

COMUNICAÇÃO POR COMPUTADORES

RELATÓRIO

TP1 - Protocolos da camada de transporte

Realizado por:

(Grupo 4)

Luís Fernandes a88539

Ricardo Silva a93195

Rui Alves a93252

PARTE 1:

QUESTÃO 1: "De que forma as perdas e duplicações de pacotes afetaram o desempenho das aplicações? Que camada lidou com as perdas e duplicações: transporte ou aplicação? Responda com base nas experiências feitas e nos resultados observados".

RESPOSTA:

A camada de transporte foi a responsável pelas perdas e duplicações. O TCP e UDP são os protocolos de transporte utilizados.

As perdas e duplicações de pacotes afetam o desempenho das aplicações dependendo do protocolo de transporte utilizado, o protocolo TCP, diferente do UDP, é voltado à conexão e tem como garantia a integridade e ordem de todos os dados de forma segura, já protocolo UDP é rápido e não precisa de conexão, pode enviar "datagramas" de uma máquina à outra, mas sem garantia de que os dados enviados chegarão intactos e na ordem correta.

	196 215.630465857	10.2.2.1	10.4.4.1	TCP	66 21 → 43922 [ACK] Seq=21 Ack=14 Win=65280 Len=0 TSval=37825366
	197 215.630469090	10.2.2.1	10.4.4.1	TCP	78 [TCP Dup ACK 196#1] 21 → 43922 [ACK] Seq=21 Ack=14 Win=65280
	198 215.630578653	10.2.2.1	10.4.4.1	FTP	100 Response: 331 Please specify the password.
	199 215.635670340	10.4.4.1	10.2.2.1	TCP	66 43922 → 21 [ACK] Seq=14 Ack=55 Win=64256 Len=0 TSval=24693970
	200 216.043673859	10.2.2.254	224.0.0.5	0SPF	78 Hello Packet
	201 216.295901600	fe80::200:ff:feaa:10	ff02::5	0SPF	90 Hello Packet
	202 217.381091500	fe80::10ec:b0ff:fe5	ff02::2	ICMPv6	70 Router Solicitation from 36:3f:72:be:90:6d
	203 218.043706158	10.2.2.254	224.0.0.5	0SPF	78 Hello Packet
	204 220.043823739	10.2.2.254	224.0.0.5	0SPF	78 Hello Packet
	205 222.045035041	10.2.2.254	224.0.0.5	0SPF	78 Hello Packet
	206 224.046131268	10.2.2.254	224.0.0.5	0SPF	78 Hello Packet
	207 224.375249008	10.4.4.1	10.2.2.1	FTP	96 Request: PASS a93252@alunos.uminho.pt
	208 224.375250131	10.4.4.1	10.2.2.1	TCP	96 [TCP Retransmission] 43922 → 21 [PSH, ACK] Seq=14 Ack=55 Win=
	209 224.376142735	10.2.2.1	10.4.4.1	TCP	66 21 → 43922 [ACK] Seq=55 Ack=44 Win=65280 Len=0 TSval=37825454
	210 224.376147770	10.2.2.1	10.4.4.1	TCP	78 [TCP Dup ACK 209#1] 21 → 43922 [ACK] Seq=55 Ack=44 Win=65280
	211 226.047016506	10.2.2.254	224.0.0.5	0SPF	78 Hello Packet
	212 226.303136264	fe80::200:ff:feaa:10	ff02::5	0SPF	90 Hello Packet
-					

Imagem 1: Exemplo de retransmissão e duplicados tratados pelo protocolo TCP (conexão FTP)

QUESTÃO 2: "Obtenha a partir do wireshark, ou desenhe manualmente, um diagrama temporal para a transferência de file1 por FTP. Foque-se apenas na transferência de dados [ftp-data] e não na conexão de controlo, pois o FTP usa mais que uma conexão em simultâneo. Identifique, se aplicável, as fases de início de conexão, transferência de dados e fim de conexão. Identifique também os tipos de segmentos trocados e os números de sequência usados quer nos dados como nas confirmações".

RESPOSTA:

Imagem 2: Diagrama temporal de uma conexão FTP.

QUESTÃO 3: "Obtenha a partir do wireshark, ou desenhe manualmente, um diagrama temporal para a transferência de file1 por TFTP. Identifique, se aplicável, as fases de início de conexão, transferência de dados e fim de conexão. Identifique também os tipos de segmentos trocados e os números de sequência usados quer nos dados como nas confirmações".

RESPOSTA:

Imagem 3: Diagrama temporal de uma conexão TFTP.

QUESTÃO 4: "Compare sucintamente as quatro aplicações de transferência de ficheiros que usou nos seguintes pontos (i) uso da camada de transporte; (ii) eficiência; (iii) complexidade; (iv) segurança".

RESPOSTA:

Pela análise da transferência por **SFTP**, é uma aplicação segura uma vez que pede autenticação por parte do utilizador, utiliza SSH que é um protocolo de rede bastante complexo, utiliza também o TCP como protocolo de transporte.

Em **FTP** apresenta um elevado overhead que compromete a sua eficiência, utiliza também o TCP como protocolo de transporte, e não apresenta nenhuma segurança adicional, sendo uma aplicação de baixa complexidade.

Na **TFTP** é um serviço pouco fiável de transferência de ficheiros uma vez que utiliza o UDP como protocolo de transporte, não oferece nenhuma segurança, mas devido ao seu baixo overhead é um serviço bastante mais eficiente.

No **HTTP** qualquer utilizador pode aceder ao conteúdo transferido e por isso é de baixa segurança, o HTTP foca em apresentar a informação, não se preocupando com a maneira de como essa informação é transmitida, isto quer dizer que o HTTP pode ser invadido e alterado. Utiliza também o TCP como protocolo de transporte.

PARTE 2:

Comando usado: (aplicação)	Protocolo de Aplicação (se aplicável)	Protocolo de transporte (se aplicável)	Porta de atendimento (se aplicável)	Overhead de transporte em bytes (se aplicável)
ping	-	-	-	-
traceroute	-	UDP	33589	8
telnet	TELNET	TCP	23	20
ftp	FTP	TCP	21	20
Tftp	TFTP	UDP	69	8
http(browser)	HTTP	TCP	80	20
Nslookup	DNS	UDP	53	8
Ssh	SSHv2	TCP	22	20


```
No. Time Source Cestination Protocol Langth bio Standard query Bit155 AAA cc322 does not OFT 3 0.000001532 19.0 v. 15 19.0 cf. 11.1 DNS 65 Standard query response 60006 A cc322 does not OFT 0.00000153 19.0 v. 15 19.0 cf. 1
```

```
No. Time Sourie Childrellon Product Length Mo 15 analors query Welfill A marco unknop of OPT 2 0,000200372 10.02,215 122,566.1.1 DRS 60 Standard query Marchi AMAN marco unknop of OPT 3 0,000200372 10.02,215 102,566.1.1 DRS 60 Standard query response 0x8713 A marco unknop of A193,136.9.2 60.02003724 10.02,215 102,150.1.1 10.02,155 DRS 300 Standard query response 0x8713 A marco unknop of A193,136.9.2 60.02003724 10.02,215 10.02,215 DRS 300 Standard query response 0x8713 A marco unknop of A193,136.9.2 60.02,000 DRS 300 Standard query response 0x8713 A marco unknop of A193,136.9.2 60.02,000 DRS 300 DRS
```

CONCLUSÃO:

Neste projeto transferiu-se o mesmo ficheiro usando 4 serviços diferentes: SFTP, FTP, TFTP e HTTP, capturando todos os pacotes trocados durante a transferência com o Wireshark, testamos também diferentes protocolos de transporte (TCP e UDP) e analisamos as suas diferenças, aprofundando assim o nosso conhecimento nestas áreas.

Em suma, consideramos que os requisitos mínimos foram cumpridos mesmo tendo surgido várias dúvidas na realização do trabalho.