Záróvizsga tételsor 12. Logika és számításelmélet

Ancsin Ádám

Logika és számításelmélet

Ítéletkalkulus és elsőrendű predikátumkalkulus: szintaxis, szemantika, ekvivalens átalakítások, a szemantikus következmény fogalma, rezolúció. – A kiszámíthatóság fogalma és a Church-Turing tézis. A Turing-gép. Rekurzív és rekurzívan felsorolható nyelvek. Eldönthetetlen problémák. Nevezetes idő- és tárbonyolultsági osztályok: P, NP, PSPACE. NP-teljes problémák.

1 Logika

1.1 Alapfogalmak

A logika tárgya az emberi gondolkodási folyamat vizsgálata és helyes gondolkodási formák keresése, illetve létrehozása.

Fogalmak:

1. Állítás: Olyan kijelentés, melynek logikai értéke (igaz volta) eldönthető, tetszőleges kontextusban igaz vagy hamis. Azt mondjuk, hogy egy állítás igaz, ha információtartalma megfelel a valóságnak (a tényeknek), és hamis az ellenkező esetben.

A mindennapi beszédben használt kijelentő mondatok legtöbbször nem állítások, mivel a mondat tartalmába a kontextus is beleszámít: időpont, környezet állapota, általános műveltség bizonyos szintje, stb. (pl. nem állítás az, hogy "ma reggel 8-kor sütött a nap", de állítás pl. az, hogy "minden páros szám osztható 2-vel").

- 2. **Igazságérték**: Az igazságértékek halmaza $\mathbb{L} = \{igaz, hamis\}$.
- 3. **Gondolkodási forma**: Gondolkodási forma alatt egy olyan (F, A) párt értünk, ahol A állítás, $F = \{A_1, A_2, ..., A_n\}$ pedig állítások egy halmaza.

A gondolkodásforma helyes, ha minden esetben, amikor F minden állítása igaz, akkor A is igaz.

1.2 Ítéletkalkulus

1.2.1 Az ítéletlogika szintaxisa

Az ítéletlogika ábécéje

Az ítéletlogika ábécéje $V_0 = V_v \cup \{(,)\} \cup \{\neg, \land, \lor, \supset\}$, ahol V_v az ítéletváltozók halmaza. Tehát V_0 az ítéletváltozókat, a zárójeleket, és a logikai műveletek jeleit tartalmazza.

Az ítéletlogika nyelve

Az ítéletlogika nyelve (\mathcal{L}_0) ítéletlogikai formulákból áll, amelyek a következőképpen állnak elő:

- 1. Minden ítéletváltozó ítéletlogikai formula. Ezek az úgynevezett prímformulák (vagy atomi formulák).
- 2. Ha A ítéletlogikai formula, akkor $\neg A$ is az.
- 3. Ha A és B ítéletlogikai formulák, akkor $(A \wedge B)$, $(A \vee B)$ és $(A \supset B)$ is ítéletlogikai formulák.
- 4. Minden ítéletlogikai formula az 1-3. szabályok véges sokszori alkalmazásával áll elő.

Literál: Ha X ítéletváltozó, akkor az X és $\neg X$ formulák literálok, amelyek alapja X.

Közvetlen részformula:

- 1. Prímformulának nincs közvetlen részformulája.
- 2. $\neg A$ közvetlen részformulája A.
- 3. $A \circ B$ (o a \land, \lor, \supset binér összekötőjelek egyike) közvetlen részformulái A (bal oldali) és B (jobb oldali).

Részformula: Legyen $A \in \mathcal{L}_0$ egy ítéletlogikai formula. Ekkor A részformuláinak halmaza a legszűkebb olyan halmaz, melynek

- 1. eleme az A, és
- 2. ha a C formula eleme, akkor C közvetlen részformulái is elemei.

Szerkezeti fa: Egy C formula szerkezeti fája egy olyan véges rendezett fa, melynek csúcsai formulák,

- 1. gyökere C,
- 2. a $\neg A$ csúcsának pontosan egy gyermeke van, az A,
- 3. a $A \circ B$ csúcsának pontosan két gyermeke van, rendre az A és B formulák,
- 4. levelei prímformulák.

ábra 1: Példa szerkezeti fára.

Logikai összetettség: Egy formula logikai összetettsége a benne található logikai összekötőjelek száma.

Művelet hatásköre: Egy művelet hatásköre a formula részformulái közül az a legkisebb logikai összetettségű részformula, melyben az adott művelet előfordul.

Fő logikai összekötőjel: Egy formula fő logikai összekötőjele az az összekötőjel, amelynek hatásköre maga a formula.

Precedencia: A logikai összekötőjelek precedenciája csökkenő sorrendben a következő: $\neg, \land, \lor, \supset$.

A definíciók alapján egyértelmű, hogy egy teljesen zárójelezett formulában mi a logikai összekötőjelek hatásköre és mi a fő logikai összekötőjel. Most megmutatjuk, hogy egy formulában milyen esetekben és mely részformulákat határoló zárójelek hagyhatóak el úgy, hogy a logikai összekötőjelek hatásköre ne változzon. A részformulák közül a prímformuláknak és a negációs formuláknak nincs külső zárójelpárja,

ezért csak az $(A \circ B)$ alakú részformulákról kell eldöntenünk, hogy írható-e helyettük $A \circ B$. A zárójelek elhagyását mindig a formula külső zárójelpárjának (ha van ilyen) elhagyásával kezdjük. Majd ha egy részformulában már megvizsgáltuk a külső zárójelelhagyás kérdését, utána ezen részformula közvetlen részformuláinak külső zárójeleivel foglalkozunk. Két eset lehetséges:

- 1. A részformula egy negációs formula, melyben az $(A \circ B)$ alakú közvetlen részformula külső zárójelei nem hagyhatók el.
- 2. A részformula egy $(A \bullet B)$ vagy $A \bullet B$ alakú formula, melynek A és B közvetlen részformuláiban kell dönteni a külső zárójelek sorsáról. Ha az A formula $A_1 \circ A_2$ alakú, akkor A külső zárójelpárja akkor hagyható el, ha \circ nagyobb precedenciájú, mint \bullet . Ha a B formula $B_1 \circ B_2$ alakú, akkor B külső zárójelpárja akkor hagyható el, ha \circ nagyobb vagy egyenlő precedenciájú, mint \bullet .
- 3. Ha egy $(A \wedge B)$ vagy $A \wedge B$ alakú formula valamely közvetlen részformulája szintén konjunkció, illetve egy $(A \vee B)$ vagy $A \vee B$ alakú formula valamely közvetlen részformulája szintén diszjunkció, akkor az ilyen részformulákból a külső zárójelpár elhagyható.

Formulaláncok: A zárójelek elhagyására vonatkozó megállapodásokat figyelembe véve úgynevezett konjunkciós, diszjunkciós, illetve implikációs formulaláncokat is nyerhetünk. Ezek alakja $A_1 \wedge ... \wedge A_n$, $A_1 \vee ... \vee A_n$, illetve $A_1 \supset ... \supset A_n$ Ezeknek a láncformuláknak a fő logikai összekötőjelét a következő zárójelezési megállapodással fogjuk meghatározni: $(A_1 \wedge (A_2 \wedge ... \wedge (A_{n-1} \wedge A_n)...))$, $(A_1 \vee (A_2 \vee ... \vee (A_{n-1} \vee A_n)...))$, illetve $(A_1 \supset (A_2 \supset ... \supset (A_{n-1} \supset A_n)...))$

1.2.2 Az ítéletlogika szemantikája

Interpretáció: \mathcal{L}_0 interpretációján egy $\mathcal{I}: V_v \to \mathbb{L}$ függvényt értünk, mely minden ítéletváltozóhoz egyértelműen hozzárendel egy igazságértéket.

Boole-értékelés: \mathcal{L}_0 -beli formulák \mathcal{I} interpretációbeli Boole-értékelése a következő $\mathcal{B}_{\mathcal{I}}: \mathcal{L}_0 \to \mathbb{L}$ függvény:

- 1. ha A prímformula, akkor $\mathcal{B}_{\mathcal{I}}(A) = \mathcal{I}(A)$,
- 2. $\mathcal{B}_{\mathcal{I}}(\neg A)$ legyen $\neg \mathcal{B}_{\mathcal{I}}(A)$,
- 3. $\mathcal{B}_{\mathcal{I}}(A \wedge B)$ legyen $\mathcal{B}_{\mathcal{I}}(A) \wedge \mathcal{B}_{\mathcal{I}}(B)$,
- 4. $\mathcal{B}_{\mathcal{T}}(A \vee B)$ legven $\mathcal{B}_{\mathcal{T}}(A) \vee \mathcal{B}_{\mathcal{T}}(B)$,
- 5. $\mathcal{B}_{\mathcal{I}}(A \supset B)$ legyen $\mathcal{B}_{\mathcal{I}}(A) \supset \mathcal{B}_{\mathcal{I}}(B)$,

Bázis: A formula ítéletváltozóinak egy rögzített sorrendje.

Szemantikus fa: Egy formula különböző interpretációit szemantikus fa segítségével szemléltethetjük. A szemantikus fa egy olyan bináris fa, amelynek i. szintje (i >= 1) a bázis i. ítéletváltozójához tartozik, és minden csúcsából két él indul, az egyik a szinthez rendelt ítéletváltozóval, a másik annak negáltjával címkézve. Az X ítéletváltozó esetén az X címke jelentse azt, hogy az X igaz az adott interpretációban, a $\neg X$ címke pedig azt, hogy hamis az adott interpretációban. A szemantikus fa minden ága egy-egy lehetséges interpretációt reprezentál. Egy n változós formula esetén minden ág n hosszú, és a fának 2^n ága van és az összes lehetséges interpretációt tartalmazza.

ábra 2: Az X,Y,Z ítéletváltozókat tartalmazó formula szemantikus fája.

Igazságtábla: Egy n változós formula igazságtáblája egy n+1 oszlopból és 2^n sorból álló táblázat. A táblázat fejlécében az i. oszlophoz (1 <= i <= n) a formula bázisának i. ítéletváltozója, az n+1. oszlophoz maga a formula van hozzárendelve. Az első n oszlopban az egyes sorokhoz megadjuk rendre a formula különböző interpretációit, majd a formula oszlopába minden sorba beírjuk a formula - a sorhoz tartozó interpretációbeli Boole-értékeléssel kapott - igazságértékét.

A logikai műveletek igazságtáblája:

X	Y	$ \neg X$	$X \wedge Y$	$X \vee Y$	$X\supset Y$
	i		i	i	i
i	h i	h	h	i	h
h	i	i	h	i	i
h	h	i	h	h	i

Igazhalmaz, **hamishalmaz**: Egy A formula igazhalmaza (A^i) azon interpretációk halmaza, melyen a formula igazságértékelése igaz. Az A formula hamishalmaza (A^h) pedig azon interpretációk halmaza, melyekre a formula igazságértékelése hamis.

Igazságértékelés függvény: Olyan függvény, amely minden formulához hozzárendeli az igazhalmazát (φA^i) vagy a hamishalmazát (φA^h) .

Legyen A egy tetszőleges ítéletlogikai formula. Határozzuk meg A-hoz az interpretációira vonatkozó φA^i , illetve φA^h feltételeket a következőképpen:

- 1. Ha A prímformula, a φA^i feltételt pontosan azok az \mathcal{I} interpretációk elégítik ki, melyekre $\mathcal{I}(A) = igaz$, a φA^h feltételt pedig pontosan azok melyekre $\mathcal{I}(A) = hamis$.
- 2. A $\varphi(\neg A)^i$ feltételek pontosan akkor teljesülnek, ha teljesülnek a φA^h feltételek.
- 3. A $\varphi(A \wedge B)^i$ feltételek pontosan akkor teljesülnek, ha a φA^i és a φB^i feltételek egyszerre teljesülnek.
- 4. A $\varphi(A \vee B)^i$ feltételek pontosan akkor teljesülnek, ha a φA^i vagy a φB^i feltételek teljesülnek.
- 5. A $\varphi(A \supset B)^i$ feltételek pontosan akkor teljesülnek, ha a φA^h vagy a φB^i feltételek teljesülnek.

Tétel: Tetszőleges A ítéletlogikai formula esetén a φA^i feltételeket pontosan az A^i -beli interpretációk teljesítik.

Igazságértékelés-fa: Egy A formula φA^i , illetve φA^h feltételeket kielégítő interpretációit az igazságértékelés-fa segítségével szemléltethetjük. Az igazságértékelés-fát a formula szerkezeti fájának felhasználásával állítjuk elő. A gyökérhez hozzárendeljük, hogy A melyik igazságértékre való igazságértékelés-feltételeit keressük, majd a gyökér alá A közvetlen részformulái kerülnek a megfelelő feltétel-előírással, az alábbiak szerint:

ábra 3: Igazságértékelés-fa feltétel-előírásai.

Ezután a gyökérhez a
 \checkmark (feldolgozott) jelet rendeljük. Az eljárást rekurzívan folytatjuk, amíg egy ágon a fel nem dolgozott formulák

- (a) mind ítéletváltozók nem lesznek, vagy
- (b) ugyanarra a formulára egymásnak ellentmondó előírás nem jelenik meg.

Az (a) esetben az ágon előforduló ítéletváltozóknak az ágon rögzített igazságértékeit tartalmazó nesek mind elemei φA^i gyökér esetén a formula igazhalmazának, φA^h gyökér esetén a formula hamishalmazának.

A (b) esetben nem áll elő ilyen igazságérték n-es.

ábra 4: Az $(Y \vee Z) \wedge (Z \supset \neg X)$ formula igazságértékelés-fája.

A fenti példában a formula igazhalmaza az igazságértékelés-fa alapján: $\{(i,i,h),(h,i,i),(h,i,h),(h,h,i)\}$

Kiterjesztett igazságtábla: Egy igazságtáblában a formula igazságértéke kiszámításának megkönnyítésére vezették be a kiterjesztett igazságtáblát. A kiterjesztett igazságtáblában az ítéletváltozókhoz és a formulához rendelt oszlopokon kívül rendre a formula részformuláihoz tartozó oszlopok is megjelennek. Tulajdonképpen a szerkezeti fában megjelenő részformulák vannak felsorolva.

X	Y	Z	$Y \vee Z$	$\neg X$	$Z\supset \neg X$	$(Y \lor Z) \land (Z \supset \neg X)$
i	i	i	i	h	h	h
i	i	h	i	h	i	i
i	h	i	i	h	h	h
i	h	h	h	h	i	h
h	i	i	i	i	i	i
h	i	h	i	i	i	i
h	h	i	i	i	i	i
h	h	h	h	i	i	h

ábra 5: Az $(Y \vee Z) \wedge (Z \supset \neg X)$ formula kiterjesztett igazságtáblája.

Formula kielégíthetősége, modellje: Egy A ítéletlogikai formula kielégíthető, ha létezik olyan \mathcal{I} interpretáció, melyre $\mathcal{I} \models_0 A$, azaz a $\mathcal{B}_{\mathcal{I}}$ Boole-értékelés A-hoz igaz értéket rendel. Egy ilyen interpretációt A modelljének nevezünk. Ha A-nak nincs modellje, akkor azt mondjuk, hogy kielégíthetetlen.

Ha A igazságtáblájában van olyan sor, amelyben a formula oszlopában igaz érték szerepel, akkor a formula kielégíthető, különben kielégíthetetlen. Ugyanígy, ha φA^i nem üres, akkor kielégíthető, különben kielégíthetetlen.

Ítéletlogikai törvény, tautológia: Egy A ítéletlogikai formula *ítéletlogikai törvény* vagy másképpen tautológia, ha \mathcal{L}_0 minden interpretációja modellje A-nak. (jelölés: $\models_0 A$)

Eldöntésprobléma: Eldöntésproblémának nevezzük a következő feladatokat:

- 1. Döntsük el tetszőleges formuláról, hogy tautológia-e!
- 2. Döntsük el tetszőleges formuláról, hogy kielégíthetetlen-e!

Tautologikusan ekvivalens formulák: Az A és B ítéletlogikai formulák tautologikusan ekvivalensek (jelölés: $A \sim_0 B$), ha \mathcal{L}_0 minden \mathcal{I} interpretációjában $\mathcal{B}_{\mathcal{I}}(A) = \mathcal{B}_{\mathcal{I}}(B)$.

Formulahalmaz kielégíthetősége, modellje: \mathcal{L}_0 formulainak egy tetszőleges Γ halmaza kielégíthető, ha van \mathcal{L}_0 -nak olyan \mathcal{I} interpretációja, melyre: $\forall A \in \Gamma : \mathcal{I} \models_0 A$. Egy ilyen \mathcal{I} interpretáció modellje Γ-nak. Ha Γ-nak nincs modellje, akkor Γ kielégíthetetlen.

Lemma: Egy $\{A_1, A_2, ..., A_n\}$ formulahalmaznak pontosan azok az \mathcal{I} interpretációk a modelljei, amelyek a $A_1 \wedge A_2 \wedge ... \wedge A_n$ formulának. Következésképpen $\{A_1, A_2, ..., A_n\}$ pontosan akkor kielégíthetetlen, ha az $A_1 \wedge A_2 \wedge ... \wedge A_n$ formula kielégíthetlen.

Szemantikus következmény: Legyen Γ ítéletlogikai formulák tetszőleges halmaza, B egy tetszőleges formula. Azt mondjuk, hogy a B formula tautologikus következménye a Γ formulahalmaznak (jelölés: $\Gamma \models_0 B$), ha minden olyan interpretáció, amely modellje Γ -nak, modellje B-nek is. A Γ -beli formulákat feltételformuláknak, vagy premisszáknak, a B formulát következményformulának (konklúziónak) hívjuk.

Tétel: Legyen Γ ítéletlogikai formulák tetszőleges halmaza, A,B,C tetszőleges ítéletlogikai formulák. Ha $\Gamma \models_0 A$, $\Gamma \models_0 B$ és $\{A,B\} \models_0 C$, akkor $\Gamma \models_0 C$.

Tétel: Legyenek $A_1, A_2, ..., A_n, B$ tetszőleges ítéletlogikai formulák. $\{A_1, A_2, ..., A_n\} \models_0 B$ pontosan akkor, ha a $\{A_1, A_2, ..., A_n, \neg B\}$ formulahalmaz kielégíthetetlen, azaz a $A_1 \wedge A_2 \wedge ... \wedge A_n \wedge \neg B$ formula kielégíthetetlen.

Tétel: Legyenek $A_1, A_2, ..., A_n, B$ tetszőleges ítéletlogikai formulák. $\{A_1, A_2, ..., A_n\} \models_0 B$ pontosan akkor, ha $\models_0 A_1 \land A_2 \land ... \land A_n \supset B$.

Ekvivalens átalakítások

Fogalmak:

- 1. Egy prímformulát (ítéletváltozót), vagy annak a negáltját közös néven *literálnak* nevezünk. A prímformula a *literál alapja*. Egy literált bizonyos esetekben *egységkonjunkciónak* vagy *egységdiszjunkciónak* (*egységklóznak*) is hívunk.
- 2. Elemi konjunkció az egységkonjunkció, illetve a különböző alapú literálok konjunkciója (\land kapcsolat a literálok között). Elemi diszjunkció vagy klóz az egységdiszjunkció és a különböző alapú literálok diszjunkciója (\lor kapcsolat a literálok között). Egy elemi konjunkció, illetve elemi diszjunkció teljes egy n-változós logikai műveletre nézve, ha mind az n ítéletváltozó alapja valamely literáljának.
- 3. Diszjunktív normálformának (DNF) nevezzük az elemi konjunkciók diszjunkcióját. Konjunktív normálformának (KNF) nevezzük az elemi diszjunkciók konjunkcióját. Kitüntetett diszjunktív, illetve konjunktív normálformákról (KDNF, ileltve KKNF) beszélünk, ha a bennük szereplő elemi konjunkciók, illetve elemi diszjunkciók teljesek.

Tetszőleges logikai műveletet leíró KDNF, KKNF előállítása: Legyen $b: \mathbb{L}^n \to \mathbb{L}$ egy n-változós logikai művelet. Adjuk meg b művelettábláját. Az első n oszlop fejlécébe az $X_1, X_2, \dots X_n$ ítéletváltozókat írjuk.

A b-t leíró KDNF előállítása:

- 1. Válasszuk ki azokat a sorokat a művelettáblában, ahol az adott igazságérték n-eshez b igaz értéket rendel hozzá. Legyenek ezek a sorok rendre $s_1, s_2, ...s_r$. Minden ilyen sorhoz rendeljünk hozzá egy $X_1' \wedge X_2' \wedge ... \wedge X_n'$ teljes elemi konjunkciót úgy, hogy az X_j' literál X_j vagy $\neg X_j$ legyen aszerint, hogy ebben a sorban X_j igaz vagy hamis igazságérték szerepel. Az így nyert teljes elemi konjunkciók legyenek rendre $k_{s_1}, k_{s_2}, ...k_{s_r}$.
- 2. Az így kapott teljes elemi konjunkciókból készítsünk egy diszjunkciós láncformulát: $k_{s_1} \vee k_{s_2} \vee ... \vee k_{s_r}$. Ez a formula lesz a b művelet kitüntetett diszjunktív normálformája (KDNF).

X	Y	Z	b		a teljes elemi konjunkciók
i	i	i	h		
i	i	h	i	*	$X \wedge Y \wedge \neg Z$
i	h	i	h		
i	h	h	i	*	$X \wedge \neg Y \wedge \neg Z$
h	i	i	i	*	$\neg X \land Y \land Z$
h	i	h	h		
h	h	i	i	*	$\neg X \wedge \neg Y \wedge Z$
h	h	h	i	*	$\neg X \wedge \neg Y \wedge \neg Z$

ábra 6: Egy háromváltozós b logikai művelet művelettáblája és az előállított teljes elemi konjunkciók.

A fenti példa b műveletének kitüntetett diszjunktív normálformája a következő formula: $(X \wedge Y \wedge \neg Z) \vee (X \wedge \neg Y \wedge \neg Z) \vee (\neg X \wedge Y \wedge Z) \vee (\neg X \wedge \neg Y \wedge Z) \vee (\neg X \wedge \neg Y \wedge \neg Z)$.

A b-t leíró KKNF előállítása:

1. Válasszuk ki azokat a sorokat a művelettáblában, ahol az adott igazságérték n-eshez b hamis értéket rendel hozzá. Legyenek ezek a sorok rendre $s_1, s_2, ...s_r$. Minden ilyen sorhoz rendeljünk hozzá egy $X_1' \vee X_2' \vee ... \vee X_n'$ teljes elemi diszjunkciót úgy, hogy az X_j' literál X_j vagy $\neg X_j$ legyen aszerint, hogy ebben a sorban X_j hamis vagy igaz igazságérték szerepel. Az így nyert teljes elemi diszjunkciók legyenek rendre $d_{s_1}, d_{s_2}, ...d_{s_r}$.

2. Az így kapott teljes elemi diszjunkciókból készítsünk egy konjunkciós láncformulát: $d_{s_1} \wedge d_{s_2} \wedge ... \wedge d_{s_r}$. Ez a formula lesz a b művelet kitüntetett konjunktív normálformája (KKNF).

X	Y	Z	b		a teljes elemi diszjunkciók
\overline{i}	i	i	h	*	$\neg X \lor \neg Y \lor \neg Z$
i	i	h	i		
i	h	i	h	*	$\neg X \lor Y \lor \neg Z$
i	h	h	i		
h	i	i	i		
h	i	h	i		
h	\overline{h}	i	h	*	$X \lor Y \lor \neg Z$
h	h	h	i		

ábra 7: Egy háromváltozós b logikai művelet művelettáblája és az előállított teljes elemi diszjunkciók.

A fenti példa b műveletének kitüntetett konjunktív normálformája a következő formula: $(\neg X \lor \neg Y \lor \neg Z) \land (\neg X \lor Y \lor \neg Z) \land (X \lor Y \lor \neg Z)$.

KNF, DNF egyszerűsítése: Egy ítéletlogikai formula logikai összetettségén a formulában szereplő logikai összekötőjelek számát értettük. Ugyanazt a logikai műveletet leíró formulák közül azt tekintjük egyszerűbbnek, amelynek kisebb a logikai összetettsége (azaz kevesebb logikai összekötőjelet tartalmaz).

Legyen X egy ítéletváltozó k egy az X-et nem tartalmazó elemi konjunkció, d egy X-et nem tartalmazó elemi diszjunkció. Ekkor az

- (a) $(X \wedge k) \vee (\neg X \wedge k) \sim_0 k$ és
- (b) $(X \lor d) \land (\neg X \lor d) \sim_0 d$

egyszerűsítési szabályok alkalmazásával konjunktív és diszjunktív normálformákat írhatunk át egyszerűbb alakba.

Klasszikus Quine-McCluskey-féle algoritmus KDNF egyszerűsítésére:

- 1. Soroljuk fel a KDNF-ben szereplő összes teljes elemi konjunkciót az L_0 listában, j:=0.
- 2. Megvizsgáljuk az L_j -ben szereplő összes lehetséges elemi konjunkciópárt, hogy alkalmazható-e rájuk az (a) egyszerűsítési szabály. Ha igen, akkor a két kiválasztott konjunkciót \checkmark -val megjelöljük, és az eredmény konjunkciót beírjuk a L_{j+1} listába. Azok az elemi konjunkciók, amelyek az L_j vizsgálata során nem lesznek megjelölve, nem voltak egyszerűsíthetők, tehát bekerülnek az egyszerűsített diszjunktív normálformába.
- 3. Ha az L_{j+1} konjunkciólista nem üres, akkor j:=j+1. Hajtsuk végre újból a 2. lépést.
- 4. Az algoritmus során kapott, de meg nem jelölt elemi konjunkciókból készítsünk egy diszjunkciós láncformulát. Így az eredeti KDNF-el logikailag ekvivalens, egyszerűsített DNF-et kapunk.

Rezolúció

Legyenek $A_1, A_2, ..., A_n, B$ tetszőleges ítéletlogikai formulák. Azt szeretnénk bebizonyítani, hogy $\{A_1, A_2, ..., A_n\} \models_0 B$, ami ekvivalens azzal, hogy $\{A_1, A_2, ..., A_n, \neg B\}$ kielégíthetetlen. Írjuk át ez utóbbi formulahalmaz formuláit KNF alakba! Ekkor a $\{KNF_{A_1}, KNF_{A_2}, ..., KNF_{A_n}, KNF_{\neg B}\}$ formulahalmazt kapjuk, ami pontosan akkor kielégíthetetlen, ha a halmaz formuláiban szereplő klózok halmaza kielégíthetetlen.

A klózokra vonatkozó egyszerűsítési szabály szerint ha X ítéletváltozó, C pedig X-et nem tartalmazó klóz, akkor $(X \vee C) \wedge (\neg X \vee C) \sim_0 C$. Az X és a $\neg X$ egységklózok (azt mondjuk, hogy X és $\neg X$ komplemens literálpár) konjunkciójával ekvivalens egyszerűbb, egyetlen literált sem tartalmazó klóz az üres klóz, melyet a \square jellel jelölünk és definíció szerint minden interpretációban hamis igazságértékű.

Legyenek most C_1 és C_2 olyan klózok, melyek pontosan egy komplemens literálpárt tartalmaznak, azaz $C_1 = C_1' \vee L_1$ és $C_2 = C_2' \vee L_2$, ahol L_1 és L_2 az egyetlen komplemens literálpár (C_1' és C_2' üres klózok is lehetnek). Világos, hogy ha a két klózban a komplemens literálpáron kívül is vannak literálok, és ezek nem mind azonosak, az egyszerűsítési szabály alkalmazhatósági feltétele nem áll fenn.

Tétel: Ha $C_1 = C_1' \vee L_1$ és $C_2 = C_2' \vee L_2$, ahol L_1 és L_2 komplemens literálpár, akkor $\{C_1, C_2\} \models_0 C_1' \vee C_2'$

Rezolvens: Legyenek C_1 és C_2 olyan klózok, melyek pontosan egy komplemens literálpárt tartalmaznak, azaz $C_1 = C_1' \vee L_1$ és $C_2 = C_2' \vee L_2$, ahol L_1 és L_2 a komplemens literálpár, a $C_1' \vee C_2'$ klózt a (C_1, C_2) klózpár (vagy a $C_1 \vee C_2$ formula) rezolvensének nevezzük. Ha $C_1 = L_1$ és $C_2 = L_2$ (azaz C_1' és C_2' üres klózok), rezolvensük az üres klóz (\square). Az a tevékenység, melynek eredménye a rezolvens, a rezolválás.

	klózpár	rezolvens
(a)	$(X \lor Y, \ \neg Y \lor Z)$	$X \vee Z$
(b)	$(X \vee \neg Y, \ \neg Y \vee Z)$	nincs: mindkét azonos alapú literál negált
(c)	$(X \vee \neg Y, \ Z \vee \neg V)$	nincs: nincs azonos alapú literál
(d)	$(\neg X \vee \neg Y, \ X \vee Y \vee Z)$	nincs: két komplemens literálpár van
(e)	$(X, \neg X)$	

ábra 8: Példák klózpárok rezolválhatóságára, rezolvensére.

Tétel: Ha a C klóz a (C_1, C_2) klózpár rezolvense, akkor azon \mathcal{I} interpretációk a $\{C_1, C_2\}$ klózhalmazt nem elégíthetik ki, amelyekben C igazságértéke hamis, azaz $\mathcal{B}_{\mathcal{I}}(C) = hamis$.

Rezolúciós levezetés: Egy S klózhalmazból a C klóz rezolúciós levezetése egy olyan véges $k_1, k_2, ..., k_m (m \ge 1)$ klózsorozat, ahol minden j = 1, 2, ..., m-re

- 1. vagy $k_i \in S$,
- 2. vagy van olyan $1 \le s, t \le j$, hogy k_j a (k_s, k_t) klózpár rezolvense,

és a klózsorozat utolsó tagja, k_m , éppen a C klóz.

Megállapodásunk szerint a rezolúciós kalkulus eldöntésproblémája az, hogy levezethető-e S-ből \square . A rezolúciós levezetés célja tehát \square levezetése S-ből. Azt, hogy \square levezethető S-ből, úgy is ki lehet fejezni, hogy létezik S-nek rezolúciós cáfolata.

Példa: Próbáljuk meg levezetni \Box -t az $S = \{\neg X \lor Y, \neg Y \lor Z, X \lor Z, \neg V \lor Y \lor Z, \neg Z\}$ klózhalmazból. A levezetés bármelyik S-beli klózból indítható.

```
1. \neg V \lor Y \lor Z \quad [\in S]
                    [\in S]
 3. \neg V \lor Y
                    [ 1, 2 rezolvense ]
                     [\in S]
 4. \neg Y \lor Z
                      [2, 4 rezolvense]
 5.
                      [3, 5 rezolvense]
 6. \neg V
 7.
    X \vee V
                      [\in S]
 8.
                      [6, 7 rezolvense]
 9.
      \neg X \lor Y
                      \{ \in S \mid
10.
      Y
                      [8, 9 rezolvense]
11.
                      5, 10 rezolvense
```

ábra 9: \square rezolúciós levezetése S-ből.

Lemma: Legyen S tetszőleges klózhalmaz. S-ből történő rezolúciós levezetés esetén bármely S-ből levezetett klóz tautologikus következménye S-nek.

A rezolúciós kalkulus helyessége: A rezolúciós kalkulus helyes, azaz tetszőleges S klózhalmaz esetén amennyiben S-ből levezethető \square , akkor S kielégíthetetlen.

A rezolúciós kalkulus teljessége: A rezolúciós kalkulus teljes, azaz bármely véges, kielégíthetetlen S klózhalmaz esetén S-ből levezethető \square .

Levezetési fa: Egy rezolúciós levezetés szerkezetét levezetési fa segítségével szemléltethetjük. A levezetési fa csúcsai klózok. Két csúcsból pontosan akkor vezet él egy harmadik, közös csúcsba, ha az a két klóz rezolvense.

ábra 10: Az előző példa levezetési fája.

Rezolúciós stratégiák:

• Lineáris rezolúció: Egy S klózhalmazból való lineáris rezolúciós levezetés egy olyan $k_1, l_1, k_2, l_2, ..., k_{m-1}, l_{m-1}, k_m$ rezolúciós levezetés, amelyben minden j=2,3,...,m-re k_j a (k_{j-1},l_{j-1}) klózpár rezolvense. A k_j klózokat centrális klózoknak, az l_j klózokat mellékklózoknak nevezzük.

Tetszőleges rezolúciós levezetés átírható lineárissá, azaz a lineáris rezolúciós kalkulus teljes.

• Lineáris inputrezolúció: Egy S klózhalmazból való lineáris inputrezolúciós levezetés egy olyan $k_1, l_1, k_2, l_2, ..., k_{m-1}, l_{m-1}, k_m$ lineáris rezolúciós levezetés, amelyben minden j = 1, 2, ..., m-1-re $l_j \in S$, azaz a lineáris inputrezolúciós levezetésben a mellékklózok S elemei.

A lineáris inputrezolúciós stratégia nem teljes, de megadható olyan formulaosztály, melyre az. A legfeljebb egy negált literált tartalmazó klózokat Horn-klózoknak nevezzük, a Horn-formulák pedig azok a formulák, melyek konjunktív normálformája Horn-klózok konjunkciója. A lineáris inputrezolúciós stratégia Horn-formulák esetén teljes.

1.3 Predikátumkalkulus

1.3.1 Elsőrendű logikai nyelvek szintaxisa

Egy elsőrendű logikai nyelv ábécéje logikai és logikán kívüli szimbólumokat, továbbá elválasztójeleket tartalmaz. A logikán kívüli szimbólumhalmaz megadható < Srt, Pr, Fn, Cnst > alakban, ahol:

- 1. Srt nemüres halmaz, elemei fajtákat szimbolizálnak,
- 2. Pr nemüres halmaz, elemei predikátumszimbólumok,
- 3. az Fn halmaz elemei függvényszimbólumok,

4. Cnst pedig a függvényszimbólumok halmaza.

Az < Srt, Pr, Fn, Cnst > ábécé szignatúrája egy $< \nu_1, \nu_2, \nu_3 >$ hármas, ahol

- 1. minden $P \in Pr$ predikátumszimbólumhoz ν_1 a predikátumszimbólum alakját, azaz a $(\pi_1, \pi_2, ..., \pi_k)$ fajtasorozatot,
- 2. minden $f \in Fn$ függvényszimbólumhoz ν_2 a függvényszimbólum alakját, azaz a $(\pi_1, \pi_2, ..., \pi_k, \pi)$ fajtasorozatot és
- 3. minden $c \in Cnst$ konstansszimbólumhoz ν_3 a konstansszimbólumhoz alakját, azaz (π) -t

```
rendel (k > 0 \text{ és } \pi_1, \pi_2, ..., \pi_k, \pi \in Srt).
```

Logikai jelek az ítéletlogikában is használt logikai összekötőjelek, valamint az univerzális (\forall) és egzisztenciális (\exists) kvantorok és a különböző fajtájú individuumváltozók. Egy elsőrendű nyelv ábécéjében minden $\pi \in Srt$ fajtához szimbólumoknak megszámlálhatóan végtelen v_1^π, v_2^π, \ldots rendszere tartozik, ezeket a szimbólumokat nevezzük π fajtájú változóknak. Elválasztójel a nyitó és csukó zárójelek, és a vessző.

Az elsőrendű logikai nyelvekben az elválasztójelek és a logikai jelek mindig ugyanazok, viszont a logikán kívüli jelek halmaza, illetve ezek szignatúrája nyelvről nyelvre lényegesen különbözhet. Ezért mindig megadjuk a < Srt, Pr, Fn, Cnst > négyest és ennek $< \nu_1, \nu_2, \nu_3 >$ szignatúráját, amikor egy elsőrendű logikai nyelv ábécéjére hivatkozunk. Jelölése $V[V_{\nu}]$, ahol V_{ν} adja meg a $< \nu_1, \nu_2, \nu_3 >$ szignatúrájú < Srt, Pr, Fn, Cnst > négyest.

Termek: A $V[V_{\nu}]$ ábécé feletti termek halmaza $\mathcal{L}_t[V_{\nu}]$, ami a következő tulajdonságokkal bír:

- 1. Minden $\pi \in Srt$ fajtájú változó és konstans π fajtájú term.
- 2. Ha az $f \in Fn$ függvényszimbólum $(\pi_1, \pi_2, ..., \pi_k, \pi)$ alakú és $t_1, t_2, ..., t_k$ rendre $\pi_1, \pi_2, ..., \pi_k$ fajtájú termek, akkor az $f(s_1, s_2, ..., s_k)$ egy π fajtájú term.
- 3. Minden term az 1-2. szabályok véges sokszori alkalmazásával áll elő.

Formulák: A $V[V_{\nu}]$ ábécé feletti elsőrendű formulák halmaza $\mathcal{L}_f[V_{\nu}]$, ami a következő tulajdonságokkal bír:

- 1. Ha a $P \in Pr$ predikátumszimbólum $(\pi_1, \pi_2, ..., \pi_k)$ alakú és az $t_1, t_2, ..., t_k$ rendre $\pi_1, \pi_2, ..., \pi_k$ fajtájú termek, akkor a $P(t_1, t_2, ..., t_k)$ szó egy elsőrendű formula. Az így nyert formulákat atomi formuláknak nevezzük.
- 2. Ha S elsőrendű formula, akkor $\neg S$ is az.
- 3. Ha S és T elsőrendű formulák és \circ binér logikai összekötőjel, akkor $(S \circ T)$ is elsőrendű formula.
- 4. Ha S eleme elsőrendű formula, Q kvantor (\forall vagy \exists) és x tetszőleges változó, akkor QxS is elsőrendű formula. Az így nyert formulákat kvantált formuláknak nevezzük, a $\forall xS$ alakú formulák univerzálisan kvantált formulák, a $\exists xS$ alakú formulák pedig egzisztenciálisan kvantált formulák. A kvantált formulákban Qx a formula prefixe, S pedig a magja.
- 5. Minden elsőrendű formula az 1-4. szabályok véges sokszori alkalmazásával áll elő.

A $V[V_{\nu}]$ ábécé feletti elsőrendű logikai nyelv $\mathcal{L}[V_{\nu}] = \mathcal{L}_t[V_{\nu}] \cup \mathcal{L}_f[V_{\nu}]$, azaz $\mathcal{L}[V_{\nu}]$ minden szava vagy term, vagy formula.

A negációs, konjunkciós, diszjunkciós, implikációs (ezek jelentése ua., mint nulladrendben) és kvantált formulák összetett formulák.

Az elsőrendű logikai nyelv prímformulái az atomi formulák és a kvantált formulák.

Változóelőfordulás fajtái: Egy formula x változójának egy előfordulása:

- szabad, ha nem esik x-re vonatkozó kvantor hatáskörébe,
- kötött, ha x-re vonatkozó kvantor hatáskörébe esik.

Változó fajtái: Egy formula x változója:

- szabad, ha minden előfordulása szabad,
- kötött, ha minden előfordulása kötött, és
- vegyes, ha van szabad és kötött előfordulása is.

Formula zártsága, nyíltsága: Egy formula:

- zárt, ha minden változója kötött,
- nyílt, ha legalább egy változójának van szabad előfordulása és
- kvantormentes, ha nincs benne kvantor

Megjegyzés: a zárt formulák elsőrendű állításokat szimbolizálnak (egy elsőrendű állítás nem más, mint elemek egy halmazára megfogalmazott kijelentő mondat).

1.3.2 Az elsőrendű logika szemantikája

Matematikai struktúra: Matematikai struktúrán egy < U, R, M, K > négyest értünk, ahol:

- 1. $U = \bigcup_{\pi} U_{\pi}$ nem üres alaphalmaz (univerzum),
- 2. R az U-n értelmezett logikai függvények (relációk) halmaza,
- 3. M az U-n értelmezett matematikai függvények (alapműveletek) halmaza,
- 4. K az U kijelölt elemeinek (konstansainak) halmaza (lehet üres).

Interpretáció: Az interpretáció egy < U, R, M, K > matematikai struktúra és $\mathcal{I} = <\mathcal{I}_{Srt}, \mathcal{I}_{Pr}, \mathcal{I}_{Fn}, \mathcal{I}_{Cnst} >$ függvénynégyes, ahol:

- az $\mathcal{I}_{Srt}: \pi \mapsto U_{\pi}$ függvény megad minden egyes $\pi \in Srt$ fajtához egy U_{π} nemüres halmazt, a π fajtájú individuumok halmazát,
- az $\mathcal{I}_{Pr}: P \mapsto P^{\mathcal{I}}$ függvény megad minden $(\pi_1, \pi_2, ..., \pi_k)$ alakú $P \in Pr$ predikátumszimbólumhoz egy $P^{\mathcal{I}}: U_{\pi_1} \times U_{\pi_2} \times ... \times U_{\pi_k} \to \mathbb{L}$ logikai függvényt (relációt),
- az $\mathcal{I}_{Fn}: f \mapsto f^{\mathcal{I}}$ függvény hozzárendel minden $(\pi_1, \pi_2, ..., \pi_k, \pi)$ alakú $f \in Fn$ függvényszimbólumhoz egy $P^{\mathcal{I}}: U_{\pi_1} \times U_{\pi_2} \times ... \times U_{\pi_k} \to U_{\pi}$ matematikai függvényt (műveletet),
- az $\mathcal{I}_{Cnst}: c \mapsto ct^{\mathcal{I}}$ pedig minden π fajtájú $c \in Cnst$ konstansszimbólumhoz az U_{π} individuumtartománynak egy individuumát rendeli, azaz $c^{\mathcal{I}} \in U_{\pi}$.

Változókiértékelés: Legyen az $\mathcal{L}[V_{\nu}]$ nyelvnek \mathcal{I} egy interpretációja, az interpretáció univerzuma legyen U és jelölje V a nyelv változóinak halmazát. Egy olyan $\kappa:V\to U$ leképezést, ahol ha x π fajtájú változó, akkor $\kappa(x)\in U_{\pi}$, \mathcal{I} -beli változókiértékelésnek nevezünk.

 $\mathcal{L}_t[V_{\nu}]$ szemantikája: Legyen az $\mathcal{L}[V_{\nu}]$ nyelvnek \mathcal{I} egy interpretációja és κ egy \mathcal{I} -beli változókiértékelés. Az $\mathcal{L}[V_{\nu}]$ nyelv egy π fajtájú t termjének értéke \mathcal{I} -ben a κ változókiértékelés mellett az alábbi – $|t|^{\mathcal{I},\kappa}$ -val jelölt – U_{π} -beli individuum:

- 1. ha $c \in Cnst \ \pi$ fajtájú konstansszimbólum, akkor $|c|^{\mathcal{I},\kappa}$ az U_π -beli $c^{\mathcal{I}}$ individuum,
- 2. ha $x \pi$ fajtájú változó, akkor $|x|^{\mathcal{I},\kappa}$ az U_{π} -beli $\kappa(x)$ individuum,
- 3. ha $t_1, t_2, ..., t_k$ rendre $\pi_1, \pi_2, ..., \pi_k$ fajtájú termek és ezek értékei a κ változókiértékelés mellett rendre az U_{π_1} -beli $|t_1|^{\mathcal{I},\kappa}$, az U_{π_2} -beli $|t_2|^{\mathcal{I},\kappa}$... és az U_{π_k} -beli $|t_k|^{\mathcal{I},\kappa}$ individuumok, akkor egy $(\pi_1, \pi_2, ..., \pi_k, \pi)$ alakú $f \in Fn$ függvényszimbólum esetén $|f(t_1, t_2, ..., t_k)|^{\mathcal{I},\kappa}$ az U_{π} -beli $f^{\mathcal{I}}(|t_1|^{\mathcal{I},\kappa}, |t_2|^{\mathcal{I},\kappa}, ..., |t_k|^{\mathcal{I},\kappa})$ individuum.

Változókiértékelés x-variánsa: Legyen x egy változó. A κ^* változókiértékelés a κ változókiértékelés x-variánsa, ha $\kappa^*(y) = y$ minden x-től különböző y változó esetén.

Elsőrendű logikai formula logikai értéke: Legyen az $\mathcal{L}[V_{\nu}]$ nyelvnek \mathcal{I} egy interpretációja és κ egy \mathcal{I} -beli változókiértékelés. Az $\mathcal{L}[V_{\nu}]$ nyelv egy C formulájához \mathcal{I} -ben a κ változókiértékelés mellett az alábbi – $|C|^{\mathcal{I},\kappa}$ -val jelölt – igazságértéket rendeljük:

$$1. \ |P(t_1,t_2,...,t_k)|^{\mathcal{I},\kappa} = \left\{ \begin{array}{ll} igaz & :P^{\mathcal{I}}(|t_1|^{\mathcal{I},\kappa},|t_2|^{\mathcal{I},\kappa},...,|t_k|^{\mathcal{I},\kappa}) = igaz \\ hamis & : kulonben \end{array} \right\}$$

- 2. $|\neg A|^{\mathcal{I},\kappa}$ legyen $\neg |A|^{\mathcal{I},\kappa}$
- 3. $|A \wedge B|^{\mathcal{I},\kappa}$ legyen $|A|^{\mathcal{I},\kappa} \wedge |B|^{\mathcal{I},\kappa}$
- 4. $|A \vee B|^{\mathcal{I},\kappa}$ legyen $|A|^{\mathcal{I},\kappa} \vee |B|^{\mathcal{I},\kappa}$
- 5. $|A \supset B|^{\mathcal{I},\kappa}$ legyen $|A|^{\mathcal{I},\kappa} \supset |B|^{\mathcal{I},\kappa}$

6.
$$|\forall xA|^{\mathcal{I},\kappa} = \left\{ \begin{array}{ll} igaz & : |A|^{\mathcal{I},\kappa^*} = igaz \ \kappa \ minden \ \kappa^* \ x - variansara \\ hamis & : kulonben \end{array} \right\}$$

7.
$$|\exists x A|^{\mathcal{I},\kappa} = \left\{ \begin{array}{ll} igaz & : |A|^{\mathcal{I},\kappa^*} = igaz \ \kappa \ valamely \ \kappa^* \ x - variansara \\ hamis & : kulonben \end{array} \right\}$$

Elsőrendű formula kielégíthetősége: Egy A elsőrendű formula kielégíthető, ha van olyan \mathcal{I} interpretáció és κ változókiértékelés, amelyre $|A|^{\mathcal{I},\kappa} = igaz$ (ekkor azt mondjuk, hogy az \mathcal{I} interpretáció és κ változókiértékelés kielégíti A-t), különben kielégíthetetlen.

Amennyiben az A formula zárt, igazságértékét egyedül az interpretáció határozza meg. Ha $|A|^{\mathcal{I}} = igaz$, azt mondjuk, hogy az \mathcal{I} kielégíti A-t vagy másképpen: \mathcal{I} modellje A-nak ($\mathcal{I} \models A$).

Logikailag igaz elsőrendű formula: Egy A elsőrendű logikai formula logikailag igaz, ha minden \mathcal{I} interpretációban és \mathcal{I} minden κ változókiértékelése mellett $|A|^{\mathcal{I},\kappa}=igaz$. Jelölése: $\models A$.

Szemantikus következmény: Azt mondjuk, hogy a G formula szemantikus következménye az \mathcal{F} formulahalmaznak, ha minden olyan \mathcal{I} interpretációra, amelyre $\mathcal{I} \models \mathcal{F}$ fennáll, $\mathcal{I} \models G$ is igaz (jelölés: $\mathcal{F} \models G$).

Tétel: Legyenek $A_1, A_2, ..., A_n, B$ $(n \ge 1)$ tetszőleges, ugyanabból az elsőrendű logikai nyelvből való formulák. Ekkor $\{A_1, A_2, ..., A_n\} \models B$ akkor és csak akkor, ha $A_1 \wedge A_2 \wedge ... \wedge A_n \wedge \neg B$ kielégíthetetlen.

Rezolúció: Elsőrendű predikátumkalkulusban is végezhető rezolúció, ráadásul a módszer helyes és teljes is. Nehézséget a klózok kialakítása okozhat, amelyek zárt, univerzálisan kvantált literálok konjunkciójából állnak. Ehhez eszközeink a prenex-, illetve skolem-formák.

2 Számításelmélet

2.1 Kiszámíthatóság

2.1.1 Algoritmusmodellek

- Gödel: rekurzív függvények (primitív rekurzív függvények 1931-ben, majd általánosabb 1934-ben)
- Church: λ-kalkulus, λ-definiálható függvények: ekvivalensek a rekurzív függvényekkel (bizonyított)
- Turing: Turing-gép (1936), a λ -definiálható és a Turing-géppel kiszámítható függvények megegyeznek (bizonyított)

Church-Turing tézis: A kiszámíthatóság különböző matematikai modelljei mind az effektíven kiszámítható függvények osztályát definiálják.

2.1.2 Fogalmak

Kiszámítási problémának nevezünk egy olyan, a matematika nyelvén megfogalmazott kérdést, amire egy algoritmussal szeretnénk megadni a választ. A gyakorlati élet szinte minden problémájához rendelhető, megfelelő absztrakciót használva, egy kiszámítási probléma.

Egy problémát a hozzá tartozó konkrét bementettel együtt a probléma egy példányának nevezzük.

Speciális kiszámítási probléma az eldöntési probléma. Ilyenkor a problémával kapcsolatos kérdés egy eldöntendő kérdés, tehát a probléma egy példányára a válasz "igen" vagy "nem" lesz.

Egy kiszámítási probléma reprezentálható egy $f:A\to B$ függvénnyel. Az A halmaz tartalmazza a probléma egyes bemeneteit, jellemzően egy megfelelő ábécé feletti szóban elkódolva, míg a B halmaz tartalmazza a bemenetekre adott válaszokat, szintén valamely alkalmas ábécé feletti szóban elkódolva. Értelemszerűen, ha eldöntési problémáról van szó, akkor az f értékkészlete, vagyis a B egy két elemű halmaz: $\{igen, nem\}, \{1,0\}, stb.$

Kiszámítható függvény: Egy $f:A\to B$ függvényt kiszámíthatónak nevezünk, ha minden $x\in A$ elemre az $f(x)\in B$ függvényérték kiszámítható valamilyen algoritmikus modellel.

Megoldható, eldönthető probléma: Egy kiszámítási probléma *megoldható* (eldöntési probléma esetén azt mondjuk, hogy *eldönthető*), ha az általa meghatározott függvény kiszámítható.

Algoritmusok időigénye: Legyenek $f,g:\mathbb{N}\to\mathbb{N}$ függvények, ahol \mathbb{N} a természetes számok halmaza. Azt mondjuk, hogy f legfeljebb olyan gyorsan nő, mint g (jelölése: $f(n)=\mathcal{O}(g(n))$), ha $\exists c>0$ és $n_0\in\mathbb{N}$, hogy $f(n)\leq c*g(n)$ $\forall n\geq n_0$. Az $f(n)=\Omega(g(n))$ jelöli azt, hogy $g(n)=\mathcal{O}(f(n))$ teljesül és $f(n)=\Theta(g(n))$ jelöli azt, hogy $f(n)=\mathcal{O}(g(n))$ és $f(n)=\Omega(g(n))$ is teljesül.

Példa: $3n^3 + 5n^2 + 6 = \mathcal{O}(n^3)$, $n^k = \mathcal{O}(2^n) \ \forall k \ge 0$, stb.

Tétel: Minden polinomiális függvény lassabban nő, mint bármely exponenciális függvény, azaz minden p(n) polinomhoz és c > 0-hoz $\exists n_0$ egész szám, hogy $\forall n \geq n_0$ esetén $p(n) \leq 2^{cn}$

Kiszámítási probléma megfeleltetése eldöntési problémának: Tekintsünk egy P kiszámítási problémát és legyen $f:A\to B$ a P által meghatározott függvény. Ekkor megadható P-hez egy P' eldöntési probléma úgy, hogy P' pontosan akkor eldönthető, ha P kiszámítható. Állítsuk párba ugyanis minden $a\in A$ elemre az a és f(a) elemeket, és kódoljuk el az így kapott párokat egy-egy szóban. Ezek után legyen P' az így kapott szavakból képzett formális nyelv. Nyilvánvaló, hogy ha minden $a\in A$ és $b\in B$ elemre az $(a,b)\in P'$ tartalmazás eldönthető (azaz P' eldönthető), akkor P kiszámítható és fordítva. E megfeleltetés miatt a továbbiakban jellemzően eldöntési problémákkal foglalkozunk.

2.2 Turing-gépek

Hasonlóan a véges automatához vagy a veremautomatához, a Turing-gép is egy véges sok állapottal rendelkező eszköz. A Turing-gép egy két irányban végtelen szalagon dolgozik. A szalag cellákra van osztva, tulajdonképpen ez a gép (korlátlan) memóriája. Kezdetben a szalagon csak a bemenő szó van, minden cellán egy betű. A szalag többi cellája egy úgynevezett blank vagy szóköz (\sqcup) szimbólumokkal van feltöltve. Kezdetben a gép úgynevezett író-olvasó feje a bemenő szó első betűjén áll és a gép a kezdőállapotában van. A gép az író-olvasó fejet tetszőlegesen képes mozgatni a szalagon. Képes továbbá a fej pozíciójában a szalag tartalmát kiolvasni és átírni. A gépnek van két kitüntetett állapota, a q_i és a q_n állapotok. Ha ezekbe az állapotokba kerül, akkor rendre elfogadja illetve elutasítja a bemenő szót. Formálisan a Turing-gépet a következő módon definiáljuk.

A Turing-gép formális definíciója: A Turing-gép egy olyan $M = (Q, \Sigma, \Gamma, \delta, q_0, q_i, q_n)$ rendszer, ahol:

- \bullet Q az állapotok véges, nem üres halmaza,
- $q_0, q_i, q_n \in Q, q_0$ a kezdőállapot, q_i az elfogadó állapot, q_n pedig az elutasító állapot,

- Σ és Γ ábécék, a bemenő jelek és a szalagszimbólumok ábécéje úgy, hogy $\Sigma \subseteq \Gamma$ és $\Gamma \Sigma$ tartalmaz egy speciális \sqcup szimbólumot,
- $\delta: (Q \{q_i, q_n\}) \times \Gamma \to Q \times \Gamma \times \{L, R, S\}$ az átmenetfüggvény.

Úgy mint a veremautomaták esetében, egy M Turing-gép működésének fázisait is konfigurációkkal írhatjuk le.

Turing-gép konfigurációja: Az M Turing-gép konfigurációja egy olyan uqv szó, ahol $q \in Q$ és $u, v \in \Gamma^*$, $v \neq \varepsilon$. Ez a konfiguráció az M azon állapotát tükrözi amikor a szalag tartalma uv (uv előtt és után a szalagon már csak \sqcup van), a gép a q állapotban van, és az író-olvasó fej a v első betűjére mutat. M összes konfigurációjának halmazát \mathcal{C}_M -el jelöljük.

Turing-gép kezdőkonfigurációja: M kezdőkonfigurációja egy olyan $q_0u \sqcup szó$, ahol u csak Σ -beli betűket tartalmaz.

Turing-gép konfigurációátmenete: M konfigurációátmenete egy olyan $\vdash \subseteq \mathcal{C}_M \times \mathcal{C}_M$ reláció, amit a következőképpen definiálunk. Legyen uqav egy konfiguráció, ahol $a \in \Gamma$ és $u, v \in \Gamma^*$. A következő három esetet különböztetjük meg:

- 1. Ha $\delta(q, a) = (r, b, S)$, akkor $uqav \vdash urbv$.
- 2. Ha $\delta(q,a)=(r,b,R)$, akkor $uqav\vdash ubrv'$, ahol v'=v, ha $v\neq \varepsilon$, különben $v'=\sqcup$.
- 3. Ha $\delta(q,a)=(r,b,L)$, akkor $uqav\vdash u'rcbv$, ahol u'c=u valamely $u'\in\Gamma^*$ -ra és $c\in\Gamma$ -ra, ha $u\neq\varepsilon$, egyébként pedig $u'=\varepsilon$, $c=\sqcup$.

Azt mondjuk, hogy M véges sok lépésben eljut a C konfigurációból a C' konfigurációba (jele $C \vdash^* C'$), ha létezik olyan $n \geq 0$ és $C_1, ...C_n$ konfigurációsorozat, hogy $C_1 = C$, $C_n = C'$ és minden $1 \leq i < n$ -re $C_i \vdash C_{i+1}$.

Ha $q \in \{q_i, q_n\}$, akkor azt mondjuk, hogy az uqv konfiguráció egy megállási konfiguráció. Továbbá, $q = q_i$ esetében elfogadó, míg $q = q_n$ esetében elutasító konfigurációról beszélünk.

Turing-gép által felismert nyelv: Az M Turing-gép által felismert nyelv (jelölése L(M)) azoknak az $u \in \Sigma^*$ szavaknak a halmaza, melyekre igaz, hogy $q_0 u \sqcup \vdash^* x q_i y$ valamely $x, y \in \Gamma^*$, $y \neq \varepsilon$ szavakra.

ábra 11: Egy, az $L = \left\{ u \# u \mid u \in \left\{0,1\right\}^+ \right\}$ felismerő Turing-gép.

Turing-gépek ekvivalenciája: Két Turing-gépet ekvivalensnek nevezünk, ha ugyanazt a nyelvet ismerik fel.

Turing-felismerhető nyelv, rekurzívan felismerhető nyelvek osztálya: Egy $L \subseteq \Sigma^*$ nyelv Turing-felismerhető, ha L = L(M) valamely M Turing-gépre. A Turing-felismerhető nyelveket szokás rekurzívan felsorolható nyelvek osztályát RE-vel jelöljük.

Turing-eldönthető nyelv, rekurzív nyelvek osztálya: Egy $L \subseteq \Sigma^*$ nyelv Turing-eldönthető, ha létezik olyan Turing-gép, amely minden bemeneten megállási konfigurációba jut és felismeri L-et. A Turing-felismerhető nyelveket szokás rekurzívnak is nevezni. A rekurzív nyelvek osztályát R-rel jelöljük.

Turing-gép futási ideje, időigénye: Tekintsünk egy $M=(Q,\Sigma,\Gamma,\delta,q_0,q_i,q_n)$ Turing-gépet és annak egy $u\in\Sigma^*$ bemenő szavát. Azt mondjuk, hogy M futási ideje (időigénye) az u szón n $(n\geq 0)$, ha M a $q_0u\sqcup$ kezdőkonfigurációból n lépésben el tud jutni egy megállási konfigurációba. Ha nincs ilyen szám, akkor M futási ideje az u szón végtelen.

Legyen $f: \mathbb{N} \to \mathbb{N}$ egy függvény. Azt mondjuk, hogy M időigénye f(n) (vagy azt, hogy M egy f(n) időkorlátos gép), ha minden $u \in \Sigma^*$ input szóra M időigénye az u szón legfeljebb f(l(u)).

2.2.1 Többszalagos Turing-gépek

A többszalagos Turing-gépek, értelemszerűen, egynél több szalaggal rendelkeznek. Mindegyik szalaghoz tartozik egy-egy író-olvasó fej, melyek egymástól függetlenül képesek mozogni a szalagon.

Többszalagos Turing-gép definíciója: Legyen k>1. Egy k-szalagos Turing-gép egy olyan $M=(Q, \Sigma, \Gamma, \delta, q_0, q_i, q_n)$ rendszer, ahol a komponensek a δ kivételével megegyeznek az egyszalagos Turing-gép komponenseivel, δ pedig a következőképpen adódik. $\delta: (Q-\{q_i,q_n\}) \times \Gamma^k \to Q \times \Gamma^k \times \{L,R,S\}^k$. Legyenek $q, p \in Q, a_1, a_2, ..., a_k, b_1, b_2, ..., b_k \in \Gamma$ és $D_1, D_2, ..., D_k \in \{L,R,S\}$. Ha $\delta(q,a_1,a_2,...,a_k)=(p,b_1,b_2,...,b_k,D_1,D_2,...,D_k)$, akkor a gép akkor a gép a q állapotból, ha a szalagjain rendre az $a_1,a_2,...,a_k$ betűket olvassa, át tud menni a p állapotba, miközben az $a_1,a_2,...,a_k$ betűket átírja a $b_1,b_2,...,b_k$ betűkre és a szalagokon a fejeket $D_1,D_2,...,D_k$ irányokba mozgatja.

A többszalagos Turing-gép konfigurációja, a konfigurációátmenet valamint a felismert illetve eldöntött nyelv definíciója az egyszalagos eset értelemszerű általánosítása. A többszalagos Turing-gép időigényét is az egyszalagoshoz hasonlóan definiáljuk.

Többszalagos és egyszalagos gépek ekvivalenciája: Minden k-szalagos, f(n) időkorlátos Turinggéphez van vele ekvivalens $\mathcal{O}(n * f(n))$ időkorlátos egyszalagos Turing-gép.

2.2.2 Nemdeterminisztikus Turing-gépek

Egy M nemdeterminisztikus Turing-gép állapotfüggvénye $\delta: (Q-\{q_i,q_n\}) \times \mathcal{P}(\Gamma \to Q \times \Gamma \times \{L,R\})$ alakú. Tehát M minden konfigurációjából néhány (esetleg nulla) különböző konfigurációba mehet át. Ily módon M számítási sorozatai egy u szón egy fával reprezentálhatók. A fa csúcsa M kezdőkonfigurációja, a szögpontjai pedig M konfigurációi. A fa minden levele megfelel M egy számítási sorozatának az u-n. M akkor fogadja el u-t, ha a fa valamelyik levele elfogadó konfiguráció. Nevezzük ezt a most leírt fát az M nemdeterminisztikus számítási fájának az u-n. Az M által felismert nyelv a determinisztikus esethez hasonlóan definiálható, a gép által eldöntött nyelv pedig a következőképpen.

Nemdeterminisztikus Turing-gép által eldöntött nyelv: Azt mondjuk, hogy egy nemdeterminisztikus M Turing-gép eldönt egy $L \subseteq \Gamma^*$ nyelvet, ha felismeri, és minden $u \in \Sigma^*$ szóra M számítási sorozatai végesek és elfogadási vagy elutasítási konfigurációba vezetnek.

Nemdeterminisztikus Turing-gép időigénye: Legyen $f: \mathbb{N} \to \mathbb{N}$ függvény, M egy nemdeterminisztikus Turing-gép. Az M időigénye f(n), ha egy n hosszú u bemeneten nincsenek M-nek f(n)-nél hosszabb számítási sorozatai, azaz az M számítási fája az u-n legfeljebb f(n) magas.

Determinisztikus és nemdeterminisztikus Turing-gépek ekvivalenciája: Minden M nemdeterminisztikus Turing-géphez megadható egy ekvivalens M' determinisztikus Turing-gép. Továbbá, ha M f(n) időigényű valamely $f: \mathbb{N} \to \mathbb{N}$ függvényre, akkor M' $2^{\mathcal{O}(f(n))}$ időigényű.

2.3 Eldönthetetlen problémák

Ebben a fejezetben megmutatjuk, hogy bár a Turing-gép a lehető legáltalánosabb algoritmus modell, mégis vannak olyan problémák, melyek nem számíthatók ki Turing-géppel.

Emlékeztető: A rekurzívan felsorolható (Turing-felismerhető) nyelvek osztályát RE-vel, a rekurzív (Turing-eldönthető) nyelvek osztályát R-rel jelöljük.

Világos, hogy $R \subseteq RE$. A célunk az, hogy megmutassuk: az R valódi részhalmaza az RE-nek, azaz van olyan nyelv (probléma) ami Turing-felismerhető, de nem eldönthető.

Csak olyan Turing-gépeket fogunk vizsgálni, melyek bemenő ábécéje a $\{0,1\}$ halmaz. Ez nem jelenti az általánosság megszorítását, hiszen ha találunk egy olyan $\{0,1\}$ feletti nyelvet, melyet nem lehet eldönteni ilyen Turing-géppel, akkor ezt a nyelvet egyáltalán nem lehet eldönteni.

2.3.1 Turing-gépek kódolása

A $\{0,1\}$ feletti szavak felsorolhatóak (vagyis megszámlálhatóak). Valóban, tekintsük azt a felsorolást, amelyben a szavak a hosszuk szerint követik egymást, és két egyforma hosszú szó közül pedig az van előbb, amelyik az alfabetikus rendezés szerint megelőzi a másikat. Ily módon a $\{0,1\}^*$ halmaz elemeinek egy felsorolása a következőképpen alakul: $w_1 = \varepsilon$, $w_2 = 0$, $w_3 = 1$, $w_4 = 00$, $w_5 = 01$ és így tovább. Ebben a fejezetben tehát a w_i szóval a $\{0,1\}^*$ i. elemét jelöljük.

Legyen továbbá M egy $\{0,1\}$ inputábécé feletti Turing-gép. Van olyan k>0 szám, hogy Q-t felírhatjuk $Q=\{p_1,...p_k\}$ alakban, ahol $p_1=q_0,\ p_{k-1}=q_i,\ p_k=q_n$. Továbbá, van olyan m>0 szám, hogy Γ -t felírhatjuk $\Gamma=\{X_1,...X_m\}$ alakban, ahol $X_1=0,\ X_2=1,\ X_3=\sqcup$, és $X_4,...X_m$ az M további szalagszimbólumai. Nevezzük végül az L,R,S szimbólumokat (amelyek irányokat jelölnek) rendre $D_1,\ D_2$ és D_3 -nak. Ezek után M egy $\delta(p_i,X_j)=(p_r,X_s,D_t)$ ($0\leq i,r\leq k,\ 1\leq j,s\leq m$ és $1\leq t\leq 3$) átmenete elkódolható a $0^i10^j10^r10^s10^t$ szóval. Mivel minden 0-s blokk hossza legalább 1, az átmenetet kódoló szóban nem szerepel az 11 részszó. Tehát az M összes átmenetét kódoló szavakat összefűzhetjük egy olyan szóvá, melyben az átmeneteket az 11 részszó választja el egymástól. Az így kapott szó pedig magát M-et kódolja.

A továbbiakban M_i -vel jelöljük azt a Turing-gépet, amelyet a w_i szó kódol $(i \ge 1)$. Amennyiben w_i nem a fent leírt kódolása egy Turing-gépnek, akkor tekintsük M_i -t olyannak, ami minden input esetén azonnal a q_n állapotba megy, azaz $L(M_i) = \emptyset$.

A későbbiekben szükségünk lesz arra, hogy elkódoljunk egy (M, w) Turing-gép és bemenet párost egy $\{0, 1\}$ feletti szóban. Mivel a Turing-gépek kódolása nem tartalmazhat 111-et, ezért (M, w) kódja a következő: M kódja után írunk 111-et, majd utána w-t.

2.3.2 Egy nem rekurzívan felsorolható nyelv

Az $L_{\acute{a}tl\acute{o}}$ nyelv: Az $L_{\acute{a}tl\acute{o}}$ nyelv azon $\{0,1\}$ feletti Turing-gépek bináris kódjait tartalmazza, melyek nem fogadják el önmaguk kódját, mint bemenő szót, azaz $L_{\acute{a}tl\acute{o}}=\{w_i\mid i\geq 1, w_i\notin L(M_i)\}$

Tétel: $L_{\acute{a}tl\acute{o}} \notin RE$.

2.3.3 Egy rekurzívan felsorolható, de nem eldönthető nyelv

Az L_u **nyelv**: Tekintsük azon (M, w) párok halmazát (egy megfelelő bináris szóban elkódolva), ahol M egy $\{0, 1\}$ bemenő ábécé feletti Turing-gép, w pedig egy $\{0, 1\}$ feletti szó úgy, hogy $w \in L(M)$, azaz M elfogadja w-t. Ezt a nyelvet jelöljük L_u -val. $L_u = \{\langle w_i, w_j \rangle \mid i, j \geq 1, w_j \in L(M_i)\}$

Tétel: $L_u \in RE$.

Tétel: $L_u \notin R$.

2.3.4 További tételek

- 1. Legyen L egy nyelv. Ha $L, \bar{L} \in RE$, akkor $L \in R$. Következmény: a rekurzívan felsorolható nyelvek nem zártak a komplementerképzésre.
- 2. Ha $L \in R$, akkor $\bar{L} \in R$, azaz a rekurzív nyelvek zártak a komplementerképzésre.

2.3.5 További eldönthetetlen problémák

Kiszámítható függvény: Legyen Σ és Δ két ábécé és f Σ^* ból Δ^* -ba képző függvény. Azt mondjuk, hogy f kiszámítható, ha van olyan M Turing-gép, hogy M-et egy $w \in \Sigma^*$ szóval a bemenetén elindítva, M úgy áll meg, hogy a szalagján a $f(w) \in \Delta^*$ szó van.

Eldöntési problémák visszavezetése: Legyen $L_1 \subseteq \Sigma^*$ és $L_2 \subseteq \Delta^*$ két eldöntési probléma. L_1 visszavezethető L_2 -re $(L_1 \le L_2)$, ha van olyan $f: \Sigma^* \to \Delta^*$ kiszámítható függvény, hogy minden $w \in \Sigma^*$ szóra $w \in L_1$ pontosan akkor teljesül, ha $f(w) \in L_2$ is teljesül.

Tétel: Legyen $L_1 \subseteq \Sigma^*$ és $L_2 \subseteq \Delta^*$ két eldöntési probléma és tegyük fel, hogy L_1 visszavezethető L_2 -re. Ekkor igazak a következő állítások:

- 1. Ha L_1 eldönthetetlen, akkor L_2 is.
- 2. Ha $L_1 \notin RE$, akkor $L_2 \notin RE$.

A megállási probléma: Legyen $L_h = \{\langle M, w \rangle \mid M \text{ megáll a } w \text{ bemeneten} \}$, azaz L_h azon $\langle M, w \rangle$ Turing-gép és bemenet párosokat tartalmazza elkódolva, melyekre M megáll a w bemeneten. L_h eldönthetetlen (L_u visszavezethető L_h -ra), viszont $L_h \in RE$.

Az $L_{\ddot{u}res}$ **probléma**: Legyen $L_{\ddot{u}res} = \{\langle M \rangle \mid L(M) = \emptyset\}$. $L_{\ddot{u}res}$ eldönthetetlen (L_u visszavezethető $L_{\ddot{u}res}$ -re), valamint $L_{\ddot{u}res} \notin RE$.

Rekurzívan felsorolható nyelvek (nem triviális) tulajdonsága: Ha \mathcal{P} a rekurzívan felsorolható nyelvek egy halmaza, akkor \mathcal{P} a rekurzívan felsorolható nyelvek egy tulajdonsága. Ha $\mathcal{P} \neq \emptyset$ és $\mathcal{P} \neq RE$, akkor \mathcal{P} nem triviális tulajdonsága a rekurzívan felsorolható nyelveknek.

Rice tétele: Adott \mathcal{P} tulajdonságra jelöljük $L_{\mathcal{P}}$ -vel azon Turing-gépek kódjainak halmazát, amelyek \mathcal{P} -beli nyelvet ismernek fel. Ha \mathcal{P} a rekurzívan felsorolható nyelvek egy nem triviális tulajdonsága, akkor $L_{\mathcal{P}}$ eldönthetetlen.

Post Megfelelkezési Probléma (röviden PMP): A PMP problémát a következőképpen definiáljuk. Legyen Σ egy legalább két betűt tartalmazó ábécé és legyen $D = \left\{ \begin{bmatrix} u_1 \\ v_1 \end{bmatrix}, ..., \begin{bmatrix} u_n \\ v_n \end{bmatrix} \right\}$ egy dominóhalmaz, melyben $n \geq 1$ és $u_1, ..., u_n, v_1, ..., v_n \in \Sigma^+$. A kérdés az, hogy van-e egy olyan $1 \leq i_1, ..., i_m \leq m \ (m \geq 1)$ indexsorozat, melyre teljesül, hogy a $\left[\frac{u_{i_1}}{v_{i_1}} \right], ..., \left[\frac{u_{i_m}}{v_{i_m}} \right]$ dominókat egymás mellé írva alul és felül ugyanaz a szó adódik, azaz $u_{i_1}...u_{i_m} = v_{i_1}...v_{i_m}$. Ebben az esetben a fenti dominósorozatot a D egy megoldásának nevezzük.

Formális nyelvként a következőképpen definiálhatjuk a PMP-t: PMP = $\{\langle D \rangle \mid D-nek\ van\ megoldása\}$. PMP eldönthetetlen.

2.4 Bonyolultságelmélet

A bonyolultságelmélet célja a megoldható (és ezen belül az eldönthető) problémák osztályozása a megoldáshoz szükséges erőforrások (jellemzően az idő és a tár) mennyisége szerint.

2.4.1 Időbonyolultsági fogalmak

TIME: Legyen $f: \mathbb{N} \to \mathbb{N}$ függvény. **TIME** $(f(n)) = \{L \mid L \text{ eldönthet} \tilde{o} \mathcal{O}(f(n)) \text{ időigényű Turing} - géppel\}$

 $\mathbf{P} = \bigcup_{k \geq 1} \mathbf{TIME}(n^k)$. Tehát \mathbf{P} azon nyelveket tartalmazza, melyek eldönthetőek polinom időkorlátos determinisztikus Turing-géppel. Ilyen például a jól ismert ELÉRHETŐSÉG probléma, melynek bemenete egy G gráf és annak két kitüntetett csúcsa (s és t). A kérdés az, hogy van-e a G-ben út s-ből t-be. Ha

az Elérhetőség problémára nyelvként tekintünk, akkor írhatjuk azt, hogy

```
Elérhetőség = \{\langle G, s, t \rangle \mid G - ben \ van \ út \ s - b\tilde{o}l \ t - be \}.
```

Könnyen megadható az ElérhetőséG problémáját polinom időben eldöntő determinisztikus Turinggép, tehát ElérhetőséG \in **P**.

```
NTIME: Legyen f: \mathbb{N} \to \mathbb{N} függvény.

NTIME(f(n)) = \{L \mid L \text{ eldönthet} \tilde{o} \mathcal{O}(f(n)) \text{ id} \tilde{o} \text{igény} \tilde{u} \text{ nemdeterminisztikus Turing} - géppel\}
```

 $\mathbf{NP} = \bigcup_{k \geq 1} \mathbf{NTIME}(n^k)$. Az \mathbf{NP} -beli problémák rendelkeznek egy közös tulajdonsággal az alábbi értelemben. Ha tekintjük egy \mathbf{NP} -beli probléma egy példányát és egy lehetséges "bizonyítékot" arra nézve, hogy ez a példány "igen" példánya az adott problémának, akkor ezen bizonyíték helyességének leellenőrzése polinom időben elvégezhető. Ennek megfelelően egy \mathbf{NP} -beli problémát eldöntő nemdeterminisztikus Turing-gép általában úgy működik, hogy "megsejti" a probléma bemenetének egy lehetséges megoldását, és polinom időben leellenőrzi, hogy a megoldás helyes-e.

Tekintsük a SAT problémát, amit a következőképpen definiálunk. Adott egy ϕ ítéletlogikai KNF. A kérdés az, hogy kielégíthető-e. Annak a bizonyítéka, hogy a ϕ kielégíthető, egy olyan változóhozzárendelés, ami mellett kiértékelve a ϕ -t igaz értéket kapunk. Egy tetszőleges változóhozzárendelés tehát a ϕ kielégíthetőségének egy lehetséges bizonyítéka .Annak leellenőrzése pedig, hogy ez a hozzárendelés tényleg igazzá teszi-e ϕ -t, polinom időben elvégezhető. A SAT \mathbf{NP} -beli probléma.

Az a definíciókból következik, hogy fennáll a $P \subseteq NP$ tartalmazás.

2.4.2 NP-teljes problémák

Polinom időben kiszámítható függvény: Legyen Σ és Δ két ábécé és f Σ *ból Δ *-ba képző függvény. Azt mondjuk, hogy f polinom időben kiszámítható, ha kiszámítható egy polinom időigényű Turinggéppel.

Eldöntési problémák polinom idejű visszavezetése: Legyen $L_1 \subseteq \Sigma^*$ és $L_2 \subseteq \Delta^*$ két eldöntési probléma. L_1 polinom időben visszavezethető L_2 -re $(L_1 \leq_p L_2)$, ha $L_1 \leq L_2$ és a visszavezetésben használt f függvény polinom időben kiszámítható.

Tétel: Legyen L_1 és L_2 két probléma úgy, hogy $L_1 \leq_p L_2$. Ha L_2

- 1. **P**-beli, akkor L_1 is **P**-beli.
- 2. **NP**-beli, akkor L_1 is **NP**-beli.

 \mathbf{NP} -teljes probléma: Legyen L egy probléma. Azt mondjuk, hogy L \mathbf{NP} -teljes, ha

- 1. **NP**-beli, és
- 2. minden további \mathbf{NP} -beli probléma polinom időben visszavezethető L-re.

Tétel: Legyen L egy **NP**-teljes probléma. Ha $L \in \mathbf{P}$, akkor $\mathbf{P} = \mathbf{NP}$.

Megjegyzés: Jelenleg NEM tudunk P-beli NP-teljes problémáról!!!

Tétel: Legyen L_1 egy **NP**-teljes, L_2 pedig **NP**-beli probléma. Ha $L_1 \leq_p L_2$, akkor L_2 is **NP**-teljes.

Cooke tétele: Sat NP-teljes.

Legyen $k \ge 1$. kSat = { $\langle \phi \rangle \mid \phi \text{ minden tagjában } k \text{ literál van.}}$

Tétel: 3SAT **NP**-teljes, ugyanis SAT \leq_p 3SAT.

TELJES RÉSZGRÁF = $\{\langle G,k\rangle\mid G \text{ } véges \text{ } gráf,k\geq 1, \text{ } G-nek \exists \text{ } k \text{ } csúcsú \text{ } részgráfja\}$. Tehát a TELJES RÉSZGRÁF azon G és k párokat tartalmazza, megfelelő ábécé feletti szavakban elkódolva, melyekre igaz,

hogy G-ben van k csúcsú teljes részgráf, azaz olyan részgráf, melyben bármely két csúcs között van él.

TELJES RÉSZGRÁF = $\{\langle G, k \rangle \mid G \text{ véges } gráf, k \geq 1, G-nek \exists k \text{ csúcsú } részgráfja\}$. Tehát a TELJES RÉSZGRÁF azon G és k párokat tartalmazza, megfelelő ábécé feletti szavakban elkódolva, melyekre igaz, hogy G-ben van k csúcsú teljes részgráf, azaz olyan részgráf, melyben bármely két csúcs között van él.

FÜGGETLEN CSÚCSHALMAZ = $\{\langle G, k \rangle \mid G \text{ véges } gráf, k \geq 1, G-nek \exists k \text{ elemű } független \text{ csúcshalmaza} \}$. Vagyis a FÜGGETLEN CSÚCSHALMAZ azon G és k párokat tartalmazza, melyekre igaz, hogy G-ben van k olyan csúcs, melyek közül egyik sincs összekötve a másikkal.

```
 \begin{cases} \text{Csúcslefedés} = \\ \left\{ \langle G, k \rangle \mid \begin{array}{l} G \text{ véges } gráf, k \geq 1, \ G-nek \ van \ olyan \ k \ elem \tilde{u} \ csúcshalmaza, \\ mely \ tartalmazza \ G \ minden \ élének \ legalább \ 1 \ végpontját. \\ \end{cases} \right\}.
```

Teljes részgráf, Független csúcshalmaz és Csúcslefedés **NP**-teljesek (Teljes részgráf \leq_p Független csúcshalmaz \leq_p Csúcslefedés).

```
 \begin{array}{l} \text{Utazóügynök} = \\ \left\{ \langle G,k \rangle \mid \begin{array}{l} G \text{ véges irányítatlan gráf, az éleken egy - egy pozitív egész súllyal és} \\ van G - ben legfeljebb k összsúlyú Hamilton kör \end{array} \right\}. \end{array}
```

Tétel: Az UTAZÓÜGYNÖK probléma NP-teljes.

2.4.3 Tárbonyolultság

A tárbonyolultságot egy speciális, úgynevezett offline Turing-gépen vizsgáljuk.

Off-line Turing-gép: Offline Turing-gépnek nevezünk egy olyan többszalagos Turing-gépet, mely a bemenetet tartalmazó szalagot csak olvashatja, a többi, ún. munkaszalagokra pedig írhat is. Az offline Turing-gép tárigényébe csak a munkaszalagokon felhasznált terület számít be.

A továbbiakban Turing-gép alatt minidig offline Turing-gépet értünk. Most definiáljuk a tárbonyolultsággal kapcsolatos nyelvosztályokat.

```
\mathbf{SPACE}(f(n)) = \{L | L \ eld\"{o}nthet\~{o} \ \mathcal{O}(f(n)) \ t\'{a}rig\'{e}ny\~{u} \ determinisztikus \ Turing - g\'{e}ppel \}
```

 $NSPACE(f(n)) = \{L|L \ eldönthet\tilde{o} \ \mathcal{O}(f(n)) \ tárigény\tilde{u} \ nemdeterminisztikus \ Turing - géppel\}$

$$PSPACE = \bigcup_{k>0} SPACE(n^k)$$

 $NPSPACE = \bigcup_{k>0} NSPACE(n^k)$

 $\mathbf{L} = \mathbf{SPACE}(\log_2 n)$

 $NL = NSPACE(\log_2 n)$

Savitch tétele: Ha $f(n) \ge \log n$, akkor NSPACE $(f(n)) \subseteq SPACE(f^2(n))$.