Conectividade em Sistemas CiberFisicos

TDE 1 Configuração, gerencia de processos e memória em Linux

Atividades deste TDE

- 1. Ler alguns aspectos teóricos que estão apresentados nos próximos slides.
- Instalar o VMWare Player ou Virtual Box caso já não tenha em seu computador
- 3. Instalar o Lubuntu no ambiente de máquina virtual
- A entrega da atividade corresponde ao relatório solicitado no final deste roteiro com a resposta as <u>PERGUNTAS</u> formuladas.
- OBS. Caso você já tenha Linux instalado em seu computador, você pode optar por não instalar o ambiente virtualizado.

Virtualização

Virtualização é uma tecnologia que permite que sistemas operacionais sejam executados como aplicações em outros sistemas operacionais.

No desenho, o Sistema Operacional é denominado **KERNEL**.

O termo emulação é utilizado quando a CPU do S.O. original é diferente do S.O virtualizado, exigindo uma conversão das instruções.

Virtualização e Computação na Nuvem

Virtualização é uma tecnologia que permite que múltiplos sistemas operacionais compartilhem os mesmos recursos de hardware.

Virtualização é uma tecnologia fundamental para a implementação de serviços de computação na Nuvem usados atualmente.

Modelos de Nuvem

Antigamente as empresas alugavam computadores (físicos) em Data Centers, e eram responsáveis por seu gerenciamento. Esse é o modelo ON PREMISES no desenho ao lado.

Atualmente o <u>serviço</u> é oferecido através de máquinas virtuais de várias formas:

- a) Como uma máquina virtual onde o usuário instala o sistema operacional (INFRASTRUCTURE)
- b) Como um ambiente de desenvolvimento onde o usuário desenvolve e executa aplicações (PLATFORM)
- c) Como aplicações para os usuários utilizarem, mas sem poder modifica-las (SOFTWARE)

Containers e Docker Container

- Containers são uma abordagem alternativa a VMs
- Containers não virtualizam hardware e compartilham o sistema operacional do próprio host.
- O container permite executar um conjunto de processos em um sistema operacional "parcialmente virtualizado". Esses processos estão isolados (não compartilham recursos) em relação ao resto do sistema.
- Na prática, um container é uma aplicação com todo o código binário, todas as bibliotecas (inclusive as dinâmicas) e todos os serviços externos (por exemplo, banco de dados) necessárias para sua execução.
- Docker é um tipo de container para Linux
- Windows suporta containers através do Docker Desktop.

Instalação do Ambiente de Virtualização Para estudantes que não tenham Linux nativo

 O estudante poderá escolher um dos ambientes abaixo (clique no link para ir a página de Download):

SE VOCÊ JÁ TEM LINUX PODE PULAR ATÉ O SLIDE 17

- **VMWare** (Preferencial)
 - Pode ser necessário habilitar a aceleração de <u>virtualização na BIOS</u>. Clique no link caso apareça a mensagem de erro ao lado.
- Virtual Box

Distribuições no Linux

O Linux divide o código em duas partes:

Kernel: Código comum a qualquer distribuição. Interage diretamente com o Hardware.

Distribuição: Conjunto de programas que incluem a interface gráfica com o usuário e diversos aplicativos que podem variar significativamente de distribuição para distribuição.

Por que Lubuntu?

- Lubuntu é uma distribuição baseada no Ubuntu
- Mas ela instala apenas o conjunto mínimo de aplicações e serviços para um computador operar como desktop
- É possível executar o Lubuntu em máquinas com poucos recursos de memória.
- Usando o Lubuntu, sua máquina virtual não irá consumir muita memória do seu computador.
- Veja a descrição do Lubuntu no endereço: https://lubuntu.me/

Exercícicio:

Instalar o sistema operacional Lubuntu:

https://lubuntu.me/downloads/

Se o seu computador for antigo, recomenda-se o Lubuntu Alternate 32-bits (é um arquivo .iso com apenas 750Mbytes).

Caso seja mais novo, você pode baixar a ultima versão de 64-bit

21.04 (Hirsute Hippo)

A It is important to read the release announcement before downloading. A

It's better to use the U (magnet) link first (auto-verified downloads).

A Note: make sure to verify the integrity (SHA256sums) of your downloads and that they come from an official source. More info here.

20.04.2 LTS (Focal Fossa)

\mathbf{A} It is important to read the release announcement before downloading. \mathbf{A}

It's better to use the U (magnet) link first (auto-verified downloads).

A Note: make sure to verify the integrity (SHA256sums) of your downloads and that they come from an official source. More info here,

18.04.5 Bionic Beaver LTS (LXDE)

It is important to read the release announcement before downloading. Note: some versions, like alternate, may be older releases.

Para criar a VM você precisa ter o arquivo abaixo (.iso) em uma pasta do seu computador.

lubuntu-18.04-alternate-i386

05/05/2020 17:24

Arquivo de Image...

732.160 KB

- L) Clique na opção Create a New Virtual Machine
- Selecione a opção installer disc image file (iso)
- Use o botão Browse e selecione o arquivo .iso indicado acima.
- 4) Next Linux
- 5) Next Mude o nome se desejar
- Selecione a quantidade de disco (uso o valor default se tiver espaço, reduza para até 2G caso não tenha espaço suficiente)
- Use a opção store virtual disk as a single file (fica mais fácil de copiar a máquina virtual para outro computador caso deseje)
- 8) Next e Finish

Welcome to VMware Workstation 15 Player

Verificação das Opções de Criação

Clique no Play Virtual Machine para lançar a máquina virtual

O FOCO DE SEU MOUSE VAI FICAR PRESO NA VM SE QUISER TIRAR O FOCO DA VM CLIQUE: <CTRL> + <ALT> + <ESC>

Escolha as opções:

- 1) Remind Me Later
- 2) Português do Brasil
- 3) Instalar Lubuntu
- 4) Ignore o Warning do idioma e confirme Português e opções default.
- 5) Veja no próximo slide as sugestões para o nome do HOST, login e senha.

HOST: conectividade

USER: conectividade

SENHA: conectividade

SEM PROXY

Demais opções

- 1. Use toda partição do disco
 - Não se preocupe, é o da VM, e não do seu computador
- 2. Confirme usando as opções default
- 3. Não tem Proxy
- 4. Você não precisa fazer o download do suporte a linguagem, mas pode fazer se desejar
- 5. Confirme a instalação do Grub
 - OBS. O Lubuntu não sabe que está em uma VM

SUCESSO!!!!

Você vai usar bastante o LXTerminal que é o aplicativo para digitar comandos sem interface gráfica.

Você pode clicar e arrastar o LXTerminal para o Desktop para facilitar futuros acessos.

RELATÓRIO:

- A sequencia deste documento propõe uma série de testes de para verificar a configuração e monitorar o sistema
- O objetivo é fazer com que você se familiarize com aspectos que devem ser monitorados no sistema operacional
- As <u>PERGUNTAS</u> feitas após cada teste devem ser compiladas no relatório que será entregue

Exercício 1: Verifique as especificação da máquina criada

- Abra um terminal: (procure por terminal ou shell)
- OBS: sudo é para executar com permissão de superusuário (use a senha criada na instalação)
- sudo lshw -short (resumo geral)
- sudo Ishw -short -class memory ou disk ou processor ou network (apenas informações solicitadas)
- sudo Ispci (controladoras e dispositivos de E/S)

PERGUNTA 1: Indique a configuração do seu sistema:

- A. Processador
- B. Memória
- C. DISCO (Memória, Sistema de Arquivos)
- D. Controladores de E/S (citar pelo menos 2)
- E. Interfaces de Rede

Exercício 2: Verifique a estrutura do sistema de arquivos

- Abra um terminal: (procure por terminal ou shell)
- Verifique o diretório corrente
 - pwd
- Verifique o conteúdo do diretório com os comandos abaixo:
 - dir ou ls
 - Is -all ou Is -lh
 - Arquivos iniciando com "." são ocultos
- Mova o diretório corrente para raiz:
 - Repita o comando cd .. 2 vezes até chegar na raiz
 - Verifique o nome da raiz com pwd
 - Digite o comando echo \$HOME
 - Volte para o diretório do usuário com cd \$HOME ou apenas cd
 - Teste os comandos cd ./ e ls ./

PERGUNTA 2: Responda:

- Qual é o caminho padrão no sistema de arquivos (pasta) quando você abre o terminal ?
- Qual é o nome dado pelo Linux para o diretório raiz ?
- Qual o significado de ./?

PREPARAÇÃO:

Programa para teste de CPU (Python)

- 1. Caso não esteja instalado, instale o Python3 e gedit:
 - sudo apt install python3
 - sudo apt install gedit
- 2. Crie o seguinte programa em Python usando o gedit:
 - gedit testecpu.py

```
import time
tempo=float(input('espera em segundos: '))
x=0
while True:
  time.sleep(tempo)
  x=x+1
```

Exercicio3: Verifique o uso de CPU executando o programa de teste com os seguintes tempos de sleep:

- Verificar o uso de CPU:
 - ps -fu (CPU é a terceira coluna)
 - ps -fu | grep testecpu.py (mostra apenas o processo solicitado)
- **Teste 1**: um programa sem sleep (tempo = 0)
 - python3 testecpu.py
 - Verifique o uso de CPU (abra um novo terminal para executar o comando)
 - Anote o PID (segunda coluna) e o uso de CPU (terceira coluna)
 - Encerre o processo testecpu.py com o comando abaixo:
 - kill PID_anotado_anteriormente

Exercicio3: (continuação)

- **Teste 2**: dois programas com sleeps diferentes (tempo = 0.1 e 0.01)
 - python3 testecpu.py (tempo 0.1)
 - python3 testecpu.py (tempo 0.01)
 - Verifique e anote o uso de CPU e o PID dos dois programas
 - Encerre o programa que está consumindo mais CPU com o comando kill
 - Verifique novamente o uso de CPU

PERGUNTA 3: Responda:

- Qual o uso de CPU do programa no caso 1
- Qual o uso de CPU de cada um dos dois programas no caso 2

PREPARAÇÃO: Programa para teste de memória (Linguagem C)

- 1. Instale o compilador gcc
 - sudo apt install gcc
- 2. Crie o programa ao lado usando o gedit
 - gedit testemem.c
 - Se você quiser copiar e colar o código você precisa abrir este PDF dentro da VM.
- 3. Compile o programa
 - gcc testemem.c -o testemem
- OBS. Em caso de erro de compilação fique atento se as aspas (") estão retas. Talvez você tenha que redigitá-las.

```
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
int main(int argc, char *argv[])
if (argc < 2)
  printf("Voce esqueceu o argumento");
else {
  int mem = atoi(argv[1]);
  void *buffer = malloc(mem);
  if(buffer == NULL)
    printf("Voce pediu memoria demais");
  else
    memset(buffer, 1, mem);
  printf("<ENTER> para encerrar");
  getchar();
```

Exercício 4: Verifique o uso de memória por um aplicativo

- 1. Verifique e anote a quantidade de memória usada e livre no sistema
 - free -m (em Megabytes)
 - free -k (em Kilobytes)
 - free -h (em formato com unidade)
- 2. Verifique a memória livre após executar cada um dos programas abaixo:
 - ./testemem 10000000
 - ./testemem 100000000
- 3) Enquanto o segundo teste estiver em execução, verifique o resultado do comando **ps -fu**. Faça uma pesquisa rápida sobre o significado dos termos abaixo:
 - RSZ: Resident Set Size
 - VSZ: Virtual Memory Size

PERGUNTA 4: Responda:

- Os três valores de memória livre (antes de pois de lançar cada um dos dois teste de memória)
- Enquanto o teste de 10Mbytes estava ativo, quais valores você obteve para %MEM, VSZ e RSS.

Entrega do TDE

• Responda as quatro perguntas e entregue apenas o relatório

• Esta VM será utilizada no próximo TDE