000000 0000000 000000

Prédiction des blessures majeures des footballeurs.

TAFZA Hanae

Mathématiques (Mathématiques appliquées) Informatique (Informatique pratique)

2023 -2024

Plan

- Introduction
- 2 Le modèle XGBoost
- 3 Préparation des données
- Modélisation et optimisation des hyperparamètres
- 6 Conclusion

- Introduction
- Le modèle XGBoost
- Préparation des données
- Modélisation et optimisation des hyperparamètres
- Conclusion

0 • 0 0 0000000 00000 00000 000000 000000

Introduction

Figure 1: L'apprentissage automatique et le football

L'intelligence artificielle ne cesse guerre à évoluer le domaine sportif, notamment l'entrainement des footballeurs et l'adoption d'une stratégie de jeu. **0000** 0000000 00000 000000 000000

Les types du Machine Learning

Figure 2: Les différents types de l'apprentissage automatique

000000 00000 00000 00000**0**

Problématique et objectifs

0000

Problématique

Comment aider à informer les entraineurs sur les risques potentiels de faire jouer certains joueurs à l'aide de l'apprentissage automatique?

- Introduction
- 2 Le modèle XGBoost
- Préparation des données
- Modélisation et optimisation des hyperparamètres

Le modèle XGBoost

Figure 3: Le fonctionnement du modèle XGBoost

Algorithme de Gradient Boosting

Entrée : Ensemble d'entraînement $\{(x_i, y_i)\}_{i=1}^n$, une fonction de perte différentiable L(y, F(x)), nombre d'itérations M.

Algorithme:

1 Initialiser le modèle avec une valeur constante :

$$F_0(x) = \arg\min_{\gamma} \sum_{i=1}^{\sum} L(y_i, \gamma).$$

- **2** Pour m = 1 à M:
 - Calculer ce que l'on appelle les pseudo-résidus :

$$r_{im} = -\frac{\left[\frac{\partial L(y_i, F(x))}{\partial F(x_i)}\right]}{\partial F(x_i)} \quad \text{pour } i = 1, \dots, n.$$

TAFZA Hana

Algorithme de Gradient Boosting

- 2 Pour m = 1 à M (suite):
 - ② Ajuster un apprenant de base (ou un apprenant faible, par exemple un arbre) fermé sous la mise à l'échelle $h_m(x)$ à des pseudo-résidus, c'est-à-dire à l'entraîner à l'aide de l'ensemble d'apprentissage $\{(x_i, r_{im})\}_{i=1}^n$.
 - **3** Calculer le multiplicateur γ_m en résolvant le problème d'optimisation unidimensionnelle suivant :

$$\gamma_m = \arg\min_{\gamma} \sum_{i=1}^{\sum} L(y_i, F_{m-1}(x_i) + \gamma h_m(x_i)).$$

Mettre à jour le modèle :

$$F_m(x) = F_{m-1}(x) + \gamma_m h_m(x).$$

3 Sortie $F_M(x)$.

Fonction de Perte pour Gradient Boosting (Classification)

Pour la classification binaire, la fonction de perte log-loss est définie comme suit :

$$L(y, F(x)) = -\frac{1}{n} \sum_{i=1}^{\infty} \left[y_i \log(F(x_i)) + (1 - y_i) \log(1 - F(x_i)) \right]$$

où:

- n est le nombre d'exemples,
- v_i est la vraie étiquette de la i-ème observation,
- F(x_i) est la prédiction de la probabilité que l'étiquette soit 1 pour la i-ème observation.

Changement de la Fonction de Perte

La fonction de perte nécessite des changements. Nous allons l'écrire en fonction de log(odds) plutôt que p. log(odds) est défini comme suit:

$$\log \left(\frac{p}{1-p}\right) = \log(\text{odds})$$

$$L(y_i, \log(\text{odds})) = -\frac{1}{n} \sum_{i=1}^{\infty} \left[y_i \log(\text{odds}) + \log(1 + e^{\log(\text{odds})})\right]$$

$$\frac{\partial L(y_i, \log(\text{odds}))}{\partial \log(\text{odds})} = -y_i + \frac{e^{\log(\text{odds})}}{1 + e^{\log(\text{odds})}}$$

OU

$$\frac{\partial L(y_i, F(x))}{\partial F(x)} = -y_i + p$$

Un équivalent de la fonction de perte

Pour chaque itération m dans l'algorithme de Gradient Boosting, la mise à jour du modèle est approximée comme suit :

$$L(y_{i}, F_{m-1}(x_{i}) + \gamma h_{m}(x_{i})) \approx L(y_{i}, F_{m-1}(x_{i})) + \frac{\partial L(y_{i}, F_{m-1}(x_{i}))}{\partial F_{m-1}(x_{i})} \gamma h_{m}(x_{i}) + \frac{1}{2} \frac{\partial^{2} L(y_{i}, F_{m-1}(x_{i}))}{\partial F_{m-1}(x_{i})^{2}} (\gamma h_{m}(x_{i}))^{2} \text{ Où } :$$

$$h_{m}(x_{i}) = y_{i} - F_{m-1}(x_{i}) \text{ pour } i = 1, ..., n$$

Une partie cruciale de la méthode de Gradient Boosting est la régularisation par rétrécissement, qui modifie la règle de mise à jour comme suit :

$$F_m(x) = F_{m-1}(x) + v \cdot \gamma_m h_m(x), \quad 0 < v \le 1,$$

où v est le taux d'apprentissage.

- Introduction
- Le modèle XGBoost
- Préparation des données
- Modélisation et optimisation des hyperparamètres

000 000000 **0●000** 00000<u>00000</u>

Préparation des données

Figure 4: Les valeurs manquantes du Dataset

_	p_id2	start_year	season_days_injured	total_days_injured	season_minutes_played	season_games_played	season_matches_in_squad	total_minutes_played	total_games_played	dob
	0 aaronconnolly	2019	13	161	1312.0	24	28	2148.0	41	2000- 01-28
	1 aaronconnolly	2020	71	161	836.0	17	28	2148.0	41	2000- 01-28
	2 aaroncresswell	2016	95	226	2247.0	26	27	13368.0	149	1989- 12-15
	3 aaroncresswell	2018	87	226	1680.0	20	27	13368.0	149	1989- 12-15
	4 aaroncresswell	2019	35	226	2870.0	31	31	13368.0	149	1989- 12-15

	height_cm	weight_kg	nationality	work_rate	pace	physic	fifa_rating	position
	175.333333	75.666667	Republic of Ireland	Medium/Low	72.333333	58.0	63.000000	Forward
	175.333333	75.666667	Republic of Ireland	Medium/Low	72.333333	58.0	63.000000	Forward
	171.666667	66.000000	England	High/Medium	74.333333	67.0	75.333333	Defender
	171.666667	66.000000	England	High/Medium	74.333333	67.0	75.333333	Defender
	171.666667	66.000000	England	High/Medium	74.333333	67.0	75.333333	Defender

Figure 5: Les cings premiers lignes de l'ensmeble de données Source du Dataset:https://www.kaggle.com/

00000 000000 **00●00** 000000 0000000

Figure 6: Les distributions des caractéristques catégorielles

Figure 7: Les distributions des caractéristques numériques

0000 000000 **00•00** 000000 000000

Figure 8: Les distributions des Nationalités

- Introduction
- Le modèle XGBoost
- Préparation des données
- Modélisation et optimisation des hyperparamètres
- Conclusion

19 / 31

Figure 9: La matrice de corrélation

000 000000 00000 **00 000** 000000

Modélisation et optimisation des hyperparamètres

Figure 10: Scores des caractéristiques selon différentes méthodes

0 000000 00000 **000000** 000000

```
Les meilleurs paramétres obtenus: {'colsample_bytree': 0.5353970008227678, 'learning_rate': 0.06879485872574555, 'max_depth': 3, 'n_estimators': 89, 'subsample': 0.8378115394712806}
```

	précision	rappel	f1-score	support
0	0.67	0.54	0.60	57
1	0.88	0.93	0.90	203
Précision			0.84	260
La moyenne macro	0.78	0.73	0.75	260
La moyenne pondérée	0.83	0.84	0.84	260

Table 1: La classe 0 correspond aux joueurs non aptes à avoir des blessures majeures, tandis que la classe 1 correspond aux joueurs aptes à avoir des blessures majeures.

Figure 11: L'importance des caractéristiques

0000 0000000 00000 **000000** 000000

Figure 12: Les probabilités des blessures majeures visualisées sur le terrain

- Introduction
- Le modèle XGBoost
- Préparation des données
- Modélisation et optimisation des hyperparamètres
- 6 Conclusion

Conclusion

- Ce projet a utilisé le modèle XGBoost pour prédire si un joueur de football subira une blessure majeure ou non.
- Les caractéristiques utilisées dans le modèle incluent des données sur les matchs joués, l'âge, les jours blessés, la condition physique, la note FIFA, la vitesse, le poids, les minutes jouées et la taille.
- Le modèle a été entraîné et optimisé en utilisant RandomizedSearchCV pour trouver les meilleurs hyperparamètres.
- Les résultats montrent une bonne précision et une capacité de prédiction fiable.

Annexe

```
Continues (Assemble)

Ordering For Assemble

Of Ordering For Assemble

Or
Programme, National 1 (New York - Valley College Colle
                                                           of these to accommon the extrement enterpolation 
20 November (200)

to 1, faculate in terrorise (Control of the Control of th
```



```
Z Happy (not not assert) 

Separt particular

servings, Filterestrough (proof , netapory-futurableroug)
         injury, threshold + 10

# | tempt inter | + (#) near, for injury | + unity, threshold, adjust (in) |

    Aufair las consecutiones et la secutio sitté por la montragion
fedores : | distince | traditionatione | tendinates disset | tendinates disset |
secutions to tendinates disset | tendinates disset | tendinates disset |
secution tendinates | tendinates disset | tendinates disset | tendinates disset | tendinates | tendi
print! These of A after handling Natur., E. Preps.
    A Affairer to farm of the pressions ligner to jos on desires settler grant These of the detect effect bedding mixing values?", of amount proper refine for two of the classes detect.")
         and nesteep/correlation_matrix, asnot-free, chap-'conlects', fet-'.27'1
```

```
https://doi.org/10.1006/j.com/10.1006/j.com/10.1006/j.com/10.1006/j.com/10.1006/j.com/10.1006/j.com/10.1006/j.com/10.1006/j.com/10.1006/j.com/10.1006/j.com/10.1006/j.com/10.1006/j.com/10.1006/j.com/10.1006/j.com/10.1006/j.com/10.1006/j.com/10.1006/j.com/10.1006/j.com/10.1006/j.com/10.1006/j.com/10.1006/j.com/10.1006/j.com/10.1006/j.com/10.1006/j.com/10.1006/j.com/10.1006/j.com/10.1006/j.com/10.1006/j.com/10.1006/j.com/10.1006/j.com/10.1006/j.com/10.1006/j.com/10.1006/j.com/10.1006/j.com/10.1006/j.com/10.1006/j.com/10.1006/j.com/10.1006/j.com/10.1006/j.com/10.1006/j.com/10.1006/j.com/10.1006/j.com/10.1006/j.com/10.1006/j.com/10.1006/j.com/10.1006/j.com/10.1006/j.com/10.1006/j.com/10.1006/j.com/10.1006/j.com/10.1006/j.com/10.1006/j.com/10.1006/j.com/10.1006/j.com/10.1006/j.com/10.1006/j.com/10.1006/j.com/10.1006/j.com/10.1006/j.com/10.1006/j.com/10.1006/j.com/10.1006/j.com/10.1006/j.com/10.1006/j.com/10.1006/j.com/10.1006/j.com/10.1006/j.com/10.1006/j.com/10.1006/j.com/10.1006/j.com/10.1006/j.com/10.1006/j.com/10.1006/j.com/10.1006/j.com/10.1006/j.com/10.1006/j.com/10.1006/j.com/10.1006/j.com/10.1006/j.com/10.1006/j.com/10.1006/j.com/10.1006/j.com/10.1006/j.com/10.1006/j.com/10.1006/j.com/10.1006/j.com/10.1006/j.com/10.1006/j.com/10.1006/j.com/10.1006/j.com/10.1006/j.com/10.1006/j.com/10.1006/j.com/10.1006/j.com/10.1006/j.com/10.1006/j.com/10.1006/j.com/10.1006/j.com/10.1006/j.com/10.1006/j.com/10.1006/j.com/10.1006/j.com/10.1006/j.com/10.1006/j.com/10.1006/j.com/10.1006/j.com/10.1006/j.com/10.1006/j.com/10.1006/j.com/10.1006/j.com/10.1006/j.com/10.1006/j.com/10.1006/j.com/10.1006/j.com/10.1006/j.com/10.1006/j.com/10.1006/j.com/10.1006/j.com/10.1006/j.com/10.1006/j.com/10.1006/j.com/10.1006/j.com/10.1006/j.com/10.1006/j.com/10.1006/j.com/10.1006/j.com/10.1006/j.com/10.1006/j.com/10.1006/j.com/10.1006/j.com/10.1006/j.com/10.1006/j.com/10.1006/j.com/10.1006/j.com/10.1006/j.com/10.1006/j.com/10.1006/j.com/10.1006/j.com/10.1006/j.com/10.1006/j.com/10.1006/j.com/10.1006/j.com/10.1006/j.com/10.1006/j.com/10.1006/j.com/
```

```
# Their | Description des paracheristiques 
pls. Rights (Egylentes), (1) 
ann Ampliel (Homes, age, France, Laure Lerian, principal, Fastures) 
pls. 1922 ( Sentine Light Homes, Laure Lerian)
# Print area or initias in medition
production - rg.m/m/[

[8, 8, 0, 0 boline],

17, 17, 8, 87/4051,

12, 7, 8, 6 minute;

[25, 12, 12, 6 Minute],

[25, 13, 14, 6 Minute],

[26, 13, 14, 6, 8 Minute]
           # Change or berein in factual 
of the problemen, other white's 
of as to been 
(4 - $25.004)
                                                        fracture de jour parties Austragle()6, 0), estimatió, bespeció, especió es abligatación ()6.
                                 Also Japan to Te reviews (0 per control (0 per control (1 per con
                                 nemen as
If there is program in many of points the James as a many property of the program of the program
```

Merci de votre attention