Teorema 1

L'integrale generale di (1) in [a, b] è dato dalla somma dell'integrale generale dell'omogenea associata (2) con un integrale particolare noto di (1)

$$\int gen(1) = \int gen(2) + \int particolare(1)$$

Dimostrazione. Sia y(x) una soluzione qualsiasi di (1) (y(x) appartiene all'integrale generale di (1)) e sia $\bar{y}(x)$ una soluzione particolare (nota) di (1). Voglio far vedere è che la loro differenza è una soluzione qualsiasi di (2)

Dunque per ipotesi n ha che:

$$y'(x) + a(x)y(x) = f(x), \forall x \in [a, b]$$

$$\bar{y}'(x) + a(x)\bar{y}(x) = f(x)$$

Entrambe soddisfano la (1)

Sottraggo membro a membro le due:

$$y'(x) - \bar{y}'(x) + a(x)y(x) - a(x)\bar{y}(x) = f(x) - f(x)$$

$$y'(x) - \bar{y}'(x) + a(x)[y(x) - \bar{y}(x)] = 0$$

Si può scrivere anche (le derivate raccolte):

$$[y(x) - \bar{y}(x)]' + a(x)[y(x) - \bar{y}(x)] = 0$$

E dunque la funzione $y(x) - \bar{y}(x) = z(x)$ è soluzione di (2) Quindi:

$$y(x) = \bar{y}(x) + z(x)$$

Viceversa se z(x) è una qualsiasi soluzione di (2) e $\bar{y}(x)$ è una soluzione particolare di (1) voglio mostrare che la loro somma è soluzione di (1)

Pongo:

$$y(x) = z(x) + \bar{y}(x)$$

Devo mostrare che y(x) verifica (1)

sapendo che:

$$z'(x) + a(x)z(x) = 0$$

$$\bar{y}'(x) + a(x)\bar{y}(x) = f(x)$$

$$y'(x) = (z(x) + \bar{y}(x))' = z'(x) + \bar{y}'(x) = -a(x)z(x) - a(x)\bar{y}(x) + f(x) = -a(x)[z(x) + \bar{y}(x)] + f(x)$$

E quindi ho dimostrato che:

$$y'(x) = -a(x)y(x) + f(x)$$

$$y'(x) + a(x)y(x) = f(x)$$

$$y(x) = z(x) + \bar{y}(x)$$

Teorema 2

Siano f e g continue (sugli opportuni domini) allora:

- $f + g, f \cdot g$ sono continue
- $\bullet \ \mbox{se} \ g \neq 0$ allora $\frac{f}{g}$ è continua
- se g > 0 allora f^g è continua
- la funzione comporta $g \circ f$ è continua (dove è definita)

Teorema 3

Sia $f: D \subset \mathbb{R}^2 \to \mathbb{R}$ e sia $P_0 = (x_0, y_0) \in D$ allora:

$$\lim_{(x,y)\to(x_0,y_0)} f(x,y) = l \Leftrightarrow \lim_{\rho\to 0^+} f(x_0 + \rho cos\theta, y_0 + \rho sin\theta) = l$$

uniformemente rispetto a θ

Dimostrazione. per far vedere che vale il limite è sufficiente mostrare che esiste una funzione g che dipende solo da ρ (non negativa) $g(\rho) \ge 0$ tale che:

$$|f(x_0 + \rho cos\theta, y_0 + \rho sin\theta) - l| \le g(\rho)$$

dove $g(\rho) \to 0$ per $\rho \to 0^+$

e poi faccio vedere che quindi (per il teorema dei due carabinieri):

$$0 \le f(x_0 + \rho \cos\theta, y_0 + \rho \sin\theta) - l \le g(\rho) = 0$$

Teorema 4

f è differenziabile in $\bar{x_0}\subset A\to f$ è continua in $\bar{x_0}$

Dimostrazione. Per dimostrare che f è continua in $\bar{x_0}$ devo far vedere che:

$$\lim_{h \to 0} f(x+h) = f(\bar{x_0})$$

$$\lim_{h \to 0} f(x_0 + h) \stackrel{\text{poiché } f \text{ è differenziabile}}{=} \lim_{h \to 0} [f(x_0) + \langle \nabla f(x_0), h \rangle + \underbrace{o(|h|)}_{\to 0}]$$

usiamo Cauchy-Schwarz:

$$\langle \nabla f(x_0), h \rangle \leq \underbrace{\langle \nabla f(x_0), h \rangle}_{\text{valore assoluto}} | \leq \underbrace{|\nabla f(x_0)|}_{\text{lunghezza del vettore}} | \underbrace{h}_{\rightarrow 0} | \overset{\text{numero moltiplicato 0}}{=} 0$$

quindi abbiamo che:

$$\lim_{h \to 0} [f(x_0) + \underbrace{\langle \nabla f(x_0), h \rangle}_{\to 0} + \underbrace{o(|h|)}_{\to 0}] = f(x_0)$$

Teorema 5: Teorema del differenziale

Sia $f: A \subseteq \mathbb{R}^n \to \mathbb{R}$, A aperto, derivabile in A.

Se le derivate parziali f_{x_1}, \dots, f_{x_n} sono continue in $\bar{x} \in A$ allora f è differenziabile in \bar{x}

Dimostrazione. Per n=2, f=f(x,y) con $(x,y)\in A\subseteq \mathbb{R}^2$ $\bar{h}=(h,k)$:

$$f(x+h,y+k) - f(x,y)$$
 aggiungo e tolgo $f(x,y+k)$

$$= f(x+h,y+k) + f(x,y+k) - f(x,y+k) - f(x,y) =$$

Applico due volte il teorema di Lagrange sugli intervalli di estremi x, x + h e y, y + k:

 $\exists x_1 \in \text{ interval o aperto di estremi } x, x + h$

 $\exists y_1 \in \text{ intervallo aperto di estremi } y, y+k$

$$= \frac{\partial f}{\partial x}(x_1, y + k)(\cancel{x} + h\cancel{x}) + \frac{\partial f}{\partial y}(x, y_1)(\cancel{y} + k\cancel{y}) =$$

$$= \frac{\partial f}{\partial x}(x_1, y + k)h + \frac{\partial f}{\partial y}(x, y_1)k$$

a questo punto faccio vedere la definizione di differenziabilità e sostituisco quello sopra:

$$\frac{f(x+h,y+k) - f(x,y) - f_x(x,y)h - f_y(x,y)k}{\sqrt{h^2 + k^2}} =$$

$$= \frac{f_x(x_1,y+k)h + f_y(x,y_1)k - f_x(x,y) - f_y(x,y)k}{\sqrt{h^2 + k^2}} =$$

$$= \frac{[f_x(x_1,y+k) - f_x(x,y)]h + [f_y(x,y_1) - f_y(x,y)]k}{\sqrt{h^2 + k^2}}$$

metto tutto in valore assoluto e maggioro:

$$= \left| \frac{[f_x(x_1, y+k) - f_x(x, y)]h + [f_y(x, y_1) - f_y(x, y)]k}{\sqrt{h^2 + k^2}} \right| \le$$

$$\le |f_x(x_1, y+k) - f_x(x, y_1)| \frac{|h|}{\sqrt{h^2 + k^2}} + |f_y(x, y_1) - f_y(x, y)| \frac{|k|}{\sqrt{h^2 + k^2}} \le$$

$$\leq |f_x(x_1, y + k) - f_x(x, y)| + |f_y(x, y_1) - f_y(x, y)|$$

vediamo che succede quando $(h,k) \to (0,0) :$

 $(x_1,y_1) \to (x,y)$ le funzioni f_x e f_y sono continue in (x,y)

dunque se passo al limite:

$$|\underbrace{f_x(x,y) - f_x(x,y)}_{\rightarrow 0}| + |\underbrace{f_y(x,y) - f_y(x,y)}_{\rightarrow 0}|$$

Teorema 6: Regola della catena

consideriamo una curva continua $\gamma: [-1,1] \subset \mathbb{R} \to A \subseteq \mathbb{R}^n$ curva e supponiamo $\gamma(t)$ vettore (di n componenti) sia derivabile, cioè:

$$\gamma(t) = (\gamma_1(t), \dots, \gamma_n(t))$$

esiste:

$$\gamma'(t) = (\gamma_1'(t), \dots, \gamma_n'(t))$$

e supponiamo che $\gamma(0) = x_0 \in A$ e $\gamma'(0) = \bar{v} \in \mathbb{R}^n$,

allora se $f:A\to\mathbb{R}$ è differenziabile in x_0 , la funzione composta $F\to f(\gamma(t))$ da $[-1,1]\to\mathbb{R}$:

$$F = f \circ g : [-1, 1] \to \mathbb{R}$$

$$F(t) = (f \circ g)(t) = f(\gamma(t))$$

è differenziabile in 0:

$$F'(0) = \frac{\partial F}{\partial t}(0) = \frac{\partial (f \circ g)}{\partial t}(0) = \langle \nabla f(x_0), \underbrace{\gamma'(0)}_{\text{direzione } \bar{v}} \rangle$$

Questo si chiama teorema delle derivate delle funzioni composte o regola della catena.

Dimostrazione. Dimostrato dalle considerazioni fatte fino a ora.

Teorema 7: Derivazione della funzione composta

Supponiamo $\gamma(t)$ derivabile $\forall t \in I$ ovvero $\gamma'(t)$ è definito $\forall t \in I$ con $\gamma'(t) = (\gamma'_1(t), \ldots, \gamma'_n(t))$ e supponiamo che f sia differenziabile in $\gamma(t) \in A$ (data $f : A \subseteq \mathbb{R}^n \to \mathbb{R}$) allora la funzione composta $F = f \circ \gamma : I \to \mathbb{R}$ è derivabile in t.

Inoltre:

$$F'(t) = \langle \nabla f(\gamma(t)), \gamma'(t) \rangle = \sum_{i=1}^{n} \frac{\partial f}{\partial x_i}(\gamma(t))\gamma'_i(t)$$

Dimostrazione. Inizio dimostrando che f è derivabile, ovvero che esiste finito il limite del rapporto incrementale:

$$\frac{F(t+h)-F(t)}{h} = \frac{F(\gamma(t+h))-F(\gamma(t))}{h} = \langle \nabla f(\gamma(t+h)), \underbrace{\frac{\gamma(t+h)-\gamma(t)}{h}}_{1} \rangle + \underbrace{\frac{o(\gamma(t+h)-\gamma(t)|)}{h}}_{2}$$

quando $h \to 0$:

1.
$$\lim_{h \to 0} \frac{\gamma(t+h) - \gamma(t)}{h} = \gamma'(t)$$

2.
$$\lim_{h \to 0} \frac{o(|\gamma(t+h) - \gamma(t)|)}{h} = \lim_{h \to 0} \frac{|o(|\gamma(t+h) - \gamma(t)|)|}{|h|} \cdot \frac{|\gamma(t+h) - \gamma(t)|}{|\gamma(t+h) - \gamma(t)|} = \lim_{h \to 0} \underbrace{\frac{|o(|\gamma(t+h) - \gamma(t)|)|}{|\gamma(t+h) - \gamma(t)|}}_{0 \text{ per definizione di o-piccolo}} \cdot \underbrace{\frac{|\gamma(t+h) - \gamma(t)|}{|h|}}_{\text{quantità finita}} = 0$$

Quantità finita perché:

$$\lim_{h \to 0} \frac{|\gamma(t+h) - \gamma(t)|}{|h|} = \lim_{h \to 0} \left(\sum_{i=1}^{n} \left(\frac{\gamma_i(t+h) - \gamma_i(t)}{h}\right)^2\right)^{\frac{1}{2}} =$$

$$= \sqrt{\sum_{i=1}^{n} (\gamma_i'(t))^2} = \underbrace{|\gamma'(t)|}_{\text{lunghezza di un vettore}} > 0$$

Teorema 8: Formula del gradiente

Se f(x,y) è differenziabile in P=(x,y) allora f ammette derivate direzionali in (x,y) per ogni direzione. Inoltre per ogni versore $\bar{v}=(a,b)$, vale:

$$D_{\overrightarrow{v}}f(x,y) = \langle \nabla f(x,y), \overrightarrow{v} \rangle = \frac{\partial f}{\partial x}(x,y) \cdot a + \frac{\partial f}{\partial y}(x,y) \cdot b$$

Dimostrazione.

$$e^{-A(x)} = -a(x)e^{-A(x)}$$

ovvero

$$(e^{-A(x)})' + a(x)e^{-A(x)} = 0$$

Dimostrazione. Poiché $\bar{y}(x)$ è soluzione di (1) si ha che $\bar{y}'(x) + a(x)\bar{y}(x) = f(x)$ da cui sostituendo $\bar{y}(x) = c(x)e^{-A(x)}$:

$$(c(x)e^{-A(x)})' + a(x)c(x)e^{-A(x)} = f(x)$$

Deriviamo:

$$c'(x)e^{-A(x)} - c(x)a(x)e^{-A(x)} + a(x)e(x)e^{-A(x)} = f(x)$$

semplifico

$$c'(x)e^{-A(x)} = f(x)$$

$$c'(x) = f(x)e^{A(x)} \to c(x) = \int f(x)e^{A(x)} dx$$

e dunque:

$$\bar{y}(x) = e^{-A(x)} \int f(x)e^{A(x)} dx$$

Cioè l'integrale particolare

Teorema 9: Schwarz

Sia $f: A \subseteq \mathbb{R}^n \to \mathbb{R}$, A aperto

e supponiamo che la f sia derivabile due volte su A, quindi esistono tutte le $f_{x_ix_j}$, $\forall i,j$ $1, \ldots, n \text{ e sia } \bar{x_0} \in A.$

Se le $f_{x_ix_j}$, e le $f_{x_jx_i}$ con $i \neq j$ sono **continue** in x_0 , allora:

$$f_{x_i x_i}(x_0) = f_{x_i x_i}(x_0)$$

Dimostrazione. Sia $P_0=(x_0,y_0)$ e P=(x,y) un punto qualsiasi su A, con $P\neq P_0$ (quindi $x \neq x_0, y \neq y_0$

Consideriamo il valore della funzione nei punti:

$$f(x_0, y_0) = f(x, y_0), f(x, y), f(x_0, y)$$

$$\underbrace{F(x)}_{\text{dipende solo da }x} \underbrace{f(x,y) - f(x,y_0)}_{\text{dissato}}$$

$$\underbrace{G(y)}_{\text{dipende solo da }y\ (x \text{ fissato})} = f(x,y) - f(x_0,y)$$

Applico il teorema di Lagrange (teorema del valore intermedio)

Lagrange a F(x) nell'intervallo di estremi x_0, x , si ha che esiste un elemento x_1 in questo intervallo per cui:

$$F(x) - F(x_0) = F'(x_1)(x - x_0) = [f_x(x_1, y) - f_x(x_1, y_0)](x - x_0) \stackrel{\text{applico Lagrange due volte come spiegato sottoments}}{=} = f_x(x_1, y_0) - f_x(x_1, y_0) = f_x(x_1, y_0) - f_x$$

Sappiamo che f è derivabile due volte, posso quindi applicare Lagrange a $f_x(x_1, y)$ nell'intervallo di estremi y_0, y . Quindi $\exists y_1$ nell'intervallo tale che:

$$f_x(x_1, y) - f_x(x_1, y_0) = \frac{\partial}{\partial y} (f_x(x_1, y_1))(y - y_0) = f_{xy}(x_1, y_1)(y - y_0)$$

quindi la nostra espressione diventa:

$$= f_{xy}(x_1, y_1)(x - x_0)(y - y_0)$$

quindi abbiamo fatto vedere che:

$$F(x) - F(x_0) = f_{xy}(x_1, y_1)(x - x_0)(y - y_0)$$

Analogamente per G(y) applico Lagrange quindi $\exists y_2$ nell'intervallo di estremi y, y_0 tale che:

$$G(y)-G(y_0)=G'(y_2)(y-y_0)=[f_y(x,y_2)-f_y(x_0,y_2)](y-y_0)\stackrel{\mathrm{applico\ di\ nuovo\ Lagrange}}{=}$$

applico quindi Lagrange a $f_y(x,y_2)$ nell'intervallo di estremi x,x_0 quindi $\exists x_2$ in questo intervallo:

$$f_y(x, y_2) - f_y(x_0, y_2) = f_{yx}(x_2, y_2)(x - x_0)$$

infine quindi:

$$= f_{yx}(x_2, y_2)(x - x_0)(y - y_0)$$

Notiamo che:

$$F(x) - F(x_0) = G(x) - G(x_0)$$

$$G(x) - G(x_0) = f(x, y) - f(x_0, y) - (f(x, y_0) - f(x_0, y_0))$$

Le due espressioni sono quindi uguali, di conseguenza anche le espressioni ottenute precedentemente Essendo $F(x) - F(x_0) = G(x) - G(x_0)$, segue che:

$$f_{xy}(x_1, y_1)(x - x_0)(y - y_0) = f_{yx}(x_2, y_2)(x - x_0)(y - y_0)$$

noi sappiamo che $(x, y) \neq (x_0, y_0)$ per ipotesi, quindi deve essere che:

$$f_{xy}(x_1, y_1) = f_{yx}(x_2, y_2)$$

 (x_1,y_1) e (x_2,y_2) stanno nell'intervallo del rettangolo tratteggiato:

Passando al limite (per $P \to P_0$) succede che:

$$(x,y) \rightarrow (x_0,y_0)$$

$$(x,y_0) \to (x_0,y_0)$$

$$(x_2, y_2) \to (x_0, y_0)$$

ed essendo la funzione f_{xy}, f_{yx} continue in $P_0 = (x_0, y_0)$, si ha:

$$f_{xy}(x_0, y_0) = f_{yx}(x_0, y_0)$$

 ${\it Dimostrazione.} \ {\rm Immediata\ applicando\ Taylor\ con\ k=1:}$

$$F(1) = F(0) + F'(\theta)$$

Dimostrazione. Di nuovo viene da Taylor per $k=2\colon$

$$F(1) = F(0) + F'(0) + \frac{F''(\theta)}{2}$$

Teorema 10: Teorema di Fermat per funzioni in più variabili

Sia $f:D\subset\mathbb{R}^n\to\mathbb{R}$, sia $x_0\in A$ punto di estremo locale per f. Se f è differenziabile in x_0 allora:

$$\nabla f(x_0) = 0$$

Dimostrazione. Supponiamo x_0 punto di massimo relativo. Allora x_0 è punto di massimo relativo anche per la restrizione di f lungo una qualsiasi retta passante per x_0 . Dunque consideriamo $v \in \mathbb{R}^n$ la direzione di tale retta, quindi $x_0 + tv$ sono i punti su tale retta.

La funzione in **una** variabile:

$$F(t) = f(x_0 + tv)$$

è definita in un intorno di t=0 e per ipotesi, siccome x_0 è punto di massimo per f, allora t=0 è punto di massimo per F.

Per il Teorema di Fermat (in una variabile) su F si ha:

$$F'(0) = \langle \nabla f(x_0), v \rangle = 0$$

per ogni direzione v. Siccome $v \neq \emptyset$ (perché |v|=1), allora necessariamente $\nabla f(x_0)=0$.

Dimostrazione. È basata sull'approssimazione al secondo ordine della nostra funzione attraverso la formula di Taylor (al II ordine) col resto di Peano.

$$\underbrace{f(\bar{x_0} + \bar{h})}_{f(x,y)} = \underbrace{f(\bar{x_0})}_{f(x_0,y_0)} + \underbrace{\langle \nabla f(\bar{x_0}), \bar{h} \rangle}_{=0} + \underbrace{\frac{1}{2} \langle Hf(\bar{x_0})\bar{h}, \bar{h} \rangle}_{=0} + o(|\bar{h}|^2)$$

osserviamo che:

$$\frac{1}{2}\langle Hf(\bar{x_0})\bar{h},\bar{h}\rangle\tag{1}$$

è un polinomio di II grado in h, k i cui coefficienti sono le derivate seconde quindi ci fornisce il **segno**

per $h \to 0$ abbiamo:

- $\bullet \ \bar{x_0} + \bar{h} = x$
- $\bar{h} = \bar{x} \bar{x_0}$
- $\bar{h} = (h, k)$

Vediamo cosa succede:

$$f(x,y) - f(x_0, y_0) = \underbrace{\frac{\partial f}{\partial x}(x_0, y_0)}_{= 0} (x - x_0) + \underbrace{\frac{\partial f}{\partial y}(x_0, y_0)}_{= 0} (y - y_0) + \underbrace{\frac{1}{2}[f_{xx}(x_0, y_0)(x - x_0)^2 + 2f_{xy}(x_0, y_0)(x - x_0)(y - y_0)]}_{= 0}$$

$$+f_{yy}(x_0,y_0)(y-y_0)^2$$
] + $o((x-x_0)^2 + (y-y_0)^2)$

Osserviamo adesso 1 forma quadratica dell'hessiana in $\bar{h} \in \mathbb{R}^n$ è un polinomio di grado 2 omogeneo nelle variabili h_1, \dots, h_n

Ad ogni forma quadratica è associata una matrice:

$$q(\bar{h}) = \sum_{i,j=1}^{n} a_{ij} h_i h_j \leftrightarrow \langle A\bar{h}, \bar{h} \rangle$$

dove $A=(a_{ij})$. Notiamo che tutti i h_i^2 hanno coefficienti a_{ii} (stanno sulla diagonale).

Nel nostro caso la matrice associata è la matrice Hessiana, che è **simmetrica** ($a_{ij} = a_{ji}$ per il teorema di Schwarz).

Quindi per avere il coefficiente di posto ij, siccome $a_{ij} = a_{ji} \rightarrow a_{ij} + a_{ji} = 2a_{ij}$, devo dividere il coefficiente per 2.

Esempio

$$n=2 \ \mathrm{e} \ \bar{h}=(h_1,h_2)$$

Sappiamo in generale che:

$$q(h_1, h_2) = a_{11}h_1^2 + \underbrace{2a_{12}h_1h_2}_{\text{A simmetrica}} + a_{22}h_2^2$$

per una matrice 2×2 :

$$A = \begin{pmatrix} \overbrace{1}^{a_{11}} & \overbrace{5}^{2a_{12}} \\ 5 & \underbrace{4}_{2a_{21}} & a_{22} \end{pmatrix} \leftrightarrow q(h_1, h_2) = h_1^2 + 4h_2^2 + 10h_1h_2$$

per una matrice 3×3 :

$$A = \begin{pmatrix} 2 & -2 & 5 \\ -2 & 3 & 0 \\ 5 & 0 & 4 \end{pmatrix} \leftrightarrow q(\bar{h}) = 2h_1^2 + 3h_2^2 + 4h_3^2 - 4h_1h_2 + 10h_1h_3$$

Studiamo il segno

Adesso studiamo il segno della quadratica hessiana

Definizione 1

 $q(\bar{h})$ si dice **definita positiva** se $\forall h \neq 0$ si ha $q(\bar{h}) > 0$

Definizione 2

 $q(\bar{h})$ si dice **definita negativa** se $\forall h \neq 0$ si ha $q(\bar{h}) < 0$

Definizione 3

 $q(\bar{h})$ si dice **indefinita** se $\exists \bar{h_1}, \bar{h_2} \in \mathbb{R}^2$ t.c. $q(\bar{h_1}) < 0 < q(\bar{h_2})$ cioè cambia segno

Nota

Per studiare il segno possiamo usare anche il segno degli autovalori.

Conclusione

Vediamo quindi cosa succede:

- $det(Hf(x_0,y_0)>0$ e $f_{xx}(x_0,y_0)>0$ la forma quadratica corrispondente è definita positiva
- $det(Hf(x_0,y_0)>0$ e $f_{xx}(x_0,y_0)<0$ \to la forma quadratica corrispondente è definita negativa
- $det(Hf(x_0,y_0)<0 \rightarrow \text{la forma quadratica corrispondente è indefinita}$

Teorema 11: Weistrass

Sia $f:K\to\mathbb{R}$ con K limitato e chiuso di \mathbb{R}^2 continua allora f è limitata ed assume minimo e massimo su K, ovvero:

$$\exists (x_m, y_m), (x_n, y_n) \in K$$

t.c.

$$f(x_m, y_m) \le f(x, y) \le f(x_n, y_n) \forall x, y \in K$$

cioè

- $f(x_m, y_m)$ valore minimo assoluto di f su K
- $f(x_n, y_n)$ valore massimo assoluto di f su K

Teorema 12: Moltiplicatori di Lagrange

Supponiamo che $f, g \in \mathbb{C}^1(A)$ dove $A \subseteq \mathbb{R}^2$ aperto.

Se $(x_0, y_0) \in A$ è un punto di estremo (minimo o massimo) per la f nell'insieme V $((x_0, y_0)$ è punto di estremo vincolato):

$$V = \{(x, y) \in A, q(x, y) = k\}$$

e vale anche:

$$\underbrace{\nabla g(x_0,y_0) \neq 0}_{(x_0,y_0) \in V \text{ regolare per } g}$$

allora esiste $\lambda_0 \in \mathbb{R}$ t.c.:

$$\underbrace{\nabla f(x_0, y_0) = \lambda_0 \nabla g(x_0, y_0)}_{\text{equazione vettoriale}}$$

Teorema 13

Sia $f: R \to \mathbb{R}$ limitata, allora f è integrabile secondo Riemann su $R(f \in \mathbb{R}(R)) \Leftrightarrow \forall \varepsilon$ esiste una suddivisione D_{ε} di R per cui:

$$S(f, D_{\varepsilon}) - s(f, D_{\varepsilon}) < \varepsilon$$

Teorema 14: di riduzione

Sia $f \in \mathbb{R}(R)$ dove $R = [a, b] \times [c, d]$

1. Se, per ogni $y \in [c, d]$, esiste l'integrale:

$$G(y) = \int_{a}^{b} f(x, y) \, dx$$

allora la funzione $y \to G(y)$ è integrabile in [c,d] e vale la formula:

$$\iint_{R} f = \int_{c}^{d} G(y) \, dy = \int_{c}^{d} \left(\int_{a}^{b} f(x, y) \, dx \right) dy$$

2. Se, per ogni $x \in [a, b]$ esiste l'integrale

$$H(x) = \int_{c}^{d} f(x, y) \, dx dy$$

allora la funzione $x \to H(x)$ è integrabile in [a, b] e vale la formula:

$$\iint_{R} f = \int_{a}^{b} H(x) dx = \int_{a}^{b} \left(\int_{c}^{d} f(x, y) dy \right) dx$$

Teorema 15: Formule di riduzione

Sia $f:R=[a,b]\times [c,d]\to \mathbb{R}$ continua, allora $f\in R(\mathbb{R})$ e si ha:

$$\iint_{R} f(x,y) \, dx dy = \int_{a}^{b} \left(\int_{c}^{d} f(x,y) \, dy \right) dx = \int_{c}^{d} \left(\int_{a}^{b} f(x,y) \, dx \right) dy$$

Teorema 16: Formule di riduzione

Ogni funzione continua su un'insieme semplice $D \subset \mathbb{R}^2$ è integrabile su tale insieme e valgono le formule di riduzione:

1. Se D è y-semplice allora:

$$\iint_{D} f(x,y) \, dx dy = \int_{a}^{b} dx \int_{g_{1}(x)}^{g_{2}(x)} f(x,y) \, dy$$

2. Se D è x-semplice allora:

$$\iint_{D} f(x, y) \, dx dy = \int_{c}^{d} dy \int_{h_{1}(y)}^{h_{2}(y)} f(x, y) \, dx$$

Teorema 17

Consideriamo l'applicazione verticale $F(\rho,\theta)=(F_1(\rho,\theta),F_2(\rho,\theta))$ in cui $F:A\to\mathbb{R}^2$ in cui $A=(0,+\infty)\times(0,2\pi)$.

Sia $S \subset (0, +\infty) \times (0, 2\pi)$ un aperto misurabile nel piano (ρ, θ) con $\bar{S} \subset (0, \infty) \cdot (0, 2\pi)$ e sia T = F(S) (fig. ??)

Allora per ogni funzione f integrabile su T, continua e limitata, vale la sequente formula:

$$\iint_{T=F(S)} f(x,y) \, dxdy = \iint_{S=F'(T)} f(\rho \cos \theta, \rho \sin \theta) \underbrace{\rho}_{\det JF(\rho,\theta)} d\rho d\theta$$

Teorema 18: Teorema fondamentale dell'algebra

L'equazione di II in \mathbb{C}

$$a\lambda^2 + b\lambda + c = 0, in \mathbb{C}$$

ha sempre due soluzioni in \mathbb{C}

Dimostrazione. y è soluzione di ?? $\Leftrightarrow Ly = 0$

Se considero $y(x) = e^{\lambda x}$

Devo dimostrare che:

$$L(e^{\lambda x}) = 0 \Leftrightarrow p(\lambda) = 0$$

Sostituisco a $x e^{\lambda x}$:

$$L(e^{\lambda x}) = a(e^{\lambda x})'' + b(e^{\lambda x})' + c(e^{\lambda x}) =$$

$$=a\lambda^2e^{\lambda x}+b\lambda e^{\lambda x}+ce^{\lambda x}=e^{\lambda x}(a\lambda^2+b\lambda+c)$$

dunque

$$L(e^{\lambda x}) = 0 \Leftrightarrow a\lambda^2 + b\lambda + c = 0$$

Teorema 19

L'integrale generale dell'equazione omogene
a $ay^{\prime\prime}+by^{\prime}+c=0$ è dato da:

$$c_1y_1(x) + c_2y_2(x)$$

al variare di $c_1, c_2 \in \mathbb{R}$ dove $y_1(x)$ e $y_2(x)$ sono definite come sopra

Dimostrazione. 1) $b^2-4ac>0$ con λ_1,λ_2 soluzioni dell'equazioni di $p(\lambda)=0$ scrivo la Wronskiana di y_1,y_2 :

$$\begin{bmatrix} e^{\lambda_1 x} & e^{\lambda_2 x} \\ \lambda_1 e^{\lambda_1 x} & \lambda_2 e^{\lambda_2 x} \end{bmatrix}$$

che è diverso da zero quindi le soluzioni sono linearmente indipendenti sia ora y(x) una soluzione di ??:

$$y(x) = e^{\lambda_1 x} u(x)$$

io devo determinare u(x) per poi dimostrare che $y(x) = c_1 e^{\lambda_1 x} + c_2 e^{\lambda_2 x}$ Poiché $y(x) = e^{\lambda_1 x} u(x)$ è soluzione di ?? si ha derivando e sostituendo:

$$a(e^{\lambda_1 x}u(x))'' + b(e^{\lambda_1 x}u(x))' + ce^{\lambda_1 x}u(x) = 0$$

$$a(\lambda_1 e^{\lambda_1 x}u(x) + e^{\lambda_1 x}u'(x))' + b(\lambda_1 e^{\lambda_1 x}u(x) + e^{\lambda_1 x}u'(x)) + ce^{\lambda_1 x}u(x) = 0$$

$$e^{(\lambda_1 x}[a\lambda_1^2 + b\lambda_1 + c)u(x) + \underbrace{(au''(x) + (2a\lambda_1 + b)u'(x))}_{\text{impongo che sia zero}}] = 0$$

estraggo solo l'ultima parentesi e impongo che sia uguale a zero perché il resto è già zero

$$au''(x) + (2a\lambda_1 + b)u'(x) = 0$$

divido per a:

$$u''(x) + (2\lambda_1 + \frac{b}{a})u'(x) = 0$$

sapendo che:

$$a\lambda^2 + b\lambda + c = 0$$

$$\lambda^2 + \frac{b}{a}\lambda + \frac{c}{a} = 0$$

$$\lambda_1 + \lambda_2 = -\frac{b}{a}$$

$$\lambda_1 \lambda_2 = \frac{c}{a}$$

$$u''(x) + (2\lambda_1 - \lambda_1 - \lambda_2)u'(x) = 0$$

il meno per comodità:

$$u''(x) - (\lambda_1 - \lambda_2)u'(x) = 0$$

se adesso chiamo $u^{\prime}(x)=v(x)$ e $v^{\prime\prime}(x)=u^{\prime}(x)$ l'equazione diventa:

$$v' - kv = 0$$

 ${\bf Risolvendo}$

$$v(x) = ce^{kx}$$

$$v(x) = ce^{(\lambda_2 - \lambda_1)x}$$

Risostituendo:

$$u'(x) = ce^{(\lambda_2 - \lambda_1)x}$$

Integrando:

$$u(x) = c_1 e^{(\lambda_2 - \lambda_1)x} + c_2$$

la nostra y(x) diventa:

$$y(x) = e^{\lambda_1 x} u(x) = e^{\lambda_1 x} (c_1 e^{(\lambda_2 - \lambda_1)x} + c_2) = c_1 e^{\lambda_2 x} + c_2 e^{\lambda_1 x}$$

Dimostrazione.

$$|x+y|^2 = \langle x+y, x+y \rangle = (x+y) \bullet (x+y) \stackrel{\text{bilinearità}}{=} \langle x, x+y \rangle + \langle y, x+y \rangle \stackrel{\text{sempre bilinearità}}{=}$$

$$= \langle x, x \rangle + \langle x, y \rangle + \langle y, x \rangle + \langle y, y \rangle = \langle x, x \rangle + 2\langle x, y \rangle + \langle y, y \rangle =$$

$$= |x|^2 + |y|^2 + 2x \bullet y$$

Dimostrazione. Se

$$y = 0$$

$$y = 0 = (0, \dots, 0)$$

questo caso va bene.

Sia dunque $\mathbb{R}^n \to y \neq 0$ e consideriamo la funzione reale di una variabile reale $t \to |x+ty|^2 \geq 0$ polinomio di secondo grado in t

$$|x + ty|^2 \stackrel{\text{Carnot}}{=} |x|^2 + |ty|^2 + 2\langle x, ty \rangle = |x|^2 + |y|^2 t^2 + 2\langle x, y \rangle t$$

è un polinomio di II grado in t
 dove $|y|^2>0$ essendo $y\neq 0$

Il nostro $\frac{\Delta}{4}$ deve essere non positivo:

$$(x \bullet y)^2 - |x|^2 |y|^2 \le 0$$

$$(x \bullet y)^2 \le |x|^2 |y|^2$$

da cui si ha la tesi.

Si verifica, se si ha che

$$\langle x, y \rangle = |x||y|$$

si ha che il Δ del trinomio di II grado è nullo e dunque $t\in\mathbb{R}$ per cui $|x+ty|^2=0$ ovvero x+ty=0 $\to x=-ty$

devo mostrare che $-t \ge 0$

$$t = -\frac{\langle x, y \rangle}{|y|^2}$$

si ricorda che |y| > 0 essendo y non nullo

$$-t = \frac{|x||y|}{|y|^2} \ge 0$$

Dimostrazione. Dimostriamo la disuguaglianza triangolare, considero:

$$|x + y|^2 = \langle x + y, x + y \rangle = |x|^2 + |y|^2 + 2\langle x, y \rangle \le$$

$$\leq |x|^2 + |y|^2 + 2|\langle x, y \rangle| \leq \underbrace{|x|^2 + |y|^2 + 2|x| \bullet |y|}_{(|x| + |y|)^2}$$

estraendo e passando alle radici si ha

$$|x+y| \le |x| + |y|$$