Friday, January 27, 2023 11:22

TA Help session 10:30 Fridays, Math library, JCC 574
Student hours with Todd 1:30-3:00 my office JCC 575 (end of hall)

Student hours will start on Friday at 2:00 and we can continue to 3:30 (because of AWM panel and lunch)

Still get-to-know-you meeting slots available and when they fill up, I'll add more https://docs.google.com/spreadsheets/d/1T8o6af3Oe3uA3aswPvv1pm0FdnmQ6 oaiF5Le623wdLY/edit?usp=sharing

MATHEMATICAL CONTEST IN MODELING: February 16-20, 2023. TEAMS OF THREE UNDERGRADS

https://www.contest.comap.com/undergraduate/contests/

DIRECTED READING PROGRAM: grad student and undergrad read a math book or article and learn about it together

A list of projects and descriptions can be found

here: https://drive.google.com/file/d/1ffyVId43yPtFP-9GiODrtHf3ZIJ2Nc2S/view

?usp=sharing

Application: https://forms.gle/P46BCsEKvdnzftLo9

Save the date! AWM Panel & Lunch with Malena Espanol Friday February 3rd at 1pm in JCC 501

Malena Espanol is an assistant professor in the school of Mathematical and Statistical Sciences at Arizona State University. She earned a Ph.D. in math from Tufts in 2009. The Tufts AWM chapter is excited to host Dr. Espanol for a Q&A over lunch! Everyone in the Tufts community is welcome to join.

Please RSVP at https://tufts.qualtrics.com/jfe/form/SV 0cR5K8g15jJQ7eC

Proposition 13.15 The Mean Value Proposition Let \mathbf{x} be a point in \mathbb{R}^n and let r be a positive number. Suppose that the function $f:\mathcal{B}_r(\mathbf{x})\to\mathbb{R}$ has first-order partial derivatives. Then if the point $\mathbf{x}+\mathbf{h}$ belongs to $\mathcal{B}_r(\mathbf{x})$, there are points $\mathbf{z}_1,\mathbf{z}_2,\ldots,\mathbf{z}_n$ in $\mathcal{B}_r(\mathbf{x})$ such that

$$f(\mathbf{x} + \mathbf{h}) - f(\mathbf{x}) = \sum_{i=1}^{n} h_i \frac{\partial f}{\partial x_i}(\mathbf{z}_i),$$

and

$$\|\mathbf{x} - \mathbf{z}_i\| < \|\mathbf{h}\|$$
 for each index i with $1 \le i \le n$.

Definition Let \mathcal{O} be an open subset of \mathbb{R}^n that contains the point \mathbf{x} and suppose that the function $f: \mathcal{O} \to \mathbb{R}$ has first-order partial derivatives at \mathbf{x} . We define the *gradient* of the function $f: \mathcal{O} \to \mathbb{R}$ at the point \mathbf{x} , denoted by $\nabla f(\mathbf{x})$, to be the point in \mathbb{R}^n given by

$$\nabla f(\mathbf{x}) = \left(\frac{\partial f}{\partial x_1}(\mathbf{x}), \ \frac{\partial f}{\partial x_2}(\mathbf{x}), \dots, \ \frac{\partial f}{\partial x_n}(\mathbf{x})\right).$$

Math 136 section 2 start reading these notes at the proof of the Directional Derivative Theorem on the next page.

Directional Deriv Than
$$\Theta = \Theta + \infty \in \mathbb{R}$$
 $\Theta \text{ opn in } \mathbb{R}^n \text{ f.'} \Theta - \mathbb{R} \text{ Set } \mathbb{R} \in \mathbb{O}$
 $h = (h_1, h_2, -h_n) \in \mathbb{R}^n \setminus Sol$
 $f \in C'(\Theta) \quad (conV. diff)$

Then $\frac{\partial f}{\partial h} \quad (\overline{\chi}) = \langle \nabla f(\overline{\chi}), h \rangle$
 $\frac{\partial f}{\partial h} \quad = \langle \nabla f(\overline{\chi}), h \rangle$
 $\frac{\partial f}{\partial h} \quad = \langle \partial f(\overline{\chi}), h \rangle$
 $\frac{\partial f}{\partial h} \quad = \langle \partial f(\overline{\chi}), h \rangle$
 $\frac{\partial f}{\partial h} \quad = \langle \partial f(\overline{\chi}), h \rangle$
 $\frac{\partial f}{\partial h} \quad (h_1, h_2) \quad (h_3, h_4)$
 $\frac{\partial f}{\partial h} \quad = \langle \partial f(\overline{\chi}), h \rangle \quad (h_3, h_4) \quad (h_3, h_4) \quad (h_4, h_4) \quad (h_4,$

When the second of the second By Mean velu prop

(The Koth for the Total) - for) $= \underbrace{\sum_{i=1}^{\infty} \frac{\partial f}{\partial x_i}(z_i)} th_i$ 112; -X // < 1/th/ = 1t/11/1/ So $\frac{\partial f}{\partial h}(x) = \lim_{t \to 0} \frac{f(x+th)}{t} + (x)$ t=0 + J=(0X,) // 2/ -X/ 2/4/// an f is C (C out d d C) $\frac{1}{2} \left(\frac{1}{2} \right) = \frac{1}{2} \left(\frac{1}{2} \right) \left(\frac{1}{2}$ Mean Value Throfork @ open in Rh F ∈ C'(E) assume The segment between X and X th 5 in O $(\overline{X} + \overline{A} + \overline{A}) = \overline{A} + \overline{A}$ defin Q(t) = f(V, tth) Q(T, tth)

 $\frac{Pf}{Q(d-f(x))} \frac{Q(t)}{Q(t)} = f(x+y)$ let I be open interns st [0,1] CI and if tCI, X+tN ED Clair as diff or I and $\Phi'(t) = \langle \nabla f(X + t \pi), \overline{h} \rangle$ $O(t) = f(x+t_{\overline{h}})$ $Q'(t) = \lim_{S \to 0} Q(t+s) - Q(t) \quad (d+t)$ $=\lim_{S\to0}f(X+th+sh)-f(X+th)$ = df (x+ta) = < vf(x+ta), n> at Dirdent fec Use MVT on R O! [0,1] -R cout a O is deff or I of diff on (0,1) $\frac{\partial \left(1\right) - \partial \left(0\right)}{\partial \left(1\right) - \partial \left(0\right)} = \frac{\partial \left(0\right)}{\partial \left(0\right)} = \frac{2}{\sqrt{2}} \frac{\sqrt{2}}{\sqrt{2}} \left(\frac{\sqrt{2}}{\sqrt{2}} + 0\right) \left(\frac{\sqrt{2}}{\sqrt{2}}\right)$ $\frac{\partial \left(1\right)}{\partial \left(1\right)} - \frac{\partial \left(0\right)}{\partial \left(1\right)} = \frac{\partial \left(0\right)}{\partial \left(1\right)} = \frac{2}{\sqrt{2}} \frac{\sqrt{2}}{\sqrt{2}} \left(\frac{\sqrt{2}}{\sqrt{2}} + 0\right) \left(\frac{\sqrt{2}}{\sqrt{2}}\right)$ $\frac{\partial \left(1\right)}{\partial \left(1\right)} - \frac{\partial \left(0\right)}{\partial \left(1\right)} = \frac{\partial \left(0\right)}{\partial \left(1\right)} = \frac{2}{\sqrt{2}} \frac{\sqrt{2}}{\sqrt{2}} \left(\frac{\sqrt{2}}{\sqrt{2}} + 0\right) \left(\frac{\sqrt{2}}{\sqrt{2}}\right)$ $\frac{\partial \left(1\right)}{\partial \left(1\right)} - \frac{\partial \left(0\right)}{\partial \left(1\right)} = \frac{\partial \left(0\right)}{\partial \left(1\right)} = \frac{2}{\sqrt{2}} \frac{\sqrt{2}}{\sqrt{2}} \left(\frac{\sqrt{2}}{\sqrt{2}}\right)$ $\frac{\partial \left(1\right)}{\partial \left(1\right)} - \frac{\partial \left(0\right)}{\partial \left(1\right)} = \frac{\partial \left(0\right)}{\partial \left(1\right)} = \frac{2}{\sqrt{2}} \frac{\sqrt{2}}{\sqrt{2}} \left(\frac{\sqrt{2}}{\sqrt{2}}\right)$ $\frac{\partial \left(1\right)}{\partial \left(1\right)} - \frac{\partial \left(0\right)}{\partial \left(1\right)} = \frac{\partial \left(0\right)}{\partial \left(1\right)} = \frac{2}{\sqrt{2}} \frac{\sqrt{2}}{\sqrt{2}} \frac{\sqrt{2}}{\sqrt{2}} = \frac{2}{\sqrt{2}} \frac{\sqrt{2}}{\sqrt{2}} \frac{\sqrt{2}}{\sqrt{2}} = \frac{2}{\sqrt{2}} = \frac{2}{\sqrt{2}} \frac{\sqrt{2}}{\sqrt{2}} = \frac{2}{\sqrt{2}} = \frac{2}{\sqrt{2}$ f(x+5)-f(x)= < OF(X+0G), G> The let FEC1(0) fara OE(0,1) then f is Continuon Plex TEG r>OST Br(X) CG and assur dBv/K) co oz f is C'on cl (Br(x))

 $\lim_{\chi \to 0} g(\chi + \chi) - f(\chi + \chi) = 0$ $\lim_{\chi \to 0} \chi = \chi = \chi$ pic ex I open interval Xo EI the the tangest line to y-F(x) at xo approx for to Order of the $g(X) = f(X_0) + f'(X_0)(X - X_0)$ $\lim_{h\to 0} \frac{g(X_0 + h) - f(X_0 + h)}{|h|} = \lim_{h\to 0} \frac{f(X_0) + f'(X_0)(h)}{|h|} = \lim_{h\to 0} \frac{f(X_0 + h)}{|h|} = 0$ = light(x) +f(x) h -f(x)+h) $= \lim_{h \to 0} \left\{ f(x_0) - f(x_0 + f_0) : + f'(x_0) \right\} =$

Math 136-02 you can stop reading here. The other material will be covered on Monday, 2/6 in section 2.

Defr let a EIR BERT

Definite a \in IR \bar{h} \in