INT201 Decision, Computation and Language

Tutorial 6 Dr Yushi Li

1.

Consider language A with CFG $G = (V, \Sigma, R, S)$ Variables $V = \{S, C, D\}$ Terminals $\Sigma = \{a, b\}$ Rules: $S \to CDa \mid CD$ $C \to aD$ $D \to Sb \mid b$

Derivation for string s = ababbba:

 $S\Rightarrow CDa\Rightarrow aDDa\Rightarrow abDa\Rightarrow abSba\Rightarrow abCDba\Rightarrow abaDDba\Rightarrow ababDba\Rightarrow ababbba$

- (1) Construct a parse tree based on the given CFG and derivation
- (2) Apply the constructed parse tree to split string "ababbba".
- 2. Prove that $L = \{ a^n b^n c^n \mid n \ge 0 \}$ is non-CFL. (using Pumping Lemma)

Solution

1.

ullet Split string $s \in A$ into

$$s = \underbrace{ab}_{u} \underbrace{a}_{v} \underbrace{b}_{x} \underbrace{bb}_{y} \underbrace{a}_{z}$$

using repeated variable D.

 In depth-first traversal of tree

- u = ab is before D-D subtree
- v = a is before second D within D-D subtree
- $\mathbf{x} = b$ is what second D eventually becomes
- y = bb is after second D within D-D subtree
- z = a is after D-D subtree

Solution

2.

Recall Pumping Lemma for CFL

Let L be a context-free language. Then there exists an integer $p \ge 1$, called the pumping length, such that the following holds: Every string s in L, with $|s| \ge p$, can be written as s = uvxyz, such that

- 1. $|vy| \ge 1$ (i.e., v and y are not both empty),
- 2. $|vxy| \le p$, and
- 3. $uv^ixy^iz \in L$, for all $i \ge 0$.

Step 1. Suppose we could construct some CFG G for L

$$S \rightarrow CC \mid BC \mid a$$

$$B \rightarrow CS \mid b$$

$$C \rightarrow SB \mid c$$

Step 2. Set string s = aabbcc

$$S \Rightarrow CC \Rightarrow SBC \Rightarrow SCSC \Rightarrow SSBSC \Rightarrow SSBBCC \Rightarrow asBBCC \Rightarrow aabBCC \Rightarrow aabbcC \Rightarrow aabbcC \Rightarrow aabbcC \Rightarrow aabbcC$$

Solution

Step 3. Parse tree and splitting

Taking B as the repeated variable, get $s = uv^i xy^i z = a(a)^i b(bc)^i c$

Step 4. Contradiction

Satisfies property 1 and 2 of Pumping Lemma, but does not satisfy property 3: $a(a)^i \ b(bc)^i \ c \not\in L$

