	Землі»
Дата виконання:	Розрахунковий лист до лабораторної
магн	ітного поля Землі»
упа студент	

Виконання роботи

Результати вимірювань запишемо до таблиці 1.1.

2 Ознайомитись з основними поняттями земного магнетизму.

Таблиця 1.1

магнітного поля Землі.

Номер	Значення	Кути відхилення стрілки,				
досл. (i)	сили струму <i>I, мА</i>	$oldsymbol{eta}_{\it nie}$	eta_{npas}	< e > _i	$tg < \epsilon >_i$	B_{0i} , $T\pi$
1						
2						
3						
4						
5						

Запишемо до протоколу значення кількості витків N, радіусу r та похибки $\mathbf{D}r$, $\mathbf{D}I$, $\mathbf{D}\beta$.

$$r =$$
 $Dr =$

N =

$$DI = D\beta =$$

№ 12 «Визначення горизонтальної складової вектора індукції магнітного поля Землі»

Для кожного досліду визначимо $\langle \varepsilon \rangle_i$, $tg \langle \varepsilon \rangle_i$, за допомогою формули (1.3) обчислимо горизонтальну складову магнітного поля Землі B_0 . Результати занесемо до таблиці 1.1.

Обчислимо середнє значення горизонтальної складової індукції магнітного поля Землі $\langle B_0 \rangle$.

$$\langle B_0 \rangle = \left(\sum_{i=1}^5 B_{0i} \right) / 5 =$$

Обчислимо випадкову похибку виміру магнітного поля

$$DB_{0sun} = 3\sqrt{\sum_{i=1}^{5} (B_{0i} - \langle B_0 \rangle)^2 / 20} =$$

Для обчислення похибки приладів в кожному з експериментів використаємо формулу

$$DB_{0np} = \langle B_0 \rangle \sqrt{\left(\frac{DI}{I}\right)^2 + \left(\frac{Dr}{r}\right)^2 + \left(\frac{2D\beta}{\sin(2\beta)}\right)^2}.$$

Обчислимо цю похибку для кожного з експериментів.

$$\Delta B_{0np1} =$$

$$\Delta B_{0nn2} =$$

$$\Delta B_{0nn3} =$$

$$\Delta B_{0np4} =$$

$$\Delta B_{0np5} =$$

Результуючу похибку визначимо як

$$\mathbf{D}B_0 = \sqrt{\mathbf{D}B_{0sun}^2 + \mathbf{D}B_{0np \, \text{max}}^2} =$$

Горизонтальна складова магнітного поля Землі дорівнює

$$B_0 = \langle B_0 \rangle \pm DB_0 =$$

№ 12 «Визначення горизонтальної складової вектора індукції магнітного поля Землі»

висновки

Знайдено індукцію горизонтальної складової магнітного поля Землі. Вона дорівнює

$$B_0 = \langle B_0 \rangle \pm \mathbf{D}B_0 =$$