particles are of opposite signs, and said polymer particles and said inorganic particles are electrostatically bonded to form composite particles,

wherein said polymer particles have at least one functional group selected from the group consisting of a carboxyl group, an anion of a carboxyl groups, a sulfonic acid group and an anion of a sulfonic acid group, and said inorganic particles are alumina, titania, or combinations thereof, and

wherein a plurality of said inorganic particles are attached to a surface of each of said polymer particles, and a ratio (Sp/Si) of a mean particle size of said polymer particles (Sp) and a mean particle size of said inorganic particles (Si) is from 1 to 40.

- 82. (New) The dispersion according to Claim 81, wherein said inorganic particles are alumina, and the pH of said aqueous dispersion is from 2 to 9.
- 83. (New) The dispersion according to Claim 81, wherein said inorganic particles are titania, and the pH of said aqueous dispersion is from 2 to 6.
- 84. (New) The dispersion according to Claim 81, wherein said polymer particles have at least one further functional group selected from the group consisting of an ester group, an amide group, a hydroxyl group and an ether group.
- 85. (New) The dispersion according to Claim 81, wherein a ratio (Sp/Si) of a mean particle size of said polymer particles (Sp) and a mean particle size of said inorganic particles (Si) is from 1.5 to 20.

86. (New) The dispersion according to Claim 81, wherein a ratio (Wp/Wi) of a content of said polymer particles (Wp) and a content of said inorganic particles (Wi) is from 0.05 to 1.

- 87. (New) The dispersion according to Claim 81, further comprising a surfactant, wherein a content of said surfactant is not greater than 0.15 wt%.
- 88. (New) The dispersion according to Claim 87, further comprising an oxidizing agent, a polyvalent metal ion, or a combination thereof.
 - 89. (New) The dispersion according to Claim 88, further comprising an organic acid.
- 90. (New) A dispersion comprising polymer particles, inorganic particles and water, wherein the zeta potential of said polymer particles and the zeta potential of said inorganic particles are of opposite signs, and said polymer particles and said inorganic particles are electrostatically bonded to form composite particles,

wherein said polymer particles have at least one functional group selected from the group consisting of a cation-formable nitrogen-containing group and a cation of a cation-formable nitrogen-containing group, and at least one of said inorganic particles is selected from the group consisting of silica, zirconia and titania, and

wherein a plurality of said inorganic particles are attached to a surface of each of said polymer particles, and a ratio (Sp/Si) of a mean particle size of said polymer particles (Sp) and a mean particle size of said inorganic particles (Si) is from 1 to 40.

- 91. (New) The dispersion according to Claim 90, wherein said inorganic particles are silica, and the pH of said aqueous dispersion is from 2.5 to 8.5.
- 92. (New) The dispersion according to Claim 90, wherein said inorganic particles are zirconia, and the pH of said aqueous dispersion is from 4 to 8.5.
- 93. (New) The dispersion according to Claim 90, wherein said inorganic particles are titania, and the pH of said aqueous dispersion is from 6.5 to 8.5.
- 94. (New) The dispersion according to Claim 90, wherein a ratio (Sp/Si) of a mean particle size of said polymer particles (Sp) and a mean particle size of said inorganic particles (Si) is from 1.5 to 20.
- 95. (New) The dispersion according to Claim 90, wherein a ratio (Wp/Wi) of a content of said polymer particles (Wp) and a content of said inorganic particles (Wi) is from 0.05 to 1.
- 96. (New) The dispersion according to Claim 90, further comprising a surfactant, wherein a content of said surfactant is not greater than 0.15 wt%.
- 97. (New) The dispersion according to Claim 96, further comprising an oxidizing agent, a polyvalent metal ion, or a combination thereof.
 - 98. (New) The dispersion according to Claim 97, further comprising an organic acid.

99. (New) A dispersion comprising polymer particles, inorganic particles and water, wherein the zeta potential of said polymer particles and the zeta potential of said inorganic particles are of opposite signs, said polymer particles and said inorganic particles are electrostatically bonded to form composite particles,

wherein said polymer particles have at least one functional group selected from the group consisting of a carboxyl group, an anion of a carboxyl groups, a sulfonic acid group and an anion of a sulfonic acid group, and said inorganic particles are alumina, titania, or a combination thereof, and a plurality of said inorganic particles are attached to a surface of each of said polymer particles, and

wherein a ratio (Sp/Si) of a mean particle size of said polymer particles (Sp) and a mean particle size of said inorganic particles (Si) is from 1 to 40, said composite particles are obtained after ultrasonic irradiation treatment or mechanical shear stress treatment with a homogenizer, and a mean particle size of said composite particles is not greater than 1 m.

100. (New) A dispersion comprising polymer particles, inorganic particles and water, wherein the zeta potential of said polymer particles and the zeta potential of said inorganic particles are of opposite signs, said polymer particles and said inorganic particles are electrostatically bonded to form composite particles,

wherein said polymer particles have at least one functional group selected from the group consisting of a cation-formable nitrogen-containing group and a cation of a cation-formable nitrogen-containing group, and said inorganic particles are selected from the group consisting of silica, zirconia and titania, and

wherein a plurality of said inorganic particles are attached to a surface of each of said polymer particles, and a ratio (Sp/Si) of a mean particle size of said polymer particles (Sp) and a mean particle size of said inorganic particles (Si) is from 1 to 40, said composite