NETAJI SUBHAS UNIVERSITY OF TECHNOLOGY

MACHINE LEARNING

KNN QUIZ

ADARSH KUMAR

2020UCO1663 COE-3

LINKS TO FILES

QUIZ	Quiz google form
STUDENT RESPONSES	<u>Responses</u>

QUESTIONS

QUESTION	ANSWER
How to avoid a clashes between two classes of data? * Mark only one oval.	Choose odd value of k to avoid any chances of the confusion.
Choose a larger value of k to avoid any chances of the confusion.	
Choose a smaller value of k to avoid any chances of the confusion.	
Choose even value of k to avoid any chances of the confusion.	
Choose odd value of k to avoid any chances of the confusion.	
A small value of k could lead to as well as a big value of k can lead to	overfitting, underfitting
Mark only one oval.	
underfitting, underfitting	
overfitting, underfitting	
underfitting, overfitting	
overfitting, overfitting	

Which of the following distance variables do we use in case of categorical variables in K-NN?	Hamming distance
Mark only one oval.	
Hamming distance	
Euclidean distance	
Manhattan distance	
Cosine distance	
Which of the following is true about Manhattan distance? *	It can be used for continuous
Mark only one oval.	variables.
It can be used for continuous variables.	
It can be used for categorical variables.	
It can be used for categorical and continous variables.	
What is the correct order of time taken by 1-NN, 2-NN, 3-NN for creation of model? Mark only one oval. 1-NN > 2-NN > 3-NN 3-NN > 2-NN > 1-NN 1-NN ~ 2-NN ~ 3-NN 2-NN > 3-NN > 1-NN	1-NN ~ 2-NN ~ 3-NN

What will be the predicted value of unknown class '?' on choosing different value of k and which value of k should be preferred?	k =2 class predicted be red
new point to be classify k=2 R=3 R=7	
Mark only one oval.	
k = 2 class predicted be red	
k=3 class predicted be green	
k=7 class predicted be red	
k=5 class predicted be green	
	Local Communication
IN order to reduce noise in data which of the following option would you consider in k-NN?	I will increase the value of k
you consider in k-NN?	
you consider in k-NN? Mark only one oval.	
you consider in k-NN? Mark only one oval. I will increase the value of k	
you consider in k-NN? Mark only one oval. I will increase the value of k I will decrease the value of k	
you consider in k-NN? Mark only one oval. I will increase the value of k Noise can not be dependent on value of k None of the above Considering there is no limit of the size of data points, what is the most appropriate measure to pre process our data points?	We need to standardize the data points considering it
you consider in k-NN? Mark only one oval. I will increase the value of k I will decrease the value of k Noise can not be dependent on value of k None of the above Considering there is no limit of the size of data points, what is the * 1 point	walue of k We need to standardize the data
you consider in k-NN? Mark only one oval. I will increase the value of k Noise can not be dependent on value of k None of the above Considering there is no limit of the size of data points, what is the most appropriate measure to pre process our data points?	We need to standardize the data points considering it follows a gaussian
you consider in k-NN? Mark only one oval. I will increase the value of k I will decrease the value of k Noise can not be dependent on value of k None of the above Considering there is no limit of the size of data points, what is the most appropriate measure to pre process our data points? Mark only one oval.	We need to standardize the data points considering it follows a gaussian
you consider in k-NN? Mark only one oval. I will increase the value of k I will decrease the value of k Noise can not be dependent on value of k None of the above Considering there is no limit of the size of data points, what is the most appropriate measure to pre process our data points? Mark only one oval. It is not necessary to pre process the data points	We need to standardize the data points considering it follows a gaussian

	en which d data point		y both binar ariable to b	as real number * 1 point the real number variable then compute its Hamming distant
×	(6)		Class	
	1	3.7	+	
	0	3.9	•	
	0	2.4	+	
	1	3.3	-	
	0	2.8	+	
	1	2.2		
Which of	the followi	ng will b	e true about	When you decrea the k the variance
ariance a				will increases and
lark only o	ne oval.			bias will decrease
When	you increas	e the k the	bias will be in	nd variance increase
When	you decreas	se the k th	e bias will be i	and variance decrease
	you decreas	se the k th	e variance wil	and bais will decrease
When				
	of k does no	ot effect ba	ais and varain	

Which of the following statement is true about k-NN algorithm? 1. k-NN performs much better if all of the data have the same priority	1, 2 and 3
2. k-NN works well with a small number of input data, but struggles when the number of data points is very large	
3. k-NN makes no assumptions about the functional form of the problem being solved	
Mark only one oval.	
1 and 2 1 and 3 Only 1	
1, 2 and 3	
What is the time complexity of the <i>k</i> -NN algorithm? * n = cardinality of the training set d = dimension of each sample	O(n*d)
Mark only one oval.	
O(d + n)	
O(d)	
O(n*d)	
O(n)	

Using the Elbow Method, at which point is the value of K most suitable	3
35	
In elbow method, if we choose the number of clusters equal to the data points, then the value of WCSS becomes, and that will be the of the plot.	Zero, Endpoint
Mark only one oval.	
Zero, Middle	
One, Endpoint	
Zero, Endpoint	
Infinite, Endpoint	