Introducción a la Probabilidad y Estadística - Probabilidad y Estadística

Grisel Britos

2023

INTERVALOS DE CONFIANZA BASADOS EN UNA SOLA MUESTRA

Una estimación puntual sólo proporciona un valor numérico, pero NO proporciona información sobre la precisión y confiabilidad de la estimación del parámetro. Entonces una alternativa es calcular lo que llamaremos INTERVALO DE CONFIANZA.

Un Intervalo de Confianza (IC) para el parámetro θ permite tener una medida de la CONFIABILI-DAD y PRECISIÓN de la estimación del parámetro.

La PRECISIÓN de un IC tiene que ver con su longitud: cuanto menor sea su longitud, mayor es la precisión.

La CONFIABILIDAD es medida con el nivel de confianza del intervalo, que denotaremos con $(1-\alpha)$. Los niveles más usados son de 0.90 , 0.95 y 0.99. Cuanto mayor sea el nivel de confianza, mayor es la chance de que el IC contenga al verdadero valor poblacional.

Luego es bueno pedirle a un IC que tenga una longitud pequeña y una alta confiabilidad de contener al parámetro poblacional.

Método para generar un IC para θ

Sea $X_1, X_2, ..., X_n$ una muestra aleatoria (m.a.) con distribución que depende de θ .

- 1
ro) Hallar un estadístico $h(X_1, X_2, ..., X_n; \theta)$ con distribución conocida y que no dependa de θ .
- 2do) Fijar un nivel de confianza $(1-\alpha)$ y, usando la distribución del estadístico, encontrar a < b tales que

$$P(a \le h(X_1, X_2, ..., X_n; \theta) \le b) = (1 - \alpha)$$
(1)

3ro) A partir de la expresión del evento $(a \leq h(X_1, X_2, ..., X_n; \theta) \leq b)$ hay que tratar de obtener $l(X_1, X_2, ..., X_n)$ y $u(X_1, X_2, ..., X_n)$ tales que

$$P(l(X_1, X_2, ..., X_n) \le \theta \le u(X_1, X_2, ..., X_n)) = (1 - \alpha)$$

Luego $[l(X_1, X_2, ..., X_n); u(X_1, X_2, ..., X_n)]$ es un IC aleatorio para θ con un nivel de confianza $(1 - \alpha)$.

Notación: Denotaremos con z_{β} al valor crítico, hallado en la tabla de la distribución Normal Estándar, tal que: $\Phi(z_{\beta}) = 1 - \beta$

IC para la media poblacional μ

CASO A:

Sea $X_1, X_2, ..., X_n$ una m.a. con distribución $N(\mu, \sigma^2)$, con σ^2 conocida.

1
ro) Conocemos la distribución del promedio muestral \overline{X} y esta es:

$$\overline{X} \sim N(\mu, \frac{\sigma^2}{n}).$$

Al estandarizar \overline{X} obtenemos una v.a. con distribución N(0,1):

$$\frac{(\overline{X} - \mu)}{\sigma} \sqrt{n} = h(X_1, X_2, ..., X_n; \theta) \sim N(0, 1)$$

2do) Fijado un nivel de confianza $(1 - \alpha)$, hay que buscar en la tabla normal estándar los valores de a y b tales que cumplan (1). Estos valores son $a = -z_{\alpha/2}$ y $b = z_{\alpha/2}$.

3ro) Trabajando desde la expresión del evento $(a \le h(X_1, X_2, ..., X_n; \theta) \le b)$ se tiene que

$$P((\overline{X} - z_{\alpha/2} \frac{\sigma}{\sqrt{n}} \le \mu \le \overline{X} + z_{\alpha/2} \frac{\sigma}{\sqrt{n}})) = (1 - \alpha)$$

Por lo tanto un IC aleatorio de nivel $(1 - \alpha)$ para $\theta = \mu$ es:

$$\overline{X}\pm z_{lpha/2}rac{\sigma}{\sqrt{n}}$$

Por lo tanto, si se observa que en un evento $\omega \in \Omega$:

$$X_1(\omega) = x_1; X_2(\omega) = x_2; ...; X_n(\omega) = x_n,$$

un IC con un nivel de confianza $(1-\alpha)$ para μ es

$$\overline{x} \pm z_{\alpha/2} \frac{\sigma}{\sqrt{n}}$$

Interpretación del nivel de confianza de un intervalo

Se generaron 20 muestras aleatorias de distribución N(0,1) de tamaño n=10. Con cada muestra se calculó el IC del 90 % para μ dado por

$$\overline{x} \pm 1,645 \frac{1}{\sqrt{n}}$$
 con $z_{0,05} = 1,645$

Los 20 IC se muestran en la siguiente gráfica:

Como se puede observar en la gráfica, el verdadero valor de μ , que sabemos es igual a cero, NO pertenece a sólo el 10 % de los IC hallados.

Por eso un IC del 0,90 significa que hay una confiabilidad del 90 % de que el valor verdadero del parámetro se encuentre entre la cota inferior y superior hallada.

Algunas observaciones:

Intervalos de confianza para muestras N(0,1) de longitud 10

a) La longitud del IC de nivel $(1 - \alpha)$ para μ es igual a

$$2z_{\alpha/2}\frac{\sigma}{\sqrt{n}}$$

- b) A mayor confiabilidad (1α) , se pierde precisión.
- c) Si se quiere obtener un intervalo de confianza de longitud a lo sumo L y una confiabilidad $(1-\alpha)$ para μ entonces hay que tomar

 $n \ge (2z_{\alpha/2} \frac{\sigma}{L})^2$

Ejercicio 1: La calibración de una báscula debe ser revisada al pesar 25 veces un espécimen de 10 Kg. Suponga que los resultados de los diferentes pesos son independientes entre sí y que la variable peso esta normalmente distribuida con un desvío estándar $\sigma=0,20$ Kg. Sea μ el verdadero valor medio de lectura de peso de la báscula.

- a) ¿Cuál es el nivel de confianza para el intervalo $\overline{x} \pm 2.81 \frac{\sigma}{\sqrt{n}}$ para μ ?
- b) ¿Cuál es el valor de $z_{\alpha/2}$ para un IC del 99,7% para μ ?
- c) Si de la muestra observada se obtuvo un promedio y desvío estándar muestrales de $\overline{x} = 10,30$ Kg y $s_{n-1} = 0,19$ Kg respectivamente, obtenga un IC del 95 % para μ . Interprete el intervalo obtenido.
- d) ¿Qué tan grande debería ser el tamaño de muestra tal que la longitud del IC del 95 % para μ sea a lo sumo de 0.05?

CASO B:

Por T.C.L., si $X_1, X_2, ..., X_n$ es una m.a. con $E(X) = \mu$ y $V(X) = \sigma^2$ entonces, para n suficientemente grande se tiene que $\overline{X} = \frac{1}{n} \sum_{i=1}^n X_i$ tiene distribución aproximadamente $N(\mu, \sigma^2/n)$, o equivalentemente,

$$\frac{(\overline{X} - \mu)\sqrt{n}}{\sigma} \dot{\sim} N(0, 1)$$

• Luego, si $n \geq 30$ y σ conocido, y trabajando de igual forma que lo realizado en el Caso A, se obtiene que un IC aleatorio de nivel aproximado $(1 - \alpha)$ para μ es:

$$\overline{X}\pm z_{lpha/2}rac{\sigma}{\sqrt{n}}$$

• Si σ es desconocido, a partir de $n \geq 40$,

$$\frac{(\overline{X} - \mu)\sqrt{n}}{S_{n-1}} \dot{\sim} N(0, 1)$$

Luego un IC aleatorio de nivel aproximado $(1 - \alpha)$ para μ es:

$$\overline{X} \pm z_{\alpha/2} \frac{S_{n-1}}{\sqrt{n}}$$

donde
$$S_{n-1} = \frac{1}{n-1} \sum_{i=1}^{n} (X_i - \overline{X})^2$$
.

Observación: En el caso en que σ sea conocida, un IC de nivel aproximado $(1 - \alpha)$ para μ de longitud a lo sumo L se obtiene con una muestra de tamaño al menos:

$$n \geq (2z_{\alpha/2}\frac{\sigma}{L})^2$$

Ejercicio 2: Se tiene una muestra de la duración de eco de radar de 110 relámpagos en cierta región. El promedio muestral fue de 0.81 segundos y el desviación estándar muestral (s_{n-1}) de 0.34 segundos. Calcular un IC de nivel aproximado 0.99 para la media de duración de eco μ .

Distribución t-student con ν grados de libertad

Definición: Sean Z y X dos variables aleatorias independientes tales que $Z \sim N(0,1)$ y $X \sim \chi^2_{\nu}$. Entonces $T = \frac{Z}{\sqrt{X/\nu}}$ se dice que tiene distribución t-student con ν grados de libertad.

La función densidad para una v.a. con distribución t-student con ν grados de libertad es:

$$f(x;\nu) = \frac{\Gamma(\frac{\nu+1}{2})}{\sqrt{\nu\pi}\Gamma(\frac{\nu}{2})} (1 + \frac{x^2}{\nu})^{-(\nu+1)/2} \quad \forall x \in \mathbb{R}$$

Propiedades de la densidad de una t-student con ν gl.

- a) Tiene forma de campana y es simétrica entorno del origen.
- b) La diferencia con la N (0; 1) es que tiene mayor dispersión para ν pequeño.
- c) Cuando $\nu \to \infty$ la densidad se aproxima a la N (0; 1).

Para el cálculo de probabilidades usaremos la Tabla A-5 del libro de Devore.

<u>Notación</u>: $t_{\alpha,\nu}$ es el valor crítico cuya área a cola superior es igual a α y los grados de libertad son ν .

Ejercicio: Para una distribución t-student con ν grados de libertad.

- I) Determinar los siguientes valores críticos:
 - a) $t_{0.025.5}$
 - b) $t_{0,025,25}$
 - c) $t_{0,975,5}$
- II) Determinar el valor crítico que contenga el área descripta en los siguientes casos:
 - a) Área a cola inferior 0,025 y grados de libertad 15.
 - b) Área central 0,95 y grados de libertad 15.
 - c) Área central 0,99 y grados de libertad 25.

Teorema: Sea $X_1, X_2, ..., X_n$ una m.a. con distribución $N(\mu, \sigma^2)$ entonces:

a)
$$Z = \frac{(\overline{X} - \mu)\sqrt{n}}{\sigma} \sim N(0, 1)$$
 y $(n - 1)\frac{S_{n-1}^2}{\sigma^2} \sim \chi_{n-1}^2$

b) Z y W son variables aleatorias independientes.

Por lo tanto de a) y b) resulta que

$$\frac{(\overline{X} - \mu)\sqrt{n}}{S_{n-1}} \sim t_{n-1}$$

CASO C:

Sea $X_1, X_2, ..., X_n$ una m.a. con distribución $N(\mu, \sigma^2)$, con σ^2 desconocida. Ya sabemos que

$$\frac{(\overline{X} - \mu)\sqrt{n}}{\sigma} \sim N(0, 1)$$

Por lo tanto, por lo visto en el Caso B, si $n \ge 40$ un IC aleatorio de nivel aproximado $(1-\alpha)$ para μ es:

$$\overline{X} \pm z_{\alpha/2} \frac{S_{n-1}}{\sqrt{n}}$$

Pero ¿qué hacer si n < 40?

Debido al teorema visto recién y trabajando en forma similar a lo realizado cuando la distribución es normal estándar, se tiene que un IC aleatorio de nivel $(1 - \alpha)$ para μ es:

$$\overline{X} \pm t_{\frac{\alpha}{2},n-1} \frac{S_{n-1}}{\sqrt{n}}$$

<u>Ejercicio 3:</u> Un artículo sobre envejecimiento del papel aislante en transformadores de potencia, contiene la siguiente tabla sobre el grado de polimerización en muestra de papel:

Suponiendo que muestra proviene de una distribución normal

- a) Construir un intervalo de confianza del 95 % para el grado de polimerización medio.
- b) A partir del intervalo obtenido ¿es factible el valor de 440 para la polimerización media? ¿y un valor de 450? Justifique su respuesta.

Distribución χ^2 con ν grados de libertad (gl)

La distribución χ^2 con ν g.l. es un caso particular de la distribución Gamma:

$$\chi^2_{\nu} = \Gamma(\frac{\nu}{2}, 2).$$

La función densidad de esta variable aleatoria no es simétrica respecto del origen. Para el cálculo de probabilidades usaremos la Tabla A-7 del libro de Devore.

Notación: $\chi^2_{\alpha,\nu}$ es el valor crítico cuya área a cola superior es igual a α y los grados de libertad son ν .

Ejercicio: Sea X una variable aleatoria con distribución Chi-cuadrado, entonces hallar:

- a) El valor crítico que me deja un área a cola superior de 0,005 con gl=25.
- b) El valor crítico que me deja un área a cola superior de 0,95 con gl=25.
- c) El percentil 95 % para X con gl=10.
- d) El percentil 5% para X con gl=15.
- e) $P(10, 98 \le X \le 36, 78)$ con ql=22.
- f) $P((X < 14,611) \cup (X > 37,652))$ con gl=25.

IC para σ^2 y σ de nivel $(1-\alpha)$

Sea $X_1, X_2, ..., X_n$ una m.a.con distribución $N(\mu, \sigma^2)$.

Para dar el IC en esta situación presentaremos una variable aleatoria presentada en el teorema anterior:

$$h(X_1, ..., X_n; \sigma^2) = (n-1) \frac{S_{n-1}^2}{\sigma^2} \sim \chi_{n-1}^2$$

donde $S_{n-1}^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i - \overline{X})^2$

Luego con este resultado y trabajando en forma similar a lo realizado antes se tiene que un IC aleatorio de nivel $(1 - \alpha)$ para σ^2 es:

$$[\frac{(n-1)S_{n-1}^2}{\chi^2_{\frac{\alpha}{2},n-1}};\frac{(n-1)S_{n-1}^2}{\chi^2_{1-\frac{\alpha}{2},n-1}}]$$

y para σ :

$$[\sqrt{\frac{(n-1)s_{n-1}^2}{\chi_{\frac{\alpha}{2},n-1}^2}};\sqrt{\frac{(n-1)s_{n-1}^2}{\chi_{1-\frac{\alpha}{2},n-1}^2}}]$$

Ejercicio 4: Se efectuaron las siguientes observaciones de resistencia a la fractura de placas base de 18% de acero maragizado al níquel:

$$69, 5 \quad 71, 9 \quad 72, 6 \quad 73, 1 \quad 73, 3 \quad 73, 5 \quad 75, 5 \quad 75, 7 \quad 75, 8 \quad 76, 1 \quad 76, 2$$

Asuma que la muestra proviene de una distribución $N(\mu, \sigma^2)$.

- a) Construir un intervalo de confianza del 99 % para la resistencia media a la fractura.
- b) Construir un intervalo de confianza del 99 % para la desviación estándar poblacional de la resistencia a la fractura.

IC para la proporción poblacional p

Sea $X_1, X_2, ..., X_n$ una m.a.con distribución Bernoulli(p) y tamaño de muestra suficientemente grande. Entonces por TCL resulta que

$$\frac{(\overline{X}-p)}{\sqrt{\frac{p(1-p)}{n}}} \dot{\sim} N(0,1)$$

donde p = E(X) y V(X) = p(1 - p). Denotaremos con $\hat{p} = \overline{X}$, entonces

$$\frac{(\hat{p}-p)}{\sqrt{\frac{p(1-p)}{n}}} \dot{\sim} N(0,1)$$

Planteando la ecuación:

$$P(|\frac{(\hat{p}-p)}{\sqrt{\frac{p(1-p)}{n}}}| \le z_{\alpha/2}) \simeq (1-\alpha)$$

y trabajando con el evento elevado al cuadrado se puede obtener una ecuación cuadrática en p donde las raíces de esa ecuación son la cota inferior y superior de un intervalo de confianza aproximado $(1 - \alpha)$ para p, resultando:

$$\frac{\hat{p} + \frac{z_{\alpha/2}^2}{2n} \pm z_{\alpha/2} \sqrt{\frac{\hat{p}(1-\hat{p})}{n} + \frac{z_{\alpha/2}^2}{4n}}}{1 + \frac{z_{\alpha/2}^2}{n}}$$

Para n suficientemente grande:

- $\frac{z_{\alpha/2}^2}{2n}$ es insignificante en comparación con \hat{p} ;
- $\frac{z_{a/2}^2}{4n}$ es insignificante en comparación con $\frac{\hat{p}(1-\hat{p})}{n}$ y
- $\frac{z_{\alpha/2}^2}{n}$ es insignificante en comparación con 1.

Luego desechando esos términos insignificantes resulta este IC aleatorio de nivel aproximado $(1-\alpha)$ para p tradicional

$$\hat{p}\pm z_{lpha/2}\sqrt{rac{\hat{p}(1-\hat{p})}{n}}$$

siempre que $n\hat{p} \ge 10$ y $n(1-\hat{p}) \ge 10$

Observación: Para este último intervalo, si se quiere un IC de nivel aproximado $(1 - \alpha)$ para p y de longitud a lo sumo L entonces el tamaño de muestra debe ser tal que:

$$n \ge (\frac{z_{\alpha/2}}{L})^2$$

independientemente del valor de la proporción observada (\hat{p}) .

Ejercicio 5: En un artículo sobre estimación de fuentes de defectos visuales, se reporta que se estudiaron con un sensor de inspección 356 matrices de silicio de las cuales 201 pasaron la prueba.

- a) Construir un intervalo de confianza de nivel aproximado 0. 98 para la proporción poblacional de matrices que pasan la inspección.
- b) ¿Qué tamaño de muestra sería necesario para que la longitud un intervalo de confianza de nivel aproximado 0.98 para la proporción poblacional de matrices que pasan la inspección sea a lo sumo 0.05, independientemente del valor p̂?

		Cuadro 1: Resumen de Intervalos de Confianza	
θ	Supuestos	Estadístico y distribución	Intervalo de Confianza $(1 - \alpha)$
	m.a. $N(\mu, \sigma^2)$; σ conocido	$rac{(\overline{X}-\mu)\sqrt{n}}{\sigma} \sim N(0,1)$	$\overline{x} \pm z_{\alpha/2} \frac{\sigma}{\sqrt{n}}$
η	m.a. $N(\mu, \sigma^2)$; σ desconocido	$rac{(\overline{X}-\mu)\sqrt{n}}{S_{n-1}} \sim t_{n-1}$	$\overline{x} \pm t_{lpha/2;n-1} rac{s_{n-1}}{\sqrt{n}}$
	m.a. con	$\frac{(\overline{X} - \mu)\sqrt{n}}{\sigma} \sim N(0, 1); \text{ si } n \geq 30 \text{ y } \sigma \text{ conocido}$	$\overline{x} \pm z_{\alpha/2} rac{\sigma}{\sqrt{n}}$
	$"n \gg 0$	$\frac{(\overline{X}-\mu)\sqrt{n}}{S_{n-1}} \sim N(0,1); \text{ si } n \geq 40 \text{ y } \sigma \text{ desconocido}$	$\overline{x} \pm z_{\alpha/2} rac{s_{n-1}}{\sqrt{n}}$
σ^2	m.a. $N(\mu, \sigma^2)$	$(n-1)\frac{S_{n-1}^2}{\sigma^2} \sim \chi_{n-1}^2$	$\left[(n-1) \frac{s_{n-1}^2}{\chi_{\alpha/2;n-1}^2}, (n-1) \frac{s_{n-1}^2}{\chi_{1-\alpha/2;n-1}^2} \right]$
d	m.a. $Be(p) \text{ con } "n \gg 0$ ": $n\hat{p} \geq 10 \text{ y } n(1 - \hat{p}) \geq 10$	$rac{(\hat{p}-p)}{\sqrt{rac{p(1-p)}{n}}}\!\sim\! N(0,1)$	$\hat{p} \pm z_{\alpha/2} \sqrt{\frac{\hat{p}(1-\hat{p})}{n}}$