCGGTGCTTGCTCCTCCCGGAGTGGCCTTGGCAGG $\tt GTGTTGGAGCCCTCGGTCTGCCCGTCCGGTCTCTGGGGCCAAGGCTGGGTTTCCCTC \underline{\textbf{ATG}} \texttt{T}$ ATGGCAAGAGCTCTACTCGTGCGGTGCTTCTTCTCCTTGGCATACAGCTCACAGCTCTTTGG $\verb|CCTATAGCAGCTGTGGAAATTTATACCTCCCGGGTGCTGGAGGCTGTTAATGGGACAGATGC| \\$ TCGGTTAAAATGCACTTTCTCCAGCTTTGCCCCTGTGGGTGATGCTCTAACAGTGACCTGGA ATTTTCGTCCTCTAGACGGGGGACCTGAGCAGTTTGTATTCTACTACCACATAGATCCCTTC CAACCCATGAGTGGGCGGTTTAAGGACCGGGTGTCTTGGGATGGGAATCCTGAGCGGTACGA TGCCTCCATCCTTCTGGAAACTGCAGTTCGACGACAATGGGACATACACCTGCCAGGTGA AGAACCCACCTGATGTTGATGGGGTGATAGGGGAGATCCGGCTCAGCGTCGTGCACACTGTA CGCTTCTCTGAGATCCACTTCCTGGCTCTGGCCATTGGCTCTGCCTGTGCACTGATGATCAT AATAGTAATTGTAGTGGTCCTCTTCCAGCATTACCGGAAAAAGCGATGGGCCGAAAGAGCTC ATAAAGTGGTGGAGATAAAATCAAAAGAAGAGGAAAGGCTCAACCAAGAGAAAAAGGTCTCT $\tt GTTTATTTAGAAGACACAGAC{\color{red}{\textbf{TAA}}} CAATTTTAGATGGAAGCTGAGATGATTTCCAAGAACAA$ GAACCCTAGTATTTCTTGAAGTTAATGGAAACTTTTCTTTGGCTTTTCCAGTTGTGACCCGT TTTCCAACCAGTTCTGCAGCATATTAGATTCTAGACAAGCAACACCCCTCTGGAGCCAGCAC AGTGCTCCTCCATATCACCAGTCATACACAGCCTCATTATTAAGGTCTTATTTAATTTCAGA GTGTAAATTTTTTCAAGTGCTCATTAGGTTTTTATAAACAAGAAGCTACATTTTTTGCCCTTAA GACACTACTTACAGTGTTATGACTTGTATACACATATATTGGTATCAAAGGGGATAAAAGCC AATTTGTCTGTTACATTTCCTTTCACGTATTTCTTTTAGCAGCACTTCTGCTACTAAAGTTA ATGTGTTTACTCTCTTCCCTTCCCACATTCTCAATTAAAAGGTGAGCTAAGCCTCCTCGGTG TTTCTGATTAACAGTAAATCCTAAATTCAAACTGTTAAATGACATTTTTATTTTTATGTCTC TTTGTCG

FIGURE 280

MYGKSSTRAVLLLLGIQLTALWPIAAVEIYTSRVLEAVNGTDARLKCTFSSFAPVGDALTVT WNFRPLDGGPEQFVFYYHIDPFQPMSGRFKDRVSWDGNPERYDASILLWKLQFDDNGTYTCQ VKNPPDVDGVIGEIRLSVVHTVRFSEIHFLALAIGSACALMIIIVIVVVLFQHYRKKRWAER AHKVVEIKSKEEERLNQEKKVSVYLEDTD

FIGURE 281

FIGURE 282

MKFLAVLVLLGVSIFLVSAQNPTTAAPADTYPATGPADDEAPDAETTAAATTATTAAPTTAT TAASTTARKDIPVLPKWVGDLPNGRVCP

FIGURE 283

FIGURE 284

MLPPALPPALVFTVAWSLLAERVSWVRDAEDAHRLQPFVTERTLGKVQRWSGVHTQTGGRAG GGQFCCAWLDSKRVLASPGWGAANSIKNQRVWAPATESSAQLLCCWPVGVARGGALCQ

FIGURE 285

FIGURE 286

MPVPALCLLWALAMVTRPASAAPMGGPELAQHEELTLLFHGTLQLGQALNGVYRTTEGRLTK ARNSLGLYGRTIELLGQEVSRGRDAAQELRASLLETQMEEDILQLQAEATAEVLGEVAQAQK VLRDSVQRLEVQLRSAWLGPAYREFEVLKAHADKQSHILWALTGHVQRQRREMVAQQHRLRQ IQERLHTAALPA

FIGURE 287

GGCAAC<u>ATG</u>GCTCAGCAGGCTTGCCCCAGAGCCATGGCAAAGAATGGACTTGTAATTTGCAT CCTGGTGATCACCTTACTCCTGGACCAGACCACCACCACACATCCAGATTAAAAGCCAGGA AGCACAGCAAACGTCGAGTGAGAGACAAGGATGGAGATCTGAAGACTCAAATTGAAAAGCTC TAAAGTTCACAAGAAATGCTACCTTGCTTCAGAAGGTTTGAAGCATTTCCATGAGGCCAATG AAGACTGCATTTCCAAAGGAGGAATCCTGGTTATCCCCAGGAACTCCGACGAAATCAACGCC CTCCAAGACTATGGTAAAAGGAGCCTGCCAGGTGTCAATGACTTTTGGCTGGGCATCAATGA CATGGTCACGGAAGGCAAGTTTGTTGACGTCAACGGAATCGCTATCTCCTTCAACTGGG ACCGTGCACAGCCTAACGGTGGCAAGCGAGAAAACTGTGTCCTGTTCTCCCAATCAGCTCAG GGCAAGTGGAGTGATGAGGCCTGTCGCAGCAGCAAGAGATACATATGCGAGTTCACCATCCC TAAATAGGTCTTTCTCCAATGTGTCCTCCAAGCAAGATTCATCATAACTTATAGGTTCATGA TCTCTAAGATCAAGTAAAAATCATAATTTTTACTTATTAAAAAATTGCAACACAAGATCAAT GTCCATAGCAATATGATAGCATCAGCCAATTTTGCTAACACATTTCTTTGGGATTTTGCCCT TCCTGGGGTATAGGGGATCAGAAATATTGATCCATGTGCACGCAGATAAAATGGCTTCTGCT TTCCCTTGGAAGTTTAGCGTATGTTTGACTAACAAAATTCCCTACATCAGAGACTCTAGGT GCTATATAATCCAAAAACTTTTCAGCCTGTTGCTCATTCTGTCCCATGCTGGCAATAATACC TTGTCAGCCCATTACCCTTATTTTGAATTGCTCCATCTCCTGGTGGGACTTGTATCTTGTCT TACCCTTTTTTTGGAAGTTTCCAGCCGCAATTTGAAATGAAATGACAAGGTGTATATTTGAT CAATTTTCATTCCCACCATTGCATTACAACCTCTAACTTAAATGGGTAACCCTAAGGCATAT AGCATCCTTACTCTCACCTTTTATGAGATTGAGAGTGGACTTACATTTCCTTTTTTACATTT TCGTATATTTTTTTTTTTAGCCATCATTATATGTTTAAGTCTATTATGGGCAACCAATCTT TGGAAGCTGAAACTGAATTTAAAGAATGCTATCTTGGAAAATTGCATACGTCTGTGCAATT TTTTATTCTGCCTAGTGCTATTCTGCTTGTTTAACTAGATTGTACAAAATAACTTCATTGCT TAATATCAAATTACAAAGTTTAGACTTGGAGGGAAATGGGCTTTTTAGAAGCAAACAATTTT AAATATATTTTGTTCTTCAAATAAATAGTGTTTAAACATTGAATGTGTTTTTGTGAACAATAT CCCACTTTGCAAACTTTAACTACACATGCTTGGAATTAAGTTTTAGCTGTTTTCATTGCTCA

FIGURE 288

MAQQACPRAMAKNGLVICILVITLLLDQTTSHTSRLKARKHSKRRVRDKDGDLKTQIEKLWT EVNALKEIQALQTVCLRGTKVHKKCYLASEGLKHFHEANEDCISKGGILVIPRNSDEINALQ DYGKRSLPGVNDFWLGINDMVTEGKFVDVNGIAISFLNWDRAQPNGGKRENCVLFSQSAQGK WSDEACRSSKRYICEFTIPK

FIGURE 289

FIGURE 290

 ${\tt MKLAALLGLCVALSCSSAAAFLVGSAKPVAQPVAALESAAEAGAGTLANPLGTLNPLKLLLS} \\ {\tt SLGIPVNHLIEGSQKCVAELGPQAVGAVKALKALLGALTVFG}$

FIGURE 291

TGAAGGACTTTTCCAGGACCCAAGGCCACACTGGAAGTCTTGCAGCTGAAGGGAGGCACT CCTTGGCCTCCGCAGCCGATCACATGAAGGTGGTGCCAAGTCTCCTGCTCTCCGTCCTCCTG GCACAGGTGTGGCTGGTACCCGGCTTGGCCCCCAGTCCTCAGTCGCCAGAGACCCCAGCCCC TCAGAACCAGACCAGGGTAGTGCAGGCTCCCAGGGAGGAAGAGGAAGATGAGCAGGAGG CCAGCGAGGAAGGCCGGTGAGGAAGAGAAAGCCTGGCTGATGGCCAGCAGCAGCAGCTT GCCAAGGAGACTTCAAACTTCGGATTCAGCCTGCTGCGAAAGATCTCCATGAGGCACGATGG CAACATGGTCTTCTCCATTTGGCATGTCCTTGGCCATGACAGGCTTGATGCTGGGGGCCA CAGGGCCGACTGAAACCCAGATCAAGAGAGGGCCTCCACTTGCAGGCCCTGAAGCCCACCAAG CCCGGGCTCCTGCCTCTTTAAGGGACTCAGAGAGACCCTCTCCCGCAACCTGGAACT GGGCCTCTCACAGGGGAGTTTTGCCTTCATCCACAAGGATTTTGATGTCAAAGAGACTTTCT TCAATTTATCCAAGAGTATTTTGATACAGAGTGCGTGCCTATGAATTTTCGCAATGCCTCA CAGGCCAAAAGGCTCATGAATCATTACATTAACAAAGAGACTCGGGGGAAAATTCCCAAACT GTTTGATGAGATTAATCCTGAAACCAAATTAATTCTTGTGGATTACATCTTGTTCAAAGGGA AATGGTTGACCCCATTTGACCCTGTCTTCACCGAAGTCGACACTTTCCACCTGGACAAGTAC AAGACCATTAAGGTGCCCATGATGTACGGTGCAGGCAAGTTTGCCTCCACCTTTGACAAGAA TTTTCGTTGTCATGTCCTCAAACTGCCCTACCAAGGAAATGCCACCATGCTGGTGGTCCTCA TGGAGAAAATGGGTGACCACCTCGCCCTTGAAGACTACCTGACCACAGACTTGGTGGAGACA GAAGTATGAGATGCATGAGCTGCTTAGGCAGATGGGAATCAGAAGAATCTTCTCACCCTTTG CTGACCTTAGTGAACTCTCAGCTACTGGAAGAAATCTCCAAGTATCCAGGGTTTTACGAAGA ACAGTGATTGAAGTTGAAAGGGGCACTGAGGCAGTGGCAGGAATCTTGTCAGAAATTAC TGCTTATTCCATGCCTCCTGTCATCAAAGTGGACCGGCCATTTCATTTCATGATCTATGAAG AAACCTCTGGAATGCTTCTGTTTCTGGGCAGGGTGGTGAATCCGACTCTCCTA**TAA**TTCAGG TACCAGCAATGGATGGCAGGGGAGAGTGTTCCTTTTGTTCTTAACTAGTTTTAGGGTGTTCTC AAATAAATACAGTAGTCCCCACTTATCTGAGGGGGATACATTCAAAGACCCCCAGCAGATGC AAAGTTTAATTTATAAATTAGGCACAGTAAGAGATTAACAATAATAACAACATTAAGTAAAA TGAGTTACTTGAACGCAAGCACTGCAATACCATAACAGTCAAACTGATTATAGAGAAGGCTA CTAAGTGACTCATGGGCGAGGAGCATAGACAGTGTGGAGACATTGGGCAAGGGGAGAATTCA CATCCTGGGTGGGACAGAGCAGGACGATGCAAGATTCCATCCCACTACTCAGAATGGCATGC TGCTTAAGACTTTTAGATTGTTTATTTCTGGAATTTTTCATTTAATGTTTTTTGGACCATGGT TGACCATGGTTAACTGAGACTGCAGAAAGCAAAACCATGGATAAGGGAGGACTACTACAAAA

FIGURE 292

MKVVPSLLLSVLLAQVWLVPGLAPSPQSPETPAPQNQTSRVVQAPREEEEDEQEASEEKAGE EEKAWLMASRQQLAKETSNFGFSLLRKISMRHDGNMVFSPFGMSLAMTGLMLGATGPTETQI KRGLHLQALKPTKPGLLPSLFKGLRETLSRNLELGLSQGSFAFIHKDFDVKETFFNLSKRYF DTECVPMNFRNASQAKRLMNHYINKETRGKIPKLFDEINPETKLILVDYILFKGKWLTPFDP VFTEVDTFHLDKYKTIKVPMMYGAGKFASTFDKNFRCHVLKLPYQGNATMLVVLMEKMGDHL ALEDYLTTDLVETWLRNMKTRNMEVFFPKFKLDQKYEMHELLRQMGIRRIFSPFADLSELSA TGRNLQVSRVLRRTVIEVDERGTEAVAGILSEITAYSMPPVIKVDRPFHFMIYEETSGMLLF LGRVVNPTLL

FIGURE 293

FIGURE 294

MRRLLLVTSLVVVLLWEAGAVPAPKVPIKMQVKHWPSEQDPEKAWGARVVEPPEKDDQLVVL FPVQKPKLLTTEEKPRGQGRGPILPGTKAWMETEDTLGRVLSPEPDHDSLYHPPPEEDQGEE RPRLWVMPNHQVLLGPEEDQDHIYHPQ

FIGURE 295

 ${\tt TACCCAAGGAAAGTGCAGCTGAGACTCAGACAAGATTACA} \underline{{\tt ATG}} {\tt AACCAACTCAGCTTCCTGC}$ TGGACCTGTTCTTCGTCTCCATCTCTGCCCAGAAGCTGCAAGGAAATCAAAGACGAATGTCC TAGTGCATTTGATGGCCTGTATTTTCTCCGCACTGAGAATGGTGTTATCTACCAGACCTTCT GTGACATGACCTCTGGGGGGTGGCGGCTGGACCCTGGTGGCCAGCGTGCATGAGAATGACATG CGTGGGAAGTGCACGGTGGCCAGTCAGCAGGGCAGCAAAGCAGACTACCC AGAGGGGGACGCCAACTACAACACCTTTGGATCTGCAGAGGCGGCCACGAGCG ATGACTACAAGAACCCTGGCTACTACGACATCCAGGCCAAGGACCTGGGCATCTGGCACGTG CCCAATAAGTCCCCCATGCAGCACTGGAGAAACAGCTCCCTGCTGAGGTACCGCACGGACAC TGGCTTCCTCCAGACACTGGGACATAATCTGTTTGGCATCTACCAGAAATATCCAGTGAAAT ATGGAGAAGGGAAAGTGTTGGACTGACAACGGCCCGGTGATCCCTGTGGTCTATGATTTTGGC GACGCCCAGAAAACAGCATCTTATTACTCACCCTATGGCCAGCGGGAATTCACTGCGGGATT TGTTCAGTTCAGGGTATTTAATAACGAGAGAGCCAGCCAACGCCTTGTGTGCTGGAATGAGGG TCACCGGATGTAACACTGAGCATCACTGCATTGGTGGAGGAGGATACTTTCCAGAGGCCAGT CCCCAGCAGTGTGGAGATTTTTCTGGTTTTGATTGGAGTGGATATGGAACTCATGTTGGTTA $\texttt{CAGCAGCAGCCGTGAGATAACTGAGGCAGCTGTGCTTCTATTCTATCGT} \underline{\textbf{TGA}} \texttt{GAGTTTTGTG}$ GGAGGGAACCCAGACCTCCCCCCAACCATGAGATCCCCAAGGATGGAGAACAACTTACCCA GTAGCTAGAATGTTAATGGCAGAAGAGAAAACAATAAATCATATTGACTCAAGAAAAAA

FIGURE 296

MNQLSFLLFLIATTRGWSTDEANTYFKEWTCSSSPSLPRSCKEIKDECPSAFDGLYFLRTEN GVIYQTFCDMTSGGGGWTLVASVHENDMRGKCTVGDRWSSQQGSKADYPEGDGNWANYNTFG SAEAATSDDYKNPGYYDIQAKDLGIWHVPNKSPMQHWRNSSLLRYRTDTGFLQTLGHNLFGI YQKYPVKYGEGKCWTDNGPVIPVVYDFGDAQKTASYYSPYGQREFTAGFVQFRVFNNERAAN ALCAGMRVTGCNTEHHCIGGGGYFPEASPQQCGDFSGFDWSGYGTHVGYSSSREITEAAVLL FYR

FIGURE 297

GCGGAGCCGGCCGCCAGCTGCGCAGAGGAGCCGCTCTCGCCGCCGCCACCTCGGCTGGGAGCC ${\tt CACGAGGCTGCCGCATCCTGCCCTCGGAACA} \underline{\textbf{ATG}} {\tt GGACTCGGCGCGCGAGGTGCTTGGGCCG}$ CGCTGCTCCTGGGGACGCTGCAGGTGCTAGCGCTGCTGGGGGCCCCCATGAAAGCGCAGCC ATGGCGGCATCTGCAAACATAGAGAATTCTGGGCTTCCACACAACTCCAGTGCTAACTCAAC AGAGACTCTCCAACATGTGCCTTCTGACCATACAAATGAAACTTCCAACAGTACTGTGAAAC CACCAACTTCAGTTGCCTCAGACTCCAGTAATACAACGGTCACCACCATGAAACCTACAGCG GCATCTAATACAACAACACCAGGGATGGTCTCAACAAATATGACTTCTACCACCTTAAAGTC TACACCCAAAACAACAAGTGTTTCACAGAACACATCTCAGATATCAACATCCACAATGACCG TAACCCACAATAGTTCAGTGACATCTGCTGCTTCATCAGTAACAATCACAACAACTATGCAT TCTGAAGCAAAGGATCAAAATTTGATACTGGGAGCTTTGTTGGTGGTATTGTATTAAC GCTGGGAGTTTTATCTATTCTTTACATTGGATGCAAAATGTATTACTCAAGAAGAGGCATTC ${\tt GGTATCGAACCATAGATGAACATGATGCCATCATT} \underline{{\tt TAA}} {\tt GGAAATCCATGGACCAAGGATGGA}$ ATACAGATTGATGCTGCCCTATCAATTAATTTTGGTTTATTAATAGTTTAAAACAATATTCT CTTTTTGAAAATAGTATAAACAGGCCATGCATATAATGTACAGTGTATTACGTAAATATGTA AAGATTCTTCAAGGTAACAAGGGTTTTGGGTTTTGAAATAAACATCTGGATCTTATAGACCGT GGGGTGGGGCATTGGTCACATATGACCAGTAATTGAAAGACGTCATCACTGAAAGACAGAA TGCCATCTGGGCATACAAATAAGAAGTTTGTCACAGCACTCAGGATTTTGGGTATCTTTTGT AGCTCACATAAAGAACTTCAGTGCTTTTCAGAGCTGGATATATCTTAATTACTAATGCCACA CAGAAATTATACAATCAAACTAGATCTGAAGCATAATTTAAGAAAAACATCAACATTTTTTG TGCTTTAAACTGTAGTAGTTGGTCTAGAAACAAAATACTCC

FIGURE 298

MGLGARGAWAALLLGTLQVLALLGAAHESAAMAASANIENSGLPHNSSANSTETLQHVPSDH TNETSNSTVKPPTSVASDSSNTTVTTMKPTAASNTTTPGMVSTNMTSTTLKSTPKTTSVSQN TSQISTSTMTVTHNSSVTSAASSVTITTTMHSEAKKGSKFDTGSFVGGIVLTLGVLSILYIG CKMYYSRRGIRYRTIDEHDAII

FIGURE 299

CAGCCGGGTCCCAAGCCTGTGCCTGAGCCTGAGCCTGAGCCCGAGCCGGGAGCCGG ${\tt TCGCGGGGGCTCCGGGCTGTGGGACCGCTGGGCCCCCAGCG} {\color{red} \underline{\bf ATG}} {\tt GCGACCCTGTGGGGAGGC}$ CTTCTTCGGCTTGGCTCAGCCTGTCGTGCCTGCCTGCTGCTGCTGCTGCTGCT ATAAAGAAAATTCTGGGCATATTTATAATAAGAACATATCTCAGAAAGATTGTGATTGCCTT CATGTTGTGGAGCCCATGCCTGTGCGGGGGCCTGATGTAGAAGCATACTGTCTACGCTGTGA ATGCAAATATGAAGAAGAAGCTCTGTCACAATCAAGGTTACCATTATAATTTATCTCTCCA TTTTGGGCCTTCTACTTCTGTACATGGTATATCTTACTCTGGTTGAGCCCATACTGAAGAGG CGCCTCTTTGGACATGCACAGTTGATACAGAGTGATGATGATATTGGGGGATCACCAGCCTTT TGCAAATGCACACGATGTGCTAGCCCGCTCCCGCAGTCGAGCCAACGTGCTGAACAAGGTAG CATGTTGTCCTCAGC**TAA**TTGGGAATTGAATTCAAGGTGACTAGAAAGAAACAGGCAGACAA CTGGAAAGAACTGACTGGGTTTTGCTGGGTTTCATTTTAATACCTTGTTGATTTCACCAACT ATAATAGAGACATTTTTAAAAAGCACACAGCTCAAAGTCAGCCAATAAGTCTTTTCCTATTTG TGACTTTTACTAATAAAATAAATCTGCCTGTAAATTATCTTGAAGTCCTTTACCTGGAACA AGCACTCTCTTTTTCACCACATAGTTTTAACTTGACTTTCAAGATAATTTTCAGGGTTTTTG AACAACTTTTTCAAGTCACTTTACTAAACAAACTTTTGTAAATAGACCTTACCTTCTATTT TCGAGTTTCATTTATATTTTGCAGTGTAGCCAGCCTCATCAAAGAGCTGACTTACTCATTTG ACTTTTGCACTGACTGTATTATCTGGGTATCTGCTGTGTCTGCACTTCATGGTAAACGGGAT CTAAAATGCCTGGTGGCTTTTCACAAAAAGCAGATTTTCTTCATGTACTGTGATGTCTGATG CAATGCATCCTAGAACAAACTGGCCATTTGCTAGTTTACTCTAAAGACTAAACATAGTCTTG GTGTGTGTGTCTTACTCATCTTCTAGTACCTTTAAGGACAAATCCTAAGGACTTGGACACT TGCAATAAAGAAATTTTATTTTAAACCCAAGCCTCCCTGGATTGATAATATATACACATTTG TCAGCATTTCCGGTCGTGGTGAGAGGCAGCTGTTTGAGCTCCAATATGTGCAGCTTTGAACT AGGGCTGGGGTTGTGGGTGCCTCTTCTGAAAGGTCTAACCATTATTGGATAACTGGCTTTTT TCTTCCTATGTCCTCTTTGGAATGTAACAATAAAAATAATTTTTTGAAACATCAA

FIGURE 300

MATLWGGLLRLGSLLSLSCLALSVLLLAQLSDAAKNFEDVRCKCICPPYKENSGHIYNKNIS QKDCDCLHVVEPMPVRGPDVEAYCLRCECKYEERSSVTIKVTIIIYLSILGLLLLYMVYLTL VEPILKRRLFGHAQLIQSDDDIGDHQPFANAHDVLARSRSRANVLNKVEYAQQRWKLQVQEQ RKSVFDRHVVLS

FIGURE 301

FIGURE 302

MAYSTVQRVALASGLVLALSLLLPKAFLSRGKRQEPPPTPEGKLGRFPPMMHHHQAPSDGQT PGARFQRSHLAEAFAKAKGSGGGAGGGGSGRGLMGQIIPIYGFGIFLYILYILFKVSRIILI ILHQ

FIGURE 303

CGGCTCGAGTGCAGCTGTGGGAGATTTCAGTGCATTGCCTCCCCTGGGTGCTCTTCATCTT ${\tt GGATTTGAAAGTTGAGAGCAGC} \underline{\textbf{ATG}} {\tt TTTTGCCCACTGAAACTCATCCTGCCAGTGTTAC}$ TGGATTATTCCTTGGGCCTGAATGACTTGAATGTTTCCCCGCCTGAGCTAACAGTCCATGTG GGTGATTCAGCTCTGATGGGATGTTTTTCCAGAGCACAGAAGACAAATGTATATTCAAGAT AGACTGGACTCTGTCACCAGGAGAGCACGCCAAGGACGAATATGTGCTATACTATTACTCCA ATCTCAGTGTGCCTATTGGGCGCTTCCAGAACCGCGTACACTTGATGGGGGACATCTTATGC AATGATGGCTCTCCTGCTCCAAGATGTGCAAGAGGCTGACCAGGGAACCTATATCTGTGA AATCCGCCTCAAAGGGGAGAGCCAGGTGTTCAAGAAGGCGGTGGTACTGCATGTGCTTCCAG AGCACAGAAGTGAAACACGTGACCAAGGTAGAATGGATATTTTCAGGACGGCGCGCAAAGGA GGAGATTGTATTTCGTTACTACCACAAACTCAGGATGTCTGTGGAGTACTCCCAGAGCTGGG GCCACTTCCAGAATCGTGTGAACCTGGTGGGGGACATTTTCCGCAATGACGGTTCCATCATG CTTCAAGGAGTGAGGGAGTCAGATGGAGGAAACTACACCTGCAGTATCCACCTAGGGAACCT GGTGTTCAAGAAAACCATTGTGCTGCATGTCAGCCCGGAAGAGCCTCGAACACTGGTGACCC $\tt CGGCAGCCCTGAGGCCTCTGGTCTTGGGTGATCAGTTGGTGATCATTGTGGGAATTGTC$ TGTGCCACAATCCTGCTGCTCCCTGTTCTGATATTGATCGTGAAGAAGACCTGTGGAAATAA GAGTTCAGTGAATTCTACAGTCTTGGTGAAGAACACGAAGAAGACTAATCCAGAGATAAAAG AAAAACCCTGCCATTTTGAAAGATGTGAAGGGGAGAAACACATTTACTCCCCAATAATTGTA CGGGAGGTGATCGAGGAAGAAGAACCAAGTGAAAAATCAGAGGCCACCTACATGACCATGCA $\tt CCCAGTTTGGCCTTCTCTGAGGTCAGATCGGAACAACTCACTTGAAAAAAAGTCAGGTGGGG$ ${\tt GAATGCCAAAAACACAGCAAGCCTTT} \underline{{\tt TGA}} {\tt GAAGAATGGAGAGTCCCTTCATCTCAGCAGCGG}$ TGGAGACTCTCTCTGTGTGTGTCCTGGGCCACTCTACCAGTGATTTCAGACTCCCGCTCTC CCAGCTGTCCTCTCTCATTGTTTGGTCAATACACTGAAGATGGAGAATTTGGAGCCTGG CAGAGAGACTGGACAGCTCTGGAGGAACAGGCCTGCTGAGGGGAGGGGAGCATGGACTTGGC CTCTGGAGTGGGACACTGGCCCTGGGAACCAGGCTGAGCTGAGTGGCCTCAAACCCCCCGTT GGATCAGACCCTCCTGTGGGCAGGGTTCTTAGTGGATGAGTTACTGGGAAGAATCAGAGATA AAAACCAACCCAAATCAA

FIGURE 304

MFCPLKLILLPVLLDYSLGLNDLNVSPPELTVHVGDSALMGCVFQSTEDKCIFKIDWTLSPG
EHAKDEYVLYYYSNLSVPIGRFQNRVHLMGDILCNDGSLLLQDVQEADQGTYICEIRLKGES
QVFKKAVVLHVLPEEPKELMVHVGGLIQMGCVFQSTEVKHVTKVEWIFSGRRAKEEIVFRYY
HKLRMSVEYSQSWGHFQNRVNLVGDIFRNDGSIMLQGVRESDGGNYTCSIHLGNLVFKKTIV
LHVSPEEPRTLVTPAALRPLVLGGNQLVIIVGIVCATILLLPVLILIVKKTCGNKSSVNSTV
LVKNTKKTNPEIKEKPCHFERCEGEKHIYSPIIVREVIEEEEPSEKSEATYMTMHPVWPSLR
SDRNNSLEKKSGGGMPKTQQAF

FIGURE 305

CTATGAAGAAGCTTCCTGGAAAACAATAAGCAAAGGAAAACAAATGTGTCCCATCTCACATG GTTCTACCCTACTAAAGACAGGAAGATCATAAACTGACAGATACTGAAATTGTAAGAGTTGG AAACTACATTTTGCAAAGTCATTGAACTCTGAGCTCAGTTGCAGTACTCGGGAAGCC**ATG**CA GGATGAAGATGGATACATCACCTTAAATATTAAAACTCGGAAACCAGCTCTCGTCTCCGTTG GCCCTGCATCCTCCTGGTGGCGTGTGATGGCTTTGATTCTGCTGATCCTGTGCGTGGGG ATGGTTGTCGGGCTGGTGGCTCTGGGGATTTGGTCTGTCATGCAGCGCAATTACCTACAAGA TGAGAATGAAAATCGCACAGGAACTCTGCAACAATTAGCAAAGCGCTTCTGTCAATATGTGG TAAAACAATCAGAACTAAAGGGCACTTTCAAAGGTCATAAATGCAGCCCCTGTGACACAAAC TGGAGATATTATGGAGATAGCTGCTATGGGTTCTTCAGGCACAACTTAACATGGGAAGAGAG TAAGCAGTACTGCACTGACATGAATGCTACTCTCCTGAAGATTGACAACCGGAACATTGTGG AGTACATCAAAGCCAGGACTCATTTAATTCGTTGGGTCGGATTATCTCGCCAGAAGTCGAAT GAGGTCTGGAAGTGGGAGGATGGCTCGGTTATCTCAGAAAATATGTTTTGAGTTTTTGGAAGA TGGAAAAGGAAATATGAATTGTGCTTATTTTCATAATGGGAAAATGCACCCTACCTTCTGTG AGAACAACATTATTTAATGTGTGAGAGGAAGGCTGGCATGACCAAGGTGGACCAACTACCT TAATGCAAAGAGGTGGACAGGATAACACAGATAAGGGCTTTATTGTACAATAAAAGATATGT ATGAATGCATCAGTAGCTGAAAAAAAAAAAAAA

FIGURE 306

MQDEDGYITLNIKTRKPALVSVGPASSSWWRVMALILLILCVGMVVGLVALGIWSVMQRNYL QDENENRTGTLQQLAKRFCQYVVKQSELKGTFKGHKCSPCDTNWRYYGDSCYGFFRHNLTWE ESKQYCTDMNATLLKIDNRNIVEYIKARTHLIRWVGLSRQKSNEVWKWEDGSVISENMFEFL EDGKGNMNCAYFHNGKMHPTFCENKHYLMCERKAGMTKVDQLP

FIGURE 307

CCCACGCGTCCGCGCAGTCGCCAGTTCTGCCTCCGCCTGCCAGTCTCGCCCGCGATCCCGG CGCCGGAGGAGCTCGGACGCCTGCTGAGCCCCCTCCTTTGCTGAAGCCCGAGTGCGGAGAA GCCCGGGCAAACGCAGGCTAAGGAGACCAAAGCGGCGAAGTCGCGAGACAGCGGACAAGCAG CGTCGTGGCC**ATC**GCGGCGGCTATCGCCAGCTCGTCATCCGTCAGAAGAGGCCAAGCCCGCG AGCGCGAGAAATCCAACGCCTGCAAGTGTGTCAGCAGCCCCAGCAAAGGCAAGACCAGCTGC GACAAAAACAAGTTAAATGTCTTTTCCCGGGTCAAACTCTTCGGCTCCAAGAAGAGGCGCAG AAGAAGACCAGAGCCTCAGCTTAAGGGTATAGTTACCAAGCTATACAGCCGACAAGGCTACC ACTTGCAGCTGCAGGCGGATGGAACCATTGATGGCACCAAAGATGAGGACAGCACTTACACT CTGTTTAACCTCATCCCTGTGGGTCTGCGAGTGGTGGCTATCCAAGGAGTTCAAACCAAGCT GTACTTGGCAATGAACAGTGAGGGATACTTGTACACCTCGGAACTTTTCACACCTGAGTGCA AATTCAAAGAATCAGTGTTTGAAAATTATTATGTGACATATTCATCAATGATATACCGTCAG CAGCAGTCAGGCCGAGGGTGGTATCTGGGTCTGAACAAAGAAGGAGAGATCATGAAAGGCAA CCATGTGAAGAAGAACAAGCCTGCAGCTCATTTTCTGCCTAAACCACTGAAAGTGGCCATGT ACAAGGAGCCATCACTGCACGATCTCACGGAGTTCTCCCGATCTGGAAGCGGGACCCCAACC AAGAGCAGAAGTGTCTCTGGCGTGCTGAACGGAGGCAAATCCATGAGCCACAATGAATCAAC GTAGCCAGTGAGGGCAAAAGAAGGGCTCTGTAACAGAACCTTACCTCCAGGTGCTGTTGAAT CAGAGTTCACTATTCTATCTGCCATTAGACCTTCTTATCATCCATACTAAAGC

FIGURE 308

></usr/seqdb2/sst/DNA/Dnaseqs.full/ss.DNA28498

><subunit 1 of 1, 245 aa, 1 stop

><MW: 27564, pI: 10.18, NX(S/T): 1

MAAAIASSLIRQKRQAREREKSNACKCVSSPSKGKTSCDKNKLNVFSRVKLFGSKKRRRRRP EPQLKGIVTKLYSRQGYHLQLQADGTIDGTKDEDSTYTLFNLIPVGLRVVAIQGVQTKLYLA MNSEGYLYTSELFTPECKFKESVFENYYVTYSSMIYRQQQSGRGWYLGLNKEGEIMKGNHVK KNKPAAHFLPKPLKVAMYKEPSLHDLTEFSRSGSGTPTKSRSVSGVLNGGKSMSHNEST

N-glycosylation site.

amino acids 242-246

Glycosaminoglycan attachment site.

amino acids 165-169, 218-222

Tyrosine kinase phosphorylation site.

amino acids 93-100

N-myristoylation site.

amino acids 87-93, 231-237

ATP/GTP-binding site motif A (P-loop).

amino acids 231-239

HBGF/FGF family proteins

amino acids 78-94, 102-153

FIGURE 309

CCAGGATGGAGCTGGGGGCCTGTATAGCCATATTATTGTTCTATGCTACTAGACATGGGGGGG ACTTGGTGAAAAAGGTATTATCCAGCCAGAGGGTCTGGGAGCCCTGTCTTACTGAACCTGGG ${\tt CAACCTGGATATTCTGAGACATATTTTGGGGGGGATTTCAGTGAAAAAAGTGGGGGATCCCCT}$ CCCCAGTAGGGGTGGGATGAGCGAATATTCCCAAAGCTAAAGTCCCACACCCTGTAGATTAC AAGAGTGGATTTGGCAGGAGTGTGCCCCAAAATACAGTGGAAAGGTGCCTGAAGATATTTAA GAGAGGAGGGAAAGGGGACGTTTTCAATAGGAGGCAAAACTCGAGGGTGGGATCCACTGAGG AGTACATAGGCTGCTGGATCTGGTGGAGCCAGCACTGGGCCCACGGGTGGTAACTGGCTGCT CGAGTCGGGGCCTGAGCGTCAAGAGCATGCCCTAGTGAGCGGGCTCCTCTGGGGGAGCCCAG CGCAGCGGCGCGTGTGTCCCCGCGGCACCAAGTCCCTTTGCCAGAAGCAGCTCCTCATCCTG CTGTCCAAGGTGCGACTGTGCGGGGGGGGGCCGGCCCGGGCCCGGAGCCTCA GCTCAAAGGCATCGTCACCAAACTGTTCTGCCGCCAGGGTTTCTACCTCCAGGCGAATCCCG ACGGAAGCATCCAGGGCACCCCAGAGGATACCAGCTCCTTCACCCACTTCAACCTGATCCCT GTGGGCCTCCGTGTGGTCACCATCCAGAGCGCCAAGCTGGGTCACTACATGGCCATGAATGC ${\tt TGAGGGACTGCTCTACAGTTCGCCGCATTTCACAGCTGAGTGTCGCTTTAAGGAGTGTCTCT}$ TGGTACCTCGGCCTGGACAAGGGGGCCAGGTCATGAAGGGGAAACCGAGTTAAGAAGACCAA ${\tt ACAGTGTCCCCGAGGCCTCCCCTTCCAGTCCCCCTGCCCCC}{{\tt TGA}}{\tt AATGTAGTCCCTGGACTG}$ GAGGTTCCCTGCACTCCCAGTGAGCCAGCCACCACCACCACCTGT

FIGURE 310

MAALASSLIRQKREVREPGGSRPVSAQRRVCPRGTKSLCQKQLLILLSKVRLCGGRPARPDR GPEPQLKGIVTKLFCRQGFYLQANPDGSIQGTPEDTSSFTHFNLIPVGLRVVTIQSAKLGHY MAMNAEGLLYSSPHFTAECRFKECVFENYYVLYASALYRQRRSGRAWYLGLDKEGQVMKGNR VKKTKAAAHFLPKLLEVAMYQEPSLHSVPEASPSSPPAP

Tyrosine kinase phosphorylation site:

amino acids 199-207

N-myristoylation sites:

amino acids 54-60, 89-95, 131-137

HBGF/FGF family signature:

amino acids 131-155

FIGURE 311

FIGURE 312

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA28503

><subunit 1 of 1, 247 aa, 1 stop

><MW: 27702, pI: 10.36, NX(S/T): 2

MAAAIASGLIRQKRQAREQHWDRPSASRRRSSPSKNRGLCNGNLVDIFSKVRIFGLKKRRLR RQDPQLKGIVTRLYCRQGYYLQMHPDGALDGTKDDSTNSTLFNLIPVGLRVVAIQGVKTGLY IAMNGEGYLYPSELFTPECKFKESVFENYYVIYSSMLYRQQESGRAWFLGLNKEGQAMKGNR VKKTKPAAHFLPKPLEVAMYREPSLHDVGETVPKPGVTPSKSTSASAIMNGGKPVNKSKTT

N-glycosylation site.

amino acids 100-104, 242-246

cAMP- and cGMP-dependent protein kinase phosphorylation site. amino acids 28-32, 29-33

Tyrosine kinase phosphorylation site.

amino acids 199-207

N-myristoylation site.

amino acids 38-44, 89-95, 118-124, 122-128, 222-228

HBGF/FGF family proteins.

amino acids 104-155, 171-198

FIGURE 313

ACGAAGCTTTTTCTTGTGAGCCCTGGATCTTAACACAAATGTGTATATGTGCACACAGGGAGCATTCAAGAATG CTCCCCACCCCCAAAAAAAAGGATGATTGGAAATGAAGAACCGAGGATTCACAAAGAAAAAAGTATGTTCATTT TTCTCTATAAAGGAGAAAGTGAGCCAAGGAGATATTTTTGGAATGAAAAGTTTGGGGGCTTTTTTAGTAAAGTAA AGAACTGGTGTGTGTGTTTTTCCTTTTTTTGAATTTCCCACAAGAGGAGAGAAATTAATAATACATCTGC CAGTTGGATTTGTGCCTATGTTGACTAAAATTGACGGATAATTGCAGTTGGATTTTTCTTCATCAACCTCCTTT $\tt TTTTTAAATTTTTATTCCTTTTGGTATCAAGATCATGCGTTTTCTCTTGTTCTTAACCACCTGGATTTCCATCT$ GGATGTTGCTGTGATCAGTCTGAAATACAACTGTTTGAATTCCAGAAGGACCAACACCAGATAAATTATGA**ATG** TTGAACAAGATGACCTTACATCCACAGCAGATAATGATAGGTCCTAGGTTTAACAGGGCCCTATTTGACCCCCT GCTCCTGCAGCAACCAGTTCAGCAAGGTGATTTGTGTTCGGAAAAACCTGCGTGAGGTTCCGGATGGCATCTCC ACCAACACGGCTGCTGAACCTCCATGAGAACCAAATCCAGATCATCAAAGTGAACAGCTTCAAGCACTTGAG ACCTCAACACTCTGGAACTCTTTGACAATCGTCTTACTACCATCCCGAATGGAGCTTTTGTATACTTGTCTAAA $\tt CTGAAGGAGCTCTGGTTGCGAAACAACCCCATTGAAAGCATCCCTTCTTATGCTTTTAACAGAATTCCTTCTTT$ ${\tt GCGCCGACTAGACTTAGGGGGAATTGAAAAGACTTTCATACATCTCAGAAGGTGCCTTTGAAGGTCTGTCCAACT}$ TGAGGTATTTGAACCTTGCCATGTGCAACCTTCGGGAAATCCCTAACCTCACACCGCTCATAAAACTAGATGAG $\tt CTGGATCTTTCTGGGAATCATTTATCTGCCATCAGGCCTGGCTCTTTCCAGGGTTTGATGCACCTTCAAAAACT$ GTGGATGATACAGTCCCAGATTCAAGTGATTGAACGGAATGCCTTTGACAACCTTCAGTCACTAGTGGAGATCA ACCTGGCACACAATAATCTAACATTACTGCCTCATGACCTCTTCACTCCCTTGCATCATCTAGAGCGGATACAT ${ t TTACATCACAACCCTTGGAACTGTAACTGTGACATACTGTGGCTCAGCTGGTGGATAAAAGACATGGCCCCCTC}$ GAACACAGCTTGTTGTGCCCGGTGTAACACTCCTCCCAATCTAAAGGGGAGGTACATTGGAGAGCTCGACCAGA ATTACTTCACATGCTATGCTCCGGTGATTGTGGAGCCCCCTGCAGACCTCAATGTCACTGAAGGCATGGCAGCT GAGCTGAAATGTCGGGCCTCCACATCCCTGACATCTGTATCTTGGATTACTCCAAATGGAACAGTCATGACACA ${\tt TGGGGCGTACAAAGTGCGGATAGCTGTGCTCAGTGATGGTACGTTAAATTTCACAAATGTAACTGTGCAAGATA}$ GCAACCACTACTCCTTTCTCTTACTTTTCAACCGTCACAGTAGAGACTATGGAACCGTCTCAGGATGAGGCACG GACCACAGATAACAATGTGGGTCCCACTCCAGTGGTCGACTGGGAGACCACCAATGTGACCACCTCTCTCACAC CACAGAGCACAAGGTCGACAGAGAAAACCTTCACCATCCCAGTGACTGATATAAACAGTGGGATCCCAGGAATT GATGAGGTCATGAAGACTACCAAAATCATCATTGGGTGTTTTTGTGGCCATCACACTCATGGCTGCAGTGATGCT GGTCATTTTCTACAAGATGAGGAAGCAGCACCATCGGCAAAACCATCACGCCCCAACAAGGACTGTTGAAATTA TTAATGTGGATGATGAGATTACGGGAGACACCCATGGAAAGCCACCTGCCCATGCCTATCGAGCATGAG ${ t CAGTTCAGTGCATGAACCGTTATTGATCCGAATGAACTCTAAAGACAATGTACAAGAGACTCAAATC{ t TAA}$ TTTACAGAGTTACAAAAAACAATCAAAAAAAAAAGACAGTTTATTAAAAATGACACAAATGACTGGGCTAA TGATCTAAAGCAGACAAAA

FIGURE 314

MLNKMTLHPQQIMIGPRFNRALFDPLLVVLLALQLLVVAGLVRAQTCPSVCSCSNQFSKVIC VRKNLREVPDGISTNTRLLNLHENQIQIIKVNSFKHLRHLEILQLSRNHIRTIEIGAFNGLA NLNTLELFDNRLTTIPNGAFVYLSKLKELWLRNNPIESIPSYAFNRIPSLRRLDLGELKRLS YISEGAFEGLSNLRYLNLAMCNLREIPNLTPLIKLDELDLSGNHLSAIRPGSFQGLMHLQKL WMIQSQIQVIERNAFDNLQSLVEINLAHNNLTLLPHDLFTPLHHLERIHLHHNPWNCNCDIL WLSWWIKDMAPSNTACCARCNTPPNLKGRYIGELDQNYFTCYAPVIVEPPADLNVTEGMAAE LKCRASTSLTSVSWITPNGTVMTHGAYKVRIAVLSDGTLNFTNVTVQDTGMYTCMVSNSVGN TTASATLNVTAATTTPFSYFSTVTVETMEPSQDEARTTDNNVGPTPVVDWETTNVTTSLTPQ STRSTEKTFTIPVTDINSGIPGIDEVMKTTKIIIGCFVAITLMAAVMLVIFYKMRKQHHRQN HHAPTRTVEIINVDDEITGDTPMESHLPMPAIEHEHLNHYNSYKSPFNHTTTVNTINSIHSS VHEPLLIRMNSKDNVQETQI

Signal sequence:

amino acids 1-44

Transmembrane domain:

amino acids 523-543

N-glycosylation site.

amino acids 278-282, 364-368, 390-394, 412-416, 415-419, 434-438, 442-446, 488-492, 606-610

cAMP- and cGMP-dependent protein kinase phosphorylation site. amino acids 183-187

Casein kinase II phosphorylation site.

amino acids 268-272, 417-421, 465-469, 579-583, 620-624

N-myristoylation site.

amino acids 40-46, 73-79, 118-124, 191-197, 228-234, 237-243, 391-397, 422-428, 433-439, 531-537

FIGURE 315

GGCTGCAGCCACCTCGCGCGCACCCCGAGGCGCCCCAGCTCGCCCGAGGTCCGTCGGA GGCGCCCGGCCCCGGAGCCAAGCAGCAACTGAGCGGGGAAGCGCCCGCGTCCGGGGATC GGGATGTCCTCCTCTTCTCTCTTGCTAGTTTCCTACTATGTTGGAACCTTGGGGACTCA CACTGAGATCAAGAGAGTGGCAGAGGAAAAGGTCACTTTGCCCTGCCACCATCAACTGGGGC TTCCAGAAAAAGACACTCTGGATATTGAATGGCTGCTCACCGATAATGAAGGGAACCAAAAA GTGGTGATCACTTACTCCAGTCGTCATGTCTACAATAACTTGACTGAGGAACAGAAGGGCCG AGTGGCCTTTGCTTCCAATTTCCTGGCAGGAGATGCCTCCTTGCAGATTGAACCTCTGAAGC CCAGTGATGAGGGCCGGTACACCTGTAAGGTTAAGAATTCAGGGCGCTACGTGTGGAGCCAT GTCATCTTAAAAGTCTTAGTGAGACCATCCAAGCCCAAGTGTGAGTTGGAAGGAGAGCTGAC AGAAGGAAGTGACCTGACTTTGCAGTGTGAGTCATCCTCTGGCACAGAGCCCATTGTGTATT ACTGGCAGCGAATCCGAGAGAAAGAGGGGAGAGGATGAACGTCTGCCTCCCAAATCTAGGATT GACTACAACCACCCTGGACGAGTTCTGCTGCAGAATCTTACCATGTCCTACTCTGGACTGTA CCAGTGCACAGCAGCAACGAAGCTGGGAAGGAAAGCTGTGTGGTGCGAGTAACTGTACAGT ATGTACAAAGCATCGGCATGGTTGCAGGAGCAGTGACAGGCATAGTGGCTGGAGCCCTGCTG GAGACCTAATGAAATTCGAGAAGATGCTGAAGCTCCAAAAGCCCGTCTTGTGAAACCCAGCT CCTCTTCCTCAGGCTCTCGGAGCTCACGCTCTGGTTCTTCCTCCACTCGCTCCACAGCAAAT ACGGTC**TGA**ATTACAATGGACTTGACTCCCACGCTTTCCTAGGAGTCAGGGTCTTTGGACTC TTCTCGTCATTGGAGCTCAAGTCACCAGCCACACCAGATGAGAGGTCATCTAAGTAGCA GTGAGCATTGCACGGAACAGATTCAGATGAGCATTTTCCTTATACAATACCAAACAAGCAAA AGGATGTAAGCTGATTCATCTGTAAAAAGGCATCTTATTGTGCCTTTAGACCAGAGTAAGGG AAAGCAGGAGTCCAAATCTATTTGTTGACCAGGACCTGTGGTGAGAAGGTTGGGGAAAGGTG AGGTGAATATACCTAAAACTTTTAATGTGGGATATTTTGTATCAGTGCTTTGATTCACAATT TTCAAGAGGAAATGGGATGCTGTTTGTAAATTTTCTATGCATTTCTGCAAACTTATTGGATT ATTAGTTATTCAGACAGTCAAGCAGAACCCACAGCCTTATTACACCTGTCTACACCATGTAC TGAGCTAACCACTTCTAAGAAACTCCAAAAAAGGAAACATGTGTCTTCTATTCTGACTTAAC TTCATTTGTCATAAGGTTTGGATATTAATTTCAAGGGGAGTTGAAATAGTGGGAGATGGAGA AGAGTGAATGAGTTTCTCCCACTCTATACTAATCTCACTATTTGTATTGAGCCCAAAATAAC TATGAAAGGAGACAAAAATTTGTGACAAAGGATTGTGAAGAGCTTTCCATCTTCATGATGTT ATGAGGATTGTTGACAAACATTAGAAATATATAATGGAGCAATTGTGGATTTCCCCTCAAAT CAGATGCCTCTAAGGACTTTCCTGCTAGATATTTCTGGAAGGAGAAAATACAACATGTCATT TATCAACGTCCTTAGAAAGAATTCTTCTAGAGAAAAAGGGATCTAGGAATGCTGAAAGATTA CCCAACATACCATTATAGTCTCTTCTTCTGAGAAAATGTGAAACCAGAATTGCAAGACTGG TGGTGCCAGGCACCTGTAGGAAAATCCAGCAGGTGGAGGTTGCAGTGAGCCGAGATTATGCC ATTGCACTCCAGCCTGGGTGACAGAGCGGGACTCCGTCTC

FIGURE 316

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA45419

><subunit 1 of 1, 373 aa, 1 stop

><MW: 41281, pI: 8.33, NX(S/T): 3

MSLLLLLLVSYYVGTLGTHTEIKRVAEEKVTLPCHHQLGLPEKDTLDIEWLLTDNEGNQKV VITYSSRHVYNNLTEEQKGRVAFASNFLAGDASLQIEPLKPSDEGRYTCKVKNSGRYVWSHV ILKVLVRPSKPKCELEGELTEGSDLTLQCESSSGTEPIVYYWQRIREKEGEDERLPPKSRID YNHPGRVLLQNLTMSYSGLYQCTAGNEAGKESCVVRVTVQYVQSIGMVAGAVTGIVAGALLI FLLVWLLIRRKDKERYEEEERPNEIREDAEAPKARLVKPSSSSSGSRSSRSGSSSTRSTANS ASRSQRTLSTDAAPQPGLATQAYSLVGPEVRGSEPKKVHHANLTKAETTPSMIPSQSRAFQTV

Signal sequence:

amino acids 1-16

Transmembrane domain:

amino acids 232-251

FIGURE 317

CGCGAGGCGCGGGGAGCCTGGGACCAGGAGCGAGAGCCGCCTACCTGCAGCCGCCGCCCACGGCACGGCAGCCA ${\tt CCATG}{\tt GCGCTCCTGCTGCTCCTGTGCGGGGTAGTGGATTTCGCCAGAAGTTTGAGTATCACTACT}$ CCTGAAGAGATGATTGAAAAAGCCAAAGGGGAAACTGCCTATCTGCCATGCAAATTTACGCTTAGTCCCGAAGA CCAGGGACCGCTGGACATCGAGTGGCTGATATCACCAGCTGATAATCAGAAGGTGGATCAAGTGATTATTTTAT ATTCTGGAGACAAAATTTATGATGACTACTATCCAGATCTGAAAGGCCGAGTACATTTTACGAGTAATGATCTC AAATCTGGTGATGCATCAATAAATGTAACGAATTTACAACTGTCAGATATTGGCACATATCAGTGCAAAGTGAA ${\tt AAAAGCTCCTGGTGTTGCAAATAAGAAGATTCATCTGGTAGTTCTTGTTAAGCCTTCAGGTGCGAGATGTTACG}$ TTGATGGATCTGAAGAAATTGGAAGTGACTTTAAGATAAAATGTGAACCAAAAGAAGGTTCACTTCCATTACAG TATGAGTGGCAAAAATTGTCTGACTCACAGAAAATGCCCACTTCATGGTTAGCAGAAATGACTTCATCTGTTAT ATCTGTAAAAATGCCTCTTCTGAGTACTCTGGGACATACAGCTGTACAGTCAGAAACAGAGTGGGCTCTGATC AGTGCCTGTTGCGTCTAAACGTTGTCCCTCCTTCAAATAAAGCTGGACTAATTGCAGGAGCCATTATAGGAACT TTGCTTGCTCTAGCGCTCATTGGTCTTATCATCTTTTGCTGTCGTAAAAAGCGCAGAGAAGAAAAATATGAAAA GGAAGTTCATCACGATATCAGGGAAGATGTGCCACCTCCAAAGAGCCGTACGTCCACTGCCAGAAGCTACATCG GCAGTAATCATTCATCCCTGGGGTCCATGTCTCCTTCCAACATGGAAGGATATTCCAAGACTCAGTATAACCAA GTACCAAGTGAAGACTTTGAACGCACTCCTCAGAGTCCGACTCTCCCACCTGCTAAGTTCAAGTACCCTTACAA GACTGATGGAATTACAGTTGTA**TAA**ATATGGACTACTGAAGAATCTGAAGTATTGTATTATTTGACTTTATTTT AGGCCTCTAGTAAAGACTTAAATGTTTTTTAAAAAAAGCACAAGGCACAGAGATTAGAGCAGCTGTAAGAACAC ATCTACTTTATGCAATGCATTAGACATGTAAGTCAGATGTCAAAATTAGTACGAGCCAAATTCTTTGT TAAAAAACCCTATGTATAGTGACACTGATAGTTAAAAGATGTTTTATTATATTTTCAATAACTACCACTAACAA ATTTTTAACTTTTCATATGCATATTCTGATATGTGGTCTTTTAGGAAAAGTATGGTTAATAGTTGATTTTTCAA AGGAAATTTTAAAATTCTTACGTTCTGTTTAATGTTTTTGCTATTTAGTTAAATACATTGAAGGGAAATACCCG TTCTTTTCCCCTTTTATGCACACAACAGAAACACGCGTTGTCATGCCTCAAACTATTTTTTATTTGCAACTACA TAAAGTAAATTCTCAAAGGTGCTAGAACAAATCGTCCACTTCTACAGTGTTCTCGTATCCAACAGAGTTGATGC ACAATATATAAATACTCAAGTCCAATATTAAAAACTTAGGCACTTGACTAACTTTAATAAAAATTCTCAAACTA TATCAATATCTAAAGTGCATATATTTTTTAAGAAAGATTATTCTCAATAACTTCTATAAAAATAAGTTTGATGG TTTGGCCCATCTAACTTCACTACTATTAGTAAGAACTTTTAACTTTTAATGTGTAGTAAGGTTTATTCTACCTT TTTCTCAACATGACACCAACACAATCAAAAACGAAGTTAGTGAGGTGCTAACATGTGAGGATTAATCCAGTGAT TCCGGTCACAATGCATTCCAGGAGGAGGTACCCATGTCACTGGAATTGGGCGATATGGTTTATTTTTTTCTCCC TGATTTGGATAACCAAATGGAACAGGAGGAGGATAGTGATTCTGATGGCCATTCCCTCGATACATTCCTGGCTT TTTTCTGGGCAAAGGGTGCCACATTGGAAGAGGTGGAAATATAAGTTCTGAAATCTGTAGGGAAGAACACAT TAAGTTAATTCAAAGGAAAAAATCATCATCTATGTTCCAGATTTCTCATTAAAGACAAAGTTACCCACAACACT GAGATCACATCTAAGTGACACTCCTATTGTCAGGTCTAAATACATTAAAAACCTCATGTGTAATAGGCGTATAA TGTATAACAGGTGACCAATGTTTTCTGAATGCATAAAGAAATGAATAAACTCAAACAGGTACTTCCTAAACAA CTTCAACCAAAAAGACCAAAACATGGAACGAATGGAAGCTTGTAAGGACATGCTTGTTTTAGTCCAGTGGTTT CCACAGCTGGCTAAGCCAGGAGTCACTTGGAGGCTTTTAAATACAAAACATTGGAGCTGGAGGCCATTATCCTT AGCAAACTAATGCAGAAACAGAAAATCAACTACCGCATGTTCTCACTTATAAGTGGGAGGTAATGATAAGAACT GAAAAGATAACTATTGAGTACTGCCTTCACACCTGGGTGATGAAATAATATGTACAACAAATCCCTGTGACACA ΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑ

FIGURE 318

></usr/seqdb2/sst/DNA/Dnaseqs.full/ss.DNA82361

><subunit 1 of 1, 352 aa, 1 stop

><MW: 38938, pI: 7.86, NX(S/T): 3

MALLLCFVLLCGVVDFARSLSITTPEEMIEKAKGETAYLPCKFTLSPEDQGPLDIEWLISPA
DNQKVDQVIILYSGDKIYDDYYPDLKGRVHFTSNDLKSGDASINVTNLQLSDIGTYQCKVKK
APGVANKKIHLVVLVKPSGARCYVDGSEEIGSDFKIKCEPKEGSLPLQYEWQKLSDSQKMPT
SWLAEMTSSVISVKNASSEYSGTYSCTVRNRVGSDQCLLRLNVVPPSNKAGLIAGAIIGTLL
ALALIGLIIFCCRKKRREEKYEKEVHHDIREDVPPPKSRTSTARSYIGSNHSSLGSMSPSNM
EGYSKTQYNQVPSEDFERTPQSPTLPPAKFKYPYKTDGITVV

Signal sequence.

amino acids 1-19

Transmembrane domain:

amino acids 236-257

N-glycosylation sites.

amino acids 106-110, 201-205, 298-302

Tyrosine kinase phosphorylation sites.

amino acids 31-39, 78-85, 262-270

N-myristoylation sites.

amino acids 116-122, 208-214, 219-225, 237-243, 241-247, 245-251, 296-302

Myelin PO protein.

amino acids 96-125

FIGURE 319

CTCAAGCATCACTTACAGGACCAGAGGGACAAGACATGACTGTGATGAGGAGCTGCTTTCGC CAATTTAACACCAAGAAGAATTGAGGCTGCTTGGGAGGAAGGCCAGGAGGAACACGAGACTG AGAG**ATG**AATTTTCAACAGAGGCTGCAAAGCCTGTGGACTTTAGCCAGACCCTTCTGCCCTC CTTTGCTGGCGACAGCCTCTCAAATGCAGATGGTTGTGCTCCCTTGCCTGGGTTTTACCCTG CTTCTCTGGAGCCAGGTATCAGGGGCCCAGGGCCAAGAATTCCACTTTGGGCCCTGCCAAGT GAAGGGGGTTGTTCCCCAGAAACTGTGGGAAGCCTTCTGGGCTGTGAAAGACACTATGCAAG CTCAGGATAACATCACGAGTGCCCGGCTGCTGCAGCAGGGGGTTCTGCAGAACGTCTCGGAT GCTGAGAGCTGTTACCTTGTCCACACCCTGCTGGAGTTCTACTTGAAAAACTGTTTTCAAAAA CCACCACAATAGAACAGTTGAAGTCAGGACTCTGAAGTCATTCTCTACTCTGGCCAACAACT TTGTTCTCATCGTGTCACAACTGCAACCCAGTCAAGAAAATGAGATGTTTTCCATCAGAGAC AGTGCACACGGCGGTTTCTGCTATTCCGGAGAGCATTCAAACAGTTGGACGTAGAAGCAGC TCTGACCAAAGCCCTTGGGGAAGTGGACATTCTTCTGACCTGGATGCAGAAATTCTACAAGC TCTGAATGTCTAGACCAGGACCTCCCTCCCCCTGGCACTGGTTTGTTCCCTGTGTCATTTCA AACAGTCTCCCTTCCTATGCTGTTCACTGGACACTTCACGCCCTTGGCCATGGGTCCCATTC TTGGCCCAGGATTATTGTCAAAGAAGTCATTCTTTAAGCAGCGCCAGTGACAGTCAGGGAAG AATTAATGTCAGTATTTCAACTGAAGTTCTATTTATTTGTGAGACTGTAAGTTACATGAAGG CAGCAGAATATTGTGCCCCATGCTTCTTTACCCCTCACAATCCTTGCCACAGTGTGGGGCAG GTTAAAAAACAGAGAGGGATGCTTGGATGTAAAACTGAACTTCAGAGCATGAAAATCACACT TAAACGATAAAATGTGGATTAAAGTGCCCAGCACAAAGCAGATCCTCAATAAACATTTCATT TATCCTAGTCATTCTTCCCTAATCTTCCACTTGAGTGTCAAGCTGACCTTGCTGATGGTGAC ATTGCACCTGGATGTACTATCCAATCTGTGATGACATTCCCTGCTAATAAAAGACAACATAA СТССАААААААААААААААААААА

FIGURE 320

></usr/seqdb2/sst/DNA/Dnaseqs.full/ss.DNA88002

><subunit 1 of 1, 206 aa, 1 stop

><MW: 23799, pI: 9.12, NX(S/T): 3

MNFQQRLQSLWTLARPFCPPLLATASQMQMVVLPCLGFTLLLWSQVSGAQGQEFHFGPCQVK GVVPQKLWEAFWAVKDTMQAQDNITSARLLQQEVLQNVSDAESCYLVHTLLEFYLKTVFKNH HNRTVEVRTLKSFSTLANNFVLIVSQLQPSQENEMFSIRDSAHRRFLLFRRAFKQLDVEAAL TKALGEVDILLTWMQKFYKL

Signal sequence:

amino acids 1-42

N-glycosylation sites.

amino acids 85-89, 99-103, 126-130

FIGURE 321

FIGURE 322

></usr/seqdb2/sst/DNA/Dnaseqs.full/ss.DNA92282

><subunit 1 of 1, 177 aa, 1 stop

><MW: 20452, pI: 8.00, NX(S/T): 2

MKLQCVSLWLLGTILILCSVDNHGLRRCLISTDMHHIEESFQEIKRAIQAKDTFPNVTILST LETLQIIKPLDVCCVTKNLLAFYVDRVFKDHQEPNPKILRKISSIANSFLYMQKTLRQCQEQ RQCHCRQEATNATRVIHDNYDQLEVHAAAIKSLGELDVFLAWINKNHEVMFSA

Signal sequence:

amino acids 1-18

N-glycosylation sites.

amino acids 56-60, 135-139

cAMP- and cGMP-dependent protein kinase phosphorylation site.

amino acids 102-106

N-myristoylation site.

amino acids 24-30

Actinin-type actin-binding domain signature 1.

amino acids 159-169

FIGURE 323

CCCGTGCCAAGAGTGACGTAAGTACCGCCTATAGAGTCTATAGGCCCACTTGGCTTCGTTAG AACGCGGCTACAATTAATACATAACCTTATGTATCATACACATACGATTTAGGTGACACTAT AGAATAACATCCACTTTGCCTTTCTCCACAGGTGTCCACTCCCAGGTCCAACTGCACCTC GGTTCTATCGATAATCTCAGCACCAGCCACTCAGAGCAGGGCACGATGTTGGGGGGCCCGCCT CAGGCTCTGGGTCTGTGCAGCGTCTGCAGCATGAGCGTCCTCAGAGCCTATCCCA ATGCCTCCCCACTGCTCGGCTCCAGCTGGGGTGGCCTGATCCACCTGTACACAGCCACAGCC AGGAACAGCTACCACCTGCAGATCCACAAGAATGGCCATGTGGATGGCGCACCCCATCAGAC CATCTACAGTGCCCTGATGATCAGATCAGAGGATGCTGGCTTTGTGGTGATTACAGGTGTGA TGAGCAGAAGATACCTCTGCATGGATTTCAGAGGCAACATTTTTGGATCACACTATTTCGAC CCGGAGAACTGCAGGTTCCAACACCAGACGCTGGAAAACGGGTACGACGTCTACCACTCTCC TCAGTATCACTTCCTGGTCAGTCTGGGCCGGGCGAAGAGAGCCTTCCTGCCAGGCATGAACC CACCCCGTACTCCCAGTTCCTGTCCCGGAGGAACGAGATCCCCCTAATTCACTTCAACACC CCCATACCACGGCGCACACCCGGAGCGCCGAGGACGACTCGGAGCGGGACCCCCTGAACGT GCTGAAGCCCCGGGCCCGGCCCCGGCCTCCTGTTCACAGGAGCTCCCGAGCG CCGAGGACAACAGCCCGATGGCCAGTGACCCATTAGGGGTGGTCAGGGGCGGTCGAGTGAAC ACGCACGCTGGGGGAACGGCCCGGAAGGCTGCCCCCCTTCGCCAAGTTCATC**TAG**GGTCG CTGG

FIGURE 324

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA142238

><subunit 1 of 1, 251 aa, 1 stop

><MW: 27954, pI: 9.22, NX(S/T): 1

MLGARLRLWVCALCSVCSMSVLRAYPNASPLLGSSWGGLIHLYTATARNSYHLQIHKNGHVD GAPHQTIYSALMIRSEDAGFVVITGVMSRRYLCMDFRGNIFGSHYFDPENCRFQHQTLENGY DVYHSPQYHFLVSLGRAKRAFLPGMNPPPYSQFLSRRNEIPLIHFNTPIPRRHTRSAEDDSE RDPLNVLKPRARMTPAPASCSQELPSAEDNSPMASDPLGVVRGGRVNTHAGGTGPEGCRPFA KFI

Important features of the protein:

Signal peptide:

amino acids 1-24

cAMP- and cGMP-dependent protein kinase phosphorylation site. amino acids 175-179

N-myristoylation site.

amino acids 33-39, 100-106, 225-231, 229-235

HBGF/FGF family proteins

amino acids 73-124

FIGURE 325

GGAAAAGGTACCCGCGAGAGACAGCCAGCAGTTCTGTGGAGCAGCGGTGGCCGGCTAGG**ATG** GAGCTCTGCAGGCCCCAGCACCCGCAGAGCAGACACTGCGATGACAACGGACGACACAGAAG TGCCCGCTATGACTCTAGCACCGGGCCACGCCGCTCTGGAAACTCAAACGCTGAGCGCTGAG ACCTCTTCTAGGGCCTCAACCCCAGCCGGCCCCATTCCAGAAGCAGAGACCAGGGGAGCCAA GAGAATTTCCCCTGCAAGAGAGACCAGGAGTTTCACAAAAACATCTCCCAACTTCATGGTGC TGATCGCCACCTCCGTGGAGACATCAGCCGCCAGTGGCAGCCCCGAGGGAGCTGGAATGACC ACAGTTCAGACCATCACAGGCAGTGATCCCGAGGAAGCCATCTTTGACACCCTTTGCACCGA TGACAGCTCTGAAGAGGCAAAGACACTCACAATGGACATATTGACATTGGCTCACACCTCCA CAGAAGCTAAGGGCCTGTCCTCAGAGAGCAGTGCCTCTTCCGACGGCCCCCATCCAGTCATC ${ t ACCCCGTCACGGGCCTCAGAGAGCGCCCCCTCTTCCGACGGCCCCCATCCAGTCATCACCCC}$ GTCACGGGCCTCAGAGAGCAGCGCCTCTTCCGACGGCCCCCATCCAGTCATCACCCCGTCAT GGTCCCCGGGATCTGATGTCACTCTCCTCGCTGAAGCCCTGGTGACTGTCACAAACATCGAG GTTATTAATTGCAGCATCACAGAAATAGAAACAACATCCCAGCATCCCTGGGGCCTCAGA ${\tt CATAGATCTCATCCCCACGGAAGGGGTGAAGGCCTCGTCCACCTCCGATCCACCAGCTCTGC}$ CTGACTCCACTGAAGCAAAACCACACATCACTGAGGTCACAGCCTCTGCCGAGACCCTGTCC ACAGCCGGCACCACAGAGTCAGCTGCACCTCATGCCACGGTTGGGACCCCACTCCCCACTAA CAGCGCCACAGAAAGAGAAGTGACAGCACCCGGGGCCACGACCCTCAGTGGAGCTCTGGTCA CAGTTAGCAGGAATCCCCTGGAAGAAACCTCAGCCCTCTCTGTTGAGACACCAAGTTACGTC AAAGTCTCAGGAGCAGCTCCGGTCTCCATAGAGGCTGGGTCAGCAGTGGGCAAAACAACTTC CTTTGCTGGGAGCTCTGCTTCCTCCTACAGCCCCTCGGAAGCCGCCCTCAAGAACTTCACCC CTTCAGAGACACCGACCATGGACATCGCAACCAAGGGGCCCTTCCCCACCAGCAGGGACCCT CTTCCTTCTGTCCCTCCGACTACAACCAACAGCAGCCGAGGGACGAACAGCACCTTAGCCAA GATCACAACCTCAGCGAAGACCACGATGAAGCCCCAACAGCCACGCCCACGACTGCCCGGAC GAGGCCGACCACAGACGTGAGTGCAGGTGAAAATGGAGGTTTCCTCCTCCTGCGGCTGAGTG TGGCTTCCCCGGAAGACCTCACTGACCCCAGAGTGGCAGAAAGGCTGATGCAGCAGCTCCAC CGGGAACTCCACGCCCACGCCCTCACTTCCAGGTCTCCTTACTGCGTGTCAGGAGAGGCTA ACGGACATCAGCTGCAGCCAGGCATGTCCCGTATGCCAAAAGAGGGTGCTGCCCCTAGCCTG GGCCCCACCGACAGACTGCAGCTGCGTTACTGTGCTGAGAGGTTACCCAGAAGGTTCCCATG AAGGGCAGCATGTCCAAGCCCCTAACCCCAGATGTGGCAACAGGACCCTCGCTCACATCCAC CGGAGTGTATGTATGGGGAGGGGCTTCACCTGTTCCCAGAGGTGTCCTTGGACTCACCTTGG CACATGTTCTGTGTTTCAGTAAAGAGAGACCTGATCACCCATCTGTGTGCTTCCATCCTGCA TTAAAATTCACTCAGTGTGGCCCAAAAAAA

FIGURE 326

MGCLWGLALPLFFFCWEVGVSGSSAGPSTRRADTAMTTDDTEVPAMTLAPGHAALETQTLSA
ETSSRASTPAGPIPEAETRGAKRISPARETRSFTKTSPNFMVLIATSVETSAASGSPEGAGM
TTVQTITGSDPEEAIFDTLCTDDSSEEAKTLTMDILTLAHTSTEAKGLSSESSASSDGPHPV
ITPSRASESSASSDGPHPVITPSRASESSASSDGPHPVITPSWSPGSDVTLLAEALVTVTNI
EVINCSITEIETTTSSIPGASDIDLIPTEGVKASSTSDPPALPDSTEAKPHITEVTASAETL
STAGTTESAAPHATVGTPLPTNSATEREVTAPGATTLSGALVTVSRNPLEETSALSVETPSY
VKVSGAAPVSIEAGSAVGKTTSFAGSSASSYSPSEAALKNFTPSETPTMDIATKGPFPTSRD
PLPSVPPTTTNSSRGTNSTLAKITTSAKTTMKPQOPRPRLPGRGRPQT

N-glycosylation sites:

amino acids 252-256, 445-449, 451-455

cAMP-and cGMP-dependent protein kinase phosphorylation site. amino acids 84-90

Casein kinase II phosphorylation sites.

amino acids 37-41, 108-112, 131-135, 133-137, 148-152, 165-169, 246-250, 254-258, 256-260, 269-273, 283-287, 333-337, 335-339, 404-408, 414-418, 431-435

N-myristoylation sites.

amino acids 2-8, 19-25, 117-123, 121-127, 232-238, 278-284, 314-320, 349-355, 386-392, 397-403, 449-455

ATP/GTP-binding site motif A (P-loop).

amino acids 385-393

FIGURE 327

GCGGAGCATCCGCTGCGGTCCTCGCCGAGACCCCCGCGGGATTCGCCGGTCCTTCCCGCGG GCGCGACAGAGCTGTCCTCGCACCTGGATGGCAGCAGGGGCGCCGGGGTCCTCTCGACGCCA CCTTGACCTTTGAAGACCAAAACTAAACTGAAATTTAAA**ATG**TTCTTCGGGGGAGAAGGGAG CTTGACTTACACTTTGGTAATAATTTGCTTCCTGACACTAAGGCTGTCTGCTAGTCAGAATT GCCTCAAAAAGAGTCTAGAAGATGTTGTCATTGACATCCAGTCATCTCTTTCTAAGGGAATC AGAGGCAATGAGCCCGTATATACTTCAACTCAAGAAGACTGCATTAATTCTTGCTGTTCAAC AAAAAACATATCAGGGGACAAAGCATGTAACTTGATGATCTTCGACACTCGAAAAACAGCTA GACAACCCAACTGCTACCTATTTTTCTGTCCCAACGAGGAAGCCTGTCCATTGAAACCAGCA AAAGGACTTATGAGTTACAGGATAATTACAGATTTTCCATCTTTGACCAGAAATTTGCCAAG CCAAGAGTTACCCCAGGAAGATTCTCTCTTACATGGCCAATTTTCACAAGCAGTCACTCCCC TAGCCCATCATCACACAGATTATTCAAAGCCCACCGATATCTCATGGAGAGACACACTTTCT GCTCCTTGCTTATAAGGAAAAAGGCCATTCTCAGAGTTCACAATTTTCCTCTGATCAAGAAA TAGCTCATCTGCTGCCTGAAAATGTGAGTGCGCTCCCAGCTACGGTGGCAGTTGCTTCTCCA CATACCACCTCGGCTACTCCAAAGCCCGCCACCCTTCTACCCACCAATGCTTCAGTGACACC TTCTGGGACTTCCCAGCCACAGCTGGCCACCACAGCTCCACCTGTAACCACTGTCACTTCTC AGCCTCCCACGACCCTCATTTCTACAGTTTTTACACGGGCTGCGGCTACACTCCAAGCAATG GCTACAACAGCAGTTCTGACTACCACCTTTCAGGCACCTACGGACTCGAAAGGCAGCTTAGA AACCATACCGTTTACAGAAATCTCCAACTTAACTTTGAACACAGGGAATGTGTATAACCCTA CTGCACTTTCTATGTCAAATGTGGAGTCTTCCACTATGAATAAAACTGCTTCCTGGGAAGGT AGGGAGGCCAGTCCAGGCAGTTCCTCCCAGGGCAGTGTTCCAGAAAATCAGTACGGCCTTCC ATTTGAAAAATGGCTTCTTATCGGGTCCCTGCTCTTTGGTGTCCTGTTCCTGGTGATAGGCC TCGTCCTCCTGGGTAGAATCCTTTCGGAATCACTCCGCAGGAAACGTTACTCAAGACTGGAT TATTTGATCAATGGGATCTATGTGGACATC**TAA**GGATGGAACTCGGTGTCTCTTAATTCATT TAGTAACCAGAAGCCCAAATGCAATGAGTTTCTGCTGACTTGCTAGTCTTAGCAGGAGGTTG GCTCTGTTGCCCAGGCTGGAGTGCAGTAGCACGATCTCGGCTCTCACCGCAACCTCCGTCTC CTGGGTTCAAGCGATTCTCCTGCCTCAGCCTCCTAAGTATCTGGGATTACAGGCATGTGCCA CCACACCTGGGTGATTTTTGTATTTTTAGTAGAGACGGGGTTTCACCATGTTGGTCAGGCTG GTCTCAAACTCCTGACCTAGTGATCCACCCTCCTCGGCCTCCCAAAGTGCTGGGATTACAGG CATGAGCCACCACAGCTGGCCCCCTTCTGTTTTATGTTTTGGTTTTTTGAGAAGGAATGAAGTG GGAACCAAATTAGGTAATTTTGGGTAATCTGTCTCTAAAATATTAGCTAAAAACAAAGCTCT ATGTAAAGTAATAAAGTATAATTGCCATATAAATTTCAAAATTCAACTGGCTTTTATGCAAA GAAACAGGTTAGGACATCTAGGTTCCAATTCATTCACATTCTTGGTTCCAGATAAAATCAAC TGTTTATATCAATTCTAATGGATTTGCTTTTCTTTTTATATGGATTCCTTTAAAACTTATT CCAGATGTAGTTCCTTCCAATTAAATATTTGAATAAATCTTTTGTTACTCAA

FIGURE 328

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA45410

><subunit 1 of 1, 431 aa, 1 stop

><MW: 46810, pI: 6.45, NX(S/T): 6

MFFGGEGSLTYTLVIICFLTLRLSASQNCLKKSLEDVVIDIQSSLSKGIRGNEPVYTSTQED CINSCCSTKNISGDKACNLMIFDTRKTARQPNCYLFFCPNEEACPLKPAKGLMSYRIITDFP SLTRNLPSQELPQEDSLLHGQFSQAVTPLAHHHTDYSKPTDISWRDTLSQKFGSSDHLEKLF KMDEASAQLLAYKEKGHSQSSQFSSDQEIAHLLPENVSALPATVAVASPHTTSATPKPATLL PTNASVTPSGTSQPQLATTAPPVTTVTSQPPTTLISTVFTRAAATLQAMATTAVLTTTFQAP TDSKGSLETIPFTEISNLTLNTGNVYNPTALSMSNVESSTMNKTASWEGREASPGSSSQGSV PENQYGLPFEKWLLIGSLLFGVLFLVIGLVLLGRILSESLRRKRYSRLDYLINGIYVDI

Signal sequence.

amino acids 1-25

Transmembrane domain.

amino acids 384-405

N-glycosylation sites.

amino acids 72-76, 222-226, 251-255, 327-331, 352-356

cAMP- and cGMP-dependent protein kinase phosphorylation site.

amino acids 415-419

Tyrosine kinase phosphorylation site.

amino acids 50-57

N-myristoylation sites.

amino acids 4-10, 48-54, 315-321

FIGURE 329

 $\tt CTCCCACGGTGTCCAGCGCCCAGA{\color{red} ATG} CGGCTTCTGGTCCTGCTATGGGGTTGCCTGCTGCT$ CCCAGGTTATGAAGCCCTGGAGGGCCCAGAGGAAATCAGCGGGTTCGAAGGGGACACTGTGT CCCTGCAGTGCACCTACAGGGAAGAGCTGAGGGACCACCGGAAGTACTGGTGCAGGAAGGGT GGGATCCTCTCTCTCGCTGCTCTGGCACCATCTATGCAGAAGAAGAAGACCCAGGAGACAAT GAAGGGCAGGGTGTCCATCCGTGACAGCCGCCAGGAGCTCTCGCTCATTGTGACCCTGTGGA ACCTCACCCTGCAAGACGCTGGGGGGTACTGGTGTGGGGTCGAAAAACGGGGCCCCGATGAG TCTTTACTGATCTCTCTGTTCGTCTTTCCAGGACCCTGCTGTCCTCCCCTTCTCCCAC CTTCCAGCCTCTGGCTACAACACGCCTGCAGCCCAAGGCAAAAGCTCAGCAAACCCAGCCCC CAGGATTGACTTCTCCTGGGCTCTACCCGGCAGCCACCACAGCCAAGCAGGGGAAGACAGGG GCTGAGGCCCCTCCATTGCCAGGGACTTCCCAGTACGGGCACGAAAGGACTTCTCAGTACAC AGGAACCTCTCCTCACCCAGCGACCTCTCCTCCTGCAGGGAGCTCCCGCCCCCCATGCAGC ${\tt TGGACTCCACCTCAGCAGAGGACACCAGTCCAGCTCTCAGCAGTGGCAGCTCTAAGCCCAGG}$ GTGTCCATCCCGATGGTCCGCATACTGGCCCCAGTCCTGGTGCTGAGCCTTCTGTCAGC CGCAGGCCTGATCGCCTTCTGCAGCCACCTGCTCCTGTGGAGAAAGGAAGCTCAACAGGCCA CGGAGACACAGAGGAACGAGAAGTTCTGGCTCTCACGCTTGACTGCGGAGGAAAAGGAAGCC CCTTCCCAGGCCCCTGAGGGGGACGTGATCTCGATGCCTCCCCTCCACACATCTGAGGAGGA $\texttt{GCTGGGCTTCTCGAAGTTTGTCTCAGCG} \underline{\textbf{TAG}} \texttt{GGCAGGAGGCCCTCCTGGCCAGGCCAGCAGT}$ GAAGCAGTATGGCTGGATCAGCACCGATTCCCGAAAGCTTTCCACCTCAGCCTCAGAG TCCAGCTGCCCGGACTCCAGGGCTCTCCCCACCCTCCCAGGCTCTCCTCTTGCATGTTCCA GCCTGACCTAGAAGCGTTTGTCAGCCCTGGAGCCCAGAGCGGTGGCCTTGCTCTTCCGGCTG GAGACTGGGACATCCCTGATAGGTTCACATCCCTGGGCAGAGTACCAGGCTGCTGACCCTCA $\tt GCAGGGCCAGACAAGGCTCAGTGGATCTGGTCTGAGTTTCAATCTGCCAGGAACTCCTGGGC$ TGGCGTCCTCAGACTTAGTCCCACGGTCTCCTGCATCAGCTGGTGATGAAGAGGAGCATGCT GGGGTGAGACTGGGATTCTGGCTTCTCTTTGAACCACCTGCATCCAGCCCTTCAGGAAGCCT GTGAAAAACGTGATTCCTGGCCCCACCAAGACCCACCAAAACCATCTCTGGGCTTGGTGCAG GACTCTGAATTCTAACAATGCCCAGTGACTGTCGCACTTGAGTTTGAGGGCCAGTGGGCCTG ATGAACGCTCACACCCCTTCAGCTTAGAGTCTGCATTTGGGCTGTGACGTCTCCACCTGCCC CAATAGATCTGCTCTGTCTGCGACACCAGATCCACGTGGGGACTCCCCTGAGGCCTGCTAAG TCCAGGCCTTGGTCAGGTCAGGTGCACATTGCAGGATAAGCCCAGGACCGGCACAGAAGTGG TTGCCTTTNCCATTTGCCCTCCCTGGNCCATGCCTTCTTGCCTTTGGAAAAAATGATGAAGA AAACCTTGGCTCCTTGTCTGGAAAGGGTTACTTGCCTATGGGTTCTGGTGGCTAGAGA GAAAAGTAGAAAACCAGAGTGCACGTAGGTGTCTAACACAGAGGAGAGTAGGAACAGGGCGG ATACCTGAAGGTGACTCCGAGTCCAGCCCCTGGAGAAGGGGTCGGGGGTGGTGAAAGTA GCACAACTACTATTTTTTTTTTTTTTCCATTATTATTGTTTTTTAAGACAGAATCTCGTGCT GCTGCCCAGGCTGGAGTGCAGTGGCACGATCTGCAAACTCCGCCTCCTGGGTTCAAGTGATT $\tt TTTGTACTTTAGTAGAGATGGGGTTTCACCATGTTGGCCAGGCTGGTCTTGAACTCCTGAC$ CTCAAATGAGCCTCCTGCTTCAGTCTCCCAAATTGCCGGGATTACAGGCATGAGCCACTGTG TCTGGCCCTATTTCCTTTAAAAAGTGAAATTAAGAGTTGTTCAGTATGCAAAACTTGGAAAG ATGGAGGAGAAAAAGGAAAAAAAATGTCACCCATAGTCTCACCAGAGACTATCAT TATTTCGTTTTGTTGTTGTTCCTTCCACTCTTTTCTTCTTCACATAATTTGCCGGTGTTCTT TTTACAGAGCAATTATCTTGTATACAACTTTGTATCCTGCCTTTTCCACCTTATCGTTCC GCTGCATAAAAAAAAAAAAAA

FIGURE 330

</usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA44196</pre>

<subunit 1 of 1, 332 aa, 1 stop</pre>

<MW: 36143, pI: 5.89, NX(S/T): 1

MRLLVLLWGCLLLPGYEALEGPEEISGFEGDTVSLQCTYREELRDHRKYWCRKGGILFSRCS GTIYAEEEGQETMKGRVSIRDSRQELSLIVTLWNLTLQDAGEYWCGVEKRGPDESLLISLFV FPGPCCPPSPSPTFQPLATTRLQPKAKAQQTQPPGLTSPGLYPAATTAKQGKTGAEAPPLPG TSQYGHERTSQYTGTSPHPATSPPAGSSRPPMQLDSTSAEDTSPALSSGSSKPRVSIPMVRI LAPVLVLLSLLSAAGLIAFCSHLLLWRKEAQQATETQRNEKFWLSRLTAEEKEAPSQAPEGD VISMPPLHTSEEELGFSKFVSA

Important features:

Signal peptide:

amino acids 1-17

Transmembrane domain:

amino acids 248-269

N-glycosylation site.

amino acids 96-99

Fibrinogen beta and gamma chains C-terminal domain.

amino acids 104-113

Ig like V-type domain:

amino acids 13-128