Categorical Plot Types

INTERMEDIATE DATA VISUALIZATION WITH SEABORN

Chris Moffitt
Instructor

Categorical Data

- Data which takes on a limited and fixed number of values
- Normally combined with numeric data
- Examples include:
 - Geography (country, state, region)
 - Gender
 - Ethnicity
 - Blood type
 - Eye color

Plot types - show each observation

Plot types - abstract representations

Plot types - statistical estimates

Plots of each observation - stripplot

Plots of each observation - swarmplot

Abstract representations - boxplot

Abstract representation - violinplot

Abstract representation - boxenplot

Statistical estimates - barplot

Statistical estimates - pointplot

Statistical estimates - countplot

sns.countplot(data=df, y="DRG_Code", hue="Region")

Let's practice!

INTERMEDIATE DATA VISUALIZATION WITH SEABORN

Regression Plots

INTERMEDIATE DATA VISUALIZATION WITH SEABORN

Chris Moffitt
Instructor

Bicycle Dataset

- Aggregated bicycle sharing data in Washington DC
- Data includes:
 - Rental amounts
 - Weather information
 - Calendar information
- Can we predict rental amounts?

Plotting with regplot()

Evaluating regression with residplot()

- A residual plot is useful for evaluating the fit of a model
- Seaborn supports through residplot function

```
sns.residplot(data=df, x='temp', y='total_rentals')
```


Polynomial regression

• Seaborn supports polynomial regression using the order parameter

residplot with polynomial regression

Categorical values

Estimators

• In some cases, an x_estimator can be useful for highlighting trends

Binning the data

- x_bins can be used to divide the data into discrete bins
- The regression line is still fit against all the data

Let's practice!

INTERMEDIATE DATA VISUALIZATION WITH SEABORN

Matrix Plots

INTERMEDIATE DATA VISUALIZATION WITH SEABORN

Chris Moffitt
Instructor

Getting data in the right format

- Seaborn's heatmap() function requires data to be in a grid format
- pandas crosstab() is frequently used to manipulate the data

```
pd.crosstab(df["mnth"], df["weekday"],
values=df["total_rentals"],aggfunc="mean").round(0)
```

weekday	0	1	2	3	4	5	6
mnth							
1	1816.0	1927.0	2568.0	2139.0	2513.0	2446.0	1957.0
2	2248.0	2604.0	2824.0	2813.0	2878.0	2933.0	2266.0
3	3301.0	3546.0	3574.0	3670.0	3817.0	3926.0	3939.0
4	4417.0	4516.0	4556.0	4331.0	4764.0	4387.0	4446.0
5	5320.0	4512.0	5025.0	5119.0	5893.0	5751.0	5978.0
6	5940.0	5478.0	5681.0	5701.0	5622.0	5616.0	6344.0
7	5298.0	5792.0	5844.0	5814.0	5624.0	5406.0	5232.0
8	4703.0	5518.0	5930.0	6077.0	6038.0	5958.0	5224.0
9	6160.0	5637.0	5184.0	5668.0	5486.0	5747.0	6394.0
10	4735.0	4632.0	5065.0	5505.0	5537.0	5623.0	5445.0
11	4126.0	4658.0	4040.0	4136.0	3994.0	4524.0	4288.0
12	2740.0	3498.0	3713.0	3270.0	3711.0	3742.0	3195.0

Build a heatmap

Customize a heatmap

Centering a heatmap

Seaborn support centering the heatmap colors on a specific value

Plotting a correlation matrix

- Pandas corr function calculates correlations between columns in a dataframe
- The output can be converted to a heatmap with seaborn

```
cols = ['total_rentals', 'temp', 'casual', 'hum', 'windspeed']
sns.heatmap(df[cols].corr(), cmap='YlGnBu')
```


Let's practice!

INTERMEDIATE DATA VISUALIZATION WITH SEABORN

