- Random forest usimg grid search
- Methodology
 - **Data Cleaning:** Checking for null values and based on their number either droping them or replacing with mean, median, mode based on the type and description of data. Droping decscrete and catagorical variables that have highly skewed histograms.
 - **Data Visualization:** This step helps understand the understand the data in a visually. We can understand normality of the data as well. This helps us to decide whether to normalize the data. In case of catagorical variables it also helps in feature selection.
 - Feature Selection: Based on the Pearson correlation between the labeled column and rest of the features. In general, a very great correlation should have an absolute value greater than 0.75. When the labeled column is depended on multiple columns, the correlation with one column may be less. But combined features may have higher effect.
 - Train Test Split: We split the data into 80:20 ratio for tarining testing respectively.
 - Model Selection: Based on the data visualization and data correlation, we need to select a model that would best suit. Here we need to
 use XGBOOST.
 - Evalution: In this case we are using RMSE, R2 Score to determine the accuracy of the predicting model.
- importing libraries

```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
```

Reading data

```
df=pd.read_csv(r"drive/My Drive/Asteroid_Updated.csv")
```

[-> /usr/local/lib/python3.6/dist-packages/IPython/core/interactiveshell.py:2718: DtypeWarning: Columns (0,10,15,16,23,24) have mixed types. Specify dtype option on import or set low_memory=Facinteractivity=interactivity, compiler=compiler, result=result)

Null value percentages

С

```
Null=[]
for i in df:
    Null.append((i,df[i].isna().mean()*100))
Null=pd.DataFrame(Null,columns=['class','per'])
Null
```

	class	per
0	name	97.383990
1	а	0.000238
2	е	0.000000
3	i	0.000000
4	om	0.000000
5	W	0.000000
6	q	0.000000
7	ad	0.000715
8	per_y	0.000119
9	data_arc	1.842770
10	condition_code	0.103249
11	n_obs_used	0.000000
12	Н	0.320228
13	neo	0.000715
14	pha	1.958048
15	diameter	83.609181
16	extent	99.997856
17	albedo	83.755302
18	rot_per	97.761619
19	GM	99.998333
20	BV	99.878411
21	UB	99.883413
22	IR	99.999881
23	spec_B	99.801599
24	spec_T	99.883294
25	G	99.985829
26	moid	1 958048

▼ Columns with percentage of null values Greater than 85%

l=Null[Null['per']>85]['class']
Null[Null['per']>85]

₽

	class	per
0	name	97.383990
16	extent	99.997856
18	rot_per	97.761619
19	GM	99.998333
20	BV	99.878411

These columns will have very less impact on the decision since most of their values are null.

We can drop them

df=df.drop(l,axis=1)
df

₽		а	e	i	om	W	q	ad	per_y	data_arc	condition_code	n_obs_used	н	neo	pha	diameter	albedo	moid	class	n
	0	2.769165	0.076009	10.594067	80.305532	73.597694	2.558684	2.979647	4.608202	8822.0	0	1002	3.340	N	N	939.4	0.0900	1.594780	MBA	0.213885
	1	2.772466	0.230337	34.836234	173.080063	310.048857	2.133865	3.411067	4.616444	72318.0	0	8490	4.130	N	Ν	545	0.1010	1.233240	MBA	0.213503
	2	2.669150	0.256942	12.988919	169.852760	248.138626	1.983332	3.354967	4.360814	72684.0	0	7104	5.330	N	Ν	246.596	0.2140	1.034540	MBA	0.226019
	3	2.361418	0.088721	7.141771	103.810804	150.728541	2.151909	2.570926	3.628837	24288.0	0	9325	3.200	Ν	Ν	525.4	0.4228	1.139480	MBA	0.271609
	4	2.574249	0.191095	5.366988	141.576605	358.687607	2.082324	3.066174	4.130323	63507.0	0	2916	6.850	N	Ν	106.699	0.2740	1.095890	MBA	0.238632
	839709	2.812945	0.664688	4.695700	183.310012	234.618352	0.943214	4.682676	4.717914	17298.0	0	118	20.400	Υ	Υ	NaN	NaN	0.032397	APO	0.208911
	839710	2.645238	0.259376	12.574937	1.620020	339.568072	1.959126	3.331350	4.302346	16.0	9	15	17.507	Ν	Ν	NaN	NaN	0.956145	MBA	0.229090
	839711	2.373137	0.202053	0.732484	176.499082	198.026527	1.893638	2.852636	3.655884	5.0	9	6	18.071	Ν	Ν	NaN	NaN	0.893896	MBA	0.269600
	839712	2.260404	0.258348	9.661947	204.512448	148.496988	1.676433	2.844376	3.398501	10.0	9	13	18.060	Ν	Ν	NaN	NaN	0.680220	MBA	0.290018
	839713	2.546442	0.287672	5.356238	70.709555	273.483265	1.813901	3.278983	4.063580	11.0	9	11	17.406	Ν	Ν	NaN	NaN	0.815280	MBA	0.242551
	839714 rc	ows × 21 col	umns																	

df.dtypes

₽

```
a float64
e float64
i float64
```

▼ Catagorical columns with skewed distribution

Since the most values have only one catagory so, the impact of rest of the catagories is not significant, and droping them will not effect the decision variable.

```
float64
       i
                         float64
                         float64
       om
                         float64
                         float64
       q
                         float64
       ad
                         float64
       per_y
       data_arc
                         float64
       condition_code
                         object
       n_obs_used
                          int64
       Н
                         float64
                         object
       diameter
       albedo
                         float64
       moid
                         float64
                         float64
       n
       per
                         float64
                         float64
       dtype: object
▼ Handling diameter columns data
  df.diameter.unique()
   rray(['939.4', '545', '246.596', ..., 0.122, 0.65099999999999, 1.077],
             dtype=object)
  The data is in both numeric and catagorical values, we need to convert it to int data type
  df['diameter']= df.diameter.astype(float,errors='ignore')
  df.diameter.unique()
   ray([9.39400e+02, 5.45000e+02, 2.46596e+02, ..., 1.22000e-01,
              6.51000e-01, 1.07700e+00])
▼ Droping null values
```

df.dtypes

df.isna().sum()/len(df)*100

C→

float64

а 0.000238 there are null values in predicting column and it is a high number filling them increases the error in the data so, dropping them is only the option. df = df[df['diameter'].notna()] 0 000110 fill the remaining with median value 0.000000 n obs used df=df.fillna(df.mean()) df.isna().sum() 0 _→ a 0 0 i 0 om 0 W q 0 0 ad per_y data_arc 0 condition code 0 0 n_obs_used 0 diameter albedo 0 0 moid 0 n 0 per 0 dtype: int64 ▼ Handling condition_code columns data

```
df['condition_code'].unique()
7.0, 9.0, 8.0, '8', '6'], dtype=object)
df['condition_code'] = df.condition_code.astype(int)
df['condition_code'].unique()

Array([0, 1, 3, 2, 4, 5, 9, 7, 6, 8])
```

▼ Feature

₽

```
import seaborn as sns
plt.figure(figsize=(30,20))
sns.heatmap(df.corr(),annot = True,cmap="jet")
```

- 0.8

- 0.6

- 0.4

- 0.2

- 0.0

- -0.2

<matplotlib.axes._subplots.AxesSubplot at 0x7f3d67f18ef0>

abs(df.corr()['diameter']*100).sort_values(ascending=False)

```
diameter
                         100.000000
                         56.849287
                         49.157968
       data arc
  15 highly correlated features
  l=dict(abs(df.corr()['diameter']*100).sort_values(ascending=False)[:-3]).keys()
   F> dict_keys(['diameter', 'H', 'data_arc', 'n_obs_used', 'moid', 'q', 'n', 'a', 'albedo', 'ad', 'condition_code', 'i', 'e', 'per', 'per_y'])
                          4.913337
  df=df[1]
                           0.965894
▼ Train Test Split
       Name, urameter, utype, iroaton
  cols = [col for col in df.columns if col not in ["diameter"]]
  X = df[cols]
  from sklearn.model_selection import train_test_split
  X train, X test, y train, y test = train test split(df, df['diameter'], test size=0.2)

    XGBOOST Model

  from xgboost import XGBRegressor
  model = XGBRegressor(max_depth=8,n_jobs=6,booster='dart')
  model.fit(X train, y train)
   F.> [19:25:16] WARNING: /workspace/src/objective/regression_obj.cu:152: reg:linear is now deprecated in favor of reg:squarederror.
       XGBRegressor(base_score=0.5, booster='dart', colsample_bylevel=1,
                    colsample bynode=1, colsample bytree=1, gamma=0,
                    importance_type='gain', learning_rate=0.1, max_delta_step=0,
                    max_depth=8, min_child_weight=1, missing=None, n_estimators=100,
                    n_jobs=6, nthread=None, objective='reg:linear', random_state=0,
                    reg_alpha=0, reg_lambda=1, scale_pos_weight=1, seed=None,
                    silent=None, subsample=1, verbosity=1)

    R2 Score on Test and Train set

  model.score(X train, y train)
   model.score(X_test, y_test)
   € 0.9205378495840809
```