Math 415 - Lecture 22

Orthogonal projection

Friday October 16th 2015

Textbook reading: Chapter 3.2.

Suggested practice exercises: Chapter 3.2: 9, 10, 17, 19.

Strang lecture: Lecture 15: Projections onto Subspaces

1 Review/Outlook

- We can deal with complicated linear systems Ax = b (maybe with help of a computer), but what to do when there is no exact solution?
- Ax = b had no solution if b is not in Col(A).
- Idea: make Ax b as small as possible (when we vary x).
- How? Project b on the column space Col(A).
- Recall: If v_1, v_2, \ldots, v_n are orthogonal (and non zero) they are independent.
- Recall: To calculate coordinates for orthogonal vectors is easy: this uses

$$v_1 \cdot (c_1v_1 + c_2v_2 + \cdots + c_nv_n) = c_1v_1 \cdot v_1.$$

2 Orthogonal Bases

Definition 1. A basis v_1, v_2, \ldots, v_n of \mathbb{R}^n is called *orthogonal* if the vectors are pairwise orthogonal, $v_i \cdot v_j = 0$ if $i \neq j$.

Example 2. The standard basis $e_1 = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$, $e_2 = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}$, $e_3 = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$ is an orthogonal basis

for \mathbb{R}^3 . Similarly, the standard basis e_1, e_2, \ldots, e_n is an orthogonal basis for \mathbb{R}^n .

Example 3. Are the vectors $\begin{bmatrix} 1 \\ -1 \\ 0 \end{bmatrix}$, $\begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}$, $\begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$ an orthogonal basis for \mathbb{R}^3 ? Solution. **Theorem 1.** Let (v_1, v_2, \ldots, v_p) be an orthogonal basis of $V \subset \mathbb{R}^n$, $w \in V$. Then $w = \frac{v_1 \cdot w}{v_1 \cdot v_1} + \dots + \frac{v_p \cdot w}{v_p \cdot v_p}.$ Proof.

Example 4. Express $w =$	$\begin{bmatrix} 3 \\ 7 \\ 4 \end{bmatrix}$	in the basis $v_1 =$	$\begin{bmatrix} 1 \\ -1 \\ 0 \end{bmatrix}$	$v_2 = $	$\begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}$	$, v_3 =$	$\begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$	•
Solution.								

Warning

The easy formula for the coordinates only works for orthogonal bases.

Example 5. Take the basis $\begin{bmatrix} 1 \\ 0 \end{bmatrix}$, $\begin{bmatrix} 1 \\ 3 \end{bmatrix}$ and the vector $w = \begin{bmatrix} 4 \\ 9 \end{bmatrix}$. Then

$$\begin{bmatrix} 4 \\ 9 \end{bmatrix} = 1 \begin{bmatrix} 1 \\ 0 \end{bmatrix} + 3 \begin{bmatrix} 1 \\ 3 \end{bmatrix},$$

and the coefficients are not the numbers you get from the easy formula. To find them you need to solve a system of equations.

Example 6. The standard basis of $\begin{bmatrix} 3 \\ 7 \\ 4 \end{bmatrix}$ in the standard basis.	$\begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix},$	$\begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}$	$,\begin{bmatrix}0\\0\\1\end{bmatrix}$	is orthor	normal.	Find	the coo	ordinates
Example 7. The vectors $\begin{bmatrix} 1 \\ -1 \\ 0 \end{bmatrix}$, an orthonormal basis.	$\begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}$	$\begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$	form	an ortho	gonal b	asis.	Produce	e from it
Solution.								

Example 8. Express	3 7 4	in the orthonormal basis $(\frac{1}{\sqrt{2}})$	$\begin{bmatrix} 1 \\ -1 \\ 0 \end{bmatrix}$,	$\frac{1}{\sqrt{2}}$	$\begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}$,	$\begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$).
--------------------	-------------	---	--	---	----------------------	---	---	---	----

Solution.

3 Orthogonal Projection

Definition 9 (Orthogonal Projection). The **orthogonal projection** of vector \mathbf{x} on vector \mathbf{y} is

The error is $\mathbf{x}^{\perp} = \mathbf{x} - \hat{\mathbf{x}}$.

- The projection $\hat{\mathbf{x}}$ is the *closest point* to \mathbf{x} on the line through \mathbf{y} .
- The error $\mathbf{x}^{\perp} = \mathbf{x} \hat{\mathbf{x}}$ is characterized by the property that it is orthogonal to $Span(\mathbf{y})$.
- We have a decomposition $\mathbf{x} = \hat{\mathbf{x}} + \mathbf{x}^{\perp}$. The **projection** $\hat{\mathbf{x}}$ is in $Span(\mathbf{y})$ and \mathbf{x}^{\perp} is orthogonal to $Span(\mathbf{y})$.

Summary: the projection formula is
$\hat{\mathbf{x}} = rac{\mathbf{y} \cdot \mathbf{x}}{\mathbf{y} \cdot \mathbf{y}} \mathbf{y}.$
Why?
Solution.
Example 10. Find the orthogonal projection of $\mathbf{x} = \begin{bmatrix} -8 \\ 4 \end{bmatrix}$ onto $\mathbf{y} = \begin{bmatrix} 3 \\ 1 \end{bmatrix}$.
Solution.

Example 11. What is the projection of $\begin{bmatrix} 2\\1\\1 \end{bmatrix}$ onto each of the ve	ctors $\begin{bmatrix} 1 \\ -1 \\ 0 \end{bmatrix}$, $\begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}$, $\begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$?
Solution.	

Theorem 2. If
$$v_1, \ldots, v_n$$
 is orthogonal basis of V and $w \in V$ then $w = c_1v_1 + \cdots + c_nv_n$, with $c_j = \frac{w \cdot v_j}{v_j \cdot v_j}$.

So the terms in this sum are precisely the projections onto each basis vector.

4 Projection Matrix

If \mathbf{y} is a fixed nonzero vector, we get from any vector \mathbf{x} the projection $\hat{\mathbf{x}}$. There is matrix that turns \mathbf{x} into $\hat{\mathbf{x}}$. How? Rewrite the formula for $\hat{\mathbf{x}}$.
where $P = \frac{1}{\mathbf{y} \cdot \mathbf{y}} \mathbf{y} \mathbf{y}^T$. P is called the <i>projection matrix</i> on the subspace $Span(\mathbf{y})$.
Example 12. Let $\mathbf{y} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$. Find the projection matrix P for \mathbf{y} and use it to calculate
the projections of $\begin{bmatrix} 1 \\ 0 \end{bmatrix}$, $\begin{bmatrix} 1 \\ 1 \end{bmatrix}$, $\begin{bmatrix} 1 \\ -1 \end{bmatrix}$ on \mathbf{y} .
Solution.