DEPARTAMENTO DE ENGENHARIA INFORMÁTICA

Introdução às Redes de Comunicação

Trabalho 1 – Protocolos da Camada de Transporte

Ano Lectivo de 2014/2015

Data de entrega: O trabalho deverá ser entregue até dia 16/Nov/2014 na Inforestudante.

Grupos: Os trabalhos podem ser apresentados por grupos de até 2 alunos. Não se esqueça de incluir os nomes e números de aluno no relatório.

Avaliação: A avaliação será feita através de uma defesa presencial. Deverá ser entregue nessa altura um relatório impresso do trabalho.

Descrição do trabalho

Este trabalho pretende analisar e comparar a transmissão de dados usando os protocolos UDP e TCP. Para esta análise foi construída a rede da Fig. 1, a qual vai ser simulada recorrendo ao NS2.

Fig. 1 - Rede

Usando a rede especificada, o "Servidor A" vai enviar ao "Receptor" um bloco de dados de 3MB, que começa a ser transmitido no instante 0.5 segundos. Ao mesmo tempo, entre o "Servidor B" e o "Receptor", existe tráfego que corresponde a uma *stream* de música que o "Receptor" está a receber (que também começa no instante 0.5 segundos). Dependendo do cenário considerado o "Receptor" tem a *stream* activa ou não.

IRC 2014/2015

Características da rede

- Detalhes das ligações:
 - Servidor A Router 1: ligação a 100Mb/s
 - o Router 1 Router 2: Ligação a 1Gb/s
 - o Router 2 Receptor: Ligação a 10Mb/s
 - o Servidor B Router 5: ligação a 10Mb/s
 - o Router 5 Router 6: Ligação a 1Gb/s
 - o Router 1 Router 5: Ligação a 5Mb/s
 - o Router 2 Router 6: Ligação a 10Mb/s
 - Os tempos de propagação são todos de 10 ms, com excepção da ligação entre o "Router 2" e o "Receptor" que será de 3ms.
 - o Todas as filas são do tipo *DropTail* com o tamanho por *default*. (Ver Nota 2)
 - o Será usado um protocolo de routing dinâmico (rtproto DV)

Cenários

- Cenário 1:
 - o Sem tráfego entre o "Servidor B" e o "Receptor".
- Cenário 2:
 - Tráfego entre o "Servidor B" e o "Receptor" que ocupa 50% da largura de banda existente entre o "Servidor B" e o "Router 5".

Notas gerais

- Para efeitos de simulação, todo o tráfego do "Servidor A" para o "Receptor" será criado usando o gerador de tráfego CBR existente no NS2 o qual gerará um pacote de dados com 3MB.
- Use o parâmetro rate_ do CBR para criar o fluxo de dados entre o "Servidor B" e o "Receptor". Este parâmetro fará com que o NS2 crie pacotes do tamanho, e com o intervalo, necessários a ocupar a largura de banda pretendida.
- O tráfego entre o "Servidor B" e o "Receptor" será sempre UDP.
- Use sempre os valores por *default* para o tamanho das filas (excepto a do "Servidor A"), dos pacotes e da janela TCP, excepto quando lhe for pedido explicitamente que os altere.
- Use na simulação o agente TCP e não o TCP/RFC793edu usado em fichas anteriores.
- Os dados por omissão usados no NS2 são guardados no ficheiro "./ns-2.35/tcl/lib/ns-default.tcl".
- Despreze todos os tempos de processamento existentes durante a transmissão dos dados.
- Apresente todos os cálculos realizados e indique sempre as unidades utilizadas.
- Justifique as respostas usando os conhecimentos que tem sobre os protocolos TCP e UDP.
- Adeque os tempos de simulação a cada uma das simulações executadas.

Trabalho

- 1 Crie a rede de teste descrita.
 - 1.1 Minimize o número de ficheiros diferentes usados enviando por argumentos de linha os valores necessários para criar os vários cenários.
 - 1.2 Crie os nós e as ligações entre eles.
 - 1.3 Identifique cada fluxo de dados com uma cor diferente.
 - 1.4 Mostre as filas presentes em cada nó.
 - 1.5 Use o valor mínimo possível para a fila no "Servidor A".

IRC 2014/2015

2 – Preencha a seguinte tabela com os dados retirados do NS2:

Tamanho por omissão das filas nos nós	
Tamanho por omissão dos pacotes TCP	
Tamanho por omissão dos pacotes UDP	
Tamanho por omissão da janela do TCP	
Valor por omissão da fila no Servidor A	

3 - Supondo o "Cenário 1":

3.1 - Determine o menor tempo total de transmissão do bloco de dados entre o "Servidor A" e o "Receptor" usando TCP e UDP. No caso do TCP use para isso o menor valor possível da janela de transmissão. Preencha os resultados na tabela seguinte:

	TCP			UDP
Tempo min	Janela min	Nº pacotes perdidos	Tempo min	Nº pacotes perdidos

3.2 – Quebre a ligação entre o "Router 1" e o "Router 2" no instante 0.6 segundos. Mantenha a ligação quebrada durante 0.1 segundos. Determine o menor tempo total de transmissão do bloco de dados entre o "Servidor A" e o "Receptor" usando TCP e UDP. No caso do TCP use para isso o menor valor possível da janela de transmissão. Preencha os resultados na tabela seguinte:

	ТСР			UDP
Tempo min	Janela min	Nº pacotes perdidos	Tempo min	Nº pacotes perdidos

4 - Supondo o "Cenário 2":

4.1 - Determine o tempo total de transmissão do bloco de dados entre os "Servidor A" e o "Receptor" usando TCP e UDP. Use o TCP com uma janela de transmissão igual a 20. Preencha os resultados na tabela seguinte:

ТСР		UDP		
Tempo min	Nº pacotes perdidos	Tempo min Nº pacotes perdid		

4.2 - Determine o menor tempo total de transmissão do bloco de dados entre os "Servidor A" e o "Receptor" usando TCP e UDP. No caso do TCP use para isso o menor valor possível da janela de transmissão. No caso do UDP altere a fila do "Router 2" para o valor que o faça perder o menor número de pacotes. A fila só será alterada no caso do UDP, quando usar o TCP use os valores por omissão. Preencha os resultados na tabela seguinte:

TCP			UDP		
Tempo min	Janela min	Nº pacotes perdidos	Tempo min	Nº pacotes perdidos	Tamanho min fila

IRC 2014/2015

4.3 – Quebre a ligação entre o "Router 1" e "Router 2" no instante 0.6 segundos. Mantenha a ligação quebrada durante 0.1 segundos. Determine o menor tempo total de transmissão do bloco de dados entre o "Servidor A" e o "Receptor" usando TCP e UDP. No caso do TCP use pra isso o menor valor possível da janela de transmissão. Preencha os resultados na tabela seguinte:

	TCP			UDP
Tempo min	Janela min	Nº pacotes perdidos	Tempo min	Nº pacotes perdidos

5 - Analise os resultados das perguntas anteriores de modo a comparar a performance entre uma ligação TCP e UDP. Qual seria o melhor protocolo a escolher no caso de querer transmitir um ficheiro através da rede?

Nota 1

Junto com o enunciado será disponibilizado o ficheiro 'trace_analyzer.awk' que lhe permitirá de uma forma rápida obter estatísticas sobre o tráfego enviado. Antes de correr este ficheiro terá de criar um ficheiro de *trace* no NS. De seguida apresenta-se um exemplo de como criar um ficheiro deste tipo:

```
set nt [open out.tr w]
$ns trace-all $nt
```

Para executar o ficheiro awk deverá executar o seguinte comando na consola:

```
awk -f trace_analyzer.awk type=<tipo_pacote> src=<origem>
dest=<destino> flow=<fluxo de pacotes> <ficheiro de trace>
```

Exemplos:

```
awk -f trace_analyzer.awk type=cbr src=1 dest=5 flow=1 trace.tr
awk -f trace analyzer.awk type=tcp src=1 dest=5 flow=1 trace.tr
```

Como resultado obterá a seguinte informação:

- Total sent número de pacotes enviados da origem em determinado fluxo
- Total received— número de pacotes recebidos no destino em determinado fluxo
- Lost packets número de pacotes perdidos
- Average delay média de atraso dos pacotes entre emissor e receptor
- *Total transmission time* diferença entre o tempo de chegada do último pacote e o tempo do envio do primeiro

Nota 2

Se gerar o pacote de 3MB usando o gerador de tráfego CBR com um *packetSize*_ contendo a totalidade do ficheiro e um *maxpkts*_ de 1, isso criará uma quantidade de pacotes, UDP ou TCP, superior à capacidade da fila. Isso vai provocar a perda de todos os pacotes que não couberam inicialmente na fila da ligação entre o "Servidor A" e o "Router 1". Para solucionar esse problema pode-se aumentar a fila da ligação entre o "Servidor A" e o "Router 1" para um número superior ao número total de pacotes em que os 3MB vão ser divididos, de modo a que nenhum se perca à partida. Determine o número de pacotes gerados inicialmente e use uma fila com o tamanho adequado.

IRC 2014/2015 4