Key Concepts on Deep Neural Networks

1.	Which of the following is stored in the 'cache' during forward propagation for latter use in backward propagation?	1/1 point
	$@~~Z^{[l]}$	
	$\bigcirc w^{\scriptscriptstyle [l]}$	
	○ p ^(ℓ)	
	∠ ⁷ Expand	
	\odot Correct Yes. This value is useful in the calculation of $dW^{[l]}$ in the backward propagation.	
2.	Which of the following are "parameters" of a neural network? (Check all that apply.)	1/1 point
	$igsqcup g^{[l]}$ the activation functions.	
	$igstyle W^{[l]}$ the weight matrices.	
	✓ Correct Correct. The weight matrices and the bias vectors are the parameters of the network.	
	$ullet$ $b^{[l]}$ the bias vector.	
	✓ Correct	
	Correct. The weight matrices and the bias vectors are the parameters of the network.	
	$oxedsymbol{oxed}$ L the number of layers of the neural network.	
	∠ ⁿ Expand	
	○ Correct Great, you got all the right answers.	

3.	Which of the following statements is true?	1/1 point
	The deeper layers of a neural network are typically computing more complex features of the input than the earlier layers.	
	 The earlier layers of a neural network are typically computing more complex features of the input than the deeper layers. 	
	_e [∞] Expand	
	⊙ Correct	
4.	We can not use vectorization to calculate $da^{[l]}$ in backpropagation, we must use a for loop over all the examples. True/False?	1/1 point
	○ True	
	False	
	_k [≯] Expand	
	\bigcirc Correct Correct. We can use vectorization in backpropagation to calculate $dA^{[l]}$ for each layer. This computation is done over all the training examples.	
	/ectorization allows us to compute $a^{[l]}$ for all the examples on a batch at the same time without using a for loop. True/False?	1/1 point
	○ False	
	① True	
	∠ ⁷ Expand	
	Correct Correct. Vectorization allows us to compute the activation for all the training examples at the same time, avoiding the use of a for loop.	

5.	Assume we store the values for $n^{[l]}$ in an array called layer_dims, as follows: layer_dims = $[n_x, 4,3,2,1]$. So layer 1 has four hidden units, layer 2 has 3 hidden units and so on. Which of the following for-loops will allow you to initialize the parameters for the model?	1/1 point
	for i in range(1, len(layer_dims)): parameter['W' + str(i)] = np.random.randn(layer_dims[i], layer_dims[i-1]) * 0.01 parameter['b' + str(i)] = np.random.randn(layer_dims[i], 1) * 0.01	
	<pre>for i in range(1, len(layer_dims)): parameter['W' + str(i)] = np.random.randn(layer_dims[i-1], layer_dims[i]) * 0.01 parameter['b' + str(i)] = np.random.randn(layer_dims[i], 1) * 0.01</pre>	
	for i in range(1, len(layer_dims)/2): parameter['W' + str(i)] = np.random.randn(layer_dims[i], layer_dims[i-1]) * 0.01 parameter['b' + str(i)] = np.random.randn(layer_dims[i-1], 1) * 0.01	
	for i in range(1, len(layer_dims)/2): parameter['W' + str(i)] = np.random.randn(layer_dims[i], layer_dims[i-1]) * 0.01 parameter['b' + str(i)] = np.random.randn(layer_dims[i], 1) * 0.01	
	∠ ⁷ Expand	
	⊘ Correct	
5.	$Suppose\ W[i]\ is\ the\ array\ with\ the\ weights\ of\ the\ i-th\ layer,\ b[i]\ is\ the\ vector\ of\ biases\ of\ the\ i-th\ layer,\ and\ g\ is$	1/1 point
	the activation function used in all layers. Which of the following calculates the forward propagation for the neural network with L layers.	
	<pre>for i in range(1, L+1): Z[i] = W[i]*A[i-1] + b[i] A[i] = g(Z[i])</pre>	
	for i in range(L): $Z[i+1] = W[i+1]^*A[i+1] + b[i+1]$ A[i+1] = g(Z[i+1])	
	$ \int for i in range(L): $ $ Z[i] = W[i]*X + b[i] $ $ A[i] = g(Z[i]) $	
	for i in range(1, L): $Z[i] = W[i]^*A[i-1] + b[i]$ $A[i] = g(Z[i])$	
	∠ [™] Expand	

Yes. Remember that the range omits the last number thus the range from 1 to L+1 gives the L $\,$

5.

⊘ Correct

necessary values.

6. Consider the following neural network:

1/1 point

How many layers does this network have?

- The number of layers L is 5.
- The number of layers L is 4.
- The number of layers L is 6
- The number of layers L is 2.

∠[¬] Expand

⊘ Correct

Yes. The number of layers is the number of hidden layers \pm 1.

How many layers does this network have?

- \bigcirc The number of layers \underline{L} is 3. The number of hidden layers is 3.
- \bigcirc The number of layers \underline{L} is 5. The number of hidden layers is 4.
- \bigcirc The number of layers $\emph{\textbf{L}}$ is 4. The number of hidden layers is 4.
- The number of layers is 4. The number of hidden layers is 3.

⊘ Correct

Yes. As seen in lecture, the number of layers is counted as the number of hidden layers + 1. The input and output layers are not counted as hidden layers.

7. During forward propagation, to calculate $A^{[l]}$, you use the activation function $g^{[l]}$ with the values of $Z^{[l]}$.

1/1 point

 $\mathbf{True}/\mathbf{False} : \mathbf{During\ backward\ propagation}, \mathbf{you\ calculate}\ dA^{[l]}\ \mathbf{from}\ Z^{[l]}.$

- True
- False

⊘ Correct

Correct. During backward propagation we are interested in computing $dW^{[l]}$ and $db^{[l]}$. For that we use $g'^L, dZ^{[l]}, Z^{[l]}$, and $W^{[l]}$.

7.	During forward propagation, in the forward function for a layer l you need to know what is the activation function in a layer (sigmoid, tanh, ReLU, etc.). During backpropagation, the corresponding backward function also needs to know what is the activation function for layer l , since the gradient depends on it. True/False? False True	1/1 point
	∠ [⊅] Expand	
	Correct Yes, as you've seen in week 3 each activation has a different derivative. Thus, during backpropagation you need to know which activation was used in the forward propagation to be able to compute the correct derivative.	
	There are certain functions with the following properties: (i) To compute the function using a shallow network circuit, you will need a large network (where we measure size by the number of logic gates in the network), but (ii) To compute it using a deep network circuit, you need only an exponentially smaller network. True/False? True False	1/1 point
	∠ [≯] Expand	
	⊙ Correct	

8.

 $\qquad W^{[1]}$ will have shape (4, 3)

1/1 point

10.	In the general case if we are training with m examples what is the shape of $A^{[l]} ?$	1/1 point
	\bigcap $(m, n^{[l+1]})$	
	\bigcap $(m, n^{[l]})$	
	\bigcirc $(n^{[l+1]}, m)$	
	\bigcirc $(n^{[l]}, m)$	
	∠ ⁷ Expand	
	\bigcirc Correct Yes. The number of rows in $A^{[1]}$ corresponds to the number of units in the l-th layer.	