6 Geometrické počítání

V této kapitole se podíváme na výpočty týkající se geometrických obrazců v rovině a těles v prostoru a budeme se věnovat i úhlům.

6.1 Geometrické obrazce v rovině

V rovině nás budou zajímat obrazce jako trojúhelníky, rovnoběžníky, lichoběžníky, kruh a kružnice. Budeme počítat jejich obvody (typicky značíme o, pro obvod používáme jednotky délky mm, cm, dm, m a km). Dál budeme počítat jejich obsahy (typicky značíme S, používáme jednotky obsahu mm^2 , cm^2 , dm^2 , m^2 , a, ha a km^2). Pro uvedené vzorečky budeme používat klasické značení pro strany, výšky na strany atd., nebudeme uvádět obrázky, takže pokud by něco nebylo zřejmého, co znamená, tak se ptejte.

6.1.1 Trojúhelníky

Pro naše potřeby rozlišujeme typicky dva typy trojúhelníků a to:

- 1. **Obecný trojúhelník**, jehož obvod spočítáme jako o = a+b+c a jeho obsah jako $S = \frac{a \cdot v_a}{2} = \frac{a \cdot v_b}{2} = \frac{a \cdot v_c}{2}$, kde v_a, v_b, v_c jsou výšky na strany a, b, c.
- 2. **Pravoúhlý trojúhelník**, jehož obvod spočítáme jako o = a + b + c a jeho obsah jako $S = \frac{a \cdot b}{2}$, kde a, b jsou strany přilehlé pravému úhlu (tedy odvěsny), třetí, nejdelší strana se nazývá přepona (často značená jako c). Pro počítání s pravoúhlými trojúhelníky se nám často hodí Pythagorova věta, tedy $a^2 + b^2 = c^2$.

6.1.2 Rovnoběžníky

Pro naše potřeby rozlišujeme několik typů rovnoběžníků a to:

- 1. Čtverec, jehož obvod spočítáme jako $o = 4 \cdot a$, kde a je strana čtverce. Obsah jako $S = a^2$ nebo jako $S = \frac{u^2}{2}$, kde u je úhlopříčka čtverce.
- 2. **Obdélník**, jehož obvod spočítáme jako $o = 2 \cdot (a+b) = 2a + 2b$ a obsah jako $S = a \cdot b$.
- 3. **Kosočtverec**, jehož obvod spočítáme jako $o = 4 \cdot a$. Obsah jako $S = a \cdot v_a$ kde v_a je výška na stranu a nebo jako $S = \frac{u_1 \cdot u_2}{2}$, jde u_1, u_2 jsou úhlopříčky.
- 4. **Kosodélník**, jehož obvod spočítáme jako $o = 2 \cdot (a + b) = 2a + 2b$. Obsah jako $S = a \cdot v_a = b \cdot v_b$, kde v_a, v_b jsou výšky na strany a, b.

6.1.3 Lichoběžník

Jeho základny značíme typicky jako a, c a jeho ramena jako b, d. Výšku (na stranu a) značíme v. Jeho obvod spočítáme jako o = a + b + c + d a jeho obsah jako $S = \frac{(a+c)\cdot v}{2}$.

6.1.4 Kružnice a kruh

U kružnice či kruhu značíme jeho poloměr jako r a jeho průměr jako d, platí, že $d=2\cdot r$. K počítání potřebujeme znát číslo $\pi\approx 3.14\approx \frac{22}{7}$. Obvod kruhu a kružnice je pak $o=2\cdot \pi\cdot r$ a obsah kruhu je $S=\pi\cdot r^2$.

6.2 Geometrické tělesa v prostoru

V prostoru nás budou zajímat tělesa jako krychle, kvádr, hranol, válec, jehlan, kužel a koule. Budeme počítat typicky jejich povrch (značíme obdobně jako v rovině S a používáme stejné jednotky) a navíc jejich objemy (značené V s jednotkami jako $mm^3, cm^3, dm^3, m^3, km^3$ a ml, cl, dl, l, hl).

6.2.1 Krychle

Krychle má 8 vrcholů, 6 stran a 12 hran. Obsah jejích stran spočítáme jako $S=6\cdot a^2$, kde a je hrana krychle. Objem pak jako $V=a^3$.

6.2.2 Kvádr

Obdobně kvádr má 8 vrcholů, 6 stran a 12 hran. Obsah jeho stran spočítáme jako $S=2\cdot(ab+bc+ac)$, kde a,b,c jsou hrany kvádru. Objem pak jako $V=a\cdot b\cdot c$.

6.2.3 Koule

U koule nás zajímá její poloměr r popřípadě její průměr d. Plochu koule (obsah jejího pláště) spočítáme jako $S=4\cdot\pi\cdot r^2$ a její objem jako $V=\frac{4}{3}\cdot\pi\cdot r^3$.

6.2.4 Hranol

Hranol má jako svou podstavu pravidelné nebo nepravidelné mnohoúhelníky. Plášť je typicky obdélník. Obsah jeho stran spočítáme jako $S=2\cdot S_p+S_{pl}$, kde S_p je obsah podstavy (spočítáme jako obsah daného mnohoúhelníku) a S_{pl} je obsah pláště hranolu.

6.2.5 Válec

Povrchu válce je $S = 2 \cdot S_p + S_{pl}$, kde $S_p = \pi \cdot r^2$ jelikož podstava je vlastně obsah kruhu a $S_{pl} = 2 \cdot \pi \cdot r \cdot v$ je obsah obdélníku, který má jednu stranu dlouhou jako výšku v a druhou jako délku kruhu, který tvoří podstavu, tedy $2 \cdot \pi \cdot r$.

6.2.6 Jehlan

Povrch spočítáme jako $S=S_p+S_{pl}$, kde S_p je obsah podstavy, tedy nějakého mnohoúhelníku, často čtverce. Spl je pak obsah pláště, kde ten tvoří trojúhelníky. Objem spočítáme jako $V=\frac{1}{3}\cdot S_p\cdot v$, kde S_p je znova obsah podstavy a v je výška jehlanu.

6.2.7 Kužel

U kuželu nás zajímá jeho výška v, poloměr jeho podstavy r a délka jeho strany s (délka od kraje podstavy k vrcholu kužele), platí z Pythagorovy věty $s=\sqrt{r^2+v^2}$. Povrch je pak tedy $S=S_p+Spl$, kde obsah podstavy $S_p=\pi\cdot r^2$, jelikož to je kruh a obsah pláště je $S_{pl}=\pi\cdot r\cdot s$. Objem je pak $V=\frac{1}{3}\cdot S_p\cdot v=\frac{1}{3}\cdot \pi\cdot r^2\cdot v$.

6.3 Příklady k procvičení

1. Nádrž na vodu ve tvaru kvádru (bez víka) má vnější rozměry 2 m, 3 m a výšku 1 m. Tloušťka stěn nádrže je 10 cm. Chceme tuhle nádrž natřít zevnitř, jak velkou plochu budeme natírat? Zaokrouhlete na celé m^2 .

2.	Krychle o hraně 6 dm je plná vody, Tuto vodu přelijeme do kvádru s podstavou s rozměry 9 dm, 8 dm a výškou 7 dm. Vypočítejte obsah ploch kvádru, které jsou smáčené vodou (tloušťku stěn zanedbáme).
	Nerozložený žebřík (štafle ve tvaru písmene A) mají délku 29 dm (obě jeho ramena). Do jaké výšky bude dosahovat, když obě ramena žebříku budou od sebe 42 dm?
4.	Potřebujeme upoutat třemi lany stožár s vlajkou vysoký 8 m, upoutáme ho v půlce jeho výšky a druhý konec lan byl upoután vždy 3 m od paty stožáru do země. Kolik metrů lana jsme použili pro zakotvení všemi třemi lany a pokud zanedbáme spotřebu lana na uzly pro připevnění?
5.	London-Eye je vyhlídkové kolo s průměrem 120 m, jakou dráhu urazí cestující v kabince během tří otočení? Počítejte s hodnotou $\pi=3.$
6.	V parku je kruhový záhon s průměrem 14 m. Petr ho oběhl za minutu 8x a Jonáš 11x. O kolik více uběhl Jonáš oproti Petrovi? Počítejte s hodnotou $\pi=3$.

7.	V nádobě ve tvaru stojícího válce je 48 l vody, voda sahá v nádobě do výšky 27 cm. Kolik litrů vody bude v nádobě pokud po celodenním lijáku voda sahá do výšky 72 cm?
8.	Hasičská nádrž ve tvaru kvádru má délku 6 m a šířku dvakrát menší. Jaká je její výška jestliže hadice s průtokem 12 l za sekundu ji napustí z prázdna do plna za půl hodiny?
9.	Chceme pokrýt krytinou střechu tvaru pravidelného čtyřbokého jehlanu, střecha má stranu podstavy dlouhou 6 m a délka boční strany jehlanu je 5 m, kolik m^2 střešní krytiny budeme potřebovat?
10.	Je dát trojúhelník ABC s vnitřními úhly α,β,γ . Velikost úhlu β je dvakrát větší než úhlu γ . Úhel α je o 14° menší než úhel γ , určete jednotlivé úhly tohoto trojúhelníku.