DENEY 2

KOMBİNEZONSAL DEVRELERİN GERÇEKLENMESİ

GİRİŞ

Bu deneyde amaç; kombinezonsal lojik devrelerin en düşük maliyetli ifadelerinin bulunması ve değişik yöntemlerle gerçeklenmesidir.

DENEYDEN ÖNCE YAPILACAKLAR

- 1. Aşağıda verilen fonksiyonun tüm temel içeren tabanını a) Karnaugh diyagramı ile, b) Quine-McCluskey yöntemi ile bulunuz. Seçenekler tablosunu kullanarak fonksiyona ait en düşük maliyetli ifadeyi bulunuz. Maliyet hesabında, bir monomdaki her değişkenin maliyeti 2 birim, her tümleme işleminin maliyeti de 1 birim olarak alınacaktır. Bulduğunuz en düşük maliyetli ifadeye ilişkin devreyi aşağıda verilen elemanları (VE, VEYA, tümleme) kullanarak tasarlayıp çiziniz.
 - $F(A,B,C,D)=\Sigma_1(0,3,5,7,11,12,13) + \Sigma_0(1,8,15)$
- **2.** Aynı fonksiyonu sadece aşağıda verilen TVE kapılarını ve tümleme kapılarını kullanarak tasarlayıp çiziniz.
- **3.** Aynı fonksiyonu bir adet 8:1 veri seçici ve tümleme elemanları kullanarak tasarlayıp çiziniz.
- **4.** Áşağıda verilen genel lojik fonksiyonu bir adet 3:8 kod çözücü ve VEYA kapıları ile tasarlayarak çiziniz.

 $F_1(A,B,C)=A'\cdot C' + B\cdot C$ $F_2(A,B,C)=A'\cdot B'\cdot C' + A\cdot B$

DENEY ELEMANLARI

C.A.D.E.T	Deney kiti
74x00	2 girişli TVE (NAND) kapısı
74x04	Tümleme (NOT) kapısı
74x08	2 girişli VE (AND) kapısı
74x10	3 girişli TVE (NAND) kapısı
74x11	3 girişli VE (AND) kapısı
74x27	3 girişli TVEYA (NOR) kapısı
74x32	2 girişli VEYA (OR) kapısı
74x138	3:8 Kod çözücü
74x151	8:1 Veri seçici

x: S,LS, HC, HCT olabilir. Bu harfler lojik kapıların elektronik iç yapılarını belirtir. S ve LS, TTL ailesinin elemanları; HC ve HCT ise CMOS ailesinin elemanlarıdır.

DENEY 2

DENEY 2.1

Deneyden Önce Yapılacaklar bölümünün 1. maddesinde tasarladığınız devreyi kurup çalıştırınız. Doğruluk tablosunu oluşturarak devrenin doğruluğunu sınayınız. Belirsiz girişler (Φ) devreye uygulandığında çıkış hangi değeri almaktadır? Neden?

DENEY 2.2

Deneyden Önce Yapılacaklar bölümünün 2. maddesinde tasarladığınız devreyi kurup çalıştırınız. Doğruluk tablosunu oluşturarak devrenin doğruluğunu sınayınız. Belirsiz girişler (Φ) devreye uygulandığında çıkış hangi değeri almaktadır? Neden?

DENEY 2.3

Deneyden Önce Yapılacaklar bölümünün 3. maddesinde tasarladığınız devreyi kurup çalıştırınız. Doğruluk tablosunu oluşturarak devrenin doğruluğunu sınayınız. Belirsiz girişler (Φ) devreye uygulandığında çıkış hangi değeri almaktadır? Neden?

DENEY 2.4

Deneyden Önce Yapılacaklar bölümünün 4. maddesinde tasarladığınız devreyi size verilmiş olan elamanları kullanarak kurup çalıştırınız. Doğruluk tablosunu oluşturarak devrenin doğruluğunu sınayınız..

RAPORDA İSTENENLER

- 1. Raporunuzu "Rapor Yazım Kılavuzu"na uygun olarak yazınız.
- 2. Oluşturduğunuz tüm devreleri düzgün bir şekilde çiziniz ve elde ettiğiniz sonuçları veriniz.
- 3. Aşağıda verilen fonksiyonu toplamların çarpımı şeklinde yazıp sadece 2 girişli TVEYA kapıları kullanarak tasarlayıp çiziniz. F'(A,B,C,D)= A'·B'·C+A·C'·D' + B·D'
- 4. Bir 2:4 kod çözücüyü sadece TVE kapıları kullanarak tasarlayıp çiziniz.

DENEY 2