MATHEMATIQUES - 2 IC INSA TD 5 - SYSTEMES DIFFERENTIELS LINEAIRES EXPONENTIELLE MATRICIELLE

Exercice 1

Ecrire les systèmes suivants sous forme matricielle et les résoudre par diagonalisation.

(1)
$$\begin{cases} x' = -3x + 2y + 5z \\ y' = -6x + 4y + 10z \\ z' = 3x - 2y - 5z \end{cases}$$

(2)
$$\begin{cases} x' = -2y \\ y' = x + 2y \end{cases}$$

Exercice 2

Soit le système différentiel

$$\begin{cases} x' = 4x - y \\ y' = x + 2y \end{cases}$$

- 1. Démontrer que la matrice du système est semblable à $T = \begin{pmatrix} 3 & 1 \\ 0 & 3 \end{pmatrix}$, en précisant la matrice de passage. Résoudre le système de matrice T et en déduire les solutions du système initial.
- 2. Retrouver le résultat à partir des espaces caractéristiques.

Exercice 3

Résoudre les systèmes différentiels :

(1)
$$\begin{cases} x' = 2x + y \\ y' = y + z \\ z' = y + z \end{cases}$$

(2)
$$\begin{cases} y_1' = -6y_1 + 5y_2 + 3y_3 + \frac{1}{x} \\ y_2' = -8y_1 + 7y_2 + 4y_3 \\ y_3' = -2y_1 + y_2 + y_3 + \frac{2}{x} \end{cases}, x > 0$$

Exercice 4

Résoudre le système
$$Y' = AY$$
, où $A = \begin{pmatrix} 1 & 0 & -1 & 1 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 \end{pmatrix}$

En déduire la matrice e^{tA} . On remarquera : $A(A - I_4)^2 = 0$.

Exercice 5

Soit l'équation différentielle d'ordre 2 : $x'' + \omega^2 x = 0$ ($\omega \in \mathbb{R}*$).

- 1. Ecrire le système différentiel associé, d'inconnue $X=(x,\frac{1}{\omega}x')$. On désigne la matrice du système par A.
- 2. Obtenir la solution générale X(t), à partir de celle de l'équation scalaire. En déduire la matrice e^A .
- 3. Retrouver e^A en remarquant que $A^2 = -\omega^2 I_2$.

Exercice 6

On souhaite calculer le déterminant de la matrice e^A , pour $A \in \mathcal{M}_n(\mathbb{C})$.

Première méthode.

Soit
$$T = \begin{pmatrix} \lambda_1 & \cdots & \cdots & \cdots \\ 0 & \lambda_2 & \cdots & \cdots \\ \vdots & 0 & \ddots & \cdots \\ 0 & \cdots & \cdots & \lambda_n \end{pmatrix} \in \mathcal{M}_n(\mathbb{C})$$
, une matrice triangulaire.

1. Vérifier :
$$\forall k \in \mathbb{N}, T^k = \begin{pmatrix} \lambda_1^k & \cdots & \cdots & \cdots \\ 0 & \lambda_2^k & \cdots & \cdots \\ \vdots & 0 & \ddots & \cdots \\ 0 & \cdots & \cdots & \lambda_n^k \end{pmatrix}$$

2. En déduire un calcul de $det(e^A)$.

Deuxième méthode.

Montrer que la fonction $D: \mathbb{R} \to \mathbb{C}$, $D(t) = \det(e^{tA})$ vérifie l'équation différentielle : $D' = (\operatorname{Tr} A) D$. En déduire $\det(e^A)$.