Implementação de uma biblioteca da Lógica de Inconsistência Formal LFI1 em Coq

Helena Vargas Tannuri

Universidade do Estado de Santa Catarina helenavargastannuri@gmail.com

Orientadora: Dra Karina Girardi Roggia

Coorientador: Miguel Alfredo Nunes

23/11/2024

Sumário

- Introdução
- Objetivos
- Trabalhos Relacionados
- 4 Definições básicas
- 5 LFI1
- 6 Metateoremas
- Conclusões
- 8 Referências

Introdução

- Lógicas paraconsistentes são sistemas não-clássicos que separam a trivialidade da contradição;
 - Usualmente, lógicas ortodoxas assumem que toda teoria contraditória é uma teoria trivial, ou seja, uma teoria com todas as fórmulas.
- Lógica não-clássica é qualquer lógica que quebra algum dos princípios da lógica clássica;
 - As lógicas paraconsistentes quebram o princípio da explosão (definido como $\alpha \to (\neg \alpha \to \beta)$) (CARNIELLI; CONIGLIO; MARCOS, 2007).
- Lógicas de inconsistência formal (LFIs) são lógicas paraconsistentes que resgatam de maneira controlada o princípio da explosão (CARNIELLI; CONIGLIO, 2016).

Introdução

- Lógicas paraconsistentes, sobretudo LFIs, possuem diversas aplicações em diferentes campos do conhecimento;
 - Ciências naturais:
 - Linguística;
 - Computação (bancos de dados com inconsistências).
- LFI1: Uma LFI que internaliza o conceito de inconsistência dentro de sua linguagem (representado por ∘).
 - Resgata a explosividade com o princípio da explosão gentil (definido como $\circ \alpha \to (\alpha \to (\neg \alpha \to \beta))$) (CARNIELLI; MARCOS; AMO, 2000).

Introdução

- Assistentes de provas s\u00e3o ferramentas de softwares utilizadas no desenvolvimento de provas formais (CHLIPALA, 2019);
- O Coq é um assistente de provas amplamente utilizado para a verificação formal de software e para o desenvolvimento de teoremas, baseando-se no cálculo de construções indutivas (SILVA, 2019);
- As provas desenvolvidas no assistente possuem um grau de confiabilidade dificilmente encontrado em provas manuais pois independe de um avaliador para garantir sua correção.

Objetivo Geral

Implementar uma biblioteca de **LFI1** em Coq, assim como desenvolver os metateoremas da correção, da completude e da dedução dentro da biblioteca, análogo ao que foi desenvolvido em (SILVEIRA, 2020).

Objetivos Específicos

- Estudar conceitos relevantes sobre lógicas paraconsistentes, em especial a LFI1;
- Estudar e revisar as provas manuais para completude, correção e metateorema da dedução da LFI1;
- Oesenvolver uma biblioteca da LFI1 em Coq, baseada na semântica e sintaxe previamente definidas;
- Desenvolver e verificar formalmente as provas para completude, correção e metateorema da dedução em Coq.

Trabalhos Relacionados

- Villadsen e Schlichtkrull (2017) implementam uma biblioteca de uma lógica paraconsistente com infinitos valores-verdade no assistente de provas Isabelle. Algumas metapropriedades são provadas dentro da biblioteca;
- 2 Amo e Pais (2007) especificam uma linguagem de consulta a banco de dados baseada na lógica de inconsistência formal LFI1, chamada P-Datalog;
- Ávila, Abe e Prado (1997) descrevem uma linguagem de programação lógica chamada ParaLog_e, que propõe mesclar conceitos de programação lógica clássica com conceitos de inconsistência, utilizando como base a lógica evidencial.

Definições básicas - Lógica Tarskiana

Uma lógica $\mathscr{L}=\langle\mathcal{L},\Vdash\rangle$ que respeita estas propriedades é dita Tarskiana:

```
(i) Se \alpha \in \Gamma então \Gamma \Vdash \alpha; (reflexividade)
```

(ii) Se
$$\Delta \Vdash \alpha$$
 e $\Delta \subseteq \Gamma$ então $\Gamma \Vdash \alpha$; (monotonicidade)

(iii) Se
$$\Delta \Vdash \alpha$$
 e $\Gamma \Vdash \delta$ para todo $\delta \in \Delta$ então $\Gamma \Vdash \alpha$. (corte)

Г

Definições básicas - Lógica padrão

Uma lógica Tarskiana é dita *padrão* caso ela respeite as seguintes condições:

- (i) Se $\Gamma \Vdash \alpha$, então $\sigma[\Gamma] \Vdash \sigma(\alpha)$, para toda substituição σ de variável por fórmula.
- (ii) Se $\Gamma \Vdash \alpha$, então existe conjunto finito $\Gamma_0 \subseteq \Gamma$ tal que $\Gamma_0 \Vdash \alpha$.

Definições básicas - Lógica paraconsistente

Uma lógica Tarskiana é dita paraconsistente se ela possuir uma negação \neg e existirem fórmulas quaisquer $\alpha, \beta \in \mathcal{L}$ tal que $\alpha, \neg \alpha \nVdash \beta$.

Definições básicas - LFI

Uma lógica padrão será uma lógica de inconsistência formal (**LFI**) (em relação a $\bigcirc(p)$ e \neg , onde $\bigcirc(p)$ é um conjunto não-vazio de fórmulas dependentes somente da variável p) caso respeite as seguintes condições:

- (i) Existem $\alpha, \beta \in \mathcal{L}$, de modo que $\alpha, \neg \alpha \not\Vdash \beta$;
- (ii) Existem $\alpha, \beta \in \mathcal{L}$, de modo que:
 - (ii.a) $\bigcap (\alpha), \alpha \nvDash \beta$;
 - (ii.b) \bigcirc (α), $\neg \alpha \nvDash \beta$;
- (iii) Para todo $\alpha, \beta \in \mathcal{L}$, tem-se \bigcirc $(\alpha), \alpha, \neg \alpha \Vdash \beta$.

LFI1 - Linguagem

Construção indutiva do menor conjunto \mathcal{L}_{Σ} que respeita:

- 1. $\mathcal{P} \subseteq \mathcal{L}_{\Sigma}$
- 2. Se $\varphi \in \mathcal{L}_{\Sigma}$, então $\Delta \varphi \in \mathcal{L}_{\Sigma}$, com $\Delta \in \{\neg, \circ\}$
- 3. Se $\varphi, \psi \in \mathcal{L}_{\Sigma}$, então $\varphi \otimes \psi \in \mathcal{L}_{\Sigma}$, com $\otimes \in \{\land, \lor, \rightarrow\}$

LFI1 - Sintaxe

Cálculo de Hilbert ⊢_{LFI1}, com 20 axiomas:

$$\alpha \to (\beta \to \alpha) \qquad (Ax1)$$

$$(\alpha \to (\beta \to \gamma)) \to ((\alpha \to \beta) \to (\alpha \to \gamma)) \qquad (Ax2)$$

$$\alpha \to (\beta \to (\alpha \land \beta)) \qquad (Ax3)$$

$$(\alpha \land \beta) \to \alpha \qquad (Ax4)$$

$$(\alpha \land \beta) \to \beta \qquad (Ax5)$$

$$\alpha \to (\alpha \lor \beta) \qquad (Ax6)$$

$$\beta \to (\alpha \lor \beta) \qquad (Ax7)$$

$$(\alpha \to \gamma) \to ((\beta \to \gamma) \to ((\alpha \lor \beta) \to \gamma)) \qquad (Ax8)$$

$$(\alpha \to \beta) \lor \alpha \qquad (Ax9)$$

$$\alpha \lor \neg \alpha \qquad (Ax10)$$

LFI1 - Sintaxe

LFI1 - Sintaxe

Regra de inferência modus ponens:

$$\frac{\alpha \qquad \alpha \to \beta}{\beta} \text{ MP}$$

г

LFI1 - Semântica

A LFI1 possui dois sistemas semânticos:

- Semântica matricial;
 - Trivalorada:
 - Algébrica.
- Semântica de valorações.
 - Bivalorada;
 - Não-determinística.

LFI1 - Semântica matricial

 $\mathcal{M}_{LFI1} = \langle M, D, O \rangle$, com $M = \{1, 1/2, 0\}$ e $D = \{1, 1/2\}$.

\rightarrow	1	1/2	0	\wedge	1	$1/_{2}$	0	\vee	1	$1/_{2}$	0
1	1	1/2	0	1	1	1/2	0	1	1	1	1
1/2	1	$1/_{2}$	0	1/2	1/2	1/2	0	$1/_{2}$	1	$1/_{2}$	$1/_{2}$
0	1	1	1	0	0	0	0	0	1	$1/_{2}$	0

	_
1	0
1/2	1/2
0	1

$$\begin{array}{c|cc} & \circ & \\ \hline 1 & 1 \\ 1/2 & 0 \\ 0 & 1 \\ \end{array}$$

 $\Gamma \vDash_{\mathcal{M}_{\mathsf{LFII}}} \varphi$ sse, para toda valoração $h : \mathcal{L}_{\Sigma} \to M$ de $\mathcal{M}_{\mathsf{LFII}}$, se $h[\Gamma] \subseteq D$ então $h(\varphi) \in D$.

LFI1 - Semântica de valorações

Uma função $v: \mathcal{L}_{\Sigma} \to \{1,0\}$ é uma valoração para a lógica **LFI1** caso ela satisfaça as seguintes cláusulas:

$$v(\alpha \wedge \beta) = 1 \Longleftrightarrow v(\alpha) = 1 \text{ e } v(\beta) = 1$$

$$v(\alpha \vee \beta) = 1 \Longleftrightarrow v(\alpha) = 1 \text{ ou } v(\beta) = 1$$

$$v(\alpha \rightarrow \beta) = 1 \Longleftrightarrow v(\alpha) = 0 \text{ ou } v(\beta) = 1$$

$$v(\neg \alpha) = 0 \Longrightarrow v(\alpha) = 1$$

$$v(\neg \alpha) = 1 \Longrightarrow v(\alpha) = 0 \text{ ou } v(\neg \alpha) = 0$$

$$v(\neg \alpha) = 1 \Longrightarrow v(\alpha) = 1 \text{ e } v(\neg \alpha) = 1$$

$$v(\neg \alpha) = 1 \Longleftrightarrow v(\alpha) = 1 \text{ e } v(\neg \alpha) = 1$$

$$v(\neg \alpha) = 1 \Longleftrightarrow v(\alpha) = 1 \text{ ou } v(\neg \beta) = 1$$

$$v(\neg \alpha \wedge \beta) = 1 \Longleftrightarrow v(\neg \alpha) = 1 \text{ ou } v(\neg \beta) = 1$$

$$v(\neg \alpha \wedge \beta) = 1 \Longleftrightarrow v(\neg \alpha) = 1 \text{ e } v(\neg \beta) = 1$$

$$v(\neg \alpha \rightarrow \beta) = 1 \Longleftrightarrow v(\alpha) = 1 \text{ e } v(\neg \beta) = 1$$

$$v(\neg \beta) = 1 \Longleftrightarrow v(\neg \beta) = 1 \text{ e } v(\neg \beta) = 1$$

$$v(\neg \beta) = 1 \Longleftrightarrow v(\alpha) = 1 \text{ e } v(\neg \beta) = 1$$

$$v(\neg \beta) = 1 \Longleftrightarrow v(\neg \beta) = 1 \text{ e } v(\neg \beta) = 1$$

 $\Gamma \vDash_{\mathsf{LFI1}} \varphi$ sse, para toda valoração v de $\mathsf{LFI1}$, se $v[\Gamma] \subseteq \{1\}$ então $v(\varphi) = 1$.

Conclusões

- Uma implementação paramétrica de fusão de sistemas sintáticos semelhante a desenvolvida nesse trabalho não foi encontrado nos trabalhos relacionados:
- Não foi possível terminar a implementação da fusão de sistemas semânticos devido a escolhas de implementação da biblioteca base;
- Não foi possível demonstrar transferência de propriedades no Coq.

Referências

AMO, S. d.; PAIS, M. S. A paraconsistent logic programming approach for querying inconsistent databases. International Journal of Approximate Reasoning, v. 46, n. 2, p. 366-386, 2007. ISSN 0888-613X. Special Track on Uncertain Reasoning of the 18th International Florida Artificial Intelligence Research Symposium (FLAIRS 2005). Disponível em: https://www. sciencedirect.com/science/article/pii/S0888613X06001307>. 🗐 ÁVILA, B. C.; ABE, J. M.; PRADO, J. P. d. A. Paralog e: a paraconsistent evidential logic programming language. In: Proceedings 17th International Conference of the Chilean Computer Science Society. [S.I.: s.n.], 1997. p. 2–8. CARNIELLI, W.; CONIGLIO, M.; MARCOS, J. Logics of Formal Inconsistency. In: . Handbook of Philosophical Logic. [S.I.]: Springer, 2007. p. 1-93. ISBN 978-1-4020-6323-7.

Referências

- CARNIELLI, W.; CONIGLIO, M. E. Paraconsistent logic: Consistency, contradiction and negation. [S.I.]: Springer International Publishing, 2016.
- CARNIELLI, W.; MARCOS, J.; AMO, S. D. Formal inconsistency and evolutionary databases. *Logic and logical philosophy*, p. 115–152, 2000.
- CHLIPALA, A. Certified programming with dependent types: A pragmatic introduction to the coq proof assistant. [S.I.]: The MIT Press, 2019.
- SILVA, R. C. G. Uma certificação em Coq do algoritmo W monádico. 2019. 78 p. Dissertação (Mestrado) Universidade do Estado de Santa Catarina, Programa de Pós Graduação em Computação Aplicada, 2019.

Referências

SILVEIRA, A. A. da. Implementação de uma biblioteca de lógica modal em Coq. Dissertação (Projeto de Diplomação) — Bacharelado em Ciência da Computação-Centro de Ciências Tecnológicas, UDESC, Joinville, 2020. VILLADSEN, J.; SCHLICHTKRULL, A. Formalizing a paraconsistent logic in the Isabelle proof assistant. In: Transactions on Large-Scale Data- and Knowledge-Centered Systems XXXIV: Special Issue on Consistency and Inconsistency in Data-Centric Applications. Berlin, Heidelberg: Springer Berlin Heidelberg, 2017. p. 92-122. ISBN 978-3-662-55947-5. Disponível em: https://doi.org/10.1007/978-3-662-55947-5 5>.