Лабораторна робота № 10 «Визначення довжини хвилі за допомогою біпризми Френеля»

Цисін Михайло 5А група

Мета роботи

Засвоїти інтерференційний метод вимірювання довжини хвилі за допомогою біпризми Френеля

Прилади і матеріали

Оптична лава, джерело світла, конденсор, щілина діафрагма, світлофільтр, біпризма Френеля, окулярний мікрометр, теодоліт

Хід роботи

Для визначення довжини хвилі користуємося формулою:

$$\lambda = \frac{d}{L+l}$$

Для визначення цієї величини скористаємося теодолітом. В такому разі розрахункові формули після вимірювання кута ψ:

$$\frac{d}{L+l} = 2 * tg\left(\frac{\psi}{2}\right) \sim \psi$$

Тоді отримаємо:

$$\lambda = \psi * \Delta X$$

Вимірювання для ψ та ΔX подано нижче:

Номер	Шкала	Барабан
0	1	83
5	6	27
10	11	63
15	17	20
20	22	65
25	28	10

Дані для ΔХ

Ліво		Право	
Градуси	Мінути	Градуси	Мінути
314	57	314	54.5
314	58	314	54
314	57.5	314	54

Дані для ф

Далі проводимо розрахунки для ψ та ΔX

	ΔΧ	ψ
значення	0.00054	0.00097
похибка	0.00002	0.00002

Із отриманих даних знаходимо $\lambda = 520 \pm 70\,$ нм. Така велика похибка визначення довжини хвилі виходить через те, що була значна похибка визначення кута у цій роботі.

Далі, за формулою

$$\alpha = \frac{L+1}{2l(n-1)} * \psi$$

Отримаємо:

$$\alpha = 30 \pm 2'$$

Далі за наведеною формулою розраховуємо теоретичне число смуг:

$$N_t = \frac{4lL(n-1)^2 \alpha^2}{(L+l)\lambda} = 33 \pm 1$$

3 експерименту отримали $N_e=34$. Теоретичне значення збігається з реальним.

Висновок

У цій лабораторний роботі ми виміряли довжину хвилі світла, що пройшло через світлофільтр, і отримали значення $\lambda = 520 \pm 100$ нм. Це — зелене світло, що сходиться з реальністю. Таку похибку можна пояснити точністю вимірювання кута ψ у даній роботі. Потім також було розраховано заломлюючий кут біпризми Френеля і отримали $\alpha = 30 \pm 2$ 0, що сходиться з тим, що відомо про дану біпризму із методички. Також було теоретично розраховано число інтерференційних смуг і порівняно із тим, що спостерігалося під час експерименту. Теоретичне значення $N_t = 33\pm 1$, а експериментальне — $N_e = 34\pm 1$. Ці значення співпадають.