AI for Materials Geometric Representation Learning and High Tensor Order Property Predictions

Keqiang Yan

Department of Computer Science and Engineering

Texas A&M University

Discovery of Novel Materials

- \triangleright Experiments are expensive and time-consuming v.s. $> 10^9$ material search space
- Experts and DFT algorithms $O(n^3 \sim n^7)$ can narrow down the candidate list

Figures designed using images from Flaticon.com

Speed Up Material Discovery using AI

Crystal Structures

Crystal Structures

> Lattice

- $\succ L \in \mathbb{R}^{3 \times 3}$
- > How unit cell repeats itself in 3D space

> Atom matrix

- \rightarrow $A \in \mathbb{R}^{n \times 1}$
- > Atomic numbers of atoms in the unit cell

> Atom Position matrix

- $ightharpoonup P \in R^{n \times 3}$
- > 3D positions of atoms in the unit cell

Geometric Representation Learning

The bridge between real world atomic systems and AI

Crystal structures

Complex 3D structures

Near **infinite unexplored**

structural space

Geometric representations

Converting structures into representations that **capture geometric information**

AI methods

Only consider information contained in representations!

Previous Multi-edge Graphs

Only captures bond lengths and atom types within a radius

Geometric Representation Learning

Instead, we want the geometric representations to

Model different crystals differently

Model equivariant crystals equivariantly

Geometric Representation Learning + AI

Given robust and powerful geometric representations, designing AI methods that are

- Accurate, efficient, and robust
- Screening potential crystal structures $\sim 10^5$ times faster

Talk Overview

Empowering AI methods to

- distinguish any crystal structural differences [ICLR 2024]
- predict crystal tensor properties of various order [ICML 2024]

Distinguish Any Structural Differences

Can previous methods (Matformer, ALIGNN, M3GNet) distinguish any structural differences?

Distances are not enough (even with bond angles)

Distinguish Any Structural Differences

Can we design a crystal representation that is complete?

Ability to capture any structural differences

Definition 1 (Geometrically Complete Crystal Graph). Following Widdowson & Kurlin (2022), a crystal graph \mathcal{G} is geometrically complete if $\mathcal{G}_1 = \mathcal{G}_2 \to \mathbf{M}_1 \cong \mathbf{M}_2$, where \cong denotes that two crystals are isometric as defined in Appendix A.3. It means if two crystal graphs \mathcal{G}_1 and \mathcal{G}_2 are the same, the infinite crystal structures represented by \mathcal{G}_1 and \mathcal{G}_2 are identical.

Challenges

- A crystal can have *dramatically different* unit cells, but should have *a unique* representation
- Map equivariant crystals equivariantly, e.g., rotates when the structure is rotated
- Efficiency

The proposed ComFormer

- > Insights: periodic patterns are the same for every atom in a crystal
 - > First uniquely determine a unit cell
 - > Use periodic patterns to form a *lattice frame* for every atom

The proposed ComFormer

- How to extend to global completeness?
 - Lattice frame alignment

The proposed ComFormer

- \triangleright Edge features: distances + three lattice angles, or e_{ji}
- > Completeness: with rigorous mathematical proofs
- \triangleright Efficiency: linear computational complexity with O(nk)

Experimental Results

- > SOTA prediction results for Matbench
 - > # 1 method for the competitive formation energy task with 16.5 meV/atom MAE
 - > # 2 method for jdft2d, with just 636 samples (#1 method is physics descriptor based)
- Even *faster* beyond *in-complete* methods

Table 4: Efficiency analysis.

Method	Complexity	Num. Params.	Time/epoch
Matformer	$egin{aligned} O(nk) \ O(nk^2) \end{aligned}$	2.9 M	64 s
ALIGNN		4.0 M	327 s
eComFormer	$O(nk) \ O(nk) \ O(nk) \ O(nk)$	12.4 M	115 s
eComFormer-half		5.6 M	90 s
iComFormer(3)		4.1 M	69 s
iComFormer(4)		5.0 M	78 s

Takeaway

Lattice frames can be used to achieve completeness with efficiency

Complete geometric representations can boost the prediction accuracy

 \triangleright ComFormer is complete, efficient with O(nk), and robust across various material properties with ranging training data scales

Talk Overview

Empowering AI methods to

- distinguish any structural differences [ICLR 2024]
- predict crystal tensor properties of various order [ICML 2024]

Predict General Materials Tensors

- > Crystal tensor properties with different tensor orders
 - How to predict high tensor order properties?
 - \triangleright How to guarantee underlying physics constraints, e.g., O(3) and crystal space groups?

Challenges

- \triangleright Crystal tensor properties with tensor order *n* are of matrix form $\in \mathbb{R}^{3^n}$
 - ➤ Order 2 dielectric tensors $\in \mathbb{R}^{3\times3}$, order 3 piezoelectric tensors $\in \mathbb{R}^{3\times3\times3}$
 - > General ML models developed cannot predict matrix output

\rightarrow O(3) tensor equivariance

- When the crystal is rotated, tensor properties will rotate in a complex way
- ho Dielectric $m{arepsilon} = \mathbf{R}_i m{arepsilon} \mathbf{R}_i^T$, piezoelectric $\mathbf{e}'_{ijk} = \sum_{\ell mn} \mathbf{R}_{i\ell} \mathbf{R}_{jm} \mathbf{R}_{kn} \mathbf{e}_{\ell mn}$
- Space group constraints

Space Group Constraints

- Space group of crystal structures
 - > Space group transformations will map the crystal back to itself
 - > e.g., rotate 90 degree, reflect along xy-plane, etc.
- > Space group puts direct constraints to tensor matrix values

$$\begin{bmatrix} D_x \\ D_y \\ D_z \end{bmatrix} = \begin{bmatrix} \boldsymbol{\varepsilon}_{xx} & \boldsymbol{\varepsilon}_{xy} & \boldsymbol{\varepsilon}_{xz} \\ \boldsymbol{\varepsilon}_{yx} & \boldsymbol{\varepsilon}_{yy} & \boldsymbol{\varepsilon}_{yz} \\ \boldsymbol{\varepsilon}_{zx} & \boldsymbol{\varepsilon}_{zy} & \boldsymbol{\varepsilon}_{zz} \end{bmatrix} \begin{bmatrix} E_x \\ E_y \\ E_z \end{bmatrix}, \quad \mathbf{R}_1 = \begin{bmatrix} 0 & -1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}.$$

Due to $oldsymbol{arepsilon} = \mathbf{R}_i oldsymbol{arepsilon} \mathbf{R}_i^T$, we can have

$$egin{bmatrix} egin{bmatrix} oldsymbol{arepsilon}_{xx} & oldsymbol{arepsilon}_{xy} & oldsymbol{arepsilon}_{xz} \\ oldsymbol{arepsilon}_{yx} & oldsymbol{arepsilon}_{yy} & oldsymbol{arepsilon}_{yz} \end{bmatrix} = egin{bmatrix} oldsymbol{arepsilon}_{yy} & -oldsymbol{arepsilon}_{yx} & -oldsymbol{arepsilon}_{yx} & oldsymbol{arepsilon}_{xx} \end{bmatrix} & oldsymbol{arepsilon} & oldsymbol{arepsilon} = egin{bmatrix} oldsymbol{arepsilon}_{xx} & oldsymbol{arepsilon}_{xy} & 0 \\ -oldsymbol{arepsilon}_{xy} & oldsymbol{arepsilon}_{xx} & 0 \\ 0 & 0 & oldsymbol{arepsilon}_{zz} \end{bmatrix}. \end{cases}$$

Resulting in strictly zero and equal entries in dielectric tensors

GMTNet

- GMTNet: General Materials Tensor Network
 - A carefully designed network *satisfying all structural symmetry constraints for various tensors*

GMTNet

- > GMTNet: General Materials Tensor Network
 - > Three components
 - > 1. Symmetry-informed crystal graphs
 - > 2. Equivariant crystal high rotation order feature extraction
 - > 3. Equivariant tensor property prediction

> Satisfy crystal symmetries at different levels, including atom and crystal levels

Atom and Crystal Level Requirements

- Symmetry-informed crystal graphs
 - \triangleright Requirements for atom-level features \rightarrow satisfy crystal symmetries
 - If two atoms can be mapped to each other by space group operation (R, τ) , then they must have identical invariant features and rotated equivariant features

- > Equivariant crystal high rotation order feature extraction
 - Requirements for crystal-level features
 - ➤ According to Neumann's Principle, crystal features should retain the same spatial symmetry characteristics as the crystal → invariant to space group ops

Atom and Crystal Level Requirements

By satisfying these requirements, we mathematically prove that the extracted crystal feature is invariant to (R, τ) in corresponding space groups.

$$oldsymbol{G}^\ell = rac{1}{n} \sum_{1 \leq i \leq n} oldsymbol{f}_i^\ell = rac{1}{n} \sum_{1 < heta_{ ext{re}}(i) < n} oldsymbol{f}_{ heta_{ ext{re}}(i)}^\ell = rac{1}{n} \sum_{1 \leq i' \leq n} oldsymbol{f}_{i'}^\ell = oldsymbol{G}_{ ext{rotated}}^\ell,$$

$$oldsymbol{G}_{ ext{rotated}}^{\ell} = rac{1}{n} \sum_{1 \leq i \leq n} oldsymbol{f}_{i, ext{rotated}}^{\ell} = rac{1}{n} \sum_{1 \leq i \leq n} ext{WD}^{\ell}(\mathbf{R}) \circ oldsymbol{f}_{i}^{\ell} = ext{WD}^{\ell}(\mathbf{R}) \circ oldsymbol{G}^{\ell}.$$

Global crystal feature is invariant to space group transformations (R, τ)

Equivariant Tensor Property Prediction

Mimic the actual physical response when external electric field / strain is applied

- General response theory inspired
 - Directly restricting the output to satisfy complex O(3) equivariance is hard
 - Predicting electrical displacement field (a 3D vector) is easy

Dielectric:
$$\mathbf{D} = \sum (\mathbf{G}^{\ell_G} \otimes \mathbf{E}^{\ell_{\mathbf{E}}=1})^{\ell_{\mathbf{D}}=1}, \quad \boldsymbol{\varepsilon} = \frac{\partial \mathbf{D}}{\partial \mathbf{E}}.$$

Piezoelectric:
$$\mathbf{D} = \sum_{\ell_G} \sum_{\ell_{\epsilon}} (\mathbf{G}^{\ell_G} \otimes \boldsymbol{\epsilon}^{\ell_{\epsilon}})^{\ell_{\mathbf{D}} = 1}$$
, and $\mathbf{e} = \frac{\partial \mathbf{D}}{\partial \boldsymbol{\epsilon}}$.

Elastic:
$$\sigma^{\ell_{\sigma}} = \sum_{\ell_{G}} \sum_{\ell_{\epsilon}} (G^{\ell_{G}} \otimes \epsilon^{\ell_{\epsilon}})^{\ell_{\sigma}}$$
, and $C = \frac{\partial \sigma}{\partial \epsilon}$.

Curated Dataset

A dataset is curated specifically focusing on crystal tensor properties, including dielectric, piezoelectric, and elasticity tensors, sourced from the JARVIS-DFT database

Dataset	# Samples	Fnorm Mean	Fnorm STD	# Elem.	Unit
Dielectric	4713	14.7	18.2	87	Unitless
Piezo	4998	0.43	3.09	87	C/m ²
Elastic	14220	327	249	87	GPa

Experimental Results

GMTNet satisfies all symmetry constraints

Left / Right: success rate in predicting zero / equal entries in dielectric tensors

Crystal System	MEGNET	ETGNN	GMTNet
Cubic	0%	13.5%	100 %
Tetragonal	0%	1.3%	100 %
Hexa-Trigonal	0%	2.3%	100 %
Orthorhombic	0%	0%	100 %
Monoclinic	0%	6.4%	100 %

Crystal System	MEGNET	ETGNN	GMTNet
Cubic	0%	100% $55.3%$ $0%$ $0%$	100%
Tetragonal	0%		100%
Hexagonal	0%		100%
Trigonal	0%		100%

Accuracy comparison for dielectric tensors

	MEGNET	ETGNN	GMTNet
Fnorm ↓ EwT 25% ↑ EwT 10% ↑ EwT 5% ↑	$\begin{array}{c c} 4.16 \\ 74.9\% \\ 38.9\% \\ 19.1\% \end{array}$	$3.92 \\ 81.3\% \\ 41.6\% \\ 23.8\%$	3.50 84.5% 57.1% 27.8%

Experimental Results

GMTNet can generalize to higher tensor properties

Accuracy for piezoelectric and elastic tensors

	Piezo (C/m ²)	Elastic (GPa)
Data Fnorm (mean \pm std)	0.43 ± 3.09	326.9 ± 249.3
Fnorm ↓ EwT 25% ↑ EwT 10% ↑ EwT 5% ↑	$\begin{array}{c c} \textbf{0.37} \\ 49.1\% \\ 46.3\% \\ 45.7\% \end{array}$	$egin{array}{c} 67.38 \\ 66.1\% \\ 21.8\% \\ 7.7\% \end{array}$
Symmetry-Zero ↑ Symmetry-Equality ↑	100% 100%	$100\% \\ 100\%$

Visualization Comparison with Ground Truth

Takeaway

> Crystal space group symmetry constraints can be decomposed into atom-level and crystal-level feature requirements

The proposed GMTNet is a powerful, general, and robust machine learning tool to predict crystal tensor properties of various orders, satisfying all symmetry constraints

Acknowledgement

- > Everyone attending the talk!
- Advisors: Dr. Shuiwang Ji, Dr. Xiaofeng Qian, Dr. Xiaoning Qian
- > All other collaborators

- Funding Agencies
 - > The National Science Foundation (NSF)
 - > Center for Reconfigurable Electronic

Materials Inspired by Nonlinear Dynamics (reMIND)

