Some Plot in R

Just a note

 $blade_jack163.com$

2018.2.13

Contents

1	R p	lot
	1.1	Scatter
	1.2	Histgram
	1.3	Boxplot
	1.4	Pie
	1.5	Barplot
	1.6	Multi figures
	1.7	Volcano
2	ggpl	ot 20
	2.1	SV statistics & plot
	2.2	Scatter
	2.3	Boxplot
	2.4	Violine
	2.5	Density curve
	2.6	Time change plot
	2.7	Variant type statistics and plot
	2.8	KEGG Plot
	2.9	Go annotation plot
	2.10	Manhattan
	2.11	Venn
		2.11.1 gplots Venn
	2.12	Heatmap
		2.12.1 R heatmap
		2.12.2 gplots heatmap
		2.12.3 pheatmap heatmap

Chapter 1

R plot

1.1 Scatter

1.2 Histgram

Histogram of Gene Length

Histogram of Gene Length

1.3 Boxplot

```
options(warn=-1)
m <- read.table("./figure/03.Boxplot/test.txt");
x <- m[,1];
y <- m[,2];
z <- m[,3];
boxplot(z~x,outline=F);</pre>
```


test boxplot

test boxplot

1.4 Pie

```
m=read.table("./figure/04.Pie/Species.txt");
pie(m[,3]);
```



```
pie(m[,3],
    col=rainbow(nrow(m)),
   );
```


1.5 Barplot

```
ylab="Number of genes",
       );
mtext( m[,1],side=1,at=1:25-0.5 );
1 \leftarrow c(0,5,15,23,25);
id<- c("INFORMATION STORAGE\nAND PROCESSING",</pre>
       "CELLULAR PROCESSES\nAND SIGNALING",
       "METABOLISM",
       "POORLY\nCHARACTERIZED"
      );
abline( v = 1[c(-1, -5)] );
for( i in 2:length(1) ){
    text( (l[i-1]+l[i])/2, max(m[,3])*1.1,
            id[i-1],
            cex=0.8, xpd=T,
        );
}
par(mar=c(2,0,2,1)+0.1 );
plot(0,0,type="n",
        xlim=c(0,1), ylim=c(0,26),
        bty="n",axes=F,xlab="",ylab="",
    );
for( i in 1:length(class) ){
    text(0,26-i+0.5,paste(m[i,1],m[i,2]),
            pos=4,cex=1,pty=T,
        );
title("COG function classification");
```


- J Translation, ribosomal structur A RNA processing and modifica K Transcription
- L Replication, recombination an
- B Chromatin structure and dyna
- D Cell cycle control, cell divisior
- Y Nuclear structure
- V Defense mechanisms
- T Signal transduction mechanis
- M Cell wall/membrane/envelopε
- N Cell motility
- Z Cytoskeleton
- W Extracellular structures
- U Intracellular trafficking, secret
- O Posttranslational modification
- C Energy production and conve
- G Carbohydrate transport and n
- E Amino acid transport and met
- F Nucleotide transport and meta
- H Coenzyme transport and met
- I Lipid transport and metabolism
- $\ensuremath{\mathsf{P}}$ Inorganic ion transport and $\ensuremath{\mathsf{m}}$
- Q Secondary metabolites biosy
- R General function prediction or S Function unknown

1.6 Multi figures

```
par(mar=c(0,5,1,1));
barplot(xhist$counts,space=0,xlim=c(0,100));

par(mar=c(5,0,1,1));
barplot(yhist$counts,space=0,horiz=TRUE,ylim=c(0,max(y)));
```


1.7 Volcano

```
library("ggplot2")
library("DESeq2")

## Loading required package: S4Vectors
## Loading required package: methods
## Loading required package: stats4
## Loading required package: BiocGenerics
## Loading required package: parallel
##
## Attaching package: 'BiocGenerics'
```

```
## The following objects are masked from 'package:parallel':
##
     clusterApply, clusterApplyLB, clusterCall, clusterEvalQ,
##
##
     clusterExport, clusterMap, parApply, parCapply, parLapply,
##
     parLapplyLB, parRapply, parSapply, parSapplyLB
## The following objects are masked from 'package:stats':
##
##
     IQR, mad, xtabs
## The following objects are masked from 'package:base':
##
##
     anyDuplicated, append, as.data.frame, as.vector, cbind,
##
     colnames, do.call, duplicated, eval, evalq, Filter, Find, get,
     grep, grepl, intersect, is.unsorted, lapply, lengths, Map,
##
##
     mapply, match, mget, order, paste, pmax, pmax.int, pmin,
     pmin.int, Position, rank, rbind, Reduce, rownames, sapply,
     setdiff, sort, table, tapply, union, unique, unlist, unsplit
##
## Loading required package: IRanges
## Loading required package: GenomicRanges
## Loading required package: GenomeInfoDb
## Loading required package: SummarizedExperiment
## Loading required package: Biobase
## Welcome to Bioconductor
##
##
      Vignettes contain introductory material; view with
##
      'browseVignettes()'. To cite Bioconductor, see
##
      'citation("Biobase")', and for packages 'citation("pkgname")'.
## Loading required package: Rcpp
## Loading required package: RcppArmadillo
## Note: the specification for S3 class "AsIs" in package 'DBI' seems
equivalent to one from package 'BiocGenerics': not turning on duplicate
class definitions for this class.
dta <- read.csv("data/des.csv",header = T)</pre>
head(dta)
                  X
                       baseMean log2FoldChange
                                                   lfcSE
## 1 ENSG00000000003 708.6021697 -0.38125397 0.10065597 -3.7876937
                                   0.20681259 0.11222180 1.8428915
## 2 ENSG00000000419 520.2979006
## 3 ENSG00000000457 237.1630368
                                   0.03792034 0.14345322 0.2643394
## 4 ENSG00000000460 57.9326331 -0.08816367 0.28716771 -0.3070111
## 6 ENSG00000000971 5817.3528677
                                   0.42640216 0.08831006 4.8284666
##
          pvalue
                         padj
## 1 1.520521e-04 0.0012815112
## 2 6.534485e-02 0.1962308610
## 3 7.915184e-01 0.9112208706
## 4 7.588349e-01 0.8946714454
## 5 6.937335e-01
                           NA
## 6 1.375884e-06 0.0000181641
```

```
dta <- na.omit(dta)
volcano <- ggplot(dta,aes(log2FoldChange,-1*log10(padj)))
volcano+geom_point()</pre>
```


volcano+geom_point()+xlim(-10,10) + ylim(0,100)

Chapter 2

ggplot

2.1 SV statistics & plot


```
#
ggplot(my_sv, aes(x=chrom,fill=type)) + geom_bar(position = "fill")
```


ggplot(my_sv, aes(x=chrom,fill=type)) + geom_bar(position = "dodge")

ggplot(my_sv, aes(x=chrom,fill=type)) + geom_bar(position = "jitter")

ggplot(my_sv, aes(x=chrom,fill=type)) + geom_bar(position = "identity")

ggplot(my_sv, aes(x=chrom,fill=type)) + geom_bar(position = "stack")


```
#
ggplot(my_sv, aes(x=size,fill=type)) +
geom_bar(binwidth=5) + xlim(0,500)
```


2.2 Scatter

ggplot(my_sv, aes(x=ref.dist,y=query.dist,color=type)) +
 geom_point()

2.3 Boxplot

ggplot(my_sv, aes(x=type,y=size,fill=type)) +
 geom_boxplot()+ylim(0,1000)


```
ggplot(my_sv, aes(x=type,y=size,fill=type)) +
    geom_boxplot() + coord_flip()
```


2.4 Violine


```
ggplot(my_sv, aes(x=type,y=size,fill=type)) +
    geom_violin() + ylim(0,1000) + guides(fill=FALSE)
```


ggplot(my_sv, aes(x=type,y=size,fill=type)) +
 geom_violin(adjust=0.2) + ylim(0,1000) + guides(fill=FALSE)

ggplot(my_sv, aes(x=type,y=size,fill=type)) +
 geom_violin() + scale_y_log10()

2.5 Density curve


```
ggplot(my_sv, aes(x=size,fill=type)) +
    geom_density(position="stack") + xlim(0,500)
```


ggplot(my_sv, aes(x=size,fill=type)) +
 geom_density(alpha=0.5) + xlim(0,500)

2.6 Time change plot

```
library(ggplot2)
time_course <- read.csv("data/time_course_data.txt",</pre>
                        stringsAsFactors=TRUE,header=TRUE)
time_course
##
      seconds value sample
## 1
            0
               0.00
## 2
                5.97
                          Α
## 3
            2
              13.42
## 4
            3 56.08
## 5
            4
               98.04
            5
## 6
               27.11
                          Α
## 7
           10 38.74
                          Α
## 8
           15 64.88
                          Α
           20 65.21
## 9
                          Α
## 10
        0
              0.00
```

```
## 11
      1 7.72
                          В
            2 17.28
                          В
## 12
## 13
            3 60.72
                          В
## 14
           4 130.27
                          В
## 15
           5 40.21
                          В
           10 50.29
## 16
                          В
## 17
           15 80.17
                          В
## 18
           20 40.72
                          В
library(reshape2)
times <- dcast(time_course,seconds ~ sample)</pre>
#
plot(times$seconds,times$A,
     type = "1",col="red",lwd=2,ylim=c(0,140),lty=2,
     xlab = "Second",ylab="Value")
lines(times$seconds,times$B,col="green",lwd=2)
legend("topright",legend = c("A","B"),
       lty = c(2,1), lwd=2, col = c("red", "green"))
grid()
```



```
# ggplot2
#library(ggplot2)
ggplot(time_course, aes(x=seconds,y=value,colour=sample)) +
    geom_line()
```



```
#
ggplot(time_course, aes(x=seconds,y=value,colour=sample)) +
    geom_line(size=2) + coord_polar()
```


2.7 Variant type statistics and plot

```
summary(my_var)
     chrom
                start
                                    stop
## chr1 : 54467 Min. : 0 Min. : 10200
## chr2 : 46499 1st Qu.: 33424623 1st Qu.: 33427336
## chr3 : 37617 Median : 66145965 Median : 66150096
## chr6 : 34846 Mean : 77800396 Mean : 77805350
## chr5 : 30071 3rd Qu.:114147254 3rd Qu.:114148704
  chr7 : 29420
                Max. :249229377 Max. :249232977
##
  (Other):338419
                             V5 V6
                                                 V7
           type
## 7_Weak_Enhancer :109468 Min. :0 .:571339 Min. :
## 11_Weak_Txn : 82312 1st Qu.:0
                                           1st Qu.: 33424623
## 13_Heterochrom/lo: 75112 Median :0
                                           Median: 66145965
## 6_Weak_Enhancer : 69111 Mean :0
                                           Mean : 77800396
                                           3rd Qu.:114147254
## 5_Strong_Enhancer: 38604 3rd Qu.:0
                                           Max. :249229377
                        Max. :0
## 2_Weak_Promoter : 35065
## (Other) :161667
  V8
##
                           V9
## Min. : 10200 255,252,4 :178579
## 1st Qu.: 33427336 245,245,245: 89268
## Median: 66150096 153,255,102: 82312
## Mean : 77805350 250,202,0 : 64090
## 3rd Qu.:114148704 0,176,80 : 42736
## Max. :249232977 255,105,105: 35065
                   (Other) : 79289
table(my_var$chrom)
## chr1 chr10 chr11 chr12 chr13 chr14 chr15 chr16 chr17 chr18 chr19 chr2
## 54467 27263 28246 28863 14064 19133 20277 20113 25570 12324 19947 46499
## chr20 chr21 chr22 chr3 chr4 chr5 chr6 chr7 chr8 chr9 chrX
## 15000 6128 11497 37617 25155 30071 34846 29420 24506 24123 16210
levels(my_var$type)
## [1] "10_Txn_Elongation" "11_Weak_Txn" "12_Repressed"
  [4] "13 Heterochrom/lo" "14 Repetitive/CNV" "15 Repetitive/CNV"
## [7] "1_Active_Promoter" "2_Weak_Promoter" "3_Poised_Promoter"
## [10] "4_Strong_Enhancer" "5_Strong_Enhancer" "6_Weak_Enhancer"
## [13] "7_Weak_Enhancer" "8_Insulator" "9_Txn_Transition"
table(my_var$type)
## 14_Repetitive/CNV 15_Repetitive/CNV 1_Active_Promoter
                                                 2_Weak_Promoter
## 8028 6128 15278 35065
```

```
## 3_Poised_Promoter 4_Strong_Enhancer 5_Strong_Enhancer 6_Weak_Enhancer ## 5263 25486 38604 69111 ## 7_Weak_Enhancer 8_Insulator 9_Txn_Transition ## 109468 33265 16227 barplot(table(my_var$chrom))
```



```
#
chr1 <- table(my_var[my_var$chrom=="chr1",]$type)
barplot(chr1)</pre>
```



```
#
dsize = my_var$stop - my_var$start
hist(dsize)
```

Histogram of dsize


```
# 1
# 2 type
# 3 type

# chr
my_var$chrom <- factor(gsub("chr", "", my_var$chrom))
ggplot(my_var,aes(x=chrom,fill=type)) + geom_bar()</pre>
```



```
#
c(seq(1,22),"X","Y")
## [1] "1" "2" "3" "4" "5" "6" "7" "8" "9" "10" "11" "12" "13" "14"
## [15] "15" "16" "17" "18" "19" "20" "21" "22" "X" "Y"

my_var$chrom <- factor(my_var$chrom, levels=c(seq(1,22),"X","Y"))
ggplot(my_var,aes(x=chrom,fill=type)) + geom_bar()</pre>
```



```
summary(my_var$type)
                                             12_Repressed 13_Heterochrom/lo
## 10_Txn_Elongation
                            11_Weak_Txn
               26509
                                 82312
                                                    25483
## 14_Repetitive/CNV 15_Repetitive/CNV 1_Active_Promoter
                                                             2_Weak_Promoter
##
                8028
                                   6128
                                                                       35065
                                                    15278
## 3_Poised_Promoter 4_Strong_Enhancer 5_Strong_Enhancer
                                                            6_Weak_Enhancer
##
                5263
                                25486
                                                    38604
                                                                       69111
                           8_Insulator 9_Txn_Transition
##
     7_Weak_Enhancer
##
              109468
                                 33265
                                                    16227
             %in%
my_var <- my_var[my_var$type %in%</pre>
                 c("1_Active_Promoter",
                   "4_Strong_Enhancer",
                   "8_Insulator"), ]
summary(my_var$type)
```

```
## 10_Txn_Elongation
                           11_Weak_Txn
                                             12_Repressed 13_Heterochrom/lo
## 14_Repetitive/CNV 15_Repetitive/CNV 1_Active_Promoter
                                                            2 Weak Promoter
##
                   0
                                      0
                                                    15278
                                                                           0
## 3_Poised_Promoter 4_Strong_Enhancer 5_Strong_Enhancer
                                                            6_Weak_Enhancer
##
                   0
                                  25486
##
                           8_Insulator 9_Txn_Transition
     7_Weak_Enhancer
##
                   0
                                  33265
ggplot(my_var,aes(x=chrom,fill=type)) + geom_bar()
```



```
#
levels(my_var$type)[1]="Promoter"
levels(my_var$type)[10]="Enhancer"
levels(my_var$type)[14]="Insulator"

# plyr revalue
#library(plyr)
#my_var$type <- revalue(my_var$type, c("1_Active_Promoter"="Promoter", "4_Strong_Enhancer")</pre>
```

```
summary(my_var$type)
##
            Promoter
                                             12_Repressed 13_Heterochrom/lo
                            11_Weak_Txn
##
                   0
                                      0
## 14_Repetitive/CNV 15_Repetitive/CNV 1_Active_Promoter
                                                             2_Weak_Promoter
##
                   0
                                      0
                                                    15278
                                                                           0
## 3_Poised_Promoter
                                                             6_Weak_Enhancer
                               Enhancer 5_Strong_Enhancer
##
                                  25486
                   0
##
     7_Weak_Enhancer
                              Insulator 9_Txn_Transition
##
                                  33265
ggplot(my_var,aes(x=chrom,fill=type)) + geom_bar()
```



```
ggplot(my_var,aes(x=chrom,fill=type)) + geom_bar() +
    scale_fill_manual(values = c("green","blue","red"))
```



```
# facet
head(my_var)
     chrom start stop
1 11137 11737
                                   type V5 V6
                                                       V8
##
                                                V7
## 3
                             Insulator 0
                                           . 11137 11737 10,190,254
         1 28537 29737 1_Active_Promoter 0
                                               28537 29737
                                                             255,0,0
                                               91137 91737 10,190,254
## 22
         1 91137 91737 Insulator 0
         1 92337 92537
                              Insulator 0
                                               92337 92537 10,190,254
## 24
                              Insulator 0
                                            . 104737 105137 10,190,254
## 29
         1 104737 105137
## 31
         1 134337 134737
                              Insulator 0 . 134337 134737 10,190,254
colnames(my_var)
## [1] "chrom" "start" "stop" "type" "V5" "V6"
                                                  "V7"
                                                         "V8"
                                                                 "V9"
ggplot(my_var, aes(x=chrom,fill=type)) + geom_bar() +
facet_grid(type ~ .)
```



```
ggplot(my_var, aes(x=chrom,fill=type)) + geom_bar() +
   facet_grid(chrom ~ .)
```


2.8 KEGG Plot

```
library(ggplot2)

pathway <- read.csv("data/kegg.csv",header=T)
colnames(pathway)

## [1] "Pathway" "AvsB" "All_Unigene" "Pvalue" "Qvalue"

## [6] "richFactor" "Pathway.ID" "Genes" "KOs"

pp <- ggplot(data=pathway,mapping = aes(x=richFactor,y=Pathway))

pp + geom_point()</pre>
```


pp + geom_point(aes(size=AvsB))

pp + geom_point(aes(size=AvsB,color=Qvalue))


```
pp + geom_point(aes(size=AvsB,color=Qvalue)) +
    scale_colour_gradient(low="green",high="red")
```


2.9 Go annotation plot

```
library(ggplot2)

go <- read.csv("data/go.csv",header = T)
go_sort <- go[order(go$Ontology,-go$Percentage),]
m <- go_sort[go_sort$Ontology=="Molecular function",][1:10,]
c <- go_sort[go_sort$Ontology=="Cellular component",][1:10,]
b <- go_sort[go_sort$Ontology=="Biological process",][1:10,]
slimgo <- rbind(b,c,m)

# Trem
slimgo$Term=factor(slimgo$Term,levels=slimgo$Term)

colnames(slimgo)

## [1] "Ontology" "Term" "GO_ID" "Input_number"
## [5] "Percentage"</pre>
```

```
pp=ggplot(data = slimgo, mapping = aes(x=Term,y=Percentage,fill=Ontology))
pp+geom_bar(stat="identity")
```


2.10 Manhattan

```
#install.packages("qqman")
library(qqman)

##

## For example usage please run: vignette('qqman')

##

## Citation appreciated but not required:

## Turner, S.D. qqman: an R package for visualizing GWAS results using

Q-Q and manhattan plots. biorXiv DOI: 10.1101/005165 (2014).

##

library(RColorBrewer)

str(gwasResults)

## 'data.frame': 16470 obs. of 4 variables:

## $ SNP: chr "rs1" "rs2" "rs3" "rs4" ...

## $ CHR: int 1 1 1 1 1 1 1 1 1 ...
```

```
## $ BP : int 1 2 3 4 5 6 7 8 9 10 ...
## $ P : num 0.915 0.937 0.286 0.83 0.642 ...
head(gwasResults)
##
   SNP CHR BP
## 1 rs1
        1 1 0.9148060
## 2 rs2
         1 2 0.9370754
## 3 rs3
         1 3 0.2861395
## 4 rs4
         1 4 0.8304476
         1 5 0.6417455
## 5 rs5
## 6 rs6
         1 6 0.5190959
# Plot !
manhattan(gwasResults)
```



```
col = c("blue4", "orange3"),
suggestiveline = F,
genomewideline = F,
chrlabs = c(1:20, "P", "Q"))
```

Manhattan Plot


```
#
number <- length(unique(gwasResults$CHR))
set.seed(888)
yanse <- sample(colors(),number,replace = F)
manhattan(gwasResults,col = yanse,main = "Manhattan Plot")</pre>
```

Manhattan Plot


```
# SNP
snpsOfInterest
    [1] "rs3001" "rs3002" "rs3003" "rs3004" "rs3005" "rs3006" "rs3007"
##
##
    [8] "rs3008" "rs3009" "rs3010" "rs3011" "rs3012" "rs3013" "rs3014"
   [15] "rs3015" "rs3016" "rs3017" "rs3018" "rs3019" "rs3020" "rs3021"
   [22] "rs3022" "rs3023" "rs3024" "rs3025" "rs3026" "rs3027" "rs3028"
##
    [29] "rs3029" "rs3030" "rs3031" "rs3032" "rs3033" "rs3034" "rs3035"
##
    [36] "rs3036" "rs3037" "rs3038" "rs3039" "rs3040" "rs3041" "rs3042"
##
    [43] "rs3043" "rs3044" "rs3045" "rs3046" "rs3047" "rs3048" "rs3049"
##
    [50] "rs3050" "rs3051" "rs3052" "rs3053" "rs3054" "rs3055" "rs3056"
##
    [57] "rs3057" "rs3058" "rs3059" "rs3060" "rs3061" "rs3062" "rs3063"
##
   [64] "rs3064" "rs3065" "rs3066" "rs3067" "rs3068" "rs3069" "rs3070"
    [71] "rs3071" "rs3072" "rs3073" "rs3074" "rs3075" "rs3076" "rs3077"
##
    [78] "rs3078" "rs3079" "rs3080" "rs3081" "rs3082" "rs3083" "rs3084"
##
    [85] "rs3085" "rs3086" "rs3087" "rs3088" "rs3089" "rs3090" "rs3091"
##
    [92] "rs3092" "rs3093" "rs3094" "rs3095" "rs3096" "rs3097" "rs3098"
##
    [99] "rs3099" "rs3100"
manhattan(gwasResults, highlight = snpsOfInterest)
```



```
# SNP
manhattan(gwasResults, annotatePval = 0.01)
```


manhattan(gwasResults, annotatePval = 0.005, annotateTop = FALSE)

2.11 Venn

```
listA <- read.csv("data/genes_list_A.txt",header=FALSE)
A <- listA$V1
listB <- read.csv("data/genes_list_B.txt",header=FALSE)
B <- listB$V1
listC <- read.csv("data/genes_list_C.txt",header=FALSE)
C <- listC$V1
listD <- read.csv("data/genes_list_D.txt",header=FALSE)
D <- listD$V1

#length(A);length(B);length(C);length(D)
#intersect(A,B)
#setdiff(A,B)
#setdiff(B,A)
#union(C,D)</pre>
# gplots
```

```
library(gplots)

##

## Attaching package: 'gplots'

## The following object is masked from 'package:IRanges':

##

## space

## The following object is masked from 'package:stats':

##

## lowess

E <- sample(unique(union(C,D)),500,replace = F)

vennlist <- list(A,B,C,D,E)

venn(vennlist[1:3])</pre>
```



```
venn(vennlist[1:4])
```


venn(vennlist)


```
# VennDiagram
# install package VennDiagram
```

2.11.1 gplots Venn

2.12 Heatmap

2.12.1 R heatmap

```
dta <- read.csv("data/heatmap.csv",header = T,row.names = 1)
heatmap(as.matrix(dta))</pre>
```


2.12.2 gplots heatmap

```
library(gplots)
dta <- read.csv("data/heatmap.csv",header = T,row.names = 1)
heatmap.2(as.matrix(dta))</pre>
```


2.12.3 pheatmap heatmap

```
library(pheatmap)
dta=read.table("data/heatmap.csv",header=TRUE,row.names=1,sep=",")
pheatmap(dta)
```


mat=cor(dta)
pheatmap(mat,cluster_rows=F,cluster_cols=F,display_numbers=TRUE)

