BIOSTAT 651

Notes #10: Case-Control & Link functions

- Lecture Topics:
 - \circ Case-control sampling
 - Link functions

Case-Control sampling

Study Designs

- Study designs:
 - o randomized clinical trial
 - \circ observational study
- Randomized trial: gold standard
 - o often infeasible (logistics, ethics)
- Observational study: often easier and more cost efficient to study associations
 - cohort
 - o case-control

Case-Control Sampling

- Case-Control study:
 - \circ select n_1 diseased subjects
 - \circ select n_0 non-diseased subjects
 - analysis: contrast \mathbf{x}_i between cases $(Y_i = 1)$ and controls $(Y_i = 0)$
- Motivation: study of rare diseases
 - more generally, cost- and/or time-efficient study of disease (more later...)

Analysis of Case-Control Data

• Recall: the exposure odds ratio (EOR) estimated through case-control sampling is equal to the OR of interest

$$\text{o i.e., } Y_i = 0, 1 \text{ and } X_i = 0, 1$$

$$EOR \equiv \frac{\text{odds}(X_i = 1 | Y_i = 1)}{\text{odds}(X_i = 1 | Y_i = 0)}$$

$$= \vdots$$

$$= \vdots$$

$$= \frac{\text{odds}(Y_i = 1 | X_i = 1)}{\text{odds}(Y_i = 1 | X_i = 0)} \equiv OR$$

• Result extends to the regression setting...

Case-Control Study: General Set-Up

- Consider the following setting:
 - $\circ Y_i$: binary
 - $\mathbf{x}_i = (1, x_{i1}, \dots, x_{iq})^T$ (assume discrete)
 - population: N subjects; study: n subjects sample n_1 cases, and n_0 controls $S_i = \text{sampling indicator}$
- data:
 - observed (population):
 - assigned (by investigators):
 - observed data (sample):

- Model:
- sampling fractions:

$$\tau_0 \equiv P(S_i = 1 | Y_i = 0)$$

$$\tau_1 \equiv P(S_i = 1 | Y_i = 1)$$

o model:

$$\log \left\{ \frac{\pi_i}{1 - \pi_i} \right\} = \mathbf{x}_i^T \boldsymbol{\beta}$$

$$\pi_i = \pi(\mathbf{x}_i) = \frac{e^{\mathbf{x}_i^T \boldsymbol{\beta}}}{1 + e^{\mathbf{x}_i^T \boldsymbol{\beta}}}$$

Case-Control Data: MLE

- Estimation proceeds via maximum likelihood
 - Since \mathbf{x}_i is a random variable, the retrospective likelihood is written as

$$L_i(\beta) \propto P(\mathbf{x}_i | Y_i = 1, S_i = 1)^{Y_i}$$

 $P(\mathbf{x}_i | Y_i = 0, S_i = 1)^{1 - Y_i}$

- Prentice and Pyke (1979) showed that MLE of β from $P(Y_i = 1 | \mathbf{x}_i, S_i = 1)$ is the same as MLE of β from the prospective logistic regression model with retrospective sampling.

Case-Control Data: MLE

• $P(Y_i = 1 | \mathbf{x}_i, S_i = 1)$:

$$P(Y_{i} = 1 | \mathbf{x}_{i}, S_{i} = 1)$$

$$= \frac{P(Y_{i} = 1, \mathbf{x}_{i}, S_{i} = 1)}{P(\mathbf{x}_{i}, S_{i} = 1)}$$

$$= \frac{P(\mathbf{x}_{i} | Y_{i} = 1, S_{i} = 1)P(Y_{i}, S_{i} = 1)}{P(\mathbf{x}_{i}, S_{i} = 1)}$$
(1)

• Since

$$P(S_i = 1 | \mathbf{x}_i, Y_i = 1) = P(S_i = 1 | Y_i = 1),$$

we have

$$P(\mathbf{x}_{i}|Y_{i} = 1, S_{i} = 1)$$

$$= \frac{P(S_{i} = 1|\mathbf{x}_{i}, Y_{i} = 1)P(\mathbf{x}_{i}|Y_{i} = 1)}{P(S_{i} = 1|Y_{i} = 1)}$$

$$= P(\mathbf{x}_{i}|Y_{i} = 1)$$

$$= \frac{P(Y_{i} = 1|\mathbf{x}_{i})P(\mathbf{x}_{i})}{P(Y_{i} = 1)}$$
(2)

• Combine (1) and (2)

$$P(Y_i = 1 | \mathbf{x}_i, S_i = 1) = P(Y_i = 1 | \mathbf{x}_i) \frac{P(S_i = 1 | Y_i = 1)}{P(S_i = 1 | \mathbf{x}_i)}$$
$$= \pi(\mathbf{x}_i) \frac{P(S_i = 1 | Y_i = 1)}{P(S_i = 1 | \mathbf{x}_i)}$$

• Odds

$$\frac{P(Y_i = 1 | \mathbf{x}_i, S_i = 1)}{P(Y_i = 0 | \mathbf{x}_i, S_i = 1)} = \frac{\pi(\mathbf{x}_i)}{1 - \pi(\mathbf{x}_i)} \frac{P(S_i = 1 | Y_i = 1)}{P(S_i = 1 | Y_i = 0)}$$

$$= \frac{\pi(\mathbf{x}_i)}{1 - \pi(\mathbf{x}_i)} \frac{\tau_1}{\tau_0}$$

• Odds ratio between \mathbf{x}_a vs \mathbf{x}_b

$$OR = \frac{\pi(\mathbf{x}_a)/\{1 - \pi(\mathbf{x}_a)\}}{\pi(\mathbf{x}_b)/\{1 - \pi(\mathbf{x}_b)\}}$$

OR is the same as the prospective design OR.

• Logistic regression model with retrospective sampling

$$\log\{odds(\mathbf{x}_i)\} = \mathbf{x}_i'\beta^*$$
$$= \mathbf{x}_i'\beta + \log\left(\frac{\tau_1}{\tau_0}\right)$$

• Intercept:

$$\beta_0^* = \beta_0 + \log\left(\frac{\tau_1}{\tau_0}\right)$$

- Only the intercept is changed.
- If the sampling fractions are known (τ_0 and τ_1), we can estimate true β_0 .

Case-Control: Example

- We return to the lung cancer example in Lecture Note #8 ...
 - Smoking is a risk factor for the colorectal cancer. It can increase the risk twice.
 - Assumptions:
 - * Risk for the cancer among non-smoker: 0.05
 - * Prevalence of smoking: 20%
 - Studies
 - * Case-control study with 5,000 cases vs 5,000 controls.

• Consider a saturated model based on the logit link,

$$\log\left\{\frac{\pi_i}{1-\pi_i}\right\} = \beta_0 + \beta_1 X_i$$

• True values

$$\beta_0 = \log \left\{ \frac{0.05}{0.95} \right\} = -2.944$$

$$\beta_0 + \beta_1 = \log \left\{ \frac{0.1}{0.9} \right\} = -2.197$$

$$\beta_1 = 0.747; \exp(\beta_1) = 2.11$$

Example: Case-Control Sampling (logit)

	Y=0	Y=1	total
X=0	4022	3358	7380
X=1	978	1642	2620
total	5000	5000	10000

• we compute the parameter estimates as:

$$\widehat{\beta}_0 = \log \left\{ \frac{3358}{4022} \right\} = -0.1804$$

$$\widehat{\beta}_0 + \widehat{\beta}_1 = \log \left\{ \frac{1642}{978} \right\} = 0.518$$

$$\widehat{\beta}_1 = 0.698; \exp(\widehat{\beta}_1) = 2.01$$

- Calculate sampling fraction:
 - * Prevalence:

$$P(Y = 1) = 0.06$$

* Ratio of the sampling fractions:

$$\frac{\tau_1}{\tau_0} = 0.94/0.06 = 15.6667$$

 \circ Adjust β_0 using the sampling fractions:

$$\widehat{\beta}_0 - \log(\frac{\tau_1}{\tau_0}) = -0.1804 - 2.7515 = -2.9319$$

Outcome-Dependent Sampling

- Case-control study is a special case of what has come to be called *Outcome-Dependent Sampling* (ODS)
 - creative ways to sample cases and controls
 - outcome can be binary, or more complicated structure
 - o extension to survival times, clustered data, etc

Link functions

- o Dose-response modeling
- Link functions
- Interpretation of parameters
- \circ Issues in case-control sampling

Dose-Response Models: Introduction

- General set-up:
 - evaluate effect of dose on the probability of a specific event
 - \circ covariate: D_i
 - \circ dependent variable: $Y_i = 0, 1$
 - $\circ \text{ set } \pi_i = \pi(D_i) = P(Y_i = 1 | D_i)$
- Based on our study to date, we use the logit link
 - we now explore alternative link functions

Link Functions: Binary Response

• Link functions used for binary data:

$$\log \left\{ \frac{\pi_i}{1 - \pi_i} \right\} = \mathbf{x}_i^T \boldsymbol{\beta}$$

$$\Phi^{-1}(\pi_i) = \mathbf{x}_i^T \boldsymbol{\beta}$$

$$\log \left\{ -\log(1 - \pi_i) \right\} = \mathbf{x}_i^T \boldsymbol{\beta}$$

$$-\log\{-\log(\pi_i)\} = \mathbf{x}_i^T \boldsymbol{\beta}$$

- \circ all are continuous and increasing on (0,1)
- o only first two are symmetric

Link Functions: Background

• Often model π_i using a cumulative distribution function

$$\pi(t) = \int_{-\infty}^{t} f(s)ds$$

where f(s) is a tolerance distribution \circ characteristics of valid f(s):

- (i) $f(s) \ge 0$
- (ii) $\int_{-\infty}^{\infty} f(s)ds = 1$

Connection to Bioassays

- Historically, binomial regression models were motivated by *bioassay* studies
 - response: proportion of eventse.g., percent dead
 - exposure: dose levele.g., treatment, toxin, contaminant, etc
- Models of the form $g(\pi_i) = \beta_0 + \beta_1 D_i$ were often considered

Example: Uniform Tolerance

• Example: Suppose that the tolerance distribution is $\overline{\text{Uniform}(a,b)}$:

$$f(s) =$$

$$\pi(t) =$$

 \circ Graphs of f(s) and $\pi(t)$:

Uniform Tolerance

• Connecting dose and tolerance:

$$\pi(x) = \beta_0 + \beta_1 x$$

$$\beta_0 = \frac{-a}{b-a}$$

$$\beta_1 = \frac{1}{b-a}$$

- Need to impose constraints on x, β_0 and β_1
 - \circ standard GLM methods would not apply

Probit Model

• Suppose that a $Normal(\mu, \sigma^2)$ distribution is used for the tolerance

$$\circ f(s) =$$

$$\circ P(T \leq t) =$$

• Choosing the probit function as the link:

$$\Phi^{-1}(\pi(x)) = \beta_0 + \beta_1 x$$

$$\beta_0 = -\frac{\mu}{\sigma}$$

$$\beta_1 = \frac{1}{\sigma}$$

Probit Model (continued)

- Probit link is used frequently
 - e.g., $Y_i = I_i(\text{dead})$ μ referred to as the median lethal dose, LD(50): dose required to kill 50% of the members of a tested population in a specific time.

Logit Link

• Consider the logistic tolerance distribution:

$$f(s) = \frac{\beta_1 \exp\{\beta_0 + \beta_1 s\}}{(1 + \exp\{\beta_0 + \beta_1 s\})^2}$$

which implies that

$$\pi(t) =$$

which implies the *logit* link function

Complementary Log-Log Link

• If tolerance follows the *extreme value* distribution:

$$f(s) = \beta_1 \exp\{(\beta_0 + \beta_1 s) - e^{\beta_0 + \beta_1 s}\}\$$

then we obtain

$$\pi(t) = 1 - \exp\left\{-e^{\beta_0 + \beta_1 t}\right\}$$

which implies the *complementary log-log* link:

$$\log\{-\log(1-\pi(x))\} = \beta_0 + \beta_1 x$$

- Related to the harzard ratio
 - Hazard function

$$h(t) = P(T = t | T \ge t) = \frac{f(t)}{1 - \pi(t)}$$

- Hazard ratio:

$$\frac{h(t+1)}{h(t)} = \exp(\beta_1)$$

f(s) functions with $\beta_0 = 0$ and $\beta_1 = 1$

 $\pi(x)$ functions

Case-Control Sampling

- Recall that logistic regression provides a consistent OR estimator for case-control sampling
 - e.g, if the model is given by

$$\log \left\{ \frac{\pi_i}{1 - \pi_i} \right\} = \beta_0 + \mathbf{x}_{i1}^T \boldsymbol{\beta}_1$$

then a case-control study will consistently estimate:

- This is a property of the logit link
 - need not hold for alternative link functions

Case-Control Sampling: Example

- Lung cancer example
 - Cohort study with 5,000 non-smoker vs 5,000 smokers
 - Case-control study with 5,000 cases vs 5,000 controls.

Example: Complementary log-log link

• Example: Assume that the true model follows the complementary log-log link,

$$\log\left\{-\log(1-\pi_i)\right\} = \beta_0 + \beta_1 X_i$$

• True values

$$\beta_0 = \log \{-\log(1 - 0.05)\} = -2.97$$

 $\beta_0 + \beta_1 = \log \{-\log(1 - 0.1)\} = -2.25$

 $\beta_1 = 0.720$

Example: Cohort Sampling (CLL)

	Y=0	Y=1	total
X=0	4748	252	5000
X=1	4465	535	5000
total	9213	787	10000

• Parameter estimates:

$$\widehat{\beta}_0 = \log \{-\log(4748/5000)\} = -2.962$$

$$\widehat{\beta}_0 + \widehat{\beta}_1 = \log \{-\log(4465/5000)\} = -2.178$$

$$\widehat{\beta}_1 = 0.783$$

Example: Case-Control Sampling (CLL)

	Y=0	Y=1	total
X=0	4022	3358	7380
X=1	978	1642	2620
total	5000	5000	10000

• Parameter estimates:

$$\widehat{\beta}_0 = \log \{-\log(4022/7380)\} = -0.499$$

$$\widehat{\beta}_0 + \widehat{\beta}_1 = \log \{-\log(978/2620)\} = -0.0147$$

$$\widehat{\beta}_1 = 0.484$$