Linear Regression Assessment & Diagnostics

STAT 245 Sept 24, 2024

Model Diagnostics and Assessment

- Does the model fit data well?
- Should we have fit a line -- Is model appropriate for data?
- Are predictors really associated with response?

Regression Conditions

E

Our Model

Residuals Normal: Histogram

(Be quite generous)

Resid. Normality: Q-Q plot

(Be quite generous)

```
gf_qq(~resids, data = my_data) |>
  gf_qqline()
```


Normality of Residuals: Q-Q plot w/CI

(Does data go far outside the CI (expected range)?)

car::qqp(mod)

Lack of Non-Linearity

DATA plots: No trend, OK. Linear trend, OK

Lack of Non-Linearity

RESIDUALS vs. FITTED: OK if No trends

```
gf_point(resids ~ preds, data = my_data)
```


Constant Residual Variance

Point cloud should fit well in a rectangle (not trumpet) True for resid vs. predicted *and* resid vs. any predictor

Independence of Residuals

Ponder sort order; then ACF plot

```
s245::gf_acf(\sim mod) |>
gf_lims(y = c(-1,1))
```


Any LINE Violation -> Danger!

Conclusions can not be trusted

- slope estimates incorrect
- CIs and p-values too small
- poor prediction accuracy

R-squared

Simple measure of fit of model to data NOT goodness of model or appropriateness

$$R^2 = 1 - \frac{RSS}{TSS} =$$

$$1 - rac{\sum_{i=1}^n (y_i - \hat{y}_i)^2}{\sum_{i=1}^n (y_i - ar{y})^2}$$

R-squared

Simple measure of goodness-of-fit

R^2 ranges 0 - 1

0: no trend; 1: perfect line

Want practice? For fun, check out: https://www.guessthecorrelation.com/