Chapter 8 Arithmétique des entiers

Exercice 8.1

Démontrer que pour tout $n \in \mathbb{N}$, 7 divise $3^{6n} - 6^{2n}$.

Solution 8.1

On peut effectuer une récurrence sur $n \in \mathbb{N}$. En effet, 7 divise $0 = 3^0 - 6^0$. Soit $n \in \mathbb{N}$. Supposons que 7 divise $3^{6n} - 6^{2n}$, c'est-à-dire qu'il existe $k \in \mathbb{Z}$ tel que

$$3^{6n} - 6^{2n} = 7k$$
.

Ainsi $3^{6n} = 6^{2n} + 7k$, d'où

$$3^{6n+6} - 6^{2n+2} = 3^6(6^{2n} + 7k) - 6^{2n+2} = 6^{2n}(3^6 - 6^2) + 7k \times 3^6 = 7(99 \times 6^{2n} + 3^6k).$$

Ainsi, 7 divise $3^{6n+6} - 6^{2n+2}$.

On en déduit le résultat par récurrence.

Variante. En utilisant les opération modulo 7:

$$3^3 = 27 \equiv -1 \pmod{7}$$
 donc $3^6 \equiv (-1)^2 \equiv 1 \pmod{7}$

de même

$$6^2 = 36 \equiv 1 \pmod{7}.$$

Ainsi, pour $n \in \mathbb{N}$,

$$3^{6n} - 6^{2n} \equiv 1^n - 1^n \equiv 0 \pmod{7}$$
,

c'est-à-dire que 7 divise $3^{6n} - 6^{2n}$.

Les nombres a, b, c, d étant des éléments non nuls de \mathbb{Z} , dire si les propriétés suivantes sont vraies ou fausses, en justifiant la réponse.

- **1.** Si a divise b et c, alors $c^2 2b$ est multiple de a.
- **2.** Si a divise b + c et b c, alors a divise b et a divise c.
- 3. Si a est multiple de b et si c est multiple de d, alors a + c est multiple de b + d.
- **4.** Si 4 ne divise pas bc, alors b ou c est impair.
- 5. Si a divise b et b ne divise pas c, alors a ne divise pas c.

Solution 8.2

- **1.** Vrai. Si a divise b et c, alors a divise 2b et $c \times c$ et donc divise $c^2 2b$.
- **2.** Faux. On peut montrer que a divise 2b et 2c, ce qui suggère un contre exemple avec a = 2. On a bien a = 2 qui divise 8 = 5 + 3 et divise 2 = 5 3 et pourtant 2 ne divise pas 5 (ni 3 d'ailleurs).
- **3.** Faux. $4 = 2 \times 3$ et $35 = 5 \times 7$ et 4 + 35 = 39 n'est pas multiple de 3 + 7 = 10.
- **4.** Vrai. On montre facilement la contraposée. Si b et c sont pairs, alors $2 \mid b$ et $2 \mid c$, donc $4 = 2 \times 2 \mid bc$.
- **5.** Faux. a = 2 divise b = 6 et 6 ne divise pas c = 10 et on a bien 2 | 10.

Déterminer les entiers $n \in \mathbb{N}$ tels que :

- 1. n|n + 8.
- 2. n-1|n+11.
- 3. $n-3|n^3-3$.

Solution 8.3

1. Puisque $n \mid n$, alors

$$n|n+8 \iff n|n+8-n \iff n|8 \iff n \in \{1,2,4,8\}.$$

2. Puisque n-1|n-1, alors

$$\begin{array}{ll} n-1|n+11 \iff n-1|(n+11)-(n-1) \iff n-1|12 \\ \iff n-1 \in \{\,\pm 1, \pm 2, \pm 3, \pm 4, \pm 6, \pm 12\,\,\} \iff n \in \{\,0, 2, 3, 4, 5, 7, 13\,\,\}\,\mathrm{car}\,\,n \geq 0. \end{array}$$

3. On a $n-3|n^2(n-3)$, c'est-à-dire $n-3|n^3-3n^2$, d'où

$$n-3|n^3-3 \iff n-3|(n^3-3)-(n^3-3n^2) \iff n-3|3n^2-3.$$

De plus, n - 3|3n(n - 3), c'est-à-dire $n - 3|3n^2 - 9n$, d'où

$$n-3|n^{3}-3\iff n-3|3n^{2}-3-3n^{2}+9n\iff n-3|9n-3$$

$$\iff n-3|9n-3-9(n-3)\iff n-3|24$$

$$\iff n-3\in \{\pm 1,\pm 2,\pm 3,\pm 4,\pm 6,\pm 8,\pm 12,\pm 24\} \iff n\in \{0,1,2,4,5,6,9,11,15,27\}.$$

Variante. On peut aussi remarquer que $n^3 - 3 = (n-3)(n^2 + 3n + 9) + 24$ (division euclidienne de polynômes) et on retrouve

$$n-3|n^3-3 \iff n-3|24.$$

Exercice 8.4 Déterminer l'ensemble E des $n \in \mathbb{Z}$ tels que $n^2 + 7 \mid n^3 + 5$. Solution 8.4

Soit $n \in \mathbb{N}^*$.

- 1. Montrer que tout élément de [1, n] a au moins un multiple dans [n + 1, 2n].
- **2.** En déduire que l'ensemble E des multiples communs à $1, 2, \ldots, 2n$ est égal à l'ensemble E' des multiples communs à $n+1, n+2, \ldots, 2n$.

Solution 8.5

Montrer que pour tout $n \in \mathbb{N}$, l'intervalle [n! + 2, n! + n] ne contient aucun nombre premier.

Solution 8.6

Soit
$$n \in \mathbb{N}$$
. Soit $k \in [2, n]$,

$$k \mid n! + k \text{ et } 2 \le k < n! + k.$$

L'entier n! + k n'est donc pas premier.

Exercice 8.7 (***) Infinité des nombres premiers congrus à 3 modulo 4, (X MP)

Montrer que l'ensemble \mathcal{P} des nombres premiers est infini. Montrer qu'il en est de même de l'ensemble des nombres premiers congrus à 3 modulo 4.

Solution 8.7 Infinité des nombres premiers congrus à 3 modulo 4, (X MP)

Sachant que l'on a $96842 = 256 \times 375 + 842$, déterminer, sans faire la division, le reste de la division du nombre 96842 par chacun des nombres 256 et 375.

Solution 8.8

On a $842 = 256 \times 3 + 74$, d'où

$$96842 = 256 \times 375 + 256 \times 3 + 74 = 256 \times 378 + 74$$
 et $0 \le 74 < 256$.

Le quotient et le reste de la division euclidienne de 96842 par 256 sont respectivement 378 et 74. De manière analogue, on On a $842 = 2 \times 375 + 92$, d'où

$$96842 = 256 \times 375 + 2 \times 375 + 92 = 258 \times 375 + 92$$
 et $0 \le 92 < 375$.

Le quotient et le reste de la division euclidienne de 96842 par 375 sont respectivement 258 et 92.

Les nombres a, b, c, d étant des éléments non nuls de \mathbb{Z} , dire si les propriétés suivantes sont vraies ou fausses, en justifiant la réponse.

- **1.** Si a divise b et b divise c, alors a divise c.
- **2.** Si a divise b et a divise c, alors a divise 2b + 3c.
- 3. S'il existe u et v entiers tels que au + bv = 4 alors pgcd(a, b) = 4.
- **4.** Si 7a 9b = 1 alors a et b sont premiers entre eux.
- **5.** Si a divise b et b divise c et c divise a, alors |a| = |b|.
- **6.** Si a divise c et b divise d, alors ab divise cd.
- 7. Si 9 divise ab et si 9 ne divise pas a, alors 9 divise b.
- **8.** Si a divise b ou a divise c, alors a divise bc.
- **9.** Si a divise b, alors a n'est pas premier avec b.
- 10. Si a n'est pas premier avec b, alors a divise b ou b divise a.

Solution 8.9

Calculer pgcd(424, 68) par l'algorithme d'Euclide.

Solution 8.10

On a successivement

$$424 = 6 \times 68 + 16$$
 donc $424 \mod 68 = 16$
 $68 = 4 \times 16 + 4$ donc $68 \mod 16 = 4$
 $16 = 4 \times 4 + 0$ donc $16 \mod 4 = 0$.

Ainsi pgcd(424, 68) = 4.

Calculer par l'algorithme d'Euclide pgcd (18480, 9828).

Solution 8.11

pgcd(18480, 9828) = 84.

Soit $n \in \mathbb{N}$. Déterminer, en discutant éventuellement suivant les valeurs de n, le pgcd des entiers suivants.

$$A = 9n^2 + 10n + 1$$
 et $B = 9n^2 + 8n - 1$.

Solution 8.12

$$pgcd(A, B) = pgcd(A - B, B) = pgcd(2n + 2, 9n^2 + 8n - 1).$$

En remarquant que $9n^2 + 8n - 1 = (n+1)(9n-1)$, on a donc

$$pgcd(A, B) = pgcd(2(n+1), (n+1)(9n-1)) = (n+1)pgcd(2, 9n-1) = (n+1)pgcd(2, n-1)$$

puisque 9n - 1 = 2(4n) + n - 1. Finalement

$$\operatorname{pgcd}(A, B) = \begin{cases} 2(n+1) & : n \text{ impair} \\ (n+1) & : n \text{ pair} \end{cases}$$

Soit $u = (u_n)_{n \in \mathbb{N}}$ la suite numérique définie par

$$u_0 = 0,$$
 $u_1 = 1,$ et $\forall n \in \mathbb{N}, u_{n+2} = 3u_{n+1} - 2u_n.$

- 1. Calculer les termes u_2 , u_3 , u_4 , u_5 , u_6 de la suite u.
- **2.** Montrer que la suite *u* vérifie

$$\forall n \in \mathbb{N}, u_{n+1} = 2u_n + 1.$$

En déduire le plus grand diviseur commun de deux termes consécutifs de cette suite u.

3. Montrer que la suite *u* vérifie

$$\forall n \in \mathbb{N}, u_n = 2^n - 1.$$

Les nombres $2^n - 1$ et $2^{n+1} - 1$ sont-ils premiers entre eux pour tout entier naturel n?

4. Vérifier que, pour tout couple d'entiers naturels $(n, p) \in \mathbb{N} \times \mathbb{N}$,

$$u_{n+p} = u_n \left(u_p + 1 \right) + u_p.$$

En déduire que, pour tout couple d'entiers naturels $(n, p) \in \mathbb{N} \times \mathbb{N}$,

$$\operatorname{pgcd}\left(u_{n}, u_{n+p}\right) = \operatorname{pgcd}\left(u_{n}, u_{p}\right). \tag{8.1}$$

5. Soient *a* et *b* deux entiers naturels non nuls, *r* est le reste de la division euclidienne de *a* par *b*. Déduire de la propriété (8.1)

$$\operatorname{pgcd}\left(u_{b}, u_{r}\right) = \operatorname{pgcd}\left(u_{a}, u_{b}\right)$$

et que

$$\operatorname{pgcd}\left(u_a, u_b\right) = u_{\operatorname{pgcd}(a,b)}.$$

6. Calculer alors pgcd (u_{1982}, u_{312}) .

Solution 8.13

1. On a succéssivement

$$u_0 = 0$$

$$u_1 = 1$$

$$u_2 = 3u_1 - 2u_0 = 3$$

$$u_3 = 3u_2 - 2u_1 = 9 - 2 = 7$$

$$u_4 = 3u_3 - 2u_2 = 21 - 6 = 15$$

$$u_5 = 3u_4 - 2u_3 = 45 - 14 = 31$$

$$u_6 = 3u_5 - 2u_4 = 93 - 30 = 63$$

2. Pour $n \in \mathbb{N}$, on pose R(n) l'assertion $u_{n+1} = 2u_n + 1$.

On a
$$u_1 = 1$$
 et $2u_0 + 1 = 1$, d'où $R(0)$.

Soit $n \in \mathbb{N}$ tel que R(n). On a alors

$$u_{n+2} = 3u_{n+1} - 2u_n$$

= $3u_{n+1} - (u_{n+1} - 1)$ d'après $R(n)$
= $2u_{n+1} + 1$ d'où $R(n+1)$.

Conclusion

Par récurrence, on obtient pour tout $n \in \mathbb{N}$, $u_{n+1} = 2u_n + 1$.

De plus la relation $u_{n+1} - 2u_n = 1$ et le théorème de Bézout montre que u_{n+1} et u_n sont premiers entre eux.

3. Pour $n \in \mathbb{N}$, on a $u_{n+1} + 1 = 2(u_n + 1)$, ainsi, la suite $(u_n + 1)$ est géométrique de raison 2 et pour $n \in \mathbb{N}$,

$$u_n + 1 = 2^n (u_0 + 1) = 2^n$$
,

d'où $u_n = 2^n - 1$. Comme vu à la question précédente $2^{n+1} - 1$ et $2^n - 1$ sont premiers entre eux.

4. Pour $n, p \in \mathbb{N}$,

$$u_n(u_p+1) + u_p = (2^n-1) \times 2^p + (2^p-1) = 2^{n+p} - 2^p + 2^p - 1 = 2^{n+p} - 1 = u_{n+p}$$

On en déduit alors

$$\operatorname{pgcd}\left(u_{n},u_{n+p}\right)=\operatorname{pgcd}\left(u_{n},u_{n+p}-(u_{p}+1)u_{n}\right)=\operatorname{pgcd}\left(u_{n},u_{p}\right).$$

5. Notons q et r la quotient le reste de la division euclidienne de a par b: a = bq + r. En écrivant a = bq + r = b + (b(q - 1) + r), on a d'après la question précédente

$$\operatorname{pgcd}(u_a, u_b) = \operatorname{pgcd}(u_b, u_a) = \operatorname{pgcd}(u_b, u_{bq+r})$$

$$= \operatorname{pgcd}(u_b, u_{b+(b(a-1)+r)}) = \operatorname{pgcd}(u_b, u_{b(a-1)+r})$$

En itérant le procédé (ou avec une récurrence), on obtient

$$pgcd(u_b, u_{bq+r}) = pgcd(u_b, u_{b(q-1)+r}) = pgcd(u_b, u_{b(q-2)+r}) = ...$$
$$= pgcd(u_b, u_{a+r}) = pgcd(u_b, u_{a+r}) = pgcd(u_b, u_a).$$

Notons $a_0 = a$, $a_1 = b$ et définissons par récurrence l'entier a_{i+2} par

$$a_{j+2} = a_j \mod a_{j+1}$$

tant que $a_{j+1} \neq 0$. On note $k \in \mathbb{N}$ le premier indice j tel que $a_{j+2} = 0$. Alors, l'algorithme d'Euclide donne $\operatorname{pgcd}(a,b) = a_{k+1}$.

Nous avons déjà montré que

$$\operatorname{pgcd}\left(u_{a_{j}},u_{a_{j+1}}\right)=\operatorname{pgcd}\left(u_{a_{j+1}},u_{a_{j+2}}\right).$$

et en itérant le procédé, on obtient finalement

$$\begin{split} \operatorname{pgcd}\left(u_{a_{0}}, u_{a_{1}}\right) &= \operatorname{pgcd}\left(u_{a_{1}}, u_{a_{2}}\right) = \dots \\ &= \operatorname{pgcd}\left(u_{a_{k-1}}, u_{a_{k}}\right) = \operatorname{pgcd}\left(u_{a_{k}}, u_{a_{k+1}}\right) = \operatorname{pgcd}\left(u_{a_{k+1}}, 0\right) = u_{a_{k+1}} \end{split}$$

c'est-à-dire

$$\operatorname{pgcd}(u_a, u_b) = u_{\operatorname{pgcd}(a,b)}$$

6. Puisque pgcd(1982, 312) = 2, on a $pgcd(u_{1982}, u_{312}) = u_2 = 3$.

Exercice 8.14 *Une équation avec un PGCD et un PPCM* Résoudre l'équation suivante, d'inconnues $(a, b) \in \mathbb{N}^2$:

$$pgcd(a, b) + ppcm(a, b) = a + b.$$

Solution 8.14 Une équation avec un PGCD et un PPCM

Les nombres a, b étant des éléments non nuls de \mathbb{Z} , dire si les propriétés suivantes sont vraies ou fausses, en justifiant la réponse.

- **1.** Si 19 divise *ab*, alors 19 divise *a* ou 19 divise *b*.
- **2.** Si 91 divise *ab*, alors 91 divise *a* ou 91 divise *b*.
- 3. Si 5 divise b^2 , alors 25 divise b^2 .
- **4.** Si 12 divise b^2 , alors 4 divise b.
- 5. Si 12 divise b^2 , alors 36 divise b^2 .

Solution 8.15

- 1. Vrai. 19 est un nombre premier : c'est le lemme d'Euclide.
- **2.** Faux. $91 = 7 \times 13$ n'est pas premier. Avec a = 7 et b = 13, on a bien 91|ab mais 91 ne divise ne a, ni b.
- **3.** Vrai. 5 est premier et $5|b \times b$, donc (lemme d'Euclide) 5|b, d'où $25|b^2$.
- **4.** Faux. Avec b = 6, on a bien $12|b^2$ mais 4 ne divise pas $b^2 = 36$.
- **5.** On écrit la décompostion en facteur premiers de *b*:

$$b = 2^u 3^v p_1^{\alpha_1} \dots p_r^{\alpha_r}$$

où 2, 3, p_1, \ldots, p_r sont des nombre premiers distincts, $u \in \mathbb{N}$, $v \in \mathbb{N}$ (donc éventuellement nuls), $\alpha_i \in \mathbb{N}^*$. On a donc

$$b^2 = 2^{2u} 3^{2v} p_1^{2\alpha_1} \dots p_r^{2\alpha_r}$$

Si $12|b^2$ alors $2|b^2$ et $3|b^2$, donc $2u \ge 1$ et $2v \ge 1$, et puisque $v \in \mathbb{N}$, $2v \ge 2$, donc $12 = 2^1 \times 3^2|b^2$.

Exercice 8.16 Développement de $(1 + \sqrt{2})^n$

1. Monter

$$\forall n \in \mathbb{N}, \exists ! (a_n, b_n) \in \mathbb{Z}^2, (1 + \sqrt{2})^n = a_n + b_n \sqrt{2}.$$

2. Calculer $\operatorname{pgcd}(a_n, b_n)$ pour tout $n \in \mathbb{N}$.

Solution 8.16 *Développement de* $(1 + \sqrt{2})^n$

On considère l'équation (E): 26x + 15y = 1 dans laquelle les inconnues x et y sont des entiers relatifs.

- 1. Écrire l'algorithme d'Euclide pour les nombres 26 et 15.
- **2.** En déduire une solution particulière de (E) puis l'ensemble des solutions de (E).
- 3. Utiliser ce qui précède pour résoudre l'équation 26x + 15y = 4.

Solution 8.17

1. On a

$$26 = 1 \times 15 + 11$$
 $15 = 1 \times 11 + 4$ $11 = 2 \times 4 + 3$ $4 = 1 \times 3 + 1$ $3 = 3 \times 1 + 0$.

Donc pgcd(26, 15) = 1.

2. On remonte les calculs précédents:

$$1 = 4 - 1 \times 3$$
 = $3 \times 4 - 1 \times 11 ::3$ = $11 - 2 \times 4$
= $3 \times 15 - 4 \times 11$:: $4 = 15 - 1 \times 11$
= $7 \times 15 - 4 \times 26$:: $11 = 26 - 1 \times 15$

D'où la solution particulière $(x_0, y_0) = (-4, 7)$.

On a donc

$$26x + 15y = 1 \iff 26x + 15y = 26 \times (-4) + 15 \times 7 \iff 26(x+4) = -15(y-7)$$

Or $15 = 3 \times 5$ est premier avec 26, donc 3 et 5 n'apparaissent pas dans la décomposition en facteurs premiers de 26. On en déduit que 15 divise x + 4 dons l'équation précédente. Plus précisement, en posant x + 4 = 15m ($m \in \mathbb{Z}$), nous avons y - 7 = -26m.

Nous pouvons alors vérifier que l'ensemble des solutions de (E) est l'ensemble des couples

$$(15m-4, -26m+7)$$
 lorsque m décrit \mathbb{Z} .

3. Une solution particulière de 26x + 15y = 4 est $(x_0, y_0) = (-16, 28)$. Un raisonnement analogue au précédent donne tous les couples de solutions (15m - 16, -26m + 28), où $m \in \mathbb{Z}$.

Résoudre dans \mathbb{Z}^2 les équations

- **1.** 1260x + 294y = 3814.
- **2.** 1260x + 294y = 2814.

Solution 8.18

Soient a et b des entiers > 0 et premiers entre eux. Montrer qu'il existe un et un seul couple d'entiers (c, d) tel que

$$ac + bd = 1 \qquad 0 \le c < b, \tag{8.2}$$

et que les autres solutions (u, v) de l'égalité de Bézout ua + vb = 1 sont u = c + kb et v = d - ka, k parcourant \mathbb{Z} .

Solution 8.19

Exercice 8.20 (***) Suite de Farey

Soit $n \in \mathbb{N}^*$. Considérons tous les nombres rationnels *mis sous forme irréductible* appartenant à [0, 1], et dont le dénominateur est au plus égal à n. En les rangeant par ordre croissant, on obtient une suite \mathcal{F}_n , appelée *suite de Farey d'ordre n*. Voici par exemple \mathcal{F}_7 :

$$\frac{0}{1}, \frac{1}{7}, \frac{1}{6}, \frac{1}{5}, \frac{1}{4}, \frac{2}{7}, \frac{1}{3}, \frac{2}{5}, \frac{3}{7}, \frac{1}{2}, \frac{4}{7}, \frac{3}{5}, \frac{2}{3}, \frac{5}{7}, \frac{3}{4}, \frac{4}{5}, \frac{5}{6}, \frac{6}{7}, \frac{1}{1}.$$

- 1. Montrer que, si $x = \frac{a}{b}$ et $y = \frac{c}{d}$ sont deux termes consécutifs de \mathcal{F}_n (x < y), on a bc ad = 1.
- **2.** Déduire de ce qui précède que, si $x = \frac{a}{b}$, $y = \frac{c}{d}$, $z = \frac{e}{f}$ sont trois termes consécutifs de \mathcal{F}_n , on a $y = \frac{a+e}{b+f}$.

Solution 8.20 *Suite de Farey*

Montrer qu'il existe un unique couple $(u, v) \in \mathbb{Z}^2$ tel que ub - av = 1 et $n - b < v \le n$. Posant $t = \frac{u}{v}$, montrer ensuite que t appartient à \mathcal{F}_n et $t \ge y$. Montrer enfin que t = y, en raisonnant par l'absurde ; on évaluera les différences y - x, t - y, t - x.

Montrer que si p > 3 est premier, alors $24|p^2 - 1$. **Solution 8.21**

Résoudre l'équation xy + 6x - 3y = 40 d'inconnue $(x, y) \in \mathbb{Z}^2$.

Solution 8.22

Pour $(x, y) \in \mathbb{Z}^2$,

$$xy + 6x - 3y = 40 \iff (x - 3)(y + 6) + 18 = 40 \iff (x - 3)(y + 6) = 22.$$

Or l'ensemble des diviseurs (dans \mathbb{Z}) de 22 sont $\{\pm 1, \pm 2, \pm 11, \pm 22\}$. On distingue ainsi huit cas:

$$x-3=1$$
 et $y+6=22 \iff x=4$ et $y=16$
 $x-3=2$ et $y+6=11 \iff x=5$ et $y=5$
 $x-3=11$ et $y+6=2 \iff x=14$ et $y=-4$
 $x-3=22$ et $y+6=1 \iff x=25$ et $y=-5$
 $x-3=-1$ et $y+6=-22 \iff x=2$ et $y=-28$
 $x-3=-2$ et $y+6=-11 \iff x=1$ et $y=-17$
 $x-3=-11$ et $y+6=-2 \iff x=-8$ et $y=-8$
 $x-3=-22$ et $y+6=-1 \iff x=-19$ et $y=-7$

L'ensemble des solutions de l'équation xy + 6x - 3y = 40 est

$$\{(4,16),(5,5),(14,-4),(25,-5),(2,-28),(1,-17),(-8,-8),(-19,-7)\}.$$

Combien 15! admet-il de diviseurs positifs?

Solution 8.23

On écrit la décompostion en facteurs premiers de 15!:

$$15! = 2 \times 3 \times 4 \times 5 \times 6 \times 7 \times 8 \times 9 \times 10 \times 11 \times 12 \times 13 \times 14 \times 15$$

$$= 2 \times 3 \times 2^{2} \times 5 \times 2 \times 3 \times 7 \times 2^{3} \times 3^{2} \times 2 \times 5 \times 11 \times 2^{2} \times 3 \times 13 \times 2 \times 7 \times 3 \times 5$$

$$= 2^{11}3^{6}5^{3}7^{2}11^{1}13^{1}.$$

Les diviseurs positifs de 15! sont donc les entiers de la forme

$$2^{a}3^{b}5^{c}7^{d}11^{e}13^{f} \quad \text{avec} \quad \begin{cases} 0 \le a \le 11 \\ 0 \le b \le 6 \\ 0 \le c \le 3 \\ 0 \le d \le 2 \\ 0 \le e \le 1 \\ 0 \le f \le 1 \end{cases}$$

Il y en a donc $12 \cdot 7 \cdot 4 \cdot 3 \cdot 2 \cdot 2 = 4032$.

Combien 15! admet-il de diviseurs?

Exercice 8.25

Soient $a \in \mathbb{N}^*$ et N le nombre de diviseurs positifs de a. Déterminer une condition nécessaire et suffisante portant uniquement sur N pour que a soit un carré parfait.

Solution 8.25

N impair.

Quel est le reste de la division euclidienne de 3^{2023} par 11.

Solution 8.26

On a successivement,

$$3 \equiv 3 \pmod{11}$$
 $3^2 \equiv 9 \pmod{11}$ $3^3 \equiv 5 \pmod{11}$ $3^4 \equiv 4 \pmod{11}$ $3^5 \equiv 1 \pmod{11}$.

De plus, $2015 = 403 \times 5$, d'où

$$3^{2015} = (3^5)^{403} \equiv 1^{403} \equiv 1 \pmod{11}.$$

Calculer 2000^{2000} modulo 7 et 2^{500} modulo 3.

Solution 8.27

On a $2000 = 285 \times 7 + 5$, d'où

$$2000 \equiv 5 \pmod{7}$$

 $2000^2 \equiv 5^2 \equiv 25 \equiv 4 \pmod{7}$
 $2000^3 \equiv 5 \times 4 \equiv 20 \equiv 6 \pmod{7}$
 $2000^4 \equiv 5 \times 6 \equiv 30 \equiv 2 \pmod{7}$
 $2000^5 \equiv 5 \times 2 \equiv 10 \equiv 3 \pmod{7}$
 $2000^6 \equiv 5 \times 3 \equiv 15 \equiv 1 \pmod{7}$

De plus, $2000 = 333 \times 6 + 2$, d'où

$$2000^{2000} = 2000^{333 \times 6 + 2} = (2000^{6})^{333} \times 2000^{2} \equiv 1^{333} 4 \pmod{7} \equiv 4 \pmod{7}.$$

De manière analogue, on trouve $2^2 \equiv 1 \pmod{3}$, d'où

$$2^{500} = (2^2)^{250} \equiv 1^{250} \equiv 1 \pmod{3}.$$

Exercice 8.28 Reste de la division euclidiene du carré d'un entier par 8

- **1.** Soit $a \in \mathbb{Z}$. Montrer que le reste de la division euclidienne de a^2 par 8 est égal à 0, 1 ou 4.
- 2. Soit $n \in \mathbb{N}$. Montrer que, si 8 divise n-7, alors n ne peut pas être la somme de trois carrés d'entiers.

Solution 8.28 Reste de la division euclidiene du carré d'un entier par 8

Déterminer les nombres entiers x tels que $x^2 - 2x + 2$ soit divisible par 17.

Solution 8.29

Résumons sous forme de tableau

<i>x</i> mod 17	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
$x^2 \mod 17$	0	1	4	9	16	8	2	15	13	13	15	2	8	16	9	4	1
$x^2 - 2x + 2 \mod 17$	2	1	2	5	10	0	9	3	16	14	14	16	3	9	0	10	5

Ainsi $x^2 - 2x + 2$ est divisible par 17 si, et seulement si

$$x \equiv 5 \pmod{17}$$
 ou $x \equiv 14 \pmod{17}$.

Déterminer les solutions entière de $x^2 + y^2 = 11z^2$.

Solution 8.30

(0, 0, 0)

Résoudre les équations suivantes.

- 1. $5x \equiv 3$ [17].
- **2.** $10x \equiv 6$ [34].
- **3.** $10x \equiv 5$ [34].

Solution 8.31

Exercice 8.32 BanqueCCINP 2023 Exercice 94 algèbre

- 1. Énoncer le théorème de Bézout dans \mathbb{Z} .
- 2. Soit a et b deux entiers naturels premiers entre eux.

Soit $c \in \mathbb{N}$.

Prouver que: $(a|c \text{ et } b|c) \iff ab|c$.

- 3. On considère le système (S): $\begin{cases} x \equiv 6 & [17] \\ x \equiv 4 & [15] \end{cases}$ dans lequel l'inconnue x appartient à \mathbb{Z} .
 - (a) Déterminer une solution particulière x_0 de (S) dans \mathbb{Z} .
 - (b) Déduire des questions précédentes la résolution dans \mathbb{Z} du système (S).

Solution 8.32 BanqueCCINP 2023 Exercice 94 algèbre

1. Théorème de Bézout:

Soit $(a, b) \in \mathbb{Z}^2$.

$$a \wedge b = 1 \iff \exists (u, v) \in \mathbb{Z}^2 / au + bv = 1.$$

2. Soit $(a, b) \in \mathbb{N}^2$. On suppose que $a \wedge b = 1$. Soit $c \in \mathbb{N}$.

Prouvons que $ab|c \Longrightarrow a|c \text{ et } b|c$.

Si ab|c alors $\exists k \in \mathbb{Z} / c = kab$.

Alors, c = (kb)a donc a|c et c = (ka)b donc b|c.

Prouvons que $(a|c \text{ et } b|c) \Longrightarrow ab|c$.

 $a \wedge b = 1 \text{ donc } \exists (u, v) \in \mathbb{Z}^2 / au + bv = 1.$ (1)

De plus a|c donc $\exists k_1 \in \mathbb{Z} / c = k_1 a$. (2)

De même, b|c donc $\exists k_2 \in \mathbb{Z} / c = k_2 b$. (3)

On multiplie (1) par c et on obtient cau + cbv = c.

Alors, d'après (2) et (3), $(k_2b)au + (k_1a)bv = c$, donc $(k_2u + k_1v)(ab) = c$ et donc ab|c.

On a donc prouvé que $(a|c \text{ et } b|c) \iff ab|c$.

3. (a) Première méthode (méthode générale):

Soit $x \in \mathbb{Z}$.

$$x \text{ solution de}(S) \iff \exists (k, k') \in \mathbb{Z}^2 \text{ tel que } \begin{cases} x = 6 + 17k \\ x = 4 + 15k' \end{cases}$$

$$\iff \exists (k, k') \in \mathbb{Z}^2 \text{ tel que } \begin{cases} x = 6 + 17k \\ 6 + 17k = 4 + 15k' \end{cases}$$

Or
$$6 + 17k = 4 + 15k' \iff 15k' - 17k = 2$$
.

Pour déterminer une solution particulière x_0 de (S), il suffit donc de trouver une solution particulière (k_0, k'_0) de l'équation 15k' - 17k = 2.

Pour cela, cherchons d'abord, une solution de l'équation 15u + 17v = 1.

17 et 15 sont premiers entre eux.

Déterminons alors un couple (u_0, v_0) d'entiers relatifs tel que $15u_0 + 17v_0 = 1$.

On a: $17 = 15 \times 1 + 2$ puis $15 = 7 \times 2 + 1$.

Alors $1 = 15 - 7 \times 2 = 15 - 7 \times (17 - 15 \times 1) = 15 - 17 \times 7 + 15 \times 7 = 15 \times 8 - 17 \times 7$

Donc $8 \times 15 + (-7) \times 17 = 1$

Ainsi, $16 \times 15 + (-14) \times 17 = 2$.

On peut prendre alors $k'_0 = 16$ et $k_0 = 14$.

Ainsi, $x_0 = 6 + 17 \times k_0 = 6 + 17 \times 14 = 244$ est une solution particulière de (S).

Deuxième méthode:

En observant le système (S), on peut remarquer que $x_0 = -11$ est une solution particulière. Cette méthode est évidemment plus rapide mais ne fonctionne pas toujours.

(b) x_0 solution particulière de (S) donc $\begin{cases} x_0 = 6 & [17] \\ x_0 = 4 & [15] \end{cases}$.

On en déduit que x solution de (S) si et seulement si $\begin{cases} x - x_0 = 0 & [17] \\ x - x_0 = 0 & [15] \end{cases}$.

C'est-à-dire x solution de $(S) \iff (17|x - x_0 \text{ et } 15|x - x_0)$.

Or 17 + 15 = 1 done d'enrès 2 = x solution de $(S) \iff (17|x - 15)$.

Or $17 \wedge 15 = 1$ donc d'après 2., x solution de (S) \iff $(17 \times 15)|x - x_0$.

Donc l'ensemble des solutions de (S) est $\{x_0 + 17 \times 15k, k \in \mathbb{Z}\} = \{244 + 255k, k \in \mathbb{Z}\}.$

15 pirates chinois se partagent un butin constitué de pièces d'or. Mais une fois le partage (équitable) effectué, il reste 3 pièces. Que va-t-on en faire ? La discussion s'anime. Bilan : 8 morts. Les 7 survivants recommencent le partage, et il reste cette fois ci 2 pièce ! Nouvelle bagarre à l'issue de laquelle il ne reste que 4 pirates. Heureusement, ils peuvent cette fois ci se partager les pièces sans qu'il n'en reste aucune.

Sachant que 32 Tsing-Tao (bière chinoise) coûtent une pièce d'or, combien (au minimum) de Tsing-Tao pourra boire chaque survivant ?

Solution 8.33

Exercice 8.34 (***) Étude de l'irréductibilité d'une fraction

- **1.** Montrer que pour tout $n \in \mathbb{N}$, la fraction $\frac{5^{n+1} + 6^{n+1}}{5^n + 6^n}$ est irréductible.
- **2.** Trouver une condition nécessaire et suffisante sur $(\lambda, \mu, \alpha, \beta) \in \mathbb{N}^4$ pour que la fraction $\frac{\lambda \alpha^{n+1} + \mu \beta^{n+1}}{\lambda \alpha^n + \mu \beta^n}$ soit irréductible pour tout $n \in \mathbb{N}$.

Solution 8.34 Étude de l'irréductibilité d'une fraction

Exercice 8.35 Banque CCINP 2023 Exercice 86 algèbre

- **1.** Soit $(a, b, p) \in \mathbb{Z}^3$. Prouver que : si $p \wedge a = 1$ et $p \wedge b = 1$, alors $p \wedge (ab) = 1$.
- **2.** Soit *p* un nombre premier.
 - (a) Prouver que $\forall k \in [1, p-1]$, p divise $\binom{p}{k}k!$ puis en déduire que p divise $\binom{p}{k}$.
 - (b) Prouver que: $\forall n \in \mathbb{N}, n^p \equiv n \mod p$. **Indication**: procéder par récurrence.
 - (c) En déduire, pour tout entier naturel n, que : p ne divise pas $n \Longrightarrow n^{p-1} \equiv 1 \mod p$.

Solution 8.35 BanqueCCINP 2023 Exercice 86 algèbre

1. On suppose $p \wedge a = 1$ et $p \wedge b = 1$.

D'après le théorème de Bézout,

$$\exists (u_1, v_1) \in \mathbb{Z}^2 \text{ tel que } u_1 p + v_1 a = 1.$$
 (1)

$$\exists (u_2, v_2) \in \mathbb{Z}^2 \text{ tel que } u_2 p + v_2 b = 1.$$
 (2)

En multipliant les équations (1) et (2), on obtient :

$$\underbrace{(u_1u_2p+u_1v_2b+u_2v_1a)p}_{\in\mathbb{Z}+\underbrace{(v_1v_2)}_{\in\mathbb{Z}}(ab)=1.$$
 Example 2. Donc, d'après le théorème de Bézout, $p \land (ab)=1$.

2. Soit p un nombre premier.

(a) Soit
$$k \in [1, p-1]$$
. $\binom{p}{k} = \frac{p!}{k!(p-k)!} = \frac{p(p-1)...(p-k+1)}{k!}$.

Donc
$$\binom{p}{k} k! = p(p-1)...(p-k+1).$$

donc
$$p \mid \binom{p}{k} k!$$
. (3)

Or, $\forall i \in [1, k], p \land i = 1$ (car p est premier) donc, d'après $1, p \land k! = 1$.

Donc, d'après le lemme de Gauss, $(3) \Longrightarrow p \mid \binom{p}{\iota}$.

(b) Procédons par récurrence sur *n*.

Pour n = 0 et pour n = 1, la propriété est vérifiée.

Soit $n \in \mathbb{N}$.

Supposons que la propriété (P_n) : $n^p \equiv n \mod p$ soit vérifiée.

Alors, d'après la formule du binôme de Newton, $(n+1)^p = n^p + \sum_{k=1}^{p-1} \binom{p}{k} n^k + 1$. (4)

Or
$$\forall k \in [1, p-1], p \mid \binom{p}{k} \text{ donc } p \mid \sum_{k=1}^{p-1} \binom{p}{k} n^k$$
.

Donc d'après (4) et (P_n) , $(n+1)^p \equiv n+1 \mod p$ et (P_{n+1}) est vraie.

(c) Soit $n \in \mathbb{N}$ tel que p ne divise pas n.

Comme p est premier, alors $p \wedge n = 1$.

La question précédente donne p divise $n^p - n = n(n^{p-1} - 1)$.

Or comme p est premier avec n, on en déduit, d'après le lemme de Gauss, que p divise $n^{p-1} - 1$. Ce qui signifie que $n^{p-1} \equiv 1 \mod p$. (petit théorème de Fermat).