Universidad de la República Facultad de Ingeniería Instituto de Matemática y Estadística

Solución del Examen de Matemática Discreta 2 22 de Julio de 2008

Ejercicio 1.

a) El elemento neutro de Q es la matriz identidad 2×2 la cual denotaremos como 1 (es un abuso de notación, el lector sabrá reconocer cuando nos referimos a la matriz identidad o al entero 1).

$$wz = \left(\begin{array}{cc} -i & 0 \\ 0 & i \end{array} \right), zw = -wz, z^2 = w^2 = -1, z^3 = -z, w^3 = -w, z^4 = w^4 = 1.$$

Por otra parte, como los elementos w y z tienen orden 4 resulta que $w^{4q+r}=w^r$ y $z^{4q+r}=z^r$ para todo $q\in\mathbb{N}$ y r=0,1,2 ó 3.

- b) i) Se observa de la parte anterior que $wz \neq zw$.
 - ii) Por definición de subgrupo generado tenemos que $Q = \langle w, z \rangle = \{w^{\alpha_1} z^{\beta_1} w^{\alpha_2} z^{\beta_2} \dots w^{\alpha_t} z^{\beta_t} : \alpha_1, \dots, \alpha_t, \beta_1, \dots, \beta_t \in \mathbb{Z}, t \in \mathbb{Z}^+\}$. Como $wz = -zw = z^3 w$ resulta que $Q = \{z^{\alpha} w^{\beta} : \alpha, \beta \in \mathbb{Z}\}$. Finalmente como $z^2 = w^2 = -1$ resulta que $Q = \{1, -1, z, -z, w, -w, zw, -zw\}$ y es claro que todos los elementos de ese conjunto son distintos dos a dos por lo que |Q| = 8.
 - iii) Sea H < Q, si $H = \{1\}$ ó Q se cumple trivialmente que $H \triangleleft Q$, así que supondremos de ahora en más que H es no trivial. Como |Q| = 8 por Lagrange tenemos que |H| = 2 ó 4. Si |H| = 4 entonces [Q:H] = 2 por lo tanto $H \triangleleft Q$. Si |H| = 2 entonces $H = \{1,x\}$ donde $x \neq 1$ y $x^2 = 1$; como $(\pm w)^2 = (\pm z)^2 = (\pm zw)^2 = -1$ la única opción es que x = -1 y obtenemos el único subgrupo de orden $2, H = \{1, -1\}$. En este caso como $g(-1)g^{-1} = -gg^{-1} = -1 \in H$ para todo $g \in Q$ resulta que H es un subgrupo normal de Q.
 - iv) Una posibilidad para probar esta parte es haciendo la tabla de multiplicación del grupo Q y observando que los únicos elementos que conmutan con todos los elementos del grupo son el 1 y el -1.

Otra manera es analizando cardinales, como $Z(Q) < Q \Rightarrow |Z(Q)| = 1, 2, 4$ ó 8 (Lagrange). Pero $|Z(Q)| \neq 1$ pues Q es un 2-grupo (corolario de la ecuación de clase), $|Z(Q)| \neq 8$ pues Q no es abeliano. Si $|Z(Q)| = 4 \Rightarrow |Q/Z(Q)| = 2 \Rightarrow Q/Z(Q)$ sería cíclico y Q sería abeliano, pero como no lo es, tenemos que |Z(Q)| = 2. En la parte anterior vimos que hay un único subgrupo de orden 2 que viene dado por $\{1, -1\}$ por lo tanto $Z(Q) = \{1, -1\}$.

d) Tenemos que $Q/Z(Q) = Q/\{1, -1\} = \{\overline{1}, \overline{z}, \overline{w}, \overline{zw}\}$ donde $\overline{x} = \{x, -x\}$ es la clase de $x \in Q$ en el cociente. A continuación escribiremos la tablas del producto de los grupos Q/Z(Q) y $\mathbb{Z}_2 \times \mathbb{Z}_2$:

	$\overline{1}$	\overline{z}	\overline{w}	\overline{zw}	+	(0,0)	(0, 1)	(1,0)	(1, 1)
$\overline{1}$	1	\overline{z}	\overline{w}	\overline{zw}	(0,0)	(0,0)	(0,1)	(1,0)	(1,1)
\overline{z}	\overline{z}	$\overline{1}$	\overline{zw}	\overline{w}	(0, 1)	(0,1)	(0, 0)	(1, 1)	(1,0)
\overline{w}	\overline{w}	\overline{zw}	1	\overline{z}	(1,0)	(1,0)	(1, 1)	(0,0)	(0, 1)
\overline{zw}	\overline{zw}	\overline{w}	\overline{z}	1	(1,1)	(1,1)	(1,0)	(0,1)	(0,0)

Observamos que bajo la identificación $\overline{1} \mapsto (0,0), \overline{z} \mapsto (0,1), \overline{w} \mapsto (1,0)$ y $\overline{zw} \mapsto (1,1)$ la tabla de producto se preserva, por lo tanto, ambos grupos han de ser isomorfos (y la identificación anterior es el isomorfismo correspondiente, claro).

Ejercicio 2.

- a) Por propiedad del mcm, para cada $i=1,2,\ldots,t$ existe $k_i\in\mathbb{Z}^+$ tal que $\delta(n)=k_i\phi(p_i^{\alpha_i})$. Como $mcd(a,n)=1\Rightarrow mcd(a,p_i^{\alpha_i})=1$ para cada $i=1,2,\ldots,t$. Luego, por el Teorema de Euler-Fermat $a^{\phi(p_i^{\alpha_i})}\equiv 1\pmod{p_i^{\alpha_i}}$. Elevando a la k_i de ambos lados de la congruencia tenemos que $a^{\delta(n)}\equiv 1\pmod{p_i^{\alpha_i}}$, con lo cual (por el Teorema del Resto Chino) tenemos que $a^{\delta(n)}\equiv 1\pmod{n}$.
- b) Como $mcd(a,30)=1 \Rightarrow mcd(a,120)=1$ (pues 30 y 120 tienen los mismos primos en la descomposición factorial). Entonces $a^{\delta(120)}\equiv 1\pmod{120}$, pero $\delta(120)=mcm\{\phi(8),\phi(3),\phi(5)\}=mcm\{4,2,4\}=4$.
- c) i) $a_0 \equiv a_1 \equiv 0 \pmod{3}$ y si para algún $n \geq 0$ se tiene que $a_n \equiv a_{n+1} \equiv 0 \pmod{3}$ entonces $a_{n+2} = 7a_{n+1} + 40a_n \equiv 7 \cdot 0 + 40 \cdot 0 \equiv 0 \pmod{3}$. Luego $a_n \equiv 0 \pmod{3}$ para todo $n \geq 0$.
 - ii) Para todo $n \geq 2$ se tiene que $a_n = 7a_{n-1} + 40a_{n-1} \equiv 7a_{n-1} \pmod{120}$ (como $a_{n-1} = 3 \Rightarrow 40a_{n-1} = 120$). Aplicando lo anterior reiteradas veces $a_{2008} \equiv 7a_{2007} \equiv 7^2a_{2006} \equiv \dots \equiv 7^{2007}a_1 \equiv 7^{2007} \cdot 21 \equiv 7^{2008} \cdot 3 \pmod{120}$. Por la parte anterior $7^{2008} = (7^4)^{502} \equiv 1^{502} \equiv 1 \pmod{120}$, así que $a_{2008} \equiv 3 \pmod{120}$.

Ejercicio 3.

- a) Ver teórico.
- b) La clave $k=17^{70}\pmod{73}$, por Fermat $17^{72}\equiv 1\pmod{73}$, así que $17^2k\equiv 1\pmod{73}$. Resolviendo la ecuación diofántica correspondiente obtenemos k=24.
- c) Hay que escribir 24 en base 13, nos queda $24 = 1 \cdot 13 + 11$ asi que a = 1, b = 11 y E(x) = x + 11 (mód 13). E(BIEN) = E(0, 4, 2, 5) = 11, 2, 0, 3 = TEBG.
- d) $E(G)=B\Rightarrow E(3)=3a+b=0\pmod{13}$ y $E(D)=U\Rightarrow E(1)=3a+b=12\pmod{13}$. Planteamos el sistema de congruencias: $\begin{cases} 3a+b\equiv 0\pmod{13}\\ a+b\equiv 12\pmod{13} \end{cases}$

Resolvemos este sistema obteniendo $a \equiv 7 \pmod{13}$ y $b \equiv 5 \pmod{13}$, las únicas soluciones en el intervalo considerado son a = 7 y b = 5. Si $7x + 5 \equiv 8 \pmod{13} \Rightarrow x \equiv 6 \pmod{13}$ por lo tanto D(Q) = O, así que el mensaje desencriptado es GOOD.