安徽大学互联网学院 2018-2019 学年第一学期

《高等数学 A (一)》期末考试试卷(B卷)

(闭卷 时间 120 分钟)

考场登记表序号

题 号	_	11	Ξ	四	五.	总分
得 分						
阅卷人						

一、填空题(本题共五小题,每小题3分,共15分)

得分

1. $\lim_{n \to \infty} \sqrt[n]{1 + 2^n + 3^n} = \underline{\hspace{1cm}}$

小水

年级

- 2. 若 $f(x) = x(x+1)(x+2)\cdots(x+100)$,则 f'(0) =______
- 3. 设函数 y = y(x) 是由方程 $\ln(x^2 + y) = x^3 y + \sin x$ 确定,则 $dy|_{x=0} =$
- **4.** 若点(1,3) 是曲线 $y = ax^3 + bx^2$ 的拐点,则(a,b) = _____.
- 5. 函数 $y = \frac{x^2}{2x+1}$ 的斜渐近线为______.

二、选择题(本题共五小题,每小题3分,共15分)

得 分

- 6. 若函数 f(x) 的一个原函数为 ln(x+1) ,则 f'(x)等于
- - A. $(x+1)^{-1}$; B. $-(x+1)^{-2}$; C. $\ln(x+1)$; D. $(x+1)\ln(x+1)$.
- 7. 已知极限 $\lim_{x\to 0} \frac{x \arctan x}{x^k} = c$, 其中 k, c 为常数,且 $c \neq 0$,则
 - A. k = 2, $c = -\frac{1}{2}$; B. k = 2, $c = \frac{1}{2}$; C. k = 3, $c = -\frac{1}{3}$; D. k = 3, $c = \frac{1}{2}$.

8. 反常积分① $\int_{-\infty}^{0} \frac{1}{r^2} e^{\frac{1}{x}} dx$, ② $\int_{0}^{+\infty} \frac{1}{r^2} e^{\frac{1}{x}} dx$ 的敛散性为

- A. ①收敛, ②收敛; B. ①收敛, ②发散;
- ②收敛; D. ①发散, C. ①发散, ②发散.
- 9. 下列命题正确的是
 - ()
 - A. 若 $(x_0, f(x_0))$ 是函数 y = f(x) 拐点,则 $x = x_0$ 不可能是 f(x) 的极值点;
 - B. 若 $x = x_0$ 是 f(x) 的极值点,且 f(x) 在 $x = x_0$ 二阶可导,则必有 $f''(x) \neq 0$;
 - C. 若 f'(b) < 0,则 f(b)不可能是 f(x) 在 [a,b] 上的最大值;
 - D. 若 $x = x_0$ 是 f(x) 在 [a,b] 上的极小值点,则 $f(x_0)$ 必为 f(x) 在 [a,b] 上的最小值.

10. 设
$$f(x) = \begin{cases} bx^2 + a, & x \le 0 \\ \frac{\sin bx}{x}, & x > 0 \end{cases}$$
 在 $x = 0$ 处连续,则常数 a, b 应满足的关系是 () A. $a = b$; B. $a = -b$; C. $ab = -1$; D. 以上都不对.

三、计算题(本题共六小题,每小题7分,共42分)

得 分

11. 已知数列 $a_{n+1} = \sqrt{6+a_n}$, $n = 1, 2, \dots$, $a_1 = 10$, 求数列的极限 $\lim_{n \to \infty} a_n$.

13. 求
$$\begin{cases} x = e^t \sin 2t \\ y = e^t \cos t \end{cases}$$
 在点 (0,1) 处的法线方程.

14.
$$\int \frac{1}{x + \sqrt{a^2 - x^2}} dx$$
.

15.
$$\int_{1}^{4} \frac{1}{x(1+\sqrt{x})} dx$$
.

16.
$$\vec{x} \frac{dy}{dx} = \frac{x+y-1}{x-y+3} \text{ 的通解}.$$

四、应用题(本题共两小题,每小题8分,共16分)

17. 要做一个容积为 2π 的密闭圆柱形罐头筒,问半径和筒高如何确定才能使所用材料 最省?

- 18. 过坐标原点做曲线 $y = \ln x$ 的切线,该切线与曲线 $y = \ln x \mathcal{D} x$ 轴围成平面图形 D.
 - (1) 求切线方程;

江

閥

杈

凰

袔

(2) 求 D 的面积.

五、证明题(本题共两小题,每小题6分,共12分)

得分

19. 设函数 f(x) 在 [a,b] 上连续,在 (a,b) 内可导,且 (0 < a < b) . 试证明:存在 $\xi \in (a,b)$,使得 $f(b) - f(a) = \xi(\ln \frac{b}{a}) f'(\xi)$.

20. 设 f(x) 在 [0,3] 上连续,在 (0,3) 上可导, f(0)+f(1)+f(2)=3, f(3)=1. 证明:存在一点 $\xi \in (0,3)$,使得 $f'(\xi)=0$.