Notes on Polish space

Rui Wang

Monday 27th May, 2019

1 Introduction

This document contains notes about Polish space which play an important role in probability and statistics. The materials are mainly from Cohn (2013), Chapter 8 and Dudley (2002), Chapter 13.

2 Polish space

Exercise 1 (Cohn (2013), Exercise 8.1.3). Let (X, \mathscr{A}) be a measurable space, let Y be a separable metrizable space, and let $f, g: X \to Y$ be measurable with respect to \mathscr{A} and $\mathscr{B}(Y)$. Then $\{x \in X: f(x) = g(x)\} \in \mathscr{A}$.

Proof. For any $A, B \in \mathcal{B}(Y)$,

$${x: (f(x), g(x)) \in A \times B} = f^{-1}(A) \cap f^{-1}(B) \in \mathscr{A}.$$

Hence the map $F: x \mapsto (f(x), f(x))$ is measurable with respect to \mathscr{A} and $\mathscr{B}(Y) \times \mathscr{B}(Y)$. Since Y is a separable metrizable space, $\mathscr{B}(Y) \times \mathscr{B}(Y) = \mathscr{B}(Y \times Y)$. Thus, the map F is measurable with respect to \mathscr{A} and $\mathscr{B}(Y \times Y)$. Let $\Delta = \{(y_1, y_2) \in Y \times Y : y_1 = y_2\}$. Then Δ is a closed subset of $Y \times Y$ and $\{x \in X : f(x) = g(x)\} = F^{-1}(\Delta)$. It follows that $\{x \in X : f(x) = g(x)\} \in \mathscr{A}$.

Exercise 2 (Cohn (2013), Exercise 8.2.1). Let A be an uncountable analytic subset of the Polish space X. Then,

- (a) A has a subset that is homeomorphic to $\{0,1\}^{\mathbb{N}}$.
- (b) A has the cardinality of the continuum.

Proof. From Cohn (2013), Corollary 8.2.8., there is a continuous function f from \mathcal{N} onto A. By the axiom of choice, there is a set $S \subset \mathcal{N}$ such that the restriction of f on S is a bijection of S onto A. As a subspace of \mathcal{N} , S is an uncountable separable metrizable space. Let $S_0 \subset S$ be the set of all condensation points of the space S. From Cohn (2013), Lemma 8.2.12, S_0 is uncountable

and each point of S_0 is a condensation point of S_0 . Let $d_{\mathscr{N}}(\cdot,\cdot)$ be a metric on \mathscr{N} which metrize the topology of \mathscr{N} . Let $d_X(\cdot,\cdot)$ be a metric on X which metrize the topology of X.

Now we construct a homeomorphic between a subset of X and $\{0,1\}^{\mathbb{N}}$. First, let x_0 and x_1 be two distinct points in S_0 . Since the restriction of f on S_0 is injective, $f(x_0) \neq f(x_1)$. Hence there exists $0 < \epsilon_1 < 1$ such that $\overline{B(x_0, \epsilon_1)} \cap \overline{B(x_1, \epsilon_1)} = \emptyset$ and $f(\overline{B(x_0, \epsilon_1)}) \cap f(\overline{B(x_1, \epsilon_1)}) = \emptyset$. For i = 0, 1, let $C(i) = B(x_i, \epsilon_1)$. Note that for i = 0, 1, $C(i) \cap S_0$ is uncountable and each point of $C(i) \cap S_0$ is a condensation point of $C(i) \cap S_0$. Then there exist $x_{i0}, x_{i1} \in C(i) \cap S_0$ (i = 0, 1) and $0 < \epsilon_2 < 1/2$ such that for j = 0, 1, $B(x_{ij}, \epsilon_2) \subset B(x_i, \epsilon_1)$, $\overline{B(x_{i0}, \epsilon_2)} \cap \overline{B(x_{i1}, \epsilon_2)} = \emptyset$ and $f(\overline{B(x_{i0}, \epsilon_2)}) \cap f(\overline{B(x_{i1}, \epsilon_2)}) = \emptyset$. For $i, j \in \{0, 1\}$, let $C(i, j) = B(x_{ij}, \epsilon_2)$.

Inductively construct sets $C(n_1, n_2, ..., n_k)$, $n_i \in \{0, 1\}$, $k \in \mathbb{N}$. Then for $\{n_k\}_{k=1}^{\infty} \in \mathscr{N}$, consider the set $\bigcap_{k=1}^{\infty} \overline{C(n_1, ..., n_k)}$. By the completeness of \mathscr{N} , $\bigcap_{k=1}^{\infty} \overline{C(n_1, ..., n_k)} \neq \emptyset$. Also, the diameter of $\overline{C(n_1, ..., n_k)}$ tends to 0. Then there exists a unique point in $\bigcap_{k=1}^{\infty} \overline{C(n_1, ..., n_k)}$. Let g be the function from \mathscr{N} to X which maps $\{n_k\}_{k=1}^{\infty}$ to the unique point of $\bigcap_{k=1}^{\infty} \overline{C(n_1, ..., n_k)}$.

By the construction of $C(n_1, \ldots, n_k)$, g is continuous and injective. Then $f \circ g$ is continuous. To see that $f \circ g$ is injective, let $\{n_k\}_{k=1}^{\infty}$ and $\{m_k\}_{k=1}^{\infty}$ be two distinct points of $\{0,1\}^{\mathcal{N}}$. Let k_0 be the first k such that $n_k \neq m_k$. By the construction of $C(\cdot, \ldots, \cdot)$, $f(\overline{C(n_1, \ldots, n_{k_0})}) \cap f(\overline{C(m_1, \ldots, m_{k_0})}) = \emptyset$. Since $g(\{n_k\}_{k=1}^{\infty}) \subset \overline{C(n_1, \ldots, n_{k_0})}$, $g(\{m_k\}_{k=1}^{\infty}) \subset \overline{C(m_1, \ldots, m_{k_0})}$. Then $f \circ g(\{n_k\}_{k=1}^{\infty}) \neq f \circ g(\{m_k\}_{k=1}^{\infty})$.

Since $\{0,1\}^{\mathcal{N}}$ is compact, the inverse of $f \circ g$ is also continuous. This completes the proof of (a).

(a) implies that $\operatorname{card}(A) \geq \mathfrak{c}$. On the other hand, Cohn (2013), Corollary 8.2.8. implies that $\operatorname{card}(A) \leq \mathfrak{c}$. Thus, $\operatorname{card}(A) = \mathfrak{c}$.

Exercise 3 (Cohn (2013), Exercise 8.2.2). Let X be an uncoutable Polish space. Then the collection of analytic subsets of X and the collection of Borel subsets of X have the cardinality of the continuum.

Proof. Exercise 2 implies that the cardinality of X is \mathfrak{c} . Since each single point of X is a Borel set, the cardinality of the collection of Borel subsets of X is at least \mathfrak{c} . We only need to prove that the cardinality of the collection of analytic subsets of X is at most \mathfrak{c} .

Cohn (2013), Proposition 8.2.9 implies that it suffices to upper bound the cardinality of the collection of closed subsets of the Polish space $\mathscr{N} \times X$. Let $\{U_i\}_{i=1}^{\infty}$ be a countable base of the topology of $\mathscr{N} \times X$. Then every closed subset of $\mathscr{N} \times X$ is the intersection of certain U_i^{\complement} , that is, $\bigcap_{i \in S} U_i^{\complement}$ where S is a subset of \mathbb{N} . Hence there is an injective map from the collection of closed subsets of $\mathscr{N} \times X$ to $2^{\mathbb{N}}$. Thus, the cardinality of the collection of closed subsets of $\mathscr{N} \times X$ is at most \mathfrak{c} .

Exercise 4 (Cohn (2013), Exercise 8.2.3).

- (a) Let X be a nonempty zero-dimensional Polish space such that each nonempty open subset of X is not compact. Then X is homeomorphic to \mathcal{N} .
- (b) the Space \mathscr{I} of irrational numbers in the interval (0,1) is homeomorphic to \mathscr{N} .

Proof. Let $d(\cdot, \cdot)$ be a complete metric for X. We begin by constructing a family $\{C(n_1, \ldots, n_k)\}$ of subsets of X, indexed by the set of all finite sequences $\{(n_1, \ldots, n_k)\}$ of positive integers, in such a way that

- 1. $C(n_1, \ldots, n_k)$ is nonempty, open, closed and noncompact,
- 2. the diameter of $C(n_1, \ldots, n_k)$ is at most 1/k,
- 3. $\{C(n_1,\ldots,n_{k-1},n_k)\}_{n_k=1}^{\infty}$ are disjoint and $C(n_1,\ldots,n_{k-1})=\bigcup_{n_k=1}^{\infty}C(n_1,\ldots,n_k),$
- 4. $X = \bigcup_{n_1=1}^{\infty} C(n_1)$.

We do this by induction on k.

First, suppose that k = 1. Since X is assumed to be not compact, Cohn (2013), Lemma 8.2.11 gives a sequence $\{C(n_1)\}_{n_1=1}^{\infty}$ where terms are nonempty, open, closed and with diameter at most 1. By assumption, each $C(n_1)$ is not compact.

Now suppose that k > 1 and that $C(n_1, \ldots, n_{k-1})$ has already been chosen. It is easy to use a modification of the construction of the $C(n_1)$'s, now applied to $C(n_1, \ldots, n_{k-1})$ rather than to X, to produce sets $C(n_1, \ldots, n_k)$, $n_k = 1, 2, \ldots$ that satisfy conditions 1 to 4. With this, the induction step in our construction is complete.

We turn to the construction of a homeomorphic between \mathscr{N} and X. Let $\mathbf{n} = \{n_k\}$ be an element of \mathscr{N} . Then the sets $C(n_1)$, $C(n_1, n_2)$, ... are decreasing nonempty closed sets whose diameters approach to 0. Since X is complete, there is a unique element in $\bigcap_{k=1}^{\infty} C(n_1, \ldots, n_k)$. We can define a function $f: \mathscr{N} \to X$ by letting $f(\mathbf{n})$ be the unique member of $\bigcap_{k=1}^{\infty} C(n_1, \ldots, n_k)$. Note that if \mathbf{m} and \mathbf{n} are elements of \mathscr{N} such that $m_i = n_i$ holds for $k = 1, \ldots, k$, then $d(\mathbf{m}, \mathbf{n}) \leq 1/k$. It follows that f is continuous. Also, it is obvious that f is bijective. It remain to prove that the inverse of f is continuous. Suppose $f(\mathbf{n}^{(l)}) \to f(\mathbf{n})$. Fix k > 0. Then if f is large enough, $f(\mathbf{n}^{(l)}) \in C(n_1, \ldots, n_k)$. By the construction of f, this implies that $n_i^{(l)} = n_i$ for $i = 1, \ldots, k$. Thus, $\mathbf{n}^{(l)} \to \mathbf{n}$ as $l \to \infty$. This completes the proof of f.

We turn to the proof of (b). The space \mathscr{I} is a G_{δ} set of [0,1], and hence is a Polish space. The family of intervels (a_i,b_i) where a_i and b_i is rational is a base that consists of sets that are both open and closed. It follows that \mathscr{I} is zero-dimensional. Each interval (a,b) is the union of $\{(a_i,b_i)\}_{i=1}^{\infty}$ where a_i , b_i are rational and $a_i \downarrow a$ and $b_i \uparrow b$. Hence each interval of \mathscr{I} is not compact. Then the conclusion follows from (a).

Exercise 5 (Cohn (2013), Exercise 8.2.3). Each nonempty Polish space is the image of \mathcal{N} under a continuous open map.

Proof. We mimic the proof of Cohn (2013), Proposition 8.2.7.

Let X be a nonempty Polish space, and let d be a complete metric for X. We begin by constructing a family $\{C(n_1, \ldots, n_k)\}$ of subsets of X, indexed by the set of all finite sequences $\{n_1, \ldots, n_k\}$ of positive integers, in such a way that

- 1. $C(n_1, \ldots, n_k)$ is nonempty and open,
- 2. the diameter of $C(n_1, \ldots, n_k)$ is at most 1/k,
- 3. $\overline{C(n_1,\ldots,n_{k-1},n_k)} \subset C(n_1,\ldots,n_{k-1})$ and $C(n_1,\ldots,n_{k-1}) = \bigcup_{n_k=1}^{\infty} C(n_1,\ldots,n_k)$,
- 4. $X = \bigcup_{n_1=1}^{\infty} C(n_1)$.

We do this by induction on k.

First, suppose that k = 1, and let $\{x_i\}_{i=1}^{\infty}$ be a sequence whose terms form a dense subset of X. The sequence $\{X_i\}_{i=1}^{\infty}$ may have duplicated elements. Let $\{C(n_1)\}_{n_1=1}^{\infty}$ be the collection of open balls which center at certain x_i and with rational radius not larger than 1/2. Certainly each $C(n_1)$ is open and nonempty and has diameter at most 1. Furthermore, $X = \bigcup_{n_1} C(n_1)$.

Now suppose that k > 1 and that $C(n_1, \ldots, n_{k-1})$ has already been chosen. Let $\{C(n_1, \ldots, n_{k-1}, n_k)\}_{n_k=1}^{\infty}$ be the collection of open balls which center at centain x_i and with rational radius not larger than 1/(2k) and whose closure is contained in $C(n_1, \ldots, n_{k-1})$. Certainly each $C(n_1, \ldots, n_k)$ is open and nonempty and has diameter at most 1/k. Now we prove that $C(n_1, \ldots, n_{k-1}) = \bigcup_{n_k=1}^{\infty} C(n_1, \ldots, n_k)$. Suppose $x \in C(n_1, \ldots, n_{k-1})$. Since $C(n_1, \ldots, n_{k-1})$ is open, there is a open ball $B(x,r) \subset C(n_1, \ldots, n_{k-1})$ where r is rational and r < 1/k. Since $\{x_i\}_{i=1}^{\infty}$ is dense in X, there is an x_i such that $d(x,x_i) < r/3$. Then the ball $B(x_i,r/2)$ contains x. Also, the Closure of $B(x_i,r/2)$ has radius not larger than 1/(2k) and is contained in $C(n_1, \ldots, n_{k-1})$. Thus, $B(x_i,r/2) = C(n_1, \ldots, n_k)$ for some n_k . With this, the induction step in our construction is complete.

We turn to the construction of a continuous function that maps $\mathscr N$ onto X. Let $\mathbf n=\{n_k\}$ be an element of $\mathscr N$. It follows from 3 that $\cap_{k=1}^\infty C(n_1,\ldots,n_k)=\cap_{k=1}^\infty \overline{C(n_1,\ldots,n_k)}$ which is intersection of a decreasing sequence of nonempty closd subsets of X whose diameters approach 0. Thus there is a unique element in the intersection of these sets, and we can define a function $f:\mathscr N\to X$ by letting $f(\mathbf n)$ be the unique member of $\cap_k C(n_1,\ldots,n_k)$. Note that if $\mathbf m$ and $\mathbf n$ are elements on $\mathscr N$ such that $m_i=n_i$ holds for $i=1,\ldots,k$, then $d(f(\mathbf m,\mathbf n))\leq 1/k$. It follows that f is continuous. Also, 3 and 4 above imply that for each $\mathbf x$ in X there is an element $\mathbf n=\{n_k\}$ of $\mathscr N$ such that $x\in\cap_k C(n_1,\ldots,n_k)$ and hence such that $x=f(\mathbf n)$. Thus f is surjective.

It remains to prove that f is an open map. Note that the sets of the form $\{n_1\} \times \cdots \times \{n_k\} \times \mathbb{N} \times \ldots$ is a base for the topology of \mathscr{N} . By the construction of f, for any n_1, \ldots, n_k , $f(\{n_1\} \times \cdots \times \{n_k\} \times \mathbb{N} \times \ldots) = C(n_1, \ldots, n_k)$ is an open set. This completes the proof.

Exercise 6 (Cohn (2013), Exercise 8.2.5). Each Borel subst of a Polish space is the image under a continuous injective map of some Polish space.

Proof. Let X be a Polish space. Let \mathcal{A} be the collection of Borel subsets of X which are the image under continuous injective maps of some Polish spaces. Then all open and closed subsets of X belong to \mathcal{A} since they are themselves Polish spaces.

Assume $A_1, \ldots, A_n, \cdots \in \mathcal{A}$ and A_1, \ldots, A_n, \ldots are disjoint. For each A_i , there is a Polish space X_i and a continuous infective map $f_i(\cdot)$ such that $f_i(X_i) = A_i$. Define $f: \bigcup_{i=1}^{\infty} X_i \mapsto \bigcup_{i=1}^{\infty} A_i$ by $f(x) = f_i(x)$ if $x \in X_i$. Here $\bigcup_{i=1}^{\infty} X_i$ is the disjoint union of X_i . Then $\bigcup_{i=1}^{\infty} X_i$ is Polish and f is injective and continuous. Then $\bigcup_{i=1}^{\infty} A_i \in \mathcal{A}$.

Assume $A_1, \ldots, A_n, \cdots \in \mathcal{A}$. For each A_i , there is a Polish space X_i and a continuous infective map $f_i(\cdot)$ such that $f_i(X_i) = A_i$. Define $f: \prod_{i=1}^{\infty} X_i \mapsto \prod_{i=1}^{\infty} X$ by $f(\{x_i\}_{i=1}^{\infty}) = \{f_i(x_i)\}_{i=1}^{\infty}$. Then f is injective and continuous onto $\prod_{i=1}^{\infty} A_i \subset \prod_{i=1}^{\infty} X$. Let $D = \{(x, x, \ldots) : x \in X\}$. Define $g: D \mapsto X$ by $g(x, x, \ldots) = x$. Then g is a homeomorphism between D and X. Consider $g \circ f$ defined on $f^{-1}(D)$. Then $g \circ f$ is injective and continuous from $f^{-1}(D)$ onto $\bigcap_{i=1}^{\infty} A_i$. Since $f^{-1}(D)$ is a closed subset of $\prod_{i=1}^{\infty} X_i$, it is Polish. Thus, $\bigcap_{i=1}^{\infty} A_i \in \mathcal{A}$.

From Cohn (2013), Lemma 8.2.4, \mathcal{A} contains all Borel subset of X. This completes the proof. \square

Exercise 7 (Cohn (2013), Exercise 8.2.6). If X is an uncountable Polish space, then there is an analytic subset of X that is not a Borel set.

Proof. Let X be an uncountable Polish space. From Cohn (2013), Proposition 8.2.13, there is a continuous injective map $f: \mathcal{N} \to X$ such that $X - f(\mathcal{N})$ is countable. From Cohn (2013), Corollary 8.2.17, there is an analytic set $A \in \mathcal{N}$ that is not a Borel set. Then f(A) is not a Borel set of X, or else $A = f^{-1}(f(A))$ would be a Borel set, a contradiction. On the other hand, f(A) is analytic. This completes the proof.

Exercise 8 (Cohn (2013), Exercise 8.3.1). Let X and Y be Polish spaces, and let $f: X \to Y$ be a function whose graph is an analytic subset of $X \times Y$. Then f is Borel measurable.

Remark 1. It follows from this conclution and Cohn (2013), Proposition 8.1.8 that f is Borel measurable iif the graph of f is a Borel subset of $X \times Y$. Then the graph of f can not be an analytic set which is not a Borel set.

Proof. Let $G = \{(x, f(x)) : x \in X\}$ denote the graph of f. For any Borel subset B of Y, the sets $G \cap (X \times B)$ and $G \cap (X \times B^{\complement})$ are analytic. Then the projection of these two sets on X, i.e. $f^{-1}(B)$ and $f^{-1}(B^{\complement})$, are also analytic. From separation theorem, i.e. Cohn (2013), Theorem 8.3.1, B and B^{\complement} are Borel sets. Hence f is Borel measurable.

Exercise 9 (Cohn (2013), Exercise 8.3.2). Let X and Y be uncountable Polish spaces. Then the cardinality of the collection of Borel measurable functions from X to Y is that of the continuum.

Proof. The cardinalities of X and Y are both \mathfrak{c} . For each $y \in Y$, the constant function $f(x) \equiv y$ is Borel measurable. Hence the cardinality of the collection of Borel measurable functions from X to Y is at least \mathfrak{c} .

On the other hand, since the graph of Borel measurable function f is a Borel subset of $X \times Y$, and the collection of Borel subsets of an uncontable Polish space has cardinality \mathfrak{c} , the cardinality of the collection of Borel measurable functions from X to Y is as most \mathfrak{c} . This completes the proof.

Exercise 10 (Cohn (2013), Exercise 8.3.2). There is a Lebesgue measurable function $f : \mathbb{R} \to \mathbb{R}$ such that no real-valued Borel measurable function f_1 satisfies $f(x) \leq f_1(x)$ at each x in \mathbb{R} .

Proof. Let K be the Cantor set. K is an uncontable Polish space. According to the preceding ecercise, there is a bijection $x \mapsto g_x$ of K onto the set of real-valued Borel functions on K. Define $f: \mathbb{R} \to \mathbb{R}$ by

$$f(x) = \begin{cases} g_x(x) + 1 & \text{if } x \in K, \\ 0 & \text{otherwise.} \end{cases}$$

Since f(x) = 0 a.e., f is Lebesgue measurable. Suppose there is a real-valued Borel measurable function f_1 satisfying $f(x) \leq f_1(x)$ at each $x \in \mathbb{R}$. Then the restriction of f_1 on K is still Borel measurable. Hence there is an $x_1 \in K$ such that $f_1(x) = g_{x_1}(x)$ at each $x \in K$. Then $g_{x_1}(x) \geq g_x(x) + 1$ at each $x \in K$. But this is impossible when $x = x_1$. This completes the proof.

Exercise 11 (Cohn (2013), Exercise 8.3.3). Let X be a Polish space, let μ be a Borel measure on X such that $\mu(X) = 1$, and let λ be Lebesgue measure on the Borel subsets of [0,1]. Then there is a Borel measurable function $f:[0,1] \to X$ such that $\mu = \lambda f^{-1}$.

Proof. If X is countably infinite, let $\{x_i\}_{i=1}^{\infty}$ be an enumeration of the points of X. Then $\sum_{i=1}^{\infty} \mu(\{x_i\}) = \mu(\bigcup_{i=1}^{\infty} \{x_i\}) = 1$. We can construct f by letting $f(t) = x_i$ if $t \in \left[\sum_{j=1}^{i-1} x_j, \sum_{j=1}^{i} x_j\right)$, and $f(1) = x_1$. Then $\lambda f^{-1}(\{x_i\}) = \lambda\left(\left[\sum_{j=1}^{i-1} x_j, \sum_{j=1}^{i} x_j\right)\right) = x_i$. Hence $\mu = \lambda f^{-1}$. If X is finite, the construction of f is similar.

Now suppose X is uncountable, from Cohn (2013), Theorem 8.3.6, there is a bijection g from \mathbb{R} onto X which is Borel isomorphism. Then the measure μg is a probability measure on the Borel sets of \mathbb{R} . From Cohn (2013), Proposition 10.1.15, there is a Borel measurable function h from [0,1] to \mathbb{R} such that $\mu g = \lambda h^{-1}$. Thus, for any $A \in \mathcal{B}(X)$,

$$\mu(A) = \mu(gg^{-1}A) = \mu g(g^{-1}A) = \lambda h^{-1}(g^{-1}A) = \lambda (h^{-1}g^{-1}A) = \lambda ((g \circ h)^{-1}A) = \lambda (g \circ h)^{-1}(A).$$

The conclusion follows by letting $f = g \circ h$.

Exercise 12 (Cohn (2013), Exercise 8.4.1). Let (X, \mathcal{A}) be a measurable space.

- (a) A function $f: X \to [-\infty, +\infty]$ is \mathscr{A}_* -measurable if and only if for each finite measure μ on (X, \mathscr{A}) there are \mathscr{A} -measurable functions $f_0, f_1: X \to [-\infty, +\infty]$ that satisfy $f_0 \leq f \leq f_1$ everywhere on X and $f_0 = f_1$ μ -almost surely.
- (b) If $f: X \to [-\infty, +\infty]$ is \mathscr{A}_* -measurable and if the functions f_0 and f_1 in part (a) can be chosen independently of μ , then f is \mathscr{A} -measurable.

Proof. It is understood that \mathscr{A}_* -measurable means $\mathscr{A}_*/\mathscr{B}([-\infty,+\infty])$ measurable.

Suppose $f: X \to [-\infty, +\infty]$ is \mathscr{A}_* -measurable. Then for each finite measure μ on (X, \mathscr{A}) , since $\mathscr{A} \subset \mathscr{A}_{\mu}$, f is \mathscr{A}_{μ} measurable. Then the existence of f_0, f_1 is implied by Cohn (2013), Proposition 2.2.5. Conversely, suppose for each finite measure μ , such f_0, f_1 exist. Then Cohn (2013), Proposition 2.2.5 implies that f is \mathscr{A}_{μ} measurable. Thus, for any $A \in \mathscr{B}([-\infty, +\infty])$, $f^{-1}(A) \in \cap_{\mu} \mathscr{A}_{\mu} = \mathscr{A}_*$. This completes the proof of (a).

We turn to (b). Consider the set $A = \{x : f_0(x) \neq f_1(x)\}$. By assumption, $\mu^*(A) = 0$ for any finite μ on \mathscr{A} . If A is not empty, let x be a point of A and δ_x be the point mass concentrated on x. Then $\delta_x^*(A) = 1$, a contradiction. It follows that $A = \emptyset$. Thus $f = f_0$, hence f is \mathscr{A} -measurable. \square

Exercise 13 (Cohn (2013), Exercise 8.4.2). Let (X, \mathcal{A}) be a measurable space. Then

- (a) $(\mathscr{A}_*)_* = \mathscr{A}_*$.
- (b) If μ is a finite measure on (X, \mathscr{A}) , then $(\mathscr{A}_{\mu})_* = \mathscr{A}_{\mu}$.

Proof. First we proof (b). It is clear that $(\mathscr{A}_{\mu})_* \supset \mathscr{A}_{\mu}$. On the other hand, $(\mathscr{A}_{\mu})_* \subset (\mathscr{A}_{\mu})_{\mu} = \mathscr{A}_{\mu}$. This completes the proof of (b).

We turn to (a). It is clear that $(\mathscr{A}_*)_* \supset \mathscr{A}_*$. On the other hand, let μ be any finite measure on \mathscr{A} . Then $(\mathscr{A}_*)_* \subset (\mathscr{A}_{\mu})_* = \mathscr{A}_{\mu}$. Hence $(\mathscr{A}_*)_* \subset \cap_{\mu} \mathscr{A}_{\mu} = \mathscr{A}_*$.

The following lemma is useful in proving the next two lemmas.

Lemma 1. Let (X, \mathscr{A}) and (Y, \mathscr{B}) are two measurable spaces. Let f be an isomorphism between (X, \mathscr{A}) and (Y, \mathscr{B}) , that is, f is a bijection and f and f^{-1} are both measurable. Then for any finite measure μ on \mathscr{A} , f is also an isomorphism between (X, \mathscr{A}_{μ}) and $(Y, \mathscr{B}_{\mu f^{-1}})$. Furthermore, f is an isomorphism between (X, \mathscr{A}_*) and (Y, \mathscr{B}_*) .

Proof. Let μ be any finite measure on \mathscr{A} . For any $A \in \mathscr{A}_{\mu}$, there exist $A_0, A_1 \in \mathscr{A}$ such that $A_0 \subset A \subset A_1$ and $\mu(A_1/A_0) = 0$. Then $f(A_0), f(A_1) \in \mathscr{B}$, $f(A_0) \subset f(A) \subset f(A_1)$ and $\mu(f^{-1}(f(A_1)/f(A_0))) = \mu(A_1/A_0) = 0$. Then $f(A) \in \mathscr{B}_{\mu f^{-1}}$. Similarly, if $B \in \mathscr{B}_{\mu f^{-1}}$, then $f^{-1}(B) \in \mathscr{A}_{\mu}$. Thus, f is an isomorphism between (X, \mathscr{A}_{μ}) and $(Y, \mathscr{B}_{\mu f^{-1}})$.

This is true for any finite measure μ on \mathscr{A} . Hence f is an isomorphism between $(X, \cap_{\mu} \mathscr{A}_{\mu})$ and $(Y, \cap_{\mu} \mathscr{B}_{\mu f^{-1}})$. By definition, $\cap_{\mu} \mathscr{A}_{\mu} = A_*$. On the other hand, for any finite measure ν on \mathscr{B} , $\nu(B) = \nu(f \circ f^{-1}B) = \nu f(f^{-1}B) = (\nu f)f^{-1}(B)$. Note that νf is a finite measure on \mathscr{A} . It follows that $\cap_{\mu} \mathscr{B}_{\mu f^{-1}} = \cap_{\nu} \mathscr{B}_{\nu} = \mathscr{B}_*$. This complemes the proof.

Exercise 14 (Cohn (2013), Exercise 8.4.3). There is a Lebesgue measurable subset of \mathbb{R} that is not universally measurable.

Proof. Let C be the Cantor set on [0,1] (see Cohn (2013), example 1.4.6), let $f:[0,1] \to [0,1]$ be the Cantor function (see Cohn (2013), example 2.1.10). It is known that f is nondecreasing and continuous.

Let λ be the Lebesgue measure on \mathbb{R} . Let $\lambda_{[0,1]}$ be the Lebesgue measure on [0,1]. Let μ be the measure on [0,1] with distribution function f. It is known that $\mu(C) = 1$. Define $\mu_1 = \lambda + \mu$. Then for $x \in [0,1]$, $\mu_1([0,x]) = f(x) + x$. Define $g:[0,1] \to [0,2]$ by g(x) = f(x) + x. Then g is strict increasing and continuous. Thus, g is a Borel isomorphism from $([0,1], \mathcal{B}([0,1]), \mu_1)$ to $([0,2], \mathcal{B}([0,2]), \lambda)$. Also, $\lambda \circ g = \mu_1$. From Lemma 1, g is also an isomorphism between the completion spaces $([0,1], \mathcal{B}([0,1])_{\mu_1}, \mu_1)$ and $([0,2], \mathcal{B}([0,2])_{\lambda}, \lambda)$. It can be shown that $\lambda(g(C^{\complement})) = 1$. Hence $\lambda(g(C)) = 2 - 1 = 1$. Then There is a Lebesgue **non**measurable subset D of D of D of D is a subset of D of D is a subset of D which has Lebesgue measure 0. Thus, D is a Lebesgue measurable subset of D which has Lebesgue measurable.

Exercise 15 (Cohn (2013), Exercise 8.4.4). Each uncountable Polish space has a subset that is not universally measurable.

Proof. Let X be an uncountable Polish space. From Cohn (2013), Theorem 8.3.6, there is a Borel isomorphism f between $(X, \mathcal{B}(X))$ and $(\mathbb{R}, \mathcal{B}(\mathbb{R}))$. Form Lemma 1, f is an isomorphism between $(X, \mathcal{B}(X)_*)$ and $(\mathbb{R}, \mathcal{B}(\mathbb{R})_*)$. But there is an $B \notin \mathcal{B}(\mathbb{R})_*$, e.g., a Lebesgue nonmeasurable set. Then $f^{-1}(B) \notin \mathcal{B}(X)_*$. This complemes the proof.

Exercise 16 (Cohn (2013), Exercise 8.4.5). There is a measurable space (X, \mathcal{A}) and an outer measure μ^* on it such that there exists an increasing sequence $\{A_n\}$ of subsets of X,

$$\mu^*(\cup_n A_n) = \lim_n \mu^*(A_n).$$

Remark 2. An outher measure μ^* on (X, \mathscr{A}) is a function from \mathscr{A} to $[0, +\infty]$ such that

- (a) $\mu^*(\emptyset) = 0$.
- (b) if $A \subset B \subset X$, then $\mu^*(A) \leq \mu^*(B)$, and
- (c) if $\{A_n\}$ is an infinite sequence of subsets of X, then $\mu^*(\cup_n A_n) \leq \sum_n \mu^*(A_n)$.

Proof. Let $X = \mathbb{N}$, $\mathscr{A} = 2^X$. Let $\mu^*(\emptyset) = 0$, $\mu^*(X) = 2$ and $\mu^*(A) = 1$ for $A \neq \emptyset$, X. It is an easy task to check μ^* is an outer measure. Now consider $A_n = \{0, 1, \dots, n\}$. Then $\bigcup_n A_n = X$. And $\mu^*(\bigcup_n A_n) = 2 > 1 = \lim_n \mu^*(A_n)$.

Definition 1. Let (X, \mathscr{A}) and (Y, \mathscr{B}) be measurable spaces. A function $K: X \times \mathscr{B} \to [0, +\infty]$ is called a *kernel* from (X, \mathscr{A}) to (Y, \mathscr{B}) if

- (i) for each $x \in X$ the function $B \mapsto K(x, B)$ is a measure on (Y, \mathcal{B}) , and
- (ii) for each $B \in \mathcal{B}$ the function $x \mapsto K(x, B)$ is \mathscr{A} -measurable.

Exercise 17 (Cohn (2013), Exercise 2.4.7). Suppose that K is a kernel from (X, \mathscr{A}) to (Y, \mathscr{B}) , that μ is a measure on (X, \mathscr{A}) , and that f is a $[0, +\infty]$ -valued \mathscr{B} -measurable function on Y. Then

- (a) $B \mapsto \int K(x, B)\mu(dx)$ is a measure on (Y, \mathcal{B}) ,
- (b) $x \mapsto \int f(y)K(x,dy)$ is an \mathscr{A} -measurable function on X, and
- (c) if ν is the measure on (Y, \mathcal{B}) defined in part (a), then $\int f(y)\nu(\mathrm{d}y) = \int (\int f(y)K(x,\mathrm{d}y))\mu(\mathrm{d}x)$. Proof.
- (a): As a function of x, K(x,B) is \mathscr{A} -measurable. Hence $\int K(x,B)\mu(\mathrm{d}x)$ is well defined for each B. Clearly, $\int K(x,\emptyset)\mu(\mathrm{d}x) = \int 0\mu(\mathrm{d}x) = 0$. Suppose $\{A_i\}_{i=1}^{\infty}$ is an infinite sequence of disjoint sets that belongs to \mathscr{A} . Then

$$\int K(x, \bigcup_{i=1}^{\infty} A_i)\mu(\mathrm{d}x) = \int \sum_{i=1}^{\infty} K(x, A_i)\mu(\mathrm{d}x) = \sum_{i=1}^{\infty} \int K(x, A_i)\mu(\mathrm{d}x),$$

where the last equality follows from the monotone convergence theorem.

(b): If $f = \mathbf{1}_A$ for $A \in \mathcal{B}$, then $\int f(y)K(x,\mathrm{d}y) = K(x,B)$ is \mathscr{A} -measurable by the definition of kernel. It follows that $\int f(y)K(x,\mathrm{d}y) = K(x,B)$ is \mathscr{A} -measurable for every simple \mathscr{B} -measurable function f. Finally, let $f: Y \to [0,+\infty]$ be an arbitrary \mathscr{B} -measurable function, and choose a sequence $\{g_n\}$ of simple \mathscr{B} -measurable functions from Y to $[0,+\infty)$ such that $g_n(y) \uparrow f(y)$ for each $y \in Y$. Then the monotone convergence theorem implies that $\int f(y)K(x,\mathrm{d}y) = \int \lim_n g_n(y)K(x,\mathrm{d}y) = \lim_n \int g_n(y)K(x,\mathrm{d}y)$. It follows that $\int f(y)K(x,\mathrm{d}y)$ is \mathscr{A} -measurable.

(c): If $f = \mathbf{1}_A$ for $A \in \mathcal{B}$, then

$$\int f(y)\nu(\mathrm{d}y) = \nu(A) = \int K(x,A)\mu(\mathrm{d}x) = \int \int f(y)K(x,\mathrm{d}y)\mu(\mathrm{d}x).$$

By the linearity of integral, the conclustion holds for any $[0, +\infty]$ valued simple \mathscr{B} -measurable function. Finally, the conclusion holds for any $[0, +\infty]$ -valued \mathscr{B} -measurable function on Y by the monotone convergence theorem.

Exercise 18 (Cohn (2013), Exercise 8.4.6). Let (X, \mathscr{A}) and (Y, \mathscr{B}) be measurable spaces, and let K be a kernel from (X, \mathscr{A}) to (Y, \mathscr{B}) such that $\sup \{K(x, Y), : x \in X\}$ is finite. For each x in X let $B \mapsto \overline{K}(x, B)$ be the restriction to \mathscr{B}_* of the completion of the measure $B \mapsto K(x, B)$. Finally, for each finite measure μ on (X, \mathscr{A}) let μK be the measure on (Y, \mathscr{B}) defined by $(\mu K)(B) = \int K(x, B)\mu(\mathrm{d}x)$.

- (a) $x, B \to \overline{K}(x, B)$ is a kernel from (X, \mathscr{A}_*) to (Y, \mathscr{B}_*) .
- (b) Suppose that μ is a finite measure on (X, \mathscr{A}) and that $\overline{\mu}$ and $\overline{\mu}\overline{K}$ are the restrictions to \mathscr{A}_* and \mathscr{B}_* of the completions of μ and μK . Then $\overline{\mu}\overline{K} = \overline{\mu}\overline{K}$, that is,

$$\overline{\mu K}(B) = \int \overline{K}(x, B) \overline{\mu}(\mathrm{d}x)$$

holds for each B in \mathscr{B}_* .

Proof.

(a): By definition, for any fixed $x \in X$, $B \mapsto \overline{K}(x,B)$ is a measure on (Y,\mathcal{B}) . We only need to prove that for each $B \in \mathcal{B}_*$, the function $x \mapsto \overline{K}(x,B)$ is \mathscr{A}_* -measurable. We apply [Cohn (2013), Exercise 8.4.1(a)] to prove this claim. Fix $B \in \mathscr{B}_*$. We shall prove that for each finite measure μ on (X,\mathscr{A}) there are \mathscr{A} -measurable functions $f_0, f_1 : X \to [0, +\infty]$ that satisfy $f_0 \leq \overline{K}(x,B) \leq f_1$ everywhere on X and $f_0 = f_1$ μ -almost everywhere.

From Cohn (2013), Exercise 2.4.7(a), the measure $\mu K : \mathscr{B} \to [0, +\infty]$ defined as $A \mapsto \int K(x, A)\mu(\mathrm{d}x)$ is well defined. Also $\int K(x, Y)\mu(\mathrm{d}x) \leq \int \sup_{x \in X} K(x, Y)\mu(\mathrm{d}x) = \sup_{x \in X} K(x, Y)\mu(X) < \infty$. Hence μK is a finite measure on \mathscr{B} . Since B is universally measurable, there exists $B_0, B_1 \in \mathscr{B}$ such that $B_0 \subset B \subset B_1$ and $\mu K(B_0) = \mu K(B_1)$. It follows that

$$\int K(x, B_1) - K(x, B_0)\mu(\mathrm{d}x) = 0.$$

Hence $K(x, B_1) = K(x, B_0)$ μ -almost everywhere. Note that $K(x, B_0) \leq \overline{K}(x, B) \leq K(x, B_1)$. This completes the proof.

(b): For $B \in \mathcal{B}$, $\overline{\mu K}(B) = \mu K(B)$ by definition, and

$$\overline{\mu}\overline{K}(B) = \int \overline{K}(x,B)\overline{\mu}(\mathrm{d}x) = \int K(x,B)\overline{\mu}(\mathrm{d}x) = \int K(x,B)\mu(\mathrm{d}x) = \mu K(B).$$

Thus $\overline{\mu K} = \overline{\mu} \overline{K}$ on \mathscr{B} . Hence they agree on \mathscr{B}_* .

References

Cohn, D. L. (2013). Measure Theory. Birkhäuser, New York, 2nd edition.

Dudley, R. M. (2002). Real Analysis and Probability. Cambridge University Press.