Lista 1 de probleme¹

Grupele 103 & 104 - 2020-2021

Toate inelele se consideră unitare și comutative în cele ce urmează.

Exercițiul 1.1:

- a) Demonstrați că $\mathbb{Z}_2[X]/(X^2+X) \simeq \mathbb{Z}_2 \times \mathbb{Z}_2$.
- b) Demonstrați că $\mathbb{Z}_2[X]/(X^2+\hat{1})$ este un inel cu 4 elemente care nu este izomorf cu $\mathbb{Z}_2\times\mathbb{Z}_2$.

Exercițiul 1.2: Fie un polinom $f \in \mathbb{Z}[X]$ astfel încât există $a, b \in \mathbb{Z}$ cu f(a), f(b) și a + b impare. Demonstrați că f nu are rădăcini întregi.

Exercițiul 1.3: Fie R un inel. Pentru $I \subseteq R$, notăm

$$\sqrt{I} = \{ r \in R \mid \exists \ n \in \mathbb{N}^*, r^n \in I \}.$$

a) Demonstrați că \sqrt{I} este un ideal al lui R ce îl conține pe I (se numește idealul radical al lui I).

Un ideal $I \unlhd R$ se numește $ideal \ radical$ dacă $\sqrt{I} = I.$

b) Notăm cu

$$\mathfrak{N}(R) = \{ r \in R \mid \exists \ n \in \mathbb{N}^*, r^n = 0 \}$$

mulțimea elementelor nilpotente ale lui R. Demonstrați că $\mathfrak{N}(R)$ este ideal al lui R (numit nilradicalul lui R).

 c) Demonstrați că, folosind notațiile de la curs și seminar pentru ideale ale inelului factor,

$$\sqrt{I}/I = \mathfrak{N}\left(R/I\right)$$

(unde $\mathfrak{N}\left(\frac{R}{I}\right)$ este nilradicalul inelului $\frac{R}{I}$, definit în exercițiul precedent).

d) Determinați idealele radicale ale lui \mathbb{Z} .

Exercițiul 1.4: Fie $A = \{ f \in \mathbb{Q}[X] \mid f \text{ nu are termen de grad 1} \}$. Demonstrați că A este subinel unitar al lui $\mathbb{Q}[X]$ și

$$\mathbb{Q}[X,Y]/(X^3 - Y^2) \simeq A.$$

Trimiteți rezolvările în format pdf la miron.stanciu@fmi.unibuc.ro.

Exercițiul cu * valorează 0.2 puncte, iar celelalte 0.1 puncte. Nota maximă pe această listă este de 1p. **Puteți colabora, dar redactarea trebuie să fie individuală.** Îmi rezerv dreptul de a avea discuții individuale cu voi pentru a verifica înțelegerea problemelor redactate.

¹Termen de predare: 12 aprilie 2020.

Exercițiul 1.5: Fie R un domeniu de integritate infinit și $f \in R[X_1, ..., X_n]$. Presupunem că există o submulțime $A = A_1 \times ... \times A_n \subset R^n$ cu A_i infinite pentru orice $1 \le i \le n$ astfel încât f(x) = 0 pentru orice $x \in A$. Demonstrați că f = 0.

Mai rămâne adevărată afirmația dacă știm doar că f(x) = 0 pentru orice x dintr-o submulțime infinită a lui \mathbb{R}^n ?

Exercițiul 1.6: Fie $R = \{f : [0,1] \to \mathbb{R} \mid f \text{ continuă} \}$. Pentru orice $c \in [0,1]$, fie $\mathfrak{m}_c = \{f \in R \mid f(c) = 0\}$.

Demonstrați că \mathfrak{m}_c este ideal maximal al lui R.

Exercițiul 1.7*: Fie $R = \{f : [0,1] \to \mathbb{R} \mid f \text{ continuă}\}.$

- a) Demonstrați că, folosind notațiile din exercițiul precedent, orice ideal maximal al lui R este de tipul \mathfrak{m}_c , pentru un $c \in [0,1]$.
- b) Demonstrați că, dacă $b \neq c$, $\mathfrak{m}_b \neq \mathfrak{m}_c$.
- c) Demonstrați că $\mathfrak{m}_c \neq (X-c)$, idealul generat de funcția polinomială X-c.
- d) Demonstrați că \mathfrak{m}_c nu este ideal finit generat.

Exercițiul 1.8: Fie $R = \{f : \mathbb{R} \to \mathbb{R} \mid f \text{ continuă}\}$. La fel ca mai devreme, pentru orice $c \in \mathbb{R}$, fie $\mathfrak{m}_c = \{f \in R \mid f(c) = 0\}$.

Pentru orice $f \in R$, notăm cu

$$\operatorname{supp}(f) = \overline{\{x \in \mathbb{R} \mid f(x) \neq 0\}},$$

numit suportul funcției f. Fie

$$I_0 = \{ f \in R \mid \text{supp}(f) \text{ compact} \}.$$

- a) Demonstrați că I_0 este ideal al lui R.
- b) Demonstrați că R_{I_0} nu este domeniu de integritate.
- c) Fie \mathfrak{m} un ideal maximal astfel încât $I_0 \subset \mathfrak{m}$ (conform Lemei lui Krull). Arătați că nu există $c \in \mathbb{R}$ astfel încât $\mathfrak{m} = \mathfrak{m}_c$.

Exercițiul 1.9: Fie K un corp și $n \ge 1$.

• Pentru orice ideal $I \subseteq K[X_1, ..., X_n]$, introducem notația

$$\mathcal{Z}(I) = \{x = (x_1, ..., x_n) \in K^n \mid f(x) = 0, \ \forall f \in I\}$$

(multimea zerourilor comune ale tuturor polinoamelor din I).

• Pentru orice submulțime $A \subset K^n$, introducem notația

$$\mathcal{I}(A) = \{ f \in K[X_1, ..., X_n] \mid f(x) = 0, \ \forall x \in A \}$$

(multimea polinoamelor care se anulează pe A).

Demonstrați următoarele:

- a) Pentru orice $A \subset K^n$, $\mathcal{I}(A) \subseteq K[X_1, ..., X_n]$ şi $\mathcal{Z}(\mathcal{I}(A)) \supset A$.
- b) Pentru orice $I \subseteq K[X_1,..,X_n], \mathcal{I}(\mathcal{Z}(I)) \supset \sqrt{I}$ (vedeți Exercițiul 1.3).
- c) Demonstrați că există o topologie pe K^n pentru care mulțimile **închise** sunt exact cele de tipul $\mathcal{Z}(I)$ pentru un $I \subseteq K[X_1, ..., X_n]$ (se numește topologia Zariski).