

#### AKADEMIA GÓRNICZO-HUTNICZA IM. STANISŁAWA STASZICA W KRAKOWIE

## Sensory w Aplikacjach Wbudowanych

## Kondycjonowanie sygnału z czujników

dr hab. inż. Cezary Worek, prof. AGH

(na bazie materiałów dra inż. Wojciech Maziarz)

Wydział IET, Instytut Elektroniki

Kontakt: worek@agh.edu.pl



## Kondycjonowanie sygnału z czujnika

Sensory na ogół nie są podłączane bezpośrednio do układu rejestrującego, gdyż sygnał może być za słaby, zaszumiony lub niekompatybilny. Sygnał sensorowy musi być poddany **kondycjonowaniu**.

Znaczna większość sensorów jest typu rezystancyjnego, gdzie wartość rezystancji może się zmieniać w przedziale od omów do megaomów.

## Przykład

termistor: zakres rezystancji  $100 \Omega - 10 M\Omega$ 

W wielu przypadkach zmiany rezystancji są małe (platynowe czujniki RTD mają TWR ok. 0.385%/°C, czujniki tensometryczne wykazują często zmianę rezystancji poniżej 1% w całym zakresie pomiarowym).

Stąd konieczność pomiaru małych zmian rezystancji jest czasami krytyczna.



## Kondycjonowanie sygnału z czujnika

Sygnał wyjściowy z czujników:

- Rezystancyjny
- Indukcyjny
- Pojemnościowy
- Napięciowy,
- Prądowy
- Ładunkowy
- . . .

Ogromna różnorodność układów kondycjonujących.

Należy dopasowywać je do konkretnego czujnika i zastosowania, biorąc pod uwagę własności czujników oraz układów pośredniczących.



## Problem 1

#### Dane:

- rezystancyjny czujnik gazu
- R warstwy w powietrzu =10-100 k $\Omega$
- w gazie redukującym R spada do 1 k $\Omega$
- w gazie utleniającym R wzrasta do 1  $\mathrm{M}\Omega$
- zależność R od stężenia gazu jest nieliniowa
- istnieje wpływ napięcia zasilania, temperatury otoczenia, wilgotności, prędkości przepływu, innych gazów itd.

## Jak zmierzyć R?

- jakiego przyrządu pomiarowego użyć?
- jakiego układu, w jakiej konfiguracji?
- ew. jak kontrolować temperaturę pracy?







## Problem 2

#### Dane:

- rezystancyjny czujnik temperatury (RTD) Pt100
- R czujnika =  $100 \Omega dla 0^{\circ}C$
- zakres temperatur pracy -200°C (18,48  $\Omega$ ) 850°C (390,48  $\Omega$ )
- czujnik prawie liniowy (jest tabela, są wzory: wielomiany)
- dodatni TWR (0.00385  $\Omega/1^{\circ}$ C)

## Jak zmierzyć R?

- jakiego przyrządu pomiarowego użyć?
- jakiego układu, w jakiej konfiguracji?





## Problem 3

#### Dane:

- Rezystancyjny czujnik naprężeń (tensometr)
- R czujnika =  $120 \Omega dla 20^{\circ}C$
- zakres zmian R dla całego zakresu pomiarowego 2.2%
- liniowa zależność R od naprężeń
- istnieje wpływ temperatury

## Jak zmierzyć R?

- jakiego przyrządu pomiarowego użyć?
- jakiego układu, w jakiej konfiguracji?





http://www.kyowa-ei.com



 $V_0 = \frac{V_Z R_L}{R_s + R_r}$ Sygnał użyteczny dla układu z dzielnikiem napięcia jest równy Czułość związana ze zmianą sygnału użytecznego przy zmianie rezystancji

 $\frac{dV_0}{dR_S} = \frac{-V_Z R_L}{(R_S + R_I)^2}$  Maksymalną czułość uzyskuje się dla  $R_L = R_S$ . sensora

Dzielnik napięcia utworzony z sensora o rezystancji R<sub>s</sub> połączonego szeregowo z rezystorem obciążenia R<sub>1</sub>.



Układ korzystny we wskaźnikach przekroczenia wartości progowej.



Zależność sygnału użytecznego od R<sub>S</sub>/R<sub>L</sub>. Dobrą czułość uzyskuje się dla dużego zakresu R<sub>S</sub> (maks. czułość dla R<sub>S</sub> = R<sub>I</sub>). Dla dużego R<sub>S</sub>/R<sub>I</sub> mała czułość.



## Dzielnik napięcia z wtórnikiem napięciowym

## Zalety:

- prostota,
- wyjście ilorazowe (dla konwersji A/C i użycia U<sub>DD</sub> jako Uref)
- możliwość wykrycia błędu sensora (przerwa)

## Wady:

- słabe tłumienie sygnału wspólnego
- napięcie wyjściowe V<sub>OUT</sub> jest nieliniową funkcją

## R<sub>SEN</sub>!

## Przykłady czujników/zastosowania:

Termistor, RTD, czujnik magnetorezystancyjny







$$V_0 = -\frac{V_Z R_S}{R_L} \qquad \frac{dV_0}{dR_S} = \frac{-V_Z}{R_L}$$

Sensor o rezystancji R<sub>S</sub> w obwodzie napięciowego sprzężenia zwrotnego wzmacniacza odwracającego fazę.

W takim pomiarze zwanym **potencjometrycznym** (prąd płynący przez sensor nie zależy od  $R_S$ ), czułość nie zależy od rezystancji bazowej  $R_S$ , a jej wartość można regulować dobierając  $R_I$ .





W obwodzie sprzężenia zwrotnego wzmacniacza odwracającego fazę umieszczony rezystor obciążenia R<sub>L</sub>.

$$V_0 = -\frac{V_Z R_L}{R_S} \qquad \frac{dV_0}{dR_S} = \frac{V_Z R_L}{R_S^2}$$

Na rezystancji  $R_S$  występuje stałe napięcie równe  $V_Z$  (pomiar **potencjostatyczny**). Napięcie wyjściowe jest iloczynem  $R_L$  i zmieniającego się prądu  $V_Z/R_L$ . Czułość pomiaru zależy od  $R_S$ .





Źródło prądowe w postaci lustra prądowego (układ Wilsona)

Prąd wyjściowy i<sub>out</sub> płynący przez sterowany tranzystor T<sub>1</sub> jest równy prądowi wejściowemu i<sub>in</sub>, który zależy od napięcia V<sub>1</sub> i rezystancji R<sub>1</sub>. Tranzystor T<sub>2</sub> może ten prąd wielokrotnie zwiększyć.



Sensor zasilany ze źródła prądowego.

Wtórnik napięciowy spolaryzowany diodą Zenera wysterowuje tranzystor, który wytwarza prąd niezależny od R<sub>S</sub>.

$$V_0 = \frac{V_Z R_S}{R_L} \qquad \frac{dV_0}{dR_S} = \frac{V_Z}{R_L}$$



Czułość nie zależy od R<sub>S</sub>.



## Układy ilorazowe

Tego typu układy stosuje się wtedy, gdy źródła błędów mają charakter multiplikatywny (niestabilność zasilania, zmiany temp., efekty starzeniowe), a nie addytywny (np. szum termiczny). Przykładowo można wykorzystać dwa sensory, z których jeden jest aktywny, a drugi pełni rolę sensora odniesienia.



$$V_{01} = V_N = -V_Z \frac{R}{R_S}$$

$$V_{02} = V_D = -V_Z \frac{R}{R_0}$$

Z kolei dzielnik analogowy wykonuje operację dzielenia dając sygnał wyjściowy niezależny zarówno od napięcia zasilania  $V_Z$ , jak i wzmocnienia wzmacniacza.

$$V_0 = k \frac{V_N}{V_D} = k \frac{R_0}{R_S}$$

Operacja dzielenia może być realizowana cyfrowo.



## Układy ilorazowe - przykłady

Typowy przykład - sensory w układzie mostka z konwersją sygnału w przetworniku ADC. Napięcie zasilania mostka oraz przetwornika pochodzą z tego samego źródła. Zmiana napięcia zasilania nie wpływa na sygnał wyjściowy. Do dokładnych pomiarów nie jest zatem konieczne źródło zasilania o wysokiej stabilności.



W układzie ilorazowym kod wyjściowy D<sub>OUT</sub> na wyjściu przetwornika jest reprezentacją cyfrową stosunku sygnału wejściowego przetwornika AIN do sygnału odniesienia V<sub>REF</sub> a zatem wahania nap. zasilania nie wpływają na wynik pomiaru.

W prezentowanym układzie wykorzystuje się dodatkowe źródło nap. odniesienia REF niezależne od V<sub>DD</sub> i układ przestaje być ilorazowy. Tego typu rozwiązania stosuje się w przypadku dużej dynamiki zmian napięcia AIN.



Typowy układ to mostek rezystancyjny, gdzie w jednym z ramion umieszczony jest sensor (piezorezystor, termistor). Rezystancje mogą być również zastąpione pojemnościami lub indukcyjnościami.



$$V_{Wy} = \left(\frac{R_{I}}{R_{I} + R_{2}} - \frac{R_{3}}{R_{3} + R_{S}}\right) V_{C}$$

Warunek równowagi:  $\frac{R_1}{R_2} = \frac{R_3}{R_S}$ 

Maksymalną czułość pomiaru uzyskuje się dla  $R_1 = R_2$  i  $R_3 = R_S$ .

Ogólnie napięcie wyjściowe jest nieliniową funkcją niezrównoważenia  $\Delta R = R_S - R$ .

$$\frac{\delta V_{Wy}}{V_C} = \frac{R_3 \Delta R}{\left(R_3 + R + \Delta R\right)^2}$$



Wzmacniacz w układzie mostka aktywnego.

Wzmacniacz wytwarza napięcie równe i przeciwnego znaku niż zmiana powodowana  $\Delta R$ . Napięcie to jest liniowe w funkcji  $\Delta R$  (linearyzacja wyjścia).





Wzmacniacz w układzie mostka z pływającym źródłem zasilania



$$V_{wy} \approx n \frac{V_C}{4} \frac{\Delta R_x}{R_x}$$

## Zalety:

- liniowa zależność U(R) w pewnym zakresie zmienności R
- wyjście ilorazowe (konwersja A/C
- + U<sub>DD</sub> jako Uref)

### Wady:

- cena
- wymaga precyzyjnych R

**Zastosowanie:** termistor, RTD, anemometr



Mostek może pracować w układzie zrównoważonym (na wyjściu istnieje wzmacniacz błędu, który poprzez sprzężenie zwrotne przywraca stan równowagi) lub niezrównoważonym, który jest częściej stosowany.



WO na wyjściu mostka niezrównoważonego (wpływ R<sub>F</sub> i prądu polaryzacji na równowagę). Trudno uzyskać odp. wzm. i jednocześnie duże CMRR.

## Zalety:

- prostota, dobre tłumienie CMRR
- wyjście ilorazowe (konwersja A/C + U<sub>DD</sub> jako Uref)
- możliwość wykrycia błędu sensora (przerwa)

#### Wady:

- wzmocnienie jest funkcją Rs
- •Należy stosować uC+ program
- •Napięcie U<sub>wv</sub> nieliniową funkcją Rs

Przykład: cz. ciśnienia, tensometr, cz. magnetorez.





Wyjście nieliniowe, korekcja po stronie cyfrowej

> Stosując na wyjściu wzmacniacz pomiarowy unika się rozrównoważenia mostka przy regulacji wzmocnienia (R<sub>G</sub>), jednocześnie uzyskuje się duży CMRR (wsp. tłumienia sygnału sumacyjnego). 19



### Wzmacniacz pomiarowy (instrumentation amplifier)

- szczególna postać wzmacniacza różnicowego o regulowanym wzmocnieniu.

Wejścia odizolowane są od wew. sprzężenia zwrotnego.

Impedancja wejściowa rzędu  $10^9 \Omega$  lub większa.

Wzmacniane są sygnały mikrowoltowe z tłumieniem woltowego sygnału sumacyjnego (duży współcz. CMRR w przedziale 70 - 100 dB), co jest szczególnie istotne dla częstotliwości 50 Hz.



$$k = \frac{R_4}{R_3} \left( 1 + \frac{2R_2}{R_1} \right)$$



## Przykład: Analog Devices AMP04

Precision Single Supply Instrumentation Amplifier

- •Single Supply Operation
- •Low Supply Current: 700 μA Max
- •Wide Gain Range: 1 to 1000
- •Low Offset Voltage: 150 μV Max
- •Zero-In/Zero-Out
- •Single-Resistor Gain Set
- •8-Lead Mini-DIP and SO Packages



8-Lead Narrow-Body SO (S Suffix)



SO-8 TANI! 14,20 zł (slawmir.com.pl)

https://slawmir.com.pl/ukl-scalony-amp04-so8-p-1957069.html

ale 1Ku List Price \$7,93 na:

https://www.analog.com/en/products/amp04.html#product-samplebuy



## Analog Devices AMP04 – zastosowanie do czujnika RTD





## Analog Devices AMP04 — wzmacniacz o programowanym wzmocnieniu (PGA)





## Analog Devices AMP04 – odbiornik w pętli pomiarowej 4-20 mA

- transformacja I → U
- sygnał 4-20 mA płynie przez  $R=100 \Omega$  (sense resistor)
- różnicowe wzmacnianie napięcia przez AMP04
- offset 4mA usuwany przez układ przesuwania poziomu (op177)
- na wyjściu sygnał 0-1.6 V





## Problem 1 – propozycja rozwiązania

## Rezystancyjny czujnik gazu TGS 813



 $R_1$  (w nocie RL) dobrane z uwzgl. *Power of Sensitivity body (Ps):*  $Ps=Vc2\times Rs/(Rs+RL)2$ 



## Problem 1 – propozycja rozwiązania

## Rezystancyjny czujnik gazu





## Problem 2 – propozycja rozwiązania

## Rezystancyjny czujnik temperatury (RTD) Pt100

- należy zamienić R na U
- prąd pobudzenia stabilny i nie za duży (< 1mA), aby uniknąć błędu pomiarowego od samopodgrzewania
- dla -200°C błąd pomiaru nawet 5%



FIGURE 1: Callendar-Van Dusen Equation Comparison; Error Caused by Using Equation (2) for Temperatures Below Zero



## Problem 2 – propozycja rozwiązania

Dla wyższej dokładności stosujemy równanie Callendar-Van Dusena

 $R_{RTD(TA)} = R_{RTD(T0)} [1 + aT_A + bT_A^2 + cT_A^3 (100 - T_A)], gdzie$ 

 $R_{RTD(TA)}$  to rezystancja RTD w temp. pokojowej;

R<sub>RTD(T0)</sub> to rezystancja RTD w temp. 0°C; a, b, c - stałe podawane przez producenta

 $A_1 i A_2 + REF5025 + 5xR$ tworzą źródło referencyjne 1mA  $A_3$ 

- mierzy napięcie na RTD,
- likwiduje wpływ R doprowadzeń :  $R_{W1}$ ,  $R_{W2}$  i  $R_{W3}$   $\mathbf{A}_{4}$
- wzmacnia sygnał
- filtruje go
- dostarcza sygnału dla ADC (ADS8634)



Figure 1 This implementation of an RTD circuit uses four amplifiers, a voltage reference, an ADC, a microcontroller, and a PT100 RTD.



## Problem 3 – propozycja rozwiązania

## Rezystancyjny czujnik naprężeń (tensometr)

#### STRAIN-GAGE SENSOR



In this loop-powered strain-gage sensor application, a 50-mV full-scale (FS) bridge output is amplified and calibrated for a 4–20-mA transmitter output. Power is furnished by the remote loop supply of 12 to 36 V.



## Wzmacniacz nieodwracający



#### Zalety:

- duża imp. wejściowa
- niski prąd polaryzacji (wzm. CMOS)
- dodatnie wzmocnienie
- prostota

#### Wady:

- Ograniczony zakres Uwy (Vsen do Vout)
- Zniekształcenia stopnia wejściowego
- Wzmacnianie sygnału wspólnego

#### Przykłady czujników/zastosowania:

Termopara, termostos, warstwa piezoelektryka

Wzmacniacz nieodwracający dla czujników o dużej Zwe



**FET Input Op Amp** 

#### Zalety:

- BARDZO duża imp. wejściowa
- BARDZO niski prąd polaryzacji (wzm. CMOS)
- dodatnie wzmocnienie
- prostota

#### Wady:

- Ograniczony zakres Uwy (Vsen do Vout)
- Zniekształcenia stopnia wejściowego
- Wzmacnianie sygnału wspólnego

## Przykłady czujników/zastosowania:

elektroda pH

30



#### Wzmacniacz odwracający



#### Zalety:

- izolacja rezystancyjna od źródła
- możliwy duży zakres U<sub>SEN</sub>
- brak zniekształceń stopnia wejściowego
- prostota

#### Wady:

- Obciążenie rezystancyjne źródła
- Wzmocnienie ujemne
- Wzmacnianie sygnału wspólnego

#### Przykłady czujników/zastosowania:

Termostos, czujnik napięcia

### Wzmacniacz różnicowy



#### Zalety:

- izolacja rezystancyjna od źródła
- możliwy duży zakres U<sub>SEN</sub>
- tłumi CMRR (dobre do czujników zdalnych)
- prostota

#### Wady:

- Obciążenie rezystancyjne źródła
- Zniekształcenia sygnału wejściowego

#### Przykłady czujników/zastosowania:

Zdalna termopara, mostek Wheatstone'a 31



### Wzmacniacz pomiarowy

## Zalety:

- znakomite tłumienie CMRR,
- dobry do czujników zdalnych
- izolacja rezystancyjna od źródła
- wykrywanie uszkodzeń czujnika

### Wady:

- Obciążenie rezystancyjne źródła
- Cena



## Przykłady czujników/zastosowania:

Zdalna termopara, zdalny RTD (źródło prądu lub dzielnik napięcia – na wyjściu RTD musi być napięcie), mostek Wheatstone'a (czujniki ciśnienia, naprężeń – tensometry)



### Wzmacniacz o regulowanym wzmocnieniu (PGA)

## Zalety:

- pomiar wielu czujników
- wejście CMOS (duże Zwe, mały Ibias)
- cyfrowa kontrola wejścia i wzmocnienia (interfejs SPI)
- Linearyzacja źródeł nieliniowych

## 

#### Wady:

- Zniekształcenia stopnia wejściowego
- Wzmocnienie sygnału wspólnego
- Konieczność użycia uC i firmware

### Przykłady czujników/zastosowania:

Termistor, termostos, warstwa piezoelektryka



## Wzmacniacz prądu

## Zalety:

- dobre tłumienie CMRR
- rezystancyjna izolacja od źródła
- szeroki zakres Uwe

## Wady:

- Rezystancyjne obciążenie wejścia
- Zniekształcenia w stopniu wejściowym



$$R_1 << R_2$$

### Przykłady czujników/zastosowania:

Czujnik prądu (AC), czujnik napięcia VDD (konieczny Rszeregowy)



## Wzmacniacz transimpedancyjny

Zamiana I<sub>SEN</sub> na U<sub>OUT</sub>

### Zalety:

- dobre dopasowanie do źródła sygnału
- prostota



### Wady:

- układ można/należy stabilizować
- C1 konieczny dla dużych pojemności źródła

### Przykłady czujników/zastosowania:

Detektor dymu IR, fotodioda, fototranzystor



### Wzmacniacz logarytmujący

$$U_{OUT} \sim ln(I_{SEN})$$

- D1B kompensuje zmiany temperatury
- Jeśli źródło ma obie polaryzacje, należy dodać przeciwsobnie diodę || do D1A
- Szeroki zakres dynamiczny prądów



D<sub>1A</sub> and D<sub>1B</sub> are a matched pair in the same package.

## Przykłady czujników/zastosowania:

Fotodioda



# Kondycjonowanie sensorów z wyjściem ładunkowym

Stosowany w przypadku sensorów wysokoimpedancyjnych, takich jak piezoelektryczne.



#### Zalety:

- Wysoki CMRR
- Wyjście stosunkowe (z ADC wykorzystującym VDD jako Uref)
- Detekcja zwarcia/rozwarcia czujnika

#### Wady:

Straty mocy Konieczne użycie sygnału AC

Są to wzmacniacze AC z częstotliwościami odcięcia: górną  $f_2=1/(2\pi R_2 C_2)$  i dolną  $f_1=1/(2\pi R_1 C_1)$  .



# Kondycjonowanie sensorów z wyjściem ładunkowym





# Kondycjonowanie sensorów z wyjściem pojemnościowym

### Oscylator - f zależna od C



#### Zalety:

Niski koszt Wyjście ilorazowe Łatwe połączenie z μC

Wada:

mała dokładność

#### **Zastosowanie:**

czujnik wilgotności, dotyku, poziomu cieczy



# Kondycjonowanie sensorów z wyjściem pojemnościowym

Układ z pojedynczym całkowaniem prądu

#### Działanie:

- SW1 (sterowany z uC) zwiera napięcie na  $C_{\text{SEN}}$  i rozpoczyna całkowanie
- napięcie Uwy liniowo narasta w czasie
- ullet czas narastania zależy od  $V_{REF}$  i  $R_1$
- po osiągnięciu U=U<sub>REF</sub> sygnał z komparatora wysterowuje MCU



#### Zalety:

możliwość pracy z uC Dokładność zależy od  $V_{REF}$  i  $R_1$ 

Wada: cena

#### **Zastosowanie:**

czujnik wilgotności, dotyku, poziomu cieczy



## Kondycjonowanie - funkcje dodatkowe

### Zabezpieczenie wejść przeciwko:

- ESD (Electrostatic Discharge),
- przepięciom, przetężeniom

### Wykrywanie uszkodzenia czujnika Filtracja:

-Filtry analogowe na wejściu (polepszają pracę ADC, dzięki nim można uniknąć aliasingu, zmniejszyć pasmo i częstotliwość próbkowania → oszczędność mocy obliczeniowej) – typu RC lub aktywne

### Konwersja ADC

Korekcja (błędów, charakterystyk nieliniowych (wielomiany)) **Kalibracja** (sprzętowa, np. rezystor nastawczy lub programowa – firmware) 41



Przykład realizacji układu współpracującego z czujnikami różnego typu:





Dostosowanie poziomów napięcia 0-10 V do 0-3 V



I stopień: WO odwracający, wzmocnienie -1 II stopień: WO odwracający – dopasowanie poziomu sygnału do zakresu 0-3 V i odwrócenie go



### Dostosowanie poziomów napięcia 1-9 V do 0-3 V



$$K = \frac{R77 + P9}{R79} = 0.375$$

- 1. Sygnały napięciowe:
  - (a) 0-10V,
  - (b)  $\pm 10 \text{V}$ ,
  - (c)  $\pm 5V$ ,

#### Sygnały prądowe:

I stopień: WO odwracający i odejmujący - usunięcie (a) 0-20mA, składowej stałej 1 V (konwersja do poziomów -8 – 0 V) (b) 4-20mA. II stopień: WO odwracający – dopasowanie poziomu sygnału do zakresu napięcia wyj. i odwrócenie go



Zamiana sygnału z wyjścia prądowego 4-20 mA na zakres 0,6-3 V



- •I stopień zamiana I/U na R48 odkłada się napięcie 0,4-2 V
- •II stopień: WO nieodwracający dopasowanie poziomu sygnału do zakresu 0,6-3 V



Zamiana sygnału sinusoidalnego na prostokątny



MAX990ESA – detektor przejścia przez 0

Wykorzystany dla sygnałów bez składowej stałej (napięcia 0,7 – 5 V)

Wyjście podane bezpośrednio na wejścia cyfrowe uC.



D1-D4 – zabezpieczenie przeciw ESD

*Ustawienie CMRR:* 

- -zewrzeć L i R.
- -podać 100mV 50Hz na te wejścia
- zminimalizować poziom sygnału Uwyj (pot. P1)

prawa noga – poziom odniesienia







**INA333** (26.69 zł netto w TME):

Low Power, Precision Instrumentation Amplifier Micro-Power (50µA), Zerø-Drift, Rail-to-Rail Out Instrumentation Amplifier (Rev. B)



#### **FEATURES**

- LOW OFFSET VOLTAGE: 25µV (max), G ≥ 100
- LOW DRIFT: 0.1µV/°C, G ≥ 100
- LOW NOISE: 50nV/√Hz, G ≥ 100
- HIGH CMRR: 100dB (min), G ≥ 10
- LOW INPUT BIAS CURRENT: 200pA (max)
- SUPPLY RANGE: +1.8V to +5.5V
- INPUT VOLTAGE: (V-) +0.1V to (V+) -0.1V
- OUTPUT RANGE: (V-) +0.05V to (V+) -0.05V
- LOW QUIESCENT CURRENT: 50μA
- OPERATING TEMPERATURE: -40°C to +125°C
- RFI FILTERED INPUTS
- MSOP-8 AND DFN-8 PACKAGES

#### **APPLICATIONS**

- BRIDGE AMPLIFIERS
- ECG AMPLIFIERS
- PRESSURE SENSORS
- MEDICAL INSTRUMENTATION
- PORTABLE INSTRUMENTATION
- WEIGH SCALES
- THERMOCOUPLE AMPLIFIERS
- RTD SENSOR AMPLIFIERS
- DATA ACQUISITION





Figure 36. ECG Amplifier With Right-Leg Drive

| Table 1. | Commonly-Used Gains and Resisto | or Values |
|----------|---------------------------------|-----------|
|          | R <sub>G</sub> (Ω)              |           |
|          | 645                             |           |

| DESIRED GAIN | R <sub>G</sub> (Ω) | NEAREST 1% R <sub>G</sub> (Ω) |
|--------------|--------------------|-------------------------------|
| 1            | NC <sup>(1)</sup>  | NC                            |
| 2            | 100k               | 100k                          |
| 5            | 25k                | 24.9k                         |
| 10           | 11.1k              | 11k                           |
| 20           | 5.26k              | 5.23k                         |
| 50           | 2.04k              | 2.05                          |
| 100          | 1.01k              | 1k                            |
| 200          | 502.5              | 499                           |
| 500          | 200.4              | 200                           |
| 1000         | 100.1              | 100                           |

<sup>(1)</sup> NC denotes no connection. When using the SPICE model, the simulation will not converge unless a resistor is connected to the R<sub>G</sub> pins; use a very large resistor value.



Figure 34. Providing an Input Common-Mode **Current Path**