

Pourquoi le **gradient**, le **rotationnel**, et la **divergence** sont-ils *un seul et même opérateur* ?

- Des rappels
- 2 Les vecteurs tangents sont des dérivations
- 3 Les multicovecteurs
- 4 Les formes différentielles
- Seponse à la question (et ouverture) : grad, rot, et div sont un seul et même opérateur appelé dérivée extérieure mais appliqué à des formes différentielles de degrés différents

- Des rappels
- 2 Les vecteurs tangents sont des dérivations
- 3 Les multicovecteurs
- 4 Les formes différentielles
- 6 Réponse à la question (et ouverture) : grad, rot, et div sont un seul et même opérateur appelé dérivée extérieure mais appliqué à des formes différentielles de degrés différents

Définitions : gradient, rotationnel, divergence

$$\operatorname{grad} f = \begin{bmatrix} \partial/\partial x \\ \partial/\partial y \\ \partial/\partial z \end{bmatrix} f = \begin{bmatrix} f_x \\ f_y \\ f_z \end{bmatrix}$$
$$\operatorname{rot} \begin{bmatrix} P \\ Q \\ R \end{bmatrix} = \begin{bmatrix} \partial/\partial x \\ \partial/\partial y \\ \partial/\partial z \end{bmatrix} \times \begin{bmatrix} P \\ Q \\ R \end{bmatrix} = \begin{bmatrix} R_y - Q_z \\ -(R_x - P_z) \\ Q_x - P_y \end{bmatrix}$$
$$\operatorname{div} \begin{bmatrix} P \\ Q \\ R \end{bmatrix} = \begin{bmatrix} \partial/\partial x \\ \partial/\partial y \\ \partial/\partial z \end{bmatrix} \cdot \begin{bmatrix} P \\ Q \\ R \end{bmatrix} = P_x + Q_y + R_z$$

 $\{\text{fonc. num.}\}\xrightarrow{\text{grad}} \{\text{fonc. vec.}\}\xrightarrow{\text{rot}} \{\text{fonc. vec.}\}\xrightarrow{\text{div}} \{\text{fonc. num.}\}$

Quelques propriétés ...

$$\operatorname{rot}(\operatorname{grad} f) = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$
$$\operatorname{div}(\operatorname{rot} \begin{bmatrix} P \\ Q \\ R \end{bmatrix}) = 0$$
$$\operatorname{rot} \mathsf{F} = 0 \Leftrightarrow \exists f, \; \mathsf{F} = \operatorname{grad} f$$

- Des rappels
- 2 Les vecteurs tangents sont des dérivations
- 3 Les multicovecteurs
- 4 Les formes différentielles
- Séponse à la question (et ouverture) : grad, rot, et div sont un seul et même opérateur appelé dérivée extérieure mais appliqué à des formes différentielles de degrés différents

On considère l'espace euclidien \mathbb{R}^n . Soit $p \in \mathbb{R}^n$.

On considère $T_p(\mathbb{R}^n)$ l'espace tangent à \mathbb{R}^n au point p. Intuitivement, on a $\mathbb{R}^n \approx T_p(\mathbb{R}^n)$.

Dérivée directionnelle

Pour tout point $v \in T_p(\mathbb{R}^n)$ et toute fonction f qui est C^{∞} sur un voisinage de p, on peut calculer la dérivée directionnelle de f au point p dans la direction de v:

$$D_{v}f = \frac{d}{dt}\Big|_{t=0}f(p^{1}+tv^{1},\ldots,p^{n}+tv^{n}) = \sum_{i=1}^{n}v^{i}\frac{\partial f}{\partial x^{i}}(p)$$

Ainsi, $D_v: C_p^\infty \to \mathbb{R}$ est une application \mathbb{R} -linéaire qui vérifie la règle de Leibniz : $D_v(fg) = (D_v f)g(p) + f(p)D_v g$

Plus généralement, toute application de $C_p^\infty \to \mathbb{R}$ qui est \mathbb{R} -linéaire et qui vérifie la règle de Leibniz est appelée une **dérivation au point** p. L'ensemble des dérivations au point p est noté $\mathcal{D}_p(\mathbb{R}^n)$.

 $T_p(\mathbb{R}^n)$ et $\mathcal{D}_p(\mathbb{R}^n)$ sont des espaces vectoriels isomorphes

A tout point $v \in \mathcal{T}_p(\mathbb{R}^n)$ on peut associer une unique dérivation $D_v \in \mathcal{D}_p(\mathbb{R}^n)$. Et toute dérivation de $\mathcal{D}_p(\mathbb{R}^n)$ est en fait une dérivée directionnelle selon un unique vecteur de $\mathcal{T}_p(\mathbb{R}^n)$. On peut donc faire comme si l'espace tangent était l'espace des dérivations $\mathcal{T}_p(\mathbb{R}^n) \approx \mathcal{D}_p(\mathbb{R}^n)$

La base canonique de
$$T_p(\mathbb{R}^n)$$
: e_1, \ldots, e_n devient $\frac{\partial}{\partial x^1}\Big|_p, \ldots, \frac{\partial}{\partial x^n}\Big|_p$
Ainsi, pour tout $v \in T_p(\mathbb{R}^n)$, on a $v = \sum_{i=1}^n v^i \frac{\partial}{\partial x^i}\Big|_p$

Champ de vecteurs

Un champ de vecteurs X est une fonction de $\mathbb{R}^n \to \mathcal{T}_p(\mathbb{R}^n)$ qui associe à chaque point $p \in \mathbb{R}^n$ un vecteur tangent (c'est à dire une dérivation à p) noté $X_p = \sum_{i=1}^n a^i(p) \frac{\partial}{\partial x^i} \Big|_p$

Si f est une fonction C^{∞} , on peut définir une nouvelle fonction Xf telle que, pour tout $p \in \mathbb{R}^n$, $Xf(p) = X_p f = \sum a^i(p) \frac{\partial f}{\partial x^i}(p)$

- Des rappels
- 2 Les vecteurs tangents sont des dérivations
- 3 Les multicovecteurs
- 4 Les formes différentielles
- Séponse à la question (et ouverture) : grad, rot, et div sont un seul et même opérateur appelé dérivée extérieure mais appliqué à des formes différentielles de degrés différents

Applications multilinéaires

Soit V un \mathbb{R} -espace vectoriel de dimension finie n.

Une fonction $f:V^k\to\mathbb{R}$ est k-linéaire si elle est linéaire selon chacun de ses k arguments.

Une fonction k-linéaire sur V est appelée un k-tenseur sur V

L'action de permutation

Soit f un k-tenseur sur V et soit σ une permutation de S_k

On peut définir un nouveau k-tenseur par :

$$(\sigma f)(v_1, \ldots, v_k) = f(v_{\sigma(1)}, \ldots, v_{\sigma(k)})$$

 f est symétrique $\Leftrightarrow \sigma f = f$ pour tout $\sigma \in S_k$
 f est alterné $\Leftrightarrow \sigma f = (\operatorname{sgn} \sigma)f$ pour tout $\sigma \in S_k$

On note $A_k(V)$ l'espace des k-tenseurs alternés. Ils sont appelés les multicovecteurs de degré k ou les k-covecteurs.

Le produit tensoriel

Soient f un k-tenseur et g un l-tenseur.

Leur produit tensoriel est le (k+1)-tenseur $f \otimes g$ défini par :

$$f \otimes g(v_1,\ldots,v_{k+l}) = f(v_1,\ldots,v_k)g(v_{k+1},\ldots,v_{k+l})$$

Le produit extérieur

Soient $f \in A_k(V)$ et $g \in A_l(V)$. On définit le produit extérieur $f \land g \in A_{k+l}(V)$ par :

$$f \wedge g = \frac{1}{k! I!} \sum_{\sigma \in S_k} (\operatorname{sgn} \sigma) \sigma(f \otimes g)$$

Le produit extérieur est associatif et anticommutatif, c'est à dire qu'on a $f \wedge g = (-1)^{kl} g \wedge f$

On note $A_*(V) = \bigoplus_{k=0}^{\infty} A_k(V)$ l'algèbre graduée anticommutative appelée algèbre extérieure des multicovecteurs sur V.

Une base de $A_k(V)$

Soit e_1, \ldots, e_n une base de V.

On considère les 1-covecteurs $\alpha^i:V\to\mathbb{R}$ vérifiant $\alpha^i(e_j)=\delta^i_j$ (il s'agit de la base duale).

Pour $I = (i_1, \ldots, i_k)$, on note $\alpha^I = \alpha^{i_1} \wedge \cdots \wedge \alpha^{i_k}$.

Alors l'ensemble des α^I tels que $I = (i_1 < \cdots < i_k)$ est une base de $A_k(V)$.

Ainsi, $A_k(V)$ est de dimension $\binom{n}{k}$.

- Des rappels
- 2 Les vecteurs tangents sont des dérivations
- 3 Les multicovecteurs
- 4 Les formes différentielles
- Séponse à la question (et ouverture) : grad, rot, et div sont un seul et même opérateur appelé dérivée extérieure mais appliqué à des formes différentielles de degrés différents

1-Forme Différentielle

Un champ de vecteurs assigne un vecteur tangent (i.e. une dérivation) à tout point de \mathbb{R}^n . De façon duale, une 1-forme différentielle (aussi appelée champ de covecteurs) est une fonction ω qui assigne à tout point $p \in \mathbb{R}^n$ un covecteur $\omega_p \in A_1(T_p(\mathbb{R}^n))$

Différentielle d'une fonction

Pour toute fonction $f:\mathbb{R}^n\to\mathbb{R}$ qui est C^∞ , on peut construire une 1-forme df appelée la différentielle de f telle que, pour tout $p\in\mathbb{R}^n$ et tout $X_p\in T_p(\mathbb{R}^n)$, on a : $(df)_p(X_p)=X_pf$

Si on note x^1, \ldots, x^n les fonctions coordonées standards de \mathbb{R}^n , alors pour tout point $p \in \mathbb{R}^n$, $\{(dx^1)_p, \ldots, (dx^n)_p\}$ est la base de $A_1(\mathcal{T}_p(\mathbb{R}^n))$ duale de la base $\{\frac{\partial}{\partial x^1}\Big|_p, \ldots, \frac{\partial}{\partial x^n}\Big|_p\}$ de $\mathcal{T}_p(\mathbb{R}^n)$.

Ainsi, on a $\omega = \sum_{i=1}^{r} a_i dx^i$ et en particulier $df = \sum_{i=1}^{r} \frac{\partial f}{\partial x^i} dx^i$

k-Forme Différentielle

Une k-forme différentielle est une fonction $\mathbb{R}^n \to A_k(T_p(\mathbb{R}^n))$ qui assigne à chaque p un k-covecteurs $\omega_p \in A_k(T_p(\mathbb{R}^n))$.

L'ensemble des $dx_p^I = dx_p^{i_1}, \ldots, dx_p^{i_k}, i_1 < \cdots < i_k$ est une base de $A_k(T_p(\mathbb{R}^n))$ donc on peut écrire $\omega = \sum a_I dx^I$.

On note $\Omega_k(\mathbb{R}^n)$ l'espace vectoriel des k-formes C^{∞} .

Une 0-forme est simplement une fonction $\mathbb{R}^n \to \mathbb{R}$.

Le produit extérieur d'une k-forme ω avec une l-forme τ est défini terme à terme $(\omega \wedge \tau)_p = \omega_p \wedge \tau_p$.

Ainsi, la somme directe $\Omega^*(\mathbb{R}^n) = \bigoplus_{k=0}^n \Omega^k(\mathbb{R}^n)$ est une algèbre graduée anticommutative.

La dérivée extérieure d'une fonction (ou d'une 0-forme)

La dérivée extérieure d'une fonction $f \in \Omega^0(\mathbb{R}^n)$ est définie comme étant sa différentielle $df \in \Omega^1(\mathbb{R}^n)$

La **dérivée extérieure** d'une k-forme

Pour $k \geq 1$, soit $\omega = \sum_{l} a_{l} dx^{l} \in \Omega^{k}(\mathbb{R}^{n})$ une k-forme. La dérivée extérieure de ω est une (k+1)-forme $d\omega \in \Omega^{k+1}(\mathbb{R}^{n})$ définie par :

$$d\omega = \sum_{I} da_{I} \wedge dx^{I} = \sum_{I} \left(\sum_{j} \frac{\partial a_{I}}{\partial x^{j}} dx^{j} \right) \wedge dx^{I}$$

Caractérisation de la dérivée extérieure

La dérivée extérieure d est l'unique function de $\Omega^*(\mathbb{R}^n) \to \Omega^*(\mathbb{R}^n)$ vérifiant

- $d(\omega \wedge \tau) = (d\omega) \wedge \tau + (-1)^{\deg \omega} \omega \wedge d\tau$ (on dit que d est une antidérivation de degré 1)
- $d^2 = 0$ (cela correspond au théorème de Schwarz)
- Si $f \in \Omega^0(\mathbb{R}^n)$ et X est un champ de vecteur, alors pour tout p, $(df)_p(X_p) = X_p f$

Soit ω une k-forme.

 ω est dite fermée si $d\omega = 0$.

 ω est dite *exacte* si il existe une (k-1)-forme τ telle que $\omega=d\tau$. Comme $d(d\tau)=0$, toute forme exacte est fermée.

- Des rappels
- 2 Les vecteurs tangents sont des dérivations
- Les multicovecteurs
- 4 Les formes différentielles
- Séponse à la question (et ouverture) : grad, rot, et div sont un seul et même opérateur appelé dérivée extérieure mais appliqué à des formes différentielles de degrés différents

On se place dans \mathbb{R}^3 et on note x,y,z les coordonnées standards de \mathbb{R}^3 . Soit $f:\mathbb{R}^3\to\mathbb{R}$ une fonction. f est une 0-forme. La dérivée extérieure de f est alors :

$$df = \frac{\partial f}{\partial x}dx + \frac{\partial f}{\partial y}dy + \frac{\partial f}{\partial z}dz \leftrightarrow \begin{bmatrix} \frac{\partial f}{\partial x} \\ \frac{\partial f}{\partial y} \\ \frac{\partial f}{\partial z} \end{bmatrix} = \operatorname{grad} f$$

On considère une fonction $F:\mathbb{R}^3\to\mathbb{R}^3$ que l'on note $F=\begin{bmatrix}P\\Q\\R\end{bmatrix}$.

F est en fait un champ de vecteur de $\mathbb{R}^3 o \mathcal{T}_p(\mathbb{R}^3)$.

On peut aussi identifier F à une 1-forme Pdx + Qdy + Rdz. La dérivée extérieure de cette 1-forme est alors :

$$d(Pdx + Qdy + Rdz) = dP \wedge dx + dQ \wedge dy + dR \wedge dz$$

$$= (P_x dx + P_y dy + P_z dz) \wedge dx$$

$$+ (Q_x dx + Q_y dy + Q_z dz) \wedge dy$$

$$+ (R_x dx + R_y dy + R_z dz) \wedge dz$$

$$= (R_y - Q_z) dy \wedge dz$$

$$- (R_x - P_z) dz \wedge dx$$

$$+ (Q_x - P_y) dx \wedge dy$$

Cela correspond au rotationnel de F.

On peut aussi voir notre champ de vecteur F comme une 2-forme $Pdy \wedge dz + Qdz \wedge dx + Rdx \wedge dy$. La dérivée extérieure de cette 2-forme est alors :

$$d(Pdy \wedge dz + Qdz \wedge dx + Rdx \wedge dy) = dP \wedge dy \wedge dz + dQ \wedge dz \wedge dx + dR \wedge dx \wedge dy$$
$$= (P_x + Q_y + R_z)dx \wedge dy \wedge dz$$

Cela correspond à la divergence.

$$\Omega^{0}(\mathbb{R}^{3}) \xrightarrow{d} \Omega^{1}(\mathbb{R}^{3}) \xrightarrow{d} \Omega^{2}(\mathbb{R}^{3}) \xrightarrow{d} \Omega^{3}(\mathbb{R}^{3})$$

$$C^{\infty}(\mathbb{R}^{3}) \xrightarrow{\operatorname{grad}} \mathfrak{X}(\mathbb{R}^{3}) \xrightarrow{\operatorname{rot}} \mathfrak{X}(\mathbb{R}^{3}) \xrightarrow{\operatorname{div}} C^{\infty}(\mathbb{R}^{3})$$

Retour sur les propriétés

$$\operatorname{rot}(\operatorname{grad} f) = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} \leftrightarrow d^2 = 0$$
$$\operatorname{div}(\operatorname{rot} \begin{bmatrix} P \\ Q \\ R \end{bmatrix}) = 0 \leftrightarrow d^2 = 0$$
$$\operatorname{rot} \mathsf{F} = 0 \Leftrightarrow \exists f, \; \mathsf{F} = \operatorname{grad} f$$

La dernière propriété affirme qu'une 1-forme sur \mathbb{R}^3 est exacte si et seulement si elle est fermée.

La généralisation de cette dernière propriété s'appelle le lemme de Poincaré: toute k-forme fermée sur \mathbb{R}^n est exacte (ce qui n'est pas vrai sur une partie de \mathbb{R}^n).

Mais à quoi servent les formes différentielles ?

Les formes différentielles permettent de généraliser l'analyse vectorielle de \mathbb{R}^3 à \mathbb{R}^n et plus généralement à n'importe quelle variété différentielle.

Théorème de Stokes-Cartan

Soit ω une (n-1)-forme à support compact définie sur une variété différentielle orientée M de dimension n.

$$\int_{M} d\omega = \int_{\partial M} \omega$$

Notamment, le théorème de Stokes-Cartan généralise le théorème fondamental de l'analyse, le théorème de Stokes, le théorème d'Ostrogradski ...