Μηχανική Μάθηση DETECTION OF PARKINSON'S DISEASE

Σκοπός

- Ανίχνευση της νόσου Parkinson από ηχογραφημένες φωνές
- Κατασκευή μοντέλου ανίχνευσης με τη δυνατότερη ακρίβεια
 - 1. Χρήση και σύγκριση 5 διαφορετικών αλγορίθμων ταξινόμησης
 - 2. Χρήση Ensemble τεχνικών
 - Boosting
 - Bagging

Δεδομένα

• Προέρχονται από UCI Machine Learning Repository

- Συνολικά:
 - 195 δείγματα
 - 24 χαρακτηριστικά
- Οι μετρήσεις έγιναν μεταξύ 31 ανθρώπων εκ των οποίων οι 23 είχαν τη νόσο Parkinson.

Δεδομένα

- 24 χαρακτηριστικά ειδικών μετρήσεων ως προς τη συχνότητα
- Status:
 - 0 για μη ασθενής
 - 1 για ασθενής

```
name - ASCII subject name and recording number
MDVP:Fo(Hz) - Average vocal fundamental frequency
MDVP:Fhi(Hz) - Maximum vocal fundamental frequency
MDVP:Flo(Hz) - Minimum vocal fundamental frequency
MDVP:Jitter(%),
MDVP: Jitter(Abs),
MDVP:RAP,
                    Several measures of variation in fundamental frequency
MDVP:PPQ,
Jitter:DDP
MDVP:Shimmer,
MDVP:Shimmer(dB),
Shimmer: APQ3,
                    Several measures of variation in amplitude
Shimmer: APQ5,
MDVP:APQ,
Shimmer:DDA
NHR,
         Two measures of ratio of noise to tonal components in the voice
HNR
status - Health status of the subject , (one) - Parkinson's, (zero) - healthy
RPDE,
         Two nonlinear dynamical complexity measures
D2
DFA
         Signal fractal scaling exponent
spread1,
           Three nonlinear measures of fundamental frequency variation
spread2,
PPE
```

Pre-processing δεδομένων

Descriptive Statistics

	MDVP:Fo(Hz)	MDVP:Fhi(Hz)	MDVP:Flo(Hz)	MDVP:Jitter(%)	MDVP:Jitter(Abs)	MDVP:RAP
count	195.000000	195.000000	195.000000	195.000000	195.000000	195.000000
mean	154.228641	197.104918	116.324631	0.006220	0.000044	0.003306
std	41.390065	91.491548	43.521413	0.004848	0.000035	0.002968
min	88.333000	102.145000	65.476000	0.001680	0.000007	0.000680
25%	117.572000	134.862500	84.291000	0.003460	0.000020	0.001660
50%	148.790000	175.829000	104.315000	0.004940	0.000030	0.002500
75%	182.769000	224.205500	140.018500	0.007365	0.000060	0.003835
max	260.105000	592.030000	239.170000	0.033160	0.000260	0.021440

Συντελεστής συσχέτισης μεταβλητών

Feature Split

 Διαχωρισμός των δεδομένων σε χαρακτηριστικά εισόδου και εξόδου

• Διαχωρισμός των δεδομένων σε training και test σύνολα

• Train: 80%

• Test: 20%

Σύγκριση 5 διαφορετικών αλγορίθμων χωρίς feature scaling

1. Logistic Regression:

0.859583 (0.114429)

2. knn: 0.834167 (0.118714)

3. **SVC**: 0.821667 (0.117951)

4. decision tree: 0.865417 (0.072314)

5. Naive Bayes: 0.735833 (0.071715)

Σύγκριση 5 διαφορετικών αλγορίθμων με feature scaling

- 1. Logistic Regression: 0.859583 (0.114429)
- 2. knn: 0.834167 (0.118714)
- 3. **SVC**: 0.821667 (0.117951)
- 4. decision tree : 0.859167 (0.079009)
- 5. Naive Bayes: 0.735833 (0.071715)

Regularization Tuning για τους 2 καλύτερους αλγορίθμους

- Decision Tree Tunning αλγόριθμος
 - Best: 0.878750 using {}
- Logistic Regression Tuning αλγόριθμος
 - Best: 0.859167 using {'C': 0.7}

Ensemble Μάθηση Boosting και Bagging αλγόριθμοι

1. Scaled AB: 0.867083 (0.070155)

2. Scaled GBC: 0.929583 (0.059729)

3. Scaled RFC: 0.885833 (0.066906)

4. Scaled ETC: 0.924167 (0.088010)

Regularization Tuning για τους 2 καλύτερους αλγορίθμους

- Gradient Boosting Classifier Tuning
 - Best: 0.942500 using {'learning rate': 1.0, 'n estimators': 100}

- Extra Trees Classifier Tuning
 - Best: 0.930833 using {'n estimators': 30}

Αποτελέσματα

• Επιλογή του καλύτερου αλγορίθμου για ανίχνευση της νόσου Parkinson

train set ακρίβεια 1.0 → train set matrix

38	0
О	118

• test set ακρίβεια 0.94 → test set matrix

8	2
0	29