Description

HIGH EFFICIENCY CHARGE PUMP WITH PREVENTION FROM REVERSE CURRENT

BACKGROUND OF INVENTION

- [0001] 1. Field of the Invention
- [0002] The present invention relates to a charge pump and, more particularly, to a charge pump capable of preventing from reverse current, thereby generating a pumping voltage with high efficiency.
- [0003] 2. Description of the Related Art
- [0004] FIG. 1 is a detailed circuit diagram showing a conventional charge pump 10. NMOS transistors N_1 and N_2 have first current electrodes together coupled to a supply voltage source V_1 . A control electrode of the NMOS transistor N_1 is coupled to a second current electrode of the NMOS transistor N_2 while a control electrode of the NMOS transistor N_2 is coupled to a second current electrode of the NMOS transistor N_2 is coupled to a second current electrode of the NMOS transistor N_1 . A capacitor C_1 has a first electrode

coupled to the second current electrode of the NMOS transistor N_1 while a capacitor C_2 has a first electrode coupled to the second current electrode of the NMOS transistor N_2 .

[0005] An NMOS transistor N_3 has a first current electrode coupled to the second current electrode of the NMOS transistor N_2 while an NMOS transistor N_4 has a first current electrode coupled to the second current electrode of the NMOS transistor N_1 . A control electrode of the NMOS transistor N_3 is coupled to a second current electrode of the NMOS transistor N_4 while a control electrode of the NMOS transistor N_4 is coupled to a second current electrode of the NMOS transistor N_3 . A capacitor C_3 has a first electrode coupled to the second current electrode of the NMOS transistor N_3 while a capacitor C_4 has a first electrode coupled to the second current electrode of the NMOS transistor N_3 .

 $^{[0006]}$ An NMOS transistor N $_5$ has a first current electrode coupled to the second current electrode of the NMOS transistor N $_3$. Also, the NMOS transistor N $_5$ has a control electrode coupled to its own first current electrode, forming a diode-coupled transistor. A pumping voltage V $_{pp}$ of the charge pump 10 is asserted at a second current electrode

of the NMOS transistor N_5 .

[0007] Under the control of clock signals CLK₁ and CLK₂, the conventional charge pump 10 performs a function of boosting voltage through charge transferring operations. Referring to FIG. 2(a), the clock signals CLK₁ and CLK₂ are a same-stage complementary pair of pulse trains with equal amplitude. In addition, the clock signals CLK₁ and CLK₂ are so designed as to be non-overlapping with respect to each other for avoiding synchronous occurrence of a high level. Typically, the amplitude of the clock signals CLK₁ and CLK₂ alternately swings between the supply voltage source V_{in} and a ground potential. As shown in FIG. 1, the clock signals CLK₁ is applied to both of second electrodes of the capacitors C_1 and C_3 while the clock signals CLK₂ is applied to both of second electrodes of the capacitors C_2 and C_4 .

Hereinafter is described in detail an operation of the conventional charge pump 10. For understanding the operation of the conventional charge pump 10, it is assumed as an initial condition that the first electrodes of the capacitors C_1 and C_2 are both at a voltage of $V_{\rm in}$. When the clock signal CLK₁ is at the low level and the clock signal CLK₂ is at the high level, such as a time interval A shown in FIG.

2(a), the first electrode of the capacitor C_2 is pushed upwardly to a voltage of $2*V_{in}$, turning on the transistor N_1 . As a result, the supply voltage source V_{in} charges the capacitor C_1 , sustaining the first electrode of the capacitor C_1 at the voltage of V_{in} . Subsequently, when the clock signal CLK₁ is at the high level and the clock signal CLK₂ is at the low level, such as a time interval B shown in FIG. 2(a), the first electrode of the capacitor C_2 is pulled downwardly to a voltage of V_{in} and the first electrode of the capacitor C_1 is pushed upwardly to a voltage of $2*V_{in}$, turning on the transistor N_2 . As a result, the supply voltage source V_{in} charges the capacitor C_2 , sustaining the first electrode of the capacitor C_2 at the voltage of V_{in} .

- [0009] Therefore, a first pumping stage of the charge pump 10 is constructed by the transistors N_1 and N_2 with the capacitors C_1 and C_2 under the control of the clock signals CLK_1 and CLK_2 , supplying a first stage pumping voltage $2*V_{in}$ to a next pumping stage alternately through the first electrodes of the capacitors C_1 and C_2 .
- [0010] Similarly, it is assumed as an initial condition that the first electrodes of the capacitors C_3 and C_4 are both at a voltage of $2*V_{in}$. When the clock signal CLK₁ is at the low level and the clock signal CLK₂ is at the high level, such as the

time interval A shown in FIG. 2(a), the first electrode of the capacitor C_4 is pushed upwardly to a voltage of $3*V_{in}$, turning on the transistor N_3 . As a result, the first electrode of the capacitor C_2 supplies the capacitor C_3 with the first stage pumping voltage 2*V_{in}, sustaining the first electrode of the capacitor C_3 at the voltage of $2*V_{in}$. Subsequently, when the clock signal CLK₁ is at the high level and the clock signal CLK, is at the low level, such as the time interval B shown in FIG. 2(a), the first electrode of the capacitor C_4 is pulled downwardly to a voltage of $2*V_{in}$ and the first electrode of the capacitor C_3 is pushed upwardly to a voltage of $3*V_{in}$, turning on the transistor N_{4} . As a result, the first electrode of the capacitor C₁ supplies the capacitor C₄ with the first stage pumping voltage 2*V_{in}, sustaining the first electrode of the capacitor C_4 at the voltage of 2*V_{in}.

Therefore, a second pumping stage of the charge pump 10 is constructed by the transistors N_3 and N_4 with the capacitors C_3 and C_4 under the control of the clock signals CLK_1 and CLK_2 , supplying a second stage pumping voltage $3*V_{in}$ to an output stage alternately through the first electrodes of the capacitors C_3 and C_4 .

[0012] The transistor N₅ serves as the output stage of the charge

pump 10, functioning as a diode for only allowing the charge pump 10 to output the pumping voltage V_{pp} . Due to the effect of the transistor N_5 , the pumping voltage V_{pp} is subjected to a voltage loss of a forward bias diode drop, required to turn on the transistor N_5 , from the voltage of the first electrode of the capacitor C_3 .

[0013] Under adverse effects of reverse current (or reverse charge transfer), the conventional charge pump 10 fails to achieve an efficient voltage-converting characteristic. In the prior art, the reverse current occurs in two situations where: (1) the clock signals are at steady states and (2) the clock signals make transitions from the high level to the low level or from the low level to the high level.

[0014] Firstly is described the reverse current problem the charge pump 10 is subjected to when the clock signals are at steady states. When the clock signal CLK_1 is at the high level and the clock signal CLK_2 is at the low level, such as the time interval B shown in FIG. 2(a), the second current electrode of the transistor N_1 is at the voltage of $2*V_{in}$, the second current electrode of the transistor N_2 is at the voltage of V_{in} , the second current electrode of the transistor V_{in} , the second current electrode of the transistor V_{in} is at the voltage of V_{in} . There-

fore, the transistor N_3 has the control electrode at the voltage of 3*V and the first current electrode at the voltage of V, resulting in being turned on. Since the transistor N₂ is also turned on at this moment, a steady-state reverse current is discharged from the first electrode of the capacitor C_3 , which is at the voltage of $3*V_{in}$, flowing through the transistors N_3 and N_2 sequentially, and back to the supply voltage source V_{in} . In such case that the steady-state reverse current exists, the charge stored in the capacitor C₃ cannot be fully transferred to the transistor N_{ς} , i.e. the output stage of the charge pump 10, resulting in a reduced efficiency of generating the pumping voltage V_{pp}.

Followed is a description of the reverse current problem the charge pump 10 is subjected to when the clock signals make transitions. Although the capacitors C_1 and C_3 are wired to receive the same clock signal CLK_1 and the capacitors C_2 and C_4 are wired to receive the same clock signal CLK_2 in the description set forth, an amount of time delay is inevitably produced in the clock signals CLK_1 and CLK_2 due to signal distribution along the clock lines in practical circuit applications. If the time delay is considered, the capacitor C_3 actually receives a clock signal CLK_3

as shown in FIG. 2(b), which is a delayed signal from the clock signal CLK_1 , and the capacitor C_4 actually receives a clock signal CLK_4 as shown in FIG. 2(b), which is a delayed signal from the clock signal CLK_2 .

[0016] When the clock signals CLK₁ and CLK₃ are both at the low level and the clock signals CLK₂ and CLK₄ are both at the high level, such as a time interval A shown in FIG. 2(b), the second current electrode of the transistor N_1 is at the voltage of V_{in}, the second current electrode of the transistor N_2 is at the voltage of $2*V_{in}$, the second current electrode of the transistor N_3 is at the voltage of $2*V_{in}$, the second current electrode of the transistor N_{Δ} is at the voltage of 3*V ... Subsequently, when the clock signal CLK 2 makes a transition from the high level to the low level, the clock signal CLK₄ still retains the high level due to the time delay, such as a time interval C shown in FIG. 2(b). At this moment, both of the clock signals CLK₁ and CLK₃ stay at the low level because of the non-overlapping arrangement described above. In this case, the first current electrode of the transistor N_3 since coupled to the second current electrode of the transistor N₂ is pulled downwardly to a voltage of V_{in} . Because the control electrode of the transistor N_3 is at the voltage of $3*V_{in}$, the transistor N_3

is turned on such that a transition-state reverse current is discharged from the first electrode of the capacitor C_3 , which is at the voltage of $2*V_{in}$, flowing through the transistor $N_{_{\rm S}}$ and back to the first electrode of the capacitor C 2. In such case that the transition-state reverse current exists, the first electrode of the capacitor C_3 cannot be fully charged to the desired voltage of 2*V_{in}, causing that the first electrode of the capacitor C_3 cannot be fully pushed upwardly to the desired voltage of 3*V when the clock signal CLK₃ subsequently makes a transition from the low level to the high level, such as a time interval B shown in FIG. 2(b). As a result, the efficiency of generating the pumping voltage V_{pp} by the charge pump 10 is reduced.

SUMMARY OF INVENTION

- [0017] In view of the above-mentioned problems, an object of the present invention is to provide a charge pump capable of preventing from the reverse current when the clock signals are at steady states, thereby enhancing the efficiency of generating the pumping voltage.
- [0018] Another object of the present invention is to provide a charge pump capable of preventing from the reverse current when the clock signals make transitions, thereby en-

hancing the efficiency of generating the pumping voltage.

[0019] First and second clock signals are applied to first and second capacitors, respectively. The first clock signal alternately swings between a first clock high level and a first clock low level. The second clock signal alternately swings between a second clock high level and a second clock low level. The second clock high level and the first clock high level are non-overlapping in time with respect to each other.

[0020] First and second former-stage clock signals are applied to first and second former-stage capacitors, respectively. The first former-stage clock signal alternately swings between a first former-stage clock high level and a first former-stage clock low level. The second former-stage clock signal alternately swings between a second former-stage clock high level and a second former-stage clock low level. The second former-stage clock high level and the first former-stage clock high level are non-overlapping in time with respect to each other.

[0021] When turned on, a first switching circuit couples the second former-stage capacitor with the first capacitor such that an amount of charge is transferred between the second former-stage capacitor and the first capacitor. When

turned on, a second switching circuit couples the first former-stage capacitor with the second capacitor such that an amount of charge is transferred between the first former-stage capacitor and the second capacitor.

[0022] When the first clock signal is at the first clock high level and the second former-stage clock signal is at the second former-stage clock low level, a first reverse current preventing circuit turns off the first switching circuit, thereby preventing a first steady-state reverse current from flowing through the first switching circuit out of the first capacitor.

[0023] The first reverse current preventing circuit includes a first PMOS transistor and a first NMOS transistor. The first PMOS transistor is controlled by the first clock signal through the first capacitor. When the first clock signal is at the first clock low level and the second clock signal is at the second clock high level, the first PMOS is turned on such that the second clock signal controls the first switching circuit through the second capacitor. The first NMOS transistor is controlled by the first clock signal through the first capacitor. When the first clock signal is at the first clock high level and the second former–stage clock signal is at the second former–stage clock low level, the first

NMOS is turned on such that the second former-stage clock signal controls the first switching circuit through the second former-stage capacitor.

[0024] When the second clock signal is at the second clock high level and the first former-stage clock signal is at the first former-stage clock low level, a second reverse current preventing circuit turns off the second switching circuit, thereby preventing a second steady-state reverse current from flowing through the second switching circuit out of the second capacitor.

[0025] The second reverse current preventing circuit includes a second PMOS transistor and a second NMOS transistor. The second PMOS transistor is controlled by the second clock signal through the second capacitor. When the second clock signal is at the second clock low level and the first clock signal is at the first clock high level, the second PMOS is turned on such that the first clock signal controls the second switching circuit through the first capacitor. The second NMOS transistor is controlled by the second clock signal through the second capacitor. When the second clock signal is at the second clock high level and the first former–stage clock signal is at the first former–stage clock low level, the second NMOS is turned on such that

the first former-stage clock signal controls the second switching circuit through the first former-stage capacitor.

[0026]

A second clock falling edge of the second clock signal from the second clock high level to the second clock low level occurs earlier in time than a second former-stage clock falling edge of the second former-stage clock signal from the second former-stage clock high level to the second former-stage clock low level. A second former-stage clock rising edge of the second former-stage clock signal from the second former-stage clock low level to the second former-stage clock high level occurs earlier in time than a second clock rising edge of the second clock signal from the second clock low level to the second clock high level. In this case, when the second clock signal and the second former-stage clock signal make transitions, the first switching circuit is turned off for preventing a first transition-state reverse current from flowing through the first switching circuit out of the first capacitor.

[0027]

A first clock falling edge of the first clock signal from the first clock high level to the first clock low level occurs earlier in time than a first former-stage clock falling edge of the first former-stage clock signal from the first former-stage clock high level to the first former-stage clock low

level. A first former-stage clock rising edge of the first former-stage clock signal from the first former-stage clock low level to the first former-stage clock high level occurs earlier in time than a first clock rising edge of the first clock signal from the first clock low level to the first clock high level. When the first clock signal and the first former-stage clock signal make transitions, the second switching circuit is turned off for preventing a second transition-state reverse current from flowing through the second switching circuit out of the second capacitor.

BRIEF DESCRIPTION OF DRAWINGS

- [0028] The above-mentioned and other objects, features, and advantages of the present invention will become apparent with reference to the following descriptions and accompanying drawings, wherein:
- [0029] FIG. 1 is a detailed circuit diagram showing a conventional charge pump;
- [0030] FIGs. 2(a) and 2(b) are waveform timing charts showing conventional clock signals;
- [0031] FIG. 3(a) is a detailed circuit diagram showing a reverse current preventing charge pump according to a first embodiment of the present invention;
- [0032] FIG. 3(b) is a detailed circuit diagram showing a reverse

- current preventing charge pump according to a second embodiment of the present invention;
- [0033] FIG. 4(a) is a detailed circuit diagram showing a reverse current preventing charge pump according to a third embodiment of the present invention;
- [0034] FIG. 4(b) is a waveform timing chart showing reverse current preventing clock signals applied to the charge pump according to the third embodiment of the present invention;
- [0035] FIG. 5 is a detailed circuit diagram showing a reverse current preventing charge pump according to a fourth embodiment of the present invention;
- [0036] FIG. 6(a) is a detailed circuit diagram showing a reverse current preventing charge pump according to a fifth embodiment of the present invention; and
- [0037] FIG. 6(b) is a waveform timing chart showing reverse current preventing clock signals applied to the charge pump according to the fifth embodiment of the present invention.

DETAILED DESCRIPTION

[0038] The preferred embodiments according to the present invention will be described in detail with reference to the drawings.

FIG. 3(a) is a detailed circuit diagram showing a reverse current preventing charge pump 30 according to a first embodiment of the present invention. Referring to FIG. 3(a), the charge pump 30 according to the first embodiment of the present invention includes an input stage 30 , an intermediate stage 30 , and an output stage 30 out. As for the input stage 30_{in}, specifically, NMOS transistors N₁ and N₂ have first current electrodes together coupled to a supply voltage source V_{in} . A control electrode of the NMOS transistor N_1 is coupled to a second current electrode of the NMOS transistor N₂ while a control electrode of the NMOS transistor N_2 is coupled to a second current electrode of the NMOS transistor N_1 . A capacitor C_1 has a first electrode coupled to the second current electrode of the NMOS transistor N_1 while a capacitor C_2 has a first electrode coupled to the second current electrode of the NMOS transistor N₂.

[0039]

[0040] As for the intermediate stage $30_{\rm int}$, specifically, an NMOS transistor N_3 has a first current electrode coupled to the second current electrode of the NMOS transistor N_2 while an NMOS transistor N_4 has a first current electrode coupled to the second current electrode of the NMOS transistor N_1 . A control electrode of the NMOS transistor N_3 is

controlled by a reverse current preventing circuit 301 while a control electrode of the NMOS transistor N_4 is controlled by a reverse current preventing circuit 302. A capacitor C_3 has a first electrode coupled to the second current electrode of the NMOS transistor N_3 while a capacitor C_4 has a first electrode coupled to the second current electrode of the NMOS transistor N_4 .

- [0041] As for the output stage 30 out, specifically, a PMOS transistor P_1 has a first current electrode coupled to the second current electrode of the NMOS transistor N_3 while a PMOS transistor P_2 has a first current electrode coupled to the second current electrode of the NMOS transistor N_4 . A control electrode of the PMOS transistor P_1 is coupled to the second current electrode of the NMOS transistor N_4 while a control electrode of the PMOS transistor P_2 is coupled to the second current electrode of the NMOS transistor P_2 is coupled to the second current electrode of the NMOS transistor P_3 . The PMOS transistors P_1 and P_2 have second current electrodes coupled together, at which a pumping voltage V_{DD} of the charge pump 30 is asserted.
- The charge pump 30 according to the first embodiment of the present invention performs charge transferring operations under the control of the conventional clock signals CLK₁ and CLK₂ shown in FIG. 2(a) so as to achieve the

voltage boosting characteristic. For the sake of simplicity, the description of the clock signals CLK₁ and CLK₂ should be referred to the paragraphs set forth and omitted in the following paragraphs.

[0043] As clearly seen from comparison of FIG. 1 and FIG. 3(a), the charge pump 30 according to the first embodiment of the present invention is different from the conventional charge pump 10 in that: (1) the intermediate stage 30_{int} of the charge pump 30 is additionally provided with the reverse current preventing circuits 301 and 302, and (2) the output stage 30_{out} is implemented by the PMOS transistors P_1 and P_2 .

[0044] The first reverse current preventing circuit 301 applies a dynamic bias to the control electrode of the transistor N₃ for preventing a reverse current from flowing in a direction from the second current electrode toward the first current electrode of the transistor N₃ but allowing a forward current to flow in the opposite direction from the first current electrode toward the second current electrode of the transistor N₃. For achieving the effect of preventing the reverse current, the first reverse current preventing circuit 301 detects the voltages of the first and second current electrodes of the transistor N₃ and then applies a

disable bias to the control electrode of the transistor N_3 when the second current electrode is higher in voltage than the first current electrode, causing the transistor N_3 to be nonconductive. In the embodiment shown in FIG. 3(a), the reverse current preventing circuit 301 includes a PMOS transistor P_3 and an NMOS transistor N_5 . The transistor P₃ has a first current electrode coupled to the second current electrode of the transistor N_4 , a control electrode coupled to the second current electrode of the transistor N₃, and a second current electrode coupled to the control electrode of the transistor N_3 . The transistor N_5 has a first current electrode coupled to the second current electrode of the transistor P₃, a control electrode coupled to the second current electrode of the transistor N_3 , and a second current electrode coupled to the first current electrode of the transistor N_3 .

The second reverse current preventing circuit 302 applies a dynamic bias to the control electrode of the transistor N₄ for preventing a reverse current from flowing in a direction from the second current electrode toward the first current electrode of the transistor N₄ but allowing a forward current to flow in the opposite direction from the first current electrode toward the second current electrode

of the transistor N_4 . For achieving the effect of preventing the reverse current, the second reverse current preventing circuit 302 detects the voltages of the first and second current electrodes of the transistor N_4 and then applies a disable bias to the control electrode of the transistor N_{Δ} when the second current electrode is higher in voltage than the first current electrode, causing the transistor N_{Δ} to be nonconductive. In the embodiment shown in FIG. 3(a), the reverse current preventing circuit 302 includes a PMOS transistor P_4 and an NMOS transistor N_6 . The transistor P_{Δ} has a first current electrode coupled to the second current electrode of the transistor N_3 , a control electrode coupled to the second current electrode of the transistor N_4 , and a second current electrode coupled to the control electrode of the transistor N_4 . The transistor N_6 has a first current electrode coupled to the second current electrode of the transistor P_4 , a control electrode coupled to the second current electrode of the transistor $N_{\underline{a}}$, and a second current electrode coupled to the first current electrode of the transistor N_{Δ} .

[0046] Hereinafter is described in detail an operation of the charge pump 30 according to the first embodiment of the present invention with reference to the drawings. When

the clock signal CLK₁ is at the low level and the clock signal CLK₂ is at the high level, such as the time interval A shown in FIG. 2(a), the second current electrode of the transistor N_1 is at the voltage of V_{in} , the second current electrode of the transistor N_2 is at the voltage of $2*V_{in}$, the second current electrode of the transistor N_3 is at the voltage of 2*V , the second current electrode of the transistor N_4 is at the voltage of $3*V_{in}$. Therefore, the transistor P_3 is conductive and the transistor N_5 is nonconductive, resulting in that the reverse current preventing circuit 301 applies an enable bias of 3*V_{in} to the control electrode of the transistor N_3 for turning on the transistor N_3 . As a result, the first electrode of the capacitor C_2 supplies the first stage pumping voltage 2*V_{in} to the first electrode of the capacitor C_3 through the forward current, thereby sustaining the first electrode of the capacitor C_3 at the voltage of 2*V_{in}. On the other hand, because the transistor P_4 is nonconductive and the transistor N_6 is conductive, the reverse current preventing circuit 302 applies a disable bias of V_{in} to the control electrode of the transistor N_4 for turning off the transistor N_{Δ} . Therefore, the reverse current preventing circuit 302 effectively prevents the prior art steady-state reverse current from flowing

through the transistor N_4 . As a result, the charge stored in the capacitor C_4 is completely transferred to generate the pumping voltage V_{pp} of $3*V_{in}$ through the conductive transistor P_2 of the output stage 30_{out} .

Subsequently, when the clock signal CLK_1 is at the high [0047] level and the clock signal CLK, is at the low level, such as the time interval B shown in FIG. 2(a), the second current electrode of the transistor N_1 is at the voltage of $2*V_{in}$, the second current electrode of the transistor N_2 is at the voltage of V_{in}, the second current electrode of the transistor N_3 is at the voltage of $3*V_{in}$, the second current electrode of the transistor N_4 is at the voltage of $2*V_{in}$. Therefore, the transistor P_4 is conductive and the transistor N_6 is nonconductive, resulting in that the reverse current preventing circuit 302 applies an enable bias of 3*V_{in} to the control electrode of the transistor N_4 for turning on the transistor N_4 . As a result, the first electrode of the capacitor C₁ supplies the first stage pumping voltage 2*V_{in} to the first electrode of the capacitor C_{Δ} through the forward current, thereby sustaining the first electrode of the capacitor C_4 at the voltage of $2*V_{in}$. On the other hand, because the transistor P₃ is nonconductive and the transistor N_5 is conductive, the reverse current preventing cir-

cuit 301 applies a disable bias of V_{in} to the control electrode of the transistor N_3 for turning off the transistor N_3 . Therefore, the reverse current preventing circuit 301 effectively prevents the prior art steady-state reverse current from flowing through the transistor N_3 . As a result, the charge stored in the capacitor C_3 is completely transferred to generate the pumping voltage V_{pp} of $3*V_{in}$ through the conductive transistor P_1 of the output stage

[0048]The output stage 30 implemented by the cross-coupled transistors P_1 and P_2 provides two advantages in which: (1) whether the clock signal CLK_1 is at the low level and the clock signal CLK₂ is at the high level, such as the time interval A shown in FIG. 2(a), or the clock signal CLK_1 is at the high level and the clock signal CLK, is at the low level, such as the time interval B shown in FIG. 2(a), the charge pump 30 according to the present invention supplies the pumping voltage V_{pp} of $3*V_{in}$ alternately through the transistors P_1 and P_2 , and (2) the output stage 30_{out} never causes the prior art loss of the forward bias diode drop. [0049]It is should be noted that although the above-described

output stage 30 out is implemented by the cross-coupled

transistor P_1 and P_2 , the present invention is not limited to

this and may be applied to a case that the output stage $30_{\rm out}$ is implemented by only one of the transistors P_1 and P_2 , or another case that the output stage $30_{\rm out}$ is implemented by the prior art diode-coupled NMOS transistor. No matter how the output stage $30_{\rm out}$ is modified or implemented, the reverse current preventing function provided by the intermediate stage $30_{\rm int}$ of the charge pump 30 according to the first embodiment of the present invention stays unaffected.

[0050] It should be noted that although the above–described intermediate stage 30 intition is provided with both of the reverse current preventing circuits 301 and 302, the present invention is not limited to this and may be applied to a case that the intermediate stage 30 is provided with either the reverse current preventing circuit 301 or the reverse current preventing circuit 302. Although the charge pump 30 is only able to prevent the reverse current from flowing the transistor N₃ (or N₄) if provided only with the reverse current preventing circuit 301 (or 302), the charge pump 30 still generates the pumping voltage V_{pp} with a higher efficiency than the prior art charge pump 10 without prevention from the reverse current.

[0051] FIG. 3(b) is a detailed circuit diagram showing a reverse

current preventing charge pump 31 according to a second embodiment of the present invention. Referring to FIG. 3(b), the charge pump 31 according to the second embodiment of the present invention includes an input stage 31_{in} , first and second intermediate stages 31_{int1} and 31, and an output stage 31_{out} . The input stage 31_{in} is substantially identical to the input stage 30 in shown in FIG. 3(a). Each of the intermediate stages 31 and 31 int1 is substantially identical to the intermediate stage 30 int shown in FIG. 3(a). The output stage 31_{out} is substantially identical to the output stage 30_{out} shown in FIG. 3(a). In other words, the charge pump according to the second embodiment of the present invention can be expanded in size through cascading a plurality of identical intermediate stages. Each of the intermediate stages enhances the pumping voltage generated by a previous stage with a voltage of V in if assumed the amplitude of the clock signals is V_{in} . With regard to a charge pump having N intermediate stages, its output stage may supply a pumping voltage of $(N+2)*V_{in}$ since the input stage also enhances the supply voltage source V_{in} with a voltage of V_{in} . Therefore, the charge pump 31 having two intermediate stages 31_{int1} and 31_{int2} shown in FIG. 3(b) generates a pumping

voltage V_{pp} of $4*V_{in}$.

[0052]FIG. 4(a) is a detailed circuit diagram showing a reverse current preventing charge pump 40 according to a third embodiment of the present invention. Referring to FIG. 4(a), the charge pump 40 according to the third embodiment of the present invention includes an input stage 40 , an intermediate stage 40 and an output stage 40 out. The input stage 40 is substantially identical to the input stage 30 shown in FIG. 3(a). The output stage 40 is substantially identical to the output stage 30_{out} shown in FIG. 3(a). Although the intermediate stage 40 is not provided with the reverse current preventing circuits 301 and 302 of the first embodiment, and therefore is substantially identical to the input stage 40_{in}, the charge pump 40 utilizes four reverse current preventing clock signals PCLK₁ to PCLK₄ shown in FIG. 4(b), respectively applied to the capacitors C_1 to C_4 for performing the voltage boosting characteristic, in order to overcome the reverse current problem when the clock signals make transitions.

[0053] More specifically, the reverse current preventing clock signals $PCLK_1$ and $PCLK_2$ are applied to the second electrodes of the capacitors C_1 and C_2 of the input stage 40_{in} , respectively. The clock signals $PCLK_1$ and $PCLK_2$ are a

same-stage complementary pair of pulse trains with equal amplitude. In addition, the clock signals PCLK₁ and PCLK₂ are so designed as to be non-overlapping with respect to each other for avoiding synchronous occurrence of a high level. Typically, the amplitude of the clock signals PCLK₁ and PCLK₂ alternately swings between the supply voltage source V_{in} and a ground potential. On the other hand, the reverse current preventing clock signals PCLK₃ and PCLK₄ are applied to the second electrodes of the capacitors C_3 and C₄ of the intermediate stage 40_{int}, respectively. The clock signals PCLK₃ and PCLK₄ are a same-stage complementary pair of pulse trains with equal amplitude. In addition, the clock signals $PCLK_3$ and $PCLK_4$ are so designed as to be non-overlapping with respect to each other for avoiding synchronous occurrence of a high level. Typically, the amplitude of the clock signals $PCLK_3$ and $PCLK_4$ alternately swings between the supply voltage source V_{in} and a ground potential.

[0054] The clock signals $PCLK_1$ and $PCLK_3$ belong to an adjacent-stage covering pair of pulse trains. For each clock cycle, a falling edge of the latter-stage clock signal $PCLK_3$ from the high level to the low level must occur earlier in time than a falling edge of the former-stage clock signal $PCLK_1$

from the high level to the low level, and a rising edge of the former-stage clock signal PCLK₁ from the low level to the high level must occur earlier in time than a rising edge of the latter-stage clock signal PCLK₃ from the low level to the high level. In other words, the low level of the formerstage clock signal PCLK₁ is completely covered in time within the low level of the latter-stage clock signal PCLK₃. That is, the high level of the latter-stage clock signal PCLK₃ is completely covered in time within the high level of the former-stage clock signal PCLK₁. On the other hand, the clock signals PCLK₂ and PCLK₄ belong to an adjacentstage covering pair of pulse trains. For each clock cycle, a falling edge of the latter-stage clock signal PCLK₄ from the high level to the low level must occur earlier in time than a falling edge of the former-stage clock signal PCLK, from the high level to the low level, and a rising edge of the former-stage clock signal PCLK₂ from the low level to the high level must occur earlier in time than a rising edge of the latter-stage clock signal PCLK₄ from the low level to the high level. In other words, the low level of the formerstage clock signal PCLK, is completely covered in time within the low level of the latter-stage clock signal PCLK_{α}. That is, the high level of the latter-stage clock signal PCLK $_{_{\Delta}}$ is completely covered in time within the high level of the former-stage clock signal PCLK₂.

[0055]

Hereinafter is described in detail an operation of the charge pump 40 according to the third embodiment of the present invention with reference to the drawings. When the clock signals PCLK₁ and PCLK₃ are both at the low level and the clock signals PCLK, and PCLK, are both at the high level, such as a time interval A shown in FIG. 4(b), the second current electrode of the transistor N_1 is at a voltage of V_{in}, the second current electrode of the transistor N_2 is at a voltage of $2*V_{in}$, the second current electrode of the transistor N_3 is at a voltage of $2*V_{in}$, the second current electrode of the transistor N_{Δ} is at a voltage of 3*V_{in}. Subsequently, when the latter-stage clock signal PCLK₄ makes a transition to the low level earlier in time and the former-stage clock signal PCLK, still stays at the high level, such as a time interval B shown in FIG. 4(b), the control electrode of the transistor N₃ since coupled to the second current electrode of the transistor N_4 is pulled downwardly to a voltage of 2*V_{in}, turning off the transistor N_3 . In this case, even when the former-stage clock signal PCLK, subsequently makes a transition to the low level, such as a time interval C shown in FIG. 4(b), pulling

the first current electrode of the transistor N_3 since coupled to the second current electrode of the transistor N_2 downwardly to a voltage of V_1 , the prior art transition—state reverse current is effectively prevented from flowing from the first electrode of the capacitor C_3 through the transistor N_3 to the first electrode of the capacitor C_2 because the transistor N_3 has already been turned off.

[0056]

Subsequently, when the former-stage clock signal PCLK₁ makes a transition to the high level earlier in time and the latter-stage clock signal PCLK₃ still stays at the low level, such as a time interval D shown in FIG. 4(b), the first current electrode of the transistor N_{Δ} since coupled to the second current electrode of the transistor N_1 is pushed upwardly to a voltage of 2*V_{in}, becoming substantially equal in potential with respect to the second current electrode of the transistor N_4 . In this case, even when the latter-stage clock signal PCLK₃ subsequently makes a transition to the high level, such as a time interval E shown in FIG. 4(b), pushing the control electrode of the transistor N_4 since coupled to the second current electrode of the transistor N_3 upwardly to a voltage of $3*V_{in}$ to turn on the transistor $N_{\underline{a}}$, the transition-state reverse current never flows from the first electrode of the capacitor C_4 through

the conductive transistor N_4 to the first electrode of the capacitor C_1 because the first and second current electrodes of the transistor N_4 are both substantially equal in potential.

Subsequently, when the latter-stage clock signal PCLK₃ [0057] makes a transition to the low level earlier in time and the former-stage clock signal PCLK₁ still stays at the high level, such as a time interval F shown in FIG. 4(b), the control electrode of the transistor N_4 since coupled to the second current electrode of the transistor N_3 is pulled downwardly to a voltage of 2*V_{in}, turning off the transistor N_4 . In this case, when the former-stage clock signal PCLK₁ subsequently makes a transition to the low level, such as a time interval G shown in FIG. 4(b), pulling the first current electrode of the transistor N_{Δ} since coupled to the second current electrode of the transistor N_1 downwardly to a voltage of V_{in}, the prior art transition-state reverse current is effectively prevented from flowing from the first electrode of the capacitor C₄ through the transistor N₄ to the first electrode of the capacitor C₁ because the transistor N_{Δ} has already been turned off.

 $^{[0058]}$ Subsequently, when the former-stage clock signal PCLK makes a transition to the high level earlier in time and the

latter-stage clock signal PCLK₄ still stays at the low level, such as a time interval H shown in FIG. 4(b), the first current electrode of the transistor N_{q} since coupled to the second current electrode of the transistor N₂ is pushed upwardly to a voltage of 2*V_{in}, becoming substantially equal in potential with respect to the second current electrode of the transistor N₃. In this case, even when the latter-stage clock signal PCLK₄ subsequently makes a transition to the high level, such as the time interval A shown in FIG. 4(b), pushing the control electrode of the transistor N_3 since coupled to the second current electrode of the transistor N_4 upwardly to a voltage of $3*V_{in}$ to turn on the transistor N_3 , the transition-state reverse current never flows from the first electrode of the capacitor C₃ through the conductive transistor N_3 to the first electrode of the capacitor C₂ because the first and second current electrodes of the transistor N_3 are both substantially equal in potential.

[0059] It should be noted that although the above-described charge pump 40 utilizes the four reverse current preventing clock signals PCLK₁ to PCLK₄, the present invention is not limited to this and may be applied to a case that the charge pump 40 utilizes the two reverse current prevent-

ing clock signals PCLK₁ and PCLK₃ in cooperation with the prior art clock signals CLK₂ and CLK₄, or another case that the charge pump 40 utilizes the two reverse current preventing clock signals PCLK₂ and PCLK₄ in cooperation with the prior art clock signals CLK₁ and CLK₃. Although the charge pump 40 is only able to prevent the transition–state reverse current from flowing through the transistor N₄ (or N₃) if only the reverse current preventing clock signals PCLK₁ and PCLK₃ (or PCLK₂ and PCLK₄) are utilized, the charge pump 40 still generates the pumping voltage V_{pp} with a higher efficiency than the prior art charge pump 10 without prevention from the reverse current.

[0060] FIG. 5 is a detailed circuit diagram showing a reverse current preventing charge pump 50 according to a fourth embodiment of the present invention. Referring to FIG. 5, the charge pump 50 according to the fourth embodiment of the present invention is essentially a combination of the charge pump 30 of the first embodiment and the charge pump 40 of the third embodiment. More specifically, the charge pump 50 includes an input stage 50 in output stage 50 and an intermediate stage 50 intervention provided with reverse current preventing circuits 501 and 502

according to the first embodiment. Also, the charge pump

50 utilizes reverse current preventing clock signals $PCLK_1$ to $PCLK_4$ according to the third embodiment, respectively applied to the capacitors C_1 to C_4 , for the voltage boosting operation. Therefore, the charge pump 50 effectively overcomes the reverse current problems both when the clock signals are at steady states and when the clock signals make transitions, achieving the optimum efficiency of converting voltage according to the present invention.

[0061] FIG. 6(a) is a detailed circuit diagram showing a reverse current preventing charge pump 60 according to a fifth embodiment of the present invention. Referring to FIG. 6(a), the charge pump 60 according to the fifth embodiment of the present invention includes an input stage 60 , first and second intermediate stages 60 and 60 int1 and an output stage $60_{
m out}$. The input stage $60_{
m in}$ is substantially identical to the input stage 50_{in} shown in FIG. 5. Each of the first and second intermediate stages 60 int1 and 60_{int2} is substantially identical to the intermediate stage 50 shown in FIG. 5. The output stage 60 out is substantially identical to the output stage 50 shown in FIG. 5. In other words, the charge pump 60 according to the fifth embodiment of the present invention can be expanded in size through cascading a plurality of identical

intermediate stages.

[0062]

Along with the increase of the number of the intermediate stages, the necessary number of the reverse current preventing clock signals must be increased because each of the intermediate stages utilizes as the clock signals a same-stage complementary pair of non-overlapping pulse trains swinging typically between the supply voltage source V and a ground potential, as described above. Since the charge pump 60 according to the fifth embodiment of the present invention is provided with six capacitors C_1 to C_6 , six reverse current preventing clock signals PCLK₁ to PCLK₆ are necessary for performing the voltage boosting operations. In accordance with the circuit configuration shown in FIG. 6(a), each pair of the clock signals PCLK₁ and PCLK₂, the clock signals PCLK₃ and PCLK₄, and the clock signals PCLK₅ and PCLK₆ belongs to a same-stage complementary pair of pulse trains. Moreover, each pair of the clock signals PCLK₁ and PCLK₃, the clock signals of PCLK₃ and PCLK₅, the clock signals PCLK₂ and PCLK₄, and the clock signals PCLK₄ and PCLK₆ belongs to an adjacent-stage covering pair of pulse trains. Like the clock signals of the third embodiment described above with reference to FIG. 4(b), for overcoming the re-

verse current problem when the clock signals make transitions, each of the adjacent-stage covering pairs of clock signals according to the fifth embodiment has the following timing relationship for each clock cycle: (1) a falling edge of the latter-stage clock signal must occur earlier in time than a falling edge of the former-stage clock signal, and (2) a rising edge of the former-stage clock signal must occur earlier in time than a rising edge of the latterstage clock signal. In other words, the low level of the former-stage clock signal is completely covered in time within the low level of the latter-stage clock signal. That is, the high level of the latter-stage clock signal is completely covered in time within the high level of the formerstage clock signal. Based on such timing relationship as a design rule, the reverse current preventing clock signals PCLK₁ to PCLK₆ shown in FIG. 6(b) is provided for applying to the charge pump 60 according to the fifth embodiment of the present invention.

[0063] Each of the intermediate stages enhances the pumping voltage generated by a previous stage with a voltage of V_{in} if assumed the amplitude of the clock signals is V_{in} . With regard to a charge pump having N intermediate stages, its output stage may supply a pumping voltage of $(N+2)*V_{in}$

since the input stage also enhances the supply voltage source V_{in} with a voltage of V_{in}. Therefore, the charge pump 60 having two intermediate stages 60_{int1} and 60_{int2} shown in FIG. 6(a) generates a pumping voltage V_{pp} of 4*V

pretation so as to encompass all such modifications.

in

While the invention has been described by way of examples and in terms of preferred embodiments, it is to be understood that the invention is not limited to the disclosed embodiments. To the contrary, it is intended to cover various modifications. Therefore, the scope of the appended claims should be accorded the broadest inter-