1

GATE 2023 IN 29

EE23BTECH11065 - prem sagar

Question:

Let y(t)=x(4t), where x(t) is a continous-time periodic signal of 100s.the fundamental period of y(t) is (rounded off to the nearest integer) (GATE IN 29)

Solution:

Symbol	Value	Description
T	100	fundamental period of $x(t)$
T_1		fundamental period of $y(t)$
ω_0	$\frac{8\pi}{100}$	fundamental frequency of $y(t)$

TABLE 1 INPUT PARAMETERS

From Table 1 Applying Fourier series:

$$x(t) = \sum_{n = -\infty}^{\infty} c_n e^{\frac{j 2\pi n t}{100}}$$
 (1)

$$y(t) = x(4t) \tag{2}$$

$$y(t) = \sum_{n = -\infty}^{\infty} c_n e^{\frac{j 2\pi n \, (4t)}{100}}$$
 (3)

$$=\sum_{n=-\infty}^{\infty}c_ne^{\frac{j\,8\pi n\,t}{100}}\tag{4}$$

$$T_1 = \frac{2\pi}{\omega_0}$$

$$= \frac{2\pi}{\frac{8\pi}{100}}$$

$$= \frac{100}{100}$$

$$(5)$$

$$=\frac{2\pi}{\frac{8\pi}{100}}\tag{6}$$

$$=\frac{100}{4}\tag{7}$$

$$= 25 \sec \tag{8}$$