Input: an arbitrary target policy π Initialize, for all $s \in S$, $a \in A(s)$: $Q(s, a) \in \mathbb{R}$ (arbitrarily)

Off-policy MC prediction (policy evaluation) for estimating $Q \approx q_{\pi}$

 $C(s,a) \leftarrow 0$

$$C(s, a) \leftarrow 0$$

Loop forever (for each episode):

Loop forever (for each episode):

Loop forever (for each episode):
$$b \leftarrow$$
 any policy with coverage of π

$$b \leftarrow$$
 any policy with coverage of π
Generate an episode following $b: S_0, A_0, R_1, \dots, S_{T-1}, A_{T-1}, R_T$

 $C(S_t, A_t) \leftarrow C(S_t, A_t) + W$

 $G \leftarrow 0$

 $G \leftarrow \gamma G + R_{t+1}$

 $W \leftarrow W \frac{\pi(A_t|S_t)}{h(A_t|S_t)}$

 $W \leftarrow 1$ Loop for each step of episode, $t = T - 1, T - 2, \dots, 0$, while $W \neq 0$:

of episode,
$$t$$
:

 $Q(S_t, A_t) \leftarrow Q(S_t, A_t) + \frac{W}{C(S_t, A_t)} [G - Q(S_t, A_t)]$

pisode,
$$t = T - 1$$
,

$$\gamma$$
, while $m \neq 0$.