

# **DOT Series**

AT Command Reference Guide



#### **DOT Series AT Command Guide**

Models: MTDOT-915-xxx, MTDOT-868-xxx, MTXDOT-915-xx, MTXDOT-898-xx,

Part Number: S000643, Version 3.0

#### Copyright

This publication may not be reproduced, in whole or in part, without the specific and express prior written permission signed by an executive officer of Multi-Tech Systems, Inc. All rights reserved. **Copyright © 2017 by Multi-Tech Systems, Inc.** 

Multi-Tech Systems, Inc. makes no representations or warranties, whether express, implied or by estoppels, with respect to the content, information, material and recommendations herein and specifically disclaims any implied warranties of merchantability, fitness for any particular purpose and non-infringement.

Multi-Tech Systems, Inc. reserves the right to revise this publication and to make changes from time to time in the content hereof without obligation of Multi-Tech Systems, Inc. to notify any person or organization of such revisions or changes.

#### **Trademarks and Registered Trademarks**

MultiTech, and the MultiTech logo, and MultiConnect are registered trademarks and mDot, xDot, and Conduit are a trademark of Multi-Tech Systems, Inc. All other products and technologies are the trademarks or registered trademarks of their respective holders.

#### **Legal Notices**

The MultiTech products are not designed, manufactured or intended for use, and should not be used, or sold or re-sold for use, in connection with applications requiring fail-safe performance or in applications where the failure of the products would reasonably be expected to result in personal injury or death, significant property damage, or serious physical or environmental damage. Examples of such use include life support machines or other life preserving medical devices or systems, air traffic control or aircraft navigation or communications systems, control equipment for nuclear facilities, or missile, nuclear, biological or chemical weapons or other military applications ("Restricted Applications"). Use of the products in such Restricted Applications is at the user's sole risk and liability.

MULTITECH DOES NOT WARRANT THAT THE TRANSMISSION OF DATA BY A PRODUCT OVER A CELLULAR COMMUNICATIONS NETWORK WILL BE UNINTERRUPTED, TIMELY, SECURE OR ERROR FREE, NOR DOES MULTITECH WARRANT ANY CONNECTION OR ACCESSIBILITY TO ANY CELLULAR COMMUNICATIONS NETWORK. MULTITECH WILL HAVE NO LIABILITY FOR ANY LOSSES, DAMAGES, OBLIGATIONS, PENALTIES, DEFICIENCIES, LIABILITIES, COSTS OR EXPENSES (INCLUDING WITHOUT LIMITATION REASONABLE ATTORNEYS FEES) RELATED TO TEMPORARY INABILITY TO ACCESS A CELLULAR COMMUNICATIONS NETWORK USING THE PRODUCTS.

The MultiTech products and the final application of the MultiTech products should be thoroughly tested to ensure the functionality of the MultiTech products as used in the final application. The designer, manufacturer and reseller has the sole responsibility of ensuring that any end user product into which the MultiTech product is integrated operates as intended and meets its requirements or the requirements of its direct or indirect customers. MultiTech has no responsibility whatsoever for the integration, configuration, testing, validation, verification, installation, upgrade, support or maintenance of such end user product, or for any liabilities, damages, costs or expenses associated therewith, except to the extent agreed upon in a signed written document. To the extent MultiTech provides any comments or suggested changes related to the application of its products, such comments or suggested changes is performed only as a courtesy and without any representation or warranty whatsoever.

#### **Contacting MultiTech**

#### **Knowledge Base**

The Knowledge Base provides immediate access to support information and resolutions for all MultiTech products. Visit http://www.multitech.com/kb.go.

#### **Support Portal**

To create an account and submit a support case directly to our technical support team, visit: https://support.multitech.com.

#### Support

Business Hours: M-F, 8am to 5pm CT

| Country                      | By Email                | By Phone                         |
|------------------------------|-------------------------|----------------------------------|
| Europe, Middle East, Africa: | support@multitech.co.uk | +(44) 118 959 7774               |
| U.S., Canada, all others:    | support@multitech.com   | (800) 972-2439 or (763) 717-5863 |

#### Warranty

To read the warranty statement for your product, visit www.multitech.com/warranty.go. For other warranty options, visit www.multitech.com/es.go.

#### **World Headquarters**

Multi-Tech Systems, Inc.

2205 Woodale Drive, Mounds View, MN 55112

Phone: (800) 328-9717 or (763) 785-3500

Fax (763) 785-9874

# **Contents**

| Chapter 1 – Introduction        | 8  |
|---------------------------------|----|
| AT Commands                     | ε  |
| Using Commands                  | 8  |
| Querying                        | 8  |
| Assigning New Values            | 8  |
| Terminology                     | g  |
| LoRa Topology                   | c  |
| Chapter 2 – General AT Commands |    |
| AT Attention                    |    |
| Syntax                          |    |
| Parameters and Values           |    |
| Command with Response Examples  |    |
| ATI Request ID                  |    |
| Syntax                          |    |
| Parameters and Values           |    |
| Command with Response Examples  | 11 |
| ATZ Reset CPU                   | 11 |
| Syntax                          | 11 |
| Parameters and values           | 11 |
| Command with Response Examples  | 11 |
| ATEO/1 Echo Mode                | 12 |
| Syntax                          | 12 |
| Parameters and Values           |    |
| Command with Response Examples  |    |
| ATV0/1 Verbose Mode             |    |
| Syntax                          |    |
| Parameters and Values           | 13 |
| Command with Response Examples  | 13 |
| AT&K0/3 Hardware Flow Control   |    |
| Syntax                          | 13 |
| Parameters and Values           |    |
| Command with Response Examples  |    |
| AT&F Reset to Factory Defaults  |    |
| Syntax                          |    |
| Parameters and Values           |    |
| Command with Response Examples  | 14 |
| Example US 915MHz               |    |
| Example EU 868MHz               | 16 |

| AT&W Save Configuration                        | 18 |
|------------------------------------------------|----|
| Syntax                                         | 18 |
| Parameters and Values                          |    |
| Command with Response Examples                 | 18 |
| AT+WP Wake Pin                                 | 19 |
| Syntax                                         | 19 |
| Parameters and Values                          | 19 |
| Command with Response Examples                 | 19 |
| AT+IPR Serial Speed                            | 20 |
| Syntax                                         | 20 |
| Parameters and Values                          | 20 |
| Command with Response Examples                 | 20 |
| AT+DIPR Debug Serial Speed                     | 21 |
| Syntax                                         | 21 |
| Parameters and Values                          | 21 |
| Command with Response Examples                 | 21 |
| AT+LOG Debug Log Level                         | 22 |
| Syntax                                         | 22 |
| Parameters and Values                          | 22 |
| Command with Response Examples                 | 22 |
| Chapter 3 – Network Management                 | 24 |
| Configuring                                    | 24 |
| AT+DI Device ID                                | 24 |
| AT+DFREQ Default Frequency Band                | 25 |
| AT+FREQ Frequency Band                         | 26 |
| AT+FSB Frequency Sub-Band (915MHz models only) | 27 |
| AT+PN Public Network Mode                      | 28 |
| AT+JBO Join Byte Order                         | 30 |
| AT+NJM Network Join Mode                       | 31 |
| AT+JOIN Join Network                           | 32 |
| AT+JR Join Retries                             | 33 |
| AT+JD Join Delay                               | 33 |
| Over-the-Air Activation (OTA)                  | 35 |
| AT+NI Network ID                               | 35 |
| AT+NK Network Key                              | 36 |
| AT+ENC AES Encryption                          | 37 |
| Manual Activation                              | 38 |
| AT+NA Network Address                          | 38 |
| AT+NSK Network Session Key                     | 39 |
| AT+DSK Data Session Key                        | 39 |
| AT+ULC Uplink Counter                          | 40 |

| AT+DLC Downlink Counter                    | 41 |
|--------------------------------------------|----|
| Network Joining                            | 42 |
| OTA Network Join                           | 42 |
| Auto OTA Network Join                      | 42 |
| Ensuring Network Connectivity              | 42 |
| AT+NJS Network Join Status                 | 42 |
| AT+PING Send Ping                          | 43 |
| AT+ACK Require Acknowledgment              | 44 |
| AT+NLC Network Link Check                  | 45 |
| AT+LCC Link Check Count                    | 46 |
| AT+LCT Link Check Threshold                | 47 |
| Preserving, Saving, and Restoring Sessions | 47 |
| AT+SS Save Network Session                 | 47 |
| AT+RS Restore Network Session              | 48 |
| AT+PS Preserve Session                     | 49 |
| Chapter 4 – Sending and Receiving Packets  | 50 |
| Channels and Duty Cycles                   |    |
| AT+CHM Channel Mask                        | 50 |
| AT+TXCH Transmit Channel                   | 51 |
| AT+LBT Listen Before Talk                  | 54 |
| AT+TXN Transmit Next                       | 55 |
| AT+TOA Time On Air                         | 56 |
| Configuring                                | 57 |
| AT+MAC Inject MAC Command                  | 57 |
| AT&V Settings and Status                   | 59 |
| AT+DC Device Class                         | 61 |
| AT+AP Application Port                     | 62 |
| AT+TXP Transmit Power                      | 63 |
| AT+TXI Transmit Inverted                   | 63 |
| AT+RXI Receive Signal Inverted             | 64 |
| AT+RXD Receive Delay                       | 65 |
| AT+FEC Forward Error Correction            | 66 |
| AT+CRC Cyclical Redundancy Check           | 67 |
| AT+ADR Adaptive Data Rate                  | 68 |
| AT+TXDR TX Data Rate                       | 68 |
| AT+SDR Session Data Rate                   | 70 |
| AT+REP Repeat Packet                       | 70 |
| Sending Packets                            | 71 |
| AT+SEND Send                               | 71 |
| AT+SENDB Send Binary                       | 73 |
| Receiving Packets                          | 74 |

| AT+RECV Receive Once               |    |
|------------------------------------|----|
| AT+RXO Receive Output              | 75 |
| AT+DP Data Pending                 | 75 |
| AT+TXW Transmit Wait               | 76 |
| Statistics                         | 77 |
| AT&R Reset Statistics              | 77 |
| AT&S Statistics                    | 78 |
| AT+RSSI Signal Strength            | 79 |
| AT+SNR Signal to Noise Ratio       | 79 |
| Serial Data Mode                   | 80 |
| AT+SD Serial Data Mode             | 80 |
| AT+SMODE Startup Mode              | 81 |
| AT+SDCE Serial Data Clear on Error | 82 |
| Chapter 5 – Power Management       | 84 |
| AT+SLEEP Sleep Mode                | 84 |
| Syntax                             | 84 |
| Parameters and Values              | 84 |
| Command with Response Examples     | 84 |
| AT+WM Wake Mode                    | 85 |
| Syntax                             | 85 |
| Parameters and Values              | 85 |
| Command with Response Examples     | 85 |
| AT+WI Wake Interval                | 85 |
| Syntax                             | 86 |
| Parameters and Values              | 86 |
| Command with Response Examples     | 86 |
| AT+WD Wake Delay                   | 86 |
| Syntax                             | 86 |
| Parameters and Values              | 87 |
| Command with Response Examples     | 87 |
| AT+WTO Wake Timeout                | 87 |
| Syntax                             | 87 |
| Parameters and Values              | 87 |
| Command with Response Examples     | 88 |
| AT+ANT Antenna Gain                | 88 |
| Syntax                             | 88 |
| Parameters and Values              | 88 |
| Command with Response Examples     | 88 |
| Chapter 6 – Testing and Compliance | 90 |
| AT+RXDR Receive Data Rate          | 90 |
| Syntax                             | 90 |

| Parameters and Values             | 90  |
|-----------------------------------|-----|
| Command with Response Examples    | 90  |
| EU 868MHz                         | 90  |
| AT+RXF Receive Frequency          | 91  |
| Syntax                            | 91  |
| Parameters and Values             | 91  |
| Command with Response Examples    | 91  |
| AT+RECVC Receive Continuously     | 91  |
| Syntax                            | 92  |
| Parameters and Values             | 92  |
| Command with Response Examples    | 92  |
| AT+SENDI Send on Interval         | 92  |
| Syntax                            | 92  |
| Parameters and Values             | 92  |
| Command with Response Examples    | 93  |
| AT+TXF Transmit Frequency         | 93  |
| Syntax                            | 93  |
| Parameters and Values             | 93  |
| Command with Response Examples    | 94  |
| US 915MHz                         | 94  |
| EU 868 MHz                        | 94  |
| Chapter 7 – Examples              | 95  |
| Network Configuration and Joining | 95  |
| US 915MHz - Frequency Sub-band    | 95  |
| Join Mode                         | 96  |
| Ensuring Network Connectivity     | 97  |
| Serial Mode                       | 98  |
| Peer to Peer                      | 99  |
| Configuration                     | 99  |
| Peer-to-Peer Throughput           | 10C |

# **Chapter 1 – Introduction**

## **AT Commands**

This reference provides AT Command information for the MultiTech Dot Series. These commands are available in firmware Version 2.0.x. Note that some commands are not available in older firmware versions.

- For mDot firmware upgrade instructions and to download the latest firmware, go to http://www.multitech.net/developer/software/mdot-software/mdot-firmware-upgrade/.
- For xDot firmware upgrade instructions and to download the latest firmware, go to http://www.multitech.net/developer/downloads/#xdot

# **Using Commands**

#### Querying

Some commands allow you to query the current value. Enter the command with no argument or followed by a question mark (?):

Query a value

```
AT+TXP
11
OK
```

Query a value with optional ?

```
AT+TXP?
11
OK
```

#### **Assigning New Values**

Some commands allow you to assign a new value:

To assign a new value, pass the value as an argument

```
AT+TXP=10
OK
```

To see a range of input or output values for a command, give ? at the only argument.

```
AT+TXP
AT+TXP: (0-20)
OK
```

# **Terminology**

| Term                | Description                                                  |
|---------------------|--------------------------------------------------------------|
| End device          | Mote (sensor node)                                           |
| EUI                 | Extended Unique Identifier (EUI), a 64-bit global identifier |
| Gateway             | Concentrator or base station                                 |
| Uplink              | In the direction from end device to network server           |
| Downlink            | In the direction from network server to end device           |
| ISM                 | Industrial, scientific and medical radio bands               |
| Frequencies         | US: 902-928MHz ISM band (915MHz)                             |
|                     | EU: 863-870MHz ISM band (868MHz)                             |
| Channel frequencies | Physical layer                                               |
|                     | EU 868MHz  868,100,000Hz  868,300,000Hz  868,500,000Hz       |
| Data rates          | 300bps to 50Kbps                                             |
| ОТА                 | Over the air                                                 |

# **LoRa Topology**

A LoRa network is usually a star or star of stars topology where gateways relay messages between end devices and a central network server. Gateways, like MultiTech's Conduit, may contain the network server. However, the Conduit can be configured to work with an external network server. Gateways communicate with a network server over standard IP connections..

# **Chapter 2 – General AT Commands**

# **AT** Attention

Attention, used to verify the COM channel is working. AT required at the beginning of every command.

#### **Syntax**

| Command |
|---------|
| AT      |
| help AT |
| AT=?    |

#### **Parameters and Values**

None

#### **Command with Response Examples**

ΑT

OK

help AT

AT: Attention

OK

AT=?

AT: NONE

OK

# **ATI** Request ID

Request ID returns product and software identification information.

#### **Syntax**

| Command  |  |
|----------|--|
| ATI      |  |
| help ATI |  |
| ATI=?    |  |

#### **Parameters and Values**

None

# **Command with Response Examples**

ATI

MultiTech mDot
Firmware: 1.0.0-preview
Library: 1.0.0-preview

OK
help ATI

ATI: Request Identification

OK

ATI=?

ATI: NONE

# **ATZ** Reset CPU

Resets the CPU, the same way as pressing the reset button. The program is reloaded from flash and begins execution at the main function. Reset takes about 3 seconds.

#### **Syntax**

OK



#### **Parameters and values**

None

### **Command with Response Examples**

ATZ

OK

help ATZ

ATZ: Reset the CPU

OK

ATZ=?

ATZ: NONE

OK

# ATEO/1 Echo Mode

Enable or disable command mode echo.

#### **Syntax**

| Command                        |
|--------------------------------|
| ATE= <parameter1></parameter1> |
| help ATE                       |
| ATE=?                          |

### **Parameters and Values**

#### Parameter1

0 Disables echo

1 Enables echo (Default)

# **Command with Response Examples**

ATE0

OK

ATE1

OK

# ATV0/1 Verbose Mode

Enable or disable verbose mode. Affects the verbosity of command query responses. For example, without verbose mode, AT+IPR? responds with 115200. With verbose mode AT+IPR? responds with Serial Baud Rate: 115200. Does not affect OK responses.

# **Syntax**

| Command                        |
|--------------------------------|
| ATV= <parameter1></parameter1> |
| help ATV                       |
| ATV=?                          |

#### **Parameters and Values**

#### Parameter1

O Disables verbose mode (Default)

1 Enables verbose mode

#### **Command with Response Examples**

ATV0

OK

ATV1

OK

# AT&K0/3 Hardware Flow Control

Enable or disable hardware flow control. Hardware flow control is useful in serial data mode to keep from overflowing the input buffers.

This uses pins NCTS\_DIO7(CTS) and RTS\_AD6\_DIO6(RTS). When in serial data mode, use hardware flow control to prevent buffer overflow. (Serial data mode is AT+SMODE=1 or AT+SD.) Changes CTS signal to low with &KO and to high with &K3.

**Note:** RTS of the dot pinout is an output. When used as a DCE device, connect this RTS pin to the CTS of a connected DTE device. The dot RTS pin is an input and connects to CTS of a DTE interface.

#### **Syntax**

| Command                         |
|---------------------------------|
| AT&K= <parameter1></parameter1> |
| help AT&K                       |
| AT&K=?                          |

#### **Parameters and Values**

#### Parameter1

O Disables hardware flow control

3 Enables hardware flow control

# **Command with Response Examples**

AT&KO

OK

AT&K3

```
OK

AT&K?
3

OK

help AT&K

AT&K: AT&K0: disable, AT&K3: enable

OK
```

# **AT&F** Reset to Factory Defaults

Changes the current settings to the factory defaults, but does not store them. To store the default settings, use with AT&W. Otherwise, resetting or power cycling the device restores the previous settings.

#### **Syntax**

| Command   |
|-----------|
| AT&F      |
| help AT&F |
| AT&F=?    |

#### **Parameters and Values**

None

#### **Command with Response Examples**

```
AT&F

OK

help AT&F

AT&F: Reset current configuration to factory defaults

OK

AT&F=?

AT&F: NONE

OK
```

### **Example US 915MHz**

AT&F

OK

AT&V

Device ID: be:7a:00:00:00:00:07:7a

Frequency Band: FB 915

Frequency Sub Band: 0

Public Network: off

Start Up Mode: COMMAND
Network Address: 00000000

Network ID: 2b:7e:15:16:28:ae:d2:a5

Network ID Passphrase:

Network Key: 2b.7e.15.16.28.ae.d2.a6.ab.f7.15.88.09.cf.4f.45

Network Key Passphrase:

Network Join Mode: OTA
Network Join Retries: 2

Preserve Session: off

Join Byte Order: LSB

Join Delay: 1

App Port: 1

Link Check Threshold: off
Link Check Count: off

Error Correction: 1 bytes

ACK Retries: off

Packet Repeat: 1

Encryption: on

CRC: on

Adaptive Data Rate: off

Command Echo: on

Verbose Response: off

Tx Frequency: 0

Tx Data Rate: DR0 - SF10BW125

Tx Power: 11
Tx Antenna Gain: 3
Tx Wait: on
Tx Inverted Signal: off
Rx Delay: 1 s

Rx Inverted Signal: on

Rx Output Style: HEXADECIMAL

Debug Baud Rate: 115200
Serial Baud Rate: 115200
Serial Flow Control: off

Serial Clear On Error: on

Wake Mode: INTERVAL

Wake Interval: 10 s
Wake Delay: 100 ms
Wake Timeout: 20 ms
Wake Pin: DI8
Log Level: 0

OK

#### **Example EU 868MHz**

AT&F

OK

AT&V

Device ID: be:7a:00:00:00:07:7a

Frequency Band: FB 868

Frequency Sub Band: 0
Public Network: off

Start Up Mode: COMMAND
Network Address: 00000000

Network ID: 2b:7e:15:16:28:ae:d2:a5

Network ID Passphrase:

Network Key: 2b.7e.15.16.28.ae.d2.a6.ab.f7.15.88.09.c

f.4f.45

Network Key Passphrase:

Network Session Key: 00.00.00.00.00.00.00.00.00.00.00.00.00

0.00.00

Data Session Key: 00.00.00.00.00.00.00.00.00.00.00.00.00

0.00.00

Network Join Mode: OTA
Network Join Retries: 2

Preserve Session: off
Join Byte Order: LSB
Join Delay: 1

Join Delay: 1
App Port: 1

Link Check Threshold: off
Link Check Count: off

Error Correction: 1 bytes

ACK Retries: off
Packet Repeat: 1
Encryption: on

CRC: on
Adaptive Data Rate: off
Command Echo: on

Verbose Response: off

Tx Frequency: 0

Tx Data Rate: DRO - SF12BW125

Tx Power: 11

Tx Antenna Gain: 3

Tx Wait: on

Tx Inverted Signal: off

Rx Delay: 1 s

Rx Output Style: HEXADECIMAL

Debug Baud Rate: 115200 Serial Baud Rate: 115200

Serial Flow Control: off
Serial Clear On Error: on

Wake Mode: INTERVAL

Wake Interval: 10 s
Wake Delay: 100 ms
Wake Timeout: 20 ms
Wake Pin: DI8
Log Level: 0

OK

# **AT&W** Save Configuration

Writes all configuration settings displayed in AT&V to flash memory.

### **Syntax**

| Command   |
|-----------|
| AT&W      |
| help AT&W |
| AT&W=?    |

#### **Parameters and Values**

None

# **Command with Response Examples**

AT&W

OK

help AT&W

AT&W: Save configuration to flash memory

OK

AT&W=?

AT&W: NONE

OK

#### AT+WP **Wake Pin**

Sets the pin that the end device monitors if wake mode is set to interrupt mode. The end device wakes if a positive going edge is detected on the wake pin. Upon waking, it waits +WD amount of time for an initial character then +WTO amount of time for each additional character.

#### **Syntax**

| Command                          |
|----------------------------------|
| AT+WP= <parameter1></parameter1> |
| help AT+WP                       |
| AT+WP?                           |
| AT+WP=?                          |

#### **Parameters and Values**

#### Parameter1

1 2 AD2\_DIO2

DIN

- 3 AD3\_DIO3
- 4 AD4\_DIO4
- 5 ASSOCIATE AD5 DIO5
- 6 RTS\_AD6\_DIO6 (Not available with AT&K3)
- 7 NCTS DIO7 (Not available with AT&K3)
- 8 NDTR\_SLEEPRQ\_DI8 (Default)

```
help AT+WP
AT+WP: Wakeup DIO pin of sleep mode (1-8) (default: DI8, 1:DIN), deep-
sleep uses DIO7
OK
AT+WP?
DI8
OK
AT+WP=?
AT+WP: (1-8)
OK
```

# AT+IPR Serial Speed

Sets serial baud rate for interface on header pins 2 and 3. Changes to this setting take effect after a save and reboot of the Dot.

#### **Syntax**

| Command                           |
|-----------------------------------|
| AT+IPR= <parameter1></parameter1> |
| help AT+IPR                       |
| AT+IPR?                           |
| AT+IPR=?                          |

# **Parameters and Values**

```
Parameter1

1200

2400

4800

9600

19200

38400

57600

115200 (Default)

230500
```

460800 921600

# **Command with Response Examples**

```
AT+IPR
115200

OK

help AT+IPR
AT+IPR: Set serial baud rate, default: 115200

OK

AT+IPR?
115200

OK
```

20

```
AT+IPR=?
AT+IPR: (2400,4800,9600,19200,38400,57600,115200,230400,460800,921600)
OK
```

# AT+DIPR Debug Serial Speed

Sets debug serial baud rate for interface on DEBUG header pins 30 and 31. Changes to this setting take effect after a save and reboot of the Dot. power-cycle or reset.

#### **Syntax**

| Command                            |
|------------------------------------|
| AT+DIPR= <parameter1></parameter1> |
| help AT+DIPR                       |
| AT+DIPR?                           |
| AT+DIPR=?                          |

#### **Parameters and Values**

# Parameter1 2400

4800

9600

19200

38400

57600

115200 (Default)

230500

460800

921600

```
AT+DIPR
115200

OK

help AT+DIPR
AT+DIPR: Set debug serial baud rate, default: 115200

OK
```

```
AT+DIPR?
115200

OK

AT+DIPR=?
AT+DIPR: (1200, 2400, 4800, 9600, 19200, 38400, 57600, 115200, 230400, 460800, 921600)

OK
```

# AT+LOG Debug Log Level

Sets the debug message logging level. Messages are output on the debug port. Higher settings log more messages.

#### **Syntax**

| Command                           |  |
|-----------------------------------|--|
| AT+LOG= <parameter1></parameter1> |  |
| help AT+LOG                       |  |
| AT+LOG?                           |  |
| AT+LOG=?                          |  |

#### **Parameters and Values**

#### Parameter1

Off – No debug messages (Default)
 FATAL – Output FATAL debug messages.
 ERROR – Outputs ERROR and FATAL debug messages
 WARNING – Outputs WARNING and all lower level debug messages
 INFO – Outputs INFO and all lower level debug messages
 DEBUG – Output DEBUG and all lower level debug messages
 TRACE – Output TRACE and all lower level debug messages

```
AT+LOG=0

OK

help AT+LOG

AT+LOG: Enable/disable debug logging. (0: off, 1:Fatal - 6:Trace)

OK

AT+LOG?
```

0

OK

AT+LOG=?
AT+LOG: (0-6)

OK

# **Chapter 3 – Network Management**

# **Configuring**

#### AT+DI Device ID

The device ID is an EUI. The EUI is programmed at the factory. This command allows you to query the EUI, but not change it.

#### **Syntax**

| Command    |
|------------|
| AT+DI      |
| help AT+DI |
| AT+DI?     |
| AT+DI=?    |

#### **Parameters and Values**

None

```
AT+DI
00:80:00:00:00:00:00:06

OK

help AT+DI
AT+DI: Device EUI-64 (MSB) (unique, set at factory) (8 bytes)

OK

AT+DI?
00:80:00:00:00:00:00:06

OK

AT+DI=?
AT+DI: (hex:8)

OK
```

# AT+DFREQ Default Frequency Band

Use to query the factory default frequency band/channel plan. This is not configurable. It is either 915MHz or 868MHz.

#### **Syntax**

# Command help AT+DFREQ AT+DFREQ?

#### **Parameters and Values**

None

#### **Command with Response Examples**

```
help AT+DFREQ=?
AT+DFREQ: (NONE, US915, AU915, EU868, AS923, KR920, AS923-JAPAN)
OK
AT+DFREQ?
US915
OK
AT+DFREQ?
EU868
OK
AT+DFREQ?
EU868
OK
AT+DFREQ?
AU915
OK
AT+DFREQ?
AS923
OK
AT+DFREQ?
KR920
OK
AT+DFREQ?
AS923-JAPAN
```

OK

AT+DFREQ? NONE

OK

This information also appears in the AT&V results.

### AT+FREQ Frequency Band

Use to query the current frequency band. This is not configurable. It is either 915MHz or 868MHz.

#### **Syntax**

| Co | ommand      |
|----|-------------|
| ΑΊ | T+FREQ      |
| he | elp AT+FREQ |
| ΑΊ | T+FREQ?     |
| АΊ | T+FREQ=?    |

#### **Parameters and Values**

None

#### **Command with Response Examples**

```
AT+FREQ

US915

OK

AT+FREQ

KR920

OK

help AT+FREQ

AT+FREQ: Configured Frequency Band '868' or '915'

OK

AT+FREQ?

US915

OK

AT+FREQ?

AT+FREQ?

OK
```

26

# AT+FSB Frequency Sub-Band (915MHz models only)

Configures the frequency sub-band for 915MHz models. This enables hybrid mode for private network channel management.

Note: AT+TXCH lists channels used in the current AT+FSB setting.

#### **Channel Details (AT+PN=0)**

| AT+FSB | Uplink Channels                | Downlink on Rx1 and Rx2 |
|--------|--------------------------------|-------------------------|
| 1      | 902.3-903.7 - 125k, 903.0 500k | 923.3 kHz               |
| 2      | 903.9-905.3 - 125k, 904.6 500k | 923.9 kHz               |
| 3      | 905.5-906.9 - 125k, 906.2 500k | 924.5 kHz               |
| 4      | 907.1-908.5 - 125k, 907.8 500k | 925.1 kHz               |
| 5      | 908.7-910.1 - 125k, 909.4 500k | 925.7 kHz               |
| 6      | 910.3-911.7 - 125k, 911.0 500k | 926.3 kHz               |
| 7      | 911.9-913.3 - 125k, 912.6 500k | 926.9 kHz               |
| 8      | 913.5-914.9 - 125k, 914.2 500k | 927.5                   |

Note: Rx1 and Rx2 Downlink on 923.3 - 927.5 depending on uplink channel used (channel / 8)

#### **Channel Details (AT+PN=1)**

| AT+FSB | Uplink Channels    | Downlink channels on Rx1 |
|--------|--------------------|--------------------------|
| 1      | 902.3-903.7 - 125k | - 923.3-927.5 - 500kHz   |
| 2      | 903.9-905.3 - 125k |                          |
| 3      | 905.5-906.9 - 125k |                          |
| 4      | 907.1-908.5 - 125k |                          |
| 5      | 908.7-910.1 - 125k |                          |
| 6      | 910.3-911.7 - 125k |                          |
| 7      | 911.9-913.3 - 125k |                          |
| 8      | 913.5-914.9 - 125k |                          |

Note: Rx1 Downlink on 923.3 - 927.5 depending on uplink channel used (channel / 8) Rx2 Downlink on 923.3

#### **Syntax**

| Command                           |
|-----------------------------------|
| AT+FSB= <parameter1></parameter1> |
| help AT+FSB                       |
| AT+FSB?                           |
| AT+FSB=?                          |

#### **Parameters and Values**

#### Parameter1

- O Allows channel hopping of all 64 channels. (Default)
- Enter a value from 1-8 to configure the end device to use one set of eight channels out of 64 possible. This must match the gateway settings.

#### **Command with Response Examples**

```
AT+FSB

O

OK

help AT+FSB
AT+FSB: Set the frequency sub-band for US 915, (0:ALL, 1-8)

OK

AT+FSB?

O

OK

AT+FSB=?
AT+FSB: (0-8)

OK
```

# **AT+PN** Public Network Mode

Configures the end device to function on either a public or private LoRa network.

When public network is enabled, the device functions as a LoRaWAN device as specified in LoRa Alliance documentation.:

- Syncword 0x34 is used
- Join windows open at the default 5/6 seconds after end of transmission for OTA
- Set AT+FSB=1-8 to enable hybrid functionality, Rx windows open at the default 1/2 seconds after end of transmission.

When not enabled, (default) the device functions on a private network with the following modifications, adjusted for the local network server available on the Conduit:

- Syncword 0x12 is used
- Join windows open at 1/2 seconds after end of transmission for OTA
- Rx1 and Rx2 windows are fixed to each AT+FSB setting (see AT+FSB)

#### **Syntax**

#### **Command**

AT+PN=<parameter1>

| Command    |
|------------|
| help AT+PN |
| AT+PN?     |
| AT+PN=?    |

#### **Parameters and Values**

#### Parameter1

O Disable public network mode (Default)

1 Enable public network mode.

#### **Command with Response Examples**

```
AT+PN=0
OK
help AT+PN
AT+PN: Enable/disable public network mode. (0: off, 1: on)
OK
AT+PN?
0
OK
AT+PN=?
AT+PN=?
AT+PN: (0,1)
OK
```

#### **Public Mode Example**

```
US 64 channel
AT+FSB=0
(AT+PN=1) sets the SyncWord to 0x34 and uses join rx windows of 5/6 seconds.
Downlink channel is (uplink_channel modulo 8)
OK
```

#### **Public Hybrid Mode Example**

```
US 8 channel AT+FSB=(1 - 8) (AT+PN=1) sets the SyncWord to 0x34 and uses join rx windows of 5/6 seconds. Downlink channel is (uplink channel modulo 8)
```

OK

#### **Private Hybrid Mode Example**

```
AT+FSB=(1 - 8) (AT+PN=0) sets the SyncWord to 0x12 and uses join rx windows of 1/2 seconds. Downlink channel is (uplink_channel / 8)
```

OK

# AT+JBO Join Byte Order

Sets the byte order (LSB or MSB first) in which the device EUI is sent to the gateway in a join request.

**Note:** Used only for connecting to non-compliant network servers.

#### **Syntax**

| Command                           |  |
|-----------------------------------|--|
| AT+JBO= <parameter1></parameter1> |  |
| help AT+JBO                       |  |
| AT+JBO?                           |  |
| AT+JBO=?                          |  |

#### **Parameters and Values**

#### Parameter1

0 LSB first (Default)

1 MSB first

#### **Command with Response Examples**

```
AT+JBO=0

OK

help AT+JBO
AT+JBO: Send EUI's in join request with configured byte ordering (0:LSB,1:MSB)

OK

AT+JBO?

O

OK

AT+JBO=?
AT+JBO: (0:LSB,1:MSB)
```

30

OK

#### AT+NJM Network Join Mode

Controls how the end device establishes communications with the gateway.

- When AT+NJM=2 (AUTO\_OTA) and AT+PS is set to 1 the session is not be defaulted on reset or power.
- When AT+NJM=1 (OTA) AT+PS will not be applied and session stays in flash in either case.

#### **Syntax**

| Command                           |
|-----------------------------------|
| AT+NJM= <parameter1></parameter1> |
| help AT+NJM                       |
| AT+NJM                            |
| AT+NJM=?                          |

#### **Parameters and Values**

#### Parameter1

- Manual configuration
   OTA network join (Default)
   Auto OTA network join on start up
   CAUTION: Setting +NJM=2 causes the Dot to join immediately. Configure network settings and OTA mode before setting to AUTO\_OTA mode.
- 3 Peer-to-peer mode

```
AT+NJM=1
OK
help AT+NJM
AT+NJM: 0: Manual configuration, 1: OTA Network Join, 2: Auto OTA Network Join on start up, 3: Peer-to-Peer (default: 1)
OK
AT+NJM?
1
OK
AT+NJM=?
AT+NJM=?
AT+NJM: (0-3)
```

#### AT+JOIN Join Network

Join network. For US915 and EU868 models +NI, +NK must match gateway settings in order to join. US915 must also match +FSB setting.

#### **Syntax**

| Command      |
|--------------|
| AT+JOIN      |
| help AT+JOIN |
| AT+JOIN=?    |

#### **Parameters and Values**

None

If Parameter1 is set to 1, a character string up to 128 characters.

#### **Error Messages**

- Failed to join network No join response received from gateway.
- Join backoff End device must wait for next available free channel to join. Issue AT+TXN to get the wait time.

```
AT+JOIN
Successfully joined network
OK
AT+JOIN
Join Error - Failed to join network
ERROR
AT+JOIN
Join Error - Join backoff
ERROR
help AT+JOIN
AT+JOIN: Join network, provide argument of '1' to force join (acquire network
address and session keys)
OK
AT+JOIN=?
AT+JOIN: (force:1)
OK
```

#### **AT+JR Join Retries**

Enabling this setting allows the dot to search each sub-band when trying to join the Conduit when in AUTO\_OTA mode. The dot can then recover if the Conduit changes sub-band after it detects the lost network connection with AT+LCT used with AT+LCC or AT+ACK. The dot attempts to join on the configured AT+FSB the number of join retries, if unsuccessful it attempts on the next AT+FSB setting.

#### **Syntax**

| Command                          |
|----------------------------------|
| AT+JR= <parameter1></parameter1> |
| help AT+JR                       |
| AT+JR?                           |
| AT+JR=?                          |

#### **Parameters and Values**

#### Parameter1

0 Disable

1-255 Seconds enabled (Default is 2)

#### **Command with Response Examples**

```
AT+JR=5

OK

help AT+JR

AT+JR: US915 AUTO_OTA Frequency sub-band search retries (0:disable,1-255:attempts)

OK

AT+JR?

5

OK

AT+JR?

AT+JR: (0-255)
```

# AT+JD Join Delay

Allows the dot to use non-default join receive windows, if required by the network it is attempting to connect to. Initiating a join request opens a receive window to listen for the response. This command allows you to alter the default timing of the window.

#### **Syntax**

| Command                          |
|----------------------------------|
| AT+JD= <parameter1></parameter1> |
| help AT+JD                       |
| AT+JD?                           |
| AT+JD=?                          |

#### **Parameters and Values**

#### Parameter1

1-15 seconds (Default is 1)

```
AT+JD=1

OK

help AT+JD
AT+JD: Number of seconds before receive windows are opened for join (1 - 15)

OK

AT+JD?
1

OK

AT+JD=?
AT+JD: (1-15)
```

# **Over-the-Air Activation (OTA)**

LoRa allows OTA activation between a device and a network to generate session keys based on a pre-shared key. During OTA, the device exchanges Device and Network IDs with the server. If the Network ID matches the server's configuration, session keys are generated using the pre-shared keys and random nonce values from the device and server. Then, a join accept message is sent to the device with the server's random nonce value encrypted with the pre-shared key. After this initial exchange, only session keys are used for subsequent message encryption.

To use OTA, configure the network ID and network key and enable encryption.

#### AT+NI Network ID

Configures network EUI/Name. (App EUI in LoRaMac.)

#### **Syntax**

| Command                                                    |
|------------------------------------------------------------|
| AT+NI= <parameter1>,<parameter2></parameter2></parameter1> |
| help AT+NI                                                 |
| AT+NI?                                                     |
| AT+NI=?                                                    |

#### **Parameters and Values**

#### Parameter1

- O Second parameter is a hex key.
- 1 Second parameter is a string up to 128 characters long.

#### Parameter2

16 bytes of hex data using a colon (:) to separate each byte from the next byte.

If Parameter1 is set to 1, a character string up to 128 characters.

```
AT+NI=0,00:11:22:33:44:55:66:77
Set Network ID: 00.11.22.33.44.55.66.77

OK

AT+NI?
00:11:22:33:44:55:66:77

OK

AT+NI=1,This string can be up to 128 characters long.
Set Network Name: This string can be up to 128 characters long.
OK

help AT+NI
```

```
AT+NI: Configured Network EUI/Name (App EUI in LoraMac) AT+NI=0,hex AT+NI=1,network_name (Net ID = crc64(network_name)) (8 bytes)

OK

AT+NI?
61:63:4d:b3:8a:2b:86:22

Passphrase: 'This string can be up to 128 characters long.'

OK

AT+NI=?
AT+NI=?
AT+NI: (0,(hex:8)),(1,(string:128))

OK
```

# AT+NK Network Key

Configures network key/passphrase. (App key in LoRaMac.)

#### **Syntax**

| Command                                                    |
|------------------------------------------------------------|
| AT+NK= <parameter1>,<parameter2></parameter2></parameter1> |
| help AT+NK                                                 |
| AT+NK?                                                     |
| AT+NK=?                                                    |

#### **Parameters and Values**

#### Parameter1

- O Second parameter is a hex key.
- 1 Second parameter is a string up to 128 characters long.

#### Parameter2

16 bytes of hex data using a colon (:) to separate each byte from the next byte.

If Parameter1 is set to 1, a character string up to 128 characters.

```
AT+NK=0,88:99:AA:BB:CC:DD:EE:FF:00:11:22:33:44:55:66:77
Set Network Key: 88.99.aa.bb.cc.dd.ee.ff.00.11.22.33.44.55.66.77
OK
AT+NK?
88.99.aa.bb.cc.dd.ee.ff.00.11.22.33.44.55.66.77
OK
```

```
AT+NK=1, This String can be up to 128 characters long.

Set Network Passphrase: This String can be up to 128 characters long.

OK

help AT+NK
AT+NK: Configured network key/passphrase (App Key in LoraMac) ## AT+NK=0, hex AT+NK=1, passphrase (Net key = cmac(passphrase)) (16 bytes)

OK

AT+NK?
e1.07.15.95.06.50.46.80.89.cf.2e.6e.2b.ea.f9.cf
Passphrase: 'This String can be up to 128 characters long.'

OK

AT+NK=?
AT+NK=?
AT+NK: (0, (hex:16)), (1, (string:128))

OK
```

# **AT+ENC AES Encryption**

Enables or disables AES encryption of payload data.

Note: Must be enabled for use with nearly all network servers."

# **Syntax**

| Command                           |  |
|-----------------------------------|--|
| AT+ENC= <parameter1></parameter1> |  |
| help AT+ENC                       |  |
| AT+ENC?                           |  |
| AT+ENC=?                          |  |

# **Parameters and Values**

# Parameter1

0 Disabled

1 Enabled (Default)

# **Command with Response Examples**

AT+ENC=1

OK

help AT+ENC

AT+ENC: Enable/disable AES encryption (0: off, 1: on)

```
OK
AT+ENC?

OK
AT+ENC=?
AT+ENC: (0,1)
OK
```

# **Manual Activation**

If supported by the network server, the Dot can be activated manually. To do this, configure the network address, network session key, and data session key.

# **AT+NA Network Address**

Sets network address in MANUAL join mode, the server will assign an address in OTA modes.

# **Syntax**

| Command                          |
|----------------------------------|
| AT+NA= <parameter1></parameter1> |
| help AT+NA                       |
| AT+NA?                           |
| AT+NA=?                          |

# **Parameters and Values**

#### Parameter1

4 bytes of hex data using a colon (:) to separate each byte from the next byte.

# **Command with Response Examples**

```
AT+NA=01:fa:b0:1c
Set Network Address: 01:fa:b0:1c

OK
help AT+NA
AT+NA: Network address (devAddr in LoraMac) (4 bytes)

OK

AT+NA?
01:fa:b0:1c

OK
```

38

```
AT+NA=?
AT+NA: (hex:4)
OK
```

# **AT+NSK** Network Session Key

Sets network session key in MANUAL join mode, will be automatically set in OTA modes..

# **Syntax**

| Command                           |
|-----------------------------------|
| AT+NSK= <parameter1></parameter1> |
| help AT+NSK                       |
| AT+NSK?                           |
| AT+NSK=?                          |

### **Parameters and Values**

#### Parameter1

16 bytes of hex data using a colon (:) to separate each byte from the next byte.

# **Command with Response Examples**

```
AT+NSK=00:11:22:33:44:55:66:77:88:99:AA:BB:CC:DD:EE:FF
Set Network Session Key: 00.11.22.33.44.55.66.77.88.99.aa.bb.cc.dd.ee.ff
OK
help AT+NSK
AT+NSK: Network session encryption key (16 bytes)
OK
AT+NSK?
00.11.22.33.44.55.66.77.88.99.aa.bb.cc.dd.ee.ff
OK
AT+NSK=?
AT+NSK=?
AT+NSK: (hex:16)
OK
```

# AT+DSK Data Session Key

Sets data session key in MANUAL join mode, will be automatically set in OTA modes. Used for AES-128 encryption of transferred data.

# **Syntax**

| Command                           |
|-----------------------------------|
| AT+DSK= <parameter1></parameter1> |
| help AT+DSK                       |
| AT+DSK?                           |
| AT+DSK=?                          |

# **Parameters and Values**

### Parameter1

16 bytes of hex data using a colon (:) to separate each byte from the next byte.

# **Command with Response Examples**

```
AT+DSK=FF:EE:DD:CC:BB:AA:99:88:77:66:55:44:33:22:11:00
Set Data Session Key: ff.ee.dd.cc.bb.aa.99.88.77.66.55.44.33.22.11.00
OK
help AT+DSK
AT+DSK: Data session encryption key (16 bytes)
OK
AT+DSK?
ff.ee.dd.cc.bb.aa.99.88.77.66.55.44.33.22.11.00
OK
AT+DSK: (hex:16)
OK
```

# **AT+ULC** Uplink Counter

A device using MANUAL join mode a network server may reject uplink packets, if they do not have the correct counter value. This setting is available for an application to manage this session parameter. Otherwise, use AT+SS and AT+RS to save this setting to flash in any join mode.

# **Syntax**

| Command                           |
|-----------------------------------|
| AT+ULC= <parameter1></parameter1> |
| help AT+ULC                       |
| AT+ULC?                           |
| AT+ULC=?                          |

# **Parameters and Values**

### Parameter1

0-4294967295 (Default is 1).

# **Command with Response Examples**

```
AT+ULC=1

OK

help AT+ULC
AT+ULC: Get or set the uplink counter for the next packet

OK

AT+ULC?

1

OK

AT+ULC=?
AT+ULC=?
AT+ULC: (0-4294967295)

OK
```

# AT+DLC Downlink Counter

A device using MANUAL join mode, it may reject downlink packets if they do not have the correct counter value. This setting is available for an application to manage this session parameter. Otherwise, use AT+SS and AT+RS to save this setting to flash in any join mode.

# **Syntax**

| Co | ommand                           |
|----|----------------------------------|
| Α¯ | T+DLC= <parameter1></parameter1> |
| he | elp AT+DLC                       |
| Α  | T+DLC?                           |
| Α  | T+DLC=?                          |

# **Parameters and Values**

# Parameter1

0-4294967295 (Default is 1).

# **Command with Response Examples**

AT+DLC=0

OK

```
help AT+DLC
AT+DLC: Get or set the downlink counter

OK
AT+DLC?

O

OK
AT+DLC?

AT+DLC=?
AT+DLC: (0-4294967295)
```

# **Network Joining**

# **OTA** Network Join

OK

After configuring the network ID and network key on the mDot, send a join packet with the device ID, network ID, and a dev-nonce value. The network server checks the network ID and assigns an address, which is returned with the network ID and app-nonce value. Session keys are generated independently on the device and network server using the network address, network ID, nonce-values, and network key.

- AT+NJM=1 Configure mDot for OTA join mode (default).
- AT+JOIN Send a join request to the server.
- AT+NJS Display current join status 0:not joined, 1:joined.

# **Auto OTA Network Join**

After a successful join, the session information is stored in flash. This session information is restored when waking from sleep. If the device is reset or the power cycled, session information is reset and a join is attempted. The session information is valid as long as the Dot checks in before the Conduit's lease-time expires.

- AT+NJM=2 Configure Dot for AUTO OTA join mode.
- AT+JOIN Reloads the session info from flash.
- AT+JOIN=1 Force Dot to perform OTA join regardless for saved session.

# **Ensuring Network Connectivity**

# **AT+NJS** Network Join Status

Displays the last known network join state, which helps determine if communication has been lost.

# **Syntax**

| Command                           |
|-----------------------------------|
| AT+NJS= <parameter1></parameter1> |
| help AT+NJS                       |
| AT+NJS?                           |

# Command

AT+NJS=?

# **Parameters and Values**

### Parameter1

0 Not joined.

1 Joined

# **Command with Response Examples**

```
AT+NJS
0

OK

help AT+NJS
AT+NJS: 0: Not joined, 1: Joined

OK

AT+NJS?
0

OK

AT+NJS?
0

AT+NJS: (0,1)
```

# AT+PING Send Ping

Sends a ping to the gateway. The gateway responds with a pong containing RSSI and SNR, which the end device displays. RSSI ranges from -140dB to -0dB and SNR ranges from -20dBm to 20dBm.

# **Syntax**

OK

# Command AT+PING help AT+PING AT+PING=?

# **Parameters and Values**

None

# **Command with Response Examples**

```
AT+PING -31,10.0
```

```
OK

AT+PING
Network Not Joined

ERROR

help AT+PING
AT+PING: Sends ping and displays the servers received rssi and snr

OK

AT+PING=?
AT+PING: (-140-0), (-20.0-20.0)
```

# AT+ACK Require Acknowledgment

The maximum number of times the end device tries to retransmit an unacknowledged packet. Options are from 1 to 8.

**Note:** When ACKs are enabled, the AT+SEND command does not return until the ACK is received or attempts are exhausted.

# **Syntax**

OK

| Command                           |
|-----------------------------------|
| AT+ACK= <parameter1></parameter1> |
| help AT+ACK                       |
| AT+ACK?                           |
| AT+ACK=?                          |

# **Parameters and Values**

### Parameter1

O ACKs are not required. (Default)

1-8 The maximum number of attempts without an acknowledgment.

# **Command with Response Examples**

```
AT+ACK=0
```

OK

```
help AT+ACK
AT+ACK: Enable to require send acknowledgment (0: off, N: number of attempts until ACK recevied)
```

```
OK
AT+ACK?
0
OK
AT+ACK=?
AT+ACK: (0-8)
```

# AT+NLC Network Link Check

Performs a network link check. The first number in the response is the dBm level above the demodulation floor (not to be confused with the noise floor). This value is from the perspective of the signal sent from the end device and received by the gateway. The second number is the count of gateways reporting the link-check request to the network server.

# **Syntax**

OK

| Command     |
|-------------|
| AT+NLC      |
| help AT+NLC |
| AT+NLC?     |
| AT+NLC=?    |

# **Parameters and Values**

None

# **Command with Response Examples**

```
AT+NLC
11,2

OK

AT+NLC
No response from network

ERROR

AT+NLC
Network Not Joined

ERROR
```

help AT+NLC

AT+NLC: Perform network link check, displays dBm above floor, number of gateways in range and optional packet payload if received

OK

```
AT+NLC=?
AT+NLC: (-20.0-20.0),(1-)
```

OK

# AT+LCC Link Check Count

Performs periodic connectivity checking. This feature is an alternative to enabling ACK for all packets in order to detect when the network is not available or the session information has been reset on the server.

# **Syntax**

|  | Command                           |
|--|-----------------------------------|
|  | AT+LCC= <parameter1></parameter1> |
|  | help AT+LCC                       |
|  | AT+LCC?                           |
|  | AT+LCC=?                          |

### **Parameters and Values**

#### Parameter1

O Disabled (Default)

1-255 Number of packets sent before a link check is performed. Link checks are not be sent if ACKs are

enabled.

# **Command with Response Examples**

```
AT+LCC=3

OK

help AT+LCC
AT+LCC: Set number of packets between each link check if ACK's are disabled

OK

AT+LCC?

3

OK

AT+LCC?

AT+LCC: (0:off,N:Packets (max 255))
```

46

OK

# AT+LCT Link Check Threshold

Threshold for the number of consecutive link check or ACK failures to tolerate before setting the join status to not joined.

# **Syntax**

| Command                           |
|-----------------------------------|
| AT+LCT= <parameter1></parameter1> |
| help AT+LCT                       |
| AT+LCT?                           |
| AT+LCT=?                          |

# **Parameters and Values**

### Parameter1

0 Disabled (Default)

1-255 Number of failures before not joined status is set

# **Command with Response Examples**

```
AT+LCT=3

OK

help AT+LCT
AT+LCT: Set threshold for number of link check or ACK failures to tolerate,
(0: off, N: number of failures)

OK

AT+LCT?
3

OK

AT+LCT=?
AT+LCT=: (0-255)
```

# **Preserving, Saving, and Restoring Sessions**

# AT+SS Save Network Session

Saves the network session information (join) over resets allowing for a session restore (AT+RS) without requiring a join. This command should be issued after the Dot has joined. See AT+PS if using auto join mode.

# **Syntax**

| Command    |
|------------|
| AT+SS      |
| help AT+SS |
| AT+SS?     |
| AT+SS=?    |

# **Parameters and Values**

None

# **Command with Response Examples**

AT+SS

OK

help AT+SS

AT+SS: Save network session info to flash

OK

AT+SS=?
AT+SS: NONE

OK

# AT+RS Restore Network Session

Restores the network session information (join) that was saved with the AT+SS command.

# **Syntax**

| Command    |   |
|------------|---|
| AT+RS      | · |
| help AT+RS |   |
| AT+RS?     |   |
| AT+RS=?    |   |

# **Parameters and Values**

None

# **Command with Response Examples**

AT+RS

OK

48

```
HELP AT+RS
```

AT+RS: Restore network session info from flash

OK

AT+RS=?
AT+RS: NONE

OK

# **AT+PS** Preserve Session

Preserves the network session information over resets when using auto join mode (AT+NJM). If not using auto join mode, use with the save session command (AT+SS).

# **Syntax**

| Command                          |
|----------------------------------|
| AT+PS= <parameter1></parameter1> |
| help AT+PS                       |
| AT+PS?                           |
| AT+PS=?                          |

### **Parameters and Values**

#### Parameter1

0 Off (Default)

1 On

# **Command with Response Examples**

```
AT+PS=0

OK

help AT+PS
AT+PS: Save network session info through reset or power down in AUTO_OTA mode (0:off, 1:on)

OK

AT+PS?

O

OK

AT+PS?

AT+PS: (0,1)
```

OK

# **Chapter 4 – Sending and Receiving Packets**

# **Channels and Duty Cycles**

For reference, use the +TXCH command to display channels used with frequency hopping.

**Note:** Europe 868 MHz deployments have a 1% duty cycle, meaning your devices can be on air only 1% of the time per hour. This limitation is part of the European radiated emission requirements and cannot be avoided or changed. Sending more data than the air time allows results in a transmit error - no free channel debug notice.

# **AT+CHM** Channel Mask

Sets a channel mask to enable or disable channels to be used to transmit packets.

- US915/AU915 72 bit mask (MSB)
- EU868 16 bit mask (MSB)

# **Syntax**

| Command                                                     |
|-------------------------------------------------------------|
| AT+CHM= <parameter1>,<parameter2></parameter2></parameter1> |
| help AT+CHM                                                 |
| AT+CHM?                                                     |
| AT+CHM=?                                                    |

#### **Parameters and Values**

# US915/AU915

# Parameter1, Parameter2

0,00FF Enables channels 0-7, disables channels 8-15

0,FFFF Enables channels 0-15

2,00FF Enables channels 32-39, disables channels 40-47

4,00FF Enables channels 64-71

# **EU868**

# Parameter1, Parameter2

0,000F Enables default channels 0-3, disables channels 4-15

# **Command with Response Examples**

```
help AT+CHM
```

AT+CHM: Get/set channel mask (OFFSET:0-4, MASK:0000-FFFF)

OK

#### **US915**

AT+FSB=0

OK

AT+CHM

OOFFFFFFFFFFFFFFFF

OK

AT+FSB=1

OK

AT+CHM

000100000000000000FF

OK

AT+FSB=2

OK

OK

### **EU868**

AT+CHM=0,00FF

OK

AT+CHM 00FF

OK

# **AT+TXCH** Transmit Channel

With an US 951MHz model, lists the available channels in the current AT+FSB setting

With an EU 868MHz model, lists the available channels, including additional channels sent by the network server with the JoinAccept message. With an EU 868MHz model, this command can be used to add additional channels

# **EU868 Adding a Channel**

AT+TXCH=<INDEX>,<FREQUENCY>,<RANGE> INDEX - 3-15 FREQUENCY - 863000000-870000000 RANGE - datarate range

For example, 40 -> DR4:max DR0:min, 77 -> DR7:max DR7:min

# **Syntax**

| Command      |
|--------------|
| AT+TXCH      |
| help AT+TXCH |
| AT+TXCH?     |
| AT+TXCH=?    |

# **Parameters and Values**

None

# **Command with Response Examples**

help AT+TXCH

AT+TXCH: List Tx channel frequencies for sub-band

OK

AT+FSB=1

OK

### AT+TXCH

| Index | Frequency | DR Max | Min | On |
|-------|-----------|--------|-----|----|
| 0     | 902300000 | 3      | 0   | 1  |
| 1     | 902500000 | 3      | 0   | 1  |
| 2     | 902700000 | 3      | 0   | 1  |
| 3     | 902900000 | 3      | 0   | 1  |
| 4     | 903100000 | 3      | 0   | 1  |
| 5     | 903300000 | 3      | 0   | 1  |
| 6     | 903500000 | 3      | 0   | 1  |
| 7     | 903700000 | 3      | 0   | 1  |
| U     | 903000000 | 4      | 4   | 1  |
| R2    | 923300000 | 8      | 8   |    |

OK

OK

AT+TXCH=?

AT+TXCH: TABLE

OK

# Note the following for US915:

- U: Uplink Channel for DR4:SF8BW500
- R2: Frequency and datarate for second receive window
- In public mode, R2 defaults to 923.3 DR8

■ In private mode, R2 is defaulted by AT+FSB setting 1:923.3,2:923.9,...

# Add EU868 FSK Channel at Index 8

AT+TXCH=?
AT+TXCH: <INDEX>, <FREQUENCY>, <DR\_RANGE>
OK

AT+TXCH=8,868800000,77

OK

# **EU868 Before Join**

| AT+TXCH |           |    |     |     |    |
|---------|-----------|----|-----|-----|----|
| Index   | Frequency | DR | Max | Min | On |
| 0       | 868100000 |    | 5   | 0   | 1  |
| 1       | 868300000 |    | 6   | 0   | 1  |
| 2       | 868500000 |    | 5   | 0   | 1  |
| 3       | 0         |    | 0   | 0   | 0  |
| 4       | 0         |    | 0   | 0   | 0  |
| 5       | 0         |    | 0   | 0   | 0  |
| 6       | 0         |    | 0   | 0   | 0  |
| 7       | 0         |    | 0   | 0   | 0  |
| 8       | 0         |    | 0   | 0   | 0  |
| 9       | 0         |    | 0   | 0   | 0  |
| 10      | 0         |    | 0   | 0   | 0  |
| 11      | 0         |    | 0   | 0   | 0  |
| 12      | 0         |    | 0   | 0   | 0  |
| 13      | 0         |    | 0   | 0   | 0  |
| 14      | 0         |    | 0   | 0   | 0  |
| 15      | 0         |    | 0   | 0   | 0  |
| R2      | 869525000 |    | 0   | 0   |    |

OK

# **EU868 After Join**

| AT+TXCH |           |    |     |     |    |
|---------|-----------|----|-----|-----|----|
| Index   | Frequency | DR | Max | Min | On |
| 0       | 868100000 |    | 5   | 0   | 1  |
| 1       | 868300000 |    | 6   | 0   | 1  |
| 2       | 868500000 |    | 5   | 0   | 1  |
| 3       | 866100000 |    | 5   | 0   | 1  |
| 4       | 866300000 |    | 5   | 0   | 1  |
| 5       | 866500000 |    | 5   | 0   | 1  |
| 6       | 866700000 |    | 5   | 0   | 1  |
| 7       | 866900000 |    | 5   | 0   | 1  |
| 8       | 0         |    | 0   | 0   | 0  |
| 9       | 0         |    | 0   | 0   | 0  |

| 10 | 0         | 0 | 0 | 0 |
|----|-----------|---|---|---|
| 11 | 0         | 0 | 0 | 0 |
| 12 | 0         | 0 | 0 | 0 |
| 13 | 0         | 0 | 0 | 0 |
| 14 | 0         | 0 | 0 | 0 |
| 15 | 0         | 0 | 0 | 0 |
| R2 | 869525000 | 0 | 0 |   |

# **AT+LBT** Listen Before Talk

Enables or disables the Listen Before Talk function.

# **Syntax**

| Command                                                     |
|-------------------------------------------------------------|
| AT+LBT= <parameter1>,<parameter2></parameter2></parameter1> |
| help AT+LBT                                                 |
| AT+LBT?                                                     |
| AT+LBT=?                                                    |

### **Parameters and Values**

Parameter1

0 Disable

0-65535 Time for the listen before talk delay in microseconds (μs).

Parameter2

0 Disable -127-128 dBm Threshold

# **Command with Response Examples**

```
AT+LBT=?
AT+LBT: time(0-65535 us), threshold(-127-128 dBm)(0,0: disable, time, threshold: enable)
```

Get current LBT configuration: 0,0 means it is disabled:

AT+LBT 0,0

OK

OK

Set LBT to -65dB threshold and 5ms sample time:

```
AT+LBT=5000, -65
```

OK

Verify configuration:

```
AT+LBT 5000,-65
```

OK

These settings also appear in the AT&V results.

# **AT+TXN** Transmit Next

Returns the time, in milliseconds, until the next free channel is available to transmit data. The time can range from 0-2793000 milliseconds.

EU868 time to wait may be duty-cycle limit on channel or network imposed Join duty-cycle. US915 will only be affected by the network imposed Join duty-cycle.

Network imposed join duty-cycle in LoRaWAN 1.0.1:

| 1.0%  | 0-1 hour   |
|-------|------------|
| 0.1%  | 1-10 hours |
| 0.01% | 10+ hours  |

# **Syntax**

| Command    |    |
|------------|----|
| AT+TXN     |    |
| help AT+Tኦ | (N |
| AT+TXN?    |    |
| AT+TXN=?   |    |

# **Parameters and Values**

None

# **Command with Response Examples**

```
AT+TXN
0

OK

help AT+TXN
AT+TXN: Get time in ms until next free channel

OK

AT+TXN?
0

OK

AT+TXN?
```

AT+TXN: (0-2793000)

OK

# AT+TOA Time On Air

Displays the amount of on air time, in milliseconds, required to transmit the number of bytes specified at the current data rate. (Included for informational purposes. )

# **Syntax**

| Command                           |
|-----------------------------------|
| AT+TOA= <parameter1></parameter1> |
| help AT+TOA                       |
| AT+TOA?                           |
| AT+TOA=?                          |

# **Parameters and Values**

#### Parameter1

0-242 The number of bytes used to calculate the time on air.

# **Command with Response Examples**

```
AT+TOA=128
738

OK

help AT+TOA
AT+TOA: Get time in ms of packet tx with current datarate

OK

AT+TOA?
Invalid parameter, expects (0-242)

ERROR

AT+TOA=?
AT+TOA=:
AT+TOA: (0-242)

OK
```

# **Configuring**

# AT+MAC Inject MAC Command

When used without a parameter the MAC command buffer to be sent with the next packet is displayed. The MAC command buffer can be cleared by passing an argument of '0'. Changes made by MAC commands through this command or made by the server can be saved with AT+SS and restored with AT+RS.

- **LinkADRReq:** If ADR is enabled, changes device's datarate and power. Changes the channel mask and redundancy regardless of ADR setting.
- DutyCycleReq: Sets device's total time on air duty cycle.
- RxParamSetupReq: Changes downlink frequency and datarates.
- **DevStatus:** Requests the device's status, battery, and RX packect SNR value.
- NewChannelReq: Requests the device to add or delete a channel.
- RxTimingSetup: Changes the delay from end of TX to opening of RX1.

# **Syntax**

| Command                           |
|-----------------------------------|
| AT+MAC= <parameter1></parameter1> |
| help AT+MAC                       |
| AT+MAC?                           |
| AT+MAC=?                          |

#### **Parameters and Values**

| Para | me | te | r1 |
|------|----|----|----|
|------|----|----|----|

LinkADRReq Format: ID (1) | DR\_PWR (1) | MASK (2) | CTRL\_REP (1)

Example: 0350FF0001 -> DR: 5 PWR: 0 MASK: FF00 CTRL: 0 REP: 1

ID MAC command ID

DR Datarate index US915 0-4, AU915 0-4, EU868 0-7
PWR Power index US915 0-10, AU915 0-10, EU868 0-5

MASK 16 bit mask for enabling channels

CTRL Instructions for applying the 16-bit mask field

REP Redundancy setting to repeat a packet unless downlink is received

DutyCycleReq Format: ID (1) | MDC (1)

ID MAC command ID

MDC MAX\_DUTY\_CYCLE (MDC) – duty cycle setting ( 1 / 2^MDC )

Values:

0400 100% 0401 50% 040F 0.003 % RxParamSetupReq Format: ID (1) | DLSettings (1) | Frequency (3)

Example: 050468E28C ? RX1O: 0 RX2: 5 FREQ: 923300000

ID MAC command ID

DLSettings Datarate offset for RX1 and datarate index for RX2

Frequency 3 bytes of frequency in 100 Hz (LSB)

DevStatus Format: ID (1)

Example: 06

ID MAC command ID

NewChannelReq Note: EU868 only, Channels 0-2 cannot be changed.

Format: ID (1) | INDEX (1) | FREQ (3) | RANGE (1)

Example: 0703F87D8440 -> INDEX: 3 FREQ: 868300000 RANGE: MAX:4 MIN:0

ID MAC command ID

INDEX Channel Index

FREQ Channel frequency in 100 Hz
RANGE Datarate range (MAX:4,MIN:4)

RxTimingSetup Format: ID (1) | DELAY (1)

Example: 0801 ? DELAY: 1 second

ID MAC command ID

Delay Delay in seconds until RX1

# **Command with Response Examples**

# **Inject Device Status MAC Command**

AT+MAC=06

OK

#### Show MAC Commands Buffer to be Sent in Next Packet

AT+MAC 06ff00

OK

# Clear MAC Commands Buffer to be Sent in Next Packet

AT+MAC=0

OK

AT+MAC

OK

58

# Help

help AT+MAC

AT+MAC: Inject MAC command to MAC layer or read uplink MAC command buffer, pass '0' argument to clear buffer

OK

# AT&V Settings and Status

Displays device settings and status in a tabular format.

# **Syntax**

| Command   |  |
|-----------|--|
| AT&V      |  |
| help AT&V |  |
| AT&V=?    |  |

### **Parameters and Values**

None

# **Command with Response Examples**

AT&V

Device ID: 00:00:00:00:00:00:00

Frequency Band: FB\_915

Frequency Sub Band: 0
Public Network: off

Start Up Mode: COMMAND
Network Address: 00000000

Network ID: 2b:7e:15:16:28:ae:d2:a5

Network ID Passphrase:

Network Key: 2b.7e.15.16.28.ae.d2.a6.ab.f7.15.88.09.cf

.4f.45

Network Key Passphrase:

Network Session Key: 00.00.00.00.00.00.00.00.00.00.00.00.00

.00.00

Data Session Key: 00.00.00.00.00.00.00.00.00.00.00.00

.00.00

Network Join Mode: OTA
Network Join Retries: 2
Preserve Session: off

Join Byte Order: LSB
Join Delay: 1

App Port: 1

Link Check Threshold: off
Link Check Count: off

Error Correction: 1 bytes

ACK Retries: off

Packet Repeat: 1
Encryption: on
CRC: on
Adaptive Data Rate: off

Command Echo: on Verbose Response: off

Tx Frequency: 0

Tx Data Rate: DR0 - SF10BW125

Tx Power: 11

Tx Antenna Gain: 3

Tx Wait: on

Tx Inverted Signal: off

Rx Delay: 1 s

Rx Inverted Signal: on

Rx Output Style: HEXADECIMAL

Debug Baud Rate: 115200
Serial Baud Rate: 115200
Serial Flow Control: off
Serial Clear On Error: on

Wake Mode: INTERVAL

Wake Interval: 10 s
Wake Delay: 100 ms
Wake Timeout: 20 ms
Wake Pin: DI8
Log Level: 0

OK

help AT&V

AT&V: Displays current settings and status

OK AT&V=?

AT&V: TABLE

OK

# AT+DC Device Class

Sets the device class. The LoRaWAN 1.0 specification defines the three device classes, Class A, B and C as follows:.

Note: Currently only Class A and Class C are supported.

- Class A: Bi-directional End Devices allow for bi-directional communications where each end device's uplink transmission is followed by two short downlink receive windows. The transmission slot scheduled by the end device is based on its communication needs with a small variation based on a random time basis (ALOHA-type protocol). This Class A operation is the lowest power end device system for applications that only require downlink communication from the server shortly after the end device has sent an uplink transmission. Downlink communications from the server at any other time have to wait until the next scheduled uplink.
- Class B: Bi-directional end devices with scheduled receive slots allow for more receive slots. In addition to the Class A random receive windows, Class B devices open extra receive windows at scheduled times. For the end device to open a receive window as scheduled, it must receive a time synchronized beacon from the gateway. This allows the server to know when the end device is listening.
- Class C: Bi-directional end devices with maximal receive slots have nearly continuously open receive windows, which close only when transmitting. Class C end devices use more power to operate than Class A or Class B, but they offer the lowest latency for server to end device communication.

# **Syntax**

| Command                          |
|----------------------------------|
| AT+DC= <parameter1></parameter1> |
| help AT+DC                       |
| AT+DC?                           |
| AT+DC=?                          |

#### **Parameters and Values**

#### Parameter1

A Class A device. (Default)

B Class B device.

C Class C device.(Not supported in Version 2.0 or older.)

# **Command with Response Examples**

AT+DC=A

OK

```
help AT+DC
AT+DC: Device class (A,B,C)

OK

AT+DC=?
AT+DC: (A,B,C)

OK
```

# AT+AP Application Port

Sets the port used for application data. Each LoRaWAN packet containing data has an associated port value. Port 0 is reserved for MAC commands, ports 1-223 are available for application use, and port 233-255 are reserved for future LoRaWAN use.

# **Syntax**

| Command                          |
|----------------------------------|
| AT+AP= <parameter1></parameter1> |
| help AT+AP                       |
| AT+AP?                           |
| AT+AP=?                          |

# **Parameters and Values**

# Parameter1

1-223 The port used for application data.

# **Command with Response Examples**

```
AT+AP=1

OK

HELP AT+AP

AT+AP: Port used for application data (1 - 223)

OK

AT+AP=?

AT+AP: (1-223)

OK

AT+AP: (1-223)

OK
```

# **AT+TXP** Transmit Power

Configures the output power of the radio in dBm, before antenna gain. The mac layer will attempt to reach this output level but limit any transmission to the local regulations for the chosen frequency.

Note: Refer to AT+ANT to configure antenna gain.

# **Syntax**

| Command                           |
|-----------------------------------|
| AT+TXP= <parameter1></parameter1> |
| help AT+TXP                       |
| AT+TXP?                           |
| AT+TXP=?                          |

# **Parameters and Values**

# Parameter1

0-20 dB. (Default is 11).

# **Command with Response Examples**

```
AT+TXP=11

OK

help AT+TXP

AT+TXP: Set the Tx power for all channels

OK

AT+TXP?

11

OK

AT+TXP=?

AT+TXP: (0-20)

OK
```

# **AT+TXI** Transmit Inverted

Sets TX signal inverted.

Note: Transmitted signals are inverted so motes/gateways do not see other mote/gateway packets.

# **Syntax**

# Command AT+TXI=<parameter1>

| Command     |  |
|-------------|--|
| help AT+TXI |  |
| AT+TXI?     |  |
| AT+TXI=?    |  |

# **Parameters and Values**

# Parameter1

0 Not inverted (Default)

1 Inverted

# **Command with Response Examples**

```
AT+TXI=0

OK

help AT+TXI
AT+TXI: Set Tx signal inverted, (default:off)

OK

AT+TXI?

O

OK

AT+TXI=?
AT+TXI: (0,1)

OK
```

# AT+RXI Receive Signal Inverted

Sets RX signal inverted.

**Note:** Transmitted signals are inverted so motes/gateways do not see other mote/gateway packets.

# **Syntax**

| Command                           |
|-----------------------------------|
| AT+RXI= <parameter1></parameter1> |
| help AT+RXI                       |
| AT+RXI?                           |
| AT+RXI=?                          |

# **Parameters and Values**

Parameter1

- 0 Receive signal not inverted
- 1 Receive signal inverted (Default)

# **Command with Response Examples**

```
AT+RXI=1

OK

help AT+RXI
AT+RXI: Set Rx signal inverted, (default:on)

OK

AT+RXI?

1

OK

AT+RXI=?
AT+RXI: (0,1)

OK
```

# AT+RXD Receive Delay

Allows the dot to use non-default rx windows, if required by the network it is attempting to communicate with. Opens receive window to listen for a response when sending packets with one of the +SEND commands.

**Note:** Setting must match that of network server, in case of OTA join the value sent in Join Accept message overwrites this setting.

# **Syntax**

| Command                           |  |
|-----------------------------------|--|
| AT+RXD= <parameter1></parameter1> |  |
| help AT+RXD                       |  |
| AT+RXD?                           |  |
| AT+RXD=?                          |  |

# **Parameters and Values**

# Parameter1

1-15 seconds (Default)

# **Command with Response Examples**

AT+RXD=1

OK

```
help AT+RXD
AT+RXD: Number of seconds before receive windows are opened (1 - 15)
OK
AT+RXD?
1
OK
AT+RXD=?
AT+RXD=: (0,1)
OK
```

# AT+FEC Forward Error Correction

Sends redundant data to compensate for unreliable communication with the goal of reducing the need to retransmit data. Increasing redundancy increases time-on-air, LoRaWAN specifies a setting of 1 (4/5).

# **Syntax**

| Command                           |
|-----------------------------------|
| AT+FEC= <parameter1></parameter1> |
| help AT+FEC                       |
| AT+FEC?                           |
| AT+FEC=?                          |

# **Parameters and Values**

# Parameter1

- 1 Sends 5 bits to represent 4 bits.
- 2 Sends 6 bits to represent 4 bits.
- 3 Sends 7 bits to represent 4 bits.
- 4 Sends 8 bits to represent 4 bits.

# **Command with Response Examples**

```
AT+FEC=1

OK

help AT+FEC

AT+FEC: Configure Forward Error Correction bytes (1 to 4)

OK

AT+FEC?
```

```
1
OK
AT+FEC=?
AT+FEC: (1-4)
OK
```

# AT+CRC Cyclical Redundancy Check

Enable or disable Cyclical Redundancy Check(CRC) for uplink and downlink packets. Must be enabled to be compliant with LoRaWAN. Packets received with a bad CRC are discarded.

# **Syntax**

| Command                           |  |
|-----------------------------------|--|
| AT+CRC= <parameter1></parameter1> |  |
| help AT+CRC                       |  |
| AT+CRC?                           |  |
| AT+CRC=?                          |  |

# **Parameters and Values**

### Parameter1

0 CRC disabled

1 CRC enabled (Default)

# **Command with Response Examples**

```
AT+CRC=1

OK

help AT+CRC
AT+CRC: Enable/disable CRC (0: off, 1: on)

OK

AT+CRC?

1

OK

AT+CRC=?
AT+CRC=: (0,1)

OK
```

# AT+ADR Adaptive Data Rate

Enable or disable adaptive data rate for your device. For more information on Adpative Data Rate, refer to your device's Developer Guide.

# **Syntax**

| Command                           |
|-----------------------------------|
| AT+ADR= <parameter1></parameter1> |
| help AT+ADR                       |
| AT+ADR?                           |
| AT+ADR=?                          |

### **Parameters and Values**

### Parameter1

0 ADR disabled (Default)

1 ADR enabled

# **Command with Response Examples**

```
AT+ADR=0
OK
help AT+ADR
AT+ADR: Enable/disable Adaptive Data Rate (0: off, 1: on)
OK
AT+ADR?
0
OK
AT+ADR?
0
OK
AT+ADR=?
AT+ADR: (0,1)
OK
```

# AT+TXDR TX Data Rate

Sets the current data rate to use, DR0-DR15 can be entered as input in addition to (7-12) or (SF\_7-SF\_12). Output has changed as shown in the following table:

| From To |                 |
|---------|-----------------|
| AT+TXDR | AT+TXDR         |
| SF_12   | DR0 - SF12BW125 |
| OK      | OK              |

# **US Data Rates Max Payload (bytes)**

DR0 : 11 DR1 : 53 DR2 : 129 DR3 : 242 DR4 : 242

# **EU Data Rates Max Payload (bytes)**

DR0 : 51
DR1 : 51
DR2 : 51
DR3 : 115
DR4 : 242
DR5 : 242
DR6 : 242
DR7 : 50

**Note:** Data rate is directly related to spreading factor. Spreading factor determines the amount of redundant data spread across the transmission. A higher spreading factor means more redundant data is transmitted, which results in a longer range but a lower data rate. For more information on spreading factor, refer to the device's developer guide

# **Syntax**

| Command                            |  |  |
|------------------------------------|--|--|
| AT+TXDR= <parameter1></parameter1> |  |  |
| help AT+TXDR                       |  |  |
| AT+TXDR?                           |  |  |
| AT+TXDR=?                          |  |  |

# **Parameters and Values**

# Parameter1

7-10 915MHz Models (Default is 9)

7-12 868MHz Models

# **Command with Response Examples**

```
AT+TXDR=9

OK

help AT+TXDR

AT+TXDR: Set the Tx data rate for all channels

OK

AT+TXDR?

DR0 - SF12BW125
```

OK

AT+TXDR=?
AT+TXDR: (7-10)

OK

# AT+SDR Session Data Rate

Display the current data rate the LoRaMAC layer is using. It can be changed by the network server if ADR is enabled.

# **Syntax**

| Command     |
|-------------|
| AT+SDR      |
| help AT+SDR |
| AT+SDR?     |
| AT+SDR=?    |

# **Parameters and Values**

None

# **Command with Response Examples**

AT+SDR DR0

OK

help AT+SDR

OK

AT+SDR?

OK

AT+SNR=?

OK

# AT+REP Repeat Packet

Repeats each frame as many times as indicated or until downlink from network server is received. This setting increases redundancy to increase change of packet to be received by the gateway at the expense of increasing network congestion. When enabled, debug output shows multiple packets being sent. On the Conduit, an MQTT

client can listen to the 'packet\_recv' topic to see that duplicate packets are received, but not forwarded to the up topic.

# **Syntax**

| Command                           |
|-----------------------------------|
| AT+REP= <parameter1></parameter1> |
| help AT+REP                       |
| AT+REP?                           |
| AT+REP=?                          |

#### **Parameters and Values**

#### Parameter1

0-15 Number of send attempts. (Default)

# **Command with Response Examples**

```
AT+REP
0
OK
HELP AT+REP
AT+REP: Configure number of times to repeat a packet
OK
AT+REP?
0
OK
AT+REP?
0
OK
OK
OK
OK
OK
```

# **Sending Packets**

# AT+SEND Send

Sends supplied data and opens a receive window to receive data from the gateway/network server. If a data packet is received, it is output following AT+SEND. To configure the receive data format, use the AT+RXO command. Although parameter1 can be up to 242 bytes, it is limited by the payload size as determined by +TXDR setting as shown in the following table:

| US 915 MHz Device |              | EU 868MHz Device |         |
|-------------------|--------------|------------------|---------|
| DR0-DR4           | Payload Size | DR0-DR7          | Payload |

| US 915 N | US 915 MHz Device EU 868MHz Device |     | Hz Device |
|----------|------------------------------------|-----|-----------|
| DR0      | 11                                 | DR0 | 51        |
| DR1      | 53                                 | DR1 | 51        |
| DR2      | 129                                | DR2 | 51        |
| DR3      | 242                                | DR3 | 115       |
| DR4      | 242                                | DR4 | 242       |
|          |                                    | DR5 | 242       |
|          |                                    | DR6 | 242       |
|          |                                    | DR7 | 50        |

+SEND commands response is significantly impacted by the AT+ACK setting. The following table shows the theoretical worst case timing from +SEND to OK or ERROR response using a 915Mhz device. Retransmit delay is random 1-3s delay before a retransmit if an ACK has not been received. Time on air is the amount of time consumed transmitting. Wait for receive is the max time waiting to receive a data packet from the gateway/network server.

**Note:** These are theoretical values. With no response from the network server, the +ACK=0 time has been observed at about 2.5 seconds.

| +ACK | Cumulative Retransmit<br>Delay | Cumulative Time on Air (seconds) | Cumulative Wait for Receive (seconds) | Max Response Time<br>(seconds) |
|------|--------------------------------|----------------------------------|---------------------------------------|--------------------------------|
| 0    | 0                              | .4                               | 1-2                                   | 2.4                            |
| 1    | 0                              | .4                               | 3-4                                   | 4.4                            |
| 2    | 1-3                            | .8                               | 5-6                                   | 9.8                            |
| 3    | 2-6                            | 1.2                              | 7-8                                   | 15.2                           |
| 4    | 3-9                            | 1.6                              | 9-10                                  | 20.6                           |
| 5    | 4-12                           | 2                                | 11-12                                 | 26                             |
| 6    | 5-15                           | 2.4                              | 13-14                                 | 31.1                           |
| 7    | 6-18                           | 2.8                              | 15-16                                 | 36.8                           |
| 8    | 7-21                           | 3.2                              | 17-18                                 | 42.2                           |

# **Syntax**

| Command                            |
|------------------------------------|
| AT+SEND= <parameter1></parameter1> |
| help AT+SEND                       |
| AT+SEND=?                          |

# **Parameters and Values**

# Parameter1

Up to 242 bytes of data or the maximum payload size based on spreading factor (See AT+TXDR)

### **Command with Response Examples**

```
AT+SEND=<data to send>
<data received from the gateway/network server>
OK
AT+SEND <data to send> (the "=" sign is optional)
<data received from the gateway/network server>
OK
AT+SEND=This is a test with SF10
Data exceeds datarate max payload
ERROR
AT+SEND (sends an empty packet and opens a receive window)
<data received from the gateway/network server>
OK
AT+SEND
Network Not Joined
ERROR
help AT+SEND
AT+SEND: Sends supplied packet data one time and return response, (max:242
bytes)
ΟK
AT+SEND=?
AT+SEND: (string:242)
OK
```

# AT+SENDB Send Binary

Functions as the +SEND command, but sends hexadecimal data.

#### **Syntax**

| Command                             |
|-------------------------------------|
| AT+SENDB= <parameter1></parameter1> |
| help AT+SENDB                       |
| AT+SENDB=?                          |

#### **Parameters and Values**

#### Parameter1

String of up to 242 eight bit hexadecimal values. Each value may range from 00 to FF.

### **Command with Response Examples**

```
AT+SENDB=6174 (sends the letter a and t)
<data received from the gateway/network server>

OK

help AT+SENDB
AT+SENDB: Sends supplied binary (hex) packet data one time and return response

OK

AT+SENDB=?
AT+SENDB: (hex:242)

OK
```

# **Receiving Packets**

#### AT+RECV Receive Once

Displays the last payload received. It does not initiate reception of new data. Use +SEND to initiate receiving data from the network server.

#### **Syntax**

| Command      |
|--------------|
| AT+RECV      |
| help AT+RECV |
| AT+RECV=?    |

#### **Parameters and Values**

None

### **Command with Response Examples**

```
AT+RECV <last received data payload>

OK

help AT+RECV
AT+RECV: Receive and display one packet.

OK
```

74

```
AT+RECV=?
AT+RECV: (string:242) or (hex:242)
OK
```

# **AT+RXO** Receive Output

Formats the receive data output. Data is either processed into hexadecimal data or left unprocessed/raw. Hexadecimal outputs the byte values in the response. Raw/Unprocessed outputs the actual bytes on the serial interface.

#### **Syntax**

| Command                           |
|-----------------------------------|
| AT+RXO= <parameter1></parameter1> |
| help AT+RXO                       |
| AT+RXO?                           |
| AT+RXO=?                          |

#### **Parameters and Values**

#### Parameter1

0 Hexadecimal (Default)

1 Raw/Unprocessed

### **Command with Response Examples**

```
AT+RXO=0

OK

help AT+RXO
AT+RXO: Set the Rx output type (0:hexadecimal, 1:raw)

OK

AT+RXO?

0

OK

AT+RXO=?
AT+RXO=?
AT+RXO: (0,1)

OK
```

# AT+DP Data Pending

Indicates there is at least one packet pending on the gateway for this end device. This indication is communicated to the end device in any packet coming from the server. Each packet contains a data pending bit.

### **Syntax**

| Command    |
|------------|
| AT+DP      |
| help AT+DP |
| AT+DP?     |
| AT+DP=?    |

### **Parameters and Values**

None

### **Command with Response Examples**

```
AT+DP
0
OK
help AT+DP
AT+DP: Indicator of data in queue on server
OK
AT+DP?
0
OK
AT+DP?
0
OK
AT+DP=?
AT+DP: (0,1)
OK
```

### **AT+TXW** Transmit Wait

Enables or disables waiting for RX windows to expire after sending.

Note: Non-blocking operation may disrupt the Dot's ability to receive downlink packets.

## **Syntax**

| Command                           |
|-----------------------------------|
| AT+TXW= <parameter1></parameter1> |
| help AT+TXW                       |
| AT+TXW?                           |
| AT+TXW=?                          |

#### **Parameters and Values**

#### Parameter1

O Do not wait. Not recommended.

1 Wait (Default)

## **Command with Response Examples**

```
AT+TXW=1

OK

help AT+TXW
AT+TXW: Enable/disable waiting for rx windows to expire after send. (0: off, 1: on)

OK

AT+TXW?
1

OK

AT+TXW=?
AT+TXW=?
AT+TXW: (0,1)
```

# **Statistics**

### AT&R Reset Statistics

Resets device statistics displayed with the AT&S command.

## **Syntax**

|  | Command   |
|--|-----------|
|  | AT&R      |
|  | help AT&R |
|  | AT&R=?    |

#### **Parameters and Values**

None

## **Command with Response Examples**

AT&R

OK

help AT&R

AT&R: Reset statistics

OK

AT&R=?
AT&R: NONE

OK

### AT&S Statistics

Displays device statistics including join attempts, join failures, packets sent, packets received and missed acks. Use AT&R to reset/clear the statistics.

### **Syntax**

| Command   |
|-----------|
| AT&S      |
| help AT&S |
| AT&S=?    |

### **Parameters and Values**

None

# **Command with Response Examples**

AT&S

Join Attempts: 1
Join Fails: 0
Up Packets: 25
Down Packets: 5
Missed Acks: 0

OK

help AT&S

AT&S: Display statistics

OK

AT&S=?

AT&S: TABLE

OK

# AT+RSSI Signal Strength

Displays signal strength information for all packets received from the gateway since the last reset. There are four signal strength values, which, in order, are: last packet RSSI, minimum RSSI, maximum RSSI and average RSSI. Values range from -140dB to 0dB.

#### **Syntax**

| Command      |
|--------------|
| AT+RSSI      |
| help AT+RSSI |
| AT+RSSI?     |
| AT+RSSI=?    |

#### **Parameters and Values**

None

### **Command with Response Examples**

```
AT+RSSI
-54, -54, -50, -52

OK

help AT+RSSI
AT+RSSI: Displays signal strength information for received packets: last, min, max, avg

OK

AT+RSSI?
0, 0, 0, 0

OK

AT+RSSI=?
AT+RSSI: (-140-0), (-140-0), (-140-0)

OK
```

# AT+SNR Signal to Noise Ratio

Displays signal to noise ratio for all packets received from the gateway since the last reset. There are four signal to noise ratio values, which, in order, are: last packet SNR, minimum SNR, maximum SNR and average SNR. Values range from -20dBm to 20dBm.

#### **Syntax**

| Command     |
|-------------|
| AT+SNR      |
| help AT+SNR |
| AT+SNR?     |
| AT+SNR=?    |

#### **Parameters and Values**

None

#### **Command with Response Examples**

```
AT+SNR
2.9, 2.8, 3.0, 2.9

OK

help AT+SNR
AT+SNR: Display signal to noise ratio of received packets: last, min, max, avg

OK

AT+SNR?
2.9, 2.8, 3.0, 2.9

OK

AT+SNR=?
AT+SNR: (-20.0-20.0), (-20.0-20.0), (-20.0-20.0)

OK
```

# **Serial Data Mode**

#### AT+SD Serial Data Mode

Reads serial data, sends packets, and then sleeps using wake settings. The escape sequence is +++.

- When +++ is received to escape serial data mode all buffer data will be discarded.
- CTS is handled by the serial driver and is relative to its buffer size. When flow control is enabled, see AT&K.
- mDot firmware serial buffer size is 512 bytes.
- If an RX packet requires an ACK or data pending bit is set, an empty packet is sent automatically.

#### **Syntax**

| Command    |
|------------|
| AT+SD      |
| help AT+SD |
| AT+SD=?    |

#### **Parameters and Values**

None

## **Command with Response Examples**

```
AT+SD

CONNECT

<send data>
<send +++ to escape>
OK

help AT+SD

AT+SD: Enter serial data mode, exit with '+++'
OK
```

# AT+SMODE Startup Mode

Configures which operation mode the end device powers up in, either AT command mode or serial data mode.

- AT Command mode: The end device powers up or resets in command mode. AT commands are used to send and receive data.
- Serial data mode: Allows the end device to send and receive data without entering AT commands. Data
  is sent and received based on wake command settings. This mode requires network join mode to be set
  for either auto join or peer-to-peer mode. (AT+NJM=2 or 3).

**Note:** To exit serial data mode, reset the end device and input+++ within one second. If the end device responds to AT commands, the +++ was successful. After exiting data mode issue AT+SMODE=0 to disable data mode and AT&W to save the change.

#### **Syntax**

| Command                             |
|-------------------------------------|
| AT+SMODE= <parameter1></parameter1> |
| help AT+SMODE                       |
| AT+SMODE?                           |
| AT+SMODE=?                          |

#### **Parameters and Values**

Parameter1

- 0 AT command mode (Default)
- 1 Serial data mode

### **Command with Response Examples**

```
AT+SMODE=0

OK

help AT+SMODE
AT+SMODE: 0: AT command mode, 1: Serial data mode

OK

AT+SMODE?

0

OK

AT+SMODE=?
AT+SMODE=: (0,1)

OK
```

#### AT+SDCE Serial Data Clear on Error

Sets the device to either keep or discard data in the serial buffer when an error occurs.

In serial data mode, the dot wakes periodically to received data on the serial pins and transmit out the radio. If the data cannot be sent, this setting indicates the how device handles the buffered data. Data can either be kept in the buffer to be resent until successful or be discarded.

#### **Syntax**

| Command                            |
|------------------------------------|
| AT+SDCE= <parameter1></parameter1> |
| help AT+SDCE                       |
| AT+SDCE?                           |
| AT+SDCE=?                          |

#### **Parameters and Values**

#### Parameter1

O Data that cannot be sent remains in the serial buffer for later transmission

1 Data that cannot be sent is discarded

#### **Command with Response Examples**

```
AT+SDCE
1
```

OK

```
help AT+SDCE
AT+SDCE: Serial clear on error if enabled data that cannot be sent will be discarded

OK
AT+SDCE?
1

OK
AT+SDCE=?
AT+SDCE: (0:off,1:on)

OK
```

# **Chapter 5 – Power Management**

# AT+SLEEP Sleep Mode

Puts the end device in sleep mode. The end device wakes on interrupt or interval based on AT+WM setting. Once awakened, use AT+SLEEP again to return to sleep mode.

Note: Deep sleep is not available for mDot devices.

**Deep Sleep** (ST Micro standby mode) is the lowest power mode. All RAM is lost and peripherals are off. You can use backup registers to retain the state over sleep. The dot library keeps the running state in the backup registers to be reloaded automatically to maintain the session. Execution begins at the start of the program as it would from power up.

Sleep (ST Micro stop mode) maintains RAM and keeps peripherals on. Execution resumes from the call to sleep.

If you need to wake the device at a specific 1 msec timing, take the following values into account.

- Waking from Deep Sleep takes 314-407 usec
- Waking from Sleep takes 13-14 usec
- RTC period is 30.5 usec

# **Syntax**

| Command                             |
|-------------------------------------|
| AT+SLEEP= <parameter1></parameter1> |
| help AT+SLEEP                       |
| AT+SLEEP=?                          |

#### **Parameters and Values**

#### Parameter1

- O Deep sleep (ST Micro standby mode)
- 1 Sleep (ST Micro stop mode )

# **Command with Response Examples**

```
AT+SLEEP

AT+SLEEP=0

AT+SLEEP=1

help AT+SLEEP
AT+SLEEP: Enter sleep mode

OK

AT+SLEEP=?
AT+SLEEP=?
AT+SLEEP: NONE
```

OK

# AT+WM Wake Mode

Configures the end device to wake from sleep mode either on a time interval (set by AT+WI) or by an interrupt. For details on interval mode, refer to +WI. For details on interrupt mode, refer to +WP.

# **Syntax**

| Command                          |
|----------------------------------|
| AT+WM= <parameter1></parameter1> |
| help AT+WM                       |
| AT+WM?                           |
| AT+WM=?                          |

### **Parameters and Values**

#### Parameter1

0 Wake on interval. (Default)

1 Wake on interrupt

# **Command with Response Examples**

```
AT+WM=0

OK

help AT+WM

AT+WM: Wakeup mode, INTERRUPT uses DIO7 as wake-
up pin (0:INTERVAL,1:INTERRUPT)

OK

AT+WM?

O

OK

AT+WM=?

AT+WM: (0:INTERVAL,1:INTERRUPT)
```

# AT+WI Wake Interval

When using wake mode set to interval, use this command to configure the number of seconds the end device sleeps when in sleep mode. Upon waking, it waits +WD amount of time for an initial character then +WTO amount of time for each additional character.

# **Syntax**

| Command                          |
|----------------------------------|
| AT+WI= <parameter1></parameter1> |
| help AT+WI                       |
| AT+WI?                           |
| AT+WI=?                          |

### **Parameters and Values**

Parameter1

2-2147483647 seconds (Default is 10)

# **Command with Response Examples**

```
AT+WI=10

OK

help AT+WI
AT+WI: Wakeup interval (seconds)

OK

AT+WI?

10

OK

AT+WI=?
AT+WI: (2-2147483647) s

OK
```

# AT+WD Wake Delay

Configures the maximum amount of time to wait for data when the device wakes up from sleep mode. If this timer expires, the device goes back to sleep. If the device received at least one character before this timer expires, the device continues to read input until either the payload is reached or the +WTO timer expires at which time it sends the collected data and goes to sleep.

# **Syntax**

| Command                          |
|----------------------------------|
| AT+WD= <parameter1></parameter1> |
| help AT+WD                       |
| AT+WD?                           |

#### Command

AT+WD=?

# **Parameters and Values**

Parameter1

2-2147483647 milliseconds (Default is 100)

# **Command with Response Examples**

```
AT+WD=100

OK

help AT+WD
AT+WD: Time to wait for data after wakeup signal (milliseconds)

OK

AT+WD?

100

OK

AT+WD=?

AT+WD=?

AT+WD: (2-2147483647) ms
```

# AT+WTO Wake Timeout

Configures the amount of time that the device waits for subsequent characters following the first character received upon waking. Once this timer expires, the collected data is sent and the end device goes back to sleep.

# **Syntax**

OK

| Command                           |
|-----------------------------------|
| AT+WTO= <parameter1></parameter1> |
| help AT+WTO                       |
| AT+WTO?                           |
| AT+WTO=?                          |

#### **Parameters and Values**

Parameter1

0-65000 milliseconds (Default is 20)

# **Command with Response Examples**

```
AT+WTO=20

OK

help AT+WTO
AT+WTO: Read serial data until timeout (milliseconds)

OK

AT+WTO?

20

OK

AT+WTO=?
AT+WTO=: (0-65000) ms

OK
```

# AT+ANT Antenna Gain

Allows a non-default antenna to be used while still adhering to transmit power regulations.

# **Syntax**

| Command                           |  |
|-----------------------------------|--|
| AT+ANT= <parameter1></parameter1> |  |
| help AT+ANT                       |  |
| AT+ANT?                           |  |
| AT+ANT=?                          |  |

### **Parameters and Values**

Parameter1

-128 to 127 (Default is 3)

# **Command with Response Examples**

```
AT+ANT=3

OK

help AT+ANT

AT+ANT: Gain in dBi of installed antenna (-128-127)

OK
```

```
AT+ANT?
3

OK

AT+ANT=?
AT+ANT: (-128-127)

OK
```

# **Chapter 6 – Testing and Compliance**

# AT+RXDR Receive Data Rate

Sets the receive data rate. Used to configure the receive data rate that AT+RECVC uses for receiving packets.

Note: This command is used for compliance testing. It is not intended for the typical end user.

# **Syntax**

| Command                            |
|------------------------------------|
| AT+RXDR= <parameter1></parameter1> |
| help AT+RXDR                       |
| AT+RXDR?                           |
| AT+RXDR=?                          |

### **Parameters and Values**

#### Parameter1

7-10 915MHz model (Default is 9)

7-12 868MHz model

# **Command with Response Examples**

```
AT+RXDR=9

OK

help AT+RXDR
AT+RXDR: Set the Rx data rate

OK

AT+RXDR?
SF_9

OK

AT+RXDR=?
AT+RXDR: (7-10)

OK
```

#### EU 868MHz

```
AT+RXDR?
SF_12
```

# AT+RXF Receive Frequency

Configures the frequency that +RECVC listens to for received packets.

Note: This command is used for compliance testing. It is not intended for the typical end user.

# **Syntax**

| Command                           |
|-----------------------------------|
| AT+RXF= <parameter1></parameter1> |
| help AT+RXF                       |
| AT+RXF?                           |
| AT+RXF=?                          |

# **Parameters and Values**

Parameter1

0

902000000-928000000 (Default is 903700000)

# **Command with Response Examples**

```
AT+RXF=902123456

OK
help AT+RXF

AT+RXF: Set the Rx frequency for +RECV,+RECVC

OK

AT+RXF?
902123456

OK
AT+RXF=?
AT+RXF=?
AT+RXF: (0,902000000-928000000)

OK
```

# AT+RECVC Receive Continuously

Causes the device to receive packets continuously on the frequency configured via AT+RXF and at the data rate configured via AT+RXDR. Use +++ to exit this mode. It can take many seconds to get an OK following +++.

Note: This command is used for compliance testing. It is not intended for the typical end user.

# **Syntax**

| Command       |
|---------------|
| AT+RECVC      |
| help AT+RECVC |
| AT+RECVC?     |
| AT+RECVC=?    |

### **Parameters and Values**

None

# **Command with Response Examples**

```
AT+RECVC

OK

help AT+RECVC

AT+RECVC: Continuously receive and display packets. (escape sequence: +++)

OK

AT+RECVC=?

AT+RECVC: out: (string:242) or (hex:242)

OK
```

# AT+SENDI Send on Interval

Functions the same as the +SEND command, except that it takes an additional parameter as the interval then continually sends and receives on that interval. Issue +++ to stop sending.

**Note:** This command is used for compliance testing. It is not intended for the typical end user.

# **Syntax**

| Command                                                        |
|----------------------------------------------------------------|
| AT+SENDI= <parameter1>, <parameter2></parameter2></parameter1> |
| help AT+SENDI                                                  |
| AT+SENDI=?                                                     |

### **Parameters and Values**

Parameter1

100-2147483647 milliseconds

Parameter2

Up to 242 bytes of data or the max payload size based on the spreading factor (see AT+TXDR)

# **Command with Response Examples**

```
AT+SENDI=1000, <data to send>
<data received from the gateway/network server>

OK

AT+SENDI
Invalid arguments

ERROR

help AT+SENDI
AT+SENDI: Sends supplied packet data on interval between sends, output any recevied packets (escape sequence: +++)

OK

AT+SENDI=?
AT+SENDI: (100-2147483647) ms, (string:242)

OK
```

# **AT+TXF** Transmit Frequency

Set Tx frequency used in Peer-to-Peer mode. To avoid interference with LoRaWAN networks, use 915.5-919.7 MhZ for US 915 devices and a fixed 869.85 MHz for EU 868 devices.

**Note:** The parameter ranges below are used for compliance testing and are not intended for the typical end user.

# **Syntax**

| Command                           |
|-----------------------------------|
| AT+TXF= <parameter1></parameter1> |
| help AT+TXF                       |
| AT+TXF?                           |
| AT+TXF=?                          |

#### **Parameters and Values**

#### Parameter1

US915 - (0,902000000-928000000)

EU868 - (0,863000000-870000000)

# **Command with Response Examples**

AT+TXF=902123456

OK

help AT+TXF

AT+TXF: Set Tx frequency

OK

AT+TXF? 902123456

OK

### **US 915MHz**

AT+TXF=?

AT+TXF: (0,902000000-928000000)

OK

## **EU 868 MHz**

AT+TXF=?

AT+TXF: (0,863000000-870000000)

OK

# **Chapter 7 – Examples**

# **Network Configuration and Joining**

Configure Network ID and Network Key with either a hexadecimal value or name/passphrase.

To configure with a hexadecimal value, provide a first argument of 0:

```
AT+NI=0,0011223344556677

OK
AT+NK=0,00112233445566770011223344556677

OK
```

■ To configure with a name/passphrase value provide a first argument of 1:

```
AT+NI=1,MTS-LORA-1

OK
AT+NK=1,MTS-LORA-PASSPHRASE

OK
```

# **US 915MHz - Frequency Sub-band**

Before joining to a Conduit in the US, set the frequency sub-band to join using the frequencies the Conduit is configured to listen on.

To configure the frequency sub-band:

```
AT+FSB=5
```

OK

# Join Mode

The Dot supports both OTA and manual provisioning or joining. See *OTA Activation* in *Chapter 3 Network Management*.

■ To configure for OTA join mode and connect to the network:

```
AT+NJM=1

OK
AT+JOIN

OK
```

To configure for AUTO OTA join mode and connect to the network, if you are not already joined, a join attempt will be made:

```
AT+NJM=2

OK

Joining Network... Network Joined

OK
```

■ To configure for MANUAL provisioning, change the mode, then set the network address and session keys:

```
AT+NJM=0

OK

AT+NA=0011223344556677

OK

AT+DSK=00112233445566770011223344556677

OK

AT+NSK=00112233445566770011223344556677
```

# **Ensuring Network Connectivity**

To ensure the Dot is still connected to the network, request a response from the server. One method is to require ACKs for each packet, but under a heavy load, the server may not be able to respond to every packet. The other option is to periodically require an ACK using AT+LCC, this maintains join status without overburdening the network server. In the following examples, the gateway is powered off to simulate network loss. Refer to *Ensuring Network Connectivity* in *Chapter 3 Network Management*.

Using acknowledgments to detect network loss requires a response for each packet. With a threshold set to
one, the network is no longer joined after only one lost packet. Increasing the LCT value allows some missed
packets without the need to rejoin the network. If AUTO\_OTA is enabled the device automatically attempts
to rejoin after network is lost.

```
[Gateway Powered On]
AT+JOIN
Successfully joined network
OK
AT+ACK=1
OK
AT+LCT=1
OK
AT+SEND=message
OK
[Gateway Powered Off]
AT+NJS
1
OK
AT+SEND=message
Operation Timed Out - ACK not received
OK
AT+NJS
\cap
OK
```

When using link checks to detect network loss, you can configure how many responses are required. With a threshold set to one, the network is no longer joined after only one lost packet. Increasing the LCT value allows some missed packets without the need to rejoin the network. If AUTO\_OTA is enabled the device automatically attempts to rejoin after network is lost.

```
[Gateway Powered On]
AT+JOIN
Successfully joined network
```

```
OK
AT+LCC=2
OK
AT+LCT=1
OK
AT+SEND=message
OK
[Gateway Powered Off]
AT+SEND=message
OK
AT+NJS
1
OK
AT+SEND=message
Network Not Joined
ERROR
AT+NJS
0
OK
```

# **Serial Mode**

Configure the device to wake periodically or on interrupt, wait for data on serial port, send data out, and go back to sleep. Refer to *Chapter 5, Power Management* for more information.

• Configure the device to wake up after 10 seconds of sleep and send data from the serial port:

```
AT+WM=0

OK
AT+WI=10

OK
AT+WD=100

OK
AT+WTO=20

OK
AT+SMODE=1

OK
AT&W
```

OK ATZ

OK

Device resets into Serial Mode.

# **Peer to Peer**

mDots using 1.0.8 AT Firmware or Library can be configured for Peer to Peer communication. To allow communication between mDots, configure two or more mDots with the same network settings. Enabling ACKs guarantees packet delivery; however, this may disrupt higher level protocols such as zmodem or ymodem file transfers. Communication between mDots is half-duplex, so both ends should not transmit at the same time or communication will be disrupted.

The frequency can be set for US 915 models. We advise using 915.5-919.7 to avoid interference with LoRa Networks.

For Europe 868 models, use a fixed frequency, 869.85, with 7 dBm power setting to allow 100% duty-cycle usage.

# **Configuration**

This example sets up each side with identical settings and starts serial data mode. Then, text can be entered into a terminal on either side and it will show as received on the other mDot.

```
AT+NJM=3
AT+NA=00112233
AT+NSK=001122330011223300112233
AT+DSK=33221100332211003322110033221100
AT+TXDR=DR8 (US:DR8-DR13,EU:DR0-DR6)
AT+TXF=915500000 (US-ONLY:915.5-919.7)
AT&W
ATZ
AT+SD
```

# **Peer-to-Peer Throughput**

