Week 13: Discrete scalar dynamical systems

May 27, 2024

An exercise

In the previous lecture we solved the following exercise Using the stair-step diagram, estimate the basin of attraction for each of the fixed points (if there is any which is an attractor) of the map

$$f:(0,\infty)\to\mathbb{R},\quad f(x)=\frac{x^2+5}{2x}$$
.

We found that f has a unique fixed point, $\eta^*=\sqrt{5}$, which is an attractor. More precisely, we found $f'(\sqrt{5})=0$, which is the smallest constant λ that satisfy the condition $|\lambda|<1$. Moreover, using the cobweb diagram we developed the intuition that the basin of attraction of the fixed point $\eta^*=\sqrt{5}$ is the whole interval $(0,\infty)$ and that just few steps are needed to arrive very close to $\sqrt{5}$.

On the other hand, note that $f(x) \in \mathbb{Q}$ for any $x \in \mathbb{Q}$. Recall that a rational number (from \mathbb{Q}) can be written as a fraction (of two natural numbers) and, after division, it has a finite number of decimals or repeating decimals.

Rational approximations of $\sqrt{5}$ =2.23606 79774 99789 69640 91736 68731 27623 54406 18359 61152 57242 7089...

$$f: (0, \infty) \to \mathbb{R}, \quad f(x) = \frac{x^2 + 5}{2x}.$$

 $f(\sqrt{5}) = \sqrt{5}, \quad f'(\sqrt{5}) = 0.$

We compute now the iterations of f starting with $x_0 = 2$. We have

$$x_1 = f(2) = \frac{9}{4} = 2.25,$$

 $x_2 = f(9/4) = \frac{161}{72} = 2.236(1),$
 $x_3 = f(161/72) = \frac{51841}{23184} = 2.23606797792....$

The basin of attraction of $\sqrt{5}$ (the proof)

$$f:(0,\infty)\to\mathbb{R},\quad f(x)=\frac{x^2+5}{2x}\quad f'(x)=\frac{x^2-5}{2x^2}$$
.

We prove that: The sequence $x_k = f^k(\eta)$ converges to $\sqrt{5}$ for any $\eta > 0$.

We have that f is decreasing on $(0, \sqrt{5})$ and increasing on $(\sqrt{5}, \infty)$, $\lim_{x \to \infty} f(x) = +\infty$, $f(\sqrt{5}) = \sqrt{5}$, $\lim_{x \to \infty} f(x) = +\infty$.

Then $f(x) \in (\sqrt{5}, \infty)$ for any $x \in (0, \infty)$. This assures that it is sufficient to study the restriction of f to $(\sqrt{5}, \infty)$. On the other hand it can be easily seen that f(x) < x for all $x \in (\sqrt{5}, \infty)$.

Fix $\eta \in (\sqrt{5}, \infty)$. Then the sequence $(f^k(\eta))_{k\geq 0}$ is decreasing and belongs to the interval $(\sqrt{5}, \eta)$. Thus, it is convergent.

As we know, the only possible limit of a sequence of iterates is a fixed point of f. We reach the conclusion by recalling that $\sqrt{5}$ is the only fixed point of f.

4□ ト 4回 ト 4 至 ト 4 至 ト 至 め 9

The Newton-Raphson method

We consider now the map

$$g:(0,\infty)\to\mathbb{R},\quad g(x)=x^2-5.$$

Of course, $g(\sqrt{5}) = 0$, i.e. $\sqrt{5}$ is a zero of g. Using the graph of g, we present a graphical method to find again a sequence that converges to $\sqrt{5}$.

Start with $x_0 = \eta > 0$. For $k \in \mathbb{N}$ do the following.

Find x_{k+1} such that the point $(x_{k+1}, 0)$ belongs to the tangent to the graph of g in the point $(x_k, g(x_k))$.

In order to find the formula generated by this method we write first the equation of the tangent

$$y-g(x_k)=g'(x_k)(x-x_k).$$

Since $(x_{k+1}, 0)$ belongs to it, we have $-g(x_k) = g'(x_k)(x_{k+1} - x_k)$, which gives

$$x_{k+1} = x_k - \frac{g(x_k)}{g'(x_k)}.$$

The Newton-Raphson method

The sequence (x_k) given by

$$x_{k+1} = x_k - \frac{g(x_k)}{g'(x_k)}$$
 (1)

is the sequence of iterates of the function $f(x) = x - \frac{g(x)}{g'(x)}$. Note that for $g(x) = x^2 - 5$ we have $f(x) = x - \frac{x^2 - 5}{2x} = \frac{x^2 + 5}{2x}$. Since we already studied the dynamic of the map f we are convinced that the Newton-Raphson method is very efficient for the map $g(x) = x^2 - 5$. What about for other maps g? We have

Theorem (The Newton-Raphson method)

Let $V \subset \mathbb{R}$ be a nonempty open interval and the C^2 map $g: V \to \mathbb{R}$. Assume that $g'(x) \neq 0$ for any $x \in V$ and there exists $\eta^* \in V$ such that $g(\eta^*) = 0$. Then there exists $\rho > 0$ such that whenever $|x_0 - \eta^*| < \rho$ we have $\lim_{k \to \infty} x_k = \eta^*$, where (x_k) is defined by (1).

Proof of the Newton-Raphson theorem

Using the remark written in the previous slide and the definition of the attracting fixed point, the conclusion is equivalent to the following statement

 η^* is an attracting fixed point of

$$f: V \to \mathbb{R}, \quad f(x) = x - \frac{g(x)}{g'(x)}.$$

In order to prove this, we just have to compute $f(\eta^*)$ and $f'(\eta^*)$.

We have $f(\eta^*) = \eta^* - \frac{g(\eta^*)}{g'(\eta^*)} = \eta^*$. Thus, η^* is a fixed point of f.

Since $f'(x) = 1 - \frac{g'(x)g'(x) - g(x)g''(x)}{[g'(x)]^2}$ for all $x \in V$, we have $f'(\eta^*) = 1 - 1 = 0$ (a very good value, the best one again).

Since $|f'(\eta^*)| < 1$ we deduce that η^* is an attractor for the map f.

Newton fractal

Theorem (The Newton-Raphson method for complex maps)

Let $V \subset \mathbb{C}$ be an open disk and the C^2 map $g: V \to \mathbb{C}$. Assume that $g'(z) \neq 0$ for any $z \in V$ and there exists $\eta^* \in V$ such that $g(\eta^*) = 0$. Then there exists $\rho > 0$ such that whenever $|z_0 - \eta^*| < \rho$ we have $\lim_{k \to \infty} z_k = \eta^*$, where (z_k) is defined by $z_{k+1} = z_k - \frac{g(z_k)}{g'(z_k)}$.

We consider just an example, $g(z)=z^3-1$. We see that g has 3 zeros, the roots of order 3 of the unity: $\eta_1^*=1$, $\eta_2^*=-\frac{1}{2}-i\frac{\sqrt{3}}{2}$, $\eta_3^*=-\frac{1}{2}+i\frac{\sqrt{3}}{2}$.

Check the hypotheses of the theorem: We have $g'(z)=3z^2$ which takes the value 0 just in 0. Thus there are disks $V_1, V_2, V_3 \subset \mathbb{C}$ such that $\eta_1^* \in V_1, \ \eta_2^* \in V_2, \ \eta_3^* \in V_3$ and $g'(z) \neq 0$ for any $z \in V_1 \cup V_2 \cup V_3$.

The theorem assures the convergence of the Newton's method to one of the η^* at least if we start sufficiently close to η^* . Of course, the actual basin of attraction can be larger. So, let us denote the basin of attraction of the Newton's method corresponding to η^* by A_1 , A_2 , A_3 .

Newton fractal for $g(z) = z^3 - 1$

Figure: The basins of attraction A_1 , A_2 , A_3

The boundary of each basin of attraction is a fractal.

Construction of the figure - the algorithm

Let $g: \mathbb{C} \to \mathbb{C}$. Fix a very small constant $\varepsilon > 0$.

- Step 1. Compute g'(z) and $f(z) = z \frac{g(z)}{g'(z)}$.
- Step 2. Compute the roots of g(z).
- Step 3. Pick an initial point and calculate the distance between the point and each of the roots of g. If the distance is less then ε , color the point with the color chosen for the respective root.
- Step 4. If not, iterate f until the distance between the iterate and one of the roots of g is less then ε . Color the original point with the color chosen for the respective root.
- Step 5. Repeat for many points.

You can find information and other pictures on the internet.

For example, here:

https://www.chiark.greenend.org.uk/~sgtatham/newton/

This is a nice video:

https://www.youtube.com/watch?v=-RdOwhmqP5s&t=968s

Chaos in
$$f(x) = 4x(1-x)$$

Start with $x_0 = \eta \in [0,1]$ and let $x_k = f^k(\eta)$ for all $k \ge 1$, i.e. $x_{k+1} = 4x_k(1-x_k)$ for all $k \ge 0$.

A simple formula for x_k . We have

$$x_k = \sin^2(2^k \theta)$$

where $\theta \in \mathbb{R}$ is such that $x_0 = \sin^2 \theta$.

Proof of the formula.

$$x_{k+1} = \sin^2(2 \cdot 2^k \theta) = 4\sin^2(2^k \theta)\cos^2(2^k \theta) = 4x_k(1 - x_k).$$

Chaos in
$$f(x) = 4x(1-x)$$

For example, when $x_0 = 0.67$ we take $\theta = \arcsin(\sqrt{0.67})$, thus

$$x_{40} = \sin^2\left(2^{40}\arcsin\left(\sqrt{0.67}\right)\right).$$

This is a representation of the exact value. As we have seen in the lab, this is computationally challenging! Let us look at the sequence (x_k) using the cobweb diagram here

https://www.geogebra.org/m/gHYqKMSJ

Main features of this dynamic:

- 1) There are *p*-cycles for any $p \ge 1$.
- 2) The butterfly effect.
- 3) A dense orbit.

Cycles of any period

The fixed points: 0 and 0.75 (found by solving x = 4x(1-x)).

Recall that $x_k = \sin^2(2^k \theta)$ and that $\sin(x + \pi) = -\sin(x)$.

First let us find a cycle of period 3, i.e. we look for a value x_0 such that $x_3=x_0, \ x_2\neq x_0$ and $x_1\neq x_0$. In other words, we look for a value θ such that $0<\theta<2\theta<4\theta<8\theta=\theta+\pi$. Then $\theta=\frac{\pi}{7}$. It is clear that $x_k=\sin^2\left(2^k\frac{\pi}{7}\right)$ is a cycle of period 3.

There is an article by Li and Yorke published in 1975 called *Period three implies chaos*. One of the theorems proved in it assures that, for any map, if there exists a cycle of period 3, then there exists a cycle of any period. Anyway, for our particular example we can also prove this like we proved for period three.

Indeed, for an arbitrary $p \ge 2$ take $\theta = \frac{\pi}{2^p - 1}$ (found such that $2^p \theta = \theta + \pi$). Then $x_k = \sin^2\left(2^k \frac{\pi}{2^p - 1}\right)$ is a cycle of period p.

The butterfly effect

Given $\eta \in [0,1]$ and $\delta > 0$, there exist $K \geq 1$ and $\tilde{\eta} \in [0,1]$ such that $|\eta - \tilde{\eta}| < \delta$ and $|f^K(\eta) - f^K(\tilde{\eta})| \geq \frac{1}{2}$.

Proof. Write $\eta = \sin^2(\theta)$. Recall that $x_k = f^k(\eta) = \sin^2(2^k\theta)$.

Take $K \geq 1$ such that $\frac{\pi}{2^K} < \delta$.

Take $\zeta \in [0.\pi]$ such that

$$|\sin^2(2^k\theta) - \sin^2(2^k\theta + \zeta)| \ge \frac{1}{2}.$$
 (2)

Now take $\tilde{\eta} = \sin^2(\theta + \frac{\zeta}{2^K})$. Then, using that

$$|\sin^2(\theta_1) - \sin^2(\theta_2)| \le |\theta_1 - \theta_2|,$$

(which can be proved using the mean value theorem and $(\sin^2\theta)' = \sin 2\theta$), we obtain $|\eta - \tilde{\eta}| = |\sin^2(\theta) - \sin^2(\theta + \frac{\zeta}{2^K})| \le |\frac{\zeta}{2^K}| \le \frac{\pi}{2^K} < \delta$.

Also, from (2) we have
$$|f^K(\eta) - f^K(\tilde{\eta})| \ge \frac{1}{2}$$
. \square

A dense orbit

There exists $\eta \in [0,1]$ such that $\{f^k(\eta) : k \geq 0\}$ is dense in [0,1].

This means that for each $x \in [0,1]$ there exists a sub-sequence of $(f^k(\eta))$ which converges to x. Equivalently, for each $x \in [0,1]$ there exists $K \ge 1$ such that $f^K(\eta)$ is arbitrarily close to x. In other words, each $x \in [0,1]$ is as close as we want to a term of the sequence $(f^k(\eta))$.

[1] R. L. Devaney, An Introduction to Chaotic Dynamical Systems, 2nd ed. Reading, MA: Addison-Wesley, 1989.

A map with the three properties

- 1) There are p-cycles for any $p \ge 1$.
- 2) The butterfly effect.
- 3) A dense orbit. is said to be chaotic (see [1]).

The pendulum equation

A nice video:

 $https://www.youtube.com/watch?v=p_di4Zn4wz4\&t=916s$