Harmonic Soft Maps and the Laplace-Beltrami Operator Overview Presentation

Alfred Rossi

The Ohio State University

March 23, 2014

Introduction

- Project goal is to discover and understand the landscape of ideas surrounding harmonic maps and the Laplace-Beltrami operator while exploring related applications.
- In particular
 - The variational formulation of the Laplace-Beltrami operator
 - ► The generalization of Harmonic Maps from functions between manifolds to soft maps
 - The interplay between these ideas

Laplace-Beltrami Operator

Throughout this presentation M_S and M_T will denote two smooth, compact Riemannian manifolds with gradient operators ∇_S , ∇_T , respectively.

Definition

Let g_S denote the metric for M_S , then the Laplace-Beltrami Operator at a point $x \in M_S$ is given by $\Delta_{g_S} u \equiv \text{div} \cdot \text{grad} u$.

- The Laplace-Beltrami Operator on a Riemannian Manifold is determined by the metric.
- The converse direction holds too, by intermediate construction of the heat kernel

The Heat Equation

Consider a heat diffusion process on a manifold. The goal is to find the amount of heat at each location of the manifold $u(x,t): M_S \times \mathbb{R}^+ \to \mathbb{R}$ for all t > 0, given an initial distribution u(x,0).

Definition

$$\Delta_{gs}u(x,t) = -\frac{\partial u(x,t)}{\partial t}$$

Solving the Heat Equation

Intuitively, suppose we had a function $K: M_S \times M_S \times \mathbb{R}^+ \to \mathbb{R}$ which given two points $x,y \in M_S$ encodes the proportion of heat at position y from position x after a time Δt . Then,

Fact

$$u(x,t) = \int_{M_{\mathfrak{S}}} K(x,y,t) \, u(y,0) \, dy$$

What would such a K look like?

Alfred Rossi (The Ohio State University)Harmonic Soft Maps and the Laplace-Bel

The Heat Kernel

Definition

Let λ_n, ϕ_n be the eigenvalues and eigenfunctions of Δ_{g_S} . The heat kernel $K(x, y, t) \in C^{\infty}(M_S \times M_S \times \mathbb{R}^+)$ is given by

$$K(x, y, t) = \sum_{n=0}^{\infty} e^{-\lambda_n t} \phi_n(x) \phi_n(y)$$

- Analogous to Fourier analysis on the manifold
- Contains all of the information regarding the structure of the manifold
 - can be used to determine the metric

(ロ) (레) (토) (토) · 토 · 외익(C

Alfred Rossi (The Ohio State University)Harmonic Soft Maps and the Laplace-Bel

Soft Maps Between Surfaces [SNBBcG]

Definition

A Soft Map from M_S to M_T is a function assigning to each point $x \in M_S$ a probability distribution μ_X over M_T .

- Let $\mathcal{U} \subseteq M_T$ then $\mu_x(\mathcal{U})$ encodes the probability that x maps into \mathcal{U} . In particular it is required that:
 - ▶ $\mu_{x}(\mathcal{U}) \in [0,1]$
 - $\mu_{\times}(M_T) = 1$
- Soft maps generalize point to point maps.

Harmonic Maps [SGB]

Definition

The *Dirichlet Energy* of a map $\phi: M_S \to M_T$ is given by

$$\mathcal{E}_{D}(\phi) \equiv \int_{M_{S}} \left\| \nabla_{S} \phi(x) \right\|^{2} dx$$

- ullet Can think of this as a measure of the "intrinsic stretching" of ϕ .
- Maps which extremize this functional are known as harmonic maps.
- Project goal: Investigate and understand how to generalize this notion to soft maps.

Alfred Rossi (The Ohio State University)Harmonic Soft Maps and the Laplace-Bel

One Point Isometric Matching by Heat Kernel [OMMG]

- Gives a method to recover an isometry when given only a single pair of corresponding points between two geodesically identical meshes
- Works by exploiting the invariance of the heat kernel under isometry
 - ▶ Given a pair of isometric manifolds M, N and a pair of points $p \in M$, $q \in M$ such that for some isometry $\psi : M \to N$, $\psi(p) = q$. One can associate to every point on $x \in M$ a signature $k_t^M(p,x)$ and likewise for any $y \in N$ a signature $k_t^N(q,y)$.
 - Related points can be identified by matching signatures
 - ▶ Both the initial correspondence and isometry can be found efficiently in practice
- Very general. That is, it does not depend genus of the surface, or dimension

One Point Isometric Matching by Heat Kernel [OMMG]

Applications of Soft Maps [SNBBcG]

- Models M_1 , M_2 are descritized into patches corresponding to geodesic voroni cells
- A descriptor $\phi_s(U) \in \mathbb{R}^k$ is associated with each patch $U \subset M_s$, $s \in \{1,2\}$ that encodes some information about its geometry.
- A solver numerically finds a soft correspondence A which minimizes the energy $E(A) = E_{\phi}(A) + \lambda E_{cont}(A) + \beta E_{s}(A)$ where
 - \triangleright E_{ϕ} ensures the corresponding patches have similar geometry
 - \blacktriangleright E_{cont} attempts to keep local patches local in the correspondence by applying a cost based on GEMD
 - E_s is a sharpness term that tries to mediate tradeoff between E_{ϕ} and E_{cont} when there is an exact symmetry.

Applications of Soft Maps [SNBBcG]

Bibliography

- Ovansjanikov, Merigot, Mémoli, and Gubias. *One Point Isometric Matching with the Heat Kernel*
- Solomon, Gubias, Butscher. Dirichlet Energy for Analysis and Synthesis of Soft Maps
- Zeng, Guo, Luo, Gu. Discrete Heat Kernel Determines Discrete Riemannian Metric
- Crane, Weischedel, and Wardetzky. Geodesics in Heat
- Eells and Sampson. Harmonic Mappings of Riemannian Manifolds
- Mémoli. Spectral Gromov-Wasserstein Distances for Shape Matching
- Solomon, Nguyen, Butscher, Ben-Chen, Gubias. Soft Maps Between Surfaces