Sample size determination for testing mediation with the mediation Bayes factor

X: independent variable (e.g., treatment assignment)

M: mediator

Y: outcome

a-path: coefficient of independent variable (X) in the mediator (M) model

b-path: coefficient of mediator (M) in the outcome (Y) model

The mediation effect is quantified as a*b

BFmed > cutoff is interpreted as support for the

alternative hypothesis that mediation is present.

The cutoff can be defined as an absolute value,

such as 3; or be definited as a relative value that

corresponds to certain false positive rate, such

specify the absolute cutoff or the relative cutoff,

as 5% false positive rate. If a user does not

Absolute cutoff for interpreting a Bayes

False positive rate (used by the relative

Please provide a sequence of candidate sample

The smallest sample size to be considered:

The largest sample size to be considered:

a integer specifying the increment in the

sequence of sample sizes:

The number of replications:

factor value as supporting the alternative

the defaults are used.

hypothesis:

cutoff):

0.05

70

120

10

1000

sizes below.

True positive rates and false positive rates:

Show	25 ♦ entries		Search:										
N \$	true_positive_relative.cut \=	relative.cut 🔷	true_positive_absolute.cut \=	false_positive_absolute.cut	a ♦	b	ср∜	Design.PriorOdds.a 🔷	Design.PriorOdds.b 🖣	Analysis.PriorOdds.a 🖣	Analysis.PriorOdds.b	cutoff.BF =	cutoff.FPR 🛊
70	0.88	2.57	0.86	0.04	0.39	0.39	0	1	1	1	1	3	0.05
80	0.91	2.52	0.89	0.04	0.39	0.39	0	1	1	1	1	3	0.05
90	0.92	3.71	0.94	0.06	0.39	0.39	0	1	1	1	1	3	0.05
100	0.96	2.94	0.96	0.05	0.39	0.39	0	1	1	1	1	3	0.05
110	0.97	3.15	0.97	0.05	0.39	0.39	0	1	1	1	1	3	0.05
120	0.98	3.17	0.98	0.06	0.39	0.39	0	1	1	1	1	3	0.05
N	true_positive_relative.cut	relative.cut	true_positive_absolute.cut	false_positive_absolute.cut	а	b	ср	Design.PriorOdds.a	Design.PriorOdds.b	Analysis.PriorOdds.a	Analysis.PriorOdds.b	cutoff.BF	cutoff.FPR

Previous 1

Plot of the true positive rates

Showing 1 to 6 of 6 entries

Plot of the false positive rates

