TD Théorie des Langages 1 — Feuille 1 Induction structurelle, Notions de langage

Exercice 1 Soit V un vocabulaire et soit un sous-ensemble $A \subseteq V$. Dans cet exercice on considérera la fonction $|.|_A:V^*\to\mathbb{N}$ qui à tout mot $w\in V^*$ associe le nombre d'occurrences d'éléments de A présents dans w. Ainsi, si $V=\{a,b,c,d\}$ et $A=\{a,b\}$, alors :

- $|cabdbacc|_A = 4,$
- $|bbaba|_A = 5,$
- $|ccdc|_A = 0.$

On pose $V = \{ \land, \lor, \neg,), (, \bot, \top \}$, et on considère l'ensemble E défini par induction structurelle de la façon suivante :

Base. $\top \in E$ et $\bot \in E$.

Induction. Si w, w_1 et w_2 sont dans E, alors :

- $-(\neg w) \in E$,
- $-(w_1 \wedge w_2) \in E,$
- $-(w_1 \vee w_2) \in E.$

 \triangleright QUESTION 1 Est-ce que les deux mots suivants sont dans E ? On justifiera en quelques mots les réponses.

- 1. $(\top \land \neg)$
- 2. $(\top \wedge \top \wedge \top)$

 \triangleright QUESTION 2 Montrer que $((\top \land \top) \lor (\bot \lor \top)) \in E$.

On définit les ensembles de symboles suivants :

$$U = \{\neg\},$$

$$B = \{\land, \lor\},$$

$$S = \{\top, \bot\},$$

$$N = U \cup B \cup S.$$

- $\triangleright \text{ QUESTION 3 Soit } w_1 = (\top \wedge ((\neg \bot) \vee (\top \wedge (\bot \vee (\neg \top))))). \text{ Calculer } |w_1|_U, |w_1|_B \text{ et } |w_1|_S.$
- \triangleright QUESTION 4 Démontrer par induction structurelle que pour tout $w \in E$, on a $|w|_N = 2|w|_B + |w|_U + 1$.
- \triangleright QUESTION 5 [Avancé] Soit $w \in E$. Exprimer |w| en fonction de $|w|_B$ et $|w|_U$.
- ▷ QUESTION 6 [Avancé] Utiliser la question 5 pour justifier formellement les réponses à la question 1.

Solution de l'Exercice 1.

 \triangleright QUESTION 1 Le symbole \neg ne peut apparaître qu'après '(' et il manque des parenthèses pour le deuxième mot (pour chaque \land il doit y avoir un '(').

- \triangleright QUESTION 2 Pour montrer qu'un terme appartient à un ensemble défini par induction, il faut le construire en utilisant les constructeurs et les case de base. Notons $u = (\top \land \top)$ et $v = (\bot \lor \top)$. On a $u \in E$ par application du deuxième constructeur inductif à deux fois le premier cas de base. De même, $v \in E$ par application du troisième constructeur inductif au deuxième et premier cas de base. Au final, le mot $((\top \land \top) \lor (\bot \lor \top))$ appartient à E par application du troisième constructeur inductif à u et v.
- ▷ QUESTION 3 On a $|w_1|_U = 2$, $|w_1|_B = 4$ et $|w_1|_S = 5$.
- \triangleright QUESTION 4 **Rappel :** Pour faire une démonstration par induction structurelle d'une propriété P sur un ensemble E défini inductivement, on doit démontrer P pour les cas de base et démontrer que pour chaque constructeur inductif κ , si on suppose P pour tous les arguments u_1, \ldots, u_k de κ (d'arité k), alors on peut démontrer P sur le mot $\kappa(u_1, \ldots, u_k)$.

Ici, on a deux cas de base et trois constructeurs inductifs, donc cinq cas à considérer.

Montrons la propriété 1 $P[w]=|w|_N=2|w|_B+|w|_U+1$ par induction structrelle sur E.

- Pour \top : $|\top|_N = 1 = 2 * 0 + 0 + 1 = 2|\top|_B + |\top|_U + 1$.
- Pour \perp : $|\perp|_N = 1 = 2 * 0 + 0 + 1 = 2|\perp|_B + |\perp|_U + 1$.
- Pour $(\neg u)$: Soient u dans E et supposons P[u]. On a

$$|(\neg u)|_{N} = 1 + |u|_{N}$$

$$\stackrel{HI}{=} 1 + (2|u|_{B} + |u|_{N} + 1)$$

$$= 2|u|_{B} + +(|u|_{U} + 1) + 1$$

$$= 2|(\neg u)|_{B} + |(\neg u)|_{U} + 1$$

Ainsi, on a montré $P[(\neg u)]$.

— Pour $(u \wedge v)$: Soient u, v dans E et supposons P[u] et P[v]. On a

$$\begin{split} |(u \wedge v)|_N &= 1 + |u|_N + |v|_N \\ &\stackrel{HI}{=} 1 + (2|u|_B + |u|_N + 1) + (2|v|_B + |v|_N + 1) \\ &= (2|u|_B + 2|v|_B + 2) + (|u|_U + |v|_U) + 1 \\ &= 2|(u \wedge v)|_B + |(u \wedge v)|_U + 1 \end{split}$$

Ainsi, on a montré $P[(u \wedge v)]$.

— Pour $(u \vee v)$: Soient u, v dans E et supposons P[u] et P[v]. On a

$$\begin{split} |(u \vee v)|_N &= 1 + |u|_N + |v|_N \\ &\stackrel{HI}{=} 1 + (2|u|_B + |u|_N + 1) + (2|v|_B + |v|_N + 1) \\ &= (2|u|_B + 2|v|_B + 2) + (|u|_U + |v|_U) + 1 \\ &= 2|(u \vee v)|_B + |(u \vee v)|_U + 1 \end{split}$$

Ainsi, on a montré $P[(u \vee v)]$.

- \triangleright QUESTION 5 On a $|w|=4|w|_B+3|w|_U+1.$ En effet, $|w|=|w|_N+|w|_{\{\},(\}}=(2|w|_B+|w|_U+1)+(2|w|_B+2|w|_U).$
- \triangleright QUESTION 6 L'égalité de la question précédente n'est pas vérifiée pour les mots de la question 1, ils ne font donc pas partie de E.

^{1.} J'utilise les crochets $[\]$ car les parenthèses font partie du vocabulaire V.

Exercice 2 Définir la fonction $|.|_A$ de l'exercice 1 par induction structurelle sur V^* .

Solution de l'Exercice 2.

Base : $|\varepsilon|_A = 0$.

Induction : Pour tout mot w et tout symbole x,

$$|xw|_A = \begin{cases} 1 + |w|_A & \text{si } x \in A \\ |w|_A & \text{sinon} \end{cases}$$

Exercice 3 Définitions inductives d'ensembles.

- $\,\vartriangleright\,$ QUESTION 1 Donner des définitions inductives des langages suivants :
 - 1. L'ensemble L_1 des mots sur $\{a,b\}$ de longueur paire.
 - 2. L'ensemble L_2 des mots sur $\{a,b\}$ ne contenant pas deux a consécutifs.
 - 3. L'ensemble L_3 des palindromes sur $\{a, b\}$.
 - 4. [Avancé] L'ensemble L_4 des mots sur $\{a,b\}$ contenant un nombre pair de a.
 - 5. [Avancé] L'ensemble L_5 des mots sur $\{a,b\}$ contenant autant de a que de b.
- ▷ QUESTION 2 [Avancé] Prouver que ces définitions inductives sont correctes.

Solution de l'Exercice 3.

- ▶ Question 1
 - 1. Soit M_1 l'ensemble défini par induction de la façon suivante :

Base : $\varepsilon \in M_1$.

Induction : si $w \in M_1$, alors aaw, abw, baw et bbw sont également dans M_1 .

Remarque : Pour les cas inductifs, on aurait pu choisir de placer les deux lettres derrière w (waa, wab, wba, wbb) voire une de chaque côté (awa, awb, bwa, bwb).

2. Soit M_2 l'ensemble défini par induction de la façon suivante :

Base: $\{\varepsilon, a\} \subseteq M_2$.

Induction : si $w \in M_2$, alors bw et abw sont également dans M_2 .

Remarque: Idem, on aurait pu prendre wb, wba pour les cas inductifs.

3. Soit M_3 l'ensemble défini par induction de la façon suivante :

Base: $\{\varepsilon, a, b\} \in M_3$.

Induction: si $w \in M_3$, alors awa et bwb sont également dans M_3 .

4. Soit M_4 l'ensemble défini par induction de la façon suivante :

Base : $\varepsilon \in M_4$.

Induction: si $w \in M_4$, alors bw, wb et awa sont également dans M_4 .

5. Soit M_5 l'ensemble défini par induction de la façon suivante :

Base : $\varepsilon \in M_5$.

Induction : si w_1 et w_2 sont des éléments de M_5 , alors aw_1b , bw_1a et w_1w_2 sont également dans M_5 .

Variante (celle présentée en cours) : si w_1 et w_2 sont de éléments de M_5 , alors aw_1bw_2 et bw_1aw_2 sont dans M_5

- \triangleright QUESTION 2 Les preuves que les M_i sont inclus dans les L_i se font par induction structurelle. Nous détaillons la preuve pour i=1, il s'agit donc de prouver que $M_1 \subseteq L_1$ par induction structurelle.
 - On montre tout d'abord que la propriété est vérifiée pour tous les cas de base. On a $|\varepsilon| = 0$, donc $\varepsilon \in L_1$.
 - On montre ensuite que la propriété est préservée par les règles de construction. Soit $w \in M_1$, et supposons que $w \in L_1$. Alors |aaw| = |w| + 2 est pair, donc aaw est bien élément de L_1 . On prouve de la même manière que abw, baw et bbw sont dans L_1 .

Les preuves que les définitions inductives engendrent bien tous les mots des langages correspondants se feront par récurrence bien fondée sur la longueur des mots.

1. Prouvons que $L_1 \subseteq M_1$. Soit $w \in L_1$ de longueur n, et supposons que pour tout $w' \in L_1$, si |w'| < n, alors $w' \in M_1$.

Si n=0, alors $w=\varepsilon$ et il est clair que $w\in M_1$. Il est également clair que si $w\in L_1$, alors on ne peut pas avoir n=1. On suppose maintenant que w=uvw', où u,v sont des lettres dans $\{a,b\}$. Sans perte de généralité, on peut supposer que u=a et v=b, les autres cas sont similaires. Comme $w'\in L_1$ est nécessairement de longueur paire et que |w'|=|w|-2<|w|, par hypothèse d'induction, $w'\in M_1$. Donc, le mot abw' est également dans M_1 d'après les règles de construction de M_1 , ce qui prouve que $w\in M_1$.

On en déduit que $L_1 \subseteq M_1$.

- 2. Prouvons que $L_2 \subseteq M_2$. Soit $w \in L_2$ de longueur n, et supposons que pour tout $w' \in L_2$, si |w'| < n, alors $w' \in M_2$.
 - Si $n \in \{0,1\}$, alors $w \in \{\varepsilon, a, b\}$, et il est aisé de vérifier que $w \in M_2$. Supposons maintenant n > 1 et distinguons deux cas.
 - Si w = bw', alors w' ne peut pas contenir deux a consécutifs et est donc élément de L_2 . Comme |w'| = n 1, on en déduit que $w' \in M_2$, puis que $bw' \in M_2$.
 - Sinon w = aw', et nécessairement w' = bw'' car n > 1 par hypothèse. Donc w = abw'' et w'' ne peut pas contenir deux a consécutifs. Donc $w'' \in M_2$, et $abw'' \in M_2$.
- 3. Prouvons que $L_3 \subseteq M_3$. Soit $w \in L_3$ de longueur n, et supposons que pour tout $w' \in L_3$, si |w'| < n, alors $w' \in M_3$.

Si $n \in \{0, 1\}$, alors il est aisé de vérifier que $w \in M_3$.

Supposons maintenant que la première lettre de w soit un a, le cas où cette première lettre est un b est similaire. Alors comme w est un palindrôme, sa dernière lettre est également un a, donc w est de la forme aw'a. Comme w' est nécessairement un palindrôme, de longueur strictement inférieure à n, on a $w' \in M_3$, et donc, $aw'a \in M_3$.

- 4. Prouvons que $L_4 \subseteq M_4$. Soit $w \in L_4$ de longueur n, et supposons que pour tout $w' \in L_4$, si |w'| < n, alors $w' \in M_4$.
 - Il est clair que si $w = \varepsilon$, alors $w \in M_4$.
 - Si w = bw', alors w' doit contenir un nombre pair de a, donc par hypothèse d'induction $w' \in M_4$ et on en déduit que $bw' \in M_4$.
 - Si w = w'b, alors le même raisonnement que précédemment prouve que $w'b \in M_4$.
 - Supposons maintenant que w = aw'a. Alors une fois encore, w' doit contenir un nombre pair de a et est bien élément de M_4 ; on en déduit que $aw'a \in M_4$.
- 5. Prouvons que $L_5 \subseteq M_5$. Soit $w \in L_5$ de longueur n, et supposons que pour tout $w' \in L_5$, si |w'| < n, alors $w' \in M_5$.

Pour la première version : il est clair que si $w = \varepsilon$, alors $w \in M_5$. Supposons maintenant que la première lettre de w est a, la preuve dans le cas où la première lettre est b est similaire.

- Si w est de la forme aw_1b , alors nécessairement, w_1 contient autant de a que de b. Ce mot étant de longueur n-2, on en déduit que $w_1 \in M_5$, et qu'on a bien $aw_1b \in M_5$.
- Supposons que w est de la forme aw_1a , et considérons l'ensemble

$$A \stackrel{\text{def}}{=} \{w' \mid w' \text{ est un préfixe strict de } w \text{ et } |w'|_a \leq |w'_b| \}.$$

L'ensemble A est non-vide car aw_1 en est un élément. Prenons l'élément de A de longueur minimale ; cet élément est de la forme aw_2 , où $w_2 \in \{a,b\}^*$, et w est de la forme aw_2w_3a . Comme aw_2 est de longueur minimale dans A, on en déduit que $|aw_2|_a = |aw_2|_b$ (sinon en enlevant sa dernière lettre, on obtient toujours un élément de A). Nécessairement, on a aussi $|w_3a|_a = |w_3a|_b$, puisque $|w|_a = |w|_b$. Ceci signifie que aw_2 et w_3a sont tous deux éléments de L_5 , et comme $|aw_2| < |w|$ et $|w_3a| < |w|$, ces mots sont également éléments de M_5 . Par la suite, aw_2w_3a est nécessairement dans M_5 d'après la dernière règle de construction de M_5 .

Pour la variante (preuve non présentée en cours) : si |w| = 0, alors $w = \varepsilon \in M_5$. Pour |w| > 0, supposons w = aw' (le cas w = bw' est identique, en remplaçant tous les a par b). Soit x le plus court des préfixes y de w' tels que $|y|_b > |y|_a$ (forcément $x \neq \varepsilon$). Noter que x existe car $|w'|_b > |w'|_a$. On a donc $w = axw_2$. x ne peut pas terminer par a, sinon x = za et $|z|_b > |z|_a$. avec z plus court que x. Donc x termine par $b: x = w_1b$. Maintenant, $|x|_b = |x|_a + 1$ car sinon $|w_1|_b > |w_1|_a$, avec w_1 plus court que x. On en déduit $|w_1|_b = |w_1|_a$, donc $w_1 \in L_5$, et donc aussi $w_2 \in L_5$. On a donc $w = aw_1bw_2$. L'HI nous dit que w_1 et w_2 sont dans M_5 , donc par induction w aussi.