彪哥带你学强化学习

3、强化学习基础概念(下)

DEEPLY UNDERSTAND REINFORCEMENT LEARNING

讲师: 韩路彪

回顾:基础模型——马尔科夫决策过程Markov decision process(MDP)

回顾:强化学习是什么

研究对象 做一件事情的过程,核心是**序列**

研究目标 最优策略

监督学习	强化学习
单个值	序列
有明确结果	不容易给出每一步明确结果
需要标注好的数据	可以直接和环境交互获取数据
即时反馈	延迟反馈

价值函数

为了可以比较和计算,引入奖励R/r

为了考虑长远奖励,引入回报G/g

$$g_t = r_t + \gamma r_{t+1} + \gamma^2 r_{t+2} + \ldots$$

回报存在的问题:

- 1. 针对单个样本
- 2. 事后才能知道结果,不容易指导策略
- 3. 方差大,不稳定

解决方法:引入价值函数

价值函数

状态价值函数 $V^{\pi}(s_t) = \mathbb{E}_{\pi}(G_t|S_t = s_t)$

最优状态价值函数 $V^*(s_t) = \max_{\pi} V^\pi(s_t)$

状态动作价值函数 $Q^{\pi}(s_t,a_t)=\mathbb{E}_{\pi}(G_t|S_t=s_t,A_t=a_t)$

最优状态动作价值函数 $Q^*(s_t,a_t) = \max_{\pi} Q^{\pi}(s_t,a_t)$

最优策略 $\pi^\star = rg \max_{\pi} Q^\pi(s_t, a_t)$

$$egin{aligned} V^\pi(s_t) &= \sum_{a \in \mathcal{A}} \pi(a|s_t) Q^\pi(s_t,a) \ &= \mathbb{E}_{a \sim \pi(\cdot|s_t)} ig[Q^\pi(s_t,a)ig] \end{aligned}$$

$$V^\star(s_t) = \max_{a \in \mathcal{A}} Q^\star(s_t, a)$$

