Mai 2017 GROUPE : 32

NOM: DAYID

Partiel n°2 de Physique

Les calculatrices et les documents ne sont pas autorisés. Réponses exclusivement sur le sujet

Exercice 1 (5 points) Les parties 1 et 2 sont indépendantes

1- Un calorimètre de capacité négligeable contient une masse m_1 = 200g d'eau à la température initiale θ_1 = 70°C. On y place un glaçon de masse m_2 = 80g sortant du congélateur à la température θ_2 = -20°C. Exprimer les quantités de chaleurs échangées Q par l'eau et le glaçon, en déduire la température d'équilibre θ_e , sachant que le glaçon fond dans sa totalité.

Données : Chaleur latente de fusion de la glace : L_f = 300.10³ Jkg⁻¹.

Capacité massique de l'eau : c_e = 4.10³JK⁻¹kg⁻¹.

Capacité massique de la glace : $c_g = 2.10^3 \text{JK}^{-1} \text{kg}^{-1}$

20

Q₁=m,
$$G_{\mathbf{p}}(Q_{e}-Q_{1})$$
 $\leq Q_{1}=0$ et Q₁al=0
Q₂= m₂ $G_{\mathbf{q}}(Q_{e}-Q_{2})$ $Q_{1}+Q_{2}+Q_{3}+Q_{1}=0$
Q₃= m₂ $G_{\mathbf{q}}(Q_{e}-Q_{2})$ $G_{\mathbf{q}}=0$ $G_{$

He resultat doit être positif, it doity avoir une enou de signe

2- Un calorimètre contient une masse $m_1 = 150g$ d'eau. La température initiale de l'ensemble out $\theta_1 = 20^{\circ}\text{C}$. On ajoute une masse $m_2 = 250g$ d'eau à la température $\theta_2 = 70^{\circ}\text{C}$. Calcule la capacité thermique C_{cal} du calorimètre sachant que la température d'équilibre est $\theta_0 = 50^{\circ}\text{C}$. On donne la capacité massique de l'eau : $C_0 = 4.10^{3}\text{JK}^{-1}\text{kg}^{-1}$.

Exercice 2 (7 points) Les questions 1, 2 et 3 sont indépendantes

1- a) Exprimer l'énergie élémentaire dU et l'enthalpie élémentaire dH d'un gaz parfait.
b) en déduire la relation de Meyer, donnée par: C_ρ - C_ν = nR, valable pour un gaz parfait.

- 2- a) Enoncer le premier principe de la thermodynamique donnant dC en fonction des grandeurs élémentaires δQ en δW.
 - b) Utilliser de principe et le lui de Messer pour un que parfair, pour montrer que la quantité élémentaire de challeur échangese pour a moiles de gaz parfait à pression constante s'écrit

$$\delta Q_{\rm p} = n.c_{\rm p}dT \quad ({\rm On \ donne} \ \frac{dW}{W} = \frac{dT}{T} \ {\rm lorsque} \ {\rm ln} \ {\rm pression \ est \ constant2}).$$

- 3- Exprimer le travail des forces de pression W, dans les cas suivants :
 - a) Détente isobare à pression P_A, du volume V_A vers le volume V_B.
 - b) Compression adiabatique du volume V_A vers le volume V_B en fonction des températures T_A . T_B et de la capacité molaire à volume constant c_a .

Exercice 3 (8 points)

Un moteur thermique fonctionne selon le Cycle de Beau de Rochas : n moles de gaz parfait décrivent le cycle ABCDA représenté sur la figure ci-dessous.

Les transformations DA et BC sont des adiabatiques alors que les transformations CD et AB sont des isochores. On désigne par $\mathbf{a} = \mathbf{V_2}/\mathbf{V_1}$ le rapport des volumes (appelé le taux de compression).

1- Utiliser la loi de Laplace pour montrer les relations suivantes :

$$T_B(V_1)^{\gamma-1} = T_C(V_2)^{\gamma-1}$$

 $T_A(V_1)^{\gamma-1} = T_D(V_2)^{\gamma-1}$

2- Exprimer les quantités de chaleur Q, les travaux des forces de pression W et les variations d'énergie interne ΔU pour chacune des transformations du cycle, en fonction des températures.

Transf	W	SU	Q
As Vo. V.	W= JPdV AB = 0	DU = QAB = MCV (78-7A)	of mer (TB-7n)
Sc diatalique	W=- \ PAV BC = BC = mcv (ic-To) W = DU.	Mer DT.	Q= 0 (actial) BC.
Cos sochare Vc=Vo-te	W=- Sepalv W=>	DU = 02 . W DU = mcv (TB-Tc)	Cl = MCV (TD.TC)
DA acliabilique	W=- PdV OA - MCV-TA-TB	DU= Chon + WLA	&= acr(TA-TB) Con = 0 (ad

3- a) Exprimer le rendement de ce moteur donné par : $r = \frac{Q_{AB} + Q_{CD}}{Q_{AB}}$, en fonction des températures.

QAB = mCVBT

QCB = mCVBT

$$A = \frac{mcv(T_B - T_A) + mcv(T_B - T_C)}{mcv(T_B - T_A)} + \frac{M^2 - T_C}{T_B - T_A} = \frac{M^2 - T_C}{T_B - T_A}$$
 $Mcv(T_B - T_A)$
 $Mcv(T_B - T_A)$

- b) Retrouver une expression de ce rendement en fonction de \mathbf{a} et de γ . (On pose $\mathbf{a} = \mathbf{V_2}/\mathbf{V_1}$) Indice de calcul: $\frac{T_C T_D}{T_B T_A} = \frac{T_D}{T_A} = \frac{T_C}{T_B}$
- c) Faire le calcul numérique pour a = 9; $\gamma = 1,4$. On donne : $9^{-0,4} \approx 0,4$

$$\frac{1 - \frac{T_{C} - T_{D}}{T_{B} - T_{A}}}{T_{B} - T_{A}} = 1 - \frac{T_{A} \left(\frac{V_{i}}{V_{c}}\right)^{3 - 1}}{T_{A}} = 1 - \frac{1}{T_{A}} \left(\frac{1}{V_{c}}\right)^{3 - 1} = 1 - \frac{1}{V_{c}} \left(\frac{1}{V_{c}}\right)^{3 - 1} = 1 - \frac$$