Unsolved Number Theory Problem Attempt

Abhimanyu Nag

June 2021

1 Problem Statement

Conjecture

Let $k \ge 2$ a positive integer. The diophantine equation:

$$y = 2x_1x_2\dots x_k + 1$$

has an infinity of solutions of primes. (For example: $571 = 2 \cdot 3 \cdot 5 \cdot 19 + 1,691 = 2 \cdot 3 \cdot 5 \cdot 23 + 1$, or $647 = 2 \cdot 17 \cdot 19 + 1$, when k = 4, respectively, 3). (Gamma 2/1986).

2 Proof Attempt

For the purposes of this problem, let us restrict our solution set : $(x_1, x_2, x_3,, x_k, y)$ to the positive integers/natural numbers.

CLAIM 1: y is an odd integer and y > 2.

PROOF

Arguing by contradiction, if y < 2 then this would imply that :

$$2x_1x_2\dots x_k+1<2$$

$$2x_1x_2\dots x_k<1$$

Which is impossible since the LHS has to be ≥ 2 for all x_i s in **N** Hence proved that y > 2.

Now coming to the first part of our claim,

We can safely conclude that y is an odd integer since it is a whole number which is not divisible by 2 and this is based on the observation that y = 2m + 1 where

 $m \in \mathbf{N}$.

Now again for the purposes of our solution, we further restrict y from an odd integer to a prime number, implying that y is an odd prime.

CLAIM 2: $\frac{y-1}{2}$ is always an integer for odd prime y.

PROOF:

Since y is an odd integer,

We can express y as y = 2m + 1 for $m \in \mathbb{N}$

Thus

$$\frac{y-1}{2} = \frac{(2m+1)-1}{2} = \frac{2m}{2} = m \in \mathbf{N}$$

This was also trivial to notice due to our assumption that $x_1, x_2, x_3,, x_k$ are all positive integers. Hence proved.

Now we have

$$\frac{y-1}{2} = x_1 x_2 \dots x_k = m$$

SOLUTION CLAIM: for any value of m, we can always have infinite prime number solutions of $(x_1, x_2, x_3,, x_k)$.

From here, we diverge to consider two cases :

CASE 1: When there is a possibility that $x_i = x_j$ for $i \neq j$

INVESTIGATION:

THEOREM: (THE FUNDAMENTAL THEOREM OF ARITHMETIC) every positive integer (except the number 1) can be represented in exactly one way apart from rearrangement as a product of one or more primes (Hardy and Wright 1979, pp. 2-3).

Taking the above mentioned theorem into consideration, a suitable way to express m could be as a product of its primes.

Thus

 $m = p_1^{\alpha_1}.p_2^{\alpha_2}.p_3^{\alpha_3}\cdots p_n^{\alpha_n}$ where $p_i, \alpha_i \in \mathbf{N}$ and every p_i is a prime.

Now as per the equality that we found out above,

$$m = p_1^{\alpha_1}.p_2^{\alpha_2}.p_3^{\alpha_3}\cdots p_n^{\alpha_n} = x_1x_2\dots x_k$$

Since all the p_i 's are coprime to each other, we can certainly allot each of the p_i 's to the x_i 's and therefore get prime solutions for $(x_1, x_2, x_3,, x_k)$. Thus (WLOG $\alpha_1 < \alpha_2 < \cdots < \alpha_n$)

$$x_1 = x_2 = x_3 = \dots = x_{\alpha_1} = p_1$$

$$x_{\alpha_1+1} = x_{\alpha_1+2} = x_{\alpha_1+3} = \dots = x_{\alpha_2} = p_2$$

and so on and so forth, where $k = \alpha_1 + \alpha_2 + \alpha_3 + \cdots + \alpha_n$. Hence shown for this case

CASE 2: When $x_i \neq x_j$ for $i \neq j$

INVESTIGATION:

Without Loss of Generality, let $p_i < p_j$ whenever i < j where p has been defined as above.

Arguing casewise,

Let $(p_1, p_2, p_3 \cdots p_k, p_x)$ where x > k be the solution set of primes that satisfy the given Diophantine equation.

Therefore,

$$p_x = 2p_1 \cdot p_2 \cdot p_3 \cdots p_k + 1$$

Consider $m \in N$ and :

$$p_x + 2m = 2(p_1 \cdot p_2 \cdot p_3 \cdots p_k + m) + 1$$

where $p_x + 2m$ is a prime (after even jumps from p_x).

Now we focus on $(p_1 \cdot p_2 \cdot p_3 \cdots p_k + m)$ and see if it can be of the form $x_1 x_2 \dots x_k$ or not.

SUBCASE 1: $(p_1 \cdot p_2 \cdot p_3 \cdots p_k + m)$ is a prime number.

INSIGHT:

If the given is a prime number then it is proven that there exist a pair of primes

that can satisfy the given equation. Hence proved.

SUBCASE 2: $(p_1 \cdot p_2 \cdot p_3 \cdots p_k + m)$ is not a prime number.

INSIGHT:

This suggests that $(p_1 \cdot p_2 \cdot p_3 \cdots p_k + m)$ can be expressed in terms of its prime factors (Due to Fundamental Theorem of Arithmetic above). Therefore:

$$p_1 \cdot p_2 \cdot p_3 \cdots p_k + m = p_a \cdot p_b \cdots p_r$$

where not all of a, b, \dots, r are $= 1, 2, \dots, k$ (because $p_x \neq p_x + m$). Thus each of p_a, p_b, \dots, p_r can be used as x_i 's in the solution set.

Now we see,

There are infinite primes of the form $p_x + 2m$ (since all primes other than 2 are odd and $p_x \neq 2$) and as per subcases above, every one of those primes will bear prime solutions for x_i 's and thus since there are infinite primes (Proof by Euclid), there are infinite solutions for the solution set. Thereby proving the Solution Claim.

Hence shown End of attempt.

OPEN PROBLEM: Formulate the general lemma in the selection of x_i s and y for which the given problem has only prime solutions in \mathbf{N} .