Thursday, June 24

· No class on Monday, June 28.

Sequences

Def: A sequence of real numbers

is function IN -> IR (our convention).

domain codomain

$$S(1) = S_1$$
 $S(2) = S_1$
 $S(3) = S_3$

$$Can represent sequences
$$as such$$

$$S(3) = S_3$$$$

Examples

·
$$S_{n}=\frac{1}{n}: (1,\frac{1}{2},\frac{1}{3},...)$$

$$s_n = n : (1,2,3,...)$$

$$S_n \equiv 0$$

identically

•
$$S_{n} = (-1)^{n} : (-1, 1, -1, 1, ...)$$

$$s_n = (1 + \frac{1}{2})^n : (2, \frac{9}{4}, \frac{64}{27}, ...)$$

(converges to e)

$$\cdot$$
 (S_n) = (3,3.1,3.14,3.141,3.1415,...)

(converges to TI)

Want to formalize the idea of terms getting "closer and closer" to some number.

Def: A sequence (sn) of real numbers converges if there exists seR such that

for any E>O, there exists NEIN such that n=N implies | Sn-s | < E.

textbook def: N can be a non-natural #.

Intuitively: No matter how small you pick E>D, eventually the sequence will stay within & of s. at some point, and forever after.

In this case, we say threshold N that (s_n) converges to s. s is called the limit of (s_n) .

That (s_n) converges to s. s is called the limit of (s_n) .

The same point s is called the limit of (s_n) .

Def: If a sequence does not converge, then we say it diverges.

Examples:

- a) $S_n = h$. Prove that $S_n \to 0$. Archimedean property $\frac{Proof}{1}$: Let $\varepsilon > 0$. By A.P., there exists NEN such that $\frac{1}{N} < \varepsilon$. Then if $n \ge N$, then $|S_n 0| = h \le \frac{1}{N} < \varepsilon$.
- b) $S_n \equiv 0$. Prove that $S_n \rightarrow 0$ Proof: Let $\epsilon > 0$. Set N = 1. Then if $n \geq N$, then $|S_n 0| = |0 0| = 0 < \epsilon$.
- c) $S_n = (-1)^n$. Prove that (S_n) diverges. Proof: (Contradiction) Suppose $S_n \rightarrow S$ for some $S \in \mathbb{R}$ = |S+1| = |-S-1|Consider $E = |_{\mathcal{F}}$ Then $2 = |-(-1)| = |-S+S-(-1)| \le |_{1-S}| + |_{S-(-1)}| \le 2$. There exists $|S_n - S| \le |S_n - S| \le |$

Definition: Divergence to too or -00.
what should it mean for a sequence to be "getting closer and closer to oo"?
A sequence (sn) diverges to 00 if for any
MER, there exists NEIN such that n2N "no matter how large" implies $s_n > M$.
Likewise for (Sn) diverging to -00.
Technicality: limit exists, equals a real number we write converge diverge to ∞ or $-\infty$ limit exists, equals ∞ or $-\infty$ diverge
diverge not div. to as or -as — limit exists, equals as or -as

Limit theorems for sequences

Def: A sequence (Sn) is bounded if the set $\{S_n : n \in \mathbb{N}\}$ is bounded, i.e. there exists M > D such that $|S_n| \leq M$ for all n.

Theorem: Convergent sequences are bounded.

Proof: Suppose (S_n) converges to S. Let E=1.

Then there exists $N \in \mathbb{N}$ such that $n \ge N$ implies $|S_n - S| \le 1 \implies |S_n| \le |S| + 1$. Set $M = \max \{|S_1|, |S_2|, ..., |S_{N-1}|, |S| + 1\}$.

Then

 $|s_n| = |s_n - s + s| \le |s_n - s| + |s|$ $\Rightarrow |s_n| - |s| \le |s_n - s| < 1$ $\Rightarrow |s_n| < |s| + 1$ |S1|≤M |Sn|≤M |S2|≤M |Sn|≤M |Sn-1|≤M |Sn-1|≤M |Sn|<|S|+|≤M

Math 104 Worksheet 3 UC Berkeley, Summer 2021 Thursday, June 24

Prove the following basic limit theorems using the rigorous definition of a limit.

1. If $r \in \mathbb{R}$ and (s_n) converges to s, then (rs_n) converges to rs, i.e. $\lim(rs_n) = r \lim(s_n)$.

Proof. (Completed) Assume $r \neq 0$, since otherwise the result is trivial. Let $\varepsilon > 0$. (The goal is to find $N \in \mathbb{N}$ such that $|rs_n - rs| < \varepsilon$ for all $n \geq N$.) Since $s_n \to s$, there exists $N \in \mathbb{N}$ such that $|s_n - s| < \varepsilon/|r|$ for all $n \geq N$. Then $|rs_n - rs| < \varepsilon$ for all $n \geq N$, as desired.

2. If (s_n) converges to s and (t_n) converges to t, then $(s_n + t_n)$ converges to s + t, i.e. $\lim(s_n + t_n) = \lim s_n + \lim t_n$.

Proof. Let \(\epsilon > 0\). Goal: ... Show there exists NEN 5+, n≥N implies

 $(Hint: |s_n + t_n - (s+t)| = |(s_n - s) + (t_n - t)| \le |s_n - s| + |t_n - t|.)$

Since sn-15, there exists N, EN such that in 2N, implies | sn-5/< \$2.

Since tn->t, there exists N, EN such that n>N, implies | tn-t|< \$2. Set N=max(N, N2)

3. If (s_n) converges to s and (t_n) converges to t, then (s_nt_n) converges to st, i.e. Then if $n \ge N$ $\lim(s_nt_n) = (\lim s_n) \cdot (\lim t_n)$.

Proof. Since (s_n) converges, it is a bounded sequence, so there exists $M \in \mathbb{R}$ such that $|s_n| \leq M$. Let $\varepsilon > 0$. Goal: ... Show there exists $N : \mathbb{R} \setminus \mathbb{R} \setminus \mathbb{R} \setminus \mathbb{R} \setminus \mathbb{R}$

 $(\mathit{Hint}\colon |s_nt_n - st| = |s_nt_n - s_nt + s_nt - st| \leq |s_nt_n - s_nt| + |s_nt - st| = |s_n| \cdot |t_n - t| + |t| \cdot |s_n - s|.)$

Since $t_n \rightarrow t$, $\exists N_1 : n \ge N_1 \Rightarrow |t_n - t| < \frac{\varepsilon}{2M}$ Since $s_n \rightarrow s$, $\exists N_2 : n \ge N_2 \Rightarrow |s_n - s| < \frac{\varepsilon}{2M}$ Set $N = \max(N_1, N_2)$ Then $n \ge N \Rightarrow \frac{2|t|+1}{2|t|+1}$ $|s_n t_n - st| \le |s_n||t_n - t|+|t||s_n - s| < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon$ = |Sn-5|+|+n-+| < E