Eau liquide et eau solvant

Table des matières

Propriétés de l'eau liquide		s de l'eau liquide
1.1	Carac	téristiques expérimentales de la molécule H_2O
	1.1.1	Géométrie
	1.1.2	Caractéristiques éléctriques
1.2	Eau liquide	
	1.2.1	Existance de la liaison hydrogène
	1.2.2	Propriétés électriques de l'eau liquide
Eau	solva	${f nt}$
2.1	Solution	on aqueuse
2.2	Eau es	st un solvant ionisant et dispersant
	2.2.1	Rôle ionisant (moment dipolaire du solvant)
	2.2.2	Rôle dispersant (constante diélectrique élevée du solvant)
2.3	Solvat	ation
	2.3.1	Définition
	2.3.2	Interactions ions-dipôles
	2.3.3	Liaison hydrogène
	2.3.4	Liaison covalente de coordination
2.4	Solvol	yse (hydrolyse)
	2.4.1	Réaction tôtale
	2.4.2	Réaction limitée
2.5	Autop	protolyse de l'eau
	1.1 1.2 Eau 2.1 2.2 2.3	1.1 Carac 1.1.1 1.1.2 1.2 Eau li 1.2.1 1.2.2 Eau solvai 2.1 Soluti 2.2 Eau e 2.2.1 2.2.2 2.3 Solvat 2.3.1 2.3.2 2.3.3 2.3.4 2.4 Solvol 2.4.1 2.4.2

L'eau est le solvant le plus utilisé tant que dans le domaine industriel que dans la vie courante grâce à :

- Son abondance naturelle
- Son rôle de constituant essentiel de la matière vivante
- Ses caractéristiques structurales lui conférant des propriétés spécifiques .

1 Propriétés de l'eau liquide

1.1 Caractéristiques expérimentales de la molécule H_2O

1.1.1 Géométrie

La molécule d'eau est Coudé où tétraédrique

- $\alpha = HOH = 104,5^{\circ}$
- α reste inférieur à $109^{\circ}28'$ du faite de la la répulsion des doublets non liants
- Les liaisons OH sont courtes $l_{O-H} = 96pm$

1.1.2 Caractéristiques éléctriques

L'eau possède un fort moment dipôlaire $\mu=1,85D \text{ avec } 1D=\frac{1}{3}10^{-29}C.m$

- $\overrightarrow{\mu_1} = \delta e.\overrightarrow{OH}$
- $\overrightarrow{\mu_2} = \delta e.\overrightarrow{OH}$ avec $\mu_1 = \mu_2$ et $0 \le \delta \le 1$

Le moment dipôlaire traduisant une dissymetrie de la répartition des charges électriques . Le barycentre des charges négatives distinct du barycentre des charges positives . H_2O est polaire .

1.2 Eau liquide

La molécule d'eau n'est jamais isolée mais en interaction avec les molécules voisins dans le corps pur .

1.2.1 Existance de la liaison hydrogène

ullet L'existance d'une liaison polarisée $O\leftarrow H$ au voisinage d'un atome O porteur de doublets libres permet la formation d'une liaison H intermoléculaire

liaison H-intermolécolaire
$$O - - H - \overline{O}$$

La liaison H est l'interaction électrostatique entre dipôle permanent $(\stackrel{\delta^-}{O}-\stackrel{\delta^+}{H})$ et dipôle induit (déformation du doublet libre de \overline{O} voisin) .

• La liaison H augmente les constantes physiques de H_2O (point d'ébullition, température de changement d'état ...)

1.2.2 Propriétés électriques de l'eau liquide

 \bullet L'eau liquide possède une permittivité relative ε_r (constante diélectrique) particulièrement élevée

$$\varepsilon_r = 80, 1, \text{à } 25^{\circ}c$$

• L'eau liquide est légèrement conductrice, preuve de l'existence des traces d'ions .

2 Eau solvant

2.1 Solution aqueuse

Solution aqueuse (notation : aq) est une solution obtenue en dissolvant dans l'eau liquide (solvant) diverses substances chimiques (solutés) dans les conditions usuelles de température et de pression .

- La mise en solution se traduit par une modification des des propriétés structurales et énérgetiques . Le bilan de cette mise en solution se traduit par un double échange énergétique :
 - ▶ une énergie à fournir pour séparer les différentes entités du soluté :phase d'ionisation et de dispersion.
 - ▶ une énergie libérée par stabilisation du système lors de la formation de nouvelles interactions solvant-soluté :phase de solvatation et de solvolyse .
- Remarque : on distingue entre :
 - ► composé hydrophile : composé moléculaire ou polarisable qui sont trés solubles dans l'eau (NaCl,KCl...)
 - ▶ composé hydrophobe : composé moléculaire apolaire qui sont insoluble dans l'eau

2.2 Eau est un solvant ionisant et dispersant

2.2.1 Rôle ionisant (moment dipolaire du solvant)

L'eau liquide, ayant un fort moment dipolaire, crée un champ éléctrique suffisant pour ioniser les molécules très polarisables t qHCl

$$H^{\delta+} - Cl^{\delta-} \stackrel{H_2O}{\longrightarrow} (H^+ + Cl^-)_{aq}$$
: paire d'ions

les ions H^+, Cl^- sont sensiblement à la même distance que H, Cl

2.2.2 Rôle dispersant (constante diélectrique élevée du solvant)

La constante diéléctrique trés élevée de l'eau ($\varepsilon_r = 80$ à $20^{\circ}c$ et 78, 3 à $25^{\circ}c$) provoque un net affaiblissement des interactions électrostatiques entre les ions (facteur de division $\varepsilon_r = 80$)

$$\overrightarrow{f}_{eau} = \frac{q \cdot (-q)}{4\pi \varepsilon_0 \varepsilon_r r^2} \overrightarrow{u}$$

$$\overrightarrow{f}_{air} = \frac{q \cdot (-q)}{4\pi \varepsilon_0 r^2} \overrightarrow{u}$$

$$\frac{f_{air}}{f_{eau}} = \varepsilon_r \Rightarrow f_{eau} = \frac{f_{air}}{\varepsilon_r} = \frac{f_{air}}{80}$$

Dans l'eau (solvant polaire) (généralement solvant polaire $\varepsilon_r > 15$) les ions existent sous forme dispersés dans la solution . Par contre dans un solvant de faible ε_r les ions restent assoccié sous forme de paires d'ions où d'agrégats d'ions .

$$H^{\delta+} - Cl^{\delta-} \xrightarrow{H_2O} (H^+ + Cl^-)_{aq}$$
: phase d'ionisation $(H^+ + Cl^-)_{aq} \to H^+_{aq} + Cl^-_{aq}$: phase de dispersion

2.3 Solvatation

2.3.1 Définition

Diverses associations entre soluté et molécules de solvant, le soluté conservant son individualité . Dans le cas de l'eau on dit hydratation . Il existe 3 modes de solvatation

2.3.2 Interactions ions-dipôles

- Les anions et les cations s'entourent de molécules d'eau sur un ou plusieurs couches dites d'hydratation .
- les dipôles s'orientent radialement , la partie négative vers le cation et la partie positive vers l'anion

 Na^+ s'entourent de 4 à 6 molécules d'eau $Na^+(H_2O)$ 6 Cl^- s'entourent de 1 à 4 molécules d'eau l'organisation spatiale est régie par un champ crée par l'ion

2.3.3 Liaison hydrogène

Cas de F^-

La petitesse de l'ion lui permet une distance d'approche trés faible des molécules d'eau et donc formation de liaison hydrogène

2.3.4 Liaison covalente de coordination

Les métaux de transitions possèdent des orbitales d partiellement vides susceptibles d'accueillir les doublets d'électrons non liants de H_2O , il se forme des liaisons de coordination entre le centre positif et les molécules d'eau (légands)

© Boukaddid Cours de chimie sup TSI

2.4 Solvolyse (hydrolyse)

Elle traduit une coupure des liaisons σ sous l'action du solvant , la reaction peut être tôtale ou limitée .

2.4.1 Réaction tôtale

Il y a disparition au moins d'un réactif

$$H - Cl \stackrel{H_2O}{\to} H_{aq}^+ + Cl_{aq}^-$$

 H^+ n'existe pas dans l'eau , il réagit par capture d'un doublet électronique de l'oxygène de la molécule d'eau .

$$H_2O + H^+ \to H_3O^+$$

l'hydrolyse de HCl conduit à l'acide chlorhydrique $(H_3O^+ + Cl^-)$

2.4.2 Réaction limitée

Dans l'état final on aura des quantités des réactifs en équilibre avec des quantités des produits

$$CH_3COOH + H_2O \rightleftharpoons CH_3COO^- + H_3O^+$$

 CH_3COO^- : ion éthanoate Il s'agit d'une coupure de la liaison O-H suivi de l'hydratation .

Conclusion : La solvolyse modifie les propriétés du soluté et du solvant de manière importante par l'apparition de nouvelles éspèces .

2.5 Autoprotolyse de l'eau

L'eau pure conduit faiblement du courant électrique ce qui prouve la présence des ions dans l'eau pure par réaction d'autoprotolyse

$$H_2O + H_2O \rightleftharpoons H_3O^+ + HO^-$$

donc l'eau est un solvant amphiprotique (libérant ou capturant du proton)