Lecture 1: Bayes and Beyond

Jeff Rouder

June, 2024

All Stats Begins With Probability

- Probability in Two Parts:
 - technical part for parceling probability across things
 - the soul or meaning

The Technical Part

- X, sample space, set of all outcomes
- A, B, subset of X, event
- P(A) is probability of A, how much of X does it measure.
- Kolmogorov Axioms:
 - $P(A) \ge 0$
 - P(X) = 1
 - if $A \cap B = \emptyset$ then $P(A \cup B) = P(A) + P(B)$
- Kolmogorov Axioms describe a system of relative weights.
- Everyone agrees on probability as a relative weight system that obeys the Kolmogorov Axioms

Some Questions About Meaning?

Flip a coin:

- Is the probability of a head the property of a coin much as the coin has properties of weight, composition, and circumference? Alternatively, is probability a property of the observer? Both?
- Does the probability of a head change depending on the situation?
- Is probability subjective or objective?
- Can we talk about the probability of one-off events, say that the Ukraine war ends in 2025?

Usual, Classical, Frequentist

- Probability of heads is the proportion of heads in the long-run limit of many flips.
 - belongs to coin
 - objective fact
 - long-run limit is an abstraction, nonetheless useful

Bayesian

- Probability is the observers belief about the plausibility of events.
- Goal is to update rationally in light of data using Kolmogov's Axioms and the Law of Conditional Probability
- Probability of a head:
 - belongs to observer
 - subjective opinion
 - mutable
 - no need for long-run abstraction, works always
- Probability as wagers
 - p=.25 (1-to-3 odds)
 - I might wager a dollar if I win more than three.

Bayesian Updating

- Before The Bad Apple Catastrophe
 - A: 20%
 - B: 30%
 - C: 50%
- After The Bad-Apple Catastrophe
 - A: ?
 - B: ??
 - C: 0%

Refresher

- $Pr(A \cap B)$: joint probability.
 - the foundation
 - it all starts here
- Pr(A): Marginal Probability
- Pr(A|B): Conditional Probability

Refresher

Joint:

```
## A=0 A=1
## B=0 0.1 0.2
## B=1 0.3 0.4
```

Marginals For A:

```
## A=0 A=1
## 0.4 0.6
```

Marginals For B:

```
## B=0 B=1
## 0.3 0.7
```

Refresher

```
Joint:
## A=O A=1
## B=0 0.1 0.2
## B=1 0.3 0.4
Pr(A|B):
##
       A=0 A=1
## B=0 0.33 0.67
## B=1 0.43 0.57
```

Your Turn

What is Pr(B|A)?

• You need a 2-by-2 matrix of responses.

Ans

```
Pr(B|A):
## A=0 A=1
## B=0 0.25 0.33
## B=1 0.75 0.67
```

Puzzler

If I provided P(A|B) and P(B|A), could you compute $P(A \cap B)$?

- Yes / No ?
- Try the above example with 2-by-2. You have Pr(A|B) and Pr(B|A). Can you compute $Pr(A \cap B)$?

Law of Conditional Probability

Classic:

$$P(A|B) = \frac{P(B|A)Pr(A)}{P(B)}$$

Updating Version:

$$P(A|B) = \left[\frac{P(B|A)}{P(B)}\right]P(A)$$

Ratio Version:

$$\frac{P(A|B)}{P(A)} = \frac{P(B|A)}{P(B)}$$

Two Bayesian Orientations

- Posterior orientation:
 - What you learn in most courses
 - Closest to conventional statistics
 - Benefit of Bayesian machinery without a strong Bayesian commitment
 - Me: intellectually dangerous
 - Most of today
- Updating Orientation
 - Deep stuff
 - Controversial
 - Hard
 - Higher plane of Bayesian consciousness
 - I'll touch on it

Posterior Orientation

$$P(\theta|Y) = \frac{P(Y|\theta)P(\theta)}{P(Y)}$$

• Posterior: $P(\theta|Y)$

• Prior: $P(\theta)$

• Likelihood: $P(Y|\theta)$

• P(Y)?: marginal probability of data

uniquely Bayesian

lacksquare doesn't depend on heta

constant

Posterior Orientation

Posterior \propto Likelihood \times Prior

Multiple Parameters

Kids On Smarties Take An IQ Test?

Data: 100,104,105,124

Kids On Smarties Take An IQ Test?

$$Y_i | \mu, \sigma^2 \sim \mathsf{Normal}(\mu, \sigma^2)$$

$$\mu \sim \mathsf{Norma}(100, 5^2)$$

$$\sigma^2 \sim \mathsf{InvGamma}(1, 15^2)$$

My Prior

Likelihood

Posteiror: Multiply These, Point By Pont

Posteiror: Multiply These, Point By Pont

Marginal Posterior for μ

Marginal Posterior for σ^2

Your Turn

Code up the normal in stan or jags:

- do you get the same joint posterior?
- do you get the same marginal posteriors?

Many People

- Example: 100 people each read 10 words. Q: How fast does each person read?
- Example data at dat1.RDS
- Your Turn: Write a model to describe this case. You can typeseet in Rmarkdown/Latex or just write it on paper.

Many People, Fixed Effects

$$egin{aligned} Y_{ij} | heta_i, \delta^2 &\sim \mathsf{N}(heta_i, au^2) \ heta_i &\sim \mathsf{N}(a, b) \ au^2 &\sim \mathsf{InvGamma}\left(rac{1}{2}, rac{r^2}{2}
ight) \end{aligned}$$

- au^2 describes variance within a person across trials (trial noise)
- Settings: a = 600, $b = 400^2$, $r^2 = 200^2$
- Go code this up in JAGS/stan
- Compare to sample mean.

Going Hierarchical

$$\begin{split} Y_{ij} | \theta_i, \delta^2 &\sim \mathsf{N}(\theta_i, \tau^2) \\ \theta_i | \mu, \sigma^2 &\sim \mathsf{N}(\mu, \sigma^2) \\ \mu &\sim \mathsf{N}(a, b) \\ \delta^2 &\sim \mathsf{InvGamma}\left(\frac{1}{2}, \frac{r_w^2}{2}\right) \\ \sigma^2 &\sim \mathsf{InvGamma}\left(\frac{1}{2}, \frac{r_b^2}{2}\right) \end{split}$$

- Settings: a = 600, $b = 400^2$, $r_w^2 = r_b^2 = 200^2$
- Go code this up in JAGS/stan
- Compare to sample mean.

Bayes Estimates

Up To Now...

Bayes' Rule:

$$\pi(\theta|Y) = \frac{p(Y|\theta)\pi(\theta)}{1}$$

Critique

Problems:

- No sense of what p(Y) means
- Stress posterior rather than the process of updating.
- Strive to minimize influence of priors.
- Separation of estimation and model comparison.

Ratio Form of Bayes Rule

Solution, restate Bayes Rule as follows:

$$\frac{\pi(\theta|Y)}{\pi(\theta)} = \frac{p(Y|\theta)}{p(Y)}.$$

And study what this equation means!

For Our Example

• 7 successes in 10 trials

Left-Hand Side

Bayes Rule:

$$\frac{\pi(\theta|Y)}{\pi(\theta)} = \frac{p(Y|\theta)}{p(Y)}$$

Left-Hand Side:

$$\frac{\pi(\theta|Y)}{\pi(\theta)}$$

Right-Hand Side

Bayes Rule:

$$\frac{\pi(\theta|Y)}{\pi(\theta)} = \frac{p(Y|\theta)}{p(Y)}$$

Right-Hand Side:

$$\frac{p(Y|\theta)}{p(Y)}$$

- $p(Y|\theta)$: Conditional Predictive Accuracy
- p(Y): Marginal Predictive Accuracy

Evidence for a point is the degree to which it improves the prediction for the observed data.

- "Evidence = Prediction"
- way catchier than "Posterior is Proportional To The Likelihood Times The Prior"

Your Turn: Which is the better parameter value?

- A coin has probability either $\theta = 1/3$ or $\theta = 2/3$.
- We observe Y out of N successes.
- Q: What is the relative evidence of $\theta = 1/3$ vs. $\theta = 2/3$

Need a Hint?

Compute

$$\frac{\frac{\pi(\theta_1|Y)}{\pi(\theta_1)}}{\frac{\pi(\theta_2|Y)}{\pi(\theta_2)}}$$

- where $\theta_1 = 1/3$ and $\theta_2 = 2/3$.
- derive generally and then put in values.

Fair Coin?

We have observed 7 of 10 successes. What is the evidence for a fair coin?

General Model, Model Ma

$$Y \mid \theta \sim \mathsf{Binomial}(\theta, N),$$

 $\theta \sim \mathsf{Uniform}(0, 1).$

Fair-Coin Model, Model M_b :

$$Y \sim \text{Binomial}(.5, N)$$
.

Bayes Rule:

$$\frac{\frac{\pi(M_a|Y)}{\pi(M_a)}}{\frac{\pi(M_b|Y)}{\pi(M_b)}} = \frac{\frac{p(Y|M_a)}{p(Y)}}{\frac{p(Y|M_b)}{p(Y)}} = \frac{p(Y|M_a)}{p(Y|M_b)} = B_{ab}.$$

Fair Coin Prediction

$$Pr(Y = y) = \binom{N}{y}.5^{y}, 5^{(N-y)}$$

General Model Prediction

$$Pr(Y = y) = \int_0^1 \binom{N}{y} \theta^y, (1 - \theta)^{(N - y)} d\theta$$

Spike and Slab Priors

I have a coin in my hand. It has a true probability of heads of θ . I am going to flip it 1000 times. Guess how many heads of 1000. Let's call your guess G, let's flip it for Y heads. Your error is e=G-Y and I am going to pay you $\max(0,10000-e^2)$, so guess good. Now, to make this fair I am going to show flip the coin 1000 times twice. The first time of 1000 flips is to help you formulate your guess; the second time of 1000 flips is for the money.

- if there is 743 of 1000 initially, what is your guess?
- if there are 510 of 1000 initially, what is your guess?

Spike and Slab Priors

$$Y_0 \sim \mathsf{Binomial}(heta, 1000)$$
 $(heta \mid \eta = 0) = .5$ $(heta \mid \eta = 1) \sim \mathsf{Unif}(0, 1)$ $\eta \sim \mathsf{Bernoulli}(.5)$

Spike and Slab, Probabilities

$$BF_{01} = \frac{\Pr(\eta = 0|Y)}{\Pr(\eta = 1|Y)} = \frac{\Pr(Y|\eta = 0)}{\Pr(Y|\eta = 1)} \times \frac{\Pr(\eta = 0)}{\Pr(\eta = 1)}$$
$$= \frac{\Pr(Y|\eta = 0)}{\Pr(Y|\eta = 1)}$$
$$= 1001 \times \binom{N}{Y} \times .5^{N}$$

- $Pr(\eta = 0|Y) = BF_{01}/(BF_{01} + 1)$
- $Pr(\eta = 1|Y) = 1 Pr(\eta = 0|Y)$

Estimates, Posterior Mean

$$\begin{split} E(\theta \mid Y) = & E(\theta \mid Y, \eta = 0) \times \Pr(\eta = 0 \mid Y) + \\ & E(\theta \mid Y, \eta = 1) \times \Pr(\eta = 1 \mid Y). \\ E(\theta \mid Y) = & .5 \times \Pr(\eta = 0 \mid Y) + \\ & \frac{Y+1}{1002} \times \Pr(\eta = 1 \mid Y) \end{split}$$

JAGS spike and slab code

Spike and Slab in Modern Regression

Let Y_n be an observation, i = 1, ..., N. Here is a linear model for R covariates:

$$Y_n = \mu + X_{1n}\alpha_1 + \ldots + X_{Rn}\alpha_R + \epsilon_n$$

Suppose R is large, potentially $R\gg N$. Yet, we know, several α 's are at or near zero.

$$(lpha_r \mid \eta_r = 0) = 0$$

 $(lpha_r \mid \eta_r = 1) \sim \mathsf{Normal}(0, b)$
 $\eta_r \sim \mathsf{Bernoulli}(\pi)$
 $\pi \sim \mathsf{Beta}(c, d)$

- Potential to zero out many, many coefficients.
- VSS (variable selection search)

Adaptive Priors

Modern shrinkage is *adaptive* and, in the Bayesian case, reflects mixture priors where the mixture is over different models (or different priors, it's all the same).

- Spike and slab is a dichotomous mixture
- Lasso is a continuous mixture