MASSACHUSETTS MATHEMATICS LEAGUE CONTEST 1 - OCTOBER 2016 SOLUTION KEY

Round 6

- A) Invoking the PEMDAS rule, $2+3\cdot4-x\div6=7$ is equivalent to $2+(3\cdot4)-\frac{x}{6}=7$ $\Rightarrow 14-\frac{x}{6}=7 \Rightarrow \frac{x}{6}=7 \Rightarrow x=\underline{42}$
- B) Sums triggering the paintbrush are 3, 5, 6, 9, 10, 12 and 15, since the smallest sum is 2 and the largest 16. $(r=2)+(c=1...8) \Rightarrow 3,5,6,9,10$ $(r=4)+(c=1...8) \Rightarrow 5,6,9,10,12$ $(r=6)+(c=1...8) \Rightarrow 9,10,12$

All other rows generate 4 triggering sums. Thus, there will be $5 \cdot 4 + 2 \cdot 5 + 3 = 33$.

	1	2	3	4	5	6	7	8	
1		Х		X	Х			X	4
2	x		х	X			X	X	5
3		х	х			х	x		4
4	x	х			х	х		X	5
5	x			X	х		X		4
6			х	x		х			3
7		х	х		х			X	4
8	X	X		X			X		4

C) Let *x* denote the length of the third side.

According to the triangle inequality,
$$\begin{cases} x+17 > 38 \\ 17+38 > x \end{cases} \Rightarrow 22 \le x \le 54$$

The perimeter is 55 + x. The minimum value of x producing a multiple of 4 is 25. The values of x are of the form 25 + 4k. k = 7 produces the largest possible value of x, namely 53. Thus, there are **8** possible lengths for the third side.