1/f noise

From Wikipedia, the free encyclopedia

1/f noise, or more accurately $1/f^{\alpha}$ noise, is a signal or process with a power spectral density proportional to $1/f^{\alpha}$,

$$S(f) = \frac{\text{constant}}{f^{\alpha}}$$

where f is the frequency. Typically use of the term focuses on noises with exponents in the range $0 < \alpha < 2$, that is, fluctuations whose structure falls in-between white $(\alpha = 0)$ and brown $(\alpha = 2)$ noise. Such "1 / f-like" noises are widespread in nature and a source of great interest to diverse scientific communities.

The "strict 1/f" case of $\alpha = 1$ is also referred to as **pink noise**, although the precise definition of the latter term^[1] is not a 1/f spectrum per se but that it contains equal energy per octave, which is only satisfied by a 1/f spectrum. The name stems from the fact that it lies in the middle between white $(1/f^0)$ and red $(1/f^2)$, more commonly known as Brown or Brownian) noise^[2].

The term **flicker noise** is sometimes used to refer to 1/f noise, although this is more properly applied only to its occurrence in electronic devices due to a direct current. Mandelbrot and Van Ness proposed the name **fractional noise** (sometimes since called **fractal noise**) to emphasise that the exponent of the spectrum could take non-integer values and be closely related to fractional Brownian motion, but the term is very rarely used.

Contents

- 1 Description
 - 1.1 Pink noise
 - 1.2 Relationship to fractional Brownian motion
- 2 See also
- 3 References
 - 3.1 Notes
 - 3.2 Bibliography

Description

In the most general sense, noises with a $1/f^{\alpha}$ spectrum include white noise, where the

power spectrum is proportional to $1/f^0 = \text{constant}$, and Brownian noise, where it is proportional to $1/f^2$. The term black noise is sometimes used to refer to $1/f^\alpha$ noise with an exponent $\alpha > 2$.

Pink noise

[1]

Relationship to fractional Brownian motion

The power spectrum of a fractional Brownian motion of Hurst exponent H is proportional to: $1/f^{2H+1}$

See also

- Colors of noise
- Detrended fluctuation analysis
- Hurst exponent

References

Notes

- 1. ^ a b Federal Standard 1037C and its successor, American National Standard T1.523-2001.
- 2. ^ Confusingly, the term "red noise" is sometimes used instead to refer to pink noise. In both cases the name springs from analogy to light with a $1/f^{\alpha}$ spectrum: as α increases, the light becomes darker and darker red.

Bibliography

- Dutta, P. and Horn, P. M. (1981). "Low-frequency fluctuations in solids: 1 / f noise". Reviews of Modern Physics 53 (3): 497–516.

 DOI:10.1103/RevModPhys.53.497.
- Keshner, M. S. (1982). "1 / f noise". Proceedings of the IEEE 70 (3): 212–218.
- Li, W. (1996–present). A bibliography on 1 / f noise.
- Mandelbrot, B. B. and Van Ness, J. W. (1968). "Fractional Brownian motions, fractional noises and applications". *SIAM Review* 10 (4): 422–437.
- Press, W. H. (1978). "Flicker noises in astronomy and elsewhere". Comments on

Astrophysics 7 (4): 103-119.

Retrieved from "http://en.wikipedia.org/wiki/1/f_noise"

Category: Articles to be merged since January 2007

■ This page was last modified 04:52, 14 June 2007.

■ All text is available under the terms of the GNU Free Documentation License. (See Copyrights for details.)

Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a US-registered 501(c)(3) tax-deductible nonprofit charity.