Newsletter Churn Prediction

Rohan Chandra

Addressing the Dataset

- Feature extraction and data wrangling to determine relevant features(many features not usable)
- Data is unbalanced, the majority of users were remaining subscribed
- Different data transformations proved to be useful for the different models, as well as different features

5572fb559 sbcglobal.n hardbounce	6/6/2015 9:53	51	11	1/20/2016 0:35	8/12/2015 19:50		El Dorado	FCA US	US	95762	169 Other	DMi	Betty	600
S441111bEhotmail.coroptout	10/17/2014 8:52	2	0	11/21/2014 7:37		11/21/2014 7:45					203	Untagged		
S6cde9d9d yahoo.com optout	2/24/2016 12:35	0	0			3/2/2016 19:45					10	DMi	Ana	Alva
57e68298cigmail.com dormant	9/24/2016 9:41	0	0								257	Facebook		
5498bd77f sbcglobal.n optout	12/22/2014 19:55	30	1	1/6/2015 21:10	1/1/2015 21:21	1/6/2015 21:11			US		39 Android			
57f84fbad5hotmail.corpassive	10/7/2016 21:45	54	29	4/17/2017 15:29	4/6/2017 10:34		Birmingha	r MI US	US	48005	235 Chrome	In Book A	1	
573f226e7.yahoo.com optout	5/20/2016 10:42	16	0	5/25/2016 20:24		5/25/2016 20:26					9	LiveIntent		
55f6fb9521gmail.com disengaged	9/14/2015 12:53	16	0	2/5/2017 20:51							632	DMi	Rose	Dos
S42c8af71!hotmsil.corhardbounce	10/1/2014 19:15	0	0								1	Untagged		
547240a36yahoo.com hardbounce	11/23/2014 15:16	0	0								1	Facebook		
54917c5a1 ymail.com optout	12/17/2014 7:51	31	5	4/30/2016 9:31	1/1/2016 12:53	4/30/2016 9:32	Evanston,	VWY US	US	82930	438 iPad	Facebook		
5844b929Caol.com passive	12/4/2016 19:47	164	20	4/19/2017 12:46	3/15/2017 20:20		New York	INY US	US	1002	164 Android T	ablet		
5631559ef yahoo.com optout	10/28/2015 19:09	20	2	11/24/2015 10:30	10/30/2015 11:08	11/24/2015 10:30	Stockton,	CCA US	US	9520:	20 iPhone	In Book A	1	
567665cd9 hotmail.cordisengaged	12/20/2015 3:24	11	0	1/10/2017 11:58							540	DMi	Sandra	Heb
53ebd8281yahoo.com dormant	8/13/2014 17:27	0	0								1335	Untagged		
56a9647a1 yahoo.com optout	1/27/2016 19:44	0	0			2/11/2016 15:18					20	DMi	Lynn	Mho
58b5697bcgmail.com active	2/28/2017 7:13	45	23	4/19/2017 13:36	4/17/2017 13:33		Killington,	'VT US	US	0575:	66 Chrome	LiveIntent		
568ce7e4a gmail.com dormant	1/6/2016 5:09	0	0								258	DMI	Monique	Ives
56a82b95dgmail.com disengaged	1/26/2016 21:29	74	0	2/3/2017 9:44							525	DMi	danielle	char
53f9c552fEgmail.com optout	8/24/2014 6:58	56	1	5/31/2015 17:46	6/1/2015 8:10	6/1/2015 8:11			US		859 Android	Untagged		
56edcf121/gmail.com dormant	3/19/2016 18:13	0	0								219	Livelntent		
56a2e3835 verizon.net optout	1/22/2016 21:20	29	51	3/19/2016 10:19	6/24/2016 9:55	6/26/2016 15:47	Thousand	(CA US	US	91360	173 iPad	In Book A	d	
5526b41e1yahoo.com disengaged	4/9/2015 13:17	1	0	11/17/2015 19:46							622	Permissio	Teresa	Saff
58e7ec722 yahoo.com passive	4/7/2017 15:45	2	0	4/15/2017 22:04							17	torsweeps		
578154dbc verizon.net optout	7/9/2016 15:47	51	0	8/13/2016 21:08		8/6/2016 12:54					33	LiveIntent		
585570092 comcast.ne optout	12/17/2016 12:04	7	0	1/21/2017 11:33		1/21/2017 11:33					42	LiveIntent		
549b4276f yahoo.com optout	12/24/2014 17:47	7	0	1/5/2015 9:55		1/5/2015 9:55					29	Facebook		
570c0c124 sbcglobal.n optout	4/11/2016 16:41	2	0	4/13/2016 11:02		4/13/2016 11:02					2	BookRiotS	weeps	
S44afSeOfEaol.com hardbounce	10/24/2014 20:59	0	0								1	Untagged		
585162272gmail.com passive	12/14/2016 10:15	55	4	4/17/2017 22:36	3/29/2017 15:09		Decatur, 6	G/GA US	US	3003:	155 Android	Google		
58e7ec6f2cverizon.net dormant	4/7/2017 15:45	0	0								11	torsweeps		
56a021c71 gmail.com dormant	1/20/2016 19:09	0	0								241	DMi	cedric	coe
56e6d8eb6gmail.com disengaged	3/14/2016 11:29	1	0	6/5/2016 9:51							437	DMi	Ryan	Gan
54208f961 comcast ne optout	9/23/2014 16:29	622	77	6/12/2016 23:20	11/11/2015 13:30	4/14/2016 10:21	Mechanic	SIPA US	US	1705!	1015 Android T	a Facebook		
54a6c4b91 yahoo.com disengaged	1/2/2015 11:18	2	5	1/27/2015 12:18	1/27/2015 12:19		Barberton	OHUS	US	4420	24 iPhone			
55ca11f29:gmail.com optout	8/11/2015 11:17	- 4	0	8/17/2015 11:04		8/17/2015 11:05					5	DMi	Bee	Pars
569d18dcbgmail.com optout	1/18/2016 11:54	2	0	3/2/2016 19:15		3/2/2016 19:16					51	DMi	Megan	Rus
5862f5a20-aol.com disengaged	12/27/2016 18:13	2	0	2/23/2017 23:37							142			

Decision Tree

- Used relevant features and got unbalanced results
 - Minimal misclassifications at 210 leaf nodes
 - Great subscriber accuracy with poor opt-out accuracy

```
Test Opt-out Percent Correct: 0.17116292427261143
Test Subscribed Percent Correct: 0.951306222766972
Test Misclassifications: 53765
```

- Class weights of tree were balanced
 - More misclassifications than unbalanced tree
 - Less gap in the accuracy of predicted Opt-out and Subscribed users
 - Misclassifications continue to decrease as max nodes increases

```
Test Opt-out Percent Correct: 0.5440920431497137
Test Subscribed Percent Correct: 0.6885279565683337
Test Misclassifications: 73937
```


Decision Tree Improvement

Problems:

- Model training time is very high
- Final tree is very complex with no optimal max leaf nodes
- Accuracy of model still suffered

Discovered Solution:

- Initial inclusion of the large amount of one-hot encoded user genre preference features helped lower misclassifications before class weights were balanced
- After balancing the weights these features harmed the accuracy of the model while making the model overly complex
- Removal of preference features greatly simplified model and improved accuracy
- Max leaf nodes was optimized at 5
- A defined max depth only hindered the accuracy
- Other variables such as minimum samples for a split and minimum samples per leaf had no effect on outcome

Training Opt-out Percent Correct: 0.609967796350253
Training Subscribed Percent Correct: 0.6751996255300402
Test Opt-out Percent Correct: 0.6083140380162619
Test Subscribed Percent Correct: 0.6755331095866676
Test Misclassifications: 72384

Decision Tree Conclusion

If the goal was to minimize misclassifications:

- Balancing the class weights would hurt the results
- Subscriber prediction accuracy excels at the cost of the opt-out accuracy

With a goal of predicting users who will potentially opt-out:

- Balancing class weights puts an emphasis on equal accuracy for classification
- More useful outcome since the model attempts to accurately predict opt-out users

Takeaways:

- An overly complex model will lead to little information gain with each split
- Even after all attempted optimization, a decision tree is most likely the ideal model for the task

SVM

- Standard SVC from scikit-learn too slow, hard to test with multiple parameters due to long training times
- Used LinearSVC, got imbalanced results(very low accuracy for predicting optouts, and very high accuracy for predicting subscribers)
- Used Nystroem kernel approximation paired with a LinearSVC, and RBFSampler kernel approximation paired with SGDClassifier; results were still not good
- The above 2 models behave similar to an SVM with an RBF kernel, but with much faster training times
- Attempted an ensemble of all the above models using a VotingClassifier; no improvement
- Attempted to loop through all possible parameters for most of the above models; no improvement

The Gaussian RBF Kernel

mage source: http://www.cs.toronto.edu/~duvenaud/cookbook/index.htr

Solution

- Dropped most of the above models; kept only 3 which seemed to show slightly better results more consistently
- The format of the data, it's imbalanced examples and the features used were the problem
- Applied One-Hot-Encoding and changed other features of the dataset to suit the selected models
- Dropped a few features, included some which were not used earlier
- Tuned the parameters and narrowed down the useful models to 2 with the below parameters:
 - o LinearSVC(fit_intercept = False,dual = False, class_weight = 'balanced)
 - RBFSampler(gamma= 0.1, random_state=1); SGDClassifier(max_iter=1000, class_weight = 'balanced')
- LinearSVC provided the highest accuracy, RBFSampler with SGDClassifier was good enough to be included as well

SVM-Final Results

- LinearSVC produced a good accuracy of 77.3% for Optout and 85.1% for Subscribed with the best parameters
- RBF+SGD produced a mediocre accuracy of 53% for Optout and 62% for Subscribed with the best parameters

Random Forest

- Random Forest consists of a large number of individual decision trees that operate as an ensemble
- Each tree gives us a class prediction and the class with the most votes becomes our prediction
- Random Forest uses bagging and random features when building the individual trees to create a forest of uncorrelated trees

Feature Extraction

- Recursive Feature Extraction (RFE):
 - Retrieving the top 3 features using the logistic regression algorithm

Tally: Six 1s and Three 0s

The features taken into account are:
 Profile.ld,Signup,Last.Open,Last.Click,Opt out.Time,Opens,Clicks,Lifetime.Message,r eferral_source,Top.Device,

Geolocation.City,Domain

- The target variable is the 'Engagement'
- Retrieving the 3 most favorable features

```
with the following ranks:
```

Num Features: 3

```
rfe = RFE(model, 3)
fit = rfe.fit(X, Y)
print("Num Features: %d" % fit.n_features_)
print("Selected Features: %s" % fit.support_)
print("Feature Ranking: %s" % fit.ranking_)
```

In [16]: model = LogisticRegression(solver='lbfgs')

```
Selected Features: [False True True False True False False False False False False]
Feature Ranking: [10 1 1 2 1 5 6 7 8 9 4 3]
```

 Random Forest Algorithm produced an accuracy of 96.5% for subscribed and 80% for optout, which is the highest of all 3 types of models.

Conclusion

Decision Tree

- Opt-out Accuracy: 60.8%
- Subscribed Accuracy: 67.6%

SVM

- Opt-out Accuracy: 77.3%
- Subscribed Accuracy: 85.1%

Random Forest

- Opt-out Accuracy: 96.5%
- Subscribed Accuracy: 80%

References

- 1. https://towardsdatascience.com/optimizing-hyperparameters-in-randomforest-classification-ec7741f9d3f6
- 2. https://scikit-learn.org/stable/modules/kernel_approximation.html
- 3. https://www.geeksforgeeks.org/ml-one-hot-encoding-of-datasets-in-python/
- 4. http://chrisstrelioff.ws/sandbox/2015/06/08/decision_trees_in_python_with_scikit_learn_and_pandas.html
- 5. https://towardsdatascience.com/understanding-random-forest-58381e0602d2