

Binary Logic

- consists of binary variables and logical operations
- resembles binary arithmetic
- use and application of binary logic are demonstrated by switching cicuits
- Equivalent to Boolean Algebra

- a set of elements, a set of operators, and a number of unproven axioms or postulates
- developed by an English mathematician named George Boole

• AND

- represented by a dot or the absence of an operator.
- 0 dominates

X	y	xy
0	0	0
0	1	0
1	0	0
1	1	1

Boolean Operations

• OR

- represented by a plus sign.
- 1 dominates

X	y	x+y
0	0	0
0	1	1
1	0	1
1	1	1

• NOT

- represented by a prime
- Inversion or complementation

X	x'
0	1
1	0

Boolean Theorems

- Boolean operations on constants
- Boolean operations on one variable
- Boolean operations on two or more variables

Boolean Operations on constants

AND	OR	NOT
0 • 0 = 0	O + O = O	0' = 1
0 · 1 = 0	0 + 1 = 1	1' = 0
1 · 0 = 0	1 + 0 = 1	
1 · 1 = 1	1 + 1 = 1	

Boolean Operations on one variable

AND	OR	NOT
$A \cdot O = O$	A + O = A	$A^{\prime\prime}=A$
A • 1 = A	A + 1 = 1	
$A \cdot A = A$	A + A = A	
$A \cdot A' = 0$	$A + A^2 = 1$	

Boolean Operations On Two or More Variables

Commutative laws

$$A + B = B + A$$
$$AB = BA$$

• Associative laws A+(B+C) = (A+B)+C A(BC) = (AB)C

Distributive laws
 A(B+C) = AB + AC
 A+(BC) = (A+B)(A+C)

De Morgan's laws
 (A+B)' = A'B'
 (AB)' = A' + B'

Boolean Operations On Two or More Variables

Laws of Absorption

$$A + AB = A$$

$$A(A+B) = A$$

- Boolean functions are expressions formed with binary variables and boolean operators
- Representations of boolean functions:
 - Algebraic expression
 - Truth table

Algebraic Expression Examples

•
$$F_1 = xyz'$$

•
$$F_2 = x + y'z$$

•
$$F_3 = x'z + xy'$$

•
$$F_4 = x'$$

•
$$F_5 = 1$$

Truth table examples

X	y	Z	F ₁	F_2	F_3	F_4	F ₅
0	0	0	0	0	0	1	1
0	0	1	0	1	1	1	1
0	1	0	0	0	0	1	1
0	1	1	0	0	1	1	1
1	0	0	0	1	1	0	1
1	0	1	0	1	1	0	1
1	1	0	1	1	0	0	1
1	1	1	0	1	0	0	1

•
$$F_1 = x + x'y$$

•
$$F_1 = x + x'y$$

= $(x + x')(x + y)$

•
$$F_1 = x + x'y$$

= $(x + x')(x + y)$
= $1(x + y)$

•
$$F_1 = x + x'y$$

= $(x + x')(x + y)$
= $1(x + y)$
= $x + y$

•
$$F_2 = x(x'+y)$$

•
$$F_2 = x(x'+y)$$

= $xx' + xy$

•
$$F_2 = x(x'+y)$$

 $= xx' + xy$
 $= 0 + xy$

•
$$F_2 = x(x'+y)$$

 $= xx' + xy$
 $= 0 + xy$
 $= xy$

•
$$F_3 = xy + xy'$$

•
$$F_3 = xy + xy'$$

$$= x(y + y')$$

•
$$F_3 = xy + xy'$$

$$= x(y + y')$$

$$= x$$

•
$$F_4 = x'y'z + x'yz + xy'$$

•
$$F_4 = x'y'z + x'yz + xy'$$

= $x'z(y'+y) + xy'$

•
$$F_4 = x'y'z + x'yz + xy'$$

= $x'z(y'+y) + xy'$
= $x'z + xy'$

Binary Variables

- Forms of variables
 - normal (x)
 - complement (x')
- Forms of terms (variables x and y)
 - Minterms m_i (or standard product)

Maxterms M_i (or standard sum)

Minterms and Maxterms for 3 variables

		MINTERM MAXTE		AXTERM		
X	у	Z	Term	Designation	Term	Designation
0	0	0	x'y'z'	mO	X+ y + Z	MO
0	0	1	x'y'z	m1	x+y+z'	M1
0	1	0	x'yz'	m2	x+y'+z	M2
0	1	1	x'yz	m3	x+y'+z'	M3
1	0	0	xy'z'	m4	x ⁴ +y+z	M4
1	0	1	xy'z	m5	x'+y+z'	M5
1	1	0	xyz'	m6	x'+y'+z	M6
1	1	1	xyz	m7	x ⁴ +y ² +z ²	M7

- Canonical Form
 - Sum of minterms

$$F(x,y,z) = xyz' + x'yz$$

Product of maxterms

$$F(x,y,z) = (x^2+y^2+z)(x+y+z^2)$$

- Standard Form
 - Sum of products

$$F(x,y,z) = xz'+y$$

- Product of sums

$$F(x,y,z) = (x+y^2)z$$