SUPPORT VECTOR MACHINES

Many slides courtesy of Marios Savvides

Linear classification problem

- Find a line that separates two classes
- Many solutions exist!
- Which one is the best?

Logistic Regression

 Minimizes sum of L2 distance (square error) between all points to the line

Also have probabilistic interpretation (assume noise is

Gaussian)

Support Vector Machines (SVM)

- Goal: improve generalization!
 - Care more about reducing classifier variance than reducing classifier bias
- How?
- Find the decision boundary that gives the most "slack" in classification
 - Don't care about easy cases, care about borderline cases!
 - Focus on the margin
 - Maximize the "margin of error" between two classes

Let x^+ denote a positive point with functional margin of 1 and x^- denote a negative point respectively.

This implies:

$$w^{T}x^{+} + b = +1$$

$$w^{T}x^{-} + b = -1$$

The functional margin of the resulting classifier m is

$$m = \left(\left\langle \frac{\mathbf{w}}{\|\mathbf{w}\|}, \mathbf{x}^+ \right\rangle - \left\langle \frac{\mathbf{w}}{\|\mathbf{w}\|}, \mathbf{x}^- \right\rangle\right)$$

$$= \frac{1}{\|\mathbf{w}\|} \left(\langle \mathbf{w}, \mathbf{x}^+ \rangle - \langle \mathbf{w}, \mathbf{x}^- \rangle \right)$$

$$= \frac{2}{\|\mathbf{w}\|}$$

< > denotes dot product

SVM objective function

- Minimize w^Tw
- Subject to

•
$$y_i(<\mathbf{w}, \mathbf{x}_i>+b) = y_i(\mathbf{w}^T\mathbf{x}_i+b) \ge 1$$

- y_i = {+1,-1} depending on the binary class
 - Positive class must fall on the positive side of the boundary
 - Negative class must fall on the negative size
- Convex optimization (No local minimas)
- Can be solved by Quadratic Programing (QP)

Notes on the Losses

- Linear regression optimizes for the L2 loss (squared loss)
 - Squared distance of data points to boundary (x-h(x))²
- SVM optimize for the hinge loss
 - $y_i(\mathbf{w}^T\mathbf{x}_i + b) \ge 1$
 - Or $0 \ge 1 y_i(\mathbf{w}^T \mathbf{x}_i + \mathbf{b})$
 - We don't want this inequality to be broken so our effective loss is
 - $\max(0, 1-y_i(\mathbf{w}^T\mathbf{x}_i + b))$

L2 vs hinge loss

Linearly non-separable

 What happens when you cannot separate the two classes with a linear boundary

Introducing an error term ε

 Aim for a hyperplane that tries to maximize the margin while minimize total error Σε;

Slack variables

- We call these error terms "Slack variables"
- Give SVM some slack so that the SVM can do its job.

SVM objective function

- Minimize w^Tw
- Subject to

•
$$y_i(<\mathbf{w}, \mathbf{x}_i>+b) = y_i(\mathbf{w}^T\mathbf{x}_i+b) \ge 1$$

- y_i = {+1,-1} depending on the binary class
 - Positive class must fall on the positive side of the boundary
 - Negative class must fall on the negative size
- Convex optimization (No local minimas)
- Can be solved by Quadratic Programing (QP)

SVM objective with slack

- Minimize $\mathbf{w}^{\mathsf{T}}\mathbf{w} + \Sigma \varepsilon_{\mathsf{i}} / C$
- Subject to

C is a weight parameter, how much we care about slack

$$\mathbf{w}^{\mathsf{T}}\mathbf{x}_{i} + b \ge 1 - \varepsilon_{i} \quad for + ve \quad class$$

$$\mathbf{w}^{\mathsf{T}}\mathbf{x}_{i} + b \le -1 + \varepsilon_{i} \quad for -ve \quad class$$

$$\varepsilon_{i} > 0 \quad \forall i$$

Notes about slacks

- Even if the problem has linear separability we might want some slack still.
 - Missed label points near the boundaries, noise in the data set etc.
 - In this case, we trade-off classifier bias for classifier variance.
 - A form of regularization!

Linear SVMs

Easy

Example SVMs

• ??????

Adding features (non-linear transformation)

- Remember we add non-linear features to linear regression to do non-linear fitting
- Consider as a non-linear transformation to higher dimensional space

Mapping functions

$$\phi: X \to F$$

A mapping function that maps to higher dimensional space

Kernel function

 We define the inner product in the mapped space as a kernel function K(x,y)

$$K(\mathbf{x},\mathbf{y}) = \langle \Phi(\mathbf{x}), \Phi(\mathbf{y}) \rangle$$

- Kernel of $x \rightarrow (x, x^2)$
 - $\cdot xy + x^2y^2$
- Kernel of x -> (x, x^2, x^3)
 - $xy + x^2y^2 + x^3y$

SVM and kernels

Instead of mapping input to high dimensions, we can use kernel to save computation in SVMs.

Example kernels:

Linear

Polynomial (degree 2,3,4...)

Radial basis functions (RBF)

Radial Basis Kernels

Most powerful general purpose kernel

$$K(\mathbf{x},\mathbf{x}') = \exp\!\left(-rac{\|\mathbf{x}-\mathbf{x}'\|^2}{2\sigma^2}
ight)$$

- Pretty much a Gaussian with mean x' and variance σ²
 - Variance is a parameter to select
- This kernel comes from a space that has infinite dimensions

RBF kernels

 Think of RBF as putting Gaussians onto the support vectors

SVM examples

RBF SVM and sci-kit learn

- Gamma is the inverse of the variance
- C is the inverse slack variable weight

Histogram intersection kernels

- Given input features which are histograms
 - Histogram of first data $H_0(y)$. Histogram of second data $H_1(z)$
- The Kernel that counts the intersection of the histograms is a valid kernel.
 - E.g. Sum of min($H_0(y)$, $H_1(z)$) for all histogram bins
- (One of the most used kernels in computer vision)

One class SVMs

- Sometimes it is easy to get positive examples but hard to acquire all possible negative examples
 - Email spam filter
 - We kind of know what a good email looks like. And we have lots of examples
 - Hard to model what a spam is. Spammer can change the format and evade detection.

- Solution: train on just the positive class
 - Model what that class looks like
 - Anything that deviates too much from it is considered negative examples

How?

- Separates the data from the "origin" (in mapped space)
- Maximize the distance between data points and the origin

Summary

- SVMs
 - Max margin
 - Slack
 - Kernel (inner product of higher space)
 - RBF kernels
 - One class SVM

