姓名: 专业: 学号:

第 06 周作业

练习 1. 求下列函数的全微分

(1)
$$z = xy + \frac{x}{y};$$
 (2) $u = x^{yz}.$

练习 2. 求函数 $z=\frac{y}{x}$ 当 $x=2,\ y=1,\ \Delta x=0.1,\ \Delta y=-0.2$ 时的全增量和全微分。

练习 3. (选择题) 设函数 f(x, y) 在点 $P(x_0, y_0)$ 的两个偏导数 $f_x(x_0, y_0)$ 都存在,则(

- A f(x, y) 在点 P 处连续;
- B f(x, y) 在点 P 处可微;
- C $\lim_{x\to x_0} f(x, y_0)$ 及 $\lim_{y\to y_0} f(x_0, y)$ 都存在;
- D $\lim_{(x,y)\to(x_0,y_0)} f(x,y)$ 存在.

练习 4. (选择题) 二元函数 $f(x,y) = \begin{cases} \frac{xy}{x^2+y^2}, & (x,y) \neq (0,0) \\ 0, & (x,y=(0,0) \end{cases}$ 在点 (0,0) 处 (

- A 连续,偏导数存在;
- B 连续,偏导数不存在;
- C 不连续, 偏导数存在;
- D 不连续,偏导数不存在.

练习 5. (选择题) " $f_x(x_0, y_0)$ 与 $f_y(x_0, y_0)$ 均存在"是函数 f(x, y) 在点 $P(x_0, y_0)$ 处连续的()条件。

- A 充分非必要;
- B 必要非充分;
- C 充分且必要;
- D 非充分非必要.

练习 6. 设 $z = \arctan(xy), \ y = e^x, \ 求 \frac{dz}{dx}$ 。

练习 7. 设 z = xy + xF(u), $u = \frac{y}{x}$, F(u) 为可导函数, 证明

$$x\frac{\partial z}{\partial x} + y\frac{\partial z}{\partial y} = z + xy.$$

练习 8. 求下列复合函数的一阶偏导数(假设 f 具有一阶连续偏导):

(1)
$$z = f(x^2 - y^2, e^{xy});$$
 (2) $u = f(\frac{x}{y}, \frac{y}{z});$ (3) $u = f(x, xy, xyz).$

练习 9. 求复合函数 $z=f(xy^2,x^2y)$ 的所有二阶偏导数。这里假设 f 具有二阶连续偏导数。

练习 10. 设 $\ln \sqrt{x^2 + y^2} = \arctan \frac{y}{x}$, 求 $\frac{dy}{dx}$

练习 11. 设 $\frac{x}{z} = \ln \frac{z}{y}$, 求 $\frac{\partial z}{\partial x}$ 及 $\frac{\partial z}{\partial y}$ 。

练习 12. 设 $x=x(y,z),\ y=y(x,z),\ z=z(x,y)$ 都是由方程 F(x,y,z)=0 所确定的具有连续偏导数的函数,证明

$$\frac{\partial x}{\partial y} \cdot \frac{\partial y}{\partial z} \cdot \frac{\partial z}{\partial x} = -1.$$

练习 13. 设 $z^3 - 3xyz = a^3$, 求 $\frac{\partial^2 z}{\partial x \partial y}$ 。