

Kėlinių ilgiausias bendras posekis

Dviems sekoms x ir y apibrėžkime LCS(x,y) kaip jų ilgiausio bendro posekio ilgį.

Jums duoti 4 sveikieji skaičiai n,a,b,c. Nustatykite, ar egzistuoja 3 sveikųjų skaičių nuo 1 iki n kėliniai (permutacijos) p,q,r tokie, kad:

- LCS(p,q) = a
- LCS(p,r) = b
- LCS(q,r) = c

Jei tokie kėliniai egzistuoja, raskite bet kokį galimą jų trejetą.

Sveikųjų skaičių nuo 1 iki n kėlinys (permutacija) p yra tokia ilgio n seka, kurioje visi elementai yra skirtingi sveikieji skaičiai iš intervalo [1,n]. Pavyzdžiui, (2,4,3,5,1) yra sveikųjų skaičių nuo 1 iki 5 kėlinys, o (1,2,1,3,5) ir (1,2,3,4,6) – nėra.

Seka c yra sekos d posekis, jei c galima gauti iš d išėmus keletą (galimai nė vieno arba visus) elementų. Pavyzdžiui, (1,3,5) yra sekos (1,2,3,4,5) posekis, o (3,1) – nėra.

Ilgiausias bendras dviejų sekų x ir y posekis yra ilgiausia seka z, kuri yra ir sekos x, ir sekos y posekis. Pavyzdžiui, ilgiausias bendras sekų x=(1,3,2,4,5) ir y=(5,2,3,4,1) posekis yra z=(2,4), kadangi tai yra abiejų sekų posekis ir jis yra ilgiausias iš visų tokių posekių. LCS(x,y) yra ilgiausio bendro posekio ilgis, kuris šiame pavyzdyje yra lygus z.

Pradiniai duomenys

Pirmoje eilutėje yra vienas sveikasis skaičius t ($1 \le t \le 10^5$) – testų kiekis. Toliau pateiktas testų aprašymas.

Vienintelėje kiekvieno testo eilutėje yra 5 sveikieji skaičiai n,a,b,c,output ($1 \le a \le b \le c \le n \le 2 \cdot 10^5$, $0 \le output \le 1$).

Jei output=0, Jums tereikia nustatyti, ar egzistuoja sąlygą tenkinantis kėlinių trejetas. Jei output=1, Jums taip pat reikia surasti tokį trejetą, jei jis egzistuoja.

Garantuojama, kad visų testų n suma neviršija $2\cdot 10^5$.

Rezultatai

Kiekvieno testo pirmoje eilutėje išveskite "YES", jei tokie kėliniai p,q,r egzistuoja, ir "NO" kitu atveju. Jei output=1 ir tokie kėliniai egzistuoja, išveskite dar tris eilutes:

Pirmoje eilutėje išveskite n sveikųjų skaičių p_1,p_2,\ldots,p_n ($1\leq p_i\leq n$, visi p_i yra skirtingi) – p elementus.

Antroje eilutėje išveskite n sveikųjų skaičių q_1,q_2,\ldots,q_n ($1\leq q_i\leq n$, visi q_i yra skirtingi) – q elementus.

Trečioje eilutėje išveskite n sveikųjų skaičių r_1, r_2, \ldots, r_n ($1 \le r_i \le n$, visi r_i yra skirtingi) – r elementus.

Jei yra keletas galimų trejetų, išveskite bet kurį iš jų.

Raides galima išvesti tiek didžiąsias, tiek mažąsias (pavyzdžiui, "YES", "Yes", "Yes", "YEs" bus atpažįstama kaip teigiamas atsakymas).

Pavyzdys

Įvestis:

```
      8

      1 1 1 1 1

      4 2 3 4 1

      6 4 5 5 1

      7 1 2 3 1

      1 1 1 0

      4 2 3 4 0

      6 4 5 5 0

      7 1 2 3 0
```

Išvestis:

```
YES
1
1
1
1
NO
YES
1 3 5 2 6 4
3 1 5 2 4 6
1 3 5 2 4 6
NO
YES
NO
YES
NO
```

Komentarai

Pirmame teste LCS((1),(1)) yra 1.

Antrame teste galima įrodyti, kad tokie kėliniai neegzistuoja.

Trečiame teste vienas iš galimų pavyzdžių yra p=(1,3,5,2,6,4), q=(3,1,5,2,4,6), r=(1,3,5,2,4,6). Nesunku pastebėti, kad:

- LCS(p,q)=4 (vienas iš ilgiausių bendrų posekių yra (1,5,2,6))
- LCS(p,r)=5 (vienas iš ilgiausių bendrų posekių yra (1,3,5,2,4))
- LCS(q,r)=5 (vienas iš ilgiausių bendrų posekių yra (3,5,2,4,6))

Ketvirtame teste galima įrodyti, kad tokie kėliniai neegzistuoja.

Vertinimas

```
1. (3 taškai): a=b=1, c=n, output=1
2. (8 taškai): n \leq 6, output=1
3. (10 taškų): c=n, output=1
4. (17 taškų): a=1, output=1
5. (22 taškai): output=0
6. (40 taškų): output=1
```