Joint task learning for relation extraction and named entity recognition

Authors

Institution

In this work we present our system for RuREBus challenge held together with Dialog 2020 conference. The task consisted of 3 tracks: named entity recognition, relation extraction with provided named entity tags and end-to-end relation extraction. Our system took the first place for named entity recognition and the second place in the third track. For the second task we failed to submit the solution till the deadline but it was among the best systems. The systems for all tasks are based on Transformer models.

Key words: relation extraction, named entity recognition, transformer, bert

Совместное обучение моделей для извлечения отношений и именованных сущностей

Авторы

Организация

В данной работе мы представляем нашу систему для соревнования RuREBus, проводящегося совместно с конференцией Dialog 2020. Задача состояла из 3 дорожек: распознавание именованных сущностей, классификация отношений между заранее аннотированными именованными сущностями и извлечение отношений из неаннотированного текста. Наша система заняла первое место в задаче распознавания именованных сущностей и второе место на третьей дорожке. Для второй задачи мы не успели своевременно представить решение, но оно оказалось в числе лучших систем. Системы для всех задач основаны на моделях Transformer.

Ключевые слова: извлечение отношений, распознавание именованных сущностей, transformer, bert

1 Introduction

Relation

- 1.1 Named entities recognition
- 1.2 Stand-alone relation extraction
- 1.3 Relation classification with provided named entity tags

References

[1] Kurt Bollacker, Colin Evans, Praveen Paritosh, Tim Sturge, and Jamie Taylor. Free-base: A collaboratively created graph database for structuring human knowledge. In *Proceedings of the ACM SIGMOD International Conference on Management of Data*, pages 1247–1249, 2008.

- [2] Mikhail Burtsev, Alexander Seliverstov, Rafael Airapetyan, Mikhail Arkhipov, Dilyara Baymurzina, Nickolay Bushkov, Olga Gureenkova, Taras Khakhulin, Yuri Kuratov, Denis Kuznetsov, Alexey Litinsky, Varvara Logacheva, Alexey Lymar, Valentin Malykh, Maxim Petrov, Vadim Polulyakh, Leonid Pugachev, Alexey Sorokin, Maria Vikhreva, and Marat Zaynutdinov. DeepPavlov: Open-Source library for dialogue systems. In ACL 2018 56th Annual Meeting of the Association for Computational Linguistics, Proceedings of System Demonstrations, pages 122–127, 2018.
- [3] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: Pretraining of Deep Bidirectional Transformers for Language Understanding. oct 2018.
- [4] Ralph Weischedel et Al. OntoNotes Release 5.0 LDC2013T19. Linguistic Data Consortium, 2013.
- [5] Mandar Joshi, Danqi Chen, Yinhan Liu, Daniel S. Weld, Luke Zettlemoyer, and Omer Levy. SpanBERT: Improving Pre-training by Representing and Predicting Spans. In *Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics*, pages 1388–1398, Florence, Italy, 2019. Association for Computational Linguistics.
- [6] Mandar Joshi, Danqi Chen, Yinhan Liu, Daniel S Weld, Luke Zettlemoyer, and Omer Levy. Spanbert: Improving pre-training by representing and predicting spans. arXiv preprint arXiv:1907.10529, 2019.
- [7] Mandar Joshi, Danqi Chen, Yinhan Liu, Daniel S Weld, Luke Zettlemoyer, Omer Levy, and † Allen. SpanBERT: Improving Pre-training by Representing and Predicting Spans. Technical report.
- [8] T A Le, M A Petrov, Y. M. Kurato, and M S Burtsev. Sentence Level Representation and Language Models in The Task of Coreference Resolution for Russian. In *Computational Linguistics and Intellectual Technologies: Papers from the Annual International Conference "Dialogue"* (2019), pages 341–350, 2019.
- [9] Bonan Min, Ralph Grishman, Li Wan, Chang Wang, and David Gondek. Distant Supervision for Relation Extraction with an Incomplete Knowledge Base. In *Proceedings of the 2013 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies*, pages 777–782, Atlanta, Georgia, 2013. Association for Computational Linguistics.
- [10] Mike Mintz, Steven Bills, Rion Snow, and Dan Jurafsky. Distant supervision for relation extraction without labeled data. pages 1003–1011, 2009.
- [11] James Pustejovsky and Amber Stubbs. Natural language annotation for machine learning. 2013.
- [12] Sebastian Riedel, Limin Yao, and Andrew McCallum. Modeling relations and their mentions without labeled text. In Lecture Notes in Computer Science (including subscries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), volume 6323 LNAI, pages 148–163, 2010.
- [13] A. S. Starostin, V. V. Bocharov, S. V. Alexeeva, A. A. Bodrova, A. S. Chuchunkov, S. S. Dzhumaev, I. V. Efimenko, D. V. Granovsky, V. F. Khoroshevsky, I. V. Krylova, M. A. Nikolaeva, I. M. Smurov, and S. Y. Toldova. FactRuEval 2016: Evaluation of named entity recognition and fact extraction systems for Russian. In Komp'juternaja Lingvistika i Intellektual'nye Tehnologii, pages 702-720, 2016.

- [14] Pontus Stenetorp, Sampo Pyysalo, Goran Topić, Tomoko Ohta, Sophia Ananiadou, and Jun'ichi Tsujii. brat: a Web-based Tool for NLP-Assisted Text Annotation. In *Proceedings of the Demonstrations Session at EACL 2012*, Avignon, France, 2012. Association for Computational Linguistics.
- [15] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. In Advances in Neural Information Processing Systems, volume 2017-Decem, pages 5999-6009, 2017.
- [16] Yuhao Zhang, Victor Zhong, Danqi Chen, Gabor Angeli, and Christopher D Manning. Position-aware attention and supervised data improve slot filling. In *EMNLP 2017 Conference on Empirical Methods in Natural Language Processing, Proceedings*, pages 35–45, 2017.
- [17] Yuhao Zhang, Victor Zhong, Danqi Chen, Gabor Angeli, and Christopher D Manning. Position-aware Attention and Supervised Data Improve Slot Filling. In *Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing (EMNLP 2017)*, pages 35–45, 2017.