MI-SPI Druhá úloha

Tomáš Pšenička, Jan Groschaft

23. května 2020

Obsah

1	Zadání						
2	Řešení						
	2.1	Charakteristika délek slov	2				
	2.2	Pravděpodobnosti znaků	3				
	2.3	Na hladině významnosti 5% otestujte hypotézu, že rozdělení délek slov nezávisí na tom, o který jde text. Určete také p-hodnotu testu	3				
	2.4	Na hladině významnosti 5% otestujte hypotézu, že se střední délky slov v obou textech rovnají. Určete také p-hodnotu testu.	5				
	2.5	Na hladině významnosti 5% otestujte hypotézu, že rozdělení písmen nezávisí na tom, o který jde text. Určete také p-hodnotu testu.	5				
3	Záv	ěr	8				

1 Zadání

- Z obou datových souborů načtěte texty k analýze. Pro každý text zvlášť odhadněte základní charakteristiky délek slov, tj. střední hodnotu a rozptyl. Graficky znázorněte rozdělení délek slov.
- Pro každý text zvlášť odhadněte pravděpodobnosti písmen (symbolů mimo mezery), které se v textech vyskytují. Výsledné pravděpodobnosti graficky znázorněte.
- Na hladině významnosti 5% otestujte hypotézu, že rozdělení délek slov nezávisí na tom, o který jde text. Určete také p-hodnotu testu.
- Na hladině významnosti 5% otestujte hypotézu, že se střední délky slov v obou textech rovnají. Určete také p-hodnotu testu.
- Na hladině významnosti 5% otestujte hypotézu, že rozdělení písmen nezávisí na tom, o který jde text. Určete také p-hodnotu testu.

2 Řešení

2.1 Charakteristika délek slov

Pro odhad charakteristik délek slov jsme použili výběrový průměr a výběrový rozptyl:

$$\bar{X}_n = \frac{1}{n} \sum_i X_i$$

$$s_n^2 = \frac{1}{n-1} \sum_i (X_i - \bar{X}_n)^2.$$

Výsledky sledujeme v tabulce 1 a na obrázcích 1 a 2.

Text	\bar{X}_n	s_n^2				
009.txt	4.2623	4.9860				
011.txt	3.8603	4.5360				

Tabulka 1: Charakteristika délek slov

Obrázek 1: Rozdělení délek slov v souboru 009.txt

2.2 Pravděpodobnosti znaků

Pravděpodobnost jednotlivých znaků byla vypočítána jako poměr počtu výskytů jednotlivých znaků k celkovému počtu všech znaků a je znázorněna v grafech 3 a 4 pomocí nástroje matplotlib.

2.3 Na hladině významnosti 5% otestujte hypotézu, že rozdělení délek slov nezávisí na tom, o který jde text. Určete také p-hodnotu testu.

Provedli jsme test nezávislosti v kontingenční tabulce, viz tabulku 2. Testujeme hypotézu H_0 , že rozdělení délek slov nezávisí na volbě zdrojového textu oproti alternativě H_A , že na volbě zdrojového textu závisí.

Obrázek 2: Rozdělení délek slov v souboru 011.txt

Soubor	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
009.txt	40	186	270	175	125	93	70	41	32	13	9	2	3	0	1
011.txt	101	217	343	257	119	87	55	28	20	12	14	2	3	1	1

Tabulka 2: Kontingenční tabulka četností délek slov

Testová statistika χ^2 má tvar

$$\chi^2 = n \sum_{i=1}^r \sum_{j=1}^c \frac{N_{i,j}^2}{N_{i,\bullet} N_{\bullet,j}}$$

a po dosazení r=2, c=15 máme $\chi^2=45.6235$ a p-hodnotu 3.2990e-05. Kritická hodnota je $\chi^2_{\alpha,(r-1)(c-1)}=\chi^2_{0.05,14}=23.68$. Protože je naše testová statistika větší než kritická hodnota, zamítáme nulovou hypotézu ve prospěch alternativy.

2.4 Na hladině významnosti 5% otestujte hypotézu, že se střední délky slov v obou textech rovnají. Určete také p-hodnotu testu.

Cheme testovat hypotézu $H_0: \mu_1 = \mu_2$ proti $H_A: \mu_1 \neq \mu_2$. Použijeme dvouvýběrový t-test za předpokladu různých rozptylů, tedy $\sigma_1 \neq \sigma_2$, naše náhodné výběry jsou v tabulce 2. Použijeme tedy konkrétně testovou statistiku

$$T = \frac{\bar{X}_n - \bar{Y}_n}{s_d},$$

kde

$$s_d = \sqrt{\frac{s_X^2}{n} + \frac{s_Y^2}{m}}.$$

Po dosazení vychází T=-4.409004682120487 a p-hodnota je 1.0882e-05. Pro kritický obor přitom platí $|T|\geq t_{\alpha/2,n_d}$, kde

$$n_d = \frac{s_d^4}{\frac{1}{n-1}(\frac{s_X^2}{n})^2 + \frac{1}{m-1}(\frac{s_Y^2}{m})^2}.$$

Po dosazení máme $t_{0.025,n_d}=1.9610$, tedy $|T|\geq t_{0.025,n_d}$ a nulovou hypotézu zamítáme ve prospěch alternativy.

2.5 Na hladině významnosti 5% otestujte hypotézu, že rozdělení písmen nezávisí na tom, o který jde text. Určete také p-hodnotu testu.

Stejně jako v sekci 2.3 použijeme test nezávislosti v kontingenční tabulce, akorát použijeme jiná vstupní data. Rozdělení písmen je vidět na obrázcích 3 a 4, kontingenční tabulka četností je příliš velká a nevešla se rozumným způsobem na stránku. Testujeme hypotézu H_0 , že rozdělení písmen nezávisí na volbě zdrojového textu oproti alternativě H_A , že na volbě zdrojového textu závisí.

Testová statistika χ^2 má tvar

$$\chi^2 = n \sum_{i=1}^r \sum_{j=1}^c \frac{N_{i,j}^2}{N_{i,\bullet} N_{\bullet,j}}$$

a po dosazení r=2, c=25 máme $\chi^2=41.2762$ a p-hodnotu 0.0215.

Kritická hodnota je $\chi^2_{\alpha,(r-1)(c-1)}=\chi^2_{0.05,24}=36.42$. Protože je naše testová statistika větší než kritická hodnota, zamítáme nulovou hypotézu ve prospěch alternativy. Vidíme, že tentokrát je test méně přesvědčivý než v případě úkolu 2.3.

Obrázek 3: Grafické znázornění pravděpodobností znaků textu 009.txt

Obrázek 4: Grafické znázornění pravděpodobností znaků textu 011.txt

3 Závěr

Všechny testované hypotézy jsme zamítli, můžeme učinit závěr, že si v testovaných statistikách zdrojové texty nejsou přiliš podobné.