# ICLR 2016

# Deep Compression:

# Compressing Deep Neural Networks with Pruning, Trained Quantization and Huffman Coding

Song Han, Huizi Mao, William J. Dally

Stanford University, Tsinghua University

#### [배경지식] 딥러닝(Deep Learning) 모델

• 딥러닝 모델은 <u>여러 레이어로 구성</u>되며 다수의 뉴런이 서로 **연결(connection)**됩니다.

4개의 입력 뉴런과 4개의 출력 뉴런으로 구성되므로 16개의 연결(connection) 존재



# [배경지식] 모바일(Mobile) 환경에서의 딥러닝(Deep Learning) 기술

- 모바일 환경에서의 딥러닝 기술은 개인정보(privacy) 보호, 실시간 처리(real-time processing), 네트워크 대역폭(network bandwidth) 측면에서의 이점이 있습니다.
- 하지만 딥러닝 모델의 큰 용량 때문에 모바일 앱에 딥러닝 모델을 직접적으로 탑재하기 어렵습니다.





Self Driving Cars

#### [배경지식] 딥러닝 모델의 에너지 소비(Energy Consumption) 문제

- 큰 네트워크를 사용할 때 가중치를 **인출(fetch)**하는 과정에서 많은 메모리 대역폭을 요구하고, 포워딩을 위해 <u>많은 수의 내적(dot product) 연산</u>을 수행합니다.
- 특히 메모리 접근(memory access) 과정에서 많은 <u>에너지 소비</u>가 발생할 수 있습니다.

#### < 뉴럴 네트워크 예시 >

- 초당 프레임(FPS): 20
- 메모리 접근 **에너지 소비량**: 640pJ
- 뉴럴 네트워크 **연결(connection) 수**: 1 billion



#### 초당 전력량(Watt)

- = (20Hz)(1G)(640pJ)
- = 12.8W



본 논문에서는 뉴럴 네트워크의 용량과 에너지 소비량을 줄일 수 있는 Deep Compression을 제안합니다.

# Deep Compression: 3단계 압축 파이프라인(Three Stage Compression Pipeline)

- **1. 가지치기(Pruning)**: 불필요한 연결을 가지치기하여 <u>중요한(important) 연결</u>만을 남깁니다.
- 2. 양자화(Quantization): 각 가중치를 나타내기 위한 <u>비트(bit)의 수를 감소</u>시킵니다.
- 3. **허프만 코딩(Huffman coding)** : 자주 등장하는 가중치(weight)에 작은 코드워드(codeword) 할당합니다.



#### 1단계: 네트워크 가지치기(Network Pruning)

- 네트워크 **가지치기(pruning)**는 복잡도(complexity)와 과적합(over-fitting) 감소에 효과가 있습니다.
  - 1. 일반적인 네트워크 학습을 진행합니다.
  - 2. 가중치(weight) 값이 작은 연결(connection)을 제거합니다.
  - 3. 남아있는 연결(connection)을 유지한 상태로 가중치를 **재학습(retraining)**합니다.





[Figure] Three-Step Training Pipeline.

[Figure] Synapses and neurons before and after pruning.

## [배경지식] 밀집행렬(Dense Matrix)과 희소행렬(Sparse Matrix)

- **가지치기를 수행**하여 희소행렬을 생성할 수 있습니다.
  - 6 X 6 가중치 행렬이 있을 때 **가중치 값이 3 이상인 연결(connection)만** 남기면 어떻게 될까요?

#### 원본 행렬(Matrix)

| 1 | 2 | 2 | 1 | 6 | 1 |
|---|---|---|---|---|---|
| 2 | ന | 0 | 4 | 1 | 1 |
| 1 | 1 | 1 | 0 | 2 | 2 |
| 5 | 0 | 1 | 1 | 1 | 2 |
| 2 | 1 | 1 | 2 | 0 | 2 |
| 1 | 2 | 3 | 7 | 1 | 2 |

# 가지치기된 행렬(Matrix)

| 0 | 0 | 0 | 0 | 6 | 0 |
|---|---|---|---|---|---|
| 0 | ന | 0 | 4 | 0 | 0 |
| 0 | 0 | 0 | 0 | 0 | 0 |
| 5 | 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 3 | 7 | 0 | 0 |

#### [배경지식] 희소 구조(Sparse Structure): Coordinate Format (COO)

• 행렬에 포함된 0이 아닌 값을 가진 데이터에 대하여 <u>행(row)과 열(column) 위치 정보</u>를 기록합니다.

| 0 | 0 | 0 | 0 | 6 | 0 |
|---|---|---|---|---|---|
| 0 | თ | 0 | 4 | 0 | 0 |
| 0 | 0 | 0 | 0 | 0 | 0 |
| 5 | 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 3 | 7 | 0 | 0 |



• 0이 아닌 원소의 개수가  $\alpha$ 일 때  $3\alpha$  만큼의 원소가 요구

## [배경지식] 희소 구조(Sparse Structure): Compressed Sparse Row (CSR)

• 행압축정보(Row Pointer)를 이용해 희소행렬을 표현하는 자료구조입니다.

**Row Pointer** 



Deep Compression: Compressing Deep Neural Networks with Pruning, Trained Quantization and Huffman Coding (ICLR 2016)

#### [배경지식] 희소 구조(Sparse Structure): COO와 CSR 형식 파이썬 구현

• 임의의 희소 행렬을 COO와 CSR 형식으로 저장하고 사용할 수 있습니다.

```
import numpy as np
from scipy import sparse
# 원본 행렬(Matrix)
arr = [
    [0, 0, 0, 0, 0, 1],
    [0, 3, 0, 4, 0, 0],
    [0, 0, 0, 0, 0, 0],
   [5, 0, 0, 0, 0, 0],
    [0, 0, 0, 0, 0, 0],
    [0, 0, 3, 7, 0, 0]
dense_mat = np.array(arr)
print(dense_mat)
```

```
data = np.array([1, 3, 4, 5, 3, 7])
col_idx = np.array([5, 1, 3, 0, 2, 3])
row_idx = np.array([0, 1, 1, 3, 5, 5])
# COO (Coordinate) 형식
coo_mat = sparse.coo_matrix((data, (row_idx, col_idx)))
print(coo_mat.toarray())
# CSR (Compressed Sparse Row) 형식
row_ptr = np.array([0, 1, 3, 3, 4, 4, 6])
csr_mat = sparse.csr_matrix((data, col_idx, row_ptr))
print(csr_mat.toarray())
```

## 1단계: 네트워크 가지치기(Network Pruning)

- Deep Compression에서는 <u>희소 구조(sparse structure)</u>를 저장하기 위한 방법을 선택할 수 있습니다.
  - Compressed Sparse Row (CSR)
  - Compressed Sparse Column (CSC)
- 값이 0이 아닌 원소의 개수가 a이고 n개의 행과 열이 있을 때, 2a + n + 1개의 수를 저장해야 합니다.
- 추가적인 압축을 위해 절대적인 위치(position)를 저장하지 않고 위치 사이의 차이(difference) 저장합니다.
  - 예시) 차이 값을 저장하기 위해 3bits만을 사용할 때, 그 차이가 3bits보다 크다면 패딩을 삽입합니다.



# 2단계: 학습된 양자화(Trained Quantization)와 가중치 공유(Weight Sharing)

- 양자화: 각 가중치(weight)를 표현하기 위한 비트(bit)의 수를 감소시키는 효과가 있습니다.
  - 실제로 사용할 가중치의 개수 k를 설정합니다.
  - 해당 k개의 가중치를 저장한 뒤에 이를 공유(sharing)합니다.
  - 해당 k개의 가중치를 미세조정(fine-tuning)합니다.
- 예를 들어 각 FC 레이어에서 5-bits (32개의 공유 가중치)만을 사용할 수 있습니다.

가중치(weights)

| 2.09  | -0.98 | 1.48  | 0.09  |
|-------|-------|-------|-------|
| 0.05  | -0.14 | -1.08 | 2.12  |
| -0.91 | 1.92  | 0     | -1.03 |
| 1.87  | 0     | 1.53  | 1.49  |

k개의 centroid (bins) 계산

k개의 가중치를 업데이트



# 2단계 1) 가중치 k개를 생성하여 이를 공유(Sharing)하기

- 4 X 4 (n = 16) 개의 가중치
- k = 4개의 클러스터
- 각 연결당 비트 수(b) = 32 bits

압축률 (Compression Rate)



$$r = \frac{nb}{nlog_2(k) + kb}$$

$$3.2 = \frac{16 * 32}{16 * 2 + 4 * 32}$$

#### 가중치(Weights)

| 2.09  | -0.98 | 1.48  | 0.09  |
|-------|-------|-------|-------|
| 0.05  | -0.14 | -1.08 | 2.12  |
| -0.91 | 1.92  | 0     | -1.03 |
| 1.87  | 0     | 1.53  | 1.49  |

Cluster index (2 bit unit)



Centroids

| 3: | 2.00  |
|----|-------|
| 2: | 1.50  |
| 1: | 0.00  |
| 0: | -1.00 |

- 가중치 공유(Weight Sharing)를 위한 중심점(Centroid) 계산
  - 센트로이드(Centroid) = 학습된 가중치 = 코드북(Codebook)

$$\underset{C}{\operatorname{arg\,min}} \sum_{i=1}^{k} \sum_{w \in c_i} |w - c_i|^2$$

## [배경지식] K-means Clustering 알고리즘

- ullet n개의 데이터에 대하여 각 집합 내 데이터간 응집도를 최대로 하는 k개의 집합을 찾는 알고리즘입니다.
  - 1) 먼저 k개의 중심점(centroid)을 초기화합니다.
  - 2) 각 데이터는 가장 가까이에 있는 중심점을 기준으로 클러스터를 구성합니다.
  - 3) 이후에 k개 클러스터의 중심점의 값을 조정합니다.
  - 4) 수렴할 때까지 2번과 3번의 과정을 반복합니다.



https://en.wikipedia.org/wiki/K-means\_clustering

#### 2단계 2) 공유된 가중치 초기화(Initialization of Shared Weights)

- 1.  $\,$  Forgy (random) 초기화: 가중치 중에서 랜덤으로 k개를 선택하여 이것을 초기 중심점으로 사용합니다.
- 2. Density-based 초기화: 가중치의 CDF에서 y-axis에 대하여 동일한 간격으로 선택합니다.

3. Linear 초기화: 가중치의 [min, max] 사이에서 동일한 간격으로 선택합니다. 및 절댓값이 큰 기

수행한다는 점에서 Linear 초기화가 유리  $20000_{1}$ CDF ××× linear quantization nonlinear quantization by clustring and finetuning density initialization 15000 linear initialization ooo random initialization 10000density 5000 -0.10-0.05-0.040.02 0.04 -0.020.00 0.06 weight value

[Figure] Left: Three different methods for centroids initialization. Right: Distribution of weights (blue) and distribution of codebook before (green cross) and after fine-tuning (red dot).

절댓값이 큰 가중치가 더 중요한 역할을

## 2단계 3) Feed-Forward and Back-Propagation



#### 3단계: 허프만 부호화(Huffman Coding)

- 특정한 중심점(centroid)이 많이 등장합니다. (biased distribution)
- Variable-length codewords: 이처럼 많이 등장하는 심볼(symbol)에 적은 비트(bit)를 할당할 수 있습니다.



[Figure] Distribution for weight (Left) and index (Right). The distribution is biased.

- 저장하고자 하는 데이터(문자열)가 있을 때, 고정 길이(fixed-length) 부호화를 이용하면 어떻게 될까요?
- 저장할 문자열: ABCDABAABBDAACBADACAACABA (25개의 문자)

#### [고정 길이(Fixed-length) 부호 테이블]

| 심볼(Symbol) | 부호(Code) |
|------------|----------|
| А          | 00       |
| В          | 01       |
| С          | 10       |
| D          | 11       |

# (25개의 심볼)

ABCDABAABBDAACBADACAACABA



- **허프만 트리(Huffman Tree)**를 구축하는 알고리즘은 다음과 같습니다.
  - 1. 각 심볼(symbol)을 그 출현 빈도와 함께 하나의 노드로 만듭니다.
  - 2. 모든 노드를 우선순위 큐에 삽입합니다.
  - 3. 우선순위 큐에 노드가 하나 남을 때까지 아래 과정을 반복합니다.
    - 1) 우선순위 큐에서 두 개의 노드를 추출합니다.
    - 2) 두 개의 노드를 자식 노드로 하는 새로운 노드를 생성하여 우선순위 큐에 삽입합니다.

• Step 1) 각 심볼을 출현 빈도와 함께 묶어 노드로 만듭니다.



• Step 2) 모든 노드를 우선순위 큐에 삽입합니다.



• Step 3) 가장 작은 두 노드(키의 값이 3인 노드와 키의 값이 4인 노드)를 꺼내 합친 뒤에 다시 삽입합니다.



• Step 4) 가장 작은 두 노드(키의 값이 6인 노드와 키의 값이 7인 노드)를 꺼내 합친 뒤에 다시 삽입합니다.



- Step 5) 가장 작은 두 노드(키의 값이 12인 노드와 키의 값이 13인 노드)를 꺼내 합친 뒤에 다시 삽입합니다.
- 남은 노드의 개수가 1개이므로, 여기에서 허프만 트리 구축이 완료됩니다.



• 허프만 트리를 구축한 뒤에는 각각의 노드의 위치까지 재귀적으로 조회하며, 왼쪽 경로에 0을, 오른쪽 경로에 1을 부여합니다. 결과적으로 다음과 같이 각 심볼에 대하여 다른 길이의 부호(code)가 부여됩니다.



- 저장할 문자열: ABCDABAABBDAACBADACAACABA (25개의 문자)
- 허프만 부호화를 이용해 **가변 길이(**variable-length) 부호화를 진행한 결과는 다음과 같습니다.

[가변 길이(Variable-length) 부호 테이블]

| 심볼(Symbol) | 부호(Code) |
|------------|----------|
| А          | 0        |
| В          | 10       |
| С          | 110      |
| D          | 111      |

## (25개의 심볼)

ABCDABAABBDAACBADACAACABA



(45 bits)

#### 실험 결과 분석: 네 개의 네트워크 아키텍처를 대상으로 실험 진행

- 본 논문에서 제안한 Deep Compression은 네트워크의 용량을 35배에서 49배까지 압축할 수 있었습니다.
  - 10MB 정도의 크기는 on-chip SRAM에 적재할 수 있을 정도로 작은 크기입니다.
  - 정확도(accuracy)는 거의 그대로 유지되는 것을 확인할 수 있습니다.

| Network                  | Top-1 Error | Top-5 Error | Parameters | Compress<br>Rate |
|--------------------------|-------------|-------------|------------|------------------|
| LeNet-300-100 Ref        | 1.64%       | -           | 1070 KB    |                  |
| LeNet-300-100 Compressed | 1.58%       | -           | 27 KB      | <b>40</b> ×      |
| LeNet-5 Ref              | 0.80%       | -           | 1720 KB    |                  |
| LeNet-5 Compressed       | 0.74%       | -           | 44 KB      | <b>39</b> ×      |
| AlexNet Ref              | 42.78%      | 19.73%      | 240 MB     |                  |
| AlexNet Compressed       | 42.78%      | 19.70%      | 6.9 MB     | $35 \times$      |
| VGG-16 Ref               | 31.50%      | 11.32%      | 552 MB     |                  |
| VGG-16 Compressed        | 31.17%      | 10.91%      | 11.3 MB    | <b>49</b> ×      |



ILSVRC-2012 데이터 세트에 대하여 좋은 성능을 보입니다. CONV 레이어의 가중치는 8 bits, FC 레이어는 5 bits를 사용합니다.

#### 실험 결과 분석: VGG-16 아키텍처

- VGG-16 아키텍처의 경우 138M X 4B = 552MB에서 **11.3MB (552MB X 2.05%)**로 압축 가능합니다.
  - 압축 과정: Pruning(13X) → Quantization(31X) → Huffman Coding(49X)
  - 원래 각 가중치(weight)는 32 bits을 사용하지만, 각각 8 bits (CONV)와 5 bits (FC)로 Quantization을 수행합니다.

|         |          | Weights%          | Weigh | Weight  | Index | Index   | Compress            | Compress             |
|---------|----------|-------------------|-------|---------|-------|---------|---------------------|----------------------|
| Layer   | #Weights | (P)               | bits  | bits    | bits  | bits    | rate                | rate                 |
|         |          |                   | (P+Q) | (P+Q+H) | (P+Q) | (P+Q+H) | (P+Q)               | (P+Q+H)              |
| conv1_1 | 2K       | 58%               | 8     | 6.8     | 5     | 1.7     | 40.0%               | 29.97%               |
| conv1_2 | 37K      | 22%               | 8     | 6.5     | 5     | 2.6     | 9.8%                | 6.99%                |
| conv2_1 | 74K      | 34%               | 8     | 5.6     | 5     | 2.4     | 14.3%               | 8.91%                |
| conv2_2 | 148K     | 36%               | 8     | 5.9     | 5     | 2.3     | 14.7%               | 9.31%                |
| conv3_1 | 295K     | 53%               | 8     | 4.8     | 5     | 1.8     | 21.7%               | 11.15%               |
| conv3_2 | 590K     | 24%               | 8     | 4.6     | 5     | 2.9     | 9.7%                | 5.67%                |
| conv3_3 | 590K     | 42%               | 8     | 4.6     | 5     | 2.2     | 17.0%               | 8.96%                |
| conv4_1 | 1M       | 32%               | 8     | 4.6     | 5     | 2.6     | 13.1%               | 7.29%                |
| conv4_2 | 2M       | 27%               | 8     | 4.2     | 5     | 2.9     | 10.9%               | 5.93%                |
| conv4_3 | 2M       | 34%               | 8     | 4.4     | 5     | 2.5     | 14.0%               | 7.47%                |
| conv5_1 | 2M       | 35%               | 8     | 4.7     | 5     | 2.5     | 14.3%               | 8.00%                |
| conv5_2 | 2M       | 29%               | 8     | 4.6     | 5     | 2.7     | 11.7%               | 6.52%                |
| conv5_3 | 2M       | 36%               | 8     | 4.6     | 5     | 2.3     | 14.8%               | 7.79%                |
| fc6     | 103M     | 4%                | 5     | 3.6     | 5     | 3.5     | 1.6%                | 1.10%                |
| fc7     | 17M      | 4%                | 5     | 4       | 5     | 4.3     | 1.5%                | 1.25%                |
| fc8     | 4M       | 23%               | 5     | 4       | 5     | 3.4     | 7.1%                | 5.24%                |
| Total   | 138M     | $7.5\%(13\times)$ | 6.4   | 4.1     | 5     | 3.1     | 3.2% ( <b>31</b> ×) | 2.05% ( <b>49</b> ×) |

[Table] Compression statistics for VGG-16. P: pruning, Q:quantization, H:Huffman coding.

#### 실험 결과 분석: AlexNet 성능 분석

- 본 논문의 메서드를 사용해 AlexNet을 압축했을 때 압축률이 가장 높았습니다. 240MB → 6.9MB (**35X**)
  - 압축 결과: 정확도(accuracy)의 감소가 거의 없다는 점에서 성능이 우수합니다.

| Network                                 | Top-1 Error | Top-5 Error | Parameters | Compress<br>Rate |
|-----------------------------------------|-------------|-------------|------------|------------------|
| Baseline Caffemodel (BVLC)              | 42.78%      | 19.73%      | 240MB      | 1×               |
| Fastfood-32-AD (Yang et al., 2014)      | 41.93%      | _           | 131MB      | $2\times$        |
| Fastfood-16-AD (Yang et al., 2014)      | 42.90%      | -           | 64MB       | $3.7 \times$     |
| Collins & Kohli (Collins & Kohli, 2014) | 44.40%      | -           | 61MB       | $4\times$        |
| SVD (Denton et al., 2014)               | 44.02%      | 20.56%      | 47.6MB     | $5 \times$       |
| Pruning (Han et al., 2015)              | 42.77%      | 19.67%      | 27MB       | $9 \times$       |
| Pruning+Quantization                    | 42.78%      | 19.70%      | 8.9MB      | $27 \times$      |
| Pruning+Quantization+Huffman            | 42.78%      | 19.70%      | 6.9MB      | $35 \times$      |

[Table] Comparison with other compression methods on AlexNet.

- 8 bits / 5 bits 조합을 사용할 때 정확도의 감소가 없음
- 8 bits / 4 bits는 하드웨어 친화적

| #CONV bits / #FO | C bits   Top-1 Error | Top-5 Error | Top-1 Error<br>Increase | Top-5 Error<br>Increase |
|------------------|----------------------|-------------|-------------------------|-------------------------|
| 32bits / 32bits  |                      | 19.73%      | -                       | -                       |
| 8 bits / 5 bits  |                      | 19.70%      | 0.00%                   | -0.03%                  |
| 8 bits / 4 bits  |                      | 19.73%      | 0.01%                   | 0.00%                   |
| 4 bits / 2 bits  | 44.77%               | 22.33%      | 1.99%                   | 2.60%                   |

[Table] Accuracy of AlexNet with different aggressiveness of weight sharing and quantization.

# Discussion: 가지치기(Pruning)과 양자화(Quantization) 같이 <u>사용하기</u>

- Pruning과 Quantization을 <u>함께 사용</u>할 때 가장 성능이 우수합니다.
- 개별적으로 사용할 때보다 압축 성능이 훨씬
   좋은 것을 확인할 수 있습니다.





- 큰 가중치 값을 유지하기 위하여
   Linear 초기화 방식을 사용합니다.
- · 뉴럴 네트워크의 특성상 Linear **초기화** 방식이 가장 우수한 성능 을 보입니다.

#### Discussion: 압축 결과 각각의 컴포넌트가 차지하는 비율

- 각각의 컴포넌트가 차지하는 비율을 확인할 수 있습니다. (필요한 추가적인 공간 모두 반영)
  - Pruning은 가중치 행렬을 희소 행렬로 바꾸므로 <u>인덱스를 저장하기 위한 추가적인 공간</u>이 필요합니다.
  - Quantization은 <u>코드북(codebook)을 위한 추가적인 공간</u>이 필요합니다.
- 비율을 확인해 보면, Codebook이 추가됨에 따른 오버헤드는 무시할 만한 수준인 것을 알 수 있습니다.



[Figure] Storage ratio of weight, index and codebook.

#### Conclusion

- The authors propose "Deep Compression" that compressed neural networks without affecting accuracy.
  - Pruning the unimportant connections.
  - 2. Quantizing the network using weight sharing.
  - Applying Huffman coding.
- Various networks can be compressed by 35x to 49x without loss of accuracy.
- Deep compression facilitates the use of complex neural networks in mobile applications.