

PONTIFICIA UNIVERSIDAD CATÓLICA DE CHILE FACULTAD DE MATEMÁTICAS DEPARTAMENTO DE MATEMÁTICA

I2

Variable Compleja - MAT2705 Fecha de Entrega: 2019-11-12

Problema 1:

Considere $f(z) = \frac{\sin(\pi z)}{(2z-1)(4z-i)}$ y calcule las siguientes integrales

- (a) $\int_{\{z:|z|=\frac{1}{10}\}} f(z) dz$
- (b) $\int_{\{z:|z-\frac{i}{4}|=\frac{1}{10}\}} f(z) dz$
- (c) $\int_{\{z:|z|=1\}} f(z) dz$

Solución problema 1:

- (a) Notemos que f(z) es analítica en el disco centrado en 0 de radio $\frac{1}{10}$, ya que $sin(\pi z)$ es analítica y (2z-1)(4z-i) es analítica sin ceros en ese disco. Por ende, el valor de la integral es 0.
- (b) Se nota que g(z) = f(z)(4z-i) es analítica en el disco centrado en $\frac{i}{4}$ de radio $\frac{1}{10}$. Luego, por la formula integral de Cauchy, se tiene que $2\pi i g(\frac{i}{4})$ es el valor de la integral pedida. Esto es fácil de calcular: $2\pi i g(\frac{i}{4}) = 2\pi i \cdot \frac{i \sinh(\frac{\pi}{4})}{\frac{i}{2}-i} = 2\pi i \cdot -2 \sinh(\frac{\pi}{4}) = -4\pi i \sinh(\frac{\pi}{4})$.
- (c) Usando la formula integral de Cauchy se nota que la integral se puede escribir como la siguiente suma:

$$\int_{\{z:|z-\frac{1}{2}|=\frac{1}{10}\}} f(z) dz + \int_{\{z:|z-\frac{i}{4}|=\frac{1}{10}\}} f(z) dz$$

Se nota que la segunda integral ya fue calculada, y que la primera se puede calcular de forma similar, g(z)=(2z-1)f(z) es analítica en el area pedida, luego se tiene que $2\pi i g(\frac{1}{2})=2\pi i\cdot\frac{\sin(\frac{\pi}{2})}{2-i}=2\pi i(2+i)/3$. Juntando ambos resultados se llega a lo siguiente:

$$\int_{\{z:|z|=1\}} f(z) \, \mathrm{d}z = \int_{\{z:|z-\frac{1}{2}|=\frac{1}{10}\}} f(z) \, \mathrm{d}z + \int_{\{z:|z-\frac{i}{4}|=\frac{1}{10}\}} f(z) \, \mathrm{d}z = 2\pi i (2+i)/3 - 4\pi i \sinh(\frac{\pi}{4})$$

Problema 2:

Sea f una función entera tal que $\Im(f(z)) > 0$ para todo $z \in \mathbb{C}$. Demuestre que f es constante. Indicación: Puede usar que $L(z) = \frac{iz+1}{1-iz}$ mapea el semiplano superior en el disco unitario.

Solución problema 2: Se nota que si f es una función entera entonces $\exp(if)$ también lo es, pero $|\exp(if)| = \exp(-\Im(f)) < 1$, por lo que $\exp(if)$ es acotada, pero por Liouville se tiene que $\exp(if)$ es constante, por lo que f también es constante.

Problema 3:

Encuentre la seria de potencias en torno a z=0 que representa la función $f(z)=z\ln(z+1)$. Calcule su radio de convergencia.

Solución problema 3: Se sabe que

$$\ln(z+1) = -\sum_{k=1}^{\infty} \frac{(-1)^k z^k}{k} \tag{1}$$

por lo que $f(z) = \sum_{k=1}^{\infty} \frac{(-1)^{k+1}z^{k+1}}{k}$, ahora cambiando lo indices se tiene que $f(z) = \sum_{k=2}^{\infty} \frac{(-1)^kz^k}{k-1}$. Se recuerda que el radio de convergencia de (1) es 1, por lo que el radio de convergencia de la serie encontrada tambien es 1.

Problema 4:

Encuentre todas las funciones analíticas en $\{z:|z|<1\}$ que satisfacen $f\left(\frac{1}{n}\right)=\frac{1}{n^3}$ para todo $n\in\mathbb{N}$

Solución problema 4: Se nota que $f(z) = z^3$ cumple lo pedido. Ya que $\frac{1}{n} \to 0$, $\frac{1}{n^3} \to 0$ y f es continua se tiene que f(0) = 0, por lo que 0 es un punto de acumulación y por el teorema del principio de unicidad, se tiene que la única función que cumple lo pedido es $f(z) = z^3$.

Problema 5:

El objetivo de esta pregunta es calcular la serie de Laurent de $f(z) = \frac{z}{(z^2-4)^2}$ en el anillo $\{0 < |z-2| < 4\}$ y el orden del polo en z=2. Se sugieren los siguientes pasos:

- (a) Calcule la expansión de $\frac{1}{z+2}$ en torno a z=2.
- (b) Encuentre a partir del paso anterior la serie de Laurent de $\frac{1}{z^2-4}$ en torno a z=2.
- (c) Utilice lo anterior para calcular la serie de Laurent de $f(z) = \frac{z}{(z^2-4)^2}$.
- (d) Estudie el orden del polo de f en z=2.

Solución problema 5:

(a) Se escribe la fracción de la siguiente forma, $\frac{1}{(z-2)+4} = \frac{1}{4} \cdot \frac{1}{1-(-z+2)/4}$, y estos se puede reescribir usando la serie geométrica $\frac{1}{4} \cdot \frac{1}{1-(-z+2)/4} = \frac{1}{4} \sum_{n=0}^{\infty} (-\frac{1}{4})^n (z-2)^n$, con lo que se tiene la expansión de potencia.

- (b) Se usa fracciones parciales consiguiendo la siguiente identidad $\frac{1}{z^2-4} = \frac{1}{4(z-2)} \frac{1}{4(z+2)}$, por lo que la serie de Laurent es la siguiente $\frac{1}{z^2-4} = \frac{1}{4} \left(\frac{1}{z-2} + \sum_{n=0}^{\infty} (-1)^{n+1} 2^{-n} (z-2)^n \right)$.
- (c) Se nota que $f(z) = -\frac{1}{2}g'(z)$, donde $g(z) = \frac{1}{z^2-4}$, como $g(z) = \frac{1}{4}\left(\frac{1}{z-2} + \sum_{n=0}^{\infty}(-1)^{n+1}2^{-n}(z-2)^n\right)$ se tiene que $g'(z) = \frac{1}{4}\left(\frac{1}{(z-2)^2} + \sum_{n=1}^{\infty}(-1)^{n+1}2^{-n}n(z-2)^{n-1}\right)$, por lo que $f(z) = -\frac{1}{8}\left(\frac{1}{(z-2)^2} + \sum_{n=1}^{\infty}(-1)^{n+1}2^{-n}n(z-2)^{n-1}\right)$.
- (d) Viendo la serie de Laurent es fácil concluir que f tiene un polo de orden 2 en z=2.

Problema 6:

Demuestre que $f(z) = \exp(\frac{1}{z})$ tiene una singularidad esencial en z = 0.

Solución problema 6: En la tarea se demostro que dado una función analítica f con una singularidad aislada no reparable en z_0 , entonces z_0 es singularidad esencial de $\exp(f)$. Dado la anterior, se nota que z=0 es una singularidad no reparable de $\frac{1}{z}$, por lo que es singularidad esencial de $\exp(\frac{1}{z})$.

Problema 7:

En esta pregunta consideraremos la función

$$N_f(w) = \frac{1}{2\pi i} \int_{|z-z_0|=\rho} \frac{f'(z)}{f(z) - w} dz$$
 (2)

para $f: \Omega \subset \mathbb{C} \to \mathbb{C}$ una función meromorfa y $w \in \mathbb{C}$ tal que $f(z) \neq w$ en $|z - z_0| = \rho$. Asumimos también que $B_{\rho}(z_0) = \{z \in \mathbb{C} : |z - z_r| < r\}$.

- (a) Demuestre que si $f(z) w_0$ tiene un cero de orden m en z_0 entonces $\frac{f'(z)}{f(z) w_0}$ tiene un polo de orden 1 con residuo m en z_0 .
- (b) Demuestre que si $f(z) w_0$ tiene un polo de orden m en z_0 entonces $\frac{f'(z)}{f(z)-w_0}$ tiene un polo de orden 1 con residuo -m en z_0 .
- (c) Suponga que $|f(z) w_0| > \delta > 0$ para todo $|z z_0| = \rho$. Demuestre que existe un r > 0 tal que N(w)) es analítica en $B_r(w_0)$.
- (d) El teorema de residuos implica que si $f(z) w_0$ tiene un cero de orden m en z_0 y $f(z) w_0 \neq 0$ para $0 < |z z_0| \leq \rho$ entonces $N_f(w_0) = m$, más aún $N)f(w) \in \mathbb{N}$. **Puede asumir el resultado anterior**. Demuestre que existe un r > 0 tal que $N_f(w)$ es constante en $B_r(w_0)$.

- (e) Concluya que si $f(z_0) = w_0, f'(z_0) \neq 0$, entonces existe un r > 0 tal que N(w) = 1 en $B_r(w_0)$.
- (f) Explique por qué el item anterior es equivalente a decir que f es inyectiva en una vecindad de z_0 .
- (g) Demuestre que si f_n es una sucesión de funciones analíticas que convergen uniformemente en a f(z) en $\overline{B_R(z_0)}$, entonces f es analítica en $B_R(z_0)$.
- (h) Suponga que f_n es una sucesión de funciones analíticas que convergen uniformemente en $\overline{B_r(z_0)}$ a f(z) y $f_n(z_0) \to w_0$. Demuestre que existe r > 0 tal que $N_{f_n}(w) \to N_f(w)$ uniformemente en $B_r(w_0)$ cuando $n \to \infty$.
- (i) Demuestre que si f_n es una sucesión de funciones analíticas que converge uniformemente en $\overline{B_R(z_0)}$ a f(z) y f_n es inyectiva para todo n, entonces f es inyectiva.

Solución problema 7:

(a)

4