Capítulo 2

Semana 2

Ejercicio 1. Demuestre que todo subconjunto finito de \mathbb{R}^n es cerrado.

Solución. El espacio euclidiano \mathbb{R}^n es un espacio métrico, por ende es T_0, T_1, T_2, \ldots todas las Ts. La T que nos interesa es T_1 , i.e., los singletones son cerrados. Toda unión finita de cerrados es cerrada, así que, en particular, los subconjuntos finitos (uniones finitas de singletones) de \mathbb{R}^n son cerrados.

Ejercicio 2. Determine si la unión arbitraria de cerrados de \mathbb{R}^n es siempre cerrada.

Solución. Si esto fuese cierto, entonces todo subconjunto $A \subset \mathbb{R}^n$ sería cerrado, ya que A se puede expresar como la unión de los singletones contenidos en A. Pero esto implicaría que la topología de \mathbb{R}^n es discreta, lo cual no es cierto para n > 0. Por ende, la afirmación es falsa para n > 0.

Ejercicio 3. Demuestre que $F \subset \mathbb{R}^n$ es cerrado si y sólo si $\partial F \subset F$.

Solución. Por definición, F es cerrado si y sólo si F^c es abierto, si y sólo si ningún punto de F^c es adherente a $F^{cc} = F$, si y sólo si todo punto adherente a F está en F, si y sólo si $\partial F \subset F$. En el último paso, hemos utilizado el hecho de que todo punto no adherente a F^c está automáticamente en F.

Ejercicio 4. Sean X, Y subconjuntos arbitrarios de \mathbb{R}^n . Demuestre que

- a) $\overline{X \cup Y} = \overline{X} \cup \overline{Y}$
- b) $\overline{X \cap Y} \subset \overline{X} \cap \overline{Y}$ y determine si esta inclusión puede ser estricta.

Solución. Este ejercicio es dual al ejercicio 4 de la semana anterior, pues $\overline{X^c} = \operatorname{int}(X^c)$, como se demuestra en la solución del ejercicio 5.b).

a) Por De Morgan, $(X \cup Y)^c = X^c \cap Y^c$, así que

$$(\overline{X \cup Y})^c = \operatorname{int}(X^c \cap Y^c) = \operatorname{int}(X^c) \cap \operatorname{int}(Y^c) = (\overline{X})^c \cap (\overline{Y})^c = (\overline{X} \cup \overline{Y})^c$$

Tomando complementos, tenemos $\overline{X \cup Y} = \overline{X} \cup \overline{Y}$.

b) Por De Morgan, $(X \cap Y)^c = X^c \cup Y^c$, así que

$$(\overline{X \cap Y})^c = \operatorname{int}(X^c \cup Y^c) \supset \operatorname{int}(X^c) \cup \operatorname{int}(Y^c) = (\overline{X})^c \cup (\overline{Y})^c = (\overline{X} \cap \overline{Y})^c$$

Tomando complementos, la inclusión se revierte y tenemos $\overline{X \cap Y} \subset \overline{X} \cap \overline{Y}$.

Al igual que la semana pasada, la inclusión puede ser o no ser estricta:

- Si X = Y, entonces $\overline{X \cap Y} = \overline{X} = \overline{X} \cap \overline{Y}$.
- Si $X = \mathbb{Q}$ e $Y = \mathbb{R} \mathbb{Q}$, entonces $\overline{X \cap Y} = \emptyset$, pero $\overline{X} \cap \overline{Y} = \mathbb{R}$.

Ejercicio 5. Sea X un subconjunto arbitrario de \mathbb{R}^n .

- a) Demuestre que \overline{X} es el menor cerrado que contiene a X.
- b) Demuestre que $int(X)^c = \overline{X^c}$.

Solución.

- a) Sea $F \subset \mathbb{R}^n$ un subconjunto cerrado que contiene a X. Puesto que F es cerrado, todo punto adherente a F está en F. En particular, todo punto adherente a X está en F. Por ende, $\overline{X} \subset F$.
- b) Por definición, el interior de X está conformado por los puntos no adherentes a X^c , mientras que la clausura de X^c está conformado por los puntos adherentes a X^c . Por lo tanto, int $(X)^c = \overline{X^c}$.