#### Vowel Tuner

Soklong HIM Nora LINDVALL Maxime MÉLOUX Jorge VASQUEZ-MERCADO

NLP M2

Software Project Jan. 13, 2023



### Outline

- Interface
- Corpus processing
- Oeep learning approach
- 4 Rule-based approach
- The application
- O Plan

- Interface
- Corpus processing
- Oeep learning approach
- 4 Rule-based approach
- The application
- 6 Plan

#### **Vowel Tuner**

Do you want to sound like a French native speaker?

Are you having trouble pronouncing French vowels?

Start practicing your French vowels now!

Start

Disclaimer: We acknowledge that there are several correct ways to pronounce French vowels and that pronounciation varies between regions.

This system is based on a northern French accent, which is the accent most widely taught in schools.

### **Vowel Tuner**

Say:



/y/ as in 'tu'

Speak

#### **Vowel Tuner**

### Not quite!

#### How to improve:

- Raise the front of your tongue
- Round your lips

#### Pronunciation hack!

Try saying 'tea' in English.

Now, keep your tongue in the same position, but **protrude** your lips, as if you were about to kiss someone.

This is the tongue and lip position for u!

Your vowel was registered as:



u/

as in 'tout'

Listen to yourself

Listen to u

How the mouth should move:



Native speaker pronouncing u

Retry

Next vowel

### **Vowel Tuner**

### You got it! Excellent work!

Listen to yourself

Listen to u

Next vowel

### Web App Development

#### Welcome Interface

### **Vowel Tuner**

Home Vowels About us

Do you want to sound like a French native speaker?

Are you having trouble pronouncing French vowels?

Start practicing your French vowels now!



Disclaimer: We acknowledge that there are several correct ways to pronounce French vowels and that pronounciation varies between regions. This system is based on northern French accent, which is the accent most widely taught in schools

## Web App Development

### Recording Interface





## Web App Development

#### Web App Development - now

- Welcome interface
- Get the audio record from the browser using the user's microphone
- Obtain the .wav file by clicking on the link

#### Web App Development - to do

- Storing the .wav file automatically in a specific location
- Create the full interface presented before

- Interface
- 2 Corpus processing
- Deep learning approach
- 4 Rule-based approach
- The application
- 6 Plan

### The corpus

- 17 men, 21 women
- 1754 (automatically?) annotated vowels
- $\rightarrow$  Too few samples for a large neural network?
- → More data potentially available

# Corpus processing



Figure: How a training example is processed

- Interface
- Corpus processing
- Oeep learning approach
- 4 Rule-based approach
- The application
- 6 Plan

### Architecture

CNN-based architecture using the image of the spectrogram



Figure: A cropped recording of the word "lors" /lo(B)/.

### Architecture

- CNN-based architecture using the image of the spectrogram
- Images padded to the same maximal width (resizing?)
- Quite shallow architecture due to dataset size
- 10 classes output (only oral vowels) and cross-entropy loss
- Hyperparameters: Number of convolutional layers, number and size of fully connected layers, kernel size, max pool kernel size, dropout, activation function, padding, stride, batch normalization, optimizer, batch size, learning rate, vowel only or consonant+vowel...

### Preliminary experiments



Figure: The best performing architecture so far (4,162,954 parameters)

Accuracy on test set (10% of dataset): 81.51%

- Interface
- Corpus processing
- Oeep learning approach
- Rule-based approach
- The application
- 6 Plan

## Rule-based approach

Using reference formants: 33% accuracy (last presentation), can be increased to 40-45% with tweaks.

Can we go further?

#### Input features:

- Formants F1-F4, automatically extracted
- "Only" 960 vowels
- The gender of the speaker
- The previous consonant (m, p, l, s, t, t1)
- $\rightarrow$  4 analog dimensions and 7 binary ones

## Input visualization



Figure: (F1, F2) for vowels in the dataset

# Input visualization (better)



Figure: T-SNE of the 11-dimensional dataset

### Some classifiers - Decision Trees



Figure: Decision trees classifier rules

# Some classifiers - Multilayer Perceptron



Figure: T-SNE of the input dataset vs. after the last hidden layer of the MLP

### Best classifier results



Figure: Confusion matrices for selected classifiers (bagging, decision trees, extra trees, k-neighbors, logistic regression, MLP, random forests, stacking)

### Best classifier results

| Classifier            | Accuracy |
|-----------------------|----------|
| *Bagging              | 73.96%   |
| Decision trees        | 60.42%   |
| *Extra trees          | 79.79%   |
| K neighbors           | 67.71%   |
| Logistic regression   | 66.67%   |
| Multilayer perceptron | 75.00%   |
| *Random forests       | 75.00%   |
| *Stacking             | 71.88%   |

Table: Test set accuracy of various classifiers. Stars denote ensemble methods.

- Interface
- Corpus processing
- Oeep learning approach
- 4 Rule-based approach
- The application
- 6 Plan

# Vowel processing



Figure: Vowel extraction from the initial recording

### Vowel classification and feedback



Figure: The deep-learning pipeline



Figure: The rule-based pipeline

Idea: combine both to have a stronger model?



- Interface
- Corpus processing
- Deep learning approach
- 4 Rule-based approach
- The application
- O Plan

#### What's next?

- Create content (text prompts)
- Perform more experiments (neural network)
- Record visuals
- Complete interface
- (Annotate more .wav files)
- Write report

# What about the corpus collection??

-Organizational issues
-No time



# Thank you!

Questions? Feedback?

