Floer theory: Homework 1

Paramjit Singh

Terminology. Let X be a manifold with a Morse function f on it. We shall refer to f(p) as the *height* of $p \in X$. By a small neighborhood around a critical point, we mean one which doesn't include any other critical point.

Problem 1. Let $\gamma: \mathbb{R} \to X$ be a gradient flow line. Show that $\lim_{t\to\pm\infty} \gamma(t)$ exist and are critical points.

Solution. Suffices to show $\lim_{t\to\infty} \gamma(t)$ exists and is a critical point (and then take negative of the Morse function for the other result).

Let t_n be a sequence such that $t_n \to \infty$ as $n \to \infty$. Suppose $\gamma(t_n)$ exists. Then it must be a critical point.

(Intuitively, if the limit is a regular point, then one can still flow along the direction of the gradient, and thereby reduce height, and hence we can't have $\lim_{n\to\infty} \gamma(t_n)$ to be a regular point, as height strictly decreases for $\gamma(t)$ as t increases.)

More precisely, if $p = \lim_{n \to \infty}$ is regular, it has a neighborhood of regular points around it, say W. By the flow box theorem, there exist neighborhoods U of p in $f^{-1}(f(p))$, and $(-\varepsilon, \varepsilon)$, such that the flow function $\varphi : U \times (-\varepsilon, \varepsilon) \to W$ is a smooth embedding (a diffeomorphism onto its image, which is open in W). Under this embedding, grad f is mapped to $\partial/\partial x$, which strictly moves $\vec{0}$, and hence the flow of grad f moves f. Thus $f(\varphi(p,\varepsilon/2)) < f(p)$ and hence if f(x) = f(x) + f(x) + f(x) = f(x) + f(x) + f(x) = f(x) = f(x) + f(x) = f(

Now we show $\lim_{t\to\infty} \gamma(t)$ exists. As X is compact, $\{\gamma(t):t\in\mathbb{R}_+\}$ does have limit points. Each of them must be a critical point, as shown above. Let p and q be two such distinct points.

Enclose all critical points in an open set U, comprising disjoint balls around each critical point. Then $X \setminus U$ being compact, $|\operatorname{grad} f|$ is bounded on $X \setminus U$ ($|\cdot|$ being taken with respect to a Riemannian metric on X).

Assume X is connected, and let d be the geodesic distance between p and q. Let $p \in U_1, q \in U_2$, such that $U_1 \cup U_2 \subseteq U$, and choose $d' = \inf\{d(r,s) \mid r \in U_1, s \in U_2\}$.

As $p \neq q$ are limit points of $\{\gamma(t): t \in \mathbb{R}_+\}$, the flow line traverses at least distance d' with bounded velocity grad f, thus, if $\gamma(t) \notin U$, then $\exists \ \delta > 0$, such that $\gamma(t - \delta, t + \delta) \subseteq X \setminus U$ (i.e., in particular, $\gamma(t)$ stays outside U, for infinite time).

As $|\operatorname{grad} f|$ is bounded below on $X \setminus U$, for any flow segment $\alpha : [0,1] \to X \setminus U$, there is a $t \in [0,1]$ such that $f(\alpha(1)) - f(\alpha(0)) = (f \circ \alpha)'(t) = f'(\alpha(t)) \cdot [-\operatorname{grad} f(\alpha(t))] = -|f'(\alpha(t))|^2 \le b$ for some constant b > 0.

This implies that if t_n are such that $\gamma(t_n) \notin U$, $\lim_{t\to\infty} f(\gamma(t_n)) = -\infty$, a contradiction, as X is compact. \square vspace{1cm}

Problem 2. Suppose γ_n is a sequence of flow lines in $\mathcal{M}(p,q)$. Then there exists a subsequence, a limit k-broken flow line $p \xrightarrow{\bar{\gamma_0}} r_1 \xrightarrow{\bar{\gamma_1}} r_2 \to \cdots \xrightarrow{\bar{\gamma_k}} q$ and sequences $s_{n,0} < s_{n,1} < \cdots < s_{n,k}$ such that $\gamma_n(s_{n,i} + \bullet) \to \bar{\gamma_i}$ uniformly on compact sets.

Solution. Let U be a small neighborhood of p, not containing critical points other than p. Fix $\varepsilon > 0$ such that $B(p,\varepsilon) \subseteq U$ (where this sphere is defined with respect to the Riemannian metric on X). As $\lim_{t\to-\infty} \gamma_n(t) = p$, for every n, there exists a time $s_{n,0}$ such that $\gamma_n(s_{n,0}) \in \partial B(p,\varepsilon)$ and $\gamma_n(t) \in B(p,\varepsilon) \, \forall \, t < s_{n,0}$.

Consider the smooth flow lines $\gamma_n(s_{n,0} + \bullet)$ on the compact set X, Arzela-Ascoli applies and therefore, there is a subsequence converging uniformly on compact sets to a curve $\bar{\gamma_0}$ in X. $\bar{\gamma_0}$ is a flow line, because grad f is smooth and hence (passing to a subsequence without change of notation) as $\gamma_n \to \bar{\gamma_0}$ uniformly on compact sets, $\gamma'_n = -\operatorname{grad} f(\gamma_n)$ converge, in particular, to $\bar{\gamma_0}'$.

We now show that $\bar{\gamma_0}$ is a non-constant flow line and that $\lim_{t\to-\infty}\bar{\gamma_0}(t)=p$. As $\gamma_n(s_{n,0})\in\partial B(p,\varepsilon)$ \forall n, and $\gamma_n(s_{n,0})\to\bar{\gamma_0}(0)$, it follows that $\bar{\gamma_0}(0)\in\partial B(p,\varepsilon)$, thus, $\bar{\gamma_0}$ is a non-constant flow line. Further, as $\gamma_n(s_{n,0})\in B(p,\varepsilon)$ \forall $t< s_{n,0}$ \forall n, it follows that $\bar{\gamma_0}(t)\in B(p,\varepsilon)$ \forall t< 0. As $t\to-\infty$, $\bar{\gamma_0}(t)$ must converge to a critical point, which thus has to be p.

Let $r_1 = \lim_{t \to \infty} \bar{\gamma_0}(t)$. If $r_1 = q$, we are done. Otherwise, we use the following arguments.

We first procure a ball around r_1 such that any flow line in $W^u(q)$ entering a smaller ball, must leave the original ball at a height lower than that of r_1 .

Consider a small neighborhood around r_1 , and let $B(r_1, \varepsilon)$ be in this neighborhood for some fixed ε . Consider the concentric regions $U_i = \{p \in X \mid i\varepsilon/3 \le d(p, r_1) \le (i+1)\varepsilon/3\}$ for i = 0, 1, 2 constituting this ball. As U_1 is compact, $|\operatorname{grad} f|$ is bounded above and below on U_1 by constants M, m > 0 respectively. We claim that any flow line on entering

 U_1 must spend at least a fixed amount of time in U_1 before leaving it. This would help us to show that every flow line entering a small enough ball around r_1 loses height by at least a fixed amount, which leads us to our final goal, which is the existence of a $\delta > 0$, such that any flow line entering $B(r_1, \delta)$ leaves $B(r_1, \varepsilon)$ at a height lower than that of r_1^{-1} .

More precisely, if γ is a flow line, such that $\gamma(t) \in \partial B(r_1, \varepsilon/3)$ and $\gamma(t + \Delta) \in \partial B(r_1, 2\varepsilon/3)$, then we must have $\Delta \ge \inf\{d(x,y) \mid x \in \partial U_0, y \in \partial U_1 \setminus \partial U_0\} / \sup\{|\operatorname{grad} f(u)| \mid u \in U_1\} = \varepsilon/3M$. Moreover,

$$f(\gamma(t+\Delta)) - f(\gamma(t)) = (f \circ \gamma)'(t')\Delta = f'(\gamma(t'))\gamma'(t')\Delta = -|f'(\gamma(t'))|^2\Delta < -m^2\varepsilon/3M =: -h$$

for some $t' \in (t, t + \delta)$.

Now we must choose δ judiciously, so that any flow line of $W^u(q)$ entering $B(r_1, \delta)$ must leave $B(r_1, \varepsilon)$ (which it can do only by traversing across U_1) at a height lower than $f(r_1)$. That is, we want the fall in height h to be at least more than δ i.e., $\delta < h = m^2 \varepsilon^2 / 3M$.

As $\lim_{t\to\infty} \bar{\gamma_0}(t) = r_1$ and $\gamma_n(s_{n,0} + \bullet) \to \bar{\gamma_0}$ uniformly on compact sets, let t be such that $\bar{\gamma_0}(t) \in B(r_1, \delta/3)$ and N be such that for all $n \geq N$, $\gamma_n(s_{n,0} + t) \in B(\bar{\gamma_0}(t), \delta/3) \subseteq B(r_1, \delta)$. Thus, re-labelling γ_n as γ_{n+N} , we see that all flow lines γ_n pass through the $B(r_1, \delta)$ ball. So they must all leave $B(r_1, \varepsilon)$ at a height lower than $f(r_1)$.

Let $s_{n,1} > s_{n,0} + t$ be the *least* time such that $\gamma_n(s_{n,1}) \in \partial B(r_1, \varepsilon)$. Consider the new sequence of flow lines $\gamma_n(s_{n,1} + \bullet)$. As before, by Arzela-Ascoli, it has a convergent subsequence, which without change of notation, we again denote by γ_n . Denote the limit by $\bar{\gamma}_1$. It is a flow line, by convergence of γ'_n to $\bar{\gamma}_1'$, which then has to satisfy the flow equation.

We now claim that $\bar{\gamma}_1$ is a non-constant flow line satisfying $\lim_{t\to-\infty}\bar{\gamma}_1(t)=r_1$. It is non-constant since $\lim_{n\to\infty}\gamma_n(s_{n,1})=\bar{\gamma}_1(0)\in\partial B(r_1,\varepsilon)$, which comprises regular points.

Let t_0 be such that $\bar{\gamma}_0(t_0) \in B(r_1, 2\varepsilon/3)$ above r_1 , and let d_n be a positive increasing sequence such that $\lim_{n\to\infty} d_n = \infty$. Then for all n, there exist N_n , such that $\forall m \geq N_n, \sup_{t\in[t_0,t_0+d_n]} d(\gamma_m(s_{m,0}+t), \bar{\gamma}_0(t)) < \varepsilon/3$, in particular, $\gamma_m(s_{m,0}+t) \in B(r_1,\varepsilon) \ \forall \ t \in [t_0,t_0+d_n]$. That is, γ_m spend increasingly larger amounts of time in $B(r_1,\varepsilon)$.

In particular, $\gamma_m(s_{m,0}+\overline{t_0+d_n}) \in B(\bar{\gamma}_0(t_0+d_n),\varepsilon/3)$ does not belong to $\partial B(r_1,\varepsilon)$. Thus, $s_{m,1}>s_{m,0}+t_0+d_n \ \forall \ m\geq N_n$ as $s_{m,1}$ is the least time after $s_{n,0}+t_0^2$ at which γ_m leaves $B(r_1,\varepsilon)$. In particular, for $t\in[-d_n,0],\ \gamma_m(s_{m,1}+t)\in B(r_1,\varepsilon) \ \forall \ m\geq N_n$. Taking limits as $m\to\infty$, this gives us that $\bar{\gamma}_1(t)=\lim_{m\to\infty}\gamma_m(s_{m,1}+t)\in \bar{B}(r_1,\varepsilon)$ for $t\in[-d_n,0]$. But note that this occurs for all n, and hence taking $n\to\infty$, we get $\bar{\gamma}_1(t)\in\bar{B}(r_1,\varepsilon)$ for t<0. This gives us that the only critical point that $\lim_{t\to-\infty}\bar{\gamma}_1(t)$ could be, has to be r_1 .

We now repeat the argument with $\bar{\gamma}_1$ and continue till q is reached, which it must, as X is compact and there are finitely many critical points.

¹Note that this is easier than arguing existence of ε such that any flow line entering $B(r_1, \varepsilon)$ leaves the same ball at a height lower than $f(r_1)$; but this suffices for our purpose.

²Note that this is *not* the definition of $s_{n,1}$ but follows as an easy consequence.