MATE 5201: Tarea 4

Due on 8 de octubre

Prof. Alejandro Velez, C41, 8 de octubre

Sergio Rodriguez

Problem 1

(6 puntos) – Demuestre que un espacio metrico (X,d) es conexo si y solo si los unicos subconjuntos E abiertos y cerrados de X son $E=\emptyset$ y E=X.

Prueba:

MEP

Problem 2

(4 puntos) – $Si E \subseteq \mathbb{R}^n$ es convexo, pruebe que E es conexo.

Prueba:

MEP

Problem 3

(6 puntos) – Suponga que $0 < x_1 < 1$, y defina la sucesion recursiva: $x_{n+1} \coloneqq 1 - \sqrt{1 - x_n}$. Demuestre que $\{x_n\}$ es decreciente, con $\lim_{n \to \infty} x_n = 0$. Luego pruebe que $\lim_{n \to \infty} \frac{x_{n+1}}{x_n} = \frac{1}{2}$.

Prueba:

MEP

Problem 4

 $\text{(4 puntos)} - \textit{Sean} \ \{x_n\}, \{y_n\} \ \textit{sucesiones en un espacio metrico} \ (X,d), \textit{tales que} \ x_n \to x \ \textit{y} \ y_n \to y \ \textit{en} \ X. \ \textit{Demuestre que} \ \lim_{n \to \infty} d(x_n,y_n) = d(x,y).$

Prueba:

MEP

Problem 5

(5 puntos) - En(X, d), si $E \subseteq X$ es completo, pruebe que E es cerrado.

Prueba:

MEP

Problem 6

(4 puntos) – Demuestre que $\overline{\mathbb{Q}} = \mathbb{R}$ de la siguiente forma: dado $x \in \mathbb{R}$, demuestre que existe una sucesion $\{x_n\} \subseteq \mathbb{Q}$ tal que $x_n \to x$.

Prueba:

MEP

Problem 7

 $\text{ (4 puntos)} - \textit{Sea} \ \{x_n\} \ \textit{sucesion en} \ (X,d), \ \textit{y sea} \ E_n \coloneqq \big\{x_n, x_{n+1}, x_{n+2}, \ldots \big\}. \ \textit{Demuestre que} \ \{x_n\} \ \textit{es sucesion de Cauchy si y solamente si} \ \lim_{n \to \infty} \text{diam}(E_n) = 0.$

Prueba:

MEP

Problem 8

(8 puntos) – Sea $\{x_n\}$ una sucesion de numeros reales, y definamos:

$$y_n \coloneqq \frac{1}{n} \sum_{j=1}^n x_j, \qquad z_n \coloneqq \frac{x_n}{n}. \tag{1}$$

(a) - (4 puntos) – Si $x_n \to x$ en \mathbb{R} , demuestre que $y_n \to x$.

Prueba:

MEP

(b) - (4 puntos) - Si $(x_{n+1} - x_n) \to x$ en \mathbb{R} , pruebe que $z_n \to x$.

Prueba:

MEP

Problem 9

(5 puntos) – Sean $\{x_n\}$ y $\{y_n\}$ dos sucesiones de Cauchy en (X,d), y definamos $\beta_n \coloneqq d(x_n,y_n)$. Pruebe que $\{\beta_n\}$ converge en \mathbb{R} .

Prueba:

MEP

Problem 10

(4 puntos) – Considere la sucesion $\{a_n\}$ definida como sigue:

$$a_1 = 0;$$
 $a_{2n} = \frac{a_{2n-1}}{2};$ $a_{2n+1} = \frac{1}{2} + a_{2n};$ $(n \in \mathbb{N}).$ (2)

 $\operatorname{Calcule} \limsup_{n \to \infty} a_n \ y \liminf_{n \to \infty} a_n.$

Prueba:

MEP

Problem 11

(4 puntos) – Si $\{x_n\}$ es una sucesion acotada en \mathbb{R} , demuestre que:

Sergio Rodriguez | MATE 5201: Tarea 4 | Problem 11

$$\limsup_{n \to \infty} (-x_n) = - \liminf_{n \to \infty} (x_n) \qquad \qquad y \qquad \qquad \liminf_{n \to \infty} (-x_n) = - \limsup_{n \to \infty} (x_n) \tag{3}$$

Prueba:

MEP