```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
from google.colab import drive
drive.mount('/content/drive')
     Mounted at /content/drive
# Code to read csv file into Colaboratory:
!pip install -U -q PyDrive
from pydrive.auth import GoogleAuth
from pydrive.drive import GoogleDrive
from google.colab import auth
from oauth2client.client import GoogleCredentials
# Authenticate and create the PyDrive client.
auth.authenticate user()
gauth = GoogleAuth()
gauth.credentials = GoogleCredentials.get application default()
drive = GoogleDrive(gauth)
link = 'https://drive.google.com/file/d/1g1KW6UgHCbDFJ 9X0a2O2qnQeDoIUUlH/view?usp=sharing'
fluff, id = link.split('=')
print (id) # Verify that you have everything after '='
     sharing
downloaded = drive.CreateFile({'id':id})
#downloaded.GetContentFile('/content/drive/My Drive/train u6lujuX CVtuZ9i.csv')
#data=pd.read_csv('/content/drive/My Drive/train_u6lujuX_CVtuZ9i.csv')
```

#downloaded.GetContentFile('/content/drive/My Drive/train.csv')
data=pd.read_csv('/content/drive/My Drive/train.csv')

data.head()

	Loan_ID	Gender	Married	Dependents	Education	Self_Employed	ApplicantIncome	CoapplicantIncome
0	LP001002	Male	No	0	Graduate	No	5849	0.0
1	LP001003	Male	Yes	1	Graduate	No	4583	1508.0
2	LP001005	Male	Yes	0	Graduate	Yes	3000	0.0
3	LP001006	Male	Yes	0	Not Graduate	No	2583	2358.0
4	LP001008	Male	No	0	Graduate	No	6000	0.0

data.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 614 entries, 0 to 613
Data columns (total 13 columns):

#	Column	Non-Null Count	Dtype
0	Loan_ID	614 non-null	object
1	Gender	601 non-null	object
2	Married	611 non-null	object
3	Dependents	599 non-null	object
4	Education	614 non-null	object
5	Self_Employed	582 non-null	object
6	ApplicantIncome	614 non-null	int64
7	CoapplicantIncome	614 non-null	float64
8	LoanAmount	592 non-null	float64
9	Loan_Amount_Term	600 non-null	float64
10	Credit_History	564 non-null	float64
11	Property_Area	614 non-null	object
12	Loan_Status	614 non-null	object

dtypes: float64(4), int64(1), object(8)

memory 11cage . 63 5+ KB

data.shape

(614, 13)

data.describe()

	ApplicantIncome	CoapplicantIncome	LoanAmount	Loan_Amount_Term	Credit_History
count	614.000000	614.000000	592.000000	600.00000	564.000000
mean	5403.459283	1621.245798	146.412162	342.00000	0.842199
std	6109.041673	2926.248369	85.587325	65.12041	0.364878
min	150.000000	0.000000	9.000000	12.00000	0.000000
25%	2877.500000	0.000000	100.000000	360.00000	1.000000
50%	3812.500000	1188.500000	128.000000	360.00000	1.000000
75%	5795.000000	2297.250000	168.000000	360.00000	1.000000
max	81000.000000	41667.000000	700.000000	480.00000	1.000000

data.isnull().sum()

Loan_ID	0
Gender	13
Married	3
Dependents	15
Education	0
Self_Employed	32
ApplicantIncome	0
CoapplicantIncome	0
LoanAmount	22
Loan_Amount_Term	14
Credit_History	50
Property_Area	0

```
Loan_Status 0 dtype: int64
```

```
data['LoanAmount']=data['LoanAmount'].fillna(data['LoanAmount'].mean())
data['Credit_History']=data['Credit_History'].fillna(data['Credit_History'].median())
data.dropna(inplace=True)
data.shape
     (542, 13)
data['Gender'].value_counts()
     Male
               444
     Female
                98
     Name: Gender, dtype: int64
data['Married'].value_counts()
            355
     Yes
            187
     No
     Name: Married, dtype: int64
data['Education'].value_counts()
     Graduate
                     425
     Not Graduate
                     117
     Name: Education, dtype: int64
data['Property_Area'].value_counts()
```

```
Semiurban 209
Urban 174
Rural 159
Name: Property_Area, dtype: int64
```

```
plt.boxplot(data['LoanAmount'])
```


plt.boxplot(data['ApplicantIncome'])

```
{'boxes': [<matplotlib.lines.Line2D at 0x7fceedcab0d0>],
 'caps': [<matplotlib.lines.Line2D at 0x7fceedc31190>,
 <matplotlib.lines.Line2D at 0x7fceedc316d0>],
 'fliers': [<matplotlib.lines.Line2D at 0x7fceeed4add0>],
 'means': [],
 'medians': [<matplotlib.lines.Line2D at 0x7fceedc31c50>],
 'whiskers': [<matplotlib.lines.Line2D at 0x7fceedcab6d0>,
 <matplotlib.lines.Line2D at 0x7fceedcabc10>]}
                            0
 80000
 70000
 60000
 50000
                            8
 40000
 30000 -
```

plt.boxplot(data['Loan_Amount_Term'])

```
{'boxes': [<matplotlib.lines.Line2D at 0x7fceedc29450>],
sns.scatterplot(x='Property_Area',y='Loan_Status',data=data)
```

<matplotlib.axes._subplots.AxesSubplot at 0x7fceedc1df50>

print(pd.crosstab(data['Property_Area'],data['Loan_Status']))

Loan_Status N Y
Property_Area
Rural 61 98
Semiurban 47 162
Urban 58 116

sns.countplot(data['Property_Area'],hue=data['Loan_Status'])

/usr/local/lib/python3.7/dist-packages/seaborn/_decorators.py:43: FutureWarning: Pass the following var FutureWarning

<matplotlib.axes._subplots.AxesSubplot at 0x7fceedb41390>

print(pd.crosstab(data['Gender'],data['Loan_Status']))

Loan_Status	N	Υ
Gender		
Female	33	65
Male	133	311

sns.countplot(data['Gender'],hue=data['Loan_Status'])

/usr/local/lib/python3.7/dist-packages/seaborn/_decorators.py:43: FutureWarning: Pass the following var print(pd.crosstab(data['Married'],data['Loan_Status']))

```
Loan_Status N Y
Married
No 70 117
Yes 96 259
```

sns.countplot(data['Married'],hue=data['Loan_Status'])

/usr/local/lib/python3.7/dist-packages/seaborn/_decorators.py:43: FutureWarning: Pass the following var FutureWarning <matplotlib.axes._subplots.AxesSubplot at 0x7fceeda4cb50>

print(pd.crosstab(data['Self_Employed'],data['Loan_Status']))

Loan_Status N Y
Self_Employed
No 141 326
Yes 25 50

```
sns.countplot(data['Sel+_Employed'],hue=data['Loan_Status'])
```

/usr/local/lib/python3.7/dist-packages/seaborn/_decorators.py:43: FutureWarning: Pass the following var FutureWarning

<matplotlib.axes._subplots.AxesSubplot at 0x7fceed9c7ed0>


```
print(pd.crosstab(data['Education'],data['Loan_Status']))
# In[34]:
sns.countplot(data['Education'],hue=data['Loan_Status'])
```

```
Loan_Status
                          Υ
     Education
     Graduate
                   122 303
     Not Graduate
                    44
                        73
     /usr/local/lib/python3.7/dist-packages/seaborn/_decorators.py:43: FutureWarning: Pass the following variable as a keywo
       FutureWarning
     <matplotlib.axes._subplots.AxesSubplot at 0x7fceed930d10>
        300
                                              Loan Status
                                                N
        250
        200
data['Loan_Status'].replace('N',0,inplace=True)
data['Loan_Status'].replace('Y',1,inplace=True)
plt.title('Correlation Matrix')
sns.heatmap(data.corr(),annot=True)
```

<matplotlib.axes._subplots.AxesSubplot at 0x7fceed933a90>

	Gender	Married	Dependents	Education	Self_Employed	Credit_History	Property_Area	Loan_Status
0	Male	No	0	Graduate	No	1.0	Urban	1
1	Male	Yes	1	Graduate	No	1.0	Rural	0
2	Male	Yes	0	Graduate	Yes	1.0	Urban	1
3	Male	Yes	0	Not Graduate	No	1.0	Urban	1
4	Male	No	0	Graduate	No	1.0	Urban	1

from sklearn.preprocessing import LabelEncoder
from sklearn.preprocessing import OneHotEncoder
le=LabelEncoder()
ohe=OneHotEncoder()

```
data2['Property_Area']=le.fit_transform(data2['Property_Area'])
data2['Dependents']=le.fit_transform(data2['Dependents'])
data2=pd.get_dummies(data2)
data2.dtypes
     Dependents
                                 int64
     Credit_History
                               float64
     Property_Area
                                 int64
     Loan_Status
                                 int64
     Gender_Female
                                 uint8
     Gender_Male
                                 uint8
     Married_No
                                 uint8
     Married Yes
                                 uint8
     Education_Graduate
                                 uint8
     Education_Not Graduate
                                 uint8
     Self_Employed_No
                                 uint8
     Self_Employed_Yes
                                 uint8
     dtype: object
data2=data2.drop(labels=['Gender_Female'],axis=1)
# In[55]:
data2=data2.drop(labels=['Married_No'],axis=1)
# In[56]:
```

```
data2=data2.drop(labels=['Education_Not Graduate'],axis=1)

# In[58]:

data2=data2.drop(labels=['Self_Employed_No'],axis=1)

# In[60]:

data2.head()
```

	Dependents	Credit_History	Property_Area	Loan_Status	Gender_Male	Married_Yes	Education_Graduate
0	0	1.0	2	1	1	0	,
1	1	1.0	0	0	1	1	
2	0	1.0	2	1	1	1	
3	0	1.0	2	1	1	1	(
4	0	1.0	2	1	1	0	

plt.title('Correlation Matrix')
sns.heatmap(data2.corr(),annot=True)


```
Self_Employed Yes - 0.06 -0.027 -0.041 -0.024 -0.02 -0.013 0.015
                                                                 0.0
data2=data2.drop('Self_Employed_Yes',1)
# In[65]:
data2=data2.drop('Dependents',1)
# In[67]:
data2=data2.drop('Education Graduate',1)
# In[68]:
X=data2.drop('Loan_Status',1)
Y=data2['Loan_Status']
```

```
from sklearn.model_selection import train_test_split
# In[72]:
x_train,x_test,y_train,y_test=train_test_split(X,Y,test_size=0.2,random_state=6)
# In[74]:
print('X_train is: ',x_train.shape)
print('X_test is: ',x_test.shape)
print('Y_train is: ',y_train.shape)
print('y_test is: ',y_test.shape)
    X_train is: (433, 4)
    X_test is: (109, 4)
    Y_train is: (433,)
    y_test is: (109,)
from sklearn.linear_model import LogisticRegression
log=LogisticRegression()
# In[77]:
log.fit(x_train,y_train)
# In[78]:
log.score(x_train,y_train)
```

```
# In[79]:
pred=log.predict(x_test)
from sklearn.metrics import accuracy_score
accuracy_score(y_test,pred)
     0.8440366972477065
from sklearn import metrics
# In[84]:
# CONFUSION Matrix
metrics.confusion_matrix(y_test,pred)
     array([[23, 16],
            [ 1, 69]])
metrics.f1_score(y_test,pred)
     0.8903225806451613
metrics.precision_score(y_test,pred)
     0.8117647058823529
metrics.recall_score(y_test,pred)
```

0.9857142857142858

```
data={'y_test':y_test,'pred':pred}
pd.DataFrame(data=data)
```

	y_test	pred
572	1	1
133	1	1
371	1	1
487	0	1
277	1	1
457	0	1
310	1	1
553	0	0
186	0	0
340	0	1

109 rows × 2 columns

from sklearn.tree import DecisionTreeClassifier
clf=DecisionTreeClassifier()

In[91]:

clf.fit(x_train,y_train)

```
# In[92]:
pred1=clf.predict(x_test)
# In[93]:
accuracy_score(y_test,pred1)
     0.8440366972477065
metrics.confusion_matrix(y_test,pred1)
     array([[23, 16],
            [ 1, 69]])
metrics.f1_score(y_test,pred1)
     0.8903225806451613
metrics.recall_score(y_test,pred1)
     0.9857142857142858
metrics.precision_score(y_test,pred1)
     0.8117647058823529
```