NỘI DUNG ÔN THI CUỐI KỲ

Thời gian 120 phút. Hầu hết nội dung của đề thi gần với một trong số các câu sau.

1.1 Giải và biện luận hệ phương trình sau theo tham số m.

$$\begin{cases} x_1 + x_2 & = 3; \\ 2x_1 + x_2 + mx_3 & = 3; \\ 4x_1 + 2x_2 + mx_3 & = 7. \end{cases}$$

1.2 Cho tham số thực m và hệ phương trình tuyến tính sau

$$\begin{cases}
-x_1 - x_2 + x_3 & = -3; \\
5x_1 + 4x_2 - 3x_3 + mx_4 & = 10; \\
7x_1 + 5x_2 - 3x_3 + (m+1)x_4 & = 14.
\end{cases}$$

- a) Giải hệ phương trình khi m=2;
- b) Tìm điều kiện m để hệ vô nghiệm.
- **1.3** Tìm điều kiện k để ma trận $\begin{pmatrix} 1 & 1 & -3 \\ 2 & 1 & k \\ 1 & k & 7 \end{pmatrix}$ có hạng bằng 2.

1.4 Cho ma trận
$$A = \begin{pmatrix} 2 & 4 & -3 \\ 4 & 1 & -2 \\ -1 & -1 & 1 \end{pmatrix}$$
 và $B = \begin{pmatrix} 2 & 1 & -1 \\ 1 & 1 & -1 \\ -2 & 1 & 0 \end{pmatrix}$.

- a) Chứng tỏ A khả nghịch và tìm ma trận nghịch đảo của A.
- b) Tìm ma trận X thỏa AXA = 2AB.

1.5 Cho
$$m \in \mathbb{R}$$
 và ma trận $A = \begin{pmatrix} 3 & 2 & 4 & 2 \\ 1 & 1 & 2 & 1 \\ 3 & 1 & 3 & 1 \\ 1 & 2 & 4 & m+3 \end{pmatrix}$.

- a) Tính định thức của ma trận A. Tìm điều kiện m để A khả nghịch.
- b) Cho $B=mA^2$. Tìm điều kiện m để B không khả nghịch.
- c) Cho B=2A+mA. Tìm điều kiện m để B khả nghịch.
- **1.6** Trong không gian \mathbb{R}^4 , cho

$$S = \{u_1 = (1, 0, 2, 1), u_2 = (1, 0, 4, 4)\}.$$

Chứng tỏ S độc lập tuyến tính và thêm vào S một số vecto để S trở thành cơ sở của \mathbb{R}^4 .

1.7 Trong không gian \mathbb{R}^4 , cho W sinh bởi

$$S = \{u_1 = (1, 2, 1, 2), u_2 = (2, 1, 1, 2), u_3 = (3, 0, 1, 2), u_4 = (5, 7, 4, 8)\}.$$

Tìm một tập con của S để là cơ sở của W?

1.8 Cho W_1 là không gian nghiệm của hệ phương trình

$$\begin{cases} x_1 + 2x_2 - 2x_3 + 5x_4 = 0; \\ 3x_1 + 6x_2 - x_3 + 5x_4 = 0; \\ 2x_1 + 4x_2 - x_3 + 4x_4 = 0. \end{cases}$$

và W_2 là không gian sinh bởi $\{v_1 = (1, 2, 2, 1); v_2 = (3, -2, 2, 1)\}.$

- a) Tìm một cơ sở của không gian W_1 .
- b) Tìm một cơ sở của không gian $W_1 + W_2$.
- c) Tìm số chiều của không gian $W_1 \cap W_2$.
- **1.9** Trong không gian \mathbb{R}^3 cho các vecto $u_1 = (3, 2, -1), u_2 = (2, 0, 1), u_3 = (-1, -1, 1), v_1 = (2, 1, -1), v_2 = (-1, 1, -2), v_3 = (1, 2, m).$
 - a) Chứng minh $\mathcal{B} = (u_1, u_2, u_3)$ là cơ sở của \mathbb{R}^3 .
 - b) Tìm điều kiện m để $\mathcal{C} = (v_1, v_2, v_3)$ là cơ sở của \mathbb{R}^3 .
 - c) Với m = -1, hãy tìm ma trận chuyển cơ sở từ \mathcal{B} sang \mathcal{C} .
- **1.10** Trong không gian \mathbb{R}^3 , cho W là không gian sinh bởi hai vectơ $u_1 = (2, 1, 2)$ và $u_2 = (3, 1, 1)$.
 - a) Chứng tổ rằng $\mathcal{B} = (u_1, u_2)$ là cơ sở của W.
- b) Cho $u=(a,b,c)\in\mathbb{R}^3$. Tìm điều kiện của a,b,c để $u\in W$. Với điều kiện đó, hãy tìm $[u]_{\mathcal{B}}$ theo a,b,c.
- c) Cho $v_1 = (3, 2, 5)$ và $v_2 = (1, 1, 3)$. Chứng tổ rằng $\mathcal{C} = (v_1, v_2)$ là cơ sở của W và xác định ma trận chuyển cơ sở từ \mathcal{B} sang \mathcal{C} .
- d) Tìm $[u]_{\mathcal{C}}$ biết $[u]_{\mathcal{B}} = \begin{pmatrix} 2 \\ 3 \end{pmatrix}$.
- **1.11** Cho $u_1 = (1, 1, 2), u_2 = (2, 1, 2), u_3 = (1, 1, 1)$ và $v_1 = (1, 1), v_2 = (2, 1), v_3 = (1, 2)$. Hãy tìm ánh xạ tuyến tính $f : \mathbb{R}^3 \to \mathbb{R}^2$ thỏa điều kiện $f(u_1) = v_1, f(u_2) = v_2$ và $f(u_3) = v_3$.
- **1.12** Cho $u_1 = (1,0), u_2 = (1,1), u_3 = (1,-2)$ và $v_1 = (2,1), v_2 = (1,1), v_3 = (3,2)$. Tồn tại hay không một ánh xạ tuyến tính $f : \mathbb{R}^2 \to \mathbb{R}^2$ thỏa điều kiện $f(u_i) = v_i, \forall i = 1, 2, 3$? Giải thích?
- **1.13** Trong không gian \mathbb{R}^3 cho các vectơ:

$$u_1 = (1, -1, 1); u_2 = (1, 0, 1); u_3 = (2, -1, 3).$$

- a) Chứng tỏ $\mathcal{B}=(u_1,u_2,u_3)$ là một cơ sở của \mathbb{R}^3 .
- b) Tìm ánh xạ tuyến tính $f:\mathbb{R}^3 \to \mathbb{R}^3$ sao cho

$$f(u_1) = (2, 1, -2); f(u_2) = (1, 2, -2); f(u_3) = (3, 5, -7).$$

2

1.14 Cho $f: \mathbb{R}^4 \to \mathbb{R}^3$ được xác định bởi:

$$f(x, y, z, t) = (x + 2y + 3z + 2t, x + 3y + 3z - t, 2x + 3y + 6z + 7t).$$

Tìm một cơ sở của không gian nhân và không gian ảnh của f.

1.15 Xét ánh xạ tuyến tính $f: \mathbb{R}^3 \to \mathbb{R}^2$ xác định bởi

$$f(x, y, z) = (2x + y - z, -y + 2z)$$

và cặp cơ sở $\mathcal{B} = \{u_1 = (1, 1, 0), u_2 = (1, 0, 1), u_3 = (0, 1, 1)\}$ và $\mathcal{C} = \{v_1 = (1, 2), v_2 = (3, 5)\}$. Tìm ma trận biểu diễn ánh xạ tuyến tính f theo cặp cơ sở \mathcal{B} và \mathcal{C} (ký hiệu $[f]_{\mathcal{B},\mathcal{C}}$)

1.16 Cho ánh xa tuyến tính $f: \mathbb{R}^3 \to \mathbb{R}^2$ có ma trận biểu diễn theo cặp cơ sở $\mathcal{B} = (u_1 = (1, 2, 1), u_2 = (2, 0, 1), u_3 = (2, 1, 1))$ và $\mathcal{C} = (v_1 = (2, 1), v_2 = (3, 2))$ là

$$[f]_{\mathcal{B},\mathcal{C}} = \left(\begin{array}{ccc} 1 & 2 & 2 \\ -1 & 3 & 2 \end{array}\right).$$

Hãy tìm công thức của f?

Lưu ý: Các bước tính toán cần trình bày rõ ràng và đầy đủ.