Tooth Growth Analysis

Martin Connolly
June 21, 2015

Exploratory Analysis

Loading data

```
library(datasets)
library(ggplot2)
library(dplyr, quietly = TRUE, warn.conflicts = FALSE)
test_data <- ToothGrowth</pre>
str(test_data)
                   60 obs. of 3 variables:
## 'data.frame':
## $ len : num 4.2 11.5 7.3 5.8 6.4 10 11.2 11.2 5.2 7 ...
## $ supp: Factor w/ 2 levels "OJ", "VC": 2 2 2 2 2 2 2 2 2 2 ...
## $ dose: num 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 ...
summary(test_data)
        len
                   supp
                               dose
## Min. : 4.20
                   OJ:30 Min.
                                 :0.500
## 1st Qu.:13.07 VC:30 1st Qu.:0.500
## Median :19.25
                          Median :1.000
## Mean :18.81
                           Mean :1.167
## 3rd Qu.:25.27
                           3rd Qu.:2.000
## Max. :33.90
                           Max. :2.000
```

Dose data are categorical rather than continuous, so need to convert this to a factor variable.

```
test_data$dose <- factor(test_data$dose)</pre>
```


From the above chart, we can see that variability is not consistent, which we will need to take account of when performing any tests.

Compare tooth length and supplement type

-0.1710156 7.5710156

sample estimates:
mean of x mean of y
20.66333 16.96333

```
len_OJ <- select(filter(test_data, supp == "OJ"), len)
len_VC <- select(filter(test_data, supp == "VC"), len)
test_supp <- t.test(len_OJ, len_VC, conf.level=.95, var.equal=FALSE, paired=FALSE, alternative ="two.sitest_supp

##
## Welch Two Sample t-test
##
## data: len_OJ and len_VC
## t = 1.9153, df = 55.309, p-value = 0.06063
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:</pre>
```

We can see that the p-value is 0.0606345 which is higher than 5% and the confidence interval contains zero, so we cannot reject the null hypothesis and we cannot say that the type of supplement alone will affect tooth

growth.

Compare tooth growth and dose

```
#subset data based on dose
len_small_dose <- select(filter(test_data, dose == 0.5), len)
len_medium_dose <- select(filter(test_data, dose == 1), len)
len_large_dose <- select(filter(test_data, dose == 2), len)</pre>
```

Compare effect on length of small dose (0.5) of supplement versus medium dose (1.0)

```
test_dose_1 <- t.test(len_small_dose, len_medium_dose, conf.level=.95, var.equal=FALSE, paired=FALSE, a
test_dose_1
##
   Welch Two Sample t-test
##
##
## data: len_small_dose and len_medium_dose
## t = -6.4766, df = 37.986, p-value = 1.268e-07
\#\# alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -11.983781 -6.276219
## sample estimates:
## mean of x mean of y
##
      10.605
               19.735
```

Compare effect on length of medium dose (1.0) of supplement versus large dose (2.0)

```
test_dose_2 <- t.test(len_medium_dose, len_large_dose, conf.level=.95, var.equal=FALSE, paired=FALSE, a
test_dose_2

##
## Welch Two Sample t-test

##
## data: len_medium_dose and len_large_dose
## t = -4.9005, df = 37.101, p-value = 1.906e-05

## alternative hypothesis: true difference in means is not equal to 0

## 95 percent confidence interval:
## -8.996481 -3.733519

## sample estimates:
## mean of x mean of y
## 19.735 26.100</pre>
```

Compare effect on length of small dose (0.5) of supplement versus large dose (2.0)

```
test_dose_3 <- t.test(len_small_dose, len_large_dose, conf.level=.95, var.equal=FALSE, paired=FALSE, altest_dose_3

##
## Welch Two Sample t-test
##
## data: len_small_dose and len_large_dose
## t = -11.799, df = 36.883, p-value = 4.398e-14
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -18.15617 -12.83383
## sample estimates:
## mean of x mean of y
## 10.605 26.100</pre>
```

Conclusion

We have to reject the null hypothesis for all three t-tests and conclude that dosage of the supplements affect tooth growth.