Multi-criteria shortest paths

Antonin Lentz

with Nicolas Hanusse and David Ilcinkas

LaBRI, France

Introduction

Query

Compute the "best" path

- from a source vertex s
- to a target vertex t

Shortest path problem on a road network

Introduction

Shortest path computation with Google Maps

Introduction

Shortest path computation with Google Maps

Let G be a weighted graph with n vertices and m edges.

- Bellman Ford: $\mathcal{O}(m \times n)$ (1956)
- Dijkstra: $\mathcal{O}(m \times \log n)$ (1959)

Let G be a weighted graph with n vertices and m edges.

- Bellman Ford: $\mathcal{O}(m \times n)$ (1956) Dijkstra: $\mathcal{O}(m \times \log n)$ (1959) one-to-all algorithms

Let G be a weighted graph with n vertices and m edges.

- Bellman Ford: $\mathcal{O}(m \times n)$ (1956) Dijkstra: $\mathcal{O}(m \times \log n)$ (1959) one-to-all algorithms

Let G be a weighted graph with n vertices and m edges.

- Bellman Ford: $\mathcal{O}(m \times n)$ (1956) Dijkstra: $\mathcal{O}(m \times \log n)$ (1959) one-to-all algorithms

Speed-up techniques

Speed-up utilization

Speed-up ideas and algorithms

- landmarks: TNR,
- separators: CRP, HPML,
- hierarchical techniques: CH, CCH, Reach
- and many others.

Speed-up techniques

Speed-up utilization

Speed-up ideas and algorithms

- landmarks: TNR,
- separators: CRP, HPML,
- hierarchical techniques: CH, CCH, Reach
- and many others.

Speed-up techniques

Comparison of different methods [Bast et al., 2016]

Western Europe: 18.0 millions vertices and 42.5 millions edges

Unicriterion Multimodal

Shortest path problem on a road network

Query time : at least few seconds for a 7.10^6 nodes graph [Wagner and Zündorf, 2017]

Multi-criteria Unimodal

Shortest path problem on a road network

Multi-criteria Multimodal

Multimodal network may imply multi-criteria

Taking into account other transportation means naturally introduces a lot of criteria:

- time,
- distance,
- price,
- number of transitions [Delling et al., 2014],
- difficulty (bike) [Hrnčíř et al., 2017],
- uncertainty,
- ...

Modelisation

For d criteria, weights are d dimensional vectors $(w_1,...w_d)$, $\mathbf{w_i} \ge 1$.

Goal : compare two vectors of weights $(x_i)_i$ and $(y_i)_i$

Goal : compare two vectors of weights $(x_i)_i$ and $(y_i)_i$

Linear combinaison

→ total order, same as before :

TRANSIT Algorithm [Antsfeld and Walsh, 2012]

Goal : compare two vectors of weights $(x_i)_i$ and $(y_i)_i$

Linear combinaison

→ total order, same as before :

TRANSIT Algorithm [Antsfeld and Walsh, 2012]

Two dimensionnal edges

Linear combinaison edges

Goal : compare two vectors of weights $(x_i)_i$ and $(y_i)_i$

Linear combinaison

 \rightarrow total order, same as before :

TRANSIT Algorithm [Antsfeld and Walsh, 2012]

Two dimensionnal edges

Linear combinaison edges

 \wedge How to choose A, B?

Goal : compare two vectors of weights $(x_i)_i$ and $(y_i)_i$

Linear combinaison

→ total order, same as before :

TRANSIT Algorithm [Antsfeld and Walsh, 2012]

Two dimensionnal edges

Linear combinaison edges

 \wedge How to choose A, B?

→ Domination relation (partial order)

Path in a graph

Path coordinates (2D)

Path in a graph

Path coordinates (2D)

Path in a graph

Path coordinates (2D)

Path in a graph

Path coordinates (2D)

$$\mathbf{p} = (p_1, ..., p_d)$$
 is dominated by $\mathbf{q} = (q_1, ..., q_d)$ if:

$$\forall i, q_i \leq p_i$$

Domination area of p

$$\mathbf{p} = (p_1, ..., p_d)$$
 is dominated by $\mathbf{q} = (q_1, ..., q_d)$ if:

$$\forall i, q_i \leq p_i$$

Domination area of ${\sf p}$

$$\mathbf{p} = (p_1, ..., p_d)$$
 is dominated by $\mathbf{q} = (q_1, ..., q_d)$ if:

$$\forall i, q_i \leq p_i$$

Domination area of ${\sf p}$

Pareto Set

Goal: obtain non dominated solutions (Pareto Set)

Pareto set with two dimensions

Pareto Set

Goal: obtain non dominated solutions (Pareto Set)

Pareto set with two dimensions

Pareto Set

Goal: obtain non dominated solutions (Pareto Set)

Pareto set with two dimensions

Problem: too many solutions! If:

- \bullet Δ is the maximum degree,
- *n* the number of vertices,

Then possibly Δ^n non-dominated solutions.

Pathological example

Problem: too many solutions! If:

- \bullet Δ is the maximum degree,
- *n* the number of vertices,

Then possibly Δ^n non-dominated solutions.

Pathological example

Every path is non dominated!

The Pareto Set is $\{(k, 2^n - 1 - k), k \in [0, 2^n - 1]\}$

Pareto set of the vertex t

The Pareto Set is $\{(k, 2^n - 1 - k), k \in [0, 2^n - 1]\}$

Pareto set of the vertex u_i

A set back in practice too

Difficulties

even with real datasets, algorithms are way slower!
Examples:

```
uni-criterion: micro-seconds for 10^6 node graphs [Bast et al. , 2016] tri-criteria: 15min for 7.10^4 node graphs [Hrnčíř et al., 2017]
```

• the user does not want to get a lot of propositions : |ParetoSet| = 1600 in the above example.

Summarize Pareto Sets

How to summarize?

- K-paths,
- heuristics,
- approximation,

Summarize Pareto Sets

How to summarize?

- K-paths: output only K paths from the Pareto Set
- heuristics,
- approximation,

How to summarize?

K-paths: output only K paths from the Pareto Set

K representative paths

- heuristics,
- approximation,

How to summarize?

K-paths: output only K paths from the Pareto Set

K representative paths

- heuristics,
- approximation,

How to summarize?

- K-paths,
- heuristics: several metrics to evaluate the output quality
- approximation,

How to summarize?

- K-paths,
- heuristics: several metrics to evaluate the output quality
 - [Hrnčíř et al., 2017] : pruning with different rules,
 - [Bast et al., 2013] : rounding and filtering,
 - [Delling et al., 2013] : MultiCriteria RAPTOR variants.
- approximation,

How to summarize?

- K-paths,
- heuristics,
- approximation:

$(1+\epsilon)$ -domination

Definition

$$\mathbf{p} = (p_1, ...p_d)$$
 is $(1+\epsilon)$ -dominated by $\mathbf{q} = (q_1, ..., q_d)$ if:

$$\forall i, q_i \leq (1+\epsilon) \cdot p_i$$

 $(1+\epsilon)$ domination area

$(1+\epsilon)$ -domination

Definition

$$\mathbf{p} = (p_1, ..., p_d)$$
 is $(1 + \epsilon)$ -dominated by $\mathbf{q} = (q_1, ..., q_d)$ if:

$$\forall i, q_i \leq (1+\epsilon) \cdot p_i$$

 $(1+\epsilon)$ domination area

$(1+\epsilon)$ -domination

Definition

$$\mathbf{p} = (p_1, ...p_d)$$
 is $(1+\epsilon)$ -dominated by $\mathbf{q} = (q_1, ..., q_d)$ if:

$$\forall i, q_i \leq (1+\epsilon) \cdot p_i$$

 $(1+\epsilon)$ domination area

Definition $((1+\epsilon)$ approximation of a Pareto Set)

Set of paths S s.t. each path of the Pareto Set is $(1+\epsilon)$ -dominated by one from S.

Approximation set with two dimensions

Definition $((1+\epsilon)$ approximation of a Pareto Set)

Set of paths S s.t. each path of the Pareto Set is $(1+\epsilon)$ -dominated by one from S.

Approximation set with two dimensions

Definition $((1+\epsilon)$ approximation of a Pareto Set)

Set of paths S s.t. each path of the Pareto Set is $(1+\epsilon)$ -dominated by one from S.

Approximation set with two dimensions

Definition $((1+\epsilon)$ approximation of a Pareto Set)

Set of paths S s.t. each path of the Pareto Set is $(1+\epsilon)$ -dominated by one from S.

Approximation set with two dimensions

Theorem

A polynomial approximation of a Pareto set exists [Papadimitriou and Yannakakis, 2000]:

$$|ApproxSet| = \mathcal{O}\left(\frac{\log(nW^{max})^{d-1}}{\epsilon^{d-1}}\right)$$

Theorem

A polynomial approximation of a Pareto set exists [Papadimitriou and Yannakakis, 2000]:

$$|ApproxSet| = \mathcal{O}\left(\frac{\log(nW^{max})^{d-1}}{\epsilon^{d-1}}\right)$$

Theorem

A polynomial approximation of a Pareto set exists [Papadimitriou and Yannakakis, 2000]:

$$|ApproxSet| = \mathcal{O}\left(\frac{\log(nW^{max})^{d-1}}{\epsilon^{d-1}}\right)$$

Theorem

A polynomial approximation of a Pareto set exists [Papadimitriou and Yannakakis, 2000]:

$$|ApproxSet| = \mathcal{O}\left(\frac{\log(nW^{max})^{d-1}}{\epsilon^{d-1}}\right)$$

Polynomial approximation algorithm

Best known algorithm [Tsaggouris and Zaroliagis, 2009]

Bellman-Ford like algorithm with the following complexity:

$$\mathscr{O}\left(\frac{n^{d-1}}{\epsilon} \cdot n \cdot m \left(\frac{\log(nW^{max})}{\epsilon}\right)^{d-1}\right)$$

Problem: the factor n^{d-1} is unusable for large graphs.

Dijkstra-like algorithm

- Priority queue containing paths ordered by the rank of the associated weights : $rank(p_1,...p_d) = p_1 + ... + p_d$
- ② We remove the minimum of the priority list and add it to the S_u .
- We extend with all possible edges and add it to the priority queue.

Dijkstra-like algorithm

- Priority queue containing paths ordered by the rank of the associated weights : $rank(p_1,...p_d) = p_1 + ... + p_d$
- ② We remove the minimum of the priority list and add it to the S_u .
- We extend with all possible edges and add it to the priority queue.

Dijkstra-like algorithm

- Priority queue containing paths ordered by the rank of the associated weights : $rank(p_1,...p_d) = p_1 + ... + p_d$
- ② We remove the minimum of the priority list and add it to the S_u .
- We extend with all possible edges and add it to the priority queue.

Extending paths

Extending paths

We do not extend a path strictly dominated.

Extending paths

We do not extend a path strictly dominated.

We firstly restrict to d = 2 and weight are in \mathbb{N}^* .

Frame algorithm

We firstly restrict to d = 2 and weight are in \mathbb{N}^* .

We firstly restrict to d = 2 and weight are in \mathbb{N}^* .

We firstly restrict to d = 2 and weight are in \mathbb{N}^* .

Frame algorithm

We firstly restrict to d = 2 and weight are in \mathbb{N}^* .

Frame algorithm

Frame algorithm

Complexity (2D, integers weights)

Our Algorithm	$\mathcal{O}\left(\Delta \cdot W^{max} \cdot n \cdot \frac{n\log(nW^{max})}{\epsilon}\right)$
[Tsaggouris et al., 2009]	$\mathscr{O}\left(\frac{m \cdot n \cdot \frac{n \log(nW^{max})}{\epsilon}}{\epsilon}\right)$
[Vassilvitskii et al., 2005]	$\mathscr{O}\left(m \cdot (\log(\log(n)) + \frac{1}{\epsilon}) \cdot \frac{n\log(nW^{max})}{\epsilon}\right)$

with Δ maximum degree and W^{max} maximum weight.

Weights in \mathbb{R}_+^*

Rounding inside a slice

Complexity

If the slice width is L, the algorithm gives an $(1+\epsilon+\frac{L}{2})$ -approximation in

$$\mathcal{O}\left(\Delta \cdot W^{max} \cdot \frac{n^2 \log(nW^{max})}{L \cdot \epsilon}\right)$$

Weights in ℝ₊*

Complexity (2D, non integer weights)

Frame Algorithm	$\mathcal{O}\left(\underline{\Delta \cdot W^{max}} \cdot \frac{n^2 \log(nW^{max})}{\epsilon^2}\right)$	
[Tsaggouris et al., 2009]	$\mathscr{O}\left(\frac{m \cdot \frac{n^2 \log(nW^{max})}{\epsilon}\right)$	
with Δ maximum degree and W^{max} maximum weight.		

Tests

Pareto Set and Frame algorithm output

Tests

 ${\sf Pareto} \,\, {\sf Set} \,\, {\sf and} \,\, {\sf Frame} \,\, {\sf algorithm} \,\, {\sf output}$

Same rank plan for d = 3

Elimination criterion

Elimination criterion

Elimination criterion

Elimination criterion

Elimination criterion

Elimination criterion

Let S a set of same ranked paths and $P = (P_1,...P_d) \in S$. If $\forall i, \exists Q = (Q_1,...,Q_d)$ such that

$$\left\{ \begin{array}{l} P_i \leq Q_i \\ Q_i \leq (1+\epsilon)P_i \\ \forall j \neq i, P_j \geq Q_j \end{array} \right.$$

Then we remove P.

Lemme

If we apply the above criterion at each same rank hyperplan, the obtained solution set cover the Pareto Set.

Conclusion

Our algorithm

- we presented a new method to compute approximated Pareto Set,
- experiments on real datasets requiered (at least correlated weights),

Future work

A multimodal network enforces some generalisations:

- what about null weights?
- we work with static graph, what about temporal graph?
- can we efficiently use speed up techniques to improve query time ?

Conclusion

Our algorithm

- we presented a new method to compute approximated Pareto Set,
- experiments on real datasets requiered (at least correlated weights),

Future work

A multimodal network enforces some generalisations:

- what about null weights?
- we work with static graph, what about temporal graph?
- can we efficiently use speed up techniques to improve query time ?

Thanks for your attention!

- [1] Leonid Antsfeld and Toby Walsh. Finding multi-criteria optimal paths in multi-modal public transportation networks using the transit algorithm. In *Proceedings of the 19th ITS World Congress*, page 32, 2012.
- [2] Hannah Bast, Mirko Brodesser, and Sabine Storandt. Result diversity for multi-modal route planning. In ATMOS-13th Workshop on Algorithmic Approaches for Transportation Modelling, Optimization, and Systems-2013, volume 33, pages 123–136. Schloss Dagstuhl—Leibniz-Zentrum fuer Informatik, 2013.
- [3] Hannah Bast, Daniel Delling, Andrew Goldberg, Matthias Müller-Hannemann, Thomas Pajor, Peter Sanders, Dorothea Wagner, and Renato F Werneck. Route planning in transportation networks. In Algorithm engineering, pages 19–80. Springer, 2016.
- [4] Daniel Delling, Julian Dibbelt, Thomas Pajor, Dorothea Wagner, and Renato F Werneck. Computing multimodal journeys in practice. In *International Symposium on Experimental Algorithms*, pages 260–271. Springer, 2013.
- [5] Daniel Delling, Thomas Pajor, and Renato F Werneck. Round-based public transit routing. *Transportation Science*, 49(3):591–604, 2014.

- [6] Jan Hrnčíř, Pavol Žileckỳ, Qing Song, and Michal Jakob. Practical multicriteria urban bicycle routing. *IEEE Transactions on Intelligent Transportation Systems*, 18(3):493–504, 2017.
- [7] Christos H Papadimitriou and Mihalis Yannakakis. On the approximability of trade-offs and optimal access of web sources. In Foundations of Computer Science, 2000. Proceedings. 41st Annual Symposium on, pages 86–92. IEEE, 2000.
- [8] George Tsaggouris and Christos Zaroliagis. Multiobjective optimization: Improved fptas for shortest paths and non-linear objectives with applications. *Theory of Computing Systems*, 45(1):162–186, 2009.
- [9] Dorothea Wagner and Tobias Zündorf. Public transit routing with unrestricted walking. In *OASIcs-OpenAccess Series in Informatics*, volume 59. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2017.