Sveučilište u Zagrebu Fakultet elektrotehnike i računarstva

Međuispit iz predmeta TEORIJA INFORMACIJE, 28. studenog 2019.

Pravilo bodovanja zadataka

Svaki točno odgovoreni zadatak donosi 5 bodova, netočno odgovoreni 2 negativna boda, a neodgovoreni 0 bodova.

Zadatak 1. Instrument mjeri slučajnu veličinu čije su vrijednosti zadane skupom $X = \{-2, -1, 0, 1, 2\}$. Sve su vrijednosti jednako vjerojatne. Pokazivač instrumenta, namijenjen brojčanom prikazu izmjerene vrijednosti, je u kvaru koji se manifestira tako da se znak za "minus" ne upali u 30% slučajeva. Promatrajte opisani mjerni sustav kao komunikacijski kanal i odredite transinformaciju u kanalu.

a) 1,9167 bit/simbol;

- b) 0,4053 bit/simbol;
- c) 2,3219 bit/simbol;
- d) 2,2692 bit/simbol;
- e) ništa od navedenog.

Postupak rješavanja:

Informacijski kanal

Na gornjoj slici *x* određuje mjerenu veličinu, a *y* prikazanu. One se ponekad međusobno razlikuju zbog kvara pokazivača. Temeljem skice kanala moguće je odrediti matricu uvjetnih vjerojatnosti prijelaza i matricu združenih vjerojatnosti:

$$\begin{bmatrix} P(y_j|x_i) \end{bmatrix} = \begin{bmatrix} 0.7 & 0 & 0 & 0 & 0.3 \\ 0 & 0.7 & 0 & 0.3 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{bmatrix}$$

Nadalje, s obzirom da su sve vrijednosti mjerene veličine međusobno jednako vjerojatne, vrijedi $P(x_i) = 0,2$, i = 1, ..., 5. Koristeći matricu kanala i apriorne vjerojatnosti mjerene veličine moguće je odrediti matricu parova vjerojatnosti (x_i, y_j) koje čine mjerena i prikazana veličina:

$$[P(x_i, y_j)] = [P(x_i) \cdot P(y_j | x_i)] = \begin{bmatrix} 0.14 & 0 & 0 & 0 & 0.06 \\ 0 & 0.14 & 0 & 0.06 & 0 \\ 0 & 0 & 0.2 & 0 & 0 \\ 0 & 0 & 0 & 0.2 & 0 \\ 0 & 0 & 0 & 0 & 0.2 \end{bmatrix}$$

Zbrajanjem po stupcima matrice $[P(x_i, y_j)]$ dobivamo vjerojatnosti pojave izmjerene veličine na pokazivaču, $P(y_j) = [0.14 \ 0.14 \ 0.2 \ 0.26 \ 0.26], j = 1, ..., 5$. Transinformaciju u kanalu moguće je odrediti koristeći izraz:

$$I(X;Y) = \sum_{i=1}^{5} \sum_{j=1}^{5} P(x_{i}, y_{j}) \log \left(\frac{P(x_{i}, y_{j})}{P(x_{i}) \cdot P(y_{j})} \right)$$

Uvrštavanjem otprije poznatih vrijednosti dobivamo I(X; Y) = 1,9167 bit/simbol.

Zadatak 2. Binarni izvor generira dva simbola iz abecede $X_1 = \{x_1, x_2\}$ s pripadajućim vjerojatnostima pojavljivanja $P(x_1) = 2/3$ i $P(x_2) = 1/3$. Nadalje, pretpostavimo da isti izvor kombinira simbole x_1 i x_2 u združene simbole abecede $X_2 = \{x_1x_1, x_1x_2, x_2x_1, x_2x_2\}$, $P(x_i, x_j) = P(x_i) \cdot P(x_j)$, $\forall i, j \in \{1, 2\}$. Odredite omjer efikasnosti kôda ako se Huffmanov kôd primijeni nad proširenom abecedom X_2 u odnosu na njegovu primjenu na početnu abecedu X_1 .

a) 2

b) 18/17

- c) 17/9
- d) 36/17
- e) ništa od navedenog

Postupak rješavanja:

Ako se Huffmanov kôd primijeni na simbole iz abecede X, tada se x_1 kodira binarnim simbolom 1, a x_2 binarnim simbolom 0. Srednja duljina kodne riječi iznosi 1 bit/simbol, a entropija H(X) iznosi $-[2/3 + \log_2(1/3)]$ bit/simbol. Ako primijenimo prošireni Huffmanov kôd, dobivamo četiri združena simbola:

Združeni simbol	Vjerojatnost	Huffmanov kôd
$x_1 x_1$	4/9	0
<i>x</i> ₁ <i>x</i> ₂	2/9	10
$x_2 x_1$	2/9	111
$x_2 x_2$	1/9	110

Srednja duljina kodne riječi iznosi 17/9 bit/združeni simbol, a entropija združenih simbola, $H_2(X)$, jednaka je $2 \cdot H(X)$ [bit/združeni simbol]. Dakle, omjer učinkovitosti Huffmanova koda nad proširenim skupom simbola prema učinkovitosti nad izbornim skupom od dva simbola iznosi:

$$\frac{\varepsilon_2}{\varepsilon_1} = \frac{\frac{2H(X)}{17/9}}{\frac{H(X)}{1}} = \frac{18}{17}$$

Zadatak 3. Na ulaz kodera informacije dolazi poruka sastavljena od jedanaest simbola a i oznake kraja poruke (simbol *), aaaaaaaaaaaa*. Koliko mora iznositi duljina prozora za kodiranje pa da izlaz iz kodera informacije koji koristi kôd LZ77 bude određen sljedećim trojkama: (0,0,a), (1,9,a), (0,0,*)?

- a) 11 simbola;
- b) 9 simbola;
- c) 12 simbola;
- d) 10 simbola.
- e) ništa od navedenog

Postupak rješavanja:

Nakon prvog koraka kodiranja, koji generira trojku (0,0,a), u posmičnom prozoru sadržan je simbola a, a prozor za kodiranje obuhvaća naredne simbole u nizu. Kako bi druga trojka bila (1,9,a), a treća (0,0,*) prozor za kodiranje mora obuhvaćati 10 simbola a (devet kako označava drugi element trojke i jedan kojeg označava treći element trojke). To je ujedno i duljina prozora za kodiranje, tj. 10 simbola.

Zadatak 4. Sukladno slici, na ulaz kanala dolaze parovi simbola (x_i, y_j) , $x_i \in X$, $x_i = i - 1$, $\forall i \in \{1, 2, 3\}$, i $y_j \in Y$, $y_j = j + 1$, $\forall j \in \{1, 2\}$. Nadalje, vrijedi $p(x_i) = 1/3$, $\forall x_i \in X$, i $p(y_j) = 1/2$, $\forall y_j \in Y$. Simboli x_i i y_j su potpuno neovisni jedni o drugima. Svaki par simbola (x_i, y_j) tvori simbol w_l , l = 2i + j - 2, $w_l \in W$. U kanalu se simboli x_i i y_j algebarski zbrajaju uslijed čega se na izlazu kanala pojavljuju simboli $z_k = x_i + y_j$, k = i + j - 1, $z_k \in Z$.

Odredite transinformaciju u promatranom kanalu.

- a) 0,667 bit/simbol
- b) 1,918 bit/simbol
- c) 2,585 bit/simbol
- d) 0 bit/simbol
- e) ništa od navedenog.

Postupak rješavanja:

Temeljem teksta zadatka moguće je konstruirati preslikavanja parova simbola (x_i, y_j) u simbole w_l , odnosno z_k .

$$p(w_i)$$

 $1/6$ $(x_1, y_1) = (0, 2) = w_1$ 1
 $1/6$ $(x_1, y_2) = (0, 3) = w_2$ 1
 $1/6$ $(x_2, y_1) = (1, 2) = w_3$ 1
 $1/6$ $(x_2, y_2) = (1, 3) = w_4$ 1
 $1/6$ $(x_3, y_1) = (2, 2) = w_5$ 1
 $1/6$ $(x_3, y_2) = (2, 3) = w_6$ 1
 $1/6$ $(x_3, y_2) = (2, 3) = w_6$ 1

Temeljem slike na jednostavan način određujemo matricu $[P(Z|W)] = [p(z_k|w_l)]$:

$$\left[P(Z|W)\right] = \begin{vmatrix}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{vmatrix}$$

S obzirom da su simboli x_i i y_j međusobno neovisni i vrijedi $p(x_i, y_j) = p(x_i) \cdot p(y_j)$, tada je

$$H(W) = -\sum_{l=1}^{6} p(w_{l}) \log_{2} \left[p(w_{l}) \right] = -\sum_{i=1}^{3} \sum_{j=1}^{2} p(x_{i}) p(y_{j}) \log_{2} \left[p(x_{i}) p(y_{j}) \right] =$$

$$= -\sum_{i=1}^{3} \sum_{j=1}^{2} p(x_{i}) p(y_{j}) \log_{2} \left[p(x_{i}) \right] - \sum_{i=1}^{3} \sum_{j=1}^{2} p(x_{i}) p(y_{j}) \log_{2} \left[p(y_{j}) \right] =$$

$$-\sum_{j=1}^{2} p(y_{j}) \sum_{i=1}^{3} p(x_{i}) \log_{2} \left[p(x_{i}) \right] - \sum_{i=1}^{3} p(x_{i}) \sum_{j=1}^{2} p(y_{j}) \log_{2} \left[p(y_{j}) \right] =$$

$$H(X) \left[\sum_{j=1}^{2} p(y_{j}) \right] + H(Y) \left[\sum_{j=1}^{3} p(x_{i}) \right] = H(X) + H(Y) \left[\text{bit/simbol} \right]$$

S obzirom da vrijedi $p(x_i) = 1/3$, $\forall x_i \in X$, i $p(y_j) = 1/2$, $\forall y_j \in Y$, entropije H(X) i H(Y) je moguće odrediti kao $\log_2(3)$, odnosno $\log_2(2)$ [bit/simbol], pa entropija H(W) ima iznos $\log_2(6) = 2,585$ bit/simbol. S obzirom da vrijedi $[P(W,Z)] = [p(w_l,z_k)] = [p(z_k|w_l)\cdot p(w_l)]$, matrica [P(W,Z)] ima sljedeće elemente

$$[P(W,Z)] = \begin{bmatrix} 1/6 & 0 & 0 & 0 \\ 0 & 1/6 & 0 & 0 \\ 0 & 1/6 & 0 & 0 \\ 0 & 0 & 1/6 & 0 \\ 0 & 0 & 1/6 & 0 \\ 0 & 0 & 0 & 1/6 \end{bmatrix}$$

Zbrajajući elemente matrice po stupcima dobivamo: $p(z_1) = 1/6$, $p(z_2) = 1/3$, $p(z_3) = 1/3$, $p(z_4) = 1/6$. Nadalje, s obzirom da vrijedi $[P(W|Z)] = [p(w_l|z_k)] = [p(w_l|z_k)/p(z_k)]$, matrica [P(W|Z)] ima sljedeće elemente

$$\left[P(W|Z) \right] = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1/2 & 0 & 0 \\ 0 & 1/2 & 0 & 0 \\ 0 & 0 & 1/2 & 0 \\ 0 & 0 & 1/2 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Entropiju H(W|Z) određujemo na sljedeći način:

$$H(W|Z) = -\sum_{l=1}^{6} \sum_{k=1}^{4} p(w_l, z_k) \log_2 \left[p(w_k|z_l) \right] = -4 \frac{1}{6} \log_2 \left(\frac{1}{2} \right) = \frac{2}{3} \left[\text{bit/simbol} \right]$$

Konačno, transinformaciju u kanalu moguće je odrediti izrazom

$$I(W;Z)=H(W)-H(W|Z)=\log_2(6)-\frac{2}{3}=\log_2(3)+\frac{1}{3}=1,918$$
[bit/simbol]

Isti rezultat dobivamo i pomoću izraza I(W; Z) = H(Z) - H(Z|W) = H(Z) = 1,918 bit/simbol, jer je H(Z|W) jednaka nuli, što je evidentno iz matrice [P(Z|W)].

Zadatak 5. Čestica se može nalaziti u jednom od stanja $\{1, 2, ..., m\}$. Ako se nalazi u stanju i, i > 1, tada se s vjerojatnošću 1 vraća u stanje i - 1. Iz stanja 1 prelazi s jednakom vjerojatnošću u bilo koje stanje 1, 2, ..., m. Odredite stacionarnu vjerojatnost stanja 1 uz m = 5.

a) 4/15

b) 1/3

- c) 2/15
- d) 1/5
- e) ništa od navedenog.

Postupak rješavanja:

Sukladno zadanome moguće je napisati matricu prijelaznih vjerojatnosti

$$\Pi = \begin{bmatrix} \frac{1}{m} & \frac{1}{m} & \cdots & \frac{1}{m} & \frac{1}{m} \\ 1 & 0 & \cdots & 0 & 0 \\ 0 & 1 & \cdots & 0 & 0 \\ \vdots & & \ddots & & \\ 0 & 0 & \cdots & 1 & 0 \end{bmatrix}$$

Matrica Π^m ima sve elemente pozitivne, u m koraka moguće je iz bilo kojeg stanja otići u bilo koje drugo, te je $p_{ij}(m) > 0$. Zato je Markovljev lanac ergodičan i postoje stacionarne vjerojatnosti. Moguće ih je odrediti iz jednadžbe u matričnom obliku

$$\begin{bmatrix} \pi_1 \\ \pi_2 \\ \vdots \\ \pi_{m-1} \\ \pi_m \end{bmatrix} = \begin{bmatrix} \frac{1}{m} & 1 & 0 & \cdots & 0 \\ \frac{1}{m} & 0 & 1 & \cdots & 0 \\ \vdots & & & \ddots & \\ \frac{1}{m} & 0 & 0 & \cdots & 1 \\ \frac{1}{m} & 0 & 0 & \cdots & 0 \end{bmatrix} \begin{bmatrix} \pi_1 \\ \pi_2 \\ \vdots \\ \pi_{m-1} \\ \pi_m \end{bmatrix}$$

Dakle

$$\pi_{1} = \frac{1}{m} \pi_{1} + \pi_{2},$$

$$\pi_{2} = \frac{1}{m} \pi_{1} + \pi_{3},$$

$$\vdots$$

$$\pi_{m-1} = \frac{1}{m} \pi_{1} + \pi_{m},$$

$$\pi_{m} = \frac{1}{m} \pi_{1}.$$

Rješavajući unatrag dobivamo

$$\pi_{m-1} = 2\pi_m, \quad \pi_{m-2} = 3\pi_m, \quad \dots, \pi_1 = m\pi_m.$$

S obzirom da mora vrijediti da je $\sum_{i=1}^{m} \pi_i = 1$, vrijedi

$$[m+(m-1)+...+2+1]\pi_m = 1 \Rightarrow \pi_m = \frac{2}{m(m+1)}.$$

Stacionarne vjerojatnosti su $\pi_j = \frac{2(m-j+1)}{m(m+1)}$, j=1,...,m. Konačno, ako je $m=5, \pi_1=1/3$.

Zadatak 6. Razmatrajte izvor koji generira četiri simbola iz skupa $X = \{x_1, x_2, x_3, x_4\}$ s odgovarajućim vjerojatnostima pojavljivanja za koje vrijedi:

$$1 > p(x_1) = p_1 > p(x_2) = p_2 > p(x_3) = p_3 > p(x_4) = p_4 > 0 \text{ i } \sum_{i=1}^4 p_i = 1.$$

Svi su simboli potpuno neovisni jedni o drugima. Nadalje, izvor je spojen s koderom informacije koji navedene simbole kodira binarnim simbolima sukladno algoritmu Shannon-Fano, a rezultat toga je prefiksni kôd. Kodne riječi na izlazu kodera informacije, $C(x_i)$, ovise o razdiobi vjerojatnosti simbola $x_i \in X$. Zadane su vjerojatnosti $p_3 = 0,19$ i $p_4 = 0,15$. Neka izvor informacije generira poruku duljine 10 simbola x_2 . Sukladno pretpostavci da $C(x_1)$ mora imati

duljinu jedan bit, odredite koliko može iznositi najveći sadržaj informacije prenijet porukom sastavljenom od 10 simbola x_2 .

- a) *I* < 16,44 bit;
- b) *I* < 10 bit;

c) I < 23.96 bit;

- d) I < 20 bit;
- e) ništa od navedenog.

Postupak rješavanja:

Način kodiranja algoritmom Shannon-Fano ovisi o razdiobi vjerojatnosti $p(x_i)$. Pri tome je važno kako se simboli x_i , ovisno o $p(x_i)$, grupiraju. Bit je algoritma da prilikom podjele simbola u dvije grupe razlika zbroja vjerojatnosti simbola u jednoj i drugoj grupi bude minimalna. U slučaju zadanih simbola x_i i adekvatne razdiobe vjerojatnosti $p(x_i)$, konačan rezultat kodiranja algoritmom Shannon-Fano može biti:

1)
$$C(x_1) = 00$$
, $C(x_2) = 01$, $C(x_3) = 10$, $C(x_4) = 11$, ili

2)
$$C(x_1) = 0$$
, $C(x_2) = 10$, $C(x_3) = 110$, $C(x_4) = 111$.

Dakle, samo u drugom ishodu kodiranja moguće je ostvariti da $C(x_1)$ ima duljinu jednog bita. Da bi se simboli x_i dijelili u grupe na način koji odgovara binarnom kodu kreiranom u ishodu 2, mora vrijediti:

$$|p_1 - (p_2 + p_3 + p_4)| \le |(p_1 + p_2) - (p_3 + p_4)|$$
, tj. s obzirom da je $p_3 + p_4 = 0.19 + 0.15 = 0.34$
 $|p_1 - p_2 - 0.34| \le |p_1 + p_2 - 0.34|$

Desna strana nejednakosti uvijek je jednaka $p_1 + p_2 - 0.34$ zbog uvjeta $1 > p(x_1) > p(x_2) > p(x_3) > p(x_4) > 0$. Lijeva strana nejednakosti može polučiti sljedeće rezultate:

1. za $p_1 \ge p_2 + p_3 + p_4$ vrijedi: $p_1 - p_2 - p_3 - p_4 \le p_1 + p_2 - p_3 - p_4$, što daje: $2p_2 \ge 0$, a to uvijek vrijedi;

Međutim, iz uvjeta $p_1 \ge p_2 + p_3 + p_4$, tj. $p_1 \ge p_2 + 0.34$, te uz $p_2 = 1 - p_1 - (p_3 + p_4) = 0.66 - p_1$ mora vrijediti: $2p_1 \ge 1$, tj. $p_1 \ge 0.5$; istovremeno, zbog uvjeta $p_2 > p_3$, tj. $p_2 > 0.19$, te zbog jednakosti $p_1 + p_2 = 1 - (p_3 + p_4)$, slijedi $p_1 < 0.66 - 0.19$, tj. $p_1 < 0.47$. S obzirom da je ova dva uvjeta za p_1 nemoguće istovremeno zadovoljiti, $p_1 \ge p_2 + p_3 + p_4$ nije opcija koja pogoduje rješenju;

2.
$$\operatorname{za} p_1 \le p_2 + p_3 + p_4 \operatorname{vrijedi}: -p_1 + p_2 + p_3 + p_4 \le p_1 + p_2 - p_3 - p_4, \operatorname{tj}.$$

 $-p_1 + p_2 + 0.34 \le p_1 + p_2 - 0.34,$

i konačno: $p_1 \ge 0.34$

Kao što je već ranije rečeno, zbog jednakosti $p_1 + p_2 = 1 - (p_3 + p_4)$, slijedi $p_1 < 0.66 - 0.19$, tj. $p_1 < 0.47$. Ova dva uvjeta u opciji 2 moguće je istovremeno zadovoljiti pa je konačno rješenje: $p_1 \in [0.34, 0.47)$.

Sukladno proračunatom te zbog $p_2 = 1 - (p_1 + p_3 + p_4)$, mora vrijediti: $p_2 \in (0,19,0,32]$. Sadržaj informacije sadržan u jednom simbolu x_2 iznosi $I(x_2) = -\log_2(p_2)$ bita. Dakle, maksimalan sadržaj informacije kojeg može prenositi simbol x_2 uz ograničenje u zadatku iznosi $I(x_2) < -\log_2(0,19) = 2,396$ bita. Konačno, sadržaj informacije u poruci duljine 10 uzastopnih simbola x_2 mora zadovoljavati uvjet:

$$I\left(x_2...x_2\right) < 23,96$$
[bit]

Zadatak 7. Zadan je diskretni binarni kanal. Na izvoru informacije pojavljuju se simboli x_1 i x_2 , a na odredištu simboli y_1 i y_2 . Matrica šuma u kanalu koji povezuje izvor i odredište, [P(Y|X)], zadana je kao

$$P[Y \mid X] = \begin{bmatrix} 2/3 & 1/3 \\ 1/3 & 2/3 \end{bmatrix}.$$

Odredite za koliko se kapacitet takvog kanala razlikuje od maksimalnog mogućeg kapaciteta binarnog simetričnog kanala (traži se apsolutna vrijednost razlike).

- a) 0 bit/simbol;
- b) 1 bit/simbol;
- c) 0,08 bit/simbol;

d) 0,92 bit/simbol;

e) ništa od navedenog.

Postupak rješavanja:

U zadanom kanalu vjerojatnost pogrešnog prijenosa simbola je $p_g = 1/3$. Kapacitet binarnog simetričnog kanala dan je izrazom:

$$C = 1 + p_g \log_2(p_g) + (1 - p_g) \log_2(1 - p_g) [bit/simbol]$$

Ako u izraz uvrstimo $p_{\rm g}=1/3$, dobit ćemo C=0.08 bit/simbol. Maksimalan mogući kapacitet binarnog simetričnog kanala, $C_{\rm max}$, iznosi 1 bit/simbol. Sukladno tome, apsolutna vrijednost razlike između $C_{\rm max}$ i C iznosi 0,92 bit/simbol.

Zadatak 8. Zadan je izvor na čijem se izlazu pojavljuju dva simbola, točka i crta. Trajanje točke iznosi 0,2 s, a crte tri puta dulje. Vjerojatnost pojavljivanja točke je dvostruko veća od vjerojatnosti pojavljivanja crte, dok je trajanje stanke između simbola 0,2 s. Izračunajte prosječnu brzinu generiranja informacije na izvoru u bit/s.

- a) 0,918 bit/s;
- b) 0,581 bit/s;
- c) 2,754 bit/s;

d) 1,721 bit/s;

e) ništa od navedenog.

Postupak rješavanja:

Dakle, trajanja i vjerojatnosti pojave simbola su sljedeće:

$$t_{(\bullet)} = 0.2 s,$$
 $p_{(\bullet)} = 2/3$
 $t_{(-)} = 0.6 s,$ $p_{(-)} = 1/3$
 $t_s = 0.2 s$

Prosječna količina informacije po jednom simbolu iznosi:

$$H(X) = -p_{(\bullet)} \log_2 p_{(\bullet)} - p_{(-)} \log_2 p_{(-)} = 0, 6 \cdot 0, 585 + 0, 3 \cdot 1, 585$$

= 0,918 bit/simbol

Prosječno trajanje simbola je:

$$T_s = p_{(\bullet)} \cdot t_{(\bullet)} + p_{(-)} \cdot t_{(-)} + t_s = 0,53 \text{ s/simbol}$$

Informacijska brzina izvorišta iznosi:

$$R = \frac{0.918 \text{ bit/simbol}}{0.53 \text{ s/simbol}} = 1,721 \text{ bit/s}$$

Zadatak 9. Zadana je stohastička matrica slabo simetričnog kanala:

$$\mathbf{K}_1 = \begin{bmatrix} a & b & 0 \\ 0 & c & d \end{bmatrix}.$$

Odredite koliko iznosi kapacitet kanala zadanog sljedećom matricom kanala:

$$\mathbf{K}_2 = \begin{bmatrix} a & b & 0 \\ 1/3 & 1/3 & 1/3 \\ 0 & c & d \end{bmatrix}.$$

- a) 1,585 bit/simbol;
- b) 0,667 bit/simbol:
- c) 1 bit/simbol;
- d) 2 bit/simbol;
- e) ništa od navedenog.

Postupak rješavanja:

Iz uvjeta da je matrica \mathbf{K}_1 stohastička matrica slabo simetričnog kanala slijedi:

$$a = b + c = d$$

$$a + b = 1$$

$$c + d = 1$$

Dakle, a = 1 - a + 1 - d, 2a + d = 2, 3a = 2 i konačno a = d = 2/3, a b = c = 1/3.

Sad je moguće proračunati kapacitet kanala zadanog matricom \mathbf{K}_2 .

$$C = \max_{\{p(x_i)\}} I(X;Y) = \max_{\{p(x_i)\}} [H(Y) - H(Y \mid X)]$$

$$[P(y_1), P(y_2),..., P(y_m)] = [P(x_1), P(x_2),..., P(x_n)] \cdot \mathbf{K}_2$$

Neka je $P(x_1) = p_1$, $P(x_2) = p_2$ i $P(x_3) = p_3$. Tada vrijedi:

$$P(y_2) = \frac{1}{3}p_1 + \frac{1}{3}p_2 + \frac{1}{3}p_3 = \frac{1}{3}.$$

$$P(y_3) = \frac{1}{3}p_2 + \frac{2}{3}p_3$$

$$H(Y) = -\sum_{i=1}^{3} P(y_i)\log P(y_i) =$$

$$= \log_2(3) - \frac{1}{3}(2p_1 + p_2)\log_2(2p_1 + p_2) - \frac{1}{3}(p_2 + 2p_3)\log_2(p_2 + 2p_3)$$

$$H(Y|X) = -\sum_{i=1}^{3} \sum_{i=1}^{3} P(x_i, y_j)\log_2 P(y_j | x_i) =$$

$$= \log_2 3 - \frac{2}{3}(p_1 + p_3)$$

 $P(y_1) = \frac{2}{3}p_1 + \frac{1}{3}p_2$

Sada je moguće provesti sljedeće razmatranje. Prvo pretpostavimo da će kapacitet kanala, C, biti maksimalan kad je H(Y|X) minimalan. U tom slučaju vrijedi: $p_1 + p_3 = 1$ i $p_2 = 0$, te je sukladno tome

$$H(Y \mid X) = \log_2 3 - \frac{2}{3} \text{ bit/simbol}$$

No sada treba pokazati da uz takvu razdiobu vjerojatnosti $P(x_i)$ entropija izlaza, H(Y), može postići svoju maksimalnu vrijednost, tj. $\log_2 3$ bit/simbol (to je ujedno vrijednost koju bi H(Y) poprimio kad bi svi izlazi y_i bili jednako vjerojatni. Dakle, za $p_1 + p_3 = 1$ i $p_2 = 0$, te uz dodatnu pretpostavku da je $p_1 = p_2 = 0.5$, H(Y) poprima vrijednost u iznosu $\log_2 3$ bit/simbol, čime je opravdan ovakav način optimizacije kapaciteta kanala. U konačnici, kapacitet kanala iznosi

$$C = \log_2 3 + \frac{2}{3} - \log_2 3 = \frac{2}{3} \frac{\text{bit}}{\text{simbol}}$$

Zadatak 10. Temeljem polaznog rječnika D[0] = a i D[1] = b dekodirajte primljenu poruku 0 1 0 4 5 koristeći algoritam LZW.

- a) abaaaaa (7 znakova);
- b) abaaaaaa (8 znakova);
- c) abaaaaaaa (9 znakova);
- d) abaaaa (6 znakova);
- e) ništa od navedenog.

Postupak rješavanja:

Prošireni rječnik: D[2] = ab, D[3] = ba, D[4] = aa, D[5] = aaa. Dekodirana poruka: abaaaaaa.