Recursos Humanos. ¿Deberíamos contratar nuevo personal? José Luis Higuera Caraveo

Marzo 02 2022

1 Descripción del problema

La contratación de personal puede ser una tarea muy complicada y tardía, esto porque dependiendo del puesto, se necesitan candidatos que tengan que cumplir con ciertas capacidades y cubrir unas otras habilidades. Encontrar al candidato ideal puede demorar mucho tiempo, algunos estudios arrojan que esta tarea puede durar hasta 52 días.

A continuación, se enlistan algunos puntos que se tienen que tomar en consideración respecto a la contratación de nuevos empleados.

- Contratar y retener a empleados son tareas extremadamente complejas dentro de las organizaciones que requieren capital, tiempo y habilidades.
- Los jefes de departamento de Recursos Humanos dedican aproximadamente un 40% de su jornada laboral a tareas que son relacionadas a la contratación y renuncia de empleados, tareas que, por lo general no aportan ingresos a la organización.
- Las empresas pueden llegar a gastar entre el 15% al 20% del salario del empleado para contratar a un nuevo candidato.
- Según el giro de la organización, en ciertos puesto de trabajo, la empresa tiene que invertir
 en equipo para que el nuevo empleado pueda laborar, poniendo como ejemplo, equipo de
 protección personal, y cuando un empleado decide dejar el puesto, existe la posibilidad de
 que este no devuelva el equipo, por lo que se traduce directamente en una inversión no
 retornable para la empresa.

Se ha generado una base de datos con información respecto a las renuncias que se han presentado en una empresa. Con el objetivo de atacar el problema de la deserción de personal, se prosigue a realizar un análisis con el objetivo de predecir cuales empleados son propensos a que renuncien a su puesto.

Una señal a tiempo puede ser importante para que la empresa genere soluciones para retener al empleado y evitar contratar a uno nuevo.

Dentro del conjunto de datos proporcionados por el departamento se encuentra información relacionada con los siguientes rubros: * Participación laboral * Educación * Satisfacción laboral * Clasificación de rendimiento * Satisfacción en las relaciones * Equilibrio Trabajo-Vida

Los datos que se usarán para el análisis son Open Database disponibles en: IBM HR Analytics Employee Attrition & Performance.

2 Importando Librerías y los datos

```
[1]: import pandas as pd
     import numpy as np
     import seaborn as sns
     import matplotlib.pyplot as plt
     import matplotlib
     matplotlib.style.use('ggplot')
[2]: # Importando los datos
     employee_df = pd.read_csv('./Human_Resources.csv')
     employee_df.head()
[2]:
        Age Attrition
                           BusinessTravel DailyRate
                                                                    Department \
                            Travel_Rarely
     0
         41
                  Yes
                                                 1102
                                                                         Sales
         49
                   No Travel_Frequently
                                                  279 Research & Development
     1
     2
         37
                  Yes
                            Travel_Rarely
                                                 1373
                                                       Research & Development
     3
         33
                   No
                       Travel_Frequently
                                                 1392 Research & Development
     4
         27
                   No
                            Travel_Rarely
                                                  591
                                                       Research & Development
        DistanceFromHome Education EducationField EmployeeCount EmployeeNumber
     0
                                   2 Life Sciences
     1
                                   1 Life Sciences
                                                                   1
                                                                                   2
     2
                        2
                                   2
                                               Other
                                                                   1
                                                                                   4
     3
                       3
                                     Life Sciences
                                                                   1
                                                                                   5
                                                                                   7
     4
                        2
                                   1
                                            Medical
                                                                   1
           RelationshipSatisfaction StandardHours StockOptionLevel
     0
                                                 80
     1
                                   4
                                                 80
                                                                     1
     2
                                   2
                                                 80
                                                                     0
     3
                                   3
                                                 80
                                                                     0
     4
                                   4
                                                 80
                                                                     1
                            TrainingTimesLastYear WorkLifeBalance
                                                                    YearsAtCompany
        TotalWorkingYears
     0
                         8
                                                                                  6
                                                 3
                                                                 3
     1
                        10
                                                                                 10
     2
                         7
                                                 3
                                                                  3
                                                                                  0
     3
                         8
                                                 3
                                                                  3
                                                                                  8
     4
                                                 3
                                                                  3
                         6
                                                                                  2
                           YearsSinceLastPromotion
       YearsInCurrentRole
                                                      YearsWithCurrManager
     0
                         4
                                                   0
                                                                          5
                                                                          7
                         7
                                                   1
     1
     2
                         0
                                                   0
                                                                          0
     3
                         7
                                                   3
                                                                          0
     4
                         2
                                                   2
                                                                          2
```

[5 rows x 35 columns]

```
[31]: # Nombre de las columnas columns = employee_df.columns
```

Obtención de más información a algunas columnas que son difíciles de entender. (Esta información es proporcionada por el creador del conjunto de datos).

Education 1. 'Below College' 2. 'College' 3. 'Bachelor' 4. 'Master' 5. 'Doctor'

EnvironmentSatisfaction 1. 'Low' 2. 'Medium' 3. 'High' 4. 'Very High'

JobInvolvement 1. 'Low' 2. 'Medium' 3. 'High' 4. 'Very High'

JobSatisfaction 1. 'Low' 2. 'Medium' 3. 'High' 4. 'Very High'

PerformanceRating 1. 'Low' 2. 'Good' 3. 'Excellent' 4. 'Outstanding'

RelationshipSatisfaction 1. 'Low' 2. 'Medium' 3. 'High' 4. 'Very High'

WorkLifeBalance 1. 'Bad' 2. 'Good' 3. 'Better' 4. 'Best'

Estamos frente a un conjunto de datos con 1470 muestras y 35 variables o características.

[4]: employee_df.shape

[4]: (1470, 35)

Comprendiendo el conjunto de datos. Nombre de columna, valores nulos y tipo de datos para cada columna.

[5]: employee_df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 1470 entries, 0 to 1469
Data columns (total 35 columns):

#	Column	Non-Null Count	Dtype
0	Age	1470 non-null	int64
1	Attrition	1470 non-null	object
2	BusinessTravel	1470 non-null	object
3	DailyRate	1470 non-null	int64
4	Department	1470 non-null	object
5	DistanceFromHome	1470 non-null	int64
6	Education	1470 non-null	int64
7	EducationField	1470 non-null	object
8	EmployeeCount	1470 non-null	int64
9	EmployeeNumber	1470 non-null	int64
10	EnvironmentSatisfaction	1470 non-null	int64
11	Gender	1470 non-null	object
12	HourlyRate	1470 non-null	int64

13	JobInvolvement	1470	non-null	int64
14	JobLevel	1470	non-null	int64
15	JobRole	1470	non-null	object
16	JobSatisfaction	1470	non-null	int64
17	MaritalStatus	1470	non-null	object
18	MonthlyIncome	1470	non-null	int64
19	MonthlyRate	1470	non-null	int64
20	NumCompaniesWorked	1470	non-null	int64
21	Over18	1470	non-null	object
22	OverTime	1470	non-null	object
23	${\tt PercentSalaryHike}$	1470	non-null	int64
24	PerformanceRating	1470	non-null	int64
25	${\tt RelationshipSatisfaction}$	1470	non-null	int64
26	StandardHours	1470	non-null	int64
27	StockOptionLevel	1470	non-null	int64
28	${\tt TotalWorkingYears}$	1470	non-null	int64
29	${\tt Training Times Last Year}$	1470	non-null	int64
30	WorkLifeBalance	1470	non-null	int64
31	${\tt YearsAtCompany}$	1470	non-null	int64
32	YearsInCurrentRole	1470	non-null	int64
33	${\tt YearsSinceLastPromotion}$	1470	non-null	int64
34	${\tt YearsWithCurrManager}$	1470	non-null	int64
1+ 17n	ag: in+6/(26) $object(0)$			

dtypes: int64(26), object(9)
memory usage: 402.1+ KB

Alguna información estadística para columnas numéricas

[6]: employee_df.describe()

	Jan Para		- (,				
[6]:		Age	DailyRate	DistanceFromHo	me Educati	on EmployeeCou	nt \
	count	1470.000000	1470.000000	1470.0000	00 1470.0000	000 1470	.0
	mean	36.923810	802.485714	9.1925	17 2.9129	25 1	.0
	std	9.135373	403.509100	8.1068	64 1.0241	.65 0	.0
	min	18.000000	102.000000	1.0000	00 1.0000	000 1	.0
	25%	30.000000	465.000000	2.0000	00 2.0000	000 1	.0
	50%	36.000000	802.000000	7.0000	00 3.0000	000 1	.0
	75%	43.000000	1157.000000	14.0000	00 4.0000	000 1	.0
	max	60.000000	1499.000000	29.0000	00 5.0000	000 1	.0
		EmployeeNumb	er Environme	entSatisfaction	HourlyRate	JobInvolvement	\
	count	1470.0000	00	1470.000000	1470.000000	1470.000000	
	mean	1024.8653	06	2.721769	65.891156	2.729932	
	std	602.0243	35	1.093082	20.329428	0.711561	
	min	1.0000	00	1.000000	30.000000	1.000000	
	25%	491.2500	00	2.000000	48.000000	2.000000	
	50%	1020.5000	00	3.000000	66.000000	3.000000	
	75%	1555.7500	00	4.000000	83.750000	3.000000	
	max	2068.0000	00	4.000000	100.000000	4.000000	

count mean std min 25% 50% 75% max	JobLevel 1470.000000 2.063946 1.106940 1.000000 2.000000 3.000000 5.000000		sfaction 0.000000 2.712245 1.081209 1.000000 2.000000 3.000000 4.000000 4.000000	StandardHours \ 1470.0 80.0 0.0 80.0 80.0 80.0 80.0 80.0 8	
count mean std min 25% 50% 75% max	StockOptionLevel 1470.000000 0.793878 0.852077 0.000000 0.0000000 1.0000000 1.0000000 3.0000000	1470.000 11.279 7.780 0.000 6.000 10.000 15.000	0000 0592 0782 0000 0000 0000	ningTimesLastYear 1470.000000 2.799320 1.289271 0.000000 2.000000 3.000000 3.000000 6.000000	\
count mean std min 25% 50% 75% max	WorkLifeBalance 1470.000000 2.761224 0.706476 1.000000 2.000000 3.000000 4.000000	YearsAtCompany 1470.000000 7.008163 6.126525 0.000000 3.000000 5.000000 9.000000 40.000000		######################################	
count mean std min 25% 50% 75% max	2 3 0 0 1 3	omotion YearsWi .000000 .187755 .222430 .000000 .000000 .000000 .000000	thCurrMana 1470.000 4.123 3.568 0.000 2.000 3.000 7.000	0000 3129 8136 0000 0000 0000	

[8 rows x 26 columns]

Antes de aplicar un modelo de Machine Learning es importante convertir las variables categóricas en numéricas. Se tomarán las columnas de tipo de datos de objeto más importantes y se convertirán en variables dummies.

Comprobando si los cambios se han aplicado correctamente.

```
[8]: employee_df[['Attrition', 'Over18', 'OverTime']].head()
```

```
[8]:
         Attrition Over18 OverTime
     0
                  1
                           1
                  0
                                       0
     1
                           1
     2
                  1
                           1
                                       1
     3
                  0
                           1
                                       1
     4
                  0
                           1
                                       0
```

3 Análisis Exploratorio de datos

3.0.1 Valores Nulos

Verifiquemos si hay datos nulos en el conjunto de datos.

Se utilizará la herramienta seaborn para imprimir un mapa de calor binario.

```
[9]: plt.figure(figsize=(10,10))
sns.heatmap(employee_df.isnull(), yticklabels=False, cbar=False)
plt.show()
```


Como muestra el gráfico, no hay ningún valor nulo en el conjunto de datos.

3.0.2 Distribución de las variables

Una excelente manera de entender una variable es con su histograma. En la siguiente línea de código se imprimirá.

```
[10]: plt.figure()
employee_df.hist(bins = 30, figsize=(20,20))
plt.show()
```

<Figure size 432x288 with 0 Axes>

Se puede llegar a una conclusión importante con los resultados anteriores. Por ejemplo, aproximadamente el 80% de los empleados están considerando no dejar la empresa, el otro 20% ha dejado la empresa.

Ahora, el objetivo del análisis es entender las características de ese 20%.

3.0.3 Empleados que se van de la empresa vs los que se quedan.

Eliminando variables que no aportan mucho al problema que se analiza.

```
[11]: employee_df.drop(['EmployeeCount', 'StandardHours', 'Over18', 'EmployeeNumber'], axis=1, inplace=True)
```

Dividiendo el conjunto de datos en los empleados que dejaron la empresa y por otro lado con los empleados que se quedan en la empresa.

```
[12]: left_df = employee_df[employee_df['Attrition'] == 1]
stayed_df = employee_df[employee_df['Attrition'] == 0]
```

Empleados totales: 1470, Empleados que se van: 237, Empleados que se quedan: 1233

Porcentaje que se va: 16.12%, Porcentaje que se queda: 83.88%

[14]: left_df.describe()

[14]:		Age	Attrition	DailyRate	DistanceFromHome	Education	\
	count	237.000000	237.0	237.000000	237.000000	237.000000	
	mean	33.607595	1.0	750.362869	10.632911	2.839662	
	std	9.689350	0.0	401.899519	8.452525	1.008244	
	min	18.000000	1.0	103.000000	1.000000	1.000000	
	25%	28.000000	1.0	408.000000	3.000000	2.000000	
	50%	32.000000	1.0	699.000000	9.000000	3.000000	
	75%	39.000000	1.0	1092.000000	17.000000	4.000000	
	max	58.000000	1.0	1496.000000	29.000000	5.000000	
		Environment	Satisfaction	n HourlyRate	JobInvolvement	JobLevel	\
	count		237.000000	237.000000	237.000000	237.000000	
	mean		2.464135	65.573840	2.518987	1.637131	
	std		1.169791	20.099958	0.773405	0.940594	
	min		1.000000	31.000000	1.000000	1.000000	
	25%		1.000000	50.000000	2.000000	1.000000	

```
50%
                       3.000000
                                   66.000000
                                                     3.000000
                                                                  1.000000
75%
                       4.000000
                                   84.000000
                                                     3.000000
                                                                  2.000000
max
                       4.000000
                                  100.000000
                                                     4.000000
                                                                  5.000000
       JobSatisfaction
                                                 RelationshipSatisfaction
                            PerformanceRating
             237.000000
                                    237.000000
                                                                237.000000
count
                                                                  2.599156
               2.468354
                                      3.156118
mean
std
               1.118058
                                      0.363735
                                                                  1.125437
min
               1.000000
                                      3.000000
                                                                  1.000000
25%
               1.000000
                                      3.000000
                                                                  2.000000
50%
               3.000000
                                      3.000000
                                                                  3.000000
75%
               3.000000
                                      3.000000
                                                                  4.000000
max
               4.000000
                                      4.000000
                                                                  4.000000
       StockOptionLevel
                          TotalWorkingYears
                                               TrainingTimesLastYear
              237.000000
                                  237.000000
count
                                                          237.000000
                0.527426
                                    8.244726
                                                             2.624473
mean
std
                0.856361
                                    7.169204
                                                             1.254784
min
                0.00000
                                    0.000000
                                                             0.00000
25%
                0.00000
                                    3.000000
                                                             2.000000
50%
                0.00000
                                    7.000000
                                                             2.000000
75%
                                   10.000000
                                                             3.000000
                1.000000
                3.000000
                                   40.000000
                                                             6.000000
max
                         YearsAtCompany
                                          YearsInCurrentRole
       WorkLifeBalance
count
             237.000000
                              237.000000
                                                   237.000000
mean
               2.658228
                                5.130802
                                                     2.902954
                                5.949984
                                                     3.174827
std
               0.816453
min
               1.000000
                                0.00000
                                                     0.00000
                                                     0.00000
25%
               2.000000
                                1.000000
50%
                                                     2.000000
               3.000000
                                3.000000
75%
               3.000000
                                7.000000
                                                     4.000000
               4.000000
max
                               40.000000
                                                    15.000000
                                  YearsWithCurrManager
       YearsSinceLastPromotion
count
                     237.000000
                                             237.000000
                                               2.852321
mean
                       1.945148
std
                                               3.143349
                       3.153077
min
                       0.000000
                                               0.000000
25%
                       0.00000
                                               0.00000
50%
                       1.000000
                                               2.000000
75%
                       2.000000
                                               5.000000
                      15.000000
                                              14.000000
max
```

[8 rows x 25 columns]

[15]: stayed_df.describe()

[15]:		Age	Attrition	DailyRa	te DistanceFromHon	ne Education	. \
	count	1233.000000	1233.0	1233.0000	00 1233.00000	00 1233.000000	1
	mean	37.561233	0.0	812.5044	61 8.91565	3 2.927007	
	std	8.888360	0.0	403.2083	79 8.01263	33 1.027002	
	min	18.000000	0.0	102.0000	00 1.00000	1.000000	1
	25%	31.000000	0.0	477.0000	00 2.00000	2.000000	1
	50%	36.000000	0.0	817.0000	7.00000	3.000000	1
	75%	43.000000	0.0	1176.0000	00 13.00000	00 4.000000	1
	max	60.000000	0.0	1499.0000	29.00000	5.000000	1
		EnvironmentS	atisfactio	n HourlyR	ate JobInvolvement	JobLevel	\
	count		1233.00000	1233.000	000 1233.000000	1233.000000	
	mean		2.77129	65.952	149 2.770479	2.145985	
	std		1.07113	20.380	754 0.692050	1.117933	
	min		1.00000	30.000	000 1.000000	1.000000	
	25%		2.00000	48.000	000 2.000000	1.000000	
	50%		3.00000	66.000	3.000000	2.000000	
	75%		4.00000	83.000	3.000000	3.000000	
	max		4.00000	100.000	4.00000	5.000000	
		JobSatisfact	ion Pe:	rformanceRa [.]	ting RelationshipS	Satisfaction \	
	count	1233.000	000	1233.00		1233.000000	
	mean	2.778	589 	3.15	3285	2.733982	
	std	1.093	277	0.36	0408	1.071603	
	min	1.000	000	3.00	0000	1.000000	
	25%	2.000	000	3.00	0000	2.000000	
	50%	3.000	000	3.00	0000	3.000000	
	75%	4.000	000	3.00	0000	4.000000	
	max	4.000	000	4.00	0000	4.000000	
		StockOptionL	evel Tota	lWorkingYea:	rs TrainingTimesLa	astYear \	
	count	1233.00		1233.0000	•	000000	
	mean	0.84	5093	11.8629	36 2.	832928	
	std	0.84	1985	7.7607	19 1.	293585	
	min	0.00	0000	0.0000	00 0.	000000	
	25%	0.00	0000	6.0000	00 2.	000000	
	50%	1.00	0000	10.0000	00 3.	000000	
	75%	1.00	0000	16.0000	00 3.	000000	
	max	3.00	0000	38.0000	00 6.	000000	
		WorkLifeBala	nce Years	AtCompany '	YearsInCurrentRole	\	
	count	1233.000	000 123	33.000000	1233.000000		
	mean	2.781	022	7.369019	4.484185		
	std	0.681	907	6.096298	3.649402		
	min	1.000	000	0.000000	0.000000		
	25%	2.000	000	3.000000	2.000000		
	50%	3.000	000	6.000000	3.000000		

75%	3.000000 10	7.00000
max	4.000000 37	7.000000 18.000000
	${\tt YearsSinceLastPromotion}$	${\tt YearsWithCurrManager}$
count	1233.000000	1233.000000
mean	2.234388	4.367397
std	3.234762	3.594116
min	0.000000	0.00000
25%	0.000000	2.000000
50%	1.000000	3.000000
75%	3.000000	7.000000
max	15.000000	17.000000

[8 rows x 25 columns]

Haciendo un análisis de ambos conjuntos de datos para llegar a alguna conclusión de los datos:

- Se compara la media y el error estándar de los empleados que se quedaron y se fueron.
- 'age': La edad promedio de los empleados que se quedaron es mayor en comparación con los que se fueron.
- 'DailyRate': La tarifa diaria de los empleados que se quedaron es más alta.
- 'DistanceFromHome': los empleados que permanecen viven más cerca del trabajo.
- 'Satisfacción ambiental' y 'Satisfacción laboral': los empleados que se quedan generalmente están más satisfechos con sus trabajos.
- 'StockOptionLevel': Los empleados que se quedan tienen un mayor nivel de opciones sobre acciones.
- 'Ingreso Mensual': Los empleados que se quedan tienen un Ingreso mensual más alto.

3.0.4 Matriz de Confusión

```
[16]: correlations = employee_df.corr()

plt.figure(figsize=(20,20))
    sns.heatmap(correlations, annot=True)
    plt.show()
```


Conclusiones:

- El nivel de trabajo está altamente correlacionado con el número total de horas de trabajo.
- El ingreso mensual está altamente correlacionado con el nivel de trabajo.
- El ingreso mensual está altamente correlacionado con el número total de horas de trabajo.
- La edad está altamente correlacionada con los ingresos mensuales.

3.0.5 Distribución

Age vs Attrition

```
[17]: plt.figure(figsize=(25,12)) sns.countplot(x='Age', hue='Attrition', data=employee_df)
```

plt.show()

La mayoría de los empleados que dejan la empresa tienen entre 18 y 37 años. Una vez que un empleado tiene más de esa edad, la probabilidad de dejar la empresa disminuye.

Un factor como la edad puede ser importante para determinar si un empleado dejará o no la empresa.

Job Role, Marital Status, Job Involvement y Job Level. Se podrían analizar más variables para comprender la distribución de datos.

```
[18]: plt.figure(figsize=(25,25))
   plt.subplot(411)
   sns.countplot(x='JobRole', hue='Attrition', data=employee_df)
   plt.subplot(412)
   sns.countplot(x='MaritalStatus', hue='Attrition', data=employee_df)
   plt.subplot(413)
   sns.countplot(x='JobInvolvement', hue='Attrition', data=employee_df)
   plt.subplot(414)
   sns.countplot(x='JobLevel', hue='Attrition', data=employee_df)
   plt.show()
```


Conclusiones: * En el departamento de ventas existe un alto porcentaje de empleados que dejan la empresa, aproximadamente el 40% * Los empleados Solteros tienen más probabilidades de dejar la empresa que los demás. * Cuanto menor sea la implicación en el trabajo es más probable que un empleado se vaya. * Un empleado con más nivel en el trabajo tiene menos posibilidades de abandonar la empresa.

3.0.6 Distribuciones de Densidad

```
Distance from Home
```


Por un lado, si la distancia es corta, la probabilidad de quedarse es mayor, por otro lado, si la distancia aumenta, más de 10 Millas, la probabilidad de irse es mayor.

Years with current manager

```
plt.figure(figsize=(12,8))
sns.kdeplot(left_df['YearsWithCurrManager'], label = 'Empleados que dejan la

→compañía',
shade=True, color='r')
sns.kdeplot(stayed_df['YearsWithCurrManager'], label = 'Empleados que se quedan

→en la compañía',
shade=True, color='b')
plt.xlabel('Número de años con el mismo Gerente')
plt.legend()
plt.show()
```


Una vez que un empleado permanece aproximadamente 1,5 años con el mismo gerente, es más probable que permanezca en la empresa.

Total working years

Como el tiempo de permanencia en la empresa es mayor, la probabilidad de permanencia también es alta.

3.0.7 Box Plots

Gender vs Monthly Income

```
[22]: plt.figure(figsize=(15,10))
   sns.boxplot(x='MonthlyIncome', y='Gender', data=employee_df)
   plt.show()
```


No existe discriminación por el género del empleado, en el gráfico se puede ilustrar que el salario medio por género es casi el mismo, de hecho, el salario medio de las mujeres es un poco más alto que el de los hombres.

Monthly Income vs Job Role

```
[23]: plt.figure(figsize=(15,10))
    sns.boxplot(x='MonthlyIncome', y='JobRole', data=employee_df)
    plt.show()
```


En el gráfico anterior hay más información interesante: * Los empleados con mayor salario son los gerentes o directores de investigación. * El representante de ventas, el científico investigador y el técnico de laboratorio son los peor pagados.

3.0.8 Trabajando con las variables categóricas

```
[24]: cat_cols = ['BusinessTravel', 'Department', 'EducationField', 'Gender', |
      x_cat = employee_df[cat_cols]
[25]:
     x_cat.head()
[25]:
           BusinessTravel
                                     Department EducationField
                                                               Gender
            Travel_Rarely
     0
                                          Sales Life Sciences
                                                               Female
     1
        Travel_Frequently
                          Research & Development
                                                Life Sciences
                                                                Male
            Travel_Rarely
                          Research & Development
     2
                                                        Other
                                                                Male
```

Research & Development Life Sciences

Female

Male

Medical

JobRole MaritalStatus

Research & Development

0	Sales Executive	Single
1	Research Scientist	Married
2	Laboratory Technician	Single
3	Research Scientist	Married
4	Laboratory Technician	Married

Travel Frequently

Travel_Rarely

3

4

```
[26]: from sklearn.preprocessing import OneHotEncoder
[27]: onehotencoder = OneHotEncoder()
      x_cat = onehotencoder.fit_transform(x_cat).toarray()
[28]: x_cat.shape
[28]: (1470, 26)
[29]: x_cat = pd.DataFrame(x_cat)
      x cat.head()
                    2
                         3
                              4
                                   5
                                        6
                                             7
                                                  8
[29]:
          0
               1
                                                        9
                                                                16
                                                                     17
                                                                          18
                                                                               19
         0.0
             0.0
                   1.0
                        0.0
                             0.0
                                  1.0
                                                 0.0
                                       0.0
                                            1.0
                                                       0.0
                                                               0.0
                                                                    0.0
                                                                         0.0
         0.0
              1.0
                   0.0
                        0.0
                             1.0
                                  0.0
                                       0.0
                                            1.0
                                                 0.0
                                                       0.0
                                                               0.0
                                                                    0.0
                                                                         0.0 0.0
      2 0.0 0.0
                   1.0
                                                 0.0
                                                       0.0
                        0.0
                             1.0
                                  0.0
                                       0.0
                                            0.0
                                                               1.0
                                                                    0.0 0.0 0.0
      3 0.0
              1.0
                   0.0
                        0.0
                             1.0
                                  0.0
                                       0.0
                                            1.0
                                                 0.0
                                                       0.0
                                                               0.0
                                                                    0.0 0.0 0.0
      4 0.0
              0.0
                   1.0
                        0.0
                             1.0
                                  0.0
                                       0.0 0.0 0.0
                                                     1.0
                                                               1.0 0.0 0.0 0.0
          20
               21
                    22
                         23
                              24
                                   25
         0.0
             1.0
                   0.0
                        0.0
                             0.0
                                  1.0
             0.0
                        0.0
         1.0
                   0.0
                             1.0
      2 0.0 0.0
                   0.0
                        0.0
                             0.0 1.0
      3 1.0 0.0
                   0.0
                        0.0 1.0 0.0
      4 0.0 0.0 0.0
                        0.0 1.0 0.0
      [5 rows x 26 columns]
     3.0.9 Trabajando con variables numéricas
[32]: num_cols = [col for col in columns if col not in cat_cols if col != 'Attrition']
      x_num = employee_df[num_cols]
[33]: x_num.head()
[33]:
         Age
              DailyRate
                         DistanceFromHome
                                           Education EnvironmentSatisfaction
      0
          41
                   1102
                                        1
                                                                             2
          49
                    279
                                        8
                                                                             3
      1
                                                    1
      2
          37
                   1373
                                        2
                                                    2
                                                                             4
                                                    4
      3
          33
                   1392
                                        3
                                                                             4
          27
                    591
                                        2
                                                    1
                                                                             1
         HourlyRate JobInvolvement
                                     JobLevel
                                                JobSatisfaction
                                                                 MonthlyIncome
                                            2
      0
                 94
                                                                          5993
      1
                 61
                                  2
                                            2
                                                              2
                                                                          5130
      2
                 92
                                  2
                                            1
                                                              3
                                                                          2090 ...
      3
                 56
                                  3
                                             1
                                                              3
                                                                          2909
```

```
4
                  40
                                   3
                                                                2
                                              1
                                                                             3468 ...
         PerformanceRating RelationshipSatisfaction StockOptionLevel
      0
                          3
      1
                          4
                                                     4
                                                                         1
      2
                          3
                                                     2
                                                                         0
      3
                          3
                                                     3
                                                                         0
      4
                          3
                                                      4
                                                                         1
         TotalWorkingYears
                             TrainingTimesLastYear WorkLifeBalance
                                                                      YearsAtCompany
      0
                                                                                     6
      1
                         10
                                                  3
                                                                    3
                                                                                    10
                          7
                                                  3
                                                                    3
      2
                                                                                     0
                          8
                                                  3
      3
                                                                    3
                                                                                     8
      4
                          6
                                                  3
                                                                    3
                                                                                     2
         YearsInCurrentRole
                             YearsSinceLastPromotion YearsWithCurrManager
      0
                           7
                                                                             7
      1
                                                     1
                                                     0
      2
                           0
                                                                             0
      3
                           7
                                                     3
                                                                             0
      4
                           2
                                                     2
                                                                             2
      [5 rows x 24 columns]
     3.0.10 Uniendo las variables en un solo dataset
[34]: x_all = pd.concat([x_cat, x_num], axis=1)
      x_all.head()
[34]:
                           3
                                4
                                      5
                                                7
                                                                 PerformanceRating \
                 1
                                           6
                                                     8
                                                           9
                   1.0
                                              1.0
         0.0
              0.0
                         0.0
                              0.0
                                   1.0
                                                   0.0
                                         0.0
                                                         0.0
         0.0
             1.0 0.0
                              1.0
                                                                                  4
                         0.0
                                   0.0
                                         0.0
                                              1.0
                                                   0.0
                                                         0.0
                                                                                  3
              0.0
                   1.0
                         0.0
                              1.0
                                   0.0
                                         0.0
                                              0.0
                                                   0.0
         0.0
              1.0
                   0.0
                         0.0
                              1.0
                                   0.0
                                         0.0
                                              1.0
                                                   0.0
                                                         0.0
                                                                                  3
         0.0
              0.0
                   1.0 0.0 1.0 0.0
                                        0.0 0.0
                                                   0.0
                                                        1.0
                                                                                  3
         RelationshipSatisfaction StockOptionLevel
                                                       TotalWorkingYears
      0
                                                                        8
                                 4
                                                    1
                                                                        10
      1
                                 2
      2
                                                    0
                                                                        7
                                 3
                                                                         8
      3
      4
                                                                         6
         TrainingTimesLastYear WorkLifeBalance YearsAtCompany YearsInCurrentRole \
      0
                              0
                                                1
                                                                 6
                                                                                      4
                                                                10
                                                                                      7
      1
                              3
                                                3
```

```
      2
      3
      3
      0
      0

      3
      3
      3
      8
      7

      4
      3
      3
      2
      2
```

YearsSinceLastPromotion YearsWithCurrManager

0	0	5
1	1	7
2	0	0
3	3	0
4	2	2

[5 rows x 50 columns]

3.0.11 Min-Max Scaler

```
[35]: from sklearn.preprocessing import MinMaxScaler
```

```
[38]: scaler = MinMaxScaler()
    x_scaled = scaler.fit_transform(x_all)
    x_scaled
```

```
, 1.
[38]: array([[0.
                                                    , ..., 0.2222222, 0.
               0.29411765],
              [0.
                                                    , ..., 0.38888889, 0.06666667,
                                       , 0.
               0.41176471],
                                                    , ..., 0.
              [0.
                                                               , 0.
                                       , 1.
               0.
                         ],
              [0.
                          , 0.
                                                    , ..., 0.11111111, 0.
                                       , 1.
              0.17647059],
              [0.
                                                    , ..., 0.33333333, 0.
                                       , 0.
               0.47058824],
                         , 0.
                                       , 1.
                                                    , ..., 0.16666667, 0.06666667,
               0.11764706]])
```

3.0.12 Variable Predictora

```
[39]: y = employee_df['Attrition']
```

4 Entrenamiento y Evaluación del modelo

4.1 Logistic Regression

Dividir los datos entre el conjunto de entrenamiento y el conjunto de prueba

```
[43]: from sklearn.model_selection import train_test_split
```

```
[44]: x_train, x_test, y_train, y_test = train_test_split(x_scaled, y, test_size=0.25)
[45]: x_train.shape
[45]: (1102, 50)
[46]: x_test.shape
[46]: (368, 50)
     Entrenando el modelo
[47]: from sklearn.linear_model import LogisticRegression
      from sklearn.metrics import accuracy_score
[48]: model = LogisticRegression()
      model.fit(x_train, y_train)
      y_pred = model.predict(x_test)
     Evaluando el modelo
[49]: from sklearn.metrics import confusion_matrix, classification_report
[50]: print('Accuracy: {}'.format(100 * accuracy_score(y_pred, y_test)))
     Accuracy: 90.21739130434783
     El modelo tiene un 0.902 de precisión, lo que significa que el modelo puede predecir correctamente
     sobre el 90.2% si un empleado ha dejado la empresa o se ha quedado.
[58]: cm = confusion_matrix(y_test, y_pred)
      sns.heatmap(cm, annot=True)
      plt.show()
```


[52]: print(classification_report(y_test, y_pred))	[52]:	<pre>print(classification_report(y_test, y_</pre>	pred))
--	-------	---	--------

support	f1-score	recall	precision	
313 55	0.94 0.61	0.97 0.51	0.92 0.76	0 1
368	0.90			accuracy
368	0.78	0.74	0.84	macro avg
368	0.89	0.90	0.89	weighted avg

4.2 Random Forest

```
[53]: from sklearn.ensemble import RandomForestClassifier
```

```
[54]: model = RandomForestClassifier()
model.fit(x_train, y_train)

y_pred = model.predict(x_test)
```

```
[55]: print('Accuracy: {}'.format(100 * accuracy_score(y_pred, y_test)))
```

Accuracy: 86.95652173913044

El algoritmo de bosque aleatorio es una buena opción, tenemos una precisión del 86.95%, un poco más baja que la regresión logística.

```
[59]: cm = confusion_matrix(y_test, y_pred)
sns.heatmap(cm, annot=True)
plt.show()
```


[60]: print(classification_report(y_test, y_pred))

	precision	recall	f1-score	support
0	0.87	0.99	0.93	313
1	0.82	0.16	0.27	55
accuracy			0.87	368
macro avg	0.84	0.58	0.60	368
weighted avg	0.86	0.87	0.83	368

4.3 Deep Learning

```
[61]: import tensorflow as tf
```

Entrenando el modelo.

```
[65]: model = tf.keras.models.Sequential()
model.add(tf.keras.layers.Dense(units = 500, activation='relu',

input_shape=(50,)))
model.add(tf.keras.layers.Dense(units = 500, activation='relu'))
```

```
model.add(tf.keras.layers.Dense(units = 500, activation='relu'))
model.add(tf.keras.layers.Dense(units = 1, activation='sigmoid'))
model.compile(loss='binary_crossentropy', optimizer='adam',_
 →metrics=['accuracy'])
hist = model.fit(x_train, y_train, epochs=30, batch_size=64, verbose=2)
Epoch 1/30
18/18 - 2s - loss: 0.4394 - accuracy: 0.8330
Epoch 2/30
18/18 - 0s - loss: 0.3504 - accuracy: 0.8621
Epoch 3/30
18/18 - 0s - loss: 0.3037 - accuracy: 0.8866
Epoch 4/30
18/18 - 0s - loss: 0.2744 - accuracy: 0.8920
Epoch 5/30
18/18 - 0s - loss: 0.2443 - accuracy: 0.9047
Epoch 6/30
18/18 - 0s - loss: 0.2153 - accuracy: 0.9192
Epoch 7/30
18/18 - Os - loss: 0.1697 - accuracy: 0.9392
Epoch 8/30
18/18 - 0s - loss: 0.1379 - accuracy: 0.9546
Epoch 9/30
18/18 - 0s - loss: 0.1276 - accuracy: 0.9564
Epoch 10/30
18/18 - 0s - loss: 0.0776 - accuracy: 0.9728
Epoch 11/30
18/18 - 0s - loss: 0.0539 - accuracy: 0.9855
Epoch 12/30
18/18 - 0s - loss: 0.0482 - accuracy: 0.9828
Epoch 13/30
18/18 - 0s - loss: 0.0689 - accuracy: 0.9737
Epoch 14/30
18/18 - 0s - loss: 0.0317 - accuracy: 0.9873
Epoch 15/30
18/18 - 0s - loss: 0.0443 - accuracy: 0.9846
Epoch 16/30
18/18 - 0s - loss: 0.0367 - accuracy: 0.9873
Epoch 17/30
18/18 - 0s - loss: 0.0299 - accuracy: 0.9882
Epoch 18/30
18/18 - 0s - loss: 0.0151 - accuracy: 0.9973
Epoch 19/30
18/18 - 0s - loss: 0.0092 - accuracy: 0.9964
Epoch 20/30
```

```
18/18 - 0s - loss: 0.0029 - accuracy: 1.0000
Epoch 21/30
18/18 - 0s - loss: 0.0017 - accuracy: 1.0000
Epoch 22/30
18/18 - 0s - loss: 9.2786e-04 - accuracy: 1.0000
Epoch 23/30
18/18 - 0s - loss: 6.4863e-04 - accuracy: 1.0000
Epoch 24/30
18/18 - 0s - loss: 5.1840e-04 - accuracy: 1.0000
Epoch 25/30
18/18 - 0s - loss: 4.4289e-04 - accuracy: 1.0000
Epoch 26/30
18/18 - Os - loss: 3.9289e-04 - accuracy: 1.0000
Epoch 27/30
18/18 - Os - loss: 3.4043e-04 - accuracy: 1.0000
Epoch 28/30
18/18 - Os - loss: 3.0875e-04 - accuracy: 1.0000
Epoch 29/30
18/18 - 0s - loss: 2.7156e-04 - accuracy: 1.0000
Epoch 30/30
18/18 - 0s - loss: 2.4235e-04 - accuracy: 1.0000
```

Entendiendo la perdida y el accuracy en cada epoch del algoritmo.

```
[66]: plt.figure(figsize=(10,6))
   plt.plot(hist.history['loss'])
   plt.title('Loss on each epoch')
   plt.xlabel('Epoch')
   plt.ylabel('Loss')
   plt.legend(['Loss during the training'])
   plt.show()
```



```
[67]: plt.figure(figsize=(10,6))
   plt.plot(hist.history['accuracy'])
   plt.title('Accuracy on each epoch')
   plt.xlabel('Epoch')
   plt.ylabel('Accuracy')
   plt.legend(['Accuracy during the training'])
   plt.show()
```


La pérdida es de 0 aproximadamente en las 25 épocas y así sucesivamente, al mismo tiempo, la precisión es del 100%. No es exactamente un buen modelo, tal vez, el modelo está sobreajustando los datos, para verificar esto, es necesario evaluar el modelo.

Evaluando el modelo

```
[68]: y_pred = model.predict(x_test)
```

Debido a que los resultados que está obteniendo de la red neuronal es una probabilidad, es importante transformar esas probabilidades en 0 o 1, para poder evaluar el modelo correctamente.

```
[69]: y_pred = [0 if pred < 0.5 else 1 for pred in y_pred]
```

Accuracy: 84.78260869565217

Como vemos tenemos un 84.78% de acierto cuando las predicciones se realizan con nuevos datos.

```
[71]: cm = confusion_matrix(y_test, y_pred)
sns.heatmap(cm, annot=True)
plt.show()
```


[72]: print(classification_report(y_test, y_pred))

	precision	recall	f1-score	support
0	0.91	0.92	0.91	313
1	0.49	0.45	0.47	55
accuracy			0.85	368
macro avg	0.70	0.69	0.69	368
weighted avg	0.84	0.85	0.85	368

Conclusiones

- El mejor modelo es el de regresion logística, con un 90.2% de precisión al momento de evaluar los datos de testing.
- La red neuronal, al llegar a un número determinado de épocas, esta aprende los datos, al ser evaluada tenemos una baja precisión lo que significa que tenemos un algoritmo con overfitting.
- El modelo a implementar será el de regresión logística, esto para solucionar el problema. En un futuro, se puede mejorar la red neuronal para evitar el overfitting aplicando regularizaciones.