微积分第一次习题课讲义

2023年9月20日

习题 1.1

2. 证明 $\sqrt{6}$ 是无理数。更进一步,如果在自然数 a 的质数分解中,至少有一个质数因子出现奇数次,则 \sqrt{a} 是无理数。

证明. 假设 $\sqrt{6}$ 是有理数,则设 $\sqrt{6} = \frac{p}{a}$,其中 p,q 互素。则有

$$p^2 = 6q^2 \tag{1}$$

于是 p 是偶数,设 p=2m,代入(1)有

$$2m^2 = 3q^2 \tag{2}$$

因此 q 也是偶数。这与 p,q 互素的假设不符,矛盾。

注 1. 对于 a 是自然数的情形, 可设 $a = q_1^{r_1} q_2^{r_2} \cdots q_n^{r_n}$, 其中, q_k 是质数, $r_k = 0, 1, \cdots (1 \le k \le n)$, 则 $\sqrt{a} = \sqrt{q_1^{r_1} q_2^{r_2} \cdots q_n^{r_n}}$ 。

对于 r_k 是偶数的 $q_k^{r_k}$ 可以直接开出平方根,但是若 r_k 是奇数,此时 $q_k^{r_k}$ 可类似 $\sqrt{3}$ 讨论出结果是无理数。后面这些数的乘积可以类似 $\sqrt{6}$ 的讨论,得出结论。但不可直接认为无理数 \times 无理数是无理数。

拓展 1. 证明: 若 $n \in \mathbb{N}^*$ 目 n 不属于完全平方数,则 \sqrt{n} 是无理数。

证明. 用反证法。假设 $\sqrt{n} = p/q$, 其中 $p, q \in \mathbb{N}^*$ 。由于 n 不是完全平方数,故有 $m \in \mathbb{N}^*$,使得 m < p/q < m + 1,由此得到 $0 。在等式 <math>p^2 = nq^2$ 的两边都减去 mpq,得到 $p^2 - mpq = nq^2 - mpq$,这等价于

$$\frac{p}{q} = \frac{nq - mp}{p - mq}$$

令 $p_1 = nq - mp, q_1 = p - mq$ 。由于 $q_1 \in \mathbb{N}^*$ 且 $q_1 < q$,所以 $p_1 \in \mathbb{N}^*$ 且 $p_1 < p$ 。对等式

$$\frac{p}{q} = \frac{p_1}{q_1}$$

反复地进行同样的讨论, 可以得到两串递减的正整数列

$$p > p_1 > p_2 > p_3 > \cdots$$
 $q > q_1 > q_2 > q_3 > \cdots$

使得

$$\frac{p}{q} = \frac{p_1}{q_1} = \frac{p_2}{q_2} = \frac{p_3}{q_3} = \cdots$$

这是不可能的,因为从 pq 开始的正整数不可能无止境地递减下去。这就证明了 \sqrt{n} 不可能是有理数。

5. 下列哪些集合有上下确界和最大最小值,如果存在请求出这些 值。

- 1. 自然数集 №
- 2. (0,1) 中的所有有理数
- 3. $\left\{\frac{n}{m+n+1}|m,n\in\mathbb{N}\right\}$
- 4. $\{x \in \mathbb{R} | x^2 < 2\}$
- 5. $\{(1 \frac{1}{n+1}) | n \in \mathbb{N}\}$

解. 1. 无上确界和最大值,下确界为0,最小值是0

- 2. 上确界为 1, 下确界为 0, 无最大值和最小值
- 3. 上确界是 1, 下确界是 0, 无最大值, 最小值为 0
- 4. 上确界是 $\sqrt{2}$, 下确界是 $-\sqrt{2}$, 无最大值和最小值
- 5. 上确界是 1, 下确界是 0, 无最大值, 最小值是 0

注 2. 如果一个集合存在最大值 (最小值),则它的上确界 (下确界) 一定存在,且与最大值 (最小值) 相等,即上确界 (下确界) 可以理解为在一定容忍度 (ϵ) 下集合的最大值 (最小值),即上确界 (下确界) 是最大值 (最小值) 在极限意义下的推广。

$$\text{ inf}(-A) = -\sup A, \sup(-A) = -\inf A.$$

7. 证明: 若 A 和 B 是 \mathbb{R} 中的非空有界集,则 $A \cap B$ 和 $A \cup B$ 也是有界集,且:

$$\inf(A \cup B) = \min\{\inf A, \inf B\}, \sup(A \cup B) = \max\{\sup A, \sup B\}$$

 $\inf(A \cap B) \ge \max\{\inf A, \inf B\}, \sup(A \cap B) \le \min\{\sup A, \sup B\}$

证明. 对于 $A \cup B$,求其上确界和下确界方法类似,下面只给出上确界的证明:

注意到 $\sup(A \cup B) = \sup(\{x | x \in A \text{ or } x \in B\})$, 因此 $\sup(A \cup B) \ge \sup A, \sup(A \cup B) \ge \sup B$.

不妨设 $\sup A \ge \sup B$,则 $\forall x \in A \cup B$,如果 $x \in A$,则 $x \le \sup A$,否则 $x \in B$,则 $x \le \sup B \le \sup A$,因此 $\sup(A \cup B) \le \sup A$. 综上, $\sup(A \cup B) = \sup A$. 对于 $A \cap B$,类似地:

不妨设 $\inf A \leq \inf B$, 则 $\forall x \in A \cap B$, 则有 $x \in A, x \in B$, 因此 $x \geq \inf B \geq \inf A$, 因此 $\inf (A \cap B) \geq \inf B$ 。上确界也类似。

注 4. 对于任何一个集合 A 而言, 如果 $B \subset A$, 则 $\sup B \leq \sup A$, $\inf B \geq \inf A$.

12. 设 A,B 是 \mathbb{R} 中非空有界集,且 A、B 中数都是非负实数,记 $AB = \{xy | x \in A, y \in B\}$,证明:

$$\inf(AB) = \inf A \cdot \inf B, \sup(AB) = \sup A \cdot \sup B.$$

证明. $\forall x \in A, y \in B, \inf A \leq x \leq \sup A, \inf B \leq y \leq \sup B \Rightarrow \inf A \cdot \inf B \leq xy \leq \sup A \cdot \sup B$. 即 $\inf A \cdot \inf B \leq \inf (AB) \leq \sup A \cdot \sup B$.

 $\forall \epsilon > 0, \exists x_0 \in A, y_0 \in B, s.t \ x_0 < \inf A + \epsilon, y_0 < \inf B + \epsilon,$ 于是 $xy < \inf A \cdot \inf B + \epsilon (\inf A + \inf B + \epsilon)$ 。再由 ϵ 的任意性,可以得到 $\inf(AB) \leq \inf A \cdot \inf B$. 综上, $\inf A \cdot \inf B = \inf(AB)$,上确界证明类似。

14. 设 $n \ge 2$ 是自然数,证明:

$$(1 + \frac{1}{n-1})^n > (1 + \frac{1}{n})^{n+1}$$

证明.

$$(\frac{n-1}{n})^n = \underbrace{\frac{n-1}{n}\frac{n-1}{n}\cdots\frac{n-1}{n}}_{\text{n } \uparrow \uparrow} \cdot 1 \overset{\text{id} f. \text{ \sharp x}}{\leq} (\frac{\frac{n-1}{n}\cdot n+1}{n+1})^{n+1} = (\frac{n}{n+1})^{n+1}$$

注 5. 这道题有很多解法: 求导、Bernoulli 不等式 …,但是要注意一个很显然的错误证法,如下:

$$(1 + \frac{1}{n-1})^n \ge 1 + \frac{n}{n-1}$$
$$(1 + \frac{1}{n})^{n+1} \ge 1 + \frac{n+1}{n}$$
$$1 + \frac{n}{n-1} > 1 + \frac{n+1}{n}$$

注 6. 类似地,可以证明 $\{(1+\frac{1}{n})^n\}$ 是严格递增数列 (留作练习)

拓展 2. 证明: 任意两个不同实数之间都存在无穷多个有理数和无理数。

证明. 等价于证明两个实数之间存在1个有理数和1个无理数。

不妨设 a < b, 考虑 a, b 间的有理数。

令 $x = \frac{3}{4}a + \frac{1}{4}b, y = \frac{1}{4}a + \frac{3}{4}b,$ 则有 a < x < y < b。

若 x, y 中至少有一个是有理数,则已经找到一个有理数。

若 x,y 均为无理数,不妨设 [x]=[y],否则 Z=[y] 即为 a,b 间的一个有理数。

记 $\{x\}$, $\{y\}$ 分别为 $0.\overline{x_1x_2...x_n...}$, $0.\overline{y_1y_2...y_n...}$

设它们在第 k 位开始不同,则取 $Z=[y]+0.\overline{y_1y_2...y_k}$,则 Z 即为 a,b 间的有理数。

进一步则可以找到无穷多个有理数使得 $0 < z_1 < z_2 < ... < z_n < ... < b$ 再考虑无理数,任取 a,b 间的两个有理数 $z_1 < z_2$,则 $z_1 + \frac{\sqrt{2}}{2}(z_2 - z_1)$ 即为所求。

拓展 3. 习题 1.1 第 15 题

习题 1.2

2. 已知
$$f(x+1) = 2x^2 - x + 1, g(x + \frac{1}{x}) = x^2 + \frac{1}{x^2}(x \neq 0)$$
, 写出 $f(x), g(x), f \circ g, g \circ f$ 的表达式

解. 设 $x+1=t, x+\frac{1}{x}=s, t\in\mathbb{R}, |s|\geq 2$, 因此,

$$f(t) = 2(t-1)^2 - (t-1) + 1 = 2t^2 - 5t + 4$$

同理,

$$g(s) = s^2 - 2$$

于是

$$\begin{split} f\circ g &= f(g(s)) = f(s^2-2) = 2(s^2-2)^2 - 5(s^2-2) + 4 = 2s^4 - 13s^2 + 22 \\ g\circ f &= g(f(t)) = g(2t^2-5t+4) = (2t^2-5t+4)^2 - 2 = 4t^4 - 20t^3 + 41t^2 - 40t + 14 \\ \text{Rp} \end{split}$$

$$f(x) = 2x^2 - 5x + 4, f \circ g(x) = 2x^4 - 13x^2 + 22$$
$$g(x) = x^2 - 2, g \circ f(x) = 4x^4 - 20x^3 + 41x^2 - 40x + 14$$

6. 验证 $y = \ln(\sqrt{x^2 + 1} + x)$ 是奇函数,并求出对应反函数解.

$$y(-x) = \ln(\sqrt{(-x)^2 + 1} - x) = \ln(\frac{1}{\sqrt{x^2 + 1} + x}) = -\ln(\sqrt{x^2 + 1} + x) = -y(x)$$

因此 y(x) 是奇函数。

反解
$$y = \ln(\sqrt{x^2 + 1} + x)$$
, 即

$$e^y = \sqrt{x^2 + 1} + x$$

同理,

$$e^{-y} = \sqrt{x^2 + 1} - x$$

联立,解得

$$x = \frac{e^y - e^{-y}}{2}$$

$$\Re y^{-1}(x) = \frac{e^x - e^{-x}}{2}.$$

拓展 4. 双曲函数:

$$\sinh x = \frac{e^{x} - e^{-x}}{2}$$

$$\cosh x = \frac{e^{x} + e^{-x}}{2}$$

$$\sinh^{-1} x = \ln(\sqrt{x^{2} + 1} + x)$$

$$\cosh^{-1} x = \ln(\sqrt{x^{2} - 1} + x)$$

15. 证明 $0 < x < \frac{\pi}{2}$ 时,有

$$\frac{2}{\pi}x < \sin x < x < \tan x$$

证明. 考虑一个单位圆, 当它的角度为 x 时, 此时 x 对应扇形的弧长, 由几何知识可以知道

$$\sin x < x < \tan x$$

结合 $y = \sin x$ 与 $y = \frac{2}{\pi}x$ 图像,我们可以发现

$$\frac{2}{\pi}x < \sin x$$

注 7. 这里求导证明也可以。不过由于还没有学习导数知识,应尽量规避。

拓展 5. 几道有趣的判断题:

- 1. 周期函数一定具有最小正周期。
- 2. f(x) 是周期函数,则 $f(x^2)$ 不是周期函数。
- 3. f 和 g 都不连续,则 $f+g,f\cdot g$ 都不连续。