Definiciones, Teoremas y Propiedades de Probabilidades y Estadística

1. Espacios y Probabilidades

- <u>Def.</u>: Definimos al conjunto S el **Espacio Muestral** como el que contiene todos los posibles resultados de un experimento. A cada subconjunto del espacio muestral lo llamamos **Evento**. Definimos el **Espacio de Eventos** como el conjunto F que contiene todos los posibles eventos
- **Prop.:** Sea S un espacio muestral numerable $\Longrightarrow \mathcal{F} = \mathcal{P}_{(S)}$.
- <u>Def.:</u> Definimos la **Probabilidad** como $\mathbb{P}: \mathcal{F} \to [0,1] / (\mathbb{P}(\mathcal{S}) = 1) \wedge (\{A_n\}, n \in [1,N] \subseteq \mathbb{N} / A_i \cap A_j = \phi \ \forall i,j \implies \mathbb{P}\left(\bigcup_{n=1}^N A_n\right) = \sum_{n=1}^N \mathbb{P}(A_n)).$
- <u>Def.</u>: Sea S un espacio muestral $/ \mathbb{P}(A) = \mathbb{P}(B) \forall A, B \in S$ lo llamamos un **Espacio Muestral Equiprobable**.
- Prop.: Sean A y B dos eventos llamamos la Probabilidad Condicional de A dado B a la probabilidad de que el evento A suceda dado que sucede el evento B y vale que $\mathbb{P}(A|B) = \frac{\mathbb{P}(A \cap B)}{\mathbb{P}(B)}$.
- <u>Def.:</u> Sean A y B dos eventos los llamamos **Independientes** $\iff \mathbb{P}(A \cap B) = \mathbb{P}(A)\mathbb{P}(B)$. Notamos $A \perp B$.
- **Prop.:** Sean A y B dos eventos, son independientes $\iff \mathbb{P}(A|B) = \mathbb{P}(A)$.
- <u>Fórmula de Probabilidad Total:</u> Sea $I = \{B_i\}, i \in [1, N] \subseteq \mathbb{N}$ una partición del espacio muestral y A un evento $\implies \mathbb{P}(A) = \sum_{i=1}^{N} \mathbb{P}(A|B_i)\mathbb{P}(B_i)$.
- Fórmula de Bayes: Sea $I = \{B_i\}, i \in [1, N] \subseteq \mathbb{N}$ una partición del espacio muestral y A un evento $\implies \mathbb{P}(B_i|A) = \frac{\mathbb{P}(A|B_i)\mathbb{P}(B_i)}{\sum\limits_{i=1}^{N} \mathbb{P}(A|B_j)\mathbb{P}(B_j)}$.
- <u>Def.:</u> Sea $\{A_i\}$, $i \in [1, N] \subseteq \mathbb{N}$ un conjunto de eventos lo llamamos una **Familia de Eventos** Independientes $\iff \mathbb{P}\left(\bigcap_{i=1}^{N} A_i\right) = \prod_{i=1}^{N} \mathbb{P}(A_i)$.

2. Variables Aleatorias Discretas

- <u>Def.</u>: Definimos una Variable Aleatoria Discreta como una función $X : \mathcal{S} \to \mathbb{N}$.
- <u>Def.</u>: Definimos la Función de Probabilidad o Distribución de Probabilidad como la función P: $\mathbb{N} \to [0,1] / \mathbb{P}(x) = \mathbb{P}(X_{(w)} = x) \forall w \in \mathcal{S}$.
- <u>Def.</u>: Sea X una variable aleatoria y P la distribución de probabilidad de X entonces notamos $X \sim P$.
- <u>Def.:</u> Sea X una variable aleatoria definimos la **Probabilidad Acumulada** como $\mathbb{P}(X \leq x) = \sum_{X=i}^{x} \mathbb{P}(X=i)$.
- **<u>Def.:</u>** Definimos la **Esperanza** como la función E: $S \to \mathbb{N}$ /E(X) = $\sum_X x \mathbb{P}(X = x)$.

- Prop.: Sean X e Y variables aleatorias $/(g: \mathbb{N} \to \mathbb{N}) \land (y = g_{(x)}) \implies E(Y) = \sum_{X} g_{(x)} \mathbb{P}(X = x)$
- $\underline{\mathbf{Def.:}}$ Sea X una variable aleatoria llamamos $\mathbf{Varianza}$ a la función $\mathrm{V}(X) = \mathrm{E}\big((X \mathrm{E}(X))^2\big)$.
- **<u>Def.:</u>** Sea X una variable aleatoria llamamos **Desvío Estándar** a la función $\sigma(X) = \sqrt{V(X)}$.
- **Prop.:** Sea X una variable aleatoria \implies $V(X) = E(X^2) E(X)^2$.
- Prop.: Sea X una variable aleatoria y $V_{(X,m)} = \sum_X (x-m)^2 \mathbb{P}(X=x) \implies V(X) \leq V_{(X,m)} \ \forall m \in \mathbb{R}.$
- Prop.: Sean $X \sim \mathcal{G}(p) \implies \mathbb{P}(X > k + l | X > l) = \mathbb{P}(X > k) \ \forall k, l \in \mathbb{N}.$

3. Variables Aleatorias Continuas

- <u>Def.:</u> Llamamos a X una Variable Aleatoria Continua si $(X : \mathcal{S} \to \mathbb{R}) \land (\mathbb{P}(X \in A) = \int_A f_{(x)} dx)$. Llamamos a f la Distribución de Probabilidad de X. Esta distribución debe cumplir que $(f : \mathbb{R} \to \mathbb{R}) \land (f_{(x)} \geqslant 0 \ \forall x \in \mathbb{R}) \land \left(\int_{-\infty}^{\infty} f_{(x)} dx = 1\right)$. Definimos también la Distribución Acumulada como $F_{(t)} = \int_{-\infty}^{t} f_{(x)} dx$.
- **Def.:** Sea f una distribución y $p \in [0,1]$ llamamos **Percentil** de p a $x_p / \int_{-\infty}^{x_p} f_{(x)} dx = p$.
- <u>Def.</u>: Sea f una distribución y X una variable aleatoria llamamos **Promedio** de una función $g: \mathbb{R} \to \mathbb{R}$ a $< g >= \int\limits_{-\infty}^{\infty} g_{(x)} f_{(x)} dx$.
- \blacksquare Sea funa distribución llamamos **Mediana** al percentil de $\frac{1}{2}.$
- Prop.: Sea X una variable aleatoria con distribución f, $X \ge 0 \implies \langle X \rangle = \int_0^\infty (1 F_{(x)}) dx$, $F_{(x)} = \int_{-\infty}^x f_{(u)} du$.
- Lema: Sea $X \sim \mathcal{N}(\mu, \sigma^2) \iff Z = \frac{X \mu}{\sigma} \sim \mathcal{N}(0, 1)$.
- <u>Def.:</u> Sea $X \sim \mathcal{N}(0,1) \implies \Phi_{(z)} = \mathbb{P}(X \leqslant z)$.
- Prop.: Sea $X \sim \mathcal{N}(\mu, \sigma^2) \implies \mathbb{P}(X \leqslant z) = \Phi_{\left(\frac{z-\mu}{\sigma}\right)}$.
- Prop.: Sea $X \sim \mathcal{E}(\lambda) \implies \mathbb{P}(X > t + s | X > s) = \mathbb{P}(X > t)$.
- Prop.: $\lim_{n\to\infty} \mathcal{G}\left(\frac{\lambda}{n}\right) = \mathcal{E}(\lambda)$.
- **Prop.:** Sean $X_i \sim \mathcal{E}(\lambda) \implies \sum_{i=1}^n X_i \sim \Gamma(n, \lambda)$.
- Prop.: Sea $X \sim \Gamma(n, \alpha) \implies \lambda X \sim \Gamma(n, \frac{\alpha}{\lambda}) \ \forall \lambda \in \mathbb{R}$.
- **Prop.:** Sean $X_i \sim \mathcal{P}(\lambda_i) \implies \sum_{i=1}^n X_i \sim \mathcal{P}\left(\sum_{i=1}^n \lambda_i\right)$.
- **<u>Def.:</u>** Sean X e Y variables aleatorias son independientes \iff $< f_{(x)}g_{(x)} > = < f_{(x)} > < g_{(x)} > \forall f, g.$
- <u>Teorema:</u> Sea X una variabe aleatoria acotada, $X \in (a,b)$, $a,b \in \mathbb{R}$, con distribución f_x , sea $g:(a,b) \to \mathbb{R}$ biyectiva e $Y = g_{(x)} \implies f_{y(y)} = \frac{f_{x\left(g_{(y)}^{-1}\right)}}{\left|g'_{\left(g_{(y)}^{-1}\right)}\right|}$.

4. Vectores Aleatorios

- **<u>Def.:</u>** Definimos un **Vector Aleatorio** a un vector $\boldsymbol{X}: \mathcal{S} \to \mathbb{R}^N$ con distribución $f: \mathbb{R}^N \to \mathbb{R}^N / \int_{\mathcal{S}} f_{(\boldsymbol{x})} d\boldsymbol{x} = 1$, $f_{(\boldsymbol{x})} \geq 0 \ \forall \boldsymbol{x}$. Sea $\Xi = \{x_i \in \mathbb{R} / x_i \leq t_i \ \forall \ i \in [1, N], \ \boldsymbol{t} \in \mathbb{R}^N \}$ definimos la distribución acumulada de \boldsymbol{X} como $F_{(\boldsymbol{t})} = \int_{\Xi} f_{(\boldsymbol{x})} d\boldsymbol{x}$.
- <u>Def.</u>: Sea X un vector aleatorio con distribución f definimos la **Distribución Marginal** de una coordenada x_i como $f_{X_i(x_i)} = \int\limits_{\mathbb{R}^{N-1}} f_{(\boldsymbol{x})} d\tilde{\boldsymbol{x}}$, donde $\tilde{\boldsymbol{x}}$ es el vector con todas las coordenadas de \boldsymbol{x} menos x_i .
- Prop.: Sean X e Y variables aleatorias discretas y g y h funciones tal que $\mathbb{P}(X = x, Y = y) = Cg_{(x)}h_{(y)}$ donde $C \in \mathbb{R} \implies X \perp Y$, $\mathbb{P}(X = x) = \left(\sum_{x'} g_{(x')}\right)^{-1} g_{(x)}$, $\mathbb{P}(Y = y) = \left(\sum_{y'} h_{(y')}\right)^{-1} h_{(y)}$.
- Prop.: Sean X e Y variables aleatorias con distribuciones f_X y f_Y respectivamente entonces son independientes $\iff f_{(x,y)} = f_{X(x)} f_{Y(y)}$.
- Prop.: Sea $h: \mathbb{R}^N \to \mathbb{R}$, X un vector aleatorio con distribución $f \Longrightarrow \mathrm{E}\big(h_{(X)}\big) = \int\limits_{\mathbb{R}^N} h_{(x)} f_{(x)} dx$.
- **<u>Def.:</u>** Sean X e Y variables aleatorias definimos la **Covarianza** de ambos como Cov(X,Y) = E((X E(X))(Y E(Y))).
- **Prop.:** Sean X e Y variables aleatorias, $X \perp Y \implies \text{Cov}(x,y) = 0$.
- <u>Def.</u>: Sean X e Y variables aleatorias definimos el **Coeficiente de Correlación** entre ambas como $\rho(X,Y) = \frac{\text{Cov}(X,Y)}{\sigma(X)\sigma(Y)}$.
- Prop.: Sean X e Y variables aleatorias $\implies f_{X|Y=y(x)} = \frac{f_{(x,y)}}{f_{Y(y)}}$.
- <u>Teorema:</u> Sea X una variable aleatoria y $\{A_i\}$, $i \in [1, n] \subseteq \mathbb{N}$ una partición del espacio muestral $\Longrightarrow E(X) = \sum_{i=1}^n E(X|A_i)\mathbb{P}(A_i)$.

5. Ley de Grandes Números y Teorema Central del Límite

- <u>Def.</u>: Sea X una variable aleatoria definimos un **Modelo** de X a un vector X de variables aleatorias independientes e idénticamente distribuidas (o iid) $X_i \sim X \ \forall i \in [1, n] \subseteq \mathbb{N}$. A algún valor x del modelo de X lo llamamos una **Muestra** de X
- <u>Def.:</u> Sea X modelo de X definimos a la **Media Muestral** de X como $\bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$. Vale además que $E(\bar{X}) = E(X)$ y $V(\bar{X}) = \frac{V(X)}{n}$.
- <u>Def.:</u> Sea X modelo de X definimos a la **Desviación Estándar** como $\sigma_n(X) = \sqrt{\frac{1}{n} \sum_{i=1}^n (X_i \bar{X})^2}$, y definimos el **Error Estadístico** como $\frac{\sigma_n(X)}{\sqrt{n}}$.
- <u>Desigualdad de Markov:</u> Sea X>0 una variable aleatoria con esperanza finita y $\epsilon>0$ $\Longrightarrow \mathbb{P}(X>\epsilon)\leqslant \frac{\mathrm{E}(X)}{\epsilon}$.
- Desigualdad de Chebyshev: Sea X una variable aleatoria con esperanza finita y $\epsilon > 0 \implies \mathbb{P}(|X \mathcal{E}(X)| \ge \epsilon) \le \frac{\mathcal{V}(X)}{\epsilon^2}$.
- Ley de Grandes Números: Sea X una variable aleatoria y x un modelo de X $\Longrightarrow \lim_{n\to\infty} \mathbb{P}(|X_n X| > \epsilon) = 0 \ \forall \epsilon > 0$. En particular, vale que $\lim_{n\to\infty} \mathbb{P}(|\bar{X} \mathrm{E}(X)| > \epsilon) = 0$.

- <u>Def.</u>: Sea X una variable aleatoria llamamos el **Momento** de orden k de X a $m_k = \mathrm{E}(X^k) < \infty$. En general se refiere a m_1 como **Posición**, a m_2 como **Dispersión**, a m_3 como **Asimetría** y a m_4 como **Kurtosis**.
- <u>Def.</u>: Sea X una variable aleatoria definimos la Función Generadora de Momentos de X como $M_X : \mathbb{R} \to \mathbb{R}, \ M_{X(t)} = \mathrm{E}(e^{tX}).$
- <u>Teorema:</u> Sea X una variable aleatoria $\implies m_k = \frac{d^k}{dt^k} M_{X(t)} \Big|_{t=0}$.
- Teorema de Unicidad: Sea X una variable aleatoria \implies su función generadora de momentos es única.
- Teorema: Sean X_i , $i \in [1, n] \subseteq \mathbb{N}$ variables aleatorias $/X_i \perp X_j \ \forall i \neq j, \ Y = \sum_{i=1}^n X_i \implies M_{Y(t)} = \prod_{i=1}^n M_{X_i(t)}$.
- <u>Def.:</u> Sean $\{X_i\}$, $i \in \mathbb{N}$ una sucesión de variables aleatorias decimos que **Converge en Distribución** a otra variable aleatoria $X \iff \lim_{i \to \infty} F_{X_i(x)} = F_{X(x)}$. Notamos $X_i \to X$.
- Teorema Central del Límite: Sean X_i variables aleatorias iid con media μ y varianza σ^2 y sea $S_n = \sum_{i=1}^n X_i \implies Z_n = \frac{S_n n\mu}{\sqrt{n}\sigma} \to Z$, donde $Z \sim \mathcal{N}(0,1)$.
- <u>Teorema</u>: Sea X una variable aleatoria entonces converge en distribución a alguna otra variable aleatoria \iff hay convergencia de las distribuciones acumuladas \iff existen y convergen las funciones generadoras de momentos.

6. Estadística

- <u>Def.</u>: Sea X una variable aleatoria definimos un **Parámetro** de X como una variable que caracteriza la distribución de X. Notamos a la distribución de X como $f_{(\theta;x)}$, donde θ es un parámetro de X.
- <u>Def.</u>: Sea X un modelo de X definimos el **Estimador Puntual** $\hat{\theta}_n$ como una variable aleatoria función del modelo que estima el parámetro de X. Llamamos **Estimación** o **Estimativa** al estimador aplicado a una muestra.
- Def.: Sea $\hat{\theta}_n$ un estimador lo llamamos Consistente si $\hat{\theta}_n \to \theta$, donde θ es el parámetro.
- <u>Def.</u>: Sea $\hat{\theta}_n$ un estimador y θ el parámetro definimos el **Sesgo** como $b = E(\hat{\theta}_n) \theta$. Llamamos a un estimador **Insesgado** si no tiene sesgo y **Asintóticamente Insesgado** si $\lim_{n\to\infty} b = 0$.
- <u>Def.</u>: Sea X un modelo de X definimos al **Momento Muestral** de orden k de X como $\hat{m}_k = \frac{1}{n} \sum_{i=1}^n X_i^k$.
- **<u>Def.:</u>** Sea θ parámetro de X y \exists $k \in \mathbb{N}$ / m_k sea función inversible de θ entonces se define el **Estimador de Momento** de θ como $\hat{\theta}_n = \hat{m}_k^{-1}$.
- <u>Def.</u>: Sea X una muestra de X con parámetro θ definimos la **Función de Verosimilitud** como $\mathcal{L}(\theta; x) = \mathbb{P}(X = x)$. En el caso continuo se define $\mathcal{L}(\theta; x) = \prod_{i=1}^{n} f_{(\theta; x_i)}$.
- <u>Def.:</u> Sea θ parámetro de X definimos el Estimador de Máxima Verosimilitud a $\hat{\theta}_n / \mathcal{L}(\theta; \boldsymbol{x})$ sea máximo.
- <u>Def.:</u> Sea $\hat{\theta}_n$ un estimador de θ llamamos **Error** a $(\hat{\theta}_n \theta)$, **Error Estándar** a $\sigma(\hat{\theta}_n)$ y **Error Cuadrático Medio** a $\text{ECM}(\hat{\theta}_n) = \text{E}((\hat{\theta}_n \theta)^2)$.
- **Prop.:** Sea $\hat{\theta}_n$ un estimador de $\theta \implies \text{ECM}(\hat{\theta}_n) = b^2(\hat{\theta}_n) V(\hat{\theta}_n)$.

- **<u>Def.:</u>** Sea X modelo de X definimos la **Varianza Muestral** como $S_n^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i \bar{X})^2$.
- $\underline{\mathbf{Prop.:}}$ Sea X modelo de X entonces, a diferencia de su desviación estándar, la varianza muestral es un estimador insesgado.
- <u>Lema:</u> Sea $\hat{\theta}_n$ estimador de θ si es asintóticamente insesgado y $\lim_{n\to\infty} V(\hat{\theta}_n) = 0 \implies$ es consistente.
- <u>Def.</u>: Sea X modelo de X con parámetro θ llamamos **Intervalo de Confianza** de nivel $1-\alpha$, donde α es la **Probabilidad de Error**, a un intervalo aleatorio $I / \mathbb{P}(\theta \in I) = 1-\alpha$ y que es independiente de θ .
- Prop.: Sea X modelo de X con parámetro θ y $T(\theta; X)$ una función inversible cuya distribución no depende de θ la llamamos Función Pivote y sean $a, b \in \mathbb{R} / \mathbb{P}(a \leqslant T \leqslant b) = 1 \alpha$, $\alpha \in [0, 1] \subseteq \mathbb{R} \implies I = \begin{bmatrix} T_{(a)}^{-1}, T_{(b)}^{-1} \end{bmatrix}$ es un intervalo de confianza de nivel 1α de θ .
- Prop.: Sean $z \sim \mathcal{N}(0,1), \ U \sim \chi_n^2 \implies z\sqrt{\frac{n}{U}} \sim t_n$.
- Prop.: Sean $X_i \sim \mathcal{N}(\mu, \sigma^2)$ iid $\implies S_n^2 \sim \chi_n^2, \ S_n^2 \perp \bar{X}, \ \sqrt{n} \left(\frac{\bar{X} \mu}{S_n^2}\right) \sim t_{n-1}.$
- <u>Def.</u>: Definimos un **Test** como una regla de decisión basada en una variable aleatoria que llamamos **Estadístico** que depende de la muestra y de ciertos parámetros a testear. Estableciendo una **Hipótesis Nula** que va a ser sujeta al test vamos a calcular el estadístico y definir una **Zona de Rechazo**, tal que si el estadístico cae en esta zona entonces se rechazará la hipótesis nula. A esta zona de rechazo la vamos a definir utilizando una **Hipótesis Alternativa** a la hipótesis nula y el **Error de Tipo I**, que es la probabilidad de rechazar la hipótesis nula dado que es verdadera. Llamamos **Error de tipo II** a la probabilidad de no rechazar la hipótesis nula cuando esta es falsa.
- <u>Def.</u>: Sea t el estadístico medido usando H_0 la hipótsis nula definimos el **p-Valor** como $p = \mathbb{P}(|T| \ge t|H_0)$. Se puede usar esta cantidad para determinar el resultado de un test rechazando la hipótesis nula si $p > \alpha$, donde α es el error de tipo I.

7. Distribuciones

7.1. Discretas

Nombre	Distribución	$\mathrm{E}(X)$	V(X)	$M_{X(t)}$
Bernoulli	Be(p) = $p\delta_{X1} + (1-p)\delta_{X0}$ (*)	p	p(1 - p)	$pe^t + 1 - p$
Geométrica	$G(p) = p(1-p)^{x-1}$ (*)	$\frac{1}{p}$	$\frac{1-p}{p^2}$	$\frac{pe^t}{1 - (1 - p)e^t}$
Binomial	$B(n,p) = \binom{n}{x} p^x (1-p)^{n-x}$ (*)	$\stackrel{\cdot}{np}$	np(1-p)	$(pe^t + 1 - p)^n$
Binomial Negativa	$NB(r,p) = {\binom{x-1}{r-1}} p^r (1-p)^{x-r} \ (*)$	$\frac{r}{p}$	$\frac{r(1-p)}{p^2}$	$\left(\frac{pe^t}{1-(1-p)e^t}\right)^r$
Poisson	$\mathcal{P}(\lambda) = \frac{\lambda^x}{x!} e^{-\lambda} \ (***)$	λ	λ	$e^{\lambda(e^t-1)}$
Hipergeométrica	$\mathcal{H}(N,B,m) = \frac{\binom{B}{x}\binom{N-B}{m-x}}{\binom{N}{m}} \ (**)$	$m\frac{B}{N}$	$m\frac{B}{N}\frac{(N-B)}{N}\frac{(N-m)}{(N-1)}$	_
Empírica	$\hat{F}(n) = \frac{1}{n} \sum_{i=1}^{n} \delta_{X_i X} (****)$	$\frac{1}{n} \sum_{i=1}^{n} X_i$	$\frac{1}{n} \sum_{i=1}^{n} (X_i - E(X))^2$	$\frac{1}{n} \sum_{i=1}^{n} e^{tX_i}$

Tabla 1: Distribuciones Discretas Usuales

7.2. Continuas

Nombre	Distribución	$\mathrm{E}(X)$	V(X)	$M_{X(t)}$
Normal	$\mathcal{N}(\mu, \sigma^2) = \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{(x-\mu)^2}{2\sigma^2}}$	μ	σ^2	$e^{\frac{\sigma^2 t^2}{2} + \mu t}$
Uniforme	$\mathcal{U}(a,b) = \frac{1}{b-a} \mathbb{I}_{(a,b)}(x)$	$\frac{a+b}{2}$	$\frac{(b-a)^2}{12}$	$\frac{e^{bt}-e^{at}}{t(b-a)}$
Exponencial	$\mathcal{E}(\lambda) = \lambda e^{-\lambda x} \mathbb{I}_{(0,\infty)}(x) \ (***)$	$\frac{1}{\lambda}$	$\frac{1}{\lambda^2}$	$\frac{\lambda}{\lambda - t} \mathbb{I}_{(-\infty, \lambda)}(t)$
Gamma	$\Gamma(\alpha,\lambda) = \frac{\lambda^{\alpha}}{\Gamma(\alpha)} x^{\alpha-1} e^{-\lambda x} \mathbb{I}_{(0,\infty)}(x) (***)$	$\frac{\alpha}{\lambda}$	$\frac{\alpha}{\lambda^2}$	$\left(\frac{\lambda}{\lambda - t}\right)^{\alpha} \mathbb{I}_{(-\infty, \lambda)}(t)$
Chi Cuadrado	$\chi_n^2 = \Gammaigl(rac{n}{2},rac{1}{2}igr) \ (***)(****)$	n	2n	$(1-2t)^{-\frac{n}{2}}\mathbb{I}_{\left(-\infty,\frac{1}{2}\right)}(t)$
t-Student	$t_n = \frac{\Gamma(\frac{n+1}{2})}{\sqrt{n\pi}\Gamma(\frac{n}{2})} \left(1 + \frac{x^2}{n}\right)^{-\frac{n+1}{2}} (***)(*****)$	0, n > 1	$\frac{n}{n-2}, \ n>2$	_

Tabla 2: Distribuciones Continuas Usuales

- (*): $p \in (0,1) \subseteq \mathbb{R}$.
- \blacksquare (**): N total poblacional, B "buenos" en la población y m total de la muestra.
- (***): $\lambda, \alpha > 0, \ \lambda, \alpha \in \mathbb{R}, \mathbb{I}$ es la función indicatriz.
- \bullet (****): X_i muestra de $X,\,\delta_{ij}$ es la delta de Kronecker.
- (****): $n \in \mathbb{N}$ grados de libertad.