Procedimentos para Análise Multiavariada

ACH2036 – Métodos Quantitativos Aplicados à Adm. de Empresas I Prof. Regis Rossi A. Faria 2º sem. 2020

Programa do tópico

- Alguns procedimentos importantes para realizar uma análise multivariada (requisitos, pressupostos)
- Roteiro de ações sugeridas

Pressupostos básicos

- Objetivo → evitar vieses nas estimativas
- Checagem de

 - Linearidade → relacionamento entre os dados (variáveis)
 - Ausência de erros

Pressupostos para regressão

- Normalidade dos resíduos
- Homoscedasticidade dos resíduos → dispersão de Y em relação a X deve ser consistente e constante em todas as dimensões (dispersão homogênea)
- Linearidade nas variáveis (e coeficientes, parâmetros)
- Ausência de autocorrelação serial nos resíduos
- Multicolinearidade entre as variáveis independentes

Uma boa regressão ou estimativa...

- Requisito de verificação: checar a situação dos resíduos, que é a principal medida de precisão do poder preditivo >> gerar para estudar (através de diversos testes disponíveis):
 - uma variável para os valores estimados (previstos pelo modelo)
 - uma variável para os resíduos e outra para os resíduos ao quadrado
- Há diversos testes disponíveis para checar situações de multicolinearidade, ausência de correlação serial, normalidade, etc.

Fontes de erros comuns

- Diferenças nos dados devido à amostragem em intervalos da população expostos a problemas ou exceções (o corte distingue da população)
- Existência (e influência) de *outliers*
- Erros na especificação de variáveis
- Multicolinearidade → aparece em regressões com alto R² e coeficientes não significantes

- Definição do tamanho da amostra, realização da amostragem/coleta de dados; tratamento dos dados
- Definição do objeto de pesquisa, o que se deseja verificar, e seleção das variáveis adequadas para este estudo
- Avaliação das suposições (pressupostos, requisitos para a técnica escolhida)
 - Análise de matriz de correlações, diagramas de dispersão
 - Múltiplas ferramentas e testes

- Definição do tamanho da amostra, realização da amostragem/coleta de dados; tratamento dos dados
- Definição do objeto de pesquisa, o que se deseja verificar, e seleção das variáveis adequadas para este estudo def. pesquisa
- Avaliação das suposições (pressupostos, requisitos para a técnica escolhida)
 - Análise de matriz de correlações, diagramas de dispersão
 - Múltiplas ferramentas e testes

- Montagem do modelo de análise, e iteração com acréscimo de uma variável em cada etapa (método por etapas ou stepwise)
 - A cada etapa: verificação do poder explicativo do modelo, significância estatística
 - Realização de testes
 - Avaliação do ajuste geral do modelo: na ocorrência de desajustes ->
 etapa de ajustamento ou correção dos dados
- Interpretação dos resultados
 - Validação de resultados (divisão da amostra em duas; reamostragem)

🧪 aplicação da técnica

- Montagem do modelo de análise, e iteração com acréscimo de uma variável em cada etapa (método por etapas ou stepwise)
 - A cada etapa: verificação do poder explicativo do modelo, significância estatística
 - Realização de testes
 - Avaliação do ajuste geral do modelo: na ocorrência de desajustes

 etapa de ajustamento ou correção dos dados
- Interpretação dos resultados
 - Validação de resultados (divisão da amostra em duas; reamostragem)

Testes

O que testar	Métodos (testes)
Normalidade	Kolmogorov-Smirnov Shapiro-Wilk (se amostra N<30)
Multicolinearidade	VIF (variance inflation factor) e Tolerância
Auto-correlação serial	Teste de Durbin-Watson
Homoscedasticidade	Pesarán-Pesarán
Heteroscedasticidade	White

 A análise gráfica também permite avaliar relações de linearidade entre variáveis, multicolinearidade entre variáveis independentes, normalidade dos resíduos, homoscedasticidade (existência de padrões que difiram de uma dispersão homogênea), independência dos resíduos

Ajustes

- Exame da influência de *outliers* (ex: retirando-os para estudo do modelo refeito)
- Avaliação do relacionamento entre variáveis explicativos e resíduos por regressão (ex: teste de heteroscedasticidade de White)
- Mudanças na especificação do modelo e variáveis
 - Transformações
 - Reamostragem (reavaliação do tamanho da amostra)

FIM