MA 205: Complex Analysis Extra questions

Aryaman Maithani

https://aryamanmaithani.github.io/tuts/ma-205

Autumn Semester 2020-21

Contents

0	Notations	2
1	Topology	3
2	Cauchy Riemann Equations	4

§**0** Notations

§0. Notations

- 1. $\mathbb{N} = \{1, 2, 3, \ldots\}$, the set of positive integers.
- 2. \mathbb{Z} is the set of integers.
- 3. \mathbb{Q} is the set of rational numbers.
- 4. \mathbb{R} is the set of real numbers.
- 5. $A \subset B$ is read as "A is a subset of B." In particular, note that $A \subset A$ is true for any set A.
- 6. $A \subsetneq B$ is read "A is a proper subset of B."
- 7. \supset and \supsetneq are defined similarly.
- 8. Given a function $f: X \to Y, A \subset X, B \subset Y$, we define

$$f(A) = \{y \in Y \mid y = f(a) \text{ for some } a \in A\} \subset Y,$$

$$f^{-1}(B) = \{x \in X \mid f(x) \in B\} \subset X.$$

(Note that this f^{-1} is different from the inverse of a function. In particular, this is always defined, even if f is not bijective. However, the f and f^{-1} above need not be "inverses.")

 $\S 1$ Topology 3

§1. Topology

1. Is the interval (0,1) open as a subset of \mathbb{C} ?

HIDDEN: No

2. Is the interval (0,1) closed as a subset of \mathbb{C} ?

HIDDEN: No

- 3. Consider the following four properties that a subset of $\mathbb C$ can have:
 - (a) Open
 - (b) Closed
 - (c) Bounded
 - (d) Path connected

Thus, we can classify all the subsets of $\mathbb C$ into 2^4 classes on the basis of what properties they have (and what they don't).

Give an example of each or a proof that some certain class cannot have anything. You may assume that \varnothing and $\mathbb C$ are the only subsets of $\mathbb C$ which are both open and closed.

§2. Cauchy Riemann Equations

1. Consider the function $f:\mathbb{C}\to\mathbb{C}$ defined as

$$f(z) = \bar{z}$$
.

Show that f is continuous at each point.

Show that f is differentiable at no point.

(This has given us a very easy example of a function which is continuous everywhere but differentiable nowhere. On the contrary, one has to put a lot more effort to construct an example in the case of real analysis.)

2. Show that the function $f: \mathbb{R}^2 \to \mathbb{R}^2$ defined as

$$f(x,y) = (x, -y)$$

is differentiable in the sense that you saw in MA 105. (That is, its total derivative exists at every point.)

Compare this with the previous question.

3. Let Ω be a region and $f:\Omega\to\mathbb{C}$ be holomorphic. Suppose

$$f(z) \in \mathbb{R}$$
 for all $z \in \Omega$.

Show that f is constant. (That is, if a complex differentiable function takes only real values, then it must be constant on path-connected sets.)

4. Let Ω be a region and $f:\Omega\to\mathbb{C}$ be holomorphic. Suppose that |f| is constant. Show that f is constant.