

Time Series Project:

Understanding the Growth of Data Science StackOverflow Questions

Outline

•	Data Description	3
•	Research Questions	4
•	Exploratory Data Analysis	5-8
•	SARIMA o Methods o Results	9 10-12
•	VAR o Methods o Results	13 14-17
•	Conclusion	18
•	Discussion	19
•	Limitations	20

Data Description

- StackOverflow is a public question-forum for programming questions
- Raw counts of StackOverflow questions relating to 82 data science topics from <u>Kaggle</u>
 - \circ R
 - Python
 - Machine learning
 - Classification
 - Regression
 - Clustering
 - Time Series
- Monthly data from January 2011 to December 2019

Research Questions

Prediction

Which data science tools between R and Python have the highest predicted growth rate from 2019 to 2021?

Inference

Which data science topics significantly contributed to the question count for R and Python?

Python has the most StackOverflow questions per month, followed by R

There is a strong correlation between all the time series of interest

There is a trend and a seasonal effect in both the Python and R time series

Decomposition of Python Series

Decomposition on R Series

ACF/PACF plots suggest an AR process with seasonal effects

Methods for Modeling (SARIMA)

It's clear that our time series have complex behaviors, so SARIMA models were fit to the R and Python series to gain a better understanding of our data:

- 1. **Manually fit a SARIMA**(1,0,0) (1,1,0) [12] for Python and R based on ACF and PACF plots
- 2. **Verify the initial model** using auto.arima with varying parameters
 - a. For Python, auto.arima found the same model we originally fit
 - b. For R, auto.arima found an SARIMA(1,1,0) (0,1,1) [12] model
- 3. **Check model diagnostic plots** and forecasts
 - a. Auto.arima model chosen over our original model due to lower AIC and RMSE/MAE

Plots illustrate that the SARIMA models fit the data relatively well

Model diagnostics suggest that the residuals are white noise, but a seasonal pattern remains present in Python

Python & R forecasts suggest an increasing trend consistent with prior data

Methods for Modeling (VAR)

A VAR model was fitted to the data to answer our research questions:

- 1. **Detrend and deseasonalize** the Python and R series based on findings from the SARIMA model and in the exploratory data analysis
- 2. **Create two VAR models** using the VARselect function to select an appropriate order for the Python and R series
- 3. **Check model diagnostic** plots and forecasts
- 4. **Evaluate the summary output** for the VAR models
- 5. **Forecast** question counts for the next two years in the original data scale

After transforming the data, plots suggest Python and R follow an AR process

The R model has more significant predictors and a higher adjusted R²

Python				
Variable (Lag 1)	Coefficient Est.	Std. Error		
Python	0.67***	0.07		
Machine Learning	0.39	0.69		
Classification	4.87	6.86		
Regression	-5.43	5.81		
Time Series	0.24	4.29		
Cluster Analysis	-2.65	7.35		

R				
Variable (Lag 1)	Coefficient Est.	Std. Error		
R	0.87***	0.05		
Machine Learning	-0.24	0.21		
Classification	7.79***	2.15		
Regression	-2.57	1.78		
Time Series	0.73	1.36		
Cluster Analysis	-6.18***	2.25		

Adj. R²: 0.44

Adj. R²: 0.81

Plots illustrate that the VAR models also fit the data relatively well

Forecasts suggest an increasing trend consistent with prior data

Conclusions

Prediction

- The Python model forecasts the number of questions to grow from 20,058 in December 2019 to 23,661 in December 2021, a **17.97%** growth rate
- The R model forecasts the number of questions to grow from 4,150 in December 2019 to 5,238 in December 2021, a **26.24%** growth rate

Inference

- None of the topics significantly contributed to predicting the Python series
- Classification and Clustering were the only topics that significantly contributed to predicting the R series
- R overall has a better fit with machine learning topics than Python

Discussion

- R is primarily used for statistical modeling while Python has many other uses (i.e. software engineering), which explains the differences in:
 - Significant predictors
 - Adjusted R²
 - Growth rate
- Unsure why clustering and classification are the only significant predictors

Limitations

- R vs. Python may not be a reasonable comparison because R is used for statistical modeling while Python has many other uses
- Limited selection of topics
- Better features may exist
 - Chosen by intuition/research question
- Feature redundancy
 - Double counting likely present in data
 - o e.g.) Python vs. Python 3.0
- May be losing important patterns in the data due to monthly aggregation

Next Steps

- Extend time frame of analysis
- Verify results of forecast with new data
- Include more predictors in the models
- Increase frequency of the data (daily, weekly, etc.)
- Add indicator variables for whether the semester is in session

Thank You! Questions?