Escapy2.0 Engine Short Specification and User Guide

Генрих Тимур Домагальски

31.07.2017 Издаине 1

Содержание

1	Hau	ало ра	работы	3
2	Con 2.1 2.2	ntext Game Annot	$ au_{ ext{tation}}$	
3	Util	ls		6
	3.1	Escapy	pySimpleSerialized	7
	3.2	Escapy	${ m by Instance Loader}$	8
		3.2.1	Загрузка аттрибутов	8
		3.2.2	Интсанцирование	9
4	Des	ktop		10
5	Graphic 11			
	5.1		oy Camera	11
	5.2		er	
		5.2.1	Mapping	
		5.2.2	FBO	
		5.2.3	Program	
		5.2.4	Light	13
6	Gro	oup		15
	6.1	Contai	ainer	15
		6.1.1	DefaultGroupContainer	
		6.1.2	Сериализация	
	6.2	M2ap		

О движке

Escapy2 это игровой движок написанный на java с использованием библиотек Dagger1, libGDX и Gson. Поскольку libGDX является лишь низкоуровневой оберткой над lwjgl - движок дает полноту простора в использовании openGL, в свою очередь Dagger делает код более модульным и масштабируемым. На момент издания этого документа, движок состоит из пяти ключевых пакетов:

- 1. Context
- 2. Desktop
- 3. Graphic
- 4. Group
- 5. Utils

Каждому из вышеперечисленных пакетов посвящена отдельная глава, подробнее со структурой арі можно ознакомится через javadoc. На конец следует сразу заметить, что данный документ, так же как и сам движок расчитан на разработчиков неплохо знакомых с java и ООП, а так же основами openGL. Основной задачей документа не является скурпулезное описание API - за этим следует идти в javadoc, основная же цель документа - в первую очередь кратко обрисовать возможности движка, его принцип работы, а так же life-cycle и тп.

1 Начало работы

Вход производится похожим образом как в libGDX и lwjgl - в main с созданием инстанции LwjglApplication. Для этого создается объект LwjglApplicationConfiguration который загружается из json файла с помощью EscapyDesktopConfigLoader, о самих загрузчиках и механизме сериализации в движке более подробно потом.

```
"type": "EscapyConfiguration",
    "name": "MainConfiguration",

"resizable": false,
    "vSync": true,
    "fullscreen": false,
    "forceExit": true,
    "useGL30": true,

"scrWidth": 1920,
    "scrHeight": 1080,

"fps": 25
```

При создании LwjglApplication в качестве аргумента передается EscapyApplicationAdapter, который в свою очередь в качестве аргумента принимает класс наследующийся от EscapyGameContext и varargs модулей Dagger'a.

Подробнее о том как использовать модули Dagger'a можно прочитать на оффициальном сайте проекта (http://square.github.io/dagger/). EscapyGameContext имеет два конструктора, один из них как аргумент принимает инстанцию класса унаследованного от EscapyGameContextConfiguration - абстрактного класса предоставляющего конфигурацию проекта через методы которые можно перегрузить в случае необходимости.

2 Context

Самый главный и значимый пакет движка в плане его архитектуры. Его основными элементами являются два субпакета - game и annotation и класс EscapyGameContext. Последний наследуется от интерфейса EscapyScreenContext позволяя тем самым на работу с экранами (сценами).

2.1 Game

Основные эллементы данного субпакета это классы:

- EscapyGameContextConfiguration абстрактный класс делегирующий настройки
- EscapyScreenContext интерфейс управления экранами
- EscapyScreen интерфейс экрана (сцены).
- PropertyKeysStorage интерфейс позволяет сохранять пары ключ-объект.
- Escapy синглетон хранящий некоторые настройки.

EscapyScreen

Отдельного внимания заслуживает этот интерфейс, он в свою очередь наследуется от интерфейса Screen из библиотеки libGDX и содержит callback методы в которых должна находиться логика игры. Класс реализующий данный интерфейс, может (опционально) быть отмечен аннотацией @SreenName("..."), в таком случае этому экрану будет присвоенно имя с помощью которого к этому экрану можно будет обращаться через методы интерфейса EscapyScreenContext.

2.2 Annotation

Содержит аннотации такие как @SreenName("..."), а так же субпакет meta содержащий процессор аннотаций построенный по шаблону «Декоратор». Если интересуют подробности или возникло желание написать свою собственную имплементацию, то лучшем решением будет отсылка в javadoc или исходники.

$3 \mid \text{Utils}$

Пакет со вспомогательными классами и прочими полезными вещами. Особого внимания заслуживают:

- EscapyArray и EscapyAssociatedArray интерфейсы (и их реализации) наследующие Iterable с массивом внутри.
- Пакет *proxy* позволяет инстацировать объекты с listener'ами внутри.
- EscapyInstanceLoader позволяет инстанцировать объекты по имени с помощью аннотации @EscapyInstanced("...") или по имени метода.
- EscapySerialized и EscapySimpleSerialized интерфейс и абстрактный класс реализующий этот интерфейс, служат шаблоном для сериализуемы с помщью Gson'a классов.

3.1 EscapySimpleSerialized

Так выглядит этот шаблон в исходниках.

```
public abstract class EscapySimpleSerialized implements EscapySerialized {
    @SerializedName("type") @Expose public String type = "";
    @SerializedName("name") @Expose public String name = "";
    @SerializedName("attributes") @Expose public List<String> attributes = new LinkedList<>();

    @Override public Collection<String> getAttributes() {
        return attributes;
    }

    @Override public String getName() {
        return name;
    }

    @Override public String getType() {
        return type;
    }
}
```

A так выглядит его json.

```
{
    "name": "",
    "type": "",
    "attributes": ["", "", ""]
}
```

Поскольку все классы движка должны сериализовываться через этот шаблон, код выше является необходимым минумом, для того что бы загрузчики движка могли успешно выполнить свою работу.

3.2 EscapyInstanceLoader

Класс реализующий этот интерфейс позволяет на вызов инстанцирующих методов по имени либо самого метода, либо указанного в аннотации которым этот метод отмечен. Этот механизм очень удобен в использовании в загрузчиках движка и потому повсеместно там используется - для инстанцирования объектов по имени указаноому в json файле, либо для загрузки атрибутов для уже существующего объекта.

3.2.1 Загрузка аттрибутов

Данный пример показывает как производить загрузку аттрибутов для уже существуюшего объекта - сначала создается класс реализующий интерфейс, затем инстанция класса передается в загрузчкик.

И в загрузчкие, во время инициализации используется для создания нужного объекта по его имени взятом из json файла, посредством вызова метода:

T: objectToLoad = loadInstanceAttributes(T: objectToLoad, String[]: attributes);

3.2.2 Интсанцирование

Инастанцирование производится по потому же принципу что и загрузка аттрибутов, с той лишь разницей, что метод отмеченный аннотацией @EscapyInstanced("...") не имеет аргументов.

```
public class ExampleClassInstancer implements EscapyInstanceLoader<SomeExampleClass> {
    @EscapyInstanced("example_one")
    public SomeExampleClass randomMethodNameOne() {
        return new SomeExampleClass(name: "Say: 1");
    }
    @EscapyInstanced("example_two")
    public SomeExampleClass randomMethodNameTwo() {
        return new SomeExampleClass(name: "Say: 2");
    }
}
```

В свою очередь создание инстанции нужного нам объекта происходит через вызов метода: loadInstance(String: instanceName, Object[]: args); или просто:

loadInstance(String: instanceName);

4 Desktop

На данный момент, этот пакет служит только для загрузки начальной конфигурации из json файла в desktop-версии приложений. Для этого используются такие интерфейсы (их реализации) как **DesktopConfigLoader и DesktopConfigLoaderBuilder**. Очевидный пример использования этого пакета продемонстрирован в самом начале документа.

Builder создает нужную нам инстанцию загрузчика, после чего остается вызвать на этой инстанции метод «loadDesktopConfig();» который заинстанцирует нужный нам объект и устновит в нем значения полей считанные из json файла.

5 Graphic

Пакет Graphic состоит из трех субпакетов:

- Camera
- Render
- Screen

5.1 EscapyCamera

Класс из пакета *Camera* инкапсулирующий *Ortographic Camera* с дополнительным функционалом - простота и удобство, рекомендуется к использованию.

5.2 Render

Ключевой субпакет, на данный момент состоит из субпакетов:

- Fbo
- Light
- Mapping
- Program

5.2.1 Mapping

Данный пакет включает в себя 4 интерфейса, три из них содержат методы вызываемые во время отрисовки:

- *GraphicRenderer* методы этого интерфейса вызываются во время отрисовки цветных (обычных) текстур объектов.
- *NormalMapRenderer* методы вызываются во время отрисовки текстур карты нормалей.
- ullet LightMapRenderer методы вызываются во время отрисовки текстур карты света.
- EscapyRenderable этот интерфейс наследуется от трех выше перечисленных.

5.2.2 FBO

FBO - иначе Frame Buffer Object, в движке представлен интерфейсом EscapyFBO и его стандартной реализацией EscapyFrameBuffer которая инкапсулирует FrameBuffer из библиотеки libGDX, но с дополнительным полезным и удобным функционалом. О том как работают FrameBuffer'ы следует ознакомится самостоятельно через материалы посвященные openGL.

5.2.3 Program

Состоит из двух субпакетов gl10 и gl20. Первый использует нативные вызовы openGL без шейдеров в процессе рендеринга, второй в свою очередь нацелен на использование именно шейдеров.

GL10

Функционалом gl10 пользуются такие классы как например:

- EscapyGLBlendRenderer интерфейс ответственный за блендинг.
- NativeSeparateBlendRenderer нативная реализация интерфейса выше
- LightMask маска, используется для затемнения активной области экрана.

GL20

Пакет направленный на работу с шейдерами удобным способом. Работа осуществляется посредством двух основных интерфейсов EscapyShader и UniformsProvider, а так же интерфейсов от них налседующихся как EscapySingleSourceShader и EscapyMultiSourceShader. Работа с юниформами (их загрузка и тп) осуществляется посредством вспомогательного класса StandardUniforms и Uniform < T > внутри него.

```
private void initBlender(ShaderFile shaderFile) {

StandardUniforms uniforms = uniformBlender.getStandardUniforms();
uniforms.addFloatUniform( name: "u_coeff");
uniforms.addFloatUniform( name: "u_angCorrect");
uniforms.addFloatArrayUniform( name: "u_color");
uniforms.addFloatArrayUniform( name: "u_fieldSize");
uniforms.addFloatArrayUniform( name: "u_umbra");
uniforms.addFloatArrayUniform( name: "u_radius");
uniforms.addFloatArrayUniform( name: "u_angles");
uniformBlender.setSourcesNames("targetMap", "u_lightMap");
uniformBlender.loadProgram(shaderFile);
}
```

Выше изображен пример использования класса Standard Uniforms.

В целом для работы с шейдерами достаточно двух стандартных реализаций интерфейсов EscapyUniformSingle и EscapyUniformBlender. Их реализации предоставленные движком это SingleRendererExtended и BlendRendererExtended соотвественно. Достаточно в аргументах конструктора этих классов указать файлы .vert и .frag шейдеров, а с помощью метода getStandardUniforms() установить значения для юинформов. Хорошим примером может послужить исходный код класса EscapyLightSource.

5.2.4 Light

Данный пакет как можно догадаться из названия служит работе со светом. Субпакет source отвечает за создание источников света с помощью классов EscapyLightSource и LightSource (рекомендуется использовать второй). Субпакет processor оветчает за правильную отрисовку источников света посредством интерфейса EscapyLightProcessor и его двух стандартных реализаций EscapyFlatLight и EscapyVolumeLight их ключевое отличие заключается в использовании карты нормалей, в первом случае оная не используется и свет получается плоским как и следует из описания.

Пример с объемным светом.

Пример с плоским светом.

6 Group

Данный пакет предназначен для упрощения работы с игровыми объектами на всех этапах их жизни посредством конфигурационных файлов (в стандартной реализации движка это json). На данный момент этот пакет представлен тремя субпакетами:

- ullet map отвественный за игровые объекты
- render ответсвенный за процесс отрисовки объектов
- container отвественный за делегирование первых двух

6.1 Container

Представлен тремя основными интерфейсами, а так же их реализациями по умолчанию посредством которых осуществляется работа. Интерфейсы вместе с имплементриующими классами:

- ullet (I) EscapyGroupContainer: (C) DefaultGroupContainer
- (I) EscapyLocationContainer: (C) DefaultLocationContainer
- (I) EscapyRendererContainer: (C) DefaultRendererContainer

Классы **DefaultLocationContainer** и **DefaultRendererContainer** имеют конструкторы с модификатором доступа **protected** потому их невозможно заинстанцировать на прямую, вместо этого надо использовать класс **DefaultGroupContainer**.

6.1.1 DefaultGroupContainer

Основной класс контейнера объектов реализующий интерфейс EscapyGroupContainer от которого содержит метод $boolean\ initialize();$, который следует самостоятельно и однократно за весь жизненный цикл приложения, вызвать во время инициализации оного.

```
@Override
public void show() {
    sprite = new Sprite(new Texture(logoUrl));
    camera.setCameraPosition(x: sprite.getWidth() * .5f, y: sprite.getHeight() * .5f, absolute: true);
    new Thread(() -> initialized.set(groupContainer.initialize())).start();
}
```

Пример вызова метода в новом потоке во время стартового экрана приложения.

6.1.2 Сериализация

В случае с классом *DefaultGroupContainer* для сериализации используется json файл который имеет следующую структуру:

В массиве *locations* следует указать имя и путь к файлу из которой должна загружаться локация, в массиве *renderers* так же следует указать путь файла из которого будет загружатся *renderer*, однако имя должно содержать название локации и имя сублокации для *renderer'a* разделенное двоеточием.

В конструкторе DefaultGroupContainer следует указать путь на json файл объекта, а так же загрузчики DefaultLocationLoader и DefaultRendererLoader

6.2 Map