# Otimização Modelagem Matemática

A modelagem, que trata de representação quantitativa de processos de problemas reais, é de grande importância nas diversas áreas do conhecimento. O objetivo de um modelo matemático é reproduzir o realidade da forma mais fiel possível, buscando entender o mundo real e obtendo as respostas que podem resultar a partir de ações.

## Formulação de um Modelo

- 1. Compreender o problema
- 2. Descrever o objetivo
- 3. Definir as variáveis de decisão
- 4. Descrever cada restrição
- 5. Escrever o objetivo em termos das variáveis de decisão
- 6. Escrever as restrições em termos das variáveis de decisão

## Modelagem em Programação Linear (PPL)

#### Hipóteses de Linearidade

Nos modelos de programação linear são admitidas algumas hipóteses que as grandezas envolvidas precisam obedecer:

- Proporcionalidade
- Aditividade
- Não integralidade de solução (fracionamento ou divisibilidade)
- Determinística

## **Exemplo**

Uma empresa pode fabricar dois produtos (1 e 2).

Na fabricação do produto 1 a empresa gasta nove horas-homem e três horas-máquina. Margem de lucro R\$ 4000,00

Na fabricação do produto 2 a empresa gasta uma hora-homem e uma hora- máquina. Margem de lucro R\$1000,00

A empresa dispõe de 18 horas-homem e 12 horas-máquina para um período de produção.

Quanto a empresa deve fabricar de cada produto para ter o maior lucro?

Primeiro descrevemos o objetivo (Função Objetiva)

A função lucro (função objetivo)

Tem-se a decidir quanto produzir do produto  $\frac{1}{2}(x_1)$  e quanto produzir do produto  $\frac{2}{2}(x_2)$ . Assim consideramos como variáveis as quantidades a serem produzidas da cada produto respectivamente  $\frac{1}{2}(x_1)$ 0 lucro  $\frac{1}{2}(x_2)$ 1 depende da quantidade de cada produto

$$z = 4x_1 + x_2$$

## Descrevendo as restrições

Não se pode utilizar o que não se tem!

A quantidade utilizada deve ser menor ou igual a quantidade disponível. As quantidades de fabricação devem ser não negativas

$$egin{aligned} ext{(Hora Homem)} & 9x_1+x_2 \leq 18 \ ext{(Hora Máquina)} & 3x_2+x-2 \leq 12 \ x_1 \geq 0 & x_2 \geq 0 \end{aligned}$$

## Problema de Programação Linear - PPL



## Resolução Geométrica









# Possíveis Melhores Soluções



Como queremos Maximizar  $x_1$  e  $x_2$ , então podemos desconsiderar **P1, P2 e P4** Logo, substituindo P4, na função objetiva,  $z=4x_1+x-2$ , temos:

$$(1,9)$$
  $4 \cdot 1 + 9 = 13$ 

Então a solução ótima é  $x_1=1$  e  $x_2=9$ , para o valor ótimo =13

# Problema de Programação Linear - PPL

PPL Inteira

$$egin{aligned} \min \left( ext{ou max} 
ight) z &= c^t x \ ext{sujeito a} \ Ax &= b \ x &\in \mathbb{Z}^n \end{aligned}$$

PPL Inteira-Mista

$$egin{aligned} \min \left( ext{ou max} 
ight) z &= c^t x + d^t y \ ext{sujeito a} \ Ax + By &= b \ x \in \mathbb{R}^n, y \in \mathbb{Z}^p \end{aligned}$$

## A Terminologia para um PPL

#### Função Objetivo:

A função a ser maximizada ou minimizada é chamada Função objetivo f.

#### Restrição:

As condições impostas pelo modelo são denominadas Restrições do PPL. As restrições  $x_j \geq 0$  são denominadas Restrições de não negatividade. As outras Restrições funcionais.

#### Solução Viável:

Uma <u>Solução Viável</u> é uma solução para a qual todas as restrições são satisfeitas.

#### Solução Inviável:

Uma Solução Inviável é uma solução para a qual pelo menos uma restrição é violada.

#### Região Viável:

a região viável é o conjunto de todas as soluções viáveis.

## Solução Ótima:

Uma solução ótima ié uma solução viável onde onde a função objetivo atinge valor máximo(

PPL maximização) ou mínimo (PPL minimização)

# Geometria do PPL

# Soluções de um PPL

# 1. Solução Única



# 2. Solução Alternativa







Raio ótimo Semi reta como solução

## 3. Solução Ilimitada



## 4. Problema Inviável



# Geometria de uma restrição (PPL forma canônica )

- Definição 1: 0 conjunto  $x \in IR^n | a^Tx \leq b$  é denominado semiespaço fechado
- Definição 2: Um conjunto  $S \subset IR^n$  é dito limitado se existe uma constante K tal que o valor absoluto de cada componente de todo elemento de S e 'menor ou igual a K .
- Definição 3:
   Um politopo é um conjunto que pode ser expresso como a interseção de

um número finito de semiespaços fechados

- Definição 4:
   Um poliedro é politopo limitado, não vazio.
- Definição 5: Seja a um vetor não-nulo em  $IR^n$  e seja b um escalar. O conjunto  $x \in IR^n | a^Tx = b$  é chamado de hiperplano.

Geometricamente buscamos o hiperplano que intercepta o conjunto das soluções viáveis para o qual k é máximo ( caso de problema de maximização) ou k é mínimo ( problema de minimização)

## Convexidade

Um conjunto  $C \subset \mathbb{R}^n$  é conjunto convexo se para todo.  $p, q \in C$  e para qualquer  $0 \le \lambda \le 1$ , temos

$$w = \lambda p + (1-\lambda)q \in \mathbb{C}$$

Portanto, um conjunto C é convexo ,se todo segmento de reta que une dois de seus elementos pontos está inteiramente contido em C.

Um ponto x de um conjunto convexo C é dito ser um ponto extremo de C se ele não pode ser expresso como uma combinação convexa de

outros pontos distintos de C.

A região de contato (interseção) entre o hiperplano ótimo da função objetivo e o politopo da região viável é ou um ponto extremo ou uma face do politopo.

# Relação entre a representação geométrica e representação algébrica do PPL:





Álgebra



TEOREMA 5: Otimalidade do Ponto Extremo

Se um problema de programação linear tem exatamente uma solução ótima, então esta solução deve ser um ponto extremo do conjunto viável Lema

Se o PPL tem mais que uma solução ótima, ele tem infinitas soluções ótimas. Além disso, o conjunto das soluções ótimas é convexo

## **Dualidade**

Passamos a ter dois problemas o Primal (P) e o Dual (D) Exemplo Primal

sujeito a 
$$\max z = 4x_1 + x_2 + 5x_3 + 3x_4$$
  $x_1 - x_2 - x_3 + 3x_4 \leqslant 1$   $5x_1 + x_2 + 3x_3 + 8x_4 \leqslant 55$   $-x_1 + 2x_2 + 3x_3 - 5x_4 \leqslant 3$   $x_1, x_2, x_3, x_4 \geq 0$ 

Dual

$$\begin{array}{ll} \text{min } w = 1y_1 + 55y_2 + 3y_3 \\ \text{sujeito a} & y_1 + 5y_2 - y_3 \geq 4 \\ \text{(D)} & -y_1 + y_2 + y_2_3 \geq 1 \\ & -y_1 + 3y_2 + 3y_3 \geq 5 \\ & 3y_1 + 8y_2 - 5y_3 \geq 3 \\ & y_1, y_2, y_3 \geq 0 \end{array}$$

DEFINIÇÃO: O dual do problema (P) (*Problema PRIMAL*) é definido como sendo o problema (D) (*Problema DUAL*)

$$ext{(P)} \qquad ext{maximize } z = \sum_{j=1}^n c_j x_j \ ext{sujeito a} \qquad \sum_{j=1}^n a_{ij} x_j \leq b_i \quad (i=1,\ldots,m) \ x_j \geq 0 \quad (j=1,\ldots,n) \ ext{(D)} \qquad ext{minimize } w = \sum_{i=1}^m b_i y_i \ ext{sujeito a} \qquad \sum_{i=1}^m a_{ij} y_i \geq c_j \quad (j=1,\ldots,n) \ y_i \geq 0 \quad (i=1,\ldots,m) \ ext{}$$

#### Teorema de Dualidade Fraca:

Se x é uma solução viável de um problema primal e y é uma solução viável do problema dual correspondente, então

$$\sum_{j=1}^n c_j x_j \leq \sum_{j=1}^m b_i y_i$$

#### Teorema da Dualidade Forte:

Se um problema de programação linear tem uma solução ótima, seu dual também tem e os custos ótimos de ambos os problemas são iguais.

$$\sum_{j=1}^n c_j x_j^* \leq \sum_{j=1}^m b_i y_i^*$$

## Relação entre Primal e Dual

Dado o problema dual:

$$ext{(D)} \qquad ext{minimize} \ w = \sum_{i=1}^m b_i y_i \ ext{sujeito a} \qquad \sum_{i=1}^m a_{ij} y_i \geq c_j \quad (j=1,\ldots,n) \ ext{} \ y_i \geq 0 \quad (i=1,\ldots,m) \ ext{}$$

Podemos escrever com:

$$ext{(D)} \qquad ext{maximize} \quad -w = \sum_{i=1}^m (-b_i) y_i \ ext{sujeito a} \qquad \sum_{i=1}^m (-a_{ij}) y_i \leq -c_j \quad (j=1,\ldots,n) \ y_i \geq 0 \quad (i=1,\ldots,m) \ ext{}$$

Analogamente...

$$ext{(P)} \qquad ext{maximize } z = \sum_{j=1}^n (-c_j) x_j \ ext{sujeito a} \qquad \sum_{j=1}^n (-a_{ij}) x_j \geq -b_i \quad (i=1,\ldots,m) \ x_j \geq 0 \quad (j=1,\ldots,n) \ ext{}$$

O dual deste problema, resulta no primal

$$ext{(P)} \qquad ext{maximize } z = \sum_{j=1}^n c_j x_j \ ext{sujeito a} \qquad \sum_{j=1}^n a_{ij} x_j \leq b_i \quad (i=1,\ldots,m) \ x_j \geq 0 \quad (j=1,\ldots,n) \ ext{}$$



| PRIMAL     | MAXIMIZE        | MINIMIZE         | DUAL       |
|------------|-----------------|------------------|------------|
|            | ≥0              | ≥ C <sub>J</sub> |            |
| VARIÁVEIS  | ≤0              | ≤C <sub>J</sub>  | RESTRIÇÕES |
|            | IRRESTRITAS     | =C <sub>J</sub>  |            |
|            | ≤b <sub>i</sub> | ≥ 0              |            |
| RESTRIÇÕES | ≥b <sub>i</sub> | ≤0               | VARIÁVEIS  |
|            | =b <sub>i</sub> | irrestrita       |            |

## Primal (P) = Max / Dual (D) = Min



## Primal (P) = Min / Dual (D) = Min



Certificado de Otimalidade (Teorema da Folga Complementar)

### Uma forma mais aplicável do Teorema da Folga Complementar

TEOREMA: Considere o PPL (P) 
$$\begin{cases} \max imize \ z = \sum_{j=1}^{n} c_{j} x_{j} \\ sujeito \ a \quad \sum_{j=1}^{n} a_{ij} x_{j} \le b_{i} \quad (i = 1, ..., m) \\ x_{j} \ge 0 \qquad (j = 1, ..., n) \end{cases}$$

Uma solução viável  $x_1^*$ ,  $x_2^*$ , ...,  $x_n^*$  de (P) é ótima se somente se existem números e  $y_1^*$ ,  $y_2^*$ , ...,  $y_m^*$  tais que

$$\sum_{i=1}^{m} a_{ij} y_i^* = c_j \quad \text{sempre que } \mathbf{x}_j^* > 0 \quad (5)$$

$$\mathbf{y}_i^* = 0 \quad \text{sempre que } \sum_{j=1}^{n} a_{ij} x_j^* < b_i \quad (6)$$
E tal que
$$\sum_{i=1}^{m} a_{ij} y_i^* \ge c_j \quad para \ todo \quad j = 1, 2 ... n$$

$$y_i^* \ge 0 \quad para \ todo \quad i = 1, 2 ... m$$

$$(7)$$

- 1. Testar se a solução é viável, ou seja, aplicar  $x_{1,2,\ldots}^*$  nas restrições
- 2. Escrever o Dual
- 3. Zerar as colunas as quais no primal a solução  $x_i^st=0$
- 4. Zerar as linhas as quais  $a_{ij}x_i^* < b$  , ou seja, ao testar a viabilidade, há a presença de uma folga (2 < 3 e não 3 = 3)
- 5. Resolver o sistema
- 6. Testar a solução dual, principalmente nas linhas que foram zerar.
- 7. Certificar a otimalidade ou não.

# Método Dual Simplex

Dado um PPL

$$egin{aligned} \min ext{ (ou max) } z = c^t x \ & ext{ sujeito a} \ & Ax = b \ & x \in \mathbb{Z}^n \end{aligned}$$

Onde o PPL é um primal inviável, vamos tentar achar um dual viável, para isso temos que achar uma base  $Ax \leq b$ , ou seja, (1) adicionar variáveis de folga

Exemplo:

sujeito a 
$$egin{aligned} \max z &= -2x_1 - 3x_2 \ 2x_1 - 3x_2 &\leq 30 \ x_1 + 2x_2 &\geq 10 \ x_1, x_2 &\geq 0 \end{aligned}$$

Transformamos a restrição R2 em:

sujeito a 
$$egin{array}{ll} \max z=-2x_1-3x_2\ 2x_1-3x_2+x_3=30\ -x_1-2x_2+x_4=-10\ x_1,x_2\geq 0 \end{array}$$

- (2) Definir quem sai da base  $\min\{b_i\}$  (Quem tiver o menor valor de b)
- (3) Definir quem entra na base  $\max\{\frac{Z}{\operatorname{Restrição} \operatorname{deMin\{b\}}}\}$  (Pegamos os coeficientes da função objetiva e dividimos pelos coeficientes da variável que sai da base, a variável que tiver o maior coeficiente entrará na base)
- (4) Continua o algoritmo dual simplex e retornar para (2)