PRIMO

PRobabilistic Inference MOdules

Manuel Baum, Denis John, Lukas Kettenbach, Maximilian Koch

Bielefeld University

11. Oktober 2013

Introduction

Idea

- probabilistic inference modules for Python
- library which offers well known probabilistic (graphical) models like Bayesian or temporal networks
- variety of inference algorithms

Download/Documentation/Installation Guide

- github.com/mbaumBielefeld/PRIMO
- github.com/mbaumBielefeld/PRIMO/ wiki

Structure

PRIMO/

- doc/
- examples/
- primo/
 - core/ → BayesNet.py, Node.py, DynamicBayesNet.py, ...
 - decision/ → DecisionNode.py, UtilityNode.py, ...
 - reasoning/ → DiscreteNode.py, density/, MCMC.py, ...
 - tests/
 - utils/ → XMLBIF.py
- setup.py

Definition

A DBN is a pair (B_0, B_{\rightarrow}) , where B_0 is a Bayesian network over $\chi^{(0)}$ representing the initial distribution, and B_{\rightarrow} is a 2-TBN for the process. For any desired time span $T \geq 0$, the distribution over $\chi^{(0:T)}$ is defined as a unrolled Bayesian network, where, for any i=1,...,n:

- the structure and CPDs of $X_i^{(0)}$ are the same as those for X_i in B_0 ,
- the structure and CPDs of $X_i^{(t)}$ for $t \ge 0$ are the same as those for X_i' in B_{\rightarrow} .

Inference

Exact Inference

- We can use standard inference algorithms (e.g. variable elimination)
- Problem I: run inference on larger an larger networks over time
- Problem II: maintain our entire history of observations indefinitely
- Solution/workaround: use approximate inference

Inference

Approximate Inference

- We can use some kind of Likelihood Weighting
- Two modifications:
 - run all samples together through the DBN, one slice at a time
 - focus the set of samples on the high-probability regions of the state space
- Particle Filter:
 - Each sample is propagated forward by sampling the next state value x_{t+1} given the current value x_t for the sample
 - Each sample is weighted by the likelihood it assigns to the new evidence $P(e_{t+1}|x_{t+1})$
 - 3 The population is *resampled* to generate a new population of *N* samples. Each new sample is selected from the current population; the probability that a particular sample is selected is proportional to its weight.

Inference

Algorithm

Task Description

Task Description

- Exact inference
- Use elimination trees
- Prior Marginal,
 Posterior Marginal &
 PoE

```
Algorithm 0 \text{ FE2}(N, \mathbf{Q}, (T, \phi), r) input:

N: Bayesian network

Q: some variables in network N

(T, \phi): elimination tree for the CPTs of network N

r: a node in tree T where \mathbf{Q} \subseteq \text{van}(r)

output: the prior marginal P(\mathbf{Q})

main:

i. while tree T has more than one node do

2: remove a node [+e] having a single neighbor f from tree T

3: V = V-variables appearing in \phi_t but not in remaining tree T

4: \phi_t = \phi_t \sum_i \phi_i

5: end while

6: return project (\phi_t, \mathbf{Q})
```

Literature

Literature

 Modeling and Reasoning with Bayesian Networks , Adnan Darwiche Literature

Thank you for your attention!