Unsupervised Machine Learning: Clustering: k-means

Alipio Jorge

January 2021

Supervised vs. Unsupervised

- Instructor avaialable
 - supervised
- Instructor not available
 - unsupervised
- Instructor partially available
 - semi-supervised
- Instructor better than random but not very precise
 - weakly supervised
- Finding a representation using a surrogate task
 - self-supervised

Clustering

Cluster analysis

Partition a set of objects into **groups**

- Each group is a cluster
- Objects in the same cluster are similar
- Objects in different clusters are dissimilar

In the real world differences are not always easy to find

- Maximise intra-similarity
- Minimize inter-similarity

Why Clustering?

No labels available

- Learn classes without a supervisor
- Examples have no class labels

Applications

- Customer segmentation
- Divide patients in homogeneous groups
- Organize web results by content

Figure 1: ''

Cluster analysis

- Given
 - a set of objects
 - a number k of desired groups
- Obtain
 - a mapping of each object into each group

Example

- Objects = $\{x_1, x_2, x_3, x_4, x_5, x_6\}$, k = 3
- $Groups = \{1, 1, 2, 1, 3, 2\}$

Setup

- Imagine the data points in a multidimensional space
 - The dimensions are the attributes
- Pick an appropriate distance/similarity metric
 - It should correspond to our intuition of the domain

Strategy: partitioning method

- Obtain an initial partitioning
- Improve iteratively

The algorithm

- Input
 - k: the number of clusters,
 - D: a data set containing n objects.
- Output
 - A set of k clusters.
- Method
 - lacktriangle arbitrarily choose k objects from D as the initial cluster centers
 - 2 repeat
 - **(re)assign** each object to the cluster to which the object is the most similar the cluster center
 - update the cluster means, that is, calculate the mean value of the objects for each cluster
 - until no change

k-means algorithm

Result of k-means

- k disjoint clusters C_1, C_2, \ldots, C_k
- $\bigcup_{i=1}^{k} C_i = D$, every point is in one cluster
- Each cluster C_i is characterized by a **centroid** c_i
- A centroid is a vector but typically not a true point

$$\mathbf{c}_i = \operatorname{average}_j \mathbf{x}_j , \mathbf{x}_j \in C_i$$

Figure 2: ''

Quality of a cluster

- we want to minimize within-cluster variation
- a measure of error (an objective function)
- the sum of the squared distances to the centroid

$$E = \sum_{i} \sum_{\mathbf{x} \in C_i} dist(\mathbf{c}_i, \mathbf{x})^2$$

The clustering problem

The complexity

- In general it is a NP-hard problem
 (https://mathworld.wolfram.com/NP-HardProblem.html)
- k-means is a greedy approach
- Complexity of k-means is O(nkt)
 - t = iterations
 - usually dominated by n (in practice O(n))
 - very efficient

Convergence

- k-means **may not converge** to a global optimum (for a given k)
- results **depend** on the initial seed centers

Options in k-means

Initialization

- Random
- Heuristic
- User's choice

Calculating centroids

- Means
- Modes (for categorical values), a.k.a. k-modes
- Sample for scalability

Outliers

- Means can be affected by outliers
- k-Medoids is an alternative that uses median
 - and absolute error in the objective function

Evaluating the result of clustering

How can the results of clustering be evaluated?

- Is there a **cluster structure** in the data?
- Is the number of clusters adequate?
- How good are the clusters?

Preparing for clustering

Cluster structure

- Non uniform data
- Use Hopkins statistic to determine spatial randomness
 - $X \leftarrow \text{ sample } m \text{ points from } D$
 - dx_i is the distance of each x_i to nearest neighbor in D
 - $Y \leftarrow$ generate m points uniformly
 - dy_i is the distance of each y_i to nearest neighbor in D
 - if *H* is close to 0.5 then *D* is not clusterable
 - H > 0.5 means good for clustering (some say H > 0.75)

$$H = \frac{\sum dy_i}{\sum dy_i + \sum dx_i}$$

Preparing for clustering

How many clusters?

- in general not obvious
- elbow method
 - try different values for k starting with 1 or around a reasonable number
 - measure within-cluster variance (or another quality measure)
 - it may be advisable to average
 - plot the curve for those values
 - visually choose the turning point of the curve

Figure 3: from "Statistics for Machine Learning" by Pratap Dangeti

Cluster Quality

Extrinsic Methods

- Ground truth is available
 - e.g., some cases, are labeled by experts
- Completeness: two cases with same label must be in same cluster
 - similar to Recall
- Homogeneity: all cases in one cluster should have same label
 - similar to 'Precision
- Completeness and Homogeneity should be balanced (as in F1)
 - 1 cluster vs. n clusters
- e.g. BCubed recall and precision

Cluster Quality

Intrinsic Methods

- NO ground truth
 - typical scenario
- In general:
 - compactness
 - separation
- e.g. silhouette coefficient

Cluster Quality

Silhouette coefficient

- Is a measure and a visualization of cluster quality
- It helps to identify:
 - compact clusters
 - well separated clusters

Silhouette Coefficient of one point x

s(x) tends to 1 if the point is close to other points in same cluster
 AND very far from points in other clusters

Silhouette coefficient

How to calculate for a point x

- calculate average distances of the point to each cluster
- $a(\mathbf{x})$ the distance within cluster
- b(x) the distance to the nearest cluster
- $s(\mathbf{x}) = (b a) / \max(b, a)$
- $-1 \le s(x) \le 1$

Silhouette coefficient

visualization

- Plot bars for every point by cluster
- negative values stand out

Figure 5: 5 cluster example from Yellowbrick

Silhouette 4 blobs Example

• From sklearn documentation "plot_kmeans_silhouette_analysis.html"

Other methods

Other than k-means

- Hierarchical Clustering
- Density Based
- etc.

References

- Books
 - Han, Kamber & Pei, Data Mining Concepts and Techniques, Morgan Kaufman.
- Scikit docs
 - https://scikit-learn.org/stable/auto_examples/cluster/plot_kmeans_ silhouette_analysis.html