## Solutions to Assignment #1

1. (a) 
$$\hat{Z}=H_mZH_n$$
. Thus 
$$H_m\hat{Z}H_n=H_m^2ZH_n^2=mnZ$$
 since  $H_n^2=nI$ . Thus  $Z=H_m\hat{Z}H_n/(mn)$ .

(b) Functions for the hard and soft thresholding can either use the original image as an input (with its W-H transform computed within the function) or the W-H transform as an input. The examples given below show the latter approach:

Note that these two functions do not shrink the (1,1) element of the matrix – this is usually a good practice to follow although in this case, shrinking the (1,1) element (which only relevant for soft thresholding) does not change the denoised images significantly unless  $\lambda$  is very large.

(c) Figures 1 and 2 show the hard and soft thresholded images using  $\lambda = 60, 80, 100, 120$  for each method.

The value of  $\lambda$  influences (a) the contrast between the dark and light regions of the image, and (b) the sharpness of the boundary between the dark and light regions. As  $\lambda$  increases. we do see an increase in the contrast between the dark and light regions coupled with a lessening of sharpness of the boundary between the two regions.

This denoising method as applied here is very crude. First, we use a single threshold value for all of elements (with the exception of the (1,1) element) of the matrix W-H transform, Second (and perhaps more importantly), we are applying the transform to the entire image rather than applying the transform to smaller sub-images and thresholding each of these transforms.





lambda = 60 lambda = 8





lambda = 100 lambda = 120

Figure 1: Hard thresholded images





lambda = 60 lambda = 80





lambda = 100 lambda = 120

Figure 2: Soft thresholded images

2. (a) We use the facts that (a)  $E(t^S) = \sum_{n=0}^{\infty} E(t^S|N=n) P(N=n)$  and (b)  $E(t^S|N=n) = \phi(t)^n$ . Thus

$$E(t^{S}) = \sum_{n=0}^{\infty} \phi(t)^{n} P(N=n) = g(\phi(t))$$

for t such that  $g(\phi(t))$  is finite, that is, for t such that  $\phi(t) < 1/\theta$ .

(b) Note that N < m implies that  $S < m\ell$  and so

$$1 - P(N \ge m) = P(N < m) \le P(S < m\ell) = 1 - P(S \ge m\ell)$$

and so

$$P(S \ge m\ell) \le P(N \ge m).$$

Thus if  $P(N \ge m) \le \epsilon$  then  $P(S \ge m\ell) \le \epsilon$ .

(c) For a given value of t > 1 with  $\phi(t) < 1/\theta$ ,  $P(S \ge M) < \epsilon$  if  $M \ge M(t)$  where

$$M(t) = \frac{\ln(1-\theta) - \ln(1-\theta\phi(t)) - \ln(\epsilon)}{\ln(t)}$$

by setting the upper bound equal for  $P(S \ge M)$  to  $\epsilon$  and solving for M(t). Since (for each t)  $P(S \ge M(t)) < \epsilon$ , it follows that if  $M = \inf_t M(t)$  then  $P(S \ge M) < \epsilon$ .

- (d) Since  $\phi(t) = (1+t)^{10}/2^{10}$ , we have  $\phi(t) < 1/\theta$  if  $t < 2\theta^{-1/10} 1$ . Thus for  $\theta = 0.9$ , we need to evaluate M(t) for 1 < t < 1.021184. This is done using the following R code:
- > eps <- 1e-5
- > theta <- 0.9
- > tt <- c(1000001:1021183)/1000000
- $> phi <- (1 + tt)^10/2^10$
- $> M < (\log(1-\text{theta}) \log(1 \text{theta*phi}) \log(\text{eps}))/\log(\text{tt})$
- $> \min(M)$
- [1] 724.1235

Thus we can define M to be any number greater than 724 (although we could use 724 without problem). In what follows, I will use 725 although (for example) 729 has only 2 and 3 as its prime factors (As a point of comparison,  $P(N \ge m) < \epsilon = 10^{-5}$  for  $m \ge \lceil \ln(\epsilon) / \ln(\theta) \rceil = 110$  and so the upper bound from part (b) is 1100.)

Since the  $\{X_i\}$  are Binomial with parameters 10 and 1/2, we can use the R function **dbinom** to define p(x) for  $x = 0, 1, \dots, 10$  with  $p(11) = \dots = p(724) = 0$ .

- > px <- c(dbinom(c(0:10),10,1/2),rep(0,714))
- > pxhat <- fft(px)</pre>
- > pshat <- (1 theta)/(1 theta\*pxhat)</pre>
- > ps <- Re(fft(pshat,inv=T))/725</pre>
- > plot(c(0:724),ps,type="h",lwd=2,xlim=c(0,150),xlab="s",ylab="P(S = s)")



Figure 3: Probability distribution of S

Figure 3 shows P(S=s) for  $s=0,\dots,150$ . Note that P(S=0) is relatively large and that the distribution of S has a relatively long tail, that is, P(S=s) tends to 0 quite slowly as s increases.

## Supplemental problems

3. (a) Note that

$$\sum_{i=1}^{k+1} (x_i - \bar{x}_{k+1})^2 = \sum_{i=1}^k (x_i - \bar{x}_k + \bar{x}_k - \bar{x}_{k+1})^2 + (x_{k+1} - \bar{x}_{k+1})^2$$
$$= \sum_{i=1}^k (x_i - \bar{x}_k)^2 + k(\bar{x}_k - \bar{x}_{k+1})^2 + (x_{k+1} - \bar{x}_{k+1})^2$$

Then we have

$$(\bar{x}_k - \bar{x}_{k+1})^2 = \frac{1}{(k+1)^2} (x_{k+1} - \bar{x}_k)^2$$
$$(x_{k+1} - \bar{x}_{k+1})^2 = \frac{k^2}{(k+1)^2} (x_{k+1} - \bar{x}_k)^2.$$

Substituting, the desired identity follows.

(b) For any  $x_0$ , we have

$$\sum_{i=1}^{n} (x_i - \bar{x})^2 = \sum_{i=1}^{n} (x_i - x_0 + x_0 - \bar{x})^2$$

$$= \sum_{i=1}^{n} (x_i - x_0)^2 - 2\sum_{i=1}^{n} (x_i - x_0)(\bar{x} - x_0) + n(\bar{x} - x_0)^2$$

$$= \sum_{i=1}^{n} (x_i - x_0)^2 - n(\bar{x} - x_0)^2$$

since

$$2\sum_{i=1}^{n}(x_i-x_0)(\bar{x}-x_0)=2n(\bar{x}-x_0)^2.$$

(c) There is no absolutely optimal approach to choosing the value of  $x_0$  to use in the formula in part (b). The idea is to try to choose  $x_0$  (without completely scanning the data) to make  $(\bar{x}-x_0)^2$  small — but of course, without going through the data, we cannot compute  $\bar{x}$ . One feasible approach if n is extremely large is to take a small random sample of size m (where m is very much smaller than n) from the data and set  $x_0$  equal to the mean of these numbers. Other implementations of this approach merely set  $x_0 = x_1$ , the first datum. Generally speaking, as long as we take  $x_0$  within the range of the data (i.e. between the minimum and maximum), we will avoid catastrophic cancellation in most cases.

4. (a) Note that  $P(N \leq x) = P(N \leq \lfloor x \rfloor)$  since N takes the values  $0, 1, 2, \cdots$ . Thus

$$P(N \le x) = (1 - \theta) \sum_{y=0}^{\lfloor x \rfloor} \theta^y = \frac{(1 - \theta)(1 - \theta^{\lfloor x \rfloor + 1})}{1 - \theta} = 1 - \theta^{\lfloor x \rfloor + 1}$$

and so  $F(x) = P(N \le x) = 1 - \theta^{n+1}$  for  $n \le x < n+1$ .

(b) For  $x \ge 0$ , F(x) takes the values  $1 - \theta$ ,  $1 - \theta^2$ ,  $1 - \theta^3$ ,  $\cdots$  with jumps at  $x = 0, 1, 2, \cdots$ Thus

$$F^{-1}(t) = n$$
 if  $1 - \theta^n < t \le 1 - \theta^{n+1}$ 

for 0 < t < 1.

(c)  $N = F^{-1}(U)$  where  $U \sim \text{Unif}(0,1)$  has a Geometric distribution; from part (b), N = n if  $1 - \theta^n < U \le 1 - \theta^{n+1}$  or, equivalently,  $\theta^{n+1} \le 1 - U < \theta^n$ .

(d) If X has an Exponential distribution with mean  $-1/\ln(\theta) > 0$  and N = |X| then

$$P(N = n) = P(n \le X < n + 1)$$

$$= \exp(n \ln(\theta)) - \exp((n + 1) \ln(\theta))$$

$$= \theta^n - \theta^{n+1}$$

$$= (1 - \theta)\theta^n.$$