INTEGRAIS DEFINIDAS

O Problema da Área

Como determinar a área da região S que está sob a curva y = f(x) e limitada pelas retas verticais x = a, x = b e pelo eixo x?

Uma ideia é aproximarmos a região S utilizando retângulos e depois tomarmos o limite das áreas desses retângulos à medida que aumentamos o número de retângulos (semelhante a definição de reta tangente em que a aproximação é feita por retas secantes e então tomamos o limite dessas aproximações).

Exemplo: Use retângulos para estimar a área sob a parábola $y = x^2$ no intervalo [0, 1].

Observe que a área de S deve estar entre 0 e 1, pois S está contida em um quadrado com lados de comprimento 1. Suponha que S seja dividida em quatro faixas S_1 , S_2 , S_3 , e S_4 :

Aproximando cada faixa por um retângulo com base igual à largura da faixa e alturas definidas pelo valor da função $f(x) = x^2$ nas extremidades direitas dos subintervalo, temos:

Se R₄ for a soma das áreas dos retângulos aproximados, teremos:

$$R_4 = \frac{1}{4} \cdot \left(\frac{1}{4}\right)^2 + \frac{1}{4} \cdot \left(\frac{1}{2}\right)^2 + \frac{1}{4} \cdot \left(\frac{3}{4}\right)^2 + \frac{1}{4} \cdot 1^2 = \frac{15}{32} = 0,46875$$

Observe que a área A da região S é menor que R_4 , ou seja, A < 0.46875.

Também poderíamos usar os retângulos menores para aproximar a área de S. Neste caso, as alturas assumiriam os valores de f nas extremidades esquerdas dos subintervalos.

A soma das áreas desses retângulos é:

$$L_4 = \frac{1}{4} \cdot 0^2 + \frac{1}{4} \cdot \left(\frac{1}{4}\right)^2 + \frac{1}{4} \cdot \left(\frac{1}{2}\right)^2 + \frac{1}{4} \cdot \left(\frac{3}{2}\right)^2 = \frac{7}{32} = 0,21875$$

Desta forma: 0,21875 < A < 0,46875. Repetindo esse procedimento com um número maior de faixas, por exemplo, S dividida em oito faixas com a mesma largura:

$$L_8 = 0.2734375 < A < 0.3984375 = R_8$$

Usando n retângulos cujas alturas são encontradas com as extremidades esquerdas (L_n) ou com as extremidades direitas (R_n) , ambos, L_n e R_n se tornam aproximações cada vez mais próximas e melhores à área de S.

Em particular, vemos que usando 50 faixas a área está entre 0,3234 e 0,3434. Com 100 faixas a área está entre 0,3283500 e 0,3383500 e, com 1.000 faixas A está entre 0,3328335 e 0,3338335. Fazendo uma estimativa, temos que: $A \approx 0,33333335$.

Portanto, definimos a área A como o limite das somas das áreas desses retângulos. Isto é:

$$A = \lim_{n \to \infty} R_n = \lim_{n \to \infty} L_n = \frac{1}{3}$$

Desta forma, para definir a área de uma figura plana qualquer S, delimitada pelo gráfico de uma função contínua não negativa f, pelo eixo x e por suas retas x = a e x = b, começamos por subdividir S em n faixas $S_1, S_2, ..., S_n$ de igual largura.

A largura do intervalo [a, b] é b-a, assim, a largura de cada uma das n faixas é: $\Delta x = \frac{b-a}{n}$

Essas faixas dividem o intervalo [a, b] em n subintervalos $[x_0, x_1]$, $[x_1, x_2]$, $[x_2, x_3]$, ..., $[x_{n-1}, x_n]$, em que $x_0 = a$ e $x_n = b$. Aproximando a i-ésima faixa S_i por um retângulo com largura Δx e altura $f(x_i)$, a área do i-ésimo retângulo é $f(x_i)$ Δx .

A área aproximada de S é obtida pela soma das áreas desses retângulos, que é

$$R_n = f(x_1) \Delta x + f(x_2) \Delta x + \dots + f(x_n) \Delta x$$

À medida que o número de faixas aumenta, isto é, quando n $\to \infty$, a aproximação da área fica melhor.

Definição 1

A área da região S que está sob o gráfico de uma função contínua f é o limite da soma das áreas dos retângulos:

$$A = \lim_{n \to \infty} R_n = \lim_{n \to \infty} [f(x_1) \Delta x + f(x_2) \Delta x + \dots + f(x_n) \Delta x]$$

Em vez de usarmos as extremidades dos retângulos, podemos tomar a altura do i - ésimo retângulo como o valor de f em qualquer número x_i^* no i -ésimo subintervalo [x_{i-1} , x_i].

Logo, uma expressão mais geral para a área S é:

$$A = \lim_{n \to \infty} [f(x_1^*) \Delta x + f(x_2^*) \Delta x + \dots + f(x_n^*) \Delta x] = \lim_{n \to \infty} \sum_{i=1}^n f(x_i^*) \Delta x$$

Integral Definida

Definição 2

Se f(x) uma função definida e contínua no intervalo real [a, b], dividimos o intervalo [a, b] em n subintervalos de comprimentos iguais Δx . Seja $x_{i-1} \le x_i^* \le x_i$, i = 1, ..., n. Então, a integral definida de f, de \mathbf{a} até \mathbf{b} é

$$\int_{a}^{b} f(x) dx = \lim_{n \to \infty} \sum_{i=1}^{n} f(x_{i}^{*}) \Delta x$$

Se o limite existe, dizemos que f é integrável em [a, b].

Observações:

- ✓ Na notação $\int_a^b f(x) dx$, a é o limite inferior de integração, b é o limite superior de integração e f(x) é o integrando.
- ✓ A integral definida é um número.
- ✓ A soma $\sum_{i=1}^{n} f(x_i^*) \Delta x$ é chamada soma de Riemann, em homenagem ao matemático Bernhard Riemann (1826-1866).
- ✓ Quando f é contínua e não negativa em [a, b] a definição de integral definida coincide com a definição de área (definição 1). Assim, a integral definida é a área da região sob o gráfico de f de a até b.

Teorema:

Se f é contínua em [a, b], então f é integrável em [a, b].

Propriedades da integral definida

Sejam f(x) e g(x) funções integráveis em [a, b].

1.
$$\int_{a}^{b} kf(x)dx = k \int_{a}^{b} f(x)dx.$$

2.
$$\int_{a}^{b} [f(x) \pm g(x)] dx = \int_{a}^{b} f(x) dx \pm \int_{a}^{b} g(x) dx.$$

3.
$$\int_{a}^{b} f(x)dx = \int_{a}^{c} f(x)dx + \int_{c}^{b} f(x)dx, \ a < c < b.$$

4. Para todo
$$x$$
 em $[a, b]$, se $f(x) \ge 0$, então $\int_a^b f(x) dx \ge 0$.

5. Para todo
$$x$$
 em $[a, b]$, se $f(x) \ge g(x)$, então $\int_a^b f(x)dx \ge \int_a^b g(x)dx$.

6. Se
$$a > b$$
, então $\int_a^b f(x)dx = -\int_b^a f(x)dx$.

7. Se
$$a = b$$
, então $\int_{a}^{a} f(x)dx = 0$.

O teorema fundamental do cálculo nos permite relacionar as operações de derivação e integração.

Teorema Fundamental do Cálculo

Se f(x) é uma função contínua no intervalo [a, b] e F'(x) = f(x), então:

$$\int_{a}^{b} f(x)dx = F(x)|_{a}^{b} = F(b) - F(a)$$

Exemplos:

a.
$$\int_{1}^{3} x^2 dx$$

$$b. \int_{0}^{\pi/4} \cos x \ dx$$

c.
$$\int_{0}^{1} (2x^3 - x^2 + 1) dx$$

$$d. \int_{0}^{2} e^{x} dx$$

Mudança de variáveis para integrais definidas

Existem duas maneiras para calcular a integral definida utilizando o método da substituição. Uma delas consiste em calcular a integral indefinida e então utilizar o teorema fundamental do cálculo. A outra maneira consiste em recalcular os limites de integração ao fazer a mudança de variável.

Exemplos:

a.
$$\int_{0}^{4} \sqrt{2x+1} dx$$

b.
$$\int_{0}^{2} 2x^2 \sqrt{x^3 + 1} \, dx$$

Exercícios

1 – Calcular as seguintes integrais:

$$a) \int_{1}^{2} (6x-1)dx$$

$$b) \int_{1}^{2} (x^2 - 3x + 2) dx$$

c)
$$\int_{1}^{2} (3x+2)^2 dx$$

$$d) \int_{-1}^{2} (x+x^4) dx$$

$$e) \int_{0}^{1} \frac{dx}{\sqrt{3x+1}} \, dx$$

$$f$$
) $\int_{0}^{4} (2x+1)^{-1/2} dx$

Cálculo de áreas

Caso I. Cálculo da área da figura plana limitada pelo gráfico de f, pelas retas x = a, x = b e o eixo x, em que f é contínua e $f(x) \ge 0$, $\forall x \in [a, b]$.

Neste caso, a área é dada por:

$$A = \int_{a}^{b} f(x)dx$$

Caso II. Cálculo da área da figura plana limitada pelo gráfico de f, pelas retas x = a, x = b e o eixo x, em que f é contínua e $f(x) \le 0$, $\forall x \in [a, b]$.

Neste caso, a área é dada por:

$$A = \left| \int_{a}^{b} f(x) dx \right|$$

Exemplos:

1) Encontre a área da região limitada pela curva y = 2x + 1, pelo eixo x e pelas retas x = 1 e x = 3.

2) Encontre a área da região limitada pelo eixo x e pela função $f(x) = x^2 - 4x$ no intervalo [1, 3].

3) Encontre a área da região limitada por $f(x) = x^3 - 2x^2 - 5x + 6$ no intervalo [-2, 3].

Caso III – Área de regiões entre curvas

A área da região é limitada pelos gráficos de f e g e pelas retas x = a e x = b. As funções f e g são definidas e contínuas em [a, b] e $f(x) \ge g(x)$, $\forall x \in [a,b]$.

i) $f(x) \ge 0, g(x) \ge 0 \text{ e } f(x) \ge g(x), \forall x \in [a,b].$

Neste caso, a área é dada por:

$$A = \int_{a}^{b} f(x)dx - \int_{a}^{b} g(x)dx = \int_{a}^{b} [f(x) - g(x)]dx$$

ii) $f(x) \ge 0$ e $g(x) \le 0 \forall x \in [a,b]$.

Neste caso, a área é dada por:

$$A = \int_{a}^{b} f(x)dx + \left[-\int_{a}^{b} g(x)dx \right] =$$

$$= \int_{a}^{b} f(x)dx - \int_{a}^{b} g(x)dx = \int_{a}^{b} \left[f(x) - g(x) \right] dx$$

iii) $f(x) \le 0, g(x) \le 0 \text{ e } f(x) \ge g(x), \forall x \in [a,b].$

Neste caso, a área é dada por:

$$A = -\int_{a}^{b} g(x)dx - \left[-\int_{a}^{b} f(x)dx \right] =$$

$$= \int_{a}^{b} f(x)dx - \int_{a}^{b} g(x)dx = \int_{a}^{b} \left[f(x) - g(x) \right] dx$$

Exemplos:

1) Encontre a área limitada pelas curvas $f(x) = -x^2 + 4x$ e $g(x) = x^2$.

2) Encontre a área limitada pelas curvas $f(x) = x^2 - 1$ e g(x) = x + 1.

3) Encontre a área limitada pelas curvas $f(x) = x^3$ e g(x) = x.

4) Encontre a área limitada pelas curvas $y^2 = 2x - 2$ e y = x - 5

5) Encontre a área limitada pelas curvas f(x) = sen(x) e $g(x) = \cos(x)$, $\frac{\pi}{4} \le x \le \frac{9\pi}{4}$

Exercícios

1 – Encontre a área da região limitada pelas curvas dadas:

a)
$$x = \frac{1}{2}$$
; $x = \sqrt{y}$; $y = -x + 2$ Resp. 1/3

b)
$$y = 5 - x^2$$
; $y = x + 3$ Resp. 9/2

c)
$$x + y = 3$$
; $y + x^2 = 3$ Resp. 1/6

d)
$$x = y^2$$
, $y - x = 2$, $y = -2$ e $y = 3$; A= 115/6

e)
$$y = \text{sen}(x)$$
 e $y = -\text{sen}(x)$; $x \in [0, 2\pi]$

Resp. 8

f)
$$y = 1 - x^2$$
; $y = -3$ Resp. 32/3

g)
$$y = 1/6x^2$$
; $y = 6$ Resp. 48

h)
$$y = \cos(x)$$
; $y = -\cos(x)$;

$$x \in \left[\frac{-\pi}{2}; \frac{3\pi}{2}\right]$$
 Resp. 8

i)
$$y = e^x$$
; $x = 0$; $x = 1$; $y = 0$ Resp. e -1

j)
$$y = \ln x$$
; $y = 0$; $x = 4$ Resp. $8\ln 2 - 3$

k)
$$y = 4 - x^2$$
; $y = x^2 - 14$ Resp. 72

2 – Encontrar as área da região S_1 :

Teorema do valor médio para integrais

Se f é uma função contínua em [a, b], existe um ponto z entre a e b tal que:

$$\int_{a}^{b} f(x)dx = (b-a).f(z)$$

ou seja, existe $z \in [a, b]$ tal que $f(z) = \frac{1}{b-a} \int_{a}^{b} f(x) dx$.

Interpretação geométrica

Se $f(x) \ge 0$, $\forall x \in [a, b]$, então a área sob o gráfico de f é igual à área do retângulo de lados (b - a) e altura f(z).

Observação: O valor médio de f em [a, b] é dado por $VM = \frac{1}{b-a} \int_{a}^{b} f(x) dx$.

Exemplos

1. Um pesquisador estima que t horas depois da meia-noite, em um período típico de 24 horas, a temperatura (graus Celsius) em certa cidade é dada por $T(t) = 3 - \frac{2}{3} (t - 13)^2$, $0 \le t \le 24$. Qual é a temperatura média na cidade entre as 6:00 e 16:00 horas?

2. Encontre o valor médio de $f(x) = 3\sqrt{x+1}$ no intervalo [-1,8] e determine o valor de z que corresponde ao valor médio de f.

Comprimento de arco de uma curva plana usando equações cartesianas

A representação gráfica de uma função y = f(x) num intervalo [a, b] pode ser um segmento de reta ou uma curva qualquer. A porção de curva do ponto A(a, f(a)) ao ponto B(b, f(b)) é chamada arco.

Para encontrar o comprimento de uma curva, faremos uma aproximação por uma poligonal e, então, tomaremos o limite quando o número de segmentos da poligonal aumenta.

Seja uma curva C seja definida pela equação y = f(x), em que f é contínua e a $\le x \le b$. Obtemos uma poligonal de aproximação para C dividindo o intervalo [a,b] em n subintervalos com extremidades $x_0, x_1, ..., x_n$ e com larguras iguais a Δx . Se $y_i = f(x_i)$, então o ponto $P_i(x_i, y_i)$ está em C e a poligonal com vértices $P_0, P_1, ..., P_n$, é uma aproximação para C.

a aproximação fica melhor quando *n* aumenta.

Como a poligonal é formada por segmentos de reta, é possível calcular o comprimento de cada segmento. Desta forma, o comprimento da poligonal é calculado por:

$$L_n = \sum_{i=1}^n \sqrt{(x_i - x_{i-1})^2 + (f(x_i) - f(x_{i-1}))^2}$$

Como f é derivável em [a,b], podemos aplicar o *teorema do valor médio* (para derivadas!!) em cada intervalo $[x_{i-1} - x_i]$, i = 1, ..., n e descobrimos que existe um número x_i^* entre x_{i-1} e x_i tal que

$$f(x_i) - f(x_{i-1}) = f'(x_i^*)(x_i - x_{i-1})$$

Substituindo este resultado na equação de L_n , temos:

$$L_n = \sum_{i=1}^n \sqrt{(x_i - x_{i-1})^2 + (f'(x_i^*)(x_i - x_{i-1}))^2}$$
$$= \sum_{i=1}^n \sqrt{(x_i - x_{i-1})^2 + (f'(x_i^*))^2 (x_i - x_{i-1})^2}$$

Cálculo II – Profa. Adriana Cherri

$$= \sum_{i=1}^{n} \sqrt{(x_i - x_{i-1})^2 (1 + [f'(x_i^*)]^2)} = \sum_{i=1}^{n} \sqrt{1 + [f'(x_i^*)]^2} (x_i - x_{i-1})$$

$$= \sum_{i=1}^{n} \sqrt{1 + [f'(x_i^*)]^2} \Delta x_i$$

Quando $n \rightarrow \infty$, $\Delta x \rightarrow 0$ e L_n tende ao comprimento da curva C de a até b.

Definição:

Seja C uma curva de equação y = f(x), em que f é uma função contínua e derivável em [a, b]. O comprimento de arco da curva C, do ponto A(a, f(a)) ao ponto B(b, f(b)), denotado por s, é dado por:

$$s = \lim_{n \to \infty} \sum_{i=1}^{n} \sqrt{1 + [f'(x_i^*)]^2} \, \Delta x_i$$

se este limite existir.

Como f'(x) é contínua em [a, b], o limite existe. Logo, pela definição de integral definida:

$$s = \int_{a}^{b} \sqrt{1 + [f'(x)]^2} \, dx$$

Exemplos:

1. Calcule o comprimento do arco da curva dada por $y = x^{3/2} - 4$ entre os pontos (1, -3) e (4, 4).

2. Calcule o comprimento do arco da parábola semicúbica $y^2 = x^3$ entre os pontos (1, 1)e (4, 8).

3. Determine o comprimento da curva $y = \frac{x^2}{2} - \frac{\ln x}{4}$ para $2 \le x \le 4$.

Se uma curva tem a equação x=g(y), $c \le y \le d$ e g'(y) contínua, então, o comprimento do arco da curva C é dado por:

$$s = \int_{c}^{d} \sqrt{1 + [g'(y)]^{2}} \, dy$$

Exemplo:

1. Determine o comprimento do arco dado por $x = \frac{y^3}{2} + \frac{1}{6y} - 1$ para $1 \le y \le 3$.

Comprimento de arco de uma curva plana usando equações paramétricas

Para calcular o comprimento de arco de uma curva C dada na forma paramétrica, usamos as equações:

$$\begin{cases} x = x(t) \\ y = y(t) \end{cases}, \quad t \in [t_0, t_1]$$

em que x = x(t) e y = y(t) são contínuas com derivadas contínuas e $x'(t) \neq 0$ para todo $t \in [t_0, t_1]$. Estas equações definem uma função y = f(x), cuja derivada é dada por:

$$\frac{dy}{dx} = \frac{y'(t)}{x'(t)}$$

A partir de uma mudança de variáveis na equação $s = \int_a^b \sqrt{1 + [f'(x)]^2} dx$, calculamos o comprimento de arco de uma curva. Seja x = x(t) e dx = x'(t)dt, obtermos:

$$s = \int_{a}^{b} \sqrt{1 + [f'(x)]^2} \, dx = \int_{t_0}^{t_1} \sqrt{1 + \left[\frac{y'(t)}{x'(t)}\right]^2} \, x'(t) dt$$

em que $x(t_0) = a$ e $x(t_1) = b$. Portanto, o comprimento de arco de uma curva C dada na forma paramétrica é dado por:

$$s = \int_{t_0}^{t_1} \sqrt{[x'(t)]^2 + [y'(t)]^2} dt$$

Exemplo:

1. Calcule o comprimento do arco dado pela equação $\begin{cases} x = \frac{1}{3}t^3 \\ y = \frac{1}{2}t^2 \end{cases}, \ 0 \le t \le 2$

Área de uma região plana

O cálculo da área de uma região plana pode ser realizado quando as curvas que delimitam a região são dadas na forma paramétrica.

Caso I

A área da região S é limitada pelo gráfico de f, pelas retas x = a, x = b e pelo eixo x. A função y = f(x) é contínua em [a, b] e $f(x) \ge 0$, $\forall x \in [a,b]$.

Neste caso, para
$$y = f(x)$$

$$\begin{cases} x = x(t) \\ y = y(t) \end{cases}, \qquad t \in [t_0, t_1]$$

em que
$$x(t_0) = a$$
 e $x(t_1) = b$.

Em coordenadas cartesianas, a área da região S é dada por $\int_a^b f(x) dx = \int_a^b y dx$. Fazendo a substituição x = x(t) e dx = x'(t)dt obtemos:

$$A = \int_{t_0}^{t_1} y(t) x'(t) dt$$

Exemplo:

1. Calcule a área da região limitada pela elipse $\begin{cases} x = 2\cos t \\ y = 3sen t \end{cases}$

Caso II

A área da região S é limitada pelos gráficos de f e g e pelas retas x = a e x = b. As funções f e g são contínuas em [a, b] e $f(x) \ge g(x)$, $\forall x \in [a,b]$.

Utilizando o resultado obtido para o cálculo de áreas de regiões entre curvas (em coordenadas cartesianas):

$$A = \int_{a}^{b} f(x)dx - \int_{a}^{b} g(x)dx = \int_{a}^{b} [f(x) - g(x)]dx$$

Fazendo a substituição de variáveis, temos:

$$A = \int_{t_0}^{t_1} y_1(t) x_1'(t) dt - \int_{t_2}^{t_3} y_2(t) x_2'(t) dt$$

Exemplo:

1) Calcule a área entre as elipses $\begin{cases} x = \cos t \\ y = sen t \end{cases} e \begin{cases} x = \cos t \\ y = \frac{1}{2} sen t \end{cases}$

Volume de um sólido de revolução

Sólido de revolução é um sólido obtido com a rotação de uma região num plano em torno de uma reta, chamada de eixo de revolução, a qual pode ou não interceptar a região.

Se girarmos a região limitada pelas curvas y = 0, y = x e x = 4 em torno do eixo x o sólido de revolução obtido é um cone.

Girando o retângulo limitado pelas retas x = 0, x = 1, y = 0 e y = 3 em torno de y, o sólido de revolução obtido é um cilindro.

Considere o problema de definir o volume do sólido T, gerado pela rotação da região plana R, em torno do eixo x.

Suponha que f(x) é contínua e não negativa em [a, b]. Considere uma partição P de [a, b], dada por $a = x_0 < x_1 < x_2 < ... < x_{i-1} < x_i < ... < x_n = b$ e seja $\Delta x_i = x_i - x_{i-1}$ o comprimento do intervalo $[x_{i-1}, x_i]$.

Em cada intervalo $[x_{i-1}, x_i]$, escolhemos um ponto qualquer c_i . Para cada i, i = 1, ..., n, construímos um retângulo R_i , de base Δx_i e altura $f(c_i)$. Fazendo cada retângulo R_i girar em torno do eixo x, o sólido de revolução obtido é um cilindro cujo volume é dado por $\pi [f(c_i)]^2 \Delta x_i$.

A soma dos volumes dos n cilindros nos dá uma aproximação do volume do sólido T. Esta soma é dada por:

$$V_n = \pi \left[f(c_1) \right]^2 \Delta x_1 + \dots + \pi \left[f(c_n) \right]^2 \Delta x_n$$
$$= \pi \sum_{i=1}^n \left[f(c_i) \right]^2 \Delta x_i$$

Cálculo II – Profa. Adriana Cherri

Representação gráfica:

Se $n \to \infty$, Δx_i , i = 1, ..., n, tornar-se muito pequeno e a soma dos volumes dos n cilindros (V_n) aproxima-se, intuitivamente, do volume do sólido T.

Definição:

Seja y = f(x) uma função contínua não negativa em [a, b] e R a região sob o gráfico de f de a até b. O volume do sólido T, gerado pela revolução de R em torno do eixo x, é definido por

$$V = \lim_{n \to \infty} \pi \sum_{i=1}^{n} [f(c_i)]^2 \Delta x_i$$

se este limite existir.

Como f(x) é contínua em [a, b], o limite existe. Logo, pela definição de integral definida:

$$V = \pi \int_{a}^{b} [f(x)]^2 dx$$

A fórmula do volume pode ser generalizada para outras situações:

Caso I – A função f(x) é negativa em alguns pontos de [a,b]

Como $|f(x)|^2 = (f(x))^2$, a fórmula permanece válida.

Caso II – A região R está entre gráficos de duas funções f(x) e g(x) de a até b

Supondo $f(x) \ge g(x)$, $\forall x \in [a, b]$, o volume do sólido T, gerado pela rotação de R, é dado por:

$$V = \pi \int_{a}^{b} ([f(x)]^{2} - [g(x)]^{2}) dx$$

Caso III - A região R gira em torno do eixo dos y

$$V = \pi \int_{c}^{d} [g(y)]^{2} dy$$

Caso IV - A rotação se efetua ao redor de uma reta paralela a um dos eixos coordenados

Se o eixo de revolução for a reta y = L, temos:

$$V = \pi \int_{a}^{b} [f(x) - L]^{2} dx$$

Se o eixo de revolução for a reta x = M, temos:

$$V = \pi \int_{c}^{d} [g(y) - M]^{2} dy$$

Exemplos:

1. A região R, limitada por $y = 1/4x^2$, pelo eixo dos x e as retas x = 1 e x = 4, gira em torno do eixo dos x. Encontrar o volume do sólido de revolução gerado.

2. Calcular o volume do sólido gerado pela rotação, em torno do eixo dos x, da região limitada pela parábola $y = \frac{1}{4}(13 - x^2)$ e pela reta $y = \frac{1}{2}(x + 5)$.

2 `	
3)	Calcular o volume do sólido gerado pela rotação, em torno do eixo dos x , da região entre o gráfico de $y = \text{sen}(x)$ e o eixo dos x , de $-\pi/2$ até $3\pi/2$.
4	
4)	Determinar o volume do sólido obtido pela revolução da região limitada pela parábola cúbica $y = x^3$, pelo eixo y e pela reta $y = 8$, em torno do eixo dos y .
4)	Determinar o volume do sólido obtido pela revolução da região limitada pela parábola cúbica $y = x^3$, pelo eixo y e pela reta $y = 8$, em torno do eixo dos y .
4)	Determinar o volume do sólido obtido pela revolução da região limitada pela parábola cúbica $y = x^3$, pelo eixo y e pela reta $y = 8$, em torno do eixo dos y .
4)	Determinar o volume do sólido obtido pela revolução da região limitada pela parábola cúbica $y = x^3$, pelo eixo y e pela reta $y = 8$, em torno do eixo dos y .
4)	Determinar o volume do sólido obtido pela revolução da região limitada pela parábola cúbica $y = x^3$, pelo eixo y e pela reta $y = 8$, em torno do eixo dos y .
4)	Determinar o volume do sólido obtido pela revolução da região limitada pela parábola cúbica $y = x^3$, pelo eixo y e pela reta $y = 8$, em torno do eixo dos y .
4)	Determinar o volume do sólido obtido pela revolução da região limitada pela parábola cúbica $y = x^3$, pelo eixo y e pela reta $y = 8$, em torno do eixo dos y .
4)	Determinar o volume do sólido obtido pela revolução da região limitada pela parábola cúbica $y = x^3$, pelo eixo y e pela reta $y = 8$, em torno do eixo dos y .
4)	Determinar o volume do sólido obtido pela revolução da região limitada pela parábola cúbica $y = x^3$, pelo eixo y e pela reta $y = 8$, em torno do eixo dos y .
4)	Determinar o volume do sólido obtido pela revolução da região limitada pela parábola cúbica $y=x^3$, pelo eixo y e pela reta $y=8$, em torno do eixo dos y .
4)	Determinar o volume do sólido obtido pela revolução da região limitada pela parábola cúbica $y=x^3$, pelo eixo y e pela reta $y=8$, em torno do eixo dos y .

5) Determinar o volume do sólido gerado pela rotação, em torno da reta y = 4, da região limitada por y = 1/x, y = 4 e x = 4.

6) Determinar o volume do sólido obtido pela revolução da região delimitada pela parábola $x = 1/2y^2 + 1$ e pelas retas x = -1, y = 2 e y = -2, em torno da reta x = -1.

7) Determinar o esboço da região R e o volume do sólido de revolução gerado pela rotação das regiões indicadas, ao redor dos eixos dados.

a)
$$y = \cos(x)$$
, $y = \sin(x)$, $x = 0$, $x = \pi/4$; eixo-x. Resp. $(\pi/2 \text{ u.v})$

b)
$$y = x^3$$
 e $y = x^2$; eixo- y. Resp. $(\pi/10 \text{ u.v})$

c)
$$y = 2x^2$$
; $x = 1$; $x = 2$; $y = 2$, ao redor de $y = 2$. Resp. $(152\pi/15 \text{ u.v})$

d)
$$y = \cos(x)$$
, $y = -2$, $x = 0$, $x = 2\pi$; ao redor da reta $y = -2$. Resp. $(9\pi^2 \text{ u.v})$

Área de uma superfície de revolução

Quando uma curva plana gira em torno de uma reta no plano, obtemos uma superfície de revolução.

Seja a área da superfície de revolução S, obtida quando uma curva C, de equação $y = f(x), x \in [a, b]$ gira em torno do eixo x.

Suponha que $f(x) \ge 0$ para todo $x \in [a, b]$ e que f é uma função derivável em [a, b]. Dividindo o intervalo [a, b] em n subintervalos de modo que $a = x_0 < x_1 < x_2 < ... < x_{i-1} < x_i < ... < x_n = b$ obtemos $Q_0, Q_1, ..., Q_n$ pontos pertencentes a curva C:

Fazendo cada segmento de reta desta linha poligonal girar em torno do eixo x, a superfície de revolução obtida é um tronco de cone.

Definição:

Seja C uma curva de equação y = f(x), com f e f ' contínuas em [a, b] e $f(x) \ge 0$ para todo $x \in [a, b]$. A área da superfície de revolução S, gerada pela rotação da curva C ao redor do eixo x é dada por:

$$A = 2\pi \int_{a}^{b} f(x)\sqrt{1 + [f'(x)]^{2}} dx$$

Cálculo II – Profa. Adriana Cherri

Se considerarmos uma curva x = g(y), $y \in [c, d]$ girando em torno do eixo y, a área da superfície de revolução é dada por:

$$A = 2\pi \int_{c}^{d} g(y)\sqrt{1 + [g'(y)]^{2}} \, dy$$

Exemplos:

1) Calcule a área da superfície de revolução obtida pela rotação, em torno do eixo x e da curva $y = 4\sqrt{x}$, $\frac{1}{4} \le x \le 4$.

2) Calcule a área da superfície de revolução obtida pela rotação, em torno do eixo y e da curva $x = y^3$, $0 \le y \le 1$.