A Tutorial for Bayesian Integrative Factor Models

Mavis Liang

2024-10-10

Table of contents

Pr	reface	3						
1	Preliminary 1.1 Factor models and multi-study setting	4						
2	Quick start	5						
3	Package Installation							
	3.1 Stack FA, Ind FA, and BMSFA	6						
	3.2 PFA							
	3.3 MOM-SS	6						
	3.4 SUFA	6						
	3.5 Tetris	6						
4	Case study: nutrition data							
	4.1 Loading and previewing the data	7						
	4.2 Data preprocessing	8						
	4.3 Model fitting	11						
	4.4 Post processing	12						
	4.5 Visualization							
	4.6 Mean squared error (MSE)	12						
5	Summary							
R	eferences	14						

Preface

This is the tutorial to guide statisticians to use Baysian integrative factor models.

1 + 1

1 Preliminary

1.1 Factor models and multi-study setting

This chapter introduce the theory behind factor models See Knuth (1984) for additional discussion of literate programming.

1 + 1

2 Quick start

Step 1: Prepare the package and data

A small simulated data can be downloaded here:

RDS format

Step 2: Run BMSFA

Step 3: Post-processing

Step 4: Visualization

1 + 1

3 Package Installation

I have this separate section to introduce the package installation because installing some packages requires extra efforts.

3.1 Stack FA, Ind FA, and BMSFA

3.2 PFA

PFA does not provide any downloadable R packages and we need to download the R scripts from their GitHub repository, put them in the same directory as the main script, and source them for use.

We only need the three files: FBPFA-PFA.R, FBPFA-PFA with fixed latent dim.R, and PFA.cpp, which can be found in https://github.com/royarkaprava/Perturbed-factor-models. The FBPFA-PFA.R file contains the full Bayesian inference algorithm for the PFA model, directly set the latent dimensions equal to the dimensions or the original data. The FBPFA-PFA with fixed latent dim.R file contains the same algorithm that requires to set numbers of common factors K. We also notice that two version of the models are both PFA(), and some functions in the FBPFA-PFA with fixed latent dim.R file depends on the FBPFA-PFA.R file. Therefore, since we want to run the dimension reduction version of the model, we must source the FBPFA-PFA.R file first, and then source the FBPFA-PFA with fixed latent dim.R file.

```
# Suppose the files are in the same directory as the main script
source("FBPFA-PFA.R")
source("FBPFA-PFA with fixed latent dim.R")
```

- 3.3 MOM-SS
- **3.4 SUFA**
- 3.5 Tetris

4 Case study: nutrition data

4.1 Loading and previewing the data

The data used in this section is from... This data is not publicly available. Please contact the authors of the original study for access.

```
load("./Data/dataLAT_projale2.rda")
```

The resulting object is a list of 6 data frames, each corresponding to a different study. Each data frame contains information about the nutritional intake of individuals, and the columns represent different nutrients. From Study 1 to Study 6, the number of individuals (N_s) are 1364, 1517, 2210, 5184, 2478, and 959, respectively, and the number of nutrients (P) are all 42.

```
# Check how many studies in the list length(X_s2)
```

```
# Dimension of each study
lapply(X_s2, dim)
```

```
[[1]]
[1] 1364 42

[[2]]
[1] 1517 42

[[3]]
[1] 2210 42

[[4]]
[1] 5184 42
```

```
[[5]]
[1] 2478 42
[[6]]
[1] 959 42
```

Let's take a look at the first few rows of the first data frame to get an idea of the data structure.

```
X_s2[[1]][1:5, 1:5]
```

	Animal	Protein (g) Vegetable	Protein (g)	Cholesterol	(mg)	SCSFA	MCSFA
1		28.95	60	14.7440	256	5.761	0.2665	0.939
2		33.66	75	8.9710	104	.217	0.2180	0.520
3		70.00	00	31.0635	207	.902	0.9845	1.692
4		20.67	00	13.8240	148	3.921	0.0625	0.239
5		15.42	50	10.5550	65	.060	0.0090	0.033

We note that the data we have available is different from the original data (cite). The original data is a collection of 12 studies, and there are known covariates for each individuals, like the one we simulated in the previous section. However, for the purpose of this case study, the data we used are collapsed into 6 studies, and only the nutritional intake data are available.

4.2 Data preprocessing

Some individuals have missing values for all nutrients, thus we will remove these individuals from the data. Also, there are some nutrition intake are less than zero, for which we will replace with 0. We then apply a log transformation to the data.

We first count how many NA values and negative values are in each study.

```
count_na_and_negatives <- function(df) {
    # Count NA values
    na_count <- sum(is.na(df))
    # Count negative values
    negative_count <- sum(df < 0, na.rm = TRUE)

# Print counts
cat("Number of NAs:", na_count, "\n")</pre>
```

```
cat("Number of negative values:", negative_count, "\n")
}
invisible(lapply(X_s2, count_na_and_negatives))
```

```
Number of NAs: 1344
Number of negative values: 0
Number of NAs: 1344
Number of negative values: 1
Number of NAs: 1344
Number of negative values: 0
Number of NAs: 1344
Number of negative values: 2
Number of NAs: 1344
Number of negative values: 1
Number of NAs: 1344
Number of negative values: 1
Number of negative values: 0
```

We will define a function to process the data, which removes rows where all values are NA. We also define a function that replaces negative values with 0, and applies a log transformation to the data.

```
process_study_data <- function(df) {
    # Remove rows where all values are NA
    cleaned_df <- df[!apply(df, 1, function(row) all(is.na(row))), , drop = FALSE]
    # Count remaining rows
    remaining_rows <- nrow(cleaned_df)
    # Print results for the study
    cat("Remaining rows:", remaining_rows, "\n")
    return(cleaned_df)
}

Y_list <- lapply(X_s2, process_study_data)</pre>
```

Remaining rows: 1332
Remaining rows: 1485
Remaining rows: 2178
Remaining rows: 5152
Remaining rows: 2446
Remaining rows: 927

```
# Replace negative values with 0, then log(x+0.01) + 0.01
replace_negatives <- function(df) {
    # Replace negative values with 0
    df[df < 0] <- 0
    # Apply log transformation. Add 0.01 to avoid log(0).
    transformed_df <- log(df + 0.01)
    return(transformed_df)
}

Y_list <- lapply(Y_list, replace_negatives)</pre>
```

The numbers of individuals in each study left for analysis (N_s) are 1332, 1485, 2178, 5152, 2446, and 927, respectively.

```
# Check the processed data
invisible(lapply(Y_list, count_na_and_negatives))
```

```
Number of NAs: 0
Number of negative values: 11910
Number of NAs: 0
Number of negative values: 11222
Number of NAs: 0
Number of negative values: 15006
Number of negative values: 36230
Number of negative values: 36230
Number of negative values: 19349
Number of NAs: 0
Number of negative values: 6707
```

Now we don't have any NA values or negative values in the data.

The assumptions for factor models require that each variable has a mean of 0. Therefore, for each study, we will center the data for each column. We note that for some model (Stack FA, Ind FA, BMSFA, and Tetris), this step is handeled internally, and for MOM-SS, the random intercepts are estimated, so we do not need to center the data.

```
Y_list_scaled <- lapply(
   Y_list, function(x) scale(x, center = TRUE, scale = FALSE)
)
Y_mat_scaled <- Y_list_scaled %>% do.call(rbind, .) %>% as.matrix()
```

4.3 Model fitting

We recommend that we run the following code chunk in a high-performance computing environment, as the model fitting process can be computationally intensive. PFA and Tetris are particularly computationally expensive, where PFA requires more than 10 hours to run, and Tetris requires more than 4 days to run. Other models can be finished within half an hour. We recommend at least 5GB of memory for running the models and post-processing.

For each model, we over-specify the numbers of factors to .. [to be written].

```
# Stack FA
Y_mat = Y_list %>% do.call(rbind, .) %>% as.matrix()
fit_stackFA <- MSFA::sp_fa(Y_mat, k = 6, scaling = FALSE, centering = TRUE,</pre>
                                control = list(nrun = 10000, burn = 800))
# Ind FA
fit_indFA <-
      lapply(1:6, function(s){
        j_s = c(8, 8, 8, 8, 8, 8)
        MSFA::sp_fa(Y_list[[s]], k = j_s[s], scaling = FALSE, centering = TRUE,
                     control = list(nrun = 10000, burn = 8000))
      })
# PFA
N_s <- sapply(Y_list, nrow)</pre>
fit_PFA <- PFA(Y=t(Y_mat_scaled),</pre>
                         latentdim = 6,
                          grpind = rep(1:6,
                                      times = N_s,
                 Thin = 5,
                 Total itr = 10000, burn = 8000)
# MOM-SS
Y_mat = Y_list %>% do.call(rbind, .) %>% as.matrix()
# Construct the membership matrix
N_s <- sapply(Y_list, nrow)</pre>
M_list <- list()</pre>
   for(s in 1:6){
     M_{list}[[s]] \leftarrow matrix(1, nrow = N_s[s], ncol = 1)
   }
M <- as.matrix(bdiag(M_list))</pre>
fit_MOMSS <- BFR.BE::BFR.BE.EM.CV(x = Y_mat, v = NULL,
                                    b = M, q = 6, scaling = FALSE)
```

4.4 Post processing

- 4.5 Visualization
- 4.6 Mean squared error (MSE)

5 Summary

In summary, this book has no content whatsoever.

1 + 1

References

Knuth, Donald E. 1984. "Literate Programming." Comput.~J.~27~(2): 97–111. https://doi.org/10.1093/comjnl/27.2.97.