

11-324/11-624/11-724 Human Language for Al

Finite State Phonology

David R. Mortensen September 26, 2022

Language Technologies Institute Carnegie Mellon University

Learning Objectives

During this class period, each student will

- · Learn what a finite-state transducer is
- Learn how FSTs apply to phonology

Morphophonological Analysis: An

Example Problem

Catalan Example I

MASC SG	FEM SG		MASC SG	FEM SG	
əkel ^j	əkel ^j ə	'that'	mal	malə	'bad'
siβil	siβilə	'civil'	əskerp	əskerpə	'shy'
∫op	∫opə	'drenched'	sεk	sεkə	'dry'
əspɛs	əspɛsə	'thick'	gros	grosə	'large'
ba∫	ba∫ə	'short'	ko∫	ko∫ə	'lame'
tot	totə	ʻall'	brut	brutə	'dirty'
pok	pokə	'little'	prəsis	prəsizə	'precise'
frənses	frənsezə	'French'	gris	grizə	'grey'
kəzat	kəzaðə	'married'	bwit	bwiðə	'empty'
rɔt∫	rɔʒə	'red'	botJ	boʒə	'crazy'
orp	orβə	'blind'	l ^j ark	l ^j aryə	'long'
sek	seyə	'blind'	fə∫uk	fə∫uγə	'heavy'
grok	groyə	'yellow'	puruk	puruɣə	'fearful'
kandit	kandiðə	'candid'	fret	freðə	'cold'

Catalan Example II

MASC SG	FEM SG		MASC SG	FEM SG	
səyu	səɣurə	'sure'	du	durə	'hard'
səyəðo	səyəðorə	'reaper'	kla	klarə	'clear'
nu	nuə	'nude'	kru	kruə	'raw'
flɔɲd͡ʒu	flɔɲd͡ʒə	'soft'	dropu	dropə	'lazy'
əgzaktə	əgzaktə	'exact'	əlβi	əlβinə	'albino'
sa	sanə	'healthy'	pla	planə	'level'
bo	bonə	'good'	sərɛ	sərenə	'calm'
suβlim	suβlimə	'sublime'	al	altə	'tall'
for	fortə	'strong'	kur	kurtə	'short'
sor	sorðə	'deaf'	ber	berðə	'green'
san	santə	'saint'	kəlεn	kəlεntə	'hot'
prufun	prufundə	'deep'	fəkun	fəkundə	'fertile'
dəsen	dəsentə	'decent'	dulen	dulentə	'bad'
əstuðian	əstuðiantə	'student'	blaŋ	blaŋkə	'white'

Example Catalan Grammar

Final Devoicing

$$\begin{split} z &\rightarrow s/_\# \\ b &\rightarrow p/_\# \\ d &\rightarrow t/_\# \\ g &\rightarrow k/_\# \\ d \\ \vec{3} &\rightarrow t \\ \vec{J}/_\# \end{split}$$

Spirantization

$$b \to \beta / \left\{ \begin{array}{c} V \\ I \\ r \end{array} \right\} - V$$

$$d \to \delta / \left\{ \begin{array}{c} V \\ I \\ r \end{array} \right\} - V$$

$$g \to \gamma / \left\{ \begin{array}{c} V \\ I \\ r \end{array} \right\} - V$$

$$d\tilde{\beta} \to 3$$

Hiatus Resolution

$$\lor \rightarrow \emptyset$$
 \lor

n-Apocope

$$\mathsf{n} \to \emptyset \, _\#$$

Plosive Apocope

$$\left\{\begin{array}{c} p \\ t \\ k \end{array}\right\} \to \emptyset \ _\#$$

D-Deletion

$$\mathsf{D}\to\emptyset$$

Finite-State Transducers

Formal definition

Formally, an FST is a 6-tuple $(Q, \Sigma, \Gamma, I, F, \delta)$ such that:

- · Q is a finite set of states;
- Σ is a finite set of symbols, the *input alphabet*;
- \cdot Γ is a finite set of symbols, the *output alphabet*;
- *I* is a subset of *Q*, the set of *initial states*;
- F is a subset of Q, the set of final states or acceptor states;
- $\delta \subseteq Q \times (\Sigma \cup \{\epsilon\}) \times (\Gamma \cup \{\epsilon\}) \times Q$ (where ϵ is the empty string), the transition relation.

A Simple FST

Operations

FSTs are closed under:

- Inversion
- Composition
- Concatenation
- Union
- · Kleene Closure
- ...

FSTs are not closed under:

- Intersection
- Determination
- ...

Inversion

- · Inversion reverses the "direction" of a relation.
- When inverted, a transducer that mapped "kiss^s" to "kisses" would map "kisses" to "kiss^s"
- Inversion is algorithmically simple: you just search through the graph and replace each label a:b with b:a
- Inversion is useful because it allows you to write a transducer that maps from and underlying form to a surface form and invert it to get a transducer that maps from surface for to underlying form (no extra work required).
- Inversion can result in transducers that are NON-DETERMINISTIC

Composition

- Composition is the equivalent of joining two transducers together "vertically" so that the output of the first is the input to the second.
- Take two FSTs:
 - One that maps "cat" \rightarrow "dog"
 - One that maps "dog" \rightarrow "pig"
- The composition of the first and the second would be a transducer that maps "cat"
 → "pig"
- The algorithm for composition is quite complicated

Concatenation

- Concatenation is the equivalent of joining two transducers together "horizontally" so that the transducers apply in sequence.
- Take two FSTs:
 - One that maps "cat" \rightarrow "dog"
 - One that maps "dog" \rightarrow "pig"
- The concatenation of these two transducers would be one that maps "catdog" to "dogpig"

Determination

Determination takes a transducer that is non-deterministic (has more than one transition from the same state with the same input label) and yields an equivalent deterministic transducer (one that captures the same relation). This is only possible for some transducers.

FSTs and Phonology

FSTs and phonological rules

In the 1970s, C. Douglas Johnson discovered that most phonological rules that had been proposed to analysis languages since the advent of Generative Phonology (phonology with the kind of string rewrite rules we have learned) were equivalent to a subset of Finite-State Transducers.

- The exceptions were rules that feed themselves or bleed themselves.
- [+syllabic] \rightarrow [+high] / [+high] C_0 _
- These were used to model "tone spreading" and "vowel harmony"—processes that "spread" a feature out across a word.
- By the late 1970s, phonologists were thinking of other ways to address these phenomena.

Today it is argued, by many computational phonologists, that all of phonology is in fact SUBREGULAR, that is, a principled subset of possible FSTs can account for all of phonology.

Schwa Epenthesis FST

Three FSTs for Catalan

- · What do each of these FSTs do?
- To what rules do they correspond?
- Assume, also, an FST that converts voiced plosives and affricates to fricatives in a specific set of contexts (between vowels+/r/ and vowels) as in /orbə/ → [orβə] and /sega/ → [seɣə]. How would you draw it?
- How would you combine these FSTs to model the data from the example?

Spirantization FST

 Σ represents the input alphabet. V represents the set of vowels. What problem do you see in this FST?

Questions?