CS305 Computer Architecture

Cache Performance Analysis

Bhaskaran Raman Room 406, KR Building Department of CSE, IIT Bombay

http://www.cse.iitb.ac.in/~br

Outline

- The three kinds of cache misses
- Performance implications of block size
- Joint I+D cache vs separate I, D caches
- Performance implications of associativity
- Design of cache $\leftarrow \rightarrow$ main memory interface
- Multi-level caches

The Three Kinds of Cache Misses

Compulsory

The miss caused the first time a block is accessed Since the cache starts "cold", "empty"...

Conflict

A miss caused due to insufficient set size Cannot happen in a fully associative cache (by defn.)

Capacity

A miss caused due to insufficient cache size All misses after compulsory misses, in fully assoc. caches

Effect of Increase in Block Size

- (+) Increased spatial locality
- → Lesser compulsory misses
- (-) More conflict misses: for same cache size
- (–) Higher miss penalty

Miss Rate vs Block Size

Increased Block Size: Techniques to Reduce Miss Penalty

- Early restart
 - Processor can proceed as soon as required word is in cache
- Critical word first
 - Get the word required by the processor first, then the rest of the block
- Implications: increased complexity in cache controller and/or memory system

Joint I+D Cache or Separate I, D Caches

Joint I+D Cache

- (+) Better hit rate
- (–) Lower instructionthroughput (pipeline stalls)

Separate I, D Caches

- (–) Slightly lower hit rate
- (+) Better instruction throughput

Performance Implications of Associativity

- (+) Reduced conflict misses
- (-) Increased hit time!

miss

9 Locatina

Note: decreasing benefits of higher associativity.

Reason: only a certain number of conflict misses to remove

Design of Cache-to-Main-Memory Interface

What Happens on a Cache Miss?

Miss penalty: time to load a block from main memory to cache

- a) Send address to memory
- b) DRAM access initiation latency
- c) Read 1 word of data from memory to cache
- → Say 1 cycle
- → Say 15 cycles
- → Say 1 cycle

Miss penalty for 4-word block = $4 \times (1+15+1) = 68$ cycles

Reducing Miss Penalty: Wide Memory

Reducing Miss Penalty: Interleaved Memory

Multi-Level Caches

Reducing Miss Penalty: Multi-Level Caches

L1 thinks L2 to be main memory, L2 thinks L1 is processor Miss in L1 → see in L2, Miss in L2 → see in main memory

Reducing Miss Penalty: Multi-Level Caches

Optimize for hit-time: (miss penalty low anyway) Smaller size, smaller blocks Direct mapped or low associativity Optimize for miss-rate:
(hit time does not matter anyway)
Larger size, larger blocks
2, 4, or 8-way associative

L2 Miss Rate: Local vs Global

L2 local miss rate: with respect to L2 accesses

L2 **global** miss rate: with respect to memory references by processor

Summary

- The three C's: compulsory, conflict, capacity
- Performance implications of design options: block size, separate vs unified, associativity
- Interleaved memory
- Multi-level caches
- Next: program performance in presence of caches