Combinadores

Introdução

Prof. Edson Alves

Campus UnB Gama: Faculdade de Ciências e Tecnologias em Engenharia

* 1889 | † 1942

* 1889 | † 1942

* 1889 | † 1942

On the building blocks of mathematical logic

* As ideias foram apresentadas em 1920

* 1889 | † 1942

- * As ideias foram apresentadas em 1920
- * 0 artigo foi publicado em 1924

* 1889 | † 1942

- * As ideias foram apresentadas em 1920
- * O artigo foi publicado em 1924
- * Introduziu os combinadores

* 1889 | † 1942

- * As ideias foram apresentadas em 1920
- * O artigo foi publicado em 1924
- * Introduziu os combinadores
- * Resgatou a ideia de Frege (1893) de tratar todas as funções como unárias (currying)

Operação ¹ Leitura

Operação 1	Leitura	Definição	
$ar{a}$	não a	Inverte o valor lógico de $\it a$	

Operação ¹	Leitura	Definição
\bar{a}	não a	Inverte o valor lógico de $\it a$
$a \lor b$	a ou b	Falso apenas se a e b são ambos falsos

Operação ¹	Leitura	Definição
$ar{a}$	não a	Inverte o valor lógico de a
$a \lor b$	a ou b	Falso apenas se a e b são ambos falsos
a & b	a e b	Verdadeiro apenas se a e b são ambos verdadeiros

Operação ¹	Leitura	Definição
\bar{a}	não a	Inverte o valor lógico de $oldsymbol{a}$
$a \lor b$	a ou b	Falso apenas se a e b são ambos falsos
a & b	$a \; e \; b$	Verdadeiro apenas se a e b são ambos verdadeiros
$a \rightarrow b$	se a , então b	Falso apenas se a é verdadeiro e b é falso

Operação ¹	Leitura	Definição
\bar{a}	não a	Inverte o valor lógico de $\it a$
$a \lor b$	a ou b	Falso apenas se a e b são ambos falsos
a & b	$a \ e \ b$	Verdadeiro apenas se a e b são ambos verdadeiros
$a \rightarrow b$	se a , então b	Falso apenas se a é verdadeiro e b é falso
$a \sim b$	\boldsymbol{a} é equivalente a \boldsymbol{b}	Verdadeiro se ambos tem mesmo valor lógico

Operação 1	Leitura	Definição
\bar{a}	não a	Inverte o valor lógico de $\it a$
$a \lor b$	a ou b	Falso apenas se a e b são ambos falsos
a & b	$a \ \mathbf{e} \ b$	Verdadeiro apenas se a e b são ambos verdadeiros
$a \rightarrow b$	se a , então b	Falso apenas se a é verdadeiro e b é falso
$a \sim b$	\boldsymbol{a} é equivalente a \boldsymbol{b}	Verdadeiro se ambos tem mesmo valor lógico

¹ Notação de Hilbert

Primitivos: 7, &, V

Primitivos: 7, &, V

Primitivos: 7, &, V

$$p \to q \equiv \bar{p} \vee q$$

Primitivos: ¬, &, ∨

$$p \to q \equiv \bar{p} \lor q$$

$$p \sim q \equiv (p \& q) \lor (\bar{p} \& \bar{q})$$

Primitivos: , V

Primitivos: , V

Primitivos: , V

$$p \& q \equiv \overline{(\bar{p} \lor \bar{q})}$$

Primitivos: , V

$$p \& q \equiv \overline{(\bar{p} \lor \bar{q})}$$

$$p \to q \equiv \bar{p} \lor q$$

Primitivos: , V

$$p \& q \equiv \overline{(\bar{p} \lor \bar{q})}$$

$$p \to q \equiv \bar{p} \vee q$$

$$p \sim q \equiv (p \rightarrow q) \& (\bar{q} \rightarrow \bar{p})$$

Conectivos de Scheffer

|--|

Conectivos de Scheffer

Conectivo	Nome	Definição
↓	negação conjunta	Verdadeira somente quando ambas proposições são falsas $(p\downarrow q\equiv \bar{p} \ \& \ \bar{q})$

Conectivos de Scheffer

Conectivo	Nome	Definição
\	negação conjunta	Verdadeira somente quando ambas proposições são falsas $(p\downarrow q\equiv \bar{p}\ \&\ \bar{q})$
†	negação disjunta	Falsa somente quando ambas proposições são verdadeiras $(p\uparrow q\equiv \bar{p}\vee \bar{q})$

Primitivo: \uparrow (notação de Schönfinkel: $p \mid q$)

Primitivo: \uparrow (notação de Schönfinkel: $p \mid q$)

```
Primitivo: \uparrow (notação de Schönfinkel: p \mid q)
```

$$p \& q \equiv (p \mid q) \mid (p \mid q)$$

```
Primitivo: \uparrow (notação de Schönfinkel: p \mid q)
```

$$p \& q \equiv (p \mid q) \mid (p \mid q)$$

$$p \lor q \equiv (p \mid p) \mid (q \mid q)$$

```
Primitivo: \uparrow (notação de Schönfinkel: p \mid q)
```

$$p \& q \equiv (p \mid q) \mid (p \mid q)$$

$$p \lor q \equiv (p \mid p) \mid (q \mid q)$$

$$\bar{p} \equiv (p \mid p)$$

Notação Nome Definição	
------------------------	--

Notação	Nome	Definição
$(Ex)f(x)$ $\exists x.f(x)$	quantificador existencial	Existe ao menos um \boldsymbol{x} que tem a propriedade \boldsymbol{f}

Notação	Nome	Definição
$(Ex)f(x)$ $\exists x.f(x)$	quantificador existencial	Existe ao menos um \boldsymbol{x} que tem a propriedade \boldsymbol{f}
$ (x)f(x) \\ \forall x.f(x)$	quantificador universal	Todo \boldsymbol{x} tem a propriedade \boldsymbol{f}

Notação	Nome	Definição
$(Ex)f(x)$ $\exists x. f(x)$	quantificador existencial	Existe ao menos um \boldsymbol{x} que tem a propriedade \boldsymbol{f}
(x)f(x) $\forall x.f(x)$	quantificador universal	Todo \boldsymbol{x} tem a propriedade \boldsymbol{f}

Conectivo fundamental de Schönfinkel: $f(x) \mid^x g(x) \equiv (x) [\overline{f(x)} \vee \overline{g(x)}] \equiv (x) \overline{f(x)} \otimes g(x)$

Primitivo: $f(x)|^x g(x)$

Primitivo: $f(x) |^x g(x)$

Primitivo: $f(x)|^x g(x)$

Reduções:

 $\bar{a} = a \mid^x a$

Primitivo: $f(x) |^x g(x)$

$$\bar{a} = a \mid^x a$$

$$a \lor b = (x)(a \lor b) = \bar{a} | x \bar{b} = (a | y a) | x (b | y b)$$

Primitivo: $f(x) |^x g(x)$

$$\bar{a} = a \mid^x a$$

$$a \lor b = (x)(a \lor b) = \bar{a} \mid^x \bar{b} = (a \mid^y a) \mid^x (b \mid^y b)$$

$$(x)f(x) = (x)(\overline{\overline{f(x)}} \lor \overline{\overline{f(x)}}) = \overline{f(x)} \mid^x \overline{f(x)} = (f(x) \mid^y f(x)) \mid^x (f(x) \mid^y f(x))$$

Primitivo: $f(x) |^x g(x)$

$$\bar{a} = a \mid^{x} a$$

$$a \lor b = (x)(a \lor b) = \bar{a} \mid^{x} \bar{b} = (a \mid^{y} a) \mid^{x} (b \mid^{y} b)$$

$$(x)f(x) = (x)(\overline{\overline{f(x)}} \lor \overline{\overline{f(x)}}) = \overline{f(x)} \mid^{x} \overline{f(x)} = (f(x) \mid^{y} f(x)) \mid^{x} (f(x) \mid^{y} f(x))$$

$$(Ex)f(x) = \overline{(x)}\overline{f(x)}$$

Cálculo funcional

Funções de um argumento

Uma função f de um argumento x pode ser representada pela justaposição dos símbolos da função e de seu argumento. Em notação matemática,

$$f(x) \equiv fx$$

Cálculo funcional

Funções de vários argumentos

Uma função F(x,y) de dois argumentos pode ser reduzida a duas funções de um único argumento. Defina, para um x fixo, a função $G_x(y)$ tal que $G_x(y) = F(x,y)$. Ou seja, uma vez fixado x, G_x coincide com F em todos os pares (x,y). Como G é uma função de um único argumento, podemos escrever G = fx e

$$F(x,y) = G_x(y) = (G_x)y = (fx)y = fxy$$

Esta redução pode ser aplicada para uma função H com N argumentos x_1,x_2,\ldots,x_N :

$$H(x_1, x_2, \dots, x_N) = Hx_1x_2 \dots x_N$$

* No artigo, Schönfinkel os denominou funções particulares

- * No artigo, Schönfinkel os denominou funções particulares
- * Foram propostos cinco combinadores:

- * No artigo, Schönfinkel os denominou funções particulares
- * Foram propostos cinco combinadores:
 - \circ Função identidade I (Identitätsfunktion)

- * No artigo, Schönfinkel os denominou funções particulares
- * Foram propostos cinco combinadores:
 - Função identidade I (Identitätsfunktion)
 - Função constância C (Konstanzfuncktion)

- * No artigo, Schönfinkel os denominou funções particulares
- * Foram propostos cinco combinadores:
 - Função identidade I (Identitätsfunktion)
 - Função constância C (Konstanzfuncktion)
 - Função de intercâmbio T (Vertauschungsfunktion)

- * No artigo, Schönfinkel os denominou funções particulares
- * Foram propostos cinco combinadores:
 - Função identidade I (Identitätsfunktion)
 - Função constância C (Konstanzfuncktion)
 - Função de intercâmbio T (Vertauschungsfunktion)
 - Função de composição Z (Zusammeensetzungsfunktion)

- * No artigo, Schönfinkel os denominou funções particulares
- * Foram propostos cinco combinadores:
 - Função identidade I (Identitätsfunktion)
 - Função constância C (Konstanzfuncktion)
 - Função de intercâmbio T (Vertauschungsfunktion)
 - Função de composição Z (Zusammeensetzungsfunktion)
 - Função de fusão S (Verschmelzungsfunktion)

- * No artigo, Schönfinkel os denominou funções particulares
- * Foram propostos cinco combinadores:
 - Função identidade I (Identitätsfunktion)
 - Função constância C (Konstanzfuncktion)
 - Função de intercâmbio T (Vertauschungsfunktion)
 - Função de composição Z (Zusammeensetzungsfunktion)
 - Função de fusão S (Verschmelzungsfunktion)
- \star Posteriormente, o combinador C passou a usar a notação K, remetendo ao termo original em alemão

Combinador I

Função identidade

A função identidade I é uma função cujo argumento não tem nenhuma restrição (pode ser, inclusive, uma função) e cujo valor sempre coincide com seu argumento. Assim.

$$Ix = x$$

onde o sinal de igualdade não representa equivalência lógica, e sim que ambos lados da expressão tem mesmo significado (por exemplo, II=I).

Combinador K

Função constância

Assuma que, para um argumento x arbitrário, o valor da função seja sempre igual a um valor fixo a. Esta função depende de a, logo tem a forma Ka. Podemos escrever

$$(Ka)y = a$$

Permitindo que a também seja variável, obtemos

$$(Kx)y = x$$
, ou $Kxy = x$,

a equação que define a função constância K.

Combinador T

Função de intercâmbio

A função de intercâmbio T recebe como argumento uma função da função φxy e retorna uma função

$$\psi = T\varphi$$

tal que o valor ψxy coincide com φyx para todos os argumentos x e y para os quais φ tem significado. Assim,

$$(T\varphi)xy = \varphi yx,$$

onde os parêntesis podem ser omitidos.

Combinador Z

Função de composição

Se uma função f de um argumento recebe, como argumento, o valor de uma função g de um argumento, a função F=f(gx) é a função composta de f e g. A função F é o valor de uma certa função Z' de f e g. Assim

$$[Z'(\varphi,\chi)]x = \varphi(\chi x)$$

Usando a convenção de trocar Z' por uma função de um argumento, obtemos

$$Z\varphi\chi x = \varphi(\chi x),$$

a função de composição Z, onde os parêntesis não podem ser eliminados.

Combinador S

Função de fusão

Se na expressão fxy substituirmos y pelo valor de uma função g em x, obtemos

$$fx(gx) = Fx$$

Esta função F=S'(f,g) depende das funções f e g, de modo que $[S'(\varphi,\chi)]x=\varphi x(\chi x)$. A substuição por funções de um argumento leva a

$$S\varphi\chi x = \varphi x(\chi x),$$

a função de fusão S.

Referências

* SCHÖNFINKEL, Moses. On the building blocks of the mathematical logic.

Mathematische Annalen (in German). 92 (3-4): 305-316, 1924.

- * O'LEARY, Daniel J. The Propositional Logic of Principia Mathematica and Some of Its Forerunners: Russell: The Journal of Bertrand Russell Studies 8 (1) (1988).
 - * FILHO, Edgard de Alencar. Introdução à Lógica Matemática. Nobel, 2009.