Econ 722 - Advanced Econometrics IV, Part II

Francis J. DiTraglia

University of Pennsylvania

Lecture #1 – AIC-type Information Criteria

Kullback-Leibler Divergence

Bias of Maximized Sample Log-Likelihood

Review of Asymptotics for Mis-specified MLE

Deriving AIC and TIC

Corrected AIC (AIC_c)

Kullback-Leibler (KL) Divergence

Motivation

How well does a given density f(y) approximate an unknown true density g(y)? Use this to select between parametric models.

Definition

$$\mathsf{KL}(g;f) = \underbrace{\mathbb{E}_G\left[\log\left\{\frac{g(Y)}{f(Y)}\right\}\right]}_{\mathsf{True\ density\ on\ top}} = \underbrace{\mathbb{E}_G\left[\log g(Y)\right]}_{\mathsf{Depends\ only\ on\ truth}} - \underbrace{\mathbb{E}_G\left[\log f(Y)\right]}_{\mathsf{Expected\ log-likelihood}}$$

Properties

- Not symmetric: $KL(g; f) \neq KL(f; g)$
- ▶ By Jensen's Inequality: $KL(g; f) \ge 0$ (strict iff g = f a.e.)

KL Divergence and Mis-specified MLE

Pseudo-true Parameter Value θ_0

$$\widehat{\theta}_{\mathit{MLE}} \overset{p}{\to} \theta_0 \equiv \operatorname*{arg\,min}_{\theta \in \Theta} \mathsf{KL}(g; f_\theta) = \operatorname*{arg\,max}_{\theta \in \Theta} \mathbb{E}_G[\log f(Y|\theta)]$$

What if f_{θ} is correctly specified?

If $g = f_{\theta}$ for some θ then $KL(g; f_{\theta})$ is minimized at zero.

Goal: Compare Mis-specified Models

$$\mathbb{E}_G [\log f(Y|\theta_0)]$$
 versus $\mathbb{E}_G [\log h(Y|\gamma_0)]$

where θ_0 is the pseudo-true parameter value for f_θ and γ_0 is the pseudo-true parameter value for h_γ .

How to Estimate Expected Log Likelihood?

For simplicity: $Y_1, \ldots, Y_n \sim \text{ iid } g(y)$

Unbiased but Infeasible

$$\mathbb{E}_{G}\left[\frac{1}{T}\ell(\theta_{0})\right] = \mathbb{E}_{G}\left[\frac{1}{T}\sum_{t=1}^{T}\log f(Y_{t}|\theta_{0})\right] = \mathbb{E}_{G}\left[\log f(Y|\theta_{0})\right]$$

Biased but Feasible

 $T^{-1}\ell(\widehat{\theta}_{MLE})$ is a biased estimator of $\mathbb{E}_G[\log f(Y|\theta_0)]$.

Intuition for the Bias

 $T^{-1}\ell(\widehat{\theta}_{MLE}) > T^{-1}\ell(\theta_0)$ unless $\widehat{\theta}_{MLE} = \theta_0$. Maximized sample log-like. is an overly optimistic estimator of expected log-like.

What to do about this bias?

- General-purpose asymptotic approximation of "degree of over-optimism" of maximized sample log-likelihood.
 - Takeuchi's Information Criterion (TIC)
 - Akaike's Information Criterion (AIC)
- 2. Problem-specific finite sample approach, assuming $g \in f_{\theta}$.
 - ► Corrected AIC (AIC_c) of Hurvich and Tsai (1989)

Tradeoffs

TIC is most general and makes weakest assumptions, but requires very large T to work well. AIC is a good approximation to TIC that requires less data. Both AIC and TIC perform poorly when T is small relative to the number of parameters, hence AIC_C.

Recall: Asymptotics for Mis-specified ML Estimation

Model $f(y|\theta)$, pseudo-true parameter θ_0 . For simplicity $Y_1, \ldots, Y_T \sim \text{ iid } g(y)$.

Fundamental Expansion

$$\sqrt{T}(\widehat{\theta} - \theta_0) = J^{-1}\left(\sqrt{T}\,\overline{U}_T\right) + o_p(1)$$

$$J = -\mathbb{E}_G \left[\frac{\partial \log f(Y|\theta_0)}{\partial \theta \partial \theta'} \right], \quad \bar{U}_T = \frac{1}{T} \sum_{t=1}^{I} \frac{\partial \log f(Y_t|\theta_0)}{\partial \theta}$$

Central Limit Theorem

$$\sqrt{T}\bar{U}_T \to_d U \sim N_p(0,K), \quad K = \operatorname{Var}_G \left[\frac{\partial \log f(Y|\theta_0)}{\partial \theta} \right]$$

$$\sqrt{T}(\widehat{\theta}-\theta_0)
ightarrow_d J^{-1}U \sim N_p(0,J^{-1}KJ^{-1})$$

Information Matrix Equality

If
$$g = f_{\theta}$$
 for some $\theta \in \Theta$ then $K = J \implies \mathsf{AVAR}(\widehat{\theta}) = J^{-1}$

Bias Relative to Infeasible Plug-in Estimator

Definition of Bias Term B

$$B = \underbrace{\frac{1}{T}\ell(\widehat{\theta})}_{\text{feasible overly-optimistic}} - \underbrace{\int g(y)\log f(y|\widehat{\theta}) \ dy}_{\text{uses data only once infeas. not overly-optimistic}}$$

Question to Answer

On average, over the sampling distribution of $\widehat{\theta}$, how large is B? AIC and TIC construct an asymptotic approximation of $\mathbb{E}[B]$.

Derivation of AIC/TIC

Step 1: Taylor Expansion

$$B = \bar{Z}_T + (\widehat{\theta} - \theta_0)'J(\widehat{\theta} - \theta_0) + o_p(T^{-1})$$

$$\bar{Z}_T = \frac{1}{T}\sum_{t=1}^T \{\log f(Y_t|\theta_0) - \mathbb{E}_G[\log f(Y|\theta_0)]\}$$

Step 2:
$$\mathbb{E}[\bar{Z}_T] = 0$$

$$\mathbb{E}[B] \approx \mathbb{E}\left[(\widehat{\theta} - \theta_0)' J(\widehat{\theta} - \theta_0) \right]$$

Step 3:
$$\sqrt{T}(\widehat{\theta} - \theta_0) \rightarrow_d J^{-1}U$$

$$T(\widehat{\theta} - \theta_0)'J(\widehat{\theta} - \theta_0) \rightarrow_d U'J^{-1}U$$

Derivation of AIC/TIC Continued...

Step 3:
$$\sqrt{T}(\widehat{\theta} - \theta_0) \to_d J^{-1}U$$

$$T(\widehat{\theta} - \theta_0)'J(\widehat{\theta} - \theta_0) \to_d U'J^{-1}U$$

Step 4:
$$U \sim N_p(0, K)$$

$$\mathbb{E}[B] \approx \frac{1}{T} \mathbb{E}[U'J^{-1}U] = \frac{1}{T} \text{tr} \left\{ J^{-1}K \right\}$$

Final Result:

 $T^{-1} {\rm tr} \left\{ J^{-1} K \right\}$ is an asymp. unbiased estimator of the over-optimism of $T^{-1} \ell(\widehat{\theta})$ relative to $\int g(y) \log f(y|\widehat{\theta}) \ dy$.

TIC and AIC

Takeuchi's Information Criterion

Multiply by
$$2T$$
, estimate $J, K \Rightarrow \mathsf{TIC} = 2\left[\ell(\widehat{\theta}) - \mathsf{tr}\left\{\widehat{J}^{-1}\widehat{K}\right\}\right]$

Akaike's Information Criterion

If
$$g = f_{ heta}$$
 then $J = K \Rightarrow \operatorname{tr}\left\{J^{-1}K\right\} = p \Rightarrow \mathsf{AIC} = 2\left[\ell(\widehat{ heta}) - p\right]$

Contrasting AIC and TIC

Technically, AIC requires that all models under consideration are at least correctly specified while TIC doesn't. But $J^{-1}K$ is hard to estimate, and if a model is badly mis-specified, $\ell(\widehat{\theta})$ dominates.

Corrected AIC (AIC_c) – Hurvich & Tsai (1989)

Idea Behind AIC

Asymptotic approximation used for AIC/TIC works poorly if p is too large relative to T. Try exact, finite-sample approach instead.

Assumption: True DGP

$$\mathbf{y} = \mathbf{X}\boldsymbol{\beta}_0 + \boldsymbol{\varepsilon}, \quad \boldsymbol{\varepsilon} \sim \mathit{N}(\mathbf{0}, \sigma_0^2 \mathbf{I}_T), \quad \textit{k} \; \mathsf{Regressors}$$

Can Show That

$$\mathit{KL}(g,f) = rac{T}{2} \left[rac{\sigma_0^2}{\sigma_1^2} - \log \left(rac{\sigma_0^2}{\sigma_1^2}
ight) - 1
ight] + \left(rac{1}{2\sigma_1^2}
ight) (eta_0 - eta_1)' \mathbf{X}' \mathbf{X} (eta_0 - eta_1)$$

Where f is a normal regression model with parameters (β_1, σ_1^2) that might not be the true parameters.

But how can we use this?

$$\mathit{KL}(g,f) = rac{T}{2} \left[rac{\sigma_0^2}{\sigma_1^2} - \log \left(rac{\sigma_0^2}{\sigma_1^2}
ight) - 1
ight] + \left(rac{1}{2\sigma_1^2}
ight) (eta_0 - eta_1)' \mathbf{X}' \mathbf{X} (eta_0 - eta_1)$$

- 1. Would need to know (β_1, σ_1^2) for candidate model.
 - Easy: just use MLE $(\widehat{\boldsymbol{\beta}}_1, \widehat{\sigma}_1^2)$
- 2. Would need to know (β_0, σ_0^2) for true model.
 - Very hard! The whole problem is that we don't know these!

Hurvich & Tsai (1989) Assume:

- Every candidate model is at least correctly specified
- ▶ Implies any candidate estimator $(\widehat{\beta}, \widehat{\sigma}^2)$ is consistent for truth.

Deriving the Corrected AIC

Since $(\widehat{\beta}, \widehat{\sigma}^2)$ are random, look at $\mathbb{E}[\widehat{KL}]$, where

$$\widehat{\mathit{KL}} = \frac{\mathit{T}}{2} \left[\frac{\sigma_0^2}{\widehat{\sigma}^2} - \log \left(\frac{\sigma_0^2}{\widehat{\sigma}^2} \right) - 1 \right] + \left(\frac{1}{2\widehat{\sigma}^2} \right) (\widehat{\boldsymbol{\beta}} - \boldsymbol{\beta}_0)' \mathbf{X}' \mathbf{X} (\widehat{\boldsymbol{\beta}} - \boldsymbol{\beta}_0)$$

Finite-sample theory for correctly spec. normal regression model:

$$\mathbb{E}\left[\widehat{\mathit{KL}}\right] = \frac{T}{2} \left\{ \frac{T+k}{T-k-2} - \log(\sigma_0^2) + \mathbb{E}[\log \widehat{\sigma}^2] - 1 \right\}$$

Eliminate constants and scaling, unbiased estimator of $\mathbb{E}[\log \widehat{\sigma}^2]$:

$$AIC_c = \log \widehat{\sigma}^2 + \frac{T+k}{T-k-2}$$

a finite-sample unbiased estimator of KL for model comparison

Lecture #2 – More on "Classical" Model Selection

Mallow's C_p

Bayesian Model Comparison

Laplace Approximation

Bayesian Information Criterion (BIC)

Motivation: Predict **y** from **x** via Linear Regression

$$egin{aligned} \mathbf{y} &= \mathbf{X} & \boldsymbol{\beta} \\ (au imes \mathbf{1}) &= (au imes K)(K imes \mathbf{1}) \end{aligned} + oldsymbol{\epsilon} \ \mathbb{E}[oldsymbol{\epsilon}|\mathbf{X}] = 0, \quad \mathsf{Var}(oldsymbol{\epsilon}|\mathbf{X}) = \sigma^2 \mathbf{I} \end{aligned}$$

- If β were known, could never achieve lower MSE than by using all regressors to predict.
- ▶ But \(\beta\) is unknown so we have to estimate it from data \(\Rightarrow\) bias-variance tradeoff.
- Could make sense to exclude regressors with small coefficients: add small bias but reduce variance.

Operationalizing the Bias-Variance Tradeoff Idea

Mallow's C_p

Approximate the predictive MSE of each model relative to the infeasible optimum in which $oldsymbol{eta}$ is known.

Notation

- ▶ Model index m and regressor matrix X_m
- ▶ Corresponding OLS estimator $\widehat{\beta}_m$ padded out with zeros
- $\mathbf{X}\widehat{\boldsymbol{\beta}}_m = \mathbf{X}_{(-m)}\mathbf{0} + \mathbf{X}_m \left[(\mathbf{X}_m'\mathbf{X}_m)^{-1}\mathbf{X}_m'\mathbf{y} \right] = \mathbf{P}_m\mathbf{y}$

In-sample versus Out-of-sample Prediction Error

Why not compare RSS(m)?

In-sample prediction error: $RSS(m) = (\mathbf{y} - \mathbf{X}\widehat{\boldsymbol{\beta}}_m)'(\mathbf{y} - \mathbf{X}\widehat{\boldsymbol{\beta}}_m)$

From your Problem Set

RSS cannot decrease even if we add irrelevant regressors. Thus in-sample prediction error is an overly optimistic estimate of out-of-sample prediction error.

Bias-Variance Tradeoff

Out-of-sample performance of full model (using all regressors) could be very poor if there is a lot of estimation uncertainty associated with regressors that aren't very predictive.

Predictive MSE of $\mathbf{X}\widehat{\boldsymbol{\beta}}_m$ relative to infeasible optimum $\mathbf{X}\boldsymbol{\beta}$

Step 1: Algebra

$$\mathbf{X}\widehat{\boldsymbol{\beta}}_{m} - \mathbf{X}\boldsymbol{\beta} = \mathbf{P}_{m}\mathbf{y} - \mathbf{X}\boldsymbol{\beta} = \mathbf{P}_{m}(\mathbf{y} - \mathbf{X}\boldsymbol{\beta}) - (\mathbf{I} - \mathbf{P}_{m})\mathbf{X}\boldsymbol{\beta}$$

$$= \mathbf{P}_{m}\boldsymbol{\epsilon} - (\mathbf{I} - \mathbf{P}_{m})\mathbf{X}\boldsymbol{\beta}$$

Step 2: P_m and $(I - P_m)$ are symmetric, idempotent, and orthogonal

$$\begin{aligned} \left| \left| \mathbf{X} \widehat{\boldsymbol{\beta}}_{m} - \mathbf{X} \boldsymbol{\beta} \right| \right|^{2} &= \left\{ \mathbf{P}_{m} \boldsymbol{\epsilon} - (\mathbf{I} - \mathbf{P}_{m}) \mathbf{X} \boldsymbol{\beta} \right\}' \left\{ \mathbf{P}_{m} \boldsymbol{\epsilon} + (\mathbf{I} - \mathbf{P}_{m}) \mathbf{X} \boldsymbol{\beta} \right\} \\ &= \left. \boldsymbol{\epsilon}' \mathbf{P}'_{m} \mathbf{P}_{m} \boldsymbol{\epsilon} - \boldsymbol{\beta}' \mathbf{X}' (\mathbf{I} - \mathbf{P}_{m})' \mathbf{P}_{m} \boldsymbol{\epsilon} - \boldsymbol{\epsilon}' \mathbf{P}'_{m} (\mathbf{I} - \mathbf{P}_{m}) \mathbf{X} \boldsymbol{\beta} \right. \\ &+ \left. \boldsymbol{\beta}' \mathbf{X}' (\mathbf{I} - \mathbf{P}_{m}) (\mathbf{I} - \mathbf{P}_{m}) \mathbf{X} \boldsymbol{\beta} \right. \\ &= \left. \boldsymbol{\epsilon}' \mathbf{P}_{m} \boldsymbol{\epsilon} + \boldsymbol{\beta}' \mathbf{X}' (\mathbf{I} - \mathbf{P}_{m}) \mathbf{X} \boldsymbol{\beta} \end{aligned}$$

Predictive MSE of $\mathbf{X}\hat{\boldsymbol{\beta}}_m$ relative to infeasible optimum $\mathbf{X}\boldsymbol{\beta}$

Step 3: Expectation of Step 2 conditional on X

$$\begin{aligned} \mathsf{MSE}(m|\mathbf{X}) &= & \mathbb{E}\left[(\mathbf{X}\widehat{\boldsymbol{\beta}}_m - \mathbf{X}\boldsymbol{\beta})'(\mathbf{X}\widehat{\boldsymbol{\beta}}_m - \mathbf{X}\boldsymbol{\beta})|\mathbf{X}\right] \\ &= & \mathbb{E}\left[\epsilon'\mathbf{P}_m\boldsymbol{\epsilon}|\mathbf{X}\right] + \mathbb{E}\left[\boldsymbol{\beta}'\mathbf{X}'(\mathbf{I} - \mathbf{P}_m)\mathbf{X}\boldsymbol{\beta}|\mathbf{X}\right] \\ &= & \mathbb{E}\left[\mathsf{tr}\left\{\epsilon'\mathbf{P}_m\boldsymbol{\epsilon}\right\}|\mathbf{X}\right] + \boldsymbol{\beta}'\mathbf{X}'(\mathbf{I} - \mathbf{P}_m)\mathbf{X}\boldsymbol{\beta} \\ &= & \mathsf{tr}\left\{\mathbb{E}[\boldsymbol{\epsilon}\boldsymbol{\epsilon}'|\mathbf{X}]\mathbf{P}_m\right\} + \boldsymbol{\beta}'\mathbf{X}'(\mathbf{I} - \mathbf{P}_m)\mathbf{X}\boldsymbol{\beta} \\ &= & \mathsf{tr}\left\{\sigma^2\mathbf{P}_m\right\} + \boldsymbol{\beta}'\mathbf{X}'(\mathbf{I} - \mathbf{P}_m)\mathbf{X}\boldsymbol{\beta} \\ &= & \sigma^2k_m + \boldsymbol{\beta}'\mathbf{X}'(\mathbf{I} - \mathbf{P}_m)\mathbf{X}\boldsymbol{\beta} \end{aligned}$$

where k_m denotes the number of regressors in \mathbf{X}_m and $\operatorname{tr}(\mathbf{P}_m) = \operatorname{tr}\left\{\mathbf{X}_m \left(\mathbf{X}_m'\mathbf{X}_m\right)^{-1}\mathbf{X}_m'\right\} = \operatorname{tr}\left\{\mathbf{X}_m'\mathbf{X}_m \left(\mathbf{X}_m'\mathbf{X}_m\right)^{-1}\right\} = \operatorname{tr}(\mathbf{I}_m)$

Now we know the MSE of a given model...

$$MSE(m|\mathbf{X}) = \sigma^2 k_m + \beta' \mathbf{X}' (\mathbf{I} - \mathbf{P}_m) \mathbf{X} \beta$$

Bias-Variance Tradeoff

- ▶ Smaller Model $\Rightarrow \sigma^2 k_m$ smaller: less estimation uncertainty.
- ▶ Bigger Model $\Rightarrow \mathbf{X}'(\mathbf{I} \mathbf{P}_m)\mathbf{X} = ||(\mathbf{I} \mathbf{P}_m)\mathbf{X}||^2$ is in general smaller: less (squared) bias.

Mallow's C_p

- ▶ Problem: MSE formula is infeasible since it involves β and σ^2 .
- ▶ Solution: Mallow's C_p constructs an unbiased estimator.
- ▶ Idea: what about plugging in $\widehat{\beta}$ to estimate second term?

What if we plug in $\hat{\beta}$ to estimate the second term?

For the missing algebra in Step 4, see the lecture notes.

Notation

Let $\widehat{\boldsymbol{\beta}}$ denote the full model estimator and ${\bf P}$ be the corresponding projection matrix: ${\bf X}\widehat{\boldsymbol{\beta}}={\bf P}{\bf y}.$

Crucial Fact

 $span(\mathbf{X}_m)$ is a subspace of $span(\mathbf{X})$, so $\mathbf{P}_m\mathbf{P} = \mathbf{P}\mathbf{P}_m = \mathbf{P}_m$.

Step 4: Algebra using the preceding fact

$$\mathbb{E}\left[\widehat{\boldsymbol{\beta}}'\mathbf{X}'(\mathbf{I}-\mathbf{P}_m)\mathbf{X}\widehat{\boldsymbol{\beta}}|\mathbf{X}\right]=\cdots=\boldsymbol{\beta}'\mathbf{X}'(\mathbf{I}-\mathbf{P}_m)\mathbf{X}\boldsymbol{\beta}+\mathbb{E}\left[\boldsymbol{\epsilon}'(\mathbf{P}-\mathbf{P}_m)\boldsymbol{\epsilon}|\mathbf{X}\right]$$

Substituting $\widehat{\boldsymbol{\beta}}$ doesn't work...

Step 5: Use "Trace Trick" on second term from Step 4

$$\begin{split} \mathbb{E}[\epsilon'(\mathbf{P} - \mathbf{P}_m)\epsilon|\mathbf{X}] &= \mathbb{E}[\operatorname{tr}\left\{\epsilon'(\mathbf{P} - \mathbf{P}_m)\epsilon\right\}|\mathbf{X}] \\ &= \operatorname{tr}\left\{\mathbb{E}[\epsilon\epsilon'|\mathbf{X}](\mathbf{P} - \mathbf{P}_m)\right\} \\ &= \operatorname{tr}\left\{\sigma^2(\mathbf{P} - \mathbf{P}_m)\right\} \\ &= \sigma^2\left(\operatorname{trace}\left\{\mathbf{P}\right\} - \operatorname{trace}\left\{\mathbf{P}_m\right\}\right) \\ &= \sigma^2(K - k_m) \end{split}$$

where K is the total number of regressors in X

Bias of Plug-in Estimator

$$\mathbb{E}\left[\widehat{\boldsymbol{\beta}}'\mathbf{X}'(\mathbf{I}-\mathbf{P}_m)\mathbf{X}\widehat{\boldsymbol{\beta}}|\mathbf{X}\right] = \underbrace{\boldsymbol{\beta}'\mathbf{X}'(\mathbf{I}-\mathbf{P}_m)\mathbf{X}\boldsymbol{\beta}}_{\text{Truth}} + \underbrace{\boldsymbol{\sigma}^2(\boldsymbol{K}-\boldsymbol{k}_m)}_{\text{Bias}}$$

Putting Everything Together: Mallow's C_p

Want An Unbiased Estimator of This:

$$\mathsf{MSE}(m|\mathbf{X}) = \sigma^2 k_m + \beta' \mathbf{X}' (\mathbf{I} - \mathbf{P}_m) \mathbf{X} \boldsymbol{\beta}$$

Previous Slide:

$$\mathbb{E}\left[\widehat{\boldsymbol{\beta}}'\mathbf{X}'(\mathbf{I}-\mathbf{P}_m)\mathbf{X}\widehat{\boldsymbol{\beta}}|\mathbf{X}\right] = \boldsymbol{\beta}'\mathbf{X}'(\mathbf{I}-\mathbf{P}_m)\mathbf{X}\boldsymbol{\beta} + \sigma^2(K-k_m)$$

End Result:

$$MC(m) = \widehat{\sigma}^2 k_m + \left[\widehat{\beta}' \mathbf{X}' (\mathbf{I} - \mathbf{P}_m) \mathbf{X} \widehat{\beta} - \widehat{\sigma}^2 (K - k_m) \right]$$
$$= \widehat{\beta}' \mathbf{X}' (\mathbf{I} - \mathbf{P}_m) \mathbf{X} \widehat{\beta} + \widehat{\sigma}^2 (2k_m - K)$$

is an unbiased estimator of MSE, with $\hat{\sigma}^2 = \mathbf{y}'(\mathbf{I} - \mathbf{P})\mathbf{y}/(T - K)$

Why is this different from the textbook formula?

Just algebra, but tedious...

$$\begin{aligned} \mathsf{MC}(m) - 2\widehat{\sigma}^2 k_m &= \widehat{\beta}' X' (\mathbf{I} - P_M) X \widehat{\beta} - K \widehat{\sigma}^2 \\ \vdots &&\\ &= \mathbf{y}' (\mathbf{I} - P_M) \mathbf{y} - T \widehat{\sigma}^2 \\ &= \mathsf{RSS}(m) - T \widehat{\sigma}^2 \end{aligned}$$

Therefore:

$$MC(m) = RSS(m) + \widehat{\sigma}^2(2k_m - T)$$

Divide Through by $\widehat{\sigma}^2$:

$$C_p(m) = \frac{\mathsf{RSS}(m)}{\widehat{\sigma}^2} + 2k_m - T$$

Tells us how to adjust RSS for number of regressors...

Bayesian Model Comparison: Marginal Likelihoods

Bayes' Rule for Model $m \in \mathcal{M}$

$$\underbrace{\frac{\pi(\boldsymbol{\theta}|\mathbf{y},m)}_{\mathsf{Posterior}} \propto \underbrace{\pi(\boldsymbol{\theta}|m)}_{\mathsf{Prior}} \underbrace{f(\mathbf{y}|\boldsymbol{\theta},m)}_{\mathsf{Likelihood}}}_{\mathsf{Likelihood}}$$

$$\underbrace{f(\mathbf{y}|m)}_{\mathsf{Marginal Likelihood}} = \int_{\Theta} \pi(\boldsymbol{\theta}|m) f(\mathbf{y}|\boldsymbol{\theta},m) \; \mathrm{d}\boldsymbol{\theta}$$

Posterior Model Probability for $m \in \mathcal{M}$

$$P(m|\mathbf{y}) = \frac{P(m)f(\mathbf{y}|m)}{f(\mathbf{y})} = \frac{\int_{\Theta} P(m)f(\mathbf{y}, \boldsymbol{\theta}|m) d\boldsymbol{\theta}}{f(\mathbf{y})} = \frac{P(m)}{f(\mathbf{y})} \int_{\Theta} \pi(\boldsymbol{\theta}|m)f(\mathbf{y}|\boldsymbol{\theta}, m) d\boldsymbol{\theta}$$

where P(m) is the prior model probability and f(y) is constant across models.

Laplace (aka Saddlepoint) Approximation

Suppress model index m for simplicity.

General Case: for T large...

$$\int_{\Theta} g(\boldsymbol{\theta}) \exp\{T \cdot h(\boldsymbol{\theta})\} \; \mathrm{d}\boldsymbol{\theta} \approx \left(\frac{2\pi}{T}\right)^{p/2} \exp\{T \cdot h(\boldsymbol{\theta}_0)\} g(\boldsymbol{\theta}_0) \left|H(\boldsymbol{\theta}_0)\right|^{-1/2}$$

$$p = \dim(\theta), \ \theta_0 = \arg\max_{\theta \in \Theta} h(\theta), \ H(\theta_0) = -\frac{\partial^2 h(\theta)}{\partial \theta \partial \theta'} \Big|_{\theta = \theta_0}$$

Use to Approximate Marginal Likelihood

$$h(\theta) = \frac{\ell(\theta)}{T} = \frac{1}{T} \sum_{t=1}^{T} \log f(Y_i | \theta), \quad H(\theta) = J_T(\theta) = -\frac{1}{T} \sum_{t=1}^{T} \frac{\partial^2 \log f(Y_i | \theta)}{\partial \theta \partial \theta'}, \quad g(\theta) = \pi(\theta)$$

and substitute $\widehat{\boldsymbol{\theta}}_{MF}$ for $\boldsymbol{\theta}_0$

Laplace Approximation to Marginal Likelihood

Suppress model index m for simplicity.

$$\int_{\Theta} \pi(\boldsymbol{\theta}) f(\mathbf{y}|\boldsymbol{\theta}) d\boldsymbol{\theta} \approx \left(\frac{2\pi}{T}\right)^{p/2} \exp\left\{\ell(\widehat{\boldsymbol{\theta}}_{MLE})\right\} \pi(\widehat{\boldsymbol{\theta}}_{MLE}) \left|J_{T}(\widehat{\boldsymbol{\theta}}_{MLE})\right|^{-1/2}$$

$$\ell(\boldsymbol{\theta}) = \sum_{i=1}^{T} \log f(Y_{i}|\boldsymbol{\theta}), \quad H(\boldsymbol{\theta}) = J_{T}(\boldsymbol{\theta}) = -\frac{1}{T} \sum_{i=1}^{T} \frac{\partial^{2} \log f(Y_{i}|\boldsymbol{\theta})}{\partial \boldsymbol{\theta} \partial \boldsymbol{\theta}'}$$

Bayesian Information Criterion

$$\int_{\Theta} \pi(\boldsymbol{\theta}) f(\mathbf{y}|\boldsymbol{\theta}) \, \mathrm{d}\boldsymbol{\theta} \approx \left(\frac{2\pi}{T}\right)^{p/2} \exp\left\{\ell(\widehat{\boldsymbol{\theta}}_{\mathit{MLE}})\right\} \pi(\widehat{\boldsymbol{\theta}}_{\mathit{MLE}}) \left|J_{T}(\widehat{\boldsymbol{\theta}}_{\mathit{MLE}})\right|^{-1/2}$$

Take Logs and Multiply by 2

$$2\log f(\mathbf{y}|\boldsymbol{\theta}) \approx \underbrace{2\ell(\widehat{\boldsymbol{\theta}}_{MLE})}_{O_p(T)} - \underbrace{p\log(T)}_{O(\log T)} + \underbrace{p\log(2\pi) + \log \pi(\widehat{\boldsymbol{\theta}}) - \log|J_T(\widehat{\boldsymbol{\theta}})|}_{O_p(1)}$$

The BIC

Assume uniform prior over models and ignore lower order terms:

$$BIC(m) = 2 \log f(\mathbf{y}|\widehat{\boldsymbol{\theta}}, m) - p_m \log(T)$$

large-sample Frequentist approx. to Bayesian marginal likelihood

Lecture #3 – Cross-Validation

Model selection via a Hold-out Sample

K-fold Cross-validation

Asymptotic Equivalence Between LOO-CV and TIC

Influence Functions

Model Selection using a Hold-out Sample

- The real problem is double use of the data: first for estimation, then for model comparison.
 - Maximized sample log-likelihood is an overly optimistic estimate of expected log-likelihood and hence KL-divergence
 - ► In-sample squared prediction error is an overly optimistic estimator of out-of-sample squared prediction error
- ► AIC/TIC, AIC_c, BIC, C_p penalize sample log-likelihood or RSS to compensate.

Another idea: don't re-use the same data!

Hold-out Sample: Partition the Full Dataset

Unfortunately this is extremely wasteful of data...

K-fold Cross-Validation: "Pseudo-out-of-sample"

Step 1

Randomly partition full dataset into K folds of approx. equal size.

Step 2

Treat k^{th} fold as a hold-out sample and estimate model using all observations except those in fold k: yielding estimator $\widehat{\theta}(-k)$.

K-fold Cross-Validation: "Pseudo-out-of-sample"

Step 2

Treat k^{th} fold as a hold-out sample and estimate model using all observations except those in fold k: yielding estimator $\widehat{\theta}(-k)$.

Step 3

Repeat Step 2 for each k = 1, ..., K.

Step 4

For each t calculate the prediction $\hat{y}_t^{-k(t)}$ of y_t based on $\hat{\theta}(-k(t))$, the estimator that excluded observation t.

K-fold Cross-Validation: "Pseudo-out-of-sample"

Step 4

For each t calculate the prediction $\hat{y}_t^{-k(t)}$ of y_t based on $\hat{\theta}(-k(t))$, the estimator that excluded observation t.

Step 5

Define $CV_K = \frac{1}{T} \sum_{t=1}^{T} L\left(y_t, \widehat{y}_t^{-k(t)}\right)$ where L is a loss function.

Step 5

Repeat for each model & choose m to minimize $CV_K(m)$.

CV uses each observation for parameter estimation and model evaluation but never at the same time!

Cross-Validation (CV): Some Details

Which Loss Function?

- For regression squared error loss makes sense
- For classification (discrete prediction) could use zero-one loss.
- ► Can also use log-likelihood/KL-divergence as a loss function. . .

How Many Folds?

- ▶ One extreme: K = 2. Closest to Training/Test idea.
- ▶ Other extreme: K = T Leave-one-out CV (LOO-CV).
- Computationally expensive model ⇒ may prefer fewer folds.
- ▶ If your model is a linear smoother there's a computational trick that makes LOO-CV extremely fast. (Problem Set)
- Asymptotic properties are related to K...

Relationship between LOO-CV and TIC

Theorem

LOO-CV using KL-divergence as the loss function is asymptotically equivalent to TIC but doesn't require us to estimate the Hessian and variance of the score.

Large-sample Equivalence of LOO-CV and TIC

Notation and Assumptions

For simplicity let $Y_1,\ldots,Y_T\sim \mathrm{iid}$. Let $\widehat{\theta}_{(t)}$ be the maximum likelihood estimator based on all observations except t and $\widehat{\theta}$ be the full-sample estimator.

Log-likelihood as "Loss"

 $\mathsf{CV}_1 = \frac{1}{T} \sum_{t=1}^T \log f(y_t | \widehat{\theta}_{(t)})$ but since min. $\mathsf{KL} = \mathsf{max}$. log-like. we choose the model with highest $\mathsf{CV}_1(m)$.

Overview of the Proof

First-Order Taylor Expansion of $\widehat{\theta}_{(t)}$ around $\widehat{\theta}$:

$$CV_{1} = \frac{1}{T} \sum_{t=1}^{T} \log f(y_{t}|\widehat{\theta}_{(t)})$$

$$= \frac{1}{T} \sum_{t=1}^{T} \left[\log f(y_{t}|\widehat{\theta}) + \frac{\partial \log f(y_{t}|\widehat{\theta})}{\partial \theta'} \left(\widehat{\theta}_{(t)} - \widehat{\theta} \right) \right] + o_{p}(1)$$

$$= \frac{\ell(\widehat{\theta})}{T} + \frac{1}{T} \sum_{t=1}^{T} \frac{\partial \log f(y_{t}|\widehat{\theta})}{\partial \theta'} \left(\widehat{\theta}_{(t)} - \widehat{\theta} \right) + o_{p}(1)$$

Crucial point: the first-order term is not zero in this case. (Why?)

Overview of Proof

From expansion on previous slide, we simply need to show that:

$$\frac{1}{T} \sum_{t=1}^{T} \frac{\partial \log f(y_t | \widehat{\theta})}{\partial \theta'} \left(\widehat{\theta}_{(t)} - \widehat{\theta} \right) = -\frac{1}{T} \operatorname{tr} \left(\widehat{J}^{-1} \widehat{K} \right) + o_p(1)$$

$$\widehat{K} = \frac{1}{T} \sum_{t=1}^{T} \left(\frac{\partial \log f(y_t | \widehat{\theta})}{\partial \theta} \right) \left(\frac{\partial \log f(y_t | \widehat{\theta})}{\partial \theta} \right)'$$

$$\widehat{J} = -\frac{1}{T} \sum_{t=1}^{T} \frac{\partial \log f(y_t | \widehat{\theta})}{\partial \theta \partial \theta'}$$

Overview of Proof

By the definition of \widehat{K} and the properties of the trace operator:

$$\begin{split} -\frac{1}{T} \mathrm{tr} \left\{ \widehat{J}^{-1} \widehat{K} \right\} &= -\frac{1}{T} \mathrm{tr} \left\{ \widehat{J}^{-1} \left[\frac{1}{T} \sum_{t=1}^{T} \left(\frac{\partial \log f(y_t | \widehat{\theta})}{\partial \theta} \right) \left(\frac{\partial \log f(y_t | \widehat{\theta})}{\partial \theta} \right)' \right] \right\} \\ &= \left[\frac{1}{T} \sum_{t=1}^{T} \mathrm{tr} \left\{ \frac{-\widehat{J}^{-1}}{T} \left(\frac{\partial \log f(y_t | \widehat{\theta})}{\partial \theta} \right) \left(\frac{\partial \log f(y_t | \widehat{\theta})}{\partial \theta} \right)' \right\} \right] \\ &= \frac{1}{T} \sum_{t=1}^{T} \frac{\partial \log f(y_t | \widehat{\theta})}{\partial \theta'} \left(-\frac{1}{T} \widehat{J}^{-1} \right) \frac{\partial \log f(y_t | \widehat{\theta})}{\partial \theta} \end{split}$$

So it suffices to show that

$$\left(\widehat{ heta}_{(t)} - \widehat{ heta}
ight) = -rac{1}{T}\widehat{J}^{-1}\left[rac{\partial \log f(y_t|\widehat{ heta})}{\partial heta}
ight] + o_p(1)$$

Digression: Functionals and Influence Functions

(Statistical) Functional

 $\mathbb{T} = \mathbb{T}(G)$ maps a CDF G to \mathbb{R}^p .

Example: ML Estimation

$$heta_0 = \mathbb{T}(G) = \operatorname*{arg\,min}_{\theta \in \Theta} E_G \left[\log \left\{ rac{g(Y)}{f(Y|\theta)}
ight\}
ight]$$

Influence Function

Let δ_y be a point mass at y: $\delta_y(y) = 1$, $\delta_y(y') = 0$ for $y' \neq y$. Influence function = functional derivative: how does a small change in G affect \mathbb{T} ?

$$\inf(G, y) = \lim_{\epsilon \to 0} \frac{\mathbb{T}\left[(1 - \epsilon) G + \epsilon \delta_y\right] - \mathbb{T}(G)}{\epsilon}$$

Back to the Proof...

Step 1

The influence function for ML estimation turns out to be $\inf(G, y) = J^{-1} \frac{\partial}{\partial \theta} \log f(y|\theta_0).$

Step 2

Let \widehat{G} denote the empirical CDF based on y_1, \ldots, y_T . Then:

$$\left(\widehat{\theta}_{(t)} - \widehat{\theta}\right) = -\frac{1}{T} \mathsf{infl}(\widehat{G}, y_t) + o_p(1)$$

Step 3

Evaluating Step 1 at \widehat{G} and substituting into Step 2

$$\left(\widehat{ heta}_{(t)} - \widehat{ heta}
ight) = -rac{1}{T}\widehat{J}^{-1}\left[rac{\partial \log f(y_t|\widehat{ heta})}{\partial heta}
ight] + o_p(1)$$

Lecture #4 – Asymptotic Properties

Overview

Weak Consistency

Consistency

Efficiency

AIC versus BIC in a Simple Example

Overview

- ▶ What happens as $T \to \infty$?
- Consistency: choose "best" model wpa 1
- Efficiency: procedure with good risk properties
- Can't have both at once.
- Large, fairly technical literature: only a brief overview today.
- More details: Sin and White (1992, 1996), Pötscher (1991),
 Leeb & Pötscher (2005), Yang (2005) and Yang (2007).

Penalizing the Likelihood

Examples we've seen:

$$\begin{split} & \textit{TIC} &= 2\ell_{\textit{T}}(\widehat{\theta}) - \mathsf{trace}\left\{\widehat{J}^{-1}\widehat{K}\right\} \\ & \textit{AIC} &= 2\ell_{\textit{T}}(\widehat{\theta}) - 2\,\mathsf{length}(\theta) \\ & \textit{BIC} &= 2\ell_{\textit{T}}(\widehat{\theta}) - \mathsf{log}(\textit{T})\,\mathsf{length}(\theta) \end{split}$$

Generic penalty $c_{T,k}$

$$IC(M_k) = 2\sum_{t=1}^{T} \log f_{k,t}(Y_t|\widehat{\theta_k}) - c_{T,k}$$

How does choice of $c_{T,k}$ affect behavior of the criterion?

Weak Consistency: Suppose M_{k_0} Uniquely Minimizes KL

Assumption

$$\liminf_{T \to \infty} \left(\min_{k \neq k_0} \frac{1}{T} \sum_{t=1}^{T} \left\{ \mathit{KL}(g; f_{k,t}) - \mathit{KL}(g; f_{k_0,t}) \right\} \right) > 0$$

Consequences

- Any criterion with c_{T,k} > 0 and c_{T,k} = o_p(T) is weakly consistent: selects M_{k0} wpa 1 in the limit.
- ▶ Weak consistency still holds if $c_{T,k}$ is zero for one of the models, so long as it is strictly positive for all the others.

Both AIC and BIC are Weakly Consistent

Both satisfy $T^{-1}c_{T,k} \stackrel{p}{\to} 0$.

BIC Penalty: $c_{T,k} = \log(T) \times \operatorname{length}(\theta_k)$

AIC Penalty: $c_{T,k} = 2 \times \text{length}(\theta_k)$

Consistency: No Unique KL-minimizer

Example

If the truth is an AR(5) model then AR(6), AR(7), AR(8), etc. models all have zero KL-divergence.

Principle of Parsimony

Among the KL-minimizers, choose the simplest model, i.e. the one with the fewest parameters.

Notation

 $\mathcal{J}=$ be the set of all models that attain minimum KL-divergence

 $\mathcal{J}_0 = \text{subset}$ with the minimum number of parameters.

Sufficient Conditions for Consistency

Consistency: Select Model from \mathcal{J}_0 wpa 1

$$\lim_{\mathcal{T} \to \infty} \mathbb{P} \left\{ \min_{\ell \in \mathcal{J} \setminus \mathcal{J}_0} \left[\mathit{IC}(\mathit{M}_{j_0}) - \mathit{IC}(\mathit{M}_{\ell}) \right] > 0 \right\} = 1$$

Sufficient Conditions

(i) For all $k \neq \ell \in \mathcal{J}$

$$\sum_{t=1}^T \left[\log f_{k,t}(Y_t|\theta_k^*) - \log f_{\ell,t}(Y_t|\theta_\ell^*)\right] = O_p(1)$$

where θ_k^* and θ_ℓ^* are the KL minimizing parameter values.

(ii) For all $j_0\in\mathcal{J}_0$ and $\ell\in(\mathcal{J}\setminus\mathcal{J}_0)$ $P\left(c_{\mathcal{T},\ell}-c_{\mathcal{T},j_0}\to\infty\right)=1$

BIC is Consistent; AIC and TIC Are Not

- ▶ AIC and TIC cannot satisfy (ii) since $(c_{T,\ell} c_{T,j_0})$ does not depend on sample size.
- It turns out that AIC and TIC are not consistent.
- BIC is consistent:

$$c_{T,\ell} - c_{T,j_0} = \log(T) \left\{ \operatorname{length}(\theta_{\ell}) - \operatorname{length}(\theta_{j_0}) \right\}$$

- ▶ Term in braces is *positive* since $\ell \in \mathcal{J} \setminus \mathcal{J}_0$, i.e. ℓ is not as parsimonious as j_0
- ▶ $log(T) \rightarrow \infty$, so BIC always selects a model in \mathcal{J}_0 in the limit.

Efficiency

- Roughly speaking, a model selection criterion is called efficient if it performs "nearly as well" as the theoretical optimum relative to some loss function.
- More broadly, an efficient/conservative criterion is one that has "good risk properties."
- We don't have time to go into detail, so we'll look at a particular example...

Consistency versus Efficiency in a Simple Example

Information Criteria

Consider criteria of the form $IC_m = 2\ell(\theta) - d_T \times length(\theta)$.

True DGP

$$Y_1, \ldots, Y_T \sim \text{iid N}(\mu, 1)$$

Candidate Models

 M_0 assumes $\mu = 0$, M_1 does not restrict μ . Only one parameter:

$$egin{aligned} \mathsf{IC}_0 &= 2 \max_{\mu} \left\{ \ell(\mu) \colon \mathsf{M}_0
ight\} \ &\mathsf{IC}_1 &= 2 \max_{\mu} \left\{ \ell(\mu) \colon \mathsf{M}_1
ight\} - d_{\mathcal{T}} \end{aligned}$$

Log-Likelihood Function

Since
$$\sum_{t=1}^{T} (Y_t - \mu)^2 = T(\bar{Y} - \mu)^2 + T\hat{\sigma}^2$$
,

$$\begin{split} \ell_T(\mu) &= \sum_{t=1}^T \log \left(\frac{1}{2\pi} \exp \left\{ -\frac{1}{2} (Y_t - \mu)^2 \right\} \right) \\ &= -\frac{T}{2} \log (2\pi) - \frac{1}{2} \sum_{t=1}^T (Y_t - \mu)^2 \\ &= -\frac{T}{2} \log (2\pi) - \frac{T}{2} \widehat{\sigma}^2 - \frac{T}{2} (\bar{Y} - \mu)^2 \\ &= \operatorname{Constant} - \frac{T}{2} (\bar{Y} - \mu)^2 \end{split}$$

Side Calculation: $\sum_{t=1}^{T} (Y_t - \mu)^2 = T(\bar{Y} - \mu)^2 + T\hat{\sigma}^2$

$$T\hat{\sigma}^{2} = \sum_{t=1}^{T} (Y_{t} - \bar{Y})^{2} = \sum_{t=1}^{T} (Y_{t} - \mu + \mu - \bar{Y})^{2} = \sum_{t=1}^{T} [(Y_{t} - \mu) - (\bar{Y} - \mu)]^{2}$$

$$= \sum_{t=1}^{T} (Y_{t} - \mu)^{2} - \sum_{t=1}^{T} 2(Y_{t} - \mu)(\bar{Y} - \mu) + \sum_{t=1}^{T} (\bar{Y} - \mu)^{2}$$

$$= \left[\sum_{t=1}^{T} (Y_{t} - \mu)^{2} \right] - 2(\bar{Y} - \mu) \left(\sum_{t=1}^{T} Y_{t} - \sum_{t=1}^{T} \mu \right) + T(\bar{Y} - \mu)^{2}$$

$$= \left[\sum_{t=1}^{T} (Y_{t} - \mu)^{2} \right] - 2(\bar{Y} - \mu)(T\bar{Y} - T\mu) + T(\bar{Y} - \mu)^{2}$$

$$= \left[\sum_{t=1}^{T} (Y_{t} - \mu)^{2} \right] - 2T(\bar{Y} - \mu)^{2} + T(\bar{Y} - \mu)^{2}$$

$$= \left[\sum_{t=1}^{T} (Y_{t} - \mu)^{2} \right] - T(\bar{Y} - \mu)^{2}$$

The Selected Model \widehat{M}

Information Criteria

 M_0 sets $\mu=0$ while M_1 uses the MLE \bar{Y} , so we have

$$egin{aligned} \mathsf{IC}_0 &= 2\max_{\mu}\left\{\ell(\mu)\colon\mathsf{M}_0
ight\} = 2 imes\mathsf{Constant} - Tar{Y}^2 \ \\ \mathsf{IC}_1 &= 2\max_{\mu}\left\{\ell(\mu)\colon\mathsf{M}_1
ight\} - d_T = 2 imes\mathsf{Constant} - d_T \end{aligned}$$

Difference of Criteria

$$\mathsf{IC}_1 - \mathsf{IC}_0 = T\bar{Y}^2 - d_T$$

Selected Model

$$\widehat{M} = \left\{ \begin{array}{ll} \mathsf{M}_1, & |\sqrt{T}\,\bar{Y}| \geq \sqrt{d_T} \\ \mathsf{M}_0, & |\sqrt{T}\,\bar{Y}| < \sqrt{d_T} \end{array} \right.$$

Case I: $\mu \neq 0$

Apply theory from earlier in lecture...

KL-Divergence of M₁

 M_1 is the true DGP with minimized KL-divergence equal to zero.

KL-Divergence of M₀

- ► Truth: $g(y) = (2\pi)^{-1/2} \exp \left\{ -(y \mu)^2 / 2 \right\}$
- M_0 : $f(y) = (2\pi)^{-1/2} \exp\{-y^2/2\}$
- Hence: $\log g(y) \log f(y) = -\frac{1}{2}(y-\mu)^2 + \frac{1}{2}y^2 = \mu \left(y \frac{\mu}{2}\right)$

$$\begin{aligned} \mathsf{KL}(g;\mathsf{M}_0) &= \int_{\mathbb{R}} \mu(y - \mu/2) (2\pi)^{-1/2} \exp\left\{ (y - \mu)^2 / 2 \right\} \; \mathsf{d}y \\ &= \mu(\mu - \mu/2) = \mu^2 / 2 \end{aligned}$$

Verifying Weak Consistency: $\mu \neq 0$

Condition on KL-Divergence

$$\liminf_{T \to \infty} \frac{1}{T} \sum_{t=1}^T \left\{ \textit{KL}(g; M_0) - \textit{KL}(g; M_1) \right\} = \liminf_{n \to \infty} \ \frac{1}{T} \sum_{t=1}^T \left(\frac{\mu^2}{2} - 0 \right) > 0$$

Condition on Penalty

- ▶ Need $c_{T,k} = o_p(T)$, i.e. $c_{T,k}/T \stackrel{p}{\rightarrow} 0$.
- ▶ Both AIC and BIC satisfy this
- ▶ If $\mu \neq 0$, both AIC and BIC select M₁ wpa 1 as $T \rightarrow \infty$.

Case II: $\mu = 0$

What's different?

- ▶ Both M_1 and M_0 are true and minimize KL divergence at zero.
- Consistency says choose most parsimonious true model: M₀

Verifying Conditions for Consistency

- ▶ N(0,1) model nested inside $N(\mu,1)$ model
- ▶ Truth is N(0,1) so LR-stat is asymptotically $\chi^2(1) = O_p(1)$.
- ▶ For penalty term, need $\mathbb{P}(c_{T,k} c_{T,0}) \rightarrow \infty$
- BIC satisfies this but AIC doesn't.

Finite-Sample Selection Probabilities: AIC

AIC Sets $d_T = 2$

$$\widehat{M}_{AIC} = \left\{ \begin{array}{ll} M_1, & |\sqrt{T}\,\bar{Y}| \ge \sqrt{2} \\ M_0, & |\sqrt{T}\,\bar{Y}| < \sqrt{2} \end{array} \right.$$

$$\begin{split} P\left(\widehat{M}_{AIC} = M_1\right) &= P\left(\left|\sqrt{T}\,\bar{Y}\right| \geq \sqrt{2}\right) \\ &= P\left(\left|\sqrt{T}\,\mu + Z\right| \geq \sqrt{2}\right) \\ &= P\left(\sqrt{T}\,\mu + Z \leq -\sqrt{2}\right) + \left[1 - P\left(\sqrt{T}\,\mu + Z \leq \sqrt{2}\right)\right] \\ &= \Phi\left(-\sqrt{2} - \sqrt{T}\,\mu\right) + \left[1 - \Phi\left(\sqrt{2} - \sqrt{T}\,\mu\right)\right] \end{split}$$

where $Z \sim N(0,1)$ since $\bar{Y} \sim N(\mu, 1/T)$ because $Var(Y_t) = 1$.

Finite-Sample Selection Probabilities: BIC

BIC sets $d_T = \log(T)$

$$\widehat{M}_{BIC} = \left\{ \begin{array}{ll} M_1, & |\sqrt{T}\,\bar{Y}| \geq \sqrt{\log(T)} \\ M_0, & |\sqrt{T}\,\bar{Y}| < \sqrt{\log(T)} \end{array} \right.$$

Same steps as for the AIC except with $\sqrt{\log(T)}$ in the place of $\sqrt{2}$:

$$\begin{split} P\left(\widehat{M}_{BIC} = M_1\right) &= P\left(\left|\sqrt{T}\,\bar{Y}\right| \geq \sqrt{\log(T)}\right) \\ &= \Phi\left(-\sqrt{\log(T)} - \sqrt{T}\mu\right) + \left[1 - \Phi\left(\sqrt{\log(T)} - \sqrt{T}\mu\right)\right] \end{split}$$

Interactive Demo: AIC vs BIC

https://fditraglia.shinyapps.io/CH_Figure_4_1/

Probability of Over-fitting

- ▶ If $\mu = 0$ both models are true but M_0 is more parsimonious.
- Probability of over-fitting (Z denotes standard normal):

$$P\left(\widehat{M} = M_1\right) = P\left(|\sqrt{T}\,\overline{Y}| \ge \sqrt{d_T}\right) = P(|Z| \ge \sqrt{d_T})$$
$$= P(Z^2 \ge d_T) = P(\chi_1^2 \ge d_T)$$

- AIC: $d_T = 2$ and $P(\chi_1^2 \ge 2) \approx 0.157$.
- ▶ BIC: $d_T = \log(T)$ and $P(\chi_1^2 \ge \log T) \to 0$ as $T \to \infty$.

AIC has $\approx 16\%$ prob. of over-fitting; BIC does not over-fit in the limit.

Risk of the Post-Selection Estimator

The Post-Selection Estimator

$$\widehat{\mu} = \left\{ \begin{array}{ll} \bar{Y}, & |\sqrt{T}\,\bar{Y}| \geq \sqrt{d_T} \\ 0, & |\sqrt{T}\,\bar{Y}| < \sqrt{d_T} \end{array} \right.$$

Recall from above

Recall from above that $\sqrt{T}\bar{Y} = \sqrt{T}\mu + Z$ where $Z \sim N(0,1)$

Risk Function

MSE risk times T since Var. of well-behaved estimator = O(1/T)

$$R_T(\mu) = T \cdot \mathbb{E}\left[(\widehat{\mu} - \mu)^2\right] = \mathbb{E}\left[\left(\sqrt{T}\widehat{\mu} - \sqrt{T}\mu\right)^2\right]$$

Simplifying the MSE Risk Function

$$\sqrt{T}ar{Y} = \sqrt{T}\mu + Z$$
 where $Z \sim \textit{N}(0,1)$

Let
$$X=\mathbf{1}\left\{A\right\}$$
 where $A=\left\{\left|\sqrt{T}\mu+Z\right|\geq\sqrt{d_{T}}\right\}$

$$\begin{split} R_{T}(\mu) &= \mathbb{E}\left[\left(\sqrt{T}\widehat{\mu} - \sqrt{T}\mu\right)^{2}\right] \\ &= \mathbb{E}\left\{\left[\left(\sqrt{T}\mu + Z\right)X - \sqrt{T}\mu\right]^{2}\right\} \\ &= \mathbb{P}(A)\,\mathbb{E}\left\{\left[\left(\sqrt{T}\mu + Z\right) - \sqrt{T}\mu\right]^{2} \middle| X = 1\right\} + \left[1 - \mathbb{P}(A)\right]\left(\sqrt{T}\mu\right)^{2} \\ &= \mathbb{P}(A)\,\mathbb{E}\left[Z^{2}|X = 1\right] + \left[1 - \mathbb{P}(A)\right]T\mu^{2} \end{split}$$

So we need to calculate $\mathbb{P}(A)$ $\mathbb{E}[Z^2|X=1]$ and $\mathbb{P}(A)$.

Calculating $\mathbb{P}(A)$

Define
$$a = (-\sqrt{d_T} - \sqrt{T}\mu)$$
 and $b = (\sqrt{d_T} - \sqrt{T}\mu)$

$$\mathbb{P}(A) = \mathbb{P}\left(|\sqrt{T}\mu + Z| \ge \sqrt{d_T}\right)$$

$$= \mathbb{P}\left(\sqrt{T}\mu + Z \ge \sqrt{d_T}\right) + \mathbb{P}\left(\sqrt{T}\mu + Z \le -\sqrt{d_T}\right)$$

$$= \mathbb{P}(Z \ge b) + \mathbb{P}(Z \le a)$$

$$= 1 - \Phi(b) + \Phi(a)$$

And hence:

$$1 - \mathbb{P}(A) = \Phi(b) - \Phi(a)$$

Calculating $\mathbb{P}(A)$ $\mathbb{E}[Z^2|X=1]$ – Step 1

Conditional Density of Z|X=1

$$f(z|x=1)=rac{\mathbf{1}(A)arphi(z)}{\mathbb{P}(A)}$$
 where $arphi$ is the $\mathit{N}(0,1)$ density

Therefore:

$$\mathbb{P}(A) \, \mathbb{E}[Z^2 | X = 1] = \mathbb{P}(A) \int_{\mathbb{R}} z^2 \left[\frac{\mathbf{1}(A)\varphi(z)}{\mathbb{P}(A)} \right] \, \mathrm{d}z$$
$$= \int_{-\infty}^a z^2 \varphi(z) \, \mathrm{d}z + \int_b^\infty z^2 \varphi(z) \, \mathrm{d}z$$

Calculating $\mathbb{P}(A)$ $\mathbb{E}[Z^2|X=1]$ – Step 2

Unconditional Expectation: $\mathbb{E}[Z^2]$

$$1 = \mathbb{E}[Z^2] = \int_{-\infty}^a z^2 \varphi(z) \, \mathrm{d}z + \int_a^b z^2 \varphi(z) \, \mathrm{d}z + \int_b^\infty z^2 \varphi(z) \, \mathrm{d}z$$

Therefore:

$$\mathbb{P}(A) \, \mathbb{E}[Z^2 | X = 1] = \int_{-\infty}^a z^2 \varphi(z) \, \mathrm{d}z + \int_b^\infty z^2 \varphi(z) \, \mathrm{d}z$$
$$= 1 - \int_a^b z^2 \varphi(z) \, \mathrm{d}z$$

Calculating $\mathbb{P}(A)$ $\mathbb{E}[Z^2|X=1]$ – Step 3

Integration By Parts

Take u = -z and $dv = -z \exp\{-z^2/2\}$ since

$$\frac{d}{dz}\left(\exp\left\{-z^2/2\right\}\right) = -z\exp\left\{-z^2/2\right\}$$

Thus, $v = \exp\{-z^2/2\}$, du = -1 and

$$\int_{a}^{b} z^{2} \phi(z) dz = (2\pi)^{-1/2} \int_{a}^{b} z^{2} \exp\left\{-z^{2}/2\right\} dz$$

$$= (2\pi)^{-1/2} \left[-z \exp\left\{-z^{2}/2\right\} \Big|_{a}^{b} + \int_{a}^{b} \exp\left\{-\frac{z^{2}}{2}\right\} dz \right]$$

$$= a\phi(a) - b\phi(b) + \Phi(b) - \Phi(a)$$

The Simplifed MSE Risk Function

$$R_{T}(\mu) = 1 - [a\phi(a) - b\phi(b) + \Phi(b) - \Phi(a)] + T\mu^{2} [\Phi(b) - \Phi(a)]$$
$$= 1 + [b\phi(b) - a\phi(a)] + (T\mu^{2} - 1) [\Phi(b) - \Phi(a)]$$

where

$$a = -\sqrt{d_T} - \sqrt{T}\mu$$
$$b = \sqrt{d_T} - \sqrt{T}\mu$$

https://fditraglia.shinyapps.io/CH_Figure_4_2/

Punchline: Risk of the Post-Selection Estimator

- ► AIC: bounded worst-case risk
- ▶ BIC: low risk in a neighborhood of $\mu = 0$ in exhange for unbounded worst-case risk as sample size grows
- General phenomenon: consistency and efficiency are mutually exclusive: consistent criteria have unbounded worst-case risk.

► For more details, see Yang (2007, ET)

Lecture #7 – Focused Moment Selection

DiTraglia (2016, JoE)

Focused Moment Selection Criterion (FMSC)

- 1. Choose False Assumptions on Purpose
- 2. Focused Choice of Assumptions
- 3. Local mis-specification
- 4. Averaging, Inference post-selection

GMM Framework

Adding Moment Conditions

Ordinary versus Two-Stage Least Squares

$$y_i = \beta x_i + \epsilon_i$$

 $x_i = \mathbf{z}_i' \boldsymbol{\pi} + \mathbf{v}_i$

$$E[\mathbf{z}_i \epsilon_i] = 0$$

$$E[x_i \epsilon_i] = ?$$

Choosing Instrumental Variables

$$y_i = \beta x_i + \epsilon_i$$

$$x_i = \Pi'_1 \mathbf{z}_i^{(1)} + \Pi'_2 \mathbf{z}_i^{(2)} + v_i$$

$$E[\mathbf{z}_{i}^{(1)}\epsilon_{i}] = 0$$

$$E[\mathbf{z}_{i}^{(2)}\epsilon_{i}] = ?$$

FMSC Asymptotics – Local Mis-Specification

Local Mis-Specification for OLS versus TSLS

$$y_i = \beta x_i + \epsilon_i$$

 $x_i = \mathbf{z}_i' \boldsymbol{\pi} + \mathbf{v}_i$

$$E[\mathbf{z}_i \epsilon_i] = 0$$

$$E[\mathbf{x}_i \epsilon_i] = \tau / \sqrt{n}$$

Local Mis-Specification for Choosing IVs

$$y_i = \beta x_i + \epsilon_i$$

$$x_i = \Pi'_1 \mathbf{z}_i^{(1)} + \Pi'_2 \mathbf{z}_i^{(2)} + v_i$$

$$E[\mathbf{z}_i^{(1)} \epsilon_i] = 0$$

$$E[\mathbf{z}_i^{(1)} \epsilon_i] = \tau / \sqrt{n}$$

Local Mis-Specification

Triangular Array $\{Z_{ni}: 1 \leq i \leq n, n = 1, 2, ...\}$ with

- (a) $E[g(Z_{ni}, \theta_0)] = 0$
- (b) $E[h(Z_{ni}, \theta_0)] = n^{-1/2}\tau$
- (c) $\{f(Z_{ni}, \theta_0): 1 \le i \le n, n = 1, 2, \ldots\}$ uniformly integrable
- (d) $Z_{ni} \rightarrow_d Z_i$, where the Z_i are identically distributed.

Shorthand: Write Z for Z_i

Candidate GMM Estimator

$$\widehat{\theta}_{S} = \underset{\theta \in \Theta}{\text{arg min}} \ \left[\Xi_{S} f_{n}(\theta)\right]' \widetilde{W}_{S} \ \left[\Xi_{S} f_{n}(\theta)\right]$$

$$\Xi_S$$
 = Selection Matrix (ones and zeros)
$$\widetilde{W}_S = \text{Weight Matrix (p.s.d.)}$$

$$f_n(\theta) = \begin{bmatrix} g_n(\theta) \\ h_n(\theta) \end{bmatrix} = \begin{bmatrix} n^{-1} \sum_{i=1}^n g(Z_{ni}, \theta) \\ n^{-1} \sum_{i=1}^n h(Z_{ni}, \theta) \end{bmatrix}$$

Notation: Limit Quantities

$$G = E\left[\nabla_{\theta} g(Z, \theta_{0})\right], \quad H = E\left[\nabla_{\theta} h(Z, \theta_{0})\right], \quad F = \begin{bmatrix} G \\ H \end{bmatrix}$$

$$\Omega = Var\left[f(Z, \theta_{0})\right] = \begin{bmatrix} \Omega_{gg} & \Omega_{gh} \\ \Omega_{hg} & \Omega_{hh} \end{bmatrix}$$

$$\widetilde{W}_{S} \rightarrow_{p} W_{S} \text{ (p.d.)}$$

Local Mis-Specification + Standard Regularity Conditions

Every candidate estimator is consistent for θ_0 and

$$\sqrt{n}(\widehat{\theta}_S - \theta_0) \rightarrow_d - K_S \Xi_S \left(\left[egin{array}{c} M_g \\ M_h \end{array}
ight] + \left[egin{array}{c} 0 \\ au \end{array}
ight]
ight)$$

$$K_S = [F'_S W_S F_S]^{-1} F'_S W_S$$

$$M = (M'_g, M'_h)'$$

$$M \sim N(0, \Omega)$$

Scalar Target Parameter μ

$$\mu = \mu(\theta)$$
 Z-a.s. continuous function $\mu_0 = \mu(\theta_0)$ true value $\widehat{\mu} = \mu(\widehat{\theta}_S)$ estimator

Delta Method

$$\sqrt{n}(\widehat{\mu}_{S} - \mu_{0}) \rightarrow_{d} -\nabla_{\theta}\mu(\theta_{0})'K_{S}\Xi_{S}\left(M + \begin{bmatrix} 0 \\ \tau \end{bmatrix}\right)$$

FMSC: Estimate AMSE($\hat{\mu}_S$) and minimize over S

$$\mathsf{AMSE}(\widehat{\mu}_{\mathcal{S}}) = \nabla_{\theta} \mu(\theta_0)' K_{\mathcal{S}} \Xi_{\mathcal{S}} \left\{ \begin{bmatrix} 0 & 0 \\ 0 & \tau \tau' \end{bmatrix} + \Omega \right\} \Xi_{\mathcal{S}}' K_{\mathcal{S}}' \nabla_{\theta} \mu(\theta_0)$$

Estimating the unknowns

No consistent estimator of τ exists! (But everything else is easy)

A Plug-in Estimator of au

An Asymptotically Unbiased Estimator of au au'

$$\sqrt{n}h_n(\widehat{ heta}_v) = \widehat{ au} o_d (\Psi M + au) \sim N_q(au, \Psi \Omega \Psi')$$

$$\Psi = \left[-HK_v \quad \mathbf{I}_q \right]$$

 $\widehat{ au}\widehat{ au}'-\widehat{\Psi}\widehat{\Omega}\widehat{\Psi}$ is an asymptotically unbiased estimator of au au'.

FMSC: Asymptotically Unbiased Estimator of AMSE

$$\mathsf{FMSC}_n(S) = \nabla_{\theta} \mu(\widehat{\theta})' \widehat{K}_S \Xi_S \left\{ \begin{bmatrix} 0 & 0 \\ 0 & \widehat{B} \end{bmatrix} + \widehat{\Omega} \right\} \Xi_S' \widehat{K}_S' \nabla_{\theta} \mu(\widehat{\theta})$$

$$\widehat{B} = \widehat{\tau} \widehat{\tau}' - \widehat{\Psi} \widehat{\Omega} \widehat{\Psi}'$$

Choose S to minimize $FMSC_n(S)$ over the set of candidates \mathcal{S} .

A (Very) Special Case of the FMSC

Under homoskedasticity, FMSC selection in the OLS versus TSLS example is identical to a Durbin-Hausman-Wu test with $\alpha \approx$ 0.16

$$\widehat{\tau} = n^{-1/2} \mathbf{x}' (\mathbf{y} - \mathbf{x} \widetilde{\beta}_{TSLS})$$

OLS gets benefit of the doubt, but not as much as $\alpha = 0.05, 0.1$

Limit Distribution of FMSC

$$FMSC_n(S) \rightarrow_d FMSC_S$$
, where

$$FMSC_S = \nabla_{\theta}\mu(\theta_0)'K_S\Xi_S \left\{ \begin{bmatrix} 0 & 0 \\ 0 & B \end{bmatrix} + \Omega \right\} \Xi_S'K_S'\nabla_{\theta}\mu(\theta_0)$$

$$B = (\Psi M + \tau)(\Psi M + \tau)' - \Psi \Omega \Psi'$$

Conservative criterion: random even in the limit.

Moment Average Estimators

$$\widehat{\mu} = \sum_{S \in \mathscr{S}} \widehat{\omega}_S \widehat{\mu}_S$$

Additional Notation

- $\widehat{\mu}$ Moment-average Estimator
- $\widehat{\mu}_{\mathcal{S}}$ Estimator of target parameter under moment set \mathcal{S}
- $\widehat{\omega}_S$ Data-dependent weight function
- S Collection of moment sets under consideration

Examples of Moment-Averaging Weights

Post-Moment Selection Weights

$$\widehat{\omega}_{\mathcal{S}} = \mathbf{1} \left\{ \mathsf{MSC}_n(\mathcal{S}) = \mathsf{min}_{\mathcal{S}' \in \mathscr{S}} \, \mathsf{MSC}_n(\mathcal{S}') \right\}$$

Exponential Weights

$$\widehat{\omega}_{\mathcal{S}} = \exp\left\{-rac{\kappa}{2}\mathsf{MSC}(\mathcal{S})\right\} \Big/ \sum_{\mathcal{S}' \in \mathscr{S}} \exp\left\{-rac{\kappa}{2}\mathsf{MSC}(\mathcal{S}')\right\}$$

Minimum-AMSE Weights...

Minimum AMSE-Averaging Estimator: OLS vs. TSLS

$$\widetilde{\beta}(\omega) = \omega \widehat{\beta}_{OLS} + (1 - \omega) \widetilde{\beta}_{TSLS}$$

Under homoskedasticity:

$$\omega^* = \left[1 + \frac{\mathsf{ABIAS}(\mathsf{OLS})^2}{\mathsf{AVAR}(\mathsf{TSLS}) - \mathsf{AVAR}(\mathsf{OLS})}\right]^{-1}$$

Estimate by:

$$\widehat{\omega}^* = \left[1 + \frac{\max\left\{0,\; \left(\widehat{\tau}^2 - \widehat{\sigma}_{\epsilon}^2\widehat{\sigma}_{x}^2\left(\widehat{\sigma}_{x}^2/\widehat{\gamma}^2 - 1\right)\right)/\;\widehat{\sigma}_{x}^4\right\}}{\widehat{\sigma}_{\epsilon}^2(1/\widehat{\gamma}^2 - 1/\widehat{\sigma}_{x}^2)}\right]^{-1}$$

Where $\widehat{\gamma}^2 = n^{-1}\mathbf{x}'Z(Z'Z)^{-1}Z'\mathbf{x}$

Limit Distribution of Moment-Average Estimators

$$\widehat{\mu} = \sum_{S \in \mathscr{S}} \widehat{\omega}_S \widehat{\mu}_S$$

- (i) $\sum_{S \in \mathscr{S}} \widehat{\omega}_S = 1$ a.s.
- (ii) $\widehat{\omega}(S) \to_d \varphi_S(\tau, M)$ a.s.-continuous function of τ , M and consistently-estimable constants only

$$\sqrt{n}(\widehat{\mu}-\mu_0)\to_d \Lambda(\tau)$$

$$\Lambda(\tau) = -\nabla_{\theta}\mu(\theta_0)' \left[\sum_{S \in \mathscr{L}} \varphi_S(\tau, M) K_S \Xi_S \right] \left(M + \begin{bmatrix} 0 \\ \tau \end{bmatrix} \right)$$

Simulating from the Limit Experiment

Suppose τ Known, Consistent Estimators of Everything Else

- 1. for $j \in \{1, 2, \dots, J\}$
 - (i) $M_j \stackrel{iid}{\sim} N_{p+q} \left(0, \widehat{\Omega}\right)$
 - (ii) $\Lambda_j(\tau) = -\nabla_\theta \mu(\widehat{\theta})' \left[\sum_{S \in \mathscr{S}} \widehat{\varphi}_S(M_j + \tau) \widehat{K}_S \Xi_S \right] (M_j + \tau)$
- 2. Using $\{\Lambda_j(\tau)\}_{j=1}^J$ calculate $\widehat{a}(\tau)$, $\widehat{b}(\tau)$ such that $P\left[\widehat{a}(\tau) \leq \Lambda(\tau) \leq \widehat{b}(\tau)\right] = 1 \alpha$
- 3. $P\left[\widehat{\mu} \widehat{b}(\tau)/\sqrt{n} \le \mu_0 \le \widehat{\mu} \widehat{a}(\tau)/\sqrt{n}\right] \approx 1 \alpha$

Two-step Procedure for Conservative Intervals

- 1. Construct 1δ confidence region $\mathscr{T}(\widehat{\tau}, \delta)$ for τ
- 2. For each $\tau^* \in \mathscr{T}(\widehat{\tau}, \delta)$ calculate 1α confidence interval $\left[\widehat{a}(\tau^*), \widehat{b}(\tau^*)\right]$ for $\Lambda(\tau^*)$ as descibed on previous slide.
- 3. Take the lower and upper bound over the resulting intervals: $\widehat{a}_{min}(\widehat{\tau}) = \min_{\tau^* \in \mathscr{T}} \widehat{a}(\tau^*), \quad \widehat{b}_{max}(\widehat{\tau^*}) = \max_{\tau^* \in \mathscr{T}} \widehat{b}(\tau)$
- 4. The interval

$$\mathsf{CI}_{\textit{sim}} = \left[\widehat{\mu} - \frac{\widehat{b}_{\textit{max}}(\widehat{\tau})}{\sqrt{n}}, \quad \widehat{\mu} - \frac{\widehat{a}_{\textit{min}}(\widehat{\tau})}{\sqrt{n}} \right]$$

has asymptotic coverage of at least $1 - (\alpha + \delta)$

OLS versus TSLS Simulation

$$y_i = 0.5x_i + \epsilon_i$$

 $x_i = \pi(z_{1i} + z_{2i} + z_{3i}) + v_i$

 $(\epsilon_i, v_i, z_{1i}, z_{2i}, z_{3i}) \sim \text{ iid } N(0, S)$

$$\mathcal{S} = \left[egin{array}{ccccc} 1 &
ho & 0 & 0 & 0 \\
ho & 1 - \pi^2 & 0 & 0 & 0 \\ 0 & 0 & 1/3 & 0 & 0 \\ 0 & 0 & 0 & 1/3 & 0 \\ 0 & 0 & 0 & 0 & 1/3 \end{array}
ight]$$

$$Var(x) = 1, \qquad \rho = Cor(x, \epsilon), \qquad \pi^2 = \text{First-Stage } R^2$$

Econ 722, Part II Lecture 7 – Slide 29

Choosing Instrumental Variables Simulation

$$y_i = 0.5x_i + \epsilon_i$$

 $x_i = (z_{1i} + z_{2i} + z_{3i})/3 + \gamma w_i + v_i$

 $(\epsilon_i, v_i, w_i, z_{i1}, z_{2i}, z_{3i})' \sim \text{ iid } N(0, \mathcal{V})$

$$\mathcal{V} = \left[egin{array}{cccccc} 1 & (0.5 - \gamma
ho) &
ho & 0 & 0 & 0 \\ (0.5 - \gamma
ho) & (8/9 - \gamma^2) & 0 & 0 & 0 & 0 \\
ho & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1/3 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1/3 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1/3 \end{array}
ight]$$

$$\gamma = Cor(x, w), \quad \rho = Cor(w, \epsilon), \quad \text{First-Stage } R^2 = 1/9 + \gamma^2$$

$$Var(x) = 1, \quad Cor(x, \epsilon) = 0.5$$

Alternative Moment Selection Procedures

Downward J-test

Use Full instrument set unless J-test rejects.

Andrews (1999) - GMM Moment Selection Criteria

 $\mathsf{GMM}\text{-}\mathsf{MSC}(S) = J_n(S) - \mathsf{Bonus}$

Hall & Peixe (2003) - Canonical Correlations Info. Criterion

 $CCIC(S) = n \log [1 - R_n^2(S)] + Penalty$

Penalty/Bonus Terms

Analogies to AIC, BIC, and Hannan-Quinn

Econ 722, Part II Lecture 7 – Slide 33

Econ 722, Part II Lecture 7 – Slide 34

Empirical Example: Geography or Institutions?

Institutions Rule

Acemoglu et al. (2001), Rodrik et al. (2004), Easterly & Levine (2003) – zero or negligible effects of "tropics, germs, and crops" in income per capita, controlling for institutions.

Institutions Don't Rule

Sachs (2003) – Large negative direct effect of malaria transmission on income.

Carstensen & Gundlach (2006)

How robust is Sachs's result?

Carstensen & Gundlach (2006)

Both Regressors Endogenous

$$lnGDPC_i = \beta_1 + \beta_2 \cdot INSTITUTIONS_i + \beta_3 \cdot MALARIA_i + \epsilon_i$$

Robustness

- Various measures of INSTITUTIONS, MALARIA
- Various instrument sets
- \triangleright β_3 remains large, negative and significant.

2SLS for All Results That Follow

Expand on Instrument Selection Exercise

FMSC and Corrected Confidence Intervals

- 1. FMSC which instruments to estimate effect of malaria?
- Correct CIs for Instrument Selection effect of malaria still negative and significant?

Measures of INSTITUTIONS and MALARIA

- rule Average governance indicator (Kaufmann, Kray and Mastruzzi; 2004)
- malfal Proportion of population at risk of malaria transmission in 1994 (Sachs, 2001)

Instrument Sets

Baseline Instruments - Assumed Valid

- ▶ Inmort Log settler mortality (per 1000), early 19th century
- maleco Index of stability of malaria transmission

Further Instrument Blocks

Climate frost, humid, latitude

Europe eurfrac, engfrac

Openness coast, trade

	$\mu=$ malfal			$\mu = \mathit{rule}$		
	FMSC	posFMSC	$\widehat{\mu}$	FMSC	posFMSC	$\widehat{\mu}$
(1) Valid	3.0	3.0	-1.0	1.3	1.3	0.9
(2) Climate	3.1	3.1	-0.9	1.0	1.0	1.0
(3) Open	2.3	2.4	-1.1	1.2	1.2	8.0
(4) Eur	1.8	2.2	-1.1	0.5	0.7	0.9
(5) Climate, Eur	0.9	2.0	-1.0	0.3	0.6	0.9
(6) Climate, Open	1.9	2.3	-1.0	0.5	0.8	0.9
(7) Open, Eur	1.6	1.8	-1.2	8.0	0.8	8.0
(8) Full	0.5	1.7	-1.1	0.2	0.6	8.0
> 90% CI FMSC	(-1.6, -0.6)			(0.5, 1.2)		
>90% CI posFMSC	((-1.6, -0.6)			(0.6, 1.3)	

Lecture #8 – High-Dimensional Regression I

The James-Stein Estimator

QR Decomposition

Singular Value Decomposition

Review of Principal Component Analysis (PCA)

Recall: Gauss-Markov Theorem

Linear Regression Model

$$\mathbf{y} = X\beta + \boldsymbol{\epsilon}, \quad \mathbb{E}[\boldsymbol{\epsilon}|X] = \mathbf{0}$$

Best Linear Unbiased Estimator

- ▶ $Var(\epsilon|X) = \sigma^2 I \Rightarrow$ then OLS has lowest variance among linear, unbiased estimators of β .
- ▶ $Var(\varepsilon|X) \neq \sigma^2 I \Rightarrow$ then GLS gives a lower variance estimator.

What if we consider biased estimators?

Dominance and Admissibility

Notation

Let R be a risk function, e.g. MSE, and $\widehat{\theta}$ and $\widetilde{\theta}$ be estimators of θ .

Dominance

We say that $\widehat{\theta}$ dominates $\widetilde{\theta}$ with respect to R if $R(\widehat{\theta}, \theta) \leq R(\widetilde{\theta}, \theta)$ for all $\theta \in \Theta$ and the inequality is strict for at least one value of θ .

Admissibility

We say that $\widehat{\theta}$ is **admissible** if no other estimator dominates it.

Inadmissiblility

To prove that an estimator $\widetilde{\theta}$ is **inadmissible** it suffices to find an estimator $\widehat{\theta}$ that dominates it.

A Very Simple Example: $X \sim N(\theta, I)$

Goal

Estimate the p-vector of unknown parameters θ using X.

Maximum Likelihood Estimator $\widehat{\theta}$

 $\mathsf{MLE} = \mathsf{sample} \; \mathsf{mean}, \; \mathsf{but} \; \mathsf{only} \; \mathsf{one} \; \mathsf{observation} \colon \; \hat{\theta} = X.$

MSE of $\widehat{\theta}$

$$(\hat{\theta} - \theta)'(\hat{\theta} - \theta) = (X - \theta)'(X - \theta) = \sum_{i=1}^{p} (X_i - \theta_i)^2 \sim \chi_p^2$$

Since $\mathbb{E}[\chi_p^2] = p$, we have $MSE(\hat{\theta}) = p$.

A Very Simple Example: $X \sim N(\theta, I)$

James-Stein Estimator

$$\hat{\theta}^{JS} = \hat{\theta} \left(1 - \frac{p-2}{\hat{\theta}'\hat{\theta}} \right) = X - \frac{(p-2)X}{X'X}$$

- ► Shrinks components of sample mean vector towards zero
- ▶ More elements in $\theta \Rightarrow$ more shrinkage
- ▶ MLE close to zero $(\widehat{\theta}'\widehat{\theta}$ small) gives more shrinkage

MSE of James-Stein Estimator

$$MSE\left(\hat{\theta}^{JS}\right) = \mathbb{E}\left[\left(\hat{\theta}^{JS} - \theta\right)'\left(\hat{\theta}^{JS} - \theta\right)\right]$$

$$= \mathbb{E}\left[\left\{(X - \theta) - \frac{(p - 2)X}{X'X}\right\}'\left\{(X - \theta) - \frac{(p - 2)X}{X'X}\right\}\right]$$

$$= \mathbb{E}\left[(X - \theta)'(X - \theta)\right] - 2(p - 2)\mathbb{E}\left[\frac{X'(X - \theta)}{X'X}\right]$$

$$+ (p - 2)^{2}\mathbb{E}\left[\frac{1}{X'X}\right]$$

$$= p - 2(p - 2)\mathbb{E}\left[\frac{X'(X - \theta)}{X'X}\right] + (p - 2)^{2}\mathbb{E}\left[\frac{1}{X'X}\right]$$

Using fact that $MSE(\widehat{\theta}) = p$

Simplifying the Second Term

Writing Numerator as a Sum

$$\mathbb{E}\left[\frac{X'(X-\theta)}{X'X}\right] = \mathbb{E}\left[\frac{\sum_{i=1}^{p} X_{i}\left(X_{i}-\theta_{i}\right)}{X'X}\right] = \sum_{i=1}^{p} \mathbb{E}\left[\frac{X_{i}(X_{i}-\theta_{i})}{X'X}\right]$$

For $i = 1, \ldots, p$

$$\mathbb{E}\left[\frac{X_i(X_i - \theta_i)}{X'X}\right] = \mathbb{E}\left[\frac{X'X - 2X_i^2}{(X'X)^2}\right]$$

Not obvious: integration by parts, expectation as a p-fold integral, $X \sim N(\theta, I)$

Combining

$$\mathbb{E}\left[\frac{X'(X-\theta)}{X'X}\right] = \sum_{i=1}^{p} \mathbb{E}\left[\frac{X'X-2X_{i}^{2}}{\left(X'X\right)^{2}}\right] = p\mathbb{E}\left[\frac{1}{X'X}\right] - 2\mathbb{E}\left[\frac{\sum_{i=1}^{p} X_{i}^{2}}{\left(X'X\right)^{2}}\right]$$
$$= p\mathbb{E}\left[\frac{1}{X'X}\right] - 2\mathbb{E}\left[\frac{X'X}{\left(X'X\right)^{2}}\right] = (p-2)\mathbb{E}\left[\frac{1}{X'X}\right]$$

The MLE is Inadmissible when $p \ge 3$

$$MSE\left(\hat{\theta}^{JS}\right) = p - 2(p - 2)\left\{(p - 2)\mathbb{E}\left[\frac{1}{X'X}\right]\right\} + (p - 2)^{2}\mathbb{E}\left[\frac{1}{X'X}\right]$$
$$= p - (p - 2)^{2}\mathbb{E}\left[\frac{1}{X'X}\right]$$

- ▶ $\mathbb{E}[1/(X'X)]$ exists and is positive whenever $p \ge 3$
- $(p-2)^2$ is always positive
- Hence, second term in the MSE expression is negative
- First term is MSE of the MLE

Therefore James-Stein strictly dominates MLE whenever $p \ge 3!$

James-Stein More Generally

- Our example was specific, but the result is general:
 - MLE is inadmissible under quadratic loss in regression model with at least three regressors.
 - ▶ Note, however, that this is MSE for the *full parameter vector*
- James-Stein estimator is also inadmissible!
 - Dominated by "positive-part" James-Stein estimator:

$$\widehat{\beta}^{JS} = \widehat{\beta} \left[1 - \frac{(p-2)\widehat{\sigma}^2}{\widehat{\beta}' X' X \widehat{\beta}} \right]_+$$

- $ightharpoonup \widehat{\beta} = \mathsf{OLS}, \ (x)_+ = \mathsf{max}(x,0), \ \widehat{\sigma}^2 = \mathsf{usual} \ \mathsf{OLS}\text{-based estimator}$
- ▶ Stops us us from shrinking *past* zero to get a negative estimate for an element of β with a small OLS estimate.
- ▶ Positive-part James-Stein isn't admissible either!

QR Decomposition

Result

Any $n \times k$ matrix A with full column rank can be decomposed as A = QR, where R is an $k \times k$ upper triangular matrix and Q is an $n \times k$ matrix with orthonormal columns.

Notes

- Columns of A are orthogonalized in Q via Gram-Schmidt.
- ▶ Since Q has orthogonal columns, $Q'Q = I_k$.
- ▶ It is *not* in general true that QQ' = I.
- ▶ If A is square, then $Q^{-1} = Q'$.

Different Conventions for the QR Decomposition

Thin aka Economical QR

Q is an $n \times k$ with orthonormal columns (qr_econ in Armadillo).

Thick QR

Q is an $n \times n$ orthogonal matrix.

Relationship between Thick and Thin

Let A = QR be the "thick" QR and $A = Q_1R_1$ be the "thin" QR:

$$A = QR = Q \begin{bmatrix} R_1 \\ 0 \end{bmatrix} = \begin{bmatrix} Q_1 & Q_2 \end{bmatrix} \begin{bmatrix} R_1 \\ 0 \end{bmatrix} = Q_1R_1$$

My preferred convention is the thin QR...

Least Squares via QR Decomposition

Let
$$X = QR$$

$$\widehat{\beta} = (X'X)^{-1}X'y = [(QR)'(QR)]^{-1}(QR)'y$$

$$= [R'Q'QR]^{-1}R'Q'y = (R'R)^{-1}R'Qy$$

$$= R^{-1}(R')^{-1}R'Q'y = R^{-1}Q'y$$

In other words, $\widehat{\beta}$ solves $R\beta = Q'y$.

Why Bother?

Much easier and faster to solve $R\beta = Q'y$ than the normal equations $(X'X)\beta = X'y$ since R is upper triangular.

Back-Substitution to Solve $R\beta = Q'y$

The product Q'y is a vector, call it v, so the system is simply

$$\begin{bmatrix} r_{11} & r_{12} & r_{13} & \cdots & r_{1,n-1} & r_{1k} \\ 0 & r_{22} & r_{23} & \cdots & r_{2,n-1} & r_{2k} \\ 0 & 0 & r_{33} & \cdots & r_{3,n-1} & r_{3k} \\ \vdots & \vdots & \ddots & \ddots & \vdots & \vdots \\ 0 & 0 & \cdots & 0 & r_{k-1,k-1} & r_{k-1,k} \\ 0 & 0 & \cdots & 0 & 0 & r_k \end{bmatrix} \begin{bmatrix} \beta_1 \\ \beta_2 \\ \beta_3 \\ \vdots \\ \beta_{k-1} \\ \beta_k \end{bmatrix} = \begin{bmatrix} v_1 \\ v_2 \\ v_3 \\ \vdots \\ v_{k-1} \\ v_k \end{bmatrix}$$

 $\beta_k = v_k/r_k \Rightarrow$ substitute this into $\beta_{k-1}r_{k-1,k-1} + \beta_k r_{k-1,k} = v_{k-1}$ to solve for β_{k-1} , and so on.

Calculating the Least Squares Variance Matrix $\sigma^2(X'X)^{-1}$

- ► Since X = QR, $(X'X)^{-1} = R^{-1}(R^{-1})'$
- ► Easy to invert *R*: just apply repeated back-substitution:
 - ▶ Let $A = R^{-1}$ and \mathbf{a}_i be the *j*th column of A.
 - Let \mathbf{e}_i be the *j*th standard basis vector.
 - ▶ Inverting R is equivalent to solving $R\mathbf{a}_1 = \mathbf{e}_1$, followed by $R\mathbf{a}_2 = \mathbf{e}_2, \ldots, R\mathbf{a}_k = \mathbf{e}_k$.
- ▶ If you enclose a matrix in trimatu() or trimatl(), and request the inverse ⇒ Armadillo will carry out backward or forward substitution, respectively.

QR Decomposition for Orthogonal Projections

Let X have full column rank and define $P_X = X(X'X)^{-1}X'$

$$P_X = QR(R'R)^{-1}R'Q' = QRR^{-1}(R')^{-1}R'Q' = QQ'$$

It is *not* in general true that QQ'=I even though Q'Q=I since Q need not be square in the economical QR decomposition.

The Singular Value Decomposition (SVD)

Any $m \times n$ matrix A of arbitrary rank r can be written

$$X = UDV' = (orthogonal)(diagonal)(orthogonal)$$

- $V = m \times m$ orthog. matrix whose cols contain e-vectors of AA'
- $V = n \times n$ orthog. matrix whose cols contain e-vectors of A'A
- ▶ $D = m \times n$ matrix whose first r main diagonal elements are the *singular values* d_1, \ldots, d_r . All other elements are zero.
- ▶ The singular values d_1, \ldots, d_r are the square roots of the non-zero eigenvalues of A'A and AA'.
- \blacktriangleright (E-values of A'A and AA' could be zero but not negative)

SVD for Symmetric Matrices

If A is **symmetric** then $A = Q\Lambda Q'$ where Λ is a diagonal matrix containing the e-values of A and Q is an orthonormal matrix whose columns are the corresponding e-vectors. Accordingly:

$$AA' = (Q \wedge Q')(Q \wedge Q')' = Q \wedge Q'Q \wedge Q' = Q \wedge^2 Q'$$

and similarly

$$A'A = (Q \wedge Q')'(Q \wedge Q') = Q \wedge Q'Q \wedge Q' = Q \wedge^2 Q'$$

using the fact that Q is orthogonal and Λ diagonal. Thus, when A is symmetric the SVD reduces to U=V=Q and $D=\sqrt{\Lambda^2}$ so that *negative* eigenvalues become *positive* singular values.

The Economical SVD

- ▶ Number of singular values is $r = Rank(A) \le max\{m, n\}$
- ▶ Some cols of *U* or *V* multiplied by zeros in *D*
- Economical SVD: only keep columns in U and V that are multiplied by non-zeros in D (Armadillo: svd_econ)
- ▶ Summation form: $A = \sum_{i=1}^r d_i \mathbf{u}_i \mathbf{v}_i'$ where $d_1 \leq d_2 \leq \cdots \leq d_r$
- ► Matrix form: A = U D V' $(n \times p) = (n \times r)(r \times r)(r \times p)$

In the economical SVD, U and V may no longer be square, so they are not orthogonal matrices but their *columns* are still orthonormal.

Principal Component Analysis (PCA)

Notation

Let **x** be a $p \times 1$ random vector with variance-covariance matrix Σ .

Optimization Problem

$$lpha_1 = rg \max_{lpha} \ \mathsf{Var}(lpha'\mathbf{x}) \quad \mathsf{subject to} \quad lpha'lpha = 1$$

First Principal Component

The linear combination $\alpha'_1 \mathbf{x}$ is the first principal component of \mathbf{x} . It is the direction along with \mathbf{x} has maximal variation

Solving for α_1

Lagrangian

$$\mathcal{L}(\alpha_1, \lambda) = \alpha' \Sigma \alpha - \lambda(\alpha' \alpha - 1)$$

First Order Condition

$$2(\Sigma\alpha_1 - \lambda\alpha_1) = 0 \iff (\Sigma - \lambda I_p)\alpha_1 = 0 \iff \Sigma\alpha_1 = \lambda\alpha_1$$

Variance of 1st PC

 α_1 is an e-vector of Σ but which one? Substituting,

$$\mathsf{Var}(\alpha_1'\mathsf{x}) = \alpha_1'(\Sigma\alpha_1) = \lambda\alpha_1'\alpha_1 = \lambda$$

Solution

Var. of 1st PC equals λ and this is what we want to maximize, so α_1 is the e-vector corresponding to the largest e-value.

Subsequent Principal Components

Additional Constraint

Construct 2nd PC by solving the same problem as before with the additional constraint that $\alpha_2'\mathbf{x}$ is uncorrelated with $\alpha_1'\mathbf{x}$.

jth Principal Component

The linear combination $\alpha'_{j}\mathbf{x}$ where α_{j} is the e-vector corresponding to the jth largest e-value of Σ .

Sample PCA

Notation

 $X = (n \times p)$ centered data matrix – columns are mean zero.

SVD

$$X = UDV'$$
, thus $X'X = VDU'UDV' = VD^2V'$

Sample Variance Matrix

$$S = n^{-1}X'X$$
 has same e-vectors as $X'X$ – the columns of $V!$

Sample PCA

Let \mathbf{v}_i be the jth column of V. Then,

$$\mathbf{v}_i = PC$$
 loadings for jth PC of S

$$\mathbf{v}_i'\mathbf{x}_i = PC$$
 score for individual/time period i

Sample PCA

PC scores for jth PC

$$\mathbf{z}_{j} = \begin{bmatrix} z_{j1} \\ \vdots \\ z_{jn} \end{bmatrix} = \begin{bmatrix} \mathbf{v}_{j}' \mathbf{x}_{1} \\ \vdots \\ \mathbf{v}_{j}' \mathbf{x}_{n} \end{bmatrix} = \begin{bmatrix} \mathbf{x}_{1}' \mathbf{v}_{j} \\ \vdots \\ \mathbf{x}_{n}' \mathbf{v}_{j} \end{bmatrix} = \begin{bmatrix} \mathbf{x}_{1}' \\ \vdots \\ \mathbf{x}_{n}' \end{bmatrix} \mathbf{v}_{j} = X \mathbf{v}_{j}$$

Getting PC Scores from SVD

Since X = UDV' and V'V = I, XV = UD, i.e.

$$\begin{bmatrix} \mathbf{x}_1' \\ \vdots \\ \mathbf{x}_n' \end{bmatrix} \begin{bmatrix} \mathbf{v}_i & \cdots & \mathbf{v}_p \end{bmatrix} = \begin{bmatrix} \mathbf{u}_1 & \cdots & \mathbf{u}_r \end{bmatrix} \begin{bmatrix} d_1 & \cdots & 0 \\ & \ddots & \\ 0 & \cdots & d_r \end{bmatrix}$$

Hence we see that $\mathbf{z}_i = d_i \mathbf{u}_i$

Properties of PC Scores z_i

Since X has been de-meaned:

$$\bar{z}_j = \frac{1}{n} \sum_{i=1}^n \mathbf{v}_j' \mathbf{x}_i = \mathbf{v}_j' \left(\frac{1}{n} \sum_{i=1}^n \mathbf{x}_i \right) = \mathbf{v}_j' \mathbf{0} = 0$$

Hence, since $X'X = VD^2V'$

$$\frac{1}{n}\sum_{i=1}^{n}(z_{ji}-\bar{z}_{j})^{2}=\frac{1}{n}\sum_{i=1}^{n}z_{ji}^{2}=\frac{1}{n}\mathbf{z}_{j}'\mathbf{z}_{j}=\frac{1}{n}(X\mathbf{v}_{j})'(X\mathbf{v}_{j})=\mathbf{v}_{j}'S\mathbf{v}_{j}=d_{i}^{2}/n$$

Lecture #9 – High-Dimensional Regression II

Ridge Regression

Principal Components Regression

LASSO

Ridge Regression – OLS with an L_2 Penalty

$$\widehat{\beta}_{\textit{Ridge}} = \operatorname*{arg\,min}_{\beta} \ (\mathbf{y} - X\beta)'(\mathbf{y} - X\beta) + \lambda\beta'\beta$$

- Add a penalty for large coefficients
- $lacktriangleright \lambda = ext{non-negative constant}$ we choose: strength of penalty
- X and y assumed to be de-meaned (don't penalize intercept)
- ▶ Unlike OLS, Ridge Regression is not scale invariant
 - ▶ In OLS if we replace \mathbf{x}_1 with $c\mathbf{x}_1$ then β_1 becomes β_1/c .
 - The same is not true for ridge regression!
 - ► Typical to standardize *X* before carrying out ridge regression

Alternative Formulation of Ridge Regression Problem

$$\widehat{eta}_{\mathit{Ridge}} = \operatorname*{arg\,min}_{eta} \ (\mathbf{y} - Xeta)'(\mathbf{y} - Xeta) \quad \text{subject to} \quad eta'eta \leq t$$

- ▶ Ridge Regression is like least squares "on a budget."
- ► Make one coefficient larger ⇒ must make another one smaller.
- ▶ One-to-one mapping from t to λ (data-dependend)

Ridge as Bayesian Linear Regression

If we ignore the intercept, which is unpenalized), Ridge Regression gives the posterior mode from the Bayesian regression model:

$$y|X, \beta, \sigma^2 \sim N(X\beta, \sigma^2 I_n)$$

 $\beta \sim N(\mathbf{0}, \tau^2 I_p)$

where σ^2 is assumed known and $\lambda = \sigma^2/\tau^2$. (In this example, the posterior is normal so the mode equals the mean)

Explicit Solution to the Ridge Regression Problem

Objective Function:

$$Q(\beta) = (\mathbf{y} - X\beta)'(\mathbf{y} - X\beta) + \lambda\beta'\beta$$

$$= \mathbf{y}'\mathbf{y} - \beta'X\mathbf{y} - \mathbf{y}'X\beta + \beta'X'X\beta + \lambda\beta'I_{p}\beta$$

$$= \mathbf{y}'\mathbf{y} - 2\mathbf{y}'X\beta + \beta'(X'X + \lambda I_{p})\beta$$

Recall the following facts about matrix differentiation

$$\partial (\mathbf{a}'\mathbf{x})/\partial \mathbf{x} = \mathbf{a}, \quad \partial (\mathbf{x}'A\mathbf{x})/\partial \mathbf{x} = (A+A')\mathbf{x}$$

Thus, since $(X'X + \lambda I_p)$ is symmetric,

$$\frac{\partial}{\partial \beta} Q(\beta) = -2X' \mathbf{y} + 2(X'X + \lambda I_p)\beta$$

Explicit Solution to the Ridge Regression Problem

Previous Slide:

$$\frac{\partial}{\partial \beta}Q(\beta) = -2X'\mathbf{y} + 2(X'X + \lambda I_p)\beta$$

First order condition:

$$X'\mathbf{y} = (X'X + \lambda I_p)\beta$$

Hence.

$$\widehat{eta}_{Ridge} = (X'X + \lambda I_p)^{-1}X'\mathbf{y}$$

But is $(X'X + \lambda I_p)$ guaranteed to be invertible?

Ridge Regresion via OLS with "Dummy Observations"

Ridge regression solution is identical to

$$\underset{\beta}{\operatorname{arg\,min}} \left(\widetilde{\mathbf{y}} - \widetilde{X}\beta \right)' \left(\widetilde{\mathbf{y}} - \widetilde{X}\beta \right)$$

where

$$\widetilde{\mathbf{y}} = \begin{bmatrix} \mathbf{y} \\ \mathbf{0}_p \end{bmatrix}, \qquad \widetilde{X} = \begin{bmatrix} X \\ \sqrt{\lambda} I_p \end{bmatrix}$$

since:

$$\left(\widetilde{\mathbf{y}} - \widetilde{X}\beta \right)' \left(\widetilde{\mathbf{y}} - \widetilde{X}\beta \right) = \left[(\mathbf{y} - X\beta)' (-\sqrt{\lambda}\beta)' \right] \left[\begin{array}{c} (\mathbf{y} - X\beta) \\ -\sqrt{\lambda}\beta \end{array} \right]$$

$$= (\mathbf{y} - X\beta)'(\mathbf{y} - X\beta) + \lambda\beta'\beta$$

Ridge Regression Solution is Always Unique

Ridge solution is always unique, even if there are more regressors than observations! This follows from the preceding slide:

$$\begin{split} \widehat{\beta}_{\textit{Ridge}} &= \arg\min_{\beta} \left(\widetilde{\mathbf{y}} - \widetilde{X}\beta \right)' \left(\widetilde{\mathbf{y}} - \widetilde{X}\beta \right) \\ \widetilde{\mathbf{y}} &= \left[\begin{array}{c} \mathbf{y} \\ \mathbf{0}_{p} \end{array} \right], \ \widetilde{X} = \left[\begin{array}{c} X \\ \sqrt{\lambda}I_{p} \end{array} \right] \end{split}$$

Columns of $\sqrt{\lambda}I_p$ are linearly independent, so columns of \widetilde{X} are also linearly independent, regardless of whether the same holds for the columns of X.

Efficient Calculations for Ridge Regression

QR Decomposition

Write Ridge as OLS with "dummy observations" with $\widetilde{X} = QR$ so

$$\widehat{\beta}_{Ridge} = (\widetilde{X}'\widetilde{X})^{-1}\widetilde{X}'\widetilde{\mathbf{y}} = R^{-1}Q'\widetilde{\mathbf{y}}$$

which we can obtain by back-solving the system $R\widehat{eta}_{Ridge} = Q'\,\widetilde{\mathbf{y}}$.

Singular Value Decomposition

If $p \gg n$, it's much faster to use the SVD rather than the QR decomposition because the rank of X will be n. For implementation details, see Murphy (2012; Section 7.5.2).

Comparing Ridge and OLS

Assumption

Centered data matrix $X \atop (n \times p)$ with rank p so OLS estimator is unique.

Economical SVD

- lacksquare $X = \bigcup_{(n \times p)(p \times p)(p \times p)} V'$ with $U'U = V'V = I_p$, D diagonal
- ► Hence: $X'X = (UDV')'(UDV') = VDU'UDV' = VD^2V'$
- ▶ Since V is square it is an orthogonal matrix: $VV' = I_p$

Comparing Ridge and OLS – The "Hat Matrix"

Using X = UDV' and the fact that V and U are square orthogonal,

$$H(\lambda) = X (X'X + \lambda I_p)^{-1} X' = UDV' (VD^2V + \lambda VV')^{-1} VDU'$$

$$= UDV' (VD^2V' + \lambda VV')^{-1} VDU'$$

$$= UDV' [V(D^2 + \lambda I_p)V']^{-1} VDU'$$

$$= UDV' (V')^{-1} (D^2 + \lambda I_p)^{-1} (V)^{-1} VDU'$$

$$= UDV'V (D^2 + \lambda I_p)^{-1} V'VDU'$$

$$= UD (D^2 + \lambda I_p)^{-1} DU'$$

Model Complexity of Ridge Versus OLS

OLS Case

Number of free parameters equals number of parameters p.

Ridge is more complicated

Even though there are p parameters they are constrained!

Idea: use trace of $H(\lambda)$

$$\mathsf{df}(\lambda) = \mathsf{tr}\left\{H(\lambda)\right\} = \mathsf{tr}\left\{X(X'X + \lambda I_p)^{-1}X'\right\}$$

Why? Works for OLS: $\lambda = 0$

$$df(0) = tr\{H(0)\} = tr\{X(X'X)^{-1}X'\} = p$$

Effective Degrees of Freedom for Ridge Regression

Using cyclic permutation property of trace:

$$\begin{split} \mathrm{df}(\lambda) &= \mathrm{tr} \left\{ H(\lambda) \right\} = \mathrm{tr} \left\{ X (X'X + \lambda I_p)^{-1} X' \right\} \\ &= \mathrm{tr} \left\{ U D \left(D^2 + \lambda I_p \right)^{-1} D U' \right\} \\ &= \mathrm{tr} \left\{ D U' U D \left(D^2 + \lambda I_p \right)^{-1} \right\} \\ &= \mathrm{tr} \left\{ D^2 \left(D^2 + \lambda I_p \right)^{-1} \right\} \\ &= \sum_{j=1}^p \frac{d_j^2}{d_j^2 + \lambda} \end{split}$$

- $df(\lambda) \rightarrow 0$ as $\lambda \rightarrow 0$
- $df(\lambda) = p$ when $\lambda = 0$
- $df(\lambda) < p$ when $\lambda > 0$

Econ 722, Part II

Comparing OLS and Ridge Predictions

$$\widehat{y}(\lambda) = X\widehat{\beta}(\lambda) = X \left(X'X + \lambda I_p\right)^{-1} X'$$

$$= H(\lambda) = \left[UD \left(D^2 + \lambda I_p\right)^{-1} DU'\right] \mathbf{y}$$

$$= \left[\sum_{j=1}^{p} \mathbf{u}_j \left(\frac{d_j^2}{d_j^2 + \lambda}\right) \mathbf{u}_j'\right] \mathbf{y} = \sum_{j=1}^{p} \left(\frac{d_j^2}{d_j^2 + \lambda}\right) \mathbf{u}_j \mathbf{u}_j' \mathbf{y}$$

Comparing OLS and Ridge Predictions

$$\widehat{y}(\lambda) = \sum_{j=1}^{p} \left(\frac{d_j^2}{d_j^2 + \lambda} \right) \mathbf{u}_j \mathbf{u}_j' \mathbf{y}$$

- ▶ Since X is centered, $\mathbf{z}_j = d_j \mathbf{u}_j$ is the jth sample PC
- $ightharpoonup d_i^2$ is proportional to the variance of the *j*th sample PC
- Prediction from regression of y on z_i is:

$$\mathbf{z}_{j}(\mathbf{z}_{j}'\mathbf{z}_{j})^{-1}\mathbf{z}_{j}'\mathbf{y} = d_{j}\mathbf{u}_{j}\left(d_{j}^{2}\mathbf{u}_{j}'\mathbf{u}_{j}\right)^{-1}d_{j}\mathbf{u}_{j}'\mathbf{y} = \mathbf{u}_{j}\mathbf{u}_{j}'\mathbf{y}$$

- ▶ Ridge equivalent to regressing *y* on sample PCs of *X* but shrinking predictions to zero: higher variance PCs are shrunk less.
- OLS doesn't shrink.

Principal Components Regression (PCR)

Instead of "smooth weights" as in Ridge, truncate the PCs:

- 1. Calculate SVD X = UDV' of centered data matrix X
- 2. Construct the sample principal components: $\mathbf{z}_i = d_i \mathbf{u}_i$.
- 3. Throw away all but first M principal components, where M < p.
- 4. Regress \mathbf{y} on $\mathbf{z}_1, \ldots, \mathbf{z}_k$.

PCR versus Ridge

- PCR is a much less smooth version of Ridge
- Conventional wisdom is that PCR will perform worse since it shrinks low variance directions too much and doesn't shrink high variance directions at all.
- However, Dhillon et al. (2013) show that the MSE risk of PCR is always within a constant factor of that of Ridge Regression while there are situations in which Ridge can be arbitrarily worse than PCR in terms of MSE.

▶ In practice, which is better depends on the DGP

Least Absolute Shrinkage and Selection Operator (LASSO)

Bühlmann & van de Geer (2011); Hastie, Tibshirani & Wainwright (2015)

Assume that X has been centered: don't penalize intercept!

Notation

$$||\beta||_2^2 = \sum_{j=1}^p \beta_j^2, \quad ||\beta||_1 = \sum_{j=1}^p |\beta_j|$$

Ridge Regression – L_2 Penalty

$$\widehat{\beta}_{\textit{Ridge}} = \mathop{\arg\min}_{\beta} \; (\mathbf{y} - X\beta)'(\mathbf{y} - X\beta) + \lambda \left| |\beta| \right|_{2}^{2}$$

LASSO – L_1 Penalty

$$\widehat{\beta}_{\textit{Lasso}} = \mathop{\arg\min}_{\beta} \; (\mathbf{y} - X\beta)'(\mathbf{y} - X\beta) + \lambda \left|\left|\beta\right|\right|_{1}$$

Other Ways of Thinking about LASSO

Constrained Optimization

$$rg\min_{eta}(\mathbf{y}-Xeta)'(\mathbf{y}-Xeta)$$
 subject to $\sum_{j=1}^p |eta_j| \leq t$

Data-dependent, one-to-one mapping between λ and t.

Bayesian Posterior Mode

Ignoring the intercept, LASSO is the posterior model for β under

$$\mathbf{y}|X,eta,\sigma^2 \sim \mathcal{N}(Xeta,\sigma^2I_n), \quad eta \sim \prod_{j=1}^r \mathsf{Lap}(eta_j|0, au)$$

where
$$\lambda=1/ au$$
 and $\mathrm{Lap}(x|\mu, au)=(2 au)^{-1}\exp\left\{- au^{-1}|x-\mu|\right\}$

Comparing Ridge and LASSO – Bayesian Posterior Modes

Figure: Ridge, at left, puts a normal prior on β while LASSO, at right, uses a Laplace prior, which has fatter tails and a taller peak at zero.

Comparing LASSO and Ridge – Constrained OLS

Figure: $\widehat{\beta}$ denotes the MLE and the ellipses are the contours of the likelihood. LASSO, at left, and Ridge, at right, both shrink β away from the MLE towards zero. Because of its diamond-shaped constraint set, however, LASSO favors a sparse solution while Ridge does not

No Closed-Form for LASSO!

Simple Special Case

Suppose that $X'X = I_p$

Maximum Likelihood

$$\widehat{\boldsymbol{\beta}}_{MLE} = (X'X)^{-1}X'\mathbf{y} = X'\mathbf{y}, \quad \widehat{\beta}_{j}^{MLE} = \sum_{i=1}^{n} x_{ij}y_{i}$$

Ridge Regression

$$\widehat{\boldsymbol{\beta}}_{Ridge} = (X'X + \lambda I_p)^{-1}X'\mathbf{y} = [(1+\lambda)I_p]^{-1}\widehat{\boldsymbol{\beta}}_{MLE}, \quad \widehat{\boldsymbol{\beta}}_{j}^{Ridge} = \frac{\widehat{\boldsymbol{\beta}}_{j}^{MLE}}{1+\lambda}$$

So what about LASSO?

LASSO when
$$X'X = I_p$$
 so $\widehat{\beta}_{MLE} = X'\mathbf{y}$

Want to Solve

$$\widehat{\boldsymbol{\beta}}_{LASSO} = \mathop{\arg\min}_{\boldsymbol{\beta}} \left. (\mathbf{y} - X\boldsymbol{\beta})'(\mathbf{y} - X\boldsymbol{\beta}) + \lambda \left| |\boldsymbol{\beta}| \right|_1$$

Expand First Term

$$(\mathbf{y} - X\boldsymbol{\beta})'(\mathbf{y} - X\boldsymbol{\beta}) = \mathbf{y}'\mathbf{y} - 2\boldsymbol{\beta}'X'\mathbf{y} + \boldsymbol{\beta}'X'X\boldsymbol{\beta}$$

$$= (constant) - 2\boldsymbol{\beta}'\widehat{\boldsymbol{\beta}}_{MLE} + \boldsymbol{\beta}'\boldsymbol{\beta}$$

Hence

$$\begin{split} \widehat{\boldsymbol{\beta}}_{LASSO} &= \underset{\boldsymbol{\beta}}{\arg\min} \left(\boldsymbol{\beta}'\boldsymbol{\beta} - 2\boldsymbol{\beta}'\widehat{\boldsymbol{\beta}}_{MLE}\right) + \lambda \left|\left|\boldsymbol{\beta}\right|\right|_{1} \\ &= \underset{\boldsymbol{\beta}}{\arg\min} \sum_{i=1}^{p} \left(\beta_{j}^{2} - 2\beta_{j}\widehat{\boldsymbol{\beta}}_{j}^{MLE} + \lambda \left|\beta_{j}\right|\right) \end{split}$$

LASSO when $X'X = I_p$

Preceding Slide

$$\widehat{\boldsymbol{\beta}}_{LASSO} = \underset{\boldsymbol{\beta}}{\arg\min} \sum_{j=1}^{p} \left(\beta_{j}^{2} - 2\beta_{j} \widehat{\beta}_{j}^{MLE} + \lambda \left| \beta_{j} \right| \right)$$

Key Simplification

Equivalent to solving j independent optimization problems:

$$\widehat{\beta}_{j}^{\textit{Lasso}} = \arg\min_{\beta_{j}} \left(\beta_{j}^{2} - 2\beta_{j} \widehat{\beta}_{j}^{\textit{MLE}} + \lambda \left| \beta_{j} \right| \right)$$

- ▶ Sign of β_i^2 and $\lambda |\beta_j|$ unaffected by sign (β_j)
- $ightharpoonup \widehat{eta}_i^{MLE}$ is a function of data only outside our control
- ▶ Minimization requires matching sign(β_i) to sign($\widehat{\beta}_i^{MLE}$)

LASSO when $X'X = I_p$

Case I:
$$\widehat{\beta}^{MLE} > 0 \implies |\beta_j| = |\beta_j|$$

Optimization problem becomes

$$\widehat{\beta}_{j}^{\textit{Lasso}} = \underset{\beta_{j}}{\arg\min} \ \beta_{j}^{2} - 2\beta_{j} \widehat{\beta}_{j}^{\textit{MLE}} + \lambda \beta_{j}$$

Interior solution:

$$\widehat{\beta}_j = \widehat{\beta}_j^{MLE} - \frac{\lambda}{2}$$

Can't have
$$\beta_j < 0$$
: corner solution sets $\beta_j = 0$
$$\widehat{\beta}_j^{\textit{Lasso}} = \max \left\{ 0, \widehat{\beta}_j^{\textit{MLE}} - \frac{\lambda}{2} \right\}$$

LASSO when $X'X = I_p$

Case II:
$$\widehat{\beta}^{MLE} \leq 0 \implies \beta_j \leq 0 \implies |\beta_j| = -\beta_j$$

Optimization problem becomes

$$\widehat{\beta}_{j}^{\textit{Lasso}} = \arg\min_{\beta_{j}} \, \beta_{j}^{2} - 2\beta_{j} \widehat{\beta}_{j}^{\textit{MLE}} - \lambda \beta_{j}$$

Interior solution:

$$\widehat{\beta}_j = \widehat{\beta}_j^{MLE} + \frac{\lambda}{2}$$

Can't have
$$eta_j > 0$$
: corner solution sets $eta_j = 0$
$$\widehat{eta}_j^{\textit{Lasso}} = \min \left\{ 0, \widehat{eta}_j^{\textit{MLE}} + \frac{\lambda}{2} \right\}$$

Ridge versus LASSO when $X'X = I_p$

Figure: Horizontal axis in each plot is MLE

$$\begin{split} \widehat{\beta}_{j}^{Ridge} &= \left(\frac{1}{1+\lambda}\right) \widehat{\beta}_{j}^{MLE} \\ \widehat{\beta}_{j}^{Lasso} &= \operatorname{sign}\left(\widehat{\beta}_{j}^{MLE}\right) \max \left\{0, \left|\widehat{\beta}_{j}^{MLE}\right| - \frac{\lambda}{2}\right\} \end{split}$$

Calculating LASSO – The Shooting Algorithm

Cyclic Coordinate Descent

```
Data: y, X, \lambda \ge 0, \varepsilon > 0
Result: LASSO Solution
\beta \leftarrow \mathsf{ridge}(X, \mathbf{y}, \lambda)
repeat
   \beta^{prev} \leftarrow \beta
for j = 1, ..., p do
\begin{vmatrix} a_j \leftarrow 2 \sum_{i=1}^n x_{ij}^2 \\ c_j \leftarrow 2 \sum_{i=1}^n x_{ij} (y_i - \mathbf{x}_i'\beta + \beta_j x_{ij}) \\ \beta_j \leftarrow \text{sign}(c_j/a_j) \max \{0, |c_j/a_j| - \lambda/a_j\} \end{vmatrix}
           end
until \sum_{i=1}^{p} |\beta_i^{prev} - \beta_j| < \varepsilon;
```

Econ 722, Part II