总体来说难度不高,计算量也不太大,简单的小题居多。

题目

一、填空

10道 3x10: 很简单,熟悉基本的概率、期望、分布即,也没计算量(记不起来了)

最难的一道:

(10) 进行 n 次成功率为 $\frac{1}{3}$ 的 Bernoulli 实验,成功奇数次的概率为?

二、计算

3 道: 4+4+10

- **1.** X_1 , X_2 服从 $\lambda=2$ 泊松分布,设 $Y=2X_1+X_2$, $Z=X_2-2X_1$,求:
- $^{1.}Y$,Z 的期望和方差;
- $^{2.}$ ho(Y,Z) \circ
- **2.** 置信区间,设 $X \sim N(\mu,1)$, μ 未知,现在取一 n=9 样本,
 - $^{1.}$ 求 92% 置信度的区间长度;
- $^{2.}$ 另取一样本,使得 96% 置信度区间长度为 0.08,则样本大小至少为?
- **3.** 扔一次骰子,设得到的数为 n,然后扔 n 次硬币:
 - $^{1.}$ 求得到 $_4$ 个正面的概率;
 - $^{2.}$ 若得到了 $_3$ 个正面,求投骰子得到的数是 $_4$ 的概率;

三、证明

2道:6+6

证明题难度不是太大

1. 设 \mathbb{R} 上函数f满足:

- $f(x) = 0, x \leq 0$
- $f(x)=1, \ x\geq 1$

[0,1] 上随机变量 X 满足:

* 对于仟意 0 < x < y < 1,有 $\mathbb{P}(x < X < y) = f(y = x)$

证明 X 服从 [0,1] 均匀分布。

2. 若 X_1 , X_2 服从单位正态分布且独立,求证 $Y=rac{X_1}{X^2}$ 服从柯西分布。

四、奖励题

6分

比证明题难一点。

若 $X\sim N(0,1)$,Y 服从自由度为 n 的卡方分布,求证 $Z=\sqrt{\frac{X}{Y/n}}$ 服从自由度为 n 的 t-分布。

思路:

一、10. 高中组合题,生成函数代入 $z=\pm 1$ 。

证明题1:

- [•] 先证 f 是 X 的分布函数,得到 f(y-x)=f(y)-f(x),f 在 [0,1] 上具有线性和单调递增性。
- *经典问题,由有理数到任意实数,没有连续性,利用单调性夹逼即可。

证明题2:

- ullet 由于 X_1 , X_2 独立,其联合分布密度函数为各自密度函数之积
- ullet 设 $S=\{(X,Y)\ |\ X/Y\leq t\}$,则 $P(Y\leq t)=P((X_1,X_2)\in S)$
- ullet 使用下面公式,代入 $_S$,

$$P((X,Y) \in S) = \iint_S f(u,v) \mathrm{d}u \mathrm{d}v$$

 ullet 得到含 $_t$ 的参数积分 $_{F(t)}$, 可以证明一致收敛)所以可以交换求导次序,求导后可以积出来,而 $_{F(t)}$ 是分布函数,求导就得到了密度函数,得证。

奖励题同理,只是比较复杂。