影像處理

(Image Processing)

Course 5 鄰域處理 真理大學 資訊工程系 吳汶涓老師

Outline

- 5.1 前言
- 5.2 運算符號
- 5.3 Matlab中的濾波函數
- 5.4 頻率:低通與高通濾波器
- 5.5 高斯濾波器
- 5.6 邊緣銳利化
- 5.7 非線性濾波器
- 5.8 感興趣的區域處理

5.1 前言

- 點處理:其處理結果只受此點的灰度值影響和 此點所在的位置無關。
- 鄰域處理:處理的結果會受此點的鄰近點影響
 - □ 遮罩(Mask)與函數的結合稱為滤波器(Filter)。

遮罩值 (3×5)

m(-1,-2)	m(-1,-1)	m(-1,0)	m(-1,1)	m(-1, 2)
m(0, -2)	m(0, -1)	m(0, 0)	m(0, 1)	m(0, 2)
m(1, -2)	m(1, -1)	m(1, 0)	m(1, 1)	m(1, 2)

相對應的像素值

_	
m(s,t)p(i + s, i + t
	m(s,t)p(

p(i-1,j-2)	p(i-1,j-1)	p(i-1,j)	p(i-1,j+1)	p(i-1,j+2)
p(i, j-2)	p(i, j-1)	p(i, j)	p(i, j+1)	p(i, j+2)
p(i+1,j-2)	p(i+1,j-1)	p(i+1,j)	p(i+1,j+1)	p(i+1,j+2)

圖 5.2 執行空間濾波

■ 範例:3×3的平均濾波器


```
\rightarrow \frac{1}{9}(a+b+c+d+e+f+g+h+i)
>> x=uint8(10*magic(5))
X =
   170
           240
                   10
                           80
                                 150
   230
            50
                   70
                                 160
                          140
                          200
                                 220
     40
            60
                  130
   100
           120
                  190
                          210
                                 30
   110
           180
                  250
                           20
                                  90
```

```
>> mean2(x(1:3,2:4))

ans =

108.8889

108.8889

108.8889

110.0000 130.0000 150.0000 131.1111 151.1111 148.8889
```

5.2 運算符號

■ 平均濾波器可用下列矩陣表示:

$$\begin{bmatrix} \frac{1}{9} & \frac{1}{9} & \frac{1}{9} \\ \frac{1}{9} & \frac{1}{9} & \frac{1}{9} \\ \frac{1}{9} & \frac{1}{9} & \frac{1}{9} \end{bmatrix} = \frac{1}{9} \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix} \rightarrow \frac{1}{9}(a+b+c+d+e+f+g+h+i)$$

■ 高通濾波器

$$\begin{bmatrix} 1 & -2 & 1 \\ -2 & 4 & -2 \\ 1 & -2 & 1 \end{bmatrix} \longrightarrow a - 2b + c - 2d + 4e - 2f + g - 2h + i$$

□遮罩運算

- 鄰近區即為<u>遮罩大小</u>,並以<u>由左往右</u>、<u>由上往下</u>方式滑動
- 每個輸出像素均以相同方式運算
- 超出影像範圍之鄰近區:
 - 1. 補0
 - 2. 重複邊緣像素值(鏡射) 3. 不考慮會超出的部分(忽略邊緣)

2. 重複邊緣像素值(鏡射)

3. 不考慮會超出的部分(忽略邊緣)

5.3 Matlab中的濾波函數

■ 使用filter2函數執行線性濾波運算:

```
filter2(filter,image,shape)
```

結果會產生一個 double資料形態的矩陣

```
>> a=ones(3,3)/9
>> filter2(a,x,'same')
```

- 參數shape非必要,用來指定影像邊緣的處理方式
 - > 'same' 補零
 - ▶ 'valid' 忽略邊緣

■ 範例:3×3的平均濾波器

```
>> x=uint8(10*magic(5))

>> a=ones(3,3)/9

>> filter2(a,x,'valid')

ans =

111.1111    108.8889    128.8889
    110.0000    130.0000    150.0000
    131.1111    151.1111    148.8889
```

→ 濾波器可自己設定,也可使用fspecial函數產生

結論:

- 平均濾波器會模糊影像
- 邊緣補 0 會在影像四周 產生深色邊線,遮罩大 越明顯

■ 5.4 平均濾波 (a) 原始影像 (b) 平均濾波 (c) 9×9 濾波 (d) 25×25 濾波 (e) 使用鏡射的 25×25 濾波

5.4 頻率:低通與高通濾波器

- 影像的頻率(frequency):是灰階值隨著距離而產生變化程度的一種度量。
 - □ High frequency: 如邊緣、雜訊等
 - □ Low frequency: 如背景、皮膚紋理等

$$\begin{bmatrix} 1 & -2 & 1 \\ -2 & 4 & -2 \\ 1 & -2 & 1 \end{bmatrix} \qquad \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$$

係數總和為零,「」」」 針對邊緣偵測、 高通濾波器 低通濾波器 邊緣增強(high-pass filter) (low-pass filter)

高通濾波器 (high-pass filter)

```
>> f1=fspecial('log')
f1 =
          0.0468 0.0564 0.0468
                                   0.0448
   0.0448
   0.0468 0.3167 0.7146 0.3167
                                   0.0468
   0.0564 0.7146 -4.9048 0.7146
                                  0.0564
   0.0468
          0.3167 0.7146 0.3167
                                   0.0468
                          0.0468
                                    0.0448
          0.0468 0.0564
   0.0448
>> cf1=filter2(f1,c);
>> figure, imshow(cf1/100)
```


(a) Laplacian 濾波

(b) 高斯的 Laplacian (LoG) 濾波

- Why divide by 100?
- >> imshow(cf/100)
- □ 因為處理數值超出0至255的範圍
 - 將負值變為正值(make negative values positive)
 - 數值裁剪 (clip values)
 - 比例轉換(scaling transformation)

$$y = 255 \frac{x - g_L}{g_H - g_L}$$

```
>> f2=[1 -2 1;-2 4 -2;1 -2 1];
>> cf2=filter2(f2,c);
>> figure,imshow(mat2gray(cf2));做法1
>> maxcf2=max(cf2(:));
>> mincf2=min(cf2(:)); 做法2
>> cf2g=(cf2-mincf2)/(maxcf2-mncf2);
>> figure,imshow(cf2/60) 做法3
```


(a) 使用 mat2gray

(b) 除以一個常數

圖 5.6 執行高通濾波並顯示結果

應用

■低通濾波器

Original image

Blurring image (15×15 mask)

Binary image

■高通濾波器

5.5 高斯濾波器(Gaussian filter)

- 高斯濾波器是個低通濾波器,由高斯機率分佈 函數變化而來
 - □ σ是標準差,值越大,曲線越平緩;反之,越陡峭
 - □此濾波器具模糊效果

>> g=fspecial('gaussian', [5 5], 2);


```
>> a=50;s=3;
>> g=fspecial('gaussian',[a a],s);
>> surf(1:a,1:a,g)
>> s=9;
>> g2=fspecial('gaussian',[a a],s);
>> figure,surf(1:a,1:a,g2)
```


圖 5.8 二維高斯

■ 範例:n×n的高斯瀘波器(σ=2 or 5)

```
>> c=imread('cameraman.tif');
                                          預設\sigma=0.5
>> g1=fspecial('gaussian',[5,5]);
>> g2=fspecial('gaussian', [5,5],2);
>> g3=fspecial('gaussian',[11,11],1);
>> g4=fspecial('gaussian',[11,11],5);
\rightarrow imshow(filter2(g1,c)/256)
>> figure, imshow(filter2(g2,c)/256)
>> figure, imshow(filter2(g3,c)/256)
>> figure, imshow(filter2(g4,c)/256)
```

標準差越大 效果越模糊

 5×5 , $\sigma=0.5$

 5×5 , $\sigma=2$

 11×11 , $\sigma = 1$

 11×11 , $\sigma = 5$

5.6 邊緣銳利化

■ 動作又稱edge enhancement、edge crispening 、unsharp masking

```
>> f=fspecial('average');
>> xf=filter2(f,x);
>> xu=double(x)-xf/1.5
>> imshow(xu/70)
```


圖 5.10 去銳利化遮罩的流程

(a) 原始影像

(b) 去銳利化遮罩後影像

■ 或,使用fspecial函數下unsharp去銳利化參數

```
>> p=imread('pelicans.tif');
>> u=fspecial('unsharp',0.5); α = 0.5
>> pu=filter2(u,p);
>> imshow(p), figure, imshow(pu/255)
```


(a) 原始影像

(b) 去銳利化遮罩後影像

5.7 非線性濾波器

- 非線性濾波器則是對遮罩內灰階值執行非線性 函數
 - □ 排序濾波器 (rank-order filters)
 - 最大濾波器(maximum filter)
 - 最小濾波器(minimum filter)
 - 中位濾波器(median filter)

```
>> c=imread('cameraman.tif');

>> cmax = n1filter(c, [3 3], 'max(x(:))');

>> cmin = n1filter(c, [3 3], 'min(x(:))');

>> cMAX=ordfilt2(c, 9, ones(3,3));

>> cMIN=ordfilt2(c, 1, ones(3,3));

>> cMed=ordfilt2(c, 5, ones(3,3));
```


圖 5.15 (a) 執行最大濾波器

(b) 執行最小濾波器

5.8 感興趣區域 (ROI)

■ 影像中的特定感興趣之區域(regions of interest)


```
>> ig=imread('iguana.tif');
>> roi=roipoly(ig,[406 600 600 406],[58 58 231 231]);
```

- 範例:針對特定區域作處理
 - □ 平均濾波

```
>> a=fspecial('average',[15,15]);
>> iga=roifilt2(a,ig,roi);
>> imshow(iga)
```

□ 去銳利化遮罩

```
>> u=fspecial('unsharp');
>> igu=roifilt2(u,ig,roi);
>> figure,imshow(igu)
```

□ 高斯log濾波

```
>> l=fspecial('log');
>> igl=roifilt2(l,ig,roi);
>> figure,imshow(igl)
```


- 自動產生濾波器: Create 2-D special filters
 - fspecial(type,parameters)

ex.: F1=fspecial('average', 11)

Value	Description
'gaussian'	Gaussian lowpass filter
'sobel'	Sobel horizontal edge-emphasizing filter
'prewitt'	Prewitt horizontal edge-emphasizing filter
'laplacian'	Filter approximating the two-dimensional Laplacian operator
'log'	Laplacian of Gaussian filter
'average'	Averaging filter
'unsharp'	Unsharp contrast enhancement filter

FILTER TYPE:

練習

■使用下列指令顯示猴子(mandrill.tiff)的灰階影像, 執行下列所有濾波,請選出各個濾波器的效果。

- □ 高通濾波器
- □ 低通濾波器
- □ 偵測垂直方向
- □ 偵測水平方向
- □ 偵測135度
- □ 偵測45度
- □ 邊緣偵測
- □ 模糊濾波器 ←
- □ 全相偵測

$$d = -1$$
 2 -1 $e = -1$ -1 -1 -1 -1 2 -1 -1 2 -1 -1 -1 -1