Evolution of Operating Systems

In the beginning

1st generation (1945-1955) Hardware – expensive; Human – cheap

- Built using vacuum tubes
- Bare machine: no operating system
- No programming languages, assemblers, compilers...
- Single group of people designed, built, programmed, operated & maintained computer
- Programming in absolute machine language
 - Initially: manually use plugboards
 - Later: use punched cards for writing program
- Very tedious & error prone

Introduction of early software

2nd generation (1955-1965) Mainframes

- Mainframes built using transistors
- Separation between programmers, operators, etc.
- Introduction of programming languages, assemblers, compilers, etc.
- Early mainframes
 - Programmer submits card deck (single job) to operator
 - Card deck processed & output printed (w/ operator intervention)
 - Output returned to programmer by operator
 - Steps repeated for next job
- Inefficient use of expensive resources
 - Low processor utilization, high setup time

Introducing batch systems...

- Programmers submit card decks
 - Programs written in FORTRAN/assembly language
- Cards put on tape
 - ◆ Small, less expensive computer used (e.g., IBM 1041)
- Tape loaded by operator onto tape deck
 - More expensive computer used for actual processing (e.g., IBM 7094)
- Rudimentary OS loaded by operator (e.g., FMS/IBSYS)
 - Read next job process job write output to tape [and repeat...]
- Batch output tape processed by operator & printed on printer

More sophisticated concepts

3rd generation (1965-1980) Faster, cheaper computers

- Integrated circuits came into use (e.g., in IBM 360)
- ◆ Concept of multiprogramming (e.g., in OS/360)
 - Partition memory into pieces for different jobs
 - → Special hardware included to ensure protection between jobs
 - ♦ While one job waiting for I/O, process another job

- ◆ Concept of SPOOLING (Simultaneous Peripheral Operation On Line)
 - Use disk (random access device) as large storage
 - Read as many input files as possible
 - Store output files until output devices are ready to accept them
 - Allows overlap I/O of one job with computation of another
- Still essentially batch processing systems
 - \bullet Large turnaround times for jobs \rightarrow Errors in program very costly

Timesharing

Hardware – getting cheaper; Human – getting expensive

- Provide fast interactive service to some users
- Execute large batch jobs in background
- Introduction of MULTICS (MULTIplexed Information and Computing Service)
- Programs queued for execution in FIFO order
- Like multiprogramming, but timer device interrupts after a quantum (timeslice)
 - Interrupted program is returned to end of FIFO
 - Next program is taken from head of FIFO

Improved operating systems

- ◆ OS/360, MULTICS
 - Enormous & complex (over-engineered!)
- Birth of UNIX (and later, Linux)

Personal Computers

4th generation (1980s – present) Hardware – cheap; Human – expensive

- Single user systems, portable
- ♦ I/O devices: keyboards, mice, display screens, small printers
- Laptops and palmtops, Smart cards, Wireless devices
- May not need advanced CPU utilization/protection features
- ◆ Birth of CP/M, MS-DOS, Mac OS X, Windows...
- Convenient for user, responsive, ubiquitous

Real-time systems

- Correct system function depends on timeliness
- Need special OS to ensure timeliness
- Hard real-time systems -
 - Failure if response time too long
 - Secondary storage is limited
- Soft real-time systems
 - Less accurate if response time is too long
 - Useful in applications such as multimedia, virtual reality

