ENSAE AS1 (2022/2023) CONTROLE N°2 D'ALGÈBRE LINÉAIRE II DURÉE = 4H

Exercice 1:6pts = 1,5 + (1,5+1) + 1 + 1

On considère la matrice carrée d'ordre 4 :
$$A = \begin{pmatrix} 0 & 1 & 0 & 0 \\ 3 & 0 & 4 & 0 \\ 0 & 0 & 0 & 1 \\ -1 & 0 & -1 & 0 \end{pmatrix}$$

- (1) Déterminer $p_A(X)$, polynôme caractéristique de A
- (2) (a) En déduire les valeurs propres et les sous-espaces propres de A
 (b) La matrice A est elle diagonalisable? Justifier.
- (3) Montrer que A est semblable à $B = \begin{pmatrix} 1 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & -1 & 1 \\ 0 & 0 & 0 & -1 \end{pmatrix}$
- (4) Résoudre le système différentiel $X'(s) = AX(s), \forall s \in \mathbb{R}$, avec $X(s) = (x_1(s), x_2(s), x_3(s), x_4(s))$ et X(0) = (0, -1, 0, -1)

Exercice 2:4pts = (1+1)+1+1

On considère la matrice carrée d'ordre 4 :
$$A = \begin{pmatrix} 0 & 1 & 0 & 0 \\ 3 & 0 & 2 & 0 \\ 0 & 2 & 0 & 3 \\ 0 & 0 & 1 & 0 \end{pmatrix}$$

- (1) (a) Calculer le polynôme caractéristique de A
 - (b) La matrice A est elle diagonalisable?
- (2) Déterminer, en fonction de n, l'expression de $A^n, \forall n \in \mathbb{N}$
- (3) Résoudre le système linéaire récurrent $AX_n = X_{n+1}, \forall n \in \mathbb{N}$, où $X_n = (u_n, v_n, w_n, t_n)$ et $X_0 = (u_0, v_0, w_0, t_0)$ est donné.

Exercice 3: 5pts =
$$(1 + 1) + 1 + (1 + 1)$$

On considère la matrice $A = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 45 & -39 & 11 \end{pmatrix}$

- (1) (a) Déterminer le polynôme caratéristique de A
 - (b) la matrice A est elle diagonalisable? Justifier.
- (2) Montrer que A est semblable à la matrice triangulaire $T = \begin{pmatrix} 3 & 1 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 5 \end{pmatrix}$
- (3) Applications:
 - (a) Déterminer la suite $(U_n)_{n\geq 0}$ telle que $U_{n+1}=45U_{n-2}-39U_{n-1}+11U_n, \forall n\geq 2$ et $U_0=U_1=U_2=1$
 - (b) Déterminer la fonction Y, dérivable sur \mathbb{R} , telle que Y''' = 45Y'' 39Y' + 11Y, avec Y''(0) = Y'(0) = Y(0) = 1

Exercice
$$4:7pts = 1 + (1 + 1 + 1) + 1 + (1 + 1)$$

On considère le $\mathbb{R} - ev : E = \mathbb{R}_n[x]$, muni de sa base canonique \mathcal{B}_0 , et l'application φ définie sur E par $\varphi(P) = (X - 1)P'$

- (1) Montrer que φ est un endomorphisme de E
- (2) (a) Déterminer le noyau de φ
 - (b) A-t-on φ injective?
 - (c) Préciser le rang de φ
- (3) Déterminer la matrice Ω de φ dans \mathcal{B}_0
- (4) (a) Préciser le spectre de Ω
 - (b) Montrer que la matrice Ω est diagonalisable