ПРИЛОЖЕНИЕ 1.1

Значения давления насыщенного пара над плоской поверхностью воды (p_{sw}) и льда (p_{si}).

T, °C	р _{sw} , Па	р _{ѕі} , Па	T, ℃	р _{sw} , Па	р _{ѕі} , Па	T, °C	р _{sw} , Па	р _{ѕі} , Па
-50	6,453	3,924	-33	38,38	27,65	-16	176,37	150,58
-49	7,225	4,438	-32	42,26	30,76	-15	191,59	165,22
			_		,	_		
-48	8,082	5,013	-31	46,50	34,18	-14	207,98	181,14
-47	9,030	5,657	-30	51,11	37,94	-13	225,61	198,45
-46	10,08	6,38	-29	56,13	42,09	-12	244,56	217,27
-45	11,24	7,18	-28	61,59	46,65	-11	264,93	237,71
-44	12,52	8,08	-27	67,53	51,66	-10	286,79	259,89
-43	13,93	9,08	-26	73,97	57,16	-9	310,25	283,94
-42	15,48	10,19	-25	80,97	63,20	-8	335,41	310,02
-41	17,19	11,43	-24	88,56	69,81	-7	362,37	338,26
-40	19,07	12,81	-23	96,78	77,06	-6	391,25	368,84
-39	21,13	14,34	-22	105,69	85,00	-5	422,15	401,92
-38	23,40	16,03	-21	115,32	93,67	-4	455,21	437,68
-37	25,88	17,91	-20	125,74	103,16	-3	490,55	476,32
-36	28,60	19,99	-19	136,99	113,52	-2	528,31	518,05
-35	31,57	22,30	-18	149,14	124,82	-1	568,62	563,09
-34	34,83	24,84	-17	162,24	137,15	0	611,65	611,66

приложение 1.2

Значения давления насыщенного пара над плоской поверхностью воды (p_{sw}) .

T, °C	р _{sw} , Па						
0	611,65	26	3364,5	52	13629,5	78	43684,4
1	657,5	27	3568,7	53	14310,3	78	45507,1
			,		,		,
2	706,4	28	3783,7	54	15020,0	80	47393,4
3	758,5	29	4009,8	55	15759,6	81	49344,8
4	814,0	30	4247,6	56	16530,0	82	51363,3
5	873,1	31	4497,5	57	17332,4	83	53450,5
6	935,9	32	4760,1	58	18167,8	84	55608,3
7	1002,6	33	5036,0	59	19037,3	85	57838,6
8	1073,5	34	5325,6	60	19942,0	86	60143,3
9	1148,8	35	5629,5	61	20883,1	87	62524,2
10	1228,7	36	5948,3	62	21861,6	88	64983,4
11	1313,5	37	6282,6	63	22878,9	89	67522,9
12	1403,4	38	6633,1	64	23936,1	90	70144,7
13	1498,7	39	7000,4	65	25034,6	91	72850,8
14	1599,6	40	7385,1	66	26175,4	92	75643,4
15	1706,4	41	7787,9	67	27360,1	93	78524,6
16	1819,4	42	8209,5	68	28589,9	94	81496,5
17	1939,0	43	8650,7	69	29866,2	95	84561,4
18	2065,4	44	9112,1	70	31190,3	96	87721,5
19	2198,9	45	9594,6	71	32563,8	97	90979,0
20	2340,0	46	10098,9	72	33988,0	98	94336,4
21	2488,9	47	10625,8	73	35464,5	99	97795,8
22	2646,0	48	11176,2	74	36994,7	100	101359,8
23	2811,7	49	11750,9	75	38580,2		
24	2986,4	50	12350,7	76	40222,5		
25	3170,6	51	12976,6	77	41923,4		

приложение 2.

Значения абсолютной влажности газа с относительной влажностью по воде 100% при различных температурах.

T,°C	$A, \Gamma/M^3$	T,°C	Α, Γ/ M ³	T,°C	Α, Γ/ м ³	T,°C	$A, \Gamma/M^3$
-50	0,063	-10	2,361	30	30,36	70	196,94
-49	0,070	-9	2,545	31	32,04	71	205,02
-48	0,078	-8	2,741	32	33,80	72	213,37
-47	0,087	-7	2,950	33	35,64	73	221,99
-46	0,096	-6	3,173	34	37,57	74	230,90
-45	0,107	-5	3,411	35	39,58	75	240,11
-44	0,118	-4	3,665	36	41,69	76	249,61
-43	0,131	-3	3,934	37	43,89	77	259,42
-42	0,145	-2	4,222	38	46,19	78	269,55
-41	0,160	-1	4,527	39	48,59	79	280,00
-40	0,177	0	4,852	40	51,10	80	290,78
-39	0,196	1	5,197	41	53,71	81	301,90
-38	0,216	2	5,563	42	56,44	82	313,36
-37	0,237	3	5,952	43	59,29	83	325,18
-36	0,261	4	6,364	44	62,25	84	337,36
-35	0,287	5	6,801	45	65,34	85	349,91
-34	0,316	6	7,264	46	68,56	86	362,84
-33	0,346	7	7,754	47	71,91	87	376,16
-32	0,380	8	8,273	48	75,40	88	389,87
-31	0,416	9	8,822	49	79,03	89	403,99
-30	0,455	10	9,403	50	82,81	90	418,52
-29	0,498	11	10,02	51	86,74	91	433,47
-28	0,544	12	10,66	52	90,82	92	448,86
-27	0,594	13	11,35	53	95,07	93	464,68
-26	0,649	14	12,07	54	99,48	94	480,95
-25	0,707	15	12,83	55	104,06	95	497,68
-24	0,770	16	13,63	56	108,81	96	514,88
-23	0,838	17	14,48	57	113,75	97	532,56
-22	0,912	18	15,37	58	118,87	98	550,73
-21	0,991	19	16,31	59	124,19	99	569,39
-20	1,076	20	17,30	60	129,70	100	588,56
-19	1,168	21	18,33	61	135,41		
-18	1,266	22	19,42	62	141,33		
-17	1,372	23	20,57	63	147,47		

T,°C	$A, \Gamma/M^3$	T,°C	$A,\Gamma/M^3$	T,°C	$A,\Gamma/M^3$	T,°C	$A, \Gamma/M^3$
-16	1,486	24	21,78	64	153,83		
-15	1,608	25	23,04	65	160,41		
-14	1,739	26	24,37	66	167,23		
-13	1,879	27	25,76	67	174,28		
-12	2,029	28	27,22	68	181,58		
-11	2,190	29	28,75	69	189,13		