OPTIMIZATION IN PRACTICE

Dr. Natalia Summerville

Advanced Analytics and Artificial Intelligence

Portfolio Optimization – Type 1

You have \$100 to invest in stocks. You have two stock options: A and B. Stock A will give you an estimated 5% return. Stock B will give you an estimated 3% return. Assume you can invest maximum 50% of your budget in stock A. How much do you invest in each stock to maximize your return? What is the maximum return possible?

Portfolio Optimization – Type 2

You have three stock options: A, B and C. Stock A will give you an estimated 5% return. Stock B will give you an estimated 3% return. Stock C will give you an estimated 2% return. Assume you need \$60 to invest in stock A, \$120 to invest in stock B and \$80 to invest in stock C. Partial investments are not allowed and your budget is \$200. Which stocks do you choose to maximize your return? What is the maximum return possible?

Business Applications

Advertisement Scheduling in TV Network

Tesla wants:

Advertise Model X on Jan-Mar 2016 Spend at most \$350,000 Reach at least 1M Female 31-50 viewers

7 Dayparts:

Weekend Day

Early Morning 10 Channels: Daytime 12 weeks 30 spots of 30 secs per hour CNN 1680 hours of 604,800 Early Fringe planning programming **TNT** options Primetime horizon FOX Late Fringe Etc... Late Night

Analytical Formulation

Mathematical Formulation

Daypart	Week	Channel	SPOTS	lmp	СРМ
Daytime	5/10	FOX	2	500	\$24
Daytime	5/10	CNN	0	710	\$46
Daytime	5/10	ABC	5	210	\$15

Decision Variables:

Spots_{daypart,week,channel} INTEGER

Parameters/Inputs:

 $Impressions_{demo,daypart,week,channel} \\ CPM_{daypart,week,channel} \\ Available_{daypart,week,channel}$

Objective Function:

$$\max \sum Spots_{daypart,week,channel} \frac{Impressions_{demo,daypart,week,channel}}{1000} CPM_{daypart,week,channel}$$

Subject to:

$$\sum Spots_{daypart,week,channel} \frac{Impressions_{demo,daypart,week,channel}}{1000} CPM_{daypart,week,channel} \leq \$350000$$

$$\sum Spots_{daypart,week,channel} Impressions_{demo,daypart,week,channel} \ge 1,000,000$$

$$\sum Spots_{daypart,week,channel} \leq Available_{daypart,week,channel}$$

Business Applications

Price optimization in b2b

Sears wants:

100-200 Refrigerators
50-100 Microwaves
Delivered by October 31st 2016
They want a promotion from you

Analytical Formulation

Mathematical Formulation

Product	Promo	SELECT	Demand	Profit
Fridge	5%	1	100	1%
Fridge	10%	0	150	2%
Fridge	15%	0	180	0.8%

Decision Variables:

Select_{product,promo} BINARY

Parameters/Inputs:

 $Demand_{product,promo}$ $Profit_{product,promo}$ $Available_{product}$ Weigth

Objective Function:

$$\max \sum (W*Demand_{product,promo} + (1-W)Profit_{product,promo})Select_{product,promo}$$

Subject to:

$$\sum Select_{product,promo} Demand_{product,promovalue} \leq Available_{product}$$

$$\begin{split} &\sum Select_{product,promo} Profit_{product,promo} \geq 1\% \\ &100 \leq \sum Select_{fridge,promo} Demand_{fridge,promo} \leq 200 &\sum Select_{fridge,promo} = 1 \\ &50 \leq \sum Select_{microwave,promo} Demand_{microwave,promo} \leq 100 &\sum Select_{microwavepromo} = 1 \end{split}$$

Operations Research

- Scientific decision-making tool
- Use of mathematical formulation and programming
- Operations Research includes other areas as:
 - Optimization
 - Simulation
 - Network Flows
- Optimization
 - Minimization/Maximization (Objective Function)
 - Under certain conditions (Constraints)
 - Algorithm (Solver)

Optimization

- Linear Programming
- Mixed Integer Linear Programming
- Non-Linear Programming
- Multicriteria Programming

Business Applications

- Media Advertisement
- Hospital Management
- Portfolio Management
- Price Optimization
- Personnel Assignment
- Transportation Scheduling
- Inventory Management
- Facility Location