## Class 7: Machine Learning 1

### Matthew White

Before we get into clustering methods lets make up some sample data to cluster in which we know what the answer should be.

To help with this, use the rnorm() function.

#combine plots of two different random sets of values clustered around a set mean by vectoris
hist(c(rnorm(150000, mean=-3), rnorm(150000, 3)))

### Histogram of c(rnorm(150000, mean = -3), rnorm(150000,



c(rnorm(150000, mean = -3), rnorm(150000, 3))

```
n=30
x <- c(rnorm(n, mean=-3), rnorm(n, 3))
x</pre>
```

```
[1] -2.830317262 -1.230943331 -2.057713351 -4.288282629 -2.028794871
[6] -2.483461772 -1.984912921 -3.635901352 -3.818423960 -3.471964117
[11] -3.339836283 -1.332549748 -2.807758639 -4.366408294 -3.191455667
[16] -1.448907045 -4.456975800 -2.228883602 -2.917929116 -3.918793570
[21] -4.007872984 -2.973662274 -1.430706419 -0.008211708 -4.116393984
[26] -2.762597625 -3.009595277 -4.137147082 -3.203578855 -3.527280965
[31] 2.585187817 2.315797879 2.677233881 3.537877934 4.623835453
[36] 3.393928509 2.820906764 3.711640693 1.806906469 3.038622320
[41] 4.030281310 3.779987974 4.802598073 2.580011734 3.472510547
[46] 2.864600136 3.782767307 1.305641830 3.814645974 3.505728220
[51] 4.123810862 1.288252813 3.804564601 0.860694764 2.471153016
[56] 2.313307466 3.626851866 4.812380746 3.150191096 2.211991687

#to build up our second sample data cluster, could either rewrite the above code but flipped y <- rev(x)
```

```
[1] 2.211991687 3.150191096 4.812380746 3.626851866 2.313307466 [6] 2.471153016 0.860694764 3.804564601 1.288252813 4.123810862 [11] 3.505728220 3.814645974 1.305641830 3.782767307 2.864600136 [16] 3.472510547 2.580011734 4.802598073 3.779987974 4.030281310 [21] 3.038622320 1.806906469 3.711640693 2.820906764 3.393928509 [26] 4.623835453 3.537877934 2.677233881 2.315797879 2.585187817 [31] -3.527280965 -3.203578855 -4.137147082 -3.009595277 -2.762597625 [36] -4.116393984 -0.008211708 -1.430706419 -2.973662274 -4.007872984 [41] -3.918793570 -2.917929116 -2.228883602 -4.456975800 -1.448907045 [46] -3.191455667 -4.366408294 -2.807758639 -1.332549748 -3.339836283 [51] -3.471964117 -3.818423960 -3.635901352 -1.984912921 -2.483461772 [56] -2.028794871 -4.288282629 -2.057713351 -1.230943331 -2.830317262
```

#cbind will combine columns of two different vectors/matrices/data frames. basically making  $z \leftarrow cbind(x,y)$ 

```
x y
[1,] -2.830317262 2.211991687
[2,] -1.230943331 3.150191096
[3,] -2.057713351 4.812380746
[4,] -4.288282629 3.626851866
[5,] -2.028794871 2.313307466
[6,] -2.483461772 2.471153016
```

У

- [7,] -1.984912921 0.860694764
- [8,] -3.635901352 3.804564601
- [9,] -3.818423960 1.288252813
- [10,] -3.471964117 4.123810862
- [11,] -3.339836283 3.505728220
- [12,] -1.332549748 3.814645974
- [13,] -2.807758639 1.305641830
- [14,] -4.366408294 3.782767307
- [15,] -3.191455667 2.864600136
- [16,] -1.448907045 3.472510547
- [17,] -4.456975800 2.580011734
- [18,] -2.228883602 4.802598073
- [19,] -2.917929116 3.779987974
- [20,] -3.918793570 4.030281310
- [21,] -4.007872984 3.038622320
- [22,] -2.973662274 1.806906469
- [23,] -1.430706419 3.711640693
- [24,] -0.008211708 2.820906764
- [25,] -4.116393984 3.393928509
- -
- [26,] -2.762597625 4.623835453
- [27,] -3.009595277 3.537877934
- [28,] -4.137147082 2.677233881
- [29,] -3.203578855 2.315797879
- [30,] -3.527280965 2.585187817
- [31,] 2.585187817 -3.527280965
- [32,] 2.315797879 -3.203578855
- [33,] 2.677233881 -4.137147082
- [34,] 3.537877934 -3.009595277
- [35,] 4.623835453 -2.762597625
- [36,] 3.393928509 -4.116393984
- [37,] 2.820906764 -0.008211708
- [38,] 3.711640693 -1.430706419
- [39,] 1.806906469 -2.973662274
- [40,] 3.038622320 -4.007872984
- [41,] 4.030281310 -3.918793570
- [42,] 3.779987974 -2.917929116
- [43,] 4.802598073 -2.228883602
- [44,] 2.580011734 -4.456975800
- [45,] 3.472510547 -1.448907045
- [46,] 2.864600136 -3.191455667
- [47,] 3.782767307 -4.366408294
- [48,] 1.305641830 -2.807758639
- [49,] 3.814645974 -1.332549748

```
[50,]
      3.505728220 -3.339836283
[51,]
      4.123810862 -3.471964117
      1.288252813 -3.818423960
[52,]
[53,]
      3.804564601 -3.635901352
      0.860694764 -1.984912921
[54,]
[55,]
      2.471153016 -2.483461772
[56,]
      2.313307466 -2.028794871
     3.626851866 -4.288282629
[57,]
[58,]
      4.812380746 -2.057713351
[59,]
      3.150191096 -1.230943331
[60,]
      2.211991687 -2.830317262
```

### plot(z)



##K-means clustering

The function in base R for k-means clustering is called kmeans()

```
km <- kmeans(z, centers = 2)
km</pre>
```

K-means clustering with 2 clusters of sizes 30, 30

```
Cluster means:
```

```
x y
1 -2.900575 3.103797
2 3.103797 -2.900575
```

### Clustering vector:

Within cluster sum of squares by cluster:

```
[1] 64.79842 64.79842
(between_SS / total_SS = 89.3 %)
```

### Available components:

- [1] "cluster" "centers" "totss" "withinss" "tot.withinss"
- [6] "betweenss" "size" "iter" "ifault"

### km\$centers

```
x y
1 -2.900575 3.103797
2 3.103797 -2.900575
```

Q: Print out the cluster membership vector (i.e. our main answer)

### km\$cluster

Plot of data with the clustering result

```
plot(z, col = km$cluster)
points(km$centers, col = "blue", pch = 15, cex = 2)
```



Can you cluster our data in **z** into four clusters?

K-means clustering with 4 clusters of sizes 8, 8, 30, 14

### Cluster means:

x y 1 -2.766364 1.821718 2 -1.562564 3.901089 3 3.103797 -2.900575 4 -3.741846 3.380818

### Clustering vector:

Within cluster sum of squares by cluster:
[1] 5.116030 8.861647 64.798425 7.136586
(between\_SS / total\_SS = 92.9 %)

Available components:



##must be careful with kmeans clustering, as it will return what you ask for. You can force

### **Hierarchical Clustering**

The main function for hierarchical clustering in base R is call hclust()

Unlike kmeans() I can not just pass in my data as input. I first need a distance matrix from my data.

```
d <- dist(z)
hc <- hclust(d)
hc</pre>
```

#### Call:

hclust(d = d)

Cluster method : complete
Distance : euclidean

Number of objects: 60

There is a specific hclust plot() method

```
plot(hc)
#To get main clustering result (membership vector), give a height at which to cut the tree as
abline(h=10, col = "red")
```

### **Cluster Dendrogram**



d hclust (\*, "complete")

```
grps <- cutree(hc, h =10)
grps</pre>
```

```
plot(z, col = grps)
```



#Principal Component Analysis

 $\#\#\mathrm{PCA}$  of UK food data

```
url <- "https://tinyurl.com/UK-foods"
#reading dataset with `row.names = 1` argument to not conisder row names as a column value
x <- read.csv(url, row.names = 1)
dim(x)</pre>
```

### [1] 17 4

### head(x)

|               | England | Wales | ${\tt Scotland}$ | N.Ireland |
|---------------|---------|-------|------------------|-----------|
| Cheese        | 105     | 103   | 103              | 66        |
| Carcass_meat  | 245     | 227   | 242              | 267       |
| Other_meat    | 685     | 803   | 750              | 586       |
| Fish          | 147     | 160   | 122              | 93        |
| Fats_and_oils | 193     | 235   | 184              | 209       |
| Sugars        | 156     | 175   | 147              | 139       |

### tail(x)

|                  | England | Wales | ${\tt Scotland}$ | ${\tt N.Ireland}$ |
|------------------|---------|-------|------------------|-------------------|
| Fresh_fruit      | 1102    | 1137  | 957              | 674               |
| Cereals          | 1472    | 1582  | 1462             | 1494              |
| Beverages        | 57      | 73    | 53               | 47                |
| Soft_drinks      | 1374    | 1256  | 1572             | 1506              |
| Alcoholic_drinks | 375     | 475   | 458              | 135               |
| Confectionery    | 54      | 64    | 62               | 41                |

Now some plots of our data (not very useful ones for visualization)

```
barplot(as.matrix(x), beside = T, col = rainbow(nrow(x)))
```



#beside argument can change to stacked bars. default is False barplot(as.matrix(x), beside = F, col = rainbow(nrow(x)))



### $\#\#\mathrm{PCA}$ to the rescue

The main function to do PCA in base R is called prcomp().

Note that I need to take the transpose of this particular data because that is what prcomp() help page was asking for

X

|                    | England | Wales | ${\tt Scotland}$ | ${\tt N.Ireland}$ |
|--------------------|---------|-------|------------------|-------------------|
| Cheese             | 105     | 103   | 103              | 66                |
| Carcass_meat       | 245     | 227   | 242              | 267               |
| Other_meat         | 685     | 803   | 750              | 586               |
| Fish               | 147     | 160   | 122              | 93                |
| Fats_and_oils      | 193     | 235   | 184              | 209               |
| Sugars             | 156     | 175   | 147              | 139               |
| Fresh_potatoes     | 720     | 874   | 566              | 1033              |
| Fresh_Veg          | 253     | 265   | 171              | 143               |
| Other_Veg          | 488     | 570   | 418              | 355               |
| Processed_potatoes | 198     | 203   | 220              | 187               |
| Processed_Veg      | 360     | 365   | 337              | 334               |
| Fresh_fruit        | 1102    | 1137  | 957              | 674               |
| Cereals            | 1472    | 1582  | 1462             | 1494              |
| Beverages          | 57      | 73    | 53               | 47                |

| Soft_drinks      | 1374 | 1256 | 1572 | 1506 |
|------------------|------|------|------|------|
| Alcoholic_drinks | 375  | 475  | 458  | 135  |
| Confectionery    | 54   | 64   | 62   | 41   |

#get transposed version of x data frame with t() function t(x)

|                   | Cheese  | Carcass_  | meat  | Other   | _meat | Fish | Fats_and  | _oils   | Sugars |
|-------------------|---------|-----------|-------|---------|-------|------|-----------|---------|--------|
| England           | 105     |           | 245   |         | 685   | 147  |           | 193     | 156    |
| Wales             | 103     |           | 227   |         | 803   | 160  |           | 235     | 175    |
| Scotland          | 103     |           | 242   |         | 750   | 122  |           | 184     | 147    |
| N.Ireland         | 66      |           | 267   |         | 586   | 93   |           | 209     | 139    |
|                   | Fresh_p | otatoes   | Fres  | h_Veg   | Other | _Veg | Processed | d_potat | toes   |
| England           |         | 720       | )     | 253     |       | 488  |           |         | 198    |
| Wales             |         | 874       | Ŀ     | 265     |       | 570  |           |         | 203    |
| Scotland          |         | 566       | 3     | 171     |       | 418  |           |         | 220    |
| ${\tt N.Ireland}$ |         | 1033      | 3     | 143     |       | 355  |           |         | 187    |
|                   | Process | sed_Veg   | Fresh | _fruit  | Cere  | als  | Beverages | Soft_d  | drinks |
| England           |         | 360       |       | 1103    | 2     | 1472 | 57        |         | 1374   |
| Wales             |         | 365       |       | 113     | 7     | 1582 | 73        |         | 1256   |
| Scotland          |         | 337       |       | 95      | 7     | 1462 | 53        |         | 1572   |
| ${\tt N.Ireland}$ |         | 334       |       | 674     | 1     | 1494 | 47        |         | 1506   |
|                   | Alcohol | lic_drink | s Co  | nfectio | onery |      |           |         |        |
| England           |         | 3         | 375   |         | 54    |      |           |         |        |
| Wales             |         | 4         | 175   |         | 64    |      |           |         |        |
| Scotland          |         | 4         | 158   |         | 62    |      |           |         |        |
| ${\tt N.Ireland}$ |         | 1         | .35   |         | 41    |      |           |         |        |

# pca <- prcomp(t(x)) summary(pca)</pre>

### Importance of components:

|                        | PC1      | PC2      | PC3      | PC4       |
|------------------------|----------|----------|----------|-----------|
| Standard deviation     | 324.1502 | 212.7478 | 73.87622 | 2.921e-14 |
| Proportion of Variance | 0.6744   | 0.2905   | 0.03503  | 0.000e+00 |
| Cumulative Proportion  | 0.6744   | 0.9650   | 1.00000  | 1.000e+00 |

Lets see what is inside our result object pca that we just calculated

### attributes(pca)

### pca\$x

```
PC1 PC2 PC3 PC4
England -144.99315 -2.532999 105.768945 -9.152022e-15
Wales -240.52915 -224.646925 -56.475555 5.560040e-13
Scotland -91.86934 286.081786 -44.415495 -6.638419e-13
N.Ireland 477.39164 -58.901862 -4.877895 1.329771e-13
```

To make our main result figure, called a "PC plot" or "score plot, or"ordination plot" or "PC1 vs PC2 plot".



#now understand why had to transpose the dataset. we can see a point for each of the countri-

 $\#\#\mbox{Variable Loadings plot}$ 

Can give us insight into how the original variables, in this case the foods, contribute to our new PC axis

```
par(mar=c(10, 3, 0.35, 0))
barplot( pca$rotation[,1], las=2 )
```



### pca\$rotation

|                    | PC1          | PC2          | PC3         | PC4          |
|--------------------|--------------|--------------|-------------|--------------|
| Cheese             | -0.056955380 | 0.016012850  | 0.02394295  | -0.409382587 |
| Carcass_meat       | 0.047927628  | 0.013915823  | 0.06367111  | 0.729481922  |
| Other_meat         | -0.258916658 | -0.015331138 | -0.55384854 | 0.331001134  |
| Fish               | -0.084414983 | -0.050754947 | 0.03906481  | 0.022375878  |
| Fats_and_oils      | -0.005193623 | -0.095388656 | -0.12522257 | 0.034512161  |
| Sugars             | -0.037620983 | -0.043021699 | -0.03605745 | 0.024943337  |
| Fresh_potatoes     | 0.401402060  | -0.715017078 | -0.20668248 | 0.021396007  |
| Fresh_Veg          | -0.151849942 | -0.144900268 | 0.21382237  | 0.001606882  |
| Other_Veg          | -0.243593729 | -0.225450923 | -0.05332841 | 0.031153231  |
| Processed_potatoes | -0.026886233 | 0.042850761  | -0.07364902 | -0.017379680 |
| Processed_Veg      | -0.036488269 | -0.045451802 | 0.05289191  | 0.021250980  |
| Fresh_fruit        | -0.632640898 | -0.177740743 | 0.40012865  | 0.227657348  |
| Cereals            | -0.047702858 | -0.212599678 | -0.35884921 | 0.100043319  |
| Beverages          | -0.026187756 | -0.030560542 | -0.04135860 | -0.018382072 |
| Soft_drinks        | 0.232244140  | 0.555124311  | -0.16942648 | 0.222319484  |
| Alcoholic_drinks   | -0.463968168 | 0.113536523  | -0.49858320 | -0.273126013 |
| Confectionery      | -0.029650201 | 0.005949921  | -0.05232164 | 0.001890737  |