## Common Laplace Transforms and Properties

| f(t)                        | $F(s) = \mathcal{L}\left\{f(t)\right\}$ |
|-----------------------------|-----------------------------------------|
| 1                           | $\left  \frac{1}{s}, s > 0 \right $     |
| $e^{at}$                    | $\frac{1}{s-a}, \ s > a$                |
| $t^n, \ n=1,2,\dots$        | $\frac{n!}{s^{n+1}}, \ s > 0$           |
| $\sin\left(bt\right)$       | $\frac{b}{s^2 + b^2}, \ s > 0$          |
| $\cos(bt)$                  | $\frac{s}{s^2 + b^2}, \ s > 0$          |
| $e^{at}t^n, \ n=1,2,\dots$  | $\frac{n!}{(s-a)^{n+1}}, \ s > a$       |
| $e^{at}\sin\left(bt\right)$ | $\frac{b}{(s-a)^2+b^2}, \ s>a$          |
| $e^{at}\cos\left(bt\right)$ | $\frac{s-a}{(s-a)^2+b^2}, \ s>a$        |

## Properties:

L.1  $\mathscr{L}\left\{cf(t)\right\} = c\mathscr{L}\left\{f(t)\right\}$ , where c is a constant.

L.2 
$$\mathcal{L}\{f_1(t) + f_2(t)\} = \mathcal{L}\{f_1(t)\} + \mathcal{L}\{f_2(t)\}$$

L.3 If  $F(s) = \mathcal{L}\{f(t)\}$  exists for all  $s > \alpha$ , then  $\mathcal{L}\{e^{at}f(t)\} = F(s-a)$  for all  $s > \alpha + a$ .

L.4 If  $F(s) = \mathcal{L}\{f(t)\}$  exists for all  $s > \alpha$ , then for all  $s > \alpha$ ,

$$\mathscr{L}\left\{f^{(n)}(t)\right\} = s^n \mathscr{L}\left\{f(t)\right\} - s^{n-1}f(0) - s^{n-2}f'(0) - \dots - f^{(n-1)}(0).$$

L.5 If  $F(s) = \mathcal{L}\{f(t)\}$  exists for all  $s > \alpha$ , then  $\mathcal{L}\{t^n f(t)\} = (-1)^n \frac{d^n F}{ds^n}$  for all  $s > \alpha$ .



## Section 6.2: Solving ODE's

- Step 1 Take the Laplace transform of both sides. Refer to properties.
- Step 2 Rearrange and group like terms to solve for  $\mathcal{L}\{y(t)\} = Y(s)$
- Step 3 Take the inverse Laplace transform and solve for  $y(t) = \mathcal{L}^{-1}\{Y(x)\}.$ 
  - 1. Solve the initial value problem using Laplace Transforms (not previous methods).
    - (a) y'' 2y' + 5y = 0 with y(0) = 2 and y'(0) = 4.

(b) 
$$y'' - y' - 2y = 0$$
 with  $y(0) = -2$  and  $y'(0) = 5$ .

(c) 
$$y'' - 4y' - 5y = 4e^{3t}$$
 with  $y(0) = 2$  and  $y'(0) = 7$ .

(d) ty'' - ty' + y = 2 with y(0) = 2 and y'(0) = -1.

(e) y'' + ty' - y = 0 with y(0) = 0 and y'(0) = 3.