

肖书华 中山大学管理学院

合作者: 马家丽博士, 夏俐教授, 朱书尚教授

中国运筹学会金融工程与金融风险管理分会第十一届学术年会 2022.12.11

Mind Map

Optimal Systemic Risk Bailout

max
$$f(x)$$
 GAP: no closed form (P) s.t. $g(x) \le 0$ $h(x) = 0$,

Overview (Optimal bailout!)

Bailout Measurement (What is it?)

Framework (How to find it?)

Simulating Results

Overview: Background

On October 14, 2008, the Treasury Department used \$105 billion in TARP funds to launch the Capital Purchase Program, which purchased <u>preferred stock</u> in the eight leading banks. By the time TARP expired on October 3, 2010, Treasury had used the funds in four other areas: [2]

Bailout: costly but necessary!

How to find out optimal **systemic risk** bailout?

E-N Models

Overview: Motivation

How to find out **optimal systemic risk bailout**?

Model	E-N model	E-N +Default costs	E-N + Market value/Cross hold	E-N +Multiple illiquid assets	
Source of Model	Eisenberg & Noe (2001)	Rogers & Veraart (2013)		Feinstein (2017) Ma et.al(2021)	
Property	Linear Programming	Non- deterministic Polynomial hard (NP hard)	•••••	Objective function with no closed form	
Research	Pokutta et.al(2011)	Jackson & Pernoud (2020): A simple algorithm (by order)	Demange and Gabrielle(2018): A threat index (by index)	Ma et.al(2021): A heuristic algorithm	

Overview: Motivation

How to find out **optimal systemic risk bailout**?

Model	E-N model	E-N +Default costs	E-N + Market value/Cross hold	E-N +Multiple illiquid assets	
Source of Model	Eisenberg & Noe (2001)	Rogers & Veraart (2013)	Explore the	Feinstein (2017) Ma et.al(2021)	
Property	Linear Programming	Non- deterministic Polynomial hard (NP hard)	black box !	Objective function with no closed form	
Research	Pokutta et.al(2011)	Jackson & Pernoud (2020): A simple algorithm (by order)	Demange and Gabrielle(2018): A threat index (by index)	Ma et.al(2021): A heuristic algorithm	

Overview (Optimal bailout!)

- Background
- Motivation

Bailout Measurement (What is it?)

Framework (How to find it?)

Simulating Results

Overview (Optimal bailout!)

- Background
- Motivation

Bailout Measurement (What is it?)

- Definitions
- Two Cases

Framework (How to find it?)

Simulating Results

Definitions of the Financial System

Definitions of the Financial System

Definitions of the Financial System

Interbank Relationship

Fixed-point System

Clearing Vector l^*

Extended E-N Model

Interbank Relationship + Portfolio Overlapping

Fixed-point System

Clearing Vector \boldsymbol{l}^*

Price Vector p^*

Definitions of the Objective Function

$$Pay_{all} = \mathbf{1}^{T} \mathbf{l}^{*}(\tilde{\mathbf{c}})$$

$$Save_{all} = \tilde{\mathbf{c}} + \Pi^{T} [\mathbf{l}^{*}(\tilde{\mathbf{c}}) - \mathbf{l}^{*}(\mathbf{s})] + (\mathbf{1}^{T} - \mathbf{1}^{T}\Pi)[\mathbf{l}^{*}(\tilde{\mathbf{c}}) - \mathbf{l}^{*}(\mathbf{s})] + A[\mathbf{p}^{*}(\tilde{\mathbf{c}}) - \mathbf{p}^{*}(\mathbf{s})]$$

$$Ratio = \frac{Save_{all}}{L}$$

 $m{l}^*$: Clearing Vector

p*: Price Vector

 Π : The relative liability matrix

 \tilde{c} : The bailout vector

A: The portfolio holdings

 $s = (s_i) \in \mathbb{R}^n_+$: The initial shock

Definitions of the Objective Function

Overview (Optimal bailout!)

- Background
- Motivation

Bailout Measurement (What is it?)

- Definitions
- Two Cases

Framework (How to find it?)

Simulating Results

Overview (Optimal bailout!)

- Background
- Motivation

Bailout Measurement (What is it?)

- Definitions
- Two Cases

Framework (How to find it?)

- Prediction
- Gradient
- Optimization

Simulating Results

$$\begin{aligned} & \min \quad f(\boldsymbol{x}) \\ (P) \quad \text{s.t.} \quad g(\boldsymbol{x}) \leq 0 \\ & h(\boldsymbol{x}) = 0, \end{aligned}$$

$$\begin{aligned} & \min \quad f(\boldsymbol{x}) \\ (P) \quad \text{s.t.} \quad g(\boldsymbol{x}) \leq 0 \\ & h(\boldsymbol{x}) = 0, \end{aligned}$$

min
$$f(\mathbf{x})$$

 (P) s.t. $g(\mathbf{x}) \le 0$
 $h(\mathbf{x}) = 0$,

Algorithm 1 The Prediction-Gradient-Optimization

Input: Training set of (x, f(x)) generated by black-box system; Times of training \mathcal{T} ; Inequality constraint g(x); Equality constraint h(x); Initial point x_0

Output: x^*

- 1: Initialize W and b randomly;
- 2: while the times in \mathcal{T} do
- 3: According to the optimization of the loss function based on (x, f(x)), update W and b;
- 4: end while
- 5: **function** Prediction(W, b, x)
- 6: According to the forward-propagation process, predict $\hat{f}(x)$;
- 7: **return** $\hat{f}(x)$;
- 8: end function
- 9: function Gradient $(\boldsymbol{W},\,\boldsymbol{b},\,\boldsymbol{x})$
- 10: According to Eq.(A1), compute $\nabla \hat{f}(\boldsymbol{x})$;
- 11: **return** $\nabla \hat{f}(\boldsymbol{x})$;
- 12: end function
- 13: function Optimization($\hat{f}(\boldsymbol{x}), \nabla \hat{f}(\boldsymbol{x}), g(\boldsymbol{x}), h(\boldsymbol{x}), \boldsymbol{x}_0$)
- 14: Starting from x_0 , use one constrained optimization algorithm to optimize x;
- 15: return x^* .
- 16: end function

Algorithm 1 The Prediction-Gradient-Optimization

Input: Training set of (x, f(x)) generated constraint g(x); Equality constraint h

Output: x^*

- 1: Initialize W and b randomly;
- 2: while the times in \mathcal{T} do
- 3: According to the optimization of
- 4: end while
- 5: **function** Prediction(W, b, x)
- 6: According to the forward-propag
- 7: **return** $\hat{f}(\boldsymbol{x})$;
- 8: end function
- 9: **function** Gradient($oldsymbol{W},\,oldsymbol{b},\,oldsymbol{x}$)
- 10: According to Eq.(A1), compute $\nabla \hat{f}(\boldsymbol{x})$;
- 11: **return** $\nabla \hat{f}(\boldsymbol{x})$;
- 12: end function
- 13: function Optimization($\hat{f}(\boldsymbol{x}), \nabla \hat{f}(\boldsymbol{x}), g(\boldsymbol{x}), h(\boldsymbol{x}), \boldsymbol{x}_0$)
- 14: Starting from x_0 , use one constrained optimization algorithm to optimize x;
- 15: return x^* .
- 16: end function

Algorithm 1 The Prediction-Gradient-Optimization

Input: Training set of (x, f(x)) generated by black-box system; Times of training \mathcal{T} ; Inequality constraint g(x); Equality constraint h(x); Initial point x_0

Output: x^*

- 1: Initialize W and b randomly;
- 2: while the times in \mathcal{T} do
- 3: According to the optimization of the loss function based on (x, f(x)), update W and b;
- 4: end while
- 5: **function** Prediction(W, b, x)
- 6: According to the forward-propagation process, predict $\hat{f}(x)$;
- 7: **return** $\hat{f}(x)$;
- 8: end function
- 9: **function** Gradient(W, b, x)
- 10: According to Eq.(A1), compute $\nabla \hat{f}(\boldsymbol{x})$;
- 11: **return** $\nabla \hat{f}(\boldsymbol{x})$;

12: end function

- 13: function Optimization($\hat{f}(\boldsymbol{x}), \nabla \hat{f}(\boldsymbol{x}), g(\boldsymbol{x}), h(\boldsymbol{x}), \boldsymbol{x}_0$)
- 14: Starting from x_0 , use one constrained optimization algorithm to optimize x;
- 15: return x^* .
- 16: end function

Gradient Projection

Overview (Optimal bailout!)

- Background
- Motivation

Bailout Measurement (What is it?)

- Definitions
- Two Cases

Framework (How to find it?)

- Prediction
- Gradient
- Optimization

Simulating Results

Overview (Optimal bailout!)

- Background
- Motivation

Bailout Measurement (What is it?)

- Definitions
- Two Cases

Framework (How to find it?)

- Prediction
- Gradient
- Optimization

Simulating Results

- Case1
- Case2(Known/Unknown Budget)

Simulating Results

Two cases

Table 1: A brief summary of two cases.

Case	Model	Method	Objective Function	Decision Variable
Case 1	E-N Model	LP	Pay_{all}	$m{l}, ilde{m{c}}$
Case 1	E-N Model	PGO	Pay_{all}	$ ilde{m{c}}$
	D to lel	Heuristic	Pay_{all}	$ ilde{m{c}}$
$Case\ 2$	Extended E-N Model	PGO	Pay_{all}	$ ilde{m{c}}$
		PGO	$Save_{all}$	$ ilde{m{c}}$

Order:

$$\mathsf{Heuristic:} \ \widetilde{c_1} \Longrightarrow \binom{l_1}{p_1} \Longrightarrow Pay_{all_1} \Longrightarrow \widetilde{c_1} + \Delta c \Longrightarrow \binom{l_2}{p_2} \Longrightarrow Pay_{all_2} \stackrel{\dots}{\Longrightarrow} \widetilde{c^*} \Longrightarrow \begin{cases} Pay_{all} \\ Save_{all} \end{cases}$$

PGO:
$$\widetilde{c_o} \Rightarrow \widehat{f}(\widetilde{c_0}) \Rightarrow \widetilde{c_1} \Rightarrow \widehat{f}(\widetilde{c_1}) \stackrel{\dots}{\Rightarrow} \widetilde{c^*} \Rightarrow \begin{cases} Pay_{all} \\ Save_{all} \end{cases}$$

Simulating Results: Case1(E-N Model)

$$\begin{array}{ccc} \max & \mathbf{1}^T \boldsymbol{l} \\ \max & Pay_{all}(\tilde{\boldsymbol{c}}) & \text{s.t.} & \tilde{\boldsymbol{c}} + \boldsymbol{c} - \boldsymbol{s} + \Pi^T \boldsymbol{l} \geq \boldsymbol{l} \\ \text{s.t.} & \mathbf{1}^T \tilde{\boldsymbol{c}} \leq \tau & \mathbf{0} \leq \boldsymbol{l} \leq \bar{\boldsymbol{l}} \\ & \tilde{\boldsymbol{c}} \geq \mathbf{0}, & \mathbf{1}^T \tilde{\boldsymbol{c}} \leq \tau \\ & & \tilde{\boldsymbol{c}} \geq \mathbf{0} \end{array}$$

Table 2: Results of LINPROG and PGO in Case 1.

· · · · · · · · · · · · · · · · · · ·	LINPROG -	PGO				
$oldsymbol{n}$		lay=2	lay=3	lay=4	lay=5	
n = 10	4.146	3.979 $95.98%$	4.059 $97.89%$	4.136 $99.76%$	4.046 $97.58%$	
n = 100	28.859	27.932 $96.79%$	28.787 $99.75%$	27.785 $96.281%$	28.751 $99.63%$	
n = 1000	312.853	311.030 $99.42%$	311.852 $99.68%$	311.553 $99.58%$	311.936 $99.71%$	

Simulating Results: Case2(Extended E-N Model)

Case2.1 Known Budget

Heuristic (Objective Function:
$$Pay_{all}$$
)

$$\max_{\tilde{\boldsymbol{c}}_{\mathcal{D}^{1}}} \quad Pay_{all}(\tilde{\boldsymbol{c}}_{\mathcal{D}^{1}}) = \mathbf{1}^{T} \boldsymbol{l}_{\mathcal{D}^{1}}^{*} (\tilde{\boldsymbol{c}}_{\mathcal{D}^{1}})$$
s.t.
$$\mathbf{1}^{T} \tilde{\boldsymbol{c}}_{\mathcal{D}^{1}} \leq \tau$$

$$\tilde{\boldsymbol{c}}_{\mathcal{D}^{1}} \geq \mathbf{0},$$

PGO (Objective Function:
$$Pay_{all}$$
)

$$\max_{\tilde{c}} \quad Pay_{all}(\tilde{c})$$
s.t.
$$\mathbf{1}^T \tilde{c} \leq \tau$$

$$\tilde{c} \geq \mathbf{0},$$

PGO (Objective Function:
$$Save_{all}$$
)

$$\max_{\tilde{c}} \quad Save_{all}(\tilde{c})$$
s.t.
$$\mathbf{1}^T \tilde{c} \leq \tau$$

$$\tilde{c} \geq \mathbf{0}$$

Simulating Results: Case2.1 Known Budget

 $Budget = min\{budget, \tau_{max}\}$

Table 3: Results of the Heuristic and the PGO in Case 2 with the known budget.

Different Approach	Result	n = 10	n = 100	n = 1000
Initial State	Pay_{all}	5.487	55.308	522.313
Illitial State	Budget	0.076	3.080	54.237
TT	Pay_{all}	5.600	59.765	590.471
Heuristic (Objective Function: Pay_{all})	$Save_{all}$	0.644	16.930	261.939
	Ratio	8.472	5.497	4.830
P.G.O.	Pay_{all}	5.600	59.477	590.471
PGO (Objective Function: Pay_{all})	$Save_{all}$	0.719	15.876	303.902
(significant of the significant	Ratio	9.458	5.155	5.603
P.G.O.	Pay_{all}	5.600	59.420	590.471
PGO (Objective Function: $Save_{all}$)	$Save_{all}$	0.719	16.525	307.152
(= Joseph and Joseph a	Ratio	9.458	5.365	5.663

Simulating Results: Case 2.2 Unknown Budget

$$Budget_{max} = \tau_{max}$$

Table 4: Results of the Heuristic and the PGO in $Case\ 2$ with the unknown budget.

	n=10			r	n=100			n = 1000		
	Sample	PGO	Ratio	Sample	PGO	Ratio	Sample	PGO	Ratio	
$0.1 au_{max}$	0.851	0.875	9.608	3.237	3.303	3.619	31.801	32.095	3.553	
$0.2 au_{max}$	1.278	1.278	7.021	9.944	10.018	5.489	63.603	63.931	3.539	
$0.3 au_{max}$	1.369	1.369	5.014	13.872	14.172	5.176	100.962	100.227	3.698	
$0.4 au_{max}$	1.460	1.460	4.010	17.646	19.079	5.227	210.075	212.494	5.881	
$0.5 au_{max}$	1.551	1.551	3.408	21.202	20.895	4.579	257.300	257.760	5.707	
$0.6 au_{max}$	1.642	1.642	3.007	23.700	23.354	4.265	280.043	281.901	5.201	
$0.7 au_{max}$	1.733	1.733	2.720	26.024	25.808	4.040	299.973	300.155	4.747	
$0.8 au_{max}$	1.824	1.824	2.505	28.107	27.931	3.826	313.486	313.895	4.344	
$0.9 au_{max}$	1.915	1.915	2.338	30.054	29.535	3.596	326.595	327.472	4.028	
$ au_{max}$	2.006	2.006	2.204	31.145	30.940	3.390	340.400	340.812	3.773	

Simulating Results: Case 2.2 Unknown Budget

The Highest Ratio

$$Ratio = \frac{Save_{all}}{\tau}$$

Simulating Results: Case2.3 More Constraints

• $Budget = 0.1\tau_{max}$

• The number of bailout funds for each bank $\leq \frac{\xi}{n_s} \tau_{\max}$

 ξ : a parameter(=1.5)

 n_{s} : the number of banks bailed out

Table 5: Results of the random generation and the PGO in Case 2 with $0.1\tau_{max}$ budget and more constraints.

	n = 10		n = 100		n=1000	
	Sample	PGO	Sample	PGO	Sample	PGO
$Save_{all}$	0.260	0.327	5.037	6.209	31.793	32.094
Time(s)	0.66	0.87	3.18	3.27	457.97	283.22

Overview (Optimal bailout!)

- Background
- Motivation

Bailout Measurement (What is it?)

- Definitions
- Two Cases

Framework (How to find it?)

- Prediction
- Gradient
- Optimization

Simulating Results

- Case1
- Case2(Known/Unknown Budget)

Overview (Optimal bailout!)

- Background
- Motivation

Bailout Measurement (What is it?)

- Definitions
- Two Cases

Framework (How to find it?)

- Prediction
- Gradient
- Optimization

Simulating Results

- Case1
- Case2(Known/Unknown Budget)

Conclusion

E-N model + Multiple asset Banking System

Discussion

- Generalization
- NP-hard & Combinatorial Optimization

Model	E-N model	E-N +Default costs	E-N + Market value/Cross hold	E-N +Multiple illiquid assets
Source of Model	Eisenberg & Noe (2001)	Rogers & Veraart (2013)		Feinstein (2017) Ma et.al(2021)
Property	Linear Programming	Non- deterministic Polynomial hard (NP hard)		Objective function with no closed form
Research	Pokutta et.al(2011)	Jackson & Pernoud (2020): A simple algorithm (by order)	Demange and Gabrielle(2018): A threat index (by index)	Ma et.al(2021): A heuristic algorithm

Thanks for your listening!