Computer Logic Design Fundamentals

Chapter 2 – Combinational Logic Circuits

Part 1 – Gate Circuits and Boolean Equations

Prof. Yueming Wang

ymingwang@zju.edu.cn

College of Computer Science and Technology, Zhejiang University

Overview

- Part 1 Gate Circuits and Boolean Equations
 - Binary Logic and Gates
 - Boolean Algebra
 - Standard Forms
- Part 2 Circuit Optimization
 - Two-Level Optimization
 - Map Manipulation
 - Practical Optimization (Espresso)
 - Multi-Level Circuit Optimization
- Part 3 Additional Gates and Circuits
 - Other Gate Types
 - Exclusive-OR Operator and Gates
 - High-Impedance Outputs
 - Propagation Delay

Binary Logic and Gates

- Binary variables take on one of two values.
- Logical operators operate on binary values and binary variables.
- Basic logical operators are the <u>logic functions</u> AND, OR and NOT.
- Logic gates implement logic functions.
- Boolean Algebra: a useful mathematical system for specifying and transforming logic functions.
- We study Boolean algebra as a foundation for designing and analyzing digital systems!

Binary Variables

- Recall that the two binary values have different names:
 - True/False
 - On/Off
 - Yes/No
 - 1/0
- We use 1 and 0 to denote the two values.
- Variable identifier examples:
 - A, B, y, z, or X_1 for now
 - RESET, START IT, or ADD1 later

Logical Operations

- The three basic logical operations are:
 - AND
 - OR
 - NOT
- AND is denoted by a dot (·).
- OR is denoted by a plus (+).
- NOT is denoted by an overbar (¯), a single quote mark (') after, or (~) before the variable.

Notation Examples

Examples:

- $Y = A \times B$ is read "Y is equal to A AND B."
- z = x + y is read "z is equal to x OR y."
- X = A is read "X is equal to NOT A."
- Note: The statement:

1 + 1 = 2 (read "one plus one equals two")

is not the same as

1 + 1 = 1 (read "1 or 1 equals 1").

Operator Definitions

Operations are defined on the values "0" and "1" for each operator:

AND

$$0 \cdot 0 = 0$$

$$0 \cdot 1 = 0$$

$$1 \cdot 0 = 0$$

$$1 \cdot 1 = 1$$

$$0 + 0 = 0$$

$$0+1=1$$
 $\bar{1}=0$

$$1 + 0 = 1$$

$$1 + 1 = 1$$

$$\overline{0} = 1$$

$$\overline{1} = 0$$

Truth Tables

- Truth table a tabular listing of the values of a function for all possible combinations of values on its arguments
- Example: Truth tables for the basic logic operations:

AND			
X	Y	$Z = X \cdot Y$	
0	0	0	
0	1	0	
1	0	0	
1	1	1	

	OR			
X	$ \mathbf{Y} \mathbf{Z} = \mathbf{X} + \mathbf{Y}$			
0	0	0		
0	1	1		
1	0	1		
1	1	1		

NOT			
$Z = \overline{X}$			
1			
0			

Logic Function Implementation

- Using Switches
 - For inputs:
 - logic 1 is <u>switch closed</u>
 - logic 0 is switch open
 - For outputs:
 - logic 1 is <u>light on</u>
 - logic 0 is <u>light off</u>.
 - NOT uses a switch such
 - that:
 - logic 1 is switch open
 - logic 0 is switch closed

Switches in parallel => OR

Switches in series => AND

Normally-closed switch => NOT

Logic Function Implementation (Continued)

Example: Logic Using Switches

• Light is on (L = 1) for

$$L(A, B, C, D) =$$

and off (L = 0), otherwise.

 Useful model for relay circuits and for CMOS gate circuits, the foundation of current digital logic technology

Logic Gates

- In the earliest computers, switches were opened and closed by magnetic fields produced by energizing coils in *relays*. The switches in turn opened and closed the current paths.
- Later, vacuum tubes that open and close current paths electronically replaced relays.
- Today, transistors are used as electronic switches that open and close current paths.

Logic Gates (Continued)

 Implementation of logic gates with transistors (See Reading Supplement – CMOS Circuits)

- Transistor or tube implementations of logic functions are called <u>logic gates</u> or just <u>gates</u>
- Transistor gate circuits can be modeled by switch circuits

Logic Gate Symbols and Behavior

Logic gates have special symbols:

And waveform behavior in time as follows:

Gate Delay

- In actual physical gates, if one or more input changes causes the output to change, the output change does not occur instantaneously.
- The delay between an input change(s) and the resulting output change is the *gate delay* denoted by t_G :

Logic Diagrams and Expressions

	4 T		1 1	1
I rii	th	la	bl	Δ
11 U		1 a	W	

Truth Table				
XYZ	$\mathbf{F} = \mathbf{X} + \overline{\mathbf{Y}} \times \mathbf{Z}$			
000	0			
001	1			
010	0			
011	0			
100	1			
101	1			
110	1			
111	1			

Equation

$$F = X + \overline{Y} Z$$

Logic Diagram

- Boolean equations, truth tables and logic diagrams describe the same function!
- Truth tables are unique; expressions and logic diagrams are not. This gives flexibility in implementing functions.

Boolean Algebra

An algebraic structure defined on a set of at least two elements, B, together with three binary operators (denoted +, · and —) that satisfies the following basic identities:

$$1. X + 0 = X$$

3.
$$X+1=1$$

$$5. X + X = X$$

$$7. \quad X + \overline{X} = 1$$

9.
$$\overline{\overline{X}} = X$$

$$2. X \cdot 1 = X$$

4.
$$X \cdot 0 = 0$$

6.
$$X \cdot X = X$$

8.
$$X \cdot \overline{X} = 0$$

10.
$$X + Y = Y + X$$

12.
$$(X + Y) + Z = X + (Y + Z)$$

$$14. \quad X(Y+Z) = XY+XZ$$

16.
$$\overline{X+Y} = \overline{X} \cdot \overline{Y}$$

11.
$$XY = YX$$

13.
$$(XY)Z = X(YZ)$$

15.
$$X + YZ = (X + Y)(X + Z)$$

17.
$$\overline{X \cdot Y} = \overline{X} + \overline{Y}$$

Boolean Operator Precedence

- The order of evaluation in a Boolean expression is:
 - 1. Parentheses
 - 2. NOT
 - 3. AND
 - 4. OR
- Consequence: Parentheses appear around OR expressions
- Example: F = A(B + C)(C + D)

Some Properties of Identities & the Algebra

- If the meaning is unambiguous, we leave out the symbol "."
- The identities above are organized into pairs. These pairs have names as follows:
 - 1-4 Existence of 0 and 1 5-6 Idempotence
 - 7-8 Existence of complement 9 Involution
 - 10-11 Commutative Laws 12-13 Associative Laws
 - 14-15 Distributive Laws 16-17 DeMorgan's Laws
- The <u>dual</u> of an algebraic expression is obtained by interchanging + and · and interchanging 0's and 1's.
- The identities appear in <u>dual</u> pairs. When there is only one identity on a line the identity is <u>self-dual</u>, i. e., the dual expression = the original expression.

Some Properties of Identities & the Algebra (Continued)

- Unless it happens to be self-dual, the dual of an expression does not equal the expression itself.
- Example: $F = (A + \overline{C}) \cdot B + 0$ dual $F = (A \cdot \overline{C} + B) \cdot 1 = A \cdot \overline{C} + B$
- Example: $G = X \cdot Y + (\overline{W} + \overline{Z})$ dual G =
- Example: $H = A \cdot B + A \cdot C + B \cdot C$ dual H =
- Are any of these functions self-dual?

Example 1: Boolean Algebraic Proof

- Our primary reason for doing proofs is to learn:
 - Careful and efficient use of the identities and theorems of Boolean algebra, and
 - How to choose the appropriate identity or theorem to apply to make forward progress, irrespective of the application.

Example 2: Boolean Algebraic Proofs

Example 3: Boolean Algebraic Proofs

•
$$(\overline{X} + \overline{Y})Z + X\overline{Y} = \overline{Y}(X + Z)$$

Proof Steps Justification (identity or theorem)
 $(\overline{X} + \overline{Y})Z + X\overline{Y}$

Useful Theorems

•
$$x \cdot y + \overline{x} \cdot y = y$$
 $(x + y)(\overline{x} + y) = y$ Minimization
• $x + x \cdot y = x$ $x \cdot (x + y) = x$ Absorption
• $x + \overline{x} \cdot y = x + y$ $x \cdot (\overline{x} + y) = x \cdot y$ Simplification

$$x \cdot y + \overline{x} \cdot z + y \cdot z = x \cdot y + \overline{x} \cdot z$$
 Consensus
$$(x + y) \cdot (\overline{x} + z) \cdot (y + z) = (x + y) \cdot (\overline{x} + z)$$

$$\overline{x+y} = \overline{x} \cdot \overline{y}$$
 $\overline{x \cdot y} = \overline{x} + \overline{y}$ DeMorgan's Laws

Proof of Simplification

$$x \cdot y + \overline{x} \cdot y = y$$
 $(x + y)(\overline{x} + y) = y$

Boolean Function Evaluation

$$F1 = xy\overline{z}$$

$$F2 = x + \overline{y}z$$

$$F3 = \overline{x}\overline{y}\overline{z} + \overline{x}yz + x\overline{y}$$

$$F4 = x\overline{y} + \overline{x}z$$

X	y	Z	F1	F2	F3	F4
0	0	0	0	0		
0	0	1	0	1		
0	1	0	0	0		
0	1	1	0	0		
1	0	0	0	1		
1	0	1	0	1		
1	1	0	1	1		
1	1	1	0	1		

Expression Simplification

- An application of Boolean algebra
- Simplify to contain the smallest number of <u>literals</u> (complemented and uncomplemented variables):

$$AB + \overline{A}CD + \overline{A}BD + \overline{A}C\overline{D} + ABCD$$

$$= AB + ABCD + \overline{A}CD + \overline{A}C\overline{D} + \overline{A}BD$$

$$= AB + AB(CD) + \overline{A}C(D + \overline{D}) + \overline{A}BD$$

$$= AB + \overline{A}C + \overline{A}BD = B(A + \overline{A}D) + \overline{A}C$$

$$= B (A + D) + \overline{A} C 5 literals$$

Example: Simplify Expression

$$L = AB + A\overline{C} + \overline{B}C + \overline{C}B + \overline{B}D + \overline{D}B + ADE(F + G)$$

$$L = A\overline{B}C + \overline{B}C + \overline{C}B + \overline{B}D + \overline{D}B + ADE(F + G)$$
 DeMorgan Laws

$$=A+\overline{B}C+\overline{C}B+\overline{B}D+\overline{D}B+ADE(F+G)$$
 A

$$=A+\overline{B}C+\overline{C}B+\overline{B}D+\overline{D}B$$

$$=A+\overline{B}C(D+\overline{D})+\overline{C}B+\overline{B}D+\overline{D}B(C+\overline{C})$$

$$= A + \overline{BCD} + \overline{BCD} + \overline{BC} + \overline{BD} + \overline{DBC} + \overline{DBC}$$

$$=A+\overline{BCD}+B\overline{C}+\overline{BD}+\overline{DBC}$$

$$=A+C\overline{D(B+B)}+B\overline{C}+\overline{BD}$$

$$= A + CD + BC + BD$$

$$A + \overline{AB} = A + B$$

$$A+AB=A$$

$$A + \overline{A} = 1$$

$$A+AB=A$$

$$A + \overline{A} = 1$$

Complementing Functions

- Use DeMorgan's Theorem to complement a function:
 - 1. Interchange AND and OR operators
 - 2. Complement each constant value and literal
- Example: Complement $F = \overline{x}y\overline{z} + x\overline{y}\overline{z}$ $\overline{F} = (x + \overline{y} + z)(\overline{x} + y + z)$
- Example: Complement $G = (\overline{a} + bc)\overline{d} + e$ $\overline{G} =$

Overview - Canonical Forms

- What are Canonical Forms?
- Minterms and Maxterms
- Index Representation of Minterms and Maxterms
- Sum-of-Minterm (SOM) Representations
- Product-of-Maxterm (POM) Representations
- Representation of Complements of Functions
- Conversions between Representations

Canonical Forms

- It is useful to specify Boolean functions in a form that:
 - Allows comparison for equality.
 - Has a correspondence to the truth tables
- Canonical Forms in common usage:
 - Sum of Minterms (SOM)
 - Product of Maxterms (POM)

Minterms

- Minterms are AND terms with every variable present in either true or complemented form.
- Given that each binary variable may appear normal (e.g., x) or complemented (e.g., \overline{x}), there are 2^n minterms for n variables.
- **Example:** Two variables (X and Y)produce $2 \times 2 = 4$ combinations:

XY (both normal)

XY(X normal, Y complemented)

XY (X complemented, Y normal)

 $\overline{\mathbf{X}}\overline{\mathbf{Y}}$ (both complemented)

Thus there are <u>four minterms</u> of two variables.

Maxterms

- Maxterms are OR terms with every variable in true or complemented form.
- Given that each binary variable may appear normal (e.g., x) or complemented (e.g., \overline{x}), there are 2^n maxterms for n variables.
- **Example:** Two variables (X and Y) produce $2 \times 2 = 4$ combinations:

X + Y (both normal)

X + Y (x normal, y complemented)

 $\overline{X} + Y$ (x complemented, y normal)

 $\overline{\mathbf{X}} + \overline{\mathbf{Y}}$ (both complemented)

Maxterms and Minterms

Examples: Two variable minterms and maxterms.

Index	Minterm	Maxterm
0	$\overline{\mathbf{x}}\overline{\mathbf{y}}$	x + y
1	X y	$x + \overline{y}$
2	x y	$\overline{\mathbf{x}} + \mathbf{y}$
3	ху	$\overline{x} + \overline{y}$

The index above is important for describing which variables in the terms are true and which are complemented.

Standard Order

- Minterms and maxterms are designated with a subscript
- The subscript is a number, corresponding to a binary pattern
- The bits in the pattern represent the complemented or normal state of each variable listed in a standard order.
- All variables will be present in a minterm or maxterm and will be listed in the <u>same order</u> (usually alphabetically)
- Example: For variables a, b, c:
 - Maxterms: $(a + b + \overline{c})$, (a + b + c)
 - Terms: (b + a + c), a \(\bar{c}\) b, and (c + b + a) are NOT in standard order.
 - Minterms: $a \bar{b} c$, a b c, $\bar{a} \bar{b} c$
 - Terms: (a + c), \bar{b} c, and $(\bar{a} + b)$ do not contain all variables

Purpose of the Index

The <u>index</u> for the minterm or maxterm, expressed as a binary number, is used to determine whether the variable is shown in the true form or complemented form.

For Minterms:

- "1" means the variable is "Not Complemented" and
- "0" means the variable is "Complemented".

For Maxterms:

- "0" means the variable is "Not Complemented" and
- "1" means the variable is "Complemented".

Index Example in Three Variables

- Example: (for three variables)
- Assume the variables are called X, Y, and Z.
- The standard order is X, then Y, then Z.
- The Index 0 (base 10) = 000 (base 2) for three variables). All three variables are complemented for minterm 0 ($\overline{X}, \overline{Y}, \overline{Z}$) and no variables are complemented for Maxterm 0 (X,Y,Z).
 - Minterm 0, called m_0 is $\overline{X}\overline{Y}Z$.
 - Maxterm 0, called M_0 is (X + Y + Z).
 - Minterm 6?
 - Maxterm 6 ?

Index Examples – Four Variables

Index	Binary	Minterm	Maxterm
i	Pattern	m_i	$\mathbf{M_i}$
0	0000	abcd	a+b+c+d
1	0001	abcd	?
3	0011	?	$a+b+\bar{c}+\bar{d}$
5	0101	abcd	$a+\overline{b}+c+\overline{d}$
7	0111	?	$a+\overline{b}+\overline{c}+\overline{d}$
10	1010	abcd	$\overline{a} + b + \overline{c} + d$
13	1101	abcd	?
15	1111	abcd	$\overline{a} + \overline{b} + \overline{c} + \overline{d}$

Minterm and Maxterm Relationship

- Review: DeMorgan's Theorem $\overline{x \cdot y} = \overline{x} + \overline{y}$ and $\overline{x + y} = \overline{x} \cdot \overline{y}$
- Two-variable example:

$$\mathbf{M}_2 = \overline{\mathbf{x}} + \mathbf{y}$$
 and $\mathbf{m}_2 = \mathbf{x} \cdot \overline{\mathbf{y}}$

Thus M₂ is the complement of m₂ and vice-versa.

- Since DeMorgan's Theorem holds for n variables, the above holds for terms of n variables
- giving:

$$M_i = \overline{M}_{i \text{ and }} M_i = \overline{M}_{i}$$

Thus M_i is the complement of m_i.

Function Tables for Both

Minterms of2 variables

ху	m_0	\mathbf{m}_1	m_2	m ₃
0 0	1	0	0	0
01	0	1	0	0
10	0	0	1	0
11	0	0	0	1

Maxterms of 2 variables

ху	$\mathbf{M_0}$	\mathbf{M}_1	M_2	M_3
0 0	0	1	1	1
0 1	1	0	1	1
10	1	1	0	1
11	1	1	1	0

Each column in the maxterm function table is the complement of the column in the minterm function table since M_i is the complement of m_i.

Observations

- In the function tables:
 - Each minterm has one and only one 1 present in the 2^n terms (a minimum of 1s). All other entries are 0.
 - Each \underline{max} term has one and only one 0 present in the 2^n terms All other entries are 1 (a \underline{max} imum of 1s).
- We can implement any function by "ORing" the minterms corresponding to "1" entries in the function table. These are called the minterms of the function.
- We can implement any function by "ANDing" the maxterms corresponding to "0" entries in the function table. These are called the maxterms of the function.
- This gives us two <u>canonical forms</u>:
 - Sum of Minterms (SOM)
 - Product of Maxterms (POM)

for stating any Boolean function.

Minterm Function Example

• Example: Find $F_1 = m_1 + m_4 + m_7$

•
$$\mathbf{F1} = \overline{\mathbf{x}} \ \overline{\mathbf{y}} \ \mathbf{z} + \mathbf{x} \ \overline{\mathbf{y}} \ \overline{\mathbf{z}} + \mathbf{x} \ \mathbf{y} \ \mathbf{z}$$

X	y z	index	\mathbf{m}_1	+	$\mathbf{m_4}$	+	m ₇	$= \mathbf{F}_1$
0	0 0	0	0	+	0	+	0	= 0
0	01	1	1	+	0	+	0	= 1
0	10	2	0	+	0	+	0	= 0
0	11	3	0	+	0	+	0	= 0
1	0 0	4	0	+	1	+	0	= 1
1	0 1	5	0	+	0	+	0	= 0
1	10	6	0	+	0	+	0	= 0
1	11	7	0	+	0	+	1	= 1
Chapter 2 - Part 1								

Minterm Function Example

- $F(A, B, C, D, E) = m_2 + m_9 + m_{17} + m_{23}$
- F(A, B, C, D, E) =

Maxterm Function Example

Example: Implement F1 in maxterms:

$$\begin{split} F_1 &= M_0 \cdot M_2 \cdot M_3 \cdot M_5 \cdot M_6 \\ F_1 &= (x+y+z) \cdot (x+\overline{y}+z) \cdot (x+\overline{y}+\overline{z}) \\ \cdot (\overline{x}+y+\overline{z}) \cdot (\overline{x}+\overline{y}+z) \\ & \underline{x} \ \underline{y} \ \underline{z} \ \underline{i} \ \underline{M_0 \cdot M_2 \cdot M_3 \cdot M_5 \cdot M_6} = F1 \\ \hline 0000 \ 0 \ 0 \cdot 1 \cdot 1 \cdot 1 \cdot 1 \cdot 1 = 0 \\ 001 \ 1 \ 1 \cdot 1 \cdot 1 \cdot 1 \cdot 1 = 1 \\ 010 \ 2 \ 1 \cdot 0 \cdot 1 \cdot 1 \cdot 1 = 0 \\ 011 \ 3 \ 1 \cdot 1 \cdot 0 \cdot 1 \cdot 1 = 0 \\ 100 \ 4 \ 1 \cdot 1 \cdot 1 \cdot 1 \cdot 1 = 1 \\ 101 \ 5 \ 1 \cdot 1 \cdot 1 \cdot 1 \cdot 0 \cdot 1 = 0 \\ 110 \ 6 \ 1 \cdot 1 \cdot 1 \cdot 1 \cdot 1 \cdot 0 = 0 \\ 111 \ 7 \ 1 \cdot 1 \cdot 1 \cdot 1 \cdot 1 \cdot 1 = 1 \end{split}$$

Maxterm Function Example

- $F(A, B,C,D) = M_3 \cdot M_8 \cdot M_{11} \cdot M_{14}$
- $\mathbf{F}(\mathbf{A}, \mathbf{B}, \mathbf{C}, \mathbf{D}) =$

Canonical Sum of Minterms

- Any Boolean function can be expressed as a <u>Sum of Minterms</u>.
 - For the function table, the <u>minterms</u> used are the terms corresponding to the 1's
 - For expressions, expand all terms first to explicitly list all minterms. Do this by "ANDing" any term missing a variable v with a term $(v + \overline{v})$.
- Example: Implement $f = x + \overline{x} \overline{y}$ as a sum of minterms.

First expand terms: $f = x(y + \overline{y}) + \overline{x} \overline{y}$ Then distribute terms: $f = xy + x\overline{y} + \overline{x} \overline{y}$ Express as sum of minterms: $f = m_3 + m_2 + m_0$

Another SOM Example

- Example: F = A + BC
- There are three variables, A, B, and C which we take to be the standard order.
- Expanding the terms with missing variables:

- Collect terms (removing all but one of duplicate terms):
- Express as SOM:

Shorthand SOM Form

From the previous example, we started with:

$$F = A + \overline{B} C$$

We ended up with:

$$F = m_1 + m_4 + m_5 + m_6 + m_7$$

This can be denoted in the formal shorthand:

$$F(A,B,C) = \Sigma_m(1,4,5,6,7)$$

Note that we explicitly show the standard variables in order and drop the "m" designators.

Canonical Product of Maxterms

- Any Boolean Function can be expressed as a <u>Product of Maxterms (POM)</u>.
 - For the function table, the maxterms used are the terms corresponding to the 0's.
 - For an expression, expand all terms first to explicitly list all maxterms. Do this by first applying the second distributive law, "ORing" terms missing variable v with a term equal to $v \cdot \overline{v}$ and then applying the distributive law again.
- Example: Convert to product of maxterms:

$$f(x,y,z) = x + \overline{x} \overline{y}$$

Apply the distributive law:

$$x + \overline{x} \overline{y} = (x + \overline{x})(x + \overline{y}) = 1 \cdot (x + \overline{y}) = x + \overline{y}$$

Add missing variable z:

$$x + \overline{y} + z \cdot \overline{z} = (x + \overline{y} + z)(x + \overline{y} + \overline{z})$$

Express as POM: $f = M_2 \cdot M_3$

Another POM Example

Convert to Product of Maxterms:

$$f(A,B,C) = A\overline{C} + BC + \overline{A}\overline{B}$$

Use $x + y = (x+y) \cdot (x+z)$ with $x = (A\overline{C} + BC)$, $y = \overline{A}$, and $z = \overline{B}$ to get:

$$f = (A\overline{C} + BC + \overline{A})(A\overline{C} + BC + \overline{B})$$

• Then use $x + \overline{x}y = x + y$ to get:

$$f = (\overline{C} + BC + \overline{A})(A\overline{C} + C + \overline{B})$$

and a second time to get:

$$f = (\overline{C} + B + \overline{A})(A + C + \overline{B})$$

Rearrange to standard order,

$$f = (\overline{A} + B + \overline{C})(A + \overline{B} + C)$$
 to give $f = M_5 \cdot M_2$

Function Complements

- The complement of a function expressed as a sum of minterms is constructed by selecting the minterms missing in the sum-of-minterms canonical forms.
- Alternatively, the complement of a function expressed by a Sum of Minterms form is simply the Product of Maxterms with the same indices.
- Example: Given $F(x, y, z) = \Sigma_m(1,3,5,7)$ $\overline{F}(x, y, z) = \Sigma_m(0,2,4,6)$ $\overline{F}(x, y, z) = \Pi_M(1,3,5,7)$

Conversion Between Forms

- To convert between sum-of-minterms and productof-maxterms form (or vice-versa) we follow these steps:
 - Find the function complement by swapping terms in the list with terms not in the list.
 - Change from products to sums, or vice versa.
- Example: Given F as before: $F(x, y, z) = \sum_{m} (1, 3, 5, 7)$
- Form the Complement: $\overline{F}(x,y,z) = \Sigma_m(0,2,4,6)$
- Then use the other form with the same indices this forms the complement again, giving the other form of the original function: $F(x, y, z) = \prod_{M} (0, 2, 4, 6)$

Standard Forms

- Standard Sum-of-Products (SOP) form: equations are written as an OR of AND terms
- Standard Product-of-Sums (POS) form: equations are written as an AND of OR terms
- Examples:
 - SOP: $ABC + \overline{A}\overline{B}C + B$
 - POS: $(A+B) \cdot (A+\overline{B}+\overline{C}) \cdot C$
- These "mixed" forms are neither SOP nor POS
 - $\bullet (A B + C) (A + C)$
 - \bullet ABC+AC(A+B)

Standard Sum-of-Products (SOP)

- A sum of minterms form for *n* variables can be written down directly from a truth table.
 - Implementation of this form is a two-level network of gates such that:
 - The first level consists of *n*-input AND gates, and
 - The second level is a single OR gate (with fewer than 2^n inputs).
- This form often can be simplified so that the corresponding circuit is simpler.

Standard Sum-of-Products (SOP)

- A Simplification Example:
- $F(A,B,C) = \Sigma m(1,4,5,6,7)$
- Writing the minterm expression: $F = \overline{A} \overline{B} C + A \overline{B} \overline{C} + A \overline{B} C + ABC + ABC$
- Simplifying:F =

Simplified F contains 3 literals compared to 15 in minterm F

AND/OR Two-level Implementation of SOP Expression

The two implementations for F are shown below – it is quite apparent which is simpler!

SOP and **POS** Observations

- The previous examples show that:
 - Canonical Forms (Sum-of-minterms, Product-of-Maxterms), or other standard forms (SOP, POS) differ in complexity
 - Boolean algebra can be used to manipulate equations into simpler forms.
 - Simpler equations lead to simpler two-level implementations
- Questions:
 - How can we attain a "simplest" expression?
 - Is there only one minimum cost circuit?
 - The next part will deal with these issues.

Assignment

2-1a; 2-2a, c; 2-3a, c; 2-6b, d; 2-10a, c; 2-11a, c, d; 2-12b