

数字集成电路设计简介

组合逻辑和时序逻辑

Combinational

Output = f(In)

Sequential

Output = f(In, Previous In)

输入/输出表达式描述为

$$y_1 = F_1(x_1, x_2, ..., x_m)$$

$$y_2 = F_2(x_1, x_2, ..., x_m)$$

$$y_n = F_n(x_1, x_2, ..., x_m)$$

- 1. 组合逻辑电路的分析电路 =〉真值表
- 2. 组合逻辑电路的设计

- (1) 确定**I/O**
- (2) 列真值表
- (3) 求最简表达式
- (4) 用基本门电路实现

1.表达式

1)标准与或表达式

$$F(A, B, C,) = \sum mi = \sum m(i) = \sum (i)$$

2)标准或与表达式

$$F(A, B, C,) = \prod Mi = \prod M(i) = \prod (i)$$

- 2.真值表
- 3.卡诺图
- 4.逻辑图

$$(1) \ 0 \cdot 0 = 0$$

(2)
$$0 \cdot 1 = 0$$

$$(3) 1 \cdot 1 = 1$$

$$(4) \ \bar{0} = 0$$

$$(5) \ 0 \cdot A = A$$

(6)
$$1 \cdot A = A$$

(7)
$$A \cdot \overline{A} = 0$$

(8)
$$A \cdot A = A$$

(9)
$$A \cdot B = B \cdot A$$

$$(10) A \cdot (B \cdot C) = (A \cdot B) \cdot C$$

$$(11) A \cdot (B+C) = A \cdot B + A \cdot C$$

$$(12) \ \overline{A+B} = \overline{A} \cdot \overline{B}$$

$$(13) \ \overline{A} = A$$

$$(1') 0+0=0$$

$$(2') 0+1=0$$

$$(3')$$
 1+1=1

$$(4') \bar{1} = 0$$

$$(5') 0 + A = A$$

$$(6') 1 + A = A$$

$$(7') A + \overline{A} = 0$$

$$(8') A + A = A$$

$$(9') A + B = B + A$$

$$(10')$$
 $A + (B + C) = (A + B) + C$

(11)
$$A \cdot (B+C) = A \cdot B + A \cdot C$$
 (11') $A + B \cdot C = (A+B) \cdot (A+C)$

$$(12') \ \overline{A \cdot B} = \overline{A} + \overline{B}$$

表1—13 判奇电路的真值表

	A	В	С	F
	0	0	0	0
ý	0	0	1 00	1
107	0	10	0	1
11	0	1	1010	0
	1	0	0	1
- 1	1	0	1	0
	1	1	0	0
	1	1	1	1

								CE AB	00	01	11	10	CDI AB	E ₀₀₀	001	011	010	110	111	101	100
AB	0	1	BC A	00	01	11	10	00	0	1	3	2	00	0	1	3	2	6	7	5	4
0	0	1	$\begin{bmatrix} & A \\ & 0 \end{bmatrix}$	0	1	3	2	01	4	5	7	6	01	8	9	11	10	14	15	13	12
1	2	3	1	4	5	7	6	11	12	13	15	14	11	24	25	27	26	30	31	29	28
		Z.,		1	1		X	10	8	9	11	10	10	16	17	19	18	22	23	21	20
	(a)				(b))		0 .	11	(c))	Y					(c	1)			

图1-5 变量卡诺图

(a)两变量;(b)三变量;(c)四变量;(d)五变量

AB	00	01	11	10
00	0	1	0	1
01	1	1	1	0
11	0	0	0	1
10	0	1	1	0

图1-6一个四变量函数的卡诺图

2.真值表→表达式

两种标准的形式:标准与或和标准或与

1)标准与或表达式

标准与或表达式:每个与项都为标准与项

•标准与项:又称最小项,包含了所有逻辑变量,每个变量以原变量或反变量出现一次且出现一次。

最小项

- (1) 所有逻辑变量相与;
- (2) 每个变量仅出现一次(以原变量或反变量);
- (3) 编号由变量取值组合的逻辑值决定。
 - 最小项编号的确定:
 - 变量为原变量 => 对应组合中变量取值为1;
 - 变量为反变量=〉对应组合中变量取值为0。
 - •A、B、C的最小项ABC:对应变量取值组合为101,
 - •该值为5,所以A \overline{BC} 记为 m_5 。

最小项的性质:

- (1)每个最小项都与变量的惟一的一个取值组合相对应, 只有该组合使这个最小项取值为1,其余任何组合均使该 最小项为0。
- (2)所有不同的最小项相或,结果一定为1。
- (3)任意两个不同的最小项相与,结果一定为0。

• 标准与或表达式:

• 让函数值为1的最小项之和

$$F(A, B, C,) = \sum mi = \sum m(i) = \sum (i)$$

A	В	С	F
0	0	0	0
0	0	1	1
0	1	0	1
0	1	1	0
1	0	0	1
1	0	1	0
1	1	0	0
1	1	1	1

$$F(A,B,C) = \overline{A}BC + \overline{A}BC + ABC + ABC$$

$$= m_1 + m_2 + m_4 + m_7$$

$$= \sum_{} m(1,2,4,7)$$

$$= \sum_{} (1,2,4,7)$$

写出函数
$$F=A+BC+ABC$$
 的标准与或表达式。

解:
$$F=A+BC+ABC$$

$$=A(B+\overline{B})(C+\overline{C})+(A+\overline{A})BC+\overline{A}B\overline{C}$$

$$=\overline{A}BC+\overline{A}B\overline{C}+\overline{A}B\overline{C}+\overline{A}BC+\overline{A}BC+\overline{A}BC$$

也可以写成

$$(A,B,C)=m_1+m_2+m_4+m_5+m_6+m_7$$

或
$$F(A,B,C)=\sum m(1,2,4,5,6,7)$$

或
$$F(A,B,C)=\sum (1,2,4,5,6,7)$$

- 2)标准或与表达式
- 标准或与表达式:每个或项均为标准或项。
- •标准或项: 又称最大项, 包含了所有逻辑变量, 每个变量以原变量或反变量出现一次且仅出现一次。

最大项

- (1)所有逻辑变量相或;
- (2)每个变量仅出现一次(以原变量或反变量);
- (3)编号由变量取值组合的逻辑值决定。

最大项编号的确定:

变量为原变量 => 对应组合中变量取值为0;

变量为反变量=〉对应组合中变量取值为1。

A、B、C的最大项(A+B+C)对应的变量取值组合为010, 其大小为2,因而该最大项编号为2,记为M₂。

最大项的主要性质:

- (1)每个最大项都与变量的惟一的一个取值组合相对应,只有该组合使这个最大项取值为0,其余任何组合均使该最大项为1。
- (2)所有不同的最大项相与,结果一定为0。
- (3)任意两个不同的最大项相或,结果一定为1。

• 标准或与表达式:

• 让函数值为0的最大项之和

$$F(A, B, C,) = \prod Mi = \prod M(i) = \prod (i)$$

A	В	С	F
0	0	0	1
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	0

$$F(A,B,C) = (A+B+\overline{C})(A+\overline{B}+C)$$

$$(\overline{A}+B+C)(\overline{A}+\overline{B}+C)$$

$$= M_1 + M_2 + M_4 + M_7$$

$$= \prod M(1,2,4,7)$$

$$= \prod (1,2,4,7)$$

写出函数 F=A(B+C) 的标准或与表达式。

• 解:

$$F=A(B+C)$$

$$=(A+B\overline{B}+C\overline{C})(A\overline{A}+\overline{B}+C)$$

$$= (A+B+C)(A+\overline{B}+C)(A+B+\overline{C})(A+\overline{B}+\overline{C})(A+\overline{B}+C)(\overline{A}+\overline{B}+C)$$

$$=(A+B+C)(A+B+\overline{C})(A+\overline{B}+C)(A+\overline{B}+\overline{C})(\overline{A}+\overline{B}+C)$$

也可以写成
$$F(A,B,C)=M_0+M_1+M_2+M_3+M_6$$

或
$$F(A,B,C)= M(0,1,2,3,6)$$

组合逻辑电路的设计

功能 =〉电路

设计步骤

- 1. 分析逻辑功能要求,确定输入/输出变量(I/O);
- 2. 根据功能要求列出待设计电路的真值表; ■
- 3. 用逻辑代数公式或卡诺图求出输出函数的最简表达式;
- 4. 用基本门电路实现函数。

组合逻辑电路的设计

设计一个有三个输入、一个输出的组合逻辑电路,输入为二进制。当输入二进制能被3整除时,输出为1,否则,输出为0。

设输入变量为A、B、C,输出变量为Z。

- 1. 根据逻辑功能要求,列出的电路的真值表
- 2. 画出的相应的卡诺图
- 3. 由卡诺图得到的输出Z的表达式

ABC	00	01	11	10
0	1		1	
1				1

$$Z = \overline{A}\overline{B}\overline{C} + \overline{A}BC + AB\overline{C} = \overline{A}\overline{B} \oplus \overline{C} + AB\overline{C}$$

Α	В	С	Z
0	0	C 0 0	1
0	1	0	0
0	0	1	0
A00011	1	1	1
1	1	1	0
	0	1	1 0 0 1 0 0
1	1	0	
1	0	0	0

组合逻辑电路的设计

$$Z = \overline{A}\overline{B}\overline{C} + \overline{A}BC + AB\overline{C} = \overline{A}\overline{B} \oplus \overline{C} + AB\overline{C}$$

组合逻辑电路的设计

某厂有A、B、C三个车间和Y、Z两台发电机。如果一个车间开工,启动Z发电机即可满足使用要求;如果两个车间同时开工,启动Y发电机即可满足使用要求;如果三个车间同时开工,则需要同时启动Y、Z两台发电机才能满足使用要求。试仅用与非门和异或门两种逻辑门设计一个供电控制电路,使电力负荷达到最佳匹配。

1. 确定I/O

输入:开工的车间A,B,C

输出:发电机 Y, Z

用"0"表示该厂车间不开工或发电机不工作,用"1"表示该厂车间开工或发电机工作。为使电力负荷达到最佳匹配,应该根据车间的开工情况即负荷情况,来决定两台发电机的启动与否。

SZIOT-SZU

组合逻辑电路的设计

Α	В	С	Υ	Z
0	0	0		/ 3
0	1	0	M.	1
0	0	1		1
0	1	1	1	X
1	1	1	1	1
1	0	1	1	
1	1	0	1	
1	0	0		1

$$Y = AB + BC + AC$$

$$Z = 2ABC + ABC + ABC + ABC$$

SZIOT-SZU

组合逻辑电路的设计

$$Y = \overline{\overline{AB + BC + AC}} = \overline{\overline{ABBCAC}}$$

与非门实现

$$Z = \overline{ABC} + \overline{ABC} + A\overline{BC} + ABC = A \oplus B \oplus C$$

22

1.描述方法

- 1)特性方程组:输出、驱动(激励)、状态
- 2)特性表:输入、现态 → 次态
- 3)驱动表: 电路输入、现态、次态 → 触发器 输入
- 4)状态转换图:图形表示状态的转换及条件
- 5)时序图:时钟、输入、状态的时间对应

2.触发器

1.RS触发器
$$\begin{cases} Q^{n+1} = S + \overline{R}Q^{n} \\ RS = 0 \end{cases}$$
$$Q^{n+1} = Q^{n}$$

2. **D触发器**
$$Q^{n+1} = D$$
 CP有效时 $Q^{n+1} = Q^n$ CP无效时

3.**JK触发器**
$$Q^{n+1} = J\overline{Q}_n + \overline{K}Q_n$$
 CP有效时 $Q^{n+1} = Q_n$ CP无效时

4. T触发器
$$Q^{n+1} = T\overline{Q}^n + \overline{T}Q^n$$
 CP有效时 $Q^{n+1} = Q^n$ CP无效时

1.RS触发器

表 4-7 RS 触发器的特性表

逻辑功能	Q^{n+1}	Q"	s	R
保持	0	0	0	0
冰切	1	1	0	0
置 1	1	0	1	0
<u></u>	1	1	1.	0
置 0	0	0	0	1
<u> </u>	0	. 1	0	1
约束	×	0	1	1
-1水	×	1	1	1
		1000		

表4—8 RS触发器的驱动表

Q"	Q^{n+1}	R	S
0	0	×	0
0	1	0	1
1	o	1	0
1	1	0	×

$$\begin{cases} Q^{n+1} = S + \overline{R}Q^n \\ RS = 0 \end{cases}$$

$$Q^{n+1} = Q^n$$

2. D触发器

表4—9 D触发器的特性表

D	Q^n	Q^{n+1}	逻辑功能
, 0	0	. 0	
0	1	0	置 0
1	0	1	
1	1	1	置 1

表4—10 D触发器的驱动表

Q"	Q^{n+1}	D
0	0	0
0	1	1
1 .	0	0
1	1	. 1

$$Q^{n+1} = D$$
 CP有效时

$$Q^{n+1} = Q^n$$
 CP无效时

3.JK触发器

表 4-11 JK 触发器的特性表

J	K	Q^n	Q^{n+1}	逻辑功能
Ö	0	0	0	
0	0	1	1	保持
0	1	0	0	ES . 0
0	1	1	0	置()
1	0	0	1	置 1
1	0	1	1	
1	1	0	1	翻转
1	1	1	0	

表4—12 JK触发器的驱动表

Q"	Q^{n+1}	J	K
0	0	0	×
0	1	1	×
1	0	\times	1
1	1	×	0

$$J=1$$

$$K=\times$$

$$J=0$$

$$K=\times$$

$$J=\times$$

$$K=0$$

$$K=1$$

$$\boldsymbol{Q}^{n+1} = \boldsymbol{J} \overline{\boldsymbol{Q}}_n + \overline{\boldsymbol{K}} \boldsymbol{Q}_n$$

CP有效时

$$Q^{n+1} = Q_n$$

CP无效时

4. T触发器

表4—13 T触发器的特性表

Т	Q^n	Q^{n+1}	逻辑功能	
0	0	0		
0	1	1	保持	
1	0	1		
1	1	0	翻转	

表4—14 T触发器的驱动表

Q"	Q^{n+1}	Т
0	0	0
O	1	1
1	0	1
1	1	0 .

$$Q^{n+1} = T\overline{Q}^n + \overline{T}Q^n$$
 CP有效时 $Q^{n+1} = Q^n$ CP无效时

$$T= 0$$

$$T= 1$$

$$T= 0$$

$$T= 1$$

3. 分析

分析同步时序逻辑电路的一般步骤:

(1) 根据逻辑图写方程组

输出:
$$Y_i = f_i(X_1, X_2, ..., X_m, Q_1, Q_2, ..., Q_r)$$
, $i=1,...,k$

激励:
$$W_i = g_i(X_1, X_2, ..., X_m, Q_1, Q_2, ..., Q_r), i=1, ..., p$$

(2) 结合触发器特性方程,写出各个触发器的状态方程。

(3) 写出状态表 (特性表)

(4) 画状态图、时序图。

3. 分析

输入: 1 (CP不作为逻辑输入)

输出: C

5个器件,其中3个JK触发器→ 2^3个状态

3. 分析

(1) 根据逻辑图写输出和激励方程

输出方程: C=QnoQn1Qn2

驱动方程:

$$J_0 = K_0 = 1$$
,

$$Q^{n+1} = J\overline{Q}^n + \overline{K}Q^n$$

 $J_1 = K_1 = Q_0^n$,

$$J_2 = K_2 = Q_0^n Q_1^n$$

时钟方程: CP₀=CP₁=CP₂=CP →同步逻辑

3. 分析

(2) 写出各个触发器的状态方程

$$\begin{aligned} & \underline{Q}_{1}^{n+0} = \underline{Q}_{0}^{n} \\ & \underline{Q}_{1}^{n+1} = \underline{Q}_{0}^{n} \overline{Q}_{1}^{n} + \overline{Q}_{0}^{n} \underline{Q}_{1}^{n} \\ & \underline{Q}_{2}^{n+1} = \underline{Q}_{0}^{n} \underline{Q}_{1}^{n} \overline{Q}_{2}^{n} + \overline{Q}_{0}^{n} \underline{Q}_{1}^{n} \underline{Q}_{2}^{n} \end{aligned}$$

- (3) 写出状态表 (特性表)
- (4) 画状态图、时序图

000 /0	(001) /0 (010)	011
/1		/0
111 /0	110 (101)	100

Q_2^n	\mathbf{Q}_1^n	\mathbf{Q}_0^n	\mathbf{Q}_2^{n+1}	\mathbf{Q}_1^{n+1}	\mathbf{Q}_0^{n+1}	C
0	0	0	0	0	1	0
0	0	1	0	1	0	0
0	1	0	0	1	1	0
0	1	1	1	0	0	0
1	0	0	1	0	1	0
1	0	1	1	1	0	0
1	1	0	1	1	1	0
1	1	1	0	0 -	0	1

$$Q_2Q_1Q_0$$

32

特性表

3. 分析

- 4. 设计
 - (1) 功能 =) 状态
 - (2) 状态化简
 - (3) 触发器数目,状态分配 => 状态转换图
 - (4)触发器选型,确定驱动表驱动表:电路输入、现态、次态 → 触发器 输入
 - (5) 驱动表 =〉卡诺图 =〉触发器驱动方程 卡诺图: 电路输入、现态 → 触发器 输入
 - (6) 检查电路能否自启动。如不能自启动,则进行修改。
 - (7) 画逻辑图并实现电路。

4. 设计

设计一个T触发器,采用D触发器实现

输入: T

输出: Q, Q^

4. 设计

(1) (2) (3): 状态位数→1个触发器

(4):激励表:D触发器

Qn	Qn+1	Т	D
0	0	0	0
0	1	1	1
1	0	1	0
1	1	0	1

	Qn	T	D	
	0	0	0	
5	0	1	1	
	1	1	0	
	1	0	1	
		36	V	

$$\Box D = \overline{Q_n}T + \overline{T}Q_n$$

4. 设计

用下降沿动作的JK触发器设计一个同步时序逻辑电路,要求其状态转换图如下

异步

驱动表

\mathbf{Q}_2''	\mathbf{Q}_1''	\mathbf{Q}_0^n	Q_2^{n+1}	\mathbf{Q}_1^{n+1}	Q_0^{n+1}	J_2	K_2	\cdot J_1	K_1	J_{o}	\mathbf{K}_{0}
0	0	0	0	0	1	0	×	0	×	1	×
0	0	1	0	1	1	0	\times	1	×	×	0
0	1	0	1	1	0	1	\times	\times	0	0	\times
0	1	1	0	1	0	0	×	\times	0	\times	1
1	0	0	0	0	0	×	1	0	\times	0	\times
1	0	1	1	0	0	\times	0	0	\times	\times	1
1	1	0	1	1	1	\times	0	\times	0	1	\times
1	1	1	1	0	1	\times	0	×	1	\times	0

SZIOT-SZU

时序逻辑电路

4. 设计

用下降沿动作的JK触发器设计一个同步时序逻辑电路,要求其状态转换图如下

时序逻辑电路

4. 设计

用下降沿动作的JK触发器设计一个同步时序逻辑电路,要求其状态转换图如下

$$\begin{split} \mathbf{J}_2 &= \mathbf{Q}_1^{\mathrm{n}} \mathbf{Q}_0^{\mathrm{n}} & \mathbf{K}_2 &= \overline{\mathbf{Q}}_1^{\mathrm{n}} \overline{\mathbf{Q}}_0^{\mathrm{n}} \\ \mathbf{J}_1 &= \overline{\mathbf{Q}}_2^{\mathrm{n}} \mathbf{Q}_0^{\mathrm{n}} & \mathbf{K}_1 &= \mathbf{Q}_2^{\mathrm{n}} \mathbf{Q}_0^{\mathrm{n}} \\ \mathbf{J}_0 &= \mathbf{Q}_2^{\mathrm{n}} \mathbf{Q}_1^{\mathrm{n}} + \overline{\mathbf{Q}}_2^{\mathrm{n}} \overline{\mathbf{Q}}_1^{\mathrm{n}} & \mathbf{K}_0 &= \mathbf{Q}_2^{\mathrm{n}} \overline{\mathbf{Q}}_1^{\mathrm{n}} + \overline{\mathbf{Q}}_2^{\mathrm{n}} \mathbf{Q}_1^{\mathrm{n}} \end{split}$$

PUN and PDN are dual logic networks

NMOS Transistors in Series/Parallel Connection

Transistors can be thought as a switch controlled by its gate signal

NMOS switch closes when switch control input is high

NMOS Transistors pass a "strong" 0 but a "weak" 1

PMOS Transistors in Series/Parallel Connection

PMOS switch closes when switch control input is low

PMOS Transistors pass a "strong" 1 but a "weak" 0

• PUP is the <u>DUAL</u> of PDN (can be shown using DeMorgan's Theorem's)

$$\overline{A+B} = \overline{A}\overline{B}$$

$$\overline{AB} = \overline{A} + \overline{B}$$

• The complementary gate is inverting

$$AND = NAND + INV$$

Example Gate: NAND

	A	В	Out			
	0	0	1			
	0	1	1			
	1	0	1			
	1	1	0			
Tr	Truth Table of a 2 input NAND					

gate

PDN:
$$G = A B \implies Conduction to GND$$

PUN:
$$F = A + B = AB \Rightarrow$$
 Conduction to V_{DD}

$$G(In_1,In_2,In_3,\ldots) \equiv F(\overline{In_1},\overline{In_2},\overline{In_3},\ldots)$$

Example Gate: NOR

A	В	Out
0	0	1
0	1	0
1	0	0
1	1	0

Truth Table of a 2 input NOR gate

Complex CMOS Gate

Constructing a Complex Gate

(a) pull-down network

(b) Deriving the pull-up network hierarchically by identifying sub-nets

标准单元设计

- Standard Cells
 - General purpose logic
 - Can be synthesized
 - Same height, varying width
- Datapath Cells
 - For regular, structured designs (arithmetic)
 - Includes some wiring in the cell
 - Fixed height and width

Standard Cell Layout Methodology – 1980s

Standard Cell Layout Methodology – 1990s

Cell height = N X (horizntal/vertical) routing pitch (track)

power & ground = need 4 tracks

I/O pins = need 4-5 tracks

routing = need 2-3 tracks

track width = metal width

track spacing = metal min spacing

horizantal routing track width ⇒ M2 min width

vertical routing track width ⇒ M3 min width

With minimal diffusion routing

2-input NAND gate

