Yelp Dataset Sentiment Analysis

Literature Review Survey

Cole Hanrahan and Julia Sober Text Mining & Analysis Fall 2025

Motivation – Why Sentiment Analysis on Yelp?

- Yelp reviews are full of **opinions**, but **star ratings** can be inconsistent or biased.
- Text analysis helps interpret **real customer sentiment** beyond stars.
- Bridges $AI \rightarrow ML \rightarrow NLP$: understanding language through computation.

Research Directions in Literature

- The field spans three main research goals:
 - Binary Sentiment Classification positive vs. negative reviews.
 - -Star Rating Prediction predict 1–5 stars from text.
 - Bias Analysis explore inconsistencies between text and rating.

Data & Preprocessing (Common Steps)

- Data: Mostly Yelp reviews, sometimes compared with Amazon, Twitter, IMDB.
- Common preprocessing steps:
 - -Lowercasing, removing punctuation, stopwords.
 - Tokenization → focus on adjectives (key sentiment words).
 - -Negation handling: "not good" → "not_good" (mixed results).
 - -Stemming: Porter stemmer via NLTK.
- Split data: usually 70–30 or 80–20 train/test; some use k-fold validation.

Feature Engineering Approaches

- Different papers tested how best to represent text as numbers:
 - -Bag of Words (BoW): count word frequencies (still effective).
 - -Part-of-Speech Filtering: use only adjectives.
 - -Sentiment Lexicons: predefined word lists (e.g., Bing Liu).
- *Finding*: Raw text features often performed **as well as engineered ones** overengineering sometimes adds noise.

Machine Learning Models Compared

Classical ML dominates:

- Ensemble methods (Bagging, AdaBoost) slightly improve results.
- Deep learning rarely used traditional ML still performs well.

Model	Strength	Accuracy / RMSE
Naïve Bayes	Simple, fast	79%
Random Forest	Robust, handles noise	76%
Logistic Regression / SVM	Solid generalizers	50–55%
Linear Regression	Predicts stars	0.6

 Highlight specific papers here and show their different models

Evaluation and Findings

- **Metrics:** Accuracy, F1-Score, Precision/Recall, RMSE (for regression).
- Trends observed:
 - -More features ≠ better performance (can cause overfitting).
 - -Random Forest and Naïve Bayes remain top performers.
 - -Regression models can estimate ratings fairly accurately.

Challenges and Gaps

- Context & Sarcasm: "Great job burning my pizza!" still reads as positive to models.
- Lexicon mismatch: Yelp slang & typos break standard sentiment dictionaries.
- Imbalanced data: Some ratings $(2 \star, 3 \star)$ underrepresented.
- **Domain generalization:** Most models trained on restaurants only.

Interesting Findings

- **Simple ML still strong:** Naïve Bayes and Linear Regression remain competitive.
- Feature design matters: Focusing on adjectives helps; lexicons not always transferable.
- **Bias is real:** "Warm start" and subjective rating behaviors skew stars.
- **Future work:** Context-aware models (e.g., BERT) for sarcasm, multi-aspect sentiment, and business category generalization.

Conclusion and Next Steps

- Yelp sentiment research evolved from binary classification
 → star prediction → bias correction.
- Common thread: leveraging textual emotion for better business insights.
- Our contribution: continue this line by [state your project's focus e.g., improving feature interpretability, using deep embeddings, or analyzing multi-aspect sentiments].