2.1 **Matrix Operations**

McDonald Fall 2018, MATH 2210Q, 2.1 Slides

2.1 Homework: Read section and do the reading quiz. Start with practice problems, then do

• *Hand in*: 2, 5, 7, 10, 15.

• Recommended: 20, 22, 27, 28.

Definition 2.1.1. If A is an $m \times n$ matrix (m rows and n columns), then the entry in the ith row and jth column of A, typically denoted a_{ij} , is called the (i,j)-entry of A. We write $A = [a_{ij}]$ using this notation. Columns of A are vectors in \mathbb{R}^m , usually denoted $\mathbf{a}_1, \dots \mathbf{a}_n$. We often write:

$$A = \left[\begin{array}{ccc} \mathbf{a}_1 & \cdots & \mathbf{a}_n \end{array} \right].$$

 $A = \left[\begin{array}{ccc} \mathbf{a}_1 & \cdots & \mathbf{a}_n \end{array}\right].$ The **diagonal entries** of $A = [a_{ij}]$ are $a_{11}, a_{22}, a_{33}, \ldots$, and they form the **main diagonal** of A. A diagonal matrix is an $n \times n$ square matrix whose nondiagonal entries are all zero. A zero matrix is an $m \times n$ matrix whose entries are all zero.

Definition 2.1.2. Two matrices are **equal** if they have the same size and their corresponding entires are equal. If A and B are matrices of the same size, then the sum A+B is the matrix whose entries are the sums of the corresponding entries in A and B.

Example 2.1.3. Let
$$A = \begin{bmatrix} 1 & 2 & 3 \\ -4 & 5 & -6 \end{bmatrix}$$
, $B = \begin{bmatrix} 4 & 5 & 6 \\ 7 & -8 & 9 \end{bmatrix}$, and $C = \begin{bmatrix} 1 & 3 \\ 5 & -6 \end{bmatrix}$. Find $A + B$, $B + A$, and $A + C$.

Definition 2.1.4. If r is a scalar and A is a matrix, then the **scalar multiple** rA is the matrix whose entries are r times the corresponding entries of A. Notationally, -A stands for (-1)A, and A - B = A + (-1)B.

Example 2.1.5. Let
$$A = \begin{bmatrix} 1 & 2 & 3 \\ -4 & 5 & -6 \end{bmatrix}$$
 and $B = \begin{bmatrix} 4 & 5 & 6 \\ 7 & -8 & 9 \end{bmatrix}$. Find $2B$ and $A - 2B$.

Theorem 2.1.6. Let A, B, and C be matrices of the same size, and r and s be scalars.

$$a. \ A+B=B+A$$

$$d. \ r(A+B) = rA + rB$$

b.
$$(A+B) + C = A + (B+C)$$

$$e. (r+s)A = rA + rB$$

$$c. A + 0 = A.$$

$$f. \ r(sA) = (rs)A.$$

Definition 2.1.7. If A is an $m \times n$ matrix, and B is an $n \times p$ matrix with columns $\mathbf{b}_1, \dots, \mathbf{b}_p$, then the product AB is the $m \times p$ matrix whose columns are $A\mathbf{b}_1, \dots, A\mathbf{b}_p$. That is

$$AB = \begin{bmatrix} A\mathbf{b}_1 & A\mathbf{b}_2 \cdots & A\mathbf{b}_p \end{bmatrix}.$$

Remark 2.1.8. If the number of columns of A doesn't match the number of rows of B, then the product AB is undefined.

Example 2.1.9. Compute
$$AB$$
 and BA , when $A = \begin{bmatrix} 2 & 1 \\ -3 & 4 \end{bmatrix}$ and $B = \begin{bmatrix} 3 & 5 & 1 \\ 2 & -8 & 3 \end{bmatrix}$.

Procedure 2.1.10 (Row-Column Rule for AB). If the product AB is defined, then the (i, j)-entry of AB is the sum of the products of corresponding entries from row i of A and column j of B. If $(AB)_{ij}$ denotes the (i, j)-entry in AB, and A is an $m \times n$ matrix, then

$$(AB)_{ij} = a_{i1}b_{1j} + a_{i2}b_{2j} + a_{i3}b_{3j} + \dots + a_{in}b_{nj}$$

Example 2.1.11. With A and B from Example 2.1.9, compute AB using the row-column rule.

Theorem 2.1.12. Let A be an $m \times n$ matrix, and let B and C have the right sizes so that the following sums and products are defined.

$$\begin{array}{ll} a. \ A(BC)=(AB)C & d. \ r(AB)=(rA)B=A(rB) \\ b. \ A(B+C)=AB+AC & (for\ any\ scalar\ r) \\ c. \ (B+C)A=BA+CA. & e.\ I_mA=A=AI_n \end{array}$$

Remark 2.1.13. When a matrix B multiplies a vector \mathbf{x} , it transforms \mathbf{x} into $B\mathbf{x}$. If this vector is multiplied by a second matrix A, the resulting vector is $A(B\mathbf{x})$. We can think about this as a composition of mappings. The matrix product is defined in a special way so that $A(B\mathbf{x}) = (AB)\mathbf{x}$.

Example 2.1.14. Let $T: \mathbb{R}^2 \to \mathbb{R}^2$ be the transformation that first reflects points through the horizontal x_1 -axis, and then reflects them through the line $x_2 = x_1$. Find the standard matrix of T.

Example 2.1.15. Let $A = \begin{bmatrix} 2 & -3 \\ -4 & 6 \end{bmatrix}$, $B = \begin{bmatrix} 8 & 4 \\ 5 & 5 \end{bmatrix}$, $C = \begin{bmatrix} 5 & -2 \\ 3 & 1 \end{bmatrix}$, and $D = \begin{bmatrix} 3 & 9 \\ 2 & 6 \end{bmatrix}$.

- (a) Find AB and BA.
- (b) Find AC.
- (c) Find AD.

Watchout! 2.1.16. Here are some important warnings for matrix multiplication:

- 1. In general, $AB \neq BA$.
- 2. Cancellation laws do not hold for multiplication; CA = CB (or AC = BC) does not mean A = B.
- 3. If AB = 0, this does not mean A = 0 or B = 0.

Definition 2.1.17. If A is an $n \times n$ square matrix and k is a positive integer, then we denote

$$A^k = AA \cdots A \ (k \text{ times})$$

We adopt the convention that $A^0 = I_n$.

Definition 2.1.18. If A is an $m \times n$ matrix, the **transpose** of A is the $n \times m$ matrix, denoted A^T , whose columns are formed from the corresponding rows of A.

Example 2.1.19. Let $A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$, $B = \begin{bmatrix} 8 & 4 \\ 5 & 5 \\ 6 & 2 \end{bmatrix}$, and $C = \begin{bmatrix} 5 & -2 & 1 & 3 \\ 3 & 1 & 2 & -6 \end{bmatrix}$.

Find A^T , B^T , and C^T .

Theorem 2.1.20. Let A and B be matrices who are the right size for the following operations.

$$a. \ (A^T)^T = A$$

c.
$$(rA)^T = rA^T$$
 (for any scalar r)

b.
$$(A+B)^T = A^T + B^T$$

$$d. \ (AB)^T = B^T A^T$$