Computer Graphics

Prof. Feng Liu Fall 2014

http://www.cs.pdx.edu/~fliu/courses/cs447/

12/03/2014

Last time

□ Ray tracing

Today

- Animation
- ☐ Homework 5 due 12/03, in class
- ☐ Final Exam: 17:30-19:20, December 8, 2014
 - To-know list available

Animation

- □ Animation is about bringing things to life
- □ Technically:
 - Generate a sequence of images that, when played one after the other, make things move
 - One image is called a frame
 - □ 24 frames per second for film, resolution approx 1600x1200, good antialiasing
 - □ 30 frames per second for NTSC video, resolution less than 640x480
 - □ 60+ frames per second for "twitch" computer games, 640x480 or higher resolution
 - Interlacing: Display every second row for one frame, every other row for the next. Used in NTSC TV and older monitors

Perceptual Issues

- We perceive many still images in rapid succession as continuous motion
 - Even if there is a transition period between the images
 - Can even put distracters in and motion is still perceived
- You can be fooled, however, if the flicker rate is incorrect
- The frame rate for film was perceptually chosen

Animation Issues

- When evaluating an animation technique or application, the following things should be considered:
 - How fast can the images be generated?
 - How easy is it to control the appearance of the animation?
 - How much human expertise is required to generate the animation?
 - Can the animation be generated in response to a user's action (interactive animation)?
- Application driven: Different applications have different requirements:
 - Feature film animation is different from interactive gaming animation

The 11 Principles

- Developed at Disney over the 1920s and 1930s
- □ Described by John Lasseter (Pixar) 1987
- Squash-and-Stretch, Timing, Anticipation, Follow Through and Overlapping Action, Straight Ahead Action and Pose-to-Pose Action, Slow In and Out, Arcs, Exaggeration, Secondary Action, Appeal
- Basically, principles are driven by:
 - Perceptual factors, such as directing the viewer's attention and smoothing the motion for easier perception
 - Conveying emotion through motion

Basic Animation Techniques

- Keyframe animation
 - Animator specifies important positions throughout the animation - the *keyframes*
 - Someone or something fills in the intermediate frames inbetweening, or just 'tweening
- Motion capture
 - System captures motion data from a real enactment of the animation
 - The data then drives a virtual character or object
- Procedural animation
 - A set of equations or rules are evaluated to determine how the animation behaves

Keyframing

- The original way to animate, and still the most common form for feature animation
 - Process has shifted to computers, but basic approach is the same
- Underlying technique is interpolation
 - The in-between frames are interpolated from the keyframes
 - Originally done by armies of underpaid animators
 - Now done with computers
 - Which of the techniques that we have learned about is used extensively for keyframe animation?

Interpolation

- Interpolating splines are smooth curves that interpolate their control points
 - For example, Cardinal cubics (Shirley book ch. 15.5.3)
- Perfect for keyframe animation
- Typically, time is directly associated with the parameter value,

controlling speed

More Interpolation

- Anything can be keyframed and interpolated
 - Position, Orientation, Scale, Deformation, Patch Control Points (facial animation), Color, Surface normals...
- Special interpolation schemes for things like rotations
 - Use *quaternions* to represent rotation and do spherical interpolation
- Control of parameterization controls speed of animation

Motion Capture

- Extract data from real-world people acting out a scene
- Many techniques for getting the data:
 - Optical take video and extract motion
 - Magnetic/Radio attach magnets, transponders and use sensors to get location
 - Mechanical methods of extracting motion (for small motions)
- Most methods have some problems, all are limited in the complexity of the scenes they can capture
 - Solution: Break scenes into smaller pieces and re-construct later

Motion Capture Example

From http://www.batou.fr/wp-content/uploads/motion_capture_1.jpg

Motion Capture in Use

- Motion capture is one of the primary animation techniques for computer games
 - Gather lots of snippets of motion capture
 - □ e.g.: Several ways to dunk, dribble, pass
 - Arrange them so that they can be pieced together smoothly
 - At run time, figure out which pieces to play to have the character do the desired thing
- Problems: Once the data is captured, it's hard to modify for a different purpose

Procedural Animation

- □ Animation is generated by writing a program that outputs the position/shape/whatever of the scene over time
- ☐ Generally:
 - Program some rules for how the system will behave
 - Choose some initial conditions for the world
 - Run the program, maybe with user input to guide what happens
- Advantage: Once you have the program, you can get lots of motion
- Disadvantage: The animation is generally hard to control, which makes it hard to tell a story with purely procedural means

Particle Systems

- □ A particle has:
 - A position in the world
 - Rules for how it moves over time
 - Rules for how it is drawn
- ☐ A particle system:
 - Controls when particles are created and destroyed
 - Makes sure that all the particles are updated

Smoke Particle System

- Constantly create particles
- Particles move upwards, with *turbulence* added
 - Ken Perlin: An academy award
- Draw them as partially transparent circles that fade over time

Movie Particle Systems

- Particle systems are the standard way of doing smoke and water spray
- Examples from Perfect Storm (lots of water)
 - All images from Industrial Light and Magic (ILM)

Basic Ocean

☐ Ocean created with *Computational Fluid Dynamics*

Flowing Water

■ Water from previous frame flowing over boat

Boat's Spray

Particles are created where the boat meets the ocean

Impact Spray

Particles created where boat and ocean hit hard

Perfect Storm - Composite

Spring-Mass Systems

- Model objects as systems of springs and masses
- The springs exert forces, and you control them by changing their rest length
- ☐ A reasonable, but simple, physical model for muscles
- Advantage: Good looking motion when it works
- Disadvantage: Expensive and hard to control

Spring mass fish

Figure 4.1: The biomechanical fish model. Black dots indicate lumped masses. Lines indicate deformable elements at their natural, rest lengths.

Spring mass fish

http://www.dgp.toronto.edu/~tu/animations.html

Physically-Based Models

- Create a model based on the physics of a situation, and just solve for what happens
- ☐ Has been applied to:
 - Colliding rigid objects
 - Cloth
 - An example: http://www.youtube.com/watch?v=04nXlhdPxB4&noredirect=1
 - Water
 - Smoke
 - □ https://www.youtube.com/watch?v=7cC-_-aqx18
 - Squishy objects
 - Humans
 - New ones every year
- Problem: Expensive, hard to control, and not necessarily realistic

Mixing Techniques

- Techniques can be mixed and matched in the same animation
- For example, apply physical secondary motion on top of key-framed primary motion
 - Particularly appropriate for cloth
- Mix motion capture and physics:
 - Motion captured person kicks a ball which is then physically simulated to find out where it goes

Animation Summary (brief)

Technique	Control	Time to Create	Computation Cost	Interactivity
Key-Framed	Excellent	Poor	Low	Low
Motion Capture	Good at time of creation, after that poor	Medium	Medium	Medium
Procedural	Poor	Poor to create program	High	High

Current Challenges

- Human characteristics
 - Hair animation and rendering
 - Skin rendering
 - Facial animation
 - Walking, running, climbing
- High quality real time
 - Fluids, hair, physics
 - Realistic lighting and shading
- Control with quality
 - Making it easier for artists and directors to get the results they want

Next Time

☐ Final Exam