Tutorien-Übungsblatt 6

Aufgabe 1

Zeigen Sie, dass die Sprache $\mathcal{L} = \{ \langle \mathcal{M} \rangle \mid \text{Turingmaschine } \mathcal{M} \text{ hat mindestens einen unerreichbaren Zustand} \}$ nicht entscheidbar ist!

Aufgabe 2

Beweisen Sie, dass es eine Gödelnummer $n = \langle \mathcal{M} \rangle \in \mathbb{N}_0$ zu einer Turingmaschine \mathcal{M} gibt, die die Funktion $f_n(x) = (n+x)^2$ für alle $x \in \mathbb{N}_0$ berechnet!

Aufgabe 3

Welche der folgenden Mengen sind rekursiv aufzählbar? Beweisen Sie Ihre Aussage!

- 1. $M_1 := \{ q \in \mathbb{Q} \mid 0 < q < 1 \}$
- 2. $M_2 := \{ r \in \mathbb{R} \mid 0 < r < 1 \}$

Aufgabe 4

Sei $A \subseteq \mathbb{N}_0$ eine entscheidbare Menge. Zeigen Sie, dass $B := \{x + 2y^2 + 17 + 11^x \mid x, y \in A\}$ entscheidbar ist!

Lösung zu Aufgabe 1

Beweis: Es gilt: \mathcal{L} entscheidbar $\Leftrightarrow \bar{\mathcal{L}}$ entscheidbar

Zeige also die Reduktion HALT $\leq_m \bar{\mathcal{L}} = \{\langle \mathcal{M} \rangle \mid \text{Turingmaschine } \mathcal{M} \text{ hat keinen unerreichbaren Zustand} \}!$ Konstruiere dazu aus einer Instanz $(\langle \mathcal{M} \rangle, w) \in \text{HALT}$, also aus der Turingmaschine \mathcal{M} und deren Eingabe w, eine neue Turingmaschine \mathcal{M}' :

- 1. Leere das Band
- 2. Schreibe w auf das Band
- 3. Simuliere \mathcal{M}
- 4. Gehe in einen speziellen Zustand q_S

Dabei hat \mathcal{M}' bezüglich der Schritte 1. bis 3. keine unerreichbaren Zustände, der einzige potentiell unerreichbare Zustand ist also q_S .

Sei nun $f: \text{HALT} \to \bar{\mathcal{L}}, (\langle \mathcal{M} \rangle, w) \mapsto \langle \mathcal{M}' \rangle$ die totale und berechenbare Funktion, die die Reduktion nach der obigen Beschreibung liefert. Dann gilt:

 $(\langle \mathcal{M} \rangle, w) \in \text{HALT} \Leftrightarrow \mathcal{M} \text{ hält bei der Eingabe von } w \Leftrightarrow \mathcal{M}' \text{ erreicht den Zustand } q_S \Leftrightarrow \mathcal{M}' \text{ hat keinen unerreichbaren Zustand} \Leftrightarrow \langle \mathcal{M}' \rangle = f((\langle \mathcal{M} \rangle, w)) \in \bar{\mathcal{L}}$

Damit ergibt sich aus der Annahme, dass $\bar{\mathcal{L}}$ berechenbar ist, direkt, dass auch HALT berechenbar ist. Dies ist aber ein Widerspruch, da HALT als nicht berechenbar bekannt ist. Damit kann also $\bar{\mathcal{L}}$ und damit auch \mathcal{L} nicht berechenbar sein.

Lösung zu Aufgabe 2

Wir wenden das Rekursionstheorem auf folgende Turingmaschine \mathcal{M} an, welche eine Eingabe x erhält:

- 1. Hole eigene Beschreibung $n = \langle \mathcal{M} \rangle$
- 2. Berechne y = n + x
- 3. Berechne $z = y^2$
- 4. Gib z aus

Sei $n = \langle \mathcal{M}' \rangle$ die Gödelnummer von \mathcal{M} . \mathcal{M} berechnet also die Funktion $f_n(x) = (n+x)^2$.

Lösung zu Aufgabe 3

1. Es wird als bekannt vorausgesetzt, dass es berechenbare Bijektionen von \mathbb{N}_0 nach \mathbb{N}_0^2 gibt. Sei f eine beliebige, aber feste derartige Bijektion. Seien $\kappa_1: \mathbb{N}_0^2 \to \mathbb{N}_0, (n_1, n_2) \mapsto n_1$ und $\kappa_2: \mathbb{N}_0^2 \to \mathbb{N}_0, (n_1, n_2) \mapsto n_2$ die ebenfalls berechenbaren Projektionen.

Betrachte nun die Funktion $g: \mathbb{N}_0 \to \mathbb{Q}$ mit

$$g(x) := \begin{cases} \frac{\kappa_1(f(x))}{\kappa_2(f(x))} &, & \text{falls } 0 < \kappa_1(f(x)) < \kappa_2(f(x)) \\ \frac{1}{2} &, & \text{sonst} \end{cases}$$

g ist berechenbar und es gilt $\operatorname{Bild}(g)=M_1,$ also ist M_1 rekursiv aufzählbar.

2. Annahme: M_2 ist rekursiv aufzählbar

Da $M_2 \neq \emptyset$ gilt, gibt es eine totale und berechenbare Funktion $f: \mathbb{N}_0 \to \mathbb{R}$ mit $Bild(f) = M_2$.

Seien dann $f(0) = 0, a_{00}a_{01}..., f(1) = 0, a_{10}a_{11}...,$ usw., wobei also a_{ij} die Ziffer der Nachkommastelle mit dem Positionsindex j zu f(i) bezeichnet.

Konstruiere $b := 0, b_1b_2...$ mit

$$b_i := \left\{ \begin{array}{ll} 1 & , & \text{falls } a_{ii} \neq 1 \\ 0 & , & \text{sonst} \end{array} \right.$$

Dann gilt $b \in M_2$, es muss also eine Zahl $n \in \mathbb{N}_0$ geben mit f(n) = b. Daraus folgt:

$$b_n = 1 \Leftrightarrow a_{nn} = b_n \neq 1$$

Dies ist ein Widerpruch, damit ist M_2 nicht rekursiv aufzählbar.

Lösung zu Aufgabe 4

Da die Funktion $x + 2y^2 + 17 + 11^x$ streng monoton wachsend ist und zudem $A \subseteq \mathbb{N}_0$ gilt, folgt somit:

$$z \in B \Leftrightarrow \exists \ x,y \in A: 0 \leq x \leq z \land 0 \leq y \leq z \land z = x + 2y^2 + 17 + 11^x$$

Da A entscheidbar ist, ist damit ihre charakteristische Funktion χ_A berechenbar.

Betrachte nun folgende Mehrband-Turingmschine, die auf dem ersten Band die Eingabe z enthält:

- 1. Initialisiere x auf dem zweiten Band und y auf dem dritten Band mit 0
- 2. Berechne auf weiteren Bändern $\chi_A(x)$, $\chi_A(y)$ und $x+2y^2+17+11^x$
- 3. Prüfe, ob $\chi_A(x) = 1 \wedge \chi_A(y) = 1 \wedge x + 2y^2 + 17 + 11^x = z$ gilt:
- Falls ja: Ersetze z auf dem ersten Band durch eine 1 und stoppe
- Falls nein: Gehe zu Schritt 4.
- 4. Erhöhe y um 1 und prüfe, ob $y \le z$ gilt:
- Falls ja: Gehe zu Schritt 2.
- Falls nein: Setze y auf 0 zurück und gehe zu Schritt 5.
- 5. Erhöhe x um 1 und prüfe, ob $x \le z$ gilt:
- Falls ja: Gehe zu Schritt 2.
- Falls nein: Ersetze z auf dem ersten Band durch eine 0 und stoppe

Die Turingmaschine berechnet die charakteristische Funktion χ_B und ist wie jede Mehrband-Turingmschine durch eine Einband-Turingmschine simulierbar. Wichtig ist dabei, dass alle Einzelschritte berechenbar sind. Dafür wird die Berechenbarkeit von χ_A benötigt. Zudem wird als bekannt vorausgesetzt, dass die diskrete Arithmetik auf \mathbb{N}_0 und damit der Term $x + 2y^2 + 17 + 11^x$ berechenbar ist.