

Pre-laboratorio 1

Métodos de Monte Carlo

MA4402 Simulación Estocástica 29 agosto 2022

Índice

- 1 Inversa generalizada
 - Definición y Resultado
 - Algoritmo
- 2 Método de Newton-Raphson
 - Enunciado
 - Algoritmo
- 3 Simulaciones
 - Resultados
 - Costo de simulación
 - Estimación de media y varianza

Inversa Generalizada

Definition (Inversa Generalizada)

Sea X v.a. real, F_X su función distribución. Definimos la inversa generalizada de F_X : $[0,1] \mapsto \mathbb{R}$,

$$F_X^-(t) := \inf\{x \in : F_X(x) > t\} \text{ con } t \in [0, 1].$$

Proposition

Sea X variable aleatoria real $y F_X^-$ su inversa generalizada. Si $U \sim \mathbb{U}([0,1])$, entonces tenemos:

$$F_X^-(U) \sim Ley(X)$$
.

Algoritmo

Dada F función de distribución de la variable aleatoria X que deseamos simular, tenemos el siguiente algoritmo para calcular F_X^- .

- I Simular $u \sim \mathbb{U}([0,1])$
- Para computar $F_X^-(u)$ ejecutamos
 - 2.1 Tomar n = 0
 - 2.2 Mientras F(n) < u:
 - 2.3 Hacer n = n + 1
- 3 Retornar *n*

Método de Newton-Raphson

Dado $U \in [0,1]$ queremos encontrar el único \bar{x} tal que $F_X(\bar{x}) = U$ (de este modo $\bar{x} = F_{X(U)}^-$). Es decir, buscamos la única raiz de $G(x) = F_X(x) - U$

Luego usando la aproximación de Newton:

$$x_n := x_{n-1} - \frac{G(x_{n-1})}{G'(x_{n-1})} = x_{n-1} - \frac{(F_X(x_{n-1}) - U)}{f_X(x_{n-1})} \underset{n \to \infty}{\longrightarrow} \bar{x}$$

e iterar hasta que $(F_X(x_k) - U) \le \delta$ para δ pequeño.

Algoritmo

Dada F función de distribución de la variable aleatoria X que deseamos simular y dado una tolerancia $\epsilon>0$, tenemos el siguiente algoritmo para estimar $F_X^-(u)$.

- I Simular $u \sim \mathbb{U}([0,1])$
- 2 Para computar $F^-(u)$ ejecutamos
 - 2.1 Tomar $x_n = 0$
 - 2.2 Mientras $F(x_n) u > \epsilon$:
 - 2.3 $X_n = X_n \frac{F(x_n) u}{f(x_n)}$
 - 2.4 Hacer n = n + 1
- 3 Retornar x_n

La idea será simular una variable **geométrica** de parámetro $p = \frac{1}{2}$:

$$X=\inf\{k\geq 1: U_k\leq \frac{1}{2}\}$$

Esta distribución cumple

$$\mathbb{E}(X) = \frac{1}{p} = 2, \quad Var(X) = \frac{1-p}{p} = 2$$

Simularemos $n = 10^k$ réplicas para k = 1, ..., 5

Para k = 10

Para k = 100

Para k = 1000

8 Noviembre 2020

Para k = 100000

8 Noviembre 2020

Costo de simulación

Observemos el gráfico de tiempo versus cantidad de muestras.

Costo de simulación

Calculamos el costo de simulación por réplica, que vimos que está dado por:

$$C pprox rac{T_N}{N}$$

Donde N es un número de réplicas suficientemente grande y T_N es el tiempo que toma simularlas, para cada uno de los tres métodos. Obtendremos lo siguiente

	Costo de simulación por réplica [s]				
Discrete	$0.3882 \cdot 10^{-5}$				
DiscreteF	$0.6316 \cdot 10^{-5}$				
Continuous	2.9595 · 10 ⁻⁵				

Estimación de media y varianza

Dado que el método Discrete es aquel con mejor costo por réplica, lo usaremos para estimar la media ya la varianza. Los resultados, para cada $k = 1, \ldots, 5$ se muestra en la siguiente tabla:

	10e1	10e2	10e3	10e4	10e5	teórica
media	2.6000	1.9200	1.995	2.0179	2.0065	2.0
varianza	3.3777	1.3268	2.135	2.0131	2.0116	2.0

Se aprecia una convergencia hacia el valor teórico a medida que sube la cantidad de muestras.

Estimación de media y varianza

Estimación de media y varianza

Pre-laboratorio 1

Métodos de Monte Carlo

MA4402 Simulación Estocástica 29 agosto 2022