# MOD500 Decision Analysis with Artificial Intelligence Support

Enrico Riccardi<sup>1</sup>

Department of Energy Resources, University of Stavanger (UiS).<sup>1</sup>

Oct 28, 2024



© 2024, Enrico Riccardi. Released under CC Attribution 4.0 license

## Decision trees learning

It is a simple model for supervised classification

Each decision nodes performs a Boolean test (binary split version)

They are build out of DATA!

At each split, we perform the slip that reduce entropy the most.

#### REMINDER

We need to provide a label!

#### Decision tree outcome



## Decision trees

#### Pseudo-code

- Compute the entropy of each feature (myopic approach)
- Pick the feature with the maximum entropy
- For each value of the selected feature, compute the entropy of the new population
- Compute the Information Gain by splitting the dataset
- Repeat for the number of desired splits

## Decision trees in Python

## Tutorial [4]

Generate (at least) 4 different probability distributions

Make a meaningful label, and then make a decision tree from the data generated  $% \left( 1\right) =\left( 1\right) \left( 1\right) \left($ 

# Language models

A language model is a probability distribution over sequences of words [1].

Jurafsky and Martin: Speech and Language Processing, 2023

$$p(x_1,...,x_n) = \prod_{i=1}^n p(x_i|x< i)$$

P(Twinkle twinkle little star, how I wonder what you are.) = 0.99 P(Twinkle twinkle little moon, how I wonder what you are.) = 0.75 P(Twinkle twinkle little thing, how I wonder what you are.) = 0.3

# Vector representations

#### Vector representation

- tokenization
- word2vec

|             | aardvark | <br>computer | data | result | pie | sugar |  |
|-------------|----------|--------------|------|--------|-----|-------|--|
| cherry      | 0        | <br>2        | 8    | 9      | 442 | 25    |  |
| strawberry  | 0        | <br>0        | 0    | 1      | 60  | 19    |  |
| digital     | 0        | <br>1670     | 1683 | 85     | 5   | 4     |  |
| information | 0        | <br>3325     | 3982 | 378    | 5   | 13    |  |

## Sparse Vector representations

|             | aardvark | <br>computer | data | result | pie | sugar |  |
|-------------|----------|--------------|------|--------|-----|-------|--|
| cherry      | 0        | <br>2        | 8    | 9      | 442 | 25    |  |
| strawberry  | 0        | <br>0        | 0    | 1      | 60  | 19    |  |
| digital     | 0        | <br>1670     | 1683 | 85     | 5   | 4     |  |
| information | 0        | <br>3325     | 3982 | 378    | 5   | 13    |  |

Table of co-occurrences of the words in Wikipedia

- ullet One dimension for each word  $->\log$
- Many values are 0 -> sparse

#### Cherry picking

pointing to individual cases that seem to confirm a particular position while ignoring a significant portion of similar cases or data that may contradict that position.

# Vector similarity

#### Metric alert

How close are two words?



## Cosine similarity

A popular metric to measure the similarity between sentences



cosinesimilarity = 
$$S_C(A, B) = cos(\theta) = \frac{A \cdot B}{||A|| \ ||B||}$$

## Transformers

- A neural network designed to explicitly take into account the long-range dependencies between words
- Sequence-to-sequence models that transform an input vectors  $(x_1, ..., x_n)$  to some output vectors  $(y_1, ..., y_n)$  of the same length
- Transformers are made up of stacks of transformer blocks.
- Attention allows to directly extract and use information from arbitrarily long contexts

# Encode & decode

## Encoder model

From an input sequence to a contextualised representation of each input element

## Decoder model

From contextualised representations to a task-specific output sequence



## RAGs

# Reducing hallucinations

Retrieval Augmented Generation

$$p(x_1,...,x_n) = \prod_{i=1}^n p(x_i|x < i; [Q:])$$

where  $\left[ \mathsf{Q} : \right]$  is additional information

Combining different information sources with different (assumed) reliability

# Learn more!

- Speech and Language Processing, Chapter 9 (Transformers) and 10 (Large Language Models), Dan Jurafsky and James H. Martin 17
- The Illustrated Transformer, Jay Alammar

## LLMs



# RAGS

| Large Language Model<br>(LLM) |                                                                      | Knowledge<br>System (                       |                                                                                     | Integrator                             |                                                                                                     |  |
|-------------------------------|----------------------------------------------------------------------|---------------------------------------------|-------------------------------------------------------------------------------------|----------------------------------------|-----------------------------------------------------------------------------------------------------|--|
| Base<br>Architecture          | Prompt<br>Retrieve<br>Generate                                       | Information<br>Retrieval (IR)<br>Techniques | keyword search<br>semantic similarity<br>measures<br>document tanking<br>algorithms | Fusion<br>Techniques<br>applied by LLM | attention-based<br>mechanisms<br>conditional probability<br>models<br>attention-based<br>approaches |  |
| Foundation<br>Models          | BERT<br>T5<br>GPT-4                                                  | Knowledge<br>Base<br>Integration            | Linking the<br>KRS<br>Wikipedia or domain-<br>specific databases                    | Fact-checking<br>and<br>Consistency    | cross-checking retrieved information with the NLM's internal knowledge and esternal sources         |  |
| Fine-tuning                   | pre-trained<br>Model, fine-tuned<br>for specific<br>enterprise needs | Real-time<br>Data<br>Integration            | live data feeds<br>enabling responses<br>based on the labest<br>information         | Explanation<br>and<br>Reasoning        | generated response,<br>building trust and<br>enabling further<br>refinement                         |  |