405

office SAS 3208

HW assigned every Fri and due following Fri

Tests sound tough; check Koofers

Final is 5/10/17, 8-11 AM A - linely [85, 89] A likely [89, 93] [90,94] A+ likely [95, 100]

highly doable

Linear

having to do with lines or planes (geometric)

Algebra

Solving equations involve variables, rumbers, etc. ("solve for x")

Two Main Kinds of Probs

known

solve for x,

2) Ax = \(\frac{1}{3}\) x

^ number (eigenvalue)

"Eigenvalue Problem"

TONS of applications can be solved in this way.

- Chemistry: solve rxn equations

- Physics: compute simulated model of: propagating waves,

air flow,

heat diffusion.

Markets production + Jemand

- e conomics:

are numbers.

Linear Systems of Egns (1,1-1,3) \bar{x} $y - \frac{1}{2} x = 1$ any line can be any + az x = b Two variables, x, y
Two coeff, a,=1, a2= ½ def A linear equation in variables (x,,x2,...,xn) is an equation that can be written in form a, x, + a2x2 + ... + a, xn = b, (a,,az,...,an) weff and b

$$2 \times 3 \times 1 - 5 \times 2 + \lambda = \times 1 - \times 2$$

Linear?

Yes:

 $2 \times 1 - 4 \times 2 = -2$

with two variables: eqn. of a line

ex X2=2(53-x1)+x3

Linear? Yes: 3 variables: eqn. of a plane

ex $X_3 + X_2 + 3_{X_1}^2 = \sqrt{X_3}$

Linear?

no: quadratic factor;

also, power of 1/2.

Powers of vars must be 1.

def A system of linear equs is a collection of two or more linear equs. with the same variables.

$$\frac{e \times 1}{2} \begin{cases} 2x_1 + x_2 - \frac{3}{2}x_3 = 8 \\ x_1 + 4x_3 = 6 \end{cases}$$

 $X_2 isn'+ missing(a_2=0)+0x_2$

Two equs w/ 3 vars x1, x2, x3

Jef A solution to a system of linear eqns. is (SI, SI, SI, SI, SI, SI) a set of #'s which can be plugged into all equations from the system and have each be true.

In 2 vars, a solution and is a point of eqn. intersection of all the lines,

5 olution: point & Possible to have no solta.

AN 3rd line: No solutions for this 3-eqn. system

$$ex$$
 dx , $+x_2 - \frac{3}{2}x_3 = 8$

Solution = wherever these two planes intersect (probably a line)

could be line intersection be this.

(no intersection)

$$2 \times_1 + \times_2 - \frac{3}{2} \times_3 = 8$$

 $\times_1 + 0 \times_2 + 4 \times_3 = 6$

a possible solution: (2, 1/2, 1)

Pick $X_1 = 2$. Then $X_3 = 1$. And then $X_2 = \frac{11}{2}$.

This means it's case 2: they intersect in a line,

i.e. if the planes intersect in one point, there are infinitely many solutions.

def For any linear system, the solution set (of all poss. soltas) is either an infinite set (line, plane), a single point, (two lines intersecting), or there are no points in solution set.

3 eqns., 3 vars (3 siff. planes)

-> How can 3 planes intersect?

> 2 planes can intersect as a line, or not at all.

Thou to add 3rd plane?

-> How can you mapipulate these egns?

Substitution: X, = 6-2×2-3×3 Subinto others, eliminate XI

$$(12-4\times2-6\times3)$$
 - $3\times2+2\times3=14$
 $(18-6\times2-9\times3)$ + $\times2-\times3=-2$
Subst. and elim. performed.

Repeat! Well, First, simplify:

Now you can substitute again! It Joesn't Matter which way you substitute.

- 7x2 - 4x3 = 2

$$abla x^2 + 2 \times 3 = 4$$
Scaling eqn. by - 1/5;
linear system unchanged

prior egns. For Xz: plug into two original 3-84n. System.

-> Last step: substitute X3 to get X2, then X1. (Back-substitution)

These operations:

- 1) Replacement
- 2) Interchange ("doesn't matter) 3) Scaling (-1/5)