Examenul de bacalaureat național 2020 Proba E. c)

Matematică M_pedagogic

Test 19

Filiera vocațională, profilul pedagogic, specializarea învățător-educatoare

- Toate subiectele sunt obligatorii. Se acordă 10 puncte din oficiu.
- Timpul de lucru efectiv este de 3 ore.

SUBIECTUL I (30 de puncte)

5p 1. Arătați că
$$\left(1 - \frac{1}{2}\right) \left(1 - \frac{1}{3}\right) \left(1 - \frac{1}{4}\right) \left(1 - \frac{1}{5}\right) \left(1 - \frac{1}{6}\right) = \frac{1}{6}$$
.

- **5p** 2. Determinați abscisele punctelor de intersecție a graficelor funcțiilor $f : \mathbb{R} \to \mathbb{R}$, $f(x) = x^2 + 2x + 1$ și $g : \mathbb{R} \to \mathbb{R}$, g(x) = 1.
- **5p 3.** Rezolvați în mulțimea numerelor reale ecuația $3^{12-3x} = 9^{-3}$.
- **5p 4.** Determinați câte numere naturale pare de două cifre se pot forma cu elementele mulțimii $A = \{1, 2, 3, 4, 5, 6, 7, 8, 9\}$.
- **5p 5.** În reperul cartezian xOy se consideră punctele A(4,0), B(8,3) și C(0,3). Calculați perimetrul triunghiului ABC.
- **5p 6.** Arătați că $2\sin^2 30^\circ \cos^2 45^\circ = 0$.

SUBIECTUL al II-lea (30 de puncte)

Pe mulțimea numerelor reale se definește legea de compoziție asociativă $x \circ y = xy + 3x + 3y + 6$.

- **5p 1.** Arătați că $2020 \circ (-3) = -3$.
- **5p 2.** Demonstrați că $x \circ y = (x+3)(y+3)-3$, pentru orice numere reale x și y.
- **5p 3.** Arătați că $(-3) \circ x = -3$, pentru orice număr real x.
- **5p 4.** Verificați dacă e = -2 este elementul neutru al legii de compoziție " \circ ".
- **5p 5.** Calculați $(-3) \circ (-2) \circ (-1) \circ 0 \circ 1 \circ 2 \circ 3$.
- **5p 6.** Determinați numerele reale x pentru care $x \circ x = 1$.

SUBIECTUL al III-lea (30 de puncte)

Se consideră matricele $A = \begin{pmatrix} 5 & 2 \\ 2 & 1 \end{pmatrix}$ și $I_2 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$.

- **5p 1.** Arătați că det A = 1.
- **5p** 2. Arătați că $A \cdot A 6A = -I_2$.
- **5p** 3. Determinați numerele reale x pentru care det(xA) = 4.
- **5p 4.** Arătați că $\det(A \cdot A 6A + aI_2) \ge 0$, pentru orice număr real a.
- **5p** | **5.** Determinați numerele reale m pentru care $m(\det(A+I_2)+\det(A-I_2))=\det(mA)$.
- **5p 6.** Determinați perechile (m,n) de numere întregi, știind că $\det(mA) \det(nA) = 8$.