Университет ИТМО Физико-технический мегафакультет Физический факультет

Группа <u>К3121</u>	K работе допущен <u>01.01.2025</u>
Студент Сакулин Иван	Работа выполнена
Преполаватель Кураллова С.А.	Отчет принят

Рабочий протокол и отчет по лабораторной работе № 1

Исследование распределения случайной величины

1. Цель работы

Исследование распределения случайной величины на примере многократных измерений определённого интервала времени.

2. Задачи, решаемые при выполнении работы

- 1. Провести многократные измерения определенного интервала времени.
- 2. Построить гистограмму распределения результатов измерения.
- 3. Вычислить среднее значение и дисперсию полученной выборки.
- 4. Сравнить гистограмму с графиком функции Гаусса с такими же как и у экспериментального распределения средним значением и дисперсией.

3. Объект исследования

Случайная величина – промежуток времени.

4. Метод экспериментального исследования

Проведение измерений определённого промежутка времени, получение экспериментальных данных, вычисление необходимых величин.

5. Рабочие формулы и исходные данные

Выборочное среднее как среднеарифметическое всех результатов измерений:

$$\langle t \rangle_N = \frac{1}{N} (t_1 + t_2 + \dots + t_N) = \frac{1}{N} \sum_{i=1}^N t_i$$
 (1)

Выборочное среднеквадратичное отклонение:

$$\sigma_N = \sqrt{\frac{1}{N-1} \sum_{i=1}^{N} (t_i - \langle t \rangle_N)^2}$$
 (2)

Максимальное значение плотности распределения:

$$\rho_{max} = \frac{1}{\sigma\sqrt{2\pi}} \tag{3}$$

Функция Гаусса, описывающая нормальное распределение:

$$\rho(t) = \frac{1}{\sigma\sqrt{2\pi}} \exp\left(-\frac{(t - \langle t \rangle)^2}{2\sigma^2}\right) \tag{4}$$

Границы интервалов при распределении случайной величины:

$$[\langle t \rangle_N - \sigma, \langle t \rangle_N - \sigma]$$

$$[\langle t \rangle_N - 2\sigma, \langle t \rangle_N - 2\sigma]$$

$$[\langle t \rangle_N - 3\sigma, \langle t \rangle_N - 3\sigma]$$
(5)

Среднеквадратичное отклонение среднего значения:

$$\sigma_{\langle t \rangle} = \sqrt{\frac{1}{N(N-1)} \sum_{i=1}^{N} (t_i - \langle t \rangle_N)^2}$$
 (6)

Доверительная вероятность α :

$$\alpha = P(t \in [\langle t \rangle - \Delta t, \langle t \rangle + \Delta t]) \tag{7}$$

Доверительный интервал для измеряемого промежутка времени:

$$\Delta t = t_{\alpha,N} \cdot \sigma_{\langle t \rangle} \tag{8}$$

6. Измерительные приборы

Таблица 1 — Измерительные приборы

№ п/п	Наименование	Тип прибора	Погрешность прибора
1	Секундомер	Цифровой	0.01 с
2	Секундомер	Механический	0.1 c

7. Схема установки

Рисунок 1 — Схема установки

8. Результаты прямых измерений и их обработки

Во время замеров стрелка механического секундомера задавала интервалы времени проходя через отметки кратные 5 секундам. С помощью цифрового секундомера при переходе отметок были отмечены момент начала и конца интервала. Результаты 100 измерений записаны во 2 столбец таблицы 4.

Вычислено среднее арифметическое:

$$\langle t \rangle_N = \frac{1}{N} \sum_{i=1}^N t_i = \frac{1}{100} (4.78 + 4.78 + \dots + 5.25) = 0.01 \cdot 496.86 = 4.9686c$$

Во втором столбце таблицы 4 посчитана разница измерения и среднего значения $t_i - \langle t \rangle_N$, в третьем - эта разница в квадрате $(t_i - \langle t \rangle_N)^2$.

И, наконец, выборочное среднеквадратичное отклонение и максимальное значение плотности распределения:

$$\sigma_N = \sqrt{\frac{1}{N-1} \sum_{i=1}^{N} (t_i - \langle t \rangle_N)^2} = \sqrt{\frac{1}{99} \cdot (1.111204)} \approx 0.1059c$$

$$\rho_{max} = \frac{1}{\sigma \sqrt{2\pi}} = \frac{1}{0.1059 \cdot \sqrt{2\pi}} \approx 3.7656c^{-1}$$

9. Расчет результатов косвенных измерений

Для построения графика была построена таблица 2.

Пример расчётов для первого промежутка. Посчитаем $\Delta N=5$ - количество измерений, попадающих в промежуток [4.74, 4.80). В 3 столбце $\frac{\Delta N}{N\Delta t}=\frac{5}{100\cdot0.06}\approx0.8333c^{-1}$. В 4 столбец занесена середина промежутка, в 5 столбце плотность была посчитана по формуле Гауса 4.

$$\rho(t) = \frac{1}{\sigma\sqrt{2\pi}}\exp\left(-\frac{(t-\langle t\rangle)^2}{2\sigma^2}\right) = \frac{1}{0.1059\cdot\sqrt{2\pi}}\exp\left(-\frac{(4.76-4.9686)^2}{2\cdot0.1059^2}\right) \approx 0.6498c^{-1}$$

Таблица 2 — Данные для построения гистограммы

Границы	ΔN	$\frac{\Delta N}{N\Delta t}, c^{-1}$	t, c	ρ, c^{-1}
интервалов, с		$N\Delta t$,		ρ, c
4.74	5	0.8333	$\begin{vmatrix} 4.77 \end{vmatrix}$	0.6498
4.80	0	0.0000	4.11	0.0430
4.80	12	2.0000	4.83	1.6003
4.86	12	2.0000	4.00	1.0003
4.86	19	3.1667	4.89	2.8596
4.92	13	3.1007	4.03	2.0090
4.92	18	3.0000	4.95	3.7080
4.98	10	3.0000	4.30	3.1000

Продолжение таблицы 2

Границы интервалов, с	ΔN	$\frac{\Delta N}{N\Delta t}, c^{-1}$	t, c	ρ, c^{-1}	
4.98	24	4.0000	5.01	3.4888	
5.04		2.0000	0.01	3.1 000	
5.04	11	1.8333	5.07	2.3818	
5.10		1.0000	0.01	2.0010	
5.10	6	1.0000	5.13	1.1799	
5.16	O	1.0000	0.10	1.1100	
5.16	3	0.5000	5.19	0.4241	
5.22	0	0.5000	0.19	0.4241	
5.22	2	0.3333	5.25	0.1106	
5.28		U.JJJJ	J.20	0.1100	

В таблице 3 посчитаны доверительные интервалы для результатов измерений.

Таблица 3 — Доверительные интервалы

	Интер	вал, с	ΔN	$\frac{\Delta N}{N}$	P
	ОТ	до	<u> </u>	\overline{N}	1
$\langle t \rangle_N \pm \sigma_N$	4.8626	5.0746	69	0.69	0.683
$\langle t \rangle_N \pm 2\sigma_N$	4.7566	5.1806	98	0.98	0.954
$\langle t \rangle_N \pm 3\sigma_N$	4.6506	5.2866	100	1.00	0.997

10. Расчет погрешностей измерений

Среднеквадратичное отклонение среднего значения:

$$\sigma_{\langle t \rangle} = \sqrt{\frac{1}{N(N-1)} \sum_{i=1}^{N} (t_i - \langle t \rangle_N)^2} = \sqrt{\frac{1.1112}{100 \cdot 99}} = 0.0105c$$

При $\alpha=0.95,\,N=100$ коэффициент Стьюдента $t_{\alpha,N}=1.9840.$ Доверительный интервал для промежутка в 5 секунд:

$$\Delta t = t_{\alpha,N} \cdot \sigma_{\langle t \rangle} = 1.9840 \cdot 0.0105 = 0.02c$$

Относительная погрешность среднего значения времени:

$$\varepsilon_{\langle t \rangle} = \frac{\Delta t}{\langle t \rangle} = \frac{0.02}{4.9686} = 0.4\%$$

11. Графики

Рисунок 2 — График плотности распределения

12. Окончательные результаты

В результате работы было получено значение t:

$$t = 4.97 \pm 0.02c, \quad \varepsilon_{\langle t \rangle} = 0.4\%, \quad \alpha = 0.95$$

13. Выводы и анализ результатов работы

После обработки многократных измерений интервала времени в 5 секунд была построена гистограмма, которая похожа на график нормального распределения Гаусса, а значит совокупность их результатов описывается статистическими закономерностями.

Таблица 4 — Результаты прямых измерений

Приложение А

№	t_i, c	$t_i - \langle t \rangle_N, c$	$(t_i - \langle t \rangle_N)^2, c^2$
1	4.78	-0.1886	0.0356
2	4.78	-0.1886	0.0356
3	4.78	-0.1886	0.0356
4	4.78	-0.1886	0.0356
5	4.79	-0.1786	0.0319
6	4.81	-0.1586	0.0252
7	4.81	-0.1586	0.0252
8	4.81	-0.1586	0.0252
9	4.81	-0.1586	0.0252
10	4.82	-0.1486	0.0221
11	4.84	-0.1286	0.0165
12	4.84	-0.1286	0.0165
13	4.84	-0.1286	0.0165
14	4.84	-0.1286	0.0165
15	4.85	-0.1186	0.0141
16	4.85	-0.1186	0.0141
17	4.85	-0.1186	0.0141
18	4.87	-0.0986	0.0097
19	4.87	-0.0986	0.0097
20	4.87	-0.0986	0.0097
21	4.87	-0.0986	0.0097
22	4.88	-0.0886	0.0078
23	4.88	-0.0886	0.0078
24	4.88	-0.0886	0.0078
25	4.88	-0.0886	0.0078
26	4.88	-0.0886	0.0078
27	4.88	-0.0886	0.0078
28	4.90	-0.0686	0.0047

Продолжение таблицы 4

29 4.90 -0.0686 30 4.91 -0.0586 31 4.91 -0.0586 32 4.91 -0.0586 33 4.91 -0.0586 34 4.91 -0.0586	0.0047 0.0034 0.0034 0.0034
31 4.91 -0.0586 32 4.91 -0.0586 33 4.91 -0.0586	0.0034
32 4.91 -0.0586 33 4.91 -0.0586	
33 4.91 -0.0586	0.0034
34 4.91 -0.0586	0.0034
	0.0034
35	0.0034
36 4.91 -0.0586	0.0034
37 4.93 -0.0386	0.0015
38 4.93 -0.0386	0.0015
39 4.94 -0.0286	0.0008
40 4.94 -0.0286	0.0008
41 4.94 -0.0286	0.0008
42 4.94 -0.0286	0.0008
43 4.94 -0.0286	0.0008
44 4.96 -0.0086	0.0001
45 4.96 -0.0086	0.0001
46 4.96 -0.0086	0.0001
47 4.97 0.0014	0.0000
48 4.97 0.0014	0.0000
49 4.97 0.0014	0.0000
50 4.97 0.0014	0.0000
51 4.97 0.0014	0.0000
52 4.97 0.0014	0.0000
53 4.97 0.0014	0.0000
54 4.97 0.0014	0.0000
55 5.00 0.0314	0.0010
56 5.00 0.0314	0.0010
57 5.00 0.0314	0.0010
58 5.00 0.0314	0.0010

Продолжение таблицы 4

No	t_i, c	$t_i - \langle t \rangle_N, c$	$(t_i - \langle t \rangle_N)^2, c^2$
59	5.00	0.0314	0.0010
60	5.00	0.0314	0.0010
61	5.00	0.0314	0.0010
62	5.00	0.0314	0.0010
63	5.00	0.0314	0.0010
64	5.00	0.0314	0.0010
65	5.00	0.0314	0.0010
66	5.00	0.0314	0.0010
67	5.03	0.0614	0.0038
68	5.03	0.0614	0.0038
69	5.03	0.0614	0.0038
70	5.03	0.0614	0.0038
71	5.03	0.0614	0.0038
72	5.03	0.0614	0.0038
73	5.03	0.0614	0.0038
74	5.03	0.0614	0.0038
75	5.03	0.0614	0.0038
76	5.03	0.0614	0.0038
77	5.03	0.0614	0.0038
78	5.03	0.0614	0.0038
79	5.06	0.0914	0.0084
80	5.06	0.0914	0.0084
81	5.06	0.0914	0.0084
82	5.06	0.0914	0.0084
83	5.06	0.0914	0.0084
84	5.06	0.0914	0.0084
85	5.07	0.1014	0.0103
86	5.07	0.1014	0.0103
87	5.09	0.1214	0.0147
88	5.09	0.1214	0.0147

Продолжение таблицы 4

№	t_i, c	$t_i - \langle t \rangle_N, c$	$(t_i - \langle t \rangle_N)^2, c^2$
89	5.09	0.1214	0.0147
90	5.10	0.1314	0.0173
91	5.12	0.1514	0.0229
92	5.12	0.1514	0.0229
93	5.13	0.1614	0.0260
94	5.15	0.1814	0.0329
95	5.15	0.1814	0.0329
96	5.16	0.1914	0.0366
97	5.16	0.1914	0.0366
98	5.16	0.1914	0.0366
99	5.22	0.2514	0.0632
100	5.25	0.2814	0.0792
	$\langle t \rangle_N = 4.9686c$	$\sum_{i=1}^{N} (t_i - \langle t \rangle_N) = 0c$	$\sigma_N \approx 0.1059c$
			$\rho_{max} \approx 3.7656c^{-1}$