buy_affinity

July 26, 2020

1 Case Study - Customer Buy Affinity On E-commerce Dataset

```
[2]: #importing for exploratory data analysis and visualization import pandas as pd import matplotlib.pyplot as plt import seaborn as sns

#importing for undersampling and oversampling techniques import numpy as np from imblearn.under_sampling import RandomUnderSampler from imblearn.over_sampling import RandomOverSampler

from sklearn.model_selection import train_test_split from sklearn.metrics import classification_report from sklearn.preprocessing import StandardScaler

#different models to try from sklearn.linear_model import LogisticRegression from sklearn.ensemble import RandomForestClassifier
```

2 Reading the data for training

```
[3]: df = pd.read_csv('BuyAffinity_Train.txt',sep='\t',index_col='Index')
```

3 Checking the head of data

```
[4]: df.head()
[4]:
                 F1
                           F2
                                     F3
                                               F4
                                                     F5
                                                           F6
                                                                 F7
                                                                       F8
                                                                             F9
    Index
    1
           0.224506 0.500340
                               0.489860
                                         0.902413
                                                   7934 -6970 -5714 9982 -5697
    2
           0.321128 0.281119
                               0.907283
                                         0.772159 -8238
                                                         1219
                                                               1663
                                                                     1287 -3658
                                                         5266 -9377 -3504 -4511
    3
           0.893441 0.622005 0.998776
                                         0.098386
                                                  8540
    4
           0.320641 0.957234 0.346000
                                         0.646479 -7772 -383
                                                               9681 -8661 3474
```

```
5
       0.475961 0.623008 0.544988 0.159709 1571 -8039 -7961 -2385 4407
              F10
                              F14
                                         F15
                                                      F16 F17 F18 F19
                                                                         F20
Index
1
       4227810299
                   ... -3433637453
                                  10/4/1986
                                                 9/6/1992
                                                             2
                                                                     706
                                                                          305
                                                                  1
                                                                          206
2
      -1146724819
                        609277486
                                   2/24/1979
                                                 1/5/1983
                                                             1
                                                                  1
                                                                     423
3
       5947184989
                   ... -8977995005
                                  1/12/1989
                                             11/22/1986
                                                             2
                                                                     703
                                                                          315
                                                                  1
4
      -5724795826
                       4868760308
                                   2/18/1982
                                                6/10/1992
                                                             1
                                                                  1
                                                                     122
                                                                          304
      -3097637172 ...
                      9757408267 4/10/1987
                                               10/19/1985
                                                                     486
                                                             1
                                                                  1
                                                                          240
       F21 F22 C
Index
1
         1
              2
                 0
2
        18
              7
                 1
3
         1
              4
                 0
4
        15
              1
                 0
5
         1
              1
                 0
```

4 Dropping the F14,F15 date columns

[5 rows x 23 columns]

```
[5]: df =df.drop(columns=['F15', 'F16'])
     df.head()
                  F1
                            F2
                                                 F4
                                                             F6
[5]:
                                      F3
                                                       F5
                                                                   F7
                                                                         F8
                                                                                F9
                                                                                    \
     Index
     1
            0.224506 0.500340
                                0.489860
                                          0.902413
                                                     7934 -6970 -5714
                                                                       9982 -5697
            0.321128 0.281119
                                0.907283
                                          0.772159 -8238
                                                           1219
                                                                 1663
                                                                       1287 -3658
     3
            0.893441 0.622005
                                0.998776
                                          0.098386
                                                     8540
                                                           5266 -9377 -3504 -4511
     4
            0.320641
                      0.957234
                                0.346000
                                          0.646479 -7772
                                                           -383
                                                                 9681 -8661
            0.475961
                     0.623008
                                                     1571 -8039 -7961 -2385
     5
                                0.544988
                                          0.159709
                   F10
                                  F12
                                               F13
                                                           F14
                                                               F17 F18
                                                                         F19 \
     Index
                            316195953 6176861823 -3433637453
                                                                          706
     1
            4227810299
     2
                           1378635942 -9031507610
           -1146724819
                                                     609277486
                                                                  1
                                                                          423
     3
            5947184989
                        ... -9921889287 -5610051842 -8977995005
                                                                  2
                                                                       1
                                                                          703
                           6550322883 -4697085930
                                                                          122
     4
           -5724795826
                                                   4868760308
                                                                  1
                                                                       1
           -3097637172 ...
                            759031103 9984692447 9757408267
                                                                          486
            F20 F21 F22 C
     Index
     1
            305
                   1
                        2
     2
            206
                  18
                        7
                           1
     3
            315
                   1
```

```
4 304 15 1 0
5 240 1 1 0
```

[5 rows x 21 columns]

5 Describing the data

[6]:	df.describe()					
[6]:		F1	F2	F3	F4	\
	count	101180.000000	101180.000000	101180.000000	101180.000000	·
	mean	0.502348	0.501497	0.499886	0.499839	
	std	0.288058	0.289017	0.288875	0.288729	
	min	0.000018	0.000004	0.000002	0.000006	
	25%	0.253819	0.251115	0.248818	0.250501	
	50%	0.501802	0.501095	0.499820	0.501387	
	75%	0.753598	0.752404	0.750281	0.748803	
	max	0.999986	0.999990	0.999985	0.999977	
		F5	F6	F7	F8	\
	count	101180.000000	101180.000000	101180.000000	101180.000000	
	mean	-29.742617	1.511000	7.939118	16.434147	
	std	5781.829379	5796.594007	5765.581875	5782.805211	
	min	-10000.000000	-10000.000000	-10000.000000	-10000.000000	
	25%	-5045.000000	-5012.000000	-4979.000000	-4988.000000	
	50%	-46.000000	-11.500000	16.500000	60.000000	
	75%	4978.000000	5050.000000	4962.000000	5021.000000	
	max	10000.000000	10000.000000	10000.000000	10000.000000	
		F9	F10	F1:	2 F13	\
	count	101180.000000	1.011800e+05	1.011800e+0	5 1.011800e+05	
	mean	9.927812	1.869749e+07	6.921685e+0		
	std	5771.004738	5.769064e+09	5.771750e+09	9 5.786659e+09	
	min	-10000.000000	-9.999816e+09	9.999754e+0	9 -9.999852e+09	
	25%		-4.966961e+09	4.991278e+0	9 -5.027003e+09	
	50%	22.500000	4.346691e+07	4.277384e+0		
	75%	5020.000000	5.019440e+09	5.008238e+09		
	max	10000.000000	9.999497e+09	9.999555e+09	9 9.999951e+09	
		F14	F17	F18		\
	count	1.011800e+05	101180.000000	101180.000000	101180.000000	
	mean	-5.198163e+07	1.339593	1.335027	387.181479	
	std	5.782358e+09	0.894065	0.882435	235.939585	
	min	-9.999767e+09	1.000000	1.000000	1.000000	
	25%	-5.070403e+09	1.000000	1.000000	187.000000	
	50%	-8.816174e+07	1.000000	1.000000	374.000000	

75%	4.947133e+09	1.000000	1.000000	560.000000
max	9.999997e+09	6.000000	6.000000	901.000000
	F20	F21	F22	C
count	101180.000000	101180.000000	101180.000000	101180.000000
mean	387.333999	4.588031	4.598567	0.245375
std	235.374285	4.775671	4.776494	0.430311
min	1.000000	1.000000	1.000000	0.000000
25%	187.000000	1.000000	1.000000	0.000000
50%	375.000000	3.000000	3.000000	0.000000
75%	561.000000	7.000000	7.000000	0.000000
max	901.000000	21.000000	21.000000	1.000000

[8 rows x 21 columns]

6 Finding the percentage missing data

No data is missing for any attribute

```
[7]: miss_per = df.isnull().sum()/df.shape[0]
print(miss_per)
```

F1 0.0 F2 0.0 F3 0.0 F4 0.0 0.0 F5 F6 0.0 0.0 F7 F8 0.0 0.0 F9 F10 0.0 F11 0.0 0.0 F12 0.0 F13 F14 0.0 F17 0.0 F18 0.0 0.0 F19 F20 0.0 F21 0.0 F22 0.0 С 0.0 dtype: float64

7 Checking distribution of positive and negative class

There is class imbalance between negative and positive class

8 Training with LogisticRegression

Does not work well on imbalanced data

precision recall f1-score support

0.0	0.75	1.00	0.86	22906
1.0	0.00	0.00	0.00	7448
accuracy			0.75	30354
macro avg	0.38	0.50	0.43	30354
weighted avg	0.57	0.75	0.65	30354

[Parallel(n_jobs=1)]: Using backend SequentialBackend with 1 concurrent workers.
[Parallel(n_jobs=1)]: Done 1 out of 1 | elapsed: 0.1s finished
/home/durgesh/miniconda3/lib/python3.7/sitepackages/sklearn/metrics/_classification.py:1221: UndefinedMetricWarning:
Precision and F-score are ill-defined and being set to 0.0 in labels with no
predicted samples. Use `zero_division` parameter to control this behavior.
_warn_prf(average, modifier, msg_start, len(result))

9 Training With RandomForest

Performs a bit better to logistic regression on imbalanced data

 $\label{lem:concurrent} \begin{tabular}{ll} Parallel(n_jobs=80)]: Using backend ThreadingBackend with 80 concurrent workers. \end{tabular}$

[Parallel(n_jobs=80)]: Done 42 out of 100 | elapsed: 14.4s remaining: 19.9s [Parallel(n_jobs=80)]: Done 100 out of 100 | elapsed: 18.2s finished

 $[Parallel(n_jobs=80)]: \ Using \ backend \ Threading Backend \ with \ 80 \ concurrent$

workers.

	precision	recall	f1-score	support
0.0	0.76	0.99	0.86	22906
1.0	0.44	0.02	0.04	7448
266112261			0.75	30354
accuracy		0.54		
macro avg	0.60	0.51	0.45	30354
weighted avg	0.68	0.75	0.66	30354

[Parallel(n_jobs=80)]: Done 42 out of 100 | elapsed: 0.4s remaining: 0.6s

10 Performing Under Sampling And Training With RandomForest

Random forests performs better with balanced data

```
[Parallel(n_jobs=80)]: Using backend ThreadingBackend with 80 concurrent workers.
```

```
\label{lem:constraint} \begin{tabular}{ll} [Parallel(n_jobs=80)]: Done 42 out of 100 | elapsed: 6.4s remaining: 8.8s \\ [Parallel(n_jobs=80)]: Done 100 out of 100 | elapsed: 8.0s finished \\ [Parallel(n_jobs=80)]: Using backend ThreadingBackend with 80 concurrent workers. \\ \end{tabular}
```

	precision	recall	f1-score	support
0.0	0.79	0.48	0.60	7449
1.0	0.63	0.88	0.73	7448
accuracy			0.68	14897
macro avg	0.71	0.68	0.66	14897
weighted avg	0.71	0.68	0.66	14897

```
[Parallel(n_jobs=80)]: Done 42 out of 100 | elapsed: 0.2s remaining: 0.3s [Parallel(n_jobs=80)]: Done 100 out of 100 | elapsed: 0.2s finished
```

11 Performing Over Sampling And Training with RandomForest

Random forests performs better with over-sampling balanced data as there is more datapoints to train

```
[12]: ros = RandomOverSampler()
  data = df.to_numpy()
  X,y = data[:,:-1],data[:,-1]
```

 $[Parallel(n_jobs=80)]$: Using backend ThreadingBackend with 80 concurrent workers.

[Parallel(n_jobs=80)]: Done 42 out of 100 | elapsed: 21.0s remaining: 29.0s

[Parallel(n_jobs=80)]: Done 100 out of 100 | elapsed: 26.8s finished [Parallel(n_jobs=80)]: Using backend ThreadingBackend with 80 concurrent workers.

	precision	recall	f1-score	support
0.0	0.91	0.83	0.87	22906
1.0	0.85	0.92	0.88	22906
accuracy			0.88	45812
macro avg	0.88	0.88	0.88	45812
weighted avg	0.88	0.88	0.88	45812

[Parallel(n_jobs=80)]: Done 42 out of 100 | elapsed: 0.7s remaining: 1.0s [Parallel(n_jobs=80)]: Done 100 out of 100 | elapsed: 0.8s finished

12 Predicting labels on BuyAffinity_Test data

```
[26]: df_test = pd.read_csv('BuyAffinity_Test.txt',sep='\t',index_col='Index')
    df_test = df_test.drop(columns=['F15', 'F16'])
    data_test = df_test.to_numpy()
    X_test = data_test
    X_test = StandardScaler().fit_transform(X_test)
    y_pred = clf.predict(X_test).astype(np.int32)
    df_test = pd.read_csv('BuyAffinity_Test.txt',sep='\t',index_col='Index')
    df_test['C'] = y_pred
    df_test.to_csv('BuyAffinity_Test_labels.txt', sep='\t', mode='w')
    df_test.head()
```

[Parallel($n_jobs=80$)]: Using backend ThreadingBackend with 80 concurrent workers.

[Parallel(n_jobs=80)]: Done 42 out of 100 | elapsed: 0.3s remaining: 0.5s [Parallel(n_jobs=80)]: Done 100 out of 100 | elapsed: 0.4s finished

[26]:	F1	F2	F3	F4	F5 F6	F7	F8	\
Index								
T30234341	0.654765	0.812009	0.603190	0.391039 -52	20 4825	-1784	7447	
T30234342	0.694636	0.690568	0.473460	0.259760 -6	18 -5018	2012	9259	
T30234343	0.203759	0.323301	0.492294	0.011448 -87	78 6141	6965	3774	
T30234344	0.319627	0.286247	0.906197	0.093840 -79	29 4471	7715	9543	
T30234345	0.236003	0.782784	0.285689	0.383585 -32	96 4564	-1580 -	-8559	
	F9	F10	F	14 F15	F	16 F17	7 F18	\
Index		•••						
T30234341	-7147 -346	31806391	55535950	74 9/17/1996	8/18/19	90 1	l 1	
T30234342	9267 -3	6253473	22162840	70 11/7/1985	4/11/19	90 1	l 1	
T30234343	4303 535	4243488	-3154095	10 7/9/1984	5/4/19	97 1	l 1	
T30234344	335 740)5036171	-33602249	57 6/3/1987	7/1/19	88 1	l 1	
T30234345	-27 -635	51599280	76048382	79 7/17/1984	12/3/19	93 1	l 1	
	F19 F20	F21 F22	C					
Index								
T30234341	436 478	1 1	0					
T30234342	138 56	10 4	0					
T30234343	117 323	10 1	0					
T30234344	115 149	16 21	0					
T30234345	527 281	3 1	1					

[5 rows x 23 columns]