

JETSY

Robot asistente personal que interactúa con el ser humano a nivel físico y emocional.

PROJECT SPRINT #0. DATE: 14th April 2021 Juan Manuel Camara Diaz 1566532 Miguel del Arco Marquez 1566698 Daniel Suárez Valverde 1566103 Christian Ferré Delgado 1565129

Table of Contents

Project description	1
Electronic components	1
Scheme	1
Extra components and 3D pieces	1
Foreseen risks and contingency plan	2

Sprint #0 Date: 14 April 2021

JETSY

Robot asistente personal que interactúa con el ser humano a nivel físico y emocional.

Project description

Este proyecto busca crear un robot autónomo completamente enfocado a una interacción emocional con el usuario. Se llevará a cabo mediante un asistente de mesa con funcionalidades típicas ya existentes pero gracias a la inteligencia artificial podrá interactuar con él mediante la voz y video y así potenciar la interacción robot-humano buscando la máxima fluidez posible.

También creemos que el diseño estético del robot es muy importante para poder transmitir emociones al usuario por lo que estará muy trabajado.

Otro punto que queremos es que todo el software tenga que ser open source, desde los modelos de deep learning hasta las librerías usadas.

Electronic components

This is the list of the used components:

- Sensor de distancia por ultrasonidos
- Micro servo miniatura SG90 x 3
- Kit motores Dagu 140RPM (2 unidades)
- Controlador de motores TB6612FNG
- Amplificador de audio I2S MAX98357A (3W)
- Batería Lipo 3500mAh 2S 25C, 7.4V

- Arducam 5MP 1080p OV5647 RASPBERRY PI
- Altavoz con caja 3W
- PANTALLA 1.8" LCD/TFT
- Micrófono electret preamplificado
- Power Bank 5000 MAh, lx USB-A
- Raspberry Pi 3 Modelo A+ (Jetson Nano)
- INMSDH32G-100V10
- SENSOR INFRARROJO DE LLAMA x 2

Hardware Scheme

Diagrama del Hardware

- Sensor de distancia por ultrasonidos
- o VCC -> 5V(39)
- o GND -> GND(38)
- Trig -> PinOut(4)
- o Echo -> PinOut(6)

- Micro servo miniatura SG90
- \circ VCC -> 5V (39)
- GND -> GND(38)
- Pulse -> PinOut(10)
- Micro servo miniatura SG90
- \circ VCC -> 5V (39)
- o GND -> GND(38)
- Pulse -> PinOut(32)
- Kit motores Dagu 140RPM
- Pin1 -> A01 (Controlador de motores TB6612FNG)
- Pin1 -> A02 (Controlador de motores TB6612FNG)
- Kit motores Dagu 140RPM
- Pin1 -> B02 (Controlador de motores TB6612FNG)
- o Pin1 -> B01 (Controlador de motores TB6612FNG)
- Controlador de motores TB6612FNG
- VM -> + (Batería Lipo 3500mAh 2S 25C, 7.4V)
- $\circ \qquad VCC \rightarrow 5V(39)$
- o GND -> (Batería Lipo 3500mAh 2S 25C, 7.4V)
- PWMA -> PinOut(16)
- AIN2 -> PinOut(22)

- AIN1 -> PinOut(18)
- o STBY -> PinOut(21)
- BIN1 -> PinOut(17)
- BIN2 -> PinOut(25)
- o PWMB -> PinOut(19)
- Amplificador de audio I2S MAX98357A (3W)
- o VIN -> 5V (39)
- o GND -> GND(38)
- DIN -> PinOut(15)
- o BCLK -> PinOut(28)
- LRC -> PinOut(8)
- Batería Lipo 3500mAh 2S 25C, 7.4V
- Arducam 5MP 1080p OV5647 RASPBERRY PI
- o Conexion camara Jetson
- Altavoz con caja 3W
- + -> + (Amplificador de audio I2S MAX98357A (3W))
- --> (Amplificador de audio I2S MAX98357A (3W))
- PANTALLA 1.8" LCD/TFT
- $\circ \qquad VCC -> 5V(39)$
- o GND -> GND(38)

- o CS -> PinOut(2)
- o RESET -> PinOut(37)
- A0 -> PinOut(36)
- o SDA -> PinOut(3)
- o SCK -> PinOut(11)
- \circ LED -> 5V (39)
- Micrófono electret preamplificado
- \circ VCC -> 5V (39)
- o GND -> GND(38)
- o AUD -> PinOut(29)
- Power Bank 5000 MAh, 1x USB-A
- o Micro USB Jetson
- Raspberry Pi 3 Modelo A+ (Jetson Nano)
- INMSDH32G-100V10
- SD socket
- SENSOR INFRARROJO DE LLAMA
- \circ VCC -> 5V (39)
- o GND -> GND(38)
- OUT -> PinOut(7)
- SENSOR INFRARROJO DE LLAMA

- \circ VCC -> 5V (39)
- o GND -> GND(38)
- o OUT -> PinOut(33)

Software Architecture

Modules diagram

Input-output diagram

Amazing contributions

Una interacción humano-robot emocional nunca vista.

Asistente de mesa 2.0

Extra components and 3D pieces

- Cuerpo del robot (carcasas)
- Rueda x2
- Brazo x2
- Rueda loca x1
- Tapa enchufe x1

Simulation Strategy

Para llevar a cabo el robot vamos a crear algunos simuladores mientras se reliza la implmentacion hardware sofrware.

Para simular una pantalla LCD crearemos un simulador.

PyGame

FaceDraw

Foreseen risks and contingency plan

Risk#	Description	Probability	Impact	Contingency plan
1	Fallo de Bateria	Low	Low	No usar baterias
2	Bajo rendimiento de CPU/GPU	Low	Low	Reducir el número de módulos de Deep Learning.
3	Máquina de estados compleja	Medium	Low	Reducir las funcionalidades del robot
4	Mal reconocimiento de voz	Low	Medium	Ajustar algunas palabras clave
5	Grandes interferencias de audio	Low	Medium	Reducir la calidad del sonido para evitar las interferencias o usar una api externa.
6	No hacer un proyecto open-source	Medium	Low	Usar código y APIs no opern-source
7	Que el robot no se pueda estabilizar bien con las ruedas	Low	Medium	Distribución correcta del peso
8	Falta de espacio dentro del robot	Low	Medium	Hacer un buen diseño 3D de las piezas o hacerlo manual

References

This project has been inspired by the following Internet projects:

- https://living.ai/emo/
- https://developer.amazon.com/es-ES/alexa
- https://www.digitaldreamlabs.com/pages/cozmo

Other links

- https://www.youtube.com/watch?v=8QD6HqL9Qc0&t=7s
- https://pjreddie.com/darknet/yolo/
- https://github.com/snakers4/silero-models