Quantitative Microbial Physiology

Jacopo Grilli Lecture 2, Feb 18, 2025

Growing bacteria in the lab

what else can we measure?

when is easier to study physiology? physiology: biological study of the activities that take place in a cell to keep it alive

Balanced exponential growth

- the difference between 'exponential phase' and 'balanced growth' is the difference between watching apples fall and thinking of gravity E. Schaechter

What makes up a cell?

TABLE 1. Composition of an average E. coli B/r cella

Component(s)	% Total dry wt ^b	Amt (g, 10 ¹⁵)/cell ^c	Mol wt	Molecules/cell	No. of different kinds of molecules
Protein	55.0	156	4.0 × 10 ⁴ -	2,350,000	1,850
RNA	20.5	58			
23 S rRNA		31.0	1.0×10^{6}	18,700	1
16 S rRNA		15.5	5.0×10^{5}	18,700	1
5 S rRNA		1.2	3.9×10^{4}	18,700	1
Transfer		8.2	2.5×10^4	198,000	60
Messenger		2.3	1.0×10^{6}	1,380	600
DNA	3.1	8.8	2.5×10^{9}	2.1	1
Lipid	9.1	25.9	705	22,000,000	
Lipopolysaccharide	3.4	9.7	4,070	1,430,000	1
Peptidoglycan	2.5	7.1	(904)n	1	1
Glycogen	2.5	7.1	1.0×10^{6}	4,300	1
Polyamines	0.4	1.1			
Putrescine		0.83	88	5,600,000	1
Spermidine		0.27	145	1,100,000	1
Metabolites, cofactors, ions	3.5	9.9			800+

^a Calculated for an average cell in a population of *E. coli* B/r in balanced growth at 37°C in aerobic glucose minimal medium with a mass doubling time of 40 min. The cell is defined by dividing the total biomass, or the amount of any of its measured

Mostly proteins, mostly ribosomes How does this depends on growth condition?

TABLE	1.	Composition	of	an	average	E.	coli	B/r	cella
-------	----	-------------	----	----	---------	----	------	-----	-------

Component(s)	% Total dry wt ^b	Amt (g, 10 ¹⁵)/cell ^c	Mol wt	Molecules/cell	No. of different kinds of molecules
Protein	55.0	156	4.0 × 10 ⁴ -	2,350,000	1,850
RNA					
23 S rRNA			1.0×10^{6}	18,700	1
16 S rRNA			5.0×10^{5}	18,700	1
5 S rRNA		1.2	3.9×10^{4}	18,700	1
Transfer		8.2	2.5×10^4	198,000	60
Messenger		2.3	1.0×10^{6}	1,380	600
DNA	3.1	8.8	2.5×10^{9}	2.1	1
Lipid			705	22,000,000	
Lipopolysaccharide			4,070	1,430,000	1
Peptidoglycan	2.5	7.1	(904)n	1	1
Glycogen	2.5	7.1	1.0×10^{6}	4,300	1
Polyamines	0.4	1.1			
Putrescine		0.83	88	5,600,000	1
Spermidine		0.27	145	1,100,000	1
Metabolites, cofactors, ions	3.5	9.9			800+

a Calculated for an average cell in a population of E. coli B/r in balanced growth at 37°C in aerobic glucose minimal medium with a mass doubling time of 40 min. The cell is defined by dividing the total biomass, or the amount of any of its measured

First growth law: ribosome fraction increases linearly with growth rate

Neidhardt and Magasanik (1960)

First growth law: ribosome fraction increases linearly with growth rate Doubling rate (doublings/hour)

Neidhardt and Magasanik (1960)

Scott et. al (2010)

Strain Medium	EQ2
M63+glyc	
M63+gluc	
cAA+glyc	
cAA+gluc	
RDM+glyc	
RDM+gluc	

References

Jun et al., 2018 Rep. Prog. Phys. 81 056601

Brock Biology of Microorganisms

Scott et a., Science 2010

How is growth (cell density) measured? viable counts

How is growth (cell density) measured? viable counts

How is growth (cell density) measured? viable counts

output: CFU/ml (colony forming units) how many viable cells there are How is growth (cell density) measured? turbidity methods

How is growth (cell density) measured? turbidity methods

output: Optical Density (OD) 1 OD600 ~ 3 10⁷ cell/ml (E. coli)

