Inertial Sensors

MEMS technology

Micro Electro Machine Systems

MEMS accelerometer – block diagram

Inertial Sensors

- MEMS technology
 - MEMS accelerometers
 - MEMS Gyroscopes

Acc Components

Inertial Sensors

- Range
 - $-\pm 2g$
 - 1g == Vcc/4, e.g. 3V/4=0.75V

• Example, phone at 45 degrees

$$- X_g = 1g * cos(\pi/4) \rightarrow X = 1.5V + 0.75 V * cos(\pi/4) = 2.03V$$

$$- Y_g = -1g * \sin(\pi/4) \rightarrow X = 1.5V - 0.75 V * \sin(\pi/4) = 0.97V$$

Analog Accelerometers

- ADXL335
 - 3 axis ±3g sensing

FUNCTIONAL BLOCK DIAGRAM

Figure 1.

Analog Accelerometers

Digital Accelerometers

- ADXL313
 - 3 axis
 - $-\pm 0.5$ g, ± 1 g, ± 2 g, and ± 4 g sensing

FUNCTIONAL BLOCK DIAGRAM

Digital Accelerometers

DIGITAL ACCELEROMETERS
1061+ PRECISION

2-1=1023 → +29

$$0 -2g$$

$$5 = \frac{1023}{4g} \approx 256 \left[\frac{counts}{g}\right]$$