Introduction to Machine Learning:

Binary Classification

ECE 580 Spring 2022 Stacy Tantum, Ph.D.

Goal of Classifiers

Copyright © 2014-2022 by Stacy Tantum. All rights reserved. Not to be distributed without express written consent of the author.

Correctly classify a previously unseen data instance (with high probability)

Weight [g]	Wingspan [cm]	Webbed Feet?	Back Color	Species		
1000.1	125.0	No	Brown	Buteo jamaicensis		
3000.7	200.0	No	Gray	Sagittarius serpentarius		
4100.0	136.0	Yes	Black	Gavia immer		
3.0	11.0	No	Green	Calothorax lucifer		
570.0	75.0	No	Black	Campephilius principalis		
4.3	14.8	No	Green	??? Calothorax lucifer		
600.0	80.0	No	Black	??? Campephilius principalis		
785.0	100.0	No	Dark Brown	????		

Goal of Classifiers

Correctly classify a previously unseen data instance (with high probability)

* = class 1

★ = test data (don't know a priori if truly blue or orange)

$$egin{align*} egin{align*} A & target \ variables \ (O \ or \ 1) \end{array} \end{bmatrix} \end{bmatrix}$$

$$X = \begin{bmatrix} --- & X_{n=1}^{\mathsf{T}} & --- \\ --- & X_{n=2}^{\mathsf{T}} & --- \\ \vdots & \vdots & \vdots \\ --- & X_{n=N}^{\mathsf{T}} & --- \end{bmatrix}$$
D dimensions
(D features)

Classification can be viewed as regression with

$$t \in \{0,1\}$$
 or $t \in \{-1,+1\}$

Want majority of test data to fall in region that corresponds to the true class

Define Your Problem!

Weight [g]	Wingspan [cm]	Webbed Feet?	Back Color	Species
1000.1	125.0	No	Brown	Buteo jamaicensis
3000.7	200.0	No	Gray	Sagittarius serpentarius
4100.0	136.0	Yes	Black	Gavia immer
3.0	11.0	No	Green	Calothorax lucifer
570.0	75.0	No	Black	Campephilius principalis

Swimming birds vs. non-swimming birds?

Small birds vs. big birds?

All rights reserved. ten consent of the a

Copyright © 2014-2022 by Stacy Tantum. All Not to be distributed without express written

Colorful birds vs. drab birds?

Ivory-billed woodpecker vs. all others?

Ensure what you measure (performance) is meaningful to your goal

(Binary) Decision Statistics

Classifiers transform the set of D-dimensional features for an observation to a scalar (a decision statistic) that forms the basis for making a decision

decision statistic for an observation x_n is $\lambda_n = f(x_{n1}, x_{n2}, \dots x_{nD})$

Binary Decision Outcomes: Confusion Matrix (for a **single** threshold β)

Sensitivity (or Probability of Detection, P_D)

Sensitivity = True Positive Rate = TPR (Recall)

$$=\frac{TP}{TP+FN}$$

= $p(decide H_1 | H_1 true)$

= probability of detection (P_D)

Fall-out (or Probability of False Alarm, P_{FA})

Fall-out = False Positive Rate = FPR

$$=\frac{FP}{FP+TN}$$

- = $p(decide H_1 | H_0 true)$
- = probability of false alarm (P_{FA})

Decision H_0 H_1 H_0 Η, FN TP

Specificity (or Probability of Correct Rejection, P_{CR})

Specificity = True Negative Rate = TNR

$$=\frac{TN}{TN+FP}$$

- = $p(decide H_o | H_o true)$
- = probability of correct rejection (P_{CR})
- = 1 Fall-Out
- $= 1 P_{FA}$

2014-2022 by Stacy Tantum

Decision

Precision = Positive Predictive Value = PPV

$$= \frac{TP}{TP + FP}$$

$$= p(H_1 \text{ true } | \text{ decide } H_1)$$

Accuracy

$$Accuracy = \frac{TP + TN}{TP + FP + FN + TN}$$

= probability of correct decision (P_{CD})

Accuracy is an overall summary of performance

- Incorporates both types of "right" decisions and both types of "wrong" decisions A change in any of TN, FP, FN, TP
- changes accuracy
 - → Accuracy captures everything

Decision

$$F1 = \frac{TP}{TP + \frac{1}{2}(FP + FN)}$$

= probability of ...?

Overall summary of performance

What if TN changes? → F1 unchanged

→ F1 does not capture everything

TO6.1: Binary Classification

F1 Score vs Averaging Precision and Recall

Copyright © 2014-2022 by Stacy Tantum. Not to be distributed without express wri

F1 Score has a "stronger" trade-off between precision [$p(H_1 \text{ true}|\text{decide }H_1)$] and recall [$p(\text{decide }H_1|H_1 \text{ true})$]