Applicant: Shunpei Yamazaki, et al.

Attorney's Docket No.: 12732-051002 /
Serial No.: New Application US4976/4978/4981/4982D1

Serial No.: New Application Filed: December 5, 2003

Page : 2 of 16

Amendments to the Specification:

Beginning at page 1, line 3, please insert the following paragraph:

CROSS-REFERENCE TO RELATED APPLICATIONS

This application is a divisional application of U.S. Application Serial No. 09/874,204, filed on June 6, 2001, now allowed, which claims the benefit from foreign priority applications filed in Japan, as serial number 2000-176173, filed June 12, 2000, serial number 2000-176188, filed June 12, 2000, serial number 2000-177641, filed June 13, 2000, and serial number 2000-177652, filed June 13, 2000. This application claims priority to all of these applications, and all of these applications are incorporated by reference.

Please replace the paragraph beginning at page 3, line 23 with the following rewritten paragraph:

This invention provides a TFT having a channel-forming region formed of a crystalline semiconductor film obtained by heat-treating and crystallizing an amorphous semiconductor film containing silicon as a main component and germanium in an amount of not smaller than 0.1 atomic % but not larger than 10 atomic % (preferably, not smaller than 1 atomic % but not larger than 5 atomic %) while adding a metal element thereto, wherein an orientation ratio of the lattice plane {101} is not smaller than 20% [[ef]] and the lattice plane {101} has an angle of not larger than 10 degrees with respect to the surface of the semiconductor film, and an orientation ratio of the lattice plane {001} is not larger than 3% [[ef]] and the lattice plane {001} has an angle of not larger than 10 degrees with respect to the surface of the semiconductor film, and an orientation ratio of the lattice plane {001} is not larger than 5% [[ef]] and the lattice plane {111} has an angle of not larger than 10 degrees with respect to the surface of the semiconductor film as detected by the electron backscatter diffraction pattern method.

Please replace the paragraph beginning at page 4, line 11 with the following rewritten paragraph:

The invention further provides a TFT having a channel-forming region formed of a crystalline semiconductor film obtained by heat-treating and crystallizing an amorphous semiconductor film containing silicon as a main component and germanium in an amount of not

Applicant: Shunpei Yamazaki, et al.

Attorney's Docket No.: 12732-051002 /
Serial No.: New Application

US4976/4978/4981/4982D1

Serial No.: New Application Filed: December 5, 2003

Page : 3 of 16

smaller than 0.1 atomic % but not larger than 10 atomic % (preferably, not smaller than 1 atomic % but not larger than 5 atomic %) while adding a metal element thereto, wherein an orientation ratio of the lattice plane {101} is not smaller than 5% [[ef]] and the lattice plane {101} has an angle of not larger than 5 degrees with respect to the surface of the semiconductor film, an orientation ratio of the lattice plane {001} is not larger than 3% [[ef]] and the lattice plane {001} has an angle of not larger than 10 degrees with respect to the surface of the semiconductor film, and an orientation ratio of the lattice plane {001} is not larger than 5% [[ef]] and the lattice plane {111} has an angle of not larger than 10 degrees with respect to the surface of the semiconductor film as detected by the electron backscatter diffraction pattern method.

Please replace the paragraph beginning at page 5, line 2 with the following rewritten paragraph:

The invention further provides a semiconductor device having a channel-forming region formed of a semiconductor film obtained by heat-treating and crystallizing an amorphous semiconductor film containing silicon as a main component and germanium in an amount of not smaller than 0.1 atomic % but not larger than 10 atomic % (preferably, not smaller than 1 atomic % but not larger than 5 atomic %) while adding a metal element thereto, wherein an orientation ratio of the lattice plane {101} is not smaller than 20% [[ef]] and the lattice plane {101} has an angle of not larger than 10 degrees with respect to the surface of the semiconductor film, and an orientation ratio of the lattice plane {001} is not larger than 3% [[ef]] and the lattice plane {001} has an angle of not larger than 10 degrees with respect to the surface of the semiconductor film, and an orientation ratio of the lattice plane {001} is not larger than 5% [[ef]] and the lattice plane {111} has an angle of not larger than 10 degrees with respect to the surface of the semiconductor film as detected by the electron backscatter diffraction pattern method.

Please replace the paragraph beginning at page 5, line 14 with the following rewritten paragraph:

The invention further provides a semiconductor device having a channel-forming region formed of a semiconductor film obtained by heat-treating and crystallizing an amorphous semiconductor film containing silicon as a chief component and germanium in an amount of not

Applicant: Shunpei Yamazaki, et al.

Attorney's Docket No.: 12732-051002 /
Serial No.: New Application

US4976/4978/4981/4982D1

Serial No.: New Application Filed: December 5, 2003

Page : 4 of 16

smaller than 0.1 atomic % but not larger than 10 atomic % (preferably, not smaller than 1 atomic % but not larger than 5 atomic %) while adding a metal element thereto, wherein an orientation ratio of the lattice plane {101} is not smaller than 5% [[ef]] and the lattice plane {101} has an angle of not larger than 5 degrees with respect to the surface of the semiconductor film, an orientation ratio of the lattice plane {001} is not larger than 3% [[ef]] and the lattice plane {001} has an angle of not larger than 10 degrees with respect to the surface of the semiconductor film, and an orientation ratio of the lattice plane {001} is not larger than 5% [[ef]] and the lattice plane {111} has an angle of not larger than 10 degrees with respect to the surface of the semiconductor film as detected by the electron backscatter diffraction pattern method.

Please replace the paragraph beginning at page 44, line 7 with the following rewritten paragraph:

As described above, this invention makes it possible to obtain a crystalline semiconductor film by heat-treating and crystallizing an amorphous semiconductor film containing silicon as a main component and germanium in an amount of not smaller than 0.1 atomic % but not larger than 10 atomic % (preferably, not smaller than 1 atomic % but not larger than 5 atomic %) while adding a metal element thereto, wherein an orientation ratio of the lattice plane {101} is not smaller than 20% [[ef]] and the lattice plane {101} has an angle of not larger than 10 degrees with respect to the surface of the semiconductor film, and an orientation ratio of the lattice plane {001} is not larger than 3% [[ef]] and the lattice plane {001} has an angle of not larger than 10 degrees with respect to the surface of the semiconductor film, and an orientation ratio of the lattice plane {001} is not larger than 5% [[ef]] and the lattice plane {111} has an angle of not larger than 10 degrees with respect to the surface of the semiconductor film as detected by the electron backscatter diffraction pattern method.