Teorema de Weierstrass

Teorema Sejam $D \subset \mathbb{R}^2$ e

$$f:D\to\mathbb{R}$$
.

Se

- D for compacto (isto é, fechado e limitado)
- e f for contínua em D,

então f tem ambos máximo e mínimo absolutos no conjunto D.

Extremo absoluto num ponto interior de domínio

Teorema

Se uma função de duas variáveis diferenciável, tem um extremo absoluto num ponto interior de seu domínio, então este extremo ocorre num ponto crítico.

Extremos absolutos em conjuntos compactos

Como encontrar os extremos absolutos de uma função contínua de duas variáveis num conjunto compacto *R*:

- Passo 1 Encontre os pontos críticos que estão situados no interior do conjunto R.
- ${\it Passo~2}$ Encontre todos os pontos de fronteira nos quais os extremos podem ocorrer.
- Passo 3 Calcule f(x, y) nos pontos obtidos nos passos precedentes. O maior desses valores é o máximo absoluto e o menor é o mínimo absoluto.

Problemas de extremos com restrições

Problema 1. Maximize ou minimize a função f(x, y) sujeita à restrição g(x, y) = 0.

Problema 2. Maximize ou minimize a função f(x, y, z) sujeita à restrição g(x, y, z) = 0.

Extremos absolutos e relativos restritos

- Diz-se que f tem em (x_0, y_0) um máximo (mínimo) absoluto restrito à curva g(x, y) = 0 se $f(x_0, y_0)$ é o maior (menor) valor de f na curva definida pela equação g(x, y) = 0.
- Diz-se que f tem em (x_0, y_0) um máximo (mínimo) relativo restrito à curva g(x, y) = 0 se $f(x_0, y_0)$ é o maior (menor) valor de f em algum segmento da curva g(x, y) = 0 que se estenda para ambos lados do ponto (x_0, y_0) .

Princípio do extremo restrito para duas varáveis e uma restrição

Teorema

Sejam f e g funções de classe C^1 num conjunto aberto de \mathbb{R}^2 contendo a curva de restrição g(x,y)=0 e suponha que

$$\nabla g(x,y) \neq (0,0)$$

em qualquer ponto da curva. Se f tiver um extremo relativo restrito, então esse extremo ocorre num ponto (x_0, y_0) da curva de restrição no qual os vetores gradientes $\nabla f(x_0, y_0)$ e $\nabla g(x_0, y_0)$ são paralelos: isto é, existe um número λ (chamado multiplicador de Lagrange) tal que

$$\nabla f(x_0, y_0) = \lambda \nabla g(x_0, y_0).$$

Exemplo

Exemplo

A figura mostra a interseção do paraboloide elíptico $z = x^2 + 4y^2$ e o cilindro circular reto $x^2 + y^2 = 1$. Use multiplicadores de Lagrange para determinar os pontos mais alto e mais baixo da curva de interseção.

Resolução

Resolução:

Princípio do extremo restrito para três varáveis e uma restrição

Teorema

Sejam f e g funções de classe C^1 num conjunto aberto de \mathbb{R}^3 contendo a superfície de restrição g(x,y,z)=0 e suponha que

$$\nabla g(x,y,z) \neq (0,0,0)$$

em qualquer ponto dessa superfície. Se f tiver um extremo relativo restrito, então esse extremo ocorre num ponto (x_0, y_0, z_0) da superfície de restrição no qual os vetores gradientes $\nabla f(x_0, y_0, z_0)$ e $\nabla g(x_0, y_0, z_0)$ são paralelos: isto é, existe um número λ (chamado multiplicador de Lagrange) tal que

$$\nabla f(x_0, y_0, z_0) = \lambda \nabla g(x_0, y_0, z_0).$$

Exemplo

Exemplo

Determine os pontos da esfera $x^2 + y^2 + z^2 = 36$ que estão o mais próximo e o mais afastado do ponto (1,2,2).

Exemplo

Exemplo

Determine os pontos da esfera $x^2 + y^2 + z^2 = 36$ que estão o mais próximo e o mais afastado do ponto (1,2,2).

