

BUNDESREPUBLIK DEUTSCHLAND

**Prioritätsbescheinigung über die Einreichung
einer Patentanmeldung**

BEST AVAILABLE COPY

Aktenzeichen: 10 2004 020 187.0

Anmeldetag: 22. April 2004

Anmelder/Inhaber: Infineon Technologies AG, 81669 München/DE

Bezeichnung: Umverdrahtungssubstratstreifen mit mehreren
Halbleiterbauteilpositionen

IPC: H 01 L 23/50

**Die angehefteten Stücke sind eine richtige und genaue Wiedergabe der ur-
sprünglichen Unterlagen dieser Patentanmeldung.**

München, den 21. Juni 2005
Deutsches Patent- und Markenamt
Der Präsident
Im Auftrag

Kahle

A large, handwritten signature in black ink, which appears to read "Kahle". It is positioned below the typed name and above a stylized graphic element.

D

Beschreibung

Umverdrahtungssubstratstreifen mit mehreren Halbleiterbauteilpositionen

5

Die Erfindung betrifft einen Umverdrahtungssubstratstreifen mit mehreren Halbleiterbauteilpositionen und Halbleiterbauteile des Umverdrahtungssubstratstreifens, die in Zeilen und Spalten auf dem Umverdrahtungssubstratstreifen angeordnet sind, sowie ein Verfahren zur Herstellung derselben.

10

Für Halbleiterbauteile wird zunehmend eine Minimierung der produzierten Produktgehäusegröße angestrebt. Dazu wird die Anzahl der Außenkontakte auf ein Minimum reduziert und ange-15 strebt, möglichst viele Außenkontakte eines Halbleiterbau- teils, die für Testoptimierungszwecke und Analysenzwecke bis- her vorgesehen sind, zu vermeiden. Mit einer derartigen Redu- zierung der Außenkontakte ist der Nachteil verbunden, dass Außenkontakte zu internen Test- und Analysezwecken nicht mehr 20 extern am Gehäuse bereitgestellt werden. Daraus ergeben sich zwar kleinere Produktgehäuse, jedoch ergeben sich auch gleichzeitig, nachteilig, signifikante Einschränkungen bei der Analyse und der Testbarkeit derartiger Halbleiterbauteile und ihrer Zwischenproduktstufen.

25

Die damit verbundenen Risiken in Bezug auf die Ausbeute funk- tionsfähiger Halbleiterbauteile aus einem Umverdrahtungs- substratstreifen können nicht durch weitere verbesserte Fer- tigungsverfahren komprimiert werden. Somit wird in der Tech- 30 nik zwischen einem Produktgehäuse, das die minimal erforder- liche Anzahl von Außenkontakten aufweist und einem sogenann- ten Debug-Gehäuse unterschieden, wobei das Debug-Gehäuse zu- sätzliche entfernbare Prüfkontakte aufweist, die nach einem

Test auf Funktionsfähigkeit von dem eigentlichen Produktionsgehäuse getrennt werden.

Werden zusätzlich zu den Außenkontakte des Produktgehäuses
5 Prüfflächen auf einem Debug-Bauteil, das größer ist, als das
Produktbauteil, zur Verfügung gestellt, so ergeben sich viel-
fältige Möglichkeiten zum Testen des Bauteils durch Hinzufü-
gung von Prüfkontaktflächen in Randbereichen des Debug-
Bauteils. Jedoch entsteht ein erhöhter Flächenbedarf mit zu-
10 nehmender Anzahl von Prüfflächen zwischen den Halbleiterbau-
teilen einer Bauteilgruppe eines Umverdrahtungssubstratstreifens.

Aufgabe der Erfindung ist es, einen Umverdrahtungssubstratstreifen mit mehreren Halbleiterbauteilpositionen zu schaffen, mit dem die obigen Probleme überwunden werden können.
15 Dabei soll trotz reduzierter Anzahl von Außenkontakten und reduzierter Gehäusegröße eine Analyse und Testbarkeit interner Signale für die Prozessoptimierung, für die Korrelation zu anderen Gehäuseformen, sowie für die Charakterisierung der Halbleiterbauteile erhalten bleiben. Ferner soll eine optimierte Anordnung und Ausrichtung von Halbleiterbauteilen in den Halbleiterbauteilpositionen geschaffen werden, die verkleinerte Produktgehäuse und eine optimierte Größe der Debug-
20 Bauteile ermöglichen. Schließlich sollen Tests ohne Beschädigung oder Verformung von Außenkontakten möglich werden. Darüber hinaus ist es eine Aufgabe der Erfindung eine einfache und kostengünstige Lösung für mechanische und elektrische Kontaktierungen von Halbleiterbauteilen oder von Halbleiter-
25 modulen hochintegrierter Schaltung für einen "burn-in"-Test anzugeben.
30

Gelöst wird diese Aufgabe mit dem Gegenstand der unabhängigen Ansprüche. Vorteilhafte Weiterbildungen der Erfindung ergeben sich aus den abhängigen Ansprüchen.

5 Erfindungsgemäß wird ein Umverdrahtungssubstratstreifen mit mehreren Halbleiterbauteilpositionen für Halbleiterbauteile geschaffen und ein Verfahren zu dessen Herstellung angegeben. Die Halbleiterbauteile sind in mehreren Bauteilzeilen und Bauteilspalten, unterteilt durch Sägespuren, auf dem Umverdrahtungssubstratstreifen angeordnet. Dazu sind mehrere Halbleiterbauteilpositionen zu einer Bauteilgruppe zusammengefasst. Die Halbleiterbauteilgruppe umfasst mehrere Halbleiterchips der Halbleiterbauteile auf einer Oberseite des Umverdrahtungssubstratstreifens. Innerhalb einer Bauteilgruppe sind zwischen den Bauteilzeilen und Bauteilspalten Sägestreifen vorgesehen, die von Sägespuren begrenzt sind und die Prüfkontaktflächen aufweisen.

15 Die Halbleiterbauteilpositionen einschließlich ihrer Prüfkontaktflächen sind derart zueinander ausgerichtet, dass sich ein Parkettierungsmuster gemäß einem Parallel-Stab Parkettmuster ergibt. Die Anordnungen von Außenkontakten und Prüfkontaktflächen der Halbleiterbauteile sind entsprechend dem Parkettierungsmuster derart zueinander angeordnet und ausgerichtet, dass vier nächste Nachbarn eines Halbleiterbauteils eine Anordnung der Außenkontakte aufweisen, die um einheitlich 90° oder um einheitlich 270° gegenüber der Anordnung des einzelnen Halbleiterbauteils gedreht ausgerichtet ist.

20 25 30 Der Umverdrahtungssubstratstreifen hat den Vorteil, dass die Fläche, die für eine Bauteilgruppe vorzusehen ist, dahingehend optimiert ist, dass möglichst viele Prüfkontaktflächen in entsprechenden Sägestreifenabschnitten für jedes der Bau-

teilpositionen zur Verfügung gestellt werden kann. Ferner wird durch die Ausrichtung der vier nächsten Nachbarn eines Halbleiterchips um einheitlich 90° oder um einheitlich 270° gedreht zu dem Halbleiterchip erreicht, dass die Verbindungsleitungen zwischen Außenkontakten und Prüfflächen in ihrer 5 Länge und Dichte optimiert werden können.

Derartige Verbindungsleitungen zwischen Außenkontakten des Produktgehäuses und Prüfkontaktflächen des Debug-Gehäuses 10 können in vorteilhafter Weise, sowohl auf der Oberseite des Umverdrahtungssubstratstreifens, als auch auf der Rückseite des Umverdrahtungssubstratstreifens in Form von Umverdrahtungsleitungen realisiert werden. Die Rückseite wird vorteilhafter Weise dann gewählt, wenn die Prüfung auf der Seite der 15 Außenkontakte erfolgen soll, und die Oberseite wird dann für die Umverdrahtungsleitungen und für die Prüfkontaktflächen eingesetzt, wenn die Prüfung auf den Außenkontakten gegenüber liegenden Oberseite des Umverdrahtungssubstratstreifens, auf der sich auch die Halbleiterchips befinden, stattfindet. Die einheitlich gedrehte Ausrichtung von vier 20 nächsten Nachbarn zu einem Halbleiterchip hat darüber hinaus den Vorteil, dass beim Bestücken der Oberseite des Umverdrahtungssubstratstreifens mit Halbleiterchips der Bestückungsaufomat lediglich zwei um einen festen Winkel zueinander gedrehte Ausrichtungen der Halbleiterchips vorzunehmen hat oder 25 nur zwei vorbestimmte Ausrichtungen der Halbleiterchips durch den Bestückungsaufomat von einem entsprechend vorbereiteten Halbleiterwafer oder einem entsprechend vorbereiteten Zwi-schenträger oder von einem entsprechend vorbereiteten Trans-portband aufzunehmen sind.

In einer weiteren Ausführungsform der Erfindung weisen Bauteilzeilen und Bauteilspalten einer Bauteilgruppe erste und

zweite Halbleiterchips auf. Dabei unterscheiden sich die ersten und zweiten Halbleiterchips in ihren Ausrichtungen. Die ersten Halbleiterchips weisen eine erste Ausrichtung A auf, während die zweiten Halbleiterchips einheitlich eine Ausrichtung B aufweisen, die entweder um 90° oder einheitlich um 270° gegenüber der ersten Ausrichtung A gedreht ist. Die ersten und zweiten Halbleiterchips sind dann in den Bauteilzeilen und Bauteilspalten alternierend angeordnet.

Somit kann in vorteilhafter Weise, z.B. jede ungerade Halbleiterbauteilposition in den Bauteilzeilen und Bauteilspalten einer Bauteilgruppe, die Ausrichtung A aufweisen. Entsprechend weisen dann die geraden Halbleiterbauteilpositionen in den Bauteilzeilen und den Bauteilspalten einer Bauteilgruppe die Ausrichtung B auf. Damit ist der Vorteil verbunden, dass die Anordnung der Außenkontakte auf der Rückseite des Halbleiterchips genauso ausgerichtet ist, wie die Halbleiterchips auf der Oberseite des Umverdrahtungssubstratstreifens, was die Umverdrahtungsstruktur innerhalb des Umverdrahtungssubstratstreifens und/oder auf seiner Oberseite und seiner Rückseite vorteilhaft vereinfacht.

In einer bevorzugten Ausführungsform der Erfindung sind auf einer Rückseite des Umverdrahtungssubstratstreifens, die der Oberseite gegenüberliegt, in den Halbleiterpositionen Außenkontakt aufweisende Außenkontaktflecken angeordnet. Diese Außenkontaktflecken gehören zu einer Umverdrahtungsstruktur, welche Umverdrahtungsleitungen aufweist. Diese Umverdrahtungsleitungen der Umverdrahtungsstruktur verbinden die Außenkontaktflecken mit den Prüfkontaktflächen auf den Sägestreifen des Umverdrahtungssubstratstreifens.

Diese Ausführungsform der Erfindung hat den Vorteil, dass der Umverdrahtungssubstratstreifen relativ preiswert hergestellt werden kann, zumal er lediglich auf seiner Rückseite, auf der sowieso die Außenkontaktflecken vorzusehen sind, eine Umverdrahtungsstruktur mit Umverdrahtungsleitung zu den Prüfkontaktflächen benötigt. Auf der Oberseite des Umverdrahtungssubstratstreifens sind entsprechend nur solche metallischen Strukturen notwendig, die ein Verbinden des Umverdrahtungssubstratstreifens mit den Halbleiterchips in jeder der Halbleiterbauteilpositionen ermöglichen und es sind Durchkontakte zu den Außenkontaktflecken auf der Rückseite des Umverdrahtungssubstratstreifens erforderlich. Somit sind sowohl die Rückseite als auch die Oberseite des Umverdrahtungssubstratstreifens mit herkömmlichen Technologien, wie sie auch aus der Leiterplattenherstellung bekannt sind, strukturiert, was die Kosten für den Umverdrahtungssubstratstreifen vermindert.

In einer weiteren bevorzugten Ausführungsform der Erfindung sind den jeweiligen Halbleiterbauteilpositionen Sägestreifenabschnitte zugeordnet, die Prüfkontaktflächen tragen und auf zwei gegenüber liegenden Randseiten des Produktgehäuses angeordnet sind. Damit ist der Vorteil verbunden, dass auch für ein Produktgehäuse mit quadratischem Grundriss ein rechteckiges Debug-Gehäuse entsteht, welches die Grundlage eines Parallel-Stab Parkettmusters bildet. Bei diesem Muster entstehen Kreuzungsflächen, die durch das Kreuzen von horizontalen und vertikalen Sägestreifen entlang der Bauteilzeilen und der Bauteilspalten gebildet sind.

Diese Kreuzungsflächen können in einer weiteren Ausführungsform der Erfindung ebenfalls zum Anordnen von Prüfkontaktflächen für eine optimale Nutzung der Fläche einer Bauteilgruppe

eingesetzt werden. Dazu wird ein Viertel dieser Prüfkontaktflächen auf einer Kreuzungsfläche jeweils einer der vier angrenzenden Halbleiterbauteilpositionen zugeordnet. Somit erhöht sich in vorteilhafter Weise die mögliche Anzahl von 5 Prüfkontaktflächen pro Halbleiterbauteilposition, zumal vier Kreuzungsflächen gemäß dem Parkettierungsmuster zu einer Halbleiterposition benachbart sind, womit die für Prüfkontaktflächen nutzbare Fläche der Bauteilpositionen um eine gesamte Kreuzungsfläche pro Bauteilposition erhöht werden kann.

10

Weiterhin ist es vorgesehen, dass mehrere Bauteilgruppen auf dem Umverdrahtungssubstratstreifen hintereinander und/oder nebeneinander aufgereiht sind und vorzugsweise eine oder mehrere Kunststoffabdeckungen aufweisen. Derartige Kunststoffabdeckungen sind insbesondere erforderlich, wenn die elektrischen Verbindungen zwischen Halbleiterchip und Umverdrahtungssubstratstreifen mittels Bondtechnik und damit mittels empfindlicher Bonddrähte erreicht wird. Diese Kunststoffabdeckungen auf den Bauteilgruppen sichern und schützen derartige Bonddrähte der Bondverbindungen zwischen Halbleiterchip und Umverdrahtungssubstratstreifen.

15

20

25

Eine andere mögliche Verbindung zwischen Halbleiterchip und Umverdrahtungssubstratstreifen ist durch die so genannte Flipchip-Technik möglich. Dazu sind auf der aktiven Oberseite des Halbleiterchips Kontaktflächen, die sonst für Bondverbindungen zur Verfügung stehen mit Flipchip-Kontakten versehen, welche unmittelbar auf entsprechende Kontaktanschlussflächen auf dem Umverdrahtungssubstratstreifen aufgelötet werden können. Da bei dieser Ausführungsform der Erfindung eine relativ stabile Lötverbindung über die Flipchip-Kontakte zwischen dem Halbleiterchip und dem Umverdrahtungssubstratstreifen mit entsprechenden Kontaktanschlussflächen erreicht wird, sind 30

30

bei dieser Ausführungsform der Erfindung auch Gehäuse ohne schützende Kunststoffabdeckung möglich.

Bei einer weiteren Ausführungsform der Erfindung ist es vor-
5 gesehen, dass der Umverdrahtungssubstratstreifen auf seiner Rückseite, außerhalb des Bereichs einer Bauteilgruppe, Berei- che mit freiliegenden Testkontakteflächen aufweist. Diese Testkontakteflächen sind über Umverdrahtungsleitungen mit den Prüfkontakteflächen in den Sägestreifen und/oder den Außenkon-
10 taktflecken der Halbleiterbauteile und/oder mit Kontaktflä- chen auf der aktiven Seite der Halbleiterchips elektrisch verbunden. Diese Ausführungsform der Erfindung hat den Vor- teil, dass über diese zusätzlichen Testkontakteflächen außer-
halb der Bauteilgruppen bisher nicht vorgesehene Messungen
15 und Prüfungen zusätzlich auf dem Umverdrahtungssubstratstreifen durchgeführt werden können. Während die Fläche einer Bau- teilgruppe optimiert und minimiert ist, verfügt der Um- verdrahtungssubstratstreifen über genügend große Bereiche au-
ßerhalb einer Baugruppe, um derartige zusätzliche Testkon-
20 taktflächen zur Verfügung zu stellen. Damit können die Analy- sen und Tests der einzelnen integrierten Schaltungen vorteil- haft erweitert werden.

Eine weitere Verbesserung der Prüfmöglichkeiten für den Um-
25 verdrahtungssubstratstreifen besteht darin, dass für eine Bauteilgruppe eine Testkontakteleiste im Randbereich des Um- verdrahtungssubstratstreifens für einen Temperaturzyklykentest bzw. einen "burn-in"-Test vorgesehen ist. Für diesen so ge- nannten "burn-in"-Test werden charakteristische Halbleiter-
30 bauteilelemente auf dem Halbleiterchip über ein Bündel ent- sprechender Umverdrahtungsleitungen mit der Steckkontakteleis- te verbunden, sodass nicht einzelne Bauelemente für den "burn-in"-Test vorzubereiten sind, sondern es können noch auf

dem Umverdrahtungssubstratstreifen diese Temperaturzyklen-
tests für ganze Baugruppen durchgeführt werden. Eine derarti-
ge Steckkontakteleiste kann, sowohl auf der Rückseite, als
auch auf der Oberseite des Umverdrahtungssubstratstreifens

5 angeordnet sein. Dabei können die einzelnen Steckkontaktflä-
chen einer Steckkontakteleiste mit den Prüfkontaktflächen
und/oder den Außenkontaktflecken und/oder den Kontaktflächen
einer aktiven Oberseite eines Halbleiterchips elektrisch in
Verbindung stehen. Zusätzlich können weitere Umverdrahtungs-
10 leitungen mit der Steckkontakteleiste verbunden sein, um dar-
über hinausgehende Funktionstests der einzelnen Halbleiter-
bauteile einer Halbleiterbauteilgruppe über die Steckkontakte-
leiste vorzunehmen.

15 Statt eine Kontaktierung über die Steckkontakteleiste zu er-
möglichen, können auch die Prüfkontaktflächen entweder unmit-
telbar mit entsprechenden Prüfsonden in Verbindung gebracht
werden oder es werden Prüfkontakte auf die Prüfkontaktflächen
aufgebracht. Derartig aufgebrachte Prüfkontakte haben den
20 Vorteil, dass die Messsonden in Form von Messspitzen nicht
auf den Außenkontakten oder auf den Prüfkontaktflächen eines
Produktgehäuses bzw. eines Debug-Gehäuses aufgebracht werden
müssen. Somit werden die Außenkontakte eines Produktgehäuses
bzw. die Prüfkontaktflächen eines Debug-Gehäuses, weder von
25 den Messspitzen kontaminiert noch umgekehrt die Messspitzen
von den Außenkontakten bzw. den Prüfkontaktflächen kontami-
niert.

Um die Kontaminationsgefahr der Messspitzen durch Prüfkon-
30 taktfächern oder Prüfkontakte zu weiterhin vermindern, können
Prüfkontaktflächen bzw. Prüfkontakte in einer weiteren Aus-
führungsform der Erfindung mit einer Goldbeschichtung belegt
sein. Eine derartige Goldbeschichtung der Prüfkontaktflächen.

117

oder der Prüfkontakte verbessert außerdem den Kontaktüber-gangswiderstand, zumal Gold nicht wie Aluminium oder Kupfer an der Luft oxidiert oder wie Silber an Luft sulfidiert wird.

5. Eine weitere Ausführungsform der Erfindung ermöglicht, insbe-sondere durch das Vorsehen von Debug-Gehäusen mit einer ent-sprechend hohen Anzahl von Prüfkontaktflächen, das Prüfen von Umverdrahtungssubstratstreifen mit einem Stapel aus einem Lo-gikchip und einem Speicherchip in den Halbleiterbauteilposi-tionen. Dabei können über die Prüfkontaktflächen und/oder die freiliiegenden Testkontaktflächen und/oder über die Steckkon-takteisten, sowohl die Speicherfunktionen des Speicherchips, als auch die Logikfunktionen des Logikchips noch vor dem Ver-packen und Weiterverarbeiten des Umverdrahtungssubstratstrei-fens zu einzelnen Halbleiterbauteilen geprüft werden.

Halbleiterbauteile, die auf der Basis derartiger Umverdra-hungssubstratstreifen hergestellt wurden, können leicht iden-tifiziert werden, zumal sie auf gegenüberliegenden Randseiten ihres Gehäuses durchgetrennte Umverdrahtungsleitungen, die zu den Prüfkontaktflächen auf den Sägestreifen des Umverdra-hungssubstrats führen, nach dem Vereinzeln zu Halbleiterbau-teilen aufweisen. Ein derartiges Halbleiterbauteil hat den Vorzug, dass es noch vor einem Verkapseln oder einem Abdecken durch eine Kunststoffmasse intensiv geprüft werden kann, so-dass entweder die Möglichkeit besteht, defekte Halbleiter-chips vor dem Verpacken zu identifizieren und zu entfernen, oder die defekten Halbleiterchips beizubehalten, jedoch der-art zu markieren, dass sie nach dem Auftrennen zu einzelnen Halbleiterbauteilen noch erkennbar sind und aussortiert wer-den können.

EIN VERFAHREN ZUR Herstellung eines Umverdrahtungssubstratstreifens mit mehreren Bauteilgruppen, die in x-Richtung in Bauteilzeilen und in y-Richtung in Bauteilspalten angeordnete Halbleiterbauteilpositionen mit Halbleiterchips aufweisen,

5 weist nachfolgende Verfahrensschritte auf.

zunächst wird ein Substratstreifen bereitgestellt, der mindestens auf seiner Rückseite metallbeschichtet ist. Diese Metallbeschichtung wird zu einer Umverdrahtungsstruktur strukturiert, die Außenkontaktflecken in den Halbleiterbauteilpositionen und Prüfkontaktflächen im Bereich von Sägestreifen 10 zwischen den Halbleiterbauteilpositionen aufweist. Nachdem eine derartige Umverdrahtungsstruktur hergestellt ist, werden auf die Oberseite des Umverdrahtungssubstratstreifens Halbleiterchips 15 in den Halbleiterbauteilpositionen nach einem vorbestimmten Plan aufgebracht. Zunächst wird jede ungerade Halbleiterbauteilposition in den Bauteilzeilen und den Bauteilspalten mit einem ersten Halbleiterchip in einer ersten Ausrichtung A bestückt.

20 Anschließend werden die verbliebenen geraden Halbleiterpositionen in den Bauteilspalten und den Bauteilzeilen mit einem zweiten Halbleiterchip bestückt, wobei die zweiten Halbleiterchips gegenüber der ersten Ausrichtung A einheitlich eine 25 um 90° oder einheitlich eine um 270° verdrehte Ausrichtung B aufweisen. Dabei können, sowohl die ersten, als auch die zweiten Halbleiterchips völlig identische integrierte Schaltungen aufweisen. Die erste Ausrichtung A und die zweite Ausrichtung B bewirken, dass ein Stab Parkettmuster nach vorgegebenem Plan in x- und y-Richtung gebildet wird.

Nachfolgend werden Verbindungen zwischen den Halbleiterchips und der Umverdrahtungsstruktur hergestellt. Danach werden Au-

Benkontakte in den Halbleiterbauteilpositionen auf die Außenkontakteflecken der Umverdrahtungsstruktur auf der Rückseite des Umverdrahtungsubstratstreifens aufgebracht. Anschließend erfolgen Funktionstests der Halbleiterchips der Halbleiterbauteile unter Kontaktieren der Prüfkontaktflächen und/oder von Testkontaktflächen und/oder von Steckkontaktflächen einer Steckkontakteiste. Abschließend werden die defekten Halbleiterbauteile auf dem Umverdrahtungsubstratstreifen markiert.

5 10 Dieses Verfahren hat den Vorteil, dass aufgrund der zusätzlichen Prüfkontaktflächen auf den Sägestreifen in den Bauteilgruppen und den zusätzlichen Steckkontaktflächen auf Randseiten des Umverdrahtungsubstratstreifens eine vollständige und verbesserte Durchführung von Funktionstests der Halbleiterchips möglich ist, ohne jedoch die Außenkontakte auf dem Umverdrahtungsubstratstreifen kontaktieren zu müssen. Darüber hinaus hat dieses Verfahren den Vorteil, dass auch die interne Signalverarbeitung in den zu Baugruppen angeordneten Halbleiterchips geprüft werden kann, ohne dass zusätzliche Außenkontakte für das Produktgehäuse erforderlich werden.

15 20

Mit diesem Verfahren lassen sich folglich Bauteile herstellen, die verkleinerte Gehäuse aufweisen, bei gleichzeitiger Reduzierung der Anzahl der Außenkontakte und die dennoch einen vollständigen und verbesserten Funktionstest auch für die interne Signalverarbeitung unterzogen werden können. Durch das Anordnen der Steckkontakteiste lässt sich darüber hinaus ein "burn-in"-Testzyklusverfahren direkt mithilfe des Umverdrahtungsubstratstreifens durchführen. Somit können die Halbleiterbauteile noch vor dem Auftrennen der Bauteilgruppen in einzelne Halbleiterbauteile unter extremer Temperaturzyklusbelaustung getestet werden.

Diese Vorteile, nämlich die Schonung der Außenkontakte des Produktgehäuses, die erweiterten Test- und Analysemöglichkeit von inneren Signalverläufen sämtlicher Halbleiterchips und die Prüfung jeder Bauteilgruppe mit mehreren Halbleiterbau-

5 teilen innerhalb beispielsweise einer Kunststoffabdeckung unter extremen Temperaturschwankungen; werden bei diesem erfundensgemäßem Verfahren mithilfe des Parkettierungsmusters des erfundensgemäßem Umverdrahtungssubstratstreifens möglich.

Die Sägestreifen mit ihren Prüfflächen werden beim Vereinzeln 10 der Halbleiterbauteile herausgesägt, sodass das Produktgehäuse klein bleibt, da die Prüfkontakte von dem sogenannten Debug-Gehäuse gemeinsam entfernt werden.

Eine weitere Verfahrensvariante sieht vor, dass die Halblei- 15 terchips gleichförmig und einheitlich ausgerichtet auf die Oberseite des Umverdrahtungssubstratstreifens aufgebracht werden. Für die Umverdrahtungsstruktur wird jedoch auf dem Umverdrahtungssubstratstreifen vorgesehen, dass in den Halbleiterbauteilpositionen des Umverdrahtungssubstratstreifens 20 eine Ausrichtung der Anordnung von Außenkontakten gegenüber der Ausrichtung der Halbleiterchips in den Bauteilzeilen und den Bauteilspalten für ungerade Halbleiterbauteilpositionen einheitlich eine um 0° und/oder 180° und für gerade Halbleiterbauteilpositionen in den Bauteilzeilen und den Bauteilspalten 25 eine gegenüber der Ausrichtung der Halbleiterchips einheitlich um 90° und/oder einheitlich um 270° verdrehte Ausrichtung vorgesehen wird.

Somit wird die unterschiedliche, vorgegebene Rotation in den 30 geraden und den ungeraden Halbleiterbauteilpositionen mittels eines vorgegebenen Umverdrahtungsplanes für einen mehrlagigen Umverdrahtungssubstratstreifen durchgeführt und ein Verdrehen von Halbleiterchips vermieden. Das bedeutet, dass der mehrla-

gige Umverdrahtungssubstratstreifen zwar komplexer aufgebaut ist, zumal er die geforderte unterschiedliche Rotation von Anordnungen von Außenkontakten über entsprechend strukturier- te Umverdrahtungsleitungen und Durchkontakte realisiert, be- 5 steht der Vorteil darin, dass die Bestückung des Umverdrah- tungssubstratstreifens in den Bauteilgruppen vereinfacht wird, zumal die Halbleiterchips einer Bauteilgruppe einheit- lich ausgerichtet bleiben können.

10. Bei einer weiteren Durchführungsvariante des Verfahrens ste- hen zum Aufbringen von unterschiedlich ausgerichteten und an- geordneten Halbleiterchips auf einem Umverdrahtungssubstrat- streifen ein in Halbleiterchips getrennter Wafer zur Verfü- gung. Dieser Wafer weist in x- und y-Anordnung, sowie in Ro- 15 tationsausrichtung vorbereitend ausgerichtete und angeordnete Halbleiterchips auf. Diese werden von einem Bestückungsauto- maten in der vorgegebenen Anordnung und Ausrichtung des Wa- fers auf die Oberseite des Umverdrahtungssubstratstreifens aufgebracht.

20. Dieses Verfahren mit einem bereits für das Aufbringen auf die Oberseite eines Umverdrahtungssubstratstreifens vorbereiteten Halbleiterwafers hat den Vorteil, dass mit einem Standardbe- stückungsautomaten ohne jede zusätzliche Rotation die Bestü- 25 ckung des Umverdrahtungssubstratstreifens mit Halbleiter- chips, die unterschiedlich ausgerichtet sind, in den Bauteil- positionen einer Bauteilgruppe durchgeführt werden kann. Der gleiche Vorteil ergibt sich, wenn in einer weiteren Durchfüh- rungsvariante des Verfahrens eine Folie mit flächig angeord- 30 neten Halbleiterchips oder ein Transportgurt mit linear ange- ordneten Halbleiterchips zur Verfügung steht, die in x-, y- Anordnung und/oder in Rotationsausrichtung vorbereitend aus- gerichtete und angeordnete Halbleiterchips aufweisen. Auch

von einer derartigen Folie bzw. einem derartigen Transportgurt können die Halbleiterchips mit einem Standardbestückungsautomaten ohne jede zusätzliche Rotation in vorgegebener Anordnung und Ausrichtung auf die Oberseite des Umverdrahtungsubstratstreifens aufgebracht werden.

5 verdrahtungsubstratstreifens aufgebracht werden.

Eine weitere Verfahrensvariante sieht vor, dass zum Aufbringen von unterschiedlich ausgerichteten und angeordneten Halbleiterchips auf dem Umverdrahtungsubstratstreifen ein in x- und in y-Anordnung, sowie Rotationsausrichtung programmierbarer Bestückungsautomat eingesetzt wird. Dieser Bestückungsautomat nimmt angeordnete und gleichförmig ausgerichtete Halbleiterchips von einem in Halbleiterchips getrennten Wafer oder von einer einheitlich mit Halbleiterchips bestückten Folie oder aus einem Transportgurt auf, und verbringt sie nach einem vorgesehenen Anordnungs- und Ausrichtungsplan beim Bestücken des Umverdrahtungsubstratstreifens programmgemäß auf diesen auf. Bei dieser Verfahrensvariante ist zwar ein höherer Aufwand für die Auslegung und Konstruktion des programmierbaren Bestückungsautomaten erforderlich, jedoch können die Halbleiterchips in standardisierter Weise auf einem Wafer oder auf einer Folie in einem Transportgurt vorgesehen werden.

25 Bei einer weiteren Verfahrensvariante werden die Halbleiterchips in den Bauteilgruppen mit Flipchip-Kontakten ausgestattet. Die Herstellung von Verbindungen zwischen Halbleiterchip und dem Umverdrahtungsubstratstreifen wird auf der Oberseite des Umverdrahtungsubstratstreifens für Flipchip-Kontakte mittels eines Lötprozesses erfolgen. Ein derartiges Aufbringen von Halbleiterchips hat den Vorteil, dass auf eine Kunststoffeinbettung der Halbleiterchips mit Flipchip-Kontakten evtl. verzichtet werden kann. Darüber hinaus ist ein Lötpro-

zess ein paralleler Fertigungsschritt, bei dem gleichzeitig eine Vielzahl von elektrischen Verbindungen zwischen einer Umverdrahtungsstruktur eines Umverdrahtungsubstratstreifens und Flipchip-Kontakten von Halbleiterchips hergestellt werden kann.

Eine weitere Verfahrensvariante sieht vor, dass die Halbleiterchips mit ihren Rückseiten auf die Halbleiterbauteilpositionen aufgebracht werden. Danach wird das Herstellen von Verbindungen zwischen den Halbleiterchips und einer Umverdrahtungsstruktur des Umverdrahtungsubstratstreifens mittels Bondtechnik durchgeführt. Bei diesem Verfahren werden Kontaktflächen auf der aktiven Oberseite des Halbleiterchips mit entsprechenden Kontaktanschlussflächen oder Bondfingern auf der Umverdrahtungsstruktur des Umverdrahtungssubstratstreifens mittels Bonddrähten hergestellt. Dieses ist ein serielles Verfahren, bei dem nacheinander eine Bondverbindung nach der anderen aufgebracht wird und die Bonddrähte anschließend in eine Kunststoffgehäusemasse mit den Halbleiterchips zusammen und unter Abdecken der Oberseite des Umverdrahtungsubstratstreifens erfolgt, um die Bondverbindungen vor Beschädigungen zu schützen.

Um die Prüfkontaktflächen und/oder die Außenkontaktflecken zu veredeln, können diese mit einer Goldlegierung selektiv beschichtet werden. Eine derartige selektive Beschichtung kann mittels Aufdampfen, Zerstäuben oder Sputtern unter Verspiegelung der gesamten Flächen einer Bauteilgruppe einer Umverdrahtungsstruktur erfolgen, nachdem vorher bereits eine strukturierte Fotolackschicht aufgebracht wurde. Anschließend wird die Goldschicht an Flächen, die nicht zu Vergolden sind, durch Abheben oder Aufquellen des Photolackes entfernt. Eine weitere Möglichkeit besteht darin, von vornherein eine Me-

tallbeschichtung auf dem Substratstreifen vorzusehen, die eine Grundmetallisierung beispielsweise aus Kupfer aufweist, und eine Beschichtung aus einer Goldlegierung besitzt, um anschließend durch entsprechende Photolithographieschritte die-
5 se mehrlagige Metallschicht mittels Nassätzen oder Plas-
maabtragen zu strukturieren.

Wenn für die vorgesehenen Tests die Prüfflächen als solche nicht ausreichen für eine entsprechende Kontaktierung, so
10 können in einer weiteren Durchführungsvariante des Verfahrens Lotbälle auf die Prüfkontakte aufgelötet werden, bevor die Tests durchzuführen sind. Die Kontaktierung der Lötballen auf den Prüfkontaktflächen hat darüber hinaus den Vorteil, dass die Außenkontaktflächen und/oder die Außenkontakte des Pro-
15 duktgehäuses geschont werden.

Nachdem mit dem oben geschilderten Verfahren und/oder Verfah-
rensvarianten ein Umverdrahtungssubstratstreifen hergestellt
und getestet wurde, kann ein Auftrennen des Umverdrahtungs-
20 substratstreifens in einzelne Halbleiterbauteile erfolgen und sich ein Aussortieren der als defekt markierten Halbleiter-
bauteile anschließen.

Zusammenfassend ist festzustellen, dass bei dem erfindungsge-
25 mäßen Substratstreifen der noch verfügbare Platz innerhalb
einer Bauteilgruppe für zusätzliche Prüfkontaktflächen oder
Prüfkontakte genutzt wird. Dabei werden eigene Flächen direkt
neben den Halbleiterbauteilen für die zusätzlichen Prüfkon-
takte und Prüfkontaktflächen vorgesehen. Dieser Teil des Um-
30 verdrahtungssubstratstreifens in Form von Sägestreifen wird
durch zusätzliche Sägelinien oder Sägespuren beim Auftrennen
des Umverdrahtungssubstratstreifens in einzelne Halbleiter-
bauteile entfernt. Durch eine Drehung der Halbleiterbauteile

auf dem Umverdrahtungssubstratstreifen wird die zusätzlich nutzbare Fläche in den Sägestreifen dann auch auf eine zweite Richtung erweitert, sodass die verfügbare Fläche z.B. bei Halbleiterbauteilen mit Anschlüssen an zwei Kanten optimiert

5 ist. Durch das Drehen der Halbleiterchips, sowie durch ein teilweises Verlegen von Testkontakte oder von Testkontaktflächen in den Bereich außerhalb der Bauteilgruppe wird die verfügbare Kontakt- und Verdrahtungsfläche auf die Testautomaten zugreifen können vergrößert.

10 Die Schritte zwischen den Bauteilzeilen und Bauteilspalten Sägestreifen für Prüfkontaktflächen und außerhalb der Bauteilgruppe Testkontaktflächen vorzusehen, können gemeinsam oder getrennt je nach Anforderungen an den Umverdrahtungssubstratstreifen und die Messtechnik eingesetzt werden.

15 B Die Erfindung wird nun anhand der beigefügten Figuren näher erläutert.

20 Figur 1 zeigt eine schematische Draufsicht auf einen Umverdrahtungssubstratstreifen gemäß einer ersten Ausführungsform der Erfindung,

25 Figur 2 zeigt eine Prinzipskizze einer Anordnung von Prüfkontaktflächen einer Bauteilgruppe eines Umverdrahtungssubstratstreifens gemäß einer zweiten Ausführungsform der Erfindung,

30 Figur 3 zeigt eine schematische Draufsicht auf einen Umverdrahtungssubstratstreifen der zweiten Ausführungsform der Erfindung gemäß Figur 2.

Figur 1 zeigt eine schematische Draufsicht auf einen Substratstreifen 23 eines Umverdrahtungssubstratstreifens 100 gemäß einer ersten Ausführungsform der Erfindung. Der rechte Teil der Draufsicht zeigt eine geschlossene Kunststoffabdeckung 17, die den Bereich 26 einer Bauteilgruppe 5 abdeckt. Die Details der Bauteilgruppe 5 werden in der linken Bildhälfte auf dem Umverdrahtungssubstratstreifen 100 gezeigt, wobei die Kunststoffabdeckung 17 weggelassen ist. In dieser ersten Ausführungsform der Erfindung sind unter der Kunststoffabdeckung 17 neun Halbleiterbauteile 3 angeordnet. Die Anordnung gliedert sich in drei Bauteilzeilen 29 und drei Bauteilspalten 30. Die neun Halbleiterbauteile 3 sind auf neun Halbleiterbauteilpositionen 2 angeordnet. Markierungspunkte 7 markieren die Ausrichtung der Halbleiterbauteile 3 in den Halbleiterbauteilpositionen 2, wobei zwischen einer ersten Ausrichtung A und einer um dazu um 90° gedrehten Ausrichtung B, zu unterscheiden ist.

Die Bezugszeichen 12 kennzeichnen Sägespuren, mit denen der Umverdrahtungssubstratstreifen 100 in einzelne Halbleiterbauteile 3 getrennt wird. Jeweils zwei Sägespuren 12 trennen aus dem Umverdrahtungssubstratstreifen 100 Sägestreifen 18 heraus. Diese weisen auf der Rückseite 6, welche der hier gezeigten Oberseite 31 des Umverdrahtungssubstratstreifens 100 gegenüber liegt, Prüfkontaktflächen 13 auf. In der Ausschnittsvergrößerung 20 am oberen rechten Bildrand wird ein Ausschnitt der Rückseite 6 einer Halbleiterbauteilposition mit Sägestreifen 18 und Prüfkontaktflächen 13, die Prüfkontakte 19 tragen können, gezeigt.

Die linke Hälfte der Figur 1 zeigt die Bauteilgruppe ohne die Kunststoffabdeckung 17 und gibt damit einen Blick auf die Halbleiterchips 4 frei, die in dieser Ausführungsform der Er-

findung quadratische Flächen aufweisen und mit Flipchip-Kontakten ausgestattet sein können. Jede Halbleiterbauteilposition 2 ist jedoch rechteckig, weil zu der Fläche der Halbleiterchips 4 noch Sägestreifenabschnitte auf zwei gegenüberliegenden Randseiten 22 der Halbleiterbauteile 3 hinzukommen. Diese rechteckige Fläche entspricht einem Debug-Gehäuse, während die quadratische Fläche in jeder der Halbleiterbauteilpositionen 2 die Größe eines Produktgehäuses kennzeichnet, das entsteht, wenn entlang der Sägespuren 12 der Umverdrahtungssubstratstreifen 100 auseinandergetrennt wird.

Durch den Bereich 8 der Sägestreifen 18 wird eine Fläche für Prüfkontaktflächen 13, wie sie in der Ausschnittsvergrößerung 20 zu sehen sind, bereit gestellt, die jedoch beim Auftrennen des Umverdrahtungssubstratstreifens 100 nicht zum Produktgehäuse gehören. Die Prüfkontaktflächen 13 auf der Rückseite 6, wie in der Ausschnittsvergrößerung 20 gezeigt, dienen dazu, die Funktionsfähigkeit der Halbleiterbauteile 3 bzw. der Halbleiterchips 4 zu testen, ohne dass die Außenkontakte 9 des Produktgehäuses auf der Rückseite 6 der Umverdrahtungssubstratstreifen 100 beschädigt werden.

Die Anordnungen in x- und y-Richtung einer Bauteilgruppe 5, wie sie auf der linken Hälfte der Figur 1 gezeigt werden, sind dadurch charakterisiert, dass die nächsten Nachbarn eines in einer ersten Ausrichtung A angeordneten Halbleiterbauteils eine um einheitlich 90° oder einheitlich um 270° gedrehte zweite Ausrichtung B aufweisen. In der ersten Ausführungsform der Figur 1 sind nur auf den Sägestreifenabschnitten zwischen den Produktionsgehäusen und nicht auf den Kreuzungsflächen 32 der Sägestreifen 18 Prüfkontaktflächen oder Prüfkontakte vorgesehen.

Diese erste Ausführungsform der Erfindung weist zusätzlich in einem Randbereich 15 des Umverdrahtungssubstratstreifens 100 eine Steckkontakteleiste 16 auf, die über eine Bündel 21 von Umverdrahtungsleitungen mit den Prüfkontaktflächen und/oder 5 den Außenkontakten der Bauteilgruppe 5 elektrisch in Verbindung steht. Diese Steckkontakteleiste 16 dient dazu, Temperaturzyklen tests, wie einen "burn-in"-Test, gleichzeitig für jeweils eine Bauteilgruppe 5 zu ermöglichen. Die Breite b eines Sägestreifens richtet sich danach, wie viele Reihen an 10 Prüfkontaktflächen 13 für das Prüfen der Halbleiterchips 4 in den Halbleiterbauteilpositionen erforderlich sind.

In der Ausführungsform gemäß Figur 1 sind zwei Reihen Prüfkontakteleisten 13 auf den Sägestreifen 18 auf der Rückseite 6 des Umverdrahtungssubstratstreifens 100 vorgesehen, wie es in 15 der Ausschnittsvergrößerung 20 gezeigt wird. Die Ausschnittsvergrößerung 20 zeigt weiterhin, dass die Außenkontakte 9 auf der Rückseite 6 des Umverdrahtungssubstratstreifens 100 in jeder der Halbleiterbauteilpositionen 2 in Außenkontaktezeilen 20 11 und Außenkontaktspalten 14 angeordnet sind. Ferner zeigt die Ausschnittsvergrößerung 20, dass die gesamte Unterseite 25 des Produktgehäuses in einem vorgegebenem Rastermaß bei vorgegebener Schrittweite in Matrixform von Außenkontakten bedeckt ist. Die Außenkontakte 9 sind in dieser Ausführungsform der Erfindung auf Außenkontaktflecken 10 aufgelötete Lotbälle 28.

Die linke Hälfte der Figur 1 zeigt darüber hinaus, dass in den Bauteilzeilen 29 und den Bauteilspalten 30 jeweils auf 30 den ungeraden Halbleiterbauteilpositionen 2 erste Halbleiterchips 4 mit der Ausrichtung A angeordnet sind, und auf geraden Halbleiterbauteilpositionen 2 zweite Halbleiterchips 42 mit der Ausrichtung B angeordnet sind. Diese Anordnung der

Halbleiterbauteile ergibt ein Parallel-Stab Parkettmuster für die Debug-Gehäuse, wobei einerseits die quadratischen Kreuzungsflächen 32 mit der Randseite b charakteristisch sind und andererseits die größeren Rechteckflächen des jeweiligen 5 zugehörigen Debug-Gehäuses das Parkettmuster kennzeichnen.

Figur 2 zeigt eine Prinzipskizze einer Anordnung von Prüfkontaktflächen 13 einer Bauteilgruppe 5 eines Umverdrahtungs- 10 substratstreifens gemäß einer zweiten Ausführungsform der Erfindung. Komponenten mit gleichen Funktionen wie in Figur 1 werden mit gleichen Bezugszeichen gekennzeichnet und nicht extra erörtert.

In dieser zweiten Ausführungsform befinden sich die Prüfkontaktflächen 13 ebenfalls auf der Rückseite 6 eines Umverdrahtungssubstratstreifens. Die Prüfkontaktflächen 13 sind auf den Sägestreifen 18 mit der Breite b angeordnet. Die Außenkontur des Debug-Gehäuses ist jedoch nicht mehr rechteckförmig sondern Doppel-T-förmig. Durch diese spezielle Form des 20 Debug-Gehäuses ist es möglich, die Kreuzungsflächen 32 der Sägestreifen 18 ebenfalls für das Anbringen von Prüfkontaktflächen 13 auszuschöpfen. Die Zuordnung der Prüfkontaktflächen 13 in den Kreuzungsflächen 32 ist so gestaltet, dass ein Viertel der Anzahl der Prüfkontaktflächen 13 in den Kreuzungsflächen 32 zu jeweils einem der benachbarten Debug- 25 Gehäuse hinzukommt. Damit wird die Fläche der Sägestreifen optimal und vollständig für das Anordnen von Prüfkontaktflächen ausgenutzt. Die gegeneinander um 90° gedrehten Ausrichtungen A und B, sowie die alternierende Anordnung von ersten Halbleiterchips 41 und zweiten Halbleiterchips 42 in den Bau- 30 teilzeilen 29 und Bauteilspalten 30 wird wie in der ersten Ausführungsform beibehalten.

Figur 3 zeigt eine schematische Draufsicht auf einen Umverdrahtungsubstratstreifen 200 der zweiten Ausführungsform der Erfindung gemäß Figur 2. Komponenten mit gleichen Funktionen, wie in den vorhergehenden Figuren, werden mit gleichen Bezugszeichen gekennzeichnet und nicht extra erörtert.

Mit Figur 3 wird auf der linken Bildhälfte, die ohne Kunststoffabdeckung 17 dargestellt ist, die veränderte Außenkontur der Debug-Gehäuse gezeigt, die es ermöglicht, auch die Kreuzungsflächen 32 für das Anbringen von Prüfkontakten 13 zu nutzen. Die erste Ausrichtung A der ersten Halbleiterchips 41 und die zweite Ausrichtung B der zweiten Halbleiterchips 42 bleibt unverändert. Da die Debug-Gehäuse an sich nicht verändert werden, sind weiterhin gerade Sägespuren 12 entlang der gestrichelten Linien 24 möglich, um aus dem Umverdrahtungsubstratstreifen 200 quadratische Halbleiterbauteile mit entsprechenden Außenkontakten 9 herauszusägen.

Bezugszeichenliste

100, 200 Umverdrahtungssubstratstreifen
2 Halbleiterbauteilposition
5 3 Halbleiterbauteil
4 Halbleiterchip
5 Bauteilgruppe
6 Rückseite des Umverdrahtungssubstratstreifens
7 Markierungspunkt
10 8 Bereich der Sägestreifen
9 Außenkontakte
10 Außenkontaktflecken
11 Außenkontaktzeile
12 Sägespuren
15 13 Prüfkontaktflächen
14 Außenkontaktspalte
15 Randbereich des Umverdrahtungssubstratstreifens
16 Steckkontaktleiste
17 Kunststoffabdeckung
20 18 Sägestreifen
19 Prüfkontakte
20 Ausschnittsvergrößerung
21 Bündel von Umverdrahtungsleitungen
22 Randseiten des Halbleiterbauteils
5 23 Substratstreifen
24 gestrichelte Linie
26 Bereich einer Bauteilgruppe
28 Lotball
29 Bauteilzeilen
30 30 Bauteilpalten
31 Oberseite des Umverdrahtungssubstratsstreifens
32 Kreuzungsfläche
41 erster Halbleiterchip

42 zweiter Halbleiterchip

b Breite des Sägestreifens

A erste Richtung

5 B zweite Richtung

Patentansprüche

1. Umverdrahtungssubratstreifen mit mehreren Halbleiterbauteilpositionen (2) für Halbleiterbauteile (3), die in mehreren Bauteilzeilen (29) und Bauteilspalten (30) angeordnete Halbleiterchips (4) unterteilt durch Sägespuren (12) angeordnet sind, wobei mehrere Halbleiterbauteilpositionen (2) zu einer Bauteilgruppe (5) zusammengefasst sind, wobei die Bauteilgruppe (5) mehrere Halbleiterchips (4) der Halbleiterbauteile (3) auf einer Oberseite (31) des Umverdrahtungssubratstreifens (100) aufweist, und wobei innerhalb einer Bauteilgruppe (5) zwischen den Bauteilzeilen (29) und Bauteilspalten (30) Sägestreifen (18) vorgesehen sind, die Prüfkontaktflächen (13) aufweisen, wobei die Halbleiterbauteilpositionen (2) mit den Prüfkontaktflächen (13) derart zueinander ausgerichtet sind, dass sich ein Parkettierungsmuster gemäß einem Parallel-Stab Parkettmuster ergibt und die Anordnungen von Außenkontakten (9) und Prüfkontaktflächen (13) auf der Rückseite (6) des Umverdrahtungs- substratstreifens (100) entsprechend zueinander in der Weise ausgerichtet sind, dass die Anordnungen von vier nächsten Nachbarn eines Halbleiterbauteils (3) um einheitlich 90° oder um einheitlich 270° gegenüber der einen Anordnung entsprechend einem vorgegebenen Plan gedreht sind.
2. Umverdrahtungssubratstreifen nach Anspruch 1, dadurch gekennzeichnet, dass die Bauteilzeilen (29) und Bauteilspalten (30) erste und zweite Halbleiterchips (41, 42) aufweisen, wobei sich die ersten und zweiten Halbleiterchips (41, 42) in ihren Ausrichtungen (A, B) unterscheiden, und wobei die ersten

Halbleiterchips (41) eine erste Ausrichtung (A) aufweisen, und wobei die zweiten Halbleiterchips (42) einheitlich um 90° oder einheitlich um 270° gegenüber der ersten Ausrichtung A gedreht eine zweite Ausrichtung B aufweisen, und wobei die ersten und zweiten Halbleiterchips (41, 42) in den Bauteilzeilen (29) und Bauteilspalten (30) alternierend angeordnet sind.

3. Umverdrahtungssubstratstreifen nach Anspruch 1 oder Anspruch 2,

dadurch gekennzeichnet, dass auf einer der Oberseite (31) gegenüberliegenden Rückseite (6) des Umverdrahtungssubstratstreifens (100) in den Halbleiterbauteilpositionen (2) Außenkontakte (9) aufweisende Außenkontaktflecken (10) angeordnet sind und wobei die Außenkontaktflecken (10) über Umverdrahtungsleitungen mit den Prüfkontaktflächen (13), auf den Sägestreifen (18) elektrisch in Verbindung stehen.

20 4. Umverdrahtungssubstratstreifen nach einem der vorhergehenden Ansprüche,

dadurch gekennzeichnet, dass in den Halbleiterbauteilpositionen (2) die Prüfkontaktflächen (13) auf Sägestreifenabschnitten, die zu zwei gegenüberliegenden Randseiten (22) der Halbleiterbauteile (3) angeordnet sind, der jeweiligen Halbleiterbauteilposition (2) zugeordnet sind.

5. Umverdrahtungssubstratstreifen nach einem der vorhergehenden Ansprüche,

dadurch gekennzeichnet, dass die Sägestreifen (18) horizontal entlang der Bauteilzeilen (29) und vertikal entlang der Bauteilspalten (30)

angeordnet sind und jeweils eine Kreuzungsfläche (32) bilden, die eine Anzahl von Prüfkontaktflächen (13) aufweist, wobei ein Viertel dieser Prüfkontaktflächen (13) auf einer Kreuzungsfläche (32) jeweils eine der vier angrenzenden Halbleiterbauteilpositionen (2) zugeordnet sind.

6. Umverdrahtungssubstratstreifen nach einem der vorhergehenden Ansprüche,
dadurch gekennzeichnet, dass eine oder mehrere Bauteilgruppen (5) auf dem Umverdrahtungssubstratstreifen (100) hintereinander und/oder nebeneinander aufgereiht sind, und vorzugsweise eine oder mehrere Kunststoffabdeckungen (17) aufweisen.
- 15 7. Umverdrahtungssubstratstreifen nach einem der vorhergehenden Ansprüche,
dadurch gekennzeichnet, dass in den Halbleiterbauteilpositionen (2) Außenkontakte (9) aufweisende Außenkontaktflecken (10) in einer Außenkontaktfleckensmatrix mit Außenkontaktzeilen (11) und Außenkontaktspalten (14) angeordnet sind.
- 20 8. Umverdrahtungssubstratstreifen nach einem der vorhergehenden Ansprüche,
dadurch gekennzeichnet, dass die Halbleiterchips (4) über Flipchip-Kontakte oder über Bonddrahtverbindungen elektrisch mit dem Umverdrahtungssubstratstreifen (100) in Verbindung stehen.
- 30 9. Umverdrahtungssubstratstreifen nach einem der vorhergehenden Ansprüche,
dadurch gekennzeichnet, dass

der Umverdrahtungssubstratstreifen (100) auf seiner Rückseite (6) außerhalb des Bereichs (26) einer Bauteilgruppe (5) Bereiche mit freiliegenden Testkontaktflächen aufweist, wobei die Testkontaktflächen über Umverdrahtungsleitungen mit den Prüfkontaktflächen (13) in den Sägestreifen (18) und/oder den Außenkontaktflecken (10) der Halbleiterbauteile (3) elektrisch in Verbindung stehen.

10 10. Umverdrahtungssubstratstreifen nach einem der vorhergehenden Ansprüche,
dadurch gekennzeichnet, dass der Umverdrahtungssubstratstreifen (100) in einem Randbereich (15)
eine Steckkontakteiste (16) mit Steckkontaktflächen
aufweist, wobei die Steckkontaktflächen mit den Prüfkontaktflächen (13) und/oder mit Testkontaktflächen
und/oder den Außenkontaktflecken (10) elektrisch in Verbindung stehen.

20 11. Umverdrahtungssubstratstreifen nach Anspruch 10,
dadurch gekennzeichnet, dass
die Steckkontakteiste (16) des Umverdrahtungs-
substratstreifens (100) für einen Temperaturzyklustest
bzw. "burn-in" Test vorgesehen ist.

12. Umverdrahtungssubstratstreifen nach einem der vorhergehenden Ansprüche,
dadurch gekennzeichnet, dass
die Prüfkontaktflächen (13) Prüfkontakte (19) tragen.

30 13. Umverdrahtungssubstratstreifen nach einem der vorhergehenden Ansprüche,
dadurch gekennzeichnet, dass

die Prüfkontaktflächen (13) eine Goldbeschichtung aufweisen.

14. Umverdrahtungssubstratstreifen nach einem der vorhergehenden Ansprüche,
dadurch gekennzeichnet, dass
der Umverdrahtungssubstratstreifen (100) in den Halbleiterbauteilpositionen (2), Stapel aus einem Logikchip und
einem Speicherchip aufweist, wobei über die Prüfkontaktflächen (13) und/oder über freiliegende Testkontakte und/oder über
Steckkontakteleisten (16), sowohl die Speicherfunktionen des Speicherchips, als auch die Logikfunktionen des Logikchips prüfbar sind.

15

15. Halbleiterbauteil, das durch Auftrennen des Umverdrahtungssubstratstreifens (100) nach einem der Ansprüche 1 bis 14 gebildet ist und somit auf gegenüberliegenden Randseiten (22) durchtrennte Umverdrahtungsleitungen, die zu Prüfkontaktflächen (13) auf Sägestreifen (18) des Umverdrahtungssubstratstreifens (100) führten, aufweist.

20

16. Verfahren zur Herstellung eines Umverdrahtungssubstratstreifen (100) mit mehreren Bauteilgruppen (5), wobei die Bauteilgruppen (5) in x-Richtung in Bauteilzeilen (29) und in y-Richtung in Bauteilspalten (30) angeordnete Halbleiterbauteilpositionen (2) mit Halbleiterchips (4) aufweisen, und wobei das Verfahren folgende Verfahrensschritte aufweist:

30

- Bereitstellen eines auf seiner Rückseite (6) metallbeschichteten Substratstreifens (23),
- Aufbringen einer Umverdrahtungsstruktur auf dem metallbeschichteten Substratstreifen (23), wobei die

Umverdrahtungsstruktur Außenkontaktflecken (10) in den Halbleiterbauteilpositionen (2) und Prüfkontaktflächen (13) im Bereich (8) von Sägestreifen (18) zwischen den Halbleiterbauteilpositionen (2) aufweist,

- Aufbringen von Halbleiterchips (4) auf die Oberseite (31) des Umverdrahtungssubstratstreifens (100) in den Halbleiterbauteilpositionen (2), in der Weise, dass zunächst jede ungerade Halbleiterbauteilposition (2) in den Bauteilzeilen (29) und den Bauteilspalten (30) mit einem ersten Halbleiterchip (41) in einer ersten Ausrichtung (A) bestückt wird und anschließend die verbliebenen geraden Halbleiterbauteilpositionen (2) mit einem zweiten Halbleiterchip (42) in einer zweiten gegenüber der ersten Ausrichtung (A) einheitlich um 90° oder einheitlich um 270° verdrehten zweiten Ausrichtung (B) bestückt werden, sodass ein Stab Parkettmuster nach vorgegebenem Plan in x- und y-Richtung gebildet wird,
- Herstellen von Verbindungen zwischen den Halbleiterchips (4) und der Umverdrahtungsstruktur,
- Aufbringen von Außenkontakte (9) in den Halbleiterbauteilpositionen (2) auf die Außenkontaktflecken (10) der Umverdrahtungsstruktur auf der Rückseite (6) des Umverdrahtungssubstratstreifens (100),
 - Durchführen von Funktionstests der in Bauteilgruppen (5) zusammengefassten Halbleiterchips (4) unter Kontaktieren der Prüfkontaktflächen (13),
 - Markieren von defekten Halbleiterbauteilen (3) auf dem Umverdrahtungssubstratstreifen (100).

17. Verfahren nach Anspruch 16,
dadurch gekennzeichnet, dass
die Halbleiterchips (4) gleichförmig und einheitlich
ausgerichtet auf die Oberseite (31) des Umverdrahtungs-
substratstreifens (100) aufgebracht werden und eine Um-
verdrahtungsstruktur auf dem Umverdrahtungsleitungen
vorgesehen wird, wie in den Halbleiterbauteilpositionen
(2) des Umverdrahtungssubratstreifens (100) eine Aus-
richtung der Anordnung von Außenkontakten (9) gegenüber
der Ausrichtung der Halbleiterchips in den Bauteilzeilen
(29) und den Bauteilspalten (30) für ungerade Halblei-
terbauteilpositionen (2) einheitlich eine um 0° und/oder
 180° und für gerade Halbleiterbauteilpositionen (2) eine
gegenüber der Ausrichtung der Halbleiterchips einheit-
lich um 90° und/oder einheitlich um 270° verdrehte Aus-
richtung vorsieht, sodass die vorgegebene Rotation in
den Halbleiterbauteilpositionen (2) mittels eines vorge-
gebenen Umverteilungsplanes für einen mehrlagigen Um-
verdrahtungssubratstreifen (100) durchgeführt wird.

18. Verfahren nach Anspruch 16,
dadurch gekennzeichnet, dass
zum Aufbringen von unterschiedlich ausgerichteten und
angeordneten Halbleiterchips (4) auf dem Umverdrahtungs-
substratstreifen (100) ein in Halbleiterchips (4) ge-
trennter Wafer zur Verfügung steht, der in x- und y-
Anordnung, sowie in Rotationsausrichtung vorbereitend
ausgerichtete und angeordnete Halbleiterchips (4) auf-
weist, die von einem Bestückungsautomaten in dieser vor-
gegebenen Anordnung und Ausrichtung des Wafers auf die
Oberseite (31) des Umverteilungssubratstreifens (100)
aufgebracht werden.

19. Verfahren nach Anspruch 16,
dadurch gekennzeichnet, dass
zum Aufbringen von unterschiedlich ausgerichteten und
angeordneten Halbleiterchips (4) auf dem Umverdrahtungs-
substratstreifen (100) eine Folie mit Halbleiterchips
(4) zur Verfügung steht, die in x- und y-Anordnung sowie
in Rotationsausrichtung vorbereitend ausgerichtete und
angeordnete Halbleiterchips (4) aufweist, die von einem
Bestückungsautomaten in dieser vorgegebenen Anordnung
und Ausrichtung auf die Oberseite (31) des Umvertei-
lungssubratstreifens (100) aufgebracht werden.

20. Verfahren nach Anspruch 16,
dadurch gekennzeichnet, dass
zum Aufbringen von unterschiedlich ausgerichteten und
angeordneten Halbleiterchips (4) auf dem Umverdrahtungs-
substratstreifen (100) ein in x-, y-Anordnung und Rota-
tionsausrichtung programmierbarer Bestückungsautomat
eingesetzt wird, der einheitlich angeordnete und gleich-
förmig ausgerichtete Halbleiterchips (4) von einem in
Halbleiterchips (4) getrennten Wafer oder von einer ein-
heitlich mit Halbleiterchips (4) bestückten Folie auf-
nimmt und der den vorgesehenen Anordnungs- und Ausrich-
tungsplan beim Bestücken des Umverdrahtungssubrat-
streifens (100) programmgemäß durchgeführt.

21. Verfahren nach einem der Ansprüche 16 bis 20,
dadurch gekennzeichnet, dass
die Halbleiterchips (4) in den Bauteilgruppen (5) Halb-
leiterchips (4) mit Flipchip-Kontakten sind und die Her-
stellung von Verbindungen zwischen Halbleiterchips (4)
und einer Umverdrahtungsstruktur auf der Oberseite (31)

des Umverdrahtungssubstratstreifens (100) mittels eines Lötprozesses erfolgt.

22. Verfahren nach einem der Ansprüche 16 bis 20,
dadurch gekennzeichnet, dass
die Halbleiterchips (4) mit ihren Rückseiten auf die
Halbleiterbauteilpositionen (2) aufgebracht werden, und
das Herstellen von Verbindungen zwischen Halbleiterchips
(4) und einer Umverdrahtungsstruktur auf der Oberseite
(31) des Umverdrahtungssubstratstreifens (100) mittels
Bondtechnik erfolgt.
- 5
10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95
100
105
110
115
120
125
130
135
140
145
150
155
160
165
170
175
180
185
190
195
200
205
210
215
220
225
230
235
240
245
250
255
260
265
270
275
280
285
290
295
300
305
310
315
320
325
330
335
340
345
350
355
360
365
370
375
380
385
390
395
400
405
410
415
420
425
430
435
440
445
450
455
460
465
470
475
480
485
490
495
500
505
510
515
520
525
530
535
540
545
550
555
560
565
570
575
580
585
590
595
600
605
610
615
620
625
630
635
640
645
650
655
660
665
670
675
680
685
690
695
700
705
710
715
720
725
730
735
740
745
750
755
760
765
770
775
780
785
790
795
800
805
810
815
820
825
830
835
840
845
850
855
860
865
870
875
880
885
890
895
900
905
910
915
920
925
930
935
940
945
950
955
960
965
970
975
980
985
990
995
1000
1005
1010
1015
1020
1025
1030
1035
1040
1045
1050
1055
1060
1065
1070
1075
1080
1085
1090
1095
1100
1105
1110
1115
1120
1125
1130
1135
1140
1145
1150
1155
1160
1165
1170
1175
1180
1185
1190
1195
1200
1205
1210
1215
1220
1225
1230
1235
1240
1245
1250
1255
1260
1265
1270
1275
1280
1285
1290
1295
1300
1305
1310
1315
1320
1325
1330
1335
1340
1345
1350
1355
1360
1365
1370
1375
1380
1385
1390
1395
1400
1405
1410
1415
1420
1425
1430
1435
1440
1445
1450
1455
1460
1465
1470
1475
1480
1485
1490
1495
1500
1505
1510
1515
1520
1525
1530
1535
1540
1545
1550
1555
1560
1565
1570
1575
1580
1585
1590
1595
1600
1605
1610
1615
1620
1625
1630
1635
1640
1645
1650
1655
1660
1665
1670
1675
1680
1685
1690
1695
1700
1705
1710
1715
1720
1725
1730
1735
1740
1745
1750
1755
1760
1765
1770
1775
1780
1785
1790
1795
1800
1805
1810
1815
1820
1825
1830
1835
1840
1845
1850
1855
1860
1865
1870
1875
1880
1885
1890
1895
1900
1905
1910
1915
1920
1925
1930
1935
1940
1945
1950
1955
1960
1965
1970
1975
1980
1985
1990
1995
2000
2005
2010
2015
2020
2025
2030
2035
2040
2045
2050
2055
2060
2065
2070
2075
2080
2085
2090
2095
2100
2105
2110
2115
2120
2125
2130
2135
2140
2145
2150
2155
2160
2165
2170
2175
2180
2185
2190
2195
2200
2205
2210
2215
2220
2225
2230
2235
2240
2245
2250
2255
2260
2265
2270
2275
2280
2285
2290
2295
2300
2305
2310
2315
2320
2325
2330
2335
2340
2345
2350
2355
2360
2365
2370
2375
2380
2385
2390
2395
2400
2405
2410
2415
2420
2425
2430
2435
2440
2445
2450
2455
2460
2465
2470
2475
2480
2485
2490
2495
2500
2505
2510
2515
2520
2525
2530
2535
2540
2545
2550
2555
2560
2565
2570
2575
2580
2585
2590
2595
2600
2605
2610
2615
2620
2625
2630
2635
2640
2645
2650
2655
2660
2665
2670
2675
2680
2685
2690
2695
2700
2705
2710
2715
2720
2725
2730
2735
2740
2745
2750
2755
2760
2765
2770
2775
2780
2785
2790
2795
2800
2805
2810
2815
2820
2825
2830
2835
2840
2845
2850
2855
2860
2865
2870
2875
2880
2885
2890
2895
2900
2905
2910
2915
2920
2925
2930
2935
2940
2945
2950
2955
2960
2965
2970
2975
2980
2985
2990
2995
3000
3005
3010
3015
3020
3025
3030
3035
3040
3045
3050
3055
3060
3065
3070
3075
3080
3085
3090
3095
3100
3105
3110
3115
3120
3125
3130
3135
3140
3145
3150
3155
3160
3165
3170
3175
3180
3185
3190
3195
3200
3205
3210
3215
3220
3225
3230
3235
3240
3245
3250
3255
3260
3265
3270
3275
3280
3285
3290
3295
3300
3305
3310
3315
3320
3325
3330
3335
3340
3345
3350
3355
3360
3365
3370
3375
3380
3385
3390
3395
3400
3405
3410
3415
3420
3425
3430
3435
3440
3445
3450
3455
3460
3465
3470
3475
3480
3485
3490
3495
3500
3505
3510
3515
3520
3525
3530
3535
3540
3545
3550
3555
3560
3565
3570
3575
3580
3585
3590
3595
3600
3605
3610
3615
3620
3625
3630
3635
3640
3645
3650
3655
3660
3665
3670
3675
3680
3685
3690
3695
3700
3705
3710
3715
3720
3725
3730
3735
3740
3745
3750
3755
3760
3765
3770
3775
3780
3785
3790
3795
3800
3805
3810
3815
3820
3825
3830
3835
3840
3845
3850
3855
3860
3865
3870
3875
3880
3885
3890
3895
3900
3905
3910
3915
3920
3925
3930
3935
3940
3945
3950
3955
3960
3965
3970
3975
3980
3985
3990
3995
4000
4005
4010
4015
4020
4025
4030
4035
4040
4045
4050
4055
4060
4065
4070
4075
4080
4085
4090
4095
4100
4105
4110
4115
4120
4125
4130
4135
4140
4145
4150
4155
4160
4165
4170
4175
4180
4185
4190
4195
4200
4205
4210
4215
4220
4225
4230
4235
4240
4245
4250
4255
4260
4265
4270
4275
4280
4285
4290
4295
4300
4305
4310
4315
4320
4325
4330
4335
4340
4345
4350
4355
4360
4365
4370
4375
4380
4385
4390
4395
4400
4405
4410
4415
4420
4425
4430
4435
4440
4445
4450
4455
4460
4465
4470
4475
4480
4485
4490
4495
4500
4505
4510
4515
4520
4525
4530
4535
4540
4545
4550
4555
4560
4565
4570
4575
4580
4585
4590
4595
4600
4605
4610
4615
4620
4625
4630
4635
4640
4645
4650
4655
4660
4665
4670
4675
4680
4685
4690
4695
4700
4705
4710
4715
4720
4725
4730
4735
4740
4745
4750
4755
4760
4765
4770
4775
4780
4785
4790
4795
4800
4805
4810
4815
4820
4825
4830
4835
4840
4845
4850
4855
4860
4865
4870
4875
4880
4885
4890
4895
4900
4905
4910
4915
4920
4925
4930
4935
4940
4945
4950
4955
4960
4965
4970
4975
4980
4985
4990
4995
5000
5005
5010
5015
5020
5025
5030
5035
5040
5045
5050
5055
5060
5065
5070
5075
5080
5085
5090
5095
5100
5105
5110
5115
5120
5125
5130
5135
5140
5145
5150
5155
5160
5165
5170
5175
5180
5185
5190
5195
5200
5205
5210
5215
5220
5225
5230
5235
5240
5245
5250
5255
5260
5265
5270
5275
5280
5285
5290
5295
5300
5305
5310
5315
5320
5325
5330
5335
5340
5345
5350
5355
5360
5365
5370
5375
5380
5385
5390
5395
5400
5405
5410
5415
5420
5425
5430
5435
5440
5445
5450
5455
5460
5465
5470
5475
5480
5485
5490
5495
5500
5505
5510
5515
5520
5525
5530
5535
5540
5545
5550
5555
5560
5565
5570
5575
5580
5585
5590
5595
5600
5605
5610
5615
5620
5625
5630
5635
5640
5645
5650
5655
5660
5665
5670
5675
5680
5685
5690
5695
5700
5705
5710
5715
5720
5725
5730
5735
5740
5745
5750
5755
5760
5765
5770
5775
5780
5785
5790
5795
5800
5805
5810
5815
5820
5825
5830
5835
5840
5845
5850
5855
5860
5865
5870
5875
5880
5885
5890
5895
5900
5905
5910
5915
5920
5925
5930
5935
5940
5945
5950
5955
5960
5965
5970
5975
5980
5985
5990
5995
6000
6005
6010
6015
6020
6025
6030
6035
6040
6045
6050
6055
6060
6065
6070
6075
6080
6085
6090
6095
6100
6105
6110
6115
6120
6125
6130
6135
6140
6145
6150
6155
6160
6165
6170
6175
6180
6185
6190
6195
6200
6205
6210
6215
6220
6225
6230
6235
6240
6245
6250
6255
6260
6265
6270
6275
6280
6285
6290
6295
6300
6305
6310
6315
6320
6325
6330
6335
6340
6345
6350
6355
6360
6365
6370
6375
6380
6385
6390
6395
6400
6405
6410
6415
6420
6425
6430
6435
6440
6445
6450
6455
6460
6465
6470
6475
6480
6485
6490
6495
6500
6505
6510
6515
6520
6525
6530
6535
6540
6545
6550
6555
6560
6565
6570
6575
6580
6585
6590
6595
6600
6605
6610
6615
6620
6625
6630
6635
6640
6645
6650
6655
6660
6665
6670
6675
6680
6685
6690
6695
6700
6705
6710
6715
6720
6725
6730
6735
6740
6745
6750
6755
6760
6765
6770
6775
6780
6785
6790
6795
6800
6805
6810
6815
6820
6825
6830
6835
6840
6845
6850
6855
6860
6865
6870
6875
6880
6885
6890
6895
6900
6905
6910
6915
6920
6925
6930
6935
6940
6945
6950
6955
6960
6965
6970
6975
6980
6985
6990
6995
7000
7005
7010
7015
7020
7025
7030
7035
7040
7045
7050
7055
7060
7065
7070
7075
7080
7085
7090
7095
7100
7105
7110
7115
7120
7125
7130
7135
7140
7145
7150
7155
7160
7165
7170
7175
7180
7185
7190
7195
7200
7205
7210
7215
7220
7225
7230
7235
7240
7245
7250
7255
7260
7265
7270
7275
7280
7285
7290
7295
7300
7305
7310
7315
7320
7325
7330
7335
7340
7345
7350
7355
7360
7365
7370
7375
7380
7385
7390
7395
7400
7405
7410
7415
7420
7425
7430
7435
7440
7445
7450
7455
7460
7465
7470
7475
7480
7485
7490
7495
7500
7505
7510
7515
7520
7525
7530
7535
7540
7545
7550
7555
7560
7565
7570
7575
7580
7585
7590
7595
7600
7605
7610
7615
7620
7625
7630
7635
7640
7645
7650
7655
7660
7665
7670
7675
7680
7685
7690
7695
7700
7705
7710
7715
7720
7725
7730
7735
7740
7745
7750
7755
7760
7765
7770
7775
7780
7785
7790
7795
7800
7805
7810
7815
7820
7825
7830
7835
7840
7845
7850
7855
7860
7865
7870
7875
7880
7885
7890
7895
7900
7905
7910
7915
7920
7925
7930
7935
7940
7945
7950
7955
7960
7965
7970
7975
7980
7985
7990
7995
8000
8005
8010
8015
8020
8025
8030
8035
8040
8045
8050
8055
8060
8065
8070
8075
8080
8085
8090
8095
8100
8105
8110
8115
8120
8125
8130
8135
8140
8145
8150
8155
8160
8165
8170
8175
8180
8185
8190
8195
8200
8205
8210
8215
8220
8225
8230
8235
8240
8245
8250
8255
8260
8265
8270
8275
8280
8285
8290
8295
8300
8305
8310
8315
8320
8325
8330
8335
8340
8345
8350
8355
8360
8365
8370
8375
8380
8385
8390
8395
8400
8405
8410
8415
8420
8425
8430
8435
8440
8445
8450
8455
8460
8465
8470
8475
8480
8485
8490
8495
8500
8505
8510
8515
8520
8525
8530
8535
8540
8545
8550
8555
8560
8565
8570
8575
8580
8585
8590
8595
8600
8605
8610
8615
8620
8625
8630
8635
8640
8645
8650
8655
8660
8665
8670
8675
8680
8685
8690
8695
8700
8705
8710
8715
8720
8725
8730
8735
8740
8745
8750
8755
8760
8765
8770
8775
8780
8785
8790
8795
8800
8805
8810
8815
8820
8825
8830
8835
8840
8845
8850
8855
8860
8865
8870
8875
8880
8885
8890
8895
8900
8905
8910
8915
8920
8925
8930
8935
8940
8945
8950
8955
8960
8965
8970
8975
8980
8985
8990
8995
9000
9005
9010
9015
9020
9025
9030
9035
9040
9045
9050
9055
9060
9065
9070
9075
9080
9085
9090
9095
9100
9105
9110
9115
9120
9125
9130
9135
9140
9145
9150
9155
9160
9165
9170
9175
9180
9185
9190
9195
9200
9205
9210
9215
9220
9225
9230
9235
9240
9245
9250
9255
9260
9265
9270
9275
9280
9285
9290
9295
9300
9305
9310
9315
9320
9325
9330
9335
9340
9345
9350
9355
9360
9365
9370
9375
9380

- Herstellen eines Umverdrahtungssubstratstreifens (100) nach einem der Ansprüche 16 bis 25,
- Auf trennen des Umverdrahtungssubstratstreifens (100) in einzelne Bauteile und
- 5 - Aussortieren der als defekt markierten Halbleiterbauteile (3).

Zusammenfassung

Die Erfindung betrifft einen Umverdrahtungssubstratstreifen (100) und ein Verfahren zu seiner Herstellung

5

Der Umverdrahtungssubstratstreifen (100) weist mehrere Halbleiterbauteilpositionen (2) für Halbleiterbauteile (3) auf. Die Halbleiterbauteilpositionen (2) sind in Zeilen und Spalten angeordnet. Dabei sind mehrere Halbleiterbauteilpositionen zu einer Bauteilgruppe (5) zusammengefasst. Die Halbleiterbauteile (3) einer Bauteilgruppe (5) sind derart zueinander angeordnet, dass ein einzelnes Halbleiterbauteil (3) gegenüber vier benachbarten Halbleiterbauteilen um 90° gedreht ist.

10
15

[Figur 1]

三

三

2/3

FIG 2

3
FIG

GESAMT SEITEN 43

Document made available under the Patent Cooperation Treaty (PCT)

International application number: PCT/DE05/000714

International filing date: 19 April 2005 (19.04.2005)

Document type: Certified copy of priority document

Document details: Country/Office: DE
Number: 10 2004 020 187.0
Filing date: 22 April 2004 (22.04.2004)

Date of receipt at the International Bureau: 30 June 2005 (30.06.2005)

Remark: Priority document submitted or transmitted to the International Bureau in compliance with Rule 17.1(a) or (b)

World Intellectual Property Organization (WIPO) - Geneva, Switzerland
Organisation Mondiale de la Propriété Intellectuelle (OMPI) - Genève, Suisse

**This Page is Inserted by IFW Indexing and Scanning
Operations and is not part of the Official Record**

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

- BLACK BORDERS**
- IMAGE CUT OFF AT TOP, BOTTOM OR SIDES**
- FADED TEXT OR DRAWING**
- BLURRED OR ILLEGIBLE TEXT OR DRAWING**
- SKEWED/SLANTED IMAGES**
- COLOR OR BLACK AND WHITE PHOTOGRAPHS**
- GRAY SCALE DOCUMENTS**
- LINES OR MARKS ON ORIGINAL DOCUMENT**
- REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY**
- OTHER:** _____

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.