Vissim 자동 시뮬레이션 도구 매뉴얼

<변경 기록표>

버전	변경 일자	변경 내용	작성자
1.0	2020.12.30	최초 작성	이혜안
1.1	2021.01.15	교통량 변경 기능 추가	이혜안
1.2	2021.01.18	엑셀 output 제거	이혜안
1.3	2021.01.20	교통량 변경 기능 수정, 엑셀 output 복구 후 수정	이혜안

목차

1.	개의	요		.5
	A.	기능	5	. 5
	В.	I/O	······································	. 5
		a.	Input	5
		b.	Output	5
2.	Vis	sim	세팅	.6
	A.	상단	단 툴 바	. 6
		a.	Lists	6
		b.	Signal Control	6
		c.	Evaluation	6
	В.	Ne	twork Objects	. 6
		a.	Links	6
		b.	Signal Heads	7
		c.	Vehicle Inputs	7
		d.	Nodes	7
		e.	Data Collection Points	7
		f.	Vehicle Travel Times	8
		g.	Queue Counters	8
3.	Inp	outs.		.9
	A.	Vis	sim 파일	. 9
		a.	inpx 파일	9
		b.	layx 파일	9
		_	sia 파인	۵

	B.	엑셀 파일	9
		a. 신호 파일	9
		b. 교통량 파일	11
	c.	JSON 파일	13
		a. init.json	13
4.	Ou	ıtput	14
	A.	Measurements	14
	В.	엑셀 파일	14
		a. 개요	14
		b. Simulation Info	14
		c. Measurements	15
		d. Overall Results	15
		e. Per Hour Results	16
5.	실	행	18
	A.	실행 전 Setting	18
	В.	주의사항	18
	C.	실행 방법	18

1. 개요

A. 기능

- 현시 시간을 다양하게 조절하였을 때 교통 상황이 얼마나 나아지는지 Vissim으로 시뮬레이션할 때, 시뮬레이션을 도와주고 결과를 뽑아내는 프로그램.
- Vissim 11을 기반으로 개발됨.

B. I/O

a. Input

• 고정된 현시 순서, 변화하는 현시 시간, 교통량, Vissim Network.

b. Output

● 시뮬레이션 결과 파일.

2. Vissim 세팅

● 아래 A~B에 언급한 항목은 필수적으로 설정해야 함. 언급하지 않은 항목도 적절하게 수 정하여 정상적으로 동작하는 네트워크를 구축해야 함.

A. 상단 툴 바

a. Lists

- Results > Link Results에서 Autosave after simulation 버튼을 클릭하여 활성화.
- Results > Node Results에서 Autosave after simulation 버튼을 클릭하여 활성화.

b. Signal Control

- Signal Controllers에서 Signal Controller를 필요한 만큼 만들어 줌.
- 이때 Type은 모두 Fixed time으로 해야함.
- 각 Signal Controller에 대해 Signal Group을 필요한 만큼 만들어줌.
- Signal Program은 설정할 필요 없음.

c. Evaluation

● Configuration > Result Attributes 탭 > Queue Counters 행 > More 버튼을 클릭하여 Oueue definition을 원하는 대로 설정.

B. Network Objects

a. Links

● 도로를 그릴 때, 교차로는 link가 아닌 connector로 설정한다. 이로 인해 한 lane에는 신호등이 최대 1개까지만 배치되는 것을 기대할 수 있다. link가 교차로를 지나가면 output 에서 Max Queue, Density, Delay 등이 부정확하게 나올 수 있다. 아래 Table 1의 예시 참조.

Table 1 Network 예시

b. Signal Heads

- 필요한 곳에 모두 배치하고 알맞은 Signal Group을 설정.
- 본 프로그램은 Signal Head가 설치된 lane에 대해서만 대기 길이와 점유율, 교통량을 측정.

c. Vehicle Inputs

• 3-B-b의 내용에 따라 프로그램 내에서 일괄 설치되므로 수동으로는 설치하면 안됨.

d. Nodes

● LOS 측정결과나 일산화탄소(CO) 배출량, 휘발성유기화합물(VOC) 배출량을 알고 싶은 곳에 그림. 필수는 아님.

e. Data Collection Points

• 프로그램 내에서 Signal Head 앞에 일괄 설치되므로 수동으로는 설치하면 안됨.

f. Vehicle Travel Times

- 평균 속력을 알고 싶은 구간에 모두 만듦. 필수는 아님.
- 이때 StartLink와 EndLink가 모두 같은 Vehicle Travel Time Measurement는 만들면 안됨.

g. Queue Counters

• 프로그램 내에서 Signal Head 근처에 일괄 설치되므로 수동으로는 설치하면 안됨.

3. Inputs

A. Vissim 파일

a. inpx 파일

• 2번의 설정이 모두 완료된 네트워크 파일이 필요.

b. layx 파일

● layx 파일이 없으면 프로그램을 실행할 때마다 2-A-a의 작업을 진행해야 함.

c. sig 파일

- 2-A-b를 완료하면 sig 파일이 생성되었을 수 있는데, 본 프로그램 실행 시 그 중 하나라 도 없으면 Vissim에서 Runtime error 발생.
- 즉, Figure 1의 Signal Controllers list에서 보이는 SupplyFile2가 모두 있어야 함.

Figure 1 Signal Controllers / Signal Groups

B. 엑셀 파일

• 프로그램의 구동을 위해서 아래 두 개의 엑셀 파일이 필요함.

a. 신호 파일

• Sheet의 개수와 이름은 Signal Controller의 개수와 이름과 동일해야 함. Signal Controller

- 의 이름이란, Figure 1의 Signal Controllers list에서 보이는 Name을 의미.
- A, B 열은 사용자의 편의를 위한 것으로, 그 내용은 프로그램의 구동과는 상관없음. 프로 그램이 사용하는 정보는 C 열부터, 1행부터 입력 필요.
- Figure 1에 해당하는 엑셀 파일인 아래 Table 2를 참고.

Table 2 신호 엑셀 파일 예시

- '현시' 항목의 행 개수는, 그 Sheet에 해당하는 Signal Controller의 Signal Group의 개수와 동일해야 함. 행 삽입 / 행 삭제를 통해 늘리고 줄이면 됨. 하나의 Signal Group마다 하나의 행을 사용해야 하며, 그 순서는 해당 Signal Controller의 Signal Group의 순서와 동일해야 함. Signal Group의 순서란, Figure 1의 Signal Groups list에서의 순서를 의미.
- 현시 개수는 정해진 값이 아니며, 해당 Signal Controller에 맞게 늘리고 줄이면 됨. 현시 순서는 C 열부터 마지막 열까지 순서대로 입력. 예를 들어, 현시 개수가 10개라면 순서 대로 C 열부터 L 열까지에 입력.
- '현시' 항목의 C 열부터 각 셀에 G, Y, R을 입력하여 각각 청색, 황색, 적색 현시를 표시.
 셀의 색깔은 입힐 필요 없으며, 매뉴얼 가독성을 위해 임의로 색을 입힘. C 열 1행이 꼭 청신호일 필요는 없음.
- '현시' 항목을 모두 입력한 후 '현시 시간 배분' 항목을 입력한다. '현시' 항목과 '현시 시간 배분' 항목 사이에 빈 행이 있으면 안됨. '현시 시간 배분'의 행 개수는 제한이 없으며, 열 개수는 '현시' 항목의 열 개수와 동일해야 함.

- '현시 시간 배분' 항목의 각 셀은 해당하는 열의 현시의 지속시간을 나타내며, 단위는 [초] 임. 각 셀은 자연수여야 하며, 0인 셀이 있으면 안됨.
- 한 Sheet의 '현시 시간 배분' 항목의 시간을 모두 합하면 Vissim 프로그램의 시뮬레이션 시간이 되며, 이 값은 각 Sheet에서 모두 같아야 함.

b. 교통량 파일

- 교통량 엑셀 파일을 통해서는, 시뮬레이션 중에 입력되는 교통량을 변화시킬 수 있음. 교 통량을 새로이 입력하는 시간 단위는 일정해야 함. 예를 들어, 매 15분 마다 또는 매 한 시간 마다 교통량을 바꾸는 것은 가능하지만 시뮬레이션 시작 후 10분, 그 후 20분, ...과 같이 바꾸는 것은 불가능함.
- 교통량을 새로이 입력하는 시간 단위는 3-C-a의 JSON 파일에서 초 단위로 변환하여 명시하면 됨. 예를 들어, 매 한 시간 마다 교통량을 바꾸고 싶으면 3600을 적으면 됨.
- Sheet의 개수는, {(시뮬레이션 시간) / (교통량 입력 시간 단위)}보다 작지 않은 최소 자연수여야 함. 예를 들어, 시뮬레이션 시간이 2시간이고 매 한 시간마다 교통량을 바꾸고 싶으면 Sheet는 2개여야 함.
- Sheet의 순서는, 시간 순서여야 함.
- 각 Sheet의 포맷은 동일해야 하며, 그 Sheet에 해당하는 시간 범위의 교통량을 입력하면 됨.
- 1, 2행은 사용자의 편의를 위한 것으로, 그 내용은 프로그램의 구동과는 상관없음. 프로그램이 사용하는 정보는 3행부터 입력 필요.
- A열에는, 3행부터 2-B-c의 Vehicle Input을 설정할 Link 번호를 입력함. Link 번호라 함은 Figure 4의 Links list의 No를 의미.
- B열에는, 3행부터 각 열에 해당하는 link에 할당하고 싶은 차량 수를 0 이상의 정수로 입력하면 됨. 단위는 시간 당 차량 대수. 순서는 Vehicle(승용차), Small Truck(소형 트럭), Large Truck(대형 트럭), Special Car(특수차), Bus(버스), Motor Cycle(오토바이) 순을 지켜야함.
- 아래 예시 파일 Table 3과, 그 결과로 Vissim에 설정된 Figure 2를 참고. 시뮬레이션 시간 은 한 시간, 교통량 입력 시간 단위는 15분으로 설정한 예시임.

Table 3 교통량 엑셀 파일 예시

Figure 2 Vehicle Inputs / Vehicle Volumes By Time Interval

C. JSON 파일

a. init.json

아래 Table 4와 Figure 3를 참고.

	Signal	3-B-a의 신호 엑셀 파일의 절대 경로.	
TargetFile	VehicleInput	3-B-b의 교통량 엑셀 파일의 절대 경로.	
	VissimInput	3-A-a의 Vissim inpx 파일의 절대 경로.	
	RandomSeed	시뮬레이션을 위한 랜덤 시드.	
		1의 경우 프로그램이 자체적으로 랜덤한 시드를 부여한	
		다.	
6		- 특정한 시드로 시뮬레이션하고 싶다면 2 ³¹ -1 이하의 자	
Settings		연수를 적으면 된다.	
	TimeInterval of	3-B-b의 교통량 엑셀 파일의 시간 단위 [초].	
	VehicleInput		
	Comment	4-B의 엑셀 파일에 표시될 코멘트.	

Table 4 init.json

```
| File | Edit | Selection | View | Go | Run | Terminal | Help | Initison - Visual Studio Code | Cod
```

Figure 3 init.json 예시

4. Output

A. Measurements

Delay	신호등이 설치된 link에 대해, (total delay) / (total travel time) [%].
Density	신호등이 설치된 link에 대해, 차량 밀도 [/km].
Emissions CO	Node별 CO 배출량 [g].
Emissions VOC	Node별 VOC 배출량 [g].
LOS	시간별 Level of service. A~F로 표시되며, A가 가장 좋고 F가 가장 나쁨.
OssupData	신호등이 설치된 lane에 대해, 신호등 1.6m 앞의 data collection point의 점
OccupRate	유율 [%].
Ougueston	신호등이 설치된 link에 대해, 미터 당 대기행렬의 차량 대수 [/m].
QueueStop	Vissim 프로그램의 queue definition에 따라 달라질 수 있음.
Speed	신호등이 설치된 link와 2-B-f의 Vehicle Travel Time Measurement에 대해, 그
Speed	구간의 시간별 차량 평균 속력 [km/h].

Table 5 Output Measurement 종류

B. 엑셀 파일

a. 개요

- 프로그램을 한 번 돌릴 때마다 프로그램의 결과를 담은 엑셀 파일 하나가 생성된다. 파일명은 'output_YYYYMMDD_HHMMSS.xlsx'로, 프로그램을 시작한 시각. Sheet는 한 개.
- 내용은 총 4개로 구분되어 있으며, 순서대로 아래의 b~e 항목.

b. Simulation Info

- 3-C-a의 JSON 파일의 내용이 입력됨.
- Network File 항목에는 'TargetFile' > 'VissimInput'이, Signal 항목에는 'TargetFile' > 'Signal' 이, Vehicle 항목에는 'TargetFile' > 'VehicleInput'이, Random Seed 항목에는 'Settings' > 'RandomSeed'가, Comment 항목에는 'Settings' > 'Comment'가 입력됨.
- 추가로, Date 항목에는 프로그램이 종료된 시각이, Simulation time 항목에는 시뮬레이션 시간이 입력됨.

c. Measurements

● 4-A의 내용이 입력됨.

d. Overall Results

- 프로그램 실행의 전체적인 결과가 입력. 각 행에서 가장 나쁜 3개 값은 분홍색으로 표시됨.
- 첫 번째 표에는 신호등이 설치된 link에 대한 Delay, Density, Speed, QueueStop과 신호등이 설치된 lane에 대한 OccupRate가 입력. 열 이름은 'LinkNo LaneIndex' 형식이며, LinkNo는 Figure 4의 Links list의 No를, LaneIndex는 Figure 4의 Lanes list의 Index를 의미.
- 이 때, Speed 행 셀에 숫자가 아닌 None이 입력될 수 있는데, 그 link를 통과한 차량이 한 대도 없었거나, 차량이 있었어도 이동하지 않았다는 의미.
- 두 번째 표에는 2-B-d에서 설정한 Node에 대해 CO 배출량과 VOC 배출량이 입력됨. 열 이름은 Figure 5의 Nodes list의 No를 의미.

Figure 4 Links / Lanes

Figure 5 Nodes

e. Per Hour Results

- 시간별 시뮬레이션 결과가 입력. 총 7개의 표로 구성되었으며, 각 표의 행 이름은 해당하는 값이 측정된 시간을 의미. 시뮬레이션 시작부터 1시간이 지났을 때까지, 그 후부터 2시간이 지났을 때까지, ... 의 시간을 나타냄. 시간별로 가장 나쁜 3개 값은 분홍색으로 표시됨.
- 표의 개수가 7개보다 적을 수 있는데, 그 경우 2-B 단계에서 해당하는 measurement가 설정되지 않았음을 의미.
- 첫 번째 표인 The Number of Vehicles에는 신호등이 설치된 lane에 대한 시간별 교통량이 입력됨. 차량 수는 신호등 1.6m 앞의 Data Collection Point에서 계수됨. 대체로 2-B-c에서 설정한 Vehicle Input에 가까운 값. 열 이름은 'LinkNo LaneIndex' 형식이며, LinkNo는 Figure 4의 Links list의 No를, LaneIndex는 Figure 4의 Lanes list의 Index를 의미.
- 두 번째 표인 OccupRate에는 신호등이 설치된 lane의 시간별 점유율이 입력됨. 열 이름은 'LinkNo LaneIndex' 형식이며, LinkNo는 Figure 4의 Links list의 No를, LaneIndex는 Figure 4의 Lanes list의 Index를 의미.
- 세 번째 표인 QueueStop에는 신호등 앞에서의 시간별 대기행렬의 차량 수가 미터 당 값으로 입력됨. 열 이름은 'LinkNo'이며, LinkNo는 Figure 4의 Links list의 No를 의미함. 각열의 값을 합하면 4-B-d의 QueueStop 값과 동일함.
- 네 번째 표인 Speed에는 Vehicle Travel Time Measurement에 대한 시간별 차량 평균 속력이 입력됨. 열 이름은 'LinkNo1 to LinkNo2' 형식이며, LinkNo1은 Figure 6의 StartLink의 No를, LinkNo2는 Figure 6의 EndLink의 No를 의미. 셀에 숫자가 아닌 None이 입력될 수있는데, 그 시간대에 해당하는 Section을 통과한 차량이 한 대도 없었다는 의미.
- 다섯 번째 표인 LOS에는 각 Node에 대한 시간별 LOS 계산 결과가 입력됨. 열 이름은 Figure 5의 Nodes list의 No를 의미.

- 여섯 번째 표인 Emissions CO에는 각 Node에 대한 시간별 CO 배출량이 입력됨. 열 이름은 Figure 5의 Nodes list의 No를 의미.
- 일곱 번째 표인 Emissions VOC에는 각 Node에 대한 시간별 VOC 배출량이 입력됨. 열 이름은 Figure 5의 Nodes list의 No를 의미.

Figure 6 Vehicle Travel Time Measurements List

5. 실행

A. 실행 전 Setting

• 3의 작업을 모두 완료한 파일을 준비.

B. 주의사항

- 본 프로그램은 win32com 모듈을 사용하기 때문에 Windows에서 구동 필요.
- 3-B의 엑셀 파일을 읽는 과정과 4-B의 엑셀 파일을 쓰는 과정에서 엑셀 프로그램이 새롭게 열리고 닫히는데, 이 과정에서 사용자가 다른 엑셀 파일을 열면 의도치 않게 자동으로 닫힐 수 있으므로 본 프로그램을 실행하는 도중에는 엑셀 파일 작업을 하지 않는 것을 권장.

C. 실행 방법

● 본 프로그램의 실행 파일인 VissimSimulator.exe와 3-C-a의 init.json 파일을 같은 위치에 둬야 함. VissimSimulator.exe를 실행하면 프로그램이 돌아가고, 같은 위치에 4-B의 엑셀 파일이 저장됨.