Supervised Learning II

1. Our Example Data

Outlook Temperature Humidity Windy? Play Outside?				
Outlook	Temperature	Humidity	Windy?	Play Outside?
Sunny	Hot	High	False	No
Sunny	Hot	High	True	No
Overcast	Hot	High	False	Yes
Rainy	Mild	High	False	Yes
Rainy	Cool	Normal	False	Yes
Rainy	Cool	Normal	True	No
Overcast	Cool	Normal	True	Yes
Sunny	Mild	High	False	No
Sunny	Cool	Normal	False	Yes
Rainy	Mild	Normal	False	Yes
Sunny	Mild	Normal	True	Yes
Overcast	Mild	High	True	Yes
Overcast	Hot	Normal	False	Yes
Rainy	Mild	High	True	No

- a.
- i. Goal is whether we will go out and play outside
- ii. Every row is a separate data with four features and one ground truth

2. First Convert into Numeric Representation

Outlook	Temperature	Humidity	Windy?	Play Outside?
0	2	1	0	0
0	2	1	1	0
1	2	1	0	1
2	1	1	0	1
2	0	0	0	1
2	0	0	1	0
1	0	0	1	1
0	1	1	0	0
0	0	0	0	1
2	1	0	0	1
0	1	0	1	1
1	1	1	1	1
1	2	0	0	1
2	1	1	1	0

- a.
- b. Computers do not like strings \rightarrow change into bits
- c. For example, "sunny" is 0

3. Build a Decision Tree

a.

h.

- b. Now, we can construct flowcharts
- c. Vertices ask questions and edges tell where to go
- d. Questions are features and edges are the answers here
- e. For example, "what happens to our predictions if we make a node for humidity?"
 - i. If humidity == 0, go to a branch
 - ii. If humidity == 1, go to another branch
- f. Collect data for each branch
 - i. If humidity==0, collect the columns of real data that have humidity of 0
 - ii. If humidity == 1, collect the columns of real data that have humidity of 1
- g. Repeat the same exact process for all features (Windy?, Temperature, Outlook)
 - i. Notice that outlook and temperature have three branches since there are three values associated with it

- i. Pretend we have magical way of picking Quality
 - ii. Example (higher quality values are better)

- 1. Quality of humidity is 0.152
- 2. Quality of Windy? Is 0.048
- 3. Quality of temperature is 0.029
- 4. Quality of outlook is $0.247 \rightarrow$ the best node

- i. We chose outlook as the best node
 - ii. If outlook == 0, the outcomes are
 - 1. 0

i.

- 2. 0
- 3. 0
- 4. 1
- 5. 1
- 6. Therefore, we need to recurse
- iii. If outlook == 1, the outcomes are all 1s
 - 1. Perfect predictions! Don't need to recurse
- iv. If outlook == 2, the outcomes are
 - 1. 1
 - 2. 1
 - 3. 0
 - 4. 1
 - 5. 0
 - 6. Therefore, we need to recurse
- v. Now, we need to conduct trees for when outlook == 0 and outlook == 2 until we make leaves (where we do not need to recurse)
- vi. Get rid of data that is useless \rightarrow the outlook feature is not useless
- vii. At most four layers of tree (four features)

- 4. What is "Quality?" of a Node?
 - a. Measure how well a node splits the ground truth
 - b. Want:
 - i. Quality to be high when split is "pure"
 - ii. Quality to be low when different classes are distributed within same child
 - c. A few ways to do this:
 - i. Information Gain (based on the information gain)
 - ii. Gini Index
 - iii. Etc.
- 5. Information Gain & Entropy

Play Outside?
1
0
1
1
1
1
1

- a.
- b. How good is a split?
- c. Idea: Can we measure how much info is inside the ground truth?
 - i. Entropy function

$$H(X) = -\mathbb{E}\left[\log(\Pr[X])\right] = -\sum_{x \in Y} \Pr[X = x]\log(\Pr[X = x])$$

- ii.
- d. Entropy?

X	Pr[X]
0	1/7
1	6/7

i. \rightarrow turn the ground truth to PMF

$$-\Pr[X=1]\log(\Pr[X=1]) - \Pr[X=0]\log(\Pr[X=0])$$

- e. Entropy tells us how "well distributed" a distribution is
 - i. Think of it like compression: how many bits needed to compress distribution?
 - 1. If distribution is skewed: fewer bits
 - 2. If distribution is balanced: more bits

- f. How can we use this to determine the "quality" of a split?
 - i. Measure entropy before & after!
 - ii. Measure the difference \rightarrow it is called (information gain)!
- g. Before split:

Humidity 1	Play Outside?	X	Pr[Hum]
1	1	0	7/14
0	1	1	7/14
0	1	-	
0	1	H(Y) =	0.9402
0	1		
0	1		

h. After split:

- H(Y | Hum = 0) = 0.5917 H(Y | Hum = 1) = 0.9852
 - i. Multiply each by the probability that it appears in data

$$IG(Hum) = H(Y) - H(Y | Hum)$$
$$= H(Y) - \mathbb{E}[H(H | Hum)]$$

$$= H(Y) - \Pr[Hum = 0]H(Y | Hum = 0) - \Pr[Hum = 1]H(Y | Hum = 1)$$

- i. This is the calculation
- k. The final value

i.
$$0.9402 - (7/14) * (0.5917) - (7/14) * 0.9852 = 0.152$$

- 1. Information gain \rightarrow how much does a feature tell me about the ground truth?
 - i. The node that tells me the most information about the ground truth is the best

- 6. When to stop?
 - a. Run out of features
 - b. The labels of a node are "pure" enough (hyperparameter)
 - c. Max depth of the tree is reached (hyperparameter)
 - d. What about continuous features?
 - i. Feature should still be considered in child nodes

- i. Pick a threshold and binarize based on that
 - ii. Does not guarantee that the feature is gone since that feature might still be affecting it
- 7. Continuous Features
 - a. Sort the feature and ground truth by the feature value
 - b. Potential values of 't'?
 - i. Infinitely many
 - 1. can restrict to those within range of feature
 - c. Observation:
 - i. Only need to consider values of 't' where the class changes!

- i. Now only have six thresholds to consider
- 8. Decision Boundary
 - a. Let's think about models geometrically
 - i. Consider some 2d data
 - 1. Our argument extends to higher dims

Binary classification task

2.

ii.

1. Our argument extends to non-binary classification

- b. How do Decision Trees chop up the feature space?
 - i. Let's consider continuous features in this example (easier to draw)
 - 1. Argument applies to discrete features
 - ii. Each node picks a features and makes a binary split
 - 1. axis-parallel (axis-aligned) cuts!
 - 2. The shape they draw is called a decision boundary
 - a. Decision trees draw pixelated-looking rectangular boundaries

