Fonction inverse

Tle STMG

Table des matières

1	éfinition et représentation graphique	2
	1 Définition : Fonction inverse	2
	2 Représentation graphique	2
2	érivée et sens de variation	3
	érivée et sens de variation 1 Propriété : Dérivée de la fonction inverse	3
	2 Propriété : Variations de la fonction inverse	
	3 Propriété : Comportement de la fonction inverse aux bornes de son ensemble de définition	4
3	ponction de la forme $f(x) = P(x) + \frac{k}{x}$	7
	1 Méthode : Étudier une fonction de la forme $f(x) = P(x) + \frac{k}{x}$	7

1 Définition et représentation graphique

1.1 Définition : Fonction inverse

Définition : La fonction inverse f est définie sur $\mathbb{R} \setminus \{0\}$ par

$$f\left(x\right) = \frac{1}{x}$$

1.2 Représentation graphique

Table 1 – Tableau de valeurs de la fonction inverse

\overline{x}	-2	-1	-0.25	0.1	0.5	1	1.25	2	2.5
$f(x) = \frac{1}{x}$	-0.5	-1	-4	10	2	1	0.8	0.5	0.4

FIGURE 1 – Représentation graphique de la fonction inverse

1.2.1 Remarque:

La courbe d'équation $y = \frac{1}{x}$ de la fonction inverse, appelée **hyperbole** de centre O, est symétrique par rapport à l'origine.

2 Dérivée et sens de variation

2.1 Propriété : Dérivée de la fonction inverse

La dérivée de la fonction inverse f est définie sur $\mathbb{R}\smallsetminus\{0\}$ par

$$f'(x) = -\frac{1}{x^2}$$

.

Démonstration

Soit $f(x) = \frac{1}{x}$ définie sur $\mathbb{R} \setminus \{0\}$. Par définition, la fonction dérivée de f est :

$$f'(a) = \lim_{h \to 0} \frac{f(a+h) - f(a)}{h}$$

Dans notre cas:

$$f'(a) = \lim_{h \to 0} \left(\frac{f(a+h) - f(a)}{h} \right)$$

$$= \lim_{h \to 0} \left(\frac{\frac{1}{a+h} - \frac{1}{a}}{h} \right)$$

$$= \lim_{h \to 0} \left(\frac{1}{h} \times \left(\frac{1}{a+h} - \frac{1}{a} \right) \right)$$

$$= \lim_{h \to 0} \left(\frac{1}{h} \times \left(\frac{a}{a(a+h)} - \frac{a+h}{a(a+h)} \right) \right)$$

$$= \lim_{h \to 0} \left(\frac{1}{h} \times \left(\frac{a - (a+h)}{a(a+h)} \right) \right)$$

$$= \lim_{h \to 0} \left(\frac{1}{h} \times \left(\frac{-h}{a(a+h)} \right) \right)$$

$$= \lim_{h \to 0} \left(\frac{1}{a(a+h)} \right) = \frac{-1}{a^2}$$

Pour tout nombre a, on associe le nombre dérivé de la fonction f égal à $\frac{-1}{a^2}$.

Ainsi, pour tout x de $\mathbb{R} \setminus \{0\}$, on a : $f'(x) = \frac{-1}{x^2}$.

2.2 Propriété : Variations de la fonction inverse

La fonction inverse est **décroissante** sur $]-\infty$; 0[et sur]0; $+\infty[$.

Démonstration

Pour tout
$$x$$
 de $\mathbb{R} \setminus \{0\}$, $f'(x) = \frac{-1}{x^2} < 0$ car $x^2 > 0$ et $-1 < 0$.

Donc f est **décroissante** sur $]-\infty$; 0[et sur]0; $+\infty$ [.

2.3 Propriété : Comportement de la fonction inverse aux bornes de son ensemble de définition

2.3.1 En $+\infty$

On s'intéresse aux valeurs de f(x) lorsque x devient de **plus en plus grand**.

Table 2 – Tableau de valeurs de la fonction inverse lorsque $x \to +\infty$

x	0.1	1	2	4	10	50	100	1000	
$f(x) = \frac{1}{x}$	10	1	0.5	0.25	0.1	0.02	0.01	0.001	

On constate que f(x) se rapproche de 0 lorsque x devient de plus en plus grand.

On dit que la **limite** de f lorsque x tend vers $+\infty$ est égale à 0 et on note :

$$\lim_{x \to +\infty} f(x) = 0$$

Graphiquement, pour des valeurs de plus en plus grandes, la courbe de f se rapproche de plus en plus de l'axe des abscisses.

FIGURE 2 – Représentation graphique de la fonction inverse sur]0; $+\infty[$

2.3.2 En $-\infty$

On s'intéresse aux valeurs de f(x) lorsque x devient de plus en plus grand dans les négatifs.

Table 3 – Tableau de valeurs de la fonction inverse lorsque $x \to -\infty$

\overline{x}		-1000	-100	-10	-5	-1	-0.5	-0.1
$f(x) = \frac{1}{x}$	-0.001	-0.01	-0.1	-0.2	-1	-2	-10	

On constate que f(x) se rapproche de 0 lorsque x devient de plus en plus grand dans les négatifs.

On dit que la **limite** de f lorsque x tend vers $-\infty$ est égale à 0 et on note :

$$\lim_{x \to -\infty} f(x) = 0$$

Graphiquement, pour des valeurs de plus en plus **grandes dans les négatifs**, la courbe de f se rapproche de plus en plus de l'axe des abscisses.

FIGURE 3 – Représentation graphique de la fonction inverse sur $]-\infty$; 0

Remarque:

On dit que l'axe des abscisses est une **asymptote horizontale** à la courbe de la fonction inverse en $-\infty$ et en $+\infty$.

2.3.3 Au voisinage de 0

L'image de 0 par la fonction f n'existe pas. On s'intéresse cependant aux valeurs de f(x) lorsque x se rapproche de 0.

\overline{x}	-1	-0.5	-0.1	-0.01	-0.001	 0.001	0.01	0.1	0.5	1
$f(x) = \frac{1}{x}$	-1	-2	-10	-100	-1000	 1000	100	10	2	1

A l'aide de la calculatrice, on constate que :

— Pour x > 0, on a f(x) devient de **plus en plus grand** lorsque x se rapproche de 0.

On dit que la limite de f lorsque x tend vers 0 pour x>0 est égale à $+\infty$ et on note :

$$\lim_{x \to 0} f(x) = +\infty$$

$$x > 0$$

— Pour x < 0, on a f(x) devient de **plus en plus grand dans les négatifs** lorsque x se rapproche de 0

On dit que la limite de f lorsque x tend vers 0 pour x<0 est égale à $-\infty$ et on note :

$$\lim_{x \to 0} f(x) = -\infty$$
$$x < 0$$

Figure 4 – Représentation graphique de la fonction inverse au voisinage de 0

Remarque

Graphiquement, pour des valeurs de plus en plus en proches de 0, la courbe de f se rapproche de plus en plus de l'axe des ordonnées.

On dit que l'axe des ordonnées est une **asymptote verticale** à la courbe représentative de la fonction inverse.

3 Fonction de la forme $f(x) = P(x) + \frac{k}{x}$

3.1 Méthode : Étudier une fonction de la forme $f(x) = P(x) + \frac{k}{x}$

Soit la fonction f définie sur $\mathbb{R} \setminus \{0\}$ par $f(x) = 1 - 2x - \frac{2}{x}$.

- a) Calculer la fonction dérivée de f.
- b) Déterminer le signe de f' en fonction de x.
- c) Dresser le tableau de variations de f.
- d) Représenter la fonction f dans un repère.

(a) On a :
$$f(x) = 1 - 2x - 2 \times \frac{1}{x}$$

Donc, on a:

$$f'(x) = 0 - 2 - 2 \times \left(\frac{-1}{x^2}\right)$$
$$= \frac{-2 \times x^2}{x^2} + \frac{2}{x^2}$$
$$= \frac{2 - 2x^2}{x^2}$$

On a donc :
$$f'(x) = \frac{2 - 2x^2}{x^2}$$

(b) On doit résoudre l'inéquation f'(x) > 0.

Pour $x \neq 0$, on a :

$$\frac{2-2x^2}{x^2} > 0$$

$$2-2x^2 > 0 \quad \text{car } x^2 > 0$$

$$2 > 2x^2$$

$$x^2 < 1$$

Et donc si f'(x) > 0 alors -1 < x < 1 et $x \neq 0$.

(c)

x	$-\infty$	-1		0		1		$+\infty$
f'(x)	_	0	+		+	0	_	
f(x)		<u></u>		*		-3		•

(d)

FIGURE 5 – Représentation graphique de la fonction $f(x) = 1 - 2x - \frac{2}{x}$