Álgebra Linear

Fco. Leonardo Bezerra M. 2019.1

(leonardobluesummers@gmail.com)

Aulas 21 e 22

Autovalores e Autovetores

Introdução

Problema 1: Dada uma transformação linear T: V → V, quais são os vetores $\mathbf{v} \in V$ tais que $T(\mathbf{v}) = \mathbf{v}$?

Exemplos:

- a) Identidade. $T: \mathbb{R}^2 \to \mathbb{R}^2$, $(x, y) \to (x, y)$.
 - $T(\mathbf{v}) = \mathbf{v} \text{ para } \mathbf{v} = \mathbb{R}^2.$
- b) Reflexão em x. $T: \mathbb{R}^2 \to \mathbb{R}^2$, $(x, y) \to (x, -y)$.
 - $T(\mathbf{v}) = \mathbf{v} \text{ para } \mathbf{v} = (\mathbf{x}, 0), \mathbf{x} \in \mathbb{R}.$
- c) Aplicação nula. $T: \mathbb{R}^2 \to \mathbb{R}^2$, $(x, y) \to (0, 0)$.
 - $T(\mathbf{v}) = \mathbf{v} \text{ para } \mathbf{v} = (0, 0).$

- Problema 2: Dada uma transformação linear $T: V \to V$, e um escalar $\lambda \in \mathbb{R}$, quais são os vetores $\mathbf{v} \in V$ tais que $T(\mathbf{v}) = \lambda \mathbf{v}$?
- Como $\mathbf{v} = \mathbf{0}$ satisfaz a equação para todo λ , estamos apenas interessados nos vetores $\mathbf{v} \neq \mathbf{0}$.
- O escalar λ é chamado de *autovalor* (ou *valor característico*) de T e o vetor \mathbf{v} é o *autovetor* (ou *vetor característico*) de T.

Autovalor e Autovetor

> **Definição:** Dada uma transformação $T: V \to V$. Se existirem $\mathbf{v} \in V$, $\mathbf{v} \neq \mathbf{0}$ e $\lambda \in \mathbb{R}$ tais que $T(\mathbf{v}) = \lambda \mathbf{v}$, λ é um *autovalor* de T e \mathbf{v} um *autovetor* de T associado a λ .

• Observe que podemos ter $\lambda = 0$ enquanto que $\mathbf{v} \neq \mathbf{0}$.

Exemplos

Exemplo 1:

$$T: \mathbb{R}^2 \to \mathbb{R}^2$$
$$\mathbf{v} \mapsto 2\mathbf{v}$$

$$\begin{bmatrix} x \\ y \end{bmatrix} \longmapsto \begin{bmatrix} 2 & 0 \\ 0 & 2 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 2x \\ 2y \end{bmatrix} = 2 \begin{bmatrix} x \\ y \end{bmatrix}$$

Neste caso, 2 é um autovalor de T e qualquer $(x, y) \neq (0, 0)$ é um autovetor de T associado ao autovalor 2. Observe geometricamente:

De um modo geral toda transformação

$$T: \mathbb{R}^2 \to \mathbb{R}^2$$

 $\mathbf{v} \mapsto \alpha \mathbf{v}, \ \alpha \neq 0$

tem α como autovalor e qualquer $(x, y) \neq (0, 0)$ como autovetor correspondente. Observe que T(v) é sempre um vetor de mesma direção que v. Ainda mais, se:

- i) $\alpha < 0$, T inverte o sentido do vetor.
- ii) $|\alpha| > 1$, T dilata o vetor.
- iii) $|\alpha| < 1$, T contrai o vetor.
- iv) $\alpha = 1$, T é a identidade.

Exemplo 2:

 $r_x : \mathbb{R}^2 \to \mathbb{R}^2$ (Reflexão no eixo-x) $(x, y) \mapsto (x, -y)$

$$\begin{bmatrix} x \\ y \end{bmatrix} \longmapsto \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}.$$

Os vetores da forma $\begin{bmatrix} 0 \\ y \end{bmatrix}$ são tais que

$$\begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} \begin{bmatrix} 0 \\ y \end{bmatrix} = \begin{bmatrix} 0 \\ -y \end{bmatrix} = -1 \begin{bmatrix} 0 \\ y \end{bmatrix}.$$

Assim, todo vetor (0, y), $y \neq 0$, é autovetor de r_x com autovalor $\lambda = -1$. Como já vimos no Exemplo 2 da seção 6.1.1 os vetores (x, 0) são fixos por esta transformação, $r_x(x, 0) = 1(x, 0)$, ou seja, (x, 0) são autovetores correspondentes ao autovalor 1.

Exemplo 3:

 $T: \mathbb{R}^2 \to \mathbb{R}^2$ (Rotação de 90° em torno da origem) $(x, y) \mapsto (-y, x)$

$$\begin{bmatrix} x \\ y \end{bmatrix} \rightarrow \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} -y \\ x \end{bmatrix}$$

Note que nenhum vetor diferente de zero é levado por T num múltiplo de si mesmo. Logo, T não tem nem autovalores nem autovetores.

Este é um exemplo de que nem todo operador linear possui autovalores e autovetores. Exemplo 4:

Seja
$$A = \begin{bmatrix} 2 & 2 \\ 0 & 1 \end{bmatrix}$$

Então A
$$\cdot \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 2 & 2 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 2x + 2y \\ y \end{bmatrix}$$

$$e T_A(x, y) = (2x + 2y, y).$$

Para procurar os autovetores e autovalores de $T_{\mathbf{A}}$ resolvemos a equação $T_{\mathbf{A}}(\mathbf{v}) = \lambda \mathbf{v}$ ou

$$\begin{bmatrix} 2x + 2y \\ y \end{bmatrix} = \lambda \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} \lambda x \\ \lambda y \end{bmatrix}$$

Assim, temos o sistema de equações

$$\begin{cases} 2x + 2y = \lambda x \\ y = \lambda y \end{cases}$$

Consideremos os casos quando i) $y \neq 0$ e ii) y = 0.

mantidos fixos pela transformação T.

i) Se $y \neq 0$, então da segunda equação $\lambda = 1$. Logo 2x + 2y = x e $y = -\frac{1}{2}x$. Obtemos assim, para o autovalor $\lambda = 1$, os autovetores do tipo $(x, -\frac{1}{2}x)$, $x \neq 0$. Em outras palavras, como $T(x, -\frac{1}{2}x) = 1(x, -\frac{1}{2}x)$, os vetores sobre a reta x = -2y são ii) Se y = 0, x deve ser diferente de 0, pois senão o autovalor (x, y) seria nulo, o que não pode acontecer pela definição de autovetor. Da primeira equação, 2x + 0 = λx ου λ = 2. Portanto, outro autovalor é 2 e qualquer vetor não nulo (x, 0) é um autovetor correspondente. Então, todos os vetores sobre o eixo-x são levados em vetores de mesma direção:
T(x, 0) = (2x, 0) ou T(v) = 2v.

Temos assim, para esta transformação T, autovetores $(x, -\frac{1}{2}x)$, $x \neq 0$, associados ao autovalor 1 e autovetores (x, 0), $x \neq 0$, associados ao autovalor 2. Todos os outros vetores do plano são levados por T em vetores de direções diferentes.

Forema: Dada uma transformação $T: V \to V$ e um autovetor \mathbf{v} associado a um autovalor λ , qualquer vetor $\mathbf{w} = \alpha \mathbf{v}$ (α \neq 0)também é autovetor de T associado a λ .

> **Definição:** O subespaço $V_{\lambda} = \{ \mathbf{v} \in V : T(\mathbf{v}) = \lambda \mathbf{v} \}$ é chamado de *subespaço associado ao autovalor* λ.

Autovalores e Autovetores de uma Matriz

Dada uma matriz quadrada, A, de ordem n, estaremos entendendo por autovalor e autovetor de A autovalor e autovetor da transformação linear $T_A: \mathbb{R}^n \to \mathbb{R}^n$, associada à matriz A em relação à base canônica, isto é, $T_A(\mathbf{v}) = \mathbf{A} \cdot \mathbf{v}$ (na forma coluna). Assim, um autovalor $\lambda \in \mathbb{R}$ de A, e um autovetor $\mathbf{v} \in \mathbb{R}^n$, são soluções da equação $\mathbf{A} \cdot \mathbf{v} = \lambda \mathbf{v}$, $\mathbf{v} \neq 0$.

Exemplo: Dada a matriz diagonal

$$\mathbf{A} = \begin{bmatrix} a_{11} & 0 & \dots & 0 \\ 0 & a_{22} & \dots & 0 \\ \vdots & \vdots & & \vdots \\ 0 & 0 & \dots & a_{nn} \end{bmatrix}$$

e dados os vetores $e_1 = (1, 0, ..., 0), e_2 = (0, 1, 0, ..., 0), ..., e_n = (0, 0, ..., 0, 1), temos$

$$\mathbf{A} \cdot \mathbf{e}_1 = \begin{bmatrix} a_{11} \\ 0 \\ \vdots \\ 0 \end{bmatrix} = a_{11} \mathbf{e}_1 \quad \text{e em geral,}$$

 $\mathbf{A} \cdot \mathbf{e}_i = a_{ii}\mathbf{e}_i$. Então, estes vetores da base canônica de \mathbb{R}^n são autovetores para \mathbf{A} , e o autovetor \mathbf{e}_i é associado ao autovalor a_{ii} .

Veremos na próxima secção que dada uma transformação linear $T: V \to V$ e fixada uma base β podemos reduzir o problema de encontrar autovalores e autovetores para T à determinação de autovalores para a matriz $[T]_{\rho}^{\beta}$.

Polinômio Característico

Exemplo:

$$\mathbf{A} = \begin{bmatrix} 4 & -2 & 0 \\ -1 & 1 & 0 \\ 0 & 1 & 2 \end{bmatrix}$$

Procuramos vetores $\mathbf{v} \in \mathbf{R}^3$ e escalares $\lambda \in \mathbf{R}$ tais que $\mathbf{A} \cdot \mathbf{v} = \lambda \mathbf{v}$. Observe que se I for a matriz identidade de ordem 3, então a equação acima pode ser escrita na forma $\mathbf{A}\mathbf{v} = (\lambda \mathbf{I})\mathbf{v}$, ou ainda, $(\mathbf{A} - \lambda \mathbf{I})\mathbf{v} = 0$. Escrevendo explicitamente

$$\left(\begin{bmatrix} 4 & 2 & 0 \\ -1 & 1 & 0 \\ 0 & 1 & 2 \end{bmatrix} - \begin{bmatrix} \lambda & 0 & 0 \\ 0 & \lambda & 0 \\ 0 & 0 & \lambda \end{bmatrix} \right) \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

Temos então a seguinte equação matricial:

$$\begin{bmatrix} 4 - \lambda & 2 & 0 \\ -1 & 1 - \lambda & 0 \\ 0 & 1 & 2 - \lambda \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

Se escrevermos explicitamente o sistema de equações lineares equivalente a esta equação matricial, iremos obter um sistema de três equações e três incógnitas. Se o determinante da matriz dos coeficientes for diferente de zero, saberemos que este sistema tem uma única solução, que é a solução nula, ou seja x = y = z = 0. (Veja a observação final de 3.7.2.) Mas estamos interessados em calcular os autovetores de A, isto é, vetores $\mathbf{v} \neq \mathbf{0}$, tais que $(\mathbf{A} - \lambda \mathbf{I})\mathbf{v} = \mathbf{0}$. Neste caso $\det(\mathbf{A} - \lambda \mathbf{I})$ deve ser zero, ou seja

$$\begin{bmatrix} 4 - \lambda & 2 & 0 \\ -1 & 1 - \lambda & 0 \\ 0 & 1 & 2 - \lambda \end{bmatrix} = 0$$

E portanto $-\lambda^3 + 7\lambda^2 - 16\lambda + 12 = 0$.

Vemos que det(A - λ I) é um polinômio em λ . Este polinômio é chamado o polinômio característico de A. Continuando a resolução, temos $(\lambda - 2)^2 (\lambda - 3) = 0$.

Logo $\lambda = 2$ e $\lambda = 3$ são as raízes do polinômio característico de A, e portanto os autovalores da matriz A são 2 e 3. Conhecendo os autovalores podemos encontrar os autovetores correspondentes. Resolvendo a equação $Av = \lambda v$, para os casos:

$$i)$$
 $\lambda = 2$

$$\begin{bmatrix} 4 & 2 & 0 \\ -1 & 1 & 0 \\ 0 & 1 & 2 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = 2 \begin{bmatrix} x \\ y \\ z \end{bmatrix} \implies \begin{cases} 4x + 2y & = 2x \\ -x + y & = 2y \\ y + 2z = 2z \end{cases}$$

A terceira equação implica que y = 0 e por isso vemos na segunda que x = 0. Como nenhuma equação impõe uma restrição em z, os autovetores associados a $\lambda = 2$ são do tipo (0, 0, z), ou seja, pertencem ao subespaço [(0, 0, 1)].

ii)
$$\lambda = 3$$

Resolvendo a equação $\mathbf{A}\mathbf{v} = 3\mathbf{v}$, temos

$$\begin{cases} 4x + 2y &= 3x \\ -x + y &= 3y \\ y + 2z &= 3z \end{cases}$$

Tanto da primeira equação quanto da segunda vemos que x = -2y e da terceira vem z = y. Os autovetores associados ao autovalor $\lambda = 3$ são do tipo (-2y, y, y), ou seja, pertencem ao subespaço [(-2, 1, 1)].

6.2.1. O que fizemos neste exemplo com uma matriz A de ordem 3, pode ser generalizado. Seja A uma matriz de ordem n. Quais são os autovalores e autovetores correspondentes de A? São exatamente aqueles que satisfazem a equação $Av = \lambda v$ ou $Av = (\lambda I)v$ ou ainda $(A - \lambda I)v = 0$. Escrevendo esta equação explicitamente, temos

Escrevendo esta equação explicitamente, temos

$$\begin{bmatrix} a_{11} - \lambda & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} - \lambda & \dots & a_{2n} \\ \vdots & \vdots & & \vdots \\ a_{n1} & a_{n2} & \dots & a_{nn} - \lambda \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ \vdots \\ 0 \end{bmatrix}$$

Chamemos de **B** a primeira matriz acima. Então $\mathbf{B} \cdot \mathbf{v} = 0$. Se det $\mathbf{B} \neq 0$, sabemos que o posto da matriz \mathbf{B} é n e portanto o sistema de equações lineares homogêneo indicado acima tem uma única solução. Ora, como $x_1 = x_2 = ... = x_n = 0$ (ou $\mathbf{v} = 0$) sempre é solução de um sistema homogêneo, então esta única solução seria a nula. Assim, a única maneira de encontrarmos autovetores \mathbf{v} (soluções não nulas da equação acima) é termos det $\mathbf{B} = 0$, ou seja,

$$\det\left(\mathbf{A}-\lambda\mathbf{I}\right)=0.$$

Impondo esta condição determinamos primeiramente os autovalores λ que satisfazem a equação e depois os autovetores a eles associados. Observamos que

$$P(\lambda) = \det(\mathbf{A} - \lambda \mathbf{I}) = \det\begin{bmatrix} a_{11} - \lambda & \dots & a_{1n} \\ \vdots & & \vdots \\ a_{n1} & \dots & a_{nn} - \lambda \end{bmatrix}$$

é um polinômio em λ de grau n.

 $P(\lambda) = (a_{11} - \lambda) \dots (a_{nn} - \lambda) + \text{termos de grau} < n$, e os autovalores procurados são as raízes deste polinômio. $P(\lambda)$ é chamado polinômio característico da matriz A.

Exemplo

$$\mathbf{A} = \begin{bmatrix} -3 & 4 \\ -1 & 2 \end{bmatrix}$$

$$\det(\mathbf{A} - \lambda \mathbf{I}) = \det \begin{bmatrix} -3 - \lambda & 4 \\ -1 & 2 - \lambda \end{bmatrix}$$

$$= (-3 - \lambda) (2 - \lambda) + 4$$

$$= \lambda^2 + \lambda - 2 = \mathbf{P}(\lambda).$$

$$\mathbf{P}(\lambda) = 0 \implies (\lambda - 1) (\lambda + 2) = 0 \text{ ou } \lambda = 1 \text{ ou } \lambda = -2.$$

Então os autovalores de A são I e -2.

i) $\lambda = 1$ Temos

$$\begin{bmatrix} -3 & 4 \\ -1 & 2 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = 1 \begin{bmatrix} x \\ y \end{bmatrix}$$

Logo

$$\begin{bmatrix} -3x + 4y \\ -x + 2y \end{bmatrix} = \begin{bmatrix} x \\ y \end{bmatrix} \Longrightarrow \begin{cases} -4x + 4y = 0 \\ -x + y = 0 \end{cases}$$

Então, temos que x = y.

Portanto os autovetores associados a $\lambda = 1$ são os vetores $\mathbf{v} = (x, x)$, $x \neq 0$.

$$ii$$
) $\lambda = -$

$$\begin{bmatrix} -3 & 4 \\ -1 & 2 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = -2 \begin{bmatrix} x \\ y \end{bmatrix} \text{ ou } \begin{bmatrix} -3x + 4y \\ -x + 2y \end{bmatrix} = \begin{bmatrix} -2x \\ -2y \end{bmatrix}$$

Então

$$\begin{cases} -x + 4y = 0 \\ -x + 4y = 0 \end{cases} \quad \text{ou} \quad x = 4y.$$

Os autovetores correspondentes ao autovalor $\lambda = -2$ são da forma $v = (4y, y), y \neq 0$ (ou $v = (x, \frac{1}{4}x)$).

Exemplo

$$\mathbf{A} = \begin{bmatrix} \sqrt{3} & -1 \\ 1 & \sqrt{3} \end{bmatrix}$$

$$P(\lambda) = \det(\mathbf{A} - \lambda \mathbf{I}) = \det \begin{bmatrix} \sqrt{3} - \lambda & -1 \\ 1 & \sqrt{3} - \lambda \end{bmatrix}$$

$$= (\sqrt{3} - \lambda)^2 + 1$$

$$= \lambda^2 - 2\sqrt{3} \lambda + 4.$$

 $P(\lambda) = 0$ não admite raiz real ($\Delta = -4$), logo a matriz **A** não admite autovalores (nem autovetores). Isto significa que a transformação dada pela matriz **A** não preserva a direção de nenhum vetor. $T_{\mathbf{A}}(\mathbf{v}) \neq \lambda \mathbf{v}$, $\mathbf{v} \neq 0$.

Exemplo

$$\mathbf{A} = \begin{bmatrix} 3 & 0 & -4 \\ 0 & 3 & 5 \\ 0 & 0 & -1 \end{bmatrix} \quad \mathbf{e} \quad \mathbf{A} - \lambda \mathbf{I} = \begin{bmatrix} 3 - \lambda & 0 & -4 \\ 0 & 3 - \lambda & 5 \\ 0 & 0 & -1 - \lambda \end{bmatrix}$$

Então, $P(\lambda) = \det(\mathbf{A} - \lambda \mathbf{I}) = (3 - \lambda)^2 (-1 - \lambda)$. Os autovalores de A são $\lambda_1 = 3$ e $\lambda_2 = -1$.

i) Autovetores associados a $\lambda_1 = 3$

$$\begin{bmatrix} 3 & 0 & -4 \\ 0 & 3 & 5 \\ 0 & 0 & -1 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = 3 \begin{bmatrix} x \\ y \\ z \end{bmatrix}$$

$$\begin{cases} 3x & -4z = 3x \\ 3y + 5z = 3y \Rightarrow \begin{cases} -4z = 0 \\ 5z = 0 \\ -4z = 0 \end{cases}$$

A solução é: z = 0 e x, y quaisquer. Portanto os autovetores são do tipo y = (x, y, 0).

ii) Autovetores associados a $\lambda_2 = -1$.

$$\begin{bmatrix} 3 & 0 & -4 \\ 0 & 3 & 5 \\ 0 & 0 & -1 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = -1 \begin{bmatrix} x \\ y \\ z \end{bmatrix} \Longrightarrow \begin{cases} 3x & -4z = -x \\ 3y - 5z = -y \\ -z = -z \end{cases}$$

$$\Longrightarrow \begin{cases} 4x & -4z = 0 \\ 4y - 5z = 0 \\ 0 = 0 \end{cases}$$

Solução: x = z, $y = \frac{5}{4}z$, z qualquer.

Os autovetores são do tipo $v = (z, \frac{5}{4}z, z), z \neq 0$.

Exemplo

$$\mathbf{A} = \begin{bmatrix} 3 & -3 & -4 \\ 0 & 3 & 5 \\ 0 & 0 & -1 \end{bmatrix}$$

$$P(\lambda) = \begin{bmatrix} 3 - \lambda & -3 & -4 \\ 0 & 3 - \lambda & 5 \\ 0 & 0 & -1 - \lambda \end{bmatrix} = (3 - \lambda)^2 (-1 - \lambda).$$

Observe que este polinômio é o mesmo que o do exemplo anterior. Então os autovalores são $\lambda_1 = 3$ e $\lambda_2 = -1$.

i) Para $\lambda_1 = 3$

$$\begin{bmatrix} 3 & -3 & -4 \\ 0 & 3 & 5 \\ 0 & 0 & -1 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = 3 \begin{bmatrix} x \\ y \\ z \end{bmatrix} \Longrightarrow \begin{cases} 3x - 3y - 4z = 3x \\ 3y + 5z = 3y \\ -z = 3z \end{cases} \Longrightarrow$$

$$= 3z \Rightarrow \begin{cases} -3y - 4z = 0 \\ 5z = 0 \\ -4z = 0 \end{cases}$$

y = 0, z = 0, x qualquer.

Os autovetores são do tipo $v = (x, 0, 0), x \neq 0$.

ii) Para
$$\lambda_2 = -1$$

$$\begin{cases} 3x - 3y - 4z = -x \\ 3y + 5z = -y \\ -z = -z \end{cases} \longrightarrow \begin{cases} 4x - 3y - 4z = 0 \\ 4y + 5z = 0 \\ 0 = 0 \end{cases}$$

$$x = -\frac{31}{16}z$$
, $y = -\frac{5}{4}z$, z qualquer.

Os autovetores são do tipo $\mathbf{v} = (-\frac{31}{16}z, -\frac{5}{4}z, z), z \neq 0$.

Exemplo

Seja $T: \mathbb{R}^2 \to \mathbb{R}^2$ dada por T(x, y) = (-3x + 4y, -x + 2y). Procuremos seus autovalores e autovetores. Notemos que se α é a base canônica de \mathbb{R}^2

$$[T]^{\alpha}_{\alpha} = \begin{bmatrix} -3 & 4 \\ -1 & 2 \end{bmatrix}$$
 e, portanto,

podemos dar o polinômio característico de T como $P(\lambda) = \det ([T]^{\alpha}_{\alpha} - \lambda I)$.

EXERCÍCIOS PROPOSTOS

Páginas 194 a 196, exercícios 3, 4, 7, 11, 13, 16, 17, 22, 26abc.

BIBLIOGRAFIA

BOLDRINI, José Luiz et al. **Álgebra** linear. Harper & Row, 1980.