Reconocimiento de emociones en señales de voz

Alumnos: Leonardo Arato

Nahuel Boutet

Tutor: Dr. H. Leonardo Rufiner

Motivaciones

- Humano-Máquina
- Reconocimiento de llamadas de emergencia.
- Call Centers.
- Detección de enfermedades psicológicas

Base de datos

Tratamiento de señales

- Ventana de Hamming
- Fonemas Sonoros
- Energía
- Frecuencia Fundamental
- Frecuencias Formantes

Tratamiento de señales

Energías

Frecuencia Fundamental

• Auto-Correlación.

Frecuencias Formantes

- LPC.
- Respuesta en Frecuencia del sistema.

Vector Característico

Conjunto de vectores característicos por emoción

Distancia Euclídea

Vc=	σ^2 Energía	Energía	σ²Fo	Fo	F1	F2	F3
p=	0.0953	0.0938	17.3258	152.5	488.9	996.4	2156
q=	0.0469	0.0493	18.27	156.8	487.4	1050.6	2300.2
p-q=	0.0484	0.0445	-0.9442	-4.3	1.5	-54.2	-144.2

$$d_E(P,Q) = \sqrt{(p_1 - q_1)^2 + (p_2 - q_2)^2 + \dots + (p_n - q_n)^2} = \sqrt{\sum_{i=1}^n (p_i - q_i)^2}.$$

Distancia Euclídea

154.11

Distancia de Mahalanobis

Pondera según la varianza: las variables con menos varianza tendrán más importancia que las de mayor varianza. La expresión quedaría:

$$d_2(\vec{x_1}, \vec{x_2}) = \sqrt{\left(\frac{(x_{11} - x_{12})}{\sigma_1}\right)^2 + \left(\frac{(x_{21} - x_{22})}{\sigma_2}\right)^2}$$

Fórmula general:

$$d_m(\vec{x_1}, \vec{x_2}) = \sqrt{(\vec{x_1} - \vec{x_2})^T \Sigma^{-1} (\vec{x_1} - \vec{x_2})}$$

Distancia de Mahalanobis

Distancia de Mahalanobis

Clasificación

Resultados-

Ventana de 160 muestras	Hombres	Mujeres
Emoción	Porcentaje de Acierto	Porcentaje de Acierto
Enojo	98.21 %	84.37 %
Felicidad	73.21 %	93.75 %
Neutral	76.78 %	84. 37 %
Tristeza	78.57 %	75.00 %

Ventana de 256 muestras	Hombres	Mujeres
Emoción	Porcentaje de Acierto	Porcentaje de Acierto
Enojo	100 %	84.37 %
Felicidad	73.21 %	93.75 %
Neutral	76.57 %	84. 37 %
Tristeza	80.35 %	84.37 %

Señal + Ruido

SNR = 20dB	Hombres	Mujeres
Emoción	Porcentaje de Acierto	Porcentaje de Acierto
Enojo	98.21 %	81.25 %
Felicidad	53.57 %	87.5 %
Neutral	73.21 %	50.00 %
Tristeza	71.42 %	78.12 %

SNR = odB	Hombres	Mujeres
Emoción	Porcentaje de Acierto	Porcentaje de Acierto
Enojo	77.5 %	74.37 %
Felicidad	26.78 %	18.75 %
Neutral	0.0 %	0.0 %
Tristeza	o.o %	0.0 %

Fin