▼ SEGUNDO TRABALHO DE ANÁLISE DE REGRESSÃO

Aluna: Glenda Tavares

DRE: 118086817

O objetivo desta análise é prever a quantidade de consumo de cerveja em litros em São Paulo.

→ Primeiros passos:

```
#Importando as bibliotecas necessárias
import pandas as pd
import matplotlib.pyplot as plt
%matplotlib inline
import seaborn as sns
import numpy as np
from sklearn.model selection import train test split
from sklearn.linear model import LinearRegression
from sklearn.metrics import mean squared error
#Conjunto de dados
df = pd.read_csv('Consumo_cerveja.csv')
#Verificando o tamanho do conjunto de dados
df.shape
    (941, 7)
```

O conjunto de dados possui 941 linhas e 7 colunas.

▼ Remoção da Variável Data:

Neste trabalho, a variável Data não será utilizada, portanto decidi excluir ela do conjunto de dados

```
#Exclusão da Variável
df = df.drop(['Data'], axis=1)
```

#Verificação do dataframe em relação a exclusão

df.head()

	Temperatura Media (C)	Temperatura Minima (C)	Temperatura Maxima (C)	Precipitacao (mm)	Final de Semana	Consumo de cerveja (litros)
0	27,3	23,9	32,5	0	0.0	25.461
1	27,02	24,5	33,5	0	0.0	28.972
2	24,82	22,4	29,9	0	1.0	30.814
3	23,98	21,5	28,6	1,2	1.0	29.799
4	23,82	21	28,3	0	0.0	28.900
*	+					

▼ Transformando o tipo das variáveis

```
df['Temperatura Media (C)'] = df['Temperatura Media (C)'].str.replace(',' ,'.').as
df['Temperatura Minima (C)'] = df['Temperatura Minima (C)'].str.replace(',','.').
df['Temperatura Maxima (C)'] = df['Temperatura Maxima (C)'].str.replace(',','.').
df['Precipitacao (mm)'] = df['Precipitacao (mm)'].str.replace(',' ,'.').astype(flo
df.info()
```

<class 'pandas.core.frame.DataFrame'> RangeIndex: 941 entries, 0 to 940 Data columns (total 6 columns):

#	Column	Non-Null Count	Dtype
0	Temperatura Media (C)	365 non-null	float64
1	Temperatura Minima (C)	365 non-null	float64
2	Temperatura Maxima (C)	365 non-null	float64
3	Precipitacao (mm)	365 non-null	float64
4	Final de Semana	365 non-null	float64
5	Consumo de cerveja (litros)	365 non-null	float64

dtypes: float64(6) memory usage: 44.2 KB

▼ Valores nulos

```
#Ouantidade de valores nulos
df.isna().sum()
```

Temperatura Media ((C)	576
Temperatura Minima	(C)	576
Temperatura Maxima	(C)	576
Precipitacao (mm)		576
Final de Semana		576
Consumo de cerveja	(litros)	576
dtype: int64		

#Retirando os valores nulos para que não haja influência na análise

```
df = df.dropna()

#Verificação dos valores nulos

df.isna().sum()

    Temperatura Media (C)
    Temperatura Minima (C)
```

Temperatura Maxima (C) 0
Precipitacao (mm) 0
Final de Semana 0
Consumo de cerveja (litros) 0

dtype: int64

#Após a remoção dos valores nulos. Vamos verificar o tamanho do conjunto de dados.

df.shape

(365, 6)

Agora possuímos 365 linhas e 6 colunas.

▼ Nova Coluna: Choveu?

Adicionando uma coluna baseada na variável Precipitação na qual 1 significa que choveu e 0 significa que não choveu naquele dia, para melhor manipulação dos dados.

```
#Choveu? 1-sim 0-não

df['Choveu?'] = df['Precipitacao (mm)'].apply(lambda x: 1.0 if x > 0 else 0.0)

/usr/local/lib/python3.7/dist-packages/ipykernel_launcher.py:3: SettingWithCo
A value is trying to be set on a copy of a slice from a DataFrame.

Try using .loc[row_indexer,col_indexer] = value instead

See the caveats in the documentation: <a href="https://pandas.pydata.org/pandas-docs/s">https://pandas.pydata.org/pandas-docs/s</a>
```

This is separate from the ipykernel package so we can avoid doing imports t

	Temperatura Media (C)	Temperatura Minima (C)	Temperatura Maxima (C)	Precipitacao (mm)	Final de Semana	Consumo de cerveja (litros)	Chov
0	27.30	23.9	32.5	0.0	0.0	25.461	
1	27.02	24.5	33.5	0.0	0.0	28.972	
2	24.82	22.4	29.9	0.0	1.0	30.814	
3	23.98	21.5	28.6	1.2	1.0	29.799	
4	23.82	21.0	28.3	0.0	0.0	28.900	
+4							>

Análise Exploratória de Dados

▼ Estatísticas

#Observando a contagem, média, desvio padrão, mínimo, 25%,50%, 75% e máximo. df.describe().transpose()

	count	mean	std	min	25%	50%	75%	max
Temperatura Media (C)	365.0	21.226356	3.180108	12.900	19.020	21.380	23.280	28.860
Temperatura Minima (C)	365.0	17.461370	2.826185	10.600	15.300	17.900	19.600	24.500
Temperatura Maxima (C)	365.0	26.611507	4.317366	14.500	23.800	26.900	29.400	36.500
Precipitacao (mm)	365.0	5.196712	12.417844	0.000	0.000	0.000	3.200	94.800
Final de Semana	365.0	0.284932	0.452001	0.000	0.000	0.000	1.000	1.000
Consumo de	225.2	05 404007	4 000 4 40	44040	22 222	04.007	22 224	~~ ~~~

→ Algumas observações

▼ As pessoas bebem mais no final de semana ou dia de semana?

df['Consumo de cerveja (litros)'].groupby(df['Final de Semana']).agg('mean')

```
Final de Semana
0.0 23.998222
1.0 28.922721
```

Name: Consumo de cerveja (litros), dtype: float64

```
x = 'Final de Semana'
y = 'Consumo de cerveja (litros)'
plt.figure(figsize = (10,6))
boxplot = sns.boxplot(x=x,y=y,data=df,palette='hls')
```

boxplot.set_title('Consumo de litros de Cerveja em dias de semana e finais de sema
plt.show()

O consumo médio de cerveja é maior nos finais de semana.

Nos dias de semana, 50% dos dados estão mais ou menos entre 20 e 27 litros de cerveja. Já nos finais de semana, 50% dos dados estão entre 25 e 33 litros.

Além disso, por meio deste gráfico, pode-se perceber que existem três outliers nos dias de semana.

No código abaixo vou verificar esses outliers.

```
(df[(df['Final de Semana'] == 0.0) \& (df['Consumo de cerveja (litros)'] > 33.5)])
```

	Temperatura Media (C)	Temperatura Minima (C)	Temperatura Maxima (C)	Precipitacao (mm)	Final de Semana	Consumo de cerveja (litros)	Ch
19	27.68	23.3	35.6	0.6	0.0	35.127	
259	27.26	20.4	33.0	0.0	0.0	33.930	
287	28 12	18 9	35.8	0.0	0 0	35 861	

Qual a média do consumo de cerveja em dias que chovem e em dias que não chovem? E fim de semana e dia de semana que chovem e não chovem?

```
df['Consumo de cerveja (litros)'].groupby(df['Choveu?']).agg('mean')
    Choveu?
    0.0
           25.929757
    1.0
           24.617769
    Name: Consumo de cerveja (litros), dtype: float64
```

Em dias que choveu, a média do consumo foi menor que nos dias que não choveu.

Média do consumo em dias da semana e em finais de semana que estão chovendo e que não estão chovendo:

```
consumo chuva = pd.pivot table(df,
                       columns = 'Final de Semana',
                       index = 'Choveu?',
                       values = 'Consumo de cerveja (litros)',
                       aggfunc = 'mean')
consumo chuva
```

Final de Semana	0.0	1.0	1	
Choveu?				
0.0	24.495261	29.621820		
1.0	23.247885	27.930977		

Tanto nos dias de semana como nos finais de semana, nos dias chuvosos o consumo médio de cerveja é menor.

```
x = 'Choveu?'
y = 'Consumo de cerveja (litros)'
plt.figure(figsize = (10,6))
boxplot = sns.boxplot(x=x,y=y,data=df,palette='hls')
```

boxplot.set title('Consumo de litros de Cerveja em dias que choveu e em dias que n plt.show()

Em dias que não choveu, pode-se perceber que o consumo foi maior que nos dias que choveu.

Relação linear do consumo de cerveja em dias de semana e finais de semana que está chovendo.

```
sns.lmplot(x='Precipitacao (mm)', y='Consumo de cerveja (litros)', hue='Final de S
           data=df, aspect=1.5, height=6);
plt.xlabel('Precipitação (mm)')
plt.ylabel('Consumo de cerveja (litros)')
plt.grid(ls='-.', lw=.5);
```


A relação da precipitação (mm) com o consumo de cerveja é negativa, ou seja, quanto maior a precipitação (mm), menor será o consumo de cerveja. Por meio deste gráfico de dispersão, é possível perceber que nos finais de semana, apesar da relação também ser negativa, o consumo é maior que nos dias de semana.

→ Correlação das Variáveis

rrecipitação (IIIIII)

df.corr(method = 'pearson')

	Temperatura Media (C)	Temperatura Minima (C)	Temperatura Maxima (C)	Precipitacao (mm)	Final de Semana	ce (li
Temperatura Media (C)	1.000000	0.862752	0.922513	0.024416	-0.050803	0.5
Temperatura Minima (C)	0.862752	1.000000	0.672929	0.098625	-0.059534	0.3
Temperatura Maxima (C)	0.922513	0.672929	1.000000	-0.049305	-0.040258	0.6
Precipitacao (mm)	0.024416	0.098625	-0.049305	1.000000	0.001587	-0.1
Final de Semana	-0.050803	-0.059534	-0.040258	0.001587	1.000000	0.5
Consumo de cerveja (litros)	0.574615	0.392509	0.642672	-0.193784	0.505981	1.(
Choveu?	-0.012409	0.155332	-0.138883	0.510326	0.013800	-0.1
4						•

Por meio dessa tabela de correlação é possível perceber que a variável a qual tem a correlação mais forte com o Consumo de cerveja (litros) é a Temperatura Máxima (C). Mas pode-se perceber também que as variáveis de temperatura têm uma correlação alta entre elas, fator que pode afetar no modelo, pois recomenda-se que as variáveis não tenham forte correlação entre elas, somente com a variável dependente (y).

→ Consumo de Cerveja X Temperatura Média

Verificando a relação de consumo de cerveja com a temperatura está média por meio de um gráfico de dispersão:

sns.lmplot(x = "Temperatura Media (C)", y = "Consumo de cerveja (litros)", data =
plt.title("Gráfico de dispersão da relação do Consumo de Cerveja e Temperaturas Mé
plt.show()

Conforme verificado pelo coeficiente de correlação, a relação entre o consumo de cerveja e a temperatura média é positiva, ou seja, conforme a temperatura média aumenta, o consumo de cerveja também aumenta. O coeficiente foi de 0.57, podendo ser considerada uma correlação moderada.

Consumo de Cerveja X Temperaturas Máximas

sns.lmplot(x = "Temperatura Maxima (C)", y = "Consumo de cerveja (litros)", data = plt.title("Gráfico de dispersão da relação do Consumo de Cerveja e Temperaturas Má <math>plt.show()

Gráfico de dispersão da relação do Consumo de Cerveja e Temperaturas Máximas

Aqui a relação também é positiva, conforme a temperatura máxima aumenta, o consumo de cerveja também aumenta. Além disso, o coeficiente de correlação foi de 0.64, podendo ser considerada uma correlação moderada entre as variáveis.

Consumo de Cerveja X Temperaturas Mínimas

sns.lmplot(x = "Temperatura Minima (C)", y = "Consumo de cerveja (litros)", data = plt.title("Gráfico de dispersão da relação do Consumo de Cerveja e Temperaturas Mí plt.show()

Gráfico de dispersão da relação do Consumo de Cerveja e Temperaturas Mínimas

Apesar da relação entre as duas variáveis ser positiva, pode-se perceber que os dados estão bastante dispersos. O coeficiente de correlação dessas duas variáveis foi de 0.39, ou seja, apesar de ser uma relação positiva, trata-se de uma correlação baixa entre as variáveis.

Aplicando o Modelo de Regressão Linear Múltipla

▼ Modelo 1

```
# x do modelo
x = df.drop('Consumo de cerveja (litros)',axis=1)
# y do modelo
y = df['Consumo de cerveja (litros)']
#Dividindo o conjuntos de dados em base de treino e de teste. 75% será para treino
x_train, x_test, y_train, y_test = train_test_split (x,y,test_size=0.25,random_sta
#Verificando os tamanhos dos conjuntos de dados de treino e teste
print(x_train.shape, y_train.shape)
print(x test.shape, y test.shape)
    (273, 6) (273,)
    (92, 6) (92,)
#Treinando o Modelo de Regressão Linear Múltipla:
lr = LinearRegression()
lr.fit(x_train,y_train)
lr.coef
    array([ 0.18927666, -0.12450782, 0.58663292, -0.05800596, 5.16444987,
             0.376810881)
Verificando os pesos das variáveis no modelo:
plt.figure(figsize=(15,9))
sns.barplot(x = x_train.columns,y = lr.coef_)
plt.show()
```


Pode-se perceber que a variável que tem o maior peso sobre a variável resposta é Final de Semana, ou seja, a variação entre dia de semana e final de semana influencia muito o consumo de cerveja. Além disso, as variáveis Temperatura Mínima (C) e Precipitação (mm) têm um peso negativo sobre a variável y.

```
#Verificando a Média dos Erros ao Ouadrado
y_pred = lr.predict(x_test)
mean squared error(y test,y pred)
    5.7536903080703015
```

#Raiz quadrada aplicada à Média dos Erros ao Quadrado, para trazer a métrica para np.sqrt(mean_squared_error(y_test,y_pred))

2.3986851206588793

Tendo em vista que a média do consumo de cerveja é de 25.40 litros, pode-se considerar que o erro é aceitável. O modelo está errando 2.39 litros para cima e para baixo.

```
# Verificando o coeficiente de determinação (R2) do modelo:
lr.score(x_test,y_test)
    0.7446236565419468
```

Por meio do coeficiente de determinação, pode-se dizer que aproximadamente 74% do modelo explica o consumo de cerveja.

```
#Verificando o modelo no conjunto de dados de treino
y pred train = lr.predict(x train)
print(mean_squared_error(y_train,y_pred_train))
print(np.sqrt(mean_squared_error(y_train,y_pred_train)))
print(lr.score(x train,y train))
    5.233514969664927
    2.2876876905873598
    0.7085589493630273
```

Analisando o conjunto de dados de treino, pode-se perceber que o modelo explica 70% da variação do consumo de cerveja, o R2 foi menor que no conjunto de dados de teste.

```
#Plotando os erros do modelo
def graficos(y, pred):
    plt.figure(figsize=(12, 6))
    plt.plot(y,y)
    plt.scatter(pred,y, c='r', marker='o')
    plt.legend(['Real','Previsão'])
    plt.grid(ls='-.', lw=0.2, c='k');
graficos(y_test, y_pred)
```


→ Modelo 2

Tendo em vista que a variável Temperatura Mínima (C) tem uma correlação alta com Temperatura Média (C), e que Precipitação (mm) tem uma correlação alta com a variável que verifica se choveu, decidiu-se por aplicar outro modelo neste dataset, desta vez excluindo as variáveis Temperatura Mínima (C), Temperatura Média (C) e Choveu?

```
#Definindo o x do modelo
x = df.drop(['Consumo de cerveja (litros)', 'Temperatura Media (C)', 'Temperatura
#Definindo o y do modelo
y = df['Consumo de cerveja (litros)']
#Dividindo o dataset em treino e teste
x train, x test, y train, y test = train test split (x,y,test size=0.25,random sta
#Aplicando o Modelo de Regressão Linear Múltipla
lr = LinearRegression()
lr.fit(x_train,y_train)
lr.coef_
    array([ 0.65295463, -0.05081594, 5.18612642])
#Verificando a Média dos Erros ao Quadrado
y pred = lr.predict(x test)
mean_squared_error(y_test,y_pred)
    5.652562093305644
#Aplicando a raiz quadrada na Média dos Erros ao Quadrado
np.sqrt(mean_squared_error(y_test,y_pred))
    2.3775117440941576
```

A diferença entre os dois modelos foi muito baixa, mesmo excluindo as variáveis que têm alta colinearidade.

#Verificando o coeficiente de determinação do modelo

```
lr.score(x_test,y_test)
    0.749112211247579
```

Assim como o primeiro modelo, este explica, aproximadamente, 74% do consumo de cerveja.

```
#Avaliação no treino
y pred train = lr.predict(x train)
print(mean squared error(y train,y pred train))
print(np.sqrt(mean_squared_error(y_train,y_pred_train)))
print(lr.score(x_train,y_train))
    5.2697243466481245
    2.295588017621656
    0.7065425418563973
```

→ CONCLUSÕES

Analisando o dataset, foi possível perceber que o

- Analisando o dataset, foi possível perceber que o consumo médio de cerveja é maior nos finais de semana.
- Além disso, em dias que chovem o consumo médio de cerveja foi menor, tanto nos dias de semana quanto nos finais de semana. Precipitação (mm) tem uma relação linear negativa com a variável target, ou seja, quanto maior a precipitação, menor será o consumo de cerveja.
- Além disso, em dias que chovem o consumo médio de cerveja foi menor, tanto nos dias de semana quanto nos finais de semana. Precipitação (mm) tem uma relação linear negativa com a variável target, ou seja, quanto maior a precipitação, menor será o consumo de cerveja.
- Ainda, por meio da tabela gerada das correlações entre as variáveis explicativas e a variável resposta, foi possível perceber que a correlação mais forte com a variável y -Consumo de Cerveja – foi a variável Temperatura Máxima. Porém, percebeu-se também que as variáveis de temperatura tinham uma correlação forte entre elas, e é importante mencionar que a colinearidade (alta correlação entre as variáveis explicativas) não é interessante para um modelo de regressão linear, pois ele pode ficar enviesado.
- Ao aplicar o modelo de regressão linear múltipla, foi possível perceber que a variável que possuía maior peso dentro do modelo era a variável Final de Semana.

- Decidimos treinar o modelo duas vezes: na primeira considerando todas as variáveis explicativas e na segunda, desconsiderando as variáveis explicativas que possuíam alta colinearidade. Nos dois modelos, o erro foi muito próximo, de aproximadamente 2,39 litros para cima e para baixo. Vale mencionar que, em razão da média do consumo de cerveja ser de 25,4 litros, um erro de 2,39 é considerado baixo.
- Por fim, é importante mencionar que nos dois modelos o coeficiente de determinação coeficiente que informa o quanto que x está explicando a variação de y - foi de 74%, ou seja, os modelos explicam 74% da variação do consumo de cerveja.

✓ 0s conclusão: 22:31

X