REPORT OF GROUP B-12 A MS101

A. Graph

*Initially when we presented demo to professor the upper gripper compressed the workpiece instead due to which we got negative value of strain later reversing polarity of motor we got proper value of stress from 3.98 Pa.

B. Raw Data

C.ARDUINO CODE

```
unsigned int pulseCount=0; // No of pulses counted
                         // A dummy index used to store Current
unsigned char index=0;
readings in an array
int r;
int i;
float Averaged_A0;
int y;
float strain;
float stress;
#define mtrDirPin1 7 // In1 Pin on Motor Driver - Controls Motor
Direction
#define mtrDirPin2 8 // In2 Pin on Motor Driver - Controls Motor
Direction
#define mtrEnPin 9 // EnA Pin on Motor Driver - Turns Motor ON/OFF
#define irPin 2
                     // This is the IR sensor's (near the encoder disc)
Output Pin
#define currentPin A0 // This pin will be used to sense Motor Current
#define isrTestPin 13 // This pin will toggle every time ISR is called
unsigned int analogValues[100]; // Stores last hundred ADC readings
void setup()
  // This code will run once initially
  pinMode(mtrDirPin1,OUTPUT);
  pinMode(mtrDirPin2,OUTPUT);
  pinMode(mtrEnPin,OUTPUT);
  pinMode(irPin,INPUT);
  attachInterrupt(digitalPinToInterrupt(irPin), pulseDetected, FALLING);
  pinMode(isrTestPin,OUTPUT);
  Serial.begin(9600);
  digitalWrite(mtrDirPin1,HIGH);
  digitalWrite(mtrDirPin2,LOW);
  digitalWrite(mtrEnPin,HIGH);
     // Full Speed
  // analogWrite(mtrEnPin, 128); // Variable Speed, set second parameter
0 - 255
}
void loop()
  y = analogValues[index];
  stress = (0.0202*y+ 29.4)/12;
```

```
strain = pulseCount*(0.00046875);
  //(1.5/8)*(1/16)*(1/25)
  Serial.print(strain);
  Serial.print(",");
  Serial.println(stress);
  // k = 15/740 stress = force/area
  // (15/740)*v + c/area
}
void pulseDetected() // This is the Interrupt Service Routine
{ // This will run everytime a falling edge is detected on the irPin
 //digitalWrite(isrTestPin,!digitalRead(isrTestPin));
 // The ISR Test Pin toggled everytime a falling edge is detected!
  pulseCount++; // We detected a pulse! Increase the pulse count by 1
  index++;
  if (index>=100)
    index = 0;
  // Index incrments with pulseCount but if it goes above 99, its resetted
to 0
  analogValues[index] = analogRead(currentPin); // Read the Motor Current
D. Fabrication Sheet
```

MS 101 Makerspace Fabrication Request Form - Autumn 2023

Section 3: Laser Cutting

- 1. Total Area: The total area of all parts must NOT exceed 3600 cm² (60 x 60 cm) for test parts (cardboard) or for the final parts (acrylic). Ensure that all parts are within
- Total Area: The total area to an pain and the Aceted Scot Ciff (by A bod Injuries as the Kender).
 In the solimits before submitting the job for laser cutting.
 Job Submission: Submission time will be the first 30 minutes of your lab slot. Kindly fill up the details in this form and the logbook available with lab staff. You must provide the part file to the lab engineer and fill out the job submission form. The lab engineer will assist you in submitting the job.
 Misuse of Machine: ANY misuse of the laser cutting machine will attract a grade penalty. Ensure that your team is following all safety guidelines.
 Job Collection: The time will be 9:30 AM 11:30 AM, and 2 PM 4 PM every day. A team member MUST produce this form to collect the completed part.

Test	Cuts	(Cardboard)

Job #		Area	Verification by ME mentor (sign)	Job Submission Details			Job Collection Details			
	Part Name	(cm²)		Date	Time	Lab Engineer Sign	Date	Time	Team Member Sign	Lab Engineer Sign
-										
	Total							1		

Final Cuts (Acrylic)

Job		Area	Verification by	Job	Submission	Details	Job Collection Details				
#	Part Name	(cm²)	ME mentor (sign)	Date	Time	Lab Engineer Sign	Date	Time	Team Member Sign	Lab Engineer Sign	
1	GIEAR,	18.8×16.3	Ubris	28-10-23	11:30	Sec	28 10 23	11:35	81	-	
2	Lawes Gampes	12.1×8.1	Tlokar &-	31-20-23	9:45	That	31-10-2	9:50	80-	Book	
3	Upper esinoca	100 X 12 -3	Pravon Shit la	31-10-23	10:41	Jun-	31-10-23	10:46	- mpth.	Dave -	
4	Base	20830		31-10-23	11:48	200	31-10-23	11:23	dura.	940	
R		30x30	Asser	3/11	10:16	400	310-22	10:21	0	190	
6	Uriper part	"YXSX	1	AN	9:48	hes .	3/11/23	9: (3	dance:	Thelier,	
#	(i stotales	6 X.5	90	7/11	10:00	Ser-	7 1 23	inent	2000	8F)- 1/3	

Note: Small jobs required for the complete of the project using drill, Dremel, etc., need to be taken care by you under the supervision of a TA or staff.

Please note: This form is non-transferrable and cannot be used by anyone other than the designated team member. The form will not be re-issued if lost, so please ensure that you keep it safe and secure. For all Makerspace lab fabrication related issues contact your TA or Staff (Sunil Khalekar).

MS 101 Makerspace Fabrication R	equest Form – Autumn 2023
Team Member Names and Roll Numbers: (I) 40 AMUDAN BISWAL 28800 40 (III) HATSHIJKER VIJNY MAYLY 23800 52 (V) Krupa Pai 23800 5	(IV) KRISHANG CTNGH 2380051
What we are going to provide: 1. Acrylic sheets: 5 mm and 10 mm thickness. Maximum sheet size available to you is 60 cm (الم المرازة	m X 60 cm, of each.
 The lathe is required to make the leadscrew and nut combination. A maximum of three [3] length that can be fabricated in Makerspace lab is 10 cm. There are few lathes available in 	leadscrew-nut components are allowed to be made. The maximum threaded makerspace. So, you will need to ensure that your lab period is used to make

these jobs with the help lab staff and TAs.

Section 2: 3D Printing – It is only allowed for grips as well as any innovative part in your design that is discussed approved by the respective instructor.

- Weight and Printing Time: The total weight of all parts must NOT exceed 150 (i AND the total printing time must NOT exceed 5 hrs. Your team must ensure that all parts are within these limits before submitting the job for printing.
 Job Submission: Submission time will be the first 30 minutes of your lab slot Kindly fill up the details in this form and the logbook available with lab staff. It is your team's responsibility to submit the job with the help of a lab engineer and monitor the progress (for the first 10 minutes and every 30 minutes after that). In case of any printing issues, please stop the printing and contact the lab engineer immediately.
 Misuse of Machine: ANY misuse of the 3D printer will attract a grade penalty. Ensure that your team is following all safety guidelines and using the 3D printer correctly.
 Job Collection time will be 9:30 AM 11:30 AM, and 2 PM 4 PM every day

Job	Part Name	Weight	Printing	Verification		Job Subn	nission Det	tails	Job Collection Details			
#		(g)	Time (min)	by ME mentor (sign)	Machine Number	Date	Time	Lab Engineer Sign	Date	Time	Team Member Sign	Lab Engineer Sign
-												
100	Total								1000	The sale		

Please note: This form is non-transferrable and cannot be used by anyone other than the designated team member. The form will not be re-issued if lost, so please ensure that you keep it safe and secure. For all Makerspace lab fabrication related issues contact your TA or Staff (Sunil Khalekar).

Material bought

- 1.Ball Bearings-3
- 2.IR Sensor-1
- 4.Nuts-3

E.UTM parts

1.Lower Base	4.Upper Gripper	7.Circuit Stand	10.Motor
2.Support Rods	5.Leadscrew	8.Motor mount	11.Gears
3.Lower Gripper	6.Slider for upper gripper	9.Circular disk	12.IR sensor

F. Roles and contribution

		Roll no.	Role
	1.	23B0049	Ideation in design
			 Made 3 min video and report
			Fabrication
	2.	23B0050	 CAD modelling of UTM
			Ideation in design
			Fabrication
	3.	23B0051	Ideation in design
Hrishikesh			Electrical part(Circuit)
	4.	23B0052	Ideation in design
			 Code and electrical
	5.	23B0053	Ideation in design(upper
			gripper)
			2D sketch of UTM
			Fabrication
	6.	23B0054	Ideation of design(circuit
			mount, Gear)
			Fabrication
			 Electrical circuit and code

G.YOUTUBE LINK:-

https://youtube.com/shorts/xVYfgQ_1JiY?fea ture=shared

23B0052 <u>Home Logout IITB Website</u>

Roll no 23B0052 Name Hrishikesh Vijay Mavily

Department Aerospace Engineering **Program** B.Tech.

Payment

Performance Summary

New Entrants

Graduation Requirements

Personal Information

Forms/Requests

Academic Performance Summary

Year	Sem	SPI	CPI	Sem Credits Used for SPI	Completed Semester Credits	Cumulative Credits Used for CPI	Completed Cumulative Credits
2023	Spring	8.06	8.08	31.0	31.0	62.0	62.0
2023	Autumn	8.1	8.1	31.0	31.0	31.0	31.0

Semester-wise Details

*This registration is subject to approval(s) from faculty advisor/Course Instructor/Academic office.

Year/Semester: 2024-25/Autumn

Course Code	Course Name	Credits	Tag	Grade	Credit/ Audit
AE 223	Thermodynamics and Propulsion	6.0	Core course	Not allotted	С
AE 227	Solid Mechanics	6.0	Core course	Not allotted	С
AE 229	Introduction to Aerodynamics and Propulsion Laboratory	3.0	Core course	Not allotted	С
AE 231	Introduction to Aerospace Structures and Control Laboratory	3.0	Core course	Not allotted	С
AE 308	Control Theory	6.0	Core course	Not allotted	С
EC 101 (D2)	Economics	6.0	Core course	Not allotted	С
ES 250	Environmental Studies : Science and Engineering First Half	3.0	Core course	Not allotted	N
HS 250	Environmental Studies Second Half	3.0	Core course	Not allotted	N

1 of 2 30-09-2024, 20:24

SC 639	Mathematical Structures for Control	6.0	Minor Not	
(M)	Mathematical Structures for Control	0.0	Minor allotted	•

Year/Semester: 2023-24/Spring

Course Code	Course Name	Credits	Tag (Grade	Credit/ Audit
AE 152 (D2)	Introduction to Aerospace Engg.	6.0	Core course	ВВ	С
CS 101 (D2)	Computer Programming and Utilization	6.0	Core course	AB	С
ENT101	Introduction to Innovation & Entrepreneurship	4.0	Core course	AB	С
MA 110 (D2)	Linear Algebra and Differential Equations	8.0	Core course	СС	С
NOCS02	NCC/NSS/NSO	0.0	Core course	PP	N
PH 117 (P10)	Physics Lab	3.0	Core course	ВВ	С
SOM101 (S2)	Introduction to Management	4.0	Core course	AA	С

Year/Semester: 2023-24/Autumn

Course Code	Course Name	Credits	Tag	Grade	Credit/ Audit
AE 103	A historical perspective of Aerospace Engineering	6.0	Core course	ВВ	С
BB 101 (D2)	Biology	6.0	Core course	ВВ	С
CH 117 (P10)	Chemistry Lab	3.0	Core course	АВ	С
GC 101	Gender in the workplace	0.0	Core course	PP	N
MA 105 (D2)	Calculus	8.0	Core course	ВВ	С
MS 101 (P10)	Makerspace	8.0	Core course	ВВ	С
NOCS01 (S1)	NCC/NSS/NSO	0.0	Core course	PP	N

Report Problem

2 of 2