МГТУ им. Н. Э. Баумана

Лабораторная работа №1

По дисциплине: Архитектура ЭВМ

По теме: Триггеры

Выполнил: Лемешев Александр ИУ7-42Б **Цель работы:** изучить схемы асинхронного RS-триггера, который является запоминающей ячейкой всех типов триггеров, синхронных RS- и D-триггеров со статическим управлением записью и DV-триггера с динамическим управлением записью.

Ход работы:

1. Исследование работы асинхронного RS-триггера с инверсными входами в статическом режиме.

Схема асинхронного RS-триггера с инверсными входами:

Схема асинхронного RS-триггера в программе multisim:

Принцип работы:

У триггера на входе 2 сигнала: R (reset) и S (set), и на выходе 2 сигнала: Q и not_Q. При замыкании ключа SET, выходной сигнал Q принимает значение 1, а сигнал not_Q 0, при любом сигнале Q_{пред}. При замыкании ключа RESET, выходной сигнал Q принимает значение 0, а сигнал not_Q 1, при любом сигнале Q_{пред}. Инверсия достигается двумя элементами U2A и U4A, которые инвертируют входное значение. Комбинация входных сигналов SET = 0 и RESET = 0 никак не влияет на выходные сигналы, поэтому такой режим работы называется "хранение". Комбинация входных сигналов SET = 1 и RESET = 1 является запрещенной, в этом случае состояние триггера считается неопределенным.

Таблица переходов:

R	S	Qn	Q _{n+1}	Режим работы
0	0	0	0	Хранение
0	0	1	1	
0	1	0	1	Установка 1
0	1	1	1	
1	0	0	0	Установка 0
1	0	1	0	
1	1	0	X	Запрещенный
1	1	1	X	

2. Исследование работы синхронного RS-триггера в статическом режиме.

Схема синхронного RS-триггера:

Схема синхронного RS-триггера в программе multisim:

Принцип работы:

У триггера на входе 3 сигнала: R (reset), S (set) и C, и на выходе 2 сигнала: Q и not_Q. Сигналы R и S влияют на триггер только при активированном сигнале C (C = 1), при C = 0 триггер находится в режиме "хранения". Комбинация входных сигналов SET = 1, RESET = 1 и C = 1 является запрещенной, в этом случае состояние триггера считается неопределенным.

Таблица переходов:

С	R	S	Qn	Q_{n+1}	Режим работы
0	*	*	Qn	Qn	Хранение
1	0	0	0	0	
1	0	0	1	1	

1	0	1	0	1	Установка 1
1	0	1	1	1	
1	1	0	0	0	Установка 0
1	1	0	1	0	
1	1	1	0	X	Запрещенный
1	1	1	1	X	_

3. Исследование работы синхронного D-триггера в статическом режиме.

Схема синхронного D-триггера:

Схема синхронного D-триггера в программе multisim:

Принцип работы:

У триггера на входе 2 сигнала: D (data) и C, и на выходе 2 сигнала: Q и not_Q. Сигнал D влияет на триггер только при активированном сигнале C (C = 1), при C = 0 триггер находится в режиме "хранения". При активном сигнале D (D = 1), выходной сигнал Q принимает значение 1, а сигнал not_Q 0. При отсутствии сигнала на D (D = 0), выходной сигнал Q принимает значение 0, а сигнал not_Q 1.

Таблица переходов:

С	D	Q _n	Q _{n+1}	Режим работы
0	*	Q _n	Q _n	Хранение
1	0	0	0	Установка 0
1	0	1	0	
1	1	0	1	Установка 1
1	1	1	1	

4. Исследование схемы синхронного D-триггера с динамическим управлением записью в статическом режиме

Схема синхронного D-триггера с динамическим управлением записью:

Схема синхронного D-триггера с динамическим управлением записью в программе multisim:

Принцип работы:

Изменение выходных сигналов Q и not_Q происходит только в момент изменения входного сигнала C с 0 на 1.

Таблица переходов:

С	D	Q _n	Q _{n+1}	Режим работы
*	*	Q _n	Q _n	Хранение

0-1	0	*	0	Установка 0
0-1	1	*	1	Установка 1
1-0	0	Q _n	Q _n	Хранение
1-0	1	Qn	Q _n	

5. Исследование схемы синхронного DV-триггера с динамическим управлением записью в динамическом режиме.

Схема синхронного DV-триггера с динамическим управлением записью в программе multisim:

Временная диаграмма:

Принцип работы:

При отсутствии сигнала на вход C (C=0) триггер работает в режиме сохранения. При C=1 и V=0 триггер сохраняет предыдущее внутреннее состояние. При C=1 и V=1 триггер принимает значение со входа D.

6. Исследование работы DV-триггера, включенного по схеме TVтриггера.

Схема синхронного DV-триггера, включенного по схеме TV-триггера, в программе multisim:

Временная диаграмма:

Принцип работы:

Асинхронный Т-триггер переходит в противоположное состояние при подаче на Т -вход единичного сигнала. Т -триггер реализует сложение по модулю 2. Синхронный Т- триггер имеет вход С и вход Т. Синхронный Т -триггер переключается в противоположное состояние сигналом С, если на счетном входе Т действует единичный сигнал.

Вывод: мной были изучены схемы: асинхронного RS-триггера, который является запоминающей ячейкой всех типов триггеров, синхронных RS- и D-триггеров со статическим управлением записью и DV-триггера с динамическим управлением записью.