

CS-3002: Information Security

Lecture # 5: Message Integrity, MACs, Collision Resistant HMAC

Prof. Dr. Sufian Hameed
Department of Computer Science
FAST-NUCES

Message Integrity

Goal: integrity, no confidentiality.

 There are Scenarios where integrity is important and confidentiality is not required

Examples:

- Protecting public binaries on disk
 - To prevent malicious manipulation
- Protecting banner ads on web pages.

Message integrity: MACs

- MAC is short information
 - Provide integrity and authenticity assurances on the message.
 - Integrity assurances detects accidental and intentional message changes
 - Authenticity assurances affirms the message's origin

Def: MAC I = (S,V) defined over (K,M,T) is a pair of algs:

- S(k,m) outputs t in T
- V(k,m,t) outputs 'yes' or 'no'

MAC

Integrity requires a secret key?

• Attacker can easily modify message m and re-compute CRC.

• CRC designed to detect **random**, not malicious errors.

Secure MACs

MAC:

- Signing Alg. $S(k,m) \rightarrow t$ and
- Verification alg. $V(k,m,t) \rightarrow 0,1$

Attacker's power: chosen message attack

• for $m_1, m_2, ..., m_q$ attacker is given $t_i \leftarrow S(k, m_i)$

Attacker's goal: existential forgery

- produce some <u>new</u> valid message/tag pair (m,t). $(m,t) \notin \{ (m_1,t_1), ..., (m_q,t_q) \}$
- ⇒ attacker cannot produce a valid tag for a new message
- \Rightarrow given (m,t) attacker cannot even produce (m,t') for $t' \neq t$

Lets Make Secure MACs

A bad example

Suppose $\mathbf{F} : \mathbf{K} \times \mathbf{X} \longrightarrow \mathbf{Y}$ is a secure PRF with $\mathbf{Y} = \{0,1\}^{10}$

Is the derived MAC I_F a secure MAC system?

- •Yes, the MAC is secure because the PRF is secure
- No tags are too short: anyone can guess the tag for any msg
- •It depends on the function F

Security

<u>Thm</u>: If **F**: $K \times X \longrightarrow Y$ is a secure PRF and 1/|Y| is negligible (i.e. |Y| is large) then I_F is a secure MAC.

 \Rightarrow I_F is secure as long as |Y| is large, say |Y| = 2⁸⁰.

Examples

- AES (a secure PRF): a MAC for 16-byte messages
- Main question: how to convert Small-MAC into a Big-MAC ?
- Two main constructions used in practice
 - **CBC-MAC** (banking ANSI X9.9, X9.19, FIPS 186-3)
 - **HMAC** (Internet protocols: SSL, IPSEC, SSH, ...)
- Both convert a small-PRF into a big-PRF

Truncating MACs based on PRFs

```
Easy lemma: suppose F: \mathbf{K} \times \mathbf{X} \longrightarrow \{\mathbf{0},\mathbf{1}\}^n is a secure PRF. Then so is \mathbf{F}_t(\mathbf{k},\mathbf{m}) = \mathbf{F}(\mathbf{k},\mathbf{m})[\mathbf{1}...t] for all 1 \le t \le n of output
```

⇒ if (S,V) is a MAC based on a secure PRF outputting n-bit tags
 the truncated MAC outputting w bits is secure
 ... as long as 1/2^w is still negligible (say w≥64)

CBC-MAC and NMAC

MACs and PRFs

Recall: secure PRF $\mathbf{F} \Rightarrow$ secure MAC, as long as $|\mathbf{Y}|$ is large

$$S(k, m) = F(k, m)$$

Our goal:

given a PRF for short messages (AES) construct a PRF for long messages

From here on let $X = \{0,1\}^n$ (e.g. n=128)

Construction 1: encrypted CBC-MAC

raw CBC

Construction 2: NMAC (nested MAC)

cascade

Why the last encryption step in ECBC-MAC and NMAC?

NMAC: suppose we define a MAC I = (S,V) where

$$S(k,m) = cascade(k, m)$$

This MAC is secure

This MAC can be forged without any chosen msg queries

This MAC can be forged, but only with two msg queries

Why the last encryption step in ECBC-MAC?

Suppose we define a MAC $I_{RAW} = (S,V)$ where

$$S(k,m) = rawCBC(k,m)$$

Then I_{RAW} is easily broken using a 1-chosen msg attack.

Adversary works as follows:

- Choose an arbitrary one-block message $m \in X$
- Request tag for m. Get t = F(k, m)
- Output t as MAC forgery for the 2-block message (m, t⊕m)

Indeed: $rawCBC(k, (m, t \oplus m)) = F(k, F(k,m) \oplus (t \oplus m)) = F(k, t \oplus (t \oplus m)) = t$

Comparison

ECBC-MAC is commonly used as an AES-based MAC

- CCM encryption mode (used in 802.11i)
- NIST standard called CMAC

NMAC not usually used with AES or 3DES

- Main reason:
 - need to change AES key on every block
 - requires re-computing AES key expansion
- But NMAC is the basis for a popular MAC called HMAC (next)

MAC Padding

Recall: ECBC-MAC

What if msg. len. is not multiple of block-size?

CBC MAC padding

Bad idea: pad m with 0's

Is the resulting MAC secure?

Yes, the MAC is secure

It depends on the underlying MAC

No, given tag on msg m attacker obtains tag on mll0

Problem: pad(m) = pad(mll0)

CBC MAC padding

For security, padding must be invertible!

$$m_0 \neq m_1 \implies pad(m_0) \neq pad(m_1)$$

<u>ISO</u>: pad with "1000...00". Add new dummy block if needed.

• The "1" indicates beginning of pad.

CMAC (NIST standard)

Variant of CBC-MAC where $key = (k, k_1, k_2)$ (K_1, K_2) derived

- No final encryption step (extension attack thwarted by last keyed xor)
- No dummy block (ambiguity resolved by use of k₁ or k₂)

Parallel- MAC (PMAC)

• ECBC and NMAC are sequential.

• Can we build a parallel MAC from a small PRF??

Construction 3: PMAC – parallel MAC

P(k, i): an easy to compute function

PMAC is incremental

Suppose F is a PRP.

When $m[1] \rightarrow m'[1]$ can we quickly update tag?

no, it can't be done

do
$$F^{-1}(k_1, tag) \oplus F(k_1, m'[1] \oplus P(k, 1))$$

do $F^{-1}(k_1, tag) \oplus F(k_1, m[1] \oplus P(k, 1)) \oplus F(k_1, m'[1] \oplus P(k, 1))$

do tag \bigoplus $F(k_1, m[1] \bigoplus P(k,1)) \bigoplus F(k_1, m'[1] \bigoplus P(k,1))$

Then apply $F(k_1, \cdot)$

Construction 4: HMAC (Hash-MAC)

Most widely used MAC on the Internet.

... but, we first we need to discuss hash function.

Further reading

- J. Black, P. Rogaway: CBC MACs for Arbitrary-Length Messages: The Three-Key Constructions. J. Cryptology 18(2): 111-131 (2005)
- K. Pietrzak: A Tight Bound for EMAC. ICALP (2) 2006: 168-179
- J. Black, P. Rogaway: A Block-Cipher Mode of Operation for Parallelizable Message Authentication. EUROCRYPT 2002: 384-397
- M. Bellare: New Proofs for NMAC and HMAC: Security Without Collision-Resistance. CRYPTO 2006: 602-619
- Y. Dodis, K. Pietrzak, P. Puniya: A New Mode of Operation for Block Ciphers and Length-Preserving MACs. EUROCRYPT 2008: 198-219

Recap: message integrity

So far, four MAC constructions:

ECBC-MAC, CMAC: commonly used with AES (e.g. 802.11i)

NMAC: basis of HMAC (this segment)

PMAC: a parallel MAC

This module: MACs from collision resistance.

Collision Resistance

Let $H: M \rightarrow T$ be a hash function (|M| >> |T|)

A <u>collision</u> for H is a pair m_0 , $m_1 \in M$ such that: $H(m_0) = H(m_1) \quad \text{and} \quad m_0 \neq m_1$

A function H is **collision resistant** if for all (explicit) "eff" algs. A:

 $Adv_{CR}[A,H] = Pr[A \text{ outputs collision for } H]$ is "neg".

Example: SHA-256 (outputs 256 bits)

MACs from Collision Resistance

Let I = (S,V) be a MAC for short messages over (K,M,T) (e.g. AES)

Let $H: M^{big} \rightarrow M$

Def: $I^{big} = (S^{big}, V^{big})$ over (K, M^{big}, T) as:

$$S^{\text{big}}(\mathbf{k},\mathbf{m}) = S(\mathbf{k},\mathbf{H}(\mathbf{m}))$$
; $V^{\text{big}}(\mathbf{k},\mathbf{m},\mathbf{t}) = V(\mathbf{k},\mathbf{H}(\mathbf{m}),\mathbf{t})$

Thm: If I is a secure MAC and H is collision resistant then I^{big} is a secure MAC.

Example: $S(k,m) = AES_{2-block-cbc}(k, SHA-256(m))$ is a secure MAC.

MACs from Collision Resistance

$$S^{big}(k, m) = S(k, H(m))$$
; $V^{big}(k, m, t) = V(k, H(m), t)$

Collision resistance is necessary for security:

Suppose adversary can find $m_0 \neq m_1$ s.t. $H(m_0) = H(m_1)$.

Then: Sbig is insecure under a 1-chosen msg attack

step 1: adversary asks for $t \leftarrow S(k, m_0)$

step 2: output (m_1, t) as forgery

Protecting file integrity using C.R. hash

Software packages:

When user downloads package, can verify that contents are valid

H collision resistant ⇒
attacker cannot modify package without detection

no key needed (public verifiability), but requires read-only space

Generic Birthday Attack

Generic attack on C.R. functions

Let H: $M \rightarrow \{0,1\}^n$ be a hash function $(|M| >> 2^n)$

Generic alg. to find a collision in time $O(2^{n/2})$ hashes

Algorithm:

- 1. Choose $2^{n/2}$ random messages in M: $m_1, ..., m_2^{n/2}$ (distinct w.h.p)
- 2. For $i = 1, ..., 2^{n/2}$ compute $t_i = H(m_i) \in \{0,1\}^n$
- 3. Look for a collision $(t_i = t_i)$. If not found, go back to step 1.

How well will this work?

The birthday paradox

Let $r_1, ..., r_n \in \{1,...,B\}$ be indep. identically distributed integers.

Thm: when $\mathbf{n} = 1.2 \times \mathbf{B}^{1/2}$ then $\Pr[\exists i \neq j: r_i = r_j] \ge \frac{1}{2}$

The Birthday Problem

- Let there be n people in a room
- For what value of n two people will share the same birthday or What is the probability of two people sharing the same birthday?

Link to hash functions

• Collisions more likely for pairwise matching

Generic Attack

 $H: M \to \{0,1\}^n$. Collision finding algorithm:

- 1. Choose $2^{n/2}$ random elements in M: $m_1, ..., m_2^{n/2}$
- 2. For $i = 1, ..., 2^{n/2}$ compute $t_i = H(m_i) \in \{0,1\}^n$
- 3. Look for a collision $(t_i = t_j)$. If not found, got back to step 1.

Expected number of iteration ≈ 2

Running time: $O(2^{n/2})$ (space $O(2^{n/2})$)

Sample C.R. hash functions:

AMD Opteron, 2.2 GHz (Linux)

		digest		generic
	<u>function</u>	size (bits)	Speed (MB/sec)	<u>attack time</u>
NIST standards	SHA-1 SHA-256 SHA-512	160 256 512	153 111 99	2^{80} 2^{128} 2^{256}
	Whirlpool	512	57	2^{256}

best known collision (theoratical) finder for SHA-1 requires 2⁵¹ hash evaluations. Other than that there are no known collisions

The Merkle-Damgard Paradigm

Collision resistance: Review

Let H: M \rightarrow T be a hash function (|M| >> |T|)

A collision for H is a pair
$$m_0$$
, $m_1 \in M$ such that:

$$H(m_0) = H(m_1) \text{ and } m_0 \neq m_1$$

Goal: collision resistant (C.R.) hash functions

Step 1: given C.R. function for **short** messages, construct C.R. function for **long** messages

The Merkle-Damgard iterated construction

Given $h: T \times X \longrightarrow T$

(compression function)

we obtain $\mathbf{H}: \mathbf{X}^{\leq \mathbf{L}} \longrightarrow \mathbf{T}$.

H_i - chaining variables

If no space for PB add another block

MD collision resistance

<u>Thm</u>: if h is collision resistant then so is H.

collision on $H \Rightarrow$ collision on h

Constructing Compression Function

The Merkle-Damgard iterated construction

Thm: h collision resistant \Rightarrow H collision resistant

Goal: construct compression function $h: T \times X \longrightarrow T$

Compression. func. from a block cipher

E: $K \times \{0,1\}^n \longrightarrow \{0,1\}^n$ a block cipher

The **Davies-Meyer** compression function: $h(H, m) = E(m, H) \oplus H$

<u>Thm</u>: Suppose E is an ideal cipher (collection of |K| random perms.). Finding a collision h(H,m)=h(H',m') takes $O(2^{n/2})$ evaluations of (E,D).

Best possible!!

Other block cipher constructions

Let $E: \{0,1\}^n \times \{0,1\}^n \longrightarrow \{0,1\}^n$ for simplicity

Miyaguchi-Preneel: $h(H, m) = E(m, H) \oplus H \oplus m$ (Whirlpool)

 $h(H, m) = E(H \oplus m, m) \oplus m$ total of 12 variants like this

Case study: SHA-256

- Merkle-Damgard function
- Davies-Meyer compression function
- Block cipher: SHACAL-2

Provable compression functions

Choose a random 2000-bit prime $\,p\,$ and random $\,1 \leq u,\, v\, \leq p\,$.

For
$$m,h \in \{0,...,p-1\}$$
 define

$$h(H,m) = u^H \cdot v^m \pmod{p}$$

Compression is 2:1

Fact: finding collision for h(.,.) is as hard as solving "discrete-log" modulo p.

Problem: slow

HMAC: a MAC from SHA-256

The Merkle-Damgard iterated construction

Thm: h collision resistant \Rightarrow H collision resistant

Can we use H(.) to directly build a MAC?

MAC from a Merkle-Damgard Hash Function

H: $X^{\leq L} \rightarrow T$ a C.R. Merkle-Damgard Hash Function

Attempt #1: $S(k, m) = H(k \parallel m)$

This MAC is insecure because:

Given H(k | m) can compute H(w | l k | l m | l PB) for any w.

Given H(k11m) can compute H(k11mllw) for any w.

Given H(k ll m) can compute H(k ll m ll PB ll w) for any w.

Anyone can compute H(kllm) for any m.

Standardized method: HMAC (Hash-MAC)

Most widely used MAC on the Internet.

H: hash function.

example: SHA-256; output is 256 bits

Building a MAC out of a hash function:

HMAC: $S(k, m) = H(k \oplus \text{opad } \text{ll } H(k \oplus \text{ipad } \text{ll } m))$

HMAC in pictures

main difference: the two keys k_1 , k_2 are dependent

Timing Attacks on MAC Verification

Warning: verification timing attacks [L'09]

Example: Keyczar crypto library (Python) [simplified]

def Verify(key, msg, sig_bytes):
 return HMAC(key, msg) == sig_bytes

The problem: '==' implemented as a byte-by-byte comparison

Comparator returns false when first inequality found

Warning: verification timing attacks [L'09]

Timing attack: to compute tag for target message m do:

Step 1: Query server with random tag

Step 2: Loop over all possible first bytes and query server.

stop when verification takes a little longer than in step 1

Step 3: repeat for all tag bytes until valid tag found

Defense #1

Make string comparator always take same time (Python):

```
return false if sig_bytes has wrong length
result = 0
for x, y in zip( HMAC(key,msg) , sig_bytes):
    result |= ord(x) ^ ord(y)
return result == 0
```

Can be difficult to ensure due to optimizing compiler.

Defense #2

Make string comparator always take same time (Python):

```
def Verify(key, msg, sig_bytes):
    mac = HMAC(key, msg)
    return HMAC(key, mac) == HMAC(key, sig_bytes)
```

Attacker doesn't know values being compared

Lesson

Don't implement crypto yourself!

Acknowledgements

Material in this lecture are taken from the slides prepared by:

• Prof. Dan Boneh (Stanford)

