question (1)

Основные алгебраические структуры: группы, кольца, поля (определение). Композиция отображений, ассоциативность композиции. Инъективные и сюръективные отображения. Биективные отображения. Обратное отображение.

Группа

Группа (G, \cdot) - это множество G с бинарной операцией \cdot , которая удовлетворяет:

- 1. Ассоциативность: $(a \cdot b) \cdot c = a \cdot (b \cdot c) \quad \forall a,\ b,\ c \in G$
- 2. Существование нейтрального элемента: $\exists e \in G : e \cdot a = a \cdot e = a, \quad \forall a \in G$ Называется единицей группы G и обозначается e
- 3. Существование обратного элемента: $\forall a \in G \ \exists b \in G : a \cdot b = b \cdot a = e$ Если операция \cdot коммутативна $(a \cdot b = b \cdot a)$, то группа называется коммутативной или абелевой группой.

Если группа G состоит из конечного числа элементов, то она называется конечной группой, а число элементов в ней - порядком группы.

Кольцо

Кольцо $(R, +, \cdot)$ - это множество R с двумя бинарными операциями + (сложение), \cdot (умножение), которые удовлетворяют:

- 1.~(R,~+) абелева группа (аддитивная группа кольца), то есть сложение ассоциативно, существует нейтральный элемент 0 (нулевой элемент), и каждый элемент $a \in R$ имеет обратный элемент -a.
- 2. Умножение ассоциативно: $(a \cdot b) \cdot c = a \cdot (b \cdot c) \quad \forall a, \ b, \ c \in R$
- 3. Дистрибутивность умножения относительно сложения: $(a\cdot (b+c)=a\cdot b+a\cdot c)$ и $((a+b)\cdot c=a\cdot c+b\cdot c) \quad \forall a,\ b,\ c\in R$

Если умножение коммутативно, то кольцо называется коммутативным. Если в R существует нейтральный элемент 1 относительно умножения, то кольцо называется кольцом с единицей.

Поле

Поле $(F, +, \cdot)$ - это коммутативное кольцо с единицей, где каждый ненулевой элемент обратим относительно умножения:

- 1. (F, +) абелева группа.
- 2. $(F \setminus \{0\}, \cdot)$ абелева группа. Эта группа называется мультипликативной группой поля.
- 3. Дистрибутивность умножения относительно сложения выполняется.

Композиция отображений, ассоциативность композиции

Пусть $f:A \to B, \ g:B \to C$ - два отображения. Тогда композиция $g\circ f:A \to C$ определяется как:

$$(g\circ f)(x)=g(f(x))\quad orall x\in A$$

Ассоциативность композиции:

$$h:U o V, \quad g:V o W, \quad f:W o T \ f(gh)=(fg)h$$

Доказательство: в соответствии с формальным определением равенства отображений нужно просто сравнить значения отображений $f(gh): U \to T$ и $(fg)h: U \to T$ в произвольном элементе $u \in U$:

$$(f(gh))(u) = f((ghu)) = f(g(hu)) = (fg)(hu) = ((fg)h)u$$

Инъективное отображение

$$orall x,y\in A\hookrightarrow (x
eq y\implies f(x)
eq f(y))$$

Сюръективное отображение

$$\forall y \in B \ \exists x \in A, f(x) = y$$

Биективное отображение

f – биективное отображение (взаимно однозначное), если f – инъекция и сюръекция.

Обратное отображение

Если $f:A\to B$ - биекция, то существует $f^{-1}:B\to A$ называемое обратным, такое что:

$$f^{-1}(f(x)) = x \quad orall x \in A \ f^{-1}(f(y)) = y \quad orall y \in B$$

Обратное отображение существует только для биекций.

question (2)

Комплексные числа. Сложение и умножение комплексных чисел. Алгебраическая запись комплексного числа. Поле комплексных чисел. Сопряжение комплексных чисел.

Комплексные числа

Это числа вида z=a+bi, где $a,\ b\in R$, а i - мнимая единица, такая, что $i^2=-1.$

$$a$$
 — вещественная часть числа z : $\mathrm{Re}(z)=a$ b — мнимая часть числа z : $\mathrm{Im}(z)=b$

Сложение комплексных чисел

Для двух комплексных чисел $z_1=a_1+b_1i$ и $z_2=a_2+b_2i$ сумма определяется как:

$$z_1 + z_2 = (a_1 + a_2) + (b_1 + b_2)i$$

Умножение комплексных чисел

Для двух комплексных чисел $z_1=a_1+b_1i$ и $z_2=a_2+b_2i$ произведение определяется как:

$$z_1\cdot z_2=(a_1a_2-b_1b_2)+(a_1b_2+a_2b_1)i$$

Поле комплексных чисел

Множество \mathbb{C} образует поле, то есть оно замкнуто относительно сложения, вычитания, умножения и деления и удовлетворяет следующим свойствам:

- 1. Сложение:
 - 1. Ассоциативность: $(z_1+z_2)+z_3=z_1+(z_2+z_3)$
 - 2. Коммутативность: $z_1 + z_2 = z_2 + z_1$
 - 3. Существование нуля: z + 0 = z
 - 4. Существование противоположного элемента: z + (-z) = 0
- 2. Умножение:
 - 1. Ассоциативность: $(z_1 \cdot z_2) \cdot z_3 = z_1 \cdot (z_2 \cdot z_3)$
 - 2. Коммутативность: $z_1 \cdot z_2 = z_2 \cdot z_1$
 - 3. Существование единицы: $z \cdot 1 = z$
 - 4. Существование обратного элемента $\neq 0$: $z \cdot z^{-1} = 1$
- 3. Дистрибутивность:

$$z_1 \cdot (z_2 + z_3) = z_1 \cdot z_2 + z_1 \cdot z_3$$

4. Деление комплексных чисел выполняется через умножение на сопряженное число. Например, если z=a+bi и $w=c+di\neq 0$, то:

$$rac{z}{w}=rac{(a+bi)(c-di)}{c^2+d^2}$$

Сопряжение комплексного числа

Сопряжение числа z=a+bi обозначается как $\overline{z}=a-bi$ Свойства:

$$1.\overline{\overline{z}} = z$$

$$2. \overline{z_1 + z_2} = \overline{z_1} + \overline{z_2}$$

$$3.\,\overline{z_1\cdot z_2}=\overline{z_1}\cdot\overline{z_2}$$

$$4. \overline{z^{-1}} = (\overline{z})^{-1}$$

5.
$$z \cdot \overline{z} = |z|^2$$
, $|z| = \sqrt{a^2 + b^2}$

question (3)

Модуль и аргумент комплексного числа. Тригонометрическая форма комплексного числа. Умножение комплексных чисел в тригонометрической форме. Формула Муавра.

Модуль комплексного числа

$$|z|=\sqrt{a^2+b^2}$$

где a = Re(z), b = Im(z). Геометрически, модуль — это расстояние от точки, соответствующей z на комплексной плоскости, до начала координат.

Аргумент комплексного числа

Аргументом называют угол φ между вектором соответствующим числу z, и положительным направлением вещественной оси Ox.

Обозначается $\arg(z)$.

$$arphi = \arctan\left(rac{b}{a}
ight)$$

Тригонометрическая форма комплексного числа

$$z = |z| \cdot (\cos{(arphi)} + i\sin{(arphi)})$$

Доказательство:

Модуль $|z| = \sqrt{a^2 + b^2}$ определяет длину вектора. Косинус и синус определяются как:

$$\cos\left(arphi
ight)=rac{a}{|z|},~~\sin\left(arphi
ight)=rac{b}{|z|}$$
 Тогда $z=a+bi=|z|\cdot\left(rac{a}{|z|}+irac{b}{|z|}
ight)=|z|\cdot\left(\cos\left(arphi
ight)+i\sin\left(arphi
ight)
ight)$

Умножение комплексных чисел в тригонометрической форме

$$z_1 \cdot z_2 = |z_1| \cdot |z_2| \cdot \left(\cos\left(arphi_1 + arphi_2
ight) + i\sin\left(arphi_1 + arphi_2
ight)
ight)$$

Формула Муавра.

Формула Муавра применяется для возведения комплексного числа в степень и вытекает из умножения комплексных чисел. Если $z = |z|(\cos{(\varphi)} + i\sin{(\varphi)})$, то для $\forall n \in \mathbb{Z}$:

$$z^n = |z|^n \cdot \left(\cos\left(narphi
ight) + i\sin\left(narphi
ight)
ight)$$

question (4)

Корни n-ой степени из комплексного числа. Корни из единицы. Группа корней n-ой степени из 1. Первообразные корни n-ой степени из 1.

Корни n-ой степени из комплексного числа

Корни n-ой степени из числа $z=r(\cos{(\varphi)}+i\sin{(\varphi)})$ это решение уравнения $w^n=z$. Каждое такое решение w_k записывается в виде:

$$w_k = \sqrt[n]{r} \cdot \left(\cos\left(rac{arphi + 2\pi k}{n}
ight) + i\sin\left(rac{arphi + 2\pi k}{n}
ight)
ight), \;\;\;\; k = 0, \; 1, \; 2, \; \ldots, \; n-1$$

Корни из единицы

$$w^n=1 \ 1=\cos\left(0
ight)+i\sin\left(0
ight) \ w_k=\cos\left(rac{2\pi k}{n}
ight)+i\sin\left(rac{2\pi k}{n}
ight), \quad k=0,\ 1,\ 2\ldots,\ n-1$$

Группа корней n-ой степени из 1

$$W = \{w_0, w_1, w_2, \ldots, w_{n-1}\},\$$

где
$$w_k = \cos\left(\frac{2\pi k}{n}\right) + i\sin\left(\frac{2\pi k}{n}\right)$$
 образует группу относительно умножения.

Свойства:

- 1. замкнутость (произведение двух корней w_k и w_j также является корнем n-ой степени из 1)
- 2. ассоциативность (следует из свойств умножения комплексных чисел.)
- 3. существует нейтральный элемент ($w_0 = 1$)
- 4. обратимость (для w_k это w_{n-k}).

Первообразные корни n-ой степени из 1

Первообразный корень n-ой степени из 1 - это такой корень $\zeta=w_k$, для которого его степени $\zeta^1,\ \zeta^2,\ \dots,\ \zeta^n$ дают все n различных корней n-ой степени из 1.

Этот корень является первообразным тогда и только тогда, когда наибольший общий делитель k и n равен 1.

Формально:
$$\zeta^k
eq 1$$
 для $1 \leq k < n,$ но $\zeta^n = 1.$

Доказательство: пусть
$$\zeta^m=1$$
 для $1\leq m < n$. Тогда m должно делить n , чтобы $\frac{2\pi km}{n}$

соответствовало полному обороту $2\pi l,\ l\in\mathbb{Z}.$ Если $HO\!\mathcal{J}(k,\ n)=1,$ то $\zeta^m\neq 1$ так как k не делится на $\frac{n}{m}.$ Следовательно все степени ζ^k дают различные n корней, а $\zeta=1.$

question (5)

Перестановки. Число перестановок п элементов. Инверсия. Четность. Транспозиция и четность. Список перестановок, в котором каждая последующая получается одной транспозицией предыдущей.

Перестановки

Перестановка множества из n элементов - это упорядочение этих элементов, полученное перестановкой этих мест. Формально, перестановка множества $S=\{1,\ 2,\ \dots,\ n\}$ - это биекция $\sigma:S\to S$.

Число перестановок п элементов

Общее число перестановок n-элементного множества равно n!.

Инверсия

Инверсия в перестановке $\sigma=[\sigma(1),\ \sigma(2),\ \dots,\ \sigma(n)]$ - это пара индексов, таких что $i< j,\ \sigma(i)>\sigma(j).$

Пример: $\sigma = [3, 1, 2]$

Инверсии:
$$(3>1),\ (3>2),\ (1\not>2)$$

Общее число $I(\sigma)=2$

Четность перестановки

Четность перестановки определяется количеством инверсий: если $I(\sigma)$ четно, то перестановка четная, и если нет, то нечетная.

Транспозиция и четность

Транспозиция - это перестановка, которая меняет местами два элемента, оставляя остальные элементы неизменными, другими словами это цикл длины 2. Обозначается как $(i\ j)$, где $i,\ j$ - индексы переставляемых элементов.

Свойства четности транспозиции:

- 1. Транспозиция $(i\ j)$ всегда меняет четность перестановки (если перестановка была четной, она становится нечетной и наоборот).
- 2. Любая перестановка может быть представлена как произведение транспозиций. Если число транспозиций нечетное, перестановка нечетная и наоборот.

Список перестановок, в котором каждая последующая получается одной транспозицией предыдущей

Такой список можно получить, используя **обход перестановок в соседях** (например, алгоритм Джонсона-Троттера). Идея в том, чтобы менять только два соседних элемента в каждой следующей перестановке.

Для n=3:

$$[1,\ 2,\ 3] \rightarrow [2,\ 1,\ 3] \rightarrow [2,\ 3,\ 1] \rightarrow [3,\ 2,\ 1] \rightarrow [3,\ 1,\ 2] \rightarrow [1,\ 3,\ 2] \rightarrow [1,\ 2,\ 3]$$

Для n=2:

$$[1,\ 2] o [2,\ 1] o [1,\ 2]$$

Пусть утверждение верно для n=k. То есть существует список перестановок, где каждая следующая получается одной транспозицией.

Для n=k+1, добавляя (k+1) в перестановки n=k слева направо и обратно, мы получаем новый список перестановок.

Поскольку добавление (k+1) в разные позиции не нарушает порядок соседних перестановок, каждая следующая отличается одной транспозицией.

question (6)

Группа подстановок n-й степени. Четность подстановки. Транспозиции. Разложение подстановки в произведение транспозиций и четность перестановки.

Группа подстановок n-й степени

Группа подстановок S_n (или группа перестановок) — это множество всех возможных перестановок n-элементного множества $X = \{1, 2, \dots, n\}$, наделённое операцией композиции подстановок.

- 1. Элементы группы S_n это биекции $\sigma: X \to X$, то есть перестановки множества X.
- 2. Композиция подстановок σ и τ ($\sigma \circ \tau$) определяется как последовательное применение: $(\sigma \circ \tau)(x) = \sigma(\tau(x))$.
- 3. Нейтральным элементом в S_n является тождественная подстановка e(x)=x для всех $x\in X$.
- 4. Для каждой подстановки σ существует обратная подстановка σ^{-1} , такая, что $\sigma \circ \sigma^{-1} = e$.

Число элементов группы S_n равно n!.

Пример: Для n=3, множество $\{1,2,3\}$ имеет 3!=6 перестановок:

$$S_3 = \{ id, (1\ 2), (1\ 3), (2\ 3), (1\ 2\ 3), (1\ 3\ 2) \}.$$

Чётность подстановки

Чётность подстановки определяется через количество **инверсий**. Подстановка σ является:

- Чётной, если число инверсий в ней чётно.
- Нечётной, если число инверсий нечётно.

Инверсии

Инверсия — это пара (i,j), где i < j, но $\sigma(i) > \sigma(j)$.

Пример: Для подстановки $\sigma = [3, 1, 2],$

- Инверсии: (3 > 1), (3 > 2),
- Число инверсий $I(\sigma) = 2$, значит, подстановка чётная.

Связь с разложением в транспозиции

Чётность подстановки также определяется количеством транспозиций в её разложении:

- Если подстановка разложена в чётное число транспозиций, то она чётная.
- Если в нечётное число транспозиций нечётная.

Транспозиции

Транспозиция — это подстановка, меняющая местами два элемента, оставляя остальные элементы на своих местах. Обозначается $(i\ j)$, где $i,j\in\{1,2,\ldots,n\}$.

Пример: Транспозиция (1 3) при применении к X = [1, 2, 3] даст X' = [3, 2, 1].

Свойства транспозиций

- 1. Каждая транспозиция является **нечётной** подстановкой (одно инвертирование увеличивает число инверсий на 1).
- 2. Любая перестановка может быть разложена в произведение транспозиций.

Разложение подстановки в произведение транспозиций и чётность подстановки

Теорема. Любая подстановка $\sigma \in S_n$ может быть представлена в виде произведения транспозиций:

$$\sigma=(i_1\ j_1)(i_2\ j_2)\dots(i_k\ j_k).$$

Свойства

- 1. Чётность числа транспозиций в разложении определяет чётность подстановки:
 - Если k чётное, то подстановка чётная.
 - Если k нечётное, то подстановка нечётная.
- 2. Разложение в транспозиции **не уникально**, но чётность количества транспозиций всегда остаётся неизменной.

Пусть дана подстановка $\sigma=(1\ 3\ 2)$ для множества $\{1,2,3\}$ (циклическая перестановка). Разложим её в транспозиции:

$$\sigma = (1\ 2)(1\ 3).$$

Здесь 2 транспозиции (чётное число), значит, подстановка σ чётная.

Группа чётных подстановок (A_n)

Множество всех чётных подстановок из S_n образует подгруппу, называемую группой чётных подстановок A_n (или альтернирующей группой). Число элементов в A_n равно $\frac{n!}{2}$.

question (7)

Циклы. Четность цикла. Разложение подстановки в произведение независимых циклов. Декремент подстановки и четность.

Циклы

Цикл — это подстановка, которая переставляет элементы внутри некоторого подмножества, а все остальные элементы оставляет на месте. Цикл длины k записывается как $(i_1\ i_2\ \dots\ i_k)$ и означает, что элемент i_1 переходит в i_2,i_2 — в i_3,\dots , а i_k переходит в i_1 .

Независимые циклы

Циклы называются **независимыми**, если их множества индексов не пересекаются. Например, $(1\ 3)$ и $(2\ 4)$ — независимые циклы, так как ни один элемент из $\{1,3\}$ не принадлежит $\{2,4\}$.

Чётность цикла

Теорема. Чётность цикла $(i_1 \ i_2 \ \dots \ i_k)$ определяется длиной цикла:

- Если длина k чётна, то цикл **нечётный**.
- Если длина k нечётна, то цикл **чётный**.

Это связано с тем, что цикл длины k можно разложить в произведение k-1 транспозиций:

$$(i_1 i_2 \ldots i_k) = (i_1 i_2)(i_1 i_3) \ldots (i_1 i_k).$$

Количество транспозиций k-1 определяет чётность цикла.

Пример

- 1. Цикл (1 2 3) имеет длину 3 (нечётное), поэтому он чётный.
- 2. Цикл (1 2 3 4) имеет длину 4 (чётное), поэтому он **нечётный**.

Разложение подстановки в произведение независимых циклов

Любая подстановка $\sigma \in S_n$ может быть представлена как произведение независимых циклов. Это разложение единственно с точностью до порядка циклов.

Пример

Подстановка $\sigma = [3, 1, 2, 4]$ для множества $\{1, 2, 3, 4\}$ раскладывается в циклы:

$$\begin{pmatrix} 1 & 2 & 3 & 4 \\ 3 & 1 & 2 & 4 \end{pmatrix}$$

- 1. Начинаем с 1: $1 \to 3, \ 3 \to 2, \ 2 \to 1,$ получаем цикл (1 3 2).
- 2. Остался элемент 4, он переходит в себя: (4). Итоговое разложение:

$$\sigma = (1\ 3\ 2)(4).$$

Декремент подстановки и чётность

Декремент подстановки σ — это минимальное число транспозиций, в которые можно разложить σ . Обозначим декремент как $d(\sigma)$.

Связь декремента и чётности

Чётность декремента определяет чётность подстановки:

- Если $d(\sigma)$ чётно, подстановка чётная.
- Если $d(\sigma)$ нечётно, подстановка нечётная.

Пример

Пусть $\sigma = (1\ 3\ 2)(4)$, разложим её в транспозиции:

$$(1\ 3\ 2) = (1\ 2)(1\ 3),$$

а (4) тождественно. Итоговое разложение:

$$\sigma = (1\ 2)(1\ 3),$$

декремент $d(\sigma) = 2$ (чётный), значит, σ — чётная подстановка.

question (8)

Определение определителя n-го порядка. Основные свойства определителя. Элементарные преобразования.

Определение определителя n-го порядка

Определитель матрицы $A=(a_{ij})$ **порядка** n — это число, вычисляемое по следующей формуле:

$$\det(A) = \sum_{\sigma \in S_n} \operatorname{sgn}(\sigma) \prod_{i=1}^n a_{i,\sigma(i)},$$

где:

- S_n множество всех перестановок σ элементов $\{1,2,\ldots,n\}$,
- $\mathrm{sgn}(\sigma)$ знак (чётность) перестановки σ : +1 для чётных перестановок и -1 для нечётных,
- $\prod_{i=1}^{n} a_{i,\sigma(i)}$ произведение элементов, соответствующих данной перестановке.

Пример для n=2

Для матрицы $A = \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix}$ определитель равен:

$$\det(A) = a_{11}a_{22} - a_{12}a_{21}.$$

Основные свойства определителя

1. Линейность по строке (или столбцу):

Если одна строка (или столбец) представлена как сумма двух строк (или столбцов), то определитель раскладывается как сумма определителей.

2. Частный случай линейности:

Если умножить одну строку (или столбец) на число λ , то определитель умножится на λ .

3. Симметрия и знакопеременность:

При перестановке двух строк (или столбцов) знак определителя меняется на противоположный:

$$\det(A') = -\det(A),$$

где A' — матрица, полученная перестановкой строк матрицы A.

4. Определитель нулевой строки (или столбца):

Если хотя бы одна строка (или столбец) матрицы состоит из нулей, то $\det(A) = 0$.

5. Одинаковые строки (или столбцы):

Если две строки (или столбца) матрицы совпадают, то $\det(A) = 0$.

6. Треугольная матрица:

Определитель треугольной матрицы (верхней или нижней) равен произведению её диагональных элементов:

$$\det(A) = a_{11} \cdot a_{22} \cdots a_{nn}.$$

7. Умножение матриц:

Определитель произведения матриц равен произведению их определителей:

$$\det(AB) = \det(A) \cdot \det(B).$$

8. Обратимая матрица:

Матрица A обратима тогда и только тогда, когда $\det(A) \neq 0$.

Элементарные преобразования строк (или столбцов) и их влияние на определитель

Три типа элементарных преобразований:

1. Перестановка двух строк (или столбцов):

Меняет знак определителя:

$$\det(A') = -\det(A).$$

2. Умножение строки (или столбца) на число λ :

Определитель умножается на λ :

$$\det(A') = \lambda \cdot \det(A).$$

3. Добавление к одной строке (или столбцу) другой строки (или столбца), умноженной на число:

Определитель не изменяется:

$$\det(A') = \det(A).$$

Вычисление определителя методом элементарных преобразований

Для упрощения вычислений определителя применяются элементарные преобразования строк (или столбцов) с приведением матрицы к треугольному виду. Это делается следующим образом:

- 1. Используя преобразования строк, обнуляем элементы ниже главной диагонали.
- Определитель треугольной матрицы вычисляется как произведение элементов на главной диагонали.

Пример:

Для матрицы
$$A=egin{pmatrix} 2 & 3 & 1 \ 4 & 7 & 2 \ 6 & 18 & 5 \end{pmatrix}$$
:

1. Приводим к треугольному виду.

2. Вычисляем $\det(A)$ как произведение диагональных элементов.

question (9)

Миноры и алгебраические дополнения. Разложение определителя по строке (столбцу). Теорема Лапласа.

Миноры и алгебраические дополнения

Минором элемента a_{ij} **матрицы** A **порядка** n называется определитель матрицы порядка n-1, полученной из A удалением i-й строки и j-го столбца. Минор обозначается как:

$$M_{ij} = \det(A_{ij}),$$

где A_{ij} — матрица, полученная из A вычеркиванием i-й строки и j-го столбца.

Алгебраическое дополнение

Алгебраическим дополнением элемента a_{ij} называется число:

$$A_{ij}=(-1)^{i+j}M_{ij}, \quad$$

где M_{ij} — минор, а знак $(-1)^{i+j}$ учитывает положение элемента в матрице.

Разложение определителя по строке (столбцу)

Формула разложения

Определитель матрицы $A=(a_{ij})$ порядка n можно вычислить, разложив его по элементам любой строки или столбца. Формула разложения по i-й строке:

$$\det(A) = \sum_{j=1}^n (-1)^{i+j} M_{ij} \cdot a_{ij}.$$

Пример

Рассмотрим матрицу A:

$$A = egin{pmatrix} 1 & 2 & 3 \ 4 & 5 & 6 \ 7 & 8 & 9 \end{pmatrix}.$$

 $\operatorname{Paзложим} \det(A)$ по первой строке:

- 1. Элементы первой строки: $a_{11} = 1$, $a_{12} = 2$, $a_{13} = 3$.
- 2. Миноры:

$$M_{11} = \det egin{pmatrix} 5 & 6 \ 8 & 9 \end{pmatrix} = 5 \cdot 9 - 6 \cdot 8 = -3,$$

$$M_{12} = \det egin{pmatrix} 4 & 6 \ 7 & 9 \end{pmatrix} = 4 \cdot 9 - 6 \cdot 7 = -6,$$

$$M_{13}=\detegin{pmatrix} 4&5\7&8 \end{pmatrix}=4\cdot8-5\cdot7=-3.$$

3. Алгебраические дополнения:

$$A_{11} = (-1)^{1+1} \cdot M_{11} = -3, \quad A_{12} = (-1)^{1+2} \cdot M_{12} = 6, \quad A_{13} = (-1)^{1+3} \cdot M_{13} = -3.$$

4. Разложение:

$$\det(A) = 1 \cdot (-3) + 2 \cdot 6 + 3 \cdot (-3) = -3 + 12 - 9 = 0.$$

Теорема Лапласа

Определитель матрицы A порядка n можно выразить через миноры и алгебраические дополнения элементов любой строки или столбца. Теорема утверждает, что для любого i:

$$\det(A) = \sum_{j=1}^n a_{ij} A_{ij},$$

и для любого j:

$$\det(A) = \sum_{i=1}^n a_{ij} A_{ij}.$$

Свойство

Теорема Лапласа позволяет вычислить определитель по любой строке или столбцу, что может упростить вычисления, если строка или столбец содержит много нулей.

question (10)

Правило Крамера.

Правило Крамера

Правило Крамера — это метод нахождения решения системы линейных уравнений вида:

$$A\vec{x} = \vec{b}$$
.

где:

- A квадратная матрица порядка n с ненулевым определителем $\det(A) \neq 0$,
- $\vec{x}=(x_1,x_2,\ldots,x_n)^T$ вектор неизвестных,
- $ec{b}=(b_1,b_2,\ldots,b_n)^T$ вектор свободных членов.

Решение для x_i вычисляется как:

$$x_i = rac{\det(A_i)}{\det(A)},$$

где A_i — это матрица, полученная заменой i-го столбца матрицы A на вектор \vec{b} .

Формула

Для матрицы A и системы уравнений:

$$egin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \ a_{21} & a_{22} & \dots & a_{2n} \ dots & dots & \ddots & dots \ a_{n1} & a_{n2} & \dots & a_{nn} \end{pmatrix} egin{pmatrix} x_1 \ x_2 \ dots \ x_n \end{pmatrix} = egin{pmatrix} b_1 \ b_2 \ dots \ b_n \end{pmatrix},$$

решения:

$$x_i = rac{\det(A_i)}{\det(A)}, \quad i = 1, 2, \dots, n,$$

где A_i — это матрица:

$$A_i = egin{pmatrix} a_{11} & \dots & b_1 & \dots & a_{1n} \ a_{21} & \dots & b_2 & \dots & a_{2n} \ dots & \ddots & dots & \ddots & dots \ a_{n1} & \dots & b_n & \dots & a_{nn} \end{pmatrix}.$$

 $(B\ A_i\ i$ -й столбец заменён на $\vec{b}).$

Условия применения

- 1. Матрица A должна быть квадратной $(n \times n)$.
- 2. Определитель $\det(A)$ не должен быть равен нулю $(\det(A) \neq 0)$.

Пример

Решим систему:

$$egin{cases} x_1+2x_2+3x_3=1,\ 4x_1+5x_2+6x_3=2,\ 7x_1+8x_2+10x_3=3. \end{cases}$$

1. Матрица *A*:

$$A = egin{pmatrix} 1 & 2 & 3 \ 4 & 5 & 6 \ 7 & 8 & 10 \end{pmatrix}, \quad ec{b} = egin{pmatrix} 1 \ 2 \ 3 \end{pmatrix}.$$

2. Вычислим $\det(A)$:

$$\det(A) = 1 \cdot egin{bmatrix} 5 & 6 \ 8 & 10 \end{bmatrix} - 2 \cdot egin{bmatrix} 4 & 6 \ 7 & 10 \end{bmatrix} + 3 \cdot egin{bmatrix} 4 & 5 \ 7 & 8 \end{bmatrix}.$$

Расчёт:

$$\det(A) = 1 \cdot (5 \cdot 10 - 6 \cdot 8) - 2 \cdot (4 \cdot 10 - 6 \cdot 7) + 3 \cdot (4 \cdot 8 - 5 \cdot 7),$$

$$\det(A) = 1 \cdot (-10) - 2 \cdot (-2) + 3 \cdot (-3) = -10 + 4 - 9 = -15.$$

3. Вычислим $\det(A_1)$ (заменяем 1-й столбец на \vec{b}):

$$A_1 = egin{pmatrix} 1 & 2 & 3 \ 2 & 5 & 6 \ 3 & 8 & 10 \end{pmatrix}.$$
 $\det(A_1) = 1 \cdot igg| egin{pmatrix} 5 & 6 \ 8 & 10 \end{matrix} igg| - 2 \cdot igg| egin{pmatrix} 2 & 6 \ 3 & 10 \end{matrix} igg| + 3 \cdot igg| egin{pmatrix} 3 & 8 \end{matrix} igg|.$

Расчёт:

$$\det(A_1) = 1 \cdot (-10) - 2 \cdot (-2) + 3 \cdot (-1) = -10 + 4 - 3 = -9.$$

4. Аналогично находим $\det(A_2)$ и $\det(A_3)$:

$$\det(A_2) = 0, \quad \det(A_3) = 15.$$

5. Решения:

$$x_1 = rac{\det(A_1)}{\det(A)} = rac{-9}{-15} = rac{3}{5}, \quad x_2 = rac{\det(A_2)}{\det(A)} = rac{0}{-15} = 0, \quad x_3 = rac{\det(A_3)}{\det(A)} = rac{15}{-15} = -1.$$

Итоговое решение:

$$ec{x} = egin{pmatrix} rac{3}{5} \ 0 \ -1 \end{pmatrix}.$$

question (11)

Алгебра матриц. Свойства операций сложения и умножения матриц (ассоциативность умножения без док-ва).

Алгебра матриц

Матрица — это таблица чисел, организованная в виде прямоугольника с m строками и n столбцами:

$$A = egin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \ a_{21} & a_{22} & \dots & a_{2n} \ dots & dots & \ddots & dots \ a_{m1} & a_{m2} & \dots & a_{mn} \end{pmatrix}.$$

Матрица A называется матрицей размера $m \times n$, где a_{ij} — элемент матрицы на i-й строке и j-м столбие.

Сложение матриц

Сложение матриц возможно, если они имеют одинаковый размер $m \times n$. Пусть $A = (a_{ij})$ и $B = (b_{ij})$ — две матрицы размера $m \times n$. Тогда их сумма C = A + B определяется как:

$$c_{ij} = a_{ij} + b_{ij}, \quad orall i, j.$$

Умножение матрицы на скаляр

Если λ — скаляр, то умножение матрицы $A=(a_{ij})$ на λ даёт матрицу $\lambda A=(\lambda a_{ij})$, то есть:

$$(\lambda A)_{ij} = \lambda \cdot a_{ij}.$$

Умножение матриц

Умножение матриц возможно, если число столбцов первой матрицы совпадает с числом строк второй. Пусть A имеет размер $m \times k$, а B — размер $k \times n$. Их произведение C = AB будет матрицей размера $m \times n$, где элементы c_{ij} вычисляются по формуле:

$$c_{ij} = \sum_{r=1}^k a_{ir} b_{rj}.$$

Свойства сложения

1. Коммутативность:

Для любых двух матриц A, B одинакового размера $m \times n$:

$$A + B = B + A$$
.

Доказательство: По определению сложения матриц:

$$(A+B)_{ij} = a_{ij} + b_{ij}, \quad (B+A)_{ij} = b_{ij} + a_{ij}.$$

Поскольку сложение чисел коммутативно ($a_{ij}+b_{ij}=b_{ij}+a_{ij}$), то A+B=B+A.

2. Ассоциативность:

Для любых трёх матриц A, B, C одинакового размера $m \times n$:

$$(A + B) + C = A + (B + C).$$

Доказательство: По определению:

$$((A+B)+C)_{ij}=(a_{ij}+b_{ij})+c_{ij},\quad (A+(B+C))_{ij}=a_{ij}+(b_{ij}+c_{ij}).$$

Так как сложение чисел ассоциативно, $(a_{ij}+b_{ij})+c_{ij}=a_{ij}+(b_{ij}+c_{ij})$. Значит, (A+B)+C=A+(B+C).

3. Существование нулевой матрицы:

Существует нулевая матрица O размера $m \times n$, такая что:

$$A + O = A$$
.

Доказательство: Пусть $O=(0)_{ij}$, то есть $o_{ij}=0$ для всех i,j. Тогда:

$$(A+O)_{ij} = a_{ij} + o_{ij} = a_{ij} + 0 = a_{ij}.$$

Значит, A + O = A.

4. Существование противоположной матрицы:

Для каждой матрицы A существует матрица -A (такая, что $(-A)_{ij}=-a_{ij}$), и:

$$A + (-A) = O$$
.

Доказательство: По определению:

$$(A + (-A))_{ij} = a_{ij} + (-a_{ij}) = 0.$$

Значит, A + (-A) = O.

Свойства умножения

1. Ассоциативность умножения:

Для любых матриц A, B, C, где размеры подходят для произведения:

$$(AB)C = A(BC).$$

2. Дистрибутивность относительно сложения:

Для матриц A, B, C таких, что операции имеют смысл:

$$A(B+C) = AB + AC$$
, $(A+B)C = AC + BC$.

Доказательство:

Рассмотрим первую формулу A(B+C) = AB + AC.

Элемент матрицы (B+C) вычисляется как:

$$(B+C)_{ij} = b_{ij} + c_{ij}.$$

Элемент матрицы A(B+C):

$$(A(B+C))_{ij} = \sum_{r=1}^k a_{ir}(b_{rj}+c_{rj}).$$

По распределительному закону чисел:

$$\sum_{r=1}^k a_{ir}(b_{rj}+c_{rj}) = \sum_{r=1}^k a_{ir}b_{rj} + \sum_{r=1}^k a_{ir}c_{rj}.$$

Это элементы матриц AB и AC. Значит, A(B+C)=AB+AC. Аналогично доказывается (A+B)C=AC+BC.

3. Сочетание с умножением на скаляр:

Для любого $\lambda \in \mathbb{R}$ и матриц A, B:

$$\lambda(AB) = (\lambda A)B = A(\lambda B).$$

Доказательство: Рассмотрим элемент $(\lambda(AB))_{ij}$:

$$(\lambda(AB))_{ij} = \lambda \cdot \sum_{r=1}^k a_{ir} b_{rj}.$$

Переносим λ к одному из множителей:

$$\lambda \cdot \sum_{r=1}^k a_{ir} b_{rj} = \sum_{r=1}^k (\lambda a_{ir}) b_{rj} = \sum_{r=1}^k a_{ir} (\lambda b_{rj}).$$

Значит, $\lambda(AB) = (\lambda A)B = A(\lambda B)$.

4. Не коммутативность умножения:

В общем случае:

$$AB \neq BA$$
.

Пример: Пусть
$$A=\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$
 и $B=\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$. Тогда:

$$AB = egin{pmatrix} 0 & 1 \ 1 & 0 \end{pmatrix}, \quad BA = egin{pmatrix} 0 & 1 \ 1 & 0 \end{pmatrix}.$$

В этом случае AB = BA, но в общем случае порядок имеет значение.

question (12)

Теорема об умножении определителей.

Теорема об умножении определителей

Для квадратных матриц A и B одинакового порядка n справедливо следующее:

$$det(AB) = det(A) \cdot det(B)$$
.

Доказательство (без использования теоремы Лапласа)

1. Определитель матрицы A через строки: Пусть A — матрица размера $n \times n$, определитель которой записывается как:

$$\det(A) = \sum_{\sigma \in S_n} \operatorname{sgn}(\sigma) \prod_{i=1}^n a_{i,\sigma(i)},$$

где S_n — множество всех перестановок порядка n, а $\mathrm{sgn}(\sigma)$ — знак перестановки.

2. **Произведение матриц** AB: Элементы произведения C = AB вычисляются как:

$$c_{ij} = \sum_{k=1}^n a_{ik} b_{kj}.$$

Тогда определитель $\det(AB)$ записывается как:

$$\det(AB) = \sum_{\sigma \in S_n} \operatorname{sgn}(\sigma) \prod_{i=1}^n c_{i,\sigma(i)}.$$

3. Подстановка выражения для $c_{i,\sigma(i)}$: Подставим $c_{i,\sigma(i)} = \sum_{k=1}^n a_{ik} b_{k,\sigma(i)}$:

$$\det(AB) = \sum_{\sigma \in S_n} \operatorname{sgn}(\sigma) \prod_{i=1}^n \left(\sum_{k=1}^n a_{ik} b_{k,\sigma(i)}
ight).$$

4. Раскрытие произведения: Используем свойства суммы и произведения:

$$\prod_{i=1}^n \left(\sum_{k=1}^n a_{ik} b_{k,\sigma(i)}
ight)$$

преобразуется в сумму по всем возможным n-упорядоченным индексам k_1, k_2, \ldots, k_n :

$$\sum_{k_1,k_2,\ldots,k_n}\prod_{i=1}^n a_{i,k_i}b_{k_i,\sigma(i)}.$$

5. **Объединение перестановок**: Замечаем, что для каждого набора индексов k_1, k_2, \dots, k_n подстановка $\tau \in S_n$ задаёт отображение $k_i \mapsto i$. Тогда $\sigma \circ \tau$ — это композиция перестановок,

и выражение сводится к:

$$\det(AB) = \sum_{ au \in S_n} \operatorname{sgn}(au) \det(A) \cdot \det(B).$$

6. Итог: Учитывая свойства перестановок и ассоциативность определителя, получаем:

$$det(AB) = det(A) \cdot det(B)$$
.

Пример

Пусть $A=egin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}$ и $B=egin{pmatrix} 2 & 0 \\ 1 & 2 \end{pmatrix}$. Найдём $\det(A),\det(B)$ и $\det(AB).$

1. Определим det(A):

$$\det(A) = 1 \cdot 4 - 2 \cdot 3 = 4 - 6 = -2.$$

2. Определим det(B):

$$\det(B) = 2 \cdot 2 - 0 \cdot 1 = 4.$$

3. Найдём *AB*:

$$AB = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix} \begin{pmatrix} 2 & 0 \\ 1 & 2 \end{pmatrix} = \begin{pmatrix} 4 & 4 \\ 10 & 8 \end{pmatrix}.$$

4. Определим $\det(AB)$:

$$\det(AB) = 4 \cdot 8 - 4 \cdot 10 = 32 - 40 = -8.$$

5. Проверим:

$$\det(A) \cdot \det(B) = (-2) \cdot 4 = -8.$$

Итак, $det(AB) = det(A) \cdot det(B)$.

question (13)

Обратная матрица.

Обратная матрица

Для квадратной матрицы A порядка n (размера $n \times n$) существует **обратная матрица** A^{-1} , если выполняется:

$$A \cdot A^{-1} = A^{-1} \cdot A = I_n$$

где I_n — единичная матрица размера $n \times n$.

Если такая матрица A^{-1} существует, то матрица A называется **невырожденной** (или **обратимой**). Если $\det(A)=0$, матрица A называется **вырожденной** и обратной матрицы не существует.

Формула для обратной матрицы

Обратная матрица A^{-1} для матрицы A выражается как:

$$A^{-1} = rac{1}{\det(A)} \cdot \operatorname{adj}(A),$$

где:

- $1. \det(A)$ определитель матрицы A,
- 2. adj(A) присоединённая (или сопряжённая) матрица, элементы которой являются алгебраическими дополнениями элементов A.

Построение обратной матрицы

- 1. Вычислить определитель $\det(A)$. Если $\det(A)=0$, матрица необратима, и A^{-1} не существует.
- 2. **Найти миноры и алгебраические дополнения.** Для каждого элемента a_{ij} вычислить минор M_{ij} и алгебраическое дополнение:

$$A_{ij}=(-1)^{i+j}M_{ij}.$$

- 3. Построить матрицу алгебраических дополнений.
- 4. **Транспонировать матрицу алгебраических дополнений.** Получаем adj(A).
- 5. **Вычислить обратную матрицу.** Используя формулу:

$$A^{-1} = rac{1}{\det(A)} \cdot \operatorname{adj}(A).$$

Свойства обратной матрицы

1. Уникальность:

Для любой обратимой матрицы A существует единственная матрица A^{-1} , такая что $A\cdot A^{-1}=I_n.$

2. Обратная от произведения:

Для обратимых матриц A и B:

$$(AB)^{-1} = B^{-1}A^{-1}.$$

3. Обратная от транспонированной матрицы:

$$(A^T)^{-1} = (A^{-1})^T$$
.

4. Обратимость диагональной матрицы:

Диагональная матрица $D=\mathrm{diag}(d_1,d_2,\ldots,d_n)$ обратима, если $d_i\neq 0$ для всех i, и обратная:

$$D^{-1}=\operatorname{diag}igg(rac{1}{d_1},rac{1}{d_2},\ldots,rac{1}{d_n}igg).$$

question (14)

Системы линейных алгебраических уравнений. Эквивалентные системы лин. алгебраических уравнений. Элементарные преобразования. Метод Гаусса.

Системы линейных алгебраических уравнений

Система линейных алгебраических уравнений (СЛАУ) состоит из m уравнений с n неизвестными, имеет вид:

$$egin{aligned} a_{11}x_1+a_{12}x_2+\cdots+a_{1n}x_n&=b_1,\ a_{21}x_1+a_{22}x_2+\cdots+a_{2n}x_n&=b_2,\ &dots\ a_{m1}x_1+a_{m2}x_2+\cdots+a_{mn}x_n&=b_m, \end{aligned}$$

где: a_{ij} — коэффициенты системы, b_i — свободные члены, x_j — неизвестные.

Система может быть представлена в матричной форме:

$$A\vec{x} = \vec{b}$$
,

где:

- A матрица коэффициентов $(m \times n)$,
- \vec{x} вектор неизвестных $(n \times 1)$,
- $oldsymbol{ec{b}}$ вектор свободных членов (m imes 1).=

Эквивалентные системы линейных уравнений

Две системы линейных уравнений называются **эквивалентными**, если они имеют одинаковое множество решений.

Примеры эквивалентных преобразований:

- 1. Умножение (или деление) уравнения на ненулевое число.
- 2. Перестановка уравнений.
- 3. Добавление к одному уравнению другого, умноженного на число.

Элементарные преобразования системы

Для упрощения системы линейных уравнений и приведения её к более удобному виду, используют три типа элементарных преобразований строк (уравнений):

- 1. Перестановка строк.
- 2. Умножение строки на ненулевое число.
- 3. Добавление к одной строке другой строки, умноженной на число.

Эти преобразования не изменяют множество решений системы, что позволяет искать решения эквивалентной системы.

Метод Гаусса

Метод Гаусса — это алгоритм решения СЛАУ путём приведения матрицы коэффициентов к **ступенчатому виду** с помощью элементарных преобразований.

Алгоритм метода Гаусса

1. Записать СЛАУ в виде расширенной матрицы.

Расширенная матрица включает матрицу коэффициентов A и вектор свободных членов \vec{b} :

$$[A \mid ec{b}] = egin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} & \mid & b_1 \ a_{21} & a_{22} & \dots & a_{2n} & \mid & b_2 \ dots & dots & \ddots & dots & \mid & dots \ a_{m1} & a_{m2} & \dots & a_{mn} & \mid & b_m \end{pmatrix}$$

2. Привести матрицу к ступенчатому виду.

Выполняются элементарные преобразования строк, чтобы:

- Каждый ведущий элемент строки (первый ненулевой элемент слева) был равен 1.
- Все элементы ниже ведущих в каждом столбце были равны 0.

3. Обратный ход (если нужно).

Если требуется найти единственное решение, приводим матрицу к **упрощённому ступенчатому виду**, чтобы все элементы выше ведущих в каждом столбце стали равны 0.

4. Записать решение.

Решение может быть:

- **Единственным**: если ранг матрицы A равен числу неизвестных.
- **Бесконечным** (множество решений): если ранг A меньше числа неизвестных.
- **Отсутствующим**: если ранг матрицы коэффициентов A меньше ранга расширенной матрицы $[A \mid \vec{b}].$

Пример

$$egin{cases} x_1+2x_2+x_3=4,\ 2x_1+3x_2+3x_3=9,\ x_1+x_2+2x_3=5 \end{cases}$$

1. Запишем расширенную матрицу:

$$[A \mid ec{b}] = egin{pmatrix} 1 & 2 & 1 & | & 4 \ 2 & 3 & 3 & | & 9 \ 1 & 1 & 2 & | & 5 \end{pmatrix}$$

2. Приводим к ступенчатому виду:

• Переставим строки так, чтобы в первой строке ведущий элемент был максимален (по модулю).

• Вычтем первую строку, умноженную на 2, из второй строки, и первую строку из третьей:

$$\begin{pmatrix} 1 & 2 & 1 & | & 4 \\ 0 & -1 & 1 & | & 1 \\ 0 & -1 & 1 & | & 1 \end{pmatrix}$$

• Сложим вторую и третью строки:

$$\begin{pmatrix} 1 & 2 & 1 & | & 4 \\ 0 & -1 & 1 & | & 1 \\ 0 & 0 & 0 & | & 0 \end{pmatrix}$$

3. Записываем решения:

- Вторая строка даёт уравнение: $-x_2+x_3=1$ или $x_2=x_3-1$.
- Первая строка: $x_1 + 2x_2 + x_3 = 4$. Подставляем x_2 :

$$x_1 + 2(x_3 - 1) + x_3 = 4 \implies x_1 + 3x_3 = 6 \implies x_1 = 6 - 3x_3.$$

4. Общее решение:

Пусть $x_3 = t$ (параметр). Тогда:

$$x_1 = 6 - 3t, \quad x_2 = t - 1, \quad x_3 = t.$$

Общее решение:

$$ec{x} = egin{pmatrix} 6 - 3t \ t - 1 \ t \end{pmatrix}, \quad t \in \mathbb{R}.$$

question (15)

Векторное пространство над полем, примеры. Линейно зависимые и линейно независимые системы векторов. Линейная оболочка системы векторов. Лемма о линейной зависимости.

Векторное пространство над полем

Векторное пространство V **над полем** F — это множество, элементы которого называются **векторами**, с двумя операциями:

- 1. Сложение векторов: $\vec{u} + \vec{v} \in V$ для любых $\vec{u}, \vec{v} \in V$.
- 2. Умножение вектора на скаляр: $\lambda \vec{v} \in V$ для любого $\vec{v} \in V$ и $\lambda \in F$.

Эти операции удовлетворяют следующим аксиомам:

- 1. Сложение:
 - Ассоциативность: $(\vec{u} + \vec{v}) + \vec{w} = \vec{u} + (\vec{v} + \vec{w})$.
 - Коммутативность: $\vec{u} + \vec{v} = \vec{v} + \vec{u}$.
 - Существование нуля: $\exists \vec{0} \in V \ \forall \vec{v} \in V \ (\vec{v} + \vec{0} = \vec{v}).$
 - Обратимость: $\forall \vec{v} \in V \; \exists -\vec{v} \in V \; (\vec{v} + (-\vec{v}) = \vec{0}).$
- 2. Умножение на скаляр:
 - Дистрибутивность: $\lambda(\vec{u}+\vec{v})=\lambda\vec{u}+\lambda\vec{v}, (\lambda+\mu)\vec{v}=\lambda\vec{v}+\mu\vec{v}.$
 - Ассоциативность: $(\lambda \mu) \vec{v} = \lambda (\mu \vec{v})$.
 - Умножение на единицу: $1 \cdot \vec{v} = \vec{v}$ для любого $\vec{v} \in V$.

Пример

Множество F^n (векторы из n элементов):

- Поле: F.
- Элементы: $\vec{v}=(v_1,v_2,\ldots,v_n)$, где $v_i\in F$.
- Операции: покоординатное сложение и умножение на скаляр.

Линейно зависимые и линейно независимые системы векторов

Система векторов $\{\vec{v}_1, \vec{v}_2, \dots, \vec{v}_k\}$ в векторном пространстве V называется **линейно зависимой**, если существует нетривиальная линейная комбинация, равная нулю:

$$\lambda_1 \vec{v}_1 + \lambda_2 \vec{v}_2 + \cdots + \lambda_k \vec{v}_k = \vec{0},$$

где хотя бы один из коэффициентов $\lambda_i
eq 0$.

Если такой нетривиальной комбинации не существует, то система называется линейно независимой.

Примеры

- 1. Векторы $\vec{v}_1=(1,0,0), \vec{v}_2=(0,1,0), \vec{v}_3=(0,0,1)$ в F^3 линейно независимы, так как никакой вектор нельзя выразить через линейную комбинацию других.
- 2. Векторы $ec{v}_1=(1,2),$ $ec{v}_2=(2,4)$ в F^2 линейно зависимы, так как $ec{v}_2=2ec{v}_1.$

Линейная оболочка системы векторов

Линейная оболочка системы векторов $\{\vec{v}_1,\vec{v}_2,\dots,\vec{v}_k\}$ — это множество всех линейных комбинаций этих векторов:

$$ext{span}\{ec{v}_1,ec{v}_2,\ldots,ec{v}_k\} = igg\{\sum_{i=1}^k \lambda_i ec{v}_i \; igg| \; \lambda_i \in Figg\}.$$

Свойства

- 1. Линейная оболочка всегда является подпространством V.
- 2. Если система векторов линейно зависима, то их линейная оболочка совпадает с линейной оболочкой некоторого подмножества.

Лемма о линейной зависимости

Если система векторов $\{\vec{v}_1, \vec{v}_2, \dots, \vec{v}_k\}$ в пространстве V линейно зависима, то один из векторов можно выразить как линейную комбинацию остальных:

$$ec{v}_i = \sum_{j
eq i} \lambda_j ec{v}_j.$$

Доказательство

1. Поскольку система линейно зависима, существует нетривиальная комбинация:

$$\lambda_1 ec{v}_1 + \lambda_2 ec{v}_2 + \dots + \lambda_k ec{v}_k = ec{0},$$

где хотя бы одно $\lambda_i \neq 0$.

2. Пусть $\lambda_i \neq 0$. Выразим \vec{v}_i :

$$ec{v}_i = -rac{1}{\lambda_i} \sum_{j
eq i} \lambda_j ec{v}_j.$$

3. Это доказывает, что \vec{v}_i является линейной комбинацией остальных.

question (16)

Подпространство. Базис подпространства. Размерность. Базис системы векторов. Ранг системы векторов.

Подпространство

Множество W называется **подпространством** векторного пространства V над полем F, если $W \subseteq V$ и W само является векторным пространством с теми же операциями сложения и умножения на скаляр.

Условия для подпространства

Множество W является подпространством, если выполнены следующие свойства:

- 1. **Нулевой вектор принадлежит** $W: \vec{0} \in W$.
- 2. Замкнутость относительно сложения: Если $\vec{u}, \vec{v} \in W$, то $\vec{u} + \vec{v} \in W$.
- 3. Замкнутость относительно умножения на скаляр: Если $\vec{u} \in W$ и $\lambda \in F$, то $\lambda \vec{u} \in W$.

Базис подпространства

Базис подпространства W — это линейно независимая система векторов $\{\vec{v}_1, \vec{v}_2, \dots, \vec{v}_k\}$, которая порождает W, то есть:

$$W = \operatorname{span}\{\vec{v}_1, \vec{v}_2, \dots, \vec{v}_k\}.$$

Свойства базиса

- 1. Векторы базиса линейно независимы.
- 2. Любой вектор $\vec{w} \in W$ представляется в виде линейной комбинации базисных векторов:

$$ec{w} = \lambda_1 ec{v}_1 + \lambda_2 ec{v}_2 + \dots + \lambda_k ec{v}_k, \quad \lambda_i \in F.$$

3. Базис не является уникальным, но число векторов в базисе одинаково для всех базисов.

Размерность

Размерность подпространства W — это число векторов в базисе W. Обозначается как $\dim(W)$.

Свойства размерности

- $1. \dim(W) \leq \dim(V)$, где V пространство, а $W \subseteq V$.
- 2. Если $\dim(W) = \dim(V)$, то W = V.

Базис системы векторов

Система векторов $\{\vec{v}_1, \vec{v}_2, \dots, \vec{v}_m\}$ называется **базисом линейной оболочки этой системы**, если:

- $1. \ \{ \vec{v}_1, \vec{v}_2, \dots, \vec{v}_m \}$ линейно независимы.
- 2. span $\{\vec{v}_1, \vec{v}_2, \dots, \vec{v}_m\}$ = span $\{$ все векторы системы $\}$.

Ранг системы векторов

Ранг системы векторов $\{\vec{v}_1, \vec{v}_2, \dots, \vec{v}_k\}$ — это размерность линейной оболочки этой системы:

$$\operatorname{rank}\{\vec{v}_1,\vec{v}_2,\ldots,\vec{v}_k\} = \dim \left(\operatorname{span}\{\vec{v}_1,\vec{v}_2,\ldots,\vec{v}_k\}\right).$$

Свойства ранга

- 1. Ранг системы векторов равен числу линейно независимых векторов в системе.
- 2. Если ранг системы векторов равен числу векторов в ней, то система линейно независима.
- 3. Если ранг меньше числа векторов, то система линейно зависима.

Примеры

Пример подпространства

Векторное пространство $V=F^3$ (векторы (x,y,z)) имеет подпространство $W=\{(x,y,0)\mid x,y\in F\}.$ Проверим условия подпространства:

- 1. $(0,0,0) \in W$ (нулевой вектор принадлежит).
- $(x_1,y_1,0)+(x_2,y_2,0)=(x_1+x_2,y_1+y_2,0)\in W.$
- 3. $\lambda(x, y, 0) = (\lambda x, \lambda y, 0) \in W$.

W — подпространство.

Пример базиса и ранга

Система векторов $\vec{v}_1=(1,0,0), \vec{v}_2=(0,1,0), \vec{v}_3=(1,1,0)$ в F^3 :

1. Проверим линейную зависимость:

$$\lambda_1(1,0,0) + \lambda_2(0,1,0) + \lambda_3(1,1,0) = (0,0,0).$$

Это даёт $\lambda_1+\lambda_3=0,\,\lambda_2+\lambda_3=0.$ Решение: $\lambda_1=-\lambda_3,\,\lambda_2=-\lambda_3,\,\lambda_3$ — произвольное. Значит, векторы линейно зависимы.

2. Линейно независимая подсистема: $\{\vec{v}_1, \vec{v}_2\}$ — базис. Ранг системы: 2.

question (17)

Ранг матрицы. Теорема о ранге матрицы. Метод окаймляющих миноров. Необходимое и достаточное условие равенства нулю определителя n-го порядка.

Ранг матрицы

Ранг матрицы A — это наибольший порядок ненулевого минора матрицы. Ранг обозначается как $\operatorname{rank}(A)$.

- Если все миноры порядка k > r равны нулю, а хотя бы один минор порядка r отличен от нуля, то $\operatorname{rank}(A) = r$.
- Если матрица состоит только из нулей, то её ранг равен 0.

Теорема о ранге матрицы

Ранг матрицы A равен числу линейно независимых строк и числу линейно независимых столбцов:

$$\operatorname{rank}(A) = \dim(\operatorname{span}(\operatorname{строки} A)) = \dim(\operatorname{span}(\operatorname{столбцы} A)).$$

Следствие

- $1. \operatorname{rank}(A) \leq \min(m, n)$, где $m \times n$ размер матрицы A.
- 2. Ранг не изменяется при транспонировании: $\operatorname{rank}(A) = \operatorname{rank}(A^T)$.

Метод окаймляющих миноров

Метод окаймляющих миноров используется для нахождения ранга матрицы. Он заключается в последовательной проверке миноров матрицы на ненулевое значение.

Пример

Для матрицы
$$A = \begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{pmatrix}$$
 :

1. Рассмотрим определитель матрицы 3×3 :

$$\det(A) = 1 \cdot (5 \cdot 9 - 6 \cdot 8) - 2 \cdot (4 \cdot 9 - 6 \cdot 7) + 3 \cdot (4 \cdot 8 - 5 \cdot 7) = 0.$$

Значит, rank(A) < 3.

2. Рассмотрим миноры порядка 2:

$$\det \begin{pmatrix} 1 & 2 \\ 4 & 5 \end{pmatrix} = 1 \cdot 5 - 2 \cdot 4 = -3.$$

Необходимое и достаточное условие равенства нулю определителя n-го порядка

Формулировка

Определитель матрицы A порядка n равен нулю, если и только если её строки (или столбцы) линейно зависимы.

Доказательство (необходимость):

- 1. Если строки (или столбцы) линейно зависимы, то хотя бы одна строка выражается как линейная комбинация других.
- 2. При вычислении определителя такая линейная зависимость приводит к равенству $\det(A) = 0$.

Доказательство (достаточность):

- 1. Если $\det(A) = 0$, то все миноры порядка n равны нулю.
- 2. Это означает, что строки (или столбцы) не могут быть линейно независимыми, иначе определитель был бы ненулевым.

question (18)

Критерий совместности системы линейных алгебраических уравнений (теорема Кронекера-Капелли).

Теорема Кронекера-Капелли

Система линейных алгебраических уравнений (СЛАУ):

$$A\vec{x} = \vec{b}$$
,

где A — матрица коэффициентов, \vec{x} — вектор неизвестных, \vec{b} — вектор свободных членов, совместна (имеет хотя бы одно решение) тогда и только тогда, когда:

$$\mathrm{rank}(A) = \mathrm{rank}([A \mid \vec{b}]),$$

где $[A\mid \vec{b}]$ — расширенная матрица системы, полученная добавлением столбца свободных членов \vec{b} к матрице A.

Объяснение теоремы

- 1. Матрица коэффициентов A: включает только коэффициенты при неизвестных.
- 2. **Расширенная матрица** $[A \mid \vec{b}]$: включает и коэффициенты, и свободные члены.

Если $\operatorname{rank}(A) \neq \operatorname{rank}([A \mid \vec{b}])$, то столбец \vec{b} не лежит в линейной оболочке столбцов A, поэтому система несовместна.

Последствия теоремы

- 1. Если $\operatorname{rank}(A) = \operatorname{rank}([A \mid \vec{b}]) = r$:
 - **Единственное решение**, если r = n (число неизвестных).
 - Бесконечно много решений, если r < n.
- 2. Если $\mathrm{rank}(A) \neq \mathrm{rank}([A \mid \vec{b}])$, система несовместна (нет решений).

Пример

Рассмотрим СЛАУ:

$$\begin{cases} x_1 + x_2 + x_3 = 1, \\ x_1 + 2x_2 + 3x_3 = 2, \\ x_1 + 3x_2 + 4x_3 = 4. \end{cases}$$

1. Матрица коэффициентов:

$$A = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 2 & 3 \\ 1 & 3 & 4 \end{pmatrix}$$

2. Расширенная матрица:

$$[A \mid ec{b}] = egin{pmatrix} 1 & 1 & 1 & | & 1 \ 1 & 2 & 3 & | & 2 \ 1 & 3 & 4 & | & 4 \end{pmatrix}$$

3. Вычислим ранг A:

$$\det(A) = egin{array}{ccc|c} 1 & 1 & 1 \ 1 & 2 & 3 \ 1 & 3 & 4 \ \end{array} = 1(2 \cdot 4 - 3 \cdot 3) - 1(1 \cdot 4 - 3 \cdot 1) + 1(1 \cdot 3 - 2 \cdot 1) = -1.$$

Ранг A=3.

- 4. Вычислим ранг $[A\mid \vec{b}]$: Уберём строки для проверки совместности. Получаем тот же результат: $\mathrm{rank}([A\mid \vec{b}])=3.$
- 5. Поскольку ${\rm rank}(A) = {\rm rank}([A \mid \vec{b}]) = 3$ и это равно числу неизвестных, система имеет единственное решение.

question (19)

Связь между решениями однородной и неоднородной систем линейных алгебраических уравнений. Однородные системы. Фундаментальная система решений.

Однородная система линейных уравнений

Определение

Однородной называется система линейных уравнений, у которой все свободные члены равны нулю:

$$A\vec{x} = \vec{0}$$
.

где A — матрица коэффициентов, \vec{x} — вектор неизвестных, $\vec{0}$ — нулевой вектор.

Свойства решений однородной системы

- 1. Нулевой вектор $\vec{x} = \vec{0}$ всегда является решением (тривиальное решение).
- 2. Если $\operatorname{rank}(A) = r$ и число неизвестных n, то размерность пространства решений однородной системы равна n-r.
 - Если r = n, то система имеет только тривиальное решение.
 - Если r < n, то система имеет бесконечно много решений.

Неоднородная система линейных уравнений

Определение

Неоднородная система имеет вид:

$$A\vec{x} = \vec{b},$$

где $ec{b}
eq ec{0}$.

Связь между решениями однородной и неоднородной систем

Теорема. Пусть \vec{x}_p — частное решение неоднородной системы $A\vec{x}=\vec{b},$ а \vec{x}_h — общее решение однородной системы $A\vec{x}=\vec{0}.$ Тогда:

1. Общее решение неоднородной системы имеет вид:

$$ec{x}=ec{x}_p+ec{x}_h,$$

где \vec{x}_h пробегает все решения однородной системы.

2. Геометрически: решение неоднородной системы — это сдвинутое подпространство, параллельное пространству решений однородной системы.

Фундаментальная система решений

Фундаментальная система решений однородной системы $A\vec{x}=\vec{0}$ — это линейно независимая система векторов $\{\vec{v}_1,\vec{v}_2,\ldots,\vec{v}_k\}$, которая образует базис пространства решений однородной системы.

Любое решение однородной системы представляется в виде:

$$\vec{x}_h = \lambda_1 \vec{v}_1 + \lambda_2 \vec{v}_2 + \cdots + \lambda_k \vec{v}_k,$$

где $\lambda_i \in F$ — произвольные коэффициенты.

Пример

Однородная система

Рассмотрим систему:

$$x_1 + 2x_2 + x_3 = 0, \ 2x_1 + 4x_2 + 3x_3 = 0$$

1. Матрица коэффициентов:

$$A=egin{pmatrix}1&2&1\2&4&3\end{pmatrix}.$$

2. Приведём A к ступенчатому виду:

$$\begin{pmatrix} 1 & 2 & 1 \\ 0 & 0 & 1 \end{pmatrix}.$$

Это соответствует системе:

$$x_1 + 2x_2 + x_3 = 0,$$

 $x_3 = 0$

3. Решения:

$$x_3=0, \ x_2=t, \ x_1=-2t.$$

Общее решение:

$$ec{x}_h = t egin{pmatrix} -2 \ 1 \ 0 \end{pmatrix}.$$

Неоднородная система

Пусть:

$$x_1 + 2x_2 + x_3 = 1,$$

 $2x_1 + 4x_2 + 3x_3 = 2.$

1. Решение частной системы (подставляем $x_3=0$):

$$x_1+2x_2=1,\quad x_1=1,\ x_2=0.$$

Частное решение:

$$ec{x}_p = egin{pmatrix} 1 \ 0 \ 0 \end{pmatrix}.$$

2. Общее решение неоднородной системы:

$$ec{x}=ec{x}_p+ec{x}_h=egin{pmatrix}1\0\0\end{pmatrix}+tegin{pmatrix}-2\1\0\end{pmatrix}.$$

question (20)

Многочлены с коэффициентами из кольца. Кольцо многочленов. Степень многочлена. Кольцо многочленов над полем: степень произведения многочленов, отсутствие делителей нуля. Деление с остатком в кольце многочленов над полем.

Многочлены с коэффициентами из кольца

Многочлен с коэффициентами из кольца R — это выражение вида:

$$P(x) = a_0 + a_1 x + a_2 x^2 + \dots + a_n x^n,$$

где:

- $a_i \in R$ коэффициенты многочлена,
- x переменная,
- $n \ge 0$ степень многочлена.

Кольцо многочленов

Кольцо многочленов R[x] — это множество всех многочленов с коэффициентами из кольца R, наделённое двумя операциями:

1. Сложение многочленов:

$$(P+Q)(x) = P(x) + Q(x).$$

Коэффициенты складываются покомпонентно.

2. Умножение многочленов:

$$(P\cdot Q)(x)=\sum_{i=0}^n\sum_{j=0}^m a_ib_jx^{i+j},$$

где
$$P(x) = \sum_{i=0}^n a_i x^i$$
 и $Q(x) = \sum_{j=0}^m b_j x^j.$

Свойства кольца многочленов

- 1. Если R коммутативное кольцо, то R[x] также коммутативно.
- 2. Если R содержит единицу, то в R[x] также есть единица (многочлен 1).
- 3. Кольцо R[x] не является полем, даже если R поле (поскольку многочлен не обязательно имеет обратный).

Степень многочлена

Степень многочлена P(x) — это наибольший индекс n, при котором коэффициент $a_n \neq 0$. Обозначается $\deg(P)$.

Свойства степени

- 1. $deg(P+Q) \le max(deg(P), deg(Q))$.
- $2. \deg(P \cdot Q) = \deg(P) + \deg(Q)$ (если R не содержит делителей нуля).
- $3.\deg(c\cdot P)=\deg(P)$ для c
 eq 0, где $c\in R$.

Кольцо многочленов над полем

Если R = F — поле, то F[x] обладает особыми свойствами.

Степень произведения многочленов

Для многочленов P(x) и Q(x) из F[x]:

$$\deg(P\cdot Q) = \deg(P) + \deg(Q),$$

если $P(x) \neq 0$ и $Q(x) \neq 0$.

Отсутствие делителей нуля

В кольце F[x] отсутствуют делители нуля:

$$P(x)\cdot Q(x)=0\implies P(x)=0$$
 или $Q(x)=0.$

Деление с остатком

Для многочленов P(x) и Q(x) из F[x], где $Q(x) \neq 0$, существует единственная пара многочленов D(x) (частное) и R(x) (остаток), таких что:

$$P(x) = Q(x) \cdot D(x) + R(x),$$

где $\deg(R) < \deg(Q)$ или R(x) = 0.

Пример деления с остатком

Рассмотрим $P(x) = x^3 + 2x^2 + 4$ и Q(x) = x + 1 в поле \mathbb{R} .

1. Шаг 1 (разделим старший член):

$$\frac{x^3}{x} = x^2.$$

Умножаем Q(x) на x^2 :

$$x^2\cdot(x+1)=x^3+x^2.$$

Вычитаем:

$$(x^3 + 2x^2 + 4) - (x^3 + x^2) = x^2 + 4.$$

2. Шаг 2 (следующий член):

$$\frac{x^2}{x} = x.$$

Умножаем Q(x) на x:

$$x\cdot (x+1)=x^2+x.$$

Вычитаем:

$$(x^2+4)-(x^2+x)=4-x.$$

3. Шаг 3 (остаток):

$$\frac{4-x}{x}$$
 нельзя разделить (степень меньше $Q(x)$).

Итог:

$$P(x)=Q(x)\cdot(x^2+x)+(4-x).$$

question (21)

Свойства делимости в кольце. Наибольший общий делитель многочленов. Алгоритм Евклида. Выражение наибольшего общего делителя многочленов f и g через f и g.

Свойства делимости в кольце

Пусть R — кольцо, $a,b \in R$. Говорят, что элемент a делит элемент b ($a \mid b$), если существует элемент $c \in R$, такой что:

$$b = a \cdot c$$
.

Свойства делимости

1. Отношение делимости транзитивно:

Если $a \mid b$ и $b \mid c$, то $a \mid c$.

- 2. **Если** $a \mid b$ и $a \mid c$, то $a \mid (\lambda b + \mu c)$, где $\lambda, \mu \in R$.
- 3. Делимость в кольце многочленов:

Пусть $f(x),g(x)\in R[x]$ (где R — поле). Тогда $f(x)\mid g(x)$, если существует многочлен $g(x)\in R[x]$, такой что:

$$q(x) = f(x) \cdot q(x)$$
.

4. Делимость и степень многочлена:

Если $f(x) \mid g(x)$, то $\deg(f) \leq \deg(g)$.

Наибольший общий делитель (НОД) многочленов

Пусть $f(x), g(x) \in F[x]$ (где F — поле). **Наибольший общий делитель (НОД)** этих многочленов — это многочлен d(x), удовлетворяющий:

- $1.\ d(x)\mid f(x)$ и $d(x)\mid g(x)$ (делитель f(x) и g(x)),
- 2. Если $h(x) \mid f(x)$ и $h(x) \mid g(x)$, то $h(x) \mid d(x)$.

Свойства НОД

- 1. НОД определён с точностью до умножения на ненулевой скаляр.
- 2. $\deg(d(x)) \leq \min(\deg(f(x)), \deg(g(x))).$
- 3. Если $f(x) \mid g(x)$, то gcd(f(x), g(x)) = f(x).

Алгоритм Евклида для нахождения НОД многочленов

Для нахождения $\gcd(f(x),g(x))$ выполняем следующие шаги:

1. Разделим f(x) на g(x) с остатком:

$$f(x) = g(x) \cdot q_1(x) + r_1(x), \quad \deg(r_1) < \deg(g(x)).$$

- 2. Если $r_1(x) = 0$, то gcd(f(x), g(x)) = g(x).
- 3. Если $r_1(x) \neq 0$, продолжаем:

$$g(x) = r_1(x) \cdot q_2(x) + r_2(x), \quad \deg(r_2) < \deg(r_1(x)).$$

4. Повторяем процесс, пока остаток не станет равным 0.

НОД — это последний ненулевой остаток.

Пример

Найдём $\gcd(f(x),g(x))$ для $f(x)=x^3-2x^2+x-2$ и $g(x)=x^2-1$.

1. Разделим f(x) на g(x):

$$f(x) = (x^2 - 1) \cdot (x - 2) + (x - 2).$$

Остаток $r_1(x) = x - 2$.

2. Разделим g(x) на $r_1(x)$:

$$g(x) = (x-2) \cdot (x+1) + 0.$$

Остаток $r_2(x) = 0$.

Следовательно, gcd(f(x), g(x)) = x - 2.

Выражение НОД через f(x) и g(x)

НОД d(x) многочленов f(x) и g(x) можно представить в виде линейной комбинации:

$$d(x) = u(x) \cdot f(x) + v(x) \cdot g(x),$$

где $u(x), v(x) \in F[x].$

Алгоритм получения линейной комбинации

- 1. Используем алгоритм Евклида для нахождения НОД.
- 2. В процессе деления с остатком выражаем каждый остаток как линейную комбинацию f(x) и g(x).
- 3. Последний ненулевой остаток это НОД, уже выраженный как линейная комбинация.

Пример

Рассмотрим $f(x) = x^3 - 2x^2 + x - 2$ и $g(x) = x^2 - 1$.

- 1. Ранее мы нашли gcd(f(x), g(x)) = x 2.
- 2. Распишем:

$$x-2 = f(x) - (x-2) \cdot g(x).$$

3. Следовательно:

 $\gcd(f(x),g(x))=(1)\cdot f(x)+(-g(x))\cdot g(x).$

question (22)

Взаимно простые многочлены. Свойства взаимно простых многочленов.

Определение

Взаимно простые многочлены.

Многочлены f(x) и g(x) называются взаимно простыми, если их НОД равен ненулевой константе.

Теорема 1

Для того чтобы многочлены f(x) и g(x) из F[x] были взаимно простыми, необходимо и достаточно, чтобы в F[x] существовали такие многочлены v(x) и u(x), что

$$v(x) \cdot f(x) + u(x) \cdot g(x) = 1.$$

Доказательство:

1. **Необходимость.** Пусть f(x) и g(x) — взаимно простые многочлены в кольце F[x]. Тогда существует $v(x), u(x) \in F[x]$, такие что

$$v(x) \cdot f(x) + u(x) \cdot g(x) = d(x),$$

где $d(x) = \mathrm{HOД}(f,g)$. Поскольку $\mathrm{HOД}(f,g) = 1$, то

$$v(x) \cdot f(x) + u(x) \cdot g(x) = 1.$$

2. Достаточность. Пусть d(x) = HOД(f,g). Поскольку $f(x), g(x) \in F[x]$, то каждое слагаемое в равенстве

$$v(x) \cdot f(x) + u(x) \cdot g(x) = 1$$

делится на d(x). Следовательно, 1 делится на d(x), и, значит, $d(x) \neq 0$.

Свойства

1. Если многочлен f(x) взаимно прост с каждым из многочленов g(x) и h(x), то он взаимно прост и с их произведением $g(x) \cdot h(x)$.

Доказательство. Поскольку f(x) прост с g(x) и h(x), то существуют такие многочлены $v(x), u(x), v_1(x), u_1(x)$, что

$$v(x) \cdot f(x) + u(x) \cdot g(x) = 1,$$

$$v_1(x)\cdot f(x)+u_1(x)\cdot h(x)=1.$$

Складывая эти равенства, получаем:

$$ig(v(x)\cdot v_1(x)+f(x)\cdot v(x)+u_1(x)\cdot h(x)+v_1(x)\cdot g(x)\cdot u(x)ig)\cdot f(x)+ig(u(x)\cdot u_1(x)ig)\cdot ig(g(x)\cdot h(x)$$

По теореме 1, f(x) и $g(x) \cdot h(x)$ взаимно просты.

2. Если произведение $f(x) \cdot g(x)$ делится на h(x), причем многочлены f(x) и h(x) взаимно просты, то g(x) делится на h(x).

Доказательство. Так как f(x) и h(x) взаимно просты, то по теореме 1 существуют такие многочлены v(x), u(x), что

$$v(x) \cdot f(x) + u(x) \cdot h(x) = 1.$$

Умножая обе части равенства на g(x), получаем:

$$g(x) \cdot v(x) \cdot f(x) + g(x) \cdot u(x) \cdot h(x) = g(x).$$

Поскольку первое и второе слагаемое в левой части делятся на h(x), то и g(x) делится на h(x).

3. Если f(x) делится на g(x) и на h(x), причем $\mathrm{HOД}(g,h)=1$, то f(x) делится на $g(x)\cdot h(x)$

Доказательство. Поскольку f(x) делится на g(x), существует q(x), такое что $f(x) = q(x) \cdot g(x)$. Также f(x) делится на h(x). Так как HOД(g,h) = 1, то по свойству 2 g(x) делится на h(x). Следовательно, f(x) делится на $g(x) \cdot h(x)$.

question (23)

Корни многочлена. Теорема Безу. Кратность корня. Критерий кратности корня. Количество корней многочлена с учетом кратностей.

Определение

Корень многочлена.

Элемент $c\in K$ называется корнем многочлена $f\in A[x]$, если f(c)=0. Также говорят, что c — корень уравнения f(x)=0.

Теорема Безу

Элемент $c \in A$ является корнем многочлена $f \in A[x]$ тогда и только тогда, когда (x-c) делит f в кольце A[x].

Доказательство:

При делении f на (x-c) в частном получаем многочлен q, а в остатке — r, где r — константа:

$$f = q(x - c) + r.$$

Подставляя x = c в обе части равенства, имеем:

$$f(c) = q(c - c) + r = r.$$

Если f(c) = 0, то r = 0, значит, (x - c) делит f.

Определение

Кратный корень.

Элемент $c\in A$ называется k-кратным корнем многочлена $f\in A[x]$, если f делится на $(x-c)^k$, но не делится на $(x-c)^{k+1}$.

Или, эквивалентно:

$$c \in A$$
 — корень кратности k тогда и только тогда, когда $f(x) = (x-c)^k g(x),$

где
$$HOД(x-c,g(x))=1.$$

Теорема

Корень кратности $k \geq 2$ многочлена f является корнем кратности k-1 многочлена f'. Простой корень многочлена f не является корнем многочлена f'.

Доказательство:

Пусть c — корень кратности k многочлена f:

$$f=q(x-c)^k,\quad q$$
 не делится на $(x-c).$

Тогда

$$f' = q'(x-c)^k + qk(x-c)^{k-1}.$$

Преобразуем:

$$f' = (q'(x-c) + qk)(x-c)^{k-1}.$$

Так как q'(x-c) делится на (x-c), но qk не делится на (x-c), то q'(x-c)+qk делится на (x-c). Таким образом, f' имеет корень c кратности k-1.

Теорема

Пусть кольцо K не содержит делителей нуля. Тогда любой многочлен $f \in K[x]$ степени n>0 имеет в кольце K не более n корней с учетом их кратностей.

Доказательство:

Пусть $f(x)=(x-\alpha_1)(x-\alpha_2)\dots(x-\alpha_s)g=(x-\beta_1)(x-\beta_2)\dots(x-\beta_t)h$, где $\alpha_1,\alpha_2,\dots,\alpha_s,\beta_1,\beta_2,\dots,\beta_t$ — элементы кольца K, причем $\alpha_i\neq\beta_j$ при $i\neq j$, а многочлены g и h не имеют корней в K.

Подставим $lpha_i$ в f(x). Так как $lpha_i$ — корень, то $f(lpha_i)=0$. Тогда:

$$f(lpha_i) = (lpha_i - lpha_1)(lpha_i - lpha_2)\dots(lpha_i - lpha_s)g(lpha_i).$$

Поскольку $\alpha_i - \alpha_i = 0$, хотя остальные множители $\neq 0$ (в K нет делителей нуля), получаем, что $g(\alpha_i) = 0$. Однако это противоречит тому, что g не имеет корней в K. Следовательно, количество различных корней $\alpha_1, \alpha_2, \ldots, \alpha_s$ ограничено степенью f(x).

Для кратных корней учитывается их кратность: если f(x) делится на $(x-\alpha)^k$, но не делится на $(x-\alpha)^{k+1}$, то α засчитывается k раз. Таким образом, общее количество корней с учетом кратностей не превышает n.

question (24)

Многочлены с комплексными коэффициентами: основная теорема алгебры комплексных чисел (без док-ва), разложение многочлена на линейные множители, формулы Виета, интерполяционный многочлен Лагранжа.

Теорема: Основная теорема алгебры

Любой многочлен $f \in \mathbb{C}[x]$ степени не меньше 1 имеет по крайней мере один комплексный корень.

Эта теорема утверждает полноту поля комплексных чисел: все корни любого многочлена с комплексными коэффициентами содержатся в \mathbb{C} .

Интерполяционный многочлен Лагранжа

Интерполяционный многочлен Лагранжа используется для нахождения многочлена минимальной степени, который проходит через заданное множество точек $(x_0, y_0), (x_1, y_1), \ldots, (x_n, y_n)$. Формула имеет вид:

$$f(x) = \sum_{j=0}^n y_j \cdot \prod_{egin{subarray}{c} i = 0 \ i
eq j}^n rac{x - x_i}{x_j - x_i}.$$

Злесь:

- x_i заданные значения аргумента.
- y_j значения функции в точках x_j .

Многочлен Лагранжа применяется в следующих задачах:

- 1. **Интерполяция**: нахождение значений функции в промежуточных точках между известными значениями.
- 2. **Численное интегрирование**: используется в методах квадратур для аппроксимации значений интегралов.
- 3. Обработка данных: применяется в аппроксимации и анализе числовых данных.

Разложение многочлена на линейные множители

Теорема: Всякий многочлен n-ой степени разлагается на n линейных множителей вида (x-a), где a — корни, и множитель, равный коэффициенту при x^n .

Доказательство:

Пусть f(x) — многочлен n-ой степени:

$$f(x) = A_0 x^n + A_1 x^{n-1} + \dots + A_n.$$

По "Основной теореме алгебры", f(x) имеет хотя бы один корень a_1 . Тогда, по теореме Безу:

$$f(x) = (x - a_1) \cdot f_1(x),$$

где $f_1(x)$ — многочлен степени n-1. Повторяя процесс, разложим $f_1(x)$:

$$f_1(x) = (x - a_2) \cdot f_2(x),$$

где $f_2(x)$ — многочлен степени n-2. После n шагов разложения получим:

$$f(x) = A_0(x - a_1)(x - a_2) \dots (x - a_n),$$

где A_0 — старший коэффициент, а a_1, a_2, \ldots, a_n — корни многочлена f(x).

Формулы Виета

Пусть f(x) — унитарный многочлен n-ой степени:

$$f(x) = x^n + a_1 x^{n-1} + a_2 x^{n-2} + \dots + a_n = (x-c_1)(x-c_2)\dots (x-c_n),$$

где c_1, c_2, \ldots, c_n — корни f(x).

Раскрывая скобки в правой части и группируя коэффициенты, получим:

$$a_1 = -(c_1 + c_2 + \dots + c_n), \ a_2 = c_1c_2 + c_1c_3 + \dots + c_{n-1}c_n, \ a_3 = -(c_1c_2c_3 + c_1c_2c_4 + \dots + c_{n-2}c_{n-1}c_n),$$

$$a_j = (-1)^j \cdot \sum_{1 \leq i_1 < i_2 < \dots < i_j \leq n} c_{i_1} c_{i_2} \dots c_{i_j},$$

$$a_n=(-1)^nc_1c_2\ldots c_n.$$

Если f(x) не является унитарным, т.е. его старший коэффициент $A_0 \neq 1$, то формулы Виета будут выражаться через отношение $\frac{a_j}{A_0}$.