Experimentalphysik II

Vorlesung von Prof.Dr. Schumacher im Sommersemester 2018

Markus Österle Andréz Gockel

16.04.2018

Inhaltsverzeichnis

I Elektrostatik			
	I.1	Elekt	rische Ladung
		I.1.1	Reibungselektrizität
		I.1.2	Die elektrische Ladung
		I.1.3	Die Elementarladung
	I.2	Kraft	ϵ und Feld
		I.2.1	Coulomb - Gesetz
		I.2.2	Influez
		I.2.3	Das Elektrische Feld
		I.2.4	Das elektrische Potential
		I.2.5	Der elektrische Fluss
		I.2.6	Quellstärke des elektrischen Feldes
		I.2.7	Maxwell-Gleichungen
	I.3	Multi	ipole
		I.3.1	Kräfte auf Dipol
		I.3.2	Quadrupol
	I.4	Elekt	rostatische Energie und Kapazität
		I.4.1	Spannung
		I.4.2	Kapazität
		I.4.3	Kondensatorschaltungen
		I.4.4	Elektrische Energie
	I.5	Mate	rie in elektrischen Feldern
		I.5.1	Polarisation des Mediums
		I.5.2	Felder und Maxwell gl. im Medium
		I.5.3	Mikroskopische Beschreibung der Polarisation (Pol.) 29
		I.5.4	Kondensator im Dielektrikum
II		agnetos	
	II.6		ne
		II.6.1	Elektrischer Strom
		II.6.2	Ohmsches Gesetz
		II.6.3	Arbeit und Leitung
		II.6.4	Leitungsvorgänge in Metallen und Halbleitern
		II.6.5	Kirchhoffsche Gesetze KHG
		II.6.6	Leitungsvorgänge in Flüssigkeiten
		II.6.7	Stromleitung in Gasen
		II.6.8	Stromquellen
		II.6.9	Thermoelektrizität
	II.7	Das n	nagnetische Feld

	II.7.1	Eletromagnetische Kräfte	39
	II.7.2	Magnetisches Feld	39
	II.7.3	0 . 0	39
	II.7.4	Das Vektorpotential $\vec{A}(\vec{r})$	40
	II.7.5		41
II.8	Magne	etische Kräfte	43
	II.8.1		43
	II.8.2	Kräfte auf Stöme	44
	II.8.3	Der Magnetische Dipol	45
II.9	Magne	etische Felder in Materie	46
	II.9.1	Magnetisierung der Materie	46
	II.9.2	Diamagnetismus	48
	II.9.3	Paramagnetismus	48
	II.9.4	Ferromagnetismus	49
	II.9.5	Elektromagnet	49
	ektrody		51
111.10		0	51
	III.10.1	9	51
	III.10.2		53
	III.10.3		54
	III.10.4	e e e e e e e e e e e e e e e e e e e	55
111.11			55
	III.11.1		55
	III.11.2	9	56
	III.11.3		57
	III.11.4	1	57
	III.11.5	•	58
	III.11.6	0	60
	III.11.7		61
111.12			63
		0 0	63
	III.12.2	11 0 0	67
	III.12.3		68
III.13		Θ	68
	III.13.1		69
	III.13.2		72
	III.13.3		77
	III.13.4	0 1	79
III.14			80
	III.14.1	1	80
	III.14.2	S I	81
	III.14.3		84
III.1		8	87
	III.15.1	9 /	87
	III.15.2		92
	111.15.3	Wellen an Grenzflächen	93

Kapitel I

Elektrostatik

I.1 Elektrische Ladung

Exp: Auf Thales Spuren

(PVC Rohr mit Filz gerieben, Lametta zum schweben gebracht)

I.1.1 Reibungselektrizität

- Reibung von Kunststoff und Filz \Rightarrow Aufladung des Stabes
- Berührung Lametta mit Stab ⇒ Abstoßung

Anziehende/Abstoßende Kräfte: Elektrizität

Exp:

- i) 2 Kunststoffstäbe \Rightarrow Abstoßung, gleiche Ladung
- ii) Kunststoff-, Glasstab ⇒ Anziehung, ungleiche (entgegengesetzte) Ladung
- ⇒ Es gibt zwei Arten von Ladungen
- ⇒ Aufladung ist Materialabhängig. "Reihenfolge": Triboelektrische Reihe ¹

Zwei Materialien A und B und $W_A < W_B$

Energiefreisetzung wenn Elektron e^- von A nach B wandert

⇒ A positiv (Elektronenmangel), B negativ (Elektronenüberschuss)

Ladungen "wandern", werden aber nicht erzeugt oder vernichtet.

I.1.2 Die elektrische Ladung

Elektrische Ladung Q quantifiziert Elektrizität. Q bezeichnet die Menge Elektrizität die ein Körper trägt.

Neues Phänomen ⇒ nicht Rückführbar auf "m,kg,s"

[Q] = C Coulomb (C.A. de Coulomb)

 $^{^{1}}$ (Erklärung in Festkörperphysik: Austrittsarbeit W_{Aus} ist die Arbeit um ein Elektron aus einer Oberfläche zu entfernen bzw. die freigesetzte Energie wenn es von einer Oberfläche absorbiert wird)

keine basiseinheit Def. mittels Stromstärke

[A] = A Ampere

 $1C = \text{Ladung die von einem Strom mit Stärke } I = 1A \text{ in der Zeit } \Delta t = 1s$

1C ist eine relativ große Ladung:

Vergleich:

•
$$Q_{\text{Elektron}} = -1,602 \cdot 10^{-19} C$$

•
$$Q_{\text{Reibungselektrizit"}} = \mu Q = 10^{-6} C$$

Elektrometer: Messung von Ladung ohne Vorzeichen. Beobachtung: 2 Ladungsvorzeichen, Ladungen sind Additiv

Erhaltungssatz der Ladungen: In einem geschlossenen System ist die Summe der Ladungen konstant.

Erinnerung: geschlossenes System $\hat{=}$ kein Austausch von Materie mit Umgebung (Ladung gekoppelt an Materie)

Noether - Theorem

Erhaltungssatz \Leftrightarrow Symmetrie des Systems/ Gesetzes. hier: Eichsymmetrie $U(1)_Q \Leftrightarrow$ Ladungserhaltung (später fortgeschrittene Quantenmechanik, Teilchenphysik)

I.1.3 Die Elementarladung

Faraday Elektrolyseexperimente

Bei der Umsetzung von einem Mol eines Elements wird eine feste Ladung umgesetzt.

1 wertig: 96486 C/mol (Faraday Konstante)

Also bei der Reaktion eines Moleküls wird $Q=1,6\cdot 10^{-19}\mathrm{C}$ (Annahme Avogardozahl bekannt, erste Bestimmung 1865 Loschschmidt)

Frage: Mittelwert über viele Reaktionen oder fester Wert für jede Reaktion.

Exp: ightarrow 1913 Millikan - Experiment

Kräfte:

Gewichtskraft:

$$\vec{F} = m \cdot \vec{g} = (\frac{4}{3}\pi r_{\text{tr\"opf}}^3) \rho_{\ddot{\text{O}}\text{l}} \vec{g} \downarrow$$

Elektrische Kraft:

$$\vec{F_{el}} = Q_{\text{tr\"opf}} \vec{E} \downarrow \uparrow$$

Auftrieb:

$$\vec{F_A} = -\frac{4}{3}\pi T_{\rm tr\"{o}pf}^3 \rho_{\rm Luft} \vec{g} \uparrow$$

Reibungskraft:

$$\vec{F_R} = -G\pi\eta_{\text{Luft}}\vec{v}_{\text{tr\"opf}}\uparrow\downarrow$$

Laminare Strömung

Da $r_{\rm tr\"{o}pf} \sim \lambda_{\rm frei}$

 \rightarrow Conningham - Korrektur

$$F_R = 1 + \frac{\lambda_{\text{frei}}}{r_{\text{tropf}}} \left(A_1 + A_2 e^{-A_3} \frac{r_{\text{tropf}}}{\lambda_{\text{frei}}} \right)$$

Luft: $A_1 = 1,257A_2 = 0,4A_3 = 1,1$

- Suche Tröpfchen
- Beobachtete Bewegung bei 2. Spannung
- Bestimme Sink- bzw. Steiggeschwingigkeit
- $\rightarrow r_{\text{tr\"opf}}$ und $Q_{\text{tr\"opf}}$
- a) Suchmethode
 - $-\,$ sinken bei0V=U
 - Erhöhung von U bis Schwebung der Tropfen $\vec{v}_{\text{tropf}} = \vec{0}$
- b) Steig-/Sink Methode
 - zwei Spannungen $U_c(>0)$ Messe \vec{r}_{tropf}

Mathode a) (ohne Conningham Korrektur)

$$U = 0V \quad |\vec{F}_G| = |\vec{F}_A| + |\vec{F}_R|$$

(Stationärer Zustand ($\vec{a} = \text{const}$))

$$\frac{4}{3}\pi\rho_{\mathrm{Oel}}r_{\mathrm{tropf}}^{3}g = \frac{4}{3}\pi\rho_{Luft}r_{\mathrm{tropf}}^{3}g + 6\pi\eta_{\mathrm{Luft}} + r|\vec{v}|$$

$$\Rightarrow r_{\rm tropf} = \sqrt{\frac{9}{2g} \frac{\eta_{\rm Luft} + |\vec{r}|}{\rho_{\rm Oel} - \rho_{\rm Luft}}}$$

Bei Schwebung:

$$U = 0V \quad |\vec{F}_G| = |\vec{F}_A| + |\vec{F}_{el}|$$
$$\frac{4}{3}\pi r^3 \rho_{\text{Oel}} g = \frac{4}{3}\pi r_{\pi}^3 \rho_{\text{Luft}} + Q_{\text{tropf}} \frac{U}{d}$$

d = Abstand Kondensatorplatten

$$Q\pi = \frac{4}{3}\pi g \left(\rho_{\text{Oel}} - \rho_{\text{Luft}} \frac{d}{U}\right)$$

viele Tröpfchen \rightarrow Statistische Auswertung Ergebnis von Millikan

Elektrische Ladung ist gequantelt $\pm e$; $\pm 2e$; ...

$$e = 1.6021766208(88) \cdot 10^{-19}C$$

Erstmals gequantelte Größe

Drittelzahlige Ladungen der Quarks

Quarks sind Konstituenten von Protonen und Neutronen

Proton p = (uud) Neutron n = (udd)

$$Q_u = +\frac{2}{3}, Q_d = -\frac{1}{3} \Rightarrow Q_p = 1Q_n = 0$$

$$Q_p + Q_e < 10 - 21e$$

aus Stabilität der Materie

Historisch:

 $Q = 4,774 + -0,009 \cdot 10^{-10}$ esu (Electrostatic unit)

 $1 \text{ esu} = 3,34 \cdot 10^{-10} C$

Millikans wert für Elementarladung:

$$esu \Rightarrow SI : e = 1,592 + -0,003 \cdot 10^{-19}C$$

"5 σ " - Effekt \rightarrow Fehler unterschätzt.

I.2 Kraft und Feld

I.2.1 Coulomb - Gesetz

Elektrische Kraft zwischen zwei Körpern (punktförmig) mit Ladungen Q_1 und Q_2 im Abstand r

$$\vec{F}_{el} = k \frac{Q_1 Q_2}{r^2}, \quad \hat{r}_{12} = \frac{\vec{r}_{12}}{|\vec{r}_{12}|}$$

Kraft auf Q_2 von Q_1

Exp: Coulomb - Waage

$$k=8,99\cdot 10^9\frac{\text{N m}^2}{C^2}$$
 für $Q_1=Q_2=1$ C, $r=1$ m $\Rightarrow |\vec{F}_{el}|$ 8,99 · 109 N Im SI-System: $k=\frac{1}{4\pi\epsilon_0}$ ϵ_0 Dielektrizitätskonstante: $\epsilon_0=8,85\cdot 10^{-12}\frac{C^2}{\text{Nm}^2}$ (cgs-System k = 1 \Rightarrow Umdefinition der Ladung)

$$\vec{F}_{el} = \frac{1}{4\pi\epsilon_0} \frac{Q_1 Q_2}{r^2} \hat{r}_{12}$$

Coulomb - Gesetz

Motivation der Abhängigkeit:

- $\sim Q_2$ Additivität der Ladungen
- $\bullet \sim Q_1$, actio = reactio"
- $\bullet \sim \frac{1}{r^2}$ dreidimensionaler (für 4 Raumdimensionen wäre es $\sim \frac{1}{r^3}$)

I.2.2 Influez

Beobachtung: Ausschlag des Elektrometers ohne Berührung. Anhängig von der nähe des Stabes.

Erklärung: Kraft von e^- auf dem Stab verdrängen die e^- aus der Kugel in die Zeiger.

⇒ Kugel positiv geladen, Zeiger negativ geladen

<u>Influenz</u>: Trennung von Ladungen in einem neutralen Körper.

<u>In Metallen und Leitern</u> sind die Elektronen (zu einem bestimmten vom Material abhängigen Grad) frei beweglich.

 $Q_1 = Q_2$ da neutral

$$|\vec{F}_1| = k \frac{Q_1 Q}{r_1^2} \quad |\vec{F}_2| = k \frac{Q_2 Q}{r_2^2} \quad \text{da } r_1 < r_2 \quad |\vec{F}_1| > |\vec{F}_2|$$

Leiter angezogen

Nichtleiter:

Ladungen/Elektronen nicht Frei beweglich Verschiebung bei Polaren Molekülen. Wasser H_2O $\alpha=105$ e^- vom H zum O verschoben \to Dipol

I.2.3 Das Elektrische Feld

Bisher: Kraft zwischen zwei Ladungen q und $Q \to \vec{F}$

Frage : woher kennt q die Existenz von Q? \rightarrow abstraktes Konzept: elektrisches Feld \vec{E}

- \bullet um jede Ladung Q bildet sich ein Feld \vec{E}
- Probeladung q spürt eine Kraft $\vec{F} = q\vec{E}$

Quantenelktrodynamik (QED):

- Anregung des Feldes = Photonen γ
- Kraft/Wechselwirkung = Austausch von γ

Pragmatisch: gegben: beliebige Ladungsverteilung wie sieht die Kraft auf eine pkt. förmige q? (q klein \to keine Verzerrung von \vec{E})

$$ightarrow \vec{E} = rac{\vec{F}}{q_{ ext{Probe}}}$$
 unabhängig von $q_{ ext{Probe}}$

El. Feld einer Pktladung

$$\vec{E} = \frac{\vec{F}_{\text{Punkt}}}{q_{\text{Probe}}} = \frac{1}{4\pi\epsilon_0} \frac{Qq_{\text{Probe}}}{r^2 q_{\text{Probe}}} \hat{r} = \frac{1}{4\pi\epsilon_0} \frac{Q}{r^2} \hat{r}$$

Zusammenfassung:

- \bullet jede Ladung Qvon $\vec{E}\text{-Feld}$ umgeben
- \bullet es gilt Superpositonsprinzi
p $\vec{E}_{Q_1+Q_2}=\vec{E}_{Q_1}+\vec{E}_{Q_2}$ folgt aus Addition von Kräften

- ullet Nahwirkung der Kraft: Feld breitet sich mit Lichtgeschwindigkeit c aus Superposition:
 - N Punktladungen $Q_i, i=1,\ldots,N$ $\vec{F} = \sum_{i=1}^N \vec{F}_i = \frac{1}{4\pi\epsilon_0} \sum_{i=1}^N \frac{Q_i}{r_i^2} \hat{r}_i$

$$\Rightarrow \vec{E} = \sum_{i=1}^{N} \vec{E}_i = \frac{1}{4\pi\epsilon_0} \sum_{i=1}^{N} \frac{Q_i}{r_i^2} \hat{r}_i$$

• kontinuierliche **Ladungsverteilung**: $\rho(\vec{r})$ Gesamtladung $Q = \int dV \rho(\vec{r'}) \quad (dV = d\vec{r'})^3$

$$\vec{E}(\vec{r}) = \frac{1}{4\pi\epsilon_0} \int d^3 \vec{r'} \frac{\rho(\vec{r'})}{|\vec{r} - \vec{r'}|^2} \frac{\vec{r} - \vec{r'}}{|\vec{r} - \vec{r'}|}$$

Visualisierung:

- a) Feldvektoren an vorgegebenen Gitterpunkten im Raume oft Vektor $\hat{=}$ Projektion von \vec{E} in Ebene
- b) Feldlinien:
 - Tangenten $\hat{=}$ Richtung von \vec{E}
 - Dichte der Linie $\hat{=}$ Stärke $|\vec{E}|$

Exp: Feldlinien

- Feldlinien kreuzen sich nicht [Falls Kreuzung: dann 2 Felder \vec{E} , 2 \vec{E} in einem Punkt wid: Superpositionsprinzip]
- ullet Feldlinien ot orthogonal auf Oberfläche der Leiter
- keine Feldlinien innerhalb geschlossener Leiter

Elektrisches Feld im Leiter

- $\bullet\ e^-$ frei beweglich und sie stoßen sich ab
- \bullet "Kräftegleichgewicht" wenn e^- an der Oberfläche sitzen
- $\vec{E}, \vec{F} \perp$ Oberfläche
- \vec{E} -Feld im Inneren verschwindet

Kugel mit Radius:

$$\vec{E}(\vec{R}) = 0 \qquad |\vec{r}| < R$$

$$\vec{E}(\vec{r}) = \frac{1}{4\pi\epsilon_0} \frac{Q}{r^2} \hat{r} \qquad |\vec{r}| \ge R$$

verhält sich bei großem Abstand wie Punkt-förmige Ladung im Zentrum

Beliebige Flächen:

Approximation durch Ebenen und Kugelschalen Kugel:

$$|\vec{E}| \sim \frac{1}{r^2}$$

kleiner Krümmungsradius — großes $|\vec{E}|$ "Spitze" — kleines r — großes $|\vec{E}|$ — führt zur Entladungen

Faradaysche Becher:

- begränzte Ladungsaufnahme von außen
- $\rightarrow\,$ Ladungen von innen aufbringen

Feldberechnung:

1) homogen geladener Ring Radius R, Dicke vernachlässigbar

$$-\lambda = \frac{Q}{2\pi R}$$
 $[\lambda] = \frac{C}{m}$ Linienladungsdichte

– gesucht:
$$\vec{E}(a)$$
 auf Symmetrieachse (y=z=0)

– Symmetrie:
$$\vec{E}(a) = E\vec{e}_x$$
 [andere Komponenten kompensieren sich]

– Element auf Ring trägt Ladung
$$\lambda dx$$
, liefert Feldbeitrag

$$dE_x = \frac{1}{4\pi\epsilon_0} \frac{1}{r^2} \cos\phi dQ$$

$$E_x = \cos \phi |\vec{E}| \qquad \cos \phi = \frac{a}{r} \qquad r = \sqrt{R^2 + a^2}$$

– Integration über Ring in Polarkoordinaten

$$E_x = \int_{\text{Ring}} dQ \frac{1}{4\pi\epsilon_0} \frac{1}{r^2} \cos \phi$$
$$= \int_{\text{Ring}} dQ$$

$$\int_{\text{Ring}} dQ \frac{1}{4\pi\epsilon_0} \frac{1}{R^2 + a^2} \frac{a}{\sqrt{R^2 + a^2}} = \frac{Q}{4\pi\epsilon_0} \frac{a}{(R^2 + a^2)^{(\frac{3}{2})}}$$

große Entfernung:
$$a \gg R$$
: $E_x \sim \frac{1}{a^2}$ wie Pkt.ladung

Nähe des Rings:
$$a \sim R$$
: langsamer Anstieg von

$$|\vec{E}|$$
 als für Pkt.ladung

$$a = 0$$
: $E_x = 0$ aus Symmetrie

2) unendlich dünne, unendlich ausgedehnte leitende Platte Flächenladungsdichte σ $[\sigma] = \frac{C}{m^2}$

– Symmetrie: $\vec{E} = \vec{E}_z \vec{e}_z \perp$ auf Platte

$$Q = \frac{1}{4\pi\epsilon_0} \int_{VPlatte} d^3 \vec{r} \, \rho(\vec{r})$$

$$\begin{split} \vec{E}(\vec{r}) &= \frac{1}{4\pi\epsilon_0} \int_{V\text{Platte}} d^3 \vec{r} \, \frac{\rho(\vec{r})}{r^2} \hat{r} \qquad \hat{r} \perp \text{ Platte} \\ &= \frac{1}{4\pi\epsilon_0} \int_{A\text{Platte}} d^2 \vec{r} \, \frac{\sigma}{r^2} \hat{r} \end{split}$$

– Es gilt: $E_z = \cos \beta |\vec{E}| \qquad \cos \beta = \frac{a}{d}$ Integration in kleinen Ringen bzw. Polarkoordinaten $(dA = r dr d\varphi)$

$$E_z(a) = \frac{1}{4\pi\epsilon_0} \int_0^\infty dr \int_0^{2\pi} d\varphi \ r \frac{\sigma}{a^2} \cos\beta$$
$$= \frac{\sigma}{4\pi\epsilon_0 a^2} \int_0^\infty dr \int_0^{2\pi} d\varphi \cos^3\beta$$

mit

$$r = a \tan \beta$$
 $dr = \frac{a}{\cos^2 \beta} d\beta$

$$r = 0 \stackrel{\frown}{=} \beta = 0$$
$$r = \infty \stackrel{\frown}{=} \beta = \frac{\pi}{2}$$

$$E_z(a) = \frac{\sigma}{4\pi\epsilon_0 a^2} \int_0^{2\pi} d\varphi \int_0^{\frac{\pi}{2}} a^2 \sin\beta \, d\beta$$
$$= \frac{\sigma}{2\epsilon_0} (-\cos\beta) \Big|_0^{\frac{\pi}{2}}$$
$$= \frac{\sigma}{2\epsilon_0}$$

homogenes Feld in z-Richtung (d.h. senkrecht ⊥ zur Platte)

I.2.4 Das elektrische Potential

• Bewegung von Ladung im elektrischen Feld

$$W = -\int\limits_{Weg} \vec{F} \; d\vec{s} = -q \int\limits_{Weg} \vec{E} \; d\vec{s}$$

W>0: von außen gegen $\vec{E}\text{-}\mathrm{Feld}$ verrichten

W < 0: Feld verrichtet Arbeit Charakteristik der Feldes: Arbeit pro Einheitsladung

$$\frac{W}{q} = -\int_{Weg} \vec{E} \, d\vec{s}$$

• Arbeit im Feld einer Punktladung $\vec{E} \perp d\vec{s}$ keinen Beitrag

$$\frac{W_{ACB}}{q} = -\int_{A}^{C} |\vec{E}| ds = -\frac{1}{a\pi\epsilon_{0}} \int_{r_{A}}^{r_{C}} \frac{Q}{r^{2}} dr = -\frac{1}{a\pi\epsilon_{0}} (-\frac{Q}{r}) \Big|_{r_{A}}^{r_{C}} = -\frac{Q}{a\pi\epsilon_{0}} (\frac{1}{r_{A}} - \frac{1}{r_{C}})$$

analog:

$$\frac{W_{ADB}}{q} = -\int_{D}^{B} |\vec{E}| ds = -\frac{Q}{a\pi\epsilon_{0}} (\frac{1}{r_{D}} - \frac{1}{r_{B}})$$

$$r_{A} = r_{D} \quad r_{B} = r_{C} \Rightarrow \frac{W}{q} \text{ auf beiden Wegen gleich}$$

$$\Rightarrow \oint_{\text{geschlossenem Weg}} \vec{E} \ d\vec{s} = 0 \qquad W \text{ unabh. von Weg}$$

+ Superpositionsprinzip \Rightarrow Arbeit auf einem geschlossenen Weg verschwindet (i.e = 0)

Erlaubt Definition der potentiellen Energie

$$E_{\rm pot}(\vec{r}) = -\int_{\vec{r}_0}^{\vec{r}} \vec{E} \ d\vec{s}$$

 \vec{r}_0 ist ein Bezugspunkt (Referenzpunkt) oft im unendlichen da $(\vec{E}(|\vec{r}| \to \infty) \to 0)$ In Praxis: nur

$$\Delta E_{\rm pot} = E_{\rm pot}(\vec{r}_2) - E_{\rm pot}(\vec{r}_1)$$

relevant. Normierung von $E_{\rm pot}$ auf im Feld bewegte Ladung: el. Potential

$$\varphi(\vec{r}) - \varphi(\vec{r}_0) = \int \vec{E} \ d\vec{s}$$
 off $\varphi(\vec{r}_0) = 0$
$$\varphi(\vec{r}) = \int \vec{E} \ d\vec{s}$$

Für Punktladung Q $\vec{r_0} \rightarrow \infty$:

$$\varphi(\vec{r}) = \frac{1}{4\pi\epsilon_0} \frac{Q}{|\vec{r}|}$$

• Superpositionsprinzip:

N Punktladungen Q_i bei $\vec{r_i}$

$$\varphi(\vec{r}) = \sum_{i=1}^{N} \varphi_i(\vec{r}) = \sum_{i=1}^{N} \frac{1}{4\pi\epsilon_0} \frac{Q_i}{|\vec{r} - \vec{r_i}|}$$

Potential ist Skalarfeld \rightarrow Rechnungen oft einfacher, graphische Darstellung mittels Äquipotentialflächen: (auf diesen gilt $\varphi(\vec{r}) = \text{const.}$)

- für Pkt. Ladung: Äquipotentialflächen = Kugelschalen
- -Feldlinien / $\vec{E}\text{-Feld}$ \perp Äquipotentialflächen
- -Bewegung in Äquipotentialflächen \rightarrow keine Arbeit wird verrichtet

Zusammenhang elektrisches Feld \vec{E} und Potential φ Wir hatten:

$$\varphi(\vec{r}) = -\int_{\vec{r}_0}^{\vec{r}} \vec{E} \, d\vec{s} \qquad \varphi(\vec{r}_0) = 0$$

Ist dies umkehrbar?

a) infinitesimaler Weg dx, Probeladung q

$$dW = -q[\varphi(x, y, z) - \varphi(x + dx, y, z]$$

$$= q \frac{\varphi(x + dx, y, z) - \varphi(x, y, z)}{dx} dx$$

$$= q \frac{\partial \varphi(x, y, z)}{\partial x} dx$$

b)

$$dW = -q\vec{E}(\vec{r}) d\vec{s} \qquad d\vec{s} = \begin{pmatrix} dx \\ 0 \\ 0 \end{pmatrix}$$
$$= -qE_x dx$$

Vgl:

$$E_x = -\frac{\partial \varphi}{\partial x}$$

analog zu Bewegung in y- und in z-Richtung

$$\vec{E}(\vec{r}) = \left(-\frac{\partial \varphi}{\partial x}\vec{e}_x\right) + \left(-\frac{\partial \varphi}{\partial y}\vec{e}_y\right) + \left(-\frac{\partial \varphi}{\partial z}\vec{e}_z\right)$$

$$= -\operatorname{grad}\varphi(\vec{r}) = -\vec{\nabla}\varphi(\vec{r}) \qquad \qquad \vec{\nabla} = \begin{pmatrix} \frac{\partial \varphi}{\partial x} \\ \frac{\partial \varphi}{\partial y} \\ \frac{\partial \varphi}{\partial \varphi} \end{pmatrix}$$

Elektrostatik: äquivalente Beschreibung durch entweder \vec{E} -Feld oder φ

Wirbelfreiheit von \vec{E} Rotation von

$$\begin{split} \vec{E}: & \operatorname{rot}(\vec{E}) = \vec{\nabla} \times \vec{E} \\ & = \left(\frac{\partial E_z}{\partial y} - \frac{\partial E_y}{\partial z}\right) \vec{e_x} + \left(\frac{\partial E_x}{\partial z} - \frac{\partial E_z}{\partial x}\right) \vec{e_y} + \left(\frac{\partial E_y}{\partial x} - \frac{\partial E_x}{\partial y}\right) \vec{e_z} \end{split}$$

da $\vec{E} = \operatorname{grad} \varphi$ und

$$\frac{\partial^2 \varphi}{\partial y \partial x} = \frac{\partial^2 \varphi}{\partial x \partial y}$$

Partielle Ableitungen vertauschbar

$$\Rightarrow \operatorname{rot} \vec{E} = -\operatorname{rot}(\operatorname{grad} \varphi) = \vec{0}$$

 \vec{E} -Felder in Elektrostatik sind Wirbelfrei Zusammenhang: mit Stokesschem Satz

$$\int\limits_{A} \vec{\nabla} \times \vec{V}(\vec{r}) \ d\vec{A} = \oint\limits_{S=dA} \vec{V}(\vec{r}) \ d\vec{s} \qquad \vec{V}(\vec{r}) \text{Vetorfeld}$$

hier

$$\int_{A} \operatorname{rot}(\vec{E}) \ d\vec{A} = \oint_{\delta A} \vec{E} \ d\vec{s} \stackrel{\text{E. statik}}{=} 0$$

Bedeutung: wirbelfrei bzw. keine geschlossenen Feldlinien

Beispiele Potential-Berechung:

1) Potential eines homogenen ringförmigen Leiters. Beitrag $d\varphi$ aus dQ auf Ring

$$d\varphi = \frac{1}{4\pi\epsilon_0} \frac{1}{r} dQ$$

Aus Abbildung: $r = \sqrt{R^2 + a^2}$

$$\varphi(a) = \frac{Q}{4\pi\epsilon_0} \frac{1}{\sqrt{R^2 + a^2}}$$

da r= const. auf x-Achse für $a\gg R$ $\varphi(a)=\frac{Q}{4\pi\epsilon_0}\frac{1}{a}$ Potential einer Pkt. Ladung

$$E_x = -\frac{\partial \varphi(a)}{\partial a} = -\frac{\partial \varphi(x)}{\partial x} = -\frac{Q}{4\pi\epsilon_0} \frac{1}{(R^2 + a^2)^{\frac{3}{2}}} \left(-\frac{1}{2}\right) 2a = \frac{1}{4\pi\epsilon_0} \frac{Qa}{(R^2 + a^2)^{\frac{3}{2}}}$$

2) Beispiel 2: leitende Kugel Radius R

$$\varphi(a) = \frac{Q}{4\pi\epsilon_0} \frac{1}{a} \qquad a \ge R$$

$$\varphi(a) = \frac{Q}{4\pi\epsilon_0} \frac{1}{R} = \text{const.} \qquad a < R$$

$$\to \vec{E} = -\text{grad}\varphi = \frac{Q}{4\pi\epsilon_0} \frac{1}{a^2} \vec{e}_R \qquad a \ge R$$

$$= 0 \Rightarrow \qquad a < R$$

Bisher: $\varphi(\vec{r})$ aus $\rho(\vec{r})$ via Poisson-Integral teilweise $\rho(\vec{r})$ nicht bekannt, aber Randbedingungen $\varphi(\vec{r}) = 0$ auf Leiteroberfläche. $(\rho(\vec{r})$ kann komlex sein) ⇒ Randwertproblem (Theo II.)

"Einfaches" Beispiel mit Methode der Spiegelladung

Platte geerdet
$$\varphi(x, y, z) \stackrel{!}{=} 0$$
 Punktladung q_1 bei $\vec{r} = \begin{pmatrix} 0 \\ 0 \\ z_1 \end{pmatrix}$

Realisierung der Randbedingungen durch Spiegelladung q_2

Brauche: $\varphi(x, y, z = 0) = 0$

Superposition $\varphi = \varphi_1 + \varphi_2$

 $\Rightarrow q_2 = -q_1$ $z_2 = -z_1$ erfüllen Randbedingung

$$\varphi(\vec{r}) = \frac{a_r}{4\pi\epsilon} \left\{ \frac{1}{|\vec{r} - \vec{r_1}|} - \frac{1}{|\vec{r} - \vec{r_2}|} \right\}$$

 \vec{E} -Feld aus $-\vec{\nabla}\varphi$

$$\vec{E}(\vec{r}) = \frac{a_r}{4\pi\epsilon_0} \left\{ \frac{\vec{r} - \vec{r}_1}{|\vec{r} - \vec{r}_1|^3} - \frac{\vec{r} - \vec{r}_2}{|\vec{r} - \vec{r}_2|^3} \right\}$$

für z=0 : $E_x=E_y=0$ $\vec{E}\perp(x,y)$ -Ebene Flächenladungsdichte: σ $[\sigma]=\frac{C}{m^2}$

Später: $\sigma = 2\epsilon_0 E_z$

$$\sigma = -\frac{q_1}{2\pi} \frac{z_1}{(x^2 + y^2 + z_1^2)}$$
$$\vec{r_1} = \begin{pmatrix} 0\\0\\z_1 \end{pmatrix}$$

I.2.5Der elektrische Fluss

Elektrischer Fluss Φ ist ein Maß für die dichte der el. Feldlinien. Er ist definiert für eine gegebene Fläche A.

$$\Phi_A = \int_A \vec{E} \ d\vec{A}$$
 $\vec{A} = \text{infinitisimaler Normalvektor}$ $\vec{A} \perp \text{ Fläche}$

offene Fläche: Orientierung beliebig

geschlossene Fläche: Orientierung nach außen

Fluss durch geschlossene Fläche:

Bsp: Würfel im Plattenkondensator (Abb.auf [Folie: Elektrischer Fluss durch geschlossene Oberfläche]) nur Beiträge von linker und rechter Fläche:

$$\Phi = \Phi_l + \Phi_r = \vec{E}\vec{A}_l + \vec{E}\vec{A}_r = -EA_l + EA_r \cos \alpha = -EA_l + EA_l = 0$$
$$\vec{A}_l = -\vec{A}_r \cos \alpha$$

Superposition bzw. Approximation von Körper durch inf. Würfel ⇒ Fluss durch geschlossene Oberfläche im homogenen Feld verschwindet.

Bsp: Kugelschale

$$\vec{A}(r)=4\pi r^2\vec{e}_R\left\{\begin{array}{ll} + & \text{für äußere}\\ - & \text{für innere} \end{array}\right.$$

$$\vec{E}(\vec{r})=\frac{Q}{4\pi\epsilon_0}\frac{1}{r^2}$$

$$\left| \vec{E}(\vec{r}) \cdot \vec{A}(\vec{r}) \right| = \text{const}$$

$$\Phi = \Phi(r_1) + \Phi(r_2) = + \text{const} - \text{const} = 0$$

In elektrischen Feldern (wenn keine Ladungen im Volumen) \Rightarrow Fluss durch geschlossene Oberfläche verschwindet.

I.2.6 Quellstärke des elektrischen Feldes

 $\Phi_A \neq 0$ wenn Ladungen innerhalb geschlossener Oberfläche. Bsp: Kugel mit Radius R. Punktladung im Ursprung $d\vec{A}$ und \vec{E} radial nach außen $\sim \vec{e_r}$

$$\Phi = \oint_{\mathbf{R} = \text{const}} \vec{E} \, d\vec{A} = \underbrace{\frac{1}{4\pi\epsilon_0} \frac{Q}{R^2}}_{|\vec{E}|} \underbrace{4\pi R^2}_{A} = \frac{Q}{\epsilon_0}$$

Ergebnis unabhängig von:

- Form der Oberfläche
- Position der Ladung innerhalb der Oberfläche

Mehrere Ladungen Q_i aus Superposition der \vec{E}_i

$$\Phi = \oint \left(\sum_{i} \vec{E}_{i}\right) d\vec{A} = \frac{\sum_{i} Q_{i}}{\epsilon_{0}}$$

"externe" Q_i liefern keinen Beitrag

Es gilt:

$$\Phi = \oint \vec{E} \ d\vec{A} = \frac{Q_{\rm ein}}{\epsilon_0}$$

Gaußsches Gesetz (Integralform)

Mit Gaußschen Satz : Oberflächen- \rightarrow Volumenintegral

$$\oint_{A} \vec{E} \ d\vec{A} = \int_{V} \operatorname{div} \vec{E} \ d\vec{V} \quad \text{mit} \quad Q_{\text{ein}} = \int_{V} \rho(\vec{r}) \ dV$$

$$\int_{V} \operatorname{div} \vec{E} \ dV = \frac{1}{\epsilon_{0}} \int_{V} \rho(\vec{r}) \ dV$$

gültig für beliebige Volumen

 $\Rightarrow {\rm div} \vec{E} = \frac{\rho}{\epsilon_0}$ differentielle Form des Gaußschen Gesetzes

Ladungen die Quellen $(\rho > 0)$ bzw. Senken $(\rho < 0)$ des elektrischen Feldes sind.

I.2.7 Maxwell-Gleichungen

für statische (unbewegte) Ladungen Integral- und Differentialform

$$\oint \vec{E} \ d\vec{s} = 0 \quad \text{rot} \vec{E} = \vec{0} \quad \text{Wirbelfrei}$$
(1)

$$\oint \vec{E} \, d\vec{A} = \frac{Q_{\text{ein}}}{\epsilon_0} \quad \text{div} \vec{E} = \frac{\rho}{\epsilon_0} \quad \text{Quellen/Senken}$$
 (3)

1. gilt allgemein in Zentralkraftfeldern d.h. $\rho(\vec{r}) \sim |\vec{r}|$

3. gilt nur für $\varphi \sim \frac{1}{|\vec{r}|} |\vec{E}| \sim \frac{1}{|\vec{r}|^2}$ im 3-dimensionalen Raum

MW-Gleichungen sind Axiome der Elektrostatik d.h. F_{coulomb} ableitbar betrachte Ladungen $Q_1=Q_{\text{ein}}$

1.Gl:

$$\oint_{A} \vec{E} \ d\vec{A} = \frac{Q_{1}}{\epsilon_{0}}$$
$$|\vec{E}(r)| 4\pi r^{2} = \frac{Q_{1}}{\epsilon_{0}}$$

Kraft auf Ladung $Q_2 \colon \vec{F}_{Q_2} = \vec{E}_{Q_1} \cdot Q_2$

$$|\vec{F}_{Q_2}| = \frac{Q_1 Q_2}{4\pi\epsilon_0} \frac{1}{r^2}$$

Bsp.: homogene geladene Kugel, Radius R, $\rho(\vec{r}) = \text{const} \quad |\vec{r}| \leq R$

$$Q_{\rm ges} = \frac{4}{3}\pi R^3 \rho$$

Symmetrie: $\vec{E} = |\vec{E}|\vec{e}_r$ radial $|\vec{E}| = E_r$

• $|\vec{r}| \geq R$:

$$\Phi = \oint_A \vec{E} \ d\vec{A} = \int_A E_r \ dA = E_r 4\pi r^2 \stackrel{!}{=} \frac{Q_{\text{ein}}}{\epsilon_0}$$
$$E_r = \frac{\rho_0 R^3}{\epsilon_0 3 r^2}$$

wie bei Punktladung

• $|\vec{r}| \leq R$:

$$Q_{\rm ein} = \frac{4}{3}\pi r^3 \rho \qquad \Phi = \frac{Q_{\rm ein}}{\epsilon_0}$$

$$E_r = \frac{\rho_0 r}{3\epsilon_0}$$

linearen Anstieg

Potential $\varphi(\vec{r})$:

$$\varphi(r_0 = \infty) = 0$$

$$\varphi(r) = -\int_{\infty}^{r} \vec{E} \ d\vec{r} \stackrel{(r \ge R)}{=} -\int_{\infty}^{r} \frac{\rho R^{3}}{\epsilon_{0} 3r'^{2}} \ dr' = \int_{r}^{\infty} \frac{\rho}{\epsilon_{0}} \frac{R^{3}}{3r'^{2}} \ dr' = \frac{\rho R^{3}}{\epsilon 3r}$$
$$\left(\frac{\partial (\hat{r})}{\partial r} = -\frac{1}{r^{2}}\right)$$

Innenraum: $(r \leq R)$

$$\varphi(r) = -\int \frac{\rho r'}{3\epsilon_0} dr' = -\frac{1}{2} \frac{\rho_0}{\epsilon_0} \frac{r^2}{3} + \text{const}$$

Wähle c so, dass φ stetig bei r=R ist

$$\rightarrow c = \frac{R^2 \rho}{2\epsilon_0}$$

$$\varphi(r) = \frac{R^2 \rho}{2\epsilon_0} (1 - \frac{r^2}{3R^2}) \quad \text{ für } r \leq R$$

Maxwell-Gl. und Potential φ

$$\vec{E} = -\operatorname{grad}(\varphi)$$

1. Gl

$$\operatorname{rot} \vec{E} = -\operatorname{rot}(\operatorname{grad} \varphi) \stackrel{\text{linear}}{=} 0$$

da rot $\vec{E}=0$ können wir \vec{E} als grad φ schreiben

3. Gl

$$\operatorname{div} \vec{E} = \operatorname{div}(-\operatorname{grad}\varphi) = -\left[\frac{\partial^2 \varphi}{\partial x^2} + \frac{\partial^2 \varphi}{\partial y^2} + \frac{\partial^2 \varphi}{\partial z^2}\right] = -\Delta\varphi$$

$$\rightarrow \quad -\Delta\varphi = \frac{\rho}{\epsilon_0}$$

Poisson-Gl. ($\rho = 0$ Laplace-Gl.)

Poisson-Gl. äquivalent zu beiden Maxwell-Gl.

MW-Gl: 2 Gl. erster Ordnung in Ableitungen $(\frac{\partial}{\partial x}, \dots)$

Poisson-Gl: 1.Gl. zweiter Ordnung in Ableitung $(\frac{\partial^2}{\partial x^2}, \dots)$

I.3 Multipole

 $\bullet\,$ für beliebige Ladungsverteilung $\rho(\vec{r})$ ist

$$\Phi(\vec{r}) = \frac{1}{4\pi\epsilon_0} \int d^3 \vec{r'} \frac{\rho(\vec{r'})}{|\vec{r} - \vec{r'}|}$$

komplex i.a.

- oft interessiert nur Fernfeld $\rho(\vec{r}), \vec{E}(\vec{r}), |\vec{r}| \gg |\vec{r'}|$ mit $\rho(\vec{r'}) = 0$ Abstand \gg Ausdehnung der Ladungsverteilung
- Approximation von $\rho(r)$ in Taylor-Entwicklung \rightarrow Multipolentwicklung

$$\rho(\vec{r}) = \underbrace{\frac{a}{T}}_{\text{Monopol}} + \underbrace{\frac{b}{T^2}}_{\text{Dipol}} + \underbrace{\frac{c}{T^3}}_{\text{Quadrupol}} + \dots$$

Monopol:

$$\vec{E}_{\mathrm{Mono}}(\vec{r}) = \frac{1}{4\pi\epsilon_0} \frac{Q}{r^2} \hat{r} \qquad \varphi_{\mathrm{Mono}}(\vec{r}) = \frac{Q}{4\pi\epsilon_0} \frac{1}{r}$$

dominiert für $r\to\infty$ wenn $Q_{\rm ges}\neq 0$

$$Q_{\mathrm{Mono}} = \sum_{i=1}^{N} Q_i$$
 Pkt. Ladungen $Q_{\mathrm{Mono}} = \int d^3 \vec{r} \rho(\vec{r})$

 Q_{Mono} bei $\vec{r_s}$ Ladungsschwerpunkt platzieren

$$\begin{split} \vec{r_s} &= \frac{\sum_i |Q_i| \vec{r_i}}{\sum_i |Q_i|} \\ \vec{r_s} &= \frac{\int |\rho(\vec{r})| \vec{r} d^3 \vec{r}}{\int |\rho(\vec{r})| d^3 \vec{r}} \end{split}$$

Dipol:

zwei entgegengesetzte, gleich große Ladungen Q>0 im Abstand $d=|\vec{d}|$. Richtung \vec{d} von -Q nach +Q

$$\vec{r}_{-} = \vec{r}_{0} - rac{ec{d}}{2} \qquad \vec{r}_{+} = \vec{r}_{0} + rac{ec{d}}{2}$$

Potential $\varphi(\vec{r})$ aus Superposition

$$\varphi_{\text{Dipol}}(\vec{r}) = \frac{Q}{4\pi\epsilon_0} \left\{ \frac{1}{|\vec{r_0} + \frac{\vec{d}}{2}|} - \frac{1}{|\vec{r_0} - \frac{\vec{d}}{2}|} \right\}$$

für $(|\vec{r}_0|\gg |\vec{d}|)$ nutze Näherung

$$\frac{1}{|\vec{r}_0 \pm \frac{\vec{d}}{2}|} = \frac{1}{\sqrt{\vec{r}_0^2 \pm r_0 \vec{d} + \frac{\vec{d}^2}{4}}} = \frac{1}{|\vec{r}_0|} \frac{1}{\sqrt{1 \pm \frac{r_0 \vec{d}}{|\vec{r}_0|^2} + \frac{\vec{d}^2}{4\vec{r}_0^2}}} = \frac{1}{|\vec{r}_0|} \left(1 \mp \frac{\vec{r}_0 \vec{d}}{\vec{r}_0^2} \right)$$

$$\varphi_{\text{Dipol}} \sim \frac{Q}{4\pi\epsilon_0} \frac{\vec{r}\vec{d}}{r^2} = \frac{1}{4\pi\epsilon_0} \frac{\vec{p} \cdot \vec{r}}{r^2}$$

 $\vec{p} = Q\vec{d} = [\vec{p}] = c_m$ Dipolmoment

$$\varphi_{\text{Dipol}}(\vec{r}) = \frac{Q\vec{d}}{4\pi\epsilon_0} \frac{\cos\theta}{r^2} \qquad \theta = \sphericalangle(\vec{d}, \vec{r})$$

- Potential richtungsabhängig $\sim \cos \theta$ maximal entlang \vec{d} verschwindend $\perp \vec{d}$
- $\varphi \sim \frac{1}{r^2} \Rightarrow \text{ Erwartung } |\vec{E}| \sim \frac{1}{r^3}$

Bestimmung des \vec{E} -Feldes:

 \vec{d} entlang z-Achse

Geometrie \to Zylindersymmetrie des Feldes, d.h. keine Abhängigkeit vom Azimutalwinkel ϕ

$$\vec{E}(\vec{r}) = -\vec{\nabla}\varphi(\vec{r}) = -\frac{\partial\varphi}{\partial r}\vec{e}_r - \frac{1}{r}\frac{\partial\varphi}{\partial\theta}\vec{e}_\theta = \frac{1}{r\sin\theta}\underbrace{\frac{\partial\varphi}{\partial\phi}}_{\varnothing}\vec{e}_\varphi$$

$$\vec{E}(\vec{r}) = \frac{1}{4\pi\epsilon_0 r^3} |\vec{p}| (2\cos\theta \vec{e}_r + \sin\theta \vec{e}_\theta)$$

- für N
 Punktladungen $\vec{p} = \sum_i Q_i \vec{r_i}$
- für Ladungsverteilung $\vec{p} = \int d^3 \vec{r} \; \rho(\vec{r}) \vec{r}$

 \vec{p} abhängig von Wahl des Koordinatenursprungs

Bsp.: Punktladung bei
$$\vec{r}_0 \Rightarrow \left\{ \begin{array}{ll} {\rm i}) & \vec{r}_0 = \vec{0} & {\rm dann} & \vec{p} = \vec{0} \\ {\rm ii}) & \vec{r}_0 \neq \vec{0} & {\rm dann} & \vec{p} \neq \vec{0} \end{array} \right.$$

Konvention: Ursprung bei $\vec{r_s}$ Ladungsschwerpunkt

- punktsymmetrische Ladungsverteilung $\rho(\vec{r}) = \rho(-\vec{r})$ gilt $\vec{p} = \vec{0}$
- $\bullet\,$ wenn $Q_{\rm ges}=0$ dann \vec{p} unabhängig von Ursprung

I.3.1 Kräfte auf Dipol

a) homogenes \vec{E} -Feld (Bsp. Plattenkondensator)

Beobachtung: Dipol richtet sich im Kondensator wie erwartet aus: Plus zu Minus, Minus zu Plus

Kraft:

$$\vec{F}_{ges} = Q\vec{E} + (-Q)\vec{E} = \vec{0}$$

 \rightarrow keine Translation

Drehmoment:

$$\begin{split} \vec{T}_{ges} &= \sum_{i=1}^{2} \vec{r}_{i} \times \vec{F}_{i} \\ &= \frac{\vec{d}}{2} \times Q \vec{E} + \frac{-\vec{d}}{2} \times (-Q \vec{E}) = Q \vec{d} \times \vec{E} \end{split}$$

$$\vec{T}_{ges} = \vec{p} \times \vec{E}$$

 $\vec{p} \perp \vec{E} \quad \vec{T}$ Maximal $\vec{p} \parallel \vec{E} \quad \vec{T}$ verschwindet \rightarrow Ausrichtung im \vec{E} -Feld Potentiellen Energie:

$$E_{\text{Dip}} = Q\varphi(\vec{r}_1) - Q\varphi(\vec{r}_2)$$
$$\varphi(\vec{r}_1) - \varphi(\vec{r}_2) = \vec{\nabla}\varphi(\vec{r})\vec{d} = -\vec{E}\vec{d}$$
$$E_{\text{Dip}} = -Q\vec{E}\vec{d} = -\vec{p}\vec{E}$$

 $p \uparrow \uparrow E$ minimiert $E_{\text{Dip}} \longrightarrow \text{Richtung von } \vec{p} \text{ im } \vec{E}$

b) inhomogenes \vec{E} -Feld zusätzliche Kraft:

$$\vec{F}_{ges} = Q\vec{E}(\vec{r} + \vec{d}) - Q\vec{E}(\vec{r})$$

$$\vec{E}(\vec{r} + \vec{d}) \stackrel{\text{Taylor-Entwicklung}}{=} \vec{E}(\vec{r}) + (\vec{d} \cdot \nabla)\vec{E}(\vec{r})$$

$$\vec{F}_{ges} = Q(\vec{q} \cdot \nabla)\vec{E}(\vec{r}) = (\vec{p} \cdot \nabla)\vec{E}(\vec{r})$$

- i) Ausrichtung von Dipol durch \vec{T}_{ges}
- ii) Bewegung ins Gebiet höherer Feldstärke \vec{E}

I.3.2 Quadrupol

- $\bullet\,$ vier Ladungen 2 : $\,+Q,\,2$: $\,-Q\,$, jeweils im Abstand d

$$\varphi_{\rm Dipol} = \frac{1}{4\pi\epsilon_0} \frac{\vec{p}\vec{r}}{r^3} = \frac{1}{4\pi\epsilon_0} \frac{p\cos\theta}{r^2} \qquad \vec{r}_s = \vec{0} \quad \theta = \sphericalangle(\vec{r}, \vec{e}_z)$$

$$\varphi_{\rm Quadrupol} = \varphi_{\rm oben}(\vec{r} - \frac{\vec{d}}{2}) - \varphi_{\rm unten}(\vec{r} + \frac{\vec{d}}{2})$$

für $|\vec{d}|$ klein :

$$\approx -d\frac{\partial}{\partial x}\varphi_{\text{Dipol}}(\vec{r})$$

$$\frac{\partial}{\partial x}\varphi_{\text{Dipol}} = \frac{1}{4\pi\epsilon_0} \left[-2\frac{p\cos\theta}{r^3} \frac{\partial r}{\partial x} - \frac{p\sin\theta}{r^2} \frac{\partial\theta}{\partial x} \right]$$

Kettenregel:

$$\frac{\partial}{\partial x} = \frac{\partial r}{\partial x} \frac{\partial}{\partial r} \quad \frac{\partial}{\partial x} = \frac{\partial \theta}{\partial x} \frac{\partial}{\partial \theta}$$

Kugelkoordinaten:

$$\begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} r \sin \theta \cos \phi \\ r \sin \theta \sin \phi \\ r \cos \phi \end{pmatrix}$$
$$\frac{\partial r}{\partial x} = \frac{\partial}{\partial x} \sqrt{x^2 + y^2 + z^2} = \frac{1}{r^2} 2x = \frac{x}{r} = \sin \theta \cos \phi$$
$$\frac{\partial \cos \theta}{\partial x} = -\frac{1}{r} \sin \theta \sin \phi \cos \phi$$

$$\varphi_{\text{Quadrupol}}(\vec{r}) = -\frac{|\vec{p}||\vec{d}|}{4\pi\epsilon_0} \left\{ -\frac{2\cos\theta}{r^3}\sin\theta\cos\phi - \frac{\sin\theta}{r^2}\frac{1}{r}\cos\theta\cos\phi \right\}$$
$$= \frac{3|\vec{p}||\vec{d}|}{4\pi\epsilon_0 r^3}\cos\theta\sin\theta\cos\phi$$

$$Q_{\text{Mono}} = 0 \quad \vec{p}_{\text{gesamt}} = \vec{0}$$

Fernferld:

$$\varphi(\vec{r}) \sim \frac{1}{r^3}$$
 bzw. $\vec{E}(\vec{r}) \sim \frac{1}{r^4} \vec{e}_R$

Bsp.: linearer Quadrupol

$$\varphi_{\text{Quad}}^{\text{lin}} = \frac{1}{4\pi\epsilon_0} \frac{|\vec{d}|^2 Q}{r^3} (3\cos^2\theta - 1)$$

Kraft und Elektrische Energie des Quadrupols

• homogenes Feld: $\vec{F}_{\rm ges} = \vec{0}$; $\vec{T}_{\rm ges} = \vec{0}$

 \bullet inhomogenes Feld : komplexe $\vec{F}_{\rm ges}$, $\vec{T}_{\rm ges}$

Elektrische Energie

$$E_{el} = \sum_{i=1}^{4} Q_i \varphi_{\text{ext}}(\vec{r_i})$$
 (eine kleine Rechnung)

$$E_{el} = Q|\vec{d}|^2 \frac{\partial^2 \varphi_{\text{ext}}}{\partial x \partial y} = \frac{1}{3} \hat{Q}_{xy} \frac{\partial^2 \varphi_{\text{ext}}}{\partial x \partial y}$$

 $\hat{Q}_{x_1} = 3Q|\vec{d}|^2$ Quadrupol

allgemein gilt : für $x_1 = x, x_2 = y, x_3 = z$

$$E_{el} = \frac{1}{6} \sum_{i,j=1}^{3} \hat{Q}_{ij} \frac{\partial^{2} \varphi_{ext}}{\partial x_{i} \partial x_{j}}$$

$$\hat{Q}_{ij} = \int d^3 \vec{r} \{3x_i x_j - |\vec{r}|^2 \delta_{ij}\} \rho(\vec{r})$$

Tensor 2. Stufe $i, j = 1 \rightarrow 3$ für N Punktladungen :

$$\hat{Q}_{ij} = \sum_{k=1}^{N} (3x_i x_j)_n - |\vec{r}|^2 \delta_{ij} \qquad \delta_{ij} = \begin{cases} i = j & 1 \\ i \neq j & \text{sonst} \end{cases} = \begin{pmatrix} 1 & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & 1 \end{pmatrix}$$

 E_{el} in Multipolentwicklung

$$\begin{split} E_{el} &= Q_{\text{ges}} \varphi_{\text{ext}}(\vec{r}) + \sum_{i=1}^{3} p_{i} \frac{\partial \varphi_{\text{ext}}}{\partial x_{i}} + \frac{1}{6} \sum_{i,j=1}^{3} \hat{Q}_{ij} \frac{\partial^{2} \varphi_{\text{ext}}}{\partial x_{i} \partial x_{j}} \\ &= Q_{\text{Mono}} \varphi_{\text{ext}}(\vec{r}) + \underbrace{\vec{p} \, \vec{\nabla} \varphi_{\text{ext}}(\vec{r})}_{\text{Dipolanteil}} + \underbrace{\frac{1}{6} \sum_{i,j=1}^{3} \hat{Q}_{ij} \frac{\partial^{2} \varphi_{\text{ext}}}{\partial x_{i} \partial x_{j}}}_{\text{Quadrupolanteil}} \end{split}$$

Bem.: \vec{p},\hat{Q} abhängig von Wahl des Koordinatensystems

I.4 Elektrostatische Energie und Kapazität

I.4.1 Spanning

Erinnerung:

$$\varphi(\vec{r}) = \frac{\text{``}W(\vec{r_0} \to \vec{r})\text{'`}}{q} = \int_{\vec{r_0}}^{\vec{r}} \vec{E} \ d\vec{s} + \varphi(\vec{r_0})$$

 \vec{r}_0 Bezugspunkt

Spannung U als Potentialdifferenz zwischen \vec{r}_A und \vec{r}_B

$$U_{\rm BA}=\varphi(\vec{r}_B)-\varphi(\vec{r}_A)=\int_{\vec{r}_A}^{\vec{r}_B}\vec{E}\;d\vec{s}$$
unabhängig von \vec{r}_0
$$[U]=1V=1\frac{J}{C}$$

I.4.2 Kapazität

• alle Potentiale \sim Ladung: $\varphi(\vec{r}) \sim Q$ N Punktladungen

$$\varphi(\vec{r}) = \frac{1}{4\pi\epsilon_0} \sum_{i=1}^{N} \frac{Q_i}{|\vec{r} - \vec{r_i}|}$$

für $Q_i \to zQ_i$ gilt $\varphi(\vec{r}) \to z\varphi(\vec{r})$ Es folgt:

$$U = \frac{1}{C}Q$$

C Kapazität

$$[C] = 1F(\text{Farad}) = a\frac{C}{V}$$

typische Werte für C: pF bis mF $(10^{-12}F - 10^{-3}F)$ Bei gegebener Spannung U ist die Kapazität C ein Maß dafür wieviel Ladung eine Konfiguration von Leitern aufnehmen kann

- C abhängig von Geometrie der Leiter Beispiele:
 - a) homogene Kugel Radius R, Ladung Q

$$\varphi(\vec{r}) = \frac{Q}{4\pi\epsilon_0} \frac{1}{r} \quad r_0 = \infty \quad \varphi(\vec{r}_0) = 0$$

$$U(R) = \varphi(R) - \varphi(\infty) = \frac{Q}{4\pi\epsilon_0} \frac{1}{R}$$

$$\boxed{C_{\text{Kugel}} = 4\pi\epsilon_0 R}$$

b) Plattenkondensator (homogenes Feld)

$$\vec{E} = \frac{\sigma}{\epsilon_0} \vec{e}_z \qquad \sigma = \frac{Q}{A} \quad \text{Flächenladungsdichte}$$

$$\varphi(\vec{r}) = \int_{z=0}^z \vec{E} \ d\vec{z} = \frac{1}{\epsilon_0} \frac{Q}{A} z \qquad \varphi(z=0) = 0$$

$$U = \varphi(d\vec{e}_z) - \varphi(d\vec{e}_z) = \frac{1}{\epsilon_0} \frac{Q}{A} d = |\vec{E}| d$$

$$\boxed{C_{\text{Platte}} = \frac{\epsilon_0 A}{d}}$$

c) **Zylinderkondensator**, Länge l

$$Q_1 = -Q_2$$

 \vec{E} -Feld aus Gaußschem Gesetz für $R_1 > r > R_2$ $\vec{E} = 0$ da $Q_{\rm ein} = 0$ für $R_1 \le r \le R_2$:

$$\oint_{\text{Zylinder(r)}} \vec{E} \, d\vec{A} = \int_0^l \int_0^{2\pi} dz d\varphi E_r(|\vec{r}|) = l2\pi r E_r$$

$$E_r = \frac{1}{2\pi\epsilon_0} \frac{Q}{l} \frac{1}{l}$$

$$\varphi = \frac{1}{2\pi\epsilon_0} \frac{Q}{l} \ln r$$

$$U = \varphi(R_2) - \varphi(R_2) = \frac{1}{2\pi\epsilon_0} \frac{Q}{l} \ln \frac{R_2}{R_1}$$

$$C_{\text{Zylinder}} = 2\pi\epsilon_0 \frac{l}{\ln \frac{R_2}{R_1}}$$

d) Lecherleitung/parallele Drähte

einzelner Draht mit Radius R, Ladungsdichte $\frac{Q}{I}$

$$\varphi(\vec{r}) = -\frac{1}{2\pi\epsilon_0} \frac{Q}{l} \ln\left(\frac{r}{R}\right)$$

Drahtpaar mit $\mp \frac{Q}{l}$, Abstand a

$$\varphi(\vec{r}) = -\frac{Q}{2\pi\epsilon_0} \left[\ln \left(\frac{r_+}{R} \right) - \ln \left(\frac{r_-}{R} \right) \right]$$

Sei $R \ll a$. U aus 2 Punkten auf Drähten

pos. Draht: $r_{+} \approx R$ $r_{-} \approx a$ neg. Draht: $r_{+} \approx a$ $r_{-} \approx R$

$$U = \varphi(\text{pos. D}) - \varphi(\text{neg- D})$$

$$= -\frac{1}{2\pi\epsilon_0} \frac{Q}{l} \left[\ln \frac{R}{R} - \ln \frac{a}{R} - \ln \frac{a}{R} + \ln \frac{R}{R} \right]$$

$$= \frac{1}{\pi\epsilon_0} \frac{Q}{l} \ln \frac{a}{R}$$

$$C_{\text{Lecher}} = \frac{\pi \epsilon_0 l}{\ln \frac{a}{R}}$$

e) Kugelkondensator

$$\boxed{C_{\text{Kugelkond.}}} = \frac{4\pi\epsilon_0 R_1 R_2}{R_2 - R_1} = \frac{4\pi\epsilon_0 R_1}{1 - \frac{R_1}{R_2}}$$

für
$$R_2 \to \infty$$
 $C_{Kugel} = 4\pi \epsilon_0 R_1$

I.4.3 Kondensatorschaltungen

a) Parallelschaltung

$$C_1: Q_1 = C_1 U \quad C_2: Q_2 = C_2 U$$

Potentiale / Spannungen gleich $U_1=U_2=U=\varphi_+-0$ $Q_{\rm ges}=Q_1+Q_2$ Ladungserhaltung

 $Q_{\rm ges} = C_{\rm ges} U$ Frage: $C_{\rm ges}$

$$Q_{\text{ges}} = Q_1 + Q_2 = U(C_1 + C_2)$$
 also $C_{\text{ges}} = C_1 + C_2$

allgemein für n parallele C_i :

$$C_{\text{ges}} = \sum_{i=1}^{n} C_i$$

Parallelschaltung erlaubt großes C_{ges}

b) Reihenschaltung

Es gilt: $Q_1^+ = -Q_1^- = Q_2^+ = -Q_2^-$

 $Q_1 \equiv Q$

 $U = U_1 + U_2$

$$U = \frac{Q}{C_1} + \frac{Q}{C_2} = Q(\frac{1}{C_1} + \frac{1}{C_2}) = \frac{Q}{C_{\text{ges}}}$$

also

$$\frac{1}{C_{\text{ges}}} = \frac{1}{C_1} + \frac{1}{C_2}$$

allg. für serielle C_i :

$$\frac{1}{C_{\text{ges}}} = \sum_{i=1}^{n} \frac{1}{C_i} \quad C_{\text{ges}} < C_i$$

I.4.4 Elektrische Energie

- \bullet wie viel Energie notwendig um Ladungen im $\vec{E}\text{-Feld}$ zu bewegen
- Punktladung q von $A \to B$ $W_{A\to B} = q\varphi(\vec{r}_B) - q\varphi(\vec{r}_A)$
- zwei Punktladungen Q_1 und Q_2 von ∞ an $\vec{r_1}$ und $\vec{r_2}$ $Q_1:\infty\to\vec{r_1}$: kein \vec{E} -Feld, kein $\varphi\to$ keine Arbeit $Q_2:\infty\to\vec{r_2}$: Arbeit im Feld von Q_1

$$W_2 = Q_2 \varphi_1(\vec{r}_2) = Q_2 \frac{Q_1}{4\pi\epsilon_0 |\vec{r}_2 - \vec{r}_1|}$$

andere Reihenfolge:

$$W_1 = Q_1 \varphi_2(\vec{r_1}) = Q_1 \frac{Q_2}{4\pi\epsilon_0 |\vec{r_1} - \vec{r_2}|}$$

$$E_{el} = \frac{1}{2} \sum_{i,j=1}^{2} Q_i \varphi_j(\vec{r_i})$$

dritte Punktladung $Q_3: \infty \to \vec{r}_3$

$$W_{3} = Q_{3}\varphi_{1}(\vec{r}_{3}) + Q_{3}\varphi_{2}(\vec{r}_{3})$$
 Es gilt: $Q_{3}\varphi_{i}(\vec{r}_{3}) = Q_{i}\varphi_{3}(\vec{r}_{i})$ $i = 1, 2$
$$E_{el} = \frac{1}{2}Q_{1}[\varphi_{2}(\vec{r}_{1}) + \varphi_{3}(\vec{r}_{1})] + \frac{1}{2}Q_{2}[\varphi_{1}(\vec{r}_{2}) + \varphi_{3}(\vec{r}_{2})] + \frac{1}{2}Q_{3}[\varphi_{1}(\vec{r}_{3}) + \varphi_{2}(\vec{r}_{3})]$$

$$E_{el} = \frac{1}{2} \sum_{i=1}^{N} Q_i \varphi(\vec{r_i})$$
 für N Punktladungen

mit

$$\varphi(\vec{r_i}) = \sum_{\substack{i=1\\i\neq j}}^N \varphi_j(\vec{r_i})$$

konst. Ladungsvertielung $\varphi(\vec{r}): \sum Q_i \to \int dQ$

$$E_{el} = \frac{1}{3} \int \frac{d^3 \vec{r} \rho(\vec{r})}{dQ} \varphi(\vec{r})$$

Bsp.: homogengeladene Kugelschale mit Radius R

$$\varphi(\vec{r}) = \text{const} \quad r < R \qquad \varphi(\vec{r}) = \frac{Q}{4\pi\epsilon_0} \frac{1}{r} \quad r \ge R$$

Sei zunächst Q = 0. dQ aus $\infty \to R$

$$dE_{el} = \varphi(e)dQ = \frac{1}{4\pi\epsilon_0} \frac{Q}{R} dQ$$

$$E_{el} = \int_0^Q \frac{1}{4\pi\epsilon_0} \frac{Q^1}{R} dQ^1 = \frac{1}{4\pi\epsilon_0} \frac{1}{2} \frac{(Q^1)^2}{R} \Big|_0^{Q???R} = \frac{1}{4\pi\epsilon_0} \frac{1}{2} \frac{Q^2}{R} = \frac{1}{2} Q\varphi(R)$$

wie oben Bsp.: homogen geladene Kugel Radius R, Ladung Q:

$$E_{el} = \frac{3}{5} \ k \ \frac{Q^2}{R}$$

Andere Form von E_{el} mit \vec{E}

$$E_{el} = \frac{1}{2} \int d^3 \vec{r} \rho(\vec{r}) \varphi(\vec{r}) \qquad (3. \text{ MW-Gl.}) \quad \text{div}(\vec{E}) = \frac{\rho}{\epsilon_0}$$
$$= \frac{\epsilon_0}{2} \int d^3 \vec{r} \vec{\nabla} \vec{E}(\vec{r}) \varphi(\vec{r})$$

partielle Integraltion $\left(1 \text{ dim: } \int_a^b dx f(x) g'(x) = fg \Big|_a^b - \int dx f'(x) g(x)\right)$ in 3 Dimensionen:

$$E_{el} = \frac{\epsilon_0}{2} \left[\oint_{\text{Rand des}} \varphi(\vec{r}) \vec{E}(\vec{r}) \ d\vec{s} - \int d^3 \vec{r} \ \vec{E}(\vec{r}) \vec{\nabla} \varphi(\vec{r}) \right]$$

Volumen $\to \infty$; $E(\vec{r}) \to 0$ auf Rand $\Rightarrow \oint_{\text{Rand}} \to 0$ verschwindet

$$E_{el} = \frac{\epsilon_0}{2} \int |\vec{E}(\vec{r})|^2 d^3 \vec{r} \qquad \vec{\nabla} \varphi = -\vec{E}$$

 $E_{el} \sim |\vec{E}|^2$ Energie im \vec{E} -Feld gespeichert Energiedichte $W_{el} = \frac{\epsilon_0}{2} |\vec{E}|^2$

Bsp.: Plattenkondensator mit Spannung U(q)

 E_{el} und dq auf Platte hinzufägen?

 $dE_{el}=Udq=\frac{q}{C}\;dq$ Energie um Kondensator von Ø nach Q laden

$$E_{el} = \int_{0}^{Q} \frac{q}{C} dq = \frac{1}{2} \frac{q^{2}}{C} \Big|_{0}^{Q} = \frac{1}{2} \frac{Q^{2}}{C}$$

$$E_{el} = \frac{1}{2} \frac{Q^{2}}{C} = \frac{1}{2} QU = \frac{1}{2} CU^{2} = \frac{1}{2} \epsilon_{0} V_{\text{Kond}} |\vec{E}|^{2}$$

$$V_{\text{Kond}} = Ad \quad C = \epsilon_{0} \frac{A}{d} \quad |\vec{E}| = \frac{U}{d}$$

I.5 Materie in elektrischen Feldern

I.5.1 Polarisation des Mediums

Betrachte Nichtleiter, Q=0 im externen \vec{E} -Feld

- keine freien Elektronen e^-
- Verschiebung der e⁻ im Atom / Molekül.
 - \rightarrow mikroskopische Dipole $\vec{p_i} = q_i \vec{d_i}$
 - \rightarrow Ausrichtung im \vec{E} -Feld: $\vec{E} \uparrow \uparrow \vec{p_i}$ parallel

Effekt:

- Polarisation des Mediums \vec{P} oder (\vec{P})
- \bullet Flächenladungsdichte $\sigma_{\rm pol}$ am Rand des Mediums

Polarisation \vec{P} :

$$\vec{P} \equiv \frac{1}{V} \sum_{i} \vec{p_i}$$

Mittelung der mikroskopischen Dipole über Volumen V $[\vec{P}] = \frac{C}{m^2}$ Annahme: alle $\vec{p_i}$ gleich \vec{P} , gleich ausgerichtet, Dipoldichte η Gilt:

$$P = |\vec{P}| = \eta |\vec{p}| = \eta qd$$

Flächenladungsdichte $\sigma_{\rm pol}$

Betrachte V = dA am Rand des Mediums

$$P = \frac{\eta q dA}{A} = \frac{\eta q V}{A} = \frac{Q}{A} = \sigma_{\text{pol}}$$

d.h. Polarisation $\hat{=}$ Flächenladungsdichte am Rand

Polarisationsfeld \vec{E}_{pol} im Medium

Anwendung von Maxwell-Gl auf Bereich mit σ_+

$$\oint_{\sigma_+} \vec{E}_{\text{pol}} \ d\vec{A} = \frac{Q_{\text{ein}}}{\epsilon_0}$$

rechts $\vec{E}_{\rm pol}=0$ keine Beitrag zum Fluss links $\vec{E}_{\rm pol}\uparrow\uparrow\vec{A}$

$$E_{\text{pol}}A = \frac{Q_{\text{ein}}}{\epsilon_0} \Rightarrow E_{\text{pol}} = \frac{Q_{\text{ein}}}{A\epsilon_0} = \frac{\sigma_{\text{pol}}}{\epsilon_0} = \frac{P}{\epsilon_0}$$

Richtung von \vec{E}_{pol} :

 \vec{p} von neg. Pol zur pos Pol

 $\vec{E}_{\rm pol}$ von pos. Ladung zur neg Ladung

$$\rightarrow \vec{P} = -\epsilon_0 \vec{E}_{\rm pol}$$

 \vec{E}_{Med} Überlagerung von \vec{E}_{Pol} und \vec{E}_{frei}

a) \vec{E}_{frei} ohne Medium \vec{E}_{pol} aus Dipolen

$$ec{E}_{ ext{Med}} = ec{E}_{ ext{frei}} + ec{E}_{ ext{Pol}} = ec{E}_{ ext{frei}} - rac{ec{P}}{\epsilon_0}$$

Polarisation abhängig von $\vec{E}_{\text{Med}}: \vec{P} = \epsilon_0 \chi_e \vec{E}_{\text{Med}}$ $\chi_e = \hat{d}_{\text{ielektrische}}$ Suszeptibilität

$$\vec{E}_{\mathrm{Med}} = rac{\vec{E}_{\mathrm{frei}}}{1 + \chi_e}$$

 $\epsilon = 1 + \chi_e$ relative Dielektrizitätskonstante / Permitivität

$$\vec{E}_{\mathrm{Med}} = \frac{\vec{E}_{\mathrm{frei}}}{\epsilon}$$

 ϵ Faktor um den Feld geschwächt wird

 ϵ, χ_e abhängig von der Art und Struktur des Mediums

I.5.2 Felder und Maxwell gl. im Medium

3. MW-Gl:

$$\operatorname{div}\vec{E}_{\mathrm{Med}} = \frac{P}{\epsilon_0} = \frac{1}{\epsilon_0} (\rho_{\mathrm{frei}} + \rho_{\mathrm{Pol}}) \tag{*}$$

 $\rho_{\rm frei}$ freie Ladung, $\rho_{\rm Pol}$ Polarisationsladungen Polarisationsladung in V mit Rand A

$$\Delta Q_{\rm Pol} = \int_A \sigma_{\rm Pol} \ dA = \int_A \vec{P} \ dA \tag{1}$$

Außerdem:

$$\Delta Q_{\rm Pol} = -\int \rho_{\rm Pol} \ dV \tag{2}$$

 $\vec{P} \uparrow \uparrow, \vec{E}_{\text{frei}} \to \vec{P} \uparrow \downarrow \vec{A}$ auf rechter Grenze also mit "+" $\Delta Q_{\text{Pol}} < 0$ in (1) $\rho_{\text{Pol}} > 0$ in (2) \to "–" Zeichen in (2)

Gaußscher Satz:

$$\oint \vec{P} \ d\vec{A} = \int \operatorname{div} \vec{P} \ dV = \int -\rho_{\text{Pol}} \ dV$$

Es folgt:

$$\rho_{\text{Pol}} = -\text{div}\vec{P} = \epsilon_0 \text{div}\vec{E}_{\text{Pol}}$$

In (*):

$$\begin{aligned} \operatorname{div} \vec{E}_{\mathrm{Med}} &= \frac{1}{\epsilon_0} (\rho_{\mathrm{frei}} + \epsilon_0 \mathrm{div} \vec{E}_{\mathrm{Pol}}) \\ \operatorname{div} (\vec{E}_{\mathrm{Med}} - \vec{E}_{\mathrm{Pol}}) &= \frac{1}{\epsilon_0} \rho_{\mathrm{frei}} \end{aligned}$$

Definiere \vec{D} als Flussdichte / elektrische Erregung / dielektrische Verschiebung

$$\vec{D} = \epsilon_0 (\vec{E}_{\rm Med} - \vec{E}_{\rm Pol}) = \epsilon_0 \vec{E}_{\rm frei} = \epsilon_0 E_{\rm Med} + \vec{P}$$

$$\boxed{ 3. \text{MW-GL}: \ \text{div} \vec{D} = \rho_{\rm frei} \\ 1. \text{MW-GL}: \ \text{rot} \vec{E}_{\rm Med} = 0 }$$

Feldverhalten an Grenzflächen

Betrachte Grenzfkäche: Medium/Dielekktrikum ($\epsilon > 1$) \leftrightarrow Volumen ($\epsilon = 1$)

- nur Polarisation $ho_{\mathrm{frei}} = 0 \quad \cdot \vec{E}_{\mathrm{ext}}$
- $\rho_{\text{frei}} = 0 \Rightarrow D_{\text{Med}}^{\perp} = D_{\text{Vak}}^{\perp}$ $E_{\text{Med}}^{\perp} = \frac{1}{\epsilon} E_{\text{Vak}}^{\perp}$

$$\oint \vec{D} \ dA = 0 \ \text{da frei} \ = 0$$

 $d \to 0$: Beiträge von linker und rechter Stirnfläche

$$D_{\mathrm{Med}}^{\perp}(A) + D_{\mathrm{Vak}}^{\perp}(-A) = 0 \rightarrow D_{\mathrm{Med}}^{\perp} = D_{\mathrm{Vak}}^{\perp}$$

• parallele Komponenten $D^{\parallel}, E^{\parallel}$

$$\oint_{ABCD} \vec{E} \ d\vec{s} = 0 \text{ da } \text{rot} \vec{E} = 0$$

 $\overline{AB}, \overline{CD} \to 0$ nur \overline{BC} und \overline{AD} tragen bei

$$\int_{\overline{BC}} \vec{E} \, d\vec{s} + \int_{\overline{AD}} \vec{E} \, d\vec{s} = 0 \quad d\vec{s}_{\overline{AD}} = -d\vec{s}_{\overline{BC}}$$

$$\int_{B}^{C} E_{\text{Med}}^{\parallel} \, d\vec{s} + \int_{A}^{D} E_{\text{Vak}}^{\parallel} \, d\vec{s} = 0$$

$$\Rightarrow E_{\text{Med}}^{\parallel} = E_{\text{Vak}}^{\parallel} \to D_{\text{Med}}^{\parallel} = \epsilon D_{\text{Vak}}^{\parallel}$$

Berechnungsgesetz der Elektrostatik

$$\tan\alpha_{\mathrm{Med}} = \frac{E_{\mathrm{Med}}^{\parallel}}{E_{\mathrm{Med}}^{\perp}} = \epsilon \frac{E_{\mathrm{Vak}}^{\parallel}}{E_{\mathrm{Vak}}^{\perp}} = \epsilon \tan\alpha_{\mathrm{frei}}$$

I.5.3 Mikroskopische Beschreibung der Polarisation (Pol.)

angenommen $\vec{P} \sim \vec{E}_{\text{Med}}$

- Verhalten von Nichtleitern ohne permanentes Dipolmoment $\vec{p} = 0$ z.B. H_2 Ladungsschwerpunkt $(\vec{r_s})$ mittig
- im \vec{E} -Feld verschiebung der e^- bzw. $\vec{r_s}$ $\vec{F_e} \sim \vec{E}$ $\rightarrow \vec{p} = \alpha \vec{E}$, $\alpha = \frac{\text{elektrische Polarisierbarkeit}}{\text{Polarisation dominiert, sind Dielektrika im engeren Sinne}}$
- Makroskopische Polarisation \vec{P}

$$\vec{P} = n\vec{p} = n\alpha \vec{E}_{\mathrm{Med}}$$
 $n = Moleküle$ $n = \frac{N_A \rho}{m_{\mathrm{Mol}}}$

 N_A Avogadrokonst. ρ Massendichte m_{Mol} Molmasse

• Hatten $\vec{P} = \epsilon_0 \chi_e \vec{E}_{\text{Med}}$ Zusammenhang α und $\chi_e \epsilon$

$$\alpha = \frac{\epsilon_0}{n} \chi_e = \frac{\epsilon_0}{n} (\epsilon - 1)$$

gut für kleine P (z.B. Gase) wen P groß, dann Dipol-Dipol-Wechselwirkung \rightarrow Clausius-Mosotti-Beziehung: $\alpha = \epsilon \frac{\epsilon_0}{n} \frac{\epsilon - 1}{\epsilon + 2}$

Bsp.: H_2 -Molekül im E-Feld $1\frac{\text{MV}}{\text{m}}$

$$\alpha_{H_2} = 8, 7 \cdot 10^{-41} \frac{\text{Cm}}{\text{V}} (\alpha_{\text{typ}} \approx 100 \alpha_{H_2})$$
$$|\vec{p}|_{H_2} = 8, 7 \cdot 10^{-35} \text{Cm}$$
$$d = 2, 7 \cdot 10^{-16} \text{m} \quad L = 7, 4 \cdot 10^{-11} \text{m} \text{ (Abstand H Atome)}$$

 $d/L = 3.6 \cdot 10^{-6}$

- polare Moleküle (z.B. H_2O) mit permanentem Dipolmoment \vec{p} R \rightarrow paraelektrisch
- $\vec{E}_{\mathrm{Med}} = 0$ Richtung der \vec{p} statistisch / gleichverteilt \rightarrow kein \vec{P}
- $\vec{E}_{\mathrm{Med}} \neq 0$ Ausrichtung der \vec{p} im \vec{E} -Feld

Wärmebewegung behindert vollständige Ausrichtung. Ausrichtungsgrad beschrieben durch Boltzmannverteilung (\rightarrow Ex1)

$$f(\Delta E) = f_0 e^{-\Delta E/kT}$$
 T Temperatur, k Boltzmannkonstante

$$\Delta E = -|\vec{p}||\vec{E}|\cos\theta$$
 pot Energie des Dipols

 $\vec{E} = E\vec{e}_z$ Beitrag von 1 Molekül $\vec{p}_z = |\vec{p}|\cos\theta$

Polarisation aus $f(\theta)$

Ergibt:

$$P = n\vec{p}_z \left\{ \underbrace{\coth \frac{p|\vec{E}|}{kT} - \frac{kT}{p|\vec{E}|}}_{\text{Langevin fkt.}L(\frac{p|\vec{E}|}{kT})} \right\}$$

L(x)=1 d.h. alle Dipole ausgerichtet. of
t $p|\vec{E}|<< kT$ dann $L(x) \approx \frac{1}{3}x$ für |x|<<1dann

$$P = np\frac{1}{3}\frac{p|\vec{E}|}{kt} = \frac{1}{3}\frac{p^{2}|\vec{E}|}{kt}$$

wieder linear in $|\vec{E}|$

- für $|\vec{E}|$ groß, oder T klein nicht lineare Effekte und schließlich Sättigung
- Suszeptibilität abhängig von Temperatur $\chi_e(T)$

$$\begin{array}{l} \text{Bsp.: } H_2O\text{-Molekül in E-Feld } 100\frac{\text{kV}}{\text{m}} \\ P_{H_2O} = 6,15\cdot 10^{-30}\text{Cm} \quad \epsilon_{H_2O} \approx 80 \\ \Delta E = |\vec{p}||\vec{E}| = 7,7\cdot 10^{-27}\text{J} = 4,8\cdot 10^{-8}\text{eV} \end{array}$$

Ausrichtungsgrad: $\frac{1}{3} \frac{p|\vec{E}|}{kT} = 1, 9 \cdot 10^{-6}$

d.h. für 1 Million Moleküle, 2 mit $\vec{p} \uparrow \uparrow \vec{E}$ Paraelektrisch: Überlagerung von Verschieb. pol. und Orientierungs-pol.

$$P = n\left(\alpha + \frac{1}{3}\frac{p^2}{kT}\right)E_{\text{Med}}$$

plus Clausius-Moretti-Korrektur $3\frac{\epsilon-1}{\epsilon+2}\epsilon_0=n(\alpha+\frac{1}{3}\frac{p^3}{kT})$ hieraus χ_e,ϵ $P=\epsilon_0\chi_e E_{\mathrm{Med}}$ **Exp. Bestimmung: Messung** $C(T)\to\chi_e(T)$ Ferroelektrika

- große permanente Dipolmomente \vec{p} (Kristalle, kein Eisen)
- Dipol-Dipol-Wechselwirkung \rightarrow Domänenbildung ohne \vec{E} -Feld (durcheinander)
- in \vec{E} -Feld: Ausrichtung der Domänen sehr große ϵ bis 10^5

I.5.4Kondensator im Dielektrikum

Meist: Dielektrikum zwischen den Platten Ziel:

- Erhöhung der Spannungsfelder
- Erhöhung der Kapazität

Exp:

- a) Ladung $Q = \text{const. } C = \frac{Q}{U}$ Beobachtung: $U(|\vec{E}|)$ kleiner $\to C$ größer
- b) Spannung U = const.Beobachtung: Q größer $\to C$ größer

Erklärung: (a)

- Dielektrikum polarisiert
- Oberflächenladung $\sigma_{\rm pol}$ an Grenzflächen $\to \vec{E}_{\rm pol} \uparrow \downarrow \vec{E}_{\rm ext} \Rightarrow \vec{E}_{\rm Med}$ geschwächt $\to U$ kleiner $U = |\vec{E}| d$

U def. über Arbeit um dq von "+" nach "–" zu bewegen. Feld schwächer $\to U$ kleiner um Faktor ϵ also

$$C = \epsilon \epsilon_0 \frac{A}{d}$$

und

$$E_{\rm el} = \frac{1}{2}CU^2 = \frac{1}{2}\epsilon\epsilon_0 |\vec{E}|^2 V$$

Energiedichte

$$W_{\rm el} = \frac{E_{\rm el}}{V} = \frac{1}{2}\epsilon\epsilon_0 |\vec{E}|^2 = \frac{1}{2}\epsilon_0 \vec{D}\vec{E}$$

Vgl. von elektrischer Energie ohne und mit Dielektrikum

ohne mit
$$\begin{array}{ccc} C_0 & \to & \epsilon C_0 \\ U_0 & \to & U_0/\epsilon & \text{bei } Q = \text{const.} \\ & & \downarrow & \\ E_{\text{el}} & \to & E_{\text{el}}/\epsilon \end{array}$$

Teilweise mit $\epsilon > 1$ gefüllter Kondensator

- $\bullet\,$ Ladungsdichte größer bei $\epsilon>1$ da $E_{\parallel}^{\rm Med}=E_{\parallel}^{\rm Vak}$
- $\bullet\,$ Parallelschaltung von 2 Kondensatoren
- $C_{\text{Med}} = \epsilon C_{\text{Vak}} \to Q_{\text{Med}} = \epsilon Q_{\text{Vak}} \text{ da } U = \text{const.}$

Kapitel II

Magnetostatik

II.6 Ströme

II.6.1 Elektrischer Strom

Bisher: ruhende Ladungen, räumlich getrennt $\rightarrow \vec{E}, \varphi$

Jetzt: leitende Verbindung \rightarrow pos. und/oder neg. Ladungen bewegen sich

Strom: Ladungsfluss pro Zeit durch eine gegebene Fläche

$$\boxed{I = \frac{\Delta Q}{\Delta t} \quad \text{bzw.} \quad I = \frac{dQ}{dt}}$$

1. wenn I = const. ist in Δt und 2.für I(t)

[I] = 1A Ampére SI-Basiseinheit

Richtung: von "+"-Pol zu "–"-Pol \rightarrow technische Stromrichtung

in Leitern (metall): ↑↓ Richtung der Elektronen

Stromdichte:

$$\vec{j}(\vec{r}) = \frac{dI}{dA}\vec{e}_j$$
 \vec{e}_j in Stromrichtung Zshg.: $I = \int_A \vec{j} \ d\vec{A}$

Bsp.: Vakuumdiode

 v_e (Kathode) $\approx 0 \text{m/s}$ Beschleunigung in $\vec{E} = E \vec{e}_z$

wieviele e^- treffen in dt auf pos. Platte?

Alle e^- im Abstand $< ds = v \ dt$ bzw. Volumen $ds \ A$ befinden $V = ds \ A = Av \ dt$ Anzahlt e^- in V: $n_e V - n_e$ Elektronendichte. Transponierte Ladung $dQ = e n_e Av \ dt$

Strom
$$I = en_e Av$$
 Stromdichte $\vec{j} = en_e \vec{v}$

 \vec{j} konstant entlang Flugrichtung wegen Ladungserhaltung \Rightarrow Kathode: kleine v, große n_e ; Anode: große v, kleine n_e

Kontinuitätsgleichung

Betrachte Volumen V, mit Oberfläche A

Strom (oder) Ladungsdichte/Zeit druch A = Änderung der Ladung in V

$$I = \oint_{A(V)} \vec{j} \, d\vec{A} = -\frac{dQ}{dt}$$

Gaußscher Satz:

$$\Rightarrow \int_V \operatorname{div} \vec{j} \ dV = -\frac{d}{dt} \int \rho_Q \ dV$$

$$Q = \int \rho_{el} \ dV$$

$$\Rightarrow \left[\operatorname{div} \vec{j}(\vec{r}, t) = -\frac{\partial}{\partial t} \rho_Q(\vec{r}, t) \right] \text{ Kontinuitätsgleichung}$$

Ladungen erhalten; werden nicht erzeugt oder vernichtet

II.6.2 Ohmsches Gesetz

G.S. Ohm (1826): $(I \sim U)$ in vielen Leitern

$$\Rightarrow U = RI$$

Ohmsche Gesetze (OG.) makroskopische Form R: el./ohmscher Widerstand

$$[R] = 1\frac{V}{A} = 1\Omega$$
 Ohm

Exp: Strom-Spannungs Charakteristika I(U)

$$R(U) = \frac{dU}{dI}$$

$$\begin{array}{c|c} \underline{\text{Kohlefaden}} & \underline{\text{Gl\"{u}hlampe}} & \underline{\text{Konstantandraht}} \\ R \text{ kleiner f\"{u}r große } U & R \text{ gr\"{o}\$er f\"{u}r große } U & R \text{ konstant} \\ \end{array}$$

Ursache: Temperaturabhängigkeit R(T) (\rightarrow später)

Strikt: Ohmscher Widerstand $I \sim U^1$; nicht-ohmsch $I \sim U^k \quad k \neq 1$

Supraleitung

Flüssiger Stickstoff: $T_{W_2} = 77K = -196^{\circ}C$

Messung: $R(\Delta T)$ $\Delta T = T_{\text{Probe}} - T_{W_2}$ Zeitabstand $\Delta t \approx 5s$ Beobachtung:

Hoch temperatur
supraleiter $R = 0\Omega$ bis zu $\Delta T \approx 8K$

 \rightarrow Sprungtemperatur $T_c = 77K + 8K = 85K = -188^{\circ}C$

Kupfer:

 $R = 0,7 \text{m}\Omega$ für kleine ΔT , danach ohmscher Widerstand Supraleitung:

gewisse Materialien die für $T < T_c$ Widerstand Verlieren

II.6.3 Arbeit und Leitung

An Ladung q (von φ_1 nach φ_2 gebracht) wird Arbeit verrichtet/gewonnen

$$W = q(\varphi_1 - \varphi_2) = qU$$

In dt wird dQ transportiert, dann wird Leistung P verrichtet.

$$P = \frac{dW}{dt} = \frac{dQ}{dt}U = UI$$
 el. Leistung

Umkehrung:

$$W = \int_0^t P(t) dt = \int_0^t U(t)I(t) dt$$

$$[P] = 1W = 1VA = 1\frac{I}{s}$$

Leistung wird im Leiter in Wärme umgewandelt geht aus Stromkreis verloren.

Exp: Widerstände

Widerstände aus Fe und C
n in Reihe geschalten $R_{Cn} < R_{Fe}$ Strom I gleich $P = UI = RI^2 \rightarrow P_{Cn} < P_{Fe}$

II.6.4 Leitungsvorgänge in Metallen und Halbleitern

Metalle:

Strom durch die e^- im Leitungsband, U an Drahtenden $\to \vec E$ -Feld Beschleunigung der $e^ -\vec F_{e^-}=-e\vec E$

Aber: thermische Bewegung $hT(300{\rm K})=0,0025{\rm eV}\to v_{\rm therm}\approx 10^5\frac{\rm m}{\rm s}$ Stöße mit den Atomen ("Reibungseffekt")

 \rightarrow Drift der Elektronen mit v_{drift}

Stromdichte \vec{j} : in dt passieren alle e^- die Fläche A in $dl = v_0 t$ bzw V = dl A

$$dQ = N_e e = e n_e V \ dA \ dt$$

 N_e Anzahl e^- , n_e e^- -Dichte

$$\vec{j} = -n_e e \vec{v}_0$$

,,–" weil $\vec{v_0} \uparrow \downarrow \vec{E}$

Driftgeschewindigkeit v_D

$$v(t) = at = \frac{e|\vec{E}|}{m_e}t$$
 m_e Elektronenmasse

(mit $F_e l = q \cdot \vec{E}$ und q = e)

Sei \mathcal{T}_s mittlere Zeit zwischen 2 Stößen

$$v_0 = \frac{e|\vec{E}|\mathcal{T}_s}{m_e} = \boxed{\frac{n_e e^2 \mathcal{T}}{m_e}} |\vec{E}|$$

$$\sigma_{el} = \frac{1}{\rho_{el}} = \frac{n_e e^2 \mathcal{T}}{m_e}$$

 σ_{el} Elektrische Leitfähigkeit?!?!? ρ_{el} spezifischer Widerstand $[\rho_{el}]=\Omega m$

$$\vec{j} = \sigma_{el} \vec{E}$$

ohmsches Gesetz in mikroskopischer/originaler Form "Rückkehr" zu makroskopischem OG. $\vec{I}=\mathrm{const.}$ über A

$$I = |\vec{j}|A = \frac{1}{\rho_{el}}|\vec{E}|A = \frac{1}{\rho_{el}}\frac{U}{l}A$$

d.h.

$$R = \frac{\rho_{el} \ l}{A}$$
 Widerstand eines Drahtes

Halbleiter:

Bandlücke ΔE zwischen Valenz- und Leitungsband

$$n_e = n_0 e^{-\frac{\Delta E}{kT}}$$
 steigt mit T

- für $T < T_{\text{S\"attigung}}$: $\frac{dR}{dT} < 0$
- für $T > T_{\text{S\"attigung}}$: $\begin{cases} n_e \to \text{const.} \\ T_s \text{ sinkt mit T} \end{cases} \sigma \text{ sinkt mit } T$

II.6.5Kirchhoffsche Gesetze KHG

- 2 KHG + OG Grundlage für U bzw. I in R-Netzwerken
- 1.KHG (auch Kontenregel): im Knoten gilt $\sum_i I_i = 0$ aus Ladungserhaltung
- 2.KHG (auch **Maschenregel**): in Maschen gilt $\sum_i U_i = 0$ folgt $\oint \vec{E} \ d\vec{S} = 0$

Widerstandsschaltungen

• Reihenschaltung:

Knotenregel: $I = I_1 = I_2$

Machenregel: $U = U_1 + U_2$

OG: $U = R_1 I_1 + R_2 I_2 = (R_1 + R_2) I$

 $\rightarrow R_{\rm ges} = R_1 + R_2$

bzw. für $n R_i$:

$$R_{\rm ges} = \sum_{i=1}^{n} R_i$$

• Parallelschaltung:

Knotenregel: $I = I_1 + I_2$

Maschenregel:
$$U = U_1 = U_2$$

 $I = I_1 + I_2 = \frac{U_1}{R_1} + \frac{U_2}{R_2} = U(\frac{1}{R_1} + \frac{1}{R_2})$
 $\frac{1}{R_{\text{ges}}} = \frac{1}{R_1} + \frac{1}{R_2}$
bzw. für $n R_i$:

$$\frac{1}{R_{\text{ges}}} = \sum_{i=1}^{n} \frac{1}{R_i}$$

Wheatstonesche Brückenschaltung

Ziel: Messung von unbekannten R_x Spannungen an den grünen Punkten:

$$U_L = \frac{R_2}{R_1 + R_2} U_0 \qquad U_R = \frac{R_x}{R_0 + R_x} U_0$$

kein Strom I wenn $U_L = U_R$ dann gilt: $\frac{R_2}{R_1 + R_2} = \frac{R_x}{R_0 + R_x}$

II.6.6 Leitungsvorgänge in Flüssigkeiten

Beobachtung: reines H_2O kein Strom, Zugabe von NaCl Strom \sim Konzentration des NaCl

- Elektrolyt: Lösung von Salz, Säure, Lauge die Strom leitet
- Dissoziation in Lösung (Ionisation/Hydratisierung)

$$NaCl \rightarrow Na^{+}(H_2O) + Cl^{-}(H_2O)$$

wenn E(Anlagerung) > E(Ionisation)

• Wanderung der Na^+ , Cl^- -Ionen im \vec{E} -Feld. Materialabscheidung an Elektroden (fest, gasförmig) Na^+ zu Kathode(-): Abscheidung von Na ($Na^+ + e^- = Na$) CL^- zu Anode(+): Abscheidung von Chlorgas ($2Cl^- \rightarrow Cl_2 + 2e^-$)

Exp:

Glas bei $T=300\mathrm{K}$ Isolator, erstarrte Flüssigkeit bei $T=600^{\circ}\mathrm{C}$ Funken, erster Stromfluss

Strom $\to T \nearrow \to I \nearrow \to T \nearrow \dots$ bis das Glas schmilzt

Ionenleitung:

pos. Ionen mit Ladung \mathbb{Z}_+ und Dichte n_+

neg. Ionen mit Ladung Z_{-} und Dichte n_{-}

Drift im \vec{E} -Feld: $\vec{v}_{+/-} = \pm \beta_{\pm} \vec{E}$ β_{\pm} ist die Beweglichkeit der Ionen (teilweise: u, μ) $[\beta] = \frac{m^2}{Vs}$

Stromdichte:

$$|\vec{j}| = e(n_+ Z_+ V_+ + n_- Z_- V_-)$$

$$\sigma_{el} = e(n_{+}\beta_{+}Z_{+} + n_{-}\beta_{-}Z_{-})$$

für kleine n: $\beta \neq \beta(n)$ typisches $\beta \sim 10^{-8} \to 10^{-7} \frac{\text{m}^2}{\text{Vs}}$

Voltasche Spannungsreihe

Metall in Wasser: wenn $E_{\text{Ionisation}} < E_{\text{Hydratisierung}}$

Atom $\rightarrow A^+(H_2O) + e^-$ (Elektrode)

E-Feld zwischen neg. Elektrode und pos. Elektrode <u>bewirkt</u> $E_{\text{Ionisation}}$ wächst \to Sättigung der Ionisation

 $n_{\text{Gleichgewicht}}$ und $U_{\text{Gleichgewicht}}$ (Elektrode und Flüssigkeit) \rightarrow elektrolytische Tension

- zwei Elektroden aus
 - a) gleichem Metall \rightarrow keine Spannung zwischen Elektroden
 - b) unterschiedliche Metalle $\rightarrow \Delta U$ Galvanisches Element
- \bullet Messung von ΔU zu Referenzelektrode (H_2 umspültes Platin)
 - \rightarrow Voltasche Spannungsreihe ("—" unede
l \rightarrow "+"edler)

II.6.7 Stromleitung in Gasen

• Gase: keine (minimale) freie Ladungsträger

• Entladung: Stromfluss durch Gas

• Ladungsträger: Ionen (A^+, M^+) und $e^-, n_+ \approx n_-$

• 2 Arten:

- unselbstständige von außenerzeugte A^+, e^-

- selbsständige: initialer Strom wird verstärkt

Unselbsständige Ionisation:

a) als Röntgenstralung $\gamma + A \rightarrow A^+ + e^-$

b) therm. Bewegung in Stößen $T \nearrow \text{dann } E_{\text{kin}} \nearrow \text{für } E_{\text{kin}}$

Erzeugungsrate für Ionen $(e^-,A^+):(\frac{dn}{dt})_{\rm erz}=\alpha$ Vernichtungsrate/Rekombinationsrate: $(\frac{dn}{dt})_{\rm Reh}=-\beta n_+n_-=-\beta n^2$

$$n_+ = n_- = n$$

• Summe: $(\frac{dn}{dt})_{\text{Gesamt}} = \alpha - \beta n^2$

• Gleichgewicht: $(\frac{dn}{dt})_{\text{gesamt}} = 0 \rightarrow n_{\text{Gleichgew}} = \sqrt{\frac{\alpha}{\beta}}$ $n_{\text{Gleich.}} = \text{const.} \rightarrow \text{ohmscher Bereich}$

$$\vec{j} = e\sqrt{\frac{\alpha}{\beta}}(\beta^+ + \beta^-)\vec{E}$$

• U, \vec{E} sehr groß: $\lambda_{\text{frei}} \gg \text{Abstand der Platten}$ $\rightarrow \text{ keine Rekombination } \beta \rightarrow 0$ Sättigungsstrom I_s : alle e^-A^+ abgesandt

$$I_s \sim \alpha$$

II.6.8 Stromquellen

Innenwiderstand

• $U_v < U_0$

• Stromquelle hat maximale Leitung

 \rightarrow Effekt beschrieben durch Ersatzschaltbild (Reale Stromquelle als Spannungsquelle in reihe mit Widerstand)

37

Spannungs-/Stromquelle mit U_0 in Serie mit Innenwiderstand R_I – U_0 Elektromotorische Kraft EMK

$$I = \frac{U_0}{R_I + R_V} \qquad U_{kl} = R_V I = \frac{R_V}{R_I + R_V} U_0$$

Leistung:

$$P_V = U_{kl}I = \frac{R_V}{(R_V + R_I)^2} U_0^2$$

Grenzfälle:

- a) $R_V \to \infty$ $U_{kl} \to U_0$ $I \to 0$ $P_V \to 0$ offene Stromstärke
- b) $R_V \to 0$ $U_{kl} \to 0$ $I = \frac{U_0}{R_I} = \frac{U_{kl}}{R_V}$ $P_V \to 0$ kurz schluss

dazwischen P_V maximal (bei $R_I = R_V$ in Übung berechnet)

II.6.9 Thermoelektrizität

Kontaktpotential

- 2 unterschiedliche Metalle in Kontakt Fermi-Energien / Austrittsarbeiten sind unterschiedlich $E_F(A) < E_F(B)$: wandern e^- von A nach B, A pos. geladen / B neg. geladen $\to \vec{E}(B \to A)$ entgegengesetzt zu Strom
- \to Kontaktspannung $U_{\rm kon}=E_F(B)-E_F(A)$ Geschlossener Kreis: $\sum_i U_{\rm kon}^i=0$ bei konstanter Temperatur

Seebeck-Effekt

- $U_{\rm kon}$ temperaturabhängig
- Kontakte 1 und 2 bei T_1 und T_2 \to Seebeck Koeffizienten $[S_i] = \frac{V}{K}$ typ: $10^{-5 \to -6}$ in Metall 10^{-3} in Halbleiter
- ΔT bewirkt Spannung

Peltier-Effekt

Strom durch Material A, B, A

- Strom durch Kontaktstellen bewirkt ΔT
- $E_F^A > E_F^B$ AB heiß BA kühl

 $A \to B : \frac{dW}{dt} > 0$ T steigt, Energie dem Gitter zugeführt

 $B \to A : \frac{dW}{dt} < 0$ T sinkt, Energie dem Gitter entzogen

$$\frac{dW}{dt} = (\Pi_A - \Pi_B)I \qquad \text{Peltierkoeffizienten}[\Pi] = \frac{J}{K} \quad (\text{typ } 10^2 J/K)$$

Es gilt: $\Pi_A = S_A T$

II.7 Das magnetische Feld

II.7.1 Eletromagnetische Kräfte

 \rightarrow Folie

II.7.2 Magnetisches Feld

- Elektrostatik: Coulombkraft $\vec{F_e}$ $\rightarrow \vec{E}$ -Feld $\vec{E} = \frac{\vec{F_e}}{q_{\text{Probe}}}$
- Beobachtung \rightarrow Feld \rightarrow Kraft
- Beobachtung:
 - Feldlinien immer geschlossen
 [auch innerhalb von Permanentmagneten]
 ⇒ Quellen-frei
 - in Nähe von Pol und Stromdurchflossener Leiter Feldlinien Dichter \to Feld größer $\sim \frac{1}{r^k} \quad k>0$
 - Konvention:

Außenbereich von Nord \rightarrow Süd Innenbereich von Süd \rightarrow Nord in Permanentmagneten

Idee: mathematische Beschreibung durch Vektorfeld $\vec{B}(\vec{r})$ "magnetische Feldstärke", "Flussdichte", "Induktion"

$$[\vec{B}] = 1$$
T (Tesla) = $1\frac{Vs}{m^2}$ (Zshg. später)
magnetischer Fluss $\Phi_M \equiv \int_A \vec{B} \ d\vec{A}$

II.7.3 Maxwell-Gleichung der Magnetostatik

• geschlossene Feldlinien ohne Anfang und Ende

4. MW-Gl. \vec{B} ist Quellen-frei.

Äquivalenz mittels Gaußschen Satzes

$$\oint_A \vec{B} \ d\vec{A} = \int_V {\rm div} \vec{B} \ dV = 0 \quad \text{für beliebige Volumina} \ \Rightarrow \ {\rm div} \vec{B} = 0$$

39

• kein skalares Potential φ_M definierbar

• Feld von stromdurchflossenen Leiter.

$$\vec{B}(\vec{r})=B(|\vec{r}|)\vec{e}_{\varphi}$$
 nur von r abhängig
$$\oint_{r=r_0} \vec{B} \; d\vec{s}=2\pi r_0 B(r_0) \neq 0 \;\; \mu_0 I \; \text{experimentell}$$

$$\rightarrow \oint \vec{B} \ d\vec{s} = \mu_0 I$$

Ampéresches Gesetz μ_0 magnetische Feldkonstante Permeabilität des Volumens

$$\mu_0 = 4\pi \times 10^{-7} \frac{\text{Vs}}{\text{Am}}$$
 μ_0 ohne Felder \rightarrow später

• Anwendung des stokesschen Satzes mit $I = \int \vec{j} d\vec{A}$

$$\oint_{R(A)} \vec{B} \ d\vec{s} = \int_{A} \operatorname{rot} \vec{B} \ d\vec{A} = \mu_0 \int \vec{j} \ d\vec{A}$$

Weg \vec{s} auf dem Rand R(A) pos. Schraube um \vec{A}

$$\cot \vec{B} = \mu_0 \vec{j} \qquad \oint \vec{B} \ d\vec{s} = \mu_0 I$$

2 MW-Gl. Wirbelkerne = Orte mit Stromdichte $\neq 0$

Def: magnetische Feldenergie E_{mag} bzw. Energiedichte w_{mag}

$$E_{\text{mag}} = \frac{1}{2\mu_0} \int |\vec{B}|^2 dV \qquad w_{\text{mag}} = \frac{1}{2\mu_0} |\vec{B}|^2$$

Zsfg:

 \vec{E} ist wirbelfreies Quellfeld

 \vec{B} ist quellfreies Wirbelfeld

II.7.4 Das Vektorpotential $\vec{A}(\vec{r})$

- $\bullet \ \mbox{da div} \vec{B} = 0$ gibt es \vec{A} , so dass $\vec{B} = \mbox{rot} \vec{A}$
- Frage:
 - wie bestimmt man \vec{A}
 - -ist \vec{A} "real" oder nur mathematisches Hilfsmittel
 - * klassische Physik: lediglich Hilfsmittel
 - * Quantenmechanik: Aharahou-Bohm-Effekt $\vec{A} \neq 0$ beeinflusst einen e^- -Strahl obwohl $\vec{B} = 0$ auf Weg des Strahls
 - * QED: (φ_{el}, \vec{A}) ist "Wellenfunktion" des Photon

- \vec{A} ist nicht eindeutig \vec{A} und $\vec{A'} = \vec{A} + \operatorname{grad} f$ f Skalarfeld liefern selbes \vec{B} , da $\operatorname{rot}(\operatorname{grad} f) = 0$ \rightarrow Eichfreiheit durch Wahl von f oft: Coulombgleichung: $\operatorname{div} \vec{A} \stackrel{!}{=} 0$
- f eindeutig? Nein. Alle f mit $\Delta f = \text{div } \text{grad} f = 0$ erfüllen $\text{div}(\vec{A}) = 0$ nutze Freiheit in f, so dass $|\vec{A}(\vec{r})| \stackrel{|\vec{r}| \to \infty}{\longrightarrow} 0$
- Betrachte 2. MG.

$$\operatorname{rot} \vec{B} = \vec{\nabla} \times (\vec{\nabla} \times \vec{A}) = \dots = -\Delta \vec{A}$$

also

$$\Delta \vec{A} = \mu_0 \vec{j}$$
$$t = 1$$

II.7.5 Berechnung von Magnetfeldern

Aus MW-Gl. bzw. Ampéresches Gesetz

1) **gerader Leiter**, Strom I $\int \vec{B} \ d\vec{s} = \mu_0 I \quad B \text{ nur abhängig von r, in Richtung } \vec{e_r}$ $B(r)2\pi r = \mu_0 I$

$$B(r) = \frac{\mu_0 I}{2\pi r}$$

2) Koaxialkabel

$$B(r) = \frac{\mu_0 I}{2\pi} \cdot \begin{cases} \frac{r}{R_s} & \text{für} \quad r < R_s \\ \frac{1}{r} & \text{für} \quad R_s < r < R_n \\ 0 & \text{für} \quad R_n < r \end{cases}$$

3) Solenoid

$$\oint \vec{B} \ d\vec{s} = \int_C^D \vec{B} \ d\vec{s} + \int_A^B \vec{B} \ d\vec{s} \quad \text{ auf anderen Wegen } \quad \vec{B} \perp d\vec{s}$$

Bhomogen und entlang Symmetrieachse für "AB" $\rightarrow \infty \quad B(\infty) \rightarrow 0$

$$\oint \vec{B} \ d\vec{s} = \int_C^D \vec{B} \ d\vec{s} = Bl = \mu_0 NI$$

l Länge des Solenoiden N Windungszahl

$$B = \frac{\mu_0 NI}{l}$$

41

- 4) Toroidspule $\vec{B} = \frac{\mu NI}{2\pi R} \vec{e}_{\varphi}$
- 5) Flächenstrom $B_y = -\frac{1}{2}\mu_0 \vec{j} d$

Biot-Savart-Gesetz BSG

- \bullet Ziel: Verfahren zur Berechnung von \vec{B} für beliebige gegebene \vec{j},I
- Betrachte infinitesimales Leiterstück mit infinitesimaler Stromdichte $d\vec{j} \to d\vec{V}$ \vec{B}_{Gesamt} aus Summe/Integral über $d\vec{j}$
- Es gilt: $\Delta \vec{A} = -\mu_0 \vec{j}$ [Vgl: $\Delta \varphi_{\rm el} = -\frac{\rho}{\epsilon_0}$]

Lsg:
$$\vec{A} = \frac{\mu_0}{4\pi} \int d^3 \vec{r}' \frac{\vec{j}(\vec{r}')}{|\vec{r} - \vec{r}'|}$$

 $\vec{B} = \operatorname{rot} \vec{A} = \dots = \frac{\mu_0}{4\pi} \int d^3 \vec{r}' \left[\frac{1}{|\vec{r} - \vec{r}'|} \vec{\nabla} \times \vec{j}(\vec{r}') = + \frac{1}{|\vec{r} - \vec{r}'|} \vec{j} \times (\vec{r} \times \vec{r}') \right]$ $\mathrm{rot} \vec{j} = 0$ kein Kreisstrom ohne externen Antrieb in Magnetostatik

$$\vec{B} = \frac{\mu_0}{4\pi} \int d^3 \vec{r}' \frac{\vec{j}(\vec{r}') \times (\vec{r} - \vec{r}')}{|\vec{r} - \vec{r}'|^3}$$

wenn $\vec{j}=$ const. über Leiteroberfläche $\vec{j}\ d\vec{V}=\vec{j}\ d\vec{A}\ d\vec{l}=I\ d\vec{l}$ $d\vec{l}\uparrow\uparrow\ d\vec{j}\uparrow\uparrow\vec{l}$

$$\vec{B} = -\frac{\mu_0 I}{4\pi} \int \frac{(\vec{r} - \vec{r}') \times d\vec{l}}{|\vec{r} - \vec{r}'|^3}$$
 Biot Savart Gesetz

Bestimmung von \vec{B} mit BSG

1) Leiterschleife mit Radius R, Strom I ges: Magnetfeld auf der Achse aus $d\vec{l} \sim \vec{j} - d\vec{B} \sim -(\vec{r} - \vec{r'}) \times d\vec{l}$ Symmetrie bzw Kompensation von $d\vec{l}$ bei φ und $\varphi + \pi \Rightarrow \vec{B} = B_z \vec{e}_z$

$$dB_z = \cos \alpha dB$$
 $\cos \alpha = \frac{R}{|\vec{r} - \vec{r'}|} = \frac{R}{\sqrt{R^2 + z^2}}$

 $d\vec{l} \perp \vec{r} - \vec{r'} \Rightarrow \text{Beträge ausreichend}$

$$B_z = \frac{\mu_0 I}{4\pi} \int dl \frac{\cos \alpha}{|\vec{r} - \vec{r'}|} \quad \text{auf Kreis} \quad R, z = \text{const.}$$
$$= \frac{\mu_0 I}{4\pi} \frac{R}{(R^2 + z^2)^{\frac{3}{2}}} 2\pi R = \frac{\mu_0 I}{2} \frac{R^2}{(R^2 + z^2)^{\frac{3}{2}}}$$

für z = 0 (Ringzentrum) : $B_z = \frac{\mu_0 I}{2} \frac{1}{R}$

2) Helmholzspulenpaar 2 Spuen mit Radius R, Abstand d_0 (oft = R)

II.8 Magnetische Kräfte

II.8.1 Die Lorenz Kraft

Erinnerung: Anziehung $I_1 \uparrow \uparrow I_2$, Abstoßung $I_1 \uparrow \downarrow I_2$ keine Coulomb-Kräfte, da Leiter neutral

Exp: Fadenstrahlrohr

Beobachtung: $R \sim \frac{1}{I} \sim \frac{1}{|\vec{R}|}$

Richtung der Kraft: $-\vec{v_e} \times \vec{B}$ rechte-Hand-Regel "+" $Q_e = -e$

keine Arbeit verrichtet durch F_{Mag} (Loranzkraft) $W = \int F_{\text{Mag}} d\vec{s} = 0$ $F_{\text{Mag}} \perp \vec{v} \Rightarrow$ Richtung von \vec{v} ändert sich, Betrag von \vec{v} konstant

$$\vec{F}_{\text{Mag}} = \vec{F}_L = q\vec{v} \times \vec{B}$$
 Lorenzkraft

Fadenstrahlrohr:

Beschleunigung in \vec{E} -Feld: $eU_B = \frac{1}{2}mv^2$ $v = \sqrt{\frac{2eU_B}{m}}$

für $U_B = 300 \text{V}$ v = 0,03 Lichtgeschwindigkeit $\vec{F}_L = \vec{F}_{\text{Zent}}$ $-e\vec{v} \times \vec{B} = -\frac{mv^2}{r}\vec{e}_r$

$$\vec{F}_L = \vec{F}_{\mathrm{Zent}} - e\vec{v} \times \vec{B} = -\frac{mv^2}{r}\vec{e}_r$$

$$\Rightarrow r = |\vec{p}| \quad \vec{n} = m\vec{v}$$

$$\Rightarrow r = \frac{|\vec{p}|}{eB} \quad \vec{p} = m\vec{v}$$

$$T_{ ext{Umlauf}} = rac{ ext{Umfang } 2\pi r}{v} = rac{2\pi m}{eB}$$
 $\omega_{ ext{Umlauf}} = rac{2\pi}{T_{ ext{Umlauf}}} = rac{e}{m_e}B$ Zyklotronfrequenz

(gilt für $v \ll C$ Lichtgeschwindigkeit)

für $v \to c$ wird $T \nearrow, \omega \searrow$

Wenn $\vec{v}\perp\vec{B}$ dann in Gl. $\vec{v},\vec{p}\rightarrow\vec{v}_{\perp\vec{B}},\vec{p}_{\perp\vec{B}}$

 $eB = \frac{v_{\perp B}}{\rho}(\cdot m_e)$? ρ Radius in Ebene $\perp \vec{B}$

 $\vec{v}_{\parallel B}$ unbeeinflusst \rightarrow **Helixbahn** des Elektronenstrahls

Anwendung: $\frac{e}{m}$ - Bestimmung

Hall-Effekt:

• Hall-Effekt (Erwin Hall 1879 in Doktorarbeit)

Exp: Strom durch (Halb)leiter in Magnetfeld

 \rightarrow Spannung $U_{\text{Hall}} \perp \vec{B}$ und $\perp \vec{i}$

- e^- durch \vec{F}_L abgelenkt $\to \vec{E}$ -Feld wegen e^- -Mangel/Überschuss
- Gleichgewicht wenn $\vec{F}_{\rm el} + \vec{F}_L = \vec{0}$ $e|\vec{v}_D||\vec{B}| = e|\vec{E}| \qquad |\vec{E}| = \frac{U_H}{b}$ $I = |\vec{j}|A = jbd \quad j = n_e |\vec{v}_D|e \quad ev_D = \frac{j}{n_e}$ Also: $F_L = \frac{I}{bdn_e}B \quad F_{el} = e\frac{U_H}{b}$

Also:
$$F_L = \frac{I}{bdn_e}B$$
 $F_{el} = e\frac{U_H}{b}$

$$\rightarrow \boxed{U_H = \frac{IB}{edn_e}}$$

 $(n_e)_{H_L} \ll (n_e)_{\text{Leiter}} \Rightarrow \text{ für } I = \text{const. wird } U_H \text{ größer}$

• Anwendung: Hall-Sonde zur Messung von B-Feldern.

II.8.2 Kräfte auf Stöme

Leiter mit Querschnitt A: I = jA $\vec{j} = en_e \vec{v}_D$ Kraft auf infinitesimales Leiterstück dl, $dq = en_e A dl$

$$d\vec{F} = dq(\vec{v}_D \times \vec{B}) = en_e A \ dl(\vec{v} \times \vec{B}) = A \ dl\vec{j} \times \vec{B}$$

$$d\vec{l} \equiv dl \frac{\vec{j}}{|\vec{j}|}$$

$$d\vec{F} = Ajd\vec{l} \times \vec{B} = Id\vec{l} \times \vec{B}$$

Integration über Leiter: $\vec{F} = I \vec{l} \times \vec{B} \to \text{erklärt}$ rollenden Stab/Leiterschaukel

• parallele Ströme (galvanische Kräfte)

 I_2 erzeugt $\vec{B}(I_2)$ am Ort von I_1 \rightarrow Lorenzkraft auf I_1 gemäß obiger Gleichung Abstand der Leiter r, länge $l \gg r$ Kraft auf dl_1 im Leiter 1

$$d\vec{F}_1 = I_1 d\vec{l}_1 \times \vec{B}(I_2)$$

Hatten:

$$\vec{B}(I_2) = \frac{\mu_0}{2\pi} \frac{I_2}{r} \vec{e}_{\varphi}$$

 $\vec{B}(I_2) \perp I_1 \Rightarrow \text{Beträge ausreichend}$

$$dF_1 = I_1 \frac{\mu_0}{2\pi} \frac{I_2}{r} dl_1$$

$$|\vec{F_1}| = \int_0^L \frac{\mu_0}{2\pi r} I_1 I_2 \ dl_1 = \frac{\mu_0}{2\pi} \frac{L}{r} I_1 I_2$$

 $d\vec{l_1} \times \vec{B}$ mit Rechte-Hand-Regel \rightarrow Abstoßung für $I_1 \uparrow \downarrow I_2$ actio = reactio Aymmtrie zwischen I_1 und I_2

Exp: ,,Stromwaage"

Masse von 200 mg zum Beschweren $F_L = F_G \quad F_G = m \cdot g \quad F_L = \frac{\mu_0}{2\pi} I^2 \frac{L}{r}$ $\rightarrow I = \sqrt{\frac{mg^2\pi r}{L\mu_0}} = 15, 1A \quad \text{Vgl. Exp: I} = 14,9 \text{ A}$

Exp: Meissler-Ochsenfeldeffekt

Hochtemperatursupraleiter (Ytrium Barium Kupferoxid)

• Für $T < T_{\text{sprung}}$ supraleitend

- Magnetfeld aus Körper hinausgedrängt Erklärung in Festkörperphysik (Ginzburg-Landau-Th, BCS-Theorie)
- \bullet warum schweben über Magnetbahn ? \rightarrow Übung

II.8.3 Der Magnetische Dipol

Def.: magnetischer Dipol $C \rightarrow$ Leiterschleife

$$\vec{p}_M = I\vec{A}$$

Richtung von \vec{A} aus \vec{j} über "Rechte-Hand-Regel" Hatten B auf Achse:

$$\vec{B} = \frac{\mu_0 I}{2} \frac{l^2}{(R^2 + z^2)^{\frac{3}{2}}} \vec{e}_z$$

für $R^2 \ll z^2$:

$$= \frac{\mu_0 I}{2} \frac{R^2}{z^3} \vec{e}_z \sim \boxed{\frac{1}{z^3}}$$
$$= \frac{\mu_0}{2\pi} \frac{\vec{p}_M}{z^3} \qquad \boxed{\vec{p}_M \uparrow \uparrow \vec{B}}$$

Allgemein (außerhalb Achse)

$$\vec{B}(\vec{r}) = \frac{\mu_0}{4\pi} \frac{1}{|\vec{r}|^3} \left(\frac{3\vec{r}(\vec{p}_M \cdot \vec{r})}{r^2} - \vec{p}_M \right)$$

Nordpol bei +z - Richtung, Südpol bei -z - Richtung $\to \vec{p}_M$ zeigt von Süd- nach Nordpol

• Dipol des e^- im Wasserstoffatom (klassisch)

$$\vec{F}_{\rm el} = \vec{F}_{\rm zen} \quad \frac{1}{4\pi\epsilon_0} \frac{e^2}{r^2} = m_e \frac{v^2}{r} = \frac{Lv}{r^2} \quad L \equiv m_e v r$$

In QM: L quantisiert $n\hbar$ $\hbar=\frac{h}{2\pi}$ h Planksches Wirkungsquantum e^- -Bewegung $\hat{=}$ Kreisstrom $I=\frac{-e}{T}$ T Umlaufzeit

$$\vec{p}_H = I\vec{A} = \frac{-e}{T}\vec{A} = \frac{-ev}{2\pi r}\pi r^2 \vec{e}_n = -\frac{e}{2m_e}\vec{L}$$
 für $L = 1\hbar$: $|\vec{p}_H| = \underbrace{\frac{e\hbar}{2m_e}} = 9,26\cdot 10^{-24} \text{ A m}^2$

 $\mu_B = \text{Bohrsches Magneton}$

Kräfte auf magnetischen Dipol

Leiterschleife $\vec{F} = I \oint d\vec{l} \times \vec{B}$ $\vec{M} = I \oint \vec{r} \times (d\vec{l} \times \vec{B})$

a) homogenes \vec{B} -Feld

 $\vec{F}_{\rm ges} = 0$ da Kompensation von $d\vec{l}$ bei φ und $d\vec{l}$ bei $\varphi + \pi$

$$\vec{M} = IB\sin\alpha\pi R^2 \vec{e}_y = \vec{p}_M \times \vec{B}$$

 $\vec{B} \downarrow \rightarrow \vec{p}_M \qquad \vec{p}_M \uparrow \uparrow \vec{B}$ energetisch günstiger

$$\Delta E_{\rm mag} \equiv -\int\limits_{\frac{\pi}{2}}^{\alpha} \vec{M} \ d\vec{\alpha} = -\vec{p}_M \vec{B} \quad \text{Nullpunkt für } E_{\rm mag} \text{ bei } \alpha = \pi/2$$

b) inhomogenes \vec{B} -Feld

Taylorentwicklung $\vec{B}(\vec{r}) = \underbrace{\vec{B}(\vec{r_0})}_{\text{const.}} + (\vec{r} \cdot \vec{\nabla} \vec{B}(\vec{r})) |_{\vec{r} = \vec{r_0}}$

 $\vec{B}(\vec{r_0})$ kein Beitrag zur Kraft

Rechnung zeigt: $\vec{F} = \vec{\nabla}(\vec{B}\vec{p}_M)$

d.h. Kraft in Richtung \vec{B} -Gradient. Dipol wird in Bereich großer Feldstärke gezogen.

II.9 Magnetische Felder in Materie

II.9.1 Magnetisierung der Materie

- Atom: Elektronen und Kern. e^- mit \vec{p}_M verbunden \vec{p}_M im Magnetfeld \vec{B} ausgerichtet
- $\vec{B}(\vec{p}_M) \equiv \vec{B}_{\text{Mag}}$ überlagert sich externes \vec{B} -Feld $\rightarrow \vec{B}_{\text{Med}}$
- $e^- \text{ mit } \vec{L} \Rightarrow \vec{p}_M = \underbrace{-\frac{e}{2m_e}}_{\gamma_L} \vec{L} = \gamma_L \vec{L} \quad |\vec{L}| = n\hbar$

 $\gamma_L=$ gyromagnetisches Verhältnis manchmal auch ohne für $|\vec{L}|=1\hbar \quad |\vec{p}_M|=\mu_B$ Bohrsche Magneton (des $e^-)$

- komplexe Atome: viele $e^- \to \text{vektorielle Summe der } \vec{L}_i$ $\to \text{Quantenmechanik, Atomphysik}$
- Kern: $\gamma_{L, \text{ Photon}} = \frac{e}{2m_p} \approx \frac{1}{1836} \gamma_{L,e^-} \rightarrow \text{vernachlässigbar}$
- Spin des e^- (Eigendrehimpuls) $\vec{S}: |\vec{S}| = \frac{1}{2}\hbar$

$$\vec{p}_M = \gamma_S \vec{S} \quad \gamma_S = -\frac{e}{m_e} = 2\gamma_L$$

46

• Gesamt Dipolmoment eines $e^- : \vec{p}_M = \vec{p}_{M,L} + \vec{p}_{M,S}$ komplexes Atom: $\vec{p}_{M,\text{gesamt}}$ aus e^- -Konfiguration aber: \vec{p}_{Atom} fixiert, \vec{B}_{ext} ändert nur Orientierung von \vec{p}_{Atom}

Magnetisierung der Materie

- ullet Ziel: Einfluss der atomaren \vec{p}_M auf \vec{B} -Feld in Materie quantifizieren
- Magnetisierung $\vec{M} \equiv \frac{1}{V} \sum_i \vec{p}_{M,i}$ aus Überlagerung von atomaren Kreisströmen
 - im Inneren Kompensation von entgegengerichteten Strömen
 - auf Rand Oberflächenstrom I_{Mag}

$$\vec{M} = \frac{I_{\mathrm{Mag}}\vec{A}}{V} \qquad |\vec{M}| = \frac{I_{\mathrm{Mag}}A}{Ad} = \frac{I_{\mathrm{Mag}}}{d} \quad d = \mathrm{Dicke} \ \mathrm{der} \ \mathrm{schicht}$$

 \bullet $\vec{B}_{\rm Mag}$ aus $I_{\rm Mag}$ über Ampéresches Gesetz Annahme: $\vec{B}_{\rm Mag}$ homogen, im Vakuum verschwindet

$$\oint \vec{B}_{\rm Mag} d\vec{s} = \mu_0 I_{\rm Mag} \qquad B_{\rm Mag} d = \mu_0 I_{\rm Mag}$$

$$|\vec{B}_{\rm Mag}| = \mu_0 \frac{I_{\rm Mag}}{d} = \mu_0 |\vec{M}| \text{ Rechte-Hand-Regel } \vec{M} \uparrow \uparrow \vec{B}$$

- Vgl: Elektrostatik $\vec{E}_{Pol} = -\frac{1}{\epsilon_0} \vec{P}$ $\vec{B}_{Mag} = \mu_0 \vec{M}$ $\vec{E}_{Pol} \uparrow \downarrow \vec{P} \rightarrow \text{Schwächung des E-Feldes}$ $\vec{B}_{Mag} \uparrow \uparrow \vec{M} \rightarrow \text{Stärkung des B-Feldes}$
- Feld im Medium $\vec{B}_{\mathrm{Med}} = \vec{B}_{\mathrm{frei}} + \vec{B}_{\mathrm{Mag}} = \vec{B}_{\mathrm{frei}} + \mu_0 \vec{M}$ $\vec{B}_{\mathrm{Mag}} / \vec{M}$ proportional zu \vec{B}_{frei} $\vec{B}_{\mathrm{Mag}} = \chi_m \vec{B}_{\mathrm{frei}}$ χ_m magnetische Suszeptibilität Achtung: $\vec{E}_{\mathrm{Pol}} = \chi_e \vec{E}_{\mathrm{Med}}$ (nicht via \vec{E}_{frei}) Zsgh:

$$\vec{B}_{\rm Med} = (1+\chi_m) \vec{B}_{\rm frei} \equiv \mu \vec{B}_{\rm frei}$$
 μ relative Permeabilität $\mu=1+\chi_m$

 μ relative Permeabilität $\mu = 1 + \chi_m$ $((1 + \chi_e)\vec{E}_{\text{Med}} = \vec{E}_{\text{frei}})$

Maxwell- Gleichungen im Medium

Def: neues Feld magnetische Erregung

$$\vec{H} \equiv \frac{1}{\mu_0} \vec{B}_{\text{frei}}$$
 magnetische Erregung

Es gilt:

$$\vec{M} = \chi_m \vec{H}$$
 $\vec{B}_{\text{Med}} = \vec{B}_{\text{frej}} + \vec{B}_{\text{Mag}} = \mu_0 (\vec{H} + \vec{M})$

Verwendung von \vec{B} und $\vec{H} \to \text{kompaktere MW-Gl.}$

- \bullet Ab jetzt: " Med " unterdrücken \vec{B} und \vec{E} sind Felder (im Medium oder Vakuum) die gemessen werden
- Vorteil der MW-Gl in $\vec{B}, \vec{H}, \vec{E}, \vec{D}$
 - -keine Kenntnis über ρ, \vec{j} im Medium

– nur externen ρ, \vec{j}

 \vec{H} Teil des \vec{B} -Feldes $(\cdot \frac{1}{\mu_0})$ das aus der Externen Anregung/Erregung stammt

- keine magnetischen Monopole $\operatorname{div} \vec{B} = 0$ $\operatorname{div}(\mu, \mu_0, \vec{H}) = \mu \mu_0 \operatorname{div} \vec{H} + \mu_0 \operatorname{grad} \mu \cdot \vec{H} \stackrel{!}{=} 0$
 - homogenes Medium $\mu={\rm const.} \to {\rm div} \vec{H}=0$
 - inhomogenes Medium $\mu=\mu(\vec{r}) \to {\rm div} \vec{H} = -\frac{{\rm grad}\mu\vec{H}}{\mu} \neq 0$ i.a.
- Verhalten an Grenzflächen d.h.überlagerung von Vakuum $(\mu=1)$ zu Medium $(\mu\neq1)$ rot $\vec{H}=\vec{j}=0 \Rightarrow \vec{H}_{\mathrm{frei}}^{\parallel}=\vec{H}_{\mathrm{Med}}^{\parallel} \quad \vec{B}_{\mathrm{frei}}^{\parallel}=\frac{1}{\mu}\vec{B}_{\mathrm{Med}}^{\parallel}$ div $\vec{B}=0 \Rightarrow \qquad \vec{B}_{\mathrm{frei}}^{\perp}=\vec{B}_{\mathrm{Med}}^{\perp} \quad \vec{H}_{\mathrm{frei}}^{\perp}=\mu\vec{H}_{\mathrm{Med}}^{\perp}$

II.9.2 Diamagnetismus

- keine permanente Dipole ($\vec{I}_{Atom} = \vec{L}_{Atom} + \vec{S}_{Atom} = 0$) wenn abgeschlossene Schulen in Hülle (reist)
- $\vec{B}_{\rm ext}$ induziert magnetische Dipole $\vec{P}_M^{\rm ind} \uparrow \downarrow \rightarrow$ nächstes Kapitel \rightarrow Schwächung des B-Feldes, $\chi_m < 0, \mu < 1$ typ: $\chi_m \sim -10^{-5} \rightarrow -10^{-6}$
- Kraft im inhomogenen Feld $\vec{F} = \vec{\nabla}(\vec{B} \cdot \vec{p}_M)$ $\vec{M} = \frac{1}{V} \sum_i \vec{p}_{M,i}$ $\vec{p}_M = V \vec{M} = V \chi_m \vec{H} = \frac{V \chi_m}{\mu_0} \vec{B}$ $\vec{F} = \vec{\nabla}(\vec{B} \frac{V \chi_m}{\mu_0} \vec{B}) = \frac{V \chi_m}{\mu_0} \vec{\nabla} |\vec{B}|^2$

$$\mu_0$$
 μ_0

- Probe aus Bereich von hohem Feld herausgedrängt
- alle Substanzen zeigen Diamagnetismus aber durch Paramagnetismus und Ferromagnetismus Effekt überdeckt

II.9.3 Paramagnetismus

- x>0 $\vec{M} \uparrow \uparrow \vec{B}_{\mathrm{ext}}$ permanente magnetische Dipole
- $\vec{B}_{\rm ext} = 0$ keine Ausrichtung des atomaren $\vec{p}_{M,i} \Rightarrow \vec{M} = 0$
- $\vec{B}_{\rm ext} \neq 0$ teilweise Ausrichtung des $\vec{p}_{M,i}$ Gegenwirkung durch thermische Bewegung Ausrichtung durch Boltzmannvtlg. $ce^{-\frac{\Delta E}{kT}} \approx c(1-\frac{\Delta E}{kT})$ $\Delta E = \mu_B |\vec{B}| = 9, 26 \cdot 10^{-24} {\rm J}$ für B = 1T $kT(T=300{\rm K}) = 4, 14 \cdot 10^{-21} {\rm J} \quad \Rightarrow \frac{\Delta E}{kT} \ll 1$

• Mittleres Dipolmoment eines Atoms

$$|\overrightarrow{\vec{p}_M}| = \frac{1}{3} \frac{|\vec{p}_m|^2}{kT} |\vec{B}| \qquad n_p \quad \text{Dipoldichte}$$

$$\vec{M} = n_p \overrightarrow{\vec{p}_M} = \frac{1}{3} \frac{n_p |\vec{p}_m|^2}{kT} \vec{B}$$

$$\chi_m = \frac{\mu_0 \vec{M}}{|\vec{B}|} = \frac{1}{3} \frac{n_p \mu_0 |\vec{p}_m|^2}{kT} \sim \frac{1}{T} \quad \text{Curie- Gesetz}$$

$$\chi_m(300 \text{K}) \stackrel{\text{typ}}{\approx} 10^{-6} \to 10^{-4}$$

• Probe in den Bereich größeres B-Feldes gezogen

II.9.4 Ferromagnetismus

- \bullet große $\chi,\,\vec{M}$ aus WW der atomaren Dipole
- hohe Temperatur: Dipole statistisch verteilt $E_{\text{therm}} > E_{\text{Austausch}}$
- Temperatur sinkt: $E_{\text{therm}} > E_{\text{Austausch}}$
 - \rightarrow Ausrichtung der Dipole an mehreren stellen
 - \rightarrow Bildung der weißschen Bezirke / Domänen
- für $\vec{B} = \vec{0}$ gilt $\vec{M} = \vec{0}$ (zunächst)
- $\vec{B} \neq \vec{0}$: Ausrichtung der Domänen $\vec{M} \uparrow \uparrow \vec{B}$
 - Sprungweise \rightarrow Barkhausen Effekt
 - Sättigung \rightarrow alle Domänen ausgerichtet
- Phasenübergang bei Temperatur Erhöhung bei $T > T_c$: $E_{\text{therm}} > E_{\text{Austausch}} \ (N_i : T_c = 358\text{C})$ \rightarrow auflösen der Domänen $\rightarrow \vec{M} \rightarrow 0$ Entmagnetisierung

Phasenübergang: Ferro- \rightarrow Paramagnetismus

obehalb
$$T_c: \chi = \frac{d}{(T - T_c)^r}$$
 $c = \text{const.}, \ r = 1 \to 1, 5$

II.9.5 Elektromagnet

- Kombination Spule und Eisenkern
 - \rightarrow Formung des Magnetfeldes
 - \rightarrow Luftspalt zur Nutzung des Feldes Ampéresches Gesetz:

$$\oint \vec{H}d\vec{s} = H_{\text{Fe}} + l_{\text{Fe}} + H_0 d = NI$$

Grenze: $B_{\perp} = \text{const.} \ \mu_{\text{Fe}} H_{\text{Fe}} = H_0$

$$\rightarrow B = \frac{\mu_0 NI}{\frac{l_{\rm Fe}}{\mu_{\rm Fe}} + d} \approx \frac{\mu_o NI}{d} \quad \mu_{Fe} \approx 4000 \qquad hierfehltwas$$

Spalt kleiner, dann Bgrößer v
gl: Luftspule $B=\frac{\mu_0NI}{L_{\rm Spule}}$ hier Verstärkung $\frac{dL_{\rm Spule}}{d}$

Kapitel III

Elektrodynamik

III.10 Elektromagnetische Induktion

III.10.1 Induktionsgesetz

1831 Faraday: in veränderlichem \vec{B} -Feld wird entlang Leiter Spannung induziert $U_{\rm ind}$

Beobachtung: $U_{\text{ind}} \sim \frac{d}{dt}A$, $\frac{d}{dt}\vec{B}$, $\frac{d}{dt}$ Winkel (\vec{A}, \vec{B})

$$U_{\rm ind} \sim \frac{d}{dt} \Phi_M \quad \Phi_M = \int_M \vec{B} d\vec{A}$$

- Wer verursacht U_{ind} ?
- \bullet F_L auf beweglichen e^- und ortsfesten A^+
- e^- verschoben $\to E$ -Feld bis Gleichgewicht $F_{el} = F_L$

$$e|\vec{E}| = e|\vec{v}||\vec{B}| \quad U_{\text{ind}} = l|\vec{E}| = l|\vec{v}||\vec{B}|$$

$$v = \frac{ds}{dt}, \ l = \text{const.}, \ |\vec{B}| = \text{const.}$$

$$|U_{\text{ind}}| = |\vec{B}|\frac{d}{dt}(ls) = |\vec{B}|\frac{d}{dt}|\vec{A}| = \frac{d}{dt}\Phi_M \quad \Phi_M = |\vec{B}|A$$

Lorentzkraft bewirkt U_{ind} . Hier: aus Änderung von A

- Leiterschleife (A = const.) im \vec{B} -Feld
 - [A] \vec{B} homogen, $\vec{v} \uparrow \uparrow \vec{B} \to \Phi_M = \text{const.}, U_{\text{ind}} = 0$
 - B inhomogen, $B_z = f(z)B_0$ f(z) stetige, monoton fallend

$$B_z \uparrow \uparrow \vec{v}$$
 keine F_L , keine $U_{\rm ind}$

radiale komponente B_r , $\vec{B}_r \perp \vec{v} \rightarrow F_L \rightarrow U_{\text{ind}} \neq 0$

aus div
$$\vec{B} = 0$$
 folgt $B_r = \frac{B_0}{r} \int dr \ r \frac{df(z)}{dz}$

Ring geschlossen: fließt Induktionstrom I_{ind}

Offen: Induktionsspannung an Enden

$$F_{el} = e|\vec{E}| = e\frac{|U_{\text{ind}}|}{2\pi r} \stackrel{!}{=} e|\vec{v}|B_r = F_L$$

$$|U_{\rm ind}| = 2\pi r |\vec{v}| B_r \tag{1}$$

Betrachte Fluss durch Leiterschleife

$$\Phi_{M} = \int_{A} \vec{B} d\vec{A} = \oint_{A} B_{z} dA = \int d\varphi \int dr \ r B_{0} f(z)$$

$$\frac{d\Phi_{M}}{dt} = \underbrace{2\pi}_{\int d\varphi} B_{0} \frac{d}{dt} \int dr \ r f(z) = 2\pi B_{0} \int \frac{df(z)}{dz} \underbrace{\frac{dz}{dt}}_{v} r \ dr$$

$$= 2\pi B_{0} |\vec{v}| \int dr \ r \frac{df(z)}{dz} = f2\pi B_{r} r |\vec{v}| \tag{2}$$

also aus Vgl (1) und (2) $|U_{\text{ind}}| = \frac{d\Phi_M}{dt}$

Lenzsche Regel

- Richtung von U_{ind} und I_{ind} ?
- Betrachte Leiterschleife $\vec{A}\uparrow\uparrow z$ -Achse /Symmetrieachse Ring nach links bewegen $\frac{d\Phi_M}{dt}>0$ für $U_{\rm ind}=-\frac{d\Phi_M}{dt}$ Strom Linksschraube um \vec{A} machen oben I nach unten, e^- Lorentzkraft nach vorne Richtung von I konstant mit Herleitung aus F_L
- Gedanken Experiment: $\vec{B}_{\rm ind}(I_{\rm ind}) \uparrow \downarrow \Delta \vec{B}_{\rm sol}$ sonst Verletzung der Energieerhaltung

Lensche Regel:

 I_{ind} so gerichtet, dass erzeugte \vec{B}_{ind} der Änderung von Φ_M entegenwirkt.

Zusammenfassung: Änderung von Φ_M in A erzeugt/induziert U_{ind} auf Rand des Leiters gemäß Faradayschen Induktionsgesetzes.

$$U_{\rm ind} = -\frac{d\Phi_M}{dt}$$

• $I_{\rm ind}$ ist Kreisstrom (z.B. in Ring) \rightarrow Kreis/Ring förmiges \vec{E} -Feld $\oint \vec{E} d\vec{s} = U_{\rm ind} \neq 0$ zunächst Widerspruch zu 1. MX-Gl. aber bisher: $\Phi_M = {\rm const.} \rightarrow U_{\rm ind} = 0$ neuer Term in MW-Gl.

$$\oint_{dA} \vec{E} d\vec{s} = -\frac{d}{dt} \int_{A} \vec{B} d\vec{A} + \text{satz von Stokes}$$

$$\oint_{dA} \vec{E} d\vec{s} = \int_{A} \text{rot} \vec{E} d\vec{A} = -\frac{d}{dt} \int_{A} \vec{B} d\vec{A}$$

$$A \text{ beliebig } \Rightarrow \boxed{\text{rot } \vec{E} = -\frac{d}{dt} \vec{B}}$$

1. MW- Gl.:

"zeitlich veränderliche \vec{B} -Feld erzeugt elektrisches Wirbelfeld"

"Wirbelströme"

• bisher: Leiterschleifen, Spulen

• generell: in geschlossenem Leiter erzeugte elektrische Wirbelfeld Kreisströme / Wirbelströme

ullet Wirbelströme erzeugen $ec{B}$ -Feld gemäß Lenzscher Regel [Folie: Wirbelstrom bremse des ICE3]

III.10.2 Selbstinduktion

• Schleife/ Spule mit Induktion und separates veränderliches Magnetfeld

ullet aber: Induktion im Feld-erzeugenden Leiter o Selbstinduktion

Betrachte Spule: Strom $I \to \vec{B}$ -Feld erzeugt

$$\Phi_M \sim |\vec{B}| \sim I \quad \boxed{\Phi_M \equiv LI}$$

(selbst-) Induktion $L~[L]=1\frac{\rm Vs}{\rm A}=1{\rm H}$ (Henry)

Lenzsche Regel

$$U_{\rm ind} = \frac{d\Phi_M}{dt} = -L\frac{dI}{dt}$$

L abhängige von Geometrie des Leiters, zeitlich konstant

Maschenregel $U_0 = U_L + U_R$

Gegenspanning $U_L = -U_{\text{ind}}$

$$\rightarrow U_0 = U_R - U_{\text{ind}} = RI + L \frac{dI}{dt}$$

$$\frac{dI}{dt} = -\frac{R}{L}I + \frac{U_0}{L} \qquad (DGL)$$

Lösungsansatz: $I(t) = Ae^{-\chi t} + B$

$$\frac{dI}{dt} = -\chi A e^{-\chi t}$$

Einsetzen: $-\chi A e^{-\chi t} = -\frac{R}{L} A e^{-\chi t} - \frac{R}{L} B + \frac{U_0}{L}$ für belt: $\rightarrow \chi = \frac{R}{L} A_{\rm bel} B = \frac{U_0}{R}$

$$\to I(t) = \frac{U_0}{R} (1 - e)^{-\frac{R}{L}t}$$

starker Anstieg, asymptotisch gegen $\frac{U_0}{R}(\hat{=}L=0)$

Ausschaltvorgang

[Folie: Ausschaltvorgang]

Knotenregel $I_1 = -I_2$

Maschenregel $0 = U_2 - U_1 = R_2 I_2 - U_{\text{ind}} - R_1 I_1 = R_2 I_2 + L \frac{dI_2}{dt} - R_1 I_1$

$$\frac{d}{dt}I_2(t) = -\frac{R_1 + R_2}{L}I_2(t)$$

Lösung
$$I_2(t) = \frac{U_0}{R_2} e^{-\frac{R_1 + R_2}{L}t}$$
 $I_2(0) = \frac{U_0}{R_2}$

Beispiele für Induktivitäten

1. Solenoid spule

$$B=\mu_0\frac{N}{l}I \text{ Wicklungsdichte } \eta=\frac{N}{l}$$

$$\Phi_M=\int_A \vec{B}d\vec{A}=\mu_0\eta AI \quad \vec{B}\uparrow\uparrow\vec{A}, \quad \vec{B} \text{ homogen}$$

in jeder Windung Spannung induziert

$$U_{\text{ind}} = -N \frac{d\Phi_M}{dt} = -\mu_0 N \eta A \frac{dI}{dt}$$
$$= -\mu_0 \eta^2 l A \frac{dI}{dt}$$

Da
$$U_{\rm ind} = -L \frac{dI}{dt}$$
, $L = \mu_0 \eta^2 \text{ V}$

- 2. Koaxialkabel $L = \frac{\mu_0}{2\pi} (\frac{1}{2} + ln \frac{R}{R_s}) l$
- 3. Lecherleitung $L = \frac{\mu_0 l}{\pi} \left[\frac{1}{2} + ln \frac{d-r_0}{r_0} \right]$ minimal für $d = 2r_0$

III.10.3 Feldenergie

- Betrachte Schaltvorgänge in Spule
 - -Einschalten \rightarrow Aufbau $\vec{B}\text{-Feld}$ Energie im $\vec{B}\text{-Feld}$ gespeichert
 - Ausschalten $U_{\rm ext}=0$, Stromfluss \to Energiefreisetzung Strom durch R_1 und R_2 in Serie $\to P=I^2R$ $R=R_1+R_2$

$$W_m = \int_0^\infty I^2(t)R \ dt = \int_0^\infty I_0^2 e^{-\frac{2R}{L}t} R \ dt = -I_0^2 \frac{LR}{2R} e^{-\frac{2R}{L}t} \Big|_0^\infty$$
$$W_m = \frac{1}{2} I_0^2 L$$

Solenoid:
$$L = \mu_0 n^2 A l$$
 $B = \mu_0 n I_0$
dann $w_m = \frac{W_m}{V} = \frac{1}{2} I_0^2 \mu_0 = \frac{1}{2\mu_0} |\vec{B}|^2$

Ergebnis ist allgemeingültig

Zsfg:
$$W_{\rm el}=\frac{1}{2}\epsilon_0|\vec{E}|^2$$
 Kondensators $W_{\rm el}=\frac{1}{2}CU^2$ $W_{\rm mag}=\frac{1}{2\mu_0}|\vec{B}|^2$ spule $W_{\rm mag}=\frac{1}{2}LI^2$ c für Lichtgeschwindigkeit $W_{\rm ges}=\frac{1}{2}\epsilon_0(|\vec{E}|^2+c^2|\vec{B}|^2)$

III.10.4 Maxwell-Gleichungen

• Gl. für statische Situation

+ Faradays Induktionsgesetz

+ neuer Term "Verschiebungsstrom" aus Theo. Argument (Maxwell)

Betrachte:

$$\oint \vec{B} d\vec{s} = \mu_0 I$$

Links ringförmigen Weg am Leiter $\oint \vec{B} \ ds = 0$ Widerspruch zu Ampéreschen Gesetz/ Maxwell-Gl.

Rechts keinen Strom I im Kondensator aller el. Fluss $\Phi_{\rm el}$ durch Zylinderfläche \to zusätzlicher Beitrag $\frac{d\Phi_{\rm el}}{dt}$ nur wenn $\frac{d\Phi_{\rm el}}{dt} \neq 0$ fließt I und erzeugt \vec{B} -Feld

Rechnung $I_V = \frac{dQ}{dt}$ Änderung auf Kondensatorplatten

$$|\vec{E}| = \frac{Q}{\epsilon_0 A} \quad Q = |\vec{E}| A \epsilon_0$$

$$I_{V} = \frac{dQ}{dt} = \epsilon_{0} \frac{d}{dt} (|\vec{E}|A)$$
$$= \epsilon_{0} \frac{d}{dt} \int_{A} \vec{E} \ d\vec{A} = \epsilon_{0} \frac{d\Phi_{el}}{dt}$$

Addition von I_V zu normalen Strom in MW-Gl.

$$\oint \vec{B} \ d\vec{s} = \mu_0(I + I_V) = \mu_0 I + \mu_0 \epsilon_0 \frac{d}{dt} \Phi_{el}$$

Diff. Form: $I = \int_A \vec{j} \ d\vec{A}$ und Stokes'scher Satz

$$\int_{A} \operatorname{rot} \vec{B} \ d\vec{A} = \mu_{0} \int \vec{j} \ d\vec{A} + \mu_{0} \epsilon_{0} \frac{d}{dt} \int \vec{E} \ d\vec{A}$$

A beliebig:

$$\operatorname{rot} \vec{B} = \mu_0 \vec{j} + \mu_0 \epsilon_0 \frac{d}{dt} \vec{E}$$

Finale Form der MW-Gl. im Vakuum Kopplung von \vec{E} und \vec{B} durch " $\frac{d}{dt}$ "-Therme

III.11 Wechselstromkreise

III.11.1 Wechselstrom

• periodische Änderung der Polarität der Spannungsquelle meist Sinusförmig:

$$U(t) = U_0 \sin \omega t$$
 $\frac{1}{T} = f$ Frequenz $I(t) = I_0 \sin \omega t$ $\frac{2\pi}{T} = 2\pi f = \omega$

 I_0 bzw. U_0 Maximal o. Spitzenwerte Leistung am ohmschen Widerstand P(t)=U(t)I(t) Spitzenwert $U_0I_0=\frac{U_0^2}{R}=R_0I_0^2$

$$P(t) = \frac{U_0^2}{R} \sin^2 \omega t = RI_0^2 \sin^2 \omega t$$

$$\overline{P} = \frac{1}{T} \int_0^T \frac{U_0^2}{R} \sin^2 \omega t \ dt$$
$$= \frac{1}{2} \frac{U_0^2}{R} = \frac{1}{2} I_0^2 R = \frac{1}{2} U_0 I_0$$

 \rightarrow Effektivwerte: Werte die Gleichstrom hat mit gleichem Leistungsverbrauch

$$U_{\text{eff}} = \frac{U_0}{\sqrt{2}}$$
 $I_{\text{eff}} = \frac{I_0}{\sqrt{2}}$

[Folie: Netzspannung in Deutschland] [Folie: Drei-Phasen-Wechselspannung]

[Folie: Generator zur Erzeugung der Netzwechselspannung]

III.11.2 Diodenschaltungen

Diode Bauelement, dass Strom nur in eine Richtung fließt Schaltsymbol durchlässig

[Folie: Kennlinie und Schaltsymbol]

 $U_{Ak}>0,5$ V Diode wird leitend $U_{Ak}\gg 0,7$ V $l_{\rm in}~I-U$ -Charakteristik I=k(U-0,7V) $U_{Ak}<0,5$ V fließt Sperrstrom $I_{\rm sperr}\approx pA\rightarrow \mu A$ $U_{Ak}\ll 0$ Durchbruch

Gleichrichter

[Folie: Brückengleichrichtung]

- Ziel: Erzeugung von Gleichspannung aus Wechselspannung
- i) Einweggleichrichtung
 - nur in pos. Halbperiode Diode leitend
 - $-U_{\text{aus}}^{\text{max}} = U_{\text{ein}} 0.7V$
 - Glättung durch Kondensator $U_{\rm aus}(t)=U_{\rm max}e^{-t/RC}\approx U_{\rm max}(1-\frac{t}{RC})$
- ii) Grätzschaltung
 - in jeder Halbperiode 2 Dioden leitend
 - $-U_{\text{max}}^{\text{aus}} = U_{\text{ein}} 1,4V$

- Glättung wie oben
- iii) Villardschaltung

Einschalten: U_C bis $U_0 - 0,7V$ geladen

Maschenregel: $U_{\text{aus}} = U_{\text{ein}} + U_C = U_{\text{ein}} + U_0 \approx U_0 + U_0 \cos \omega t$

 \rightarrow Spannungsschub um U_0

+ Gleichrichter \rightarrow Greinacher Schaltung

 $U_{D_1} = U_0 + U_0 \cos \omega t$ $U_{\text{max}}^{\text{aus}} = 2U_0(-1, 4V)$

- iv) Kaskadenschaltung nach Greinacher
- 1. Stufe $U_{A_0}=2U_0-1,4{\rm V}$ gleichgerichtet $U_{D_2}=2U_0\sim\omega t\to {\rm Eingang~f\"ur}~2. {\rm Stufe}$
- 2. Stufe $U_{AB}=2U_0-1,4$ V gleichgerichtet $\to U_{B0}^{\rm max}=4U_0-2,8$ V viele Kaskaden \to Hochspannung

Begrenzung: Feldstärke in letzter Stufe

Anwendung: Cockroft-Walton-Kaskade in Beschleunigern

III.11.3 Zeigerdiagramme

ullet komplexe Schaltungen \to Rechnen mit cos, sin und Additionstheorem schwierig \to komplexe Schreibweise sin und cos als Realteile der komplexen Exponentialfunktion

z.B. $U_0 \cos \omega t = \text{Re}(U_0 e^{i\omega t})$ $U_0 \sin \omega t = \text{Re}(U_0 r^{i\omega t - \pi/2})$

$$\exp(ia) = \cos ai \sin a \quad \cos(a - \frac{\pi}{2})\sin a$$

$$a + ib = \sqrt{a^2 + b^2}e^{i\Phi}$$
 $\Phi = \arctan \frac{b}{a}$

oft Re weggelassen: $U = U_0 e^{i\omega t}$

- nur Hilfsmittel, an Ende Realteil bilden
- Veranschaulichung im Zeigerdiagramm

III.11.4 Komplexe Widerstände

<u>Kondensator:</u> Gilt: $U = \frac{Q}{C} \quad \frac{d}{dt} : \frac{dU}{dt} = \frac{I}{C}$

$$U(t) = U_0 \cos \omega t$$
 gegeben

$$I(t) = C\frac{dU}{dt} = -\omega U_0 C \sin \omega t = I_0 \cos(\omega t + \frac{\pi}{2})$$

Spitzenwert $I_0 = \omega C U_0$ I teilt U um $\frac{\pi}{2}(90^\circ)$ voraus

$$\overline{-U_{\rm ind}} = L_{dI}^{dI} = U(t)$$

Geg:
$$U(t) = U_0 \cos \omega t$$

$$\frac{dI}{dt} = \frac{1}{L}U(t) = \frac{U_0}{L}\cos\omega t$$

$$I(t) = \int \frac{U_0}{L} \cos \omega t \, dt = \frac{U_0}{L\omega} = \frac{U_0}{L\omega} \cos(\omega t - \frac{\pi}{2})$$

Spitzenwert $I_0 = \frac{U_0}{\omega L}$ Spannung eilt Strom um $\frac{\pi}{2}$ voraus

Impedanz Z: Widerstand für Bauteil um $\frac{U}{I}$ zu beschreiben. naiv: $\frac{U(t)}{I(t)}$ "Widerstand" zeitabhängig, negativ

alternativ: $Z = \frac{U(t)}{I(t)}$ wobei U, I komplexwertige Funktionen sind.

i) Kondensator mit Kapazität C
$$U(t)=U_0e^{i\omega t}$$
 $I(t)=\omega CU_0r^{i(\omega t+\frac{\pi}{2})}$

$$Z_C = \frac{1}{\omega C} \frac{1}{e^{i\pi/2}} = \frac{1}{i\omega C}$$

$$\omega \to 0 : Z_C \nearrow \infty \quad \omega \to \infty : Z_C \searrow 0$$

$$U(t) = U_0 e^{i\omega t} \quad I(t) = \frac{U_0}{\omega L} e^{i(\omega t - \frac{\pi}{2})}$$

$$Z_L = \omega \frac{1}{e^{-i\pi/2}} = i\omega L$$

$$\omega \to 0: Z_L \searrow 0 \quad \omega \to \infty: Z_L \nearrow \infty$$

iii) Ohmscher Widerstand

$$Z_R = R$$
 (trivial)

Kirchhoffsche Gesetze auch hier gültig (da auf Q- und E-Erhaltung basierend) Berechnung von Netzwerken mit KHG und den Impedanzen.

III.11.5Frequenzfilter

Bem: periodisches Signal mit beliebigem Amplitudenverlauf aus Überlagerung von cosund sin-förmigen Signalen

 \rightarrow Fourierzerlegung

Komplexe Widerstände

- Ändern das Frequenzspektrum
- \bullet Beeinflussen Form des Signals/Größe in Abhängigkeit von ω

Hochpass: Spannungsteiler mit $Z_1 = \frac{1}{i\omega C}$ $Z_2 = R$

 $\overline{\ddot{\text{U}}\text{bertragungsfaktor}} \ k = \frac{U_{\text{aus}}}{U_{\text{ein}}} = \frac{Z_{\text{aus}}}{Z_{\text{ges}}}$

$$k = \frac{R}{R + \frac{1}{i\omega C}} \frac{R + \frac{i}{\omega C}}{R + \frac{i}{\omega C}} = \frac{R^2 + i\frac{R}{\omega C}}{R^2 + \frac{1}{\omega^2 C^2}} = \frac{\omega^2 C^2 R^2}{\omega^2 C^2 R^2 + 1} + i\frac{\omega C R}{\omega^2 C^2 R^2 + 1}$$

58

$$|k| = \frac{|U_{\text{aus}}|}{|U_{\text{ein}}|} \quad |k|^2 = \frac{\omega^2 C^2 R^2}{\omega^2 C^2 R^2 + 1} = \frac{1}{1 + \frac{\omega_0^2}{2}} \qquad \omega_0 \equiv \frac{1}{RC}$$

Phase Φ $\tan \Phi = \frac{\operatorname{Im}}{\operatorname{Re}} = \frac{1}{\omega CR} = \frac{\omega_0}{\omega}$ für $\omega \to \infty$ $|k| \to 1$ "Hochpass" für $\omega \to 0$ $Z_C \to \infty$ Kondensator sperrt für ω klein eilt Spannung um $\frac{\pi}{2}$ hinterher

Def: Grenzfrequenz $\omega_{\mathbf{Gr}}$ Frequenz bei der $|k(\omega_{\mathbf{Gr}})| = \frac{1}{\sqrt{2}}$ Hochpass: $\omega_{\mathbf{Gr}} = \omega_0 = \frac{1}{RC}$

Tiefpass:

- a) RC-Serienschaltung mit Abgiff über C
- b) LR-Serienschaltung mit Abgriff über R

$$Z_1 = i\omega L \quad Z_2 = R \quad k = \frac{R}{R + i\omega L}$$
$$|k|^2 = \frac{R^2}{R^2 + \omega^2 L^2} = \frac{1}{1 + \frac{\omega^2}{\omega_0^2}} \quad \omega_0 \equiv \frac{R}{L}$$

$$\begin{array}{l} \tan\Phi = \frac{-\omega L}{R} = \frac{-\omega}{\omega_0} \\ \text{für } \omega \to 0 \quad |k| \to 1 \quad \Phi \to 0 \text{ Tiefpass} \\ \text{für } \omega \to \infty \quad |k| \to 0 \quad \Phi \to -\frac{\pi}{2} \end{array}$$

Bandpass:

- 1. R-L-C-Serienschaltung
- 2. nur Durchlass in einem gewissen Frequenzbereich
- 3. zwei frequenzabhängige Impedanzen $\sim \omega, \sim \frac{1}{\omega}$

$$|k| = \frac{R}{\sqrt{R^2[\omega L - \frac{1}{\omega C}]}}$$
 $\tan \Phi = \frac{\frac{1}{\omega C} - \omega L}{R}$

- 4. |k|=1 maximal bei $\omega_0=\frac{1}{\sqrt{LC}}$ dort Sprung in Φ von $+\pi/2\to -\pi/2$
- 5. Breite des Bereichs in ω mit $|k| > \frac{1}{\sqrt{2}}$

$$\Delta\omega = \sqrt{\frac{R^2}{L^2} + \frac{4}{LC}}$$

III.11.6 Blindleistung

- Bestimmung von Leistung P an Impedanz Z
- Gleichspannung: P = UI zeitlich konstant
- An Impedanz Z: $U(t) = U_0 \cos \omega t$ $I(t) = I_0 \cos(\omega t \Phi)$ Mittlere Leistung $\overline{P} \equiv \frac{1}{T} \int_0^T U(t)I(t)dt$

$$\overline{P} = \frac{1}{T} \int_{0}^{T} U_0 I_0 \cos(\omega t) \cos(\omega t - \Phi) \cdots = \frac{1}{2} U_0 I_0 \cos \Phi$$

ohmscher Widerstand Z=R $\Phi=0$ $\overline{P}=\frac{U_0I_0}{2}\equiv U_{\rm eff}I_{\rm eff}$

- für reine C, reine L $\Phi = \pm \frac{\pi}{2} \to \overline{P} = 0$
- Blindleistung: Leistung von C und / oder L aufgenommen wird

•

$$Z = \frac{U(t)}{I(t)} = \frac{U_0 e^{i\omega t}}{I_0 e^{i(\omega t - \Phi)}} = \frac{U_0}{I_0} e^{+i\Phi}$$

Wirkwiderstand $\text{Re}(z) = \frac{U_0}{I_0} \cos \Phi$ Blindwiderstand $\text{Im}(z) = \frac{U_0}{I_0} \sin \Phi$

• Wirkleistung $\overline{P} = \frac{1}{2}I_0^2 \operatorname{Re}(z) = \frac{1}{2}\frac{U_0^2}{\operatorname{Re}(z)}$ Blindleitung $\overline{Q} = \frac{1}{2}I_0^2 \operatorname{Im}(z) = \frac{1}{2}\frac{U_0^2}{\operatorname{Im}(z)}$

[Folie: Wirk- und Blindleistung]

Leistungsanpassung Betrachte Spule mit $R \ll \omega L \rightarrow$ geringe Wirkleistung aber eventuell sehr großer Strom

• optimale Leistungsübertragung \to weitere Anpassungsimpedanz Z_A in Reihe an Last $\overline{P} = \frac{1}{2}I_0^2 \operatorname{Re}(Z_L)$

$$I(t) = \frac{U(t)}{Z_A + Z_L} \to I_0 = \frac{U_0}{|Z_A + Z_L|}$$

$$\overline{P} = \frac{1}{2} \frac{U_0^2}{|Z_A + Z_L|^2} \operatorname{Re} Z_L = \frac{1}{2} \frac{U_0^2}{(\operatorname{Re} Z_A + \operatorname{Re} Z_L)^2 (\operatorname{Im} Z_A + \operatorname{Im} Z_L)^2} \operatorname{Re} Z_L$$

 \overline{P} maximal wenn Im $(Z_A) = \text{Im } (Z_L)$

Impedanz verhaltern, die $\Delta\Phi$ kompensiert.

hier: Kondensator mit $\frac{1}{\omega C} = \omega L$.

weiterhin: $\operatorname{Re}(Z_A) = 0$ damit $\overline{P}(Z_n) = 0$

wenn R_z gegeben, dann $R_L = R_Z$ maximal \overline{P}

III.11.7 Transformator

Ziel Strom oder Spannung erhöhen/erniedrigen

Prinzip Induktion zwischen gekoppelten Spulen

[Folie: Transformator - Schaltzeichnung und technische Umsetzung]

Ideale, unbelaster Trafo

• ideal: reine L, keine R

• unbelastet: $I_2 = 0$, keinen Verbraucher

Primärspule: $U_1(t) = U_0 \cos \omega t$

$$I_1 \to \Phi_{m,1} \to U_{\text{ind},1} = -N_1 \frac{d\Phi_{m,1}}{dt} = -U_1$$

Also

$$\frac{d\Phi_{\omega,1}}{dt} = -\frac{U_{\text{ind},1}}{N_1} = \frac{U_1}{N_1}$$

Flussänderung in Spule 1 = Flussänderung in Spule 2

$$\frac{d\Phi_{m,1}}{dt} = \frac{d\Phi_{m,2}}{dt}$$

Induziert

$$U_2(t) = -N_2 \frac{d\Phi_{m,1}}{dt} = -\frac{N_2}{N_1} U_1(t)$$
 also $\frac{U_2}{U_1} = -\frac{N_2}{N_1}$ $\Delta \phi = \pi$ gegenphasig

ideal: kein Leistungsverbrauch

$$U_1(t) I_1(t) = U_2(t) I_2(t) \rightarrow \frac{I_2(t)}{I_1(t)} = -\frac{N_1}{N_2}$$

großes $N_2/N_1 \to$ Erzeugung von Hochspannung kleines $N_2/N_1 \to$ Erzeugung von hohe Ströme aber: wenn $I_2 \neq 0$ dann Gegeninduktion

Realer, belastender Trafo

a) $R \neq 0 \rightarrow$ Maschenregel

$$U_1(t) - R_1 I_1(t) = N_1 \frac{d\Phi_{m,1}}{dt}$$
 (*) Primärspule
$$U_2(t) - R_2 I_2(t) = N_2 \frac{d\Phi_{m,1}}{dt}$$
 (*) Sekundärspule

b) Gegen
induktion Gilt:
$$U_L = -U_{\text{ind}} = L \frac{dI}{dt} = N \frac{d\Phi_m}{dt}$$
 $LI = N\Phi_m$

 $I_2 \neq 0$: Überlagerung der magnetischen Flüssse

 \rightarrow Beiträge zu U_{ind} in beiden Spulen

Sei Φ_{ij} der Fluss erzeugt durch I_j in Spule i

 L_{11}, L_{22} Selbstinduktivitäten

 L_{12}, L_{21} Gegeninduktivitäten

perfekte koppelung, keine Verluste von Φ_m dann $L_{12}=L_{21}=\sqrt{L_{11}L_{22}}$

$$N_1 \Phi_{m,1} = N_1 [\Phi_{m,11} + \Phi_{m,12}] = L_{11} I_1 + L_{12} I_2$$

$$N_2 \Phi_{m,2} = N_2 [\Phi_{m,21} + \Phi_{m,22}] = L_{21} I_1 + L_{22} I_2$$

Einsetzen in $(*) \rightarrow \text{Transfromator gleichungen}$

$$U_1 - R_1 I_1 = L_{11} \frac{dI_1}{dt} + L_{12} \frac{dI_2}{dt}$$

$$U_2 - R_2 I_2 = L_{21} \frac{dI_1}{dt} + L_{22} \frac{dI_2}{dt}$$

Für Spitzenwerte U_0 , I_0 mit $U_1 = U_0 e^{i\omega t}$

$$U_1 - R_1 I_1 = i\omega L_{11} I_1 + \omega L_{12} I_2$$

$$U_2 + R_2 I_2 = -i\omega L_{21} I_1 - \omega L_{22} I_2$$

Phasenverschiebung U_2 zu U_1 von $\pi\to$ " - " Zeichen Für weitere Diskussion $R_1^{\rm spule}=R_2^{\rm spule}=0$ aber Last Z Sekundärkreis

Nutze $U_2 = ZI_2$ und nach Strömen auflösen

$$I_1 = \frac{i\omega L_{22} + Z}{i\omega L_{11}Z + \omega^2(l_{12}^2 - L_{11}L_{22})}U_1$$

$$I_{2} = \frac{i\omega L_{12}}{i\omega L_{11}Z + \omega^{2}(L_{12}^{2} - L_{11}L_{22})} U_{1}(evtlauchU_{1})$$

Darus Übersetzungsverhältnisse für U_i , I_i

$$\frac{I_2}{I_1} = -\frac{i\omega L_{12}}{i\omega L_{22} + Z} \quad \frac{U_2}{U_1} = -\frac{i\omega L_{12}Z}{i\omega L_{11}Z + \omega^2(L_{12}^2 l L_1 L_2)}$$

Def: Kopplungsgrad $k = \rightarrow \frac{L_{12}}{\sqrt{L_{11}L_{22}}}$ 0 < k < 1 k = 1 vollständige Kopplung k = 0entkoppelt

$$\frac{U_2}{U_1} = \frac{iL_{12}}{iL_{11} + \omega^2(k^2 - 1)\frac{L_{11}L_{22}}{Z}}$$

Beträge:

$$\frac{|I_2|}{|I_1|} = \frac{\omega L_{12}}{\sqrt{Z^2 + \omega^2 L_{12}^2}} \quad \frac{|U_2|}{|U_1|} = \frac{L_{12}}{\sqrt{L_{11}^2 + \omega^2 \frac{L_{11}^2 L_{22}^2}{|Z|^2} (1 - k^2)}}$$

a)
$$k = 1$$
 $L_{12} = L_{21} = \sqrt{L_{11}L_{22}}$

$$\left|\frac{U_2}{U_1}\right| = \frac{L_{12}}{L_{11}} = \sqrt{\frac{L_{22}}{L_{11}}} = \frac{N_2}{N_1}$$
 wie beim idealen unbelasteten Trafo

unabhängig von Last Z

$$\frac{|I_2|}{|I_1|} \stackrel{|Z| \to 0}{\longrightarrow} \frac{N_1}{N_2}$$
sonst I_2 kleiner w
gen Last Z

- b) k < 1
- i) $Z=R \quad \frac{|U_2|}{|U_1|}$ sinkt mit sinkendem R

$$\tan \phi_{U_1, U_2} = -\frac{\omega L_{22}(L-k)}{R}$$

 $k=1 \quad \phi=\pi$ unabhängig von R $k<1 \quad \phi<\pi$

ii) $Z = i\omega L$

$$\frac{U_2}{U_1} = -\frac{L_{12}/L_{11}}{1 + L_{22}/L_{11}(1 - k^2)}$$

 $\Delta \phi = \pi$ unabhängig von Last

iii) $Z = \frac{1}{i\omega C}$ $\frac{U_2}{U_1} = \frac{L_{12}}{L_{11} - \omega^2 C L_{11} L_{22} (1 - k^2)}$ $U_2/U_1 \text{ größer als bei Leerlauf } |Z| = \infty$ Resonanzverhalten $\omega_R = \frac{1}{\sqrt{C L_{22} (1 - k^2)}}$

Anwendungen/Experimenten:

- 1. "Hörnerblitz" $N_1=500~N_2=2300~U_1=230~{\rm V} \rightarrow U_2\approx 10~{\rm kV}$
- 2. "Punktschweißen" $N_1=500 \quad N_2=5 \ U_1=230 \ \mathrm{V} \rightarrow U_2 \approx 10 \ \mathrm{kV}$
- 3. Leistungsübertragung über Kabel

Ziel: $P_{\rm el} = U_I$ übertragen

Leitung mit $R_L \to \text{Leistungs}$ verlust $I^2 R_L = \Delta P_{\text{el}}$

Relativer Leistungsverlust:

$$\frac{\Delta P_{\rm el}}{P_{\rm el}} = \frac{I^2 R_L}{UI} = \frac{I R_L}{U} = \frac{R_L}{U^2} P_{\rm el}$$

d.h. bei gegebener Leistung $P_{\rm el}$ sinkt $\Delta P_{\rm el}$ mit $\frac{1}{U^2}$ [Folie: Leistungsübertragung]

III.12 Elektromagnetische Schwingungen

III.12.1 Einfache Schwingungen

RLC-Serienschaltung \rightarrow Bandpass (ohne R)

- Exp: Resonanz bei $\omega = \frac{1}{\sqrt{LC}} (\approx 2, 2 \text{ kHz})$ $\Delta \phi = 0$
- Suche I(t)

Knotenregel I gleich in allen Bauteilen

Maschenregel
$$U_{\text{ext}} = \underbrace{U_L}_{-U_{\text{ind}}} + U_C + U_R = L \frac{dI}{dt} + \frac{1}{C}Q + RI$$

[Folie: Serienschwingkeris]

$$\frac{d}{dt}: \quad \frac{dU_{\text{ext}}}{dt} = L\frac{d^2I}{dt^2} + R\frac{dI}{dt} + \frac{1}{C}I$$

 $U_{\text{ext}} = U_0 \sin \omega t \quad (??? \cdot \frac{1}{C})$

$$\frac{d^2I}{dt^2} + \frac{R}{L}\frac{dI}{dt} + \frac{1}{LC}I = \frac{U_0\omega}{L}\cos\omega t$$

inhomogene DGL 2. Ordnung für den Strom I(t)

Lösung: mit komplexwertigem Ansatz

zunächst $U_{\text{ext}} = U_0 e^{i\omega t}$

$$\frac{d^2I}{dt^2} + \frac{R}{L}\frac{dI}{dt} + \frac{1}{LC}I = \frac{iU_0\omega}{L}e^{i\omega t}$$

Ansatz : $I(t) = I_0 e^{i(\omega t - \Phi)}$

Bilden zeitliche Ableitung und Einsetzen

$$(\underbrace{i\omega L}_{Z_L} + \underbrace{\frac{1}{i\omega L}}_{Z_C} + \underbrace{R}_{Z_R})I_0 = U_0e^{i\Phi}$$

wie erwartet für Impedanzen in Serie

 $I(t) = \frac{U(t)}{Z_{\text{ges}}}$ Resonanz wenn Z_{ges} minimal

$$\frac{dZ_{\text{ges}}}{d\omega}\Big|_{\omega_R} \stackrel{!}{=} 0 \qquad iL\omega_R - \frac{1}{i\omega_R C} = 0 \Leftrightarrow \omega_R = \frac{1}{\sqrt{LC}}$$

Freie, ungedämpfte Schwingung

- LC-Kreis R = 0 keine externe Anregung
- Kondensator laden, bei t=0 mit Spule verbinden \rightarrow Schwingungen
- periodisches Umladen des Kondensators, periodische Ströme in Spule [Folie: El.-mag. Schwingkreis und mech. Modell eines Oszillators im Vergleich]
- Maschenregel $U_C + U_L = 0$ $U_L = -U_{\text{ind}}$ $\frac{Q}{C} + L\frac{dI}{dt} = 0$
- Lösungsansatz: $Q = Q_0 \cos \omega t$ Einsetzen: $-Q_0 \omega^2 \cos \omega t + \frac{1}{LC} Q_0 \cos \omega t = 0$ also:

$$\omega = \frac{1}{\sqrt{LC}} \qquad f = \frac{1}{2\pi} \frac{1}{\sqrt{LC}} \qquad \text{Thomson-Formel}$$

harmonische Schwingung mit Randbedingung $Q(t=0)=Q_0$ andere Startbedingung: $Q(t)=Q_0\cos(\omega t+\phi)$ $I(t)=\frac{dQ}{dt}=-Q_0\omega\sin(\omega t+\phi)=Q_0\omega\cos(\omega t-\frac{\pi}{2}+\phi)$ d.h. I eilt U_C bzw. Q_C um $\frac{\pi}{2}$ hinterher

Gedämpfte Schwingung $R \neq 0$

- RLC-Kreis $Q(t=0) = Q_{\text{max}}$
- \bullet t=0 Kreis schließen \to Schwingung mit abnehmender Amplitude
- Maschenregel: $U_L + U_C + U_R = 0$

$$\frac{d^2Q}{dt^2} + \underbrace{\frac{R}{L}}_{2\gamma} \frac{dQ}{dt} + \underbrace{\frac{1}{LC}}_{\omega_0^2} Q = 0$$

 γ ist die Dämpfungskonstante, 2γ Dämpfungsterm

$$\frac{d}{dt}: \frac{d^2I}{dt^2} + 2\gamma \frac{dI}{dt} + \omega_0^2 I = 0$$

homogene DGL 2. Ordnung für Strom I

Lösungsansatz: $I(t) = ae^{\lambda t}$ Fallunterscheidung: $I(0) = I_0$

i) starke Dämpfung/Kriechfall $\gamma>\omega_0-\frac{R}{2L}>\frac{1}{\sqrt{LC}}$

$$I(t) = I_0 e^{-\gamma t} \cosh \alpha t \quad \alpha^2 = \gamma^2 - \omega_0^2$$

ii) kritische Dämpfung/aperiodischer Grenzfall $\gamma = \omega_0 \quad \tfrac{R}{2L} = \tfrac{1}{\sqrt{LC}}$

$$I(t) = I_0(1 + \gamma t)e^{-\lambda t}$$

iii) Schwache Dämpfung/Schwingfall

$$\gamma < \omega_0 \quad R/2L < \frac{1}{\sqrt{LC}}$$

$$I(t) = I_0 e^{-\gamma t} \cos(\omega t + \phi)$$

Frequenz $\omega=\sqrt{\omega_0^2-\gamma^2}$ kleiner als bei freien schwingungen. Zeitkonstante der Dämpfung $\gamma=\frac{R}{2L}$

Erzwungene Schwinung

• Serien- und Parallelschwingkreis

• Nach dem Einschwingverhalten stationäre Lösung d.h. Amplitude unabhängig von Zeit

$$U(t) = U_0 e^{i\omega t}$$
 $I(t) = \frac{U(t)}{Z_{\text{ges}}}$

Kreis schwingt mit externer Frequenz $I_0 = \frac{U_0}{|Z_{\rm ges}|}$

• Serienkreis $Z_{\rm ges}=i\omega L+\frac{1}{i\omega C}+R$ Parallelkreis $Z_{\rm ges}=(i\omega L)^{-1}+(\frac{1}{i\omega C})^{-1}+(R)^{-1}$ Resonanzverhalten in beiden Fällen

Serienkreis

$$\frac{dI_0}{d\omega} \stackrel{!}{=} 0$$

Maximum bei $\omega_0 = \frac{1}{\sqrt{LC}} I_0? \frac{U_0}{R}$

$$U_C(t) = \frac{I_0(\omega_0)}{\omega_0 C} = \frac{U_0}{R} \sqrt{\frac{L}{C}}$$

$$U_L(t) = \omega_0 L I_0(\omega_0) = \frac{U_0}{R} \sqrt{\frac{L}{C}}$$

 $U_L(t) = \omega_0 L I_0(\omega_0) = \frac{U_0}{R} \sqrt{\frac{L}{C}}$ Bem: $U_C, U_L \gg U_0$ werden \rightarrow Spannungsresonanz

umgesetzte Leistung (nur R)

$$P_{\text{wirk}} = \frac{1}{2} U_0 I_0 \cos \Phi \qquad \cos \Phi = \frac{R}{|Z_{\text{ges}}|}$$
$$= \frac{1}{2} \frac{U_0^2}{|Z_{\text{ges}}|}^2 R$$

maximal bei ω_0 , dann $Z_{\rm ges}$ minimal

Parallelkreis

- Resonanz frequenz $\omega_0 = \frac{1}{\sqrt{LC}}$
- \bullet Strom über R und $P_{\rm wirk}$ minimal bei ω_0 großer Strom im Kreis von Kondensator und Spule

$$I_C(\omega_0) = I_L(\omega_0) = U_0 \sqrt{\frac{C}{L}}$$

 $I_C \gg I_R$ Stromresonanz

Bem: In Mechanik: Resonanzfrequenz verschoben

Hier: beide Fälle $\omega_{\text{Resonanz}} = \omega_0^{\text{Thomson}}$

Mechanik: Resonanz def. über max. Auslenkung von Pendel/Feder

E-Dynamik: Analogon wäre el. Ladung Q. Aber: Resonanz def. über $I=\frac{dQ}{dt}$ Resonanz für Q auch bei $\omega_R < \omega_0^{\text{Thomson}}$

[Folie: Gekoppelte Schwingkeise]

III.12.2 Gekoppelte Schwingungen

Zwei induktiv gekoppelte Schwingkreise magnetischer Fluss durch beide Spulen \rightarrow Schwingung in Kreis 1 durch gemeinsamesn magnetischen Fluss bzw. Gegeninduktivitäten L_{12}, L_{21} auf Kreis 2 übertragen

[Folie: Induktive gekoppelte Schwingkreise]

Differentialgl. aus Maschenregel in Kreis 1 und 2

$$L_1 \frac{dI_1}{dt} + R_1 I_1 + \frac{Q_1}{C_1} + L_{12} \frac{dI_2}{dt} = 0$$

$$L_2 \frac{dI_2}{dt} + R_2 I_2 + \frac{Q_2}{C_2} + L_{21} \frac{dI_1}{dt} = 0$$

Terme 1 bis 3 wie bei Serienschwingkreis und letzter Term aus Gegeninduktion

$$\frac{d}{dt}: L_1 \frac{d^2 I_1}{dt^2} + R_1 \frac{dI_1}{dt} + \frac{I_1}{C_1} = -L_{12} \frac{d^2 I_2}{dt^2}$$
$$\frac{d}{dt}: L_2 \frac{d^2 I_2}{dt^2} + R_2 \frac{dI_2}{dt} + \frac{I_2}{C_2} = -L_{21} \frac{d^2 I_1}{dt^2}$$

Lösungsansatz: $I_1(t) = \hat{I}_1 e^{i\omega t}$ $I_2(t) = \hat{I}_2 e^{i\omega t}$

Einsetzen in DGL und sortieren

$$\underbrace{\begin{pmatrix} R_1 + i(L_1\omega - \frac{1}{\omega C_1}) & iL_{12}\omega \\ iL_{21}\omega & R_2 + i(L_2\omega - \frac{1}{\omega C_2}) \end{pmatrix}}_{\text{Impedangmetrix } M} \begin{pmatrix} \hat{I}_1 \\ \hat{I}_2 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

Triviale Lösung: $\hat{I}_1 = \hat{I}_2 = 0$

Nicht triviale Lösung: Bedingung det $\mathcal{M} = 0$

$$\det \mathcal{M} = \left(R_1 + i(\omega L_1 - \frac{1}{\omega C_1}) \right) \left(R_2 + i(\omega_2 L_2 - \frac{1}{\omega_2 C_2}) \right) + \omega^2 L_{12} L_{21} \stackrel{!}{=} 0$$

allgemeiner Lösungsansatz:

hier fehlt was

Thomsonfrequenz $\omega_0 = \frac{1}{\sqrt{LC}}$

Kopplungsparameter $k = \frac{L_{12}^{V}}{L}$

Wir haben 2 Eigenfrequenzen $(k \ll 1 \ \Delta \omega = \omega_1 - \omega_2 = \omega_0 k)$

k=0: Entkopplung Schwingung bei ω_0

 $k \to 1$: $\omega_2 \to \infty$ $\omega_1 = \frac{\omega_0}{\sqrt{2}}$ verständlich 1 Kreis mit doppelter Kapazität

0 < k < 1: Beobachtung beider Frequenzen bzw. Überlagerung \rightarrow Schebung

$$\cos\frac{\omega_1 - \omega_2}{2}t\sin\frac{\omega_1 + \omega_2}{2}t$$

Nun Anregung in Kreis 1: $U(t) = U_0 e^{i\omega t}$

obige Matrix-Gl mit rechter Seite $\begin{pmatrix} U(t) \\ 0 \end{pmatrix}$

Gekoppelte DGL mit Inhomogenität U(t)

Allgemeine L
sg: = Allg. Lsg der homogenen DGL (A) + Spezielle Lsg der inhomogenen DGL (B)

- (A) freie, gedämpfte Schwingung (s.o.) Amplitude abklingend $(R \neq 0) \rightarrow$ Einschwingvorgang für t groß $A(t) \rightarrow 0$: d.h. kein Beitrag
- (B) t groß dominant. Sationäre Lösung Amplitude zeitlich konstat, abhängig von ω

Hier: Bestimmung von (B) "homogene" Zeile der DGL:

$$I_1 = -\frac{R_2 + i(L_2\omega - \frac{1}{\omega C_2})}{iL_{21}\omega}\hat{I}_2$$

Einsetzen in "inhomogene" Zeile

$$-\{R_1 + i(L_1\omega - \frac{1}{\omega C_1})\}\frac{R_2 + i(L_2\omega - \frac{1}{\omega C_2})}{iL_{21}\omega}\hat{I}_2 + iL_{12}\omega\hat{I}_2 = U(t)$$

Daraus \hat{I}_2 messen als U_2 an R_2

$$-\left\{R_1 + i(L_1\omega + \frac{1}{\omega C_1})\right\}\left\{R_2 + i(L_2\omega + \frac{1}{\omega C_2})\right\} - L_{12}L_{21}\omega^2 = iR_2L_{21}\omega\frac{U(t)}{U_2} \qquad (*)$$

Spezialfall $R\equiv R_1=R_2$ $C\equiv C_1=C_2$ $L\equiv L_1=L_2$ $L_{12}=L_{21}$ Definiere Blindwiderstand $x\equiv \omega L-\frac{1}{\omega C}$ (*) vereinfacht zu

$$-(R+ix)^{2} - L_{12}^{2}\omega^{2} = iRL_{12}\omega \frac{U(t)}{U2}$$

Multipliziere mit $\left(-\frac{i}{RL_{12}\omega}\right)$ und Kehrwert bilden

$$\frac{U_2}{U(t)} = \frac{RL_{12}\omega}{i(R^2 - X^2 + \omega^2 L_{12}^2 - 2RX)}$$
$$\frac{|U_2|}{|U(t)|} = \frac{RL_{12}\omega}{\sqrt{(R^2 - X^2 + \omega^2 L_{12}^2)^2 + 4R^2 X^2}}$$

Bei $\omega = \omega_{1/2}$ Signifikante Übertragung von Leistungen aus Kreis 1 und Kreis 2

III.12.3 Ungedämpfte Schwingungen

→ [Folie: Erzeugung einer ungedämpften Schwingung durch manuelle Pulsierung] [Folie: Erzeugung einer ungedämpften Schwingung mittels Rückkopplung]

III.13 Elektromagnetische Wellen

1864 Vorhersage von el-magnetischen Wellen J.C.Maxwell

1886 Nachweis von Heinrich Hertz (heute Mikrowellen $\lambda \sim \mathcal{O}(10 \text{ cm})$)

1888 Untersuchung der Ausbreitung durch E.lecher Ausbreitungsgeschwindigkeit \approx Lichtgeschw. c \rightarrow Licht ist eine el.-mag. Welle $v_{\text{Welle}} = f \lambda \lambda$ Wellenlänge, f Frequenz

III.13.1 Lecher-Leitung (LL)

Induktieve Kopplung von offener/geschlossener LL an Schwingkreis mit Frequenz f

Exp:

 $f \approx 250 \mathrm{MHz}$ Annahme: $v_{\mathrm{Welle}} = c \rightarrow \lambda \approx 120 \mathrm{cm}$

Beobachtung:

Spannungsmaxim (Bäuche) und .minima (Knoten)

Strom minima (Knoten) und -maxima(Bäuche)

Abstand der Knoten $\approx 60~\mathrm{cm} \approx \frac{\lambda}{2}$ erwartet

Nur für "gute" Länge der LL Knoten und Bäuche

Erklärung:

- Bildung eines periodischen Strom bzw. Ladungverschiebung
- offenes Ende $I = 0 \rightarrow \text{Spannungsband}$
- geschlossenes Ende $U=0 \to \text{Strombauch}$
- Entstehung einer stehenden Welle wenn l_{LL} auf λ abgestimmt ist 2 abgeschlossene Enden: $l_{LL} = n \frac{\lambda}{2}$ [Folie: Lecher-Leitung und davor]

Mathematische Beschreibung

 $Ersatzschaltbild \rightarrow [Folie: Lecher-Leitung: Ersatzschaltbild]$

 $l\equiv\frac{L}{z}=\frac{\mu_0\mu}{\pi}\ln(\frac{2a}{d})$ $c=\frac{C}{z}=\frac{\pi\epsilon_0\epsilon}{\ln(\frac{2a}{d})}$ d Durchmesser der Leiter, a Abstand der Leiter $r=\frac{R}{z}$ $g=\frac{G}{z}$ $G=\frac{1}{R_{\rm Luft}}$ ideal: $r\to0$ $g\to0$

$$r = \frac{R}{z}$$
 $g = \frac{G}{z}$ $G = \frac{1}{R_{\text{Luft}}}$ ideal: $r \to 0$ $q \to 0$

Telegraphengleichung (TGl):

Leiterstück dz Taylorentwicklung (an Stelle z) für U(z+dz), I(z+dz) bis lin. Term

$$U(z + dz) = U(z) + \frac{\partial U}{\partial z}dz$$

 ∂U durch

- i) Abfall über r
- ii) Induktion in l

$$R = \frac{\partial U}{\partial I}$$
 $G = \frac{\partial I}{\partial U}$

$$\boxed{\frac{\partial U}{\partial z} = -rT - l\frac{dI}{dt}} \tag{1}$$

$$I(z+dz) = I(z) + \frac{\partial I}{\partial z}dz$$

Stromfluss über c und g

$$\boxed{\frac{\partial I}{\partial z} = -\frac{U}{g} - c\frac{dU}{dt}} \tag{2}$$

 $I_C = C \frac{\partial U}{\partial t} \quad \frac{1}{g} \to g \quad \frac{\partial I}{\partial z} = \delta U_{\pm}$

Ableiten von (1) und (2) nach $\frac{d}{dt}$ bzw $\frac{d}{dz}$

$$\begin{split} \frac{\partial^2 U}{\partial z^2} &= -r \frac{\partial I}{\partial z} - l \frac{\partial^2 I}{\partial z \partial t} & \frac{\partial^2 I}{\partial z^2} = -\frac{1}{g} \frac{\partial Z}{\partial z} - c \frac{\partial^2 U}{\partial z \partial t} \\ \frac{\partial^2 U}{\partial t \partial z} &= -r \frac{\partial I}{\partial t} - l \frac{\partial^2 I}{\partial t^2} & \frac{\partial^2 I}{\partial t \partial z} = -\frac{1}{g} \frac{\partial U}{\partial t} - c \frac{\partial^2 U}{\partial t^2} \end{split}$$

"Gemischte" Ableitung aus Zeile 2 in Zeile 1 einsetzen und Ersetzen von 1. Abl durch (1) und (2)

$$\begin{split} \frac{\partial^2 U}{\partial z^2} &= -r \bigg(-\frac{U}{g} - c \frac{\partial U}{\partial t} \bigg) - l \bigg(-\frac{1}{g} \frac{\partial U}{\partial t} - c \frac{\partial^2 U}{\partial t^2} \bigg) \\ \frac{\partial^2 I}{\partial z^2} &= -g \bigg(-rI - l \frac{\partial I}{\partial t} \bigg) - c \bigg(-r \frac{\partial I}{\partial t} - l \frac{\partial^2 I}{\partial t^2} \bigg) \end{split}$$

Entkopplung von U und I in DGL

TGl.:

$$\begin{split} \frac{\partial^2 U}{\partial z^2} &= grU + (rc + gl) \frac{\partial U}{\partial t} + lc \frac{\partial^2 U}{\partial t^2} \\ \frac{\partial I}{\partial z^2} &= grI + (rc + gl) \frac{\partial I}{\partial t} + lc \frac{\partial^2 I}{\partial t^2} \end{split}$$

Beschreibung der Ausbreitung von Signalen auf LL

Wellengleichung

approximative Lsg. der TGl für r = 0, g = 0

$$\boxed{ \frac{\partial^2 U}{\partial z^2} = lc \frac{\partial^2 U}{\partial t^2} \qquad \frac{\partial^2 I}{\partial z^2} = lc \frac{\partial^2 I}{\partial t^2} }$$

homogene Wellengleichung

hier: ∂U , ∂I in z-Richtung

Für bel. Richtung der LL: $\Delta U(\vec{r},t) = lc \frac{\partial U(\vec{r},t)}{\partial t^2}$ $\Delta I(\vec{r},t) = lc \frac{\partial I(\vec{r},t)}{\partial t^2}$

Lösungsansatz: $U(z,t) = U_0 e^{i(\omega t \mp kz - \phi)}$ $I(z,t)I_0 e^{i(\omega t \mp kz - \phi)}$

Einsetzen von U(z,t) in Wellen-Gl $k^2 = lc\omega^2 \quad v_{\rm ph} = \frac{\omega}{k} = \frac{1}{\sqrt{LC}}$ $v_{\rm ph}$ Phasengeschwindigkeit der Welle

Werte für lecher-Leitung einsetzen

$$v_{\rm ph} = \frac{1}{\sqrt{\frac{\mu_0 \mu}{\pi} \ln(\frac{2a}{d}) \frac{\pi \epsilon_0 \epsilon}{\ln(\frac{2a}{d})}}} = \frac{1}{\sqrt{\epsilon_0 \mu_0 \epsilon \mu}}$$
$$= \frac{1}{\sqrt{\epsilon \mu}} c$$

in Medium $v_{\rm ph} < c$

 $v_{\rm ph}$ unabhängig von Geometrie der LL

"∓kz"-Lösungen: "—" Ausbreitung in pos. z-Richtung, "+" Ausbreitung in neg. z-Richtung

Wellengleichung:
$$\left(\Delta - \frac{1}{v_{\rm ph}^2} \frac{\partial^2}{\partial t^2}\right) U(\vec{r}, t) = 0$$

Bisher: ideale, unendlich lang

Nun: Verbraucher aus Ende mit Impedanz Z_V

Betrachte LL: Stromquelle mit Innenwiderstand \mathbb{Z}_L

$$Z_L = \frac{U}{I} = \frac{\partial U/\partial z}{\partial U/\partial z} = \frac{-rI - l\frac{\partial I}{\partial t}}{den}$$

hier fehlt was

$$Z_L = \sqrt{\frac{r + il\omega}{g + ic\omega}} \stackrel{\text{ideal}}{=} \sqrt{\frac{l}{c}}$$

$$\text{Für LL: } = \sqrt{\frac{\mu_0 \mu}{\epsilon_0 \epsilon}} \frac{\ln \frac{2a}{d}}{\pi} = 377\Omega \sqrt{\frac{\mu}{\epsilon}} \frac{\ln \frac{2a}{d}}{\pi}$$

 $\sqrt{\frac{\mu_0}{\epsilon_0}} \approx 377\Omega$ Wellenwiderstand des Volumens

Vollständige Leistungsanpassung: $Z_L = Z_V$

- \bullet $Z_V \neq Z_L$: nur Teil der Leistung in Z_V umgesetzt der Rest der Leistung reflektiert
- Extremfälle: $Z_V = 0$ (Kurzschluss) und $Z_V = \infty$ (offene LL)
- $Z_V = 0 : U(Z_V) = 0$ Spannungsknoten
- $Z_V = \infty : I(Z_V) = 0$ Stromknoten

komplette oder teilweise Reflexion der Welle

 \to Überlagerung von einlaufender und auslaufender Welle \to stehende Welle (wie in Mechanik bei Seilen)

Rechnung: zur Entstehung der stehenden Welle

einlaufend: $U_{\text{ein}}(z,t) = U_0 e^{i(\omega t - kz)}$

Annahme vollständige Reflexion: $\Delta \phi = 0$ an losen Ende

rücklaufend: $U_{\text{rück}}(z,t) = U_0 e^{i(\omega t + kz)}$

Gesamt: $U_{\text{ges}} = U_{\text{ein}} + U_{\text{rück}} = U_0 e^{i(\omega t)} (e^{ikz} + e^{-ikz}) = 2U_0 \cos kz \cos \omega t$ (übergang zu Realteil)

Dies ist stehende Welle mit $\omega = 2\pi f \quad k = 2\pi \lambda$

Weise Beobachtung wenn LL ∞ -lang, offene Leitung

Hier/Exp: geschlossenes Ende $\Delta\phi=\pi$ bei
i Reflexion

Endliche Länge \rightarrow viele Reflexionen und Überlagerungen

Bedingung für stehende Welle/konstruktive Interferenz

1 lose / 1 fest (offen/geschlossen) : $l = \frac{2n-1}{4}\lambda$

2 lose oder 2 feste (offen/geschlossen) : $l = n\frac{\lambda}{2}$

Wellenausbreitung mit Absorption

jetzt: $r, g \neq 0$ $r, g < \omega L < \frac{1}{\omega L}$

d.h. Term: " $r \cdot gU(z,t)$ " vernachlässigbar

Ansatz: $U = U_0 e^{i(\omega t - \overline{k}z)}$

Einsetzen in Telegraphen Gl. teile durch $U_0e^{i(\omega t - \bar{k}z)}$

 $-k^{-2} = i(rc + lg)\omega - lc\omega^2$

 $\overline{k} = \sqrt{lc}\omega\sqrt{1-i\frac{rc+lg}{lc}\omega} \approx \sqrt{lc}\omega - i\frac{1}{2}\frac{rc+lg}{\sqrt{lc}}\omega^2$

 $(\sqrt{1-x}\approx 1+\frac{x}{2})$

Def: $k = \text{Re } \overline{k} = \sqrt{lc\omega}$ $\frac{1}{s} = -\text{Im } \overline{k} = \frac{1}{2} \frac{rc + lg}{\sqrt{lc}} \omega^2$ Dann: $U(z,t) = U_0 e^{-z/s} e^{i(\omega t - kz)}$

Welle mit Frequenz ω , Wellenzahl k mit Abnehmender Amplitude $(e^{-z/s})$

Exp:

Koaxialkabel $v^{-1} = 5 \frac{\text{ns}}{\text{m}}$ Länge = 20 m Rechteckimpuls von 75 ns

[Folie: Signalausbreitung auf Koaxialkabel]

Vakuumwellen III.13.2

Einleitung: el.-mag. Welle auf Leiter eingeschränkt auch Ausbreitung im Raum (Vakuum/Medien)

[Folie: Vom Schwingkreis zum Hertzschen Dipol]

Vom Schwingkreis zum Hertzschen Dipol

C vom Kondensator $\rightarrow C$ Endplatten $\rightarrow C$ Stab

- L von Spule \rightarrow L Windung \rightarrow L Stab offener Schwingkreis: C und L pro Länge
- geschlossener Schwingkreis: \vec{E} und \vec{B} -Feld lokalisiert Streufelder vernachlässigbar
- gerader Draht: Ladungen schwingen zwischen Enden \vec{E} und \vec{B} im ganzen Raum ausgedehnt. Ausbreitung mit Lichtgeschwindigkeit c
- Antenne für stehende Welle $l = n\frac{\lambda}{2}$ Sender induktiv an Schwingkreis gekoppelt Empfänger: Nachweis von U/I durch Glimmlage / Glühlampe

[Folie: Stabsendesantenne und -empfängerantenne]

[Folie: Wellenlänge in Wasser]

Wellengleichung

Betrachte Maxwell Gl. im Vakuum $(\rho=0,\vec{j}=0)$

$$\operatorname{rot} \vec{E} = -\frac{\partial \vec{B}}{\partial t} \quad \operatorname{rot} \vec{B} = \mu_0 \epsilon_0 \frac{\partial E}{\partial t}$$

$$\vec{\nabla} \times (\vec{\nabla} \times \vec{E}) = -\vec{\nabla} \times \frac{\partial \vec{B}}{\partial t} = -\frac{\partial}{\partial t} \vec{\nabla} \times \vec{B} = -\mu_0 \epsilon_0 \frac{\partial^2 \vec{E}}{\partial t^2}$$

Auswertung:

$$\vec{\nabla} \times (\vec{\nabla} \times \vec{E}) = \vec{\nabla} (\vec{\nabla} \cdot \vec{E}) - \Delta \vec{E}$$

3 Maxwell Gl. im Vakuum: $\vec{\nabla} \vec{E} = \frac{\rho}{\epsilon_0} = 0$

$$\boxed{\Delta\vec{E} = \mu_0 \epsilon_0 \frac{\partial^2 E}{\partial t^2}} \text{ Wellen gleichung für } E_x, E_y, E_z$$

Ausbreitungsgeschwindigkeit durch Faktor von $\frac{\partial^2}{\partial t^2}$

$$\boxed{\frac{1}{c^2} = \mu_0 \epsilon_0}$$

Kompakte Schreibweise:

$$\underbrace{(\Delta - \frac{1}{c^2} \frac{\partial^2}{\partial t^2})}_{\text{lambert/Quabla-Operator}} \vec{E} = 0 \quad \Box \vec{E} = 0$$

Analog für \vec{B} -Feld : $|\Box \vec{B} = 0|$ wellen gl. für \vec{B} -Feld

Lsg: $\vec{E}(\vec{r},t)=\vec{E}_0e^{i(\omega t\mp\vec{k}\vec{r})}$ Ausbreitung in + bzw. - \vec{k} - richtung

Ebene Welle

Sei $\vec{k} = k\vec{e}_z$

Ebene Welle: Amplitude konstant in Wellenfront für feste Zeit; Wellenfront: Ebene $\perp \vec{k}$ [Folie: Ebene Welle in z-Richtung]

$$\frac{\partial \vec{E}}{\partial x} = \frac{\partial \vec{E}}{\partial y} = 0 \quad \text{für festes z und t}$$

3MW-Gl: $\vec{\nabla} \vec{E} \stackrel{\text{Vakuum}}{=} 0 \Rightarrow \frac{\partial E_z}{\partial z} = 0 \Rightarrow E_z = \text{const. in } z$ Aus Wellengl.: $\frac{\partial E_z}{\partial t} = 0$ $E_z = \text{const. in } t = 0$ durch Randbedingungen

$$ightarrow \vec{E}(\vec{r},t) = \begin{pmatrix} E_x \\ E_y \\ 0 \end{pmatrix}$$

 $\vec{E} \perp \vec{k}~$ d.h. transversale Welle

$$\operatorname{div} \vec{E}(\vec{r},t) \stackrel{\text{Ansatz}}{=} \vec{E}_0 i(\mp \vec{k}) e^{i(\omega t \mp \vec{k}\vec{r})} \stackrel{!}{=} 0$$

$$\vec{E}_0 \cdot \vec{k} \stackrel{!}{=} 0 \Rightarrow \vec{E}_0 \perp \vec{k}$$

für g. Ausbreitungsrichtung 2 lin. unabhängige Lsg.

$$\vec{E}_1(\vec{r},t) = A_x \vec{e}_x e^{i(\omega t - kz)}$$

$$\vec{E}_2(\vec{r},t) = A_y \vec{e}_y e^{i(\omega t - kz)}$$

 A_i konstante Amplituden

Einsetze in Welengleichung (z.B. $\vec{E}_1(\vec{r},t)$)

$$-A_x \vec{e}_x k^2 - \frac{1}{c^2} (-A_x \vec{e}_x \omega^2) = 0$$

d.h.
$$c = \frac{\omega}{k}$$
 bzw. $V_{\rm ph} \equiv \frac{\omega}{k} = c$

keine Dispersion im Vakuum $V_{\rm ph} \neq V_{\rm ph}(\omega)$

Räumliche Periodizität

$$\omega t - k(\lambda + z) - (\omega t - kz) = 2\pi \quad k\lambda = 2\pi$$

Zeitliche Periodizität

$$\omega(t+T) - kz - (\omega t - kz) = 2\pi \quad \omega T = 2\pi$$

[Folie: Eben Welle in z-Richtung]

Polarisation

• lineare Polarisation: \vec{E} zeigt immer in die selbe Richtung $\perp \vec{k}$ \vec{E}_1 und \vec{E}_2 sind linear polarisierte Lösungen Phasengleiche Überlagerung von \vec{E}_1 und \vec{E}_2

$$\vec{E}_{\text{ges}} = \vec{E}_1 + \vec{E}_2 = A_x \vec{e}_x e^{i(\omega t - kz)} + A_y \vec{e}_y e^{i(\omega t - kz)}$$

 \vec{E} -Feld schwingt in Richtung

$$\hat{a} = \frac{1}{\sqrt{A_x^2 + A_y^2}} \begin{pmatrix} A_x \\ A_y \\ 0 \end{pmatrix}$$

linear Polarisiert

[Folie: Linear polarisierte Wellen]

• zirkulare Polarisation \vec{E} -Vektor dreht sich um \vec{k} mit konstanter Kreisgeschwindigkeit ω 2 unabhängige Lsg: links/rechts zirkular links/rechts polarisiert Aus Überlagerung von 2 lin. polarisierten Wellen mit Phasenverschiebung $\pm \frac{\pi}{2}$

$$\vec{E}_1'(\vec{r},t) = E_0 \vec{e}_x e^{i(\omega t - kz)}$$

$$\vec{E}_2'(\vec{r},t) = E_0 \vec{e}_y e^{i(\omega t - kz - \frac{\pi}{2})}$$

$$\vec{E}_2 = \vec{E}_1' + \vec{E}_2' = (E_0 \vec{e}_x + i E_0 \vec{e}_y) e^{i(\omega t - kz)} = \vec{E}_1 - i \vec{E}_2$$

Richtung von \vec{E}_L aus Realteil

$$\vec{E}_L = \vec{e}_x E_0 \cos(\omega t - kz) + E_0 \vec{e}_y \sin(\omega t - kz)$$

festes z: Rotation um k-Achse

[Folie: Zirkular Polarisierte Wellen]

 $\sigma_{+/-}$ Drehimpuls der Welle $\sigma_{+}: \vec{L} \uparrow \uparrow k$ links zirkular $\sigma_{-}: \vec{L} \uparrow \downarrow k$ rechts zirkular elliptische Polarisation: wenn $E_{0,x} = E_{0,y}$ oder $\Delta \phi = \pm \frac{\pi}{2}$

 \vec{E} -Vektor beschreibt Ellipse um k-Achse

$$\vec{E}_{R,\text{el}} = A_x \vec{E}_1 + i A_y \vec{E}_2 \quad A_x \neq A_y$$

<u>unpolarisiert:</u> wenn \vec{E} -Vektor keine zeitlich konstante Richtung und keine Ellipsen periodisch durchläuft, bzw. Richtung in Raum und Zeit statistisch verteilt i.A. Lichtquelle unpolarisiert weil Überlagerung von vielen Emissionen von Atomen/Dipolen.

[Folie: Das Spektrum der el.mag. Strahlung]

[Folie: Messung der Lichtgeschwindigkeit nach B.L. Foucault]

Stehende Welle

- Reflexion von ebener Vakuumwelle an Metalloberfläche
- Überlagerung von ein- und rücklaufender Welle
 → stehende Welle
- z.B. Welle in z-Richtung, lin. polarisiert in x-Richtung

$$\vec{E}_{\rm ein} = E_0 \vec{e}_x e^{i(\omega t - kz)}$$

$$\vec{E}_{\text{rück}} = -E_0 \vec{e}_x e^{i(\omega t - kz)}$$

Metalloberfläche bildet festes Ende. d.h. Phasensprung $\Delta \phi = \pi$ da $\vec{E}_{\text{tangetial}} = 0 \Rightarrow , -E_0$ "

$$\vec{E}_{\text{ges}} = \vec{E}_{\text{ein}} + \vec{E}_{\text{Rück}} = -E_0 \vec{e}_x e^{i\omega t} \underbrace{\left\{ \underbrace{e^{ikz} - e^{-ikz}}_{2\sin kz} \right\}}_{2\sin kz}$$

$$|\Re(\vec{E}_{\rm ges})| = 2E_0\vec{e}_x\sin kz\sin \omega t$$

zwei Metallflächen: Abstand $a=n\frac{\lambda}{2}$ stehende Welle

Magnetfeld der Wellen

Betrachte: $\vec{E} = E_0 \vec{e_x} e^{i(\omega t - kz)}$ lin. pol. in x-Richtung, Ausbreitung in +z-Richtung

$$\vec{\nabla} \times \vec{E} = E_0(\vec{e}_y)e^{i(\omega t - kz)}$$

Maxwell-Gl:
$$\frac{\partial \vec{B}}{\partial t} = \vec{\nabla} \times \vec{E}$$

$$\frac{\partial B_x}{\partial t} = \frac{\partial B_z}{\partial t} = 0$$

 B_x, B_z zeitlich konstant und können = 0 gewählt werden

$$\frac{\partial B_y}{\partial t} = +ikE_x = ikE_0e^{i(\omega t - kz)}$$

Integration t: $B_y = ikE_0 \int dt e^{i(\omega t - kz)} = \frac{k}{\omega} E_0 e^{i(\omega t - kz)}$

Also: $\vec{B} = \frac{1}{c} |\vec{E}| \vec{e_y}$ mit $\frac{\omega}{k} = c$

 $\vec{B} \perp \vec{E}; \vec{B}, \vec{E} \perp \vec{k}$

Kompakt:

$$\boxed{\vec{B} = \frac{1}{\omega}(\vec{k} \times \vec{E})} \quad \text{im Vakuum}$$

 \vec{B} und \vec{E} in Phase schwingen

[Folie: Momentanaufnahme der lin. pol. Welle von E- und B-Feld]

Hohlraumresonator

- 3-dim "Einsperrung der Welle" \rightarrow leitender Hohlraum (Metallquader)
- Betrachte Quader: l_x, l_y, l_z (a, b, c) [Folie: Hohlraumresonator]
- \bullet Tangentialkomponente des \vec{E} -Feldes verschwindet auf Wänden
- El.-mag. Welle wird vielfach reflektiert und überlagert
 → stehende Welle wenn folgende Bedingungen erfüllt sind

$$k_x = \frac{l\pi}{l_x}$$
 $k_y = \frac{n\pi}{l_y}$ $k_z = \frac{m\pi}{l_z}$ l, n, m ganze Zahlen ≥ 0

Zsgh:

$$|\vec{k}| = k = \pi \sqrt{\frac{l^2}{l_x^2} + \frac{n^2}{l_y^2} + \frac{m^2}{l_z^2}}$$

Mögliche Frequenzen $\omega=V_{\rm ph}k=ck=c\pi$ [siehe oben] stehende Welle der Form:

$$E_{lnm} = E_0(l, n, m) \cos \omega t$$

[Folie: Resonanzbedingung im Hohlraumresonator]

 $E_0(l, m, n)$ ergibt sich aus den Bedingungen

- i) $\vec{E} \perp \vec{k}$
- ii) $\vec{E}_{\text{tangential auf Wänden}} = 0$
 - Frage: wie viele Moden unterhalb Grenzfrequenz ω_0 gibt es? wichtig bei der Quantenmechanik Entwicklung

Vereinfachung: Würfel $l_x = l_y = l_z = a$ Bestimme alle $\vec{k} \leq k_G$ $k_G = \frac{\omega_G}{c}$

Punkte (n, m, l) im \vec{k} -Raum mit Gitterkonstanten $\frac{\pi}{a}$

Für ω_G bzw. k_G groß d.h. $n^2 + m^2 + l^2 \gg 1$

 N_G Anzahl der Gitterpunkte durch $\frac{V_{\mathrm{Kugel}}(|\vec{k}|)}{V_0}$

 V_0 Volumen der Einheitszelle im \vec{k} -Raum: $V_0 = (\frac{\pi}{a})^3$

 $V_{\text{Kugel}}(|\vec{k}|) = \frac{1}{8} \frac{4\pi}{3} k_G^3 \quad \frac{1}{8}$ nur pos. Oktanten $(n, m, l \ge 0)$ Anzahl der Resonatormoden ergibt sich dazu:

$$N_G=2rac{V_{
m Kugel}(k_G)}{V_0}$$
 2 für Polarisationsfreiheitsgrade
$$=2rac{\pi}{6}(rac{a\omega_G}{\pi c})^3=rac{8\pi f_G^3 a^3}{3c^3} \quad f_G=rac{\omega_G}{2\pi}$$
 Modendichte: $rac{N_G}{V}=rac{8\pi f_G^3}{3c^3}$ Spektrale Modendichte: $rac{dN_G/V}{df}=rac{8\pi f_G^2}{c^3}$

III.13.3 Hohlleiter

Hohlraumresonator mit zwei offenen Enden Ziel: Transport von Mikrowellen

a) planparallele Platten in y/z-Ebene im Abstand d Drehung des Koordinatensystems $\rightarrow \vec{k} = (k_x, 0, k_z) \quad k_z > 0$

Reflexion an Platten mit Phasensprung π

$$k_x \to -k_x \quad k_z \to k_z$$

Polarisation in y-Richtung $(\vec{E} \perp \vec{k})$

$$\vec{E} = E_0 \vec{e}_y e^{i(\omega t - k_x x - k_z z)} + E_0 \vec{e}_y e^{i(\omega t + k_x x - k_z z)}$$
$$= 2i E_0 \vec{e}_y \sin k_x x e^{i(\omega t - k_z z)}$$

aus Bedingungen, $\vec{E}_{\text{tang.}} \stackrel{!}{=} 0$ folgt $k_x = \frac{n\pi}{d}$ keine Einschränkung auf k_z

Resultat: Welle in z-Richtung mit modulierter Amplitude sin $\frac{\pi k_x}{d}x$

Algemeine Lösung:

a) $\vec{E} \perp \text{Ausbreitung } E_0 = (E_{x0}, E_{y0}, 0)$ TE-Wellen transversal elektrisch

b) $E_z \neq 0 \text{ dann } B_0 = (B_{x0}, B_{y0}, 0)$ d.h. $B \perp Ausbreitung$ TM-Wellen transversal magnetisch

" $e^{i(\omega t - k_z z)}$ " beschreibt Ausbreitung. Phasengeschwindigkeit $v_{\rm ph} = \frac{\omega}{k_z}$ Weiterhin gilt $c = \frac{\omega}{|k|} = \frac{\omega}{\sqrt{k_x^2 + k_z^2}}$

$$\rightarrow v_{\rm ph} = \frac{c}{k_z} \sqrt{k_z^2 + k_x^2} = c \sqrt{1 + \frac{k_x^2}{k_z^2}} \ge c$$

Aber Gruppengeschwindigkeit

$$v_{\rm Gr} = \frac{\partial \omega}{\partial k_z} = \frac{\partial \omega}{\partial k} \frac{\partial k}{\partial k_z} = \frac{c^2}{\omega} k_z = \frac{c^2}{v_{\rm ph}} \le c$$

kleiner als für Wellen im Vakuum Mit Bedingung $k \stackrel{!}{=} \frac{n\pi}{d}$ ergibt sich:

$$k_z = \sqrt{\frac{\omega^2}{c^2} - \frac{n^2 \pi^2}{d^2}}$$

[Folie: Phasen- und Gruppengeschwindigkeit zwischen parallelen Grenzflächen]

b) Wellenleiter

- Rechteckiger Querschnitt
- Mechanismus wie bei parallelen Platten Reflexion + Überlagerung \rightarrow Welle entlang Achse eines Hohlleiters zusätzliche Bedingung in y-Richtung

$$\vec{E} = \vec{E}_0(x, y)e^{i(\omega t - k_z z)} \tag{*}$$

Tangentialkomp von $\vec{E} = 0$ auf 4 Wänden (*) in Wellengleichung:

$$\frac{\partial^2 \vec{E}_0}{\partial x^2} + \frac{\partial^2 \vec{E}_0}{\partial y^2} + \vec{E}_0(\frac{\omega^2}{c^2} - k_z^2) = 0 \tag{**}$$

wieder TE und TM - Lsg.

Hier: TE- Moden, d.h. $\vec{E} \perp$ Ausbreitungsrichtung

Ansatz:
$$\vec{E}_0 = \begin{pmatrix} E_0 x \cos k_x x \sin k_y y \\ E_0 y \sin k_x x \cos k_y y \\ 0 \end{pmatrix}$$

Aus Randbed.: $k_x = \frac{n\pi}{e_x}$ $k_y = \frac{n\pi}{e_y}$ l_x, l_y Abmessungen des Hohlleiters Aus (**) erhalten wir Bedingungen für k_z

 $-k_x^2 - k_y^2 - k_z^2 + \frac{\omega^2}{c^2} = 0$

$$k_z = \frac{1}{\sqrt{1 - \frac{c^2}{\omega^2} (k_x^2 + k_y^2)}}$$

Phasengeschwindigkeit:

$$v_{\rm ph} = \frac{\omega}{k_z} = \frac{1}{\sqrt{1 - \frac{c^2}{\omega^2} (k_x^2 + k_y^2)}}$$

Räumliche Periode:

$$\lambda_{\text{eff}} = \lambda_z = \frac{2\pi}{k_z} = \frac{2\pi}{\sqrt{\frac{\omega^2}{c^2}(k_x^2 + k_y^2)}} = \frac{\lambda_0}{\sqrt{1 - \lambda_0^2(\frac{1}{\lambda_x^2} + \frac{1}{\lambda_z}^2)}}$$

 λ_0 Wellenlänge im Vakuum bei ω

$$\lambda_x \equiv \frac{2\pi}{k_x} \quad \lambda_y \equiv \frac{2\pi}{k_y}$$
$$\lambda_z \ge \lambda_0 \text{ da } v_{\text{ph}} \ge c$$

 k_z muss reelle Zahl sein

Hohlleiter wirkt als Hochpass

 $f < f_{\text{Grenz}}(n, m)$ können sich nicht ausbreiten

[Folie: Radiowellen in Erdatmosphäre]

III.13.4 Energietransport

Intensität der Welle

Energiedichte des el-mag. Feldes

$$w = \frac{1}{2}E_o(\vec{E}^2 + c^2\vec{B}^2)$$

Mit
$$\vec{B}=\frac{1}{\omega}(\vec{k}\times\vec{E})=\frac{1}{c}(\frac{\vec{k}}{|\vec{k}|}\times\vec{E})$$
 im Vakuum $|\vec{B}|=|\vec{E}|/c$

$$w = \epsilon_0 |\vec{E}|^2$$

Ebene Welle unendlich ausgedehnt $\rightarrow E$ unendlich Groß.

Intensität \equiv Energie der Welle die Pro Zeit dt durch die Fläche $A \perp$ zur Ausbreitungsrichtung transportiert wird.

$$I = \frac{E_{\rm em}}{dt \ A} = \frac{w_{\rm em}V}{dt \ A} = \frac{w_{\rm em} \ c \ dt \ A}{dt \ A}$$

Mittellung über Wellenlänge $\overline{\cos^2 \omega t} = \frac{1}{2}$

$$\vec{E} = E_0 \vec{e_x} \cos(\omega t - kz_0)$$
 an Stelle z_0

$$I(t) = I_0 \cos^2(\omega t - kz_0) \quad I_0 = \epsilon c E_0^2$$

$$\overline{I} = \frac{1}{T} \int_0^T I_0 \cos^2(\omega t - kz_0) dt$$
$$= \frac{1}{2} I_0 = \frac{1}{2} c\epsilon_0 E_0^2$$

Für zirkular polarisierte Welle:

$$\overline{I} = c\epsilon_0 E_0^2$$
 da $|\vec{E}| = \text{const.}$

Intensität $\sim (Amplitude der Welle)^2$

Poynting-Vektor \vec{S}

Def:

$$\vec{S} \equiv \vec{E} \times \vec{H} \stackrel{\text{Vakuum}}{=} \epsilon_0 c^2 (\vec{E} \times \vec{B})$$

Vakuum:

$$\vec{E}, \vec{B} \perp \vec{k} \Rightarrow \vec{S} \uparrow \uparrow \vec{k}$$

$$S = |\vec{S}| = \epsilon_0 c^2 |\vec{E}| |\vec{B}| = \epsilon_0 c |\vec{E}|^2 = I$$

 \vec{S} beschreibt Richtung und Betrag des Energieflusses

Betrachte Volumen V

$$E_{\rm em} = \epsilon_0 \int\limits_V |\vec{E}|^2 dV$$

keine Verbrauch von $E_{\rm em}$ in V lediglich Zu- oder Abfluss

$$-\frac{\partial E_{\rm em}}{\partial t} = -\frac{\partial}{\partial t} \int_{V} \epsilon_0 |\vec{E}|^2 dV = \oint_{A} \vec{S} d\vec{A} = \int_{\substack{\text{Gausscher} \\ \text{Satz}}} \text{div } \vec{S} dV$$

$$-\frac{\partial}{\partial t}(\epsilon_0|\vec{E}|^2) = \text{div } \vec{S}$$

[Folie: Impulstransport/Strahlungsdruck und davor]

Impulstransport

el.-mag. Welle transportiert auch Impuls

Impulstransport
$$\vec{\pi} \equiv \frac{1}{c^2} \vec{S} = \epsilon_0 (\vec{E} \times \vec{B})$$
Strahlungsdruck $P_{0} = \frac{F}{c} = \frac{dp}{dt} \frac{1}{ct}$

Strahlungsdruck
$$P_{\text{St}} = \frac{F}{A} = \frac{dp}{dt} \frac{1}{A}$$

Impulsänderung
$$dp = |\vec{\pi}|V = |\vec{\pi}|Ac \ dt$$

$$\Rightarrow P_{\rm St} = \epsilon_0 |\vec{E}|^2 = w_{\rm em}$$
 für Absorption

Spiegel mit Reflexion der Welle $\Delta p \rightarrow 2\Delta p$

Wellenabstrahlung **III.14**

III.14.1 Hertzscher Dipol

- offener, gerader Schwingkreis
- \bullet e^- im Leitungsband schwingen periodisch
- Trennung der Ladungen: e^- -überschuss oder e^- -Mangel \rightarrow Bildung eines oszillierenden Dipol
s $\vec{p}=q\vec{d}~\pm q$ Ladungen , $\vec{d}:-q\stackrel{\vec{d}}{\rightarrow}+q$ Beachte $|\vec{d}| \ll l_{\rm stab}$ typ: $|\vec{d}| \sim \mu \text{m}$

III.14.2 Abstrahlung des Hertzschen Dipols

- $\bullet\,$ qspürt Kraftwirkung aus dem $\vec{E}\text{-Feld}$ des Dipols erst nach $\Delta t = \frac{\text{Abstand}}{c}$
- \rightarrow Retardierung, $\vec{E},\ \vec{B}$ breiten sich mit Verzögerung im Raum aus

Magnetfeld

Bio-Savart für Vektorpotential \vec{A}

$$\vec{A}(\vec{r},t) = \frac{\mu_0}{4\pi} \int \frac{\vec{j}(\vec{r}',t)}{|\vec{r}-\vec{r}'|} d^3 \vec{r}'$$

[Folie: Zur Berechnung des B-Feldes]

Stromdichte der e^- im Stab:

$$\vec{j}(\vec{r}',t) = \underbrace{\vec{v}(\vec{r}',t)}_{\text{Geschw. Ladungsdichte}} \underbrace{\rho(\vec{r}',t)}_{\text{Ladungsdichte}}$$

Betrachte:

• $|\vec{r} - \vec{r}'| \gg l$ Stab dann

a)
$$r = |\vec{r}| \gg l$$

b) $|\vec{r} - \vec{r'}| \approx |\vec{r}|$ unabhängig von $\vec{r'}$

• Laufzeit der Wellen im Stab $\mathcal{T} = \frac{l}{c} \ll T = \frac{2\pi}{\omega}$ d.h. alle Wellenfronten von unterschiedlicher \vec{r}' gleichzeitig bei \vec{r} ankommen

Berücksichtigung der Retardierung

$$\vec{A}(\vec{r},t) = \frac{\mu_0}{4\pi r} \int \vec{v}(\vec{r}',t') \rho(\vec{r}',t') d^3 \vec{r}'$$

$$t' = t - \frac{r}{c} \quad \text{Retardierung}$$

Integrand durch oszillierenden Dipol beschreibbar. Dipol in z-Richtung: $\vec{p}(t) = qd\sin\omega t\vec{e}_z$ Aus $\frac{d}{dt}\vec{d} = \vec{v}$ folgt: $\frac{d}{dt}\vec{p} = q\frac{d}{dt}\vec{d} = q\vec{v}$

Raum- \rightarrow Ladungsintegral $\rho d^3 \bar{r}' = dq$

$$\rightarrow \vec{A}(\vec{r},t) = \frac{\mu_0}{4\pi r} \frac{1}{q} \frac{dp(t-\frac{r}{c})}{dt} \int_{\text{Stab}} dq$$

$$\vec{A}(\vec{r},t) = \frac{\mu_0}{4\pi r} q d\omega \{\omega(t - \frac{r}{c})\} \vec{e}_z \quad p_0 = q d$$

 $\bullet \ \frac{d}{dt} \vec{p}$ erzeugt \vec{A} und damit \vec{E} und $\vec{B}\text{-Felder}$

• Magnetfeld
$$\vec{B} = \text{rot } \vec{A} = \begin{pmatrix} \frac{\partial A_z}{\partial y} \\ -\frac{\partial A_z}{\partial x} \\ 0 \end{pmatrix}$$

Bei Ableitung beachten: $\tau(x,y)$ und Retardierung

$$\vec{B} = \frac{\mu_0}{4\pi} \begin{pmatrix} \frac{d}{dt} p(t - \frac{r}{c}) \frac{\partial}{\partial y} (\frac{1}{r}) + \frac{1}{r} \frac{\partial}{\partial y} \frac{d}{dt} p(t - \frac{r}{c}) \\ -\frac{d}{dt} p(t - \frac{r}{c}) \frac{\partial}{\partial x} (\frac{1}{r}) + \frac{1}{r} \frac{\partial}{\partial x} \frac{d}{dt} p(t - \frac{r}{c}) \end{pmatrix}$$

$$t' = t - \frac{r}{c} \quad \frac{d}{dt} p(t - \frac{r}{c}) = \frac{d}{dt'} p(t') \underbrace{\frac{dt'}{dt}}_{1} \equiv \dot{p}$$

$$\frac{\partial t'}{\partial r} = -\frac{1}{c} \quad \frac{\partial r}{\partial y} \frac{\partial \sqrt{x^2 + y^2 + z^2}}{\partial y} = \frac{1}{2r} 2y = \frac{y}{r} \quad \frac{\partial r}{\partial x} = \frac{x}{r}$$

$$\frac{\partial}{\partial x} \dot{p} = -\ddot{p} \frac{1}{c} \frac{x}{r}$$

$$\frac{\partial}{\partial y} (\frac{1}{r}) = \frac{\partial}{\partial y} \frac{1}{\sqrt{x^2 + y^2 + z^2}} = \frac{1}{-2r^3} 2y = -\frac{y}{r^3}$$

Ergibt:

$$\vec{B} = \frac{\mu_0}{4\pi} \begin{cases} -\dot{p}\frac{y}{r^3} - \ddot{p}\frac{y}{cr^2} \\ +\dot{p}\frac{x}{r^3} + \ddot{p}\frac{x}{cr^2} \\ 0 \end{cases}$$
$$\vec{B}(\vec{r},t) = \frac{mu_0}{4\pi} \left\{ \frac{\dot{\vec{p}}}{r^2} x \vec{e_r} + \frac{\ddot{\vec{p}}}{cr} x \vec{e_r} \right\}$$

 $\vec{B} \perp \vec{p} \quad (\vec{p} \parallel \dot{\vec{p}} \parallel \ddot{\vec{p}}) \quad \vec{B} \perp \vec{r}$ Beiträge:

- a) $,\dot{\vec{p}}^{\circ}$, $\sim \frac{1}{r^{2}}$ Vgl. Bio-Savart $d\vec{B} = \frac{1}{4\pi\epsilon_{0}} \frac{\vec{j} \times \vec{r}}{r^{2}} dV$ $\dot{\vec{p}} \int \vec{j} dV \Rightarrow \dot{\vec{p}}$ stammt aus Oszillation von \vec{j}
- b) ,, $\ddot{\vec{p}}$, , $\sim \frac{1}{r}$ aus $\frac{\partial \vec{E}}{\partial t}$ bzw. des Verschiebungsstromes Vgl: Maxwell-Gl:

$$rot \vec{B} = \mu_0 \vec{j} + \frac{1}{c^2} \frac{\partial \vec{E}}{\partial t}$$

Elektrisches Feld

$$\operatorname{div} \vec{A} = \frac{\partial A_z}{\partial z} = \frac{\mu_0}{4\pi} (\dot{p} \frac{z}{r^3} + \ddot{p} \frac{z}{cr^2})$$

In Lorentzeichung:

$$\operatorname{div} \vec{A} = -\frac{1}{c^2} \frac{\partial}{\partial t} \rho_{\text{el}} \quad \operatorname{mit} \quad \epsilon_0 \mu_0 = \frac{1}{c^2}$$
$$\rho_{\text{el}} \frac{1}{4\pi\epsilon_0} \left\{ p \frac{z}{r^3} + \dot{r} \frac{z}{cr^2} \right\}$$

Final

$$\begin{split} \vec{E} &= -\vec{\nabla}\rho_{\rm el} - \frac{\partial \vec{A}}{\partial t} \\ &= \frac{1}{4\pi\epsilon_0} \left\{ \begin{matrix} 3p\frac{xz}{r^5} + 3\dot{p}\frac{xz}{cr^4} + \ddot{p}\frac{xz}{c^2r^3} \\ 3p\frac{yz}{r^5} + 3\dot{p}\frac{yz}{cr^4} + \ddot{p}\frac{yz}{c^2r^3} \\ p(3\frac{z^2}{r^5} - \frac{1}{r^3}) + \dot{p}(3\frac{z^2}{cr^4} - \frac{1}{cr^2}) + \ddot{p}(\frac{z^2}{c^2r^3} - \frac{1}{c^2r}) \end{matrix} \right\} \end{split}$$

$$\vec{E} = \frac{1}{4\pi\epsilon_0} \left\{ 3(\frac{\vec{p}}{r^3} \vec{e}_r) \vec{e}_r - \frac{\vec{p}}{r^3} + 3(\frac{\vec{p}}{cr^2} \vec{e}_r) \vec{e}_r - \frac{\dot{\vec{p}}}{cr^2} + (\frac{\ddot{\vec{p}}}{cr^2} \times \vec{e}_r) \vec{e}_r \right\}$$

Nahfeld: Terme $\sim \frac{1}{r^2}$ und $\sim \frac{1}{r^3}$

$$\vec{E}_N = \frac{1}{4\pi\epsilon_0 r^3} [-\vec{p}^* + 3(\vec{p}^* \vec{e}_r) \vec{e}_r]$$

$$\vec{p}^*?\vec{p} + \frac{r}{c}\dot{\vec{p}}$$

 \vec{E} und \vec{B} um $\frac{\pi}{2}$ verschoben Fernfeld: Term $\sim \frac{1}{r}$

$$\vec{E}_F = \frac{1}{4\pi\epsilon_0 c^2 r} [\ddot{\vec{p}} - (\vec{e_r} \cdot \ddot{\vec{p}}) \vec{e_r}]$$

 $\perp \vec{r}, \perp \vec{B}, \vec{E}$ und \vec{B} in Phase wie von Vakuumwelle erwartet Amplitude $\sim \frac{1}{r} \Rightarrow$ Intensität $\sim \frac{1}{r^2}$

 \rightarrow Energie und Impuls durch eine Kugelfläche konstant

$$|\vec{E}| = \frac{|\ddot{\vec{p}}|\sin\theta}{4\pi\epsilon_0 c^2 r}$$

 θ : \triangleleft Dipolachse und Richtung der Welle

nicht isotrop, maximal \bot Dipolachse. Verschwindet entlang Dipolachse [Folie: Nahfeld des Hertzschen Dipol und davor]

Strahlungsdämpfung

Energiestromdichte: $|\vec{S}| = \epsilon_0 c |\vec{E}|^2$

Im Fernfeld:
$$S = \epsilon_0 c \left(\frac{1}{4\pi\epsilon_0} \frac{\ddot{p}}{c^2 r} \sin \theta \right)^2$$

$$\operatorname{mit} \ddot{p}^2 = -p_0^2 \omega^4 \sin^2(\dot{\omega}(t + \frac{r}{c}))$$

Mittlung über Schwingungsperiode $\overline{\vec{p}^2} = \frac{1}{2}p_0^2\omega^4$

Beachte Skalierung mit ω^4

 \rightarrow signifikante Abstrahlung bei hohen Frequenzen

$$p = \frac{p_0^2 \omega^4}{12\pi\epsilon_0 c^3}$$

- Energie wird der Schwingung des Dipols entzogen
 → Dämpfung der Schwingung
 aber Kompensation durch gekoppelte Schwingkreis
- Berechnung für freie Schwingung Bei t=0 Schwingung mit Amplitude p_0 dann schwache Dämpfung $p(t)=p_0e^{-\gamma t}$ Da $E_{\rm tot}=E_{\rm kin}+E_{\rm pot}\sim |{\rm Amplitude}|^2$ gilt $E_{\rm tot}=E_{\rm tot}(t=0)e^{-2\gamma t}$ Abgestrahlte Leistung P>0 $-P=\frac{dE_{\rm tot}}{dt}=-2\gamma E_{\rm tot} \quad \gamma=\frac{1}{2}\frac{P}{E_{\rm tot}}$

In Mechanik:
$$E_{\text{tot}} = \frac{1}{2} m v_{\text{max}}^2 = \frac{1}{2} m \omega^2 d^2$$

Daraus $\gamma = \frac{q^2 \omega^2}{12\pi \epsilon_0 m_e c^3}$
 m_e Masse el., q Ladung des Dipols

• Wie sieht das Frequenzspektrum aus?

– naiv: nur $\omega_R = \frac{1}{\sqrt{LC}}$

 Dämpfung bewirkt Verbreitung. Antenne sendet eine Welle aus mit esp. abklingender Amplitude.

Mechanik:

$$d = \frac{k}{\sqrt{(\omega_0^2 - \omega^2) + (2\gamma\omega)^2}}$$

d Amplitude, ω_0 Resonanzfrequenz

K Stärke der Anregung = $\frac{E_0q}{m}$

Einsetzen in $P = +2\gamma E_{\rm tot}$

$$P = \frac{q^2 \omega^2 K^2}{12\pi \epsilon_0 c^3} \frac{1}{(\omega_0^2 - \omega^2) + (2\gamma \omega)^2}$$

bei $\omega_{1/2}=\sqrt{\omega_0^2-\omega^2}\pm\gamma$ fällt P auf die Hälfte $\Delta\omega=2\gamma$ volle Breite auf halber Höhe

[Folie: Lebensdauer eines atomaren Zustands]

III.14.3 Beschleunigte Ladungen

Elektrostatik $\varphi(\mathbf{r})$ aus $\rho(\vec{r}')$ via Poisson-Integrals

$$\varphi(\vec{r}) = \frac{1}{4\pi\epsilon} \int \frac{\rho(\vec{r}')}{|\vec{r} - \vec{r}'|} d^3 \vec{r}'$$

Bewegte Ladungen \rightarrow Modifikationen

i) Retardierung: $\vec{r}'(t-\frac{r}{c}) \quad \rho(\vec{r}'(t-\frac{r}{c}))$

ii) "Deformation" des Integrationsvolumens dV_R' [Folie: Verlängerung der Strecke in Bewegungsrichtung]

Verlängerung von $d^3\vec{r}'$ in Richtung von \vec{v} der Ladungsbewegung

$$dV_R' = \frac{d^3 \vec{r}'}{1 - \frac{(\vec{r} - \vec{r}'')}{|\vec{r} - \vec{r}''|}} \frac{\vec{v}}{c}$$

$$\Rightarrow \varphi(\vec{r}) = \frac{1}{4\pi\epsilon_0} \int \frac{\rho(\vec{r}'(t - \frac{r}{c}))}{|\vec{r} - \vec{r}'(t - \frac{r}{c})|} \frac{1}{|\vec{r} - \vec{r}'|} \frac{\vec{v}}{c} d^3 \vec{r}'$$

Für eine Punkladung q

$$\varphi(\vec{r},t) = \frac{1}{4\pi\epsilon_0} \frac{qC}{|\vec{r} - \vec{r'}|c - (\vec{r} - \vec{r'})\vec{v}} \bigg|_{\text{ret}}$$

analog ergibt sich

$$\vec{A}(\vec{r},t) = \frac{\mu_0}{4\pi} \frac{qC}{|\vec{r} - \vec{r}'|c - (\vec{r} - \vec{r}')\vec{v}|_{\text{ret}}}$$
$$= \frac{\vec{v}}{c^2} \varphi(\vec{r},t)$$

Liénard-Wiedert-Potentiale für Pkt. ladungen

Felder der bewegten Ladung

$$\vec{E} = -\vec{\nabla}\varphi - \frac{\partial}{\partial t}\vec{A} \qquad \vec{B} = \vec{\nabla} \times \vec{A}$$

Einsetzen und lange rechnen ...

$$\vec{E} = \frac{1}{4\pi\epsilon_0} \frac{qw}{(\vec{\omega} \cdot \vec{u})^3} \left\{ (c^2 - v^2)\vec{u} + \vec{w} \times (\vec{u} \times \vec{a}) \right\}_{\text{ret.}}$$

 $\vec{B} = \frac{1}{c}\vec{e}_w \times \vec{E}$ \vec{v}, \vec{a} Geschwindigkeit, Beschleunigung der Ladung q

$$\vec{w} \equiv \vec{r} - \vec{r}'_{\text{ret}} \qquad \vec{u} \equiv c\vec{e}_w - \vec{v}$$

2 Beiträge:

- i) Term $\sim \vec{u}$ Nahfeld $|\vec{E}|, |\vec{B}| \sim \frac{1}{w^2}$ Energiefluss $\sim \frac{1}{w^4} \longrightarrow 0$ für Kugelschale mit $R \to \infty$
- ii) Term $\sim \vec{w} \times (\vec{u} \times \vec{a})$ Fernfeld $|\vec{E}|, |\vec{B}| \sim \frac{1}{w}$ Energiefluss $\sim \frac{1}{w^2} \longrightarrow$ konstant durch Kugelschalen \rightarrow Dieser Term bestimmt Abstrahlung $\sim |\vec{a}|$ bewirkt Energieverlust von q

2 Spezialfälle:

i) ruhende Ladung $n = c\vec{e}_w \parallel \vec{r} - \vec{r}'$

$$\vec{E} = \frac{1}{4\pi\epsilon_0} \frac{qw}{c^3(\vec{w}\vec{e_w})} c^2(c\vec{e_w}) = \frac{1}{4\pi\epsilon_0} \frac{q}{w^2} \vec{e_w}$$

 $\vec{B} = 0$ wie in Elektrostatik

ii) konstante Geschwindigkeit $\vec{r}'(t) = \vec{v}t$

$$\vec{E}(\vec{r},t) = \frac{1}{4\pi\epsilon_0} \frac{qw}{(\vec{w}\vec{u})^3} (c^2 - v^2) \vec{u} \Big|_{\text{ref}}$$

Es gilt: $w\vec{u} = c\Delta\vec{r}$ $\Delta\vec{r} \equiv \vec{r} - \vec{r'} = \vec{r} - \vec{v}t$ weiterhin: $\vec{w}\vec{u} = c\Delta\vec{r}\sqrt{1 - \frac{v^2}{c^2}\sin^2\theta}$

 $\theta = \langle \vec{v} \text{ und } \vec{E} \rangle$

Ergibt:
$$\vec{E} = \frac{1}{4\pi\epsilon_0} \frac{1 - \frac{v^2}{c^2}}{(1 - \frac{v^2}{c^2}\sin^2\theta)^{\frac{3}{2}}} \frac{q}{\Delta r^2} \Delta \vec{r}$$

 [Folie: Elektrische Feldlinien bewegter Punktladungen] Für
 $|\vec{v}|\to c$ $E_{\rm trans}$ wächst, $E_{\rm long}$ nimmt ab

Abstrahlung

• im Fernfeld, $\sim |\vec{a}|$ der Pkt.ladung Energiefluss aus Pointingvektor

$$\vec{S} = \epsilon_0 c^2 (\vec{E} \times \vec{B}) = \epsilon_0 c (\vec{E} \times (\vec{e}_w \times \vec{E}))$$
$$= \epsilon_0 c (\vec{E}^2 \vec{e}_w - (\vec{e}_w \vec{E}) \vec{E})$$

im Fernfeld gilt $\vec{E} \perp \vec{w} \rightarrow 2$. Term = 0

$$\vec{S} = \epsilon_0 c |\vec{E}|^2 \vec{e}_w$$

 \vec{E} abhängig von \vec{v} und \vec{a} der Ladung

- wenn $\vec{v} = \vec{0}$ dann $\vec{u} = c\vec{e}_w$ aber Abstrahlung $\neq 0$
- wenn $\vec{a} = \vec{0}$ dann Abstrahlung = 0 $\vec{a} \neq \vec{0}$ dann Abstrahlung in gewisse Richtung Beschleunigte el. Ladungen strahlen el. mag. Wellen aus

Abgestrahlte Leistung in $d\Omega = d\varphi \sin\theta \ d\theta$

$$\frac{dP}{d\Omega} = \epsilon_0 c |\vec{E}|^2 w^2$$

 \vec{S} gibt Leistung von Bewegung Q in Richtung $d\varphi$, $d\theta$ aus Sicht der Ladung. Suche: Leistung an Ort \vec{r} (ruhender Beobachter). Leistung unterschiedlich da Art Dopplereffekt:

- → Abstände Wellentäler ändert sich
- \rightarrow zusätzlicher Faktor

$$\frac{dP}{d\Omega} = \epsilon_0 c |\vec{E}|^2 w^2 \frac{\vec{w}\vec{u}}{wc} \qquad \text{(Ableitung)}$$

Betrachte 2 Spezialfälle:

i) \vec{a} parallel \vec{v} $\vec{u} \times \vec{a} = c(\vec{w} \times \vec{a})$ und $\vec{w} \cdot \vec{u} = \vec{w}(c - \vec{e}_w \vec{v})$

$$\frac{dP}{d\Omega} = \frac{q^2c^2}{16\pi^2\epsilon_0} \frac{\{\vec{e}_w \times (\vec{e}_w \times \vec{a})\}}{(c - \vec{e}_w \vec{v})^5} \qquad \qquad = \frac{q^2|\vec{a}|^2}{16\pi^2\epsilon_0} \frac{\sin^2\theta}{(1 - \frac{v}{c}\cos\theta)^5}$$

 $\theta = \langle \vec{v}, \text{ Beobachtungsrichtung} \rangle$

 $v \to 0 :\sim \sin^2 \theta$ Senkrecht zu \vec{a}

 $v \to \infty$: Nenner $\to 0$ für $\theta \to 0 \Rightarrow$ Vorwärtsabstrahlung

$$P = \int \frac{dP}{d\Omega} \Omega = \frac{q^2 c^2 \gamma^6}{6\pi \epsilon_0 c^3}$$

$$\gamma \equiv \frac{1}{\sqrt{1 - \beta^2}} = \frac{E_{\text{ges}}}{den} mc^2 \ge 1 \quad \beta = \frac{v}{c} \le 1$$

Beachte: $\gamma^6=(\frac{E}{m})^6$ Abhängigkeit

"Bremstrahlung"wenn $\vec{a} \uparrow \downarrow \vec{v}$

Gleich für Beschleunigung und Abbremsung $(|\vec{a}|^2)$

[Folie: Bremsstrahlung in Materie] [Folie: Röntgenröhren]

ii) $\vec{a} \perp \vec{v} \quad |\vec{v}| = {\rm const.}$ Kreisbewegung $\vec{v} \sim \vec{e}_w$ und $\vec{a} \sim \vec{e}_x \quad \vec{w}$ in Polarkoordinaten

$$\frac{dP}{d\Omega} = \frac{q^2a^2}{16\pi^2\epsilon_0c^3} \frac{(1-\beta\cos\theta)^2 - (1-\beta^2)\sin^2\theta\cos^2\theta}{(1-\beta\cos\theta)^5}$$

$$P = \frac{q^2 a^2 \gamma^4}{6\pi \epsilon_0 c^3}$$

"Synchrotronstrahlung": 1964 erstmals an Kreisbeschleuniger beobachtet

- $\gamma^4 = (\frac{E}{m})^4$ Abhängigkeit limitiert maximale Energie von Kreisförmigen $\frac{e^+}{e^-}$ -Beschleunigern
- Abstrahlungscharakteristik

$$\beta \approx 0 : \sim 1 - \sin^2 \theta \cos^2 \varphi$$

$$\varphi = 0 : 1 - \sin^2 \theta \text{ (wieder } \perp \vec{a}\text{)}$$

$$\varphi = 90^\circ : 1$$

$$\varphi = 45^\circ : (\cos 45^\circ = \frac{1}{\sqrt{2}})1 - \frac{1}{2}\sin^2 \theta$$

$$\beta \to 1 : \frac{1}{(1 - \beta \cos \theta)^3}$$

Strahlung in Vorwärtsrichtung gebündelt

[Folie: Abstrahlung bei v senkrecht a] [Folie: Kosmische Synchrotronstrahlung]

[Folie: Strahlentod der Atomen]

III.15 Elektro-magnetische Wellen in Materie

${\bf III.15.1} \quad {\bf Brechungsindex/Brechzahlen}$

- wie verändert sich Welle im Medium?
- Wissen bereits:

$$v_{\rm ph}^{\rm med}=c=c_{\rm med}=rac{1}{\sqrt{\epsilon_0\mu_0\epsilon\mu}}=rac{c_0}{\sqrt{\epsilon\mu}}$$
 c_0 Lichtgeschw. im Vakuum

- Dipol im Wasser: $\lambda < \lambda_0$ λ_0 Vakuumwellenlänge
- $-e^{-}$ in Atomen zu periodischen Schwingungen angeregt

$$\omega_{e^-} = \omega_{\rm ext. Welle}$$

- \rightarrow Abstrahlung von Sekundärwellen
- Brechzahl $n = \frac{c_0}{c_{\text{med}}}$ da $\omega = \text{const. folgt } \lambda_{\text{med}} = \frac{\lambda_0}{n}$

[Folie: Anregung von Atomschwingungen]

Reaktion des Mediums

e⁻-Schwingung durch Welle in z-Richtung, in x linear polarisiert

$$m\ddot{x} + b\dot{x} + Dx = -eE_0e^{i\omega t}$$

$$\ddot{x} + 2\gamma \dot{x} + \omega_0^2 x = K e^{i\omega t} \qquad K = -\frac{eE_0}{m}$$

bbeschreibt die Dämpfung die durch Energieübertragung auf Festkörper entsteht Dbeschreibt die Stärke der atomaren Rückstellkraft E_0 ist die Amplitude der Anregenden Welle

Lösung:

$$x(t) = x_0(\omega)e^{i\omega t}$$
$$x_0(\omega) = \frac{k}{\omega_0^2 - \omega^2 + 2i\gamma\omega}$$

Phasenverschiebung:

$$\phi(\omega) = \pi + \arctan \frac{\gamma \omega}{\omega_0^2 - \omega^2}$$

$$|x_0(\omega)| = \frac{k}{\sqrt{(\omega_0^2 - \omega^2) + (2\gamma\omega)^2}}$$

 \to Emission von Sekundärwellen von allen e^- im Medium ω/ω_0 klein \to positive Phasenverschiebung $\Delta\phi>0$ klein

[Folie: Überlagerung von Primärwelle und Sekundärwelle(n)]

Überlagerung der Wellen bewirkt:

- Phase wird in jeder Schicht verzögert
- Abstand der Maxima/Wellenlänge wird reduziert
- \bullet Welle \perp Ausbreitungsrichtung interferieren zu 0
- $\Rightarrow \lambda$ und c im Medium sind reduziert um n

Makroskopische Welle

[Folie: Phasenverzögerung im Medium]

Strecke Δz im Medium

Vakuumwelle bräuchte: $t_0 = \frac{\Delta z}{c_0}$

Mediumwelle braucht: $t_{\Delta z} = \frac{\Delta z}{c} = \frac{n\Delta z}{c_0} = t_0 + \underbrace{\frac{(n-1)\Delta z}{c_0}}_{\Delta t}$

Welle beim Eintritt: $E(t)=E_0e^{i\omega t}$ bei z=0

Beim Austritt:
$$E(\Delta z, t) = E_0 e^{i\omega(t - t_{\Delta z})} = \underbrace{E_0 e^{i\omega(t - \frac{\Delta z}{c_0})}}_{\text{ungestörte Welle}} e^{-i\omega(n-1)\frac{\Delta z}{c_0}} \parallel$$

$$= e^{-i\phi} \text{Phasenverzögerung}$$

$$\phi = \omega(n-1)\frac{\Delta z}{c_0} = 2\pi(n-1)\frac{\Delta z}{\lambda_0}$$

Dünne Schicht: $\phi \ll 1 \Rightarrow e^{-i\phi} \approx 1 - i\phi$ Welle hinter Medium:

$$E(\Delta z,t) = \underbrace{E_0 e^{i\omega(t-\frac{\Delta z}{c_0})}}_{\text{Primärwelle}} - \underbrace{i\omega(n-1)\frac{\Delta z}{c_0}E_0 e^{i\omega(t-\frac{\Delta z}{c_0})}}_{\text{Effekt von Sekundärwellen}}$$

Mikroskopische Modell:

[Folie: Zur Berechnung des E-Feldes der Sekundärwelle]

• Betrachte \vec{E} -Feld eines Hertzschen Dipols (Dipol $p_0=-ex_0$) im Fernfeld $z_0\gg x_0$ am Punkt z_0 vom Dipol bei $z=0,\rho,\varphi$

$$\vec{E}_{1D}(z_0, t) = -\frac{1}{4\pi\epsilon_0} \frac{e\omega^2 x_0}{c_0^2 r} e^{i\omega(t - \frac{r}{c_0})} \begin{pmatrix} 1 - \frac{\rho^2}{r^2} \cos^2 \varphi \\ -\frac{\rho^2}{r^2} \sin \varphi \cos \varphi \\ \rho \frac{z_0}{r^2} \cos \varphi \end{pmatrix}$$

Kreisring bei ρ summieren/integrieren

Kreisscheibe mit Dichte $\Delta z : dV = \Delta z \ d\varphi \rho \ d\rho$

Anzahl der Dipole in Kreisscheibe: $dN = n_{\rm at} dV$ $n_{\rm at} = \Lambda$ tomdichte auf z-Achse konstruktive Überlagerung da Δt gleich

 \Rightarrow resultierende Welle dNmal Welle für 1 Dipol

$$d\vec{E}_0(z_0,t) = n_{\rm at}\vec{E}_{\rm 1D}(z_0,t)$$

$$\vec{E}_{\mathrm{D}} = n_{\mathrm{at}} \int_{0}^{\infty} d\rho \int_{0}^{2\pi} d\varphi \rho \vec{E}_{\mathrm{1D}}(z_{0}, t)$$

 $\vec{E}_{\rm D}$ in x-Richtung. $\int d\varphi$ bewirkt $E_y=E_z=0$

$$\vec{E}_0(z_0, t) = \frac{1}{4\pi\epsilon_0} \frac{-ex_0\omega^2}{c_0^2} n_{\rm at} \Delta z e^{i\omega t} \right\} \equiv A$$

$$\int_{z_0}^{\infty} dr \int_0^{2\pi} d\varphi (1 - \frac{\rho^2}{r^2} \cos^2 \varphi) e^{-i\omega \frac{r}{c_0}} \vec{e}_x$$

Änderung der Integrationsvariablen $\rho \to r$

$$\rho \ d\rho = r \ dr \quad \text{da} \quad \ r^2 = \rho^2 + z_0^2 \quad z_0 = \text{const.}$$

Integration über $d\varphi$ durchführen:

$$\vec{E}_{\rm D}(z_0, t) = A \int_{z_0}^{\infty} dr \pi \left(1 + \frac{z_0^2}{r^2}\right) e^{-i\frac{\omega}{c_0}r} \vec{e}_x$$

Für ∞ -ausgedehnte Welle divergiert Integral. Durchmesser der Lichtwelle $2\rho_{\max}$, nur Dipole mit $\rho < \rho_{\max}$ teil $z_0^2 \approx r^2$ im Fernfeld $\left(1 + \frac{z_0^2}{r^2}\right) \approx 2$ Berücksichtige nur untere Integrationsgrenze

$$\vec{E}_{\mathrm{D}}(z_{0},t) = \frac{1}{2\epsilon_{0}} \frac{ex_{0}\omega^{2}}{c_{0}^{2}} n_{\mathrm{at}} \Delta z e^{i\omega t} \left(i\frac{c_{0}}{\omega}\right) e^{-i\frac{\omega}{c_{0}}r} \vec{e}_{x}$$

Mit Amplitude x_0 der e^- -Schwingung

$$\vec{E}_{\rm D}(z_0, t) = -i \frac{e^2 \omega^2 n_{\rm at}}{2\epsilon_0 m} \frac{\Delta z}{c_0} E_0 \frac{1}{\omega_0^2 - \omega^2 + 2i\gamma\omega} e^{i\omega(t - \frac{z_0}{c})} \vec{e}_x$$

Vergleich zwischen makroskop. und mikroskop. Beschreibung

$$\frac{e^2 \omega n_{\rm at} \Delta z}{2\epsilon_0 m c_0} E_0 \frac{1}{\omega_0^2 - \omega^2 + 2i\gamma\omega} \stackrel{!}{=} \omega (n-1) \frac{\Delta z}{c_0} E_0$$

$$\Rightarrow \boxed{n = 1 + \frac{e^2 n_{\rm at}}{2\epsilon_0 m} \frac{1}{\omega_0^2 - \omega^2 + 2i\gamma\omega}} \qquad \text{komplexe Größe}$$

- abhängig von $n_{\rm at}, \omega_0, \gamma$
- Achtung: gilt strikt nur für Medien mit $n-1 \ll 1$ Hier nur eine Eigenfrequenz \to Verallgemeinerung

$$n = 1 + \frac{e^2}{2\epsilon_0 m} \sum_{j=1}^{N} \frac{n_{j,\text{at}}}{\omega_j^2 - \omega^2 + 2i\gamma_j \omega_j}$$

für N Eigenfrequenzen ω_j , mit Dämpfung γ_j und Dipoldichte $n_{j,\mathrm{at}}$

Absorption und Dispersion

Aufspaltung $n = n' - i\kappa$

Realteil:

$$n' = 1 + \frac{e^2 n_{\rm at}}{2\epsilon_0 m} \frac{\omega_0^2 - \omega^2}{(\omega_0^2 - \omega^2)^2 + 4\gamma^2 \omega^2}$$

Imaginärteil:

$$\kappa = \frac{e^2 n_{\rm at}}{2\epsilon_0 m} \frac{4\gamma^2 \omega^2}{(\omega_0^2 - \omega^2)^2 + 4\gamma^2 \omega^2} = 0 \quad \text{für} \quad \gamma = 0$$

Welle bei Austritt aus Medium:

$$\begin{split} \vec{E}(z_0,t) &= E_0 e^{\omega \kappa \frac{\Delta z}{c_0}} e^{-i\omega(n'-1)\frac{\Delta z}{c_0}} e^{i\omega(t-\frac{\Delta z}{c_0})} \\ &= E_0 e^{2\pi\kappa \frac{\Delta z}{\lambda_0}} e^{-i2\pi(n'-1)\frac{\Delta z}{\lambda_0}} e^{i\omega(t-\frac{\Delta z}{c_0})} \end{split}$$

- $e^{i\omega(t-\frac{\Delta z}{c_0})}$ ausfallende ursprüngliche Welle
- $e^{-i\omega(n'-1)\frac{\Delta z}{c_0}}$ Phasenverschiebung im Medium $n'(\omega) \Rightarrow n'(\lambda)$ Dispersion
- $e^{-\omega\kappa\frac{\Delta z}{c_0}}$ exponentielle Abnahme der Amplitude

Def.: Absorptionskoeffizienten α

$$I(\Delta z) = I_0 e^{-\alpha \Delta z}$$
 Beersches Absorptionsgesetz

I Intensität

[Folie: Dispersion in verschiedenen Gläsern]

Zshg. von
$$\kappa$$
 und α : $\alpha = \frac{4\pi\kappa}{\lambda}$ $[\alpha] = \frac{1}{m}$

Reflexions- und Brechungsgesetz

[Folie: Reflexion und Brechung]

- hier: Richtungen, Intensitäten/Polarisation (Mittwoch)
- Grenzfläche in x-z-Ebene
- Wellenvektor der einlaufenden Welle \vec{k}_e in x-y-Ebene Normalenvektor \vec{n}_{xz} und \vec{k}_e bilden Einfallsebene
- ullet Tangentialkomponente des $ec{E}$ -Feldes stetig an Grenzfläche

$$E_{e,t} + E_{r,t} = E_{a,t} \tag{*}$$

t tangential, e einlaufend, g gebrochen bei $\vec{r} = 0$:

$$A_{e,t}e^{i\omega_{e}t} + A_{e,t}e^{i\omega_{r}t} = A_{a,t}e^{i\omega_{g}t}$$

Nur Lösung, wenn gilt $\omega_e = \omega_r = \omega_q$

Bedingung (*) gilt nur für gesamte x-z-Ebene

$$\begin{aligned} k_e \vec{r} &= k_r \vec{r} = \vec{k}_g \vec{r} \end{aligned} \tag{**}$$

$$\vec{r} &= x \vec{e}_x + z \vec{e}_z \quad \text{in Grenzfläche} \\ \vec{k}_e &= k_{ex} \vec{e}_x + k_{ey} \vec{e} \\ \vec{k}_r &= k_{rx} \vec{e}_x + k_{ry} \vec{e}_y + k_{rz} \vec{e}_z \qquad \vec{k}_g = k_{gx} \vec{e}_x + k_{gy} \vec{e}_y + k_{gz} \vec{e}_z \end{aligned}$$

Einsetzen in (**)

$$k_{ex}x = k_{rx}x + k_{rz}z = k_{gx}x + k_{gz}z$$

Muss für beliebige x und z in Grenzfläche gelten

$$\Rightarrow k_{ex} = k_{rx} = k_{qx}$$
 $k_{rz} = k_{qz} = 0$

d.h. Wellenvektoren von reflektierter und gebrochener Welle auch in Einfallsebene. Aus Abb:

$$\begin{aligned} k_{ex} &= k_e \sin \alpha & k_{rx} &= k_r \sin \alpha' & k_{gx} &= k_g \sin \beta \\ \frac{\sin \alpha}{c_1} &= \frac{\sin \alpha'}{c_1} &= \frac{\sin \beta}{c_2} & c_i \text{ Lichtgeschwindigketi im Medium i} \\ & \left[\sin \alpha &= \sin \alpha' & \alpha &= \alpha' & \text{Reflexionsgesetz} \right] \\ & \left[\frac{\sin \alpha}{\sin \beta} &= \frac{c1}{c2} &= \frac{n2}{n_1} & \text{Snelliusche Brechungsgesetz} \right] \end{aligned}$$

[Folie: Anwendung er Totalreflexion: Retroreflexionsprisma und Lichtleiter]

Totalreflexion

Übergang $1 \to 2$; $n_1 > n_2$

 $\sin \alpha \frac{n_1}{n_2} = \sin \beta \stackrel{!}{\leq} 1$

Für $\sin \beta > 1$ keine Brechung \rightarrow Totalreflexion

Grenzwinkel $\sin \alpha_{\rm Gr} = \frac{n_2}{n_1}$

 $\alpha>\alpha_{\rm Gr}$ wird $\vec k_g$ komplex \Rightarrow evaneszente Welle: Welle dringt in das Medium ein. Intensität $I_2\sim e^{-\frac{z}{\lambda}}$

Absorption

 κ, α werden groß wenn $\omega \approx \omega_0$. Dann $n_r = 1$

Exp: weißes Licht \rightarrow Schatten des Stäbchens, "keine" Absorption Na-Lampe \rightarrow Absorption in NaCl \rightarrow Schatten der Flamme $\hbar\omega_{\rm Licht} = \Delta E_{\rm Na}$ Unterschied der Energieniveaus im Na

III.15.2 Wellengleichung in Materie

$$\vec{\nabla} \times \vec{E} = -\frac{\partial \vec{B}}{\partial t} \quad \vec{\nabla} \times \vec{B} = \mu_0 \mu (\vec{j} + \frac{\partial D}{\partial t})$$
$$\vec{\nabla} \vec{D} = \rho \qquad \vec{\nabla} \vec{B} = 0$$
$$\vec{D} = \epsilon \epsilon_0 \vec{E} = \epsilon_0 \vec{E} + \vec{P} \quad \rho, \vec{j} \text{ freien Dichten}$$

Nichtleiter/Isolator: $\vec{j}=0$ ungeladen $\rho=0$

Analog zu Vakuum: $\Delta \vec{E} = \mu \mu_0 \epsilon \epsilon_0 \frac{\partial^2 \vec{E}}{\partial t^2}$ $c = \frac{1}{\sqrt{\mu \mu_0 \epsilon \epsilon_0}}$

ebenso: $\Delta \vec{B} = \frac{1}{c^2} \frac{\partial^2 \vec{B}}{\partial t^2}$ Annahme $\mu_r \approx \underline{1}$ (kein Ferromagnet)

Setze $\vec{D}(\vec{E}, \vec{P})$ in $\text{rot}\vec{B}$ ein

$$\Delta \vec{E} = \underbrace{\frac{1}{c_0^2} \frac{\partial^2 \vec{E}}{\partial t^2}}_{\text{Primärwelle}} + \underbrace{\frac{1}{\epsilon_0 c_0^2} \frac{\partial^2 \vec{P}}{\partial t^2}}_{\text{Sekundärwelle aus Dipolen}} \mu \approx 1 \quad n = \sqrt{\epsilon}$$

Aus $\vec{B}_{\omega}^{1}(\vec{k} \times \vec{E})$ folgt mit $\vec{k} = n\vec{k}_{0}$

$$\vec{B} = \frac{n}{c} (\vec{e}_{\vec{n}_0} \times \vec{E}) = \frac{|n|}{c} (\vec{e}_{n_0} \times \vec{E}) e^{i\phi_B}$$

mit $n = |n|e^{i\phi_b}$ tan $\phi_B = -\frac{k}{n}$

für $k \neq 0$ sind \vec{E} und \vec{B} nicht mehr in Phase

In x lin. pol. Welle mit Ausbreitung in z-Richtung

$$\vec{E} = E_0 e^{i(\omega t - kz} \vec{e}_x \quad \underline{P} = N\alpha E_x$$

 α polarisierbarkeit, N Dipoldichte

 α Polarisierbarkeit, N Dipoldichte Einsetzen in Wellengleichung: $k^2=\frac{\omega^2}{c^2}(1+\frac{N\alpha}{\epsilon_0})$ $\frac{c}{n}=\frac{\omega}{k}$ ergibt:

$$n^2 = 1 + \frac{N\alpha}{\epsilon_0}$$

Zusammenhang zwischen Brechzahl und Polarisierbarkeit Induzierter Dipol:

$$p = -eX_0 = \frac{e^2E}{m(\omega_0^2 - \omega^2 + 2\gamma i\omega)}$$

Andererseits: $\vec{p} = \alpha(\omega)\vec{E}$

Also folgt:

$$\alpha = \frac{e^2}{m(\omega_0^2 \omega^2 + 2i\gamma\omega)}$$

bzw: $n^2 = 1 + \frac{e^2 N}{\epsilon m(\omega_0^2 - \omega^2 + 2i\gamma\omega)}$

Gültig für n-1 groß

Für $(n-1)\ll 1$ "altes" Ergebnis mit $(n^2-1)\approx 2(n-1)$

III.15.3 Wellen an Grenzflächen

einfallend $E_e = A_e e^{i(\omega t - \vec{k}_e \vec{r})}$

reflektiert $E_r = A_r e^{i(\omega t - \vec{k}_r \vec{r})}$

gebrochen $E_g = A_g e^{i(\omega t - \vec{k}_g \vec{r})}$

 \vec{k}_0, \vec{k}_r aus Reflexions- bzw. Brechungsgesetz jetzt: Amplituden und Polarisationen

Randbedingungen an \vec{E} und \vec{R} auf Grenzfläche

Tangentialkomponente E_t, B_t und Normalkomponente E_n, B_n

Beim übergang: E_t und B_n stetig

Weiterhin: $|\vec{E}_1|\epsilon_1 = |\vec{E}_2|\epsilon_2$

da E_t gleicht:

$$\frac{E_{1,n}}{E_{2,n}} = \frac{\epsilon_2}{\epsilon_1} \stackrel{\mu=1}{\approx} \frac{n_2^2}{n_1^2}$$

analog für \vec{B} : $B_{1n} = B_{2n}$

$$\frac{B_{1,t}}{B_{2,t}} = \frac{\mu_1}{\mu_2} \stackrel{\mu=1}{\approx} 1$$

Amplituden

Zerlege Amplitude von \vec{E} in A_p parallel und A_s senkrecht zur Einfallsebene $(\vec{k}_e, \vec{n}_{\text{Grenz}})$ hier: $A_p = (A_x, A_y, 0)$ $A_s = (0, 0, A_z)$

Nutze Stetigkeit von E_t und B_t und Reflexions- bzw. Brechungsgesetz

 \rightarrow Fresnelsche Gleichungen

Senkrechte Komponenten

Reflexionskoeffizient ρ_s

$$\rho_s = \frac{A_{rs}}{A_{es}} = \frac{1-a}{1+a} = -\frac{\sin(\alpha-\beta)}{\sin(\alpha+\beta)}$$

Transmissionskoeffizienten τ_s

$$\tau_s = \frac{A_{gs}}{A_{es}} = \frac{2}{1 - a} = \frac{2n_1 \cos \alpha}{n_1 \cos \alpha + n_2 \cos \beta}$$

Analog für parallele Komponenten

$$\rho_p = \frac{A_{rp}}{A_{ep}} = \frac{\tan(\alpha - \beta)}{\tan(\alpha + \beta)}$$

$$\tau_p = \frac{A_{gp}}{A_{ep}} = \frac{2\sin\alpha\cos\beta}{\sin(\alpha + \beta)\cos(\alpha - \beta)}$$

Grundlage um Reflexion und Transmission zu berechnen Reflexions- und Transmissionsvermögen

$$\overline{I}_e = \epsilon_0 \epsilon_1 |\vec{E}_e|^2 = \frac{1}{2} \epsilon_0 \epsilon_1 c_1 A_e^2 \quad A_e = \sqrt{A_{e,s}^2 + A_{e,p}^2}$$

$$\overline{I}_R = \frac{1}{2} \epsilon_0 \epsilon_1 c_1 A_r^2$$

Reflexionsvermögen $R=\frac{\overline{I}_r}{\overline{I}_e}=\frac{A_r^2}{A_e^2}$ Strikt Fläche \perp Strahl $\frac{1}{\cos\alpha}$ Fläche auf der Grenze

$$R = \frac{\overline{I}_R \cos \alpha'}{\overline{I}_e \cos \alpha} = \frac{\overline{I}_R}{\overline{I}_e} \quad \text{da } \alpha = \alpha'$$

Transmissionsvermögen $T = \frac{\overline{I}_t \cos \beta}{\overline{I}_e \cos \beta}$

$$\begin{split} \overline{I}_t &= \frac{1}{2} \epsilon_2 \epsilon_0 c_2 A_g^2 \\ &= \frac{1}{2} \frac{n_2}{\mu_0 c_0} A_g^2 \qquad \text{für } \mu = 1 \end{split}$$

Analog: $\overline{I}_e = \frac{1}{2} \frac{n_1}{\mu_0 c_0} A_e^2$

$$\Rightarrow \boxed{T = \frac{n_2 \cos \beta A_g^2}{n_1 \cos \alpha A_e^2}}$$

Da ρ_s, ρ_p unterschiedlich sind R_s, R_p unterschiedlich

$$R_s = \frac{A_{re}^2}{A_{es}^2} = \frac{\sin^2(\alpha - \beta)}{\sin^2(\alpha + \beta)}$$
 $R_p = \frac{A_{rp}^2}{A_{ep}^2} = \frac{\tan^2(\alpha - \beta)}{\tan^2(\alpha + \beta)}$

Senkrechter Einfall $R(\alpha = 0) = \frac{(n_1 - n_2)^2}{(n_1 + n_2)^2}$

Allgemeiner Falls (nachrechnen!)

$$T_p + R_p = 1$$
 $T_s + R_s = 1$ $T + P = 1$

 \rightarrow Intensität geht nicht verloren

Brewster-Winkel

Für $\alpha + \beta = \frac{\pi}{2} = 90^{\circ}$ dann $\tan(\alpha + \beta) \to \infty$ $A_{rp} = 0$ d.h. die reflektierte Welle hat nur Anteile senkrecht zur Einfallsebene Für Brewster-Winkel $\alpha_{\rm Br}$ gilt $\vec{k_r} \perp \vec{k_q}$

Brewsterbedingung $\frac{\sin \alpha}{\sin \beta} = \frac{n_2}{n_1}$ $\alpha + \beta = \frac{\pi}{2}$

$$\rightarrow \tan \alpha_{\rm Br} = \frac{n_2}{n_1} \quad {\rm f\ddot{u}r} \quad \frac{n_2}{n_1} = 1, 5 \quad \alpha = 56.3^\circ$$

Esp:

a) unpolarisiertes Licht

Reflexion: A_p wird nicht reflektiert, \bot unpolarisiert

Transmission groß

viele Glaßplatten: nur ${\cal A}_s$ reflektiert (vielmals)

 A_s klein $\xrightarrow{}$ A_p dominiert $\xrightarrow{}$ \parallel polarisiert

b) polarisiertes Licht

 \parallel polarisiert \rightarrow keine Reflexion, vollständig Transmission

 \perp polarisiert \rightarrow Reflexion und Transmission