

Seth Balkrishan Memorial Bhilai Institute of Technology,Durg

(An Autonomous Institute affiliated to CSVTU Bhilai)

B. Tech. – IIIrdsem

Semester Assignment-I (26/10/24)

Course :- Applied Mathematics-III

Section/Branch -

Due Date of Submission: Unit I&II,

11/11/2024

Note:

1) Attempt all questions.

2) Answer each question to the points and avoid unnecessary lengthy writing.

3) Write your answer in A4 size paper and mail scanned PDF to personal e-mail of your course teacher on or before due date of submission.

Q. No.	Question	со	BL	PI
1	Solve: $\frac{\partial^2 z}{\partial x^2} - \frac{\partial^2 z}{\partial x \partial y} = \cos x \cos 2y$.	CO1	L3	1.1.1
2	Solve: $(mz - ny)p + (nx - lz)q = (ly - mx)$.	CO1	L3	1.1.1
3	(a) Solve $z = y^2 + 2f(\frac{1}{x} + \log y)$ (b) Solve $(D^2 + 3DD' + 2d'^2)z = 24xy$	CO1	L3	1.1.1
4	Solve $(z^2 - 2yz - y^2)p + (xy + zx)q = (xy - zx)$.	CO1	L3	1.1.1
5	Using method of separation of Variable solve $\frac{\partial u}{\partial x}=4\frac{\partial u}{\partial y} \text{ , Where } u(0,\ y)=8e^{-3y}$	COI	L3	1.1.1
6	Find the Fourier series of $f(x) = x^2$, $-\pi \le x \le \pi$. Hence show that $\sum \frac{1}{(2n-1)^2} = \frac{\pi^2}{8}$	CO2	L3	1.1.1
7	Find the Half-Range Sine series of $f(x) = \begin{cases} \frac{1}{4} - x, & \text{for } 0 < x < \frac{1}{2} \\ x - \frac{3}{4}, & \text{for } \frac{1}{2} < x < 1 \end{cases}$	CO2	L3	1.1.1

Seth Balkrishan Memorial Bhilai Institute of Technology, Durg (An Autonomous Institute affiliated to CSVTU Bhilai)

	DCG.			
8	Show that for the range $-\pi < x < \pi$, $\sin ax = \frac{2\sin a\pi}{\pi} \left[\frac{\sin x}{1^2 - a^2} - \frac{2\sin 2x}{2^2 - a^2} + \frac{3\sin 3x}{3^2 - a^2} \dots \right]$	CO2	L3	1.1.1
9	Obtained a half range cosine series for $f(x) = kx \text{ for } 0 \le x \le \frac{1}{2},$ $f(x) = k(1-x) \text{ for } \frac{1}{2} \le x \le 1$	CO2	L3	1.1.1
10	(1)Write the Dirichlet's condition. (2) The turning moment T is given for a series of values of the crank angle θ° . Obtain the first four terms in a series of sines to represent T and calculate T for $\theta^{\circ} = 75^{\circ}$. $\begin{array}{ c c c c c c c c c c c c c c c c c c c$	CO2	L3	1.1.1

CO - Course Outcomes, BL - Bloom's Taxonomy Levels

(L1-Remembering, L2- Understanding, L3-Applying,

L6-Creating). L5- Evaluating, L4- Analysis,

PI – Performance Indicator Code

(Please See: https://www.aicte-india.org/sites/default/files/ExaminationReforms.pdf)