ГУАП

КАФЕДРА № 44

ОТЧЕТ ЗАЩИЩЕН С ОЦЕНКОЙ									
ПРЕПОДАВАТЕЛЬ									
Доц., канд. техн. наук, доц.		О.О. Жаринов							
должность, уч. степень, звание	подпись, дата	инициалы, фамилия							
ОТЧЕТ О ЛАБОРАТОРНОЙ РАБОТЕ №4									
РАБОТКА СЧЕТЧИКА С ЗАДАННЫМ ОСНОВАНИЕМ СЧЕТА НА JK- TPИГГЕРАХ В СРЕДЕ QUARTUS									
по кур	рсу: СХЕМОТЕХНИК	A							
РАБОТУ ВЫПОЛНИЛ									
СТУДЕНТ ГР. № 4141	подпись, дата	Д.Р. Рябов инициалы, фамилия							

Вариант №7

Цель работы

Разработать проект счетчика с заданным основанием счета на JKтриггерах в среде программирования Quartus, попутно изучив элементы методологии работы с не полностью определенными таблицами истинности.

M = 22 Таблица истинности:

М	Q4	Q3	Q2	Q1	Q0	J4	K4	J3	К3	J2	K2	J1	K1	JO	КО
0	0	0	0	0	0	0	X	0	X	0	X	0	X	1	x
1	0	0	0	0	1	0	X	0	X	0	X	1	X	X	1
2	0	0	0	1	0	0	X	0	X	0	X	X	0	1	x
3	0	0	0	1	1	0	X	0	X	1	X	X	1	X	1
4	0	0	1	0	0	0	X	0	X	X	0	0	X	1	x
5	0	0	1	0	1	0	X	0	X	X	0	1	X	X	1
6	0	0	1	1	0	0	X	0	X	X	0	X	0	1	x
7	0	0	1	1	1	0	X	1	X	X	1	х	1	X	1
8	0	1	0	0	0	0	X	Х	0	0	X	0	X	1	x
9	0	1	0	0	1	0	X	X	0	0	X	1	X	X	1
10	0	1	0	1	0	0	X	X	0	0	X	X	0	1	x
11	0	1	0	1	1	0	X	X	0	1	X	X	1	X	1
12	0	1	1	0	0	0	X	X	0	X	0	0	X	1	x
13	0	1	1	0	1	0	X	X	0	X	0	1	X	X	1
14	0	1	1	1	0	0	X	X	0	X	0	X	0	1	x
15	0	1	1	1	1	1	X	X	1	X	1	X	1	X	1
16	1	0	0	0	0	X	0	0	X	0	X	0	X	1	x
17	1	0	0	0	1	X	0	0	X	0	X	1	X	X	1
18	1	0	0	1	0	X	0	0	X	0	X	X	0	1	x
19	1	0	0	1	1	X	0	0	X	1	X	X	1	X	1
20	1	0	1	0	0	X	0	0	X	X	0	0	X	1	x
21	1	0	1	0	1	X	1	0	X	X	1	0	X	X	1
22	0	0	0	0	0										

Логические выражения

J0 = 1
K0 = 1
J1 = Q0 * !(Q4*Q2)
K1 = Q0
J2 = Q1 * Q0
K2 = Q2 * Q0 * (Q4 + Q1)
J3 = Q2 * Q1 * Q0
K3 = J3
J4 = Q3 * Q2 * Q1 *Q0
K4 = Q2*Q0

Схема устройства:

Временная диаграмма:

Схема подключения ПЛИС:

Top View MAX II - EPM240M100C4

	Node Name		Direction	Location	I/O Bank	VREF Group	I/O Standard	Reserved
1	<u></u>	С	Input	PIN_B2	2		3.3-V LVTTL (default)	
2		Q0	Output	PIN_A1	2		3.3-V LVTTL (default)	
3		Q1	Output	PIN_A2	2		3.3-V LVTTL (default)	
4	•	Q2	Output	PIN_A3	2		3.3-V LVTTL (default)	
5	•	Q3	Output	PIN_A4	2		3.3-V LVTTL (default)	
6	•	Q4	Output	PIN_A5	2		3.3-V LVTTL (default)	

Отчет о компиляции:

Flow Status Successful - Sat Oct 28 17:56:48 2023

Quartus II Version 9.1 Build 222 10/21/2009 SJ Web Edition

Revision Name lab4
Top-level Entity Name lab4
Family MAX II

Device EPM240M100C4

Timing Models Final Met timing requirements Yes

Total logic elements 6 / 240 (3 %)
Total pins 6 / 80 (8 %)

Total virtual pins 0

UFM blocks 0 / 1 (0 %)