Name: _____

- 1. Suppose you have two independent measurements $\cos \theta$ and $\sin \theta$, which you call x and y. Assuming the two measurements have Gaussian uncertainties with the same σ , write down the likelihood of the measurement and find the maximum likelihood estimate $\hat{\theta}$.
- 2. Consider a Gaussian distribution with mean $\mu = 0$ and variance $\sigma^2 = 1$. Given N > 1 independent measurements x_i drawn from this distribution, the sample variance s^2 can be calculated using the expression

$$s^{2} = \frac{1}{N-1} \sum_{i=1}^{N} (x_{i} - \bar{x})^{2}.$$

- (a) Given that $(N-1)s^2/\sigma^2$ follows a χ^2 distribution with N-1 degrees of freedom, show that s^2 is an unbiased estimator of the variance σ^2 , and that its variance i.e., $\operatorname{var}(s^2)$ is 2/(N-1).
- (b) Find the expectation values and variances of other estimates

$$s_k^2 = \frac{1}{N+k} \sum_{i=1}^{N} (x_i - \bar{x})^2$$

where k is an integer. Show that although the k = 1 value s_1^2 is a biased estimator of σ^2 , its mean square deviation from unity (i.e., the MSE $d_k^2 = \text{var}(s_k^2) + b^2$, where b is the bias) is smaller than for any other estimator s_k^2 .

- 3. Investigate the extent to which small samples of a distribution do or do not provide good estimates of the population variance.
 - (a) Generate 10,000 samples of 4 measurements per sample, with each measurement drawn from a Gaussian distribution of zero mean and unit variance. Obtain an estimate s^2 of the variance of each sample and histogram the distribution of the 10,000 values of s^2 . Find the mean and variance of the s^2 distribution.
 - (b) Repeat the calculation above using the estimator

$$s_k^2 = \frac{1}{N+k} \sum_{i=1}^N (x_i - \bar{x})^2$$

for k = 0 and k = 1.

(c) Are the means and variances of the distributions of s_k for k = -1, 0, 1 what you expect?

4. The Hubble Law gives a linear relationship between the recessional velocity of a galaxy v and its distance from Earth d,

$$v = H_0 d$$
,

where H_0 is Hubble's constant. Astronomers measure recessional velocities and use the Hubble Law to infer the distance to receding objects. H_0 must be determined experimentally, so uncertainties in H_0 lead to systematic uncertainties in d.

Suppose a galaxy has a measured recessional velocity $v_m = (100 \pm 5) \times 10^3 \text{ km s}^{-1}$, i.e., the uncertainty is parameterized as a Gaussian with $\sigma = 5 \times 10^3 \text{ km s}^{-1}$. Plot the posterior PDF for the distance to the galaxy for the four cases listed below.

(Hints: assume a uniform prior distribution for d in all cases. If needed, use numerical integration to plot the posterior PDF.)

- (a) $H_0 = 75 \text{ km s}^{-1} \text{ Mpc}^{-1}$ exactly, an estimate first made in the 1950s.
- (b) $H_0 = 72 \pm 8 \text{ km s}^{-1} \text{ Mpc}^{-1}$, an estimate made 10 years ago using data from the Hubble Space Telescope. (Assume a Gaussian uncertainty in H_0 .)
- (c) H_0 uniformly distributed between 50 and 90 km s⁻¹ Mpc⁻¹, the state of measurements prior to the mid-1990s.
- (d) H_0 distributed between 50 and 90 km s⁻¹ Mpc⁻¹ using the Jeffreys prior. (Jeffreys prior: $p(x) = \frac{1}{x} \frac{1}{\log \frac{B}{A}}$ for $A \le x \le B$)