Assignment 4

https://github.com/jchryssanthacopoulos/quantum_information/tree/main/assignment_4

Quantum Information and Computing AA 2022–23

James Chryssanthacopoulos 29 November 2022

Quantum Harmonic Oscillator

- Goal is to solve 1D Schrodinger equation, $\hat{H} | \psi_n \rangle = E_n | \psi_n \rangle$
- Hamiltonian was discretized using finite difference. For $m=\omega=\hbar=1$, this becomes eigenvalue problem

$$\begin{pmatrix} \frac{x_1^2}{2} + \frac{1}{\Delta x^2} & -\frac{1}{2\Delta x^2} & 0 & \cdots & 0 \\ -\frac{1}{2\Delta x^2} & \frac{x_2^2}{2} + \frac{1}{\Delta x^2} & -\frac{1}{2\Delta x^2} & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & \cdots & 0 & -\frac{1}{2\Delta x^2} & \frac{x_N^2}{2} + \frac{1}{\Delta x^2} \end{pmatrix} |\psi_n\rangle = E_n |\psi_n\rangle$$

where $\{x_i\}$ are points between $[-x_{\max}, x_{\max}]$ and $\Delta x = 2x_{\max}/N$

```
| get spacing
de (brax - minh) / (spoints - 1)
| discortise menitorise
| (discortise menitorise
```

```
for N in 180 1805 5000; do
for year in 12,5 5 to 15; do
ento "Penning for N = 50; xain = -5xmax, year = 5xmax ..."
complied/eigen_schrodinger /
—exput_filename data/solution_SN\_5xmax.txt
—npoints SN
—xmin -5xmax
—xmax 5xmax
done
done
```

Eigenfunctions

- Eigenfunctions given by $\psi_n(x) = \frac{1}{\sqrt{2^n n!}} (\frac{1}{\pi})^{1/4} \exp(-x^2/2) H_n(x)$
- Good match to expected values using N = 1000 and $x_{max} = 10$, but error increases with n, particularly around edges of domain boundaries

Eigenvalues

- Eigenvalues given by $E_n = n + \frac{1}{2}$
- Good match to expected values, but again, error increases with *n*

Sensitivity Analysis

- Discretization sensitive to range of x, but not very sensitive to N (beyond a certain threshold)
- Best overall results found for $x_{max} = 10$

Self-Rating

- Correctness. Results closely match analytical solutions for $n < \mathcal{O}(100)$, but start to diverge for higher values. Loss of acurracy is due to discretizing continuous problem
- **Stability.** Code is stable, and dsteqr returns with info = 0. Results are reproducible across runs
- Accurate Discretization. Accuracy can be improved by making Δx smaller
- Flexibility. Other discretization schemes and potentials can easily be substituted in. It is harder to extend to multidimensional and time-dependent problems
- Efficiently. Hamiltonian is tridiagonal, so diagonalization is efficient (e.g., it takes \sim 80 seconds to solve problem with N=5000)