主領等等等

題号	1.	2,	3.	4.	5.	6.	7.	8.	9.	10.	总分
分数											
阅卷人											

Note: please draw the diagram for automaton or Turing machine.

[10 points] Design a DFA for L = {w ∈ {0,1}* | w contains both 00 and 11 as substrings}.

 [10 points] Design an NFA for L = {w ∈ {0, 1}* | w contains an equal number of occurrences of the substrings 01 and 10}.

3. [10 points] Design regular expressions for languages over $\Sigma = \{a, b\}$:

(1) All strings having at least two occurrences of the substring aa.

(2) All strings that do not end with substrings aa or bb.

(ath) (abtha) + Etath

在名

松中

封

班号

4. [10 points] Prove that the language L is not regular with pumping lemma $L = \{ w \in \{0,1\}^* \mid w \text{ has the same number of substrings 00 and 11 } \}.$

5. [10 points] Let $h: \Sigma \to \Sigma^*$ be a homomorphism: $\forall a \in \Sigma$, h(a) = aa. Please give a formal construction of the DFA for h(L) from the DFA that accepts the regular language L over Σ .

6. [10 points] Design a context-free grammar for the language

 $L = \{ x \in \{0,1\}^* \mid x \text{ has jost two nonempty blocks of 0s of the same length } \}.$

7. [10 points] Design a deterministic PDA for $L = \{ a^n b^{2n+1} \mid n \ge 1 \}$.

8. [10 points] Begin with the grammar:

$$\begin{array}{c} S \rightarrow ASA \mid A \mid \varepsilon \\ A \rightarrow 00 \mid \varepsilon \end{array}$$

Eliminate any ε-productions.

- A-700
- (2) Eliminate any unit productions in the resulting grammar.

(3) Put the resulting grammar into Chomsky Normal Form.

 [10 points] Consider a PDA P with start state q, start symbol Z in the stack and the following transition rules. Please convert P to an equivalent CFG.

- (1) $\delta(q, 0, Z) = \{(q, X)\}\$
- (2) $\delta(q, 0, X) = \{(q, XX)\}\$
- (3) $\delta(q, 1, X) = \{(r, X)\}\$
- (4) $\delta(r, 0, X) = \{(r, \varepsilon)\}\$

Iq.	£	9	303	A [979]	
	- Eqza)			C E qxq)	
(1)	924] -9	0 [9× 9]		E CAXA)	
10 C 1/ E	(q×q) _	70 L q X	3 7	,	
	(qxr) -	177			
	qxv] -				
	[X'] -9				
	7 - 7				
L	rx1) -7	0		6. 1813	

	1
S-7 A /B	
ATOC	
B - 0 D	
C-OCC ODF IF	
NAODE OCD /IE	
(April	
(-2)	
VAL	
7-70	
₹ 7 0	
5-700 00	
(-1 oca / ob) 18	
0-70pi/ocb/16	
7-70 E-70	

A-1/1A 5-10/050

