ADDITIONAL COMPOSITE FUNCTION EXERCISES

KYLE BRODER - ANU MSI 2017

All questions and solutions are written by Kyle Broder in 2017.

If there are any issues or typos, please email kylebroder@gmail.com.

Q1. If the function f is defined by $f(x) = \sqrt{x^2 - 9}$ and the function g is defined by g(x) = x + 5.

- a. Determine the integers $c, d \in \mathbb{Z}$ such that $f(g(x)) = \sqrt{(x+c)(x+d)}$.
- b. State the maximal domain for which f(g(x)) is defined.

Q2. Let
$$f(x) = \frac{1}{x}$$
 and $g(x) = \frac{2}{\sqrt{x+1}}$.

- a. State the domain and range of f(x) and g(x).
- b. State the maximal domain of g(x) such that f(g(x)) is well-defined.
- c. State the rule for f(g(x)).
- d. Determine the domain and range of f(g(x)).

Q3. Let
$$f(x) = x^2 + 1$$
 and $g(x) = \frac{1}{x}$.

- a. State the domain and range of f(x) and g(x).
- b. State the maximal domain of g(x) such that f(g(x)) is well-defined.
- c. State the rule for f(g(x)).
- d. Determine the domain and range of f(g(x)).

Q4. Let
$$f(x) = \frac{1}{\sqrt{x^2+1}}$$
 and $g(x) = 3x$.

- a. State the domain and range of f(x) and g(x).
- b. State the maximal domain of g(x) such that f(g(x)) is well-defined.
- c. State the rule for f(g(x)).
- d. Determine the domain and range of f(g(x)).

Q5. Let
$$f(x) = \frac{2x+1}{x-3}$$
 and $g(x) = x + \sqrt{x-3}$.

- a. State the domain and range of f(x) and g(x).
- b. State the maximal domain of g(x) such that f(g(x)) is well-defined.
- c. State the rule for f(g(x)).
- d. Determine the domain and range of f(g(x)).

Q6. Let
$$f(x) = \frac{1}{1+\sqrt{x}}$$
 and $g(x) = 2x + 1$.

- a. State the domain and range of f(x) and g(x).
- b. State the maximal domain of g(x) such that f(g(x)) is well-defined.
- c. State the rule for f(g(x)).
- d. Determine the domain and range of f(g(x)).

Q7. Let
$$f(x) = x^2 - 5$$
 and $g(x) = \frac{1}{(x-3)^2}$.

- a. State the domain and range of f(x) and g(x).
- b. State the maximal domain of g(x) such that f(g(x)) is well-defined.
- c. State the rule for f(g(x)).
- d. Determine the domain and range of f(g(x)).

Q8. Let
$$f(x) = 2x - \frac{1}{x}$$
 and $g(x) = \frac{1}{x}$.

- a. State the domain and range of f(x) and g(x).
- b. State the maximal domain of g(x) such that f(g(x)) is well-defined.
- c. State the rule for f(g(x)).
- d. Determine the domain and range of f(g(x)).

Q9. Let
$$f(x) = 4x - 2\sqrt{x^2 + 3}$$
 and $g(x) = \frac{4x+1}{3x-2}$.

- a. State the domain and range of f(x) and g(x).
- b. State the maximal domain of g(x) such that f(g(x)) is well-defined.
- c. State the rule for f(g(x)).
- d. Determine the domain and range of f(g(x)).

Q10. Let
$$f(x) = 2x + |x + 3|$$
 and $g(x) = 2x + \sqrt{x}$.

- a. State the domain and range of f(x) and g(x).
- b. State the maximal domain of g(x) such that f(g(x)) is well-defined.
- c. State the rule for f(g(x)).
- d. Determine the domain and range of f(g(x)).

Q11. Let
$$f(x) = \frac{1}{|x|}$$
 and $g(x) = 2x + \frac{1}{5+x}$.

- a. State the domain and range of f(x) and g(x).
- b. State the maximal domain of g(x) such that f(g(x)) is well-defined.
- c. State the rule for f(g(x)).
- d. Determine the domain and range of f(g(x)).
- Q12. Determine the domain of the function

$$f(x) := \frac{1}{\sqrt{x^2 - 5x + 6}}.$$

 $\mathbf{Q13.}$ Determine the domain of the function

$$f(x) := \frac{1}{x^2 + 2x + 1}.$$

 $\mathbf{Q14.}$ Determine the domain of the function

$$f(x) := \frac{1}{\sqrt{x^2 - 5x - 6}}.$$

 $\mathbf{Q15}$. Determine the domain of the function

$$f(x) = \frac{2x+1}{\sqrt{x^2+6x+9}}.$$