session3_clustering_demo

September 20, 2019

1 Machine Learning Demo - Depict a Phylogenetic Tree with Hierarchical clustering

Kim Hee (Graduate research assistant) Universitätsmedizin Mannheim, Mannheim (UMM)

This is prepared for Data analysis tools (Datenanalysewerkzeuge) at MIRACUM summer school 2019

1.1 How can we relate different species together?

In the decades before DNA sequencing was reliable, the scientists struggled to answer a seemingly simple question: Are giant pandas closer to bears or racoons? (Ref: https://t.ly/Ld1p8)

1.1.1 Protocol:

1. Import required libraries 2. Load RNA data (download) 3. Sequence alignment - calculate the similarities of sequence 4. Visualize the result in dendrogram (phylogenetic tree)

```
[39]: import os
from Bio import SeqIO, Phylo
from Bio.Seq import Seq
from Bio.SeqRecord import SeqRecord
from Bio.Alphabet import generic_rna, generic_protein
from Bio.Align.Applications import ClustalwCommandline
```

Biopython is a freely available tool for biological computation written in Python by an international team of developers.

1.1.2 Protocol:

1. Import required libraries 2. Load RNA data (download) 3. Sequence alignment - calculate the similarities of sequence 4. Visualize the result in dendrogram (phylogenetic tree)

```
[53]: root_dir = "data"
filename = 'rRNA'
FILE_PATH = os.path.join(root_dir, f'{filename}.fasta')
```

```
records = list(SeqIO.parse(FILE_PATH, "fasta"))
records
```

[53]: [SeqRecord(seq=Seq('ACCCAAAGCUAGCCAAGCAACAAUGACUAGUAAAACCAUUAUGAAACAUUCAA...UUU ', SingleLetterAlphabet()), id='panda', name='panda', description='panda Species_panda', dbxrefs=[]),

SeqRecord(seq=Seq('AACUAAAACUAGCCCAAACAACAAUCAAUCAAUUAAAACUACUACCACACAAUUAA...CUU ', SingleLetterAlphabet()), id='raccoon', name='raccoon', description='raccoon Species_raccoon', dbxrefs=[]),

SeqRecord(seq=Seq('GCCCAGAGCUAGCCCAGACAAUAACCAAUCAAACUACCACAGGCCAAUUAAAUA...UUU ', SingleLetterAlphabet()), id='black', name='black', description='black bear Species_black bear', dbxrefs=[])]

FASTA Format * standard text-based format in bioinformatics for representing either nucleotide/ gene sequences or amino acid/ protein sequences using one letter code * describes one/ more sequence entries * each sequence entry includes a header (starting with ">") and the actual sequence, optional comments (starting with "#")

1.1.3 Protocol:

1. Import required libraries 2. Load RNA data (download) 3. Sequence alignment - calculate the similarities of sequence 4. Visualize the result in dendrogram (phylogenetic tree)

Clustal * it is a series of widely used computer programs used in Bioinformatics for multiple sequence alignment. There have been many versions of Clustal over the development of the algorithm that are listed below. * it is a general purpose DNA or protein multiple sequence alignment program for three or more sequences.

e.g. unit edit distance (Levenshtein distance) between "kitten" and "sitting" is 3 1. kitten \rightarrow sitten (substitution of "k" by "s" at pos 1) 2. sitten \rightarrow sittin (substitution of "e" by "i" at pos 5) 3. sittin \rightarrow sitting (insertion of "g" at the end)

```
[46]: clustalw_cline = ClustalwCommandline("clustalw2", infile=FILE_PATH) stdout, stderr = clustalw_cline() print(stdout)
```

CLUSTAL 2.1 Multiple Sequence Alignments

```
Sequence format is Pearson
Sequence 1: panda 1583 bp
Sequence 2: raccoon 1587 bp
Sequence 3: black 1582 bp
Start of Pairwise alignments
```

```
Aligning...
```

```
Sequences (1:2) Aligned. Score: 86
Sequences (1:3) Aligned. Score:
                                90
Sequences (2:3) Aligned. Score: 87
Guide tree file created:
                          [data/rRNA.dnd]
There are 2 groups
Start of Multiple Alignment
Aligning...
Group 1: Sequences: 2
                            Score: 27941
Group 2: Sequences:
                     3
                            Score:26454
Alignment Score 22117
CLUSTAL-Alignment file created [data/rRNA.aln]
```

1.1.4 Protocol:

1. Import required libraries 2. Load RNA data (download) 3. Sequence alignment - calculate the similarities of sequence 4. Visualize the result in dendrogram (phylogenetic tree)