ファンデルモンド行列式について

担当:大矢浩徳 (OYA Hironori)*

本資料ではファンデルモンド行列式の公式について証明を与える. この公式は第 5 回講義資料の定理 5.6 の証明で用いられている.

- ファンデルモンド行列式 (Vandermonde determinant) 🗕

任意の正の整数nに対し、

$$\begin{vmatrix} \begin{pmatrix} 1 & x_1 & \cdots & x_1^{n-1} \\ 1 & x_2 & \cdots & x_2^{n-1} \\ 1 & x_3 & \cdots & x_3^{n-1} \\ \vdots & \vdots & \cdots & \vdots \\ 1 & x_n & \cdots & x_n^{n-1} \end{pmatrix} = \prod_{1 \le i < j \le n} (x_j - x_i)$$

注意. この公式の右辺の $\prod_{1 \le i < j \le n}$ という記号は、『条件 $1 \le i < j \le n$ を満たすような全ての自然数 $i \ge j$ に関して積をとる』という意味である.和に関する \sum という記号の積バージョンであると考えれば良い*1.例えば、n=3 のとき、

$$\begin{vmatrix} \begin{pmatrix} 1 & x_1 & x_1^2 \\ 1 & x_2 & x_2^2 \\ 1 & x_3 & x_3^2 \end{pmatrix} = (x_2 - x_1)(x_3 - x_1)(x_3 - x_2)$$

となる. ファンデルモンド行列式 (Vandermonde determinant) の右辺の積は**差積**とも呼ばれる. 特に,この行列式の値が 0 でないことの必要十分条件が

任意の相異なる i,j について $x_i \neq x_j$

であることに注意する.

証明. 証明すべき式の左辺は x_1,x_2,\ldots,x_n についての多項式であるが,任意の $1 \le i < j \le n$ に対し, $x_i = x_j$ とすると,考えている行列内に同じ行が 2 つ現れることになるので,行列式の性質(交代性)からこのとき恒等的に 0 となる.よって因数定理より,この多項式は $(x_j - x_i)$ で割り切れるということがわかる.これより,ある多項式 $p(x_1,x_2,\ldots,x_n)$ を用いて,

$$\begin{vmatrix} \begin{pmatrix} 1 & x_1 & \cdots & x_1^{n-1} \\ 1 & x_2 & \cdots & x_2^{n-1} \\ 1 & x_3 & \cdots & x_3^{n-1} \\ \vdots & \vdots & \cdots & \vdots \\ 1 & x_n & \cdots & x_n^{n-1} \end{pmatrix} = p(x_1, x_2, \dots, x_n) \prod_{1 \le i < j \le n} (x_j - x_i)$$

と書けることがわかる.

^{*} $e ext{-}mail: hoya@shibaura-it.ac.jp}$

^{*1} \sum は総和を意味する sum, summation の頭文字 s に由来しており, \prod は積を意味する product の頭文字 p に由来している. \prod はパイ π の大文字である.

一方, 行列式を考えている行列の (i,j) 成分が x_i^{j-1} であることに注意すると, 行列式の一般的な明示式より,

$$\begin{vmatrix} \begin{pmatrix} 1 & x_1 & \cdots & x_1^{n-1} \\ 1 & x_2 & \cdots & x_2^{n-1} \\ 1 & x_3 & \cdots & x_3^{n-1} \\ \vdots & \vdots & \cdots & \vdots \\ 1 & x_n & \cdots & x_n^{n-1} \end{pmatrix} = \sum_{\sigma \in S_n} \operatorname{sgn}(\sigma) x_{\sigma(1)}^0 x_{\sigma(2)}^1 x_{\sigma(3)}^2 \cdots x_{\sigma(n)}^{n-1}$$

となる. ただし, S_n は n 文字の置換全体の集合, $\mathrm{sgn}(\sigma)$ は置換 σ の符号である. これより,この多項式は全ての項が $0+1+2+\cdots+(n-1)=n(n-1)/2$ 次である多項式であり, σ が恒等置換 $e=\begin{pmatrix} 1 & 2 & \cdots & n \\ 1 & 2 & \cdots & n \end{pmatrix}$ である項を考えると, $x_2x_3^2\cdots x_n^{n-1}$ という項を係数 1 で含むことがわかる $(\mathrm{sgn}(e)=1$ に注意).

いま, $1 \leq i < j \leq n$ を満たす (i,j) は全部で ${}_n\mathrm{C}_2 = n(n-1)/2$ 通りあるので, $\prod_{1 \leq i < j \leq n} (x_j - x_i)$ は全ての項が n(n-1)/2 次である多項式であり,さらに $x_2x_3^2 \cdots x_n^{n-1}$ という項を係数 1 で含むことがわかる.これらの比較により,上の多項式 $p(x_1,x_2,\ldots,x_n)$ は 1 となるしかないことがわかる.よって,

$$\begin{vmatrix} \begin{pmatrix} 1 & x_1 & \cdots & x_1^{n-1} \\ 1 & x_2 & \cdots & x_2^{n-1} \\ 1 & x_3 & \cdots & x_3^{n-1} \\ \vdots & \vdots & \cdots & \vdots \\ 1 & x_n & \cdots & x_n^{n-1} \end{pmatrix} = \prod_{1 \le i < j \le n} (x_j - x_i).$$