细胞结构的功能

<mark>笔记源文件: Markdown, 长图, PDF, HTML</mark>

细胞种类:原核,真核,古核(极端条件存活)

1. 细胞质膜与细胞质基质

1.1. 细胞膜

脂质(甘油/鞘磷脂50%+糖脂5%+胆固醇占比不超1/3)+蛋白质(外在+内在+锚定)

3 细胞膜骨架:与内侧膜蛋白相连的,由纤维蛋白等组成的网状结构,维持细胞形态

1.2. 细胞基质

1细胞质基质: 胞内除去细胞器以外的胶状物质

2细胞骨架:基质的网络,维持形态和固定细胞器

结构	组成	功能
微丝	肌动蛋白组成的动态张力纤维	参与细胞运动、形态维持
微管	由微管蛋白组装,中空结构	参与物质运输、细胞承压

结构	组成	功能
中间丝	形成纤维网连接细胞质膜	提供结构支持和稳定细胞结构

2. 细胞器的结构与功能

2.1. 核糖体: 合成蛋白质肽链

1成分:核糖体RNA占 $\frac{2}{3}$ /蛋白质 $\frac{1}{3}$,蛋白外/rRNA内

2.2. 内膜系统

内质网/高尔基体/溶酶体/液泡/小泡/细胞膜/线粒体/叶绿体/核膜/过氧化物酶体

2.2.0. 概述

内膜系统是指在结构、功能乃至发生上相互关联,由单层膜包被的细胞器或细胞结构

2.2.1. 内质网

1 粗面内质网:

- 1. 扁平囊状,外部有大量核糖体颗粒,
- 2. 合成蛋白大多为分泌蛋白/细胞膜蛋白/细胞器蛋白, 去向为高尔基体
- 2 滑面内质网:小管或囊状,无核糖体,合成几乎所有脂质,去向为内质网

2.2.2. 高尔基体

1 形态:

- 1. 排列整齐的扁平膜囊簇
- 2. 膜囊之间膜性结构相连

- 3. 凸面aka顺面and凹面aka反面
- 2 功能:中介地位,对胞内合成物(蛋白质)加工、修饰、分选、包装与输运

2.2.3. 溶酶体

1 结构: 单层膜,囊泡状,内含多种酸性水解酶(高尔基体修饰)

2特点:是独立结构,来自高尔基体出芽小泡

3 分类:初级溶酶体

→ 功能:细胞内消化,清除细菌/病毒,清除不需要物质

2.3. 线粒体

1 结构:

- 1. 外膜(边界,连接内质网/细胞骨架)
- 2. 内膜(向内折叠成嵴)
- 3. 膜间隙(内外膜间腔隙)
- 4. 基质

2线粒体基质:

- 1. 功能(氧化磷酸化,合成蛋白)
- 2. 组成(环状DNA与RNA, 脂质, 三羧酸循环有关酶)
- 3 特点:内外膜有很大的H⁺梯度→驱动ATP合成;内膜通透性差

2.4. 细胞核

2.4.1. 结构特点

- 1 双层有孔
- 2 外膜与内质网膜相联,核间隙与内质网腔相通(核外膜可认为属于内质网膜)
- 3 外膜附着核糖体,内膜光滑

2.4.2. 其它结构

1 核纤层:核内膜纤维网,维持核形态and固定染色体

2 核孔复合物: 横跨核内外膜多孔结构, 能在胞浆与核内进行双向物质输(被动扩散or主动

输运)

3 核仁: 合成与装配rRNA

2.5. 过氧化物酶体

1 存在真核细胞

2 可发生如下反应利用氧:
$$\begin{cases} RH_2+O_2 \rightarrow R+H_2O_2 \\ \\ 2H_2O_2 \rightarrow 2H_2O+O_2 \end{cases}$$

3. 细胞的生命过程

3.1. 细胞质膜的物质交换

3.1.1. 被动扩散:高→低浓度,热运动

(A) 载体蛋白

"船"

(B) 通道蛋白

"桥"

1 适用范围:

1. 疏水or不带电荷的非极性小分子

2. 极性分子: O_2, N_2, CO_2 可快速扩散, H_2O 可慢速或借助蛋白扩散

2 分类;自由扩散,异化扩散(需要转运蛋白,载体蛋白+通道蛋白,主动运输同)

3.1.2. 主动运输: 直接耗能(ATP)+间接耗能(离子浓度/电化差)

1 示例1: Na-K泵

• 细胞浓度内 K^+ 外 Na^+ (浓度高), ΞNa^+ (逆出) ΞK^+ (逆入), 能量源于一个APT

2 示例2: 小肠上皮细胞摄入葡萄糖

3.1.3. 膜泡运输

1 胞吞: 胞内物质 → 与细胞膜融合 → 小泡内物质排出,分为胞饮/介导胞吞/吞噬

3.2. 蛋白质合成途径

3.3.细胞运动: 心肌细胞收缩为例说明

步骤	机理	
外界条件	Ca^+ 浓度上升,去除了肌动蛋白与肌球蛋白结合点的障碍	
图中步骤三	肌球蛋白头和肌动蛋白结合	
图中步骤四	球蛋白头部朝肌动蛋白丝弯曲,引起肌动蛋白丝运动,水解 ATP	

步骤	机理	
图中步骤一	球蛋白头部再结合 ATP 二者分开	
图中步潔二	球蛋白恢复原来构型	

4. 植物细胞

- 1 无限增殖
- 2 特有细胞器

1. 细胞壁: 纤维素, 果胶与木质素构成; 非常坚韧, 防止破坏, 限制细胞的运动与变形

2. 液泡: 占细胞体积的90%上, 是细胞代谢库, 能吸水, 调节内外环境, 执行类似溶酶体功能

5. 原核细胞

细菌(球菌,杆菌,螺旋菌),放线菌,支原体,蓝细菌,衣原体,立克次体

5.1. 细菌的表面结构与功能

结构	描述	功能
细胞膜	类似真核细胞膜	$\mathrm{N/A}$
细胞壁	主要是肽聚糖	是抗原有致病性,对病毒敏感(抗生素主要破坏 此结构)
荚膜	由葡萄糖与葡萄糖醛酸聚合 而成	保护、黏附、形成菌落作用
菌毛	表面丝状蛋白寡聚物	负责细菌与其他细胞的联系,细菌间遗传物质 交换
鞭毛	N/A	主导细菌的运动

5.2. 细菌胞内结构成分与功能

1 拟核:

1. 细菌环状DNA集中区

- 2. 双向复制
- 3. 复制时要锚定在质膜上
- 4. 复制转录翻译空间上没分开可同时进行(繁殖快)

2 核糖体:游离

3质粒:拟合外的裸露环状DNA

5.3. 细菌生命过程

1 增殖:

- 1. DNA复制形成两个子环后,形成两个核区
- 2. 细胞膜在两个核区间凹陷形成中间隔膜
- 3. 最后形成细胞壁直接分裂为两个子细胞
- 2 饥饿应对反应: 营养物质块耗尽的时候

5.4. 细菌的多样性

冷刃/酸碱/好氧厌氧

6. 病毒

真病毒(DNA or RNA+蛋白质),类病毒(RNA),朊病毒(蛋白质)