Chapter 7 Calculs algébriques

Exercice 7.1

Comparer les cinq sommes suivantes

$$S_{1} = \sum_{k=1}^{4} k^{3}$$

$$S_{2} = \sum_{n=1}^{4} n^{3}$$

$$S_{3} = \sum_{k=0}^{4} k^{3}$$

$$S_{4} = \sum_{k=2}^{5} (k-1)^{3}$$

$$S_{5} = \sum_{k=1}^{4} (5-k)^{3}$$

Solution 7.1

En écrivant explicitement les sommes, on a

$$S_1 = S_2 = S_3 = S_4 = S_5 = 1 + 2^3 + 3^3 + 4^3.$$

1. Montrer par récurrence

$$\forall n \in \mathbb{N}, \sum_{k=0}^{n} k^2 = \frac{n(n+1)(2n+1)}{6}.$$

2. Calculer le nombre de carrés que l'on peut dessiner sur un échiquier 8 x 8 (les côtés sont parallèles aux bords de l'échiquier et les sommets sont des sommets des cases de l'échiquier). Généraliser avec un échiquier n x n.

Solution 7.2

Pour $n \in \mathbb{N}$, on pose

$$R(n)$$
: $\sum_{k=0}^{n} k^2 = \frac{n(n+1)(2n+1)}{6}$.

R(0) est vraie car

$$\sum_{k=0}^{0} k^2 = 0^2 = 0 \quad \text{et} \quad \frac{0(0+1)(2\times 0 + 1)}{6} = 0.$$

Soit $n \in \mathbb{N}$ fixé. On suppose R(n) vraie. On a alors

$$\sum_{k=0}^{n+1} k^2 = \sum_{k=0}^{n} k^2 + (n+1)^2$$

$$= \frac{n(n+1)(2n+1)}{6} + (n+1)^2$$

$$= (n+1)\frac{n(2n+1) + 6(n+1)}{6}$$

$$= (n+1)\frac{2n^2 + 7n + 6}{6}.$$

Or $((n+1)+1)(2(n+1)+1) = (n+2)(2n+3) = 2n^2 + 7n + 6$, on a donc R(n+1):

$$\sum_{k=0}^{n+1} k^2 = \frac{(n+1)(n+2)(2n+3)}{6}.$$

Conclusion

D'après le principe de récurrence,

$$\forall n \in \mathbb{N}, \sum_{k=0}^{n} k^2 = \frac{n(n+1)(2n+1)}{6}.$$

Exercice 7.3 (***)

On définit la suite $(u_n)_{n\in\mathbb{N}}$ par

$$u_0 = 1$$
 et $u_{n+1} = \sum_{k=0}^{n} u_k$.

Montrer par récurrence (avec prédécesseurs) que pour tout $n \ge 1$, on a $u_n = 2^{n-1}$.

Solution 7.3

Pour $n \in \mathbb{N}^{\star}$, on pose R(n): $u_n = 2^{n-1}$. On a $u_1 = \sum_{k=0}^{0} u_k = u_0 = 1 = 2^{1-1}$, d'où R(1). Soit $n \in \mathbb{N}^{\star}$. On suppose $R(1), \dots, R(n)$ vraie. Alors,

$$u_{n+1} = \sum_{k=0}^{n} u_k$$

$$= u_0 + \sum_{k=1}^{n} u_k$$

$$= u_0 + \sum_{k=1}^{n} 2^{k-1}$$

$$= 1 + \sum_{k=0}^{n-1} 2^k$$

$$= 1 + \frac{1 - 2^n}{1 - 2}$$

$$= 1 + 2^n - 1 = 2^n$$

$$u_{n+1} = 2^{n+1-1}$$

D'où R(n+1).

Conclusion

Par récurrence, on a pour tous $n \in \mathbb{N}^*$, $u_n = 2^{n-1}$.

Compléter les égalités suivantes.

1.
$$\sum_{k=1}^{10} k^2 = \sum_{k=1}^{9} k^2 + \cdots$$

2.
$$\sum_{k=0}^{10} 2^k = \sum_{k=1}^{10} 2^k + \cdots$$

3.
$$\sum_{k=1}^{3} \frac{1}{k} = \sum_{l=3}^{\dots} \frac{1}{l-2}.$$

4.
$$\sum_{k=1}^{3} \frac{1}{k} = \sum_{k=5}^{7} \frac{1}{\dots}$$

Solution 7.4

1.
$$\sum_{k=1}^{10} k^2 = \sum_{k=1}^{9} k^2 + 10^2$$
 ou également $\sum_{k=10}^{10} k^2$.

2.
$$\sum_{k=0}^{10} 2^k = \sum_{k=1}^{10} 2^k + 1$$
 ou encore 2^0 ou $\sum_{k=0}^{0} 2^k$.

3.
$$\sum_{k=1}^{3} \frac{1}{k} = \sum_{l=3}^{5} \frac{1}{l-2}.$$

4.
$$\sum_{k=1}^{3} \frac{1}{k} = \sum_{k=5}^{7} \frac{1}{k-4}.$$

5.
$$\sum_{k=1}^{7} \frac{k+1}{2^k} = \sum_{k=-1}^{5} \frac{k+3}{2^{k+2}}.$$

6.
$$\sum_{k=1}^{5} (-1)^k \frac{k}{(k-1)!} = \sum_{k=0}^{4} (-1)^{k+1} \frac{k+1}{k!}.$$

7. Poser l = k - 1. Lorsque $k \in \{1, 2, 3\}$, on a $l = k - 1 \in \{0, 1, 2\}$.

$$\sum_{k=1}^{3} (-1)^{k-1} \frac{k^2}{(2k)!} = \sum_{l=0}^{2} (-1)^l \frac{(l+1)^2}{(2l+2)!}.$$

Puis l'indice étant muet, on peut écrire

$$\sum_{k=1}^{3} (-1)^{k-1} \frac{k^2}{(2k)!} = \sum_{k=0}^{2} (-1)^l \frac{(k+1)^2}{(2k+2)!}.$$

8. Poser l = k + 1.

$$\sum_{k=1}^{4} (-1)^k \frac{2k}{k+1} = \sum_{l=2}^{5} (-1)^{l-1} \frac{2l-2}{l} = \sum_{k=2}^{5} (-1)^{k-1} \frac{2k-2}{k}$$

7.
$$\sum_{k=1}^{3} (-1)^{k-1} \frac{k^2}{(2k)!} = \sum_{k=0}^{2} \cdots$$

5. $\sum_{k=1}^{7} \frac{k+1}{2^k} = \sum_{k=1}^{6} \frac{k+3}{2^{k+2}}$

8.
$$\sum_{k=\cdots}^{\cdots} (-1)^k \frac{2k}{k+1} = \sum_{k=2}^5 (-1)^{\cdots} \frac{\cdots}{k}$$
.

6. $\sum_{k=0}^{5} (-1)^k \frac{k}{(k-1)!} = \sum_{k=0}^{6} (-1)^{k+1} \frac{k+1}{k!}.$

Simplifier, pour $n \in \mathbb{N}^*$, les sommes suivantes.

1.
$$\sum_{k=1}^{n+1} k - \sum_{l=0}^{n} l;$$

3.
$$\sum_{k=1}^{n} k(k-1)$$
;

2.
$$\sum_{k=0}^{n} (2k+1);$$

3.
$$\sum_{k=1}^{n} k(k-1);$$

4. $\sum_{k=1}^{n} k(k+1)(k+2).$

1.
$$\sum_{k=1}^{n+1} k - \sum_{l=0}^{n} l = \sum_{k=0}^{n} (k-k) + n + 1 = n+1.$$

2.
$$\sum_{k=0}^{n} (2k+1) = 2\sum_{k=0}^{n} k + \sum_{k=0}^{n} 1 = 2\frac{n(n+1)}{2} + n + 1 = (n+1)^{2}.$$

3.
$$\sum_{k=1}^{n} k(k-1) = \sum_{k=1}^{n} k^2 - \sum_{k=1}^{n} k = \frac{n(n+1)(2n+1)}{6} - \frac{n(n+1)}{2} = \frac{n(n+1)(n-1)}{3}.$$

4.
$$\sum_{k=1}^{n} k(k+1)(k+2) = \sum_{k=1}^{n} k = 1^{n} \left(k^{3} + 3k^{2} + 2k \right) = \sum_{k=1}^{n} k^{3} + 3 \sum_{k=1}^{n} k^{2} + 2 \sum_{k=1}^{n} k = \frac{(n(n+1))^{2}}{4} + 3 \frac{n(n+1)(2n+1)}{6} + 2 \frac{n(n+1)}{2} = \frac{n(n+1)(n+2)(n+3)}{4}.$$

En remarquant que l'on peut écrire

$$\frac{1}{k(k+1)} = \frac{a}{k} + \frac{b}{k+1},$$

où a, b sont des constantes à déterminer, simplifier la somme

$$\sum_{k=1}^{n} \frac{1}{k(k+1)}.$$

Solution 7.6

Pour tout $k \in \mathbb{N}^*$, on a

$$\frac{a}{k} + \frac{b}{k+1} = \frac{(a+b)k + a}{k(k+1)}.$$

En choisissant a = 1 et b = -1, on obtient

$$\frac{1}{k(k+1)} = \frac{1}{k} - \frac{1}{k+1}.$$

Finalement, par téléscopage, on a

$$\sum_{k=1}^{n} \frac{1}{k(k+1)} = \sum_{k=1}^{n} \frac{1}{k} - \frac{1}{k+1} = 1 - \frac{1}{n+1}$$

Soit $(u_n)_{n\in\mathbb{N}}$ une suite de nombre complexes et $4\leq p\leq q$ deux entiers naturels. Simplifier la somme

$$\sum_{k=p-3}^{q-1} (u_{k+1} - u_{k-1})$$

Solution 7.7

Une solution directe.

$$\begin{split} \sum_{k=p-3}^{q-1} (u_{k+1} - u_{k-1}) &= \sum_{k=p-3}^{q-1} u_{k+1} - \sum_{k=p-3}^{q-1} u_{k-1} \\ &= \sum_{k=p-2}^q u_k - \sum_{k=p-4}^{q-2} u_k \\ &= \sum_{k=p-2}^{q-2} u_k + u_{q-1} + u_q - \left(u_{p-4} + u_{p-3} + \sum_{k=p-2}^{q-2} u_k \right) \\ &= u_q + u_{q-1} - u_{p-4} - u_{p-3}. \end{split}$$

Une solution astucieuse avec télescopage, on écrit $u_{k+1} - u_{k-1} = u_{k+1} - u_k + u_k - u_{k-1}$:

$$\begin{split} \sum_{k=p-3}^{q-1} (u_{k+1} - u_{k-1}) &= \sum_{k=p-3}^{q-1} (u_{k+1} - u_k) + \sum_{k=p-3}^{q-1} (u_k - u_{k-1}) \\ &= u_q - u_{p-3} + u_{q-1} - u_{p-4}. \end{split}$$

Calculer

$$\sum_{k=2}^{n} \ln \left(1 - \frac{1}{k^2} \right).$$

Solution 7.8

Pour $k \ge 2$, on a

$$\ln\left(1 - \frac{1}{k^2}\right) = \ln(k - 1) - 2\ln(k) + \ln(k + 1).$$

D'où

$$\sum_{k=2}^{n} \ln\left(1 - \frac{1}{k^2}\right) = \sum_{k=2}^{n} \ln(k-1) - 2\sum_{k=2}^{n} \ln(k) + \sum_{k=2}^{n} \ln(k+1)$$

$$= \sum_{k=1}^{n-1} \ln(k) - 2\sum_{k=2}^{n} \ln(k) + \sum_{k=3}^{n+1} \ln(k)$$

$$= \sum_{k=3}^{n-1} \ln(k) + \ln(1) + \ln(2) - 2\left(\sum_{k=3}^{n-1} \ln(k) + \ln(2) + \ln(n)\right) + \sum_{k=3}^{n-1} \ln(k) + \ln(n) + \ln(n+1)$$

$$= \ln(n+1) - \ln(n) - \ln(2)$$

$$= \ln\left(\frac{n+1}{2n}\right).$$

1. Montrer

$$\forall n \in \mathbb{N}^{\star}, \sqrt{n+1} - \sqrt{n} < \frac{1}{2\sqrt{n}} < \sqrt{n} - \sqrt{n-1}.$$

2. En déduire la partie entière de

$$\frac{1}{2}\left(1+\frac{1}{\sqrt{2}}+\dots+\frac{1}{\sqrt{10000}}\right).$$

Solution 7.9

1. Soit $n \in \mathbb{N}^*$. On a $\sqrt{n+1} > \sqrt{n}$, d'où

$$\sqrt{n+1} - \sqrt{n} = \frac{1}{\sqrt{n+1} + \sqrt{n}} < \frac{1}{2\sqrt{n}}.$$

De manière analogue, $\sqrt{n-1} < \sqrt{n}$, d'où

$$\sqrt{n}-\sqrt{n-1}=\frac{1}{\sqrt{n}+\sqrt{n-1}}>\frac{1}{2\sqrt{n}}.$$

2. En sommant les inégalités précédente pour n = 1..10000, on obtient

$$\sum_{n=1}^{100000} \sqrt{n+1} - \sqrt{n} < \sum_{n=1}^{10000} \frac{1}{2\sqrt{n}} < \sum_{n=1}^{10000} \sqrt{n} - \sqrt{n-1}.$$

Après telescopage, on obtient

$$\sqrt{10001} - 1 < \sum_{n=1}^{10000} \frac{1}{2\sqrt{n}} < \sqrt{10000} = 100$$

Or $\sqrt{10001} - 1 > \sqrt{10000} - 1 = 99$, d'où

$$99 \le \sum_{n=1}^{10000} \frac{1}{2\sqrt{n}} < 100$$

et donc

$$\left[\frac{1}{2} \left(1 + \frac{1}{\sqrt{2}} + \dots + \frac{1}{\sqrt{10000}} \right) \right] = 99.$$

1. Établir que pour tout $k \in \mathbb{N}^*$,

$$\arctan\left(\frac{1}{k^2+k+1}\right) = \arctan\frac{1}{k} - \arctan\frac{1}{k+1}.$$

2. Soit $n \in \mathbb{N}$. Calculer la valeur de la somme

$$S_n = \sum_{k=0}^n \arctan\left(\frac{1}{k^2 + k + 1}\right).$$

3. En déduire que la suite $(S_n)_{n\in\mathbb{N}}$ converge et calculer sa limite.

Solution 7.10

1. Soit $k \in \mathbb{N}^*$. On a $\frac{1}{k} > 0$ et $\frac{1}{k+1} > 0$. Or la fonction arctan est croissante majorée par $\frac{\pi}{2}$, d'où

$$0 < \arctan \frac{1}{k} < \frac{\pi}{2} \quad \text{et} \quad 0 < \arctan \frac{1}{k+1} < \frac{\pi}{2}$$

d'où

$$-\frac{\pi}{2} < \arctan \frac{1}{k} - \arctan \frac{1}{k+1} < \frac{\pi}{2}$$

De plus,

$$\tan\left(\arctan\frac{1}{k} - \arctan\frac{1}{k+1}\right) = \frac{\frac{1}{k} - \frac{1}{k+1}}{1 + \frac{1}{k+1}} = \frac{k+1-k}{k(k+1)+1} = \frac{1}{k^2 + k + 1}.$$

Et puisque $\arctan \frac{1}{k} - \arctan \frac{1}{k+1} \in \left] -\pi/2, \pi/2\right[$, on a bien

$$\arctan\left(\frac{1}{k^2 + k + 1}\right) = \arctan\frac{1}{k} - \arctan\frac{1}{k+1}.$$

2. On a par telescopage,

$$S_n = \frac{\pi}{4} + \sum_{k=1}^n \arctan\left(\frac{1}{k^2 + k + 1}\right)$$
$$= \frac{\pi}{4} + \sum_{k=1}^n \left(\arctan\frac{1}{k} - \arctan\frac{1}{k+1}\right)$$
$$= \frac{\pi}{4} + \arctan(1) - \arctan\frac{1}{n+1}$$
$$= \frac{\pi}{2} - \arctan\frac{1}{n+1}.$$

3. Puisque

$$\lim_{n \to +\infty} \frac{1}{n+1} = 0 \qquad \text{et} \qquad \lim_{x \to 0} \arctan x = 0,$$

on a

$$\lim_{n\to+\infty} S_n = \frac{\pi}{2}.$$

Calculer

$$1. \sum_{k=1}^{n} k.$$

2.
$$\sum_{i=1}^{n} k^{i}$$

$$3. \sum_{k=1}^{n} i$$

4.
$$\sum_{k=1}^{n} n$$

$$5. \prod_{k=1}^{n} k$$

$$6. \prod_{i=1}^{n} k.$$

7.
$$\prod_{k=1}^{n} i$$
.

8.
$$\prod_{k=1}^{n} n$$
.

1.
$$n(n+1)/2$$
.

4.
$$n^2$$

6.
$$k^{n}$$

7.
$$i^n$$
.

8.
$$n^n$$
.

Soit $n \in \mathbb{N}$ et $x \in \mathbb{R}$.

- 1. Montrer que $1 e^x = -2e^{x/2} \sinh \frac{x}{2}$.
- 2. Simplifier

$$\sum_{k=0}^{n} \operatorname{ch}(kx).$$

On exprimera le résultat avec les fonctions ch et sh.

Solution 7.12

On a

$$\sum_{k=0}^{n} \operatorname{ch}(kx) = \sum_{k=0}^{n} \frac{e^{kx} + e^{-kx}}{2} = \frac{1}{2} \sum_{k=0}^{n} (e^{x})^{k} + \frac{1}{2} \sum_{k=0}^{n} (e^{-x})^{k}.$$

• Si $x \neq 0$, alors

$$\sum_{k=0}^{n} (e^x)^k = \frac{1 - (e^x)^{n+1}}{1 - e^x} = \frac{1 - e^{(n+1)x}}{1 - e^x} = \frac{e^{(n+1)x/2}}{e^{x/2}} \frac{e^{-(n+1)x/2} - e^{(n+1)x/2}}{e^{-x/2} - e^{x/2}} = e^{nx/2} \frac{\sinh \frac{(n+1)x}{2}}{\sinh \frac{x}{2}}.$$

De même, en remplaçant x par -x, on obtient,

$$\sum_{k=0}^{n} (e^{-x})^k = e^{-nx/2} \frac{\sinh \frac{(n+1)x}{2}}{\sinh \frac{x}{2}}.$$

D'où

$$\sum_{k=0}^{n} \operatorname{ch}(kx) = \frac{1}{2} e^{nx/2} \frac{\operatorname{sh} \frac{(n+1)x}{2}}{\operatorname{sh} \frac{x}{2}} + \frac{1}{2} e^{-nx/2} \frac{\operatorname{sh} \frac{(n+1)x}{2}}{\operatorname{sh} \frac{x}{2}} = \frac{1}{2} \left(e^{nx/2} + e^{-nx/2} \right) \frac{\operatorname{sh} \frac{(n+1)x}{2}}{\operatorname{sh} \frac{x}{2}} = \frac{\operatorname{ch} \frac{nx}{2} \operatorname{sh} \frac{(n+1)x}{2}}{\operatorname{sh} \frac{x}{2}}.$$

• Si x = 0, on a $\sum_{k=0}^{n} \operatorname{ch}(kx) = n + 1$.

Soit $n \in \mathbb{N}^*$ et $(a, b) \in \mathbb{R}^2$, on pose

$$C_n = \sum_{k=0}^{n-1} \operatorname{ch}(a+bk)$$
 et $S_n = \sum_{k=0}^{n-1} \operatorname{sh}(a+bk)$.

Exprimer de manière simple C_n et S_n à l'aide des fonctions hyperboliques.

Solution 7.13

Si b=0, on a $C_n=n\operatorname{ch} a$ et $S_n=n\operatorname{sh} a$. Supposons maintenant $b\neq 0$. Alors

$$\sum_{k=0}^{n-1} e^{a+kb} = e^a \sum_{k=0}^{n-1} (e^b)^k$$

$$= e^a \frac{1 - e^{nb}}{1 - e^b}$$

$$= e^a \frac{e^{nb/2}}{e^{b/2}} \frac{e^{nb/2} - e^{-nb/2}}{e^{b/2} - e^{-b/2}}$$

$$= e^{a+(n-1)b/2} \frac{\sinh \frac{nb}{2}}{\sinh \frac{b}{2}}.$$

En remplaçant a et b par -a et -b, on obtient

$$\sum_{k=0}^{n-1} e^{-a-kb} = e^{-a-(n-1)b/2} \frac{\sinh \frac{nb}{2}}{\sinh \frac{b}{2}}.$$

Finalement

$$C_n = \frac{1}{2} \left(\sum_{k=0}^{n-1} e^{a+kb} + e^{-a-kb} \right)$$

$$S_n = \frac{1}{2} \left(\sum_{k=0}^{n-1} e^{a+kb} - e^{-a-kb} \right)$$

$$= \operatorname{ch} \left(a + \frac{n-1}{2} b \right) \frac{\operatorname{sh} \frac{nb}{2}}{\operatorname{sh} \frac{b}{2}}$$

$$= \operatorname{sh} \left(a + \frac{(n-1)}{2} b \right) \frac{\operatorname{sh} \frac{nb}{2}}{\operatorname{sh} \frac{b}{2}}.$$

Développer.

1.
$$(a+b)^7$$
.

2.
$$(1-3x)^5$$
.

1.
$$a^7 + 7a^6b + 21a^5b^2 + 35a^4b^3 + 35a^3b^4 + 21a^2b^5 + 7ab^6 + b^7$$
.

2.
$$1 - 15x + 90x^2 - 270x^3 + 405x^4 - 243x^5$$
.

Calculer le coefficient de x^3 dans le développement de

$$\left(2x-\frac{1}{4x^2}\right)^{12}.$$

Solution 7.15

On a

$$\left(2x - \frac{1}{4x^2}\right)^{12} = \sum_{k=0}^{12} {12 \choose k} (2x)^k \left(-\frac{1}{4x^2}\right)^{12-k} = \sum_{k=0}^{12} {12 \choose k} (-1)^k (2x)^{3k-24}.$$

L'exposant de x vaut 3 si, et seulement si 3k - 24 = 3, c'est-à-dire si k = 9, et le terme en x^3 est donc

$$\binom{12}{9}(-1)^9(2x)^{3\cdot 9-24} = -\frac{12\cdot 11\cdot 10}{3\cdot 2\cdot 1}(2x)^2 = -220\cdot 8x^3 = -1760x^3.$$

Calculer.

- 1. Le terme en x^5 du développement de $(x-2)^8$.
- **2.** Le terme en x^{20} du développement de $(x^2 y^2)^{14}$.
- 3. Le terme en x^6 du développement de $(3 4x^2)^5$.
- **4.** Le terme en x^4 et le terme en x^6 du développement de $\left(x^2 + \frac{1}{x}\right)^{14}$.

Solution 7.16

De manière analogue à l'exercice 7.15, on obtient

1.
$$-448x^5$$
.

2.
$$1001x^{20}y^8$$
.

3.
$$-5760x^6$$

3.
$$-5760x^6$$
.
4. $3003x^4$ et $0x^6$.

Déterminer a afin que le coefficient du terme en x^4 , dans le développement de

$$\left(x + \frac{a}{x^2}\right)^7$$

soit égal à 14.

Solution 7.17

On a

$$\left(x + \frac{a}{x^2}\right)^7 = \sum_{k=0}^7 {7 \choose k} x^k \left(\frac{a}{x^2}\right)^{7-k} = \sum_{k=0}^7 {7 \choose k} a^{7-k} x^{3k-14}.$$

Le terme en x^4 de ce développement correspond à k=6. Le coefficient du terme en x^4 est donc $\binom{7}{6}a=7a$. Celui-ci est égal à 14 si, et seulement si a=2.

En utilisant la formule du binôme de Newton, calculer 1 000 003⁵.

Solution 7.18

Pour $a, b \in \mathbb{C}$, on a

$$(a+b)^5 = a^5 + 5a^4b + 10a^3b^2 + 10a^2b^3 + 5ab^4 + b^5.$$

Ainsi,

$$1000003^{5} = (10^{6} + 3)^{5} = 10^{30} + 5 \times 3 \cdot 10^{24} + 10 \times 9 \cdot 10^{18} + 10 \times 27 \cdot 10^{12} + 5 \times 81 \cdot 10^{6} + 243$$

$$= 10^{30} + 15 \cdot 10^{24} + 90 \cdot 10^{18} + 270 \cdot 10^{12} + 405 \cdot 10^{6} + 243$$

$$= 1000015090000270000405000243.$$

Soit $n \in \mathbb{N}$. Simplifier les sommes suivantes.

1.
$$\sum_{k=0}^{n} \frac{1}{3^k} \binom{n}{k}$$
. 2. $\sum_{k=0}^{n} \binom{n}{k} \frac{(-1)^{k+1}}{2^k}$. 3. $\sum_{k=0}^{n} \binom{n}{k} 3^{2k+1}$.

1.
$$\sum_{k=0}^{n} \frac{1}{3^k} \binom{n}{k} = \sum_{k=0}^{n} \binom{n}{k} 1^{n-k} \left(\frac{1}{3}\right)^k = \left(1 + \frac{1}{3}\right)^n = \left(\frac{4}{3}\right)^n.$$

2.
$$\sum_{k=0}^{n} \binom{n}{k} \frac{(-1)^{k+1}}{2^k} = -\sum_{k=0}^{n} \binom{n}{k} \left(-\frac{1}{2}\right)^k 1^{n-k} = -\left(1-\frac{1}{2}\right)^n = \frac{1}{2^n}.$$

3.
$$\sum_{k=0}^{n} \binom{n}{k} 3^{2k+1} = \sum_{k=0}^{n} 3 \times \left(3^{2}\right)^{k} \binom{n}{k} = 3 \sum_{k=0}^{n} \binom{n}{k} 1^{n-k} \left(3^{2}\right)^{k} = 3 \left(1 + 3^{2}\right)^{n} = 3 \cdot 10^{n}.$$

Soit une suite arithmétique (u_n) , on note $s_n = u_0 + u_1 + ... + u_n$. Déterminer les éléments caractéristiques (premier terme u_0 et raison r) de la suite (u_n) à partir des données suivantes.

1.
$$u_0 = 6$$
 et $u_5 = 0$;

2.
$$u_0 = 3$$
 et $s_3 = 36$;

3.
$$r = 6$$
 et $s_5 = 36$;

4.
$$u_9 = 96$$
 et $s_9 = 780$;
5. $u_5 = 90$ et $u_8 = 80$;
6. $s_3 = 40$ et $s_5 = 72$.

5.
$$u_5 = 90$$
 et $u_8 = 80$:

6.
$$s_3 = 40$$
 et $s_5 = 72$.

1.
$$r = -6/5$$
.

2.
$$r = 4$$
.

3.
$$u_0 = -9$$

4.
$$u_0 = 60$$
 et $r = 4$

3.
$$u_0 = -9$$
.
4. $u_0 = 60$ et $r = 4$.
5. $u_0 = 320/3$ et $r = -10/3$.
6. $u_0 = 7$ et $r = 2$.

6.
$$u_0 = 7$$
 et $r = 2$.

Pour $p \in \mathbb{N}^*$ et $n \in \mathbb{N}^*$, on pose

$$S_p(n) = 1^p + 2^p + \dots + n^p.$$

- 1. Rappeler sans démonstration les expressions de $S_1(n)$, $S_2(n)$ et $S_3(n)$.
- 2. Soit $(p,n) \in \mathbb{N}^2$. En calculant de deux manières la somme télescopique $\sum_{k=0}^{n} ((k+1)^{p+1} k^{p+1})$, montrer

$$\sum_{i=1}^{p} {p+1 \choose i} S_i(n) = (n+1)^{p+1} - (n+1).$$
 (7.1)

3. En déduire que, pour tout $n \in \mathbb{N}^*$,

$$1^4 + 2^4 + \dots + n^4 = \frac{n(n+1)(2n+1)(3n^2 + 3n - 1)}{30}.$$
 (7.2)

Pour $x \in \mathbb{R}$ et $n \in \mathbb{N}^*$, calculer

$$V_n = \sum_{i=1}^n \sum_{j=1}^n x^{i+j}.$$

Calculer, pour tout $n \in \mathbb{N}^*$,

$$S_n = \sum_{1 \le i \le j \le n} ij.$$

Solution 7.23

Pour $n \in \mathbb{N}$,

$$S_n = \sum_{j=1}^n \sum_{i=1}^j ij = \sum_{j=1}^n \left(j \sum_{i=1}^j i \right) = \sum_{j=1}^n \left(j \frac{j(j+1)}{2} \right)$$

$$= \frac{1}{2} \sum_{j=1}^n \left(j^3 + j^2 \right)$$

$$= \frac{1}{2} \left(\frac{n^2(n+1)^2}{4} + \frac{n(n+1)(2n+1)}{6} \right)$$

$$= \frac{n(n+1)}{24} \left(3n(n+1) + 2(2n+1) \right)$$

$$= \frac{n(n+1)}{24} \left(3n^2 + 7n + 2 \right).$$

Conclusion

$$\forall n \in \mathbb{N}, S_n = \sum_{1 \le i \le j \le n} ij = \frac{n(n+1)(3n^2 + 7n + 2)}{24}.$$

Soit $n \in \mathbb{N}^*$.

- 1. Calculer la somme $S_1 = \sum_{1 \le i, j \le n} i + j$.
- 2. Calculer la somme

$$S_2 = \sum_{1 \le i, j \le n} \min(i, j).$$

On pourra scinder cette somme en deux.

3. En déduire l'expression de la somme $S_3 = \sum_{1 \leq i,j \leq n} \max(i,j)$.

Pour $i, j \in \mathbb{N}$, on note

arque

$$\min(i,j) = \begin{cases} i & \text{si } i \leq j \\ j & \text{si } i > j \end{cases}$$
 et
$$\max(i,j) = \begin{cases} j & \text{si } i \leq j \\ i & \text{si } i > j \end{cases}.$$

Simplifier les sommes suivantes.

1.
$$\sum_{i=1}^{n+1} \frac{2^i}{3^{2i-1}}.$$

2.
$$\sum_{i=0}^{n} i(i-1)$$
.

3.
$$\sum_{j=1}^{n} (2j-1)$$
.

$$4. \sum_{1 \le i < j \le n} (i+j).$$

$$5. \sum_{0 \le i, j \le n} x^{i+j}.$$

$$6. \sum_{1 \le i \le j \le n} \frac{i}{j+1}.$$

7.
$$\sum_{1 \le i \le j \le n} (j-i).$$

8.
$$\sum_{1 \le i,j \le n} (i+j)^2$$
.

$$9. \sum_{1 \leq i \leq j \leq n} \frac{i^2}{j}.$$

Solution 7.25

1.
$$\sum_{i=1}^{n+1} \frac{2^i}{3^{2i-1}} = 3 \sum_{i=1}^{n+1} \left(\frac{2}{9}\right)^i = 3 \frac{2}{9} \frac{1 - (2/9)^{n+1}}{1 - 2/9} = \frac{6}{7} \left(1 - \left(\frac{2}{9}\right)^{n+1}\right)$$

2.
$$\sum_{i=0}^{n} i(i-1) = \sum_{i=0}^{n} i^2 - \sum_{i=0}^{n} i = \frac{n(n+1)(2n+1)}{6} - \frac{n(n+1)}{2} = \frac{n(n+1)(2n+1-3)}{6} = \frac{n(n+1)(2n-2)}{6} = \frac{n(n+1)(2n-2)}{$$

3.
$$\sum_{j=1}^{n} (2j-1) = 2\sum_{j=1}^{n} j - \sum_{j=1}^{n} 1 = 2\frac{n(n+1)}{2} - n = n^2$$
.

4. On écrit une somme double

$$\sum_{1 \le i < j \le n} (i+j) = \sum_{j=2}^{n} \sum_{i=1}^{j-1} (i+j) = \sum_{j=2}^{n} \left(\sum_{i=1}^{j-1} i + \sum_{i=1}^{j-1} j \right) = \sum_{j=2}^{n} \left(\frac{(j-1)j}{2} + (j-1)j \right) = \frac{3}{2} \sum_{j=2}^{n} j(j-1)$$

$$= \frac{3}{2} \sum_{j=1}^{n-1} (j+1)j = \frac{3}{2} \sum_{j=1}^{n-1} j^2 + j = \frac{3}{2} \left(\frac{(n-1)n(2n-1)}{6} + \frac{(n-1)n}{2} \right)$$

$$= \frac{3}{2} \frac{n(n-1)(2n+2)}{6} = \frac{n(n-1)(n+1)}{2}.$$

5. Si $x \neq 1$,

$$\sum_{0 \le i,j \le n} x^{i+j} = \sum_{i=0}^{n} \sum_{j=0}^{n} x^{i} x^{j} = \sum_{i=0}^{n} x^{i} \left(\sum_{j=0}^{n} x^{j}\right) = \sum_{i=0}^{n} x^{i} \left(\frac{1-x^{n+1}}{1-x}\right)$$
$$= \left(\frac{1-x^{n+1}}{1-x}\right) \sum_{i=0}^{n} x^{i} = \left(\frac{1-x^{n+1}}{1-x}\right) \left(\frac{1-x^{n+1}}{1-x}\right) = \left(\frac{1-x^{n+1}}{1-x}\right)^{2}.$$

6. Nous allons écrire une somme double. Puisque l'on ne sait pas calculer une somme du type $\sum_{j} \frac{1}{j}$, nous allons plutôt commencer par sommer sur l'indice i.

$$\sum_{1 \le i \le j \le n} \frac{i}{j+1} = \sum_{j=1}^{n} \sum_{i=1}^{j} \frac{i}{j+1} = \sum_{j=1}^{n} \frac{1}{j+1} \sum_{i=1}^{j} i = \sum_{j=1}^{n} \frac{1}{j+1} \frac{j(j+1)}{2}$$
$$= \sum_{j=1}^{n} \frac{j}{2} = \frac{1}{2} \sum_{j=1}^{n} j = \frac{1}{2} \frac{n(n+1)}{2} = \frac{n(n+1)}{4}.$$

7. On peut écrire une somme double $(\sum_{i}\sum_{j})$, mais on peut aussi utiliser d'abord la linéarité.

$$\sum_{1 \le i \le j \le n} (j - i) = \sum_{1 \le i \le j \le n} j - \sum_{1 \le i \le j \le n} i = \sum_{j=1}^{n} \sum_{i=1}^{j} j - \sum_{i=1}^{n} \sum_{j=i}^{n} i$$

$$= \sum_{j=1}^{n} j^{2} - \sum_{i=1}^{n} (n - i + 1)i = \sum_{k=1}^{n} k^{2} - \sum_{k=1}^{n} \left((n + 1)k - k^{2} \right)$$

$$= 2 \sum_{k=1}^{n} k^{2} - \sum_{k=1}^{n} (n + 1)k = \frac{n(n+1)(2n+1)}{3} - \frac{n(n+1)^{2}}{2}$$

$$= \frac{n(n+1)(4n+2-3n-3)}{6} = \frac{n(n+1)(n-1)}{6} = \frac{n(n^{2}-1)}{6}.$$

8.

$$\sum_{1 \le i,j \le n} (i+j)^2 = \sum_{1 \le i,j \le n} i^2 + 2ij + j^2 = \sum_{i=1}^n \sum_{j=1}^n i^2 + 2ij + j^2 = \sum_{i=1}^n \left(\sum_{j=1}^n i^2 + \sum_{j=1}^n 2ij + \sum_{j=1}^n j^2 \right)$$

$$= \sum_{i=1}^n \left(ni^2 + 2i \frac{n(n+1)}{2} + \frac{n(n+1)(2n+1)}{6} \right)$$

$$= n \frac{n(n+1)(2n+1)}{6} + n(n+1) \frac{n(n+1)}{2} + n \frac{n(n+1)(2n+1)}{6}$$

$$= \frac{n^2(n+1)(2n+1+3n+3+2n+1)}{6} = \frac{n^2(n+1)(7n+5)}{6}.$$

9.

$$\sum_{1 \le i \le j \le n} \frac{i^2}{j} = \sum_{j=1}^n \frac{1}{j} \sum_{i=1}^j i^2 = \sum_{j=1}^n \frac{1}{j} \frac{j(j+1)(2j+1)}{6}$$

$$= \sum_{j=1}^n \frac{(j+1)(2j+1)}{6} = \sum_{j=1}^n \frac{(j+1)(2j+1)}{6} = \sum_{j=1}^n \left(\frac{1}{3}j^2 + \frac{1}{2}j + \frac{1}{6}\right)$$

$$= \frac{1}{3} \frac{n(n+1)(2n+1)}{6} + \frac{1}{2} \frac{n(n+1)}{2} + \frac{1}{6}n = \frac{n(4n^2 + 6n + 2 + 9n + 9 + 6)}{36}$$

$$= \frac{n(4n^2 + 15n + 17)}{36}$$

Soit $n \in \mathbb{N}^*$. Exprimer à l'aide de factorielles

- 1. $2 \times 4 \times \cdots \times (2n)$;
- **2.** $1 \times 3 \times \cdots \times (2n-1)$;
- 3. le terme général de la suite (u_n) donnée par la relation de récurrence

$$u_0 = 1 \text{ et } \forall n \in \mathbb{N}, u_{n+1} = \frac{2n+1}{n+1}u_n.$$

Soit $n \in \mathbb{N}^*$. Calculer $A_n = \sum_{k=0}^n k \binom{n}{k}$ de deux manières différentes.

- **1.** En dérivant de deux façons la fonction $f: \mathbb{R} \to \mathbb{R}, x \mapsto (1+x)^n$.
- **2.** En utilisant la relation $k \binom{n}{k} = n \binom{n-1}{k-1}$ valable pour $n, k \in \mathbb{N}^*$.

Solution 7.27

1. Pour $x \in \mathbb{R}$, on a $f(x) = (1+x)^n \sum_{k=0}^n \binom{n}{k} x^k$, et donc

$$f'(x) = n(1+x)^{n-1} = \sum_{k=1}^{n} k \binom{n}{k} x^{k-1}.$$

et en évaluant en 1,

$$A_n = \sum_{k=1}^n k \binom{n}{k} = f'(1) = n(1+1)^{n-1} = n2^{n-1}.$$

2. Le premier terme de la somme étant nul, on a

$$A_n = \sum_{k=1}^n k \binom{n}{k} = \sum_{k=1}^n n \binom{n-1}{k-1} = n \sum_{k=1}^n \binom{n-1}{k-1} = n \sum_{p=0}^{n-1} \binom{n-1}{p}$$

Or,

$$(1+1)^{n-1} = \sum_{p=0}^{n-1} \binom{n-1}{p} 1^{n-p} 1^p = \sum_{p=0}^{n-1} \binom{n-1}{p}.$$

Finalement, $A_n = n2^{n-1}$.

Soit $f: \mathbb{R} \to \mathbb{R}$. Déterminer les dérivées successives de f. Solution 7.28

Soit $n \in \mathbb{N}^*$. Calculer la dérivée n-ième de la fonction $f: \mathbb{R}_+^* \to \mathbb{R}$. $x \mapsto x^{n-1} \ln(x)$

Exercice 7.30 Banque CCINP 2023 Exercice 3 analyse

1. On pose $g(x) = e^{2x}$ et $h(x) = \frac{1}{1+x}$. Calculer, pour tout entier naturel k, la dérivée d'ordre k des fonctions g et h sur leurs ensembles de définitions respectifs.

2. On pose $f(x) = \frac{e^{2x}}{1+x}$.

En utilisant la formule de Leibniz concernant la dérivée nième d'un produit de fonctions, déterminer, pour tout entier naturel n et pour tout $x \in \mathbb{R} \setminus \{-1\}$, la valeur de $f^{(n)}(x)$.

3. Démontrer, dans le cas général, la formule de Leibniz, utilisée dans la question précédente.

Solution 7.30 BanqueCCINP 2023 Exercice 3 analyse

1. g est de classe C^{∞} sur \mathbb{R} et h est de classe C^{∞} sur $\mathbb{R}\setminus\{-1\}$.

On prouve, par récurrence, que :

$$\forall x \in \mathbb{R}, g^{(k)}(x) = 2^k e^{2x} \text{ et } \forall x \in \mathbb{R} \setminus \{-1\}, h^{(k)}(x) = \frac{(-1)^k k!}{(1+x)^{k+1}}.$$

2. g et h sont de classe C^{∞} sur $\mathbb{R}\setminus\{-1\}$ donc, d'après la formule de Leibniz, f est de classe C^{∞} sur $\mathbb{R} \setminus \{-1\}$ et $\forall x \in \mathbb{R} \setminus \{-1\}$:

$$f^{(n)}(x) = \sum_{k=0}^{n} \binom{n}{k} g^{(n-k)}(x) h^{(k)}(x) = \sum_{k=0}^{n} \binom{n}{k} 2^{n-k} e^{2x} \frac{(-1)^k k!}{(1+x)^{k+1}} = n! e^{2x} \sum_{k=0}^{n} \frac{(-1)^k 2^{n-k}}{(n-k)! (1+x)^{k+1}}.$$

3. Notons (P_n) la propriété:

Si $f: I \to \mathbb{R}$ et $g: I \to \mathbb{R}$ sont n fois dérivables sur I alors, fg est n fois dérivable sur I et :

$$\forall x \in I, (fg)^{(n)}(x) = \sum_{k=0}^{n} \binom{n}{k} f^{(n-k)}(x) g^{(k)}(x).$$

Prouvons que (P_n) est vraie par récurrence sur n.

La propriété est vraie pour n = 0 et pour n = 1 (dérivée d'un produit).

Supposons la propriété vraie au rang $n \ge 0$.

Soit $f: I \to \mathbb{R}$ et $g: I \to \mathbb{R}$ deux fonctions n+1 fois dérivables sur I.

Les fonctions f et g sont, en particulier, n fois dérivables sur I et donc par hypothèse de récurrence la

fonction
$$fg$$
 l'est aussi avec $\forall x \in I$, $(fg)^{(n)}(x) = \sum_{k=0}^{n} \binom{n}{k} f^{(n-k)}(x)g^{(k)}(x)$.

Pour tout $k \in \{0, ..., n\}$, les fonctions $f^{(n-k)}$ et $g^{(k)}$ sont dérivables sur I donc par opération sur les fonctions dérivables, la fonction $(fg)^{(n)}$ est encore dérivable sur I.

Ainsi la fonction
$$fg$$
 est $(n+1)$ fois dérivable et: $\forall x \in I, (fg)^{(n+1)}(x) = \sum_{k=0}^{n} \binom{n}{k} \left(f^{(n+1-k)}(x)g^{(k)}(x) + f^{(n-k)}(x)g^{(k+1)}(x) \right)$

En décomposant la somme en deux et en procédant à un décalage d'indice sur la deuxième somme, on

obtient:
$$\forall x \in I$$
, $(fg)^{(n+1)}(x) = \sum_{k=0}^{n} \binom{n}{k} f^{(n+1-k)}(x)g^{(k)}(x) + \sum_{k=1}^{n+1} \binom{n}{k-1} f^{(n+1-k)}(x)g^{(k)}(x)$.

$$\text{C'est-\`a-dire}\,(fg)^{(n+1)}(x) = \sum_{k=1}^n \left(\binom{n}{k} + \binom{n}{k-1}\right) f^{(n+1-k)}(x)g^{(k)}(x) + \binom{n}{0} f^{(n+1)}(x)g^{(0)}(x) + \binom{n}{n} f^{(0)}(x)g^{(n+1)}(x).$$

Or, en utilisant le triangle de Pascal, on a
$$\binom{n}{k} + \binom{n}{k-1} = \binom{n+1}{k}$$
.

On remarque également que
$$\binom{n}{0}=1=\binom{n+1}{0}$$
 et $\binom{n}{n}=1=\binom{n+1}{n+1}$. On en déduit que $(fg)^{(n+1)}(x)=\sum_{k=0}^{n+1}\binom{n+1}{k}f^{(n+1-k)}(x)g^{(k)}(x)$. Donc (P_{n+1}) est vraie.