Conformal Mappings

(1) Def:

 $u \subseteq G$. $f: u \to C$. For $Z_0 \in U$. if f is boundly injective on $D(Z_0, r)$. We f is boundly injective on $D(Z_0, r)$. We f is confirmal at Z_0 if f is confirmal at Z_0 if f in $e^{-i\phi}$ $f(Z_0 + re^{i\phi}) - f(Z_0)$ exists. f in $e^{-i\phi}$ $f(Z_0 + re^{i\phi}) - f(Z_0, re^{i\phi})$ exists.

indept with o.

Z,+Ye'i +

torgent line.

Then the limit is: e . Ger) - 8 (1-10)

For y, . y2: Y. y2 # #

fixes toxis

 \Rightarrow By the lef. $\theta = \delta$.

Lemk: That's because the curve "spin" a const angle.

1/m. DEC. f: D -> C. ZOED.

- i) fize 600). If fize to. Them f is anfund
- ii) f(z) is conformal at Zo. has a nonzero

 Nofferential Af. at Zo. Then f'(z) \$0.

 f is hifferentiable at Zo
- Pf: i) Suppose $Z_0 = 0$, $f(Z_0) = 0$. expand at <math>Z = 0. $\lim_{r \to 0} \frac{1}{1} \frac{\sum_{k \in K} k_k^{(k)}}{\sum_{k \in K} k_k^{(k)}} = \frac{a_1}{|a_1|} \neq 0.$
 - ii) suppose Zo = f(20) =0.

: f(2) = 12+ p\(\bar{z}\) + 0(121)

Funt: Bitolomorphic (un formal.

(2) Schwartz lemma.

1) Thm. Denote U = D(0.1) $f: U \rightarrow U$. Interorption

from Pointe U = D(0.1) $f: U \rightarrow U$. Interorption

from $f = Z \cdot 0$ f: |f(z-1)| = |z-1| or |f'(z)| = 1.

Then $f = Z \cdot 0^{10}$, |f(z-1)| = |z-1| or |f'(z)| = 1.

Pf: Extend |f(z)|/z| to |U| by expansion at 0. $|f(z)|/z| \in B(U)$. $|f(z)| \leq |z|$. Let |z-1|. Let $|f'(z)| \leq 1$.

By mmg of holomorphic backde the latter.

General Form:

f: U → L. holotorphic. For # Z., Zz E U.

We have: $\left| \frac{f(z_1) - f(z_2)}{1 - f(z_2)} \right| \leq \left| \frac{z_1 - \overline{z_1}}{1 - \overline{z_1}} \right|$

The =" folds (=) fiz)= l'0 = 7-1 = 70.0.

Pf: Suppose $Z_0 = f(\overline{z}_1)$. $\mathcal{L}_1 = \frac{\overline{z} - \overline{z}_1}{1 - \overline{z}_1 \overline{z}}$. $\mathcal{L}_2 = \frac{\overline{z} - \overline{z}_0}{1 - \overline{z}_0 \overline{z}}$.

 $F = \mathcal{L}_0 \circ f \circ \mathcal{L}_0 : U \to U . \quad F(0) = 0.$

Apply the thm above!

Cor. Stace | f(z) - f(z) | = | 1- f(z) f(z) | = | \frac{1-\overline{z}_1 - \overline{z}_2}{1-\overline{z}_1 \overline{z}_2} |

let Z1 → Z2 · 1 fizul = 1-1f(2)1°

Perote W= f(Z). We have Litterential form:

 $\frac{|\lambda w|}{|-|w|^2} \leq \frac{|\lambda z|}{|-|z|^2}$

O Cantor's proof:

N = C, open, bounded. $\ell: N \to N$. Indomorphic If exists $Z_0 \in N$. St. $\ell(Z_0) = Z_0$. $\ell(Z_0) = 1$

Then & is linear.

Pf. Wloh. sex Zo = Yczo) = 1. .: Y'co) = 1. : ((Z) = Z + Am Z" + O(Z") expand at Z=0 where am #0. In is the least integer. (x (2) = 6060-- 6(5) = S+ kum 2 + 0(5) By Lauchy Inequality 1 1/4 (0) 1 = m! 11/41/2 Note that It is uniformly bounded. Let know.

(3) Bie berbruh '3 Conjecture:

f & B (U). f (0) = 0. f (0) = 1. Then fir Expansion at 0: \(\sum_{\text{n}} \text{Znz}^n\), we have low |sn.

(A) Application:

Carathiology 7hm f & Q (D (o. R)). For Air) = max Refereio, where 0 < r < R. We have: I foreign = 1 foot + 2r (ACR) - Refun) Pf: Set hiz = f(z) - f(0) :. h(0) = 0 prove: |hereit) | = 21 ALIR) . O<Y=R Let $g(z) = \frac{h(z)}{z A_{h(R)} - h(z)}$. $|z| \le r < R$. 7 (RZ): U -> U. 910) =0. 19(kz) | 5/21 Remark: The rank part dominates the whole function fizs.

(3) Automorphism Group:

O ANTOCO = [A+bz | A.bed. b+03

If: $\forall f \in Aut(CG)$. $f \neq 0$ one-to-one. Untite. $f \in B(G)$. $\forall z_0 \in G$. $f : \subseteq an(z-z_0)^n$ Busines. $z = \infty$ coun't be Ussertial Stagalar.

Suppose $f(z_0) = z_1$. By Open mapping than $f(u(z_0)) = u(z_0)$. But $f = f(z_0) \rightarrow z_0$ Then $\exists p \in u(z_0)$. has prove than $\exists precimpes$. $f : \subseteq f \in An(z-z_0)^n$. f : Wo has k roots. $f : Ao + a(z-z_0)^n$.

?f: Assume r,=1==1. F. Re>1. (E) It's trivial.

 $(\Rightarrow), Suppon A, \subseteq A_2.$ $Sut \ k = I \ |z| = J_{F-3} \quad Upt$ $A_2 = I \ |z| < |z| < |+23.$

where ficks is oft.

W104. Suppose flas) for in (|<|2|<|Tri)

Otherwise. Set $g(z) = \frac{R^2}{f(z)}$, sustemorphis as well.

: If $(2n) | \rightarrow 1$ when $|2n| \rightarrow 1$ set $m = \frac{\log R_1}{\log R_1} > 0$. If $(2n) | \rightarrow R_1$ when $|2n| \rightarrow R_1$

We want to prove m=1.

Set $u(z) = 2 \log |f(z)| - 2 m \log |z|$. $\Delta u = 0$ Since $u(z)^+) = u(z)^- = 0$. Extend to boulow

.. N30 on 1=121=R,

 $\frac{\partial n}{\partial t} = \frac{f'}{f} - m \frac{1}{2} = 0 \quad \text{i.e. } \frac{\partial}{\partial t} \left(\frac{f(t)}{Z^{\mu}} \right) = 0$

: fiz) = 0 Zm. m=1. Spice one-to-one.

 $m \in \mathbb{Z}^{+}$. Since $m = \oint_{y} \frac{1}{22i} \frac{1}{z} lz = \oint_{y} \frac{1}{22i} \frac{1}{f} \in \mathbb{Z}^{+}$

⇒ suppose f: A → A. biholomorphic

W104. Set $|f(Z_n)| \to r$ when $|Z_n| \to r$ $|f(Z_n)| \to R$ when $|Z_n| \to R$

otherwise Let $g_{(2)} = \frac{g_r}{f_{(2)}}$.

Analogouly 1 = 1 = 0 on A.

(3) Aut (D) = 1 e 18 (4 | 8 & (0.22), Ya is mibins Trans)

Lemma. For $ya = \frac{\overline{z}-q}{1-\overline{q}\overline{z}}$

i) la is one-tr-one

ii) yo = ix.

iii) Pa: 24 - 24. Pa(0) = 4. Pa(4) = 0

=> 4: Ya 0 4p: \$ +> a.

iv) la = (1-a2) +0.

Pf: If ft Ant (D). Suppose f(1)=0

Then f(Yalt): U -> U. folio)=0

Apply Schwartz Lemma. on folio and (folio)

Apply Schwartz Lemma. on folio and (folio)

(1) And (M) = $\left\{\frac{nz+b}{cz+d} \mid nd-bc\neq 0, n, b, c, d\in \mathcal{P}\right\}$ M is the half upper plane.

Permot: Sometimes we will normalize nd-be.

St. nd-be=1=|ab|. Then:

Ant (M) = SL(2, iR).

Check: If $M = \binom{nb}{cR}$. $f_m = \frac{aZ+b}{cZ+A}$. Denotes)

Then f_m , of $f_m = f_{m,m}$, retain the operation.

Pf: 1') Nate that: $\frac{i-2}{j+2}: H \xrightarrow{F} D$. $F \cdot 6 = 1_H$ $i \frac{1-3}{j+2}: P \xrightarrow{G} H \quad G \circ f : 1_D$

Y: Ant(D) -> ANT(M) y is Anto-!
Y: FoyoF :: Ant(D)= ANT(M)

2°) & Z, W & M. JM & Slcz. K). St. fm(2)=W

3°) F. fmg o F = e - 2it. Mg = (6050 - 5ing)

4°) $\forall f \in Aut(M)$. Suppose $f(\beta)=i$. $\exists f_N.st. f_0f_{N(i)}=i$ $f_0f_N \in Aut(M)$. $\therefore F_0f_0f_{N(i)}=0$. $f_0f_0f_N \circ F_1^2 \in Aut(D)$. $\therefore J_0$'s rotation. Remote: Note that fm=f-m. Identify M with -M in SL(2,1R). We obtain A new group: PSL(1R)

(4) Riemann Mapping Thm:

1) Montel's 7hm:

Def: i) I is a permal family, if I is

a family of helemerphic functions.

If I = I = I fax = I fax I = I fax I = I

fax = some f (may not e I)

ii) I kn Seq of opt set is an exhaustion of a.

if kn = int knt I

Vkn = a.

Ukn = a.

Remot: Every open set 0 has an exhaustion: $k_n = \{ z \mid Aist(z, 0^c) \ge \frac{1}{n}, |z| \le n \}.$

Thm. I is a family of holomorphic func on a N En C. If I is lically uniformly borned or every opt set En. Then.

- i) of is equilorti on every upt set
 - ii) of is normal family.

Pf: i) Eensy to check by Cauchy Thm.

ii) For lkn is exhaustion of n. $\forall lfk$ = gBy Ascoli. $\exists lfik$ $j \in lfik$, haverges in k. $\exists lfik$ $j \in lfik$, converges in k.

A I fink] = I fin. k) converges in kn.

Choose I final. it converge on every upe sut!

Gor. (Vitali 7hm)

 $D \subseteq G$. If n is family of holomorphic functions on D, uniformly bounded. If f converges on a set of uniqueness f then $\exists f$. It if f aniquess if f is set of uniqueness if f any f is set of uniquess if f is any f is f aniquess if f is any f is f aniquess if f is then f is f on f in f is f and f is f aniquess if f is then f is f aniquess if f is f in f is f aniquess if f is f is f aniquess if f is f in f is f aniquess f in f is f in f is f in f is f in f i

Pf: By cantradiction: $\exists k \in D$, $\epsilon_0 > 0$. I $f_{ak} \}$. I $f_{bk} \} \in If_a \}$. $I \not\equiv n \} \subseteq D$. It. I $f_{ak} (i \not\equiv k) - f_{bk} (i \not\equiv k) | i \not\equiv 0$.

By Montel. Select Convergent subseque of $i \not\equiv q_i$, $i \not\equiv q_i$, $i \not\equiv q_i$. $i \not\equiv q_i = n$ A. Set of uniqueness. $i \not\equiv q_i$.

Suppose $Z_k \rightarrow Z_0$. Then $|g(Z_0) - f(Z_0)|_{20}$ which is a contradiction!

O Riemann's Mapping Thm:

If $\Lambda \subseteq C$. Simply connected. Then $\Lambda \subseteq D^{\triangle}D(0.1)$ Moreover. There's unique f satisfies: $f(Z_1) = 0. \quad \text{And} \quad f'(Z_1) > 0 \quad \text{for some } Z_0 \in D.$

Pf: 1) r = D

Downer ma one-to-one.

Pf: Garsider $J = \{f = n \rightarrow 0, f \in \theta(n), injective, f \in \Xi_0\} = 0\}$ i) Prove: $J \neq \emptyset$, consider biject to inject) $J \neq C = \{f \in A\}$. (Lesk $f \in A\}$: $J \in A$: $J \neq C = \{f \in A\}$: $J \in A$: $J \in C = \{f \in A\}$: $J \in A$: $J \in C = \{f \in A\}$: $J \in A$: $J \in C = \{f \in A\}$:

Since I squ's = g. st. If (201 =).

Since I squ's = g. qu'czos ->).

By Montel on squ's Ink har f

If (201 =) > 0. ... f = c. ... f = g ly Murinta. Thm

If (201 =) > 0. ... f = c. ... f = g ly Murinta. Thm

III) Prove: f: N -> D is nutomorphism.

If mt. Faeb. fiz) + a. &ZEN.

Choise $Q_n = \frac{Z-n}{1-nZ}$, $Jy_n \in \Theta(D)$, injective

Choise $Q_b = e^{impb} \frac{Z-b}{1-bZ}$, $b = Jy_{n(a)}$ $h(z) = \{0 \circ Jy_n \circ f \in \mathcal{F}\}$ Since $|(Y_1 \circ Jy_n)'(0)| = \frac{1+|b|}{2|b|} > 1$. $||h'(Z_1)| > ||f'(Z_1)| = \lambda$ Which is a contradiction!

2) Uniqueness:

If F. G. Satisfies the andition.

Then Fo G' & Aut CDD. Fix origin

Then Fo G' = Libz. 0 < 0 < 22.

g=22 since cfo G's | z=zo > 0.

Pent: Consider If(20) = sol If(20) is for fed fed filling the Pisc D as much as possible!

It's one-to-one eventually!

3 Caratheo Lory Thm:

 $D \notin G$. Simply connected. If ∂D is carting to some $D \notin U$. Then Y can be extended to: $D \cong U$. homeon.

Pf: Note that in $D \notin I$. bound.

If f is uniformly contion D.

Then f can be extended on \overline{D} .

10) Prove: Y is uniformly contion D.

By Gntradiction: I IZi]. IZi'S = D.

51. 19(Zi) - Y(Zi') | > 20. 12i'-8i' | = in

Find subseq of Zi -> 30. So will EDD.

Find subseq of ((Zi'), Y(Zi')) Converges to

W. w. w. which will belong to DU. 1W.-W21380

Fripare RMS. by Cauchy Trequilty, Contradict!

2°) Extend & to DD -> DU.

Def: Y(Zo) = lim &(Z). Zo 6 dD.

ZoD->Zo

Check & is homeomorphism!

(4) Pion core Inequivalance Than:

. In C^n , n>1. Riemann Mapping Than Roesn't hold any rore.

Penote $\beta_n = 1 \ge (Z_1, ..., Z_n) \mid \widehat{Z} \mid 3 \mid 1 \le 1$ $P(n,r) = \widehat{T} \beta(n,r), p(lydisc.)$

Then Am (Bn) is Unitary Group. Monabelian.

Ant (P(1.1)) = $\{f \mid f: (B_1 \cdots E_n) \rightarrow (Y_n(E_n) - Y_n(E_n))\}$ is abelian Growf. Aut (Bn) \neq Aut (P(0.1))

7hm. There's na bip-lemorphism between Br and P 60,1)

For Dirichlet Problem: