Status Report: Future Recommendation

Mari • Jun - Aug, 2023

What's been done — Week5 June 27 - July 4

1. Methodology writing

• Shared embeddings, Sampled Softmax etc.

2. Studied further for reproduction

- Log Q probability correction
- Mixed negatives
- Dense All Items Prediction
- Improved my previous model from last week for window=3

LogQ (Candidate) Probability Correction

Why needed?

- Mixed negatives improve performance [1, 2]
- In-batch negative sampling uses positives as negatives » Popular items occur frequently
- To correct sampling bias
- Some do not subtract log Q from positives [2], while some do [1, 3] » Mine does not

Frequency of the item over the entire training set

- 1. Created a frequency count table for all items
- 2. Divide each by the number of all items \mathcal{N}
- 3. Take a natural log
- N is too big in practice/NLP » Approximated, e.g., using <u>Count-Min Sketch</u>

Mixed Negatives

Mixing ratio depends on model and dataset

- In-batch versus: random » Around 5:8 in [1] and 1:8 in [2]
- Mine (window=3, # of item to predict=3) worked best with 1:6 on MovieLense-1m
- It could be different by window size

Dense All Items

Introduce query-window to train multiple past embeddings

Results

Mixed negatives and Softmax with LogQ improve performance

Need to tune mix ratio of negatives by window size

Average length: 140.12; Maximum window: 28

Model	NDCG@10_3	NDCG@10_5	NDCG@10_12	RECALL@10_3	RECALL@10_5	RECALL@10_12
Next item (BCE)	0.6067	0.5885	0.5356	0.8447	0.8263	0.7742
Future All items (BCE)	0.5717	0.5512	0.5033	0.8110	0.8031	0.7770
Future All items (Softmax)	0.6151	0.5906	0.5112	0.8620	0.8436	0.7861
Future All items (Softmax LogQ Mixed Neg)	0.6268	NA	NA	0.8548	NA	NA

Next Steps

Try to establish Dense All Items

Also obtain the results for mixed negatives models with window size=5 and 12

The dense all action loss outperforms all action prediction on Recall@10 and global diversity. The key difference between these two losses is that in the all action loss, gradients from all positive examples for a user will be backpropagated through the same user embedding, resulting in a larger averaging effect, as compared to the dense all action loss, where gradients all pass through different transformer outputs, and are only averaged together after passing into the transformer.

Referrences

- [1] Nikil Pancha, Andrew Zhai, Jure Leskovec, and Charles Rosenberg. Pinnerformer: Sequence modeling for user representation at pinterest, 2022.
- [2] Ji Yang, Xinyang Yi, Derek Zhiyuan Cheng, Lichan Hong, Yang Li, Simon Xiaoming Wang, Taibai Xu, and Ed H Chi. 2020. Mixed negative sampling for learning two-tower neural networks in recommendations. In Companion Proceedings of the Web Conference.
- [3] Xinyang Yi, Ji Yang, Lichan Hong, Derek Zhiyuan Cheng, Lukasz Heldt, Aditee Ajit Kumthekar, Zhe Zhao, Li Wei, and Ed Chi (Eds.). 2019. Sampling-BiasCorrected Neural Modeling for Large Corpus Item Recommendations

What's been done — Week4 June 20 - 27

1. Methodology writing

• Data split design and metrics etc.

Fig 1. Network training process with the changes made

2. Studied Embedding Learning

- Improved Future Items Predictor
 - Data split
 - Future positive sampling
 - Multiple random negative sampling
 - Shared positive & negative embeddings
 - Sampled softmax loss
 - Partially reproduced PINNERFORMER results in All Items Prediction on MovieLense-1M

Data Split Design and Metrics

1. Use Leave N out split

2. Use NDCG@K and RECALL@K

• Val 1: Test N (ignore val as it does nothing)

$$NDCG@K(U) = \frac{1}{n} \sum_{i=t+1}^{n} NDCG@K_{i}$$

$$NDCG@K_{FTR} = \frac{1}{|\mathcal{U}|} \sum_{U \in \mathcal{U}} NDCG@K(U)$$
(1)

RECALL@K(U) =
$$\frac{1}{n} \sum_{i=t+1}^{n} 1\{rank_{U}(item) \leq K\}$$

RECALL@K_{FTR} = $\frac{1}{|\mathcal{U}|} \sum_{U \in \mathcal{U}} \text{RECALL@K(U)}$ (2)

Future Positive Pairs Selection

Select multiple (query, item) pairs

Select multiple positive items for each input item

$\mathcal{L}(u_i, p_i) = -\log \left(\frac{e^{s(u_i, p_i)}}{e^{s(u_i, p_i)} + \sum_{i=1}^{N} e^{s(u_i, n_j)}} \right)$

Shared Positive & Negative Embeddings

Learn embeddings as a multi-class classification problem

Results

Longer window improves performance

- Shorter window is enough for a few items » Predict more items need a longer window
- Mixed negatives (in-batch & random) with logQ is an option to shorten the window

Average length: 140.12; Maximum window: 28

Model	NDCG@10_3	NDCG@10_5	NDCG@10_12	RECALL@10_3	RECALL@10_5	RECALL@10_12
Next item (BCE)	0.6067	0.5885	0.5356	0.8447	0.8263	0.7742
Future All items (BCE)	0.5717	0.5512	0.5033	0.8110	0.8031	0.7770
Future All items (Softmax)	0.6151	0.5906	0.5112	0.8620	0.8436	0.7861

Next Steps

Improve my future items predictor

- Try tuning on different datasets Amazon Beauty (sparse) etc.
- Figure out computation of logQ correction term to mix in-batch negatives
- Think about Dense All Items prediction in my approach

What's been done — Week3 June 15 - 22

1. Back ground reading

• Introduction and Related work sections almost completed

2. Experiments

- Tried different data split
- Experimented with Next item, All items,
 Dense all items predictions on
 MovieLense-1M
- Tried 2 approaches
 - 1. Data split only (next item predictor)
 - 2. Data split + Positove sampling (future items predictor)

Data split

Use val 1: test N split

- e.g., train [1,2,3,4,5], val [6], test [7,8,9]
- val 1: test N works better than val N: test N
- Validation size has no effect on network training because training happens before evaluate_val() and evaluate()
- Thus, longer validation window just makes training sequence length shorter (not good)

Positive Sampling

```
def sample():
    user = np.random.randint(1, usernum + 1)
   while len(user_train[user]) <= 1: user = np.random.randint(1, usernum + 1)
    seq = np.zeros([maxlen], dtype=np.int32)
   pos = np.zeros([maxlen], dtype=np.int32)
    neg = np.zeros([maxlen], dtype=np.int32)
    nxt = user_train[user][-1]
    idx = maxlen - 1
    ts = set(user train[user])
    for i in reversed(user_train[user][:-1]):
       seq[idx] = i
        pos[idx] = nxt
       if nxt != 0: neg[idx] = random_neq(1, itemnum + 1, ts)
       nxt = i
       idx -= 1
       if idx == -1: break
    return (user, seq, pos, neg)
```

E. Network Training

Recall that we convert each user sequence (excluding the last action) $(S_1^u, S_2^u, \dots, S_{|S^u|-1}^u)$ to a fixed length sequence $s = \{s_1, s_2, \dots, s_n\}$ via truncation or padding items. We define o_t as the expected output at time step t:

$$o_t = \begin{cases} < pad > & \text{if } s_t \text{ is a padding item} \\ s_{t+1} & 1 \leq t < n \\ \mathcal{S}^u_{|\mathcal{S}^u|} & t = n \end{cases}$$

where <pad> indicates a padding item. Our model takes a sequence s as input, the corresponding sequence o as expected

Future items predictor (window size =2)

Next item predictor (default SASRec)

Results

Window size effect

- Next-item performance improves as window size increases, peaking at 12
- Performance degrades as the item gets farther from the en embedding
- Shorter the window size, steeper the performance drop
- Aim to uplift those lines

Fig 1. Effect of window size on All items prediction for each item position

Results

Window size=3

• My model is slightly better than SASRec

Training objective (window=3)	NDCG@10_ftr	HIT@10_ftr
Dense all (SASRec+DataSplit)	0.5727	0.8108
All items (SASRec+DataSplit+PosSamp)	0.5717	0.8110
Next item (SASRec)	0.5709	0.8045
All items (SASRec+DataSplit)	0.5703	0.8080

Window size=12

- SASRec is the best
- But my model performs better on further items - will think about to improve closer items as well

Training objective (window=12)	NDCG@10_ftr	HIT@10_ftr
Next item (SASRec)	0.5227	0.7574
All items (SASRec+DataSplit)	0.4983	0.7571
Dense all (SASRec+DataSplit)	0.4977	0.7581
All items (SASRec+DataSplit+PosSamp)	0.4874	0.7581

Next Steps

- 1. Try to improve closer items prediction for my model?
- 2. Think about future items predictor for Dense all items
 - embedding layer needs to be changed
- 3. Start working on Methodology section

What's been done - Week1 June 1 - 8

1. Back ground reading

- Read related papers from TiSASRec, SASRec, PinnerFormer etc.
- Working on Introduction and Related Work sections

2. Experiment Preparation

- Reproduced SASRec and TiSASRec with Pytorch
- Codebase exploration
- Approached All Action Predictions by predicting [item+1, item+2] with e1 fixed - Can we do it with just changing sampling method or need to change model structure (e,g. output a list)?

Next Steps

1. Background reading

Continue reading and working on Related Work section

2. Code study

Approaches of future item prediction in mind