

WHAT IS CLAIMED IS:

í. A	viewing device for	viewing by a user,	the device comprising:
ĺ	. A	. A viewing device for	. A viewing device for viewing by a user,

a support structure; and

a far field transmission hologram supported by the support structure, the far field transmission hologram having a graphic image encoded therein;

wherein, when the support structure is disposed in a viewing position of the user, the graphic image is superimposed, with substantially no reversed diffracted copy of the graphic image, on a natural scene as viewed by the user through the hologram, and

wherein the superimposed graphic image and the natural scene are viewable by the user in combination with substantial clarity.

- 2. The viewing device of claim 1, wherein the far field transmission hologram is a spatially varying diffraction efficiency far field hologram.
- 3. The viewing device of claim 2, wherein the far field transmission hologram is a fill factor modulated far field hologram.
- 4. The viewing device of claim 3, wherein the support structure is formed as a spectacle frame.
- 5. The viewing device of claim 3, wherein the support structure is formed as a hand-held viewer.
- 6. The viewing device of claim 3, wherein the support structure is formed as a bookmark.

1 .

2

1	7. The viewing device of claim 3, wherein the support structure is formed as an
2	article of jewelry.
1	8. The viewing device of claim 2, wherein the far field transmission hologram has
	·
2	a high diffraction efficiency region with plural low diffraction efficiency regions
3	distributed irregularly across the high diffraction efficiency region.
1	9. The viewing device of claim 8, wherein the percentage of area of the far field
2	transmission hologram occupied by the plural low diffraction efficiency regions is selected
3	so as to obtain a balance of un-diffracted light seen by the user and light diffracted into the
4	graphic image.
1	10. The viewing device of claim 8, wherein the size of each of the plural low
2	diffraction efficiency regions is selected to be sufficiently large so as to prevent any
3	diffraction patterns caused by the low diffraction efficiency regions from distracting from
4	the graphic image.
1	11. The viewing device of claim 8, wherein the size of each of the plural low
2	diffraction efficiency regions is selected to be sufficiently small so as to prevent a need to
3	maintain precise position with respect to an eye of the user in order to view the graphic
4	image.
1	12. The viewing device of claim 1, wherein the far field transmission hologram is
2	a computer-generated multilevel phase far field transmission hologram.
1	1/3. A viewing device for viewing by a user, the device comprising:

a spectacle frame having lens apertures; and

		A 1			
	1	26. The method of claim 20, wherein altering the at least one optical property of a			
	2	substrate comprises: generation via computer of a multilevel phase hologram.			
	1	A filter for use with a camera having a light gathering path and an image			
	2	sensor, the filter comprising:			
	3	a far field transmission hologram, the far field transmission hologram having a			
	4	graphic image encoded therein and being adapted for mounting in the light gathering path;			
	5	wherein, when the far field transmission hologram is mounted in the light			
	6	gathering path, the graphic image is superimposed, with substantially no reversed			
u u m	7	diffracted copy of the graphic image, on a natural scene as viewed by the image sensor			
D9671098 098700	8	through the hologram, and			
	9	wherein the superimposed graphic image and the natural scene are viewable by the			
	10	image sensor in combination with substantial clarity.			
	1	28. The filter of claim 27, wherein the far field transmission hologram is a fill			
	2	factor modulated far field hologram.			
	1	29. The filter of claim 27, wherein the far field transmission hologram is a			
	2	computer-generated multilevel phase far field transmission hologram.			
	1	The filter of claim 27, further comprising:			
	2	a filter frame, the far field transmission hologram being mounted in the frame.			

1	20. A method of generating a far field transmission hologram, the method
2	comprising:
3	altering at least one optical property of a substrate to form a substantially shift-
4	invariant far field hologram, the far field hologram having a graphic image encoded
5	therein, wherein the alteration of the at least one optical property produces a high
6	diffraction efficiency; and
7	substituting a low diffraction efficiency pattern for at least one selected region of
8	the far field hologram.
1	21. The method of claim 20, wherein the low diffraction efficiency pattern
2	comprises a substantially optically flat surface.
1	22. The method of claim 20, wherein the far field hologram is computer-
2	generated.
1	23. The method of claim 20, wherein the substantially shift-invariant far field
2	hologram has a utilized hologram area and has a minimum probe diameter, and
3	wherein the size of the selected region of substitution is substantially smaller than
4	the utilized hologram area and is substantially larger than the minimum probe diameter.
1	24. The method of claim 20, wherein altering the at least one optical property of a
2	substrate comprises: amplitude modulation.
1	25. The method of claim 20, wherein altering the at least one optical property of a
2	substrate comprises: optically interferometrically recording a hologram.