System Verification and Validation Report for Chess Connect

Team #4,
Alexander Van Kralingen
Arshdeep Aujla
Jonathan Cels
Joshua Chapman
Rupinder Nagra

March~8,~2023

1 Revision History

Date	Version	Notes
2023-03-04	Arshdeep Aujla	Added Template for Nonfunctional Requirements
2023-03-05	Arshdeep Aujla	Added Table for functional requirements, traceability matrix
2023-03-07	Jonathan Cels	Added functional requirement test reports
2023-03-08	Joshua Chapman	Added changes due to testing, Trace to Modules

2 Symbols, Abbreviations and Acronyms

symbol	description
Т	Test
FSM	Finite State Machine

Refer to SRS Section 1 for an extensive list of used symbols, abbreviations, and acronyms.

Contents

1	Revision history	1
2	Symbols, Abbreviations and Acronyms	ii
3	Functional Requirements Evaluation 3.1 Game Active State	1 1 2 3 4 6
4	Nonfunctional Requirements Evaluation 4.1 Look and Feel	8 8 8 8 8 9 9
5	Unit Testing	9
6	Changes Due to Testing6.1 Embedded Testing6.2 Hardware Testing6.3 Web Application Testing	9 9 10 10
7	Automated Testing	10
8	Trace to Requirements & Modules	10
9	Trace to Modules	12
10	Code Coverage Metrics	12
A	Reflection Appendix	12
${f L}$	ist of Tables	
	1 Active State Functional Requirements Results	1 2

3	Normal Mode Functional Requirements Results
4	Engine Mode Functional Requirements Results
5	Beginner Mode Functional Requirements Results
6	Look and Feel Non-Functional Requirements Results
7	Usability and Humanity Non-Functional Requirements Results
8	Performance Non-Functional Requirements Results
9	Health and Safety Non-Functional Requirements Results
10	Precision and Accuracy Non-Functional Requirements Results
11	Capacity Non-Functional Requirements Results
12	Security Non-Functional Requirements Results
13	Requirements Traceability Matrix

List of Figures

This document ...

3 Functional Requirements Evaluation

Refer to the VnV Plan for descriptions of the tests derived to evaluate the functional requirements.

3.1 Game Active State

Test	Input	Expected	Actual	Notes	Result
GA-1	Draw/resign button pressed while game active.	System variable 'gameInProgress' set to false.	System variable configured correctly.		Pass
GA-2	Start game button pressed while game active.	System variable 'gameInProgress' remains true.	System variable configured correctly.		Pass
GA-3	User mode button pressed while game active.	System variable 'currMode' changed to represent the selected user mode.	User mode unchanged.	Design changed, user mode not switchable while a game is active.	Rework
GA-4	Start game button pressed while game inactive.	System variable 'gameInProgress' set to true, 'currFEN' variable is set to the starting FEN.	System variables configured correctly.		Pass
GA-5	Move made that results in stalemate or checkmate according to the rules of chess while game inactive.	System variable 'gameInProgress' set to false.	System variable configured correctly.		Pass

Table 1: Active State Functional Requirements Results

3.2 Game Inactive State

Test	Input	Expected	Actual	Notes	Result
GI-1	Start game button pressed while game inactive.	System variable 'gameInProgress' set to true.	System variable configured correctly.		Pass
GI-2	User mode button pressed while game inactive.	User mode unchanged.	System variable configured correctly.	Design changed, user mode is now switchable (only) while a game is inactive.	Rework
GI-3	Draw/resign button pressed while game inactive.	System variable 'gameInProgress' remains false.	System variable configured correctly.		Pass
GI-4	Piece moved while game inactive.	System variable 'currFEN' is unchanged.	System variable configured correctly.		Pass
GI-5	Draw/resign button pressed, or move made that results in stalemate or checkmate according to the rules of chess while game active.	Game termination and winner are displayed on LCD screen.	Display updates correctly.		Pass

Table 2: Inactive State Functional Requirements Results

3.3 Normal Mode

Test	Input	Expected	Actual	Notes	Result
NB-1	Piece moved while in normal mode.	Game state is updated to reflect piece movement.	Game state updated correctly.		Pass
NB-2	Resign button pressed while in normal mode.	System variable 'gameInProgress' set to false.	System variable configured correctly.		Pass
NB-3	Draw button pressed while in normal mode.	System variable 'gameInProgress' set to false.	System variable configured correctly.		Pass
ND-1	Game state updated while in normal mode.	Updated game state is transmitted to the web application via Bluetooth.	Game state transmitted correctly.		Pass
NA-1	Web application receives updated game state while in normal mode.	Update to game state is reflected on web application display.	Display updates correctly.		Pass
NA-2	Game termination occurs while in normal mode.	Game termination and winner are displayed on web application display.	Display updates correctly.		Pass

Table 3: Normal Mode Functional Requirements Results

3.4 Engine Mode

Test	Input	Expected	Actual	Notes	Result
EB-1	Piece moved while in engine mode.	Game state is updated to reflect piece movement.	Game state updated correctly.		Pass
EB-2	Resign button pressed while in engine mode.	System variable 'gameInProgress' set to false.	System variable configured correctly.		Pass
EB-3	Draw button pressed while in engine mode.	System variable 'gameInProgress' set to false.	System variable configured correctly.		Pass
EB-4	Engine moves transmitted from the web application to microcon- troller.	Engine moves are displayed on the LCD screen.	Display updated correctly.		Pass
ED-1	Game state updated while in engine mode.	Updated game state is transmitted to the web application via Bluetooth.	Game state transmitted correctly.		Pass
ED-2	Engine moves are calculated by the web application.	Calculated engine moves are transmitted from the web application to the microcontroller via Bluetooth	Moves transmitted correctly.	Only one engine move currently calculated, more planned in future revisions.	Partial Pass

Test	Input	Expected	Actual	Notes	Result
EA-1	Web application receives updated game state while in engine mode.	Update to game state is reflected on web application display.	Display updates correctly.		Pass
EA-2	Engine moves are calculated by the web application.	Calculated engine moves are displayed on web application display.	Engine moves are not displayed.	Not implemented, planned in future revisions.	TBD
EA-3	Game termination occurs while in engine mode.	Game termination and winner are displayed on web application display.	Display updates correctly.		Pass

Table 4: Engine Mode Functional Requirements Results

3.5 Beginner Mode

Test	Input	Expected	Actual	Notes	Result
BB-1	Piece moved while in beginner mode.	Game state is updated to reflect piece movement.	Game state updated correctly.		Pass
BB-2	Piece picked up and held while in beginner mode.	LEDs on board indicate legal moves.	Correct LEDs light up.		Pass
BB-3	Piece moved such that an illegal move is made while in beginner mode.	LEDs on board indicate illegal move.	Correct LEDs light up.	Not implemented, planned in future revisions.	TBD
BB-4	Resign button is pressed while in beginner mode.	System variable 'gameInProgress' set to false.	System variable configured correctly.		Pass
BB-5	Draw button is pressed while in beginner mode.	System variable 'gameInProgress' set to false.	System variable configured correctly.		Pass
BD-1	Game state is updated while in beginner mode.	Updated game state is transmitted to the web application via Bluetooth.	Game state transmitted correctly.		Pass

Test	Input	Expected	Actual	Notes	Result
BA-1	User selcetions chess instructions in web application.	Web application displays detailed rules for how to play chess.	N/A	Not implemented, planned in future revisions.	TBD
BA-2	Web application receives updated game state while in beginner mode.	Update to game state is reflected on web application display.	Display updates correctly.		Pass

Table 5: Beginner Mode Functional Requirements Results

4 Nonfunctional Requirements Evaluation

Refer to the VnV Plan for descriptions of the tests derived to evaluate the non-functional requirements.

4.1 Look and Feel

Test	Result	Notes
NFT-1		

Table 6: Look and Feel Non-Functional Requirements Results

4.2 Usability and Humanity

Test	Result	Notes
NFT-2		
NFT-3		

Table 7: Usability and Humanity Non-Functional Requirements Results

4.3 Performance

Test	Result	Notes
NFT-4		
NFT-5		
NFT-6		
NFT-7		

Table 8: Performance Non-Functional Requirements Results

4.4 Health and Safety

Test	Result	Notes
NFT-8		

Table 9: Health and Safety Non-Functional Requirements Results

4.5 Precision and Accuracy

Test	Result	Notes
NFT-9		

Table 10: Precision and Accuracy Non-Functional Requirements Results

4.6 Capacity

Test	Result	Notes
NFT-10		

Table 11: Capacity Non-Functional Requirements Results

4.7 Security

Test	Result	Notes
NFT-11		
NFT-12		

Table 12: Security Non-Functional Requirements Results

5 Unit Testing

6 Changes Due to Testing

The results detailed in the above tests prompted a number of design changes in the hardware, embedded and web application systems. Outlined below are the changes made as result.

6.1 Embedded Testing

Testing the finite state machine located in the electrical system resulted in incorrect functionality according to the design. A finite state machine was designed to control the functionality of the electrical system dictated by the user. It allows users to change modes and have control over the performance of the board. The initial implementation of the FSM utilized a slow clock speed and certain inputs were missed as a result. The new solution is to increase the clock speed of the FSM and include buffers within the states to increase the robustness of the system.

Easy mode provides the functionality of possible moves for pieces on the board. When a piece is lifted, the available squares are highlighted. During testing of the function, there were a number of edge cases that were not covered such as castling, en passant and check scenarios. The proposed solution was to increase the robustness of the algorithm and maintain logs of the game to account for these edge cases.

6.2 Hardware Testing

Testing the hall sensor piece detection circuits at scale uncovered issues with sensitivity of the sensors. At scales of four or more sensors in series, the sensitivity of the reading was too large. Initial solutions included improvement of the hardware. This included improvement of the power supply, grounding and sensors themselves. These solutions did not solve the issue. As a result, the requirements of the sensors have been changed to sense north and south poles exclusively. The functionality of individual piece detection was not feasible.

Assembly of the revision one chess board displayed issues with robustness of the connections between mechanical and electrical assemblies. Temporary connection was established with electrical and duct tape. The electrical system suspended below the mechanical system. After testing of the board, connection points began to fail and separation occured. The solution for revision two is assembly of the mechanical and electrical systems simultaneously. The two systems are assembled together and the robustness of the system is increased.

6.3 Web Application Testing

Integration of the web application with the embedded system revealed an error with the implementation of polling in the web application. Polling required handling of constant data transmission between systems. Issues were clear with required data and processing dedicated to this communicatin. One of the proposed solutions is the implementation of a refresh to erase the stored data. This eliminates the data size issue. A second solution is the introduction of sockets which eliminates polling entirely and solves the data size and processing issues.

7 Automated Testing

8 Trace to Requirements & Modules

Test	Requirement	Module
GA-1	GA1	M2
GA-2	GA2	M2

GA-3	GA3	M2
GA-4	GA6	M2
GA-5	GA7	M2, M5, M11
GI-1	GI1	M2
GI-2	GI2	M2, M11
GI-3	GI3	M2
GI-4	GI4	M2, M4
GI-5	GI5, GI6	M2, M5, M11
NB-1	NB1	M2, M11
NB-2	NB2	M2, M11
NB-3	NB3	M2, M11
ND-1	ND1	M2, M11
NA-1	NA1, NA2	M2, M6, M8, M11
NA-2	NA3	M2, M5, M11
EB-1	EB1	M2, M5, M11
EB-2	EB2	M2, M11
EB-3	EB3	M2, M11
EB-4	EB4	M10, M14
ED-1	ED1	M5, M6, M8, M12
ED-2	ED2	M14
EA-1	EA1, EA2	M5, M6, M8, M11
EA-2	EA3, EA4, EA5	M14
EA-3	EA6	M5, M6, M8, M9
BB-1	BB1	M4, M5, M11
BB-2	BB2	M4, M5, M11
BB-3	BB3	M4, M5, M11
BB-4	BB4	M2, M5, M11
BB-5	BB5	M2, M5, M11
BD-1	BD1	M2, M5, M11
BA-1	BA1	
BA-2	BA2	
NFT1	LF3	
NFT2	UH5	
NFT3	UH6	

NFT4	PR1	
NFT5	PR2	
NFT6	PR3	
NFT7	PR4	
NFT8	PR6	
NFT9	PR7	
NFT10	PR10	
NFT11	SR4	
NFT12	SR3	

Table 13: Requirements Traceability Matrix

9 Trace to Modules

10 Code Coverage Metrics

A Reflection Appendix

References

Author Author. System requirements specification. https://github.com/..., 2019.

CSA. Canadian Electrical Code. CSA Group, 2021.

FEN. Fen (forsyth-edwards notation) - chess terms. https://www.chess.com/terms/fen-chess. Accessed: 2023-01-18.

Interal Chess Federation FIDE. Fide laws of chess. https://www.fide.com/FIDE/handbook/LawsOfChess.pdf, 2018.

Canadian Centre for Occupational Health and Safety. Hazard and risk: Osh answers. https://www.ccohs.ca/oshanswers/hsprograms/hazard_risk.html, 2022. Accessed: 2022-10-05.

Carlo Ghezzi, Mehdi Jazayeri, and Dino Mandrioli. Fundamentals of Software Engineering. Prentice Hall, Upper Saddle River, NJ, USA, 2nd edition, 2003.

Daniel M. Hoffman and Paul A. Strooper. Software Design, Automated Testing, and Maintenance: A Practical Approach. International Thomson Computer Press, New York, NY, USA, 1995. URL http://citeseer.ist.psu.edu/428727.html.

- List of Chess Variants. List of chess variants, Sep 2022. URL https://en.wikipedia.org/wiki/List_of_chess_variants.
- David L. Parnas. On the criteria to be used in decomposing systems into modules. *Comm. ACM*, 15(2):1053–1058, December 1972.
- David L. Parnas. Designing software for ease of extension and contraction. In *ICSE '78: Proceedings of the 3rd international conference on Software engineering*, pages 264–277, Piscataway, NJ, USA, 1978. IEEE Press. ISBN none.
- David L. Parnas and P.C. Clements. A rational design process: How and why to fake it. *IEEE Transactions on Software Engineering*, 12(2):251–257, February 1986.
- D.L. Parnas, P.C. Clement, and D. M. Weiss. The modular structure of complex systems. In *International Conference on Software Engineering*, pages 408–419, 1984.
- James Robertson and Suzanne Robertson. Volere Requirements Specification Template. Atlantic Systems Guild Limited, 16 edition, 2012.
- W. Spencer Smith. Systematic development of requirements documentation for general purpose scientific computing software. In *Proceedings of the 14th IEEE International Requirements Engineering Conference*, RE 2006, pages 209–218, Minneapolis / St. Paul, Minnesota, 2006. URL http://www.ifi.unizh.ch/req/events/RE06/.
- W. Spencer Smith and Lei Lai. A new requirements template for scientific computing. In J. Ralyté, P. Ágerfalk, and N. Kraiem, editors, Proceedings of the First International Workshop on Situational Requirements Engineering Processes Methods, Techniques and Tools to Support Situation-Specific Requirements Engineering Processes, SREP'05, pages 107–121, Paris, France, 2005. In conjunction with 13th IEEE International Requirements Engineering Conference.
- W. Spencer Smith, Lei Lai, and Ridha Khedri. Requirements analysis for engineering computation: A systematic approach for improving software reliability. *Reliable Computing, Special Issue on Reliable Engineering Computation*, 13(1):83–107, February 2007.
- W. Spencer Smith, John McCutchan, and Jacques Carette. Commonality analysis of families of physical models for use in scientific computing. In *Proceedings of the First International Workshop on Software Engineering for Computational Science and Engineering (SECSE 2008)*, Leipzig, Germany, May 2008. In conjunction with the 30th International Conference on Software Engineering (ICSE). URL http://www.cse.msstate.edu/~SECSE08/schedule.htm. 8 pp.
- W. Spencer Smith, John McCutchan, and Jacques Carette. Commonality analysis for a family of material models. Technical Report CAS-17-01-SS, McMaster University, Department of Computing and Software, 2017.

Bill Wall. History of chess sets and symbols. https://www.chesscentral.com/pages/chess-sets-pieces-boards/a-history-of-chess-pieces-and-chess-sets.html, 2003. Accessed: 2022-10-04.

WCAG. Web content accessibility guidelines 2 overview. https://www.w3.org/WAI/standards-guidelines/wcag/#intro, 2018. Accessed: 2022-10-05.