Universidad Simón Bolívar Departamento de Matemáticas Puras y Aplicadas MA1116. Matemáticas III.

GUIA 7: Espacios vectoriales

1. Sea \overrightarrow{u} y \overrightarrow{v} dos vectores arbitrarios de un espacio vectorial V, y a y b dos escalares cualesquiera. Demostrar que

$$a\overrightarrow{u} + b\overrightarrow{v} = b\overrightarrow{u} + a\overrightarrow{v}$$
 si, y sólo si, $a = b$ ó $\overrightarrow{u} = \overrightarrow{v}$.

- 2. Diga si en \mathbb{R}^2 se define la suma (x,y)+(a,b)=(x+a,y+b) y el producto por un escalar $\lambda(x,y)=(0,\lambda b)$ define un espacio vectorial.
- 3. Comprobar la unicidad del del vector nulo y del vector opuesto, de la definición de espacio vectorial.
- 4. Demuestre que en todo espacio vectorial se cumple que $-\overrightarrow{0} = \overrightarrow{0}$. Cita todos los axiomas de la definición de espacio vectorial.
- 5. Decir cuáles de los siguientes subconjuntos son subespacio vectoriales.
 - (a) $W = \{(x, y) \in \mathbb{R}^2 : 2x + y = 0\}.$
 - (b) $H = \{(x, y) \in \mathbb{R}^2 : 3x y = 4\}.$
 - (c) $R = \{(x, y, z) \in \mathbb{R}^3 : x + y + 2z = 0, x y = 0\}.$
 - (d) $F = \{(x, y, x) \in \mathbb{R}^3 : x y = 0, x z = 1\}.$
 - (e) $S = \{(x, -x, -x) : x \in \mathbb{R}\}.$
 - (f) $T = \{(2y + z, y, z) : y, z \in \mathbb{R}^2\}.$
 - (g) El conjunto de los polinomios de grado cuatro y el polinomio nulo.
 - (h) Los polinomios con raíz en a.
 - (i) Los polinomios que satisfacen 4p(1) + p(2) = 3.
 - (j) $P = \{p(x) = ax^2 + bx + c : p(3) = 2\}.$
 - (k) $H = \left\{ A \in M_{2 \times 2} : A^2 = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} \right\}.$
 - (1) $W = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in M_{2\times 2} : a+b+c=0, c+d=0 \right\}.$
 - (m) $H = \{A \in M_{2\times 2} : AB = A\}, B$ fija.
 - (n) $S = \{(x, y, z, w) \in \mathbb{R}^4 : -a + 3c = 0\}.$
 - (o) $W = \{A \in M_{3\times 3} : A = A^{-1}\}.$
 - (p) $W = \{A \in M_{3\times 3} : A^2 = I\}.$
 - (q) $W = \{A \in M_{3\times 3} : A \text{ es triangular inferior}\}$
 - (r) $\{f \in C^1[0,1]: f'(x) = 0\}.$

- 6. Comprobar que el conjunto de matrices de tamaño 3×3 tal que su traza es cero es un subespacio del espacio de las matrices de tamaño 3×3 .
- 7. Comprobar que
 - (a) gen $\{(1,2,1), (0,1,0)\}$ = gen $\{(1,3,1), (1,0,1)\}$
 - (b) gen $\{(2,1,3), (0,1,1)\} = \text{gen } \{(2,2,4), (2,-1,1)\}$
- 8. Decir si son ciertas las siguientes igualdades,
 - (a) gen $\{\mathbf{u} + \mathbf{v}, \mathbf{u} + \mathbf{w}, \mathbf{u} + \mathbf{v} + \mathbf{w}\} = \text{gen } \{\mathbf{v} 2\mathbf{w}, \mathbf{u}, 3\mathbf{u} + 2\mathbf{v} + 2\mathbf{w}\}.$
 - (b) $gen \{ \mathbf{u}, \mathbf{u} + \mathbf{v}, 3\mathbf{u} + 2\mathbf{v} \} = gen \{ 2\mathbf{u} + 2\mathbf{v}, \mathbf{v} \}.$
- 9. Probar que $\{x-1, x+1, x^2\}$ es un conjunto generador de \mathbf{P}_2 .
- 10. Probar que los vectores (1, -1, 1), (0, -1, 2) y (2, 1, 1) forman un conjunto generador de \mathbb{R}^3 .
- 11. Probar que los vectores (1, -1, 2), (3, 2, -4) y (0, 2, -4) es generador del subespacio de \mathbb{R}^3 , $W = \{(x, y, z) \in \mathbb{R}^3 : -y = 2z\}$.
- 12. Encuentre el valor de a para que los vectores siguientes sean linealmente independientes,
 - (a) $\{(a, 1, 0), (1, a, 1), (0, 1, a)\}$
 - (b) $\{(a,1,1), (1,1,a), (3,1,1)\}$
- 13. Considere el polinomio $p(x) = ax^3 + bx^2 + cx + d$, con $a \neq 0$. Probar que los polinomios p(x), p'(x), p''(x) y p'''(x) son linealmente independiente.
- 14. Sean A y B dos matrices de $M_{n\times n}$, distinta de la matriz nula. Demostrar que si A es simétrica y B es antisimétrica, son linealmente independientes.