딥러닝 시작하기 (CNN 입문)

목차

- ▶ 01 기본 이해
- ▶ 02 초기 신경망 완전 연결층(FCL)의 한계
- ▶ 03 합성곱 신경망(CNN)
- ▶ 04 합성곱 신경망(CNN) 특징맵 생성과정
- ▶ 05 합성곱 신경망 스트라이드(stride)
- ▶ 06 완전 연결층(FCL)과 합성곱 층의 연산의 차이
- ▶ 07 합성곱 신경망
- ▶ 08 풀링 연산(Pooling)

- ▶ CNN이란 무엇일까요?
- Convolutional Neural Network의 약자
- **인공 신경망**의 한 종류
- CNN은 주로 **이미지 인식, 물체 탐지, 음성 인식** 등의 작업에 활용된다.
- CNN의 핵심 아이디어는 입력 데이터에서 **지역적 연관성(local connectivity)와** 공간 계층 구조(spatial hierarchy)를 잘 포착하는 것이다.

▶ CNN이란 무엇일까요?

- CNN은 입력 데이터에 대해 필터(filter)연산을 수행하여 특징을 추출한다. 이 과정에서 합성곱(convolution)연산이 사용된다.
- 추출된 특징 맵(feature map)은 다음 층으로 전달되어 더 높은 수준의 특징을 학습하게 된다.
- CNN은 이미지나 음성 인식 외에도 **자연어 처리, 신호 처리 등의 다양한 분야에서 활용**되고 있음.

01 기본 이해 CNN

- LeCun에 의해 처음 소개됨
 - (1) https://dl.acm.org/doi/10.1162/neco.1989.1.4.541

▶ CNN이 활용되는 모델

- ResNet(Residual Network): 2015년 MS 개발. 이미지 분류(ResNeXt)
- Inception(GoogleNet) : 구글에서 개발된 모델.
- DenseNet(Dense Convolutional Network)
- U-Net : 생물의학 영상 분할(segmentation) 문제를 해결하기 위해 개발한 CNN 기반 모델. 인코더-디코더 구조를 가진다.

▶ CNN이 활용되는 모델

- YOLO(You Only Look Once): 실시간 물체 탐지를 위한 단일 신경망 모델. 많이
 사용됨
- Mask R-CNN : 물체 탐지 뿐만 아닌 인스턴스 분할(instance segmentation)도 수행
- U-Net : 생물의학 영상 분할(segmentation) 문제를 해결하기 위해 개발한 CNN 기반 모델. 인코더-디코더 구조를 가진다.

01 기본 이해 - 용어

▶ 채널, Channel

- 이미지 픽셀 하나하나는 실수, 컬러 사진은 천연색을 표현하기 위해 각 픽셀을 RGB 3개의 실수로 표현한 3차원 데이터. 컬러 이미지는 3개의 채널로 구성.

▶ 필터(Filter)

- 필터는 이미지의 특징을 찾아내기 위한 공용 파라미터. Filter를 Kernel이라고도 한다.
- CNN에서 학습의 대상은 필터 파라미터가 된다.

- ▶ 스트라이드, stride
- 필터를 적용하는 간격의 크기 stride라 함.

- ▶ 특징맵(feature map, activation map)
- 필터를 적용해서 얻어진 결과를 말함.

02 초기의 신경망 완전 연결층(FCL)의 한계

▶ Fully Connected Layer 만으로 구성된 **인공 신경망의 입력 데이터는 1차원 형태**로 한정.

- ▶ 3차원 사진 데이터를 1차원으로 평면화 시켜야 한다. **이때 공간 정보 손실 발생**.
 - 한 장의 사진은 3차원 데이터, 배치 모드 사용되는 여러장 사진은 4차원 데이터
- ▶ Fully Connected Layer 파라미터 수가 많음.

- ▶ LeCun에 의해 처음 소개됨
 - (1) https://dl.acm.org/doi/10.1162/neco.1989.1.4.541

- ▶ 이미지를 인식하기 위한 패턴을 찾는데 특히 유용
 - => 이미지의 공간 정보를 유지한 상태로 학습이 가능한 모델(CNN)

03 CNN - 활용 분야

Classification

(A) 이미지 안의 객체(Object)의 종류를 구분하는 행위.

Localization

(A) 모델이 주어진 이미지 안의 Object가 이미지 안의 어느 위치에 있는지 위치 정보를 출력.

▶ Object Detection

(A) 보편적으로 Classification과 Localization이 동시에 수행되는 것을 의미.

Object segmentation

- (A) Object detection을 통해 검출된 object 형성을 따라 object의 영역을 표시.
- (B) 이미지의 각 pixel을 classification해서 결과를 도출. 전경과 배경을 구분하는 용도

▶ 어느 분야에 사용되는가? Object Detection

80개의 공통 객체를 탐지할 수 있는 YOLOv3 모델. 딥 뉴럴 네트워크로 감지된 물체

▶ 어느 분야에 사용되는가? Segmentation

► Image Segmentation

(A) 이미지의 영역을 분할하는 것.

▶ 장점

- 이미지의 공간 정보 유지
- 필터를 공유 파라미터로 사용하여, 일반 인공 신경망과 비교하여 **학습** 파라미터가 작다.

04 합성곱 신경망- 특징맵(feature map) 생성과정

- ▶ 원도우가 이미지 위를 이동하며 특징 맵을 만들어 낸다.
- ▶ 컨볼루션 층에서는 필터와 이미지 합성곱으로 특징맵을 만든다.
- ▶ 플링 층에서는 정해진 조건을 만족하는 값을 생성해 낸다.

05 합성곱 신경망 - 스트라이드(stride)

필터 가중치는 공유

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

8 19 12 14 18 20 22 24 28 30 32 34

20 2440 44

2 x 2

FCL

파라미터

1 0 1 1 8 19 12 14 18 20 22 24 28 30 32 34 38 40 42 44

38 40 42 44

풀링

20 2440 44

1 0 0 0 8 19 12 14 18 20 22 24 28 30 32 34 38 40 42 44 20 2440 44

05 합성곱 신경망 - 스트라이드(stride)

▶ 이것들이 반복적으로 이루어져 하나의 필터가 하나의 특성맵을 만들어냅니다.

▶ 이때 원도우가 슬라이딩하는 이동의 크기를 **스트라이 드**라고 합니다.

▶ 스트라이드는 기본적으로 1입니다. 만약 2를 사용하면 특성 맵의 높이와 너비가 2의 배수로 **다운샘플링 된 것을 의미**합니다.

05 합성곱 신경망 연산

- ▶ 컨볼루션 계층
- ▶ 필터는 채널 수 만큼의 깊이를 갖는다.
- ▶ 각 채널의 가중치는 채널마다 다르다.

http://taewan.kim/post/cnn/ 그림 참조

06 완전연결층(FCL)과 합성곱 연산층의 차이

▶ 완전 연결층(FCL)과 합성곱층 사이의 차이는 다음과 같습니다.

- (1) 완전 연결층의 Dense 층은 입력 특성 공간에 있는 모든 픽셀에 대한 패턴학습
- (2) 합성곱층은 지역 패턴을 학습.

07 합성곱 신경망

- ▶ 합성곱 연산은 핵심적인 2개의 파라미터로 정의
 - (1) 입력으로부터 하나의 합성곱 연산을 할 필터: 3x3, 5x5
 - (2) 합성곱으로 계산할 **필터의 수**

▶ 합성곱 연산은 필터의 수만큼 특성 맵을 만들어냅니다.

08 풀링(Pooling) 연산

입력 특성 맵에서 원도우에서 조건에 맞는 하나의 값을 추출한다.

(1) 최대 풀링 연산(Max Pooling)

해당 원도우에서 가장 최대의 값을 추출한다. 2x2라면 해당 영역안에서 가장 높은 값을 취한다.

(2) 평균 풀링 연산(Average Pooling)

해당 원도우에서 평균값을 추출한다.

(3) 최소 플링 연산(Min Pooling)

해당 원도우에서 가장 최소의 값을 추출한다. 2x2라면 해당 영역안에서 가장 낮은 값을 취한다.

08 풀링(Pooling) 연산

▶ 컴퓨터 비전, 이미지 인식 분야에서는 주로 Max-Pooling을 사용한다.