

Introduce of iron-X By TESR

iron-X's appearance

Overview

Top Cover & Chassis Shield

Mecanum Wheel Chassis

Chassis

iron-X controller

<u>List of iron-X controller component</u>

- 1. Power Supply
- 2. STM32 Microcontroller
- 3. Joystick module
- 4. IMU Sensor
- 5. Motor Drive
- 6. Battery level display

Specification of iron-X

Product Model	Raspberry Pi 4B Mecanum ROS Robot
Kinematic model	IRON X Series 1 Mecanum wheel all-directional movement
Programming language	Noetic Version , Bottom C, ROS/C++/Python
ROS Controller	Raspberry pi 4B 4G, TF Card 32G
ROS Controller System	Raspbian
Virtual Machine System	Ubuntu 20.04 LTS + ROS Noetic or ROS Foxy Fitzroy
Motion controller	TESR STM32 Controller
Laser radar	RPLIDAR A1
Maximum speed	linear velocity 1.2m/s angular velocity 7.8 rad/s
Electric machine	DC reduction motorEncoder 360 Pulse/Round)

Specification of iron-X

Product Model	Raspberry Pi 4B Mecanum ROS Robot
IMU	Acceleration gyroscope
Charger	14V 1.5A Charging Electrical Appliances (3 CFCC Certification)
power supply outlet	12.6v@1.5A
Body material	high strength aluminium alloy sheet surface oxidation sandblasting)
Wheels	Mecanum Wheels 97 mm
Robot Size (WxLxH)	250 mm x 250 mm x 160 mm
Weight	2.5 kg
Maximum load	8 kg
Battery capacity	12V 2200 mAh
Renewal time	8 to 20 hours (differences in usage state)

Iron-x forward kinematics

$$(V_{linear_x}, V_{linear_y}, \omega_z)$$

kinematics

$$(V_{linear_x}, V_{linear_y}, \omega_z)$$
 Iron-x forward $(N_{rpm_M1}, N_{rpm_M2}, N_{rpm_M3}, N_{rpm_M4})$ kinematics

$$V_{linear} = \omega \bullet r$$

$$V_{linear} = \frac{2\pi N_{rpm}}{60} \bullet r$$

$$V_{tangential} = \omega_z \bullet \frac{(D_x + D_y)}{2}$$

$$N_{rpm} = \frac{60 \bullet V_{linear}}{2\pi r}$$

$$V_{tangential} = \frac{60 \bullet V_{tangential}}{2\pi r}$$

$$V_{\text{tangential}} = \omega_z \cdot \frac{(D_x + D_y)}{2}$$

$$N_{rpm_{\rm tan}} = rac{60 \cdot V_{
m tangential}}{2\pi r}$$

$$N_{rpm_x} = \frac{60 \cdot V_{linear_x}}{2\pi r}$$

$$N_{rpm_y} = \frac{60 \cdot V_{linear_y}}{2\pi r}$$

$$\begin{split} N_{rpm_M1} &= N_{rpm_x} - N_{rpm_y} - N_{rpm_tan} \\ N_{rpm_M2} &= N_{rpm_x} + N_{rpm_y} + N_{rpm_tan} \\ N_{rpm_M3} &= N_{rpm_x} + N_{rpm_y} - N_{rpm_tan} \\ N_{rpm_M4} &= N_{rpm_x} - N_{rpm_y} + N_{rpm_tan} \end{split}$$

Iron-x inverse kinematics

$$(N_{rpm_M1}, N_{rpm_M2}, N_{rpm_M3}, N_{rpm_M4})$$

$V_{linear} = \frac{2\pi N_{rpm}}{60} \bullet r$

$$N_{rpm_{x}} = \frac{(N_{rpm_{M1}} + N_{rpm_{M2}} + N_{rpm_{M3}} + N_{rpm_{M4}})}{4}$$

$$N_{rpm_{y}} = \frac{(-N_{rpm_{M1}} + N_{rpm_{M2}} + N_{rpm_{M3}} - N_{rpm_{M4}})}{4}$$

$$N_{rpm_tan} = \frac{(-N_{rpm_M1} + N_{rpm_M2} - N_{rpm_M3} + N_{rpm_M4})}{4} \begin{cases} M_{anticlockwise} + M_{clockwise} \end{cases}$$

$$V_{linear_x} = \frac{2\pi N_{rpm_x}}{60} \cdot r$$

$$V_{linear_y} = \frac{2\pi N_{rpm_y}}{60} \cdot r$$

$$V_{tangential} = \frac{2\pi N_{rpm_tan}}{60} \cdot r$$

$$\omega_z = \frac{V_{tangential}}{\left(\frac{D_x + D_y}{2}\right)}$$

Iron-x inverse
$$(V_{linear_x}, V_{linear_y}, \omega_z)$$

Iron-x Mecanum wheels direction

Iron-x velocity to odom pose

$$S_{\Delta x} = (V_{xt} \cdot \cos(\theta) - V_{yt} \cdot \sin(\theta)) \cdot \Delta t$$

$$S_{\Delta y} = (V_{xt} \cdot \sin(\theta) + V_{yt} \cdot \cos(\theta)) \cdot \Delta t$$

$$\theta_{\Delta t} = \omega_z \cdot \Delta t$$

iron-X's packaging

Overview

Front-view

Top-view

Isometric-view

iron-X's packaging

Package check list

Contact Us

Email: tesrshop@gmail.com

Line official Account: @ion1900z

Facebook fanpage: TESR

Tel. 082-983-7768

Scan here

TESR Co., LTD

112/296 หมู่บ้าน เพอร์เฟค มาสเตอร์พีซ หมู่ที่ 2 ตำบลไทรม้า อำเภอเมืองนนทบุรี จังหวัดนนทบุรี 11000

