Exercises to Section 1

Exercises in red are from the list of the typical exercises for the exam. Exercises marked with a star * are for submission to your tutor.

Sets

1. Prove that any interval (a, b) is open in the sense of the definition given in the notes (i.e. it contains a neighbourhood of each of its points).

Functions, natural domains

2. Determine the natural domains of the following functions:

- (a) $f(x) = \sqrt{3x x^3}$;
- (b)* $f(x) = \sqrt{\frac{1+x}{1-x}};$
- (c) $f(x) = \sqrt{\cos x}$;
- (d) $f(x) = \frac{\sqrt{x}}{\sin \pi x}$.

Boundedness

- 3. Which of the following functions are bounded on the given interval? Sketch the graph and justify your answer.
 - (a) $f(x) = \frac{x}{1+x}$ on $[0, \infty)$
 - (b) $f(x) = 1/\sqrt{x}$ on (0,1)
 - (c) $f(x) = \sqrt{1+x^2}$ on (0,1)
 - (d) $f(x) = \sqrt{1 + x^2}$ on $(1, \infty)$
 - (e)* $f(x) = x \sin x$ on $(1, \infty)$
 - (f) $f(x) = \frac{1}{x}\sin(\frac{1}{x})$ on (0,1)

Limit of a function

- 4. Write down in the " $\epsilon-\delta$ language" the following definitions and give examples:
 - (a) $\lim_{x \to x_0} f(x) = \infty$;
 - (b) $\lim_{x \to x_0} f(x) = -\infty$;
 - (c) $\lim_{x \to \infty} f(x) = -\infty$.

O and o notation

- 5. Determine whether the following relations are true (i) for $x \to 0$; (ii) for $x \to \infty$ and justify your answer:
 - (a)* $2x x^2 = O(x)$;
 - (b) $x \sin \sqrt{|x|} = O(|x|^{3/2});$

- (c) $x \sin(1/x) = O(x)$;
- (d) $\log |x| = o(|x|^{\varepsilon})$, for any $\varepsilon > 0$;
- (e) $\sqrt{x+\sqrt{x}}=O(\sqrt{x})$.

Challenging exercises

- 6. Let n be an <u>odd</u> natural number, and let $P(x) = x^n + a_{n-1}x^{n-1} + \cdots + a_0$ be a monic polynomial of degree n (monic means that the coefficient in front of the highest power of x equals one). Prove that $\lim_{x\to\infty} P(x) = \infty$ and $\lim_{x\to-\infty} P(x) = -\infty$. What changes here when n is even?
- 7. Let $A_1, A_2 \subset \mathbb{R}$ be open sets. Prove that $A_1 \cup A_2$ and $A_1 \cap A_2$ are open. Can this be extended to the union and intersection of finitely many open sets? Infinitely many open sets?
- 8. Let $\{x_n\}_{n=1}^{\infty}$ be a sequence of real numbers; we denote

$$\limsup_{n \to \infty} x_n := \lim_{n \to \infty} \sup \{x_j\}_{j=n}^{\infty}, \qquad \liminf_{n \to \infty} x_n := \lim_{n \to \infty} \inf \{x_j\}_{j=n}^{\infty}.$$

In this exercise, we focus on $\limsup \sup$. Let us assume for simplicity that the sequence $\{x_n\}_{n=1}^{\infty}$ is bounded.

- (a) Prove that the limit in the definition of \limsup always exists. (*Hint:* use a theorem about bounded convergent sequences).
- (b) Let a be a limit point of $\{x_n\}_{n=1}^{\infty}$, namely $a=\lim_{k\to\infty}x_{n_k}$. Prove that $a\leqslant \limsup_{n\to\infty}x_n$ by passing to the limit in the inequality

$$x_{n_k} \leqslant \sup\{x_j\}_{j=n_k}^{\infty}.$$

- (c) Prove that $\limsup_{n\to\infty} x_n$ is a limit point of $\{x_n\}_{n=1}^{\infty}$. *Hint:* argue by contradiction.
- (d) Conclude that $\limsup_{n\to\infty} x_n$ is the maximal limit point of our sequence. (Similarly, $\liminf_{n\to\infty} x_n$ is the minimal limit point of our sequence.)