

人类赖以生存的空气

日期:	时间:	姓名:	
Date:	Time:	Name:	

初露锋芒

4	\rightarrow	h.7	空	/	44	・ルロ・	$-\mathbf{p}$
1	- 1	ΉЖ		7	HN.	20	HV
		лπ	т г.		ши		μ_{X}

2. 掌握空气中氧气体积分数测定的实验(拉瓦锡的实验、红磷燃烧的实验)

学习目标

&

重难点

- 3. 掌握氮气的性质和用途
- 4. 了解稀有气体及其性质和用途
- 5. 认识到我们需要洁净的空气
- 1. 空气的组成
- 2. 空气中氧气体积分数的测定

根深蒂固

-、空气的组成

1. 大气圈的构造

对流层: 形成各种天气现象

平流层: 臭氧层(能吸收紫外线)

中间层、电离层、外层

【练一练】

雷雨天气主要出现在大气圈的 ()

- A. 中间层 B. 对流层 C. 平流层

- D. 外层

2. 空气的成份

按 分数计算:

氮气 、氧气 、稀有气体 、二氧化碳 其他气体和杂质——0.03%

【练一练】

- 1. 大气中含有多种气体,按体积计算,含量最多的气体是
- A. 氧
- B. 氮气 C. 二氧化碳
- D. 稀有气体
- 2. 下列关于空气的说法中正确的是(
- A. 按质量计算,空气中含有氮气约有 78%,氧气 21%
- B. 空气中的 CO₂、CH₄等气体浓度增大,可造成气温升高
- C. 空气中只有氧气、氮气与人类的生存发展密切相关
- D. 空气质量报告中所列的空气质量级别数目越大, 空气质量越好

二、空气中氢气含量测定的实验

1. 拉瓦锡的曲颈甑实验

200 多年前法国科学家拉瓦锡用定量试验的方法测定了空气成分。

他把少量汞放在密闭容器中加热 12 天,发现部分汞变成红色粉末,同时,空气体积减少了 1/5 左右。通过对剩余气体的研究,他发现这部分气体不能供给呼吸,也不助燃,他误认为这全部 是氮气。拉瓦锡又把加热生成的红色粉末收集起来,放在另一个较小的容器中再加热,得到汞和氧气, 且氧气体积恰好等于密闭容器中减少的空气体积。他把得到的氧气导入前一个容器,所得气体 和空气性质完全相同。

讨论: 拉瓦锡实验的原理是什么?

通过实验,拉瓦锡得出了空气是由	组成,氧气占	。在测定中,
装置中剩余的气体约占空气体积的	的 4/5, 该实验从另一 。	方面说明该气体具有的性质是
19 世纪前,人们认为空气中仅有氮气与氧精确测量空气成分。	 貳气。后来陆续发现了一些 [;]	稀有气体。目前,人们已能
【练一练】		
(1) 二百多年前,法国化学家拉瓦锡通过		
组成的,其中约占空气总位		•
(2)人类对空气是一种怎样的物质进行了		
点。较早通过实验研究得出"空气是由氧气	121	科学家是()
A. 普利斯特里 B. 舍勒 C.	医德榜 D. 拉瓦锡	
2. 空气中氧气体积分数的测定: 在集气	新中 用占 燃红磷的方法测完	
(1) 实验装置图:	M I / II / III	
(2) 实验操作		
①在集气瓶内要加少量水,并做上记	号。	
②连接装置:在集气瓶口连接一个双	孔胶塞,一孔插燃烧匙,身	弓一孔插导管,并配上弹簧
夹。		
③检查气密性:把导管的一端放入水中	中,用手紧握集气瓶外壁,如	1果在导管口有气泡冒出,
则证明	o	
④点燃燃烧匙内的红磷, 立即伸入集	气瓶中,并把塞子塞紧。	
⑤待红磷熄灭并冷却后, 打开弹簧夹	0	
(3)回答下列问题		
a. 实验现象:		
b. 反应的文字表达式:		
c. 反应原理:		
d. 实验结论:		

(4) 思考与讨论

【思考 1】集气瓶内水位为什么只能上升到一定高度?

【思考 2】集气瓶内剩下的是什么气体? 该实验可推出剩余气体具有什么性质?

【思考 3】做测定氧气体积分数的实验时选用的固体一般应具备的条件?

- (5) 实验时的注意事项总结
- (6) 对做完实验后水量的分析
- I.吸入瓶内的水不足 1/5 的原因有哪些?
- Ⅱ.吸入瓶内的水大于 1/5 的原因分析
- (7) 实验结论延伸

该实验除证明空气中 O₂的体积量约为空气体积的 1/5 外,还可得到以下结论

【练一练】

- 1.用右图的装置来测定空气中氧气的体积分数。
- (1) 盛放在燃烧匙内的物质可用_____。
- (2)实验中观察到的现象是______,同时水进入广口瓶,

水的体积约占广口瓶容积的____。

(3)如果实验步骤是:①先用夹子夹紧橡皮管;②点燃燃烧匙内的固体物质;③将燃烧匙插入 广口瓶,并塞紧橡皮塞;④燃烧完毕后,打开橡皮管上的夹子,结果发现测定的氧气体积分数 低于 21%。问:这可能是由哪几种原因引起的?

2.某容器所盛的空气里含有氧气 10g,则此容器所盛的空气是 50g。这句话是否正确?若不正确请改正。

3.下图是实验验证空气中氧气含量的装置。红磷与氧气反应后生成固体五氧化二磷,该固体极易溶于水,而木炭与氧气反应后生成气体二氧化碳,该气体在水中溶解性不大。下图为两个同学设计的测定空气中氧气含量的实验示意图。

(1)图 I 实验时,燃烧匙里为什么要盛过量的红磷?

(2)图 I 实验除了可以得出氧气约占空气体积 1/5 的结论外,还可以得出有关氮气性质的哪些结论?

(3)图Ⅱ装置燃烧匙中放点燃的木炭,可以得到氧气约占空气体积 1/5 的结论吗?为什么?

4. 小丽同学想用如图所示的装置探究空气中氧气的含量。请你参与探究, 实验过程:

- (1) 将两只燃烧匙内放入过量的木炭和红磷;
- (2)分别用酒精灯点燃木炭和红磷,将燃烧匙迅速放入集气瓶内,并塞紧橡胶塞;红磷燃烧观察到有____产生,反应的化学方程

(3) 特完全冷却后打开两侧止水夹.观察到右侧集气瓶几乎无水进入,而左侧集气瓶进水量约为_____

结论解释:右侧集气瓶中水不能进入的原因是

三、氮气的性质及用途

1	氮气的性质和用途
	(1) 物理性质:
	(2) 化学性质:
<u>J.</u>	应,例如:合成氨、制氮肥、生物固氮等。
2	2. 氮气的性质和用途
	(1)制硝酸和化肥的重要原料;
	(2) 用作保护气,如焊接金属时常用氮气作保护气、灯泡中充氮气以延长使用寿命、食品包装
E	付充氮气用来防腐;
	(3) 医疗上用液氮治疗一些皮肤病和在液氮冷冻麻醉条件下做手术;
	(4) 超导材料在液氮的低温环境下能显示超导性能。
	【练一练】
1	. 空气是人类宝贵的自然资源,下列说法是与但其化学性质有关的是
Þ	A. 洁净的空气是纯净物
E	3. 空气中的氮气可以做灯泡的填充气、粮食瓜果的保护气等
C	 分离液态空气得到氧气和氮气的过程中发生了化学反应
[D. 新鲜空气中不含二氧化碳
四、	稀有气体的性质及用途
1	. 稀有气体的性质和用途
	(1) 稀有气体是等气体的总称。
	(2) 物理性质:稀有气体都是颜色、气味的气体,溶于水。
	(3) 化学性质: 极不活泼, 过去称为惰性气体, 但现在已经发现有些稀有气体在一定条件下也
	能与某些物质发生化学反应,生成其他物质。
2	2. 广泛用途
	(1) 保护气,如焊接金属时用稀有气体来隔绝空气,灯泡中充入稀有气体以使灯泡耐用;
	(2) 电光源,稀有气体在通电时能发出不同颜色的光;
	(3) 用于激光技术;
	(4) 氦气可作冷却剂;
	(5) 怎与可作麻醉剂。

【补充】灯管里充入氩气,通电时发出蓝紫色的光;充入氦气发出粉红色光;充入氖气发出红 光,这种光能穿透浓雾,可作航标灯;在石英玻璃管里充入氙气的氙灯,通电时能发出比荧光 灯强几万倍的强光,因此被叫做"人造小太阳"。 【练一练】 1. 属于稀有气体的是 (A. 氢气 B. 氦气 C. 氮气 D. 氯气 2. ____、__、__、__、__、__、__、、___、等气体总称为稀有气体。它们一般____ 其他物质发生化学反应。人们利用这种性质,在一些工业生产中,常把它们用作 稀有气体在通电时会发出______,因此它们在_____中有特殊的应用。 五、我们需要洁净的空气 1. 目前计入空气污染指数的项目为: 2. 臭氧空洞、酸雨和温室效应是人类所面临的三大环境问题 其中造成温室效应是因为人类活动的加剧,从而向环境排放了大量的二氧化碳.温室效应产生的 原因是由于空气中二氧化碳(还包括甲烷)含量的增加,使得热量散失能力减弱;臭氧空洞是 由于臭氧层被氮的氧化物和氟利昂等破坏造成的。 【练一练】 1. 下列不会造成空气污染的是 () A. 煤燃烧时产生的烟 B. 汽车排放的尾气 C. 化工厂排放的废气 D. 人和动物呼出的二氧化碳 2. 随着工业的发展,排放到空气中的 和 对空气造成了污染,"温 室效应""酸雨""臭氧层空洞"等都是空气污染引发的环境问题。 3. 有五种物质, 其中能对空气造成污染的是 () ①汽车排出尾气形成的烟雾 ②石油化工厂排出的废气 ③天然水蒸发成水蒸气

c. 85

D. (1)(3)(4)

④植物光合作用放出的气体 ⑤煤燃烧产生的烟尘

B. (1)(2)(5)

A. (2)(4)

知识点 1:全气的组力	知识点	1:	空气的	烟成
-------------	-----	----	-----	----

和识点 1: 全气的组成
【例 1】下列现象与空气中何种成分有关,请写出相关物质的名称:
A. 酥脆的饼干在空气中变软
B. 澄清的石灰水长期敞口在空气中表面有一层白膜
C. 火柴在空气中能够燃烧
D. 空气作为氮肥的原料
变式:小明同学发现铜制的眼镜框表面出现了绿色的物质,通过化学学习知识了该物质为铜绿,主
要成分是 Cu ₂ (OH) ₂ CO ₃
提出问题:铜是在什么条件下锈蚀的?
猜想:根据铜绿的化学式,小明猜想铜生锈可能是铜与空 · · · · · · · · · · · · · · · · · · ·
气中的,共同作用的结果。
设计与实验: 小明通过实验对铜片锈蚀的条件进行了探究, 如上图所示。实验进行较长时间后,
发现试管中光亮的铜片生锈。
思考:其余三支试管中铜片不生锈的原因分别是:
(1)
(2)
(3)
小结:铜片锈蚀的条件是铜与空气中的长期接触。
知识点 2: 空气中氧气含量的测定
【例 1】小军根据燃烧红磷测定空气中氧气含量的实验原理,认为可用木炭替代红磷测定空气中氧气的含量
并按图所示装置进行实验。
(1) 依据的实验原理是。
小军检查装置气密性后,将盛有足量红热木炭的燃烧匙迅速伸入广口瓶中,并
把塞子塞紧,待红热的木炭熄灭并冷却至室温后,就打开弹簧夹,并未发现倒
吸现象。经过认真分析,小军发现实验失败的原因是(答一条)
(2) 小军反思上述实验的探究过程后认为:用燃烧法测定空气中氧气含量的实验时,在药品的
选择和生成物的要求上应考虑是(答一条)。

变式: 创新装置

下列问题:

为测定空气中氧气的含量,小华同学打算设计如下方案:

选用实际容积为 40 mL 的试管作反应容器,将过量的白磷放入试管, 用橡皮塞塞紧试管口,通过导管与实际容积为 60 mL 且润滑性很好的针筒 注射器组成如右图的实验装置。假设此实验能按照小华的设想正常进行, 且白磷所占体积与导管内的气体体积忽略不计,请回答

(1) 实验前,	打开弹簧夹,	将注射器的活塞前沿从 20 mL	刻度处推至 15mL	刻度处,	然后松手,	若活
塞仍能返回至	20mL 刻度处	,则说明	°			

- (2) 若先夹紧弹簧夹,用酒精灯加热白磷,燃烧结束,等到试管冷却后再松开弹簧夹。可观察到的 现象为
- (3) 若不使用弹簧夹,用酒精灯加热白磷,充分反应直至燃烧结束,试管冷却。可观察到的现象为

(4) 若按小华的设想进行实验,实际可能遇到诸多问题而发生危险,造成实验失败。例如

瓜熟蒂落

1. 空气的成分中,体积分数约占78%的是()

A. 氮气 B. 氧气

- C. 二氧化碳
- D. 稀有气体
- 2. 桌子上有一个空烧杯, 烧杯内()

- A. 是氮气 B. 是氧气 C. 是空气 D. 没有物质

3. 空气中各组分的体积分数如下图, 把它补充完整。

其他成分占1%

4. 空气中含量较多且化学性质比较活泼的气体是(

- A. 氮气 B. 氧气 C. 二氧化碳 D. 水蒸气

5. 早期化学家为了认识空气的本质,将一些物质放在密闭容器中进行实验,结果发现每次都有约 1/5 的空气不知去向。当时化学家把这 1/5 的空气称为"有用空气",这种"有用空气"是指()

- A. 氧气 B. 氮气

- C. 二氧化碳 D. 稀有气体

6. 植物光合作用消耗空气中的(

- A. 氧气 B. 二氧化碳 C. 氮气 D. 稀有气体

)

7. 下列关于空气的说法中,错误的是()
A. 工业上利用氧气和氮气的沸点不同,从液态空气中分离出氧气的过程属于物理变化
B. 空气是一种十分重要的天然资源
C. 若大量有害物质进入空气中, 仅靠大自然的自净能力, 大气还能保持洁净
D. 按体积分数计,空气中约含有氮气 78%、氧气 21%、其他气体和杂质 1%
8. 空气的成分按体积分数计算: 氮气占, 氧气占,占 0.94%,
占 0.03%, 其他气体和杂质占。澄清石灰水露置在空气中会逐渐变浑浊, 这样说明空气中
有少量的
9. 装在某容器中的空气经测定其中氮气的体积在相同条件下是 10L,则该容器的容积为()
A. 10L B. 15L C. 12.5L D. 18L
10. 最早运用天平研究化学并得出"空气是由 1/5 体积氧气和 4/5 体积的氮气组成"的科学家是
()
A. 汤姆生 B. 道尔顿 C. 拉瓦锡 D. 门捷列夫
11. 下列物质的用途中,是利用物质的物理性质的是()
A. 氧气用于炼钢 B. 稀有气体用作保护气
C. 氮气用于制造化肥 D. 稀有气体用于电光源
12. 下列用途,主要是利用了该物质化学性质的是()
A. 用氮气填充灯泡 B. 用稀有气体制作霓虹灯
C. 用氦气填充气球 D. 用金属铜做电线
13. 为了经久耐用, 在灯泡中可填充的气体是()
A. 氧气 B. 氮气 C. 二氧化碳 D. 二氧化硫
14. 在生产和科学研究中,需要用一些保护气,当焊接金属时,为了隔绝空气,能作为保护气的一
组是()
A. H_2 , N_2 B. N_2 , O_2 C. CO_2 , CO D. N_2 , Ar
15. 已知氦气是一种比氢气密度几乎大一倍的气体,在首都东亚远东会上作升空表演的"北京 2000"
遥控飞艇内, 充的就是氦气而不是易燃易爆的氢气, 这是因为使用氦气()
A. 不会使飞艇飞得太高 B. 氦气发光 C. 更安全 D. 以上都正确
16. 下列关于稀有气体的叙述中不正确的是 ()
A. 在通电时一般都能发出有色光 B. 都是无色无味的气体
C. 一定不能和其他物质反应 D. 氙气可作麻醉剂

17. 西藏地区独特的高原风景早就吸引了小刚,他很想在国庆期间前往观光。但爸爸说初到西藏时 会发生不同程度的"高原反应",这是由于()

- A. 高原地区的氧气与平原地区的氧气的化学性质不同
- B. 高原地区空气中氧气含量过高, 让人有压抑感
- C. 高原地区,空气稀薄,氧气的体积分数小于21%
- D. 高原地区空气中二氧化碳含量过高让人感到窒息
- 18. 下列说法中不正确的是(
 - A. 纯净物只由一种物质组成
 - B. 由同种分子构成的物质是纯净物
 - C. 含有两种或两种以上元素的物质是混合物
 - D. 由不同种分子构成的物质是混合物
- 19. 下列物质中属于混合物的是()
- A. 液态氧 B. 石灰水 C. 冰水混合物 D. 四氧化三铁

20. 下列物质中,属于纯净物的是(

A. 黄酒

B. 矿泉水

C. 24K 黄金

- D. 铁矿石
- 21. 下列各组物质中,前者是纯净物,后者是混合物的是()

 - A. 空气,氧气 B. 氯酸钾,氮气 C. 液氧,食盐水 D. 金属镁,氧化汞
- 22. 用燃烧法除去密闭容器中空气成分里的氧气,应选择下列物质中的()
 - A. 细铁丝 B. 红磷 C. 硫粉 D. 木炭

- 23. 右图所示装置可用于测定空气中氧气的含量,实验前在集气瓶内加入少量水,并做上记号。下 列说法中不正确的是()

- A. 该实验证明空气中氧气的含量约占 1/5
- B. 实验时红磷一定要过量
- C. 实验前一定要检验装置的气密性
- D. 红磷燃烧产生大量的白雾,火焰熄灭后立刻打开弹簧夹

24. 小明用右图装置来测定空气中氧气的含量,对该实验认识正确的是()

- A. 使用红磷的量多或少, 都不会影响实验结果
- B. 燃烧足够的红磷可使进入容器的水占容器的 4/5
- C. 红磷燃烧消耗空气中的氧气, 使容器内压强下降, 水面上升
- D. 红磷一燃烧完, 就要立即观察, 并记录水进入容器的刻度
- 25. 某同学测定空气中氧气的含量,红磷燃烧后恢复到室温,打开弹簧夹发现进入广口瓶的液体液 面高度超过广口瓶容积的 1/5。造成这一现象的原因可能是(
 - A. 实验前没有将弹簧夹夹紧 B. 实验装置可能漏气
 - C. 实验中所取的红磷过量 D. 实验中所取的红磷不足
- 26. 拉瓦锡通过实验得出的结论是氧气约占空气总体积的 1/5, 而我们在实验中为什么气体减少的体 积小于 1/5? 下列分析的原因正确的是(只有一个正确答案)()

 - A. 有残余氧气 B. 未完全冷却就打开止水夹
 - C. 生成物溶干水
- D. 空气中的某种成分溶于水
- 27. 某校化学兴趣小组就空气中氧气的含量进行实验探究:

【集体讨论】:

(1) 为了充分消耗容器中的氧气,药品的用量应保证

(2) 小组同学共同设计了如下图的两套装置, 你认为合理的

是(填编号) 。为了保实验的成功,在装药品之前应

【分组实验】在讨论的基础上,他们分组进行了实验。

【数据分析】实验结束后,整理数据如下: (注:集气瓶容积为100mL)

组别	1	2	3	4	5	6
进入集气瓶中水的体积(mL)	20	21	19	21	21	22

(3) 通过对实验结果的交流,大多数同学都验证出氧气约占空气体积的 。通过 实验还可以推断集气瓶中剩余气体的性质是

28. 如下图所示,有三种不同的实验装置,集气瓶中均充满空气,燃烧匙内所盛有的物质(装置一中物质为红磷:装置二中物质为木炭;装置三中分别装有红磷和木炭)均为过量,大烧杯内盛有水.当充分燃烧后,冷却至室温,打开弹簧夹:

打开止水夹,请依次描述打开止水夹后三种装置所出现的现象及其原因:

(1) 装置一中所出现的现象为	, 原因是	1.
	,从日足	i i

- (3) 装置三中所出现的现象为
- 29. 为测定空气中氧气的含量,小华同学打算设计如下方案:选用实际容积为 40mL 的试管作反应容器,将过量的白磷放入试管,用橡皮塞塞紧试管,通过导管与实际容积为 60mL 且润滑性很好的针筒注射器组成如下图的实验装置。假设此实验能够按照小华的设想正常进行,且白磷所占体积与导管内的气体体积忽略不计,请回答下列问题:

(1)	实验前,	打开弹簧	長夹,将	注射器活塞前		20mL	刻度处推至	15mL 3	刻度处,	然后	松开手,	若活
塞	仍能返回	至 20mL 刻	刻度处,	则说明			;					
(2)	若先夹紧	《弹簧夹,	用酒精	灯加热白磷,	燃烧结	吉東,	等到试管冷	却后再	松开弹簧	夹。	可观察到	可的

(3) 若不使用弹簧夹,用酒精灯加热白磷,充分反应直至燃烧结束,试管冷却。可观察到的现象为

(4) 若按小华的设想进行实验,实际可能遇到诸多问题而发生危险,造成实验失败。例如: