Міністерство освіти і науки України

Національний технічний університет України «Київський політехнічний інститут імені Ігоря Сікорського"

Факультет інформатики та обчислювальної техніки

Кафедра інформатики та програмної інженерії

Звіт

з лабораторної роботи №6 з дисципліни «Економіка ІТ-індустрії та підприємництво»

"КОНСТРУКТИВНА МОДЕЛЬ ВАРТОСТІ СОСОМО"

Виконала: ІП-11 Дякунчак Ілона

Перевірив: Родіонов П.Ю.

Мета: навчитися використовувати інструменти за моделлю СОСОМО для розрахунку економічних показників розробки програмного забезпечення.

ЗАВДАННЯ

- 1. Розрахувати трудомісткість розробки програмного застосунку використовуючи за базовою та проміжною моделями СОСОМО. Для виконання роботи брати проєкти, що містять більше 25000 рядків коду.
- 2. Проаналізувати програмний застосунок на основі моделі СОСОМО ІІ (попередня та детальна оцінка).
- 3. Дослідити вплив розміру програмного коду (SIZE) на трудомісткість (PM) та час розробки проєкту (TM) для різних моделей СОСОМО ІІ. 4. Отримати значення PM та TM по всім моделям для одного й того ж значення параметра SIZE, обравши номінальний (середній) рівень складності проєкту, що має високу ступінь новизни.
- 5. Обов'язково навести проведені розрахунки з поясненням вибору всіх параметрів. Якщо параметр не використовувався (або дорівнює нулю) вказати причину невикористання.

ВИКОНАННЯ

Для виконання практичної роботи я обрала проект за посиланням: https://github.com/google-pay/shop-paydemo. Застосунок написаний на JS та являє собою інтернет-магазин одягу. Розмір проекту: 26962 рядків програмного коду.

Завдання 1:

Обчислимо трудомісткість за базовою моделлю:

З огляду на складність застосунку і досвід, необхідний для розробки такого проекту, він підпадає під категорію "Semi-Detached" в моделі СОСОМО.

$$PM = ai * (SIZE)^{bi} = 3 * (26,962)^{1,12} = 120,1$$
 люд.*міс.

Де:

PM (People \times Month) – трудомісткість (люд. \times міс.),

SIZE – обсяг програмного продукту в тисячах рядків вихідного тексту (KSLOC).

Обчислимо трудомісткість за проміжною моделлю:

Вибір значень атрибутів вартості з поясненням – нижче у таблиці 1:

Таблиця 1 – Вибір значень атрибутів вартості

Атрибути вартості, CDk	Рейтинг	Причина					
Характеристики продукту							
1. Необхідна надійність ПЗ	Високий (1,15)	Забезпечення надійності транзакцій та обробки платіжних даних.					
2. Розмір БД додатка	Середній(1)	Використання стандартних баз даних для збереження даних транзакцій та клієнтів.					
3. Складність продукту	Високий (1,15)	Інтеграція з Google Pay API та функціонал кошика додають складності.					
Харак	теристики апаратного забезп	ечення					
4. Обмеження швидкодії при виконанні програми	Середній(1)	Стандартні вимоги до часу відгуку для веб-застосунку.					
5. Обмеження пам'яті	Середній(1)	Використання стандартних засобів оптимізації пам'яті.					
6. Нестійкість оточення віртуальної машини	Дуже низький (n/a)	Не потребує віртуальної машини					
7. Необхідний час відновлення	Середній(1)	Час відновлення не є критично важливим, але швидкість все ж важлива для забезпечення хорошого користувацького досвіду (наприклад, для безперервності під час транзакцій через Google Pay).					

	Характеристики персоналу								
8. Аналітичні здібності	Високий (0,86)	Потребуються високі аналітичні здібності для інтеграції платіжних систем і створення користувацького інтерфейсу. Використання поширених технологій, таких як Node.js i Firebase.							
9. Досвід розробки	Середній(1)								
10. Здібності до розробки ПЗ	Високий (0,86)	Для цього проєкту потрібна кваліфікована команда для роботи із транзакційними системами. Використання віртуальних машин не потрібне. Node. js використовується, тому потрібен досвід роботи з цією мовою програмування.							
11. Досвід використання віртуальних машин	Дуже низький (1,21)								
12. Досвід розробки на мовах програмування	Високий (0,95)								
	Характеристики проєкту								
13. Застосування методів розробки ПЗ	Високий (0,91)	Для забезпечення якості та складності проєкту потрібні формальні методи розробки.							
14. Використання інструментарію розробки ПЗ	Середній(1)	Стандартний набір інструментів, таких як IDE, GitHub.							
15. Вимоги дотримання графіку розробки	Середній(1)	Немає жорстких термінів для завершення проєкту.							

Розрахунки було здійснено за наступною формулою: $EAF = \prod_{k=1}^{15} CD_k$

$$EAF = \prod_{k=1}^{15} CD_k$$

EAF = 1,023

$$PM = EAF * a * (SIZE)^b = 1,023 * 3 * (26,962)^{1,12} = 122,87$$
 люд.*міс. Де:

EAF (Effort Adjustment Factor) – добуток обраних атрибутів вартості РМ (People × Month) – трудомісткість (люд. × міс.);

SIZE – обсяг програмного продукту в тисячах рядків вихідного тексту (KSLOC);

Завдання 2:

Попередня оцінка:

Фактори масштабу у табличному вигляді (табл. 2):

Таблиця 2 – Фактори масштабу

Чинник масштабу	Значення	Причина		
PREC (Precedentedness)	Nominal(3,72)	Команда має досвід роботи з подібними застосунками, але не на глибокому рівні.		
FLEX (Development Flexibility)	High (2,03)	Деяка гнучкість у процесі, але визначено основні цілі.		
RESL (Architecture/Risk Resolution)	Nominal(4,24)	Основні ризики відомі та проаналізовані до 75%.		
TEAM (Team Cohesion)	High (2,19)	Колектив переважно скоординований із достатньою взаємодією.		
PMAT (Process Maturity)	Low(6,24)	Процеси мають початкову зрілість (СММ рівень 1).		

Множники трудомісткості у табличному вигляді (попередня оцінка) наведено у табл. 3:

Таблиця 3 – Множники трудомісткості (попередня оцінка)

Множник трудомісткості	Значення	Причина
PERS (Personnel Capability)	Nominal (1)	Рівень кваліфікації програмістів середній.
PREX (Personnel Experience)	Low(1,22)	Невеликий досвід у застосуванні аналогічних платформ.
RCPX (Product Reliability and Complexity)	Nominal (1)	Складність програми середня, вимоги до документації помірні.
RUSE (Developed for Reusability)	Nominal (1)	Повторне використання коду планується частково.
PDIF (Platform Difficulty)	Nominal (1)	Платформа стабільна з незначними обмеженнями.
FCIL (Facilities)	High(0,87)	Використовуються інтегровані середовища.
SCED (Required Development Schedule)	Nominal (1)	Графік розробки збалансований без надлишкової напруги.

$$E = 0.91 + 0.01 * 18,42 = 1.094$$

$$EAF = 1.06$$

$$PM = EAF * A * (SIZE)^{E} = 1,06 * 2,94 * (26,962)^{1,094} = 114,5$$
 люд.*міс.

TM = SCED * C *
$$(PM_{NS})^{D+0.2(E-B)} = 1 * 3,67 * (114,5)^{0,28+0,2(1,094-0,91)} =$$

16,48

Де:

PM (People \times Month) – трудомісткість (люд. \times міс.);

TM (Time at Month) – час розробки в календарних місяцях;

SIZE – обсяг програмного продукту в тисячах рядків вихідного тексту (KSLOC);

Детальна оцінка:

Множники трудомісткості (детальна оцінка) наведено у таблиці 4:

Таблиця 4 – Множники трудомісткості (детальна оцінка)

Множник трудомісткості	Значення	Причина
Analyst Capability (ACAP)	Nominal (1,29)	Припустимо, команда має кваліфікованих аналітиків із помірним досвідом.
Applications Experience (AEXP)	High (0,88)	Проєкт демонструє досвід у розробці вебзастосунків, включаючи інтеграцію з платіжними системами, такими як Google Pay.
Programmer Capability (PCAP)	High (0,88)	Висока якість коду і використання сучасних практик свідчать про високий рівень програмістів.
Personnel Continuity (PCON)	Nominal (1,12)	Немає інформації про плинність кадрів, тому номінальне значення є безпечним припущенням.
Platform Experience (PEXP)	High (0,91)	Команда має значний досвід у роботі з вебплатформами, необхідними для роботи з Google Pay API.
Language and Tool Experience (LTEX)	High (0,91)	Проєкт реалізовано на JavaScript, що вказує на досвідченість команди у цих технологіях.
Required Software Reliability (RELY)	High (1,26)	Враховуючи, що система працює з фінансовими транзакціями, надійність є критично важливою.
Database Size (DATA)	Nominal (0,95)	База даних незначна, основні дані зберігаються у стандартних обсягах.
Software Product Complexity (CPLX)	Nominal (0,87)	Проєкт інтегрує платіжні API та кошик покупок, що додає складності.

Required Reusability (RUSE)	Nominal (0,95)	Елементи коду можуть бути використані для повторного використання в інших інтеграціях.
Documentation Match to Life Cycle Needs (DOCU)	Nominal (0,91)	Відповідна документація полегшує інтеграцію.
Execution Time Constraint (TIME)	Nominal (n/a)	Хоча продуктивність важлива, немає екстремальних обмежень на швидкість виконання.
Main Storage Constraint (STOR)	Nominal (n/a)	Немає великих вимог до пам'яті.
Platform Volatility (PVOL)	Low (n/a)	Node.js є зрілою та стабільною платформою з мінімальними ризиками змін.
Use of Software Tools (TOOL)	Nominal (1,09)	Використовуються стандартні інструменти для веб-розробки.
Multisite Development (SITE)	Nominal (1,09)	Основна команда працює як єдине ціле, без мультисайтової розробки.
Required Development Schedule (SCED)	Nominal (1,14)	Жодного екстремального тиску на строки виконання не передбачено.

$$E = 0.91 + 0.01 * 18.42 = 1.094$$

$$EAF = 1,12$$

$$PM = EAF * A * (SIZE)^E = 1,12 * 2,45 * (26,962)^{1,094} = 100,84$$
люд.*міс.

$$\mathrm{TM} = \mathrm{SCED} * \mathrm{C} * (PM_{NS})^{D+0.2(E-B)} = 1 * 3,67 * (100,84)^{0.28+0.2(1,094-0.91)} =$$

15,82

Де:

PM (People \times Month) – трудомісткість (люд. \times міс.);

TM (Time at Month) – час розробки в календарних місяцях;

SIZE – обсяг програмного продукту в тисячах рядків вихідного тексту (KSLOC);

Завдання 3:

Дослідити вплив розміру програмного коду (SIZE) на трудомісткість (PM) та час розробки проєкту (TM) для різних моделей СОСОМО II:

Оскільки досліджуваний проєкт мав трохи більше 25 000 рядків програмного коду, зробимо розрахунки для розмірів 50 000, 75 000 та 100 000:

Для цих розрахунків:

$$E = 0.91 + 0.01 * 18,42 = 1.094$$

Для попередньої оцінки: EAF = 1,06

Для детальної оцінки: EAF = 1,12

Розмір 50 000 рядків програмного коду:

Попередня оцінка:

$$PM = EAF * A * (SIZE)^{E} = 1,06 * 2,94 * (50)^{1,094} = 225,07 \text{ люд.*мic.}$$

$$TM = SCED * C * (PM_{NS})^{D+0.2(E-B)} = 1 * 3,67 * (225,07)^{0,28+0,2(1,094-0,91)} = 20,4$$

Детальна оцінка:

$$PM = EAF * A * (SIZE)^{E} = 1,12 * 2,45 * (50)^{1,094} = 198,18 \text{ люд.*мic.}$$

$$TM = SCED * C * (PM_{NS})^{D+0.2(E-B)} = 1 * 3,67 * (198,18)^{0,28+0,2(1,094-0,91)} = 19,6$$

Розмір 75 000 рядків програмного коду:

Попередня оцінка:

$$PM = EAF * A * (SIZE)^{E} = 1,06 * 2,94 * (75)^{1,094} = 350,7$$
 люд.*міс.

TM = SCED * C *
$$(PM_{NS})^{D+0.2(E-B)} = 1 * 3,67 * (350,7)^{0.28+0.2(1,094-0.91)} = 23,49$$

Детальна оцінка:

$$PM = EAF * A * (SIZE)^E = 1,12 * 2,45 * (26,962)^{1,094} = 198,18$$
люд.*міс.

TM = SCED * C *
$$(PM_{NS})^{D+0.2(E-B)} = 1 * 3,67 * (198, 18)^{0.28+0.2(1,094-0.91)} = 19,6$$

Розмір 100 000 рядків програмного коду:

Попередня оцінка:

$$PM = EAF * A * (SIZE)^{E} = 1,06 * 2,94 * (100)^{1,094} = 480,5$$
 люд.*міс.

 $TM = SCED * C * (PM_{NS})^{D+0.2(E-B)} = 1 * 3,67 * (480,5)^{0,28+0,2(1,094-0,91)} = 25,95$

Детальна оцінка:

$$PM = EAF * A * (SIZE)^{E} = 1, 12 * 2, 45 * (100)^{1,094} = 423,04 \text{ люд.*міс.}$$

$$TM = SCED * C * (PM_{NS})^{D+0.2(E-B)} = 1 * 3,67 * (423,04)^{0,28+0,2(1,094-0,91)} = 24,92$$

Отримати значення РМ та ТМ по всім моделям для одного й того ж значення параметра SIZE, обравши номінальний (середній) рівень складності проєкту, що має високу ступінь новизни.

Проміжна СОСОМО, розмір – 50 000 рядків програмного коду (рис. 1):

Product Attributes									
Required Reliability	1.15 (H)								
Database Size	1.00 (N)								
Product Complexity	1.00 (N)								
Computer Attributes									
Execution Time Constraint	1.00 (N)								
Main Storage Constraint	1.00 (N)								
Platform Volatility	1.00 (N)								
Computer Turnaround Time	1.00 (N)								
Personnel Attributes									
Analyst Capability	0.86 (H)								
Applications Experience	0.91 (H)								
Programmer Capability	0.86 (H)								
Platform Experience	0.90 (H)								
Programming Language and Tool Experience	ce 0.95 (H)								
Project Attributes									
Modern Programming Practices	1.00 (N)								
Use of Software Tools	0.91 (H)								
Required Development Schedule	1.00 (N)								
New (Values are probably wrong	g)								
Required reusability	1.05 (H)								
Documentation match to life-cycle needs	1.10 (H)								
Personnel continuity	1.00 (H)								
Multisite development	1.00 (N)								

Рис. 1. Параметри проєкту

Результат виконаних розрахунків:

	COCOMO RESULTS for lab6									
MODE	"A" variable "B" variable "C" "D" variable KLOC EFFORT, (in person-months) DURATION, (in months)							STAFFING, (recommended)		
semi- detached	ed 2.0866368903880503 1.12 2.5 0.35 50.000 166.837 14.988 11.131									
Explanation: The coefficients are set according to the project mode selected on the previous page, (as per Boehm). Note: the decimal separator is a period. The final estimates are determined in the following manner:										
effort = a*KLOC ^b , in person-months, with KLOC = lines of code, (in thousands), and:										
staffing = effort/duration										

СОСОМО II, розмір – 50 000 рядків програмного коду.

Параметри представлено на рисунку 2:

								(COCOMO II - Cons	structive C	ost Mode	el	
Software	Sizo Siz	ing Method S	ource Lines	of C	odo 🕶								
Joitware	3126 312	ing Method S	ource Lines	01 0	oue v								
	SLOC	% Design Modified	% Code Modified		6 Integration Required	Assessment and	Unde	rstanding		miliarity)-1)			
						Assimilation (0% - 8%)	(0%	- 50%)					
New	50000												
Reused		0	0										
Modified				٦ī									
C-6	Scale Drivers												
Preceden			Low	~	Architecture /	Risk Resolution	n	High	~	Process Maturity		High	~
	nent Flexibility		High	= '				High	v rocess maturity				
· ·	Cost Drivers												
Product					Personnel					Platform			
	Software Reliabili	ity	High	_	Analyst Capa	bility		High	~	Time Constraint		Nominal	~
Data Bas	se Size		Nominal	~	Programmer	Capability		High	~	Storage Constraint		Nominal	~
Product 0	Complexity		Nominal	_	Personnel Co			High	~	Platform Volatility		Nominal	~
Develope	ed for Reusability		High	~	Application E	xperience		High	~	Project			
Documen	ntation Match to Li	fecycle Needs	High	~	Platform Expe	erience		High	~	Use of Software Tools	s	High	~
					Language an	d Toolset Exper	ience	High	~	Multisite Developmen	-	Nominal	~
										Required Developme			~
Maintena	nce Off 🗸										35		
Software	Labor Rates												
Cost per F	Person-Month (Dol	lars)											
Calculat	te												

Рисунок 2 – Параметри проєкту, що містить більше 50 000 рядків програмного коду

Results

Software Development (Elaboration and Construction)

Effort = 107.8 Person-months Schedule = 15.7 Months Cost = \$0

Total Equivalent Size = 50000 SLOC Effort Adjustment Factor (EAF) = 0.58

ВИСНОВОК

У ході виконання практичної роботи було проведено дослідження трудомісткості розробки програмного продукту за допомогою моделей СОСОМО Та СОСОМО ІІ. Аналіз включав оцінку базової та проміжної моделей СОСОМО, а також детальну оцінку за СОСОМО ІІ. У процесі дослідження було визначено вплив факторів масштабу (PREC, FLEX, RESL, TEAM, PMAT) на складність та тривалість проєкту, оцінено множники трудомісткості для різних аспектів проєкту, таких як кваліфікація персоналу, досвід роботи з платформою, складність продукту та необхідна повторна використаність коду. На основі отриманих даних було встановлено, що розмір програмного коду (SIZE) є основним чинником, що визначає трудомісткість розробки (PM). Зі збільшенням SIZE трудомісткість зростає в нелінійній залежності через вплив множників і факторів масштабу. Час розробки (TM) також значно залежить від трудомісткості (PM), але ця залежність моделюється з урахуванням типу проєкту та специфіки його реалізації.

Дослідження підтвердило, що використання моделей СОСОМО ІІ ϵ ефективним підходом для планування ресурсів, оцінки вартості та тривалості розробки програмних продуктів. Отримані результати демонструють важливість обґрунтованої оцінки факторів масштабу і

множників трудомісткості для підвищення точності прогнозування та управління процесом розробки.