Analysis of Unicorn Startups

Contents

1	Setup	1
	1.1 Import Packages	1
2	Data Preparation	1
	2.1 Load Data	1
	2.2 Data Cleaning	2
	2.3 Prepare data	2
	2.4 Preview data	2
3	Descriptive Analysis	2
	3.1 Distribution of Valuations across Different Industries	2
	3.2 Distribution of Valuations across Different Countries	
4	Time-Based Analysis	4
	4.1 Unicorn Growth Over Time	4
	4.2 Years to Unicorn	5

1 Setup

1.1 Import Packages

```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
from matplotlib.ticker import FuncFormatter
import seaborn as sns
import re
```

2 Data Preparation

2.1 Load Data

```
df = pd.read_csv('input/Unicorns_Completed.csv')
```

2.2 Data Cleaning

```
def convert_years_months(s):
    m = re.match(r'(\d+)y?\s?(\d+)m?o?', s)
    return f'{m[1]}y{m[2]}m' if m else s

df['Years to Unicorn'] = df['Years to Unicorn'].apply(convert_years_months)
```

2.3 Prepare data

```
df['Unicorn Date'] = pd.to_datetime(df['Unicorn Date'])
df['Valuation ($B)'] = pd.to_numeric(df['Valuation ($B)'])
```

2.4 Preview data

df.head()

3 Descriptive Analysis

3.1 Distribution of Valuations across Different Industries

3.2 Distribution of Valuations across Different Countries

```
# Group by Country and sum valuations

country_valuation_df = df.groupby('Country')['Valuation

→ ($B)'].sum().reset_index().sort_values('Valuation ($B)', ascending=False).head(20)

country_valuation_df

plt.figure(figsize=(12, 8))

plt.barh(country_valuation_df['Country'], country_valuation_df['Valuation ($B)'])

plt.title('Distribution of Valuations across Different Countries')

plt.xlabel('Total Valuation ($B)')

plt.ylabel('Countries')

plt.grid(axis='x', alpha=0.75)

plt.show()
```


4 Time-Based Analysis

4.1 Unicorn Growth Over Time

```
unicorn_count = df.groupby(df['Unicorn Date'].dt.year).size()
unicorn_count
```

Unicorr	Date
2007	1
2011	1
2012	4
2013	4
2014	9
2015	32
2016	17
2017	35
2018	83
2019	85
2020	91
2021	484
2022	252
2023	68
2024	78
dtype:	int64

4.2 Years to Unicorn

```
# Function to convert "Years to Unicorn" into total months
def convert_years_to_months(years_str):
    if 'y' in years_str and 'm' in years_str:
        years, months = years_str.split('y')
        months = months.replace('m', '').strip()
        return int(years.strip()) * 12 + int(months)
    elif 'y' in years_str:
        years = years_str.replace('y', '').strip()
        return int(years) * 12
    elif 'm' in years_str:
        months = years_str.replace('mo', '').replace('m', '').strip()
        return int(months)
    else:
        return None
df['Years to Unicorn (Months)'] = df['Years to Unicorn'].apply(convert_years_to_months)
plt.figure(figsize=(12, 6))
plt.hist(df['Years to Unicorn (Months)'].dropna(), bins=300, color='skyblue')
```

```
plt.title('Distribution of Years to Unicorn')
plt.xlabel('Months to Unicorn')
plt.ylabel('Number of Unicorns')
plt.grid(axis='y', alpha=0.75)
plt.show()
```

