Cambridge Part III Maths

Michaelmas 2020

Fluid Dynamics of Climate

based on a course given by John Taylor & Peter Haynes written up by Charles Powell

Notes created using Josh Kirklin's packages & classes. Please send errors and suggestions to cwp29@cam.ac.uk.

Contents

1	Flui	d motion in a rotating reference frame
	1.1	Local Cartesian coordinates
	1.2	Scale analysis
	1.3	Taylor-Proudman Theorem
2	Dep	partures from geostrophy
	2.1	Inertial (free) oscillations
	2.2	Ekman layer
		Ekman transport
	2.4	Ekman pumping
3	Rota	ating shallow water equations
		Potential vorticity (PV)

Lecture 1 12/10/20

1 Fluid motion in a rotating reference frame

In a non-rotating frame, the Navier-Stokes equations are

$$\rho \frac{\mathrm{D}\boldsymbol{u}}{\mathrm{D}t} = -\nabla p - \rho \nabla \phi + \rho \boldsymbol{F}$$

The body forces are assumed to be conservative with potential ϕ , e.g. $\phi = gz$ for gravitational force. \mathbf{F} is the frictional force.

Consider a reference frame rotating about the z-axis with constant angular velocity Ω . Axes in the inertial frame are denoted with a subscript I and axes in the rotating frame are denoted with a subscript I.

Figure 1: Geopotential ocean surface relative to a spherical Earth.

For a point with position vector x and velocity $u_R = \left(\frac{\mathrm{d}x}{\mathrm{d}t}\right)_R$ in the rotating reference frame

$$\left(\frac{\mathrm{d}\boldsymbol{x}}{\mathrm{d}t}\right)_{I} = \left(\frac{\mathrm{d}\boldsymbol{x}}{\mathrm{d}t}\right)_{R} + \boldsymbol{\Omega} \times \boldsymbol{x}$$

or equivalently $u_I = u_R + \Omega \times x$. Hence the acceleration is

$$\begin{split} \left(\frac{\mathrm{d}\boldsymbol{u}}{\mathrm{d}t}\right)_I &= \left(\frac{\mathrm{d}}{\mathrm{d}t}\left[\boldsymbol{u}_R + \boldsymbol{\Omega} \times \boldsymbol{x}\right]\right)_R + \boldsymbol{\Omega} \times (\boldsymbol{u}_R + \boldsymbol{\Omega} \times \boldsymbol{x})_R \\ &= \left(\frac{\mathrm{d}\boldsymbol{u}_R}{\mathrm{d}t}\right)_R + 2\boldsymbol{\Omega} \times \boldsymbol{u}_R + \boldsymbol{\Omega} \times (\boldsymbol{\Omega} \times \boldsymbol{x}) \end{split}$$

The first term is the acceleration in the rotating frame, the second term is the *Coriolis acceleration* and the third term is the *centrifugal acceleration*. Note that we can write the centrifugal acceleration in the form of a conservative force

$$\begin{aligned} \boldsymbol{\Omega} \times (\boldsymbol{\Omega} \times \boldsymbol{x}) &= \nabla \phi_c \\ \phi_c &= -\frac{1}{2} \left| \boldsymbol{\Omega} \times \boldsymbol{x} \right|^2 \end{aligned}$$

Hence the Navier-Stokes equations in a rotating reference frame are

$$\rho \left(\frac{\mathrm{D}\boldsymbol{u}}{\mathrm{D}t} + 2\boldsymbol{\Omega} \times \boldsymbol{u} \right) = -\nabla p - \rho \nabla \left(\phi + \phi_c \right) + \rho \boldsymbol{F}$$
 (1)

We group the potential terms into a geopotential $\Phi \equiv \phi + \phi_c$. The surface of a stationary ocean or atmosphere has a constant geopotential height described by an oblate spheroid.

Imagine a spherical earth. At sea level, the polar radius is 21.4km smaller than the equatorial radius: see figure 1. In reality, the surface of the Earth is also very close to a geopotential surface. Hence *geopotential coordinates* are very useful for planetary scale motion.

Figure 2: Local Cartesian coordinates

1.1 Local Cartesian coordinates

For small motions, it is much more convenient to define local Cartesian coordinates (figure 2). In this coordinate system $\Omega = (0, \Omega \cos \theta, \Omega \sin \theta)$. Hence if $\mathbf{u} = (u, v, w)$ then

$$2\mathbf{\Omega} \times \mathbf{u} = (2\Omega w \cos \theta - 2\Omega v \sin \theta, 2\Omega u \sin \theta, -2\Omega u \cos \theta)$$
$$= (-fv + f^*w, fu - f^*u)$$

where $f \equiv 2\Omega \sin \theta$ is the Coriolis parameter and $f^* \equiv 2\Omega \cos \theta$.

Example. In Cambridge, $\theta = 52.1^{\circ}N$ so

$$f = 2\Omega \sin \theta$$
= $2 \cdot \frac{2\pi}{3600 \cdot 24} \cdot 0.79s^{-1}$
 $\approx 1.14 \times 10^{-4}s^{-1}$

At mid-latitudes, $f \sim 10^{-4}$ is a good approximation.

We can simplify the Coriolis acceleration expression; often $f^*w \ll fv$ and $f^*u \ll g$. Hence

$$2\mathbf{\Omega} \times \mathbf{u} \approx (-fv, fu, 0) = f\hat{\mathbf{z}} \times \mathbf{u}$$

This is the *traditional approximation*. This is *not* always a good approximation, particularly at intermediate scales.

1.2 Scale analysis.

Define characteristic scales for length L, time T, and velocity U. Non-dimensional variables are denoted with a superscript star: $\mathbf{u}^* = \mathbf{u}/U$, etc.

Using these scalings with $\mathbf{F} = \nu \nabla^2 \mathbf{u}$ we have

$$\frac{U}{T}\frac{\partial \boldsymbol{u}^{*}}{\partial t^{*}}+\frac{U^{2}}{L}\boldsymbol{u}^{*}\cdot\nabla^{*}\boldsymbol{u}^{*}+fU\hat{\boldsymbol{z}}\times\boldsymbol{u}^{*}=-\frac{1}{\rho}\nabla\left(p+\rho\Phi\right)+\frac{\nu U}{L^{2}}\nabla_{*}^{2}\boldsymbol{u}^{*}$$

Dividing through by fU leaves the Coriolis acceleration term ord(1) with other terms scaled relatively.

$$\frac{1}{fT}\frac{\partial \boldsymbol{u}^*}{\partial t^*} + \operatorname{Ro}\boldsymbol{u}^* \cdot \nabla^*\boldsymbol{u}^* + \hat{\boldsymbol{z}} \times \boldsymbol{u}^* = -\frac{1}{\rho f U} \nabla \left(p + \rho \Phi \right) + \operatorname{E}\nabla_*^2 \boldsymbol{u}^*$$

where Ro $\equiv \frac{U}{fL}$ is the Rossby number and E $\equiv \frac{\nu}{fL^2}$ is the Ekman number.

Figure 3: Lines of constant pressure p act as streamlines for the horizontal flow.

Example. For an atmospheric storm, $U\sim 10ms^{-1}, L\sim 1000km, f\sim 10^{-4}s^{-1}.$ Thus Ro $\sim 0.1, E\sim 10^{-13}.$

Lecture 2 14/10/2020

Further, if T = L/U, then Ro = U/fL = 1/fT. For small Ro, E, on surfaces of constant Φ , $f\hat{z} \times u \approx -\frac{1}{\rho}\nabla p$. This is *geostrophic balance*. In components, we have

$$-fv = -\frac{1}{\rho} \frac{\partial p}{\partial x}$$
$$fu = -\frac{1}{\rho} \frac{\partial p}{\partial y}$$

The equations of geostrophic balance can be arranged to give the horizontal velocity: u_H

$$\boldsymbol{u}_H \equiv (u, v) = \frac{1}{\rho f} \hat{\boldsymbol{z}} \times \nabla p$$

Horizontal velocity is perpendicular to ∇p and hence parallel to isobars (lines of constant p), i.e. pressure acts like a streamfunction (see figure 3).

In the Northern Hemisphere, air moves clockwise around high p and anticlockwise around low p. A cyclonic rotation is in the same sense as Ω , anticyclonic in the opposite sense as Ω .

1.3 Taylor-Proudman Theorem

Consider an incompressible, ideal fluid in geostrophic balance (small Ro, E)

$$\nabla \cdot \boldsymbol{u} = 0$$

$$2\boldsymbol{\Omega} \times \boldsymbol{u} = -\frac{1}{\rho} \nabla p$$
(2)

Taking the curl of (2) we have

$$\nabla \times (\mathbf{\Omega} \times \mathbf{u}) = \varepsilon_{ijk} \partial_j \varepsilon_{klm} \Omega_l u_m$$

$$= \varepsilon_{kij} \varepsilon_{klm} \Omega_l \partial_j u_m$$

$$= (\delta_{il} \delta_{jm} - \delta_{im} \delta_{jl}) \Omega_l \partial_j u_m$$

$$= \Omega_i \partial_j u_j - \Omega_j \partial_j u_i$$

The first term is 0 by incompressibility. Thus

$$-\nabla \times (\mathbf{\Omega} \times \mathbf{u}) = \mathbf{\Omega} \cdot \nabla \mathbf{u} = 0$$

For $\Omega = (0,0,\Omega)$, this implies $\frac{\partial w}{\partial z} = 0$. If w = 0 on some horizontal surface (e.g. ground) then

Also, $u_x + v_y = 0$, i.e. horizontal velocity is non-divergent in geostrophic balance. Fluid moves in 'columns' parallel to Ω , called Taylor columns.

2 Departures from geostrophy

Consider an incompressible, rotating fluid with constant density ρ_0 with angular velocity $\Omega=$ (0,0,f/2). Assume small amplitude motions (i.e. $|u|^2 \ll |u|$), i.e. neglect $u \cdot \nabla u$ and $\nu \nabla^2 u$. From (1),

$$u_t - fv = -\frac{p_x}{\rho_0} \tag{3}$$

$$v_t + fu = -\frac{p_y}{\rho_0}$$

$$w_t = -\frac{p_z}{\rho_0}$$
(5)

$$w_t = -\frac{p_z}{\rho_0} \tag{5}$$

$$u_x + v_y + w_z = 0 (6)$$

We will eliminate variables in favour of p.

$$\nabla \cdot ((3) - (5)) \implies \nabla^2 p = \rho_0 f (v_x - u_y)$$
$$\partial_x (4) - \partial_y (3) \& (6) \implies (v_x - u_y)_t = f w_z$$

Combining these and using (5) we have

$$\nabla^2 p_{tt} + f^2 p_{zz} = 0$$

which is a wave equation for p. Seek plane wave solutions with ansatz

$$p = \hat{p}e^{i(kx+ly+mz-\omega t)}$$

and dispersion relation

$$\omega^2 = \frac{f^2 m^2}{k^2 + l^2 + m^2} = f^2 \sin^2 \theta$$

This is the dispersion relation for rotating internal waves. They have phase speed $c_p = w/k$ and group velocity

$$c_g = \frac{\partial w}{\partial \mathbf{k}} = \pm f \frac{(-km, -lm, k^2 + l^2)}{|\mathbf{k}|^{3/2}}$$

Note that $c_p \cdot c_g = 0$. Also note $|\omega| \leq |f|$.

Lecture 3 16/10/2020

2.1 Inertial (free) oscillations

Assume $\nabla p = \mathbf{0}$. The x and y components of geostrophic balance (3), (4) give

$$u_{tt} + f^2 u = 0$$

Thus $u = U \sin ft$ where f is the *inertial frequency*. Similarly, we have $v = U \cos ft$. For a particle with position (x_p, y_p) floating on an ocean surface z = 0 moving with the fluid velocity, we have

$$\frac{\mathrm{d}x_p}{\mathrm{d}t} = u \implies x_p = -\frac{U}{f}\cos ft + x_0$$

$$\frac{\mathrm{d}y_p}{\mathrm{d}t} = v \implies y_p = -\frac{U}{f}\sin ft + y_0$$

Thus the motion of fluid particles describes describes inertial circles with radius $\frac{2U}{f}$.

2.2 Ekman layer

Look for a *steady* ocean response to a constant wind stress τ_w . Use local Cartesian coordinates and make the following assumptions:

- 1. Steady, i.e. $\partial_t \equiv 0$
- 2. Neglect horizontal variations, i.e. $\partial_x = \partial_y = 0$
- 3. Neglect surface waves, i.e. w(z=0)=0
- 4. No flow in deep ocean, i.e. $\lim_{z\to-\infty} u = 0$
- 5. Constant density ρ
- 6. Traditional approximation

Continuity (incompressibility) says $u_x + v_y + w_z = 0$. Assumptions 2 and 3 then imply w = 0 everywhere. The horizontal momentum equations are

$$-fv = \nu u_{zz} \tag{7}$$

$$fu = \nu v_{zz} \tag{8}$$

Define the complex velocity $\mathcal{V} \equiv u + iv$. Then

$$\mathcal{V}_{zz} = \frac{if}{\nu} \mathcal{V} \tag{9}$$

Without loss of generality, assume τ_w is aligned with the x-axis: $\tau_w = (\tau_w, 0) = (\rho \nu u_z, 0)$. Boundary conditions for (9) are

$$\mathcal{V}_z = \left(\frac{\tau_w}{\rho \nu}, 0\right) \text{ at } z = 0$$

$$\mathcal{V} = (0, 0) \text{ as } z \to -\infty$$

Thus $\mathcal{V} = Ae^{(1+i)z/\delta}$ where $\delta = \sqrt{\frac{2\nu}{f}}$, $A = \frac{\tau_w \delta(1-i)}{2\rho\nu}$. In terms of the velocity components, we have

$$u = \frac{\tau_w}{\rho\sqrt{\nu f}} e^{z/\delta} \cos\left(-\frac{z}{\delta} + \frac{\pi}{4}\right)$$
$$v = -\frac{\tau_w}{\rho\sqrt{\nu f}} e^{z/\delta} \sin\left(-\frac{z}{\delta} + \frac{\pi}{4}\right)$$

A top view of the ocean shows an *Ekman spiral*: see figure 4.

Figure 4: Ekman spiral.

2.3 Ekman transport

Integrate the horizontal momentum equations (7),(8) to the base of the Ekman layer where $\nu u_z \approx 0$ at z = -h. Since $\nu u_z(z = 0) = (\tau_w/\rho, 0)$, the Ekman transport U_T is

$$U_T \equiv \int_{-h}^{0} u \, dz = 0$$
$$V_T \equiv \int_{-h}^{0} v \, dz = -\frac{\tau_w}{\rho f}$$

This is the net transport of fluid in the Ekman layer and is oriented 90° to the right of the applied wind shear stress (in the Northern Hemisphere).

2.4 Ekman pumping

Consider a wind stress $\tau_w(y)$ that varies over large scales. Then from incompressibility

$$\int_{-h}^{0} w_z \, dz = -\int_{-h}^{0} u_x \, dz - \int_{-h}^{0} v_y \, dz$$

Thus for h constant,

$$-w(z=-h) = -\frac{\partial V_T}{\partial y} = \frac{\partial}{\partial y} \left(\frac{\tau_w}{\rho f}\right)$$

In general we have

$$w(z=-h)=\hat{oldsymbol{z}}\cdot
abla imesrac{oldsymbol{ au}_w}{
ho f}$$

Lecture 4 19/10/20

3 Rotating shallow water equations

Consider a thin layer of fluid with constant density ρ . Define characteristic scales

- length L = horiz., H = vert.
- \bullet velocity U
- \bullet time T
- \bullet pressure P

such that $\partial_x, \partial_y \sim \frac{1}{L}, \partial_z \sim \frac{1}{H}$. Define the aspect ratio $\delta \equiv H/L$. We will assume $\delta \ll 1$. From continuity (incompressibility) we have

$$\frac{\partial w}{\partial z} = -\frac{\partial u}{\partial x} - \frac{\partial v}{\partial y}$$

$$\implies \frac{w}{H} = \mathcal{O}(U/L)$$

$$\implies w = \mathcal{O}(\delta U)$$

Using the traditional approximation and assuming the fluid is inviscid, the x-momentum equation

$$\frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x} + v \frac{\partial u}{\partial y} + w \frac{\partial u}{\partial z} - fv = -\frac{1}{\rho} \frac{\partial p}{\partial x}$$
(10) scaling: $\frac{U}{T} + \frac{U^2}{L} + \frac{U^2}{L} + \frac{wU}{H} + \frac{U}{H}$ $fU = \frac{P}{\rho L}$

Thus if p_x appears at leading order then

$$P \sim \rho U \max(L/T, U, fL)$$

Similarly the z-momentum equation and its scalings are

$$\frac{\partial w}{\partial t} + u \frac{\partial w}{\partial x} + v \frac{\partial w}{\partial y} + w \frac{\partial w}{\partial z} = -\frac{1}{\rho} \frac{\partial p}{\partial x} - g \quad (11)$$
 scaling: $\frac{w}{T} + \frac{Uw}{U} + \frac{Uw}{U} + \frac{W^2}{U} + \frac{W^2}{U}$

Hence $\frac{Dw}{Dt} \sim \max(\frac{w}{T}, \frac{Uw}{L})$. Comparing with the pressure term, we have

$$\frac{\frac{Dw}{Dt}}{\frac{1}{\rho}\frac{\partial p}{\partial z}} \sim \frac{\max(\frac{w}{T}, \frac{Uw}{L})}{\frac{U}{H}\max(\frac{L}{T}, \frac{U}{L}, f)}$$
$$\sim \delta^2 \frac{\max(\frac{1}{T}, \frac{U}{L})}{\max(\frac{1}{T}, \frac{U}{L}, f)}$$

Therefore to $\mathcal{O}(\delta^2)$ we have hydrostatic balance. To this order, (11) becomes

$$\frac{\partial p}{\partial z} - \rho g \implies p = \rho g(\eta - z)$$

assuming p=0 at $z=\eta(x,y,t)$. Similarly, we have $\frac{1}{\rho}p_x=g\eta_x$ and $\frac{1}{\rho}p_y=g\eta_y$. Hence horizontal acceleration (i.e. the LHS of (10)) is independent of z. Motivated by this, we assume that horizontal velocity is also independent of z. For $Ro\ll 1$, this follows from the Tayor-Proudman theorem. Re-writing (10) with these results we have

$$u_t + uu_x + vu_y - fv = -g\eta_x \tag{12}$$

$$v_t + uv_x + vv_y + fu = -g\eta_y \tag{13}$$

since $u_z = v_z = 0$ by assumption. Integrating the continuity equation gives

$$w = -z(u_x + v_y) + A(x, y, t)$$

where A is to be determined by the boundary conditions. Requiring no normal flow at $z = -H_0 + h_b$ is imposed by $\mathbf{u} \cdot \hat{\mathbf{n}} = 0$ where $\mathbf{n} = \nabla(z - h_b)$. Thus

$$-u\frac{\partial h_b}{\partial x} - v\frac{\partial h_b}{\partial y} + w = 0$$

Hence

$$A(x, y, t) = u \frac{\partial h_b}{\partial x} + v \frac{\partial h_b}{\partial y} + (-H_0 + h_b)(u_x + v_y)$$

The kinematic boundary condition at $z = \eta$ is $\frac{D\eta}{Dt} = w$ which may be written as

$$\eta_t + u\eta_x + v\eta_y - w = 0$$

where $w = -\eta(u_x + v_y) + u\frac{\partial h_b}{\partial x} + v\frac{\partial h_b}{\partial y} + (-H_0 + h_b)(u_x + v_y)$. Combining these boundary conditions gives

$$\eta_t + [(H_0 - h_b + \eta)u]_x + [(H_0 - h_b + \eta)v]_y = 0$$
(14)

If $H \equiv H_0 - h_b + \eta$ is the total depth of the fluid, then since $H_t = \eta_t$,

$$H_t + (uH)_x + (vH)_y = 0 (15)$$

which is a statement of the conservation of volume (equivalently mass, since ρ is constant). Equations (12), (13), and (14) are the rotating shallow water (SW) equations.

3.1 Potential vorticity (PV)

Denote the vertical vorticity by $\zeta = v_x - u_y$. Consider $\partial_x(13) - \partial_y(12)$, which gives

$$\zeta_t + u\zeta_x + v\zeta_y + vf_y = -(\zeta + f)(u_x + v_y)$$

Now from conservation of volume (15),

$$u_x + v_y = -\frac{1}{H} \frac{\mathrm{D}H}{\mathrm{D}t}$$

Combining these relates the material derivative of ζ and H by

$$\frac{\mathrm{D}\zeta}{\mathrm{D}t} = \frac{\zeta + f}{H} \frac{\mathrm{D}H}{\mathrm{D}t} \implies \frac{\mathrm{D}}{\mathrm{D}t} \left(\frac{\zeta + f}{H}\right) = 0$$

Let $q \equiv \frac{\zeta + f}{H}$, the shallow water potential vorticity (SWPV). SWPV is conserved following fluid motion. We call ζ the relative vorticity and f the planetary vorticity. ζ and f will change as a fluid moves to conserve SWPV (changing f) and angular momentum (changing depth).

