Introduction to Causal Inference

Caleb Leedy

September 5, 2023

Frameworks for Causal Inference

- Potential Outcomes
- Directed Acyclic Graphs (DAGs)

Background and Notation

Potential Outcomes

- Outcome variable Y
- Treatment assignment $A \in \{0, 1\}$
- Covariates X
- The potential outcomes of Y for individual i are

$$Y_i(0)$$
 and $Y_i(1)$.

Potential Outcomes

- Often the goal is to understand: Y(1) Y(0).
- For each individual i, we only observe either $Y_i(0)$ or $Y_i(1)$.

Assumptions

CL

Stable unit treatment value assumption (SUTVA):

$$Y_i = Y_i(1)A_i + Y_i(0)(1 - A_i).$$

No Unmeasured Confounders (NUC):

$$Y(1), Y(0) \perp A \mid X$$

• Positivity: For X with p(X) > 0,

$$0 < \Pr(A = 1 \mid X) < 1.$$

Goals:

Average treatment effect (ATE):

$$E[Y(1) - Y(0)]$$

Average treatment effect of the treated (ATT):

$$E[Y(1) - Y(0) \mid A = 1]$$

Conditional average treatment effect (CATE):

$$E[Y(1) - Y(0) | X]$$

Individual treatment effect (ITE):

$$Y_i(1) - Y_i(0)$$

Average Treatment Effect

Consider the ATE denoted by

CL

$$\tau = E[Y(1) - Y(0)].$$

Outcome Model

- From our assumptions, $E[Y(a)] = E[E[Y \mid X, A = a]].$
- We can construct a model, $m_a(X) = E[Y \mid X, A = a]$ and estimate τ using

$$\hat{\tau}_{\mathsf{OR}} = \hat{m}_1(X) - \hat{m}_0(X).$$

• If the model for $\hat{m}_a(X)$ is correctly specified, $\hat{\tau}_{OB}$ is consistent.

Propensity Score

• Instead of modeling the outcome $E[Y\mid X]$ we can model the response probability $\pi(X)=\Pr(A=1\mid X).$

Inverse Propensity Score Weighting

- If $\pi(X)$ is known then we can estimate τ with $\hat{\tau}_{IPW} = \hat{\mu}_1 \hat{\mu}_0$.
- We estimate E[Y(1)] with

$$\hat{\mu}_1 = n^{-1} \sum_{i=1}^n \frac{A_i Y_i}{\pi(X_i)}.$$

• We can estimate E[Y(0)] with

$$\hat{\mu}_0 = n^{-1} \sum_{i=1}^n \frac{(1 - A_i)Y_i}{1 - \pi(X_i)}.$$

This is similar to a Horvitz-Thompson estimator.

Result

CL

The IPW estimator is consistent.

$$\begin{split} E\left[\frac{AY}{\pi(X)}\right] &= E\left[\frac{AY(1)}{\pi(X)}\right] \\ &= E\left[E\left[\frac{AY(1)}{\pi(X)} \mid Y(1), X\right]\right] \\ &= E\left[Y(1)E\left[\frac{A}{\pi(X)} \mid X\right]\right] \\ &= E[Y(1)]. \end{split}$$

Double Robust Estimation

• We can combine our outcome model and response model together to get a doubly robust estimator: $\hat{\tau}_{DR} = \hat{\mu}_{1,DR} - \hat{\mu}_{0,DR}$ where

$$\hat{\mu}_{1,DR} = n^{-1} \sum_{i=1}^{n} \left(m_1(x_i) + \frac{A_i}{\hat{\pi}(X_i)} (Y_i - m_1(x_i)) \right)$$

and

CL

$$\hat{\mu}_{0,\mathsf{DR}} = n^{-1} \sum_{i=1}^{n} \left(m_0(x_i) + \frac{1 - A_i}{1 - \hat{\pi}(X_i)} (Y_i - m_0(x_i)) \right).$$

Result

CL

- $\hat{\tau}_{\mathrm{DR}}$ is consistent if either the outcome or the response model is true.
- If the outcome model is correctly specified $(m_1(x) = E[Y(1) \mid X])$, then

$$\begin{split} E[\hat{\mu}_{1,\mathsf{DR}}] \\ &= n^{-1} \sum_{i=1}^{n} \left(E[m_{1}(x_{i})] + E\left[E\left[\left(\frac{A_{i}}{\hat{\pi}(X_{i})} \right) (Y_{i}(1) - m_{1}(x_{i})) \mid X \right] \right] \right) \\ &= n^{-1} \sum_{i=1}^{n} \left(E[m_{1}(x_{i})] + E\left[E\left[\left(\frac{A_{i}}{\hat{\pi}(X_{i})} \right) \mid X \right] E\left[(Y_{i}(1) - m_{1}(x_{i})) \mid X \right] \right) \\ &= n^{-1} \sum_{i=1}^{n} E[m_{1}(x_{i})] \\ &= E[Y(1)]. \end{split}$$

Result

CL

• If the response model is correctly specified $(\hat{\pi}(X) = \pi(X))$, then

$$\begin{split} E[\hat{\mu}_{1,\mathsf{DR}}] \\ &= n^{-1} \sum_{i=1}^n E\left[\left(1 - \frac{A_i}{\pi(X_i)}\right) m_1(x_i) + \frac{A_i}{\pi(X_i)} Y_i\right] \\ &= n^{-1} \sum_{i=1}^n E\left[E\left[\left(1 - \frac{A_i}{\pi(X_i)}\right) m_1(x_i) + \frac{A_i}{\pi(X_i)} Y_i \mid X, Y\right]\right] \\ &= n^{-1} \sum_{i=1}^n E\left[\left(1 - \frac{\pi(X_i)}{\pi(X_i)}\right) m_1(x_i) + \frac{\pi(X_i)}{\pi(X_i)} Y_i(1)\right] \\ &= E[Y(1)]. \end{split}$$

Instrumental Variables (IVs)

- Overview of Instrumental Variables
- Instrumental Variables in Causal Inference

Ordinary Least Squares

• In OLS, we consider the model,

$$Y = X\beta + \varepsilon \tag{1}$$

17/32

where $E[\varepsilon \mid X] = 0$ and $X \perp \varepsilon$.

• However, what if $Cov(X, \varepsilon) \neq 0$?

CL

- We say a variable X_k is **endogenous** if $Cov(X_k, \varepsilon) \neq 0$.
- A variable X_k is **exogenous** if $X_k \perp \varepsilon$.

Modifying Previous Assumptions

CL

 We previous discussed the assumptions of the potential outcomes framework. One of them was: No Unmeasured Confounders (NUC),

$$Y(1), Y(0) \perp A \mid X$$
.

• If a variable X_k is endogenous, then the model does *not* satisfy the NUC condition.

Parametric Models

Consider the following linear model:¹

$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_3 x_3 + \varepsilon$$

with $x_1, x_2 \perp \varepsilon$ but $x_3 \not\perp \varepsilon$

• To estimate β_3 we need an instrumental variable.

CL

¹Example taken from (Wooldridge 2010).

Instrumental Variables

• A variable z_1 is an **instrumental variable** (IV) if it satisfies:

$$Cov(z_1, \varepsilon) = 0 (2)$$

$$Cov(z_1, x_3) \neq 0 \tag{3}$$

- This makes sense because we want it to be exogenous with respect to Equation 1, yet we need it to influence x₃ if we are going to measure β₃.
- Note, that Equation 2 cannot be tested but Equation 3 can and should be tested.

Reduced Form Equations

CL

• When we have an instrument z_1 , we can estimate:

$$\hat{x}_3 = \hat{\gamma}_0 + \hat{\gamma}_1 x_1 + \hat{\gamma}_2 x_2 + \hat{\theta} z_1$$
$$\hat{y} = \hat{\beta}_0 + \hat{\beta}_1 x_1 + \hat{\beta}_2 x_2 + \hat{\beta}_3 \hat{x}_3$$

- This framework is called two-stage least squares (2SLS).
- This can be generalized to have K exogenous x_i variables and L instruments z_j .

Identification

- Then the IV solves the identification problem.
- Let $z = (x_1, x_2, z_1)$.

CL

- Equation 2 implies that $E[z'\varepsilon] = 0$.
- The normal equations for the IV estimator are:

$$E[z'x]\beta = E[z'y].$$

• This has a unique solution if E[z'x] has full rank, which happens if Equation 3 is satisfied.

Results for 2SLS

Under regularity conditions, 2SLS is

- consistent,
- · asymptotically normal, and
- · asymptotically efficient.

See (Wooldridge 2010), Chapter 5 for these proofs.

Problems with IVs

- Bias
- Weak instruments

Instrumental Variables

- Overview of Instrumental Variables
- Instrumental Variables in Causal Inference

Causal Models with No Unconfoundedness

Suppose that we have the model,²

$$Y_i(a) = Y_i(0) + \tau A_i.$$

We can also express this as

$$Y_i = \alpha + A_i \tau + \varepsilon_i$$

We do not use the NUC. So

$$Y(1), Y(0) \not\perp A \mid X$$
.

Notice that OLS does not work because

$$\tau_{OLS} = \frac{\mathrm{Cov}(Y_i, A_i)}{\mathrm{Var}\,A_i} = \frac{\mathrm{Cov}(\tau A_i + \varepsilon, A_i)}{\mathrm{Var}\,A_i} = \tau + \frac{\mathrm{Cov}(\varepsilon, A_i)}{\mathrm{Var}\,A_i}$$

²The rest of the slides were based off of Stefan Wager's S361 Causal Inference Notes (Wager 2020).

Causal Models with IVs

We can add an instrument and have something similar to 2SLS,

$$Y_i = \alpha + A_i \tau + \varepsilon_i$$

$$A_i = Z_i \gamma + \eta_i \qquad \varepsilon_i \perp Z_i.$$

Then

$$Cov(Y_i, Z_i) = Cov(A_i\tau + \varepsilon_i, Z_i) = \tau Cov(A_i, Z_i).$$

Hence,

$$\tau = \frac{\operatorname{Cov}(Y_i, Z_i)}{\operatorname{Cov}(A_i, Z_i)}.$$

Optimal Instruments

If Z is a d-dimensional vector then we have

$$\tau = \frac{\operatorname{Cov}(Y_i, w(Z_i))}{\operatorname{Cov}(A_i, w(Z_i))}$$

where $w: \mathbb{R}^d \to \mathbb{R}$.

• The optimal choice of $w(\cdot)$ that minimizes the variance of τ , is

$$w^*(Z) \propto E[A \mid Z].$$

Estimation

The previous slide suggests the following estimation strategy:

- 1. Estimate $\hat{w}(\cdot) = E[A \mid Z]$ nonparametrically, and then
- 2. Estimate the covariances using \hat{w} ,

$$\hat{\tau} = \frac{\hat{\text{Cov}}(Y_i, \hat{w}(Z_i))}{\hat{\text{Cov}}(A_i, \hat{w}(Z_i))}$$

However, this can fail from overfitting with weak instruments.

Cross Fitting

A better strategy is to use cross-fitting, and solve

$$\hat{\tau} = \frac{\hat{\text{Cov}}(Y_i, \hat{w}^{k(-i)}(Z_i))}{\hat{\text{Cov}}(A_i, \hat{w}^{k(-i)}(Z_i))}$$

where $\hat{w}^{k(-i)}$ is the estimation of \hat{w} on the k-th fold in which element i is missing.

Previously

- Continuous Treatment Effects
- Covariate Balancing
- Multiple Causes
- Dynamic Treatment Regimes
- Spatial Confounding
- Semiparametric IVs

References I

CL

Wager, Stefan (2020). Stats 361: Causal inference.

Wooldridge, Jeffrey M (2010). Econometric analysis of cross section and panel data. MIT press.