L. Ibn Charaf Ennadhour

Devoir de contrôle n°1

A.S : 2012 - 2013

P: Horri Nizar

de mathématiques : Durée 2 h

classe: 3 sc.inf.

Exercice n°1 (4 pts)

Pour chaque question ; trois affirmations sont proposées ; une et une seule est exacte l'élève indiquera sur sa copie le numéro de la question et la lettre correspondant à la réponse choisie .Aucune justification n'est demandée.

1) La fonction $f: x \to \sqrt{x+1}$ est définie sur

$$a) \left[-1,+\infty\right[$$

b)
$$]-1, +\infty[$$

$$c)$$
 IR *

2) La fonction f définie sur IR par $f(x) = \frac{2x}{x^2 + 1}$ est :

a) paire

b) impaire

c) ni paire ni impaire

3) Soit (U_n) une suite géométrique de raison (- 2) et de premier terme U_0 = -5 alors :

a)
$$\lim_{n \to +\infty} U_n = -\infty$$

$$b) \frac{\lim}{n \to +\infty} U_n = +\infty$$

c) (U_n) n' a pas de limite

4) Cos $(\frac{25\pi}{3})$ est égal à :

a)
$$\frac{\pi}{3}$$

b)
$$\frac{-1}{2}$$

$$c) \frac{1}{2}$$
.

Exercice n°2 (6 pts)

Soit (U_n) la suite définie sur IN par : $\begin{cases} U_0 = -2 \\ U_{n+1} = \frac{2}{3} & U_n - 1 \end{cases}$

1) a) Calculer U_1 et U_2 .

b) Justifier alors que la suite (U_n) n'est ni arithmétique ni géométrique.

2) Soit la suite (V_n) définie sur IN par $V_n = U_n + 3$.

a) Montrer que la suite (V_n) est une suite géométrique de raison $\frac{2}{3}$.

b) Calculer V_n en fonction de n.

c) En déduire que pour tout entier naturel n on a : $U_n = (\frac{2}{3})^n - 3$

d) Calculer $\lim_{n \to +\infty} U_n$

5

Exercice n°3 (5 pts)

On considère les fonctions f; g et h définies respectivement par : $f(x) = \cos^2(x) - 1$; $g(x) = \cos^2(x) + \cos(x) - 2$ et $h(x) = \frac{f(x)}{g(x)}$.

- 1) calculer g(0) et $g(\frac{\pi}{2})$.
- 2) a) Montrer que $g(x) = (\cos(x) 1)(\cos(x) + 2)$.
 - b) Résoudre alors dans IR l'équation g(x) = 0.
- 3) Déterminer l'ensemble de définition D de la fonction h .

Exercice n°4 (5 pts)

On a représenté ci – dessous dans un repère orthogonal $(0, \vec{\iota}, \vec{j})$ les courbes représentatives (C) et (Γ) respectivement des fonctions f et g qui sont définies sur IR.

En utilisant le graphique :

- 1) Déterminer f(0), g(0), f(-1) et g(-1)
- 2) Déterminer suivant les valeurs de x le signe de g(x).
- 3) a) déterminer suivant les valeurs de x le signe de f(x) g(x)
 - b) En déduire les solutions de l'équation : $f(x) \ge g(x)$.

Bon travail