7. Functors K₀, K₂, and algebraic K-theory

Functor K₁

In Section 3, we made a commutative group K_1A from invertible matrices over A. Namely, two matrices $\alpha \in GL_mA$ and $\beta \in GL_nA$ are equivalent if the matrices

$$\begin{pmatrix} \alpha & 0 \\ 0 & 1_{n+k} \end{pmatrix}, \begin{pmatrix} \beta & 0 \\ 0 & 1_{m+k} \end{pmatrix} \in GL_{m+n+k}A$$

can be reduced to each other by row addition operations for some k. The group K_1A consists of the equivalence classes.

Following the crowd and contrary to what we did before we will use the additive notation for the group operation on K_1A . Thus,

$$\operatorname{wh}(\alpha\beta) = \operatorname{wh}(\alpha) + \operatorname{wh}(\beta) = \operatorname{wh}\begin{pmatrix} \alpha & 0 \\ 0 & \beta \end{pmatrix}$$

semigroup.

for $\alpha \beta \in GL_n A$. The second equality follows from the Whitehead lemma (see (1.5), and it shows that the group $K_1 A$ is commutative.

In particular, K_1F is the multiplicative group of F written additively. If you do not like that now wh(1) = 0, make additive shift on A by 1, which makes the group operation on the multiplicative group look like $(a,b) \mapsto a \times b = a+b+ab$; after the shift, wh($\alpha \times \beta$) = wh(α) + wh(β) and wh(0) = 0 (as a bonus, GL_nB becomes a subset of M_nB for any ideal B of A which makes it clear that GL_nB depends only on the ring B).

For any morphism $f:A\to A'$ of rings with 1 and any n, we have the induced morphisms $M_nA\to M_nA'$, $MA\to MA'$ of rings and the induced morphisms $GL_nA\to GL_nA'$, $E_nA\to E_nA'$ of groups, hence also group morphisms $GLA\to GLA'$, $EA\to EA'$, and $K_1A\to K_1A'$.

All these functors as well as any functor F from the the category of associative ring with 1 (with morphisms taking 1 to 1) to the category of groups can be extended to the category of all associative rings as follows: $F(A) = \ker(F(A_1) \to F\mathbf{Z})$ where A_1 is the ring obtained by adjointing 1 formally to the ring A.

The relative group F(A, B) where A is a ring with 1 and B an ideal of A can be defined as $\ker(FA' \to FA)$ where A' is the double of A along B.

Functor K₀

Now we will make another commutative group, K_0A from idempotent matrices $p=p^2$ over A. Namely, two matrices $p=p^2\in M_mA$ and $q=q^2\in M_nA$ are called equivalent if $\begin{pmatrix} p & 0 \\ 0 & 0 \end{pmatrix}\in M_{m+n+k}A$ and $\begin{pmatrix} q & 0 \\ 0 & 0 \end{pmatrix}\in M_{m+n+k}A$ are similar for some $k\geq 0$. The equivalence classes PA can be added using $p\oplus q=\begin{pmatrix} p & 0 \\ 0 & q \end{pmatrix}$. So PA is a commutative

For example, if A is a field then for any n every matrix $p=p^2$ in M_nA is similar to $\begin{pmatrix} 1_r & 0 \\ 0 & 0 \end{pmatrix}$ where $r \leq n$ is the rank of p. So PA can be identified with the semigroup N of all non-negative integers. The same is true when A is any division ring or the integers Z.

The column space pA^n of any idempotent matrix $p = p^2$ is a finitely generated projective module (that is, a module which is a direct summand of a free module A^n). In fact,

 $pA^n \oplus (1-p)A^n = A^n$, the *n*-columns over A. Also every finitely generated projective module is the column space of an idempotent matrix.

So PA is the set of isomorphism classes of finitely generated projective A-modules with the addition induced by direct sum.

If A is the ring of continuous real (resp., complex) valued functions on a compact space X, then PA consists of isomorphism classes of real (resp., complex) vector bundles over X (Swan [Sw]). For an arbitrary topological space X, the category PA is equivalent to the category of all vector bundles of finite type over X, see [V61].

A similar result for algebraic varieties is due to Grothendieck (and published by Borel-Serre [BS]).

Now we can make a commutative group, K_0A from the commutative semigroup PA like we make the integers from non-negative integers \mathbf{N} . Namely, $\tilde{p} - \tilde{q} = \tilde{p}' - \tilde{q}'$ if $p + q' \oplus 1_k$ and $p' + q \oplus 1_k$ are equivalent for some integer $k \geq 0$. In the case of \mathbf{N} , we can restrict p or q to any infinite set, and we do not need the term 1_k . In general, we can restrict p or q to any infinite set of 1_k 's, and it may happen that different elements in PA becomes the same in K_0A . Namely, two A-modules P and Q have the same image in K_0A if and only if they are stably isomorphic, i.e., $P \oplus A^k$ and $Q \oplus A^k$ are isomorphic for some k.

If P is "big" in one sense or another, stable isomorphism implies isomorphism. In other words, A^k can be cancelled in the isomorphism $P \oplus A^k \cong Q \oplus A^k$. Here is an easy example of a cancellation theorem.

Theorem 7.1. Let A be an associative ring with $1, n \leq \operatorname{sr}(A) < \infty$, and P is a right A-module which contains A^{n-1} as a direct summand. Assume also that $\operatorname{GL}_n A$ acts transitively on $\operatorname{Um}_n A$ (e.g., n=1 or A is commutative and n=2). If Q is a right A-module and $P \oplus A^k \cong Q \oplus A^k$ for some k then $P \cong Q$.

Proof. Proceeding by induction on k we see that it suffice to handle the case k=1. Applying the isomorphism $P\oplus A^1\cong Q\oplus A^1$ to a generator of A^1 in $Q\oplus A^1$ we obtain an unimodular element $p+a=\binom{p}{a}\in P\oplus A^1$ with $p\in P$ and $a\in A^1=A$ such that $(P\oplus A^1)/(p+a)A\cong Q$.

The unimodularity of p + a means that there is an A-linear homomorphism

$$f: P \oplus A^1 \to A$$

such that f(p+a)=1. Set $v=\begin{pmatrix} 0\\1 \end{pmatrix} \in P \oplus A^1$ where $0 \in P$ and $1 \in A^1=A$. This element is also unimodular and $(P \oplus A^1)/vA=P$. We will show that an authomorphism of the A-module $P \oplus A^1$ takes p+a to v.

By the condition of the theorem, we can write $P \oplus A^1 = P' \oplus A^n$ and p + a = p' + b with $p' \in P'$ and $b \in A^n$. The element $v \in P' \oplus A^n$ looks like $\begin{pmatrix} e_n \\ 0 \end{pmatrix}$ where $e_n \in A^n$ is the last column of 1. The column $\begin{pmatrix} b \\ b \end{pmatrix} \in A^{n+1}$ is unimodular, so by the condition of the

last column of 1_n . The column $\binom{b}{fp'} \in A^{n+1}$ is unimodular, so by the condition of the theorem there is $q \in A^n$ such that $b + qfp' \in \text{Um}_n A$. Also there is an isomorphism of A^n which takes b + qfp' to e_n .

Now we can define an automorphism of $P \oplus A^1 = A^n \oplus P'$ which takes $p + a = \begin{pmatrix} b \\ p' \end{pmatrix}$

to
$$v = \begin{pmatrix} e_n \\ 0 \end{pmatrix}$$
:

$$\begin{pmatrix} b \\ p' \end{pmatrix} \mapsto \begin{pmatrix} b + qfp' \\ p' \end{pmatrix} \mapsto \begin{pmatrix} e_n \\ p' \end{pmatrix} \mapsto \begin{pmatrix} e_n \\ 0 \end{pmatrix}.$$

This gives an isomorphism between

$$(P \oplus A^1)/(p+a)A \cong Q$$

and

$$(P \oplus A^1)/vA = (P \oplus A^1)/A^1 \cong P.$$

QED.

Remark. We did not require P or Q in the theorem to be projective or finitely generated. When sr(A) = 1, we have cancellation without any conditions on P, Q. The condition on transitivity in the theorem can be replaced by the condition that P contains A^n as a direct summand.

Remark. When A is commutative, the tensor product gives a commutative ring structure on the additive group K_0A . Moreover, symmetric and exterior powers of modules give an additional structure on K_0A turning it into a λ -ring.

Example. Now we consider the case when A is the ring of integers in a number field F (so F is a finitely dimensional over the rational numbers). If the class number of F is 1, i.e., every ideal of A is principal, the situation is the same as for the integers, so $PA = \mathbb{N}$ and $K_0A = \mathbb{Z}$.

In general, every element in PA is represented by $A^k \oplus B$ with some $k \geq 0$ and a nonzero ideal B of A. Two ideals B and B' are isomorphic as A-modules if and only if they differ by a nonzero factor in F. Note that $B \oplus B'$ is isomorphic to $A \oplus BB'$. Thus, K_0A can be identified with $\mathbb{Z} \oplus CL(A)$ where where Cl(A) is the ideal class group (the group of all nonzero fractional ideals modulo the subgroup GL_1F of principal nonzero fractional ideals).

The same description of K_0A holds in the more general case when A is any Dedekind domain, i.e., A is a commutative domain such that for any pair of ideals $C \subset B$ of A there is an ideal D of A such that B = CD. See [M, §1] for details. While the group Cl(A) is finite for any Dedekind ring of arithmetic type (Hasse domain, i.e., when A is the S-integers in a global field), it could be infinite for some other Dedekind domains.

Functor K₂

Now we define our next commutative group K_2A . Let StA be the group generated by symbols $a^{i,j}$ where $a \in A$, $i \neq j$, subject to the relations (1.7), (1.11) and (3.2).

Since the relations hold for elementary matrices, we have a homomorphism $StA \to EA$. The group K_2A is defined as the kernel of this homomorphism. An analog of Whitehead lemma is that K_1A is the center of the group StA.

In homological terms, $K_1A = H_1(GLA)$ and $K_2A = H_2(EA)$. In other words, K_2A is the kernel of an universal central extension $StA \to EA$ of EA. Shur introduced universal

central extensions for finite groups G so $H_2(G)$ is often called the Shur multiplier of G for any group G.

Informally speaking, K_2A describes all nontrivial relations among the elementary matrices. In the case when A = F is a field, all relations come from relations between diagonal matrices arising as products of 4 elementary matrices as in (1.5). So the group K_2F in this case is generated by the symbols $x \cdot y$ with $x, y \in GL_1F = F \setminus 0$ which satisfy the relations

(7.1)
$$(x-y)\cdot z = x\cdot z - y\cdot z$$
, $x\cdot y = -y\cdot x$, and $u\cdot (1-u) = 0$ for all $x,y,z,u\in \mathrm{GL}_1F$, $u\neq 1$.

(In K_1F we use now x-y instead of x/y but then how we write 1-u?)

Matsumoto proved that for any field F the group K_2F is generated by the symbols $x \cdot y$ subject to the defining relations (7.1). Keune [Ke1] showed that this is equivalent easily to Theorem 6.7 with $n=2, A=F[t], B=A(t^2-t)$ in which case $K_2F=SK_1(A,B)$. For this Dedekind ring A, the special case of the theorem proved by Bass-Milnor-Serre is sufficient. The theorem describes K_2F in terms of Mennicke symbols which gives the Matsumoto theorem. Later Keune [Ke2] gave (a more complicated) presentation of K_2A for any ring A with sr(A)=1.

The multiplication $K_1A \times K_1A \to K_2A$ which generalizes the above multiplication for fields, can be defined [M] for any commutative ring A but in general K_2A is not generated by the image and other additional relations may appear.

For a finite field \mathbf{F}_q , it is known that $K_2\mathbf{F}_q=0$,

For the integers \mathbf{Z} , the group $K_2\mathbf{Z}$ has order 2, and the only non-trivial element is $(-1)\cdot(-1)$ where -1 is the only non-trivial element of $K_1\mathbf{Z}$. The group $K_2\mathbf{Z}$ survives in $K_2\mathbf{R}$ and gives a generator of the fundamental group $\pi_1\mathrm{SL}_n\mathbf{R}$, $n \geq 3$, where $\mathrm{SL}_n\mathbf{R}$ is considered as a topological space with usual Hausdorff topology.

The group K_2F for global fields F is connected with reciprocity laws so it is of great interest in number theory. A complete answer is still unknown. The following exact sequence is known (as Moore's reciprocity law):

$$K_2F \to \oplus \mu(F_v) \to \mu(F) \to 0$$

where $\mu(F')$ is the group of roots of 1 in F', F_v a completion of F at a place v, the direct sum is taken over all finite and real palaces v of F, the first homomorphism is defined using the norm-residue symbols (generalizing the Hilbert symbol), and the homomorphism $\mu(F_v) \to \mu(F)$ is raising to $[\mu(F_v) : \mu(F)]$ -th power. The kernel of the first homomorphism is shown to be trivial for some F including $F = \mathbf{Q}$ and $F = \mathbf{F}_q(t)$. Thus, for those F, the group K_2F is computed. The groups K_2F_v for the local fields (including \mathbf{C}) are uncountable, $\mu(F_v)$ representing their "continuous" parts (the "continuous" part of $K_2\mathbf{C}$ being trivial).

Exact sequence

The group K_0, K_1, K_2 are related by an exact sequence. For example for an ideal B of A we have an exact sequence

$$K_2A \to K_2(A/B) \to K_1(A,B) \to K_1A \to K_1(A/B) \to K_0(A,B) \to K_0A \to K_0(A/B).$$

Here $K_1(A, B)$ is a familiar group. It also can be defined as the kernel of the homomorphism $K_1A' \to K_1(A/B)$ induced by the first (or second) projection, where $A' = \{(a, a') \in A \times A : a - a' \in B\}$ is the double of A along the ideal B.

The group $K_0(A, B)$ in the exact sequence can be defined as the kernel of the homomorphism $K_0A' \to K_0(A/B)$ induced by the first (or second) projection $K_0(A, B)$. This group depends only on the ring B (while $K_1(A, B)$ depends also on A).

The homomorphism $K_2(A/B) \to K_1(A,B)$ is easy to describe. Given any relation

$$(a'_1)^{i(1),j(1)}(a'_2)^{i(2),j(2)}\cdots(a'_m)^{i(m),j(m)}=1$$

between elementary matrices $(a'_k)^{i(k),j(k)}$ over A/B, we represent $a'_k = a_k + B \in A/B$ by $a_k \in A$ and obtain

$$\alpha = (a_1)^{i(1),j(1)} (a_2)^{i(2),j(2)} \cdots (a_m)^{i(m),j(m)} \in GLB.$$

If we change representatives, the matrix α does not change modulo E(A, B). The same is true when we change the relation using the trivial relations (1.7), (1.11) and (3.2). So we obtain a well-defined wh(α) $\in K_1(A, B)$.

Higher K-theory

The above exact sequence can be extended to an infinite in both direction exact sequence involving groups $K_m A$ which can be defined for all integers m in several ways which agree with each other.

Quillen's [Q] definition of the functors K_m with $m \geq 3$ are rather complicated so we do not give them here. He computed the higher K-theory of finite fields. Namely, for a finite field F with q elements and i > 0, we have $K_{2i}(F) = 0$ and the group $K_{2i-1}(F)$ is cyclic of order $q^i - 1$.

Later Quillen [Q2] gave a different definition for the same functors K_m .

Meanwhile, Volodin [V] gave a different definition for the same K_m which we outline now. Let A be an associative ring with 1. A subgroup of GLA is called triangular if it is conjugated by a permutation matrix to the group of the upper triangular matrices with ones along the main diagonal. A finite subset S of GLA is called a simplex if gS belongs to a triangular subgroup for some $g \in GLA$. Thus, GLA becomes an abstract simplicial complex. Then $K_nA = \pi_{n-1}GLA$ for $n \geq 0$. The homotopy groups can be defined using the geometric realization or combinatorially.

For example, the connected component $K_1A = \pi_0 GLA$ is defined using paths where a path from g to h is a sequence of invertible matrices g_i with $i \geq 0$ such that $g_0 = g, g_i = h$ for sufficiently large i, and $g_{i+1}^{-1}g_i$ is triangular for all $i \geq 0$.

Since every triangular matrix is a product of elementary matrices and every elementary matrix is triangular, every path can be refined to a path with all $g_{i+1}^{-1}g_i$ being elementary matrices, hence two matrices g, h can be connected if and only if they can be brought to each other by column addition operations. Thus, $\pi_0 \text{GL} A = \text{GL} A/\text{E} A = \text{K}_1 A$.

In general, a loop on an abstract simplicial complex X with a base point 1 is a path from 1 to 1. A simplex on the set of ΩX of the loops is a finite set $\{(x_{0,i}), \ldots, (x_{d,i})\}$ of loops such that the subset $\{x_{0,i}, \ldots, x_{d,i}, x_{0,i+1}, \ldots, x_{d,i+1}\}$ is a simplex for every i. The selected loop is the constant loop.

Then $\pi_n X = \pi_0 \Omega^n X$. In the case $X = \operatorname{GL}A$, a loop is a relation $g_1 g_2 \cdots g_d = 1$ with triangular matrices g_i . A relation is trivial if all matrices in it belong to a triangular subgroup or it is a product of those relations. All defining relations for the Steinberg group are trivial, Every trivial relation follows from the defining relations for $K_2 A$. Therefore $\pi_1 \operatorname{GL}A = K_2 A$.

The higher K-theory is not completely computed even for the integers \mathbf{Z} . The group $K_3\mathbf{Z}$ is known [LS] to be cyclic of order 48, and $K_4\mathbf{Z}$ is trivial [Ro].

When A is the ring of integers in a number field F, i.e., $n = \dim_{\mathbf{Q}}(F) < \infty$, Quillen [Q1] proved that K_iA is finitely generated for every i and Borel [B] computed the rank of those groups for $i \geq 1$. Recall that for i = 1 we have $K_1A = \operatorname{GL}_1A$ by Mennicke and Bass-Milnor-Serre [BMS] and that by the Dirichlet theorem on units, the rank of GL_1A is $r_1 + r_2 - 1$ where r_1 is the number of embeddings of F to \mathbf{R} and $2r_2$ is the number of embeddings of F to \mathbf{C} so $n = r_1 + 2r_2$.

For any $i \geq 1$, the rank is:

0 for even $i \geq 2$,

 $r_1 + r_2$ when $i \equiv 1 \mod 4$,

 r_2 when $i \equiv 3 \mod 4$.

There are conjectures relating the groups K_iA with the values of the zeta-function of F.

Lower (negative) K-theory and the "fundamental theorem"

The functors K_m with $m \leq -1$ can be defined inductively (H. Bass [B2]) as follows: $K_{m-1}A$ is the cokernel of the homomorphism

$$K_m(A[t]) \oplus K_m(A[1/t]) \to K_m(A[t, 1/t]).$$

Then

$$K_m(A[t,1/t]) = K_m A \oplus K_{m-1} A \oplus Nil_m A \oplus Nil_m A$$

for all m where $Nil_m A$ is the cokernel of

$$K_m A \to K_m(A[t])$$

(the second $Nil_m A$ comes from A[1/t]). This formula for $K_m(A[t, 1/t])$ is known as the fundamental theorem of algebraic K-theory [B2].

When m=1, Nil₁A is the subgroup of K₁A consisting of the Whitehead determinants of unipotent matrices. When A is (right) regular in the sense that A is right Noetherian and every finitely generated right A-module admits a finite projective resolution, then $K_mA=0$ for all $m \leq -1$ and Nill_mA=0 for all m, hence $K_mA[t]=K_mA$ and $K_mA[t,1/t]=K_mA\oplus K_{m-1}A$ for all m.

Here is how the mapping $K_0A \to K_1(A[t,1/t])$ works. For $p = p^2 \in M_nA$, we have $tp + (1_n - p) \in GL_nA$. Taking the Whitehead determinant, we obtain an element of $K_1(A[t,1/t])$.

Here is a more general construction. For any A, any finitely generated projective A-module P, and any automorphism α of P, we consider P' such that $P \oplus P' = A^n$ and

define an automorphism β of A^n , i.e., an invertible matrix, by $\beta(p \oplus p') = \alpha p \oplus p'$. So we get wh $(\alpha) = \text{wh}(\beta) \in K_1 A$.

In particular, for any $\gamma \in \operatorname{GL}_n C$ (where C is the center of A) and any P we have an automorphism of P^n and hence an element of K_1A . This gives a "multiplication" map $K_1C \times K_0A \to K_1A$.

Linearization

We follow [BHS]. To prove that $K_1A[t] = K_1A$ for a regular A,, we want to do the follown reduction. Given a matrix $\alpha(t) \in GLA[t]$ with $\alpha_i \in M_nA$ we want to reduce it to $\alpha(0) \in GLA$ by addition operations.

The first step, reduction to a linear matrix (i.e., a matrix of degree 1 in t) is very easy, and it works for any ring A (regular or not) and any matrix. (Moreover, linearization works also when the indeterminate t do not commute with A.) A way to do this is know in differential equations. Namely, the matrix $\alpha(x) = \alpha_0 + \alpha_1 t + \cdots + \alpha_d t^d \in M_n Atx$] where $\alpha_0 = \alpha(0)$ and $d \geq 2$ is easily reduced to a linear matrix by addition operations as follows:

$$\alpha(x) = \begin{pmatrix} \alpha_0 + \alpha_1 t + \alpha_2 t^2 & 0 \\ 0 & 1_n \end{pmatrix} \mapsto \begin{pmatrix} \alpha_0 + \alpha_1 t + \alpha_2 t^2 & t \\ 0 & 1_n \end{pmatrix} \mapsto \begin{pmatrix} \alpha_0 + \alpha_1 t & t \\ -\alpha_2 t & 1_n \end{pmatrix}$$

when d=2,

$$\alpha(x) = \begin{pmatrix} \alpha_0 + \alpha_1 t + \alpha_2 t^2 + \alpha_3 t^3 & 0 & 0 \\ 0 & 1_n & 0 \\ 0 & 0 & 1_n \end{pmatrix} \mapsto \begin{pmatrix} \alpha_0 + \alpha_1 t + \alpha_2 t^2 + \alpha_3 t^3 & t & 0 \\ 0 & 1_n & t \\ 0 & 0 & 1_n \end{pmatrix}$$

$$\mapsto \begin{pmatrix} \alpha_0 + \alpha_1 t & t & 0 \\ -\alpha_2 t - \alpha_3 t^2 & 1_n & t \\ 0 & 0 & 1_n \end{pmatrix} \mapsto \begin{pmatrix} \alpha_0 + \alpha_1 t & t & 0 \\ -\alpha_2 t & 1_n & t \\ \alpha_3 t & 0 & 1_n \end{pmatrix}$$

when d=3, and

$$\begin{pmatrix} \alpha & 0 \\ 0 & 1_{(d-1)n} \end{pmatrix} \mapsto \begin{pmatrix} \alpha_0 + \alpha_1 t & t & 0 & \dots & 0 & 0 \\ -\alpha_2 t & 1_n & t & 0 \dots & 0 & 0 \\ \alpha_3 t & 0 & 1_n & t & 0 \dots & 0 \\ \vdots & \vdots & \ddots & \ddots & \ddots & \vdots \\ (-1)^{d-2} \alpha_{d-1} t & 0 & \dots & 0 & 1_n & t \\ (-1)^{d-1} \alpha_d t & 0 & \dots & 0 & 0 & 1_n \end{pmatrix}$$

when d > 3 where t stands for a scalar matrix in $M_nA[t]$. The degree 1 part of the last matrix looks like a (block) companion matrix, but remember that the mtrices α_i do not necessary commute between themselves.

Now we assume that the matrix $\alpha(t) = \alpha_0 + \alpha_1 t$ is linear and invertible. Replacing it by $\alpha_0^{-1}\alpha$, we can assume that $\alpha_0 = 1_n$. Now we want to reduce $\alpha(t) = 1_n + \alpha_1 t$ to an identity matrix by addition operations.

It is easy to see that a matrix $1_n + \alpha_1 t \in M_n A[t]$ is invertible if and only if the matrix $\alpha_1 \in M_n A$ is nilpotent.

If α_1 is upper triangular with zeros on the main diagonal that it is clear that α_1 is nilpotent (namely $\alpha_1^n = 0$) and that $1_n + \alpha_1 t \in E_n A[t]$. Therefore $1_n + \alpha_1 t \in EA[t]$ also in the more general case when α_1 i is similar to an upper triangular with zeros on the main diagonal.

To reduce $1 + \alpha_1 t \in GLA[t]$ to 1 by addition operation in general, we have to assume that every finitely generated right A-module has a finite projective resolutions. See [BHS] or [B2] for details.

Linerization works easily also for matrices over A[t, 1/t], see [BHS] or [B2] for details.

Fredhiolm operators

While the fundamental theorem allows us to express K_{m-1} in terms of K_m , there is another (but related) way to do this. Namely, for any associative ring with 1, let $\tilde{\omega}A$ be the ring of all infinite matrices $(a_{i,j})_{i,j\in\mathbf{Z}}$ over A with finitely many nonzero entries in each row and column. The ring $\tilde{\omega}A$ contains the ideal MA consisting of matrices with finitely many nonzero entries. The factor ring $\omega A = \tilde{\omega}(A) / MA$ is an algebraic analog of Fredholm operators. It is easy to show that $K_m(\tilde{\omega}A) = 0$ for all m, hence the long exact sequence mentioned above gives that $K_m(\omega A) = K_{m-1}A$ for all m.

We used that for any ring A with 1 and any n, m, the group $K_m(M_nA)$ is isomorphic to $K_m A$. Moreover, $K_m A = K_m(MA) = K_m(\tilde{\omega}A, MA)$.

Homotopy fiber

We have mentioned a long exact sequence of K-groups corresponding to $A \to A/B$. More generally, given any morphism $f: A \to A'$ of associative rings, there is a long exact sequence

$$\cdots \to \mathrm{K}_m^f \to \mathrm{K}_m A \to \mathrm{K}_m A' \to \mathrm{K}_{m-1}^f \to \cdots$$

 $\cdots \to \mathrm{K}_m^f \to \mathrm{K}_m A \to \mathrm{K}_m A' \to \mathrm{K}_{m-1}^f \to \cdots$. Now we describe the groups K_m^f in the case when $m \geq 1$ and f is a morphism of rings with 1. In this case $K_m^f = \pi_{m-1}X$ where X is the homotopy fiber of the morphism $GLA \to GLA'$ of abstract simplicial complexes. So a vertex in X is a pair (α, β) where $\alpha \in \operatorname{GL}A$ and β is a path connecting $f(\alpha)$ with $1 \in \operatorname{GL}A'$. Simplexes in X are defined in obvious way. The first projection $X \to \operatorname{GL} A$ gives the group morphisms $\operatorname{K}_m^f \to \operatorname{K}_m A$ in the sequence $(m \ge 1)$. Sending a loop on β on $\mathrm{GL}A'$ to the pair $(1,\beta) \in X$ gives the group morphisms $K_{m+1}A' \to K_m^f$ in the sequence. The group operation on K_m^f can be defined using the direct sum of matrices.

For $m \leq 0$, the groups K_m^f can be defined using the Fredholm operators.

Concluding remarks

When $m \leq 0$, the group $K_m(A, B)$ depends only on the ring B (excision theorem).

For a commutative ring A, we have multiplication $K_i A \times K_j A \to K_{i+j} A$ for any integers i, j.

When A is regular, there is a simpler way to define higher K-theory using polynomial loops on GLA [NV], [KV]. An equivalent way involves unipotent subgroups instead of triangular subgroups of Volodin's definition. For example, the Karoubi-Nobile-Villamayor K'_1A for any associative ring A is GLA modulo the subgroup generated by unipotent matrices. Equivalently, two matrices $\alpha, \beta \in GLA$ have the same image in K'A if and only if there is a polynomial matrix $\gamma(t) \in GL(A)[t]$ (where the indeterminant t commutes with the coefficient ring A) such that $\gamma(0) = \alpha$ and $\gamma(0) = \beta$.

The higher K'-theory can be defined using the following functor Ω' on the category of associative rings: $\Omega' A = t(t-1)A[t]$. Then $K'_n A = K'_1(\Omega'^{n-1}A)$.

A commutative local ring A with 1 is regular if and only if $\dim_{A/p}(p/p^2) = \dim(A)$ where p is the maximal ideal of A and the second dim is the Krull dimension i.e., the length of the longest chain of prime ideals in A.

A commutative ring A is regular if and only if it is Noetherian and for every maximal ideal p of A its localization $B = A_p$ is regular.

When $A = \mathbf{C}[x_1, \dots, x_n]/B$ with the ideal B generated by polynomials f_1, \dots, f_m with m < n the following smoothnes condition implies the regularity: the m by n Jacobi matrix $\partial f_k/\partial x_l$ of the first partial derivatives has rank m at every solution of the system $f_k = 0$.

Problems.

1. Let $p = p^2 \in M_m A$, $q = q^2 \in M_n A$ with $m \le n$.

Suppose that the A-modules pA^m and qA^n are isomorphic $(pA^m \cong qA^n)$. Show that the matrices $\begin{pmatrix} p & 0 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} q & 0 \\ 0 & 0 \end{pmatrix} \in \mathcal{M}_{m+nk}A$ are similar (conjugated).

- 2. Show that $K_2F = 0$ for every finite field F.
- 3. Show that

$$K_1(F[t]) = K_1F, K_0(F[t]) = K_0F,$$

 $K_0(F[t, 1/t]) = K_0 F,$

and

$$K_1(F[t, 1/t]) = K_1F \oplus K_0F$$
 for any field F .

- 4. Let A be the ring of all continuous functions $X \to \mathbf{R}$ on a topological space X and $n \ge 1$. Prove that every $p = p^2 \in \mathcal{M}_n A$ is similar to a symmetric matrix.
- 5. For any $n \geq 1, d \geq 0$ let A be the ring of all continuous functions $\mathbb{R}^d \to \mathbf{R}$. Prove that every $p = p^2 \in M_n A$ is similar to $\begin{pmatrix} 1_l & 0 \\ 0 & 0 \end{pmatrix}$ for some l.
- 6. Let $A = \mathbf{Z}[x]$. Show that for any $n \geq 2$ the group $\mathrm{SL}_n A$ has a subgroup H of finite index which do not contain any $\mathrm{SL}_n B$ with an ideal B of finite index. Moreover, for any integer N there is a subgroup H of finite index in $\mathrm{SL}_n A$ such that

$$\operatorname{card}(\operatorname{SL}_n B)/(H \cap \operatorname{SL}_n B) \geq N$$
 for every ideal B of finite index in A .

- 7. Show that the ring $\mathbb{Z}/4\mathbb{Z}$ is not regular.
- 8. Show that if A is regular then both A[t] and A[t, 1/t] are regular.
- 9. Let A be a (commutative) Dedekind ring. Show that:

every ideal of A is projective;

for every nonzero $a \in A$, the factor ring A/aA is a principal ideal ring; every ideal B of A is generated by 2 elements.

 $\operatorname{sr}(A) < 2;$

every projective A-module is isomorphic to a direct sum of an ideal of A and a free A-module.

- 10. (Bass) Let A be a commutative Noetherian domain with 1. Show that every projective A-module is either finitely generated or free.
 - 11. Let X be a set, F a field, F^X the ring of functions $X \to F$.

Show that $K_0(F^X)$ is the set of bounded functions $X \to \mathbf{Z}$.

Show that $K_1(F^X)$ is the set of all functions $X \to GL_1F$.

12. Let X be a set, \mathbf{Z}^X the ring of functions $X \to \mathbf{Z}$.

Show that $K_0(\mathbf{Z}^X)$ is the set of bounded functions $X \to \mathbf{Z}$.

Show that $K_1(\mathbf{Z}^X)$ is the set of all functions $X \to GL_1\mathbf{Z}$.

- 13. Let A be a commutative ring with $1 \neq 0$ such that every prime ideal of A is of finite index. Prove that sr(A) = 1.
- 14. Let (X, Δ) be an abstract simplicial complex where X is a set and Δ is a set of simplices. Its topological realization is a topological space T consisting of the functions $p: X \to \mathbf{R}$ such that:

the support $\{x \in X : p(x) \neq 0\}$ of p is a simplex;

$$\sum_{x \in X} p(x) = 1.$$

A basis of the open neighborhoods of $p \in T$ consists of

$$U(p,\varepsilon,S) = \{ q \in T : |q(x) - p(x)| < \varepsilon, q(x) = 0 \text{ for } x \notin S \}$$

where $\varepsilon > 0$ and S is a simplex containing the support of p. The vertices (points) of X (i.e., the simplexes of cardinality 1 in Δ) correspond to the (0-1)-functions p.

Prove that $\pi_i(X, \Delta, x_0) = \pi_i(T, x_0)$ for all $i \geq 0$ for any base point $x_0 \in X$ (which is a vertex).

15. Let (X, Δ) be an abstract simplicial complex and (X, Δ_k) be its k-skeleton (consisting of simplexes of cardinality $\leq k + 1$). Prove that $\pi_i(X, \Delta, x_0) = \pi_i(X, \Delta_{i+1}, x_0)$ for all $i \geq 0$ and any basic point x_0 .