Neural Networks

Dr. Johan Hagelbäck

johan.hagelback@lnu.se

http://aiguy.org

Linear Classifier

- We will begin by implementing a linear classifier
- It will have two major components:
- A score function that maps the data to categories
- A loss function that calculates the difference between predicted categories and actual categories in the dataset
- The loss function will be used for training the classifier

We have a linear function:

$$w_1x_1 + w_2x_2 + \ldots + w_nx_n + b = 0$$

- X is the input data, with one value x_i for each attribute
- Each attribute is multiplied by a weight w_i
- And finally a bias b is added
 - So the linear function doesn't have to cross the origin
- The linear function is used to separate categories:

Linear Separation

- As the name implies, the linear classificer can only separate linearly separable categories
- It will never be 100% accurate if we have a dataset that looks like this:

Linear Separation

If we calculate the score function:

$$w_1x_1 + w_2x_2 + \ldots + w_nx_n + b = 0$$

- ... for an instance we see the confidence that the example belongs to the category
 - Higher values = more confidence
- This is our score function!
- What if we have more than one category?

Mutiple Categories

 If we have two or more categories, we need one linear function for each category:

$$w_{11}x_{11} + w_{12}x_{12} + \dots + w_{1n}x_{1n} + b_1 = 0$$

 $w_{21}x_{21} + w_{22}x_{22} + \dots + w_{2n}x_{2n} + b_2 = 0$
 \dots
 $w_{k1}x_{k1} + w_{k2}x_{k2} + \dots + w_{kn}x_{kn} + b_k = 0$

 The most efficient way to calculate the score function is to use matrix/vector operations:

The weights can be seen as a matrix:

$$m{W} = egin{bmatrix} w_{11} & w_{12} & w_{13} & \dots & w_{1n} \ w_{21} & w_{22} & w_{23} & \dots & w_{2n} \ \dots & & & & & \ w_{k1} & w_{k2} & w_{k3} & \dots & w_{kn} \end{bmatrix}$$

... and the bias and example as column vectors:

$$m{b} = egin{bmatrix} b_1 \ b_2 \ \dots \ b_k \end{bmatrix} \qquad m{x_i} = egin{bmatrix} x_1 \ x_2 \ \dots \ x_n \end{bmatrix}$$

 Calculating the score function is then a matrix-vector multiplication plus addition:

$$f(\boldsymbol{x_i}, \boldsymbol{W}, \boldsymbol{b}) = \boldsymbol{W}\boldsymbol{x_i} + \boldsymbol{b}$$

- This produces a vector with one confidence value for each category
- The example is classified as the category with the highest confidence:

$$y_{pred} = argmax(scores)$$

How it works

Assume we have two categories and three inputs:

$$m{W}m{x_i} = egin{bmatrix} w_{11} & w_{12} & w_{13} \ w_{21} & w_{22} & w_{23} \end{bmatrix} egin{bmatrix} x_1 \ x_2 \ x_3 \end{bmatrix} = egin{bmatrix} w_{11}x_1 + w_{12}x_2 + w_{13}x_3 \ w_{21}x_1 + w_{22}x_2 + w_{23}x_3 \end{bmatrix}$$

... and with the bias vector:

$$\boldsymbol{W}\boldsymbol{x_i} + \boldsymbol{b} = \begin{bmatrix} w_{11}x_1 + w_{12}x_2 + w_{13}x_3 \\ w_{21}x_1 + w_{22}x_2 + w_{23}x_3 \end{bmatrix} + \begin{bmatrix} b_1 \\ b_2 \end{bmatrix} = \begin{bmatrix} w_{11}x_1 + w_{12}x_2 + w_{13}x_3 + b_1 \\ w_{21}x_1 + w_{22}x_2 + w_{23}x_3 + b_2 \end{bmatrix}$$

- This is actually the dot-product of x_i with each row in W
- Number of columns in W must be equal to the number of components in x_i

How it works

- We don't even need to split the input data X into columns
- When calculating a product between matrices W and X, we can see X as a bunch of lined up column vectors:

$$m{WX} = egin{bmatrix} w_{11} & w_{12} & w_{13} \ w_{21} & w_{22} & w_{23} \end{bmatrix} egin{bmatrix} x_{11} \ x_{12} \ x_{13} \end{bmatrix} egin{bmatrix} x_{21} \ x_{22} \ x_{23} \end{bmatrix}$$

This results in a new matrix:

$$m{WX} = egin{bmatrix} w_{11}x_{11} + w_{12}x_{12} + w_{13}x_{13} & w_{11}x_{21} + w_{12}x_{22} + w_{13}x_{23} \ w_{21}x_{11} + w_{22}x_{12} + w_{23}x_{13} & w_{21}x_{21} + w_{22}x_{22} + w_{23}x_{23} \end{bmatrix}$$

How it works

The bias vector **b** is then added to each column:

$$m{WX} + m{b} = egin{bmatrix} w_{11}x_{11} + w_{12}x_{12} + w_{13}x_{13} + b_1 & w_{11}x_{21} + w_{12}x_{22} + w_{13}x_{23} + b_1 \ w_{21}x_{11} + w_{22}x_{12} + w_{23}x_{13} + b_2 & w_{21}x_{21} + w_{22}x_{22} + w_{23}x_{23} + b_2 \end{bmatrix}$$

- Now we have a matrix where each column is a score vector for an example x_i in X
- Taking argmax for each column produces a row vector with the predicted category for each example:

$$Y_{pred} = \begin{bmatrix} argmax(scores_1) & argmax(scores_2) \end{bmatrix}$$

Simple example

Image is converted to pixel vector (only 4 pixels used)

This is clearly a dog...

The weights need to be modified (learned) to produce correct output!

Simple example

Image is converted to pixel vector (only 4 pixels used)

Now we get correct output!

How can we automatically learn weights from training data?

Loss Function

Loss Function

- First, we need to define a loss function
 - Sometimes called cost function or objective
- The loss function measures how happy we are with the result
- The first set of weights gave a poor prediction we are not happy
- The second set of weights gave a good prediction we are happy!
- The loss will be high for bad predictions, and low for good predictions
- There are many loss functions, but we will focus on Softmax

Softmax

- Softmax calculates the normalized probabilities for belonging to each category
- This is then combined to a single loss value: crossentropy loss

Softmax

• The loss L_i is calculated as:

$$L_i = -log\left(rac{e^{f_{yi}}}{\sum_j e^{f_j}}
ight)$$

- We calculate the log probability for the correct category e^{fyi} and normalize by dividing with the sum of log probabilities for all categories
- Finally we calculate the negative natural logarithm of the normalized log probability for the correct class

Matrix Multiplication

W

0.01	-0.05	0.1	0.05
0.7	0.2	0.05	0.16
0.0	-0.45	-0.2	0.03

_X _i	
-15	
22	
-44	
56	

Matrix Multiplication

W

0.01	-0.05	0.1	0.05
0.7	0.2	0.05	0.16
0.0	-0.45	-0.2	0.03

-15 22 -44 56

Matrix Addition

W

0.01	-0.05	0.1	0.05
0.7	0.2	0.05	0.16
0.0	-0.45	-0.2	0.03

Simply add each element of vector ${\bf b}$

Numerical Stability

- If we have very high scores, calculating e^{fj} and then sum all the values can lead to numerical problems
- The sum can blowup, i.e. we get outside the range of double
- This can be solved by shifting all scores so that the highest score is 0:
 - Find max(scores)
 - Subtract max(scores) for each score

Regularization

- Suppose we have a perfect set of weights: loss = 0.0
- The problem is that this set might not be unique!
- There can be multiple sets of weights that give the same loss
- To distinct between two such sets, we extend the loss function with a regularization penalty:

$$L = \frac{1}{N} \sum_{i} L_{i} + \lambda R(W)$$
 data loss regularization loss

Regularization

- The most common one is the L2 norm, which penalizes large weights
 - Large weights can lead to numerical overflow...
 - Small weights improve generalization and reduces overflow
- The L2 norm is calculated as the squared sum of all weights:

$$R(W) = \sum_k \sum_l w_{k,l}^2$$

 The lambda parameter is called the reqularization strength, and is typically set to a low value such as 0.01

W

0.01	-0.05	0.1	0.05
0.7	0.2	0.05	0.16
0.0	-0.45	-0.2	0.03

Squared W

0.0001	0.0025	0.01	0.0025
0.49	0.04	0.0025	0.0256
0.0	0.2025	0.04	0.0009

L2 norm = sum of all squared W = **0.8166**

W

0.01	-0.05	0.1	0.05
0.7	0.2	0.05	0.16
0.0	-0.45	-0.2	0.03

X _i		b
-15		0.0
22	+	0.2
-44	•	-0.3
56		-0.5

y_i 2

W

1.00

2.00

3.00

b

0.00
0.50
-0.50

r

2.00

-4.00

-1.00

Squared W

1.0	4.0
4.0	16.0
9.0	1.0

sum

λ 0.01

35

X

0.40
0.30
0.80
0.30
0.70
0.20
-0.40
-0.60
-0.50

У

0
0
0
1
1
1
2
2
2

scores

-0.10	0.60
0.90	1.60
-2.10	-0.40
-1.50	-2.00
-2.90	-2.10
-1.70	-2.80
3.50	2.00
3.90	1.60
1.70	-1.20
	0.90 -2.10 -1.50 -2.90 -1.70 3.50 3.90

L

0.56
1.04
0.11
1.96
4.06
1.68
1.72
2.40
3.00

Data loss:

1.84

mean

1.84

Regularization loss:

0.35

2.19

Total loss:

Optimization

Optimization

- The loss function quantifies the quality of a set of weights
- The goal of optimization, or learning, is to find a set of weights that minimizes the loss function
- This can of course be done with random search or hill climbing, but it will most likely take ages to find a good set of weights
- Instead we can compute the best direction using the gradient of the loss function!

Gradient

- The task is to computer the best direction in which we should change the weights
- This direction turns out to be related to the gradient of the loss function
- The gradient is a vector of slopes (derivatives) for each dimension in the input space
- Mathematically, the derivative of a 1-D function with respect to its (single) input is:

$$\frac{df(x)}{dx} = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

Gradient

- If we have a function that takes a vector of numbers instead of a single number, the derivatives are called partial derivatives
- The gradient is simply the vector of partial derivatives in each input dimension
- We can do this in two ways:
 - Numerical gradient: slow and approximate
 - Analytic gradient: fast and exact but error-prone
- Since speed is important, we will focus on the analytic gradient

Analytic Gradient

- To find the analytic gradient, we need to derive a formula for the gradient using our math skills
- Luckily, the loss functions we use are well known and we don't have to find the formula on our own
- Depending on the loss function, the formula can be quite complex to implement
- How can we implement the gradients formula for Softmax?

Softmax Gradients

This is what we have already done when calculating loss

Softmax Gradients

0.01	-0.05	0.1	0.05
0.7	0.2	0.05	0.16
0.0	-0.45	-0.2	0.03

=

scores

e^{fj} normalize

y_i 2

dscores

0.016
0.632
-0.647

Update the score for the correct category y_i by -1

Softmax Gradients

dscores

0.016

0.632

-0.647

X_i^T

-15	22	-44	56
-----	----	-----	----

dW

-0.23	0.34	-0.68	0.87
-9.47	13.89	-27.77	35.35
9.70	-14.23	28.45	-36.21

Multiply **dscores** with the transpose of **x**_i

Multiply column and row vector

dscores

0.016 0.632 -0.647 $\mathbf{X_i}^\mathsf{T}$

-15	22	-44	56
-----	----	-----	----

= 0.016 * -15	= 0.016 * 22	= 0.016 * -44	= 0.016 * 56
= -0.23	= 0.34	= -0.68	= 0.87
= 0.632 * -15	= 0.632 * 22	= 0.632 * -44	= 0.632 * 56
= -9.47	= 13.89	= -27.77	= 35.35
= -0.647 *	= -0.647 * 22	= -0.647 *	= -0.647 * 56
-15 = 9.70	= -14.23	-44 = 28.45	= -36.21

$$M_{0,0}$$
 = dscores₀ * $X_{i}^{T}_{0}$
 $M_{0,1}$ = dscores₀ * $X_{i}^{T}_{1}$

Softmax Gradients

dscores

0.016
0.632
-0.647

=

0.016
0.632
-0.647

dB

0.016
0.632
-0.647

Sum the values of all rows in **dscores** into a new vector

Softmax Gradients

dW

-0.23	0.34	-0.68	0.87
-9.47	13.89	-27.77	35.35
9.70	-14.23	28.45	-36.21

dB

0.016
0.632
-0.647

Now we have the gradients!

What if we have multiple input examples?

0.01	-0.05	0.1	0.05
0.7	0.2	0.05	0.16
0.0	-0.45	-0.2	0.03

$\mathbf{X}_{\mathbf{i}}$

-15	8
22	-12
-44	14
56	-5

/_i 2

b

scores

-2.85	1.83
0.86	3.30
0.28	2.15

efj

0.058	6.23
2.36	27.11
1.32	8.59

normalize

0.016	0.149
0.632	0.647
0.353	0.205

dscores

0.016	0.149
0.632	-0.353
-0.647	0.205

Update the score for the correct categories yi by -1

 y_{i}

2

dscores

0.0078	0.074
0.316	-0.177
-0.323	0.102

Divide by number of training examples (2 in this case)

dscores

0.0078	0.074
0.316	-0.177
-0.323	0.102

X_i^T

-15	22	-44	56
8	-12	14	-5

dW

0.479	-0.722	0.701	0.061
-6.147	9.063	-16.359	18.556
5.669	-8.341	15.659	-18.617

Multiply **dscores** with the transpose of $\mathbf{x_i}$

Softmax Gradients

dscores

0.0078	0.074
0.316	-0.177
-0.323	0.102

=

0.0078+0.074
0.316-0.177
-0.323+0.102

dB

0.082
0.139
-0.221

Sum the values of all rows in **dscores** into a new vector

Regularization

- We also need to add a regularization factor to the weight gradients dW
- This is done by adding the weight matrix W scaled by lambda/2 to dW
- Let's go back to our first example with a single training example:

Regularization Factor

dW

-0.23	0.34	-0.68	0.87
-9.47	13.89	-27.77	35.35
9.70	-14.23	28.45	-36.21

W

0.01	-0.05	0.1	0.05
0.7	0.2	0.05	0.16
0.0	-0.45	-0.2	0.03

* λ * 0.5

 $dW + W * \lambda * 0.5$

-0.2317	0.3396	-0.6793	0.8654
-9.4639	13.8866	-27.7709	35.3459
9.6992	-14.2277	28.4500	-36.2102

dB is not changed

Weights Upgrades

- The weights are upgraded by subtracting dW multiplied by a learning rate
- The learning rate is typically set to a low value such as 0.1 or 0.05
- The best learning rate for each dataset has to be discovered by trial and error...

Weights Upgrades

W

0.01	-0.05	0.1	0.05
0.7	0.2	0.05	0.16
0.0	-0.45	-0.2	0.03

dW

-0.2317	0.3396	-0.6793	0.8654
-9.4639	13.8866	-27.7709	35.3459
9.6992	-14.2277	28.4500	-36.2102

* 0.1 =

newW

=

0.033	-0.084	0.168	-0.037
1.646	-1.189	2.827	-3.375
-0.970	0.973	-3.045	3.651

Bias Upgrades

If we calculate the loss, it has decreased from **1.04** to **0.48**

Back to our previous example

W

1.00

2.00

3.00

2.00

-4.00

-1.00

0.00 0.50 -0.50

b

X

0.50 0.40 0.30 0.80 0.30 0.80 -0.40 0.30 -0.30 0.70 -0.70 0.20 0.70 -0.40 0.50 -0.60 -0.40 -0.50 У

scores

-0.101.30 0.60 1.40 0.90 1.60 1.90 -2.10 -0.40-2.00 0.20 -1.50 1.10 -2.90 -2.10-1.70 -2.80 -0.303.50 2.00 -0.10-0.703.90 1.60 -1.40 1.70 -1.20 L

0.56 1.04 0.11 1.96 4.06 1.68 1.72 2.40 3.00

Let's calculate the gradients!

Data loss:

1.84

mean

1.84

Regularization loss:

0.35

Total loss: 2.19

Example - iteration 0

W

1.00 2.00 -0.20 0.07 2.00 -4.00

0.24

3.00

-0.01

-1.00

-0.27

0.19

b

0.00 0.15 0.50 0.04

-0.19

X

 0.50
 0.40

 0.80
 0.30

 0.30
 0.80

-0.40 0.30

-0.30 0.70 -0.70 0.20

0.70 -0.40

0.50 -0.60 -0.40 -0.50 У

2

scores

1.30 -0.

 1.30
 -0.10
 0.60

 1.40
 0.90
 1.60

1.90 -2.10 -0.40

0.20 -1.50 -2.00

 1.10
 -2.90
 -2.10

-0.30 -1.70 **-2.80**

-0.10 3.50 2.00

-0.70 3.90 1.60

-1.40 1.70 -1.20

Data loss: 1.84

Regularization loss: 0.35

Total loss: 2.19

mean

1.84

0.56

1.04

0.11

1.96

4.06

1.68

1.72

2.40

3.00

Example - iteration 1

W

-0.01

1.02 1.99 -0.20 0.07 1.98 -3.97 0.24 -0.27 3.00 -1.02

0.19

b

-0.02 0.15 0.50 0.04 -0.48 -0.18 X

0.50 0.40 0.30 0.80 0.30 0.80 -0.40 0.30 -0.30 0.70 -0.70 0.20 0.70 -0.40 0.50 -0.60 -0.40 -0.50 у

scores

-0.10 1.29 0.61 1.40 0.89 1.61 1.89 -2.09 -0.40-1.49 -1.990.17 1.07 -2.88 -2.09-2.79 -0.33-1.68 -0.102.03 3.47 -0.703.87 1.63 1.69 -1.42 -1.17 L

0.56 1.04 0.11 1.93 4.01 1.65 1.68 2.35 1.96

Data loss:

1.81

mean

1.81

Regularization loss:

0.35

Total loss:

2.16

Gradient Descent

- The procedure of repeatedly evaluating the gradients and perform weights updates is call Gradient Descent
- It is the most common way of optimizing/training linear classifiers, and also Neural Networks which we will look into shortly
- We can also train on batches of the training examples instead of all examples
 - Mini-batch Gradient Descent
- Or we can train on one example at a time
 - Stochastic Gradient Descent

Overview of information flow

Linear Softmax classifier

- Now we have a complete linear Softmax classifier
- Let's see how well it works on the example data:

		y
0.40		0
0.30		0
0.80		0
0.30		1
0.70		1
0.20		1
-0.40		2
-0.60		2
-0.50		2
	0.30 0.80 0.30 0.70 0.20 -0.40 -0.60	0.30 0.80 0.30 0.70 0.20 -0.40 -0.60

V

Linear Softmax classifier

λ: 0.01 Lrate: 1.0

Iteration	Loss	Accuracy	
0	2.19	2/9	22.2%
1	1.91	2/9	22.2%
2	1.67	2/9	22.2%
3	1.49	3/9	33.3%
4	1.34	4/9	44.4%
5	1.22	5/9	55.6%
6	1.11	6/9	66.7%
7	1.03	6/9	66.7%
8	0.96	7/9	77.8%
9	0.90	7/9	77.8%
10	0.85	7/9	77.8%
11	0.81	7/9	77.8%
12	0.77	7/9	77.8%
13	0.74	7/9	77.8%
14	0.71	7/9	77.8%
15	0.69	7/9	77.8%
16	0.67	7/9	77.8%
17	0.66	8/9	88.9%
18	0.64	8/9	88.9%
19	0.63	9/9	100%

Iris dataset

Iteration	Loss
0	1.0711
40	0.6935
80	0.5791
120	0.4842
160	0.4052
200	0.3655
240	0.3603
280	0.3591
300	0.3592

λ: 0.01 Lrate: 0.1

Iterations: 300

Final Result			
Loss:	0.3591		
Accuracy	147/150	98%	

How can we expand this into a Neural Network?

Current network layout

Current network layout

Inputs

Softmax output layer

Current network layout

Limitations

Even if this is a quite powerful classifier, it can only handle categories that are linearly separable!

Limitations

Layered network

Inputs

Expand with a layer of hidden nodes

Softmax output layer

Layered network

The layered (neural) network can learn categories that are not linearly separable!

Unit

Each unit has its own set of inputs, a weight for each input and a bias.

The output (score) can act as input to units in another layer.

Score Function

The input data x is the input to the hidden layer

The scores of the hidden layer is input to the output layer

Hidden Layer Units

- In the output layer we used the Softmax function
- In the hidden layer we need a slightly different type of activation function
- There is a wide range we can choose from:
 - Sigmoid
 - Tanh
 - ReLU
 - **–** ...
- Here, we will use the ReLU function

ReLU

The ReLU (Rectified Linear Unit) calculates the function:

$$f(x) = max(0, x)$$

- First, the weighted sum of the inputs plus the bias is calculated (as we've done before)
- Then, the activation function is applied on the result

Score Function

Loss Function

- The loss function/gradients are slightly more complex
- We need to calculate the loss and gradients for the output layer first (in the same way as we did before)
- The gradients are then backpropagated into the hidden layer
- The loss for both layers are summed

Loss Function

Loss Function

Regularization

- Regularization is added to loss and gradients in the output and hidden layer as before
- The total loss is the loss for the output plus the loss for the hidden layer

Weights Upgrades

W_h

0.01	-0.05	0.1	0.05
0.7	0.2	0.05	0.16
0.0	-0.45	-0.2	0.03

dW_{h}

0.0	0.0	0.0	0.0
-1.90	2.79	-5.59	7.11
-2.43	3.56	7.13	9.07

$newW_h$

=

0.01	-0.05	0.10	0.05
0.89	-0.08	0.61	-0.55
0.24	-0.81	0.51	-0.88

Bias Upgrades

Summary

- The linear classifier has now been extended to contain a hidden layer with ReLU nodes
- The hidden layer enables the classifier to learn categories that are not linearly separable

Non-linearly separable categories

Intro to Neural Networks

Dr. Johan Hagelbäck

johan.hagelback@lnu.se

http://aiguy.org

