第三章 多维随机变量及其分布

学号:

姓名:

一、选择题(每小题10分,共计30分)

1. 设二维随机变量(X,Y)的分布律为

X\Y	1 _ '	2	3	
1	$\frac{1}{10}$	$\frac{2}{10}$	$\frac{2}{10}$	
2	$\frac{3}{10}$	$\frac{1}{10}$	$\frac{1}{10}$	

贝 P {XY=2} = (
$$\bigcirc$$
)
A $\frac{1}{5}$ B $\frac{3}{10}$

$$C \frac{1}{2}$$

2. $f(x,y) = \begin{cases} 4xy & 0 \le x \le 1, 0 \le x \le 1, \\ 0 & \text{ i.e.} \end{cases}$ 则当 $0 \le x \le 1$ 时,(X,Y) 关于 X 的边缘密度函数为

$$f_{x}(x) = (5)$$

$$A \frac{1}{2x}$$

$$B 2x$$

$$C \frac{1}{2y}$$

$$D 2y$$

A
$$\frac{1}{2x}$$

$$c \frac{1}{2y}$$

3. 设 $X \sim N(-1,2), Y \sim N(1,3),$ 且 X 与 Y 相互独立,则 $X + 2Y \sim ($ **分**)

A N(1, 8) B N(1, 14)

- C N(1, 22)
- 二、填空题(每小题 10 分,共计 20 分)
- 1. 设平面区域 D 由曲线 $y = \frac{1}{r}$ 及直线 $y = 0, x = 1, x = e^2$ 所围成. 二维随机变量 (X,Y) 在 区域 D 上服从均匀分布,则(X,Y)关于 X 的边缘概率密度在 x=2 处的值为______ 2.设随机变量(X,Y) ~ $N(0,2^2;1,3^2;0)$,则 $P\{|2X-Y|≥1\}=$ **0.844 6**
- 三、解答题 (第1题 20分, 第2题 30分, 共计50分)

1. 袋中有一个红色球,两个黑色球,三个白色球,现有放回的从袋中取两次, 每次取一球,以 X, Y, Z 分别表示取到的红、黑、白的个数,

- (1) $\Re p\{X=1|Z=0\};$
- (2) 求二维随机变量(X,Y)的概率分布.

解:11)在设有取白球的情况下取了一次公式,利用标构的 的缩减远,相对只有1个江城,2个里城放回棋两次,整模一 个江城州概象.所外P={ 1/2=0} = 公义2 = 3

12) 大、 Y 颗 值 范围为 0, 112, 胶 $P=\{x=0, y=0\} = \frac{C_3 \times C_3}{6^2} = \overline{T}, P\{x=1, y=0\} = \frac{2 \times C_3}{6^2} = \overline{T}$ $P\{x=0, y=0\} = \frac{2 \times C_3 \times C_3}{6^2} = \overline{T}$ $P\{x=0, y=1\} = \frac{2 \times C_3 \times C_3}{6^2} = \overline{T}$ $P\{x=0, y=1\} = \frac{2 \times C_3 \times C_3}{6^2} = \overline{T}$ $P\{x=0, y=2\} = 0$ $P\{x=0, y=2\} = 0$ $P\{x=0, y=2\} = 0$ $P\{x=2, y=2\} = 0$

K	24		~		_	-	
K	K		7			2	2
1		I		7	5	-	7
T	7	7				3	4
-	7	-7			4	N	
ك	4	-	_	_			1

求

(1) 常数 A:

(2)证明 X 与 Y 相互独立.

解:(1)由性质 [+00 [+00 fts, y) dsdy=) 即
[1] (1)由性质 [-00 fts, y) dsdy=) 即
[1] [1] 由性质 [-00 fts, y) dsdy=)