



## O.

#### **Learning Objectives**

By the end of this course, you will understand:

- Text retrieval (extractive question answering)
- Working with Open Source LLMs
- Choosing the correct base LLM
- Text generation (generative question answering)
- Deployment in limited environment



## Agenda



- Introduction
- Syntactic and Semantic Similarity
- From Word Embeddings to Sentence Embeddings
- SBERT for Calculating Similarity
- Retrieving Content
- Optimizing with Cross Encoders
- Dense Passage Retrieval



#### Introduction



- About me (Christian Winkler)
  - Programming for almost 40 years
  - PhD in physics, working as a professor at a university of applied science
- About the course
  - LLMs and the technology can be intimidating
  - Let's try to clarify the myths
  - Hands on experience





#### Recap: the document-term matrix

|                           | looking | cheap | flight | where | should | stay | thanks       | answer | nearest | train | station | car | airport |  |
|---------------------------|---------|-------|--------|-------|--------|------|--------------|--------|---------|-------|---------|-----|---------|--|
| Looking for cheap flight? | 1       | 1     | 1      | 0     | 0      | 0    | 0            | 0      | 0       | 0     | 0       | 0   | 0       |  |
| Where should I stay?      | 0       | 0     | 0      | 1     | 1      | 1    | 0            | 0      | 0       | 0     | 0       | 0   | 0       |  |
| Thanks for your answer    | 0       | 0     | 0      | 0     | 0      | 0    | 1            | 1      | 0       | 0     | 0       | 0   | 0       |  |
| Nearest train station     | 0       | 0     | 0      | 0     | 0      | 0    | <sub>5</sub> | 0      | 1       | 1     | 1       | 0   | 0       |  |
| Looking for a car         | 1       | 0     | 0      | 0     | 0      | 0    | 0            | 0      | 0       | 0     | 0       | 1   | 0       |  |
| Train to airport          | 0       | 0     | 0      | 0     | 0      | 0    | 0            | 0      | 0       | 1     | 0       | 0   | 1       |  |

## O.

#### Syntactic vs. semantic similarity

- Similarity: measure between 0 and 1, often <u>cosine similarity</u>
   (angle between vectors)
- Syntactic similarity uses tokens (without flections)
  - Remove flections via lemmatization
  - Cannot capture synonyms etc.
- Semantic similarity uses concepts
  - More complex representation needed
- Solution: Word embeddings
  - Most prominent version: word2vec





#### Word embeddings

- "You shall know a word by the company it keeps."
- Example
  - What is "tezgüino"?
  - What is similar to "tezgüino"?

A bottle of \_\_\_\_ is on the table.
Everybody likes \_\_\_.
Don't have \_\_\_ before you drive.
We make \_\_\_ out of corn.



## Schematic idea of word embeddings

| "Royalty" "Masculinity" "Age" |       |       |        |      |  |  |  |  |  |
|-------------------------------|-------|-------|--------|------|--|--|--|--|--|
|                               | "Soly | "Mass | "Kelly | "POÖ |  |  |  |  |  |
| King                          | 0,96  | 0,99  | 0,03   | 0,64 |  |  |  |  |  |
| Queen                         | 0,99  | 0,05  | 0,97   | 0,72 |  |  |  |  |  |
| Woman                         | 0,08  | 0,03  | 0,98   | 0,51 |  |  |  |  |  |
| Princess                      | 0,93  | 0,01  | 0,93   | 0,12 |  |  |  |  |  |



### O.

#### Construction



continuous bag-ofwords



Skip-gram



#### Similarities and relationships







#### Shortcomings of word embeddings

- Missing contextualization
  - Important for meaning
  - Irony and sarcasm
- Homonyms cannot be captured
  - Meaning of word depends on context
  - Read a book or book a flight
- Each model has to be trained separately
  - No transfer learning





#### Basic idea of contextualized language models







#### Classical ML





Each model is trained for one specific task. Start without prior knowledge. Need large labeled training data set.

#### **Transfer Learning**



A base model is trained with a large unlabeled dataset. With much less data, it is finetuned for a specific task. Effort is almost negligible compared to base task.





#### Language models are complex with billions of parameters

#### Base: Transformer architecture with self-attention

- Attention to which words?
- Many layers with contextualization
- Complex and a bit confusing

BERT: Training for *missing* words

GPT: Training for next word









## Challenge: find similar sentences



#### Is BERT already enough for this?

- Almost, but not completely
- Model is tuned for guessing missing words
- Model can be finetuned for similarity
  - Start with mean pooling: create averages of individual (contextualized) word embeddings
  - Use supervised learning with a pre-labeled dataset
  - Optimized model understanding similarity
- Fortunately, this has already been completed
- Model is called SBERT (<u>https://sbert.org</u>)

## Challenge



- Use existing corpus
  - UN general debates (free)
- Prepare data
  - a) Segment sentences
  - b) Calculate SBERT encoding of each sentence (due to time only for 2022)
  - c) Save encoding
- 2. Encode statement
- Find most similar vector





#### Load data

Calculate sentence fragments

Calculate embeddings for each sentence

Save embeddings



## Work interactively in Jupyter notebook: Semantic retrieval





## **Cross encoders**

## O.

#### How do cross-encoders work



## O.

#### Improving the prior solution







# Work interactively in Jupyter notebook: Dense passage retrieval







## Using existing software

## LangChain



- Open source framework
- Tries to unify LLM handling via APIs
- Pros
  - Very easy to change backends etc.
  - Working with pipelines
  - Easier handling of "chained" method call
  - Very popular and many examples
- Cons
  - Code quality sometimes doubtful
  - Documentation hard to read









- "txtai is an all-in-one embeddings database for semantic search, LLM orchestration and language model workflows."
- Everything is integrated
- Very nice API
- Semantic, Keyword, Hybrid - Search with SQL
- Topics + Relationships
- Multimodal Indexes



Sparse

Database

Dense

Graph

Prompt >

Answer the following question using the context below

Search >

SELECT ... FROM txtai WHERE SIMILAR('question')

#### Llamaindex





- Open source framework
- Integrated cloud available
- Uses OpenAI as standard, but configurable
- Pros
  - Easy to change backends etc.
  - Very active and loved by developers
  - Good documentation
- Cons
  - Still a bit new
  - Extractive and generative models entangled



# Work interactively in Jupyter notebook: use LangChain and txtai

# Summary & discussion



## **Group Discussion**



- Any questions left?
- What would you like to achieve with this technology?

## **Review Course Outcomes**



By the end of this course, you should be able to:

- Calculate sentence embeddings with SBERT
- Understand and use cross-encoders
- Use existing software like LangChain and txtai to build a semantic search engine

#### Resources



#### GitHub repository

- https://github.com/datanizing/oreilly-open-source-llm
- Continuously updated

#### Hugging Face Embedding Leaderboard

https://huggingface.co/spaces/mteb/leaderboard

#### General Discussion

<a href="https://www.reddit.com/r/LocalLLaMA/">https://www.reddit.com/r/LocalLLaMA/</a>

## O'REILLY®