Analyse descriptive du jeu de données Spotify Projet en Statistique descriptive

Membres

LOULIDI Younes PHAM Tuan Kiet VO Van Nghia

Date

17 Mars, 2021

Table des matières

Table des matières					
1	Stat	tistiqu	es descriptives unidimensionnelle et bidimensionnelle	1	
	1.1	La na	ture des jeux de données	1	
		1.1.1	Des jeux de données	1	
		1.1.2	Des variables statistiques	1	
		1.1.3	Charger les jeux de données dans R	2	
	1.2	Analy	ses unidimensionnelles	3	
		1.2.1	Une variable qualitative - pop.class	3	

1 Statistiques descriptives unidimensionnelle et bidimensionnelle

1.1 La nature des jeux de données

1.1.1 Des jeux de données

Ces jeux de données se composent de 10000 chansons extraites de la base de données Spotify. Chaque ligne contient 11 variables statistiques comme suit:

- year: année de sortie du morceau,
- acousticness: métrique relative interne de l'acoustique morceau,
- duration: durée du morceau en millisecondes (ms),
- energy: métrique relative interne de l'intensité, des rythmes du morceau,
- explicit: vaut 1 si le morceau contient des vulgarités, et 0 sinon,
- key: tonalité en début de morceau,
- liveness: proportion du morceau où l'on entend un public,
- loudness: mesure relative du volume du morceau (en décibels, dB)
- mode: mode du morceau (0 si la tonalité est mineure, et 1 si la tonalité est majeure),
- tempo: le tempo du morceau, en battement par minute (bpm),
- pop.class: la popularité du morceau.

1.1.2 Des variables statistiques

Ici, nous précisons la nature de chaque variable et son format dans R.

Nom de variable statistique	Type de variable	Format dans R
year	qualitative ordinale	integer
acousticness	quantitative continue	numeric
duration	quantitative continue ¹	numeric

Nom de variable statistique	Type de variable	Format dans R
energy	quantitative continue	numeric
explicit	qualitative nominale	logical
key	qualitative nominale	factor
liveness	quantitative continue	numeric
loudness	quantitative continue	numeric
mode	qualitative nominale 2	logical
tempo	quantitative continue	numeric
pop.class	qualitative nominale	factor

1.1.3 Charger les jeux de données dans R

```
LoadDataset <- function(fname) {
    colclasses <- c(
        "integer", "numeric", "numeric",
        "numeric", "integer", "factor", "numeric",
        "numeric", "integer", "numeric", "factor"
    )
    dataframe <- read.csv(fname, colClasses = colclasses)
    dataframe$explicit <- as.logical(dataframe$explicit)
    dataframe$mode <- as.logical(dataframe$mode)
    return(dataframe)
}
daf <- LoadDataset("dataset.csv")</pre>
```

¹On choisi son nature est de quantitative continue parce que.

²On pose FALSE si la tonalité est mineure et TRUE si non.

1.2 Analyses unidimensionnelles

1.2.1 Une variable qualitative - pop.class

```
summary(daf$pop.class)

## A B C D

## 940 2874 3038 3148

Il existe 4 niveaux de popularité (modalités). Commencer par A est le plus populaire et
décroissant avec B, C, D.

pop_class_table <- table(daf$pop.class)

print(label_percent()(c(pop_class_table) / sum(pop_class_table)), quote = FALSE)

## A B C D

## 9.4% 28.7% 30.4% 31.5%</pre>
```


Figure 1: Diagramme circulaire de popularité

On peut noter que dans cet ensemble de données, la plupart des chansons ne sont pas populaires (31,5%). Plus le niveau de popularité est élevé, moins les chansons peuvent atteindre ce niveau.