Homework #6

Muhammad Asavir

February 19, 2021

Part A: $5n^3 + 2n^2 + 3n = \Theta(n^3)$

So we need to prove that f = O(g) and $f = \Omega(g)$ in order to prove that $f = \Theta(g)$. Proof of f = O(g):

$$f(n) = 5n^3 + 2n^2 + 3n$$
$$g(n) = n^3$$

Select c = 10 and $n_0 = 1$. We will show that for any $n \ge 1$, $f(n) \le c * g(n)$.

For $n \ge 1$, We know that $n \le n^2 \le n^3$:

 $f(n) = 5n^3 + 2n^2 + 3n \le f(n) = 5n^3 + 2n^3 + 3n^3$

 $f(n) = 5n^3 + 2n^3 + 3n^3 \le f(n) = 10n^3 = 10 * g(n)$

Then if we merge the inequalities we get that:

 $f(n) = 5n^3 + 2n^2 + 3n \le 10n^3 = 10 * g(n)$

Therefore we have proof that: $f \leq 10 * g(n)$ and as such f = O(g).

Proof of $f = \Omega(g)$:

$$f(n) = 5n^3 + 2n^2 + 3n$$
$$g(n) = n^3$$

Select c = 5 and $n_0 = 1$. We will show that for any $n \ge 1$, $f(n) \ge c * g(n)$.

For $n \ge 1$, We know that $n \ge 1, 2n^2 + 3n \ge 0$:

If we add $5n^3$ to both sides we get that:

 $5n^3 + 2n^2 + 3n \ge 5n^3 = 5n^3 + 2n^2 + 3n \ge 5 * g(n).$

Therefore we have proof that: $f \ge 5 * g(n)$ and as such $f = \Omega(g)$.

Since we proved both f = O(g) and $f = \Omega(g)$, we have proved that $f = \Theta(g)$.

Part B: $\sqrt{7n^2 + 2n - 8} = \Theta(n)$

So we need to prove that f = O(g) and $f = \Omega(g)$ in order to prove that $f = \Theta(g)$. Proof of f = O(g):

$$f(n)\sqrt{7n^2 + 2n - 8}$$

Select c = 10 and $n_0 = 1$. We will show that for any $n \ge 1$, $f(n) \le c * g(n)$.

If we have f(n) as above then we know that the following is true:

$$7n^2 + 2n - 8 \le 7n^2 + 2n^2 = 7n^2 + 2n - 8 \le 9n^2$$

Since square root is an increasing function, we can take square root of both sides, in order to get our f(n)

We can then take our c * g(n) as $\sqrt{9n^2} = 3n$.

Since we already showed that $7n^2 + 2n - 8 \le 9n^2$ it follows that $\sqrt{7n^2 + 2n - 8} \le 3n$.

Which means that $f(n) \leq 3 * n$.

Therefore we have proof of f = O(g).

Proof of $f = \Omega(g)$:

$$f(n) = \sqrt{7n^2 + 2n - 8}$$
$$g(n) = \sqrt{7n^2}$$

Select c=2 and $n_0=4$. We will show that for any $n\geq 4$, $f(n)\geq c*g(n)$.

We know that since f(n) has to be greater than g(n) then we can take out terms in order to guarantee that.

So if $f(n) = \sqrt{7n^2 + 2n - 8}$ then we know that $7n^2 \ge 7n^2$ and $2n \ge 2n$ and $0 \ge -8$.

Using that we can create $g(n) = \sqrt{7n^2}$.

Since 2n - 8 > 0 therefore n > 4.

Since we want the bound to be less than $\sqrt{7}$ so we round down to c=2.

Therefore we have proof that $f = \Omega(q)$.

Since we proved both f = O(g) and $f = \Omega(g)$, we have proved that $f = \Theta(g)$.