ULA - okruhy na zkoušku v1.2

Jakub Koněrza

March 10, 2025

Abstract

https://www.youtube.com/watch?v=KxGRhd $_iWuE$

1 Zobrazení

1.1 Jednoznačnost

Zobrazení $f:A\to B$ je jednoznačné, pokud pro každé $x\in A$ existuje právě jedno $y\in B$, takové že y=f(x).

• Představme si 2D graf. Na jednom bodě x nemohou být dvě a více hodnot y.

1.2 Vzor množiny

- Vzor je to A v předchozím příkladě.
- Pokud $M = \{y\}$, pak $f^{-1}(\{y\})$ je nazýván vzorem prvku y.
- Množina toho co můžeme narvat za x do funkce f(x), abychom dostali y.
- Kdybychom si to představili jako funkci tak vzor je množina (IT: pole) vstupů funkce.

1.3 Obraz

- Obraz je to y v původním příkladě.
- Obraz je prvek z množiny B, který je výsledkem zobrazení prvku.
- Prvek množiny A ukazuje na prvek v množině B, a právě tento prvek je obrazem prvku množiny A. Chápeme se? xd
- Kdybychom si to představili jako funkci v programování tak obraz je množina (IT: pole) výsledků funkce.

1.4 Definiční obor

Definiční obor zobrazení $f:A\to B$ je množina A. Jedná se o všechny vstupy, pro které je zobrazení definováno.

Příklad: Pokud $f(x) = x^2$ pro $x \in \mathbb{R}$, definiční obor je \mathbb{R} .

- Jednoduše: je to množina A (neboli všechny prvky co někam ukazují)
- Kdybychom si to představili jako funkci v programování tak je to dejme tomu "datový typ" parametru funkce.

1.5 Obor hodnot

Obor hodnot je množina B, do které zobrazení $f:A\to B$ zobrazuje. Důležité je rozlišovat mezi oborem hodnot a obrazem zobrazení, neboť obor hodnot může obsahovat prvky, které nejsou obrazem žádného prvku z definičního oboru.

- Jednoduše: je to množina B
- Pozor: množina B může mít i prvky, na které neukazuje žádný prvek A

1.6 Vzor prvku

Vzor prvku $y \in B$ je množina všech $x \in A$, pro která platí f(x) = y. Značí se $f^{-1}(\{y\})$ a platí:

$$f^{-1}(\{y\}) = \{x \in A \mid f(x) = y\}.$$

Příklad: Nechť $f(x)=x^2$ a y=4. Pak vzor prvku 4 je $f^{-1}(\{4\})=\{-2,2\}$.

- Vzor prvku je prvek z množiny A, který se zobrazuje do množiny B.
- Říká jaké x ukazují na jedno y. (předpokládám jednoznačnost)
- Co můžeme nacpat za x do funkce F(x) aby nám vyšlo konkrétní y
- Příklad: Máme funkci s absolutní hodnotou F(x) = |x|. Co do ní můžeme vložit, aby nám vyšlo y = 2? Můžeme do ní vložit (-2, 2).

1.7 Vzor podmnožiny oboru hodnot

Pro $M \subseteq B$ je vzor podmnožiny M definován jako množina:

$$f^{-1}(M) = \{ x \in A \mid f(x) \in M \}.$$

Příklad: Nechť $f(x)=x^2$ a M=[1,4]. Pak $f^{-1}(M)=[-2,-1]\cup[1,2]$. To odpovídá všem x, jejichž obrazy leží v [1,4].

- Je to množina všech $x \in A$, které ukazují na danou podmnožinu.
- Příklad: Máme funkci F(x) = x. Pokud bychom chtěli podmnožinu sudých čísel y tak právě množina těch sudých x bude ono.

1.8 Inverzní zobrazení

- Vztahuje se k bijektivním zobrazením (každé x má své y a zároveň nemají dvě x stejné y)
- Inverzní zobrazení $f^{-1}: Y \to X$, "obrací" směr zobrazení f.

1.9 Prosté zobrazení

- Přiřazuje prvkům z definičního oboru prvky v oboru hodnot.
- Každé x má maximálně jedno y + naopak.
- Příklad: nemůže se tady stát situace, kde vzor $\sqrt{4}$ má obrazy (-2,2).

1.10 Skládání zobrazení

- Výstup jednoho zobrazení se používá jako vstup pro další zobrazení.
- Není komutativní (záleží na pořadí, viz. příklad).

$$f(x) = x + 1 \tag{1}$$

$$g(x) = 2x \tag{2}$$

$$(g \circ f)(x) = g(f(x)) = g(x+1) = 2(x+1) = 2x + 2 \tag{3}$$

$$(f \circ g)(x) = f(g(x)) = f(2x) = 2x + 1 \tag{4}$$

1.11 Identita (neboli identické zobrazení

- Zobrazení, které ukazuje samo na sebe.
- $id_A : A \to A$,
- $id_A(x) = x$.
- Identita je neutrální prvek při skládání zobrazení: $f \circ id_A = f$ a $id_B \circ f = f$.
- Identita je bijektivní (= je prosté & na = každý obraz v B má právě jeden vzor v A) \rightarrow nesmysl aby to ukazovalo na něco neexistujícího

2 Těleso zbytkových tříd s prvočíselným modulem

2.1 Pojem zbytkové třídy

- Předpis: a = m * p + z
- Množina všech čísel, které dají při dělení daným číslem m stejný zbytek, nazveme zbytkovou třídou s modulem m.
- Tudíž zde máme pojem "třída ekvivalence", což jsou čísla, které jsou takovými "synonymy".
- Příklad ekvivalentních čísel: V zbytkové třídě modulo(7) jsou čísla (3, 10, 17, 24) ekvivalentní, protože vždy kdy je zmodulujeme tak nám z toho vznikne číslo 3
- Pravidlo 1) Modulo musí být prvočíslo, jelikož každý nenulový prvek musí mít inverzní prvek.
- Pravidlo 2) Koeficient před neznámou, by neměl být násobek modula. Jelikož poté se nám rovnice $7x \equiv 8 \text{ v mod}(7) \text{ smrsklo na } 0 \equiv 1 \text{ což samozřejmě není pravda.} \rightarrow \text{někdy to teda dopadne i } 0 \equiv 0$
- Znak "≡" → obě čísla patří do stejné zbytkové třídy.

2.2 Operace sčítání a násobení

- Sčítání/Odčítání: Před sčítáním musíme dát pozor, aby se čísla nacházely ve stejné zbytkové třídě. Chce to vše nejdřív zmodulovat & následně "znormalizovat" na nejbližší kladný prvek k 0.
- Násobení: Jak je uvedeno v předchozím příkladě, čísla můžeme násobit, ovšem musíme dávat pozor, aby všechny stále byly ve stejné zbytkové třídě.

2.3 Řešení lineárních rovnic a jejich soustav

• Řešme rovnici:

$$5x + 3 \equiv 0 \mod 7$$

Krok 1: Přesuňme konstantu na pravou stranu:

$$5x \equiv -3 \mod 7$$

A protože $-3 \equiv 4 \mod 7$, dostaneme (přičteme 7, abychom se dostali na nejbližší kladné číslo k nule):

$$5x \equiv 4 \mod 7$$

Krok 2: Najděme inverzní prvek k 5 modulo 7, což znamená, že hledáme číslo b, pro které platí:

$$5 \times b \equiv 1 \mod 7$$

Zkoušíme různé hodnoty b: - $5 \times 1 = 5 \mod 7$ - $5 \times 2 = 10 \equiv 3 \mod 7$ - $5 \times 3 = 15 \equiv 1 \mod 7$. Takže inverzní prvek k 5 modulo 7 je 3.

Krok 3: Vynásobíme obě strany rovnice $5x \equiv 4 \mod 7$ číslem 3:

$$3 \times 5x \equiv 3 \times 4 \mod 7$$

$$x \equiv 12 \mod 7$$

A protože $12 \equiv 5 \mod 7$, dostaneme:

$$x \equiv 5 \mod 7$$

3 Vektorový prostor

3.1 Definice

- Struktura složená z množiny vektorů.
- Existuje řádkový a sloupcový vektor.
- Praktický příklad: orientované úsečky \rightarrow načmárané šipky.
- Má dvě základní operace:
 - Sčítání vektorů
 - Násobení vektorů skalárem
- Obsahuje několik axiomů, které se dají logicky vyvodit.

3.2 Vlastnosti operací

- Sčítání
 - Součet: Pro každé dvojice vektorů existuje součet, který je také vektor.
 - Komutativita: Nezáleží na pořadí sčítání

$$\vec{c} = \vec{a} + \vec{b} = \vec{b} + \vec{a}$$

- Asociativita: Je jedno kam dáme závorky. $(\vec{u} + \vec{v}) + \vec{w} = \vec{u} + (\vec{v} + \vec{w})$
- Neutrální prvek: Přičtením se nic nezmění.

$$\vec{v} + \vec{0} = \begin{pmatrix} v_1 \\ v_2 \end{pmatrix} + \begin{pmatrix} 0 \\ 0 \end{pmatrix} = \begin{pmatrix} v_1 + 0 \\ v_2 + 0 \end{pmatrix} = \begin{pmatrix} v_1 \\ v_2 \end{pmatrix} = \vec{v}$$

Násobek

- Každému číslu a vektoru existuje příslušný násobek vektoru, který je taky vektor. (co si z toho vzít? nevim) \rightarrow dá se násobit libovolným skalárem...
- Neutrální prvek: Při vynásobení neutrálním prvkem se nemění hodnota.

$$1 \cdot \vec{v} = 1 \cdot \begin{pmatrix} 3 \\ -5 \end{pmatrix} = \begin{pmatrix} 1 \cdot 3 \\ 1 \cdot (-5) \end{pmatrix} = \begin{pmatrix} 3 \\ -5 \end{pmatrix} = \vec{v}$$

Asociativita násobení: Jedno kam dám závorky, vynásobí se to stejně.

$$a \cdot (b \cdot \vec{v}) = (a \cdot b) \cdot \vec{v}$$

- Komutativnost:
 - * Skalární: ano
 - * Vektorový součin: ne (wtf is vektorový součin, to jsem snad nedělali, crazy postup)

3.3 Příklady vektorových prostorů a definice operací s vektory v jednotlivých případech

- R² (reálný dvourozměrný prostor):
 - **Vektory**: Všechny uspořádané dvojice reálných čísel (x, y).
 - Operace:
 - * Sčítání: $(x_1, y_1) + (x_2, y_2) = (x_1 + x_2, y_1 + y_2)$
 - * Násobení skalárem: $\alpha(x,y) = (\alpha x, \alpha y) \rightarrow \text{ostatně jako u ostatních vektorů}$
- Matice jako soubor vektorů a operace s maticemi:
 - Matice A o rozměrech $m \times n$ lze chápat jako soubor vektorů:
 - \ast Sloupcové vektory: Matice Ase skládá z nsloupcových vektorů, každý o délce m. Například pro matici

$$A = \begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{pmatrix},$$

sloupcové vektory jsou:

$$\begin{pmatrix} 1 \\ 4 \end{pmatrix}, \quad \begin{pmatrix} 2 \\ 5 \end{pmatrix}, \quad \begin{pmatrix} 3 \\ 6 \end{pmatrix}.$$

* **Řádkové vektory**: Matice A se také skládá z m řádkových vektorů, každý o délce n. Pro stejnou matici A jsou řádkové vektory:

$$(1 \quad 2 \quad 3), \quad (4 \quad 5 \quad 6).$$

- Operace s maticemi:
 - \ast Sčítání matic: Provádí se po prv
cích. Matice Aa Bmusí mít stejné rozměry.

$$(A+B)_{ij} = A_{ij} + B_{ij}.$$

Příklad:

$$\begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix} + \begin{pmatrix} 5 & 6 \\ 7 & 8 \end{pmatrix} = \begin{pmatrix} 1+5 & 2+6 \\ 3+7 & 4+8 \end{pmatrix} = \begin{pmatrix} 6 & 8 \\ 10 & 12 \end{pmatrix}.$$

* Násobení matic: Násobení matic A (o rozměrech $m \times n$) a B (o rozměrech $n \times p$) je definováno jako:

$$(AB)_{ij} = \sum_{k=1}^{n} A_{ik} B_{kj}.$$

Výsledná matice AB má rozměry $m \times p$. Vždycky násobíš po řádcích se sloupci. Příklad:

$$\begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix} \begin{pmatrix} 5 & 6 \\ 7 & 8 \end{pmatrix} = \begin{pmatrix} 1 \cdot 5 + 2 \cdot 7 & 1 \cdot 6 + 2 \cdot 8 \\ 3 \cdot 5 + 4 \cdot 7 & 3 \cdot 6 + 4 \cdot 8 \end{pmatrix} = \begin{pmatrix} 19 & 22 \\ 43 & 50 \end{pmatrix}.$$

- * Rozdíl oproti vektorům:
 - Násobení vektorů (skalární součin) je definováno jako součet součinů odpovídajících složek:

$$\mathbf{u} \cdot \mathbf{v} = \sum_{i=1}^{n} u_i v_i.$$

· Násobení matic je složitější a **nekomutativní** $(AB \neq BA \text{ obecně})$, zatímco skalární součin vektorů je komutativní $(\mathbf{u} \cdot \mathbf{v} = \mathbf{v} \cdot \mathbf{u})$.

5

4 Lineární kombinace vektorů

4.1 Definice

• Lineární kombinace vektorů je výraz tvaru:

$$\mathbf{v} = c_1 \mathbf{v}_1 + c_2 \mathbf{v}_2 + \dots + c_n \mathbf{v}_n,$$

kde:

- $-\mathbf{v}_1,\mathbf{v}_2,\ldots,\mathbf{v}_n$ jsou vektory,
- $-c_1, c_2, \ldots, c_n$ jsou skaláry (obvykle reálná čísla),
- **v** je výsledný vektor.
- Každý vektor v prostoru lze vyjádřit jako lineární kombinaci základních vektorů dané báze.

4.2 Lineární obal množiny vektorů a jeho vlastnosti

- Linerání obal = množina všech vektorů, co můžu poskládat (lineárními kombinacemi) z dostupných vektorů jejich sčítáním a násobením skaláry.
- Značí se span(S) nebo $\langle S \rangle$.
- Formálně je lineární obal definován jako:

$$span(S) = \{c_1 \mathbf{v}_1 + c_2 \mathbf{v}_2 + \dots + c_k \mathbf{v}_k \mid c_1, c_2, \dots, c_k \in \mathbb{R}\}.$$

- Lineární obal je **nejmenší vektorový podprostor**, který obsahuje všechny vektory z množiny S. (pokud jiný podprostor obsahuje prvky S, tak musí být stejně velký nebo větší)
- Pokud jsou vektory $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k$ lineárně nezávislé, pak dimenze $\mathrm{span}(S)$ je rovna k.

4.3 Změny v množině vektorů

• Pro začátek by bylo dobré říct:

Báze vektorového prostoru = minimum lineárně nezávislých prvků \to množství: Dimenze

- Lineární kombinace vektorů je výraz tvaru $c_1\mathbf{v}_1 + c_2\mathbf{v}_2 + \cdots + c_n\mathbf{v}_n$, kde c_1, c_2, \ldots, c_n jsou koeficienty a $\mathbf{v}_1, \mathbf{v}_2, \ldots, \mathbf{v}_n$ jsou vektory.
- Pokud do množiny vektorů přidáme nový vektor, který je lineární kombinací stávajících vektorů, lineární obal množiny se nezmění.
- Pokud z množiny vektorů odstraníme vektor, který je lineární kombinací ostatních vektorů, lineární obal množiny se také nezmění.
- Pokud do množiny vektorů přidáme vektor, který není lineární kombinací stávajících vektorů, lineární obal množiny se rozšíří a tím i dimenze.
- Pokud z množiny vektorů odstraníme vektor, který není lineární kombinací ostatních vektorů, lineární obal množiny se zmenší a tím i dimenze.

4.4 Gaussova eliminační metoda

- Gaussova eliminační metoda je algoritmus pro řešení soustav lineárních rovnic nebo pro zjištění hodnosti matice
- Hodnost matice = počet lineárně nezávislých řádků v matici
- Metoda převádí matici do schodovitého tvaru pomocí elementárních řádkových operací.
- Elementární řádkové operace zahrnují:
 - Záměna řádků
 - Násobení řádku nenulovým číslem a přičtení násobku jednoho řádku k jinému řádku
- Odstupňovaný tvar umožňuje snadno určit řešení soustavy nebo zjistit, zda je soustava řešitelná.
- Pokud je matice v redukovaném odstupňovaném tvaru (Gauss-Jordanova eliminace), řešení lze přímo vyčíst.

5 Soustavy lineárních rovnic

5.1 Prostor lineárních rovnic o více neznámých

- Soustava lineárních rovnic je množina rovnic, které mají společnou množinu neznámých.
- Každá rovnice v soustavě představuje lineární vztah mezi neznámými.
 - Neznámé se v rovnici vyskytují pouze v první mocnině a nejsou vzájemně násobeny ani jinak nelineárně kombinovány (např. neobsahují členy jako x^2 , xy, $\sin(x)$ apod.).
 - Obecný tvar lineární rovnice o n neznámých je: $a_1x_1 + a_2x_2 + \cdots + a_nx_n = b$
- Řešením soustavy je nalezení hodnot neznámých, které splňují všechny rovnice současně.

5.2 Soustavy se stejnou množinou řešení

- Dvě soustavy lineárních rovnic jsou ekvivalentní, pokud mají stejnou množinu řešení.
- Ekvivalentní soustavy lze získat pomocí elementárních řádkových operací (násobení rovnice konstantou, přičtení násobku jedné rovnice k druhé, prohození rovnic).
- Pokud máme dvě soustavy rovnic, tak ty čtyři rovnice můžeme dát do jedné matice a řešit Gaussovou eliminací :)

5.3 Řešení soustav pomocí Gaussovy eliminace

- Gaussova eliminace = metoda pro řešení soustav lineárních rovnic
- Postupuje se převodem soustavy do stupňovitého (trojúhelníkového) tvaru pomocí elementárních řádkových operací.
- Ze stupňovitého tvaru lze pak snadno určit řešení pomocí zpětné substituce.

5.4 Zdůvodnění funkčnosti metody

- Gaussova eliminace zachovává množinu řešení soustavy, protože používá pouze ekvivalentní úpravy.
- Každý krok eliminace redukuje počet neznámých, čímž se problém zjednodušuje.
- Metoda je univerzální a funguje pro libovolnou soustavu lineárních rovnic.

6 Lineární závislost vektorů

6.1 Různé definice lineární nezávislosti

- Nyní zopakuji stejnou věc pěti způsoby xd
- Množina vektorů je lineárně závislá, pokud jejich kombinací jsme schopni vytvořit nulový vektor.

 $\mathbf{v}_1 = egin{bmatrix} 1 \ 2 \end{bmatrix}, \quad \mathbf{v}_2 = egin{bmatrix} 2 \ 4 \end{bmatrix}$

jsou závislé, protože:

$$-2 \cdot \mathbf{v}_1 + 1 \cdot \mathbf{v}_2 = \mathbf{0}.$$

Zde máme netriviální (nejsou nuly) kombinaci:

$$c_1 = -2, \quad c_2 = 1.$$

 $\mathbf{v}_1 = \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \quad \mathbf{v}_2 = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$

jsou nezávislé, protože jediná kombinace, která dává nulový vektor, je triviální (nuly):

$$c_1 \cdot \mathbf{v}_1 + c_2 \cdot \mathbf{v}_2 = \mathbf{0} \implies c_1 = 0, c_2 = 0.$$

- Vektor \mathbf{v} je lineárně závislý na množině vektorů $\{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n\}$, pokud lze \mathbf{v} vyjádřit jako lineární kombinaci těchto vektorů.
- Pokud je množina vektorů lineárně závislá, alespoň jeden z vektorů lze vyjádřit jako lineární kombinaci ostatních.

6.2 Báze vektorového prostoru

- Vektory, kteří dokáží vytvořit všechny ostatní vektory v lineárním obalu.
- Příkladem báze je standardní báze $\{(1,0),(0,1)\}$ pro prostor \mathbb{R}^2 . \rightarrow kanonická báze
- Díky této bázi také fungují kartézské souřadnice :) jupí

6.3 Dimenze vektorového prostoru

• Počet vektorů v bázi se nazývá dimenze vektorového prostoru.

6.4 Souřadnice vektoru v bázi

- Souřadnice vektoru v dané bázi jsou koeficienty lineární kombinace, která vyjadřuje daný vektor pomocí vektorů báze.
- Pokud máme bázi $\{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n\}$ a vektor \mathbf{u} , pak souřadnice vektoru \mathbf{u} v této bázi jsou skaláry c_1, c_2, \dots, c_n takové, že $\mathbf{u} = c_1 \mathbf{v}_1 + c_2 \mathbf{v}_2 + \dots + c_n \mathbf{v}_n$.
- Souřadnice vektoru závisí na volbě báze. Pokud změníme bázi, změní se i souřadnice vektoru.
- Příklad: V prostoru \mathbb{R}^2 s bází $\{(1,0),(0,1)\}$ má vektor (3,5) souřadnice [3,5]. Pokud změníme bázi např. na $\{(1,1),(1,-1)\}$, souřadnice se změní.

6.5 Izomorfismus konečněrozměrného prostoru T^n

- Izomorfismus je lineární zobrazení mezi dvěma vektorovými prostory, které je bijektivní (obraz má jeden vzor & [na] každý prvek něco ukazuje).
- Izomorfismus mezi dvěma vektorovými prostory
 - Jsou považovány za algebraicky ekvivalentní
 - Musí mít mají stejnou dimenzi
 - * \mathbb{R}^3 má bázi $\{(1,0,0),(0,1,0),(0,0,1)\}.$
 - * Prostor polynomů stupně nejvýše 2 (tj. \mathbb{P}_2) má bázi $\{1, x, x^2\}$.
 - * Musí být definovaný nad stejným tělesem jako například \mathbb{R} , \mathbb{C} , \mathbb{Z}_p
- Prostor T^n (například \mathbb{R}^n nebo \mathbb{C}^n) je izomorfní s jakýmkoli jiným vektorovým prostorem dimenze n.
- To znamená, že pokud mají dva prostory stejnou dimenzi, jsou izomorfní.
- Izomorfismus lze vyjádřit pomocí matice přechodu, která mapuje vektory z jednoho prostoru do druhého při zachování lineární struktury.
- Příklad: Prostor polynomů stupně nejvýše 2 (tj. \mathbb{P}_2) je izomorfní s prostorem \mathbb{R}^3 , protože oba mají dimenzi 3.

6.6 Souřadnice vektoru v různých bázích

- Souřadnice vektoru popisují, jak lze daný vektor vyjádřit jako lineární kombinaci vektorů báze.
- Pro každou bázi existuje jedinečné vyjádření vektoru pomocí souřadnic.
- Pokud změníme bázi, změní se i souřadnice vektoru, i když samotný vektor zůstává stejný.
- Přechod mezi souřadnicemi v různých bázích se provádí pomocí transformační matice.
- Transformační matice popisuje, jak se vektory jedné báze vyjadřují pomocí vektorů druhé báze.
- Příklad:
 - Mějme starou bázi $\mathcal{B}_1 = \{(1,0,0), (0,1,0), (0,0,1)\}$ (kanonická báze v \mathbb{R}^3).
 - Novou bázi $\mathcal{B}_2 = \{(1,1,0), (0,1,1), (1,0,1)\}.$
 - Chceme najít souřadnice vektoru $\mathbf{v}=(2,3,4)$ v bázi \mathcal{B}_2 a převést je do báze \mathcal{B}_1 .
 - Krok 1: Sestavení matice přechodu P z \mathcal{B}_2 do \mathcal{B}_1 .
 - * Každý vektor \mathcal{B}_2 vyjádříme jako lineární kombinaci vektorů \mathcal{B}_1 :

$$(1,1,0) = 1 \cdot (1,0,0) + 1 \cdot (0,1,0) + 0 \cdot (0,0,1),$$

$$(0,1,1) = 0 \cdot (1,0,0) + 1 \cdot (0,1,0) + 1 \cdot (0,0,1),$$

$$(1,0,1) = 1 \cdot (1,0,0) + 0 \cdot (0,1,0) + 1 \cdot (0,0,1).$$

* Koeficienty těchto lineárních kombinací zapíšeme jako sloupce matice P:

$$P = \begin{pmatrix} 1 & 0 & 1 \\ 1 & 1 & 0 \\ 0 & 1 & 1 \end{pmatrix}$$

- Krok 2: Převod souřadnic z \mathcal{B}_2 do \mathcal{B}_1 .
 - * Máme vektor $\mathbf{v} = (2, 3, 4)$ v bázi \mathcal{B}_2 .
 - * Jeho souřadnice v bázi \mathcal{B}_1 získáme vynásobením matice P vektorem $\mathbf{v}_{\mathcal{B}_2}$:

$$\mathbf{v}_{\mathcal{B}_1} = P \cdot \mathbf{v}_{\mathcal{B}_2} = \begin{pmatrix} 1 & 0 & 1 \\ 1 & 1 & 0 \\ 0 & 1 & 1 \end{pmatrix} \begin{pmatrix} 2 \\ 3 \\ 4 \end{pmatrix}$$

* Výpočet:

$$\mathbf{v}_{\mathcal{B}_1} = \begin{pmatrix} 1 \cdot 2 + 0 \cdot 3 + 1 \cdot 4 \\ 1 \cdot 2 + 1 \cdot 3 + 0 \cdot 4 \\ 0 \cdot 2 + 1 \cdot 3 + 1 \cdot 4 \end{pmatrix} = \begin{pmatrix} 6 \\ 5 \\ 7 \end{pmatrix}$$

- * Výsledek: Souřadnice vektoru \mathbf{v} v bázi \mathcal{B}_1 jsou (6,5,7).
- Krok 3: Převod souřadnic z \mathcal{B}_1 do \mathcal{B}_2 .
 - * Pokud chceme převést souřadnice z \mathcal{B}_1 do \mathcal{B}_2 , použijeme inverzní matici P^{-1} .
 - * Nejprve spočítáme inverzní matici P^{-1} :

$$P^{-1} = \frac{1}{\det(P)} \cdot \operatorname{adj}(P)$$

Kde $\det(P) = 1 \cdot (1 \cdot 1 - 0 \cdot 1) - 0 \cdot (1 \cdot 1 - 0 \cdot 0) + 1 \cdot (1 \cdot 1 - 1 \cdot 0) = 2.$

$$adj(P) = \begin{pmatrix} 1 & -1 & 1 \\ -1 & 1 & 1 \\ 1 & 1 & -1 \end{pmatrix}$$

Tedy:

$$P^{-1} = \frac{1}{2} \begin{pmatrix} 1 & -1 & 1 \\ -1 & 1 & 1 \\ 1 & 1 & -1 \end{pmatrix}$$

* Nyní převedeme vektor $\mathbf{v}_{\mathcal{B}_1} = (6, 5, 7)$ do \mathcal{B}_2 :

$$\mathbf{v}_{\mathcal{B}_2} = P^{-1} \cdot \mathbf{v}_{\mathcal{B}_1} = \frac{1}{2} \begin{pmatrix} 1 & -1 & 1 \\ -1 & 1 & 1 \\ 1 & 1 & -1 \end{pmatrix} \begin{pmatrix} 6 \\ 5 \\ 7 \end{pmatrix}$$

* Výpočet:

$$\mathbf{v}_{\mathcal{B}_2} = \frac{1}{2} \begin{pmatrix} 1 \cdot 6 + (-1) \cdot 5 + 1 \cdot 7 \\ (-1) \cdot 6 + 1 \cdot 5 + 1 \cdot 7 \\ 1 \cdot 6 + 1 \cdot 5 + (-1) \cdot 7 \end{pmatrix} = \frac{1}{2} \begin{pmatrix} 8 \\ 6 \\ 4 \end{pmatrix} = \begin{pmatrix} 4 \\ 3 \\ 2 \end{pmatrix}$$

* Výsledek: Souřadnice vektoru \mathbf{v} v bázi \mathcal{B}_2 jsou (4,3,2). Tohle nevypadá úplně ok, já vím, ale už se mi to nechce upravovat xd

7 Číselné matice a operace s nimi

7.1 Násobení matice vektorem, násobení matic

• Násobení matice vektorem: Násobení matice A s rozměry $m \times n$ a vektorem x s rozměry $n \times 1$ vede k vektoru Ax s rozměry $m \times 1$. Každý prvek výsledného vektoru je skalárním součinem příslušného řádku matice A a vektoru x.

$$A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}, \quad x = \begin{bmatrix} 5 \\ 6 \end{bmatrix}, \quad Ax = \begin{bmatrix} 1 \cdot 5 + 2 \cdot 6 \\ 3 \cdot 5 + 4 \cdot 6 \end{bmatrix} = \begin{bmatrix} 17 \\ 39 \end{bmatrix}$$

• Násobení matic: Násobení matice A s rozměry $m \times n$ a matice B s rozměry $n \times p$ vede k matici AB s rozměry $m \times p$. Prvek na pozici (i,j) výsledné matice je skalárním součinem i-tého řádku matice A a j-tého sloupce matice B.

$$A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}, \quad B = \begin{bmatrix} 5 & 6 \\ 7 & 8 \end{bmatrix}, \quad AB = \begin{bmatrix} 1 \cdot 5 + 2 \cdot 7 & 1 \cdot 6 + 2 \cdot 8 \\ 3 \cdot 5 + 4 \cdot 7 & 3 \cdot 6 + 4 \cdot 8 \end{bmatrix} = \begin{bmatrix} 19 & 22 \\ 43 & 50 \end{bmatrix}$$

10

7.2 Matice přechodu

• Matice přechodu: Matice přechodu popisuje, jak se souřadnice vektoru v jednom bázovém systému převádějí do jiného bázového systému. Buďte P matice přechodu z báze B do báze C, pak souřadnice vektoru x v bázi C jsou $[x]_C = P[x]_B$.

$$B = \left\{ \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \end{bmatrix} \right\}, \quad C = \left\{ \begin{bmatrix} 1 \\ 1 \end{bmatrix}, \begin{bmatrix} 1 \\ -1 \end{bmatrix} \right\}, \quad P = \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix}$$
 Pokud $[x]_B = \begin{bmatrix} 2 \\ 3 \end{bmatrix}$, pak $[x]_C = P[x]_B = \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix} \begin{bmatrix} 2 \\ 3 \end{bmatrix} = \begin{bmatrix} 5 \\ -1 \end{bmatrix}$.

7.3 Matice reprezentující operace v Gaussově eliminační metodě

• Matice elementárních operací: Gaussova eliminace se provádí pomocí elementárních matric, které reprezentují operace, jako je násobení řádku skalar, přidání násobku jednoho řádku k druhému, apod.

Přidání 2 krát prvního řádku k druhému:
$$E = \begin{bmatrix} 1 & 0 \\ 2 & 1 \end{bmatrix}, \quad E \cdot A = \begin{bmatrix} 1 & 0 \\ 2 & 1 \end{bmatrix} \begin{bmatrix} a & b \\ c & d \end{bmatrix} = \begin{bmatrix} a & b \\ 2a + c & 2b + d \end{bmatrix}$$

7.4 Jednotková matice, inverzní matice a její výpočet Gaussovou-Jordanovou eliminační metodou

• **Jednotková matice**: Jednotková matice I je čtvercová matice s jedničkami na hlavní diagonále a nulami jinde. Pro každou matici A, platí AI = IA = A.

$$I_2 = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

• Inverzní matice: Inverzní matice A^{-1} ke čtvercové matici A splňuje $AA^{-1} = A^{-1}A = I$. Výpočet se provádí pomocí Gaussova-Jordanovy eliminace.

PS: tady ten výpočet nemusí být správně, musím zkontrolovat

$$A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}, \quad \begin{bmatrix} A & I \end{bmatrix} = \begin{bmatrix} 1 & 2 & | & 1 & 0 \\ 3 & 4 & | & 0 & 1 \end{bmatrix} \xrightarrow{\text{eliminace}} \begin{bmatrix} 1 & 0 & | & -2 & 1 \\ 0 & 1 & | & 1.5 & -0.5 \end{bmatrix}, \quad A^{-1} = \begin{bmatrix} -2 & 1 \\ 1.5 & -0.5 \end{bmatrix}$$

7.5 Lineární kombinace matic

• Lineární kombinace matic: Lineární kombinace matic je součet těchto matic, každá násobená skalárem. Pokud A, B jsou matice stejných rozměrů a c, d jsou skaláry, pak cA + dB je lineární kombinace A a B.

$$A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}, \quad B = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}, \quad 2A + 3B = 2\begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} + 3\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} = \begin{bmatrix} 2 & 4+3 \\ 6+3 & 8+0 \end{bmatrix} = \begin{bmatrix} 2 & 7 \\ 9 & 8 \end{bmatrix}$$

7.6 Transpozice matice

• Transpozice matice: Transpozice matice A vznikne převratem řádků a sloupců matice A. Prvek na pozici (i,j) v původní matici bude na pozici (j,i) v transponované matici A^T .

$$A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}, \quad A^T = \begin{bmatrix} 1 & 3 \\ 2 & 4 \end{bmatrix}$$

7.7 Vztahy mezi různými maticovými operacemi

• Asociativita a distributivita: Násobení matic je asociativní, t.j. (AB)C = A(BC), a distributivní, t.j. A(B+C) = AB + AC. Nicméně, násobení matic není komutativní, obecně $AB \neq BA$.

$$A = \begin{bmatrix} 1 & 0 \\ 0 & 2 \end{bmatrix}, \quad B = \begin{bmatrix} 3 & 4 \\ 5 & 6 \end{bmatrix}, \quad AB = \begin{bmatrix} 3 & 4 \\ 10 & 12 \end{bmatrix}, \quad BA = \begin{bmatrix} 3 & 0 \\ 5 & 12 \end{bmatrix} \neq AB$$

11

7.8 Blokové matice a výpočty s nimi

• Blokové matice: Blokové matice jsou matice, jejichž prvky jsou samotné matice. Operace s nimi probíhají podobně jako s obyčejnými maticemi, pokud splňují dimenzionální požadavky.

$$A = \begin{bmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{bmatrix}, \quad B = \begin{bmatrix} B_{11} & B_{12} \\ B_{21} & B_{22} \end{bmatrix}, \quad AB = \begin{bmatrix} A_{11}B_{11} + A_{12}B_{21} & A_{11}B_{12} + A_{12}B_{22} \\ A_{21}B_{11} + A_{22}B_{21} & A_{21}B_{12} + A_{22}B_{22} \end{bmatrix}$$

8 Lineární zobrazení na vektorových prostorech

8.1 Definice lineárního zobrazení

- Lineární zobrazení je funkce $T:V\to W$ mezi dvěma vektorovými prostory V a W nad stejným tělesem, která zachovává operace sčítání vektorů a násobení skalárem.
- To znamená, že pro všechny vektory $\mathbf{u}, \mathbf{v} \in V$ a skalár c platí:
 - 1. $T(\mathbf{u} + \mathbf{v}) = T(\mathbf{u}) + T(\mathbf{v})$ (aditivita = když sečtu celou množinu = funguje to stejně jako když sečtu daný prvek s prvkem)
 - 2. $T(c*\mathbf{u}) = c*T(\mathbf{u})$ (homogenita = když vynásobím danou množinu skalárem tak to funguje stejně, jako kdybych dané prvky vynásobil tím skalárem)

Příklad: Uvažujme zobrazení $T: \mathbb{R}^2 \to \mathbb{R}^2$ definované jako T(x,y) = (2x,3y). Toto zobrazení je lineární, protože splňuje obě podmínky.

8.2 Aditivní a homogenní zobrazení

Jednoduše to splňuje danou podmínku:

- Aditivní zobrazení splňuje podmínku $T(\mathbf{u} + \mathbf{v}) = T(\mathbf{u}) + T(\mathbf{v})$.
- Homogenní zobrazení splňuje podmínku $T(c * \mathbf{u}) = c * T(\mathbf{u})$.
- **Příklad:** Zobrazení T(x,y)=(x+y,x-y) je aditivní i homogenní, protože splňuje obě podmínky.

8.3 Přípustné operace s lineárními zobrazeními

- Skládání lineárních zobrazení: Je-li $T:V\to W$ a $S:W\to U$ lineární zobrazení, pak $S\circ T:V\to U$ je také lineární zobrazení.
- Sčítání lineárních zobrazení: Je-li $T,S:V\to W$ lineární zobrazení, pak T+S je také lineární zobrazení.
- **Příklad:** Nechť T(x,y)=(2x,y) a S(x,y)=(x,3y). Pak (T+S)(x,y)=(3x,4y) je také lineární zobrazení.

8.4 Jádro lineárního zobrazení

- Jádro lineárního zobrazení $T:V\to W=$ množina všech vektorů $\mathbf{v}\in V,$ pro které platí $T(\mathbf{v})=\mathbf{0}.$
- Značíme ho ker(T).
- **Příklad:** Pro zobrazení T(x,y)=(x+y,0) je jádro $\ker(T)=\{(x,-x)\mid x\in\mathbb{R}\}.$

8.5 Vlastnosti definičního oboru a oboru hodnot

- **Definiční obor** V je vektorový prostor, ze kterého zobrazení T zobrazuje.
- Obor hodnot Im(T) je množina všech vektorů $\mathbf{w} \in W$, pro které existuje $\mathbf{v} \in V$ tak, že $T(\mathbf{v}) = \mathbf{w}$.
- **Příklad:** Pro zobrazení T(x,y)=(x,0) je definiční obor \mathbb{R}^2 a obor hodnot $\mathrm{Im}(T)=\{(x,0)\mid x\in\mathbb{R}\}.$

9 Frobeniova věta (pro obecná lineární zobrazení)

Frobeniova věta = soustava lineárních rovnic má řešení právě takhle, když hodnost matice (množství lineárně nezávislých řádků) == hodnost rozšířené matice (s přidaným sloupcem pravých stran rovnic)

• **Případ 1:** $hodnost(A) = hodnost(A|\mathbf{b})$ Soustava má řešení.

Příklad:

$$\begin{cases} x + y = 3, \\ 2x + 2y = 6. \end{cases}$$

Hodnost A = 1, hodnost $(A|\mathbf{b}) = 1$.

Závěr: Soustava má nekonečně mnoho řešení.

• Případ 2: $hodnost(A) < hodnost(A|\mathbf{b})$

Soustava nemá řešení.

Příklad:

$$\begin{cases} x + y = 3, \\ 2x + 2y = 7. \end{cases}$$

Hodnost A = 1, hodnost $(A|\mathbf{b}) = 2$.

Závěr: Soustava nemá řešení.

• **Případ 3:** hodnost(A) = počet neznámých

Soustava má právě jedno řešení.

Příklad:

$$\begin{cases} x + y = 3, \\ x - y = 1. \end{cases}$$

Hodnost A = 2, hodnost $(A|\mathbf{b}) = 2$, počet neznámých = 2.

Závěr: Soustava má právě jedno řešení (x = 2, y = 1).

• **Případ 4:** hodnost(A) < počet neznámých

Soustava má nekonečně mnoho řešení.

Příklad:

$$\begin{cases} x + y + z = 3, \\ 2x + 2y + 2z = 6. \end{cases}$$

Hodnost A = 1, hodnost $(A|\mathbf{b}) = 1$, počet neznámých = 3.

Závěr: Soustava má nekonečně mnoho řešení.

9.1 Množina vzorů daného vektoru při lineárním zobrazení

- **Definice:** Pro lineární zobrazení $f: V \to W$ a vektor $w \in W$, množina vzorů vektoru w je množina všech vektorů $v \in V$, pro které platí f(v) = w. Tuto množinu značíme $f^{-1}(w)$.
- **Příklad:** Nechť $f: \mathbb{R}^2 \to \mathbb{R}$ je zobrazení definované jako f(x,y) = x + y. Pro w = 2, množina vzorů je $f^{-1}(2) = \{(x,y) \in \mathbb{R}^2 \mid x+y=2\}$, což je přímka v rovině.

9.2 Postup hledání neznámého vzoru při známém obrazu

- Kroky:
 - 1. Určete obraz lineárního zobrazení: Zjistěte, zda daný vektor w patří do obrazu f(V).
 - 2. Najděte jedno řešení: Pokud $w \in f(V)$, najděte alespoň jeden vektor $v_0 \in V$, pro který $f(v_0) = w$.
 - 3. Popište obecné řešení: Všechny vzory v jsou pak dány vztahem $v = v_0 + \ker(f)$, kde $\ker(f)$ je jádro zobrazení f.
- **Příklad:** Pro zobrazení f(x,y) = x + y a w = 2, jedním řešením je $v_0 = (2,0)$. Jádro zobrazení je $\ker(f) = \{(t,-t) \mid t \in \mathbb{R}\}$. Tedy obecné řešení je v = (2,0) + (t,-t) = (2+t,-t) pro libovolné $t \in \mathbb{R}$.

9.3 Souvislost s řešením soustav lineárních rovnic

- Souvislost: Hledání vzorů daného vektoru při lineárním zobrazení je ekvivalentní s řešením soustavy lineárních rovnic. Konkrétně, jestliže f je reprezentováno maticí A, hledání v takového, že f(v) = w, se redukuje na řešení rovnice Av = w.
- **Příklad:** Pro matici $A = \begin{pmatrix} 1 & 1 \end{pmatrix}$ a w = 2, hledáme vektory $v = \begin{pmatrix} x \\ y \end{pmatrix}$ takové, že $\begin{pmatrix} 1 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = 2$, což je stejné jako hledat řešení rovnice x + y = 2.

10 Maticová reprezentace lineárního zobrazení

10.1 Výpočet souřadnic obrazu ze souřadnic vzoru

- Při daném lineárním zobrazení $f:V\to W$ a jeho maticové reprezentaci A vzhledem k zvoleným bázím, lze souřadnice obrazu vektoru $v\in V$ vypočítat jako součin matice A a souřadnicového vektoru v v bázích V.
- Příklad: Nechť $A = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}$ a $v = \begin{pmatrix} 1 \\ 2 \end{pmatrix}$. Potom obraz f(v) má souřadnice $A \cdot v = \begin{pmatrix} 1*1+2*2 \\ 3*1+4*2 \end{pmatrix} = \begin{pmatrix} 5 \\ 11 \end{pmatrix}$.

10.2 Konstrukce maticové reprezentace

- Matice lineárního zobrazení vzhledem k daným bázím vstupního a výstupního prostoru se konstruuje tak, že sloupce matice jsou obrazy bázových vektorů vstupního prostoru vyjádřeny v bázích výstupního prostoru.
- Příklad: Nechť $f(e_1) = w_1 + 2w_2$ a $f(e_2) = 3w_1 + 4w_2$, kde $\{e_1, e_2\}$ je báze V a $\{w_1, w_2\}$ je báze W. Pak matice $A = \begin{pmatrix} 1 & 3 \\ 2 & 4 \end{pmatrix}$.

10.3 Maticové reprezentace operací na lineárních zobrazeních

- Sčítání lineárních zobrazení odpovídá sčítání jejich matic, pokud jsou dané vzhledem k stejným bázím.
- Skalární násobek lineárního zobrazení odpovídá skalárnímu násobku jeho matice.
- Složené zobrazení $f \circ g$ odpovídá násobku matic $A_f \cdot A_g$.
- Příklad: Nechť $A_f = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}$ a $A_g = \begin{pmatrix} 5 & 6 \\ 7 & 8 \end{pmatrix}$. Potom $A_{f \circ g} = A_f \cdot A_g = \begin{pmatrix} 1*5+2*7 & 1*6+2*8 \\ 3*5+4*7 & 3*6+4*8 \end{pmatrix} = \begin{pmatrix} 19 & 22 \\ 43 & 50 \end{pmatrix}$.

10.4 Změna matice při změně bází ve výchozím a cílovém prostoru

- Při změně bází ve vstupním nebo výstupním prostoru se matice lineárního zobrazení mění podle vzorce $A' = P^{-1}AQ$, kde P je přechodová matice v cílovém prostoru a Q v výchozím prostoru.
- Příklad: Nechť původní matice je $A = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}$, přechodová matice ve vstupním prostoru $Q = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$ a ve výstupním prostoru $P = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$. Potom $A' = P^{-1}AQ = \begin{pmatrix} 1 & -1 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix} \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} = \begin{pmatrix} -2 & 1 \\ 4 & 3 \end{pmatrix}$.

11 Lineární zobrazení vektorového prostoru do sebe

11.1 Vlastní čísla a vektory lineárního zobrazení

- Vlastní číslo je skalár, ke kterému existuje nenulový vektor (vlastní vektor), který když proženeme danou maticí tak se nám vrátí vektor * λ .
- Složitě řečeno: Vlastní číslo λ lineárního zobrazení A: V → V je skalár, pro který existuje nenulový vektor v ∈ V, takže A(v) = λv. Tento vektor v se nazývá vlastní vektor příslušný k λ.
- **Příklad**: Pro lineární zobrazení reprezentované maticí $A = \begin{pmatrix} 2 & 0 \\ 0 & 3 \end{pmatrix}$ jsou vlastní čísla $\lambda_1 = 2$ a $\lambda_2 = 3$ s příslušnými vlastními vektory $v_1 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$ a $v_2 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$.

11.2 Vlastnosti vlastních vektorů

- Vlastní vektory můžu vynásobit skalárem a stále to bude vlastní vektor a jeho přidružené vlastní číslo λ se nezmění.
- Vlastní vektory k různým vlastním číslům jsou lineárně nezávislé.
- **Příklad:** Pro matici $A = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$, vlastní číslo $\lambda = 1$ má vlastní vektory ve tvaru $v = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$ a jeho násobky.

11.3 Hlavní vektory

- Hlavní vektory (generalizované vlastní vektory) jsou rozšířením vlastních vektorů pro případy, kdy matici nelze diagonalizovat.
- Definují se rekurzivně jako řešení $(A \lambda I)^k v = 0$ pro nějaké $k \ge 1$.
- **Příklad**: Pro matici $A = \begin{pmatrix} 2 & 1 \\ 0 & 2 \end{pmatrix}$, kde $\lambda = 2$ je vlastní číslo s algebraickou multiplicitou 2, ale geometrická multiplicita je 1. Hlavní vektor druhého řádu lze najít jako $v = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$.

11.4 Elementární metody hledání vlastních čísel a vektorů na konečnědimenzionálních prostorech

- Vlastní čísla: Najdou se jako kořeny charakteristického polynomu $\det(A \lambda I) = 0$.
- Vlastní vektory: Pro každé vlastní číslo λ se najdou vektorové prostředí $(A \lambda I) * v = 0$. ([v=x1,x2,x3] nebo [v=a,b,c]. Hledáme prostě tuto neznámou.)
- **Příklad**: Pro matici $A = \begin{pmatrix} 5 & -3 \\ 3 & -1 \end{pmatrix}$, charakteristický polynom je $(5 \lambda)(-1 \lambda) + 9 = \lambda^2 4\lambda + 4 = (\lambda 2)^2$. Vlastní vektory k $\lambda = 2$ splňují (A 2I)v = 0, což dává vektorový prostor řešení.

12 Skládání lineárního endomorfismu se sebou samotným

12.1 Co je endomorfismus?

- Endomorfismus = lineární zobrazení f co zobrazuje vektorový prostor V samo do sebe.
- To znamená, že pro každý vektor $\mathbf{v} \in V$ platí $f(\mathbf{v}) \in V$.
- Podmínky endomorfismu

- Zobrazuje vektorový prostor do sebe sama:
 - * Pro každý vektor $\mathbf{v} \in V$ musí platit $f(\mathbf{v}) \in V$.
 - \ast Jinými slovy, zobrazení fnemůže "vytáhnout" vektor z Vdo jiného prostoru.
- **Příklad:** Zobrazení f(x,y)=(2x,2y) na prostoru \mathbb{R}^2 zobrazuje \mathbb{R}^2 do \mathbb{R}^2 , protože:

$$f(x,y) = (2x,2y) \in \mathbb{R}^2$$
 pro každé $(x,y) \in \mathbb{R}^2$.

– Kontrapříklad: Zobrazení f(x,y)=(x,y,0) na prostoru \mathbb{R}^2 nezobrazuje do sebe sama, protože:

$$f(x,y) = (x,y,0) \in \mathbb{R}^3$$
 pro každé $(x,y) \in \mathbb{R}^2$.

Toto zobrazení není endomorfismus.

• **Příklad:** Mějme vektorový prostor \mathbb{R}^2 a endomorfismus f(x,y)=(2x,2y). Pro vektor $\mathbf{v}=(1,3)$ dostaneme:

$$f(\mathbf{v}) = f(1,3) = (2 \cdot 1, 2 \cdot 3) = (2,6).$$

Výsledek (2,6) je opět vektor v \mathbb{R}^2 , takže f je endomorfismus.

12.2 Mocniny a mnohočleny z lineárních endomorfismů

- Skládání endomorfismu se sebou samotným:
 - Označuje opakované aplikování endomorfismu f na vektorový prostor. Například, $f^2=f\circ f$ znamená, že endomorfismus f je aplikován dvakrát.
 - Pokud f je reprezentován maticí A, pak f^2 je reprezentována maticí A^2 .
 - **Příklad:** Pro endomorfismus f(x,y) = (2x,2y) platí:

$$f^{2}(x,y) = f(f(x,y)) = f(2x,2y) = (2 \cdot 2x, 2 \cdot 2y) = (4x,4y).$$

- Mnohočleny endomorfismů:
 - **Definice:** Pokud $p(t) = a_0 + a_1t + a_2t^2 + \cdots + a_nt^n$ je polynom a f je endomorfismus, pak mnohočlen endomorfismu p(f) je definován jako:

$$p(f) = a_0 \text{Id} + a_1 f + a_2 f^2 + \dots + a_n f^n,$$

kde:

- * Id je identické zobrazení (Id(x) = x),
- * f^k je k-násobné skládání f se sebou samotným,
- * a_0, a_1, \ldots, a_n jsou koeficienty polynomu.
- **Příklad:** Pro polynom $p(t) = t^2 3t + 2$ a endomorfismus f(x) = 3x platí:

$$p(f) = f^2 - 3f + 2Id.$$

Vypočítáme jednotlivé členy:

- $* f^{2}(x) = f(f(x)) = f(3x) = 3 \cdot 3x = 9x,$
- $* 3 f(x) = 3 \cdot 3x = 9x,$
- * $2\operatorname{Id}(x) = 2x$.

Sečteme výsledky:

$$p(f)(x) = f^{2}(x) - 3f(x) + 2\operatorname{Id}(x) = 9x - 9x + 2x = 2x.$$

12.3 Jádro z mnohočlenu lineárního endomorfismu a jeho vztah ke kořenům mnohočlenu a vlastním vektorům základního endomorfismu

- **Jádro mnohočlenu endomorfismu:** Pro polynom p(t) a endomorfismus f, je jádro p(f) množina vektorů \mathbf{v} , pro které $p(f)(\mathbf{v}) = 0$. Toto jádro je podprostor vektorového prostoru.
- Vztah ke kořenům polynomu: Pokud λ je kořen polynomu p(t), tj. $p(\lambda) = 0$, pak všechny vlastní vektory f s vlastními čísly λ leží v jádře p(f). Například, pro p(t) = t 2 a endomorfismus f s vlastním číslem 2, platí:

$$\ker(p(f)) = \ker(f - 2\mathrm{Id}),$$

což je množina vlastních vektorů s vlastním číslem 2.

• Vztah k vlastním vektorům: Vlastní vektory endomorfismu f jsou přímo související s kořeny charakteristického polynomu f. Vektor \mathbf{v} je vlastním vektorem k vlastnímu číslu λ , pokud $\mathbf{v} \in \ker(f - \lambda \mathrm{Id})$. Tento vztah se zobecňuje pro libovolný polynom p(t), kde $\ker(p(f))$ obsahuje vektory, které splňují $p(f)(\mathbf{v}) = 0$.

13 Determinant

13.1 Možné definice a metody jeho výpočtu

Leibnizova formule: Klasický křížový počítáníčko: (skalární součin prvků na diagonále) - (skalární součin prvků na / diagonále)

– **Příklad:** Pro
$$2 \times 2$$
 matici $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ je $\det(A) = ad - bc$.

• Laplaceova expandování: Determinant lze vypočítat pomocí rozvoje podle libovolného řádku nebo sloupce. Například rozvoj podle prvního řádku:

$$\det(A) = \sum_{j=1}^{n} a_{1j} C_{1j}$$

kde C_{1j} je algebraický doplněk prvků a_{1j} . **Příklad:** Pro matici $A = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}$, determinant je $1 \cdot 4 - 2 \cdot 3 = -2$.

• Výpočet pomocí horní trojúhelnice: Determinant matice se rovná součinu prvků na hlavní diagonále, pokud je matice převedena na horní trojúhelníkovou formu pomocí elementárních řádkových operací.

– **Příklad:** Pro matici
$$A = \begin{pmatrix} 1 & 2 \\ 0 & 4 \end{pmatrix}$$
 je $\det(A) = 1 \cdot 4 = 4$.

13.2 Geometrická reprezentace

- Jednoduše řečeno: poměr mezi plochou co do matice vložím & plochou co vrátí
- Ve 2D násobek plochy, ve 3D násobek objemu.
- Determinant reprezentuje skalární faktor, kterým je změněna objemová míra lineární transformace dané maticí.

17

– **Příklad:** Pro matici $A=\begin{pmatrix}2&0\\0&3\end{pmatrix}$, determinant je 6, což znamená, že plocha obrazu je 6 krát větší než původní plocha.

14 Skalární součin

- Pozor! Je definován jinak v:
 - Ortogonální bázi
 - Ortonormální bázi
- Může to být otázka u teoretický

14.1 Definice, vlastnosti

• Skalární součin dvou vektorů $\mathbf{u}, \mathbf{v} \in \mathbb{R}^n$ je definován jako:

$$\mathbf{u} \cdot \mathbf{v} = \sum_{i=1}^{n} u_i v_i$$

- Vlastnosti skalárního součinu:
 - Komutativita: $\mathbf{u} \cdot \mathbf{v} = \mathbf{v} \cdot \mathbf{u}$
 - Distributivita: $\mathbf{u} \cdot (\mathbf{v} + \mathbf{w}) = \mathbf{u} \cdot \mathbf{v} + \mathbf{u} \cdot \mathbf{w}$
 - Asociativita s násobením skalárem: $(c * \mathbf{u}) \cdot \mathbf{v} = c(\mathbf{u} \cdot \mathbf{v})$
 - Pozitivita definit
nost: $\mathbf{u} \cdot \mathbf{u} \ge 0$ a $\mathbf{u} \cdot \mathbf{u} = 0$ pouze pro $\mathbf{u} = \mathbf{0}$
- **Příklad**: Pro vektory $\mathbf{u} = (1, 2)$ a $\mathbf{v} = (3, 4)$ je skalární součin $\mathbf{u} \cdot \mathbf{v} = 1 \cdot 3 + 2 \cdot 4 = 11$.

14.2 Norma vektoru a její vlastnosti

• Norma vektoru $\mathbf{u} \in \mathbb{R}^n$ je definována jako:

$$\|\mathbf{u}\| = \sqrt{\mathbf{u} \cdot \mathbf{u}} = \sqrt{\sum_{i=1}^{n} u_i^2}$$

- Vlastnosti normy:
 - Pozitivita definitnost: $\|\mathbf{u}\| \ge 0$ a $\|\mathbf{u}\| = 0$ pouze pro $\mathbf{u} = \mathbf{0}$
 - Homogenita: $||c\mathbf{u}|| = |c|||\mathbf{u}||$
 - Trojúhelníková nerovnost: $\|\mathbf{u} + \mathbf{v}\| \le \|\mathbf{u}\| + \|\mathbf{v}\|$
- Příklad: Norma vektoru $\mathbf{u} = (3,4)$ je $\|\mathbf{u}\| = \sqrt{3^2 + 4^2} = 5$.

14.3 Skalární součiny na různých vektorových prostorech

- Skalární součin lze definovat v různých vektorových prostorech, například v prostoru polynomů nebo v prostoru funkcí.
- **Příklad**: V prostoru polynomů P([a,b]) lze skalární součin definovat jako:

$$\langle p, q \rangle = \int_a^b p(x)q(x)dx$$

• **Příklad výpočtu**: Pro polynomy p(x) = x a $q(x) = x^2$ na intervalu [0, 1] je skalární součin:

18

$$\langle p,q\rangle = \int_0^1 x \cdot x^2 dx = \int_0^1 x^3 dx = \frac{1}{4}$$

14.4 Speciálně: prostor l_2 a výpočet skalárního součinu geometrických posloupností

- Prostor l₂ je prostor všech číselných posloupností, jejichž součet čtverců je konvergentní.
- Skalární součin v l_2 je definován jako:

$$\langle \mathbf{a}, \mathbf{b} \rangle = \sum_{i=1}^{\infty} a_i b_i$$

• **Příklad**: Pro posloupnosti $\mathbf{a}=(1,\frac{1}{2},\frac{1}{4},\dots)$ a $\mathbf{b}=(1,\frac{1}{3},\frac{1}{9},\dots)$ je skalární součin:

$$\langle \mathbf{a}, \mathbf{b} \rangle = 1 \cdot 1 + \frac{1}{2} \cdot \frac{1}{3} + \frac{1}{4} \cdot \frac{1}{9} + \dots = 1 + \frac{1}{6} + \frac{1}{36} + \dots = \frac{7}{6}$$

14.5 Metrická matice a výpočet skalárního součinu vektorů pomocí souřadnic v dané bázi

- Metrická matice G v dané bázi je matice, jejíž prvky jsou skalární součiny základních vektorů.
- Skalární součin vektorů ${\bf x}$ a ${\bf y}$ v této bázi se vypočte jako:

$$\mathbf{x}^T G \mathbf{y}$$

- Příklad: Pro metrickou matici $G = \begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix}$ a vektory $\mathbf{x} = (1,0),\, \mathbf{y} = (0,1)$ je skalární součin:

$$\mathbf{x}^T G \mathbf{y} = \begin{bmatrix} 1 & 0 \end{bmatrix} \begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix} \begin{bmatrix} 0 \\ 1 \end{bmatrix} = 1 \cdot 1 + 0 \cdot 2 = 1$$

14.6 Výpočet souřadnic vektoru v dané bázi pomocí skalárního součinu

- Souřadnice vektoru v dané bázi lze vypočítat pomocí skalárních součinů s základními vektory.
- Pro ortogonální bázi se souřadnice vypočítají jako:

$$x_i = \frac{\mathbf{v} \cdot \mathbf{e}_i}{\mathbf{e}_i \cdot \mathbf{e}_i}$$

• Příklad: V prostoru s bází $\mathbf{e}_1 = (1,1), \mathbf{e}_2 = (1,-1)$ a vektorem $\mathbf{v} = (2,0)$ se souřadnice vypočítají jako:

$$x_1 = \frac{\mathbf{v} \cdot \mathbf{e}_1}{\mathbf{e}_1 \cdot \mathbf{e}_1} = \frac{2 \cdot 1 + 0 \cdot 1}{1^2 + 1^2} = 1, \quad x_2 = \frac{\mathbf{v} \cdot \mathbf{e}_2}{\mathbf{e}_2 \cdot \mathbf{e}_2} = \frac{2 \cdot 1 + 0 \cdot (-1)}{1^2 + (-1)^2} = 1$$

Takže $\mathbf{v} = 1 \cdot \mathbf{e}_1 + 1 \cdot \mathbf{e}_2$.

15 Úhel vektorů a ortogonalita

15.1 Schwartzova nerovnost

• Schwartzova nerovnost tvrdí, že pro libovolné vektory **u** a **v** v euklidovském prostoru platí:

$$|\langle \mathbf{u}, \mathbf{v} \rangle| < ||\mathbf{u}|| \cdot ||\mathbf{v}||$$

Zde:

- $-\langle \mathbf{u}, \mathbf{v} \rangle$ značí **skalární součin** vektorů \mathbf{u} a \mathbf{v} .
- Pro vektory $\mathbf{u} = (u_1, u_2, \dots, u_n)$ a $\mathbf{v} = (v_1, v_2, \dots, v_n)$ je skalární součin definován jako:

$$\langle \mathbf{u}, \mathbf{v} \rangle = u_1 v_1 + u_2 v_2 + \dots + u_n v_n$$

 $- \|\mathbf{u}\|$ značí **normu (délku) vektoru** \mathbf{u} , která je definována jako:

$$\|\mathbf{u}\| = \sqrt{u_1^2 + u_2^2 + \dots + u_n^2}$$

- Zápis $\|\mathbf{u}\| \cdot \|\mathbf{v}\|$ značí **obyčejné násobení** dvou reálných čísel (norem vektorů \mathbf{u} a \mathbf{v}).
- Tato nerovnost je základním nástrojem v lineární algebře a má mnoho aplikací. Například pro vektory $\mathbf{u} = (1,0)$ a $\mathbf{v} = (0,1)$ platí:
 - Skalární součin: $\langle \mathbf{u}, \mathbf{v} \rangle = (1)(0) + (0)(1) = 0$,
 - Norma vektoru **u**: $\|\mathbf{u}\| = \sqrt{1^2 + 0^2} = 1$,
 - Norma vektoru **v**: $\|\mathbf{v}\| = \sqrt{0^2 + 1^2} = 1$,
 - Obyčejné násobení norem: $\|\mathbf{u}\| \cdot \|\mathbf{v}\| = 1 \cdot 1 = 1$.

Nerovnost tedy platí, protože $0 \le 1$.

15.2 Úhel mezi vektory

- Úhel θ mezi dvěma vektory **u** a **v** lze vypočítat pomocí vzorce:

$$\cos \theta = \frac{\mathbf{u} \cdot \mathbf{v}}{\|\mathbf{u}\| \cdot \|\mathbf{v}\|}$$

Například, pro vektory $\mathbf{u} = (1,1)$ a $\mathbf{v} = (1,0)$ je $\mathbf{u} \cdot \mathbf{v} = 1$, $\|\mathbf{u}\| = \sqrt{2}$ a $\|\mathbf{v}\| = 1$, takže:

$$\cos \theta = \frac{1}{\sqrt{2} \cdot 1} = \frac{\sqrt{2}}{2}$$

a tedy $\theta = 45^{\circ}$.

15.3 Speciálně kolmost dvou vektorů

• Dva vektory jsou kolmé (ortogonální), pokud je jejich skalární součin roven nule, tedy $\mathbf{u} \cdot \mathbf{v} = 0$. Například, vektory $\mathbf{u} = (2,3)$ a $\mathbf{v} = (-3,2)$ jsou kolmé, protože:

$$\mathbf{u} \cdot \mathbf{v} = (2)(-3) + (3)(2) = -6 + 6 = 0$$

15.4 Ortogonální množiny a jejich vlastnosti

- Ortogonální množina je množina vektorů, ve které je každý dvojice vektorů kolmá. Taková množina má vlastnosti, jako je lineární nezávislost (pokud nejsou žádné vektory nulové). Například, vektory $\mathbf{e}_1 = (1,0,0)$, $\mathbf{e}_2 = (0,1,0)$ a $\mathbf{e}_3 = (0,0,1)$ tvoří ortogonální množinu v \mathbb{R}^3 .
- Ortonormální: bázové vektory mají navíc jednotkovou délku

15.5 Gramův-Schmidtův algoritmus

• Gramův-Schmidtův algoritmus je postup, který slouží k ortogonalizaci lineárně nezávislé množiny vektorů. Z dané množiny vektorů vytvoří ortogonální množinu vektorů, která spanuje stejný podprostor. Například, pro vektory $\mathbf{v}_1 = (1,1)$ a $\mathbf{v}_2 = (1,0)$ v \mathbb{R}^2 lze konstruovat ortogonální vektory $\mathbf{u}_1 = \mathbf{v}_1 = (1,1)$ a

$$\mathbf{u}_2 = \mathbf{v}_2 - \frac{\mathbf{v}_2 \cdot \mathbf{u}_1}{\mathbf{u}_1 \cdot \mathbf{u}_1} \mathbf{u}_1 = (1, 0) - \frac{1}{2} (1, 1) = \left(\frac{1}{2}, -\frac{1}{2}\right)$$

16 Optimální aproximace

16.1 Vektor v podprostoru nejbližší k danému vektoru, konstrukce, vlastnosti odchylky, výpočet souřadnic aproximace, velikost odchylky

• Nejbližší vektor v podprostoru k danému vektoru je ortogonální projekce daného vektoru na ten podprostor.

• Konstrukce:

- 1. Mějme vektor $\mathbf{v} = (v_1, v_2, \dots, v_n)$ a podprostor W generovaný ortogonální bází $\{\mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_k\}$.
- 2. Projekce \mathbf{v} na W se vypočítá jako:

$$\operatorname{proj}_{W} \mathbf{v} = \sum_{i=1}^{k} \frac{\langle \mathbf{v}, \mathbf{u}_{i} \rangle}{\langle \mathbf{u}_{i}, \mathbf{u}_{i} \rangle} \mathbf{u}_{i}$$

- 3. Odchylka je $\mathbf{v} \operatorname{proj}_W \mathbf{v}$.
- 4. Velikost odchylky je $\|\mathbf{v} \operatorname{proj}_W \mathbf{v}\|$.
- Příklad: Nechť $\mathbf{v}=(3,4,5)$ a podprostor W je generován vektory $\mathbf{u}_1=(1,0,0)$ a $\mathbf{u}_2=(0,1,0)$. Potom:

$$\operatorname{proj}_{W} \mathbf{v} = \frac{\langle \mathbf{v}, \mathbf{u}_{1} \rangle}{\langle \mathbf{u}_{1}, \mathbf{u}_{1} \rangle} \mathbf{u}_{1} + \frac{\langle \mathbf{v}, \mathbf{u}_{2} \rangle}{\langle \mathbf{u}_{2}, \mathbf{u}_{2} \rangle} \mathbf{u}_{2} = \frac{3}{1} (1, 0, 0) + \frac{4}{1} (0, 1, 0) = (3, 4, 0)$$

Odchylka je $\mathbf{v} - \text{proj}_W \mathbf{v} = (0, 0, 5)$ a její velikost je $\sqrt{0^2 + 0^2 + 5^2} = 5$.

16.2 Použití v metodě nejmenších čtverců

- Metoda nejmenších čtverců minimalizuje sumu čtverců odchylek mezi daty a modelem.
- Konstrukce:
 - 1. Mějme data $(x_1, y_1), (x_2, y_2), \dots, (x_n, y_n)$ a model y = mx + b.
 - 2. Sestavíme matici A a vektor \mathbf{b} :

$$A = \begin{bmatrix} x_1 & 1 \\ x_2 & 1 \\ \vdots & \vdots \\ x_n & 1 \end{bmatrix}, \quad \mathbf{b} = \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{bmatrix}$$

- 3. Řešíme soustavu $A^T A \mathbf{x} = A^T \mathbf{b}$, kde $\mathbf{x} = (m, b)^T$.
- **Příklad**: Pro data (1,2), (2,3), (3,5):

$$A = \begin{bmatrix} 1 & 1 \\ 2 & 1 \\ 3 & 1 \end{bmatrix}, \quad \mathbf{b} = \begin{bmatrix} 2 \\ 3 \\ 5 \end{bmatrix}$$

$$A^T A = \begin{bmatrix} 14 & 6 \\ 6 & 3 \end{bmatrix}, \quad A^T \mathbf{b} = \begin{bmatrix} 23 \\ 10 \end{bmatrix}$$

Řešení soustavy:

$$\begin{bmatrix} 14 & 6 \\ 6 & 3 \end{bmatrix} \begin{bmatrix} m \\ b \end{bmatrix} = \begin{bmatrix} 23 \\ 10 \end{bmatrix}$$

21

Výsledek: m = 1.5, b = 0.333. Přímka je y = 1.5x + 0.333.

16.3 Použití v metodě sdružených gradientů

- Metoda sdružených gradientů iterativně hledá řešení soustavy $A\mathbf{x} = \mathbf{b}$.
- Konstrukce:
 - 1. Inicializace: \mathbf{x}_0 , $\mathbf{r}_0 = \mathbf{b} A\mathbf{x}_0$, $\mathbf{p}_0 = \mathbf{r}_0$.
 - 2. Iterace:

$$\alpha_k = \frac{\mathbf{r}_k^T \mathbf{r}_k}{\mathbf{p}_k^T A \mathbf{p}_k}, \quad \mathbf{x}_{k+1} = \mathbf{x}_k + \alpha_k \mathbf{p}_k, \quad \mathbf{r}_{k+1} = \mathbf{r}_k - \alpha_k A \mathbf{p}_k, \quad \beta_k = \frac{\mathbf{r}_{k+1}^T \mathbf{r}_{k+1}}{\mathbf{r}_k^T \mathbf{r}_k}, \quad \mathbf{p}_{k+1} = \mathbf{r}_{k+1} + \beta_k \mathbf{p}_k$$

- 3. Opakování dokud $\|\mathbf{r}_k\|$ není dostatečně malé.
- Příklad: Řešení soustavy $A\mathbf{x} = \mathbf{b}$, kde:

$$A = \begin{bmatrix} 4 & 1 \\ 1 & 3 \end{bmatrix}, \quad \mathbf{b} = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$$

Inicializace: $\mathbf{x}_0 = (0,0)^T$, $\mathbf{r}_0 = \mathbf{b} - A\mathbf{x}_0 = (1,2)^T$, $\mathbf{p}_0 = \mathbf{r}_0 = (1,2)^T$. První iterace:

$$\alpha_0 = \frac{\mathbf{r}_0^T \mathbf{r}_0}{\mathbf{p}_0^T A \mathbf{p}_0} = \frac{5}{23}, \quad \mathbf{x}_1 = \mathbf{x}_0 + \alpha_0 \mathbf{p}_0 = \left(\frac{5}{23}, \frac{10}{23}\right)^T, \quad \mathbf{r}_1 = \mathbf{r}_0 - \alpha_0 A \mathbf{p}_0 = \left(\frac{18}{23}, \frac{16}{23}\right)^T, \quad \beta_0 = \frac{\mathbf{r}_1^T \mathbf{r}_1}{\mathbf{r}_0^T \mathbf{r}_0} = \frac{580}{529}, \quad \mathbf{p}_1 = \mathbf{r}_1 - \frac{1}{23}$$

Pokračování iterací dokud $\|\mathbf{r}_k\|$ není dostatečně malé.

16.4 Použití v JPEG kompresi

- V JPEG kompresi se obrazový blok aproximuje pomocí diskrétní cosine transformace (DCT).
- Konstrukce:
 - 1. Rozdělíme obraz na bloky 8x8 pixelů.
 - 2. Aplikujeme DCT na každý blok:

$$F(u,v) = \frac{1}{4}C(u)C(v)\sum_{x=0}^{7}\sum_{y=0}^{7}f(x,y)\cos\left(\frac{(2x+1)u\pi}{16}\right)\cos\left(\frac{(2y+1)v\pi}{16}\right)$$

kde $C(u) = \frac{1}{\sqrt{2}}$ pro u = 0, jinak 1.

- 3. Kvantizujeme koeficienty F(u, v).
- Příklad: Pro blok 8x8 pixelů s hodnotami f(x,y) aplikujeme DCT a získáme koeficienty F(u,v). Nízké frekvenční koeficienty jsou prioritizovány při kompresi.

16.5 Úplná ortogonální množina v prostoru

- Množina vektorů, které jsou vzájemně ortogonální (jejich skalární součin je nulový).
- Úplnost znamená, že neexistuje nenulový vektor, který by byl ortogonální ke všem vektorům této množiny.
- Tvoří ortogonální bázi prostoru libovolný vektor prostoru lze vyjádřit jako lineární kombinaci těchto vektorů.
- Příklad výpočtu:
 - Mějme vektory $\mathbf{u} = (1,0)$ a $\mathbf{v} = (0,1)$ v \mathbb{R}^2 .
 - Skalární součin: $\mathbf{u} \cdot \mathbf{v} = 1 \cdot 0 + 0 \cdot 1 = 0$ (jsou ortogonální).
 - Tyto vektory tvoří úplnou ortogonální množinu, protože každý vektor v \mathbb{R}^2 lze vyjádřit jako lineární kombinaci \mathbf{u} a \mathbf{v} .

16.6 Fourierovy řady

- Rozklad periodické funkce na nekonečnou řadu goniometrických funkcí (sinů a kosinů) s různými frekvencemi.
- Tyto funkce tvoří úplnou ortogonální množinu v prostoru kvadraticky integrovatelných funkcí (L² prostoru) na intervalu $[-\pi, \pi]$ nebo $[0, 2\pi]$.
- Příklad výpočtu:
 - Mějme funkci f(x) = x na intervalu $[-\pi, \pi]$.
 - Fourierova řada pro $f(\boldsymbol{x})$ je:

$$f(x) \sim \sum_{n=1}^{\infty} \frac{2(-1)^{n+1}}{n} \sin(nx).$$

- První členy řady:

$$f(x) \approx 2\sin(x) - \sin(2x) + \frac{2}{3}\sin(3x) - \frac{1}{2}\sin(4x) + \dots$$

17 Výpočetní náročnost operací s maticemi

17.1 Počty operací nutné k násobení matice vektorem

- Násobení matice $m \times n$ vektorem $n \times 1$ vyžaduje $\mathcal{O}(m \cdot n)$ operací (každý prvek výsledného vektoru je skalární součin řádku matice a vektoru).
- Příklad: Pro matici $\begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{pmatrix}$ a vektor $\begin{pmatrix} 2 \\ 1 \\ 0 \end{pmatrix}$ potřebujeme $2 \cdot 3 = 6$ násobení a $2 \cdot 2 = 4$ sčítání.

17.2 Násobení matic

- Násobení dvou matic $n \times n$ klasickým algoritmem má složitost $\mathcal{O}(n^3)$ (každý prvek výsledku je skalární součin řádku a sloupce).
- Příklad: Pro matice $\begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}$ a $\begin{pmatrix} 5 & 6 \\ 7 & 8 \end{pmatrix}$ je počet operací $2 \cdot 2 \cdot 2 = 8$ násobení a $2 \cdot 2 \cdot 1 = 4$ sčítání.

17.3 Použití Gaussovy eliminační metody

- Redukce matice $n \times n$ do odstupňovaného tvaru má složitost $\mathcal{O}(n^3)$ (eliminace proměnných pomocí řádkových operací).
- Příklad: Pro matici $\begin{pmatrix} 2 & 4 & 6 \\ 3 & 8 & 7 \\ 1 & 2 & 1 \end{pmatrix}$ se provádí přibližně n^3 operací pro eliminaci.

17.4 Gaussova-Jordanova eliminace

- Rozšíření Gaussovy eliminace do redukovaného odstupňovaného tvaru má také složitost $\mathcal{O}(n^3)$, ale s vyšší konstantou (eliminace nad i pod pivoty).
- Příklad: Po Gaussově eliminaci matice

$$\begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{pmatrix}$$

se dále vynulují prvky nad pivoty.

17.5 Strassenův algoritmus

- Strassenův algoritmus je efektivní metoda pro násobení matic, která dosahuje složitosti $\mathcal{O}(n^{2.81})$.
- To je lepší než klasický algoritmus se složitostí $\mathcal{O}(n^3)$.
- Algoritmus využívá rekurzivního dělení matic na menší podmatice a následně kombinuje výsledky pomocí speciálních operací.
- **Příklad**: Pro matice velikosti 2×2 se místo obvyklých 8 násobení použije pouze 7 speciálních operací. Tyto operace zahrnují například výpočet $(A_{11} + A_{22})(B_{11} + B_{22})$, kde A_{11} , A_{22} , B_{11} a B_{22} jsou podmatice původních matic. Tím se sníží počet potřebných násobení, což vede k vyšší efektivitě.

18 Matematická indukce

18.1 Princip

- Matematická indukce je metoda dokazování, která se používá k ověření pravdivosti tvrzení pro všechna přirozená čísla.
- Skládá se ze dvou kroků:
 - -1. Bázový krok: Ověříme, že tvrzení platí pro nejmenší hodnotu (obvykle n=1).
 - **2.** Indukční krok: Předpokládáme, že tvrzení platí pro nějaké n = k (indukční předpoklad), a dokážeme, že pak platí i pro n = k + 1.
- Pokud oba kroky platí, pak tvrzení platí pro všechna přirozená čísla.

18.2 Použití

- Matematická indukce se často používá k dokazování vlastností posloupností, součtů, nebo nerovností.
- **Příklad**: Dokažte, že pro všechna přirozená čísla n platí:

$$1+2+3+\cdots+n = \frac{n(n+1)}{2}$$

Řešení:

- **Bázový krok**: Pro n=1 platí $1=\frac{1(1+1)}{2}$, což je pravda.
- Indukční krok: Předpokládejme, že tvrzení platí pron=k, tedy:

$$1 + 2 + 3 + \dots + k = \frac{k(k+1)}{2}$$

Pak pro n = k + 1 máme:

$$1+2+3+\cdots+k+(k+1)=\frac{k(k+1)}{2}+(k+1)=\frac{(k+1)(k+2)}{2}$$

Tím je indukční krok dokončen.

19 Základní pravidla kombinatoriky

19.1 Pravidlo součtu

- Pravidlo součtu říká, že pokud máme n možností, jak provést jednu věc, a m možností, jak provést jinou věc, a tyto věci nelze provést současně, pak celkový počet možností je n + m.
- **Příklad:** Máme 3 červené a 4 modré kuličky. Kolik máme možností, jak vybrat jednu kuličku? Podle pravidla součtu je to 3+4=7 možností.

19.2 Pravidlo součinu

- Pravidlo součinu říká, že pokud máme n možností, jak provést jednu věc, a pro každou z těchto možností máme m možností, jak provést jinou věc, pak celkový počet možností je $n \times m$.
- Příklad: Máme 3 trička a 2 kalhoty. Kolik máme možností, jak si obléknout jedno tričko a
 jedny kalhoty? Podle pravidla součinu je to 3 × 2 = 6 možností.

19.3 Princip inkluze a exkluze

- Princip inkluze a exkluze slouží k výpočtu počtu prvků ve sjednocení dvou množin. Pokud máme množiny A a B, pak počet prvků v $A \cup B$ je $|A| + |B| |A \cap B|$.
- **Příklad:** Ve třídě je 20 studentů, kteří umí anglicky, 15 studentů, kteří umí německy, a 5 studentů, kteří umí oba jazyky. Kolik studentů umí alespoň jeden z těchto jazyků? Podle principu inkluze a exkluze je to 20 + 15 5 = 30 studentů.

19.4 Dirichletův princip

- Dirichletův princip (nebo také princip holubníku) říká, že pokud máme více předmětů než přihrádek, pak alespoň jedna přihrádka musí obsahovat více než jeden předmět.
- **Příklad:** Máme 10 ponožek a 9 šuplíků. Pokud chceme uložit všechny ponožky do šuplíků, pak alespoň jeden šuplík musí obsahovat alespoň dvě ponožky.

20 Kombinatorické výpočty

20.1 Variace

- Bez opakování:
 - Počet způsobů, jak vybrat k prvků z ns ohledem na pořadí, kde se prvky neopakují.
 - Vzorec: $V(k,n) = \frac{n!}{(n-k)!}$.
 - **Příklad**: Vybrat 3 studenty z 10 do soutěžního týmu (s rozlišením pozic): $V(3,10) = 10 \cdot 9 \cdot 8 = 720$.

• S opakováním:

- Počet způsobů, jak vybrat k prvků z n s ohledem na pořadí, kde se prvky mohou opakovat.
- Vzorec: $V'(k,n) = n^k$.
- **Příklad**: Počet možných 4místných PINů (čísla 0-9): $V'(4,10) = 10^4 = 10\,000$.

20.2 Permutace

- Bez opakování:
 - Počet způsobů, jak uspořádat všech n jedinečných prvků.
 - Vzorec: P(n) = n!.
 - **Příklad**: Uspořádání 5 knih na polici: 5! = 120.

• S opakováním:

- Počet způsobů, jak uspořádat n prvků, kde se některé prvky opakují.
- Vzorec: $P(n; k_1, k_2, ...) = \frac{n!}{k_1! \cdot k_2! \cdots}$.
- **Příklad**: Uspořádání písmen ve slově "MAMA" (2× M, 2× A): $\frac{4!}{2!\cdot 2!} = 6$.

20.3 Kombinace

- · Bez opakování:
 - Počet způsobů, jak vybrat k prvků z n bez ohledu na pořadí.
 - Vzorec: $C(n,k) = \binom{n}{k} = \frac{n!}{k!(n-k)!}$.
 - **Příklad**: Výbor 4 lidí z 10: $\binom{10}{4} = 210$.
- S opakováním:
 - Počet způsobů, jak vybrat k prvků z n s možností opakování (nezáleží na pořadí).
 - Vzorec: $C'(n,k) = \binom{n+k-1}{k}$.
 - **Příklad**: Nákup 5 koláčů ze 3 druhů (může být více stejných): $\binom{3+5-1}{5} = \binom{7}{5} = 21$.

20.4 Kombinatorické identity

- $\binom{n}{k} = \binom{n}{n-k}$ (symetrie).
 - **Vysvětlení**: Počet způsobů, jak vybrat k prvků z n, je stejný jako počet způsobů, jak vybrat n-k prvků.
 - **Příklad**: $\binom{5}{2} = \binom{5}{3} = 10$.
- $\sum_{k=0}^{n} \binom{n}{k} = 2^n$ (součet řádku v Pascalově trojúhelníku).
 - **Vysvětlení**: Součet všech kombinačních čísel v n-tém řádku Pascalova trojúhelníku je roven počtu všech podmnožin množiny s n prvky.
 - **Příklad**: Pro n = 3: $1 + 3 + 3 + 1 = 8 = 2^3$.

20.5 Pascalův trojúhelník

• Konstrukce: Každé číslo je součet dvou čísel přímo nad ním. Platí vztah:

$$\binom{n}{k} = \binom{n-1}{k-1} + \binom{n-1}{k}$$

- **Příklad**: 5. řádek Pascalova trojúhelníku [nejde mi opravit (\bullet \cap \bullet)] :

Tento řádek odpovídá kombinačním číslům:

$$\binom{5}{0} = 1, \quad \binom{5}{1} = 5, \quad \binom{5}{2} = 10, \quad \binom{5}{3} = 10, \quad \binom{5}{4} = 5, \quad \binom{5}{5} = 1.$$

20.6 Binomická věta

- Rozvoj $(a+b)^n = \sum_{k=0}^n \binom{n}{k} a^{n-k} b^k$.
 - **Příklad**: $(x+y)^3 = x^3 + 3x^2y + 3xy^2 + y^3$.

20.7 Multinomická věta

- Zobecnění pro více proměnných: $(a_1+a_2+\cdots+a_m)^n=\sum_{k_1+\cdots+k_m=n}\frac{n!}{k_1!\cdots k_m!}a_1^{k_1}\cdots a_m^{k_m}$.
 - **Příklad**: $(a+b+c)^2 = a^2 + b^2 + c^2 + 2ab + 2ac + 2bc$.

20.8 Zobecněná kombinační čísla

- Kombinace s opakováním: $\binom{n+k-1}{k}$.
 - **Příklad**: Počet způsobů, jak koupit 3 kusy ovoce ze 4 druhů: $\binom{4+3-1}{3} = \binom{6}{3} = 20$.

20.9 Newtonův vzorec

• Zobecněný rozvoj $(x+b)^r$ pomocí binomických koeficientů:

$$(x+b)^r = \sum_{k \ge 0} \binom{r}{k} x^k b^{r-k}$$

- **Příklad**: Rozvoj $(x+2)^4$:

$$(x+2)^4 = \sum_{k \ge 0} {4 \choose k} x^k 2^{4-k}$$

Postupně vypočítáme každý člen:

$$\begin{pmatrix} 4 \\ 0 \end{pmatrix} x^0 2^4 = 1 \cdot 1 \cdot 16 = 16,$$

$$\begin{pmatrix} 4 \\ 1 \end{pmatrix} x^1 2^3 = 4 \cdot x \cdot 8 = 32x,$$

$$\begin{pmatrix} 4 \\ 2 \end{pmatrix} x^2 2^2 = 6 \cdot x^2 \cdot 4 = 24x^2,$$

$$\begin{pmatrix} 4 \\ 3 \end{pmatrix} x^3 2^1 = 4 \cdot x^3 \cdot 2 = 8x^3,$$

$$\begin{pmatrix} 4 \\ 4 \end{pmatrix} x^4 2^0 = 1 \cdot x^4 \cdot 1 = x^4.$$

Sečtením všech členů dostaneme:

$$(x+2)^4 = 16 + 32x + 24x^2 + 8x^3 + x^4$$
.

21 Číselné posloupnosti

21.1 Prostor číselných posloupností

- Množina všech číselných posloupností (nekonečných nebo konečných) s operacemi sčítání a násobení skalárem.
 - **Příklad:** Posloupnosti $(1,2,3,\ldots)$ a $(2,4,8,\ldots)$ lze sečíst jako $(3,6,11,\ldots)$.

21.2 Lineární zobrazení na prostoru číselných posloupností

- Zobrazení zachovávající lineární kombinace (např. operátor posunu, derivace posloupnosti).
 - **Příklad:** Operátor posunu T aplikovaný na (1, 2, 3, ...) dá (0, 1, 2, ...).

21.3 Rekurentně definované posloupnosti

- Posloupnosti, kde každý člen závisí na předchozích členech (např. Fibonacciho posloupnost).
 - **Příklad:** $a_n = a_{n-1} + a_{n-2}$ s $a_0 = 0$, $a_1 = 1$ dává (0, 1, 1, 2, 3, 5, ...).

21.4 Rekurence konečného řádu, diferenční rovnice

- Rekurence řádu k: člen a_n závisí na k předchozích členech (např. $a_n = 2a_{n-1}$).
 - Co je řád rekurence?
 - * Řád určuje, kolik předchozích členů potřebujeme k výpočtu dalšího členu.
 - \ast Např. rekurence $a_n=2a_{n-1}$ je 1. řádu, protože závisí na 1 předchozím členu.
 - * Rekurence $a_n = a_{n-1} + a_{n-2}$ je 2. řádu, protože závisí na 2 předchozích členech.
 - **Příklad:** Diferenční rovnice $a_{n+1} 3a_n = 0$ má řešení $a_n = C \cdot 3^n$.
 - * Každý další člen je 3× větší než předchozí.
 - * Konstanta C se určí z počátečních podmínek.

21.5 Počáteční podmínky

- Hodnoty prvních členů posloupnosti nutné k jednoznačnému určení řešení rekurence.
 - **Příklad:** Pro $a_n = 2a_{n-1}$ s $a_0 = 1$ dostaneme posloupnost (1, 2, 4, 8, ...).
 - * $a_0 = 1$ (počáteční podmínka),
 - $* a_1 = 2a_0 = 2,$
 - $* a_2 = 2a_1 = 4,$
 - $* a_3 = 2a_2 = 8,$
 - * a tak dále.

21.6 Lineární rekurentní vztahy konečného řádu

- Rekurence tvaru $a_n + c_1 a_{n-1} + \cdots + c_k a_{n-k} = 0$, kde c_i jsou konstanty.
 - **Příklad:** $a_n = 5a_{n-1} 6a_{n-2}$ má řešení $a_n = C_1 \cdot 2^n + C_2 \cdot 3^n$.
 - * Charakteristická rovnice: $r^2 5r + 6 = 0$ s kořeny r = 2 a r = 3.
 - * Obecné řešení je lineární kombinací 2^n a 3^n .

22 Řešení rekurentních vztahů

22.1 Lineární rekurentní vztahy s konstantními koeficienty

- Rekurentní vztah vyjadřuje posloupnost pomocí předchozích členů. Například pro posloupnost $a_n = 2a_{n-1} a_{n-2}$ s počátečními podmínkami $a_0 = 1$, $a_1 = 3$:
 - $-a_2=2\cdot 3-1=5,$
 - $-a_3=2\cdot 5-3=7,$
 - $-a_4 = 2 \cdot 7 5 = 9$ atd.

22.2 Charakteristický mnohočlen rekurentního vztahu

- Polynom odvozený z rekurence. Pro $a_n 5a_{n-1} + 6a_{n-2} = 0$ dosadíme $a_n = r^n$:
 - Charakteristická rovnice: $r^2 5r + 6 = 0 \implies r_1 = 2, r_2 = 3.$
 - Obecné řešení: $a_n = C_1 \cdot 2^n + C_2 \cdot 3^n$.
 - S počátečními podmínkami $a_0 = 1$, $a_1 = 4$:
 - $* 1 = C_1 \cdot 2^0 + C_2 \cdot 3^0 \implies C_1 + C_2 = 1,$
 - * $4 = C_1 \cdot 2^1 + C_2 \cdot 3^1 \implies 2C_1 + 3C_2 = 4$.
 - * Řešení soustavy: $C_1 = -1$, $C_2 = 2$.
 - * Konkrétní řešení: $a_n = -2^n + 2 \cdot 3^n$.

22.3 Vlastní čísla a vlastní a hlavní vektory posunutí posloupnosti

- Posunutí posloupnosti je operátor $S(a_n) = a_{n+1}$. Pro $a_{n+1} = 3a_n$:
 - Vlastní číslo je 3, vlastní vektor je posloupnost $a_n = 3^n$.
 - S počáteční podmínkou $a_0 = 2$:
 - $* a_n = 2 \cdot 3^n.$

22.4 Reálné posloupnosti generované dvojicemi komplexně sdružených vlastních čísel

- Pro kořeny $r=\alpha\pm\beta i$ použijeme převod na trigonometrický tvar. Příklad pro rekurenci $a_n=2a_{n-1}-5a_{n-2}$:
 - Charakteristická rovnice: $r^2 2r + 5 = 0 \implies r = 1 \pm 2i$.
 - Řešení: $a_n = C_1 \cdot (\sqrt{5})^n \cos(n\theta) + C_2 \cdot (\sqrt{5})^n \sin(n\theta)$, kde $\theta = \arctan(2)$.
 - S počátečními podmínkami $a_0 = 1, a_1 = 2$:
 - * $1 = C_1 \cdot (\sqrt{5})^0 \cos(0) + C_2 \cdot (\sqrt{5})^0 \sin(0) \implies C_1 = 1,$
 - * $2 = (\sqrt{5})^1 \cos(\theta) + C_2 \cdot (\sqrt{5})^1 \sin(\theta) \implies C_2 = \frac{2 \sqrt{5} \cos(\theta)}{\sqrt{5} \sin(\theta)}$
 - * Konkrétní řešení: $a_n = (\sqrt{5})^n \cos(n\theta) + \frac{2-\sqrt{5}\cos(\theta)}{\sqrt{5}\sin(\theta)} \cdot (\sqrt{5})^n \sin(n\theta)$.

22.5 Řešení nehomogenních rekurencí se speciálními pravými stranami

- Metoda odhadu partikulárního řešení. Příklad: $a_n 4a_{n-1} = 3^n$:
 - Homogenní řešení: $a_n^{(h)} = C \cdot 4^n$.
 - Partikulární řešení tipneme jako $a_n^{(p)}=K\cdot 3^n$. Dosazením: $3^n(K-4K\cdot 3^{-1})=3^n\implies K=-3$.
 - Celkové řešení: $a_n = -3^{n+1} + C \cdot 4^n$.
 - S počáteční podmínkou $a_0 = 1$:
 - $* 1 = -3^1 + C \cdot 4^0 \implies C = 4.$
 - * Konkrétní řešení: $a_n = -3^{n+1} + 4^{n+1}$.

23 Rovinné grafy

23.1 Základní pojmy

- Vrchol (uzel): Základní prvek grafu reprezentovaný bodem
- Stupeň vrcholu: S kolika dalšími vrcholy je propojen hranou
- Hrana: Spojnice mezi dvěma vrcholy (neorientovaná/orientovaná)
- Planární graf: Lze nakreslit do roviny bez protnutí hran
- Kuratowského věta: Graf je neplanární \iff obsahuje podgraf homeomorfní s K_5 nebo $K_{3,3}$ Příklad: $K_{3,3}$ (graf "tří budov a tří zdrojů") není planární

23.2 Incidence

- Incidence je pojem, který popisuje vztah mezi vrcholy a hranami v grafu.
- Říkáme, že vrchol A inciduje s hranou e, pokud je vrchol A jedním z konců hrany e.
- Jinými slovy, vrchol a hrana jsou spojené.
- Incidenční matice je matematický nástroj, který popisuje incidenci v grafu.
- Je to matice o rozměrech $|V| \times |E|$, kde |V| je počet vrcholů a |E| je počet hran.
- Každý řádek matice odpovídá vrcholu a každý sloupec odpovídá hraně.
- Hodnota na pozici (i, j) v matici je definována takto:

$$m_{ij} = \begin{cases} 1, & \text{pokud vrchol } i \text{ inciduje s hranou } j, \\ 0, & \text{jinak.} \end{cases}$$

Příklad: Uvažujme graf, který reprezentuje cestu A - B - C. Tento graf má tři vrcholy (A, B, C) a dvě hrany $(e_1 \text{ mezi } A \text{ a } B, e_2 \text{ mezi } B \text{ a } C)$. Incidenční matice pro tento graf vypadá takto:

$$\begin{pmatrix} 1 & 0 \\ 1 & 1 \\ 0 & 1 \end{pmatrix}$$

- První řádek odpovídá vrcholu A: A inciduje s e_1 (proto je tam 1), ale neinciduje s e_2 (proto je tam 0).
- Druhý řádek odpovídá vrcholu B: B inciduje s e_1 i e_2 (proto jsou tam dvě 1).
- Třetí řádek odpovídá vrcholu C: C inciduje s e_2 (proto je tam 1), ale neinciduje s e_1 (proto je tam 0).

23.3 Matice sousednosti

Matice sousednosti je čtvercová matice o rozměru $|V| \times |V|$, kde |V| je počet vrcholů v grafu. Každý prvek a_{ij} udává počet hran mezi vrcholy i a j.

- Pokud $a_{ij}=0$, mezi vrcholy i a j není žádná hrana.
- Pokud $a_{ij} = 1$, mezi vrcholy i a j je jedna hrana.
- Pro neorientovaný graf je matice symetrická $(a_{ij} = a_{ji})$.

Příklad:

23.4 Skóre grafu

• Skóre grafu: Posloupnost stupňů vrcholů v nerostoucím pořadí Příklad: (3, 3, 2, 1) není grafické (nelze sestavit graf)

23.5 Havlův algoritmus

- Kroky algoritmu:
 - 1. Seřadit posloupnost nerostoucím způsobem
 - 2. Odebrat první prvek d_1
 - 3. Snížit následujících d_1 prvků o 1
 - 4. Opakovat dokud nezbyde samé nuly (grafické) nebo záporné číslo (negrafické)

Graf se dá popsat i matici sousednosti, to je taková matice ${\bf S}$, pro kterou je

$$s_{ij} = \left\{egin{array}{l} 1 \;, \mathsf{pokud} \; \mathsf{množina} \; \{\mathit{V}_i, \mathit{V}_j\} \in \mathcal{E} \ 0 \; \mathsf{jindy} \end{array}
ight.$$

Například grafu

Matice sousednosti normálního grafu je symetrická, $s_{ij} = s_{ji}$.

• Příklad pro (3,3,2,2):

$$(3,3,2,2)\to (3,2,1,1)$$
 (odebráno 3, sníženy 3 prvky)
$$(2,1,1)\to (1,0,0)\\ (0,0)\to {\rm grafick\acute{e}}$$

23.6 Souvislost grafů – sled, tah, cesta

- Sled: Posloupnost vrcholů spojených hranami (hrany se mohou opakovat) Příklad: $A \to B \to C \to B$
 - Pochopil jsem to tak, že je to v podstatě skupina vektorů, kde jsou propojení: e1 = (vrchol1, vrchol2) a následně jsou daný do dalšího vektoru, kde "e1" funguje jako konkrétní informace o tom vrcholu. Příklad: posloupnost = (vrchol1, e1, vrchol2, e1, ...)
- Tah: Sled s jedinečnými hranami **Příklad**: $A \to B \to C \to D$
 - Podobné jako sled, akorát obsahuje propojení jen jednou + v posloupnosti je na prvním místě ten počátek. Příklad: posloupnost = (vrchol1, e1, (zde není vrchol2, protože už je v tom prvním propojení)
- Cesta: Tah s jedinečnými vrcholy Příklad: $A \to B \to C$

23.7 Speciální typy grafů

• Multigraf: Povoluje násobné hrany a smyčky **Příklad**: Graf s vrcholem A spojeným 2 hranami s B a se smyčkou u A

- Úplný bipartitní graf $(K_{m,n})$: Všechny vrcholy z části M spojeny s částí N Příklad: $K_{2,3}$ má 2+3 vrcholů a 6 hran
- Pseudograf: Multigraf + ještě má smyčky hran ze stejného vrcholu do stejného vrcholu
- Cyklický
 - Obsahuje kruh.

23.8 Eulerovské a Hamiltonovské grafy

- Eulerovský graf (obsahuje Eulerovský tah):
 - Prochází všechny hrany jednou.
 - Příklad: Pošták musí projít všemi ulicemi jednou.
 - Podmínka: Souvislý graf se všemi stupni sudými **Příklad**: Dva trojúhelníky spojené hranou
- Hamiltonovský graf:
 - Prochází všechny vrcholy jednou.
 - Příklad: Pošťák musí projít všechny křižovatky jednou.

- Uzavřený Hamiltonovský graf:
 - Koncový vrchol splývá s počátečním.

Kostra: libovolný podgraf, co funguje jako strom.

24 Ohodnocené grafy

24.1 Optimalizační algoritmy - minimální kostra

- Kruskalův algoritmus: Seřadí hrany podle váhy a přidává je od nejlehčí, dokud nevznikne kostra bez cyklů.
 - **Příklad**: Graf s vrcholy A, B, C, D a hranami A B(1), A C(4), B C(2), B D(5), C D(3). Postupně se přidají hrany A B(1), B C(2), C D(3). Celková váha: 6.
- Borůvkův algoritmus: Pro každou komponentu vybere nejlehčí hranu spojující ji s jinou komponentou. Opakuje, dokud není jediná komponenta.
 - **Příklad**: Stejný graf jako výše.
 - 1. iterace: Komponenty $\{A\}, \{B\}, \{C\}, \{D\}$. Nejlehčí hrany: A-B(1), B-C(2), C-D(3), D-C(3).
 - 2. iterace: Komponenty $\{A,B\},\{C,D\}$. Nejlehčí spojující hrana: B-C(2). Výsledná kostra: $A-B(1),\,B-C(2),\,C-D(3)$ (celkem 6).
- U tohoto je lepší se podívat na video.

24.2 Nejkratší cesta

- Dijkstrův algoritmus: Hledá nejkratší cestu z jednoho vrcholu do všech ostatních (pro nezáporné váhy).
- Příklad pro Dijkstrův algoritmus: Graf s vrcholy A, B, C, D a hranami A B(1), A C(4), B C(2), B D(5), C D(3). Hledání cesty z A do D:
 - Krok 1: $A \to B(1)$, $A \to C(4)$.
 - Krok 2: Z B vede cesta $B \to C(1+2=3)$ a $B \to D(1+5=6)$.
 - Krok 3: Z C vede $C \to D(3+3=6)$.

Nejlepší cesta: $A \to B \to D$ s váhou 6 (nebo $A \to B \to C \to D$ se stejnou váhou).

Taky je lepší se podívat na video pro pochopení. Is this the end?

25 Post-zkouška

- Udělal jsem to za 1
- Doporučuju si spočítat alespoň jednou příklady ze sbírky.
- Všechno v tomto dokumentu nemusí být na 100% správně, učil jsem to při psaní. Možná i něco chybí. Každopádně nadpisy/podnadpisy se drží okruhů.
- Hodně štěstí:)