LaTeX to PDF and MathJax: Example 2

Emma Cliffe

2017

Contents

Using this document		1
1	The scalar product 1.1 Vectors in cartesian form	2 3
2	Using Matlab	4
\mathbf{L}_{i}	ist of Figures	
	1 Two vectors with angle between them	2

Using this document

This is a second example of a document compiled from \LaTeX into multiple formats.

- Standard print PDF
- Clearer print PDF
- Accessible web format

The outputs can be used to test setups and as a second example for students to try out.

1 The scalar product

Consider two vectors **a** and **b** drawn so their tails are at the same point.

Figure 1: Two vectors with angle between them.

We define the scalar product of **a** and **b** as follows.

Definition 1.1 (Scalar product). The scalar product of **a** and **b** is

$$\mathbf{a} \cdot \mathbf{b} = |\mathbf{a}| |\mathbf{b}| \cos \theta$$

where

- $|\mathbf{a}|$ is the modulus of \mathbf{a} ,
- $|\mathbf{b}|$ is the modulus of \mathbf{b} , and
- θ is the angle between **a** and **b**.

Remark 1.2. It is important to use the dot symbol for the scalar product (also called the dot product). You must not use a \times symbol as this denotes the vector product which is defined differently.

Example 1.3. Let

$$\mathbf{a} = \begin{pmatrix} 2 \\ 2 \end{pmatrix}$$
 and $\mathbf{b} = \begin{pmatrix} 4 \\ 0 \end{pmatrix}$.

The angle between these vectors is $\theta = 45^{\circ}$. Then $|\mathbf{a}| = \sqrt{8}$ and $|\mathbf{b}| = 4$. So,

$$\mathbf{a} \cdot \mathbf{b} = \begin{pmatrix} 2 \\ 2 \end{pmatrix} \cdot \begin{pmatrix} 4 \\ 0 \end{pmatrix} = |\mathbf{a}| |\mathbf{b}| \cos \theta$$
$$= \sqrt{8} \times 4 \times \cos 45^{\circ}$$
$$= 4\sqrt{8} \times \frac{1}{\sqrt{2}} = 4\frac{\sqrt{8}}{\sqrt{2}} = 4\sqrt{4} = 8.$$

Note that the result is a scalar, not a vector.

1.1 Vectors in cartesian form

When vectors are given in cartesian form there is an alternative formula for calculating the scalar product.

Proposition 1.4. If $\mathbf{a} = a_1 \mathbf{i} + a_2 \mathbf{j}$ and $\mathbf{b} = b_1 \mathbf{i} + b_2 \mathbf{j}$ then

$$\mathbf{a} \cdot \mathbf{b} = a_1 b_1 + a_2 b_2.$$

Proof. Consider the vector $\mathbf{b} - \mathbf{a} = \begin{pmatrix} b_1 - a_1 \\ b_2 - a_2 \end{pmatrix}$. The modulus of this is

$$|\mathbf{b} - \mathbf{a}| = \sqrt{(b_1 - a_2)^2 + (b_2 - a_2)^2}$$

Note that the vectors \mathbf{a} , \mathbf{b} and $\mathbf{b} - \mathbf{a}$ form a triangle. Let θ denote the angle between \mathbf{a} and b. Then, the cosine rule yields:

$$|\mathbf{b} - \mathbf{a}|^2 = |\mathbf{a}|^2 + |\mathbf{b}|^2 - 2|\mathbf{a}||\mathbf{b}|\cos\theta. \tag{1}$$

Substituting the definition of the scalar product of **a** and **b** into equation 1 gives:

$$|\mathbf{b} - \mathbf{a}|^2 = |\mathbf{a}|^2 + |\mathbf{b}|^2 - 2(\mathbf{a} \cdot \mathbf{b}).$$

Rearranging:

$$(\mathbf{a} \cdot \mathbf{b}) = \frac{1}{2} (|\mathbf{a}|^2 + |\mathbf{b}|^2 - |\mathbf{b} - \mathbf{a}|^2).$$

Writing this in terms of components produces:

$$(\mathbf{a} \cdot \mathbf{b}) = \frac{1}{2} \left(a_1^2 + a_2^2 + b_1^2 + b_2^2 - (b_1 - a_1)^2 - (b_2 - a_2)^2 \right)$$

$$= \frac{1}{2} \left(a_1^2 + a_2^2 + b_1^2 + b_2^2 - b_1^2 + 2b_1 a_1 - a_1^2 - b_2^2 + 2b_2 a_2 - a_2^2 \right)$$

$$= \frac{1}{2} \left(2b_1 a_1 + 2b_2 a_2 \right)$$

$$= a_1 b_1 + a_2 b_2$$

as required.

Example 1.5. Consider again the vectors

$$\mathbf{a} = \begin{pmatrix} 2 \\ 2 \end{pmatrix}$$
 and $\mathbf{b} = \begin{pmatrix} 4 \\ 0 \end{pmatrix}$.

Calculating the scalar product using the components:

$$\mathbf{a} \cdot \mathbf{b} = a_1 b_1 + a_2 b_2 = 2 \times 4 + 2 \times 0 = 8.$$

Note that if we are given vectors in this form, the scalar product may be used to calculate the angle between them. Since $\mathbf{a} \cdot \mathbf{b} = 8$ and we have:

$$|\mathbf{a}| = \sqrt{8}$$

$$|\mathbf{b}| = 4.$$

Hence,

$$8 = \mathbf{a} \cdot \mathbf{b} = |\mathbf{a}| |\mathbf{b}| \cos \theta$$
$$= 4\sqrt{8} \cos \theta.$$

Rearranging:

$$\theta = \cos^{-1}\left(\frac{8}{4\sqrt{8}}\right) = 45^{\circ}.$$

2 Using Matlab

Two calculate the scalar product in Matlab the dot function is used. Create two vectors:

```
A = [4 -1 2];

B = [2 -2 -1];
```

Calculate the scalar product: