Smooth Functions: Solutions

- 1. Prove that every continuous linear functional; is differentiable with $Df[{\pmb x}] = {\pmb \alpha}.^1$
- 2. Prove that if a differentiable functional f is increasing, then $Df[x_0](x) \ge 0$ for all $x \in X$.
- 3. Let f be a differentiable functional. Prove that the $\nabla f(\mathbf{x}_0)$ is orthogonal to the hyperplane tangent to the contour through $f(\mathbf{x}_0)$.
- 4. Let the policy production function discussed above be written

$$f(x,y) = x^{\alpha} y^{\beta}$$

Give a sufficient condition for this function to be concave on $\{\mathbb{R}_{++} \times \mathbb{R}_{++}\}$. **Hint:** A 2×2 symmetric matrix A is negative definite if $A_{11} < 0$ and $A_{11}A_{22} - A_{12}A_{21} < 0$.

 $^{^{1}}$ Carter 4.6

 $^{^2}$ Carter 4.15, recall the definition of increasingness from the lecture on monotonic functions.