Ecole nationale Supérieure d'Informatique

Décembre 2021

2CPI

Contrôle intermédiaire Analyse mathématique 3 Durée : 2 heures

Les documents, calculatrices et téléphones sont interdits. Veuillez répondre aux exercices sur le cahier.

Exercice 1 (6 points): Les questions sont indépendantes.

- 1. Déterminer la nature de la série numérique $\sum_{n\geq 1} \left(1+\frac{1}{\left(\log n\right)^2}\right)^{n^2}.$
- 2. Etudier la nature (convergence absolue et semi-convergence) de la série numérique de terme général $u_n = \sin\left(\frac{(-1)^n}{n+1}\right)$.
- 3. Calcular $\lim_{n \to +\infty} \frac{n^3}{n!}$.
- 4. Rappeler la régle d'Abel pour la convergence des séries numériques.

Exercice 2 (3 points):

Montrer que la série de fonctions de terme général

$$f_n\left(x\right) = \frac{\sin\left(nx\right).x}{n^3}$$

est continue sur \mathbb{R} .

Exercice 3 (5,5 points):

 $\overline{\text{I- Montrer la convergence}}$ uniforme sur \mathbb{R}_+^* de la suite de fonctions $(u_n)_{n\geq 1}$ où

$$u_n(x) = \frac{(-1)^n x^2}{x^4 + n}.$$

- II- On considère la série de fonctions $\sum_{n\geq 1} u_n$.
- 1) Etudier la convergence simple de la série sur \mathbb{R}_{+}^{*} .
- 2) On pose $F(x) = \sum_{n \geq 1} u_n(x)$. Montrer que F est continue sur \mathbb{R}_+^* .

Question bonus: (1point):

Soit $(a_n)_n$ une suite numérique bornée telle que la série $\sum_{n\geq 0} a_n$ diverge. Quel est le rayon de convergence de la série entière $\sum_{n\geq 0} a_n x^n$.

ESI. 2021/2022. CI- ANA3.

Veuillez répondre au questionnaire sur le sujet.

Prénom:

Groupe:

Questionnaire (5,5 points): Pour chaque affirmation répondre (sans justifier) par V si elle est toujours vraie ou par F sinon.

- **A1**: La série $\sum_{n>1} \frac{1+u_n}{5+u_n}$ converge et a pour somme $\frac{1}{5}$.
- **A2**: La série numérique $\sum \sin\left(\frac{1}{n^2}\right)$ converge.

A3: Si la série numérique $\sum u_n$ diverge alors la suite numérique (u_n) diverge.

- **A4**: Si $\lim_{n \to +\infty} n^{\sqrt{3}} |u_n| = 0$ alors la série $\sum u_n$ converge.
- **____ A5** : Si la série $\sum u_n$ converge et la série $\sum v_n$ diverge,

alors $\sum u_n.v_n$ diverge.

A6: Si $\sum u_n$ une série à termes positifs convergente

alors $\sum \sin(u_n)$ converge.

A7: La série $\sum_{n>1} \frac{3}{(4)^n}$ converge et a pour somme 4.

A8: Soient $(\overline{f_n})_n$ et $(g_n)_n$ deux suites de fonctions définies sur un intervalle $I \subset \mathbb{R}$.

Si $f_n \longrightarrow f$ et $g_n \longrightarrow g$ uniformément sur I, alors $f_n + g_n \longrightarrow f + g$ uniformément sur I.

A9: La convergence absolue d'une série de fonctions sur tout $[\alpha, +\infty]$

]0, $+\infty$ [implique sa convergence absolue sur]0, $+\infty$ [.

A10: Les séries entières $\sum_{n\geq 0} a_n x^n$ et $\sum_{n\geq 0} (-1)^n a_n x^n$ ont même rayon

A11 : Soit $\sum_{n>0} a_n x^n$ une série entière ayant]-1,1] comme domaine

de convergence et de somme S. Alors

$$\sum_{n>0} a_n = \lim_{x \to 1} S(x).$$

Un corrigé.

Exercice 1:

- 1. $u_n = \left(1 + \frac{1}{(\log n)^2}\right)^{n^2} \ge 1 \operatorname{donc} \lim_{n \to +\infty} u_n \ne 0$ 0,5 alors la série $\sum u_n$ diverge 0,5 car la condition nécéssaire n'est pas vérifiée.
- 2. a) Convergence absolue: $|u_n| = \left| \sin \left(\frac{(-1)^n}{n+1} \right) \right| \sim \frac{1}{n+1} \sim \frac{1}{n} \boxed{0.5}$ et la série $\sum \frac{1}{n}$ diverge $\boxed{0.25}$ (série de Riemann, $\alpha = 1$) donc $\sum u_n$ ne converge pas absolument par le crière d'équivalence $\boxed{0,25}$ b) convergence simple: Utilisons la méthode des DL

$$u_n = \sin\left(\frac{(-1)^n}{n+1}\right) = \frac{(-1)^n}{n+1} + o\left(\frac{1}{(n+1)^2}\right) \boxed{0,5}$$

 $\rightarrow \sum_{n=1}^{\infty} \frac{(-1)^n}{n+1}$ converge $\boxed{0,5}$ (car c'est une série de Leibnitz).

 $\rightarrow \sum o\left(\frac{1}{(n+1)^2}\right)$ converge $\boxed{0,5}$ (car $\sum \frac{1}{(n+1)^2}$ converge absolument)

On conclut la convergence de $\sum u_n$ par la linéarité. $\boxed{0,25}$

- c) Finalement on obtient la semi convergence de la série. $\boxed{0,25}$
- 3. Pour calculer $\lim_{n\to +\infty}\frac{n^3}{n!}$, voyons la nature de la série $\sum \frac{n^3}{n!}$, utilisons la régle de D'Alembert 0.25: $u_n = \frac{n^3}{n!} \ge 0 \boxed{0.25}, \lim_{n \to +\infty} \frac{u_{n+1}}{u_n} = \lim_{n \to +\infty} \frac{(n+1)^3}{(n+1)!} \cdot \frac{n!}{n^3} = 0 < 1 \boxed{0.25} \Longrightarrow$ $\sum u_n$ converge, on applique alors la condition nécessaire qui nous donnera $\lim_{n \to +\infty} \frac{n^3}{n!} = 0 \boxed{0.25}$
- 4. La régle d'Abel. Lipoint

Soit $u_n = v_n.w_n$, $où (v_n)_n$ et (w_n) vérifient les conditions suivantes: 1) $(v_n)_n$ décroissante et $\lim_{n \to +\infty} v_n = 0$.

- 2) $\exists M>0$ (c
te indépendante de n)tq $|S_n|\leq M$ où
 $S_n=w_0+w_1+\ldots+w_n.$ Alors la série $\sum u_n$ est convergente.

Exercice 2:

On a $|f_n(x)| \le \frac{|x|}{n^3} \boxed{0.5} \le \frac{a}{n^3}, \boxed{0.5} \quad \forall x \in [-a, a], \boxed{0.5} \quad a > 0$, ce qui don-

nera la convergence normale 0.25 donc uniforme de la série.

Appliquons le théorème de conservation de la continuité: 0.25

 \rightarrow Toutes les fonctions f_n sont continues sur tout [-a,a] 0,25 car c'est le produit, rapport et composée de fonctions continues.

 $\rightarrow \sum u_n$ converge uniformément sur tout [-a, a] 0.25

Alors la série continue sur tout [-a, a] 0.25, donc elle est continue sur [-a, a] 0.25.

Exercice 3:

$\overline{\text{I- }(2,5 \text{ points})}$

a) Convergence simple: Il s'agit de calculer $\lim_{n \to +\infty} u_n(x)$, $\forall x \in E = \mathbb{R}_+^*$.

$$\lim_{n \to +\infty} u_n(x) = \lim_{n \to +\infty} \frac{(-1)^n x^2}{x^4 + n} = 0 \boxed{0,5}.$$

Donc $(u_n)_n$ est convergente simplement sur E vers 0 0,25

b) Convergence uniforme: Calculons le $\sup_{x \in \mathbb{R}_+^*} |u_n(x) - 0| . \boxed{0,25}$

Posons $g_n(x) = |u_n(x)| = \frac{x^2}{x^4 + n}$, et étudions les variations de g:

$$g_{n}'(x) = \frac{2x(x^{4}+n)-4x^{5}}{(x^{4}+n)^{2}} = \frac{2xn-2x^{5}}{(x^{4}+n)^{2}} = \frac{2x(n-x^{4})}{(x^{4}+n)^{2}} = \frac{2x(x^{4}+n)^{2}}{(x^{4}+n)^{2}} = \frac{2x(x^{4}+n)^{2}}{(x^{4}+n)^{2}},$$

qui est du signe de $(\sqrt[4]{n} - x)$ 0,25, ce qui donne le TV suivant

1 (V · · · · ·)			
x	0	$\sqrt[4]{n}$	$+\infty$
$g'_n(x)$	+		_
g_n	7	$\frac{\sqrt{n}}{2n}$	>

ie
$$\sup_{x \in E} g_n(x) = g_n\left(\sqrt[4]{n}\right) = \frac{\sqrt{n}}{2n} \left[0.25\right]$$
et :

$$\lim_{n \longrightarrow +\infty} \|u_n\| = \lim_{n \longrightarrow +\infty} \left(\sup_{x > 0} g_n(x) \right) = \lim_{n \longrightarrow +\infty} \frac{1}{2\sqrt{n}} = 0. \boxed{0.25}$$

Conclusion: $u_n \stackrel{\text{uniforme}}{\longrightarrow} 0 \text{ sur }]0, +\infty \boxed{0,25}$

II- (3 points)

1) Etudier la convergence simple de $\sum_{n\geq 1} u_n$ sur $]0,+\infty[$.

Utilisons la régle de Leibnitz $\boxed{0,\!25}$: pososns $v_n\left(x\right)=\frac{x^2}{x^4+n},$ on a

- $v_n(x) \ge 0 \text{ sur }]0, +\infty[. \boxed{0.25}]$
- $(v_n(x))_n$ est décroissante selon $n \boxed{0,5}$, en effet posons $f(t) = \frac{x^2}{x^4 + t}, \ t \ge 1$,

$$f'(t) = \frac{-x^2}{(x^4 + t)^2} \le 0, \ t \ge 1,$$

• $\lim_{n \to +\infty} v_n(x) = 0, \ \forall x \in]0, +\infty \boxed{0.25}$

On obtient alors la convergence simple de $\sum_{n\geq 1} u_n$ sur $]0,+\infty[$.

2) Etudier de la convergence uniforme de $\sum_{n>1}^{n-1} u_n$.

Utilisons la méthode du reste, en effet, on a:

$$|R_{n-1}(x)| \le |u_n(x)| \le \sup_{x>0} g_n(x) = M_n \boxed{0.5}$$
 (d'après I) $\forall x \in]0, +\infty[$,

et $\lim_{n\to+\infty} M_n = 0$, ce qui donne la convergence uniforme de R_{n-1} (donc de R_n) vers 0 sur $]0,+\infty$ $\boxed{0,25}$.

Finalement $\sum_{n\geq 1} u_n$ est uniformément convergente sur $]0,+\infty[0,25]$

Appliquons le théorème de conservation de la continuité 0.25.

 \leadsto Toutes les fonctions u_n sont continues sur $]0,+\infty[$ car c'est un rapport de polynômes $\boxed{0,25}$

 $\rightarrow \sum u_n$ converge uniformément sur $]0, +\infty[$. Alors la somme F est continue sur \mathbb{R}_+^* .

Question bonus:

Soit $(a_n)_n$ une suite numérique bornée ie $\exists M>0\ /\ |a_n|\leq M=b_n$ 0,25, or la série entière $\sum_{n\geq 0}b_nx^n$ a pour rayon de convergence 1 0,25 (il suffit de

le calculer ou d'utiliser la série géométrique), ce qui nous donnera $R_a \ge 1$, de plus $\sum_{n\ge 0} a_n \left(1\right)^n$ diverge alors on obtient $R_a = 1$ $\boxed{0,5}$.

ESI. 2021/2022. CI- ANA3.

Questionnaire : 0.5 par bonne réponse.

Pour chaque affirmation répondre (sans justifier) par V si elle est toujours vraie ou par **E** sinon.

- **F** A1: La série $\sum_{n\geq 1} \frac{1+u_n}{5+u_n}$ converge et a pour somme $\frac{1}{5}$.
- $\mathbf{A2}$: La série numérique $\sum \sin\left(\frac{1}{n^2}\right)$ converge.
- **F** A3: Si la série numérique $\sum u_n$ diverge alors la suite numérique (u_n) diverge.
 - $\Lambda 4$: Si $\lim_{n \to +\infty} n^{\sqrt{3}} |u_n| = 0$ alors la série $\sum u_n$ converge.
 - **F** A5: Si la série $\sum u_n$ converge et la série $\sum v_n$ diverge,

alors
$$\sum u_n.v_n$$
 diverge.

 $oxed{N}$ A6: Si $\sum u_n$ une série à termes positifs convergente

alors
$$\sum \sin(u_n)$$
 converge.

- F A7: La série $\sum_{n>1} \frac{3}{(4)^n}$ converge et a pour somme 4.
- $oxed{N}$ A8 : Soient $(f_n)_n$ et $(g_n)_n$ deux suites de fonctions définies sur un

Si $f_n \longrightarrow f$ et $g_n \longrightarrow g$ uniformément sur I, alors $f_n + g_n \longrightarrow f + g$ uniformément sur I.

- V A9: La convergence absolue d'une série de fonctions sur tout
- $[\alpha, +\infty[\subset]0, +\infty[$ implique sa convergence absolue sur $]0, +\infty[$. **X A10**: Les séries entières $\sum_{n\geq 0} a_n x^n$ et $\sum_{n\geq 0} (-1)^n a_n x^n$ ont même rayon

de convergence.

A11: Soit $\sum_{n=0}^{\infty} a_n x^n$ une série entière ayant]-1,1] comme domaine

de convergence et de somme S. Alors

$$\sum_{n>0} a_n = \lim_{x \to 1} S(x).$$