If K/F is a p-extension (K = E s.t. E/F is Galois & |Gal (E/F)|=p'),
Then K is a tower of simple extensions of degree p.

Proof: G=Gal(E/F) is a p-group.

Let H=Gal(E/K). Then I subnormal series

H=H. & H. & H. & H. & H. = G with Hir/Hi = Zp Vi.

(by Sylow & southing else).

Then let $L_i = Fix(H_i)$ $\forall i$, and then $K = L_0 \ge L_1 \ge L_2 \ge \dots \ge L_r = F \le L - L_i/L_{i+1} \quad \text{one galois}$ with $Gal(L_i/L_{i+1}) \cong H_{i+1}/H_i \cong \mathbb{Z}_p$.

Thrown d is constructible our F iff $x \in 2$ -extension of F. $(F-field generated by <math>S \subseteq R).$

Def $\alpha \in \mathbb{C}$ is constructible iff Rex and Inva are constructible.

Lemme $\alpha \in 2$ -extension of $F \subseteq \mathbb{R}$ iff $\alpha, b \in 2$ -extensions of $\alpha \in \mathbb{R}$.

proof If $a \in K$, $b \in K_2$ where K_1 , K_2 are towers of quadratic extensions, then K_1K_2/F is also atower of quadratic extensions, and $K_1K_2(i)/F$ is also good, and $d \in K_1K_2(i)$.

Conversely, if $x \in K$ which is a bower of quadratic extensions, then $\overline{x} \in K$, and \overline{K} is also an quendratic extensions. Then $\frac{x+\overline{x}}{2} = \operatorname{Re} x \in K\overline{K}$, $\frac{x-\overline{x}}{2i} \in K\overline{K}(i)$, and $K\overline{K}$ and $K\overline{K}(i)$ are 2-extensions

Squaring a Circle

Unsolvable since IT is transcendental.

Doubling a Cube

Construct a

s.t. $\alpha^3 = 2$

Impossible be x^3-2 is irreducible, 32 has degree 3: it's not in a tower of quadratic extrs.

Trisecting an Angle

Bisection.

possibe?

$$\cos \alpha = 4\cos^3\left(\frac{\alpha}{3}\right) - 3\cos\left(\frac{\alpha}{3}\right).$$

$$\alpha = 4b^3 - 3b$$
 $\sim b$ is a root of $4\chi^3 - 3\chi - \alpha \in \mathbb{Q}(\alpha)$.

$$2x \mapsto x$$
 $\chi^3 - 3x - 2a$

for
$$a = \frac{1}{2}$$
, this is irreducible of deg. 3,

So its root, b, is not contained in a 2-extension of Q(a).

Construction of regular n-gons

7 gon: not constructible.

if wis constructible, then $\ell(n) = 2^r$

If $P(n)=2^r$, then the splitting field of \overline{P}_n (which is $Q(\omega)$) has degree 2^r , so ω is constructible for general polynomial, \overline{P}_n is special.

Regular n-gon is constructible iff $(\varphi(n)=2^r)$.

3,4,5,6 oK, 7 is not.

$$N = 2^{\kappa} P_{i}^{l_{i}} \cdots P_{i}^{l_{m}} \qquad \qquad \left(P(n) = 2^{\kappa-2} \prod_{i=1}^{k-2} (P_{i}-1)_{i} \right)$$
distinct

Private

$$Q(n) = a \text{ power of } 2 \text{ iff } l_i = 1 \text{ Vi and each}$$

$$P_i = 2^{m_i} + 1 \quad \text{for some } m_i.$$
Fermal Privus

Lemma: If 2d+1 is prime, tuen dis a power of 2.

So any fernat prime is $p = 2^{2^k} + 1$ for some κ . (3,5,17,257, etc.)

Proof If d = ml, m is odd, tum $2^{d}+1 = 2^{ml}+1$ is divisible by $2^{l}+1$; $\frac{x^{m}+1}{x+1}$ if m is odd

If n, ,..., nx >0 are square-free integers then

Th, ,..., The are linearly in dependent our Q.

eg. 1, 52, 53, 55, 56, 510, 515, etc.

Claim: If $P_1,...,P_k$ are distinct prime, then $\left(\mathbb{Q}(\sqrt{P_1},...,\sqrt{P_k}):\mathbb{Q}\right)=2^k,$ $\left(\operatorname{Gal}(\mathbb{Q}(\sqrt{P_1},...,\sqrt{P_k})/\mathbb{Q}\right)\cong\mathbb{Z}_2^k$

To prove if P = P1, ..., PK, tum VP & Q(JP1,..., JPK).

Boof if $\nabla P \in \mathbb{Q}(\nabla P_1, ..., \nabla P_k)$, then $\mathbb{Q}(\nabla P)/\mathbb{Q}$ has degree 2, and corresponds to a subgroup of \mathbb{Z}_2^k of index 2:

ture are 2^{k-1} subgraps

of index 2, corresponding

to all qua tratic extensions

of Q in Q(√r, ..., √r,).

So √p∈Q(√r, r,) for some i,..., i;.

but Then $P = P_i - P_i$, contradiction.