Embedding Intensional Semantics into Inquisitive Semantics

Philippe de Groote Valentin D. Richard

LORIA, UMR 7503 Université de Lorraine, CNRS, Inria 54000 Nancy, France

13 December 2021

This talk is about

Semantics of interrogative clauses, e.g.

- Does Mary sleep?
- Who sleep?
- John knows whether Mary sleeps.

Semantics of interrogative clauses, e.g.

- Does Mary sleep?
- Who sleep?
- John knows whether Mary sleeps.

Semantic model: object language with model-theoretic denotation

- Object language: simply typed λ-calculus
- Denotation: sets and functions
- Map: compositional interpretation

Semantics of interrogative clauses, e.g.

- Does Mary sleep?
- Who sleep?
- John knows whether Mary sleeps.

Semantic model: object language with model-theoretic denotation

- Object language: simply typed λ-calculus
- Denotation: sets and functions
- Map: compositional interpretation

We investigate the relation between:

Intensional interpretation []. (declarative)

vs. Inquisitive interpretation [.] (declarative + interrogative)

- 1 Intensional and inquisitive semantics
 - Object language
 - Intensional interpretation
 - Inquisitive interpretation
- 2 Inquisitivation
- 3 Object language modification

Object language

Simply typed λ -calculus

- atomic types:
 - PROP: proposition
 - IND: individual

Object language

Simply typed λ -calculus

- atomic types:
 - PROP: proposition
 - IND : individual
- linguistic constants
 - Mary: m : IND, John: j : IND, Ash: a : IND
 - sleep : IND \rightarrow PROP
 - $try : IND \rightarrow (IND \rightarrow PROP) \rightarrow PROP$
- logical connectives
 - ¬: PROP → PROP
 - \blacksquare \land : PROP \rightarrow PROP \rightarrow PROP
 - \blacksquare \lor : PROP \rightarrow PROP \rightarrow PROP
 - V:PROP → PROP → PRO

Object language

Simply typed λ -calculus

- atomic types:
 - PROP: proposition
 - IND: individual
- linguistic constants
 - Mary: m : IND, John: j : IND, Ash: a : IND
 - sleep : IND → PROP
 - $try : IND \rightarrow (IND \rightarrow PROP) \rightarrow PROP$
- logical connectives
 - ¬: PROP → PROP
 - \blacksquare \land : PROP \rightarrow PROP \rightarrow PROP
 - \blacksquare \lor : PROP \rightarrow PROP \rightarrow PROP
 - $\begin{array}{c} \bullet & \lor : \mathsf{PROP} \to \mathsf{PROP} \to \mathsf{PRO} \\ & \end{array}$
 - ...

- Example:
 - (1) Mary sleeps.

sleep m: PROP

(2) Mary does not sleep.

 \neg (sleep m): PROP

(3) Mary tries to sleep.

try m $(\lambda x. sleep x)$: PROP

Intensional interpretation

Intensional model:

- truth values {0, 1}
- individuals $D = \{m, j, a\}$
- $\quad \blacksquare \text{ possible world } \textit{W} = \{\texttt{M}, \texttt{J}, \texttt{A}\}$

١,	World	Mary sleeps	John sleeps	Ash sleeps
	М	yes	no	no
	J	no	yes	no
	Α	no	no	yes

5/21

Intensional interpretation

Intensional model:

- truth values {0, 1}
- individuals $D = \{m, j, a\}$
- \blacksquare possible world $W = \{M, J, A\}$
- type interpretation

$$\begin{aligned} [\mathsf{IND}]_{\mathsf{i}} &= D \\ [\mathsf{PROP}]_{\mathsf{i}} &= \mathscr{P}(W) \\ [\alpha \to \beta]_{\mathsf{i}} &= [\beta]_{\mathsf{i}}^{[\alpha]_{\mathsf{i}}} \end{aligned}$$

World	Mary sleeps	John sleeps	Ash sleeps
М	yes	no	no
J	no	yes	no
Α	no	no	yes

Intensional interpretation

Intensional model:

- truth values {0, 1}
- individuals $D = \{m, j, a\}$
- \blacksquare possible world $W = \{M, J, A\}$
- type interpretation

$$\begin{aligned} [\mathsf{IND}]_{\mathsf{i}} &= D \\ [\mathsf{PROP}]_{\mathsf{i}} &= \mathscr{P}(W) \\ [\alpha \to \beta]_{\mathsf{i}} &= [\beta]_{\mathsf{i}}^{[\alpha]_{\mathsf{i}}} \end{aligned}$$

lacksquare linguistic constant interpretation ${\cal I}$

$$[\![\mathbf{m}]\!]_i = m \in D$$
 same for \mathbf{j}, \mathbf{a}
 $[\![\mathbf{sleep}]\!]_i = d \mapsto \{w \in D \mid d \text{ sleeps in } w\}$

World	Mary sleeps	John sleeps	Ash sleeps
М	yes	no	no
J	no	yes	no
Α	no	no	yes

Intensional interpretation

Intensional model:

- truth values {0,1}
- individuals $D = \{m, j, a\}$
- lacksquare possible world $W = \{M, J, A\}$
- type interpretation

$$\begin{aligned} [\mathsf{IND}]_{\mathsf{i}} &= D \\ [\mathsf{PROP}]_{\mathsf{i}} &= \mathscr{P}(W) \\ [\alpha \to \beta]_{\mathsf{i}} &= [\beta]_{\mathsf{i}}^{[\alpha]_{\mathsf{i}}} \end{aligned}$$

World	Mary sleeps	John sleeps	Ash sleeps
М	yes	no	no
J	no	yes	no
Α	no	no	yes

 \blacksquare logical connective interpretation \mathcal{I}

lacksquare linguistic constant interpretation ${\mathcal I}$

$$[\![\mathbf{m}]\!]_i = m \in D$$
 same for \mathbf{j}, \mathbf{a}
 $[\![\mathbf{sleep}]\!]_i = d \mapsto \{w \in D \mid d \text{ sleeps in } w\}$

Intensional interpretation

Intensional model

- truth values {0, 1}
- individuals $D = \{m, j, a\}$
- \blacksquare possible world $W = \{M, J, A\}$
- type interpretation

$$\begin{aligned} [\mathsf{IND}]_{\mathsf{i}} &= D \\ [\mathsf{PROP}]_{\mathsf{i}} &= \mathscr{P}(W) \\ [\alpha \to \beta]_{\mathsf{i}} &= [\beta]_{\mathsf{i}}^{[\alpha]_{\mathsf{i}}} \end{aligned}$$

World	Mary sleeps	John sleeps	Ash sleeps
М	yes	no	no
J	no	yes	no
Α	no	no	yes

 \blacksquare logical connective interpretation \mathcal{I}

Inguistic constant interpretation \mathcal{I}

$$\llbracket \mathbf{m} \rrbracket_i \ = m \in D \text{ same for } \mathbf{j}, \mathbf{a}$$

$$\llbracket \mathbf{sleep} \ \rrbracket_i \ = d \mapsto \{ w \in D \mid d \text{ sleeps in } w \}$$

$$\llbracket \neg \left(\mathbf{sleep} \ \mathbf{m} \right) \right]$$

$$\begin{aligned} & \llbracket \textbf{sleep} \ \textbf{m} \rrbracket_i \ = \llbracket \textbf{sleep} \rrbracket_i \left(\llbracket \textbf{m} \rrbracket_i \right. \right) = \{ \textbf{M} \} \\ & \llbracket \neg \left(\textbf{sleep} \ \textbf{m} \right) \rrbracket_i \ = \mathcal{W} \setminus \llbracket \textbf{sleep} \ \textbf{m} \rrbracket_i \ = \{ \textbf{J}, \textbf{A} \} \end{aligned}$$

Semantics of questions

(4) Does Mary sleep?

Request of information, 2 (maximal) resolutions:

- Mary sleeps.
- Mary does not sleep.

Semantics of questions

(4) Does Mary sleep?

Request of information, 2 (maximal) resolutions:

- Mary sleeps.
- Mary does not sleep.

Entailment $\varphi \models \psi$

- lacksquare whenever φ is resolved, then ψ is resolved
- e.g.: (in our illustration model)

Mary sleeps. ⊨ Does Mary sleep? Who sleeps? ⊨ Does Mary sleep?

Semantics of questions

(4) Does Mary sleep?

Request of information, 2 (maximal) resolutions:

- Mary sleeps.
- Mary does not sleep.

Entailment $\varphi \models \psi$

- lacksquare whenever φ is resolved, then ψ is resolved
- e.g.: (in our illustration model)

```
Mary sleeps. ⊨ Does Mary sleep? 
Who sleeps? ⊨ Does Mary sleep?
```

Hamblin's alternative semantics [4]:

■ interrogative proposition = **set of answers** (i.e. intentional proposition), e.g.

```
[Does Mary sleeps?]_{q} = \{ [Mary sleeps.]_{i}, [Mary does not sleep.]_{i} \} 
= \{ \{M\}, \{J, A\} \}
```

several drawbacks [2]

De Groote, Richard LORIA

Inquisitive semantics [1]

Representing a question by the **downward-closed** set of its answers:

$$\begin{split} \texttt{[Does Mary sleeps?]_q} &= \{\texttt{[Mary sleeps.]]_i}\,, \texttt{[Mary does not sleep.]]_i}\,\}^\downarrow \\ &= \{\{\texttt{M}\}, \{\texttt{J}, \texttt{A}\}, \{\texttt{J}\}, \{\texttt{A}\}, \emptyset\} \end{split}$$

Inquisitive semantics [1]

Representing a question by the downward-closed set of its answers:

Inquisitivation

$$\begin{split} & \texttt{[Does Mary sleeps?]]}_q \ = & \texttt{[[Mary sleeps.]]}_i \, , \texttt{[Mary does not sleep.]]}_i \, \}^\downarrow \\ & = & \{ \{M\}, \{J,A\}, \{J\}, \{A\}, \emptyset \} \end{split}$$

 \blacksquare maximal elements are **alternatives**, here $\{M\}$ and $\{J,A\}$

Inquisitive semantics [1]

Representing a question by the downward-closed set of its answers:

- maximal elements are alternatives, here {M} and {J, A}
- general notion: issue
- 2 dimensions:

inquisitiveness

7/21

Inquisitive semantics [1]

Representing a question by the downward-closed set of its answers:

- lacktriangle maximal elements are **alternatives**, here $\{M\}$ and $\{J,A\}$
- general notion: issue
- 2 dimensions:

inquisitiveness

purely informative issue : only 1 alternative, e.g.

$$\llbracket Mary sleeps. \rrbracket_q = \{\{M\}\}$$

→ uniform account of declaratives and interrogatives

De Groote, Richard LORIA Inquisitivation 13 December 2021

Inquisitive interpretation

Question

Suppose we have a complete intensional lexicon

8/21

Question

Suppose we have a complete intensional lexicon

Practical need

Can we design an inquisitive interpretation out of the intensional one?

Inquisitivation

Inquisitive interpretation

Type interpretation:

$$\begin{split} [\mathsf{IND}]_\mathsf{q} &= D \\ [\mathsf{PROP}]_\mathsf{q} &= \mathscr{P}(\mathscr{P}(W)) \\ [\alpha \to \beta]_\mathsf{q} &= [\beta]_\mathsf{i}^{[\alpha]_\mathsf{i}} \end{split}$$

Inquisitivation

Inquisitive interpretation

Type interpretation:

$$\begin{split} [\mathsf{IND}]_{\mathsf{q}} &= D \\ [\mathsf{PROP}]_{\mathsf{q}} &= \mathscr{P}(\mathscr{P}(W)) \\ [\alpha \to \beta]_{\mathsf{q}} &= [\beta]_{\mathsf{i}}^{[\alpha]_{\mathsf{i}}} \end{split}$$

Linguistic constant interpretation \mathcal{I}

$$\llbracket \mathbf{m} \rrbracket_{\mathsf{q}} = m \in D \text{ same for } \mathbf{j}, \mathbf{a}$$

 $\llbracket \mathbf{sleep} \rrbracket_{\mathsf{q}} = d \mapsto \mathscr{P}(\llbracket \mathbf{sleep} \rrbracket_{\mathsf{i}}(d))$

Inquisitive interpretation

Type interpretation:

$$\begin{split} [\mathsf{IND}]_{\mathsf{q}} &= D \\ [\mathsf{PROP}]_{\mathsf{q}} &= \mathscr{P}(\mathscr{P}(W)) \\ [\alpha \to \beta]_{\mathsf{q}} &= [\beta]_{\mathsf{i}}^{[\alpha]_{\mathsf{i}}} \end{split}$$

Linguistic constant interpretation \mathcal{I}

$$\label{eq:m_q = m in D} \begin{split} & [\![\boldsymbol{m}]\!]_{\mathbf{q}} = m \in D \text{ same for } \boldsymbol{j}, \boldsymbol{a} \\ & [\![\![\boldsymbol{sleep}]\!]_{\mathbf{q}} = d \mapsto \mathscr{P}([\![\boldsymbol{sleep}]\!]_{\mathbf{i}}(d)) \\ & [\![\![\boldsymbol{try}]\!]_{\mathbf{q}} = d, P \mapsto ??? \end{split}$$

with
$$P:D \to \mathscr{P}(\mathscr{P}(W))$$

but $[\![\mathbf{try}]\!]_i:D \to (D \to \mathscr{P}(W)) \to \mathscr{P}(W)$

Goal

What we want:

transformation of the intensional interpretations of a constant to an equivalent inquisitive interpretation

Goal

What we want:

- **transformation** of the intensional interpretations of a constant to an **equivalent** inquisitive interpretation
- → Conservative extension : preserves the logic

Goal

What we want:

- **transformation** of the intensional interpretations of a constant to an **equivalent** inquisitive interpretation
- → Conservative extension : preserves the logic

Inquisitivation:

Embedding intentional semantics into inquisitive semantics

- 1 Intensional and inquisitive semantic
- 2 Inquisitivation
 - Inquisitivation
 - Properties
- 3 Object language modification

First ideas

 $\mathbb E$ indexed by types of $\Lambda,$ following [3]

$$egin{aligned} \mathbb{E}_{\mathsf{IND}} : D &
ightarrow D \ \mathbb{E}_{\mathsf{PROP}} : \mathscr{P}(W) &
ightarrow \mathscr{P}(\mathscr{P}(W)) \ \mathbb{E}_{lpha} : [lpha]_{\mathsf{i}} &
ightarrow [lpha]_{\mathsf{g}} \end{aligned}$$

First ideas

 \mathbb{E} indexed by types of Λ , following [3]

$$egin{aligned} \mathbb{E}_{\mathsf{IND}} : D &
ightarrow D \ \mathbb{E}_{\mathsf{PROP}} : \mathscr{P}(W) &
ightarrow \mathscr{P}(\mathscr{P}(W)) \ \mathbb{E}_{lpha} : [lpha]_{\mathsf{i}} &
ightarrow [lpha]_{\mathsf{q}} \end{aligned}$$

On simple examples:

$$\mathbb{E}_{\mathsf{IND}}(d) = d$$
 $\mathbb{E}_{\mathsf{PROP}}(p) = \mathscr{P}(p)$
 $\mathbb{E}_{\mathsf{IND} o \mathsf{PROP}}(P) = d \mapsto \mathscr{P}(P(d))$

Embedding and projection

 \blacksquare **Projection** $\mathbb P$ and **embedding** $\mathbb E$ defined by mutual induction

Embedding and projection

Projection \mathbb{P} and **embedding** \mathbb{E} defined by mutual induction

Using

$$\begin{array}{cccc} \bigcup: & \mathscr{P}(\mathscr{P}(W)) & \to & \mathscr{P}(W) \\ & \mathcal{I} & \mapsto & \bigcup_{p \in \mathcal{I}} p \end{array}$$

Property:

$$\bigcup (\mathscr{P}(p)) = p$$

Definition of inquisitivation

Complete definition:

$$\mathbb{E}_{\mathsf{IND}}(d) = d$$

$$\mathbb{E}_{\mathsf{PROP}}(p) = \mathscr{P}(p)$$

$$\mathbb{E}_{\alpha \to \beta}(f)(a) = \mathbb{E}_{\beta}(f(\mathbb{P}_{\alpha}(a)))$$

$$\mathbb{P}_{\mathsf{IND}}(d) = d$$

$$\mathbb{P}_{\mathsf{PROP}}(\mathcal{I}) = \bigcup \mathcal{I}$$

$$\mathbb{P}_{\alpha \to \beta}(f)(a) = \mathbb{P}_{\beta}(f(\mathbb{E}_{\alpha}(a)))$$

Definition of inquisitivation

Complete definition:

$$egin{align*} \mathbb{E}_{\mathsf{IND}}(d) &= d \ \mathbb{E}_{\mathsf{PROP}}(p) &= \mathscr{P}(p) \ \mathbb{E}_{lpha
ightarrow eta}(f)(a) &= \mathbb{E}_{eta}(f(\mathbb{P}_{lpha}(a))) \ \mathbb{P}_{\mathsf{IND}}(d) &= d \ \mathbb{P}_{\mathsf{PROP}}(\mathcal{I}) &= igcup \mathcal{I} \ \mathbb{P}_{lpha
ightarrow eta}(f)(a) &= \mathbb{P}_{eta}(f(\mathbb{E}_{lpha}(a))) \ \end{split}$$

Example:

$$\llbracket \mathsf{try} \rrbracket_{\mathsf{q}} (d)(P) = \mathbb{E}_{\mathsf{IND} \to (\mathsf{IND} \to \mathsf{PROP}) \to \mathsf{PROP}} (\llbracket \mathsf{try} \rrbracket_i)(d)(P)$$

Object language modification

Definition of inquisitivation

Complete definition:

$$\mathbb{E}_{\mathsf{IND}}(d) = d$$
 $\mathbb{E}_{\mathsf{PROP}}(p) = \mathscr{P}(p)$
 $\mathbb{E}_{\alpha o \beta}(f)(a) = \mathbb{E}_{\beta}(f(\mathbb{P}_{\alpha}(a)))$
 $\mathbb{P}_{\mathsf{IND}}(d) = d$
 $\mathbb{P}_{\mathsf{PROP}}(\mathcal{I}) = \bigcup \mathcal{I}$
 $\mathbb{P}_{\alpha o \beta}(f)(a) = \mathbb{P}_{\beta}(f(\mathbb{E}_{\alpha}(a)))$

Example:

$$\begin{aligned} \llbracket \mathbf{try} \rrbracket_{\mathbf{q}} \left(d \right) &(P) = \mathbb{E}_{\mathsf{IND} \to \mathsf{QIND} \to \mathsf{PROP}} (\llbracket \mathbf{try} \rrbracket_{\mathbf{i}} \right) (d) (P) \\ &= \mathbb{E}_{\mathsf{PROP}} (\llbracket \mathbf{try} \rrbracket_{\mathbf{i}} \left(\mathbb{P}_{\mathsf{IND}} (d) \right) (\mathbb{P}_{\mathsf{IND} \to \mathsf{PROP}} (P))) \end{aligned}$$

Object language modification

Definition of inquisitivation

Complete definition:

$$\mathbb{E}_{\mathsf{IND}}(d) = d$$

$$\mathbb{E}_{\mathsf{PROP}}(p) = \mathscr{P}(p)$$

$$\mathbb{E}_{\alpha \to \beta}(f)(a) = \mathbb{E}_{\beta}(f(\mathbb{P}_{\alpha}(a)))$$

$$\mathbb{P}_{\mathsf{IND}}(d) = d$$

$$\mathbb{P}_{\mathsf{PROP}}(\mathcal{I}) = \bigcup \mathcal{I}$$

$$\mathbb{P}_{\alpha \to \beta}(f)(a) = \mathbb{P}_{\beta}(f(\mathbb{E}_{\alpha}(a)))$$

Example:

$$\begin{aligned} \llbracket \mathsf{try} \rrbracket_{\mathsf{q}} \, (d)(P) &= \mathbb{E}_{\mathsf{IND} \to (\mathsf{IND} \to \mathsf{PROP}) \to \mathsf{PROP}}(\llbracket \mathsf{try} \rrbracket_{\mathsf{i}} \,)(d)(P) \\ &= \mathbb{E}_{\mathsf{PROP}}(\llbracket \mathsf{try} \rrbracket_{\mathsf{i}} \, (\mathbb{P}_{\mathsf{IND}}(d))(\mathbb{P}_{\mathsf{IND} \to \mathsf{PROP}}(P))) \\ &= \mathscr{P}(\llbracket \mathsf{try} \rrbracket_{\mathsf{i}} \, (d)(\mathbb{P}_{\mathsf{IND} \to \mathsf{PROP}}(P))) \end{aligned}$$

Definition of inquisitivation

Complete definition:

Intensional and inquisitive semantics

Inquisitivation

$$\begin{split} \mathbb{E}_{\mathsf{IND}}(d) &= d \\ \mathbb{E}_{\mathsf{PROP}}(p) &= \mathscr{P}(p) \\ \mathbb{E}_{\alpha \to \beta}(f)(a) &= \mathbb{E}_{\beta}(f(\mathbb{P}_{\alpha}(a))) \\ \\ \mathbb{P}_{\mathsf{IND}}(d) &= d \\ \mathbb{P}_{\mathsf{PROP}}(\mathcal{I}) &= \bigcup \mathcal{I} \\ \mathbb{P}_{\alpha \to \beta}(f)(a) &= \mathbb{P}_{\beta}(f(\mathbb{E}_{\alpha}(a))) \end{split}$$

Example:

$$\begin{split} \llbracket \mathbf{try} \rrbracket_{\mathbf{q}} (d)(P) &= \mathbb{E}_{\mathsf{IND} \to \mathsf{IND} \to \mathsf{PROP}) \to \mathsf{PROP}} (\llbracket \mathbf{try} \rrbracket_{\mathbf{i}})(d)(P) \\ &= \mathbb{E}_{\mathsf{PROP}} (\llbracket \mathbf{try} \rrbracket_{\mathbf{i}} (\mathbb{P}_{\mathsf{IND}} (d)) (\mathbb{P}_{\mathsf{IND} \to \mathsf{PROP}} (P))) \\ &= \mathscr{P} (\llbracket \mathbf{try} \rrbracket_{\mathbf{i}} (d) (\mathbb{P}_{\mathsf{IND} \to \mathsf{PROP}} (P))) \\ &= \mathscr{P} (\llbracket \mathbf{try} \rrbracket_{\mathbf{i}} (d) (a \mapsto \mathbb{P}_{\mathsf{PROP}} (P(\mathbb{E}_{\mathsf{IND}} (a))))) \end{split}$$

Object language modification

Complete definition:

Intensional and inquisitive semantics

Inquisitivation

$$\mathbb{E}_{\mathsf{IND}}(d) = d$$
 $\mathbb{E}_{\mathsf{PROP}}(p) = \mathscr{P}(p)$
 $\mathbb{E}_{lpha
ightarrow eta}(f)(a) = \mathbb{E}_{eta}(f(\mathbb{P}_{lpha}(a)))$
 $\mathbb{P}_{\mathsf{IND}}(d) = d$
 $\mathbb{P}_{\mathsf{PROP}}(\mathcal{I}) = \bigcup \mathcal{I}$
 $\mathbb{P}_{lpha
ightarrow eta}(f)(a) = \mathbb{P}_{eta}(f(\mathbb{E}_{lpha}(a)))$

Example:

$$\begin{split} \llbracket \mathbf{try} \rrbracket_{\mathbf{q}} (d)(P) &= \mathbb{E}_{\mathsf{IND} \to \mathsf{IND} \to \mathsf{PROP}) \to \mathsf{PROP}}(\llbracket \mathbf{try} \rrbracket_{\mathbf{i}})(d)(P) \\ &= \mathbb{E}_{\mathsf{PROP}}(\llbracket \mathbf{try} \rrbracket_{\mathbf{i}} (\mathbb{P}_{\mathsf{IND}}(d))(\mathbb{P}_{\mathsf{IND} \to \mathsf{PROP}}(P))) \\ &= \mathscr{P}(\llbracket \mathbf{try} \rrbracket_{\mathbf{i}} (d)(\mathbb{P}_{\mathsf{IND} \to \mathsf{PROP}}(P))) \\ &= \mathscr{P}(\llbracket \mathbf{try} \rrbracket_{\mathbf{i}} (d)(a \mapsto \mathbb{P}_{\mathsf{PROP}}(P(\mathbb{E}_{\mathsf{IND}}(a))))) \\ &= \mathscr{P}(\llbracket \mathbf{try} \rrbracket_{\mathbf{i}} (d)(a \mapsto \bigcup (P(a))) \end{split}$$

Main theorem

Inquisitive interpretation of a constant $c: \alpha$

$$\llbracket \pmb{c} \rrbracket_{\mathsf{q}} \stackrel{\mathsf{def}}{=} \mathbb{E}_{\alpha}(\llbracket \pmb{c} \rrbracket_{\mathsf{i}})$$

Main theorem

Inquisitive interpretation of a constant $c: \alpha$

$$\llbracket c \rrbracket_{\mathsf{q}} \stackrel{\mathsf{def}}{=} \mathbb{E}_{\alpha}(\llbracket c \rrbracket_{\mathsf{i}})$$

Main theorem

Let φ be a proposition. Then, $\models_{\mathsf{q}} \varphi$ if and only if $\models_{\mathsf{i}} \varphi$.

- 1 Intensional and inquisitive semantics
- 2 Inquisitivation
- 3 Object language modification

Formulas:

Same as classical logic formula

Inquisitive logic

Formulas:

- Same as classical logic formula
- Projection operators:
 - Non-informative projection: $?\varphi = \varphi \lor \neg \varphi$ "Does φ ?"
 - Non-inquisitive projection $!\varphi = \neg \neg \varphi$

inquisitiveness

Inquisitive logic

Formulas:

- Same as classical logic formula
- Projection operators:
 - Non-informative projection: $?\varphi = \varphi \lor \neg \varphi$ "Does φ ?"
 - Non-inquisitive projection $!\varphi = \neg \neg \varphi$

Same intensional model $\langle D, W, \mathcal{I} \rangle$ But operations on sets of sets:

inquisitiveness

Inquisitive logic

Formulas:

- Same as classical logic formula
- Projection operators:
 - Non-informative projection: $?\varphi = \varphi \lor \neg \varphi$ "Does φ ?"
 - Non-inquisitive projection $!\varphi = \neg \neg \varphi$

Same intensional model $\langle D, W, \mathcal{I} \rangle$ But operations on sets of sets:

(5) Does Mary sleep?

$$\label{eq:sleepm} \begin{split} ?\,(\text{sleep m}) &= (\text{sleep m}) \lor (\neg\,(\text{sleep m})) \\ \llbracket ?\,(\text{sleep m}) \rrbracket &= \{\{M\},\emptyset\} \cup \{\{J,A\},\{J\},\{A\},\emptyset\} \end{split}$$

inquisitiveness

18/21

Strong inquisitive interpretation $[\![\cdot]\!]_{sq}$

same, but logical constants interpreted as in Inq

Strong inquisitive interpretation []sa

= come but legical constants interpreted as in

- same, but logical constants interpreted as in Inq
- \blacksquare but if \mathcal{I}, \mathcal{Q} purely informative

$$\llbracket \wedge
rbracket_{\mathsf{q}} (\mathcal{I})(\mathcal{Q}) = \llbracket \wedge
rbracket_{\mathsf{sq}} (\mathcal{I})(\mathcal{Q})$$

Inquisitivation

 $\blacksquare \hspace{0.1cm} \llbracket \wedge \rrbracket_{sq} \hspace{0.1cm} \text{better generalization of } \llbracket \wedge \rrbracket_{i}$

Strong inquisitive interpretation []sq

- same, but logical constants interpreted as in Inq
- $\blacksquare [\![\land]\!]_q \neq [\![\land]\!]_{sq}$
- \blacksquare but if \mathcal{I}, \mathcal{Q} purely informative

$$\llbracket \wedge \rrbracket_{\mathsf{q}} (\mathcal{I})(\mathcal{Q}) = \llbracket \wedge \rrbracket_{\mathsf{sq}} (\mathcal{I})(\mathcal{Q})$$

Inquisitivation

■ ¶∧∥_{sq} better generalization of ¶∧∥_i

Looking for: **object language translation** → such that

$$lacksquare [\![arphi]\!]_{\mathsf{q}} = [\![\overline{arphi}]\!]_{\mathsf{sq}}$$
 , for every $arphi$

What about logical constants?

Strong inquisitive interpretation $[\![\cdot]\!]_{sq}$

- same, but logical constants interpreted as in Inq
- \blacksquare $\llbracket \land \rrbracket_q \neq \llbracket \land \rrbracket_{sq}$
- \blacksquare but if \mathcal{I}, \mathcal{Q} purely informative

$$\llbracket \wedge
rbracket q (\mathcal{I})(\mathcal{Q}) = \llbracket \wedge
rbracket sq (\mathcal{I})(\mathcal{Q})$$

 $\blacksquare \hspace{0.1cm} \llbracket \wedge \rrbracket_{sq} \hspace{0.1cm} \text{better generalization of } \llbracket \wedge \rrbracket_{i}$

Looking for: object language translation - such that

$$\blacksquare \ [\![\varphi]\!]_{\mathsf{q}} \ = [\![\overline{\varphi}]\!]_{\mathsf{sq}}$$
 , for every φ

$$\overline{\varphi \lor \psi} = !(\overline{\varphi} \lor \overline{\psi})$$

$$\overline{\exists x. \varphi} = !(\exists x. \overline{\varphi})$$

$$\overline{c} = c \qquad \text{for the other constants}$$

$$\overline{t u} = \overline{t} \overline{u}$$

$$\overline{\lambda x. t} = \lambda x. \overline{t}$$

Conclusion

Conservative extension from intensional semantics to inquisitive semantics

Future prospects

Using inquisitivation to define higher-order inquisitive logic

- I. Ciardelli, J. Groenendijk, and F. Roelofsen. Inquisitive Semantics: A New Notion of Meaning. Language and Linguistics Compass, 7(9):459–476, 2013. ISSN 1749-818X. doi: 10.1111/lnc3.12037.
- [2] I. Ciardelli, F. Roelofsen, and N. Theiler. Composing alternatives. Linguistics and Philosophy, 40(1):1–36, February 2017. ISSN 1573-0549. doi: 10.1007/s10988-016-9195-2.
- [3] Ph. de Groote and M. Kanazawa. A Note on Intensionalization. Journal of Logic, Language and Information, 22(2):173–194, April 2013. ISSN 1572-9583. doi: 10.1007/s10849-013-9173-9.
- [4] Ch. L. Hamblin. Questions in Montague English. Foundations of Language, 10 (1):41–53, 1973. ISSN 0015-900X.

Interpretation of λ -terms:

$$\begin{split} & \|x^{\alpha}\|_{i\,\xi} = \xi_{\alpha}(x) \\ & \|c^{\alpha}\|_{i\,\xi} = \mathcal{I}_{\alpha}(c) \\ & \|t^{\alpha \to \beta} u^{\alpha}\|_{i\,\xi} = \|t^{\alpha \to \beta}\|_{i\,\xi}(\|u^{\alpha}\|_{i\,\xi}) \\ & \|\lambda x^{\alpha}. t^{\beta}\|_{i\,\xi} = a \in [\alpha]_{i} \mapsto \|t^{\beta}\|_{i\,\xi[x^{\alpha}:=a]} \end{split}$$