

PRESENTADO POR: TORRES JULIAN

FECHA **2025-10-20**

Hospital Urgency System

HOSPITAL WAITING SYSTEM

- 1. Register New Patient
- 2. Attend Next Patient
- 3. View Waiting Queue
- 4. View Attended Patients
- 5. Undo Last Attendance
- 6. Exit

Enter your choice (1-6):

Problema y solucion

PROBLEMA

- Hospital atiente a aprox 100 pacientes
- Las llegadas son impredecibles
- Existen niveles dentro de las urgencias

SOLUCION Sistema de triaje Paciente llega Priorities Queue Cola de espera Stack (LIFO) Historial de atendidos Dynamic Array Registro completo

Arquitectura del Sistema

Priority Queue: Binary Min-Heap

ESTRUCTURA DEL HEAP

Invariante: parent ≤ children Representación: Array contiguo

```
¿Por qué O(\log n)?

Altura del árbol = \lceil \log_2(n) \rceil

Operaciones \leq altura

= O(\log n)
```

OPERACIONES CLAVE

```
1  # Inserción - O ( log n )
2  heapq.heappush(queue, patient)
3  # 1. Add to end
4  # 2. Bubble up ( compare with parent )
5  # 3. Stop when parent <= current
6
7  # Extracción - O ( log n )
8  patient = heapq.heappop(queue)
9  # 1. Remove root ( minimum )
10  # 2. Move last to root
11  # 3. Bubble down ( compare with children )</pre>
```

Stack and Dynamic Array


```
Crecimiento GeomÉtrico

Nueva capacidad = actual * 1,125

Permite O(1) amortizado en append.
```

Método de Elementos Finitos

COMPARACIÓN DE ALTERNATIVAS

Operación	Heap	Array Ordenado	Array Desordenado
Insertar Paciente	$O(\log n)$	O(n)	O(1)
Atender Próximo	$O(\log n)$	O(1)	O(n)
Ver Mínimo	O(1)	O(1)	O(n)
Caso Mixto*	$O(\log n)$	O(n)	O(n)
*Workload típico: inserciones y extracciones intercaladas			

FLUJO DE OPERACIÓN Demostración del sistema

- 1. Registrar: Mara (RED)
- 2. Registrar: Juan (BLUE)
- 3. Registrar: Ana (ORAN GE)
- 4. Ver cola de espera
- 5. Atender (RED) Mara
- 6. Ver cola de espera

Muchas gracias

Correos:

jutorresz@unal.edu.co

Repositorio:

https://github.com/Jul1a nT/Proj1_Urgency-System