

WORLD INTELLECTUAL PROPERTY ORC

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 5:

C07H 19/10, A61K 31/70

A 1

(11) International Publication Number:

WO 93/06120

(43) International Publication Date:

1 April 1993 (01.04.93)

(21) International Application Number:

PCT/US92/07792

(22) International Filing Date:

15 September 1992 (15.09.92)

(30) Priority data:

763,936

23 September 1991 (23.09.91) US

(71) Applicant: UNIVERSITY OF ROCHESTER [US/US]; 518 Hylan Building, Rochester, NY 14627 (US).

(72) Inventors: BORCH, Richard, F.; 4 Bromley Road, Pittsford, NY 14534 (US). FRIES, Kristin, M.; 422-D Clay road, Rochester, NY 14623 (US).

(74) Agent: HAMRE, Curtis, B.; Merchant, Gould, Smith, Edell, Welter & Schmidt, 3100 Norwest Center, 90 South Seventh Street, Minneapolis, MN 55402 (US).

(81) Designated States: CA, JP, European patent (AT, BE, CH, DE, DK, ES, FR, GB, GR, IE, IT, LU, MC, NL, SE).

Published

With international search report.

(54) Title: PHOSPHORAMIDATE ANALOGS OF 5-FLUORO-2'-DEOXYURIDINE

(57) Abstract

The present invention provides a series of cytotoxic phosphoramidate analogs of 5-fluoro-2'-deoxyrudine of general formula (I), wherein R¹ is H, F or (C₁-C₄)alkyl; R² is CH₂CH₂X wherein X is Cl, Br, I or p-toluenesulfonyl; R³ is (C₁-C₄)alkyl or CH₂CH₂X wherein X is Cl, Br, I or p-toluenesulfonyl; or wherein R² and R³, taken together with the N atom, can be 5- or 6-membered heterocyclic ring which is aliphatic or aliphatic interrupted by a ring oxygen or a second ring nitrogen; R⁴ is H, one equivalent of a pharmaceutically-acceptable cation or (4,4,6-trimethyltetrahydro-1,3-oxazin-2-yl)ethyl, and the pharmaceutically acceptable salts thereof.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AT	Austria	FI	Finland	MN	Mongolia
	Australia	FR	France	MR	Mauritania
ΑU		GA	Gabon	MW	Malawi
BB	Barbados	GB	United Kingdom	NL	Netherlands
BE	Belgium			NO	Norway
BF	Burkina Faso	GN	Guinca	NZ	New Zealand
BC	Bulgaria	GR	Greece		
B.J.	Benin	HU	Hongary	PL	Poland
BR	Brazil	IE	Ircland	PT	Portugal
CA	Canada	IT	Italy	RO	Romania
CF	Central African Republic	JP	Japan	RU	Russian Federation
		КP	Democratic People's Republic	SD	Sudan
CG	Congo		of Korea	SE	Sweden
CH	Switzerland	KR	Republic of Korea	SK	Slovak Republic
CI	Côte d'Ivoire		Liechtenstein	SN	Senegal
CM	Cameroon	니		su	Soviet Union
cs	Czechoslovakia	LK	Sri Lanka		Chad
CZ	Czech Republic	LU	Trumpont	TD	•
DE	Germany	MC	Monaco	TG	Togo
DK	Denniark	MG	Madagascar	UA	Ukraine
ES	Spain	MI	Mali	us	United States of America

-1-

PHOSPHORAMIDATE ANALOGS OF 5-FLURO-2'-DEOXYURIDINE

BACKGROUND OF THE INVENTION

The present invention was made with the support of National Cancer Institute grants CA34619 and CA11198. The 5 U.S. Government has certain rights in the invention.

5-Fluorouracil (5-FU) is the antineoplastic agent of choice for the treatment of carcinoma of the pancreas, and, in combination with semustine, is widely used to treat colorectal cancer and gastric cancer. Fluorouracil is also used topically in the treatment of precancerous dermatoses, especially actinic keratosis, for which it is the treatment of choice when multiple lesions occur.

5-FU is a congener of uracil that acts both as a surrogate and as an antimetabolite of that nucleotide. Its metabolite, 5-fluorodeoxyuridine-5'-monophosphate (F-dUMP) is a potent inhibitor of thymidylate synthetase, thus blocking the synthesis of thymidylic acid and hence of DNA. The analog 2'-deoxy-5-fluorouridine has been used to treat adenocarcinoma metastatic to the liver. Despite the potency of 5-FU, low response rates, low therapeutic indices, and the development of resistance represent major problems in the clinical application of this drug and its analogs.

Therefore, a need exists for analogs or prodrugs

25 of 5-FU that are both readily taken up by tumor cells while
retaining the ability to inhibit thymidylate synthetase.

SUMMARY OF THE INVENTION

The present invention provides a series of phos-30 phoramidate analogs of 5-fluoro-2'-deoxyuridine of the general formula (I):

$$\begin{array}{c|c}
R^2 & O \\
R^3 & N & P & O \\
\hline
OR^4 & OH
\end{array}$$
(I)

5

wherein R¹ is H, F or (C₁-C₄)alkyl; R² is CH₂CH₂X wherein X is Cl, Br, I or p-toluenesulfonyl; R³ is (C₁-C₄)alkyl or CH₂CH₂X wherein X is Cl, Br, I or p-toluenesulfonyl; or wherein R² and R³, taken together with the N atom, can be a 5- or 6-membered heterocyclic ring which is aliphatic or aliphatic interrupted by a ring oxygen or a second ring nitrogen; R⁴ is H, one equivalent of a pharmaceutically-acceptable cation or (4,4,6-trimethyltetrahydro-1,3-oxazin-2-yl)ethyl, and the pharmaceutically-acceptable salts thereof.

Preferably R¹ is F, H, or CH₃, most preferably R¹ is F. Preferably R⁴ is the moiety (4,4,6-trimethyl-tetrahydro-1,3-oxazin-2-yl)ethyl. Compounds containing this moiety can readily cross cell membranes and are intracellularly converted into phosphoramidate derivatives wherein R⁴ is H. Compounds of the present invention wherein R⁴ is (4,4,6-trimethyltetrahydro-1,3-oxazin-2-yl)ethyl are shown on Table I, below.

TABLE I

Cpd No.	$\underline{\mathbb{R}^1}$	<u>R²</u>	<u>R³</u>	LC-99 (µM)
la	F	CH ₂ CH ₂ Br	CH ₃	100
1b	F	CH ₂ CH ₂ OTs	CH ₃	156
1c	F	CH ₂ CH ₂ Cl	CH ₃	308
1d	F	CH ₂ CH ₂ I	CH ₃	95
1e	F	-CH ₂ CH ₂ OCH ₂ CH ₂ -		216
2	н	-CH ₂ CH ₂ OCH ₂ CH ₂ -		190
3	CH ₃	-CH ₂ CH ₂ OCH ₂ CH ₂ -		152
4	F	-(CH ₂) ₅ -		98
5	н	CH2CH2Br	CH ₃	318
6	H	CH ₂ CH ₂ Br	CH ₂ CH ₂ Br	150
. 7	CH ₃	CH ₂ CH ₂ Br	CH ₃	165
8	CH₃	CH2CH2Br	CH ₂ CH ₂ Br	120
9	F	CH ₂ CH ₂ Br	CH ₂ CH ₂ Br	90

Concentration of compound required to kill 99% of B16 melanoma cells in a clonogenic assay. Cells were treated with the compound for 2 hr.

It is believed that the present compounds exhibit antitumor and/or antiviral activity at least in part via their ability to inhibit the enzyme thymidylate synthase (TS). Compounds wherein at least one of R² or R³ is CH₂CH₂X, wherein X is a leaving group such as Cl, Br, I, p-toluenesulfonyl (OTs) or a similar leaving group, can function as irreversible inhibitors of TS, while compounds wherein R² and R³ taken together with the N atom form a 5-6 membered ring can be hydrolyzed intracellularly to release the bioactive nucleotide NucOPO₃-2 wherein Nuc is the corresponding nucleoside. The inhibition of TS by these analogs is reversible.

Analogs of the general formula NucOP(O)(NR²R³)(O⁻) are also within the scope of the invention, since they are believed to represent the reactive intermediates which are formed <u>in situ</u> following uptake of the corresponding oxazinylethyl-substituted compounds by the target cells.

The present invention is also directed to a method for the inhibition of thymidylate synthetase (TS) by contacting TS with an effective inhibiting amount of one or more compounds of formula I, either in vitro or in vivo. When administered to mammals in vivo, the compounds of formula I can be used to treat conditions which can be ameliorated by the inhibition of TS activity. Such conditions include cancers which respond to 5-fluorouracil (5-FU) treatment, such as gastrointestinal cancer, pancreatic cancer, colorectal cancer, malignant insulinoma, primary hepatocellular carcinoma, prostate cancer, bladder cancer, endometrial carcinoma, cervical cancer, breast cancer, ovarian cancer and the like. The present compounds can also act to inhibit viral replication in vivo or in vitro. Generally, the compounds of formula I are about 10-100

times more active than 5-FU, while exhibiting fewer side effects.

The present invention is also directed to novel intermediates which can be employed to prepare the compounds of formula I.

DETAILED DESCRIPTION OF THE INVENTION

Compounds <u>la-d</u> are prepared from 5-fluoro-2'deoxyuridine as outlined on Figure 1, using the reagents and reaction conditions summarized on Table II, below.

TABLE II

Step	Reaction Conditions	Product
a	Ph ₃ CCl, dimethylaminopyridine, pyridine, 80°C, 30 min	
þ	t-butyldimethylsilylchloride, imidazole, DMF, 18 hr, 25°C	
С	HOAc-H ₂ O, 30 min, reflux	<u>15</u>
. f	Lithium diisopropylamide, then add to 16a-c, THF, 0° to 25°C, 18 hr.	<u>17</u>
g	$HOAc-H_2O$, 80 °C, 30 min; then $NaOH$	
h	NaIO ₄ , pH=5.0, THF	
i	4-Methyl-4-amino-2-pentanol, 3Å molec. sieves, CH ₂ Cl ₂	<u>18</u>
j	Bu ₄ NF, THF, 0°	<u>la-d</u>

To prepare compounds $\underline{1a}$, $\underline{1c}$ and $\underline{1e}$, step f is carried out using intermediates $\underline{16a-c}$, respectively, which have the general formula $(\underline{16})$:

<u> 16</u>

wherein X is Cl, Br or I, respectively.

Generally, the 3'-protected nucleoside 15 was 10 prepared by treating the 2'-deoxynucleoside, 14 sequentially with triphenylmethyl chloride and t-butyldimethylsilyl chloride, followed by detritylation. The phosphorylating agent was prepared by reaction of phosphorus oxychloride with the appropriate amine salt followed by treat-15 ment with the lithium salt of 4-(2-hydroxyethyl)-2,2dimethyl-1,3-dioxolane. The protected nucleoside 15 was then converted to its alkoxide and phosphorylated with 16 to give 17. The acetonide was hydrolyzed, the resulting diol was cleaved with sodium periodate, and the resulting 20 aldehyde was trapped with 4-methyl-4-amino-2-pentanol to give 18. Finally, the 3'-protecting group was removed to give the 2'-deoxynucleotide phosphoramidates 1a, 1c or 1d. Tosyl analog 16 was prepared by reacting 17, X=Br with silver tosylate in acetonitrile at reflux for 3 hr to yield 17, X=OTs, which was further reacted as described above.

Morpholino analog <u>le</u> was prepared by replacing intermediate <u>16</u> with 2-(2,2-dimethyl-1,3-dioxolan-4-yl)-ethyl-morpholino-phosphoramidyl chloride, which was in turn prepared by reacting phosphorus oxychloride sequentially with morpholine and 4-(2-hydroxyethyl)-2,2-dimethyl-1,3-dioxolane. Morpholine can be replaced with other heterocyclic ring compounds, such as piperazine and piperidine to

afford compounds of formula I wherein R^2 and R^3 taken together with N are a 5- or 6-membered heterocyclic ring.

. Useful dosages of the compounds of formula I can be determined by comparing their in vitro activity, and 5 in vivo activity in animal models, to that of an equivalent dosage of 5-fluorouracil of or of 2'-deoxy-5-fluorouridine, both of which are currently employed in the treatment of human cancers. For example, a compound of formula I that is 10-20 times more potent than 5-FU against a particular 10 cancer, such as those discussed above, may be administered intravenously in a single unit dose of about 0.75-1.5 mg/kg once a week, for as long as clinical improvement is evi-The dosage can be adjusted weekly according to the The compounds of the present invenpatient's tolerance. tion can also be administered orally, as in capsules or tablets. The present compounds can also be applied topically, e.g., in a 1-5% cream or in a 1-5% solution, in combination with a semi-solid emulsified cream base, or in combination with a pharmaceutically-acceptable liquid vehicle. 20

Pharmaceutically-acceptable cations include alkali metal salts (Li⁺, Na⁺, K⁺) as well as NH_4 ⁺ and other nontoxic ammonium salts. Pharmaceutically-acceptable salts of the compounds of formula I include nontoxic amine acid addition salts of inorganic acids (HCl, H_2SO_4 , H_3PO_4) and organic acids, e.g., citrates, tartrates, gluconates, polygluconates, malates and the like.

The present compounds of formula I include both the racemic (dl), partially-resolved (optically-active)

30 mixtures of stereoisomers or the fully resolved forms.

Typically, the 1' and 4' bonds of the oxocyclopentane ring will be beta (or above the plane of the ring) and the 3'-

hydroxy group will be <u>alpha</u> (or below the plane of the ring), as depicted hereinabove.

The invention will be further described by reference to the following detailed examples in which ³¹P NMR

5 spectra were recorded on a Bruker WP-270 SY instrument equipped with a VSP multinuclear probe tuned for 109.368 MHz using 10 mm sample tubes, 5000Hz spectral width, and 64 acquisitions. Broadband gated decoupling was used, and chemical shifts are reported in parts per million from 5% triphenylphosphine oxide in toluene-d₈ as a coaxial reference. ¹H NMR spectra were recorded on the same instrument using 5 mm sample tubes and 32 acquisitions. Chemical shifts are reported in parts per million from tetramethylsilane.

15 Elemental analyses were performed by Galbraith Laboratories, Knoxville, TN. IR spectra were recorded on a Perkin Elmer 1310 Infrared Spectrometer. Melting points were determined on a Mel-Temp apparatus and are uncorrected.

20 All chromatography refers to flash chromatography over silica gel, and all organic solvents were distilled prior to use unless otherwise specified.

Example 1. N-Methyl-N-(2-bromoethyl)amine, hydrobromide salt.

This compound was prepared as described previously by F. Cortese, Org. Syn., 18, 13 (1938), on a 133 mmol scale and isolated as a white solid (20.36g, 70%): mp 66-74°C; ¹H NMR (CDCl₃) 3.83(t, 2H, J = 6.67Hz), 3.47(t, 2H, J = 6.35Hz), 2.82(s, 3H)ppm; IR (KBr) 3410, 2960, 2750, 2410, 1630, 1590, 1470, 1440, 1310, 1260, 945, 910, 1060, 1015, 960, 945, 870, 805cm⁻¹.

Example 2. N-Methyl-N-(2-chloroethyl)amine, hydrochloride salt.

Hydrogen chloride was bubbled into a stirred solution of 2-(methylamino)ethanol (10 g, 133 mmol) in CH₂Cl₂

5 (25 ml) until the mixture turned wet litmus paper red. The mixture was cooled to 0°C, and thionyl chloride (15.82g, 133 mmol) was added dropwise. The mixture was allowed to stir overnight at room temperature. The solvent was removed under reduced pressure to give product as a white

10 solid (16.60g, 96% yield): mp 95-100°C; ¹H NMR (DMSO-d₆)
4.00(t, 2H, J = 6.28Hz), 3.36(t, 2H, J = 6.29Hz), 2.81(s, 3H)ppm; IR (KBr) 3400, 2960, 2750, 2420, 1730, 1580, 1460, 1390, 1310, 1270, 1200, 1150, 1165, 1005, 990, 900, 860, 710cm⁻¹.

15

Example 3. N-Methyl-N-(2-iodoethyl)amine, hydriodide salt. This compound was prepared analogously to the bromo analog of Example 1, on a 133 mmol scale. The product was isolated as an off white solid (38.73g, 93% yield): mp 134-136°C; ¹H NMR (CDCl₃) 3.32(m, 4H), 2.60(s, 2H) ppm. TP (KPr) 3100, 3000, 2960, 2860, 2750, 2710, 2470,

3H)ppm; IR (KBr) 3100, 3000, 2960, 2860, 2750, 2710, 2470, 1560, 1460, 1450, 1415, 1395, 1350, 1190, 1135, 1100, 1070, 1050, 1000, 975, 955, 910, 835, 850cm⁻¹.

Example 4. 4-(2-Hydroxyethyl)-2,2-dimethyl-1,3-dioxolane.

Butane-1,2,4-triol (5.0g, 47 mmol) was dissolved in MeOH (5 ml). Acetone (20 ml), MgSO, (ca. 500mg), and para-toluene sulfonic acid (p-TsOH) (catalytic amount) were added, and the mixture was allowed to stir for 5 days at room temperature. The mixture was filtered and the filtrate concentrated under reduced pressure. Methylene chloride (CH₂Cl₂) (20 ml) and water (20 ml) were added, the layers were separated, and the organic layer was washed

10

Example 5. 4-Methyl-4-amino-2-pentanol.

5,6-Dihydro-2,4,4,6-tetramethyl-4H-1,3-oxazine
(10g, 70 mmol) was refluxed in 80 ml of 10% aqueous NaOH
for 8.5 hr. The mixture was allowed to cool to room temperature and was then saturated with NaCl and extracted
with ether (5 x 30 ml). The ether extracts were combined
and dried over solid KOH. The solvent was removed under
reduced pressure to afford the product as an oil (7.30g,
89%): ¹H NMR (CDCl₃) 4.06(m, 1H), 1.34(d, 2H, J = 5.54Hz),
1.15(s, 6H), 1.09(d, 3H, J = 7.17Hz)ppm; IR (neat) 3340,
3280, 2960, 2920, 2890, 2870, 1600, 1465, 1440, 1380, 1365,
1335, 1300, 1260, 1190, 1170, 1130, 1100, 1050, 1000, 970,
900, 875, 835, 760cm⁻¹.

25 Example 6. 3'-0-t-Butyldimethylsilyl-5-fluoro-2'-deoxy-uridine (15).

To a solution of 5-fluoro-2'-deoxyuridine (14, 1.00g, 4.06 mmol) in pyridine (7 ml) was added triphenylmethyl chloride (1.25g, 4.47 mmol) and dimethylaminopyridine (0.4g, 3.05 mmol). The mixture was allowed to stir at 80°C for 30 min. The pyridine was removed under reduced pressure and the residue dissolved in DMF (4 ml). Imidatole (0.67g, 9.77 mmol) and t-butyldimethylsilyl chloride (0.74g, 4.88 mmol) were added, and the mixture was allowed

to stir overnight at room temperature. The DMF was removed under pressure, and the residue was dissolved in 80% aqueous acetic acid (5 ml). The mixture was allowed to reflux for 30 min, cooled, and neutralized with NaOH. The mixture was lyophilized, and the residue was purified by chromatography (1:1 EtOAc:hexanes) to give 15 as a white solid (709mg, 48%): mp 138-142°C; R_f 0.65 (1:9 MeOH:CH₂Cl₂); ¹H NMR (CDCl₃) 7.98(d, 1H, J = 6.39Hz), 6.23(t, 1H, J = 6.78Hz), 4.49(dt, 1H, J = 5.56Hz), 3.98(m, 2H), 3.84(m, 1H), 2.26(m, 2H), 0.90(s, 9H), 0.10(s, 6H); IR (KBr) 3460, 3190, 3080, 3050, 2930, 2860, 1720, 1655, 1490, 1475, 1445, 1400, 1335, 1250, 1190, 1120, 1095, 1030, 1005, 950, 910, 835, 760, 700, 670, 640cm⁻¹.

Example 7. [2-(2,2-dimethyl-1,3-dioxolan-4-yl)ethyl]-N-methyl-N-(2-bromoethyl)phosphoramidoyl chloride (16a).

Triethylamine (12.24g, 121mmol) was added dropwise to a stirred solution of N-methyl-N-bromoethylamine HBr (12.04g, 55 mmol) and phosphorus oxychloride (8.44g, 55 mmol) in CH₂Cl₂ (100 ml) at 0°C under N₂. The mixture was allowed to stir overnight and then poured over ice. layers were separated, and the aqueous layer was extracted with CH2Cl2 (3 x 100 ml). The organic layers were combined and dried (MgSO₄). The filtrate was concentrated under reduced pressure and the residue purified by chromatography (1:4 EtOAc:hexanes) to give N-methyl-N-(2-bromoethyl)phosphoramidic dichloride as an oil (13g, 93%): Rf 0.67 (1:4 EtOAc:hexanes); 1 H NMR (CDCl₃) 3.65(dt, 2H, J = 14.10Hz), 3.50(t, 2H, J = 6.52Hz), 2.93(d, 3H, J = 15.46Hz)ppm; ³¹P NMR (CDCl₃) -6.57ppm; IR (neat) 2980, 2940, 2880, 1740, 1450, 1370, 1340, 1280, 1250, 1210, 1105, 1050, 1005, 980, 975, 940, 915, 865, 755, 700cm⁻¹.

Butyllithium (10.8 ml, 21.60 mmol, 2.0M) was added dropwise at 0°C to a stirred solution of 4-(2-hydroxyethyl) -2,2-dimethyl-1,3-dioxolane (2.87g, 19.60 mmol) and a crystal of 4-phenylazodiphenylamine indicator in THF (7 ml) The resulting solution was added dropwise at -78°C to a stirred solution of N-methyl-N-(2-bromoethyl) phosphoramidic dichloride (5.00g, 19.60 mmol) in THF (10 ml) under N_2 . The mixture was allowed to stir under N_2 at -78°C for 3 hr, at which time the purple mixture turned 10 yellow. The mixture was warmed to room temperature and the solvent removed under reduced pressure. The residue was purified by chromatography (1:4 EtOAc: hexanes) and the product 16a isolated as an oil (4.77g, 67%): R_f 0.61 (1:1 EtOAc:hexanes); ${}^{1}H$ NMR (CDCl₃) 4.26(dt, 2H, J = 8.44Hz), 15 4.17(t, 1H, J = 6.53Hz), 4.06(t, 1H, J = 7.06Hz), 3.54(t, 1H, J = 7.10Hz), 3.44(m, 4H), 2.76(d, 3H, J = 12.76Hz), 1.95(dt, 2H, J = 6.24Hz), 1.67(d, 6H, 15.63Hz); ³¹P NMR $(CDCl_3)$ -8.07 ppm.

20 Example 8. 3'-O-t-Butyldimethylsilyl-5-fluoro-2'-deoxy-5'-uridyl-[2-(2,2-dimethyl-1,3-dioxolan-4-yl)ethyl]-N-methyl-N-(2-bromoethyl)phosphoramidate (17, X=Br).

Lithium diisopropylamide was prepared by adding n-butyllithium (1.38 ml, 2.75 mmol, 2.0M) to a stirred solution of diisopropylamine (0.39 ml, 2.75 mmol) in THF (1 ml) at 0°C under N₂. The mixture was allowed to stir at 0°C for 10 min. This solution was added dropwise to a stirred solution of 15 (0.45g, 1.25 mmol) in THF (5 ml) at 0°C under N₂. This alkoxide solution was then added dropwise to a stirred solution of 16a (0.4g, 1.25 mmol) in THF (5 ml) at 0°C under N₂, and stirring was continued overnight at room temperature. The solvent was then removed under reduced pressure and the residue purified by chromatography (EtOAc) to give 17, X=Br (0.72g, 71%): R_f 0.71 (1:9 MeOH:

CH₂Cl₂); ¹H NMR (CDCl₃) 7.82(d, 1/2H, J = 6.41Hz), 7.77(d, 1/2H, J = 6.25Hz), 6.27(m, 1H), 4.44(m, 1H), 4.11(m, 7H), 3.56(5, 1H, J = 7.37Hz), 3.46(m, 4H), 2.72(d, 3H, J = 9.34Hz), 2.30(m, 1H), 2.03(m, 1H), 1.93(m, 2H), 1.36(d, 6H, J = 13.89Hz), 0.87(s, 9H), 0.08(s, 6H)ppm; ³¹P NMR (CDCl₃) - 14.30, -14.50 ppm.

Example 9. 3'-O-t-Butyldimethylsilyl-5-fluoro-2'-deoxy-5'uridyl-[2-(4,4,6-trimethyltetrahydro-1,3-oxazin-2yl)ethyl]-N-methyl-N-(2-bromoethyl)phosphoramidate (18, X=Br).

Compound 17, X = Br (340mg, 0.50 mmol) was dissolved in 80% aqueous acetic acid (2 ml), heated to 80°C for 30 min, cooled, and neutralized with NaOH. The solution was lyophilized, the residue taken up in THF, the salts removed by filtration, and the residue concentrated under reduced pressure to afford the corresponding diol as an oil (270mg, 83%): R_f 0.54 (1:9 MeOH: CH_2Cl_2); ³¹P NMR -13.53, -13.93, -14.06ppm. To a solution of the diol (220mg, 0.35 mmol) in THF (3 ml) was added NaIO, (80mg, 0.39 mmol) in acetate buffer (3 ml, 1M in H_2O , pH = 5.0). The mixture was allowed to stir for 10 min, and the THF was then removed under reduced pressure. The mixture was lyophilized, the residue taken up in THF, and the salts fil-25 tered, and the filtrate concentrated under reduced pres-The residue was dissolved in CH₂Cl₂ (3ml) and the amino alcohol of Ex. 5 (40mg, 0.35 mmol) in CH₂Cl₂ (2 ml) The mixture was allowed to stir over 3 A° molecular sieves for 15 min. The sieves were removed and the solvent removed under reduced pressure. The residue was purified by chromatography (2% MeOH:EtOAc) to afford 18, X=Br (16lmg, 65%): R_f 0.69 (1:9 MeOH:CH₂Cl₂); ¹H NMR (CDCl₃)7.78(d, 1/2H, J = 6.07Hz), 7.73(d, 1/2H, J = 6.07Hz),6.23(m, 1H), 4.40(m, 2H), 4.04(m, 5H), 3.74(m, 1H), 3.43(m,

4H), 2.69(d, 3H, J = 9.17Hz), 2.27(m, 1H), 2.01(m, 1H), 1.87(m, 2H), 1.41(d, 1H, J = 13.24Hz), 1.14(m, 10H), 0.85(s, 9H), 0.05(s, 6H); ^{31}P NMR (CDCl₃) -14.30, -14.52ppm.

Example 10. 5-Fluoro-2'-deoxy-5'-uridyl-[2-(4,4,6-tri-methyltetrahydro-1,3-oxazin-2-yl)ethyl]-N-methyl-N-(2-bromoethyl)phosphoramidate (la).

Tetrabutylammonium fluoride (0.15 ml, 0.15 mmol, 1.0M in THF) was added at 0°C to a stirred solution of 18, X=Br (0.105g, 0.15 mmol) in THF (3 ml). The mixture was 10 allowed to stir for 20 min at 0°C. The solvent was removed under reduced pressure and the residue purified by chromatography (3% MeOH:EtOAc) to afford 1a (33 mg, 37%): R_f 0.40 (1:9 MeOH: CH_2Cl_2); ¹H NMR (CDCl₃) 7.79(m, 1H), 6.22(m, 1H), 4.51(m, 1H), 4.45(m, 1H), 4.25(m, 5H), 3.74(m, 1H), 3.48(m, 4H), 2.72(d, 3H, J = 9.54Hz), 2.45(m, 1H), 2.16(m, 2.16)lH), 1.92(m, 2H), 1.43(d, 1H, J = 11.60Hz), 1.10(m, 9H), 0.91(d, 1H, J = 12.00Hz)ppm, ³¹P NMR (CDCl₃) -13.29, -13.65, -13.69, -13.81ppm; IR (neat) 3370, 3080, 2960, 2920, 1710, 1660, 1470, 1400, 1350, 1260, 1230, 1090, 1030, 975, 900, 20 870, 800, 760, 730cm⁻¹; LSIMS m/e 601(M + H)⁺, 623(M + Na)⁺.

Example 11. 3'-0-t-Butyldimethylsilyl-5-fluoro-2'-deoxy-5'-uridyl-[2-(2,2-dimethyl-1,3-dioxolan-4-yl)ethyl]-N-methyl-N-(2-tosylethyl)phosphoramidate (17, X=OTs).

Silver tosylate (1.09g, 3.91 mmol) was added to a solution of 17, X=Br (0.67g, 0.98 mmol) in CH₃CN (2.5 ml). The mixture was refluxed for 3 hr. The mixture was cooled, filtered, and the solvent removed under reduced pressure to afford 17, X=OTs as an oil (0.70g, 92%): R_f 0.75 (1:9 MeOH: CH₂Cl₂); ¹H NMR (CDCl₃) 7.74(m, 3H), 7.31(d, 2H, J = 8.04Hz), 6.24(m, 1H), 4.41(m, 1H), 4.00(m, 9H), 3.52(t, 1H, J = 7.31), 3.28(m, 2H), 2.65(d, 3H, J = 9.34Hz), 2.40(s, 3H), 2.22(m, 1H), 2.02(m, 1H), 1.88(m, 2H), 1.32(d, 6H, J =

16.24Hz), 0.84(s, 9H), 0.05(s, 6H)ppm; 31 P NMR (CDCl₃) -13.38, -12.92ppm; LSIMS m/e 780.2(M + H)⁺, 802.2(M + Na)⁺.

Example 12. 3'-O-t-Butyldimethylsilyl-5-fluoro-2'deoxy-5'uridyl-[2-(4,4,6-trimethyltetrahydro-1,3-oxazin-2yl)ethyl]-N-methyl-N-(2-tosylethyl)phosphoramidate (18,
X=OTs).

This compound was prepared as described for 18, X=Br (0.90 mmol scale). The crude product was purified by chromatography (2% MeOH:EtOAc) to afford 18, X=OTs (333mg, 46%): R_f 0.73 (1:9 MeOH:CH₂Cl₂); ¹H NMR (CDCl₃) 7.86(d, 1/2H, J = 6.16HZ), 7.77(m, 2 1/2H), 7.34(d, 2H, J = 7.81HZ), 6.25(m, 1H), 4.44(m, 2H), 4.11(m, 5H), 3.93(m, 1H), 3.74(m, 2H), 3.42(m, 2H), 2.68(d, 3H, J = 9.42HZ), 2.44(s, 3H), 2.26(m, 1H), 2.03(m, 1H), 1.90(m, 2H), 1.42(m, 1H), 1.13(m, 10H), 0.88(s, 9H), 0.08(s, 6H)ppm; ³¹P NMR (CDCl₃) -14.13, -14.36ppm.

Example 13. 5-Fluoro-2'-deoxy-5'-uridyl-[2-(4,4,6-tri-methyl-trahydro-1,3-oxazin-2-yl)ethyl]-N-methyl-N-(2-tosylethyl)phosphoramidate (1b).

This compound was prepared as described for <u>la</u> (0.41 mmol scale). The crude product was purified by chromatography (3% MeOH:EtOAc) to give <u>lb</u> (37mg, 13% yield): R_f 0.42 (1:9 MeOH: CH_2Cl_2); ¹H NMR (CDCl₃) 7.76(m, 3H), 7.36 (d, 2H, J = 7.75HZ), 6.20(m, 1H), 4.48(m, 2H), 4.17(m, 6H), 3.76(m, 2H), 3.30(m, 2H), 2.69(d, 3H, J = 9.80Hz), 2.45(s, 3H), 2.22(m, 1H), 2.05(m, 1H), 1.94(m, 2H), 1.40(d, 1H, J = 12.99Hz), 1.15(m, 9H0, 0.10(d, 1H, J = 14.60Hz)ppm; ³¹P NMR (CDCl₃) -13.30, -13.58 ppm; LSIMS calcd for MH⁺ 693.2371; found 693.2385.

Example 14. [2-(2,2-dimethyl-1,3-dioxolan-4-yl)ethyl]-Nmethyl-N-(2-chloroethyl)phosphoramidoyl chloride (16b).

This compound was prepared from N-methyl-N-chloroethylamine. HCl via N-methyl-N-(2-chloroethyl) phosphoramidic 5 dichloride, as described for 16a (14 mmol scale). crude residue was purified by chromatography (1:4 EtOAc: hexanes) to give 16b as an oil (2.72g, 61%): R_f 0.75 (1:1 EtOAc:hexanes); ¹H NMR (CDCl₃) 4.22(m, 4H), 3.60(m, 3H), 3.42(m, 2H), 2.80(d, 3H, J = 12.85Hz), 1.99(dt, 2H, J =10 6.11Hz), 1.36(d, 6H, J = 15.82Hz)ppm; ³¹P NMR (CDCl₃) -7.69, -7.92 ppm (1:1 ratio of diastereomers).

Example 15. 3'0-t-Butyldimethylsilyl-5-fluoro-2'-deoxy-5'uridyl-[2-(2,2-dimethyl-1,3-dioxolan-4-yl)ethyl]-N-methyl-N-(2-chloroethyl)phosphoramidate (17, X=Cl).

This compound was prepared as described for 17, X=Br (1.39 mmol scale) using 16b. The crude residue was purified by chromatography (EtOAc) to give 17, X=Cl (725mg, 81%): R_f 0.75 (1:9 MeOH:CH₂Cl₂); ¹H NMR (CDCl₃) 7.84(d, 20 1/2H, J = 6.48Hz), 7.77(d, 1/2H, J = 6.32Hz), 6.27(m, 1H), 4.43(m, 1H), 4.11(m, 7H), 3.59(m, 3H), 3.37(m, 2H), 2.72(d, 3H, J = 8.61HZ), 2.28(m, 1H), 2.05(m, 1H), 1.92(m, 2H), 1.35(d, 6H, J = 16.21HZ), 0.88(s, 9H), 0.08(s, 6H)ppm; ³¹P NMR (CDCl₃) -14.19, -14.44ppm (1:1 ratio of diastereomers); 25 LSIMS m/e 644.2(M + H)⁺, 666.1(M + Na)⁺.

Example 16. 3'-0-t-Butyldimethylsilyl-5-fluoro-2'-deoxy-5'-uridyl-[2-(4,4,6-trimethyltetrahydro-1,3-oxazin-2yl)ethyl]-N-methyl-N-(2-chloroethyl)phosphoramidate (18, x=c1).

This compound was prepared as described for 18, X=Br (1.13 mmol scale). The crude residue was purified by chromatography (2% MeOH:EtOAc) to afford 18, X=Cl (217mg, 30%): R_f 0.73 (1:9 MeOH:CH₂Cl₂); ¹H NMR (CDCl₃) 7.81(d, 1/2H, 35 J = 6.32Hz), 7.75(d, 1/2H, J = 6.30Hz), 6.26(m,1H), 4.40(m, 2H), 4.05(m, 5H), 3.74(m, 1H), 3.60(m, 2H), 3.36(m, 2H), 2.71(d, 3H, 9.38Hz), 2.29(m, 1H), 2.03(m, 1H), 1.94(m, 2H), 1.42(d, 1H, J = 12.77Hz), 1.13(m, 10H), 0.86(s, 9H), 0.05(s, 6H)ppm; ³¹P NMR (CDCl₃) -14.20, -14.42 ppm(1:1 ratio of diastereomers).

Example 17. 5-Fluoro-2'-deoxy-5'-uridyl-[2-(4,4,6-tri-methyltetrahydro-1,3-oxazin-yl)ethyl]-N-methyl-N-(2-chloroethyl)phosphoramidate (1c).

This compound was prepared as described for <u>1a</u>
(0.32 mmol scale). The residue was purified by chromatography (3% MeOH:EtOAc) to afford <u>1c</u> (5lmg, 28%): R_f 0.43
(1:9 MeOH:CH₂Cl₂): ¹H NMR (CDCl₃) 7.81(d, 1/2H, J = 6.36Hz),
7.72(d, 1/2H, J = 6.39Hz), 6.21(m, 1H), 4.51(m, 1H), 4,40

15 (m, 1H), 4.19(m, 5H), 3.76(m, 1H), 3.60(m, 2H), 3.33(m,
2H), 2.74(d, 3H, J = 9.53Hz), 2.45(m, 1H), 2.17(m, 1H),
1.91(m, 2H), 1.43(d, 1H, J = 10.84Hz), 1.06(m, 9H), 0.91(d,
1H, 12.30Hz)ppm; ³¹P NMR (CDCl₃) -13.60, -13.78 ppm(mixture
of diastereomers); IR (neat) 3400, 3180, 3080, 2960, 2920,
2900, 2820, 1710, 1660, 1470, 1400, 1355, 1345, 1320, 1260,
1200, 1180, 1160, 1090, 1030, 990, 975, 910, 870, 800, 735,
645cm⁻¹; LSIMS m/e 557.3 (M + H)⁺.

Example 18. [2-(2,2-dimethyl-1,3-dioxolan-4-yl)ethyl]-N-methyl-N-(2-iodoethyl)phosphoramidoyl chloride (16c).

This compound was prepared using N-methyl-N-2-iodoethylamine-HI via N-methyl-N-(2-iodoethyl)phosphoramidic dichloride, as described for $\underline{16a}$ (10 mmol scale). The crude product was purified by chromatography (1:4 EtOAc:hexanes) which afforded $\underline{16c}$ as a pale yellow oil (2.50g, 61%): R_f 0.67 (1:1 EtOAc:hexanes); ¹H NMR (CDCl₃) 4.27(m, 3H), 4.10(t, 1H, J = 6.52Hz), 3.59(t, 1H, J = 7.38Hz), 3.44(m, 2H), 3.26(t, 2H, J = 7.56Hz), 2.78(d, 3H, J = 12.89Hz), 2.00(dt, 2H, J = 6.02Hz), 1.38(d, 6H, J =

15.48Hz)ppm; 31P NMR (CDCl₃) -8.46, -8.69ppm (1:1 ratio of diastereomers).

Example 19. 3'-0-t-Butyldimethylsilyl-5-fluoro-2'-deoxy-5 5'-uridyl-[2-(2,2-dimethyl-1,3-dioxolan-4-yl)ethyl]-Nmethyl-N-(2-iodoethyl)phosphoramidate (17, X=I).

This compound was prepared as described for 17, X=Br (1.10 mmol scale) using 16c. The crude residue was purified by chromatography (EtOAc) to give 17, X=I (503mg,

- 10 62%): R_f 0.70 (1:9 MeOH:CH₂Cl₂); ¹H NMR (CDCl₃) 7.80(d, 1/2H, J = 6.30Hz), 7.78(d, 1/2H, J = 6.41Hz), 6.22(dt, 1H, J = 6.67Hz), 4.39(m, 1H), 4.08(m, 7H), 3.53(m, 1H), 3.35(m, 2H), 3.21(m, 2H), 2.65(d, 3H, J = 9.54Hz), 2.29(m, 1H), 2.05(m, 1H), 1.93(m, 2H), 1.31(d, 6H, J = 15.38Hz), 0.83(s, 2.05(m, 1H))
- 15 9H), 0.04(s, 6H)ppm; 31p NMR (CDCl₃) -14.39, -14.65 ppm (1:1 ratio of diastereomers).

Example 20. 3'-O-t-Butyldimethylsilyl-5-fluoro-2'deoxy-5'uridyl-[2-(4,4,6-trimethyltetrahydro-1,3-oxazin-2-yl)ethyll-N-methyl-N-(2-iodoethyl)phosphoramidate (18, X=I). 20

This compound was prepared as described for 18, X=Br (0.68 mmol scale). The crude residue was purified by chromatography (2% MeOH: EtOAc) to afford 18, X-I (166mg, 32%): $R_f = 0.73 (1:9 \text{ MeOH:} CH_2Cl_2); ^1H \text{ NMR (CDCl}_3) 7.75(d,$

- 1/2H, J = 6.33Hz), 7.71(d, 1/2H, J = 6.25Hz), 6.17(m, 1H), 4.33(m, 2H), 4.03(m, 5H), 3.66(m, 1H), 3.32(m, 2H), 3.22(m, 25 2H), 2.60(d, 3H, J = 9.41Hz), 2.26(m, 1H), 2.03(m, 1H), 1.87(m, 2H), 1.34(d, 1H, J = 12.32Hz), 1.08(m, 10H), 0.78(s, 9H)ppm; ³¹P NMR (CDCl₃) -14.52, -14.77, -15.06, -15.31 ppm (mixture of diastereomers).
 - Example 21. 5-Fluoro-2'deoxy-5'-uridyl-12-(4,4,6-trimethyltetrahydro-1,3-oxazin-2-yl)ethyl]-N-methyl-N-(2-iodoethyl)phosphoramidate (1d).

This compound was prepared as described for <u>la</u> (0.22mmol). The crude residue was purified by chromatography (3% MeOH:EtOAc) to afford <u>ld</u> (40mg, 28%): R_f 0.34 (1:9 MeOH:CH₂Cl₂); ¹H NMR (CDCL₃) 7.74(m, 1H), 6.18(m, 1H), 4.48(m, 1H), 4.45(m, 1H), 4.19(m, 5H), 3.72(m, 1H), 3.34(m, 2H), 3.26(m, 2H), 2.65(d, 3H, 9.36Hz), 2.40(m, 1H), 2.14(m, 1H), 1.94(m, 2H), 1.44(d, 1H, 11.54Hz), 1.12(m, 10H)ppm; ³¹P NMR (CDCl₃) -13.75, -14.04 ppm (1:1 ratio of diatereomers); IR (neat) 3380, 3050, 2960, 2920, 2820, 1710, 1660, 1465, 1400, 1355, 1320, 1260, 1240, 1275, 1090, 1030, 1000, 975, 940, 900, 870, 800, 735, 700cm⁻¹; LSIMS calcd for MH⁺ 649.1299; found 649.1315.

Example 22. [2-(2,2-dimethyl-1,3-dioxolan-4-yl)ethyl]morpholinophosphoramidoyl chloride (16d).

To a stirred solution of phosphorus oxychloride (17.63g, 115 mmol) in CH_2Cl_2 (100 ml) at 0°C, under N_2 was added morpholine (10.00g, 115 mmol) in CH₂Cl₂ (30 ml). mixture was allowed to stir overnight, under N_2 , at room temperature. The mixture was poured over ice, the layers separated, and the aqueous layer extracted with CH2Cl2 (3 x 100 ml). The organic layers were combined, dried (MgSO4), filtered, and the filtrate concentrated under reduced pressure. The residue was purified by chromatography (1:4 EtOAc:hexanes) to give morpholinophosphoramidic dichloride as a clear oil (16.04g, 68%): R_f 0.70 (1:4 EtOAc:hexane); ¹H NMR (CDCl₃) 3.71(m, 4H), 3.30(m, 4H)ppm; ³¹P NMR (CDCl₃) -8.34ppm; IR (neat) 2970, 2920, 2860, 1455, 1370, 1345, 1300, 1275, 1260, 1140, 1115, 1090, 1070, 1015, 970, 915, 850, 710cm⁻¹. 30

16d was prepared using 24 as described for 16a (20 mmol scale). The crude residue was purified by chromatography (1:4 EtOAc:hexanes) to give 16d as a yellow oil

(3.45g, 55%): R_f 0.54 (1:1 EtOAc:hexanes); ¹H NMR (CDCl₃) 4.27(m, 2H); 4.16(m, 1H); 4.05(t, 1H, J = 7.23Hz), 3.67(m, 4H), 3.54(t, 1H, J = 7.18Hz), 3.13(m, 4H), 1.96(m, 2H), 1.32(d, 6H, J = 16.36Hz)ppm; ³¹P NMR (CDCl₃); IR(neat) 2980, 2920, 2850, 1710, 1455, 1370, 1330, 1300, 1275, 1260, 1215, 1160, 1140, 1110, 1095, 1055, 975, 920, 850, 715cm⁻¹.

Example 23. 3'-0-t-Butyldimethylsilyl-5-fluoro-2'deoxy-5'uridyl-[2-(2,2-dimethyl-1,3-dioxolan-4-yl)ethyl]-morpholinophosphoramidate (19).

This compound was prepared as described for (17 X=Br) (1.2 mmol scale). The crude residue was purified by chromatography (EtOAc) to give 19 (492mg, 68%): R_f 0.72 (1:9 MeOH:CH₂Cl₂); ¹H NMR (CDCl₃) 7.76(d, 1/2H, J = 6.31Hz), 7.71(d, 1/2H, J = 6.27Hz), 6.22(m, 1H), 4.38(m, 1H), 4.06 (m, 6H), 3.88(m, 1H), 3.62(m, 4H), 3.54(5, 1H, J = 7.00Hz), 3.11(m, 4H), 2.25(m, 1H), 2.01(m, 1H), 1.88(m, 2H), 1.32(d, 6H, J = 18.20Hz), 0.84(s, 9H), 0.05(s, 6H)ppm; ³¹P NMR (CDCl₃) -16.15, -16.47 ppm (1:1 ration of diastereomers); LSIMS m/e 638(M + H)⁺; 660(M + Na)⁺.

Example 24. 3'-O-t-Butyldimethylsilyl-5-fluoro-2'deoxy-5'uridyl-[2-(4,4,6-trimethyltetrahydro-1,3-oxazin-2-yl)ethyl]-morpholinophosphoramidate (20).

This compound was prepared as described for <u>18</u>,

X=Br (0.81 mmol scale) using <u>19</u>. The crude product was

purified by chromatography (2% MeOH:EtOAc) to give <u>20</u> (178

mg, 33%): R_f 0.70 (1:9 MeOH:CH₂Cl₂); ¹H NMR (CDCl₃) 7.78(d,

1/2H, J = 6.15Hz), 7.73(d, 1/2H, J = 6.06Hz), 6.23(m, 1H),

4.38(m, 2H), 4.07(m, 5H), 3.71(m, 1H), 3.63(m, 4H), 3.12(m,

4H), 2.27(m, 1H), 2.02(m, 1H), 1.89(m, 2H), 1.41(d, 1H, J =

13.08), 1.07(m, 10H), 0.86(s, 9H), 0.06(s, 6H)ppm; ³¹P NMR

(CDCl₃) -16.08, -16.39 ppm (1:1 ratio of diastereomers); IR

(neat) 3400, 2860, 2820, 2850, 1710, 1660, 1465, 1400,

35 1355, 1255, 1190, 1110, 1090, 1020, 975, 910, 830, 775cm⁻¹.

Example 25. 5-Fluoro-2'-deoxy-5'-uridyl-[2-(4,4,6-tri-methyltetrahydro-1,3-oxazin-2-yl)ethyl]-morpholinophos-phoramidate (1e).

This compound was prepared as described for <u>la</u>

(0.27 mmol scale). The crude residue was purified by chromatography (3% MeOH:EtOAc) to give <u>le</u> (65 mg, 44%): R_f

0.36 (1:9 MeOH:CH₂Cl₂); ¹H NMR (CDCl₃) 7.70(d, 1/2H, J =

6.11Hz), 7.64(d, 1/2H, J = 6.13Hz), 6.15(m, 1H), 4.40(m,

2H), 4.08(m, 5H), 3.70(m, 1H), 3.59(m, 4H), 3.08(m, 4H),

2.36(m, 1H), 2.02(m, 1H), 1.88(m, 2H), 1.39(d, 1H, J =

13.04Hz), 1.16(m, 10H)ppm; ³¹P NMR (CDCl₃) -15.42, -15.71,

-15.83 ppm (mixture of diastereomers); IR (neat) 3400,

3080, 2960, 2850, 1710, 1650, 1470, 1450, 1400, 1350, 1260,

1100, 1030, 975, 910, 800, 730cm⁻¹; LSIMS m/e 551(M + H)⁺.

- Example 26. Preparation of Bis(2-bromoethyl)amine, hydrobromide salt. Ice cold diethanol amine (10g, 95 mmol) was added dropwise to a stirred solution of hydrobromic acid (37.6g, 464 mmol) at 0°C. The mixture was allowed to reflux and H₂O was distilled off at 1 hr intervals (26, 4, 4, 4, 4, 1, 1 ml). The mixture was refluxed for 3 hr, and then H₂O (29 ml) was distilled off. The yellow residue was poured into a beaker, while hot, containing acetone (30 ml). The product was allowed to crystallize out at 0°C and isolated as a white solid (17.37g, 59%); H NMR (DMSO-d₆) 3.72(t, 4H, J = 6.70Hz), 3.48(t, 4H, 6.73Hz), 3.09(br.s, 1H)ppm.
- Example 27. Preparation of 3'-O-t-Butyldimethylsilyl thymidine 21. To a solution of thymidine (10.00g, 41 mmol) in pyridine (50 ml) was added triphenylmethyl chloride (13.81g, 50 mmol) and dimethylaminopyridine (0.4g, 3.0 mmol). The mixture was allowed to stir at 80°C for 30 min.

The pyridine was removed under reduced pressure and the residue dissolved in DMF (80 ml). Imidazole (6.14g, 90 mmol) and t-butyldimethylsilyl chloride (6.18g, 41 mmol) were added, and the mixture was allowed to stir overnight 5 at room temperature. The DMF was removed under reduced pressure, and the residue was dissolved in 80% aqueous acetic acid (60 ml). The mixture was allowed to reflux for 30 min, cooled, and neutralized with NaOH. The mixture was lyophilized, and the residue was purified by chromatography 10 (I:1 EtOAc: hexanes) to give 21 as a white solid (10.35g, 71%): mp 60°C (softens), 90°C (melts); Rf 0.69 (1:9 MeOH: CH_2Cl_2); ¹H NMR (CDCl₃) 7.33(m, 1H), 6.13(t, 1H, J = 6-75Hz), 4.48(m, 1H), 3.90(m, 2H), 3.74(m, 1H), 2.32(m, 1H), 2.22(m, 1H), 1.89(s, 3H), 0.88(s, 9H), 0.07(s, 6H)ppm.

Example 28. Preparation of 3'-0-t-Butyldimethylsilyl-2'deoxyuridine 22. To a solution of 2'-deoxyuridine (5.00g, 22 mmol) in pyridine (20 ml) was added triphenylmethyl chloride (6.72g, 24 mmol) and dimethylaminopyridine (0.20g, 1.6 mmol). The mixture was allowed to stir at 80°C for 30 min. The pyridine was removed under reduced pressure and the residue dissolved in DMF (30 ml). Imidazole (3.59g, 53 mmol) and t-butyldimethylsilyl chloride (3.92g, 26 mmol) were added, and the mixture was allowed to stir overnight 25 at room temperature. The DMF was removed under reduced pressure, and the residue was dissolved in 80% aqueous acetic acid (20 ml). The mixture was allowed to reflux for 30 min, cooled, and neutralized with NaOH. The mixture was lyophilized, and the residue was purified by chromatography 30 (1:1 EtOAc: hexanes) to give 22 as a white solid (3.13g, 9.14 mmol, 41.51% yield): mp 140°C (softens), 160-170°C (melts); $R_f = 0.65$ (1:9 MeOH: CH_2Cl_2); ¹H NMR (CDCl₃) 7.62(d, 1H, J = 6.87Hz), 6.16(t, 1H, J = 6.61), 5.73(d, 1H, J =

5.70Hz), 4.49(m, lH), 3.93(m, 2H), 3.76(m, lH), 2.30(m, lH), 2.19(m, lH), 0.89(s, 9H), 0.09(s, 6H)ppm.

- Example 29. Preparation of 3'-O-t-Butyldimethylsilyl thymidyl-[-2-(2,2-dimethyl-1,3-dioxolan-4-yl)] N-methyl-N-(2bromoethyl phosphoramidate (25). Lithium diisopropylamide
 was prepared by adding butyllithium (5.50 ml, 11 mmol,
 2.0M) to a stirred solution of diisopropylamine (1.54 ml,
 11 mmol) in THF (1 ml) at 0°C. The mixture was allowed to
 stir at 0°C for 10 min. This alkoxide solution was added
 dropwise to a stirred solution of 21 (1.77g, 4.99 mmol) in
 the THF (8 ml) at 0°C. This alkoxide solution was then
 added dropwise to a stirred solution of 16a (2.00g, 5.48
 mmol) in THF (7 ml) at 0°C and stirring was continued overnight at room temperature. The solvent was then removed
 under reduced pressure and the residue purified by chromatography (EtOAc) to give 25 (1.75g, 51%): R_f 0.75 (1:9
 MeOH:CH₂Cl₂).
- Example 30. Preparation of 3'-O-t-Butyldimethylsilyl-2'-deoxy-5'-uridyl-[-2-(2,2-dimethyl-1,3-dioxolan-4-yl)]-N-methyl-N-(2-bromoethyl) phosphoramidate 26). Lithium diisopropylamide was prepared by adding butyllithium (1.61 ml, 3.21 mmol, 2.0M) to a stirred solution of diisopropyl-amine (0.45 ml, 3.21 mmol) in THF (2 ml) at 0°C. The mixture was allowed to stir at 0°C for 10 min. This solution was added dropwise to a stirred solution of 22 (0.500g, 1.46 mmol) in THF (5 ml) at 0°C. This alkoxide solution was then added dropwise to a stirred solution of 16a

 (0.532g, 1.46 mmol) in THF (6 ml) at 0°C and stirring was continued overnight at room temperature. The solvent was then removed under reduced pressure and the residue puri-

fied by chromatography (EtOAc) to give $\underline{26}$ (718 mg, 73%): R_f 0.75 (1:9 MeOH:CH₂Cl₂).

Example 31. Preparation of 3'-0-t-Butyldimethylsilyl thy-5 midyl-[2-(4,4,6-trimethyltetrahydro-1,3-oxazin-2-yl)ethyl]-N-methyl-N-(2-bromoethyl)phosphoramidate (27). Compound 25 (1.72g, 2.52 mmol) was dissolved in 80% aqueous acetic acid (7 ml), heated to 80°C for 30 min, cooled, and neutralized with NaOH. The solution was lyophilized, the residue taken 10 up in THF, the salts removed by filtration, and the residue concentrated under reduced pressure to afford the diol as an oil (1.00g, 62%): R_f 0.50 (1:9 MeOH: CH_2Cl_2); ³¹P NMR -13.97, -14.10 ppm (mixture of diastereomers). To a solution of the diol (855 mg, 1.30 mmol) in THF (3 ml) was 15 added NaIO₄ (164 mg, 0.77 mmol) in acetate buffer (5 ml, 1M in H_2O , pH = 5.0). The mixture was allowed to stir for 10 min, and the THF was then removed under reduced pressure. The mixture was lyophilized, the residue taken up in THF, the salts filtered, and the filtrate concentrated under 20 reduced pressure. The residue was dissolved in CH_2Cl_2 (5 ml) and 4-amino-4-methyl-2-pentanol (125 mg, 1.06 mmol) in CH_2Cl_2 (3 ml) was added. The mixture was allowed to stir over 3 Å molecular sieves for 10 min. The sieves were removed and the solvent removed under reduced pressure. 25 The residue was purified by chromatography (2% MeOH:EtOAc) to give $\underline{27}$ (364 mg, 48%): R_f 0.72 (1:9 MeOH: CH_2Cl_2).

Example 32. Preparation of 3'-0-t-Butyldimethylsilyl-2'deoxy-5'-uridyl-[2-(4,4,6-trimethyltetrahydro-1,3-oxazin-2-

yl)ethyl]-N-methyl-N-(2-bromoethyl)phosphoramidate 28.
Compound 26 (718 mg, 1.07 mmol) was dissolved in 80%
aqueous acetic acid (3.5 ml), heated to 80°C for 30 min,
cooled, and neutralized with NaOH. The solution was lyo-

philized, the residue taken up in THF, the salts removed by filtration, and the residue concentrated under reduced pressure to afford the diol as an oil (440 mg, 65%): $R_{\rm f}$ 0.53 (1:9 MeOH: CH_2Cl_2); ³¹P NMR -13.70, -13.90, -14.25 ppm 5 (mixture of diastereomers). To a solution of the diol(440 mg, 0.70 mmol) in THF (3 ml) was added NaIO₄ (164 mg, 0.77 mmol) in acetate buffer (5 ml, 1M in H_2O , pH = 5.0). The mixture was allowed to stir for 10 min, and the THF was then removed under reduced pressure. The mixture was lyo-10 philized, the residue taken up in THF, the salts filtered, and the filtrate concentrated under reduced pressure. The residue was dissolved in CH2Cl2 (5 ml) and the 4-amino-4methyl-2-pentanol (82 mg, 0.70 mmol) in CH_2Cl_2 (3 ml) was The mixture was allowed to stir over 3 Å molecular The sieves were removed and the solvent. sieves for 10 min. removed under reduced pressure. The residue was purified by chromatography (2% MeOH:EtOAc) to give 28 (203 mg, 42%): $R_f = 0.71 (1:9 MeOH:CH_2Cl_2).$

Example 34. Preparation of 2'-Deoxy-5'-uridyl-[2-(4,4,-trimethyltetrahydro-1,3-oxazin-2-yl)ethyl]-N-methyl-N-(2-bromoethyl)phosphoramidate(5), Tetrabutylammonium fluoride (0.28 ml, 0.28 mmol, 1.0M in THF) was added at 0°C to a stirred solution of 28 (193 mg, 0.28 mmol) in THF (2 ml). The mixture was allowed to stir for 45 min at 0°C. The solvent was removed under reduced pressure and the residue purified by chromatography (3% MeOH:EtOAc) to give 5 (24 mg, 15%): R_f = 0.38 (1:9 MeOH:CH₂Cl₂); ¹H NMR (CDCl₃) 7.66(m, 1H), 6.20(m, 1H), 5.74(d, 1H, J = 6.89Hz), 4.56(m, 1H), 4.41(m, 1H), 4.13(m, 5H), 3.56(m, 1H), 3.43(m, 4H), 2.72(d, 3H, J = 9.51Hz), 2.37(m, 1H), 2.07(m, 1H), 1.81(m, 2H), 1.79(d, 1H, J = 15.58Hz), 1.09(m, 10H).

Example 35. Preparation of Bis(2-bromoethyl)phosphoramidic dichloride (29). TEA (7.12g, 70 mmol) was added dropwise to a stirred solution of bis(2-bromoethyl)amine hydrobromide (10.00g, 32 mmol) and phosphorus oxychloride (4.91g, 32 mmol) in CH₂Cl₂ (50 ml) at 0°C under N₂. The mixture was allowed to stir overnight and then poured over ice. The layers were separated, and the aqueous layer was extracted with CH₂Cl₂ (3 x 50 ml). The organic layers were combined and dried (MgSO₄). The filtrate was concentrated under reduced pressure and the residue purified by chromatography (1:4 EtOAc: hexanes) to give 29 as an oil (3.86g, 35%); ¹H NMR (CDCl₃) 3.70 (t, 4H, 6.73Hz), 3.55 (t, 4H, 6.75Hz)ppm.

Example 36. Preparation of [2-(2,2-dimethyl-1,3-dioxolan-4-yl)ethyl]-bis-(2-bromoethyl)phosphoramidoyl chloride

(30). Butyllithium (6.57 ml, 13 mmol, 2.0M) was added dropwise at 0°C to a stirred solution of 4-(2-hydroxy-ethyl)-2,2-dimethyl-1,3-dioxolane (1.75g, 12 mmol) and a crystal of phenylazodiphenylamine indicator in THF (6 ml).

The resulting solution was added dropwise at -78°C to a stirred solution of 29 (4.16g, 12 mmol) in THF (7 ml). The mixture was allowed to stir at -78°C for 3 hr, at which time the purple mixture turned yellow. The mixture was warmed to room temperature and the solvent was removed under reduced pressure. The residue was purified by chromatography (1:4 EtOAc: hexanes) to give 30 as an oil (3.55g, 65%): R_f 0.74 (1:1 EtOAc: hexanes); H NMR (CDCl₃) 4.33(m, 2H), 4.20(m, 1H), 4.11 (t, 1H, J = 7.13Hz), 3.56(m, 9H), 2.05(m, 9H), 1.39(d, 6H, J = 15.75Hz)ppm.

Example 37. Preparation of 3'-O-t-Butyldimethylsilyl-5fluoro-2'-deoxy-5'-uridyl-[2-(2,2-dimethyl-1,3-dioxolan-4yl)ethyl]-bis-(2-bromoethyl)phosphoramidate (31). Lithium 15 diisopropylamide was prepared by adding butyllithium (1.70 ml, 3.39 mmol, 2.0M) to a stirred solution of diisopropylamine (0.48 ml, 3.39 mmol) in THF (1 ml) at 0°C. ture was allowed to stir at 0°C for 15 min. This solution was added dropwise to a stirred solution of 15 (500 mg, 20 1.54 mmol) in THF (5 ml) at 0°C. This alkoxide solution was then added dropwise to a stirred solution of 30 (704 mg, 1.54 mmol) in THF (5 ml) at 0°C and stirring was continued overnight at room temperature. The solvent was then removed under reduced pressure and the residue purified by 25 chromatography (EtOAc) to give 31 (931 mg, 81%): R_f 0.70 (1:9 MeOH: CH_2Cl_2); ¹H NMR (CDCl₃) 7.68(m, 1H), 6.25(m, 1H), 4.46(m, 1H), 4.18(m, 7H), 3.57(m, 1H), 3.45(m, 8H), 2.30(m, 1H), 2.18(m, 1H), 1.92(m, 2H), 1.37(d, 6H, J = 13.7Hz), 0.89(s, 9H), 0.08(s, 6H)ppm.

Example 38. Preparation of 3'-O-t-Butyldimethylsilylthymidyl-[2(2,2-dimethyl-1,3-dioxolan-4-yl)ethyl]bis-(2bromoethyl)phosphoramidate (32). Lithium diisopropylamide

was prepared by adding butyllithium (2.00 ml, 4.00 mmol, 2.0M) to a stirred solution of diisopropylamine (0.56 ml, 4.00 mmol) in THF (1 ml) at 0°C. The mixture was allowed to stir at 0°C for 15 min. This solution was added drop-5 wise to a stirred solution of 21 (647 mg, 1.82 mmol) in THF (3 ml) at 0°C. This alkoxide solution was then added dropwise to a stirred solution of 30 (1.00g, 2.18 mmol) in THF (5 ml) at 0°C and stirring was continued overnight at room temperature. The solvent was then removed under reduced 10 pressure and the residue purified by chromatography (EtOAc) to give 32 (972 mg, 69%): R_f 0.71 (1:9 MeOH: CH_2Cl_2); ¹H NMR $(CDCl_3)$ 7.34(m, 1H), 6.24(dt, 1H, J = 6.36Hz), 4.36(m, 1H), 4.06(m, 7H), 3.50(m, 1H), 3.40(m, 8H), 2.18(m, 1H), 2.07(m, 1H), 1.85(m, 5H), 1.28(d, 6H, J = 14.49Hz), 0.82(s, 9H), 0.02(s, 6H)ppm. . 15

Example 39. Preparation of 3'-0-t-Butyldimethylsilyl-2'deoxy-5'-uridyl-[2-(2,2-dimethyl-1,3-dioxolan-4-yl)ethyl]bis-(2-bromoethyl)phosphoramidate (33). Lithium diiso-20 propylamide was prepared by adding butyllithium (1.60 ml, 3.21 mmol, 2.0M) to a stirred solution of disopropylamine (0.45 ml, 3.21 mmol) in THF (1 ml) at 0°C. The mixture was allowed to stir at 0°C for 15 min. This solution was added dropwise to a stirred solution of 22 (500 mg, 1.46 mmol) in THF (5 ml) at 0°C. This alkoxide solution was then added 25 dropwise to a stirred solution of 30 (668 mg, 1.46 mmol) in THF (5 ml) at 0°C and stirring was continued overnight at room temperature. The solvent was then removed under reduced pressure and the residue purified by chromatography (EtOAc) to give 33 (765 mg, 68%): R_f 0.75 (1:9 MeOH: 30 CH₂Cl₂).

Example 40. Preparation of 3'-O-t-Butyldimethylsilyl-5-fluoro-2'-deoxy-5'-uridyl-[3,4-(dihydroxy)butyl]-bis-(2-bromoethyl)phosphoramidate (34). Compound 31 (931 mg, 1.25 mmol) was dissolved in 80% aqueous acetic acid (5 ml), heated to 80°C for 30 min, cooled, and neutralized with NaOH. The solution was lyophilized, the residue taken up in THF, the salts removed by filtration, and the residue concentrated under reduced pressure. The crude residue was purified by chromatography (3% MeOH:EtOAc) to give 34 (528 mg, 60%): R_f 0.60 (1:9 MeOH: CH₂Cl₂).

Example 41. Preparation of 3'-O-t-Butyldimethylsilylthymidyl-[3,4-(dihydroxy)butyl]-bis-(2-bromoethyl)phosphoramidate (35). Compound 32 (1.41g, 1.47 mmol) was dissolved

in 80% aqueous acetic acid (3 ml), heated to 80°C for 30
min, cooled, and neutralized with NaOH. The solution was
lyophilized, the residue taken up in THF, the salts removed
by filtration, and the residue concentrated under reduced
pressure. The crude residue was purified by chromatography

(3% MeOH:EtOAc) to give 35 (630 mg, 60%): R_f 0.57 (1:9
MeOH: CH₂Cl₂); ¹H NMR (CDCl₃) 7.32(d, 1H, J = 6.73Hz),
6.15(m, 1H), 4.37(m, 1H), 4.17(m, 5H), 4.00(m, 1H), 3.85(m,
1H), 3.63(m, 1H), 3.44(m, 8H), 2.24(m, 1H), 2.16(m, 1H),
1.92(s, 3H), 1.78(m, 2H), 0.88(s, 9H), 0.09(s, 6H)ppm.

Example 42. Preparation of 3'-O-t-Butyldimethylsilyl-2'-deoxy-5'-uridyl-[3,4-(dihydroxy)butyl]-bis-(2-bromoethyl)-phosphoramidate (36). Compound 33 (765g, 1.00 mmol) was dissolved in 80% aqueous acetic acid (5 ml), heated to 80°C for 30 min, cooled, and neutralized with NaOH. The solution was lyophilized, the residue taken up in THF, the salts removed by filtration, and the residue concentrated under reduced pressure. The crude residue was purified by

chromatography (3% MeOH:EtOAc) to give 36 (545 mg, 75%): R_f 0.58 (1:9 MeOH: CH_2Cl_2).

Example 43. Preparation of 5-Fluoro-2'-deoxy-5'-uridyl-[2-5 (4,4,6-trimethyltetrahydro-1,3-oxazin-2-yl)ethyl]bis-(2bromoethyl)phosphoramidate (9). To a stirred solution of 34 (255 mg, 0.36 mmol) in CH_3CN (4.8 ml) was added aqueous HF (0.25 ml, 50% in H_2O). The mixture was allowed to stir for 1 hr and was then neutralized with NaOH. 10 was lyophilized, the residue taken up in THF, the salts removed by filtration, and the filtrate concentrated under reduced pressure to afford the triol (163 mg, 73%): R_f 0.36 (1:9 MeOH: CH₂Cl₂). To a solution of the triol (163 mg, 0.26 mmol) in THF (3 ml) was added sodium periodate in 15 aqueous acetate buffer (3 ml, pH = 5.0, 1M). The mixture was allowed to stir for 7 min, and the THF was then removed under reduced pressure. The solution was lyophilized, the residue taken up in THF, the salts filtered, and the filtrate concentrated under reduced pressure. The residue was 20 dissolved in CH₂Cl₂ (5 ml) and 4-amino-4-methyl-2-pentanol (31 mg, 0.26 mmol) in CH_2Cl_2 (3 ml) was added. was allowed to stir over 3 Å molecular sieves for 15 mins. The sieves were removed under reduced pressure. The residue was purified by chromatography (3% MeOH: EtOAc) to give 25 $\underline{9}$ (17 mg, 10%): R_f 0.47 (1:9 MeOH CH_2Cl_2).

Example 44. Preparation of Thymidyl-[2-(4,4,6-trimethyl-tetrahydro-1,3-oxazin-2-yl)ethyl]bis-(2-bromoethyl)phosphoramidate (8). To a stirred solution of 35 (667 mg, 0.90 mmol) in CH₃CN (4.75 ml) was added aqueous HF (0.25 ml, 50% in H₂O). The mixture was allowed to stir for 1.5 hr and was then neutralized with KOH. The solution was lyophilized, the residue taken up in THF, the salts removed by

filtration, and the filtrate concentrated under reduced pressure to afford the triol (393 mg, 70%): R_f 0.33 (1:9 MeOH: CH_2Cl_2). To a solution of the triol (393 mg, 0.63 mmol) in THF (3 ml) was added sodium periodate in aqueous 5 acetate buffer (3 ml, pH = 5.0, 1M). The mixture was allowed to stir for 8 min, and the THF was then removed under reduced pressure. The solution was lyophilized, the residue taken up in THF, the salts filtered, and the filtrate concentrated under reduced pressure. The residue was 10 dissolved in CH₂Cl₂ (4 ml) and 4-amino-4-methyl-2-pentanol (59 mg, 0.50 mmol) in CH_2Cl_2 (3 ml) was added. The mixture was allowed to stir over 3 Å molecular sieves for 10 mins. The sieves were removed under reduced pressure. The residue was purified by chromatography (3% MeOH: EtOAc) to give 15 8 (167 mg, 48%): R_f 0.50 (1:9 MeOH: CH_2Cl_2); ¹H NMR (CDCl₃) 7.38(d, 1H, J = 15.55Hz), 6.23(m, 1H), 4.50(m, 1H), 4.43(m, lH), 4.19(m, 4H), 4.06(m, 1H), 3.79(m, 1H), 3.44(m, 8H), 2.64(m, 1H), 2.28(m, 1H), 1.93(m, 5H), 1.45(d, 1H, J =13.71Hz), 1.15(m, 10H)ppm.

20 Example 45. Preparation of 2'-Deoxy-5'-uridyl-[2-(4,4,6trimethyltetrahydro-1,3-oxazin-2-yl)ethyl]-bis-(2-bromoethyl)phosphoramidate (6). To a stirred solution of 36 (545 mg, 0.70 mmol) in CH_3CN (4.75 ml) was added aqueous HF (0.25 ml, 50% in H_2O). The mixture was allowed to stir for 25 1.5 hr and was then neutralized with KOH. The solution was lyophilized, the residue taken up in THF, the salts removed by filtration, and the filtrate concentrated under reduced pressure to afford the triol (323 mg, 76%): R_f 0.33 (1:9 MeOH: CH_2Cl_2). To a solution of the triol (323 mg, 0.53 30 mmol) in THF (3 ml) was added sodium periodate in aqueous acetate buffer (3 ml, pH = 5.0, 1M). The mixture was allowed to stir for 10 min, and the THF was then removed

under reduced pressure. The solution was lyophilized, the residue taken up in THF, the salts filtered, and the filtrate concentrated under reduced pressure. The residue was immediately dissolved in CH₂Cl₂ (10 ml) and 4-amino-4
5 methyl-2-pentanol (62 mg, 0.53 mmol) in CH₂Cl₂ (5 ml) was added. The mixture was allowed to stir over 3 Å molecular sieves for 10 mins. The sieves were removed under reduced pressure. The residue was purified by chromatography (3% MeOH: EtOAc) to give 6 (120 mg, 33%): R_f 0.53 (1:9 MeOH:

Example 46. Preparation of 3'-0-t-Butyldimethylsilylthymidyl-[2-(2,2-dimethyl-1,3-dioxolan-4-yl)ethyl]-morpholinophosphoramidate (40). Lithium diisopropylamide was
prepared by adding butyllithium (2.1 ml, 4.20 mmol, 2.0M)
to a stirred solution of diisopropylamine (0.58 ml, 4.20
mmol) in THF (1 ml) at 0°C. The mixture was allowed to
stir at 0°C for 10 min. This solution was added dropwise
to a stirred solution of 21 (680 mg, 1.91 mmol) in THF (6

20 ml) at 0°C. This alkoxide solution was then added dropwise
to a stirred solution of 16d (600 mg, 1.91 mmol) in THF (5
ml) at 0°C, and stirring was continued overnight at room
temperature. The solvent was then removed under reduced
pressure and the residue purified by chromatography (EtOAc)
to give 40 (835 mg, 69%): R_f 0.73 (1:9 MeOH: CH₂Cl₂).

Example 47. Preparation of 3'-0-t-Butyldimethylsilyl-2'-deoxy-5'-uridyl-[2-(2,2-dimethyl-1,3-dioxolan-4-yl)ethyl]-morpholinophosphoramidate (41). Lithium diisopropylamide was prepared by adding butyllithium (1.93 ml, 3.85 mmol, 2.0M) to a stirred solution of diisopropylamine (0.54 ml, 3.85 mmol) in THF (1 ml) at 0°C. The mixture was allowed to stir at 0°C for 15 min. This solution was added drop-

wise to a stirred solution of 22 (600 mg, 1.75 mmol) in THF (5 ml) at 0°C. This alkoxide solution was then added dropwise to a stirred solution of 16d (550 mg, 1.75 mmol) in THF (5 ml) at 0°C, and stirring was continued overnight at room temperature. The solvent was then removed under reduced pressure and the residue purified by chromatography (EtOAc) to give 41 (556 mg, 51%): R_f 0.70 (1:9 MeOH: CH_2Cl_2).

Example 48. Preparation of 3'-0-t-Butyldimethylsilyl-10 thymidyl-[2-(4,4,6-trimethyltetrahydro-1,3-oxazin-2yl)ethyl]morpholinophosphoramidate (42). Compound 40 (835 mg, 1.32 mmol) was dissolved in 80% aqueous acetic acid in water (5 ml), heated to 80°C for 30 min, cooled, and neu-15 tralized with NaOH. The solution was lyophilized, the residue taken up in THF, the salts removed by filtration, and the filtrate concentrated under reduced pressure to afford the diol (671 mg, 86%): $R_f = 0.56$ (1:9 MeOH: CH_2Cl_2); ³¹P NMR (CDCl₃) -15.53, -15.83 ppm (mixture of diastereomers). To a solution of the diol (671 mg, 1.13 mmol) in 20 THF (4 ml) was added NaIO, (242 mg, 1.13 mmol) in aqueous acetate buffer (5 ml, pH = 5.0, 1M). The mixture was allowed to stir for 7 min, and the THF was then removed under reduced pressure. The mixture was lyophilized, the 25 residue taken up in THF, the salts filtered, and the filtrate concentrated under reduced pressure. The residue was dissolved in CH_2Cl_2 (3 ml), and 4-amino-4-methyl-2-pentanol (132 mg, 1.13 mmol) in CH_2Cl_2 (3 ml) was added. The mixture was allowed to stir over 3 Å sieves for 15 min. sieves were removed and the solvent removed under reduced pressure. The residue was purified by chromatography (2% MeOH: EtOAc) to afford $\underline{42}$ (404 mg, 54%): R_f 0.70.

Example 49. Preparation of 3'-0-t-Butyldimethylsilyl-2'dioxy-5'-uridyl-[2-(4,4,6-trimethyltetrahydro-1,3-oxazin-2yl)ethyl]-morpholinophosphoramidate (43). Compound 41 (544 mg, 0.88 mmol) was dissolved in 80% aqueous acetic acid in 5 water (3 ml), heated to 80°C for 30 min, cooled, and neutralized with NaOH. The solution was lyophilized, the residue taken up in THF, the salts removed by filtration, and the filtrate concentrated under reduced pressure to afford the diol (417 mg, 82%): $R_f = 0.55$ (1:9 MeOH: CH_2Cl_2); 10 31 P NMR (CDCl₃) -15.10, -15.25 ppm (mixture of diastereo-To a solution of the diol (417 mg, 0.72 mmol) in THF (3 ml) was added NaIO, (154 mg, 0.72 mmol) in aqueous acetate buffer (3 ml, pH = 5.0, lM). The mixture was allowed to stir for 7 min, and the THF was then removed under reduced pressure. The mixture was lyophilized, the residue taken up in THF, the salts filtered, and the filtrate concentrated under reduced pressure. The residue was dissolved in CH2Cl2 (3 ml), and 4-amino-4-methyl-2-pentanol (84 mg, 0.72 mmol) in CH_2Cl_2 (3 ml) was added. The mixture 20 was allowed to stir over 3 Å sieves for 15 min. The sieves were removed and the solvent removed under reduced pressure. The residue was purified by chromatography (2% MeOH: EtOAc) to afford $\underline{43}$ (154 mg, 33%): R_f 0.70.

Example 50. Preparation of Thymidyl-[2-(4,4,6-trimethyl-tetrahydro-1,3-oxazin-2-yl)ethyl]morpholinophosphoramidate

(3). Tetrabutylammonium fluoride (0.61 ml, 0.61 mmol, 1M in THF) was added at 0°C to a stirred solution of 42 (404 mg, 0.61 mmol) in THF (3 ml). The mixture was allowed to stir for 20 min at 0°C. The solvent was removed under reduced pressure and the residue purified by chromatography (3% MeOH: EtOAc) to afford 3 (66 mg, 20%): R_f 0.69 (1:9 MeOH: CH₂Cl₂); ¹H NMR (CDCl₃) 7.37(m, 1H), 6.25(m, 1H),

4.51(m, 1H), 4.38(m, 1H), 4.13(m, 5H), 3.70(m, 1H), 3.65(m, 4H), 3.15(m, 4H), 2.42(m, 1H), 2.17(m, 1H), 1.92(m, 5H), 1.43(d, 1H), J = 13.08Hz), 1.13(m, 10H)ppm; ³¹P NMR (CDCl₃) -15.69, -15.82, -16.02 ppm (mixture of diastereomers); IR (thin film) 3400, 2960, 1690, 1470, 1370, 1250, 1110, 975 cm⁻¹.

Example 51. Preparation of 2'-Deoxy-5'-uridyl-[2-(4,4,6trimethyltetrahydro-1,3-oxazin-2-yl)ethyl|morpholinophosphoramidate (2). Tetrabutylammonium fluoride (0.24 ml, 0.24 mmol, 1M in THF) was added at 0°C to a stirred solution of 43 (154 mg, 0.24 mmol) in THF (2 ml). The mixture was allowed to stir for 20 min at 0°C. The solvent was removed under reduced pressure and the residue purified by 15 chromatography (3% MeOH: EtOAc) to afford 2 (62 mg, 49%): R_f 0.69 (1:9 MeOH: CH_2Cl_2); ¹H NMR (CDCl₃) 7.60(m, 1H), 6.25(m, 1H), 5.72(m, 1H), 4.51(m, 1H), 4.41(m, 1H), 4.15(m, 5H), 3.75(m, 1H), 3.67(m, 4H), 3.13(m, 4H), 2.45(m, 1H), 2.19(m, 1H), 1.93(m, 2H), 1.47(d, 1H, J = 13.50Hz), 1.14(m, 1.19)9H), 1.05(d, 1H, J = 12.96Hz)ppm; ³¹P NMR (CDCl₃) -15.89, -16.08 ppm (1:1 ratio of diastereomers); IR (thin film) 3420, 2960, 2920, 1690, 1460, 1350, 1260, 1110, 1090, 975, 910, 810, 730 cm⁻¹; MS m/e 533(M + H)⁺, 555(M + Na)⁺.

25 Example 52. Preparation of Piperidinophosphoramidic dichloride 44). Triethylamine (18.25g, 180 mmol) was added
dropwise to a stirred solution of piperidine hydrochloride
(10.00g, 82 mmol) and phosphorus oxychloride (12.63g, 82
mmol) in CH₂Cl₂ (100 ml) at 0°C. The mixture was allowed
30 to stir overnight and then poured over ice. The layers
were separated, and the aqueous layer was extracted with
CH₂Cl₂ (3 x 100 ml). The organic layers were combined and
dried (MgSO₄). The filtrate was concentrated under reduced

pressure and the residue purified by chromatography (1:4 EtOAc: hexanes) to give $\underline{44}$ (13.92g, 84%): R_f 0.70 (1:4 EtOAc: hexanes).

Example 53. Preparation of [2-(2,2-dimethyl-1,3-dioxolan-4-yl)-ethyl] piperidinophosphoramidate 45). Butyllithium (11.00 ml, 22 mmol, 2.0M) was added dropwise at 0°C to a stirred solution of 4-(2-hydroxyethyl)-2,2-dimethyl-1,3-dioxolane (2.92g, 20 mmol) and a crystal of 4-phenylazodiphenylamine indicator in THF (7 ml). The resulting solution was added dropwise at -78°C to a stirred solution of 44 (4.0g, 20 mmol) in THF (5 ml). The mixture was allowed to stir at -78°C for 3 hr, at which time the purple solution turned yellow. The mixture was warmed to room temperature and the solvent removed under reduced pressure. The residue was purified by chromatography (1:4 EtOAc: hexanes) to give 45 (2.69g, 43%): R_f 0.65 (1:4 EtOAc: hexanes).

Example 54. Preparation of 3'-O-t-Butyldimethylsilyl-5fluoro-2'-deoxy-5'-uridyl-[2-(2,2-dimethyl-1,3-dioxolan-4yl)ethyl]-piperidinophosphoramidate (46). Lithium diisopropylamide was prepared by adding butyllithium (0.96 ml,
1.91 mmol, 2.0M) to a stirred solution of diisopropylamine
(0.27 ml, 1.91 mmol) in THF (1.0 ml) at 0°C. The mixture

25 was allowed to stir at 0°C for 15 min. This solution was
added dropwise to a stirred solution of 15 (313 mg, 0.87
mmol) in THF (6 ml) at 0°C. This alkoxide solution was
then added dropwise to a stirred solution of 45 (271 mg,
0.87 mmol) in THF (5 ml) at 0°C, and stirring was continued overnight at room temperature. The solvent was then
removed under reduced pressure and the residue purified by
chromatography (EtOAc) to give 46 (473 mg, 86%): R_f 0.73
(1:9 MeOH: CH₂Cl₂).

0.70.

25

Example 55. Preparation of 3'-0-t-Butyldimethylsilyl-5fluoro-2'-deoxy-5'-uridyl-[2-(4,4,6-trimethyltetrahydro-1,3-oxazin-2-yl)ethyll-piperidinophosphoramidate (47). 5 Compound $\underline{46}$ (473 mg, 0.74 mmol) was dissolved in 80% aqueous acetic acid in water (5 ml), heated to 80°C for 30 min, cooled, and neutralized with NaOH. The solution was lyophilized, the residue taken up in THF, the salts removed by filtration, and the filtrate concentrated under reduced 10 pressure to afford the diol (368 mg, 83%): $R_f = 0.56$ (1:9 MeOH: CH_2Cl_2); ³¹P NMR (CDCl₃) -14.19, -14.54, -14.65, -14.74 ppm (mixture of diastereomers). To a solution of the diol (368 mg, 0.62 mmol) in THF (4 ml) was added NaIO, (132 mg, 0.62 mmol) in aqueous acetate buffer (4 ml, pH = 5.0, 1M). The mixture was allowed to stir for 10 min, and the THF was then removed under reduced pressure. The mixture was lyophilized, the residue taken up in THF, the salts filtered, and the filtrate concentrated under reduced pressure. residue was dissolved in CH_2Cl_2 (3 ml), and 4-amino-4-20 methyl-2-pentanol (84 mg, 0.72 mmol) in CH_2Cl_2 (3 ml) was added. The mixture was allowed to stir over 3Å sieves for 15 min. The sieves were removed and the solvent removed under reduced pressure. The residue was purified by chromatography (2% MeOH: EtOAc) to afford $\underline{47}$ (67 mg, 17%): R_f

Example 56. Preparation of 5-Fluoro-2'-deoxy-5'-uridyl-[2-(4,4,6-trimethyltetrahydro-1,3-oxazin-2-yl)ethyl]piper-idinophosphoramidate (4). Tetrabutylammonium fluoride (0.104 ml, 0.10 mmol, 1M in THF) was added at 0°C to a stirred solution of 47 (67 mg, 0.10 mmol) in THF (2 ml). The mixture was allowed to stir for 20 min at 0°C. The solvent was removed under reduced pressure and the residue

purified by chromatography (3% MeOH: EtOAc) to afford $\underline{4}$ (10 mg, 18%): R_f 0.70 (1:9 MeOH: CH₂Cl₂); ¹H NMR (CDCl₃) 7.75(m, 1H), 6.21(m, 1H), 4.52(m, 1H), 4.42(m, 1H), 4.12(m, 5H), 3.71(m, 1H), 3.09(m, 4H), 2.42(m, 1H), 2.19(m, 1H), 1.91(m, 2H), 1.52(m, 6H), 1.41(d, 1H, J = 12.96Hz), 1.13(m, 10H)ppm; ³¹P NMR (CDCL₃) -14.13, -14.36 ppm (1:1 ratio of diastereomers).

Example 57. Biological Activity.

- 20 A. Cytotoxicity against B16 Melanoma Cells. B16 cells in exponential growth (2-3 x 10⁶ cells in 10 ml of serum-free MEM medium) were treated with drug for 2 hr. The cells were separated, washed, and resuspended in MEM medium supplemented with 10% fetal bovine serum. The cells were plated in 60-mm culture dishes at a density of 50-50,000 cells/plate (depending upon the drug concentration used initially) and then incubated for 8 days in a CO₂ incubator at 37°C. The colonies were fixed and stained with 0.5% crystal violet in ethanol and counted. The
- B. Cyctotoxicity Against L1210 Leukemia Cells.

 In addition to the B16 melanoma cell assay summarized in Table I, compounds 1a-e, 5 and 7 were evaluated for growth inhibitory activity against L1210 leukemia
 25 cells. Stock solutions of the compounds were prepared in 95% ethanol, and serial dilutions of drug were prepared in ethanol such that 50 µl of drug solution added to 10 ml of cell suspension gave the desired final concentration.

 L1210 cells in exponential growth were suspended in Fischer's medium supplemented with 10% horse serum, 1% glutamine, and 1% antibiotic-antimycotic solution to give 10-ml volumes of cell suspension at a final density of

 $3-6 \times 10^4/\text{ml}$. Appropriate volumes of the solutions of each

compound were transferred to the cell suspensions, and incubation was continued for 2, 8, 24, or 48 hr. The cells were spun down, resuspended in fresh drug-free medium, and returned to the incubator, then counted with a Coulter Counter 48 hr after treatment with the compound. The results are summarized on Table III, below.

Growth Inhibition of Phosphoramidates 1a-e
Against L1210 Leukemia Cells in vitro

Compd	IC ₅₀ , nM Treatment Time, hr					
	<u>2</u>	<u>8</u>	24	48		
1a	120	50	18	2.5		
1b	160	60	19	2.5		
1c	300	160	25	3.5		
1d	190	75	6	2.0		
le	15,000	5,000	900 -	150		
5	20,000	8,200	1,300	425		
7	13,000	10,500	7,000	590		
5-Fluorouracil	2,200	630	220	125		

Data represents an average of at least two experiments; L1210 cells were treated with compound for 2, 8, 24 and 48 hr. The drug-containing medium was removed, cells were washed, complete medium was added, and the cells were incubated for 48 hr total. Cell counts were obtained 48 hr after the start of treatment.

The bromo compound <u>la</u> was a potent inhibitor of cell proliferation using a 2 hr contact time. The inhibitory activity was completely blocked by addition of 5 μ M thymidine, confirming that this compound was acting via inhibition of thymidylate synthetase. The potency of <u>la</u>

increased with longer treatment times and was 1-2 orders of magnitude more potent than 5-FU using treatment times of 2, 8, 24, and 48 hr. Comparable inhibition was observed with the iodo and tosyl analogs. The chloro analog 1c, whose 5 phosphoramidate would be expected to have a slower rate of alkylation, was less potent than <u>la</u>, <u>lb</u>, and <u>ld</u> at shorter exposure times but equipotent in the 24- and 48-hour treatment groups. The relationship between potency and alkylating activity was confirmed by the synthesis and evaluation of the non-alkylating morpholino phosphoramidate 1e. 10 It is interesting to note that <u>le</u> is comparable in potency to 5-FU at long treatment times; the activity of <u>le</u> is also completely reversed by addition of thymidine, suggesting that thymidylate synthetase also represents the target for 15 this compound. Thus, <u>le</u> might be a prodrug for FdUMP; the intracellular cleavage of the morpholine substituent is presumably enzymatic, because the morpholinophosphoramidate derivative NucOP(0)(NR2R3)(0) is stable to hydrolysis under physiologic conditions.

All patents, patent documents and publications cited herein are incorporated by reference herein. The invention has been described with reference to various specific and preferred embodiments and techniques. However, it should be understood that many variations and modifications may be made while remaining within the spirit and scope of the invention.

WHAT IS CLAIMED IS:

1. A compound of the formula:

wherein R¹ is H, F or (C₁-C₄)alkyl; R² is CH₂CH₂X wherein X is Cl, Br, I or p-toluenesulfonyl; R³ is (C₁-C₄)alkyl or CH₂CH₂X wherein X is Cl, Br, I or p-toluenesulfonyl, or wherein R² and R³ taken together with the N- atom are a 5- or 6-membered heterocyclic ring which is aliphatic or aliphatic interrupted by a ring oxygen or a second ring nitrogen; R⁴ is H, one equivalent of a pharmaceutically-acceptable cation or (4,4,6-trimethyltetrahydro-1,3-oxazin-2-yl)ethyl, and the pharmaceutically acceptable salts thereof.

- 2. The compound of claim 1 wherein R^1 is F.
- 3. The compound of claim 1 wherein R1 is CH3 or H.
- 4. The compound of claim 1 wherein R^2 is CH_2CH_2Br or CH_2CH_2I .

- 5. The compound of claim 4 wherein R3 is CH3.
- 6. The compound of claim 4 wherein R3 is CH2CH2Br.
- 7. The compound of claim 1 wherein R4 is H.
- 8. The compound of claim 1 wherein R⁴ is an alkali metal cation.
- 9. The compound of claim 1 wherein R⁴ is (4,4,6-trimethyl-tetrahydro-1,3-oxazin-2-yl)ethyl.
- 10. The compound of claim 1 wherein \mathbb{R}^2 and \mathbb{R}^3 taken together with the N atom are morpholino.
- 11. The compound of claim 1 wherein R^2 and R^3 taken together with the N atom are piperidinyl.
- 12. 5-Fluoro-2'-deoxy-5'-uridyl-[-2-(4,4,6-trimethyltetra-hydro-1,3-oxazin-2-yl)ethyl]-N-methyl-N(-2-bromo-ethyl)phosphoramidate.
- 13. 5-Fluoro-2'-deoxy-5'-uridyl-[-2-(4,4,6-trimethyltetra-hydro-1,3-oxazin-yl)ethyl]-N-methyl-N-(2-chloroethyl)-phosphoramidate.

FIG. 1

NTERNATIONAL SEARCH RE PCT/US 92/07792 1. CLASSIFICATION OF SUBJECT ManaTER (if several classification symbols apply, indicate all) According to International Patent Classification (IPC) or to both National Classification and IPC Int.Cl. 5 CO7H19/10: A61K31/70 II. FIELDS SEARCHED Minimum Documentation Searched? Classification System Classification Symbols C07H ; Int.C1. 5 **A61K** Documentation Searched other than Minimum Documentation to the Extent that such Documents are Included in the Fields Searched III. DOCUMENTS CONSIDERED TO BE RELEVANT⁹ Citation of Document, 11 with indication, where appropriate, of the relevant passages 12 Category o Relevant to Claim No.13 EP,A,O 331 032 (TAIHO PHARMACEUTICAL 1-13 COMPANY LIMITED) 6 September 1989 see page 3, line 1 - page 5, line 5 WO, A, 8 909 221 (UNIVERSITY OF VIRGINIA 1-13 ALUMNI PATENTS FOUNDATION.) 5 October 1989 see the whole document, especially page 5, line 4 to page 6, line 21

"A" document defining the general state of the art which is not considered to be of particular relevance

see the whole document

pages 661 - 5

JOURNAL OF MEDICINAL CHEMISTRY

vol. 23, no. 6, June 1980, WASHINGTON US

J.S.PARK ET AL. 'Oxime amd Dithiolane Derivatives of 5-Formyl-2'-Deoxyuridine and their 5'-Phosphates: Antiviral Effects and Thymidylate Synthetase Inhibition.'

- "E" earlier document but published on or after the international filing date
- "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
- "O" document referring to an oral disclosure, use, exhibition or other means
- "P" document published prior to the international filing date but later than the priority date claimed
- "T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention

-/--

1-13

- "X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step
- "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art.
- "A" document member of the same patent family

IV.	CERTIFICATION	ì

Date of the Actual Completion of the International Search

25 NOVEMBER 1992

21. 12. 92

International Searching Authority

EUROPEAN PATENT OFFICE

Date of Mailing of this International Search Report

21. 12. 92

Signature of Authorized Officer

SCOTT J. R.

III. DOCUMI	DOCUMENTS CONSIDERED TO BE RELEVANT (CONTINUED FROM THE SECOND SHEET)						
Category *	Citation of Document, with indication, where appropriate, of the relevant passages	Relevant to Claim N					
	CHEMICAL ABSTRACTS, vol. 98, no. 1, 3 January 1983, Columbus, Ohio, US; abstract no. 4751s, 'Pharmacologically Active 5-Fluorouracil Derivatives.' page 428; column 2; see abstract & JP,A,57 128 699 (TOKYO KINZOKU KOGYO CO., LTD.)	1-13					
	10 August 1982						
	•						

ANNEX TO THE INTERNATIONAL SEARCH REPORT ON INTERNATIONAL PATENT APPLICATION NO. US 9207792 65191

This annex lists the patent family members relating to the patent documents cited in the above-mentioned international search report. The members are as contained in the European Patent Office EDP file on

The European Patent Office is in no way liable for these particulars which are merely given for the purpose of information. 25/11/92

Patent document cited in search report	Publication date	1	Patent family member(s)	
EP-A-0331032	06-09-89	AU-A- CN-A- JP-A- US-A-	3015289 1045395 1308295 5032680	31-08-89 19-09-90 12-12-89 16-07-91
WO-A-8909221	05-10-89	EP-A- JP-T-	0406309 3503894	09-01-91 29-08-91