Model Selection

Peter von Rohr

20.04.2020

Why Statistical Modelling?

Some people believe, they do not need statistics. For them it is enough to look at a diagram

Statistical Modelling Because . . .

Two types of dependencies between physical quantities

- 1. deterministic
- 2. stochastic

Deterministic Versus Stochastic

Statistical Model

- stochastic systems contains many sources of uncertainty
- statistical models can handle uncertainty
- components of a statistical model
 - response variable *y*
 - \triangleright predictor variables x_1, x_2, \dots, x_k
 - error term e
 - function m(x)

How Does A Statistical Model Work?

- ▶ predictor variables $x_1, x_2, ..., x_k$ are transformed by function m(x) to explain the response variable y
- uncertainty is captured by error term.
- ▶ as a formula, for observation *i*

$$y_i = m(x_i) + e_i$$

Which predictor variables?

Question, about which predictor variables to use is answered by model selection

Why Model Selection

- Many predictor variables are available
- Are all of them relevant?
- ▶ What is the meaning of relevant in this context?

Example Dataset

Animal	Breast Circumference	Body Weight	RandPred
1	176	471	183
2	177	463	178
3	178	481	182
4	179	470	178
5	179	496	178
6	180	491	178
7	181	518	183
8	182	511	178
9	183	510	181
10	184	541	183

No Relevance of Predictors

Relevance of Predictors

Fitting a Regression Model

```
##
## Call:
## lm(formula = `Body Weight` ~ RandPred, data = tbl_reg_aug)
##
## Residuals:
##
      Min
            10 Median
                             30
                                    Max
## -35.574 -20.200 7.236 11.519 34.426
##
## Coefficients:
             Estimate Std. Error t value Pr(>|t|)
##
## (Intercept) -236.775 608.880 -0.389 0.708
## RandPred 4.062
                           3.379 1.202 0.264
##
## Residual standard error: 24.27 on 8 degrees of freedom
## Multiple R-squared: 0.153, Adjusted R-squared: 0.04716
## F-statistic: 1.445 on 1 and 8 DF, p-value: 0.2636
```

Fitting a Regression Model II

```
##
## Call:
## lm(formula = `Body Weight` ~ `Breast Circumference`, data = tbl reg aug)
##
## Residuals:
##
       Min
                10 Median
                                 30
                                        Max
## -17.3941 -6.5525 -0.0673 9.3707 13.2594
##
## Coefficients:
                        Estimate Std. Error t value Pr(>|t|)
##
## (Intercept)
                       -1065.115 255.483 -4.169 0.003126 **
## `Breast Circumference` 8.673 1.420 6.108 0.000287 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 11.08 on 8 degrees of freedom
## Multiple R-squared: 0.8234, Adjusted R-squared: 0.8014
## F-statistic: 37.31 on 1 and 8 DF, p-value: 0.000287
```

Multiple Regression

```
##
## Call:
## lm(formula = `Body Weight` ~ `Breast Circumference` + RandPred,
      data = tbl reg aug)
##
##
## Residuals:
##
      Min 10 Median 30
                                      Max
## -13.1363 -3.0404 0.7548 4.3149 14.3068
##
## Coefficients:
##
                        Estimate Std. Error t value Pr(>|t|)
## (Intercept)
                      -1492.865 295.360 -5.054 0.001473 **
## `Breast Circumference` 8.304 1.202 6.909 0.000229 ***
## RandPred
                           2.742 1.306 2.100 0.073839 .
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 9.278 on 7 degrees of freedom
## Multiple R-squared: 0.8917, Adjusted R-squared: 0.8607
## F-statistic: 28.81 on 2 and 7 DF, p-value: 0.0004183
```

Which model is better?

Why not taking all predictors?

- Additional parameters must be estimated from data
- Predictive power decreased with too many predictors (cannot be shown for this data set, because too few data points)
- ► Bias-variance trade-off

Bias-variance trade-off

Assume, we are looking for optimum prediction

$$s_i = \sum_{r=1}^q \hat{\beta}_{j_r} x_{ij_r}$$

with q relevant predictor variables

ightharpoonup Average mean squared error of prediction s_i

$$MSE = n^{-1} \sum_{i=1}^{n} E \left[(m(x_i) - s_i)^2 \right]$$

where m(.) denotes the linear function of the unknown true model.

Bias-variance trade-off II

MSE can be split into two parts

$$MSE = n^{-1} \sum_{i=1}^{n} (E[s_i] - m(x_i))^2 + n^{-1} \sum_{i=1}^{n} var(s_i)$$

where $n^{-1} \sum_{i=1}^{n} (E[s_i] - m(x_i))^2$ is called the squared **bias**

- ▶ Increasing q leads to reduced bias but increased variance $(var(s_i))$
- ightharpoonup Hence, find s_i such that MSE is minimal
- ▶ Problem: cannot compute MSE because m(.) is not known
- \rightarrow estimate MSE

Mallows C_p statistic

- ▶ For a given model \mathcal{M} , $SSE(\mathcal{M})$ stands for the residual sum of squares.
- ► MSE can be estimated as

$$\widehat{\mathit{MSE}} = \mathit{n}^{-1}\mathit{SSE}(\mathcal{M}) - \hat{\sigma}^2 + 2\hat{\sigma}^2|\mathcal{M}|/\mathit{n}$$

where $\hat{\sigma}^2$ is the estimate of the error variance of the full model, $SSE(\mathcal{M})$ is the residual sum of squares of the model \mathcal{M} , n is the number of observations and $|\mathcal{M}|$ stands for the number of predictors in \mathcal{M}

$$C_p(\mathcal{M}) = \frac{SSE(\mathcal{M})}{\hat{\sigma}^2} - n + 2|\mathcal{M}|$$

Searching The Best Model

- Exhaustive search over all sub-models might be too expensive
- For p predictors there are $2^p 1$ sub-models
- ▶ With p = 16, we get 6.5535×10^4 sub-models
- \rightarrow step-wise approaches

Forward Selection

- 1. Start with smallest sub-model \mathcal{M}_0 as current model
- 2. Include predictor that reduces SSE the most to current model
- 3. Repeat step 2 until all predictors are chosen
- \to results in sequence $\mathcal{M}_0\subseteq\mathcal{M}_1\subseteq\mathcal{M}_2\subseteq\dots$ of sub-models
 - 4. Out of sequence of sub-models choose the one with minimal C_p

Backward Selection

- 1. Start with full model \mathcal{M}_0 as the current model
- 2. Exclude predictor variable that increases SSE the least from current model
- Repeat step 2 until all predictors are excluded (except for intercept)
- \rightarrow results in sequence $\mathcal{M}_0\supseteq\mathcal{M}_1\supseteq\mathcal{M}_2\supseteq\dots$ of sub-models
 - 4. Out of sequence choose the one with minimal C_p

Considerations

- Whenever possible, choose backward selection, because it leads to better results
- ▶ If $p \ge n$, only forward is possible, but then consider LASSO

Alternative Selection Criteria

- ► AIC or BIC, requires distributional assumptions.
- ► AIC is implemented in MASS::stepAIC()
- Adjusted R^2 is a measure of goodness of fit, but sometimes is not conclusive when comparing two models
- Try in exercise