1. Collision Theory

2. Transition State Theory

© Mark Parisi, Permission required for use

3. Catalysts

COLLISION THEORY:

The rate of rxn is proportional to the number of effective/successful collisions per second between reactant molecules.

What factors determine whether reactants could form a molecule?

(e.g. is bumping into each other enough?)

COLLISION THEORY:

Not all collisions are effective.

Effective collision: A collision that actually results in the production of product molecules

In a game of pool, what are the two conditions that are required for an effective collision?

COLLISION THEORY:

Not all collisions are effective

COLLISION THEORY:

COLLISION THEORY:

Not all collisions are effective

COLLISION THEORY:

COLLISION THEORY:

For a collision to be effective, the molecules must collide with the proper:

COLLISION THEORY:

• Orientation: $H_2 + I_2 \rightarrow 2 HI$

COLLISION THEORY:

• Orientation: NO + NO₃ \rightarrow 2 NO₂

COLLISION THEORY:

- Kinetic energy: A
 minimum kinetic energy,
 called activation energy
 (E_a), is required between
 reactants for a reaction to
 proceed.
 - E_a is unique to each reaction

Higher temperatures result in a higher percentage of reactants with enough energy to react.

COLLISION THEORY:

• Kinetic energy:

COLLISION THEORY:

Kinetic energy:

COLLISION THEORY:

Factors affecting effective collisions:

- molecule orientation
- 2. molecule energy

Collision Theory Animation

Collision Theory Applet

COLLISION THEORY:

To \(\) rate of reaction, the frequency of collisions or the fraction of effective collisions must be increased

Factors that Increase Frequency of Collisions:

- -Concentration
- -Surface Area
- -Temperature

We have discussed these factors before

Factors Increase Fraction of Effective Collisions:

- -Nature of Reactant
- -Catalyst
- -Temperature

Reaction coordinate

TRANSITION STATE THEORY:

Reaction coordinate

TRANSITION STATE THEORY:

The transition state complex (bonds break and form at the same time)

TRANSITION STATE THEORY:

Potential energy diagrams

TRANSITION STATE THEORY:

Draw the potential energy diagram for the reverse reaction

TRANSITION STATE THEORY:

Examine the E_a for both reactions. What does that suggest?

E_a is different between the forward and reverse directions of a given reaction.

Generally, endothermic reactions are slower than exothermic reactions due to a higher E_a .

TRANSITION STATE THEORY:

- 1. Identify E_a , ΔH and transition state.
- 2. What are the values of E_a and ΔH ?
- 3. Endothermic or exothermic?
- 4. What are E_a and ΔH for the reverse rxn?

CATALYST:

catalyst - a substance that increases the rate of a chemical reaction without being consumed

homogeneous catalyst - exist in the same phase as the reactants

heterogeneous catalyst - exist in a different phase as the reactants

CATALYST:

Catalysts lower the E_a of a reaction

CATALYST:

Catalysts lower the E_a of a reaction

CATALYST:

Catalysts:

- bend or stretch bonds to make them easier to break / react
- reduce E_A (make transition state easier)
- bring two reactants close together
- provide a microenvironment for reactions

CATALYST:

Inhibitors - bind with the reactant or the catalyst to prevent the reaction from occurring and reducing reaction rate

