

Chenxi (Celia) Huang
The Santander Data Group

TODAY'S AGENDA

- Project Description
- Data Processing
- Feature Engineering
- Model Selection
- Future Considerations

PROJECT DESCRIPTION

• Project Nature:

Product Recommendation

• Our Goal:

Based on customers' past behaviors and those of similar customers,

to **predict which products** their existing customers will use **in the next month.**

The Data

13 million x (24 features + 24 labels)

		Feat	ures					Labels		
	fecha_dato	ncodpers ind_empleado	pais_	residenci: sexo	age	fecha_alta	ind_nuevo ind_red	ca_fin_ult1 ind_tjcr	_fin_ult1 ind_v	alo_fin_ult1
9704	1/28/2015	952138 N	ES	Н	30	9/30/2011	0	0	0	0
120754	2/28/2015	952138 N	ES	Н	30	9/30/2011	0	0	0	0
186516	3/28/2015	952138 N	ES	Н	30	9/30/2011	0	0	0	0
252157	4/28/2015	952138 N	ES	Н	30	9/30/2011	0	0	0	0
272539	5/28/2015	952138 N	ES	Н	30	9/30/2011	0	0	0	0
338163	6/28/2015	952138 N	ES	Н	30	9/30/2011	0	0	0	0
454973	7/28/2015	952138 N	ES	Н	30	9/30/2011	0	0	0	0
494807	8/28/2015	952138 N	ES	Н	30	9/30/2011	0	0	0	0
636849	9/28/2015	952138 N	ES	Н	30	9/30/2011	0	0	0	0
674624	10/28/2015	952138 N	ES	Н	30	9/30/2011	0	0	0	0
825030	11/28/2015	952138 N	ES	Н	30	9/30/2011	0	0	0	0
863829	12/28/2015	952138 N	ES	Н	30	9/30/2011	0	0	0	0
1030664	1/28/2016	952138 N	ES	Н	30	9/30/2011	0	0	0	0
1127817	2/28/2016	952138 N	ES	Н	30	9/30/2011	0	0	0	0
1191618	3/28/2016	952138 N	ES	Н	31	9/30/2011	0	0	0	0
1293000	4/28/2016	952138 N	ES	Н	31	9/30/2011	0	0	0	0
1345086	5/28/2016	952138 N	ES	Н	31	9/30/2011	0	0	0	0

DATA PROCESSING & CLEANING

Super Large Data Set

Sampling

13 million to 1 million

Empty Strings: ""

Treating as one factor level

Assign "unknown"

Missing Values: NA

Filling case by case

11 Columns, by observations

FILLING IN MISSING VALUES FOR EXAMPLE: INCOME

HOW TO

- 1. BY TOTAL AVERAGE?
- 2. BY CITIES!

FEATURE ENGINEERING

Does time matter?

e.g. created "month' feature (Christmas would buy more?).

Cross-validation error rate from 9% to 10% in the same model \rightarrow abandoned

How to create features to reflect past behaviors?

Thoughts: can current situations be used to predict future (martingale)?

Solutions: Appending current month's labels to original features

24 more features for each data

New Fe	New Labels	
April's Features	April's Labels	May's Labels

MODEL SELECTION

What is the problem?

Multi-label Classification

- Our Models (what we can do in R)
 - 1. Baseline (= clustering?)
 - 2. rFerns in mlR
 - 3. XGBoosting
 - 4. Random Forrest
 - 5. SVM
- Not in R: ML-KNN, Neural Networks.

BASELINE MODEL

1. Method

- (1) Only Feature: customer ID (ignore all other features, e.g. cities, age, income.) Just consider the past purchasing behaviors of a certain customer A
- (2) Assign Predicated Value = Majority Label
 Calculated means of each label column for customer A
 If P(A purchases product 1) > 0.5, then predict yes (assign label value = 1)
 If P(A purchases product 1) <= 0.5, then predict yes (assign label value = 0)
- 2. Cross Validation Error Rate = 0.87% (K=5)
- 3. Pros & Cons

Advantages	Disadvantages
	not using most features, in a sense similar to guessing

Multi-label Classification in R {mlR} rFerns

1. Method

{mlR} Machine Learning in R, came out in Oct 2016

- Problem transformation methods (transform into binary/multiclass classification)
- Algorithm adaptation method (adapt multiclass algorithms so they can be applied directly)

2. Cross Validation Error Rate = 24%

K=5	Regular Method	Regular Method + Added Features
Error Rate	24.00%	30.18%

Advantages	Disadvantages
predicting all labels at the same time.	demanding requirements on the format of the data, e.g. Labels = logicals
convenient & neat technique.	not very good results

XG BOOSTING

1. Method predicting labels column by column

2. Error Rate = 0.3%

K=5	Regular Method	Regular Method + Added Features
Error Rate	4.12%	0.29%

Advantages	Disadvantages
Great Performance	doesn't not take into account any of the prior months – strong assumption on the data!
Simply Implementation	

RANDOM FOREST

1. Method

Predicting labels column by column

2. Error Rate =

K=5	Regular Method	Regular Method + Added Features
Error Rate	4.09%	3.81%

Advantages	Disadvantages
enhance the strength of the model through averaging the results	Not very consistent outcomes among labels. 99.99% Vs 74.56%
Good results	Improvement not enhanced by a lot

SVM

1. Method

Predicting labels column by column

2. Error Rate = 4.66%

Tuning parameter (radial kernel, default gamma, cost = 0.001)

Advantages	Disadvantages
Widely used model, stable	Hard to tune Takes way too long time
easy to interpret	Once can fit only one Column of labels
Good results	

CONCLUSIONS

1. Feature Selection

- Appending labels as new features is working!
- Sometimes less is more (baseline)!

2. Model Selection

- Direct Multi-label Classification in {mlR} doesn't work too well here.
- XG boosting is the best

2. How to choose in the end?

- Baseline: stable
- New Features: strong assumptions. Works in the short-run.
- o XG Boosting + New Features is our selected model

FUTURE CONSIDERATIONS

- The main objective of the project: predict additional products next month
 The error rate reflects which products will be owned,
 not which products were recently acquired
- Feature Engineering
 hard to incorporate past behaviors into account append baseline labels as features?
- Combined Model
 by model votes and majority labels?
- R Shiny?

REFERENCES

- https://mlr-org.github.io/mlr-tutorial/release/html/multilabel/index.html#predict
- https://en.wikipedia.org/wiki/Multi-label_classification
- https://www.kaggle.com/c/santander-product-recommendation
- https://cran.r-project.org/web/packages/MLPUGS/vignettes/tutorial.html
- And many more!

THE END THANK YOU!

