Definitions and Theorems from Infinite Groups (Lent '22)

Isaac Martin

Last compiled January 29, 2022

§ Free Groups and Presentations

Definition 0.1 (Directly Finite). We say that a ring R (not necessarily commutative) with unity is *directly finite* (D.F.) if $\forall a,b \in R, ab = 1 \implies ba = 1$.

Definition 0.2 (Group Algebra). Let G be a group, K a field. The *group algebra*, denoted K[G], is a K-algebra. As a set it consists of all finite linear combinations of elements in K and G:

$$K[G] = \left\{ \sum_{g \in G} \lambda_g \cdot g \;\middle|\; \lambda_g \in K, \lambda_g \neq 0 \text{ for only finitely many } g \;
ight\}.$$

Addition is defined pointwise: $\lambda g + \lambda' g = (\lambda + \lambda')g$. Multiplication is defined

$$(\lambda g) \cdot (\mu h) = (\lambda \mu)(gh)$$

and extended by distribution.

Definition 0.3. labeldefn:directly-finite-group A group G is said to be *directly finite* (D.F.) if K[G] is a directly finite ring for all fields K.

Example 0.4.

- (i) if G is abelian then K[G] is commutative, and therefore directly finite.
- (ii) if G is finite then it is also directly finite.

Theorem 0.5 (Kaplansky). For any group G, the group algebra $\mathbb{C}[G]$ is directly finite.

Theorem 0.6 (Elek, Szako ('01')). Every sofic group is directly finite.

Proposition 0.7. Let G be a finite group. The map $\rho: G \to \operatorname{Sym}(G)$ defined $\rho(g): h \mapsto gh$ is an injective homomorphism. Moreover, for all $e \neq g \in G$, $\rho(g)$ has no fixed points.

Definition 0.8 (Hamming Distance). Suppose $\sigma, \tau \in \operatorname{Sym}(n)$ are two permutations. The *Hamming distance* from σ to τ is

$$d_n(\sigma, \tau) = 1 - \frac{1}{n} |\{1 \le i \le n \mid \sigma(i) = \tau(i)\}|.$$

That is, it's a number between 0 and 1 and is equal to 0 if and only if $\sigma = \tau$.

Definition 0.9 (Sofic). G is a sofic group if and only if $\forall A \subseteq G, \ \forall \varepsilon > 0$ there exists $n \in \mathbb{N}$ and a function $\phi : A \to \operatorname{Sym}(n)$ such that

(i) for all $g, h \in A$, if $gh \in A$, then

$$d_n(\phi(gh), \phi(g)\phi(h)) \leq \varepsilon$$
,

i.e. the distance is "small"

(ii) for all $e \neq g \in G$,

$$d_n(id_n, \phi(g)) \ge 1 - \varepsilon$$
,

i.e. the distance is "large".

Such a function ϕ is a (A, ε) -representation.

Example 0.10. Every finite group is sofic.

Theorem 0.11. Every abelian group is sofic.

Lemma 0.12. \mathbb{Z} is sofic.

Lemma 0.13. A group G is sofic if and only if every finitely generated subgroup of G is sofic.

Lemma 0.14. If G and H are sofic groups, then $G \times M$ is sofic.

Theorem 0.11. Given an abelian group G, we may assume it is finitely generated by lemma 0.13. By the structure theorem, we have

$$G\cong \mathbb{Z}^k\oplus rac{\mathbb{Z}}{p_1^{n_1}}\oplus ...\oplus rac{\mathbb{Z}}{p_i^{n_i}},$$

hence G is sofic by lemma 0.14.

1 2022 - 01 - 24: Free Groups

Throughout this section, *X* is a set and $X^{-1} = \{x^{-1} \mid x \in X\}$ is the set of inverses of *X*.

Definition 1.1. A *word* in X is a finite sequence of symbols: $y_1y_2...y_m$ with $y_i \in X \cup X^{-1}$. The empty word is a valid word. We denote the set of all words in X by W(X).

Definition 1.2. Concatenation of words is a map $W(X) \times W(X) \to W(X)$ defined

$$(y_1...y_m, z_1...z_n) \mapsto y_1...y_mz_1...z_n.$$

This map gives W(X) the structure of a monoid where the empty word is the identity.

Definition 1.3. Given two words $w, v \in W(X)$, we say that $w \sim v$ if it is possible to pass from one word to the other by means of a finite sequence of the following two operations:

- (a) insertion of an xx^{-1} or an $x^{-1}x$ for $x \in X$, as consecutive elements of a word;
- (b) deletion of such an xx^{-1} or $x^{-1}x$.

The relation \sim is an equivalence relation on W(X) and we define the *free group on X* to be $\frac{W(X)}{\sim}$. The group operation on F(X) is induced by concatenation.

Definition 1.4. A word $w \in W(X)$ is said to be *reduced* if there is no word v which can be obtained by operation (b) above; in other words, if w is the shortest word in the equivalence class $[x] \in F(X)$. For any other word $v \in W(X)$, there exists a unique reduced $w \in W(X)$ such that [v] = [w].

Theorem 1.5. Let X be a set, H a group, and $\phi: X \to H$ a function. Then there exists a unique group homomorphism $\Phi: F(X) \to H$ such that

commutes.