

CS 492: Operating Systems

Instructor: Iraklis Tsekourakis

Email: <u>itsekour@stevens.edu</u>

About me

- Prof. Iraklis Tsekourakis
 - Grew up in Kavala, Greece
 - Started programming in BASIC/MS-DOS in my last year of elementary school (1995)
 - Moved to the U.S. 5.5 years ago for my graduate studies
 - URL: <u>itsekour.github.io</u>

About me

- Education
 - BS in ECE Aristotle university of Thessaloniki (2010)
 - MS in CS Stevens Institute of Technology (2014)
 - PhD in CS Stevens Institute of Technology (2016)
- Professional Experience
 - Research Associate in CERTH/ITI (Information Technologies Institute) (2011-2012)
 - Software development, Project management, Research

Teaching

- I've been an instructor on
 - Image Processing
 - Machine Learning
 - Intro to Web Programming & Proj. Development
 - Operating Systems

Research

- 3-D Computer Vision
- Machine Learning
- Autonomous Software Agents

Objectives

- Introduction to basic components in operating systems
 - Process management and coordination
 - Memory management
 - I/O
 - File systems
- Advanced topics
 - Distributed systems
 - Security

Outcomes

Process-to-OS communication - How a system call is made and returns

Multi-thread programming - How preemptively scheduled processes and threads provide an abstraction that a program is the only one executing

Synchronization skill - How to use at least one classical synchronization mechanism to solve at least one classical synchronization problem

Virtual memory abstraction - How virtual memory provides an abstraction of physical memory

Input/output abstraction - How an operating system's input/output architecture provides an abstraction that every data source or sink behaves identically

File system algorithms - How the data structures of the UNIX file system serve to map file names to blocks of a storage device

Important Points

- At any point, ask me WHY?
- You can ask me anything about the course in class, during a break, on my office hours, by email
 - If you think a homework is taking too long or is wrong
 - If you're not certain about some topic
 - Etc. etc.

Logistics

- Class webpage: CANVAS
 - https://www.stevens.edu/canvas
- Office hours: Wednesdays 5-7pm
 - North Building 308
- Appointments by email
- CAs office hours: TBA

Resources

- Textbook:
 - Modern Operating Systems, Andrew S. Tanenbaum, 4rth edition (3rd is fine too)
- Slides and more
 - On Canvas

Lectures & Notes

- Lectures may **not** follow text closely
- Lecture notes will be available BEFORE class on Canvas
 - Parts of some slides may be BLANK (in the notes). This is intentional: the blanks will be filled (only) in class.
 - Some material presented in class (e.g., write on board) may NOT appear in the online notes.
 - Take notes when we discuss material not in the slides.

Syllabus

Week	Topics Covered	Reading	Assignments
1	Introduction & Outline		
2	Processes	Ch. 2	
3	Threads & Inter Process Comm.	Ch. 2	Asgn1: Processes
4	Inter Process Comm. II	Ch. 2	hw1: Threads/IPC/Scheduling
5	Scheduling	Ch. 2	Lab assignment
6	Scheduling II	Ch. 2	
7	Deadlocks	Ch. 6	Asgn2: Deadlocks
8	Virtual Memory + Midterm Overview		Midterm
9	Virtual Memory II	Ch. 3	hw2: Virtual Memory
10	Virtual Memory & File Systems	Ch. 4	
11	File Systems	Ch. 4	hw3: File Systems
12	IO & Disks	Ch. 5	
13	Disks	Ch. 5	
14	Overview/ Presentations		Extra Credit Projects

Grading

Course Evaluation

- Quizzes 5%
- Lab 5%
- Individual Assignments 10%
- Team Programming Assignments 30%
- Midterm 25%
- Final 25%
- Extra-credit Projects 5%

Grading Policies

- Late submission?
- Random attendance quizzes
- In class coding exercise
- Assignments: Any sign of collaboration (MOSS or similar software) -> Honor Board
- Midterm surveys and not only: Provide feedback!
- Grading complaints: 7 days
- Extra-credit Projects!!
- Final exam opt-out policy!