ПРАКТИЧЕСКАЯ РАБОТА №7

ТЕМА: «Расчет роликового неприводного конвейера» (4 часа)

Цель работы: Ознакомление с устройством и методикой расчета гравитационного роликового конвейера.

7.1 Основные теоретические сведения

Роликовые конвейеры **предназначены** для транспортировки штучных и массовых грузов, заключенных в тару, непрерывным потоком без остановок для их загрузки и разгрузки. **Они состоят** из последовательно расположенных на раме вращающихся роликов, по которым перемещается груз. **Трасса** роликового конвейера может быть как прямолинейной, так и криволинейной.

Роликовые конвейеры различают

- -по приводу они бывают приводные (ролики приводятся во вращение от двигателя) и неприводные;
 - -по степени сложности бывают стационарные и передвижные;
- -по направлению трассы прямолинейные, прямолинейные с криволинейными участками и разветвляющиеся (с переводными стрелками или с поворотными кругами);
 - -по конструкции рамы со сплошной рамой или секционные.

Привод роликов приводных конвейеров бывает:

- -индивидуальный;
- -групповой через продольный вал с коническими колесами, через цепи или через ремни.

Неприводные конвейеры обычно – гравитационные (рис.7.1), у которых движущей силой является продольная составляющая веса груза, находящегося на роликах наклонно (вниз) установленного конвейера. Неприводные роликовые конвейеры бывают однорядные и многорядные.

Рисунок 7.1 – Схема гравитационного роликового конвейера

					МиТОМ.ПТУМЦ.Пр.№7.2022.Отчет				
Изм.	Лист	№ докум.	Подпись	Дата					
Выпо	лнил	Крумкач А.А.			Практическая работа №7	ая работа №7 Лит. Лист Листов		Листов	
Пров	ерил	Астапенко И.В.			1			1	9
					«Расчет роликового не- приводного конвейера»	ГГТУ им. П.О. Сухого гр. МЛ-41		•	
					приводного конвеиера»			1-41	

Обычно роликовые конвейеры собирают из отдельных секций длиной 2–3 м. В ряде случаев вместо цилиндрических роликов используют дисковые ролики, устанавливаемые на шарикоподшипниках с неподвижными осями. Такие ролики удобны при движении грузов по криволинейным в плане участкам.

Установка (рис.7.1) состоит из основания 1, наклонной рамы 2, на которой с определенным шагом установлены ролики 3. Угол наклона конвейера может изменяться с помощью винтовой стойки 5.

7.2 Методика расчета

Рассчитать гравитационный роликовый конвейер с прямолинейной трассой для транспортирования штучных грузов массой m (кг) со скоростью v (м/с) с заданной производительностью z (шт./ч), заданными габаритами груза (длинна -l, ширина -b) и длинной конвейера z. При определенных условиях работы.

Расчет транспортирующей машины состоит в определении угла наклона гравитационного роликового конвейера, который будет обеспечивать движение грузов за счет продольной составляющей силы тяжести груза.

Для этого рассчитываются:

1. Производительность роликового конвейера, т/ч по формуле:

$$Q = Z \times m \times 10^{3} = 110 \cdot 0,15 = 16,5$$
(1)

2. В зависимости от производительности определяется расстояние между грузами, м:

$$t_{\rm r} = \frac{3.6\nu \times m}{Q} = \frac{3.6 \cdot 1 \cdot 0.15}{16.5} = 0.33m.$$
 (2)

3. Из табл. 1 выбирается угол наклона роликового конвейера: Таблица 7.1 - Рекомендуемый угол наклона роликового конвейера.

Наименование груза	Масса единицы груза, кг	Угол наклона конвейера
Контейнеры из листово-	до 30	2-3
го металла	30-150	2-2,5
	150-500	1,5-2
	500-1000	1-1,5
Деревянные поддоны,	до 25	2-2,5
ящики	25-125	1,5-2
	125-600	0,5-1,5
	600-1200	0,5-1,5

4. Шаг роликов определятся по формуле:

$$0.2l_z \le t_p \le 0.45l_z, \text{ MM} \tag{3}$$

					МиТОМ.ПТУМЦ.Пр.№7.2022.Отчет
Изм.	Лист	№ докум.	Подпись	Дата	•

$$0,11 \le tp \le 0,24$$

Выбираем tp=160мм.

где

 $l_{\it c}$ – длинна груза, мм.

По ГОСТ 8324-71 шаг роликов выбирается из ряда: 50; 60; 80; 100;125; 160; 200; 250; 315; 400; 500; 630.

5. Число роликов, на которых лежит груз, рассчитывается по формуле:

$$z' = l_z / t_p$$
 (4)
 $z = \frac{0.55}{0.160} = 3.4$

Выбираем число роликов 3 шт.

Число роликов, на которых лежит груз необходимо округлять до ближайшего целого числа.

6. По табл. 7.2 определяется средняя нагрузка на ролик.

Таблица 7.2 - Средняя нагрузка F на ролик, Н

Соотношение между длиной груза и шагом ролика	F_p
$2t_p \le l_z \le 3t_p$	0.5 · mg
$3t_p \le l_z \le 4t_p$	0.33 · mg
$4t_p \le l_z \le 5t_p$	0.25 · mg

7. Из табл. 7.3 при нагрузке, приходящейся на один ролик и рассчитанной длине ролика, выбирается диаметр ролика. Из табл. 7.4 определяется масса одного ролика.

Таблица 7.3 - Основные размеры роликовых конвейеров (ГОСТ 22281-76).

Диаметр	Ст	Статическая нагрузка, Н, на ролик при длине ролика, мм								
ролика, мм	160	200	250	320	400	500	650	800	1000	1200
42	980	930	980	980	980	784	588	_		
60		2940	2940	1960	1960	1568	980	980		
76		4900	4900	4900	4900	4900	3920	3920	2940	
108	_			9800	9800	9800	9800	9800	7840	7840
159				19600	19600	19600	19600	19600	19600	15680

Лист

Выбираем диаметр ролика Dp=42мм.

					МиТОМ.ПТУМЦ.Пр.№7.2022.Отчет
Изм.	Лист	№ докум.	Подпись	Дата	` .

8. Диаметр цапфы, мм ролика рассчитывается по формуле:

$$d_{II} = (0.2...\ 0.25) \cdot D_p = 0.25 \cdot 0.42 = 0.0105 \text{ m}.$$
 (5)

где D_p - диаметр ролика, мм.

9. Число роликов в конвейере определятся:

$$\mathbf{z_p} = L / t_p = \frac{16000}{160} = 100 \text{ mT}.$$
 (6)

- 10. Коэффициент трения качения груза по роликам определяется в зависимости от материала груза:
 - -для металлических деталей $\mu \approx 5 \cdot 10^{-4} \text{м};$
 - -для остальных материалов $\mu \approx 5 \cdot 10^{-3} \text{м}$
- 11. Из табл. 7.4 определяется коэффициент трения f в цапфах роликах при различных подшипниках:

Таблица 7.4 - Коэффициент трения в цапфах роликах при различных подшипниках.

Условия работы конвейера	Подши	ипники
	качения	скольжения
Хорошие	0.03	0.15
Средние	0.04	0.20
Тяжелые	0.06	0.25

12. По формуле (7) определяется сопротивление одного груза, Н:

$$F = \left[m \cdot \frac{2\mu}{D} + (m + m_p \cdot z^{\gamma}) \cdot f \cdot \frac{d}{D} \right] \cdot g + k \cdot \frac{m_p \cdot z \cdot v^2}{L}$$

$$mp = \left(\frac{3,14 \cdot 0,04 \cdot 2}{4} \cdot 0.65 + 2 \cdot \frac{3,14 \cdot 0,0105^3}{4} \right) \cdot 5200 = 4,2 \text{kg}.$$
(7)

$$F = \left[150 \cdot \frac{2 \cdot 5 \cdot 10^{3}}{0,042} + (150 + 4,2 \cdot 3) \cdot 0,03 \cdot \frac{0,0105}{0,042}\right] \cdot 9,81 + 0,8 \cdot \frac{4,2 \cdot 100 \cdot 1,5^{2}}{16} = 409,57 H.$$

где

 $k=0,8\dots 0,9$ - коэффициент, учитывающий распределение нагрузки по сечению ролика.

					M
Изм.	Лист	№ докум.	Подпись	Дата	

МиТОМ.ПТУМЦ.Пр.№7.2022.Отчет

13. По зависимости (8) определяется коэффициент сопротивления движению груза на конвейере:

$$\omega = F/m \cdot q = 409,57/150 \cdot 9,81 = 0,278$$
 (8)

14. При принятом угле наклона гравитационного конвейера β проверяется условие (9), при выполнении которого, обеспечивается движение грузов за счет продольной составляющей силы тяжести груза:

$$(1-\text{tg }\alpha) > \omega = 0.9738 > 0.278$$
 (9)

Условие гравитационного движения выполняется.

Вывод: Ознакомились с устройствами и методикой расчета гравитационного роликового конвеера. Рассчитали коэффициент сопротивления движению груза, диаметр цапфы и число роликов.

Изм	Лист	№ локум	Полпись	Лата

Задание

Рассчитать время цикла шагающего конвейера по исходным данным из таблицы 7.5.

Таблица 7.5 – Исходные данные

№ варианта	Масса груза, кг	Производи- тельность Z, шт/ч	Длинна груза І, м	Ширина груза b, \mathbb{M}	Длинна роль- ганга <i>L</i> , м	р,м,с
1	160/240/200	200/150/120	0,45	0,45	15	2
2	180/210/140	90/130/170	0,4	0,3	17	0,5
3	145/150/190	160/110/150	0,55	0,55	16	1
4	130/185/110	130/100/180	0,6	0,6	18	2
5	215/170/125	155/170/140	0,7	0,7	14	1,5

7.3 Структура отчета

- 1. Название работы;
- 2. Цель работы;
- 3. Краткие теоретические сведения;
- 4. Порядок выполнения работы;
- 5. Расчет согласно индивидуального задания по вариантам из таблицы 7.5. Объем отчета 4-7 стр. Отчет подписывается студентом.

7. 4 Контрольные вопросы.

- 1. Назначение роликового конвейера.
- 2. Приведите классификацию роликовых конвейеров.
- 3. Конструкция и работа роликового конвейера.
- 4. Последовательность расчета роликового конвейера.
- 5. Приведите расчет роликового конвейера.
- 6. При каком условии обеспечивается движение грузов за счет продольной составляющей силы тяжести груза.

			·	
Изм.	Лист	№ докум.	Подпись	Дата