

Ad 2

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39
0	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
1	0	0	0	0	0	0	0	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
2	0	0	0	0	0	0	0	0	0	0	1	0	0	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
3	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
4	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0
5	0	0	0	0	0	0	0	0	0	0	0	1	0	1	0	0	0	0	0	0	0	0	1	0	0	0	0	1	1	0	0	0	0	0	0	0	0	0	0
6	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	1	1	1	1	0	0	0	0	0	0
7	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	1	0	1	0	0	0	1	0	1	1	0	0	0	0
8	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	1	0	0	0	1	0	0	0	0	0	0	1	0	0	0	0	1	1	1	0
9	0	0	0	0	1	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	1	0	0	1
10	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	1	0	0	0	0	1	0	0	0	1	1
11	0	1	0	0	0	0	0	0	0	0	0	0	1	0	1	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	1	0	1	0	0
12	0	0	0	0	0	0	1	0	0	1	0	0	0	0	0	0	0	0	1	0	0	1	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0

Ad3

Graf jest hamiltonowski, ponieważ posiada następujący cykl Hamiltona: $0 \rightarrow 8 \rightarrow 6 \rightarrow 9 \rightarrow 10 \rightarrow 4 \rightarrow 5 \rightarrow 7 \rightarrow 3 \rightarrow 12 \rightarrow 1 \rightarrow 2 \rightarrow 11 \rightarrow 0$. Jest również półhamiltonowski: $0 \rightarrow 9 \rightarrow 8 \rightarrow 6 \rightarrow 7 \rightarrow 3 \rightarrow 12 \rightarrow 1 \rightarrow 2 \rightarrow 11 \rightarrow 4 \rightarrow 5 \rightarrow 10$.

Ad 4

Graf nie jest ani eulerowski (nie wszystkie wierzchołki mają parzyste stopnie), ani półeulerowski (co najmniej trzy wierzchołki mają nieparzyste stopnie, np. deg(0) = 7, deg(2) = 5 i deg(10) = 5).

Liczba chromatyczna: $\chi(G) = 5$

Indeks chromatyczny: $\chi'(G) = 9$; z tw. Vizinga wiemy, że $\Delta <= \chi'(G) <= \Delta + 1$, gdzie $\Delta -$ maksymalny stopień wierzchołka grafu $G = \deg(4) = 9$; graf G da się pokolorować 9 kolorami, co pokazano na rysunku na stronie poprzedniej

Ad 7

Ad 8 Graf G nie jest planarny, ponieważ zawiera podgraf $K_{3,3}$ – można tak wnioskować na podstawie twierdzenia Kuratowskiego. Podgraf $K_{3,3}$ pokazano na rysunku (zaznaczone krawędzie należą do E(G), wierzchołki do V(G)):

Algorytm Dijkstry

Algorytm Dijkstry jest używany do wyszukiwania najkrótszej ścieżki w grafie etykietowanym nieujemnymi wagami. Znajduje zastosowanie w wielu dziedzinach informatyki, optymalizując procesy podejmowania decyzji przez inne algorytmy. Rozwiązuje problemy nieoptymalnego poruszania się po grafach, tym samym oszczędza czas, moc obliczeniową oraz inne zasoby.

Zastosowania

Wiele zagadnień życia codziennego można przedstawić w formie grafu. Algorytm Dijkstry znajdzie zastosowanie przy wyborze najkrótszej drogi między dwoma punktami na mapie przy założeniu, że skrzyżowanie stanowi węzeł grafu, a etykietą (wagą) jest odległość między węzłami. Podobnie, sprawdzi się, gdy bierze się pod uwagę czas, koszt pokonania trasy czy inne kryteria – odpowiednia modyfikacja wag rozwiązuje problem.

Innym przykładem wykorzystania algorytmu Dijkstry są portale społecznościowe. Propozycje znajomych czy interesujących materiałów tworzą graf, w którym najkrótsza ścieżka obrazuje stopień połączenia między odbiorcą a prezentowaną informacją. Im krótszy czas dotarcia do kolejnego węzła tym większa szansa, że proponowana osoba, wiadomość czy reklama będzie sugerowana skutecznie.

Kolejna forma użycia algorytmu Dijkstry odnosi się do robotów i innych urządzeń, które mogą wykazywać się posiadaniem sztucznej inteligencji. Optymalizacja procesów nauki oraz wykonywania zadań zakłada, by odbywały się one jak najmniejszym nakładem czasu i energii. Algorytm Dijkstry, będący przykładem algorytmu zachłannego, zawsze wybiera najoptymalniejsze rozwiązanie w danej chwili, minimalizując poniesione koszty.

Inne metody rozwiązywania problemu znajdowania najkrótszych ścieżek w grafie

Algorytm Dijkstry nie jest jedynym sposobem wyszukiwania najkrótszych ścieżek. Równolegle stosuje się m.in. algorytm Forda-Bellmana oraz algorytm A*.

Algorytm Forda-Bellmana działa poprawnie dla grafów o wagach ujemnych. Jest to przydatna cecha, która w niektórych przypadkach dyskwalifikuje algorytm Dijkstry. Wykorzystuje się go np. do obliczania minimalnej zmiany ciepła reakcji chemicznej czy najkorzystniejszego sposobu wymiany walut.

Algorytm A* wykorzystuje heurystyki, czyli pomocnicze obliczenia, które naprowadzają pełny algorytm na znalezienie optymalnego rozwiązania. Heurystyki mogą opierać się na doświadczeniach (np. analizie gry w szachy) lub na obliczeniach, które oszczędzają czas działania pełnego algorytmu. A* używany jest w dziedzinie sztucznej inteligencji oraz w procesie produkcji gier wideo, przyczyniając się do modelowania zachowań postaci mających pozory inteligencji.