Introduction to **Genetic Algorithms**

Main page

Introduction

Biological Background

Search Space

Genetic Algorithm

GA Operators

GA Example (1D func.)

Parameters of GA

GA Example (2D func.)

Selection

Encoding

Crossover and Mutation

GA Example (TSP)

Recommendations

Other Resources

Browser Requirements

FAQ

About

Other tutorials

V. Operators of GA

Overview

As you can see from the genetic algorithm outline, the crossover and mutation are the most important part of the genetic algorithm. The performance is influenced mainly by these two operators. Before we can explain more about crossover and mutation, some information about chromosomes will be given.

Encoding of a Chromosome

The chromosome should in some way contain information about solution which it represents. The most used way of encoding is a binary string. The chromosome then could look like this:

Chromosome 1	1101100100110110
Chromosome 2	1101111000011110

Each chromosome has one binary string. Each bit in this string can represent some characteristic of the solution. Or the whole string can represent a number - this has been used in the basic GA applet.

01.09.2014 22:34 1 von 3

Of course, there are many other ways of encoding. This depends mainly on the solved problem. For example, one can encode directly integer or real numbers, sometimes it is useful to encode some permutations and so on.

Crossover

After we have decided what encoding we will use, we can make a step to crossover. Crossover selects genes from parent chromosomes and creates a new offspring. The simplest way how to do this is to choose randomly some crossover point and everything before this point point copy from a first parent and then everything after a crossover point copy from the second parent.

Crossover can then look like this (| is the crossover point):

Chromosome 1	11011 00100110110
Chromosome 2	11011 11000011110
Offspring 1	11011 11000011110
Offspring 2	11011 00100110110

There are other ways how to make crossover, for example we can choose more crossover points. Crossover can be rather complicated and very depends on encoding of the encoding of chromosome. Specific crossover made for a specific problem can improve performance of the genetic algorithm.

Mutation

After a crossover is performed, mutation take place. This is to prevent falling all solutions in population into a local optimum of solved problem. Mutation changes randomly the new offspring. For binary encoding we can switch a few randomly chosen bits from 1 to 0 or from 0 to 1. Mutation can then be following:

Original offspring 1	1101111000011110
Original offspring 2	1101100100110110
Mutated offspring 1	1100111000011110
Mutated offspring 2	1101101100110110

The mutation depends on the encoding as well as the crossover. For example when we are encoding permutations, mutation could be exchanging two genes.

4 JOL N

2 yon 3 01.09.2014 22:34

 $\underline{\text{(c) Marek Obitko, 1998}}$ - $\underline{\text{Terms of use}}$

3 von 3 01.09.2014 22:34