

proof of Ascoli-Arzelà theorem

Canonical name ProofOfAscoliArzelaTheorem

Date of creation 2013-03-22 13:16:19 Last modified on 2013-03-22 13:16:19

Owner paolini (1187) Last modified by paolini (1187)

Numerical id 12

Author paolini (1187)

Entry type Proof Classification msc 46E15 Given $\epsilon>0$ we aim at finding a 4ϵ -net in F i.e. a finite set of points F_ϵ such that

$$\bigcup_{f \in F_{\epsilon}} B_{4\epsilon}(f) \supset F$$

(see the definition of totally bounded). Let $\delta > 0$ be given with respect to ϵ in the definition of equi-continuity (see uniformly equicontinuous) of F. Let X_{δ} be a δ -lattice in X and Y_{ϵ} be a ϵ -lattice in Y. Let now $Y_{\epsilon}^{X_{\delta}}$ be the set of functions from X_{δ} to Y_{ϵ} and define $G_{\epsilon} \subset Y_{\epsilon}^{X_{\delta}}$ by

$$G_{\epsilon} = \{ g \in Y_{\epsilon}^{X_{\delta}} \colon \exists f \in F \ \forall x \in X_{\delta} \ d(f(x), g(x)) < \epsilon \}.$$

Since $Y_{\epsilon}^{X_{\delta}}$ is a finite set, G_{ϵ} is finite too: say $G_{\epsilon} = \{g_1, \ldots, g_N\}$. Then define $F_{\epsilon} \subset F$, $F_{\epsilon} = \{f_1, \ldots, f_N\}$ where $f_k \colon X \to Y$ is a function in F such that $d(f_k(x), g_k(x)) < \epsilon$ for all $x \in X_{\delta}$ (the existence of such a function is guaranteed by the definition of G_{ϵ}).

We now will prove that F_{ϵ} is a 4ϵ -lattice in F. Given $f \in F$ choose $g \in Y_{\epsilon}^{X_{\delta}}$ such that for all $x \in X_{\delta}$ it holds $d(f(x), g(x)) < \epsilon$ (this is possible as for all $x \in X_{\delta}$ there exists $y \in Y_{\epsilon}$ with $d(f(x), y) < \epsilon$). We conclude that $g \in G_{\epsilon}$ and hence $g = g_k$ for some $k \in \{1, ..., N\}$. Notice also that for all $x \in X_{\delta}$ we have $d(f(x), f_k(x)) \leq d(f(x), g_k(x)) + d(g_k(x), f_k(x)) < 2\epsilon$.

Given any $x \in X$ we know that there exists $x_{\delta} \in X_{\delta}$ such that $d(x, x_{\delta}) < \delta$. So, by equicontinuity of F,

$$d(f(x), f_k(x)) \le d(f(x), f(x_\delta)) + d(f_k(x), f_k(x_\delta)) + d(f(x_\delta), f_k(x_\delta)) < 4\epsilon.$$