Τεχνητή Νοημοσύνη 2020-2021

Ομαδική Εργασία 2ο Μέρος

Ομάδα εργασίας:

Βαρέλης Ξενοφών (3170014) Θωμάς Κωνσταντινίδης (3160074)

Αλγόριθμος multinomial naive bayes

Ακολουθούν οι κλάσεις που δημιουργήθηκαν για την υλοποίηση του αλγορίθμου και οι μέθοδοι του καθώς και συνοπτική περιγραφή τους.

Κλάση ImportData :Κλάση η οποία χρησιμοποιείται για το διάβασμα των αρχείων .feat και είναι ίδια με αυτήν που χρησιμοποιούμε και στον ID3. Πιο συγκεκριμένα περιέχει:

- Main()
- Loadataset() η οποία με την βοήθεια του Scanner διαβάζει το dataset και αποθηκεύει τα .feat αρχεία με τα reviews σε ένα
 Arraylist<Hashmap<Integer,Integer>> όπου στο key κάθε φορά βάζει την λέξη και στο value πόσες φορές έχει εμφανιστεί η λέξη αυτή. Επιπλέον αποθηκεύει την βαθμολογία κάθε review σε έναν Arraylist<Integer> και χωρίζει τα train data σε 90% train και 10% development.
- Random() η οποία καλείται για να ανακατέψει τα δεδομένα του dataset .

Κλάση Bayes:Κλάση στην οποία υλοποιείται ο αλγόριθμος του Bayes. Πιο συγκεκριμένα περιέχει:

- Bayes() Κατασκευαστής ο οποίος αρχικοποιεί τα δεδομένα και τις συλλογές.
- PriorProbability() μέθοδος που επιστρέφει την ολική Πιθανότητα ένα review να είναι θετικό ή αρνητικό ανάλογα με τι του ζητάμε και σύμφωνα με τα train data.
- Train() μέθοδος που γίνονται train τα data και δημιουργεί δυο
 hashmap<Integer,Integer> ,ένα με λέξεις που βρίσκονται στα θετικά review και ένα
 με λέξεις για τα αρνητικά reviews και αποθηκεύει στο πρώτο όρισμα την λέξη και
 στο δεύτερο την συχνότητα της λέξης αυτής. Επιπλέον Αποθηκεύει σε δύο
 μεταβλητές το σύνολο των λέξεων στα θετικά reviews και αντίστοιχα για τα
 αρνητικά.
- getNegFrequency() μέθοδος που ψάχνει στο NegDictionary την συχνότητα μιας συγκεκριμένης λέξης.
- getPosFrequency() μέθοδος που ψάχνει στο PosDictionary την συχνότητα μιας συγκεκριμένης λέξης.
- Test() μέθοδος που παίρνει σαν είσοδο τα reviews σε ένα
 Arraylist<Hashmap<Integer,Integer>> και την βαθμολογία του καθενός με έναν
 Arraylist<Integer>, βρίσκει την δεσμευμένη πιθανότητα ένα review να έιναι για
 παράδειγμα θετικό δεδομένου ότι περιέχει κάποιο σύνολο λέξεων , και την
 αποθηκεύει σε ένα Arraylist που περιέχει τις δεσμευμένες πιθανότητες για κάθε
 review να είναι θετικό και αντίστοιχα για τα αρνητικά. Πιο συγκεκριμένα ο γενικός
 τύπος για την κάθε δεσμευμένη πιθανότητα είναι: π.χ P(positive/"review"(δηλαδή
 το σύνολο των λέξεων

του))=P(positive)*P(reviewWord1/positive)^frequencyOfTheWordInTheReview*
P(reviewWord2/positive)^frequencyOfTheWordInTheReview)*.....Για να βρούμε την δεσμευμένη πιθανότητα του P(reviewWord1/positive) κάνουμε το εξής
P(reviewWord1/positive)=(frequencyOfTheWordInAllTrainData+1)/totalPositiveWords+uniqueWords).Τέλος ανάλογα με την βαθμολογία βρέσκουμε τα truepositive,truenegative,falsepositive,falsenegative από τα οποία παραγονται τα συνολικά accuracy ,recall ,precision και f1score.

Παρακάτω παραθέτονται οι πίνακες για τα train και test:

Train data για λέξεις από 500 έως 1000 του vocab

	Data									
	10%	20%	30%	40%	50%	60%	70%	80%	90%	100%
Accuracy	0.787784	0.774632	0.764749	0.766384	0.765225	0.764898	0.762817	0.761647	0.759696	0.758270
	2175657	1890325	5913211	3067320	1448952	2018130	6549264	3473027	8345965	1738742
	601 %	457 %	473 %	553 %	296 %	48 %	378 %	195 %	225 %	755 %
	0.796296	0.784708	0.772282	0.773650	0.773629	0.773777	0.771564	0.770865	0.768091	0.766134
Precision	2962962	2494969	6086956	7285040	3306424	0764596	0993633	4481391	7827024	7517730
Precision	963 %	819 %	521 %	016 %	487 %	185 %	753 %	763 %	907 %	497 %
	0.816006	0.803792	0.792305	0.791517	0.781382	0.772668	0.765448	0.761226	0.759085	0.756345
	6006600	2506183	5478115	9508712	7076609	6721100	9164086	4868979	1826727	1776649
Recall	66 %	017 %	417 %	996 %	479 %	129 %	687 %	015 %	396 %	747 %
	0.806030	0.794135	0.782165	0.782482	0.777486	0.773222	0.768494	0.766015	0.763561	0.761208
	9698451	6139279	9556901	3578248	6897659	4770642	3429068	6463701	9242579	4911477
	508 %	17 %	058 %	236 %	09 %	202 %	755 %	515 %	325 %	143 %

F1 Score

Test data για λέξεις από 500 έως 1000 του vocab

	Data									
Accuracy	10%	20%	30%	40%	50%	60%	70%	80%	90%	100%
Accuracy	0.735152	0.741773	0.745318	.7453852	0.746388	0.746655	0.747477	0.747391	0.749554	0.749077
	4879614	6757624	3520599	3274478	4430176	9657570	6427424	6532905	1287676	0465489
	767 %	398 %	251 %	33 %	565 %	894 %	903 %	297 %	12 %	567 %
Precision	0.722950	0.734963	0.739280	0.739321	0.741291	0.740360	0.741320	0.742291	0.746948	0.746287
	8196721	9133921	9587217	3572854	1473314	2401601	2375513	8549763	2313107	8240629
	312 %	412 %	044 %	291 %	158 %	067 %	933 %	985 %	012 %	264 %
	0.732558	0.745424	0.750067	0.750405	0.750647	0.750777	0.752056	0.749518	0.751164	0.750443
Recall	1395348	9694997	5493109	1863857	2491909	9732106	5403777	3044315	8745519	9063761
	837 %	966 %	971 %	374 %	385 %	616 %	083 %	993 %	713 %	098 %
	0.727722	0.740157	0.744635	0.744822	0.745939	0.745532	0.746649	0.745887	0.749050	0.748360
F1 Score	7722772	4803149	1931330	0390106	8617141	7153029	7958244	5769502	6187731	0949736
	277 %	606 %	474 %	576 %	02 %	692 %	666 %	472 %	761 %	409 %

Παρακάτω παραθέτονται οι καμπύλες για τα train και test:

Train data για λέξεις από 500 έως 1000 του vocab

Test data για λέξεις από 500 έως 1000 του vocab

ID3

- Υπερπαράμετροι: m=13100 , n=12900
- Test accuracy

Test Accuracy: 52.17481066124695

- Καμπύλες (παρακάτω)
- Πίνακες (παρακάτω)
- Οι υπερπαράμετροι αυτοί (m=13100, n=12900) επιλέχθηκαν ύστερα από την εξέταση πολλών παραδειγμάτων (πχ. m=10000, n=9800). Τέλος επιλέχθηκαν 200 λέξεις, καθώς οι παραπάνω θέλουν πολλή ώρα για να τις εξετάσει ο αλγόριθμος.

	Train	Develop	F1	Precision	Recall
10%	61.827%	48.917%	0	0	0
20%	63.922%	55.225%	58.278%	48.351%	73.333%
30%	66.306%	57.026%	41.484%	39.256%	43.981%
40%	67.966%	58.177%	45.974%	45.664%	46.289%
50%	68.025%	58.481%	45.781%	46.846%	44.763%
60%	67.366%	55.612%	47.274%	46.251%	48.344%
70%	67.119%	57.142%	48.095%	47.757%	48.438%
80%	67.121%	58.159%	50.288%	49.620%	50.974%
90%	67.160%	59.331%	51.187%	50.070%	52.356%
100%	66.171%	59.422%	51.080%	49.553%	52.704%