

Quiz 1

Strong Block Encryption

In 1945, Claude Shannon defined two basic operations to achieve strong encryption:

- Confusion: an encryption operation where the relationship between key and ciphertext is hidden.
- ♦ **Diffusion:** an encryption operation where the influence of one plaintext bit is spread over many ciphertext bits.

© Dr. Mohamad Samir A. Eid

Strong Block Encryption Each round performs a confusion and diffusion operation. Diffusion 1 Confusion 1 Diffusion 2 Confusion 2 V V Confusion N V Confusion

5

Today

- ♦ Motivation.
- Intro to Finite fields (needed for understanding AES).
- ♦ Intro to AES.

© Dr. Mohamad Samir A. Eid

Motivation

Found by every web browser, in banking machines, WiFi routers, Bitlocker, etc ..

How does it work?

All internal operations of AES are based on Finite Fields.

© Dr. Mohamad Samir A. Eid

7

Finite Fields (Galois Fields)

- ♦ Agenda:
 - ♦ Introduction to Finite Fields.
 - ♦ Prime Fields.
 - ♦ Extension Fields.

© Dr. Mohamad Samir A. Eid

Intro to Finite Fields

What's a Field?

Group

Abstract (modern) algebra consists of three basic elements: €

- Ring - Field

Group $\{G,+,-\}$: a set of elements, such that the following axioms are obeyed:

A1. Closure:

Note

If a and b belong to G, then a ∘ b is also in G.

the generic operator • denotes either + or –

A2. Associativity:

 $a \circ (b \circ c) = (a \circ b) \circ c$ for all a, b, c in G

A3. Identity element:

There is an element 0 in G such that $a \circ 0 = 0 \circ a = a$ for all a in G

A4. Inverse element:

For each a in G there is an element -a in G such that a + (-a) = (-a) + a = 0

A5. Commutativity:

 $a \circ b = b \circ a$ for all a, b in G

But we're interested in more than just +, -

© Dr. Mohamad Samir A. Eid

9

Intro to Finite Fields

Ring $\{R,+,-,\times\}$: a set of elements such that the following axioms are obeyed:

A1~A5.

M1. Closure under multiplication:

If a and b belong to R, then ab is also in R

M2. Associativity of multiplication:

a(bc) = (ab)c for all a, b, c in R

M3. Distributive laws:

a(b + c) = ab + ac for all a, b, c in R

(a + b)c = ac + bc for all a, b, c in R

M4. Commutativity of multiplication:

ab = ba for all a, b in R

M5. Multiplicative identity:

There is an element 1 in R such that a1 = 1a = a for all a in R

M6. No zero divisors:

If a, b in R and ab = 0, then either a = 0 or b = 0

Still, we're interested in more than just $+, -, \times$

© Dr. Mohamad Samir A. Eid

10

Intro to Finite Fields

Field $\{F, +, -, \times, ()^{-1}\}$: a set of elements, such that the following axioms are obeyed:

A1~A5.

M1~M6.

M7. Multiplicative inverse:

For each a in F, except 0, there is an element a^{-1} in F such that $aa^{-1}=(a^{-1})a=1$.

Simply, it's a set of numbers which we can add, subtract, multiply, and invert, that obey A1~A5 & M1~M7.

Example: Which of the following are Fields?(

© Dr. Mohamad Samir A. Eid

11

Intro to Finite Fields

In crypto, we almost always need finite sets.

m: positive integer

Theorem: A finite field only exists if it has p^m elements.

p: prime integer

Order or cardinality of the field: number of elements in GF.

Examples:

- 1) There's a finite field with 11 elements. GF(11)
- 2) There's a finite field with 81 elements. $GF(81) = GF(3^4)$
- 3) There's a finite field with 256 elements. $GF(256) = GF(2^8) \leftarrow$ The Galois field
- 4) Is the field with 12 elements a finite field?

specified in the AES standard.

Types of Finite Fields

13

Prime Field Arithmetic

The elements of a prime field GF(p) are the integers $\{0, 1, ..., p-1\}$

a) Add, subtract, multiply: $a \circ b \equiv c \mod p$ Note: the generic operator ∘ here denotes either +, −, or ×

b) Inversion:

 $a \in GF(p)$; the inverse a^{-1} must satisfy $a \cdot a^{-1} \equiv 1 \mod p$ a^{-1} can be computed using the Extended Euclidian Algorithm.

© Dr. Mohamad Samir A. Eid

Extension Field GF(2^m) Arithmetic

Used in AES.

The elements of GF(2^m) are polynomials.

$$a_{m-1}x^{m-1} + \ldots + a_1x + a_0 = A(x) \in GF(2^m)$$

Coefficients $a_i \in GF(2) = \{0, 1\}$

Example:

GF(2³) = GF(8)
A(x) =
$$a_2x^2 + a_1x + a_0 = (a_2, a_1, a_0)$$

GF(2³)= { 0, 1, x, x+1, x², x²+1, x²+x, x²+x+1}

© Dr. Mohamad Samir A. Eid

15

Extension Field GF(2^m) Arithmetic

$$C(x) = A(x) \circ B(x) = \sum_{i=0}^{m-1} c_i x^i$$
, $ci \equiv ai + bi \mod 2$

the generic operator • here denotes either +, -

Example: In GF(2³), $A(x) = x^2 + x + 1$, $B(x) = x^2 + 1$

In GF(2°),
$$A(x) = x^2 + x + 1$$
, $B(x) = x^2 +$
Compute $A(x) + B(x)$

GF(2³)= { 0, 1, x, x+1,

$$x^2$$
, x^2+1 , x^2+x ,
 x^2+x+1 }

$$A(x) + B(x) = (1+1)x^2 + x + (1+1)$$

$$=0x^2+x+0$$

$$= x = A(x) - B(x)$$

Addition and subtraction in GF(2^m) are the same operations.

© Dr. Mohamad Samir A. Eid

Extension Field GF(2^m) Arithmetic

b) Multiplication in GF(2^m):

Example: In GF(2³), $A(x) = x^2 + x + 1$, $B(x) = x^2 + 1$ $GF(2^3) = \{ 0, 1, x, x+1,$ Compute $A(x) \times B(x)$ x^2 , x^2+1 , x^2+x , x^2+x+1

$$A(x) \times B(x) = (x^2 + x + 1)(x^2 + 1)$$
$$= x^4 + x^3 + x^2 + x^2 + x + 1$$
$$= x^4 + x^3 + (1+1)x^2 + x + 1$$

$$= x^4 + x^3 + x + 1$$

Wait a second . .

So, call this result $x^4 + x^3 + x + 1 = C'(x)$

Solution: Reduce C'(x) modulo a polynomial that behaves like a prime.

i.e., a polynomial that cannot be factored.

i.e., an irreducible polynomial.

In the next example..

17

Extension Field GF(2^m) Arithmetic

b) Multiplication in GF(2^m):

 $C(x) \equiv A(x) \times B(x) \mod P(x)$, where P(x) is an irreducible polynomial.

Example: Given the irreducible polynomial for $GF(2^3)$ $P(x) = x^3 + x + 1$

 $A(x) = x^2 + x + 1$, $B(x) = x^2 + 1$ Compute $A(x) \times B(x) \mod P(x)$

 $A(x) \times B(x) = x^4 + x^3 + x + 1 = C'(x)$

© Dr. Mohamad Samir A. Eid

Extension Field GF(2^m) Arithmetic

Where did P(x) come from in the previous example?

For every finite field GF(2^m), there are several irreducible polynomials.

So, for a given finite field (e.g., $GF(2^3)$), the computation result depends on P(x).

So, multiplication can't be done unless the irreducible polynomial is specified.

It must be..

The AES standard <u>specifies</u> the irreducible polynomial: $P(x) = x^8 + x^4 + x^3 + x + 1$

What about ()-1?

How to test whether a P(x) is reducible or not? https://www.youtube.com/watch?v=pHQ73N3n-ZU

© Dr. Mohamad Samir A. Eid

19

Extension Field GF(2^m) Arithmetic

c) Inversion in $GF(2^m)$:

The inverse $A^{-1}(x)$ of an element $A(x) \in GF(2^m)$ must satisfy: $A(x) \times A^{-1}(x) \equiv 1 \mod P(x)$

Extended Euclidian Algorithm.

© Dr. Mohamad Samir A. Eid

The Advanced Encryption Standard (AES)

21

AES

- ♦ Agenda:
 - ♦ Intro to AES.
 - ♦ Structure of AES.
 - ♦ Internals of AES.

© Dr. Mohamad Samir A. Eid

Intro to AES

AES is by now the most important symmetric encryption algorithm in the world.

High level view of AES: $x \xrightarrow{128} AES \xrightarrow{128/192/256}$

NSA uses AES for classified data with 192 or 256 key.

© Dr. Mohamad Samir A. Eid

23

23

Remember the Feistel structure? (e.g., SDES, DES) One round of a Feistel network AES does NOT use the Feistel structure.

AES Encryption Round State $A_0 A_1 A_2$ A_3 A_4 A_5 A_6 A_7 A₁₀ A_{11} A₁₂ A₁₃ ByteSub(S) State ShiftRows State MixColumn State XOR Key Add State © Dr. Mohamad Samir A. Eid

c) Mix Column Layer:

Example: 1st MixColumn Box (other three are identical)

$$\begin{pmatrix} C_0 \\ C_1 \\ C_2 \\ C_3 \end{pmatrix} = \begin{pmatrix} 02 & 03 & 01 & 01 \\ 01 & 02 & 03 & 01 \\ 01 & 01 & 02 & 03 \\ 03 & 01 & 01 & 02 \end{pmatrix} \begin{pmatrix} B_0 \\ B_5 \\ B_{10} \\ B_{15} \end{pmatrix}$$

This way, one-bit flip in any of the input bytes affects C₀, C₁, C₂, C₃.

Note: The multiplications and additions for each C_i is done in $GF(2^8)$ with $P(x) = x^8 + x^4 + x^3 + x + 1$

See example in Paar page 105.

© Dr. Mohamad Samir A. Eid

31

Useful Resources

A flash animation of the AES encryption:

http://www.formaestudio.com/rijndaelinspector/archivos/Rijndael_A nimation_v4_eng.swf

A Stick Figure Guide to AES:

http://www.moserware.com/2009/09/stick-figure-guide-to-advanced.html

AES official specs:

https://csrc.nist.gov/csrc/media/publications/fips/197/final/documents/fips-197.pdf

© Dr. Mohamad Samir A. Eid

Further Reading

See AES-NI: AES instruction set for Intel processors

https://software.intel.com/en-us/articles/intel-advanced-encryption-standard-instructions-aes-ni/

Software Library for AES Encryption and Decryption by Atmel

http://ww1.microchip.com/downloads/en/appnotes/atmel-42508-software-library-for-aes-128-encryption-and-decryption_applicationnote_at10764.pdf

© Dr. Mohamad Samir A. Eid

19/2/20

33

33

Modes of Operation for Block Ciphers

- ♦ Introduction.
- ♦ Electronic Codebook Mode (ECB).
- ♦ Cipher Block Chaining Mode (CBC).
- ♦ Cipher Feedback Mode (CFB).

© Dr. Mohamad Samir A. Eid

Introduction

Block ciphers can be used for many tasks:

- ♦ PRNG
- ♦ Hash function
- ♦ MACs
- ♦ . . .

© Dr. Mohamad Samir A. Eid

35

35

Deterministic vs Probabilistic Encryption

- In a deterministic encryption scheme, a particular plaintext is mapped to a fixed ciphertext, if the key is unchanged.
- ♦ A probabilistic encryption scheme is non-deterministic. i.e., if the same plaintext is encrypted twice, different ciphertexts are obtained.

© Dr. Mohamad Samir A. Eid

Electronic Codebook Mode (ECB)

Seems like the natural way of doing encryption...

But . . . Not a very good way, as we're going to see.

© Dr. Mohamad Samir A. Eid

38

ECB Weakness: Encryption of Bitmaps in ECB Mode

Bitmap image before encryption

Encrypted bitmap image using ECB

Simply because ECB is deterministic.

Identical plaintext blocks are mapped into identical cyphertext blocks.

© Dr. Mohamad Samir A. Eid

39

Cipher Block Chaining Mode (CBC)

Main goal: Make the encryption probabilistic.

Idea: Use the ciphertext from the previous block, to impact the current block.

IV: Initialization Vector.

Doesn't have to be a secret.

Should be a nonce, i.e., number used only once.

Could be from a TRNG, PRNG, counter, etc.

© Dr. Mohamad Samir A. Eid

Textbook

Paar:

- ♦ Chapter 4 (till section 4.4.3)
- ♦ Sections 5.1.1, 5.1.2, 5.1.4

© Dr. Mohamad Samir A. Eid

19/2/20

43

