Chapitre 34

Permutations

Camille Jordan (1838 – 1922)

Les permutations de [1, n] forment un groupe, appelé groupe symétrique d'indice n, qu'on note

C'est un objet assez simple à définir mais dont la structure est complexe. Le groupe des permutations intervient dans de nombreux domaines des mathématiques. C'est son étude qui a donné naissance à la théorie des groupes.

Jordan

Camille Jordan est un mathématicien français, connu à la fois pour son travail fondamental dans la théorie des groupes et pour son influent Cours d'analyse. Il fut professeur à l'École polytechnique et au Collège de France, où il avait une réputation de choix de notations excentriques.

Il est souvent confondu avec Wilhelm JORDAN (1842 – 1899), mathématicien allemand à qui l'on doit la méthode du pivot dite « de Gauss-Jordan ». Ce JORDAN se prononce [Jordanne].

Sommaire

I. Permutations	3
1) Définition et premières propriétés	3
2) Support d'une permutation	4
3) Cycles	6
4) Transpositions	7
5) Décomposition en produit de cycles à supports disjoints	7
6) Les transpositions engendrent \mathfrak{S}_n	9
7) Permutations conjuguées	10
II. Signature d'une permutation	12
1) Inversions d'une permutation	12
2) Signature d'une permutation	12
3) Une autre expression de la signature d'une permutation	15
III. Ensemble des inversions du produit de deux permutations	17
1) Semi-anneau des parties d'un ensemble	17
2) Cas où E est l'ensemble des couples d'entiers distincts	17
3) Inversions d'un produit de deux permutations	18

Permutations 2/19

Dans tout ce chapitre, on fixe $n \ge 2$ un entier.

I. Permutations

1) Définition et premières propriétés

a) groupe symétrique

Définition PER.1

- On appelle permutation de $[\![1,n]\!]$ toute bijection $f:[\![1,n]\!] \longrightarrow [\![1,n]\!]$.
- On note \mathfrak{S}_n (ou \mathfrak{S}_n) l'ensemble des permutations de [1, n].
- \triangleright Le triplet $(\mathfrak{S}_n, \circ, \mathsf{Id}_{\llbracket 1, n \rrbracket})$ est un groupe.
 - \triangleright On l'appelle groupe symétrique d'indice n.

Remarques

- Les permutations seront souvent notées σ, τ , etc.
- On notera le neutre de ce groupe ld au lieu de $\mathrm{Id}_{\llbracket 1,n\rrbracket}$ pour des raisons de concision et de clarté.

b) cardinal

Proposition PER.2

On a

$$\left|\mathfrak{S}_n\right| = n!$$

Démonstration. — On l'a déjà vue dans le chapitre « Dénombrement ».

c) une notation

Soit $\sigma \in \mathfrak{S}_n$. Notons $a_i := \sigma(i)$ pour $i \in [1, n]$. On note alors

$$\left(\begin{array}{cccc} 1 & 2 & 3 & \cdots & n \\ a_1 & a_2 & a_3 & \cdots & a_n \end{array}\right)$$

la permutation σ .

Exemple

- On suppose dans cet exemple que n = 4.
- On pose

$$\sigma \coloneqq \left(\begin{array}{cccc} 1 & 2 & 3 & 4 \\ 2 & 3 & 4 & 1 \end{array}\right).$$

• Alors, σ est la permutation qui envoie 1 sur 2, qui envoie 2 sur 3, qui envoie 3 sur 4 et, enfin, qui envoie 4 sur 1.

Permutations 3/19

• On peut calculer σ^2 . On calcule

$$\sigma^{2}(1) = \sigma(\sigma(1)) = \sigma(2) = 3$$

$$\sigma^{2}(2) = \sigma(\sigma(2)) = \sigma(3) = 4$$

$$\sigma^{2}(3) = \sigma(\sigma(3)) = \sigma(4) = 1$$

$$\sigma^{2}(4) = \sigma(\sigma(4)) = \sigma(1) = 2.$$

On a donc

$$\sigma^2 := \left(\begin{array}{cccc} 1 & 2 & 3 & 4 \\ 3 & 4 & 1 & 2 \end{array}\right).$$

Е	xerci	ce P	ER	₹. 3
		υυ .		~

- a) Calculer σ^3 et σ^4 .
- b) Que remarque-t-on?

2) Support d'une permutation

a) définition

Le support d'une permutation $\sigma \in \mathfrak{S}_n$ est l'ensemble des indices que σ « bouge » effectivement. Plus préciscément :

Proposition PER.4

Le support σ est la partie de [1, n], notée $\mathsf{Supp}(\sigma)$, définie par

$$\mathsf{Supp}(\sigma) \coloneqq \Big\{ i \in [\![1, n]\!] \; \big| \; \sigma(i) \neq i \Big\}.$$

Exemple

• On considère encore

$$\sigma := \left(\begin{array}{cccc} 1 & 2 & 3 & 4 \\ 2 & 3 & 4 & 1 \end{array}\right).$$

• On a $Supp(\sigma) = [1, 4]$.

Remarque

Les éléments de [1, n] qui ne sont pas dans le support de σ sont exactement les points fixes de σ .

Exercice PER.5

Quelles sont les permutations $\sigma \in \mathfrak{S}_n$ telles que $\mathsf{Supp}(\sigma) = \varnothing$?

b) permutations à support disjoint

Lemme PER.6

Soit $\sigma \in \mathfrak{S}_n$. Alors,

- 1) l'ensemble $Supp(\sigma)$ est stable par σ ;
- 2) autrement dit, on a

$$\forall i \in [1, n], i \in \mathsf{Supp}(\sigma) \implies \sigma(i) \in \mathsf{Supp}(\sigma).$$

 $D\'{e}monstration.$ — Soit $i \in [1, n]$.

- Montrons que $i \in \mathsf{Supp}(\sigma) \implies \sigma(i) \in \mathsf{Supp}(\sigma)$ en raisonnant par contraposition.
- Montrons donc que $\sigma(i) \notin \mathsf{Supp}(\sigma) \implies i \notin \mathsf{Supp}(\sigma)$.
- Supposons que $\sigma(i) \notin \mathsf{Supp}(\sigma)$. Notons $j := \sigma(i)$. Comme $j \notin \mathsf{Supp}(\sigma)$, on a $\sigma(j) = j$. Autrement dit, on a $\sigma(\sigma(i)) = \sigma(i)$.
- \bullet Comme σ est injectif, on en déduit que $\sigma(i)=i,$ ce qu'on voulait.

Remarque

Voici une autre façon de voir cette démonstration :

- l'ensemble des points fixes de σ est stable par σ ;
- comme σ est bijective, on a, pour tout $X \subset [1, n]$,

$$X$$
 stable par $\sigma \iff [1, n] \setminus X$ stable par σ ;

• d'où le résultat.

Proposition PER. 7

- Des permutations à supports disjoints commutent.
- Autrement dit,

$$\forall \sigma, \tau \in \mathfrak{S}_n, \qquad \mathsf{Supp}(\sigma) \cap \mathsf{Supp}(\tau) = \varnothing \quad \Longrightarrow \quad \sigma\tau = \tau\sigma.$$

Démonstration. — Soient $\sigma, \tau \in \mathfrak{S}_n$ telles que

$$\mathsf{Supp}(\sigma)\cap\mathsf{Supp}(\tau)=\varnothing.$$

Soit $i \in [1, n]$. On distingue trois cas.

- On suppose que $i \in \mathsf{Supp}(\sigma)$.
 - \triangleright Alors, d'après le lemme précédent, on a $\sigma(i) \in \mathsf{Supp}(\sigma)$. Donc, $\sigma(i) \notin \mathsf{Supp}(\tau)$. Donc,

$$\tau(\sigma(i)) = \sigma(i).$$

- \triangleright De plus, comme $i \in \mathsf{Supp}(\sigma)$, on a $i \notin \mathsf{Supp}(\tau)$. Donc, $\tau(i) = i$.
- \triangleright Donc, on a $\sigma(i) = \sigma(\tau(i))$.

$$\tau(\sigma(i)) = \sigma(\tau(i)).$$

- On suppose que $i \in \mathsf{Supp}(\tau)$: on procède de même.
- On suppose que $i \notin \mathsf{Supp}(\sigma)$ et $i \notin \mathsf{Supp}(\tau)$. On a alors $\sigma(i) = i$ et $\tau(i) = i$. On en déduit que

$$\sigma(\tau(i)) = \sigma(i) = i.$$

De même, $\tau(\sigma(i)) = i$.

D'où le résultat.

Permutations 5/19

3) Cycles

a) un exemple

Considérons la permutation

$$\sigma := \left(\begin{array}{cccccc} 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 6 & 2 & 1 & 3 & 5 & 4 & 7 \end{array}\right).$$

On peut la représenter de la façon suivante :

C'est un cycle. On note aussi cette permutation

b) définition

Définition PER.8

• Soient i_1, i_2, \ldots, i_ℓ des éléments de $[\![1, n]\!]$ deux à deux distincts. On note

$$\boxed{\sigma\coloneqq(i_1\ i_2\ \cdots\ i_\ell)}$$

la permutation définie par

$$\sigma(i_1) = i_2, \ \sigma(i_2) = i_3, \ dots \ \sigma(i_{\ell-1}) = i_{\ell} \ \sigma(i_{\ell}) = i_1,$$

et $\sigma(i) = i$ quand $i \notin \{i_1, i_2, \dots, i_\ell\}$.

• On dit alors que σ est un cycle, de longueur ℓ .

Remarques

- Le support de $(i_1 \ i_2 \ \cdots \ i_\ell)$ est l'ensemble $\{i_1, i_2, \dots, i_\ell\}$.
- On voit ainsi que des cycles qui ont même support ne sont pas nécessairement égaux.
- On parle aussi de permutation circulaire.

Exemple

• On considère le cycle

$$\sigma := (1 \ 4 \ 5) \in \mathfrak{S}_6$$
.

On a alors

$$(1 \ 4 \ 5) = \left(\begin{array}{ccccc} 1 & 2 & 3 & 4 & 5 & 6 \\ 4 & 2 & 3 & 5 & 1 & 6 \end{array}\right).$$

Exercice PER.9 $Calculer (1 \ 4 \ 5)(2 \ 4 \ 3).$	

4) Transpositions

Définition PER.10

Une transposition est un cycle de longueur 2.

Exemples

Les permutations

sont toutes des transpositions de \mathfrak{S}_5 .

5) Décomposition en produit de cycles à supports disjoints

Théorème PER.11

- 1) Toute permutation peut s'écrire comme produit de cycles à supports disjoints.
- 2) Cette écriture est unique à l'ordre près des facteurs.

Démonstration. —

Permutations 7/19

			.
Exercice PER.12 Donner la décomposition	en cycles à supp	oorts disjoints de	
	$\left(\begin{array}{ccccc} 1 & 2 & 3 & 4 \\ 10 & 4 & 3 & 7 \end{array}\right)$	5 6 7 8 9 10 11 9 8 1 3 6	11).
	(10 4 2 7	11 9 8 1 3 6	5 /

Permutations 8/19

6) Les transpositions engendrent \mathfrak{S}_n

Théorème PER.13

- 1) Les transpositions engendrent \mathfrak{S}_n .
- 2) Autrement dit,

 $\forall \sigma \in \mathfrak{S}_n, \ \exists N \in \mathbb{N}, \ \exists \tau_1, \dots, \tau_N \ transpositions: \ \sigma = \tau_1 \tau_2 \cdots \tau_N.$

$D\'{e}monstration.$ —

Permutations conjuguées
a) définition
Définition PER.14
Soient $x, y \in \mathfrak{S}_n$. On dit que x et y sont conjuguées ssi
$\exists \sigma \in \mathfrak{S}_n: \ x = \sigma y \sigma^{-1}.$
Remarques
• Cette définition est en fait valable dans un groupe <i>G</i> quelconque.
On retrouve également une grande similitude avec la définition des matrices semblables.
 En général, si x et y sont conjugués alors « philosophiquement » et informellement, x et y sont des objets identiques mais vus d'un point de vue différent.
b) conjugaison des cycles
Proposition PER.15
Soit $\ell \in [1, n]$ et soient $i_1, \dots, i_\ell \in [1, n]$ deux à deux distincts.
Soit $\sigma \in \mathfrak{S}_n$. Alors, on a
$\sigma\left(i_1\;i_2\;\cdots\;i_\ell\right)\sigma^{-1}=\left(\sigma(i_1)\;\sigma(i_2)\;\cdots\;\sigma(i_\ell)\right).$
Démonstration. —

7)

Permutations 10/19

$Corollaire \ \mathsf{PER}.16$

- 1) Soit $\ell \in [2, n]$. Tous les cycles de longueur ℓ sont conjugués (deux à deux).
- 2) Toutes les transpositions sont conjuguées (deux à deux).

Démonstration. — Elle est laissée au lecteur à titre d'exercice.

Permutations 11/19

II. Signature d'une permutation

1) Inversions d'une permutation

a) définition

Définition PER.17

Soit $\sigma \in \mathfrak{S}_n$.

• Une inversion de σ est un couple $(i,j) \in [\![1,n]\!]$ tel que

$$i < j$$
 et $\sigma(i) > \sigma(j)$.

- On note $Inv(\sigma)$ l'ensemble des inversions de σ .
- On note $N(\sigma)$ le nombre d'inversions de σ ; autrement dit, on pose

$$N(\sigma) := |Inv(\sigma)|.$$

Exemples

• Considérons la permutation

Alors, on a $\sigma(1)=3$ et $\sigma(5)=1$; donc, on a 1<5 et $\sigma(1)>\sigma(5)$: (1,5) est une inversion de σ .

• Voyons un autre exemple et considérons

$$\sigma \coloneqq (1\ 2\ 3)(4\ 5) \in \mathfrak{S}_5.$$

Alors, on a $\sigma(1)=2$ et $\sigma(3)=1$; donc, on a 1<3 et $\sigma(1)>\sigma(3)$: (1,3) est une inversion de σ .

b) nombre d'inversions d'un produit

Proposition PER.18

Soient $\sigma, \tau \in \mathfrak{S}_n$. Alors,

$$N(\sigma \tau) \equiv N(\sigma) + N(\tau)$$
 [2].

Démonstration. — La preuve de ce résultat est l'objet de la dernière partie.

2) Signature d'une permutation

a) définition

≝ Définition PER.19

Soit $\sigma \in \mathfrak{S}_n$.

La signature de σ , notée $\varepsilon(\sigma)$, est l'élément de $\{-1,1\}$ défini par

$$\varepsilon(\sigma) \coloneqq (-1)^{\mathsf{N}(\sigma)}.$$

Permutations 12/19

Remarques

- Soit $\sigma \in \mathfrak{S}_n$. Autrement dit :
 - ightharpoonup si σ possède un nombre pair d'inversions, on a $\varepsilon(\sigma)=1$;
 - \triangleright si σ possède un nombre impair d'inversions, on a $\varepsilon(\sigma)=-1$.
- Comme ld ne possède aucune inversion, on a N(Id) = 0; ainsi, on a déjà

$$\varepsilon(\mathsf{Id}) = 1.$$

b) permutations paires et impaires

Définition PER. 20

Soit $\sigma \in \mathfrak{S}_n$. On dit que

- σ est paire $\stackrel{\triangle}{\text{ssi}} \varepsilon(\sigma) = 1$;
- σ est impaire ssi $\varepsilon(\sigma) = -1$.
- c) la signature est un morphisme

Ψ Proposition PER. 21

Soient $\sigma, \tau \in \mathfrak{S}_n$. On a

$$\varepsilon(\sigma\tau) = \varepsilon(\sigma)\varepsilon(\tau).$$

Démonstration. — Cela découle directement de la proposition PER.18.

≝ Corollaire PER. 22

L'application

$$\varepsilon: \left\{ \begin{array}{ll} \mathfrak{S}_n & \longrightarrow \{-1,1\} \\ \sigma & \longmapsto \varepsilon(\sigma) \end{array} \right.$$

est un morphisme de groupes.

Remarque

- Une propriété générale des morphismes de groupes $\varphi: G \longrightarrow H$ est que $\varphi(e_G) = e_H$.
- On a donc $\varepsilon(\operatorname{Id}_{\llbracket 1,n\rrbracket})=1$.

Permutations 13/19

d) signature des transpositions

Ψ Proposition PER. 23

Soit $\tau \in \mathfrak{S}_n$ une transposition. Alors, on a

$$\varepsilon(\tau) = -1.$$

 $D\'{e}monstration.$ —

• Déjà, on a vu que toutes les transpositions étaient conjuguées entre elles. Fixons donc $\sigma \in \mathfrak{S}_n$ telle que

$$\tau = \sigma \ (1 \ 2) \ \sigma^{-1}.$$

• On a donc

$$\begin{split} \varepsilon(\tau) &= \varepsilon(\sigma) \ \varepsilon \big((1 \ 2) \big) \ \varepsilon(\sigma^{-1}) \\ &= \varepsilon(\sigma) \varepsilon(\sigma^{-1}) \ \varepsilon \big((1 \ 2) \big) \\ &= \varepsilon(\sigma\sigma^{-1}) \ \varepsilon \big((1 \ 2) \big) \\ &= \varepsilon \big(\mathsf{Id}_{\llbracket 1, n \rrbracket} \big) \ \varepsilon \big((1 \ 2) \big) \\ &= \varepsilon \big((1 \ 2) \big). \end{split}$$

- Il suffit donc de montrer que $\varepsilon((1\ 2)) = -1$.
- Soient $i, j \in [1, n]$ tels que i < j. On va compter les inversions de $\tau_0 := (1 \ 2)$ en distinguant des cas.

$$\triangleright$$
 Si $i = 1$ et $j = 2$: alors, $(i, j) \in Inv(\tau_0)$.

$$ightharpoonup$$
 Si $i=1$ et $j\geqslant 3$: comme $\tau_0(j)=j,\,(i,j)\notin \operatorname{Inv}(\tau_0)$.

$$ightharpoonup$$
 Si $i=2$ et $j\geqslant 3$: comme $\tau_0(j)=j,\,(i,j)\notin \operatorname{Inv}(\tau_0)$.

$$ightharpoonup$$
 Si $i \geqslant 3 : (i, j) \notin Inv(\tau_0)$.

• Ainsi, on a $N(\tau_0) = 1$ et donc $\varepsilon(\tau) = \varepsilon(\tau_0) = -1$.

Exercice PER. 24

Soit $\sigma \in \mathfrak{S}_n$ un cycle. Trouver une formule donnant $\varepsilon(\sigma)$ en fonction de la longueur de σ .

e) caractérisation de la signature

Proposition PER. 25

Il existe un unique morphisme de groupes $\varphi : \mathfrak{S}_n \longrightarrow \{-1,1\}$ envoyant toute transposition sur -1.

Démonstration. —

- La signature vérifie ces conditions, ce qui prouve l'existence.
- Pour l'unicité, il suffit de remarquer que les transpositions engendrent \mathfrak{S}_n . Si deux morphismes prennent les mêmes valeurs sur l'ensemble des transpositions, il seront donc égaux partout.

Exercice PER. 26

Montrer qu'il existe exactement deux morphismes de groupes $\varphi : \mathfrak{S}_n \longrightarrow \{-1,1\}$.

Permutations 14/19

3) Une autre expression de la signature d'une permutation

Proposition PER.27

Soit $\sigma \in \mathfrak{S}_n$. Alors, on a

$$\varepsilon(\sigma) = \prod_{1 \leqslant i < j \leqslant n} \frac{\sigma(j) - \sigma(i)}{j - i}.$$

 $D\'{e}monstration.$ —

• Notons $P := \mathscr{P}_2(\llbracket 1, n \rrbracket)$ l'ensemble des parties à deux éléments de [1, n].

•
$$\triangleright$$
 Si $\{i, j\} \in \mathsf{P}$, on a

$$\frac{\sigma(j) - \sigma(i)}{j - i} = \frac{\sigma(i) - \sigma(j)}{i - j}.$$

▷ On peut donc définir

$$A \coloneqq \prod_{\{i,j\} \in \mathsf{P}} \frac{\sigma(j) - \sigma(i)}{j - i} \cdot$$

• De même, les produits

$$\prod_{\{i,j\}\in\mathsf{P}} |i-j| \qquad \text{et} \qquad \prod_{\{i,j\}\in\mathsf{P}} |\sigma(j)-\sigma(i)|$$

sont bien définis.

• On peut ainsi écrire

$$|A| = \frac{\displaystyle\prod_{\{i,j\}\in\mathsf{P}} \!\!|\sigma(j) - \sigma(i)|}{\displaystyle\prod_{\{i,j\}\in\mathsf{P}} \!\!|i-j|} \cdot$$

• Or, l'application

est une bijection. Donc, on a

$$\prod_{\{i,j\}\in \mathsf{P}} |i-j| = \prod_{\{i,j\}\in \mathsf{P}} |\sigma(j) - \sigma(i)| \cdot$$

Donc |A| = 1 et donc $A = \pm 1$.

• Maintenant, considérons l'application

$$\operatorname{sgn}: \left\{ \begin{array}{ll} \mathbb{Q}^* & \longrightarrow \{-1,1\} \\ \\ x & \longmapsto \begin{cases} 1 & \text{si } x > 0 \\ -1 & \text{sinon.} \end{array} \right.$$

On a

$$\forall x,y \in \mathbb{Q}^*, \quad \begin{cases} \operatorname{sgn}(xy) = \operatorname{sgn}(x) \operatorname{sgn}(y) \\ \operatorname{sgn}\left(\frac{x}{y}\right) = \frac{\operatorname{sgn}(x)}{\operatorname{sgn}(y)} . \end{cases}$$

• Comme $A = \pm 1$, on a $A = \operatorname{sgn}(A)$.

• Or, comme tout $c \in \mathsf{P}$ s'écrit d'une unique manière $\{i,j\}$ avec i < j, on a

$$A = \prod_{1 \leqslant i < j \leqslant n} \frac{\sigma(j) - \sigma(i)}{j - i}.$$

• Ainsi, on peut écrire

$$\begin{split} A &= \mathrm{sgn}(A) = \mathrm{sgn} \Bigg(\prod_{1 \leqslant i < j \leqslant n} \frac{\sigma(j) - \sigma(i)}{j - i} \Bigg) \\ &= \prod_{1 \leqslant i < j \leqslant n} \frac{\mathrm{sgn} \big(\sigma(j) - \sigma(i)\big)}{\mathrm{sgn}(j - i)} \\ &= \prod_{1 \leqslant i < j \leqslant n} \mathrm{sgn} \big(\sigma(j) - \sigma(i)\big). \end{split}$$

En effet, dans ce produit, on a toujours j > i et donc sgn(j - i) = 1.

• Soit $(i, j) \in [1, n]^2$.

$$ightharpoonup$$
 Si $(i,j) \in \mathsf{Inv}(\sigma)$, on a $\mathsf{sgn}\big(\sigma(j) - \sigma(i)\big) = -1$.

 \triangleright Sinon, on a $sgn(\sigma(j) - \sigma(i)) = 1$.

• Donc, on a

$$A = \prod_{\substack{1 \leqslant i < j \leqslant n \\ (i,j) \in \operatorname{Inv}(\sigma)}} -1 = (-1)^{\operatorname{N}(\sigma)},$$

ce qu'on voulait démontrer.

Remarque

• L'application

$$\mathsf{sgn}:\mathbb{Q}^*{\:\longrightarrow\:} \{-1,1\}$$

est un morphisme de groupes.

• Plus précisément, c'est un morphisme de groupes de (\mathbb{Q}^*, \times) dans $(\{-1, 1\}, \times)$.

Permutations 16/19

III. Ensemble des inversions du produit de deux permutations

1) Semi-anneau des parties d'un ensemble

Soit E un ensemble.

a) somme et conjonction

On va travailler dans $\mathcal{P}(E)$, qu'on note X.

Si $x, y \in X$, on note

$$x + y \coloneqq x \cup y$$
$$x \cdot y \coloneqq x \cap y.$$

Par convention, l'opération « • » est prioritaire sur « + », comme on en a l'habitude.

On note aussi 1 := E et $0 := \emptyset$.

On peut montrer que (X, +, 0) et $(X, \bullet, 1)$ sont des monoïdes commutatifs et que

$$\forall x, y, z \in X, (x+y) \cdot z = x \cdot z + y \cdot z.$$

b) somme disjointe

Si $x, y \in X$ sont disjoints, on note $x \oplus y$ au lieu x + y. On a encore

$$\forall x, y, z \in X, (x \oplus y) \cdot z = x \cdot z \oplus y \cdot z.$$

c) soustraction

Si $y \subset x$, on note $x - y := x \setminus y$. On a encore

$$\forall x \in X, \forall y \subset x, \forall z \in X, (x-y) \cdot z = x \cdot z - y \cdot z.$$

d) action des bijections

Si $f: E \longrightarrow E$ est bijective, et si $x \in X$, on note

$$f(x) := \{ f(a) ; a \in x \}.$$

On a alors,

$$\begin{aligned} \forall x,y \in X, \quad f(x+y) &= f(x) + f(y) \\ \forall x,y \in X, \quad f(xy) &= f(x)f(y) \\ \forall x \in X, \forall y \subset x, \quad f(x-y) &= f(x) - f(y) \\ f(1) &= 1. \end{aligned}$$

Enfin, si $g: E \longrightarrow E$ est une autre bijection, on a $\forall x \in X$, $(g \circ f)(x) = g(f(x))$.

e) compatibilité au cardinal

Si E est fini, on a, pour tous $x, y \in X$,

$$|x \oplus y| = |x| + |y|$$

$$|x - y| = |x| - |y| \quad \text{si } y \subset x$$

$$|f(x)| = |x| \quad \text{si } f \text{ est bijective}$$

2) Cas où E est l'ensemble des couples d'entiers distincts

a) cadre

On se place maintenant sur l'ensemble E des couples d'éléments distincts : on pose

$$\mathsf{E} \coloneqq \left\{ (i,j) \in \llbracket 1,n \rrbracket^2 \; \middle| \; i \neq j \right\} \qquad \text{et} \qquad \mathsf{X} \coloneqq \mathscr{P}(\mathsf{E}).$$

On pose aussi

$$p \coloneqq \big\{ (i,j) \in \mathsf{E} \bigm| i < y \big\} \qquad \text{et} \qquad n \coloneqq \big\{ (i,j) \in \mathsf{E} \bigm| i > y \big\}.$$

On a $1 = n \oplus p$.

Permutations 17/19

b) échange des éléments

On note

$$\Theta: \left\{ \begin{array}{c} \mathsf{E} \longrightarrow \mathsf{E} \\ (i,j) \longmapsto (j,i). \end{array} \right.$$

On pose, si $x \in X$, $\overline{x} := \Theta(x)$. Comme Θ est bijective, on a

$$\forall x, y \in \mathsf{X}, \ \begin{cases} \overline{x \cdot y} = \overline{x} \cdot \overline{y} \\ \overline{x + y} = \overline{x} + \overline{y} \end{cases}$$
$$|\overline{x}| = |x|.$$

On a $\overline{p} = n$.

c) action des permutations

Si $\sigma \in \mathfrak{S}_n$ et si $x \in \mathsf{X}$, on pose

$$\sigma(x) := \{ (\sigma(i), \sigma(j)) ; (i, j) \in x \}.$$

Si $x, y \in X$ et si $\sigma, \tau \in \mathfrak{S}_n$, on a (comme précédemment)

$$\sigma(x+y) = \sigma(x) + \sigma(y)$$

$$\sigma(xy) = \sigma(x)\sigma(y)$$

$$\sigma(x-y) = \sigma(x) - \sigma(y)$$

$$(\sigma\tau)(x) = \sigma(\tau(x))$$

$$\sigma(1) = 1.$$

Enfin, on peut vérifier que $\forall x \in \mathsf{X}, \ \overline{\sigma(x)} = \sigma(\overline{x}).$

3) Inversions d'un produit de deux permutations

a) inversions d'un produit

Proposition PER.28

Soient $\sigma, \tau \in \mathfrak{S}_n$. Alors,

$$\operatorname{Inv}(\sigma\tau) = \Big(\tau^{-1}\big(\operatorname{Inv}(\sigma)\big) - C\Big) \oplus \Big(\operatorname{Inv}(\tau) - \overline{C}\Big),$$

où
$$C := n \cdot (\sigma \tau)^{-1}(n) \cdot \tau^{-1}(p)$$
.

 $D\'{e}monstration.$ —

- Déjà, remarquons que $Inv(\sigma) = p \cdot \sigma^{-1}(n)$.
- On a donc

$$\operatorname{Inv}(\sigma\tau) = p \bullet \tau^{-1} \big(\sigma^{-1}(n)\big) = \tau^{-1} \Big(\tau(p) \bullet \sigma^{-1}(n)\Big).$$

• De plus, on a

$$\tau(p) \boldsymbol{\cdot} \sigma^{-1}(n) = \tau(p) \boldsymbol{\cdot} \sigma^{-1}(n) \boldsymbol{\cdot} (p \oplus n) = \underbrace{\tau(p) \boldsymbol{\cdot} \sigma^{-1}(n) \boldsymbol{\cdot} p}_{A} \ \oplus \ \underbrace{\tau(p) \boldsymbol{\cdot} \sigma^{-1}(n) \boldsymbol{\cdot} n}_{B}.$$

- On a ainsi $\operatorname{Inv}(\sigma\tau) = \tau^{-1}(A) \oplus \tau^{-1}(B)$.
- Réexprimons A puis $\tau^{-1}(A)$.

 \triangleright On a

$$\begin{split} A &= \tau(p) \bullet \sigma^{-1}(n) \bullet p = \tau(1-n) \bullet \sigma^{-1}(n) \bullet p \\ &= \tau(1) \bullet \sigma^{-1}(n) \bullet p \quad - \quad \tau(n) \bullet \sigma^{-1}(n) \bullet p \\ &= \sigma^{-1}(n) \bullet p \quad - \quad \tau(n) \bullet \sigma^{-1}(n) \bullet p \\ &= \operatorname{Inv}(\sigma) \quad - \quad \tau(n) \bullet \sigma^{-1}(n) \bullet p. \end{split}$$

Permutations 18/19

⊳ Donc,

$$\tau^{-1}(A) = \tau^{-1} \big(\mathsf{Inv}(\sigma) \big) \ - \ n \bullet (\sigma \tau)^{-1}(n) \bullet \tau^{-1}(p).$$

 $\,\rhd\,$ Si on pose $C\coloneqq n\boldsymbol{\cdot} (\sigma\tau)^{-1}(n)\boldsymbol{\cdot} \tau^{-1}(p),$ on a ainsi

$$\tau^{-1}(A) = \tau^{-1}(\operatorname{Inv}(\sigma)) - C.$$

- Venons-en maintenant à B.
 - ⊳ On a

$$\begin{split} B &= \tau(p) \bullet \sigma^{-1}(n) \bullet n = \tau(p) \bullet \sigma^{-1}(1-p) \bullet n \\ &= \tau(p) \bullet \sigma^{-1}(1) \bullet n - \tau(p) \bullet \sigma^{-1}(p) \bullet n \\ &= \tau(p) \bullet n - \tau(p) \bullet \sigma^{-1}(p) \bullet n. \end{split}$$

⊳ Donc,

$$\begin{split} \tau^{-1}(B) &= p \bullet \tau^{-1}(n) \ - \ p \bullet (\sigma \tau)^{-1}(p) \bullet \tau^{-1}(n) \\ &= \operatorname{Inv}(\tau) \ - \ p \bullet (\sigma \tau)^{-1}(p) \bullet \tau^{-1}(n). \end{split}$$

 \triangleright On remarque que le dernier terme est exactement égal à \overline{C} . On a donc

$$\tau^{-1}(B) = \operatorname{Inv}(\tau) - \overline{C}.$$

- Cela conclut.
- b) nombre d'inversions d'un produit

Corollaire PER. 29

Soient $\sigma, \tau \in \mathfrak{S}_n$. Alors,

$$N(\sigma \tau) \equiv N(\sigma) + N(\tau)$$
 [2].

Démonstration. — En utilisant les propriétés générales dégagées plus haut, c'est une conséquence immédiate de la proposition précédente. En effet, on a

$$\begin{split} \left| \mathsf{Inv}(\sigma\tau) \right| &= \left| \left(\tau^{-1} \big(\mathsf{Inv}(\sigma) \big) - C \right) \oplus \left(\mathsf{Inv}(\tau) - \overline{C} \right) \right| \\ &= \left| \tau^{-1} \big(\mathsf{Inv}(\sigma) \big) - C \right| + \left| \mathsf{Inv}(\tau) - \overline{C} \right| \\ &= \left(\left| \tau^{-1} \big(\mathsf{Inv}(\sigma) \big) \right| - |C| \right) + \left(\left| \mathsf{Inv}(\tau) \right| - |\overline{C}| \right) \\ &= \left| \mathsf{Inv}(\sigma) \right| + \left| \mathsf{Inv}(\tau) \right| - 2|C|. \end{split}$$

Permutations 19/19