Parallelforskydning af grafer.

Parallelforskydning

Vi kan parallelforskyde grafer for funktioner på to forskellige måder. Vi kan lægge et tal til funktionsforskriften for på denne måde at parallelforskyde grafen langs y-aksen. Og vi kan lægge et tal til x-værdien og parallelforskyde grafen for funktion langs x-aksen.

Sætning 1.1 (Parallelforskydning). Lad f være en funktion. Grafen for f kan parallelforskydes med b op langs y-aksen ved at lægge b til funktionsforskriften som

$$f(x) + b.$$

 $Grafen\ for\ f\ kan\ parallelforskydes\ med\ a\ til\ venstre\ langs\ x-aksen\ ved\ at\ lægge\ a\ til\ funktionsarqumentet\ som$

$$f(x+a)$$
.

En parallelforskydning både langs x-aksen og y-aksen kan altså skrives

$$f(x+a) + b.$$

Vi kan se en parallelforskydning langs y-aksen på Figur 2 og en parallelforskydning langs x-aksen på Figur 1.

Figur 1: Vandret parallelforskydning Figur 2: Lodret parallelforskydning (langs x-aksen). (langs y-aksen).

1.e

Eksempel 1.2. Vi betragter funktionen $f(x) = x^2$. Vi kan parallelforskyde f langs x-aksen og få

$$f(x+2) = (x+2)^2.$$

Vi kan også parallelforskyde langs y-aksen og få

$$f(x) + 3 = x^2 + 3.$$

Vi kan samle disse parallelforskydninger og få

$$f(x+2) + 3 = (x+2)^2 + 3.$$

Vi kan se disse funktioner tegnet på Figur 3.

Figur 3: Parallelforskydninger af grafen for funktionen $f(x) = x^2$.

Udfyld følgende tabel og skitser de fem grafer på koordinatsystemet.

x	$(x-2)^2$	$(x-1)^2$	x^2	$(x+1)^2$	$(x+2)^2$
$\overline{-4}$					
-3 -2					
-2					
-1					
0					
1					
2					
3					
4					

Kan du gennemskue, hvad der sker med grafen, hvis vi lægger et tal til x-værdien som det eksempelvis sker for $x^2 \to (x+1)^2$.

x	x^2	$x^{2} + 3$	$x^{2} + 6$
-4			
-3			
-2			
-1			
0			
1			
2			
3			
4			

Kan du gennemskue, hvad der sker med grafen, hvis vi lægger et tal til y-værdien, som det eksempelvis er tilfældet med $x^2+3\to x^2+6$?

- i) Parallelforskyd grafen for $f(x) = x^2$ langs x-aksen så den går gennem punktet (2,49).
- ii) Parallelforskyd grafen for $f(x) = x^2$ langs y-aksen, så den går gennem punktet (4,20).
- iii) Parallelforskyd grafen for f(x) = 10x 5 langs x-aksen, så den går gennem punktet (5, -5).
- iv) Parallelforskyd grafen for $f(x) = 2^x$ langs x-aksen, så den går gennem punktet (5,4)

Opgave 4

Opskriv forskriften for følgende grafer og parallelforskyd derefter en af graferne henholdsvis vandret og lodret, så de bliver kontinuerte (sammenhængene) funktioner.

I følgende koordinatsystem ses graferne for funktionerne $f:]-\infty,-1[\to\mathbb{R}$ og $g:[2,+\infty[\to\mathbb{R}$ givet ved

$$f(x) = -2x + 2,$$

$$g(x) = x^2 - 6x + 10.$$

Forskyd grafen for g, så f og g til sammen danner en kontinuert funktion. Tegn denne funktion i Maple og undersøg, om du har forskudt grafen korrekt.

Opgave 6

En funktion f siges at være lige, hvis det for alle $x \in Dm(f)$ gælder, at

$$f(x) = f(-x).$$

Modsat siges f at være ulige, hvis det gælder, at

$$f(x) = -f(-x).$$

- i) Afgør, om funktionerne $\cos(x)$ og $\sin(x)$ er ulige eller lige funktioner.
- ii) Parallelforskyd $\cos(x)$, så det bliver den omvendte funktionstype. Tegn eventuelt funktionen i GeoGebra og anvend en skyder.
- iii) Parallelforskyd $\sin(x)$, så det bliver den omvendte funktionstype. Tegn eventuelt funktionen i GeoGebra og anvend en skyder.