# Linux firmware for iRMC controller on Fujitsu Primergy servers

Vladimir Shakhov

R&D Senior Development Engineer

Fujitsu Technology Solutions, R&D department



#### Table of content

1 Fujitsu Primergy servers family

What is iRMC

Software - ServerView Suite

Open standards: IPMI protocol and others

iRMC internals

Demo: WebIF and IPMI

2 Road to Linux: from iRMC S1/ThreadX to iRMC S4/Linux

Early days - ThreadX : S1 - S2/S3

Migration to Linux: S4

Demo: RemoteManager - bug-to-bug compatible

3 Linux based firmware

Components

Develoment environment

FOSS legal questions

Demo: inside the Linux on iRMC



## **Fujitsu Primergy Servers**

Lineage of x86-based servers: Blade (BX), Rack (RX), Tower (TX) and Cloud (CX).





## iRMC S4 in the wild



## iRMC - integrated Remote Management Controller

#### ARM-based SoC

Emulex Pilot3 iBMC ASIC Integrated BMC Super I/O Graphics controller



KVMS: Remote Keyboard, Video, Mouse and Storage

CPU: 32-bit 400MHz ARM9 processor with MMU.





## iRMC - integrated Remote Management Controller

#### ARM-based SoC

Emulex Pilot3 iBMC ASIC Integrated BMC Super I/O



KVMS: Remote Keyboard, Video, Mouse and Storage

CPU: 32-bit 400MHz ARM9 processor with MMU.



Work independent if x86 host on or off.





## iRMC - integrated Remote Management Controller

#### ARM-based SoC

Emulex Pilot3 iBMC ASIC Integrated BMC Super I/O Graphics controller



KVMS: Remote Keyboard, Video, Mouse and Storage

CPU: 32-bit 400MHz ARM9 processor with MMU.



Work independent if x86 host on or off.

## **Own Operation System**

Very typical Embedded Linux.





#### iRMC basic features

- Web access (own web-server)
- Security (SSL and SSH included)
- ServerView suite Integration
- Power management
- SNMPv1/v2c/v3 support
- Text console redirection
- "Headless" system operation
- CLP command line interface





#### iRMC advanced features

- Advanced Video Redirection (AVR)
- Virtual Media
- Embedded Lifecycle Management (eLCM)











## **Intelligent Platform Management Interface**

IPMI - standardized, abstract, message-based interface between BMC and intelligent hardware for platform management. Key component of system.









## **Intelligent Platform Management Interface**

IPMI - standardized, abstract, message-based interface between BMC and intelligent hardware for platform management. Key component of system.

Web: HTTP, HTML, JavaScript

Web-based control interface.









## **Intelligent Platform Management Interface**

IPMI - standardized, abstract, message-based interface between BMC and intelligent hardware for platform management. Key component of system.

Web: HTTP, HTML, JavaScript

Web-based control interface.

SNMP ver 1/2x/3

Popular protocol for network management.









## **Intelligent Platform Management Interface**

IPMI - standardized, abstract, message-based interface between BMC and intelligent hardware for platform management. Key component of system.

Web: HTTP, HTML, JavaScript

Web-based control interface.

SNMP ver 1/2x/3

Popular protocol for network management.

Security: SSH and SSL



## IPMI - key interface of a system

## IPMI Block Diagram





#### Demo 1

Web interface: AVR, VirtualMedia, remote boot

Scenario 1: AVR, show boot settings

AVR: show Windows, Start LCM Custom Image, AVR: Show Linux



#### Demo 1

Web interface: AVR, VirtualMedia, remote boot

## Scenario 1: AVR, show boot settings

AVR: show Windows, Start LCM Custom Image, AVR: Show Linux

## Scenario 2: IPMI - via ipmitool

\$ ipmitool -U admin -P admin -H 192.168.1.1 -I lanplus [command line]

#### command line variants:

- chassis status
- lan print
- user list
- sensor



## iRMC S1 - S2/S3 OS



#### Pro

- Advanced Real-Time Operation System
- Small footprint
- Fast performance



## iRMC S1 - S2/S3 OS



#### Pro

- Advanced Real-Time Operation System
- Small footprint
- Fast performance

#### Contra

- Lack of available developers
- Lack of 3rd party ready components
- High cost of support
- Long features time-to-market
- Environment compatible only with themselves



## Why Linux





## Why Linux



## Cost of development and support

- More developers available
- Huge amount of 3rd party ready components
- Faster development
- HW platform fast enough to run it



## Main challenges

## **Backward compatibility**

- Same interfaces (UI, protocols)
- Binary firmware upgrades





## Main challenges

## **Backward compatibility**

- Same interfaces (UI, protocols)
- Binary firmware upgrades



#### Code re-use



- OS API are different
- OS layout completely different
- HW-related stuff to rewrite from scratch



## Demo 2: OpenSSH + RemoteManager

## Interface bug to bug byte to byte identical to ThreadX.

```
Welcome to PRIMERGY Remote Manager
    Firmware Revision 98.10a (1.00)
    SDR 3 16 TD 0401 TX1320M1
    Firmware built Nov 5 2015 16:35:12 CET
******************
Sustem Tupe : PRIMERGY TX1320 M1
Sustem ID : YLXLXXXX36
Sustem Name : SUT-PW
Sustem OS : Windows Server 2016 Technical Preview 3 Standard
System Status: OK (Identify LED is OFF)
Power Status : Off
Asset Tag : System Asset Tag
   Main Menu
(1) Sustem Information...
(2) Power Management...
(3) Enclosure Information...
(4) Service Processor...
(c) Change password
(*) Console Redirection (EMS/SAC)
(s) Start a Command Line shell...
(1) Console Logging
Enter selection or (0) to quit: □
```



## **iRMC** Firmware components

## Free and Open Source Software

- Linux Kernel
- U-Boot bootloader
- Busybox
- GNU Glibc
- Net-SNMP
- OpenSSH





## **iRMC** Firmware components

## Free and Open Source Software

- Linux Kernel
- U-Boot bootloader
- Busybox
- GNU Glibo
- Net-SNMP
- OpenSSH

#### **Closed source**





- IPMI full stack powered by AMI MegaRAC
- WebServer
- SNMP agents



#### iRMC firmware internals





## **Development environment**

## LXC containers + X2go for developers

The same environment for all to build and debug.

Read-only root filesystem on container.

Debian GNU/Linux based.

## Custom package system by AMI MegaRAC technology

Used only in development and build process.

Not used for updates.

Package format similar to DEB, but not the same.

## Eclipse-based IDE + AMI MegaRAC extensions

Rich IDE + version control + packaging system integration











## **IDE:** Eclipse + AMI MegaRAC extensions









## **Development cycle**



Very typical Embedded Linux development cycle (simplified view):

- 1 Get base system snapshot and freeze it
- 2 Develop new components and IPMI OEM extensions
- 3 Bug fix and stabilization
- 4 Test it hard
- 6 Release firmware to customers
- 6 Repeat once again from step (1).



## **FOSS** legal questions

- Following the FOSS licenses
- Special policy for FOSS components using
- Consolidation of components legal status
- Rare upstream communication <sup>1</sup>
- FOSS component sources by demand from support



<sup>&</sup>lt;sup>1</sup>no significant changes in upstream

#### Demo 3

Development login via SSH. Show typical Embedded Linux system.



### **Questions? Remarks?**



# shaping tomorrow with you

- Fujitsu Primergy servers: http://www.fujitsu.com/fts/products/computing/servers/primergy/
- iRMC S4 manual: http://manuals.ts.fujitsu.com/file/11470/irmc-s4-ug-en.pdf
- Emulex Pilot 3 iBMC specs: http://www.emulex.com/products/controllers/management-controllers/pilot-baseboard-management-controller/specifications
- AMI MegaRAC technology by American Megatrends Inc: http://ami.com/products/remote-management/
- ThreadX RTOS: http://rtos.com/products/threadx
- Fujitsu Technology Solutions: http://www.fujitsu.com/fts

contact: Vladimir.Shakhov at ts.fujitsu.com

