Ćwiczenie 3

Estymacja bayesowska termin oddania (wysłania) sprawozdań: 13 maja 2018

Rozwiązanie każdego zadania składa się z dwóch części. Pierwszą z nich stanowi opracowanie zadania (założenia, opis metody, wyprowadzenia niezbędnych zależności, rysunki, wnioski, komentarze), którego rezultatem powinien być plik PDF przesłany na adres MWS.A-owner@elka.pw.edu.pl. Na ten sam adres należy przesłać r-skrypt (R), w którym zawarte są wszelkie obliczenia numeryczne oraz wywołania procedur związanych z generowaniem wykresów zamieszczonych w "opisowej" części sprawozdania.

Nadsylane pliki (dokładnie dwa) powinny mieć nazwy (pisane małymi literami): xxxxxxin.pdf oraz xxxxxxin.r (skrypt w R), gdzie xxxxxx jest numerem albumu (indeksu), a in — inicjalami autora sprawozdania.

Zadanie 1. Rzucona pinezka upada ostrzem do dołu lub do góry. Zaproponuj rozkład a priori prawdopodobieństwa p tego, że pinezka upadnie ostrzem do góry. Następnie rzuć pinezką 20 razy (zanotuj wyniki kolejnych rzutów) i na tej podstawie wyznacz rozkład a posteriori parametru p oraz bayesowski estymator \hat{p} .

Rzuć pinezką jeszcze 20 razy (zanotuj wyniki). Wyznacz rozkład a posteriori oparty na wszystkich 40 rzutach i porównaj go z rozkładem uzyskanym po pierwszych 20 rzutach.

Zadanie 2. Załóż, że czas oczekiwania na obsługę w pewnej kolejce jest modelowany rozkładem wykładniczym z nieznanym parametrem λ . Rozważ następujące rozkłady a priori parametru λ :

- a) rozkład gamma ze średnią 0.5 i wariancją 1,
- b) rozkład gamma ze średnią 10 i wariancją 20.

Dla każdego z tych rozkładów wyznacz numerycznie (przy pomocy reguły Bayesa, bez wykorzystywania rozkładów sprzężonych) i narysuj funkcje gęstości rozkładów a posteriori uzyskanych po zaobserwowaniu, że średni czas oczekiwania w rozważanej kolejce, wyliczony dla losowo wybranych 20 osób, wynosi 5.1 minuty. Porównaj i skomentuj uzyskane rozkłady. Czy otrzymane rozkłady da się zaliczyć do jakiejś znanej klasy rozkładów?

Zadanie 3. 100 wyprodukowanych urządzeń (z tej samej linii produkcyjnej) zostało poddanych testom. Okazało się, że wśród nich znalazło się x urządzeń wadliwych, gdzie x jest ostatnią cyfrą numeru indeksu wykonującego ćwiczenie. Niech θ oznacza frakcję urządzeń wadliwych uzyskiwanych z rozważanej linii produkcyjnej (tzn. stosunek liczby urządzeń wadliwych do liczby wszystkich wyprodukowanych urządzeń). Przyjmując za rozkład a priori parametru θ rozkład beta z parametrami

a)
$$\alpha = \beta = 1$$
,

b)
$$\alpha = 0.5, \beta = 5,$$

wyznacz i porównaj rozkłady a posteriori parametru θ . Na podstawie uzyskanych rozkładów wyznacz estymatory parametru θ . Skomentuj uzyskane wyniki.