Quantum Optics

Alexandre Journeaux & Pierre-François Cohadon

Generation of vacuum squeezing

We consider a degenerate Optical Parametric Oscillator, where the combination of a cavity with a $\chi^{(2)}$ nonlinear crystal and a pump beam (mode \hat{b} , frequency $2\omega_0$, treated classically and assumed undepleted) creates a degenerate signal/idler beam (mode \hat{a} at ω_0). The coupling hamiltonian is:

$$\hat{H}_c = \frac{i\hbar\chi^{(2)}}{2} \left(\hat{a}^2 \hat{b}^\dagger - \hat{a}^{\dagger 2} \hat{b} \right) = \frac{i\hbar b \chi^{(2)}}{2} \left(\hat{a}^2 - \hat{a}^{\dagger 2} \right), \tag{1}$$

where $\chi^{(2)}$ (assumed $\in \mathbb{R}^+$) is characteristic of the nonlinear crystal.

For all fields, a represents the classical mean amplitude, \hat{a} the quantum fluctuations.

Mirror 1 (with reflection coefficient $r_1 = 1 - \gamma_1$ (with $\gamma_1 \ll 1$) at ω_0 , high-reflectivity coated at $2\omega_0$) can be used to inject a field $a_{\rm in}$.

Mirror 2 is used for pump injection at $2\omega_0$ and is high-reflectivity coated at ω_0 .

We however model the optical losses of the cavity by a reflection coefficient $r_2 = 1 - \gamma_2$ (with $\gamma_2 \ll 1$).

FIGURE 1 – Optical cavity with a nonlinear medium.

We first assume there is an injected field (seed beam) \hat{a}_{in} at the mirror 1 location.

1. Show that the time evolution equation for the field \hat{a} in a resonant cavity is:

$$\tau \dot{\hat{a}} = -\gamma \left(a + \hat{a} \right) + g\tau \left(a + \hat{a}^{\dagger} \right) + \sqrt{2\gamma_1} \left(a_{\rm in} + \hat{a}_{\rm in} \right) + \sqrt{2\gamma_2} \, \hat{a}_2, \tag{2}$$

where g (assumed $\in \mathbb{R}^+$) is an optical gain proportional to the pump field amplitude b and τ is the travel time of light around the ring cavity.

2. Show the mean intracavity field is amplified by the nonlinear gain:

$$\frac{|a(g)|^2}{|a(g=0)|^2} = \frac{1}{(1-g/\kappa)^2},\tag{3}$$

where $\kappa = \gamma/\tau = (\gamma_1 + \gamma_2)/\tau$ is the cavity decay rate.

The OPO is operated **below threshold** (with a pump beam such that $g < \kappa$), with no injected field, i.e. $a_{\text{in}} = 0 \Rightarrow a = 0$.

- 3. Write the time evolution equations for the intracavity field fluctuations \hat{a} and \hat{a}^{\dagger} .
- 4. Compute the quadratures $\hat{X}[\Omega]$ and $\hat{Y}[\Omega]$ in Fourier space for the intracavity field and for the output field.
- 5. Show that the output noise spectra are :

$$S_X^{\text{out}}[\Omega] = 1 + \frac{4g}{\kappa} \frac{\gamma_1}{\gamma} \frac{1}{(\Omega/\kappa)^2 + (1 - g/\kappa)^2}$$

$$\tag{4}$$

$$S_Y^{\text{out}}[\Omega] = 1 - \frac{4g}{\kappa} \frac{\gamma_1}{\gamma} \frac{1}{(\Omega/\kappa)^2 + (1 + g/\kappa)^2}.$$
 (5)

The ratio $\eta_{\rm esc} = \gamma_1/\gamma$ is called the *escape efficiency*.

- 6. Comment the dependence of the noise spectra with the gain g and the frequency Ω .
- 7. Assuming $\Omega \ll \Omega_{\rm cav}$, what is the maximum squeezing that can be delivered? Comment the $\eta_{\rm esc}$ dependence.
- 8. How could one get squeezing for a different quadrature?