$N(1650) 1/2^-$

$$I(J^P) = \frac{1}{2}(\frac{1}{2})$$
 Status: ***

Older and obsolete values are listed and referenced in the 2014 edition, Chinese Physics **C38** 070001 (2014).

N(1650) POLE POSITION

REAL	PART
------	-------------

VALUE (MeV)	DOCUMENT ID		TECN	COMMENT
1640 to 1670 (≈ 1655) OUR ESTI				
1652± 7	SOKHOYAN	15A	DPWA	Multichannel
$1660\pm \ 3.5\pm 1$	¹ SVARC		L + P	
1648	ARNDT	06	DPWA	$\pi N \rightarrow \pi N, \eta N$
1670	HOEHLER	93	ARGD	$\pi N \rightarrow \pi N$
1640 ± 20	CUTKOSKY	80	IPWA	$\pi N \rightarrow \pi N$
• • • We do not use the following	data for averages	s, fits,	limits, e	etc. • • •
1650	SHKLYAR	13	DPWA	Multichannel
1647± 6	ANISOVICH	12A	DPWA	Multichannel
1655	SHRESTHA	12A	DPWA	Multichannel
1646± 8	BATINIC	10	DPWA	π N $ ightarrow$ N π , N η
1663	VRANA	00	DPWA	Multichannel
-2×IMAGINARY PART				
VALUE (MeV)	DOCUMENT ID		TECN	COMMENT
100 to 170 (≈ 135) OUR ESTIMA				
102± 8	SOKHOYAN	15A	DPWA	Multichannel
167± 8±2	¹ SVARC	_		$\pi N \rightarrow \pi N$
80	ARNDT	06	DPWA	$\pi N \rightarrow \pi N, \eta N$
163	HOEHLER	93	ARGD	$\pi N \rightarrow \pi N$
150 ± 30	CUTKOSKY	80	IPWA	$\pi N \rightarrow \pi N$
• • • We do not use the following	data for averages	s, fits,	limits, e	etc. • • •
89	SHKLYAR	13	DPWA	Multichannel
103± 8	ANISOVICH	12A	DPWA	Multichannel
123	SHRESTHA	12A	DPWA	Multichannel
204 ± 17	BATINIC	10	DPWA	$\pi N \rightarrow N \pi, N \eta$
240	VRANA	00	DPWA	Multichannel

N(1650) ELASTIC POLE RESIDUE

MODULUS |r|

VALUE (MeV)	DOCUMENT ID		TECN	COMMENT
20 to 50 (≈ 35) OUR EST	MATE			
27± 6	SOKHOYAN	15A	DPWA	Multichannel
$47\pm 3\pm 1$	¹ SVARC	14	L+P	$\pi N \rightarrow \pi N$
14	ARNDT	06	DPWA	$\pi N \rightarrow \pi N, \eta N$
39	HOEHLER	93	ARGD	$\pi N \rightarrow \pi N$
60 ± 10	CUTKOSKY	80	IPWA	$\pi N \rightarrow \pi N$

Created: 5/30/2017 17:20

ullet ullet We do not use the following data for averages, fits, limits, etc. ullet ullet

19	SHKLYAR	13	DPWA Multichannel
24± 3	ANISOVICH	12A	DPWA Multichannel
100	BATINIC	10	DPWA $\pi N \rightarrow N\pi$. Nn

PHASE θ

VALUE (°)	DOCUMENT ID		TECN	COMMENT
50 to 80 (≈ 70) OUR ESTIMAT	E			
-60 ± 20	SOKHOYAN	15A	DPWA	Multichannel
$-47 \pm 3 \pm 1$	¹ SVARC	14	L+P	$\pi N \rightarrow \pi N$
-69	ARNDT	06	DPWA	π N $ ightarrow$ π N, η N
-37	HOEHLER	93	ARGD	$\pi N \rightarrow \pi N$
-75 ± 25	CUTKOSKY	80	IPWA	$\pi N \rightarrow \pi N$
• • • We do not use the following	data for averages	s, fits,	limits, e	etc. • • •
-46	SHKLYAR	13	DPWA	Multichannel
-75 ± 12	ANISOVICH	12A	DPWA	Multichannel
-65	BATINIC	10	DPWA	$\pi N \rightarrow N \pi, N \eta$

N(1650) INELASTIC POLE RESIDUE

The "normalized residue" is the residue divided by $\Gamma_{pole}/2.$

Normalized residue in $N\pi \to N(1650) \to N\eta$

MODULUS	PHASE (°)	DOCUMENT ID	TECN	COMMENT
0.29 ± 0.03	$\overline{134\pm10}$	ANISOVICH 12/	DPWA	Multichannel

Normalized residue in $N\pi \rightarrow N(1650) \rightarrow \Lambda K$

MODULUS	PHASE (°)	DOCUMENT ID	TECN	COMMENT
0.23+0.09	85 + 9	ANISOVICH 12	DPWA	Multichannel

Normalized residue in $N\pi \rightarrow N(1650) \rightarrow \Delta \pi$, *D*-wave

MODULUS	PHASE (°)	DOCUMENT ID	T	ECN	COMMENT
0.19 ± 0.06	-30 ± 20	SOKHOYAN 1	L5A D	PWA	Multichannel
• • • We do not	use the following data	for averages, fits,	, limits	s, etc.	• • •
0.23 ± 0.04	-30 ± 20	ANISOVICH 1	12A D	PWA	Multichannel

Normalized residue in $N\pi \to N(1650) \to N\sigma$

MODULUS	PHASE (°)	DOCUMENT ID	TECN	COMMENT
0.20 ± 0.15	undefined	SOKHOYAN 15	a DPWA	Multichannel

Normalized residue in $N\pi \rightarrow N(1650) \rightarrow N(1440)\pi$

MODULUS	PHASE (°)	DOCUMENT ID	TECN	COMMENT
0.30 ± 0.17	undefined	SOKHOYAN 15A	DPWA	Multichannel

Created: 5/30/2017 17:20

N(1650) BREIT-WIGNER MASS

VALUE (MeV)	DOCUMENT ID		TECN	COMMENT
1645 to 1670 (≈ 1655) OUR EST	IMATE			
1654 ± 6	SOKHOYAN	15A	DPWA	Multichannel
1665 ± 2	SHKLYAR	13	DPWA	Multichannel
1634.7 ± 1.1	ARNDT	06	DPWA	π N $ ightarrow$ π N, η N
1650 ± 30	CUTKOSKY	80	IPWA	$\pi N \rightarrow \pi N$
1670 ± 8	HOEHLER	79	IPWA	$\pi N \rightarrow \pi N$
• • • We do not use the following of	data for averages	s, fits,	limits, e	etc. • • •
1651 ± 6	ANISOVICH	12A	DPWA	Multichannel
1664 ± 2	SHRESTHA	12A	DPWA	Multichannel
1652 ± 9	BATINIC	10	DPWA	$\pi N o N \pi$, $ N \eta$
1665 ± 2	PENNER	02C	DPWA	Multichannel
1647 ± 20	BAI	01 B	BES	${ extsf{J}}/\psi ightarrow \hspace{0.1cm} { extsf{p}} \eta$
1689 ± 12	VRANA	00	DPWA	Multichannel

N(1650) BREIT-WIGNER WIDTH

VALUE (MeV)	DOCUMENT ID		TECN	COMMENT
110 to 170 (≈ 140) OUR ESTIMA	ATE			
102 ± 8	SOKHOYAN	15A	DPWA	Multichannel
147 ± 14	SHKLYAR	13	DPWA	Multichannel
115.4 ± 2.8	ARNDT	06	DPWA	$\pi N \rightarrow \pi N, \eta N$
150 ± 40	CUTKOSKY	80	IPWA	$\pi N \rightarrow \pi N$
180 ± 20	HOEHLER	79	IPWA	$\pi N \rightarrow \pi N$
• • • We do not use the following of	data for averages	s, fits,	limits, e	etc. • • •
104 ± 10	ANISOVICH	12A	DPWA	Multichannel
126 ± 3	SHRESTHA	12A	DPWA	Multichannel
202 ± 16	BATINIC	10	DPWA	$\pi N \rightarrow N \pi, N \eta$
138 ± 7	PENNER	02C	DPWA	Multichannel
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	BAI	01 B	BES	$J/\psi ightarrow ho \overline{ ho} \eta$
202 ±40	VRANA	00	DPWA	Multichannel

N(1650) DECAY MODES

The following branching fractions are our estimates, not fits or averages.

	Mode	Fraction (Γ_i/Γ)
$\overline{\Gamma_1}$	$N\pi$	50–70 %
Γ_2	$N\eta$	14–22 %
Γ_3	ΛK	5–15 %
Γ_4	$N\pi\pi$	8–36 %
Γ_5	$\Delta(1232)\pi$	

Γ_6	${\it \Delta}(1232)\pi$, ${\it D}$ -wave	6–18 %
Γ_7	$N\sigma$	2–18 %
Γ ₈	$\mathcal{N}(1440)\pi$	6–26 %
Γ9	$p\gamma$, helicity= $1/2$	0.04-0.20 %
Γ_{10}	$n\gamma$, helicity=1/2	0.003-0.17 %

N(1650) BRANCHING RATIOS

N(1650) BRANCHING RATIOS						
$\Gamma(N\pi)/\Gamma_{ m total}$					Γ ₁ /Γ	
VALUE (%)	DOCUMENT ID		TECN	COMMENT		
50 to 70 (≈ 60) OUR ESTIMATE						
51± 4	SOKHOYAN	15A	DPWA	Multichannel		
74 ± 3	SHKLYAR	13	DPWA	Multichannel		
65 ± 10	CUTKOSKY	80	IPWA	$\pi N \rightarrow \pi N$		
61± 4	HOEHLER	79	IPWA	$\pi N \rightarrow \pi N$		
• • • We do not use the following of	lata for averages	s, fits,	limits, e	etc. • • •		
51± 4	ANISOVICH	12A	DPWA	Multichannel		
57± 2	SHRESTHA	12A	DPWA	Multichannel		
79± 6	BATINIC	10		$\pi N \rightarrow N \pi, N \eta$		
100	ARNDT	06		$\pi N \rightarrow \pi N, \eta N$		
65± 4	PENNER	0 2C		Multichannel		
74± 2	VRANA	00	DPWA	Multichannel		
$\Gamma(N\eta)/\Gamma_{total}$					Γ_2/Γ	
	DOCUMENT ID		TECN	COMMENT	12/1	
VALUE (%)	DOCUMENT ID		TECN	COMMENT		
1 ± 2	SHKLYAR	13		Multichannel		
18 ±4	ANISOVICH			Multichannel		
• • • We do not use the following of	•					
21 ± 2	SHRESTHA			Multichannel		
13 ± 5	BATINIC	10		$\pi N \rightarrow N \pi, N \eta$		
1.0 ± 0.6	PENNER			Multichannel		
6 ± 1	VRANA	00	DPWA	Multichannel		
$\Gamma(\Lambda K)/\Gamma_{\text{total}}$ Γ_3/Γ						
VALUE (%)	DOCUMENT ID		TECN	COMMENT		
5 to 15 OUR ESTIMATE						
10 ± 5	ANISOVICH			Multichannel		
4 ±1	SHKLYAR	05		Multichannel		
• • • We do not use the following of		s, tits,	limits, e	etc. • • •		
8 ±1	SHRESTHA			Multichannel		
2.7 ± 0.4	PENNER	02 C	DPWA	Multichannel		
$\Gamma(\Delta(1232)\pi, D\text{-wave})/\Gamma_{\text{total}}$	DOCUMENT ID		TECN	CO. 11 15 15	Γ_6/Γ	
VALUE (%)	DOCUMENT ID		TECN	COMMENT		
12±6	SOKHOYAN			Multichannel		
• • • We do not use the following of	_					
19 ± 9	ANISOVICH			Multichannel		
7±2	SHRESTHA			Multichannel		
2 ± 1	VRANA	00	DPWA	Multichannel		
HTTP://PDG.LBL.GOV	Page 4		Creat	ed: 5/30/2017	17:20	

$\Gamma(N\sigma)/\Gamma_{\text{total}}$					Γ_7/Γ
VALUE (%)	DOCUMENT ID		TECN	COMMENT	
10±8	SOKHOYAN	15A	DPWA	Multichannel	
ullet $ullet$ We do not use the following	data for average	s, fits,	limits, e	etc. • • •	
< 1	SHRESTHA	12A	DPWA	Multichannel	
1 ± 1	VRANA	00	DPWA	Multichannel	
$\Gamma(N(1440)\pi)/\Gamma_{total}$					Γ ₈ /Γ
VALUE (%)	DOCUMENT ID		TECN	COMMENT	
16 ± 10	SOKHOYAN	15A	DPWA	Multichannel	
ullet $ullet$ We do not use the following	data for average	s, fits,	limits, e	etc. • • •	
< 1	SHRESTHA	12A	DPWA	Multichannel	
3± 1	VRANA	00	DPWA	Multichannel	
N(1650) PHOTON [DECAY AMPL	ITUE	DES AT	THE POLE	

$\textit{N}(1650) \rightarrow \textit{p}\,\gamma$, helicity-1/2 amplitude A $_{1/2}$

$MODULUS$ ($GeV^{-1/2}$)	PHASE (°)	DOCUMENT ID		TECN	COMMENT
$0.032\!\pm\!0.006$	-2 ± 11	SOKHOYAN	15A	DPWA	Multichannel
$0.023 ^{+ 0.003}_{- 0.008}$	6^{+28}_{-15}	ROENCHEN	14	DPWA	

N(1650) BREIT-WIGNER PHOTON DECAY AMPLITUDES

$N(1650) \rightarrow p\gamma$, helicity-1/2 amplitude A_{1/2}

$VALUE$ (GeV $^{-1/2}$)	DOCUMENT ID		TECN	COMMENT
+0.045±0.010 OUR ESTIMATE				
$0.032\!\pm\!0.006$	SOKHOYAN	15A	DPWA	Multichannel
0.055 ± 0.030	WORKMAN	12A	DPWA	$\gamma N \rightarrow N \pi$
0.022 ± 0.007	DUGGER	07	DPWA	$\gamma N \rightarrow \pi N$
• • • We do not use the following of	data for averages	s, fits,	limits, e	etc. • • •
0.063 ± 0.006	SHKLYAR	13	DPWA	Multichannel
0.033 ± 0.007	ANISOVICH	12A	DPWA	Multichannel
0.030 ± 0.003	SHRESTHA	12A	DPWA	Multichannel
0.033	DRECHSEL	07	DPWA	$\gamma N \rightarrow \pi N$
0.049	PENNER	02 D	DPWA	Multichannel

$N(1650) \rightarrow n\gamma$, helicity-1/2 amplitude $A_{1/2}$

$VALUE$ (GeV $^{-1/2}$)	DOCUMENT ID		TECN	COMMENT
-0.050 ± 0.020 OUR ESTIMATE				
0.025 ± 0.020	ANISOVICH	13 B	DPWA	Multichannel
-0.040 ± 0.010	CHEN	12A	DPWA	$\gamma N \rightarrow \pi N$
• • • We do not use the following	data for averages	s, fits,	limits, e	tc. • • •
0.011 ± 0.002	SHRESTHA	12A	DPWA	Multichannel
0.009	DRECHSEL	07	DPWA	$\gamma N \rightarrow \pi N$
-0.011	PENNER	02 D	DPWA	Multichannel

N(1650) FOOTNOTES

N(1650) REFERENCES

For early references, see Physics Letters ${\bf 111B}\ 1\ (1982).$

SOKHOYAN	15A	EPJ A51 95		(CBELSA/TAPS Collab.)
PDG	14	CP C38 070001	K. Olive <i>et al.</i>	(PDG Collab.)
ROENCHEN	14	EPJ A50 101	D. Roenchen <i>et al.</i>	
Also		EPJ A51 63 (errat.)	D. Roenchen et al.	
SVARC	14	PR C89 045205	A. Svarc <i>et al.</i>	
ANISOVICH	13B	EPJ A49 67	A.V. Anisovich et al.	
SHKLYAR	13	PR C87 015201	V. Shklyar, H. Lenske, U. Mosel	(GIES)
ANISOVICH	12A	EPJ A48 15	A.V. Anisovich et al.	(BONN, PNPI)
CHEN	12A	PR C86 015206	W. Chen et al. (DUKE	E, GWU, MSST, ITEP+)
SHRESTHA	12A	PR C86 055203	M. Shrestha, D.M. Manley	(KSU)
WORKMAN	12A	PR C86 015202	R. Workman et al.	(ĠWU)
BATINIC	10	PR C82 038203	M. Batinic et al.	(ŻAGR)
DRECHSEL	07	EPJ A34 69	D. Drechsel, S.S. Kamalov, L. Tiat	or (MAINZ, JINR)
DUGGER	07	PR C76 025211	M. Dugger et al.	(JLab CLAS Collab.)
ARNDT	06	PR C74 045205	R.A. Arndt et al.	` (GWU)
SHKLYAR	05	PR C72 015210	V. Shklyar, H. Lenske, U. Mosel	(GIES)
PENNER	02C	PR C66 055211	G. Penner, U. Mosel	(GIES)
PENNER	02D	PR C66 055212	G. Penner, U. Mosel	(GIES)
BAI	01B	PL B510 75	J.Z. Bai et al.	(BES Collab.)
VRANA	00	PRPL 328 181	T.P. Vrana, S.A. Dytman, TS.H.	,
HOEHLER	93	π N Newsletter 9 1	G. Hohler	` (KARL)
CUTKOSKY	80	Toronto Conf. 19	R.E. Cutkosky et al.	(CMÙ, LBL) IJP
Also		PR D20 2839	R.E. Cutkosky <i>et al.</i>	(CMU, LBL) IJP
HOEHLER	79	PDAT 12-1	G. Hohler <i>et al.</i>	(KARLT) IJP
Also		Toronto Conf. 3	R. Koch	(KARLT) IJP
				()

 $^{^{1}\,\}mathrm{Fit}$ to the amplitudes of HOEHLER 79.