Regularization Parameters $E(w;) \longrightarrow error "loss" on your loss function

<math>W; \leftarrow w; -n \frac{\delta E}{\delta w;} - n \wedge w;$ $\sim \infty; -n \wedge \infty;$

1 : Learning rate: determines how big/smill steps should be taken to descend

Smaller looning rate
- takes forew
to descend "overfitig"

Higher learning rate

-night give

exploding gradients

"underfittig"

1 cycle policy
- Storts with large learning rate decreases
as descending

1 λW; : Weight Leagy
regularizes the amount of charge on value

oj the weight

1: regularization rate (lambda)

Weight values

high value of lamb da

Booker the Weight values

-Choosing the right landed selve

BALANCE THIS

if lambda value is to high

- model will be simple

- risk of underfitting

- won't learn enough to
make usefull predictions

if lambda value is to low

-model will be too complex

-risk of confitting

- WILL 104111
particularities of the training
Lata set, won't generalize to new Lata set
Caps GNN specific parameters
- Theta (Reconstruction loss weight)
Weight for penalizing the GCN
layer for creetif capsule forms
different from the input
Too high Too low
- un derfitting - overfitting
- won't learn - will learn to much
to much
Gerf dataset us JSOU style
- Industry standard - dictionary base d
tait access
-need to label

as directed

label as directed or endirected