

UZ	ZUPEŁNIA ZDAJĄCY	
KOD	PESEL	
		miejsce na naklejkę

EGZAMIN MATURALNY Z INFORMATYKI

POZIOM ROZSZERZONY

Część II

MIN-R2 1P-192

DATA: 13 maja 2019 r. CZAS PRACY: 150 minut

LICZBA PUNKTÓW DO UZYSKANIA: 35

UZUPEŁNIA ZDAJĄCY	WYBRANE:	
	(system operacyjny)	
	(program użytkowy)	
	d 8 3 37	
	(środowisko programistyczne)	
	(brode wishe programmsty czne)	

Instrukcja dla zdającego

- 1. Sprawdź, czy arkusz egzaminacyjny zawiera 8 stron i czy dołączony jest do niego nośnik danych – podpisany DANE PR. Ewentualny brak zgłoś przewodniczącemu zespołu nadzorującego egzamin.
- 2. Wpisz zadeklarowany przez Ciebie na egzamin system operacyjny, program użytkowy oraz środowisko programistyczne.
- 3. Jeśli rozwiązaniem zadania lub jego części jest program komputerowy, to umieść w katalogu (folderze) oznaczonym Twoim numerem PESEL wszystkie utworzone przez siebie pliki w wersji źródłowej.
- 4. Pliki oddawane do oceny nazwij dokładnie tak, jak polecono w treści zadań, lub zapisz je pod nazwami (wraz z rozszerzeniem zgodnym z zadeklarowanym oprogramowaniem), jakie podajesz w arkuszu egzaminacyjnym. Pliki o innych nazwach nie będą sprawdzane przez egzaminatora.
- 5. Przed upływem czasu przeznaczonego na egzamin zapisz w katalogu (folderze) oznaczonym Twoim numerem PESEL ostateczną wersję plików stanowiących rozwiązania zadań.
- 6. Na tej stronie oraz na karcie odpowiedzi wpisz swój numer PESEL i przyklej naklejkę z kodem.
- 7. Nie wpisuj żadnych znaków w części przeznaczonej dla egzaminatora.

Zadanie 4. Liczby

W pliku liczby. txt zapisano 500 liczb całkowitych dodatnich po jednej w każdym wierszu. Każda liczba jest z zakresu od 1 do 100 000. Napisz program(-y) dający(-e) odpowiedzi do poniższych zadań. Zapisz uzyskane odpowiedzi w pliku wyniki4. txt, poprzedzając każdą z nich numerem odpowiedniego zadania.

Uwaga: Plik przyklad.txt zawiera przykładowe dane spełniające warunki zadania. Odpowiedzi dla danych z tego pliku sa podane pod treściami zadań.

Zadanie 4.1. (0–3)

Podaj, ile z podanych liczb jest potęgami liczby 3 (czyli liczbami postaci $1 = 3^0$, $3 = 3^1$, $9 = 3^2$ itd.).

Dla pliku przyklad. txt odpowiedź wynosi 2.

Zadanie 4.2. (0–4)

Silnią liczby naturalnej k większej od 0 nazywamy wartość iloczynu $1 \cdot 2 \cdot ... \cdot k$ i oznaczamy przez k!.

Przyjmujemy, że 0!=1. Zatem mamy:

0! = 1,

1! = 1,

 $2! = 1 \cdot 2 = 2$

 $3! = 1 \cdot 2 \cdot 3 = 6$.

 $4! = 1 \cdot 2 \cdot 3 \cdot 4 = 24$ itd.

Dowolną liczbę naturalną możemy rozbić na cyfry, a następnie policzyć sumę silni jej cyfr. Na przykład dla liczby 343 mamy 3! + 4! + 3! = 6 + 24 + 6 = 36.

Podaj, w kolejności ich występowania w pliku liczby. txt, wszystkie liczby, które są równe sumie silni swoich cyfr.

W pliku przyklad. txt znajduje się jedna taka liczba: 145 (1!+4!+5! =1+24+120 =145).

Zadanie 4.3. (0–5)

W pliku liczby. txt znajdź najdłuższy ciąg liczb występujących kolejno po sobie i taki, że największy wspólny dzielnik ich wszystkich jest większy od 1 (innymi słowy: istnieje taka liczba całkowita większa od 1, która jest dzielnikiem każdej z tych liczb).

Jako odpowiedź podaj wartość pierwszej liczby w takim ciągu, długość ciągu oraz największą liczbę całkowitą, która jest dzielnikiem każdej liczby w tym ciągu. W pliku z danymi jest tylko jeden taki ciąg o największej długości.

Uwaga: Możesz skorzystać z zależności NWD(a, b, c) = NWD(NWD(a, b), c).

Przykład:

Dla liczb 3, 7, 4, 6, 10, 2, 5 odpowiedzią jest 4 (pierwsza liczba ciągu), 4 (długość ciągu) i 2 (największy wspólny dzielnik), natomiast dla liczb 5, 70, 28, 42, 98, 1 odpowiedzią jest 70 (pierwsza liczba ciągu), 4 (długość ciągu) i 14 (największy wspólny dzielnik).

Odpowiedź dla pliku przyklad.txt: pierwsza liczba ciągu 90, długość 5, największy wspólny dzielnik 10.

Do oceny oddajesz:

- plik tekstowy wyniki4.txt zawierający odpowiedzi do poszczególnych zadań (odpowiedź do każdego zadania powinna być poprzedzona jego numerem)
- plik(i) zawierający(e) komputerową realizację Twoich obliczeń o nazwie(nazwach):

.....

Wypełnia	Nr zadania	4.1.	4.2.	4.3.
V 1	Maks. liczba pkt.	3	4	5
egzaminator	Uzyskana liczba pkt.			

Zadanie 5. Chmury

Naukowcy śledzą zmiany pogody na odległej planecie. Chmury występujące na niebie tej planety podzielono na dwie kategorie, nazwane przez analogię do ziemskich cirrusami (C) i stratusami (S). W każdej z kategorii chmury są klasyfikowane względem wielkości od 1 do 5. Mamy zatem chmury dziesięciu rodzajów: C1, C2, C3, C4 i C5 oraz S1, S2, S3, S4 i S5. Na tej planecie w jednym dniu mogą występować chmury tylko jednego rodzaju.

W każdym z 500 kolejnych dni stacja badawcza umiejscowiona na planecie mierzyła temperaturę w stopniach oraz określała rodzaj chmur. Dane te zawarte są w kolejnych wierszach pliku pogoda. txt. Każdy wiersz pliku pogoda. txt zawiera kolejno:

- numer dnia (od 1 do 500),
- zmierzoną temperaturę (z dokładnością do jednego miejsca po przecinku, temperatura nigdy nie spada poniżej zera),
- wielkość opadu, jaki miał miejsce tego dnia (w milimetrach, zaokrąglony do liczby całkowitej),
- kategorię chmur (C, S lub 0 jeśli dzień był bezchmurny),
- wielkość chmur (od 1 do 5 lub 0 jeśli dzień był bezchmurny).

Dane oddzielone są średnikami, pierwszy wiersz jest wierszem nagłówkowym.

Przykład:

```
Dzien; Temperatura; Opad; Kategoria_chmur; Wielkosc_chmur
1;19;0;0;0
2;22;1;C;1
3;23,6;4;C;1
```

W dniu 301. kamera na stacji badawczej się zepsuła i od tego dnia stacja raportowała wszystkie dni jako "bezchmurne", temperatura i opady jednak dalej były poprawnie mierzone.

Za pomocą dostępnych narzędzi informatycznych podaj odpowiedzi do poniższych zadań. Odpowiedzi zapisz w pliku wyniki5.txt, poprzedzając każdą z nich numerem odpowiedniego zadania.

Zadanie 5.1. (0–2)

Podaj liczbę dni o temperaturze większej lub równej 20 stopni i jednocześnie o opadzie mniejszym lub równym 5 mm.

Zadanie 5.2. (0–2)

Znajdź najdłuższy ciąg kolejnych dni, w których temperatura zmierzona każdego dnia jest wyższa niż temperatura dnia poprzedniego. Jest tylko jeden taki ciąg. Podaj numer pierwszego i numer ostatniego dnia w takim ciągu.

Na przykład dla danych:

```
dzień temperatura
```

34 3,7

35 3,4

36 3,5

37 3,6

38 3,7

39 3.5

pierwszym dniem ciągu spełniającym warunek zadania jest dzień 36, a ostatnim – 38.

Zadanie 5.3. (0–3)

Dla <u>pierwszych 300</u> dni pomiaru oblicz, z dokładnością do dwóch miejsc po przecinku, średni opad dla każdego rodzaju chmur (kategoria + wielkość, czyli C1, C2, C3, C4, C5, S1, S2, S3, S4, S5). Przedstaw wyniki na wykresie kolumnowym, pamiętając o czytelnym opisie wykresu.

Zadanie 5.4. (0-4)

Profesor George Nubis przedstawił teorię, według której chmury określonej wielkości i kategorii rozwijają się w następujący sposób:

- jeśli w danym dniu nie ma chmur, nazajutrz na pewno pojawią się chmury o wielkości 1,
- chmury po trzech dniach samoczynnie przechodzą w chmury o wyższym numerze, aż do numeru 5,
- chmury o wielkości 5 zanikają wtedy, gdy spadnie w ciągu dnia co najmniej 20 mm deszczu, a wówczas następny dzień jest bezchmurny,
- powstanie chmur kategorii C lub S zależy od temperatury powietrza w dniu ich tworzenia się. Jeśli temperatura w dniu pojawienia się chmur jest nie mniejsza niż 10 stopni, to powstają chmury kategorii C (o wielkości 1), w przeciwnym wypadku – chmury kategorii S (o wielkości 1).

Uwaga: Przez pierwszych 20 dni teoria zgodziła się dokładnie z obserwacjami. Użyj tej informacji, aby sprawdzić swoje obliczenia.

Załóż, że chmury rozwijałyby się przez cały czas (500 dni) według teorii profesora i że dzień pierwszy był bezchmurny (wielkość chmur 0), a następnie:

- a) podaj liczbę dni (spośród wszystkich 500) z chmurami wielkości 0, 1, 2, 3, 4 i 5 dla każdej wielkości oddzielnie (przyjmij, że wielkość opadu w danym dniu jest taka, jaką zapisano w pliku z danymi),
- b) dla pierwszych **300** dni pomiaru podaj, ile wśród nich było takich, w których teorię profesora Nubisa dotyczącą wielkości chmur potwierdzały odczyty z kamery,
- c) dla pierwszych **300** dni pomiaru podaj, ile wśród nich było takich, w których teorię profesora Nubisa dotyczącą <u>kategorii</u> chmur potwierdzały odczyty z kamery.

Do oceny oddajesz:

- plik tekstowy wyniki5.txt zawierający odpowiedzi do poszczególnych zadań (odpowiedź do każdego zadania powinna być poprzedzona jego numerem)
- plik zawierający wykres do zadania 5.3 o nazwie:
- plik(i) zawierający(e) komputerową realizację Twoich obliczeń o nazwie(nazwach):

.....

Wynełnia	Nr zadania	5.1.	5.2.	5.3	5.4.
Wypełnia	Maks. liczba pkt.	2	2	3	4
egzaminator	Uzyskana liczba pkt.				

Zadanie 6. Perfumeria DlaWas

W plikach: marki.txt, perfumy.txt, sklad.txt opisana jest oferta perfumerii "DlaWas". W perfumerii dostępne są perfumy różnych marek. Perfumy składają się z kilku składników. Zestaw składników decyduje, do jakiej rodziny zapachów należą perfumy. Pierwszy wiersz w każdym z plików jest wierszem nagłówkowym i zawiera nazwy pól. Dane w każdym wierszu oddzielone są znakiem tabulacji.

W pliku marki.txt każdy wiersz zawiera informacje o markach firm produkujących perfumy:

```
id_marki - identyfikator marki
nazwa_m - nazwa marki
```

Przykład:

W pliku perfumy.txt każdy wiersz zawiera informacje o perfumach:

```
id_perfum - identyfikator perfum
nazwa_p - nazwa perfum
id_marki - identyfikator marki tych perfum
rodzina_zapachow - nazwa rodziny zapachów, do której należą perfumy
cena - cena perfum
```

Przykład:

id_perfum	nazwa_p	id_marki	rodzina_zapachow	cena
p_1	Ythde	m_1	orientalna	241
p 2	Ythsas	m 1	kwiatowa	738

W pliku sklad.txt kolejne wiersze zawierają informacje o składzie perfum:

```
id_perfum - identyfikator perfum
nazwa skladnika - nazwa składnika
```

Przykład:

Za pomocą dostępnych narzędzi informatycznych podaj odpowiedzi do poniższych zadań. Odpowiedzi zapisz w pliku wyniki6.txt, a każdą z nich poprzedź numerem odpowiedniego zadania.

Zadanie 6.1. (0–1)

Podaj listę wszystkich nazw perfum, których jednym ze składników jest "absolut jasminu".

Zadanie 6.2. (0–3)

Podaj listę różnych rodzin zapachów. Dla każdej rodziny podaj jej nazwę, cenę najtańszych perfum z tej rodziny i ich nazwę.

Zadanie 6.3. (0–3)

Utwórz uporządkowaną alfabetycznie listę wszystkich nazw marek, które nie zawierają w swoich perfumach żadnego składnika mającego w nazwie słowo "paczula".

Zadanie 6.4. (0–3)

Ceny wszystkich perfum marki *Mou De Rosine* z rodziny o nazwie "orientalno-drzewna" zostały obniżone o 15%. Podaj listę zawierającą wszystkie nazwy takich perfum i ich ceny po obniżce. Listę posortuj niemalejąco według ceny.

Zadanie 6.5. (0–2)

Istnieją marki, których wszystkie perfumy należą do tylko jednej rodziny zapachów. Podaj listę wszystkich nazw takich marek. Lista powinna zawierać nazwy marek i nazwy odpowiednich rodzin zapachów.

Do oceny oddajesz:

- plik tekstowy wyniki6.txt zawierający odpowiedzi do poszczególnych zadań. (odpowiedź do każdego zadania powinna być poprzedzona jego numerem)
- plik(i) zawierający(e) komputerową realizację Twoich obliczeń o nazwie(nazwach):

 	 •

	Nr zadania	6.1.	6.2.	6.3	6.4	6.5.
Wypełnia egzaminator	Maks. liczba pkt.	1	3	3	3	2
	Uzyskana liczba pkt.					

BRUDNOPIS (nie podlega ocenie)