

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н.Э. Баумана

(национальный исследовательский университет)» (МГТУ им. Н. Э. Баумана)

ФАКУЛЬТЕТ	Фундаментальные науки
— КАФЕДРА	Прикладная математика

ОТЧЕТ К ЛАБОРАТОРНОЙ РАБОТЕ

HA TEMY:

Прямые методы решения систем линейных алгебраических уравнений

Студент	ФН2-51Б		А.С. Киселева							
	(Группа)	(Подпись, дата)	(И.О. Фамилия)							
Проверил										
1 1		(Подпись, дата)	(И.О. Фамилия)							

Оглавление

1.	Описание алгоритмов											3
2.	Исходные данные		 •				•	•				6
3.	Результаты расчетов					 	•		•			7
4.	Ответы на контрольные вопросы										 	8

1. Описание алгоритмов

Метод Гаусса. Рассмотрим два прямых метода решения СЛАУ Ax = b: метод Гаусса и метод QR -разложения.

Запишем систему уравнений в координатной форме:

$$\sum_{j=1}^{n} a_{ij} x_j = b_i, \quad i = 1, 2, ..., n.$$

Метод Гаусса (метод последовательного исключения неизвестных), состоит в том, что неизвестные $x_j, j = 1, 2, ..., n - 1$, последовательно исключаются из системы и в результате она преобразуется к эквивалентной системе с треугольной матрицей:

$$\begin{cases} a_{11}^{(0)}x_1 + a_{12}^{(0)}x_2 + a_{13}^{(0)}x_3 + a_{14}^{(0)}x_4 + \dots + a_{1n}^{(0)}x_n = b_1^{(0)}, \\ a_{22}^{(1)}x_2 + a_{23}^{(1)}x_3 + a_{24}^{(1)}x_4 + \dots + a_{2n}^{(1)}x_n = b_2^{(1)}, \\ a_{33}^{(2)}x_3 + a_{34}^{(2)}x_4 + \dots + a_{3n}^{(2)}x_n = b_3^{(1)}, \\ \vdots \\ a_{ii}^{(i-1)}x_- + \dots + a_{in}^{(i-1)}x_n = b_i^{(i-1)}, \\ \vdots \\ a_{nn}^{(n-1)}x_n = b_n^{(n-1)}. \end{cases}$$

Коэффициенты $a_{ij}^{(k)}$ и компоненты правой части $b_i^{(k)}$ записанной системывычисляются по формулам

$$a_{ij}^{(k)} = a_{ij}^{(k-1)} - c_{ik} a_{kj}^{(k-1)},$$

$$b_i^{(k)} = b_i^{(k-1)} - c_{ik} b_k^{(k-1)},$$

где

$$c_{ik} = a_i^{(k-1)}/a_{kk}^{(k-1)},$$

$$k = 1, 2, \dots, (n-1), \quad j = k, k+1, \dots, n, \quad i = k+1, k+1, \dots, n,$$

причем

$$a_{ij}^{(0)} = a_{ij}, \ b_i^{(0)} = b_i.$$

Вычисления по записанным формулам называются прямым ходом метода Гаусса. Затем неизвестные x_i последовательно, начиная с x_n , определяются из системы по формулам:

$$x_i = \left(b_i^{(i-1)} - \sum_{j=i+1}^n a_{ij}^{(i-1)} x_j\right) / a_{ii}^{(i-1)}, \quad i = n, n-1, \dots, 1.$$

Вычисления по данным формулам называется обратным ходом метода Гаусса.

Для реализации прямого хода метода Гаусса требуется порядка $O(n^3/3)$ операций умножения и деления чисел с плавающей точкой, для обратного — порядка $O(n^2/2)$.

Метод Гаусса применим в том случае, когда все угловые миноры матрицы A ненулевые, что равносильно требованию $a_{ij}^{(i-1)} \neq 0$ для всех значений $i=1,2,\ldots,n$.

Метод QR-разложения. Метод QR-разложения основан на представлении матрицы системы в виде произведения ортогональной матрицы Q и верхней треугольной матрицы R. Один из способов получения такого разложения — метод вращений.

Сначала неизвестное x_1 исключается из всех уравнений, кроме первого. Это производится при помощи следующего алгоритма. Для исключения x_1 из второго уравнения вычисляются коэффициенты

$$c_{12} = \frac{a_{11}}{\sqrt{a_{11}^2 + a_{21}^2}}, \quad s_{12} = \frac{a_{21}}{\sqrt{a_{11}^2 + a_{21}^2}}$$

затем первое уравнение системы заменяется линейной комбинацией первого и второго уравнений с коэффициентами c_{12} и s_{12} , а второе уравнение — линейной комбинацией тех же уравнений, но уже с коэффициентами $-s_{12}$ и c_{12} . Так

как $-s_{12}a_{11}+c_{12}a_{11}=0$, коэффициент во втором уравнении при x_i обратится в нуль.

В итоге исходная система будет приведена к виду:

Это преобразование эквивалентно умножению матрицы системы уравнений и вектора правой части слева на ортогональную матрицу T_{12} , имеющую вид

$$T_{12} = \begin{pmatrix} c_{12} & s_{12} & 0 & 0 & \dots & 0 \\ -s_{12} & c_{12} & 0 & 0 & \dots & 0 \\ 0 & 0 & 1 & 0 & \dots & 0 \\ 0 & 0 & 0 & 1 & \dots & 0 \\ 0 & 0 & 0 & 0 & \dots & 1 \end{pmatrix}$$

Так как коэффициенты c_{12} и s_{12} подобраны таким образом, что $c_{12}^2+s_{12}^2=1$ то можно считать, что

$$c_{12} = \cos \varphi, \quad s_{12} = \sin \varphi.$$

Следовательно, матрица T_{12} — это матрица поворота на угол 3 по часовой стрелке в плоскости (x_1, x_2) .

Для исключения x_1 из третьего уравнения, используются коэффициенты c_{13} и s_{13} :

$$c_{13} = \frac{a_{11}^{(1)}}{\sqrt{(a_{11}^{(1)})^2 + (a_{31}^{(1)})^2}}, \quad c_{13} = \frac{a_{31}^{(1)}}{\sqrt{(a_{11}^{(1)})^2 + (a_{31}^{(1)})^2}}$$

Далее первое и третье уравнение заменяются своими линейными комбинациями. Эта операция равносильна умножению слева матрицы $A^{(1)}=T_{12}A$ и вектора правой части $b^{(1)}=T_{12}b$ на ортогональную матрицу, имеющую вид

$$T_{13} = \begin{pmatrix} c_{13} & 0 & s_{13} & 0 & \dots & 0 \\ 0 & 1 & 0 & 0 & \dots & 0 \\ -s_{13} & 0 & c_{13} & 0 & \dots & 0 \\ 0 & 0 & 0 & 1 & \dots & 0 \\ 0 & 0 & 0 & 0 & \dots & 1 \end{pmatrix}$$

Аналогично неизвестная x_1 исключается из остальных уравнений, затем x_2 — из всех уравнений, кроме первого и второго, при этом используются матрицы $T_{23}, T_{24}, \ldots, T_{2n}$ и так далее. Процесс продолжается, пока система не будет приведена к верхней треугольной форме. То есть $T = T_{n-1,n} \cdot \ldots \cdot T_{24} \cdot T_{23} \cdot T_{1n} \cdot \ldots \cdot T_{13} \cdot T_{12}$. Причём, R = TA, где R — полученная верхнетреугольная матрица и $Q = T^{-1} = T^T$.

2. Исходные данные

13 вариант

Первая система:

$$A = \begin{pmatrix} -190.3270 & 189.7600 & -18.0160 & 72.0640 \\ -194.5200 & 193.9530 & -18.4320 & 73.7280 \\ -919.4800 & 919.4800 & -99.2470 & 398.6800 \\ -219.3900 & 219.3900 & -23.7720 & 95.5110 \end{pmatrix}, b = \begin{pmatrix} 1414.2810 \\ 1446.7620 \\ 7705.5000 \\ 1845.1920 \end{pmatrix}$$

Вторая система:

$$A = \begin{pmatrix} -38.4000 & 4.0300 & 8.3800 & 3.5300 \\ -8.3200 & -81.2000 & -8.0900 & -3.6700 \\ 4.3300 & 7.2100 & -110.8000 & -2.6300 \\ 4.2200 & 4.2200 & 6.1500 & 73.8000 \end{pmatrix}, b = \begin{pmatrix} 292.5900 \\ -504.3200 \\ -185.6600 \\ -430.5000 \end{pmatrix}$$

26 вариант

Первая система:

$$A = \begin{pmatrix} 208.594 & -37.974 & 69.564 & 0.568 \\ -626.574 & 114.052 & -208.95 & -1.804 \\ -625.785 & 113.922 & 680.556 & -1.692 \\ 104.424 & -19.008 & -113.552 & 0.304 \end{pmatrix}, b = \begin{pmatrix} 0.568 \\ -1.804 \\ -1.692 \\ 0.304 \end{pmatrix}$$

Вторая система:

$$A = \begin{pmatrix} 86.0000 & -8.9300 & -9.5900 & -3.9100 \\ 4.0500 & -100.0000 & -9.1000 & -8.1400 \\ 0.2600 & 3.6100 & -71.8000 & -4.2800 \\ -4.0300 & -6.8800 & 6.5700 & -198.6000 \end{pmatrix}, b = \begin{pmatrix} 818.5800 \\ 898.7400 \\ -912.2200 \\ -687.0600 \end{pmatrix}$$

3. Результаты расчетов

Результат для 13 варианта первой системы для типа double: Метод Гаусса

$$x=(1 \ 2 \ 20 \ 22)^T$$

$$||b-Ax||=9.37486*10^{-13}$$

$$||b-Ax||=1.7211*10^{-3} (для \ \mathrm{float})$$

QR - метод

$$x=(1 \quad 2 \quad 20 \quad 22)^T$$

$$||b-Ax||=5.56949*10^{-13}$$

$$||b-Ax||=5.59396*10^{-4} (для \ {\rm float})$$

Внесение возмущения в вектор b:

$$b = (1414.28 \quad 1446.76 \quad 7705.5 \quad 1845.19)^T$$

Решение для возмущенной правой части:

$$x = (91.831 \quad 99.1341 \quad 1288.45 \quad 323.23)^T$$

Точная оценка числа обусловленности:

$$\operatorname{cond}_1 A = 5.35508 * 10^{10}, \quad \operatorname{cond}_{\infty} A = 1.48185 * 10^{11}$$

Оценка снизу: $\mathrm{cond_1} A \geq 8.88 \times 10^9$ и $\mathrm{cond_\infty} A \geq 1.48 \times 10^{11}$

Результат для 26 варианта первой системы для типа double: Метод Гаусса

$$x=(1\quad 5\quad 3\quad 1)^T$$

$$||b-Ax||=3.00424*10^{-14}$$

$$||b-Ax||=1.56322*10^{-4} ($$
для float)

QR - метод

$$x = (1 \quad 5 \quad 3 \quad 1)^T$$

$$||b - Ax|| = 1.30439 * 10^{-13}$$

$$||b - Ax|| = 1.12621 * 10^{-4}$$
 (для float)

Внесение возмущения в вектор b:

$$b = (0.5679 - 1.8039 - 1.6921 \ 0.3039)^T$$

Решение для возмущенной правой части:

$$x = (149.669 - 418.856 - 434.256 74.5718)^T$$

Точная оценка числа обусловленности:

$$\operatorname{cond}_1 A = 4.07616 * 10^{10}, \quad \operatorname{cond}_{\infty} A = 3.86299 * 10^{11}$$

Оценка снизу: $\mathrm{cond_1} A \geq 3.50 \times 10^6$ и $\mathrm{cond_\infty} A \geq 3.87 \times 10^{10}$

4. Ответы на контрольные вопросы

1. Каковы условия применимости метода Гаусса без выбора и с выбором ведущего элемента?

В методе Гаусса вычисления возможны, если ведущие элементы матрицы A не равны нулю, то есть $a_{kk}^{k-1} \neq 0$ для $k=1,2,\ldots,n$. Но из условия невырожденности матрицы $(\det A \neq 0)$ не следует, что в ходе приведения матрицы A к треугольному виду на диагонали не возникнет элементов, равных нулю или малых по абсолютной величине (поскольку это приводит к дополнительным ошибкам округления в вычислениях). В таких случаях метод Гаусса неприменим, поэтому на практике обычно используется вариант алгоритма Гаусса с частичным либо полным выбором главного элемента. Метод Гаусса применим тогда и только тогда, когда все угловые миноры матрицы не нулевые, что равносильно тому, что главные элементы $a_{kk}^{k-1} \neq 0$.

2. Докажите, что если $\det A \neq 0$, то при выборе главного элемента в столбце среди элементов, лежащих не выше главной диагонали, всегда найдется хотя бы один элемент, отличный от нуля.

Допустим, что на i шаге была получена матриц, такая, что все элементы i-го столбца не выше главной диагонали нулевые. Выберем главный элемент в столбце, т.е. максимальный по модулю элемент в данном столбце, лежащий на главной диагонали или ниже нее. Определитель матрицы находится через миноры, если мы поменяем местами главный элемент с элементом на главной диагонали, определитель может только поменять свой знак. Тогда, если $\det A \neq 0$, то и новый определитель не будет равняться нулю.

3. В методе Гаусса с полным выбором ведущего элемента приходится не только переставлять уравнения, но и менять нумерацию неизвестных. Предложить алгоритм, позволяющий восстановить первоначальный порядок неизвестных.

Использовать дополнительный массив, в котором будут храниться номера строк и столбцов.

4. Оцените количество арифметических операций, требуемых для QR-разложения произвольной матрицы A размера $n \times n$.

Рассмотрев алгоритм метода QR—разложения, получим, что для получения верхнетреугольной матрицы R требуется порядка $\frac{4}{3}n^3$, а для получения ортогональной мтрицы Q - $2n^3$. Получается $\frac{10}{3}n^3$. Для реализации метода QR—разложения умножим матрицу A на матрицу T_{12} , имеющую вид:

$$T_{12} = \begin{pmatrix} c_{12} & s_{12} & 0 & 0 & \dots & 0 \\ -s_{12} & c_{12} & 0 & 0 & \dots & 0 \\ 0 & 0 & 1 & 0 & \dots & 0 \\ 0 & 0 & 0 & 1 & \dots & 0 \\ 0 & 0 & 0 & 0 & \dots & 1 \end{pmatrix}.$$

Для этого понадобится 4n умножений. Затем x_1 исключается из всех уравнений, кроме первого, потребуетмя n-1 операций. Далее матрицу T_{23} умножаем на матрицу $A^{(1)}$ и исключаем x_2 n-2 раз. В итоге получим сумму:

$$S_R = 4n(n-1) + 4(n-1)(n-2) + \dots \approx 4\sum_{i=1}^{n-1} i^2$$

Пусть $i^2 = \frac{1}{3}((i+1)^3 - i^3 - 3i - 1)$ тогда,

$$4\sum_{i=1}^{n-1} i^2 = \frac{4}{3}\sum_{i=1}^{n-1} ((i+1)^3 - i^3 - 3i - 1) \approx \frac{4}{3}n^3.$$

Матрица $Q = T^{-1} = T^T, \, T$ — матрица результирующего вращения, $S_Q = 2n^3.$

$$S_R + S_Q = \frac{4}{3}n^3 + 2n^3 = \frac{10}{3}n^3.$$

5. Что такое число обусловленности и что оно характеризует? Имеется ли связь между обусловленностью и величиной определителя матрицы? Как влияет выбор нормы матрицы на оценку числа обусловленности?

Число $M_A = \|A^{-1}\| \|A\|$ называют числом обусловленности матрицы . Оно характеризует степень звисимости относительной погрешности решения от относительной погрешности правой части. Если мы умножим матрицу A на костанту $\alpha \neq 0$, то обусловленность не изменится, так как обратная матрица умножится на величину α^{-1} . Поэтому определитель и число обусловленности не связаны. Выбор нормы матрицы хоть и влияет на число обусловленности, но при любом выборе сможем корректно отразить порядок этого числа. Если матрица хорошо обусловлена, то ее число обусловленности будет мало для любой нормы, а если плохо обусловлена, то число обусловленности будет большим для любой нормы. Норму можно корректировать. Подсчет определителя – дорогая операция, и определитель не несет смысловой нагрузги. Число обусловленности показывет степень вырожденности матрицы коэффициентов и позволяет определить степень чувствительности численных решений к ошибкам, то есть, число обусловленности входит в оценку. Рассмотрим, например, единичную матрицу. Определитель ее равен 1, как и число обусловленности. Если мы домножим коэффициенты матрицы на очень малую константу, то число обусловленности не изменится, в отличие от определителя.

- 6. Как упрощается оценка обусловленности, если матрица является:
- а) диагональной;
- б) симметричной;
- в) ортогональной;
- г) положительно определённой;
- д) треугольной?
- а. $condD = \frac{\max |d_{ii}|}{\min |d_{ii}|}$, где D диагональная матрица, а $\max |d_{ii}|$ максимальный элемент и $\min |d_{ii}|$ минимальный элемент.
- б. $condA = \frac{a_{max}}{a_{min}}, \ a_{max}$ максимальное собственное число матрицы, a_{min} минимальное собственное число матрицы.
- в. Для оценки нормы используют тот факт, что для ортогональной матрицы $A^{-1} = A^T$, тогда $condA = ||A||^2$.
- г. Собственные числа положительно определенной матрицы являются вещественными числами, поэтому в этом случае можно считать число обусловленности через собственные значения, используя формулу cond $D = \frac{|a_{max}|}{|a_{min}|}$.
- д. $condA = \frac{a_{max}}{a_{min}}, \ a_{max}$ максимальный элемент на диагонали, a_{min} минимальный элемент на диагонали.

7. Применимо ли понятие числа обусловленности к вырожденным матрицам?

Если матрица вырожденная, то обратной матрицы не существует. Значит, понятие числа обусловленности не применимо к варожденным матрицам.

8. В каких случаях целесообразно использовать метод Гаусса, а в каких — методы, основанные на факторизации матрицы?

Метод Гаусса и методы, основанные на факторизации матриц, практически не отличаются по числу операций. Для общего случая метод Гаусса является более эффективным во временном значении и требует меньшее количество действий. Алгоритм LU—факторизации целесообразен для матрицы с одинаковой системой коэффициентов, но разными правыми частями.

9. Как можно объединить в одну процедуру прямой и обратный ход метода Гаусса? В чём достоинства и недостатки такого подхода?

Их можно объединить, если после приведения матрицы к верхнетреуглльному виду пойти обратно вверх и привести матрицу с диагональной, но на это потребуется порядка $\frac{n^3}{3}$ операций, а это невыгодно.

- 10. Объясните, почему, говоря о векторах, норму $\|x\|_1$ часто называют октаэдрической, норму $\|x\|_2$ шаровой, а норму $\|x\|_{\infty}$ кубической.
- а. $||x||_1 = \sum_{i=1}^n |x_i|$ называется октаэдрической. Рассмотрим, как будут выглядеть множество всех единичных векторов, норма котрых равна единице, если ввести эту норму на плоскости $|x_1| + |x_2| = 1$.

Ромб. В трехмерном случае, соответственно, октаэдр.

- б. $||x||_1 = \sqrt{\sum_{i=1}^n |x_i|^2}$. В этом случае геометрическое место на плоскости точек будет задаваться уравнением $x_1^2 + x_2^2 = 1$. Окружность. В трехмерном случае, соответственно, шар.
- в. $||x||_{\infty} = \max |x_i|$, на плоскости множество всех единичных векторов, норма которых равна единице, будет выглядеть как квадрат. В трехмерном случае, соответственно, куб.