Math 111C Final

- This exam is worth 50 points.
- No collaboration or discussion with others. No search of solutions online.
- Good luck!
- 1. Let ζ_n be a primitive *n*-th root of unity and K be a subfield of $\mathbb{Q}(\zeta_n)$.
 - (a) (3 points) Show that K/\mathbb{Q} is Galois.
 - (b) (3 points) Show that $Gal(K/\mathbb{Q})$ is abelian.
- 2. Let $\alpha = \sqrt{5 + \sqrt{5}} \in \overline{\mathbb{Q}}$.
 - (a) (4 points) Find the minimal polynomial $m_{\alpha,\mathbb{Q}}(x)$.
 - (b) (4 points) Show that $\mathbb{Q}(\alpha)/\mathbb{Q}$ is Galois.
 - (c) (4 points) Show that there exists $\sigma \in \operatorname{Gal}(\mathbb{Q}(\alpha)/\mathbb{Q})$ such that $\sigma\left(\sqrt{5+\sqrt{5}}\right) = \sqrt{5-\sqrt{5}}$.
 - (d) (4 points) Show that the automorphism σ in (c) generates $Gal(\mathbb{Q}(\alpha)/\mathbb{Q})$.
- 3. Let K be the splitting field of $x^4 5x^2 + 6 \in \mathbb{Q}[x]$.
 - (a) (3 points) Show that K/\mathbb{Q} is Galois.
 - (b) (5 points) Show that $Gal(K/\mathbb{Q}) = \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$.
 - (c) (5 points) Find all the subfileds of K.
- 4. Let f(x) be a polynomial in $\mathbb{Q}[x]$ of degree n and $K \subseteq \overline{\mathbb{Q}}$ be the splitting field of f(x).
 - (a) (5 points) Show that if f(x) is irreducible in $\mathbb{Q}[x]$ and $Gal(K/\mathbb{Q})$ is abelian, then $[K:\mathbb{Q}]=n$.
 - (b) (2 points) If f(x) is not necessarily irreducible in $\mathbb{Q}[x]$ and $Gal(K/\mathbb{Q})$ is abelian, can we deduce that $[K:\mathbb{Q}] \leq n$? Justify your answer.
- 5. (5 points) Let $K \subseteq \overline{\mathbb{F}}_7$ be the splitting field of $x^3 \overline{2}$ over \mathbb{F}_{49} . Show that $Gal(K/\mathbb{F}_7) \cong \mathbb{Z}/6\mathbb{Z}$.
- 6. (3 points) Let K/\mathbb{Q} be a finite field extension with $[K:\mathbb{Q}]=n\geq 3$ and $L\subseteq \overline{\mathbb{Q}}$ be the Galois closure of K over \mathbb{Q} . Show that if $\operatorname{Gal}(L/\mathbb{Q})\cong S_n$, then $\operatorname{Aut}(K/\mathbb{Q})=\{\operatorname{id}_K\}$.