Word Embeddings and A Very Simple Word Embedding Based Model

June 22, 2019

Block 3, Lecture 2 Applied Data Science MMCi Term 4, 2019

Matthew Engelhard

MOTIVATING WORD EMBEDDINGS

Problem: our model counts words, but has no understanding of their meaning

Goal: predict sentiment (positive/negative

Problem: our model counts words, but has no understanding of their meaning

Goal: predict sentiment (positive/negative)

To effectively predict sentiment, it would be helpful to understand which words have similar meaning

am sad am miserable l am sorrowful am upset am down training set am content I am joyful am merry am satisfied I am euphoric am depressed I am unhappy test set am happy am gleeful

logistic regression: positive / negative sentiment

I passed out and Mom said I was shaking

We'd like a representation of words that places similar words close together

- euphoric
 - joyful
- satisfied
 - content
- gleefulhappy
 - merry
 - ecstatic

- unhappy
- miserable
- upset
- melancholydown
 - sad depressed
 - sorrowful

We'd like a representation of words that places similar words close together

- euphoric
 - joyful
- satisfied
 - content
- gleefulhappy
 - merry
 - ecstatic

- unhappy
- miserable
- upset
- melancholydown
 - sad depressed
 - sorrowful

positive value of this coordinate = negative sentiment

We'd like a representation of words that places similar words close together

positive sentiment

- euphoric joyful
- satisfied
 - content
- happy gleeful
 - merry
 - ecstatic

- unhappy
- miserable
- upset
- down melancholy
 - depressed
 - sorrowful

positive value of this coordinate = negative sentiment

Word Embeddings: Map Each Word in Vocabulary to a Point in Space

 The closer words are in the mapping, the more related (or synonymous) they are

Question: how might we learn this mapping?

	lawyer 1	attorney 2	penguin 3	apple 4	•	•	•	V
longitude	78.8986	79.0558	135.0000	74.0060				
latitude	35.9940	35.9132	82.8628	40.7128				
Ĺ								

vocabulary words

Example Word Geography

Here we show the learned geography of many different vocabulary words

(limited to 2 dimensions)

Too many words here to see! Let's zoom in on a smaller section.

Example Word Geography

If we zoom in on a small region of our word map, it's all related words.

Note the similarity of all the words as a whole, but also of the individual neighbors.

"Lawyer" and "attorney" are nearly identical in space!

police

Learn Geographical Relationships

The relationship between words can be maintained, we can do mathematical operations on these word vectors.

Add the same vector distance between man and woman will convert uncle to aunt and king to queen.

Plural relationships are also maintained.

Word to Vector (Word2Vec)

- Map each word to a point in space
- We will use >2D space to allow us to capture many different "dimensions" of meaning
- Do this by creating a <u>lookup table</u> for each word in our *vocabulary* (i.e. all the words we know). In code, the lookup table is implemented as a <u>dictionary</u>.

	lawyer 1	attorney 2	penguin 3	apple 4	•	•	•	V
longitude	78.8986	79.0558	135.0000	74.0060				
latitude	35.9940	35.9132	82.8628	40.7128				
Ĭ								

vocabulary words

Word to Vector (Word2Vec)

- Enter the word into the dictionary
- Receive a vector, or "embedding" for that word

What happens when we apply this to a sentence?

- Look up words individually to obtain their vectors
- Construct a sequence of vectors

KEY IDEA: words are *defined* by the <u>context</u> in which they appear

A man strolls down the street

A woman strolls down the street

A child strolls down the street

A crocodile strolls down the street

A banana strolls down the street

A concept strolls down the street

KEY IDEA: words are defined by the context in which they appear

-> if words are always exchangeable, they must have very similar meaning

learn word meaning like an adult: explicit definitions

https://www.parenting.com/activities/baby/teach-baby-to-talk/

learn word meaning like an child: implicit definitions from context

LEARNING WORD EMBEDDINGS

Predict Context Words from Input Words

```
{input word, context word}
{strolls, man}
{strolls, woman}
{swims, crocodile}
{swims, fish}
{flies, bird}
{flies, plane}
```

We define a <u>context word</u> as one that appears inside a fixed-length window around the input word in our training corpus.

(e.g. Wikipedia)

A man strolls down the street.

input context

Recall: Multi-Class Logistic Regression

$$p_{ij} = \frac{e^{z_{ij}}}{\sum_{c=1}^{C} e^{z_{ic}}}$$

Recall: Multi-Class Logistic Regression

Recall: Multi-Class Logistic Regression

We want: word vectors that allow us to predict their likely context

But again, how do we *learn* these vectors?

Let's take a step back: we'll focus on understanding how we can predict context words based on input words

Predicting context words based on input words

Input words and context words are one-hot encoded (similar to bag of words representation)

Predicting context words based on input words

Training Data:

HUGE number of pairs of the following form:

{input word, context word}

e.g. from Wikipedia

Examples:

{strolls, man}
{strolls, woman}
{swims, crocodile}
{swims, fish}
{flies, bird}
{flies, plane}

Predicting context words based on input words

Training Data:

HUGE number of pairs of the following form:

{input word, context word}

e.g. from Wikipedia

Examples:

{strolls, man}
{strolls, woman}
{swims, crocodile}
{swims, fish}
{flies, bird}
{flies, plane}

What's the simplest model we can possibly use?

First idea:

Directly connect our input to the log-odds layer

What's the simplest model we can possibly use?

First idea:

Direct connectur input to the codd ayer

How man inections?

 $V \times V$

Where is oul vocabulary size (approx. 6 billion)

What's the next simplest?

How about a single hidden layer?

How many connections?

 $V \times H \times 2$

Where *V* is our vocabulary size (approx. 6 billion)

And H is our hidden layer size ($\ll V$)

OK, let's try it: use a single hidden layer

Use mini-batches of training examples; minimize cross-entropy loss

Learn our parameters: Weight Matrices W and B

Isn't **this** the vector we were looking for?

Let's take a closer look at W

Let's take a closer look at W

Let's take a closer look at W

We now have a distributed representation of word *meaning* based on *context*

Important Takeaways:

- We are learning a vector representation for each word based on the contexts in which it appears
- training data: large number of pairs of nearby words from a large corpus
- These vectors give us much more flexibility when modeling: makes text sequences like other sequences

A VERY SIMPLE WORD EMBEDDING-BASED MODEL

VSWEM Step 1: Convert sentence to vectors

- Look up words individually to obtain their vectors
- Construct a <u>sequence</u> of vectors

VSWEM Step 1: Convert sentence to vectors

Bag of Words and VSWEM for medical abstract classification

COMPUTATIONAL EXERCISE 3

