S

0 -5

heven: X validates is discrete value is complemented open se Points are closed assumption are Open

1 • Value F. Then Figenerates F le least subsheat containing M. J. - - U f./

Definition Au L-set is a set A with

$$\begin{bmatrix}
- = -J & \times A & \longrightarrow & L \\
1 & [a = b] & [b = a]
\end{bmatrix}$$
2.
$$\begin{bmatrix}
a = bJ & [b = c] & [a = c]
\end{bmatrix}$$

Definition. An Z-morphism is a map [-=f(-)]: BxA 1. [15 = f(a)] < 11511 x || a || $2 \left[\left(\frac{1}{5} \right) = 5 \right] \wedge \left[\frac{1}{5} \right] = f(a) \left[\frac{1}{5} \right] \wedge \left[\frac{1}{5} \right] = f(a) \left[\frac{1}{5} \right]$ 3 [b=f(a)] [b'=f(a)] < [b=b] $\|\alpha\| \leq \sqrt{[b=f(a)]}$

language

Logiha Topologija:

T

X

$$\varphi \wedge \varphi$$
 $\varphi \wedge \varphi$
 $\varphi \rightarrow \varphi$
 φ

etinition Au Liset is a set 2. $A = b \land b = c \Rightarrow d = c$

Definition. An Z-morphism is a map [-=f(-]:BxA-1. + b = f(a) => || b || 1 | a || 2. $+ 6 = 6 \land 6 = f(a) \land a = a' \Rightarrow 6 = f(a')$ H- Va: A 3 b: B. b=f(a)

erties of se VOJ -<

$$facts$$
:

-[-=-] is id,.

-c=gof(a) is $factorized{factorized} - R(f(a))$ is $factorized{factorized} - R(f($

$$Ex. 1 = \{x\}, |x| = T$$

$$Ex. A = A, [\alpha = \alpha'] = V \} + |\alpha = \alpha'\}.$$

$$Ex. A_{\alpha} = A, [\alpha = \alpha'] = [\alpha = \alpha'] \wedge U.$$

$$Ex. 2 = 2, [p = 2] = p \Leftrightarrow g.$$

$$Ex. B^{A} = A \Leftrightarrow B, [f = 5] = [\forall \alpha A. f(\alpha) = g(\alpha)]$$

$$Ex. A_{\alpha} = A, [\alpha = \alpha'] = \alpha \sim \alpha'.$$

Lemma (funex+), f=g iff +f=BA Proof. Assume +f=g. Let a: A, b: B s.t. b=f(ass, 35:B. 5=f(a) 16=q(a) en b = f(a) = b' s > b = b' = q

13 is mono iff g,h: () A, f o g = f hen f(g(c)) = f(h $\int (x) =$ ne x, y: 1 +> B, x(*):= en $f \circ \hat{x} = f \circ \hat{y}$, so $\hat{x} =$

Theorem FA+B is epi iff Proof. (=) let y h: B -> C, g of = h of. Let b: B Then Ja: A b=f(a) Then g(5) = g(f(a)) = h(f(a)) = h(b)Let b.Bandin, i.B. coherf. Then in $f = i_2 \circ f \rightarrow i_1 = i_2 \rightarrow Ja \cdot A.b = f(a).$

