Friday warm-up: Forces I

Prof. Jordan C. Hanson

September 19, 2025

1 Memory Bank

- 1. $\vec{F}_{\rm net} = m\vec{a}$... Newton's Second Law, relating net force, mass, and acceleration.
- 2. Units of force: $1 \text{ N} = 1 \text{ kg m s}^{-2} \dots$ The definition of a Newton of force, like 1 pound.
- 3. $g = 9.81 \ \mathrm{m \ s^{-2}}$... The gravitational acceleration near the Earth's surface.

Figure 1: Forces on an object on an incline.

2 Chapter 5 - Forces

1. Prove that the two θ in Fig. 1 are equal, using geometric techniques and the properties of triangles.

30 degrees, calculate the magnitudes w_x and w_y . (b) What is the net force on the system, assuming there is no friction? (c) If the system slides 0.45 meters starting from rest, what is the final speed?

- 2. (a) Using Fig. 1, show that the magnitude of the weight force is mg, given the components w_x and w_y . (b) Show that, in the limit $\theta \to 90$ degrees, w_x approaches the full weight of the system. (c) Show that, in the limit $\theta \to 0$ degrees, w_y approaches the full weight of the system.
- 4. Suppose a 60 kg skiier is sliding down a slope with $\theta=15$ degrees. Assume a frictional force of 40 N opposes the motion. (a) What is the net force on the skiier? (b) What is the acceleration of the skiier? (c) Starting with an initial velocity of 5 m s⁻¹, how far does the skiier travel in 30 seconds?

3. Suppose an object with mass 40 kg is sliding down an incline (Fig. 1). In Figure 1, the weight force \vec{w} is broken into components \vec{w}_x and \vec{w}_y . (a) If θ