Einführung in die Theoretische Informatik Zusammenfassung

Ali, Mihir, Noah

April 27, 2022

Contents

1 Formale Sprachen 1.1 Grundbegriffe	1 1 2
1 Formale Sprachen	
1.1 Grundbegriffe	
- Alphabet Σ (endliche Menge) z.B. $\{1,0\}$	
\bullet Wort/String über Σ ist eine endliche Folge von zeichen aus Σ	
\bullet $ w $ länge des Wortes w	
• Leeres Wort ϵ	
$\bullet \ uv$ konkatenation der Wörter u und w	
• Ist w ein Wort so ist $w^0 = \epsilon$ und $w^{n+1} = ww^n$	
$\bullet~\Sigma^*$ Menge aller Wörter über Σ	
• (formale) Sprache $L \subseteq \Sigma^*$	

1.1.1 Operationen auf Sprachen

Seien $A,B\subseteq \Sigma^*$

 \bullet Konkatenation:

$$AB = \{uv | u \in A \land v \in B\}$$

• Konkatenation mit sich selbst:

$$A^n = \{w_1...w_n | w_1,...,w_n \in A\} = A...A$$

•
$$A^* = \{w_1...w_n | n \ge 0 \land w_1, ..., w_n \in A\} = \bigcup_{n \in \mathbb{N}} A^n$$

•
$$A^+ = AA^* = \bigcup_{n \ge 1} A^n$$

- 1. Sonderfälle:
 - $\forall A : \epsilon \in A^*$
 - $\bullet \ \emptyset^* = \{\epsilon\}$