Отчет о выполнении лабораторной работы 3.2.4(5)

Свободные и вынужденные колебания в электрическом контуре

Студент: Копытова Виктория

Сергеевна

Группа: Б03-304

1 Аннотация

Цель работы: исследование свободных и вынужденных колебаний в колебательном контуре.

В работе используются: осциллограф АКТАКОМ ADS-6142H, гене- ратор сигналов специальной формы АКИП-3409/4, магазин сопротивле- ния МСР-60, магазин емкости Р5025, магазин индуктивности Р567 типа МИСП, соединительная коробка с шунтирующей емкостью, соединитель- ные одножильные и коаксиальные провода.

2 Теоретические сведения

2.1 Свободные колебания

Схема установки для исследования колебаний приведена на рисунке 1.

Колебательный контур состоит из постоянной индуктивности L с активным со- противлением R_L , переменной емкости C и сопротивления R. Картина колебаний напряжения на емкости наблюдается на экране двухканального осциллографа. Для возбуждения затухающих колебаний используется генератор сигналов специальной формы.

Рис. 1: Схема установки для исследования вынужденных колебаний

Логарифмический декремент затухания

$$\Theta = \frac{1}{n} \ln \frac{U_m}{U_{m+n}} \tag{1}$$

2.2 Вынужденные колебания

Рис. 2: Схема установки для исследования АЧХ и ФЧХ

3 Ход работы

3.1 Активное сопротивление R_L и индуктивность ${f L}$

R_L , Om	28.8	29.2	30.8	43.0	86.0
L, мГн	100.0	99.98	99.97	100.6	103.0
ν, Гц	50	500	1500	5000	10000

Таблица 1: Активное сопротивление R_L и индуктивность L

Рис. 3: Индуктивность в зависимости от чпстоты

Рис. 4: Активное сопротивление в зависимости от чпстоты

3.2 Измерение периодов свободных колебаний

 $L=100\ {
m m}\Gamma{
m H}$

С, нФ	1	1							
ν , к Γ ц	10.87	9.04	7.8	7.04	6.44	5.94	5.58	5.25	5.02

Таблица 2: Частота свободных колебаний при разной ёмкости

Экспериментальное значение периода свободных колебаний:

$$T_{\mathfrak{S}KC\Pi} = \frac{1}{\nu}$$

Теоретическое значение периода свободных колебаний:

$$T_{\text{reop}} = 2\pi\sqrt{LC}$$

Рис. 5: Зависимость $T_{\text{эксп}} = f(T_{\text{теор}})$

$$\sigma_k = \frac{1}{\sqrt{n}} \sqrt{\frac{\langle T_{\text{эксп}}^2 > - \langle T_{\text{эксп}} >^2}{\langle T_{\text{теор}} > - \langle T_{\text{теор}} >^2}} = 0.05,$$

где k – коффициент наклона прямой.

3.3 Критическое сопротивление и декремент затухания

Примем L = 100 мГн и рассчитаем ёмкость C^* , при которой собственшая частота колебаний $\nu_0=1/(2\pi\sqrt{LC})$ составляет 6.5 кГц. Для выбраншых L и C^* рассчитаем критическое сопротивление контура $R_{\rm kp}$ по формуле $R_{\rm kp}=2\sqrt{L/C^*}$.

$$C^*=1.1$$
 н Φ

$$R_{\rm kp}=8.2~{
m kOm}$$

Сопротивление, при котором колебательный режим переходит в апериодический $-2.9~{\rm kOm}$.

Проведём измерения амплитуд и расчёт декрементов затухзания по формуле (1) для сопротивлений в диапазоне $(0.05-0.25)\cdot R_{\rm kp}$.

R, Om	420	574	820	1230	1640	2050
R_{Σ} , Om	463	617	863	1273	1683	2093
θ	0.51	0.55	0.74	1.17	1.49	1.82

Таблица 3: Декременты затухания

Рис. 6: Зависимость $\frac{1}{\theta^2} = f(\frac{1}{R_{\Sigma}^2})$

Прямая на графике проведена по первым трём точкам. Приняв обозначения $1/\Theta^2 = Y, 1/(R_\Sigma^2) = X$, можно показать, что $R = 2\pi \sqrt{\Delta Y/\Delta X}$. Тогда

$$R_{\rm Kp} = (6761 \pm 26) \; {\rm Om}$$

Рассчитаем теоретическое значение $R_{\rm kp} = 2\sqrt{L/C}$

$$R_{\mathrm{\kappa p}}^{\mathrm{reop}} = 8.2 \ \mathrm{кOm}$$

Зафиксируем $R_1 = 420$ Ом и $R_2 = 1640$ Ом.

Рассчитаем добротность контура $Q=\pi/\Theta$ для выбранных значений R_1 и R_2 по картине затухающих колебаний.

$$Q_1 = 6.1$$

$$Q_2 = 2.1$$

Теоретическое значение добротности по формуле

$$Q = \frac{1}{R_{\Sigma}} \cdot \sqrt{\frac{L}{C}}$$

$$Q_1 = 8.8$$

$$Q_2 = 2.4$$

3.4 Свободные колебания на фазовой плоскости

R, Om	420	574	820	1230	1640	2050
θ	0.39	0.52	0.95	1.1	2.43	2.44

Таблица 4: Декременты затухания

$$Q_1 = 8.1$$

$$Q_2 = 1.3$$

3.5 Исследование резонансных кривых

420	Ом	1640 Ом			
U, B	ν, Гц	U, B	ν, Гц		
3.2	5310	0.96	4200		
3.6	5376	1.02	4300		
4.0	5442	1.18	4500		
4.4	5508	1.26	4600		
5.0	5574	1.36	4700		
5.4	5640	1.48	4800		
6.1	5706	1.64	5000		
6.8	5772	1.72	5100		
7.4	5838	1.84	5200		
7.7	5904	2.21	5500		
8.0	5970	2.5	6100		
7.6	6085	2.1	7360		
6.9	6200	1.72	8630		
6.2	6315	1.52	9890		
5.3	6430	1.24	13690		
4.8	6545	1.1	18750		
4.2	6660	1.08	21280		
3.9	6775	1.08	23810		
3.6	6890	1.06	26340		
3.4	7005	1.04	28870		
3.2	7120	1.0	31400		

Таблица 5: Амплитудно-частотная характреистика

Рис. 7: АЧХ

Определим добротности по формуле

$$Q = \frac{\omega_0}{2\Delta\Omega}$$

$$Q_1 = 7.0$$

$$Q_2 = 2.1$$

420	Ом	1640	Ом
U, B	ν, Гц	U, B	ν, Гц
68.4	6407	130	3161
67.2	6440	116	3572
65.6	6473	104	3983
64	6506	93.6	4394
61.6	6539	84.4	4805
56.4	6605	74.4	5216
53.6	6638	65	5627
49.2	6671	55.8	6038
44.4	6704	43.2	6449
40	6737	28	6860
30	6803	17.2	7271
24	6836	10.6	7680
19.6	6869	7.6	8090
17.2	6902	5.4	8504
14.4	6935	3.4	8920
12.8	6968	2.8	9330
11.6	7001	2.4	9740
10	7034	1.6	10150
8.8	7067	1.8	10559

Таблица 6: Фазочастотная характеристика

Рис. 8: ФЧХ при R_1 Ом

Рис. 9: ФЧХ при R_2 Ом

Добротность по ФЧХ

$$Q = \frac{\omega}{\Delta\omega}$$

$$Q_1 = 5.5$$

$$Q_2 = 2.4$$

Определим добротности по затуханию и нарастанию колебаний. При нарастании

$$\Theta = \frac{1}{n} \ln \frac{U_0 - U_k}{U_0 - U_{k+n}}$$

$$Q = \frac{\pi}{\theta}$$

$$Q_1 = 7.3$$

$$Q_2 = 2.4$$

При затухании θ вычисляется по формуле (1)

$$Q = \frac{\pi}{\theta}$$

$$Q_1 = 8.1$$

$$Q_2 = 2.6$$

R, Om	f(L,C,R)	$f(\theta)$	Спираль	АЧХ	ФЧХ	Нарастание	Затухание
420	8.8	6.1	8.1	7.0	5.5	7.3	8.1
1640	2.4	2.1	1.3	2.1	2.4	2.4	2.6

Таблица 7: Итоговая таблица с результатами измерения добротности

4 Вывод

Экспериментальные и теоретические значения очень хорошо совпадают с учётом поправки на индуктивность контура.

Аппроксимация резонансных кривых производилась полиномиальной функцией высокого порядка методом наименьших квадратов. На самом деле функции АЧХ и ФЧХ не являются полиномами, отсюда возникает достаточно большая погрешность расчёта добротности.