Solutions to E2 210 Midterm Exam

March 4, 2025

TIME: 1½ hours MAX MARKS: 30

The marks assigned to each part of a question are listed within square brackets at the right margin.

- 1. [5 marks] Let \mathcal{C} be the (classical) binary linear code with parity-check matrix $H = \begin{bmatrix} 1 & 1 & 1 & 0 & 0 \\ 0 & 1 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 & 1 \end{bmatrix}$.
 - (a) What is the dimension of C? What is its minimum distance? [2]

Solution: Since H contains the 3×3 identity matrix as a submatrix, it has rank equal to 3. Hence, $\dim(\mathcal{C}) = n - \operatorname{rank}(H) = 5 - 3 = 2$.

(b) Identify an error vector \mathbf{e} of least weight having the same syndrome as $\mathbf{y} = [1\ 1\ 1\ 1\ 1]$.

Solution: The syndrome of \mathbf{y} is $\mathbf{s} = H\mathbf{y}^T = \begin{bmatrix} 1 \ 0 \ 0 \end{bmatrix}^T$. Since this is identical to the third column of H, if we take $\mathbf{e} = \begin{bmatrix} 0 \ 0 \ 1 \ 0 \ 0 \end{bmatrix}$, then $H\mathbf{e}^T = \begin{bmatrix} 1 \ 0 \ 0 \end{bmatrix}^T$. Since $w_H(\mathbf{e}) = 1$, we conclude that $\mathbf{e} = \begin{bmatrix} 0 \ 0 \ 1 \ 0 \ 0 \end{bmatrix}$ is an error vector of least weight having syndrome equal to $\begin{bmatrix} 1 \ 0 \ 0 \end{bmatrix}^T$.

2. [5 marks] Consider the depolarizing noise channel:

$$\mathcal{E}(\rho) = (1 - p)\rho + p\frac{I}{2}.$$

Compute the fidelity between a single-qubit pure state $|\psi\rangle$ and $\rho := \mathcal{E}(|\psi\rangle\langle\psi|)$.

Solution: Recall that the fidelity between a pure state $|\psi\rangle$ and a (possibly mixed) state with density matrix ρ is given by $F(|\psi\rangle, \rho) := \sqrt{\langle \psi | \rho | \psi \rangle}$. Plugging in $\rho = \mathcal{E}(|\psi\rangle\langle\psi|) = (1-p)|\psi\rangle\langle\psi| + p\frac{I}{2}$ into the expression for fidelity, we obtain

$$F(|\psi\rangle,\rho) \; = \; \sqrt{(1-p)\,\langle\psi|\psi\rangle\,\langle\psi|\psi\rangle \; + \; p\,\langle\psi|\frac{I}{2}|\psi\rangle} \; = \; \sqrt{(1-p)+p/2} \; = \; \sqrt{1-p/2}.$$

- 3. [10 marks] Recall that phase-flip (Z) errors can be converted to bit-flip (X) errors by padding with Hadamard gates. This idea was used to obtain a 3-qubit single-Z-error correcting code from the 3-qubit single-X-error correcting code $\mathcal{Q} = \operatorname{span}(|000\rangle, |111\rangle)$.
 - (a) Describe how Y-errors can be converted to X-errors through the use of S and S^{\dagger} gates. Here, $S=\begin{bmatrix}1&0\\0&i\end{bmatrix}$ is the phase gate that applies a $\pi/2$ phase shift on $|1\rangle$ while leaving $|0\rangle$ unaffected. [4]

Solution: We make use of the identity $S \cdot X \cdot S^{\dagger} = Y$, or equivalently, $S^{\dagger} \cdot Y \cdot S = X$. In the circuit model, we have

$$-S - Y - S^{\dagger} - = -X -$$

So, to convert Y-errors to X-errors, we pad on the left with S gates and on the right with S^{\dagger} gates.

If \mathcal{E} is an error operator of the form $Y^{e_1} \otimes Y^{e_2} \otimes Y^{e_3}$, with $e_1, e_2, e_3 \in \{0, 1\}$, then \mathcal{E}' is of the form $X^{e_1} \otimes X^{e_2} \otimes X^{e_3}$.

(b) Explain how a 3-qubit single-Y-error correcting code can be obtained from the single-X-error correcting code Q. Specifically, give an encoding circuit for a 3-qubit single-Y-error correcting code. [6]

Solution:

4. [10 marks] Consider the stabilizer group S in P_5 generated by

$$g_1 = XZZXI$$
, $g_2 = IXZZX$, $g_3 = XIXZZ$, $g_4 = ZXIXZ$.

The corresponding stabilizer code Q_S is known to be a $[[5,1,3]]_2$ code.

(a) Explain why
$$\mathcal{E} = \{ E \in \mathcal{P}_5 : \operatorname{wt}_s(E) \leq 1 \}$$
 is a set of correctable errors for $\mathcal{Q}_{\mathcal{S}}$.

Solution: Since $\dim \mathcal{Q}_{\mathcal{S}}=2^1>1$, its minimum distance is given by $d_{\min}(\mathcal{Q}_{\mathcal{S}})=\min\{\mathrm{wt_s}(E):E\in C(\mathcal{S})\setminus\mathcal{S}^\Phi\}$. For any $E_1,E_2\in\mathcal{E}$, we have $\mathrm{wt_s}(E_1^\dagger E_2)\leq \mathrm{wt_s}(E_1)+\mathrm{wt_s}(E_2)\leq 2$, which is strictly less than $d_{\min}(\mathcal{Q}_{\mathcal{S}})$. Hence, it must be the case that $E_1^\dagger E_2\notin C(\mathcal{S})\setminus\mathcal{S}^\Phi$. Therefore, by the Knill-Laflamme condition for stabilizer codes and Pauli errors, the set \mathcal{E} is a correctable set of errors for $\mathcal{Q}_{\mathcal{S}}$.

(b) For the \mathcal{E} in part (a), identify, if possible, an $E \in \mathcal{E}$ having syndrome $\mathbf{s} = [1 \ 1 \ 1 \ 1]$.

Solution: We want an operator $E \in \mathcal{E}$ that anti-commutes with each of the stabilizer generators g_1, g_2, g_3, g_4 . Note that, ignoring the phase factor of i^{ℓ} , operators in \mathcal{E} are of the form $M_1 \otimes \cdots \otimes M_5$, with at most one of the M_i 's being something other than the identity operator I.

Now, every operator of the form MIIII commutes with g_2 , since g_2 has an I in the first position. Similarly, every operator of the form IMIII, IIMII and IIIIM commutes with g_3 , g_4 and g_1 , respectively. Thus, for an operator in \mathcal{E} to anti-commute with all the stabilizer generators, it must be of

the form IIIMI, with $M \in \{X, Y, Z\}$. Each of the generators g_i has either an X or a Z in the fourth position, and Y anti-commutes with both. Thus, IIIYI anti-commutes with all the stabilizer generators, and hence, is the required $E \in \mathcal{E}$ with syndrome $\mathbf{s} = \begin{bmatrix} 1 & 1 & 1 \end{bmatrix}$.

(c) Identify any one operator in $C(\mathcal{S}) \setminus \mathcal{S}^{\Phi}$. (Recall that, in our notation, $\mathcal{S}^{\Phi} = \langle \mathcal{S} \cup \{i \cdot I\} \rangle$.) [4]

Solution: We want an operator that commutes with all the generators g_i , but is not itself a product of the g_i 's up to a phase factor. A little experimentation will quickly reveal that XXXXX and ZZZZZ are both in C(S), i.e., both these operators commute with all the g_i 's. It remains to demonstrate that neither of these is in S^{Φ} .

The check matrix corresponding to the generators g_1, g_2, g_3, g_4 is

$$H = \begin{bmatrix} 1 & 0 & 0 & 1 & 0 & | & 0 & 1 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 & 1 & | & 0 & 0 & 1 & 1 & 0 \\ 1 & 0 & 1 & 0 & 0 & | & 0 & 0 & 0 & 1 & 1 \\ 0 & 1 & 0 & 1 & 0 & | & 1 & 0 & 0 & 0 & 1 \end{bmatrix}$$

One can readily check that one cannot get $[0\ 0\ 0\ 0\ 0\ |\ *\ *\ *\ *\ *]$ or $[*\ *\ *\ *\ *\ *\ |\ 0\ 0\ 0\ 0\ 0]$ as a non-trivial linear combination (over the binary field \mathbb{F}_2) of the rows of H. This is because the submatrix H_X consisting of the first five columns of H is of full row rank over \mathbb{F}_2 , and the same is true of the H_Z submatrix consisting of the last five columns of H. From this, one concludes that \mathcal{S}^Φ does not contain Pauli operators consisting of X's and I's only nor does it contain Pauli operators consisting of Z's and Z's only. In particular, Z does not contain Z or Z