Контрольная работа №1

Задание №1. Вычисление простого выражения

Разработать программу для вычисления арифметического выражения и вывода полученного результата на экран. Исходные данные пользователь вводит с клавиатуры. Варианты задания представлены в таблице 1.

Таблица 1 – Варианты задания №1 контрольной работы №1

Номер варианта	Выражение	Исходные данные
1	$a = \ln(y^{-\sqrt{ x }}) \cdot (\sin(x) + e^{(x+y)})$	x, y
2	$b = \sqrt{c(\sqrt{y} + x^2)} \cdot (\cos(x) - c - y)$	c, x, y
3	$c = \operatorname{arctg}(x) - \frac{3}{5} \cdot e^{x \cdot y} + 0.5 \frac{ x + y }{(x + y)^b}$	b, x, y
4	$d = \frac{e^{ x-y } \cdot tg(z)}{\arctan(y) + \sqrt{x}} + \ln(x)$	x, y, z
5	$e = \frac{(\cos(x) - \sin(y))^3}{\sqrt{\operatorname{tg}(z)}} + \ln^2(x \cdot y \cdot z)$	x, y, z
6	$f = y^{x} + \sqrt{ x + e^{y}} - \frac{z^{3} \cdot \sin^{2}(y)}{y + \frac{z^{2}}{(y - x)}}$	x, y, z
7	$g = \frac{1 + \cos(x + y)}{\left e^{x} - \frac{2 \cdot y}{1 + x^{2} \cdot y^{2}} \right } \cdot x^{3} + \arcsin(y)$	x, y
8	$h = 2 + \frac{x^2}{\sqrt{2}} + \frac{ y^3 }{\sqrt{2}} + \frac{z^4 \cdot (\ln(x) + 1) \cdot \sqrt{2}}{\sqrt{3}}$	x, y, z
9	$j = \left((1+y) \cdot \sqrt{\sin(3\cdot z)} - \frac{ y-x }{5} \right)^3$	x, y, z
10	$k = \ln\left \left(y - \sqrt{ x }\right) \cdot \left(x - \frac{y}{z + \frac{x^2}{4}}\right)\right $	x, y, z
11	$l = 0.5 \cdot x^5 + 3 \cdot \cos(x + y) + e^{-0.1 \cdot y \cdot z} - \sqrt{ x \cdot y }$	x, y, z

Номер варианта	Выражение	Исходные данные
12	$m = \sqrt{\frac{-3 \cdot \operatorname{tg}(x) \cdot \operatorname{lg}(x^4 + y)}{e^{-x}} + 1}$	x, y
13	$n = \sqrt{e^x + tg(x) + 1} \cdot (lg(y) + cos(x \cdot y) + \sqrt[3]{x})$	<i>x</i> , <i>y</i>
14	$p = \frac{\lg(x) - e^{x+y}}{\sqrt{2} + y^2 + x^3 - \ln(y) }$	x, y
15	$q = \sqrt{12 \cdot x^4 - 3 \cdot x^3 + 4 \cdot x^2 - 5 \cdot x + 6} - \lg^2(z)$	X, Z
16	$r = \lg 1 - 2 \cdot x + 3 \cdot x^2 - 4 \cdot x^3 + \frac{\sqrt{ x }}{z}$	X, Z
17	$s = \frac{2 \cdot \cos(x - \frac{1}{6})}{\frac{1}{2} + \sin^2(y)} - \frac{1}{\left \frac{x^2}{(y + x^3)} \right }$	x, y
18	$t = \frac{x \cdot y \cdot z - y \cdot x + \sqrt{z} }{10^7 + \sqrt[4]{\lg(4)}}$	x, y, z
19	$u = \frac{(x + y - z)^3 - (x - y + z)^2 + \sqrt{ x + y + z }}{\log_2(\operatorname{tg}(4))}$	x, y, z
20	$w = \frac{\frac{x}{y} \cdot (z + y) \cdot e^{ x - y } + \ln(1 + e)}{\sin^2(y) - (\sin(x) \cdot \sin(y))^2}$	x, y, z
21	$a = \frac{\sqrt{ x-1 } - \sqrt[3]{ y }}{1 + \frac{x^2}{2} + \frac{y^2}{4}} + tg^2(x \cdot y)$	x, y
22	$b = \frac{3 + e^{y-1}}{1 + x^2 \cdot y - \operatorname{tg}(z) }$	x, y, z
23	$c = (1+y) \cdot \frac{x + \frac{y}{x^2 + 4}}{e^{-x-2} + \frac{1}{ x^2 + 4 }}$	x, y

Номер варианта	Выражение	Исходные данные
24	$d = \frac{2 \cdot \cos\left(x - \frac{\pi}{6}\right)}{\frac{1}{2} + \sin^2(y)} + \frac{ y - x }{3}$	x, y
25	$e = \frac{1 + \sin^2(x + y)}{2 + \left x - \frac{2 \cdot x}{1 + x^2 \cdot y^2} \right } + x$	x, y
26	$f = \ln \left \left(y - \sqrt{ x } \right) \cdot \left x - \frac{y}{z + \frac{x^2}{4}} \right \right $	x, y, z
27	$h = x - \frac{y \cdot (\operatorname{arctg}(z) + e^{-(x+3)})}{x^2 + 2 \cdot y^3}$	x, y, z
28	$k = 1 + y - x + \frac{(y - x)^2}{\sqrt{\operatorname{arctg}(x \cdot y)}}$	x, y

Задание №2. Вычисление условного выражения

Разработать программу для вычисления выражения и вывода полученного результата на экран. Соответствующие исходные данные пользователь вводит с клавиатуры. Варианты задания представлены в таблице 2.

Таблица 2 – Варианты задания №2 контрольной работы №1

Номер варианта	Выражение	Исходные данные
1	$a = \begin{cases} (x+y)^2 - \sqrt{x \cdot y}, & x \cdot y > 0 \\ (x+y)^2 + \sqrt{ x \cdot y }, & x \cdot y < 0 \\ (x+y)^2 + 1, & x \cdot y = 0 \end{cases}$	x, y
2	$b = \begin{cases} \ln\left(\frac{x}{y}\right) + (x^2 + y)^3, & \frac{x}{y} > 0\\ \ln\left \frac{x}{y}\right + (x^2 + y)^3, & \frac{x}{y} < 0\\ (x^2 + y)^3, & x = 0, y \neq 0\\ 0, & y = 0 \end{cases}$	x, y

Номер варианта	Выражение	Исходные данные
3	$c = \begin{cases} x^2 + y^2 + \sin(x), & x - y = 0\\ (x - y)^2 + \cos(x), & x - y > 0\\ (y - x)^2 + \tan(x), & x - y < 0 \end{cases}$	x, y
4	$d = \begin{cases} (x - y)^3 + \arctan(x), & x > y \\ (y - x)^3 + \arctan(x), & y > x \\ (y + x)^3 + 0.5, & y = x \end{cases}$	x, y
5	$e=egin{cases} i\cdot\sqrt{a},&i-$ нечётное , $a>0\ rac{i}{2}\cdot\sqrt{ a },&i-$ чётное , $a<0\ \sqrt{ i\cdot a },&$ иначе	i, a
6	$e = egin{cases} e^{ a - b }, & 0,5 < a \cdot b < 10 \ \sqrt{ a+b }, & 0,1 < a \cdot b < 0,5 \ 2 \cdot x^2, & $ иначе	a, b, x
7	$h = \begin{cases} \arctan(x + y), & x < y \\ \arctan(x + y), & x > y \\ (x + y)^2, & x = y \end{cases}$	x, y
8	$j = \begin{cases} \sin(5 \cdot k + 3 \cdot m \cdot k), & k < m \\ \cos(5 \cdot k + 3 \cdot m \cdot k), & k > m \\ k^3, & k = m \end{cases}$	k, m
9	$l = egin{array}{l} 3 \cdot k^3 + 3 \cdot p^2, & k > p \ k - p , & 3 < k < p \ (k - p)^2, & k = p \ 0, & u$ наче	k, p
10	$k = \begin{cases} \ln(f + q), & f \cdot q > 10 \\ e^{f+q}, & f \cdot q < 10 \\ f+q, & f \cdot q = 10 \end{cases}$	f,q
11	$m = \begin{cases} z + \sqrt{x^2 + y^2} \cdot \sin(x \cdot y), & x < -3\\ 2 \cdot x \cdot \sqrt{x^2 + 2} \cdot y \cdot z , & -3 \le x \le 1\\ x^2 + 2 \cdot y^2 + z , & x > 1 \end{cases}$	x, y, z

Номер варианта	Выражение	Исходные данные
12	$p = \begin{cases} \arcsin\left(\frac{x+y}{z}\right), & \left \frac{x+y}{z}\right \le 1\\ 2 \cdot x^2 + y + \operatorname{tg}(z), & \left \frac{x+y}{z}\right > 1 \end{cases}$	x, y, z
13	$q = \begin{cases} x \cdot y \cdot z - y - z , & x \cdot y < -1 \\ x^2 - y^2 + z, & -1 \le x \cdot y \le 1 \\ \sqrt{x^2 + y^2 + 2 \cdot \sin(2 \cdot z)}, & x \cdot y > 1 \end{cases}$	x, y, z
14	$r = \begin{cases} \sqrt{x^2 + z^2} - \sqrt{x^2 + y^2}, & x < -2\\ 3 \cdot x \cdot z - 4 \cdot y , & -2 \le x \le 2\\ \sin\left(\frac{2 \cdot z^2 + y^2}{x^2}\right), & x > 2 \end{cases}$	x, y, z
15	$s = \begin{cases} 3 \cdot x + 2 \cdot y, & x < 0 \\ x^2 + 4 \cdot \sqrt{y^2 + 1}, & 0 \le x \le 1 \\ 3 \cdot \ln\left \sin\left(\frac{y}{x}\right)\right , & x > 1 \end{cases}$	x, y
16	$t = \begin{cases} \frac{3 \cdot x^2 + 2 \cdot y}{x^2 + y^2}, & x < -2\\ x - 3 \cdot y , & -2 \le x \le 2\\ \left \ln \left \frac{x - y}{2 + 3 \cdot y} \right , & x > 2 \end{cases}$	x, y
17	$t = \begin{cases} \frac{a \cdot b}{\sqrt{a^2 + 2 \cdot b \cdot \sin(a+b) }}, & a+b < -2\\ 3 \cdot a \cdot b + 2 \cdot b^2 + c, & -2 \le a+b \le 1\\ \frac{1}{a \cdot b} + a \cdot c - \sqrt{ a-b }, & a+b > 1 \end{cases}$	a,b,c
18	$a = \begin{cases} 2 \cdot x^{2} - y \cdot x \cdot \sqrt{x + y} + y, & x \cdot y > 0 \\ 3 \cdot y^{2} + y \cdot x \cdot \sqrt{ x - y }, & x \cdot y < 0 \\ 2 \cdot x \cdot y + 3, & x \cdot y = 0 \end{cases}$	x, y

Номер варианта	Выражение	Исходные данные
19	$a = \begin{cases} \sin(x+y) + 2 \cdot (x+y)^2, & x-y \ge 0\\ \sin(x-y) + (x-y)^3, & x-y < 0\\ x^2 + \sqrt{y} , & x = 0, y \ne 0\\ 0, & y = 0 \end{cases}$	x, y
20	$c = \begin{cases} \left x^2 - y^2 \right + \sqrt{\left \frac{x}{y} \right }, & -2 < x \cdot y < 0 \\ (x - y)^2 + \sqrt{x \cdot y + 2 \cdot \frac{x}{y}}, & 0 < x \cdot y < 2 \\ \frac{1}{x + y}, & \text{uhave} \end{cases}$	x, y
21	$d = \begin{cases} (2 \cdot x - y)^2 + \sin(x), & y < x \\ (y - 2 \cdot x)^2 + \cos(x), & y > x \\ x^2 - 2 \cdot y, & y = x \end{cases}$	x, y
22	$c = egin{cases} x^{\sqrt{ a+b }}, & 0,5 < a \cdot b < 10 \\ \sqrt{ a - b } + 2 \cdot x, & 0,1 < a \cdot b < 0,5 \\ \dfrac{a \cdot b}{x}, & u$ наче	a, b, x
23	$g = \begin{cases} \sqrt{k^2 + m} + 3 \cdot k , & k < m \\ \sqrt{k + m^3} - 0.5 \cdot m - k , & k > m \\ 2 \cdot m^2 - 0.5, & k = m \end{cases}$	k, m
24	$h = \begin{cases} \sqrt{k+p} + 2 \cdot p^2, & k > p \\ 0.5 \cdot p + \frac{p}{k}, & k < p \\ 3 \cdot k - 2, & k = p \end{cases}$	k, p
25	$h = \begin{cases} \sqrt{ x + y } + 2 \cdot x - 3 \cdot y, & x \cdot y > 5 \\ 2^{x \cdot y} - (x + y), & x \cdot y < 5 \\ x - y, & x \cdot y = 5 \end{cases}$	x, y
26	$n = \begin{cases} \sin(x) + 0.5 \cdot \sqrt{x + y \cdot z }, & y < -3 \\ 2 \cdot y \cdot \sqrt{x^2 + z}, & -3 \le y \le 1 \\ 3 \cdot x^3 - 2 \cdot y^2 + z, & y > 1 \end{cases}$	x, y, z

Номер варианта	Выражение	Исходные данные
27	$m = \begin{cases} \sin(a \cdot b + c), & \left \frac{a - b}{c} \right \le 0,5 \\ 2 \cdot a \cdot \sqrt{ b + c }, & \left \frac{a - b}{c} \right > 0,5 \end{cases}$	a, b, c
28	$p = \begin{cases} \sqrt{ a \cdot b } + 2 \cdot c, & a \cdot b < -2 \\ a^3 + b^2 - c^2, & -2 \le a \cdot b \le 2 \\ a^c - b, & a \cdot b > 2 \end{cases}$	a,b,c

Задание №3. Табулирование функции

Разработать программу для вычисления значений функции y = f(x) в интервале [a,b] с шагом h и вывода полученных результатов (пары x и y) на экран. Варианты задания представлены в таблице 3.

Таблица 3 — Варианты задания №3 контрольной работы №1

Номер варианта	Функция $y = f(x)$
	$\left(\frac{1}{(x+1)\cdot\sqrt{x^2+1}}, \qquad x > -1\right)$
1	$y = \begin{cases} \frac{1}{(x+1) \cdot \sqrt{x^2 + 1}}, & x > -1\\ \frac{-(\ln x)^3 + 3 \cdot \frac{(\ln x)^2}{2} + 3 \cdot \frac{\ln x }{2} + \frac{3}{4}}{2 \cdot x^2}, & x \le -1\\ x \in [-3, 0], & h = 0, 1 \end{cases}$
	$x \in [-3, 0], h = 0,1$
2	$y = \begin{cases} \frac{e^{x} \cdot (1 + \sin(x))}{1 + \cos(x)}, & x < 0 \\ e^{x} \cdot tg\left(\frac{x}{2}\right), & x \ge 0 \end{cases}$
	$x \in \left[-\frac{\pi}{4}, \frac{\pi}{4} \right], \ h = \frac{\pi}{20}$

Номер варианта	Функция $y = f(x)$	
3	$y = \begin{cases} \sin(x) \cdot \ln(tg(x)), \\ 0, \\ \ln(tg(\frac{x}{2})) - \cos(x) \cdot \ln(tg(x)), \end{cases}$	x < 0 $x = 0$ $x > 0$
3	$x \in \left[-\frac{\pi}{8}, \frac{\pi}{8}\right], \ h = \frac{\pi}{40}$	
	$(x \cdot \ln(x))^2$,	x > 0 $x = 0$
4	$y = \begin{cases} (x \cdot \ln(x))^2, \\ 0, \\ \frac{x^3}{27} \cdot (9 \cdot \ln^2(x) - 6 \cdot \ln(x) + 2), \end{cases}$	x = 0 $x < 0$
5	$x \in [-0,6, 0,6], h = 0,12$ $y = \begin{cases} \arccos\left(\sqrt{\frac{x}{1+x}}\right), & x \ge 0\\ 1 - x^2 - 2 \cdot \sin^2(x), & x < 0 \end{cases}$ $x \in \left[-\frac{\pi}{2}, \frac{\pi}{2}\right], h = \frac{\pi}{20}$	
6	$y = \begin{cases} \frac{2}{3}, & x = \\ \frac{2}{3} \cdot \frac{\sin(x)}{x} \cdot \frac{1}{x^2} \cdot \sin\left(\frac{1}{x}\right), & \text{инал} \\ x \in [-1, 1], & h = 0, 1 \end{cases}$	0 не
7	$y = \begin{cases} \sqrt{e^{x} - 1}, & x \ge 0 \\ -x^{2}, & x < 0 \end{cases}$ $x \in [-0,5,0,5], h = 0,1$	
8	$y = \begin{cases} \operatorname{tg}^{2}(x), & x > 0 \\ x^{2} \cdot \sin(x), & x \le 0 \end{cases}$ $x \in [-1, 1], \ h = 0,2$	

Номер варианта	Функция $y = f(x)$
9	$y = \begin{cases} \frac{\ln^2(x)}{x}, & x > 0\\ 0, & x = 0\\ \frac{3}{5} \cdot \frac{\sin(2 \cdot x)}{x}, & x < 0 \end{cases}$ $x \in \left[-\frac{\pi}{2}, \frac{\pi}{2} \right], h = \frac{\pi}{20}$
10	$y = \begin{cases} x \cdot \sinh(2 \cdot x), & x > 0 \\ 0, & x = 0 \\ -x^3 \cdot e^x, & x < 0 \end{cases}$ $x \in [-0,5, 0,5], h = 0,1$
11	$y = \begin{cases} \frac{3}{7} \\ \sqrt{9 + x^2}, & x < 4 \\ \frac{3}{35} \cdot (x - 4)^3, & \text{иначе} \end{cases}$ $x \in [3, 5], h = 0,1$
12	$y = \begin{cases} 2 \cdot e^{\sqrt{x}}, & x \ge 0 \\ 2 \cdot x^3 \cdot \cos(x^2 + 1), & x < 0 \end{cases}$ $x \in [-1, 1], h = 0,2$
13	$y = \begin{cases} \frac{x}{x^4 + 3 \cdot x^2 + 2}, & x \le 0\\ \frac{1}{2} \cdot \ln\left(\frac{x^2 + 1}{x^2 + 2}\right) - \frac{1}{2} \cdot \ln\left(\frac{2 \cdot x}{3}\right), & \text{иначе} \end{cases}$ $x \in [-2, 2], h = 0,2$
14	$y = \begin{cases} \frac{x^3}{4+x}, & x \le -2\\ 0, & x = 0\\ 9 \cdot x - 27 \cdot \ln(3+x), & \text{иначе} \end{cases}$ $x \in [-3, 1], h = 0,1$

Номер варианта	Функция $y = f(x)$
15	$y = \begin{cases} \left(\frac{\ln(x)}{3}\right)^3, & x > 0\\ \frac{1}{\sqrt{2}} \cdot \ln\left(\frac{1 + \sqrt{2} \cdot (x - 1) + \sqrt{2 \cdot x^2 + 1}}{2}\right), & \text{иначе} \end{cases}$ $x \in [-0,5,0,5], h = 0,1$
16	$y = \begin{cases} \frac{1}{(3 \cdot \sin(x) + 2 \cdot \cos(x))^2}, & x < -1\\ \frac{3}{26} - \frac{3 \cdot \cos(x) - 2 \cdot \sin(x)}{13 \cdot (2 \cdot \cos(x) + 3 \cdot \sin(x))}, & x \ge -1\\ x \in [-1, 5, 0, 5], & h = 0, 1 \end{cases}$
17	$y = \begin{cases} 2 \cdot \sin^{2}(2 \cdot x) + 3 \cdot \cos^{2}(3 \cdot x), & x < 0 \\ 3 \cdot e^{\sin(x) + 2 \cdot \cos(x)}, & x \ge 0 \end{cases}$ $x \in \left[-\frac{\pi}{2}, \frac{\pi}{2} \right], h = \frac{\pi}{10}$
18	$y = \begin{cases} \frac{x \cdot e^{x} \cdot (\sin(x) - \cos(x))}{2}, & x < -1 \\ \frac{e^{x} \cdot \cos(x) - 1}{2}, & -1 \le x \le 0 \\ x^{2} \cdot \sin(2 \cdot x), & x > 0 \end{cases}$ $x \in [-2, 2], h = 0,2$
19	$y = \begin{cases} \frac{\ln^2(x)}{x}, & x > 0\\ 0, & x = 0\\ \frac{1}{x^2 \cdot \sin(2 \cdot x)}, & x < 0 \end{cases}$ $x \in [-2, 2], h = 0,2$
20	$y = \begin{cases} x \cdot \sinh(x), & x > 0\\ \frac{1 - \cos(x)}{1 + 2 \cdot \sin(3 \cdot x)}, & x \le 0 \end{cases}$ $x \in [-1, 3], h = 0,2$

Номер варианта	Функция $y = f(x)$
21	$y = \begin{cases} 0, & x = 0 \\ x \cdot \sin\left(\frac{1}{x}\right), & x > 0 \end{cases}$ $\frac{1}{x} \cdot \cos\left(\frac{2}{x}\right), & x < 0$ $x \in \left[-\frac{2}{\pi}, \frac{2}{\pi}\right], & h = \frac{1}{10 \cdot \pi}$
22	$y = \begin{cases} \frac{\sin(x-1)}{x-1}, & x > 1\\ 1, & x = 1\\ e^{-x} \cdot \cos(\pi \cdot x), & x < 1 \end{cases}$ $x \in [0, 2], h = 0,1$
23	$y = \begin{cases} \frac{\sin(2 \cdot x)}{x}, & x > 0 \\ 2, & x = 0 \\ 2 \cdot e^{-x} \cdot \cos(x), & x < 0 \end{cases}$ $x \in [-1, 1], h = 0,1$
24	$y = \begin{cases} \sqrt{x + 0.5}, & x = 0\\ \ln(x + 2), & x > 0\\ \frac{1}{x} + 0.2 \cdot x, & x < 0 \end{cases}$ $x \in [-0.5, 1], h = 0.1$
25	$y = \begin{cases} \frac{x}{2} - x, & x = 0,5 \\ \sin(x) - 2 \cdot x + 0,5 \cdot x, & x > 0,5 \\ \frac{\sqrt{x^2 + 2}}{x - 1}, & x < 0,5 \end{cases}$ $x \in [0, 1], h = 0,1$

Номер варианта	Функция $y = f(x)$
26	$y = \begin{cases} \frac{\pi \cdot x}{2}, & x > 0 \\ \frac{\pi}{x} + \sin\left(\frac{\pi}{x}\right), & x < 0 \\ 0, & x = 0 \end{cases}$
	$\begin{cases} \frac{1}{x} + \sin\left(\frac{1}{x}\right), & x < 0 \\ 0, & x = 0 \end{cases}$ $x \in [-1, 2], h = 0,2$
27	
	$y = \begin{cases} e^{-2 \cdot x}, & x > 0 \\ e^{x} + 2 \cdot x, & x < 0 \\ -2, & x = 0 \end{cases}$ $x \in [-1, 1], h = 0,1$
28	$\left \sin\left(\frac{x}{2}\right),\right \qquad x > 0,5$
	$y = \begin{cases} \sin\left(\frac{x}{2}\right), & x > 0.5 \\ 2 \cdot x, & x = 0.5 \\ \cos\left(\frac{ 2 \cdot x }{0.5 \cdot \pi}\right), & x < 0.5 \end{cases}$
	$x \in [0, 1,5], h = 0,1$

Контрольная работа №2

Задание №1. Рекуррентные последовательности

Разработать программу вычисления рекуррентной последовательности и вывода результата на экран, с учётом дополнительных условий варианта задания. Программное решение поставленной задачи не должно использовать массивы, т. е. массивами пользоваться запрещено. Варианты задания представлены в таблице 4.

Таблица 4 – Варианты задания №1 контрольной работы №2

Номер	Номор	
варианта	Текст задания	
	Вычислить произведение: $P = \prod^{30} Z_i,$	
1	где $Z_1 = 0,45;$ $Z_2 = 0,17;$ $Z_i = 0,5 \cdot \sin\left(2 \cdot Z_{i-1}\right) - 0,9 \cdot \cos\left(3 \cdot Z_{i-2}\right).$	
2	Вычислить сумму: $S = \sum_{i=1}^{50} a_i,$ где $a_1 = 3,14;$ $a_2 = 1,57;$ $a_i = 2 \cdot \sin(k \cdot a_{i-1}) + 3 \cdot \cos(k \cdot a_{i-2});$ $k = \sqrt{a_1^2 + a_2^2}.$	
3	Дана последовательность: $(r_k)_{k=1}^{\rm N}=\sqrt{r_{k-1}^2+2\cdot r_{k-2}^2}\cdot\sin(r_{k-1}\cdot r_{k-3}),$ где $r_1=2,2;$ $r_2=3,3;$ $r_3=r_1\cdot r_2;$ ${\rm N}=30.$ Найти и вывести на экран наименьший член $r_{\rm mn}=\min((r_k)_{k=1}^{\rm N}).$	

Номер варианта	Текст задания
4	Вычислить сумму: $S = \sum_{i=1}^{100} x_i,$ где $x_1 = 0,327;$ $x_2 = 0,3;$ $x_i = i+2 \cdot \sin(x_{i-1}) - x_{i-2}.$
5	Дана последовательность: $(U_i)_{i=1}^{\rm N}=2\cdot\sin(U_{i-1})-3\cdot\cos(U_{i-2}),$ где $U_1=0,5;$ $U_2=0,27;$ N = 70. Найти и вывести на экран наименьший член $U_{\rm mn}=\min((U_i)_{i=1}^{\rm N})$ и его номер.
6	Дана последовательность: $(x_i)_{i=1}^{\rm N}=\cos(i\cdot x_{i-1})-3\cdot\sin(x_{i-2}),$ где $x_1=0,15;$ $x_2=0,19;$ ${\rm N}=42.$ Найти и вывести на экран наибольший член $x_{\rm mx}=\max((x_i)_{i=1}^{\rm N})$ и его номер.
7	Вычислить произведение: $P = \prod_{i=1}^{100} U_i,$ где $U_1 = 0,4;$ $U_2 = 0,5;$ $U_3 = 0,93;$ $U_i = \sin(U_{i-1}) + \cos(U_{i-3}).$

Номер варианта	Текст задания
8	Даны последовательности: $(x_i)_{i=1}^{\rm N}=x_{i-1}+y_{i-1},\\ (y_i)_{i=1}^{\rm N}=y_{i-1}+\sin(x_{i-1})-0,5\cdot x_i,$ где $x_1=1;\\ y_1=0,14;$
	$N=15.$ Найти и вывести на экран $x_{\max}=\max\left((x_i)_{i=1}^N\right)$ и $y_{\min}=\min\left((y_i)_{i=1}^N\right).$
9	Даны последовательности: $(x_k)_{k=1}^N = y_{k-1} + y_{k-2},$ $(y_k)_{k=1}^N = x_k^2 + x_{k-2} - y_{k-1} - 0.3 \cdot x_k,$ где $x_1 = 0.5;$ $x_2 = 0.6;$ $y_1 = y_2 = 0.67;$ $N = 10.$ Найти и вывести на экран $x_{mn} = \min((x_k)_{k=1}^N).$
10	Даны последовательности: $(z_i)_{i=1}^{\rm N}=\sin\left(z_{i-1}\right)+2\cdot t_{i-1},\\ (t_i)_{i=1}^{\rm N}=t_{i-1}+z_{i-1}\cdot\sin\left(z_{i-1}\right),$ где $z_1=0,14;\\ t_1=0,53;\\ {\rm N}=30.$ Вывести на экран пару $C=(z_{\rm N},t_{\rm N}).$

Номер варианта	Текст задания
11	Вычислить произведение: $P = \prod_{i=1}^{20} y_i,$
	где $x_1 = 1;$ $x_2 = 1,5;$ $x_i = 5 \cdot \sin(y_{i-1}) + \lfloor y_{i-2} \rfloor;$
	$y_1 = -1;$ $y_2 = 1;$ $y_i = 2 \cdot x_{i-1} + 3 \cdot x_{i-2} + 5 \cdot y_{i-1},$ $[]$ – округление к меньшему.
12	Вычислить сумму: $S = \sum_{i=1}^{100} R_i,$
	где $R_1=2$; $R_2=2,5$; $R_3=0.15$; $R_i=\cos(\lceil R_{i-1} \rceil)+ \lceil 0.7 \cdot \sin(R_{i-3}) \rceil$, $\lceil \rceil - \text{округление к большему.}$
13	Вычислить произведение: $P = \prod_{i=1}^{150} x_i,$ где $x_1 = 2,3;$ $x_2 = 1,5;$
	$x_{3} = -2.1;$ $x_{i} = \log_{7} \left \frac{1 + x_{i-1}}{2} \right + 2 \cdot \sin(x_{i-3}).$

Номер варианта	Текст задания
14	$S = \sum_{i=1}^{1000} r_i,$
	где $\begin{aligned} r_1 &= 0.27; \\ r_2 &= -0.5; \\ r_i &= \left(\sin\left(r_{i-1}^2\right) + \cos\left(r_{i-1}\right)\right) \cdot \sqrt{r_{i-1}^2 + r_{i-2}^2}. \end{aligned}$
	Вычислить произведение: $P = \prod_{i=1}^{20} A_i,$ где
15	$\begin{aligned} A_1 &= 0.8; \\ A_2 &= 0.75; \\ A_3 &= 0.3; \\ A_i &= 0.25 \cdot \sin(A_{i-1}) - 1 + 0.35 \cdot \cos(A_{i-3}). \end{aligned}$
16	Вычислить сумму: $S = \sum_{i=1}^{42} h_i,$ где $h_1 = 1{,}01;$ $h_2 = 0{,}75;$
17	$h_i=0,25\cdot i+2\cdot\sin(h_{i-1})-0,35\cdot\cos(h_{i-2}).$ Дана последовательность: $(r_i)_{i=1}^{\rm N}=\left r_{i-1}-r_{i-2}\right +\cos(r_{i-2}),$ где $r_1=1,55$; $r_2=1,77$;
	N=13. Найти и вывести на экран $r_{\rm mn}=\min((r_i)_{i=1}^{\rm N})$.

Номер варианта	Текст задания
18	Вычислить произведение: $P = \prod_{i=1}^{15} Z_i,$ где $Z_1 = 0.5;$
	$Z_2 = 1.2;$ $Z_i = Z_{i-1} - \cos(0.3 \cdot i + Z_{i-2}).$
19	Дана последовательность: $(U_t)_{t=1}^{\rm N}=\sin(1,\!5\cdot t+U_{t-1})+0,\!25\cdot U_{t-2},$ где $U_1=2;$ $U_2=0,\!8;$ ${\rm N}=150.$ Найти и вывести на экран $U_{\rm mn}=\min((U_t)_{t=1}^{\rm N}).$
20	Дана последовательность: $(Q_i)_{i=1}^{\rm N}=\sin{(i\cdot Q_{i-1})}-0.77\cdot\cos{(Q_{i-2})},$ где $Q_1=0.9;$ $Q_2=1;$ N = 33. Найти и вывести на экран $Q_{\rm mx}=\max{((Q_i)_{i=1}^{\rm N})}.$
21	Вычислить произведение: $P = \prod_{i=1}^{50} W_i,$ где $W_1 = 0.3;$ $W_2 = 0.5;$ $W_i = i + \sin(W_{i-1}) - \cos(W_{i-2}).$

Номер варианта	Текст задания
22	Даны последовательности: $(x_i)_{i=1}^{\mathrm{N}} = x_{i-1} + x_{i-2} - 0.6 \cdot y_{i-1},$ $(y_i)_{i=1}^{\mathrm{N}} = y_{i-1} + 0.2 \cdot x_{i-2},$
	где $x_1=0,7$; $x_2=0,65$; $y_1=0,4$; $y_2=0,5$; $N=15$. Найти и вывести на экран $x_{\rm mx}=\max\left((x_i)_{i=1}^{\rm N}\right)$ и
	$y_{mn} = \min((y_i)_{i=1}^N).$
	Вычислить сумму: $S = \sum_{k=1}^{100} x_k,$
	где $x_1 = 0.35;$ $x_2 = 0.8;$
	$y_{1} = 0.7;$ $y_{2} = 0.3;$ $x_{k} = y_{k-1} - 0.7 \cdot x_{k-2};$ $y_{k} = x_{k} + x_{k-1} - 0.5 \cdot y_{k-1}.$
24	Даны последовательности: $(u_i)_{i=1}^{\mathrm{N}} = 0.8 \cdot u_{i-1} + 1.2 \cdot v_{i-1},$
	$(v_i)_{i=1}^{\rm N}=\sqrt{i}+u_i-0.7\cdot v_{i-1},$ где $u_1=0.33;$ $v_1=0.77;$ N = 35. Вывести на экран пару $C=(u_{\rm N},\ v_{\rm N}).$

Номер варианта	Текст задания
25	Вычислить произведение: $P = \prod_{i=1}^{100} \left(\xi + \rho \right),$
	где $\xi_1 = -0.8;$ $\xi_2 = 0.3;$ $\rho_1 = 0.23;$
	$ \rho_{2} = 0.44; \xi_{i} = 0.3 \cdot \rho_{i-1} + 0.5 \cdot \rho_{i-2} - \xi_{i-1}; \rho_{i} = 0.4 \cdot \sqrt{ \xi_{i} - \rho_{i-2} } + 0.6 \cdot \rho_{i-1}. $
	Вычислить сумму: $S = \sum_{l=1}^{150} \lambda_{l},$
26	$S=\sum_{l=1}^{}\lambda_{l},$ где $\lambda_{1}=1,5$; $\lambda_{2}=2$; $\lambda_{l}=2,5\cdot\sin(\lambda_{l-1}-\lambda_{l-2})+3\cdot\cos(\lambda_{l-1}+\lambda_{l-2}).$
27	Вычислить произведение: $P = \prod^{100} \omega_{\rm i} ,$
	где $\omega_1 = 1,33;$ $\omega_2 = -1,44;$ $\omega_3 = 1,55;$ $\omega_i = \sin(i) + 2,2 \cdot \cos(\lfloor \omega_{i-3} + \omega_{i-1} \rfloor) - 1,1 \cdot \omega_{i-2},$
	[] – округление к меньшему.

Номер варианта	Текст задания
28	Вычислить сумму: $S = \sum_{k=1}^{50} \rho_i,$ где $\rho_1 = 1,23;$ $\rho_2 = 0,65;$ $\rho_3 = -0.25;$ $\rho_i = \frac{1,2 \cdot \sin\left(\rho_{k-1} + \rho_{k-2}\right) + 0,8 \cdot \rho_{k-3}}{1 - \cos\left(\rho_{k-1}\right)} - \lceil 0,55 \cdot \rho_{k-2} \rceil,$ $\lceil \rceil - \text{округление к большему.}$

Задание №2. Одномерные массивы

Разработать программу решения поставленной в таблице 5 задачи (в соответствии с вариантом) и вывода результата на экран.

Таблица 5 – Варианты задания №2 контрольной работы №2

,	Вартанты заданы 1.2 көптрозыноп рассты 1.2
Номер варианта	Текст задания
1	Получены экспериментальные данные $a_1, a_2,, a_N$ по пористости материала, которые представлены в виде действительных чисел. Найти среднее арифметическое выборки \overline{a} и среднее квадратическое отклонение S_0 при $N=15$: $\overline{a} = \frac{1}{N} \cdot \sum_{i=1}^N a_i,$ $S_0 = \sqrt{\frac{\sum_{i=1}^N (a_i - \overline{a})^2}{N-1}}.$
2	Получены экспериментальные данные по влажности материала $w_1, w_2,, w_N$ в различные моменты времени. Вычислить среднее значение влажности \overline{w} и отклонение от среднего $s_i = w_i - \overline{w} $ для каждого значения, при $i = 1, 2,, N$ и $N = 50$.

Номер варианта	Текст задания
3	Система из N материальных точек в пространстве задана с помощью последовательности действительных чисел $(x_1, y_1, z_1, p_1), (x_2, y_2, z_2, p_2), \dots, (x_N, y_N, z_N, p_N),$ где x_i, y_i, z_i — координаты i —ой точки; p_i — её вес; $i=1,2,\dots,N$; N = 25. Получить координаты центра тяжести системы $\vec{r_c}$, а также расстояние от центра тяжести до всех точек системы d_i .
4	Даны действительные числа $a_1, a_2,, a_N$. Получить числа $b_1, b_2,, b_N$, где b_i – среднее арифметическое всех членов последовательности $a_1, a_2,, a_N$, кроме a_i ; $i=1,2,,N$; $N=25$.
5	Даны целые числа a_1 и a_2 . Построить последовательность $(a_i)_{i=1}^{\rm N}=a_1,a_2,\ldots,a_{\rm N}$, где $a_i=a_{i-1}+a_{i-2};$ $i=3,4,\ldots,{\rm N};$ ${\rm N}=30$.
6	Даны действительные числа a_1, a_2, \ldots, a_N . Получить числа $b_N, \ldots b_2, b_1, \qquad$ где $b_N = a_1 \cdot a_N; \qquad b_i = a_i \cdot a_{N-i+1};$ $i = N-1, \ldots, 2, 1; N = 30$.
7	Даны натуральные числа $n_1, n_2,, n_N$, действительные числа $d_1, d_2,, d_N$. Вычислить Ω при $N=20$: $\Omega = \frac{n_1 \cdot d_1 + + n_N \cdot d_N}{n_1 + + n_N}.$
8	Даны действительные числа $a_1, a_2,, a_N, b_1, b_2,, b_N$. Вычислить $(a_1 + b_N) \cdot (a_2 + b_{N-1}) \cdot \cdot (a_N + b_1)$ при $N = 20$.
9	Даны действительные числа $a_1, a_2,, a_{N-1}, b_1, b_2,, b_{N-1}.$ Члены последовательности $c_1, c_2,, c_N$ связаны с членами данных последовательностей соотношениями: $c_N = N + M,$ $c_{N-i} = \frac{a_{N-i}}{b_{N-i} - c_{N-i+1}},$ где $i=1,2,\ldots,N-1;$ $N=29;$ $M=13.$ Получить $c_1, c_2, \ldots, c_N.$

Номер варианта	Текст задания
10	Даны действительные числа $(a_i)_{i=1}^{\rm N}=a_1,a_2,,a_{\rm N}$, где ${\rm N}=30$. Если в результате замены отрицательных членов последовательности $(a_i)_{i=1}^{\rm N}$ их квадратами члены будут образовывать неубывающую последовательность, то получить сумму членов исходной последовательности; в противном случае получить их произведение.
11	Даны целые числа $(a_i)_{i=1}^{\rm N}=a_1,a_2,,a_{\rm N}$, где N = 30. Все члены последовательности с чётными номерами, предшествующие первому по порядку члену со значением $a_{\rm mx}=\max(a_1,a_2,,a_{\rm N})$, домножить на $a_{\rm mx}$. Последовательность $(a_i)_{i=1}^{\rm N}$ не сортировать.
12	Даны натуральное число m , действительные числа $(a_i)_{i=1}^{\rm N}=a_1,a_2,\ldots,a_{\rm N}$ (члены в последовательности $(a_i)_{i=1}^{\rm N}$ попарно различны, $m\leq {\rm N}$), где ${\rm N}=22$. В $(a_i)_{i=1}^{\rm N}$ поменять местами наибольший член $a_{\rm mx}=\max{((a_i)_{i=1}^{\rm N})}$ и член a_m . Последовательность $(a_i)_{i=1}^{\rm N}$ не сортировать.
13	Даны действительные числа $x_1, x_2,, x_N, y_1, y_2,, y_N$. Получить при $N=101$ действительные x'_i и y'_i : $x'_1,, x'_N, \\ y'_1,, y'_N,$ преобразовав для этого члены x_i и y_i по правилу: если они оба отрицательны, то каждый из них увеличить на $0,5$; если отрицательно только одно число, то отрицательное число заменить его квадратом; если оба числа неотрицательны, то каждое из них заменить на среднее арифметическое исходных значений.
14	Даны действительные числа $a_1, a_2,, a_N$, где $N=30$. Получить $a_{\rm mx}=\max \left(a_1+a_N, a_2+a_{N-1},, a_{N/2}+a_{N/2+1}\right)$ и $a_{\rm mn}=\min \left(a_1\cdot a_{N/2+1}, a_2\cdot a_{N/2+2},, a_{N/2}\cdot a_N\right)$.
15	Даны действительные числа $a_1, a_2,, a_N$, где $N = M \cdot 2$; $M = 10$. Преобразовать эту последовательность по правилу: $a_{\text{mx}} = \max(a_i, a_{\text{M}+i})$ принять в качестве нового значения a_i , а $a_{\text{mn}} = \min(a_i, a_{\text{M}+i})$ — в качестве нового значения $a_{\text{M}+i}$, где $i = 1, 2,, M$.

Номер варианта	Текст задания
16	Даны целые числа $a_1, a_2,, a_N$, где $N = 40$. Если в данной последовательности ни одно чётное число не расположено после нечётного, то распечатать все отрицательные члены последовательности, иначе — все положительные. Порядок следования чисел в обоих случаях заменяется на обратный.
17	Даны действительные числа $(r_i)_{i=1}^{\rm N}=r_1,r_2,\ldots,r_{\rm N},$ где ${\rm N}=21$. Среди членов $(r_i)_{i=1}^{\rm N}$ заведомо есть как отрицательные, так и неотрицательные. Получить $P=x_1\cdot y_1+\ldots+x_s\cdot y_s$, где x_1,\ldots,x_p – отрицательные члены $(r_i)_{i=1}^{\rm N},$ взятые в порядке их следования; y_1,\ldots,y_q – неотрицательные члены, взятые в обратном порядке; $s=\min(p,q)$.
18	Даны целые числа $(a_i)_{i=1}^{\rm N}=a_1,a_2,,a_{\rm N}$, где ${\rm N}=20$. Член $a_{\rm mn}=\min(a_1,a_2,,a_{\rm N})$ заменить значением округлённого до наименьшего целого среднего арифметического всех членов $[\overline{a}]$, остальные члены оставить без изменения. Если в последовательности несколько членов со значением $a_{\rm mn}$, то заменить последний по порядку. Последовательность $(a_i)_{i=1}^{\rm N}$ не сортировать.
19	Даны действительные числа $(a_i)_{i=1}^{\rm N}=a_1,a_2,\ldots,a_{\rm N}$ (члены в последовательности $(a_i)_{i=1}^{\rm N}$ попарно различны), где ${\rm N}=20$. Поменять в этой последовательности местами: $a_{\rm mx}=\max\left((a_i)_{i=1}^{\rm N}\right)$ и $a_{\rm mn}=\min\left((a_i)_{i=1}^{\rm N}\right)$, затем $a_{\rm mx}$ и $a_{\rm N}$. Последовательность $(a_i)_{i=1}^{\rm N}$ не сортировать.
20	Даны действительные числа $(a_i)_{i=1}^N = a_1, a_2,, a_N$, где $N = 256$. Получить новую $(a_i)_{i=1}^N$, заменяя a_i нулями, если $ a_i \neq \max((a_i)_{i=1}^N)$, и заменяя a_i единицей в противном случае. $i = 1, 2,$, N . Последовательность $(a_i)_{i=1}^N$ не сортировать.
21	Даны две последовательности из целых чисел $(a_i)_{i=1}^{\mathrm{N}}=a_1,a_2,,a_{\mathrm{N}}$ и $(b_i)_{i=1}^{\mathrm{N}}=b_1,b_2,,b_{\mathrm{N}}.$ Преобразовать $(b_i)_{i=1}^{\mathrm{N}}$ по правилу: если $a_i\leq 0$, то b_i увеличить в 10 раз, иначе b_i заменить нулём. $i=1$, 2,, N; N = 25.

Номер варианта	Текст задания
22	Даны действительные числа $(a_i)_{i=1}^{\rm N}=a_1,a_2,,a_{\rm N}$, где N = 26. Требуется домножить все члены $(a_i)_{i=1}^{\rm N}$ на квадрат $a_{\rm mn}=\min((a_i)_{i=1}^{\rm N})$, если $a_1\geq 0$, и на квадрат $a_{\rm mx}=\max((a_i)_{i=1}^{\rm N})$, если $a_1<0$. Последовательность $(a_i)_{i=1}^{\rm N}$ не сортировать.
23	Даны натуральное число n , действительные числа $(a_i)_{i=1}^{\rm N}=a_1,a_2,\ldots,a_{\rm N}$, где ${\rm N}=30$. Получить $(b_i)_{i=1}^{\rm M}=b_1,b_2,\ldots,b_{\rm M}$, где b_i равно сумме тех членов $(a_i)_{i=1}^{\rm N}$, которые принадлежат полуинтервалу $(i-1,n]$; $i=1,2,\ldots$, ${\rm M}$; ${\rm M}=10$. Если полуинтервал не содержит членов последовательности, то $b_i=0$.
24	Даны целые числа $(a_i)_{i=1}^{\rm N}=a_1,a_2,,a_{\rm N}$, где N = 30. Найти наибольшее число подряд идущих одинаковых элементов $a_{\rm E}$. Например: $(a_j)_{j=1}^{10}=1$, 1, 3, <u>6</u> , <u>6</u> , <u>6</u> , <u>6</u> , <u>6</u> , <u>6</u> , 4, 4; тогда $a_{\rm E}=5$.
25	Даны целые числа $(b_i)_{i=1}^{\rm N}=b_1,b_2,\dots,b_{\rm N}$, где N = 30. Найти значение наиболее часто встречающегося элемента $b_{\rm F}$. Например: $(b_j)_{j=1}^{10}=1$, 1, 3, 7, 2, 8, 7, 4, 7, 0; тогда $b_{\rm F}=7$.
26	Даны действительные числа $(c_i)_{i=1}^{\rm N}=c_1,c_2,\ldots,c_{\rm N}$, где ${\rm N}=25$. Получить последовательности $(x_j)_{j=1}^p=x_1,\ldots,x_p$ и $(y_z)_{z=p+1}^{\rm N}=y_1,\ldots,y_{\rm N}$, где p — порядковый номер члена $(c_i)_{i=1}^{\rm N}$ полученный путём разбиения пополам интервала между порядковыми номерами $c_{\rm mn}=\min((c_i)_{i=1}^{\rm N})$ и $c_{\rm mx}=\max((c_i)_{i=1}^{\rm N})$. Последовательность $(c_i)_{i=1}^{\rm N}$ не сортировать.
27	Даны действительные числа $(\delta_i)_{i=1}^{\rm N} = \delta_1$, δ_2 ,, $\delta_{\rm N}$, где N = 34. Найти в $(\delta_i)_{i=1}^{\rm N}$ член, наиболее близкий к среднему арифметическому всех его элементов $\overline{\delta}$.
28	Даны целые числа $(b_i)_{i=1}^{\rm N}=b_1,b_2,\dots,b_{\rm N},$ где ${\rm N}=30$. Получить числа $a_1,a_2,\dots,a_{\rm N},$ где $a_1=\frac{1}{b_1-b_{\rm N}};$

Задание №3. Двумерные массивы

Разработать программу решения поставленной в таблице 6 задачи (в соответствии с вариантом) и вывода результата на экран.

Таблица 6 – Варианты задания №3 контрольной работы №2

Номер варианта	Текст задания
1	Дана матрица $A_{N\times M}$, где $N=5$; $M=4$. Если в $i-o\breve{u}$ строке есть отрицательный элемент, то найти в $A(i,)$ среднее арифметическое \overline{a}_i всех элементов исключая нулевые, иначе $\overline{a}_i = -a_{i,1}$. Полученные \overline{a}_i сохранить в векторе $b=(\overline{a}_1,\overline{a}_2,\ldots,\overline{a}_i)$. Вывести исходную матрицу A и полученный вектор b . $i=1,2,\ldots,N$.
2	Дана матрица $B_{N\times M}$, где $N=4$; $M=5$. В каждой строке $B(i,)$ найти максимальный элемент $m_i=\max(B(i,))$ и заменить им первый элемент строки $b_{i,1}=m_i$. Предварительно $b_{i,1}$ сохранить в векторе $a=(a_1,a_2,,a_j)$, если он не равен нулю. Вывести исходную и преобразованную матрицы B , полученный вектор a . $i=1,2,,N$, $j=1,2,,z$, z – количество не нулевых элементов в $B(,1)$.
3	Дана матрица $C_{\text{N}\times\text{M}}$, где $N=4$; $M=5$. Сдвинуть все элементы на один влево (циклически) в тех строках, которые начинаются с положительного элемента. Элементы $c_{i,1}$ в таких строках сохранить в векторе $a=(a_1,a_2,\dots a_j)$. Вывести исходную и преобразованную матрицы C , полученный вектор a . $i=1,2,\dots,N$, $j=1,2,\dots,z$, z — количество положительных элементов в $C(,1)$.
4	Дана матрица $D_{N\times M}$, где $N=5$; $M=5$. Найти сумму S_i элементов в тех строках, в которых элемент на главной диагонали равен нулю. Этой суммой заменить элемент на главной диагонали. Вывести исходную и преобразованную матрицы D . $i=1,2,,z$, z — количество строк в D с нулевыми элементами на главной диагонали.
5	Дана матрица $E_{\rm N\times M}$, где N = 5; M = 4. Каждую строку $E(i,)$ преобразовать по правилу: если максимальный элемент $I_{\rm mx}=\max\left(E(i,)\right)$ не первый, то поменять его местом с первым. Вывести количество таких строк $S_{\rm cg}$, исходную и преобразованную матрицы E . $i=1,2,\ldots$, N.

Номер варианта	Текст задания
6	Дана матрица $F_{N\times M}$, где $N=5$; $M=6$. В каждой строке $F(i,)$ сдвинуть все элементы на один вправо (циклически). Если при этом в последнем столбце оказался ноль ($f_{i,M}=0$), то заменить его числом P , введённым пользователем с клавиатуры. Элементы последнего столбца $F(,M)$ сохранить в векторе $a=(f_{1,M},f_{2,M},,f_{i,M})$. Вывести исходную матрицу F и полученный вектор a . $i=1,2,,N$.
7	Дана матрица $G_{N\times M}$, где $N=4$; $M=5$. В каждой строке $G(i,)$ найти произведение элементов P_j , расположенных до первого нулевого элемента (элемента равного нулю) и их количество Q_j . Этим количеством заменить первый нулевой элемент $G(i,)$, а произведение сохранить в векторе $a=(Q_1,Q_2,,Q_j)$. Вывести исходную и преобразованную матрицы G , полученный вектор a . $i=1,2,,N$; $j=1,2,,z$, z — количество строк в G с нулевыми элементами.
8	Дана матрица $H_{\text{N}\times\text{M}}$, где $\text{N}=4$; $\text{M}=5$. Переписать в обратном порядке элементы в тех строках $H(i,)$, которые начинаются с нуля. Все отрицательные элементы сохранить в векторе $a=(m_1,m_2,,m_j)$. Вывести исходную и преобразованную матрицы H , полученный вектор a . $i=1,2,,N$; $j=1,2,,z$, z – количество отрицательных элементов в H .
9	Дана действительная квадратная матрица $Z_{\text{м}\times\text{м}}$, где $M=5$. Если в $i-o\check{u}$ строке матрицы $Z(i,)$ элемент, принадлежащий главной диагонали, отрицателен, то заменить этот элемент суммой элементов S_j $i-o\check{u}$ строки, предшествующих первому отрицательному элементу; в противном случае — суммой последних элементов A_j $i-o\check{u}$ строки, начиная с первого отрицательного элемента. Элементы главной диагонали (неизменённые) сохранить в векторе $a=(o_1,o_2,,o_{\text{м}})$. Вывести исходную и преобразованную матрицы Z , полученный вектор a . $i=1,2,,M$.

Номер варианта	Текст задания
10	Дана матрица $Y_{N\times M}$, где $N=5$; $M=6$. Первый отрицательный элемент каждого столбца $Y(\ ,i)$ заменить суммой S_j оставшихся элементов. Отрицательные элементы до замены сохранить в векторе $a=(o_1,o_2,,o_j)$. Вывести исходную и преобразованную матрицы Y , полученный вектор a . $i=1,2,,M$; $j=1,2,,z$, z — количество столбцов в Y с отрицательными элементами.
11	Дана матрица $K_{N\times M}$, где $N=5$; $M=6$. Выбрать строку $K(i,)$ с наибольшей суммой элементов $S_{mx}=\max((\sum (K(j,)))_{j=1}^N)$ и сохранить элементы этой строки в векторе $a=(k_{i,1},k_{i,2},,k_{i,M})$, затем каждый отрицательный элемент $K(i,)$ умножить на номер столбца. Вывести исходную и преобразованную матрицы K , полученный вектор a , S_{mx} . $i=1,2,,N$.
12	Дана действительная квадратная матрица $L_{\text{м}\times\text{м}}$, где $M=5$. Вычислить сумму S_{mx} тех её элементов, расположенных на главной диагонали и выше неё, которые превосходят по величине все элементы, расположенные ниже главной диагонали. Заменить этой суммой элемент на главной диагонали соответствующего столбца $L(\ ,i)$. Если на главной диагонали и выше неё нет элементов с указанным свойством, то элемент на главной диагонали оставить без изменения. Элементы главной диагонали (неизменённые) сохранить в векторе $a=(o_1,o_2,\ldots,o_{\text{м}})$. Вывести исходную и преобразованную матрицы L , полученный вектор a , S_{mx} . $i=1,2,\ldots,M$.
13	Дана матрица $O_{N\times M}$, где $N=5$; $M=6$. Поделить элементы нечётных столбцов на свой номер столбца, если в остатке не ноль, то заменить этот элемент полученным значением. Вывести количество таких элементов S_{cg} , исходную и преобразованную матрицы O .
14	Дана матрица $P_{\text{N}\times\text{M}}$, где $\text{N}=5$; $\text{M}=5$. Найти номер I_{ng} строки $P(i,)$, в которой содержится наибольшее количество отрицательных элементов A_{ng} . Значением произведения $I_{\text{ng}}\cdot A_{\text{ng}}$ заменить все элементы главной диагонали. Вывести исходную и преобразованную матрицы P , I_{ng} , A_{ng} . $i=1,2,\ldots,N$.

Номер варианта	Текст задания
15	Даны две действительные квадратные матрицы $Q_{\text{M} \times \text{M}}$ и $R_{\text{M} \times \text{M}}$, где $M=6$. Получить новую матрицу $S_{\text{M} \times \text{M}}$ путём умножения элементов каждой строки $Q(i,)$ на наибольшее из значений элементов соответствующей строки второй матрицы $E_{\text{mx}} = \max(R(i,))$. Вывести матрицы $Q, R, S.$ $i=1,2,,M$.
16	Дана матрица $T_{\text{N}\times\text{M}}$, где $\text{N}=5$; $\text{M}=4$. В каждой нечётной строке $T(i,)$ выполнить следующее преобразование: получить сумму S_{ng} всех отрицательных элементов и заменить этой суммой элемент первого столбца $t_{i,1}=S_{\text{ng}}$. До замены, все элементы первого столбца сохранить в векторе $a=(t_{1,1},t_{2,1},,t_{N,1})$. Вывести исходную и преобразованную матрицы T , полученный вектор a . $i\in 2\cdot \mathbb{N}^*-1$, $i\leq N$.
17	Дана матрица $U_{N\times M}$, где $N=4$; $M=6$. Поменять местами в каждой строке $U(i,)$ первый элемент с последним, второй – с предпоследним и т.д., если ни один из этих элементов не равен нулю. Вывести исходную и преобразованную матрицы U . $i=1,2,,N$.
18	Даны две действительные квадратные матрицы $V_{\text{м}\times\text{м}}$ и $W_{\text{м}\times\text{м}}$, где $M=6$. Получить новую матрицу $X_{\text{м}\times\text{м}}$ путём прибавления к элементам каждого столбца $V(\ ,i)$ первой матрицы произведения элементов соответствующих строк второй матрицы $P=\prod(W(i,))$. Вывести матрицы $V,\ W,\ X.\ i=1,2,,M$.
19	Дана матрица $Y_{N\times M}$, где $N=5$; $M=5$. Найти сумму S_j элементов в тех строках, в которых элемент на главной диагонали равен нулю. Найти и вывести количество таких строк Q_z . Элемент на главной диагонали, равный нулю, заменить найденной S_j . Вывести исходную и преобразованную матрицы Y . $j=1,2,,Q_z$.

Номер варианта	Текст задания
20	Дана матрица $Z_{\text{N}\times\text{M}}$, где $\text{N}=5$; $\text{M}=5$. В каждой чётной строке $Z(i,)$ найти сумму S_{ng} отрицательных элементов и заменить этой суммой первый элемент строки $z_{i,1}=S_{\text{ng}}$. В каждой нечётной строке $Z(j,)$ найти количество отрицательных элементов Q_{ng} и заменить этим значением последний элемент строки $z_{j,\text{M}}=Q_{\text{ng}}$. Вывести исходную и преобразованную матрицы Z . $i\in 2\cdot \mathbb{N}^*,\ i\leq N;\ j\in 2\cdot \mathbb{N}^*-1,\ j\leq N$.
21	Дана целочисленная квадратная матрица $A_{\text{м}\times\text{м}}$, где $M=6$. Найти матрицу $B_{\text{м}\times\text{m}}$, получающуюся из данной перестановкой строк — первой с последней, второй — с предпоследней и т.д. Перестановка осуществляется при условии, что элемент главной диагонали обоих строк не равен нулю. Вывести матрицы A , B .
22	Дана матрица $C_{N\times M}$, где $N=5$; $M=4$. В каждой строке $C(i,)$ найти первый отрицательный элемент и заменить его произведением этого элемента на его номер. Первоначальное значение сохранить в векторе $a=(o_1,o_2,,o_j)$. Вывести исходную и преобразованную матрицы C , полученный вектор a . $i=1,2,,N$, $j=1,2,,z$, z – количество строк в C с отрицательными элементами.
23	Дана матрица $D_{N\times M}$, где $N=5$; $M=4$. Найти номера строк I_i , которые содержат не более двух отрицательных элементов. Эти элементы заменить их квадратами. Вывести номера строк I_i , исходную и преобразованную матрицы $D.$ $i=1,2,,z$, $z-$ количество строк в D содержащие не более двух отрицательных элементов.
24	Дана матрица $E_{N\times M}$, где $N=4$; $M=6$. В каждой строке элементы, стоящие на нечётных местах, заменить суммой, на чётных — произведением соответствующей пары. Элементы главной диагонали сохранить в векторе $a=(e_{1,1},e_{2,2},,e_{i,i})$. Вывести исходную и преобразованную матрицы E , полученный вектор a . $i=1,2,$, N , если $N \leq M$ и $i=1,2,$, M , если $N > M$.

Номер варианта	Текст задания
25	Дана матрица $F_{N\times M}$, где $N=4$; $M=6$. Найти во всех строках $F(i,)$ все элементы, которые в своей строке больше предыдущего и меньше последующего. Сохранить их в векторе $a=(a_1,a_2,,a_j)$. Вывести исходную матрицу F и полученный вектор a . $i=1,2,,N$, $j=1,2,,z$, z – количество элементов в F , которые в своей строке больше предыдущего и меньше последующего элемента.
26	Дана матрица $G_{N\times M}$, где $N=6$; $M=6$. Элемент главной диагонали в каждой строке $G(i,)$ заменить суммой элементов S_i , расположенных за ним (если элемент на главной диагонали не равен нулю). Элементы главной диагонали сохранить в векторе $a=(g_{1,1},g_{2,2},,g_{i,i})$. Вывести исходную и преобразованную матрицы G , полученный вектор a . $i=1,2,$, N , если $N\leq M$ и $i=1,2,$, M , если $N>M$.
27	Дана матрица $H_{N\times M}$, где $N=4$; $M=5$. Найти максимальный элемент $E_{mx}=\max(H)$. Получить матрицу $K_{N\times M}$, заменив нулями элементы строки и столбца, где находится максимальный элемент E_{mx} . Элементы из строки и столбца сохранить в векторе $a=(e_1,e_2,,e_{(N+M)})$. Вывести исходную и преобразованную матрицы H , полученный вектор a .
28	Дана действительная матрица $P_{\rm N\times M}$, где N = 5; M = 5. Найти номер $I_{\rm ng}$ строки $P(i,)$, в которой содержится наибольшее количество отрицательных элементов $A_{\rm ng}$. Значением отношения $I_{\rm ng}$ / $A_{\rm ng}$ заменить все элементы побочной диагонали. Вывести исходную и преобразованную матрицы P , $I_{\rm ng}$, $A_{\rm ng}$. $i=1,2,$, N.

Контрольная работа №3

Задание №1. Динамическое распределение памяти

Разработать программу решения поставленной в таблице 7 задачи (в соответствии с вариантом) и вывода результата на экран. Значения n и m пользователь вводит с клавиатуры ($n \in \mathbb{N}^*$, $m \in \mathbb{N}^*$). Программное решение должно: использовать механизм динамического выделения памяти из кучи (выделять память на стеке под динамические массивы запрещено); освобождать выделенную память и присваивать указателю значение NULL.

Таблица 7 – Варианты задания №1 контрольной работы №3

Номер	Токот започна
_	Текст задания
варианта	
1	Даны число m и две действительные квадратные матрицы $A_{m imes m}$
	и $B_{m \times m}$. Получить действительную матрицу $C_{m \times m} = A \cdot B$.
	m//m
	Вывести матрицы A , B , C .
2	Даны числа n и m , действительная матрица $A_{n \times m}$. Необходимо
	нормировать A , это означает, что каждый элемент в этой
	матрице вычисляется на основании исходной матрицы, как
	отношение суммы всех других элементов в его строке к сумме
	всех других элементов в его столбце. Вывести исходную и
	результирующую матрицы A .
2	
3	Даны числа n и m , целочисленная матрица $A_{n \times m}$. Получить
	новую матрицу A , следующим способом: поменять местами
	строку, содержащую элемент с минимальным значением
	$E_{\mathrm{mn}} = \mathrm{min}(A)$, со столбцом, содержащим элемент с
	максимальным значением $E_{\rm mx} = {\rm max}(A)$. Вывести исходную и
	результирующую матрицы А.
4	
4	Даны числа n и m , действительная матрица $A_{n \times m}$, все
	элементы которой различны. Найти наибольший элемент $E_{ m mx}$
	среди стоящих на главной и побочной диагоналях и поменять его
	местами с элементом, стоящим на пересечении этих диагоналей.
	Вывести исходную и результирующую матрицы А.

Номер варианта	Текст задания
5	Дано число m . Необходимо построить квадратную матрицу A порядка $2 \cdot m$ следующего вида:
	$m \left\{ \begin{array}{cccccccccccccccccccccccccccccccccccc$
	$m \left\{ \begin{array}{c} 3 \ 3 \dots 3 & 4 \ 4 \dots 4 \\ 3 \ 3 \dots 3 & 4 \ 4 \dots 4 \\ \dots & \dots & \dots \\ 3 \ 3 \dots 3 & 4 \ 4 \dots 4 \end{array} \right.$
	m m Вывести полученную матрицу A .
	Даны число $m < 10$ и действительное число x . Необходимо получить квадратную матрицу A порядка m следующего вида:
6	$\begin{bmatrix} 1 & x & \dots & x^{m-2} & x^{m-1} \\ x & 0 & \dots & 0 & x^{m-2} \\ \vdots & & & & & \\ x^{m-2} & 0 & \dots & 0 & x \\ x^{m-1} & x^{m-2} & \dots & x & 1 \end{bmatrix}$
	$\begin{bmatrix} x^{m-1} & x^{m-2} & \dots & x & 1 \end{bmatrix}$ Вывести полученную матрицу A .
	Даны число m и действительные числа $(a_i)_{i=1}^m = a_1, a_2,, a_m$. Получить квадратную матрицу B спедующего вида:
7	$\begin{bmatrix} a_1 & a_2 & a_3 & \dots & a_{m-2} & a_{m-1} & a_m \\ a_2 & a_3 & a_4 & \dots & a_{m-1} & a_m & a_1 \\ a_3 & a_4 & a_5 & \dots & a_m & a_1 & a_2 \\ \vdots & & & & & & \\ a_m & a_1 & a_2 & \dots & a_{m-3} & a_{m-2} & a_{m-1} \end{bmatrix}$
7	Даны число m и действительные числа $(a_i)_{i=1}^m = a_1, a_2, \dots$ Получить квадратную матрицу $B_{m \times m}$ следующего вида:

Номер варианта	Текст задания
8	Даны число m и целочисленная квадратная матрица A порядка $2 \cdot m$. Получить новую матрицу B , путём перестановки в A блоков размера $m \times m$ следующим способом:
	Вывести матрицы А, В.
9	Даны число m и целочисленная квадратная матрица A порядка $2 \cdot m$. Получить новую матрицу B , путём перестановки в A блоков размера $m \times m$ следующим способом:
10	Дано число m . Необходимо построить квадратную матрицу $A_{m \times m}$ следующего вида: $ \begin{bmatrix} m & 0 & 0 & \dots & 0 \\ m-1 & m & 0 & \dots & 0 \\ m-2 & m-1 & m & \dots & 0 \\ \vdots & & & & & \\ 1 & 2 & 3 & \dots & m \end{bmatrix} $ Вывести полученную матрицу A .

Номер варианта	Текст задания
11	Дано число m . Необходимо построить квадратную матрицу $A_{m \times m}$ следующего вида:
	$\begin{bmatrix} \vdots \\ m-1 & m-2 & m-3 & \dots & 1 & 2 \\ m & m-1 & m-2 & \dots & 2 & 1 \end{bmatrix}$ Вывести полученную матрицу A .
12	Даны число m и действительная квадратная матрица $A_{m \times m}$. Преобразовать A по правилу: строку с номером m сделать столбцом с номером m , а столбец с номером m сделать строкой с номером m . Вывести полученную матрицу A .
13	Даны число m и две действительные квадратные матрицы $A_{m \times m}$ и $B_{m \times m}$. Получить новую матрицу $C_{m \times m}$ умножением элементов каждой строки первой матрицы $C(i,)$ на наибольшее из значений элементов соответствующей строки второй матрицы $E_i = \max(B(i,))$. Вывести матрицы $A, B, C.$ $i = 1, 2,, m$.
14	Даны числа n и m , две действительные матрицы $A_{n\times m}$ и $B_{m\times n}$. Получить новую матрицу $C_{n\times m}$ прибавлением к элементам каждого столбца первой матрицы $A(\ ,\ i)$ произведения элементов соответствующих строк второй матрицы $P_i=(B(i\ ,))$. Вывести матрицы $A,\ B,\ C.\ i=1,2,,m$.
15	Получить целочисленную квадратную матрицу A порядка $m < 8$, элементами которой являются числа $1, 2,, m^2$, расположенные в ней по спирали:

Номер варианта	Текст задания
16	Даны число m и действительные числа $(a_i)_{i=1}^{m^2}=a_1, a_2,, a_{m^2}$. Получить действительную квадратную матрицу $B_{m \times m}$ порядка $m < 8$, элементами которой являются числа $(a_i)_{i=1}^{m^2}$, расположенные в ней по схеме:
	Вывести полученную матрицу В.
17	Даны число m и действительные числа $(a_i)_{i=1}^{m^2}=a_1, a_2,, a_{m^2}$. Получить действительную квадратную матрицу $B_{m \times m}$ порядка $m < 8$, элементами которой являются числа $(a_i)_{i=1}^{m^2}$, расположенные в ней по схеме:
18	Даны число m и действительные числа $(a_i)_{i=1}^{m^2}=a_1,a_2,,a_{m^2}.$ Получить действительную квадратную матрицу $B_{m\times m}$ порядка $m<8$, элементами которой являются числа $(a_i)_{i=1}^{m^2}$, расположенные в ней по схеме:

Номер варианта	Текст задания
19	Даны число m и действительные числа $(a_i)_{i=1}^{m^2}=a_1, a_2,, a_{m^2}$. Получить действительную квадратную матрицу $B_{m\times m}$ порядка $m<8$, элементами которой являются числа $(a_i)_{i=1}^{m^2}$, расположенные в ней по схеме:
	Вывести полученную матрицу В.
20	Даны числа n и m , действительная матрица $A_{n \times m}$. Найти и вывести наибольшее из значений элементов $E_{\rm mx}$, расположенных в заштрихованной части матрицы:
	Bывести полученную матрицу A .
21	Даны числа n и m , действительная матрица $A_{n\times m}$. Найти и вывести наибольшее из значений элементов $E_{\rm mx}$, расположенных в заштрихованной части матрицы:
	Вывести полученную матрицу А.

Номер варианта	Текст задания
22	Даны числа n и m , действительная матрица $A_{n\times m}$. Найти и вывести наименьшее из значений элементов $E_{\rm mn}$, расположенных в заштрихованной части матрицы:
	Вывести полученную матрицу А.
	Даны числа n и m , действительная матрица $A_{n \times m}$. Найти и вывести наименьшее из значений элементов $E_{\rm mn}$,
	расположенных в заштрихованной части матрицы:
23	
	Вывести полученную матрицу А.
24	Даны числа n и m , целочисленная матрица $A_{n \times m}$. Найти матрицу B , получающуюся из A перестановкой столбцов — первого с последним, второго с предпоследним и т.д.
25	Даны числа n и m , целочисленная матрица $A_{n\times m}$. Найти матрицу B , получающуюся из A перестановкой строк — первой с последней, второй с предпоследней и т.д.

Номер варианта	Текст задания
26	Даны числа n и m , действительная матрица $A_{n \times m}$. Найти и вывести наименьшее $E_{\rm mn}$ и наибольшее $E_{\rm mx}$ из значений элементов, расположенных в заштрихованной части матрицы:
27	Вывести полученную матрицу A . Дано число m , действительная квадратная матрица $A_{m \times m}$, все элементы которой различны. В этой матрице в каждой строке элементы, стоящие на нечётных местах, заменить суммой, на чётных — произведением соответствующей пары.
28	Даны числа n и m , действительная матрица $A_{n \times m}$. Найти и вывести наибольшее E_{mx} из значений элементов, расположенных в заштрихованной части матрицы:

Задание №2. Работа с битами

Разработать программу решения поставленной в таблице 8 задачи (в соответствии с вариантом) и вывода на экран: введённой и преобразованной последовательностей в исходном и восьмеричном видах. Исходные данные пользователь вводит с клавиатуры. Программная реализация должна использовать для решения поставленной задачи одну или несколько побитовых операций языка Си. Счёт порядковых номеров битов и чисел начинается с 1.

Таблица 8 — Варианты задания №2 контрольной работы №3

Номер варианта	Текст задания
1	Дана последовательность из 8 символов. В символе с наибольшим кодом заменить 3-й бит нулём, а в символе с наименьшим кодом 4-й бит — единицей.
2	Дана последовательность из 8 символов. В каждом из символов в их двоичном представлении заменить: для нечётных (по порядку) символов 3-й бит единицей; для чётных символов 4-й бит нулём.
3	Дана последовательность из 8 символов. В их двоичном представлении заменить: если младший бит 1, заменить его на 0; если младший бит 0, заменить его и 2-й бит единицами.
4	Дана последовательность из 8 символов. Если символ – буква, то заменить в нём 3-й бит нулём, иначе — заменить 2-й бит единицей.
5	Дана последовательность из 8 символов. Если символ — цифра, то заменить в нём 4-й бит единицей, иначе — 2-й бит нулём.
6	Дана последовательность из 8 целых чисел. Если число чётное, то заменить его младший байт нулями, если нечётное, то заменить в его младшем байте 3-й и 4-й бит единицами.
7	Дана последовательность из 8 целых чисел. В каждом втором числе заменить $(i-1)$ -й бит единицей, где i -номер члена последовательности.
8	Дана последовательность из 8 символов. Если символ — русская гласная буква, то заменить в нём младший бит единицей, иначе — заменить 2-й и 3-й биты нулями.
9	Дана последовательность из 8 символов. Если символ — восьмеричная цифра, то заменить в нём бит, номер которого совпадает с этой цифрой, единицей; иначе — заменить младший бит нулём.
10	Дана последовательность из 8 символов. Если код символа чётный, то заменить в нем младший бит единицей, иначе — заменить два младших бита нулями.
11	Дана последовательность из 8 символов. Если символ есть $+-*/$ %, то заменить в нём четыре младших бита единицами, иначе — заменить 5-й бит нулём.

Номер варианта	Текст задания
12	Дана последовательность из 8 символов. Если символ — большая латинская буква, то заменить в нём 3-й бит нулём, иначе — заменить младший бит единицей.
13	Дана последовательность из 8 целых чисел. В каждом нечётном числе заменить $(i-1)$ -й бит нулём $(i-1)$ номер члена последовательности).
14	Дана последовательность из 8 символов. Если символ – латинская согласная буква, то заменить в нём младший бит единицей, иначе – заменить 3-й и 5-й биты нулями.
15	Дано целое число без знака, числа $n \in \mathbb{N}^*$ и $p \in \mathbb{N}^*$. Реализовать алгоритм инвертирования n -разрядов целого числа без знака, начинающихся с p -ой позиции. Оставшиеся разряды остаются без изменения.
16	Дано целое число без знака. Реализовать алгоритм, выполняющий зеркальное отображение его битов.
17	Даны два целых числа без знака, n и p . Реализовать алгоритм поиска первой пары несовпадающих в n и p разрядов.
18	Дана последовательность из 8 символов. Сравнить 5-й и 6-й биты каждого символа. Если они не равны, то сделать их равными младшему биту, иначе – старшему.
19	Дана последовательность из 8 символов. В символе с наибольшим кодом заменить 5-й бит единицей, а в символе с наименьшим кодом 6-й бит – нулём.
20	Дана последовательность из 8 символов. В их двоичном представлении заменить: если старший бит 1, заменить его на 0; если старший бит 0, заменить его и младший бит единицами.
21	Дано целое число без знака p . Реализовать алгоритм зеркального отображения тетрад битов значения p .
22	Дана последовательность из 8 целых чисел без знака. Если число нечётное, то заменить в нём старший бит нулём, иначе — заменить два младших бита единицами.
23	Дана последовательность из 8 символов. В каждом из символов в их двоичном представлении заменить все чётные биты единицами.

Номер варианта	Текст задания
24	Дана последовательность из 8 символов. Если сумма единиц в представлении символа нечётная, то заменить 2 старших бита нулями, иначе – единицами.
25	Дана последовательность из 8 символов. Если сумма трёх старших бит в символе равна единице, то заменить их единицами, иначе – нулями.
26	Дана последовательность из 8 символов. Сравнить их младший и старший биты. Если они равны, то заменить старший нулём, младший — единицей, иначе заменить старший бит единицей, младший — нулём.
27	Дана последовательность из 8 символов. Если символ — цифра, то заменить в нем 3 младших бита единицами, иначе — первый и последний нулями.
28	Дана последовательность из 8 символов. Если символ – латинская гласная буква, то заменить в нём 2 младших бита нулём, иначе – 2-й и 4-й единицами.

Задание №3. Указатели на функции

Разработать функцию, решающую поставленную в таблице 9 задачу (в соответствии с вариантом) и программное решение для её тестирования и вывода на экран результата. Программная реализация должна использовать для решения поставленной задачи указатели на функции.

Таблица 9 – Варианты задания №3 контрольной работы №3

Номер варианта	Текст задания
1	Функция filter отфильтровывает все цифры из массива символов, получает в качестве аргументов указатель на исходный массив символов, его размер, указатель на предикат, указатель на отфильтрованный массив и возвращает размер нового (отфильтрованного) массива, оставляя в нём только те элементы, для которых переданный предикат возвращает логическую истину (предикат — функция, которая возвращает истину или ложь).

Номер варианта	Текст задания
2	Функция fold суммирует все числа в массиве целочисленных чисел с использованием функции sum, получает в качестве аргументов указатель на исходный массив, размер массива, указатель на функцию sum от двух аргументов и возвращает сумму всех элементов массива. Функция sum производит сложение двух аргументов и возвращает их сумму.
3	Функция тар заменяет все отрицательные значения на ноль в массиве целых чисел, получает в качестве аргументов массив, его размер, указатель на функцию сит. Функция сит применяется ко всем элементам массива внутри функции тар, получает в качестве аргумента указатель на целое число, и, если это число оказывается отрицательным оно заменяется на ноль.
4	Функция filter отфильтровывает все положительные числа из массива целочисленных чисел, получает в качестве аргументов указатель на исходный массив, размер массива, указатель на предикат, указатель на отфильтрованный массив и возвращает размер нового (отфильтрованного) массива, оставляя в нём только те элементы, для которых переданный предикат возвращает логическую истину (предикат — функция, которая возвращает истину или ложь).
5	Функция fold ищет минимальный символ в массиве символов с использованием функции min, получает в качестве аргументов указатель на исходный массив символов, его размер, указатель на функцию min от двух аргументов и возвращает минимальный символ в массиве. Функция min производит сравнение двух аргументов и возвращает минимальный из них.
6	Функция тар заменяет все положительные значения на ноль в массиве целых чисел, получает в качестве аргументов массив, его размер, указатель на функцию cut (применяется ко всем элементам массива внутри функции тар). Функция cut получает в качестве аргумента указатель на целое число, и, если это число оказывается положительным оно заменяется на ноль.

Номер варианта	Текст задания
7	Функция filter отфильтровывает все чётные числа из массива целочисленных чисел, получает в качестве аргументов указатель на исходный массив, размер массива, указатель на предикат, указатель на отфильтрованный массив и возвращает размер нового (отфильтрованного) массива, оставляя в нём только те элементы, для которых переданный предикат возвращает логическую истину (предикат — функция, которая возвращает истину или ложь).
8	Функция fold ищет произведение всех значений в массиве целочисленных чисел с использованием функции mul, получает в качестве аргументов указатель на исходный массив, размер массива, указатель на функцию mul от двух аргументов и возвращает значение произведения всех элемент массива. Функция mul производит произведение двух аргументов и возвращает результат произведения.
9	Функция тар заменяет все символы верхнего регистра на символы нижнего регистра в массиве символов, получает в качестве аргументов массив символов, его размер, указатель на функцию сиt, которая применяется ко всем элементам массива символов внутри функции тар. Функция сиt получает в качестве аргумента указатель на символ, и, если этот символ оказывается буквой верхнего регистра, то он заменяется на ту же букву нижнего регистра.
10	Функция filter отфильтровывает все нечётные числа из массива целочисленных чисел, получает в качестве аргументов указатель на исходный массив, размер массива, указатель на предикат, указатель на отфильтрованный массив и возвращает размер нового (отфильтрованного) массива, оставляя в нём только те элементы, для которых переданный предикат возвращает логическую истину (предикат — функция, которая возвращает истину или ложь).
11	Функция fold ищет минимальное значение в массиве целочисленных чисел с использованием функции min, получает в качестве аргументов указатель на исходный массив, размер массива, указатель на функцию min от двух аргументов и возвращает минимальный элемент массива. Функция min производит сравнение двух аргументов и возвращает минимальный из них.

Номер варианта	Текст задания
12	Функция тар заменяет все нечётные значения на ноль в массиве целых чисел, получает в качестве аргументов массив, его размер, указатель на функцию cut (cut применяется ко всем элементам массива внутри функции тар). Функция cut получает в качестве аргумента указатель на целое число, и, если это число оказывается нечётным оно заменяется на ноль.
13	Функция filter отфильтровывает все отрицательные числа из массива целочисленных чисел, получает в качестве аргументов указатель на исходный массив, размер массива, указатель на предикат, указатель на отфильтрованный массив и возвращает размер нового (отфильтрованного) массива, оставляя в нём только те элементы, для которых переданный предикат возвращает логическую истину (предикат — функция, которая возвращает истину или ложь).
14	Функция fold ищет максимальное значение в массиве целочисленных чисел с использованием функции тах, получает в качестве аргументов указатель на исходный массив, размер массива, указатель на функцию тах от двух аргументов и возвращает максимальный элемент массива. Функция тах производит сравнение двух аргументов и возвращает максимальный из них.
15	Функция тар заменяет все чётные значения на ноль в массиве целых чисел. Функция тар получает в качестве аргументов массив, его размер, указатель на функцию сит, которая применяется ко всем элементам массива внутри функции тар. Функция сит получает в качестве аргумента указатель на целое число, и, если это число оказывается чётным оно заменяется на ноль.
16	Функция filter отфильтровывает все буквы верхнего регистра из массива символов, получает в качестве аргументов указатель на исходный массив символов, его размер, указатель на предикат, указатель на отфильтрованный массив и возвращает размер нового (отфильтрованного) массива, оставляя в нём только те элементы, для которых переданный предикат возвращает логическую истину (предикат — функция, которая возвращает истину или ложь).

Номер варианта	Текст задания
17	Функция fold ищет сумму всех разностей по модулю соседних элементов в массиве целочисленных чисел с использованием функции sum, получает в качестве аргументов указатель на исходный массив, размер массива, указатель на функцию sum от двух аргументов и возвращает сумму всех разностей по модулю соседних элементов в массиве целочисленных чисел. Функция sum производит расчёт разности двух аргументов по модулю и возвращает результат расчёта.
18	Функция тар заменяет все символы нижнего регистра на символы верхнего регистра в массиве символов, получает в качестве аргументов массив символов, его размер, указатель на функцию cut (cut применяется ко всем элементам массива символов внутри функции тар). Функция cut получает в качестве аргумента указатель на символ, и, если этот символ оказывается буквой нижнего регистра, то он заменяется на ту же букву верхнего регистра.
19	Функция filter отфильтровывает все буквы нижнего регистра из массива символов, получает в качестве аргументов указатель на исходный массив символов, его размер, указатель на предикат, указатель на отфильтрованный массив и возвращает размер нового (отфильтрованного) массива, оставляя в нём только те элементы, для которых переданный предикат возвращает логическую истину (предикат — функция, которая возвращает истину или ложь).
20	Функция fold ищет сумму всех произведений соседних элементов в массиве целочисленных чисел с использованием функции sum, получает в качестве аргументов указатель на исходный массив, размер массива, указатель на функцию sum от двух аргументов и возвращает сумму всех произведений соседних элементов в массиве целочисленных чисел. Функция sum производит расчёт произведения двух аргументов и возвращает результат расчёта.
21	Функция тар заменяет все отрицательные значения на те же положительные значения в массиве целых чисел, получает в качестве аргументов массив, его размер, указатель на функцию сиt, которая применяется ко всем элементам массива внутри функции тар. Функция сиt получает в качестве аргумента указатель на целое число, и, если это число оказывается отрицательным оно заменяется на тоже положительное число.

Номер варианта	Текст задания
22	Функция filter отфильтровывает все нулевые значения из массива целочисленных чисел, получает в качестве аргументов указатель на исходный массив, размер массива, указатель на предикат, указатель на отфильтрованный массив и возвращает размер нового (отфильтрованного) массива, оставляя в нём только те элементы, для которых переданный предикат возвращает логическую истину (предикат — функция, которая возвращает истину или ложь).
23	Функция fold ищет сумму всех сложений соседних элементов в массиве целочисленных чисел с использованием функции sum, получает в качестве аргументов указатель на исходный массив, размер массива, указатель на функцию sum от двух аргументов и возвращает сумму всех сложений соседних элементов в массиве целочисленных чисел. Функция sum производит расчёт суммы двух аргументов и возвращает результат расчёта.
24	Функция тар заменяет все положительные значения на те же отрицательные значения в массиве целых чисел, получает в качестве аргументов массив, его размер, указатель на функцию cut (cut применяется ко всем элементам массива внутри функции тар). Функция cut получает в качестве аргумента указатель на целое число, и, если это число оказывается положительным оно заменяется на тоже отрицательное число.
25	Функция filter отфильтровывает все цифры из массива символов, получает в качестве аргументов указатель на исходный массив символов, его размер, указатель на предикат, указатель на отфильтрованный массив и возвращает размер нового (отфильтрованного) массива, оставляя в нём только те элементы, для которых переданный предикат возвращает логическую истину (предикат — функция, которая возвращает истину или ложь).
26	Функция fold суммирует все числа в массиве целочисленных чисел с использованием функции sum, получает в качестве аргументов указатель на исходный массив, размер массива, указатель на функцию sum от двух аргументов и возвращает сумму всех элементов массива. Функция sum производит сложение двух аргументов и возвращает их сумму.

Номер варианта	Текст задания
27	Функция тар в массиве символов заменяет все символы верхнего регистра на случайно выбранный символ из набора «%?\$*@», получает в качестве аргументов массив символов, его размер, указатель на функцию сит (сит применяется ко всем элементам массива символов внутри функции тар). Функция сит получает в качестве аргумента указатель на символ, и, если этот символ оказывается буквой верхнего регистра, то он заменяется на случайно выбранный символ из набора «%?\$*@».
28	Функция filter отфильтровывает все буквы из массива символов, получает в качестве аргументов указатель на исходный массив символов, его размер, указатель на предикат, указатель на отфильтрованный массив и возвращает размер нового (отфильтрованного) массива, оставляя в нём только те элементы, для которых переданный предикат возвращает логическую истину (предикат — функция, которая возвращает истину или ложь).