Problemes Física II

Oscil.lacions

1. * El desplaçament d'una partícula, x(t), ve donat per

$$x(t) = 0.3\cos\left(2t + \frac{\pi}{6}\right)$$

(x en metres i t en segons).

- a) Determineu la freqüència ν , el període τ , l'amplitud A, la freqüència angular ω i la constant de fase.
- b) On es troba la partícula en t = 1 s?
- c) Calculeu la velocitat i la acceleració en un instant qualsevol t.
- d) Calculeu la posició inicial i la velocitat inicial.

R/ a)
$$\nu = 1/\pi$$
 Hz; $\tau = \pi$ s; $A = 0.3$ m; $\omega = 2$ rad/s; $\varphi_0 = \pi/6$; b) $x(t = 1) = -0.245$ m; c) $v(t) = -0.6 \sin\left(2t + \frac{\pi}{6}\right)$; $a(t) = -4x(t)$; d) $x(0) = 0.2598$ m; $v(0) = -0.3$ m/s.

2. * Una partícula fa un moviment harmònic simple rectilini. La seva velocitat màxima és de 80 cm/s i la seva acceleració màxima és de 90 cm/s². Determineu la freqüència, el període i l'amplitud de les oscil·lacions.

R/
$$\omega = 1.125 \text{ rad/s}$$
; $T = 5.585 \text{ s}$; $\nu = 0.179 \text{ Hz}$; $A = 71.1 \text{ cm}$.

3. * Calculeu les freqüències d'oscil.lació corresponents a cadascun dels sistemes representats a la figura 1.

Figura 1

$$R/\omega = \sqrt{\frac{k_1 k_2}{(k_1 + k_2)m}}, \, \omega = \sqrt{\frac{k_1 + k_2}{m}}, \, \omega = \sqrt{\frac{k_1 + k_2}{m}}$$

4. * Un bloc de 35.6 N de pes es troba penjat d'un resort que té una constant de recuperació de 526 N/m. Es dispara contra el bloc, des de baix, una bala de 0.445 N de pes a una velocitat de 152 m/s, que queda incrustada en el bloc. Trobeu l'amplitud del moviment harmònic simple resultant. Quina fracció de l'energia cinètica original quedarà emmagatzemada a l'oscil.lador harmònic? Es perd energia en aquest procés?

$$R/A = 0.157 \text{ m}; 0.0124.$$

5. Un cos de massa 1 kg se subjecta a una molla de constant elàstica k = 400 N/m. Si l'objecte es troba inicialment a la posició $x_0 = 3$ cm i la seva velocitat inicial és $v_0 = -25$ cm/s, calculeu la freqüència i l'amplitud del moviment. Doneu l'equació del moviment.

$$R/\nu = 3.18 \text{ s}^{-1}$$
; $A = 3.25 \text{ cm}$; $x(t) = 3.25 \cos(20t + 0.39)$

6. Un cilindre massís de massa M que pot rodar sense lliscar està unit a una molla sense massa de constant recuperadora k=3.0 N/m (Veure figura 2). Si es deixa anar el sistema sense velocitat inicial des d'una posició en què la molla està estirada 0.25 m respecte de la seva posició d'equilibri, calculeu l'energia cinètica de translació i de rotació del cilindre en el moment en què passa per la posició d'equilibri. Demostreu que el període d'oscil·lació del moviment harmònic simple resultant és $T=2\pi\sqrt{\frac{3M}{2k}}$.

Figura 2

$$R/E_c^t = 0.06250 \text{ J}; E_c^r = 0.03125 \text{ J}.$$

- 7. * Calculeu l'amplitud i la constant de fase del moviment resultant de la superposició dels moviments harmònics simples x_1 i x_2 que es dónen a continuació:
 - (a) $x_1 = 3\sin(\omega t + 30^\circ)$ $x_2 = 4\sin(\omega t + 45^\circ)$
 - (b) $x_1 = 3\sin(\omega t + 45^\circ)$ $x_2 = 4\sin(\omega t + 135^\circ)$
 - (c) $x_1 = 2\sin(\omega t + 60^\circ)$ $x_2 = 5\sin(\omega t 30^\circ)$
- 8. Un rellotge de pèndol que oscil.la amb una amplitud molt petita avança 5 min cada dia. Quant hauria de canviar la longitud del pèndol per a mantenir l'hora correctament? $R/\ \Delta l/l = 0.698\%.$
- 9. * Un pèndol simple de longitud L es deixa oscil·lar des del repòs amb un angle θ_0 respecte de la vertical. Suposant que el moviment del pèndol sigui harmònic simple, calculeu la seva velocitat quan passi per $\theta=0$. Utilitzant conservació de l'energia, calculeu el valor exacte de la velocitat per $\theta=0$. Comproveu que els dos resultats anteriors són iguals si θ_0 és petit. Determineu la diferència entre els dos resultats obtinguts per a $\theta_0=0.20$ rad i L=1 m.

$$R/v = \sqrt{gL\theta_0}; v = \sqrt{2gL(1-\cos\theta_0)}; \Delta v \simeq 0.001 \Rightarrow 0.16\%$$

10. Tenim un pèndol físic format per una esfera de massa m i radi r penjada d'una corda. La distància entre el centre de l'esfera i el punt de suspensió de la corda és L. Quan r és molt més petit que L aquest pèndol es podria considerar un pèndol simple de longitud L. Demostreu que el període de les petites oscil·lacions al voltant del punt d'equilibri del pèndol físic és $T = T_0 \sqrt{1 + \frac{2r^2}{5L^2}}$, on $T_0 = 2\pi \sqrt{L/g}$ és el període del pèndol simple de longitud L. Si r = 2 cm i L = 1 m, calculeu quin error es comet al considerar $T = T_0$. Quina mida hauria de tenir r perquè l'error fos de l'1%?

$$R/\delta_T = 0.00797\%$$
; $R = 22.5$ cm.

11. Un oscil·lador harmònic format per una massa, m=1 kg, enganxada a una molla de constant elàstica k=400 N/m és desplaçada una distància de 3 cm respecte a la posició

d'equilibri, i després es deixa anar des del repòs. Avalueu la freqüència de les oscil·lacions, l'energia total i la velocitat màxima. Doneu l'equació del moviment

R/ 3.18 Hz; 0.18 J; 0.6 m/s;
$$x(t) = 0.03 \cos(20t)$$
.

12. Per estudiar les vibracions d'una molècula diatòmica podem imaginar que està formada per dues masses puntuals, m_1 i m_2 , unides per una molla amb constant recuperadora k. Calculeu la freqüència de les vibracions.

$$R/\omega = \sqrt{\frac{k(m_1 + m_2)}{m_1 m_2}}.$$

- 13. El potencial de Lennard-Jones, que descriu les forces que existeixen entre dues molècules separades una distància r, ve donat per $U = U_0 \left[\left(\frac{r_0}{r} \right)^{12} 2 \left(\frac{r_0}{r} \right)^6 \right]$, on U_0 i r_0 són constants característiques de la molècula considerada.
 - a) Feu una gràfica de l'energia potencial i calculeu la posició d'equilibri. Quant val l'energia de dissociació de la molècula?
 - b) Feu el desenvolupament en sèrie de potències i calculeu la relació entre el terme harmònic i el primer terme anharmònic. En quines condicions es pot negligir aquest últim?
 - c) Calculeu, en funció de U_0 i r_0 , la freqüència angular de les petites oscil·lacions al voltant del mínim del potencial per a una molècula homoatòmica de massa 2m.
 - d) Sabent que l'energia de dissociació de l' O_2 és $U_0 = 5.08$ eV i que el tamany de l'enllaç és de 14 Å, calculeu la freqüència ν de les oscil·lacions segons aquest model, i compareu-la amb el valor experimental, $\nu_0 = 4.6 \times 10^{13}$ Hz.

R/ a)
$$U_0$$
; b) $\Delta r \ll r_0/7$; c) $12\sqrt{\frac{U_0}{r_0^2 m}}$; d) 8.7×10^{13} Hz.

- 14. * Tenim un pèndol format per una esfera d'alumini de radi R=5 mm lligada per un extrem a una corda de longitud L=1 m. La força de fricció de l'esfera amb l'aire ve descrita per la fórmula de Stokes, $F=-6\pi\eta Rv$, on η és el coeficient de viscositat de l'aire, i v la velocitat de l'esfera respecte l'aire. Determineu:
 - a) el temps necessari per tal que l'amplitud de les oscil·lacions es redueixi en un 10 %;
 - b) la frequència de les oscil.lacions (suposant que són petites).

(Dades: densitat de l'alumini,
$$\rho = 2.49 \text{ g/cm}^3$$
; viscositat de l'aire, $\eta = 1.78 \times 10^{-5} \text{ kg/m·s}$) R/ a) $t = 165 \text{ s}$; b) $\omega = 3.16 \text{ rad/s}$.

$$R/A(t+T)/A(t) = e^{-\gamma T}$$
.

16. Un oscil.lador amortit té una freqüència d'oscil.lació ω que és un 10% menor que la seva freqüència natural d'oscil.lació. En quin factor disminueix l'amplitud de cada oscil.lació? En quin factor es redueix la seva energia en cada oscil.lació?

$$R/0.0477$$
; 2.27×10^{-3} .

17. * Un pèndol simple té un període d'oscil·lació de 2 s i una amplitud de 2°. Després de 10 oscil·lacions, la seva amplitud s'ha reduït a 1.5°. Calculeu la constant d'amortiment. Si la massa del pèndol és 1 kg, calculeu quina és la potència mitjana necessària per a mantenir les oscil·lacions amb una amplitud constant de 2°.

 $R/b = 0.0288 \text{ kg/s}; P = 1.78 \times 10^{-4} \text{ W}.$

18. * Un objecte de 2 kg oscil.la per l'acció d'una molla de constant k=400 N/m. La constant d'amortiment és b=2 kg/s. L'objecte és impulsat per una força sinusoïdal amb un valor màxim de 10 N i amb freqüència angular de 10 rad/s. Quina és l'amplitud de les oscil.lacions? Si es varia la freqüència de la força impulsora, per a quins valors es produiran les ressonàncies? Quant valdrà l'amplitud del moviment en cada cas?

R/ A=4.98 cm; $\omega_R=14,12$ rad/s $\simeq \omega_0;$ A=0.3539 m.

Ones

- 19. * Donada l'ona harmònica $y(x,t)=2\sin(\pi x-20\pi t)$, amb y en cm, x en metres i t en segons, avalueu:
 - a) el sentit de propagació,
 - b) l'amplitud de l'ona, la seva longitud d'ona, freqüència, període i velocitat de propagació.
 - R/a) cap a la dreta; b) $A = 2 \text{ cm}; \lambda = 2 \text{ m}; \tau = 0, 1 \text{ s}; \nu = 10 \text{ Hz}; \nu = 20 \text{ m/s}.$
- 20. * Una ona harmònica té una amplitud de 60 cm, una freqüència de 0.5 Hz i una velocitat de propagació de 1.5 m/s. Quan el desplaçament vertical d'una partícula qualsevol de les que oscil.len en l'ona és màxim en el sentit negatiu (y = -60 cm per a la partícula considerada), quin és el desplaçament vertical d'una altra partícula situada a 1.2 m de distància de l'anterior, per davant de la primera en el sentit de propagació de l'ona? I la que esta en el sentit contrari?

R/0.49 m. les dues.

- 21. * Un suro està oscil.lant a l'aigua amb una velocitat vertical màxima de 3 cm/s i una acceleració màxima de 2 cm/s². a) Calculeu l'amplitud i la freqüència del moviment. b) Si la longitud d'ona de l'ona transversal generada és de 3 m, quina és la velocitat de propagació de l'ona?
 - R/ a) A = 4.5 cm; $\omega = 2/3$ rad/s; b) v = 0.318 m/s.
- 22. Ones sísmiques. En els terratrèmols hi ha quatre tipus d'ones: dues de volum (ones S i P) i dues ones de superfície. Les velocitats respectives de les ones P (primàries) i S (secundàries) valen

$$v_P = \sqrt{\frac{B+4M_c/3}{\rho}}, v_S = \sqrt{\frac{M_c}{\rho}},$$

- on B és el mòdul de compressibilitat i M_c el mòdul de cisallament.
- a) Un material geològic té els següents mòduls $B = 6.3 \ 10^{10} \text{N/m}^2$ i $M_c = 2.7 \ 10^{10} \text{N/m}^2$, i una densitat de 3 g/cm³. Avalueu les velocitats de les ones P i S en aquest medi.
- b) Una estació sismogràfica detecta l'arribada de l'ona P d'un sisme a les 0:15:23 i l'arribada de l'ona S a les 0:17:53. A quina distància de la estació s'ha produït el focus (hipocentre) del sisme si el medi que separa l'hipocentre de l'estació està compost pel material de la part a) d'aquest problema?
- R/ a) $v_P = 5,74 \text{ km/s}, v_S = 3 \text{km/s}; \text{ b) } 942 \text{ km}.$
- 23. * Demostreu que qualsevol pertorbació de la forma $q=f(x\pm vt)$ compleix l'equació d'ones unidimensional

$$\frac{\partial^2 q}{\partial x^2} = \frac{1}{v^2} \frac{\partial^2 q}{\partial t^2}.$$

24. Una corda amb densitat lineal 0.25 kg/m s'estira amb una tensió de 25 N. A un dels extrems es comunica un moviment sinusoïdal amb una freqüència de 5 Hz i una amplitud de 0.01 m. El desplaçament inicial d'aquest extrem és 0. Determineu:

- a) La velocitat de l'ona, l'amplitud, $\omega,\,\tau,\,\lambda$ i el nombre d'ona, k.
- b) La funció d'ona.
- c) El desplaçament y del punt situat a $x=0.25~\mathrm{cm}$ quan $t=0.1~\mathrm{s}.$

- d) La velocitat d'aquest punt.
- R/ a) 10 m/s; 0.01 m; $10\pi \text{ rad/s}$; 0.2 s; 2 m; $\pi \text{ m}^{-1}$; b) $y(x,t) = 0.01\sin(\pi x 10\pi t)$; c) $y(0.0025, 0.1) = -7.85 \times 10^{-5} \text{ m}$; d) v = 0.314 m/s.
- 25. Una màquina de tren s'allunya d'una estació a una velocitat constant de 48 km/h. Calculeu la variació relativa de la freqüència del xiulet de la màquina observada per una persona que està quieta a l'estació.

$$R/-3.8\%$$
.

26. * Un destructor que es troba en repòs està equipat amb un sonar que envia pulsos sonors de 40 MHz. Els pulsos que es detecten han estat reflectits per un submarí que està justament a sota del vaixell, i arriben amb un retard de 80 ms i amb una freqüència de 39.958 MHz. Si la velocitat del so a l'aigua de mar és de 1.54 km/s, calculeu la fondària a què es troba el submarí i la velocitat vertical d'aquest.

27. * Dos altaveus situats sobre l'eix y de coordenades en les posicions y = -0.5 m i y = +0.5 m funcionen mitjançant un generador de freqüència 2000 Hz. Un alumne es situa sobre l'eix x a 10 m de distància de l'eix y i camina perpendicularment a l'eix x, és a dir, paral.lelament a l'eix y en el sentiu negatiu de les y. Quina distància haurà de caminar per a trobar el primer punt on la interferència sigui constructiva? (velocitat del so a l'aire: 340 m/s).

28. Dos altaveus alineats i separats una certa distància d emeten ones sonores de la mateixa freqüència, però un dels altaveus ho fa amb una fase avançada 90° respecte de l'altre. Sigui r_1 la distància des d'un punt determinat al primer altaveu i r_2 la distància des del mateix punt a l'altre altaveu. Calculeu la condició que han de complir les posicions dels màxims i dels mínims del so en funció de $r_1 - r_2$.

$$R/r_2 - r_1 = (n - 1/4) \lambda i r_2 - r_1 = (n + 1/4) \lambda$$
, respectivement.

29. * La funció que descriu una ona estacionària en una corda fixa pels seus extrems és

$$y(x,t) = 0.5\sin(0.025x)\cos(500t).$$

Calculeu la velocitat de propagació i l'amplitud d'oscil.lació de les ones viatgeres que combinades donen aquesta ona estacionària. Quina és la distància entre dos nodes consecutius? Quina serà la longitud mínima de la corda necessària per a tenir una ona estacionària?

$$R/2 \times 10^4$$
; 0.25; 125.7; 125.7.

30. Dues ones d'igual freqüència i d'amplituds A_1 i A_2 s'estàn propagant en sentits oposats. Un observador que es belluga per sobre l'eix x, per on es propaguen les ones, troba que l'amplitud de l'ona resultant mai és més gran que 4 unitats ni més petita que 2 unitats. Si $A_1 > A_2$, trobeu els valors de les amplituds de les ones.

$$R/A_1 = 3, A_2 = 1.$$

31. Un radar que controla la velocitat dels automòbils a la carretera emet microones a una freqüència de 2.11 GHz. Quan les ones són reflectides per un cotxe en moviment, la freqüència de batiment és de 293 Hz. Calculeu la velocitat del cotxe.

$$R/75 \text{ km/h}.$$

Camp elèctric i Condensadors

32. * Dues masses de deu grams i amb càrrega elèctrica q es pengen de fils de longitud l=1 m tal com s'indica en la figura 3. Si en la posició d'equilibri els fils formen un angle de 15° amb la vertical, calculeu el valor de q.

Figura 3

$$R/q = \pm 8.94 \times 10^{-7} C$$

33. Una balança equil.librada té en el plat de la dreta una pesa de 100 g i en el de l'esquerra té suspesa una esfera petita carregada elèctricament amb una càrrega -q. En situar a sota d'aquesta una altra càrrega +2q a 10 cm de distància, s'han de canviar les peses del plat de la dreta fins a 130 g per a mantenir l'equilibri. Trobeu el valor de la càrrega de l'esfera penjada en la balança.

$$R/q = 0.4 \mu C$$

34. * Les components del camp elèctric que està aplicat a la figura 3 són $E_x = bx^{1/2}, E_y = E_z = 0$. Calculeu el flux Φ_E que passa pel cub i la càrrega que hi ha a l'interior d'aquest cub. Suposeu a = 10 cm.

$$R/\Phi_E = a^2 b \sqrt{c} (\sqrt{1 + a/c} - 1) \; ; \; Q = \epsilon_0 a^3 b / (2\sqrt{c})$$

35. En una regió particular de l'atmosfera terrestre s'ha mesurat el camp elèctric sobre la superficie de la Terra i ha resultat valdre 150 N/C a una altura de 250 m i 170 N/C a 400 m, en ambdòs casos dirigit cap avall. Calculeu la densitat de càrrega de l'atmosfera suposant que és uniforme entre 250 i 400 m. Pot negligir-se la curvatura de la Terra. Per què?

R/
$$\rho = -1.18 \times 10^{-12} \text{ C/m}^3$$
.

36. Sabem que l'electró de l'àtom d'hidrogen descriu una orbita circular de radi r al voltant del protó. a) Doneu la velocitat de l'electró en funció de e, m i r. b) Quina és l'energia potencial d'interacció entre el nucli i l'electró? Determineu l'energia total del sistema. c) Sabent que el radi r per l'àtom d'hidrogen a l'estat fonamental val $a_0 = 0.529$ Å (a_0 és el radi de Bohr) calculeu la seva energia en aquest estat expressada en eV.

$$R/c) -13.6 eV.$$

37. Una petita esfera de massa 1.2 mg i amb una càrrega de $2, 3 \times 10^{-8}$ C es troba suspesa d'un fil de seda que fa un angle de 30° amb una làmina dielèctrica carregada positivament (Figura 4). Calculeu la densitat superficial σ de la làmina. I si la làmina fos conductora?

Figura 4

$$R/5.23 \times 10^{-9} C/m^2$$
.

38. Trobeu la velocitat d'un electró accelerat amb una diferència de potencial de 2000 V si la seva velocitat inicial era de 10⁷ m/s.

$$R/v = 6.57 \times 10^7 \text{ m/s}$$

39. Considereu dues plaques carregades uniformement amb càrregues iguals i oposades. Les plaques tenen una longitud A i a una distància L d'elles es situa una pantalla S, veure figura 4. Es fa passar a través de la regió on hi són les plaques una partícula carregada de massa m i càrrega q. Quant val l'energia cinètica inicial de la partícula si mesurem d i coneixem el valor E del camp elèctric uniforme que hi ha entre les plaques.

$${\rm R}/~E_{\rm cin}^0=qEA(L+A/2)/(2d)$$

40. * Calculeu la diferència de potencial que apareix entre dues esferes metàliques concèntriques de radis r i R i amb càrrega q i Q respectivament.

$$R/\Delta V = \frac{q}{4\pi\epsilon_0} (\frac{1}{r} - \frac{1}{R})$$

- 41. Tenim dos cilindres concèntrics infinitament llargs de radis a i b, amb a < b. Els cilindres tenen càrregues iguals i de signe contrari, caracteritzades per una densitat de càrrega per unitat de longitud λ . Fent servir el teorema de Gauss, comproveu que el camp elèctric \vec{E} és zero per r < a i per r > b, i que el mòdul del camp elèctric val $E = \frac{1}{2\pi\epsilon_0} \frac{\lambda}{r}$ per a < r < b.
- 42. * Calculeu l'energia electrostàtica enmagatzemada en tot l'espai que envolta una esfera conductora de radi r en la que s'ha dipositat una càrrega Q. Feu el càlcul numèric en el cas en que r=10 cm i Q=10 nC.

$$R/E = 4.5 \times 10^{-6} J$$

- 43. Calculeu el camp elèctric creat en un punt qualsevol de l'espai, E(r), per cadascuna de les distribucions de càrrega següents.
 - a) Una esfera aïllant de radi R carregada uniformement amb una càrrega total Q.
 - b) Una esfera conductora de radi R carregada amb una càrrega total Q.

- c) Una superfície plana infinita carregada de manera uniforme amb una densitat de càrrega per unitat de superfície σ .
- d) * Un fil conductor rectilini de longitud infinita amb una densitat de càrrega λ per unitat de longitud.

R/ a)
$$E(r) = \frac{Q}{4\pi\varepsilon_0 r^2}$$
, si $r > R$ i $E(r) = \frac{Qr}{4\pi\varepsilon_0 R^3}$, si $r < R$; b) $E(r) = \frac{Q}{4\pi\varepsilon_0 r^2}$, si $r > R$ i $E(r) = 0$, si $r < R$; c) $E(r) = \frac{\sigma}{2\varepsilon_0}$; d) $E(r) = \frac{\lambda}{2\pi\varepsilon_0 r}$;

44. * Considereu una bola de radi R amb càrrega Q i densitat de càrrega uniforme (es tracta d'un model per al protó). El centre de la bola es troba a l'origen. a) Utilitzeu la component radial del camp elèctric calculada a partir de la llei de Gauss per a calcular el potencial V(r) suposant V=0 en $r=\infty$, per qualsevol punt a l'exterior de la càrrega, $r\geq R$. b) Feu el mateix, per a qualsevol punt a l'interior del protó, $r\leq R$. Quant val V a l'origen? (recordeu que V ha de ser continu a tot arreu) c) Representeu V en funció de r d) Representeu V en funció de r si la bola fos conductora.

R/ a)
$$V(r) = \frac{Q}{4\pi\varepsilon_0 r}$$
; b) $V(r) = \frac{Q}{8\pi\varepsilon_0 R^3} (3R^2 - r^2)$.

45. * Dues càrregues puntuals de $+12 \times 10^{-9}$ C i de -1.2×10^{-9} C estàn separades 10 cm, tal com es veu a la figura 5. Calculeu els potencials en els punts a, b i c. Calculeu l'energia potencial d'una càrrega de $+4 \times 10^{-9}$ C situada al punt a. Calculeu el treball realitzat per moure la càrrega de $+4 \times 10^{-9}$ C del punt b al punt c. Qui fa aquest treball?

Figura 5

R/ 1530 V, 2620 V, 971 V;
$$6.12 \times 10^{-6}$$
 J; -6.6×10^{-6} J, el camp.

- 46. Demostreu que les plaques d'un condensador pla s'atrauen amb una força igual a $\frac{q^2}{2\epsilon_0 A}$.
- 47. * Tenim un condensador pla que té les armadures separades una distància de 0.4 mm. El submergim en un líquid de constant dielèctrica ϵ . En l'interior del líquid hem de separar les plaques del condensador fins a una distància de 5.3 mm perquè tingui la mateixa capacitat. Calculeu el valor d' ϵ .

$$R/\epsilon = 1.17 \times 10^{-10} \text{ C}^2/\text{N} \cdot \text{m}^2.$$

48. * Determineu la capacitat d'un cable coaxial de 100 m de longitud si el diàmetre del conductor central és d'1 mm i el blindatge exterior és de 5 mm de diametre. La constant dielèctrica de l'aïllant intermig és 5.

R/
$$C = 17.3$$
 nF.

Figura 6

49. * Calculeu la capacitat equivalent de l'esquema de la figura 6.

$$R/C = 0.725 \ \mu F.$$

50. Tres condensadors de 2, 4 i 8 pF es connecten en sèrie. Si el voltatge de ruptura és de 1200 V per a cada un d'ells, podrem aplicar sense perill una diferència de potencial de 3500 V a la connexió?

R/ No. Fallaria el condesador de 2 pF.

51. Un condensador de 10 μ F es carrega a una diferència de potencial de 100 V i un altre de 20 μ F amb 200 V. Si es connecten tots dos en paral·lel, quina serà la diferència de potencial entre les plaques dels condensadors?

52. * Tenim dos condensadors de 3 i 5 μ F que es carreguen aplicant una tensió de 1.5 i 3.2 kV respectivament. Un cop carregats es monten en paral·lel. Calculeu les carregues i les tensions finals de cada un d'ells i les del sistema global.

$$R/ 7.7 \times 10^{-3} C$$
; $12.8 \times 10^{-3} C$; $2.56 \times 10^{3} V$.

53. * Tenim dos condensadors A i B, de capacitats respectives 10 i 5 μ F, connectats en sèrie. La placa lliure de B està connectada a terra i la placa lliure de A es connecta a una font de 600 V. Determineu la diferència de potencial entre les plaques de cada condensador i l'energia emmagatzemada per cada un d'ells.

54. Un condensador de $20~\mu\text{F}$ està carregat i manté una diferència de potencial entre les seves plaques de 1000~V. Les làmines del condensador carregat es connecten a les d'un altre de $5~\mu\text{F}$ descarregat. Calculeu la càrrega inicial del sistema i la càrrega final a les plaques de cada condensador. Calculeu la diferència de potencial que hi ha en l'estat final entre les plaques de cada condensador.

R/
$$2.0 \times 10^{-2}$$
 C; 1.6×10^{-2} C; 4.0×10^{-3} C; 800 V.

Corrent elèctric

55. * Per un punt determinat d'un tub fluorescent de 3 cm de diàmetere passen cada segon 2×10^{18} electrons i 0.5×10^{18} ions positius amb càrrega +e (on e és el valor absolut de la càrrega d'un electró). Quina ès la intensitat de corrent que circula pel tub? I la densitat de corrent?

 $R/0.4 A; 566 C/s \cdot m^2.$

- 56. Dins d'un accelerador de partícules els protons es mouen amb una velocitat propera a la de la llum. Suposem que tenim un feix de protons amb una intensitat de 5 mA, quants protons hi ha en cada metre del feix? Si la secció transversal del feix és de 10^{-6} m², feu un càlcul estimatiu de la separació mitjana dels protons. Quant val la densitat de corrent? R/ 1.04×10^8 protons; 2.1×10^{-5} m; 5.0×10^3 A/m².
- 57. Un generador de 500 V ha d'alimentar un motor que consumeix 60 A a una distancia de 5000 m. La conducció es realitza a l'anada per un cable de Cu de 38.4 mm² de secció i a la tornada per un rail d'acer de 45 cm². Quina és la tensió a què funciona el motor? (resistivitat del Cu: 1.7 $\mu\Omega$ ·cm, resistivitat de l'acer: 10.3 $\mu\Omega$ ·cm). R/ 361 V.
- 58. * Un centímetre quadrat d'una membrana té una resistència elèctrica de $0.2~\Omega$. La membrana té un gruix de 7.5×10^{-9} m i està travessada per porus de 3.5×10^{-10} m de radi. El fluid dels porus té una resistivitat de $0.15~\Omega$ ·m i la resta de la membrana pot considerar-se com un aïllant perfecte.
 - a) Quant val la resistència elèctrica de cada porus?
 - b) Quants porus hi ha en cada centímetre quadrat de la membrana?
 - R/ a) $R=2.92\times 10^9~\Omega;$ b) $n=1.46\times 10^{10}$ porus.
- 59. La intensitat donada per un generador a un circuit extern de 10 Ω és de 10 A. Si dupliquem el valor de la resistència del circuit extern la intensitat de corrent es redueix a 8 A. Quina resistència externa caldria posar per què la intensitat que circula pel circuit sigui de 9 A? R/ 14.4 Ω .
- 60. * a) Una resistència desprèn 100 W en forma de calor quan hi circulen 3 A. Calculeu el valor de la resistència. b) Es projecta una resistència per a calefacció d'1 kW per funcionar a 240 V. Quin ha de ser el valor d'aquesta resistència? Si la connectem a una diferència de potencial de 120 V, quina seria la seva potència?

R/ 11.1 Ω. 57.6 Ω; 250 W.

61. Demostreu que la potència subministrada a un circuit extern per una bateria de fem ϵ i resistència interna r és màxima quan la intensitat és la meitat de la corresponent al curt circuit, és a dir, quan els extrems de la bateria es connecten a través d'un fil de resistència negligible. Compareu la potència subministrada amb la potència dissipada en aquest cas.

$$R/P = \frac{1}{4}P_{curt-circuit}.$$

Circuits de corrent continu

62. * Quina és la intensitat del corrent en el circuit de la figura 7? Quina és la diferència de potencial entre els punts a i b? I entre b i c? I entre a i d? R/ 0.5 A; $V_b - V_a = 3$ V; $V_b - V_c = 3.75$ V; $V_a - V_d = -3.75$ V.

Figura 7

63. * Determineu la diferència de potencial entre els punts a i b de la figura 8. Si suposem que es connecten a i b, calculeu la intensitat de corrent que circula per la pila de 12 V. R/0 V; 0.5 A.

Figura 8

- 64. Calculeu, en el circuit de la figura 9, a) la resistència equivalent de la combinació en paral.lel de resistències, b) el corrent total en la font de fem i el corrent transportat per cada resistència. R/a 4 Ω ; b) 1 A; 2 A.
- 65. * Es monten en paral·lel dues sèries de 6 acumuladors de 2.1 V de fem i 0.1 Ω de resistència interna. Els extrems d'aquesta associació es connecten a través d'un circuit extern que conté una resistència de 6 Ω en serie amb un amperímetre d'1 Ω de resistència interna que porta una resistència "shunt" de 0.25 Ω en paral·lel. Calculeu quina és la intensitat que circula a través de l'amperímetre. R/ 0.39 A.
- 66. Calculeu les intensitats de corrent que circulen per cada branca del circuit de la figura $10.\ R/\ 0.8\ A;\ 1.1\ A;\ 0.3\ A.$

Figura 10

Figura 11

67. * Calculeu les intensitats de corrent que circulen per cada branca del circuit de la figura 11 i la caiguda de tensió entre els punts a i b. Dades: $R_1 = 5 \Omega$, $R_2 = 3 \Omega$, $R_3 = 6 \Omega$, $R_4 = 10 \Omega$, $R_5 = 15 \Omega$, $\epsilon_1 = 6 V$, $\epsilon_2 = 10 V$, $\epsilon_3 = 2 V$, $\epsilon_4 = 9 V$. R/ 0.36 A; 1.47 A; 0.71 A; 3 V.

Corrents variables en el temps (càrrega i descàrrega de condensadors)

68. Un condensador de 6 μ F està inicialment carregat i connectat a una diferència de potencial de 100 V. S'uneixen les seves plaques a través d'una resistència de 500 Ω . a) Quina és la càrrega inicial del condensador? b) Quin és el valor de la intensitat de corrent que circula pel circuit just en l'instant en què es connecta la resistència? c) Quina és la constant de temps d'aquest circuit? d) Quina és la càrrega del condensador 6 ms després d'haver-se connectat?

R/a)
$$6 \times 10^{-4}$$
 C; b) 0.2 A; c) 3×10^{-3} s; d) 8.12×10^{-5} C.

69. Un condensador de 1.6 μ F inicialment descarregat es connecta en sèrie amb una resistència de 10 k Ω i amb una bateria de 5 V sense resistència interna. Quina és la càrrega del condensador al cap d'un temps molt llarg? Quin temps necessita el condensador per a assolir un 99% de la seva càrrega final?

$$R/8 \times 10^{-6} C$$
; 0.0737s.

70. * Es connecta una resistència de 2 M Ω en sèrie amb un condensador d'1.5 μ F i una bateria de 6 V sense resistència interna. El condensador està inicialment descarregat. Després d'un temps $t=\tau=RC$, calculeu: a) el valor de la càrrega en el condensador, b) el ritme a què augmenta la càrrega, c) la intensitat de corrent que hi circula, d) la potència subministrada per la bateria, e) la potència dissipada per la resistència, i f) el ritme a què augmenta l'energia emmagatzemada en el condensador.

R/ a)
$$5.7 \times 10^{-6}$$
 C; b) i c) 1.1×10^{-6} A; d) 6.62×10^{-6} W; e) 2.44×10^{-6} W; f) 4.19×10^{-6} W.

71. * Un condensador d'1 μ F de capacitat emmagatzema inicialment una energia de 0.5 J i es descarrega a través d'una resistència de $10^6~\Omega$. a) Quina és la càrrega inicial del condensador? b) Quant val la intensitat de corrent que circula per la resistència en l'instant en què comença la descàrrega? c) Calculeu la diferència de potencial en la resistència en funció del temps. d) Calculeu la potència dissipada per la resistència (efecte Joule) en funció del temps.

R/a) 1 mC; b) 1 mA; c)
$$V(t) = 1000e^{-t}$$
; d) $P(t) = e^{-2t}$.

Camp Magnètic

72. Sobre un electró que es desplaça a 5000 km/s actua un camp magnètic de 8 T en direcció perpendicular a la velocitat. Calculeu el valor de la força centrípeta que actua sobre l'electró, el radi de l'òrbita que descriu l'electró i el temps que triga aquest en descriure-la. Descriviu com seria la trajectòria de l'electró en el cas que el camp magnètic i la velocitat no fossin perpendiculars.

$$R/6.4 \times 10^{-12} N$$
; $3.55 \times 10^{-6} m$; $4.5 \times 10^{-12} s$.

73. * Sigui un electró de 8.5 MeV d'energia cinètica, que es mou verticalment cap avall en una regió on hi ha un camp magnètic uniforme de 1.5 T horitzontal cap a la dreta. Calculeu el módul, direcció i sentit de la força que actua sobre l'electró. Quant valdrà el radi de la trajectòria circular que seguirà l'electró en el sí del camp magnètic? Quina serà la velocitat angular de rotació de l'electró? Quant temps trigarà l'electró en descriure la circumferència completa? Quantes voltes donarà l'electró cada segon? (Nota: 1 MeV=10⁶ eV és l'energia cinètica que pren una càrrega elèctrica igual a la càrrega d'un electró quan es accelerada amb una diferència de potencial de 1 V. La massa de l'electró és $m_e = 9.1 \times 10^{-31}$ kg i la seva càrrega és $q_e = -1.6 \times 10^{-19}$ C)

$$R/4.15 \times 10^{-10} N$$
; $6.56 \times 10^{-3} m$; $2.64 \times 10^{11} rad/s$; $2.38 \times 10^{-11} s$; $4.2 \times 10^{10} s^{-1}$.

- 74. a) Quina és la velocitat d'un feix d'electrons si no es produeix cap desviació dels electrons sota l'acció simultània d'un camp elèctric d'intensitat 34×10^4 V/m i d'un camp magnètic amb densitat de flux 2×10^{-3} Wb/m², ambdós camps perpendiculars al feix i perpendiculars entre ells?
 - b) Representeu en un diagrama l'orientació relativa dels vectors v, E i B.
 - c) Quin és el radi de l'òrbita de l'electró quan es suprimeix el camp elèctric?

$$R/1.7 \times 10^8 \text{ m/s}; 0.48 \text{ m}.$$

75. * Protons (càrrega +e), deuterons (càrrega +e) i partícules alfa (càrrega +2e) de la mateixa energia cinètica entren en una regió de camp magnètic uniforme \vec{B} perpendicular a les seves velocitats. Suposeu que r_p , r_d i r_α són els radis de les seves trajectòries. Calculeu els valors de r_d / r_p i de r_α / r_p si $m_\alpha = 2m_d = 4m_p$. Suposeu ara que tenim protons i partícules alfa tals que sota l'acció de \vec{B} descriuen òrbites d'igual radi, quina és la relació que hi ha entre les seves velocitats? I entre les seves energies cinètiques? I entre els seus moments angulars?

$$R/r_d/r_p = \sqrt{2}$$
; $r_\alpha/r_p = 1$; $v_\alpha/v_p = 1/2$; $E_\alpha/E_p = 1$; $L_\alpha/L_p = 2$.

76. Calculeu el valor del camp d'inducció magnètica en el centre d'una espira circular de radi a per la qual circula una intensitat I.

$$R/B = \frac{2\sqrt{2}\mu_0 I}{\pi a}.$$

77. * Calculeu el valor del camp d'inducció magnètica creat per un conductor rectilini infinit pel que hi circula una intensitat de corrent I en un punt situat a una distància r del conductor. Feu els càlculs numèrics si pel conductor hi circulen 5 A i si ens trobem a 10 cm del mateix. Si situéssim un altre conductor paral·lel al primer a 10 cm de distància i hi féssim circular un corrent de 3 A en el mateix sentit que en el primer conductor, quina seria la força deguda a la interacció magnètica que apareixeria entre els conductors? I si el segon corrent circula en sentit oposat al primer?

$$R/ 10^{-5} T; 3 \times 10^{-5} N/m.$$

78. Un solenoide és un dispositiu format per N espires enrotllades sobre un suport de radi r en una longitud L. Calculeu el valor del camp d'inducció magnètica, en el interior, creat per un solenoide, pel que hi circula una intensitat de corrent I.

$$R/B = \mu_0 nI$$
.

79. La figura 12 mostra un toroide de radi interior a i radi exterior b en el que s'han enrotllat uniformement N espires de fil conductor. Si per aquest fil hi circula una intensitat I, calculeu el valor del camp d'inducció magnètica en un punt de l'interior del toroide situat a una distància r (a < r < b) del seu centre.

Figura 12

$$R/B = \frac{N\mu_0 I}{2\pi r}$$

80. * Un cable coaxial molt llarg té un conductor interior i un recobriment exterior cilíndric de radi R. En un extrem del cable, el conductor intern es connecta al recobriment, i per l'altre extrem es connecten el conductor i el recobriment als pols oposats d' un generador, de manera que hi circula un corrent. Suposeu que el cable és rectilini. Calculeu el valor del camp d'inducció magnètica en un punt situat entre el conductor interior i el recobriment i en un altre situat a l'exterior del recobriment.

R/
$$B(r) = \frac{\mu_0 I}{2\pi r}$$
, si $0 < r < R$, i zero, si $r > R$.

Corrents induïts

81. El flux de camp magnètic que travessa l'espira varia segons la llei $\Phi_B = 6t^2 + 7t + 1$, amb Φ_B en mWb i t en segons. Calculeu el valor de la força electromotriu induïda en l'espira quan t = 2 s.

$$R/-31~mV$$
.

82. * Un filferro amb forma de semicercle de radi R es fa girar amb freqüència angular ω al si d'un camp magnètic d'inducció uniforme B com es mostra a la figura 13. Calculeu l'amplitut i la freqüència del voltatge i corrent induïts quan la resistència interna de l'aparell de mesura M és R_M i la resta del circuit té una resistència negligible.

$$R/\varepsilon_M = \frac{\pi R^2 B \omega}{2}$$
; $I_M = \frac{\pi R^2 B \omega}{2R_M}$; $f = \omega/2\pi$.

Figura 13

83. Determineu el flux magnètic a través del circuit rectangular de la figura 14, quan pel conductor rectilini infinit hi circula una intensitat constant I (ambdós estan en el mateix pla). Calculeu també la f.e.m. induïda quan el circuit s'allunya a velocitat constant v.

$$R/\Phi = \frac{\mu_0 Ib}{2\pi} \ln\left(\frac{r+a}{r}\right); \varepsilon = \frac{\mu_0 Iabv}{2\pi r(r+a)}$$

84. * Una espira rectangular es treu d'un camp magnètic uniforme amb velocitat constant v, tal com es veu a la figura 15. Calculeu la força electromotriu induïda a l'espira. Quina potència haurà de fer un agent extern per treure l'espira de la regió on hi ha el camp magnètic? Quin és el calor produït en l'espira per efecte Joule si aquesta té una resistència R?

Figura 14

Figura 15

$$R/\varepsilon = Blv; P = B^2l^2v^2/R.$$

85. Per una bobina d'autoinducció 8 H hi circula un corrent de 3 A que varia a raó de 200 A/s. Calculeu el flux magnètic que travessa la bobina i la fem induïda en ella.

86. Un solenoide té una longitud de 25 cm, un radi de 1 cm i està constituït per 400 voltes de fil conductor. Per ell hi circulen 3 A. Calculeu: a) El valor del camp d'inducció magnètica en el punt central del seu eix. b) El flux que travessa el solenoide, si B és uniforme. c) El coeficient d'autoinducció del solenoide. d) La força electromotriu induïda en el solenoid quan el corrent varia a raó de 150 A/s.

R/ a)
$$6.03 \times 10^{-3}$$
 T; b) 1.90×10^{-6} Wb; c) 6.32×10^{-7} H; d) 9.48×10^{-5} V.

Corrents variables en el temps (circuits RLC i corrent altern)

87. Calculeu l'equació dimensional de $1/\sqrt{LC}$ i de RC. Quines són les unitats d'aquestes magnituds en el sistema internacional?

$$R/ s^{-1}; s$$

88. * Quin és el període d'oscil·lació d'un circuit LC compost per una bobina de 2 mH i un condensador de 20 μ F sense generador? Quina inductància es necessària, juntament amb un condensador de 80 μ F, per a construir un circuit que oscil·li a 60 Hz? Quin seria, en aquest cas, el valor de la autoinducció necessària?

$$R/ 1.26 \times 10^{-3} s; 33.2 \Omega; 88 mH.$$

89. * Un circuit RCL amb L=10 mH, C=2 μF i R=5 Ω es connecta a un generador de 100 V de fem màxima i de freqüència angular ω variable. Calculeu la freqüència de ressonància ω_0 del circuit i el valor de la intensitat eficaç que hi circula en ressonància. Quan $\omega=8000$ rad/s, calculeu χ_C , χ_L , la impedància del circuit, la intensitat eficaç que hi circula i l'angle de desfasament.

R/
$$7.07 \times 10^3$$
 rad/s; 14.14 A; $\chi_C = 62.5 \Omega$; $\chi_L = 80 \Omega$; $Z = 18.2 \Omega$; 3.89 A; $74^{\circ}3'$.

90. Una bobina té una resistència de 80 Ω quan hi circula corrent continu, i una impedància de 200 Ω quan hi passa corrent altern a una freqüència d'1 kHz. Quant val el coeficient d'autoinducció de la bobina? (La capacitat de la bobina és negligible).

91. Es connecten una bobina de 0.25 H i un condensador de capacitat C en sèrie amb un generador de corrent altern a 60 Hz. La tensió eficaç que es mesura en la bobina és de 50 V, mentre que en el condensador és de 75 V. Calculeu la capacitat del condensador i el valor de l'intensitat eficaç de corrent en el circuit. Quant valdrà la tensió eficaç mesurada en el conjunt condensador-bobina?

$$R/ 18.8 \mu F$$
; 0.531 A; 24.9 V.

92. * En el circuit de la figura 16, el generador de corrent altern produeix una tensió eficaç de 115 V quan funciona a 60 Hz. Quina és la tensió eficaç entre els punts AB, BC, CD, AC i BD?

Figura 16

R/ 80.6 V; 78.0 V; 165.5 V; 112.1 V; 183.0 V.

93. * El circuit representat en la figura 17 rep el nom de filtre passa-alts, a causa que les freqüències d'entrada altes es transmeten amb amplitud més gran que les baixes. Si la tensió d'entrada és $V_e = V_{0e} \cos \omega t$, demostreu que l'amplitud de la tensió de sortida val $|V_0| = |V_e|/\sqrt{1 + (1/\omega RC)^2}$. A quina freqüència l'amplitud de la tensió de sortida és la meitat de la d'entrada? Feu una gràfica de $|V_0/V_e|$ en funció de ω .

Figura 17

$$R/\omega_0 = \frac{1}{\sqrt{3}} \frac{1}{RC}$$
.

94. Un circuit LCR en sèrie es connecta a un generador de 500 Hz. L'angle de fase entre la tensió aplicada i la intensitat de corrent es mesura i resulta ser $\phi = 75^{\circ}$. Si sabem que la resistència total és de 35 Ω i la inducció 0.15 H, quant val la capacitat del circuit? R/ 0.93 μ F.

Propagació de la llum

- 95. Un feix de llum monocromàtic vermell de 700 nm de longitud d'ona en l'aire incideix sobre l'aigua (índex de refracció 1.33). Quina és la longitud d'ona en l'aigua? Un nedador que vagi per sota l'aigua, veurà la llum del mateix color o no?
 - R/526.3 nm. Sí.
- 96. Un focus de llum està situat a 5 m per sota de la superfície d'un llac. Calculeu l'àrea de la circumferència més gran sobre la superfície del llac a través de la qual pot emergir llum directament (índex de refracció de l'aigua 1.33).

 $R/102 \text{ m}^2.$

Òptica física

- 97. Quina diferència de camí mínima és necessària per a produir un desfasament de π radiants en llum de 600 nm de longitud d'ona? Quin seria el desfasament que produiria aquesta diferència de camí en llum de 800 nm?
 - R/ 300 nm. $3\pi/4$ rad.
- 98. Llum amb una longitud d'ona de 500 nm incideix normalment sobre una pel·lícula d'aigua de $d = 10^{-4}$ cm. L'index de refracció de l'aigua és 1.33. Quan val la longitud d'ona d'aquesta llum a l'aigua? Quantes longituds d'ona estaran compreses en la distància 2d? Quina és la diferència de fase entre les ones reflectides en la cara superior de la pel·lícula i en la cara inferior?

R/ 3.76×10^{-11} m; nombre de longituds d'ona, 531; 10.6π rad.

99. Dues escletxes estretes separades entre si 1 mm s'il.luminen amb llum de 600 nm i s'observa el diagrama d'interferències en una pantalla situada a 2 metres de distància. Calculeu quantes franges de llum per centímetre es veuran a la pantalla.

 $R/8.33 \text{ cm}^{-1}$.

100. S'utilitza un feix làser per il·luminar dues escletxes separades entre si 0.5 mm i s'observa el diagrama d'interferències en una pantalla que es troba situada a 5 m. La distància en la pantalla entre l'eix que segueix el feix làser i la 27-ena franja de llum és de 25.7 cm. Quina és la longitud d'ona de la llum emessa pel làser?

R/ 952 nm.

101. Una xarxa de difracció de 2000 escletxes per centímetre s'utilitza per a analitzar la llum emesa per l'hidrògen gasós. En quin angle θ , en l'espectre de primer ordre, esperem trobar les línies violades de 434 i 410 nm? Si situem una pantalla a 20 cm de distància, quina és la separació amb la que veiem aquestes línies?

 $R/4.98^{\circ}$; 4.70° ; 9.8×10^{-4} m.

102. Amb la mateixa xarxa del problema anterior s'observen dues línies més de l'espectre de l'hidrògen en els angles $\theta_1 = 9.72 \times 10^{-2}$ rad i $\theta_2 = 1.32 \times 10^{-1}$ rad. Calculeu la longitud d'ona d'aquestes línies.

R/ 486 nm; 660 nm.

103. Es fa passar raigs X de longitud d'ona d'1 Å per una dissolució d'un determinat polinucleòtid lineal. Sobre una pantalla fosforescent situada a 1 m del recipient apareixen una sèrie de taques. Si la distància entre taques de màxima intensitat és de 10 cm, quina és la distància entre nucleòtids continguts en la molècula?

R/ 10 Å

104. Investiguem un cristall de NaCl amb raigs X de longitud d'ona de 0,586 Å. La primera difracció de Bragg es produeix a $\theta=5^{\circ}58'$, i correspon als plans de ions paral·lels a la cara de la red cúbica centrada a les cares. Calculeu la separació entre aquests plans.

R/2.80 Å

105. La llum entra a l'ull per la pupil.la, que és una obertura transparent de 5 mm de diàmetre. Quin és l'angle de difracció θ que es produeix quan un feix de raigs paral.lels de llum (longitud d'ona mitjana 550 nm) passa a través de la pupil.la? Quantes línies per centímetre hauria d'haver en una pantalla de televisor d'alta resolució per tal que un espectador a 2 m de distància vegés la imatge com un continu?

R/ 0.0077° ; 55 línies/cm.

106. Es fa passar raigs X de longitud d'ona d'1 Å per una dissolució d'un determinat polinucleòtid lineal. Sobre una pantalla fosforescent situada a 1 m del recipient apareixen una sèrie de taques. Si la distància entre taques de màxima intensitat és de 10 cm, quina és la distància entre nucleòtids continguts en la molècula?

R/ 10 Å

107. Investiguem un cristall de NaCl amb raigs X de longitud d'ona de 0,586 Å. La primera difracció de Bragg es produeix a $\theta = 5^{\circ}58'$, i correspon als plans de ions paral·lels a la cara de la red cúbica centrada a les cares. Calculeu la separació entre aquests plans.

- R/2.80 Å
- 108. Fent servir un aparell convencional de dues escletxes amb llum de 589 nm s'observen, sobre una pantalla situada a 3 m, 28 franges de llum per centímetre. Quina és la separació entre les escletxes?
- 109. La llum que incideix sobre un parell d'escletxes produeix un diagrama d'interferència sobre una pantalla col·locada a 2.5 m d'aquestes. Si la separació entre escletxes és de 0.015 cm i la distància entre línies de màxima luminositat de la pantalla és de 0.76 cm, quant val la lontitud d'ona de la llum?
- 110. Dues ones de la mateixa freqüència i amplitud es troben en un cert punt. L'ona resultant té una amplitud que ès 1.85 vegades l'amplitud de les ones inicials. Quina és la diferència de fase entre les dues ones incidents?
- 111. a) Quin és, en l'efecte fotoelèctric, la relació entre la freqüència umbral f_0 i el treball d'extracció dels electrons de la superfície? b) La longitud d'ona umbral fotoelèctrica del wolframi és 2.73×10^{-5} cm. Calculeu la màxima energia cinètica dels electrons expulsats des d'una superfície de wolframi per radiació ultraviolada de longitud d'ona 1.89×10^{-5} cm (expresseu la resposta en eV).
- 112. **Efecte Compton**. Demostreu, aplicant les lleis de conservació de l'energia i de la quantitat de moviment, que la diferència entre les longituds d'ona dels fotons incident i secundari és igual a $(1 \cos \theta)h/mc$, on h és la constant de Planck, m la massa del electró, c la velocitat de la llum, i θ l'angle entre el fotó secundari i la direcció del fotó incident.