Parte 3 Variabili casuali

Variabile casuale

Parte 1, pag. 14 Esempi 1-2-3-4

Variabile **numerica** (eventualmente **codificata**) il cui valore (assunto tra i suoi possibili valori) è **incerto**, in quanto determinato dall'esito del **campionamento casuale**

Per un dato **esperimento casuale** (come il campionamento casuale), *una* **variabile casuale** è definita *associando* agli **eventi elementari** (elementi dello spazio campionario Ω) un **numero reale** (non uno ed uno solo, ndr)

Traduzione numerica degli eventi elementari (più o meno complessa)

Funzione che associa agli eventi elementari (elementi dello spazio campionario Ω) un numero reale (funzione non necessariamente biunivoca)

L'insieme dei valori (numerici) che una variabile casuale *può assumere* è lo **spazio campionario** (numerico) *generato* dalla variabile casuale

Supporto della variabile casuale (immagine della funzione)

I **valori** della variabile casuale sono i *nuovi* **eventi elementari** di interesse

Variabili casuali (v.c.) denominate con $X, Y, Z, \dots, X_1, X_2, X_3, \dots, Y_1, Y_2, Y_3, \dots$

Il valore corrispondente (assunto *tra quelli appartenenti* al supporto) è $x, y, z, \cdots, x_1, x_2, x_3, \cdots, y_1, y_2, y_3, \cdots$

Tipo supporto di X	Numero valori di X	Tipologia di X
(Discreto) finito	Finito (2,3, ···)	Discreta con supporto finito
(Discreto) infinito numerabile	Infinito numerabile	Discreta con supporto infinito numerabile
Continuo	Infinito non numerabile	Continua

⁽retta reale, semiretta positiva, o intervallo limitato, ndr)

Esperimento casuale

Lancio di un dado equilibrato (non truccato) e osservazione del numero ottenuto

$$\Omega = \{1,2,3,4,5,6\}$$

Variabile casuale di interesse

X = "Numero ottenuto (sulla faccia in alto)" nel lancio del dado

X funzione identità (ovviamente biunivoca) degli eventi elementari (traduce gli eventi elementari in essi stessi)

Il supporto di X coincide con lo spazio campionario Ω

x = 1,2,3,4,5,6 alternativamente $x \in \{1,2,3,4,5,6\}$

X variabile casuale **discreta** con supporto **finito**

Altra variabile casuale di interesse

Y = "Numero ottenuto (sulla faccia che *tocca il tavolo*)" nel lancio del dado

di Y

\Rightarrow	Valori
	6
	5
	4
	3
	2
	1
	\Rightarrow

La somma dei numeri sulle facce *opposte* è sempre 7

Y traduce gli eventi elementari nei loro *complementi* a 7 (Y funzione biunivoca degli eventi elementari)

Y variabile casuale **discreta** con supporto **finito**

$$y \in \{1,2,3,4,5,6\}$$

$$Y = 7 - X$$
 (v.c. Y **funzione** della v.c. X, ndr)

Esempio 1

Popolazione finita

Classe di N = 50 studenti universitari

v.c. X di popolazione

Esperimento casuale

Selezione casuale di n = 3 studenti dalla classe e osservazione del loro sesso

Campionamento casuale (n = 3)

Campioni osservabili			\Leftarrow Eventi elementari in $\Omega \Rightarrow$		ampio serval	
M	M	M		0	0	0
M	M	F	← non codificati	0	0	1
M	F	M		0	1	0
М	F	$\boldsymbol{\mathit{F}}$	$codificati \Longrightarrow$	0	1	1
F	M	M		1	0	0
F	M	F		1	0	1
F	F	M		1	1	0
F	F	F		1	1	1

Variabile casuale di interesse

 $X_1 =$ "Sesso (a valori 0/1) dello studente selezionato alla **prima** estrazione"

Campioni osservabili		
0	0	0
0	0	1
0	1	0
0	1	1
1	0	0
1	0	1
1	1	0
1	1	1

⇒	Valori di X_1
	0
	0
	0
	0
	1
	1
	1
	1

X assume la denominazione di X_1

X₁ funzione *univoca* (ma *non biunivoca*) degli eventi elementari

 X_1 variabile casuale **discreta** con supporto **finito** (binario)

v.c. binaria (o dicotomica) $x_1 \in \{0,1\}$

X assume anche la denominazione di X_2 , X_3

Variabili casuali *analoghe* a X_1

 $X_2 =$ "Sesso (a valori 0/1) dello studente selezionato alla seconda estrazione"

 $X_3 =$ "Sesso (a valori 0/1) dello studente selezionato alla terza estrazione"

Altra **variabile casuale** di interesse

Y = "Somma dei numeri (valori codificati di sesso) nel campione"

Somma campionaria

In questo caso, rappresenta il **numero delle femmine** nel campione

Numero dei successi nel campione

Campioni osservabili			
0	0	0	
0	0	1	
0	1	0	
0	1	1	
1	0	0	
1	0	1	
1	1	0	
1	1	1	

Valori di <i>Y</i>
0
1
1
2
1
2
2
3

Y non è una funzione biunivoca degli eventi elementari

Y variabile casuale **discreta** con supporto **finito**

$$y \in \{0,1,2,3\}$$

Ancora un'altra variabile casuale di interesse

X = "Media aritmetica dei numeri (valori codificati di sesso) nel campione"

Media campionaria

In questo caso, rappresenta la proporzione delle femmine nel campione

Proporzione campionaria dei *successi* (frequenza relativa o percentuale)

Campioni osservabili			\Rightarrow	Valori di \overline{X}
0	0	0		0
0	0	1		1/3
0	1	0		1/3
0	1	1		2/3
1	0	0		1/3
1	0	1		2/3
1	1	0		2/3
1	1	1		1

 \overline{X} non è una funzione biunivoca degli eventi elementari

 \overline{X} variabile casuale **discreta** con supporto **finito**

$$\overline{x} \in \left\{0, \frac{1}{3}, \frac{2}{3}, 1\right\}$$

Esempio 3

Popolazione infinita

Popolazione virtuale degli infiniti intervalli temporali di un'ora, nei quali un centralino *riceve telefonate* (nelle stesse condizioni, ndr)

Possibilità di **popolazione finita**

Esperimento casuale

Selezione casuale di n=4 intervalli orari (uno alla volta, ndr) e osservazione, per ciascuno di essi, del numero di telefonate ricevute (≥ 0)

Campionamento casuale
$$(n = 4)$$

v.c. X di popolazione

Spazio campionario Ω formato da una infinità **numerabile** di eventi elementari (i *campioni osservabili* di ampiezza n=4)

Variabile casuale di interesse

$X_1 =$ "Numero di telefonate ricevute nel primo intervallo orario selezionato"

Anche interesse per le variabili casuali analoghe X_2, X_3, X_4

	Campioni osservabili			\Rightarrow	Valori di X_1
0	0	0	0		0
0	0	0	1		0
0	0	0	2		0
0	0	0	3		0
0	0	0	4		0
0	0	0	5		0
0	0	0	6		0
0	0	0	:		0
	••	•			•••

X assume la denominazione di X_1 (e anche di X_2 , X_3 , X_4)

 X_1 non è una funzione biunivoca degli eventi elementari

 X_1 variabile casuale **discreta** con supporto **numerabile**

$$x_1 \in \{0, 1, 2, \dots, \infty\}$$

Medesime considerazioni anche per X_2, X_3, X_4

Esempio 4

Popolazione finita

Lotto di N = 1000 lampade prodotte in un processo produttivo in un **dato arco temporale** di lavorazione (nelle **stesse condizioni**, ndr)

Possibilità di **popolazione infinita**

Esperimento casuale

Estrazione casuale di n=2 lampade (una alla volta, e ammettendo che una lampada possa essere estratta più di una volta, ndr) e osservazione, per ciascuna di esse, della **durata**

Campionamento casuale (n = 2)

v.c. *X* di popolazione

$$X$$
 v.c. **continua** (a valori reali ≥ 0) $x \in [0, \infty)$

Spazio campionario Ω formato da una infinità **non numerabile** di eventi elementari (i *campioni osservabili* di ampiezza n=2)

I quadrante nel piano cartesiano

 $X_1 =$ "**Durata** della **prima** lampada estratta"

X assume la denominazione di X_1

In modo *analogo* si definisce X_2

 X_1 v.c. **continua**

 $x_1 \in [0, \infty)$

 X_1 non è una funzione biunivoca degli eventi elementari

Ad ogni punto del I quadrante associa la corrispondente ascissa

Una variabile casuale *è utile* se si può calcolare la **probabilità** degli **eventi** *generati* da essa

I **valori** della variabile casuale, contenuti nel suo **supporto**, sono gli **eventi elementari** di riferimento

Un **evento** è un **insieme di valori** della v.c. (e dunque **sottoinsieme** del supporto)

(insieme numerico)

Esempi di denominazione degli **eventi** (per la v.c. X)

$$X = 1$$
 $X \ge 1$ $X < 10$
 $2 \le X \le 4$ $9 < X < 11$ $0 < X \le 3$

Spazio degli eventi

Collezione degli eventi (sottoinsiemi del supporto) dei quali *è possibile* calcolare la **probabilità**

Contiene sempre l'insieme vuoto ϕ (evento impossibile) e il supporto della v.c. (evento certo)

Supporto discreto (finito o numerabile)

Lo spazio degli eventi è la collezione di tutti i possibili sottoinsiemi del supporto

Inclusi i **singoli valori** della v.c., ndr

Numero complessivo di eventi appartenenti allo spazio degli eventi

- Supporto **finito** (con N valori della v.c. X) $\Longrightarrow 2^N$
- Supporto **numerabile** ⇒ Infinito **numerabile**

Calcolo di probabilità degli eventi

Necessita (in entrambi casi) della **conoscenza** della **probabilità** dei **singoli valori** della variabile casuale

La probabilità di un **evento** (**insieme di valori** della v.c.) è la **somma delle probabilità** dei **singoli valori** di cui l'evento si compone (Parte 2, pag. 19)

Esempio 5

Lancio di un dado equilibrato (non truccato) e osservazione del numero ottenuto

X = "Numero ottenuto (sulla faccia in alto)" nel lancio del dado

v.c. discreta con supporto finito

$$x \in \{1,2,3,4,5,6\}$$

Distribuzione di probabilità di X

Valori di X	Probabilità
X	f(x)
1	1/6
2	1/6
3	1/6
4	1/6
5	1/6
6	1/6

cfr Parte 2, pag. 22

$$f(x) = P(X = x) = \frac{1}{6} \quad \forall x$$

Funzione di probabilità di X

(funzione *costante*)

Modello di probabilità Uniforme discreto

$$(\Rightarrow Parte 5)$$

$$\sum f(x) = 1$$
 Probabilità dell'evento certo

x	f(x)
1	1/6
2	1/6
3	1/6
4	1/6
5	1/6
6	1/6

$$f(x) = \frac{1}{6} \quad \forall x$$
$$f(x) = 0 \quad altrove$$

Calcolo della probabilità di alcuni eventi

Lo **spazio degli eventi** contiene $2^6 = 64$ eventi

$$A = \{2,4,6\} =$$
"Numero pari"
$$P(A) = P((X = 2) \cup (X = 4) \cup (X = 6)) = 3\frac{1}{6} = \frac{1}{2}$$

cfr Parte 2, pag. 22

$$B = \{5,6\}$$

$$P(B) = P(X \ge 5) = 2\frac{1}{6} = \frac{1}{3}$$

$$A \cap B = \{6\}$$

$$P(A \cap B) = P(X = 6) = \frac{1}{6}$$

Esempio 1

Classe di N = 50 studenti universitari

Selezione casuale di n = 3 studenti dalla classe e osservazione del loro sesso

 $X_1 =$ "Sesso dello studente selezionato alla **prima** estrazione"

v.c. **discreta** con supporto **finito** (binario)

$$x_1 \in \{0,1\}$$

x_1	$f(x_1)$
0	<i>f</i> (0)
1	<i>f</i> (1)

Si assuma che nella classe di N=50 studenti, vi siano n(0)=20 maschi e n(1)=30 femmine

$$x_1$$
 $f(x_1)$ 0 0.4 1 0.6

$$f(0) = P(X = 0) = \frac{20}{50} = 0.4$$
$$f(1) = P(X = 1) = 0.6$$

cfr Parte 2, pagg. 35 - 37

 $f(x_1) = 0$ altrove

Lo spazio degli eventi contiene $2^2 = 4$ eventi (numero minimo di eventi)

Modello di probabilità di Bernoulli

X variabile casuale **discreta** (supporto **finito** o **numerabile**)

Funzione di probabilità di X

Funzione (di massa) di probabilità

$$f(x) = P(X = x)$$
 x valore di X

 $P(\cdot)$ è la funzione di probabilità secondo la definizione assiomatica

Dominio Codominio Funzione Intervallo [0,1] Supporto di *X* Funzione di probabilità f(x) = 0 altrove

- Supporto **finito** (con N valori della v.c. X) $\Longrightarrow x \in \{x_1, x_2, \dots, x_N\}$
- Supporto **numerabile** $\Rightarrow x \in \{x_1, x_2, \dots, \infty\}$

Proprietà della funzione di probabilità f(x)

•
$$f(x) \ge 0 \quad \forall x$$

f(x) ≥ 0 ∀x Assioma 2 di P(·) (di non-negatività)
 ∑_x f(x) = 1 Assioma 1 di P(·) (dell'evento certo)

Distribuzione di probabilità della v.c. discreta X

Si ottiene associando la **funzione di probabilità** ad ogni valore del supporto

Supporto **finito**

х	f(x)
x_1	$f(x_1)$
x_2	$f(x_2)$
÷	:
x_N	$f(x_N)$

Supporto **numerabile**

x	f(x)
x_1	$f(x_1)$
x_2	$f(x_2)$
:	:

Anche **grafico** della funzione di probabilità

Scenario tipico (cfr Parte 5)

f(x) è una funzione **analitica**

Modello di probabilità per variabili casuali discrete

Nel caso di esperimento casuale **ripetibile** (come il **campionamento casuale**)

Definizione **frequentista** della probabilità f(x)

Distribuzione di probabilità di X assimilabile alla distribuzione di frequenze (relative) dei valori di X ottenuti in un grande numero di ripetizioni dell'esperimento (distribuzione empirica dei valori di X)

Supporto **continuo**

Rappresentato da un insieme **non numerabile** di numeri reali (retta reale, semiretta positiva, o intervallo limitato, ndr)

Spazio degli eventi

Collezione **non numerabile** degli **intervalli reali** del tipo:

$$[a,b] \quad (a,b) \quad [a,b) \quad (a,b]$$

(intervalli chiusi, aperti, semi-aperti)

a, b appartenenti al supporto della v.c. continua X (anche $-\infty$ e ∞)

È una **algebra** di eventi

Non contiene i singoli valori di X (eventi elementari)

Impossibile calcolarne la probabilità

Gli intervalli [a, b], (a, b), [a, b), (a, b] hanno la **medesima probabilità**

Inclusione/esclusione degli **estremi** dell'intervallo **irrilevante**

Come calcolare la probabilità di un intervallo reale?

È necessario disporre di una *speciale* **funzione** reale da **integrare** (*sommare nel continuo*) **tra gli estremi** dell'intervallo

$$f(x)$$
 x valore di X

Funzione di densità (di probabilità) della v.c. continua *X*

Non è la **funzione** (di massa) **di probabilità** (tale funzione caratterizza una v.c. **discreta**, ndr)

Dominio

Funzione

Funzione di densità

Codominio

Intervallo $[0, \infty]$

f(x) = 0 altrove

Supporto di *X*

Sia [a, b] l'intervallo reale di riferimento

(indifferente includere/escludere gli estremi, ndr)

$$P(a \le X \le b) = \int_{a}^{b} f(x)dx$$

 $P(\cdot)$ è la funzione di probabilità secondo la definizione assiomatica

f(x) è necessariamente una funzione analitica (cfr Parte 6)

Modello di probabilità per variabili casuali continue

Rappresentazione grafica di grande importanza (ndr)

L'integrale definito che misura la *probabilità di un intervallo reale* corrisponde all'area sottesa dalla funzione di densità sull'intervallo medesimo

Proprietà della funzione di densità f(x)

$$f(x) \ge 0 \quad \forall x$$

Assioma 2 di $P(\cdot)$ (di non-negatività)

Se
$$f(x) < 0 \Longrightarrow P(a \le X \le b) = \int_a^b f(x) dx < 0$$

$$\int_{-\infty}^{\infty} f(x) dx = 1$$

Assioma 1 di $P(\cdot)$ (dell'evento certo)

Integrazione *estesa* all'intero **supporto** di X (area sottesa da f(x) è uguale a 1)

Può essere f(x) > 1

Non è una probabilità

X supposta definita sull'intera retta reale

Non si perde in generalità

Distribuzione di probabilità della v.c. continua X

Si ottiene associando la funzione di densità ad ogni valore del supporto

Grafico della funzione di densità

Nel caso di esperimento casuale **ripetibile** (come il **campionamento casuale**)

Definizione **frequentista** della probabilità (di un qualsiasi *intervallo reale*)

Distribuzione di probabilità di *X* assimilabile alla distribuzione di densità (densità di frequenze relative) dei valori di *X* (opportunamente *raggruppati*) ottenuti in un **grande** numero di ripetizioni dell'esperimento (distribuzione empirica dei valori di *X*)

Grafico della funzione di densità assimilabile all'istogramma di frequenze corrispondente

Esempio 4

$X_1 =$ "**Durata** della **prima** lampada estratta"

v.c. **continua** con supporto $[0, \infty)$

Exponential Distribution: Rate=1

Funzione di densità ipotizzata

$$\frac{f(x_1) = e^{-x_1} \quad x_1 \in [0, \infty)}{f(x_1) = 0 \quad altrove}$$

$$f(x_1) = 0$$
 altrove

Modello di probabilità Esponenziale

È un tipico modello di durata

Il **grafico** della funzione di densità *descrive* la distribuzione di probabilità di X_1

Distribuzione Esponenziale

Exponential Distribution: Rate=1

Verifica delle **proprietà** della funzione di densità

$$f(x_1) = e^{-x_1} \ge 0$$

In questo caso $f(x_1) \le 1$

$$\int_0^\infty e^{-x_1} dx_1 = 1$$

Area *sottesa* da $f(x_1)$ tra 0 e ∞ pari a 1

$$P(1 \le X_1 \le 2) = \int_1^2 e^{-x_1} dx_1 \cong \mathbf{0}, \mathbf{233}$$

Region
$$2 \text{ to } 100$$

80

Area sottesa da $f(x_1)$ tra $2 \text{ e} \infty$

$$P(X_1 \ge 2) = \int_2^\infty e^{-x_1} dx_1 \cong \mathbf{0}, \mathbf{135}$$

Ovviamente $P(X_1 \le 2) = 1 - P(X_1 \ge 2)$

Funzione di ripartizione di una v.c. X (discreta o continua)

x numero reale **qualsiasi** (non esclusivamente valore di X)

$$F(x) = P(X \le x)$$

Funzione di probabilità cumulata

Esprime una **probabilità** (compresa tra 0 e 1)

Probabilità dell'intervallo reale $(-\infty, x]$, per ogni numero reale x

Dominio

Funzione

Codominio

Asse reale \mathbb{R}

Funzione di ripartizione

Intervallo [0,1]

 $x_1 < x_2 \implies F(x_1) \le F(x_2)$

F(x) funzione **non-decrescente** in x

Cumulo progressivo di probabilità

$$F(-\infty) = 0$$
 $F(\infty) = 1$

F(x) funzione **limitata** in [0,1]

Assume valori di **probabilità** (tra 0 e 1)

Anche **grafico** di F(x)

Proprietà generali della funzione di ripartizione F(x)

Assume valori **non-decrescenti**, **a partire da 0 e fino a 1**

Funzione di ripartizione

Variabile casuale *X* continua

$$F(x) = P(X \le x) = \int_{-\infty}^{x} f(t)dt$$

Corrisponde all'area sottesa dalla funzione di densità sull'intervallo $(-\infty, x]$

Proprietà addizionale della funzione di ripartizione di una v.c continua

F(x) è una funzione **assolutamente continua** (e dunque anche *continua*)

È uguale all'integrale della sua derivata

$$F(x) = \int_{-\infty}^{x} f(x)dx \qquad f(x) = \frac{d}{dx}F(x)$$

La funzione di densità può ottenersi mediante derivazione della funzione di ripartizione

Probabilità di un qualsiasi intervallo reale [a, b]

$$P(a \le X \le b) = \int_{a}^{b} f(x)dx$$

$$A = \{X \le b\}$$
 $B = \{X < a\}$ $C = \{a \le X \le b\}$ $A = B \cup C$ $B \cap C = \emptyset$

Assioma 3 di $P(\cdot)$ (della sommabilità)

$$P(A) = P(B) + P(C)$$

$$P(X \le b) = P(X < a) + P(a \le X \le b)$$

$$P(X \le b) = P(X < a) + P(a \le X \le b)$$

X v.c continua

$$P(X < a) = P(X \le a) = F(a)$$

$$F(b) = F(a) + P(a \le X \le b)$$

$$P(a \le X \le b) = F(b) - F(a)$$

La **probabilità** di un *qualsiasi intervallo reale* può calcolarsi mediante il ricorso alla **funzione di ripartizione**

Differenza tra i valori di F(x) corrispondenti agli **estremi** dell'intervallo

$X_1 =$ "**Durata** della **prima** lampada estratta"

Funzione di densità ipotizzata

$$f(x_1) = e^{-x_1} \quad x_1 \in [0, \infty)$$
$$f(x_1) = 0 \quad altrove$$

Modello **Esponenziale**

Funzione di ripartizione $x_1 \in [0, \infty)$

$$F(x_1) = P(X_1 \le x_1) = \int_{-\infty}^{x_1} f(t)dt =$$

$$= \int_{0}^{x_1} e^{-t}dt = 1 - e^{-x_1}$$

$$F(x_1) = 0$$
 altrove

$$f(2) = e^{-2} \cong \mathbf{0.135}$$
 (**densità** di probabilità del valore 2 di *X*)

$$F(x_1) = 1 - e^{-x_1} \implies f(x_1) = \frac{d}{dx}(1 - e^{-x_1}) = e^{-x_1}$$

Funzione di densità ricavata dalla funzione di ripartizione

$$P(1 \le X_1 \le 2) = \int_1^2 e^{-x_1} dx_1 \cong \mathbf{0}, \mathbf{233}$$

$$P(1 \le X_1 \le 2) = F(2) - F(1) = 1 - e^{-2} - (1 - e^{-1}) = e^{-1} - e^{-2} \cong 0,233$$

$$P(X_1 \ge 2) = \int_2^\infty e^{-x_1} dx_1 \cong \mathbf{0}, \mathbf{135}$$

$$P(X_1 \ge 2) = P(2 \le X_1 \le \infty) = F(\infty) - F(2) = 1 - (1 - e^{-2}) = e^{-2} \cong 0, 135$$

Valore di sintesi della v.c. (tiene conto della distribuzione di probabilità)

Media di una variabile casuale *X*

Valore atteso, aspettativa, speranza matematica

$$E(X) = \sum_{x} x f(x)$$

X v.c. discreta con supporto finito o numerabile

Somma estesa ai valori x della v.c X

- Supporto **finito** (con *N* valori della v.c. X) $\Rightarrow x \in \{x_1, x_2, \dots, x_N\}$
- Supporto **numerabile** \Rightarrow $x \in \{x_1, x_2, \dots, \infty\}$

Nel caso di supporto **numerabile**, la somma (infinita) definisce una **serie** La media può **non** esistere (se la serie **non converge**)

$$E(X) = \int_{-\infty}^{\infty} x f(x) \, dx$$

X v.c. **continua** con supporto rappresentato *genericamente* dall'intero asse reale \mathbb{R}

La media può **non** esistere (se l'integrale **non è** $< \infty$)

X = "Numero ottenuto (sulla faccia in alto)" nel lancio del dado

Distribuzione di probabilità

x	f(x)
1	1/6
2	1/6
3	1/6
4	1/6
5	1/6
6	1/6

Funzione di probabilità

$$f(x) = \frac{1}{6} \quad x \in \{1,2,3,4,5,6\}$$

$$E(X) = 1\frac{1}{6} + 2\frac{1}{6} + 3\frac{1}{6} + 4\frac{1}{6} + 5\frac{1}{6} + 6\frac{1}{6} = \frac{21}{6} = \frac{7}{2} = 3.5$$

$$E(X) = \sum_{i=1}^{6} i \frac{1}{6} = \frac{1}{6} \sum_{i=1}^{6} i = \frac{1}{6} \times \frac{6 \times 7}{2} = 3.5$$

Media (valore atteso) del numero ottenuto nel lancio del dado

 $X_1 =$ "**Durata** della **prima** lampada estratta"

Funzione di densità

$$f(x_1) = e^{-x_1} \quad x_1 \in [0, \infty)$$

$$E(X_1) = \int_0^\infty x_1 e^{-x_1} dx_1 = \mathbf{1}$$

Integrazione per parti

Media (valore atteso) della durata della prima lampada estratta

Nel caso di esperimento casuale **ripetibile** (come il **campionamento casuale**)

Media della variabile casuale X assimilabile alla media aritmetica dei valori di X ottenuti in un **grande numero di ripetizioni** dell'esperimento

Media aritmetica della **distribuzione empirica** dei valori di X

Esempio 5 E(X) = 3.5

$$E(X) = 3.5$$

Media (valore atteso) del **numero** ottenuto nel lancio del dado

Assimilabile alla **media aritmetica** dei **numeri** ottenuti in un grande numero di lanci del dado

$$E(X_1) = \mathbf{1}$$

Media (valore atteso) della **durata** della prima lampada estratta

Assimilabile alla **media aritmetica** delle **durate** della prima lampada estratta, ottenute in un grande numero di ripetizioni del campionamento casuale

Proprietà di **internalità** della media

La **media** di una qualsiasi variabile casuale *X* è *sempre compresa* tra il valore **minimo** e il valore **massimo** del supporto di *X*

Espressa nella *medesima* unità di misura della v.c. X

Esempio 5	$1 \leq E(X) = 3.5 \leq 6$
Esempio 4	$0 \le E(X_1) = 1 \le \infty$

Media di un valore **costante**

$$X \equiv c$$

Variabile casuale **degenere** (pari ad una **costante**)

v.c. **discreta** con un *unico* valore c con *probabilità* f(c) = P(X = c) = 1

$$E(c) = c \times f(c) = c$$

La media di una **costante** è la **costante medesima**

Media di una *funzione* della variabile casuale *X*

g(X) funzione della v.c. X

g(x) valore di g(X) corrispondente al valore x di X

Anche g(X) è una variabile casuale, ndr

Media di g(X) basata sulla distribuzione di probabilità della v.c. X

$$E(g(X)) = \sum_{x} g(x)f(x)$$

X v.c. discreta con supporto finito o numerabile

Somma estesa ai <u>valori x della v.c X</u> (in numero **finito** o **numerabile**)

Nel caso di supporto numerabile, la media può non esistere (se la serie non converge)

$$E(g(X)) = \int_{-\infty}^{\infty} g(x)f(x)dx$$

X v.c. continua con supporto rappresentato genericamente dall'intero asse reale \mathbb{R}

La media può **non** esistere (se l'integrale **non è** $< \infty$)

Media di g(X) compresa tra **minimo** e **massimo** dei valori di g(X)

Nel caso di esperimento casuale **ripetibile** (come il **campionamento casuale**)

Media della funzione g(X) della variabile casuale X assimilabile alla media aritmetica dei valori di g(X) ottenuti in un grande numero di ripetizioni dell'esperimento

Media aritmetica della distribuzione empirica dei valori di g(X)

Momenti (non centrali) di una variabile casuale *X*

$g(X) = X^r r = 1, 2, 3, \cdots$			
$Potenza\ r-esima\ della\ v.c.\ X$			
X^1, X^2, X^3, \cdots			
Media della <i>potenza r — esima</i> della v.c. <i>X</i>			
X v.c. discreta	X v.c. continua		
$E(X^r) = \sum_{x} x^r f(x)$	$E(X^r) = \int_{-\infty}^{\infty} x^r f(x) dx$		

Momento r - esimo della v.c. X

Momento primo (la media, ndr), momento secondo, ecc.

Media di una *funzione lineare* della variabile casuale *X*

$$g(X) = a + bX$$
 a, b costanti reali

Calcolo diretto della **media** di a + bX non necessario

Proprietà di linearità della media

$$E(a + bX) = a + bE(X)$$

Richiede il previo calcolo di E(X)

Media **invariante** a *trasformazioni lineari*

Casi speciali

a = 0	b = 1
g(X) = bX	g(X) = X + a
Cambiamento di scala	Traslazione
E(bX) = bE(X)	E(X+a) = E(X) + a

Media **invariante** (a *cambiamenti di scala* e a *traslazioni*)

X = "Numero ottenuto (sulla faccia in alto)" nel lancio del dado

$$E(X) = 3.5$$

Y = "Numero ottenuto (sulla faccia che *tocca il tavolo*)" nel lancio del dado

Y traduce i valori di X nei loro complementi a 7

$$Y = 7 - X$$

Y funzione lineare della v.c. X

$$Y = g(X) = a + bX$$
 $(a,b) = (7,-1)$

$$E(Y) = 7 - 1E(X) = 3.5$$

E(X) = 3.5 precedentemente calcolata

Variabile casuale **scarto**

È una speciale traslazione della v.c. X

Notazione usuale
$$\mu = E(X)$$

$$g(X) = X + a \quad a = -\mu$$

$$g(X) = X - \mu$$

$$g(X) \text{ v.c. scarto (scarto di X dalla propria media)}$$

$$Media \text{ della v.c. scarto}$$

$$E(X - \mu) = E(X) - \mu = \mathbf{0}$$

Momenti centrali di una variabile casuale *X*

Equivalgono ai momenti (non centrali) della corrispondente v.c. scarto

$$E(X-\mu)^r$$
 $r=1,2,3,\cdots$

Momento centrale r-esimo della v.c. X

$$E(X - \mu)^{1}$$
, $E(X - \mu)^{2}$, $E(X - \mu)^{3}$, ...

Momento centrale primo (= 0, media della v.c. scarto), momento centrale secondo, ecc.

Misura di variabilità della v.c. (tiene conto della distribuzione di probabilità)

Varianza di una variabile casuale *X*

È il **momento centrale secondo** della v.c. X

Momento secondo della v.c. scarto

Media della *potenza seconda* (del *quadrato*) della v.c. **scarto**

$V(X) = E(X - \mu)^2 \ge 0$			
X v.c. discreta	.c. discreta X v.c. continua		
$V(X) = \sum_{x} (x - \mu)^2 f(x - \mu)$	$V(X) = \int_{-\infty}^{\infty} (x - \mu)^2 f(x) dx$		
Notazione usuale	$\sigma^2 = V(X)$		

Espressa nel *quadrato* dell'unità di misura della v.c. X

Deviazione standard di una variabile casuale *X*

Radice quadrata (principale) della varianza della v.c. X

$$SD(X) = \sigma = \sqrt{V(X)} \ge 0$$
 Medesima unità di misura della v.c. X

$$V(X) = 0 \iff X \equiv c$$

X v.c. **degenere** (pari ad una **costante** c)

v.c. **discreta** con un *unico* valore c con *probabilità* f(c) = P(X = c) = 1

$$E(c) = c$$
 $X \equiv c \implies V(c) = (c - c)^2 f(c) = \mathbf{0}$

La varianza di una **costante** è pari a **0**

Calcolo *alternativo* della varianza di una v.c. X

$$V(X) = E(X - \mu)^2 = E(X^2) - (E(X))^2$$

Differenza tra il momento secondo della v.c. X e il quadrato del suo momento primo

... tra la media del *quadrato* della v.c. X e il *quadrato* della sua media

Calcolo eseguito senza introdurre la v.c. scarto

Se esiste la varianza di una v.c. X	Esiste anche la sua media
Se esiste la media di una v.c. X	Non esiste necessariamente la sua varianza

X = "Numero ottenuto (sulla faccia in alto)" nel lancio del dado

$$E(X) = 3.5$$

х	f(x)	$(x-3,5)^2$
1	1/6	
2	1/6	
3	1/6	
4	1/6	
5	1/6	
6	1/6	
		17.5

$$V(X) = \sum_{x} (x - 3.5)^{2} \frac{1}{6} = \frac{1}{6} \sum_{x} (x - 3.5)^{2} = \frac{17.5}{6} = 2.917$$

Alternativamente

$$E(X^2) = \sum_{x} x^2 \frac{1}{6} = \frac{1}{6} \sum_{i=1}^{6} i^2 = \frac{91}{6} = 15.17$$

$$V(X) = 15.17 - 3.5^2 = 2.917$$

$$SD(X) = \sqrt{2.917} = 1.708$$

V(X) = 3.919 e SD(X) = 1.708 assimilabili alla varianza e alla deviazione standard dei numeri ottenuti in un *grande numero* di lanci del dado

$$X_1 =$$
 "**Durata** della **prima** lampada estratta"

$$E(X_1) = \mathbf{1}$$

$$f(x_1) = e^{-x_1} \quad x_1 \in [0, \infty)$$

$$V(X_1) = \int_0^\infty (x_1 - 1)^2 e^{-x_1} dx_1 = \mathbf{1}$$

Alternativamente

$$E(X_1^2) = \int_0^\infty x_1^2 e^{-x_1} dx_1 = \mathbf{2}$$
Integrazione per parti

$$V(X_1) = 2 - 1^2 = 1$$
 $SD(X_1) = \sqrt{1} = 1$

$$SD(X_1) = \sqrt{1} = \mathbf{1}$$

 $V(X_1) = 1$ e $SD(X_1) = 1$ assimilabili alla varianza e alla deviazione standard delle durate della prima lampada estratta, ottenute in un grande numero di ripetizioni del campionamento casuale

Varianza di una *funzione lineare* della variabile casuale *X*

$$g(X) = a + bX$$
 a, b costanti reali

Calcolo diretto della varianza di a + bX non necessario

La varianza non gode della proprietà di linearità

$$V(a+bX) = b^2V(X)$$

Richiede il previo calcolo di V(X)

Varianza non invariante a trasformazioni lineari

Casi speciali

a = 0	b = 1	
g(X) = bX	g(X) = X + a	
Cambiamento di scala	Traslazione	v.c. scarto
$V(bX) = b^2 V(X)$	V(X+a)=V(X)	$V(X - \mu) = V(X)$

Varianza **non invariante** (a *cambiamenti di scala* e a *traslazioni*)

X = "Numero ottenuto (sulla faccia in alto)" nel lancio del dado

$$V(X) = 2.917$$

Y = "Numero ottenuto (sulla faccia che tocca il tavolo)" nel lancio del dado

Y traduce i valori di X nei loro complementi a 7

$$Y = 7 - X$$

Y funzione lineare della v.c. X

$$Y = g(X) = a + bX$$
 $(a,b) = (7,-1)$

$$V(Y) = (-1)^2 V(X) = V(X) = 2.917$$

V(X) = 2.917 precedentemente calcolata

Variabile casuale **standardizzata**

È una speciale funzione lineare della v.c. X

$$\mu = E(X)$$
 $\sigma = \sqrt{V(X)}$

$$g(X) = a + bX$$
 $(a,b) = \left(-\frac{\mu}{\sigma}, \frac{1}{\sigma}\right)$

$$g(X) = -\frac{\mu}{\sigma} + \frac{1}{\sigma}X = \frac{X - \mu}{\sigma}$$

g(X) v.c. standardizzata

Ottenuta mediante standardizzazione della v.c. X

Cambiamento di scala della v.c. scarto (fattore di scala $1/\sigma$)

Notazione usuale

$$Z = \frac{X - \mu}{\sigma}$$

Media e varianza di una v.c. standardizzata

$$E(Z) = -\frac{\mu}{\sigma} + \frac{1}{\sigma}\mu = \mathbf{0}$$

$$V(Z) = \left(\frac{1}{\sigma}\right)^2 \sigma^2 = \mathbf{1} = SD(Z)$$

Momenti di una variabile casuale standardizzata

Momento primo

Media

$$E(Z) = E\left(\frac{X-\mu}{\sigma}\right) = \mathbf{0}$$

Momento secondo

Coincide con la varianza (ovvero con il momento centrale secondo)

$$E(Z^2) = E\left(\frac{X-\mu}{\sigma}\right)^2 = \mathbf{1}$$

$$V(Z) = E(Z^2) - \left(\frac{E(Z)}{E(Z)}\right)^2 = E(Z^2)$$

Momento terzo

Coefficiente di asimmetria

$$E(Z^3) = E\left(\frac{X-\mu}{\sigma}\right)^3 = \frac{E(X-\mu)^3}{\sigma^3}$$

$$E(Z^4) = E\left(\frac{X-\mu}{\sigma}\right)^4 = \frac{E(X-\mu)^4}{\sigma^4}$$

$$E(Z^4) - 3$$

Quantili di una variabile casuale

Interesse per v.c. **continue**

$$X_1 =$$
 "**Durata** della **prima** lampada estratta"

$$f(x_1) = e^{-x_1}$$

$$f(x_1) = e^{-x_1}$$
$$F(x_1) = 1 - e^{-x_1}$$

$$x_1 \in [0, \infty)$$

$$f(x_1) = F(x_1) = 0$$
 altrove

La v.c. X_1 segue un **modello esponenziale** (per *ipotesi*)

2.3 è il quantile di livello **0.90** della v.c. X_1 (della distribuzione di X_1)

2.3 è tale che

$$F(2.3) = P(X \le 2.3) = 0.90$$
 $1 - F(2.3) = P(X \ge 2.3) = 0.10$

Valore che la v.c. X_1 non supera con probabilità **0.90** (e che supera con probabilità **0.10**)

Notazione: $x_{0.90} = 2.3$ Anche 90 – *esimo* centile (o percentile) (o di livello 90)

V	Funzione di ripartizione di X	0	
X v.c. continua	$F(X) = P(X \le x)$	Livello fissato di <i>probabilità cumulata</i>	
	Quantile	Quantile di livello p della v.c. X	
x_p è <i>compreso</i> nel supporto di <i>X</i>	V	$F(x_p) = P(X \le x_p) = p$	
	Valore x_p tale che	$1 - F(x_n) = P(X \ge x_n) = 1 - p$	

Valore che la v.c. X non supera con probabilità p (e che supera con probabilità 1-p)

Anche $100 \times p - esimo$ centile (o percentile) (o di livello $100 \times p$)

Primo quartile	N	Mediana		Terzo quartile	
$p = 0.25 \implies x_{0.25} = 0$	$Q_1 p = 0.50$	$\implies x_{0.50} = M_0$	p = 0.75 =	$\Rightarrow x_{0.75} = Q_3$	
Valori usuali di <i>p</i>	0.005	0.01	0.025	0.05	
	0.95	0.975	0.99	0.995	

 x_p assimilabile al quantile di livello p della distribuzione empirica corrispondente