Probability: II

李昂生

Discrete Mathematics U CAS 8 May, 2018

Outline

- 1. Warm up
- 2. Algorithms
- 3. Tail Inequalities
- 4. Random walk and expander
- 5. Eigenvalue
- 6. PageRank and Google Matrix

General view

- Understanding the principles
- Applications of the principles
- Enjoy randomness powerful, useful, and beautiful

Linearity of expectation

For **any** random variables X and Y,

$$E[X + Y] = E[X] + E[Y].$$
 (1)

Basic properties

- 1. If a_1, a_2, \dots, a_n are some numbers whose average is c, then there exists an i such that $a_i \ge c$.
- 2. If X is a random variable which takes values from a finite set and $E[X] = \mu$, then

$$\Pr[X \ge \mu] > 0.$$

3. If $a_1, a_2, \dots, a_n \ge 0$ are numbers whose average is c, then the fractions of a_i 's that are $\ge k \cdot c$ is at most $\frac{1}{k}$.

Markov inequality

Let X be a positive random variable. Then

$$\Pr[X \ge k \cdot E[X]] \le \frac{1}{k}.$$
 (2)

More properties

- 1. If a_1, a_2, \dots, a_n are numbers in the interval [0, 1] whose average is ρ , then there are at least $\frac{\rho}{2}$ fraction of the a_i 's that are at least $\geq \frac{\rho}{2}$.
- 2. If $X \in [0, 1]$ and $E[X] = \mu$, then for any c < 1,

$$\Pr[X \le c\mu] \le \frac{1-\mu}{1-c\mu}.$$

Variance

The variance of a random variable X is:

$$Var[X] = E[(X - E[X])^{2}]$$

$$= E[X^{2}] - (E[X])^{2}.$$
(3)

The standard deviation of *X* is:

$$\sigma(X) = \sqrt[2]{\text{Var}[X]}.$$
 (4)

Chebyshev inequality

If X is a random variable with standard deviation σ , then for every k > 0,

$$\Pr[|X - E[X]| > k \cdot \sigma] \le \frac{1}{k^2}.$$
 (5)

Proof. Applying Markov to $(X - E[X])^2$.

Variance property

If X_1, X_2, \dots, X_n are pairwise independent, then

$$\operatorname{Var}\left[\sum_{i=1}^{n} X_{i}\right] = \sum_{i=1}^{n} \operatorname{Var}[X_{i}]. \tag{6}$$

Max-Cut

Max-Cut Given an undirected graph G = (V, E) with n vertices and m edges, the $maximum\ cut$ problem, denoted Max-Cut, is to find a set $X \subset V$ such that the number of edges between X and the complement \bar{X} of X, written $e(X, \bar{X})$, is maximised. Or, let E(X, Y) be the set of all the edges of G with one endpoint in X and the other in Y. Then e(X, Y) = |E(X, Y)|. The problem is NP-hard.

Theorem 1

For any undirected graph G = (V, E) with n vertices and m edges, there is a partition of the vertex set V into two sets A and B such that

$$e(A,B) \geq \frac{m}{2}$$
.

Probabilistic Algorithm

Proof.

We define the cut (A, B) as follows:

Each vertex in V is independently and equiprobably assigned to either A or B.

Then for every edge $e = (x, y) \in E$, with probability $\frac{1}{2}$, the edge e = (x, y) is in the cut (A, B).

Define random variable X_e by

$$X_e = \begin{cases} 1, & \text{if the edge } e \text{ is in the cut } (A, B), \\ 0, & \text{otherwise.} \end{cases}$$
 (7)

Then for every edge e, $E[X_e] = \frac{1}{2}$. By the linearity of expectation,

$$E[e(A,B)] = \sum_{e \in F} E[X_e] = \frac{m}{2}.$$

Deterministic Algorithm

The theorem implies that there is a cut of size at least $\frac{m}{2}$. Is there a polynomial time algorithm to find such a cut? **Algorithm** C:

- (1) Let *e* = (*u*, *v*) ∈ *E* be an edge of *G*.
 put *u* into *A*, written *u* \ \ *A*,
 put *v* into *B*, i.e., *v* \ *B*.
- (2) For every vertex $x \in V \setminus (A \cup B)$, Case 2a If e(x, A) > e(x, B), then

$$x \searrow B$$
,

and

Case 2b. Otherwise. Then

$$x \setminus A$$
.

Proof

At every step i, at which we decide a vertex x in A or B, we consider m_i edges. The algorithm $\mathcal C$ ensures that at least $\lceil \frac{m_i}{2} \rceil$ edges in the cut.

Therefore,

$$e(A,B) \geq \sum_{i} \lceil \frac{m_{i}}{2} \rceil$$

 $\geq \frac{m}{2}$.

Time complexity: O(n).

$\frac{1}{2}$ -approximation algorithm

Note that the maximum number of edges in the cut is at most m. We use OPT to denote the solution for the Max-Cut. Then

$$OPT \le m$$

Our algorithm C outputs a cut (A, B) such that

$$e(A, B) \geq \frac{1}{2} \cdot \text{OPT}.$$

This means that the algorithm C is a $\frac{1}{2}$ -approximation algorithm for the Max-Cut problem.

Open Question Is there a polynomial time algorithm that gives approximation ratio better than $\frac{1}{2}$ for the Max-Cut problem?

Maximum Satisfiability

Assume the conjunctive norm form (**CNF**) of formula. Given a CNF formula ϕ of n variables and m clauses, that is, ϕ is of the following form:

$$\phi: C_1 \wedge C_2 \wedge \cdots \wedge C_m,$$

where each C_i is a clause of the form:

$$z_1 \lor z_2 \lor \cdots \lor z_k$$

in which each z_j is either a variable x or the negation $\neg y$ of a variable y, referred to as literal.

The question is to find an assignment for the n variables such that the number of satisfied clauses among the m clauses is maximised.

We use **MAX SAT** to denote the problem. Clearly, it is NP-hard.

Probabilistic Algorithm

Consider a clause C of k variables of the form:

$$C = y_1 \vee y_2 \vee \cdots \vee y_k$$
, each y_j is a literal.

Suppose that for each variable x occurred in C, x is defined independently and randomly with equal probability to either 0 or 1. Then the probability that C is satisfied is $1 - \frac{1}{2^k}$. Suppose that all the variables are assigned randomly with equal probability to either 0 or 1.

For every clause C, define random variable

$$X_C = \begin{cases} 1, & \text{if } C \text{ is satisfied,} \\ 0, & \text{otherwise.} \end{cases}$$
 (8)

Then, if C contains k literals, then

$$E[X_C]=1-\frac{1}{2^k}.$$

Proof

Let
$$X = \sum_{C} X_{C}$$
.

Then X is the random number of the satisfied clauses of ϕ . Suppose that k_1, k_2, \cdots, k_m are the number of literals of C_1, C_2, \cdots, C_m , respectively. By the linearity of expectation,

$$E[X] = \sum_{i=1}^{m} (1 - \frac{1}{2^{k_i}}),$$

which can be computed independently from the random assignments.

Let
$$N_{\phi} = E[X]$$
.

- Generally, $E[X] \ge \frac{m}{2}$.
- If every clause has at least 2 literals, then $E[X] \ge \frac{3}{4}$.
- If every clause has at least 3 literals, then $E[X] \ge \frac{7}{8}$.

Deterministic Algorithm

Fix an ordering of all the variables of ϕ as

$$x_1, x_2, \cdots, x_n$$
.

Consider x_1 . There are two cases:

Case 1: $x_1 = 0$.

Let n_0 be the number of clauses of ϕ that are satisfied simply by $x_1 = 0$, and ϕ_0 be the formula obtained from ϕ by deleting the satisfied clauses and the literal x_1 .

Case 2: $x_1 = 1$.

Let n_1 be the number of clauses of ϕ that are satisfied simply by $x_1 = 1$, and ϕ_1 be the formula obtained from ϕ by deleting the satisfied clauses and the literal x_1 .

By the definition of N_{ϕ} ,

$$\frac{1}{2}(n_0+N_{\phi_0})+\frac{1}{2}(n_1+N_{\phi_1})=N_{\phi}. \tag{9}$$

Proof

Therefore, either $n_0 + N_{\phi_0} \ge N_{\phi}$ or $n_1 + N_{\phi_1} \ge N_{\phi}$.

Case 1: If $n_0 + N_{\phi_0} \geq N_{\phi}$, then

 $- \sec x_1 = 0$, and

 $-\phi \leftarrow \phi_0$.

Case 2: Otherwise, then

 $-x_1 = 1$, and

 $-\phi \leftarrow \phi_1$.

In either case, repeat the procedure above, until we assigned a value for every variable x_i .

The assignment satisfies at least N_{ϕ} clauses.

Self-reducibility method

The method of the algorithm for the MAX SAT problem above is due to an important property of SAT, that is, the

self-reducibility property This is a general idea for many algorithmic problems

This is a general idea for many algorithmic problems.

The method is referred to as

Self-reducibility method

The Chernoff bounds

Let X_1, X_2, \dots, X_n be mutually independent random variables over $\{0, 1\}$, and let $\mu = \sum_{i=1}^n E[X_i]$. Then for every $\delta > 0$,

(1)
$$\Pr[\sum_{i=1}^{n} X_{i} \geq (1+\delta)\mu] \leq \left[\frac{e^{\delta}}{(1+\delta)^{(1+\delta)}}\right]^{\mu}.$$
 (10)

(2)
$$\Pr[\sum_{i=1}^{n} X_{i} \leq (1-\delta)\mu] \leq \left[\frac{e^{-\delta}}{(1-\delta)^{(1-\delta)}}\right]^{\mu}. \tag{11}$$

For every c > 0,

$$\Pr[|\sum_{i=1}^{n} X_i - \mu| \ge c \cdot \mu] \le 2 \cdot e^{-\min\{c^2/4, c/2\} \cdot \mu}.$$

Poisson Trials

Recall: Let X_1, \dots, X_n be independent Bernoulli trials such that for $1 \le i \le n$, $\Pr[X_i = 1] = p$ and $\Pr[X_i = 0] = 1 - p$. Let $X = \sum_{i=1}^{n} X_i$, then X is said to have the binomial distribution. Generally, let X_1, \dots, X_n be independent coin tosses such that for $1 \le i \le n$, $\Pr[X_i = 1] = p_i$ and $\Pr[X_i = 0] = 1 - p_i$. Such coin tosses are referred to as **Poisson trials**. Let $X = \sum_{i=1}^{n} X_i$, X_i are Poisson trials. Clearly,

$$E[X] = \sum_{i=1}^{n} p_i = \mu \text{ (denoted)}$$
 (12)

Questions

- 1) For a real number $\delta > 0$, what is the probability of $X > (1 + \delta)\mu$?
- 2) How large must δ be in order that the tail probability is less than a prescribed value ϵ ?

The answer: The Chernoff bounds.

Moment Generating Function

For a random variable X, we call the quantity $E[e^{tX}]$ the moment generating function of X. Because:

$$E[e^{tX}] = \sum_{k=0}^{\infty} \frac{E[X^k]}{k!} t^k, \tag{13}$$

where $E[X^k]$ is the k-th moment of X, for natural number k. The idea to prove the Chernoff bounds is: the moment generating function + the Markov inequality.

Chernoff bound - lower bound

Theorem 2

Let X_1, X_2, \dots, X_n be independent Poisson trials such that for $1 \le i \le n$, $\Pr[X_i = 1] = p_i$ and $\Pr[X_i = 0] = 1 - p_i$, where $0 < p_i < 1$. Then, for $X = \sum_{i=1}^n X_i$, $\mu = E[X] = \sum_{i=1}^n p_i$ and any $\delta > 0$,

$$\Pr[X > (1+\delta)\mu] < \left[\frac{e^{\delta}}{(1+\delta)^{(1+\delta)}}\right]^{\mu}. \tag{14}$$

Concentration Theorem

Proof

For any positive real t,

$$\Pr[X > (1 + \delta)\mu]$$

$$= \Pr[tX > t(1 + \delta)\mu]$$

$$= \Pr[\exp(tX) > \exp(t(1 + \delta)\mu)]$$

$$< \frac{E[\exp(tX)]}{\exp(t(1 + \delta)\mu)},$$

the last inequality is by the Markov Inequality.

Proof - continued

Consider $E[\exp(tX)]$. By the independency of X_i 's, and hence $\exp(tX_i)$'s,

$$E[\exp(tX)] = E[\exp(t\sum_{i=1}^{n} X_i)]$$

$$= E[\prod_{i=1}^{n} \exp(tX_i)]$$

$$= \prod_{i=1}^{n} E[\exp(tX_i)].$$

This gives

$$\Pr[X > (1+\delta)\mu] < \frac{\prod\limits_{i=1}^{n} E[\exp(tX_i)]}{\exp(t(1+\delta)\mu)}.$$
 (15)

Proof - continued

By definition,

$$e^{tX_i} = \begin{cases} e^t, & \text{with probability } p_i, \\ 1, & \text{with probability } 1 - p_i. \end{cases}$$
 (16)

Therefore,

$$E[e^{tX_i}] = p_i e^t + 1 - p_i = 1 + p_i (e^t - 1).$$

For $x = p_i(e^t - 1)$, we use the inequality $1 + x < e^x$ to obtain:

$$\begin{aligned} \Pr[X > (1+\delta)\mu] &< \frac{\prod\limits_{i=1}^{n} \exp(p_i(e^t-1))}{\exp(t(1+\delta)\mu)} \\ &= \frac{\exp(\sum\limits_{i=1}^{n} p_i(e^t-1))}{\exp(t(1+\delta)\mu)} \\ &= \frac{\exp((e^t-1)\mu)}{\exp(t(1+\delta)\mu)}. \end{aligned}$$

Proof -continued

Let
$$f = \frac{\exp((e^t - 1)\mu)}{\exp(t(1 + \delta)\mu)}$$
.

Set f' = 0. Solving the equation, we obtain

$$t=\ln(1+\delta).$$

For this choice of *t*,

$$f = \left[\frac{e^{\delta}}{(1+\delta)^{(1+\delta)}}\right]^{\mu}.$$

Summary of the proof

- 1. We studied the random variable e^{tX} rather than X
- 2. The expectation of the product of the e^{tX_i} turns into the product of their expectations due to independence
- 3. We pick a value of *t* to obtain the best possible upper bound.

The approach above works for the sum of other distributions.

Significance

- Usually, $\mu = \Theta(n)$
- For $\delta > 0$ such that

$$\frac{e^{\delta}}{(1+\delta)^{(1+\delta)}}=\frac{1}{2},$$

then,

$$\left[\frac{e^{\delta}}{(1+\delta)^{(1+\delta)}}\right]^{\mu} = \frac{1}{2^{\Theta(n)}},$$

which is exponentially decreasing to 0.

Chernoff bound - upper bound

Theorem 3

Let X_1, X_2, \dots, X_n be independent Poisson trials such that for $1 \le i \le n$, $\Pr[X_i = 1] = p_i$, $0 < p_i < 1$. Then, for $X = \sum_{i=1}^n X_i$, $\mu = E[X] = \sum_{i=1}^n p_i$ and δ with $0 < \delta < 1$, $\Pr[X < (1 - \delta)\mu] < \exp(-\mu \frac{\delta^2}{2}). \tag{17}$

Proof

As before,

$$Pr[X < (1 - \delta)\mu]$$

$$= Pr[-X > -(1 - \delta)\mu]$$

$$= Pr[exp(-tX) > exp(-t(1 - \delta)\mu)],$$

for any positive real t.

By Markov and the same argument as before,

$$\Pr[X < (1-\delta)\mu] < \frac{\prod\limits_{i=1}^{n} E[\exp(-tX_i)]}{\exp(-t(1-\delta)\mu)}.$$
 (18)

Proof -continued

Computing $E[\exp(-tX_i)]$, we have

$$\Pr[X < (1-\delta)\mu] < \frac{\exp(\mu(e^{-t}-1))}{\exp(-t(1-\delta)\mu)}.$$

Set $t = \ln \frac{1}{1-\delta}$, we have

$$\Pr[X < (1 - \delta)\mu] < \left[\frac{e^{-\delta}}{(1 - \delta)^{(1 - \delta)}}\right]^{\mu}.$$
 (19)

For $\delta \in (0, 1]$,

$$(1-\delta)^{(1-\delta)} > \exp(-\delta + \delta^2/2),$$

using the Mclaurin expansion for $ln(1 - \delta)$.

Martingales

There is a Martingale theory dealing with the case that X_i are not totally independent, with similar bounds. Powerful and useful in theoretical computer science.

Random Walk

- To understand the dynamics of physical systems
- To understand the operations, interactions and communications that occur in networks
- To understand virus spreading in networks
- To understand the evolution of systems in nature and society
- To understand the role of randomness

Expanders vs Randomness

Advanced topic and research directions: on the basis of randomness

- Communication networks
- Pseudo random generator
- Randomness
- Derandomisation
- UPATH is Log space
- PageRank

Conventions

For simplicity, we assume that the graphs are:

- regular
- selfloop
- parallel edges

Theory is possible for general graphs without these assumptions.

Inner product

 $\langle u, v \rangle$

- $\langle xu + yv, w \rangle = x \langle u, w \rangle + y \langle v, w \rangle$
- $\langle v, u \rangle = \overline{\langle u, v \rangle}$, \bar{z} is the complex conjugation of z
- For all u, $\langle u, u \rangle \ge 0$, with 0 only if u = 0
- $\langle u, v \rangle = 0$ means u, v are orthogonal, written $u \perp v$
- If u^1, u^2, \dots, u^n satisfy $u^i \perp u^j$ for all $i \neq j$, then they are linearly independent.

Parseval's identity: If u^1, u^2, \dots, u^n form an orthonormal basis for C^n , then for every v, if $v = \sum_i \alpha_i u^i$, then

$$\langle v, v \rangle = \sum_{i=1}^{n} |\alpha_i|^2. \tag{20}$$

Hilbert space: Vector spaces with inner product.

• For
$$u, v \in \mathbb{F}^n$$
, $u \odot v = \sum_{i=1}^n u_i v_i$

- $S \subset \mathbb{F}^n$, $S^{\perp} = \{u : u \perp S\}$
- $u \perp v$, if $u \odot v = 0$, $u \perp S$, if for all $v \in S$, $u \perp v$.
- $\dim(S) + \dim(S^{\perp}) = n$
- $u \in \mathbb{F}^n$, $u^{\perp} = \{v : v \perp u\}$, and $\dim(u^{\perp}) = n 1$.

Random subsum principle

For every non-zero $u \in GF(2^n)$,

$$\Pr_{v \in_{\mathbb{R}}GF(2^n)}[u \odot v = 0] = \frac{1}{2}.$$
 (21)

Eigenvectors and eigenvalues

If A is a real, symmetric matrix, for λ and ν , if $A\nu = \lambda \nu$, then

$$\lambda \langle \mathbf{v}, \mathbf{v} \rangle = \langle \mathbf{A} \mathbf{v}, \mathbf{v} \rangle = \overline{\langle \mathbf{v}, \mathbf{A} \mathbf{v} \rangle} = \overline{\langle \mathbf{v}, \lambda \mathbf{v} \rangle} = \overline{\lambda} \langle \mathbf{v}, \mathbf{v} \rangle$$

This implies that:

$$\lambda = \bar{\lambda}$$

so λ is a real.

Norms

It is a function of the following form:

$$||\ ||:\ \mathbb{F}^n \to \mathbb{R}^{\geq 0} \tag{22}$$

A norm satisfies the following properties:

(i)
$$||v|| = 0 \iff v = 0$$

(ii)
$$||\alpha v|| = |\alpha| \cdot ||v||$$
, where α is a real scale.

(iii)
$$||u + v|| \le ||u|| + ||v||$$
.

L_p -norm

 L_p -norm of $v, p \ge 1$,

$$||v||_p = (\sum_{i=1}^n |v_i|^p)^{1/p}$$

p = 2, L_2 -norm, the Euclidean norm

$$||v||_2 = (\sum_{i=1}^n |v_i|^2)^{1/2}$$

p = 1, L_1 -norm

$$||v||_1=\sum_{i=1}^n|v_i|$$

 $p=\infty$, L_{∞} -norm

$$||v||_{\infty} = \max_{i} |v_i|.$$

Hölder inequality

For every p, q, if $\frac{1}{p} + \frac{1}{q} = 1$, then

$$||u||_{p} \cdot ||v||_{q} \ge \sum_{i=1}^{n} |u_{i}v_{i}|.$$
 (23)

$$p = q = 2$$
: Cauch-Schwarz

L_1 - and L_2 -norms

For every vector $v \in \mathbb{R}^n$,

$$\frac{|v|_1}{\sqrt{n}} \le ||v||_2 \le |v|_1. \tag{24}$$

Notations: Adjacent matrix

- G: d-regular, n vertices,
- p: a column vector, a distribution over the vertices of G

$$\mathbf{p} = \begin{pmatrix} \rho_1 \\ \rho_2 \\ \dots \\ \rho_n \end{pmatrix} \tag{25}$$

where $p_1 + p_2 + \cdots p_n = 1$.

- A_{ij} : $\frac{n_{ij}}{d}$, where n_{ij} the number of edges between i and j.
- A: the adjacent matrix. It is normalised, symmetric, stochastic

Notations: Adjacent matrix

- q = Ap: the distribution of a random walk in G from distribution p.
- A^leⁱ: the distribution of *l*-step random walk from node i
- 1: The uniform distribution is:

$$\mathbf{1} = \begin{pmatrix} \frac{1}{n} \\ \frac{1}{n} \\ \dots \\ \frac{1}{n} \end{pmatrix} \tag{26}$$

- 1^{\perp} : { $v : v \perp 1$ }
- $v \perp 1 \iff \sum v_i = 0$.

$$\lambda(A)$$

Define

$$\lambda(A) = \lambda(G)$$

= max{||Av||₂ : ||v||₂ = 1, v\perp 1}. (27)

Suppose that

$$\lambda_1, \lambda_2, \cdots, \lambda_n$$

are the eigenvalues of A with orthogonal eigenvectors

$$v^1, v^2, \cdots, v^n$$

respectively, that are listed such that:

$$|\lambda_1| \ge |\lambda_2| \ge \dots \ge |\lambda_n|. \tag{28}$$

$$|\lambda_i| \leq 1$$

For λ and ν such that $A\nu = \lambda \nu$. Then $\lambda = \frac{\langle \nu, A\nu \rangle}{\langle \nu, \nu \rangle}$. By definition,

$$\langle v, Av \rangle = \sum_{i=1}^{n} a_{ii} v_i^2 + 2 \sum_{i < j, i \sim j} a_{ij} v_i v_j$$

For i < j, $i \sim j$:

$$a_{ij}(v_i - v_j)^2 = a_{ij}v_i^2 - 2a_{ij}v_iv_j + a_{ij}v_j^2$$

Summing up all such i, j's:

$$\sum_{i < j, i \sim j} a_{ij} (v_i - v_j)^2 = \sum_{i=1}^n (1 - a_{ii}) v_i^2 - 2 \sum_{i < j, i \sim j} a_{ij} v_i v_j$$

Proof - I

$$\langle v, Av \rangle = \sum_{i=1}^{n} a_{ii} v_i^2 + \sum_{i=1}^{n} (1 - a_{ii}) v_i^2 - \sum_{i < j, i \sim j} a_{ij} (v_i - v_j)^2$$

$$= \sum_{i=1}^{n} v_i^2 - \sum_{i < j, i \sim j} a_{ij} (v_i - v_j)^2.$$
(29)

Noting that $\sum_{i=1}^{n} v_i^2 \ge 2 \sum_{i < i} a_{ij} v_i v_j$, we have

$$-\sum_{i=1}^n v_i^2 \leq \sum_{i=1}^n v_i^2 - \sum_{i < j, i \sim j} a_{ij} (v_i - v_j)^2 \leq \sum_{i=1}^n v_i^2.$$

So that

$$-1 < \lambda < 1$$
.

By definition, A1 = 1. So $\lambda_1 = 1$, and 1 is the eigenvector of $\lambda_1 = 1$. By the choice of the eigenvectors, $1^{\perp} = \operatorname{Span}\{v^2, \cdots, v^n\}.$

Proof - II

Given
$$v$$
, with $v \perp 1$, $||v||_2 = 1$.
Let $v = \alpha_2 v^2 + \cdots + \alpha_n v^n$ with $\alpha_2^2 + \cdots + \alpha_n^2 = 1$.

$$Av = \alpha_2 Av^2 + \cdots + \alpha_n Av^n = \alpha_2 \lambda_2 v^2 + \cdots + \alpha_n \lambda_n v^n$$

$$||\mathbf{A}\mathbf{v}||_2^2 = \alpha_2^2 \lambda_2^2 + \dots + \alpha_n^2 \lambda_n^2$$

Since
$$\lambda_2^2 \ge \cdots \ge \lambda_n^2$$
,

$$\max ||Av||_2^2 = \lambda_2^2.$$

Therefore

$$\lambda = \lambda(G) = |\lambda_2|.$$

Spectral gap

We call $1 - \lambda(G)$ the **spectral gap of G**.

Lemma 4

Let G be an n-vertex regular graph and p a probability distribution over G's vertices. Then,

$$||A^lp-1||_2 \leq \lambda^l$$
.

Proofs consist of the following items:

1) By definition of $\lambda = \lambda(G)$, for every $\nu \perp 1$,

$$||Av||_2 \le \lambda ||v||_2.$$

Proofs - I

2) If $v \perp 1$, then so is Av.

$$\langle 1, Av \rangle = \langle A^{\mathrm{T}}1, v \rangle = \langle 1, v \rangle = 0.$$

Note $A = A^{T}$, and A1 = 1.

3) $A: 1^{\perp} \rightarrow 1^{\perp}$, and

A shrinks each $v \in 1^{\perp}$ by at least λ factor in L_2 norm.

4) By 3), A^{l} shrinks each $v \in 1^{\perp}$ by at least λ^{l} factor, giving

$$\lambda(A') \leq \lambda'$$
.

Proofs - II

5) Let $p = \alpha 1 + p'$, $p' \perp 1$, Since $p' \perp 1$, $\sum p'_i = 0$. But $\sum p_i = 1$, so $\alpha = 1$.

$$A'p = A'(1+p') = A'1 + A'p' = 1 + A'p'.$$

$$||A^{l}p - 1||_{2} = ||A^{l}p'||_{2}$$

$$\leq ||A^{l}||_{2} \cdot ||p'||_{2}$$

$$\leq \lambda^{l} \cdot ||p'||_{2}$$

$$\leq \lambda^{l} \cdot ||p||_{2}$$

$$\leq \lambda^{l} \cdot ||p||_{1} = \lambda^{l}.$$

The third inequality uses $||p||_2^2 = ||1||_2^2 + ||p'||_2^2$.

Log space algorithm for connectivity in expanders

Suppose that λ is a constant significantly smaller than 1.

By Lemma 4 above, let $I = O(\log n)$.

Then $\lambda' \approx 0$. Therefore

$$A^{\prime}p\approx 1.$$

This means that for any two nodes i, j, the distance between i and j is within $O(\log n)$.

According to this property, we are able to design a log space algorithm to decide, for any two vertices, whether or not, they are connected.

The algorithm simply enumerates all the paths from i of length $O(\log n)$, to see if there is a path passes j. The enumeration of all the paths can be done in log space.

Randomized log space (RL, for short) for connectivity

Lemma 5

(RL) If G is a regular connected graph with self-loop at each vertex, then

$$\lambda(G) \le 1 - \frac{1}{4dn^2}.\tag{30}$$

Let $u \perp 1$, $||u||_2 = 1$. We show that $||Au||_2 \leq 1 - \frac{1}{4dn^2}$. Let v = Au. It suffices to show that $1 - ||v||_2^2 \geq \frac{1}{2dn^2}$. Since $||u||_2 = 1$,

$$1 - ||v||_2^2 = ||u||_2^2 - ||v||_2^2.$$

Considering $\sum_{i,j} A_{ij} (u_i - v_j)^2$, we have

Proofs - I

$$\begin{split} \sum_{i,j} A_{ij} (u_i - v_j)^2 &= \sum_{i,j} A_{ij} u_i^2 - 2 \sum_{i,j} A_{ij} u_i v_j + \sum_{i,j} A_{ij} v_j^2 \\ &= \sum_{i=1}^n u_i^2 - 2 \langle Au, v \rangle + \sum_{j=1}^n v_j^2 \\ &= ||u||_2^2 - 2 \langle Au, v \rangle + ||v||_2^2 \\ &= ||u||_2^2 - 2||v||_2^2 + ||v||_2^2 \\ &= ||u||_2^2 - ||v||_2^2 \\ &= 1 - ||v||_2^2. \end{split}$$

Therefore, we only need to prove

$$\sum_{i,j} A_{ij} (u_i - v_j)^2 \ge \epsilon = \frac{1}{2 dn^2}.$$

Proofs - II

By the choice of u, $\sum u_i = 0$, and $\sum u_i^2 = 1$. So there exist i, j such that $u_i u_j < 0$.

Let $u^+ = \max_i \{u_i\}$, and $u^- = \min_i \{u_i\}$. If both $u^+ < \frac{1}{\sqrt{n}}$ and

 $u^{-} > -\frac{1}{\sqrt{n}}$ hold, then $\sum_{i=1}^{n} u_i^2 < 1$.

Since $||u||_2 = 1$, either $u^+ \ge \frac{1}{\sqrt{n}}$ or $u^- \le -\frac{1}{\sqrt{n}}$. Let i and j be such that $u_i = u^+$ and $u_j = u^-$. Then:

$$u_i - u_j \ge \frac{1}{\sqrt{n}}. (31)$$

Proofs - III

Because G is connected, there is a path P between i and j. Suppose that the path P is labelled by $1, 2, \dots, D+1$. Then:

$$\frac{1}{\sqrt{n}}$$

$$\leq u_1 - u_{D+1}$$

$$= (u_1 - v_1) + (v_1 - u_2) + (u_2 - v_2) + \dots + (v_D - u_{D+1})$$

$$\leq |u_1 - v_1| + |v_1 - u_2| + \dots + |v_D - u_{D+1}|$$

$$\leq \sqrt{(u_1 - v_1)^2 + (v_1 - u_2)^2 + \dots + (v_D - u_{D+1})^2} \cdot \sqrt{2D + 1}.$$

Proofs - IV

Therefore,

$$(u_1-v_1)^2+(v_1-u_2)^2+\cdots+(v_D-u_{D+1})^2\geq \frac{1}{n(2D+1)}.$$

Since $A_{ii}, A_{ii+1} \geq \frac{1}{d}$,

$$\sum_{i,j} A_{ij} (u_i - v_j)^2 \geq \frac{1}{d} \cdot [(u_1 - v_1)^2 + (v_1 - u_2)^2 + \dots + (v_D - u_{D+1})^2$$

$$\geq \frac{1}{dn(2D+1)}$$

$$\geq \frac{1}{dn(2D+1)}$$

Random walk lemma

Lemma 6

(Random walk lemma) Let G be a d-regular n-vertex graph with all vertices having a self-loop. Let s be a vertex in G. Let $I > \Omega(dn^2 \log n)$, and X_I be the distribution of the vertex of the lth step in a random walk from s. Then for every t,

$$\Pr[X_l=t]>\frac{1}{2n}.$$

Proofs - 1

By the previous lemma,

$$||A^{l}p - 1||_{2} \le (1 - \frac{1}{4dn^{2}})^{\Omega(dn^{2}\log n)} < \frac{1}{n^{\alpha}}$$

for some constant α .

Choose α such that for $q = A^l p$,

$$|q-1|_1 \leq \sqrt{n} \cdot ||q-1||_2 < \frac{1}{n^2}.$$

Then for every *i*,

$$|q_i-\frac{1}{n}|<\frac{1}{n^2}$$

So that

$$-\frac{1}{n^2} < q_i - \frac{1}{n} < \frac{1}{n^2}$$

Proofs - 2

Therefore, the probability that $X_l = t$ is:

$$q_i > \frac{1}{n} - \frac{1}{n^2}$$
$$\geq \frac{1}{2n}.$$

Run the *I*-step random walks for $t = O(n \log n)$ many times, then with high probability, every vertex is visited, if the graph is connected.

This gives a randomized log space, written **RL**, algorithm to decide the connectivity of two vertices.

Random Walk and Expander

谢谢!