Appending Adversarial Frames for Universal Video Attack

AAF

Basic Attack Methods

Model:

$$X = \{f_1, f_2 \dots, f_T\}$$

$$E = \{p_1, p_2 \dots p_T\}$$

$$\hat{X} = \{f_1 \oplus p_1, f_2 \oplus p_2 \dots, f_T \oplus p_T\}$$

Weakness:

High authority needed.

Unsafe. $(f_1, f_2...$ are related while p_1, p_2 are not)

High perturbation rate.(every frame)

Weak transferability.

Appending Adversarial Frames Method

Model:

$$X \in R^{T \times W \times H \times C}$$
 (T: number of frames W, H, C: width, height, and channel of each frame)
$$\Delta \in R^{\Delta T \times W \times H \times C}$$
 (adversarial frames without perturbations)
$$\hat{\Delta} \in R^{\Delta T \times W \times H \times C}$$
 (adversarial frames with perturbations)
$$\hat{X} \in R^{(T + \Delta T) \times W \times H \times C}$$
 (adversarial video)

Optimization Function

$$\arg \min_{\mathbf{E}} \lambda ||\mathbf{E}||_p - \ell(\mathbf{1}_y, \mathbb{J}(\hat{\mathbf{X}}; \boldsymbol{\theta}))$$

$$\arg \min_{\mathbf{E}} \lambda ||\mathbf{E}||_p + \ell(\mathbf{1}_{y^*}, \mathbb{J}(\hat{\mathbf{X}}; \boldsymbol{\theta}))$$

Variants of AAFM

Across Videos :

$$\arg\min_{\mathbf{E}} \lambda ||\mathbf{E}||_p - \sum_{n=1}^N \alpha_n \ell(\mathbf{1}_{y_n}, \mathbb{J}(\mathbf{\hat{X}}_n; \boldsymbol{\theta}))$$

Across Models:

$$\arg\min_{\mathbf{E}} \lambda ||\mathbf{E}||_p - \sum_{k=1}^K \beta_k \ell(\mathbf{1}_{y_k}, \mathbb{J}(\hat{\mathbf{X}}; \boldsymbol{\theta}_k))$$

Feature Similarity:

$$\arg \min_{\mathbf{E}} \lambda ||\mathbf{E}||_p - \ell(\mathbf{1}_y, \mathbb{J}(\hat{\mathbf{X}}; \boldsymbol{\theta}))$$
$$+ \lambda_l ||\phi_l(\boldsymbol{\Delta}_s) - \phi_l(\hat{\boldsymbol{\Delta}})||_p$$

Experiments

Table 2. Comparison of BAM and A²FM with different video classification models.

Target Model	Methods	UCF-	101	HMDB-51	
		FR (%)	AAP	FR (%)	AAP
I3D-ResNet	BAM	100	0.22	100	0.31
	A^2FM	100	0.05	100	0.06
I3D-Inception	BAM	99.5	0.20	100	0.28
	A^2FM	99.5	0.08	100	0.07
CNN+LSTM	BAM	100	0.20	100	0.28
	A^2FM	100	0.02	100	0.02
C3D	BAM	99.5	0.24	100	0.30
	A^2FM	97.3	0.14	96.8	0.16
ResNet3D	BAM	97.8	0.25	100	0.30
	A^2FM	95.1	0.09	100	0.07
P3D	BAM	100	0.20	100	0.28
	A^2FM	100	0.02	100	0.02

fewer perturbations

Table 3. Comparison of BAM and A²FM-AV in transferability across different videos.

Target Model	Methods	UCF-101		HMDB-51	
	1,10,110,03	FR (%)	AAP	FR (%)	AAP
I3D-ResNet	BAM	95.4	0.62	93.0	0.70
	A^2FM-AV	98.1	0.52	97.8	0.60
I2D Incontion	BAM	2.6	0.34	2.0	0.25
I3D-Inception	A^2FM-AV	69.3	1.25	2.3	0.84
CNN+LSTM	BAM	18.1	0.09	69.6	0.13
CININ+LS I IVI	A^2FM-AV	47.1	0.16	45.7	0.21
C3D	BAM	97.9	0.75	98.0	0.68
	A^2FM-AV	98.1	1.21	96.9	1.75
ResNet3D	BAM	45.2	0.65	58.6	0.49
ResnetsD	A^2FM-AV	96.6	1.21	94.1	0.79
P3D	BAM	20.7	0.11	46.9	0.16
	A ² FM-AV	98.4	0.25	97.4	0.15

Better transferability AAP is not guaranteed

Experiments

Table 4. Comparison of BAM and A²FM-AM in transferability across models on UCF-101 dataset. The first column indicates we use the Leave-One-Out ensemble method that excludes one model to produce perturbations. For instance, '—I3D-ResNet' means the corresponding ensemble model excludes I3D-ResNet. The numbers in the 3-8 columns are the fooling rates (%) for each attacked model.

Models	Method	I3D-ResNet	ResNet3D	P3D	I3D-Inception	C3D	CNN+LSTM
-I3D-ResNet	BAM	0	78.7	84.6	87.8	70.8	56.2
	A^2FM-AM	39.5	68.1	97.4	42.9	85.4	81.6
-ResNet3D	BAM	100	0	84.6	87.8	70.8	38.9
	A^2FM-AM	89.5	6.4	97.4	52.2	85.4	71.4
-P3D	BAM	100	80.9	15.4	87.8	72.9	58.8
	A^2FM-AM	86.8	74.5	59.0	50.0	85.4	83.7
I2D Incention	BAM	100	83.0	97.4	0	73.0	61.1
-I3D-Inception	A^2FM-AM	86.8	78.7	100	2.0	85.4	50.0
-C3D	BAM	100	83.0	100	90.0	0	64.7
	A^2FM-AM	92.1	80.9	100	60.0	20.8	79.6
-CNN+LSTM	BAM	100	80.9	97.4	97.8	72.9	35.7
	A^2FM-AM	89.5	74.5	100	55.6	85.4	77.6

Better transferability

Experiments

Table 5. Comparison of BAM and A²FM for targeted attack.

Target Model	Methods	UCF-	101	HMDB-51	
		FR (%)	AAP	FR (%)	AAP
I3D-ResNet	BAM	97.6	0.29	97.8	0.31
	A^2FM	97.7	0.17	97.8	0.14
I3D-Inception	BAM	84.6	0.23	96.8	0.27
	A^2FM	27.4	0.08	40.2	0.08
CNN+LSTM	BAM	61.6	0.23	55.8	0.27
	A^2FM	53.2	0.07	42.4	0.07
C3D	BAM	97.9	0.30	97.8	0.31
	A^2FM	83.8	0.26	95.0	0.22
Resnet3D	BAM	98.1	0.28	98.0	0.30
	A^2FM	98.1	0.15	98.0	0.13
P3D	BAM	98.0	0.22	97.8	0.26
	A^2FM	97.8	0.07	97.8	0.08

Bad performance on targeted attack

Conclusion

The paper present an adversarial video attack method, which appends a few dummy frames with adversarial perturbations to the original video.

Comparing with the basic adversarial video attack method, AAF has a better performance on perturbation rate and transferability between different videos and classifier modules, while a worse performance on targeted attack.