block name 1

1. Orbit analysis

Martin Azpillaga

Let:

$$\begin{array}{ccc} \cdot & f : \mathbb{R} & \longrightarrow & \mathbb{R} \\ x & \longmapsto & x^3 + \frac{1}{4}x \end{array}$$

Study:

 \cdot Orbit behavior of the real dynamical system defined by f

Demonstration:

Formalization:

Consider (M, T, ϕ) where:

$$M = \mathbb{R}$$

$$T = \mathbb{N}$$

$$\phi: \mathbb{R} \times \mathbb{N} \longrightarrow \mathbb{R}$$

$$(x,n) \longmapsto f^n(x)$$

Study the orbits of $(\mathbb{R}, \mathbb{N}, \phi)$

We will denote $f^n(x)$ as x_n

Fixed points:

$$\forall x \in \mathbb{R}$$
:

$$f(x) = x \leftrightarrow x^3 + \frac{1}{4}x - x = 0 \leftrightarrow x^3 - \frac{3}{4}x = 0$$

$$\leftrightarrow x = 0 \lor x^2 - \frac{3}{4} = 0$$

$$x \text{ fixed point } \leftrightarrow x \in \{0, \pm \frac{\sqrt{3}}{2}\}$$

block name 3

Graphic analysis:

Parity:

 $\forall x \in \mathbb{R}$:

$$f(-x) = (-x)^3 + \frac{(-x)}{4} = -(x^3 + \frac{x}{4}) = -f(x)$$

f is odd

Monotonicity:

 $\forall x \in \mathbb{R}$:

$$f'(x) = 3x^2 + \frac{1}{4} > 0$$

f is increasing over $\mathbb R$

Convexity:

 $\forall x \in \mathbb{R}^-$:

$$f''(x) = 6x \le 0$$

 $\forall x \in \mathbb{R}^+$:

$$f''(x) = 6x \ge 0$$

f is concave over \mathbb{R}^- and convex over \mathbb{R}^+