Convexity Regularizer for Neural Optimal Transport

Nikita Gushchin (TA) Kofffivi F. Gbagbe Bintang A.S.W.A.M

MSc Advanced Computational Science

March 24, 2023

The research idea:

Let's consider the following Unpaired Image-to-Image Style Translation:

where we have:

Inputs: two unpaired dataset sample empirically from some p.d.f $\mathbb P$ and $\mathbb Q$ Output: a Style translation map $\mathcal T:\mathcal X\longrightarrow\mathcal Y$ such that $\mathcal T_\#\mathbb P=\mathbb Q$

The research idea (cont.):

- The method proposed in the research paper uses adversarial training (kind of GANs), which is not very stable to compute the optimal transport map T.
- From the theory , the method's optimal "discriminator" must be convex, and its gradient can be used for inverse mapping from the target distribution to the source distribution.
- Hence our goal is to add a convexity regularizer in the loss of neural optimal transport algorithm to improve its stability during transport training and the high-quality of the inverse target-to-input mapping.

General Notations

- $ightharpoonup \mathcal{X}$ and \mathcal{Y} are some polish spaces
- $ightharpoonup \mathcal{P}(\mathcal{X})$ and $\mathcal{P}(\mathcal{Y})$ are sets of probability defined respectively on \mathcal{X} and \mathcal{Y}
- For a measurable map $T:\mathcal{X}\longrightarrow\mathcal{Y}$ the operator $T_{\#}$ denotes the so called push-forward operator

Mathematical Background

Monge's Optimal Transport formulation

For $\mathbb{P} \in \mathcal{P}(\mathcal{X}), \mathbb{Q} \in \mathcal{P}(\mathcal{Y})$ and a cost function $c : \mathcal{X} \times \mathcal{Y} \longrightarrow \mathbb{R}$, Monge's primal formulation of the cost is

$$\mathbf{Cost}(\mathbb{P}, \mathbb{Q}) \stackrel{\mathsf{def}}{=} \inf_{T_{\#}\mathbb{P} = \mathbb{Q}} \int_{\mathcal{X}} c(x, T(x)) d\mathbb{P}(x) \tag{1}$$

$$\begin{array}{c} x_1 & c(x_1,T(x_1)) & T(x_1) \\ \mathbb{P} & x_2 & c(x_2,T(x_2)) & T(x_2) & \mathbb{Q} \\ x_n & c(x_n,T(x_n)) & T(x_n) & \end{array}$$

Figure: Monge's OT formulation.

Here the minimum is taken over the set of mesurables functions called transport maps $T: \mathcal{X} \longrightarrow \mathcal{Y}$ that maps the marginal distribution \mathbb{P} to \mathbb{Q} . The optimal transport map T^* is called the OT map

Mathematical Background (cont.)

Note: The equation (1) is not symmetric and for some \mathbb{P}, \mathbb{Q} it may happen that their is no T such that $T_{\#}\mathbb{P} = \mathbb{Q}$ (does not allow mass splitting)

Mathematical Background (cont.)

Strong OT formulation

To overcome the mass splitting problem (Kantorovich, 1958) proposed the following reformulation

$$\mathbf{Cost}(\mathbb{P}, \mathbb{Q}) \stackrel{\text{def}}{=} \inf_{\pi \in \Pi(\mathbb{P}, \mathbb{Q})} \int_{\mathcal{X} \times \mathcal{Y}} c(x, T(x)) d\pi(x, y) \tag{2}$$

Figure: Strong OT formulation

and the minimum is taken over all the transport plan π which represent all distributions on $\mathcal{X} \times \mathcal{Y}$ whose marginals are \mathbb{P} and \mathbb{Q} and the optimal plan denoted by π^*

The two main important results of the research paper

Corollary:

$$\mathsf{Cost}(\mathbb{P},\mathbb{Q}) = \underset{f}{\mathsf{SupInf}} \mathcal{L}(f,T),$$

where
$$\mathcal{L}(f,T) = \int_{\mathcal{Y}} f(y) d\mathbb{Q}(y) + \int_{\mathcal{X}} \left(c(x,T(x,\dot{)}_{\#}\mathbb{S}) - \int_{\mathcal{Z}} f(T(x,z)) d\mathbb{S} \right) \mathbb{P}(x) d$$

Lemma:

For any f^* that maximizes the dual form of the weak OT cost between $\mathbb P$ and $\mathbb Q$ and for any stochastic map T^* which realizes some optimal transport plan π^* , it holds that

$$T^* \in \operatorname{argInf}_{\mathcal{T}} \mathcal{L}(f^*, T).$$

Algorithm to Learn the Optimal Transport Plans

Algorithm 1: Neural optimal transport (NOT)

Input :distributions $\mathbb{P}, \mathbb{Q}, \mathbb{S}$ accessible by samples; mapping network $T_{\theta} : \mathbb{R}^{P} \times \mathbb{R}^{S} \to \mathbb{R}^{Q}$; potential network $f_{\alpha} : \mathbb{R}^{Q} \to \mathbb{R}$; number of inner iterations K_{T} :

(weak) cost $C: \mathcal{X} \times \mathcal{P}(\mathcal{Y}) \to \mathbb{R}$; empirical estimator $\widehat{C}(x, T(x, Z))$ for the cost;

Output : learned stochastic OT map T_{θ} representing an OT plan between distributions \mathbb{P}, \mathbb{Q} ; **repeat**

Sample batches $Y \sim \mathbb{Q}$, $X \sim \mathbb{P}$; for each $x \in X$ sample batch $Z_x \sim \mathbb{S}$;

$$\mathcal{L}_f \leftarrow \frac{1}{|X|} \sum_{x \in X} \frac{1}{|Z_x|} \sum_{z \in Z_x} f_\omega (T_\theta(x, z)) - \frac{1}{|Y|} \sum_{y \in Y} f_\omega(y);$$

Update ω by using $\frac{\partial \mathcal{L}_f}{\partial \omega}$;

for
$$k_T = 1, 2, ..., K_T$$
 do

Sample batch $X \sim \mathbb{P}$; for each $x \in X$ sample batch $Z_x \sim \mathbb{S}$;

$$\mathcal{L}_T \leftarrow \frac{1}{|X|} \sum_{x \in X} \left[\widehat{C}(x, T_{\theta}(x, Z_x)) - \frac{1}{|Z_x|} \sum_{z \in Z_x} f_{\omega}(T_{\theta}(x, z)) \right];$$

Update θ by using $\frac{\partial \mathcal{L}_T}{\partial \theta}$;

until not converged;

Convexity Regularization (theoretical)

- From the theory we have the potential $f(x) = f^*(x) \frac{|X|}{2}$
- ▶ By posing $f(x) = \frac{||x||^2}{2} \psi(x)$ and equating with the above formula we obtain

$$\psi(x) = -f^* \frac{|X|}{2} + \frac{\|x\|^2}{2}$$

lacktriangle We desire ψ to be a convex function which satisfies the Jensen's inequality

$$\psi(tx_1 + (1-t)x_2) - t\psi(x_1) - (1-t)\psi(x_2) \le 0, \ t \in [0,1]$$
(3)

Then, we define and penalize the loss function to hold Jensen's inequality

$$\mathcal{L}(X_1, X_2) = \psi(tX_1 + (1-t)X_2) - t\psi(X_1) - (1-t)\psi(X_2) \le 0$$

(4)

Convexity Regularization (cont.)

► To make loss positive we may apply the **ReLU** function; hence let define

$$\mathrm{R}(X_1,X_2) = \mathsf{ReLU}(\mathcal{L}(X_1,X_2))$$

Finally we uses the mean of $R(X_1, X_2)$ as a regularization term which can be multiplied by a given learning rate, in this case we are using two learning rate, 0.01 and 0.001

Sample of our results

Figure: Regularized Model in Training with a learning rate of 0.01

Sample of our results(cont.)

Figure: Regularized Model in Training with a learning rate of 0.001

