Entraînement au calcul algébrique : niveau 2.

Quotients

Question 13. Simplifier:

$$A = \frac{\frac{1}{1+\frac{1}{2}}}{\frac{1}{1+\frac{1}{2}}}$$
 (on pour
a faire des calculs intermédiaires),
$$B = \frac{2+\frac{2+a}{2-a}}{2-\frac{2+a}{2-a}}$$

$$1+\frac{1}{1-\frac{1}{2}}$$

Question 14. Simplifier:

$$A = \frac{\left(\frac{1}{a} + \frac{1}{b} - \frac{x}{ab}\right)(x+a+b)}{\frac{1}{a^2} + \frac{1}{b^2} + \frac{2}{ab} - \frac{x^2}{a^2b^2}} \qquad B = \frac{2x+3}{2(2x-3)} + \frac{12x}{9-4x^2} + \frac{3-2x}{4x+6}$$

Puissances

Question 15. Écrire comme produit de puissances de nombres premiers : 7840.

Question 16. Simplifier, sans se préoccuper de l'existence :

$$A = \frac{-3\left(\frac{2}{3}\right)^2 + 8\left(\frac{7}{2}\right)^2}{5\left(\frac{2}{5}\right)^2 - 6\left(\frac{4}{3}\right)^2}$$

Question 17. Parmi les nombres suivants, lesquels peuvent s'écrire sous la forme a^n avec a et n entiers $(n \neq 1)$? Le cas échéant, déterminer a et n, avec n le plus grand possible.

$$12^3 \times 3^3$$
 $125^2 \times 3^6$ $3^3 \times 5^6$ $7^2 \times 2^3$

Développements

Question 18. 1°) Montrer que, pour a, b, c réels : $a^2(c-b) + b^2(a-c) + c^2(b-a) = (a-b)(b-c)(c-a)$. 2°) Montrer que, pour a, b, c réels : $(a+b+c)^2 + (-a+b+c)^2 + (a-b+c)^2 + (a+b-c)^2 = 4(a^2+b^2+c^2)$

Factorisations

Question 19. Factoriser les expressions suivantes :

$$1^{\circ}$$
) $A = 16(2x+7)^2 - 25(3x-7)^2$

$$\mathbf{2}^{\circ}$$
) $B = 18x^3 + 9x^2 - 2x - 1$

3°)
$$C = (4x^2 - 25)(x+2) - (x^2 - 4)(2x+5) + (5x+10)(2x+5)$$

Comparaisons sans calculatrice

Question 20. Justifier, sans calculer les fractions, que $\frac{7}{4} < \frac{9}{5}$.

Question 21. Comparer $1 + \sqrt{2}$ et $\sqrt{3}$.

Question 22. Montrer que $\sqrt{\frac{3+\sqrt{5}}{8}} = \frac{1+\sqrt{5}}{4}$.

Question 23. Calculer A où $A = \sqrt{7 - 4\sqrt{3}} - \sqrt{7 + 4\sqrt{3}}$.

Simplification de ln et exp

Question 24. Simplifier $e^{3 \ln 2}$.

Question 25. Pour quelles valeurs de x l'expression $ln(x^2)$ existe-t-elle? La simplifier.

Question 26. Simplifier $A = 2 \ln \left(\frac{3}{4}\right) - 3 \ln \left(\frac{3}{8}\right)$ et $B = \ln \left(\frac{1}{\sqrt{2}}\right)$ (obtenir des expressions n'utilisant que des logarithmes de nombres premiers).

Question 27. Déterminer le domaine de définition de l'expression $e^{x-\ln(x+1)}$ et la simplifier.