

Unit 4 Unsupervised Learning (2

Course > weeks)

> Lecture 15. Generative Models >

8. Prior, Posterior and Likelihood

Audit Access Expires May 11, 2020

You lose all access to this course, including your progress, on May 11, 2020.

8. Prior, Posterior and Likelihood Prior, Posterior and Likelihood

Video

Download video file

Transcripts

<u>Download SubRip (.srt) file</u>

<u>Download Text (.txt) file</u>

Prior, Posterior and Likelihood

1/1 point (graded)

Consider a binary classification task with two labels '+' (positive) and '-' (negative).

Let y denote the classification label assigned to a document D by a multinomial generative model M with parameters θ^+ for the positive class and θ^- for the negative class.

Which of the following option(s) is/are true about the prior, posterior or likelihood distributions for this classifier? Choose the correct notations from the statements below:

$$lacksquare P\left(y=+|D
ight)$$
 is the posterior distribution

$$luellowbreak P\left(y=+|D
ight)$$
 is the prior distribution

$$\bigcap P\left(y=+
ight)$$
 is the posterior distribution

$$lackbox{$lackbox{$P$}$} P\left(y=+
ight)$$
 is the prior distribution

Solution:

Recall from the lecture that from bayesian rule we have,

$$P\left(y=+|D
ight)=rac{P\left(D| heta^{+}
ight) imes P\left(y=+
ight)}{P\left(D
ight)}$$

where $P\left(y=+|D\right)$ is the posterior distribution and $P\left(y=+\right)$ is the prior distribution while $P\left(D|\theta^+\right)$ is the likelihood of document D given parameter θ^+

Submit

You have used 1 of 1 attempt

1 Answers are displayed within the problem

A Numerical Example

2/2 points (graded)

Let's say that the prior for the positive class takes the following value:

$$P(y = +) = 0.3$$

Also, say that
$$P\left(D| heta^+
ight)=.3$$
 and $P\left(D| heta^-
ight)=.6$

From the above values of prior and likelihood, calculate the value of $P\left(D\right)$, the probability of generating document D. Enter the value below:

From $P\left(D\right)$ also estimate the posterior probability $P\left(y=+|D\right)$. Enter your answer as a numerical expression or round it off to two decimal places.

Solution:

From the total probability law, we have that

$$P(D) = P(D|y = +) P(y = +) + P(D|y = -) P(y = -)$$

Also probability values must sum to 1 across all classes,

$$P(y = +) + P(y = -) = 1$$

Therefore,

$$P(D) = P(D|y = +) \times .3 + P(D|y = -) \times .7$$

$$P(D) = .3 \times .3 + .6 \times .7 = 0.51$$

From $P\left(D\right)$, we can calculate the posterior value $P\left(y=+|D\right)$ using bayes rule as follows:

$$P\left(y=+|D
ight)=rac{P\left(D| heta^{+}
ight)P\left(y=+
ight)}{P\left(D
ight)}$$

$$P\left(y=+|D
ight)=rac{.3 imes.3}{0.51}=0.1764705882352941$$

Submit

You have used 1 of 3 attempts

1 Answers are displayed within the problem

Discussion

Show all posts

Hide Discussion

Topic: Unit 4 Unsupervised Learning (2 weeks) :Lecture 15. Generative Models / 8. Prior, Posterior and Likelihood

Add a Post

by recent activity

Did she just say?!?!

"this is just a Bayesian rule - there's nothing very special about it" Blasphemy! It's like she just...

Thanks for such a clear articulation of offset concept

Thanks Professor i am also taking the other course in this micro master series the 6.36x and ...

8. Prior, Posterior and Likelihood | Lecture 15. G...

https://courses.edx.org/courses/course-v1:MITx+...

? How to interpret $P(D \mid \theta +)$? 6

I understand $P(\theta + \mid D)$ as the probability that the document is generated by model $\theta +$, as in: gi...

© All Rights Reserved