

PLANO DE ENSINO

I. IDENTIFICAÇÃO	
Unidade Acadêmica: Instituto de Ciências Ex	atas e Tecnológicas - ICET
Curso: Bacharelado em Ciência da Computa	ção
Disciplina: Teoria da Computação	
Carga horária semestral: 64	Teórica: 64 Prática: 00
Semestre/ano: 2017.1	Turma/turno: A
Professor (a): Esdras Lins Bispo Junior	

II. Ementa

Noções de computabilidade efetiva. Modelos de computação. Problemas indecidíveis. Classes P, NP, NP-Completa e NP-Difícil. Algoritmos de Aproximação.

III. Objetivo Geral

Oferecer o embasamento conceitual e teórico da área teoria da computação aplicando os conhecimentos no desenvolvimento de sistemas e analisando criticamente os desafios envolvidos.

IV. Objetivos Específicos

- Definir teoria da computação, motivação e aplicações.
- Analisar os principais modelos de computação, apresentando as suas potencialidades e limitações;
- Discutir o estado da arte na área da teoria da computação, perspectivas de evolução e desafios a serem vencidos.

V. Conteúdo

- 1. TEORIA DA COMPUTAÇÃO
- a. O que é teoria da computação?
- b. Relevância do estudo da área
- c. Revisão: autômatos e linguagens livres-do-contexto
- 2. MODELOS DE COMPUTAÇÃO
- a. Noções de computabilidade efetiva
- b. Máquina de Turing
- c. Variantes da máquina de Turing

- 3. PROBLEMAS DECIDÍVEIS
- a. Linguagens decidíveis
- b. Problema da parada
- c. Linguagens Turing-reconhecíveis
- 4. PROBLEMAS INDECIDÍVEIS
- a. Redução via histórias de computação
- b. Problemas indecidíveis da Teoria das Linguagens
- c. Redutibilidade por mapeamento
- 5. COMPLEXIDADE DE TEMPO
- a. Notação assintótica: O-grande e o-pequeno.
- b. Classe P
- c. Classe NP
- 5. NP-COMPLETUDE
- a. Redutibilidade em tempo polinomial
- b. Classe NP completo
- c. Classe NP difícil
- 6. TOPICOS AVANÇADOS
- a. Algoritmos de aproximação
- b. Algoritmos probabilísticos
- c. Criptografia

VI. Metodologia

- Ensino sob Medida (Novak, 2011)
- Aulas expositivas utilizando quadro negro (ou branco) e DataShow;
- Atendimento individual ou em grupos;
- Aplicação de listas de exercícios.
- Aplicação de atividades de aquecimento utilizando o

Canvas AVA (Ambiente Virtual de Aprendizagem).

- Tempo de Aula: 50 minutos*
- *Obs.: Para complementar os 10 minutos, esta disciplina fará uso do Canvas AVA para supervisionar atividades práticas, em consonância com a resolução abaixo:

RESOLUÇÃO CNE/CES Nº 3, DE 02 DE JULHO DE 2007

I – preleções e aulas expositivas;

II – atividades práticas supervisionadas, tais como laboratórios, atividades em biblioteca, iniciação científica, trabalhos individuais e em grupo, práticas de ensino e outras atividades no caso das licenciaturas.

NOVAK, Gregor M. Just-in-time teaching. **New Directions for Teaching and Learning**, v. 2011, n. 128, p. 63-73, 2011.

VII. Processos e critérios de avaliação

Serão ministrados 04 (quatro) mini-testes que serão analisados da seguinte forma:

- Primeiro mini-teste (MT₁) equivale a 20% da pontuação total;
- Segundo mini-teste (MT₂) equivale a 20% da pontuação total;
- Terceiro mini-teste (MT₃) equivale a 20% da pontuação total;
- Quarto mini-teste (MT₄) equivale a 20% da pontuação total.

Será ministrada 01 (uma) prova final (PF) que será analisada da seguinte forma:

- Prova equivale a 20% da pontuação total.

Serão propostos exercícios de aquecimento (EA), durante toda a disciplina, equivalendo a 10% da pontuação total.

Durante a disciplina, alguns Exercícios-Bônus (EB) poderão ser propostos para os alunos.

A PF é composta por duas etapas: a PF₁ e a PF₂.

A PF1 é composta por dois mini-testes de caráter substitutivo:

- o SMT₁ (referente ao MT₁), e
- o SMT₂ (referente ao MT₂).

Por sua vez, a PF₂ é composta pelos outros dois mini-testes também de caráter substitutivo:

- o SMT₃ (referente ao MT₃), e
- o SMT₄ (referente ao MT₄).

O cálculo da média final será dada da seguinte forma:

$$MF = MIN(10, PONT)$$

em que MIN representa o mínimo entre dois valores e PONT representa a pontuação total obtida em toda a disciplina, dada da seguinte forma:

$$PONT = \left[\sum_{i=1}^{4} \max(MT_i, SMT_i) + PF\right] \times 0.2 + EA \times 0.1 + EB$$

VIII. Local de divulgação dos resultados das avaliações

Os resultados das avaliações serão divulgados através do SIGAA e/ou Canvas AVA.

XI. Bibliografia	básica e	compl	ementar
BÁSICA:			

SIPSER, Michael. Introdução à teoria da Computação, 2a Edição, Editora Thomson Learning.

LEWIS, Harry R. Lewis, PAPADIMITRIOU, Christos H. Elementos de Teoria da Computação, Bookman, 2a Edição, 2000.

DIVERIO, T. A.; MENEZES, P. B.. Teoria da Computação: Máquinas Universais e Computabilidade. Porto Alegre: Sagra Luzzato, 2000.

COMPLEMENTAR:

GAREY, M. R.; JONHSON, D. S.: Computers and Intractability: a guide to the theory of NPCompleteness. New York: W. H. Freeman and Company, 1979.

COHEN, Daniel I. A. Introduction to Computer Theory, 2nd edition, Wiley, 1996.

ARORA, Sanjeev, BARAK, Boaz. Computational Complexity: A Modern Approach. 1st Edition, Cambridge University Press, 2009

GOLDREICH, Oded. Computational Complexity: A Conceptual Perspective, 1st Edition, Cambridge University Press, 2008.

MOGENSEN, Torben, SCHMIDT, David, SUDBOROUGH, I. Hal. The Essence of Computation: Complexity, Analysis, Transformation. 1st Edition, Springer, 2004.

X. Cronograma

Nº da Aula Conteúdo CH T/P

01	Apresentação da disciplina e Introdução à Teoria da Computação	2h	Т
02	Introdução à Teoria da Computação	2h	Т
03	Modelos de Computação	2h	Т
04	Modelos de Computação	2h	Т
05	Teste 01	2h	Т
06	Entrega de notas e Resolução do Teste 01	2h	Т
07	Problemas Decidíveis	2h	Т
80	Problemas Decidíveis	2h	Т
09	Problemas Indecidíveis	2h	Т
10	Problemas Indecidíveis	2h	Т
11	Problemas Indecidíveis	2h	Т

12	Teste 02	2h	Т
13	Entrega de notas e Resolução do Teste 02	2h	T
	,		T
14	Complexidade de Tempo	2h	-
15	Complexidade de Tempo	2h	T
16	Complexidade de Tempo	2h	Т
17	NP-Completude	2h	Т
18	NP-Completude	2h	Т
19	NP-Completude	2h	Т
20	Teste 03	2h	Т
21	Entrega de notas e Resolução do Teste 03	2h	Т
22	Tópicos Avançados	2h	Т
23	Tópicos Avançados	2h	Т
24	Tópicos Avançados	2h	Т
25	Teste 04	2h	Т
26	Entrega de notas e Resolução do Teste 04	2h	Т
27	Resolução de exercícios e dúvidas	2h	Т
28	Resolução de exercícios e dúvidas	2h	Т
29	Prova	2h	Т
30	Entrega de notas e Resolução da Prova	2h	Т
31	Confraternização	2h	Т
32	Fechamento das médias finais	2h	Т

Data Jataí, 05 de maio de 2017.

Esdras Lins Bispo Junior Professor Assistente – Ciência da Computação