

Sunitha V R

Department of Science & Humanities

Unit III: Application of Quantum Mechanics to Electrical transport in Solids

- > Suggested Reading
 - 1. Concepts of Modern Physics, Arthur Beiser, Chapter 10
 - 2. Solid state Physics, S.O Pillai, Chapter 6
 - 3. Learning material prepared by the department-Unit III

- > Reference Videos
 - 1. https://nptel.ac.in/courses/115/104/115104109/

Unit III: Application of Quantum Mechanics to Electrical transport in Solids

Class #31

- Kronig Penny model,
- Allowed energy zones/energy bands

Kronig Penny model, Allowed energy bands

In real crystal, electrons move in a regularly arranged lattice of positive ions.

Observed potential is periodic – due to the periodicity of the

lattice

Potentials of electron at the positive ion site is zero and maximum in between two ions.

Kronig Penny model, Allowed energy bands

PES UNIVERSITY ONLINE

Real potentials approximated as - long chain of coupled finite square wells and barrier with height V_o , period 'a' and barrier thickness b.

Kronig Penny model, Allowed energy bands

Schrodinger equations in region I and II

$$\frac{d^2\psi_I}{dx^2} + \frac{2mE}{\hbar^2}\psi_I = 0 \qquad for \ 0 < x < a$$

$$\frac{d^2\psi_{II}}{dx^2} - \frac{2m(V_o - E)}{\hbar^2}\psi_{II} = 0 \ for \ or - b < x < 0$$

Total energy (E < V) - define two real quantities K and α

$$K^2=rac{2mE}{\hbar^2}$$
 and $lpha^2=rac{2m(V_0-E)}{\hbar^2}$

Kronig Penny model, Allowed energy bands

$$\frac{d^2\psi_I}{dx^2} + K^2\psi_I = 0 \qquad \text{for } 0 < x < a$$

$$\frac{d^2\psi_{II}}{dx^2} - \alpha^2\psi_{II} = 0 \quad for \ or - b < x < 0$$

The wave function of the electron is a modulated wave given by Bloch function $\psi_k(x) = V_k(x)e^{ikx}$

 $V_k(x)$ is a periodic function, satisfies $V_k(x + a) = V_k(x)$

Applying the boundary conditions and solving SWE equation

Kronig Penny model, Allowed energy bands

$$P \frac{Sin(Ka)}{Ka} + cos(Ka) = coska$$

Where
$$P = \frac{ma}{\hbar^2} V_o$$
. c and $K = \sqrt{\frac{2m(E)}{\hbar^2}}$

 V_o c is the barrier strength and P is the scattering power of the potential barrier.

The values of k are obtained by solving this equation.

Kronig Penny model, Allowed energy bands

Plot LHS of the equation as a function of αa

Whenever LHS goes beyond \pm 1, the equation has no solution as the RHS lies between \pm 1

Kronig Penny model, Allowed energy bands

E- k diagram

Kronig Penny model, Allowed energy bands

Classification of Material based on band structure:

Metal- partially filled conduction band

- ➤ Semiconductors-fully filled valence band and empty conduction band, energy gap 3 -5 eV
- > Insulators- energy band gap > 5 eV

Class 31. Quiz ...

PES UNIVERSITY

The concepts which are correct are....

- 1. In the Kronig-Penney model the periodic potential is approximated as a long chain of coupled infinite square wells
- 2. The potential of the electron at the positive ionic site is maximum and zero between the site.
- 3. Scattering power is the measure of the strength with which electrons in a crystal are attracted to the ions on the crystal lattice sites.
- 4. Metal are characterized by a fully filled conduction band.

THANK YOU

Sunitha VR, Ph.D.

Assistant Professor,
Department of Science and Humanities

sunithavr@pes.edu

+91 80 21722683 Extn 716