LPC1100 系列微控制器

第六章 中断控制器 用户争册 Rev1.00

广州周立功单片机发展有限公司

地址:广州市天河北路 689 号光大银行大厦 12 楼 F4

网址: http://www.zlgmcu.com

销售与服务网络(一)

广州周立功单片机发展有限公司

地址:广州市天河北路 689 号光大银行大厦 12 楼 F4

邮编: 510630

电话: (020)38730916 38730917 38730972 38730976 38730977

传真: (020)38730925 网址: www.zlgmcu.com

广州专卖店

地址: 广州市天河区新赛格电子城 203-204 室

电话: (020)87578634 87569917

传真: (020)87578842

北京周立功

地址: 北京市海淀区知春路 113 号银网中心 A 座 地址: 重庆市石桥铺科园一路二号大西洋国际大厦

1207-1208 室 (中发电子市场斜对面)

电话: (010)62536178 62536179 82628073

传真: (010)82614433

杭州周立功

地址: 杭州市天目山路 217 号江南电子大厦 502 室

电话: (0571)89719480 89719481 89719482

89719483 89719484 89719485

传真: (0571)89719494

深圳周立功

地址: 深圳市深南中路 2070 号电子科技大厦 C座 4 地址: 武汉市洪山区广埠屯珞瑜路 158 号 12128 室

楼D室

电话: (0755)83781788 (5线)

传真: (0755)83793285

上海周立功

地址: 上海市北京东路 668 号科技京城东座 7E 室

电话: (021)53083452 53083453 53083496

传真: (021)53083491

南京周立功

地址: 南京市珠江路 280 号珠江大厦 1501 室

电话: (025) 68123901 68123902

传真: (025) 68123900

重庆周立功

(赛格电子市场) 1611 室

电话: (023)68796438 68796439

传真: (023)68796439

成都周立功

地址: 成都市一环路南二段 1 号数码科技大厦 403

电话: (028)85439836 85437446

传真: (028)85437896

武汉周立功

(华中电脑数码市场)

电话: (027)87168497 87168297 87168397

传真: (027)87163755

西安办事处

地址: 西安市长安北路 54 号太平洋大厦 1201 室

电话: (029)87881296 83063000 87881295

传真: (029)87880865

销售与服务网络(二)

广州致远电子有限公司

地址:广州市天河区车陂路黄洲工业区3栋2楼

邮编: 510660

传真: (020)38601859

网址: www.embedtools.com (嵌入式系统事业部) www.embedcontrol.com (工控网络事业部) www.ecardsys.com

(楼宇自动化事业部)

技术支持:

CAN-bus:

电话: (020)22644381 22644382 22644253 邮箱: can.support@embedcontrol.com

MiniARM:

电话: (020)28872684 28267813

邮箱: miniarm.support@embedtools.com

无线通讯:

电话: (020) 22644386

邮箱: wireless@embedcontrol.com

编程器:

电话: (020)22644371

邮箱: programmer@embedtools.com

ARM 嵌入式系统:

电话: (020) 22644383 22644384

邮箱: NXPARM@zlgmcu.com

iCAN 及数据采集:

电话: (020)28872344 22644373 邮箱: ican@embedcontrol.com

以太网:

电话: (020)22644380 22644385

邮箱: ethernet.support@embedcontrol.com

串行通讯:

电话: (020)28267800 22644385 邮箱: serial@embedcontrol.com

分析仪器:

电话: (020)22644375

邮箱: tools@embedtools.com

楼宇自动化:

电话: (020)22644376 22644389 28267806

邮箱: mjs.support@ecardsys.com mifare.support@zlgmcu.com

销售:

电话: (020)22644249 22644399 22644372 22644261 28872524

28872342 28872349 28872569 28872573 38601786

维修:

电话: (020)22644245

目 录

第6章	中断控制器	2
6.1	简介	2
6.2	特性	2
6.3	中断源	

第6章 中断控制器

6.1 简介

嵌套向量中断控制器(NVIC)是 Cortex-M0 不可分割的一部分。它与 CPU 紧密结合, 降低了中断延时,并能够有效处理即将到来的中断。

请参考 Cortex-M3 技术参考手册来获取 NVIC 操作的详细描述。

6.2 特性

- ARM Cortex-M3 内部包含有嵌套向量中断控制器;
- 与内核紧密联系的中断控制器,可支持低中断延时;
- 可对系统异常和外设中断进行控制;
- LPC111x 系列 ARM 中, NVIC 支持 32 个向量中断:
- 4个可编程的中断优先级级别,具有硬件优先级屏蔽;
- 可重定位的向量表:
- 不可屏蔽中断 (NMI);
- 软件中断功能。

6.3 中断源

表 6.1 列出了每一个外设功能所对应的中断源。每一个外围设备可以有一条或几条中断 线连接到向量中断控制器。多个中断源可以共用一条中断线。哪一条中断线连接到哪一个中 断源是无关紧要的或没有优先级的,某些 ARM 的特定标准除外。

表 6.1 连接到向量中断控制器的中断源

异常编号	向量偏移量	功能	标志
12:0		启动逻辑唤醒中断	每一个中断都会与一个 PIO 输入管脚相连,作为从
			深度睡眠模式唤醒的唤醒管脚;中断0到11对应
			PIO0_0 到 PIO0_11,中断 12 对应 PIO_1_0。
13		-	保留
		SSP1	Tx FIFO 一半为空
14			Rx FIFO 一半为满
14			Rx 超时
			Rx 溢出
15		I ² C	SI (状态改变)
16		CT16B0	匹配 0-2
10			捕获 0
1.7		CT16B1	匹配 0-1
17			捕获 0
10		CT32B0	匹配 0-3
18			捕获 0
10		CT32B1	匹配 0-3
19			捕获 0

续上表

异常编号	向量偏移量	功能	标志
20		SSP0	Tx FIFO 一半为空
			Rx FIFO 一半为满
20			Rx 超时
			Rx 溢出
			Rx 线状态(RLS)
	UART	发送保持寄存器空(THRE)	
		Rx 数据可用(RDA)	
21		字符超时指示(CTI)	
			Modem 控制改变
		自动波特率结束(ABEO)	
			自动波特率超时(ABTO)
22		-	保留
23		-	保留
24		ADC	A/D 转换器结束转换
25		WDT	看门狗中断(WDINT)
26		BOD	Brown-out 检测
27		-	保留
28		PIO_3	端口3的GPIO中断状态
29		PIO_2	端口 2 的 GPIO 中断状态
30		PIO_1	端口 1 的 GPIO 中断状态
31		PIO_0	端口0的GPIO中断状态