จุฬาลงกรณ์มหาวิทยาลัย	ขื่อ
คณะวิศวกรรมศาสตร์	เลขประจำตัว
ภาควิชาวิศวกรรมคอมพิวเตอร์	้ หมายเลขเครื่อง
2110-263 DIGITAL COMPLITER LOGIC LAR L	วันที่

2. ตารางความจริงและวงจรตรรกะ

<u>วัตถุประสงค์</u>

- 1. เพื่อให้นิสิตสามารถสร้างตารางความจริงได้
- 2. เพื่อให้นิสิตสามารถเขียนสมการบูลลืนจากตารางความจริงได้
- 3. เพื่อให้นิสิตสามารถสร้างวงจรเชิงตรรกะจากสมการบุลลืนได้

บทน้ำ

ตารางความจริง คือ ตารางที่มีอินพุททั้งหมดให้ค่าครบทุกค่า และแต่ละค่าของอินพุทจะให้ค่า เอาท์พุทเป็นอย่างไร เช่น

А	В	Output
0	0	0
0	1	1
1	0	1
1	1	0

เป็นตารางความจริงที่มีอินพุท 2 ค่า คือ A และ B มีเอาท์พุท 1 ค่า คือ Output การเขียนตารางความจริง จะต้องใส่ค่าของอินพุทให้ ครบทุกค่า ซึ่งในตัวอย่างนี้มีเพียง 2 อินพุท จึงให้ค่าอินพุทได้ทั้งหมด 4 ค่า คือ 00,01,10,11 การเขียนค่าลงตารางนั้นจะต้องใส่ให้เรียงกัน ไปตามลำดับ (เพื่อให้เป็นมาตรฐานเดียวกัน) ส่วนค่าเอาท์พุทที่จะใส่ ลงไปนั้นเป็นค่าที่จะเกิดขึ้นจริงๆตามค่าของอินพุทนั้นๆ

ในกรณีที่มีอินพุทมากกว่า 2 ค่า ก็ใช้หลักการเดียวกัน เพียงแต่ จำนวนค่าอินพุททั้งหมดแตกต่างกัน เช่น ถ้ามีอินพุท 3 ค่า จะมีจำนวนคาอินพุททั้งหมด 8 ค่า ดังนี้คือ 000,001,010,011,100,101,110,111

สมการบูลลืน ถูกศึกษาเป็นครั้งแรกโดย George Boole เป็นสมการทางคณิตศาสตร์ ที่ใช้ช่วยใน การออกแบบวงจรตรรกะและคอมพิวเตอร์ สามารถเขียนได้ 2 รูปแบบคือ

- Canonical sum-of-products (Minterm)
- Canonical Product-of-sum (Maxterm)

เพื่อให้การอธิบายง่ายขึ้น ขอให้ดูตัวอย่างตารางสมมุติข้างล่าง

X ₁	X ₂	X ₃	Minterm	Maxterm	$f(x_1, x_2, x_3)$
0	0	0	$m_0 = x'_1 x'_2 x'_3$	$M_0 = X_1 + X_2 + X_3$	0
0	0	1	$m_1 = x'_1 x'_2 x_3$	$M_0 = X_1 + X_2 + X_3'$	0
0	1	0	$m_2 = x'_1 x_2 x'_3$	$M_0 = X_1 + X_2 + X_3$	1
0	1	1	$m_3 = x'_1 x_2 x_3$	$M_0 = X_1 + X_2' + X_3'$	1
1	0	0	$m_4 = x_1 x_2' x_3'$	$M_0 = x_1' + x_2 + x_3$	1
1	0	1	$m_5 = x_1 x_2' x_3$	$M_0 = x'_1 + x_2 + x'_3$	0
1	1	0	$m_6 = x_1 x_2 x_3'$	$M_0 = x'_1 + x'_2 + x_3$	0
1	1	1	$\mathbf{m}_7 = \mathbf{x}_1 \mathbf{x}_2 \mathbf{x}_3$	$M_0 = x'_1 + x'_2 + x'_3$	1

เราสามารถเขียนสมการบูลลีนทั้งสองแบบได้ดังนี้

เขียนในรูปแบบของ Canonical sum-of-products ให้เลือกเฉพาะ f(x₁,x₂,x₃) ที่เป็น 1 นำมา
เขียน Product term และ OR กัน ก็จะได้ดังนี้

$$f(x_1, x_2, x_3) = x'_1 x_2 x'_3 + x'_1 x_2 x_3 + x_1 x'_2 x'_3 + x_1 x_2 x_3$$
 (1)

แต่ละนิพจน์เรียกว่า minterm ดังนั้นอาจเขียนสมการใหม่ได้เป็น

$$f(x_1,x_2,x_3) = m_2 + m_3 + m_4 + m_7$$

หรืออาจเขียนย่ออีกอย่างได้เป็น

$$f(x_1, x_2, x_3) = \sum_{m} (2, 3, 4, 7)$$

เขียนในรูปแบบของ Canonical product-of-sums ให้เลือกเฉพาะ f(x₁,x₂,x₃) ที่เป็น 0 นำมา
เขียน Sum term และ AND กัน ก็จะได้ดังนี้

$$f(x_1,x_2,x_3) = (x_1 + x_2 + x_3)(x_1 + x_2 + x_3)(x_1 + x_2 + x_3)(x_1 + x_2 + x_3)(x_1 + x_2 + x_3) = (2)$$
 แต่ละนิพจน์เรียกว่า maxterm ดังนั้นอาจเขียนสมการใหม่ได้เป็น

$$f(x_1,x_2,x_3) = M_0 \bullet M_1 \bullet M_5 \bullet M_6$$

หรืออาจเขียนย่ออีกอย่างได้เป็น

$$f(x_1, x_2, x_3) = \prod M(0, 1, 5, 6)$$

การสร้างวงจรตรรกะ จากสมการบูลลีน เราสามารถเขียนวงจรตรรกะได้ โดยใช้เกทพื้นฐาน ได้แก่ AND gate , OR gate และ NOT gate ได้อย่างตรงไปตรงมา

ตัวอย่าง จากสมการที่ 1 นำมาเขียนวงจรจะได้

หรือจะใช้สมการที่ 2 มาเขียนวงจรก็จะได้

XOR (Sum of Products)

ให้นิสิตสร้างวงจร XOR ที่มี Input คือ A, B ขนาด 1 Bit และ Output คือ Output ขนาด 1 บิท โดยให้สร้างวงจรโดยใช้สมการบูลีนแบบ Sum of Products เท่านั้น

Α	В	Output
0	0	0
0	1	1
1	0	1
1	1	0

F = A'B + AB'

| รูปที่ 1 ตารางค่าความจริงของวงจร Xor

ข้อมูลนำเข้า

- A ขนาด 1 Bit
- B ขนาด 1 Bit

ข้อมูลส่งออก

• Output ขนาด 1 Bit

ชุดข้อมูลทดสอบ

• 100% โปรแกรมทำงานถูกต้องตาม Input ทุกรูปแบบ

XOR (Product of Sums)

ให้นิสิตสร้างวงจร XOR ที่มี Input คือ A, B ขนาด 1 Bit และ Output คือ Output ขนาด 1 บิท โดยให้สร้างวงจรโดยใช้สมการบูลีนแบบ Product of Sums เท่านั้น

	Α	В	Output	
٠	0	0	0	
•	0	1	1	F = (A+B)(A'+B')
٠	1	0	1	
•	1	1	0	

รูปที่ 1 ตารางค่าความจริงของวงจร Xor

ข้อมูลนำเข้า

- A ขนาด 1 Bit
- B ขนาด 1 Bit

ข้อมูลส่งออก

Output ขนาด 1 Bit

ชุดข้อมูลทดสอบ

• 100% โปรแกรมทำงานถูกต้องตาม Input ทุกรูปแบบ

FullAdder (Sum of Products)

ให้นิสิตสร้างวงจร FullAdder ขนาด 1 Bit ที่มี Input คือ A, B, Cin ขนาด 1 Bit และ Output คือ Sum, Cout ขนาด 1 Bit ซึ่ง Sum คือผลรวม ของ Input ทั้งหมด สำหรับหลักปัจจุบันและ Cout คือตัวทดสำหรับหลักต่อไป โดยให้สร้างวงจรโดยใช้สมการบูลีนแบบ Sum of Products

Α	В	Cin	Sum	Cout
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

รูปที่ 1. ตารางค่าความจริงของ FullAdder

ข้อมูลนำเข้า

- A ขนาด 1 Bit
- B ขนาด 1 Bit
- Cin ขนาด 1 Bit

ข้อมูลส่งออก

- Sum ขนาด 1 Bit
- Cout ขนาด 1 Bit

ชุดข้อมูลทดสอบ

- 50% Cin มีค่าเป็น 0
- 50% Cin มีค่าเป็น 1

FullAdder (Product of Sums)

ให้นิสิตสร้างวงจร FullAdder ขนาด 1 Bit ที่มี Input คือ A, B, Cin ขนาด 1 Bit และ Output คือ Sum, Cout ขนาด 1 Bit ซึ่ง Sum คือผลรวม ของ Input ทั้งหมด สำหรับหลักปัจจุบันและ Cout คือตัวทดสำหรับหลักต่อไป โดยให้สร้างวงจรโดยใช้สมการบูลีนแบบ Product of Sums

Α	В	Cin	Sum	Cout
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

รูปที่ 1. ตารางค่าความจริงของ FullAdder

ข้อมูลนำเข้า

- A ขนาด 1 Bit
- B ขนาด 1 Bit
- Cin ขนาด 1 Bit

ข้อมูลส่งออก

- Sum ขนาด 1 Bit
- Cout ขนาด 1 Bit

ชุดข้อมูลทดสอบ

- 50% Cin มีค่าเป็น 0
- 50% Cin มีค่าเป็น 1

= (A+B)(A+Cin)(B+Cin)

Comparator (Sum of Products)

ให้นิสิตสร้างวงจร comparator ที่มี 4 input คือ A, B, C และ D ขนาด 1 Bit และมี 3 output คือ Z1, Z2 และ Z3 ขนาด 1 Bit โดยที่ A และ B ประกอบเป็นค่าของเลขจำนวนที่สอง (N2) เช่น ถ้า AB = 10 เลข N1 ก็มีค่า 10 (เท่ากับ 2 ในฐานสิบ) ค่าของ Z แสดงผลการเปรียบเทียบขนาดเลขทั้งสองจำนวน โดย Z1 เป็น 1 เมื่อ N1 > N2 Z2 เป็น 1 เมื่อ N1 < N2 และ Z3 เป็น 1 เมื่อ N1 = N2 (จะสังเกตว่า ที่ input ใดๆ จะมีค่า Z เป็นหนึ่งเพียงตัวเดียวเท่านั้น) โดยให้สร้างวงจรโดยใช้สมการบูลีนแบบ Sum of Products

ข้อมูลนำเข้า

- A ขนาด 1 Bit
- B ขนาด 1 Bit
- C ขนาด 1 Bit
- D ขนาด 1 Bit

ข้อมูลส่งออก

- Z1 ขนาด 1 Bit
- Z2 ขนาด 1 Bit
- Z3 ขนาด 1 Bit

ชุดข้อมูลทดสอบ

- 33% N1 มีค่าเท่ากับ N2
- 33% N1 มีค่ามากกว่า N2
- 34% N1 มีค่าน้อยกว่า N2

<u>A</u>	В	С	D	LT	EQ	<u>GT</u>
0	0	0 0 1 1 0 0 1 1 1 0 0 1 1 1	0	0	1	0
		0	1	1	0	0
		1	0	1	1 0 0 0	0 0 0
		1	0 1 0 1 0 1 0 1 0 1 0 1 0 1	0 1 1 1 0 0 1 1 1 0 0 0 1 1 1 0 0 0 0 0	0	0
0	1	0	0	0	0 1 0 0 0 0 1 0 0	1 0 0 0 1 1 0 0
		0	1	0	1	0
		1	0	1	0	0
		1	1	1	0	0
1	0	0	0	0	0	1
		0	1	0	0	1
		1	0	0	1	0
		1	1	1	0	0
1	1	0	0	0	0	1 1 1 0
		0	1	0	0	1
		1		0	0	1
		1	1	0	1	0

	LT						
				Α	,		
	0	0	0	0			
	-	0	0	0	D		
	(-)	-	0	-			
С	-	1	0	0			
	В						

ZI = AC' + BC'D' + ABD'

Z2 : A'C + B'CD + A'B'D

Z3 = A'B'C'D' + A'BC'D + ABCD + AB'CD'

Comparator (Product of Sums)

ให้นิสิตสร้างวงจร comparator ที่มี 4 input คือ A, B, C และ D ขนาด 1 Bit และมี 3 output คือ Z1, Z2 และ Z3 ขนาด 1 Bit โดยที่ A และ B ประกอบเป็นค่าของเลขจำนวนที่สอง (N2) เช่น ถ้า AB = 10 เลข N1 ก็มีค่า 10 (เท่ากับ 2 ในฐานสิบ) ค่าของ Z แสดงผลการเปรียบเทียบขนาดเลขทั้งสองจำนวน โดย Z1 เป็น 1 เมื่อ N1 > N2 Z2 เป็น 1 เมื่อ N1 < N2 และ Z3 เป็น 1 เมื่อ N1 = N2 (จะสังเกตว่า ที่ input ใดๆ จะมีค่า Z เป็นหนึ่งเพียงตัวเดียวเท่านั้น) โดยให้สร้างวงจรโดยใช้สมการบูลีนแบบ Product of Sums

ข้อมูลนำเข้า

- A ขนาด 1 Bit
- B ขนาด 1 Bit
- C ขนาด 1 Bit
- D ขนาด 1 Bit

ข้อมูลส่งออก

- Z1 ขนาด 1 Bit
- Z2 ขนาด 1 Bit
- Z3 ขนาด 1 Bit

ชุดข้อมูลทดสอบ

- 33% N1 มีค่าเท่ากับ N2
- 33% N1 มีค่ามากกว่า N2
- 34% N1 มีค่าน้อยกว่า N2

Α	В	Ç	D	LT	EQ	GT
0	0	0	0	0	1	0
		0	1	1	0	0
		1	0	1	0	0
		0 0 1 1 0 0 0 1 1 1 0 0 1 1 1	0 1 0 1 0 1 0 1 0 1 0 1 0 1	0 1 1 1 0 0 1 1 1 0 0 0 1 1 0 0 0 0 0	1 0 0 0	0 0 0
0	1	0	0	0	0 1 0 0 0 0 1 0 0	1 0 0
		0	1	0	1	0
		1	0	1	0	0
		1	1	1	0	0
1	0	0	0	0	0	1 1 0 0
		0	1	0	0	1
		1	0	0	1	0
		1	1	1	0	
1	1	0	0	0	0	1 1 1 0
		0	1	0	0	1
		1		0		1
		1	1	Ō	1	0

	LT					
				Α		
	0	0	0	0		
	1	0	0	0	D	
	1	1	0	1		
С	1	1	0	0		
		\neg	3		•	

Z1 = (A+B)(A+C')(A+D')(C'+D')(A'+B+C')

Z2:(C+D)(A'+C)(B'+C)(A'+B')(A'+C'+D)

Z3 = (A'+c)(B'+D)(A+c')(B+D')

Multiplexer (Sum of Products)

ให้นิสิตสร้างวงจร ที่มี 3 input คือ X0, X1 และ Selector ขนาด 1 Bitและมี 1 output คือ Z ขนาด 1 Bit โดยที่ ค่าของ Z ควบคุมโดย input Selector คือ ถ้า input Selector เป็น 0 ค่าของ Z จะเป็น X0 แต่ถ้า input Selector เป็น 1 ค่าของ Z จะเป็น X1 วงจรนี้เรียกว่า Multiplexer เนื่องจากวงจรเลือก 1 input จาก 2 input จะเรียกสั้นๆว่า MUX 2:1 โดยให้สร้างวงจรโดยใช้สมการบูลีนแบบ Sum of Products

ข้อมูลนำเข้า

- X0 ขนาด 1 Bit
- X1 ขนาด 1 Bit
- Selector ขนาด 1 Bit

ข้อมูลส่งออก

Z ขนาด 1 Bit

ชุดข้อมูลทดสอบ

- 50% Selector มีค่าเป็น 0
- 50% Selector มีค่าเป็น 1

Z : AC'+ BC

Multiplexer (Product of Sums)

ให้นิสิตสร้างวงจร ที่มี 3 input คือ X0, X1 และ Selector ขนาด 1 Bitและมี 1 output คือ Z ขนาด 1 Bit โดยที่ ค่าของ Z ควบคุมโดย input Selector คือ ถ้า input Selector เป็น 0 ค่าของ Z จะเป็น X0 แต่ถ้า input Selector เป็น 1 ค่าของ Z จะเป็น X1 วงจรนี้เรียกว่า Multiplexer เนื่องจากวงจรเลือก 1 input จาก 2 input จะเรียกสั้นๆว่า MUX 2:1 โดยให้สร้างวงจรโดยใช้สมการบูลีนแบบ Product of Sums

ข้อมูลนำเข้า

- X0 ขนาด 1 Bit
- X1 ขนาด 1 Bit
- Selector ขนาด 1 Bit

ข้อมูลส่งออก

Z ขนาด 1 Bit

ชุดข้อมูลทดสอบ

- 50% Selector มีค่าเป็น 0
- 50% Selector มีค่าเป็น 1

Z : (A+C)(B+C')

Mux4:1 (Sum of Products)

ให้นิสิตสร้างวงจร MUX 4:1 คือวงจรมี 4 input คือ X0, X1, X2 และ X3 ขนาด 1 Bit และมี input ที่ใช้ในการเลือก 2 input คือ S1 S0 ขนาด 1 Bit และ 1 output คือ Z ขนาด 1 Bit โดยค่าที่ออกมาที่ Z จะเป็น input ใดขึ้นกับค่าของ S1 S0 ตามตาราง

S1	S0	Z
0	0	X0
0	1	X1
1	0	X2
1	1	Х3

ข้อแนะนำ : ใช้วงจรจากข้อ Multiplexer

ข้อมูลนำเข้า

- X0 ขนาด 1 Bit
- X1 ขนาด 1 Bit
- X2 ขนาด 1 Bit
- X3 ขนาด 1 Bit
- S0 ขนาด 1 Bit
- S1 ขนาด 1 Bit

ข้อมูลส่งออก

Z ขนาด 1 Bit

ชุดข้อมูลทดสอบ

- 25% S1 มีค่าเป็น 0 และ S2 มีค่าเป็น 0
- 25% S1 มีค่าเป็น 0 และ S2 มีค่าเป็น 1
- 25% S1 มีค่าเป็น 1 และ S2 มีค่าเป็น 0
- 25% S1 มีค่าเป็น 1 และ S2 มีค่าเป็น 1