Soluciones del examen de Topología. Septiembre 2004

1) a) Hay que comprobar las tres propiedades de la distancia:

$$a.1)$$
 $d(x,y) \ge 0$, $d(x,y) = 0 \Leftrightarrow x = y$.

Es evidente, porque $|x| + |y| \ge 0$ y |x| + |y| = 0 no puede cumplirse si $x \in y$ no son iguales y nulos.

$$a.2) d(x,y) = d(y,x).$$

Se sigue de la simetría de la función f(x,y) = |x| + |y|.

a.3)
$$d(x, z) \le d(x, y) + d(y, z)$$
.

Si x = y ó y = z, se reduce a $d(x, z) \le d(x, z)$, mientras que si x = z se sigue de a.1. Podemos por tanto suponer que x, y, z son distintos y, en ese caso, a.3 equivale a la desigualdad $|x| + |z| \le |x| + |y| + |y| + |z|$, que se cumple siempre.

b) La sucesión $\{x_n\}_{n=1}^\infty$ converge a l si y sólo si

$$\lim_{n \to \infty} d(x_n, l) = 0.$$

Distingamos dos casos dependiendo del valor del posible límite:

Si $l \neq 0$ entonces sólo puede haber un número finito de términos de la sucesión distintos de l, ya que si hubiera infinitos, digamos $\{x_{n_k}\}_{k=1}^{\infty}$, entonces

$$d(x_{n_k}, l) = |x_{n_k}| + |l| \ge |l|$$

lo que contradice (1). Así pues las únicas sucesiones que convergen a $l \neq 0$ son las que son constantes a partir de cierto término.

Si l=0 entonces entonces $d(x_n,0)=|x_n|$ (incluso si $x_n=0$) y por tanto (1) se cumple con l=0 si y sólo si $\{x_n\}_{n=1}^{\infty}$ tiende a cero en el sentido habitual.

2)

a) Falso.

Por ejemplo, [0,1] no es cerrado en la cofinita de \mathbb{R} (su complementario no es abierto) pero sí es compacto (porque un abierto $\neq \emptyset$ recubre a [0,1] salvo un número finito de puntos y basta elegir otros abiertos del recubrimiento que contengan a estos puntos).

b) Verdadero.

Sea $\{\mathcal{U}_{\alpha}\}_{\alpha\in I}$ un recubrimiento abierto de $A\cup B$, entonces también lo es de A y, por la compacidad, se pueden escoger \mathcal{U}_{α_j} con $A\subset\bigcup_{j=1}^N\mathcal{U}_{\alpha_j}$. De la misma forma, $B\subset\bigcup_{k=1}^M\mathcal{U}_{\beta_k}$, por tanto $\{\mathcal{U}_{\alpha_j}\}_{j=1}^N\cup\{\mathcal{U}_{\beta_k}\}_{k=1}^M$ es un subrecubrimiento finito de $A\cup B$.

c) Falso.

Por ejemplo, con $X = Y = Z = \mathbb{R}$ (con la usual) se puede escoger f(x) = 1/x si $x \neq 0$ y f(0) = 0; y g = f. Entonces $g \circ f(x) = x$ que es continua a pesar de que f y g no lo son.

d) Falso.

La topología cofinita no tiene la propiedad de Hausdorff y todo espacio métrico sí la tiene: Si $x \neq y$, las bolas $B_{\epsilon}(x)$, $B_{\epsilon}(y)$ son disjuntas para $0 < \epsilon < d(x,y)/2$ por la propiedad triangular $(z \in B_{\epsilon}(x) \cap B_{\epsilon}(y) \Rightarrow d(x,y) \leq d(x,z) + d(z,y) < 2\epsilon)$.

3)

• A y B son homemorfos considerando $F: A \longrightarrow B$

$$f(x,y) = \begin{cases} (x,y) & \text{si } (x,y) \in S^1 \\ (2-x,y) & \text{si } y = 0, \ x \ge 0 \end{cases}$$

por el *Pasting Lemma* es continua (el único punto de A común a S^1 y a y=0 es (1,0), por lo que ambas definiciones coinciden). Además F^{-1} tiene la misma fórmula que F, por tanto es continua igualmente. Geométricamente corresponde a dar media vuelta a la "manilla" de A alrededor de (1,0).

- A (ó B) y C no son homeomorfos porque A es compacto (cerrado y acotado) mientras que C no lo es (no es cerrado).
- A (ó B) y D no son homeomorfos. Si existiera $H:D\longrightarrow A$ homemorfismo, $H^*:D-\{(0,0)\}\longrightarrow A-\{H(0,0)\}$, dado por la restricción de H, también lo sería. Pero esto es imposible porque $D-\{(0,0)\}$ tiene tres componentes conexas, y sea cual sea $H(0,0)\in A$, $A-\{H(0,0)\}$ tiene a lo más dos.
 - C y D no son homeomorfos porque, como antes, D es compacto y C no lo es.
- 4) Sea $\mathcal{U} = \bigcup_{i \in I} \mathcal{U}_i$. Como los cuadrados abiertos forman una base de la topología usual de \mathbb{R}^2 , para cada $\{x\} \times \{0\} \in [0,1] \times \{0\}$ existe un cuadrado $C_x = (x \delta_x, x + \delta_x) \times (-\delta_x, \delta_x) \subset \mathcal{U}$. Evidentemente $\{C_x\}_{x \in [0,1]}$ es un recubrimiento de $[0,1] \times \{0\}$. Por la compacidad de este segmento, tiene un subrecubrimiento finito, digamos

$$[0,1] imes\{0\}\subset igcup_{j=1}^N C_{x_j}=igcup_{j=1}^N ig((x_j-\delta_{x_j},x_j+\delta_{x_j}) imes(-\delta_{x_j},\delta_{x_j})ig)\subset \mathcal{U}.$$

Si $\delta = \min(\delta_1, \delta_2, \dots, \delta_N)$, se tiene $[0,1] \times (-\delta, \delta) \subset \mathcal{U}$, y basta escoger $\epsilon = \delta/2$ para deducir la conclusión deseada.

Nota: Sin usar la compacidad no se puede llegar al resultado. Por ejemplo, en el segmento no compacto $(0,1] \times \{0\}$ se podrían tomar $\mathcal{U}_i = B_{i/2}(i)$, $i \in (0,1]$, que no cumplen la conclusión del problema.