In previous chapters we saw that the transfer function for the recursive LTI filter is:

$$H(z) = rac{g(1+eta_1 z^{-1} + eta_2 z^{-2} + \cdots + eta_M z^{-M})}{1+lpha_1 z^{-1} + lpha_2 z^{-2} + \cdots + lpha_N z^{-N}}$$

We know that the polynomials in the numerator and denominator can be factored, giving the form:

$$H(z) = rac{g(1-q_1z^{-1})(1-q_2z^{-1})\dots(1-q_Mz^{-1})}{(1-p_1z^{-1})(1-p_2z^{-1})\dots(1-p_Nz^{-1})}$$

Assuming none of the terms in the numerator and denominator cancel out, poles are points where z, a complex number, is equal to any of the p_i values. Zeroes are when z is equal to the q_i values. We can think of z values lying on a 2D plane, and the H magnitude, which is a real number being the 3rd dimension that lies above the z-plane. q_i and p_i values would be points where the H magnitude is either infinitely small (zero) or large (resembling a pole).

Also note that the filter order is either M or N, or the number of poles or zeros, whichever is greater. So the order of an LTI filter is the order of its transfer function.

Graphical Computation of Amplitude Response

If we take the factored form of the transfer function and set z to e^{jwt} , we get the frequency response in factored form:

$$H(z) = rac{g(1-q_1e^{-jwt})(1-q_2e^{-jwt})\dots(1-q_me^{-jwt})}{(1-p_1e^{-jwt})(1-p_2e^{-jwt})\dots(1-p_Ne^{-jwt})}$$

The amplitude response $G(w) = |H(e^{jwt})|$ ends up being:

$$G(w) = |g| rac{|e^{jwt} - q_1| |e^{jwt} - q_2| \dots |e^{jwt} - q_M|}{|e^{jwt} - p_1| \dots |e^{jwt} - p_M|}$$

proof: https://ccrma.stanford.edu/~jos/filters/Graphical_Amplitude_Response.html

Consider that the magnitude of vector u-v is a point drawn from the tip of v to u. This leads to the following conclusion:

> The frequency response magnitude (amplitude response) at frequency w is given by the product of lengths of vectors drawn from the zeros to the point e^{jwt} divided by the product of vectors drawn from the poles to the point e^{jwt} .

Computation of Phase Response

$$egin{aligned} \Theta(\omega) & riangleq \angle g + (N-M)\omega T + \angle(e^{jwT}-q_1) + \angle(e^{jwT}-q_2) + \dots + \angle(e^{jwT}-q_M) \ & -\angle(e^{jwT}-p_1) - \angle(e^{jwT}-P_2) - \dots \angle(e^{jwT}-p_N) \end{aligned}$$

Proof: https://ccrma.stanford.edu/~jos/filters/Graphical Phase Response Calculation.html

The additional term $(N-M)\omega T$ arises when we consider a z^{N-M} term in the transfer function, with poles/zeros at z=0.

$$H(z) = g z^{N-M} rac{(z-q_1)(z-q_2)\dots(z-q_M)}{(z-p_1)(z-p_2)\dots(z-p_N)}$$

Question:

Can you write a simple function to calculate the phase response graph here? https://ccrma.stanford.edu/~jos/filters/Graphical Phase Response Calculation.html

Further reading

analytic function: https://mathworld.wolfram.com/AnalyticFunction.html
Conformal mapping: https://mathworld.wolfram.com/ConformalMapping.html