CHAPTER 2

Unsupervised Learning (Hierarchical clustering)

Content

- Introduction to Unsupervised Learning
- K-means clustering
- Probabilistic clustering via EM algorithm
- Hierarchical clustering
- Determine Number of Clusters with Python
- Unsupervised Learning with Python

HIERARCHICAL CLUSTERING

Hierarchical Clustering algorithms

Agglomerative (bottom-up):

- Start with each document being a single cluster.
- Eventually all documents belong to the same cluster.

Divisive (top-down):

- Start with all documents belong to the same cluster.
- Eventually each node forms a cluster on its own.
- Could be a recursive application of k-means like algorithms
- Does not require the number of clusters k in advance
- Needs a termination/readout condition

Hierarchical Agglomerative Clustering (HAC)

- Assumes a similarity function for determining the similarity of two instances.
- Starts with all instances in a separate cluster and then repeatedly joins the two clusters that are most similar until there is only one cluster.
- The history of merging forms a binary tree or hierarchy.

Dendogram: Hierarchical Clustering

 Clustering obtained by cutting the dendrogram at a desired level: each connected component forms a cluster.

Hierarchical Agglomerative Clustering (HAC)

- Starts with each doc in a separate cluster
 - then repeatedly joins the <u>closest pair</u> of clusters, until there is only one cluster.
- The history of merging forms a binary tree or hierarchy.

How to measure distance of clusters??

Closest pair of clusters

Many variants to defining closest pair of clusters

- Single-link
 - Distance of the "closest" points (single-link)
- Complete-link
 - Distance of the "furthest" points
- Average-link
 - Average distance between pairs of elements

• Single link: smallest distance between an element in one cluster and an element in the other, i.e., $d(C_i, C_j) = min\{d(x_{ip}, x_{jq})\}$

Obviously, d(C, C)=0

Single link method

- The distance between two clusters is the distance between two closest data points in the two clusters, one data point from each cluster.
- It can find arbitrarily shaped clusters, but
 - It may cause the undesirable "chain effect" by noisy points

Two natural clusters are split into two

 Complete link: largest distance between an element in one cluster and an element in the other, i.e., d(C_i, C_j) = max{d(x_{ip}, x_{jq})}

Obviously, d(C, C)=0

Complete link method

 The distance between two clusters is the distance of two furthest data points in the two clusters.

• Average: avg distance between elements in one cluster and elements in the other, i.e., $d(C_i, C_j) = avg\{d(x_{ip}, x_{jq})\}$

Obviously, d(C, C)=0

Example: Given a data set of five objects characterized by a single continuous feature, assume that there are two clusters: C1: {a, b} and C2: {c, d, e}.

	а	b	С	d	е
Feature	1	2	4	5	6

Calculate three cluster distances between C1 and C2 by

- (i) Single link
- (ii) Complete link
- (iii) Average link

Answer:

	a	b	С	d	е
Feature	1	2	4	5	6

Step 1. Calculate the distance matrix.

	а	b	С	d	е	
а	0	1	3	4	5	
b	1	0	2	3	4	
С	3	2	0	1	2	
d	4	3	1	0	1	
е	5	4	2	1	0	

Step 2. Calculate three cluster distances between C1 and C2.

	а	b	С	d	е
а	0	1	3	4	5
b	1	0	2	3	4
С	3	2	0	1	2
d	4	3	1	0	1
е	5	4	2	1	0

Single link

$$dist(C_1, C_2) = min\{d(a,c), d(a,d), d(a,e), d(b,c), d(b,d), d(b,e)\}$$
$$= min\{3, 4, 5, 2, 3, 4\} = 2$$

Complete link

$$dist(C_1, C_2) = \max\{d(a,c), d(a,d), d(a,e), d(b,c), d(b,d), d(b,e)\}$$
$$= \max\{3, 4, 5, 2, 3, 4\} = 5$$

Average dist(C₁,C₂) =
$$\frac{d(a,c) + d(a,d) + d(a,e) + d(b,c) + d(b,d) + d(b,e)}{6}$$

= $\frac{3+4+5+2+3+4}{6} = \frac{21}{6} = 3.5$

Agglomerative Algorithm

- The *Agglomerative* algorithm is carried out in three steps:
 - 1) Convert all object features into a distance matrix
 - 2) Set each object as a cluster (thus if we have Nobjects, we will have N clusters at the beginning)
 - 3) Repeat until number of cluster is one (or known # of clusters)
 - Merge two closest clusters
 - Update "distance matrix"

Example 1

- Given the following data, perform hierarchical clustering analysis with
- 1) Single linkage
- 2) Complete linkage
- 3) Average linkage

Example 1

Answer: First of all, find the distance matrix.

$$d_{AB} = \left((1 - 1.5)^2 + (1 - 1.5)^2 \right)^{\frac{1}{2}} = \sqrt{\frac{1}{2}} = 0.7071$$

$$d_{DF} = \left((3 - 3)^2 + (4 - 3.5)^2 \right)^{\frac{1}{2}} = 0.5$$
Euclidean distance

	а	b	С	d	е	f
а	0	0.71	5.66	3.61	4.24	3.20
b	0.71	0	4.95	2.92	3.54	2.50
С	5.66	4.95	0	2.24	1.41	2.5
d	3.61	2.92	2.24	0	1	0.5
е	4.24	3.54	1.41	1	0	1.12
f	3.2	2.5	2.5	0.5	1.12	0

- We have six clusters and they are a,b,c,d,e and f.
- Merge the two closest pair.
- The closest pair is (d,f).

	а	b	С	d	е	f
a	0	0.71	5.66	3.61	4.24	3.20
b	0.71	0	4.95	2.92	3.54	2.50
С	5.66	4.95	0	2.24	1.41	2.5
d	3.61	2.92	2.24	0	1	0.5
е	4.24	3.54	1.41	1	0	1.12
f	3.2	2.5	2.5	0.5	1.12	0

Highlight the first group in red

	а	b	С	d	е	f
a	0	0.71	5.66	3.61	4.24	3.20
b	0.71	0	4.95	2.92	3.54	2.50
С	5.66	4.95	0	2.24	1.41	2.5
d	3.61	2.92	2.24	0	1	0.5
е	4.24	3.54	1.41	1	0	1.12
f	3.2	2.5	2.5	0.5	1.12	0

Group	Pair	Distance
1	(d,f)	0.5

- There are C_2^5 =6 combinations.
- We compute the minimum distance among these clusters.

• We	 We pick the pair with min. distance. 									
							Pair	Distance		
							((d,f),a)	$d((d,f),a) = \min(d(d,a),d(f,a))$ = 3.2		
	a	b	С	d	е	f	((d,f),b)	$d((d,f),b) = \min(d(d,b),d(f,b))$ = 2.5		
а	0	0.71	5.66	3.61	4.24	3.20	((d,f),c)	$d((d,f),c) = \min(d(d,c),d(f,c))$		
b	0.71	0	4.95	2.92	3.54	2.50	((3.,.,,3)	= 2.24		
С	5.66	4.95	0	2.24	1.41	2.5	((d,f),e)	$d((d,f),e) = \min(d(d,e),d(f,e))$		
d	3.61	2.92	2.24	0	1	0.5		= 1		
е	4.24	3.54	1.41	1	0	1.12	(a,b)	d(a,b) = 0.71		
					U	1.12	(a,c)	d(a,c) = 5.66		
f	3.2	2.5	2.5	0.5	1.12	0	(a,e)	d(a, e) = 4.24		
							(b,c)	d(b,c) = 4.95		
							(b,e)	d(b, e) = 3.54		
							(c,e)	d(c,e) = 2.5		

- Highlight the second cluster in blue.
- We have four clusters and they are (a,b),c,(d,f) and e.

	а	b	С	d	е	f
a	0	0.71	5.66	3.61	4.24	3.20
b	0.71	0	4.95	2.92	3.54	2.50
С	5.66	4.95	0	2.24	1.41	2.5
d	3.61	2.92	2.24	0	1	0.5
е	4.24	3.54	1.41	1	0	1.12
f	3.2	2.5	2.5	0.5	1.12	0

Group	Pair	Distance		
1	(d,f)	0.5		
2	(a,b)	0.71		

- There are C_2^4 =6 combinations.
- We compute the minimum distance among these clusters.

We pick the pair with min. distance.

	· We plok the pair with him. dist <u>ance.</u>									
							Pair	Distance		
							((a,b),c)	$d((a,b),c) = \min(d(a,c),d(b,c))$		
	_	h		al		£		= 4.95		
	a	b	С	d	е	f	((a,b),(d,f))	d((a,b),(d,f))		
a	0	0.71	5.66	3.61	4.24	3.20		$= \min(d(a,d),d(a,f),d(b,d),d(b,f))$		
b	0.71	0	4.95	2.92	3.54	2.50		= 2.50		
			_				((a,b),e)	$d((a,b),e) = \min(d(a,e),d(b,e))$		
С	5.66	4.95	0	2.24	1.41	2.5		= 3.54		
d	3.61	2.92	2.24	0	1	0.5	(c,(d,f))	$d(c,(d,f)) = \min(d(c,d),d(c,f))$		
е	4.24	3.54	1.41	1	0	1.12		= 2.24		
f	3.2	2.5	2.5	0.5	1.12	0	(c,e)	d(c,e) = 1.41		
							((d,f),e)	$d((d,f),e) = \min(d(d,e),d(f,e))$		
								=1		

- Highlight the second cluster in gray.
- We have three clusters and they are (a,b),c and ((d,f),2).

	а	b	С	d	е	f
а	0	0.71	5.66	3.61	4.24	3.20
b	0.71	0	4.95	2.92	3.54	2.50
С	5.66	4.95	0	2.24	1.41	2.5
d	3.61	2.92	2.24	0	1	0.5
е	4.24	3.54	1.41	1	0	1.12
f	3.2	2.5	2.5	0.5	1.12	0

Group	Pair	Distance
1	(d,f)	0.5
2	(a,b)	0.71
3	((d,f),e)	1

- There are C_2^3 =3 combinations.
- We compute the minimum distance among these clusters.

We pick the pair with min. distance.

	а	b	С	d	е	f
а	0	0.71	5.66	3.61	4.24	3.20
b	0.71	0	4.95	2.92	3.54	2.50
С	5.66	4.95	0	2.24	1.41	2.5
d	3.61	2.92	2.24	0	1	0.5
е	4.24	3.54	1.41	1	0	1.12
f	3.2	2.5	2.5	0.5	1.12	0

Pair	Distance
((a,b),c)	$\min(d(a,c),d(b,c)) = 4.95$
((a,b),(e,(d,f)))	$d\left((a,b),\left(e,(d,f)\right)\right)$
	$= \min(d(a, e), d(a, d), d(a, f), d(b, e), d(b, d), d(b, f)) = 2.50$
(c,(e,(d,f)))	$d(c, (e, (d, f))) = \min(d(c, e), d(c, d), d(c, f)) = 1.41$

- Highlight the second cluster in pale blue.
- We have two clusters and they are (a,b) and (c,((d,f),e)).

	а	b	С	d	е	f
а	0	0.71	5.66	3.61	4.24	3.20
b	0.71	0	4.95	2.92	3.54	2.50
С	5.66	4.95	0	2.24	1.41	2.5
d	3.61	2.92	2.24			0.5
е	4.24	3.54	1.41			1.12
f	3.2	2.5	2.5		1.12	0

Group	Pair	Distance
1	(d,f)	0.5
2	(a,b)	0.71
3	((d,f),e)	1
4	(c,((d,f),e))	1.41

• There is only one combination.

	a	b	С	d	е	f
a	0	0.71	5.66	3.61	4.24	3.20
b	0.71	0	4.95	2.92	3.54	2.50
С	5.66	4.95	0	2.24	1.41	2.5
d	3.61	2.92	2.24			0.5
е	4.24	3.54	1.41			1.12
f	3.2	2.5	2.5	0.5	1.12	0

Pair	Distance
((a,b),(c,(e,(d,f))))	d((a,b),(c,(e,(d,f)))) = min(d(a,c),d(a,e),d(a,d),d(a,f),d(b,c),d(b,e),d(b,d),d(b,f)) = 2.50

We only have one cluster and it is ((a,b), (c,((d,f),e))).

	а	b	С	d	е	f
а	0	0.71	5.66	3.61	4.24	3.20
b	0.71	0	4.95	2.92	3.54	2.50
С	5.66	4.95	0	2.24	1.41	2.5
d	3.61	2.92	2.24			0.5
е	4.24	3.54	1.41			1.12
f	3.2	2.5	2.5		1.12	0

Group	Pair	Distance
1	(d,f)	0.5
2	(a,b)	0.71
3	((d,f),e)	1
4	(c,((d,f),e))	1.41
5	((a,b), (c,((d,f),e)))	2.50

Final result (meeting termination condition)

Dendrogram tree representation

- 1. In the beginning we have 6 clusters: A, B, C, D, E and F
- 2. We merge clusters D and F into cluster (D, F) at distance 0.50
- 3. We merge cluster A and cluster B into (A, B) at distance 0.71
- 4. We merge clusters E and (D, F) into ((D, F), E) at distance 1.00
- 5. We merge clusters ((D, F), E) and C into (((D, F), E), C) at distance 1.41
- 6. We merge clusters (((D, F), E), C) and (A, B) into ((((D, F), E), C), (A, B)) at distance 2.50
- 7. The last cluster contain all the objects, thus conclude the computation

Example 1

- This finished the hierarchical clustering with single linkage.
- Now, we apply the clustering algorithm with complete linkage.

Example 1 – Complete Linkage

- We have six clusters and they are a,b,c,d,e and f.
- Merge the two closest pair.
- The closest pair is (d,f).

	а	b	С	d	е	f
a	0	0.71	5.66	3.61	4.24	3.20
b	0.71	0	4.95	2.92	3.54	2.50
С	5.66	4.95	0	2.24	1.41	2.5
d	3.61	2.92	2.24	0	1	0.5
е	4.24	3.54	1.41	1	0	1.12
f	3.2	2.5	2.5	0.5	1.12	0

Example 1 – Complete Linkage

Highlight the first group in red

	а	b	С	d	е	f
а	0	0.71	5.66	3.61	4.24	3.20
b	0.71	0	4.95	2.92	3.54	2.50
С	5.66	4.95	0	2.24	1.41	2.5
d	3.61	2.92	2.24	0	1	0.5
е	4.24	3.54	1.41	1	0	1.12
f	3.2	2.5	2.5	0.5	1.12	0

Group	Pair	Distance
1	(d,f)	0.5

- There are C_2^5 =6 combinations.
- We compute the maximum distance among these clusters.

• We	• We pick the pair with min. distance.								
vvo proktiro pan with rinni. dio							Pair	Distance	
							((d,f),a)	$d((d,f),a) = \max(d(d,a),d(f,a))$ = 3.61	
	a	b	С	d	е	f	((d,f),b)	$d((d,f),b) = \max(d(d,b),d(f,b))$ = 2.92	
а	0	0.71	5.66	3.61	4.24	3.20	((d,f),c)	$d((d,f),c) = \max(d(d,c),d(f,c))$	
b	0.71	0	4.95	2.92	3.54	2.50	, , , ,	=2.5	
С	5.66	4.95	0	2.24	1.41	2.5	((d,f),e)	$d((d,f),e) = \max(d(d,e),d(f,e))$	
d	3.61	2.92	2.24	0	1	0.5	(1)	= 1.12	
е	4.24	3.54	1.41	1	0	1.12	(a,b)	d(a,b) = 0.71	
							(a,c)	d(a, c) = 5.66	
f	3.2	2.5	2.5	0.5	1.12	0	(a,e)	d(a, e) = 4.24	
							(b,c)	d(b,c) = 4.95	
							(b,e)	d(b,e) = 3.54	
							(c,e)	d(c,e) = 2.5	

Example 1 – Complete Linkage

- Highlight the second cluster in blue.
- We have four clusters and they are (a,b),c,(d,f) and e.

	а	b	С	d	е	f
a	0	0.71	5.66	3.61	4.24	3.20
b	0.71	0	4.95	2.92	3.54	2.50
С	5.66	4.95	0	2.24	1.41	2.5
d	3.61	2.92	2.24	0	1	0.5
е	4.24	3.54	1.41	1	0	1.12
f	3.2	2.5	2.5	0.5	1.12	0

Group	Pair	Distance
1	(d,f)	0.5
2	(a,b)	0.71

- There are C_2^4 =6 combinations.
- · We compute the maximum distance among these clusters.

We pick the pair with min. distance.

	• We pick the pair with min. distance.										
	-		-				Pair	Distance			
							((a,b),c)	$d((a,b),c) = \max(d(a,c),d(b,c))$			
				= 5.66							
	a	b	С	d	е	f	((a,b),(d,f))	d((a,b),(d,f))			
a	0	0.71	5.66	3.61	4.24	3.20		$= \max(d(a,d), d(a,f), d(b,d), d(b,f))$			
b	0.71	0	4.95	2.92	3.54	2.50		= 3.61			
							((a,b),e)	$d((a,b),e) = \max(d(a,e),d(b,e))$			
С	5.66	4.95	0	2.24	1.41	2.5		= 4.24			
d	3.61	2.92	2.24	0	1	0.5	(c,(d,f))	$d(c,(d,f)) = \max(d(c,d),d(c,f))$			
е	4.24	3.54	1.41	1	0	1.12		= 2.50			
f	3.2	2.5	2.5	0.5	1.12	0	(c,e)	d(c,e) = 1.41			
							((d,f),e)	$d((d,f),e) = \max(d(d,e),d(f,e))$			
								=1.12			
						l					

- Highlight the second cluster in gray.
- We have three clusters and they are (a,b),c and ((d,f),2).

	а	b	С	d	е	f
а	0	0.71	5.66	3.61	4.24	3.20
b	0.71	0	4.95	2.92	3.54	2.50
С	5.66	4.95	0	2.24	1.41	2.5
d	3.61	2.92	2.24	0	1	0.5
е	4.24	3.54	1.41	1	0	1.12
f	3.2	2.5	2.5	0.5	1.12	0

Group	Pair	Distance
1	(d,f)	0.5
2	(a,b)	0.71
3	((d,f),e)	1.12

- There are C_2^3 =3 combinations.
- We compute the minimum distance among these clusters.

We pick the pair with min. distance.

	а	b	С	d	е	f
а	0	0.71	5.66	3.61	4.24	3.20
b	0.71	0	4.95	2.92	3.54	2.50
С	5.66	4.95	0	2.24	1.41	2.5
d	3.61	2.92	2.24	0	1	0.5
е	4.24	3.54	1.41	1	0	1.12
f	3.2	2.5	2.5	0.5	1.12	0

Pair	Distance
((a,b),c)	$\max(d(a,c),d(b,c)) = 5.66$
((a,b),(e,(d,f)))	$d\left((a,b),\left(e,(d,f)\right)\right)$
	$= \max(d(a,e), d(a,d), d(a,f), d(b,e), d(b,d), d(b,f)) = 4.24$
(c,(e,(d,f)))	$d(c, (e, (d, f))) = \max(d(c, e), d(c, d), d(c, f)) = 2.5$

- Highlight the second cluster in pale blue.
- We have two clusters and they are (a,b) and (c,((d,f),e)).

	а	b	С	d	е	f
а	0	0.71	5.66	3.61	4.24	3.20
b	0.71	0	4.95	2.92	3.54	2.50
С	5.66	4.95	0	2.24	1.41	2.5
d	3.61	2.92	2.24			0.5
е	4.24	3.54	1.41			1.12
f	3.2	2.5	2.5		1.12	0

Group	Pair	Distance
1	(d,f)	0.5
2	(a,b)	0.71
3	((d,f),e)	1.12
4	(c,((d,f),e))	2.5

• There is only one combination.

	a	b	С	d	е	f
a	0	0.71	5.66	3.61	4.24	3.20
b	0.71	0	4.95	2.92	3.54	2.50
С	5.66	4.95	0	2.24	1.41	2.5
d	3.61	2.92	2.24			0.5
е	4.24	3.54	1.41			1.12
f	3.2	2.5	2.5	0.5	1.12	0

Pair	Distance
((a,b),(c,(e,(d,f))))	d((a,b),(c,(e,(d,f)))) = max(d(a,c),d(a,e),d(a,d),d(a,f),d(b,c),d(b,e),d(b,d),d(b,f)) = 5.66

We only have one cluster and it is ((a,b), (c,((d,f),e))).

	а	b	С	d	е	f
a	0	0.71	5.66	3.61	4.24	3.20
b	0.71	0	4.95	2.92	3.54	2.50
С	5.66	4.95	0	2.24	1.41	2.5
d	3.61	2.92	2.24			0.5
е	4.24	3.54	1.41			1.12
f	3.2	2.5	2.5		1.12	0

Group	Pair	Distance
1	(d,f)	0.5
2	(a,b)	0.71
3	((d,f),e)	1.12
4	(c,((d,f),e))	2.5
5	((a,b), (c,((d,f),e)))	5.66

Dendrogram tree representation

- 1. In the beginning we have 6 clusters: A, B, C, D, E and F
- 2. We merge clusters D and F into cluster (D, F) at distance 0.50
- 3. We merge cluster A and cluster B into (A, B) at distance 0.71
- 4. We merge clusters E and (D, F) into ((D, F), E) at distance 1.12
- 5. We merge clusters ((D, F), E) and C into (((D, F), E), C) at distance 2.50
- 6. We merge clusters (((D, F), E), C) and (A, B) into ((((D, F), E), C), (A, B)) at distance 5.66
- 7. The last cluster contain all the objects, thus conclude the computation

Example 1

- This finished the hierarchical clustering with single and complete linkages.
- Now, we apply the clustering algorithm with average linkage.

- We have six clusters and they are a,b,c,d,e and f.
- Merge the two closest pair.
- The closest pair is (d,f).

	а	b	С	d	е	f
a	0	0.71	5.66	3.61	4.24	3.20
b	0.71	0	4.95	2.92	3.54	2.50
С	5.66	4.95	0	2.24	1.41	2.5
d	3.61	2.92	2.24	0	1	0.5
е	4.24	3.54	1.41	1	0	1.12
f	3.2	2.5	2.5	0.5	1.12	0

Highlight the first group in red

	а	b	С	d	е	f
a	0	0.71	5.66	3.61	4.24	3.20
b	0.71	0	4.95	2.92	3.54	2.50
С	5.66	4.95	0	2.24	1.41	2.5
d	3.61	2.92	2.24	0	1	0.5
е	4.24	3.54	1.41	1	0	1.12
f	3.2	2.5	2.5	0.5	1.12	0

Group	Pair	Distance
1	(d,f)	0.5

- There are C_2^5 =6 combinations.
- We compute the average distance among these clusters.

. We nick the nair with min distance

• VV6	 we pick the pair with min. distance. 								
							Pair	Distance	
							((d,f),a)	$\frac{d(d,a) + d(f,a)}{2} = 3.4050$	
	a	b	С	d	е	f	((d,f),b)	$\frac{\left(d(d,b)+d(f,b)\right)}{2}=2.71$	
а	0	0.71	5.66	3.61	4.24	3.20	((d,f),c)		
b	0.71	0	4.95	2.92	3.54	2.50	((3,:),3)	$\frac{(d(d,c) + d(f,c))}{2} = 2.368$	
С	5.66	4.95	0	2.24	1.41	2.5	((d,f),e)	$\frac{d(d,e) + d(f,e)}{2} = 1.059$	
d	3.61	2.92	2.24	0	1	0.5		2	
d	5.01	2.52	2.21	U		0.5	(a,b)	d(a,b) = 0.71	
е	4.24	3.54	1.41	1	0	1.12	(a,c)	d(a,c) = 5.66	
f	3.2	2.5	2.5	0.5	1.12	0	(a,e)	d(a, e) = 4.24	
							(b,c)	d(b,c) = 4.95	
							(b,e)	d(b, e) = 3.54	
								d(c,e) = 2.5	

- Highlight the second cluster in blue.
- We have four clusters and they are (a,b),c,(d,f) and e.

	а	b	С	d	е	f
а	0	0.71	5.66	3.61	4.24	3.20
b	0.71	0	4.95	2.92	3.54	2.50
С	5.66	4.95	0	2.24	1.41	2.5
d	3.61	2.92	2.24	0	1	0.5
е	4.24	3.54	1.41	1	0	1.12
f	3.2	2.5	2.5	0.5	1.12	0

Group	Pair	Distance
1	(d,f)	0.5
2	(a,b)	0.71

- There are C_2^4 =6 combinations.
- We compute the average distance among these clusters.
- We pick the pair with min. distance.

							Pair	Distance
	а	b	С	d	е	f	((a,b),c)	$\frac{\left(d(a,c)+d(b,c)\right)}{2} = 5.305$
a	0	0.71	5.66	3.61	4.24	3.20	((a,b),(d,f))	$\frac{2}{\left(d(a,d)+d(a,f)+d(b,d)+d(b,f)\right)}$
b	0.71	0	4.95	2.92	3.54	2.50	((3,2),(3,1))	4
С	5.66	4.95	0	2.24	1.41	2.5	((a,b),e)	= 3.0556 $d(a, e) + d(b, e)$
d	3.61	2.92	2.24	0	1	0.5	((a,b),c)	$\frac{d(a,e) + d(b,e)}{2} = 3.89$
е	4.24	3.54	1.41	1	0	1.12	(c,(d,f))	$\frac{\left(d(c,d)+d(c,f)\right)}{2}=2.37$
f	3.2	2.5	2.5	0.5	1.12	0	(c,e)	$\frac{2}{d(c,e) = 1.41}$
							((d,f),e)	$\frac{\left(d(d,e)+d(f,e)\right)}{}=1.06$
								2

- Highlight the second cluster in gray.
- We have three clusters and they are (a,b),c and ((d,f),e).

	а	b	С	d	е	f
а	0	0.71	5.66	3.61	4.24	3.20
b	0.71	0	4.95	2.92	3.54	2.50
С	5.66	4.95	0	2.24	1.41	2.5
d	3.61	2.92	2.24	0	1	0.5
е	4.24	3.54	1.41	1	0	1.12
f	3.2	2.5	2.5	0.5	1.12	0

Group	Pair	Distance
1	(d,f)	0.5
2	(a,b)	0.71
3	((d,f),e)	1.06

- There are C_2^3 =3 combinations.
- We compute the average distance among these clusters.

We pick the pair with min. distance.

	а	b	С	d	е	Ť
a	0	0.71	5.66	3.61	4.24	3.20
b	0.71	0	4.95	2.92	3.54	2.50
С	5.66	4.95	0	2.24	1.41	2.5
d	3.61	2.92	2.24	0	1	0.5
е	4.24	3.54	1.41	1	0	1.12
f	3.2	2.5	2.5	0.5	1.12	0

Pair	Distance
((a,b),c)	$\frac{(d(a,c) + d(b,c))}{2} = 5.3050$
((a,b),(e,(d,f)))	(d(a,e)+d(a,d)+d(a,f)+d(b,e)+d(b,d)+d(b,f))

 $\frac{((a,b),(e,(d,f)))}{2} = 5.3050$ $\frac{(d(a,e) + d(a,d) + d(a,f) + d(b,e) + d(b,d) + d(b,f))}{6} = 3.335$ $\frac{(c,(e,(d,f)))}{6} = \frac{(d(c,e) + d(c,d) + d(c,f))}{6} - 2.05$

- Highlight the second cluster in pale blue.
- We have two clusters and they are (a,b) and (c,((d,f),e)).

	а	b	С	d	е	f
a	0	0.71	5.66	3.61	4.24	3.20
b	0.71	0	4.95	2.92	3.54	2.50
С	5.66	4.95	0	2.24	1.41	2.5
d	3.61	2.92	2.24			0.5
е	4.24	3.54	1.41			1.12
f	3.2	2.5	2.5		1.12	0

Group	Pair	Distance		
1	(d,f)	0.5		
2	(a,b)	0.71		
3	((d,f),e)	1.06		
4	(c,((d,f),e))	2.05		

• There is only one combination.

	a	b	С	d	е	f
a	0	0.71	5.66	3.61	4.24	3.20
b	0.71	0	4.95	2.92	3.54	2.50
С	5.66	4.95	0	2.24	1.41	2.5
d	3.61	2.92	2.24			0.5
е	4.24	3.54	1.41			1.12
f	3.2	2.5	2.5		1.12	0

Pair	Distance
((a,b),(c,(e,(d,f))))	(d(a,c) + d(a,e) + d(a,d) + d(a,f) + d(b,c) + d(b,e) + d(b,d) + d(b,f))
	8 = 3.8275

We only have one cluster and it is ((a,b), (c,((d,f),e))).

	а	b	С	d	е	f
a	0	0.71	5.66	3.61	4.24	3.20
b	0.71	0	4.95	2.92	3.54	2.50
С	5.66	4.95	0	2.24	1.41	2.5
d	3.61	2.92	2.24			0.5
е	4.24	3.54	1.41			1.12
f	3.2	2.5	2.5		1.12	0

Group	Pair	Distance
1	(d,f)	0.5
2	(a,b)	0.71
3	((d,f),e)	1.06
4	(c,((d,f),e))	2.05
5	((a,b), (c,((d,f),e)))	3.8275

Dendrogram tree representation

- 1. In the beginning we have 6 clusters: A, B, C, D, E and F
- 2. We merge clusters D and F into cluster (D, F) at distance 0.50
- 3. We merge cluster A and cluster B into (A, B) at distance 0.71
- 4. We merge clusters E and (D, F) into ((D, F), E) at distance 1.06
- 5. We merge clusters ((D, F), E) and C into (((D, F), E), C) at distance 2.05
- 6. We merge clusters (((D, F), E), C) and (A, B) into ((((D, F), E), C), (A, B)) at distance 3.8275
- 7. The last cluster contain all the objects, thus conclude the computation

Example 2

Given a data set of five objects characterised by a single continuous feature:

	a	b	С	d	е
Feature	1	2	4	5	6

Apply the agglomerative algorithm with single-link, complete-link and averaging cluster distance measures to produce three dendrogram trees, respectively.

Example 2

Answer: First of all, find the distance matrix.

	a	b	С	d	е
Feature	1	2	4	5	6

$$d(a,b) = |1-2| = 1$$

 $d(d,e) = |5-6| = 1$

	а	b	С	d	е
а	0	1	3	4	5
b	1	0	2	3	4
С	3	2	0	1	2
d	4	3	1	0	1
е	5	4	2	1	0

- Merge two closest clusters
- Obviously, the shortest distance is 1.

	а	b	С	d	е
а	0	1	3	4	5
b	1	0	2	3	4
С	3	2	0	1	2
d	4	3	1	0	1
е	5	4	2	1	0

- There are many pairs with this value.
- We can randomly pick any one of them, say $a \leftrightarrow b$.
- At the end, we may get different clustering results.

	а	b	С	d	е
а	0	1	3	4	5
b	1	0	2	3	4
С	3	2	0	1	2
d	4	3	1	0	1
е	5	4	2	1	0

Now, we have four clusters. They are (a,b), c, d and e.

	a	b	С	d	е
a	0	1	3	4	5
b	1	0	2	3	4
С	3	2	0	1	2
d	4	3	1	0	1
е	5	4	2	1	0

Group	Pair	Distance
1	(a,b)	1

- There are C_2^4 =6 combinations
- We compute the minimum distance among these clusters.
- We pick the pair with min. distance, which is (c,d) (in fact, (d,e) is also fine).

						Pair	Distance
	a	b	С	d	е	((a,b),c)	$d((a,b),c) = \min(d(a,c),d(b,c)) = 2$
a	0	1	3	4	5	((a,b),d)	$d((a,b),d) = \min(d(a,d),d(b,d)) = 3$
b	1	0	2	3	4	((a,b),e)	$d((a,b),e) = \min(d(a,e),d(b,e)) = 4$
С	3	2	0	1	2	(c,d)	d(c,d) = 1
d	4	3	1	0	1	(c,e)	d(c,e)=2
	_	4	2	4	0	(d,e)	d(d,e) = 1
е	5	4	2	I	0		

Now, we have three clusters. They are (a,b), (c,d) and e.

	а	b	С	d	е
a	0	1	3	4	5
b	1	0	2	3	4
С	3	2	0	1	2
d	4	3	1	0	1
е	5	4	2	1	0

Group	Pair	Distance
1	(a,b)	1
2	(c,d)	1

- There are C_2^3 =3 combinations
- We compute the minimum distance among these clusters.
- We pick the pair with min. distance, which is ((c,d),e).

	a	b	С	d	е
a	0	1	3	4	5
b	1	0	2	3	4
С	3	2	0	1	2
d	4	3	1	0	1
е	5	4	2	1	0

Pair	Distance
((a,b),(c,d))	d((a,b),(c,d))
	$= \min(d(a,c), d(a,d), d(b,c), d(b,d)) = 2$
((a,b),e)	$d((a,b),e) = \min(d(a,e),d(b,e)) = 4$
((c,d),e)	$d((c,d),e) = \min(d(c,e),d(d,e)) = 1$

Now, we have three clusters. They are (a,b), (c,d) and e.

	а	b	С	d	е
a	0	1	3	4	5
b	1	0	2	3	4
С	3	2	0	1	2
d	4	3	1		1
е	5	4	2	1	0

Group	Pair	Distance
1	(a,b)	1
2	(c,d)	1
3	((c,d),e)	1

- There are two clusters.
- We compute the minimum distance among these clusters.

	a	b	С	d	е
a	0	1	3	4	5
b	1	0	2	3	4
С	3	2	0	1	2
d	4	3	1		1
е	5	4	2	1	0

Pair	Distance
((a,b),(e,(c,d)))	d((a,b),(e,(c,d)))
	$= \min(d(a,e), d(a,c), d(a,d), d(b,e), d(b,c), d(b,d)) = 2$

Now, we have three clusters. They are (a,b), (c,d) and e.

	а	b	С	d	е
а	0	1	3	4	5
b	1	0	2	3	4
С	3	2	0	1	2
d	4	3	1		1
е	5	4	2	1	0

Group	Pair	Distance
1	(a,b)	1
2	(c,d)	1
3	((c,d),e)	1
4	((a,b),((c,d),e)	2

Dendrogram tree representation

- 1. In the beginning we have 5 clusters: A, B, C, D and E
- 2. We merge clusters A and B into cluster (A, B) at distance 1.0
- 3. We merge cluster C and cluster D into (C, D) at distance 1.0
- 4. We merge clusters E and (C, D) at distance 1.00
- 5. We merge clusters (E,(C,D)) and (A,B) at distance 2.0
- 6. The last cluster contain all the objects, thus conclude the computation

Example 2

- The analysis using single linkage has been finished.
- Now, we use the same technique but with complete linkage.

- Merge two closest clusters
- Obviously, the shortest distance is 1.

	а	b	С	d	е
а	0	1	3	4	5
b	1	0	2	3	4
С	3	2	0	1	2
d	4	3	1	0	1
е	5	4	2	1	0

- There are many pairs with this value.
- We can randomly pick any one of them, say $a \leftrightarrow b$.
- At the end, we may get different clustering results.

	a	b	С	d	е
а	0	1	3	4	5
b	1	0	2	3	4
С	3	2	0	1	2
d	4	3	1	0	1
е	5	4	2	1	0

Now, we have four clusters. They are (a,b), c, d and e.

	а	b	С	d	е
a	0	1	3	4	5
b	1	0	2	3	4
С	3	2	0	1	2
d	4	3	1	0	1
е	5	4	2	1	0

Group	Pair	Distance	
1	(a,b)	1	

- There are C_2^4 =6 combinations
- We compute the maximum distance among these clusters.
- We pick the pair with max. distance, which is (c,d) (in fact, (d,e) is also fine).

						Pair	Distance
	a	b	С	d	е	((a,b),c)	$d((a,b),c) = \max(d(a,c),d(b,c)) = 3$
a	0	1	3	4	5	((a,b),d)	$d((a,b),d) = \max(d(a,d),d(b,d)) = 4$
b	1	0	2	3	4	((a,b),e)	$d((a,b),e) = \max(d(a,e),d(b,e)) = 5$
С	3	2	0	1	2	(c,d)	d(c,d) = 1
d	4	3	1	0	1	(c,e)	d(c,e)=2
•	_	1	2	1	0	(d,e)	d(d,e) = 1
е	2	4		T	U		

Now, we have three clusters. They are (a,b), (c,d) and e.

	a	b	С	d	е
а	0	1	3	4	5
b	1	0	2	3	4
С	3	2	0	1	2
d	4	3	1	0	1
е	5	4	2	1	0

Group	Pair	Distance
1	(a,b)	1
2	(c,d)	1

- There are C_2^3 =3 combinations
- We compute the maximum distance among these clusters.
- We pick the pair with mx. distance, which is ((c,d),e).

	a	b	С	d	е
a	0	1	3	4	5
b	1	0	2	3	4
С	3	2	0	1	2
d	4	3	1	0	1
е	5	4	2	1	0

Distance
d((a,b),(c,d))
$= \max(d(a,c), d(a,d), d(b,c), d(b,d)) = 4$
$d((a,b),e) = \max(d(a,e),d(b,e)) = 5$
$d((c,d),e) = \max(d(c,e),d(d,e)) = 2$

Now, we have three clusters. They are (a,b), (c,d) and e.

	a	b	С	d	е
а	0	1	3	4	5
b	1	0	2	3	4
С	3	2	0	1	2
d	4	3	1		1
е	5	4	2	1	0

Group	Pair	Distance
1	(a,b)	1
2	(c,d)	1
3	((c,d),e)	2

- There are two clusters.
- We compute the minimum distance among these clusters.

	a	b	С	d	е
a	0	1	3	4	5
b	1	0	2	3	4
С	3	2	0	1	2
d	4	3	1		1
е	5	4	2	1	0

Pair	Distance
((a,b),(e,(c,d)))	d((a,b),(e,(c,d)))
	$= \max(d(a, e), d(a, c), d(a, d), d(b, e), d(b, c), d(b, d)) = 5$

Now, we have three clusters. They are (a,b), (c,d) and e.

	а	b	С	d	е
а	0	1	3	4	5
b	1	0	2	3	4
С	3	2	0	1	2
d	4	3	1	0	1
е	5	4	2	1	0

Group	Pair	Distance
1	(a,b)	1
2	(c,d)	1
3	((c,d),e)	2
4	((a,b),((c,d),e)	5

Dendrogram tree representation

- 1. In the beginning we have 5 clusters: A, B, C, D and E
- 2. We merge clusters A and B into cluster (A, B) at distance 1.0
- 3. We merge cluster C and cluster D into (C, D) at distance 1.0
- 4. We merge clusters E and (C, D) at distance 2.00
- 5. We merge clusters (E,(C,D)) and (A,B) at distance 5.0
- 6. The last cluster contain all the objects, thus conclude the computation

Example 2

- The analysis using single linkage and complete linkage have been finished.
- Now, we use the same technique but with average linkage.

- Merge two closest clusters
- Obviously, the shortest distance is 1.

	а	b	С	d	е
a	0	1	3	4	5
b	1	0	2	3	4
С	3	2	0	1	2
d	4	3	1	0	1
е	5	4	2	1	0

- There are many pairs with this value.
- We can randomly pick any one of them, say $a \leftrightarrow b$.
- At the end, we may get different clustering results.

	a	b	С	d	е
а	0	1	3	4	5
b	1	0	2	3	4
С	3	2	0	1	2
d	4	3	1	0	1
е	5	4	2	1	0

Group	Pair	Distance
1	(a,b)	1

- Now, we have four clusters and they are (a,b), c, d and e.
- There are C_2^4 =6 combinations
- We compute the average distance among these clusters.
- We pick the pair with min. distance, which is (d,e) (in fact, (c,d) is also fine).

	a	b	С	d	е
a	0	1	3	4	5
b	1	0	2	3	4
С	3	2	0	1	2
d	4	3	1	0	1
е	5	4	2	1	0

Pair	Distance
((a,b),c)	$d((a,b),c) = \frac{d(a,c) + d(b,c)}{2} = 2.5$
((a,b),d)	$d((a,b),d) = \frac{d(a,d) + d(b,d)}{2} = 3.5$
((a,b),e)	$d((a,b),e) = \frac{d(a,e) + d(b,e)}{2} = 4.5$
(c,d)	d(c,d) = 1
(c,e)	d(c,e)=2
(d,e)	d(d,e) = 1

Now, we have three clusters and they are (a,b), (c,d) and
 e.

	a	b	С	d	е
а	0	1	3	4	5
b	1	0	2	3	4
С	3	2	0	1	2
d	4	3	1	0	1
е	5	4	2	1	0

Group	Pair	Distance
1	1 (a,b)	
2	(c,d)	1

- Now, we have three clusters and they are (a,b), (c,d) and e.
- There are C_2^3 =3 combinations
- We compute the average distance among these clusters.
- We pick the pair with min. distance, which is (c,(d,e)).

	а	b	С	d	е
a	0	1	3	4	5
b	1	0	2	3	4
С	3	2	0	1	2
d	4	3	1	0	1
е	5	4	2	1	0

Pair	Distance
((a,b),(c,d))	d((a,b),(c,d))
	$= \frac{d(a,c) + d(b,c) + d(a,d) + d(b,d)}{d(a,d) + d(b,d)} = 3$
((a,b),e)	d((a,b),e) =
	$\frac{d(a,e) + d(b,e)}{a} = 4.5$
	2 - 4.5
((c,d),e)	$d((c,d),e) = \frac{d(c,e) + d(d,e)}{2} = 1.5$
	Δ

Now, we have two clusters and they are (a,b) and (c, (d,e)).

	a	b	С	d	е
а	0	1	3	4	5
b	1	0	2	3	4
С	3	2	0	1	2
d	4	3	1	0	1
е	5	4	2	1	0

Group	Pair	Distance
1	(a,b)	1
2	(c,d)	1
3	((c,d),e))	1.5

We compute the average distance among these clusters.

	a	b	С	d	е
a	0	1	3	4	5
b	1	0	2	3	4
С	3	2	0	1	2
d	4	3	1	0	1
е	5	4	2	1	0

Pair	Distance
((a,b),(c,d),e)))	d((a,b),(c,(d,e))) = 3.5

Now, we only have one cluster.

	a	b	С	d	е
a	0	1	3	4	5
b	1	0	2	3	4
С	3	2	0	1	2
d	4	3	1	0	1
е	5	4	2	1	0

Group	Pair	Distance
1	(a,b)	1
2	(c,d)	1
3	((c,d),e))	1.5
4	((a,b),(c,d),e))	3.5

Dendrogram tree representation

- 1. In the beginning we have 5 clusters: A, B, C, D and E
- 2. We merge clusters A and B into cluster (A, B) at distance 1.0
- 3. We merge cluster C and cluster D into (C, D) at distance 1.0
- 4. We merge clusters E and (C, D) at distance 1.50
- 5. We merge clusters (E,(C,D)) and (A,B) at distance 3.5
- 6. The last cluster contain all the objects, thus conclude the computation