Relative Standing Math 122

Notation

- Σ (Greek Sigma) denotes a SUM
- \bullet x variable to denote individual data values
- Σx sum of all values of x
- \bullet n number of data values in a SAMPLE
- \bullet N number of data values in a POPULATION
- \bullet \bar{x} the mean or average of a SAMPLE
- μ the mean or average of a POPULATION

Standard Deviation

- Sample: s
- Population: σ
- Think: Average Distance From the Mean

Some values from an NHANES data set of 1000 college age males and females

	Female		Male	Male		
	Mean	St. Dev.	Mean	St. Dev.		
Height	63.8 in	2.7 in	69.6 in	3.2 in		
Weight	154.7 lb	43.0 lb	179.7 lb	47.7 lb		
Waist	35.2 in	6.7 in	35.2 in	6.3 in		
Pulse	79.1	13.2	70.5	10.7		

	Mean	Standard Deviation
Annual Snowfall in Lincoln	26.7 in	11.1 in
Annual Mean Temperature in Lincoln	51.5 degrees	1.6 degrees
IQ	100	15
Infant Birth Weight	7.5lb	1.1lb
SAT Area Test	500	100
ACT	18	6

Range Rule of Thumb

- For many types of data (whose histograms are bell-shaped) about 95% of data values are within two standard deviations of the mean.
- Maximum Usual Value = $\mu + 2\sigma$
 - Any value larger than this is unusually large.
- Minimum Usual Value = $\mu 2\sigma$
 - Any value smaller than this is unusually small.

Empirical Rule

Range Rule of Thumb A data value *x* is not unusual if

$$\mu - 2\sigma \le x \le \mu + 2\sigma$$

Z-scores

The z score of a data value x is

$$z = \frac{x - \mu}{\sigma}$$

Interpreting Z-scores

- If x is above average Z>0
- If x is below average Z<0

If x is close to average, Z is close to 0

Comparing Z scores

- In the last 5 years, male NAIA pole vaulters averaged
 3.92m with a standard deviation of 0.63m
- In the last 5 years, female NAIA pole vaulters averaged 3.02m with a standard deviation of 0.42m
- Bob can vault 4.75m

Sue can vault 3.65m

Who is better?

Comparing Z scores

- Male NAIA pole Vaulters average 3.92m with a standard deviation of 0.63m
- Female NAIA sprinters averaged 13.31s in the 100m with a standard deviation of 0.875s.
- Frank can vault 4.85m.

Jane ran the 100m in 11.73s.

Who is better?

Range Rule of Thumb

Range Rule of Thumb

 Is 69in an exceptionally tall height for a female?

Other measures of relative standing

Percentiles

- Percentiles are numbers P₁, P₂, P₃,...,P₉₉ which divided data into 100 sets which each contain about 1% of the data.
- About 1% of the data is less than P₁.
- About 2% of the data is less than P₂.
- About k% of the data is less than P_k.

Percentile of *x*

number of values less than *x* 100 number of data values

Find the percentile of 10 in this data

0	1	2	2	2	3	3	4	4	4
5	5	5	6	8	8	10	10	11	12
12	12	14	15	15	15	16	16	17	17
19	19	21	22	22	23	24	25	25	26
27	28	28	28	29	30	30	30	32	32

Finding P_k

- Let $m = \frac{k}{100} \cdot n$
- We want a number which separates the bottom
 m data values from the other data values.
- If m is a whole number, P_k is the average of the $m^{\rm th}$ and $(m+1)^{\rm st}$ data values.
- If m is not a whole number, let M be the next whole number greater than m. Then P_k is the M^{th} data value.

Find P₂₆

0	1	2	2	2	3	3	4	4	4
5	5	5	6	8	8	10	10	11	12
12	12	14	15	15	15	16	16	17	17
19	19	21	22	22	23	24	25	25	26
27	28	28	28	29	30	30	30	32	32

Find P₇₅

0	1	2	2	2	3	3	4	4	4
5	5	5	6	8	8	10	10	11	12
12	12	14	15	15	15	16	16	17	17
19	19	21	22	22	23	24	25	25	26
27	28	28	28	29	30	30	30	32	32

Quartiles

- Quartiles are numbers Q_1 , Q_2 , and Q_3 which divide data into 4 sets which each contain about 25% of the data.
- About 25% of the data is below Q₁.
- About 50% of the data is below Q₂.
- About 75% of the data is below Q₃.

Quartiles

- $Q_1 = P_{25}$
- $Q_2 = P_{50}$ $Q_3 = P_{75}$

Five Number Summary

- Minimum
- *Q*₁
- Q₂ Q₃
- Maximum

Box Plot

Female and Male Heights

