REPORT FOR MM_RecSys: 28/06/2022

Data Analysis:

I am currently using movielens 20m. My preprocessing included the following:

- 1. Remove all the movies that I don't have posters for.
- 2. Remove all the users that I don't have demographics for.

So, the final statistics for the dataset can be found in the following table:

Number of unique users	6.040
Number of unique movies	7.861
Number of ratings	2.020.157
Range of ratings	[1-5]

All the users have rated at least 35 times.

The maximum number of ratings from a single user is 3.503.

All the users have metadata (Age, Gender, Occupation, Postcode)

Potential Problems:

- 1. 2.426 movies out of 7.861 have been rated less than 10 times
- 2. Slightly imbalanced dataset (see figure 2)

Potential Solutions:

- 1. Remove these movies
- 2. Add ratings artificially for each one so they can reach a minimum of 15 ratings each.

Notes:

I also have approximately 1.200 movie posters and metadata, but I do not have ratings for these movies.

Figure 1 shows the top 5 rows and the structure of the dataset that I am using.

	userId	movield	rating	timestamp
1729638	4864	17	5.0	825499934
1729636	4864	11	5.0	825499934
1729635	4864	10	3.0	825499934
1729653	4864	79	1.0	825499934
1729637	4864	14	4.0	825499935

Figure 1

Figure 2 shows the label distribution: the number of ratings per label.

In the appendices, I have added some plots for reference. These include the user distribution over the different metadata, rating distribution over the user metadata and an example of a movie's poster.

Modelling:

I have developed different models based on how I want to approach the problem.

1st model: I treat this problem as a regression so the output is a number between 1 and 5. The model used as a baseline is a Neural Collaborative Filtering (Figure 3) with MSE as a loss function. I used learnable Embedding layers for movies and users.

Figure 3: Model 1 architecture

2nd model: I treat this problem as a regression so the output is a number between 1 and 5. The model used as a backbone is a Neural Collaborative Filtering (Figure 4) with MSE as a loss function. I used learnable Embedding layers for the users and then a concatenation from the output of Bert and the output of CNN to represent the movies.

Figure 4: Model 2 architecture

Note: Given the number of ratings I have (~2 million), I could not fine-tune the BERT and CNN. So I stored the tensors (outputs of the models) in a file and I read them while I was training the model.(If this part is unclear I can explain it in detail during our call)

Models	MSE
Model 1: Baseline	0.93
Model 2: Baseline adding multimodal movie features *	1.03 (overfitting)

^{*} I think that this would be boosted if the movies have a more balanced distribution for the movie ratings.

Models 3 and 4

I treated the same models as above as a classification problem. I used cross-entropy loss and I had a classification of 5 labels (1,2,3,4,5). So models 3 and 4 have the same architecture as models 1 and 2 (Figure 3 and 4)

Models	Accuracy
Model 3 (Baseline)	43.2
Model 4: Baseline adding multimodal movie features *	41.5

Models 5 and 6

Finally, I used Nvidia's PyTorch implementation for the NCF (see figure 5). If the differences are unclear I can explain them in detail during our call.

The Nvidia repo can be found here: link

Again I tackled the problem as a classification similarly as explained before:

Models	Accuracy
Model 5: Baseline	44.6
Model 6: Baseline adding multimodal movie features *	To be conducted

Figure 5: The architecture of a Neural Collaborative Filtering model. Taken from the <u>Neural Collaborative Filtering paper.</u>

Notes:

Nvidia treats this problem as a binary classification (positive or negative review). Figure 4 shows the structure of the dataset that Nvidia used:

train:
- type: csv
features:
- user_gender
- user_age
files:
- train_data_0_0.csv
- train_data_0_1.csv
- type: csv
features:
- user_id
- item_id
- label
files:
- train_data_1.csv

user_gender	user_age	user_id	item_id	label
0	34	1	1	1
0	29	2	5	1
1	54	4	2	0
1	34	3	2	0
0	19	6	4	1
1	23	3	5	0
0	63	6	7	1
1	62	3	8	1
1	75	7	1	1

Figure 4: Dataset structure used by Nvidia

Figure 5: Nvidia's results: The plots below show the validation accuracy over the course of training. One sample curve is shown for each configuration.

Note: I can not compare my results with them since they are working with a really powerful GPU.

Questions:

- What kind of problem is the best to try to solve:
 - Regression (predict the rating that a user will give to a movie)
 - Classification (predict the rating that a user will give to a movie from the labels [1-5])
 - Binary Classification (predict if a user will give a positive or negative rating)
- Is it going to be a big problem to not fine-tune Bert and CNN?
- Any other suggestions for recommendation models to try?
 - My ideas are
 - DLRM from Facebook
 - Attention recommenders from Microsoft
- Finally not sure how to calculate K-accuracy, K-precision, and K-recall during training. I
 can see how to compute it during testing
- Is the performance of the models okay (around 43 %)?

Next steps:

- 1. Conclude to what type of problem I am aiming to solve
- 2. Run experiments with Nvidia model and Multi modal for movies
- 3. Create the user representation using the user's metadata
- 4. Try to use these models by fine-tuning Bert and CNN

Appendicies:

Poster Example:

