Lab9 - Employee Hopping Prediction using Random Forests

Name: Ezhilarasan C

Roll No: 225229151


```
In [4]: ▶ df.columns
```

In [6]: ► df.dtypes

Out[6]:	Age	int64
	Attrition	object
	BusinessTravel	object
	DailyRate	int64
	Department	object
	DistanceFromHome	int64
	Education	int64
	EducationField	object
	EmployeeCount	int64
	EmployeeNumber	int64
	EnvironmentSatisfaction	int64
	Gender	object
	HourlyRate	int64
	JobInvolvement	int64
	JobLevel	int64
	JobRole	object
	JobSatisfaction	int64
	MaritalStatus	object
	MonthlyIncome	int64
	MonthlyRate	int64
	NumCompaniesWorked	int64
	Over18	object
	OverTime	object
	PercentSalaryHike	int64
	PerformanceRating	int64
	RelationshipSatisfaction	int64
	StandardHours	int64
	StockOptionLevel	int64
	TotalWorkingYears	int64
	TrainingTimesLastYear	int64
	WorkLifeBalance	int64
	YearsAtCompany	int64
	YearsInCurrentRole	int64
	YearsSinceLastPromotion	int64
	YearsWithCurrManager	int64
	dtype: object	

In [7]: ► df.info()

RangeIndex: 1470 entries, 0 to 1469 Data columns (total 35 columns): 1470 non-null int64 Age Attrition 1470 non-null object 1470 non-null object BusinessTravel 1470 non-null int64 DailyRate Department 1470 non-null object DistanceFromHome 1470 non-null int64 1470 non-null int64 Education EducationField 1470 non-null object EmployeeCount 1470 non-null int64 **EmployeeNumber** 1470 non-null int64 EnvironmentSatisfaction 1470 non-null int64 Gender 1470 non-null object HourlyRate 1470 non-null int64 1470 non-null int64 JobInvolvement JobLevel 1470 non-null int64 1470 non-null object JobRole JobSatisfaction 1470 non-null int64 MaritalStatus 1470 non-null object 1470 non-null int64 MonthlyIncome MonthlyRate 1470 non-null int64 NumCompaniesWorked 1470 non-null int64 1470 non-null object Over18 OverTime 1470 non-null object 1470 non-null int64 PercentSalaryHike PerformanceRating 1470 non-null int64 RelationshipSatisfaction 1470 non-null int64 StandardHours 1470 non-null int64 StockOptionLevel 1470 non-null int64 TotalWorkingYears 1470 non-null int64 TrainingTimesLastYear 1470 non-null int64 WorkLifeBalance 1470 non-null int64 YearsAtCompany 1470 non-null int64 YearsInCurrentRole 1470 non-null int64 YearsSinceLastPromotion 1470 non-null int64 YearsWithCurrManager 1470 non-null int64 dtypes: int64(26), object(9) memory usage: 402.0+ KB

<class 'pandas.core.frame.DataFrame'>

Out[9]: No 1233 Yes 237

Name: Attrition, dtype: int64

```
In [10]:  X = df.drop(['Attrition'], axis=1)
y = df.Attrition
```

```
In [11]:  X_cat_cols = X.select_dtypes('object')
X_cat_cols
```

Out	[11]	
Out	լեեյ	•

	BusinessTravel	Department	EducationField	Gender	JobRole	MaritalStatus
0	Travel_Rarely	Sales	Life Sciences	Female	Sales Executive	Single
1	Travel_Frequently	Research & Development	Life Sciences	Male	Research Scientist	Married
2	Travel_Rarely	Research & Development	Other	Male	Laboratory Technician	Single
3	Travel_Frequently	Research & Development	Life Sciences	Female	Research Scientist	Married
4	Travel_Rarely	Research & Development	Medical	Male	Laboratory Technician	Married
5	Travel_Frequently	Research & Development	Life Sciences	Male	Laboratory Technician	Single
6	Travel_Rarely	Research & Development	Medical	Female	Laboratory Technician	Married
7	Travel_Rarely	Research & Development	Life Sciences	Male	Laboratory Technician	Divorced
8	Travel_Frequently	Research & Development	Life Sciences	Male	Manufacturing Director	Single
9	Travel_Rarely	Research & Development	Medical	Male	Healthcare Representative	Married
10	Travel_Rarely	Research & Development	Medical	Male	Laboratory Technician	Married
11	Travel_Rarely	Research & Development	Life Sciences	Female	Laboratory Technician	Single
12	Travel_Rarely	Research & Development	Life Sciences	Male	Research Scientist	Divorced
13	Travel_Rarely	Research & Development	Medical	Male	Laboratory Technician	Divorced
14	Travel_Rarely	Research & Development	Life Sciences	Male	Laboratory Technician	Single
15	Travel_Rarely	Research & Development	Life Sciences	Female	Manufacturing Director	Divorced
16	Travel_Rarely	Research & Development	Life Sciences	Male	Research Scientist	Divorced
17	Non-Travel	Research & Development	Medical	Male	Laboratory Technician	Divorced
18	Travel_Rarely	Sales	Life Sciences	Female	Manager	Married
19	Travel_Rarely	Research & Development	Life Sciences	Male	Research Scientist	Single
20	Non-Travel	Research & Development	Other	Female	Manufacturing Director	Divorced
21	Travel_Rarely	Sales	Life Sciences	Male	Sales Representative	Single
22	Travel_Rarely	Research & Development	Life Sciences	Female	Research Director	Single
23	Travel_Rarely	Research & Development	Life Sciences	Male	Research Scientist	Single

	BusinessTravel	Department	EducationField	Gender	JobRole	MaritalStatus
24	Travel_Rarely	Research & Development	Medical	Male	Research Scientist	Single
25	Travel_Rarely	Research & Development	Other	Female	Manager	Divorced
26	Travel_Frequently	Research & Development	Life Sciences	Female	Research Scientist	Single
27	Travel_Rarely	Sales	Marketing	Male	Sales Executive	Married
28	Travel_Rarely	Research & Development	Medical	Female	Healthcare Representative	Married
29	Travel_Rarely	Sales	Marketing	Female	Manager	Single
1440	Travel_Frequently	Research & Development	Life Sciences	Female	Manufacturing Director	Divorced
1441	Non-Travel	Research & Development	Life Sciences	Male	Healthcare Representative	Divorced
1442	Travel_Rarely	Research & Development	Medical	Male	Research Scientist	Married
1443	Travel_Rarely	Research & Development	Life Sciences	Male	Manager	Married
1444	Travel_Rarely	Research & Development	Technical Degree	Male	Laboratory Technician	Married
1445	Travel_Rarely	Research & Development	Life Sciences	Female	Manufacturing Director	Married
1446	Travel_Rarely	Sales	Marketing	Female	Sales Executive	Married
1447	Non-Travel	Sales	Marketing	Male	Sales Executive	Divorced
1448	Travel_Rarely	Sales	Life Sciences	Male	Sales Executive	Divorced
1449	Travel_Rarely	Research & Development	Technical Degree	Male	Research Scientist	Single
1450	Travel_Rarely	Human Resources	Life Sciences	Female	Human Resources	Single
1451	Travel_Rarely	Sales	Life Sciences	Female	Sales Executive	Married
1452	Travel_Frequently	Sales	Life Sciences	Male	Sales Executive	Divorced
1453	Travel_Rarely	Sales	Marketing	Female	Sales Executive	Married
1454	Travel_Rarely	Sales	Life Sciences	Female	Sales Executive	Single
1455	Travel_Rarely	Research & Development	Life Sciences	Male	Research Scientist	Single
1456	Travel_Frequently	Research & Development	Life Sciences	Male	Healthcare Representative	Married

	BusinessTravel	Department	EducationField	Gender	JobRole	MaritalStatus
1457	Travel_Rarely	Research & Development	Medical	Female	Research Scientist	Married
1458	Travel_Rarely	Research & Development	Life Sciences	Female	Research Scientist	Married
1459	Travel_Rarely	Research & Development	Other	Male	Laboratory Technician	Married
1460	Travel_Rarely	Research & Development	Medical	Female	Research Scientist	Single
1461	Travel_Rarely	Sales	Marketing	Male	Sales Executive	Divorced
1462	Travel_Rarely	Sales	Marketing	Female	Sales Executive	Married
1463	Non-Travel	Research & Development	Medical	Male	Manufacturing Director	Single
1464	Travel_Rarely	Sales	Other	Female	Sales Representative	Single
1465	Travel_Frequently	Research & Development	Medical	Male	Laboratory Technician	Married
1466	Travel_Rarely	Research & Development	Medical	Male	Healthcare Representative	Married
1467	Travel_Rarely	Research & Development	Life Sciences	Male	Manufacturing Director	Married
1468	Travel_Frequently	Sales	Medical	Male	Sales Executive	Married
1469	Travel_Rarely	Research & Development	Medical	Male	Laboratory Technician	Married

1470 rows × 8 columns

object Out[12]: Attrition BusinessTravel object Department object object EducationField object Gender object JobRole object MaritalStatus Over18 object OverTime object dtype: object

\wedge	4	-	Г 1	1 2	п.
U	u	L	IJ	しろ	-
			_		_

	Age	Attrition	DailyRate	DistanceFromHome	Education	EmployeeCount	EmployeeNum
0	41	Yes	1102	1	2	1	
1	49	No	279	8	1	1	
2	37	Yes	1373	2	2	1	
3	33	No	1392	3	4	1	
4	27	No	591	2	1	1	
5 r	ows ×	56 colum	nns				

Accuracy = 0.8707482993197279

Report:

	precision	recall	f1-score	support
No	0.88	0.99	0.93	255
Yes	0.57	0.10	0.17	39
avg / total	0.84	0.87	0.83	294

```
In [22]:  ▶ | print(rfc.feature_importances_)
```

```
[0.0517451 0.04722933 0.03887903 0.01710468 0. 0.04278778 0.02311509 0.03904183 0.02021352 0.02396834 0.02326452 0.07920932 0.04228448 0.03307936 0.02732406 0.00401553 0.01840954 0. 0.02848345 0.04758049 0.02328496 0.01992852 0.03812122 0.02614615 0.0234592 0.02751905 0.0034132 0.01215741 0.00658376 0.00183751 0.00747679 0.00872864 0.00227644 0.00603419 0.00537846 0.00632019 0.00289069 0.00698804 0.0054528 0.00646902 0.00178921 0.00254453 0.00749878 0.00110771 0.00242763 0.00072916 0.0065639 0.00711959 0.00828513 0.00509135 0.00661428 0.0192785 0. 0.04180135 0.04094719]
```

Out[23]:

	Important_Feature
Age	0.051745
DailyRate	0.047229
DistanceFromHome	0.038879
Education	0.017105
EmployeeCount	0.000000
EmployeeNumber	0.042788
EnvironmentSatisfaction	0.023115
HourlyRate	0.039042
Joblnvolvement	0.020214
JobLevel	0.023968
JobSatisfaction	0.023265
MonthlyIncome	0.079209
MonthlyRate	0.042284
NumCompaniesWorked	0.033079
PercentSalaryHike	0.027324
PerformanceRating	0.004016
RelationshipSatisfaction	0.018410
StandardHours	0.000000
StockOptionLevel	0.028483
TotalWorkingYears	0.047580
TrainingTimesLastYear	0.023285
WorkLifeBalance	0.019929
YearsAtCompany	0.038121
YearsInCurrentRole	0.026146
YearsSinceLastPromotion	0.023459
YearsWithCurrManager	0.027519
BusinessTravel_Non-Travel	0.003413
BusinessTravel_Travel_Frequently	0.012157
BusinessTravel_Travel_Rarely	0.006584
Department_Human Resources	0.001838
Department_Research & Development	0.007477
Department_Sales	0.008729
EducationField_Human Resources	0.002276
EducationField_Life Sciences	0.006034
EducationField_Marketing	0.005378
EducationField_Medical	0.006320

Important_Feature

EducationField_Other	0.002891
EducationField_Technical Degree	0.006988
Gender_Female	0.005453
Gender_Male	0.006469
JobRole_Healthcare Representative	0.001789
JobRole_Human Resources	0.002545
JobRole_Laboratory Technician	0.007499
JobRole_Manager	0.001108
JobRole_Manufacturing Director	0.002428
JobRole_Research Director	0.000729
JobRole_Research Scientist	0.006564
JobRole_Sales Executive	0.007120
JobRole_Sales Representative	0.008285
MaritalStatus_Divorced	0.005091
MaritalStatus_Married	0.006614
MaritalStatus_Single	0.019279
Over18_Y	0.000000
OverTime_No	0.041801
OverTime_Yes	0.040947

In [24]:

import matplotlib.pyplot as plt import seaborn as sns

Out[30]: Text(0,0.5, 'Feature Important score')

In [36]: ▶ !type tree.dot

```
digraph Tree {
node [shape=box, style="filled", color="black"];
0 [label="TotalWorkingYears <= 1.5\nsamples = 749\nvalue = [954, 222]\nc</pre>
lass = Yes", fillcolor="#e58139c4"];
1 [label="OverTime_Yes <= 0.5\nsamples = 51\nvalue = [31, 47]\nclass = N
o", fillcolor="#399de557"];
0 -> 1 [labeldistance=2.5, labelangle=45, headlabel="True"];
2 [label="DailyRate <= 355.0\nsamples = 33\nvalue = [26, 24]\nclass = Ye
s", fillcolor="#e5813914"];
1 \rightarrow 2:
3 [label="samples = 6\nvalue = [0, 8]\nclass = No", fillcolor="#399de5f
2 \rightarrow 3;
4 [label="WorkLifeBalance <= 2.5\nsamples = 27\nvalue = [26, 16]\nclass
= Yes", fillcolor="#e5813962"];
2 \rightarrow 4;
5 [label="PercentSalaryHike <= 16.5\nsamples = 7\nvalue = [3, 6]\nclass
= No", fillcolor="#399de57f"];
4 -> 5;
6 [label="(...)", fillcolor="#C0C0C0"];
5 -> 6;
11 [label="(...)", fillcolor="#C0C0C0"];
5 -> 11 ;
12 [label="EnvironmentSatisfaction <= 2.5\nsamples = 20\nvalue = [23, 1]
0]\nclass = Yes", fillcolor="#e5813990"];
4 -> 12 ;
13 [label="(...)", fillcolor="#C0C0C0"];
12 -> 13 ;
16 [label="(...)", fillcolor="#C0C0C0"];
12 -> 16;
19 [label="StockOptionLevel <= 0.5\nsamples = 18\nvalue = [5, 23]\nclass
= No", fillcolor="#399de5c8"];
1 \to 19;
20 [label="samples = 11\nvalue = [0, 18]\nclass = No", fillcolor="#399de
5ff"];
19 -> 20;
21 [label="MaritalStatus_Divorced <= 0.5\nsamples = 7\nvalue = [5, 5]\nc
lass = Yes", fillcolor="#e5813900"];
19 -> 21 ;
22 [label="MonthlyIncome <= 2269.5\nsamples = 4\nvalue = [1, 4]\nclass =
No", fillcolor="#399de5bf"];
21 -> 22;
23 [label="(...)", fillcolor="#C0C0C0"];
22 \rightarrow 23;
24 [label="(...)", fillcolor="#C0C0C0"];
22 -> 24 ;
25 [label="MonthlyRate <= 25972.5\nsamples = 3\nvalue = [4, 1]\nclass =
Yes", fillcolor="#e58139bf"];
21 -> 25 ;
26 [label="(...)", fillcolor="#C0C0C0"];
25 -> 26;
27 [label="(...)", fillcolor="#C0C0C0"];
25 -> 27 ;
28 [label="OverTime_No <= 0.5\nsamples = 698\nvalue = [923, 175]\nclass
= Yes", fillcolor="#e58139cf"];
0 -> 28 [labeldistance=2.5, labelangle=-45, headlabel="False"];
29 [label="YearsAtCompany <= 3.5\nsamples = 204\nvalue = [235, 98]\nclas
```

```
s = Yes", fillcolor="#e5813995"];
28 -> 29 ;
30 [label="DistanceFromHome <= 1.5\nsamples = 59\nvalue = [49, 49]\nclas
s = Yes", fillcolor="#e5813900"];
29 -> 30;
31 [label="WorkLifeBalance <= 3.5\nsamples = 8\nvalue = [2, 12]\nclass =
No", fillcolor="#399de5d4"];
30 -> 31;
32 [label="(...)", fillcolor="#C0C0C0"];
31 -> 32;
37 [label="(...)", fillcolor="#C0C0C0"];
31 -> 37 ;
38 [label="PercentSalaryHike <= 12.5\nsamples = 51\nvalue = [47, 37]\ncl
ass = Yes", fillcolor="#e5813936"];
30 -> 38;
39 [label="(...)", fillcolor="#C0C0C0"];
38 -> 39 ;
44 [label="(...)", fillcolor="#C0C0C0"];
38 -> 44 ;
63 [label="YearsAtCompany <= 10.5\nsamples = 145\nvalue = [186, 49]\ncla
ss = Yes", fillcolor="#e58139bc"];
29 -> 63 ;
64 [label="YearsWithCurrManager <= 6.5\nsamples = 111\nvalue = [135, 44]
\nclass = Yes", fillcolor="#e58139ac"];
63 -> 64 ;
65 [label="(...)", fillcolor="#C0C0C0"];
64 -> 65;
100 [label="(...)", fillcolor="#C0C0C0"];
64 -> 100 ;
119 [label="MonthlyRate <= 2658.0\nsamples = 34\nvalue = [51, 5]\nclass
= Yes", fillcolor="#e58139e6"];
63 -> 119 ;
120 [label="(...)", fillcolor="#C0C0C0"];
119 -> 120 ;
125 [label="(...)", fillcolor="#C0C0C0"];
119 -> 125 ;
128 [label="EducationField_Technical Degree <= 0.5\nsamples = 494\nvalue
= [688, 77]\nclass = Yes", fillcolor="#e58139e2"];
28 -> 128 ;
129 [label="NumCompaniesWorked <= 5.5\nsamples = 447\nvalue = [634, 58]
\nclass = Yes", fillcolor="#e58139e8"];
128 -> 129 ;
130 [label="JobSatisfaction <= 1.5\nsamples = 373\nvalue = [546, 30]\ncl
ass = Yes", fillcolor="#e58139f1"];
129 -> 130 ;
131 [label="(...)", fillcolor="#C0C0C0"];
130 -> 131 ;
154 [label="(...)", fillcolor="#C0C0C0"];
130 -> 154 ;
195 [label="JobInvolvement <= 2.5\nsamples = 74\nvalue = [88, 28]\nclass
= Yes", fillcolor="#e58139ae"];
129 -> 195 ;
196 [label="(...)", fillcolor="#C0C0C0"];
195 -> 196
209 [label="(...)", fillcolor="#C0C0C0"];
195 -> 209 ;
222 [label="DailyRate <= 1354.5\nsamples = 47\nvalue = [54, 19]\nclass =
```

```
Yes", fillcolor="#e58139a5"];
128 -> 222 ;
223 [label="HourlyRate <= 98.5\nsamples = 35\nvalue = [45, 10]\nclass =
Yes", fillcolor="#e58139c6"];
222 -> 223 ;
224 [label="(...)", fillcolor="#C0C0C0"];
223 \rightarrow 224;
239 [label="(...)", fillcolor="#C0C0C0"];
223 -> 239 ;
242 [label="EmployeeNumber <= 1028.0\nsamples = 12\nvalue = [9, 9]\nclas
s = Yes", fillcolor="#e5813900"];
222 -> 242 ;
243 [label="(...)", fillcolor="#C0C0C0"];
242 -> 243 ;
246 [label="(...)", fillcolor="#C0C0C0"];
242 -> 246 ;
}
```

```
In [38]: | import warnings
    warnings.filterwarnings('ignore')

In [39]: | rf2 = RandomForestClassifier(oob_score=True, random_state=42, warm_start=1
    oob_list = list()
    for n_trees in [15, 20, 30, 40, 50, 100, 150, 200, 300, 400]:
        rf2.set_params(n_estimators=n_trees)
        rf2.fit(X_train, y_train)
        oob_error = 1 - rf2.oob_score_
        oob_list.append(pd.Series({'n_trees': n_trees, 'oob': oob_error}))

rf_oob_df = pd.concat(oob_list, axis=1).T.set_index('n_trees')
        rf_oob_df
```

Out[39]: oob

```
      15.0
      0.163265

      20.0
      0.159014

      30.0
      0.148810

      40.0
      0.144558

      50.0
      0.139456

      100.0
      0.140306

      200.0
      0.140306

      300.0
      0.137755

      400.0
      0.140306
```

Out[40]: [Text(0,0.5,'out-of-bag error')]


```
▶ DTC y pred = DTC.predict(X test)
In [42]:
                        DTC_y_pred
       Out[42]: array(['No', 'No', 'Yes', 'No', 'N
                        ο',
                                      'No', 'No', 'No', 'No', 'No', 'No', 'Yes', 'No', 'Yes', 'N
                         ο',
                                      'No', 'No',
                                      'No', 'No', 'No', 'No', 'Yes', 'No', 'No', 'No', 'No', 'N
                        ο',
                                      'No', 'No', 'No', 'No', 'Yes', 'No', 'No', 'No', 'No', 'N
                         ο',
                                      'No', 'No', 'No', 'No', 'No', 'Yes', 'No', 'No', 'Yes', 'N
                        ο',
                                      'No', 'No', 'No', 'No', 'No', 'No', 'No', 'No', 'No', 'No',
                                      'No', 'No', 'No', 'No', 'No', 'No', 'Yes', 'No', 'No', 'N
                        ο',
                                      'No', 'No',
                                      'No', 'No', 'No', 'No', 'No', 'No', 'No', 'No', 'No', 'No',
                                                          'No', 'No', 'No', 'No', 'No', 'No',
                                               'No',
                                                                                                                              'No', 'No', 'No',
                                      'No', 'No', 'No', 'Yes', 'No', 'No', 'No', 'No', 'No', 'N
                        ο',
                                      'No', 'Yes', 'No', 'No', 'No', 'No', 'No', 'No', 'No', 'N
                                      'No', 'No', 'No', 'No', 'Yes', 'No', 'Yes', 'No', 'No', 'N
                        ο',
                                      'No', 'No', 'No', 'No', 'No', 'No', 'No', 'No', 'No', 'No',
                                      'No', 'No', 'No', 'No', 'No', 'No', 'No', 'No', 'No', 'No',
                                                 'No', 'No', 'No', 'No', 'No', 'No',
                                                                                                                                'No', 'No', 'No',
                                      'No',
                                      'No', 'No', 'No', 'No', 'No', 'No', 'No', 'No', 'No', 'No',
                                      'No', 'No', 'No', 'No', 'No', 'No', 'No', 'No', 'No', 'No',
                                      'No', 'No', 'No', 'No', 'No', 'No', 'No', 'No', 'No', 'No', 'No',
                                      'No', 'Yes', 'No', 'Yes', 'No', 'No', 'No', 'No', 'No', 'N
                        ο',
                                      'No', 'No', 'No', 'No', 'No', 'Yes', 'No', 'No', 'No', 'N
                        ο',
                                      'No', 'No',
                                      'No', 'No', 'No', 'No', 'No', 'No', 'No', 'No', 'No', 'No',
                                               'No', 'No', 'No', 'No', 'No', 'No', 'No', 'No',
                                      'No', 'No', 'No', 'No', 'No', 'No', 'No', 'No', 'No', 'No',
                                      'No', 'No', 'No', 'No', 'No', 'No', 'No'], dtype=object)
In [43]:
                   from sklearn.tree import export graphviz
                        with open("DTC2.dot", 'w') as f:
                                f = tree.export_graphviz(DTC,out_file=f,max_depth = 4,impurity = False
                                       class_names=['Yes', 'No'], filled=True)
In [44]:
                   ▶ | print("Accuracy of test :",DTC.score(X_test,y_test))
```

Accuracy of test: 0.9183673469387755

```
In [45]:
          print(classification report(y test,DTC y pred))
                           precision
                                        recall f1-score
                                                           support
                                0.91
                                          1.00
                                                    0.96
                      No
                                                                255
                     Yes
                                1.00
                                          0.38
                                                    0.56
                                                                 39
             avg / total
                                0.93
                                          0.92
                                                    0.90
                                                               294
In [46]:
          | from sklearn.metrics import precision_score, recall_score, accuracy_score
In [47]:
             from sklearn.metrics import accuracy score, classification report
             print("Accuracy =", accuracy_score(y_test, y_pred),"\n")
             print("Report:\n", classification_report(y_test, y_pred))
             Accuracy = 0.8707482993197279
             Report:
                           precision
                                         recall f1-score
                                                            support
                                          0.99
                      No
                                0.88
                                                    0.93
                                                               255
                     Yes
                                0.57
                                          0.10
                                                    0.17
                                                                 39
             avg / total
                                0.84
                                          0.87
                                                    0.83
                                                               294
In [48]:
             from sklearn.metrics import accuracy_score, classification_report
             print("Accuracy =", accuracy_score(y_test, DTC_y_pred),"\n")
             print("Report:\n", classification_report(y_test, DTC_y_pred))
             Accuracy = 0.9183673469387755
             Report:
                                         recall f1-score
                            precision
                                                            support
                                0.91
                                          1.00
                                                    0.96
                                                               255
                      No
                     Yes
                                1.00
                                          0.38
                                                    0.56
                                                                 39
                                0.93
                                                               294
             avg / total
                                          0.92
                                                    0.90
 In [ ]:
```