THE FINITE HEINE TRANSFORMATION

GEORGE E. ANDREWS

ABSTRACT. We shall present finite summations that converge to the Heine $_2\phi_1$ transformations in the limit as $n\to\infty$. We shall investigate their partition-theoretic implications.

1. Introduction

In an expository article describing Euler's pioneering work on partitions, I was particularly drawn to Euler's assertion [6; p. 566, eq. (5.2) corrected]

$$\prod_{n=0}^{\infty} \left(q^{-3^n} + 1 + q^{3^n} \right) = \sum_{n=-\infty}^{\infty} q^n, \tag{1.1}$$

an identity valid only in a formal sense in that neither the series nor the product converges for any value of q.

This led to my comparisons of the two infinite series identities ([6; p. 567, eq. (5.5)] and [6; p. 567, eq. (5.6)] respectively):

$$\sum_{n=0}^{\infty} \frac{q^{n^2}}{(1-q)^2 (1-q^2)^2 \cdots (1-q^n)^2} = \prod_{n=1}^{\infty} \frac{1}{1-q^n},$$
 (1.2)

and

$$\sum_{n=0}^{\infty} \frac{q^n}{(1-q)^2(1-q^2)^2\cdots(1-q^n)^2} = \prod_{n=1}^{\infty} \frac{1}{(1-q^n)^2} \sum_{j=0}^{\infty} (-1)^j q^{j(j+1)/2}.$$
 (1.3)

Each of the left-hand series is analytic inside |q| < 1 with |q| = 1 as a natural boundary, and the second series is formally transformable into the first by the mapping $q \to 1/q$. The fact that |q| = 1 is a natural boundary means we should not be surprised when the same transformation applied to the right-hand side produces only nonsense.

However, it was observed in [4] that it is sometimes possible to find polynomial or rational function identities that converge to infinite q-series in the limit. This observation in [7] was the secret to dealing with Regime II of Baxter's generalized hard-hexagon model (cf. [5; Ch. 8]).

So this led to the question: Are there finite identities that would both (A) simplify (1.2) and (1.3) in the limit, and (B) allow the mapping $q \to 1/q$ prior to taking limits?

²⁰⁰⁰ Mathematics Subject Classification. Primary 11P81, 11P83, 05A17, 05A19.

 $[\]it Key words \ and \ phrases. \ q\ -series, \ partitions, \ basic \ hypergeometric \ series, \ Heine's transformation.$

Partially supported by National Science Foundation Grant DMS 0200097.

The answer to this question is yes. In Section 2 we provide q-analogs of the Heine transformations of the $_2\phi_1$. In Section 3, we shall derive generalizations of the following corollaries.

$$\sum_{n=0}^{N} \frac{q^{n^2}}{(1-q)^2(1-q^2)^2\cdots(1-q^n)^2} = \prod_{n=1}^{N} \frac{1}{(1-q^n)} \sum_{j=0}^{N} \frac{q^{(N+1)j}}{(1-q)(1-q^2)\cdots(1-q^j)}, \quad (1.4)$$

and

$$\sum_{n=0}^{N} \frac{q^n}{(1-q)^2(1-q^2)^2 \dots (1-q^n)^2} = \prod_{n=1}^{N} \frac{1}{(1-q^n)} \sum_{j=0}^{N} \frac{(-1)^j q^{j(j+1)/2}}{(1-q)(1-q^2) \dots (1-q^{N-j})}. \quad (1.5)$$

Clearly (1.4) and (1.5) converge to (1.2) and (1.3) as $N \to \infty$, and by reversing the sum on the right-hand side it is a simple matter to see that (1.4) becomes (1.5) under the now legitimate mapping $q \to 1/q$.

In Section 4, we shall note quite transparent combinatorial proofs of (1.4) and (1.5).

2. Finite Heine Transformations

We shall employ the following standard notation

$$(a)_n = (a;q)_n = \prod_{j=0}^{n-1} (1 - aq^j), \tag{2.1}$$

$$(a_1, \dots, a_r; q)_n = (a_1; q)_n (a_2; q)_n \cdots (a_r; q)_n,$$
 (2.2)

and

$${}_{r+1}\phi_r = \begin{pmatrix} a_0, a_1, \dots, a_r; q, t \\ b_1, \dots, b_r \end{pmatrix} = \sum_{j=0}^{\infty} \frac{(a_0, a_1, \dots, a_r; q)_n t^n}{(q, b_1, \dots, b_r; q)_n}.$$
 (2.3)

Lemma 1. For non-negative integers n,

$${}_{3}\phi_{2}\binom{q^{-n},\alpha,\beta;q,q}{\gamma,q^{1-n}/\tau} = \frac{(\alpha\tau;q)_{n}}{(\tau;q)_{n}} {}_{3}\phi_{2}\binom{q^{-n},\gamma/\beta,\alpha;q,\beta\tau q^{n}}{\gamma,\alpha\tau}.$$
 (2.4)

Proof. In (III.13) of [8; p. 242] $b = \gamma/\beta$, $c = \alpha$, $d = \gamma$, $e = \alpha \tau$. The result after simplification is (2.4).

We note in passing that Lemma 1 is, in fact, a finite version of Jackson's summation [9] (cf. [8; p. 11, eq. (1.54)], [2; p. 527, Lemma]).

Theorem 2.

$${}_{3}\phi_{2}\begin{pmatrix}q^{-n},\alpha,\beta;q,q\\\gamma,q^{1-n}/\tau\end{pmatrix} = \frac{(\beta,\alpha\tau;q)_{n}}{(\gamma,\tau;q)_{n}}{}_{3}\phi_{2}\begin{pmatrix}q^{-n},\gamma/\beta,\tau;q,q\\\alpha\tau,q^{1-n}/\beta\end{pmatrix}.$$
 (2.5)

Remark. When $n \to \infty$, this is Heine's classic $_2\phi_1$ transformation [8; p. 9, eq. (1.4.1)], [3; p. 28, Cor. 2.3].

Proof. If in Lemma 1, we replace α , β , γ , and τ by γ/β , τ , $\alpha\tau$ and β respectively, we find that

$${}_{3}\phi_{2}\binom{q^{-n},\gamma/\beta,\alpha;q,\beta\tau q^{n}}{\gamma,\alpha\tau} = \frac{(\beta;q)_{n}}{(\gamma,q)_{n}}{}_{3}\phi_{2}\binom{q^{-n},\gamma/\beta,\tau;q,q}{\alpha\tau,q^{1-n}/\beta}.$$
 (2.6)

Now substituting the left-hand side of (2.6) into the right-hand side of (2.4) we deduce (2.5).

Corollary 3.

$${}_{3}\phi_{2}\binom{q^{-n},\alpha,\beta;q,q}{\gamma,q^{1-n}/\tau} = \frac{(\gamma/\beta,\beta\tau;q)_{n}}{(\gamma,\tau;q)_{n}} {}_{3}\phi_{2}\binom{q^{-n},\alpha\beta\tau/\gamma,\beta;q,q}{\beta\tau,\beta q^{1-n}/\gamma}. \tag{2.7}$$

Proof. Apply Theorem 2 (with α , β , γ and τ replaced by τ , γ/β , $\alpha\tau$ and β respectively) to transform the $_3\phi_2$ on the right -hand side of (2.5).

Corollary 4.

$${}_{3}\phi_{2}\binom{q^{-n},\alpha,\beta;q,q}{\gamma,\frac{q^{1-n}}{\tau}} = \frac{(\frac{\alpha\beta\tau}{\gamma};q)_{n}}{(\tau;q)_{n}} {}_{3}\phi_{2}\binom{q^{-n},\frac{\gamma}{\alpha},\frac{\gamma}{\beta};q,q}{\gamma,\frac{\gamma q^{1-n}}{\alpha\beta\tau}}.$$

Proof. Apply Theorem 2 (with α , β , γ and τ replaced by β , $\alpha\beta\tau/\gamma$, $\beta\tau$, γ/β respectively) to transform the $_3\phi_2$ on the right-hand side of (2.7).

Corollaries 3 and 4 reduce to the second and third Heine transformations [8; p. 10] when $n \to \infty$.

3. Identities (1.4) and (1.5)

Theorem 5.

$$\sum_{j=0}^{n} \frac{q^{j}}{(q,\gamma;q)_{j}} = \frac{1}{(\gamma)_{n}} \sum_{j=0}^{n} \frac{(-1)^{j} \gamma^{j} q^{j(j-1)/2}}{(q)_{n-j}}.$$
(3.1)

Proof. Set $\alpha=0$ and let $\beta\to 0$ in Theorem 2. The desired result follows after algebraic simplification.

Theorem 6.

$$\sum_{j=0}^{n} \frac{q^{j^2} \gamma^j}{(q, \gamma q; q)_j} = \frac{1}{(\gamma q)_n} \sum_{j=0}^{n} \frac{\gamma^j q^{j(n+1)}}{(q)_j}.$$
 (3.2)

Proof. Replace q by 1/q and γ by $1/q\gamma$ in (3.1), then reverse the sum on the right-hand side and simplify.

Identity (1.3) is Theorem 5 with $\gamma = q$, and (1.4) is Theorem 6 with $\gamma = 1$.

4. Combinatorial proofs

Replacing q by q^2 in Theorem 5 and then setting $\gamma = -zq$, we see that Theorem 5 is equivalent to the following assertion:

$$\sum_{i=0}^{n} \frac{q^{2j} \left(-\gamma q^{2j+1}; q^2\right)_{n-j}}{(q^2; q^2)_j} = \sum_{i=0}^{n} \frac{\gamma^j q^{j^2}}{(q^2; q^2)_{n-j}}.$$
(4.1)

Proof of (4.1). The left-hand side of (4.1) is the generating function for partitions in which (1) all parts are $\leq 2n$, (2) odd parts are distinct, and (3) each odd is > each even. The general two-modular Ferrers graph [3; p. 13] for such partitions is

thus

Now remove the columns that have a 1 at the bottom. In light of the fact that the odds were distinct, we see that if there were originally j odd parts, then we have removed $1+3+5+\cdots+(2j-1)$ (= j^2). The remaining parts are all even and the largest is at most 2n-2j. Thus this transformation (which is clearly reversible) provides the partitions generated by the right-hand side of (4.1) and thus we have a bijective proof of Theorem 5.

Proof of (3.2). Classical arguments immediately reveal that the left-hand side of (3.2) is the generating function for partitions with Durfee square of side at most n. γ keeps track of the number of parts.

On the other hand, the side of the Durfee square is the largest j such that the j^{th} part is $\geq j$. So we may replicate the partitions generated by the left-hand side of (3.2) by exhibiting the generating function for partitions in which the parts > n are at most n in number. If there are j parts greater than n, the generating function is

$$\frac{\gamma^j q^{j(n+1)}}{(\gamma q)_n(q)_j}.$$

Hence summing on j from 0 to n we obtain a new expression for the generating function for partitions with Durfee square at most n, and this proves (3.2).

5. Conclusion

There are many other corollaries obtainable from the finite Heine transformations. The q-Pfaff-Saalschutz summation is merely [8; p. 13, eq. (1.7.2)] with $\tau = \gamma/\alpha\beta$. One can also obtain a finite version of the q-analog of Kummer's theorem [2], however, the result does not reduce to the hoped for "sum equals product" identity. Also it should be possible to provide a fully combinatorial proof of Theorem 2 along the lines given in [1] for the $n \to \infty$ case.

References

- [1] G. E. Andrews, Enumerative proofs of certain q-identities, Glasgow Math. J., 8 (1967), 33-40.
- [2] G. E. Andrews, On the q-analog of Kummer's theorem and applications, Duke Math. J., 40 (1973), 525-528.
- [3] G. E. Andrews, The Theory of Partitions, Encycl. of Math. and Its Appl., Vol. 2, Addison-Wesley, Reading, 1976 (Reissued: Cambridge University Press, 1998).
- [4] G. E. Andrews, The hard-hexagon model and Rogers-Ramanujan type identities, Proc. Nat. Acad. Sci. (USA), 78 (1981), 5290-5292.

- [5] G. E. Andrews, *q-Series...*, CBMS Regional Conference Lecture Series, **66**, (1986), Amer. Math. Soc., Providence.
- [6] G. E. Andrews, Euler's "De Partitio(ne)" Numerorum, Bull. Amer. Math. Soc., 44 (2007), 561-573.
- [7] G. E. Andrews, R. J. Baxter and P. J. Forrester, *Eight-vertex* SOS model and generalized Rogers-Ramanujan-type identities, J. Stat. Phys., **35** (1984), 193-266.
- [8] G. Gasper and M. Rahman, *Basic Hypergeometric Series*, Encycl. of Math. and Its Appl., Vol. 35, Cambridge University Press, Cambridge, 1990.
- [9] F. H. Jackson, *Tranformations of q-series*, Messenger of Mathematics, **39** (1910), 145-153.

Department of Mathematics, The Pennsylvania State University, University Park, PA 16802

 $E ext{-}mail\ address: and rews@math.psu.edu}$