Lettre de 10. Grothendieck à L. Breen (1)

Villecun le 17.2.75

Cher Larry,

Encore un "afterthought" à une lettre-fleuve sur le yoga homotopique. Comme tu sais sans doute, à un topos X on associe canoniquement un proensemble simplicial, donc un "pro-type d'homotopie" en un sens convenable. Dans le cas où X est "localement homotopiquement trivial", le pro-objet associé est essentiellement constant en tant que pro-objet dans la catégorie homotopique, donc X définit un objet de la catégorie homotopique usuelle, qui est son "type d'homotopie". De même, si X est "localement homotopiquement trivial en dim $\leq n$ ", il définit un type d'homotopie ordinaire "tronqué en dim $\leq n$ " - construction familière pour i=0 ou 1, même à des gens comme moi qui ne connaissent guère l'homotopie!

Ces constructions sont fonctorielles en X. D'ailleurs, si $f: X \longrightarrow Y$ est un morphisme de topos, Artin-Mazur ont donné une condition nécéssaire et suffisante cohomologique pour que ce soit une "équivalence d'homotopie en dim $\leq n$ ": c'est que $H^i(Y,F) \xrightarrow{\sim} H^i(X,f^*(F))$ pour $i \leq n$, et tout faisceau de groupes localement constant F sur Y, en se restreignant de plus à $i \leq 1$ dans le cas non commutatif. Ce critère, en termes de n-gerbes "localement constantes" F sur Y, s'interprète par la condition que $F(Y) \longrightarrow F(X)$ est une n-équivalence pour tout tel F et $i \leq n$. Il est certainement vrai que ceci équivaut encore au critère suivant

(A) Pour tout n-champ "localement contant" F sur Y, le n-foncteur $F(Y) \longrightarrow f^*(F)(X)$ est une n-équivalence;

¹Ce texte a été transcrit par Mateo Carmona

ou encore à

(B) Le n-foncteur $F \longrightarrow f^*(F)$ allant de la n-catégorie des (n-1)-champs localement constants sur Y dans celle des (n-1)-champs localement constants sur X, est une n-équivalence.

En d'autres termes, les constructions sur un topos X qu'on peut faire en termes de (n-1)-champs localement contants ne dépendent que de son "(pro)-type d'homotopie n-tronquée", et le définissent. Dans le cas où X est localement homotopiquement trivial en dim $\leq n$, donc définit un type d'homotopie n-tronqué ordinaire, on peut interpréter ce dernier comme un n-groupoïde C_n , (défini à n-équivalence près). En termes de C_n , les (n-1)-champs localement constants sur X doivent s'identifier aux n-foncteurs de la n-catégorie C_n dans la n-catégorie (n-1)—Cat de toutes les (n-1)-catégories. Dans le cas n=1 ceci n'est autre que la théorie de Poincaré de la classification des revêtements de X en termes du "groupoïde fondamental" C_1 de X. Par extension, C_n mérite le nom de n-groupoïde fondamental de X, que je propose de noter $\Pi_n(X)$. Sa connaissance induite donc celle des $\pi_i(X)$ $(0 \geq i \geq n)$ et des invariants de Postnikoff de tous les ordres jusqu'à $H^{n+1}(\Pi_{n-1}(X), \pi_n)$.

Dans le cas d'un topos X quelconque, pas nécéssairement localement homotopiquement trivial en dim $\leq n$, on espère pouvoir interpréter les (n-1)-champs localement constants sur X en termes d'un $\Pi_n(X)$ qui sera un pro-n-groupoïde. Ça a été fait en tous cas, plus ou moins, pour n=1 (du moins pour X connexe); le cas où X est le topos étale d'un schéma est traité in extenso dans SGA 3, à propos de la classification des tores sur une base quelconque.

Dans le cas n=1, on sait qu'on récupère (à équivalence près) le 1-groupoïde C_1 à partir de la 1-catégorie $\underline{\mathrm{Hom}}(C_1,\mathrm{Ens})$ de ces foncteurs dans $\mathrm{Ens}=0$ — Cat (i.e. des "systèmes locaux" sur C_1 qui est un topos, dit "multigaloisien") comme la catégorie des "foncteurs fibres" sur le dit topos, i.e. la catégorie opposée à la catégorie des points de ce topos (lequel n'est autre que le topos classifiant de C_1). Pour préciser pour n quelconque la façon dont le n-type d'homotopie d'un topos X (supposé localement homotopiquement trivial en dim $\leq n$, pour simplifier), i.e. son n-groupoïde fondamental C_n , s'exprime en termes de la n-catégorie des "(n-1)-systèmes locaux sur X" i.e. des (n-1)-champs localement constants sur

X, et par là élucider complètement l'énoncé hypothétique (B) ci-dessus, il faudrait donc expliciter comment un n-groupoïde C_n se récupère, à n-équivalence près, par la connaissance de la n-catégorie $C_n = n - \underline{\mathrm{Hom}}(C_n, (n-1) - \mathrm{Cat})$ des (n-1)-systèmes locaux sur C_n . On aurait envie de dire que C_n est la catégorie des "n-foncteurs fibres" sur C_n , i.e. des n-foncteurs $C_n \longrightarrow (n-1)$ —Cat ayant certaines propriétés d'exactitude (pour n=1, c'était la condition d'être les foncteurs image inverse pour un morphisme de topos, i.e. de commuter aux \varprojlim quelconques et aux \liminf finies ...) C'est ici que se matérialise la peur, exprimée dans ma précédente lettre, qu'on finisse par tomber sur la notion de n-topos et morphismes de tels! C_n serait un topos (appelé le "n-topos classifiant du n-groupoïde C_n), (n-1)—Cat serait le n-topos "ponctuel" type, et C_n d'interprète mod n-équivalence comme la n-catégorie des "n-points" du n-topos classifiant C_n . Brr!

Si on espère encore pouvoir définir un bon vieux 1-topos classifiant pour un n-groupoïde C_n , comme solution d'un problème universel, je ne vois guère que le problème universel suivant : pour tout topos T, considérons $\underline{\operatorname{Hom}}(\Pi_n(T),C_n)$. C'est une n-catégorie, mais prenons en la 1-catégorie tronquée $\tau_1\underline{\operatorname{Hom}}(\Pi_n(T),C_n)$. Pour T variable, on voudrait 2-représenter le 2-foncteur contravariant $\operatorname{Top}^\circ \longrightarrow 1-\operatorname{Cat}$ par un topos classifiant $B=B_{C_n}$, donc trouver un $\Pi_n(B) \stackrel{\varphi}{\longrightarrow} C_n$ 2-universel en le sens que pour tout T, le foncteur

$$\underline{\operatorname{Hom}}_{\operatorname{Top}}(T, \mathbf{B}) \xrightarrow{u \mapsto \varphi \circ \Pi_n(u)} \tau_1 \underline{\operatorname{Hom}}(\Pi_n(T), C_n)$$

soit une équivalence. Pour n=1 on sait que le topos classifiant de C_1 au sens usuel fait l'affaire, mais pour n=2 déjà, je doute que ce problème universel ait une solution. C'est peut-être lié au fait que le "théorème de Van Kampen", qu'on peut exprimer en disant que le 2-foncteur $T \longrightarrow \Pi_1(T)$ des topos localement 1-connexes vers les groupoïdes transforme (à 1-équivalence près) sommes amalgamées (et plus généralement commute aux 2-limites inductives), n'est sans doute plus vrai pour le $\Pi_2(T)$. Ainsi, si T est un espace topologique réunion de deux fermés T_1 et T_2 , il n'est sans doute plus vrai que la donnée d'un 1-champ localement constant sur T "équivaut à" la donnée d'un 1-champ localement constant F_i sur T_i (i=1,2) et d'une équivalence entre les restrictions de F_1 et F_2 à $T_1 \cup T_2$ (alors que l'énoncé analogue en termes de 0-champs, i.e. de revêtements, est évidemment correct).

L'énoncé (B) plus haut rend clair comment expliciter la cohomologie d'un n-groupoïde C_n . Si $C_n = \Pi_n(X)$, et si F est un (n-1)-champ localement constant sur X, e_{n-1}^X est le (n-1)-champ "final", on a une (n-1)-équivalence de (n-1)-catégories

$$\Gamma_X(F) = F(X) \simeq \operatorname{Hom}(e_{n-1}^X, F)$$

qui montre que le foncteur Γ_X "integration sur X" sur les (n-1)-champs localement constants, qui inclut la cohomologie (non commutative) localement constante de X en dim $\leq n-1$, s'interprète en termes de "(n-1)-systèmes locaux" sur le groupoïde fondamental comme un $\underline{\mathrm{Hom}}(e_{n-1}^{C_n},F)$ où maintenant F est interprété comme un n-foncteur

$$C_n \xrightarrow{F} (n-1) - \text{Cat}$$

et $e_{n-1}^{C_n}$ est le n-foncteur constant sur C_n , de valeur la (n-1)-catégorie finale.

Pour interpréter ceci en notation cohomologique, il faut que j'ajoute, comme "remords" à la lettre précédente, l'interprétation explicite de la cohomologie non commutative sur un topos X, en termes d'intégration de n-champs sur X. Soit F un n-champ de Picard strict sur X, il est donc défini par un complexe de cochaines L' sur X

$$0 \longrightarrow L^0 \longrightarrow L^1 \longrightarrow L^2 \longrightarrow \dots \longrightarrow L^n \longrightarrow 0$$

concentré en degrés $0 \le i \le n$ (défini à isomorphisme unique près dans la catégorie dérivée de Ab(X)). Ceci dit, les $H^i(X,L')$ (hypercohomologie) pour $0 \le i \le n$ s'interprètent comme $H^i(X,L') = \pi_{n-i}\Gamma_X(F)$.

Si on s'intéresse à tous les H^i (pas seulement pour $i \le n$) on doit, pour tout $N \ge n$, regarder L' comme un complexe concentré en degrés $0 \le i \le N$ (en prolongeant L' par des 0 à droite). Le N-champ de Picard strict correspondant n'est plus F mais $C^{N-n}F$, où C est le foncteur "espace classifiant", s'interprétant sur les n-catégories de Picard strictes comme l'opération consistant à "translater" les i-objets en des (i+1)-objets, et à rajouter un unique 0-objet; il se prolonge aux n-champs de Picard "de façon évidente", on espère, de façon à commuter aux opérations d'image inverse de n-champs. On aura donc pour $i \le N$

$$H^i(X, L') = \pi_{N-i} \Gamma_X(C^{N-n}F) \quad i \le N.$$

Ceci posé, il s'impose, pour tout n-champ de Picard strict F sur X, de poser

$$H^{i}(X,F) = \pi_{N-i}\Gamma_{X}(C^{N-n}F)$$
 si $N \ge i, n$

ce qui ne dépend pas du choix de l'entier $N \ge Sup(i,n)$ [NB On a un morphisme canonique de (n-1)-groupoïdes,

$$C(\Gamma_{V}F) \longrightarrow \Gamma_{V}(CF)$$
,

comme le montrent les constructions évidentes en termes de complexes de cochaines, et on voit de même que celui-ci induit des isomorphismes pour les π_i pour $1 \le i \le n+1$.]

NB On voit en passant que pour un n-champ en groupoïdes F sur X, si on se borne à vouloir définir les $H^i(X,F)$ pour $0 \le i \le n$, on n'a pas besoin sur F d'une structure de Picard, car il suffit de poser

$$H^{i}(X,F) = \pi_{n-i}(\Gamma_{X}(F)) \quad 0 \le i \le n.$$

Si d'autre part F est un n-Gr-champ (i.e. muni d'une loi de composition $F \times F \longrightarrow F$ ayant les propriétés formelles d'une loi de groupe) le (n+1)-"champ classifiant" est défini, et on peut définir $H^i(X,F)$ pour $i \le n+1$ par

$$H^{i}(X,F) = \pi_{n+1-i}(\Gamma_{X}(CF))$$

en particulier

$$H^{n+1}(X,F) = \pi_0(\Gamma_X(CF)) = \text{ sections de } CF \text{ à équivalence près.}$$

Mais on ne peut former $CCF = C^2F$ et définir $H^{n+2}(X,F)$, semble-t-il *que* si CF est lui-même un Gr-(n+1)-champ, ce qui ne sera sans doute le cas que si F est un n-champ de Picard strict...

Venons en maintenant au cas où F est un n-champ localement constant sur <math>X, donc défini par un (n+1)-foncteur

$$C_{n+1} \xrightarrow{F} n$$
 — Cat. de Picard strictes.

Alors, posant pour $0 \le i \le n$

$$H^{i}(C_{n+1}, F) = \pi_{n-1}(\underline{Hom}(e_n^{C_{n+1}}, F)),$$

"on a fait ce qu'il fallait" pour que l'on ait un isomorphisme canonique

$$H^i(C_{n+1},F) \simeq H^i(X,F),$$

(valable en fait sans structure de Picard sur F...). Il s'impose, pour tout ∞-groupoïde C et tout (n + 1)-foncteur

$$C \xrightarrow{F} n$$
 — Cat. de Picard strictes.

de définir les $H^i(C,F)$, pour tout i, par

$$H^{i}(C,F) = \pi_{N-i} \underline{Hom}(e_{N}^{C}, C^{N-n}F)$$

où on choisit $N \ge Sup(i,n)$. Si F n'a qu'une Gr-structure (pas nécéssairement de Picard) on peut définir encore les $H^i(C,F)$ pour $i \le n+1$ par

$$H^{i}(C, F) = \pi_{n+1-i} \underline{Hom}(e_{n+1}^{C}, CF).$$

Dans le cas $C = C_{n+1} = \Pi_{n+1}(X)$, il doit être vrai encore (en vertu de (A) plus haut), que cet ensemble est canoniquement isomorphe à $H^{n+1}(X,F) = \pi_0 \Gamma_X(CF)$ (c'est vrai et bien facile pour n = 0). Décrire la flèche canonique entre les deux membres de

$$H^{n+1}(X,F) \simeq H^{n+1}(\Pi_{n+1}X,F)$$
 ?

Si on veut réexpliciter (A) et (B), en termes du yoga (C), on arrive à la situation suivante:

On a un (n + 1)-foncteur entre (n + 1)-groupoïdes

$$f_{n+1}: C_{n+1} \longrightarrow D_{n+1}$$

induisant par troncature un *n*-foncteur

$$f_n: C_n \longrightarrow D_n$$

On doit avoir alors:

(A') f_n est une n-équivalence si et seule si le n-foncteur $\varphi \longrightarrow \varphi \circ f_n$

$$f_n^*: \underline{\mathrm{Hom}}(D_n, (n-1) - \mathrm{Cat}) \longrightarrow \underline{\mathrm{Hom}}(C_n, (n-1) - \mathrm{Cat})$$

allant des (n-1). systèmes locaux sur D_n (ou D_{n+1} , c'est pareil) vers les (n-1)-systèmes locaux sur C_n , est une n-équivalence.

(B') f_n est une n-équivalence si et seule si pour tout n-système local F sur D_{n+1} ,

$$F: D_{n+1} \longrightarrow n - Cat$$

le *n*-foncteur induit par f_{n+1}

$$\underbrace{\operatorname{Hom}(e_n^{D_{n+1}},F)}_{\Gamma_{D_{n+1}(F)}} \longrightarrow \underbrace{\operatorname{Hom}(e_n^{D_{n+1}},f_{n+1}^*F)}_{\Gamma_{C_{n+1}(F)}}$$

est une *n*-équivalence.

La construction de la cohomologie d'un topos en termes d'intégration des champs ne fait aucun appel à la notion de complexe de faisceaux abéliens, encore moins à la technique des résolutions injectives. On a l'impression que dans son esprit, via la définition (qui reste à expliciter!) des *n*-champs, elle s'apparenterait plutôt aux calculs "Cechistes" en termes d'hyperrecouvrements. Or ces derniers se décrivent à l'aide d'une petite dose d'algèbre semi-simpliciale. Si oui, cela ferait essentiellement trois approches distinctes pour construire la cohomologie d'un topos:

- a) point de vue des complexes de faisceaux, des résolutions injectives, des catégories dérivées (algèbre homologique commutative);
- b) point de vue Cechiste ou semi-simplicial (algèbre homotopique);
- c) point de vue des *n*-champs (algèbre catégorique, ou *algèbre homologique non-commutative*).

Dans a) on "résoud" les coefficients, dans b) on résoud l'espace (ou topos) de base, et dans c) en apparence on ne résoud ni l'un ni l'autre.

Bien cordialement,

Alexandre