

Faculty of Science and Engineering Department of Mathematics & Statistics

MID TERM ASSESSMENT PAPER

MODULE CODE: MA4003 SEMESTER: Autumn 2011/12

MODULE TITLE: Engineering Mathematics 3 DURATION OF EXAMINATION: 45 minutes

LECTURER: Dr. M. Burke PERCENTAGE OF TOTAL MARKS: 20 %

Colour: Yellow

INSTRUCTIONS TO CANDIDATES: Answer all questions. All questions carry equal marks. Use the Answer Sheet below.

Answer Sheet

STUDENT'S NAME: STUDENT'S ID NUMBER:

For each question, place an "X" in the box of your choice.

Question	a	b	c	d	e	Do not write in this column
1					X	
2				X		
3	X					
4				X		
5			X			
6		X				
7	X					
8			X			
9		X				
10					X	

Table of Laplace Transforms

$f(t), t \ge 0$	$F(s) = \mathcal{L}[f(t)]$
1	$F(s) = \mathcal{L}[f(t)]$ $\frac{1}{s}$
t	$\frac{1}{s^2}$
t^n	$\frac{n!}{s^{n+1}}$
e^{at}	$\frac{1}{s-a}$
$t^n e^{at}$	$\frac{n!}{(s-a)^{n+1}}$
$\sinh at$	$\frac{a}{s^2-a^2}$
$\cosh at$	$\frac{s}{s^2-a^2}$
$\frac{1}{a-b}(e^{at} - e^{bt})$	$\frac{1}{(s-a)(s-b)}$
$\frac{a}{a-b}e^{at} - \frac{b}{a-b}e^{bt}$	$\frac{s}{(s-a)(s-b)}$
$\sin at$	$\frac{a}{s^2+a^2}$
$\cos at$	$\frac{s}{s^2+a^2}$
f'(t)	sF(s) - f(0)
f''(t)	$s^2 F(s) - s f(0) - f'(0)$
$\int_0^t f(au) d au$	$\frac{1}{s}F(s)$
$e^{at}f(t)$	F(s-a)
Heaviside $u_a(t)$	$\frac{e^{-as}}{s}$
$f(t-a)u_a(t)$	$e^{-as}F(s)$
Ramp $R(t-a)$	$\frac{e^{-as}}{s^2}$
tf(t)	-F'(s)
$\frac{f(t)}{t}$	$\int_{s}^{\infty} F(\sigma) d\sigma$
$(f * g)(t) \equiv \int_0^t f(t - \tau)g(\tau) d\tau$	F(s)G(s)
f(t) = f(t+p)	$\frac{1}{1 - e^{-sp}} \int_0^p f(t)e^{-st} dt$

All f(t) are defined for $t \ge 0$.

1. The *Laplace* Transform of $\cos 3t - \sin 3t$ is

(a)
$$\frac{s-3}{(s^2+9)^2}$$
 (b) $\frac{1}{s-3}$ (c) $\frac{1}{s}$ (d) $\frac{1}{s+3}$ (e) $\frac{s-3}{s^2+9}$

2. The Laplace Transform of $e^{4t}(5t-1)$ is

$$(a) \ \frac{5s-1}{(s-4)^2} \ (b) \ \frac{5-s}{s^2(s-4)} \ (c) \ \frac{5}{s^2-16)} \ (d) \ \frac{9-s}{(s-4)^2} \ (e) \ \frac{5s-1}{(s+4)^2}$$

3. The Laplace Transform of $f(t) = \sin(2t - 6)u_3(t)$ is

(a)
$$\frac{2}{s^2+4}e^{-3s}$$
 (b) $\frac{2e^{-3}}{s(s^2+4)}$ (c) $\frac{3}{s^2+9}e^{-2s}$ (d) $\frac{s}{s^2+9}e^{-3s}$ (e) $\frac{3}{s^2+4}e^{-s}$

4. The inverse *Laplace* transform of $\frac{1}{c^2}e^{-2s}$ is

(a)
$$te^{-2t}$$
 (b) te^t (c) $tu_2(t)$ (d) $(t-2)u_2(t)$ (e) $(t-2)e^{-t}$

5. The inverse *Laplace* transform of $\frac{s-1}{s^2-2s+2}$ is

(a)
$$e^{-2t}$$
 (b) $\frac{1}{3}e^{2t} + \frac{2}{3}e^{-t}$ (c) $e^t \cos t$ (d) $e^t \cos 2t$ (e) e^{2t}

6. The convolution of t^2 with t^2 (also denoted by $t^2 * t^2$) is given by

(a)
$$\frac{t^6}{720}$$
 (b) $\frac{t^5}{30}$ (c) $\frac{t^4}{4}$ (d) $\frac{t^4}{6}$ (e) $\frac{t^2}{2}$

7. The function $f: \mathbb{R} \to \mathbb{R}$ satisfies $f(x+2\pi) = f(x)$. The period of f(2x) is

```
(a) \pi (b) 2 (c) 2\pi (d) 4 (e) 4\pi
```

8. The functions $f(x)=x-x^5$ and $g(x)=x\sin x$ defined on -1 < x < 1 have the property that

- (a) both are even (b) both are odd (c) f is odd and g is even
- (d) f is even and g is odd (e) at least one is neither even nor odd

9. The function $f(x) = \begin{cases} 1, & \text{if } -1 < x < 0 \\ -1, & \text{if } 0 < x < 1 \end{cases}$ is periodic with period 2. It has a *Fourier Series* $\sum_{n=1}^{\infty} b_n \sin(n\pi x)$; b_3 is given by

(a)
$$-\frac{2}{3}$$
 (b) $-\frac{4}{3\pi}$ (c) 0 (d) $\frac{4}{3\pi}$ (e) $\frac{2}{3}$

10. The coefficient a_0 in the *Fourier* Series for the periodic function $f(x) = \cosh x$ if -1 < x < 1 with period 2 has the value

$$(a) \quad -2\cosh 1 \qquad (b) \quad -\sinh 1 \qquad (c) \quad 0 \qquad (d) \quad \cosh 1 \qquad (e) \quad 2\sinh 1$$