Examenul de bacalaureat național 2017 Proba E. c) Matematică *M_st-nat*

Varianta 4

Filiera teoretică, profilul real, specializarea științe ale naturii

- Toate subiectele sunt obligatorii. Se acordă 10 puncte din oficiu.
- Timpul de lucru efectiv este de 3 ore.

SUBIECTUL I (30 de puncte)

- **5p 1.** Se consideră numerele complexe $z_1 = 3 + 2i$ și $z_2 = 3 2i$. Arătați că numărul $z_1 + z_2$ este real.
- **5p** 2. Determinați numărul real m, știind că punctul M(2, m) aparține graficului funcției $f: \mathbb{R} \to \mathbb{R}$, $f(x) = x^2 3$.
- **5p 3.** Rezolvați în mulțimea numerelor reale ecuația $3^{3x-5} = 3^{-2}$.
- **5p 4.** Calculați probabilitatea ca, alegând un număr din mulțimea $A = \{1, 2, 3, ..., 20\}$, acesta să fie multiplu de 5.
- **5p 5.** În reperul cartezian xOy se consideră punctele A(2,5), B(1,3) și C(m,1), unde m este număr real. Determinați numărul real m, știind că punctul C aparține dreptei AB.
- **5p 6.** Se consideră $E(x) = \cos \frac{x}{2} + \sin x$, unde x este număr real. Arătați că $E(\frac{\pi}{3}) = \sqrt{3}$.

SUBIECTUL al II-lea (30 de puncte)

- **1.** Se consideră matricea $A(x) = \begin{pmatrix} x & x+1 & 1 \\ 2 & x & 1 \\ 3 & 0 & 1 \end{pmatrix}$, unde x este număr real.
- **5p** a) Arătați că $\det(A(0))=1$.
- **5p b**) Determinați numărul real x, pentru care A(x) + A(x+2) = 2A(2).
- **5p** c) În reperul cartezian xOy se consideră punctele M(n,n+1), N(2,n) și P(3,0). Determinați numărul natural n, știind că punctele M, N și P sunt coliniare.
 - **2.** Se consideră polinomul $f = X^3 + aX^2 + X 1$, unde a este număr real.
- **5p** a) Arătați că f(1) f(-1) = 4, pentru orice număr real a.
- **5p b**) Pentru a = 2, calculați câtul și restul împărțirii polinomului f la polinomul $X^2 + X + 1$.
- **5p** c) Determinați numărul real a pentru care $x_1 + x_2 + x_3 + x_1x_2 + x_1x_3 + x_2x_3 = x_1x_2x_3 1$, unde x_1 , x_2 și x_3 sunt rădăcinile polinomului f.

SUBIECTUL al III-lea (30 de puncte)

- **1.** Se consideră funcția $f:(1,+\infty) \to \mathbb{R}$, $f(x) = \frac{x^2 x + 1}{x 1}$.
- **5p** a) Arătați că $f'(x) = \frac{x(x-2)}{(x-1)^2}, x \in (1,+\infty).$
- **5p b)** Determinați ecuația tangentei la graficul funcției f în punctul de abscisă x = 2, situat pe graficul funcției f.
- **5p** c) Demonstrați că $\lim_{x \to +\infty} \frac{f(x)}{e^x + 1} = 0$.
 - **2.** Se consideră funcția $f: \mathbb{R} \to \mathbb{R}$, $f(x) = e^x + 2x$.
- **5p a)** Arătați că $\int_{0}^{1} (f(x)-2x) dx = e-1$.
- **5p b**) Determinați volumul corpului obținut prin rotația în jurul axei Ox a graficului funcției $g:[0,1] \to \mathbb{R}$, $g(x) = f(x) e^x$.
- **5p** c) Determinați numărul real a, știind că $\int_{0}^{a} x f(x) dx = 1 + \frac{2a^{3}}{3}$.