Rechenübungen zur Experimentalphysik I

Aufgabenblatt 2

(Besprechung: ab 2021-11-03)

Aufgabe 1:

Bilden Sie die Ableitung der folgenden Funktionen ("von Hand", also ohne Nutzung elektronischer Hilfsmittel):

a)
$$x(t) = 10 \cdot t^2$$

b)
$$x(t) = 15 + 6 \cdot t$$

c)
$$x(t) = (5+t) \cdot (1-t^2)$$

d)
$$x(t) = (t^2 - 2)^3$$

Aufgabe 2:

Ermitteln Sie die Stammfunktion ("von Hand") des Integrals $x = \int v(t) dt$ für die folgenden Funktionen und berechnen Sie dann jeweils das bestimmte Integral in den Grenzen t = 0 bis t = 10:

a)
$$v(t) = t$$

b)
$$v(t) = 3t^2$$

c)
$$v(t) = 10 + \frac{1}{10}t$$

d)
$$v(t) = \cos(\pi t)$$

Aufgabe 3:

a) Zeichnen Sie ein Ort-Zeitdiagramm für die Zeiten $t=0\,\mathrm{s}$ bis $t=4\,\mathrm{s}$ für die Bewegung

$$x(t) = 0.5 \,\mathrm{m} + 0.2 \,\frac{\mathrm{m}}{\mathrm{s}} \cdot t$$

als durchgezogene Linie und für die Bewegung mit doppelter Geschwindigkeit als gestrichelte Linie.

b) Ein Körper bewegt sich vom Ursprung $x_0 = x(t=0) = 0$ m in der Zeitspanne t=0 s bis t=3 s mit der konstanten Geschwindigkeit 1,5 ms⁻¹ und in der Zeitspanne t=3 s bis t=5 s mit der konstanten Geschwindigkeit -1 ms⁻¹.

An welchen Orten ist er zu den Zeiten t = 3s und t = 5s?

c) Rechnen Sie die Geschwindigkeit 36 $\frac{km}{s}$ in die Geschwindigkeit mit der Einheit $\frac{m}{s}$ um.

Aufgabe 4:

Gegeben seien die Punkte A(-3, -2, 4), B(-1, 0, 2) und C(7, 8, -6).

- a) Berechnen Sie die Vektoren \overrightarrow{AB} und \overrightarrow{AC} .
- b) Berechnen Sie die Summe $\overrightarrow{AB} + \overrightarrow{AC}$ und die Differenz $\overrightarrow{AB} \overrightarrow{AC}$.
- c) Zeigen Sie, dass \overrightarrow{AC} ein Vielfaches von \overrightarrow{AB} ist.
- d) Berechnen Sie die Koordinaten des Mittelpunktes M der Strecke \overline{AB}

Aufgabe 5:

Zeichnen Sie das von den Vektoren

$$\vec{a} = \frac{1}{3} \begin{pmatrix} 2\\1\\-2 \end{pmatrix}, \qquad \vec{b} = \frac{1}{3} \begin{pmatrix} -2\\-2\\1 \end{pmatrix}, \qquad \vec{c} = \frac{1}{3} \begin{pmatrix} 1\\2\\2 \end{pmatrix}$$

aufgespannte Parallelepiped und berechnen Sie sein Volumen.

Aufgabe 6:

Ein Körper der Masse m bewege sich in einer festen Ebene mit der Geschwindigkeit $\vec{v}(t)$ auf der Bahnkurve $\vec{r}(t)$. Zur Zeit t_1 sei er an der Position \vec{r}_1 . Nach einem infinitesimal kleinen Zeitschritt dt sei er an der Position $\vec{r}_2 = \vec{r}_1 + \mathrm{d}\vec{r}$. Dabei soll gelten, dass das d \vec{r} immer senkrecht zu \vec{r} steht. Berechnen Sie die Fläche dA, die der Vektor \vec{r} pro Zeiteinheit überstreicht. Welche Bedingung muss erfüllt sein, damit die Flächengeschwindigkeit d $A/\mathrm{d}t$ eine Erhaltungsgröße ist?