SEEING THE LIGHT: A WATER CLARITY INDEX FOR INTEGRATED WATER QUALITY ASSESSMENTS

Lisa M. Smith
Research Biologist
2004 EMAP Symposium
May 5, 2004

National Coastal Condition

- 1991 1997 EMAP survey data
- Assessed condition including water quality
- Raised some issues (Water Clarity)

- 1997 2000 National Coastal Assessment survey data
- Evaluated changes over time
- Addressed some earlier criticisms

Why Make Water Clarity a Component of Water Quality?

 Water clarity is often used as a "yard stick" for certain biological and physical processes.

Water Clarity – One Size Doesn't Fit All

Figure 5-4. Light penetration data and locations for sites with < 10% light penetration along the Gulf Coast (U.S. EPA/EMAP).

- A single reference value was used to assess all estuarine waters without considering regional difference.
- Evaluated Water
 Clarity as "Poor" or
 "Good"

Water Clarity – One Size Doesn't Fit All

- Water clarity was evaluated using reference values reflecting "expected" clarity of specific coastal regions.
- Created a new category for waterbodies with "moderately" impacted clarity.

Regional Differences in Water Clarity

Naturally Turbid

A Water Quality Index

Dissolved Inorganic Nutrients (Nitrogen and Phosphorus)

Water Clarity

Evaluating Water Quality for the Gulf of Mexico Region*

REGION	N(mg/L)		P(mg/L)		Chl a(ug/L)		%Transmissivity@ 1m					
	Good	Fair	Poor	Good	Fair	Poor	Good	Fair	Poor	Good	Fair	Poor
Majority of the Gulf	<.10	.1050	>.50	<.01	.0105	>.05	<5.0	5-20	>20	>25	10-25	<10
Tampa south to Florida Bay and Laguna Madre	<.05	.05-0.1	>0.1	<.005	.00501	>.01	<0.5	0.5-1	>1.0	>40	20-40	<20
Mobile Bay and Louisiana estuaries Lake Pontchartrain, Breton Sound excluded	<.10	.1050	>.50	<.01	.0105	>.05	<5.0	5-20	>20	>20	5-20	< 5

*Dissolved Oxygen Guidelines <2.0 mg/L= poor, 2.0-5.0 mg/L=fair, >5.0 mg/L=good

All Water Clarity Data Are Not Created Equal

Market Dead Market	
Water Body Name	Raw Water Clarity
ANNA MARIA SOUND	1.0
ARANSAS BAY	0.8
BACK BAY BILOXI/BERN	14.052
BAFFIN BAY	0.7
BANGS LAKE	12.881
BARATARIA BAY	29.732
BAY BATISTE	0.7
BAY BOUDREAUX	0.5
BAYOU CASOTTE	18.795
BILOXI BAY	2.875
BOCA CIEGA BAY	0.5
BON SECOUR RIVER	13.004
BRETON SOUND	0.5

41% of sampling sites did not have expected transmissivity data

Using Different Types of Data to Evaluate Water Clarity

When light meter data were available, the data were evaluated using the regional guidelines:

REGION	%Transmissivity@ 1m				
	Good	Fair	Poor		
Majority of the Gulf	>25	10-25	<10		
Tampa south to Florida Bay and Laguna Madre	>40	20-40	<20		
Mobile Bay and Louisiana estuaries Lake Pontchartrain, Breton Sound excluded	>20	5-20	<5		

If Secchi was used as a substitute for light meter data ...

- The regional reference values for the three types of expected water clarity were used to calculate reference light attenuation coefficients (k).
- Secchi depth was used to calculate k values for evaluating water clarity.

Beer-Lambert's Law

$$k = ln(L_z/L_0)/-z$$

where,

k=light attenuation coefficient

L_z=light at depth

L_o=light at surface

z=depth

Beer-Lambert's Law continued

 Since Lz/Lo = transmissivity, and z= 1 meter, the reference k values were calculated from the regional guidelines for transmissivity at 1 meter.

The k reference values were calculated using:
 ref k= -ln(ref transmissivity)

Resulting in ...

Low er	Light attenuation	Upper	Light attenuation
reference value	coefficient for lo ref	reference value	coefficient for hi ref
(lo ref)	(klo)	(hi ref)	(khi)
5%	2.99	20%	1.61
10%	2.30	25%	1.39
20%	1.61	40%	0.916

Using Secchi Depth to calculate k

k= constant/z_{secchi}

Constants for estuarine types

- 1.7 for clear water estuaries
- 1.4 for moderately turbid estuaries
- 1.0 for highly turbid estuaries

Guidelines for Evaluating Light Attenuation Coefficients (k)

Estuarine Type	k values				
	Good	Fair	Poor		
Clear	<0.916	0.916-1.61	>1.61		
Moderately Turbid	<1.39	1.39-2.30	>2.30		
Highly Turbid	<1.61	1.61-2.99	>2.99		

Water Clarity Transmissivity and Secchi Depth

Gulf of Mexico Water Clarity: All Data

The Local Scale-Pensacola Bay

Concluding Remarks

- No statistical differences were observed in the 'poor' water clarity category when the two types of data were evaluated for the Gulf Region subset.
- This is an important issue since 'poor' is the only condition contributing to 'poor' overall water quality in the Eutrophication Index.

Concluding Remarks (continued)

 The use of combined data resulted in a gulf-wide assessment similar to the transmissivity data subset.

 This similarity may imply that the combined water clarity index can successfully be used to estimate water clarity when light meter data sets are incomplete.

Concluding Remarks (continued)

- The overlapping conditions observed in the water clarity assessment for Pensacola Bay, using transmissivity and secchi depth, are evidence that the secchi depth can be used to estimate water clarity with confidence.
- The water clarity index can be adapted for natural turbidity differences and successfully applied at regional and local scales.

Gulf of Mexico Water Clarity... Then and Now

Building a scientific foundation for sound environmental decisions