Indian Institute of Technology Hyderabad Department of Physics Complex Analysis, EP2197/PH5197 Final exam, Sep — Dec 2020

Answer all the questions

Time: $1\frac{1}{4}$ hours

Maximum marks: 100

1. Let f(z) be a analytic function. Show that the derivative of f(z) with respect to z^* exist only if f(z) is constant.

(25 marks)

2. Let C be a closed contour defined by |z| = R, where R is a constant. For the cases of R < 1 and R > 1, evaluate the following integral using the Cauchy's integral fromula and Cauchy's integral theorem.

$$\oint_C \frac{dz}{z^2 + z}$$

Hint: You can use partial fractions.

(25 marks)

- 3. (i) Show that the derivative of the function $\ln(1+z)$ exist, except for z=-1. Find the derivative of this function.
 - (ii) Develop the Taylor series expansion for $\ln(1+z)$ around the point z=0.

Hint: For an integer m, you can use

$$\frac{d}{dz}(1+z)^m = m(1+z)^{m-1}$$

(25 marks)

4. Let α, t, s are real variables. For $-1 < \alpha < 0$, Show that

$$\int_0^\infty e^{it} t^\alpha \ dt = i^{\alpha+1} \int_0^\infty e^{-s} s^\alpha \ ds$$

Hint: You can use the below contour

(25 marks)