Homework 10

Name: 方嘉聪 ID: 2200017849

Problem 1.(Revisit 3-Dimensional Matching).

Recall that in the last assignment we proved that 3-dimensional matching problem is NP-complete. Now let's consider the following maximization version: Given **disjoint** sets X, Y, and Z, and a set $T \subseteq X \times Y \times Z$ of ordered triples, we want to find out the maximum size |M| of a 3-dimensional matching $M \subseteq T$.

Give a 3-approximation algorithm. Prove its approximation ratio and give its running time.

Solution. 考虑如下的近似算法:

Algorithm 1 3-Approximation Algorithm for 3-Dimensional Matching

Input: Disjoint sets X, Y, Z and a set $T \subseteq X \times Y \times Z$ of ordered triples

Output: A 3-dimensional matching $M \subseteq T$

- 1: $M \leftarrow \emptyset$, $U_X \leftarrow X$, $U_Y \leftarrow Y$, $U_Z \leftarrow Z$
- 2: while $T \neq \emptyset$ do
- 3: 随机选取一个三元组 $(x, y, z) \in T$;
- 4: 将 (x,y,z) 加入 M;
- 5: 从 U_X, U_Y, U_Z 中删除 x, y, z;
- 6: 从T中删除所有包含x,y,z的三元组.

7: $\mathbf{return}\ M$

第 5-6 行保证了选取的三元组是合法的. 每次循环用时 O(|T|), 总的时间复杂度为 $O(|T|^2)$. 下面我们证明这个算法的近似比为 3.

设最优解为 M^* , 假设 $|M^*| > 3|M|$. 对于任意一个三元组 $(x,y,z) \in M$, 那么在 M^* 至多有 3 个对应的三元组 $(x,\cdot,\cdot),(\cdot,y,\cdot),(\cdot,\cdot,z)$. 由于 $|M^*| > 3|M|$, 那么在 M^* 存在一个三元组 $(\bar{x},\bar{y},\bar{z})$ 使得 \bar{x},\bar{y},\bar{z} 都不在 M 中, 但由我们的算法 $(\bar{x},\bar{y},\bar{z})$ 应当被加入 M 中, 矛盾. 故 $3|M| \geq |M^*|$, 即近似比为 3.

一个紧实例为:

$$X = \{x_1, x_2, x_3\}, Y = \{y_1, y_2, y_3\}, Z = \{z_1, z_2, z_3\},$$
$$T = \{(x_1, y_2, z_3), (x_1, y_1, z_1), (x_2, y_2, z_2), (x_3, y_3, z_3)\}$$

最优解为 $M^* = \{(x_1, y_1, z_1), (x_2, y_2, z_2), (x_3, y_3, z_3)\}$, 而我们的算法可能得到 $M = \{(x_1, y_2, z_3)\}$.

Problem 2. (Bounded Subset Sum).

Suppose you are given a list of N positive integers $L = [a_1, a_2, ..., a_N]$, and a positive integer C. The problem is to find a subset $S \subseteq \{1, 2, ..., N\}$ such that

$$T(S) = \sum_{i \in S} a_i \le C$$

and T(S) is as large as possible.

(a) Prof. Luo proposes the following greedy algorithm for obtaining an approximate solution to this maximization problem:

Algorithm 2 Prof. Luo's Greedy Algorithm

- 1: Initialize $S \leftarrow \varnothing, T = 0$
- 2: **for** i = 1, 2, ..., N **do**
- 3: **if** $T + a_i \leq C$ **then**
- 4: $S \leftarrow S \cup \{i\}$
- 5: $T \leftarrow T + a_i$
- 6: return S

Show that Prof. Luo's algorithm is not a ρ -approximation algorithm for any fixed value ρ . (Use the convention that $\rho > 1$.)

(b) Describe a 2-approximation algorithm for this maximization problem that runs in O(N) time. Prove its approximation ratio.

Solution. (a) 给任意的 $\rho > 0$, 设最优解为 $T(S^*)$, 我们考虑如下的反例:

$$L = \left\{ \left\lfloor \frac{C}{\rho} \right\rfloor - 1, C \right\}, \ \ \, 其中取 \, C \, \, \mbox{ 使得 } \left\lfloor \frac{C}{\rho} \right\rfloor - 1 \geq 1.$$

那么

$$T(S^*) = C, \quad T(S) = \left\lfloor \frac{C}{\rho} \right\rfloor - 1 \implies \frac{T(S^*)}{T(S)} > \frac{C}{C/\rho} > \rho.$$

故对任意的 $\rho > 1$,罗老师的算法都不是 ρ -近似算法.

(b) 不妨设 $\forall i \in [N], a_i \in (0, C]$, 考虑如下的算法:

- 1: $S \leftarrow \varnothing, T \leftarrow 0$
- 2: **for** $i = 1, 2, \dots, N$ **do**
- 3: if $a_i \geq C/2$ then
- 4: return $\{i\}$
- 5: Run Prof. Luo's Greedy Algorithm(2).

至多需扫描两遍数组 L, 时间复杂度: O(N). 下面我们证明这个算法的近似比为 2.

设最优解为 S^* , 则 $T(S^*) \leq C$. 那么:

- 若存在 i 使得 $a_i \geq C/2$, 那么直接返回 $\{i\}$, 故 $T(S) = C/2 \geq T(S^*)/2$, 近似比为 2.
- 若上述条件不成立, 那么调用了罗老师的算法. 若 L 中所有元素都被加入 T 中, 那么有 $T(S) = T(S^*)$. 否则, 设第一个不满足 $T + a_i \le C$ 的下标为 j, 由于 $a_i < C/2$, 那么

$$T + a_j > C \implies T > C - a_j \ge C/2 \implies T \ge T(S^*)/2 \implies T(S) \ge T \ge T(S^*)/2.$$

故此时近似比为 2.

综上, 近似比为 2. 证毕.

Problem 3. (Hitting Set).

We are given a set $A = \{a_1, \ldots, a_n\}$ and a collection B_1, \ldots, B_m of subsets of A. Also, each element $a_i \in A$ has a weight $w_i \geq 0$. We call $H \subseteq A$ is a *hitting set* if $H \cap B_i$ is not empty for each i. Now the problem is to find a hitting set H that minimizes the total weight of the elements in H, $\sum_{a_i \in H} w_i$.

Let $b = \max_i |B_i|$. Give a b-approximation algorithm that runs in polynomial time. Prove the approximation ratio. (*Hint: consider LP rounding.*)

Solution. 设 $\varphi(a_i) = 1$ 若 $a_i \in H$. 考虑如下的线性规划:

minimize
$$\sum_{i=1}^{n} w_{i} \varphi(a_{i})$$
s.t.
$$\varphi(a_{i}) \in \{0, 1\}, \quad \forall i = 1, 2, \cdots, n$$

$$\sum_{a_{i} \in B_{j}} \varphi(a_{i}) \geq 1, \quad \forall j = 1, 2, \cdots, m$$

考虑线性化松弛后的线性规划:

minimize
$$\sum_{i=1}^{n} w_{i} \varphi(a_{i})$$
s.t.
$$\varphi(a_{i}) \geq 0, \quad \forall i = 1, 2, \cdots, n$$

$$\varphi(a_{i}) \leq 1, \quad \forall i = 1, 2, \cdots, n$$

$$\sum_{a_{i} \in B_{j}} \varphi(a_{i}) \geq 1, \quad \forall j = 1, 2, \cdots, m$$

考虑如下的近似算法:

- 1: $H \leftarrow \varnothing$
- 2: 解上述线性规划, 得到 $\varphi(a_i)$;
- 3: **for** $i = 1, 2, \dots, n$ **do**
- 4: **if** $\varphi(a_i) > 1/b$ **then**
- 5: $H.append(a_i)$
- 6: return H

对于任意一个 B_j , $\sum_{a_i \in B_j} \varphi(a_i) \ge 1 \implies \exists \varphi(a_i) \ge 1/|B_j| \ge 1/b$. 故上述算法得到的解是一个合法的 hitting set. 显然上述算法是多项式时间的. 下面我们证明这个算法的近似比为 b.

设最优解为 H^* , 记对应的权重代价为 $w(H^*)$ (与原线性规划的最优解相等), 记线性松弛后的最优解为 z^* , 那么 $w(H^*) \geq z^*$. 设上述近似算法的到的权重代价为 w(H), 那么:

$$z^* = \sum_{i=1}^n w_i \varphi(a_i) = \sum_{\varphi(a_i) \ge 1/b} w_i \varphi(a_i) + \sum_{\varphi(a_i) < 1/b} w_i \varphi(a_i)$$
$$\ge \sum_{\varphi(a_i) \ge 1/b} w_i \varphi(a_i) \ge \frac{1}{b} \sum_{\varphi(a_i) \ge 1/b} w_i = \frac{1}{b} w(H)$$

故 $w(H^*) \ge z^* \ge w(H)/b \implies b \ge w(H)/w(H^*)$. 故近似比为 b, 证毕.

 \triangleleft