

Radar Signal Processing Mastery

Theory and Hands-On Applications with mmWave MIMO Radar Sensors

Date: 7-11 October 2024

Time: 9:00AM-11:00AM ET (New York Time)

Mohammad Alaee-Kerahroodi

Research scientist

SnT, University of Luxembourg

Email: Mohammad.alaee@uni.lu

Website: https://radarmimo.com/

Outline

Time: 9:00AM-11:00AM ET (New York Time)

Lecture	Duration	Date
Lecture 1: Radar Systems Fundamental	2 Hours	October 7 th , 2024
Lecture 2: Advanced Radar Systems	2 Hours	October 8 th , 2024
Lecture 3: Practical Radar Signal Processing - Motion Detection	2 Hours	October 9 th , 2024
Lecture 4: Practical Radar Signal Processing - Breathing and Heart Rate Estimation	2 Hours	October 10 th , 2024
Lecture 5: Practical Radar Signal Processing – Angle estimation with MIMO radar	2 Hours	October 11 th , 2024

Lecture 5

Practical Radar Signal Processing (Python Scripting): Angle estimation with MIMO radar

Lecture 5: Angle estimation with MIMO radar xWR6843ISK

IEEE UNIVERSITY OF SIT

What we learn in Lecture 5

- Review of virtual array and angle estimation in MIMO Radar
- Angular resolution in MIMO radar
- Getting started with xWR6843-ISK
- Real-time data measurement

Scan the QR code for access to the codes

FMCW Radar

Society*

A range-FFT on each row resolves objects in range

FMCW MIMO Radar

A doppler-FFT along the column resolves each column ('range-bin') in Doppler (Radial Velocity)

This is for one receive channel!

Virtual Array in FMCW MIMO Radar

Lect5_example1.m

Angle Estimation in FMCW MIMO Radar

Society*

Angular Resolution in FMCW MIMO Radar

How much is angular resolution in a MIMO radar system?

How much phase of two targets should be different such that we can discriminate them?

Angular Field of View

$$\frac{2\pi d \sin \theta}{\lambda} < \pi \qquad \qquad \theta < \sin^{-1} \left(\frac{\lambda}{2d}\right)$$

A spacing d of $\frac{\lambda}{2}$ results in the largest field of view ($\pm 90^{\circ}$)

The virtual array has inter-element space of $\frac{\lambda}{2}$

No grating lobe!

Angular Resolution in FMCW MIMO Radar

 $\exp{-j\frac{2\pi(N-1)d\sin\theta}{1}}$

How much phase of two targets should be different such that we can discriminate them?

(3dB) Beamwidth [rad]
$$\cong \frac{\alpha\lambda}{N d}$$

$$\Delta \phi = \frac{2\pi d}{\lambda} (\sin(\theta + \Delta \theta) - \sin(\theta))$$

Since derivative of $sin(\theta)$ is $cos(\theta)$

$$\frac{\sin(\theta + \Delta\theta) - \sin(\theta)}{\Delta\theta} \approx \cos\theta$$

$$\Delta \phi \approx \frac{2\pi d}{\lambda} (\cos \theta) \Delta \theta$$

$$\Delta \phi > \frac{2\pi}{N_{VA}}$$

$$\Delta \phi \approx \frac{2\pi d}{\lambda} (\cos \theta) \Delta \theta$$
 $\Delta \phi > \frac{2\pi}{N_{VA}}$ $\frac{2\pi d}{\lambda} (\cos \theta) \Delta \theta > \frac{2\pi}{N_{VA}}$

best resolution at $\theta = 0$

assuming $d = \lambda/2$ and $\theta = 0$

$$\theta_{res} = \frac{2}{N_{VA}}$$

mmWave radar sensors at Texas instruments

uni lu ont

FMCW transceiver

- Integrated PLL, transmitter, receiver, Baseband, and ADC
- 60- to 64-GHz coverage with 4-GHz continuous bandwidth
- Four receive channels
- Three transmit channels
- Supports 6-bit phase shifter
- Ultra-accurate chirp engine based on fractional-N PLL
- TX power: 12 dBm
- RX noise figure:
 - 12 dB
- Phase noise at 1 MHz:
 - -93 dBc/Hz
- •Built-in calibration and self-test
 - Arm Cortex-R4F-based radio control system
 - Built-in firmware (ROM)
 - Self-calibrating system across process and temperature
 - Embedded self-monitoring with no host processor involvement on Functional Safety-Compliant devices

xWR6843ISK evaluation module - Texas instruments

IWR6843ISK evaluation module - Texas instruments

	ntegrated Antenna 60-GHz Intelligent Edge Sensor IWR6843AoPEVM	High Performance 60-GHz Intelligent Edge Sensor xWR6843ISK	60-GHz Intelligent Edge Sensor IWR6843ISK-ODS
Tuning Frequency	60-64 GHz	60-64 GHz	60-64 GHz
Number of Receivers	4	4	4
Number of Transmitter	3	3	3
Processing	MCU• FFT accelerator• DSP	MCU• FFT accelerator• DSP	MCU• FFT accelerator• DSP
Memory	1.75 MB	1.75 MB	1.75 MB
Antenna	Antenna on Package	Antenna on PCB	Antenna on PCB
Azimuth FOV (deg)2	+/- 60	+/- 60	+/- 60
Azimuth Angular Resolution (deg)1	29	15	29
Elevation FOV (deg)2	+/- 60	+/- 15	+/- 60
Elevation Angular Resolution (deg)1	29	58	29
Gain	5dBi	7dBi	5dBi
Modular Mode	• Requires mmWavelCBOOSTfor debugging and DCA1000• Flashing and functionalmode available withoutmmWavelCBOOST	Requires mmWavelCBOOSTfor debugging• Flashing and functionalmode available withoutmmWavelCBOOST	Requires mmWavelCBOOSTfor debugging• Flashing and functionalmode available withoutmmWavelCBOOST
Raw ADC Data Capture	Yes – requires mmWavelCBOOST + DCA1000	Yes – requires DCA1000	Yes – requires DCA1000

Virtual Array in IWR6843ISK evaluation module

Lect5_example1.m

Getting started with xWR6843-ISK

https://www.ti.com/tool/IWR6843ISK

<u>UNIFLASH</u> — UniFlash for most TI microcontrollers (MCUs) and mmWave sensors

MMWAVE-SENSING-ESTIMATOR-CLOUD — mmWave sensing estimator cloud development on TI Resource Explorer

MMWAVE-SENSING-ESTIMATOR-CLOUD

UNIVERSITY OF SIT

https://dev.ti.com/gallery/view/mmwave/mmWave Demo Visualizer/ver/3.6.0/

MMWAVE-SENSING-ESTIMATOR-CLOUD

Angle estimation with MMWAVE-SENSING-ESTIMATOR-CLOUD

TI Resource Explorer – Radar Toolbox

https://dev.ti.com/tir ex/global?id=radar t oolbox

mmWave radar sensors

Embedded Software

Training

TI Resource Explorer – Radar Toolbox

TI Resource Explorer – Radar Toolbox

https://dev.ti.com/tir **Resource Explorer** ▼ ALL FILTERS ▼ Q ex/global?id=radar t 📮 « 🦙 / mmWave radar sensors / Embedded Software / Radar Toolbox (2.20.00.05) / Example Projects Arm®-based microcontrollers oolbox xWR1642 xWR1642BOOST Arm®-based processors C2000™ real-time microcontrollers xWR1443 xWR1443BOOST Development Tools mmWave radar sensors Quickstart xWR68xx, xWR64xx, xWR18xx, xWR16xx and xWR14xx devices Requirements > # mmWave low-power SDK - 05.05.02.00 @ → # Radar Toolbox - 2.20.00.05 Tool Download Link Version mmWave radar sensors Downlad Uniflash Uniflash Latest xWRL1432 Access Uniflash through the Cloud xWRL6432 Device documentation Silicon Labs CP210x USB to UART Bridge VCP Latest SiLabs Driver Latest (only required in standalone mode) **Embedded Software** er Assistance Systems Radar toolbox should be downloaded to access binaries and source code. Download Instructions in the TI Radar Toolbox Latest > 🖶 mmWave low-power SDK - 05.05.02.00 🙆 1. Configure the Evivitor Hashing Mode > 🕂 Radar Toolbox - 2.20.00.05 🕙 Follow the steps in the EVM Setup Guide for your specific EVM. 2. Flash the EVM using Uniflash Hardware kits and boards Flash the appropriate binary from the prebuilt binaries folder using UniFlash. Follow the instructions for using UniFlash Prebuilt binaries can be found in the following directory: <RADAR_TOOLBOX_INSTALL_DIR>\source\ti\examples\Out_Of_Box_Demo\prebuilt_binaries\ Training 3. Configure the EVM for Functional Mode > Training Follow the steps in the EVM Setup Guide for your specific EVM MSP430™ microcontrollers Wireless connectivity 4. Open the mmWave Demo Visualizer In google chrome, open the mmWave Demo Visualizer If prompted, follow the on-screen instructions for installing TI Cloud Agent

Configure sensor to the Flash mode

https://dev.ti.com/tir **Resource Explorer** ▼ ALL FILTERS ▼ Q ex/global?id=radar t 📮 « 🦙 / mmWave radar sensors / Embedded Software / Radar Toolbox (2.20.00.05) / Example Projects Arm®-based microcontrollers oolbox xWR1642 xWR1642BOOST Arm®-based processors C2000™ real-time microcontrollers xWR1443 xWR1443BOOST Development Tools mmWave radar sensors Quickstart xWR68xx, xWR64xx, xWR18xx, xWR16xx and xWR14xx devices Requirements > # mmWave low-power SDK - 05.05.02.00 @ → # Radar Toolbox - 2.20.00.05 Tool Download Link mmWave radar sensors Downlad Uniflash Uniflash Latest xWRL1432 Access Uniflash through the Cloud xWRL6432 Device documentation Silicon Labs CP210x USB to UART Bridge VCP Latest SiLabs Driver Latest (only required in standalone mode) **Embedded Software** er Assistance Systems Radar toolbox should be downloaded to access binaries and source code. Download Instructions in the TI Radar Toolbox Latest > 🖶 mmWave low-power SDK - 05.05.02.00 🙆 Configure the EVM for Flashing Mode > 🕂 Radar Toolbox - 2.20.00.05 🕙 ollow the steps in the EVM Setup Guide for your specific EVM. Hardware kits and boards Flash the appropriate binary from the prebuilt binaries folder using UniFlash. Follow the instructions for using UniFlash Prebuilt binaries can be found in the following directory: <RADAR_TOOLBOX_INSTALL_DIR>\source\ti\examples\Out_Of_Box_Demo\prebuilt_binaries\ Training 3. Configure the EVM for Functional Mode > Training Follow the steps in the EVM Setup Guide for your specific EVM MSP430™ microcontrollers Wireless connectivity 4. Open the mmWave Demo Visualizer In google chrome, open the mmWave Demo Visualizer If prompted, follow the on-screen instructions for installing TI Cloud Agent

Configure sensor to the Flash mode

Society*

UNIFLASH — UniFlash for most TI microcontrollers (MCUs) and mmWave sensors

UNIVERSITY OF SIT

UNIFLASH — UniFlash for most TI microcontrollers (MCUs) and mmWave sensors

C:\ti\radar_toolbox_2_20_0 0_05\source\ti\examples\Ou t_Of_Box_Demo\prebuilt_bi naries

UNIFLASH — UniFlash for most TI microcontrollers (MCUs) and mmWave sensors

Society

UNIFLASH — UniFlash for most TI microcontrollers (MCUs) and mmWave sensors

Unplug sensor, and set it back to the functional mode

Self programming with xWR6843, xWR1843, xWR1642, xWR1443

Lect5_example2_x WR6843_requiring _Out_Of_Box_Dem o_binary.py

What we learned from Lecture 5

• In Lecture 5 we used IWR6843 to capture real data and processed it. Different signal processing techniques to this end has been applied in real-time operation.

Scan the QR code for access to the codes

