MATHÉMATIQUES 2

Corrigé par Taoufiki said

EXERCICE

1.1. En effectuant les opérations $C_2 \leftarrow C_2 + C_1$, $C_3 \leftarrow C_3 + C_2$, puis en développant par rapport à la dernière colonne, on obtient

$$\chi_M(X) = \begin{vmatrix} X-2 & 1 & -1 \\ 0 & X-1 & -1 \\ 1 & -1 & X-1 \end{vmatrix} \\
= \begin{vmatrix} X-2 & X-1 & -1 \\ 0 & X-1 & -1 \\ 1 & 0 & X-1 \end{vmatrix} \\
= (X-1) \begin{vmatrix} X-2 & 1 & -1 \\ 0 & 1 & -1 \\ 1 & 0 & X-1 \end{vmatrix} \\
= (X-1) \begin{vmatrix} X-2 & 1 & 0 \\ 0 & 1 & 0 \\ 1 & 0 & X-1 \end{vmatrix} \\
= (X-1)^2(X-2)$$

On en déduit que $sp(M) = \{1, 2\}.$

1.2. χ_M est scindé sur \mathbb{R} , donc M est diagonalisable dans $M_n(\mathbb{R})$.

1.3.

$$M\begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} x \\ y \\ z \end{pmatrix} \iff \begin{cases} x = y \\ z = 0 \end{cases}$$

D'où $E_1(M) = vect\left(\begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}\right)$ et $\dim E_1(M) = 1$.

$$M\begin{pmatrix} x \\ y \\ z \end{pmatrix} = 2\begin{pmatrix} x \\ y \\ z \end{pmatrix} \iff \begin{cases} x = 0 \\ y = z \end{cases}$$

D'où
$$E_2(M) = vect\left(\begin{pmatrix} 0\\1\\1 \end{pmatrix}\right)$$
 et $\dim E_2(M) = 1$.

1.4. Non, car dim $E_1(M) < m(1)$.

1.5. $E_1(f) = vect((1,1,0))$ et $E_2(f) = vect((0,1,1))$ sont exactement les droites stables par f.

1.6.1.

$$(x,y,z) \in Ker((f-id)^{2}) \Leftrightarrow (M-I_{3})^{2} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$$
$$\Leftrightarrow \begin{pmatrix} 0 & 0 & 0 \\ -1 & 1 & 0 \\ -1 & 1 & 0 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$$
$$\Leftrightarrow y-z=0$$

C'est une équation d'hyperplan de \mathbb{R}^3 , donc $Ker[(f-id)^2]$ est un plan de \mathbb{R}^3 . Soient $u \in Ker[(f-id)^2]$ et v = f(u). On a

$$(f-id)^2(v) = (f-id)^2(f(u)) = (f-id)^2 \circ f(u) = f \circ (f-id)^2(u) = f(0,0,0) = (0,0,0)$$

D'où $v \in Ker[(f - id)^2].$

1.6.2. u_1 et u_2 sont non colinéaires donc (u_1, u_2) est libre, puis V est un plan. On a $f(u_1) = u_1$ et $f(u_2) = 2u_2$, donc pour tout $(\alpha, \beta) \in \mathbb{R}^2$,

$$f(\alpha u_1 + \beta u_2) = \alpha u_1 + 2\beta u_2 \in V$$

D'où $f(V) \subset V$.

1.6.3.i. Par théorème χ_g divise $\chi_f(X) = (X-1)^2(X-2)$, comme $\deg(\chi_g) = 2$ et χ est unitaire, alors $\chi_g(X) = (X-1)^2$ ou $\chi_g(X) = (X-1)(X-2)$.

1.6.3.ii. Si $\chi_g(X) = (X-1)^2$, alors g est trigonalisable de sorte qu'il existe une base B de W telle que

$$N := Mat_B(g) = \left(\begin{array}{cc} 1 & \alpha \\ 0 & 1 \end{array}\right)$$

On a $(M - I_2)^2 = O_2$ donc $W = Ker[(g - Id_W)^2] \subset Ker[(f - Id)^2]$, par raison de dimension, on a donc $W = Ker[(f - Id)^2]$.

1.6.3.iii. Si $\chi_q(X) = (X-1)(X-2)$, alors g est diagonalisable de sorte que

$$W = Ker(g - Id_W) \oplus Ker(g - 2Id_W) \subset Ker(f - Id) \oplus Ker(f - 2Id) = V$$

Par raison de dimension, on aura W = V.

PROBLÈME 1

- **2.1.** La matrice $A \beta I_n$ a tous ces coefficients égaux à b et $b \neq 0$ donc $rg(A \beta I_n) = 1$.
- 2.2. Par la formule du rang, on a

$$\dim[Ker(A-\beta I_n)] = \dim(M_{n,1}(\mathbb{R})) - rg(A-\beta I_n) = n-1 \ge 1$$

donc β est une valeur propre de A et le sous espace propre associé est de dimension n-1.

2.3. On observe que
$$A$$
. $\begin{pmatrix} 1 \\ \vdots \\ 1 \end{pmatrix} = \gamma \begin{pmatrix} 1 \\ \vdots \\ 1 \end{pmatrix}$, donc γ est une valeur propre (simple)

de A.

La matrice réelle A est symétrique, par théorème spectral, il existe $P \in O_n(\mathbb{R})$ telle que $P.A.^tP = diag(\beta, ..., \beta, \gamma) = D$.

 ${f 2.4.}$ Le déterminant de A est le produit des valeurs propres comptées avec leur ordre de multiplicité, donc

$$\det(A) = \beta^{n-1}\gamma = (a-b)^{n-1}(a+(n-1)b)$$

La matrice A est donc inversible si et seulement si $a \notin \{b, -(n-1)b\}$.

2.5.
$$A - \beta I_n = b \begin{pmatrix} 1 & 1 & \dots & 1 \\ 1 & 1 & & \vdots \\ \vdots & & \ddots & \vdots \\ 1 & \dots & \dots & 1 \end{pmatrix}$$
 et $A - \gamma I_n = \begin{pmatrix} -(n-1)b & b & \dots & b \\ b & -(n-1)b & & \vdots \\ \vdots & & \ddots & b \\ b & \dots & b & -(n-1)b \end{pmatrix}$

donc $(A - \beta I_n)(A - \gamma I_n) = O_n$

Autrement dit $A^2 - (\beta + \gamma)A + \beta \gamma I_n$, soit donc $A(A - (\beta + \gamma)I_n) = -\beta \gamma I_n$. Si A est inevrsible, alors $\beta \cdot \gamma \neq 0$ puis

$$A^{-1} = \frac{1}{\beta \gamma} \left((\beta + \gamma) I_n - A \right).$$

2.6. On pose $\Delta = diag(\sqrt{\beta}, ..., \sqrt{\beta}, \sqrt{\gamma}) \in M_n(\mathbb{R})$ et $S = ^t P.\Delta.P \in M_n(\mathbb{R})$. On a S est symétriqe (car $^tS = S$), de valeurs propres positives ou nulles (qui sont $\sqrt{\beta}$ et $\sqrt{\gamma}$) et vérifiant

$$S^2 = {}^t P.\Delta.P.{}^t P.\Delta.P = {}^t P.\Delta^2.P = {}^t P.D.P = A$$

3.1.1. Par l'inégalité de Cauchy-schwartz, on a

$$|\alpha| = |\langle u_1 | u_2 \rangle| \le ||u_1|| . ||u_2|| = 1$$

comme $\alpha \neq 1$ alors $\alpha \in [-1, 1[$.

- **3.1.2.** La famille est liée car elle contient un nombre de vecteurs plus grand que la dimension.
- **3.1.3.** Soient $\alpha_1, ..., \alpha_{n+1}$ des réels non tous nuls tels que

$$\alpha_1.u_1 + \dots + \alpha_{n+1}.u_{n+1} = 0_E$$

La $j^{\text{ème}}$ colonne de G est donnée par

$$C_{j} = \begin{pmatrix} \langle u_{1} | u_{j} \rangle \\ \langle u_{2} | u_{j} \rangle \\ \vdots \\ \langle u_{n+1} | u_{j} \rangle \end{pmatrix}$$

On a, pour tout i = 1, ..., n + 1, $\sum_{j=1}^{n+1} \alpha_j \langle u_i | u_j \rangle = \langle u_i | \sum_{j=1}^{n+1} \alpha_j u_j \rangle = 0$, donc

$$\sum_{j=1}^{n+1} \alpha_j C_j = O_{M_{n+1,1}(\mathbb{R})}$$

La famille des colonnes de G est donc liée puis la matrice G n'est pas inversible.

- **3.1.4.** Par hypothèse G a la même forme de la matrice A de la première partie avec a=1 et $b=\alpha$. D'après la question **2.4.** la matrice G n'est pas inversible si et seulement si $1=\alpha$ ou $1=-n\alpha$. Par hypothèse $\alpha \neq 1$ et par la question précédente G n'est pas inversible donc $\alpha = -\frac{1}{n}$.
- **3.2.1.** La matrice M a la même forme de celle de la première partie avec a=1 et $b=-\frac{1}{n}$, ces valeurs propres sont donc $\beta=a-b=\frac{n+1}{n}>0$ et $\gamma=a+nb=0\geq 0$. D'après la question **2.6.**, il existe $B\in M_{n+1}(\mathbb{R})$ symétrique telle que $M=B^2$.
- **3.2.2.** Par définition de la multiplication matricielle, on a

$$\forall (i,j) \in [|1,n+1|]^2, \ m_{i,j} = \sum_{k=1}^{n+1} b_{i,k} b_{k,j}$$

Puisque B est symétrique, la propriété précédente devient

$$\forall (i,j) \in [|1,n+1|]^2, \ m_{i,j} = \sum_{k=1}^{n+1} b_{i,k} b_{j,k}$$

3.2.3. Pour j = 1, ..., n+1, on considère le vecteur $w_j = (b_{j,1}, b_{j,2}, ..., b_{j,n+1}) \in \mathbb{R}^{n+1}$, on a

$$\forall (i,j) \in [|1,n+1|]^2 , m_{i,j} = \langle w_i | w_j \rangle$$

3.2.4. L'une des valeurs propres de M est nulle, donc M n'est pas inversible. La famille $(w_1, ..., w_{n+1})$ est constituée des vecteurs unitaires vérifiant

$$\forall (i,j) \in [|1,n+1|]^2, i \neq j \implies \langle w_i | w_j \rangle = m_{i,j} = -\frac{1}{n} \neq 1$$

D'après **3.1.2**, la famille $(w_1, ..., w_{n+1})$ est liée, donc son rang est inférieur ou égal à n, il existe alors un sous espace vectoriel F de \mathbb{R}^{n+1} tel que

$$\dim F = n \text{ et } \forall i = 1, ..., n+1, w_i \in F$$

3.2.5. On considère une base orthonormée $(e_1, ..., e_n)$ de E, une base orthonormée $(f_1, ..., f_n)$ de F (qui est muni du produit scalaire induit est aussi euclidien) et l'application linéaire $\varphi: F \to E$ définie par

$$\varphi: \sum_{i=1}^{n} x_i f_i \mapsto \sum_{i=1}^{n} x_i e_i$$

Par construction, φ est isométrie. Il suffit de prendre $v_i = \varphi(w_i)$ pour i = 1, ..., n+1, On a donc

$$\forall (i,j) \in [|1,n+1|]^2 , \quad \langle v_i | v_j \rangle = \langle \varphi(w_i) | \varphi(w_j) \rangle = \langle w_i | w_j \rangle = \begin{cases} -\frac{1}{n} & \text{si} \quad i \neq j \\ 1 & \text{si} \quad i = j \end{cases}$$

PROBLÈME 2

- **4.1.** On trouve [A, B] = C, [C, A] = 2A, [C, B] = -2B.
- **4.2.** Soit $X = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in M_2(\mathbb{C})$. On a :

$$X = \frac{a+d}{2}I_2 + bA + cB + \frac{a-d}{2}C$$

La famille (I_2, A, B, C) est génératrice de $M_2(\mathbb{C})$, par raison de dimension, c'est donc une base de $M_2(\mathbb{C})$.

- **4.3.** On pose $C_M = \{ N \in M_2(\mathbb{C}) , MN = NM \}.$
- **4.3.1.** Si $\alpha = \beta = \gamma = 0$ alors $M = \lambda I_n$ puis, pour tout $N \in M_2(\mathbb{C})$, MN = NM, d'où $\mathcal{C}_M = M_2(\mathbb{C})$.
- **4.3.2.** On a bien $I_2, M \in \mathcal{C}_M = Ker(\varphi_M)$ donc $vect(I_2, M) \subset \mathcal{C}_M$.

On vérifie que $rg(I_2, M) = 2$:

$$(I_2, M)$$
 est liée $\Leftrightarrow \exists x \in \mathbb{C} , M = xI_2 \quad (\operatorname{car} I_2 \neq O_2)$
 $\Leftrightarrow \exists x \in \mathbb{C} , \begin{pmatrix} \lambda + \gamma & \alpha \\ \beta & \lambda - \gamma \end{pmatrix} = \begin{pmatrix} x & 0 \\ 0 & x \end{pmatrix}$
 $\Leftrightarrow \alpha = \beta = \gamma = 0$

Comme $(\alpha, \beta, \gamma) \neq (0, 0, 0)$ alors (I_2, M) est libre puis $rg(I_2, M) = 2$. La représentation matricielle de φ_M dans la base (I_2, A, B, C) est donnée par

$$\begin{pmatrix}
0 & 0 & 0 & 0 \\
0 & 2\gamma & 0 & -2\alpha \\
0 & 0 & -2\gamma & -2\beta \\
0 & -\beta & \alpha & 0
\end{pmatrix}$$

Si $vect(I_2, M) \neq C_M = Ker(\varphi_M)$ alors dim $(Ker(\varphi_M)) \geq 3$ puis $rg(\varphi_M) \leq 1$, c'est à dire

$$rg \begin{pmatrix} 2\gamma & 0 & -2\alpha \\ 0 & -2\gamma & -2\beta \\ -\beta & \alpha & 0 \end{pmatrix} \le 1$$

Ceci n'est pas possible que lorsque $\alpha = \beta = \gamma = 0$, condition qui est contradictoire, d'où

$$C_M = vect(I_2, M)$$
 et $dim(C_M) = rg(I_2, M) = 2$

4.4.1. Puisque (A, B, C) est une sous famille d'une famille libre (qui est la base (I_2, A, B, C)), alors elle est libre donc dim $\mathcal{F} = 3$.

4.4.2. On a dim \mathcal{F} + dim $\mathbb{C}.I_2 = 3 + 1 = \dim M_2(\mathbb{C})$ et $\mathcal{F} + \mathbb{C}.I_2 = M_2(\mathbb{C})$ car (I_2, A, B, C) est une base de $M_2(\mathbb{C})$, donc

$$\mathcal{F} \oplus \mathbb{C}.I_2 = M_2(\mathbb{C})$$

4.4.3. La représentation matricielle vue en **4.3.2.** justifie que \mathcal{F} et $\mathbb{C}.I_2$ sont stables par φ_M pour M quelconque. **5.1.**

$$\varphi_B(A) = [B, A] = -[A, B] = -C \text{ et } \varphi_B(C) = [B, C] = -[C, B] = 2B$$

5.2.1.i. $\varphi_A(X) = -2\gamma A + \beta C \text{ donc } \varphi_C \circ \varphi_A(X) = -4\gamma A.$

On aussi $\varphi_A^2(X) = -2\beta A \in \mathcal{V}$ car \mathcal{V} est stable par φ_A , comme $\beta \neq 0$ alors $A = \frac{-1}{2\beta}\varphi_A^2(X) \in \mathcal{V}$.

5.2.1.ii. On a $A \in \mathcal{V}$ donc $-A \in \mathcal{V}$ puis $C = -[B, A] = \varphi_B(-A) \in \varphi_B(\mathcal{V}) \subset \mathcal{V}$ De même $B = \frac{1}{2}[B, C] = \frac{1}{2}\varphi_B(C) = \varphi_B(\frac{1}{2}C) \in \varphi_B(\mathcal{V}) \subset \mathcal{V}$.

5.2.1.iii. On a $\{A, B, C\} \subset \mathcal{V}$ et \mathcal{V} sous espace vectoriel donc

$$\mathcal{F} = vect(A, B, C) \subset \mathcal{V}$$

5.2.2 Si $\gamma \neq 0$, on utilise le fait que $-4\gamma A = \varphi_C \circ \varphi_A(X) \in \mathcal{V}$ puis on en déduit

de la même manière que $B,C\in\mathcal{V}$.

Si $\alpha \neq 0$, on vérifie que $\varphi_B^2(X) = 2\alpha B$, ça entraı̂ne que $B \in \mathcal{V}$ puis on en déduit de la même manière que $A, C \in \mathcal{V}$.

Dans tous les cas, on obtient que

$$\mathcal{F} = vect(A, B, C) \subset \mathcal{V}$$

5.3.1. Par **5.2.**, on a $\mathcal{F} \subset \mathcal{V}$. dim $\mathcal{F} = 3$ donc dim $\mathcal{V} \geq 3$, comme dim $\mathcal{W} \geq 1$ alors dim $\mathcal{V} = 3$ puis $\mathcal{F} = \mathcal{V}$.

Soit $Y \in \mathcal{W}$. On écrit $Y = \lambda' I_2 + \alpha' A + \beta' B + \gamma' C$. Si $(\alpha', \beta', \gamma') \neq (0, 0, 0)$ alors $\mathcal{W} = \mathcal{F}$, ce qui est absurde, donc $(\alpha', \beta', \gamma') = (0, 0, 0)$ puis $Y = \lambda' I_2 \in \mathbb{C}.I_2$ donc $\mathcal{W} \subset \mathbb{C}.I_2$, par raison de dimension, on a l'égalité.

5.3.2. Dans le cas contraire, on ne trouvera pas dans \mathcal{V} un élément $X = \lambda I_2 + \alpha A + \beta B + \gamma C$ dans \mathcal{V} tel que $(\alpha, \beta, \gamma) \neq (0, 0, 0)$ c'est à dire que $\mathcal{V} \subset \mathbb{C}.I_2$, puis l'égalité car \mathcal{V} non nul.

On prend $Y \in \mathcal{W} \setminus \{O_2\}$ tel que $Y = \lambda' I_2 + \alpha' A + \beta' B + \gamma' C$. Si $(\alpha', \beta', \gamma') = (0, 0, 0)$ alors $\lambda \neq 0$ puis $Y \in \mathcal{C} \cap \mathcal{V}$, ce qui est absurde donc $(\alpha', \beta', \gamma') \neq (0, 0, 0)$, par suite $\mathcal{W} = \mathcal{F}$ par **5.3.1.**