SOC Design

Lab-3 FIR

110590022 陳冠晰

Function specification

•
$$y[t] = \Sigma (h[i] * x[t - i])$$

In signal processing, a finite-impulse-response, or finite impulse response models are generally linear dynamic models characterized by finite-order moving average representations, implying that their responses to impulse inputs go to zero after a finite number of time steps, equal to the model's memory length.

FIR filters can be discrete-time or continuous-time, and digital or analog.

$$egin{align} y[n] &= b_0 x[n] + b_1 x[n-1] + \dots + b_N x[n-N] \ &= \sum_{i=0}^N b_i \cdot x[n-i], \end{split}$$

Where:

- . x[n] is the input signal,
- . y[n] is the output signal,
- . N is the filter order; an Nth-order filter has N + 1 terms on the right-hand side
- . b_i is the value of the impulse response at the ith instant for $0 \le I \le N$ of an Nth-order FIR filter. If the filter is a direct form FIR filter, then b_i is also a coefficient of the filter.

Block Diagram

Tap_RAM / Data_RAM

Tape RAM:

8,610000000

Tape address: 0x80 - 0xFF

EN = (AW[3]:8]==0)|(AR[3]:8]==0)&(AW[1]|AR[1])

Check if read/write address belongs to TapeRAM

WE = (AWvalid & & Wvalid == 1)? 4'b1111: 4'b0000; Check if address/data write is valid

A = AW[5:0] AW will >72, 4-bit left, still can represent the address of 11 tapes

Di = Wdata Data-in equals to wdata of AXI-Lite (hti] flow through TogetAM by avilite)

Awready = 1 (中M 尚有空間)

wready = 1 (Puta Proffer 前有 space)

Data RAM:

EN = 55_tvalid (55_tlast = 0)

WE = (55_tready & 55_idle)? 4'b 1111: 4'b 0000; (Ready to write New volue" & not finish)

A = (ap_ctrl [2] && init_addr < 6'd44)? init_addr: data_A_tmp;

If ap_idle == 1, initialize the value in dataRAM.

Pi = 55_tdata

FSM for ap_ctrl: (apstart, apdone, ap_idle)

- 1. 左上角的 FSM 是用來給 ap_start, ap_done, ap_idle 的,一開始處在 INIT state,ap_ctrl = {ap_idle, ap_done, ap_start} = 3′b100,當我們 Host 端 (testbench) program ap_start,代表 FIR 開始運作,ap_idle 降下,進到 IDLE state,ap_ctrl = {ap_idle, ap_done, ap_start} = 3′b000。當我們完成最後一個 Y 的計算,傳出去給 testbench 比對,同時拉高 sm_tlast,就代表 FIR 做完運算,進到 DONE state,ap_ctrl = {ap_idle, ap_done, ap_start} = 3′b010。由於 testbench 需要讀取 ap_done 的訊號,所以要等到 read address == 0x00 讀取 到 ap_done 過後再回到 initial 的 state。
- 左下角的 FSM 專門產生 ss_idle 的訊號拿去 data_RAM 當成 write enable,在 還未收到 ss_tlast 的期間,都會是 1,等到收到 ss_tlast,才會進到 SS_DONE state, ss_idle = 0,代表不能再寫了。
- 3. 右邊的 FSM 是在產生 sm_tlast,當最後一個 Y 計算完,counter 數到 data length,就進到 SM_DONE state,sm_tlast 拉高一個 cycle。

Operation explaining

圖片中上半部分是還未做 operation pipeline 會呈現出的 y 波形圖。 ss_tready 每次拉高,代表 stream-in 新的 x[t] 進來 RAM。再下個 cycle 可以發現 sm_tvalid 拉高,代表計算出的 Y 被拿去 testbench 做比對。

上圖最下面是做完 operation pipeline 後呈現出的 timing waveform,可以看到中間圖片中,X stream-in 和 Y stream-out 間變化。

Resource usage

Site Type	Used	Fixed	Prohibited	Available	Util%
Slice LUTs* LUT as Logic LUT as Memory Slice Registers Register as Flip Flop Register as Latch F7 Muxes	190 190 0 224 224 0	0 0 0 0 0 0 0 0 0	0 0 0 0 0	53200 53200 17400 106400 106400 26600 13300	0.36 0.36 0.00 0.21 0.21 0.00 0.00

Site Type	Used	Fixed	Prohibited	+++ Available Util% +
Block RAM Tile RAMB36/FIFO* RAMB18	0 0 0	0 0 0	0 0 0	140 0.00 140 0.00

Timing report

Fcl Console Messages Log Reports	Design Ru	ns Timino	, ×										? _ 6
Q 🛣 🛊 C 🛗 💿	Q -	ıı ♦ li		Intra-Clo	k Paths - fir_t	iming - Hold							
General Information	Name	Slack ^1	Levels	Routes	High Fanout	From	То	Total Delay	Logic Delay	Net Delay	Requirement	Source Clock	Destination Cloc
Timer Settings	¹₄ Path 11	0.140	1	2	2	ss_state_reg/C	ss_state_reg/D	0.384	0.248	0.136	0.0	fir_timing	fir_timing
Design Timing Summary	1 Path 12	0.146	1	2	6	init_addr_reg[3]/C	init_addr_reg[3]/D	0.390	0.245	0.145	0.0	fir_timing	fir_timing
Clock Summary (1)	3 Path 13	0.146	1	2	6	init_addr_reg[4]/C	init_addr_reg[5]/D	0.390	0.245	0.145	0.0	fir_timing	fir_timing
Methodology Summary	1 Path 14	0.147	1	2	7	y_cnt_reg[2]/C	tlast_cnt_reg[0]/D	0.391	0.245	0.146	0.0	fir_timing	fir_timing
Check Timing (0)	1, Path 15	0.148	1	2	8	init_addr_reg[2]/C	init_addr_reg[2]/D	0.392	0.245	0.147	0.0	fir_timing	fir_timing
intra-Clock Paths	1→ Path 16	0.151	1	2	8	init_addr_reg[2]/C	init_addr_reg[4]/D	0.395	0.248	0.147	0.0	fir_timing	fir_timing
→ ☐ fir_timing	1, Path 17	0.211	1	2	5	tlast_cnt_reg[3]/C	tlast_cnt_reg[4]/D	0.455	0.245	0.210	0.0	fir_timing	fir_timing
Setup 0.067 ns (10)	1→ Path 18	0.211	1	2	5	tlast_cnt_reg[8]/C	tlast_cnt_reg[9]/D	0.455	0.245	0.210	0.0	fir_timing	fir_timing
Hold 0.140 ns (10)	Ъ Path 19	0.213	1	2	6	y_cnt_reg[3]/C	y_cnt_reg[3]/D	0.457	0.245	0.212	0.0	fir_timing	fir_timing
Pulse Width 4.500 ns (30)	1 Path 20	0.213	1	2	6	y_cnt_reg[4]/C	y_cnt_reg[4]/D	0.457	0.245	0.212	0.0	fir_timing	fir_timing
Inter-Clock Paths Other Path Groups User Ignored Paths													

Simulation waveforms

Coefficient

> X-in / Y-out

> RAM access control

可以看到一開始 tap_Di 在 load in coefficients,再來是 data 的 stream in。

遲交理由:這兩週因為自己能力不足,時間管理上有所缺失,同時做電動機械實驗、電動機械、電子電路實驗、清大斷電無法連接工作站,直接影響 AIC 作業,再加上這週二 meeting 後才更新和老師討論過後的結果,故 10/25 才繳交。