DP Examples

- Fibonacci
- Binomial Coefficients
- Longest Common Subsequence
- Longest Increasing Subsequence
- Knapsack
- Shortest Path
- Chain Matrix Multiplication
- Edit Distance
- Rod Cutting
- Optimal BST

Longest Common Subsequence

Given two sequences x[1..m] and y[1..n]

$$X = \langle x_1, x_2, ..., x_m \rangle$$
$$Y = \langle y_1, y_2, ..., y_n \rangle$$

find a maximum length common subsequence (LCS) of X and Y

• *E.g.*:

$$X = \langle A, B, C, B, D, A, B \rangle$$

- Subsequences of X:
 - A subset of elements in the sequence taken in order
 (A, B, D), (B, C, D, B), etc.

Example

$$X = \langle A, B, C, B, D, A, B \rangle$$
 $X = \langle A, B, C, B, D, A, B \rangle$
 $Y = \langle B, D, C, A, B, A \rangle$ $Y = \langle B, D, C, A, B, A \rangle$

- (B, C, B, A) and (B, D, A, B) are longest common subsequences of X and Y (length = 4)
- (B, C, A), however is not a LCS of X and Y

Longest Common Subsequence (LCS)

Application: comparison of two DNA strings

Ex: $X = \langle A, B, C, B, D, A, B \rangle$, $Y = \langle B, D, C, A, B, A \rangle$

Longest Common Subsequence:

X = AB C BDAB

Y = BDCABA

Brute force algorithm would compare each subsequence of X with the symbols in Y

Brute-Force Solution

- For every subsequence of X, check whether it's a subsequence of Y
- There are 2^m subsequences of X to check
- Each subsequence takes Θ(n) time to check
 - scan Y for first letter, from there scan for second, and
 so on
- Running time: Θ(n2^m)

Steps in Dynamic Programming

- 1. Characterize structure of an optimal solution.
- 2. Define value of optimal solution recursively.
- 3. Compute optimal solution values bottom-up in a table.
- Construct an optimal solution from computed values.

We'll study these with the help of examples.

Making the choice

$$X = \langle A, B, D, E \rangle$$

 $Y = \langle Z, B, E \rangle$

 Choice: include one element into the common sequence (E) and solve the resulting subproblem

$$X = \langle A, B, D, G \rangle$$

 $Y = \langle Z, B, D \rangle$

 Choice: exclude an element from a string and solve the resulting subproblem

Notations

• Given a sequence $X = \langle x_1, x_2, ..., x_m \rangle$ we define the i-th prefix of X, for i = 0, 1, 2, ..., m

$$X_i = \langle x_1, x_2, ..., x_i \rangle$$
 or $x[1,...,i]$

$$Y_j = \langle y_1, y_2, ..., y_j \rangle$$
 or y[1,...,j]

c[i, j] = the length of a LCS of the sequences

$$X_{i} = \langle x_{1}, x_{2}, ..., x_{i} \rangle$$
 and $Y_{j} = \langle y_{1}, y_{2}, ..., y_{j} \rangle$

A Recursive Solution

Case 1:
$$x_i = y_j$$

e.g.: $X_i = \langle A, B, D, E \rangle$
 $Y_j = \langle Z, B, E \rangle$
 $c[i, j] = c[i-1, j-1] + 1$

- Append $x_i = y_j$ to the LCS of X_{i-1} and Y_{j-1}
- Must find a LCS of X_{i-1} and $Y_{j-1} \Rightarrow$ optimal solution to a problem includes optimal solutions to subproblems

A Recursive Solution

```
Case 2: x_i \neq y_j

e.g.: X_i = \langle A, B, D, G \rangle

Y_j = \langle Z, B, D \rangle

c[i, j] = \max \{ c[i-1, j], c[i, j-1] \}
```

- Must solve two problems
 - find a LCS of X_{i-1} and Y_i : $X_{i-1} = \langle A, B, D \rangle$ and $Y_i = \langle Z, B, D \rangle$
 - find a LCS of X_i and Y_{i-1} : $X_i = \langle A, B, D, G \rangle$ and $Y_j = \langle Z, B \rangle$
- Optimal solution to a problem includes optimal solutions to subproblems

Overlapping Subproblems

- To find a LCS of X and Y
 - we may need to find the LCS between X and Y_{n-1} and that of X_{m-1} and Y
 - Both the above subproblems has the subproblem of finding the LCS of X_{m-1} and Y_{n-1}
- Subproblems share subsubproblems

Finding LCS Length

Define c[i,j] to be the length of the LCS of x[1..,i] and y[1..,j]

Theorem:

$$c[i, j] = \begin{cases} 0 & i = 0 \text{ or } j = 0, \\ c[i-1, j-1] + 1 & \text{if } x[i] = y[j], \\ \max(c[i, j-1], c[i-1, j]) & \text{otherwise} \end{cases}$$

LCS Algorithm

- First we'll find the length of LCS. Later we'll modify the algorithm to find LCS itself.
- Define X_i, Y_j to be the prefixes of X and Y of length i and j respectively
- Define c[i,j] to be the length of LCS of X_i and Y_j
- Then the length of LCS of X and Y will be c[m,n]

$$c[i, j] = \begin{cases} 0 & i = 0 \text{ or } j = 0, \\ c[i-1, j-1] + 1 & \text{if } x[i] = y[j], \\ \max(c[i, j-1], c[i-1, j]) & \text{otherwise} \end{cases}$$

LCS recursive solution

$$c[i, j] = \begin{cases} c[i-1, j-1] + 1 & \text{if } x[i] = y[j], \\ \max(c[i, j-1], c[i-1, j]) & \text{otherwise} \end{cases}$$

- We start with i = j = 0 (empty substrings of x and y)
- Since X_0 and Y_0 are empty strings, their LCS is always empty (i.e. c[0,0]=0)
- LCS of empty string and any other string is empty, so for every i and j: c[0, j] = c[i, 0] = 0

LCS recursive solution

$$c[i, j] = \begin{cases} c[i-1, j-1] + 1 & \text{if } x[i] = y[j], \\ \max(c[i, j-1], c[i-1, j]) & \text{otherwise} \end{cases}$$

- When we calculate c[i,j], we consider two cases:
- **First case:** x[i]=y[j]: one more symbol in strings X and Y matches, so the length of LCS X_i and Y_j equals to the length of LCS of smaller strings X_{i-1} and Y_{i-1} , plus 1

LCS recursive solution

$$c[i, j] = \begin{cases} c[i-1, j-1] + 1 & \text{if } x[i] = y[j], \\ \max(c[i, j-1], c[i-1, j]) & \text{otherwise} \end{cases}$$

- Second case: x[i] != y[j]
- As symbols don't match, our solution is not improved, and the length of $LCS(X_i, Y_j)$ is the same as before (i.e. maximum of $LCS(X_i, Y_{j-1})$ and $LCS(X_{i-1}, Y_i)$

LCS Length Algorithm

```
LCS-Length(X, Y)
1. m = length(X) // get the # of symbols in X
2. n = length(Y) // get the # of symbols in Y
3. for i = 1 to m c[i,0] = 0 // special case: Y_0
4. for j = 1 to n c[0,j] = 0 // special case: X_0
5. for i = 1 to m
                                  // for all X<sub>i</sub>
6. for j = 1 to n
                                         // for all Y<sub>i</sub>
7.
             if (X_i == Y_i)
8.
                     c[i,j] = c[i-1,j-1] + 1
              else c[i,j] = max(c[i-1,j], c[i,j-1])
10. return c
```

LCS Example

We'll see how LCS algorithm works on the following example:

- X = ABCB
- Y = BDCAB

LCS Example (0)

BDCAB

i		Yj	В	D	С	Α	В
0	Xi						
1	A						
2	В						
3	С						
4	В						

$$X = ABCB$$
; $m = |X| = 4$
 $Y = BDCAB$; $n = |Y| = 5$
Allocate array c[4,5]

LCS Example (1)

ABCB BDCAB

		0	1	2	3	4	5	_
i		Yj	В	D	С	Α	В	
0	Xi	i 0	0	0	0	0	0	
1	Α	0						
2	В	0						
3	С	0						
4	В	0						

for i = 1 to m
$$c[i,0] = 0$$

for j = 1 to n $c[0,j] = 0$

LCS Example (2)

if
$$(X_i == Y_j)$$

 $c[i,j] = c[i-1,j-1] + 1$
else $c[i,j] = max(c[i-1,j],c[i,j-1])$

LCS Example (3)

BDCAB ABCB

	<u> </u>	0	1	2	3	4	_5
i	•	Yj	В	D	С	Α	В
0	Xi	0	0	0	0	0	0
1	Α	0	0	0	0		
2	В	0					
3	С	0					
4	В	0					

if
$$(X_i == Y_j)$$

 $c[i,j] = c[i-1,j-1] + 1$
else $c[i,j] = max(c[i-1,j],c[i,j-1])$

LCS Example (4)

BDCAB

	i	0	1	2	3	4	_5	<u>)</u>
i		Yj	В	D	С	A	В	
0	Xi	0	0	0	0	0	0	
1	A	0	0	0	0	1		
2	В	0						
3	С	0						
4	В	0						

if
$$(X_i == Y_j)$$

 $c[i,j] = c[i-1,j-1] + 1$
else $c[i,j] = max(c[i-1,j], c[i,j-1])$

LCS Example (5)

ABCB RDCAR

if
$$(X_i == Y_j)$$

 $c[i,j] = c[i-1,j-1] + 1$
else $c[i,j] = max(c[i-1,j], c[i,j-1])$

LCS Example (6) DCAB

if
$$(X_i == Y_j)$$

 $c[i,j] = c[i-1,j-1] + 1$
else $c[i,j] = max(c[i-1,j], c[i,j-1])$

LCS Example (7)

if
$$(X_i == Y_j)$$

 $c[i,j] = c[i-1,j-1] + 1$
else $c[i,j] = max(c[i-1,j],c[i,j-1])$

LCS Example (8)

ABCB BDCAB

	i	0	1	2	3 4	5	
i	<u>, </u>	Yj	В	D	С	Α	В
0	Xi	0	0	0	0	0	0
1	Α	0	0	0	0	1 .	1
2	В	0	1	1	1	1	2
3	С	0					
4	В	0					

if
$$(X_i == Y_j)$$

 $c[i,j] = c[i-1,j-1] + 1$
else $c[i,j] = max(c[i-1,j], c[i,j-1])$

LCS Example (10)

	i i	0	_1	2	- 3 <u>4</u>	5		5
i		Yj	В	D	С	A	В	
0	Xi	0	0	0	0	0	0	
1	Α	0	0	0	0	1	1	
2	В	0	1	_1	1	1	2	
3	C	0	1 -	1				
4	В	0						

if
$$(X_i == Y_j)$$

 $c[i,j] = c[i-1,j-1] + 1$
else $c[i,j] = max(c[i-1,j],c[i,j-1])$

LCS Example (11)

		0	_1	2	34_	5	
i	•	Yj	В	D	(c)	A	В
0	Xi	0	0	0	0	0	0
1	A	0	0	0	0	1	1
2	В	0	1	1	1	1	2
3	C	0	1	1	2		
4	В	0					

if
$$(X_i == Y_j)$$

 $c[i,j] = c[i-1,j-1] + 1$
else $c[i,j] = max(c[i-1,j], c[i,j-1])$

LCS Example (12)

		0	_1	2 3	3 4	5		<u> </u>
i		Yj	В	D	С	A	В)
0	Xi	0	0	0	0		0	
1	Α	0	0	0	0	1	1	
2	В	0	1	1	1	1	2	
3	C	0	1	1	2 -	→ 2 −	2	
4	В	0						

if
$$(X_i == Y_j)$$

 $c[i,j] = c[i-1,j-1] + 1$
else $c[i,j] = max(c[i-1,j], c[i,j-1])$

LCS Example (13)

			1	2	34	5	
i		Yj	В	D	С	Α	В
0	Xi	0	0	0	0	0	0
1	Α	0	0	0	0	1	1
2	В	0	1	1	1	1	2
3	С	0	1	1	2	2	2
4	В	0	1				

if
$$(X_i == Y_j)$$

 $c[i,j] = c[i-1,j-1] + 1$
else $c[i,j] = max(c[i-1,j], c[i,j-1])$

LCS Example (14)

	i	0	1	2	3 4	5_	D
i	•	Yj	В	D	С	A	В
0	Xi	0	0	0	0	0	0
1	Α	0	0	0	0	1	1
2	В	0	1	1	1	1	2
3	С	0	1	_1	_2	2	2
4	В	0	1 -	1	2	2	

if
$$(X_i == Y_j)$$

 $c[i,j] = c[i-1,j-1] + 1$
else $c[i,j] = max(c[i-1,j], c[i,j-1])$

LCS Example (15)

					3 4		
i		Yj	В	D	С	Α	B
0	Xi	0	0	0	0	0	0
1	A	0	0	0	0	1	1
2	В	0	1	1	1	1	2
3	C	0	1	1	2	2 、	2
4	В	0	1	1	2	2	3

if
$$(X_i == Y_j)$$

 $c[i,j] = c[i-1,j-1] + 1$
else $c[i,j] = max(c[i-1,j], c[i,j-1])$

LCS Algorithm Running Time

- LCS algorithm calculates the values of each entry of the array c[m,n]
- So what is the running time?

O(mn)

since each c[i,j] is calculated in constant time, and there are m*n elements in the array

Finding LCS

Finding LCS (2)

LCS (reversed order) B C B LCS (straight order): B C B

Additional Information

$$c[i, j] = \begin{cases} 0 & \text{if } i, j = 0 \\ c[i-1, j-1] + 1 & \text{if } x_i = y_j \\ \max(c[i, j-1], c[i-1, j]) & \text{if } x_i \neq y_j \end{cases}$$

A matrix b[i, j]:

- For a subproblem [i, j] it tells us what choice was made to obtain the optimal value
- If $x_i = y_j$ b[i, j] = "\"
- Else, if
 c[i 1, j] ≥ c[i, j-1]
 b[i, j] = " ↑ "
 else
 b[i, j] = " ← "

Example

Constructing a LCS

- Start at b[m, n] and follow the arrows
- When we encounter a "

 " in b[i, j] ⇒ x_i = y_j is an element of the LCS

		0	1	2	3	4	5	6
		Υį	В	D	C	Α	В	Α
0	X _i	0	0	0	0	0	0	0
1	Α	0	0→	$O\!\to\!$	$O\!\to\!$	1	←1	1
2	В	0	1	(1)	←1	1	2	← 2
3	C	0	1		2	€(2)	5	↑ 2
4	В	0	1	1	^2		(3)	← 3
5	D	0	↑ 1	~ 2	2→	← 2	<u>(S)</u>	- 3
6	Α	0	1	5	2→	w 🗡	თ→(4
7	В	0	1	^ 2	↑ 2	← 3	4	4

PRINT-LCS(b, X, i, j)

- 1. if i = 0 or j = 0 Running time: $\Theta(m + n)$
- 2. then return
- 3. if $b[i, j] = " \setminus "$
- **4. then** PRINT-LCS(b, X, i 1, j 1)
- 5. print x_i
- **6.** elseif b[i, j] = "↑"
- **7. then** PRINT-LCS(b, X, i 1, j)
- **8. else** PRINT-LCS(b, X, i, j 1)

Initial call: PRINT-LCS(b, X, length[X], length[Y])

Improving the Code

- What can we say about how each entry c[i, j] is computed?
 - It depends only on c[i -1, j 1], c[i 1, j], and
 c[i, j 1]
 - Eliminate table b and compute in O(1) which of the three values was used to compute c[i, j]
 - We save $\Theta(mn)$ space from table b
 - However, we do not asymptotically decrease the auxiliary space requirements: still need table c

Improving the Code

- If we only need the length of the LCS
 - LCS-LENGTH works only on two rows of c at a time
 - The row being computed and the previous row
 - We can reduce the asymptotic space requirements by storing only these two rows