Temporizadores e Contadores DCA0119 - Sistemas Digitais

Mário Sérgio Cavalcante¹

 Departamento de Engenharia de Computação e Automação mariocavalcante@dca.ufrn.br

Natal - Rio Grande do Norte

Sumário

- Introdução
- 2 Temporizador/Contador 0: Modo Normal
 - TC0 Normal
- 3 TC0 Temporizador/Contador 0: Modo CTC
 - Exemplo 1
 - Exemplo 2
 - Exemplo 3
- 4 TC0 Modo PWM Rápido
 - Introdução
 - Registradores
 - Exemplo 1

Introdução

Temporizadores e Contadores (TCs)

- Utilizados para geração de sinais periódicos e eventos;
- Contam pulso de clock interno ou externo;
- Um importante exemplo de aplicação é o sinal PWM;
- O Atmega3289p possui 3 contadores independentes:
 - TC0 e TC2 de 8 bits;
 - TC1 de 16 bits.

Temporizadores e Contadores

Temporizador/Contador 0: Modo Normal

- Contador de 8 bits conta de 0 a 255;
- Contador de 16 bits conta de 0 a 65.535;
- Um "estouro" occore quando o contador atinge seu valor máximo permitido para contagem (TOP) e retorna para o valor inicial (normalmente 0).

$$t_{\text{estouro}} = \frac{(TOP + 1) \cdot \text{prescaler}}{f_{\text{osc}}}$$

Top - Valor máximo:

fosc - Frequência do Clock (Oscilador); prescaler - Divisor da frequência

Temporizadores e Contadores

■ Exemplo: Ao utilizar TC0 (8 bits) trabalhando com frequência do oscilador RC interno do Atmega328p (16 *MHz*) e sem divisão de frequência. Qual o tempo de estouro do contador?

$$t_{\text{estouro}} = \frac{(255+1)\cdot 1}{16\cdot 10^6} = 16 \ \mu s$$

$$\overline{t_{\text{estouro}}} = \frac{(TOP + 1) \cdot \text{prescaler}}{t_{\text{osc}}}$$

Top - Valor máximo:

*f*_{osc} - Frequência do Clock (Oscilador); prescaler - Divisor da frequência

Temporizadores e Contadores

Temporizador/Contador 0: Modo Normal

Exemplo: Ao utilizar TC1 (16 bits) trabalhando com frequência do cristal utilizado no arduino (16 MHz) e com divisão de frequência igual à 64. Qual o tempo de estouro do contador?

$$t_{\text{estouro}} = \frac{(65535 + 1) \cdot 64}{16 \cdot 10^6} = 262, 1 \text{ ms}$$

$$\overline{t_{ ext{estouro}}} = \frac{(TOP + 1) \cdot \text{prescaler}}{f_{ ext{osc}}}$$

Top - Valor máximo:

fosc - Frequência do Clock (Oscilador); prescaler - Divisor da frequência

Temporizador/Contador 0: Modo Normal

- Contador simples de 8 bits;
- Contador de eventos externos;
- Divisor do clock (prescaler) de até 10 bits;
- Gerador para 2 sinais PWM (pinos OC0A e OC0B);
- Gerador de onda quadrada em diversas frequências;
- 3 fontes independentes de interrupção (estouro/comparação);

Endereço	Nome	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	
0x35	TIFR0	-	ı	-	-	-	OCF0B	OCF0A	TOV0	
0x44	TCCR0A	COMOA1	COM0A0	COM0B1	COM0B0	-	-	WGM01	WGM00	
0x45	TCCR0B	FOC0A	FOC0B	-	-	WGM02	CS02	CS01	CS00	
0x46	TCNT0	Tempo	Temporizador/Contador 0 (8 bits) - Registrador de contagem							
0x47	OCR0A	Registi	rador de	comparaç	ão de sa	ída A do	Temporiz	ador/Con	tador 0	
0x48	OCR0B	Registi	Registrador de comparação de saída B do Temporizador/Contador 0							
0x6E	TIMSK0	-	-	-	-	-	OCIE0B	OCIE0A	TOIE0	

Registradores do TC0

TCNT0:

Timer/Counter 0 Register

- Registrador de 8 bits onde é realizada a contagem do TC0 pode ser lido ou escrito a qualquer tempo.
- OCR0A e OCR0B:

Output Compare 0 Register A e Output Compare 0 Register B

- Registrador de comparação A ou B de 8 bits, possui o valor que é continuamente comparado com o valor do contador (TCNT0).
- A igualdade pode ser utilizada para gerar uma interrupção ou uma forma de onda no pino OC0A ou OC0B.

Bit	7	6	5	4	3	2	1	0
TCCR0A	COM0A1	COM0A0	COM0B1	COM0B0	-	-	WGM01	WGM00
Lê/Escreve	L/E	L/E	L/E	L/E	L	L	L/E	L/E
Valor Inicial	0	0	0	0	0	0	0	0

Modo	WGM02	WGM01	WGM00	Modo de Operação TC	TOP	Atualização de OCR0A no valor:	Sinalização do bit TOV0 no valor
0	0	0	0	Normal	0xFF	Imediata	0xFF
1	0	0	1	PWM com fase corrigida	0xFF	0xFF	0x00
2	0	1	0	CTC	OCR0A	Imediata	0xFF
3	0	1	1	PWM rápido	0xFF	0x00	0xFF
4	1	0	0	Reservado	-	-	-
5	1	0	1	PWM com fase Corrigido	OCR0A	Top (OCR0A)	0xFF
6	1	1	0	Reservado	-	-	-
7	1	1	1	PWM Rápido	OCR0A	0x00	0xFF

Bit	7	6	5	4	3	2	1	0
TCCR0A	COM0A1	COM0A0	COM0B1	COM0B0	-	•	WGM01	WGM00
Lê/Escreve	L/E	L/E	L/E	L/E	L	L	L/E	L/E
Valor Inicial	0	0	0	0	0	0	0	0

Modo CTC

COM0A1	COM0A0	Descrição			
0	0	Operação normal do pino, OC0A desconectado.			
0	1	Mudança do estado de OC0A na igualdade de comparação.			
1	0 OC0A é limpo na igualdade de comparação.				
1	1 1 OCOA é ativo na igualdade de comparação.				

Bit	7	6	5	4	3	2	1	0
TCCR0A	COM0A1	COM0A0	COM0B1	COM0B0	-	-	WGM01	WGM00
Lê/Escreve	L/E	L/E	L/E	L/E	L	L	L/E	L/E
Valor Inicial	0	0	0	0	0	0	0	0

■ Modo PWM

COM0A1	COM0A0	Descrição
0	0	Operação normal do pino, OC0A desconectado.
0	1	WGM02 = 0: operação normal do pino, OC0A desconectado. WGM02 = 1: troca de estado do OC0A na igualdade de comparação.
1	0	OC0A é limpo na igualdade de comparação, OC0A é ativo no valor do TC mínimo (modo não invertido).
1	1	OC0A é ativo na igualdade de comparação, OC0A é limpo no valor do TC mínimo (modo invertido).

Bit	7	6	5	4	3	2	1	0
TCCR0B	FOC0A	FOC0B	-	-	WGM02	CS02	CS01	CS00
Lê/Escreve	E	E	L	L	L/E	L/E	L/E	L/E
Valor Inicial	0	0	0	0	0	0	0	0

CS02	CS01	CS00	Descrição
0	0	0	Sem fonte de clock (TC0 parado)
0	0	1	Clock/1 - Sem prescaler
0	1	0	Clock/8 (Prescaler de 8)
0	1	1	Clock/64 (Prescaler de 64)
1	0	0	Clock/256 (Prescaler de 256)
1	0	1	Clock/1024 (Prescaler de 1024)
1	1	0	Clock externo no Pino T0. Contagem de borda de descida
1	1	1	Clock externo no Pino T0. Contagem na borda de subida

Bit	7	6	5	4	3	2	1	0
TIMSK0	-	-			-	OCIE0B	OCIE0A	TOIE0
Lê/Escreve	L	L	L	L	L	L/E	L/E	L/E
Valor Inicial	0	0	0	0	0	0	0	0

- Bit 2 OCIE0B Timer/Counter 0 Output Compare Match B Interrupt Enable
 - A escrita 1 neste bit ativa a interrupção do TC0 na igualdade de comparação com o registrador OCR0B
- Bit 1 OCIE0A Timer/Counter 0 Output Compare Match A Interrupt Enable
 - A escrita 1 neste bit ativa a interrupção do TC0 na igualdade de comparação com o registrador OCR0A
- Bit 0 T0IE0 Timer/Counter 0 Overflow Interrupt Enable
 - A escrita 1 neste bit ativa a interrupção por estouro do TC0

TCO - Normal

- É o modo mais simples de operação;
- Contagem crescente no registrador TCNT0 com valor da contagem podendo ser alterado por programação;
- Como é um contador de 8 bits sua contagem se dá de 0 a 255 retornando a 0 e fechando um ciclo de forma contínua;
- Ocorre estouro quando retorna para 0 e o bit sinalizador de estouro (TOV0) é colocado em 1;
- Quando habilitada, a interrupção é gerada no estouro.

TC0 - Modo Normal - Exemplo (Temporizador)

2.2: Nota:

Onde lê-se:

T= 128 μs deveria ser:

$$T = \frac{1}{f} = \frac{1}{15.625} = 64 \ \mu s$$

$$t_{\rm estouro} = 256 \cdot T$$

$$t_{\rm estouro} = 256 \cdot 64 \cdot 10^{-6}$$

$$t_{\rm estouro} = 16,384 \ ms$$

TC0 - Modo Normal - Exemplo (Configurações)

Configurações:

- Para o modo normal, bits WGM02:0 = 000.
- Vamos setar os prescaler: 1024 → Precisamos configurar o registrador TCCR0B, mais precisamente Bits CS02:0 = 101;
- Os bits COM0A1:0 e COM0B1:0 = 00 no registrador TCCR0A para desconectarem os pinos OC0A e OC0B do TC0.
- Bit TOIE0 = 1 no registrador TIMSKO para habilitar a interrupção no estouro.

Code Exemplo

```
#include <avr/io.h>
    #include <avr/interrupt.h>
 3
    #define F CPU 16000000UL
    #define LFD PB5
                               //LED em PB5
   ⊟int main(){
 6
        DDRB = (1<<LED); //Pino do LED como saída
        PORTB &= ~(1<<LED); //Apaga LED
8
        TCCR0B = (1 << CS02) | (1 << CS00); //TC0 em prescaler de 1024
 9
        TCCROA = 0; //Configurando o modo normal, OCROA e OCROB desconectado
10
        TIMSKO = 1 << TOIEO; //Habilita interrupção do TCO
11
        sei(): //Habilita interrupção geral
12
        while(1): //Laco Infinito
13
    //Tratamento da interrupção do estouro de TCO
14
   □ISR(TIMER0_OVF_vect){ //Para F_CPU em 16 MHz, estouro em 16,384 ms
16
        PORTB ^= 1<<LED; //Troca estado do LED
17
```

TC0 - Temporizador/Contador 0: Modo CTC

Registradores do TC0 - Modo CTC

TCNT0:

Timer/Counter 0 Register

- Registrador de 8 bits onde é realizada a contagem do TC0 pode ser lido ou escrito a qualquer tempo.
- OCR0A e OCR0B:

Output Compare 0 Register A e Output Compare 0 Register B

- Registrador de comparação A ou B de 8 bits, possui o valor que é continuamente comparado com o valor do contador (TCNT0).
- A igualdade pode ser utilizada para gerar uma interrupção ou uma forma de onda no pino OC0A ou OC0B.

TCO0 - Modo CTC

- CTC (Clear Time on Compare): Limpeza do contador na igualdade de comparação;
- O contador TCNT0 é zerado quando é igual ao valor de OCR0A (Top);
- O regitrador OCR0A é usado para manipular a resolução do TC0;
- Permite configura os pinos OC0A e OC0B para gerar ondas quadradas;
- Uma interrupção pode ser gerada cada vez que o contador atinge o valor de comparação (OCR0A ou OCR0B).

TC0 - Modo CTC - Cálculo de frequência

$$f_{
m OCnx} = rac{f_{
m Osc}}{2 \cdot (
m OCR0A + 1) \cdot
m prescaler}$$
 $m OCR0A = rac{f_{
m Osc}}{2 \cdot
m prescaler \cdot f_{
m OCnx}} - 1$

f_{OCnx} - Frequência Gerada;
 f_{osc} - Frequência do Clock (Oscilador);
 prescaler - Divisor da frequência
 OCROA - Valor do registrador

TC0 - CTC - Exemplo 1: Pino OC0A

```
#include <avr/io.h>
   □int main(){
 3
          DDRD = 0b01100000;
 4
          PORTD = 0b10011111;
 5
          TCCR0A = (1 << COM0A0) | (1 << WGM01);
 6
          TCCR0B = (1 << CS02) | (1 << CS00);
          OCR0A = 200;
 8
                                               38.87 Hz
 9
          while(1);
                                               0.000 Hz
10
                                               0.000 Hz
                                    atmega328-1
                                               0.000 Hz
                                                Expand
```

TC0 - CTC - Exemplo 1: Pino OC0A

```
#include <avr/io.h>
   □int main(){
 3
         DDRD = 0b01100000; // OCOA e OCOB = (PD5 e PD6) como saída
 4
         PORTD = 0b10011111; // OCOA e OCOB = 0, Hab. pull-ups dos demais pinos
5
         TCCR0A = (1 << COM0A0) | (1 << WGM01); // OC0A troca de estado
6
        TCCROB = (1 << CSO2) | (1 << CSO0); //TCO com prescaler = 1024
 7
        OCROA = 200; //Máximo valor de contagem do registrador TCNT0
8
9
        while(1); // Laço Infinito
10
```

TCCR0A TCCR0B

```
f_{
m OCOA} = rac{f_{
m Osc}}{2 \cdot {
m prescaler} \cdot ({
m OCR0A} + 1)}
f_{
m OCOA} = rac{16000000}{2 \cdot 1024 \cdot (1 + 200)}
f_{
m OCOA} = 38,87 \; Hz \Rightarrow T = 25,72 \; ms
```


TC0 - CTC - Exemplo 2: Pinos OC0A e OC0B

```
#include <avr/io.h>
   □int main(){
 3
                0b01100000; // OCOA e OCOB = (PD5 e PD6) como saída
 4
         PORTD = 0b10011111; // OCOA e OCOB = 0, Hab. pull-ups dos demais pinos
 5
         TCCRØA = (1 << COMØAØ) | (1 << COMØBØ) | (1 << WGMØ1); // OCØA troca de estado
6
         TCCR0B = (1 << CS02) | (1 << CS00); //TC0 com prescaler = 1024
 7
         OCROA = 200; //Máximo valor de contagem do registrador TCNTO
8
         OCROB = 50: // Deslocamento de OCOB em relação a OCOA
9
         while(1); // Laco Infinito
10
```

TCCR0A TCCR0B

- TCNT0 estoura e retorna para zero quando igual a OC0A.
 OC0A troca de estado.
- OC0B troca de estado quando igual a OCR0B.

TC0 - Exemplo 2: Pinos OC0A e OC0B

Exemplo 3 - CTC: Variando Tempo de Estouro

Exemplo 3 - CTC: Variando Tempo de Estouro

```
279
     int main(void)
         unsigned char ValAdc; //Armazena o valor do ADC - (apenas 8 bits)
DDRD = 0b01100000; //OCOB e OCOA (PD5 e PD6) como saída
281
         PORTD = 0b10011111; //OCOB e OCOA = 0. Hab. pull-ups dos demais pinos
282
         TCCRØA = (1<<COMØAØ) | (1 << WGMØ1); //OCØA troca estado na igualdade de comparação
283
         TCCR0B = (1 << CS02) | (1 << CS02) ;//TC0 com prescaler = 1024
284
         OCROA = 0; //Valor inicial do registrador OCOA
285
286
         adcBegin(AVCC,0x01); // Inicia ADC
         adcChannel(ADC0); // Seleciona canal do ADC
287
         UART Init();
                      // Inicia a transmissão (USART)
288
         while(1){
289
290
             ValAdc = (adcRead() >> 2); //Realiza conversão e utiliza 8 bits mais significativos
291
             OCROA = ValAdc; //Registrador OCROA recebe o valor
             uartDec1B(ValAdc): //Ler e envia valor do A/D
             uartString("\r\n"); //e
293
294
295
```

3.1: Exemplo:

O Registrador OCR0A (Top da contagem) recebe os oito bits mais significados do conversor A/D. O período de estouro e, consequentemente, a frequência do sinal gerado OC0A mudam conforme se movimenta o potenciômetro e altera a tensão aplicada ao A/D.

- A geração de sinais PWM é outra função importante dos Temporizadores/Contadores.
- O uso desses sinais é baseado no conceito de valor médio de uma onda períodica.
- O tempo em que se encontra em nível lógico alto é chamado de ciclo ativo (Duty Cicle);
- O valor médio de m sinal PWM pode ser encontrado utilizando o valor máximo da tensão e a razão entre período que se encontra ativo e o período total do sinal.

$$V_{
m m\acute{e}dio} = rac{T_{
m ativo}}{T} \cdot V_{
m MAX}$$

Exemplo: se o sinal digital tem variação de 0 a 5 V, um ciclo ativo de 50 % corresponde a um valor médio de 2,5 V, enquanto um ciclo ativo de 75 % corresponderia a 3,75 V.

- O contador (Registrador TNT0) conta de zero até o valor máximo e volta a zero.
- No modo invertido, o pino OC0x é posto em 1 no valor mínimo do contador e posto em 0 na igualdade entre TCNT0 e OCR0x. O processo é inverso quando em saída invertida;
- O registrador OCR0A determina o ciclo ativo do sinal PWM no pino OC0A, quando habilitado;
- O registrador OCR0B determina o ciclo ativo do sinal PWM no pino OC0B, quando habilitado;

$$t_{
m estouro} = rac{({
m TOP} + 1) \cdot {
m prescaler}}{f_{osc}}$$

$$f_{\text{PWM}} = \frac{1}{t_{\text{estouro}}}$$

$$f_{\text{PWM}} = \frac{f_{\text{osc}}}{(\text{TOP} + 1) \cdot \text{prescaler}}$$

$$\left[\text{Ciclo Ativo} = \frac{OCR0x + 1}{\text{Top} + 1} \cdot 100 \% \right]$$

- O valor de comparação OCR0x pode ser alterado, gerando um PWM variável.
- O valor zero para OCR0x produz um curto ciclo ativo e o valor máximo (255) deixa o sinal PWM em 0 ou 1, conforme foi habilitada a saída, invertida ou não;

Bit	7	6	5	4	3	2	1	0
TCCR0A	COM0A1	COM0A0	COM0B1	COM0B0	-	-	WGM01	WGM00
Lê/Escreve	L/E	L/E	L/E	L/E	L	L	L/E	L/E
Valor Inicial	0	0	0	0	0	0	0	0

COM0A1	COM0A0	Descrição
0	0	Operação normal do pino, OC0A desconectado.
0	1	WGM02 = 0: operação normal do pino, OC0A desconectado.
U		WGM02 = 1: troca de estado do OC0A na igualdade de comparação.
,	0	OC0A é limpo na igualdade de comparação,
1	U	OC0A é ativo no valor do TC mínimo (modo não invertido).
	1	OC0A é ativo na igualdade de comparação,
1	1	OC0A é limpo no valor do TC mínimo (modo invertido).

Modo 0

Bit	7	6	5	4	3	2	1	0
TCCR	OA COMOA1	COM0A0	COM0B1	COM0B0	-	-	WGM01	WGM00
Lê/Escre	eve L/E	L/E	L/E	L/E	L	L	L/E	L/E
Valor Ini	cial 0	0	0	0	0	0	0	0
Bit	7	6	5	4	3	2	1	0
TCCR	OB FOCOA	FOC0B	-	-	WGM02	CS02	CS01	CS00
Lê/Escre	eve E	E	L	L	L/E	L/E	L/E	L/E
Valor Ini	cial 0	0	0	0	0	0	0	0
WGM02	WGM01	WGM00	Modo de Operação TC		TOP	Atualização de OCR0A no valor:		Sinal : TO
0	0	0	Normal		0xFF	Imediata		
0	0	1	_	PWM com fase corrigida		0xFF		
0	1	0	_	CTC		Imediata		
0	1	1		PWM rápido		0x00		
1	0	0		Reservado		-		
1	0	1		PWM com fase Corrigido		Top (OCR0A)		
1	1	0		Reservado		-		
1	1	1	PWM Rápido		OCR0A	0x00		

Bit	7	6	5	4	3	2	1	0
TCCR0B	FOC0A	FOC0B		-	WGM02	CS02	CS01	CS00
Lê/Escreve	E	E	L	L	L/E	L/E	L/E	L/E
Valor Inicial	0	0	0	0	0	0	0	0

CS02	CS01	CS00	Descrição
0	0	0	Sem fonte de clock (TC0 parado)
0	0	1	Clock/1 - Sem prescaler
0	1	0	Clock/8 (Prescaler de 8)
0	1	1	Clock/64 (Prescaler de 64)
1	0	0	Clock/256 (Prescaler de 256)
1	0	1	Clock/1024 (Prescaler de 1024)
1	1	0	Clock externo no Pino T0. Contagem de borda de descida
1	1	1	Clock externo no Pino T0. Contagem na borda de subida

Modo Normal - Não Invertido


```
TCCR0A = (1 << COM0A1) | (1 << WGM01)| (1 << WGM00); // OCOA troca de estado TCCR0B = <math>(1 << CS02) | (1 << CS00); //TC0 com prescaler = 1024
OCR0A = 63; //Máximo valor de contagem do registrador TCNT0
```

Modo Invertido

OCRØA = 63:

TCCR0B = (1 << CS02) | (1 << CS00);


```
#include <avr/io.h>
pint main(){

DDRD = 0b01100000; // OC0A e OC0B = (PD5 e PD6) como saída

PORTD = 0b10011111; // OC0A e OC0B = 0, Hab. pull-ups dos demais pinos

TCCR0A = (1 << COM0A1) | (1 << WGM01) | (1 << WGM00);

TCCR0B = (1 << CS02) | (1 << CS00);

OCR0A = 63;

while(1); // Laço Infinito

}</pre>
```

$$t_{
m estouro} = rac{({
m TOP} + 1) \cdot {
m prescaler}}{f_{
m osc}} = rac{256 \cdot 1.024}{16.000.000} = 16,384 \; ms$$
 $t_{
m PWM} = rac{1}{t_{
m estouro}} = rac{1}{16,384 \cdot 10^{-3}} = 61,035 \; Hz$

Ciclo Ativo =
$$\frac{OCR0A + 1}{Top + 1} \cdot 100 \% = \frac{63 + 1}{255 + 1} = \frac{64}{256} = 25 \% \Rightarrow 4,09 \text{ ms}$$

 $V_{\text{max}} = 0,25 \cdot 5 \ V = 1,25 \ V$

