INEFFICIENT POLICIES IN THE GREEN TRANSITION

Juan Dodyk

Harvard

1

Introduction

THE CHALLENGE OF CLIMATE POLICY

Climate change mitigation is an urgent political challenge.

We know how to solve it: carbon pricing (Acemoglu et al 2016, Blanchard et al 2023).

Carbon prices are below the social cost of carbon.

- Only 1% of global emissions priced above the recommended level (World Bank)

Instead, countries use a wide range of policies, some of which reduce emissions at much higher economic costs.

However, variation across country.

Within country pattern: inefficient policies lead to carbon pricing.

EUROPEAN UNION

2001: Renewable Energy Directive

Subsidies to R&D vs. deployment in wind and solar energy in the top six European countries (2010). Source: Zachmann et al. (2014).

EUROPEAN UNION

2003: Emissions Trading System (ETS) introduced

2021: ETS reformed

GERMANY

2000: Renewable Energy Sources Act

Data source: Energy Institute - Statistical Review of World Energy (2024) OurWorldinData.org/renewable-energy | CC BY Note: 'Other renewables' refers to renewable sources including geothermal, biomass, waste, wave and tidal. Traditional biomass is not included.

Germany – Carbon Pricing

2001: Reluctant to join the EU ETS

2021: Expands the coverage of the ETS to heating and transportation sectors

Germany's carbon pricing system for transport and buildings

#Climate & CO2 #Cost & Prices

f X in

The German government decided to put a price on greenhouse gas emissions in the transport and building sectors from 2021 as a key instrument to help reach its climate targets. It starts with a fixed price, which increases every year before allowances are auctioned from 2026 onwards. This factsheet explains the details of the system, legal doubts and expected distributional effects, as well as its integration into a new EU emissions trading system. [UPDATES with 2022 report on the system]

Canada – 2005 Project Green

Burning Our Money to Warm the Planet

Canada's Ineffective Efforts to Reduce Greenhouse Gas Emissions

> Mark Jaccard, Nic Rivers, Christopher Bataille, Rose Murphy, John Nyboer and Bryn Sadownik

Canada – 2018 Federal Carbon Price

Canada passed a carbon tax that will give most Canadians more money

By rebating the revenue to households, disposable income rises, which can be a boon for the Canadian economy

Prime Minister Justin Trudeau answers a question on Parliament Hill in Ottawa on Thursday, Oct. 25, 2018. Photograph: Canadian Press/REX/Shutterstock

ARGUMENT

Strategic policy sequencing: use subsidies to build a coalition today, introduce carbon pricing tomorrow (Meckling et al 2015, 2017; Pahle et al 2018).

Efficient policies impose costs on polluters \rightarrow not feasible if polluters are politically powerful.

Subsidies that induce investments in green capital concentrate benefits in pivotal constituencies.

These investments change preferences in the future, making carbon pricing feasible.

Key: inefficient policies have policy feedback effects.

QUESTIONS

Why are inefficient instruments used in equilibrium?

Why are carbon prices initially too low?

Under what conditions is the policy sequencing strategy feasible?

How is the sequencing strategy affected by polarization?

Do non-binding policies such as net-zero commitments matter?

This paper: dynamic model of climate policymaking.

My Approach

Two policies: a carbon tax and a subsidy for green investments.

Policy requires approval by a legislature.

Legislators represent constituencies that differ in how "decarbonizable" they are.

"Brown" districts are initially a majority.

Risk of turnover: the policymaker can be replaced by an opposition politician in the future.

KEY IDEAS

Legislative bargaining \rightarrow need to **build a coalition**.

The coalition has to include green legislators and **pivotal brown districts**.

Green and brown legislators have different demands. They impose political constraints.

Brown districts oppose carbon taxes, but are willing to accept subsidies.

Subsidies require green investments, which **change the preferences** of brown districts in the future.

Once investments are sunk, carbon taxes become politically acceptable.

Preview of Results

Carbon tax is initially below optimal, and the subsidy is above optimal.

In the second period, if the initial policymaker stays, optimal carbon tax.

Economic prospects of decarbonization improve \rightarrow policy sequence more likely to start.

Proposer too green or not green enough \rightarrow no climate policy.

The effect of polarization is ambiguous.

Under some conditions non-binding policy can have real effects by changing expectations.

ROADMAP

- 1. The Model
- 2. Results
- 3. Extensions
- 4. Empirical Implications

THE MODEL

The Model – Economy

Districts $i \in [0, 1]$.

Invested in either green or brown sector: $\chi_i = 1$ if brown, $\chi_i = 0$ if green.

- Initially $[0, b_1]$ are brown, $(b_1, 1]$ green, with $b_1 > \frac{1}{2}$.
- Brown district i can invest in green capital and transition at cost $c \ge 0$.

THE MODEL - ECONOMY

Districts $i \in [0, 1]$.

Invested in either green or brown sector: $\chi_i = 1$ if brown, $\chi_i = 0$ if green.

- Initially $[0, b_1]$ are brown, $(b_1, 1]$ green, with $b_1 > \frac{1}{2}$.
- Brown district i can invest in green capital and transition at cost $c \ge 0$.

One good in the economy besides capital.

Production function is Cobb-Douglas with $\alpha = \frac{1}{2}$ using final good and capital.

- Brown district uses $\frac{1}{2}y^2$ units to produce y.
- Green district i uses $\frac{1}{2}y^2$ units to produce Aiy.
- -A > 1 measures the productivity of green technology.

Brown production leads to carbon emissions: producing y units \rightarrow emitting y tons.

The Model – Policies

Carbon tax $\tau \in [0, 1]$.

- Brown districts pay τy , so their income is $\frac{1}{2}(1-\tau)^2$.
- Green districts are not affected, and their income is $\frac{1}{2}Ai$.

Investment subsidy $s \geqslant 0$.

Lump-sum transfer T.

The Model – Politics

The districts are represented in a legislature.

Initially no climate policy, and the proposer is G.

In each period t = 1, 2:

- 1. Proposer chooses a carbon tax τ_t ; in the first period, also a subsidy s.
- 2. If a majority of districts prefer it to the status quo, it is implemented, and becomes the new status quo.
- 3. Districts make production and investment decisions.
- 4. The next period proposer is determined: with probability ρ the current proposer stays; otherwise, replaced by B.

In the second period T is automatically determined to balance the budget.

The Model – Preferences

Agents maximize discounted expected utility with discount factor δ .

Legislators only care about consumption π_{it} .

Proposer P's payoff in period t is

$$W_P = \int_0^1 \pi_{it} \, di - 1_{P=G} \lambda \underbrace{\int_0^1 \chi_{it} y_{it} \, di}_{\text{emissions}}.$$

 λ is the social cost of carbon.

RESULTS

Benchmark – Unconstrained Proposer

If the proposer decides policy in both periods,

- carbon tax equals the social cost of carbon: $\tau_1 = \tau_2 = \lambda$,
- investment subsidy not used: s = 0. It is an **inefficient instrument** for reducing emissions.

Benchmark – Unconstrained Proposer

If the proposer decides policy in both periods,

- carbon tax equals the social cost of carbon: $\tau_1 = \tau_2 = \lambda$,
- investment subsidy not used: s = 0. It is an **inefficient instrument** for reducing emissions.

With probability ρ of replacement:

- carbon tax is still equal to the social cost of carbon,
- positive optimal subsidy: $s = \delta(1 \rho)\lambda$.

Benchmark – Unconstrained Proposer

If the proposer decides policy in both periods,

- carbon tax equals the social cost of carbon: $\tau_1 = \tau_2 = \lambda$,
- investment subsidy not used: s = 0. It is an **inefficient instrument** for reducing emissions.

With probability ρ of replacement:

- carbon tax is still equal to the social cost of carbon,
- positive optimal subsidy: $s = \delta(1 \rho)\lambda$.

Turnover explains the use of subsidies, but not the sequencing.

LEGISLATIVE BARGAINING

Brown districts are a majority, so a winning coalition must include some of them.

- Strategy: use the subsidy to induce the pivotal districts to accept policy today and transition.
- In the second period there is a green majority, so a green policymaker can implement an optimal carbon tax.

LEGISLATIVE BARGAINING

Brown districts are a majority, so a winning coalition must include some of them.

- Strategy: use the subsidy to induce the pivotal districts to accept policy today and transition.
- In the second period there is a green majority, so a green policymaker can implement an optimal carbon tax.

The need to build a coalition imposes two **political constraints**:

- Brown districts demand subsidies as compensation for the costs of transition.
- Green districts demand intertemporal budget balance.

Numerical Example

MAIN RESULT

Proposition. In equilibrium either the first-period carbon tax is below the social cost of carbon and the subsidy is positive, or no climate policy is enacted, i.e., $\tau_1 < \lambda$ and s > 0, or $\tau_1 = s = 0$.

Main Result

Proposition. In equilibrium either the first-period carbon tax is below the social cost of carbon and the subsidy is positive, or no climate policy is enacted, i.e., $\tau_1 < \lambda$ and s > 0, or $\tau_1 = s = 0$.

Why? Tradeoff:

– Imposing costs on polluters today requires more subsidies to provide compensation: $\tau_1 \uparrow \Rightarrow s \uparrow$.

Main Result

Proposition. In equilibrium either the first-period carbon tax is below the social cost of carbon and the subsidy is positive, or no climate policy is enacted, i.e., $\tau_1 < \lambda$ and s > 0, or $\tau_1 = s = 0$.

Why? Tradeoff:

– Imposing costs on polluters today requires more subsidies to provide compensation: $\tau_1 \uparrow \Rightarrow s \uparrow$.

When can the proposer start the policy sequence?

- Political constraints have to be feasible.
- Proposer prefers some acceptable policy over the status quo.

POLITICAL CONSTRAINTS

Two determinants:

- 1. Economic benefits of decarbonization
- Relax brown districts' constraint.
- Tighten green districts' constraint.
 - More brown districts transition \Rightarrow less fiscal revenue.

POLITICAL CONSTRAINTS

Two determinants:

- 1. Economic benefits of decarbonization
- Relax brown districts' constraint.
- Tighten green districts' constraint.
 - More brown districts transition \Rightarrow less fiscal revenue.
- 2. Expected future carbon tax
- Increases fiscal revenue directly.
- But more districts transition \Rightarrow less fiscal revenue.
- Overall effect is ambiguous.

EFFECT OF GREEN TECHNOLOGY

Result. If economic agents are sufficiently patient, an increase in the productivity of green technology A or a decrease in the cost of capital c relax the political constraint imposed by brown districts and tighten the political constraint imposed by green districts.

If the constraints are feasible and A increases or c decreases, then the constraints continue to be feasible.

EFFECT OF GREEN TECHNOLOGY

Result. If economic agents are sufficiently patient, an increase in the productivity of green technology A or a decrease in the cost of capital c relax the political constraint imposed by brown districts and tighten the political constraint imposed by green districts.

If the constraints are feasible and A increases or c decreases, then the constraints continue to be feasible.

Implication:

 The constraints are feasible if and only if the net benefits of decarbonization are sufficiently large.

EFFECT OF GREEN TECHNOLOGY

Result. If the productivity of green technology is not too large, the political constraints are feasible only if the social cost of carbon is not too large.

Result. If the productivity of green technology is not too large, the political constraints are feasible only if the social cost of carbon is not too large.

Why?

- Second and third forces push in different directions.
- If SCC is large the third force dominates.

Result. If the productivity of green technology is not too large, the political constraints are feasible only if the social cost of carbon is not too large.

Why?

- Second and third forces push in different directions.
- If SCC is large the third force dominates.

Implication: if the proposer is too committed to fight climate change \Rightarrow political constraints harder to satisfy.

RISK OF TURNOVER

Result. If the political opposition to climate policies is initially high and the political constraints are feasible, then, if the probability that the second-period proposer is brown increases, the constraints continue to be feasible.

RISK OF TURNOVER

Result. If the political opposition to climate policies is initially high and the political constraints are feasible, then, if the probability that the second-period proposer is brown increases, the constraints continue to be feasible.

Same forces.

Implication: risk replacement by opponent to climate change mitigation can help start the policy sequence.

RISK OF TURNOVER

Result. If the political opposition to climate policies is initially high and the political constraints are feasible, then, if the probability that the second-period proposer is brown increases, the constraints continue to be feasible.

Same forces.

Implication: risk replacement by opponent to climate change mitigation can help start the policy sequence.

Polarization on climate \Rightarrow this risk \uparrow .

GROWING POLARIZATION IN THE U.S.

54% of Americans view climate change as a major threat, but the partisan divide has grown

% of U.S. adults who say global climate change is a major threat to the country

Note: Respondents who gave other responses or did not give an answer are not shown. Source: Survey conducted March 21-27, 2022.

PEW RESEARCH CENTER

AND YET

Biden signing the Inflation Reduction Act. Drew Angerer / Getty Images

EFFECT OF RISK OF TURNOVER

Green Expectations and Soft Commitments

There are two equilibria if initial political opposition is not too strong.

- If the initial policy proposal fails, but agents expect that a green proposer will implement an optimal carbon tax in the second period, some will invest in green capital.
- If enough invest, in the second period green districts form a majority, and the expectation is fulfilled.

GREEN EXPECTATIONS AND SOFT COMMITMENTS

There are two equilibria if initial political opposition is not too strong.

- If the initial policy proposal fails, but agents expect that a green proposer will implement an optimal carbon tax in the second period, some will invest in green capital.
- If enough invest, in the second period green districts form a majority, and the expectation is fulfilled.

The condition is

$$b_1 \leqslant \frac{1}{2} + \frac{\rho\lambda(2-\lambda)}{A}.$$

In this equilibrium the proposer has more bargaining power, and can implement more ambitious policies.

GREEN EXPECTATIONS AND SOFT COMMITMENTS

There are two equilibria if initial political opposition is not too strong.

- If the initial policy proposal fails, but agents expect that a green proposer will implement an optimal carbon tax in the second period, some will invest in green capital.
- If enough invest, in the second period green districts form a majority, and the expectation is fulfilled.

The condition is

$$b_1 \leqslant \frac{1}{2} + \frac{\rho\lambda(2-\lambda)}{A}.$$

In this equilibrium the proposer has more bargaining power, and can implement more ambitious policies.

Rationale for soft commitments such as net-zero targets or NDCs.

 But this logic only works under some conditions, and equilibrium policies are still not first-best.

GREEN EQUILIBRIUM

Targeted transfers and subsidies

- Information constraint.
- Mechanism design approach. Main tradeoff remains.

Targeted transfers and subsidies

- Information constraint.
- Mechanism design approach. Main tradeoff remains.

Production subsidies

- Inefficient, but they also create incentives for districts to transition.

Targeted transfers and subsidies

- Information constraint.
- Mechanism design approach. Main tradeoff remains.

Production subsidies

- Inefficient, but they also create incentives for districts to transition.

Standards and Feed-in Tariffs

- Equivalent to revenue-neutral combination of carbon taxes and production subsidies.
- The implicit subsidies can be used to reduce opposition.

Targeted transfers and subsidies

- Information constraint.
- Mechanism design approach. Main tradeoff remains.

Production subsidies

- Inefficient, but they also create incentives for districts to transition.

Standards and Feed-in Tariffs

- Equivalent to revenue-neutral combination of carbon taxes and production subsidies.
- The implicit subsidies can be used to reduce opposition.

Green preferences

- Brown districts still oppose carbon taxes.
- Under restrictive conditions first-best can be implemented.
- In general same tradeoff as without concerns for climate.

CONCLUSION

Why are inefficient instruments used in equilibrium?

- They create concentrated benefits that reduce opposition today and in the future.

Why are inefficient instruments used in equilibrium?

- They create concentrated benefits that reduce opposition today and in the future.

Can this argument explain low carbon prices?

– Yes, because there is a tradeoff between carbon prices and inefficient compensation.

Why are inefficient instruments used in equilibrium?

- They create concentrated benefits that reduce opposition today and in the future.

Can this argument explain low carbon prices?

– Yes, because there is a tradeoff between carbon prices and inefficient compensation.

Under what conditions is the strategy feasible?

- Carbon abatement technology needs to be sufficiently advanced.
- The social cost of carbon cannot be too low nor too high.

Why are inefficient instruments used in equilibrium?

- They create concentrated benefits that reduce opposition today and in the future.

Can this argument explain low carbon prices?

– Yes, because there is a tradeoff between carbon prices and inefficient compensation.

Under what conditions is the strategy feasible?

- Carbon abatement technology needs to be sufficiently advanced.
- The social cost of carbon cannot be too low nor too high.

How is the sequencing strategy affected by polarization?

- The effect is ambiguous. The risk of the opposition taking agenda-setting power in the future can relax the political constraints today.

Why are inefficient instruments used in equilibrium?

- They create concentrated benefits that reduce opposition today and in the future.

Can this argument explain low carbon prices?

– Yes, because there is a tradeoff between carbon prices and inefficient compensation.

Under what conditions is the strategy feasible?

- Carbon abatement technology needs to be sufficiently advanced.
- The social cost of carbon cannot be too low nor too high.

How is the sequencing strategy affected by polarization?

- The effect is ambiguous. The risk of the opposition taking agenda-setting power in the future can relax the political constraints today.

Do non-binding policies such as net-zero commitments matter?

 Yes. If the initial opposition is not too strong there are two equilibria. Switching to the "green" equilibrium makes it possible to enact more stringent policies.

EMPIRICAL IMPLICATIONS

Country level:

- Subsidies \rightarrow investments \rightarrow attitudes toward climate policy $\uparrow \rightarrow$ carbon pricing.
- Mediators: structure of the economy and political institutions.
- Quantitative version of the model \rightarrow testable predictions.

EMPIRICAL IMPLICATIONS

Country level:

- Subsidies \rightarrow investments \rightarrow attitudes toward climate policy $\uparrow \rightarrow$ carbon pricing.
- Mediators: structure of the economy and political institutions.
- Quantitative version of the model \rightarrow testable predictions.

Individual level:

- Individual takeup of subsidies \rightarrow support for stringent policy (e.g., Alberdi 2024).
 - I offer a mechanism, but there are alternative explanations.
- Policy sequencing has tradeoffs.
 - We should expect a backlash and a new cleavage, but at the same time a net increase in support for the green transition (e.g., Gazmararian and Krashinsky 2024).
- Exciting research agenda: study the effects of green industrial policies in real time.
 - IRA, EU Green Deal, South Korea's Green New Deal, Sweden's Green Industrial Leap.

EMPIRICAL IMPLICATIONS

Country level:

- Subsidies \rightarrow investments \rightarrow attitudes toward climate policy $\uparrow \rightarrow$ carbon pricing.
- Mediators: structure of the economy and political institutions.
- Quantitative version of the model \rightarrow testable predictions.

Individual level:

- Individual takeup of subsidies \rightarrow support for stringent policy (e.g., Alberdi 2024).
 - I offer a mechanism, but there are alternative explanations.
- Policy sequencing has tradeoffs.
 - We should expect a backlash and a new cleavage, but at the same time a net increase in support for the green transition (e.g., Gazmararian and Krashinsky 2024).
- Exciting research agenda: study the effects of green industrial policies in real time.
 - IRA, EU Green Deal, South Korea's Green New Deal, Sweden's Green Industrial Leap.

Industry and firm level:

- Expectation: "decarbonizable" industries \rightarrow subsidies \mathcal{O} , hard-to-abate $\rightarrow \mathbb{Q}$.
- Expectation: firm receives subsidies \rightarrow opposition to carbon pricing \downarrow .

CONTRIBUTION

Methodological contribution: climate policymaking in a legislative bargaining model.

- Microfounded and dynamic political constraints.
- The political power of industries is not fixed and policy can reduce it.

CONTRIBUTION

Methodological contribution: climate policymaking in a legislative bargaining model.

- Microfounded and dynamic political constraints.
- The political power of industries is not fixed and policy can reduce it.

Policy implications:

- Some inefficient policies are good because they relax political constraints in the future.
- We can integrate causal estimates of the policy feedback effects (Urpelainen and Zhang 2022, Alberdi 2024) to cost-benefit analysis (Hahn et al 2024).

CONTRIBUTION

Methodological contribution: climate policymaking in a legislative bargaining model.

- Microfounded and dynamic political constraints.
- The political power of industries is not fixed and policy can reduce it.

Policy implications:

- Some inefficient policies are good because they relax political constraints in the future.
- We can integrate causal estimates of the policy feedback effects (Urpelainen and Zhang 2022, Alberdi 2024) to cost-benefit analysis (Hahn et al 2024).

Paper: juandodyk.github.io/files/jmp.pdf Slides: juandodyk.github.io/files/jmpres.pdf

My email: juandodyk@g.harvard.edu

Comments welcome!

DELETED SLIDES

EVIDENCE

Source: Linsenmeier et al, 2024, "Policy sequencing towards carbon pricing among the world's largest emitters", $Nature\ Climate\ Change$.

DISCUSSION OF THE ASSUMPTIONS

- Green investment as a binary decision:
 - as a result of the EU ETS, "firms [paid] an up-front fixed cost to invest in alternative 'clean' production technologies that reduce marginal variable costs" (Colmer et al 2024).
- Expectations of future policy impact economic decisions today (Ramadorai and Zeni 2024).
- Productivity of clean technology is heterogeneous across constituencies:
 - the cost-competitiveness of renewable energy depends on location (Davis et al 2023),
 - the advances in decarbonization technology depend on industry (Victor et al 2019).
- Carbon-intensive interests hold political power (because of their representation in the legislature) regardless of which party controls the agenda (Mildenberger 2020).
- Investments in green capital change preferences:
 - Subsidized rooftop solar panels → support for climate policies and the Green party in Germany ↑ (Alberdi 2024).
 - Wind turbine installations \rightarrow Democratic vote shares \uparrow (Urpelainen and Zhang 2022).
 - Fuel-efficiency regulations on cars led some car manufacturers to resist Trump's decision to roll back those regulations (Vormedal and Meckling 2023).

Proposer's Incentives

Proposer cares about aggregate consumption and carbon emissions.

The tradeoff is determined by the SCC λ .

These objectives are in tension:

 Reducing carbon emissions requires either reducing production or increasing investment.

Proposer's Incentives

Proposer cares about aggregate consumption and carbon emissions.

The tradeoff is determined by the SCC λ .

These objectives are in tension:

 Reducing carbon emissions requires either reducing production or increasing investment.

Result. There is a policy that satisfies the political constraints and the proposer prefers over the status quo only if the social cost of carbon is not too low.

Proposer's Incentives

Proposer cares about aggregate consumption and carbon emissions.

The tradeoff is determined by the SCC λ .

These objectives are in tension:

 Reducing carbon emissions requires either reducing production or increasing investment.

Result. There is a policy that satisfies the political constraints and the proposer prefers over the status quo only if the social cost of carbon is not too low.

Risk of turnover $\uparrow \Rightarrow$ worse policy tomorrow, so willingness to accept a compromise \downarrow , but less inefficient investment, so willingness \uparrow .

The second effect can dominate.

TARGETED TRANSFERS AND SUBSIDIES

Assumption: government cannot target transfers nor subsidies to pivotal opponents.

Not entirely true in reality:

- Cap-and-trade systems target free allowances to reduce opposition.
- "Just transition" strategies bundle redistributive policies (Bolet et al 2023).
- "Climate bargains" tie regulations to public investments (Meckling and Strecker 2023).
- Many subsidies and regulations are technology- and industry-specific (Gawel et al 2017, Cullenward and Victor 2020).

TARGETED TRANSFERS AND SUBSIDIES

Assumption: government cannot target transfers nor subsidies to pivotal opponents.

Not entirely true in reality:

- Cap-and-trade systems target free allowances to reduce opposition.
- "Just transition" strategies bundle redistributive policies (Bolet et al 2023).
- "Climate bargains" tie regulations to public investments (Meckling and Strecker 2023).
- Many subsidies and regulations are technology- and industry-specific (Gawel et al 2017, Cullenward and Victor 2020).

However, transfers are not surgically targeted, and their logic responds to lobbying incentives (Hanoteau 2014, Winkler 2022), not optimal coalition building.

Targeted subsidies are subject to information asymmetry.

TARGETED TRANSFERS AND SUBSIDIES

Assumption: government cannot target transfers nor subsidies to pivotal opponents.

Not entirely true in reality:

- Cap-and-trade systems target free allowances to reduce opposition.
- "Just transition" strategies bundle redistributive policies (Bolet et al 2023).
- "Climate bargains" tie regulations to public investments (Meckling and Strecker 2023).
- Many subsidies and regulations are technology- and industry-specific (Gawel et al 2017, Cullenward and Victor 2020).

However, transfers are not surgically targeted, and their logic responds to lobbying incentives (Hanoteau 2014, Winkler 2022), not optimal coalition building.

Targeted subsidies are subject to information asymmetry.

Mechanism design approach: targeting allowed, but informational constraints.

- This expands the set of policies, but the fundamental tradeoff persists.
- Idea: districts with low opportunities for decarbonization are protected by the incentive compatibility constraint. They can pretend to be pivotal.

OTHER POLICY INSTRUMENTS

Production subsidies

- They also incentivize investments, but inefficiently.
- May be used to relax the political constraint of green districts.

OTHER POLICY INSTRUMENTS

Production subsidies

- They also incentivize investments, but inefficiently.
- May be used to relax the political constraint of green districts.

Emissions-intensity standards

- They mandate producers to keep their emissions below a threshold.
- Examples: renewable-portfolio standards for utilities, CAFE standards for cars.
- They are equivalent to a revenue neutral combination of a carbon tax and a production subsidy.
- They implicitly subsidize low-emissions producers, so they can be used as a carrot.

OTHER POLICY INSTRUMENTS

Production subsidies

- They also incentivize investments, but inefficiently.
- May be used to relax the political constraint of green districts.

Emissions-intensity standards

- They mandate producers to keep their emissions below a threshold.
- Examples: renewable-portfolio standards for utilities, CAFE standards for cars.
- They are equivalent to a revenue neutral combination of a carbon tax and a production subsidy.
- They implicitly subsidize low-emissions producers, so they can be used as a carrot.

Feed-in tariffs

- They force utilities to buy energy from renewable sources at a given price.
- Without volatility in supply or demand they are equivalent to an RPS.

Green Preferences

Assumption: legislators only care about the economic welfare of their constituency.

We can assume that legislators care about climate.

If the SCC is not too large then brown districts still oppose carbon taxes.

Legislators are more willing to implement climate policy, and equilibrium policy is more ambitious, but the fundamental tradeoff persists.