Algebraic Geometry II: Exercises for Lecture 1

February 7, 2019

Rings are commutative with unit element 1.

1) Let R be a commutative ring with 1. For an ideal I of R, we write V(I) for

$$\{[P] \in \operatorname{Spec}(R): P \supset I\}.$$

For $f \in R$, we write D(f) for $\operatorname{Spec}(R) - V(fR) = \{[P]: f \notin P\}$. Prove the following statements.

- i) $V(I) \cup V(J) = V(I \cap J)$.
- ii) $\cap_{\alpha} V(I_{\alpha}) = V(\sum_{\alpha} I_{\alpha}).$
- iii) $V(R) = \emptyset$ and $V(0) = \operatorname{Spec}(R)$.
- iv) The V(I) are the closed sets of a topology on Spec(R) (called the Zariski topology).
- v) The D(f) form a basis of open subsets (they are called the distinguished open subsets).
- 2) (Commutative algebra.) Let R be a ring and let I be an ideal of R. Let

$$\sqrt{I} = \{x \in R : \exists n \ge 1 \text{ such that } x^n \in I\}$$

be the radical of I. Prove: \sqrt{I} equals the intersection of the prime ideals containing I.

- 3) Let R be a ring and let [P] be the point of Spec R corresponding to a prime ideal P of R.
 - i) Show that the closure of $\{[P]\}$ is exactly V(P).
 - ii) Show that V(P) is irreducible (hence that [P] is a generic point of V(P)). Show also that [P] is the unique generic point of V(P).
- iii) Show that an irreducible closed subset Z of Spec R equals V(Q) for some prime ideal Q of R.
- 4) Let R be a ring and P a prime ideal of R. Write $X = \operatorname{Spec} R$. Show that R_P is the direct limit of the rings R_f , where the direct limit is taken over the f such that $[P] \in X_f$ (i.e., over the f not contained in P).

Remark: It is important here to understand how the direct limit is formed. When $X_f \supseteq X_g$, i.e., when $g \in \sqrt{(f)}$, we get a map $R_f \to R_g$, which is well-defined (check). When $X_f = X_g$, the two maps $R_f \to R_g$ and $R_g \to R_f$ are each other's inverse (check). When $X_f \supseteq X_g \supseteq X_h$, the obvious triangle is commutative (check). The direct limit is formed using the maps $R_f \to R_g$ whenever $X_f \supseteq X_g$ (for f and g not contained in P).

5) Read $\S4.1$ of Ben Moonen's syllabus "Introduction to Algebraic Geometry" before the lecture next week (the pages numbered 37–40, i.e., 42–45 of the pdf file). An alternative reference is $\S II.1$ of Hartshorne's Algebraic Geometry. The web address is:

https://www.math.ru.nl/~bmoonen/research.html#lecturenotes