Introduction to quantum Monte Carlo methods: Lectures I and II

Claudia Filippi

Instituut-Lorentz, Universiteit Leiden, The Netherlands

Summer School: QMC from Minerals and Materials to Molecules July 9-19, 2007, University of Illinois at Urbana-Champaign

A quick reminder: what is electronic structure theory?

A quantum mechanical and first-principle approach

 \longrightarrow Collection of ions + electrons

Only input: Z_{α} , N_{α}

Work in the Born-Oppenheimer approximation

Solve the Schrödinger equation for the electrons in the ionic field

$$\mathcal{H} = -\frac{1}{2} \sum_{i} \nabla_{i}^{2} + \sum_{i} v_{\text{ext}}(\mathbf{r}_{i}) + \frac{1}{2} \sum_{i \neq j} \frac{1}{|\mathbf{r}_{i} - \mathbf{r}_{j}|}$$

Solving the many-electron Schrödinger equation

$$\mathcal{H} = -\frac{1}{2} \sum_{i} \nabla_{i}^{2} + \sum_{i} v_{\text{ext}}(\mathbf{r}_{i}) + \frac{1}{2} \sum_{i \neq j} \frac{1}{|\mathbf{r}_{i} - \mathbf{r}_{j}|}$$

What do we want to compute?

Fermionic ground state and low-lying excited states

Evaluate expectation values $\frac{\langle \Psi_n | \mathcal{O} | \Psi_n \rangle}{\langle \Psi_n | \Psi_n \rangle}$

Where is the difficulty?

Electron-electron interaction → non-separable

Is there an optimal theoretical approach?

- Density functional theory methods
 Large systems but approximate exchange/correlation
- Quantum chemistry post-Hartree-Fock methods

Very accurate on small systems

• Quantum Monte Carlo techniques

Fully-correlated calculations

Stochastic solution of Schrödinger equation

Most | accurate | benchmarks for | medium-large | systems

An analogy

Density functional theory

Quantum chemistry

Quantum Monte Carlo

If you can, use density functional theory!

All is relative . . .

We think of density functional theory as cheap and painless!

... but density functional theory does not always work

A "classical" example: Adsorption/desorption of H₂ on Si(001)

For a small model cluster

	$E_{\it a}^{ m ads}$	E_{a}^{des}	E_{rxn}
DFT	0.69	2.86	2.17
QMC	1.01(6)	3.65(6)	2.64(6)

eV

DFT error persists for larger models!

Favorable scaling of QMC with system size

QMC possible for realistic clusters with 2, 3, 4 ... surface dimers

Accurate QMC calculations doable from small to large scales

Error of DFT is large \rightarrow 0.8 eV on desorption barrier !

Healy, Filippi et al. PRL (2001); Filippi et al. PRL (2002)

What about DFT and excited states?

- Restricted open-shell Kohn-Sham method (DFT-ROKS)
- Time-dependent density functional theory (TDDFT)

Comparison with QMC → Neither approach is reliable

When DFT has problems → Wave function based methods

Wave function $\Psi(\mathbf{x}_1, \dots, \mathbf{x}_N)$ where $\mathbf{x} = (\mathbf{r}, \sigma)$ and $\sigma = \pm 1$ How do we compute expectation values?

Many-body wave functions in traditional quantum chemistry

Interacting $\Psi(\mathbf{x}_1,\ldots,\mathbf{x}_N) \leftrightarrow \text{One-particle basis } \psi(\mathbf{x})$

 Ψ expanded in determinants of single-particle orbitals $\psi(\mathbf{x})$

Single-particle orbitals expanded on Gaussian basis

⇒ All integrals can be computed analytically

Many-body wave functions in traditional quantum chemistry

A jungle of acronyms: CI, CASSCF, MRCI, CASPT2 ...

Expansion in linear combination of determinants

$$\Psi(\mathbf{x}_{1},\ldots,\mathbf{x}_{N}) \longrightarrow D_{\mathrm{HF}} = \begin{vmatrix} \psi_{1}(\mathbf{x}_{1}) & \ldots & \psi_{1}(\mathbf{x}_{N}) \\ \vdots & & \vdots \\ \psi_{N}(\mathbf{x}_{1}) & \ldots & \psi_{N}(\mathbf{x}_{N}) \end{vmatrix}$$

$$c_{0}D_{\mathrm{HF}} + c_{1}D_{1} + c_{2}D_{2} + \ldots \text{ millions of determinants}$$

$$\begin{vmatrix} \psi_{1}(\mathbf{x}_{1}) & \ldots & \psi_{1}(\mathbf{x}_{N}) \\ \vdots & & \vdots \\ \psi_{N+1}(\mathbf{x}_{1}) & \ldots & \psi_{N+1}(\mathbf{x}_{N}) \end{vmatrix}$$

Integrals computed analytically but slowly converging expansion

Can we use a more compact Ψ ?

We want to construct an accurate and more compact Ψ

Explicit dependence on the inter-electronic distances r_{ij}

How do we compute expectation values if no single-electron basis?

A different way of writing the expectation values

Consider the expectation value of the Hamiltonian on Ψ

$$\begin{split} E_{V} &= \frac{\langle \Psi | \mathcal{H} | \Psi \rangle}{\langle \Psi | \Psi \rangle} = \frac{\int \mathrm{d}\mathbf{R} \, \Psi^{*}(\mathbf{R}) \mathcal{H} \Psi(\mathbf{R})}{\int \mathrm{d}\mathbf{R} \, \Psi^{*}(\mathbf{R}) \Psi(\mathbf{R})} \geq E_{0} \\ &= \int \mathrm{d}\mathbf{R} \, \frac{\mathcal{H} \Psi(\mathbf{R})}{\Psi(\mathbf{R})} \left[\frac{|\Psi(\mathbf{R})|^{2}}{\int \mathrm{d}\mathbf{R} |\Psi(\mathbf{R})|^{2}} \right] \\ &= \int \mathrm{d}\mathbf{R} \, E_{L}(\mathbf{R}) \, \rho(\mathbf{R}) = \langle E_{L}(\mathbf{R}) \rangle_{\rho} \end{split}$$

ho is a distribution function and $E_{
m L}({f R})=rac{{\cal H}\Psi({f R})}{\Psi({f R})}$ the local energy

Variational Monte Carlo: a random walk of the electrons

Use Monte Carlo integration to compute expectation values

- \triangleright Sample **R** from $\rho(\mathbf{R})$ using Metropolis algorithm
- ho Average local energy $E_{
 m L}({f R})=rac{{\cal H}\Psi({f R})}{\Psi({f R})}$ to obtain E_V as

$$E_V = \langle E_{
m L}({\sf R})
angle_
ho pprox rac{1}{M} \sum_{i=1}^M E_{
m L}({\sf R}_i)$$

Random walk in 3N dimensions, $\mathbf{R} = (\mathbf{r}_1, \dots, \mathbf{r}_N)$

Just a trick to evaluate integrals in many dimensions

Si₂₁H₂₂

Number of electrons $4 \times 21 + 22 = 106$

Number of dimensions $3 \times 106 = \boxed{318}$

Integral on a grid with 10 points/dimension \rightarrow 10³¹⁸ points!

MC is a powerful trick \Rightarrow Freedom in form of the wave function Ψ

Are there any conditions on many-body Ψ to be used in VMC?

Within VMC, we can use any "computable" wave function if

- ▷ Continuous, normalizable, proper symmetry
- ⊳ Finite variance

$$\sigma^2 = \frac{\langle \Psi | (\mathcal{H} - E_V)^2 | \Psi \rangle}{\langle \Psi | \Psi \rangle} = \langle (E_{\rm L}(\mathbf{R}) - E_V)^2 \rangle_{\rho}$$

since the Monte Carlo error goes as

$$\mathrm{err}(E_V) \sim \frac{\sigma}{\sqrt{M}}$$

Zero variance principle: if $\Psi \to \Psi_0$, $E_L(R)$ does not fluctuate

Variational Monte Carlo and the generalized Metropolis algorithm

How do we sample distribution function $\rho(\mathbf{R}) = \frac{|\Psi(\mathbf{R})|^2}{\int \mathrm{d}\mathbf{R} |\Psi(\mathbf{R})|^2}$?

$$\overline{\mathsf{Aim}} o \mathsf{Obtain}$$
 a set of $\{\mathsf{R}_1,\mathsf{R}_2,\ldots,\mathsf{R}_M\}$ distributed as $ho(\mathsf{R})$

Let us generate a Markov chain

- Start from arbitrary initial state R_i
- ightharpoonup Use stochastic transition matrix $M(\mathbf{R}_{\mathrm{f}}|\mathbf{R}_{\mathrm{i}})$

$$\label{eq:mass_energy} \textit{M}(\textbf{R}_{\mathrm{f}}|\textbf{R}_{\mathrm{i}}) \geq 0 \qquad \sum_{\textbf{R}_{\mathrm{c}}} \textit{M}(\textbf{R}_{\mathrm{f}}|\textbf{R}_{\mathrm{i}}) = 1.$$

as probability of making transition $R_i \to R_f$

> Evolve the system by repeated application of M

Stationarity condition

To sample ρ , use M which satisfies stationarity condition:

$$\sum_{i} M(\mathbf{R}_{\mathrm{f}}|\mathbf{R}_{\mathrm{i}}) \ \rho(\mathbf{R}_{\mathrm{i}}) = \rho(\mathbf{R}_{\mathrm{f}}) \quad \forall \ \mathbf{R}_{\mathrm{f}}$$

- Stationarity condition
 - \Rightarrow If we start with ρ , we continue to sample ρ
- \triangleright Stationarity condition + stochastic property of M + ergodicity
 - \Rightarrow Any initial distribution will evolve to ρ

More stringent condition

In practice, we impose detailed balance condition

$$M(\mathbf{R}_{\mathrm{f}}|\mathbf{R}_{\mathrm{i}}) \;
ho(\mathbf{R}_{\mathrm{i}}) = M(\mathbf{R}_{\mathrm{i}}|\mathbf{R}_{\mathrm{f}}) \;
ho(\mathbf{R}_{\mathrm{f}})$$

Stationarity condition can be obtained by summing over $R_{\rm i}$

$$\sum_{i} M(\mathbf{R}_{\mathrm{f}}|\mathbf{R}_{\mathrm{i}}) \ \rho(\mathbf{R}_{\mathrm{i}}) = \sum_{i} M(\mathbf{R}_{\mathrm{i}}|\mathbf{R}_{\mathrm{f}}) \ \rho(\mathbf{R}_{\mathrm{f}}) = \rho(\mathbf{R}_{\mathrm{f}})$$

Detailed balance is a sufficient but not necessary condition

How do we construct the transition matrix M in practice?

Write transition matrix M as proposal $T \times$ acceptance A

$$M(\mathbf{R}_{\mathrm{f}}|\mathbf{R}_{\mathrm{i}}) = A(\mathbf{R}_{\mathrm{f}}|\mathbf{R}_{\mathrm{i}}) \ T(\mathbf{R}_{\mathrm{f}}|\mathbf{R}_{\mathrm{i}})$$

M and T are stochastic matrices but A is not

Rewriting detailed balance condition

$$\begin{split} \mathcal{M}(\mathbf{R}_{\mathrm{f}}|\mathbf{R}_{\mathrm{i}})\;\rho(\mathbf{R}_{\mathrm{i}}) &= \quad \mathcal{M}(\mathbf{R}_{\mathrm{i}}|\mathbf{R}_{\mathrm{f}})\;\rho(\mathbf{R}_{\mathrm{f}}) \\ \mathcal{A}(\mathbf{R}_{\mathrm{f}}|\mathbf{R}_{\mathrm{i}})\;\mathcal{T}(\mathbf{R}_{\mathrm{f}}|\mathbf{R}_{\mathrm{i}})\;\rho(\mathbf{R}_{\mathrm{i}}) &= \quad \mathcal{A}(\mathbf{R}_{\mathrm{i}}|\mathbf{R}_{\mathrm{f}})\;\mathcal{T}(\mathbf{R}_{\mathrm{i}}|\mathbf{R}_{\mathrm{f}})\;\rho(\mathbf{R}_{\mathrm{f}}) \\ \\ \text{or} \quad \frac{\mathcal{A}(\mathbf{R}_{\mathrm{f}}|\mathbf{R}_{\mathrm{i}})}{\mathcal{A}(\mathbf{R}_{\mathrm{i}}|\mathbf{R}_{\mathrm{f}})} &= \quad \frac{\mathcal{T}(\mathbf{R}_{\mathrm{i}}|\mathbf{R}_{\mathrm{f}})\;\rho(\mathbf{R}_{\mathrm{f}})}{\mathcal{T}(\mathbf{R}_{\mathrm{f}}|\mathbf{R}_{\mathrm{i}})\;\rho(\mathbf{R}_{\mathrm{i}})} \end{split}$$

Detailed balance condition is

$$\frac{A(\mathbf{R}_{\mathrm{f}}|\mathbf{R}_{\mathrm{i}})}{A(\mathbf{R}_{\mathrm{i}}|\mathbf{R}_{\mathrm{f}})} = \frac{T(\mathbf{R}_{\mathrm{i}}|\mathbf{R}_{\mathrm{f}}) \ \rho(\mathbf{R}_{\mathrm{f}})}{T(\mathbf{R}_{\mathrm{f}}|\mathbf{R}_{\mathrm{i}}) \ \rho(\mathbf{R}_{\mathrm{i}})}$$

For a given choice of T, infinite choices of A satisfy this equation

Any function
$$A(\mathbf{R}_{\mathrm{f}}|\mathbf{R}_{\mathrm{i}}) = F\left(\frac{T(\mathbf{R}_{\mathrm{i}}|\mathbf{R}_{\mathrm{f}})\;\rho(\mathbf{R}_{\mathrm{f}})}{T(\mathbf{R}_{\mathrm{f}}|\mathbf{R}_{\mathrm{i}})\;\rho(\mathbf{R}_{\mathrm{i}})}\right)$$
 with
$$\frac{F(x)}{F(1/x)} = x$$

will do the job!

Original choice by Metropolis et al. maximizes the acceptance

$$\textit{A}(\textbf{R}_{f}|\textbf{R}_{i}) = \min \left\{1, \frac{\textit{T}(\textbf{R}_{i}|\textbf{R}_{f}) \; \rho(\textbf{R}_{f})}{\textit{T}(\textbf{R}_{f}|\textbf{R}_{i}) \; \rho(\textbf{R}_{i})}\right\}$$

Note: $\rho(\mathbf{R})$ does not have to be normalized

Original Metropolis method

$$\text{Symmetric } \mathcal{T}(\mathbf{R}_{\mathrm{f}}|\mathbf{R}_{\mathrm{i}}) = 1/\Delta^{3N} \ \Rightarrow \ \mathcal{A}(\mathbf{R}_{\mathrm{f}}|\mathbf{R}_{\mathrm{i}}) = \min\left\{1, \frac{\rho(\mathbf{R}_{\mathrm{f}})}{\rho(\mathbf{R}_{\mathrm{i}})}\right\}$$

Original Metropolis method

$$Aim$$
 \rightarrow Obtain a set of $\{\mathbf{R}_1, \mathbf{R}_2, \dots, \mathbf{R}_M\}$ distributed as $\rho(\mathbf{R})$

Operationally, simple algorithm:

- 1. Pick a starting **R** and evaluate $\rho(\mathbf{R})$
- 2. Choose \mathbf{R}' at random in a box centered at \mathbf{R}
- 3. If $\rho(\mathbf{R}') \ge \rho(\mathbf{R})$, move accepted \rightarrow put \mathbf{R}' in the set
- 4. If $\rho(\mathbf{R}') < \rho(\mathbf{R})$, move accepted with $p = \frac{\rho(\mathbf{R}')}{\rho(\mathbf{R})}$

To do this, pick a random number $\chi \in [0, 1]$:

- a) If $\chi < p$, move accepted \rightarrow put \mathbf{R}' in the set
- b) If $\chi > p$, move rejected \rightarrow put <u>another</u> entry of **R** in the set

Is the original choice of T by Metropolis the best possible choice ?

Walk sequentially correlated $\Rightarrow M_{ ext{eff}} < M$ independent observations

$$M_{
m eff} = rac{M}{T_{
m corr}}$$
 with $T_{
m corr}$ autocorrelation time of desired observable

Aim is to achieve fast evolution of the system and reduce $\mathcal{T}_{\mathrm{corr}}$

Use freedom in choice of T to have high acceptance

$$rac{T(\mathsf{R}_{\mathrm{i}}|\mathsf{R}_{\mathrm{f}})\;
ho(\mathsf{R}_{\mathrm{f}})}{T(\mathsf{R}_{\mathrm{f}}|\mathsf{R}_{\mathrm{i}})\;
ho(\mathsf{R}_{\mathrm{i}})}pprox 1\;\Rightarrow\;A(\mathsf{R}_{\mathrm{f}}|\mathsf{R}_{\mathrm{i}})pprox 1$$

and small $T_{\rm corr}$ of desired observable

Limitation: we need to be able to sample T directly!

If Δ is the linear dimension of domain around R_i

$$\frac{\textit{A}(\textbf{R}_{\rm f}|\textbf{R}_{\rm i})}{\textit{A}(\textbf{R}_{\rm i}|\textbf{R}_{\rm f})} = \frac{\textit{T}(\textbf{R}_{\rm i}|\textbf{R}_{\rm f})}{\textit{T}(\textbf{R}_{\rm f}|\textbf{R}_{\rm i})} \frac{\rho(\textbf{R}_{\rm f})}{\rho(\textbf{R}_{\rm i})} \approx 1 - \mathcal{O}(\Delta^m)$$

- ightrightarrow T symmetric as in original Metropolis algorithm gives m=1
- \triangleright A choice motivated by diffusion Monte Carlo with m=2 is

$$\mathcal{T}(\textbf{R}_f|\textbf{R}_i) = \mathcal{N} \exp \left[-\frac{(\textbf{R}_f - \textbf{R}_i - \textbf{V}(\textbf{R}_i)\tau)^2}{2\tau} \right] \ \, \text{with} \ \, \textbf{V}(\textbf{R}_i) = \frac{\nabla \Psi(\textbf{R}_i)}{\Psi(\textbf{R}_i)}$$

Other (better) choices of T are possible

Acceptance and $T_{ m corr}$ for the total energy E_V

Example: All-electron Be atom with simple wave function

Simple Metropolis

Δ	$T_{ m corr}$	Ā
1.00	41	0.17
0.75	21	0.28
0.50	17	0.46
0.20	45	0.75

Drift-diffusion transition

au	$T_{ m corr}$	Ā
0.100	13	0.42
0.050	7	0.66
0.020	8	0.87
0.010	14	0.94

Generalized Metropolis algorithm

- 1. Choose distribution $\rho(\mathbf{R})$ and transition probability $\mathcal{T}(\mathbf{R}_f|\mathbf{R}_i)$
- 2. Initialize the configuration \mathbf{R}_i
- 3. Advance the configuration from \mathbf{R}_i to \mathbf{R}'
 - a) Sample R' from $T(R'|R_i)$.
 - b) Calculate the ratio $q = rac{T(\mathbf{R_i}|\mathbf{R'})}{T(\mathbf{R'}|\mathbf{R_i})} rac{
 ho(\mathbf{R'})}{
 ho(\mathbf{R_i})}$
 - c) Accept or reject with probability q

Pick a uniformly distributed random number $\chi \in [0,1]$

if
$$\chi < p$$
, move accepted $ightarrow$ set $\mathbf{R}_{\mathrm{f}} = \mathbf{R}'$

if
$$\chi > p$$
, move rejected \rightarrow set $\mathbf{R}_{\mathrm{f}} = \mathbf{R}$

- 4. Throw away first κ configurations of equilibration time
- 5. Collect the averages and block them to obtain the error bars

Improvements on simple and drift-diffusion algorithms

For all-electron and pseudopotential systems:

Move one electron at the time \rightarrow Decorrelate faster

Does total matrix $M = \prod_{i=1}^{N} M_i$ satisfy stationarity condition?

Yes if matrices M_1, M_2, \dots, M_n satisfy stationarity condition

- - Core electrons set the length scales
 - ightarrow T must distinguish between core and valance electrons
 - Do not use cartesian coordinates
 - \rightarrow Derivative discontinuity of Ψ at nuclei

Better algorithms can achieve $T_{corr} = 1 - 2$

We compute the expectation value of the Hamiltonian ${\cal H}$ as

$$E_{V} = \frac{\langle \Psi | \mathcal{H} | \Psi \rangle}{\langle \Psi | \Psi \rangle}$$

$$= \int d\mathbf{R} \frac{\mathcal{H} \Psi(\mathbf{R})}{\Psi(\mathbf{R})} \frac{|\Psi(\mathbf{R})|^{2}}{\int d\mathbf{R} |\Psi(\mathbf{R})|^{2}}$$

$$= \int d\mathbf{R} E_{L}(\mathbf{R}) \rho(\mathbf{R})$$

$$= \langle E_{L}(\mathbf{R}) \rangle_{\rho} \approx \frac{1}{M} \sum_{i=1}^{M} E_{L}(\mathbf{R}_{i})$$

Note: a) Metropolis method: ρ does not have to be normalized \to For complex Ψ we do not know the normalization!

b) If $\Psi \rightarrow$ eigenfunction, $E_L(\mathbf{R})$ does not fluctuate

The energy is computed by averaging the local energy

$$E_V = rac{\langle \Psi | \mathcal{H} | \Psi
angle}{\langle \Psi | \Psi
angle} = \langle E_{\mathrm{L}}(\mathbf{R})
angle_{
ho}$$

The variance of the local energy is given by

$$\sigma^2 = \frac{\langle \Psi | (\mathcal{H} - E_V)^2 | \Psi \rangle}{\langle \Psi | \Psi \rangle} = \langle (E_{\rm L}(\mathbf{R}) - E_V)^2 \rangle_{\rho}$$

The statistical Monte Carlo error goes as $\,\mathrm{err}(E_V) \sim \frac{\sigma}{\sqrt{M}}$

Note: For other operators, substitute ${\cal H}$ with ${\cal X}$

Typical VMC run

Example: Local energy and average energy of acetone (C_3H_6O)

$$E_{\rm VMC} = \langle E_{\rm L}({\bf R}) \rangle_{\rho} = -36.542 \pm 0.001 \; {\rm Hartree} \; (40 \times 20000 \; {\rm steps})$$

$$\sigma_{\mathrm{VMC}} = \langle (E_{\mathrm{L}}(\mathbf{R}) - E_{\mathrm{VMC}})^2 \rangle_{\rho} = 0.90$$
 Hartree

Variational Monte Carlo \rightarrow Freedom in choice of Ψ

Monte Carlo integration allows the use of complex and accurate Ψ

- \Rightarrow More compact representation of Ψ than in quantum chemistry
- \Rightarrow Beyond $c_0 D_{\mathrm{HF}} + c_1 D_1 + c_2 D_2 + \dots$ millions of determinants

$$\Psi(\mathbf{r}_1,\ldots,\mathbf{r}_N) = \mathcal{J}(\mathbf{r}_1,\ldots,\mathbf{r}_N) \sum_{k} d_k D_k^{\uparrow}(\mathbf{r}_1,\ldots,\mathbf{r}_{N_{\uparrow}}) D_k^{\downarrow}(\mathbf{r}_{N_{\uparrow}+1},\ldots,\mathbf{r}_N)$$

 $\overline{\mathcal{J}} \longrightarrow \mathsf{Jastrow}$ correlation factor

- Positive function of inter-particle distances
- Explicit dependence on electron-electron distances $r_{
 m ij}$
- Takes care of divergences in potential

$$\Psi(\mathbf{r}_1,\ldots,\mathbf{r}_N) = \mathcal{J}(\mathbf{r}_1,\ldots,\mathbf{r}_N) \sum_k d_k D_k^{\uparrow}(\mathbf{r}_1,\ldots,\mathbf{r}_{N_{\uparrow}}) D_k^{\downarrow}(\mathbf{r}_{N_{\uparrow}+1},\ldots,\mathbf{r}_N)$$

$$\left|\sum d_k \, D_k^{\uparrow} D_k^{\downarrow}
ight| \longrightarrow \mathsf{Determinants} \; \mathsf{of} \; \mathsf{single-particle} \; \mathsf{orbitals}$$

- | Few | and not millions of determinants as in quantum chemistry
- Slater basis to expand orbitals in all-electron calculations

$$\phi(\mathbf{r}) = \sum_{\alpha}^{\text{Nuclei}} \sum_{k_{\alpha}} c_{k_{\alpha}} r_{\alpha}^{n_{k_{\alpha}} - 1} \exp(-\zeta_{k_{\alpha}} r_{\alpha}) Y_{l_{k_{\alpha}} m_{k_{\alpha}}}(\widehat{\mathbf{r}}_{\alpha})$$

Gaussian atomic basis used in pseudopotential calculations

- Slater component determines the nodal surface

What is strange with the Jastrow-Slater wave function?

$$\Psi(\mathbf{r}_1,\ldots,\mathbf{r}_N) = \mathcal{J}(\mathbf{r}_1,\ldots,\mathbf{r}_N) \sum_k d_k D_k^{\uparrow}(\mathbf{r}_1,\ldots,\mathbf{r}_{N_{\uparrow}}) D_k^{\downarrow}(\mathbf{r}_{N_{\uparrow}+1},\ldots,\mathbf{r}_N)$$

 \triangleright Why is Ψ not depending on the spin variables σ ?

$$\Psi(\mathbf{x}_1, \dots, \mathbf{x}_N) = \Psi(\mathbf{r}_1, \sigma_1, \dots, \mathbf{r}_N, \sigma_N)$$
 with $\sigma_i = \pm 1$

 \triangleright Why is Ψ not totally antisymmetric?

Why can we factorize $D_k^{\uparrow}D_k^{\downarrow}$?

Consider N electrons with
$$N=N_\uparrow+N_\downarrow$$
 and $S_z=(N_\uparrow-N_\downarrow)/2$

$$\Psi(\mathbf{x}_1,\ldots,\mathbf{x}_N) = \Psi(\mathbf{r}_1,\sigma_1,\ldots,\mathbf{r}_N,\sigma_N)$$
 with $\sigma_i = \pm 1$

Define a spin function ζ_1

$$\zeta_1(\sigma_1,\ldots,\sigma_N)=\chi_\uparrow(\sigma_1)\ldots\chi_\uparrow(\sigma_{N_\uparrow})\chi_\downarrow(\sigma_{N_\uparrow+1})\ldots\chi_\downarrow(\sigma_N)$$

Generate $K=N!/N_{\uparrow}!N_{\downarrow}!$ functions ζ_i by permuting indices in ζ_1

The functions ζ_i form a complete, orthonormal set in spin space

$$\sum_{\sigma_1...\sigma_N} \zeta_i(\sigma_1,\ldots,\sigma_N) \zeta_j(\sigma_1,\ldots,\sigma_N) = \delta_{ij}$$

Wave function with space and spin variables

Expand the wave function Ψ in terms of its spin components

$$\Psi(\mathbf{x}_1,\ldots,\mathbf{x}_N) = \sum_{i=1}^K F_i(\mathbf{r}_1,\ldots,\mathbf{r}_N) \, \zeta_i(\sigma_1,\ldots,\sigma_N)$$

 Ψ is totally antisymmetric \Rightarrow

- \triangleright $F_i = -F_i$ for interchange of like-spin
- ho $F_i=\pm$ permutation of F_1

$$|\Psi(\mathbf{x}_1,\ldots,\mathbf{x}_N) = \mathcal{A}\left\{F_1(\mathbf{r}_1,\ldots,\mathbf{r}_N)\,\zeta_1(\sigma_1,\ldots,\sigma_N)\right\}|$$

Can we get rid of spin variables? Spin-assigned wave functions

Note that if \mathcal{O} is a spin-independent operator

$$|\langle \Psi | \mathcal{O} | \Psi \rangle = \langle F_1 | \mathcal{O} | F_1 \rangle |$$

since the functions ζ_i form an orthonormal set

More convenient to use F_1 instead of full wave function Ψ

To obtain F_1 , assign the spin-variables of particles:

Particle 1 2 ...
$$N_{\uparrow}$$
 $N_{\uparrow+1}$... N
 σ 1 1 ... 1 -1 ... -1

$$F_1(\mathbf{r}_1,\ldots,\mathbf{r}_N) = \Psi(\mathbf{r}_1,1,\ldots,\mathbf{r}_{N_\uparrow},1,\mathbf{r}_{N_\uparrow+1},-1,\ldots,\mathbf{r}_N,-1)$$

Be atom,
$$1s^2 2s^2 \Rightarrow N_{\uparrow} = N_{\downarrow} = 2$$
, $S_z = 0$

Determinant of spin-orbitals $\phi_{1s} \chi_{\uparrow}$, $\phi_{2s} \chi_{\uparrow}$, $\phi_{1s} \chi_{\downarrow}$, $\phi_{2s} \chi_{\downarrow}$

$$D = \frac{1}{\sqrt{4!}} \begin{vmatrix} \phi_{1s}(\mathbf{r_1})\chi_{\uparrow}(\sigma_1) & \dots & \phi_{1s}(\mathbf{r_4})\chi_{\uparrow}(\sigma_4) \\ \phi_{2s}(\mathbf{r_1})\chi_{\uparrow}(\sigma_1) & \dots & \phi_{2s}(\mathbf{r_4})\chi_{\uparrow}(\sigma_4) \\ \phi_{1s}(\mathbf{r_1})\chi_{\downarrow}(\sigma_1) & \dots & \phi_{1s}(\mathbf{r_4})\chi_{\downarrow}(\sigma_4) \\ \phi_{2s}(\mathbf{r_1})\chi_{\downarrow}(\sigma_1) & \dots & \phi_{2s}(\mathbf{r_4})\chi_{\downarrow}(\sigma_4) \end{vmatrix}$$

Spin-assigned $F_1(\mathbf{r}_1, \mathbf{r}_2, \mathbf{r}_3, \mathbf{r}_4) = D(\mathbf{r}_1, +1, \mathbf{r}_2, +1, \mathbf{r}_3, -1, \mathbf{r}_4, -1)$

$$F_1 = \frac{1}{\sqrt{4!}} \begin{vmatrix} \phi_{1s}(\mathbf{r_1}) & \phi_{1s}(\mathbf{r_2}) & 0 & 0 \\ \phi_{2s}(\mathbf{r_1}) & \phi_{2s}(\mathbf{r_2}) & 0 & 0 \\ 0 & 0 & \phi_{1s}(\mathbf{r_3}) & \phi_{1s}(\mathbf{r_4}) \\ 0 & 0 & \phi_{2s}(\mathbf{r_3}) & \phi_{2s}(\mathbf{r_4}) \end{vmatrix}$$

Be atom,
$$1s^2 2s^2 \Rightarrow N_{\uparrow} = N_{\downarrow} = 2$$
, $S_z = 0$

$$F_{1} = \frac{1}{\sqrt{4!}} \begin{vmatrix} \phi_{1s}(\mathbf{r}_{1}) & \phi_{1s}(\mathbf{r}_{2}) & 0 & 0 \\ \phi_{2s}(\mathbf{r}_{1}) & \phi_{2s}(\mathbf{r}_{2}) & 0 & 0 \\ 0 & 0 & \phi_{1s}(\mathbf{r}_{3}) & \phi_{1s}(\mathbf{r}_{4}) \\ 0 & 0 & \phi_{2s}(\mathbf{r}_{3}) & \phi_{2s}(\mathbf{r}_{4}) \end{vmatrix}$$

$$= \frac{1}{\sqrt{4!}} \begin{vmatrix} \phi_{1s}(\mathbf{r}_{1}) & \phi_{1s}(\mathbf{r}_{2}) \\ \phi_{2s}(\mathbf{r}_{1}) & \phi_{2s}(\mathbf{r}_{2}) \end{vmatrix} \times \begin{vmatrix} \phi_{1s}(\mathbf{r}_{3}) & \phi_{1s}(\mathbf{r}_{4}) \\ \phi_{2s}(\mathbf{r}_{3}) & \phi_{2s}(\mathbf{r}_{4}) \end{vmatrix}$$

$$D(\mathbf{x}_1,\mathbf{x}_2,\mathbf{x}_3,\mathbf{x}_4) o D^{\uparrow}(\mathbf{r_1},\mathbf{r_2}) imes D^{\downarrow}(\mathbf{r_3},\mathbf{r_4})$$

Jastrow-Slater spin-assigned wave function

To obtain spin-assigned Jastrow-Slater wave functions, impose

Particle 1 2 ...
$$N_{\uparrow}$$
 $N_{\uparrow+1}$... N
 σ 1 1 ... 1 -1 ... -1

$$\begin{split} \Psi(\mathbf{r}_1,\ldots,\mathbf{r}_N) &= F_1(\mathbf{r}_1,\ldots,\mathbf{r}_N) \\ &= \mathcal{J}(\mathbf{r}_1,\ldots,\mathbf{r}_N) \sum_k d_k D_k^{\uparrow}(\mathbf{r}_1,\ldots,\mathbf{r}_{N_{\uparrow}}) D_k^{\downarrow}(\mathbf{r}_{N_{\uparrow}+1},\ldots,\mathbf{r}_N) \end{split}$$

How do we impose space and spin symmetry on Jastrow-Slater Ψ ?

 $\sum_k d_k D_k$ is constructed to have the proper space/spin symmetry

Often, $\mathcal{J} = \mathcal{J}(\{r_{ij}\}, \{r_{i\alpha}\})$ with i, j electrons and α nuclei

 $\Rightarrow \mathcal{J}$ invariant under rotations, no effect on spacial symmetry of Ψ

If \mathcal{J} is symmetric

- \rightarrow for interchange of like-spin electrons $\Rightarrow \Psi$ eigenstate of S_z
- \rightarrow for interchange of spacial variables $\Rightarrow \Psi$ eigenstate of S^2

Jastrow factor and divergences in the potential

At interparticle coalescence points, the potential diverges as

$$-\frac{Z}{r_{i\alpha}}$$
 for the electron-nucleus potential

 $\frac{1}{r_{ii}}$ for the electron-electron potential

 \Rightarrow Kinetic energy must have opposite divergence to the potential ${\mathcal V}$

Divergence in potential and behavior of the local energy

Consider two particles of masses m_i , m_j and charges q_i , q_j Assume $r_{ij} \rightarrow 0$ while all other particles are well separated

Keep only diverging terms in $\frac{\mathcal{H}\Psi}{\Psi}$ and go to relative coordinates close to $\mathbf{r}=\mathbf{r}_{ii}=0$

$$egin{split} -rac{1}{2\mu_{ij}}rac{
abla^2\Psi}{\Psi} + \mathcal{V}(r) &\sim -rac{1}{2\mu_{ij}}rac{\Psi''}{\Psi} - rac{1}{\mu_{ij}}rac{1}{r}rac{\Psi'}{\Psi} + \mathcal{V}(r) \ &\sim \left[-rac{1}{\mu_{ij}}rac{1}{r}rac{\Psi'}{\Psi} + \mathcal{V}(r)
ight] \end{split}$$

where $\mu_{ij} = m_i m_j/(m_i + m_j)$

Divergence in potential and cusp conditions

Diverging terms in the local energy

$$-\frac{1}{\mu_{ij}}\frac{1}{r}\frac{\Psi'}{\Psi} + \mathcal{V}(r) = -\frac{1}{\mu_{ij}}\frac{1}{r}\frac{\Psi'}{\Psi} + \frac{q_iq_j}{r} = \text{ finite}$$

 $\Rightarrow \Psi$ must satisfy Kato's cusp conditions:

$$\left. \frac{\partial \hat{\Psi}}{\partial r_{ij}} \right|_{r_{ij}=0} = \mu_{ij} q_i \ q_j \Psi(r_{ij}=0)$$

where $\hat{\Psi}$ is a spherical average

Note: We assumed $\Psi(r_{ij}=0)\neq 0$

Cusp conditions: example

The condition for the local energy to be finite at r = 0 is

$$\frac{\Psi'}{\Psi} = \mu_{ij} q_i \, q_j$$

• Electron-nucleus:
$$\mu=1,\ q_i=1,\ q_j=-Z$$
 \Rightarrow $\left|\left|\frac{\Psi'}{\Psi}\right|_{r=0}=-Z\right|$

$$ullet$$
 Electron-electron: $\mu=rac{1}{2},\ q_i=1,\ q_j=1$ \Rightarrow $\left\lceil rac{\Psi'}{\Psi}
ight
vert_{r=0}=1/2
ight
vert$

Generalized cusp conditions

What about two electrons in a triplet state?

Or more generally two like-spin electrons $(D^{\uparrow} \text{ or } D^{\downarrow} \rightarrow 0)$?

$$\boxed{\Psi(r=r_{ij}=0)=0} ?!?$$

Near
$$\mathbf{r} = \mathbf{r}_{ij} = 0$$
, $\Psi = \sum_{l=l_0}^{\infty} \sum_{m=-l}^{l} f_{lm}(r) r^l Y_{lm}(\theta, \phi)$

Local energy is finite if

$$f_{lm}(r) = f_{lm}^{(0)} \left[1 + \frac{\gamma}{(l+1)} r + O(r^2) \right]$$

where $\gamma = q_i q_i \mu_{ii}$

R. T. Pack and W. Byers Brown, JCP 45, 556 (1966)

Generalized cusp conditions: like-spin electrons

• Electron-electron singlet:
$$I_0 = 0 \Rightarrow \left| \Psi \sim \left(1 + \frac{1}{2} \, r \right) \right| \Rightarrow \frac{\Psi'}{\Psi} = \frac{1}{2}$$

• Electron-electron triplet:
$$I_0 = 1 \Rightarrow \left| \Psi \sim \left(1 + \frac{1}{4} r \right) r \right|$$

 $\sigma=+1$ for first N_{\uparrow} electrons, $\sigma=-1$ for the others

$$\Psi(\mathbf{r}_1,\ldots,\mathbf{r}_N) = \mathcal{J}(\mathbf{r}_1,\ldots,\mathbf{r}_{N_\uparrow}) \sum_k d_k \, D_k^{\uparrow}(\mathbf{r}_1,\ldots,\mathbf{r}_{N_\uparrow}) D_k^{\downarrow}(\mathbf{r}_{N_\uparrow+1},\ldots,\mathbf{r}_N)$$

ho Anti-parallel spins: $r_{ij} \to 0$ for $i \le N_{\uparrow}$, $j \ge N_{\uparrow} + 1$

Usually, determinantal part $\neq 0$

$$\Rightarrow \mathcal{J}(r_{ij}) \sim \left(1 + \frac{1}{2} r_{ij}\right) \Leftrightarrow \left| \frac{\mathcal{J}'}{\mathcal{J}} \right|_{r_{ij} = 0} = \frac{1}{2}$$

ho Parallel spins: $r_{ij} \to 0$ for $i, j \le N_{\uparrow}$ or $i, j \ge N_{\uparrow} + 1$

Determinantal part $\rightarrow 0$

$$\Rightarrow \mathcal{J}(r_{ij}) \sim \left(1 + \frac{1}{4} r_{ij}\right) \Leftrightarrow \left| \frac{\mathcal{J}'}{\mathcal{J}} \right|_{r_{ij} = 0} = \frac{1}{4}$$

▷ Electron-electron cusps imposed through the Jastrow factor

Example: Simple Jastrow factor

$$\mathcal{J}(r_{ij}) = \prod_{i < j} \exp\left\{b_0 \, rac{r_{ij}}{1 + b \, r_{ij}}
ight\}$$

with
$$b_0^{\uparrow\downarrow}=rac{1}{2}$$
 or $b_0^{\uparrow\uparrow}=b_0^{\downarrow\downarrow}=rac{1}{4}$

Imposes cusp conditions +

keeps electrons apart

Electron-nucleus cusps imposed through the determinantal part $\text{Assume that the nucleus is at the origin and } \Psi(r_i=0) \neq 0$ If each orbital satisfies the cusp conditions

$$\frac{\partial \hat{\phi}_{j}}{\partial r}\bigg|_{r=0} = -Z\hat{\phi}_{j}(r=0)$$

$$\Rightarrow \frac{\partial \sum_{k} d_{k} \hat{D}_{k}}{\partial r}\bigg|_{r=0} = -Z\sum_{k} d_{k} \hat{D}_{k}(r=0)$$

<u>Note</u>: Slater basis best suited for all-electron systems

No electron-nucleus cusp with pseudopotential

The effect of the Jastrow factor

Pair correlation function for $\uparrow\downarrow$ electrons in the (110) plane of Si $g_{\uparrow\downarrow}(\mathbf{r},\mathbf{r}')$ with one electron is at the bond center

Hood et al. Phys. Rev. Lett. 78, 3350 (1997)

Simple wave function for the Be atom

Be atom,
$$1s^2 2s^2 \Rightarrow N_{\uparrow} = N_{\downarrow} = 2$$
, $S_z = 0$

Spin-assigned
$$\Psi(\mathbf{r}_1, +1, \mathbf{r}_2, +1, \mathbf{r}_3, -1, \mathbf{r}_4, -1) = \mathcal{J} D$$

$$D = D^{\uparrow} \times D^{\downarrow} = \begin{vmatrix} \phi_{1s}(\mathbf{r_1}) & \phi_{1s}(\mathbf{r_2}) \\ \phi_{2s}(\mathbf{r_1}) & \phi_{2s}(\mathbf{r_2}) \end{vmatrix} \times \begin{vmatrix} \phi_{1s}(\mathbf{r_3}) & \phi_{1s}(\mathbf{r_4}) \\ \phi_{2s}(\mathbf{r_3}) & \phi_{2s}(\mathbf{r_4}) \end{vmatrix}$$

▷ Simple Jastrow factor

$$\mathcal{J} = \prod_{ij=13,14,23,24} \exp\left\{\frac{1}{2} \frac{r_{ij}}{1+b \, r_{ij}}\right\} \times \prod_{ij=12,34} \exp\left\{\frac{1}{4} \frac{r_{ij}}{1+b \, r_{ij}}\right\}$$

Jastrow factor for atoms and molecules: Beyond the simple form

Boys and Handy's form

$$\mathcal{J}(r_i, r_j, r_{ij}) = \prod_{\alpha, i < j} \exp \left\{ \sum c_{mnk}^{\alpha} \left(\bar{r}_{i\alpha}^{\ m} \, \bar{r}_{j\alpha}^{\ n} + \bar{r}_{i\alpha}^{\ n} \, \bar{r}_{j\alpha}^{\ m} \right) \, \bar{r}_{ij}^{\ k} \right\}$$

with
$$\bar{r}_{i\alpha} = \frac{a \, r_{i\alpha}}{1 + a \, r_{i\alpha}}$$
 and $\bar{r}_{ij} = \frac{d \, r_{ij}}{1 + d \, r_{ij}}$

Cusp conditions imposed by requiring:

For electron-electron cusps: m = n = 0 if k = 1

For electron-nucleus cusps: No n = 1 or m = 1, D satisfies cusps

More general form: Lift constraints and allow all values of n, m, k Impose the cusp conditions via linear dependencies among c_{mnk}^{α} Other scaling functions are possible, e.g. $(1 - e^{-ar})/a$

More general Jastrow form with e-n, e-e and e-e-n terms

$$\prod_{\alpha,i} \exp \left\{ A(r_{i\alpha}) \right\} \prod_{i < j} \exp \left\{ B(r_{ij}) \right\} \prod_{\alpha,i < j} \exp \left\{ C(r_{i\alpha}, r_{j\alpha}, r_{ij}) \right\}$$

- \triangleright Polynomials of scaled variables, e.g. $\bar{r} = r/(1+ar)$
- \triangleright $\mathcal{J} > 0$ and becomes constant for large r_i , r_j and r_{ij}
- ▷ Electron-electron terms B
 - Imposes the cusp conditions and keeps electrons apart
 - More general than simple $\mathcal{J}(r_{ij})$ gives small improvements
- ▷ Electron-nucleus terms A

Should be included if determinantal part (DFT or HF) is not reoptimized: e-e terms alter the single-particle density

Role of the electron-nucleus terms

Example: Density of all-electron Carbon atom

Foulkes et al. Rev. Mod. Phys. 73, 33 (2001)

▷ Electron-electron-nucleus terms C

If the order of the polynomial in the e-e-n terms is infinite, Ψ can exactly describe a two-electron atom or ion in an S state For these systems, a 5th-order polynomial recovers more than 99.99% of the correlation energy, $E_{\rm corr} = E_{\rm exact} - E_{\rm HF}$

▷ Is this Jastrow factor adequate for multi-electron systems?

The e-e-n terms are the most important: due to the exclusion principle, it is rare for 3 or more electrons to be close, since at least 2 electrons must necessarily have the same spin

Jastrow factor with e-e, e-e-n and e-e-e-n terms

		${\cal J}$	$E_{ m VMC}$	$E_{ m VMC}^{ m corr}$ (%)	$\sigma_{ m VMC}$
Li	$E_{ m HF}$		-7.43273	0	
		e-e	-7.47427(4)	91.6	0.240
		+ e-e-n	-7.47788(1)	99.6	0.037
		+ e-e-e-n	-7.47797(1)	99.8	0.028
	E_{exact}		-7.47806	100	0
Ne	$E_{ m HF}$		-128.5471	0	
		e-e	-128.713(2)	42.5	1.90
		+ e-e-n	-128.9008(1)	90.6	0.90
		+ e-e-e-n	-128.9029(3)	91.1	0.88
	$E_{ m exact}$		-128.9376	100	0

Huang, Umrigar, Nightingale, J. Chem. Phys. 107, 3007 (1997)

Dynamic and static correlation

$\Psi = \mathsf{Jastrow} \times \mathsf{Determinants} \to \mathsf{Two}$ types of correlation

▷ Dynamic correlation

Described by Jastrow factor

Due to inter-electron repulsion

Always present

Described by a linear combination of determinants

Due to near-degeneracy of occupied and unoccupied orbitals

Not always present

Example: Be atom and 2s-2p near-degeneracy

HF ground state configuration

$$1s^22s^2$$

Additional important configuration

$$1s^22p^2$$

Ground state has 1S symmetry \Rightarrow 4 determinants

$$egin{aligned} D &= \left(1s^{\uparrow},2s^{\uparrow},1s^{\downarrow},2s^{\downarrow}
ight) + c \, \left[\, \left(1s^{\uparrow},2p_{x}^{\uparrow},1s^{\downarrow},2p_{x}^{\downarrow}
ight) \ &+ \left(1s^{\uparrow},2p_{y}^{\uparrow},1s^{\downarrow},2p_{y}^{\downarrow}
ight) \ &+ \left(1s^{\uparrow},2p_{z}^{\uparrow},1s^{\downarrow},2p_{z}^{\downarrow}
ight) \end{aligned}$$

$$1s^2 2s^2 imes \mathcal{J}(r_{ij}) o E_{\mathrm{VMC}}^{\mathrm{corr}} = 61\%$$
 $1s^2 2s^2 \oplus 1s^2 2p^2 imes \mathcal{J}(r_{ij}) o E_{\mathrm{VMC}}^{\mathrm{corr}} = 93\%$

Example: $E_{
m VMC}^{
m corr}$ and $E_{
m DMC}^{
m corr}$ for $1^{
m st}$ -row dimers

MO orbitals with atomic s-p Slater basis (all-electron)

Active MO orbitals are $2\sigma_g, 2\sigma_u, 3\sigma_g, 3\sigma_u, 1\pi_u, 1\pi_g$ 5th-order polynomial ${\cal J}$ (e-n, e-e, e-e-n)

Filippi and Umrigar, J. Chem. Phys. 105, 213 (1996)

(2)

Determinant versus Jastrow factor

Determinantal part yields the nodes (zeros) of wave function

 \Rightarrow Quality of the fixed-node DMC solution

Why bother with the Jastrow factor?

Implications of using a good Jastrow factor for DMC:

- \triangleright Efficiency: Smaller σ and time-step error \Rightarrow Gain in CPU time
- ▷ Expectation values other than energy ⇒ Mixed estimator
- Non-local pseudopotentials and localization error
 - ⇒ Jastrow factor does affect fixed-node energy

Why should $\Psi_{\mathrm{QMC}} = \mathcal{J}D$ work?

$\mathcal{H}_{\mathrm{eff}}$ weaker Hamiltonian than \mathcal{H}

- $\Rightarrow \Phi \approx$ non-interacting wave function D
- \Rightarrow Quantum Monte Carlo wave function $\Psi = \mathcal{J}D$

Why going beyond VMC?

Dependence of VMC from wave function Ψ

Kwon, Ceperley, Martin, Phys. Rev. B 58, 6800 (1998)

Why going beyond VMC?

- ▷ Dependence on wave function: What goes in, comes out!
- No automatic way of constructing wave function Ψ
 Choices must be made about functional form (human time)
- ightharpoonup Hard to ensure good error cancelation on energy differences e.g. easier to construct good Ψ for closed than open shells

Can we remove wave function bias?

Projector Monte Carlo methods

- riangleright Construct an operator which inverts spectrum of ${\cal H}$
- riangleright Use it to stochastically project the ground state of ${\cal H}$

Diffusion Monte Carlo

Consider initial guess $\Psi^{(0)}$ and repeatedly apply projection operator

$$\Psi^{(n)} = e^{-\tau(\mathcal{H} - E_{\mathrm{T}})} \Psi^{(n-1)}$$

Expand $\Psi^{(0)}$ on the eigenstates Ψ_i with energies E_i of \mathcal{H}

$$\Psi^{(n)} = e^{-n\tau(\mathcal{H}-E_{\mathrm{T}})} \Psi^{(0)} = \sum_{i} \Psi_{i} \, \langle \Psi^{(0)} | \Psi_{i} \rangle e^{-n\tau(E_{i}-E_{\mathrm{T}})}$$

and obtain in the limit of $n \to \infty$

$$\lim_{n\to\infty} \Psi^{(n)} = \Psi_0 \langle \Psi^{(0)} | \Psi_0 \rangle e^{-n\tau(E_0-E_{\rm T})}$$

If we choose $E_{\mathrm{T}} pprox E_{\mathrm{0}}$, we obtain $\lim_{n o \infty} \Psi^{(n)} = \Psi_{\mathrm{0}}$

How do we perform the projection?

Rewrite projection equation in integral form

$$\Psi^{(n)}(\mathsf{R}',t+ au) = \int\!\mathrm{d}\mathsf{R}\, \mathcal{G}(\mathsf{R}',\mathsf{R}, au) \Psi^{(n-1)}(\mathsf{R},t)$$

where
$$G(\mathbf{R}',\mathbf{R}, au)=\langle\mathbf{R}'|e^{- au(\mathcal{H}-E_{\mathrm{T}})}|\mathbf{R}
angle$$

- ightharpoonup Can we sample the wave function? For the moment, assume we are dealing with bosons, so $\Psi>0$
- \triangleright Can we interpret $G(\mathbf{R}', \mathbf{R}, \tau)$ as a transition probability? If yes, we can perform this integral by Monte Carlo integration

VMC and DMC as power methods

$$\boxed{\mathsf{VMC}} \ \ \mathsf{Distribution} \ \ \mathsf{function} \ \ \mathsf{is} \ \ \mathsf{given} \ \ \rho(\mathsf{R}) = \frac{|\Psi(\mathsf{R})|^2}{\int \mathrm{d}\mathsf{R} |\Psi(\mathsf{R})|^2}$$

Construct M which satisfies stationarity condition $M\rho=\rho$

- ightarrow
 ho is eigenvector of M with eigenvalue 1
- ightarrow
 ho is the dominant eigenvector $\Rightarrow \lim_{n
 ightarrow \infty} \mathit{M}^n
 ho_{\mathrm{initial}} =
 ho$

DMC Opposite procedure!

The matrix M is given $o M = \langle {f R}'|e^{- au({\cal H}-E_{
m T})}|{f R}
angle$

We want to find the dominant eigenvector $\rho = \Psi_0$

What can we say about the Green's function?

$$G(\mathbf{R}',\mathbf{R}, au) = \langle \mathbf{R}'|e^{- au(\mathcal{H}-E_{\mathrm{T}})}|\mathbf{R}\rangle$$

 $G(\mathbf{R}',\mathbf{R}, au)$ satisfies the imaginary-time Schrödinger equation

$$\boxed{(\mathcal{H} - E_{\mathrm{T}})G(\mathbf{R}, \mathbf{R}_{0}, t) = -\frac{\partial G(\mathbf{R}, \mathbf{R}_{0}, t)}{\partial t}}$$

with
$$G(\mathbf{R}', \mathbf{R}, 0) = \delta(\mathbf{R}' - \mathbf{R})$$

$$\mathcal{H} = \mathcal{T}$$

Imaginary-time Schrödinger equation is a diffusion equation

$$-\frac{1}{2}\nabla^2 G(\mathbf{R}, \mathbf{R}_0, t) = -\frac{\partial G(\mathbf{R}, \mathbf{R}_0, t)}{\partial t}$$

The Green's function is given by a Gaussian

$$G(\mathbf{R}',\mathbf{R}, au) = (2\pi\tau)^{-3N/2} \exp\left[-\frac{(\mathbf{R}'-\mathbf{R})^2}{2\tau}\right]$$

Positive and can be sampled

$$\mathcal{H} = \mathcal{V}$$

$$(\mathcal{V}(\mathbf{R}) - E_{\mathrm{T}})G(\mathbf{R}, \mathbf{R}_{0}, t) = -\frac{\partial G(\mathbf{R}, \mathbf{R}_{0}, t)}{\partial t},$$

The Green's function is given by

$$G(\mathbf{R}', \mathbf{R}, \tau) = \exp\left[-\tau \left(\mathcal{V}(\mathbf{R}) - E_{\mathrm{T}}\right)\right] \delta(\mathbf{R} - \mathbf{R}'),$$

Positive but does not preserve the normalization

It is a factor by which we multiply the distribution $\Psi(\mathbf{R},t)$

 $\mathcal{H} = \mathcal{T} + \mathcal{V}$ and a combination of diffusion and branching

Trotter's theorem
$$\rightarrow \boxed{e^{(A+B)\tau} = e^{A\tau}e^{B\tau} + \mathcal{O}(\tau^2)}$$

$$\langle \mathbf{R}'|e^{-\mathcal{H}\tau}|\mathbf{R}_0\rangle \approx \langle \mathbf{R}'|e^{-T\tau}e^{-\mathcal{V}\tau}|\mathbf{R}_0\rangle$$

$$= \int \mathbf{d}\mathbf{R}''\langle \mathbf{R}'|e^{-T\tau}|\mathbf{R}''\rangle\langle \mathbf{R}''|e^{-\mathcal{V}\tau}|\mathbf{R}_0\rangle$$

$$= \langle \mathbf{R}'|e^{-T\tau}|\mathbf{R}_0\rangle e^{-\mathcal{V}(\mathbf{R}_0)\tau}$$

The Green's function in the short-time approximation to $\mathcal{O}(au^2)$ is

$$G(\mathbf{R}', \mathbf{R}, \tau) = (2\pi\tau)^{-3N/2} \exp\left[-\frac{(\mathbf{R}' - \mathbf{R})^2}{2\tau}\right] \exp\left[-\tau\left(\mathcal{V}(\mathbf{R}) - E_{\mathrm{T}}\right)\right]$$

DMC results must be extrapolated at short time-steps (au
ightarrow 0)

Time-step extrapolation

Example: Energy of Li $_2$ versus time-step au

Umrigar, Nightingale, Runge, J. Chem. Phys. 94, 2865 (1993)

The basic DMC algorithm is rather simple:

- 1. Sample $\Psi^{(0)}(\mathbf{R})$ with the Metropolis algorithm Generate M_0 walkers $\mathbf{R}_1, \dots, \mathbf{R}_{M_0}$ (zeroth generation)
- 2. Diffuse each walker as $\mathbf{R}' = \mathbf{R} + \xi$ where ξ is sampled from $g(\xi) = (2\pi\tau)^{-3N/2} \exp\left(-\xi^2/2\tau\right)$
- 3. For each walker, compute the factor

$$p = \exp\left[-\tau(\mathcal{V}(\mathbf{R}) - E_{\mathrm{T}})\right]$$

Branch the walker with p the probability to survive

Continue →

(2)

- 4. Branch the walker with *p* the probability to survive
 - \triangleright If p < 1, the walker survives with probablity p
 - ightharpoonup If p>1, the walker continues and new walkers with the same coordinates are created with probability p-1
 - \Rightarrow Number of copies of the current walker equal to $int(p + \eta)$ where η is a random number between (0,1)
- 5. Adjust $E_{\rm T}$ so that population fluctuates around target M_0
- \rightarrow After many iterations, walkers distributed as $\Psi_0(R)$

Diffusion and branching in a harmonic potential

Walkers proliferate/die in regions of lower/higher potential than E_{T}

Some comments on the simple DMC algorithm

 \triangleright E_{T} is adjusted to keep population stable

IF M(t) is the current and M_0 the desired population

$$M(t+T) = M(t) e^{-T(-\delta E_{\mathrm{T}})} = M_0 \ \Rightarrow \ \delta E_{\mathrm{T}} = \frac{1}{T} \ln \left[\frac{M_0}{M(t)} \right]$$

If $E_{\rm est}(t)$ is current best estimate of the ground state

$$E_{\mathrm{T}}(t+ au) = E_{\mathrm{est}}(t) + rac{1}{g au} \ln\left[M_0/M(t)
ight]$$

- \Rightarrow Feedback on E_{T} introduces population control bias
- ho Symmetric branching $\exp[- au(\mathcal{V}(\mathbf{R})+\mathcal{V}(\mathbf{R}'))/2]$ starting from $e^{(A+B) au}=e^{A au/2}e^{B au}e^{A au/2}+\mathcal{O}(au^3)$

Problems with simple algorithm

The simple algorithm is inefficient and unstable

- Potential can vary a lot and be unbounded
 e.g. electron-nucleus interaction → Exploding population
- > Branching factor grows with system size

Start from integral equation

$$\Psi^{(n)}(\mathsf{R}',t+ au) = \int\!\mathrm{d}\mathsf{R}\, G(\mathsf{R}',\mathsf{R}, au) \Psi^{(n-1)}(\mathsf{R},t)$$

Multiply each side by trial Ψ and define $f^{(n)}(\mathsf{R}) = \Psi(\mathsf{R})\Psi^{(n)}(\mathsf{R})$

$$f^{(n)}(\mathsf{R}',t+ au) = \int\!\mathrm{d}\mathsf{R}\, \tilde{G}(\mathsf{R}',\mathsf{R}, au) f^{(n-1)}(\mathsf{R},t)$$

where the importance sampled Green's function is

$$\tilde{G}(\mathbf{R}',\mathbf{R}, au) = \Psi(\mathbf{R}')\langle\mathbf{R}'|e^{- au(\mathcal{H}-E_{\mathrm{T}})}|\mathbf{R}
angle/\Psi(\mathbf{R})$$

We obtain
$$\lim_{n\to\infty} f^{(n)}(\mathbf{R}) = \Psi(\mathbf{R})\Psi_0(\mathbf{R})$$

Importance sampled Green's function

The importance sampled $\tilde{\textit{G}}(\textbf{R},\textbf{R}_0, au)$ satisfies

$$-\frac{1}{2}\nabla^2 \tilde{G} + \nabla \cdot [\tilde{G} \mathbf{V}(\mathbf{R})] + [E_{\mathrm{L}}(\mathbf{R}) - E_{\mathrm{T}}] \tilde{G} = -\frac{\partial \tilde{G}}{\partial \tau}$$

with the quantum velocity $\mathbf{V}(\mathbf{R}) = \frac{
abla \Psi(\mathbf{R})}{\Psi(\mathbf{R})}$

We now have drift in addition to diffusion and branching terms

Trotter's theorem \Rightarrow Consider them separately for small enough au

The drift-branching components: Reminder

Diffusion term

$$-\frac{1}{2}\nabla^{2}\tilde{G}(\mathbf{R},\mathbf{R}_{0},t)=-\frac{\partial\tilde{G}(\mathbf{R},\mathbf{R}_{0},t)}{\partial t}$$

$$\Rightarrow ilde{\mathsf{G}}(\mathsf{R}',\mathsf{R}, au) = (2\pi au)^{-3\mathsf{N}/2}\,\exp\left[-rac{(\mathsf{R}'-\mathsf{R})^2}{2 au}
ight]$$

Branching term

$$(E_{\mathrm{L}}(\mathbf{R}) - E_{\mathrm{T}})\tilde{G}(\mathbf{R}, \mathbf{R}_{0}, t) = -\frac{\partial \tilde{G}(\mathbf{R}, \mathbf{R}_{0}, t)}{\partial t}$$

$$\Rightarrow \tilde{G}(\mathbf{R}', \mathbf{R}, \tau) = \exp\left[-\tau \left(E_{\mathrm{L}}(\mathbf{R}) - E_{\mathrm{T}}\right)\right] \delta(\mathbf{R} - \mathbf{R}')$$

The drift-diffusion-branching Green's function

$$-\frac{1}{2}\nabla^{2}\tilde{G} + \nabla \cdot [\tilde{G} \mathbf{V}(\mathbf{R})] + [E_{L}(\mathbf{R}) - E_{T}] \tilde{G} = -\frac{\partial \tilde{G}}{\partial \tau}$$

Drift term

Assume
$$\mathbf{V}(\mathbf{R}) = \frac{\nabla \Psi(\mathbf{R})}{\Psi(\mathbf{R})}$$
 constant over the move (true as $au o 0$)

The drift operator becomes $\mathbf{V} \cdot \nabla + \nabla \cdot \mathbf{V} \approx \mathbf{V} \cdot \nabla$ so that

$$\mathbf{V} \cdot \nabla \tilde{G}(\mathbf{R}, \mathbf{R}_0, t) = -\frac{\partial \tilde{G}(\mathbf{R}, \mathbf{R}_0, t)}{\partial t}$$

with solution
$$ilde{G}(\mathbf{R},\mathbf{R}_0,t)=\delta(\mathbf{R}-\mathbf{R}_0-\mathbf{V}t)$$

The drift-diffusion-branching Green's function

Drift-diffusion-branching short-time Green's function is

$$\tilde{G}(\mathbf{R}', \mathbf{R}, \tau) = (2\pi\tau)^{-3N/2} \exp\left[-\frac{(\mathbf{R}' - \mathbf{R} - \tau \mathbf{V}(\mathbf{R}))^2}{2\tau}\right] \times \\
\times \exp\left\{-\tau \left[(E_{\mathrm{L}}(\mathbf{R}) + E_{\mathrm{L}}(\mathbf{R}'))/2 - E_{\mathrm{T}} \right] \right\} + \mathcal{O}(\tau^2)$$

What is new in the drift-diffusion-branching expression?

- \triangleright **V**(**R**) pushes walkers where Ψ is large
- ho $E_{
 m L}({\sf R})$ is better behaved than the potential ${\cal V}({\sf R})$

Cusp conditions \Rightarrow No divergences when particles approach

As $\Psi \to \Psi_0$, $E_L \to E_0$ and branching factor is smaller

DMC algorithm with importance sampling

- 1. Sample initial walkers from $|\Psi(\mathbf{R})|^2$
- 2. Drift and diffuse the walkers as $\mathbf{R}' = \mathbf{R} + \xi + \tau \mathbf{V}(\mathbf{R})$ where ξ is sampled from $g(\xi) = (2\pi\tau)^{-3N/2} \exp\left(-\xi^2/2\tau\right)$
- 3. Branching step as in the simple algorithm but with the factor

$$p = \exp\left\{-\tau[(E_{\mathrm{L}}(\mathbf{R}) + E_{\mathrm{L}}(\mathbf{R}'))/2 - E_{\mathrm{T}}]\right\}$$

- 4. Adjust the trial energy to keep the population stable
- \rightarrow After many iterations, walkers distributed as $\Psi(\mathbf{R})\Psi_0(\mathbf{R})$

An important and simple improvement

If $\Psi=\Psi_0$, $E_{\rm L}({\bf R})=E_0\to {\sf No}$ branching term $\to {\sf Sample}\ \Psi^2$ Due to time-step approximation, we only sample Ψ^2 as $\tau\to 0$!

Solution Introduce accept/reject step like in Metropolis algorithm

$$\tilde{G}(\mathbf{R}', \mathbf{R}, \tau) \approx \underbrace{\mathcal{N} \exp\left[-\frac{(\mathbf{R}' - \mathbf{R} - \mathbf{V}(\mathbf{R})\tau)^2}{2\tau}\right]}_{\mathcal{T}(\mathbf{R}', \mathbf{R}, \tau)} \exp\left[-(E_{\mathrm{L}}(\mathbf{R}) + E_{\mathrm{L}}(\mathbf{R}'))\frac{\tau}{2}\right]$$

Walker drifts, diffuses and the move is accepted with probability

$$p = \min \left\{ 1, \frac{|\Psi(\mathbf{R}')|^2 \ T(\mathbf{R}, \mathbf{R}', \tau)}{|\Psi(\mathbf{R})|^2 \ T(\mathbf{R}', \mathbf{R}, \tau)} \right\}$$

→ Improved algorithm with smaller time-step error

Electrons are fermions!

We assumed that $\Psi_0 > 0$ and that we are dealing with bosons

Fermions $\rightarrow \Psi$ is antisymmetric and changes sign!

How can we impose antisymmetry in simple DMC method?

Idea Rewrite initial distribution $\Psi^{(0)}$ as

$$\Psi^{(0)} = \Psi_+^{(0)} - \Psi_-^{(0)}$$

and evolve $\Psi_{+}^{(0)}$ and $\Psi_{-}^{(0)}$ separately. Will this idea work?

Particle in a box and the fermionic problem

Ground state
$$\Psi^{(0)}(\mathbf{R}) o \Psi_0(\mathbf{R})$$

Excited state $\Psi_1(\mathbf{R})$ changes sign!

Let us try our trick $\rightarrow \Psi^{(0)}(R) = \Psi^{(0)}_+(R) - \Psi^{(0)}_-(R)$

$$\Psi_-^{(0)}(R), \Psi_+^{(0)}(R) \to \Psi_0(R)$$

Is a trick possible for DMC with importance sampling?

Does it help to work with $f(\mathbf{R}) = \Psi(\mathbf{R})\Psi_0(\mathbf{R})$?

- \triangleright Initial distribution $\Psi(\mathbf{R})^2 > 0$ poses no problems. Good start!
- ho Iterate as $f^{(n)}(\mathsf{R}',t+ au) = \int\!\mathrm{d}\mathsf{R}\, ilde{\mathcal{G}}(\mathsf{R}',\mathsf{R}, au) f^{(n-1)}(\mathsf{R},t)$

If move $\textbf{R} \rightarrow \textbf{R}'$ changes sign of Ψ so that $\left| \Psi(\textbf{R}')/\Psi(\textbf{R}) < 0 \right|$

$$\Rightarrow \ \tilde{\textit{G}}(\textbf{R}',\textbf{R},\tau) = \Psi(\textbf{R}')\langle \textbf{R}'|e^{-\tau(\mathcal{H}-\textit{E}_{T})}|\textbf{R}\rangle/\Psi(\textbf{R}) \ \text{changes sign!}$$

We have no luck ?!?

See next lecture by Lubos Mitas