Inexect Accelerated Proximal Gradient

Author 1 Name, Author 2 Name *

September 25, 2025

This paper is currently in draft mode. Check source to change options.

Abstract

This is still a draft. [3].

2010 Mathematics Subject Classification: Primary 47H05, 52A41, 90C25; Secondary 15A09, 26A51, 26B25, 26E60, 47H09, 47A63. **Keywords:**

1 Introduction

Notations. Let $g: \mathbb{R}^n \to \overline{\mathbb{R}}$, we denote g^* to be the Fenchel conjugate. $I: \mathbb{R}^n \to \mathbb{R}^n$ denotes the identity operator. For a multivalued mapping $T: \mathbb{R}^n \to 2^{\mathbb{R}^n}$, gra T denotes the graph of the operator, defined as $\{(x,y) \in \mathbb{R}^n \times \mathbb{R}^n : y \in Tx\}$.

1.1 Epsilon subgradient and inexact proximal point

{def:esp-subgrad}

Definition 1.1 (ϵ -subgradient) Let $g: \mathbb{R}^n \to \overline{\mathbb{R}}$ be proper, lsc. Let $\epsilon \geq 0$. Then the ϵ -subgradient of g at some $\bar{x} \in \text{dom } g$ is given by:

$$\partial g_{\epsilon}(\bar{x}) := \{ v \in \mathbb{R}^n \mid \langle v, x - \bar{x} \rangle \le g(x) - g(\bar{x}) + \epsilon \, \forall x \in \mathbb{R}^n \}.$$

When $\bar{x} \notin \text{dom } g$, it has $\partial g_{\epsilon}(\bar{x}) = \emptyset$.

^{*}Subject type, Some Department of Some University, Location of the University, Country. E-mail: author.namee@university.edu.

Remark 1.2 $\partial_{\epsilon}g$ is a multivalued operator and, it's not monotone, unless $\epsilon=0$, which makes it equivalent to French subgradient ∂g .

If we assume lsc, proper and convex g, we will now introduce results in the literatures that $\{\text{fact:esp-fenchel-ineq}\}$ we will use.

Fact 1.3 (ϵ -Fenchel inequality) Let $\epsilon > 0$, then:

$$x^* \in \partial_{\epsilon} f(\bar{x}) \iff f^*(x^*) + f(\bar{x}) \le \langle x^*, \bar{x} \rangle + \epsilon \implies \bar{x} \in \partial_{\epsilon} f^*(x^*).$$

They are all equivalent if $f^{\star\star}(\bar{x}) = f(\bar{x})$.

Remark 1.4 The above fact is taken from Zalinascu [2, Theorem 2.4.2].

 $\{def:inxt-pp\}$ We will now define inexact proximal point based on ϵ -subgradient

Definition 1.5 (inexact proximal point) For all $x \in \mathbb{R}^n$, $\epsilon \geq 0$, $\lambda > 0$, \tilde{x} is an inexact evaluation of proximal point at x, if and only if it satisfies:

$$\lambda^{-1}(x - \tilde{x}) \in \partial_{\epsilon} g(\tilde{x}).$$

We denote it by $\tilde{x} \approx_{\epsilon} \operatorname{prox}_{\lambda q}(x)$.

{fact:resv-identity} Remark 1.6 This definition is nothing new, for example see Villa et al. [1, Definition 2.1]

Fact 1.7 (the resolvant identity) Let $T : \mathbb{R}^n \to 2^{\mathbb{R}^n}$, then it has:

$$(I+T)^{-1} = (I-(I+T^{-1})^{-1}).$$

Theorem 1.8 (inexact Moreau decomposition) Let $g : \mathbb{R}^n \to \overline{\mathbb{R}}$ be a closed, convex and proper function. It has the equivalence

$$\tilde{y} \approx_{\epsilon} \operatorname{prox}_{\lambda^{-1}q^{\star}}(\lambda^{-1}y) \iff y - \lambda \tilde{y} \approx_{\epsilon} \operatorname{prox}_{\lambda q}(y).$$

Proof. Consider $\tilde{y} \approx_{\epsilon} \operatorname{prox}_{\lambda^{-1}q^{\star}}(\lambda^{-1}y)$, then it has:

$$\tilde{y} \in (I + \lambda^{-1}\partial_{\epsilon}g^{*})^{-1}(\lambda^{-1}y)$$

$$\iff (\lambda^{-1}y, \tilde{y}) \in \operatorname{gra}(I + \lambda^{-1}\partial_{\epsilon}g^{*})^{-1}$$

$$\iff (\lambda^{-1}y, \tilde{y}) \in \operatorname{gra}(I - (I + \partial_{\epsilon}g \circ (\lambda I))^{-1})$$

$$\iff (\lambda^{-1}y, \lambda^{-1}y - \tilde{y}) \in \operatorname{gra}(I + \partial_{\epsilon}g \circ (\lambda I))^{-1}$$

$$\iff (\lambda^{-1}y - \tilde{y}, \lambda^{-1}y) \in \operatorname{gra}(I + \partial_{\epsilon}g \circ (\lambda I))$$

$$\iff (y - \lambda \tilde{y}, \lambda^{-1}y) \in \operatorname{gra}(\lambda^{-1}I + \partial_{\epsilon}g)$$

$$\iff (y - \lambda \tilde{y}, y) \in \operatorname{gra}(I + \lambda \partial_{\epsilon}g)$$

$$\iff y - \lambda \tilde{y} \in (I + \lambda \partial_{\epsilon}g)^{-1}y$$

$$\iff y - \lambda \tilde{y} \approx_{\epsilon} \operatorname{prox}_{\lambda g}(y).$$

At (1) we can use Fact 1.7, and it has $(\lambda^{-1}\partial_{\epsilon}g^{\star})^{-1} = \partial_{\epsilon}g \circ (\lambda I)$ by Fact 1.3 and the assumption that g is closed, convex and proper.

1.2 Inexact proximal gradient inequality

{ass:for-inxt-pg-ineq}

Assumption 1.9 (for inexact proximal gradient) The assumption is about (f, g, L). We assume that

- (i) $f: \mathbb{R}^n \to \mathbb{R}$ is a convex, L Lipschitz function.
- (ii) $g: \mathbb{R}^n \to \overline{\mathbb{R}}$ is a convex, proper, and lsc function which we do not have its exact proximal operator.

{def:inxt-pg} We develop the theory based on the use of epsilon subgradient as in Definition 1.1.

Definition 1.10 (inexact proximal gradient) Let (f, g, L) satisfies Assumption 1.9. Let $\epsilon \geq 0, \rho > 0$. Then, $\tilde{x} \approx_{\epsilon} T_{\rho}(x)$ is an inexact proximal gradient if it satisfies variational inequality:

$$\mathbf{0} \in \nabla f(x) + \rho(x - \tilde{x}) + \partial_{\epsilon} g(\tilde{x}).$$

Remark 1.11 We assumed that we can get exact evaluation of ∇f at any points $x \in \mathbb{R}^n$.

Lemma 1.12 (other representations of inexact proximal gradient)

Let (f, g, L) satisfies Assumption 1.9, $\epsilon \geq 0, \rho > 0$, then for all $x \approx_{\epsilon} T_{\rho}(x)$, it has the following equivalent representations:

$$(x - \rho^{-1}\nabla f(x)) - \tilde{x} \in \rho^{-1}\partial_{\epsilon}g(\tilde{x})$$

$$\iff \tilde{x} \in (I + \rho^{-1}\partial_{\epsilon}g(\tilde{x}))^{-1}(x - \rho^{-1}\nabla f(x))$$

$$\iff x \approx_{\epsilon} \operatorname{prox}_{\rho^{-1}g}\left(x - \rho^{-1}\nabla f(x)\right)$$

Proof. It's direct.

{thm:inxt-pg-ineq} Theorem 1.13 (inexact over-regularized proximal gradient inequality)

Let (f, g, L) satisfies Assumption 1.9, $\epsilon \geq 0, B \geq 0, \rho > 0$. Consider $\tilde{x} \approx_{\epsilon} T_{B+\rho}(x)$. Denote F = f + g. If in addition, \tilde{x}, B satisfies the line search condition $D_f(\tilde{x}, x) \leq B/2||x - \tilde{x}||^2$, then it has $\forall z \in \mathbb{R}^n$:

$$-\epsilon \le F(z) - F(\tilde{x}) + \frac{B+\rho}{2} ||x-z||^2 - \frac{B+\rho}{2} ||z-\tilde{x}||^2 - \frac{\rho}{2} ||\tilde{x}-x||^2.$$

Proof. By Definition 1.10 write the variational inequality that describes $\tilde{x} \approx_{\epsilon} T_B(x)$, and the definition of epsilon subgradient (Definition 1.1) it has for all $z \in \mathbb{R}^n$:

$$\begin{split} -\epsilon & \leq g(z) - g(\tilde{x}) - \langle (B+\rho)(\tilde{x}-x) - \nabla f(x), z - \tilde{x} \rangle \\ & = g(z) - g(\tilde{x}) - (B+\rho)\langle \tilde{x}-x, z - \tilde{x} \rangle + \langle \nabla f(x), z - \tilde{x} \rangle \\ & \leq g(z) + f(z) - g(\tilde{x}) - f(\tilde{x}) - (B+\rho)\langle \tilde{x}-x, z - \tilde{x} \rangle - D_f(z,x) + D_f(\tilde{x},x) \\ & \leq F(z) - F(\tilde{x}) - (B+\rho)\langle \tilde{x}-x, z - \tilde{x} \rangle + \frac{B}{2} \|\tilde{x}-x\|^2 \\ & = F(z) - F(\tilde{x}) + \frac{B+\rho}{2} \left(\|x-z\|^2 - \|\tilde{x}-x\|^2 - \|z - \tilde{x}\|^2 \right) + \frac{B}{2} \|\tilde{x}-x\|^2 \\ & = F(z) - F(\tilde{x}) + \frac{B+\rho}{2} \|x-z\|^2 - \frac{B+\rho}{2} \|z - \tilde{x}\|^2 - \frac{\rho}{2} \|\tilde{x}-x\|^2. \end{split}$$

At (1), we used considered the following:

$$\langle \nabla f(x), z - x \rangle = \langle \nabla f(x), z - x + x - \tilde{x} \rangle$$

$$= \langle \nabla f(x), z - x \rangle + \langle \nabla f(x), x - \tilde{x} \rangle$$

$$= -D_f(z, x) + f(z) - f(x) + D_f(\tilde{x}, x) - f(\tilde{x}) + f(x)$$

$$= -D_f(z, x) + f(z) + D_f(\tilde{x}, x) - f(\tilde{x}).$$

At (2), we used the fact that f is convex hence $-D_f(z,x) \leq 0$ always, and in the statement hypothesis we assumed that B has $D_f(\tilde{x},x) \leq B/2||\tilde{x}-x||^2$.

1.3 Optimizing the inexact proximal point problem

In this section we will show an optimization problem that allows us to solve for some $\tilde{x} \approx_{\epsilon} \operatorname{prox}_{\lambda g}(z)$. Most of these results are from the literature. To start, we must assume the following about a function $g: \mathbb{R}^n \to \overline{\mathbb{R}}$, with g closed, convex and proper.

 $\{ass: for\text{-}inxt\text{-}prox\}$

Assumption 1.14 (for inexact proximal operator)

This assumption is about (g, ω, A) . Let $m \in \mathbb{N}, n \in \mathbb{R}^n$, we assume that

- (i) $A \in \mathbb{R}^{m \times n}$ is a matrix.
- (ii) $\omega: \mathbb{R}^n \to \overline{\mathbb{R}}$ is a closed and convex function such that it admits proximal operator $\operatorname{prox}_{\lambda\omega}$ and, its conjugate ω^* is known.
- (iii) $g := \omega(Ax)$ such that $\operatorname{rng} A \cap \operatorname{ridom} g \neq \emptyset$.

Now, we are ready to discuss how to choose $\tilde{x} \approx_{\epsilon} \operatorname{prox}_{\lambda g}(x)$. Fix $y \in \mathbb{R}^n, \lambda > 0$, we are ultimately interested in minimizing:

$$\Phi_{\lambda}(u) := \omega(Au) + \frac{1}{2\lambda} \|u - y\|^2 \tag{1.1}$$

This problem admits dual objective in \mathbb{R}^m :

$$\Psi_{\lambda}(v) := \frac{1}{2\lambda} \|\lambda A^{\top} v - y\|^2 + \omega^{\star}(v) - \frac{1}{2\lambda} \|y\|^2.$$
 (1.2)

We define the duality gap

$$\mathbf{G}_{\lambda}(u,v) := \Phi_{\lambda}(u) + \Psi_{\lambda}(v). \tag{1.3}$$

If strong duality holds, it exists (\hat{u}, \hat{v}) such that we have the following:

$$\mathbf{G}_{\lambda}(\hat{u}, \hat{v}) = 0 = \min_{u} \Phi_{\lambda}(u) + \min_{v} \Psi_{\lambda}(v)$$

The following theorem quantifies a sufficient conditions for $\tilde{x} \approx_{\epsilon} \operatorname{prox}_{\lambda g}(x)$. The theorem below is from [1, Proposition 2.2].

{thm:primal-dual-trans}

Theorem 1.15 (primal translate to dual) Let (g, ω, A) satisfies assumption 1.14, $\epsilon \geq 0$, then

$$(\forall z \approx_{\epsilon} \operatorname{prox}_{\lambda g}(y)) (\exists v \in \operatorname{dom} \omega^{\star}) : z = y - \lambda A^{\top} v.$$

{thm:dlty-gap-inxt-pp}

This theorem that follows is from Villa et al. [1, Proposition 2.3], but put into our symbols and, Definition

Theorem 1.16 (duality gap of inexact proximal problem) Let (g, ω, A) satisfies Assumption 1.14, for all $\epsilon \geq 0$, $v \in \mathbb{R}^n$ consider the following conditions:

- (i) $\mathbf{G}_{\lambda}(y \lambda A^{\top}v, v) \leq \epsilon$.
- (ii) $A^{\top}v \approx_{\epsilon} \operatorname{prox}_{\lambda^{-1}q^{\star}}(\lambda^{-1}y)$
- (iii) $y \lambda A^{\top} v \approx_{\epsilon} \operatorname{prox}_{\lambda q}(y)$.

They have (a) \Longrightarrow (b) \Longleftrightarrow (c). If in addition $\omega^*(v) = g^*(A^\top v)$, then all three conditions are equivalent.

The following fact from the literature indicates that it's sufficient to minimize the dual problem Ψ_{λ} to obtain an element of the inexact proximal point operator. The following fact is Proposition [1, Theorem 5.1].

Fact 1.17 (minimizing dual of the proximal problem) Let \bar{v} be a solution of Ψ . Suppose that $(v_n)_{n\geq 0}$ is a minimizing sequence for Ψ . Let $z_n=y-\lambda A^{\top}v_n$, and $\bar{z}=y-\lambda A^{\top}\bar{v}$. If in addition, Φ_{λ} is L_1 Lipschitz continuous, then it has for all $k\geq 0$ the inequality:

$$\Phi_{\lambda}(z_n) - \Phi_{\lambda}(\bar{x}) \le L_1 \|z_n - \bar{z}\| \le L_1 \sqrt{2\lambda} (\Psi_{\lambda}(v_n) - \Psi_{\lambda}(\bar{v}))^{1/2}.$$

We remark that the above fact translates any algorithm that optimizes the function value of the dual problem into optimizing duality gap $\mathbf{G}(z_n, v_n)$. For this reasons, the inner loop interation required to achieve $\mathbf{G}(z_n, v_n) < \epsilon$ is now related to the convergence rate of the algorithms used to optimize $\Psi_{\lambda}(v_n)$.

STILL WRITING AND NOT FINISHED YET!

1.4 Literature reviews

1.5 Our contributions

2 The accelerated proximal gradient with controlled errors

In this section, we present an accelerated algorithm with controlled error using Definition 1.10, and show that it can have a convergence rate under certain error conditions.

{def:inxt-apg} Definition 2.1 (our inexact accelerated proximal gradient)

Suppose that (F, f, g, L) and, sequences $(\alpha_k, B_k, \rho_k, \epsilon_k)_{k>0}$ satisfies the following

- (i) $(\alpha_k)_{k>0}$ is a sequence such that $\alpha \in (0,1]$ for all $k \geq 0$.
- (ii) $(B_k)_{k\geq 0}$ is a non-negative sequence, characterizing the potential line search routine.
- (iii) $(\rho_k)_{k\geq 0}$ be a sequence such that $\rho_k > 0$, characterizing the over-relaxation of the proximal gradient operator.
- (iv) $(\epsilon_k)_{k\geq 0}$ is a non-negative sequence characterizing the errors of inexact proximal evaluation.
- (v) (f, g, L) satisfies Assumption 1.9, and let F = f + g.

Denote $L_k = B_k + \rho_k$ for short. Given any initial condition $v_{-1}, x_{-1} \in \mathbb{R}^n$, the algorithm generates the sequences $(y_k, x_k, v_k)_{k>0}$ such that they satisfy for all $k \geq 0$:

$$y_k = \alpha_k v_{k-1} + (1 - \alpha_k) x_{k-1},$$

$$x_k \approx_{\epsilon_k} T_{L_k}(y_k),$$

$$D_f(x_k, y_k) \le \frac{B_k}{2} ||x_k - y_k||^2,$$

$$v_k = x_{k-1} + \alpha_k^{-1} (x_k - x_{k-1}).$$

{lemma:inxt-apg-cnvg-prep1} Lemma 2.2 (inexact accelerated proximal gradient preparation stage I)

Let (f, g, L), and $(\alpha_k, B_k, \rho_k, \epsilon_k)_{k \geq 0}$, be given by Definition 2.1. Denote $L_k = B_k + \rho_k$. Then,

for any $\bar{x} \in \mathbb{R}^n$, the sequences $(y_k, x_k, v_k)_{k>0}$ generated satisfy for all $k \geq 1$ the inequality:

$$\begin{split} &\frac{\rho_k}{2} \|x_k - y_k\|^2 - \epsilon_k \\ &\leq (1 - \alpha_k) (F(x_{k-1}) - F(\bar{x})) + F(\bar{x}) - F(x_k) \\ &+ \max \left(1 - \alpha_k, \frac{\alpha_k^2 L_k}{\alpha_{k-1}^2 L_{k-1}} \right) \frac{\alpha_{k-1}^2 L_{k-1}}{2} \|\bar{x} - v_{k-1}\|^2 - \frac{\alpha_k^2 L_k}{2} \|\bar{x} - v_k\|^2. \end{split}$$

When, k = 1 it instead has:

$$\frac{\rho_0}{2} \|x_0 - y_0\|^2 - \epsilon_0
\leq (1 - \alpha_0)(F(x_{-1}) - F(\bar{x})) + F(\bar{x}) - F(x_0) + \frac{\alpha_0^2 L_0}{2} \|\bar{x} - v_{-1}\|^2 - \frac{\alpha_0^2 L_0}{2} \|\bar{x} - v_0\|^2.$$

Proof. Two intermediate results are in order before we can prove the inequality. Define $z_k := \alpha_k \bar{x} + (1 - \alpha_k) x_{k-1}$ for short. It has for all $k \ge 1$ the equality:

$$z_{k} - x_{k} = \alpha_{k}\bar{x} + (1 - \alpha_{k})x_{k-1} - x_{k}$$

$$= \alpha_{k}x^{+} + (x_{k-1} - x_{k}) - \alpha_{k}x_{k-1}$$

$$= \alpha_{k}\bar{x} - \alpha_{k}v_{k}.$$
(a)

It also has for all $k \geq 1$ the equality:

{eqn:inxt-apg-cnvg-prep1-a}

{eqn:inxt-apg-cnvg-prep1-b}
$$z_k - y_k = \alpha_k \bar{x} + (1 - \alpha_k) x_{k-1} - y_k$$

$$= \alpha_k \bar{x} - \alpha_k v_{k-1}.$$
 (b)

Let's denote $L_k = B_k + \rho_k$ for short. Recall that (f, g, L) satisfies Assumption 1.9, if we choose $x = y_k$ so $\tilde{x} = x_k \approx_{\epsilon} T_{L_k}(y_k)$, and set $z = z_k$, $\epsilon = \epsilon_k$ then Theorem 1.13 has:

$$\begin{split} &\frac{\rho_k}{2} \|x_k - y_k\|^2 - \epsilon_k \\ &\leq F(z_k) - F(x_k) + \frac{L_k}{2} \|y_k - z_k\|^2 - \frac{L_k}{2} \|z_k - x_k\|^2 \\ &\leq \alpha_k F(\bar{x}) + (1 - \alpha_k) F(x_{k-1}) - F(x_k) + \frac{L_k}{2} \|y_k - z_k\|^2 - \frac{L_k}{2} \|z_k - x_k\|^2 \\ &= \frac{1}{(2)} (1 - \alpha_k) (F(x_{k-1}) - F(\bar{x})) + F(\bar{x}) - F(x_k) + \frac{\alpha_k^2 L_k}{2} \|\bar{x} - v_{k-1}\|^2 - \frac{\alpha_k^2 L_k}{2} \|\bar{x} - v_k\|^2 \\ &\leq (1 - \alpha_k) (F(x_{k-1}) - F(\bar{x})) + F(\bar{x}) - F(x_k) \\ &+ \max \left(1 - \alpha_k, \frac{\alpha_k^2 L_k}{\alpha_{k-1}^2 L_{k-1}}\right) \frac{\alpha_{k-1}^2 L_{k-1}}{2} \|\bar{x} - v_{k-1}\|^2 - \frac{\alpha_k^2 L_k}{2} \|\bar{x} - v_k\|^2. \end{split}$$

At (1) we used the fact that F = f + g hence F is convex. At (2) we used (a), (b). Finally, if k = 0, then take the RHS of = then:

$$\frac{\rho_0}{2} \|x_0 - y_0\|^2 - \epsilon_0
\leq (1 - \alpha_0)(F(x_{-1}) - F(\bar{x})) + F(\bar{x}) - F(x_0) + \frac{\alpha_0^2 L_0}{2} \|\bar{x} - v_{-1}\|^2 - \frac{\alpha_0^2 L_0}{2} \|\bar{x} - v_0\|^2.$$

The following proposition is a prototype of the convergence rate together with the error schedule that delivers convergence of algorithms satisfying Definition 2.1.

{prop:inxt-apg-cnvg-generic} Proposition 2.3 (valid error schedule and convergence rate)

Let (f, g, L), $(\alpha_k, B_k, \rho_k, \epsilon_k)_{k \geq 0}$ be given by Definition 2.1. Fix any $\bar{x} \in \mathbb{R}^n$ for all $k \geq 0$ and assume that $\alpha_0 = 1$. Denote for brevity $\beta_0 = 1$, $\beta_k = \prod_{i=1}^k \max\left(1 - \alpha_i, \frac{\alpha_i^2 L_i}{\alpha_{i-1}^2 L_{i-1}}\right)$ and $L_k = B_k + \rho_k$. If for some fixed $\mathcal{E}_0 \geq 0$, $p \geq 1$ the parameter ρ_k , ϵ_k can satisfy for all $k \geq 0$ the condition

$$\frac{-\mathcal{E}_0 \beta_k}{k^p} \le \frac{\rho_k}{2} \|x_k - y_k\|^2 - \epsilon_k.$$

Then for the sequence generated $(y_k, x_k, v_k)_{k\geq 0}$ by the algorithm, for all $k\geq 0$ they satisfy:

$$F(x_k) - F(\bar{x}) + \frac{\alpha_k^2 L_k}{2} \|\bar{x} - v_k\|^2 \le \beta_k \left(\frac{L_0}{2} \|\bar{x} - v_{-1}\|^2 + \mathcal{E}_0 \sum_{n=1}^k \frac{1}{n^p} \right).$$

Proof. Consider results from Lemma 2.2 has $\forall k > 1$:

$$\frac{\rho_{k}}{2} \|x_{k} - y_{k}\|^{2} - \epsilon_{k}
\leq (1 - \alpha_{k})(F(x_{k-1}) - F(\bar{x})) + F(\bar{x}) - F(x_{k})
+ \max\left(1 - \alpha_{k}, \frac{\alpha_{k}^{2}L_{k}}{\alpha_{k-1}^{2}L_{k-1}}\right) \frac{\alpha_{k-1}^{2}L_{k-1}}{2} \|\bar{x} - v_{k-1}\|^{2} - \frac{\alpha_{k}^{2}L_{k}}{2} \|\bar{x} - v_{k}\|^{2}.
\leq \max\left(1 - \alpha_{k}, \frac{\alpha_{k}^{2}L_{k}}{\alpha_{k-1}^{2}L_{k-1}}\right) \left(F(x_{k-1}) - F(\bar{x}) + \frac{\alpha_{k-1}^{2}L_{k-1}}{2} \|\bar{x} - v_{k-1}\|^{2}\right)
+ F(\bar{x}) - F(x_{k}) - \frac{\alpha_{k}^{2}L_{k}}{2} \|\bar{x} - v_{k}\|^{2}$$

For notation brevity, we introduce β_k , Λ_k :

$$\beta_0 = 1,$$

$$\beta_k := \prod_{i=1}^k \max \left(1 - \alpha_i, \frac{\alpha_i^2 L_i}{\alpha_{i-1}^2 L_{i-1}} \right),$$

$$\Lambda_k := -F(\bar{x}) + F(x_k) + \frac{\alpha_k^2 L_k}{2} ||\bar{x} - v_k||^2.$$

Now, suppose that in addition there is a non-negative sequence $(\mathcal{E}_k)_{k\geq 0}$ such that

- (i) For all $k \geq 0$, it has $\frac{-\mathcal{E}_k}{k^p} \leq (\rho_k/2) \|x_k y_k\|^2 \epsilon_k$ where $p \geq 1$, (ii) For all $k \geq 1$, it has $\mathcal{E}_k = \frac{\beta_k}{\beta_{k-1}} \mathcal{E}_{k-1}$, with $\mathcal{E}_0 \geq 0$.

These conditions are equivalent to the assumption that $\frac{-\mathcal{E}_0\beta_k}{k^p} \leq \frac{\rho_k}{2} ||x_k - y_k||^2 - \epsilon_k$. One can show that by unrolling recurrence on \mathcal{E}_k . Then (2.1) implies $\forall k \geq 1$:

{ineq:inxt-apg-cnvg-generic-pitem-1}

$$\frac{-\mathcal{E}_k}{k^p} \le \frac{\beta_k}{\beta_{k-1}} \Lambda_{k-1} - \Lambda_k \iff \Lambda_k \le \frac{\beta_k}{\beta_{k-1}} \Lambda_{k-1} + \frac{\mathcal{E}_k}{k^p}. \tag{2.1}$$

Now, we show the convergence of Λ_k , using the relations of $\mathcal{E}_k, \Lambda_k, \beta_k$ above.

$$\Lambda_{k} \leq \frac{\beta_{k}}{\beta_{k-1}} \Lambda_{k-1} + \frac{\mathcal{E}_{k}}{k^{p}}$$

$$\leq \frac{\beta_{k}}{\beta_{k-1}} \Lambda_{k-1} + \frac{\beta_{k}}{\beta_{k-1}} \frac{\mathcal{E}_{k-1}}{k^{p}}$$

$$= \frac{\beta_{k}}{\beta_{k-1}} \left(\Lambda_{k-1} + \frac{\mathcal{E}_{k-1}}{k^{p}} \right)$$

$$\leq \frac{\beta_{k}}{\beta_{k-1}} \left(\frac{\beta_{k-1}}{\beta_{k-2}} \Lambda_{k-2} + \frac{\mathcal{E}_{k-1}}{(k-1)^{p}} + \frac{\mathcal{E}_{k-1}}{k^{p}} \right)$$

$$= \frac{\beta_{k}}{\beta_{k-2}} \left(\Lambda_{k-2} + \frac{\mathcal{E}_{k-2}}{(k-1)^{p}} + \frac{\mathcal{E}_{k-2}}{k^{p}} \right)$$
...
$$\leq \frac{\beta_{k}}{\beta_{1}} \left(\Lambda_{1} + \mathcal{E}_{1} \sum_{n=2}^{k} \frac{1}{n^{p}} \right)$$

$$\leq \frac{\beta_{k}}{\beta_{1}} \left(\frac{\beta_{1}}{\beta_{0}} \Lambda_{0} + \mathcal{E}_{1} \sum_{n=1}^{k} \frac{1}{n^{p}} \right)$$

$$= \frac{\beta_{k}}{\beta_{0}} \left(\Lambda_{0} + \mathcal{E}_{0} \sum_{n=1}^{k} \frac{1}{n^{p}} \right).$$

Therefore, it points to the following inequality:

$$F(x_k) - F(\bar{x}) + \frac{\alpha_k^2 L_k}{2} \|\bar{x} - v_k\|^2$$

$$\leq \beta_k \left(F(x_0) - F(\bar{x}) + \frac{\alpha_0^2 L_0}{2} \|\bar{x} - v_0\|^2 + \mathcal{E}_0 \sum_{n=1}^k \frac{1}{n^p} \right).$$

Finally, when $\alpha_0 = 1$, then the results from 2.2 with k = 0 simplifies the above inequality and give:

$$F(x_k) - F(\bar{x}) + \frac{\alpha_k^2 L_k}{2} \|\bar{x} - v_k\|^2 \le \beta_k \left(\frac{L_0}{2} \|\bar{x} - v_{-1}\|^2 + \mathcal{E}_0 \sum_{n=1}^k \frac{1}{n^p} \right).$$

Now, it only remains to determine the sequence α_k to derive a type of convergence rate for the algorithm because from the above theorem, we have the convergence rate β_k and, the error parameters ϵ_k , ρ_k both controlled by the sequence $(\alpha_k)_{k>0}$.

3 Linear convergence for the inner loop proximal problem

References

- [1] S. VILLA, S. SALZO, L. BALDASSARRE, AND A. VERRI, Accelerated and inexact forward-backward algorithms, SIAM Journal on Optimization, 23 (2013), pp. 1607–1633.
- [2] C. Zalinescu, Convex analysis in general vector spaces, World Scientific, River Edge, N.J.; London, 2002.
- [3] M. Zhang, M. Zhang, F. Zhang, A. Chaddad, and A. Evans, Robust brain MR image compressive sensing via re-weighted total variation and sparse regression, Magnetic Resonance Imaging, 85 (2022), pp. 271–286.