北京工业大学 2023—2024 学年第一学期 《高等数学(工)—1》期中考试试卷

考试说明: 考试日期: 2023年11月15日、考试时间: 95分钟、考试方式: 闭卷承诺:

本人已学习了《北京工业大学考场规则》和《北京工业大学学生违纪处分条例》,在考试过程中自觉遵守有关规定和纪律,服从监考教师管理,诚信考试,做到不违纪、不作弊、不替考,若有违反,愿接受相应处分。

承诺人:	学号:		
注:本试卷共 <u>三</u> 力中性笔或者钢笔。	、题,共 <u>6</u> 页,满分 100 分	分,考试时必须使用黑色或者蓝色	
	卷面成绩汇总表(阅	卷教师填写)	

题号		-	- 1	总成绩
满分	30	60	10	
得分	1			

得 分

一、填空题: (本大题共10小题,每小题3分,共30分)

1.
$$\lim_{x \to 1} \frac{\sqrt{3-x} - \sqrt{1+x}}{x^2 + x - 2} = \frac{1}{3\sqrt{2}}$$

- 2. 已知 f(x) 在 x = 0 处可导,且 f(0) = 0, f'(0) = 2,则 $\lim_{x \to 0} \frac{2f(x^3)}{x^3} = 4$
- 3. 函数 $y=x-\sqrt{x}$ 的单调减少区间是 [0,4] (开闭区间看为xf)

4. 若
$$f(x) = \begin{cases} \frac{\sin 2x + e^{2ax} - 1}{x}, & x \neq 0 \\ a, & x = 0 \end{cases}$$
 在 $(-\infty, +\infty)$ 上连续,则 $a = -2$

5. 曲线 $y=2\sin x+x^2$ 上横坐标为 x=0 的点处的切线方程为 y=2 为

资料由公众号【工大喵】收集整理并免费分享

7.设函数
$$g(x)$$
可微, $h(x) = e^{1+g(x)}$, $h'(1) = 1$, $g'(1) = 2$,则 $g(1) = \frac{ln - 1}{2}$

8.设函数
$$y = y(x)$$
 由方程 $e^y + xy = x + 1$ 确定, 则 $\frac{d^2y}{dx^2}\Big|_{x=0} = -5$

10.设
$$y = f(x)$$
具有连续的一阶导数,且 $f(2) = 1$, $f'(2) = e$, $f(1) = 2 - e$, $f'(1) = 1$,则

$$\left[f^{-1}(x)\right]'|_{x=1} = \frac{1}{\ell}$$

二、计算题: (本大题共6小题,每小题10分,共60分)

$$y''' = 2 \cdot 2 (x-1)^{-3} - 2 \cdot 2 (x+1)^{-3},$$

$$y^{(4)} = -2.3!(x-1)^{-4} + 2.3!(x+1)^{-4}$$

$$y^{(n)} = (-1)^{n+1} \ge (n-1)! (x-1)^{-n} - (-1)^{n+1} \ge (n-1)! (x+1)^{-n}$$

资料由公众号【工大喵】收集整理并免费分享

北京工业大学 2023—2024 字年第一字期《高等数字(工)-1》期中考试试卷
7 日 12. 计算极限 $\lim_{x\to 0} \left(\frac{1}{1-\cos x}\right)^{x^2}$. 日 :
[] lny= 12 ln T-W>x.
lim lny = lim ln 1- ws x
$= \lim_{x \to 0} (1 - \omega_{3x}) \cdot \frac{1}{-(1 - \omega_{3x})^{2}} \dots 6$
$\frac{1}{100} = \frac{1}{100} = \frac{1}$
$= \frac{1}{2} \lim_{x \to 0} \frac{7^{4}}{1 - w_{3} \pi}$ $= \frac{1}{4} \lim_{x \to 0} \frac{7^{4}}{1 - w_{3} \pi}$ $= \frac{1}{4} \lim_{x \to 0} \frac{7^{4}}{1 - w_{3} \pi}$
$= \frac{1}{2} \lim_{X \to \infty} \frac{\chi^4}{2\chi^2}$
得分 $= \sqrt{13}$. 求曲线 $y = xe^x$ 的极值,凹凸区间和拐点.
解:定文域 × ∈ (-10, +60) ···· ≥,
$y' = e^{x}(x+1)$, $y'' = e^{x}(x+2)$ 4
今 y'= 0, 得 水=-1.
全生0, 得 水=-2.
$7 (-10, -2) -2 (-2, -1) -1 (-1, +\infty)$
y' 0 +
y" - 0 + + +
岁 单榜,上凸 拐点 单城,下凸 单塊.下凸
故极水值为 y(-1)=-色
上巴区间、众与四大时,牧集整理并免费分享, 下巴区间 [-2 * 3 页架]。页
拐点 (-2, -20-2)10

15.求函数 $f(x) = \frac{(x-1)^2-1}{\sqrt{x^2\cdot(x^2-1)}}$ 的间断点,并判断间断点的类型.

角子: $f(x) = \frac{3(x-2)}{|x|(x+1)(x-1)}$ $f(x) = \frac{3(x-2)}{|x|(x+1)(x-1)} = -2$ $f(x) = \frac{1}{x \to 0}$ $f(x) = \frac{$

得分 16.设函数
$$f(x) = \begin{cases} ax^2 + bx, & x < 0 \\ \ln(1+x), & x \ge 0 \end{cases}$$
, 如果 $f''(0)$ 存在, 求常数 a, b .

解: f'(1)存在, 的 f'(x)存在.

$$f_{-10} = 1 - \frac{f(x) - f(0)}{x - 0} = 1 - \frac{ax^2 + bx}{x} = b - 2'$$

$$f_{+}(0) = \frac{1}{x \to 0^{+}} \frac{f(x) - f(0)}{x - 0} = \frac{1}{x \to 0^{+}} \frac{\ln(1+x)}{x} = 1$$

$$f'(x) = \begin{cases} 20x+1, & x < 0 \\ 1, & x = 0 \end{cases}$$

$$f''(0) = l \cdot \frac{f'(x) - f'(0)}{x - 0} = l \cdot \frac{2\alpha x + 1 - 1}{x} = 2\alpha \cdot \frac{7}{7}$$

$$f_{+}^{(1)}(0) = l \cdot \frac{f'(x) - f'(0)}{x - 0} = l \cdot \frac{1 + x - 1}{x} = l \cdot \frac{-x}{x(1 + x)} = -1 \cdot \cdot \cdot \cdot 9'$$

三、证明题: (本大题共2小题,每小题5分,共10分)

(2) 存在两个不同的点 $\eta,\zeta\in(0,1)$ 使得 $f'(\eta)f'(\zeta)=1$.

地明、川全
$$g(x) = f(x) - 1 + x$$
.

「例 $g(x)$ 存 $f(x) = f(x) - 1 + x$.

「別 $g(x)$ 存 $f(x) = f(x) - 1 + x$.

「別 $g(x)$ 存 $f(x) = f(x) - 1 + x$.

「別 $g(x)$ 存 $f(x) = f(x) - 1 + x$.

「別 $g(x)$ 存 $f(x) = f(x) - 1 + x$.

「別 $g(x)$ 存 $f(x) = f(x) - 1 + x$.

「別 $g(x)$ 存 $f(x) = f(x) - 1 + x$.

「別 $g(x)$ 存 $f(x) = f(x) - 1 + x$.

「 $g(x) = f(x) - 1 + x$.

「 $g(x) = f(x) - 1 + x$.

「 $g(x) = f(x) - 1 + x$.

「 $g(x) = f(x) - 1 + x$.

「 $g(x) = f(x) - 1 + x$.

「 $g(x) = f(x) - 1 + x$.

「 $g(x) = f(x) - 1 + x$.

「 $g(x) = f(x) - 1 + x$.

「 $g(x) = f(x) - 1 + x$.

「 $g(x) = f(x) - 1 + x$.

「 $g(x) = f(x) - 1 + x$.

「 $g(x) = f(x) - 1 + x$.

「 $g(x) = f(x) - 1 + x$.

「 $g(x) = f(x) - 1 + x$.

「 $g(x) = f(x) - 1 + x$.

「 $g(x) = f(x) - 1 + x$.

「 $g(x) = f(x) - 1 + x$.

「 $g(x) = f(x) - 1 + x$.

「 $g(x) = f(x) - 1 + x$.

「 $g(x) = f(x) - 1 + x$.

「 $g(x) = f(x) - 1 + x$.

「 $g(x) = f(x) - 1 + x$.

「 $g(x) = f(x) - 1 + x$.

「 $g(x) = f(x) - 1 + x$.

「 $g(x) = f(x) - 1 + x$.

「 $g(x) = f(x) - 1 + x$.

「 $g(x) = f(x) - 1 + x$.

「 $g(x) = f(x) - 1 + x$.

「 $g(x) = f(x) - 1 + x$.

「 $g(x) = f(x) - 1 + x$.

「 $g(x) = f(x) - 1 + x$.

「 $g(x) = f(x) - 1 + x$.

「 $g(x) = f(x) - 1 + x$.

「 $g(x) = f(x) - 1 + x$.

「 $g(x) = f(x) - 1 + x$.

「 $g(x) = f(x) - 1 + x$.

「 $g(x) = f(x) - 1 + x$.

「 $g(x) = f(x) - 1 + x$.

「 $g(x) = f(x) - 1 + x$.

「 $g(x) = f(x) - 1 + x$.

「 $g(x) = f(x) - 1 + x$.

「 $g(x) = f(x) - 1 + x$.

「 $g(x) = f(x) - 1 + x$.

「 $g(x) = f(x) - 1 + x$.

「 $g(x) = f(x) - 1 + x$.

「 $g(x) = f(x) - 1 + x$.

「 $g(x) = f(x) - 1 + x$.

「 $g(x) = f(x) - 1 + x$.

「 $g(x) = f(x) - 1 + x$.

「 $g(x) = f(x) - 1 + x$.

「 $g(x) = f(x) - 1 + x$.

「 $g(x) = f(x) - 1 + x$.

「 $g(x) = f(x) - 1 + x$.

「 $g(x) = f(x) - 1 + x$.

「 $g(x) = f(x) - 1 + x$.

「 $g(x) = f(x) - 1 + x$.

「 $g(x) = f(x) - 1 + x$.

「 $g(x) = f(x) - 1 + x$.

「 $g(x) = f(x) - 1 + x$.

「 $g(x) = f(x) - 1 + x$.

「 $g(x) = f(x) - 1 + x$.

「 $g(x) = f(x) - 1 + x$.

「 $g(x) = f(x) - 1 + x$.

「 $g(x) = f(x) - 1 + x$.

「 $g(x) = f(x) - 1 + x$.

「 $g(x) = f(x) - 1 + x$.

「 $g(x) =$