Principal Component Analysis

Main feature selection which components (features) are important to Keep?

significance = voriance intelligence = recognize significance

starting point is a file with a table.

	features				
	\dag{1}	1×2	χ_3		$\mathcal{I}_{\mathcal{O}}$
observa2 - tions 3					

 $\sum = E[(x - E[x])(x - E[x])^T]$

$$C = E[xx^T]$$

 $\sigma^2 = \text{Variance}(\alpha) = E[(\alpha - E(\alpha))^2]$

variance -> 1D does x3 change? covariance ___ 1D does x2, x3 change?

Diagonalizing C using a suitable orthogonal fransformation matrix A by obtaining N orthogonal "special vectors" U; with "special parameters" x;

LDA, VLAD

Applications of PCA

- * Data reduction
- * Data visuallization
- * Data classification
- * Factor analysis
- * Trend analysis
- * Noise removal

A meaningful chain:

Project

- 1. Find a problem
- 2. Analyse the problem (input/output/knowledge)

- 3. Select approach (architecture, parameters.)
- 4. Design the approach
- 5. Training
- 6. Retrain if needs
- 7. Recall phase (unseen data)
- 8. Compare against other methods