V802

Fouriersynthese

David Venker Nico Guth david.venker@udo.edu nico.guth@udo.edu

Durchführung: 12.11.2019 Abgabe: 19.11.2019

TU Dortmund – Fakultät Physik

Inhaltsverzeichnis

1	Zielsetzung	3
2	Theorie	3
3	Fouriersynthese von $f(x) = sin(x) $	4
4	Fouriersynthese von $f(x) = x$	6

1 Zielsetzung

Ziel dieses Versuchs ist es jeweils die Fourierreihen für $f(x) = |\sin(x)|$ und f(x) = x aufzustellen. Und jeweils mit 18 Koeffizienten einen Plot auf der Webseite https://www.j-berkemeier.de/Fouriersynthese.html zu erstellen.

2 Theorie

Jede periodische Funktion lässt sich mit einer Fouriersynthese in einer Reihe von $\sin(x)$ und $\cos(x)$ darstellen. Die allgemeine Darstellung ist dann

$$f(t) = \sum_{k=0}^{\infty} \left(A_k \cos\left(\omega_k t\right) + B_k \sin\left(\omega_k t\right) \right). \tag{1}$$

Wobei $\omega_k = \frac{2\pi k}{T}$ ist und die Koeffizienten A_k und B_k mit

$$A_k = \frac{2}{T} \int_{-\frac{T}{2}}^{\frac{T}{2}} f(t) \cos(\omega_k t) dt \qquad A_0 = \frac{1}{T} \int f(t) dt \qquad (2)$$

$$B_{k} = \frac{2}{T} \int_{-\frac{T}{2}}^{\frac{T}{2}} f(t) \sin(\omega_{k} t) dt \qquad B_{0} = 0$$
 (3)

berechnet werden. Wobei T die Periodendauer der Funktion f(x) ist. [1]

3 Fouriersynthese von f(x) = |sin(x)|

Nun lassen sich mit den in der Theorie genannten Formeln die Fourier-Reihe für f(x)=|sin(x)| mit $T=\pi$ und $\omega_k=2k$ berechnen. Mit Gleichung 2 lassen sich die Koeffizienten A_k wie folgt berechnen:

$$\begin{split} A_0 &= \frac{1}{\pi} \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} |\sin(t)| \mathrm{d}t \\ &= \frac{1}{\pi} \int_{-\frac{\pi}{2}}^{0} -\sin t \mathrm{d}t + \frac{1}{\pi} \int_{0}^{\frac{\pi}{2}} \sin(t) \mathrm{d}t \\ &= \frac{2}{\pi} \\ A_k &= \frac{2}{\pi} \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} |\sin(t)| \cos(\omega_k t) \mathrm{d}t \\ &= \frac{2}{\pi} \int_{-\frac{\pi}{2}}^{0} (-\sin(t)) \cos(\omega_k t) \mathrm{d}t + \frac{2}{\pi} \int_{0}^{\frac{\pi}{2}} \sin(t) \cos(\omega_k t) \mathrm{d}t \\ &= -\frac{4}{\pi} \cdot \frac{1}{4k^2 - 1} \end{split}$$

Und die Koeffizienten B_k wie folgt berechnen:

$$\begin{split} B_0 &= 0 \\ B_k &= \frac{2}{\pi} \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} |\sin(t)| \sin(\omega_k t) \mathrm{d}t \\ &= \frac{2}{\pi} \int_{-\frac{\pi}{2}}^{0} (-\sin(t)) \sin(\omega_k t) \mathrm{d}t + \frac{2}{\pi} \int_{0}^{\frac{\pi}{2}} \sin(t) \sin(\omega_k t) \mathrm{d}t \\ &= 0 \end{split}$$

Damit ergeben sich folgende 18 Koeffizienten für A_k

Tabelle 1: Berechnete Koeffizienten für $f(x) = |\sin(x)|$

k	A_k
0	0.6366
1	-0.4244
2	-0.0849
3	-0.0364
4	-0.0202
5	-0.0129
6	-0.0089
7	-0.0065
8	-0.0050
9	-0.0039
10	-0.0032
11	-0.0026
12	-0.0022
13	-0.0019
14	-0.0016
15	-0.0014
16	-0.0012
17	-0.0011

Abbildung 1: Screenshot des Plots für in Tabelle 1 genannte Koeffizienten von der Webseite https://www.j-berkemeier.de/Fouriersynthese.html wobei sich die Phase von 90° ergibt, da $B_k=0$ ist.

4 Fouriersynthese von f(x) = x

Für die Fourier-Reihe der Funktion f(x)=x, $-\pi < x < \pi$ berechnen sich mit $T=2\pi$ und $\omega_k=k$ nach Gleichung 2 die A_k wie folgt:

$$\begin{split} A_0 &= \frac{1}{2\pi} \int_{-\pi}^{\pi} t \mathrm{d}t \\ &= 0 \\ A_k &= \frac{1}{\pi} \int_{-\pi}^{\pi} t \cos(\omega_k t) \mathrm{d}t \\ &= 0 \end{split}$$

Und die Koeffizienten ${\cal B}_k$ wie folgt berechnen:

$$\begin{split} B_0 &= 0 \\ B_k &= \frac{1}{\pi} \int_{-\pi}^{\pi} t \sin(\omega_k t) \mathrm{d}t \\ &= -\frac{(-1)^k \cdot 2}{k} \end{split}$$

Damit ergeben sich folgende Koeffizienten B_k :

Tabelle 2: Berechnete Koeffizienten für f(x) = x

k	B_k
0	0.0000
1	2.0000
2	-1.0000
3	0.6667
4	-0.5000
5	0.4000
6	-0.3333
7	0.2857
8	-0.2500
9	0.2222
10	-0.2000
11	0.1818
12	-0.1667
13	0.1538
14	-0.1429
15	0.1333
16	-0.1250
17	0.1176

Abbildung 2: Screenshot des Plots für die in Tabelle 2 genannte Koeffizienten von der Webseite https://www.j-berkemeier.de/Fouriersynthese.html wobei sich die Phase von 0° ergibt, da $A_k=0$ ist.

Index der Kommentare

- 4.1 man kann auch einfach sagen, dass die Funktion gerade ist.
- 6.1 auch wieder die möglichkeit zu argumentieren, dass f ungerade ist.