Chapitre 4

Épreuve écrite d'analyse et probabilités

4.1 Énoncé

Notations et définitions

- Soit p un entier supérieur ou égal à 1. Soit Ω un ouvert de \mathbf{R}^p , on note C_{Ω} l'espace vectoriel des fonctions de Ω dans \mathbf{R} qui sont de classe \mathscr{C}^{∞} .
- Dans tout le problème, on appellera difféomorphisme entre deux ouverts de \mathbf{R}^p une bijection entre ces deux ouverts qui est de classe \mathscr{C}^{∞} ainsi que sa réciproque.
- Si *I* est un intervalle on note I^2 le carré $I \times I$ de \mathbb{R}^2 .
- Soit *I* un intervalle ouvert et *f* un élément de C_I . On dit que $x_0 \in I$ est un *point critique* de *f* si $f'(x_0) = 0$. Une valeur critique de *f* est un réel de la forme $f(x_0)$ où x_0 est un point critique. On dit qu'un point critique x_0 est non dégénéré si $f''(x_0)$ est non nul.
- Si A et B sont deux parties du plan \mathbb{R}^2 on dira que A et B sont de meme type s'il existe deux intervalles ouverts I et J et un difféomorphisme ϕ de I^2 sur J^2 tels que :

$$A \subset I^2$$
, $B \subset J^2$, $\phi(A) = B$

Objet du problème

Soit I un intervalle ouvert non vide de \mathbf{R} . Pour toute fonction f élément de C_I , et pour tout réel λ on définit la partie de \mathbf{R}^2 :

$$E_{\lambda}(f) = \{(x, y) \in I^2, f(x) + f(y) = \lambda\}$$

Le problème se propose d'étudier quelques propriétés des ensembles $E_{\lambda}(f)$.

I. Préliminaires et exemples

I.A. Généralités

- 1. Soit *I* un intervalle ouvert quelconque de \mathbf{R} , et f un élément de $C_{I\bullet}$
 - (a) Déterminer $E_{\lambda}(f) \cap E_{\mu}(f)$ (pour λ, μ distincts) et $\cup_{\lambda \in \mathbb{R}} E_{\lambda}(f)$.
 - (b) Démontrer que pour tout λ , $E_{\lambda}(f)$ est un fermé de I^2 , et trouver une symétrie commune à tous les $E_{\lambda}(f)$.

- (c) Soit $x_0 \neq 0$. On pose $g(x) = f(x + x_0)$. Préciser l'intervalle de définition de g. Quelle transformation géométrique envoie $E_{\lambda}(g)$ sur $E_{\lambda}(f)$?
- 2. Déterminer selon la valeur de λ , l'ensemble $E_{\lambda}(f)$ lorsque la fonction f est définie sur **R** par $f(x) = x^2$.
- 3. On prend dans cette question la fonction f définie sur \mathbf{R} par $f(x) = x x^3$. Démontrer que $E_0(f)$ est la réunion d'une droite et d'une ellipse.
- 4. On prend dans cette question la fonction f définie sur \mathbf{R} par $f(x) = x^2 x^3$. Démontrer que $E_0(f)$ est la réunion du point (0,0) et d'une courbe dont on donnera une équation polaire et qu'on tracera sommairement, par exemple à l'aide d'une calculatrice graphique.

I.B. Racine carrée d'une fonction positive

- 5. Dans cette question, on note I =]a, b[un intervalle contenant $0 \ (a, b \in \overline{\mathbf{R}})$. On suppose de plus que la fonction $f \in C_I$ vérifie l'hypothèse suivante :
 - (H) 0 est l'unique point critique de f et il est non dégénéré; on a f(0) = 0 et f''(0) > 0.
 - (a) Expliciter les variations de f.
 - (b) On pose $g(x) = \int_0^1 (1-u) f''(xu) du$. Établir l'égalité $f(x) = x^2 g(x)$.
 - (c) Démontrer que g est de classe \mathscr{C}^{∞} et strictement positive sur] a,b[.
 - (d) Construire une fonction h croissante et de classe \mathscr{C}^{∞} sur I telle que pour tout x on ait $f(x) = h(x)^2$. Justifier que h est un difféomorphisme de I sur un intervalle J qu'on précisera en fonction de f.

Définition : la fonction h ainsi définie sera appelée racine carrée de f.

I.C. Ovales du plan

On reprend les notations de la question 5, en supposant toujours que f vérifie l'hypothèse (H).

6. En utilisant la racine carrée de f, démontrer que pour $\lambda > 0$ l'ensemble $E_{\lambda}(f)$ est de même type que l'intersection du cercle d'équation $x^2 + y^2 = \lambda$ et du carré J^2 .

Définition : dans la suite du problème, on appellera **ovale** toute partie du plan qui est de même type qu'un cercle.

7. Une application

On considère le système différentiel (S) suivant :

$$\begin{cases} x'(t) = x(t) - x(t)y(t) \\ y'(t) = -y(t) + x(t)y(t) \end{cases}$$

où x et y sont deux fonctions inconnues de la variable t. Soit $(x_0, y_0) \in (\mathbb{R}_+^*)^2, (x_0, y_0) \neq (1, 1)$.

On note: $t \to (x(t), y(t))$ l'unique solution maximale de (S) vérifiant $x(0) = x_0, y(0) = y_0$.

- (a) Établir que les fonctions *x* et *y* ne peuvent pas s'annuler.
- (b) Démontrer que le support de l'arc paramétré $t \mapsto (x(t), y(t))$ est inclus dans un ovale que l'on caractérisera à l'aide de x_0 , y_0 et de la fonction g définie pour x > 0 par $g(x) = x 1 \ln(x)$.

II. Un problème de dénombrement

On rappelle le résultat suivant : $si\ z \to g(z)$ est une fonction d'une variable complexe holomorphe sur le disque ouvert de centre 0 et de rayon r, alors elle est somme sur ce disque ouvert d'une série entière convergente.

- 1. On pose, pour tout $z \in \mathbf{C}$, $\cos(z) = \frac{e^{iz} + e^{-iz}}{2}$ et $\sin(z) = \frac{e^{iz} e^{-iz}}{2i}$.
 - (a) Résoudre l'équation cos(z) = 0.
 - (b) Établir l'existence d'une suite $(b_n)_{n \in \mathbb{N}}$ de nombres **réels** tels que pour tout complexe z de module assez petit on ait :

$$\frac{\sin(z)+1}{\cos(z)} = \sum_{n=0}^{\infty} \frac{b_n}{n!} z^n$$

(il n'est pas demandé de calculer les coefficients b_n).

- (c) Démontrer que la fonction H définie sur $\mathbb{C} \setminus \{z, \cos(z) = 0\}$ par $H(z) = \frac{\sin(z) + 1}{\cos(z)} + \frac{4}{2z \pi}$ possède un prolongement holomorphe sur le disque ouvert $\left\{z, |z| < \frac{3\pi}{2}\right\}$.
- (d) En déduire que $b_n \sim \frac{2^{n+2}n!}{\pi^{n+1}}$.

2. Permutations alternantes

On donne a_0, \ldots, a_{n-1}, n nombres réels distincts rangés par ordre croissant : $a_0 < \ldots < a_{n-1}$. Soit σ une permutation de l'ensemble $\{a_0, \ldots, a_{n-1}\}$. On dit que σ est *alternante* si elle vérifie les deux propriétés suivantes :

$$\sigma(a_{2i}) < \sigma(a_{2i+1})$$
 pour tout i tel que $0 < 2i + 1 \le n - 1$
 $\sigma(a_{2i-1}) > \sigma(a_{2i})$ pour tout i tel que $0 < 2i \le n - 1$

On dit que σ est *antialternante* si elle vérifie les inégalités inverses. On note e_n le nombre de permutations alternantes (par convention $e_0 = e_1 = 1$).

- (a) Déterminer toutes les permutations alternantes ainsi que l'entier e_n lorsque n=2,3 ou 4.
- (b) Démontrer qu'il y a (pour $n \ge 2$) autant de permutations alternantes que de permutations antialternantes.
- (c) Démontrer que pour tout $n \ge 1$ on a :

$$2e_{n+1} = \sum_{i=0}^{n} \binom{n}{i} e_i e_{n-i}$$

Indication: pour une permutation σ de $\{a_0, \dots a_n\}$, on pourra considérer l'indice j tel que $\sigma(a_j) = a_0$.

(d) En conclure que pour tout n, $e_n = b_n$.

III. Les serpents d'Arnold

Dans cette partie, $I = \mathbf{R}$.

On se propose d'étudier la topologie de $E_{\lambda}(f)$ pour une famille de fonctions appelées serpents d'Arnold. Un entier n > 0 étant donné, on fixe n réels $a_0 < ... < a_{n-1}$ tels que les sommes $a_i + a_j$ pour $i \le j$ soient toutes distinctes.

On note \mathcal{A}_n l'ensemble des fonctions f de **R** dans lui même qui vérifient les propriétés suivantes :

- f est de classe \mathscr{C}^{∞} ;

- f possède exactement n points critiques, $x_0(f) < ... < x_{n-1}(f)$ et ils sont tous non dégénérés;
- Les valeurs critiques de f sont $a_0, ..., a_{n-1}$. Autrement dit, il existe une permutation σ_f de $a_0, ..., a_{n-1}$ telle que, pour tout i, $f(x_i(f)) = \sigma_f(a_i)$. La permutation σ_f s'appelle permutation associée à f;
- f(x) tend vers $+\infty$ quand x tend vers $-\infty$;
- f(x) tend vers +∞ ou vers -∞ quand x tend vers +∞.

Définition : un élément f de \mathcal{A}_n s'appelle un serpent à n points critiques.

Remarque : pour alléger les notations, lorsqu'il n'y a pas d'ambiguïté, on note $x_0, ..., x_{n-1}$ les points critiques de f. De même, la notation \mathcal{A}_n est en réalité une abréviation pour $\mathcal{A}_n(a_0, ..., a_{n-1})$.

Classes d'équivalence de serpents

- 1. Soit $f \in \mathcal{A}_n$. Préciser les variations de f selon la parité de n.
- 2. (a) Démontrer que la relation \sim définie par « $f \sim g$ si et seulement s'il existe un difféomorphisme croissant h de \mathbf{R} tel que $f = g \circ h$ » est une relation d'équivalence sur \mathcal{A}_n .
 - (b) Démontrer que si $f \sim g$ alors pour tout λ , $E_{\lambda}(f)$ et $E_{\lambda}(g)$ sont de même type.
- 3. Soit h un difféomorphisme croissant de **R.** Démontrer que $f \in \mathcal{A}_n \Leftrightarrow f \circ h \in \mathcal{A}_n$, et qu'alors $\sigma_f = \sigma_{f \circ h}$.
- 4. Réciproquement on suppose que f et g sont deux éléments de \mathcal{A}_n qui vérifient $\sigma_f = \sigma_g$.
 - (a) Démontrer qu'il existe une unique bijection h croissante de \mathbf{R} dans \mathbf{R} telle que $f = g \circ h$ et $h(x_k(f)) = x_k(g)$.
 - (b) En utilisant la partie I, démontrer que h est un difféomorphisme.
- 5. (a) Démontrer que le nombre de classes d'équivalence de \sim est majoré par l'entier b_n défini dans la partie **II.**
 - (b) On admet que si $[\lambda, \mu]$ ne contient aucun élément $a_i + a_j$, les ensembles $E_{\lambda}(f)$ et $E_{\mu}(f)$ sont de même type. En déduire un majorant du nombre de types des $E_{\lambda}(f)$, lorsque λ parcourt \mathbf{R} et f parcourt \mathcal{A}_n .

Topologie de $E_{\lambda}(f)$ dans le cas non critique

On se propose dans les questions qui suivent de décrire la topologie de $E_{\lambda}(f)$ lorsque f est un élément de \mathcal{A}_n et que le réel λ n'est pas de la forme $a_i + a_j$.

On note $I_0 =]-\infty, x_0], I_n = [x_{n-1}, \infty[$, et pour k variant de 1 à n-1, $I_k = [x_{k-1}, x_k]$.

- 6. Sous-graphes
 - (a) Vérifier que $E_{\lambda}(f) \cap (I_i \times I_j)$ est, pour tout (i, j), l'ensemble vide ou le graphe d'une fonction strictement monotone continue définie sur un intervalle fermé inclus dans I_i .

Définition : lorsque l'intersection $E_{\lambda}(f) \cap (I_i \times I_j)$ est non vide, on convient de l'appeler un sous-graphe de $E_{\lambda}(f)$.

- (b) Démontrer que les extrémités du sous-graphe $E_{\lambda}(f) \cap (I_i \times I_j)$ sont sur la frontière du rectangle $I_i \times I_j$.
- (c) Démontrer que chaque extrémité d'un sous-graphe appartient à exactement un autre sous-graphe et que deux sous-graphes ne peuvent avoir d'autre point commun qu'une extrémité.
- (d) Démontrer que, si n est impair, tous les sous-graphes sont bornés et que si n est pair il y en a exactement 2 qui sont non bornés.

- 7. Composantes connexes de $E_{\lambda}(f)$
 - (a) Démontrer que toute composante connexe est une union $\bigcup_{i=1}^{p} S_i$ de sous-graphes tels que S_i et S_{i+1} (pour i variant de 1 à p-1) ont une extrémité commune.
 - (b) En déduire que lorsque n est pair il y a exactement une composante connexe non bornée.
 - (c) Lorsque C est une composante connexe bornée, construire une bijection continue du cercle unité S^1 sur C

On peut alors démontrer, mais nous ne le ferons pas, que C est un ovale.

- 8. Démontrer que le nombre d'ovales est inférieur ou égal à $\left[\frac{n+1}{2}\right]^2$ (où $\left[\cdot\right]$ désigne la partie entière).
- 9. Dans cette question on choisit n = 2.
 - (a) Illustrer le fait que les composantes ne sont pas forcément des ovales lorsque λ est l'un des $a_i + a_j$
 - (b) Démontrer qu'il y a au maximum 4 ensembles $E_{\lambda}(f)$ de types différents quand λ décrit **R**.

IV. Réalisation polynomiale des serpents

On garde les notations de la partie précédente. L'entier n est supposé supérieur ou égal à 2. On souhaite démontrer le théorème (T) suivant, dû au mathématicien René Thom :

(T) Pour toute $f \in \mathcal{A}_n$ il existe un polynôme P de degré n+1 tel que $f \sim P$.

Il en résulte que les différents ensembles $E_{\lambda}(f)$ vus ci-dessus sont tous de même type qu'une courbe algébrique.

Notations

On note Ω_1 et Ω_2 les deux ouverts de \mathbb{R}^{n-1} définis par :

$$\Omega_1 = \{(x_1, ..., x_{n-1}) \in \mathbb{R}^{n-1}, 0 < x_1 < x_2 < \cdots < x_{n-1}\},
\Omega_2 = \{(y_1, ..., y_{n-1}) \in \mathbb{R}^{n-1}, 0 < y_1, \text{ et pour tout } i > 0, y_{2i-1} > y_{2i} \text{ et } y_{2i} < y_{2i+1}\}.$$

Si $x = (x_1, ..., x_{n-1})$ est un élément de Ω_1 , on note P_x le polynôme de degré n défini par

$$P_x(t) = t(x_1 - t) \cdots (x_{n-1} - t)$$

Enfin, pour tout $i \in \{1, ..., n-1\}$, on définit un polynôme $Q_{i,x}$ en posant $Q_{i,x}(t) = \frac{1}{t^2} \int_0^t \frac{P_x(u)}{x_i - u} du$.

A. Deux lemmes de topologie et un d'algèbre

1. Soient U et V deux ouverts connexes de \mathbf{R}^{n-1} et ϕ une application continue de U dans V. On fait les deux hypothèses suivantes :

H1: l'image par ϕ de tout ouvert de U est un ouvert de V;

H2: l'image réciproque par ϕ de tout compact de V est un compact de U.

Démontrer que ϕ est surjective.

2. Soit E_n l'ensemble des polynômes unitaires (c'est-à-dire de coefficient dominant égal à 1) de degré n à coefficients réels. Démontrer que $\inf_{P \in E_n} \int_0^1 |P(t)| dt$ est un réel **strictement** positif. Dans la suite, on notera $C = \inf_{P \in E_n} \int_0^1 |P(t)| dt$.

3. Soient $R_1, ..., R_{n-1}, n-1$ polynômes de degré inférieur ou égal à n-2, linéairement indépendants et $(t_1, ..., t_{n-1}), n-1$ réels distincts. Démontrer que le déterminant $\det(R_i(t_i))$ est non nul.

B. Le théorème (T)

Soit Φ l'application :

$$\begin{array}{ccc} \Omega_1 & \to & \Omega_2 \\ x & \mapsto & \left(\int_0^{x_1} P_x(t) dt, \dots, \int_0^{x_{n-1}} P_x(t) dt \right) \end{array}$$

Afin d'alléger les notations, le vecteur $\Phi(x)$ sera noté $(y_1, ..., y_{n-1})$.

- 4. Justifier que cette application est bien définie, exprimer ses dérivées partielles en fonction des polynômes $Q_{i,x}$ et en déduire que Φ vérifie l'hypothèse **H1**.
- 5. Pour $x \in \Omega_1$ démontrer l'inégalité :

$$\left| y_1 + \sum_{i=1}^{n-2} (-1)^i (y_{i+1} - y_i) \right| \ge C(x_{n-1})^{n+1}.$$

6. Démontrer que Φ vérifie l'hypothèse **H2** et en déduire le théorème (T).