NEC

NPN SILICON TRANSISTOR 2SC2901

DESCRIPTION

The 2SC2901 is designed for general purpose amplifier and

high speed switching applications.

FEATURES

- High Frequency Current Gain.
- High Speed Switching.
- Small Output Capacitance.

ABSOLUTE MAXIMUM RATINGS

Maximum Temperatures Storage Temperature -55 to +150 °C Junction Temperature 150 °C Maximum Maximum Power Dissipation (Ta = 25 °C) Total Power Dissipation 600 mW Maximum Voltages and Currents (Ta = 25 °C) V_{CBO} Collector to Base Voltage 40 V V_{CES} Collector to Emitter Voltage 40 V V_{CEO} Collector to Emitter Voltage 15 V V_{EBO} Emitter to Base Voltage 5.0 V Collector Current 200 mA 1c Collector Current (10 µs pulse) 500 mA lc

ELECTRICAL CHARACTERISTICS (Ta = 25 °C)

SYMBOL	CHARACTERISTIC	MIN.	TYP.	MAX.	UNIT	TEST CONDITIONS
t _{on}	Turn-on Time		8.0	12	ns	$V_{CC} = 3.0 \text{ V}, I_C = 10 \text{ mA}, I_{B1} = 3.0 \text{ mA}, V_{BE} = -1.5 \text{ V}$
^t off	Turn-off Time		12	18	ns	$V_{CC} = 3.0 \text{ V, } I_{C} = 10 \text{ mA, } I_{B1} = 3.0 \text{ mA,}$ $I_{B2} = -1.5 \text{ mA}$
t _{stg}	Storage Time		6.0	13	ns	$I_C = 10 \text{ mA}, I_{B1} = -I_{B2} = 10 \text{ mA}$
fT	Gain Bandwidth Product	500	750		MHz	$V_{CE} = 10 \text{ V}, I_{E} = -10 \text{ mA}, f = 100 \text{ MHz}$
C _{ob}	Output Capacitance		1.8	4.0	рF	$V_{CB} = 5.0 \text{ V}, I_E = 0, f = 1 \text{ MHz}$
hFE*	DC Current Gain	40	90	200	_	$V_{CE} = 1.0 \text{ V, } I_{C} = 10 \text{ mA}$
V _{CE(sat)*}	Collector Saturation Voltage		0.15	0.25	V	$I_C = 10 \text{ mA}, I_B = 1.0 \text{ mA}$
V _{BE(sat)*}	Base Saturation Voltage		0.80	0.85	V	I _C = 10 mA, I _B = 1.0 mA
ІСВО	Collector Cutoff Current			0.1	μΑ	$V_{CB} = 20 \text{ V, } I_E = 0$
¹ EBO	Emitter Cutoff Current			0.1	μΑ	$V_{EB} = 3.0 \text{ V, } I_{C} = 0$

^{*}Pulsed PW \leq 350 μ s, duty cycle \leq 2%.

Classification of hee

orassmoation of tipe							
Rank	L	Κ					
Range	40 – 120	100 – 200					

Test Conditions : $V_{CE} = 1.0 \text{ V}$, $I_{C} = 10 \text{ mA}$

TYPICAL CHARACTERISTICS (Ta=25 °C)

SWITCHING TIME TEST CIRCUIT

ton, toff SWITCHING

Voltage waveforms