Mandatory Exercise 3

Numeriske metoder

Table of Contents

Exercise 5	<i>2</i>
Problem I	2
Solution	
Problem II	
Solution	3
Problem III	3
Solution	3
Full Terminal Solution	4

Exercise 5

Problem I

For N = 2 (only one midpoint), state by hand computations an analytical expression for the approximation of the integral as obtained by the Extended Midpoint method.

Solution

We need to approximate the integral $\int_a^b \frac{\cos(x^3)\exp(-x)}{\sqrt{x}} dx$ using the extended midpoint method with N = 2 (only one midpoint).

First, we find the midpoint of the interval ([a, b]) given by $m = \frac{a+b}{2}$

Then we evaluate the integrand at the midpoint.

The integrand is $f(x) = \frac{\cos(x^3)\exp(-x)}{\sqrt{x}}$ at $x = m = \frac{a+b}{2}$ so we get:

$$f\left(\frac{a+b}{2}\right) = \frac{\cos\left(\left(\frac{a+b}{2}\right)^3\right)\exp\left(-\frac{a+b}{2}\right)}{\sqrt{\frac{a+b}{2}}}$$

Now er then apply the midpoint rule for the integral, which is: $(b-a)*f(\frac{a+b}{2})$.

Using this we get the approximation:

$$(b-a)*\frac{\cos\left((\frac{a+b}{2})^3\right)\exp\left(-\frac{a+b}{2}\right)}{\sqrt{\frac{a+b}{2}}}$$

Furthermore, we know that the error estimate is given by $O\left(\frac{1}{N^2}\right)$ and N=2 so we get the final approximation:

$$(b-a)*\frac{\cos\left(\left(\frac{a+b}{2}\right)^3\right)\exp\left(-\frac{a+b}{2}\right)}{\sqrt{\frac{a+b}{2}}}+O\left(\frac{1}{4}\right)$$

Patrick Ørsted Povey Andersen

Problem II

With N = 2, 3, 5, 9, ... (corresponding to N - 1 = 1, 2, 4, 8,...) use the Extended Midpoint method to approximate the integral. Terminate the subdivisions when you reach a proven accuracy of better than 10-3. State your results in a table like those used during the course and state how you computed the accuracy. State also how many f-computations (Computations of the integrand for a given x) were needed. Submit the used code.

Solution

i	A(h_i)	A(h_(i-1)) - A(h_i)	alp^k	Rich-error	f-calculations	order-estimate
1	0.803856					
2	0.761251	0.042605				
3	0.981042	-0.219791	-0.193842	0.073264		0.000000
4	1.135919	-0.154877	1.419135	0.051626		0.505012
5	1.218004	-0.082086	1.886767	0.027362	16	0.915916
6	1.279150	-0.061146	1.342450	0.020382	32	0.424868
7	1.323213	-0.044063	1.387713	0.014688	64	0.472710
8	1.354464	-0.031251	1.409939	0.010417	128	0.495633
9	1.376589	-0.022124	1.412546	0.007375	256	0.498298
10	1.392241	-0.015652	1.413469	0.005217	512	0.499240
11	1.403312	-0.011071	1.413866	0.003690	1024	0.499645
12	1.411141	-0.007829	1.414048	0.002610	2048	0.499831
13	1.416677	-0.005536	1.414133	0.001845	4096	0.499918
14	1.420592	-0.003915	1.414174	0.001305	8192	0.499960
15	1.423360	-0.002768	1.414194	0.000923	16384	0.499980
Converged	to desired acc	curacy.				

Problem III

Use DErule to approximate the integral. State your result and how many f-computations were applied. Submit the used code.

Solution

Approximations	f-calculations			
1.022004 1.433245	3 12			
1.433243 1.429545 1.430043	48 192			
1.430043	768			
convereged towards	final result			

Patrick Ørsted Povey Andersen

Full Terminal Solution

i	A(h_i)	A(h_(i-1)) - A(h_i)	alp^k	Rich-error	f-calculations	order—estimate	
1	0.803856						
2	0.761251	0.042605					
3	0.981042	-0.219791	-0.193842	0.073264		0.000000	
4	1.135919	-0.154877	1.419135	0.051626		0.505012	
5	1.218004	-0.082086	1.886767	0.027362	16	0.915916	
6	1.279150	-0.061146	1.342450	0.020382	32	0.424868	
7	1.323213	-0.044063	1.387713	0.014688	64	0.472710	
8	1.354464	-0.031251	1.409939	0.010417	128	0.495633	
9	1.376589	-0.022124	1.412546	0.007375	256	0.498298	
10	1.392241	-0.015652	1.413469	0.005217	512	0.499240	
11	1.403312	-0.011071	1.413866	0.003690	1024	0.499645	
12	1.411141	-0.007829	1.414048	0.002610	2048	0.499831	
13	1.416677	-0.005536	1.414133	0.001845	4096	0.499918	
14	1.420592	-0.003915	1.414174	0.001305	8192	0.499960	
15	1.423360	-0.002768	1.414194	0.000923	16384	0.499980	
Converged	to desired acc	uracy.					
Approximat	Approximations f-calculations						
1.02200 1.43324		3 12					
1.42954		48					
1.43004		192					
1.43004	3	768					
convereged towards final result							