

FILTER CAPACITOR

POWER SUPPLY BUILDING BLOCKS

prepared by:

Gyro A. Madrona

Electronics Engineer

........

TOPIC OUTLINE

Filter Capacitor

Smoothing Pulsating DC

FILTER CAPACITOR

FILTER CAPACITOR

A <u>filter capacitor</u> charges up when the voltage rises and discharges when the voltage drops, filling in the gaps of the pulsating DC waveform. This results in a <u>smoother DC</u> output.

Power Supply Block Diagram

SMOOTHING PULSATING DC

SMOOTHING HALF-WAVE

Discharging equation

$$v_c(t) = v_o e^{-\frac{t}{\tau}}$$

where:
$$\tau = RC$$

Let
$$\tau = 10\Delta t$$

$$v_c(\Delta t) = v_o e^{-\frac{\Delta t}{10\Delta t}}$$

$$v_c(\Delta t) = 0.905v_o$$

For half-wave, if the discharge time constant for the capacitor is 10 times the pulse duration, the average DC output level is approximately 90% of v_P .

DC with AC Ripple

EXERCISE

The AC input to the given rectifier circuit is a $12V_{RMS}$, 60Hz sine wave. For this circuit, you need 9V DC across the 100Ω load resistor. Determine the value of R_1 and C_1 .

Solution

SMOOTHING FULL-WAVE

Discharging equation

$$v_c(t) = v_o e^{-\frac{t}{\tau}}$$

where:
$$\tau = RC$$

Let
$$\tau = 10\Delta t$$

$$v_c(\Delta t/2) = v_o e^{-\frac{\Delta t/2}{10\Delta t}}$$

$$v_c(\Delta t/2) = 0.95v_o$$

For full-wave, if the discharge time constant for the capacitor is 10 times the pulse duration, the average DC output level is approximately 95% of v_P .

DC with AC Ripple

EXERCISE

The AC input to the given rectifier circuit is a $12V_{RMS}$, 60Hz sine wave. For this circuit, you need 9V DC across the 100Ω load resistor. Determine the value of R_1 and C_1 .

Solution

LABORATORY

