Graphing Calculator GUI

SOFTWARE REQUIREMENTS AND SPECIFICATIONS (SRS)

• Introduction

The purpose of this document is to define the requirements for a graphing calculator that is able to be used on a phone and on a desktop. The goal of this software is to provide a user-friendly interface that is easy to use on a daily basis for graphing functions and so on. This graphing calculator will provide multiple functions that are not only graphing related, but also a mix of scientific and classic calculator functions.

• Functional Requirements

- A graphing calculator app must provide the following features:
 - Traditional calculator with buttons for numbers (0-9)
 - Basic operations (+, -, *, /)
 - Parentheses, memory functions (M+, M-, MR, MC), and a clear © button
 - Trigonometric function and its inverse functions (Sine (sin) Cosine (cos) Tangent (tan) Secant (sec) Cosecant (csc) Cotangent (cot))
 - Logarithmic functions (log, ln), exponential functions ($^{\wedge}$), scientific notation, constants (π , e), and a history panel to view past calculations.
 - Graphing abilities to plot functions and equations
 - A graph interface where users can set window size, x and y, ranges, and different types of data plot
 - Ability to do standard deviation calculations and other complex calculations

• Non-Functional Requirements

- A graphing calculator app may contain the following qualities:
 - **Reliability:** The graphing calculator must be able to recall history of previous equations or data input. This data must be stored within the calculator and should have a button to fully reset the calculator
 - **Inputs:** The graphing calculator must accept the user's inputs which include equations (real and imaginary values) as well as complex functions (trigonometry, pi, etc.)
 - Outputs: The graphing calculator should display answers for the asked equations. However, if answers are non-real numbers, then user must switch the settings so the output would be in complex number form. Furthermore, if a user asks for angle related equations, settings must show that user wants the answer in degrees or radians.

• User Interface

- A graphing calculator interface should/must show the following features:
 - Traditional calculator with buttons for numbers (0-9)
 - Basic operations (+, -, *, /)
 - Parentheses, memory functions (M+, M-, MR, MC), and a clear © button
 - Trigonometric function and its inverse functions (Sine (sin) Cosine (cos) Tangent (tan) Secant (sec) Cosecant (csc) Cotangent (cot))
 - Logarithmic functions (log, ln), exponential functions ($^{\wedge}$), scientific notation, constants (π , e), and a history panel to view past calculations.
 - Graphing abilities to plot functions and equations
 - A graph interface where users can set window size, x and y, ranges, and different types of data plot
 - Ability to do standard deviation calculations and other complex calculations

• Input and Output

• A graphing calculator should display the input information (equations that are required to be solved) as well as the solution in the desired setting/format

• <u>Technical Specific</u>

• The graphing calculator will bedeveloped using web-based technologies, such as HTML, Bootstrap, CSS, and JavaScript

• Error Handling Requirements

• The graphing calculator should be able to detect whether the given question is non-real numbers, error (meaning that the format of the input is not specified)

• Testing Requirements

- The graphing calculator should be tested using the following methods:
 - **Manual Testing:** The calculator should be tested manually by putting in actual numbers and doing a simple problem (addition, subtraction, multiplication, division) or other simple arithmetic
 - Acceptance Criteria: The calculator should be considered acceptable if it passes all manual tests

Assumptions and Constraints

- The following are the assumptions and constraints considered during the development of the Graphing Calculator (for PC and mobile devices)
 - The calculator is developed using web technologies and is compatible with modern web browsers
 - The app is designed to work on various devices, such as desktops and mobile devices

USER PREFERENCES OF USING A CALCULATOR (QUESTIONARE)

- What type of device do you use on a daily basis?
 - o Computer/desktop
 - Laptop
 - Ipad/tablet
 - o Phone
 - o Other
- What Operating System do you use?
 - Windows
 - o Linux
 - Apple
- Specify the Operating System most current update (optional)
 - O Windows 11
 - Windows 10
 - Windows 9 and below
 - o macOS 14
 - o macOS 13
 - o macOS12
 - o macOS 11
 - o macOS 10.5 and below
 - o Linux OS
- What device do you use a calculator on for a daily basis? (Other than an actual calculator)
 - Computer/desktop
 - Laptop
 - o Ipad/tablet

- PhoneOther
 What kind of
- What kind of calculations do you do on a calculator?
 - Simple arithmetic (addition, subtraction, multiplication, division)
 - o Logarithmic
 - Angle calculations
 - o Other
- How often do you use a calculator?
 - o Everyday
 - o A few days a week
 - o Once a month
 - o Every once in a while
 - o Never
 - o Other
- What features do you consider essential in a calculator? How about a graphing calculator?
 - Simple arithmetic (addition, subtraction, multiplication, division)
 - o Logarithmic
 - Angle calculations
 - o Graphing interfaces
 - Other
- How important is the user interface (appearance, ease of use) of a Graphing Calculator to you?
 - Very (5)
 - Yes, but not that much (4)
 - o Sometimes (3)
 - Not really (2)
 - Never (1)
- What other essential features do you think is necessary for a calculator? Describe.

CALCULATOR DESIGN AND EXPLANATION

