

コンデンサ C_1 , C_2 の電気容量をC, 2C、抵抗 R_1 , R_2 の抵抗値をR, 2R とし、起電力E、スイッチ S_1 , S_2 を接続し、次の操作を行った。

- (1) S₁ のみ閉じる
- (2) コンデンサを流れる電流が0になる
- (3) S_2 も閉じる
- (4) 回路を流れる電流は一定となる

電位は点bを基準とする。次の値をC, R, E を用いて求めよ。

- (1) スイッチ S_2 を閉じる直前の、点 d の電位 V_d
- (2) スイッチ S_2 を閉じる直前の、抵抗 R_1 を流れる電流の大きさ I
- (3) スイッチ S_2 を閉じて十分に時間経過したときの、点 d の電位 V_d'
- (4) スイッチ S_2 を閉じてから、十分に時間経過するまでにスイッチ S_2 を通って点 c から点 d に向かって流れた電気量 Q

その後、スイッチ S_2 を開き、続いてスイッチ S_1 を開いた。十分に時間が経過すると回路を流れる電流は 0 になった。

- (5) スイッチ S_1 を開いてから、十分に時間が経過するまでに、点 a から抵抗 R_1 , R_2 を通り点 b に向かって流れた電気量 Q'
- (6) スイッチ S_1 を開いてから、十分に時間が経過するまでに抵抗 R_2 で発生するジュール熱 P
- (1) コンデンサ C_1 , C_2 の電荷は $Q_1=C_1V_1$, $Q_2=C_2V_2$ であり、直列のコンデンサの電荷は同じになるため、 $C_1V_1=C_2V_2$ 。

コンデンサ C_2 の電位を V_d とするとコンデンサ C_1 の電位は $E-V_d$ であるので、次の式を得る。

$$C(E - V_d) = 2CV_d \tag{1}$$

これを解くと次が得られる。

$$V_d = \frac{1}{3}E\tag{2}$$

.....

(2) 抵抗 R_1, R_2 の抵抗値はそれぞれ R, 2R であり、これが直列に繋がれているので 2 つの抵抗の合計は 3R である。電流 I は電圧 E を抵抗 3R で割ることで求まるため次のようになる。

$$I = \frac{E}{3R} \tag{3}$$

.....

(3) スイッチ S_2 を閉じ十分に電気を流すと、コンデンサには十分に電気が溜まっている状態となる。

この場合、 R_1, C_1 の並列接続と R_2, C_2 の並列接続が直列につながっている。コンデンサには電気が流れない状況であればそれぞれの電圧は R_1, R_2 に流れる電流から求まる。

$$V = IR = \frac{E}{3R} \times 2R \tag{4}$$

上記計算により次のように電圧が求まる。

$$V_d' = \frac{2}{3}E\tag{5}$$

.....

(4) スイッチ S_2 を閉じる前に C_1 , C_2 には電気が蓄えられている。電気容量が C_1 のほうが小さいため、 S_2 を閉じたあとはその差分 $2C \times E - C \times E$ の電気が流れることになる。

$$Q = CE (6)$$

.....

(5) コンデンサ C_1, C_2 の直列接続による静電容量Cは次の式で求められる。

$$C = \frac{1}{\frac{1}{C_1} + \frac{1}{C_2}} = \frac{C_1 C_2}{C_1 + C_2} \tag{7}$$

スイッチ S_2 を閉じ、十分に電気を蓄えたあとにスイッチ S_2 を開くと直列接続している C_1, C_2 の合成静電容量分の電気が蓄電されている状態となる。

$$\frac{C \times 2C}{C + 2C} = \frac{2}{3}C\tag{8}$$

スイッチ S_1 を開くと、コンデンサに蓄えた電気が流れる事となるので、電力Eと 静電容量をかけた電気が流れることとなる。

$$Q' = \frac{2}{3}CE\tag{9}$$

......

(6) スイッチ S_1, S_2 を開いた状態だと、コンデンサ C_1, C_2 と抵抗 R_1, R_2 を直列に繋いた閉回路となる。

2つのコンデンサを合成したものを $C_{1,2}$ とすると前問より、合成した電気容量 $Q'=\frac{2}{3}CE$ を $C_{1,2}$ が蓄えている状態であるといえる。このとき、直前まで起電力 E により電気が流れていた為、 $C_{1,2}$ の電位差は E となっている。

放電により $C_{1,2}$ の電気が抵抗 R_1, R_2 に流れる場合の R_2 によって発生するジュール熱を求める。

回路の静電エネルギーはコンデンサの電圧 V と電気量 Q を用いて $\frac{1}{2}QV$ と表される。回路にはコンデンサが繋がれているだけであるから、2 つの抵抗から発生するジュール熱の合計も $\frac{1}{2}QV$ と等しくなる。

今、コンデンサ $C_{1,2}$ に蓄えられた電気量は $\frac{2}{3}CE$ であり、直前まで繋がれていた起電力 E がコンデンサの電位差となる。コンデンサの静電エネルギーは次のように求められる。

$$\frac{1}{2} \times \frac{2}{3}CE \times E = \frac{1}{3}CE^2 \tag{10}$$

2 つの抵抗値は R, 2R であり、これにより電圧はそれぞれ $\frac{1}{3}$, $\frac{2}{3}$ がかかる。

 R_2 に掛かる電圧が全体の $\frac{2}{3}$ であるから式 (10) の電位差 E を $\frac{2}{3}E$ に置き換えると R_2 で発生するジュール熱が求まる。

$$P = \frac{1}{2} \times \frac{2}{3}CE \times \frac{2}{3}E = \frac{2}{9}CE^2 \tag{11}$$