Outline of the lecture

- Definition and properties
 - Examples
 - Cauchy test
 - Operations with series
- Series with positive terms
 - Comparison criteria
 - Cauchy's criterion of condensation
 - Root test of Cauchy
 - Kummer criterion
 - Gauss criterion

October 16, 2017

Series of real numbers

What is an infinite sum

$$x_1 + \cdots + x_n + \cdots$$
?

A natural approach is to study the behaviour of the partial sums $x_1 + \cdots + x_n$ for n very large (going to $+\infty$).

Definition

Let $(x_n)_{n\geq 1}\subseteq \mathbb{R}$. The series with general terms $x_n, x_n\in \mathbb{N}$ is the sequence

$$S_n := \sum_{k=1}^n x_k = x_1 + \dots + x_n, \ n \in \mathbb{N}^*.$$

We will denote this series by $\sum_{n=1}^{\infty} x_n$, $\sum_{n\geq 1} x_n$ or $x_1+\cdots+x_n+\ldots$

- For $n \in \mathbb{N}^*$, the term $S_n := x_1 + \cdots + x_n$ is called the *partial sum* of order n of the series.
- If (S_n) is convergent, we say that the series is *convergent*; we denote this

$$\sum_{n=1}^{\infty} x_n (C).$$

• If (S_n) is divergent (it has no limit or has infinite limit), we say that the series is *divergent*; we denote this

$$\sum_{n=1}^{\infty} x_n \, (D).$$

• If $S_n \to S \in \overline{\mathbb{R}}$, we write

$$\sum_{n=1}^{\infty} x_n = S.$$

4 D > 4 P > 4 B > 4 B > B = 4000

Remainder of a series

If $p \in \mathbb{N}^*$, the series $\sum_{n=1}^{\infty} x_n$ and $\sum_{n=p+1}^{\infty} x_n$ have the same nature, i.e. they are either both convergent or both divergent.

Definition

If $p \in \mathbb{N}$, we call the *remainder* of order p of the series $\sum_{n=1}^{\infty} x_n$ the series $\sum_{n=p+1}^{\infty} x_n$.

Proposition

Let $\sum_{n=1}^{\infty} x_n$ be a convergent series of real numbers. Then, for any $p \in \mathbb{N}$, the remainder of order p is convergent. Moreover, if we denote

$$R_p:=\sum_{n=p+1}^{\infty}x_n,\ p\in\mathbb{N},$$

then
$$\lim_{p o +\infty}R_p=0$$

Examples

1. The geometric series of ratio $r \in \mathbb{R}$: $\sum_{n=0}^{\infty} r^n$.

Partial sums:
$$S_n = 1 + r + \dots + r^n = \left\{ \begin{array}{l} \frac{1 - r^n}{1 - r}, & r \neq 1, \\ n + 1, & r = 1. \end{array} \right.$$

- $\sum_{n=0}^{\infty} r^n$ (C) for $r \in (-1,1)$;
- $\sum_{n=0}^{\infty} r^n$ (D) for $r \in (-\infty, -1] \cup [1, +\infty)$.
- We have also:

$$\sum_{n=0}^{\infty} r^n = \begin{cases} \frac{1}{1-r}, & r \in (-1,1), \\ +\infty, & r \ge 1. \end{cases}$$

In the case r=1, the series $\sum_{n=0}^{\infty} (-1)^n = 1-1+1-1+\ldots$ is also known as

Grandi series; it is a divergent series.

←□ → ←□ → ← □ → ← □ → ○ へ ○

October 16, 2017

2. The series $\sum_{n=1}^{\infty} \ln \left(1 + \frac{1}{n}\right)$ is divergent, because its partial sums go to $+\infty$:

$$\begin{split} S_n &= \sum_{k=1}^n \ln\left(1+\frac{1}{k}\right) = \sum_{k=1}^n \ln\frac{k+1}{k} \\ &= \underbrace{\sum_{k=1}^n \left[\ln(k+1) - \ln k\right]}_{\text{telescopic sum}} = \ln(n+1) - \ln 1 = \ln(n+1), \end{split}$$

3. The series $\sum_{n=0}^{\infty} \frac{n-\sqrt{n^2-1}}{\sqrt{n^2-n}}$ is convergent, since we have

$$\begin{split} S_n := \sum_{k=2}^n \frac{k - \sqrt{k^2 - 1}}{\sqrt{k^2 - k}} &= \sum_{k=2}^n \left(\frac{k}{\sqrt{k^2 - k}} - \frac{\sqrt{k^2 - 1}}{\sqrt{k^2 - k}} \right) \\ &= \sum_{k=2}^n \left(\sqrt{\frac{k^2}{k^2 - k}} - \sqrt{\frac{k^2 - 1}{k^2 - k}} \right) = \underbrace{\sum_{k=2}^n \left(\sqrt{\frac{k}{k - 1}} - \sqrt{\frac{k + 1}{k}} \right)}_{\text{telescopic sum}} \\ &= \sqrt{2} - \sqrt{\frac{n + 1}{n}} \underset{n \to +\infty}{\longrightarrow} \sqrt{2} - 1. \end{split}$$

Of course, we will have $\sum_{n=2}^{\infty} \frac{n - \sqrt{n^2 - 1}}{\sqrt{n^2 - n}} = \sqrt{2} - 1.$

Necessary condition of convergence

Theorem

Let $\sum_{n \to \infty} x_n$ be a convergent series. Then $\lim_{n \to \infty} x_n = 0$.

Proof.

Let $S_n := \sum_{k=1}^n x_k$, $n \in \mathbb{N}^*$ and $S := \lim_{n \to \infty} S_n \in \mathbb{R}$. Then

$$\lim_{n\to\infty} x_n = \lim_{n\to\infty} (S_n - S_{n-1}) = S - S = 0.$$

Remarks.

- If $x_n \not\to 0$, the series $\sum_{n=0}^{\infty} x_n$ is clearly divergent;
- $\lim_{n\to\infty} x_n = 0$ is just a **necessary** condition for the convergence of $\sum_{n\to\infty} x_n$, but not a sufficient one.

Cauchy criterion

Theorem

The series $\sum_{n=1}^{\infty} x_n$ is convergent if and only if

$$\forall \varepsilon > 0, \ \exists n_{\varepsilon} \in \mathbb{N}^*, \ \forall n \geq n_{\varepsilon}, \ \forall p \in \mathbb{N}^* : |x_{n+1} + \dots + x_{n+p}| < \varepsilon.$$

Proof.

Let $S_n := \sum_{k=1}^n x_k$, $n \in \mathbb{N}^*$. By Cauchy's criterion for the convergence of the sequences, the sequence (S_n) is convergent if and only if

$$\forall \varepsilon > 0, \ \exists n_{\varepsilon} \in \mathbb{N}^*, \ \forall n \geq n_{\varepsilon}, \ \forall p \in \mathbb{N}^* : |S_{n+p} - S_n| < \varepsilon.$$

But $S_{n+p} - S_n = x_{n+1} + \cdots + x_{n+p}$ for any $n, p \in \mathbb{N}^*$, which proves the assertion.

4 D > 4 B > 4 B >

By negating the Cauchy condition of convergence for a series, we obtain:

Proposition

The series $\sum_{n=1}^{\infty} x_n$ is divergent if and only if

$$\exists \varepsilon > 0, \ \forall n \in \mathbb{N}^*, \ \exists k_n \geq n, \ \forall p_n \in \mathbb{N}^* : |x_{k_n+1} + \dots + x_{k_n+p_n}| \geq \varepsilon.$$

The harmonic series

The series $\sum_{n=1}^{\infty} \frac{1}{n}$ is called the *harmonic* series. It is divergent, by the previous result. Indeed,

$$\frac{1}{n+1}+\cdots+\frac{1}{n+p}\geq \frac{p}{n+p}, \ \forall n,p\in\mathbb{N}^*.$$

For $\varepsilon := 1/2$ and any $n \in \mathbb{N}^*$, we can set $k_n := n$ and $p_n := n$; we will have

$$\left|\frac{1}{k_n+1}+\cdots+\frac{1}{k_n+p_n}\right|\geq \frac{p_n}{k_n+p_n}=\frac{1}{2}\geq \varepsilon.$$

Therefore $\sum_{n=1}^{\infty} \frac{1}{n}$ (D).

A. Zălinescu (lași)

Operations with series

Let now $\lambda \in \mathbb{R}$ and $\sum_{n=1}^{\infty} x_n$, $\sum_{n=1}^{\infty} y_n$ two series of real numbers.

- The series $\sum_{n=1}^{\infty} (x_n + y_n)$ is called the *sum* of the series $\sum_{n=1}^{\infty} x_n$ and $\sum_{n=1}^{\infty} y_n$.
- The series $\sum_{n=1}^{\infty} (\lambda x_n)$ is called the *product* of the series $\sum_{n=1}^{\infty} x_n$ with the number (scalar) λ .

Theorem

Let
$$S:=\sum_{n=1}^{\infty}x_n$$
 and $S':=\sum_{n=1}^{\infty}y_n$. If $S,S'\in\mathbb{R}$, then:

- i) if $x_n \leq y_n$, $\forall n \in \mathbb{N}^*$, then $S \leq S'$;
- ii) the series $\sum_{n=0}^{\infty} (x_n + y_n)$ is convergent and $\sum_{n=0}^{\infty} (x_n + y_n) = S + S'$;
- iii) the series $\sum_{n=1}^{\infty} (\lambda x_n)$ is convergent and $\sum_{n=1}^{\infty} (\lambda x_n) = \lambda S$.

A. Zălinescu (lași)

Lecture

Theorem

If we associate the terms of a convergent series in finite groups, by keeping the order of the terms, we still obtain a convergent series, with the same sum.

Associating the terms of $\sum_{n=1}^{\infty} x_n$ means constructing a new series

$$\sum_{k=1}^{\infty} (x_{n_k} + \cdots + x_{n_{k+1}-1}),$$

where $(n_k)_{k \in \mathbb{N}^*} \subseteq \mathbb{N}^*$ is a strictly increasing sequence with $n_1 = 1$.

Remark.

- Associating terms of a divergent series sometimes gives a convergent series.
- For instance, if we associate every two terms in *Grandi* series $\sum_{n=0}^{\infty} (-1)^n$ we obtain the convergent series

$$\sum_{k=0}^{\infty} \left((-1)^{2k} + (-1)^{2k+1} \right) = (-1+1) + (-1+1) + \dots + (-1+1) + \dots$$
$$= 0 + 0 + \dots + 0 + \dots$$

Series with positive terms

We say that a series $\sum_{n=1}^{\infty} x_n$ has positive terms if $x_n \ge 0$, $\forall n \in \mathbb{N}^*$.

A series with positive terms always has a sum (which may be finite or infinite).

Proposition

A series with positive terms is convergent if and only if the sequence of its partial terms is bounded.

This means $\sum_{n=1}^{\infty} x_n$ is convergent if and only if $(S_n)_{n\geq 1}$ is bounded, where

$$S_n := x_1 + \cdots + x_n, \ n \in \mathbb{N}^*.$$

A. Zălinescu (lași)

Comparison criterion I

We will study convergence and divergence criteria for series with positive sums. The first we state are called *comparison criteria*; they specify the nature of a series (*i.e.*, it is convergent or divergent) by comparing it with another series whose nature is already known.

Let $\sum_{n=1}^{\infty} x_n$ and $\sum_{n=1}^{\infty} y_n$ be two series with positive terms.

Theorem (CC1)

Suppose that $x_n \leq y_n$, $\forall n \in \mathbb{N}^*$.

i) If
$$\sum_{n=1}^{\infty} y_n$$
 (C) then $\sum_{n=1}^{\infty} x_n$ (C).

ii) If
$$\sum_{n=1}^{\infty} x_n$$
 (D) then $\sum_{n=1}^{\infty} y_n$ (D).

Comparison criterion II

Theorem (CC2)

Suppose that $x_n > 0$, $y_n > 0$ and $\frac{x_{n+1}}{x_n} \le \frac{y_{n+1}}{y_n}$, for every $n \in \mathbb{N}^*$.

- i) If $\sum_{n=1}^{\infty} y_n$ (C) then $\sum_{n=1}^{\infty} x_n$ (C).
- ii) If $\sum_{n=1}^{\infty} x_n$ (D) then $\sum_{n=1}^{\infty} y_n$ (D).

A. Zălinescu (lași)

Comparison criterion III

Theorem (CC3)

Suppose that $y_n > 0$, $\forall n \in \mathbb{N}^*$ and there exists $\lim_{n \to +\infty} \frac{x_n}{y_n} = \ell \in [0, +\infty]$.

- If $\ell \in (0, +\infty)$, the series $\sum_{n=1}^{\infty} x_n$ and $\sum_{n=1}^{\infty} y_n$ have the same nature.
- ② If $\ell = 0$, we have:
 - i) if $\sum_{n=1}^{\infty} y_n$ (C) then $\sum_{n=1}^{\infty} x_n$ (C);
 - ii) if $\sum_{n=1}^{\infty} x_n$ (D) then $\sum_{n=1}^{\infty} y_n$ (D).
- - i) if $\sum_{n=1}^{\infty} x_n$ (C) then $\sum_{n=1}^{\infty} y_n$ (C);
 - ii) if $\sum_{n=1}^{\infty} y_n$ (D) then $\sum_{n=1}^{\infty} x_n$ (D).

Cauchy's criterion of condensation

Theorem

Let $(x_n)_{n\geq 1}\subseteq \mathbb{R}_+$ a decreasing sequence. Then the series $\sum_{n=1}^\infty x_n$ has the same nature as the series $\sum_{n=1}^\infty (2^n x_{2^n})$.

- The above result holds also if we require only that $(x_n)_{n\geq 1}\subseteq \mathbb{R}_+$ is a monotone sequence.
- Indeed, if (x_n) is not decreasing, we have that both sequences (x_n) and $(2^n x_{2^n})$ do not converge to 0, which implies that the series $\sum_{n=1}^{\infty} x_n$ and $\sum_{n=1}^{\infty} (2^n x_{2^n})$ are divergent.

October 16, 2017

Generalized harmonic series

Example. The series $\sum_{n=1}^{\infty} \frac{1}{n^{\alpha}}$ is called the *generalized harmonic series* (of parameter $\alpha \in \mathbb{R}$).

- In the case $\alpha = 1$, we recover the *harmonic* series.
- The series $\sum_{n=1}^{\infty} \frac{1}{n^{\alpha}}$ has the same nature with the series

$$\sum_{n=1}^{\infty}\frac{2^n}{\left(2^n\right)^{\alpha}}=\sum_{n=1}^{\infty}\frac{2^n}{2^{n\alpha}}=\sum_{n=1}^{\infty}\left(2^{1-\alpha}\right)^n.$$

- This series is the *geometric series* with ratio $2^{1-\alpha}$ which converges if and only if $2^{1-\alpha} \in (-1,1)$, i.e. $\alpha > 1$.
- As a conclusion,

$$\sum_{n=1}^{\infty} \frac{1}{n^{\alpha}}$$
 (C), if $\alpha > 1$;

$$\sum_{n=1}^{\infty} \frac{1}{n^{\alpha}}$$
 (D), if $\alpha \leq 1$.

Root test of Cauchy

Theorem

Let $\sum_{n=1}^{\infty} x_n$ be a series with positive terms such that there exists

$$\lim_{n\to\infty} \sqrt[n]{x_n} = \ell \in [0, +\infty].$$

- i) If $\ell < 1$, then $\sum_{n=1}^{\infty} x_n$ (C).
- ii) If $\ell > 1$, then $\sum_{n=1}^{\infty} x_n$ (D).
 - In the case $\ell=1$, we cannot say anything about the nature of the series $\sum_{n=1}^{\infty} x_n$ (take for example the generalized harmonic function).
 - In that case, we should apply further tests (criteria).

Kummer criterion

Theorem

Let $\sum_{n=1}^{\infty} x_n$ be a series with $x_n > 0$, $\forall n \in \mathbb{N}^*$ and a sequence $(a_n)_{n \geq 1} \subseteq \mathbb{R}_+^*$. Suppose that there exists

$$\lim_{n\to\infty}\left(a_n\cdot\frac{x_n}{x_{n+1}}-a_{n+1}\right)=\ell\in\overline{\mathbb{R}}.$$

- i) If $\ell > 0$, then $\sum_{n=1}^{\infty} x_n$ (C).
- ii) If $\ell < 0$ and $\sum_{n=1}^{\infty} \frac{1}{a_n}$ (D), then $\sum_{n=1}^{\infty} x_n$ (D).

Again, in the case $\ell=0$, we cannot say anything about the nature of the series. The following criteria are applications of Kummer criterion for $a_n=1$, n or $n \ln n$.

Ratio test (d'Alembert criterion)

Corollary

Let $\sum_{n=1}^{\infty} x_n$ be a series with $x_n > 0$, $\forall n \in \mathbb{N}^*$. Suppose that there exists

$$\lim_{n\to\infty}\frac{x_{n+1}}{x_n}=L\in[0,+\infty].$$

- i) If L < 1, then $\sum_{n=1}^{\infty} x_n$ (C).
- ii) If L > 1, then $\sum_{n=1}^{\infty} x_n$ (D).

Raabe-Duhamel criterion

Corollary

Let $\sum_{n=1}^{\infty} x_n$ be a series with $x_n > 0$, $\forall n \in \mathbb{N}^*$. Suppose that there exists

$$\lim_{n\to\infty} n\left(\frac{x_n}{x_{n+1}}-1\right) = \rho \in \overline{\mathbb{R}}.$$

- i) If $\rho > 1$, then $\sum_{n=1}^{\infty} x_n$ (C).
- ii) If $\rho < 1$, then $\sum_{n=1}^{\infty} x_n$ (D).
 - In order to show the second part of this criterion we use the divergence of the harmonic series $\sum_{n=1}^{\infty} \frac{1}{n}$.
 - We usually try to apply this criterion when the ratio test fails.

Bertrand criterion

Corollary

Let $\sum_{n=1}^{\infty} x_n$ be a series with $x_n > 0$, $\forall n \in \mathbb{N}^*$. Suppose that there exists

$$\lim_{n\to\infty}\left(n\ln n\cdot\frac{x_n}{x_{n+1}}-(n+1)\ln(n+1)\right)=\mu\in\overline{\mathbb{R}}.$$

- i) If $\mu > 0$, then $\sum_{n=1}^{\infty} x_n$ (C).
- ii) If $\mu < 0$, then $\sum_{n=1}^{\infty} x_n$ (D).
 - We use the fact (for the 2nd part) that the series $\sum_{n=1}^{\infty} \frac{1}{n \ln n}$ is divergent.
 - Indeed, by Cauchy's criterion of condensation, it has the same nature with

$$\sum_{n=1}^{\infty} \frac{2^n}{2^n \ln(2^n)} = \sum_{n=1}^{\infty} \frac{1}{n \ln 2} = \frac{1}{\ln 2} \sum_{n=1}^{\infty} \frac{1}{n} = +\infty.$$

Gauss criterion

Theorem

Let $\sum x_n$ be a series with $x_n > 0$, $\forall n \in \mathbb{N}^*$. Suppose that there exists $\alpha, \beta \in \mathbb{R}$, $\gamma \in \mathbb{R}_+^*$ and a **bounded** sequence $(y_n)_{n\geq 1}$ such that

$$\frac{x_n}{x_{n+1}} = \alpha + \frac{\beta}{n} + \frac{y_n}{n^{1+\gamma}}, \ \forall n \in \mathbb{N}^*.$$

- i) If $\alpha > 1$, then $\sum_{n=1}^{\infty} x_n$ (C).
- ii) If $\alpha < 1$, then $\sum_{n=1}^{\infty} x_n$ (D).
- iii) If $\alpha = 1$ and $\beta > 1$, then $\sum_{n=1}^{\infty} x_n$ (C).
- iv) If $\alpha = 1$ and $\beta \leq 1$, then $\sum_{n=1}^{\infty} x_n$ (D).

Selected bibliography

- R. M. Dăneţ, F. Voicu, I. Popescu, *Curs modern de analiză matematică. Volumul I*, Editura Matrix Rom, Bucureşti, 2009.
- M. Gorunescu, Lecții de analiză matematică pentru informaticieni, Reprografia Univ. Craiova, 2000.
- J. K. Hunter, An Introduction to Real Analysis, University of California at Davis, 2014.
- K. Knopp, Theory and Application of Infinite Series, Dover Publications, 1990.
- J. Lebl, Basic Analysis: Introduction to Real Analysis, Creative Commons USA, 2016.
- 🦫 R. Luca-Tudorache, *Analiză matematică*, Editura Tehnopress, Iași, 2005.
- E. Popescu, Analiză matematică. Calcul diferențial, Editura Matrix Rom, București, 2006.
- 🌘 A. Precupanu, *Bazele analizei matematice*, Editura Polirom, Iași, 1998.