1 Système et référentiel

- L'objet dont on étudie le mouvement est appelé système.
- Pour décrire le mouvement d'un système, il faut identifier une échelle spatiale et une échelle temporelle adaptées.

Échelle spatiale : l'unité astronomique Échelle temporelle : le mois

Échelle spatiale : le mètre

Échelle temporelle : la seconde

L'étude d'un mouvement doit être associée à un objet de référence appelé référentiel. Le mouvement d'un système dépend du référentiel.

Référentiel : le sol L'avion est en mouvement.

Référentiel : le ravitailleur L'avion est immobile.

2 Modélisation du système

- Lorsqu'un système se déplace, tous les points qui le constituent sont également en mouvement.
- Pour simplifier l'étude du mouvement, on réduit le système à un point particulier appelé **point matériel**. La position d'un point matériel est définie par ses **coordonnées** dans un **repère d'espace**, gradué à l'aide d'une échelle spatiale adaptée.
- La trajectoire d'un système est l'ensemble des positions successives occupées par le point matériel modélisant le système.

Il existe plusieurs types de trajectoire, les plus simples sont

rectilignes, circulaires ou curvilignes.

Trajectoire rectiligne	Trajectoire circulaire	Trajectoire curviligne
Le point décrit une droite .	Le point décrit un cercle.	Le point décrit une courbe .

3 Déplacement et vitesse

- ▶ On définit le vecteur déplacement M M 'd'un point lorsque celui-ci se déplace d'une position M à une autre M'.
- La vitesse moyenne d'un point peut être représentée par un vecteur v défini par :

Le vecteur vitesse \vec{v}_i en un point M_i pour un vecteur déplacement M_i M_{i+1} s'écrit :

- Dans le cas d'une trajectoire rectiligne :
- si le vecteur vitesse ne varie pas, le mouvement est dit rectiligne uniforme;

- si le vecteur vitesse varie, le mouvement est dit rectiligne non uniforme.

1 Système et référentiel

	A	В	C
1 Le système est :	l'objet par rapport auquel on étudie le mouvement.	l'objet dont on étudie le mouvement.	l'ensemble des positions de l'objet en mouvement.
Pour étudier le mouvement d'un ballon, l'échelle spatiale la mieux adaptée est :	le kilomètre.	le micromètre.	le mètre.
L'échelle temporelle la mieux adaptée pour étudier le mouvement d'un plongeur est :	la seconde.	la minute.	l'heure.
Le conducteur d'une voiture roulant à vitesse constante sur une route horizontale est :	immobile par rapport au sol.	immobile par rapport à la voiture.	en mouvement par rapport au sol.

2 Modélisation du système

	A	В	С
5 L'ensemble des positions successives occupées par un point en mouvement est :	le mouvement du point.	la trajectoire du point.	la trajectoire du système modélisé par ce point.
y (m) x (m)	La trajectoire est rectiligne.	La trajectoire est curviligne.	La trajectoire est circulaire.

3 Déplacement et vitesse

	A	В	С
7 Q arrivée	Le vecteur déplacement est le vecteur représenté en noir.	Le vecteur déplacement est le vecteur représenté en rouge.	Le vecteur déplacement est le vecteur représenté en vert.
B La valeur de la vitesse moyenne v d'un point se déplaçant de M en M' pendant une durée Δt est :	$v = \frac{\Delta t}{M M}$	$v = \Delta t \cdot M M$	$v = \frac{M M'}{\Delta t}$
9	Le mouvement est rectiligne uniforme.	Le vecteur vitesse ne varie pas.	Le mouvement est rectiligne non uniforme.
10 Le vecteur vitesse est :	égal au vecteur déplacement.	de même sens que le vecteur déplacement.	de même direction que le vecteur déplacement.
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Le vecteur vitesse ne varie pas.	Le vecteur vitesse augmente.	Le vecteur vitesse diminue.

10 Variation d'altitude

L'altitude d'un système en mouvement est représentée sur le graphique suivant.

Quelles sont les échelles spatiale et temporelle utilisées lors de cette étude ?

17 Espace et ISS

Thomas Pesquet est le dixième spationaute français à partir dans l'espace.

Il a passé 196 jours dans la Station spatiale internationale (ISS), qu'il a quittée le 2 juin 2017.

Lors de ses sorties de la station, Thomas Pesquet a vu défiler, 400 km en dessous de lui, la Terre à une vitesse de l'ordre de 28 000 km · h⁻¹.

- 1. Dans quel référentiel Thomas Pesquet est-il immobile?
- 2. Quel est le mouvement du spationaute pour un observateur situé à la surface de la Terre ?

26 Coordonnées du vecteur déplacement

Un vecteur déplacement \overline{M} 'est représenté dans un repère orthonormé (O; x, y).

- **1.** Déterminer les coordonnées des points M et M' dans ce repère.
- 2. En déduire les coordonnées du vecteur déplacement.

(18) Exploiter les variations du vecteur vitesse (1)

Exploiter un schéma.

On a représenté ci-dessous, pour un point mobile M, les vecteurs vitesse $\overrightarrow{v_1}$ et $\overrightarrow{v_2}$.

• Décrire la nature du mouvement à l'aide des vecteurs vitesse.

19 Exploiter les variations du vecteur vitesse (2)

Interpréter des résultats.

On donne la valeur de la vitesse d'un point mobile M en deux points de sa trajectoire M_1 et M_2 : $v_1 = 3,0 \text{ m} \cdot \text{s}^{-1}$ et $v_2 = 5,0 \text{ m} \cdot \text{s}^{-1}$.

- **1.** Reproduire la figure et tracer les vecteurs vitesse $\overrightarrow{v_1}$ et $\overrightarrow{v_2}$. On utilisera comme échelle de tracé : 1 cm \leftrightarrow 2 m \cdot s⁻¹.
- 2. En déduire la nature du mouvement.

21 Le manège

| Mobiliser ses connaissances ; faire un schéma adapté.

Le passager d'un manège tourne à une vitesse de valeur constante égale à $60 \text{ km} \cdot \text{h}^{-1}$.

- 1. Préciser le système et le référentiel d'étude de ce mouvement.
- 2. Quelle est la nature du mouvement évoqué dans l'énoncé?
- 3. Représenter la trajectoire en vue de dessus, ainsi que le vecteur vitesse en trois points de la trajectoire (échelle : $1 \text{ cm} \leftrightarrow 20 \text{ km} \cdot \text{h}^{-1}$).
- 4. Quelle(s) caractéristique(s) du vecteur vitesse évolue(nt) lors de ce mouvement ?

Exercice

Ravitaillement en plein vol

Rédiger une explication ; effectuer des calculs.

Un avion ravitailleur peut voler à une vitesse de valeur proche de 900 km·h⁻¹. Le ravitaillement peut s'opérer en une minute environ.

- 1. a. L'avion de chasse ravitaillé ci-contre est-il en mouvement par rapport au sol? Dans cette situation, quel est le référentiel?
- b. Dans quel référentiel est-il immobile?
- c. Pourquoi dit-on que le mouvement est relatif?
- 2. Dans le référentiel de la guestion 1. a., calculer la distance parcourue par cet avion de chasse durant le ravitaillement.

Chute d'une bille

La chronophotographie ci-contre permet d'étudier la chute d'une bille d'acier.

Le système bille est modélisé par un point matériel: le centre de la bille.

La durée entre deux positions successives de la bille est de 0,028 s

- Caractériser la trajectoire du centre de la bille.
- 2. Expliquer si la vitesse du centre de la bille est constante ou non.
- 3. Déterminer la valeur de la vitesse du centre de la bille v_1 à l'instant t_1 et v_4 à l'instant t_4 .

En déduire si le vecteur vitesse varie.

4. Caractériser le mouvement du centre de la bille.

6

17

LES CLÉS DE L'ÉNONCÉ

- La distance parcourue par le centre de la bille peut être déterminée par une mesure directe sur le mètre.
- La durée de parcours Δt est le temps écoulé entre deux positions successives du centre de la bille.

LES QUESTIONS À LA LOUPE

- Caractériser: exploiter les observations pour qualifier un phénomène.
- **Expliquer**: donner une justification à une observation ou une affirmation.
- Déterminer : mettre en œuvre une stratégie pour trouver un résultat.
- En déduire : utiliser le résultat précédent pour répondre.

1 La voiture ballon DÉMARCHE EXPÉRIMENTALE

(AN/RAI) Proposer un protocole **VAL** Interpréter des mesures

Une voiture ballon est mise en mouvement à l'aide de l'air éjecté du ballon en baudruche. On doit mesurer la vitesse de la voiture pour vérifier si la vitesse dépend du volume d'air éjectée.

Matériel mis à disposition

- Une voiture ballon (photo).
- Une webcam.

==

== ==

==

- Une potence.
- Un objet de dimensions déterminées.
- Un ordinateur muni d'un logiciel de traitement de vidéo.

- 1. Proposer un protocole expérimental permettant de déterminer la vitesse d'un point de la voiture.
- 2. Les mesures des positions d'un point de la voiture sont répertoriées dans un tableur-grapheur.

La vitesse du point a été calculée. On obtient le graphique ci-après.

- a. L'évolution de la valeur de la vitesse en fonction du temps est-elle linéaire?
- b. Déduire le mouvement du système voiture.
- c. Déterminer la valeur de la vitesse de la voiture au temps t = 0.3 s.
- 3. Si on augmente le volume d'air dans le ballon, à quel instant doit-on mesurer la vitesse de la voiture pour pouvoir comparer les vitesses?