- 1. Mostre por indução que:
 - (a) $7^n 1$ é divisível por 6, para qualquer $n \in \mathbb{N}$,
 - (b) $7^{n+1} 6n 7$ é divisível por 36, para qualquer $n \in \mathbb{N}$,
 - (c) $1 + \frac{1}{2} + \frac{1}{2^2} + \frac{1}{2^3} + \dots + \frac{1}{2^n} = 2 \frac{1}{2^n}$, para qualquer $n \in \mathbb{N}$,
 - (d) $1 + 3 + 5 + \cdots + (2n 1) = n^2$, para qualquer $n \in \mathbb{N}$,
 - (e) $1^3 + 2^3 + 3^3 + \dots + n^3 = (1 + 2 + 3 + \dots + n)^2$, para qualquer $n \in \mathbb{N}$,
 - (f) $(1+h)^n \ge 1+nh$, para qualquer $n \in \mathbb{N}$ e para qualquer $h \ge 0$, real,
 - (g) $a^n b^n$ é divisível por a b, para qualquer $n \in \mathbb{N}$, dados quaisquer inteiros a, b,
 - (h) $1+r+r^2+r^3+\cdots+r^n=\frac{1-r^{n+1}}{1-r}$, para qualquer $n\in\mathbb{N}$, dado qualquer real $r\neq 1$.
- 2. Para que valores reais de x são válidas as desigualdades:

$$x^{2} - 3x + 2 < 0,$$
 $|x - 1| < |x + 1|,$ $\left| \frac{x + 1}{x} \right| < 6,$ $|1 - x| - x \ge 0$ $\left| \frac{x^{2} - x}{1 + x} \right| > x,$ $3x^{3} - 2x^{2} + 3x > 2$

3. Considere a sucessão definida por:

$$x_n = \frac{1}{n^2} + \frac{1}{(n+1)^2} + \dots + \frac{1}{(n+n)^2}$$

- (a) Calcule os termos x_1, x_2, x_3 ,
- (b) Mostre que x_n é decrescente,
- (c) Mostre que $x_n \to 0$.
- 4. Mostre que:
 - (a) $\lim \frac{4+5^{-n}}{2+n^{-2n}} = 2$,

(b)
$$\lim \left(\frac{2^{100n+3}}{5^{50n}} - \frac{n^3 - n + 6}{4n - 1 + 5n^3}\right) = -\frac{1}{5},$$

- (c) $\lim \frac{a^n}{n!} = 0$, para qualquer $a \in \mathbf{R}$,
- (d) $\lim \frac{n!}{n^n} = 0$
- 5. Mostre que a partir de certa ordem se tem $100n^2 + n + 3 < n^3 2n 1$.
- 6. Determine em R, o supremo, o ínfimo, o máximo, o mínimo, os majorantes e os minorantes (caso existam) de:
 - (a) $\{1, \sin 1, \sin 2\}$,
 - (b) $\{\frac{1}{n} : n \in \mathbf{N}\},\$
 - (c) $\left\{\frac{a^n}{n!}: n \in \mathbb{N}\right\}$ com $a \in \mathbb{R}$, tal que -2 < a < 2,
 - (d) $\{m + \frac{1}{n} : m, n \in \mathbf{N}\},\$

 - (e) $\{\frac{1}{n} + \frac{1}{m} : m, n \in \mathbf{N}\},$ (f) $\{n^{(-1)^m} : m, n \in \mathbf{N}\}.$
- 7. Mostre que se o conjunto dos termos de uma sucessão não tem máximo nem tem mínimo, então a sucessão é divergente.