CAMBRIDGE INTERNATIONAL EXAMINATIONS

Cambridge International General Certificate of Secondary Education

MARK SCHEME for the October/November 2015 series

0606 ADDITIONAL MATHEMATICS

0606/23 Paper 2, maximum raw mark 80

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the October/November 2015 series for most Cambridge IGCSE[®], Cambridge International A and AS Level components and some Cambridge O Level components.

Page 2	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE – October/November 2015	0606	23

Abbreviations

awrt answers which round to cao correct answer only

dep dependent

FT follow through after error isw ignore subsequent working

oe or equivalent

rot rounded or truncated

SC Special Case soi seen or implied

www without wrong working

1	$y = x^{3} + 3x^{2} - 5x - 7$ $\frac{dy}{dx} = 3x^{2} + 6x - 5$	M1	Differentiate
	$\frac{-}{\mathrm{d}x} = 3x^{2} + 6x - 3$	A1	Differentiate
	$x = 2 \to \frac{\mathrm{d}y}{\mathrm{d}x} = 19$	A1FT	on their $\frac{dy}{dx}$
	y=3	B1	
	eqn of tangent: $\frac{y-3}{x-2} = 19 \rightarrow (y=19x-35)$	A1FT	
2	$2x + k + 2 = 2x^2 + (k+2)x + 8$	M1	eliminate y or x
	$2x^2 + kx + 6 - k (=0)$	A1	correct quadratic
	$b^2 - 4ac = k^2 - 4 \times 2(6 - k)$	M1	use discriminant
	$k^2 + 8k - 48$ (>0)		
	(k+12)(k-4) (> 0)	DM1	attempt to solve 3 term quadratic
		A1	k = -12 and $k = 4$
	k < -12 or k > 4	A1	
3 (a)	$\frac{dy}{dx} = \frac{(2-x^2)3x^2 - x^3(-2x)}{(2-x^2)^2} = \left(\frac{6x^2 - x^4}{(2-x^2)^2}\right)$	M1	For quotient rule (or product rule on correct <i>y</i>)
		A2,1,0	
	dy 1 os		
(b)	$\frac{dy}{dx} = x \times \frac{1}{2} (4x+6)^{-0.5} \times 4 + (4x+6)^{0.5}$	M1 A1	product rule
		Al	
	$= \frac{6(x+1)}{(4x+6)^{0.5}} \to k = 6$	A1	
4	$x(4-\sqrt{3})=13$	M1	eliminate y or x
4		A1	simplified
	$x = \frac{13(4+\sqrt{3})}{(4-\sqrt{3})(4+\sqrt{3})}$	M1	rationalisation
	$=4+\sqrt{3}$	A1	
	$= 4 + \sqrt{3}$ $y = 1 - 2\sqrt{3}$	A1	

Page 3	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE – October/November 2015	0606	23

5		(x-3)(x-3)(x-1) = 0	M1	
		$x^3 - 7x^2 + 15x - 9 = 0$		
		a = -7	A1	
		<i>b</i> = 15	A1	
		c = -9	A1	\mathbf{AG} for c
6		$\log_x 2 = \frac{\log_2 2}{\log_2 x}$	B1	
		$2\log_2 x = \log_2 x^2$	B1	
		$3 = \log_2 8$	B1	
		$8x^2 - 29x + 15 \ (=0)$	M1	obtain quadratic and attempt to solve
		$\rightarrow (8x-5)(x-3) \ (=0)$	1411	1
		$x = \frac{5}{8} \text{ or } x = 3$	A1	
7 (i)		$a = -\frac{20}{\left(t+2\right)^3}$	M1 A1	$k(t+2)^{-3}$ oe $k = -20$
		$t = 3 \rightarrow a = -0.16 \text{ m/s}^2$	A1FT	
(ii)	i)	$\frac{10}{(t+2)^2}$ is never zero. $s = -\frac{10}{t+2} + 5$	B1	
(iii	ii)	$s = -\frac{10}{t+2} + 5$	M1 A1	integrate $\frac{k}{t+2}$ $k = -10$
			A1	+5
(iv	v)	$s = \left[-\frac{10}{t+2} \right]_3^8 = -1 + 2$	M1	insert limits and subtract
		=1	A1	

Page 4	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE – October/November 2015	0606	23

8	(i)	$\sec^2 x + \csc^2 x = \frac{1}{\cos^2 x} + \frac{1}{\sin^2 x}$	B1	
		$\cos^2 x \sin^2 x$ $= \frac{\sin^2 x + \cos^2 x}{\sin^2 x \cos^2 x}$	B1	add fractions
		$=\frac{1}{\sin^2 x \cos^2 x}$	B1	use of $\sin^2 x + \cos^2 x = 1$
		$= \sec^2 x \csc^2 x$	B1	fully correct solution
	(ii)	$\frac{1}{\cos^2 x \sin^2 x} = 4 \frac{\sin^2 x}{\cos^2 x}$	M1	
		\rightarrow $4\sin^2 x = 1$	A1	correct simplified equation
		$\sin x = \pm \frac{1}{\sqrt{2}}$		
		$x = 135^{\circ}, 225^{\circ}$	A1, A1	
9	(i)	$f(x) = 3x^{2} + 12x + 2 = 3(x+2)^{2} - 10$ $a = 3$ $b = 2$ $c = -10$	B1 B1 B1	
	(ii)	minimum $f(x) = -10$ at $x = -2$	B1FT B1FT	
	(iii)	$f\left(\frac{1}{y}\right) = 0 \to \left(\frac{1}{y}\right) = (\pm)\sqrt{\frac{10}{3}} - 2$	M1	obtain explicit expression for $\frac{1}{y}$ or y
		y = -5.74, -0.26	A1, A1	

Page 5	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE – October/November 2015	0606	23

10		$\frac{d}{dx}(e^{2-x^2}) = -2xe^{2-x^2}$	B1	k = -2
	(ii)	$-\frac{3e^{2-x^2}}{2} + c$	M1 A1FT	De^{2-x^2} $D = \frac{-3}{2} \text{ or } \frac{3}{k}$
	(iii)	$\left[-\frac{3e^{2-x^2}}{2} \right]_1^{\sqrt{2}} = -\frac{3}{2} + \frac{3}{2}e$ 2.58	M1 A1	insert limits on their (ii) and subtract
		2.58 $y = 3xe^{2-x^2}$	M1 A1	product rule
		$\frac{dy}{dx} = 3x(-2xe^{2-x^2}) + 3e^{2-x^2}$ $\frac{dy}{dx} = 0 \Rightarrow x = \pm \frac{1}{\sqrt{2}} = \pm 0.707$ $y = \pm \frac{3}{\sqrt{2}}e^{1.5} = \pm 9.51$	A1	both x or a pair both y
		$\sqrt{2}$		
11	(i)	$\log N = \log A - t \log b$	B1	
	(ii)	t 1 2 3 4 5 6 log N 3.30 3.11 2.95 2.77 2.60 2.41 ln N 7.60 7.17 6.79 6.38 5.98 5.56	M1 M1	find logs of N plot $\log N$ or $\ln N$ against t or $-t$
			IVI 1	plot log tv or in tv against t or -t
			A1	straight line passing through five points
	(iii)	gradient = $-\log b = \frac{2.415 - 3.3}{5} \rightarrow b = 1.5$	DM1	set gradient = $-\log b$ and solve
	. ,	intercept = $\log A = 3.47 \rightarrow A = 2950$	DM1 A1	set intercept = $log A$ and solve both values correct
	(iv)	$t = 10 \to N = \frac{2950}{1.5^{10}} = 51$	B1	
	(v)	$N = 10 \rightarrow 1.5' = 295 \rightarrow t = \frac{\log 295}{\log 1.5}$ = 14 years	M1 A1	substitute $N = 10$, their A , b into given or transformed equation

Page 6	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE – October/November 2015	0606	23

12	$v_p = \begin{pmatrix} 250\cos 20^{\circ} \\ 250\sin 20^{\circ} \end{pmatrix}, \ v_r = \begin{pmatrix} V\cos 30^{\circ} \\ V\sin 30^{\circ} \end{pmatrix}, \ v_w = \begin{pmatrix} 0 \\ w \end{pmatrix}$	B1	
	$ \begin{pmatrix} v_r = v_p + v_w \\ \left(V \cos 30^\circ \right) = \begin{pmatrix} 250 \cos 20^\circ \\ 250 \sin 20^\circ \end{pmatrix} + \begin{pmatrix} 0 \\ w \end{pmatrix} $		
	$V = \frac{250\cos 20^{\circ}}{\cos 30^{\circ}}$ $= 271 \text{ km/hr}$	M1 A1	equate x components and solve
	$w = V \sin 30^{\circ} - 250 \sin 20^{\circ}$ = 50.1km/hr	M1 A1	equate y components and solve
	OR triangle with sides $250 V w$ opposite angles $60^{\circ} 110^{\circ} 10^{\circ}$	B1	
	sine rule: $\frac{w}{\sin 10^{\circ}} = \frac{250}{\sin 60^{\circ}}$ $w = 50.1 \text{km/hr}$	M1 A1	apply to correct triangle and solve
	$\frac{V}{\sin 110^{\circ}} = \frac{250}{\sin 60^{\circ}}$ $V = 271 \text{ km/hr}$	M1 A1	apply to correct triangle and solve
	$V = 271 \mathrm{km/hr}$	711	