Reduplicative correspondence

(1) Summary

- RED copies the base: the initial evidence for BR correspondence
- Does Base copy RED?
- Problems for BR correspondence
- the final evidence for BR correspondence

(2) Javanese

- (a) Phonology
 - Final rounding: a -> ɔ/ __#

Affixed Unaffixed donga-ne donga

• Closed syll. Laxing: V -> [-tense]/__C.

Affixed Unaffixed a.bu.r-e a.bur

(b) Over application of these rules in reduplication

• donga-donga: Final Rounding overapplies)

donga-donga-ne
 abu.r-abur
 abur-abur-e
 (*abur-abur-e: RED not PrWd)
 (*abur-abur-e: RED not PrWd)

Two interpretations:

- Rules apply before RED: a standard cyclic effect in which input to morphology has already been phonologically processed.
- B-RED identity condition whose effects go beyond cyclic application

(3) A condition of identity needed between RED and its source in stem (Wilbur, 197x).

- Distinct from normal I-O correspondence?
- Or from O-O (base-derivative) correspondence of the *cycl, cycling* type?

Answer is yes, agreeing with Wilbur and others, incl. McCarthy and Prince 1995.

There is a form of *correspondence under adjacency*, distinct from other types.

(4) The correspondence triangle: I, B, R

Surface BASE and surface REDUPLICANT (R): BR Surface BASE (B) and UR of BASE (I): I-Base (same as IO) Surface REDUPLICANT (R) and UR of BASE (I): IR

(5) Summary of McCarthy & Prince 1995

- The same types of correspondence constraints map B-to-R, I-to-B, I-to-R
- But the actual constraints are distinct and can be differently ranked.
- Different rankings derive BR identity thru overapplication and other peculiarities of rule application in reduplicated constructions.
- Corr IB and Corr IR are distinct only in virtue of RED being an affix:

In general Corr I-root >> Corr I-affix

(6) Illustration of these points

(a) Phono (>>) Corr BR >> Corr IB, IR:

Describes overapplication at the expense of Corr IR

Javanese: *low/-#, Ident [±low]BR >> Ident [±low] IB, IR

RED-donga	*low/_#	Ident [±low]BR	Ident [±low] IB	Ident [±low] IR
donga-donga	*!			
donga-dongo		*!	*	
☞dongo-			*	*
dongo		> > -		

(b) Phono >> Corr IB (>>) IR >> Corr BR: Describes normal application

Sanskrit: *s/r,u,k,i_ >> Ident [±ant] IB, IR >> Ident [±ant] BR

RED _{perf} -smai-a	*s/r,u,k,i_	Ident [±ant] IB	Ident [±ant]IR	Ident [±ant] BR
si-smaj-a	*!		<u></u>	
☞si-şmaj-a		*		*
şi-şmaj-a		*	*!	

Sanskrit: same ranking, RED preceded by ruki prefix

ni-RED _{perf} -sad-a	*s/r,u,k,i_	Ident [±ant] IB	Ident [±ant]IR	Ident [±ant] BR
ni-sa-sad-a	*!			
☞ni-şa-sad-a			*	*
ni-şa-şad-a		*!	*	

Ruki not blocked or overapplied to either root or RED for the sake of BR identity.

(7) **BR identity is symmetrical, so expect B to copy RED**: Malay (McP 1995)

(8) Nasal harmony (NH):

• The string of [-cons] to the right of a nasal segment is nasalized

hamã 'germ' no form like *hamo*, with oral V after nasal

wani 'fragrant' anan 'reverie'

anen 'wind, unconfirmed news'

• Laryngeal C's (h, ?) undergo and transmit nasalization **tahan/mãn-tahan** 'withstand' -> **manahan** (nasal substitution) -> **mãnãñãn** (NH)

(9) Reduplication: prefixed disyllable anchored at left edge of base

e.g. tahan-tahan 'withstand-INT'

(10) Conceivable NH consequences for reduplication and their analysis

- either normal application: aŋãn -> aŋãn-ãŋãn
 - NH in the output of RED
 - *NV >> *[+nas] >> Ident [±nas] IO>> Ident [±nas]BR, BD (B = surface aŋãn; D = reduplicated form [aŋãn-ãŋãn])
- or underaplication: anãn-> anãn-anãn [perhaps as in Madurese]
 - NH excluded from level at which RED applies
 - Ident [±nas] BR, Ident [±nas] BD >> *NV

I = assume anan	Ident [±nas] BR	Ident [±nas] BD	*NV	Ident [±nas] IB
B = aŋãn				
aŋãn-ãŋãn	*!	*		**
🖙 aŋãn-aŋãn				*
ãŋãn-ãŋãn		*!		**

- or aŋãn -> ãŋãn-ãŋãn
 - Indescribable in rule terms. Neither the order (Nasal Harmony) > Redup > Nasal Harmony (*aŋãn-ãŋãn) nor Nasal Harmony > Redup (*aŋãn-aŋãn) characterizes the pattern. Heroic efforts at serial description made in McP.
 - Ident [±nas] BR, *NV >> Ident [±nas] IB, Ident [±nas] BD

I = assume anan	Ident [±nas] BR	*NV	Ident [±nas] IB
B = aŋãn		1 1	
aŋãn-ãŋãn	*!	 	**
aŋãn-aŋãn		*!	*
🖙 ãŋãn-ãŋãn		1	**

The paradox here for serial analyses: reduplicant induces nasalization onto base in virtue of NH and then acquires the nasality it has transmitted onto the base.

(11) The data (reported in McP 1995 after Onn 1976, not seen)

hamə	hāmə-hāmə	'germ'
waŋĭ	w̃ãŋi-w̃ãŋi	'fragrant'
aŋãn	ãŋãn-ãŋãn	'reverie, ambition'
aŋẽn	ãŋẽn-ãŋẽn	'wind, unconfirmed news'

(12) McCarthy and Prince report a number of other copyback cases

Most appear to have been misanalyzed: see Inkelas & Zoll 2000 ROA for refs.

24.962 Page 4 2/28/05

(13) High ranked BR correspondence can generate monsters

(a) A simple example: MAX BR, RED = 1μ or $1\sigma >> MAX$ IR, IB

RED-banana	MAX seg BR	$RED = 1\sigma$	MAX IB
banana-banana		*!	
ban-banana	*!**	! !	
™ban-ban		 	***

(b) Another example: DEP BR, RED = $[C_0u]$ >> DEP IR, IB (modelled on Marathi, as discussed by Alderete et al 1999 LI, ROA)

[RED]-saman	DEP F BR	$RED = [C_0 u$	DEP F IB
<u>saman</u> -saman		*!	
<u>suman</u> -saman	*!	1	
<u>rssuman</u> -suman		1	*

Fixed segment RED (minus the pathological insertion for the sake of DEP BR) occur in Sanskrit, Greek, Klamath, Agta, Tubatulabal. Not all cases can be understood as TETU effects¹.

(14) Spaelti (1997 UCSC diss; ROA)'s solution (see also Strujke UMd 2000, ROA)

ID correspondence (D = derivative, i.e. whole reduplicated form), requiring that input material always surface in some fashion in the derivative, in B or in RED or both.

RED-banana	MAX seg ID	$RED = 1\sigma$	MAX seg BR
⊯ban-banana			***
banana-banana		*!	
ban-ban	*!**		

(15) How to rank MAX ID to both get Malay and exclude *banana -> ban-ban, suman-suman?

(16) Inkelas and Zoll's take (inspired by Kiparsky 1999)

- a) there is no OO correspondence, only IO
- b) hence: there is no BR correspondence and the **ban-ban** problem disappears

(15) Why isn't BR identity manifested as underapplication?

		A A
	Ident [±nas] BR	*NV
aŋãn-ãŋãn	*!	
🖙 aŋãn-aŋãn		*

¹ An intriguing possibility that removes this particular problem is that all instances of fixed segmentism that do not involve TETU represent echo reduplication, where an additional condition requires that B≠RED (or some comparable string dissimilarity condition). Thus English **schm**-echo reduplication blocks when the base word begins with **schm**: try saying ***schmuck-schmuck** (as against normal **table-schmable**). If so, MAX, DEP BR are clearly subordinated to RED ≠B. Same holds for all examples known to me, discussed under this rubric by Alderete et al.

BR Identity conditions not attributable to cyclic application: Sanskrit.

(15) Basics

a. <u>notation</u>: e = e:, o = o:, v = w, y = j; IPA for the other segments

b. <u>nuclei</u>: a, i, u, r, (l), n [a], m [a], ai [e:], a:i, au [o:], a:u

c. <u>verb roots</u>: monosyllabic, typically of $C_0a(:)(R)C_0$ form, where R = sonorant

d. examples: pat, yaj, svap, smai, ma:, gam, mard, vraj, $stamb^h$, karş, vakş, krand, $b^h ranc$, $d^h vans$,

(16) **Ablaut** reviewed

a. full grade: roots under accent keep their a

b. zero grade: unaccented roots lose [a] if rest is syllabified without segment loss

smai -> smi-tá mard3 -> mṛk-tá swap -> sup-tá

c. full grade a: and zero grade a (for some roots) and i for most

dhya: -> dhi khya: -> khya

d. vocalization: when unaccented a is lost, a rime sonorant (R) becomes nucleus:

krand -> krnd [krad], not *krnd smai -> smi, not *smy *[se:]

e. when rime contains no R, rightmost onset sonorant vocalizes:

swap -> sup
wrad3 -> wrd3

(17) Intensive reduplication

root	full grade	zero grade	gloss
nau/nu	nau-náu-	nau-nu-	praise
mard/mrd	mar-márd	mar-mrd	rub
pat/pt	pa:-pát	pa:-pt	fly
kri:d	kai-krí:d	kai-kri:d	play
dyaut/dyut	dau-dyáut	dau-dyut-	shine
tvais/tvis	tai-tváis	tai-tvis	stir
sparç/sprç	par-spárç	par-spṛç	touch

(17) Sketch of an analysis (ignoring GTT):

• A size-limitation constraint: RED = 1syll

• A location constraint: RED = pref

• A set of markedness constraints inducing syllabic improvement in RED:

MAX C IB >> *Complex Onset >> MAX C IR, MAX C RB

MAX C IB, Ident [±son] IB >> *Obstruent/Coda >> MAX C IR, BR MAX V, Ident [±low] IB, >> Nuc = a >> MAX V, Ident [±low] IR, BR

(18) Unusual BR correspondence effects in the intensive:

<u>root</u> grab ^h /gṛb ^h	full grade ga:-gráb ^h	zero grade gar-gṛbh	gloss seize
vyad ^h / vid ^h	va:-vyád ^h	vai-vid ^h	pierce
svap/sup	sa:-sváp	sau-sup	sleep

The difference between full and zero grade depends on which **inflectional** affixes are added:

root	full grade	zero grade	gloss
vaid	vái-vaid-mi	vai-vid-más	see

(24) A solution

a) Linearity BR outranks MAX seg BR

RED-swáp	Linearity BR	MAX seg BR
rsa:-swáp		**
saw-swáp	*! (a-w)	*

RED-sup	Linearity B-RED	MAX seg BR
r saw-sup		*
sa:-sup		**!

(25) **Linearity, not Ident [±Rh]**: final root C frequently prevocalic in the intensive:

(a) bau-b ^h au-at	[box.bha.vat]
par-p ^h ar-at	[par.pha.rat]
gan-ghan-at	[jan.gha.nat]

(b) In such cases, the last root C is an onset, not a coda on the surface. Hence Ident [±Rh] is not satisfied. If it had been, we'd only get intensives like these.

```
* [ba:.bha.vat]
```

alternating with these:

bau-bhau-ti [bo:.bho:.ti] par-phar-ti [par.phar.ti] gan-ghan-ti [jan.ghan.ti]

^{* [}par.pha.rat]

^{* [}jaː.gʰa.nat]

24.962 Page 7 2/28/05

The right analysis:

RED-phár-at	Linearity BR	MAX seg BR
r par-p ^h a.r-at		
pa:-pha.r-at		*!

(26) Further supporting data:

i extensions: intensive reduplication can be extended by insertion of i between R and B.

Short i (in closed syll.)	Long i in open syll.
kan-i-krand [ka.nik.rand]	gar-iː-gṛbʰ [ja.riː.gṛbʰ]
ban-i-bʰranç [ba.nibʰ.ranç]	pan-i:-pan [pa.ni.pan]
dau-i-dyut [da.vid.yut]	kar-i:-kṛ [ca.ri:.kṛ]

(26) A generalization about intensives with and without i:

In forms with -i(:)- extension, the segment preceding -i(:)- has a quality that would be legitimate even if -i(:) was absent. If not ok without i, then not ok with i either.

i. kan-krand-a... kani-krand- ... gar-grbh-a... gari-grbh- ... ban-bhranç-a... bani-bhranç- ... dau-dyut-a... This is the right set of paradigms. kani-krand- ... davi-dyn- ... davi-dyut- ...

iii. *kar-krand- *kari-krand- *gar-grabh- *gari:-grabh- *bar-bhranç- *bari-bhranç-

The i-less forms violate Ident (\pm Rh) BR. But the forms with i do not violate the Ident (\pm Rh) BR, since r is in the onset in both cases. Here too it is Linearity BR that helps:

RED - vyadh	Linearity BR	MAX C BR
r va:-vyad ^h		**
vay-vyad ^h	*!	*
vayi-vyad ^h	*!	*

RED - krand	Linearity BR	MAX C BR	
™kani-krand		**	
kari-krand	*!	**	

Note that the losing candidates in these tableaux cannot be eliminated by Ident [±Rh] BR

iii. There is however a set of comparisons that still need attention.

Actual:	But why not:
kan(i)-krand-	*ka(n)di-krand-a
gar(i)-grb ^h -	*ga(r)b ^h i:-grb ^h -a
ban(i)-bhranç-	*ba(n)çi-b ^h ranç-a
dav(i)-dyut-	*da(u)ti-dyut-a

These don't rescue the Ident [±Rh] BR proposal but do suggest that the constraint on rhymes which makes the analysis work so far – specifically *Obstruent coda – has to be revised or supplemented. Here are the evaluations of these pairs given the current system:

RED-krand	MAX C IB	*Obstruent Coda	*Complex	MAX C BR, IR
™kandi-krand-a			*	*(B), *(I)
⊗ kani-krand-a			*	**(B), **(I)
⊗ kan-krand-a			*	** (B), **(I)
kad-krand-a		*!	*	

A simple revision that resolves this difficulty is *CC instead of *Complex constraint:

RED-krand	MAX C I-B	*Obstruent Coda	*CC	MAX C BR, IR
kandi-krand-a			***!	*(B), *(I)
☞ kani-krand-a			**	**(B), **(I)
™ kan-krand-a			**	** (B), **(I)
RED-krand	MAX C I-B	*Obstruent Coda	*CC	MAX C BR, IR
kad-krand-a		*!	**	
krani-krand-a			***!	*(B), *(I)
kani-kan-a	*!*		1	

What excludes **kadi-krand-a**? The low ranked Contiguity BR (no skip) which so far did not seem active: Elements contiguous in RED have contiguous correspondents in B.

RED-krand	MAX C I-B	*CC	MAX C BR, IR	Contiguity BR
kadi-krand-a		**	**(B), **(I)	*(k-a) *! (a-d)
☞ kani-krand-a		**	**(B), **(I)	*(k-a)
™ kan-krand-a		**	** (B), **(I)	*(k-a)
kadi-kad-a	**!			

Significance:

- The identity of syllabic position between segments in B and R does not reduce to IO correspondence: an explicit surface oriented correspondence BR condition must be stated.
- This does not reduce to a normal case of cyclic rule application:
 - a. Morphemes: INTENS-Root-Tense-Person-number
 - b. Constituency: [[[INTENS-[Root]]-Tense]-Person-number]
 - c. Relevant cyclic domain: [INTENS-[Root]]- at this stage root grade is undefined
 - d. When the root grade is determined by tense/pers-number affix, RED is already formed.
- Therefore no attempt to deal with this case through IO correspondence conditions on syntactically motivated constituents is successful: we need whole-word information to determine surface root shape and we need surface root to determine RED shape.