EE:450 – Computer Networks

Discussion Session #3

Some Terminology

- Bit (b)
 - Basic unit of information in computers
 - Binary : 0 or 1
- Byte (B)
 - 8 bits in one byte
- Bit Rate
 - Number of bits transmitted in a time unit
 - Typical unit is bits-per-second (bps)
 - Used to measure transmission speed in digital transmissions

Terminology continued...

- 1K Bytes = 1000 Bytes = 8000 bits
 - Similarly, 1M Bytes = 1,000,000 Bytes

However,

- 1 Kbps ≠ 2¹⁰ bps
 - 1 Kbps = 1000 bps
- Similarly, 1 Mbps = 10⁶ bps

In this course, the approximation 1KB ~ 1000 Bytes is always allowed

- Delay/Latency: Time it takes a message to travel from one end of a link to another
- It is a <u>very important</u> performance parameter
- End to End delay consists of several components
 - Transmission time
 - Propagation delay
 - Nodal Processing time
 - Queuing delay

Transmission time

- How long does it take to transmit a message (usually in KB) over a link with bit rate (usually in Mbps)?
- Steps:
 - 1. Convert message size to bits
 - 1KB = 1000 bytes
 - 1MB = 1,000,000 bytes
 - 1 Byte = 8 bits
 - Key is the difference between "B" and "b"

Transmission time ctd.

 2. To obtain the transmission time, divide the message size (in bits) by the bit rate a.k.a. bandwidth (in bps)

Transmission time = Message size/Bit rate

Transmission time example

Ex: How long does it take to transmit a 4KB file over a link with 1Mbps bandwidth?

Solution:

Step 1: Convert the file size to bits
 4 KB = 4 x 1000 Bytes = 4000 Bytes
 = 32000 bits

$1Mbps = 10^6 bps$

Step 2: Transmission Time = file size / bandwidth
 t_{trans} = 32000 bits / 10⁶ bps
 = 32ms

Propagation delay

 Propagation delay: The time it takes for a bit to traverse from one end of the link to the other end

$$t_{prop} = Link length (m) / V_{prop} (m/s)$$

Where V_{prop} is the speed with which the bit travels in the medium - same as the speed of light in the given medium

Propagation delay example

Ex: What is the propagation time of a message in a link of 2.5 Km long? The speed of light in the cable is 2.3 x 10⁸ m/s.

Solution:

```
t_{prop} = Link length/ V_{prop}
= 2500 m / 2.3 x 10<sup>8</sup> m/s
= 10.9 µs
```

Attention: t_{prop} is independent of message size and bit rate of the link.

Message Transfer Time

Message transfer time (t_{xfr}): Time taken from the point when the sender starts transmitting the message till the receiver receives the entire message. Also known as end – to – end delay

$$\mathbf{t_{xfr}} = \mathbf{t_{hs}} + \mathbf{t_{trans}} + \mathbf{t_{prop}} + \mathbf{t_{queuing/processing}}$$

Where:

- t_{hs} is the handshake time (time it takes for the initial connection establishment phase)
- t_{queuing/processing} is the queuing and processing delay in the network.
- We will assume the latter as zero most of the time.

Round Trip Time (RTT)

- Round Trip Time: The time to send a message from a sender to the receiver and receive a response back
- Depends on the message size, length of link, direction of propagation, propagation velocity (speed), node processing delay, network traffic load etc.
- We will assume RTT = 2 x t_{prop}
 - May not be true if the message and the response choose different links to traverse
 - The other delay components are ignored here.

- Bit Duration: duration (in time) of a pulse representing a bit – depends on bit rate (bandwidth) of the link.
- Bit Duration = 1 / Bandwidth
 - A bit is 1 μ s wide in a 1 Mbps channel $1/(10^6 \text{ bps}) = (1 \times 10^{-6})$ seconds per bit
 - A bit is 0.5 µs wide in a 2 Mbps channel

Bit Length(bit Width)

Bit length: The length occupied by a bit on a transmission link

```
Bit length = Bit durationx Prop. Speed= (sec) x (meters/sec)= (meters)
```


- Product of <u>Bandwidth</u> and <u>link latency</u> (propagation delay)
- Represents the maximum number of bits present in the link at given time
- Analogy
 - A Pipe: delay is the length
 - : bandwidth is the width
 - Bandwidth Delay product gives the volume

Example #1

Ex: A terminal sends a 1 MB file to another computer through a link of 10 Mbps. The distance between the two terminals is 2000 Km and the propagation speed in the cable is 2x10⁸ m/s.

- a) What is the RTT?
- b) What is the Bandwidth Delay Product? (Use RTT as the delay)
- c) What is the bit duration?
- d) Assume a handshake period of 2 RTT's and no processing/queuing delay, what is the total transfer time of the file?

Example contd...

a) RTT =
$$2 t_{prop}$$

 $t_{prop} = 2 \times 10^6 \text{ m} / 2 \times 10^8 \text{ m/s}$
= 10 msec.
Therefore, RTT = 20 msec

b) Bandwidth X Delay

- = 10 Mbps x 20 ms
- = 200000 bits
- \sim 25000 Bytes = <u>25 KB</u>

Example contd...

```
c) Bit duration= 1 / Bandwidth
= 1 / (10 Mbps)
= 10^{-7} sec./bit = 0.1\mus/bit
```

```
d) t_{xfr} = t_{hs} + t_{trans} + t_{prop}

t_{trans} = 1 \text{ MB / (10 Mbps)}

= 8 \text{ Mb / (10 Mbps)} = 800 \text{ msec}

t_{hs} = 2RTT = 40 \text{ msec}

t_{prop} = 10 \text{ msec}

t_{xfr} = 40 + 800 + 10 = 850 \text{ msec}
```

Example #2: Bandwith or Delay Sensitive?

- For each of the Following operations on a remote file server, discuss whether they are more likely to be delaysensitive or bandwidth-sensitive:
 - Open a file
 - Read the contents of a file
 - List the contents of a directory
 - Display the attributes of a file

Solution

- Delay-sensitive; the messages exchanged are short.
- Bandwidth-sensitive, particularly for large files. (Technically this does presume that the underlying protocol uses a large message size or window size; stop-and-wait transmission (as in Section 2.5 of the text) with a small message size would be delaysensitive.)
- Delay-sensitive; directories are typically of modest size.
- Delay-sensitive; a file's attributes are typically much smaller than the file itself (even on NT file systems).

Example #3

- Hosts A and B are each connected to a switch via 10 Mbps links as shown in the figure. The propagation delay on each link is 20µs. S is a store and forward device; it begins transmitting a received packet 35µs after it has finished receiving it. Calculate the total time required to transmit 10,000 bits from A to B
 - As a single packet
 - As 2 5000-bit packets sent one right after another

(a) Per-link transmission delay is 10^4 bits / 10^7 bits/sec = $1000 \mu s$. Total transfer time = $2 \times 1000 + 2 \times 20 + 35 = 2075 \mu s$.

Solution continued

(b) When sending as two packets, here is a table of times for various events:

T=0 start T=500 A finishes sending packet 1, starts packet 2

T=520 packet 1 finishes arriving at S

T=555 packet 1 departs for B

T=1000 A finishes sending packet 2

T=1055 packet 2 departs for B

T=1075 bit 1 of packet 2 arrives at B

T=1575 last bit of packet 2 arrives at B

Expressed algebraically, we now have a total of one switch delay and two link propagation delays; transmission delay is now 500 μ s: $3 \times 500 + 2 \times 20 + 1 \times 35 = 1575 \mu$ s.

Sending smaller packets is faster, here.