BIRLA INSTITUTE OF TECHNOLOGY & SCIENCE, PILANI-HYDERABAD CAMPUS SECOND SEMESTER 2021-2022 COURSE HANDOUT- (QM I)

Date: 15.01.2022

Course No. : PHY F242

Course Title : Quantum Mechanics I
Instructor-in-Charge : K V S Shiv Chaitanya
Instructor : K V S Shiv Chaitanya

Course Description: Origin of the quantum theory - black body radiation, photoelectric effect, Compton scattering, electron diffraction, Bohr model of hydrogen atom, Frank-Hertz experiment, Bohr-Sommerfeld quantization condition; notion of wave function, statistical interpretation of the wave function, issues of normalization, the Heisenberg uncertainty relation; Schrodinger equation, stationary states and time independent Schrodinger equation, energy eigenvalues and eigen-functions, one-dimensional problems – potential wells, potential barriers, the harmonic oscillator; Hilbert space formalism – state vectors, Dirac's bra-ket notation, observables as Hermitian operators, eigenvalues and eigenstates of Hermitian operators, the measurement postulate, Three dimensional problems- Particle in a three-dimensional Box, The Schrodinger equation in spherical polar coordinates, Angular momentum and spherical harmonics, The hydrogen atom.

Scope & Objectives:

The course on QM I aims to

- provide a thorough basic understanding of the fundamental principles of quantum physics,
- furnish insight in the microscopic structure of matter and
- develop an ability to employ the principles of quantum mechanics to solve a variety of

simple quantum systems

Text Book:

T1: Introduction to Quantum Mechanics (Second edition) by D J Griffiths, LPE, Pearson

Reference Books:

R1: Modern Quantum Mechanics by J J Sakurai, **R2:** Quantum Physics (2nd. Edition), Stephen Gasiorowicz, **R3:** A text book of Quantum Mechanics, Mathews Mathews, K. Venkatesan

Course Plan

Number Learning Objectives		Topics to be covered	Chapter in
			the Text

of			Book		
lectures					
3	The Schroedinger equation	The Schroedinger equation and statistical interpretation of wavefunction,	1.1 to 1.2		
3	continued	Probability and continuity equation for it	1.3-1.4		
2	Uncertainty principle	Momentum and uncertainty principle	1.5-1.6		
3	Time independent Schroedinger equation	Stationary states, Continuity (or otherwise) conditions, one dimensional piecewise constant potentials: delta function potential	2.1-2.6 (2.3 listed below)		
3	continued	infinite and finite square well potentials,	2.6		
4	The harmonic oscillator	The harmonic oscillator	2.3		
5	Formalism	Hilbert space, observables, Hermitian operators	3.1-3.3		
4	Generalized statistical interpretation	Generalized statistical interpretation, the uncertainty principle, Dirac notation	3.4-3.6		
5	Spherically symmetric potentials	Schrodinger equation in spherical coordinates	4.1		
3	The Hydrogen atom	The hydrogen atom	4.2		
7	Angular momentum	Commutation relations, eigenvalues and eigen functions 4			

Evaluation Scheme:

EC No	Evaluation scheme	Duration (minutes)	Weightag e (%)	Date, Time
1	MidSem (closed)	90 min	30	12/03 11.00am to12.30pm
4	QUIZZES/ASSIGNMENTS(open)		30	
5	Comprehensive	120 min	40	11/05 AN
	examination(closed book)			

\$:During scheduled class hour

First four listed components, with the exception of assignments if any, will be conducted during scheduled class hours.

- Notices: Notices for the course will be uploaded only on CMS.
- Make-up Policy: Very strict to genuine cases only i.e. No make up for tut tests.
- **(i) Sickness leading to hospitalization**. (No make up for stomach-ache, diarrhea, vomiting, head-ache unless seriousness is verified by medical test.)
- (ii) prior intimation & permission.

(iii) request for granting make up must reach me on or before the actual time of the concerned component; please send email stating reason/s and the earliest date make up can be conducted. Attach pictures of documentary proof in support of such request.

Academic Honesty and Integrity Policy: Academic honesty and integrity are to be maintained by all the students throughout the semester and no type of academic dishonesty is acceptable.

Instructor-in-Charge

PHY F242