· 香港考試局 HONG KONG EXAMINATIONS AUTHORITY

一九八八年香港中學會考 HONG KONG CERTIFICATE OF EDUCATION EXAMINATION, 1988

> 附加數學 (卷二) Additional Mathematics (Paper II)

> > 評卷参考 Marking Scheme

這份內部文件,只限閱卷員参閱,不得以任何形式翻印。 This is a restricted document. It is meant for use by markers of this paper for marking purposes only. Reproduction in any form is strictly prohibited.

請在學校任教之閱卷員特別留意

本評卷參考並非標準答案,故極不宜落於學生手中,以免引起誤會。

遇有學生求取此文件時,閱卷員應嚴 予拒絕。閱卷員在任何情况下披露本 評卷參考內容,均有違閱卷員守則及 「一九七七年香港考試局法例」。

Special Notes for Teacher Markers

It is highly undesirable that this marking scheme should fall into the hands of students. They are likely to regard it as a set of model answers, which it certainly is not.

Markers should therefore resist pleas from their students to have access to this documents. Making it available would constitute misconduct on the part of the marker and is, moreover in breach of the 1977 Hong Kong Examinations Authority Ordinance.

© 香港考試局 保留版權 Hong Kong Examinations Authority All Rights Reserved 1988

RESTRICTED 内部文件 Provided by dse.life

SOLUTIONS	MARKS	REMARKS
$(1 + 3x)^4 (1 - 2x)^5$		
	1A+1A	If '' omitted, withhold l mark.
$= [1 + 12x + 54x^{2} + \dots][1 - 10x + 40x^{2} + \dots]$		
a = 2	1A	
= -26	2A 5	
2. (a) P is the point $(\frac{7k+1}{k+1}, \frac{4k+2}{k+1})$	IA+1A	Alt. Solution:
(b) Sub. the coordinates of P in $7x - 3y - 28 = 0$,		Intersection of AB and $7x - 3y - 28 = 0$ is $Q(\frac{11}{2})$
$7(\frac{7k+1}{k+1}) - 3(\frac{4k+2}{k+1}) - 28 = 0$	2M	$\frac{7k+1}{k+1} = \frac{11}{2} \text{ or } \frac{4k+2}{k+1} = \frac{7}{2} \dots$
7 + 49k - 6 - 12k - 28k - 28 = 0		k = 3
9k = 27 k = 3	1A	NOTE: No marks awarded f
The ratio is 3:1.		$\frac{AQ}{QB} = \frac{3\sqrt{10/2}}{\sqrt{10/2}} = 3$
The two curves intersect when		Maria - Maria
x(x + 3) = x(5 - x)		
x = 0 or $x = 1$	1A	
Area of shaded region =	lM+1A	IM for $\int_a^b (f_2(x) - f_1(x))$
$= \int_{0}^{1} (2x - 2x^{2}) dx$		Alt. Solution:
$= [x^2 - \frac{2}{3}x^3]_0^1 \dots \dots$	1A	$\int_{0}^{1} x(5 - x) dx = \frac{13}{6}$ $\int_{0}^{1} x(x + 3) dx = \frac{11}{6} \dots$
$=\frac{1}{3}$	1A	Area = $\frac{13}{6} - \frac{11}{6}$
		$=\frac{1}{3}$
$\int x^2 + y^2 + \int (x - 6)^2 + y^2 = 10$	1A	
$(10 - \sqrt{x^2 + y^2})^2 = (\sqrt{(x - 6)^2 + y^2})^2$	1M	
$100 - 20 \sqrt{x^2 + y^2} + x^2 + y^2 = (x - 6)^2 + y^2$		
$20\sqrt{x^2 + y^2} = 12x + 64$		
$(5\sqrt{x^2 + y^2})^2 = (3x + 16)^2$	1M	
$16x^2 + 25y^2 - 96x - 256 = 0$	2A	

SOLUTIONS	MARKS	REMARKS
5. $n = 1$, L.S. $= 1^2 = 1$		
$R.S. = \frac{1(2-1)(2+1)}{3} = 1$		
3		
The equality holds for $n = 1$.	1	
Assume $1^2+3^2++(2k-1)^2 = \frac{k(2k-1)(2k+1)}{3}$	**************************************	
for some positive integer k.	1	
TOT SOME POSTATION THOUSAND		
n = k + 1,		Alt. Solution:
L.S. = $1^2 + 3^2 + + (2k-1)^2 + [(2(k+1) - 1)^2]$	L	L.S. =
$= \frac{k(2k-1)(2k+1)}{3} + (2k+1)^2 \dots$	1	$= \frac{4k^3 + 12k^2 + 11k + 3}{3}$
$= \frac{(2k+1)}{3} [2k^2 - k + 3(2k+1)]$		R.S. = $\frac{1}{3}$ (k+1)(2k+1)(2k+3)
		,
$= \frac{1}{3}(2k + 1)(2k^2 + 5k + 3)$		$= \frac{1}{3} (4k^3 + 12k^2 + 11k)$
$ = \frac{1}{3}(2k + 1)(2k + 3)(k + 1) $		= L.S.
$= \frac{1}{3}(k + 1)(2k + 1)(2k + 3) \dots$	1	
Therefore equality holds for $n = k + 1$.		
By the Principle of Mathematical Induction, the		Award this mark only if a
equality holds for all positive integers n.	6	candidate has scored the first 5 marks.
		Alt. Solution:
6. Put u = 9 - x ³	1A	Put $v^2 = 9 - x^3$
		$2vdv = -3x^2dx \qquad \dots$
$du = -3x^2 dx \qquad \dots$	1A	
x = 0, u = 9) x = 2, u = 1)	1A	When $x = 0$, $v = 3$) $x = 2$, $v = 1$
		$\int_{0}^{2} \frac{x^{2} dx}{\sqrt{9 - x^{3}}} = \int_{3}^{1} \left(-\frac{2}{3}\right) dv$
$\int_{0}^{2} \frac{x^{2} dx}{\sqrt{9 - x^{3}}}$		$y_0 / 9 - x^3$) 3 \ 3 / 3 \ = $\left[\frac{2}{3} \text{ v } \right]_1^3 \dots$
$\int 1 - dn$		$= \begin{bmatrix} \frac{1}{3} & \frac{1}{3} & \cdots \\ \frac{1}{4} & \cdots \end{bmatrix}$
$= \int_{9}^{1} \frac{-du}{3\sqrt{u}}$	1A	= 3
$=\frac{1}{3}\left[\frac{\sqrt{u}}{1}\right]_{1}^{9}$	1A	Alt. Solution: Put $x^3 = 9\sin^2\theta$
3 6 ½ 11		Put $x^3 = 9\sin^2\theta$ $3x^2dx = 18\sin\theta\cos\theta d\theta$
$=\frac{4}{3}$	<u>1A</u>	When $x = 0$, $\theta = 0$ $x = 2$, $\theta = 1.231$
	-0	
		$\int_{0}^{2} \frac{x^{2} dx}{\sqrt{9 - x^{3}}}$
		(1.231
) 0
		$= [-2\cos\theta]_0^{1.231}$

DESTRICTED 內如文性 H133VIded by dee.life

Add.	RESIMICIED PA		1
	SOLUTIONS	MARKS	REMARKS Alt. Solution:
7. (a)	$\cos\frac{3\pi}{10} = \sin(\frac{\pi}{2} - \frac{3\pi}{10})$	1A	$\cos 3\theta = \sin 2\theta$
	$= \sin \frac{2\pi}{10}$	1	$\cos 3\theta = \cos(\frac{\pi}{2} - 2\theta)$
	$\frac{\pi}{10}$ is a root of $\cos 3\theta = \sin 2\theta$.		$3\theta = 2n\pi \pm (\frac{\pi}{2} - 2\theta)$
	Alt. Solution: $\sin \frac{2\pi}{10} = \cos(\frac{\pi}{2} - \frac{2\pi}{10})$ 1A		$50 = 2n\pi + \frac{\pi}{2}$
	$= \cos \frac{3\pi}{10} \qquad 1$		$\theta = 2n\pi - \frac{\pi}{2}$
(ъ)	$\cos 3\theta = \sin 2\theta$		$\theta = \frac{\pi}{10}$
	$4\cos^3\theta - 3\cos\theta = 2\sin\theta\cos\theta$	1A	
	$\cos\theta \neq 0 \text{ for } \theta = \frac{\pi}{10} .$		
	Therefore, $4\cos^2\theta - 3 - 2\sin\theta = 0$		
_	$4\sin^2\theta + 2\sin\theta - 1 = 0$	2A	
	$\sin\theta = \frac{-2 \pm \sqrt{4 + 16}}{8}$	1A	
	As $\sin \frac{\pi}{10} > 0$,		
	$\sin \frac{\pi}{10} = \frac{\sqrt{5} - 1}{4}$	1A	
		7	
3. (a)	u = sinx		
	du = cosx dx	1A	
	x = 0 , $u = 0$)	1A	
	$\int_{0}^{\frac{\pi}{2}} \cos^{7} x dx = \int_{0}^{1} (1 - u^{2})^{3} du$	1A	
***	$= \int_{0}^{1} (1 - 3u^{2} + 3u^{4} - u^{6}) du$	1M	For expanding integrand.
	$= [u - u^3 + \frac{3}{5}u^5 - \frac{1}{7}u^7]_0^1$		
	$=\frac{16}{35}$	1 <u>A</u> 5	
(b)	$\frac{dy}{dx} = \cos^{2n}x + (2n - 1)\cos^{2n-2}x \text{ (-sinx) sinx}$	lA	
•	$= \cos^{2n} x - (2n - 1)\cos^{2n-2} x \sin^{2} x$	1A	
	Integrating,		
	$\int [\cos^{2n} x - (2n-1)\cos^{2n-2} x \sin^{2} x] dx = \sin x \cos^{2n-1} x + C$	1M	
	$\int [\cos^{2n} x - (2n-1)\cos^{2n-2} x (1-\cos^2 x)] dx = \sin x \cos^{2n-1} x$	c+C	
	$2n \int \cos^{2n} x dx - (2n-1) \int \cos^{2n-2} x dx = \sin x \cos^{2n-1} x +$	C 1 4	·

GO Adu.	riacn	.J	MEDIM	CILD 13	31/~1	<u>.</u> *
		/2 /	SOLUTIONS		MARKS	REMARKS
8. (c)	(i)	From (b) $2n \int_{0}^{\frac{\pi}{2}} c$	os ²ⁿ xdx - (2n-1) $\int_0^{\frac{\pi}{2}} cc$	s ²ⁿ⁻² xdx		
		= [sinx	$\cos^{2n-1}x]_0^{\frac{\pi}{2}} \dots \dots$		1A	$\frac{0R}{0R} \left[\sin x \cos^{2n-1} x + C \right]_{0}^{\frac{T}{2}}$
		$2n \int_{0}^{\frac{\pi}{2}} c$	$\cos^{2n} x dx - (2n-1) \int_{0}^{\frac{\pi}{2}} cc$	$s^{2n-2}xdx = 0$	1A	For R.S.
		$\int_{0}^{\frac{\pi}{2}} \cos$	$2n_{xdx} = \frac{2n-1}{2n} \int_{0}^{\frac{\pi}{2}} \cos^{2n-1}$	· ² xdx	1	·
	(ii)	$\begin{cases} \frac{\pi}{2} \\ 0 \end{cases} \cos$	$^6 x dx = \frac{5}{6} \int_0^{\frac{\pi}{2}} \cos^4 x dx$		lA	
			$= \frac{5}{6} \cdot \frac{3}{4} \int_0^{\frac{\pi}{2}} \cos^2 x dx$:	lA	Alt. Solution:
_		$\int_{0}^{\frac{\pi}{2}} \cos^{2} \theta$	$^{2}xdx = \frac{1}{2} \int_{0}^{\frac{\pi}{2}} dx$			$\int_{0}^{\frac{\pi}{2}} \cos^{2}x dx = \int_{0}^{\frac{\pi}{2}} \frac{1}{2} (\cos 2x + 1)$
			$=\frac{1}{2}\left[x\right]_{0}^{\frac{11}{2}}$			$=\frac{1}{2}\left[\frac{1}{2}\sin 2x + x\right]_{0}^{\frac{\pi}{2}}$
			$=\frac{\Pi}{4}$	• • • • • • • • • • • • • • • • • • • •	1A	= \frac{\mathbf{T}}{4} \\ \tag{2}
		Therefo	re, $\int_0^{\frac{\pi}{2}} \cos^6 x dx = \frac{5}{6}.$	ਕ ਦ		
			$=\frac{5}{32}$	π	1 <u>A</u> 7	
(d)	Put	$v = \frac{\pi}{2} -$	х		1A	
		dv = -dx)	1A	
		x = 0, v	$=\frac{\pi}{2}$; $x = \frac{\pi}{2}$, $v = 0$)		
_	$\begin{pmatrix} \mathbf{I} \\ 2 \\ 0 \end{pmatrix}$	sin ⁶ xdx	$= \int_{\frac{\pi}{2}}^{0} \sin^{6}(\frac{\pi}{2} - v)(-dt)$	(v)		NOTE: If a cand. claims
		:	$= \int_{0}^{\frac{\pi}{2}} \cos^6 v dv \dots$	•••••	1A	$\int_{0}^{\frac{\pi}{2}} \sin^{6} x dx = \int_{0}^{\frac{\pi}{2}} \cos^{6} x dx$
		:	$=\frac{5}{32}\pi$		1A 4	$=\frac{5}{32}\pi\cdots$
	Alt.	Solution	n:			
	$\frac{\underline{\tau}}{2}$	sin ⁶ xdx	$= \int_0^{\pi} (1 - \cos^2 x)^3 dx$		1A	
	,		$= \int_{0}^{\frac{\pi}{2}} (1 - 3\cos^{2}x + 3\cos^{2}x)$	cos ⁴ x - cos ⁶ x)dx	lA	
			$= [x]_0^{\frac{\pi}{2}} - \frac{3}{2} \cdot \frac{\pi}{2} + 3 \cdot \frac{3}{4}.$	$\frac{1}{2} \cdot \frac{\pi}{2} - \frac{5}{32} \pi$	lM	For using (c).
			$=\frac{5}{32}\pi$	•••••	1A	·

Add. Maths. II RESTRICTED 內部文件

(2 3 A	Add. Ma - う	itils.	L 1.	NESTAI	CIED M	ことくに	T
	ं <i>ें</i> 			SOLUTIONS		MARKS	REMARKS
9.	(a) In	. Δ PQI	$R, \frac{P!}{\sin}$	$\frac{R}{\beta^{\circ}} = \frac{c}{\sin \angle PRQ}$		2A	Accept expressions with no degree measure
	si	n ∠PRO) = sin	(180° - ♂° - ß°)			
			= sin	(x° + ß°)		2A	
	In	ΔРВІ	-	PR tan0°		lM	
			=	$\frac{\operatorname{ctan}\theta^{\circ}\sin\beta^{\circ}}{\sin(\alpha^{\circ}+\beta^{\circ})}$		1 6	
((b) (i) In	Δ PQR,	$\frac{QR}{\sin x^{\circ}} = \frac{c}{\sin \angle PRQ}$	•••••	1A	
				$QR = \frac{csin54^{\circ}}{sin80^{\circ}}$	(= 0.8215c)		
	_	tai	n ∠BQR =	$=\frac{h}{QR}$	•••••	2M	h = 0.6129c
			=	$= \frac{\text{csin46°tan40°}}{\text{sin 100°}} \cdot \frac{\text{sin}}{\text{csin}}$.n80° .n54°		
			∠BQR =	= 36.7°	•••••	2A	
	(i	i) In	Δ QMR,	$MR^2 = QM^2 + QR^2 - 2$	QM • QR • cos46°	2M	Alt. Solution:
				MR = 0.5951c			In \triangle PQR, PR = $\frac{\text{csin46}^{\circ}}{\text{sin80}^{\circ}}$
		tai	n ∠BMR =	= <u>BR</u>	•••••	IM	MR ² =PM ² +PR ² -2PM • PRcos54° 2
			=	$= \frac{\text{ctan40°sin46°}}{\text{sin 100°}} \cdot \frac{0.5}{0.5}$	<u>1</u> 951c		
Р			∠BMR =	= 45.8°	• • • • • • • • • •	2A	
		In	Δ PMR,	$\frac{\sin \angle PMR}{PR} = \frac{\sin 54^{\circ}}{MR}$		1M	for ∠ PMR
Μ		K sin	n ∠PMR =	$= \sin 54^{\circ} \cdot \frac{0.7304c}{0.5951c}$			
			LPMR =	= 83.2° or 96.8°(reje (Accept ∠PMR = 83.		2A	NORTH B B
S	ž	The	e bearin	ng of B from M is N83	3.2°E.	, 1A 14	P
		Δ.7	Lt. Solu	ıtion:			Fr.
		į.	i ⊿QMR, in∠OMR				c metres
	ř	==	•	$=\frac{\sin 46^{\circ}}{MR}$	1M		
			•	= 96.8° or 83.2°	2A		β°
				g 83.2°, the bearing is N83.2°E.	1A		

88 Add. Maths. II RESTRICTED 內部文件

88 Add.	Maths. 11 RESINICILD 13:	ap / T	
	SOLUTIONS	MARKS	REMARKS
10.(a)	$x = asin\theta$		
	$dx = a\cos\theta d\theta$	1A	
	When $x = 0$, $\theta = 0$; $x = a$, $\theta = \frac{\pi}{2}$	1A	
	$\int_0^a \sqrt{a^2 - x^2} dx = \int_0^{\frac{\pi}{2}} a^2 \cos^2\theta d\theta$	1A	
	$= \frac{a^2}{2} \int_0^{\frac{\pi}{2}} (1 + \cos 2\theta) d\theta$		-
	$=\frac{1}{2}a^2\left[\theta+\frac{1}{2}\sin 2\theta\right]_0^{\frac{1}{2}}$		
	$=\frac{\pi a^2}{4}$	1A	
	Area of ellipse = $2 \int_{-a}^{a} y dx$	1A	
	$= 4 \int_0^a b \sqrt{1 - \frac{x^2}{a^2}} dx$		
	$= \frac{4b}{a} \int_0^a \sqrt{a^2 - x^2} dx$		
	= πab	1A 6	•
(b)	(i) Volume of pebble = $\int_{-1}^{1} \pi y^2 dx$	1A+1M	IA for limits
	$= \int_{-1}^{1} \pi \left(\frac{3}{4}\right)^{2} (1 - x^{2}) dx$	1A	IM for $\int_a^b \pi y^2 dx$
	$= \frac{9}{16} \pi \left[x - \frac{x^3}{3} \right]_{-1}^{1}$		
	$=\frac{3}{4}\pi$	1A	
	(ii) (1) $V = \int_{a}^{-(b-h)} \pi x^2 dy$	1M+1A	lA for limits
_	$= \int_{-b}^{-b+h} \pi \cdot 4b^2 (1 - \frac{y^2}{b^2}) dy$	1A	1M for $\int_a^b \pi x^2 dy$
	$= 4 \pi b^{2} \left[y - \frac{y^{3}}{3b^{2}} \right]_{-b}^{-b+h}$		
	$= 4\pi b^{2}[-b + h - \frac{(-b+h)^{3}}{3b^{2}} + b - \frac{b^{3}}{3b^{2}}]$,	
	$= 4 \text{Tb}^2 \left[h - \frac{b}{3} + \frac{b^3 - 3b^2 h + 3bh^2 - h^3}{3b^2} \right]$	1M	for expanding (b-h) ³
	$= 4 \pi b^{2} \left[\frac{3bh^{2} - h^{3}}{3b^{2}} \right]$		
	$=\frac{4\pi h^2}{3} (3b - h) \dots$	1	
	$\frac{dV}{dh} = 8\pi bh - 4\pi h^2$	1A	
	When $h = \frac{b}{2}$, $\frac{dV}{dh} = 4 \pi b^2 - \pi b^2$ = $3 \pi b^2$	1.	
	100	1A	
	(2) $\int V \approx \frac{dV}{dh} \cdot \int h$ $\frac{3}{4} \pi \approx 3\pi (5)^2 \cdot \int h \dots$	1M 1M	For SV = vol. of pebble
	$\frac{7}{4}$ ≈ 3	1111	in (b)(i)
	sir ~ 0.01 (dille)	14	
		•	.

्रे जु	SOLUTIONS SOLUTIONS	MARKS	REMARKS
II. (a)	S lies on the perpendicular through K,		
(-,	slope of KS = -5	1A	
	$\frac{y-12}{x-1}=-5$	1A	
	x - 1 $5x + y - 17 = 0$		
	S also lies on the perpendicular bisector of HK:		Alt. Solution: HS = KS
	Mid-point of HK is (-1, 9)		$\sqrt{(x+3)^2 + (y-6)^2}$
	Slope of HK = $\frac{12-6}{1-(-3)} = \frac{3}{2}$	1A	$= \sqrt{(x-1)^2 + (y-12)^2} $ 1M+
	$\frac{y-9}{x+1}=-\frac{2}{3}$	1M+1A	$8x + 12y - 100 = 0 \dots$
	-3y + 27 = 2x + 2		2x + 3y - 25 = 0
	2x + 3y - 25 = 0		
	Solving the two equations,		
	x = 2, y = 7	1A	
	S is the point (2, 7).		
	Equation of C: $(x-2)^2 + (y-7)^2 = (2-1)^2 + (7-12)^2$	1M	
	$(x-2)^2 + (y-7)^2 = 26$	l A	
	$x^2 + y^2 - 4x - 14y + 27 = 0$		
		8	
	Alt. Solution:		
	Let the equation of C be		
_	$x^2 + y^2 + 2gx + 2fy + c = 0$ 1M		
	This passes through (1, 12) and (-3, 6).		
	$1^2 + 12^2 + 2g + 24f + c = 0$		
	9 + 36 - 6g + 12f + c = 0 IA		
	Differentiating the equation of C,		Alt. Solution:
	2x + 2yy' + 2g + 2fy' = 0		$\frac{12 + f}{1 + g} = -5$ 1M+
	$2 + 24(\frac{1}{5}) + 2g + 2f(\frac{1}{5}) = 0$ 1A		5g + f + 17 = 0
	5g + f + 17 = 0		
	Solving the three equations, $g = -2$)		
	g = -2) f = -7)		
	S is (2, 7).	1	
	Equation of C is $x^2+y^2-4x-14y+27 = 0$ 1A	 	

(c)

RESTRICTED 內部文件

SOLUTIONS
Equation of family of circles through A and B:
$x^2 + y^2 - 4x - 14y + 27 + k(3x-2y-5) = 0$
$x^2 + y^2 + (3k-4)x - (14+2k)y + (27-5k) = 0$
The centre is at $(\frac{4-3k}{2}, \frac{14+2k}{2})$
This lies on L, therefore
$3(\frac{4-3k}{2}) - 2(\frac{14+2k}{2}) - 5 = 0 \dots$

Required equation is $x^2+y^2-10x-10y+37 = 0$...(*)

 $\angle ASB = 90^{\circ}$ (\angle in a semi-circle)

Alt. Solution (1):

A and B are
$$(3, 2)$$
 and $(7, 8)$.
S is $(2, 7)$.

$$AS^{2} + BS^{2} = (8-7)^{2} + (7-2)^{2} + (7-2)^{2} + (2-3)^{2} = 52$$

$$= 52$$

$$AB^{2} = (7-3)^{2} + (8-2)^{2} = 52$$

$$AS^{2} + BS^{2} = AB^{2}$$

$$AS^{2} + BS^{2} = AB^{2}$$

$$AS^{3} + BS^{4} = 90^{\circ}$$

$$A1t. Solution (2):$$

$$A(7, 8), B(3, 2)$$

$$A(7, 8), B(3, 2)$$

$$A(7, 8), B(3, 2)$$

$$A1t. Solution (2):$$

$$A(7, 8), B(3, 2)$$

$$A1t. Solution (2):$$

$$A(7, 8), B(3, 2)$$

$$A1t. Solution (3):$$

$$A1t. Solution (4):$$

$$A1t. Solution (5):$$

$$A1t. Solution (5):$$

$$A1t. Solution (7, 8):$$

$$A1t. Solution (8):$$

$$A1t. Solution (9):$$

$$A1t. Solution (9)$$

$$\angle APB = \frac{1}{2} \angle ASB$$
 or $180^{\circ} - \frac{1}{2} \angle ASB$
= 45° or 135°

therefore $\angle ASB = 90^{\circ}$

REMARKS

Solving eqts. of L and C,

Alt. Solution:

$$A \begin{cases} x = 3 \\ y = 2 \end{cases} \text{ or } \begin{cases} x = 7 \\ y = 8 \end{cases}$$

 $=\sqrt{13}$

Radius =
$$\int (\frac{3k-4}{2})^2 + (\frac{14+2k}{2})^2 - (27-5k)$$
= $\frac{1}{2}AB$
= $\frac{1}{2}\sqrt{(7-3)^2 + (8-2)^2}$

2M

IA+IA

134 yiph 161 	SOLUTIONS	MARKS	REMARKS
12.(a)	Equation of L: $\frac{y-0}{x+2} = m$	1A	
	y = m(x + 2)		
	y = mx + 2m		
	Since A and B are the intersecting points of L and		
	the parabola $y^2 = 8x$, the coordinates of A and B		
•	satisfies the equations of L and the parabola, i.e.		
	$y = mx + 2m$ and $y^2 = 8x$.		
	Eliminating y, $(mx + 2m)^2 = 8x$	1M	
	$m^2x^2 + (4m^2 - 8)x + 4m^2 = 0$	3	
	$x_1 + x_2 = \frac{8 - 4m^2}{m^2}$)	IA	,
	$(x_1 - x_2)^2 = (x_1 + x_2)^2 - 4x_1x_2$	1A	
	$= \left(\frac{8 - 4m^2}{m^2} \right)^2 - 16 \dots$	1M+1A	
	$= 16 \left[\frac{(2 - m^2)}{m^2} \right]^2 - 16$		
	$= \frac{16(4 - 4m^2)}{m^4}$	1A	
-	$= \frac{64(1 - m^2)}{m^4}$	5	
	Alt. Solution: $x = \frac{-(4m^2 - 8) \pm \sqrt{(4m^2 - 8)^2 - 4(4m^2)(m^2)}}{2m^2}$ $(x_1 - x_2)^2 = \left[\frac{2\sqrt{(4m^2 - 8^2)^2 - 16m^4}}{2m^2}\right]^2$ $= \frac{64(1 - m^2)}{m^4}$ 1A		•

RESTRICTED 内部入...

	SOLUTIONS	MARKS	REMARKS
12.(c)	$y_1 = mx_1 + 2m$) $y_2 = mx_2 + 2m$)	LA	Can be omitted.
	$y_1 - y_2 = m(x_1 - x_2)$	2A	
	$AB^{2} = (x_{1} - x_{2})^{2} + (y_{1} - y_{2})^{2}$		
	$= (x_1 - x_2)^2 + m^2((x_1 - x_2)^2 \dots \dots$	1M	
	$= (1 + m^2)(x_1 - x_2)^2 $ $= (4(1 + m^2)(1 - m^2) $)	1	
	$=\frac{64(1+m^2)(1-m^2)}{m^4}$		
	Alt. Solution:		
	Eliminating x from $y = mx + 2m$ and $y^2 = 8x$.		
	$my^2 - 8y + 16m = 0$		
_	$y_1 + y_2 = \frac{8}{m}$.7%
	$y_1 + y_2 = \frac{8}{m}$)		
	$(y_1 - y_2)^2 = (y_1 + y_2)^2 - 4y_1y_2$		
	$= (\frac{8}{m})^2 - 64$ 1M		
	$=\frac{54\left(1-m^2\right)}{m^2} \qquad 1A$		
	$AB^{2} = (x_{1} - x_{2})^{2} + (y_{1} - y_{2})^{2}$		
	$= \frac{64(1 - m^2)}{m^4} + \frac{64(1 - m^2)}{m^2}$		
	$= \frac{64(1 - m^2)(1 + m^2)}{m^4} \dots 1$		
(a)	From (c), $AB^2 = 0$ or from (a), $D=0$.	1M	
	$m^2 - 1 = 0$ $m = \pm 1$	7 4 1 1 4	
		$\frac{1A+1A}{3}$	
(e)	L: $y = \frac{\sqrt{3}}{3} x + \frac{2\sqrt{3}}{3}$		
	$x - \sqrt{3}y + 2 = 0$	The same of the sa	,
	Distance from C to L = $\frac{2 - \sqrt{3}(0) + 2}{\sqrt{1 + 3}}$	1M	Absolute value sign options
	= 2	1 A	
	Length of AB = $\sqrt{\frac{64(1 + \frac{1}{3})(1 - \frac{1}{3})}{\frac{1}{9}}}$		
	$= 16\sqrt{2} \qquad \dots$	1A	
	\triangle ABC = $\frac{1}{2}(2)(16\sqrt{2})$		
	$= 16\sqrt{2}$	1A	

Provided by dse.life