UNIVERSITY OF VICTORIA EXAMINATIONS SPRING 2008

C SC 230 - Introduction to Computer Architecture and Assembly Language

STUDENT NUMBER:		
TIME: 3 hours		
INSTRUCTOR: M. Sorra	•	

TOTAL MARKS: 100

TO BE ANSWERED ON THE PAPER

Question No.	Value	Mark	Question No.	Value	Mark
1	4		8	6	
2	3		9	12	
3	5		10	13	
4	6		11	10	
5	5		12	10	
6	8		13	10	
7	8		TOTAL	100	

INSTRUCTIONS:

- 1. STUDENTS MUST COUNT THE NUMBER OF PAGES IN THIS EXAMINATION PAPER BEFORE BEGINNING TO WRITE, AND REPORT ANY DISCREPANCY IMMEDIATELY TO THE INVIGILATOR
- 2. This examination paper consists of 13 pages including this cover page plus 5 pages of Appendix.
- 3. No aids are permitted. However, an Appendix describing the ARM instruction set is provided for your use.
- 4. The marks assigned to each question are shown within square brackets. Partial marks are available for all questions.
- 5. Please be precise but brief, and use point form where appropriate.
- 6. It is strongly recommended that you read the entire exam through from beginning to end before beginning to answer the questions.

Question 1. [4]					
(a) The range of	decimal values tha	at can be represe	nted as unsigned	16-bit integers i	s:
()		
(b) The range of	decimal values that	at can be represe	nted as a signed	8-bit 2's comple:	nent integers is:
()		
•					
access time. Acce ability of a cache ory and copied i from the cache (Suppose that exectess time to an instract hit is 96%. In the and the the cache, and this time it will be the execution time	ruction is 2 ns fro case of a cache m then a second ac a hit).	om the cache and niss, the instruct access must take	d 20 ns from mer ion is fetched fro place to copy the	nory. The probom main memerinstruction
(b) [1] Compute	the execution time	e of a program w	ith 100 instructi	ons with the cac	he.
(c) [1] If the cach Compute the	e size is doubled, t execution time of	the probability o a program with	f not finding an 100 instructions	instruction is cu with the larger	t in half. cache.
*****				· · · · · · · · · · · · · · · · · · ·	

Question 3. [5] Figure 1.4 in your textbook is reproduced below in Figure 1. It shows the execution portion for a program "P" which has an "input" phase from t₀ to t₁, a "compute" phase from t₁ to t₄, and an "output" phase from t₄ to t₅. During the input phase, an OS routine loads the program from disk to memory and then execution control is passed to the application. From t₂ to t₃ the OS transfers data from disk, and from t₄ to t₅ it prints results. If several applications need to be processed, resources can be better allocated as, for example, the OS can be loading the input phase of program "P+1" while the output phase is taking place for program "P". Furthermore during the input phase of program "P" it could have been processing the output phase of program "P-1". This pattern of concurrent execution is often called "multiprogramming" and it is based on overlapping the input and output phases of a collection of programs to reduce the total time needed to execute them.

Let each of the six OS routine execution intervals be 1 unit of time, with each of the two disk operations requiring 3 units, printing requiring 3 units, and each of the two program compute intervals requiring 2 units of time (as labelled in figure 1). Figure 2 shows a diagram of the overlapping of three successive programs P1, P2 and P3. You are asked to compute the ratio of best overlapped time to non overlapped time for a sequence of programs. It may help to follow the steps below.

(a) [1] How many units of time in total are required for each single program, assuming they are composed of the same phases? Draw a diagram showing the three phases (input, computing, output) and the intervals within each, then compute the total.

	•						
		•					
	•				•	·	
÷		•	•	•		٠.	•

are required fo	three programs are shown w r the second program P2 to f r the third program P3 to fin	finish execution? How	many additional to many additional to many additional to the many ad	ime units ime units

overlapping an	lculated the time between co d the time to completion wi d time to non overlapped tin	thout overlapping in (a). Now compute the	he ratio of
				-
each program he phase takes 1/3 processing and	considered so far has been of considered so far has been of congram P+1. Now ignore the has an equal balance among of the total elapsed time to disk access can be seen as in the steady state, what could time?	e short time needed fo the <i>input, compute</i> and execution. If the three ndependent, such that	r OS routines and a output phases, that activities of printin all three could take	ssume tha : is, each g, e place at

Question 4. [6] Program execution time, *T*, is defined in section 1.6.2 of the textbook as:

$$T = \frac{N \times S}{R}$$
 where

- *T* is the total elapsed time,
- *N* is the number of machine language instructions used during the execution (not necessarily the number of machine instructions in the object code),
- *S* is the number of basic steps needed to execute one machine instruction (where each basic step is assumed to take 1 clock cycle),
- *R* is the clock rate.

You are asked to examine T for a certain high-level language program. The program can be run on a RISC or a CISC computer. Both computers use pipelined instruction execution and have the same clock rate R. However pipelining in the RISC machine is more effective than in the CISC machine, such that the effective value of Sr for the RISC machine is 1.2, but it is Sc = 1.5 for the CISC machine. You are told that the program will have the same total execution time T on both machines if Nc, the number of machine language instructions for CISC, is 80% or 4/5 of Nr, the number of machine language

(a) [1] Elapsed	time in RISC: Tr =			•	
(b) [1] <i>Elapsed</i>	time in CISC: Tc =		•	•	
					•
(c) [4] Given So	c = 1.5 and $Sr = 1.2$, th	e conjecture is t	hat Nc = 4/5 N	r <i>will give</i> T	Tr = Tc. Why?
,				•	
s and a 16-bit do be 16 bits (2 byto pected that the	ou are involved in the ata bus; it is expected es). There are both p whole address space total number of add	to be byte-addr eripherals and r will be used.	essable for ever nemory units t	rything and o be connec	a word is defin
s and a 16-bit do be 16 bits (2 by) bected that the [1] What is the [1] The idea is and ROM, and	ata bus; it is expected es). There are both p whole address space	to be byte-addreripherals and resipherals and residuals are will be used. ressable location and residuals are addressable s	essable for even nemory units to as for this syste pace for the me	rything and o be connec m? - emory requi	a word is defin ted to it and it rements of RA
s and a 16-bit do be 16 bits (2 by) bected that the [1] What is the [1] The idea is and ROM, and	eta bus; it is expected es). There are both p whole address space total number of address about 3/4 of the 1/4 of the addressab	to be byte-addreripherals and resipherals and residuals are will be used. ressable location and residuals are addressable s	essable for even nemory units to as for this syste pace for the me	rything and o be connec m? - emory requi	a word is defin ted to it and it rements of RA
s and a 16-bit debe 16 bits (2 byte 16 bits (2 byte 16 bits (2 byte 16 bits (2 byte 16 bits (2 bits 16 bits (2 bits 16	nta bus; it is expected es). There are both powhole address space total number of address about 3/4 of the 1/4 of the addressablable for memory?	to be byte-addreripherals and resipherals and residuals are will be used. ressable location are addressable space for the	essable for evenemory units the system of this system of the mean	rything and o be connec m? emory requi hat will be t	a word is defin ted to it and it rements of RA
s and a 16-bit debe 16 bits (2 byte 16 bits (2 byte 16 bits (2 byte 16 bits (2 byte 16 bits (2 bits 16 bits (2 bits 16	eta bus; it is expected es). There are both p whole address space total number of address about 3/4 of the 1/4 of the addressab	to be byte-addreripherals and resipherals and residuals are will be used. ressable location are addressable space for the	essable for evenemory units the system of this system of the mean	rything and o be connec m? emory requi hat will be t	a word is defir ted to it and it rements of RA
s and a 16-bit debe 16 bits (2 by be 16 bits (2 by bected that the [1] What is the [1] The idea is and ROM, and addresses available [1] What will the [1] The address components, 1	nta bus; it is expected es). There are both powhole address space total number of address about 3/4 of the 1/4 of the addressablable for memory?	to be byte-addreripherals and resipherals and resipherals and residuely and residuely addressable space for the ole addresses be the addresses be the addresses and the aponents and the address and the addre	essable for even nemory units to as for this system pace for the me peripherals. We for peripheral subdivided into e rest (6/8) for	rything and o be connectors? emory requitate will be to 1/8 of it for disk address.	a word is defir ted to it and it rements of RA he number of or input sing. The chos

				should not take	····		,	
•				·				
· .								
		• •	•	*				
					•			
	-				·.			
			•					
					v.			
		•						
				•				
						4		
estion 7. [8]	Describe	e at least o	one cache ma	pping strategy	in detai	l and giv	e an exai	mple.
estion 7. [8]	Describe	e at least o	one cache ma	pping strategy	in detai	l and giv	e an exar	mple.
estion 7. [8]	Describe	e at least o	one cache ma	pping strategy	in detai	l and giv	e an exai	mple.
estion 7. [8]	Describe	e at least o	one cache ma	pping strategy	in detai	l and giv	e an exai	mple.
estion 7. [8]	Describe	e at least o	one cache ma	pping strategy	in detai	l and giv	e an exai	mple.
estion 7. [8]	Describe	e at least o	one cache ma	pping strategy	in detai	l and giv	e an exai	mple.

Question 8. [6] Assume that the processor has a pipeline with 4 stages, namely for "Fetching instructions", for "Decoding instructions and fetching operands", for "Executing operations" and for "Writing results" with 3 interstage buffers. The two instructions below are found in that order in a segment of code to be executed with this processor and it is possible that they may cause a delay in the normal performance. MUL R1, R2, R3 0 R1 = R2*R3STR R4, [R5, R1] @ store R4 to memory at address (R5)+(R1) (a) [2] Why might these instructions cause a delay? (b) [1] What is this situation called? (c) [2] Draw a timing diagram for a general pipeline of this type which shows this situation. (d) [1] What solutions are possible either in software or in hardware to avoid this kind of delay? State one.

Question 9. [12] Describe the steps which occur when the ARM instruction:

LDR R4, [R2,R3, LSL #2]

is fetched, decoded and executed in the context of the example structure of the internal datapath of a processor of Figure 3. Give precise details of everything that happens, which registers, buses, control lines, etc. are used, how each element is addressed and describe the purpose of each microoperation. Be brief yet precise.

d) [3] Describe the steps which take place when the needed data is only on disk (worst	
(d) [3] Describe the steps which take place when the needed data is only on disk (worst	
(d) [3] Describe the steps which take place when the needed data is only on disk (worst	
	·
e) [3] Describe the steps which take place when the needed data is in memory, but not i	scenario
e) [3] Describe the steps which take place when the needed data is in memory, but not i	
e) [3] Describe the steps which take place when the needed data is in memory, but not i	
e) [3] Describe the steps which take place when the needed data is in memory, but not i	
e) [3] Describe the steps which take place when the needed data is in memory, but not i	
e) [3] Describe the steps which take place when the needed data is in memory, but not i	
	n cache.

Question 10. [13] Assume you have a system which contains almost all the elements which have

give a de	nay or may not hav efinition of what it the DMA, state wh	is and what fun	ction it had in	the previous 3	scenarios. If	
		•			·	
,				÷		,
					•	
having to ta understood (a) [1] A cal	it timer in ARMSir ake care of the rolli the details of the c l to the swi 0x6d i quantity. Show AR	ng around of the ode by rewriting nstruction return	e timer. You m g perfect code ns in R0 the cu	ust now show following the crent number	that you trul strict specific of ticks (milli	ly have ations here seconds) as
1-0-0-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1						
			,			. ,
"32,76 delay fu compute as paran	15-bit timer has a r 7 ₁₀ ". After reachin nction calls the sw es the difference be neter. In its simples desired delay (from	g the value "0x i 0x6d instruct etween T1 and T st form, the pseu	7FFF=32, 76' ion two times, 2 and compar ido code could	7 ₁₀ " it rolls ove saving the res es it to the desi	er to "0×0000 ults in T1 and ired delay va	0″. The I T2. It then
T1 = get	time with swi 0x6d usted time to 15-bit	триг ригителет	NU)			

There are cases to be considered because of the rollover. If both T1 and T2 fall within the same period of the timer, that is 0 < T1 < T2 < 32,767, with T1 and T2 as *unsigned* values, then all is well (e.g. T1=1,000 and T2=15,000). But if T1 has a value close to 32,767 and T2 has a value which has

T2 = get time with swi 0x6dT2 = adjusted time to 15-bit

If TIME < DELAY go to Repeat

TIME = T2-T1

						4				
					•					
	e.									
				* .						
	·									
. •									*.	

		······································							***************************************	***************************************
•										
								·		
					·					
•										

Question 12. [10] You used the swi 0x203 instruction to check whether one of the 16 blue buttons had been pressed (see the Appendix for documentation). Somebody tells you that there might be some errors in the documentation and you should test the functionality before using the instruction. For example, you are told that if one pushes the button "13" it is not clear if the result in R0 is the value "0x00002000" corresponding to the bit in position 13 having been set, or the value "0x00040000" corresponding to the hit in position 13 having been set when bits are labelled from left to right. You have now the job of testing the code against the specifications in the documentation. Write the few lines of ARM code needed to complete the code segment below to accomplish the task of checking how the swi 0x203 instruction works exactly. Check, after pressing each button, what result appears in register R0 and compare it against the expected value in the documentation. Document your code.

r and compa	ire it a	gamst the expected v	raide in the documentation. Document your code.
MLOOP:	LDR SWI MOV	R0,=PROMPTNUM 0x07 R2,R0	<pre>@prompt tester to enter a number @and save it in R2. Blue button pressed @should be the one numbered as in R2</pre>
LOOP:	SWI BEQ	0x203 LOOP	@keep checking for a blue button
	מחת		<pre>@blue button with number=R2 should @have been pressed - now check here</pre>
· · · · · · · · · · · · · · · · · · ·			<pre>@that the pattern in R0 corresponds @to the expectation of the button @number stated in R2</pre>
			<pre>@for example, if $R2 = 5$, check that @the bit in position 5 (counting from</pre>
•			@right) in R0 is indeed set to 1 and @all other bits are equal to 0
ERROR:	LDR	RO,=NOTOKAY	
	SWI BAL	0x02 MLOOP	<pre>@print error message @go test next button</pre>
NOERROR:	LDR SWI BAL	R0,=OKAY 0x02 MLOOP	<pre>@print ok message @go test next button</pre>
	* *		ego cose nexe succon
.data PROMPTNUM			number 0-16 and then press the ding blue button\n"
NOTOKAY: OKAY:	.asc	iz "problem	with this button\n" em with this button\n"

Question 13. [10] In the assignments you used a segment of code for the 8-segment display and you were expected to understand it fully (see the Appendix for the SWI instructions). Now pretend that you are teaching a new student and you must explain extremely clearly exactly what happens in this code. Explain for each line [3] through [5] what happens and exactly how the instruction works (that is, be precise about the addressing mode and its semantics). The code is shown in Figure 4, while the data and the EQU declarations are in Figure 5. To make the explanation really clear, use an example of how the code works, line by line, when it is called with parameters R0=5 and R1=1. Every register must be fully explained in its content and its meaning.

```
*** Display8Segment (Number:R0; Point:R1) ***
@ Displays the number 0-9 in R0 on the
                                                      FIGURE 4. The subroutine for
                                                      the 8-segment display
@ LED 8-segment display
@ If R1 = 1, the point is also shown
     Display8Segment:
[1]
                            stmfd
                                       sp!, \{r0-r2, lr\}
[2]
           ldr
                      r2,=Digits
131
           ldr
                      r0,[r2,r0,ls1#2]
[4]
           tst
                      r1,#0x01
[5]
           orrne
                      r0,r0,#SEG P
[6]
                      0x200
           swi
[7]
           ldmfd
                      sp!, \{r0-r2, pc\}
```

```
Digits:
                                                                 SEG A,0x80
                                                          .equ
   .word SEG A|SEG B|SEG C|SEG D|SEG E|SEG G
                                                   @0
                                                          .equ
                                                                 SEG B, 0x40
   .word SEG B|SEG C
                                                   @1
                                                          .equ
                                                                 SEG C,0x20
   .word SEG A SEG B SEG F SEG E SEG D
                                                   @2
                                                          .equ
                                                                 SEG D, 0x08
   word SEG A SEG B SEG F SEG C SEG D
                                                   @3
                                                                 SEG E,0x04
                                                          .equ
   .word SEG G|SEG F|SEG B|SEG C
                                                   @4
                                                          .equ
                                                                 SEG F,0x02
   .word SEG A SEG G SEG F SEG C SEG D
                                                   @5
                                                          .equ
                                                                 SEG G,0x01
   .word SEG A SEG G SEG F SEG E SEG D SEG C
                                                   06
                                                          .equ
                                                                 SEG P,0x10
   .word SEG A SEG B SEG C
                                                   07
                                                            FIGURE 5. Data
   .word SEG A|SEG B|SEG C|SEG D|SEG E|SEG F|SEG G @8
                                                            and EOU for 8-
   .word SEG_A|SEG_B|SEG_F|SEG_G|SEG_C
                                                   @9
                                                            segment display
       .word 0
                               @Blank display
```

```
Display8Segment:
                                                  EXPLAIN HERE
[1]
     stmfd
                 sp!, \{r0-r2, lr\}
[2]
     ldr
           r2,=Digits
          r0,[r2,r0,ls1#2]
[3]
     ldr
[4]
     tst r1, #0x01
[5]
     orrne
                r0,r0,#SEG P
           0x200 -
161
     swi
[7]
     ldmfd
                sp!, {r0-r2,pc}
```

Appendix to Final Exam for CSC 230 - Spring 2008

1. Basic SWI Operations.

Table 1: SWI operations (0x00 - 0xFF)

Opcode	Description and Action	Inputs	Outputs
swi 0x00	Display Character on Console r0: the character		
swi 0x02	Display String on Console	r0: address of a null termi- nated ASCII string	
swi 0x07	Prompt User for an Integer	r0: address of a null termi- nated ASCII string	r0: the integer
swi 0x6d	Get the current time (ticks)		r0: the number of ticks (mil- liseconds)

Display Character on Screen: swi 0x00

Displays one character in the output window.

			N. C.	
		Constitution of the last	Andrew Committee	All residence of the second
INOA	r0,#1	Α		
All the second				
SWl	0x00			
			A CALL STREET	
		Control of the state of the sta		

Display String on Screen: swi 0x02

Displays a string in the output window.

ldr	rO,	=MyStr:	ing	
swi				
303	VAU	-		
MwStri	no: as	ciz "He	allo The	re\n"
				,

Prompt User for an Integer: swi 0x07

Creates a pop-up window which displays the supplied message and waits until the user types a number into that window.

ldr	r0,=Prom	pt	
swi	0x07		
ldr	r1,=Numb	er	
Str	r0,[x1]		
Number:	.word 0		
Prompt:	.asciz "	Enter a n	umber"

Table 2: SWI operations > 0xFF

Opcode	Description and Action	Inputs	Outputs
swi 0x200	Set the 8-Segment Display to light up.	r0: the 8-segment Pattern (see below in Figure 1)	The appropriate segments light up to display a number or a character
swi 0x203	Check if one of the Blue Buttons has been pressed.	None (see below in Figure 2)	r0 = the Blue Button Pattern (see below in Figure 2).

Set the 8-Segment Display to light up: swi 0x200

The appropriate segments light up to display a number or a character. The pattern of segments to be lit up is assigned to register r0 before the call to swi 0×200 . Figure 1 shows the arrangements of segments.

Example: number "3" Display byte values R Α 08x0В 0×40 \mathbf{C} 0x20P 0x10For example, the number 3 plus the right E hand dot would have a pattern value D 0x08computed as the logical OR of the values E of the segments "A,B,C,D,F,P" to form 0x04the integer: 0x80 | 0x40 | 0x20 | F 0x020x08 + 0x02 + 0x10 = 0xFA, to be assigned to r0. G 0x01

Figure 1: The Pattern for the 8-Segment Display

Check if one of the Blue Buttons has been pressed: swi 0x203

After the call with swi 0×203 , test the content of r0. The number in r0 corresponds to the position of the blue button as depicted in Figure 2. For example, if r0=2 then the blue button in position 2 was pressed.

Figure 2: The Pattern for the Blue Buttons

They are arranged such that each button has a corresponding bit position in the 16-bit lower portion of a word in a register. The "number labels" placed in the figure, which do not appear on the real keypad, also represent the corresponding bit position, as in:

When a button is pressed, the corresponding bit is set. For example, when the button in position "1" is pressed in the cellular phone program, the swi 0x203 instruction returns x0 = 0x02, that is,

)	
č	ļ	
7	j	
	j	
٢)	
_	J	

0

Op	Operand 2		Condition Field
Immediate value	# <immed_8></immed_8>	EQ	Equal
Logical shift left immediate	Rm, LSL # <immed_5></immed_5>	Ä	Not equal
Logical shift right immediate	Rm, LSR # <immed_5></immed_5>	CS	Carry Set
Arithmetic shift right immediate	Rm, ASR # <immed_5></immed_5>	00	Сатту clear
Rotate right immediate	Rm, ROR # <immed_5></immed_5>	M	Negative
Register	[Rm]	PL	Positive or zero
Rotate right extended	Rm, RRX	VS	Overflow
Logical shift left register	Rm, LSL Rs	VC	No overflow
Logical shift right register	Rm, LSR Rs	P-1-4 3-1-4 34	Unsigned higher
Arithmetic shift right register	Rm, ASR Rs	LS	Unsigned lower or s
Rotate right register	Rm, ROR Rs	B	Signed greater or eq
			, , , , , , , , , , , , , , , , , , ,

Condition Field	Equal	Not equal	Carry Set	Сатту clear	Negative	Positive or zero	Overflow	No overflow	Unsigned higher	Unsigned lower or same	Signed greater or equal	Signed less than	Signed greater than	Signed less than or equal	Always
	EQ	NE	CS	CC	MI	PI.	VS	λC	Fil	S'T	GE	П	CT	TE	AL

Dec	Bin	Нех
0	00000000	00
	00000001	01
7	00000010	0.2
8	00000011	03
4	000000100	40
\$	00000101	\$0
9	00000110	90
7	00000111	07
· 00	00001000	80
6	00001001	60
10	00001010	0A
	00001011	0.B
12	00001100	0C
13	10110000	G D
14	00001110	0E
15	00001111	0.F
Characters Commission of	onizen oansternyonistysen spackers and an original	Solution of the State of the St

Ā	RIS	П	Q	Z	H	Ω	BIN	нр	D	BIN	H
0	00000000	00	4	00000100 04	90	8	000010000	08 12	12	0001100	30
 	00000001	01	5	00000101	05	6	00001001	60	13	00001101	00
 2	00000010	02	9	00000110	90	10	01010000	0.A 14	14	00001110	0E
 m	00000011	03	7	11100000	20	Π	11010000	0B 15	15	00001111	0F
				- Anna Carlotte Control							

							0	0	Ō	•
						Α	0		7	6
Data Transfer	doc	Full Descending	Empty Descending	Full Ascending	Empty Ascending	ush	Empty Ascending	Full Ascending	Empty Descending	Full Descending
Iultiple	Stack pop	FD	ED	FA	EA	Stack push	EA	FA	ED	FD
Addressing Mode 4 - Multiple Data Transfer	load	Increment After	Increment Before	Decrement After	Decrement Before	store	Increment After	Increment Before	Decrement After	Decrement Before
A	Block load	IA	IB	DA	DB	Block store	IA	IB	DA	DB

Operation	Assembler	Action	
Move	MOV{S} Rd, <oprnd2></oprnd2>	Rd := Oprnd2 {CPSR}	Pre-indexed
201	MVN{S} Rd, <oprud2></oprud2>	Rd := NOT Opmd2 (CPSR)	**************************************
Arithmetic	ADD{S} Rd, Rn, <opmd2></opmd2>	Rd := Rn + Oprnd2 {CPSR}	
	ADC{S} Rd, Rn, <0pmd2>	Rd := Rn + Opmd2 + Carry {CPSR}	
	SUB{S} Rd, Rn, <oprnd2></oprnd2>	Rd := Rn - Oprnd2 {CPSR}	
	SBC{S} Rd, Rn, <oprnd2></oprnd2>	Rd := Rn + Opmd2 + Carry {CPSR}	
	RSB{S} Rd, Rn, <opmd2></opmd2>	Rd := Opmd2 - Rn {CPSR}	
	RSC{S} Rd, Rn, <opmd2></opmd2>	Rd := Oprnd2 - Rn - NOTCarry {CPSR}	
**************************************	MUL{S} Rd, Rm, Rs	$Rd := Rm * Rs \{CPSR\}$	Post-indexe
	MLA{S} Rd, Rm, Rs, Rn	Rd := Rm * Rs + Rn {CPSR}	***************************************
	CLZ Rd, Rm	Rd := # leading zero in Rm	
Logical	AND{S} Rd, Rn, <oprnd2></oprnd2>	Rd := Rn AND Opmd2 {CPSR}	and a second second
	EOR{S} Rd, Rn, <oprnd2></oprnd2>	Rd := Rn EXOR Opmd2 {CPSR}	
	ORR (S) Rd, Rn, <oprnd2></oprnd2>	Rd := Rn OR Oprnd2 {CPSR}	
a May more than 1 string may be	TST Rn, <oprnd2></oprnd2>	Update CPSR on Rn AND Oprnd2	
	TEQ Rn, <oprnd2></oprnd2>	Update CPSR on Rn EOR Oprnd2	historia de la companya de la compa
	BIC{S} Rd, Rn, <oprnd2></oprnd2>	Rd := Rn AND NOT Opmd2 {CPSR}	
	NOP	R0 := R0	
Compare	CMP Rd, <oprnd2></oprnd2>	Update CPSR on Rn - Oprnd2	
Branch	B{cond} label	R15 := label	
	BL {cond} label	R14 := R14-4; R15 := label	
Swap	SWP Rd, Rm	temp := Rn; Rn := Rm; Rd := temp	
Load	LDR Rd, <a_mode2></a_mode2>	Rd := address	
	LDM <a_mode4l> Rd{!}, <reglist></reglist></a_mode4l>	Load list of registers from [Rd]	
Store	STR Rd, <a_mode2></a_mode2>	[address]:=Rd	
	STM <a_mode4s>Rd{!}, <reglist></reglist></a_mode4s>	Store list of registers to [Rd]	
SWI	SWI <immed_24></immed_24>	Software Interrupt	

	Addressing Mode 2 - Data Transfer	- Data Transfer
Pre-indexed	Immediate offset	[Rn, #+/- <immed_12>]{!}</immed_12>
	Zero offset	[Rn]
	Register offset	[Rn, +/-Rm]{!}
	Scaled register offset	[Rn, +/-Rm, LSL # <immed_5>]{!}</immed_5>
	t	[Rn, +/-Rm, LSR# <immed_5>]{!}</immed_5>
		[Rn, +/-Rm, ASR # <immed_5>]{!}</immed_5>
		[Rn, +/-Rm, ROR # <immed_5>]{!}</immed_5>
,		[Rn, +/-Rm, RRX] {!}
Post-indexed	Immediate offset	[Rn], #+/- <immed_12></immed_12>
	Register offset	[Rn], +/-Rm
	Zero offset	[Rn]
	Scaled register offset	[Rn], +/-Rm, LSL # <immed_5></immed_5>
		[Rn], +/-Rm, LSR # <immed_5></immed_5>
		[Rn], +/-Rm, ASR # <immed_5></immed_5>
		[Rn], +/-Rm, ROR # <immed_5></immed_5>
		[Rn], +/-Rm, RRX

	Key to tables
{cond}	See Condition Field
<oprnd2></oprnd2>	See Operand 2
{S}	Updates CPSR if present
<immed></immed>	Constant
<a_mode2></a_mode2>	See Addressing Mode 2
<a_mode4></a_mode4>	See Addressing Mode 4
<reglist></reglist>	List of registers with commas
	Updates base register if present