Student 3-mfld seminar

The loop than & Dehn's lemma

Stalling's formulation: (1971)

Thm (Loop theorem) Let M be a 3-mfld, BCDM a compact surface, $N \triangleleft \ker(i_{k}:\pi_{1}(B) \rightarrow \pi_{1}(M))$ a proper normal subgroup. Then there is a proper embedding $f:(D^{2},S^{1}) \rightarrow (M,B)$ such that $f|_{S^{1}}$ represents a free homotopy class outside N.

Let M a conjugacy class of $\pi_{1}(B)$

Stated by Dehn 1910 with incorrect proof:

Cor (Dehn's Lemma) Let M be a 3-mfld and let $f:(D^2,S^1) \rightarrow (M,\partial M)$ be a map that on a collar neighborhood A of S' is a proper embedding. Then there is a proper embedding $f':(D^2,S') \rightarrow (M,\partial M)$ s.t. $f'|_A = f|_A$.

Pf Let M' be from cutting out a regular while of A, and let $B \subset \partial M'$ be a regular while of $\partial A \cap M' \cong S'$

For $B \subset \partial M'$ and $N=1.2 \to C_1(B)$, apply the Loop Thm to get a proper embedding $f':(D^2,S') \longrightarrow (M',B)$ st. $f'|_{S'}$ is essential in B. $f'|_{S'}$ is isotopic to $\partial A \cap M'$ (possibly with reversed orientation) and this isotopy extends, so can assume $f'|_{S'}=\partial A \cap M'$, WLOG with correct orientation. Thus can extend domain of f' to $D^2 \cup A$. Where D is the correct orientation of D is the correct orientation.

* Singularities

What are the failures in (°-approximating aubitrary maps by immersions in general pos.?

■ 1-mfld → 2-mfld

Only isolated transverse double points.

•	2-mfld -> 3-mfld
	double curves:
	triple points:
	A 1 if well-almost a very large and a very
	And, if not already an immersion, branch points: of order 2
l	

* Simplicial approximation

For K,L compact simplicial complexes, f:K->L any map, then f is homotopic to a simplicial map with some subdivision of K. (With a fine enough subdiv., each simplex of K is taken into a star of a utx of K. Extend linearly.)

* Tower construction (Papakyriakopoulos 1957)

Start with

- M a 3-mfkl
- B c ∂M compact sfc , i:B c→M
- Na ker ix proper
- a proper map $f:(0,5') \longrightarrow (M,B)$ st. $[f|_{5'}] \notin N$

Let

- fo be simplicial approx of f
- M_o be closed regular while of $f(D^2)$
- B. = B M.
- No of TU(βo), No = TU(βo coop) (N) Note: (fols) & No

Suppose
$$(M_0, B_0)$$
 has a connected double cover $p_0: (M'_0, B_0') \longrightarrow (M_0, B_0)$
Can lift f_0 to $f_1: \dots (M'_0, B_0')$
 $f_0 \longrightarrow (M_0, B_0)$

Let

-M, be closed regular nobld of $f_1(D^2)$

 $-B_1 = B_0 \cap M_1$

 $-N_1 = \pi t_1(\beta_1 \hookrightarrow \beta_0^1 \xrightarrow{\rho_0} \beta_0)^{-1}(N_0)$

One gets a tower by inductively repeating this construction

Lemma Every tower is finite.

Pf Let $\phi(f_i) = (\# \text{ simplices in } D^2) - (\# \text{ simplices in } f_i(D^2))$.

Constant for all i Strictly increasing

Since if not, $M_{in} \neq M_i \Rightarrow \text{ disconnected cover}$

Consider the last stage (D2,51) tis (Mi, Bi).
Bi is planar surface, so To, (Bi) is normally generated by Bi loggs.
⇒ I loop in ∂Bi not in Ni. This loop bounds a disk in ∂Mi (spheres)
So let $g_i:(D^2,S^i) \to (M_i,B_i)$ be a properly embedded disk (pash disk slightly in)
with [qi(s')] & Ni
We now induct down on i to prove Loop Thm:
Let $g'_i = \rho_{i-1} \circ g_i : (\rho^2, s') \longrightarrow (M_{i-1}, B_{i-1})$, perturb to general position.
Singularities:
· double arcs and loops
· no triple points or broud pts since from double cover
Now, modify of to produce a proper embedding.
a) Suppose there is a double loop $J \subset g_i^2(0^2)$, let $J' = preimage$ of J
i) If gi : J' -> J is connected double cover, can cut D2 along J',
twist by to, and reglue; gi perturbed eliminates J'
(of Ji)
identify by ori.—reversing map over all double
ii) If $J' \rightarrow J$ is disconnected, either $\textcircled{6}$ or $\textcircled{9}$. Suppose b innermost logp.
Cut out disk a and replace with disk b, perturb. Eliminates 72 loops.
Now no double loops
b) suppose there is a double ove $J \subset q_1^2(D^2)$, $J' = preimage$. Take so an arc in J'
is innermost.
(latel b) A by by by by
Options:
i) glue sunes together ii) replace I lune with b, perturb
boundary: i) BIS ii) OCBYBI. (BYBI)(BIS) = OBYS &Ning so one & Ning

Thus, get an embedding $g_{i+1}:(D^2,5') \rightarrow (M_{i+1},B_{i+1})$. When i=0, go is the emb. Like M

kneser's lemma Let 5 be a 2-sided sto in a 3-mfld M. If S is not ϖ , -injective (i.e., $\ker(\varpi_1(S) \to \varpi_1(M)) \neq 1$) then there is a proper emb. (D2,5') - (M-V(S), dv(S)) whose boundary is essential in 2v(s)

Example Let $T^2 \subset S^3$ be an embedded torus. $\pi_1(T^2) \longrightarrow \pi_1(S^3)$ not injective, so there is a properly embedded disk D with 20 < T2.

Compress T2 along D, yielding or sphere S. Alexander's thum => 5 bounds a ball on either side; let B be on side apposite D. "Uncompressing" B along D gives a $S^1 \times D^2$ that T^2 bounds. Hence: 72 is 2 of v(knot).

for T' < R3, > this or a knot complement

Pf Let $\gamma: S' \rightarrow S$ represent an essential loop that is invessential in M - i.e., there is a nullhomotopy $f:(D^2,S') \longrightarrow (M,S)$ with $f|_{S'} = \gamma$. Since S is 2-sided, can push y off S to one side - so assume now

f(s') does not intersect s.

Since S is embedded, can perturb f so f'(s) is disjoint simple closed curves. Take innermost L Cf-1(5):

- If f(1) inessential in S, there is a disk near S that the interior of L may be replaced by, removing an intersection
- If f(L) essential in s, replace f by restriction to interior disk, removing all intersections

Thus, can assume $f(D^2) \cap S = \emptyset$, hence $\partial \nu(S) \longrightarrow M - \nu(S)$ is not TC, -injective. Apply the Loop Theorem.

<u> </u>	Freedmand Scharlemann 2017:
1	Thm Let M be a 3-mfld with collar ubhd DM×[0, E],
	y=5'-> 7M on immersion in general position (Morse) whose inclusion in M is nullhomotopic. Then there is andisplacement
	whose inclusion in M is nullhomotopic. Then there is a Adisplacement
	for $\delta: S' \to (0, E)$ such that $(Y \times S) \circ \Delta: S' \to \partial M \times (0, E)$ is an
	embedded loop bounding an embedded disk.