

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization International Bureau

(43) International Publication Date 30 January 2003 (30.01.2003)

PCT

(10) International Publication Number WO 03/008604 A2

(51) International Patent Classification7:

C12P 13/00

(21) International Application Number: PCT/EP02/07352

(22) International Filing Date: 3 July 2002 (03.07.2002)

(25) Filing Language:

English

(26) Publication Language:

English

(30) Priority Data:

101 35 051.1 60/306,867 18 July 2001 (18.07.2001) DE 23 July 2001 (23.07.2001) US

(71) Applicant (for all designated States except US): DE-GUSSA AG [DE/DE]; Bennigsenplatz 1, 40474 Düsseldorf (DE).

(72) Inventor; and

(75) Inventor/Applicant (for US only): HERMANN, Thomas [DE/DE]; Zirkonstrasse 8, 33739 Bielefeld (DE).

(81) Designated States (national): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, OM, PH, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZM, ZW.

(84) Designated States (regional): ARIPO patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, SK, TR), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Declaration under Rule 4.17:

of inventorship (Rule 4.17(iv)) for US only

[Continued on next page]

(54) Title: PROCESS FOR THE PREPARATION OF L-AMINO ACIDS USING STRAINS OF THE ENTEROBACTERIACEAE FAMILY WHICH CONTAIN AN ATTENUATED ACEB GENE

(57) Abstract: The invention relates to a process for the preparation of L-amino acids, in particular L-threonine, in which the following steps are carried out: a) fermentation of microorganisms of the Enterobacteriaceae family which produce the desired L-amino acid and in which the aceB gene, or the nucleotide sequence which codes for this, is attenuated, in particular eliminated, b) concentration of the L-amino acid in the medium or in the cells of the bacteria, and c) isolation of the L-amino acid.

70 03/008604 A2

WO 03/008604 A2

Published: .

 without international search report and to be republished upon receipt of that report

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

Process for the Preparation of L-Amino Acids using Strains of the Enterobacteriaceae Family which Contain an Attenuated aceB Gene

Field of the Invention

5 This invention relates to a process for the preparation of L-amino acids, in particular L-threonine, using strains of the Enterobacteriaceae family in which the aceB gene is attenuated.

. Prior Art

- 10 L-Amino acids, in particular L-threonine, are used in human medicine and in the pharmaceuticals industry, in the foodstuffs industry and very particularly in animal nutrition.
- It is known to prepare L-amino acids by fermentation of strains of Enterobacteriaceae, in particular Escherichia coli (E. coli) and Serratia marcescens. Because of their great importance, work is constantly being undertaken to improve the preparation processes. Improvements to the process can relate to fermentation measures, such as e.g.
- 20 stirring and supply of oxygen, or the composition of the nutrient media, such as e.g. the sugar concentration during the fermentation, or the working up to the product form, by e.g. ion exchange chromatography, or the intrinsic output properties of the microorganism itself.
- Methods of mutagenesis, selection and mutant selection are used to improve the output properties of these microorganisms. Strains which are resistant to antimetabolites, such as e.g. the threonine analogue α -amino- β -hydroxyvaleric acid (AHV), or are auxotrophic for
- 30 metabolites of regulatory importance and produce L-amino acid, such as e.g. L-threonine, are obtained in this manner.

Methods of the recombinant DNA technique have also been employed for some years for improving the strain of strains of the Enterobacteriaceae family which produce Lamino acids, by amplifying individual amino acid biosynthesis genes and investigating the effect on the production.

Object of the Invention

The object of the invention is to provide new measures for improved fermentative preparation of L-amino acids, in particular L-threonine.

Summary of the Invention

The invention provides a process for the fermentative preparation of L-amino acids, in particular L-threonine, using microorganisms of the Enterobacteriaceae family which in particular already produce L-amino acids and in which the nucleotide sequence which codes for the aceB gene is attenuated.

Detailed Description of the Invention

Where L-amino acids or amino acids are mentioned in the

following, this means one or more amino acids, including
their salts, chosen from the group consisting of Lasparagine, L-threonine, L-serine, L-glutamate, L-glycine,
L-alanine, L-cysteine, L-valine, L-methionine, Lisoleucine, L-leucine, L-tyrosine, L-phenylalanine, Lhistidine, L-lysine, L-tryptophan and L-arginine. LThreonine is particularly preferred.

The term "attenuation" in this connection describes the reduction or elimination of the intracellular activity of one or more enzymes (proteins) in a microorganism which are coded by the corresponding DNA, for example by using a weak promoter or a gene or allele which codes for a corresponding enzyme with a low activity or inactivates the

corresponding enzyme (protein) or gene, and optionally combining these measures.

By attenuation measures, the activity or concentration of the corresponding protein is in general reduced to 0 to 5 75%, 0 to 50%, 0 to 25%, 0 to 10% or 0 to 5% of the activity or concentration of the wild-type protein or of the activity or concentration of the protein in the starting microorganism.

The process comprises carrying out the following steps:

- 10 a) fermentation of microorganisms of the Enterobacteriaceae family in which the aceB gene is attenuated,
 - b) concentration of the corresponding L-amino acid in the medium or in the cells of the microorganisms of the Enterobacteriaceae family, and

15

- c) isolation of the desired L-amino acid, constituents of the fermentation broth and/or the biomass in its entirety or portions (> 0 to 100 %) thereof optionally remaining in the product.
- The microorganisms which the present invention provides can produce L-amino acids from glucose, sucrose, lactose, fructose, maltose, molasses, optionally starch, optionally cellulose or from glycerol and ethanol. They are representatives of the Enterobacteriaceae family chosen from the genera Escherichia, Erwinia, Providencia and Serratia. The genera Escherichia and Serratia are preferred. Of the genus Escherichia the species Escherichia coli and of the genus Serratia the species Serratia marcescens are to be mentioned in particular.
- 30 Suitable strains, which produce L-threonine in particular, of the genus Escherichia, in particular of the species Escherichia coli, are, for example

Escherichia coli TF427
Escherichia coli H4578
Escherichia coli KY10935
Escherichia coli VNIIgenetika MG442

5 Escherichia coli VNIIgenetika M1
Escherichia coli VNIIgenetika 472T23
Escherichia coli BKIIM B-3996
Escherichia coli kat 13
Escherichia coli KCCM-10132

Suitable L-threonine-producing strains of the genus Serratia, in particular of the species Serratia marcescens, are, for example

> Serratia marcescens HNr21 Serratia marcescens TLr156 Serratia marcescens T2000

15

Strains from the Enterobacteriaceae family which produce Lthreonine preferably have, inter alia, one or more genetic or phenotypic features chosen from the group consisting of: resistance to α -amino- β -hydroxyvaleric acid, resistance to 20 thialysine, resistance to ethionine, resistance to α methylserine, resistance to diaminosuccinic acid, resistance to α -aminobutyric acid, resistance to borrelidin, resistance to rifampicin, resistance to valine analogues, such as, for example, valine hydroxamate, 25 resistance to purine analogues, such as, for example, 6dimethylaminopurine, a need for L-methionine, optionally a partial and compensable need for L-isoleucine, a need for meso-diaminopimelic acid, auxotrophy in respect of threonine-containing dipeptides, resistance to L-threonine, 30 resistance to L-homoserine, resistance to L-lysine, resistance to L-methionine, resistance to L-glutamic acid, resistance to L-aspartate, resistance to L-leucine, resistance to L-phenylalanine, resistance to L-serine,

resistance to L-cysteine, resistance to L-valine, 35 sensitivity to fluoropyruvate, defective threonine

dehydrogenase, optionally an ability for sucrose utilization, enhancement of the threonine operon, enhancement of homoserine dehydrogenase I-aspartate kinase I, preferably of the feed back resistant form, enhancement of homoserine kinase, enhancement of threonine synthase, enhancement of aspartate kinase, optionally of the feed back resistant form, enhancement of aspartate semialdehyde dehydrogenase, enhancement of phosphoenol pyruvate carboxylase, optionally of the feed back resistant form, enhancement of phosphoenol pyruvate synthase, enhancement of transhydrogenase, enhancement of the RhtB gene product, enhancement of the RhtC gene product, enhancement of the YfiK gene product, enhancement of a pyruvate carboxylase, and attenuation of acetic acid formation.

15 It has been found that microorganisms of the Enterobacteriaceae family produce L-amino acids, in particular L-threonine, in an improved manner after attenuation, in particular elimination, of the aceB gene

The nucleotide sequences of the genes of Escherichia coli 20 belong to the prior art and can also be found in the genome sequence of Escherichia coli published by Blattner et al. (Science 277: 1453 - 1462 (1997)).

The aceB gene is described, inter alia, by the following data:

25 Description: Malate synthase A

EC No.: 4.1.3.2

Reference: Byrne et al.; Nucleic Acids Research

16(19), 9342 (1988); Byrne et al.; Nucleic Acids Research 16(22), 10924 (1988); Cortay

30 et al.; Biochimie 71(9-10): 1043-9 (1989)

Accession No.: AE000474
Alternative gene name: mas

The nucleic acid sequences can be found in the databanks of the National Center for Biotechnology Information (NCBI) of the National Library of Medicine (Bethesda, MD, USA), the nucleotide sequence databank of the European Molecular

5 Biologies Laboratories (EMBL, Heidelberg, Germany or Cambridge, UK) or the DNA databank of Japan (DDBJ, Mishima, Japan).

The genes described in the text references mentioned can be used according to the invention. Alleles of the genes which 10 result from the degeneracy of the genetic code or due to "sense mutations" of neutral function can furthermore be used.

To achieve an attenuation, for example, expression of the gene or the catalytic properties of the enzyme proteins can be reduced or eliminated. The two measures can optionally be combined.

The reduction in gene expression can take place by suitable culturing, by genetic modification (mutation) of the signal structures of gene expression or also by the antisense-RNA 20 technique. Signal structures of gene expression are, for example, repressor genes, activator genes, operators, promoters, attenuators, ribosome binding sites, the start codon and terminators. The expert can find information in this respect, inter alia, for example, in Jensen and Hammer 25 (Biotechnology and Bioengineering 58: 191-195 (1998)), in Carrier and Keasling (Biotechnology Progress 15: 58-64 (1999), Franch and Gerdes (Current Opinion in Microbiology 3: 159-164 (2000)) and in known textbooks of genetics and molecular biology, such as, for example, the textbook of 30 Knippers ("Molekulare Genetik [Molecular Genetics]", 6th edition, Georg Thieme Verlag, Stuttgart, Germany, 1995) or that of Winnacker ("Gene und Klone [Genes and Clones]", VCH

Verlagsgesellschaft, Weinheim, Germany, 1990).

Mutations which lead to a change or reduction in the catalytic properties of enzyme proteins are known from the prior art. Examples which may be mentioned are the works of Qiu and Goodman (Journal of Biological Chemistry 272: 8611-8617 (1997)), Yano et al. (Proceedings of the National Academy of Sciences of the United States of America 95: 5511-5515 (1998), Wente and Schachmann (Journal of Biological Chemistry 266: 20833-20839 (1991)). Summarizing descriptions can be found in known textbooks of genetics and molecular biology, such as e.g. that by Hagemann ("Allgemeine Genetik [General Genetics]", Gustav Fischer Verlag, Stuttgart, 1986).

Possible mutations are transitions, transversions, insertions and deletions. Depending on the effect of the 15 amino acid exchange on the enzyme activity, "missense mutations or "nonsense mutations are referred to. Insertions or deletions of at least one base pair in a gene lead to "frame shift mutations", which lead to incorrect amino acids being incorporated or translation being 20 interrupted prematurely. If a stop codon is formed in the coding region as a consequence of the mutation, this also leads to a premature termination of the translation. Deletions of several codons typically lead to a complete loss of the enzyme activity. Instructions on generation of 25 such mutations are prior art and can be found in known textbooks of genetics and molecular biology, such as e.g. the textbook by Knippers ("Molekulare Genetik [Molecular Genetics]", 6th edition, Georg Thieme Verlag, Stuttgart, Germany, 1995), that by Winnacker ("Gene und Klone [Genes 30 and Clones]", VCH Verlagsgesellschaft, Weinheim, Germany, 1990) or that by Hagemann ("Allgemeine Genetik [General Genetics] ", Gustav Fischer Verlag, Stuttgart, 1986).

Suitable mutations in the genes, such as, for example, deletion mutations, can be incorporated into suitable strains by gene or allele replacement.

A conventional method is the method, described by Hamilton et al. (Journal of Bacteriology 171: 4617-4622 (1989)), of gene replacement with the aid of a conditionally replicating pSC101 derivative pMAK705. Other methods

5 described in the prior art, such as, for example, those of Martinez-Morales et al. (Journal of Bacteriology 181: 7143-7148 (1999)) or those of Boyd et al. (Journal of Bacteriology 182: 842-847 (2000)), can likewise be used.

It is also possible to transfer mutations in the particular genes or mutations which affect expression of the particular genes into various strains by conjugation or transduction.

It may furthermore be advantageous for the production of L-amino acids, in particular L-threonine, with strains of the 15 Enterobacteriaceae family, in addition to attenuation of the aceB gene, for one or more enzymes of the known threonine biosynthesis pathway or enzymes of anaplerotic metabolism or enzymes for the production of reduced nicotinamide adenine dinucleotide phosphate or enzymes of glycolysis or PTS enzymes or enzymes of sulfur metabolism to be enhanced.

The term "enhancement" in this connection describes the increase in the intracellular activity of one or more enzymes or proteins in a microorganism which are coded by the corresponding DNA, for example by increasing the number of copies of the gene or genes, using a potent promoter or a gene which codes for a corresponding enzyme or protein with a high activity, and optionally combining these measures.

30 By enhancement measures, in particular over-expression, the activity or concentration of the corresponding protein is in general increased by at least 10%, 25%, 50%, 75%, 100%, 150%, 200%, 300%, 400% or 500%, up to a maximum of 1000% or 2000%, based on that of the wild-type protein or the

activity or concentration of the protein in the starting microorganism.

Thus, for example, at the same time one or more of the genes chosen from the group consisting of

- the thrABC operon which codes for aspartate kinase, homoserine dehydrogenase, homoserine kinase and threonine synthase (US-A-4,278,765),
 - the pyc gene of Corynebacterium glutamicum which codes for pyruvate carboxylase (WO 99/18228),
- the pps gene which codes for phosphoenol pyruvate synthase (Molecular and General Genetics 231(2): 332-336 (1992)),
 - the ppc gene which codes for phosphoenol pyruvate carboxylase (Gene 31: 279-283 (1984)),
- the pntA and pntB genes which code for transhydrogenase
 (European Journal of Biochemistry 158: 647-653 (1986)),
 - the rhtB gene which imparts homoserine resistance (EP-A-0 994 190),
- the mgo gene which codes for malate:quinone oxidoreductase (WO 02/06459),
 - the rhtC gene which imparts threonine resistance (EP-A-1 013 765),
 - the thrE gene of Corynebacterium glutamicum which codes for the threonine export protein (WO 01/92545),
- the gdhA gene which codes for glutamate dehydrogenase (Nucleic Acids Research 11: 5257-5266 (1983); Gene 23: 199-209 (1983)),

- the hns gene which codes for the DNA-binding protein HLP-II (Molecular and General Genetics 212: 199-202 (1988)),
- the pgm gene which codes for phosphoglucomutase (Journal of Bacteriology 176: 5847-5851 (1994)),
 - the fba gene which codes for fructose biphosphate aldolase (Biochemical Journal 257: 529-534 (1989)),
- the ptsH gene of the ptsHIcrr operon which codes for the phosphohistidine protein hexose phosphotransferase of
 the phosphotransferase system PTS (Journal of Biological Chemistry 262: 16241-16253 (1987)),
 - the ptsI gene of the ptsHIcrr operon which codes for enzyme I of the phosphotransferase system PTS (Journal of Biological Chemistry 262: 16241-16253 (1987)),
- the crr gene of the ptsHIcrr operon which codes for the glucose-specific IIA component of the phosphotransferase system PTS (Journal of Biological Chemistry 262: 16241-16253 (1987)),
- the ptsG gene which codes for the glucose-specific IIBC component (Journal of Biological Chemistry 261: 16398-16403 (1986)),
 - the lrp gene which codes for the regulator of the leucine regulon (Journal of Biological Chemistry 266: 10768-10774 (1991)),
- of Biological Chemistry 261: 12414-12419 (1986)) and is also known by the name groES,
 - the ahpC gene of the ahpCF operon which codes for the small sub-unit of alkyl hydroperoxide reductase
- (Proceedings of the National Academy of Sciences of the United States of America 92: 7617-7621 (1995)),

- the ahpF gene of the ahpCF operon which codes for the large sub-unit of alkyl hydroperoxide reductase (Proceedings of the National Academy of Sciences of theUnited States of America 92: 7617-7621 (1995)),
- 5 the cysk gene which codes for cysteine synthase A (Journal of Bacteriology 170: 3150-3157 (1988)),
 - the cysB gene which codes for the regulator of the cys regulon (Journal of Biological Chemistry 262: 5999-6005 (1987)),
- the cysJ gene of the cysJIH operon which codes for the flavoprotein of NADPH sulfite reductase (Journal of Biological Chemistry 264: 15796-15808 (1989), Journal of Biological Chemistry 264: 15726-15737 (1989)),
- the cysI gene of the cysJIH operon which codes for the

 15 haemoprotein of NADPH sulfite reductase (Journal of
 Biological Chemistry 264: 15796-15808 (1989), Journal of
 Biological Chemistry 264: 15726-15737 (1989)) and
- the cysH gene of the cysJIH operon which codes for adenylyl sulfate reductase (Journal of Biological
 Chemistry 264: 15796-15808 (1989), Journal of Biological Chemistry 264: 15726-15737 (1989))

can be enhanced, in particular over-expressed.

The use of endogenous genes is in general preferred.

"Endogenous genes" or "endogenous nucleotide sequences" are

understood as meaning the genes or nucleotide sequences

present in the population of a species.

It may furthermore be advantageous for the production of L-amino acids, in particular L-threonine, in addition to attenuation of the aceB gene, for one or more of the genes

30 chosen from the group consisting of

- the tdh gene which codes for threonine dehydrogenase
 (Journal of Bacteriology 169: 4716-4721 (1987)),
- the mdh gene which codes for malate dehydrogenase (E.C.
 1.1.1.37) (Archives in Microbiology 149: 36-42 (1987)),
- the gene product of the open reading frame (orf) yjfA (Accession Number AAC77180 of the National Center for Biotechnology Information (NCBI, Bethesda, MD, USA)),
 - the gene product of the open reading frame (orf) ytfP (Accession Number AAC77179 of the National Center for Biotechnology Information (NCBI, Bethesda, MD, USA)),

10

- the pckA gene which codes for the enzyme phosphoenol pyruvate carboxykinase (Journal of Bacteriology 172: 7151-7156 (1990)),
- the poxB gene which codes for pyruvate oxidase (Nucleic Acids Research 14(13): 5449-5460 (1986)),
 - the aceA gene which codes for the enzyme isocitrate
 lyase (Journal of Bacteriology 170: 4528-4536 (1988)),
- the dgsA gene which codes for the DgsA regulator of the phosphotransferase system (Bioscience, Biotechnology and Biochemistry 59: 256-261 (1995)) and is also known under the name of the mlc gene,
 - the fruR gene which codes for the fructose repressor (Molecular and General Genetics 226: 332-336 (1991)) and is also known under the name of the cra gene,
- the rpoS gene which codes for the sigma³⁸ factor (WO 01/05939) and is also known under the name of the katF gene,
 - the aspA gene which codes for aspartate ammonium lyase (Nucleic Acids Research 13(6): 2063-2074 (1985)),

- the aceK gene which codes for isocitrate dehydrogenase kinase/phosphatase (Journal of Bacteriology 170(1): 89-97 (1988)) and
- the ugpB gene which codes for the periplasmic binding
 protein of the sn-glycerol 3-phosphate transport system
 (Molecular Microbiology 2(6): 767-775 (1988))

to be attenuated, in particular eliminated or for the expression thereof to be reduced.

It may furthermore be advantageous for the production of Lamino acids, in particular L-threonine, in addition to
attenuation of the aceB gene, to eliminate undesirable side
reactions (Nakayama: "Breeding of Amino Acid Producing
Microorganisms", in: Overproduction of Microbial Products,
Krumphanzl, Sikyta, Vanek (eds.), Academic Press, London,

15 UK, 1982).

The microorganisms produced according to the invention can be cultured in the batch process (batch culture), the fed batch process (feed process) or the repeated fed batch process (repetitive feed process). A summary of known

- 20 culture methods is described in the textbook by Chmiel
 (Bioprozesstechnik 1. Einführung in die
 Bioverfahrenstechnik [Bioprocess Technology 1. Introduction
 to Bioprocess Technology (Gustav Fischer Verlag, Stuttgart,
 1991)) or in the textbook by Storhas (Bioreaktoren und
- 25 periphere Einrichtungen [Bioreactors and Peripheral Equipment] (Vieweg Verlag, Braunschweig/Wiesbaden, 1994)).

The culture medium to be used must meet the requirements of the particular strains in a suitable manner. Descriptions of culture media for various microorganisms are contained

30 in the handbook "Manual of Methods for General Bacteriology" of the American Society for Bacteriology (Washington D.C., USA, 1981).

Sugars and carbohydrates, such as e.g. glucose, sucrose, lactose, fructose, maltose, molasses, starch and optionally cellulose, oils and fats, such as e.g. soya oil, sunflower oil, groundnut oil and coconut fat, fatty acids, such as e.g. palmitic acid, stearic acid and linoleic acid, alcohols, such as e.g. glycerol and ethanol, and organic acids, such as e.g. acetic acid, can be used as the source of carbon. These substances can be used individually or as a mixture.

10 Organic nitrogen-containing compounds, such as peptones, yeast extract, meat extract, malt extract, corn steep liquor, soya bean flour and urea, or inorganic compounds, such as ammonium sulfate, ammonium chloride, ammonium phosphate, ammonium carbonate and ammonium nitrate, can be used as the source of nitrogen. The sources of nitrogen can be used individually or as a mixture.

Phosphoric acid, potassium dihydrogen phosphate or dipotassium hydrogen phosphate or the corresponding sodium-containing salts can be used as the source of phosphorus.

- 20 The culture medium must furthermore comprise salts of metals, such as e.g. magnesium sulfate or iron sulfate, which are necessary for growth. Finally, essential growth substances, such as amino acids and vitamins, can be employed in addition to the abovementioned substances.
- 25 Suitable precursors can moreover be added to the culture medium. The starting substances mentioned can be added to the culture in the form of a single batch, or can be fed in during the culture in a suitable manner.

Basic compounds, such as sodium hydroxide, potassium

30 hydroxide, ammonia or aqueous ammonia, or acid compounds, such as phosphoric acid or sulfuric acid, can be employed in a suitable manner to control the pH of the culture.

Antifoams, such as e.g. fatty acid polyglycol esters, can be employed to control the development of foam. Suitable substances having a selective action, e.g. antibiotics, can

be added to the medium to maintain the stability of plasmids. To maintain aerobic conditions, oxygen or oxygen-containing gas mixtures, such as e.g. air, are introduced into the culture. The temperature of the culture is usually 25°C to 45°C, and preferably 30°C to 40°C. Culturing is continued until a maximum of L-amino acids or L-threonine has formed. This target is usually reached within 10 hours to 160 hours.

The analysis of L-amino acids can be carried out by anion exchange chromatography with subsequent ninhydrin derivation, as described by Spackman et al. (Analytical Chemistry 30: 1190-1206 (1958)), or it can take place by reversed phase HPLC as described by Lindroth et al. (Analytical Chemistry 51: 1167-1174 (1979)).

15 The process according to the invention is used for the fermentative preparation of L-amino acids, such as; for example, L-threonine, L-isoleucine, L-valine, L-methionine, L-homoserine and L-lysine, in particular L-threonine.

A pure culture of the Escherichia coli K-12 strain

20 DH5α/pMAK705 was deposited as DSM 13720 on 8th September

2000 at the Deutsche Sammlung für Mikroorganismen und

Zellkulturen (DSMZ = German Collection of Microorganisms

and Cell Cultures, Braunschweig, Germany) in accordance

with the Budapest Treaty.

25 The present invention is explained in more detail in the following with the aid of embodiment examples.

The isolation of plasmid DNA from Escherichia coli and all techniques of restriction, ligation, Klenow and alkaline phosphatase treatment are carried out by the method of 30 Sambrook et al. (Molecular Cloning - A Laboratory Manual (1989) Cold Spring Harbor Laboratory Press). Unless

described otherwise, the transformation of Escherichia coli is carried out by the method of Chung et al. (Proceedings of the National Academy of Sciences of the United States of America 86: 2172-2175 (1989)).

The incubation temperature for the preparation of strains and transformants is 37°C. Temperatures of 30°C and 44°C are used in the gene replacement method of Hamilton et al.

Example 1

Construction of the deletion mutation of the aceB gene

Parts of the gene regions lying upstream and downstream of the aceB gene and parts of the 5' and 3' region of the aceB gene are amplified from Escherichia coli K12 using the polymerase chain reaction (PCR) and synthetic oligonucleotides. Starting from the nucleotide sequence of the aceB gene and sequences lying upstream and downstream in E. coli K12 MG1655 (SEQ ID No. 1, Accession Number

15 AE000474), the following PCR primers are synthesized (MWG Biotech, Ebersberg, Germany):

aceB5'-1: 5' - TTCGGATCCATGACGAGGAG - 3' (SEQ ID No. 3)

aceB5'-2: 5' - TTGCCAACAGTGCCTGATAG - 3' (SEQ ID No. 4)

aceB3'-1: 5' - ATGCTTACTCACGCCTGTTG - 3' (SEO ID No. 5)

20 aceB3'-2: 5' - CATGTGCAGATGCTCCATAG - 3' (SEQ ID No. 6)

The chromosomal E. coli K12 MG1655 DNA employed for the PCR is isolated according to the manufacturer's instructions with "Qiagen Genomic-tips 100/G" (QIAGEN, Hilden, Germany). A DNA fragment approx. 650 bp in size from the 5' region of

- the aceB gene region (called aceB5') and a DNA fragment approx. 700 bp in size from the 3' region of the aceB gene region (called aceB3') can be amplified with the specific primers under standard PCR conditions (Innis et al. (1990) PCR Protocols. A Guide to Methods and Applications,
- 30 Academic Press) with Taq-DNA polymerase (Gibco-BRL, Eggenstein, Germany). The PCR products are each ligated

with the vector pCRII-TOPO (TOPO TA Cloning Kit, Invitrogen, Groningen, The Netherlands) in accordance with the manufacturer's instructions and transformed into the E. coli strain TOP10F'. Selection of plasmid-carrying cells 5 takes place on LB agar, to which 50 µg/ml ampicillin are added. After isolation of the plasmid DNA, the vector pCRII-TOPOaceB3' is cleaved with the restriction enzymes XbaI and Ecl136II. The aceB5' fragment is isolated after separation in 0.8% agarose gel with the aid of the QIAquick 10 Gel Extraction Kit (QIAGEN, Hilden, Germany). After isolation of the plasmid DNA the vector pCRII-TOPOaceB5' is cleaved with the enzymes EcoRV and XbaI and ligated with the aceB5' fragment isolated. The E. coli strain DH5 α is transformed with the ligation batch and plasmid-carrying 15 cells are selected on LB agar, to which 50 μg/ml ampicillin are added. After isolation of the plasmid DNA those plasmids in which the mutagenic DNA sequence shown in SEQ ID No. 7 is cloned are detected by control cleavage with the enzymes BclI, HincII, SpeI and SphI. One of the 20 plasmids is called pCRII-TOPOΔaceB (=pCRII-TOPOdeltaaceB).

Example 2

Construction of the replacement vector pMAK705∆aceB

The ΔaceB allele described in example 1 is isolated from the vector pCRII-TOPOΔaceB after restriction with the enzymes KpnI and XbaI and separation in 0.8% agarose gel, and ligated with the plasmid pMAK705 (Hamilton et al., Journal of Bacteriology 171: 4617-4622 (1989)), which has been digested with the enzymes KpnI and XbaI. The ligation batch is transformed in DH5α and plasmid-carrying cells are selected on LB agar, to which 20 μg/ml chloramphenicol are added. Successful cloning is demonstrated after isolation of the plasmid DNA and cleavage with the enzymes BamHI, ClaI, PauI and XbaI. The replacement vector formed, pMAK705ΔaceB (= pMAK705deltaaceB), is shown in Figure 1.

Example 3

Position-specific mutagenesis of the aceB gene in the E. coli strain MG442

The L-threonine-producing E. coli strain MG442 is described in the patent specification US-A- 4,278,765 and deposited as CMIM B-1628 at the Russian National Collection for Industrial Microorganisms (VKPM, Moscow, Russia).

For replacement of the chromosomal aceB gene with the plasmid-coded deletion construct, MG442 is transformed with the plasmid pMAK705ΔaceB. The gene replacement is carried out using the selection method described by Hamilton et al. (Journal of Bacteriology 171: 4617-4622 (1989)) and is verified by standard PCR methods (Innis et al. (1990) PCR Protocols. A Guide to Methods and Applications, Academic Press) with the following oligonucleotide primers:

aceB5'-1: 5' - TTCGGATCCATGACGAGGAG - 3' (SEQ ID No. 3)

aceB3'-2: 5' - CATGTGCAGATGCTCCATAG - 3' (SEQ ID No. 6)

After replacement has taken place, MG442 contains the form of the Δ aceB allele shown in SEQ ID No. 8. The strain obtained is called MG442 Δ aceB.

Example 4

Preparation of L-threonine with the strain MG442∆aceB

MG442ΔaceB is multiplied on minimal medium with the following composition: 3.5 g/l Na₂HPO₄*2H₂O, 1.5 g/l KH₂PO₄, 25 l g/l NH₄Cl, 0.1 g/l MgSO₄*7H₂O, 2 g/l glucose, 20 g/l agar. The formation of L-threonine is checked in batch cultures of 10 ml contained in 100 ml conical flasks. For this, 10 ml of preculture medium of the following composition: 2 g/l yeast extract, 10 g/l (NH₄)₂SO₄, 1 g/l KH₂PO₄, 0.5 g/l 30 MgSO₄*7H₂O, 15 g/l CaCO₃, 20 g/l glucose are inoculated and the batch is incubated for 16 hours at 37°C and 180 rpm on

an ESR incubator from Kühner AG (Birsfelden, Switzerland).
250 µl of this preculture are transinoculated into 10 ml of
production medium (25 g/l (NH₄)₂SO₄, 2 g/l KH₂PO₄, 1 g/l
MgSO₄*7H₂O, 0.03 g/l FeSO₄*7H₂O, 0.018 g/l MnSO₄*1H₂O, 30 g/l
5 CaCO₃, 20 g/l glucose) and the batch is incubated for 48
hours at 37°C. After the incubation the optical density
(OD) of the culture suspension is determined with an LP2W
photometer from Dr. Lange (Düsseldorf, Germany) at a
measurement wavelength of 660 nm.

- The concentration of L-threonine formed is then determined in the sterile-filtered culture supernatant with an amino acid analyzer from Eppendorf-BioTronik (Hamburg, Germany) by ion exchange chromatography and post-column reaction with ninhydrin detection.
- The result of the experiment is shown in Table 1.

Strain	OD	L-Threonine
	(660 nm)	g/l
MG442	6.0	1.5
MG442∆aceB	4.8	2.1

Table 1

Brief Description of the Figure:

- Figure 1: pMAK705∆aceB (= pMAK705deltaaceB)
- 20 The length data are to be understood as approx. data. The abbreviations and designations used have the following meaning:
 - cat: Chloramphenicol resistance gene
- rep-ts: Temperature-sensitive replication region of the plasmid pSC101

- aceB5': Part of the 5' region of the aceB gene and the region lying upstream
- aceB3': Part of the 3' region of the aceB gene and the region lying downstream
- 5 The abbreviations for the restriction enzymes have the following meaning
 - BamHI: Restriction endonuclease from Bacillus amyloliquefaciens H
 - ClaI: Restriction endonuclease from Caryphanon latum
- 10 KpnI: Restriction endonuclease from Klebsiella pneumoniae
 - PauI: Restriction endonuclease from Paracoccus alcaliphilus
 - XbaI: Restriction endonuclease from Xanthomonas badrii

What is claimed is:

15

30

- 1. A process for the preparation of L-amino acids, in particular L-threonine, which comprises carrying out the following steps:
- 5 a) fermentation of microorganisms of the
 Enterobacteriaceae family which produce the desired
 L-amino acid and in which the aceB gene, or the
 nucleotide sequence which codes for this, is
 attenuated, in particular eliminated,
- 10 b) concentration of the desired L-amino acid in the medium or in the cells of the microorganisms, and
 - c) isolation of the desired L-amino acid, constituents of the fermentation broth and/or the biomass in its entirety or portions (> 0 to 100 %) thereof optionally remaining in the product.
 - 2. A process as claimed in claim 1, wherein microorganisms in which further genes of the biosynthesis pathway of the desired L-amino acid are additionally enhanced are employed.
- 20 3. A process as claimed in claim 1, wherein microorganisms in which the metabolic pathways which reduce the formation of the desired L-amino acid are at least partly eliminated are employed.
- 4. A process as claimed in claim 1, wherein the expression of the polynucleotide which codes for the aceB gene is attenuated, in particular eliminated.
 - 5. A process as claimed in claim 1, wherein the regulatory and/or catalytic properties of the polypeptide (enzyme protein) for which the polynucleotide aceB codes are reduced.

- 6. A process as claimed in claim 1, wherein, for the preparation of L-amino acids, microorganisms of the Enterobacteriaceae family in which in addition at the same time one or more of the genes chosen from the group consisting of:
 - 6.1 the thrABC operon which codes for aspartate kinase, homoserine dehydrogenase, homoserine kinase and threonine synthase,
- 6.2 the pyc gene which codes for pyruvate carboxylase,

5

- 6.3 the pps gene which codes for phosphoenol pyruvate synthase,
- 6.4 the ppc gene which codes for phosphoenol pyruvate carboxylase,
- 15 6.5 the pntA and pntB genes which code for transhydrogenase,
 - 6.6 the rhtB gene which imparts homoserine resistance,
- 6.7 the mgo gene which codes for malate:quinone oxidoreductase,
 - 6.8 the rhtC gene which imparts threonine resistance,
 - 6.9 the thrE gene which codes for the threonine export protein,
- 25 6.10 the gdhA gene which codes for glutamate dehydrogenase,
 - 6.11 the hns gene which codes for the DNA-binding protein HLP-II,

6.12	the pgm gene which codes for phosphoglucomutase,
6.13	the fba gene which codes for fructose biphosphate aldolase,
5 6.14	the ptsH gene which codes for the phosphohistidine protein hexose phosphotransferase,
6.15	the ptsI gene which codes for enzyme I of the phosphotransferase system,
10 6.16	the crr gene which codes for the glucose- specific IIA component,
6.17	the ptsG gene which codes for the glucose- specific IIBC component,
6.18	the lrp gene which codes for the regulator of the leucine regulon,
6.19	the mopB gene which codes for 10 Kd chaperone,
6.20	the ahpC gene which codes for the small sub- unit of alkyl hydroperoxide reductase,
6.21	the ahpF gene which codes for the large sub- unit of alkyl hydroperoxide reductase,
6.22	the cysk gene which codes for cysteine synthase
6.23	the cysB gene which codes for the regulator of the cys regulon,
25 6.24	the cysJ gene which codes for the flavoprotein of NADPH sulfite reductase,
€.25	the cysI gene which codes for the haemoprotein of NADPH sulfite reductase and

6.26 the cysH gene which codes for adenylyl sulfate reductase,

is or are enhanced, in particular over-expressed, are fermented.

- 5 7. A process as claimed in claim 1, wherein, for the preparation of L-amino acids, microorganisms of the Enterobacteriaceae family in which in addition at the same time one or more of the genes chosen from the group consisting of:
- 7.1 the tdh gene which codes for threonine dehydrogenase,
 - 7.2 the mdh gene which codes for malate dehydrogenase,
- 7.3 the gene product of the open reading frame (orf) yjfA,
 - 7.4 the gene product of the open reading frame (orf) ytfP,
 - 7.5 the pckA gene which codes for phosphoenol pyruvate carboxykinase
- 20 7.6 the poxB gene which codes for pyruvate oxidase
 - 7.7 the aceA gene which codes for isocitrate lyase,
 - 7.8 the dgsA gene which codes for the DgsA regulator of the phosphotransferase system,
- 7.9 the fruR gene which codes for the fructose repressor,
 - 7.10 the rpoS gene which codes for the sigma³⁸ factor,

- 7.11 the aspA gene which codes for aspartate ammonium lyase,
- 7.12 the aceK gene which codes for isocitrate dehydrogenase kinase/phosphatase and
- 5 7.13 the ugpB gene which codes for the periplasmic binding protein of the sn-glycerol 3-phosphate transport system

is or are attenuated, in particular eliminated or reduced in expression, are fermented.

Figure 1:

SEQUENCE PROTOCOL

	<110>	D	eous	sa A	G												
5	<120>	· P	roce trai	ss f ns o	or t f th	he p e En	tero									in an	
10	<130>	- 0	2027	1 BT													
	<160>	- 8															
15	<170>	P	aten	tIn	vers	ion	3.1										
15 20	<210><211><211><212><213>	- 1 - D	661 NA	rich	ia c	:01i											
25	<220><221><222><222><223>	· (28).	.(16 gene													
30	<400> ttcgg			gacg	agga	ıg ct	gcac	_	_	_						cc gat ur Asp	54
30	gaa c Glu I 10																102
35	act o																150
40	cca c Pro (198
45	att o																246
50	cgc (294
	cgc (Arg / 90																342
55	gcg d Ala I																390
60	ctg (Leu 1	gca Ala	cca Pro	gac Asp 125	tgg Trp	aac Asn	aaa Lys	gtg Val	atc Ile 130	gac Asp	gly ggg	caa Gln	att Ile	aac Asn 135	ctg Leu	cgt Arg	438
65	gat (486

5	tac Tyr	cag Gln 155	ctc Leu	aag Lys	ccc Pro	aat Asn	cca Pro 160	gcg Ala	gtt Val	ttg Leu	att Ile	tgt Cys 165	cgg Arg	gta Val	cgc Arg	ggt Gly	534
	ctg Leu 170	cac His	ttg Leu	ccg Pro	gaa Glu	aaa Lys 175	cat His	gtc Val	acc Thr	tgg Trp	cgt Arg 180	ggt Gly	gag Glu	gca Ala	atc Ile	ccc Pro 185	582
10	ggc Gly	agc Ser	ctg Leu	ttt Phe	gat Asp 190	ttt Phe	gcg Ala	ctc Leu	tat Tyr	ttc Phe 195	ttc Phe	cac His	aac Asn	tat Tyr	cag Gln 200	gca Ala	630
15	ctg Leu	ttg Leu	gca Ala	aag Lys 205	ggc Gly	agt Ser	ggt Gly	ccc Pro	tat Tyr 210	ttc Phe	tat Tyr	ctg Leu	ccg Pro	aaa Lys 215	acc Thr	cag Gln	678
20	tcc Ser	tgg Trp	cag Gln 220	gaa Glu	gcg Ala	gcc Ala	tgg Trp	tgg Trp 225	agc Ser	gaa Glu	gtc Val	ttc Phe	agc Ser 230	tat Tyr	gca Ala	gaa Glu	726
25	gat Asp	cgc Arg 235	ttt Phe	aat Asn	ctg Leu •	ccg Pro	cgc Arg 240	ggc Gly	acc Thr	atc Ile	aag Lys	gcg Ala 245	acg Thr	ttg Leu	ctg Leu	att Ile	774
	gaa Glu 250	acg Thr	ctg Leu	ccc Pro	gcc Ala	gtg Val 255	ttc Phe	cag Gln	atg Met	gat Asp	gaa Glu 260	atc Ile	ctt Leu	cac His	gcg Ala	ctg Leu 265	822
30	cgt Arg	gac Asp	cat His	att Ile	gtt Val 270	ggt Gly	ctg Leu	aac Asn	tgc Cys	ggt Gly 275	cgt Arg	tgg Trp	gat Asp	tac Tyr	atc Ile 280	ttc Phe	870
35	agc Ser	tat Tyr	atc Ile	aaa Lys 285	acg Thr	ttg Leu	aaa Lys	aac Asn	tat Tyr 290	ccc Pro	gat Asp	cgc Arg	gtc Val	ctg Leu 295	cca Pro	gac Asp	918
40	aga Arg	cag Gln	gca Ala 300	gtg Val	acg Thr	atg Met	gat Asp	aaa Lys 305	cca Pro	ttc Phe	ctg Leu	aat Asn	gct Ala 310	tac Tyr	tca Ser	cgc Arg	966
45	ctg Leu	ttg Leu 315	att Ile	aaa Lys	acc Thr	tgc Cys	cat His 320	aaa Lys	cgc Arg	ggt Gly	gct Ala	ttt Phe 325	gcg Ala	atg Met	ggc Gly	ggc Gly	1014
	atg Met 330	Ala	gcg Ala	ttt Phe	Ile	ccg Pro 335	Ser	Lys	qeA	Glu	Glu	His	aat Asn	aac Asn	cag Gln	gtg Val 345	1062
50	ctc Leu	aac Asn	aaa Lys	gta Val	aaa Lys 350	gcg Ala	gat Asp	aaa Lys	tcg Ser	ctg Leu 355	gaa Glu	gcc Ala	aat Asn	aac Asn	ggt Gly 360	cac His	1110
55	gat Asp	ggc Gly	aca Thr	tgg Trp 365	atc Ile	gct Ala	cac His	cca Pro	ggc Gly 370	ctt Leu	gcg Ala	gac Asp	acg Thr	gca Ala 375	atg Met	gcg Ala	1158
60	gta Val	ttc Phe	aac Asn 380	gac Asp	att Ile	ctc Leu	Gly ggc	tcc Ser 385	cgt Arg	aaa Lys	aat Asn	cag Gln	ctt Leu 390	gaa Glu	gtg _. Val	atg Met	1206
65	cgc Awy	gaa G1u 095	caa Glt	gac Pap	gcg Ala	ecg ?∵o	att Ile 400	act Thr	gcc Ala	gat Asp	cag Gln	ctg Leu 405	ctg Leu	gca Ala	cct Pro	tgt Cys	1254

	ga Asj 410	S GTA	gaa Glu	cgc Arg	acc Thr	gaa Glu 415	gaa Glu	ggt Gly	atg Met	cgc Arg	gcc Ala 420	aac Asn	att Ile	cgc Arg	gtg Val	gct Ala 425	1302
5	gto Val	g cag l Gln	tac Tyr	atc Ile	gaa Glu 430	gcg Ala	tgg Trp	atc Ile	tct Ser	ggc Gly 435	aac Asn	ggc	tgt Cys	gtg Val	ccg Pro 440	att Ile	1350
10	tat Tyr	ggc Gly	ctg Leu	atg Met 445	gaa Glu	gat Asp	gcg Ala	gcg Ala	acg Thr 450	gct Ala	gaa Glu	att Ile	tcc Ser	cgt Arg 455	acc Thr	tcg Ser	1398
15	ato Ile	tgg Trp	cag Gln 460	tgg Trp	atc Ile	cat His	cat His	caa Gln 465	aaa Lys	acg Thr	ttg Leu	agc Ser	aat Asn 470	ggc Gly	aaa Lys	ccg Pro	1446
20	gtg Val	Thr 475	ьуs	gcc Ala	ttg Leu	ttc Phe	cgc Arg 480	cag Gln	atg Met	ctg Leu	ggc Gly	gaa Glu 485	gag Glu	atg Met	aaa Lys	gtc Val	1494
	att Ile 490	gcc Ala	agc Ser	gaa Glu	ctg Leu	ggc Gly 495	gaa Glu	gaa Glu	cgt Arg	ttc Phe	tcc Ser 500	cag Gln	ggg Gly	cgt Arg	ttt Phe	gac Asp 505	1542
25	gat Asp	gcc Ala	gca Ala	cgc Arg	ťtg Leu 510	atg Met	gaa Glu	cag Gln	atc Ile	acc Thr 515	act Thr	tcc Ser	gat Asp	gag Glu	tta Leu 520	att Ile	1590
30	gat Asp	ttc Phe	ctg Leu	acc Thr 525	ctg Leu	cca Pro	ggc Gly	tac Tyr	cgc Arg 530	ctg Leu	tta Leu	gcg Ala	taa	acca	accad	cat	1639
	aac	tatg	gag d	catct	gcad	a to	3										1661
35	<21 <21 <21 <21	0> ; 1> ; 2> ;	gag o 2 533 PRT Esche				a										1661
35 40	<21 <21 <21 <21 <40	0> ; 1> ; 2> ; 3> ;	2 533 PRT Esche 2	erich	nia d	coli		Thr	Asp	Glu 10	Leu	Ala	Phe	Thr	Arg 15	Pro	1661
	<21 <21 <21 <21 <40 Met	0> ; 1> ; 2> ; 3> ;	2 533 PRT Esche 2 Glu	erich Gln	nia d Ala 5	coli Thr	Thr			10					15		1661
40	<21 <21 <21 <21 <40 Met 1	0> ; 1> ; 2> ; 3> ; 0> ; Thr	2 533 PRT Esche Glu Glu	erich Gln Gln 20	nia d Ala 5 Glu Val	coli Thr Lys	Thr Gln	Ile Phe	Leu 25 Thr	10 Thr Pro	Ala Gln	Glu Arg	Ala	Val 30 Lys	15 Glu	Phe	1661
40	<21 <21 <21 <400 Met 1 Tyr	0> ; 1> ; 2> ; 3> ; 0> ; Thr	2 533 PRT Esche 2 Glu Glu Glu 35	Gln Gln 20 Leu	nia d Ala 5 Glu Val	Thr Lys	Thr Gln His	Ile Phe 40	Leu 25 Thr	10 Thr Pro	Ala Gln	Glu Arg	Ala Asn 45	Val 30 Lys	15 Glu Leu	Phe Leu	1661
40	<21 <21 <21 <21 <40 Met 1 Tyr Leu Ala	0> ; 1> ; 2> ; 3> ; Thr Gly Thr	2 533 PRT Esche 2 Glu Glu 35 Arg	Gln Gln 20 Leu	Ala 5 Glu Val	Thr Lys Thr	Thr Gln His Gln 55	Ile Phe 40 Gln	Leu 25 Thr	10 Thr Pro	Ala Gln Asp	Glu Arg Asn 60	Ala Asn 45 Gly	Val 30 Lys Thr	15 Glu Leu Leu	Phe Leu Pro	1661
40 45 50	<21 <21 <21 <40 Met 1 Tyr Leu Ala Asp 65	0> : 1> : 2> : 3> : Thr Gly Thr Ala 50	2 533 PRT Esche Glu Glu Glu 35 Arg	Gln Gln 20 Leu Ile Ser	Ala 5 Glu Val Gln	Thr Lys Thr Gln Thr	Thr Gln His Gln 55 Ala	Ile Phe 40 Gln Ser	Leu 25 Thr Asp	10 Thr Pro Ile Arg	Ala Gln Asp Asp 75	Glu Arg Asn 60 Ala	Ala Asn 45 Gly Asp	Val 30 Lys Thr	15 Glu Leu Leu	Phe Leu Pro Ile 80	1661
40 45 50	<21 <21 <21 <40 Met 1 Tyr Leu Ala Asp 65 Arg	0> : 1> : 2> : 3> : Thr Gly Thr Ala 50 Phe	2 533 PRT Esche Glu Glu 35 Arg Ile Ile	Gln Gln 20 Leu Ile Ser	Ala 5 Glu Val Gln Glu Ala 85	Thr Lys Thr Gln Thr Asp	Thr Gln His Gln 55 Ala Leu	Ile Phe 40 Gln Ser	Leu 25 Thr Asp Ile Asp	Thr Pro Ile Arg Arg 90	Ala Gln Asp Asp 75	Glu Arg Asn 60 Ala Val	Ala Asn 45 Gly Asp	Val 30 Lys Thr Trp	15 Glu Leu Leu Lys Thr 95	Phe Leu Pro Ile 80 Gly	1661

Ala Val Leu Ile Cys Arg Val Arg Gly Leu His Leu Pro Glu Lys H 165 Arg Val Arg Gly Leu His Leu Pro Glu Lys H 170 Val Thr Trp Arg Gly Glu Ala Ile Pro Gly Ser Leu Phe Asp Phe A 180 Clu Tyr Phe Phe His Asn Tyr Gln Ala Leu Leu Ala Lys Gly Ser G 195 Pro Tyr Phe Tyr Leu Pro Lys Thr Gln Ser Trp Gln Glu Ala Ala Tr 210 Trp Ser Glu Val Phe Ser Tyr Ala Glu Asp Arg Phe Asn Leu Pro Ala Val Phe 225 Cly Thr Ile Lys Ala Thr Leu Leu Ile Glu Thr Leu Pro Ala Val Phe 245 260 Asn Cys Gly Arg Trp Asp Tyr Ile Phe Ser Tyr Ile Lys Thr Leu Leu L 280 Asn Tyr Pro Asp Arg Val Leu Pro Asp Arg Gln Ala Val Thr Met Al 290 275 Asn Tyr Pro Asp Arg Val Leu Pro Asp Arg Gln Ala Val Thr Met Al 305 Asn Tyr Pro Asp Arg Val Leu Pro Asp Arg Gln Ala Val Thr Met Al 306 Asn Sy Gly Ala Phe Ala Met Gly Gly Met Ala Ala Phe Ile Pro S 307 Asn Gly Ala Phe Ala Met Gly Gly Met Ala Ala Phe Ile Pro S 308 Asn Gly Ala Phe Ala Met Gly Gly Met Ala Ala Phe Ile Pro S 309 Asn Gly Leu Ala Asn Asn Gln Val Leu Asn Lys Val Lys Ala Ala 340 Lys Arg Gly Leu Ala Asn Asn Gly His Asp Gly Thr Trp Ile Ala Hi 350 As Arg Lys Asn Glu Leu Clu Val Met Arg Gly Glu Arg Thr Glu Gl 370 Ser Arg Lys Asn Gln Leu Glu Val Met Ala Val Phe Asn Asp Ile Leu Gl 370 Ser Arg Lys Asn Glu Leu Ala Pro Cys Asp Gly Glu Arg Thr Glu Gl 405 Thr Ala Asp Gln Leu Leu Ala Pro Cys Asp Gly Glu Arg Thr Glu Gl 405 Gly Met Arg Ala Asn Ile Arg Val Ala Val Glu Tyr Ile Glu Ala Tr 420 Ala Thr Ala Glu Ile Ser Arg Thr Ser Ile Trp Gly Leu Met Glu Asp Ala 445 Ala Thr Leu Ser Asn Gly Lys Pro Val Thr Lys Ala Leu Phe Ar 450 Clin Lys Thr Leu Ser Asn Gly Lys Pro Val Thr Lys Ala Leu Phe Ar 450 Clin Lys Thr Leu Ser Asn Gly Lys Pro Val Thr Lys Ala Leu Phe Ar 450																		
Ala Val Leu Ile Cys Arg Val Arg Gly Leu His Leu Pro Glu Lys H 165			Val	Ile 130	Asp	Gly	Gln	Ile	Asn 135	Leu	Arg	Asp	Ala		Asn	Gly	Thr	Ile
165		5	Ser 145	Tyr	Thr	Asn	Glu	Ala 150	Gly	Lys	Ile	Tyr		Leu	Lys	Pro	Asn	Pro 160
Leu Tyr Phe Fhe His Asn Tyr Gln Ala Leu Leu Ala Lys Gly Ser G 205 Pro Tyr Phe Tyr Leu Pro Lys Thr Gln Ser Trp Gln Glu Ala Ala Tr 210 Trp Ser Glu Val Phe Ser Tyr Ala Glu Asp Arg Phe Asn Leu Pro Ala 235 Gly Thr Ile Lys Ala Thr Leu Leu Ile Glu Thr Leu Pro Ala Val Pro 225 Gly Thr Ile Lys Ala Thr Leu Leu Ile Glu Thr Leu Pro Ala Val Pro 265 Asn Cys Gly Arg Trp Asp Tyr Ile Phe Ser Tyr Ile Lys Thr Leu Leu Lys 285 Asn Tyr Pro Asp Arg Val Leu Pro Asp Arg Gln Ala Val Thr Met Ala 290 Lys Arg Gly Ala Phe Ala Met Gly Gly Met Ala Ala Phe Ile Pro S 1355 Lys Arg Gly Ala Phe Ala Met Gly Gly Met Ala Ala Phe Ile Pro S 235 40 Lys Asp Glu Glu His Asn Asn Gln Val Leu Asn Lys Val Lys Ala Ala 340 Lys Ser Leu Glu Ala Asn Asn Gln Val Leu Asn Lys Val Lys Ala Ala 355 Pro Gly Leu Ala Asp Thr Ala Met Ala Val Phe Asn Asp Ile Leu Glu Gly Chy Leu Ala Asp Gln Leu Ala Pro Cys Asp 395 Thr Ala Asp Gln Leu Leu Ala Pro Cys Asp Gly Glu Arg Thr Glu Glu Gly Met Arg Ala Arg Ala Arg Ala Arg Gly Met Arg Ala Arg Glu Glu His Asp Gln Leu Glu Ala Val Pro Cys Asp Gly Glu Arg Thr Glu Glu Glu His Asp Gly Leu Ala Asp Thr Ala Met Ala Val Phe Asn Asp Ile Leu Glu Ala Asp Glu Glu His Asp Glu Glu Arg Thr Glu Glu Glu His Asp Gly Lys Asp Gly Glu Arg Thr Glu Glu Glu His Asp Gly Cys Val Pro Ile Tyr Gly Leu Ada Asp Ala Pro Ile Ser Gly Asp Gly Cys Val Pro Ile Tyr Gly Leu Ada			Ala	Val	Leu	Ile	Cys 165	Arg	Val	Arg	Gly	Leu 170	His	Leu	Pro	Glu		His
195 200 205		10	Val	Thr	Trp	Arg 180	Gly	Glu	Ala	Ile		Gly	Ser	Leu	Phe		Phe	Ala
215 220 225 Trp Ser Glu Val Phe Ser Tyr Ala Glu Asp Arg Phe Asn Leu Pro Al 225 Gly Thr Ile Lys Ala Thr Leu Leu Ile Glu Thr Leu Pro Ala Val Phe 245 25 Gln Met Asp Glu Ile Leu His Ala Leu Arg Asp His Ile Val Gly Leu Asn Cys Gly Arg Trp Asp Tyr Ile Phe Ser Tyr Ile Lys Thr Leu Leu Leu Leu Ile Ser Arg Gln Ala Val Thr Met Ala 295 Asn Cys Gly Arg Trp Asp Tyr Ile Phe Ser Tyr Ile Lys Thr Leu Leu 295 Asn Tyr Pro Asp Arg Val Leu Pro Asp Arg Gln Ala Val Thr Met Ala 290 Lys Pro Phe Leu Asn Ala Tyr Ser Arg Leu Leu Ile Lys Thr Cys H 315 Lys Arg Gly Ala Phe Ala Met Gly Gly Met Ala Ala Phe Ile Pro Ser 325 Lys Asp Glu Glu His Asn Asn Gln Val Leu Asn Lys Val Lys Ala Arg 335 Lys Ser Leu Glu Ala Asn Asn Gln Val Leu Asn Lys Val Lys Ala Arg 365 Pro Gly Leu Ala Asp Thr Ala Met Ala Val Phe Asn Asp Ile Leu Gl 370 Ser Arg Lys Asn Gln Leu Glu Val Met Arg Glu Gln Asp Ala Pro Ile 385 Thr Ala Asp Gln Leu Leu Ala Pro Cys Asp Gly Glu Arg Thr Glu Gl 405 Thr Ala Asp Gln Leu Leu Ala Pro Cys Asp Gly Glu Arg Thr Glu Gl 405 Thr Ala Asp Gln Leu Ala Pro Cys Asp Gly Glu Arg Thr Glu Gl 405 Cln Ser Gly Asn Gly Cys Val Pro Ile Tyr Gly Leu Met Glu Asp Ala 60 Ala Thr Ala Glu Ile Ser Arg Thr Ser Ile Typ Gln Trp Ile His Hiden Arg Cln Lys Thr Leu Ser Asg Gly Lys Pro Val Thr Lys Ala Leu Phe Arg Cln Lys Thr Leu Ser Asg Gly Lys Pro Val Thr Lys Ala Leu Phe Arg Cln Cln Cys Asp Gln Lys Thr Leu Ser Asg Gly Lys Pro Val Thr Lys Ala Leu Phe Arg Cln Cys Can Cys Can Cys Can Cys Asp Cly Cys Val Pro Val Thr Lys Ala Leu Phe Arg Cln Cys Cys Can Cys Cys Cys Cys Cys Cys Cys Cys Thr Cys		15	Leu	Tyr	Phe 195	Phe	His	Asn	Tyr		Ala	Leu	Leu	Ala		Gly	Ser	Gly
Gly Thr Ile Lys Ala Thr Leu Leu Ile Glu Thr Leu Pro Ala Val Pro 245 Gln Met Asp Glu Ile Leu His Ala Leu Arg Asp His Ile Val Gly Leu Asn Cys Gly Arg Trp Asp Tyr Ile Phe Ser Tyr Ile Lys Thr Leu Leu Leu Leu Leu Asn Tyr Pro Asp Arg Val Leu Pro Asp Arg Gln Ala Val Thr Met As 290 Asn Tyr Pro Asp Arg Val Leu Pro Asp Arg Gln Ala Val Thr Met As 300 Lys Pro Phe Leu Asn Ala Tyr Ser Arg Leu Leu Ile Lys Thr Cys H. 315 Lys Arg Gly Ala Phe Ala Met Gly Gly Met Ala Ala Phe Ile Pro Se 325 Lys Asp Glu Glu His Asn Asn Gln Val Leu Asn Lys Val Lys Ala As 345 Lys Ser Leu Glu Ala Asn Asn Gly His Asp Gly Thr Trp Ile Ala His 370 Thr Ala Asp Gln Leu Glu Val Met Arg Glu Gln Asp Ala Pro Ile 385 Ser Arg Lys Asn Gln Leu Glu Val Met Arg Glu Gln Asp Ala Pro Ile Ala Asp 370 Thr Ala Asp Gln Leu Leu Ala Pro Cys Asp Gly Glu Arg Thr Glu Glu Glu Ado Sun Ile Arg Val Ala Val Gln Tyr Ile Glu Ala Tr 420 Ile Ser Gly Asn Gly Cys Val Pro Ile Tyr Gly Leu Met Glu Asp Ala 435 Ala Thr Ala Glu Ile Ser Arg Thr Ser Ile Trp Gln Trp Ile His His Asp Gln Lys Thr Leu Ser Asn Gly Lys Pro Val Thr Lys Ala Leu Phe Arg Gli Gln Lys Thr Leu Ser Asn Gly Lys Pro Val Thr Lys Ala Leu Phe Arg Gli Gln Lys Thr Leu Ser Asn Gly Lys Pro Val Thr Lys Ala Leu Phe Arg Gli Gln Lys Thr Leu Ser Asn Gly Lys Pro Val Thr Lys Ala Leu Phe Arg Gli Gln Lys Thr Leu Ser Asn Gly Lys Pro Val Thr Lys Ala Leu Phe Arg Gli Gln Lys Thr Leu Ser Asn Gly Lys Pro Val Thr Lys Ala Leu Phe Arg Gli Gln Lys Thr Leu Ser Asn Gly Lys Pro Val Thr Lys Ala Leu Phe Arg Gli Gln Lys Thr Leu Ser Asn Gly Lys Pro Val Thr Lys Ala Leu Phe Arg Gli Gln Lys Thr Leu Ser Asn Gly Lys Pro Val Thr Lys Ala Leu Phe Arg Gli Gln Lys Thr Leu Ser Asn Gly Lys Pro Val Thr Lys Ala Leu Phe Arg Gli Cln Lys Thr Leu Ser Asn Gly Lys Pro Val Thr Lys Ala Leu Phe Arg Gli Cln Asp Ala Cln Tr Lys Ala Leu Phe Arg Gli Cln Asp Ala Cln Tr Lys Ala Leu Phe Arg Gli Cln Asp Ala Cln Tr Lys Ala Leu Phe Arg Gli Cln Tr Lys Ala Leu Phe A			Pro	Tyr 210	Phe	Tyr	Leu	Pro		Thr	Gln	Ser	Trp		Glu	Ala	Ala	Trp
245		20	Trp 225	Ser	Glu	Val	Phe		Tyr	Ala	Glu	Asp		Phe	Asn	Leu	Pro	Arg 240
Asn Cys Gly Arg Trp Asp Tyr Ile Phe Ser Tyr Ile Lys Thr Leu Ly 275 Asn Tyr Pro Asp Arg Val Leu Pro Asp Arg Gln Ala Val Thr Met Al 295 Lys Pro Phe Leu Asn Ala Tyr Ser Arg Leu Leu Ile Lys Thr Cys H 315 Lys Arg Gly Ala Phe Ala Met Gly Gly Met Ala Ala Phe Ile Pro Sc 325 Lys Asp Glu Glu His Asn Asn Gln Val Leu Asn Lys Val Lys Ala As 345 Lys Ser Leu Glu Ala Asn Asn Gly His Asp Gly Thr Trp Ile Ala His 355 Pro Gly Leu Ala Asp Thr Ala Met Ala Val Phe Asn Asp Ile Leu Gl 375 Ser Arg Lys Asn Gln Leu Glu Val Met Arg Glu Gln Asp Ala Pro Ile 385 Thr Ala Asp Gln Leu Leu Ala Pro Cys Asp Gly Glu Arg Thr Glu Glu 405 Thr Ala Asp Gly Cys Val Pro Ile Tyr Gly Leu Met Glu Asp Ala Thr 425 Ala Thr Ala Glu Ile Ser Arg Thr Ser Ile Trp Gln Trp Ile His His Asp Gln Lys Thr Leu Ser Asp Gly Lys Pro Val Thr Lys Ala Leu Phe Asp Ala Con Asp Ala Con Asp Ala Gln Lys Thr Leu Ser Asp Gly Lys Pro Val Thr Lys Ala Leu Phe Asp Ala Leu Phe Asp Ala Con Asp Ala Con Asp Ala Gln Lys His Asp Gln Lys Thr Leu Ser Asp Gly Lys Pro Val Thr Lys Ala Leu Phe Asp Ala Con Asp Ala Lys Thr Leu Ser Asp Gly Lys Pro Val Thr Lys Ala Leu Phe Asp Ala Lys Thr Lys Thr Lys Thr Lys Ala Lys Pro Val Thr Lys Ala Lys Phe Asp Ala Lys Phe Asp Ala Lys Thr Lys Ala Lys Phe Asp Ala Lys Pro Val Thr Lys Ala Lys Phe Asp Ala Lys Pro Val Thr Lys Ala Lys Phe Asp Ala Con Asp Ala Con Asp Ala			Gly	Thr	Ile	Lys	Ala 245	Thr	Leu	Leu	Ile		Thr	Leu	Pro	Ala		Phe
285 Asn Tyr Pro Asp Arg Val Leu Pro Asp Arg Gln Ala Val Thr Met As 290 Lys Pro Phe Leu Asn Ala Tyr Ser Arg Leu Leu Ile Lys Thr Cys Hi 315 Lys Arg Gly Ala Phe Ala Met Gly Gly Met Ala Ala Phe Ile Pro Sc 335 Lys Asp Glu Glu His Asn Asn Gln Val Leu Asn Lys Val Lys Ala As 350 Lys Ser Leu Glu Ala Asn Asn Gly His Asp Gly Thr Trp Ile Ala Hi 355 Pro Gly Leu Ala Asp Thr Ala Met Ala Val Phe Asn Asp Ile Leu Gl 370 Ser Arg Lys Asn Gln Leu Glu Val Met Arg Glu Gln Asp Ala Pro Il 385 Thr Ala Asp Gln Leu Leu Ala Pro Cys Asp Gly Glu Arg Thr Glu Glu Gly Met Arg Ala Asn Ile Arg Val Ala Val Gln Tyr Ile Glu Ala Tr 420 Ile Ser Gly Asn Gly Cys Val Pro Ile Tyr Gly Leu Met Glu Asp Ala 60 Ala Thr Ala Glu Ile Ser Arg Thr Ser Ile Trp Gln Trp Ile His Hid 450 Glin Lys Thr Leu Ser Asn Gly Lys Pro Val Thr Lys Ala Leu Phe Arg Ala County And In The Arg County Ala Leu Phe Arg Ala Leu Phe Arg Ala Leu Phe Arg Ala Leu Phe Arg County Ala Leu Phe Arg Ala County Ala		25	Gln	Met	Asp	Glu 260	Ĭle	Leu	His	Ala	Leu 265	Arg	Asp	His	Ile		Gly	Leu
295 300 Lys Pro Phe Leu Asn Ala Tyr Ser Arg Leu Leu Ile Lys Thr Cys H. 315 Lys Arg Gly Ala Phe Ala Met Gly Gly Met Ala Ala Phe Ile Pro St 335 Lys Asp Glu Glu His Asn Asn Gln Val Leu Asn Lys Val Lys Ala As 340 Lys Ser Leu Glu Ala Asn Asn Gly His Asp Gly Thr Trp Ile Ala His 355 Pro Gly Leu Ala Asp Thr Ala Met Ala Val Phe Asn Asp Ile Leu Gl 370 Ser Arg Lys Asn Gln Leu Glu Val Met Arg Glu Gln Asp Ala Pro Il 385 Thr Ala Asp Gln Leu Leu Ala Pro Cys Asp Gly Glu Arg Thr Glu Gl 415 Gly Met Arg Ala Asn Ile Arg Val Ala Val Gln Tyr Ile Glu Ala Tr 420 Ile Ser Gly Asn Gly Cys Val Pro Ile Tyr Gly Leu Met Glu Asp Ala 60 Ala Thr Ala Glu Ile Ser Arg Thr Ser Ile Trp Gln Trp Ile His Hi 450 Gln Lys Thr Leu Ser Asn Gly Lys Pro Val Thr Lys Ala Leu Phe Arm Ala Colu Phe Arm Glu Lys Thr Leu Ser Arg Gly Lys Pro Val Thr Lys Ala Leu Phe Arm Ala Glu Lys Thr Leu Ser Arg Gly Lys Pro Val Thr Lys Ala Leu Phe Arm Ala Glu Ile Ser Arg Gly Lys Pro Val Thr Lys Ala Leu Phe Arm Ala Glu Lys Thr Leu Ser Arg Gly Lys Pro Val Thr Lys Ala Leu Phe Arm Ala Glu Lys Thr Leu Ser Arg Gly Lys Pro Val Thr Lys Ala Leu Phe Arm Ala Glu Lys Thr Leu Ser Arg Gly Lys Pro Val Thr Lys Ala Leu Phe Arm Ala Glu Lys Thr Leu Ser Arg Gly Lys Pro Val Thr Lys Ala Leu Phe Arm Ala Glu Lys Thr Leu Ser Arg Gly Lys Pro Val Thr Lys Ala Leu Phe Arm Ala Glu Ile Ser Arg Gly Lys Pro Val Thr Lys Ala Leu Phe Arm Ala Glu Ile Ser Arg Gly Lys Pro Val Thr Lys Ala Leu Phe Arm Ala Glu Ile Ser Arg Thr Ser Ile Trp Gly Leu Met Glu Arg Thr Ala Glu Ile Ser Arg Gly Lys Pro Val Thr Lys Ala Leu Phe Arm Arm Ala Glu Ile Ser Arg Thr Ser Ile Trp Gly Leu Met Glu Arg Thr Ala Glu Ile Ser Arg Thr Ser Ile Trp Gly Leu Met Glu Arg Thr Ala Glu Ile Ser Arg Thr Ser Ile Trp Gly Leu Met Gly Arg Thr Ala Gly Lys Pro Val Thr Lys Ala Leu Phe Arm Arm Ala Gly Lys Pro Val Thr Lys Ala Leu Phe Arm Arm Ala Gly Lys Pro Val Thr Lys Ala Leu Phe Arm Arm Ala Gly Lys Pro Val Thr Lys Ala Leu Phe Arm Arm Ala Gly Lys Pro Val Thr Lys Ala Leu Phe Arm Arm Ala Gly Lys Pro Val Thr Lys Ala Lys Thr Lys Ala Lys Thr Lys Ala Lys Thr Lys Ala		30	Asn	Суѕ	Gly 275	Arg	Trp	Asp	Tyr		Phe	Ser	Tyr	Ile		Thr	Leu	Lys
Lys Arg Gly Ala Phe Ala Met Gly Gly Met Ala Ala Phe Ile Pro So 335 40 Lys Asp Glu Glu His Asn Asn Gln Val Leu Asn Lys Val Lys Ala As 350 Lys Ser Leu Glu Ala Asn Asn Gly His Asp Gly Thr Trp Ile Ala His 355 Pro Gly Leu Ala Asp Thr Ala Met Ala Val Phe Asn Asp Ile Leu Gly 370 Ser Arg Lys Asn Gln Leu Glu Val Met Arg Glu Gln Asp Ala Pro Il 385 Thr Ala Asp Gln Leu Leu Ala Pro Cys Asp Gly Glu Arg Thr Glu Gly 405 Gly Met Arg Ala Asn Ile Arg Val Ala Val Gln Tyr Ile Glu Ala Tr 420 Ile Ser Gly Asn Gly Cys Val Pro Ile Tyr Gly Leu Met Glu Asp Ala 60 Ala Thr Ala Glu Ile Ser Arg Thr Ser Ile Trp Gln Trp Ile His His 450 Gln Lys Thr Leu Ser Asn Gly Lys Pro Val Thr Lys Ala Leu Phe Arg Glu Gln Lys Thr Leu Ser Asn Gly Lys Pro Val Thr Lys Ala Leu Phe Arg Glu Gln Lys Thr Leu Ser Asn Gly Lys Pro Val Thr Lys Ala Leu Phe Arg Glu Gln Lys Thr Leu Ser Asn Gly Lys Pro Val Thr Lys Ala Leu Phe Arg Glu Gln Lys Thr Leu Ser Asn Gly Lys Pro Val Thr Lys Ala Leu Phe Arg Glu Cys Thr Leu Ser Asn Gly Lys Pro Val Thr Lys Ala Leu Phe Arg Glu Cys Val Pro Val Thr Lys Ala Leu Phe Arg Cys Val Pro Val Thr Lys			Asn	Тут 290	Pro	Asp	Arg	Val		Pro	Asp	Arg	Gln		Val	Thr	Met	Asp
325 330 335 40 Lys Asp Glu Glu His Asn Asn Gln Val Leu Asn Lys Val Lys Ala As 350 Lys Ser Leu Glu Ala Asn Asn Gly His Asp Gly Thr Trp Ile Ala Hi 355 Pro Gly Leu Ala Asp Thr Ala Met Ala Val Phe Asn Asp Ile Leu Gl 370 Ser Arg Lys Asn Gln Leu Glu Val Met Arg Glu Gln Asp Ala Pro Il 385 Thr Ala Asp Gln Leu Ala Pro Cys Asp Gly Glu Arg Thr Glu Gl 415 55 Gly Met Arg Ala Asn Ile Arg Val Ala Val Gln Tyr Ile Glu Ala Tr 420 Ile Ser Gly Asn Gly Cys Val Pro Ile Tyr Gly Leu Met Glu Asp Ala 60 Ala Thr Ala Glu Ile Ser Arg Thr Ser Ile Trp Gln Trp Ile His Hi 450 Gln Lys Thr Leu Ser Asn Gly Lys Pro Val Thr Lys Ala Leu Phe Arg Ala Cys Asp Gly Lys Pro Val Thr Lys Ala Leu Phe Arg Ala Cys Asp Gly Lys Pro Val Thr Lys Ala Leu Phe Arg Ala Cys Cys Asp Gly Lys Pro Val Thr Lys Ala Leu Phe Arg Ala Cys Thr Leu Ser Asn Gly Lys Pro Val Thr Lys Ala Leu Phe Arg Ala Cys Thr Leu Ser Asn Gly Lys Pro Val Thr Lys Ala Leu Phe Arg Ala Cys Cys Asp Gly Lys Pro Val Thr Lys Ala Leu Phe Arg Ala Cys Cys Asp Gly Lys Pro Val Thr Lys Ala Leu Phe Arg Ala Cys		35	Lys 305	Pro	Phe	Leu	Asn		Tyr	Ser	Arg	Leu		Ile	Lys	Thr	Cys	His 320
Lys Ser Leu Glu Ala Asn Asn Gly His Asp Gly Thr Trp Ile Ala His 355 Pro Gly Leu Ala Asp Thr Ala Met Ala Val Phe Asn Asp Ile Leu Gl 370 Ser Arg Lys Asn Gln Leu Glu Val Met Arg Glu Gln Asp Ala Pro Il 385 Thr Ala Asp Gln Leu Ala Pro Cys Asp Gly Glu Arg Thr Glu Glu 415 Gly Met Arg Ala Asn Ile Arg Val Ala Val Gln Tyr Ile Glu Ala Tr 420 Ile Ser Gly Asn Gly Cys Val Pro Ile Tyr Gly Leu Met Glu Asp Ala 60 Ala Thr Ala Glu Ile Ser Arg Thr Ser Ile Trp Gln Trp Ile His His 450 Gln Lys Thr Leu Ser Asn Gly Lys Pro Val Thr Lys Ala Leu Phe Arg Ala Color Cys Asp Gly Lys Pro Val Thr Lys Ala Leu Phe Arg Ala Change Ileu Ser Asn Gly Lys Pro Val Thr Lys Ala Leu Phe Arg Ala Change Ileu Ser Asn Gly Lys Pro Val Thr Lys Ala Leu Phe Arg Ala Change Ileu Ser Asn Gly Lys Pro Val Thr Lys Ala Leu Phe Arg Ala Change Ileu Ser Asn Gly Lys Pro Val Thr Lys Ala Leu Phe Arg Ala Change Ileu Ser Asn Gly Lys Pro Val Thr Lys Ala Leu Phe Arg Ala Change Ileu Ser Asn Gly Lys Pro Val Thr Lys Ala Leu Phe Arg Ala Change Ileu Inches Inches Ileu Ser Asn Gly Lys Pro Val Thr Lys Ala Leu Phe Arg Ala Change Ileu Inches Ileu Inches Ileu Inches Ileu Phe Arg Ala Change Ileu Inches Ileu Ileu Inches Ileu Inches Ileu Inches Ileu Inches Ileu Inches Ileu Ileu Ileu Ileu Ileu Ileu Ileu Ileu			Lys	Arg	Gly	Ala		Ala	Met	Gly	Gly		Ala	Ala	Phe	Ile		Ser
Pro Gly Leu Ala Asp Thr Ala Met Ala Val Phe Asn Asp Ile Leu Gly 370 Ser Arg Lys Asn Gln Leu Glu Val Met Arg Glu Gln Asp Ala Pro Il 385 Thr Ala Asp Gln Leu Leu Ala Pro Cys Asp Gly Glu Arg Thr Glu Gly 405 Gly Met Arg Ala Asn Ile Arg Val Ala Val Gln Tyr Ile Glu Ala Tr 420 Ile Ser Gly Asn Gly Cys Val Pro Ile Tyr Gly Leu Met Glu Asp Ala 435 Ala Thr Ala Glu Ile Ser Arg Thr Ser Ile Trp Gln Trp Ile His Higher Asp Gln Lys Thr Leu Ser Asn Gly Lys Pro Val Thr Lys Ala Leu Phe Arg		40	Lys	Asp	Glu	Glu 340	His	Asn	Asn	Gln		Leu	Asn	Lys	Val		Ala	Asp
Ser Arg Lys Asn Gln Leu Glu Val Met Arg Glu Gln Asp Ala Pro II 385 Thr Ala Asp Gln Leu Leu Ala Pro Cys Asp Gly Glu Arg Thr Glu Glu 405 Gly Met Arg Ala Asn Ile Arg Val Ala Val Gln Tyr Ile Glu Ala Tru 420 Ile Ser Gly Asn Gly Cys Val Pro Ile Tyr Gly Leu Met Glu Asp Ala 435 Ala Thr Ala Glu Ile Ser Arg Thr Ser Ile Trp Gln Trp Ile His Hiden 450 Gln Lys Thr Leu Ser Asn Gly Lys Pro Val Thr Lys Ala Leu Phe Arger 100 100 100 100 100 100 100 100 100 10		45	Lys	Ser	Leu 355	Glu	Ala	Asn	Asn	Gly 360	His	Asp	Gly	Thr		Ile	Ala	His
Thr Ala Asp Gln Leu Leu Ala Pro Cys Asp Gly Glu Arg Thr Glu Glu 405 Gly Met Arg Ala Asn Ile Arg Val Ala Val Gln Tyr Ile Glu Ala Tru 425 Tle Ser Gly Asn Gly Cys Val Pro Ile Tyr Gly Leu Met Glu Asp Ala 435 Ala Thr Ala Glu Ile Ser Arg Thr Ser Ile Trp Gln Trp Ile His Hius 450 Gln Lys Thr Leu Ser Asn Gly Lys Pro Val Thr Lys Ala Leu Phe Arger			Pro	Gly 370	Leu	Ala	Asp	Thr		Met	Ala	Val	Phe		Asp	Ile	Leu	Gly
405 Gly Met Arg Ala Asn Ile Arg Val Ala Val Gln Tyr Ile Glu Ala Tr 420 Ile Ser Gly Asn Gly Cys Val Pro Ile Tyr Gly Leu Met Glu Asp Al 435 Ala Thr Ala Glu Ile Ser Arg Thr Ser Ile Trp Gln Trp Ile His Hi 450 Gln Lys Thr Leu Ser Asn Gly Lys Pro Val Thr Lys Ala Leu Phe Ar		50	Ser 385	Arg	Lys	Asn	Gln		Glu	Val	Met	Arg		Gln	Asp	Ala	Pro	Ile 400
Ile Ser Gly Asn Gly Cys Val Pro Ile Tyr Gly Leu Met Glu Asp Al 435 Ala Thr Ala Glu Ile Ser Arg Thr Ser Ile Trp Gln Trp Ile His Hi 450 Gln Lys Thr Leu Ser Asn Gly Lys Pro Val Thr Lys Ala Leu Phe Ar			Thr	Ala	Asp	Gln		Leu	Ala	Pro	Cys		Gly	Glu	Arg	Thr		Glu
Ala Thr Ala Glu Ile Ser Arg Thr Ser Ile Trp Gln Trp Ile His Hi 450 Gln Lys Thr Leu Ser Asn Gly Lys Pro Val Thr Lys Ala Leu Phe Ar		55	Gly	Met	Arg	Ala 420	Asn	Ile	Arg	Val		Val	Gln	Tyr	Ile		Ala	Trp
Gln Lys Thr Leu Ser Asn Gly Lys Pro Val Thr Lys Ala Leu Phe Ar		60	Ile	Ser		Asn	Gly	Cys	Val		Ile	Tyr	Gly	Leu		Glu	Asp	Ala
			Ala	Thr 450	Ala	Glu	Ile	Ser	Arg 455	Thr	Ser	Ile	Trp		Trp	Ile	His	His
	1	65	Gln 465	Lys	Thr	Leu	Ser	Asn 470	Gly	Lys	Pro	Val		Lys	Ala	Leu	Phe	Arg 480

	Gln Met	: Leu Gly	Glu 485	Glu	Met	Lys	Val	Ile 490	Ala	Ser	Glu	Leu	Gly 495	Glu	
5	Glu Arg	Phe Ser 500	Gln	Gly	Arg	Phe	Asp 505	Asp	Ala	Ala	Arg	Leu 510	Met	Glu	
10	Gln Ile	Thr Thr 515	Ser	Asp	Glu	Leu 520	Ile	Asp	Phe	Leu	Thr 525	Leu	Pro	Gly	
10	Tyr Arg	j Leu Leu)	Ala												
15	<211> <212>		al se	equer	ıce										
20	<220> <221> <222> <223>	Primer (1)(20 aceB5'-1)												
25	<400> ttcggat	3 cca tgac	gagga	ıg						,					20
30	<210> <211> <212> <213>	20	al se	equer	ıce										
35	<220> <221> <222> <223>	Primer (1)(20 aceB5'-2)												
	<400> ttgccaa	4, .cag tgcc:	tgata	ıg											20
40	<210> <211> <212> <213>	20	al se	quen	.ce										
<u>4</u> 5		Primer (1)(20) aceB3'-1)												
50		5 ctc acgco	tgtt	g											20
55	<211> <212>	6 20 DNA artificia	al se	quen	ce										
60		Primer (1)(20) aceB3'-2							-						
65	<400> catgtgc	6 aga tgcto	cata	g											20

```
<210> 7
       <211> 1520
      <212> DNA
      <213> Escherichia coli
  5
      <220>
       <221> misc_feature
      <222> (1)..(1520)
      <223> mutagenic DNA
 10
      <220>
      <221> misc_feature
      <222> (1)..(55)
      <223> technical DNA / residues of polylinker sequence
 15
      <220>
      <221> misc_feature
      <222> (56)..(695)
      <223> parts of the 5' region of the aceB gene and regions lying upstream
20
      <220>
      <221> misc_feature
      <222> (696)..(758)
      <223> technical DNA / residues of polylinker sequence
25
      <220>
      <221> misc_feature
      <222>
            (759)..(1467)
      <223> parts of the 3' region of the aceB gene and regions lying downstream
30
      <220>
      <221> misc_feature
      <222>
            (1468)..(1520)
      <223> technical DNA / residues of polylinker sequence
35
      <400> 7
      ctagatgcat gctcgagcgg ccgccagtgt gatggatatc tgcagaattc ggcttttcgg
                                                                            60
      atccatgacg aggagetgea egatgactga acaggeaaca acaacegatg aactggettt
                                                                           120
40
      cacaaggccg tatggcgagc aggagaagca aattcttact gccgaagcgg tagaatttct
                                                                           180
      gactgagetg gtgacgeatt ttacgecaca acgeaataaa ettetggeag egegeattea
                                                                           240
45
      gcagcagcaa gatattgata acggaacgtt gcctgatttt atttcggaaa cagcttccat
                                                                           300
      togogatgot gattggaaaa ttogogggat tootgoggac ttagaagaco googogtaga
                                                                           360
      gataactggc ccggtagagc gcaagatggt gatcaacgcg ctcaacgcca atgtgaaagt
                                                                           420
50
     ctttatggcc gatttcgaag attcactggc accagactgg aacaaagtga tcgacgggca
                                                                           480
     aattaacctg cgtgatgcgg ttaacggcac catcagttac accaatgaag caggcaaaat
                                                                           540
55
     ttaccagete aageeeaate cageggtttt gatttgtegg gtacgeggte tgcacttgee
                                                                           600
     ggaaaaacat gtcacctggc gtggtgaggc aatccccggc agcctgtttg attttgcgct
                                                                           660
     ctatttcttc cacaactatc aggcactgtt ggcaaaagcc gaattccagc acactggcgg
                                                                           720
60
     cogttactag tggatccgag atctgcagaa ttcggcttat gcttactcac gcctgttgat
                                                                           780
     TAKE LEDGET CLICKBLOTTE ETTETTETET GATUTEGGG ALGEGROUPE TOLTCLICAT
65
     caaagatgaa gagcacaata accaggtgct caacaaagta aaagcggata aatcgctgga
                                                                           900
```

WO 03/008604 7

	agccaat	aac ggtcacgatg	gcacatggat	cgctcaccca	ggccttgcgg	acacggcaat	960
5	ggcggt	attc aacgacattc	teggeteceg	taaaaatcag	cttgaagtga	tgcgcgaaca	1020
	agacgc	gccg attactgccg	atcagctgct	ggcaccttgt	gatggtgaac	gcaccgaaga	1080
	aggtat	gege gecaacatte	gcgtggctgt	gcagtacatc	gaagcgtgga	tctctggcaa	1140
10	cggctgl	gtg ccgatttatg	gcctgatgga	agatgcggcg	acggctgaaa	tttcccgtac	1200
	ctcgate	tgg cagtggatcc	atcatcaaaa	aacgttgagc	aatggcaaac	cggtgaccaa	1260
15	agcctt	ntte egecagatge	tgggcgaaga	gatgaaagtc	attgccagcg	aactgggcga	1320
	agaacg	ttc tcccaggggc	gttttgacga	tgccgcacgc	ttgatggaac	agatcaccac	1380
	ttccgai	gag ttaattgatt	tcctgaccct	gccaggctac	cgcctgttag	cgtaaaccac	1440
20	cacata	acta tggagcatct	gcacatgaag	ccgaattcca	gcacactggc	ggccgttact	1500
	agtggai	ccg agctcggtac					1520
25	<210> <211>	8 · 1353					
	<212> <213>	DNA Escherichia col	4				
	<220>		•				
30	<221> <222>	misc_feature					
	<223>	(1)(1353) mutagenic DNA					
35	<220> <221>	mias fastuus					
J J	<222> <223>	misc_feature (1)(3)	43. 2.3.				
	<220>	start codon of	the deltaac	eB alleie ·			
40	<221>	misc_feature					
	<222> <223>	(1)(613) 5' region of th	e deltaaceE	3 allele			
4.5	<220>		,	,			
45	<221> <222>	misc_feature (614)(676)		•			
	<223>	technical DNA /	residues of	polylinker	sequence		
50	<220> <221>	misc_feature			•		
	<222> <223>	(677)(1435) 3' region of th	e deltasceF	مامالة ا			
	<220>	J region or u	e dereages.	, arrere			
55	<221>	misc_feature					
	<223>	(1433)(1435) stop codon of t	he deltaace	B allele			
60	<400>	8 -					
30		aac aggcaacaac					60
		aaa ttottactgo			•		120
65	2.1937.57	30.30 (F1) (L1821) F1			egalijakija	andoj lakud	

	~~~~~						
					gcgatgctga		240
	cgcgggattc	ctgcggactt	agaagaccgc	cgcgtagaga	taactggccc	ggtagagcgc	300
5	aagatggtga	tcaacgcgct	caacgccaat	gtgaaagtct	ttatggccga	tttcgaagat	360
	tcactggcac	cagactggaa	caaagtgatc	gacgggcaaa	ttaacctgcg	tgatgcggtt	420
10	aacggcacca	tcagttacac	caatgaagca	ggcaaaattt	accagctcaa	gcccaatcca	480
	gcggttttga	tttgtcgggt	acgcggtctg	cacttgccgg	aaaaacatgt	cacctggcgt	540
	ggtgaggcaa	tccccggcag	cctgtttgat	tttgcgctct	atttcttcca	caactatcag	600
15	gcactgttgg	caaaagccga	attccagcac	actggcggcc	gttactagtg	gatccgagat	660
	ctgcagaatt	cggcttatgc	ttactcacgc	ctgttgatta	aaacctgcca	taaacgcggt	720
20	gcttttgcga	tgggcggcat	ggcggcgttt	attccgagca	aagatgaaga	gcacaataac	780
	caggtgctca	acaaagtaaa	agcggataaa	tcgctggaag	ccaataacgg	tcacgatggc	840
	acatggatcg	ctcacccagg	ccttgcggac	acggcaatgg	cggtattcaa	cgacattctc	900
25	ggctcccgta	aaaatcagct	tgaagtgatg	cgcgaacaag	acgcgccgat	tactgccgat	960
	cagctgctgg	caccttgtga	tggtgaacgc	accgaagaag	gtatgcgcgc	caacattcgc	1020
0	gtggctgtgc	agtacatcga	agcgtggatc	tctggcaacg	gctgtgtgcc	gatttatggc	1080
	ctgatggaag	atgcggcgac	ggctgaaatt	tcccgtacct	cgatctggca	gtggatccat	1140
	catcaaaaaa	cgttgagcaa	tggcaaaccg	gtgaccaaag	ccttgttccg	ccagatgctg	1200
5	ggcgaagaga	tgaaagtcat	tgccagcgaa	ctgggcgaag	aacgtttctc	ccaggggcgt	1260
	tttgacgatg	ccgcacgctt	gatggaacag	atcaccactt	ccgatgagtt	aattgatttc	1320
0	ctgaccctgc	caggetaccg	cctgttagcg	taa			1353

### (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

# (19) World Intellectual Property Organization International Bureau



# 

# (43) International Publication Date 30 January 2003 (30.01.2003)

## **PCT**

# (10) International Publication Number WO 03/008604 A3

- (51) International Patent Classification⁷: C12P 13/06, 13/08, 13/10, 13/12, 13/14, 13/20, 13/22, 13/24
- (21) International Application Number: PCT/EP02/07352
- (22) International Filing Date: 3 July 2002 (03.07.2002)
- (25) Filing Language:

English

(26) Publication Language:

English

US

(20) 1 201102002 2012

101 35 051.1

60/306,867

(30) Priority Data:

18 July 2001 (18.07.2001) DE

23 July 2001 (23.07.2001)

- (71) Applicant (for all designated States except US): DE-GUSSA AG [DE/DE]; Bennigsenplatz 1, 40474 Düsseldorf (DE).
- (72) Inventor; and
- (75) Inventor/Applicant (for US only): HERMANN, Thomas [DE/DE]; Zirkonstrasse 8, 33739 Bielefeld (DE).

- (81) Designated States (national): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, OM, PH, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZM, ZW.
- (84) Designated States (regional): ARIPO patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, SK, TR), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

#### Declaration under Rule 4.17:

of inventorship (Rule 4.17(iv)) for US only

#### Published:

with international search report

[Continued on next page]

(54) Title: PROCESS FOR THE PREPARATION OF L-AMINO ACIDS USING STRAINS OF THE ENTEROBACTERIACEAE FAMILY WHICH CONTAIN AN ATTENUATED ACEB GENE



(57) Abstract: The invention relates to a process for the preparation of L-amino acids, in particular L-threonine, in which the following steps are carried out: a) fermentation of microorganisms of the Enterobacteriaceae family which produce the desired L-amino acid and in which the aceB gene, or the nucleotide sequence which codes for this, is attenuated, in particular eliminated, b) concentration of the L-amino acid in the medium or in the cells of the bacteria, and c) isolation of the L-amino acid.

WO 03/008604 A3

(88) Date of publication of the international search report: 4 December 2003

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

#### INTERNATIONAL SEARCH REPORT

interiornal Application No PCT/EP 02/07352

A. CLASSIFICATION OF SUBJECT MATTER IPC 7 C12P13/06 C12P13/08 C12P13/12 C12P13/14 C12P13/10 C12P13/22 C12P13/24 C12P13/20 According to International Patent Classification (IPC) or to both national classification and IPC Minimum documentation searched (classification system followed by classification symbols) C12P IPC 7 Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched Electronic data base consulted during the international search (name of data base and, where practical, search terms used) EPO-Internal, WPI Data, PAJ, BIOSIS C. DOCUMENTS CONSIDERED TO BE RELEVANT Relevant to claim No. Citation of document, with indication, where appropriate, of the relevant passages US 5 378 616 A (TUJIMOTO NOBUHARU ET AL) 3 January 1995 (1995-01-03) 1-7 A page 2, column 2, paragraph 2 1-7 Α WO 94 28154 A (NUTRASWEET CO) 8 December 1994 (1994-12-08) page 1, line 10 - line 14; table 2 1-7 CHUNG T ET AL: "Glyoxylate bypass operon Α of Escherichia coli: cloning and determination of the functional map." JOURNAL OF BACTERIOLOGY. US, vol. 170, no. 1, January 1988 (1988-01), pages 386-392, XP008015355 ISSN: 0021-9193 the whole document Patent family members are listed in annex. Further documents are listed in the continuation of box C. Special categories of cited documents: "T" later document published after the International filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the "A" document defining the general state of the art which is not considered to be of particular relevance Invention "E" earlier document but published on or after the international "X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such docu-ments, such combination being obvious to a person skilled in the art. citation or other special reason (as specified) document referring to an oral disclosure, use, exhibition or other means "P" document published prior to the international filing date but later than the priority date claimed "&" document member of the same patent family Date of mailing of the international search report Date of the actual completion of the international search 17/04/2003 3 April 2003 Authorized officer Name and mailing address of the ISA European Patent Office, P.B. 5818 Patentiaan 2 NL - 2280 HV Rijswijk Tel. (431-70) 340-2040, Tx. 31 651 epo nl, Fax: (431-70) 340-3018 Kools, P

## INTERNATIONAL SEARCH REPORT

Intel Conal Application No
PCT/EP 02/07352

		PCT/EP 02/07352
C.(Continu	ation) DOCUMENTS CONSIDERED TO BE RELEVANT	
Category °	Citation of document, with Indication, where appropriate, of the relevant passages	Relevant to claim No.
A	US 4 347 318 A (MIWA KIYOSHI ET AL) 31 August 1982 (1982-08-31) the whole document	1-7
A	REINSCHEID D J ET AL: "Malate synthase from Corynebacterium glutamaticum: sequence analysis of the gene and biochemical characterization of the enzyme" MICROBIOLOGY, vol. 140, no. 11, 1994, pages 3099-3108, XP008012735 Reading, GB ISSN: 1350-0872 the whole document	1-7
A	LANDGRAF J R ET AL: "THE ROLE OF H-NS IN ONE CARBON METABOLISM" BIOCHIMIE, MASSON, PARIS, FR, vol. 76, no. 10/11, 1994, pages 1063-1070, XP008014239 ISSN: 0300-9084 the whole document	6
A	RAE J L ET AL: "Sequences and expression of pyruvate dehydrogenase genes from Pseudomonas aeruginosa." JOURNAL OF BACTERIOLOGY, vol. 179, no. 11, June 1997 (1997-06), pages 3561-3571, XP002237063 US ISSN: 0021-9193 abstract	1-7
E	WO 03 008600 A (DEGUSSA ;HERMANN THOMAS (DE)) 30 January 2003 (2003–01–30) claim 7	7
E	WO 03 008602 A (DEGUSSA ;HERMANN THOMAS (DE)) 30 January 2003 (2003-01-30) claim 7	7
Ε	WO 03 008603 A (DEGUSSA ;HERMANN THOMAS (DE)) 30 January 2003 (2003-01-30) claim 7	7
E .	WO 03 008616 A (DEGUSSA ;HERMANN THOMAS (DE)) 30 January 2003 (2003-01-30) claim 7	

## INTERNATIONAL SEARCH REPORT

Information on patent family members

Intermional Application No PCT/EP 02/07352

Patent document dted in search report		Publication date		Patent family member(s)	Publication date
US 5378616		03-01-1995	BR	9203053 A	30-03-1993
00 00,000		00 01 1000	FR	2680178 A1	12-02-1993
			JP	3106714 B2	06-11-2000
			ĴΡ	5244970 A	24-09-1993
			PH	30131 A	21-01-1997
			US	5393671 A	28-02-1995
				22320\i W	20-02-1995
WO 9428154	Α	08-12-1994	ΑU	6960894 A	20-12-1994
			CA	2140527 A1	08-12-1994
			EP	0660875 A1	05-07-1995
			JP	7509375 T	19-10-1995
			WO	9428154 A1	08-12-1994
US 4347318	A	31-08-1982	JP	1029559 B	12-06-1989
	. •		JP	1552063 C	23-03-1990
			ĴΡ	55131397 A	13-10-1980
			DE	3012921 A1	23-10-1980
			FR	2453216 A1	31-10-1980
			GB	2049670 A ,B	31-12-1980
WO 03008600	Α	30-01-2003	DΕ	10135051 A1	06-02-2003
			WO	03008600 A2	30-01-2003
			WO	03008602 A2	30-01-2003
			WO	03008603 A2	30-01-2003
			WO	03008604 A2	30-01-2003
			WO	03008616 A2	30-01-2003
WO 03008602	A	30-01-2003	DE	10135051 A1	06-02-2003
WO 0000000E	••	30 01 2000	WO	03008600 A2	30-01-2003
			WO	03008602 A2	30-01-2003
			WO	03008603 A2	30-01-2003
			WO	03008604 A2	30-01-2003
			WO	03008616 A2	30-01-2003
UO 03000603		20 01 2002	Dr	10125051 41	06-02-2003
WO 03008603	Α	30-01-2003	DE	10135051 A1	30-01-2003
			MO	03008600 A2	
			WO	03008602 A2	30-01-2003
			MO	03008603 A2	30-01-2003
			MO	03008604 A2	30-01-2003
			WO	03008616 A2	30-01-2003
WO 03008616	A	30-01-2003	DE	10135051 A1	06-02-2003
			WO	03008600 A2	30-01-2003
			WO	03008602 A2	30-01-2003
			WO	03008603 A2	30-01-2003
			MO	03008604 A2	30-01-2003
			WO	03008616 A2	30-01-2003