For a list $d = (d_1, \ldots, d_k)$ of nonnegative integers, define the *factorial sum* of d to be the sum $\sum_{j=1}^k d_j j!$. Say that the list $d = (d_1, \ldots, d_k)$ is *proper* provided that for each $j, d_j \leq j$ and $d_k \neq 0$. A factorial sum is *proper* if the associated list is proper. The purpose of this problem is to prove: Every natural number can be represented uniquely as a proper factorial sum.

- 1. Prove that every natural number can be represented as a proper factorial sum. Suppose $n \in \mathbb{N}$. We must show there exists a list $(d_1, \ldots, d_k) \in \mathbb{Z}_{\geq 0}, d_k \neq 0$ such that $n = \sum_{j=1}^k d_j j!$. By the principal of mathematical induction for all $m \in \mathbb{N}$ if m < n, then there exists a list $(d_1, \ldots, d_l) \in \mathbb{Z}_{\geq 0}, d_l \neq 0$ such that $n = \sum_{j=1}^l d_j j!$. We have two cases:
 - Assume n = 1. Then 1 = 1!.
 - Assume n > 1. Then we have two cases, n is odd and n is even.
 - Assume n is odd. By definition, $n=2p+1, p\in\mathbb{N}$. Since n-1< n then by the induction hypothesis there exists $(d_1,\ldots,d_l)\in\mathbb{Z}_{\geq 0}, d_l\neq 0$ such that $n-1=\sum_{j=1}^l d_j j!$. Therefore since $n=2p+1, 2p=\sum_{j=1}^l d_j j!$. Since the only factorial that is not a multiple of 2 is 1!, then $d_1=0$. Therefore the proper list representing n is $(1,\ldots,d_l)$.
 - Assume n is even. Since n-1 < n then by the induction hypothesis there exists $(d_1, \ldots, d_l) \in \mathbb{Z}_{\geq 0}, d_l \neq 0$ such that $n-1 = \sum_{j=1}^l d_j j!$. To construct the proper list for n, append a 0 to the end of the list such that we have the list $(d_1, \ldots, d_k, 0)$, then find the first index i in the list such that $i \nmid (d_i + 1)$. Since by definition n-1 is odd, and $2 \mid (1+d_1) = (1+1)$, then we're guaranteed to have this process find an index. Then there are two cases, i < k, i = k. Assume i < k, then the list representing n would have all entries up to i be set to 0, then increment d_i by 1: $(0, \ldots, d_i + 1, \ldots, d_k)$. If k = i, then the list would be 0 for the first k terms, and the k+1st term would be 1, thus satisfying the definition of a proper list.
- 2. Prove that if two proper lists have the same factorial sum then the lists are equal. Suppose there exists $n \in \mathbb{N}$, and list $(d_1, \ldots, d_k), (e_1, \ldots, e_l) \in \mathbb{Z}_{\geq 0}$ such that $\sum_{j=1}^k d_j j! = \sum_{i=1}^l e_i i! = n$. We must show that $(d_1, \ldots, d_k) = (e_1, \ldots, e_l)$. By the principal of mathematical induction for all $m \in \mathbb{N}$ if m < n then there exists a unique proper list (m_1, \ldots, m_s) such that $m = \sum_{r=1}^s m_r r!$. We have two cases:
 - Assume n = 1. Since 1 = 1 * 1!, and the list representing that is (1), then the only proper lists of length 1 are (1), thus (1) is a unique representation of 1.
 - Assume n > 1. Then $n = \sum_{j=1}^k d_j j! = \sum_{j=1}^{k-1} d_j j! + d_k k!$. Let $m = n d_k k!$. We now have two cases:
 - Assume $n d_k k! = 0$. Then $n = d_k k!$, which means that the list $d = (0, \ldots, 0, d_k)$, which uniquely represents n as a proper factorial sum.
 - Assume $n d_k k! > 0$. Then since $n d_k k! < n$, by the induction hypothesis there exists a unique proper list (m_1, \ldots, m_r) such that $n d_k k! = \sum_{r=1}^s m_r r!$.

Therefore $\sum_{r=1}^{s} m_r r! = \sum_{j=1}^{k-1} d_j j!$. Therefore since the two sums are equal, and there's a unique representation for m, then $k!d_k + \sum_{r=1}^{s} m_r r!$ uniquely represents a natural number. Therefore $n = n - k!d_k + k!d_k = \sum_{r=1}^{s} m_r r! + k!d_k = \sum_{j=1}^{k-1} d_j j! + k!d_k = \sum_{j=1}^{k} d_j j!$.

A similar argument can be had for $\sum_{i=1}^{l} e_i i!$. Therefore both lists uniquely represent n. Thus they are equal.