

AuE-8360
Scaled Autonomous Vehicles

Simulation Tools for Scaled Vehicle Courses

Chinmay Samak

PhD Candidate, CU-ICAR

csamak@clemson.edu

Tanmay Samak

PhD Candidate, CU-ICAR

tsamak@clemson.edu

List of Simulation Tools for Scaled Vehicle Courses

- TurtleSim
- Official F1TENTH Simulator (Rviz)
- <u>Driving Scenario Designer</u>
- Gazebo Simulator
- F1TENTH Simulator (Gazebo)
- CoppeliaSim (formerly V-REP)
- F1TENTH Simulator (LGSVL)
- Isaac Sim
- AutoDRIVE Simulator

- DRIVE Sim
- CARLA Simulator
- LGSVL Simulator
- AirSim
- AWSim
- RaiSim
- OpenAl Gym
- Ansys Autonomy
- CarMaker
- CarSim
- TORCS

- Deepdrive
- rFpro
- dSPACE AURELION
- PreScan
- Webots
- Cognata
- Metamoto
- VIRES VTD
- GTA V
- Project Chrono

Recommended for Research

Recommended for Courses/Training

TurtleSim

- Advantages
 - Open source
 - Simple & intuitive
 - Multi-robot support
- Disadvantages

Physics

Engine

(kinematic

simulation)

Custom

Simulation

Quality

2D

- 2D kinematic simulation
- Environments not supported
- Only differential-drive architecture

Vehicle

Dynamics

Support

Sensor Support

Pose

API Support

ROS, ROS 2

Developer

Open

Robotics

No cross-platform support

Graphics

Rendering

OpenGL

Applications

Exploration and

understanding

Open

Source

Yes

Cost

Free

Source: Tinker Twins GitHub

Source: ROS Core Stacks

Source: ROS Wiki

Official F1TENTH Simulator (RViz)

- Advantages
 - Open source
 - Simple & intuitive
 - Uses same stack as real vehicle
- Disadvantages
 - 2D simplistic simulation
 - No vertical/roll/pitch dynamics
 - 2D environment representation
 - No cross-platform support
 - Inaccuracies (e.g., 360° LIDAR simulation real is 270°)

Simulation Quality	Physics Engine	Graphics Rendering	Vehicle Dynamics Support	Sensor Support	API Support	Developer	Cost	Open Source	Applications
2D	Custom (single track dynamics)	RViz	Single-track dynamics	2D LIDAR	ROS, ROS 2, Autoware	UPenn	Free	Yes	Exploration, understanding, course, competition

Source: F1TENTH

MathWorks Driving Scenario Designer

- Advantages
 - Simple & intuitive
 - Multi-agent support
 - Comprehensive sensor suite
- Disadvantages
 - Commercial product
 - 2D/3D simplistic visualization
 - Simplistic trajectory replay

Simulation Quality	Physics Engine	Graphics Rendering	Vehicle Dynamics Support	Sensor Support	API Support	Developer Cost		Open Source	Applications
2D/3D	N/A	MATLAB App	No	Camera, RADAR, LIDAR, INS, Ultrasonic	MATLAB, Simulink	MathWorks	Paid License	No	Exploration and understanding

Source: MathWorks

Gazebo Simulator

- Advantages
 - Open source
 - Multi-agent support
 - Comprehensive sensor suite
 - General robotics simulation
- Disadvantages

Physics

Engine

ODE

- Low fidelity dynamics
- Simplistic visualization

Graphics

Rendering

Custom

No cross-platform support

Vehicle

Dynamics

Support

Source: Tinker Twins GitHub

prototyping

Robotics

Source: <u>GazeboSim</u>

Simulation

Quality

3D

IMU, GPS

F1TENTH Simulator (Gazebo)

- Advantages
 - Open source
 - Multi-agent support
 - Uses same stack as real vehicle
 - 3D simulation environment
- Disadvantages
 - Low fidelity dynamics
 - Simplistic visualization
 - No cross-platform support

Simulation Quality	Physics Engine	Graphics Rendering	Vehicle Dynamics Support	Sensor Support	API Support	Developer	Cost	Open Source	Applications
3D	ODE	Gazebo's Custom	Yes	2D LIDAR, Pose TF	ROS	UVA	Free	Yes	Exploration, prototyping, course

Source: <u>f1tenth.dev</u>

CoppeliaSim (formerly V-REP)

- Advantages
 - 3D simulation environment
 - Multiple physics engines
 - Cross-platform support
 - Extended API support
 - General robot simulator
- Disadvantages
 - Moderate compute requirements
 - Medium fidelity graphics

Source: Coppelia Robotics

Simulation Quality	Physics Engine	Graphics Rendering	Vehicle Dynamics Support	Sensor Support	API Support	Developer	Cost	Open Source	Applications
3D	PhysX, Bullet, Vortex	Custom	Multi-body physics modules can be adapted for vehicle dynamics	2D/3D LIDAR, Camera, GNSS, IMU, Encoders, State Variables	ROS, ROS 2, Python, C++ MATLAB	Coppelia Robotics	Free (Edu)	No	Exploration and education

F1TENTH Simulator (LGSVL)

- Advantages
 - 3D simulation environment
 - Photorealistic graphics
 - Cross-platform support
- Disadvantages
 - Inaccurate parameters
 - Heavy compute requirements
 - Discontinued

Simulation Quality	Physics Engine	Graphics Vehicle Rendering Support Vehicle Support		Sensor Support	API Support	Developer	Cost	Open Source	Applications	
3D	PhysX	Unity HDRP	Wheel torque model	2D LIDAR, Camera	ROS	LG	Free/ Paid	Yes	Exploration and research	

Source: **SVLSimulator**

Isaac Sim

- Advantages
 - 3D simulation environment
 - Photorealistic graphics
 - Realistic physics
 - Cross-platform support
 - Indoor robot simulator
- Disadvantages
 - Extreme compute requirements
 - Only NVIDIA RTX supported

Source: <u>Isaac Sim</u>

Simulation Quality	Physics Engine	Graphics Rendering	Vehicle Dynamics Support	Sensor Support	API Support	Developer	Cost	Open Source	Applications	
3D	PhysX	Omniverse	Multi-body physics modules can be adapted for vehicle dynamics	2D/3D LIDAR, Camera, GNSS, IMU, Encoders, State Variables	Python, ROS 2*	NVIDIA	Free	No	Exploration, education and research	

AutoDRIVE Simulator

- Advantages
 - 3D simulation environment
 - Photorealistic graphics
 - Realistic physics
 - Cross-platform support
 - Extended API support
 - On/off road AVs across scales
- Disadvantages
 - Moderate compute requirements

Source: AutoDRIVE Ecosystem

Simulation Quality	Physics Engine	Graphics Rendering	Vehicle Dynamics Support	Sensor Support	API Support	Developer	Cost	Open Source	Applications
3D	PhysX	Unity HDRP	Full car model for lateral, longitudinal, vertical and RPY dynamics with tireterrain interaction	2D/3D LIDAR, Camera, GNSS, IPS, IMU, Encoders Steering Feedback, Throttle Feedback, State Variables	ROS, ROS 2, Python, C++, MATLAB, Simulink, Webapp	CU-ICAR, NTU, SRMIST	Free	Yes	Exploration, education and research

Comparative Analysis

Simulator	Year	Open	Realistic	Customized	Back-end	Map	Source	API Support		
Simulator	rear	Source	Perception	Scenario	Васк-епа	Real World	Human Design	Python	C++	ROS
TORCE [178]	2000	✓	✓	×	None	×	✓	×	✓	×
Webots [179]	2004	✓	✓	✓	ODE	✓	✓	✓	✓	√
CarRacing [180]	2016	✓	×	×	None	×	✓	✓	×	×
CARLA [142]	2017	✓	✓	✓	UE4	×	✓	✓	✓	√
SimMobilityST [181]	2017	✓	×	✓	None	×	✓	✓	×	×
GTA-V [156]	2017	×	✓	✓	RAGE	×	×	×	×	×
highway-env [182]	2018	✓	×	✓	None	×	✓	✓	×	×
Deepdrive [183]	2018	✓	✓	✓	UE4	×	✓	✓	✓	×
esmini [184]	2018	✓	✓	✓	Unity	×	✓	✓	✓	×
AutonoViSim [185]	2018	×	✓	✓	PhysX	×	✓	×	×	×
AirSim [186]	2018	✓	✓	✓	UE4	×	✓	✓	✓	✓
SUMO [187]	2018	✓	×	✓	None	✓	✓	✓	✓	×
Apollo [188]	2018	✓	×	✓	Unity	×	✓	✓	✓	×
Sim4CV [189]	2018	✓	✓	✓	UE4	×	✓	✓	✓	×
SUMMIT [72]	2020	✓	✓	×	UE4	✓	✓	✓	×	✓
MultiCarRacing [190]	2020	✓	×	×	None	×	✓	✓	×	×
SMARTS [80]	2020	✓	×	✓	None	×	✓	✓	×	×
LGSVL [191]	2020	✓	✓	✓	Unity	✓	✓	✓	×	√
CausalCity [77]	2021	✓	✓	✓	UE4	×	✓	✓	×	×
MetaDrive [74]	2021	✓	✓	✓	Panda3D	✓	✓	✓	×	×
L2R [192]	2021	✓	✓	✓	UE4	✓	✓	✓	×	×
AutoDRIVE [193]	2021	✓	✓	✓	Unity	×	✓	✓	✓	✓

References

- 1. M. Quigley, K. Conley, B. Gerkey, J. Faust, T. Foote, J. Leibs, R. Wheeler, and A. Ng, "ROS: an open-source Robot Operating System," in ICRA 2009 Workshop on Open Source Software, vol. 3, Jan 2009. [Online]. Available: http://robotics.stanford.edu/~ang/papers/icraoss09-ROS.pdf
- 2. S. Macenski, T. Foote, B. Gerkey, C. Lalancette, and W. Woodall, "Robot operating system 2: Design, architecture, and uses in the wild," Science Robotics, vol. 7, no. 66, p. eabm6074, 2022. [Online]. Available: https://www.science.org/doi/abs/10.1126/scirobotics.abm6074
- 3. V. S. Babu and M. Behl, "f1tenth.dev An Open-source ROS based F1/10 Autonomous Racing Simulator," 2020 IEEE 16th International Conference on Automation Science and Engineering (CASE), Hong Kong, China, 2020, pp. 1614-1620, doi: 10.1109/CASE48305.2020.9216949
- 4. M. O'Kelly, H. Zheng, D. Karthik and R. Mangharam, "F1TENTH: An Open-source Evaluation Environment for Continuous Control and Reinforcement Learning," Proceedings of Machine Learning Research, H.J. Escalante R. Hadsell (eds.), Proceedings of the NeurIPS 2019 Competition and Demonstration Track, PMLR, vol. 123, pp. 77-89, December 2020. [Online]. Available: https://proceedings.mlr.press/v123/o-kelly20a.html

References

- 5. N. Koenig and A. Howard, "Design and use paradigms for Gazebo, an open-source multi-robot simulator," 2004 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (IEEE Cat. No.04CH37566), Sendai, Japan, 2004, pp. 2149-2154 vol.3, doi: 10.1109/IROS.2004.1389727
- 6. E. Rohmer, S. P. N. Singh and M. Freese, "V-REP: A versatile and scalable robot simulation framework," 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems, Tokyo, Japan, 2013, pp. 1321-1326, doi: 10.1109/IROS.2013.6696520
- 7. G. Rong et al., "LGSVL Simulator: A High Fidelity Simulator for Autonomous Driving," 2020 IEEE 23rd International Conference on Intelligent Transportation Systems (ITSC), Rhodes, Greece, 2020, pp. 1-6, doi: 10.1109/ITSC45102.2020.9294422
- 8. T. Samak, C. Samak, S. Kandhasamy, V. Krovi, and M. Xie, "AutoDRIVE: A Comprehensive, Flexible and Integrated Digital Twin Ecosystem for Autonomous Driving Research & Education," Robotics, vol. 12, no. 3, p. 77, May 2023, doi: https://doi.org/10.3390/robotics12030077

References

9. W. Ding, C. Xu, M. Arief, H. Lin, B. Li and D. Zhao, "A Survey on Safety-Critical Driving Scenario Generation—A Methodological Perspective," in IEEE Transactions on Intelligent Transportation Systems, vol. 24, no. 7, pp. 6971-6988, July 2023, doi: 10.1109/TITS.2023.3259322

September 13, 2023