Example 3.35. Determine whether the system \mathcal{H} is linear, where

$$\mathfrak{R}x(t) = tx(t). \ \mathbf{0}$$

Solution. Let $x'(t) = a_1x_1(t) + a_2x_2(t)$, where x_1 and x_2 are arbitrary functions and a_1 and a_2 are arbitrary complex constants. From the definition of \mathcal{H} , we can write

equal for

als
$$X_{1,1} X_{2,1} x_{1,2} x_{2,1} x_{2,$$

Since $\mathcal{H}(a_1x_1 + a_2x_2) = a_1\mathcal{H}x_1 + a_2\mathcal{H}x_2$ for all x_1, x_2, a_1 , and a_2 , the superposition property holds and the system is linear.

A system H is said to be linear if, for all functions x, and xz and all complex constants a, and az, the following condition holds:

$$\mathcal{H}\left\{a_1x_1+a_2x_2\right\} = a_1\mathcal{H}x_1+a_2\mathcal{H}x_2$$