CIFAR-10 – Object Recognition in Images: Identify the subject of 300,000 labeled images

Bo-Wen Xiao (蕭博文) Advisor: Prof. Chuan-Ju Wang (王釧菇) Department of Computer Science, University of Taipei

Abstract

This project aims to predict CIFAR-10 dataset which consists of 300,000 32*32 color images with one of 10 object classes.

Dataset^[1]

10 label classes:

- Airplane
- Automobile
- Bird
- Cat
- Deer
- Dog
- Frog
- Horse
- Ship
- Truck

Training data: 50,000 labeled

images

Testing data: 300,000 unlabeled

images.

Deep Learning Algorithms^[2]

Tool: Theano^[3]

Logistic Regression^[4]

$$J(\theta) = \frac{1}{m} \sum_{i=1}^{m} \text{Cost}(h_{\theta}(x^{(i)}), y^{(i)})$$

$$= -\frac{1}{m} [\sum_{i=1}^{m} y^{(i)} \log h_{\theta}(x^{(i)}) + (1 - y^{(i)}) \log (1 - h_{\theta}(x^{(i)}))]$$
Output $h_{\theta}(x) = \frac{1}{1 + e^{-\theta^{T} x}}$

Data	Train	Valid	Test	Accuracy	Time
Gray	30,000	10,000	10,000	26%	32.2s
Gray	40,000	10,000	300,000	10.08%	23.55m

Different Batch Sizes

- Training data: 3000
- Validation data: 3000
- Testing data: 9000

Convolutional Neural Networks^[5]

Data	Train	Valid	Test	Accuracy	Time
Gray	30,000	10,000	10,000	58.2%	814.42m
Gray	40,000	10,000	300,000	59%	1107.51m
RGB	30,000	10,000	10,000	65.3%	907.1m
RGB	40,000	10,000	300,000	64.87%	1891m

Different Training Sizes

Training: Validation: Testing =4:1:4

Preprocessing

Gary-Scaled

Training set=
[2][Number][Pixel]

Object Serialization

Data_Gray.pkl

RGE

Training set=
[2][Number][[R][G][B]]

Object | Serialization

Data_RGB.pkl

Evaluation

- 1. TP = number of true positives
- 2. TN = number of true negatives
- 3. *P* =total positive
- 4. *N* =total negative

Accuracy= $\frac{(TP+TN)}{(P+N)}$

Leaderboard

Post-Deadline: Thu, 30 Oct 2014 09:31:35 300000_rgb.txt 0.64870

There are RGB data consisits of train 40000,valid 10000 and test 300000

Edit description

68	17	Marek Adamczyk	0.68770	1	Sat, 27 Sep 2014 11:16:24
69	‡7	MrLynx	0.68530	19	Wed, 08 Oct 2014 08:16:41 (-6.9d)
70	↓7	Rafael Rocha	0.68280	4	Tue, 24 Jun 2014 06:57:24 (-24.2d)
71	17	KSE525-TEAM5	0.66720	2	Sat, 21 Jun 2014 14:20:30 (-0h)
72	‡7	orbit 🖺	0.66370	2	Sat, 05 Apr 2014 17:27:35
73	↓7	mungators 🕮	0.65810	13	Sat, 11 Oct 2014 01:34:19 (-6.4d)
74	‡7	Bill Swift	0.65360	4	Sat, 11 Jan 2014 01:13:06
75	17	Cory Binnersley	0.65250	6	Tue, 08 Apr 2014 03:00:09
76	↓7	Roman K	0.64400	3	Sun, 24 Nov 2013 18:25:05
77	‡7	XterNalz	0.63770	2	Tue, 26 Nov 2013 10:06:04
78	17	Martin Beyer	0.63530	5	Sun, 10 Nov 2013 07:15:29

- [1] http://www.kaggle.com/c/cifar-10/data
- [2] http://www.deeplearning.net/tutorial/contents.html
- [3] http://deeplearning.net/software/theano/
- [4] https://www.coursera.org/course/ml
- [5] https://flickrcode.files.wordpress.com/2014/10/convnet2.png