

Europäisches Patentamt

European Patent Office

Office européen des brevets

(11) EP 0 738 899 A1

(12)

ͺ (,

 \mathbf{e}

EUROPÄISCHE PATENTANMELDUNG

(43) Veröffentlichungstag:

23.10.1996 Patentblatt 1996/43

(21) Anmeldenummer: 95203130.0

(22) Anmeldetag: 04.05.1994

(84) Benannte Vertragsstaaten: CH DE FR GB LI SE

(30) Priorität: 15.05.1993 DE 4316348

(62) Anmeldenummer der früheren Anmeldung nach Art. 76 EPÜ: 94916928.8

(71) Anmelder: Leica AG
CH-9435 Heerbrugg (CH)

(72) Erfinder:

 Ehbets, Hartmut CH-9432 Platz (CH)

Giger, Kurt
 CH-9494 Ruethi (CH)

(51) Int. Cl.⁶: **G01S 7/486**, G01S 7/497

- Bernhard, Heinz
 CH-9035 Grub (CH)
 Hinderling, Jürg
- Hinderling, Jürg
 CH-9435 Heerbrugg (CH)
- (74) Vertreter: Stamer, Harald, Dipl.-Phys. et al c/o Leica Industrieverwaltung GmbH, Konzernstelle Patente + Marken, Postfach 20 20 35530 Wetzlar (DE)

Bemerkungen:

Diese Anmeldung ist am 19 - 09 - 1995 als Teilanmeldung zu der unter INID-Kode 62 erwähnten Anmeldung eingereicht worden.

(54) Vorrichtung zur Distanzmessung

(57) Vorrichtung zur Distanzmessung mit einem von einem Halbleiterlaser (10) erzeugten sichtbaren Meßstrahlenbündel (11), einem Kollimatorobjektiv (12) zur Kollimation des Meßstrahlenbündels in Richtung der optischen Achse (13) des Kollimatorobjektivs (12), einer Schaltungsanordnung zur Modulation der Meßstrahlung, einem Empfangsobjektiv (15) zur Aufnahme und Abbildung des an einem entfernten Objekt (16) reflektierten Meßstrahlenbündels auf eine Empfangseinrichtung, einer schaltbaren Strahlumlenkeinrichtung (28)

zur Erzeugung einer internen Referenzstrecke zwischen dem Halbleiterlaser (10) und Empfangseinrichtung und einer elektronischen Auswerteeinrichtung (25) zur Ermittlung und Anzeige der zum Objekt (16) gemessenen Distanz. Die Empfangseinrichtung enthält einen Lichtleiter (17') mit nachgeschaltetem optoelektronischem Wandler (24). Erfindungsgemäß ist die Meßstrahlung pulsmoduliert mit Anregungspulsen einer Pulsbreite unterhalb von zwei Nanosekunden.

Fig.1

5

,}

Beschreibung

Die Erfindung betrifft eine Vorrichtung zur Distanzmessung mit den im Oberbegriff des Anspruches 1 angegebenen Merkmalen.

Eine Vorrichtung dieser Art ist aus einer Veröffentlichung der Fa. Wild Heerbrugg AG, Schweiz, V.86, mit dem Titel "Distanzmessung nach dem Laufzeitmeßverfahren mit geodätischer Genauigkeit" bekannt. Sie wird auch zur Messung von Distanzen zu Objekten mit natürlichen rauhen Oberflächen eingesetzt. So werden zur Vermessung von schwer zugänglichen Oberflächen, wie z.B. Steinbrüche, Kavernenwände, Tunnelprofile usw., bei denen Distanzen bis zu einigen 100 m gemessen werden müssen, Vorrichtungen verwendet, bei denen gepulste Infrarothalbleiterlaserdioden mit großen emittierenden Oberflächen als Strahlungsquellen dienen. Es werden Pulslängen von 12 nsec verwendet. Der Vorteil dieser Strahlungsquellen besteht darin, daß Strahlungspulse hoher Spitzenleistung in der Größenordnung von einigen Watt erzeugt werden können, so daß damit die geforderten Meßdistanzen von einigen 100 m erreicht werden. Die Genauigkeit beträgt 5-10 mm. Ein Nachteil ergibt sich aus den relativ großen Abmessungen der emittierenden Oberfläche dieser Laser in der Größenordnung von 300 µm, weil dadurch die Abstrahlungskeule dieser Vorrichtungen eine Divergenz von ca. 2 mrad aufweist, wodurch bei 50 m bereits ein Bündelquerschnitt von 0,1 m vorhanden ist. Bei sehr kurzer Distanz hat der Bündelquerschnitt dieser Vorrichtung immer noch einen Durchmesser von mehreren cm, weil man zur Aussendung der Pulsleistung von einigen Watt bei 2 mrad Bündeldivergenz Objektivdurchmesser von mehreren cm braucht.

Ein Nachteil besteht darin, daß wegen der infraroten Meßstrahlung die aktuell angemessene Objektstelle nicht erkennbar ist. Um den Zielort sichtbar zu machen, wird ein zusätzlicher Laser mit sichtbarer Strahlungsemission vorgesehen, dessen Strahlachse zur Sendestrahlachse sorgfältig justiert werden muß. Das Gerät ist mit einer elektronischen Auswerte- und Anzeigevorrichtung ausgestattet, die es auch gestattet, über eine Tastatur zusätzliche Werte einzugeben und Berechnungen auszuführen.

Aus der DE 40 02 356 C1 ist ebenfalls ein 45 Abstandsmeßgerät mit getrenntem Sende- und Empfangsobjektiv bekannt. Die Sendeeinrichtung enthält zwei elektronisch komplementär schaltbare Laserdioden, von denen eine die Lichtwellenzüge auf die Meßstrecke, die andere die Lichtwellenzüge auf die 50 Referenzstrecke schickt. Beide Lichtwellenzüge werden vom gleichen Fotoempfänger abwechselnd empfangen, der an eine Auswerteelektronik angeschlossen ist. Es ist aus der Druckschrift nicht zu entnehmen, ob die Laserdioden sichtbares Licht emittieren. Der zu messende Abstandsbereich wird mit 2 bis 10 m angegeben und die Meßgenauigkeit soll im Bereich einiger mm liegen.

In der Zeitschrift "Industrie", 11/92, Seiten 6-8, wird ein Entfernungs-Meßgerät DME 2000 der Fa. Sick GmbH mit optischer Distanzmessung auf Basis Laufzeitmessung beschrieben, das mit zwei sichtbares Licht emittierenden Halbleiterlaserdioden arbeitet. Das erforderliche Sendelicht erzeugt eine Laserdiode mit Kolli-Laserdiode liefert das matoroptik, die zweite notwendige Referenzsignal direkt an den Empfänger. Das Sendestrahlenbündel und das Empfangsstrahlenbündel sind koaxial zueinander angeordnet, so daß nur ein einziges Objektiv mit relativ großem Durchmesser verwendet wird. Der Meßabstand zu natürlichen rauhen Oberflächen beträgt 0,1 bis 2 m mit einem Lichtfleckdurchmesser von ca. 3 mm. Für größere Objektentfernungen bis zu 130 m muß eine Reflektorfolie auf dem anzumessenden Objekt angebracht werden. Der Lichtfleckdurchmesser beträgt bei diesen Distanzen ca. 250 mm. In Verbindung mit der koaxialen Sende-Empfangsoptik wird als Empfänger eine relativ großflächige PIN-Fotodiode verwendet. Damit ist dann-zwar eine Überlappung der stark divergenten Empfangslichtkeule mit dem Sendebündel gegeben, so daß Distanzen bis herab zu 0,1 m gemessen werden können, jedoch lassen sich mit diesen großflächigen Detektoren ohne zusätzliche Reflektoren keine großen Meßreichweiten erzielen.

Im Baugewerbe, insbesondere beim Innenausbau und im Installationsgewerbe besteht die Forderung, Distanzen bis zu 30 m auf rauhen Oberflächen ohne zusätzliche Präparation durch Reflektoren und mit einer Meßgenauigkeit von 1 bis 2 mm messen zu können.

Der Erfindung liegt daher die Aufgabe zugrunde, mit einem stark kollimierten sichtbaren Meßstrahlenbündel eine Distanzmessung zu natürlichen rauhen Oberflächen im gesamten Distanzbereich von der Vorderkante des Meßgerätes bis zu mindestens 30 m zu ermöglichen. Die Genauigkeit der Messung soll dabei im Millimeterbereich liegen.

Diese Aufgabe wird bei einer Vorrichtung der eingangs genannten Art erfindungsgemäß durch die kennzeichnenden Merkmale des Anspruchs 1 gelöst. Vorteilhafte Ausgestaltungen und Weiterbildungen der Vorrichtung ergeben sich aus den Merkmalen der Unteransprüche 2 bis 9.

Beim Erfindungsgegenstand erzeugt das Kollimatorobjektiv einen stark gebündelten Meßstrahl entlang seiner optischen Achse. Die optische Achse des daneben angeordneten Empfangsobjektivs verläuft zumindest nahezu parallel zu der optischen Achse des Kollimatorobjektivs und liegt mit dieser in einer gemeinsamen Ebene.

Ein die Meßgenauigkeit der erfindungsgemäßen Vorrichtung begrenzender Effekt ergibt sich aus den physikalischen Eigenschaften der modulierten Laserstrahlung im Zusammenwirken mit den anzumessenden rauhen Oberflächen.

Die sichtbare Strahlung der Halbleiterlaserdioden wird als Spektrum von äquidistanten Spektrallinien (Moden) abgestrahlt. Während der Einwirkung des

١,

7

Modulationsstromes ändern sich sowohl die Wellenlängen als auch die Strahldichten (Intensitäten) der Moden. Je nach Wellenlänge ergeben sich daher unterschiedliche Modulationsphasenverzögerungen des Laserpulses bezogen auf den elektrischen Modulationspuls. Die Modulationsphase bezieht sich dabei auf den zeitlichen Schwerpunkt t_s der Intensitätsvariation I(t) über die Abstrahldauer t des Laserpulses während eines Modulationspulses. Mathematisch ist t_s gleich dem Integral über I(t)*t*dt dividiert durch das Integral über I(t)*dt., wobei der Integrationsbereich gleich der gesamten Laserpulsdauer ist.

Je nach Modulationsart und Modulationspulsbreite können die je nach Wellenlänge variierenden Modulationsphasenunterschiede zeitlichen Laserpulsverzögerungen von bis zu 1,3 ns entsprechen. Die entsprechenden scheinbaren Distanzunterschiede gehen bis zu 200 mm.

Das von der anzumessenden rauhen Oberfläche zurückgestreute Licht hat wegen der Kohärenz der 20 Laserstrahlung eine granulierte Intensitätsverteilung, die unter der Bezeichnung Speckles bekannt ist. Nur in der Richtung, in die die Laserstrahlung reflektiert würde, wenn die rauhe Oberfläche ein Spiegel wäre, fallen die Speckles der verschiedenen Moden der Laserstrahlung zusammen. Wegen der unterschiedlichen Wellenlänge der Moden ist das für alle anderen Richtungen nicht der Fall, so daß ein Strahlungsfeld mit räumlich unterschiedlichen Modulationsphasen vorliegt.

Die Strahlung, die auf das Empfangsobjektiv fällt 30 und dem Fotodetektor zugeführt wird, hat eine repräsentative Modulationsphase, die durch die mit der entsprechenden Intensität gewichtete Mittelung über alle Modulationsphasen des in das Objektiv einfallenden Strahlungsfeldes entsteht. Dieser Mittelwert schwankt 35 je nach Specklesstruktur über das Strahlungsfeld, d.h. je nach Struktur der rauhen Oberfläche. Durch Verschieben eines Objektes mit makroskopisch gleichförerscheinender Oberfläche senkrecht Meßrichtung konnte nachgewiesen werden, daß der dieser Modulationsphasenschwankung entsprechende Distanzfehler bis zu 20 mm betragen kann. Überraschenderweise hat sich herausgestellt, daß eine entder physikalischen Verbesserung scheidende Gegebenheit allein dadurch gelingt, daß die Modulation der Laserdioden mit Anregungspulsen erzeugt wird, deren Pulsbreite kleiner 2 ns beträgt. Dann werden die Modulationsphasenunterschiede je nach Wellenlänge so klein, daß die entsprechenden Distanzschwankungen kleiner 2 mm werden.

Die Verwendung von Lichtleitern in Distanzmeßgeräten ist an sich bekannt. Im Zusammenhang mit dem vorliegenden Erfindungsgegenstand ergibt sich der besondere Vorteil, daß der Lichtleiter in seinem Verlauf zum opto-elektronischen Wandler mehrfach gekrümmt werden kann. Dadurch wird die vorstehend beschriebene gewichtete Mittelung über alle Modulationsphasen zusätzlich unterstützt.

Zur Kompensation von Drifteffekten in der Elektronik und in den optoelektronischen Wandlern ist es bekannt, daß vor und nach der externen Distanzmessung zum Vergleich über eine interne Referenzstrecke bekannter Länge gemessen wird. Zu diesem Zweck wird beim Erfindungsgegenstand ein lichtstreuendes Element in das kollimierte Meßstrahlenbündel so eingeschaltet, daß keine Strahlung über den externen Lichtweg gelangt. Die Streucharakteristik dieses Elementes wird dem Raumbereich angepaßt, in dem sich die Lichtleitereintrittsfläche befindet. Dadurch wird erreicht, daß von jedem Teil des Meßstrahlenbündels Strahlung in die Lichtleitereintrittsfläche gelangt, wodurch Unterschiede der Modulationsphase über den Querschnitt des Meßstrahlenbündels keinen Einfluß auf die Distanzmessung haben. Die Streuintensität pro Flächeneinheit kann so eingestellt werden, daß eine Übersteuerung der Auswerteeinrichtung sicher vermieden wird.

Die erfindungsgemäße Vorrichtung wird nachfolgend anhand von in der Zeichnung schematisch dargestellten Ausführungsbeispielen näher beschrieben, wobei auch auf weitere Vorteile eingegangen wird. Im einzelnen zeigen:

- Fig. 1 eine Gesamtdarstellung der Vorrichtung in Aufsicht,
- Fig. 2 einen in das Sendestrahlenbündel eingesetzten Strahlenteiler und
- Fig. 3 ein in das Sendestrahlenbündel einschaltbares Umlenkprisma.

In Fig.1 erzeugt ein Halbleiterlaser 10 ein sichtbares Meßstrahlenbündel 11, das durch ein Kollimatorobjektiv 12 in Richtung der optischen Achse 13 als Parallelstrahlenbündel ausgesendet wird und einen Durchmesser von etwa 4 mm hat. Die optische Achse 14 des Empfangsobjektivs 15 verläuft zumindest angenähert parallel zur optischen Achse 13 des Kollimatorobjektivs 12 und liegt mit dieser in einer Ebene. Der Durchmesser des Empfangsobjektivs 15 beträgt etwa 30 mm und der Aufnahmewinkel etwa 120°, so daß einerseits der Bündelquerschnitt für von weit entfernten Objekten 16 reflektierte Strahlungsintensitäten ausreichend groß ist und andererseits auch die von nahen Objekten unter großem Einfallswinkel reflektierte Strahlung aufgenommen werden kann.

Das Lichtleiterende mit der Lichtleitereintrittsfläche 17 ist von einer Halterung 18 umfaßt. Der Lichtleiter 17' ist in hinteren Abschnitt 23 mehrfach gekrümmt fixiert. An seinem Ende ist der Lichtleiteraustrittsfläche ein opto-elektronischer Wandler 24 nachgeschaltet. Die Empfangssignale werden einer Auswerteeinrichtung 25 zugeführt.

Im Bereich des aus dem Gehäuse 20 der Vorrichtung austretenden Meßstrahlenbündes 11 ist eine reflexarm verspiegelte Abschlußscheibe 26 eingesetzt, die zur Unterdrückung von Reflexen auch schräg zum

Strahl gestellt sein kann. Um zu vermeiden, daß Reststreuungen zur Lichtleitereintrittsfläche 17 gelangen, ist außerdem eine rohrförmige Blende 27 vorgesehen. Vor der Lichteintrittsöffnung dieser Blende 27 ist eine schaltbare Strahlenumlenkeinrichtung 28 angeordnet, die um eine Achse 29 motorisch schwenkbar ist. Die vom Meßstrahlenbundel 11 beaufschlagte Oberfläche der Strahlenumlenkeinrichtung 28 ist streuend, wobei ein divergenter Streukegel 30 erzeugt wird. Die Auswerteeinrichtung 25 enthält auch die Elektronik zur Modulation des Halbleiterlasers 10. Zur Justierung der Abstrahlrichtung des Halbleiterlasers 10 auf die optische Achse 13 des Kollimatorobjektivs 12 kann das Gehäuse des Halbleiterlasers 10 um eine Achse 31 oder eine dazu senkrecht stehende Achse schwenkbar gelagert sein. Die Justierung kann in Abhängigkeit von einem ausgewählten Empfangssignal motorisch über die Auswerteeinrichtung 25 gesteuert werden.

Die Auswerteeinrichtung 25 enthält eine Anzeigevorrichtung 32 und eine Tastatur 33, über die z.B. Korrekturwerte oder ergänzende Informationen zur aktuellen Distanzmessung eingegeben werden können. Eine wichtige ergänzende Information ist die Berücksichtigung der Horizontallage bzw. Vertikallage der durch die beiden optischen Achsen 13, 14 definierten Ebene, um tatsächlich senkrecht zum Objekt messen zu können. Dazu kann der Vorrichtung z.B. ein zweiachsiger elektronischer Neigungsmesser 34 zugeordnet sein, dessen Horizontalachsen in der Ebene der optischen Achsen 13, 14 liegen und parallel und senkrecht zu diesen Achsen ausgerichtet sind.

Die Ausgangssignale des Neigungsmessers 34 können der Auswerteeinrichtung 25 zugeführt und bei der Distanzmessung automatisch berücksichtigt werden. Sie können aber auch zur mechanischen Verstellung des Halbleiterlasers 10 oder eines nicht dargestellten ativen optischen Elementes im Sendestrahlengang verwendet werden, um das kollimierte Strahlenbündel automatisch zu horizontieren.

Neben einer Information über die Neigung der Vorrichtung im Raum erweitert die Berücksichtigung des Azimuts, d.h. des Winkels, unter dem das Meßstrahlenbündel in der Horizontalebene auf die angemessene Objektfläche auftrifft, die Möglichkeiten der Distanzmessung, und zwar in Form einer polaren Aufnahme der Meßwerte. Dazu kann der Vorrichtung ein digitalmagnetischer Kompaß 35 zugeordnet sein, dessen Azimutreferenzrichtung parallel zur optischen Achse 13 des Kollimatorobjektivs 12 ausgerichtet ist. Mehrere Distanzmessungen mit Berücksichtigung der Neigung und des Azimuts des Meßstrahlenbündels erlauben in an sich bekannter Weise die Bestimmung von Punkten und Flächen im Raum und auch die Bestimmung der Lage von Flächen zueinander von einem einzigen Meßstandort aus. Ebenso ist die rechnerische Ermittlung 55 von Horizontaldistanzen möglich, wie sie sonst nur bei Meßsystemen mit mechanischen Achsen, elektronischen Tachymetern, möglich ist.

Als Nullpunkt der Messung können die Vorderfläche, die Rückfläche oder auch die Mitte des Gehäuses 20 der Vorrichtung definiert und wahlweise z.B. über die Tastatur 33 in die Auswerteeinrichtung 25 eingegeben sowie von ihr automatisch bei der Distanzmessung berücksichtigt werden.

Eine Erweiterung des Anwendungsbereichs der erfindungsgemäßen Vorrichtung ergibt sich durch den Einsatz eines drehbaren Zweistrahlprismas in das austretende kollimierte Meßstrahlenbündel. Wie in Fig.2 dargestellt, kann dazu die Abschlußscheibe 26 entfernt und an ihrer Stelle ein Tubus 39 in die rohrförmige Blende 27 eingesetzt werden. In den Tubus 39 ist ein Prisma 40 mit strahlteilender Kittfläche 41 eingesetzt. Durch eine Öffnung 42 im Tubus 39 kann auf diese Weise ein zusätzlicher sichtbarer Strahl senkrecht zur optischen Achse 13 des Meßstrahlenbündels erzeugt werden. Dieser Strahl kann z.B. dazu verwendet werden, ihn an eine vorhandene Fläche anzulegen, um Abstände senkrecht zu dieser Fläche messen zu können. Bei senkrecht zum Meßobjekt ausgerichteter Vorrichtung können mit dem zusätzlichen Strahl auch Abstandswerte auf andere Flächen übertragen werden.

Der in Fig. 2 dargestellte Vorsatz zur Erzeugung eines Orientierungsstrahles senkrecht zum Meßstrahl kann in an sich bekannter Weise auch durch Prismen mit mehreren Teilerflächen oder anderer Strahlenumlenkung, wie z.B. bei einem Pentaprisma, abgeändert werden.

Eine weitere Aufgabe des Vorsatzes kann darin bestehen, die optische Achse 13 des Meßstrahles in Richtung auf die optische Achse 14 des Empfangsobjektivs 15 umzulenken. Eine solche Ausgestaltung ist in Fig. 3 dargestellt. Sie hat den Vorteil, daß sogar an der Vorderkante 20' des Gehäuses 20 anliegende Objekte Strahlung in den Empfangsstrahlengang reflektieren. Aus konstruktiven Gründen der Halterung des Objektivs 15 ist es in diesem Fall vorteilhaft, das Empfangsobjektiv 15 etwas in das Gehäuse 20 hinein zu verlegen. Das zur Umlenkung der Strahlen vorgesehene Prisma 43 ist auf einem Schieber 44 angeordnet, der bei Messung von sehr kurzen Entfernungen von Hand in den Strahlengang eingeschoben werden kann.

Der Aufwand an Funktionselementen für die erfindungsgemäße Vorrichtung ist gering und diese eignen sich für eine Miniaturisierung. Die Vorrichtung kann daher sehr kompakt und insbesondere als Taschengerät ausgestaltet werden.

Patentansprüche

- 1. Vorrichtung zur Distanzmessung mit
 - einem von einem Halbleiterlaser (10) erzeugten sichtbaren Meßstrahlenbündel (11),
 - einem Kollimatorobjektiv (12) zur Kollimation des Meßstrahlenbündels (11) in Richtung der

, J.

5

10

15

optischen Achse (13) des Kollimatorobjektivs (12),

- einer Schaltungsanordnung zur Modulation der Meßstrahlung,
- einem Empfangsobjektiv (15) zur Aufnahme und Abbildung des an einem entfernten Objekt (16) reflektierten Meßstrahlenbündels (11) auf eine Empfangseinrichtung,
- einer schaltbaren Strahlumlenkeinrichtung (28)
 zur Erzeugung einer internen Referenzstrecke
 zwischen dem Halbleiterlaser (10) und der Empfangseinrichtung
- und einer elektronischen Auswerteeinrichtung
 (25) zur Ermittlung und Anzeige der zum
 Objekt (16) gemessenen Distanz, dadurch
 gekennzeichnet, daß die Meßstrahlung pulsmoduliert ist mit Anregungspulsen einer Pulsbreite unterhalb von zwei Nanosekunden.
- 2. Vorrichtung nach Anspruch 1, dadurch gekennzeichnet, daß die Empfangseinrichtung einen 25
 Lichtleiter (17') mit nachgeschaltetem optoelektronischen Wandler (24) enthält, wobei der Lichtleiter
 (17') in seinem Verlauf mehrfach gekrümmt (23) ist.
- 3. Vorrichtung nach einem der vorhergehenden 30 Ansprüche, dadurch gekennzeichnet, daß als schaltbare Strahlumlenkeinrichtung für die Erzeugung der Referenzstrecke ein lichtstreuendes Element (28) vorgesehen ist, dessen Streucharakteristik (30) dem Ort der Lichtleiterein- 35 trittsfläche (17) angepaßt ist.
- 4. Vorrichtung nach einem der vorhergehenden Ansprüche, gekennzeichnet durch einen elektronischen Neigungsmesser (34), dessen Meßachse 40 parallel zur optischen Achse (13) des Kollimatorobjektis (12) ausgerichtet ist.
- 5. Vorrichtung nach einem der vorhergehenden Ansprüche, gekennzeichnet durch einen zwei- 45 achsigen elektronischen Neigungsmesser, (34) dessen eine Achse parallel zur optischen Achse (13) des Kollimatorobjektivs (12) und dessen andere Achse senkrecht dazu und parallel zu der Ebene ausgerichtet ist, die durch die optischen 50 Achsen (13, 14) des Kollimatorobjektivs (12) und des Empfangsobjektivs (15) gebildet wird.
- 6. Vorrichtung nach einem der vorhergehenden Ansprüche, gekennzeichnet durch einen digital- 55 magnetischen Kompaß (35), dessen Azimut-Referenzrichtung parallel zur optischen Achse (13) des Kollimatorobjektivs (12) ausgerichtet ist.

- 7. Vorrichtung nach einem der Ansprüchen 4 bis 6, dadurch gekennzeichnet, daß die Ausgangssignale des Neigungsmessers (34) und/oder Kompaß (35) der Auswerteeinrichtung (25) als zusätzliche Eingangssignale zugeleitet werden.
- 8. Vorrichtung nach einem der Ansprüche 4 oder 5, dadurch gekennzeichnet, daß die Ausgangssignale des Neigungsmessers (34) einem aktiven optischen oder mechanischen Stellement zur Horizontierung des kollimierten Meßstrahlenbündels (11) zugeleitet werden.
- 9. Vorrichtung nach einem der vorhergehenden Ansprüche, gekennzeichnet durch ein in das austretende Meßstrahlenbündel (11) einfügbares Prisma (40, 41; 43).

Fig. 1

Fig. 2

Fig. 3

EUROPÄISCHER RECHERCHENBERICHT

Nummer der Anmeldung EP 95 20 3130

	EINSCHLÄGIGE		<u> </u>	
Kategorie	Kennzeichnung des Dokument der maßgebliche	s mit Angabe, soweit erforderlich, en Teile	Betrifft Anspruch	KLASSIFIKATION DER ANMELDUNG (Int.CL6)
A	DE-A-35 40 157 (MESS BLOHM) 21.Mai 1987 * Seite 3, Zeile 36 * Seite 4, Zeile 45	- Zeile 54 *	1	G01S7/486 G01S7/497
D,A	DE-C-40 02 356 (ERWI OPTIK-ELEKTRONIK) * Zusammenfassung; A		1	·
A	WO-A-93 07510 (HEINO * Zusammenfassung; A		1	·
			-	
	-			RECHERCHIERTE SACHGEBIETE (Int.Cl.6)
	•			
	diamada Dankan barishi wanda (Fin alla Patantananiaha arrealit		
Det VO	rliegende Recherchenbericht wurde	Abschlußdatun der Recherche		Prüfer
		2.April 1996	Haf	fner, R
X : von Y : von and A : tech	KATEGORIE DER GENANNTEN DO besonderer Bedeutung allein betrachtet besonderer Bedeutung in Verbindung m eren Veröffentlichung derselben Kategor anologischer Hintergrund htschriftliche Offenbarung	E: älteres Patente nach dem Ann it einer D: in der Anmeld ie L: aus andern Gr	lokument, das jedo neldedatum veröffet ung angeführtes De linden angeführtes	atlicht worden ist Okument