Midsem solution, NLP 2018

Q1)
I. No
II. Yes
III. No
IV. No

No

Q2)

V.

P(icecream|love) =0+1/0+5=1/5 P(icecream|love) =1+1/2+5=2/7

Binary marking. Take assumptions like change in vocab mentioned, etc.

Q3)

.5 marks for each probability calculated correctly. = 0.5*6=3 1 mark for perplexity calculation = 1

P(Sachin|<s>)=0.4/19 P(is|Sachin)=0.4/19 P(a|is)=1 P(great|a)=1/3 P(guy|great)=0.4/19 P(</s>|guy)=1

Vocab size = 19

Take assumptions like change in vocab mentioned, etc.

Question 4. A- Independent assumption- features must be independent of each other.

B-
$$P(x1x2x3---xn/C) = P(x1/C)*P(x2/C)*P(x3/C)-----*P(xn/C)*P(C)$$

Question 5)

- 1) No, can not accept epsilon empty string Solution: 0*|1*
- (1.5 marks)
- 2) No, can not accept string like 1001 Solution(1*| 1*01*01*)

(1.5 marks)

(0.5) for every part

Question 6)

1:c, 2:a, 3:d, 4:b

.5 for each correct option

Question 7)

Note P(s)=0.5% and not .5

Answer: Let $T \equiv$ "Test positive", $S \equiv$ "Sufferer", $M \equiv$ "Misclassified." Then $\mathbf{P}(T|S) = 0.95$, $\mathbf{P}(T|S') = 0.10$, $\mathbf{P}(S) = 0.005$. Hence

(a)
$$\mathbf{P}(T) = \mathbf{P}(T|S)\mathbf{P}(S) + \mathbf{P}(T|S')\mathbf{P}(S') = (0.95 \times 0.005) + (0.1 \times 0.995) = 0.10425.$$

(b)
$$\mathbf{P}(S|T) = \frac{\mathbf{P}(T|S)\mathbf{P}(S)}{\mathbf{P}(T|S)\mathbf{P}(S) + \mathbf{P}(T|S')\mathbf{P}(S')} = \frac{0.95 \times 0.005}{(0.95 \times 0.005) + (0.1 \times 0.995)} = 0.0455.$$

© (05*.005)/(1-.10425)=.000279

(d)
$$P(M) = P(T \cap S') + P(T' \cap S) = P(T|S')P(S') + P(T'|S)P(S) = 0.09975.$$

Q8)

Word	P(word Sports)	P(word Not Sports)
a	$\frac{2+1}{11+14}$	$\frac{1+1}{9+14}$
very	$\frac{1+1}{11+14}$	$\frac{0+1}{9+14}$
close	$\frac{0+1}{11+14}$	$\frac{1+1}{9+14}$
game	$\frac{2+1}{11+14}$	$\frac{0+1}{9+14}$

$$P(a|Sports) \times P(very|Sports) \times P(close|Sports) \times P(game|Sports) \times P(Sports) \\ = 4.61 \times 10^{-5} \\ = 0.0000461$$

$$P(\text{a}-\text{Not Sports}) \times P(very|NotSports) \times P(close|NotSports) \times P(game|NotSports) \times P(NotSports) \\ = 1.43 \times 10^{-5} \\ = 0.0000143$$

If token size is wrong: 1 marks is given If vocab is wrong: 2 marks is given If prior is not taken: 2 marks is given

Else if answer is correct: 4

Question 9)

You need to calculate class specific confusion matrix measures then combine using macro or micro averaging:

Continue	Actual T	Actual F
Predict T	3	2
Predict F	3	3

Precision: 3/5 Recall: 3/6

Not Continue	Actual T	Actual F
Predict T	3	3
Predict F	2	3

Precision: 3/6 Recall: 3/5

Micro	Actual T	Actual F
Predict T	6	5
Predict F	5	6

Precision: 6/11 Recall: 6/11

Macro precision: $\frac{1}{2}$ *(3 / 5+ 3 / 6) Macro Recall: $\frac{1}{2}$ *(3 / 6+ 3 / 5)

- A. Full marks 3 for all above being correct (any one micro or macro)
- B. 1 mark if only one class specific confusion metric measure is given with bellow correct measures: **precision**, **recall**, **accuracy**, **F score**
- C. 0.5 for partial correct

Bonus

1A. If (ii) as changed

$$P(H|A), P(I|H), P(D|I), P(J|E), P(G|J) = 5$$
 [+ 1]

$$P(b|H), P(c|I), P(f|J) = 3$$
 [+ 1]

Total = 8

Or if (i) as changed

$$P(B|A)$$
, $P(C|B)$, $P(D|C)$, $P(F|E)$, $P(G|F)$ [+ 1]

$$P(b|B),P(c|C),P(f|F) [+1]$$

Total = 8

1B. Any 3 correct differences (+1 marks for each correct answer)

(https://www.usebackpack.com/resources/19584/download?1536899882)

1C.

We prove here that for a fixed set of primitive queries, any binary decision tree can be converted into a transformation list. Extending the proof beyond binary trees is straightforward.

Proof (by induction)

Base Case:

Given the following primitive decision tree, where the classification is A if the answer to the query X? is yes, and the classification is B if the answer is no:

1 marks

this tree can be converted into the following transformation list:

- Label with S /* Start State Annotation */
- If X, then S → A
- S → B /* Empty Tagging Environment—Always Applies To Entities Currently Labeled With S */

Induction:

Assume that two decision trees T_1 and T_2 have corresponding transformation lists L_1 and L_2 . Assume that the arbitrary label names chosen in constructing L_1 are not used in L_2 , and that those in L_2 are not used in L_1 . Given a new decision tree T_3 constructed from T_1 and T_2 as follows:

2 marks

we construct a new transformation list L_3 . Assume the first transformation in L_1 is:

Label with S'

and the first transformation in L_2 is:

Label with S"

The first three transformations in L_3 will then be:

Label with S

2 marks

- 2. If X then $S \rightarrow S'$
- 3. $S \rightarrow S''$

followed by all of the rules in L_1 other than the first rule, followed by all of the rules in L_2 other than the first rule. The resulting transformation list will first label an item as S' if X is true, or as S" if X is false. Next, the transformations from L_1 will be applied if X is true, since S' is the initial-state label for L_1 . If X is false, the transformations from L_2 will be applied, because S" is the initial-state label for L_2 .

Source: (https://www.usebackpack.com/resources/19584/download?1536899882)