PHYSIK

Thermodynamik
Erster Hauptsatz der Thermodynamik
Prof. Dr.-Ing. Tatsiana Malechka

Thermodynamik

- 1. Hauptsatz der Thermodynamik
- Änderung der inneren Energie
- Wärmekapazität für Gase
- Volumenarbeit
- Adiabatisches Prozess
- 2. Hauptsatz der Thermodynamik

1. Hauptsatz der Thermodynamik

Erster Hauptsatz der Thermodynamik: Erhaltung der Energie

Die Energie eines isolierten Systems bleibt konstant.

oder

Ein thermodynamisches System kann Energie in Form von **Arbeit** und/oder **Wärme** mit seiner Umgebung austauschen.

```
\Delta U = \Delta Q + \Delta W
\Delta U = \text{Änderung der inneren Energie}, \ \Delta Q = \text{Wärmeaustausch}, \ \Delta W = \text{Arbeit}
\text{Wärme wird zugeführt} \rightarrow +
\text{Wärme wird abgeführt} \rightarrow -
\text{Arbeit vom System} \rightarrow -
```

Wärme

Wärmekapazität: Die Wärmekapazität gibt an, wie viel Wärme einem Körper zugeführt werden muss, um eine Temperaturerhöhung ΔT zu erreichen.

$$C = \frac{\Delta Q}{\Delta T} \qquad [C] -? \qquad \frac{\partial}{\partial t}$$

Spezifische (massebezogene) Wärmekapazität: Die Proportionalitätskonstante heißt spezifische Wärmekapazität. Sie ist eine massebezogene Stoffkonstante.

$$c = \frac{\Delta Q}{m\Delta T} \qquad [c] -? \quad \frac{U}{\log U}$$

Molare (stoffmengenbezogene) Wärmekapazität:

$$C_{mol} = \frac{\Delta Q}{n\Delta T} [c_{mol}] - ?$$

Wärmekapazität von idealen Gasen

• Gas mit Volumen V und Druck p drückt einen Kolben mit Kraft F.

$$\Delta U = \Delta Q + \Delta W$$

$$\Delta U = \Delta Q$$

Värmekapazität von idealen Gasen

Konstantes Volumen:

Die zugeführte Wärme dient ganz der Erhöhung der Inneren Energie der Teilchen.

Cmol, 1= 3 NKB

 $T = > T + \Delta T$

1-atomiges Gas:
$$U = \frac{3}{2}Nk_BT$$

1-atomiges Gas:
$$U = \frac{3}{2}Nk_BT$$

n-atomiges Gas: $U = \frac{6}{2}Nk_BT$

Für *n*-atomige Moleküle gilt:

	lineare Moleküle	nicht lineare Moleküle
$f_{ m trans}$	3	3
$f_{ m rot}$	2	3
$f_{ m vib}$	3n-5	3n-6
Summe f	3n	3n

Für die Anderung der Inneren Energie gilt dann:

$$\Delta U = \Delta Q = \frac{f}{2} Nk_B \Delta T$$

$$C_V = \frac{\Delta Q}{\Delta T} = \frac{f}{2} Nk_B$$
Volumen is toous t

für 1-atom. Moleküle:
$$C_V = \frac{\Delta Q}{\Delta T} = \frac{3}{2} \text{Nk}_B$$

isochore Wärmekapazität (Wärmekapazität eines idealen Gases bei

konstantem Volumen)
$$c_{MO}(v=3) \cdot \frac{MA \cdot VB}{2} = \frac{3}{2} MA \cdot VB = \frac{3}{2} R$$

Wärmekapazität von idealen Gasen

Konstanter Druck:

Die zugeführte Wärme ΔQ muss zusätzlich Ausdehnungsarbeit verrichten.

$$\Delta U = \Delta Q + \Delta W$$

$$T \Rightarrow T + \Delta T$$
$$V \Rightarrow V + \Delta V$$

<i>c</i> –	ΔQ	10-0W	\neq	C v
c_p –	ΔT	11	7	

Mayer's Formel, auch Mayer-Beziehung genannt,

beschreibt den Zusammenhang zwischen den

Wärmekapazitäten eines idealen Gases

bei konstantem Druck (C_p) und konstantem

Volumen (
$$C_V$$
): $C_p - C_V = Nk_B$

für 1-atom. Moleküle:
$$C_p = \frac{\Delta Q}{\Delta T} = \frac{5}{2} \, \mathrm{Nk}_B$$

isobare Wärmekapazität (Wärmekapazität eines idealen Gases bei konstantem Druck)

Thermodynamische Prozesse

N-Diagramm Massurrelevant!

Isobare Zustandsveränderung

Isobare Ausdehnung $1 \rightarrow 2$

Volumenarbeit $W = -\int p dV$

Isobare Zustandsveränderung

Isobare Kompression $2 \rightarrow 1$

Isochore Zustandsänderung

Isochore Druckerhöhung 1→2

11

Isochore Zustandsänderung

Isochore Druckerniedrigung 2→1

$$\Delta Q_{21} = (mol, v \cdot n \cdot (T_1 - T_2))$$

 $\Delta Q_{21} = \Delta Q_{21}$

Isotherme Zustandsänderung

Isotherme Zustandsänderung

Isotherme Expansion 2→1

Adiabatische Zustandsänderung

Adiabatisch bedeutet: keine Wärmezufuhr oder Abgabe $\Delta Q = 0$.

Adiabatische Zustandsänderungen liegen z.B. vor, bei

 $\delta Q = 0$

b) guter Isolation

W=-SpdV AV=10°+1 V=>10-5W->AU-1 W=0

Adiabatische Kompression: $1 \rightarrow 2$

0W=-SpdV dW=-pd/

Adiabatische Zustandsänderung

 $dU = \delta W = -pdV$

Kreisprozesse, Wärmekraftmaschinen

Bei einem Kreisprozess durchläuft ein System eine Folge von Zustandsänderungen, so dass der Endzustand wieder mit dem Ausgangszustand übereinstimmt. Arbeitsleistung im rechtsläufigen Kreisprozess

Weg 1 \rightarrow 2 Expansion

Durch Zufuhr von Wärme ΔQ_{12} wird vom Gas Arbeit verrichtet. Dabei wird auch die Innere Energie erhöht.

Weg 2 → 1 Kompression

Durch Kompression wird Arbeit zugeführt. Dabei muss gleichzeitig Wärme ΔQ_{21} abgeführt werden, da die Innere Energie dabei abnimmt.

Arbeitsbilanz: $\Delta \mathcal{U} = \Delta \mathcal{U}_{12} + \Delta \mathcal{U}_{21} =$

Kreisprozesse, Wärmekraftmaschinen

Arbeitsbilanz:

Wärmebilanz:

Wirkungsgrad einer Wärmekraftmaschine:

Der Carnotsche Kreisprozess

S. Carnot hat sich 1824 eine periodisch arbeitende Maschine ausgedacht, die Wärme in Arbeit umwandelt und dabei einen maximalen Wirkungsgrad besitzt. Die Wärme wird von einem Reservoir bei höherer Temperatur T1 = const aufgenommen und an ein Reservoir bei tieferer Temperatur T2 = const abgegeben.

Carnot-Kreisprozess

Weg $3 \rightarrow 4$: Isotherme Kompression:

Carnot-Kreisprozess

Weg $1 \rightarrow 2$: Isotherme Expansion:

Weitere technische Kreisprozesse

		Bezeichnung	p, V-Diagramm	Einzel- prozesse	thermischer Wirkungsgrad
Kolbenmaschinen	Verbrennungsmotoren	Seiliger- Prozeß	$\begin{array}{c c} P & 0.3 & 0.04 \\ \hline 0.2 & 0.04 & 0.05 \\ \hline 2 & 0.04 & 0.05 \\ \hline & 1.0 & 0.05 \\ \hline & 1.0 & 0.05 \\ \hline \end{array}$	2 Isentropen, 2 Isochoren, 1 Isobare	$\eta_{th} = 1 - \frac{T_5 - T_1}{T_3 - T_2 + \kappa (T_4 - T_3)}$
		Otto- Prozeß		2 Isentropen, 2 Isochoren	$\eta_{th} = 1 - \frac{1}{\left(\frac{V_1}{V_2} - 1\right)^{\kappa - 1}}$
		Diesel- Prozeß	P 2 10, 3 4 1 0, 10 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	2 Isentropen, 1 Isochore, 1 Isobare	$\eta_{th} = \frac{\left(\frac{V_3}{V_2}\right)^{\kappa - 1}}{\kappa \left(\frac{V_3}{V_2} - 1\right) \left(\frac{V_1}{V_2}\right)^{\kappa - 1}}$
	Heißluftmotor	Stirling- Prozeß	2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	2 Isothermen, 2 Isochoren	$\eta_{1h} = 1 - \frac{T_1}{T_3} = \eta_{1h,c}$
Strömungsmaschinen	offene Gasturbine	Joule- Prozeß	P 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	2 Isentropen, 2 Isobaren	$\eta_{th} = 1 - \frac{T_1}{T_2}$ $= 1 - \left(\frac{\rho_1}{\rho_2}\right)^{\frac{K-1}{K}}$
	geschlossene Gasturbine	Ericsson- Prozeß	P 2 1 Q _{ru} 3 V ₂ Q _{ru} 4 V ₂ Q _{ru} 4	2 Isothermen, 2 Isobaren	$\eta_{in} = 1 - \frac{T_1}{T_3} = \eta_{in,c}$
	Dampfkraft- anlagen	Clausius- Rankine-Prozeß	P 2 Q ₁ 3	2 Isentropen, 2 Isobaren	$ \eta_{\rm in} = \frac{h_3 - h_4}{h_3 - h_1} $ $ \approx 1 - \frac{h_4}{h_3} $

Der 2. Hauptsatz der Thermodynamik

Formulierung 1: Es gibt keine periodisch arbeitende Maschine, die Wärme aus einer Wärmequelle entnimmt und vollständig in mechanische Arbeit umwandelt.

Formulierung 2: Ein höherer Wirkungsgrad als der des Carnotschen Kreisprozesses ist nicht möglich.

Formulierung 3: Wärme geht nicht von selbst von einem kalten auf einen warmen Körper über

Zusammenfassung

2. Hauptsatz der Thermodynamik

Formulierung 1: Es gibt keine periodisch arbeitende Maschine, die Wärme aus einer Wärmequelle entnimmt und vollständig in mechanische Arbeit umwandelt.

Formulierung 2: Ein höherer Wirkungsgrad als der des Carnotschen Kreisprozesses ist nicht möglich.

Formulierung 3: Wärme geht nicht von selbst von einem kalten auf einen warmen Körper über

Eine **Carnot-Wärmekraftmaschine** ist eine Maschine, die im **Carnot-Kreisprozess**, also reversibel, zwischen zwei Reservoiren arbeitet.

$$\eta_{max} = 1 - \frac{T_L}{T_H}$$

Wirkungsgrad der Carnot-Kreisprozesses:

$$\eta = \frac{|W|}{|Q_H|}$$
 $\eta = \frac{|W|}{|Q_H|} = \frac{|Q_H - Q_L|}{|Q_H|} = 1 - \frac{|Q_L|}{|Q_H|}$

Wirkungsgrad einer Wärmekraftmaschine: