Name (Last, First):	Student ID:
Assignment 1	
METCS544A3A4_F2024	
Instructions:	
 For answering programming questions, please use Adobe Acrobat e steps [See Appendix: Example Question and Answer]: 	dit the pdf file in two
a. Copy and paste your R code as text in the box provided (so t	hat your teaching
team can run your code); b. Screenshot your R console outputs, save as a .PNG image file	e, and paste/insert in
the box provided.	, , ,
 c. Show all work - credit will not be given for code without sho action by including the screenshot of R console outputs. 	wing the code in
 For non-programming questions, please type or handwrite your final 	al answers clearly in
the boxes. Show all work - credit will not be given for numerical solu	•
without explanation in the space above the boxes.	• •
3. [Total 78 pts = 66 pts + 12 Extra Credit pts]	
Grading Rubric	
Each question is worth 3 points and will be graded as follo	ows:
3 points: Correct answer with work shown	
2 points: Incorrect answer but attempt shows some understanding	•
1 point: Incorrect answer but an attempt was made (work shown), or corr explanation (work not shown)	ect answer without
0 points: Left blank or made little to no effort/work not sh	own
Reflective Journal [3 pts]	
(Copy and paster the link to your live Google doc in the box below)	

Part I. Arithmetic Review (24 pts) [Enter your final answer in the box. Show your work in the space in between, to gain full credit]

1. Solve the following problem. Remember your order of operations!

Answer:

2. Solve the following problem. Remember your order of operations! Please round your final answer to the 2 decimal places.

$$\frac{(105-110)}{\sqrt{\frac{3^2}{12} + \frac{2^2}{10}}}$$

Answer:

3. Please solve for x:

$$5 = \frac{x+60}{2}$$

Answer:		

4. Please solve for x. Please round your final answer to the 2 decimal places.

$$\frac{2x-8}{6} = 10$$

Answer:		

5.	The following number is written in scientific notation. Please write it in standard decimal notation.
	6.52E-3
	Answer:
6.	The following is written in scientific notation. Please write it in standard decimal notation.
	7.38E2
	Answer:
7.	You collected data on 72 college students and found that eight were left-handed. What
	proportion of the students you surveyed are left-landed? Please write your final answer as a decimal rounded to 2 decimal places.
	Answer:

8.	A study found that 33 out of 105 teenagers had admitted to texting and driving. What proportion of the teenagers you surveyed text and drive? Please write your final answer as a decimal rounded to 2 decimal places.
Answe	r:

Part II Statistical Programming (51 pts) [* Extra Credits]

- Sequences. Generate the following sequences using rep(), seq() and arithmetic:
 - (a) $1, 3, 5, 7, \ldots, 21$.
 - (b) $1, 10, 100, \dots, 10^9$.
 - (c) $0, 1, 2, 3, 0, \dots, 3, 0, 1, 2, 3$ [with each entry appearing 6 times]
 - (d) $0, 0, 0, 1, 1, 1, 2, \dots, 4, 4, 4$.
 - $(e)^* 50, 47, 44, \dots, 14, 11.$
 - $(f)^*$ 1, 2, 5, 10, 20, 50, 100, ..., 5×10^4 .

Can any of your answers be simplified using recycling?

- 2. Arithmetic. Create a vector containing each of the following sequences:
 - (a) $\cos(\frac{\pi n}{3})$, for $n = 0, \dots, 10$.
 - (b) 1, 9, 98, 997, ..., 999994.
 - (c) $e^n 3n$, for $n = 0, \dots, 10$.
 - (d)* $3n \mod 7$, for $n = 0, \dots, 10$.

Let

$$S_n = \sum_{i=1}^n \frac{(-1)^{i+1}}{2i-1} = 1 - \frac{1}{3} + \frac{1}{5} - \frac{1}{7} + \dots + \frac{(-1)^{n+1}}{2n-1}.$$

You will recall that $\lim_n S_n = \pi/4$.

- (e) Evaluate $4S_{10}$, $4S_{100}$ and $4S_{1000}$. [Hint: use the sum() function.]
- (f) Create a vector with entries $S_i \frac{\pi}{4}$, for i = 1, ..., 1000. [Hint: try creating the vector with entries S_i first; the function cumsum() may be useful.]

3. Subsetting

Create a vector x of normal random variables as follows:

```
> set.seed(123)
> x <- rnorm(100)
```

The set.seed() fixes the random number generator so that we all obtain the same x; changing the argument 123 to something else will give different results. This is useful for replication.

Give commands to select a vector containing:

- (a) the 25th, 50th and 75th elements;
- (b) the first 25 elements;
- (c) all elements except those from the 31st to the 40th.

Recall the logical operators |, & and !. Give commands to select:

- (d) all values larger than 1.5 (how many are there?);
- (e) what about the entries that are either > 1.5 or < -1?

Screenshot of your R console outputs and paste the image in the box below				

Appendix: Example Question and Answer for R programming questions:

```
Calculate the sum \sum_{j=0}^{n} r^{j}, where r has been assigned the value 1.08, and compare with (1-r^{n+1})/(1-r), for n=10,20,30,40.
```

Answer: Copy and paste your R code in the box below (not an image but the text).

```
r < -1.08

n < -c(10, 20, 30, 40)

sum1 < -c()

for(i in n) \{

x < -0:i

sum1 < -c(sum1, sum(r^x))

\}

sum1 = This gives the calculated sums for <math>n = 10, 20, 30, 40.

sum2 < -(1 - r^n(n + 1)) / (1 - r)

sum2 = sum1 = The formula works.
```

Screenshot of your R console outputs and paste the image in the box below

THE END