DM 22 : un corrigé

Partie I:

- **1**°) Soit $(c_n) \in \mathcal{P}$. Il existe $p \in \mathbb{N}^*$ tel que, pour tout $n \in \mathbb{N}$, $c_{n+p} = c_n$.
- \diamond Par récurrence sur k, montrons pour tout $n, k \in \mathbb{N}, c_{n+kp} = c_n$: c'est évident pour k = 0
- et si c'est vrai pour $k \in \mathbb{N}$, alors, pour tout $n \in \mathbb{N}$, $c_{n+(k+1)p} = c_{(n+kp)+p} = c_{n+kp} = c_n$.
- \diamond Alors $\{c_n \mid n \in \mathbb{N}\} = \{c_k \mid k \in \{0, \dots, p-1\}\}$: en effet, soit $n \in \mathbb{N}$. Par division euclidienne, n = pq + r avec $0 \leqslant r < p$. Ainsi, $c_n = c_r \in \{c_k \mid k \in \{0, \dots, p-1\}\}$. L'inclusion réciproque est évidente.
- \diamond Ainsi, $\{c_n \mid n \in \mathbb{N}\}$ est une partie finie de \mathbb{C} , donc elle est bornée. On a montré que $(c_n) \in \mathcal{B}$, donc $\mathcal{P} \subset \mathcal{B}$.

2°)

- \diamond \mathcal{B} et \mathcal{P} contiennent la suite identiquement nulle, donc ils sont non vides.
- \diamond Soit $(c_n), (d_n) \in \mathcal{B}$ et $\alpha \in \mathbb{C}$. Par hypothèse, il existe $M, M' \in \mathbb{R}_+$ tels que, pour tout $n \in \mathbb{N}, |c_n| \leq M$ et $|d_n| \leq M'$. Alors, pour tout $n \in \mathbb{N}, |\alpha c_n + d_n| \leq |\alpha|M + M'$, donc la suite $\alpha(c_n) + (d_n)$ est encore dans \mathcal{B} .
- \diamond Soit $(c_n), (d_n) \in \mathcal{P}$ et $\alpha \in \mathbb{C}$. Par hypothèse, il existe $p, q \in \mathbb{N}^*$ tels que, pour tout $n \in \mathbb{N}$, $c_{n+p} = c_n$ et $d_{n+q} = d_n$. On a vu en question précédente qu'alors, pour tout $n \in \mathbb{N}$, $c_{n+pq} = c_n$ et $d_{n+pq} = d_n$, donc pour tout $n \in \mathbb{N}$, $\alpha c_{n+pq} + d_{n+pq} = \alpha c_n + d_n$, ce qui prouve que la suite $\alpha(c_n) + (d_n)$ est encore dans \mathcal{P} , et que pq en est une période.
- \diamond On a ainsi prouvé que \mathcal{B} et \mathcal{P} sont non vides et stables par combinaisons linéaires, donc ce sont des sous-espaces vectoriels du \mathbb{C} -espace vectoriel $\mathbb{C}^{\mathbb{N}}$ (lequel est bien un \mathbb{C} -espace vectoriel d'après le cours).
- **3**°) Soit $c = (c_n) \in \mathcal{B}$, $d = (d_n) \in \mathcal{B}$ et $\lambda \in \mathbb{C}$.
- \diamond Clairement $||c|| \geqslant 0$.
- \diamond Supposons que ||c|| = 0. Alors, pour tout $n \in \mathbb{N}$, $0 \leqslant |c_n| \leqslant ||c|| = 0$, donc $c_n = 0$, puis c = 0.
- ♦ Pour tout $n \in \mathbb{N}$, $|\lambda c_n| = |\lambda| |c_n| \le |\lambda| ||c||$, donc $|\lambda| ||c||$ est un majorant de $\{|\lambda c_n| / n \in \mathbb{N}\}$, or la borne supérieure est le plus petit des majorants, donc $||\lambda c|| = \sup\{|\lambda c_n| / n \in \mathbb{N}\} \le |\lambda| ||c||$. Par la suite, ce raisonnement sera appelé un passage à la borne supérieure.

- \diamond Supposons que $|\lambda| \neq 0$. Alors en appliquant le résultat précédent, mais en remplaçant (λ, c) par $(\frac{1}{\lambda}, \lambda c)$, on obtient que $||c|| \leq |\frac{1}{\lambda}|||\lambda c||$, donc $||\lambda c|| = |\lambda|||c||$. Ce résultat est évident lorsque $\lambda = 0$.
- \diamond Soit $n \in \mathbb{N}$. $|c_n + d_n| \leq |c_n| + |d_n| \leq ||c|| + ||d||$, donc par passage à la borne supérieure, $||c + d|| \leq ||c|| + ||d||$.
- \diamond En conclusion, $\|.\|$ est bien une norme sur \mathcal{B} .
- **4**°) \diamond Notons G l'ensemble des périodes de c. Par hypothèse, G est une partie non vide de \mathbb{N} , donc elle possède un minimum, noté $p_c \in \mathbb{N}^*$.
- \diamond On a déjà vu que, pour tout $k \in \mathbb{N}^*$, kp_c est encore une période de c, donc $p_c\mathbb{N}^* \subset G$. Réciproquement, soit $p \in G$.

Par division euclienne, il existe $q, r \in \mathbb{N}$ tels que $p = qp_c + r$ avec $0 \le r < p_c$.

Alors, pour tout $n \in \mathbb{N}$, $c_{r+n} = c_{p-qp_c+n} = c_n$, donc si $r \neq 0$, alors $r \in G$, ce qui contredit la minimalité de p_c . Ainsi, r = 0 et $p = qp_c$, avec $q \in \mathbb{N}^*$.

En conclusion, l'ensemble des périodes de c est $p_c\mathbb{N}^*$, c'est-à-dire l'ensemble des multiples de la plus petite période.

 \diamond Supposons que $c_n = \operatorname{Re}(i^{n+1})$.

Pour tout $n \in \mathbb{N}$, $c_{n+4} = c_n$, car $i^4 = 1$, donc 4 est une période de c.

On calcule $c_0 = 0$, $c_1 = -1$, $c_2 = 0$ et $c_3 = 1$, donc $c_0 \neq c_{0+1}$, $c_1 \neq c_{1+2}$ et $c_0 \neq c_{0+3}$. Ainsi, 1, 2 et 3 ne sont pas des périodes de c. Ceci prouve que 4 est la plus petite période de c.

5°) Supposons que \mathcal{P} est de dimension finie. Ainsi, il existe $p \in \mathbb{N}$ et $(b_1, \ldots, b_p) \in \mathcal{P}^p$ qui vérifient : pour tout $c \in \mathcal{P}$, il existe $(\alpha_1, \ldots, \alpha_p) \in \mathbb{C}^p$ tel que $c = \sum_{i=1}^p \alpha_i b_i$.

On a vu en question 2 que si p est une période de $c \in \mathcal{P}$ et si q est une période de $d \in \mathcal{P}$, alors pq est une période de $\alpha c + \beta d$, pour tout $\alpha, \beta \in \mathbb{C}$. Par récurrence sur $k \in \mathbb{N}^*$, on en déduit que, si c_1, \ldots, c_k sont k éléments de \mathcal{P} , alors pour tout $(\alpha_1, \ldots, \alpha_k) \in \mathbb{C}^k$,

 $\sum_{i=1}^{k} \alpha_i c_i \text{ admet } \prod_{i=1}^{k} p_i \text{ comme p\'eriode.}$

Ainsi, d'après notre hypothèse, en notant q_1 une période de b_1, \ldots, q_p une période de

 b_p , pour tout $c \in \mathcal{P}$, $Q = \prod_{i=1}^p q_i \in \mathbb{N}^*$ est une période de c.

Pour tout $n \in \mathbb{N}$, posons $u_n^{i=1} = 0$ lorsque $n \not\equiv 0$ [Q+1] et $u_n = 1$ lorsque $n \equiv 0$ [Q+1]. La suite $u = (u_n)$ est périodique de période Q+1, donc $u \in \mathcal{P}$. Alors ce qui précède implique que Q est aussi une période de u. D'après la question 4, (Q+1)-Q=1 est aussi une période de u, donc u est constante, ce qui est faux.

En conclusion, \mathcal{P} est bien de dimension infinie.

Partie II:

6°) Notons, pour toute période
$$p$$
 de c et pour tout $n \in \mathbb{N}$, $M(c, p, n) = \frac{1}{p} \sum_{k=0}^{p-1} c_{n+k}$.

$$\Rightarrow \text{ Soit } n \in \mathbb{N}. \ pM(c, p, n+1) = \sum_{k=0}^{p-2} c_{(n+1)+k} \ + c_{(n+1)+(p-1)} = \sum_{k=1}^{p-1} c_{n+k} \ + c_n \ (\text{en posant } p = 1, \dots, n+1)$$

$$h = k + 1$$
 et car c est p -périodique), donc $pM(c, p, n + 1) = \sum_{k=0}^{p-1} c_{n+k} = pM(c, p, n)$.

Ainsi la suite $(M(c, p, n))_{n \in \mathbb{N}}$ est constante.

En particulier, pour tout $n \in \mathbb{N}$, M(c, p, n) = M(c, p, 0).

 \diamond Notons p_0 la période minimale de c et soit p une période de c.

D'après la question 4, il existe
$$k \in \mathbb{N}^*$$
 tel que $p = kp_0$. Alors, par sommation par paquets, $M(c, p, 0) = \frac{1}{kp_0} \sum_{h=0}^{kp_0-1} c_h = \frac{1}{kp_0} \sum_{\alpha=0}^{k-1} \sum_{h=\alpha p_0}^{(\alpha+1)p_0-1} c_h = \frac{1}{kp_0} \sum_{\alpha=0}^{k-1} \sum_{h=0}^{p_0-1} c_{h+\alpha p_0}$. Ainsi,

$$M(c, p, 0) = \frac{1}{k} \sum_{\alpha=0}^{k-1} M(c, p_0, \alpha p_0) = \frac{1}{k} k M(c, p_0, 0)$$
, d'après le point précédent.

On en déduit que $M(c, p, 0) = M(c, p_0, 0)$.

- \diamond En conclusion, pour toute période p de c et pour tout $n \in \mathbb{N}$, $M(c, p, n) = M(c, p_0, 0)$: M(c, p, n) ne dépend ni de p, ni de n, on peut effectivement le noter M(c).
- \diamond Soit $c = (c_n) \in \mathcal{P}$, $d = (d_n) \in \mathcal{P}$ et $\alpha \in \mathbb{C}$. Notons p une période de c et q une période de d. On sait alors que pq est une période de $\alpha c + d$. Ainsi,

$$M(\alpha c + d) = M(\alpha c + d, pq, 0) = \frac{1}{pq} \sum_{k=0}^{pq-1} (\alpha c_k + d_k) = \alpha M(c, pq, 0) + M(d, pq, 0), \text{ car}$$

pq est une période de c et de d. Ainsi, $M(\alpha c + d) = \alpha M(c) + M(d)$. De plus M est à valeurs dans le corps \mathbb{C} et \mathcal{P} est un \mathbb{C} -espace vectoriel, donc M est bien une forme linéaire sur \mathcal{P} .

a) Soit $c = (c_n) \in \mathcal{P}$ et p une période de c.

$$|M(c)| = \frac{1}{p} |\sum_{k=0}^{p-1} c_k| \le \frac{1}{p} \sum_{k=0}^{p-1} |c_k| \le \frac{1}{p} \sum_{k=0}^{p-1} ||c|| = ||c||$$
. Or M est linéaire, donc d'après le cours, M est continue (elle est même lipschitzienne).

b) Ce qui précède montre que, pour tout $c \in \mathcal{P} \setminus \{0\}$, $\frac{|M(c)|}{||c||} \leqslant 1$, donc 1 est

un majorant de
$$\left\{\frac{|M(c)|}{\|c\|} \ / \ c \in \mathcal{P} \setminus \{0\}\right\}$$
. Ainsi, par passage à la borne supérieure, $|M(c)|$

$$\sup_{c \in \mathcal{P} \setminus \{0\}} \frac{|M(c)|}{\|c\|} \leqslant 1.$$

Notons 1 la suite constante égale à 1. $1 \in \mathcal{P}$, de période 1,

$$\mathrm{donc}\, \sup_{c\in\mathcal{P}\backslash\{0\}}\frac{|M(c)|}{\|c\|}\geqslant \frac{|M(\mathbf{1})|}{\|\mathbf{1}\|}=1. \text{ En conclusion, } \sup_{c\in\mathcal{P}\backslash\{0\}}\frac{|M(c)|}{\|c\|}=1.$$

c) $\mathcal{P}_0 = \text{Ker}(M) = M^{-1}(\{0\})$, or M est continue et $\{0\}$, en tant que singleton, est un fermé de \mathbb{C} , donc d'après le cours, \mathcal{P}_0 est un fermé de \mathcal{P} .

8°)

a)

 \diamond Soit $c=(c_n)\in\mathcal{P}$. Soit p une période de c. Posons $D(c)=d=(d_n)$. Ainsi, pour tout $n \in \mathbb{N}$, $d_n = c_{n+1} - c_n$.

Alors, pour tout $n \in \mathbb{N}$, $d_{n+p} = c_{n+1+p} - c_{n+p} = d_n$, donc $d \in \mathcal{P}$.

De plus, pour tout $\alpha \in \mathbb{C}$ et $c, d \in \mathcal{P}$, on vérifie aisément que $D(\alpha c + d) = \alpha D(c) + D(d)$, donc D est bien un endomorphisme sur \mathcal{P} .

 \diamond Soit $c = (c_n) \in \mathcal{P}$. $c \in \text{Ker}(D) \iff \forall n \in \mathbb{N}, c_{n+1} - c_n = 0, \text{ donc } \text{Ker}(D) \text{ est}$ l'ensemble des suites constantes de complexes.

 \diamond Soit $d = (d_n) \in \operatorname{Im}(D)$:

il existe $c = (c_n) \in \mathcal{P}$ telle que, pour tout $n \in \mathbb{N}$, $d_n = c_{n+1} - c_n$.

Soit p une période de c. On a vu que p est aussi une période de d,

donc
$$M(d) = \frac{1}{p} \sum_{k=0}^{p-1} (c_{k+1} - c_k) = M(c, p, 1) - M(c, p, 0) = 0$$
 d'après la question 6.

Ceci prouve que $\operatorname{Im}(D) \subset \mathcal{P}_0$.

Réciproquement, soit $d=(d_n)\in\mathcal{P}_0$. On définit la suite de complexes $c=(c_n)$ par les relations: $c_0 = 0$ et pour tout $n \in \mathbb{N}$, $c_{n+1} = d_n + c_n$.

Soit p une période de d. Alors, pour tout $n \in \mathbb{N}$, on montre par récurrence sur k que

$$c_{n+k} = c_n + \sum_{h=0}^{k-1} d_{n+h}$$
, donc en particulier, $c_{n+p} = c_n + pM(d) = c_n \operatorname{car} d \in \mathcal{P}_0 = \operatorname{Ker}(M)$.

Ainsi $c \in \mathcal{P}$. De plus, pour tout $n \in \mathbb{N}$, $d_n = c_{n+1} - c_n$, donc $d = D(c) \in \text{Im}(D)$. On a donc prouvé que $\operatorname{Im}(D) = \mathcal{P}_0$.

b)

 \diamond Soit $c=(c_n)\in\mathcal{P}$. Pour tout $n\in\mathbb{N}, |c_{n+1}-c_n|\leqslant |c_{n+1}|+|c_n|\leqslant 2\|c\|$, donc par passage à la borne supérieure, $||D(c)|| = \sup_{c \in \mathbb{N}} |c_{n+1} - c_n| \leq 2||c||$. Or D est linéaire, donc

D est continue.

 \diamond Ainsi, pour tout $c \in \mathcal{P} \setminus \{0\}, \frac{\|D(c)\|}{\|c\|} \leqslant 2$,

donc par passage au sup, $\sup_{c \in \mathcal{P} \setminus \{0\}} \frac{\|\ddot{D}(\ddot{c})\|}{\|c\|} \leqslant 2.$

Posons $c_0 = ((-1)^n)_{n \in \mathbb{N}}$. c_0 est 2-périodique, $||c_0|| = 1$

et
$$D(c_0) = ((-1)^{n+1} - (-1)^n)_{n \in \mathbb{N}} = -2c_0$$
, donc $||D(c_0)|| = 2$.
Alors $\sup_{c \in \mathcal{P} \setminus \{0\}} \frac{||D(c)||}{||c||} \geqslant \frac{||D(c_0)||}{||c_0||} = 2$. En conclusion, $\sup_{c \in \mathcal{P} \setminus \{0\}} \frac{||D(c)||}{||c||} = 2$.

9°)

a) Soit $c \in \mathcal{P}_0$. Notons p une période de c. Posons $d = (d_n) = I(c)$.

Pour tout
$$n \in \mathbb{N}$$
, $d_{n+p} = d_n + \sum_{k=n+1}^{n+p} c_k = d_n + pM(c, p, n+1) = d_n$, car $c \in \mathcal{P}_0 = \text{Ker}(M)$.

Ainsi $I(c) \in \mathcal{P}$.

De plus, on vérifie aisément que, pour tout $\alpha \in \mathbb{C}$ et $c, d \in \mathcal{P}_0$, $I(\alpha c + d) = \alpha I(c) + I(d)$, donc I est bien une application linéaire de \mathcal{P}_0 dans \mathcal{P} .

b) Supposons que I est continue. I étant linéaire, d'après le cours, il existe $k \in \mathbb{R}_+$ tel que, pour tout $c \in \mathcal{P}_0$, $||I(c)|| \leq k||c||$.

Fixons $p \in \mathbb{N}^*$ et posons, pour tout $n \in \mathbb{N}$, $c_n = e^{\frac{i\pi n}{p}}$.

$$c$$
 est $2p$ -périodique, donc $c \in \mathcal{P}$. De plus, $M(c) = \frac{1}{2p} \sum_{k=0}^{2p-1} \left(e^{\frac{i\pi}{p}} \right)^k = \frac{1 - \left(e^{\frac{i\pi}{p}} \right)^{2p}}{1 - e^{\frac{i\pi}{p}}}$, car

 $e^{\frac{i\pi}{p}} \neq 1$. Ainsi, M(c) = 0 et $c \in \mathcal{P}_0$.

$$||I(c)|| \geqslant \Big| \sum_{k=0}^{p-1} \left(e^{\frac{i\pi}{p}} \right)^k \Big| = \Big| \frac{1 - \left(e^{\frac{i\pi}{p}} \right)^p}{1 - e^{\frac{i\pi}{p}}} \Big| = \frac{2}{|e^{\frac{i\pi}{2p}}(-2i\sin(\frac{\pi}{2p}))|}, \text{ donc } ||I(c)|| \geqslant \frac{1}{\sin(\frac{\pi}{2p})}.$$

On en déduit que $k = k||c|| \ge ||I(c)|| \ge \frac{1}{\sin(\frac{\pi}{2p})} \sim \frac{1}{p \to +\infty} \frac{1}{\frac{\pi}{2p}} = \frac{2p}{\pi} \longrightarrow_{p \to +\infty} +\infty$. C'est impossible, donc I n'est pas continue.

c) \diamond Soit $c \in \text{Ker}(I)$. Alors, pour tout $n \in \mathbb{N}$, $\sum_{k=0}^{n} u_k = 0$. Par récurrence sur n, on en

déduit facilement que, pour tout $n \in \mathbb{N}$, $u_n = 0$, donc $Ker(I) = \{0\}$.

 \diamond Supposons que $c \in \text{Im}(I)$: il existe $d \in \mathcal{P}_0$ tel que c = I(d).

Notons p une période de d : c'est aussi une période de c d'après la question a) et

$$c_{p-1} = \sum_{k=0}^{p-1} d_k = pM(d, p, 0) = 0 \text{ car } d \in \mathcal{P}_0.$$

 \diamond Réciproquement, soit $c = (c_n) \in \mathcal{P}$ tel que $c_{p-1} = 0$, où p désigne une période de c. Montrons que $c \in \text{Im}(I)$.

Posons $d_0 = 0$ et pour tout $n \in \mathbb{N}^*$, $d_n = c_{n-1}$.

Pour tout $n \in \mathbb{N}^*$, $d_{n+p} = c_{n-1+p} = c_{n-1} = d_n$ et $d_p = c_{p-1} = 0 = d_0$, donc $d \in \mathcal{P}$ et p est une période de d.

Alors
$$e = D(d) \in \text{Im}(D) = \mathcal{P}_0$$
 et $I(e) = \left(\sum_{k=0}^{n} (d_{k+1} - d_k)\right)_{n \in \mathbb{N}} = (d_{n+1} - d_0) = c$.

Ainsi, $c \in \text{Im}(I)$.

 \diamond On a donc montré que $c \in \text{Im}(I)$ si et seulement si il existe une période p de c telle que $c_{p-1}=0$. Soit c une telle suite. Notons p_c la plus petite période de c. On a vu qu'il existe $k \in \mathbb{N}^*$ tel que $p=kp_c$. Alors $0=c_{kp_c-1}=c_{p_c-1}$.

Ainsi, en notant p_c la plus petite période de c, pour tout $c \in \mathcal{P}$, on a montré que $\text{Im}(I) = \{c = (c_n) \in \mathcal{P} \mid c_{p_c-1} = 0\}.$

Partie III:

Si c=0, la série est identiquement nulle, donc elle converge. Supposons maintenant que $c \neq 0$. Notons p une période de c. Il existe $r \in \{0, \ldots, p-1\}$ tel que $c_r \neq 0$. Alors pour tout $k \in \mathbb{N}$, $\frac{c_{kp+r}}{(kp+r)^{\alpha}} = \frac{c_r}{(kp+r)^{\alpha}} \xrightarrow[k \to +\infty]{} 0$, car $\alpha \leqslant 0$.

A fortiori, $\frac{c_n}{n^{\alpha}} \xrightarrow[n \to +\infty]{} 0$ (sinon toutes ses suites extraites convergeraient vers 0), donc la série $\sum_{n} \frac{c_n}{n^{\alpha}}$ diverge grossièrement.

Pour tout $n \in \mathbb{N}$, $\left| \frac{c_n}{n^{\alpha}} \right| \leqslant \frac{\|c\|}{n^{\alpha}}$, or $\alpha > 1$, donc la série $\sum_{n \geq 1} \frac{1}{n^{\alpha}}$ converge. Ainsi,

 $\sum \frac{c_n}{n^{\alpha}}$ est absolument convergente.

Si c = 0, la série est identiquement nulle, donc elle converge.

Supposons maintenant que $c \neq 0$. Notons p une période de c. Il existe $r \in \{0, \ldots, p-1\}$ tel que $c_r \neq 0$. Alors pour tout $k \in \mathbb{N}$, $\frac{|c_{kp+r}|}{(kp+r)^{\alpha}} = \frac{|c_r|}{(kp+r)^{\alpha}}$, donc pour tout $k \in \mathbb{N}^*$,

$$\sum_{n=n}^{kp-1} \frac{|c_n|}{n^{\alpha}} = \sum_{h=1}^{k-1} \sum_{n=nh}^{ph+p-1} \frac{|c_n|}{n^{\alpha}} \geqslant \sum_{h=1}^{k-1} \frac{|c_{ph+r}|}{(ph+r)^{\alpha}} = |c_r| \sum_{h=1}^{k-1} \frac{1}{(ph+r)^{\alpha}},$$

mais $\frac{1}{(ph+r)^{\alpha}} \sim_{h\to+\infty} \frac{1}{p^{\alpha}} \times \frac{1}{h^{\alpha}}$ et $\alpha \leq 1$, donc la série $\sum_{r} \frac{1}{(ph+r)^{\alpha}}$ diverge, or elle

est à termes positifs, donc $\sum_{k=1}^{k-1} \frac{1}{(ph+r)^{\alpha}} \xrightarrow[k \to +\infty]{} +\infty$. Alors, d'après le principe des gen-

darmes, $\sum_{n=1}^{\kappa p-1} \frac{|c_n|}{n^{\alpha}} \xrightarrow[k \to +\infty]{} +\infty$. Ceci prouve que la série tronquée $\sum_{n \geq n} \frac{|c_n|}{n^{\alpha}}$ est divergente.

Il en est de même d'après le cours pour la série $\sum_{n} \frac{|c_n|}{n^{\alpha}}$.

a) Il s'agit d'une transformation d'Abel:

$$\sum_{k=1}^{n} \frac{c_k}{k^{\alpha}} = \sum_{k=1}^{n} \frac{S_k - S_{k-1}}{k^{\alpha}} = \sum_{k=1}^{n} \frac{S_k}{k^{\alpha}} - \sum_{k=0}^{n-1} \frac{S_k}{(k+1)^{\alpha}},$$

donc
$$\sum_{k=1}^{n} \frac{c_k}{k^{\alpha}} = \sum_{k=1}^{n} S_k \left(\frac{1}{k^{\alpha}} - \frac{1}{(k+1)^{\alpha}} \right) + \frac{S_n}{(n+1)^{\alpha}} - c_0.$$

b) Avec les notations de la partie II, $(S_n) = I(c) \in \mathcal{P}$, donc la suite (S_n) est bornée. On en déduit déjà que $\frac{S_n}{(n+1)^{\alpha}} \underset{n \to +\infty}{\longrightarrow} 0$, car $\alpha > 0$.

De plus,
$$\frac{1}{k^{\alpha}} - \frac{1}{(k+1)^{\alpha}} = \frac{1}{k^{\alpha}} \left(1 - \frac{1}{(1+\frac{1}{k})^{\alpha}} \right) = \frac{1}{k^{\alpha}} (1 - (1 - \frac{\alpha}{k} + O(\frac{1}{k^2}))), \text{ donc}$$

$$\frac{1}{k^{\alpha}} - \frac{1}{(k+1)^{\alpha}} = \frac{\alpha}{k^{\alpha+1}} + O\left(\frac{1}{k^{\alpha+2}}\right).$$

On a vu que
$$S_n = O(1)$$
, donc $S_k \left(\frac{1}{k^{\alpha}} - \frac{1}{(k+1)^{\alpha}} \right) = O\left(\frac{1}{k^{\alpha+1}} \right)$ mais $\alpha + 1 > 1$, donc

 $\sum_{k\geq 1} \frac{1}{k^{\alpha+1}}$ converge (et ses termes sont positifs), donc d'après le cours,

$$\sum_{k\geqslant 1} S_k \left(\frac{1}{k^{\alpha}} - \frac{1}{(k+1)^{\alpha}}\right)$$
 est absolument convergente. Alors, d'après la formule établie

au a), la suite de terme général $\sum_{k=1}^{n} \frac{c_k}{k^{\alpha}}$ converge lorsque n tend vers $+\infty$, ce qui prouve la convergence de la série $\sum_{n\geq 1} \frac{c_n}{n^{\alpha}}$.

14°) Posons $d_n = c_n - M(c)$, pour tout $n \in \mathbb{N}$. La suite constante est dans \mathcal{P} qui est un \mathbb{C} -espace vectoriel, donc $d = (d_n)_{n \in \mathbb{N}} \in \mathcal{P}$. De plus, par linéarité de M, $M(d) = M(c) - M(c) \times M((1)_{n \in \mathbb{N}}) = M(c) - M(c) = 0$, donc $d \in \mathcal{P}_0$.

Pour tout $n \in \mathbb{N}$, $\frac{c_n}{n^{\alpha}} = \frac{d_n}{n^{\alpha}} + M(c)\frac{1}{n^{\alpha}}$, or d'après la question précédente, $\sum_{n \ge 1} \frac{d_n}{n^{\alpha}}$ est

convergente, et par hypothèse, $M(c) \neq 0$, donc $\sum_{n\geqslant 1} \frac{c_n}{n^{\alpha}}$ a même nature que $\sum_{n\geqslant 1} \frac{1}{n^{\alpha}}$: elle est divergente.

Partie IV:

- **15°)** Soit $\alpha \in \mathbb{C}$ et $c, d \in \mathcal{P}_0$. D'après le cours sur les séries convergentes, $S(\alpha c + d) = \sum_{n=1}^{+\infty} \frac{\alpha c_n + d_n}{n} = \alpha S(c) + S(d)$. De plus S est à valeurs dans \mathbb{C} , donc S est une forme linéaire sur \mathcal{P}_0 .
- **16°)** On a vu en question 4 que c est 4-périodique avec $(c_0, c_1, c_2, c_3) = (0, -1, 0, 1)$, donc pour tout $n \in \mathbb{N}$, $c_{2n} = 0$ et $c_{2n+1} = (-1)^{n+1}$. Ainsi,

$$S(c) = \lim_{N \to +\infty} \sum_{n=0}^{2N+1} \frac{c_n}{n} = \lim_{N \to +\infty} \sum_{n=0}^{N} \frac{c_{2n+1}}{2n+1} = \sum_{n=0}^{+\infty} \frac{(-1)^{n+1}}{2n+1}.$$

Soit
$$n \in \mathbb{N}$$
. $\sum_{k=0}^{n} \frac{(-1)^{k+1}}{2k+1} = \sum_{k=0}^{n} (-1)^{k+1} \int_{0}^{1} t^{2k} dt = -\int_{0}^{1} \sum_{k=0}^{n} (-t^{2})^{k} dt$,

donc
$$\sum_{k=0}^{n} \frac{(-1)^{k+1}}{2k+1} = -\int_{0}^{1} \frac{1-(-t^{2})^{n+1}}{1+t^{2}} dt = [-\arctan t]_{0}^{1} + \int_{0}^{1} \frac{(-t^{2})^{n+1}}{1+t^{2}} dt.$$

Or par inégalité triangulaire, $\left|\int_0^1 \frac{(-t^2)^{n+1}}{1+t^2} \ dt\right| \leqslant \int_0^1 t^{2n+2} \ dt = \frac{1}{2n+3} \underset{n \to +\infty}{\longrightarrow} 0, \text{ donc}$ d'après le principe des gendarmes, $\int_0^1 \frac{(-t^2)^{n+1}}{1+t^2} \ dt \underset{n \to +\infty}{\longrightarrow} 0. \text{ En conclusion, } S(C) = -\frac{\pi}{4}.$

17°) a) Posons
$$u_n = \sum_{k=1}^n \frac{1}{k} - \ln n$$
. Alors $u_n - u_{n-1} = \frac{1}{n} + \ln(1 - \frac{1}{n}) = O(\frac{1}{n^2})$. Ainsi,

 $\sum (u_n - u_{n-1})$ est une série télescopique convergente, donc d'après le cours, il existe $\gamma \in \mathbb{R}$ tel que $u_n \xrightarrow[n \to +\infty]{} \gamma$, ce qu'il fallait démontrer.

b) On vérifie que c est une suite p-périodique et que M(c)=0, donc $c\in\mathcal{P}_0$.

Soit
$$n \in \mathbb{N}^*$$
. $\sum_{k=1}^{np} \frac{c_k}{k} = \sum_{h=0}^{n-1} \sum_{k=hp+1}^{hp+p} \frac{c_k}{k} = \sum_{h=0}^{n-1} \sum_{k=1}^{p} \frac{c_k}{k+hp}$, donc

$$\sum_{k=1}^{np} \frac{c_k}{k} = \sum_{h=0}^{n-1} \left(\sum_{k=1}^{p-1} \frac{1}{k+hp} + \frac{1-p}{p+hp} \right) = \sum_{h=0}^{n-1} \left(\sum_{k=1}^{p} \frac{1}{k+hp} - \frac{p}{p+hp} \right) = \sum_{k=1}^{np} \frac{1}{k} - \sum_{h=0}^{n-1} \frac{1}{h+1}.$$
Alors d'après la question a)

$$\sum_{k=1}^{np} \frac{c_k}{k} = \ln(np) + \gamma + o(1) - \ln n - \gamma + o(1) = \ln p + o(1) \underset{n \to +\infty}{\longrightarrow} \ln p.$$

En conclusion, $S(c) = \ln p$.

 18°)

- $\Rightarrow \text{ Pour tout } t \in]0,1], \ \frac{1-t^q}{(1-t)(1+t^q)} = \frac{\displaystyle\sum_{k=0}^{q-1} t^k}{1+t^q}, \ \text{donc cette fonction de t se prolonge continûment sur } [0,1] \text{ et } I_q \text{ est bien définie en tant qu'intégrale sur un segment d'une fonction continue.}$
- $\Rightarrow \text{ De plus } I_q = \int_0^1 \frac{\sum\limits_{k=0}^{q-1} t^k}{1+t^q} \ dt \geqslant \sum\limits_{k=0}^{q-1} \int_0^1 \frac{t^k}{2} \ dt = \sum\limits_{k=0}^{q-1} \frac{1}{2(k+1)} = \frac{1}{2} \sum\limits_{k=1}^q \frac{1}{k} \underset{q \to +\infty}{\longrightarrow} +\infty.$ D'après le principe des gendarmes, $I_q \underset{q \to +\infty}{\longrightarrow} +\infty.$
- 19°) La suite d est bien 2q-périodique avec M(d)=0, donc $d\in\mathcal{P}_0$. On sait ainsi que $\sum_{n=1}^{2qN}\frac{d_n}{n}$ converge vers S(d) lorsque N tend vers $+\infty$. Soit $N\in\mathbb{N}^*$.

$$\begin{split} \sum_{n=1}^{2qN} \frac{d_n}{n} &= \sum_{h=0}^{N-1} \sum_{n=2qh+1}^{2q(h+1)} \frac{d_n}{n} = \sum_{h=0}^{N-1} \sum_{n=1}^{2q} \frac{d_n}{n+2qh} \\ &= \sum_{h=0}^{N-1} \left(\sum_{n=1}^{q} \frac{1}{n+2qh} - \sum_{n=q+1}^{2q} \frac{1}{n+2qh} \right) = \sum_{h=0}^{N-1} \sum_{n=1}^{q} \left(\frac{1}{n+2qh} - \frac{1}{n+q+2qh} \right) \\ &= \sum_{h=0}^{N-1} \sum_{n=1}^{q} \left(\frac{(-1)^{2h}}{n+2qh} + \frac{(-1)^{2h+1}}{n+q(2h+1)} \right) = \sum_{n=1}^{q} \sum_{i=0}^{2N-1} \frac{(-1)^i}{n+qi} \\ &= \sum_{n=1}^{q} \sum_{i=0}^{2N-1} (-1)^i \int_0^1 t^{n+qi-1} dt = \int_0^1 \sum_{n=1}^q t^{n-1} \sum_{i=0}^{2N-1} (-t^q)^i dt \\ &= \int_0^1 \sum_{n=0}^{q-1} t^n \frac{1-(-t^q)^{2N}}{1+t^q} dt = \int_0^1 \frac{1-t^q}{(1-t)(1+t^q)} (1-t^{2Nq}) dt, \text{ or } \\ &\left| \int_0^1 \frac{1-t^q}{(1-t)(1+t^q)} t^{2Nq} dt \right| \leqslant \int_0^1 \frac{\sum_{k=0}^{q-1} t^k}{1+t^q} t^{2Nq} dt \leqslant q \int_0^1 t^{2Nq} dt = \frac{q}{2Nq+1} \underset{N \to +\infty}{\longrightarrow} 0, \\ &\text{donc } \sum_{n=1}^{2qN} \frac{d_n}{n} \underset{N \to +\infty}{\longrightarrow} J_q. \end{split}$$

En conclusion, $S(d) = J_q$

20°) Supposons que S est continue. S étant linéaire, il existe $k \in \mathbb{R}_+$ tel que, pour tout $c \in \mathcal{P}_0$, $|S(c)| \leq k||c||$.

En particulier, pour tout $q \in \mathbb{N}^*$, en utilisant la suite d précédente, on obtient que $k = k||d|| \geqslant |S(d)| = J_q \xrightarrow[q \to +\infty]{} +\infty$. C'est impossible, donc S n'est pas continue.