

인공지능 이산수학

데이터 정리와 확률

조준우 metamath@gmail.com

1차원 데이터

• 시험 점수

[45, 26, 57, 67, 40, 30, 55, 60, 95]

→ 획득된 샘플(표본)

샘플은 숫자 하나로 구성

중심의 지표: 평균

- 평균mean
 - 데이터를 모두 더한 후 개수로 나눈 대푯값
 - 가장 많이 사용
 - 이상치에 민감

$$\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_1 + x_2 + \dots + x_n$$

중심의 지표: 중앙값

- 중앙값median
 - 데이터를 크기 순서로 나열한 후 가장 가운데 있는 값

```
45, 26, 57, 67, 40, 30, 55, 60, 95 

26, 30, 40, 45, 55, 57, 60, 67, 95 

정렬
```

퍼짐의 지표: 분산과 표준편차

 $\sum_{\log \partial \mathbf{x}}$

- 분산variance
 - 평균으로 부터 퍼짐의 정도를 숫자로 표현

scores1 = [74 77 94 97 97 39 51 66 42 88] mean=72.5 scores2 = [51 88 89 73 74 67 87 75 63 58] mean=72.5

분산의 그림 표현

- 분산variance
 - 평균으로 부터 퍼짐의 정도를 한변으로 하는 사각형의 평균 넓이

분산
$$s^2 = \frac{1}{n} \sum_{i=1}^{n} (x_i - \bar{x})^2$$

분산
$$s^2 = \frac{1}{n} \sum_{i=1}^n (x_i - \bar{x})^2$$
 표준편차standard deviation $s = \sqrt{\frac{1}{n} \sum_{i=1}^n (x_i - \bar{x})^2}$

히스토그락

• 데이터를 계급으로 나눠 계급에 해당하는 빈도수(도수)를 막대그래프로 그린 그래프

상자그림Box Plot

2차원 데이터

- $\frac{\sum}{\log \partial \mathbf{x}}$
- 키데이터: [170, 155, 175, 182, 171, 188, 165, 167, 175, 183] (cm)
- 몸무게: [65, 59, 68, 78, 62, 85, 63, 58, 70, 98] (kg)
- 신체 지수

키 데이터, 몸무게 데이터를 열 방향으로

X=[[170, 65 155, 59 175, 68 182, 78 171, 62 188, 85 165, 63 167, 58

175, 70

183, 98]]

평균과 분산


```
X=[[170, 65
               키와 몸무게의 평균?
   155, 59
   175, 68
   182, 78
   171, 62
   188, 85
   165, 63
   167, 58
   175, 70
   183, 98]]
키 평균 몸무게 평균
키 분산 몸무게 분산
```


공부사

cov_corr.gsheet

• 공분산covariance

- 두 평균으로 부터 퍼짐의 정도를 한변으로 하는 사각형의 평균 넓이
- 양수: 두 데이터는 양의 직선관계, X 증가 $\rightarrow Y$ 증가, X 감소 $\rightarrow Y$ 감소
- 음수: 두 데이터는 음의 직선관계, X 증가 $\rightarrow Y$ 감소, X 감소 $\rightarrow Y$ 증가
- 거의 0: 직선의 관계가 없음
- 공분산이 크면 직선의 관계가 더 강한가?

공분산
$$s_{XY} = \frac{1}{n} \sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y})$$

분산
$$s^2 = \frac{1}{n} \sum_{i=1}^{n} (x_i - \bar{x})^2$$

상관계수

- 상관계수correlation coefficient
 - 두 변수의 단위에 관계없이 상관성을 나타내는 지표
 - 1에 가까우면: 두 데이터는 양의 상관관계, X 증가 $\rightarrow Y$ 증가, X 감소 $\rightarrow Y$ 감소
 - -1에 가까우면: 두 데이터는 음의 상관관계, X 증가 $\rightarrow Y$ 감소, X 감소 $\rightarrow Y$ 증가
 - 거의 0: 직선의 관계가 없음

$$r_{XY} = \frac{s_{XY}}{s_X s_Y}$$

$$-1 \le r_{XY} \le 1$$

상과계수

• 두 샘플 편차 벡터 사이각의 코사인 값

$$\mathbf{a} \cdot \mathbf{b} = |\mathbf{a}| |\mathbf{b}| \cos \theta$$

$$\cos\theta = \frac{\mathbf{a} \cdot \mathbf{b}}{|\mathbf{a}||\mathbf{b}|}$$

$$\cos\theta = \frac{\sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y})}{\sqrt{\sum_{i=1}^{n} (x_i - \bar{x})^2} \sqrt{\sum_{i=1}^{n} (y_i - \bar{y})^2}}$$

- 줄세우기
 - a, b, c, d에서 두 개를 골라 줄 세우기
 - (a,b),(a,c),(a,d)
 - (b,a),(b,c),(b,d)
 - (c,a),(c,b),(c,d)
 - (d,a),(d,b),(d,c)

a, b, c, d 네 개 중 하나

 $4 \times 3 = \frac{4 \times 3 \times 2 \times 1}{2 \times 1} = \frac{4!}{2!} = \frac{4!}{(4-2)!}$

a, b, c, d중 하나를 제외한 세 개 중 하나

$$P(n,r) = \frac{n!}{(m-r)!}$$

 $P(n,r) = \frac{n!}{(n-r)!} \qquad n: 음이 아닌 정수, r: 0 \le r \le n$

순열

• ABCDEFG의 순열 중 AB 문자열이 포함된 것은 모두 몇 개?

ABCDEFG

문자 하나로 보면 여섯 개 문자를 배열하는 것으로 6!

조합

- 선택하기
 - a, b, c, d에서 두 개를 선택하기
 - (a,b),(a,c),(a,d)
 - (b,a),(b,c),(b,d)
 - (c,a),(c,b),(c,d)
 - (d,a),(d,b),(d,c)
 - 순열에서 같은 요소가 있는 선택들이 하나로 줄어 버림
 - 2!개가 한 개로!

$$\binom{n}{r} = \frac{n!}{(n-r)!} \div r! = \frac{n!}{r!(n-r)!}$$
 n: 음이 아닌 정수, $r: 0 \le r \le n$

조합

• 남학생 5명, 여학생 7명이 지원한 선발에서 남학생 3명, 여학생 3명 뽑는 방법 수

$$\binom{5}{3} \times \binom{7}{3} = \frac{5!}{(5-3)! \, 3!} \times \frac{7!}{(7-3)! \, 3!} = 350$$

확률의 정의

• 수학적 확률

- 어떤 시행에서 사건 A 가 일어날 가능성을 수로 나타낸 것: P(A)
- 표본공간 Ω 에서 사건 A 가 일어날 수학적 확률
 - 표본공간 Ω 인 어떤 시행에서 각 결과가 일어날 가능성이 모두 같은 정도로 기대될 때

•
$$P(A) = \frac{n(A)}{n(\Omega)}$$

• 통계적 확률

- 일어날 가능성이 같은 정도로 기대될 수 없을 때
- 같은 시행을 n 번 반복할 때 사건 A 가 일어난 횟수를 r_n
- 시행 횟수 n 이 한없이 커짐에 따라 $\frac{r_n}{n}$ 이 일정한 값 P 에 가까워 지면
- P 는 사건 A 의 통계적 확률

확률은 면적

• 동전을 던지는 표본공간에서

$$P(\{\}) = 0$$
 $P(\Omega) = 1$
 $P(\{H\}) = 0.3$ $P(\{T\}) = 0.7$

- 두 사건 *A*, *B*에 대해
- 결합확률Joint Probability: 두 사건이 동시에 일어날 확률 P(A, B)
- 조건부확률Conditional Probability: 사건 A가 일어났을 때 사건B가 일어날 확률 P(B|A)

$$P(B|A) = \frac{P(A,B)}{P(A)}$$

A: 홈런 30개 이상 12번 P(A) = 12/20

B: 도루 30개 이상 3번

 $A \cap B$: 30,30 이상 2번 P(A,B) = 2/20

- 두 사건 *A*, *B*에 대해
- 결합확률Joint Probability: 두 사건이 동시에 일어날 확률 P(A, B)
- 조건부확률Conditional Probability: 사건 A가 일어났을 때 사건B가 일어날 확률 P(B|A)

$$P(B|A) = \frac{P(A,B)}{P(A)}$$
 4: 홈런 30개 이상 12번 $P(A) = 12/20$ B: 도루 30개 이상 3번 $A \cap B$: 30,30 이상 2번 $P(A,B) = 2/20$ 홈런 30개 이상 쳤을 때 도루 30개 이상할 확률 $P(B|A) = 2/12$, 분자 분모를 20으로 나누면 —

- P(남학생,중국어)=45/100
- P(남학생|중국어)=45/70

	중국어	일본어
남학생 수	45	15
여학생 수	25	15

• P(남학생, 중국어)=45/100

• P(남학생|중국어)=45/70

확률변수: 이산 확률변수

 $X(\boxtimes) = 5$

 $X(\square) = 6$

 $Z(\boxtimes) = 0$

 $Z(\square) = 1$

- 표본공간의 샘플에 숫자를 할당하는 함수
- 이산 확률변수 $X: \Omega = \{ \Box, \Box, \Box, \Box, \Box, \Box \} \rightarrow \mathbb{R}$

우리가 관심있는 표본sample들
이 모여 있는 공간
$$\omega_1$$
 ω_2 ω_5 ω_4 ω_6 ω_3

$$X(\square) = 1$$
 $Y(\square) = 1$ $Z(\square) = 0$
 $X(\square) = 2$ $Y(\square) = 0$ $Z(\square) = 0$
 $X(\square) = 3$ $Y(\square) = 1$ $Z(\square) = 1$
 $X(\square) = 4$ $Y(\square) = 0$ $Z(\square) = 0$

 $Y(\boxtimes) = 1$

 $Y(\square) = 0$

확률분포

- 확률변수 X가 가질 수 있는 값과 확률의 대응 관계
 - 다시 말해 X가 가질 수 있는 값에 확률이 얼마나 할당되었는가를 나타낸 확률의 펼쳐짐 정도
 - P(X = x): 확률변수 X가 x값을 가질 확률
- 이삿 확률변수

확률 질량함수

• 이산 확률변수의 다른 예

기댓값Expected Value

• 평균

-N개를 다 더해서 N으로 나눔

상금(원)	0	10,000	30,000	50,000	합계
행운권 수	872	100	20	8	1,000

- 행운권 한 장 당 평균 상금: 총 상금/행운권 수

$$\frac{0 \times 872 + 10000 \times 100 + 30000 \times 20 + 50000 \times 8}{1000} = 2000$$

$$0 \times \frac{872}{1000} + 10000 \times \frac{100}{1000} + 30000 \times \frac{20}{1000} + 50000 \times \frac{8}{1000} = 2000$$

확률변수의 기댓값

- 평균
 - 행운권 한 장 당 평균 상금: 총 상금/행운권 수

$$E[X] = \sum_{i=1}^{n} x_i p_i$$

$$0 \times \frac{872}{1000} + 10000 \times \frac{100}{1000} + 30000 \times \frac{20}{1000} + 50000 \times \frac{8}{1000} = 2000$$

확률변수의 기댓값, 분산, 표준편차

• 기댓값(평균)

$$E[X] = \sum_{i=1}^{N} x_i p_i$$

• 분산variance: 편차 제곱의 평균

$$Var[X] = E[(X - E[X])^2] = \sum_{i=1}^{N} (x_i - E[X])^2 p_i$$

• 표준편차standard deviation $\sigma(X) = \sqrt{Var[X]}$

분산: 제곱의 평균 – 평균의 제곱

 $=E[X^2]-\mathbb{E}[X]^2$

$$Var[X] = \sum_{i=1}^{N} (x_i - E[X])^2 p_i$$

$$= \sum_{i=1}^{N} (x_i^2 - 2E[X]x_i + E[X]^2) p_i$$

$$= \sum_{i=1}^{N} x_i^2 p_i - 2E[X] \sum_{i=1}^{N} x_i p_i + \mathbb{E}[X]^2 \sum_{i=1}^{N} p_i$$

$$= E[X^2] - 2E[X]E[X] + E[X]^2$$

이산확률분포: 베르누이 분포 (log $\partial \mathbf{x}$

- 베르누이 분포Bernoulli distribution
 - 0 또는 1을 값으로 가지는 바이너리binary 확률변수 X에 대한 분포. 즉 $x \in \{0,1\}$
 - 예: 동전 던지기, 동전의 앞면(Head)이 나오면 x=1, 뒷면(Tail)이 나오면 x=0
- 확률질량함수
 - $-x \in \{0,1\}$ 이므로 x=1일 확률은 $p(x=1|\mu)=\mu, x=0$ 일 확률은 $p(x=0|\mu)=1-\mu$ $f_X(x|\mu)=\mu^x(1-\mu)^{1-x}$

바이너리 확률변수에 값을 할당하게 하는 행위 - 베르누이 시행bernoulli trial, bernoulli experiment

이산확률분포: 멀티누이 분포

- 멀티누이Multinoulli distribution, Categorical distribution
 - 다항변수multinomial variables:이진 변수의 일반화로 이진 변수가 여러 개가 모인 벡터 변수 X에 대한 확률분포
 - 예: 주사위 던지기, \Box : $\mathbf{x} = (1,0,0,0,0,0)^{\mathrm{T}}$, \Box : $\mathbf{x} = (0,1,0,0,0,0)^{\mathrm{T}}$, \cdots
 - 제약조건: $\sum_{k=1}^{K} x_k = 1$
- 확률질량함수

$$f_X(\mathbf{x}|\mathbf{\mu}) = \prod_{k=1}^K \mu_k^{x_k}$$
 제약조건
$$\mathbf{\mu} = (\mu_1, \dots, \mu_K)^T \quad \mu_k \ge 0 \quad \sum_k \mu_k = 1$$

- 파라미터도 벡터
- -k번째 자리가 1인 벡터변수에 할당된 확률은 k번째 자리의 μ_k

확률벡터

• 다변량 확률변수: 확률변수 여러 개 모임, 숫자의 모임 → 벡터

확률변수 추출된 샘플 벡터 확률변수 추출된 샘플벡터 확률변수 $\mathbf{z} = \begin{bmatrix} z_1 \\ z_2 \\ \vdots \end{bmatrix} = \begin{bmatrix} x_1 & y_1 \\ x_2 & y_2 \\ \vdots & \vdots \end{bmatrix}$ 추출된 샘플→행렬

결합확률분포

- 결합확률분포joint probability distribution
 - 확률변수 X, Y를 동시에 고려한 확률분포
 - 확률 질량함수는 이변수 스칼라 함수이며 0 이상의 값을 함숫값으로 가지며 모두 더해서 1이 됨

확률변수 샘플 결합확률질량함수
$$XY = \begin{bmatrix} X \\ Y \end{bmatrix}$$
 $xy = \{(x_i, y_j) | i = 1, 2, ...; j = 1, 2, ...\}$ $f_{XY}(XY) = P(X = x_i, Y = y_j)$

결합확률분포 예

• 결합확률분포joint probability distribution

$f_{XY}(x,y)$		X			f (a)
		5	6	7	$f_{Y}(y)$
Y	8	0	0.4	0.1	0.5
	9	0.3	0	0.2	0.5
f_X ((x)	0.3	0.4	0.3	1

https://en.wikipedia.org/wiki/Covariance

$$(5, 8)$$
 $f_{XY}(5, 8) = 0$

$$(5,9) f_{XY}(5,9) = 0.3$$

(6, 8)
$$f_{XY}(6,8) = 0.4$$

$$(6,9)$$
 $f_{XY}(6,9)=0$

$$(7, 8)$$
 $f_{XY}(7,8) = 0.1$

$$(7,9)$$
 $f_{XY}(7,9) = 0.2$

●: 베르누이 분포추정

$$P(x = \{x = 1\}) = 1$$

$$P(x = 1) = ?$$
 $P(x = 1) = ?$

●: 멀티누이 분포추정

$$P(x = x)$$

$$\mathbf{y} = (0,1,0) = 3$$

$$P(x = \int_{0}^{\infty} dx)$$

$$P(x = 0.1,0) = P(x = 0.1,0) = P(x = 0.1,0) = P(x = 0.1,0)$$

