CO 250: Introduction to Optimization

Module 2: Linear Programs (Half-Spaces and Convexity)

For an optimization problem, the

feasible region = set of all feasible solutions.

$$\max \quad (1,2)x$$
 s.t.
$$\begin{pmatrix} 1 & 1 \\ 1 & 0 \\ 0 & 1 \end{pmatrix} x \leq \begin{pmatrix} 2 \\ 2 \\ 3 \end{pmatrix} \qquad \begin{pmatrix} 1 \\ (2) \\ (3) \end{pmatrix}$$

$$x \geq \mathbf{0}$$

Feasible region $\subseteq \Re^2$

For an optimization problem, the

feasible region = set of all feasible solutions.

 $\max \quad (1,2)x$ s.t. $\begin{pmatrix} 1 & 1 \\ 1 & 0 \\ 0 & 1 \end{pmatrix} x \le \begin{pmatrix} 2 \\ 2 \\ 3 \end{pmatrix} \qquad \begin{pmatrix} 1 \\ (2) \\ (3) \end{pmatrix}$ $x \ge \mathbf{0}$

Non-negativity constraints

For an optimization problem, the

feasible region = set of all feasible solutions.

$$\max \quad (1,2)x$$
 s.t.
$$\begin{pmatrix} 1 & 1 \\ 1 & 0 \\ 0 & 1 \end{pmatrix} x \leq \begin{pmatrix} 2 \\ 2 \\ 3 \end{pmatrix} \qquad \begin{pmatrix} 1 \\ (2) \\ (3) \end{pmatrix}$$

$$x \geq \mathbf{0}$$

Constraint (1)

For an optimization problem, the

feasible region = set of all feasible solutions.

$$\max \quad (1,2)x$$
 s.t.
$$\begin{pmatrix} 1 & 1 \\ 1 & 0 \\ 0 & 1 \end{pmatrix} x \leq \begin{pmatrix} 2 \\ 2 \\ 3 \end{pmatrix} \quad \begin{array}{c} (1) \\ (2) \\ (3) \end{array}$$

$$x \geq \mathbf{0}$$

Constraint (2)

For an optimization problem, the

feasible region = set of all feasible solutions.

$$\max \quad (1,2)x$$
 s.t.
$$\begin{pmatrix} 1 & 1 \\ 1 & 0 \\ 0 & 1 \end{pmatrix} x \le \begin{pmatrix} 2 \\ 2 \\ 3 \end{pmatrix} \qquad \begin{array}{c} (1) \\ (2) \\ (3) \end{array}$$

$$x \ge \mathbf{0}$$

Constraint (3)

For an optimization problem, the

feasible region = set of all feasible solutions.

$$\max_{\mathbf{s.t.}} \quad (1,2)x$$

$$\mathbf{s.t.}$$

$$\begin{pmatrix} 1 & 1 \\ 1 & 0 \\ 0 & 1 \end{pmatrix} x \le \begin{pmatrix} 2 \\ 2 \\ 3 \end{pmatrix} \qquad \begin{pmatrix} 1 \\ (2) \\ 3 \end{pmatrix}$$

$$x \ge \mathbf{0}$$

FEASIBLE REGION

 $P\subseteq\Re^n$ is a polyhedron if there exists a matrix A and a vector b such that

$$P = \{x : Ax \le b\}.$$

Proposition

The feasible region of an LP is a polyhedron.

Proposition

The feasible region of an LP is a polyhedron.

Example:

$$\max_{\textbf{s.t.}} \quad (1,3,2)x$$
 s.t.
$$\begin{pmatrix} 1 & 2 & -1 \\ 3 & 4 & 5 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 2 \\ 12 \end{pmatrix}$$

$$x_1, x_2, x_3 \geq 0$$

Let's rewrite the constraints:

$$\begin{pmatrix} 1 & 2 & -1 \\ -1 & -2 & 1 \\ 3 & 4 & 5 \\ -3 & -4 & -5 \\ -1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{pmatrix} x \le \begin{pmatrix} 2 \\ -2 \\ 12 \\ -12 \\ 0 \\ 0 \\ 0 \end{pmatrix}$$

Proposition

The feasible region of an LP is a polyhedron.

Exercise

Generalize the previous example and prove the proposition.

GOAL: Understand the geometry of a polyhedra.

Definition

Let $a \neq \mathbf{0}$ be a vector and β a real number.

- 1. $\{x: a^{\top}x = \beta\}$ is a hyperplane.
- 2. $\{x: a^{\top}x \leq \beta\}$ is a halfspace.

A hyperplane is the set of solutions to a single linear equation.

A halfspace is the set of solutions to a single linear inequality.

Remark

A polyhedron is the intersection of a finite set of halfspaces.

Thus, understanding the geometry of a polyhedra is satisfied by understanding the geometry of halfspaces.

Remark

Let a, b be vectors. Then

$$a^{\top}b = ||a|| ||b|| \cos(\theta)$$

where $\|..\|$ is the norm and θ the angle between a and b.

$$a^{\top}b > 0$$

 $a^{\top}b < 0$

The Geometry of Hyperplanes and Halfspaces

Vector
$$a \neq \mathbf{0}$$
, $\beta = \mathbf{0}$

Hyperplane
$$H = \{x : a^{\top}x = \beta\}$$

Vector
$$a \neq \mathbf{0}$$
, $\beta = \mathbf{0}$

Halfspace
$$F = \{x : a^{\top}x \leq \beta\}$$

Remark

- 1. H = the set of vectors orthogonal to a.
- 2. F =the set of vectors on side of H not containing a.

Let $S,S'\subseteq\Re^n$. Then S' is a translate of S if there exists $p\in\Re^n$ and

$$S' = \left\{ s + p : s \in S \right\}.$$

Hyperplanes

Proposition

Let $a \neq \mathbf{0}$ be a vector and β a real number and let

$$H := \{x : a^{\top} x = \beta\}$$
 and $H_0 := \{x : a^{\top} x = 0\}.$

It follows that H is a translate of H_0 .

Proposition

Let $a \neq \mathbf{0}$ be a vector and β a real number and let

$$H := \{x : a^{\top}x = \beta\}$$
 and $H_0 := \{x : a^{\top}x = 0\}.$

It follows that H is a translate of H_0 .

Proof

Choose $p \in H$. To show: $x \in H_0 \Leftrightarrow x + p \in H$.

$$x \in H_0 \qquad \Leftrightarrow \\ a^\top x = 0 \qquad \Leftrightarrow \\ a^\top x + a^\top p = 0 + a^\top p \qquad \Leftrightarrow \\ a^\top (x+p) = \beta \qquad \Leftrightarrow \\ x+p \in H$$

Halfspaces

Proposition

Let $a \neq \mathbf{0}$ be a vector and β a real number and let

$$F := \{x : a^{\top} x \le \beta\}$$
 and $F_0 := \{x : a^{\top} x \le 0\}.$

It follows that F is a translate of F_0 .

Exercise

Prove the previous proposition.

Question

What is the dimension of a hyperplane in \Re^n ?

Let $a \in \mathbb{R}^n$, $a \neq \mathbf{0}$ and let $\beta \in \mathbb{R}$. Define

$$H = \{x: a^\top x = \beta\} \qquad \text{and} \qquad H_0 = \{x: a^\top x = 0\}.$$

- We define the dimension of H to be the dimension of H_0 .
- \bullet H_0 is a vector space and its dimension can be computed as follows:

$$dim(H_0) = n - rank(a) = n - 1.$$

Proposition

The dimension of a hyperplane in \Re^n is n-1.

Is this shaded figure a polyhedron? \overline{NO}

Is this shaded figure a polyhedron? \overline{NO}

Remark

A polyhedron has no "dents" and no "holes".

Formalizing this remark will lead us to the notion of convexity.

Let $x^{(1)}, x^{(2)} \in \mathbb{R}^n$. The line through $x^{(1)}$ and $x^{(2)}$ is defined as

$$L = \left\{ x = \lambda x^{(1)} + (1 - \lambda) x^{(2)} : \lambda \in \Re \right\}.$$

Let $x^{(1)}, x^{(2)} \in \Re^n$. The line through $x^{(1)}$ and $x^{(2)}$ is defined as

$$L = \left\{ x = \lambda x^{(1)} + (1 - \lambda) x^{(2)} : \lambda \in \Re \right\}.$$

Definition

Let $x^{(1)}, x^{(2)} \in \mathbb{R}^n$. The line segment between $x^{(1)}$ and $x^{(2)}$ is defined as

$$S = \left\{ x = \lambda x^{(1)} + (1 - \lambda) x^{(2)} : \lambda \in \Re, 0 \le \lambda \le 1 \right\}.$$

A set $S \subseteq \Re^n$ is convex if, for any pair of points $x^{(1)}, x^{(2)} \in S$, the line segment between $x^{(1)}$ and $x^{(2)}$ is in S.

Is this shaded figure convex? NO

Is this shaded figure convex? NO

A set $S \subseteq \Re^n$ is convex if, for any pair of points $x^{(1)}, x^{(2)} \in S$, the line segment between $x^{(1)}$ and $x^{(2)}$ is in S.

Is this shaded figure convex? NO

Is this shaded figure convex? YES

Let $A,B\subseteq\Re^n.$ Suppose A and B are both convex.

Question

Is $A \cup B$ convex?

NO.

Example: $A = \{0\}$ and $B = \{1\}$.

Question

Is $A \cap B$ convex?

YES.

Example:

Proposition

Let $H = \{x : a^{\top}x \leq \beta\}$ be a halfspace. It follows that H is convex.

Proof

Pick two arbitrary points $x^{(1)}, x^{(2)} \in H$.

Pick an arbitrary point \bar{x} in the line segment between $x^{(1)}$ and $x^{(2)}$.

We now need to show that $\bar{x} \in H$.

$$a^{\top} \bar{x} = a^{\top} \left(\lambda x^{(1)} + (1 - \lambda) x^{(2)} \right)$$

$$= \underbrace{\lambda}_{\geq 0} \underbrace{a^{\top} x^{(1)}}_{\leq \beta} + \underbrace{(1 - \lambda)}_{\geq 0} \underbrace{a^{\top} x^{(2)}}_{\leq \beta}$$

$$\leq \lambda \beta + (1 - \lambda) \beta$$

$$= \beta$$

Proposition

Let $H = \{x : a^{\top}x \leq \beta\}$ be a halfspace. It follows that H is convex.

Corollary

If P is a polyhedron, then P is convex.

Proof

P is the intersection of halfspaces.

Each halfspace is convex.

The intersection of convex sets is convex.

The feasible region of an LP is always a convex set!

Recap

- We defined hyperplanes and halfspaces.
- A polyhedron is the intersection of a finite number of halfspaces.
- We showed that the feasible region of an LP is a polyhedron.
- We defined the line segment between two points.
- We defined convex sets.
- We proved that a polyhedron is always convex.