8. Непрерывные случайные величины

8.1. Функции распределения и плотности непрерывной случайной величины

Необходимый теоретический материал из лекции 3.

Определение 8.1. Функция F(x) обладает кусочно непрерывной производной, если её производная F'(x) непрерывна везде, кроме конечного (или бесконечного счётного) множества точек, в которых F'(x) может иметь разрывы 1-го рода.

В частности, если производная F'(x) непрерывна, то она кусочно непрерывна, т.к. множество точек разрыва пусто.

Определение 8.2. Случайная величина ξ называется **непрерывной**, если её функция F(x) непрерывна и обладает кусочно непрерывной производной F'(x).

Свойства функции распределения непрерывной случайной величины :

- (1) $0 \le F(x) \le 1$, $F(-\infty) = 0$, $F(+\infty) = 1$;
- (2) $P\{x_1 \le \xi < x_2\} = F(x_2) F(x_1);$
- (3) F(x) не убывает;
- (4) F(x) непрерывна;
- (5) $P\{\xi = a\} = 0$ для любого числа a.

Определение 8.3. Функцией распределения F(x) случайной величины ξ называется вероятность того, что ξ приняла значение меньшее x:

$$F(x) = P\{\xi < x\}. \tag{8.1}$$

Используя определение функции распределения (8.3), рассмотрим ряд задач и на непрерывные случайные величины.

В соответствии с только что сделанным замечанием вероятность попадания случайной величины в заданный промежуток зависит от скорости роста функции распределения. Поэтому непрерывную случайную величину задают, используя производную от функции распределения.

Определение 8.4. Плотностью распределения f(x) (или дифференциальной функцией распределения) непрерывной случайной величины ξ называют первую производную от её функции распределения:

$$f(x) = F'(x). \tag{8.2}$$

ЗАМЕЧАНИЕ 8.1. Поскольку функция распределения дискретной случайной величины имеет ступенчатую форму, для её описания плотность распределения неприменима.

Свойства плотности распределения:

- (1) $f(x) \ge 0$;
- (2) $f(-\infty) = f(+\infty) = 0$;
- (3) f(x) кусочно непрерывная функция;

$$(4) F(x) = \int_{-\infty}^{x} f(t)dt$$

(4)
$$F(x) = \int_{-\infty}^{x} f(t)dt;$$

(5) $P\{x_1 \le \xi < x_2\} = \int_{x_1}^{x_2} f(x)dx;$

$$(6)\int_{-\infty}^{+\infty} f(x)dx = 1.$$

ПРИМЕР 8.1. Случайная величина ξ задана функцией распределения

$$F(x) = \begin{cases} 0 & npu \ x \le -2, \\ (x+2)^2 & npu - 2 < x \le -1, \\ 1 & npu \ x > -1. \end{cases}$$

Найти вероятность того, что в результате испытания величина ξ примет значение, заключенное в интервале (-3/2, -1).

 \blacktriangleright Вероятность того, что ξ примет значение, заключенное в интервале (-3/2, -1), равна приращению функции распределения на этом интервале:

$$P(-3/2 < \xi < -1) = F(-1) - F(-3/2) = (-1+2)^2 - (-3/2+2)^2 = \frac{3}{4}.$$
Other: 0,75.

ПРИМЕР 8.2. Непрерывная случайная величина ξ задана плотностью распределения $\varphi(x) = \cos x$ в интервале $(0,\pi/2)$; вне этого интервала f(x) = 0. Найти вероятность того, что ξ примет значение, принадлежащее интервалу $(\pi/4,\pi/3)$.

▶Применим формулу

$$P(a < \xi < b) = \int_{a}^{b} f(x)dx.$$

По условию, $a=\pi/4,\ b=\pi/3,\ f(x)=\cos x.$ Следовательно, данная вероятность

$$P\left(\frac{\pi}{4} < \xi < \frac{\pi}{3}\right) = \int_{\pi/4}^{\pi/3} \cos x dx = \sin x \Big|_{\pi/4}^{\pi/3} = \frac{\sqrt{3} - \sqrt{2}}{2} \approx 0,159. \blacktriangleleft$$
Other: $\approx 0,159.$

ПРИМЕР 8.3. Дана функция распределения непрерывной случайной величины ξ

$$F(x) = \begin{cases} 0 & npu \ x \le 1, \\ A(x-1)^2 & npu \ 1 < x \le 3, \\ 1 & npu \ x > 3. \end{cases}$$

Найти значение величины A и плотность распределения f(x).

►Плотность распределения равна первой производной от функции распределения:

$$f(x) = F'(x) = \begin{cases} 0 \text{ при } x \leqslant 1, \\ 2A(x-1) \text{ при } 1 < x \leqslant 3, \\ 0 \text{ при } x > 3. \end{cases}$$

Для определения A используем свойство функции плотности вероятностей

$$\int_{-\infty}^{+\infty} f(x)dx = 1.$$

Подставляем полученную функцию f(x).

$$\int_{1}^{3} 2A(x-1)dx = 2A\left(\frac{x^{2}}{2} - x\right)\Big|_{1}^{3} = 2A\left(\left(\frac{9}{2} - 2\right) - \left(\frac{1}{2} - 1\right)\right) = 4A.$$

Следовательно, $A=\frac{1}{4}$ и

$$f(x) = \begin{cases} 0 \text{ при } x \le 1, \\ 0.25(x-1) \text{ при } 1 < x \le 3, \\ 0 \text{ при } x > 3. \end{cases}$$

ПРИМЕР 8.4. ξ – непрерывная случайная величина с плотностью распределения f(x), заданной следующим образом:

$$f(x) = \begin{cases} 0, \ ecnu \ x \le 0, \\ A(4x - x^2), \ ecnu \ 0 < x \le 4, \\ 0, \ ecnu \ x > 4. \end{cases}$$

Найти: а) значение параметра A б) вероятность попадания ξ в интервал (1;2); в) функцию распределения F(x).

$$\int_{0}^{4} A(4x - x^{2})dx = A\left(2x^{2} - \frac{x^{3}}{3}\right)\Big|_{0}^{4} = A\left(32 - \frac{64}{3} - 0\right) = \frac{32A}{3}.$$

$$\frac{32A}{3} = 1 \qquad \Rightarrow A = \frac{3}{32}.$$

б) Вероятность

$$P(1 < \xi < 2) = \int_{1}^{2} f(x)dx = \int_{1}^{2} \frac{3}{32}(4x - x^{2})dx = A\left(2x^{2} - \frac{x^{3}}{3}\right)\Big|_{1}^{2} = 11$$

 $=\frac{11}{32}\approx 0.344.$

в) Функция распределения F(x) для непрерывной случайной величины даётся формулой

$$F(x) = \int_{-\infty}^{x} f(t)dt.$$

Если $-\infty < x \leqslant 0$, то

$$F(x) = \int_{-\infty}^{x} 0dt = 0;$$

если $0 < x \le 4$, то

$$F(x) = \int_{-\infty}^{0} f(t)dt + \int_{0}^{x} f(t)dt = \frac{6x^{2} - x^{3}}{32};$$

если, наконец, x > 4, то

$$F(x) = \int_{-\infty}^{0} 0dt + \int_{0}^{4} \frac{3}{32} (4t - t^{2})dt + \int_{0}^{x} 0dt = 1. \blacktriangleleft$$

Other: $P(1 < \xi < 2) = 11/32 \approx 0.344$,

Ответ:
$$P(1 < \xi < 2) = 11/32 \approx 0,344$$

$$F(x) = \begin{cases} 0, & \text{если } x \leq 0, \\ \frac{6x^2 - x^3}{32}, & \text{если } 0 < x \leq 4, \\ 1, & \text{если } x > 4. \end{cases}$$

ПРИМЕР 8.5. Случайная величина ξ имеет на всей числовой оси плотность распределения $f(x) = a/(1+x^2)$ (закон Kowu). Найти коэффициент a и функцию распределения F(x).

▶Так как

$$\int_{-\infty}^{+\infty} f(x)dx = 1,$$

TO

$$\int_{-\infty}^{+\infty} \frac{a}{1+x^2} dx = a \cdot \operatorname{arctg} x \Big|_{-\infty}^{+\infty} = a \left(\frac{\pi}{2} - \left(-\frac{\pi}{2} \right) \right) = a\pi = 1.$$

Отсюда найдем, что $a = 1/\pi$, а плотность распределения $f(x) = 1/\pi(1+x^2)$. Функция распределения

$$F(x) = \int_{-\infty}^{x} f(t)dt = \int_{-\infty}^{x} \frac{dt}{\pi(1+t^2)} = \frac{1}{2} + \frac{1}{\pi} \arctan x.$$

Other: $a = 1/\pi \approx 0.318$, $F(x) = 0.5 + \arctan(x)/\pi$.

8.2. Числовые характеристики непрерывной случайной величины

Необходимый теоретический материал из лекции 3.

Определение 8.5. Математическим ожиданием непрерывной случайной величины ξ с плотностью распределения f(x) называется:

$$M(\xi) = \int_{-\infty}^{+\infty} x f(x) dx. \tag{8.3}$$

ЗАМЕЧАНИЕ 8.2. Если $\eta = \varphi(\xi)$ — непрерывная функция случайного аргумента ξ , причём возможные значения ξ принадлежат всей оси Ox, то

$$M(\varphi(\xi)) = \int_{-\infty}^{+\infty} \varphi(x) \cdot f(x) dx, \tag{8.4}$$

 $\epsilon \partial e \ f(x)$ – плотность распределения ξ .

Определение дисперсии как математического ожидания квадрата отклонения полностью сохраняется для непрерывных случайных величин:

$$D(\xi) = M(\xi - M(\xi))^{2}.$$

Вычисление дисперсии непрерывной случайной величины с учётом замечания 10.1 следует вести по следующей формуле:

$$D(\xi) = \int_{-\infty}^{+\infty} \left(x - M(\xi)\right)^2 f(x) dx. \tag{8.5}$$

Все свойства математического ожидания и дисперсии, приведённые в предыдущей для ДСВ, сохраняются в этом случае.

Если $\eta = \varphi(\xi)$ — функция случайного аргумента ξ , причём возможные значения ξ принадлежат всей оси Ox, то

$$D(\varphi(\xi)) = \int_{-\infty}^{+\infty} (\varphi(\xi) - M(\varphi(x)))^2 f(x) dx, \tag{8.6}$$

или

$$D(\varphi(\xi)) = \int_{-\infty}^{+\infty} \varphi^2(x) f(x) dx - M^2(\varphi(\xi)). \tag{8.7}$$

ПРИМЕР 8.6. Случайная величина ξ задана плотностью распределения f(x) = x/8 в интервале (0,4); вне этого интервала f(x) = 0. Найти математическое ожидание и дисперсию величины ξ .

▶Поскольку плотность равна 0 вне (0, 4),

$$M(\xi) = \int_{-\infty}^{+\infty} x f(x) dx = \int_{0}^{4} x f(x) dx.$$

Подставив f(x) = x/8, получим

$$M(\xi) = \frac{1}{8} \int_{0}^{4} x^{2} dx = \frac{1}{8} \cdot \frac{x^{3}}{3} \Big|_{0}^{4} = \frac{8}{3} \approx 2,667.$$

Дисперсия

$$D(\xi) = \int_{a}^{b} x^{2} f(x) dx - M^{2}(\xi)$$

или

$$D(\xi) = \frac{1}{8} \int_{0}^{4} x^{3} dx - \left(\frac{8}{3}\right)^{2} = \frac{1}{8} \cdot \left.\frac{x^{4}}{4}\right|_{0}^{4} - \frac{64}{9} = \frac{8}{9} \approx 0,889. \blacktriangleleft$$

Other: $M(\xi) = 8/3 \approx 2,667, \ D(\xi) = 8/9 \approx 0,889.$

ПРИМЕР 8.7. График плотности вероятности случайной величины ξ изображен на рисунке 30 (закон Симпсона). Найти математическое ожидание и дисперсию.

▶Из графика f(x) видно, что плотность вероятности определяется уравнениями:

$$f(x) = \begin{cases} x + 1 \text{ при } x \in (-1, 0), \\ -x + 1 \text{ при } x \in (0, 1), \\ 0 \text{ при } x \leqslant -1, x \geqslant 1. \end{cases}$$

Рис. 30. График плотности распределения

Поскольку f(x) задана на интервале (-1,1) двумя аналитическими выражениями, то

$$M(\xi) = \int_{-\infty}^{+\infty} x f(x) dx = \int_{-1}^{0} x(x+1) dx + \int_{0}^{1} x(-x+1) dx = 0.$$

Далее, учитывая, что $M(\xi)=0$, найдем дисперсию

$$D(\xi) = \int_{-1}^{0} x^{2}(x+1)dx + \int_{0}^{1} x^{2}(-x+1)dx = \frac{1}{6} \approx 0.167. \blacktriangleleft$$
Other: $M(\xi) = 0$, $D(\xi) = 1/6 \approx 0.167$.

ПРИМЕР 8.8. Случайная величина ξ задана плотностью распределения $f(x) = A \sin 2x$ в интервале $(0, \pi/2)$; вне этого интервала f(x) = 0. Найти математическое ожидание и дисперсию величины ξ .

►Заданная функция может быть функцией плотностью, если она неотрицательна и площадь между графиком функции и осью абсцисс равна 1. Получаем

$$\int_{-\infty}^{+\infty} f(x)dx = A \int_{0}^{\pi/2} \sin 2x dx = -0.5A \cos 2x \Big|_{0}^{\pi/2} = -0.5A(\cos \pi - \cos 0) = A.$$

При A=1 все требования к функции плотности выполняются.

$$M(\xi) = \int_{-\infty}^{+\infty} x f(x) dx = \int_{0}^{\pi/2} x \sin 2x dx = -0.5 \int_{0}^{\pi/2} x d \cos 2x = 0$$

$$= -0.5x \cos 2x \Big|_{0}^{\pi/2} + 0.5 \int_{0}^{\pi/2} \cos 2x dx = 0$$

$$= -0.5(\frac{\pi}{2} \cos \pi - 0 \cos 0) + 0.25 \sin 2x \Big|_{0}^{\pi/2} = \pi/4.$$

$$M(\xi^{2}) = \int_{-\infty}^{+\infty} x^{2} f(x) dx = \int_{0}^{\pi/2} x^{2} \sin 2x dx = -0.5 \int_{0}^{\pi/2} x^{2} d \cos 2x = 0$$

$$= -0.5x^{2} \cos 2x \Big|_{0}^{\pi/2} + 0.5 \int_{0}^{\pi/2} \cos 2x dx^{2} = \frac{\pi^{2}}{8} + \int_{0}^{\pi/2} x \cos 2x dx = 0$$

$$= \frac{\pi^{2}}{8} + 0.5 \int_{0}^{\pi/2} x d \sin 2x = \frac{\pi^{2}}{8} + 0.5(x \sin 2x \Big|_{0}^{\pi/2} - \int_{0}^{\pi/2} \sin 2x dx) = 0$$

$$= \frac{\pi^{2}}{8} + 0.25 \cos 2x \Big|_{0}^{\pi/2} = \frac{\pi^{2}}{8} - \frac{1}{2}.$$

$$D(\xi) = M(\xi^{2}) - M^{2}(\xi) = \frac{\pi^{2}}{8} - \frac{1}{2} - \frac{\pi^{2}}{16} = \frac{\pi^{2}}{16} - \frac{1}{2}.$$

$$Other: M(\xi) == \pi/4, D(\xi) = \frac{\pi^{2}}{16} - \frac{1}{2}.$$

ПРИМЕР 8.9. Плотность вероятности распределения Лапласа имеет вид: $f(x) = \frac{\lambda}{2} \cdot e^{-\lambda |x|} \ (\lambda > 0)$. Найти математическое ожидание, дисперсию и среднее квадратическое отклонение случайной величины ξ .

►Математическое ожидание

$$M(\xi) = \int_{-\infty}^{+\infty} x \frac{1}{2} \lambda e^{-\lambda |x|} dx = \frac{1}{2} \lambda \int_{-\infty}^{0} x e^{\lambda x} dx + \frac{1}{2} \lambda \int_{0}^{\infty} x e^{-\lambda x} dx.$$

Проводя интегрирование по частям, получим $M(\xi)=0$. Этот результат можно было получить сразу, поскольку подынтегральная функция нечётная.

Аналогично найдем дисперсию

$$D(\xi) = \int_{-\infty}^{+\infty} x^2 \cdot \frac{1}{2} \lambda e^{-\lambda|x|} dx = \frac{2}{\lambda^2}.$$

Среднее квадратическое отклонение
$$\sigma(\xi) = \sqrt{D(\xi)} = \frac{\sqrt{2}}{\lambda}. \blacktriangleleft$$

Other:
$$M(\xi) = 0, \ D(\xi) = 2/\lambda^2, \ \sigma(\xi) = \frac{\sqrt{2}}{\lambda}.$$

ПРИМЕР 8.10. Случайная величина эксцентриситета детали характеризуется функцией распределения Рэлея:

$$F(x) = \begin{cases} 0 & npu \ x < 0, \\ 1 - e^{-\frac{x^2}{2\sigma^2}} & npu \ x \ge 0. \end{cases}$$

Найти плотность вероятности f(x), моду и медиану распределения.

▶Плотность вероятности

$$f(x) = F'(x) = \begin{cases} 0 \text{ при } x < 0, \\ \frac{x}{\sigma^2} \cdot e^{-\frac{x^2}{2\sigma^2}} \text{ при } x \geqslant 0. \end{cases}$$

Модой распределения $M_0(\xi)$ называется значение аргумента, при котором плотность вероятности достигает максимума. Здесь

$$f'(x) = \frac{1}{\sigma^2} e^{-\frac{x^2}{2\sigma^2}} \cdot \left(1 - \frac{x^2}{\sigma^2}\right)$$

и так как $x\geqslant 0$, то f'(x)=0 только при $x=\sigma$. Поскольку f'(x) меняет знак с плюса на минус при переходе через точку $x=\sigma$, то f в этой точке будет иметь максимум. Следовательно, мода $M_0(\xi)=\sigma$.

Медианой распределения $M_e(\xi)$ называют величину x, определяемую из равенства F(x) = 1/2. В данной задаче

$$1/2 = 1 - e^{-x^2/2\sigma^2}, \quad 1/2 = e^{-x^2/2\sigma^2}.$$

Отсюда найдем $x = \sigma \sqrt{2 \cdot \ln 2}$ или $M_e(\xi) = \sigma \sqrt{2 \cdot \ln 2}$. \blacktriangleleft

Задания для самостоятельной работы

ПРИМЕР 8.11. Случайная величина ξ задана на всей оси Ox функцией распределения $F(x)=1/2+\arctan(x)/\pi$. Найти вероятность того, что в результате испытания величина ξ примет значение, заключенное в интервале $(0,\sqrt{3})$.

ПРИМЕР 8.12. Плотность распределения непрерывной случайной величины ξ в интервале (0,2) задана как $f(x) = Ax^3$; вне этого интервала f(x) = 0. Определить A, найти вероятность того, что ξ

примет значение, принадлежащее интервалу (0,1) и её математическое ожидание.

ПРИМЕР 8.13. Дана функция распределения непрерывной случайной величины ξ

$$F(x) = \begin{cases} 0 & npu \ x \le 0, \\ 1/2 - (1/2)\cos 3x & npu \ 0 < x \le \pi/3, \\ 1 & npu \ x > \pi/3. \end{cases}$$

Найти плотность распределения f(x).

ПРИМЕР 8.14. Функция распределения непрерывной случайной величины ξ задана выражением

$$F(x) = \begin{cases} 0 & npu \ x \le 0, \\ ax^3 & npu \ 0 < x \le 4, \\ 1 & npu \ x > 1. \end{cases}$$

Определить: коэффициент a, плотность распределения ξ , вероятность попадания ξ в интервал (2,3).

ПРИМЕР 8.15. Плотность распределения случайной величины ξ имеет вид:

$$f(x) = \begin{cases} 0, & ecnu \ x \leq 0 \ unu \ x > \pi, \\ A\sin x, & ecnu \ 0 < x \leq \pi. \end{cases}$$

Hайти A, функцию распределения, математическое ожидание и дисперсию.

ПРИМЕР 8.16. Случайная величина ξ имеет плотность вероятности $f(x) = (2/\pi) \cdot \cos^2 x$ при $x \in (-\pi/2, \pi/2)$ и f(x) = 0 вне указанного интервала. Найти среднее квадратическое отклонение величины ξ .

Домашнее задание.

Выполнить задание 1.10 типового расчёта.