CS1555 Recitation 10 Solution

Objective: to practice normalization, finding canonical forms, checking for lossless decompositions.

<u>Part 1:</u> For each of the following relations R and sets of functional dependencies F, find the canonical cover (minimal cover) of F.

- 1. Consider the following set of functional dependencies F on a relation R (A, B, C, D, E):
 - $A \rightarrow BC$
 - $A \rightarrow D$
 - $B \rightarrow C$
 - $C \rightarrow D$
 - $DE \rightarrow C$
 - $BC \rightarrow D$

Finding the canonical form:

- Transform all FDs to canonical form (i.e., one attributes on the right):
 - $A \rightarrow B$
 - $A \rightarrow C$
 - $A \rightarrow D$
 - $B \rightarrow C$
 - $C \rightarrow D$
 - $DE \rightarrow C$
 - $BC \rightarrow D$
- Drop extraneous attributes:

B in BC \rightarrow D is extraneous, since we already have C \rightarrow D. The set of FDs becomes:

- $A \rightarrow B$
- $A \rightarrow C$
- $A \rightarrow D$
- $B \rightarrow C$
- $C \rightarrow D$
- DE C

- Drop redundant FDs:
 - $A \rightarrow B$ and $B \rightarrow C$ implies $A \rightarrow C$, so we drop $A \rightarrow C$.
 - $A \rightarrow B$, $B \rightarrow C$ and $C \rightarrow D$ implies $A \rightarrow D$, so we drop $A \rightarrow D$.

The set of FDs becomes:

- $A \rightarrow B$
- $B \rightarrow C$
- $C \rightarrow D$
- $DE \rightarrow C$

which is the canonical cover of F.

- 2. Consider the following set of functional dependencies F on relation R (A, B, C, D, E, H):
 - $A \rightarrow C$
 - $AC \rightarrow D$
 - $E \rightarrow AD$
 - $E \rightarrow H$
 - $A \rightarrow CD$
 - $E \rightarrow AH$

Finding the canonical form:

- Transform all FDs to canonical form (i.e., one attribute on the right):
 - $A \rightarrow C$
 - $AC \rightarrow D$
 - $\mathsf{E} \to \mathsf{AD}$ becomes $\mathsf{E} \to \mathsf{A}$ and $\mathsf{E} \to \mathsf{D}$
 - $E \rightarrow H$
 - $A \rightarrow CD$ becomes $A \rightarrow C$ and $A \rightarrow D$
 - $E \rightarrow AH$ becomes $E \rightarrow A$ and $E \rightarrow H$
- Remove redundant dependencies:
 - $A \rightarrow C$
 - $AC \rightarrow D$
 - $E \rightarrow A$
 - $\mathsf{E}\to\mathsf{D}$
 - $E \rightarrow H$
 - $A \rightarrow D$

- Drop extraneous attributes:
 - $AC \rightarrow D$ can be removed because we have $A \rightarrow D$ so C is redundant:
 - $A \rightarrow C$
 - $\mathsf{E} \to \mathsf{A}$
 - $\mathsf{E} \to \mathsf{D}$
 - $E \rightarrow H$
 - $A \rightarrow D$
- Drop redundant FDs:
 - Try removing some dependencies in F and still have a set of dependencies equivalent to F.
 - $E \rightarrow D$ can be deduced from $E \rightarrow A$ and $A \rightarrow D$ so we can remove $E \rightarrow D$.
 - The set of FDs becomes:
 - $A \rightarrow C$
 - $E \rightarrow A$
 - E→H
 - $A \rightarrow D$
 - which is the canonical cover of F.

Part 2: Assume that R is decomposed into:

$$R1 (A, B), F1 = \{A \rightarrow B\}$$

R2 (B, C), F2 =
$$\{B \to C\}$$

R3 (C, D, E), F3 =
$$\{C \to D, DE \to C\}$$

Is this decomposition a lossless-join decomposition? Use the table method.

Checking for lossless-join:

Initially the Table looks like this:

	Α	В	С	D	Е
R1(A,B)	a1	α2	U13	U14	U15
R2(B,C)	U21	α2	аЗ	U24	U25
R3(C,D,E)	U31	U32	a3	α4	α5

Using B \rightarrow C: we can replace U13 by a3

	Α	В	С	D	Е
R1(A,B)	a1	α2	a 3	U14	U15
R2(B,C)	U21	α2	α3	U24	U25
R3(C,D,E)	U31	U32	a 3	α4	a 5

Using $\text{C} \rightarrow \text{D} :$ we can replace U14 and U24 by a4

	Α	В	С	D	Е
R1(A,B)	a1	α2	α3	α4	U15
R2(B,C)	U21	α2	α3	α4	U25
R3(C,D,E)	U31	U32	α3	α4	a 5

We cannot proceed and there is no row of all known values \rightarrow the decomposition is lossy.