Outer never he spens

 (X, σ_1, S_i) and (X, σ_2, S_2) . and (X, σ_3) $M \cdot (II)$., $\sigma_i \rightarrow M_i$. $M \in M_i$. $M \in M_i$, $M \in M_2$.

VEEE, JE, SEE, C2EE2 S.t. $S(4,E) \in S_1(4,E_1) \cdot S_2(4,E_2)$.

Onter Hölder enmale;

11t, t, 11e(x,55) \(2. 11t, 11e(x,5,5). 11t, 11e(x,5,5). 11t, 11e(x,5,5). \(\frac{1}{p} = \frac{1}{p} + \frac{1}{p}. \)

Pt. Whey. return $||f_i||=1$, and $f_i \times A. \times O$.

Rich. F_i : untsup $S_i(f_i) \leq A^{p_i}$. $M_i(f_i) \leq M_i(S_i(f_i) \times A^{p_i})$. $\neq E$.

 $F=F, UF_2.$ $W'is. \qquad \mu(S(4, f_2)>1) \leq \mu(F).$

1

VE, 8(f, f, 1 fc, E) & S(f, & 1 fc, E). S, (f, 1 fc, E2). 1 fr I Fi CF. 5. 2h 2h 5 1. $M(s(f,f_1)>a) \leq \mu(F) \leq \mu_1(f_1) + \mu_2(f_2)$. $\leq \sum_{i=1}^{2} \mu_i(s_i(f_i)>a^{i/p_i}+2s_i^{i-1}$. Sade to paraproducts. $Tif(n,t) = \frac{1}{t} \cdot f(\frac{1}{t}) \cdot At., \qquad \int f(z) = 0. \quad i = 1,2.$ 1 (f, f2, f3) = SR2 (T, f1). (2f2). (3f3) du dt in semal. 1 1-4, Pa, B) \ \(\(\(\Gamma_1 \) \(\Gamma_1 \) \(\Gamma_1 \) \(\Gamma_2 \) \(\Gamma_1 \) \(\Gamma_1 \) \(\Gamma_2 \) \(\Gamma_2 \) \(\Gamma_1 \) \(\Gamma_2 \) Eleall $IE = \{\text{set } f \text{ fontr} \}$, $\sigma(T(x,t)) = t$ $\{f,t\} = \frac{1}{t}$. If $f = \frac{1}{t}$ and $f = \frac{1}{t}$. $\left(\frac{1}{2}+\frac{1}{2}+\frac{1}{\infty}=1\right)$ ZAZIORES) 1173 f3 1/18 (122, 5, 500).

Rombe Consid matter is to find the orghet Si's. The premoun of were in less memois lissed. The MITTING (x, 5, 5, 52) < | Hell P(IR).

Tremed & SY = 0. $X = \mathbb{R}^2$ 1< p < 00. Pf. p=∞: Caldum reproducing fumilier: 15 178/2 doubt = c. S.18/2 dn. Noed: $\{S_2(F,T), \leq ||f||_{\infty}$ (T = tent). g:=+.1(2-36,2+8t). TAT' SSR 1+4(+)+9/2 ducht = c SR 19/2 du.

hy of option opted, reduce to T'. Duc.

 $\left(3\right)$

Weals L: Need M(S2(F)>A) & & 118/11. C.Z. decemp: f. = g + \(\subseteq \) | 1911 \(\in \) \(\frac{1}{3} \), At hic (night, nitsi). Shi =0. H== U; T(n;35;) Need: intrope S. (Fb) & A. F= cynlin. / X M(S2(TF)XA) = M(S2(Tg)>A) +. M(S2(Tb)>A). time only C1. M(H) & Zisi & & 118112. (hy K.L. L,>WL). B; (n) = 5- 0 h; H of (x); b:(n)= \(\int \b_{\tau} \). (Tbi) (nit)= + Bis * (+ 4!(+)) Entitle This of test (See protection

That 6

(27,€) € H => Fb; =0. Y

 $|\mathcal{F}b(m,\epsilon)| \leq ||\mathcal{F}b(m,\epsilon)| \leq ||\mathcal{F}b(m,\epsilon)| \leq |\mathcal{F}b(m,\epsilon)| \leq |\mathcal{F}b(m,\epsilon)|$

< temp, Ilbill. \$1.

→. So (761_{HC}, 1) ≤ 1.

Estimute nu Si

A S, (Tb: 1HC, T(nit))

= IS 1 Thil dyde T(x,t) H. Thil dyde.

€ ∫ J | Thil dyds. S>Si ly-n:1 ≤2t.

€. ∫° ∫ | 18:11₄. | 14'||₂ dy de.

 $\leq \|\mathbf{b}_i\|_1 \cdot \mathbf{t} \cdot \mathbf{t}_{s_i^2} \cdot \leq \|\mathbf{b}_i\|_{2^{s_i^2}} \cdot \mathbf{t}_{s_i^2}$

\$ \$\frac{1}{2} (76) \(\tau_1 \) \(\tau_2 \) \(\tau_1 \) \(\tau_1 \) \(\tau_2 \) \(\tau_1 \) \(\tau_2 \

< 1 Zillbille Si.

Bilinen Hillan Transform

Calderón problem: [A(n)-A(y)] < c/n-y/,

Conchy but gral on graph of A.

 $f \mapsto \int_{\mathbb{R}} \frac{f(n)}{(n+i\lambda(n))-(y+i\lambda(n))} dy \quad L^2 \to L^2 \text{ hold}.$

1st attant: Calclem 1st commetate.

f -> p.v. \ \frac{A(m)-A(y)}{(2-y)^2} f(y) dy.

Puller stude by Conffron - Meyer - Mohher 1982.

tolied altost by Caldron:

 $\frac{A(n)-A(y)}{(x-y)!} = \frac{1}{(n-y)!} \int_{0}^{1} A'(xy+(1-x)n) dx . \quad (y-n=t).$

so, $p.v.(\int_{-\infty}^{\infty} -1) dx dx A'(n+\alpha t) f(n+t).$

= Soda (p.v Jir f(n+t) A'(n+xt) dt). (6)

Q? [m] [R f(n+t) A'(x+xt) dt.) 5. 11/11/2 1/2 1/2 $\lambda = 0 ; vk.$ $\lambda = 1 : ok.$ OKX <1: Lawy & Thick 197. Michael of ha Tinliner for 1(f., f., f.). Fr/TT; f; (2-1; t) dndt \$. fr p= (1,-1,0).

The 1 1 (f., f2, f3) 1 & 11f, 11p. 11f2/1/p2. 11f3/1/p3 id 1/p. f3=1. P; > 1 Three w.t. recon in R3.

 $(1,1,1), \beta = (1,-1,0), \alpha = (1,1,-2).$

F(n, s, t) = . In fly). + 4(4-12) eis(y-n) dy.

were fachet.

X=R₊.

Fine - Esegrency tent T(n, 3, t) = { (y, y, s): 14-n | < t-s M-31<+. {.

