SPRAWOZDANIE Z LABORATORIUM LOGIKI UKŁADÓW CYFROWYCH				
Numer ćwiczenia	204	Temat ćwiczenia	Hardware'owa implementacja automatu skończonego pełniącego funkcję automatu niedeterministycznego "NFA with ξ- moves"	
Numer grupy	5	Termin zajęć	12.01.2017; 7:30	
Skład grupy			Prowadzący	Ocena
Sebastian Korniewicz, 226183 Bartosz Rodziewicz, 226105			Mgr inż. Antoni Sterna	

1. Cel ćwiczenia

Celem ćwiczenia jest stworzenie grafu automatu NFA with ξ – moves oraz zaprojektowanie i zmontowanie na jego podstawie układu sekwencyjnego pełniącego funkcję automatu niedeterministycznego z pustymi przejściami.

2. Przebieg ćwiczenia

- 1. Graf automatu sekwencyjnego akceptującego słowa ze zbioru 0*(1+2)*3*
- 2. Synteza układu

Przeprowadzenie syntezy automatu niedeterministycznego (z pustymi przejściami) jest trudne, ponieważ nie istnieją żadne konkretne metody.

Nasz układ będziemy bazować na schemacie układu NFA podanym w instrukcji akceptującego słowa alfabetu 0*1*2*.

3. Analiza schematu układu dla słów 0*1*2* Schemat układu dla takiego alfebetu prezentuje się następująco:

Z uwagi na ograniczenia oprogramowania do symulacji przerzutniki RS zbudowaliśmy z dwóch bramek NAND:

Na układzie możemy zauważyć trzy główne strefy schematu:

a) Strefa poprawności słowaJest to najprostszy fragment układu:

Bramka zapala diodę poprawności słowa w momencie gdy wciśniemy przycisk READ i jednocześnie będzie aktywny którykolwiek z przerzutników. Do samej bramki podpięty jest co prawda stan przerzutnika 3, jednak przycisk READ jest podpięty do strefy SET przerzutników, powodując, że gdy którykolwiek z przerzutników jest aktywny przełączy cały automat do stanu ostatniego.

b) Strefa RESET

Każdy przerzutnik posiada wejście RESET do którego podpięty jest sygnał ustawiający przerzutnik w stan 0.

Do przerzutnika pierwszego podpięty jest sygnał z przycisku i stan kolejnego przerzutnika (gdy następuje aktywacja przerzutnika 2, przerzutnik 1 musi się wyłączyć).

Przerzutnik 2 na wejściu RESET ma podpięty sygnał z przycisku RESET, stan następnego przerzutnika i litera 0, która jest niedopuszczalna w tym stanie.

Trzeci przerzutnik ma podpięte dwie niedopuszczalne litery i przycisk RESET.

c) Strefa SET

Strefa SET to najbardziej skomplikowana część układu. Do każdego przerzutnika jest podłączony taki o zestaw bramek:

Zestaw ten włącza przerzutnik gdy dostanie odpowiednie słowo i poprzedni przerzutnik jest aktualnie aktywny lub gdy dostanie odpowiednie słowo i on sam jest aktywny.

4. Modyfikacja do obsługi alfabetu 0*(1+2)*3*

Modyfikacja tego schematu była naprawdę prosta. Polegała na wstawienie dodatkowego przycisku i bramki NOR:

3. Wnioski

Układ został podłączony na zajęciach i działał poprawnie.