Liste des Tests du cours

Charles Vin

2022

Test de Kolmogorov-Smirnov

Conditions

- 1. Les X_i semblent provenir d'une loi à fonction de répartition continue. \Rightarrow on n'a pas plusieurs fois la même valeur (sauf si celle-ci on était arrondi).
- 2. Fonctionne $\forall n$: même si n est petit, ce test est pertinent
- 3. Si $n \ge 100$, on fait un test asymptotique.

Hypothèse

- $$\begin{split} & \boldsymbol{--} \ H_0 = \operatorname{les} X_i \text{ ont pour fdr. } F_X \\ & \boldsymbol{--} \ H_1 = \operatorname{les} X_i \text{ n'ont pas pour fdr. } F_X \end{split}$$

Statistique de test

$$h(F_n, F) = \max_{1 \le i \le n} (\max(\left| \frac{i}{n} - F(X_{(i)}) \right|, \left| \frac{i-1}{n} - F(X_{(i)}) \right|)).$$

Zone de Rejet

$$\mathcal{R} = \{h(F_n, F_X) \le h_{1-\alpha}\}.$$

avec F_n fonction de réparation empirique, $h_{1-\alpha}$ le quantile à aller chercher dans la table

Méthode

Pour trouver la valeur de $h(F_n, F_X)$: Faire le grand tableau puis trouver le max. Exemple :

i	1	2	3	4	5
$X_{(i)}$	0.3	0.7	0.9	1.2	1.4
$X_{(i)} - 2$	-1.70	-1.30	-1.10	-0.80	-0.60
$F_0(X_{(i)})$	0.04	0.10	0.14	0.21	0.27
$\frac{i}{n}$	0.05	0.1	0.15	0.2	0.25
$\frac{1}{ i-F_0(X_{(i)}) }$	0.01	0.00	0.01	0.01	0.02
$ \frac{i-1}{n} - F_0(X_{(i)}) $	0.04	0.05	0.04	0.06	0.07

Table 1 – Ici le max c'est 0.07 à la dernière case

Adéquation à une famille d'exponentielle

Conditions

Hypothèse

Statistique de test

Zone de Rejet

Méthode

Adéquation à une loi normale

Conditions

Hypothèse

Statistique de test

Zone de Rejet

Méthode

4 Le test du \mathcal{X}^2 d'ajustement

Conditions

- 1. Les X_i sont à valeur dans un ensemble fini (loi discrète)
- 2. Test asymptotique : $\forall k \in \{1,\ldots,d\}, np_k^{ref}(1-p_k^{ref}) \geq 5 \Leftrightarrow n \geq 20$

Hypothèse

$$H_0=p=p^{ref}$$
 i.e. $\forall k\in\{1,\ldots,d\}, p_k=p_k^{ref}$ $H_1=p\neq p^{ref}$ i.e. $\exists k\in\{1,\ldots,d\}: p_k\neq p_k^{ref}$

Avec p^{ref} un vecteur fixé à tester (par exemple pour un lancé de dé $(\frac{1}{6},\dots,\frac{1}{6})$)

Statistique de test

$$D(\bar{p_n}, p^{ref}) = n \sum_{k=1}^d \frac{(p_{k,n}^- - p_k^{ref})^2}{p_k^{ref}} \to_{n \to \infty}^{\mathcal{L}} \mathcal{X}^2(d-1).$$

avec
$$\begin{array}{l} - N_{k,n} = \sum_{i=1}^n \mathbbm{1}_{X_i x_k} \\ - p_{k,n}^- = \frac{N_{k,n}}{n} \text{ les proportions observés} \end{array}$$

Zone de Rejet

$$\mathcal{R} = \{ D(\bar{p_n}, p^{ref}) \ge h_{\alpha} \}.$$

avec h_{α} le quantile d'ordre $1-\alpha$ de la loi $\mathcal{X}^2(d-1)$

Méthode

1. Etape 0 : On vérifie les conditions

$$\forall k \in \{1, \dots, d\}, n * p_k \ge 5.$$

C'est la condition de Cochran (1954), il avait testé cas possible en observant l'approximation faites.

- 2. Etape 1 : On calcule les effectifs et proportions observées : $N_{k,n}$ et $\hat{p}_{k,n}$
- 3. Etape 2 : Calcul de la statistique de test

$$D = n \sum_{d}^{k=1} \frac{(\hat{p}_{k,n} - p_k)^2}{p_k}.$$

- 4. Etape 3 : Détermination de la zone de rejet au niveau α . On lit h_{α} le quantile d'ordre $1-\alpha$ de la loi $\mathcal{X}^2(d_1)$
- 5. Etape 4 : Décisions
 - $\sin D > h_{lpha}$, on rejette H_0 (au niveau lpha).
 - Si $D \leq h_{\alpha}$ on conserve H_0