MATH 148 HOMEWORK 7

- 1. Review and make sure you understand the following notions and theorems. When understanding abstract notions, try to have concrete examples in mind. Below we consider planar dynamical systems, i.e. n=2:
 - positively and negatively invariant sets, invariant set
 - ω -limit point and set, α -limit point and set, and their dynamical meaning
 - ω or α -limit sets are invariant
 - local section, flow box, times of first arrival and return to a local section
 - monotone sequences along a trajectory or along a line segament
 - Proposition 5.1: consider a sequence that is both on a local section and on a trajectory. If it's monotone on the trajectory, then it's monotone on the local section.
 - Proposition 5.2: if \vec{y} is a ω -limit point of some point \vec{x} , then the trajectory of \vec{y} meet any local section at most at one point.
 - Poincaré-Bendixon theorem: for any \vec{x} , if $\omega(\vec{x})$ ($\alpha(\vec{x})$, resp.) is bounded, nonempty, and contains no equilibrium point, then $\omega(\vec{x})$ ($\alpha(\vec{x})$, resp.) is a cycle. Moreover, either $x \in \omega(\vec{x})$ and the trajectory of \vec{x} is the cycle $\omega(\vec{x})$, or $x \notin \omega(\vec{x})$ and $\omega(\vec{x})$ is a limit cycle that attracts (repels, resp.) some nearby trajectories.
- 2. Suppose the trajectory of \vec{x} , $\phi(t, \vec{x})$, is a cycle i.e. there is a T > 0 such that $\phi(t+T, \vec{x}) = \phi(t, \vec{x})$ for all $t \in \mathbb{R}$. Let γ denotes this cycle. Show that $\omega(\vec{x}) = \alpha(\vec{x}) = \gamma$.
- 3. Recall in HW 6, we consider the Hamiltonian system $\begin{cases} x' = -y \\ y' = x^3 x \end{cases}$. We know:
 - (1) Its Hamiltonian function may be chosen as: $H = \frac{1}{2}y^2 + \frac{1}{4}(x^2 1)^2$.
 - (2) For each $c \geq 0$, $\{(x,y) \in \mathbb{R}^2 : H(x,y) \leq c\}$ is a bounded, invariant set of the dynamical system.
 - (3) There are three equilibria $(0,0), (\pm 1,0)$. Moreover, $(0,0) \in H^{-1}(\frac{1}{4})$ is a homoclinic point with two homoclinic orbits and $H^{-1}(0) = \{(\pm 1,0)\}$.

Using the information above and following the steps below to show that for each (x,y) with $H(x,y) \neq 0$ or $\frac{1}{4}$, its trajectory is a cycle.

- step 1: for each c, $H^{-1}(c)$ is a bounded, invariant set.
- step 2: fix any $\vec{x} = (x, y)$ with H(x, y) = c. By continuity of H, show that $\omega(\vec{x})$ is a subset of $H^{-1}(c)$. Thus, $\omega(\vec{x})$ is bounded and nonempty. Here you may directly use the fact that $\omega(x) \neq \emptyset$ which can be obtained via Bolzano-Weirstrass theorem.
- step 3: if $c \neq 0, 1/4$, then by Poincaré-Bendixon, $\omega(\vec{x})$ must be a cycle.
- step 4: if $\vec{x} \notin \omega(\vec{x})$, then $\omega(\vec{x})$ is a limit cycle. We will show that Hamiltonian systems may not have limit cycles (or it's actually a consequence of Liouville's theorem that we mentioned in the end of Chapter 4). Thus $\vec{x} \in \omega(\vec{x})$ and the cycle $\omega(\vec{x})$ is the trajectory of \vec{x} .

1

I strongly recommend that you think about the following questions. I will answer these quesitons for you at some point in class.

- (1) Based on the steps of problem 3 on page 1, can you draw the following conclusion: for a planar Hamiltonian system, if all the level sets of the Hamiltonian function are bounded, then trajectories may only be one of the following types: equilibrium points, homoclinic or heteroclinic type of trajectories (i.e. curves consists of equilibria and orbits connecting them), or cycles?
- (2) Based on the conclusion in question (1), can you construct other hamiltonian systems with such types of trajectories as described in question (1)?
- (3) In this conclusion of question (1), can we replace "planar Hamiltonian system" by "planar system with a non-trival first integeral"? Here a non-triviality function means a function $f: \mathbb{R}^2 \to \mathbb{R}$ that doesn't stay constant on any open ball, i.e. $B_r(\vec{x}) = \{\vec{y}: |\vec{x} \vec{y}| < r\}$ where $|\vec{x} \vec{y}|$ is the distance between the two points \vec{x} and \vec{y} in \mathbb{R}^2 .