19. Juni 2019

Stochastik I 11. Übung

- **Aufgabe 1** (4 Punkte) Seien (Ω, \mathcal{A}, P) ein Wahrscheinlichkeitsraum und $(X_k)_{k=1,\dots,n}$ eine Folge unabhängiger Zufallsvariablen in $L^1(P)$ mit $S_n := \sum_{k=1}^n X_k$ und $E[X_k] = 0$. Zeigen Sie:
 - (i) $E[|S_k|] \le E[|S_{k+1}|]$ für k = 1, ..., n 1.
 - (ii) Für $t \geq 4E[|S_n|]$:

$$P\left(\left\{\max_{k\leq n}|S_k|>t\right\}\right)\leq 2P\left(\left\{|S_n|>\frac{t}{2}\right\}\right).$$

(iii)
$$E\left[\max_{k \le n} |S_k|\right] \le 8E[|S_n|].$$

Aufgabe 2 (5 Punkte)

(i) Seien (Ω, \mathcal{A}, P) ein Wahrscheinlichkeitsraum und $(X_n)_{n \in \mathbb{N}}$ eine Folge unabhängiger, reellwertiger Zufallsvariablen auf (Ω, \mathcal{A}, P) mit $E[X_n] = 0$ für alle $n \in \mathbb{N}$. Zeigen Sie mit Hilfe des Lemmas von Borel Cantelli: Genügt $(X_n)_{n \in \mathbb{N}}$ dem starken Gesetz der großen Zahlen, so gilt für alle $\epsilon > 0$

$$\sum_{n=1}^{\infty} P\left(\left\{\frac{1}{n}|X_n| \ge \epsilon\right\}\right) < \infty$$

(ii) Sei die Folge $(X_n)_{n\in\mathbb{N}}$ so, dass

$$P({X_n = n}) = P({X_n = -n}) = \frac{1}{2n\log(n+1)}$$

und

$$P({X_n = 0}) = 1 - \frac{1}{n\log(n+1)}.$$

Zeigen Sie, dass $(X_n)_{n\in\mathbb{N}}$ dem schwachen Gesetz der großen Zahlen, nicht jedoch dem starken Gesetz der großen Zahlen genügt.

Aufgabe 3 (4 Punkte) Seien (Ω, \mathcal{A}, P) ein Wahrscheinlichkeitsraum und $(X_n)_{n \in \mathbb{N}}$ eine Folge unabhängiger, identisch verteilter Zufallsvariablen in $L^2(P)$ mit $\mu := E[X_1]$ und $\sigma^2 = \text{Var}[X_1] > 0$. Wir betrachten die empirische Varianz

$$\Sigma_n^2 := \frac{1}{n-1} \sum_{i=1}^n \left[(X_i - \bar{X}_n)^2 \right],$$

wobei $\bar{X}_n := \frac{1}{n} \sum_{i=1}^n X_i$. Zeigen Sie:

- (i) Für alle $n \in \mathbb{N}$ gilt $E[\Sigma_n^2] = \sigma^2$.
- (ii) $\Sigma_n^2 \to \sigma^2$ fast sicher.
- **Aufgabe 4** (4 Punkte) Seien X, Y reelle Zufallsvariablen und $(X_n)_{n \in \mathbb{N}}, (Y_n)_{n \in \mathbb{N}}$ Folgen von reellen Zufallsvariablen auf einem Wahrscheinlichkeitsraum (Ω, \mathcal{A}, P) . Zeigen Sie:
 - (i) Ist $c \in \mathbb{R}$ eine Konstante, so gilt:

$$X_n \to c$$
 in Wahrscheinlichkeit $\Leftrightarrow X_n \to c$ in Verteilung

- (ii) Aus $X_n \to X$ in Verteilung und $Y_n \to Y$ in Verteilung folgt im Allgemeinen nicht $X_n + Y_n \to X + Y$ in Verteilung.
- (iii) Gilt $X_n \to X$ in Verteilung und ist $g : \mathbb{R} \to \mathbb{R}$ stetig, so folgt $g(X_n) \to g(X)$ in Verteilung.