Contents

1	Definitions and Theory	1
	1.1 Topological Spaces	1
2	Exercises	3

1

Definitions and Theory

1.1 Topological Spaces

Definition 1. A topology on a set X is a collection τ of subsets of X satisfying:

- 1. $\varnothing, X \in \tau$
- 2. An intersection of finite subcollections of τ is in τ
- 3. A union of any subcollection of τ is in τ

The ordered pair (X, τ) is called a **topological space**.

Definition 2. Let (X, τ) be a topological space. An **open subset** of X is a member of τ .

Definition 3. Let τ and σ be two topologies on a set X. We say that τ is **weaker** (or smaller, coarser) than σ if $T \subseteq \sigma$. In this case, σ is then said to be **stronger** (or larger, finer) than τ .

Definition 4. Let X be any set. The collection $\tau = P(X)$ is a topology on X and is called the **discrete topology** on X. Here (X,τ) is called the **discrete topological space**.

Definition 5. Let X be any set. The collection $\tau = \{\emptyset, X\}$ is called the **indiscrete topology** on X. Here (X, τ) is called the **indiscrete topology**.

Definition 6. A topology τ on a set X is said to be **metrizable** if there exists a metric d on X such that the topology τ_d generated by the metric d coincides with τ .

Definition 7. Two metrics defined on a set X are said to be **equivalent** if they generate the same topology. In other words, d_1 and d_2 are equivalent if the collection of open sets in (X, d_1) and (X, d_2) are the same.

Definition 8. The topology generated by the Euclidean metric on \mathbb{R}^n is called the **usual topology** on \mathbb{R}^n . For $Y \subseteq \mathbb{R}^n$, the topology generated by the Euclidean metric is called the usual topology on Y.

Definition 9. By a **neighbourhood** of a point x in a topological space (X, τ) , we mean an open set containing x.

Definition 10. A subset A of a topological space (X, τ) is said to be **closed** if $X \setminus A$ is open in X, that is $X \setminus A \in \tau$

Definition 11. Let X be a topological space and $A \subseteq X$. A point $x \in X$ is said to be an **interior point** of A if there exists a neighbourhood U of X such that $U \subseteq A$, or in other words, if there exists an open set U in X such that $x \in U \subseteq A$. The set of all interior points of A is called the **interior** of A and is denoted A° .

2

Exercises

1. Let (X, d) be a metric space and τ_d be the collection of all open subsets of X. Show that τ_d is a topology on X This is called the topology on X generated by d

Source. Class, Aug 07

2. Let X be any set and $A \subseteq X$. Then show that $\tau = \{\emptyset, A, X\}$ is a topology on X.

Source. Class, Aug 07

3. Let X be any set. Let $\tau = \{A \subseteq X : X \setminus A \text{ is finite }\} \cup \{\emptyset\}$ Then show that τ is a topology on X. This is called the co-finite topology or finite-complement

topology

Source. Class, Aug 07

4. Let X be any set and $\tau = \{A \subseteq X : X \setminus A \text{ is countable }\} \cup \{\emptyset\}$. Then show that τ is a topology on X. This is called the co-countable topology on X

Source. Class, Aug 07

5. Show that every discrete topological space is metrizable

Source. Class, Aug 07

6. Let X be any set with more than one element. Show that the topology $\tau = \{\emptyset, X\}$ is not metrizable.

Source. Class, Aug 07

7. Let $X = \mathbb{R}^n$.

For any $x = (x_1, x_2, ..., x_n) \in \mathbb{R}^n$ and $y = (y_1, y_2, ..., y_n) \in \mathbb{R}^n$, define

1.
$$d_1(x,y) = \sqrt{\sum_{i=1}^{n} (x_i - y_i)^2}$$

2.
$$d_2(x,y) = \sum_{i=1}^{n} |x_i - y_i|$$

3.
$$d_3(x,y) = \max\{|x_i - y_i| : 1 \le i \le n\}$$

Show that d_1 , d_2 , d_3 all define the same topology on \mathbb{R}^n .

Source. Class, Aug 09

8. Let (X, τ) be a topological space and $A \subseteq X$. Suppose for each $x \in A$, there exists an open set U in X such that $x \in U \subseteq A$. Show that A is open in X.

Source. Problem Sheet 01, Q1

9. Let X be a set, and let $\{\tau_{\alpha}\}_{{\alpha}\in I}$ be a collection of topologies on X. Show that $\bigcap \tau_{\alpha}$ is a topology on X.

Source. Problem Sheet 01, Q2

10. Show by an example that a union of two topologies on a set X may not be a topology.

Source. Problem Sheet 01, Q3

11. Consider (X, τ) where τ is the discrete topology. Then the collection of closed sets is the power set P(X) which coincides with the collection open sets in (X, τ) . Consider (X, τ) where τ is the co-finite topology. Then the collection of closed sets in (X, τ) is $\{A \in \tau : A \text{ is finite }\} \cup \{X\}$.

Source. Class, Aug 11

- **12.** Given a topological space (X, τ) , show that:
 - 1. \emptyset and X are closed in X
 - 2. An intersection of any collection of closed sets is closed in X
 - 3. A union of a finite collection closed sets in X is closed in X

Source. Class, Aug 11

13. Consider (\mathbb{R}, τ) where τ is the usual topology on \mathbb{R} . Find A^{o} where:

1.
$$A = (0, 1)$$

2.
$$A = \mathbb{Q}$$

Source. Class, Aug 11

14. Consider (\mathbb{R}, τ) where τ is the discrete topology on \mathbb{R} . Find \mathbb{Q}°

Source. Class, Aug 11

15. Consider (\mathbb{R}, τ) where τ is the indiscrete topology on \mathbb{R} . Find \mathbb{Q}^{o}

Source. Class, Aug 11

16. Consider (\mathbb{R}, τ) where τ is the co-finite topology on \mathbb{R} . Find A° where A = (0, 1).

Source. Class, Aug 11

17. Let (X, d) be a topological space and $S \subseteq X$. Then show that S^{o} is the largest open set in X that is contained in S.

Source. Class, 11 Aug

18. Let X be a topological space and $S \subseteq X$. Then show that S is open if and only if $S = S^{\circ}$.

Source. Class, Aug 11

19. Let τ be a topology on X consisting of four sets $\tau = \{X, \phi, A, B\}$, where A, B are non-empty, distinct proper subsets of X. What conditions must A and B satisfy?

Source. Schaum's P73, Q3

20. Let $f: X \to Y$ be a function from a non-empty set X into a topological space (Y, σ) . Furthermore, let τ be the class of inverses of open subsets of Y: $\tau = \{f^{-1}(G) : G \in \sigma\}$ Show that τ is a topology on X.

Source. Schaums, P74, Q5

- **21.** Let A be a subset of a topological space in X with the property that each point $p \in A$ belongs to an open set G_p contained in A. Then prove that A is open. Source. Schaums, P74, Q8
- **22.** Let τ be the class of subsets of \mathbb{R} consisting of \mathbb{R} , \emptyset and all open infinite intervals $E_a = (a, \infty)$ with $a \in \mathbb{R}$. Show that τ is a topology on \mathbb{R} .

Source. Schaum's P75, Q9