Pierre Parisé

Problem 10 3= 1+i, 3=1-i, 3=2+5i.

(a)
$$e^{2i}e^{2z}e^{2s} = e^{1+i}e^{1-i}e^{2+5i}$$

 $= e^{4+5i}$
 $= e^{4} (\cos 5 + i \sin 5)$
 $= e^{4} \cos 5 + i e^{4} \sin 5$

(b)
$$\frac{1}{e^{2i}} = \frac{1}{e^{1+i}} = e^{1-i} = e^{1-i} (cos(-i) + i sin(-i))$$

= $e^{-1} cos(i) - e^{-1} sin(-1)$

(c)
$$(e^{2}e^{2z})^{10} = (e^{2z+2z})^{10} = e^{102z+102z}$$

= $(e^{2z+2z})^{10} = e^{102z+102z}$
= $(e^{2z+2z})^{10} = e^{102z+102z}$

(d)
$$\frac{e^{2i} + e^{2i}}{e^{2i}} = \frac{e^{i}(\cos 1 + i \sin 1) + e^{i}(\cos (i) - i \sin (i))}{e^{2} e^{4i}}$$

$$= \frac{2e^{i}\cos(i)}{e^{2} e^{5i}} = \frac{2e^{-1}e^{-5i}}{2e^{-1}(\cos 5 - i \sin 5)}$$

Yroblem 15 b

Let
$$z = x + iy$$
. Then
$$e^{z^2} = (x + iy)^z$$

Now,
$$(x+iy)^2 = x^2-y^2 + \partial xyi$$

$$\Rightarrow e^{z^2} = e^{x^2y^2} e^{i2xy}$$

$$= e^{x^2y^2} \cos 2xy + i e^{x^2-y^2} \sin 2xy$$

Thus,

$$u(x,y) = e^{x^2 - y^2} \cos(2xy)$$

and
 $v(x,y) = e^{x^2 - y^2} \sin(2xy)$.

Problem 166

$$e^{\overline{z}} = e^{\times}e^{iy} = e^{\times}e^{iy} = e^{\times}e^{iy} = e^{\times}e^{iy} = e^{\times}e^{iy} = e^{\times}e^{-iy} = e^{\times}e^{-iy}$$

Problem 17

Recall that

$$\Rightarrow |e^2| = e^x A Arg(e^z) = y$$

$$-3 \le \text{Re 2} \le 3$$
 \Rightarrow $e^{-3} \le |e^2| \le e^3$
 $0 \le \text{Im 2} \le \frac{\pi}{2} \Rightarrow$ $0 \le \text{Arg}(e^2) \le \frac{\pi}{2}$

Problem 28

(a) No.
$$e^{i} = e^{(1+2\pi)i}$$
, but $i \neq (1+7\pi)i$.
So, e^{z} is not one-to-one (injective!).

(b) No. Let
$$Z_1 = 1 + i$$
 and $Z_2 = Z_i$

$$\Rightarrow$$
 $|2|=\sqrt{2}<2=|2|$

but
$$|e^{z_1}| = e^{-z_2} = |e^{z_2}|$$
.

(c) No. Using the fact
$$w \neq 0 \Leftrightarrow |w| \neq 0$$
,

$$e^{2} \neq 0 \implies |e^{2}| \neq 0 \implies e^{\times} \neq 0$$
.
We know that $e^{\times} \neq 0$, $\forall x$
 $\Rightarrow e^{2} \neq 0$, $\forall z \in \mathbb{C}$.

(e) We have
$$|c^2| = e^x$$
, not e^z