Devoir à la maison n° 17

À rendre le 4 mai

I. Un bourrage dans une urne.

Soit n un entier naturel non nul. On considère une urne contenant n boules, numérotées de 1 à n. On effectue, dans cette urne, un premier tirage, et l'on note X_1 la variable aléatoire correspondant au numéro ainsi tiré. On procède ensuite comme ceci : on remet la boule tirée dans l'urne, et l'on y rajoute X_1 nouvelles boules, portant toutes le même numéro X_1 . On effectue ensuite un second tirage dans cette urne, et l'on note X_2 la variable aléatoire correspondant au numéro ainsi tiré.

- 1) Déterminer la loi de X_1 , ainsi que son espérance et sa variance.
- 2) Déterminer la loi de X_2 .
- 3) Montrer que l'espérance de X_2 vaut $\mathbb{E}(X_2) = \frac{1-n}{2} + \frac{3n+1}{2} \sum_{k=1}^n \frac{1}{n+k}$.
- 4) Déterminer un équivalent de $\mathbb{E}(X_2)$ lorsque n tend vers $+\infty$.

II. Temps d'attente du tirage du plus grand numéro.

On dispose $n \ge 2$ boules dans une urne, numérotées 1, 2, ..., n. Un premier joueur effectue des tirages sans remise (et « au hasard » chaque fois parmi les boules restantes), jusqu'au premier tour X_1 où il tire la boule n.

1) Montrer que X_1 suit une loi uniforme sur $\{1, \ldots, n\}$.

Un second joueur entre alors en scène et deux situations vont être considérées.

- 2) Dans le premier cas, ce joueur effectue X_2 tirages jusqu'à obtenir la boule de plus grand numéro parmi les boules restantes (on pose $X_2 = 0$ lorsqu'il ne reste plus de boules dans l'urne).
 - a) Déterminer la loi de X_2 conditionnellement à l'événement $[X_1 = j]$, pour tout $j \in \{1, \ldots, n\}$.

C'est-à-dire : on déterminera les $\mathbb{P}(X_2 = \ell | X_1 = j)$ pour tout ℓ .

- b) X_2 est-elle indépendante de X_1 ?
- c) Calculer l'espérance de X_2 .
- 3) Dans le second cas, s'il reste au moins une boule dans l'urne, le second joueur tire simplement une boule au hasard, dont on note X_3 le numéro.
 - a) Déterminer la loi conditionnelle de X_3 par rapport à l'événement $[X_1 = j]$, pour chaque $i \le n-1$.
 - **b)** Comment définir X_3 lorsqu'il n'y a plus de boules dans l'urne, de sorte que X_3 soit indépendante de X_1 ?