Marking Sthere

233/2 Chemistry paper 2 Time:2 hours

INSTRUCTIONS TO CANDIDATES:

- · Answer all the questions in the spaces provided.
- Write your Name and Index Number in the spaces provided above.
- Mathematical tables and electronic calculators may be used for calculations.
- All working must be clearly shown where necessary

For Examiner's Use only.

QUESTION	MAXIMUM SCORE	CANDIDATE'S SCORE
i	12	
2	13	
3	13	
4	12	
		-—
6	11	
7	08	
Total score	80	

This paper consists of 14 printed pages. Candidates should check the questions to ascertain that all the pages are printed as indicated and no questions are missing.

(i) the second member of the alloyae homogogous series;	(1 mark)
P ^q	
H - C= C-C-H	***************************************
Profyre	49.F48.F48.F45.F4

(ii) heptanoic acid;	(1 mark)
H-C-C-C-C-C-C-DH	***************************************
ррини	•••••
(iii) 1-butanol.	(1 mark)
HHHH	
H-C-C-C-OH	
(b) State and explain how ethanol could be distinguished from otherwise	
	acid (2 marks)
Add a few drops of acidified prostium dich.	the mange Now
1 K2(4,0, /H+ Changer to gran while in	<i>ethonoic</i>
ord 162 (v. 07/H+ Changer to gran while in	••••••
in in the second se	
Add a few drops of KMaDa/H+ to a fest tules. Etnand will desolvenice is Shile advance acid will of desolve	ach in deforate
fest tubes. Strand will delolourise	KMADA/AH
Shill Agrand and and the set of detailed	mu y.
or or or or starts shows -	d alas
DE sodium consenete. Etronoic au effervescence whole etnand does no	d diser
Extended and	

1.

(a) Draw the structures of

(c) Use the information in the scheme below to answer the questions that follow.

(i) give the name of;

(II) compound J (1 mark)

(ii) Give the name of the reaction which occurs in step III (1 mark)

(iii) Write the equation for the chemical reaction in step I (1 mark) $2C_2H_5OH + 2N^4 - > 2C_3H_5ON^4 + H_{29}$

(iv) Name the reagent and conditions necessary for the reaction step V

(v) State the observations made in step II

Purple acidified Pota Time manganate (vII) transe

to Nowles

2. (a) The diagram below represents the industrial process for the manufacture of aminonia. Study it and answer the questions that follow.

		> NH4NO3	
(ii) Determine the r 720 liters of am	mass of ammonium nitrate mmonia was used.(N=14,	e formed in b (i) above given to O=16, Molar gas volume = 24	that 1 000 cr marks)
Wille wor a	1 NH NO = 10	200	
3		720000 \$80	
24000cm	7/80	24000	
720000(~	Z= 1		············
State and explain wha	would be observed when	n aqueous ammonia is added d	ropwis marks)
until in excess to a sol		dissolves in each	
Marce luco	Moures Solution		

The grid below shows part of the periodic table. Study it and answer the questions that follow. 3. The letters do not represent the actual symbols of the elements.

(a)	Which element forms an ion of charge - 3? Explain your answer [] Jonifes by gaining 3 ellectrons	(2 marks)
	JJ	
	•	·

(b)	What is the nature of the oxide formed by element C?			(1 mark)
(0)	λ	1/	•	

(c) Which is the least reactive element? Explain. (2 marks)

B! Has octet ten electron tenfiguration. (4)

Ratu. Neitur lokes nor gains ellectrons.

Write the chemical equation for the reaction between F and water? (d) 2 F +2H2 DU1 -->2F OH(an, + H215)

e) How the atomic radii C and E compare?	(1 mark)
E has a smaller atomic radius than	C. E has
Linker and and success thank them Ein	- MINIMUS
Stronger nulleur fru 7 aftrathen	than C.
(f) The oxide of A is dissolved in water. State, with a reason the	most likely pH of the (2 marks)
PH 12.0. Mutan front in Strang	ly alkaline
₩	
PH 13.0	•••••
(g) 22.5 cm ³ of a solution of a hydroxide of F completely neutral acid whose concentration is 0.2 moles per litre. Calculate the concent of F in moles per litre. Mile Q ayd = 0.2 x 22.5	(3 marks) 1
1000	22.5
Mis of hydroxide = 0.0045x2	= 0.4M/2
= 0.009	
(h) What name is given to the family of G?	(1 mark)
Alkaline earth metale	

4. (a) The table below shows the standard reduction potentials for four half cells. Study it and answer the questions that follow.

Number	Half -reaction	E ⁰ volts
1	$Ag^{+}_{(aq)} + 2\bar{e} \longrightarrow Ag_{(s)}$	+ 0.80
II	$Cu^{2+}_{(aq)} + 2\bar{e}$ $Cu_{(s)}$	+ 0.34
III	$Pb^{2+}_{(aq)} + 2\bar{e}$ $Pb_{(s)}$	- 0.13
ΙV	$Zn^{2+(aq)}+2\bar{e}$ $Zn_{(s)}$	- 0.76

(ii) Predict whether or not a solution of copper (II) nitrate can be stored in a container made of lead (2 marks)

lead container will los electrons to Muham 9 (9) hence dissave. Thus it not and parable.

(iii) In the space provided, draw a labeled diagram of the electrochemical cell that would give the highest emf.

(iv) Calculate the E of the electrochemical cell constructed in (iii) above.(1 mark)

During the electrolysis of aqueous silver nitrate using silver electrodes, a current of 1.2 amperes was passed through the electrolytic cell for 6 hours and 50 minutes.

(i) Write an ionic equation for the reaction that took place at the anode (1 mark

(c)

Minimum amount of energy that must be available to reaction for a Chemical reaction to our.

Oxygen may be prepared in the laboratory by decomposition of hydrogen peroxide using a certain catalyst.

(i) Name the catalyst used;

(1 mark)

Manganea (IV) ride

(ii) State and explain the effect of the catalyst named in b (i) on the rate of production of oxygen. (1 mark)

inheales rate of poduction 9 raygen.

(iii) On the axes below sketch a graph of catalyzed and uncatalysed decomposition of hydrogen peroxide. Label the curves. (2 marks)

(c) 100 cm³ of 0.5 M hydrochloric acid was reacted with a clean 20 million ribbon. The volume of hydrogen evolved was measured and recorded at Interval. The results were recorded as shown in the table below.

volume of gas (cm³) 0 24 38	48	52 53	53	53
Time in seconds 10 10 20	30	40 50	60	70

(i) On the grid provided, plot a graph of volume (vertical axis) against time. Label it as K (3 marks)

(II) From your graph, determine the rate of reaction between at 38th second. (2 marks)

57-47 /2 10 Shaving Imade 60-20 40 2 = 0.25 cm³ s⁻¹

(iii) On the same grid, sketch a curve that would be obtained if the same experiment was repeated using excess 0.8 M hydrochloric acid. Label it as L. (1 mark)

6. (a) Name and give the formula of **two** ores from which copper is extracted.(2 mar

(ii) During extraction of copper, the ore is first crushed into fine powder and then concentrated by froth flotation. Why this is important? (1 mark

Raises low copper concent vations which makes
it viable to extract it.

(ii) One of the gases evolved during copper extraction is sulphur (IV) oxide. Give two ways of preventing the gas from escaping to the atmosphere.

· fed in suphwicks, and plant vad in central process.

(iii) Blister copper is impure copper which is about 97.5 % pure. To obtain pure copper from blister copper electrolysis is done. Draw a set up that can be used to purify copper. (3 marks)

(iv) Give two uses of copper	(2 marks)
· fleat willing white	N viver
(v) State one way in which the e	traction of copper causes environmental pollutio
	(1 mark)
Water Polly	104
Human heal	4 4,04
Study the flow chart below and answ	er the questions that follow.
Solid N Water Step I	Solution P and Colourless gas Q
Stop	Step II 2 drops of aqueous sodium hydroxide
	White precipitate S
	Step III Excess aqueous sodium hydroxide
	White precipitate S
(i) Identify: I solid N	(1 mark)
II Colourless gas Q	(1 mark)
(ii) Give the formula of white p	ecipitate S (1 mark)
CM(OTI)	
(iii) Write the ionic equation for	the reaction in step II (1 mark) $OH =$

	(iv) Give one use of solution P	(2 marks)
	· Sewage + reatment. · Sugar production · Find processing	
	- fight production	
	, find prousing	
	, , ,	
(h)	Calculate the number of nitrate jons present in 25.0 cm ² of 0.	80 M aluminium nitrate
	solution. $(L = (6 \cdot 0 \times 10^{23})$	(3 marks)
	25.0 X D. 3 / -0.02	
	1/8	\ /
	1000	
		22 -
	D.02 X6.0 X10 X 3 = 2-6	XIO NO
		3
	THIS IS THE LAST PRINTED PAGE.	