KCS 47 10 85 : 2019

기타공사

2019년 4월 8일 개정 http://www.kcsc.re.kr

건설기준 제정 또는 개정에 따른 경과 조치

이 기준은 발간 시점부터 사용하며, 이미 시행 중에 있는 설계용역이나 건설 공사는 발주기관의 장이 필요하다고 인정하는 경우 종전에 적용하고 있는 기준을 그대로 사용할 수 있습니다.

건설기준 연혁

- 이 기준은 건설기준 코드체계 전환에 따라 기존 건설기준(설계기준, 표준시방서) 간 중복· 상충을 비교 검토하여 코드로 통합 정비하였다.
- 이 기준은 기존의 철도에 해당되는 부분을 통합 정비하여 기준으로 제정한 것으로 제 · 개정 연혁은 다음과 같다.

건설기준	주요내용	제정 또는 개정 (년.월)
철도건설공사 전문시방서(노반편)	• 일반철도와 고속철도로 분리된 노반분야의 전문 시방서를 통합하고, 기준체계를 명확히 하여 합리적 이고 효율적인 시방서(노반편)로 제정 • 노반·궤도·전기분야 인터페이스를 고려한 시방 서와 기술발전 등 기술적 환경변화 대응을 위한 기 준을 마련	제정 (2011.12.)
철도건설공사 전문시방서(노반편)	• 표층안전처리공에서 현행 인장강도 및 봉합강도 시험방법이 KS에 규정된 품질기준과 상이하여 올바르게 수정 • 설계기법 개선·최적화 및 신기술·신공법 적용을 통한 사업비 절감 방안과 그 동안 불합리한 사항 개선 • "건설공사 비탈면 설계기준"등 상위기준 개정내 용 반영	개정 (2013.11.)
철도건설공사 전문시방서(노반편)	• 최근 철도교량에 사용빈도 많아진 구체방수 기준을 신설하여 공사시방서 작성의 표준화 유도 • KS규격 개정내용 반영 및 안전사고 예방(싱크홀, 운행선 근접공사, 전기뇌관 취급, 시스템 동바리 등) 을 위한 안전기준 제시 • 관계법령 및 기관명 수정	개정 (2015.12.)
KCS 47 10 85 : 2016	• 건설기준 코드체계 전환에 따라 코드화로 통합 정비함	제정 (2016.6.)
KCS 47 10 85 : 2019	• 철도 건설기준 적합성평가에 의해 코드를 정비함	개정 (2019.04)

제 정: 2016년 6월 30일 개 정: 2019년 04월 08일

심 의 : 중앙건설기술심의위원회 자문검토 : 국가건설기준센터 건설기준위원회

소관부서 : 국토교통부 철도건설과

관련단체 : 한국철도시설공단 작성기관 : 한국철도기술연구원

목 차

1.	일반사항1
	1.1 적용범위1
	1.2 참고 기준1
	1.3 용어의 정의1
	1.4 시설물의 구성1
	1.5 품질요구사항 4
	1.6 운송, 보관 및 취급 4
	1.7 타 공정과의 협력작업 4
2.	자재
	2.1 방음벽 재료 4
	2.2 전기설비 재료 11
3.	시공
	3.1 방음벽 시공 12
	3.2 전기설비 부대공사 시공 18

1. 일반사항

1.1 적용 범위

1.1.1 방음벽

- (1) 철도 차량운행에 의해 발생되는 소음을 기준치 이하로 유지하기 위하여 설치되는 방음벽공사에 적용한다. 일반철도(소음·진동관리법 시행규칙 별표 12. 교통소음·진동의 관리기준)와 고속철도(환경영향평가 협의기준)소음기준치는 각각 해당기준을 따른다.
- (2) 여기서 언급하지 않은 사항은 KCS 44 80 05를 따른다.

1.1.2 전기설비 부대공사

(1) 이 기준은 노반공사 시 시행해야 할 전기설비공사(횡단전선관, 핸드홀, 전선관로, 전차 선로 지지물 기초, 전기설비기초, 접지설비 등)에 적용한다.

표 1.1-1 일반철도의 소음한도

FILALTICA	일반철도			
대상지역	주간(06:00~22:00)	야간(22:00~06:00)		
주거지역, 녹지지역, 관리지역 중 취락지구·주거개발진흥지구 및 관광·휴양개발진흥지구, 자연환경보존지역, 학교·병원·공공도서관 및 입소규모 100명 이상의 노인의료복지시설·영유아보육시설의 부지 경계선으로부터 50 m 이내지역	Leq 70 dB(A)	Leq 60 dB(A)		
상업지역, 공업지역, 농림지역, 생산관리지역 및 관리지역 중 산업·유통개발진흥지구,미고시지역	Leq 75 dB(A)	Leq 65 dB(A)		

표 1.1-2 고속철도의 소음한도

			\ =1 =1 =1 = \			
	고속철도 (소음협의기준)1)					
대상지역	시험신	선구간	시험선외 구간			
	개통시	개통 15년 이후	개통시	개통 15년 이후		
주거지역, 녹지지역, 관리지역 중 취락지구·주거개발진흥지구 및 관광·휴양개발진흥지구, 자연환경보존지역, 학교·병원·공공도서관 및 입소규모 100명 이상의 노인의료복지시설·영유아보육시설의 부지 경계선으로부터 50 m 이내지역	Leq 65 dB(A)	Leq 60 dB(A)	Leq 63 dB(A)	Leq 60 dB(A)		
상업지역, 공업지역, 농림지역, 생산관리지역 및 관리지역 중 산업·유통개발진흥지구, 미고시지역	Leq 70 dB(A)	Leq 65 dB(A)	Leq 68 dB(A)	Leq 65 dB(A)		

주 1) 고속철도(소음협의기준): 국토교통부(구,건설교통부)로부터 한국철도시설공단(구,한국고속철도건설공단)에 통보(1999.12.8)된 내용

1.1.3 포장공사

포장공사는 도로공사 표준시방서의 해당사항을 따른다.

1.2 참고 기준

1.2.1 방음벽 참조 기준

- KS D 0001 강재의 검사 통칙
- KS D 0201 용융아연도금 시험방법
- KS D 3503 일반 구조용 압연 강재
- KS D 3506 용융아연도금 강판 및 강대
- KS D 3514 와이어 로프
- KS D 3701 스프링 강재
- KS D 3752 기계 구조용 탄소 강재
- KS D 6701 알루미늄 및 알루미늄 합금의 판 및 띠
- KS D 8303 알루미늄 및 알루미늄 합금의 양극산화도장 복합피막
- KS D 8308 용융아연도금
- KS F 2805 잔향실법 흡음 성능 측정방법
- KS F ISO 10140-1~5 건물 부재의 차음 성능 실험실 측정방법 제 1부: 특정 제품에 대한 적용규칙
- KS F 2809 공기 전달음 차단 성능 현장 측정 방법
- KS F 4009 레디믹스트 콘크리트
- KS L 2004 접합 유리
- KS L 2514 판유리의 가시광선 투과율, 반사율, 방사율, 태양열 취득률, 자외선 투과율, 연색성 시험방법
- KS M 3026 플라스틱의 황색도 및 황변도 시험 방법
- KS M ISO 75-2 플라스틱-하중 변형 온도의 측정-제2부 : 플라스틱 및 에보나이트
- KS M ISO 4892-3 플라스틱-실험실 광원에 의한 폭로 시험방법-제3부 자외선 형광 랜프
- KS M ISO 5470-1 고무 또는 플라스틱 피복 직물-내마모성 측정 방법-제1부 테이버 마모 시험기
- KS M ISO 9352 플라스틱-연마륜에 의한 내마모성의 측정
- KS M ISO 14782 플라스틱-투명재료의 흐림도 측정

1.2.2 전기설비 부대공사 참조규격

- KS C 8401 강재 전선관
- KS C 8431 경질 폴리염화비닐 전선관
- KS C 8455 파상형 경질 폴리에틸렌 전선관

2

- KS D 0201 용융 아연 도금 시험방법
- KS B 1002 6각 볼트
- KS B 1012 6각 너트 및 6각 낮은너트
- KS D 2351 아연 잉곳
- KS D 3503 일반구조용 압연 강재
- KS D 8308 용융 아연 도금

•

1.3 용어의 정의

내용 없음

1.4 제출물

1.4.1 방음판 공사 제출물

- (1) 다음 사항은 KCS 47 10 05 (2.)의 해당요건에 따라 작성, 제출해야 한다.
 - ① 작업절차서
 - ② 검사 및 시험계획서
 - ③ 시공계획서
 - ④ 자재공급원 승인요청서
 - 가. 제품자료에는 다음 사항이 추가로 포함되어야 한다.
 - (가) 방음판 투과손실, 흡음률 측정 시험성적서
 - (나) 알루미늄 강판 시험성적서
 - (다) 아연도강판 시험성적서
 - (라) 구조용압연강재 시험성적서
 - (마) 흡음재 시험성적서
 - (바) 용융아연도금 시험성적서
 - (사) 양극산화도장 복합피막 시험성적서
 - (아) 도장 시험성적서
- (2) 수급인

3

① 수급인은 방음시설 설치 후 별표 1과 같이 방음시설 성능평가서를 제출해야 한다.

1.4.2 전기설비 부대공사 제출물

- (1) 다음 사항은 KCS 47 10 05 (2.)의 해당요건에 따라 작성, 제출해야 한다.
 - ① 검사 및 시험계획서
 - ② 시공계획서
 - ③ 시공상세도
 - ④ 접지저항 측정결과

1.5 품질요구사항

(1) 자재는 같은 공사구간 내에서는 동일상표, 동일공장 제품으로 한다. 다만, 시공적기에 납품이 불가능한 경우의 공급원 변경에 대하여는 변경된 시험성과를 제출하여 공사감 독자/감리원의 승인을 받아야 한다.

1.6 운송, 보관 및 취급

(1) C-찬넬은 부주의로 인해 도금피막의 손상, 재질의 변형, 홈 등이 발생하지 않도록 관리에 주의해야 한다.

1.7 타 공정과의 협력작업

- (1) 수급인은 강화노반 및 교량난간 설치작업과 방음벽 기초작업 간에 서로 지장이 없도록 공사착수전에 혐의 조절해야 한다.
- (2) 전기설비 부대공사는 노반공사의 공정과 시공에 밀접한 연관이 있으므로 시공계획 수립 시 전기설비 부대공사 전후 시방서를 참고하여 작성해야 한다.

2. 자재

2.1 방음벽 재료

2.1.1 흡음형 방음패널

- (1) 방음패널의 성능
 - ① 투과손실: 투과손실 측정방법은 KS F ISO 10140-1~5에 따라 공인된 시험검사 기관에서 측정한 결과가 500 Hz의 음에 대하여 25 dB 이상, 1,000 Hz의 음에 대하여 30 dB 이상 되거나 수음자 위치에서 방음판에 기대하는 회절감쇠치에 10 dB을 더한 값 이상으로 한다.
 - ② 흡음률: 흡음률은 방음판 시공직전 완제품 상태에서 KS F 2805에 따라 공인된 시험검사기관(KOLAS 또는 건설기술진흥법에서 품질시험·검사대행기관으로 지정된기관, 한국표준과학연구원)에서 측정하며 소요 흡음률 기준은 표 2.1-1, 표 2.1-2을 따른다.

표 2.1-1 흡음형 방음패널의 흡음률(일반철도)

(환경부)

주파수(比)	250	500	1,000	2,000		
- 이디 이터	평균 70% 이상					

₩	2 1-2	흔음형	방음패널의	흔윽륲	(고 솔첩 도)(CFN-10	기 주)

주파수(比)	125	250	500	1,000	2,000	4,000
흡음률(%)	50	80	90	95	90	70
흡음계수	0.50	0.80	0.90	0.95	0.90	0.70

- (2) 방음패널의 일반사양 및 재질
 - ① 형식: 표 2.1-1, 표 2.1-2을 만족하는 방음판
 - ② 규격: 1,960 mm(L)×500 mm 및 3,960 mm(L)×500 mm 를 기준으로 하고 최소 H-Beam 150×150×7×10에 삽입이 될 수 있는 두께로 하며 현장여건에 따라 방음벽의 길이(L)는 변경할 수 있다.
 - ③ 형태: 갤러리 type 또는 펀칭 type 등 흡음률 기준을 만족하는 구조는 모두 가능함
 - ④ 방음판

가. 전면판

- (가) 두께 1.0 mm 이상의 알루미늄 합금판으로서 KS D 6701의 A 5005P를 사용해야 한다.
- (나) 화학성분(A 5005P 기준): 표 2.1-3 참조

표 2.1-3 전면판 화학성분(A 5005P 기준)

					화혈	학성분 (질량분율	≩ %)				
합금 번호								Ga,V		기티	타1)	
	Si	Fe	Cu	Mn	Mg	Cr	Zn	,Ni, B,Zr 등	Ti	각각	합계	Al
5005	0.3 이하	0.7 이하	0.2 이하	0.2 이하	0.5- 1.1	0.1 이하	0.25 이하	/-	1	0.05 이하	0.15 이하	나머 지

주 1) 그 밖의 화학성분은 표 중에서 '-'로 표시된 성분값을 규정하고 있지 않은 화학 성분도 포함하여 존재를 미리 알 수 있는 경우 또는 통상의 분석에 있어서 그 밖의 규정값을 초과할 징후가 있는 경우에 한하여 분석한다.

(다) 기계적 성질(A 5005P 기준): 표 2.1-4 참조

표 2.1-4 전면판 기계적 성질(A 5005P 기준)

		인장	굽힘	시험		
질별	두께 (mm)	인장강도 (MPa)	항복강도 (MPa)	연신률 (%)	두께 (mm)	안쪽반지름
H14	0.8 초과 1.3 이하	145 이상 185 이하	120 이상	2 이상	0.5 이상 2.9 이하	두께의 1배

(라) 냉간압연재의 두께허용오차: 표 2.1-5 참조

# 2	1-5	저 명 파	냉간압연재의	두께허용차
-----	-----	-------	--------	-------

합금번호	1080,1070,1050,1100,1200,1100,1130,3003,3203,3005,3105,5005								
너비	450 이하	450 초과 900 이하	900 초과 1,400 이하	1,400 초과 1,800 이하	1,800 초과 2,300 이하	2,300 초과 2,600 이하			
두께 0.9 초과 1.1 이하	±0.05	±0.06	±0.08	±0.10	±0.13	-			

나. 후면판 및 측면판

- (가) 두께 1.6 mm 이상의 아연도 강판으로서 KS D 3506에 적합한 것으로 한다.
- (나) 양면의 두께가 같은 도금의 양면 최소 부착량: 표 2.1-6 참조

표 2.1-6 후면판 및 측면판의 최소 아연부착량

도금구분	도금구분 도금의 아연 부착량 표시기포		양변 1점 최소 부착량	호칭 부착량
비합금화	Z 27	$275g/m^{2}$	$234g/m^{2}$	$381g/m^2$

다. 양극 산화 피막

- (가) 용도: 알루미늄 및 알루미늄 합금에 양극 산화 처리한 후, 도장을 처리함에 따라서 내구성에 미치는 내식성, 내마모성 등을 겸한 피막이다.
- (나) 피막기준: 적용기준은 KS D 8303에 따르며 본 방음판의 피막은 옥외에서 가혹한 환경에 견딜 수 있는 기준을 적용하며 표 2.1-7과 같다.

표 2.1-7 방음판의 양극산화피막 기준

종류	양극산화피막 두께(μm)	도막두께 (μm)	도막	주요용도 보기
А	9.0 이상	12.0 이상	투명계	건축부재(옥외에서 가혹한 환경)

- (다) 양극 산화피막 부위: 방음판의 전면판
- (라) 양극 산화피막 두께 및 도막두께는 최저피막두께로 한다.
- (마) 투명계 도막을 실시하여 방음벽 전면판에 양극 산화피막을 입힌 후 이의 색조를 손 상하지 않는 역할과 부수적으로 무광택 효과를 주어 빛에 의한 반사광을 억제하는 효과를 얻을 수 있도록 한다.
- (바) 품질: 피막 완료 후에는 흠, 얼룩, 벗겨짐 등 사용상의 문제가 되는 결함이 없어야하고 또한 도막에 주름, 균열, 부풀음 및 변색 등이 없어야한다.

라. 흡음재

(가) 재질은 흡음재로서 흡음률기준을 만족하는 재료로 하며 표면은 발암물질 등 인체

에 유해한 물질을 함유하지 않으면서 내구성이 있어야 한다.

- (나) 또한 온도 차이 등으로 인하여 변형되거나 그 흡음성능이 저하되지 않는 재료를 사용해야 한다. 측정방법은 KS L 2513에 적합한 것으로 한다.
- 마. 흡음재 보호피막

흡음재는 폴리비닐 폴로라이드(P.V.F) 또는 동등이상의 재질로 보호피막하여 시 공 이후 수분이 침투되지 않고 자중에 의한 처짐 등을 방지해야 한다.

- 바. 보호피막 보호재
 - (가) 전면판을 조립하기 전 보호재로 보호피막을 싸주어야 한다.
 - (나) 보호피막이 훼손의 위험이 없는 경우에는 보호재를 사용하지 않아도 된다.

사. 리벳

전면판과 후면판의 결합에 사용되는 리벳머리, 몸체 및 심축의 모든 재료는 KS R ISO 15973,15974에 따라 알루미늄 합금재를 사용하되 리벳 설치부위의 부식을 방지하기 위해 코킹 처리한다.

(3) 방음판 제작

- ① 알루미늄 합금판, 아연도 강판을 프레스 및 절곡기에 의해 전면, 후면, 측면판을 각각 절곡시켜 일정 길이, 높이, 두께의 사각밀폐형으로 리벳을 이용하여 조립한 구조로 제작되어야 한다.
- ② 방음판을 조립식으로 설치할 수 있어야 하며, 조립시 조립접촉부에서 소음누출을 최소화 할 수 있는 구조여야 한다.
- ③ 빗물이 샐 경우를 대비하여 배수 및 증발이 용이한 구조로 제작되어야 한다.
- ④ 방지판에 내장된 흡음재는 빗물, 수분, 햇빛 및 기타 불순물로부터의 열화방지 또는 처짐 방지 등을 위해 보호피막을 입혀야 하며, 전면판, 후면판, 측면판의 리벳 조립 시 접합부위에서 방음판 전체에 걸쳐 10 kN의 인장력에 견딜 수 있어야 한다.
- ⑤ 모든 프레스 굴곡부위는 굴경 1 mm에서도 균열이 발생되어서는 안 되며, 공차 ±1.0 mm 이내로 가공해야 한다.
- ⑥ 후면판에 알루미늄의 광택에 의한 반사를 최소화하기 위하여 도장처리를 할 때에 는 반광택 색상을 사용하여 분체소부 도장을 해야 한다.
- ⑦ 후면판에 분체소부 도장을 할 때에는 다음과 같이 해야 한다.
 - 가. 분체도료는 칼라 반사를 방지하기 위하여 폴리에스테르를 사용한다.
 - 나. 야간의 칼라 반사를 방지하기 위하여 반광으로 처리한다.
 - 다. 색상지정은 칼라 합성사진을 제출하여 공사감독자/감리원과 협의 후 결정하며, 결정된 컬러 합성사진을 근거로 칼라 배열시트를 제출하여 최종 승인을 득 해야 한다.

2.1.2 투명형 방음패널

(1) 음향 투과손실

투과손실은 측정방법은 KS F ISO 10140-1~5에 따라 공인된 시험검사기관에서 측정한

결과가 500 Hz의 음에서 25 dB 이상, 1,000 Hz의 음에 대해서 30 dB 이상 되어야 한다.

(2) 규격 및 조립

① 규격

- 가. 투명방음판은 얇은 판을 프레임에 끼우는 구조로 투명판이 극심한 바람에 따라 프레임에서 이탈할 수 있으므로 투명판과 프레임을 철저히 결합하여 일체가 될 수 있도록 제작에 철저를 기해야 한다.
- 나. 투명판의 프레임 내 삽입 홈의 최소깊이는 25 mm 이상으로 한다.
- 다. 토공구간 규격(mm)은 3,960(L)×1,000(B)×10을 기준으로 하고, 현장여건 등에 따라 투명방음판의 두께(t) 및 길이(L)는 조정할 수 있으며, A.L 프레임은 $45 \times 95 \times 1.6$ 이상으로 하여 구조적으로 안전성을 유지해야 한다.
- 라. 교량구간 규격(mm)은 1,960(L)×1,000(B)×10을 기준으로 하고, 현장여건 등에 따라 투명방음판의 두께(t) 및 길이(L)는 조정할 수 있으며. A.L 프레임은 $45 \times 95 \times 1.6$ 이상으로 하여 구조적으로 안전성을 유지해야 한다.

② 조립

- 가. A.L 프레임의 상·하부 및 측면에 앵글을 사용하여 투명판과 프레임 사이에 틈새가 벌어지지 않도록 스테인리스 나사 또는 리벳 체결방법 등으로 보강해야 한다.
- 나. 체결된 투명 방음판에서 투명판과 프레임 사이는 실리콘 코킹을 실시하여 투명판이 움직이지 않고 틈새가 없도록 밀폐시킨다.

(3) 재질

① 투명판

투명방음판의 투광부재는 투광성의 재료를 사용한 판재로서 폴리메틸메타크릴레이트(PMMA) 수지, 폴리카보네이트(PC) 수지 등의 투명 플라스틱수지 또는 접합유리를 사용하며, 한국산업규격에 품질규정이 있는 것에 대해서는 그 품질을 기본적으로 만족해야 한다.

② 프레임

투광부재를 고정하는 데 이용되는 프레임부재는 녹이나 부식이 발생하지 않는 소재 또는 적절한 방법에 의해 방청처리된 강재를 사용해야 한다.

- ③ 투명부재
 - 가. 방음판은 충분한 내구성이 있어야 하며, 가시광선 투과율 시험방법 KS L2514에 의한 무색 투광부재의 가시광선 투과율은 85% 이상을 표준으로 한다.
 - 나. 투광부재에 대한 촉진 내후성 시험은 KS M ISO 4892-3에 따라 시험하여 표 2.1-8을 만족해야 한다. 황변도는 KS M 3026에 따라 측정하며, 흐림도는 KS M ISO 14782에 따라 측정한다. 촉진 내후성 시험 후 백색을 배경으로 검사했을 때, 현저한 변색 및 사용상 지장이 있는 기포, 흐림 등이 없어야 한다. 재질이 동일하더라도 내후성에 관한 첨가제, 표면처리 방법 등이 다른 경우에 대해서

는 동일 재료로 간주하지 않으며, 내후성 시험 결과는 동일 재료의 다른 두께에 대해서도 유효하다고 간주할 수 있다. 현장에 반입되는 투명 방음판 자재는 투광부재의 제조회사별, 재질별로 2,000 m2마다 촉진 내후성 시험을 실시하여 그 품질을 확인해야 한다.

표 2.1-8 투광부재의 내후성 평가

시험항목	평가기준
촉진내후성시험 (1,500시간)	황변도(ΔYI) 3 이하 흐림도변화(ΔH) 10% 이하 (자외선 형광램프,폭로방식 1)

다. 투광부재에 대한 내충격 시험

- (가) 낙구 충격 시험: KS L 2004의 낙구 충격 시험에 따라 시험하여 충격 후 균열이나 손상이 발생하지 않아야 한다. 이때, 장구는 KS B 2001에 규정하는 호칭 21/2 의 강구 중에서 무게 1,040±10 g 인 것을 사용하고, 낙하 높이는 1.2 m로 한다.
- (나) 진자 충격 시험: KS L 2004의 쇼트백 충격 시험에 따라 시험하여 충격 후 파편 의 결락에 따른 노출 부분이 없어야 한다. 다만 시험 장치의 가격체는 무게가 45±0.1 kg 인 원형 강구로 한다. 이때, 가격체의 낙하 높이는 가격체 최대 지름의 중심이 정지 상태의 위치로부터 480 mm 가 되도록 한다.
- 라. 내마모용 투광부재는 KS M ISO 5470-1, KS M ISO 9352에 따라 CS-10F 마모 륜을 사용하여 시험편에 4.9 N의 하중을 가하면서 100회전시킨 후, 흐림도의 변화(△H)가 15% 이하를 만족하는 것을 기준으로 한다. 투광부재의 재질과 두 께가 동일하더라도 내마모성에 관한 표면처리 등이 다른 경우에 대해서는 동일 재료로 간주하지 않는다.
- 마. 투광부재의 내열성은 표 2.1-9의 조건을 만족해야 한다.

표 2.1-9 투광부재의 내열성 평가

구분	평가기준	비고
플라스틱수지	하중변형온도 85 ℃ 이상	KS M ISO 75-2 PC: 방법 A PMMA: 방법 B
접합유리	내열성 시험 후 시료의 유리부분에 균열이 생기는 것은 허용하나, 시료의 가장자리 또는 균열된 곳으로부터 13 mm를 초과하는 곳에 사용상 지장이 있는 기포 또는 그 밖의 결점이 없을 것	KS L 2004

2.1.3 지주 및 강재

(1) 일반 구조용 압연강재로 KS D 3503의 SS 400 형강 및 강판에 적합해야 한다.

- (2) 표면처리는 탈지, 산세, 수세 등의 공정을 거친 후 KS D 8308에 의한 용융아연도금을 해야 하고, 도금시 아연 부착량은 $610~g/m^2$ 이상으로 해야 한다.
- (3) 지주의 아연도금이 완료된 시점에서 지주에 용접, 드릴링 등의 지주의 아연도금을 훼손하는 작업은 절대로 해서는 안 되며, 도금이 훼손되었을 때에는 반드시 교체해야하다.

2.1.4 기초볼트 및 너트

- (1) 기계구조용 탄소강재 KS D 3752에 적합한 것으로 볼트는 강도구분 4.6 이상, 너트는 강도구분 4 이상의 것을 사용해야 한다.
- (2) 표면처리는 탈지, 산세, 수세 등의 공정을 거친 후 KS D 8308에 의한 용융아연도금을 해야 하고 도금 시 아연 부착량은 $610~g/m^2$ 이상으로 해야 한다.

2.1.5 방음판 고정 및 방진장치

- (1) 고무판은 방음판과 지주사이의 틈새를 완전 밀폐하여 소음 및 진동소음을 차단하기 위한 것으로써, 흑색 합성고무(chloroprene rubber)를 5배 발포한 스펀지형 또는 동등 이상의 재질로 SH 50°±5의 경도로 하고, 방음판 양단과 지주사이를 완전히 접착해야 한다.
- (2) 판 스프링은 지주사이에 끼워진 방음판을 전면으로 밀착시킬 수 있는 구조로 조립후 이탈을 방지할 수 있는 구조로 하며, KS D 3701 또는 KS D 3506(구조용)에 적합한 것으로 최소 아연부착량 381 q/m^2 이상의 재질으로 한다.
- (3) 방음판 설치를 완료한 후 지주 상단 마감을 위해 설치하는 캡플레이트는 지주에 기 설치된 캡플레이트용 앵글에 볼트를 이용하여 조립하는 구조로 유지보수 시 쉽게 해체 및 조립이 가능한 구조로 하며, 아연도금은 KS D 8308에서 정하고 있는 가혹한 부식환경에서의 기준인 아연부착량 610 q/m^2 이상을 적용해야 한다.
- (4) 와이어로프는 KS D 3514, 6×19G 6 mm로 S꼬임에 적합한 것으로써 나일론 피막을 처리한 것이라야 한다.

2.2 전기설비 재료

2.2.1 전선관

- (1) 경질비닐전선관 및 부속품은 KS C 8431 또는 동등이상의 제품으로 한다.
- (2) 파상형 경질폴리에틸렌 전선관은 KS C 8455 또는 동등이상의 제품으로 한다.
- (3) 강재전선관은 KS C 8401 또는 동등이상의 제품으로 한다.

2.2.2 철강재

(1) 형강, 평강, 봉강(볼트재 포함)은 KS D 3503 또는 동등 이상의 제품으로 한다.

- (2) 볼트와 너트는 KS B 1002, KS B 1012, KS D 0201 또는 동등 이상의 제품으로 한다.
- (3) 강재의 아연도금은 KS D 8308에 따라야 하며, 아연은 KS D 2351의 2종 이상 또는 동 등 이상의 제품으로 한다.
- (4) 아연도금의 부착량은 표 2.2-1과 같다.

표 2.2-1 강재의 아연부착량

아연부착량 (g/m^2)	유산동 시험횟수	적용대상
350 이상	4회 이상	• 볼트, 너트, 와셔
450 이상	5회 이상	• 애자금구, 경완철
500 이상	5회 이상	• 가선금구, 밴드, 터널금구
550 이상	6회 이상	• 철주, 롯드, 완철, 물이나 땅에 접하는 강재

- (5) 철강재는 홈, 굴곡, 단접과 용접개소가 없는 것을 사용해야 한다.
- (6) 강재는 정확하게 절단하고 모서리는 원만하게 뒷마무리를 해야 한다.
- (7) 구멍 뚫기는 드릴을 사용해야 하고, 강재의 두께가 10 mm 이하일 때는 펀치를 사용할 수도 있다.
- (8) 강재의 구멍은 매끈하게 그라인딩 뒷마무리를 하고, 구멍의 가공 지름은 사용하는 볼 트 지름보다 1.5 mm 이상 뚫어서는 안 되며 볼트의 길이는 너트를 조인 후 6 mm 이상의 여유가 있어야 한다.
- (9) 강재를 10° 이상 굽힘 가공을 할 때는 균열이 없도록 가열해야 하고 냉각은 자연 냉각을 해야 한다.
- (10) 부재의 조립에 앞서 접합면은 흑피, 녹, 먼지, 유지 등을 완전히 제거하고, 조립할 때는 부재맞춤을 위하여 리마(reamer) 등으로 구멍을 넓히거나 무리한 시공을 하지 않도록 해야 한다.
- (11) 볼트의 나사 부분에는 이완방지용 접착제(적색 또는 녹색)를 칠한 다음 너트를 체결해야 하며, 조립한 다음에 시공하는 경우는 너트의 상면에 접착제를 다시 칠하여 너트의 이완을 방지해야 한다.
- (12) 진동이 심한 터널 및 교량 등에는 이완방지 및 진동완화 너트를 사용하고, 필요시 볼트의 나사부분을 뭉개어 너트의 이완을 방지해야 한다.

3. 시공

3.1 방음벽 시공

3.1.1 시공조건 확인

(1) 공사 전 수급인은 공사의 규모 및 현장조건을 확인해야 한다.

3.1.2 시공기준

(1) 방음벽구간의 배수구멍 뚫기는 음의 유출이 최소화 할 수 있도록 해야 한다.

- (2) 방음벽 기초옹벽 상단면과 판 사이에는 소음의 유출이 없도록 정교하게 시공해야 하며 불량재질의 사용이나 틈이 있는 경우에는 수급인의 부담으로 고무판, 접착제, 실런 트 등을 사용하여 소음의 유출을 최소화 할 수 있도록 해야 한다.
- (3) 방음벽의 기초는 침하가 발생하지 않도록 다짐을 해야 하며, 되메우기 시에도 풍압에 견딜 수 있도록 주변다짐을 해야 한다.
- (4) 음판은 바닥이 평평한 곳에 받침목을 설치한 후 적재해야 하며, 한곳에 많이 적재하여 방음판의 변형이 발생하지 않도록 해야 한다.
- (5) 방음벽 시공이 완료되면 방음판의 틈새와 볼트 조임 등을 점검하여 풍압이나 열차진 동에도 흔들림이 없도록 견고하게 설치되었는지, 강풍에 의해 비산될 가능성은 없는 지 이상 유무를 확인해야 한다.

3.1.3 지주 및 강재

- (1) 모든 용접은 도면에 명기된 용접방법에 따라야한다.
- (2) spatter, undercut, overlap, pin hole 및 용접슬래그(slag) 등은 완전히 제거해야 하며 비드(bead)는 모양을 깨끗이 하여 지주의 용융아연도금이 완벽하게 되어 산화되지 않도록 철저를 기한다.
- (3) 기초판의 기초볼트용 구멍간격은 도면에 의하되 그 치수에 맞게 지그(gauging jig)를 사용하여 정확히 마킹 후 드릴작업을 해야 한다.
- (4) 교량부에 이미 설치되어 있는 기초볼트의 경우는 사전에 필히 현장조사를 실시하고 그 결과를 바탕으로 드릴작업을 하여 구멍간격이 기초볼트와 일치하도록 해야 한다.

(5) 접지

- ① 낙뢰에 의한 방음벽의 손상과 안전사고를 방지하기 위하여 모든 지주는 본딩점퍼 (bonding jumper)를 사용하여 상호 접속하며, 전선관로(cable trough)를 따라 포설되어 있는 접지선에 접속한다.
- ② 교량구간의 접지는 기 시공된 지주용 앵커에 설치하는데 이때 방음벽구조에 영향을 주지 않는 중앙 앵커에 접지선을 연결해야 한다.

3.1.4 방음판 고정 및 방진장치

- (1) 고무판은 10 mm(T)×120 mm 소요폭으로 방음판 양측단에 접착제로 부착되어야 한다.
- (2) 판 스프링은 방음판의 방음판 반력 1.5 kN에 견디도록 제작되며, 4.5 kN의 하중에도 균열, 또는 찢어짐이 발생되지 않도록 한다.
- (3) 무수축 모르터는 프리캐스트콘크리트의 이음마감재, 지주용 베이스 플레이트와 콘크리트 기초 등의 보강재로 사용되며, 소요강도는 fck=40 MPa 이상으로 한다.

3.1.5 토공구간 지주설치

(1) 시공순서는 방음벽 위치선정-천공작업-지주삽입 및 콘크리트 주입(타설)-주변마무리-양생-주변정리(잔토처리, 환경정리 등)와 같은 순서로 진행한다.

- (2) 도면에 명시된 지주설치를 위하여 천공위치 하부의 지하매설물(전선관 등)의 유무를 확인해야 하며, 만일 시공중 천공에 지장을 주는 지하매설물이 발견될 시에는 이를 지체 없이 공사감독자/감리원에게 보고하고, 공사감독자/감리원과 협의·조절하여 천 공위치를 변경하되 방음벽 지간 4 m일 경우 2 m 간격으로 위치를 조절해야 한다.
- (3) 지주는 도면에 명시된 일정간격으로 설치하고, 현장여건상 끝부분에 남는 여유부분은 2 m를 기본간격으로 조절해야 한다.

(4) 천공

- ① 토사용 천공기는 설계 및 확인 심도보다 1.5 m 이상 긴 것을 사용해야 한다.
- ② 토사용 천공기의 굴진완료 후 역회전 인발시 공벽 무너짐이 예상되는 곳에는 공사 감독자/감리원과 협의하여 강관 케이싱을 매입 시공할 수도 있다. 그러나 그렇지 아니한 토질에는 강관 케이싱을 사용하지 않는다.
- ③ 천공 시에는 방음벽 설치위치에 기 설치되어 있는 각종 시설물(cable trough, duct, hand hole 등)들이 파손되지 않도록 주의해야 한다.
- ④ 천공 깊이는 소요깊이보다 약 500 mm 더 천공하여, 천공면으로부터 흙이나 이물 질들이 낙하되어도 원래의 길이에는 지장이 없도록 해야 한다.
- ⑤ 지하수 유출 시에는 강관 케이싱 삽입 후, 케이싱 내 용출수를 양수 후, 콘크리트 (24 MPa 이상)을 타설해야 한다.
- ⑥ 깎기 구간의 경우 매입깊이는 도면에 명시된 깊이까지 실시하되, 풍화암이 분포하면 암선에서 500 mm까지 천공한다.

(5) 지주 삽입 및 콘크리트 주입

- ① 지주는 천공구멍의 중심과 수직이 되도록 세운 뒤, 지주자중에 의해 삽입한다.
- ② 지주 삽입 후 지주자체의 수직도와 인접 지주와의 수평도는 5 mm 이내의 오차범 위 내에서 허용될 수 있다.
- ③ 지주 삽입 및 콘크리트 주입 후 시멘트 페이스트 침강 및 누출로 지주주변에 공벽이 남아 있을 경우는 계획고까지 콘크리트를 추가 주입해야 하며, 이때 콘크리트 가 지반 위로 일부 노출 되는데 이 부분의 크랙 또는 깨어짐을 방지하기 위해 별도의 보강재를 설치하여 노출부분의 외관이 미려하도록 해야 한다.
- ④ 콘크리트 타설 시 방음벽 설치위치에 기설치되어 있는 각종 시설물(cable trough, duct, hand hole 등)에 콘크리트가 묻지 않도록 주의해야 하고, 만일 콘크리트가 묻었을 경우에는 신속하게 닦아내어야 한다.
- ⑤ 지주 설치 후 방음벽 기초 하부처리 시 천공으로 배출된 이완토사 및 두부정리 잔 재는 계획고까지 단단하게 다지고, 바닥부는 깨끗하고 견고하게 주변마무리를 해야 하며 쌓기 구간의 지주는 전선관로 비탈면 보호공 등의 연관공정을 고려하여

시공해야 한다.

- (6) 쌓기 구간 하부에 설치되어 있는 지하구조물 위의 방음벽 시공
 - ① 박스암거 상부 표토깊이 1.5 m 미만인 경우 작업이 용이하도록 박스암거 상부 슬래브까지 표토를 제거하고 박스암거 상부 슬 래브에 케미칼 앵커로 고정시킨다. 단, 박스암거의 상판 두께가 250 mm 미만인 경우에는 별도 기초판을 제작하여 시공해야 한다.
 - ② 박스암거 상부 표토깊이 1.5 m 이상인 경우
 - 가. 확대기초판은 방음벽 길이방향으로 줄기초로 설치하며, 기초판 상부에서 표면 까지 되메우기는 1 m 로 한다.
 - 나. 확대기초판의 지주가 설치되는 위치에 500×500 mm 의 지주설치용 기초를 설 치해야 한다.
 - 다. 베이스 플레이트와 기초 콘크리트 사이에는 무수축 모르터 등으로 밀실히 충 진하여 베이스 플레이트와 기초판이 일체가 되도록 시공한다.

3.1.6 교량구간 지주설치

- (1) 시공순서는 베이스플레이트 설치-스프링록와셔(spring lock washer) 설치-너트고정-주 변마무리-주변정리와 같은 순서로 진행한다.
- (2) 베이스플레이트와 기초콘크리트 사이에는 무수축 모르터 충전 등으로 밀실하게 하여 베이스플레이트의 수평도 유지 및 베이스 플레이트와 기초판(교량)이 일체가 되도록 시공한다.
- (3) 구조물 마감선의 수평을 확인하고 높은 부분은 절단, 낮은 부분은 무수축 모르타르 등으로 충진하여 기초구조물에 완전히 밀착되도록 베이스플레이트를 설치해야 한다.
- (4) 지주자체의 수직도와 인접 지주와의 수평도는 5 mm 이내로 한다.
- (5) 설치완료 후 구조물상부로 돌출된 기초볼트의 높이는 설계도에 명시한 값을 준수해야 한다. 또한 진동에 의한 너트의 풀림방지를 위하여 설계도에 명시한 토우크 값 이상으로 조여야 한다.
- (6) 교량 신축이음(expansion joint)이 방음벽 지간 중간에 위치할 경우, 이로 인한 유격으로 방음판이 이탈 할 수 있으므로 이를 보호하기 위해 지주의 플랜지를 최대 유격길이 만큼 확보하여 보강 설치한다. 지주 플랜지의 길이를 길게 할 때는 지주와 같은 두 께를 유지하여 도면에 명시된 맞댐 용접을 철저히 실시하고 모재 이상의 효과를 얻어야 하며, 용접부위는 교량의 신축이 발생할 경우 방음판에 손상을 주지 않도록 용접면을 깨끗하게 처리해야 한다.

3.1.7 콘크리트블록 설치

(1) 콘크리트 블록은 경제성을 고려한 반사형 방음패널로 지반과 방음판이 직접 접촉으로 인한 부식을 방지하고 노반내의 배수를 위하여 방음벽이 설치되는 모든 구간의 방음 판 하단부(레일레벨 아래)에 설치해야 하며, 현장 여건을 고려하여 다른 종류의 반사

- 형 방음패널로 변경할 수 있다.
- ① 쌓기 구간의 경우 방음판 하단부에 2단(L mm×500 mm×120 mm×2단)을 설치하되 전선관로 비탈면 보호공과의 연관작업을 고려하여 설치해야 한다.
- ② 깎기 구간의 경우 방음판 하단부에 1단(L mm×500 mm×120 mm×1단) 또는 2단(L mm×500 mm×1단 + L mm×380 mm×1단)을 지면의 굴곡과 현장여건에 따라 설치해야 한다.
- ③ 교량구간의 경우 방음판 하단부에 1단(L mm×320 mm×120 mm×1단)을 설치해야 한다.
- (2) 콘크리트 블록의 시공은 크레인에 의한 부재운반 ⇒ 지주사이에 삽입 ⇒ 수평·수직 도 점검 ⇒ 지주와의 완전한 밀착 접합(고정금구 사용) ⇒ 주변정리 시공순서에 따른 다.
- (3) 콘크리트 블록의 적재 운반 시는 제품의 균열 및 파손을 방지하기 위한 필요한 조치를 강구해야 한다.
- (4) 콘크리트 블록은 내부공간 규격과 블록두께와의 차이에서 생기는 유격부분에 방진용 완충제와 고정금구를 사용하여 외부진동에 흔들림이 없고 견고한 상태로 밀착지지 되 도록 고정해야 한다.

3.1.8 방음판 설치

- (1) 와이어로프를 지주에 설치 시 양쪽 끝 250 mm 정도를 지주보다 길게 한다.
- (2) 교량 신축이음부가 방음판 지간의 중간에 위치하는 경우, 신축률에 따라 방음판의 길이를 조절하여 설치해야 한다.

3.1.9 접촉부분(Interface)의 처리

- (1) 토공-교량구간 연결
 - ① 토공-교량구간을 연결할 때 방음벽이 꺾어지는 각도는 가능한 작게 해야 하며 지주는 다-형강으로 대체하여 사용할 수 있으나 표준지주(H-빔) 또는 동등이상의 구조적 안정성을 갖는 지주를 선정하여 시공해야 한다.
- (2) 쌓기-깎기 구간 연결
 - ① 쌓기-깎기로 방음벽을 연결할 때 방음벽과 측구가 교차하며 접촉부분의 처리를 할 때 외부의 충격에 의한 파손 등의 위험이 있으므로 주의를 해야 하며, 지주는 ㄷ- 형강으로 대체하여 사용할 수 있으나 표준지주(H-빔) 또는 동등이상의 구조적 안 정성을 갖는 지주를 선정하여 시공해야 한다.
- (3) 토공-터널구간 연결
 - ① 토공-터널구간을 연결할 때 갱구부의 벨마우스와 틈새가 발생하지 않도록 방음벽을 설치해야 하며, 벨마우스 천공 시 구조물의 손상이 없도록 주의해야 한다.

3.1.10 비상출입문

(1) 방음벽 설치 연장이 500 m 이상 되는 구간과 방음벽의 설치로 인해 유지관리를 위한 진입이 불가능한 경우 필요에 따라 공사감독자/감리원과 협의하여 비상출입문을 설치할 수 있다.

(2) 비상출입문의 설치간격은 최소 방음벽 연장 250 m 마다 1개소, 크기는 폭 1.0 m, 높이 2.0 m 이상으로 하며 출입문의 모양 등 상세내용은 공사감독자/감리원의 승인을 받아야 한다.

3.1.11 방음벽 시공후 성능평가

- (1) 수급인은 방음벽 시공 전 방음벽 성능평가 계획을 수립하고, 시공 후 검증된 공인기 관으로 하여금 방음벽 성능평가를 실시하여 공사감독자/감리원에게 제출해야 한다.
- (2) 방음벽 시공 후 동일 수음점, 동일조건에서의 설치 전·후 소음도를 비교하여 추후 민원발생시 참고자료로 활용하며, 수음점에서의 소음기준 적합 여부를 판단해야 한다.
- (3) 삽입손실치를 측정하여 방음벽, 성능의 구체적인 자료로 활용해야 한다.
- (4) 방음벽 시공 후 삽입손실은 동일조건에서 방음벽의 영향을 받지 않는 곳(대조점)과 방음시설의 영향을 받는 곳(예측점) 두 곳의 소음레벨을 동시에 측정하여 방음벽의 성능을 평가하고 공사감독자/감리원의 승인을 받아야 한다.

3.1.12 시공허용오차

- (1) 방음판의 외형 치수 공차는 길이 ±2 mm, 높이 및 두께 ±1 mm 이내로 하고, 전면판 의 직진도(straightness)는 0.5% 이내로 한다.
- (2) 지주와 베이스플레이트의 직각도(squareness)는 고정판의 상면을 기준으로 하여 5 mm 이내로 한다.
- (3) 지주의 전면 직진도는 2 mm 이내로 한다.

별표 1. 방음시설 성능평가서

평가 항목	검토항목	세부검토항목	
일반사항		1. 방음벽 설계자(감리자) 인적사항 - 음향 및 구조 - 예술분야 2. 부지 도면(수음점과 소음원과의 위치관계) 3. 방음벽 설치지점의 지반상태 4. 도로상황 및 교통량(대/Hr)	
	음향설계서	5. 방음벽의 높이, 설치길이 6. 방음벽설치에 따른 차음효과(고층일 경우 층별계산) 사용된 소음도 예측식 계산과정	
	성능평가	7. 동일 수음점·동일조건에서의 설치전·후의 소음도 - 설 치 전: 낮 dB(A), 밤 dB(A) - 환경기준: 낮 dB(A), 밤 dB(A) - 설계기준: 낮 dB(A), 밤 dB(A) - 설 치 후: 낮 dB(A), 밤 dB(A)	
방음판	투과손실 흡음률 기타	8. 시험성적서 및 검토자료 9. 재질, 충격강도, 빛의 반사도, 가시광선투과율 등	
 구조	구조설계서	10. 풍하중, 기초공법, 통로 설치여부 등	
시공 시공도면		11. 시공계획서	
미관	주위경관 고려 시각적 효과고려	12. 수림대조성, 덩굴식물 식재, 화분설치여부 등 13. 방음벽 전·후면에 대한 색채 및 형태	
안전성	안전설계서	14. 방호시설 설치여부 등	

3.2 전기설비 부대공사 시공

3.2.1 시공기준

- (1) 터파기는 다음 요건에 따른다.
 - ① 터파기 완료 후 시공을 계속하지 않을 때에는 지반의 붕괴와 인축에 대한 위험을 방지하는 안전조치를 해야 한다.
 - ② 터파기로 인하여 손상된 비탈면, 잔디, 석축 등은 원상복구하고 파손된 개소가 확대되지 않도록 대책을 확보하여 조치해야 한다.
 - ③ 노반 횡단전선관 설치를 위하여 터파기 할 경우에는 노반을 형성하는 층이 손상되지 않도록 주의하여 시공해야 한다.
- (2) 되메우기는 KCS 47 10 25 (3)의 해당요건에 따른다.
 - ① 모래로 되메우기 할 경우에는 충분한 물다짐을 하고, 일반 되메우기는 1층의 다짐 두께를 300 mm 로 하여 견고히 다져야 한다.

② 기초잡석은 25 ~ 40 mm 크기의 경질 천연골재 또는 부순골재를 사용하고 잡석과 접촉되는 지면은 다진 다음 기초잡석을 채우고 다시 다져야 한다.

- ③ 핸드홀 시공을 위하여 터파기 한 후 되메우기는 맹암거와의 상호간섭에 유의해야 하며, 특히 맹암거의 유수를 고려한 다짐에 대하여는 공사감독자/감리원의 승인을 받은 소형다짐장비를 사용해야 한다.
- ④ 되메우기시 다짐은 해당구간의 노반에 요구된 다짐도를 확보해야 한다.
- (3) 동바리 및 거푸집의 설치, 제거는 KCS 14 20 12를 따른다.
- (4) 콘크리트 타설 및 양생은 KCS 14 20 10 (3)을 따른다.
- (5) 모든 전기설비 부대공사는 한국철도시설공단 토목 관련 전기설비 표준도를 기준으로 하여 시공해야 하며, 이에 포함되지 않은 전기설비 부대공사는 공사감독자/감리원과 사전에 협의하여 시행해야 한다.

3.2.2 합성수지관 공사

- (1) 관을 가열할 때는 토치램프를 사용해야 하며 너무 강하게 열을 가해 타지 않도록 주의한다.
- (2) 관 상호간의 접속은 반드시 커프링을 사용해야 하며, 관 상호 및 박스와 접속은 합성수지용 접착제를 사용 시공 시 이탈방지 및 방수가 되도록 시공해야 한다.
- (3) 관 상호 및 관과 박스와의 접속 시에 삽입하는 길이는 관 바깥지름의 1.2배 이상으로 하고 또한 삽입 접속으로 견고하게 접속해야 한다.
- (4) 관로가 긴 경우에는 신축 커프링 등을 사용해야 한다.
- (5) 관 이음새 등을 지지하는 경우에는 그 지지 점간의 거리를 수평 1.5 m 및 수직 1 m 이내로 한다.
- (6) 배관은 중량물의 압력 또는 심한 기계적 충격을 받는 장소에 시설하여서는 안 된다. 다만 적절한 방호시설을 한 경우에는 공사감독자/감리원의 승인을 받아 배관시공을 할 수 있다.
- (7) 배관의 끝단은 매끈하게 하여 전선의 피복이 손상될 우려가 없어야 한다.
- (8) 콘크리트 내에 집중배관하여 강도를 감소시키지 않도록 하고, 3개 이상의 배관이 한 군데 묶여서 동일방향으로 배관되지 않도록 하고 가능한 한 50 mm 이상을 이격하여 배관해야 한다.
- (9) 콘크리트 내에 매설하는 배관은 가능한 한 철근을 따라가면서 배관하고 벽 내에서는 수직배관으로 하며 수평배관은 피하도록 한다.

3.2.3 강재전선관 공사

- (1) 관상호간 접속 및 박스와의 규정된 접속재를 사용해야 한다.
- (2) 노출배관의 경우 그 지지점간의 거리는 수평 1.5 m 및 수직 1 m 이내로 한다.
- (3) 관 길이가 긴 경우 신축 커프링을 사용해야 한다.
- (4) 레일 횡단개소에는 케이블 횡단표시를 해야 한다.

(5) 금속관에는 배관 후 전선을 인입할 때까지 관내에 습기 및 먼지 등이 침입하지 않도록 예방조치를 해야 한다.

3.2.4 접지공사

- (1) 공통사항
 - ① 콘크리트에 매입 시공되는 접지단자는 콘크리트면과 접지단자 전면이 일치하게 시공해야 하며, 접지단자의 전면에 식별이 용이한 색깔의 테이프를 붙여 콘크리트 등으로 볼트구멍이 막히지 않도록 해야 한다.
 - ② 접지단자와 연결용 쇠봉은 별도의 너트를 이용하여 견고히 체결하고, 녹이 쓴 것은 녹을 제거하여 사용해야 한다.
 - ③ 시공 후 모든 개소의 단자를 찾아서 볼트와 와셔를 체결해야 한다.
 - ④ 교각에 시공된 접지단자는 접지저항을 측정하고 그 기록을 공사감독자/감리원에 게 제출해야하며, 개소당 $10~\Omega$ 이하 로 하며, 라멘교량은 교각에 준하여 상판 1개소당 1개만 접지저항을 측정해야 한다.
 - ⑤ 교량상판, 터널 라이닝 및 배수공동관로에 시공된 접지단자는 상호간 전기적 연속 성 시험을 하여 그 결과를 공사감독자/감리원에게 제출해야 하며, 그 결과는 5 Ω 이하로 한다.
- (2) 터널 배수공동관로 접지단자시공
 - ① 터널양측 배수공동관로용 기초에 설치된 접지선으로부터 매 50 m 마다 교호되게 인출된 접지인출선을 기준으로 만나는 철근의 5개소를 용접해야 한다.
 - ② 터널 내 배수공동관로에 설치될 접지단자는 매 50 m 간격으로 상·하선 방향으로 교호되게 설치된 접지인출선에 견고하게 접속한 후 용접하여 설치해야 한다.
- (3) 터널라이닝 접지단자시공
 - ① 터널라이닝에 설치되는 접지단자는 매 블록마다 별도의 평철을 이용하여 견고하게 설치해야 한다.
 - ② 평철의 단면적은 200 mm² 이상 되는 것을 사용해야 하며, 평철상호 간 이음개소 의 용접은 평철의 단면적(200 mm² 이상)이 나오도록 용접해야 한다.
 - ③ 종방향 터널하부는 1m 간격으로 평철과 철근이 접하는 부위를 용접해야 하며, 터널상부는 0.5 m 간격으로 용접해야 한다.
- (4) 교각접지단자시공
 - ① 교각에 설치되는 접지단자는 별도의 나동연선(80 mm²)을 사용하여 시공해야 한다.
 - ② 강관파일 기초의 경우에는 2개의 파일을 별도의 철근을 사용하여 용접 연결한 후 테르밋 용접으로 나동선을 이용 접지해야 한다.
 - ③ 확대기초 및 우물통 기초의 경우 기초 상하부 외각 모서리 철근의 이음개소를 용접하여 하나의 철근이 되도록 용접한 후 테르밋 용접으로 나동선을 이용 접지해야한다.
 - ④ 기초가 완성된 후 교각이 올라갈 때 나동선이 교각 철근을 따라 코핑부까지 올라

갈 수 있도록 철저히 관리해야 하며, 최종 코핑부 콘크리트 타설 시 거푸집 면에 접지 단자가 밀착되어 견고히 부착될 수 있도록 해야 한다.

(5) 교량상판 접지단자시공

- ① 교량상판에 설치되는 접지단자는 별도의 평철을 이용하여 시공해야 한다.
- ② 평철의 단면적은 200 mm² 이상 되는 것을 사용해야 하며, 평철상호 간 이음개소 의 용접은 평철의 단면적(200 mm² 이상)이 나오도록 용접해야 한다.
- ③ 평철과 철근과의 용접은 1 m 당 1개소를 용접해야 한다.

3.2.5 토공구간 횡단전선관 설치공사

- ① 토공구간의 횡단전선관은 경질비닐전선관(KS C 8431 또는 동등이상의 제품)을 사용해야 한다.
- ② 핸드홀 인출전선관은 파상형 경질 폴리에틸렌 전선관(KS C 8455 또는 동등 이상의 제품)을 사용해야 한다.
- ③ 터널구간에 사용하는 횡단전선관은 강재 전선관(KS C 8401 또는 동등 이상의 제품)을 사용해야 한다.
- ④ 노반 횡단전선관 및 핸드홀 인출전선관의 매입깊이는 궤도 양측에 설치되는 핸드홀의 깊이에 따라 조절하여 설치해야 하며, 그 외의 수량을 적용 시는 공사감독자 /감리원의 승인을 받아 시행해야 한다.
- ⑤ 핸드홀 인출전선관은 핸드홀 거푸집과 같이 시공하여 상호 일체적으로 수평을 유지한 후 콘크리트 타설을 해야 한다.
- ⑥ 횡단전선관 지지용 C-찬넬은 횡단전선관 중심에서 2 m 간격으로 5개소에 설치하도록 해야 한다.
- ⑦ 횡단전선관은 설치기준점에서 좌, 우 대칭이 되도록 설치해야 한다.
- ⑧ 핸드홀 인출전선관의 길이는 현장 여건에 따라 공사감독자/감리원과 협의 결정해 야 한다.
- ⑨ 핸드홀 인출전선관의 2배열로 인하여 노반의 외측경사면이 약화될 우려가 있을 경우에는 공사감독자/감리원의 승인을 받아 시행해야 한다.

3.2.6 핸드홀

(1) 핸드홀은 횡단전선관의 수에 따라 그 크기를 각각 구분하여 표 3.2-1을 기준으로 적용 해야 한다.

#	3.2-	1 해	ㄷ호	선 ㅊ	レフ	주
	U.L			2 ^		

횡단전선관수 (개)	핸드홀 타입	핸드홀크기 (mm)
8, 8×2	H-HV, H-HVt	2,500×1,280×1,000
4, 6	H-S, H-St	2,000×1,280×1,000
2	H-I, H-Iv	1,500×1,280×1,000
-	H-H	2,100×1,300×900

- (2) 핸드홀 설치 깊이는 각각 1,000 mm, 850 mm 및 750 mm로 현장여건에 따라 구분하여 적용해야 하며, 이때의 횡단전선관 설치 깊이도 각각 핸드홀의 설치 깊이에 따라 조절하여 노반 횡단전선관의 거푸집과 같이 시공하여 상호 일체적으로 콘크리트를 타설해야 한다.
- (3) 토공구간의 깎기 및 쌓기구간에 따라 전선관로 및 핸드홀의 설치방법은 매입 설치하고, 깎기 구간에서 잡석 및 버림콘크리트는 유공관 설치지점까지 각각 구분하여 설치해야 한다.
- (4) 깎기 구간의 배수관은 맹암거의 유공관으로 핸드홀 내 물이 배수될 수 있도록 설치해야 하다.
- (5) 옥외수배전설비 기초용 핸드홀의 배수관은 노반 배수로로 배수될 수 있도록 설치해야 한다.
- (6) 쌓기구간에서는 핸드홀 내 배수를 위한 배수관 및 배수로 인하여 궤도외측의 경사면 이 세골 등이 되지 않도록 하고, 배수관을 토공에서 시공한 배수로까지 시공해야 한다.
- (7) 선로변에 핸드홀 설치 시 지중에 설치된 매설접지선이 있을 경우에는 궤도측으로 우회시켜 작업에 지장이 없도록 조치해야 한다.

3.2.7 옥외 수 · 배전설비 기초 및 접지공사

- (1) 옥외수배전설비 기초
 - ① 기초콘크리트는 KCS 14 20 10을 따른다.
 - ② 옥외수배전설비 기초는 선로변 깎기구간 및 교량하부, 선로변 쌓기구간에 따라 각 구분하여 적용해야 한다.
 - ③ 옥외수배전설비의 최종 높이는 쌓기 작업이 완료된 지표면에서 600 mm 이상으로 한다.
- (2) 접지공사
 - ① 접지선은 KS 규격품을 사용해야 하며 MESH용 접지선은 나동선(BC)을 사용하고, 인출용 접지선은 접지용전선(GV)을 사용해야 한다.
 - ② 접지선의 매설깊이는 1.2 m 이상 되도록 시공해야 한다.
 - ③ 접지선 매설을 위한 토공의 터파기는 기초공사용 터파기를 포함하여 일괄 시공한

다

- ④ 접지선의 접속은 테르밋 용접으로 전문기술자가 시공해야 한다.
- ⑤ 접지선(copper wire)과 접속 금구류의 용접은 견고하게 시공해야 한다.
- ⑥ 수·배전설비 및 펜스에 접속할 입상용 접지선은 2 m 이상 인출해야 한다.
- ⑦ 접지봉은 지정된 규격품을 사용하며 접지선 설치 깊이까지 접지봉을 매입해야 한다.

3.2.8 터널 내 전기기재갱 공사

- (1) 기재갱의 바닥에는 무근콘크리트를 타설함을 기준으로 하고, 배전반용 케이블 인출입을 위한 트렌치는 시공상세도를 작성하여 시공해야 한다.
- (2) 기초바닥의 마감은 아스타일에 따라 매끈하고 정갈하게 시공되어야 한다.
- (3) 터널기재갱 내 케이블 인출입을 위한 부분인 수로와 기재갱 간의 블록아웃은 케이블 인출입에 지장이 없도록 300 mm의 헌치를 준다.

3.2.9 전차선로 기초공사

- (1) 교량구간 전철주기초 앵커볼트 설치
 - ① 기초의 구조와 위치는 명시된 도면에 따라 정확히 설치해야 한다.
 - ② 앵커볼트는 상부로부터 250 mm를 KS D 8308에 의한 용융아연도금을 시행해야 한다.
 - ③ 앵커볼트의 굽힘가공은 KS D 3503에 의거 가공하되 균열 또는 재질을 해치지 않는 방법으로 시행해야 한다.
 - ④ 앵커볼트는 추후 전주를 세울 때 까지 나사부가 손상되지 않도록 견고한 보호조치를 해야 하며, 노출부분은 구리스 도포를 시행하고 2중 너트를 체결해야 한다.
 - ⑤ 앵커볼트와 철근조립에 앞서 접합면은 녹, 먼지 등 콘크리트의 부착에 장애가 되는 이물질을 완전히 제거하고 접합개소는 재점검하여 불완전한 접속이 발생치 않도록 해야 한다.
 - ⑥ 앵커볼트와 철근은 명시된 도면에 따라 형상 및 치수가 일치하도록 하고, 콘크리트 타설전에 공사감독자/감리원의 확인을 받아야 한다.
 - ⑦ 앵커볼트의 간격 허용오차는 ±5 mm 이내로 한다.
 - ⑧ 최종 인수검사 전까지 각 개소의 앵커볼트 설치개소에 대한 자료(측량결과, 볼트 간 설치간격, 나사산 돌출부 길이, 볼트 상부로부터 콘크리트 피복까지의 길이 등) 을 제출하여 공사감독자/감리원의 확인을 받아야 한다.
- (2) 터널 내 C-찬넬 설치공사
 - ① C-찬넬의 설치위치는 명시된 도면에 따라 정확히 시공해야 한다.
 - ② C-찬넬 간격의 허용오차는 ±10 mm 이내로 한다.
 - ③ C-찬넬 설치시 무리한 힘을 가하여 재질의 강도저하 및 구부러짐이 발생하지 않도록 주의해야 하며, C-찬넬의 홈에 콘크리트 등 이물질이 끼이지 않도록 하여 추후

전차선로 지지물(하수강) 설치 시 지장이 없도록 해야 한다.

- ④ 콘크리트 양생 후 최종 인수검사전까지 C-찬넬 내부의 마감재(스티로폴 또는 스폰 지)를 제거해야 한다.
- ⑤ 최종 인수검사 전까지 각 C-찬넬 설치개소의 자료(측량결과, 찬넬 간 상하부 설치 간격, C-찬넬 타입 등)을 제출하여 공사감독자/감리원의 확인을 받아야 한다.

3.2.10 전선관로 설치공사

- (1) 전선관로 CT-G1, G2형의 구분
 - ① 토공노반 양측에 설치할 전선관로 토공용은 G1형과 G2형으로 구분되며, 기존선과 의 연결선 구간에는 KS 제품인 T300형으로 구분하여 설치되어야 한다.
 - ② 역사 및 신호기계실 중심으로부터 상, 하 3 km 까지는 CT-G1형으로 설치하고, 그이외 구간에는 CT-G2형으로 설치해야 한다. 동일 구조물에서는 가능한 동일한 형태의 전선관로를 사용해야 한다. 단 구조물의 잔여길이가 1 km 이상인 경우에는 중간 핸드홀에서 구분 설치해야 한다.
 - ③ 전선관로 CT-G1 및 CT-G2형은 철근콘크리트 프리캐스트 제품인 몸체와 뚜껑으로 이루어진 3칸식 덕트구조로 한다.
- (2) 전선관로 설치 준비

수급인은 전선관로를 설치할 위치에 전선관로를 정확하고 효율적으로 설치할 수 있도록 가~다를 포함하여 필요한 사전준비 작업을 해야 한다.

- ① 전선관로 설치장소는 주변을 정리, 청소해야 하며 깎기구간에서는 배수구 노반측 벽면의 군더더기를 제거해야 한다.
- ② 전선관로 설치의 시작점인 핸드홀의 전선관로 접합구 시공상태를 확인해야 한다.
- ③ 전선관로 설치 기준선 측량 기준선이 설계서에 달리 명시되지 아니한 경우, 쌓기 구간에서는 궤도중심선(T1, T2) 또는 전철주 중심선을 기준하여 공사감독자/감리원과 협의하여 정해야 하며, 깎기 구간에서는 배수측구의 노반측 벽면을 기준하여 정해야 한다.
- (3) 전선관로 몸체 설치-토공구간
 - ① 전선관로는 전체가 직선을 이루며 노반에 매입하여 설치해야 한다.
 - ② 설치작업은 토공구간 내에 또는 고가교량이나 터널구간 경계지점에 설치된 핸드홀 의 전선관로 접합구에서 시작하되 노반중심 쪽에 제어설비에서 사용 할 칸이 위치하도록 설치해야 한다(상, 하선공통).
 - ③ 전선관로 몸체를 설치 종축 기준선에 맞추어 명시된 도면 및 토공작업의 상세에 따라 설치해야 하며 인접되는 두 전선관로의 소켓부위에 이물질이 없이 서로 밀착시켜 틈새가 발생치 않도록 시공해야 한다.
 - ④ 몸체 위의 뚜껑을 덮었을 때 노반의 빗물이 선로 외측으로 흐르도록 몸체의 밑면 에 약 3%의 기울기를 주어야 하며, 선로중심 쪽으로 기우는 부분이 없어야 한다.
 - ⑤ 전선관로 설치 시 전력용칸에 스페이서가 설치된 전선관로를 2 m마다 1개씩(일반

전선관로 3개 설치 후 4번째 스페이서용 1개 설치) 설치해야 한다.

- ⑥ 전선관로 설치 후에 이루어질 보조도상층 시공은 이 기준에 정한 규정에 따르며, 깎기구간의 배수구측 벽면과 전선관로사이의 틈새는 유수로 인한 세굴이 발생하지 않도록 현장여건에 따라 양질의 토사나 시멘트 모르타르로 채워 마감해야 하고, 쌓기구간 내 전선관로와 선로측 사이의 보조도상 설치시는 다짐에 의한 전선관로의 변형이 없도록 조치해야 한다.
- ⑦ 전선관로 설치작업은 사전에 반드시 공사감독자/감리원의 확인을 필한 후 이상이 없다고 판단될 경우에 작업을 개시해야 한다.
- ⑧ 토공 쌓기구간 측면부는 다짐시공이 어렵고, 장기적으로 세굴의 우려가 있으므로 해당규정에 따라 시멘트 모르타르로 관로저면과 동일한 위치까지 시공하되 노반 내 우수의 흐름이 방해하지 않도록 보강구간의 설치한계는 준수해야 한다.
- ⑨ 전선관로 몸체 설치 후 다짐작업 시 다짐작업 기구가 전선관로에 접촉되어 파손되는 일이 없도록 해야 한다.

(4) 뚜껑 임시 덮기

- ① 몸체 설치 후 뚜껑을 덮을 때는 제작자 약호가 윗면으로 오도록 설치해야 하며 몸 체와 뚜껑의 접합상태가 울림이 없어야 한다.
- ② 혹한기를 대비하여 전선관로 몸체 설치 시 반드시 뚜껑을 덮어 폭설시 눈이 전선 관로 내에 쌓이지 않도록 해야 한다.

(5) 핸드홀-전선관로 접합

- ① 핸드홀과 전선관로의 접합은 명시된 도면에 따라 핸드홀의 전선관로 접합구에 전 선관로를 삽입 연결해야 한다.
- ② 전선관로와 핸드홀 접합작업은 핸드홀이 현장타설인 경우 양생기간이 경과하였음을 확인 한 후 착수해야 한다.
- ③ 전선관로 몸체의 끝부분은 핸드홀 내측과 일치하도록 삽입하고, 시멘트 모르타르 등으로 틈새를 완전히 밀폐시켜 야생동물 등의 침입을 막아야 한다.
- ④ 핸드홀 쪽의 전선관로 끝부분에 턱이 생길 경우 시멘트 모르타르로 둥글게 처리하여 날카로운 부분이 없도록 해야 한다.
- (6) 깎기구간과 쌓기구간의 전선관로 접합 깎기구간과 쌓기구간이 연속되는 장소에서 핸드홀이 없이 전선관로를 접속하는 경우 에는 쌓기구간에서부터 깎기구간 쪽으로 완만한 곡선을 주어 연결해야 한다.
- (7) 전선관로 절단 및 구멍 뚫기 시공 시 발생하는 절단 및 구멍 뚫기는 콘크리트용 절삭공구를 이용하여 가공해야 하 며, 이때 표면에 돌출된 철근은 부식을 방지하기 위하여 별도의 방청제(C-20 동급 이
 - 며, 이때 표면에 돌출된 철근은 부식을 방지하기 위하여 별도의 방청제(C-20 동급 이상)를 사용하여 처리해야 한다.
- (8) 쌓기구간 집수정위의 전선관로 설치 쌓기구간의 법면 세굴방지용 집수정에 설치하는 집수정용 전선관로는 배수구멍이 집 수정의 중앙에 오도록 설치해야 하며 배수구멍이 있는 전선관로는 전선관로 공급자가

제공해야 한다.

(9) 접지선 처리

수급인은 토공 노반 양측에 50 m 마다 기설치 인출되어 있는 접지선 위치에 접지용 구멍이 있는 전선관로를 설치해야 하며, 접지선을 전선관로 내에 인입하고, 틈새 마감처리(몰탈 또는 콤파운드)가 끝난 뒤에 보조도상층 작업을 시행해야 한다.

(10) 완성된 노반에서 전선관로 터파기

- ① 전선관로 설치공사를 착수할 시점에 그 토공노반의 시공상태가 사실상 이미 완성 단계에 있을 경우에는 그 노반 양측에 전선관로를 매입 설치하는데 필요한 터파기를 해야 한다.
- ② 터파기를 하고 전선관로를 매입설치 한 후 되메우기는 전선관로에 손상이 가지 않는 범위 내에서 다짐장비 및 다짐방법을 선정해야 하며, 다짐은 해당구간의 노반에 요구된 다짐도를 확보해야 한다.
- ③ 수급인은 되메우기 다짐작업으로 인하여 전선관로가 손상되면 수급인의 부담으로 요구된 품질이상의 제품으로 원상 복구해야 한다.

(11) 터널용 전선관로 시공

- ① 수급인은 터널 내 콘크리트 블록아웃 시공 착수 전에 공사감독자/감리원과 사전 협의를 거친 후 시공해야 한다.
- ② 콘크리트 블록아웃 바닥면은 3 m 직선자를 어느 방향으로나 대어 측정하였을 때 가장 들어간 곳이 6 mm 이상이어서는 안 된다.

3.2.11 교량구간 매입전선관(Insert Sleeve) 설치공사

- (1) 전선관은 경질비닐전선관(KS C 8431 또는 동등 이상의 제품)을 사용해야 한다.
- (2) 전선관용 부속품은 특수한 것을 제외하고 KS 제품을 사용해야 한다.
- (3) 교량구간 매입전선관 설치 시 교량상판의 장력강성 관로로부터 이격하여 강선관로에 손상이 없도록 해야 하며, 전선관이 움직이지 않도록 결속선을 이용하여 전선관의 상·하단부를 철근에 고정시켜야 한다.
- (4) 2개 이상의 매입전선관 설치 시 전선관의 간격은 현장여건에 따라 30 mm 이하 간격으로 설치할 수 있다.
- (5) 매입전선관의 설치유형 및 위치는 명시된 도면의 횡단위치별 이격거리 및 수량을 확인 후 시공해야 한다.

집필위원

성 명	소 속	성 명	소 속
황선근	한국철도기술연구원	신지훈	한국철도기술연구원

자문위원

성 명	소 속	성 명	소 속
구웅회	㈜서영엔지니어링	안태봉	우송대학교
정혁상	동양대학교	조성호	중앙대학교

국가건설기준센터 및 건설기준위원회

성 명	소 속	성 명	소 속
이용수	한국건설기술연구원	정혁상	동양대학교
구재동	한국건설기술연구원	구자안	한국철도공사
김기현	한국건설기술연구원	김석수	㈜수성엔지니어링
김태송	한국건설기술연구원	김재복	㈜태조엔지니어링
김희석	한국건설기술연구원	소민섭	회명정보통신㈜
류상훈	한국건설기술연구원	여인호	한국철도기술연구원
원훈일	한국건설기술연구원	이성혁	한국철도기술연구원
주영경	한국건설기술연구원	이승찬	㈜평화엔지니어링
최봉혁	한국건설기술연구원	이진욱	한국철도기술연구원
허원호	한국건설기술연구원	이찬우	한국철도기술연구원
		최상철	㈜한국건설관리공사
		최찬용	한국철도기술연구원

중앙건설기술심의위원회

성 명	소 속	성 명	소 속
김현기	한국철도기술연구원	최상현	한국교통대학교
이광명	성균관대학교	정광섭	포스코건설
신수봉	인하대학교	손성연	씨앤씨종합건설(주)
이용재	삼부토건(주)		

<u>기타공사 KCS 47 10 85 : 2019</u>

궆	투	ᆔ	톳	부

성 명	소 속	성 명	소 속
임종일	철도건설과	홍석표	철도건설과
문재웅	철도건설과		

KCS 47 10 85 : 2019

기타공사

2019년 04월 08일 개정

소관부서 국토교통부 철도건설과

관련단체 한국철도시설공단

34618 대전광역시 동구 중앙로 242 한국철도시설공단

Tel: 1588-7270 http://www.kr.or.kr

작성기관 한국철도기술연구원

16105 경기도 의왕시 철도박물관로 176 한국철도기술연구원

Tel: 02-460-5000 http://www.krri.re.kr

국가건설기준센터

10223 경기도 고양시 일산서구 고양대로 283(대화동)

http://www.KCSc.re.kr