Computational Anatomy

Matthias Wilms

Statistical Learning Study Group

Overview

- Computational Anatomy?
- Basic concepts
- Diffeomorphic image registration → key technique!
 - LDDMM
 - Geodesic shooting
 - Stationary velocity fields
- Statistics on nonlinear manifolds

What is Computational Anatomy?

Definition by Michael I. Miller:

Computational Anatomy is the mathematical study of anatomy [...] under groups of diffeomorphisms [...] of anatomical exemplars

Anatomical shapes

What is Computational Anatomy?

Definition by Michael I. Miller:

Computational Anatomy is the <u>mathematical study of anatomy</u> [...] under <u>groups of diffeomorphisms [...] of anatomical exemplars</u>.

Two new questions:

- 1. Mathematical study of anatomy? → Anatomical shapes and their variability
- 2. Groups of diffeomorphisms?

Anatomical Shapes and their Variability

Traditional field of study in Medicine & Biology

- Dates back to ancient times
- e.g. based on dissected bodies

Anatomical Shapes and their Variability

Traditional field of study in Medicine & Biology

- Dates back to ancient times
- e.g. based on dissected bodies

Nowadays: Computer-based shape representations

Explicit: Surface mesh

Implicit: Image volume

What do we need to perform statistics?

Pairwise distances:

How to quantify shape similarity/dissimilarity?

What do we need to perform statistics?

Pairwise distances

Population studies (mean, variability, classification, ...):

What do we need to perform statistics?

Pairwise distances

Population studies (mean, variability, classification, ...)

Longitudinal studies (description/quantification of temporal development):

Example: Statistical Shape Models

Widely used PCA-based modeling technique

Example: Statistical Shape Models (2)

Basic Ideas of Computational Anatomy

1. Shape differences should be described via spatial transformations:

12

Basic Ideas of Computational Anatomy

- 1. Shape differences can be described via spatial transformations
- 2. Deformable template orbit model:

$$egin{aligned} \Omega \subset \mathrm{R}^3 \ I:\Omega o \mathrm{R} \ arphi:\Omega o \Omega \end{aligned}$$

13

Basic Ideas of Computational Anatomy

- 1. Shape differences can be described via spatial transformations
- 2. Deformable template orbit model:

 $\Omega\subset \mathrm{R}^3$ $I:\Omega o\mathrm{R}$ $arphi:\Omega o\Omega$ Set of diffeomorphisms Orbit:

Group of diffeomorphic transformations

Diffeomorphic Transformations

Properties of $\varphi:\Omega \to \Omega$:

- Bijection → one-to-one & onto
- o differentiable → smooth
- \circ Inverse $arphi^{-1}$ exists & is differentiable
- \circ Id is a diffeomorphism

 $\Rightarrow \varphi$ is topology preserving!

Diffeomorphic Transformations

Properties of $\varphi:\Omega o \Omega$:

- Bijection → one-to-one & onto
- o differentiable → smooth
- \circ Inverse $arphi^{-1}$ exists & is differentiable
- \circ Id is a diffeomorphism
- $\Rightarrow \varphi$ is topology preserving!
 - No local changes of orientation (folding, ...)
- No new/disappearing structures
- **>** ...

Diffeomorphic Transformations (2)

Elements of $\operatorname{Diff}\left(\Omega\right)$ can be generated via smooth flows ϕ_t

$$\frac{\partial}{\partial t}\phi_t(\mathbf{x}) = v(\phi_t(\mathbf{x}),t) \quad \text{with } \phi_0(\mathbf{x}) = \mathbf{x} \text{ and } t \in [0,1]$$
 smooth, time-dependent velocity field!
$$\varphi(\mathbf{x}) = \phi_1(\mathbf{x}) = \phi_0(\mathbf{x}) + \int_0^1 v(\phi_t(\mathbf{x}),t) dt$$
 path parameterized by v v(x,0.5)

Diffeomorphic Transformations (2)

Elements of $\operatorname{Diff}\left(\Omega\right)$ can be generated via smooth flows ϕ_t

$$rac{\partial}{\partial t}\phi_t(\mathbf{x}) = v(\phi_t(\mathbf{x}),t) \quad ext{with } \phi_0(\mathbf{x}) = \mathbf{x} ext{ and } t \in [0,1]$$
 $arphi(\mathbf{x}) = \phi_1(\mathbf{x}) = \phi_0(\mathbf{x}) + \int_0^1 v(\phi_t(\mathbf{x}),t) dt$

Diffeomorphic Image Registration

Goal: Estimate a $arphi=\phi_1\in \mathrm{Diff}\,(\Omega)$ that *optimally* aligns I_1 and I_2

Optimization problem:

$$rg \min_v \; \mathcal{D}(I_1 \circ arphi^{-1}, I_2) + lpha \mathcal{S}(v)$$

s.t
$$rac{\partial}{\partial t}\phi_t = v_t \; orall t \in [0,1] \; ext{and} \; \phi_0 = Id ^{I_1}$$

⇒ Large Deformation Diffeomorphic Metric Mapping (LDDMM)

Diffeomorphic Image Registration

Goal: Estimate a $arphi=\phi_1\in \mathrm{Diff}\,(\Omega)$ that *optimally* aligns I_1 and I_2

Optimization problem:

(SSD,)

$$rg \min_v \; \mathcal{D}(I_1 \circ arphi^{-1}, I_2) + lpha \mathcal{S}(v)$$

Distance measure Regularizer

$$\int_0^1 \|v_t\|_V^2 \ dt = \int_0^1 \|Lv_t\|_2^2 \ dt$$

⇒ geodesic shortest length path!

Distance between an optimal $\,arphi\,$ and $\,Id$:

$$d(Id,arphi)_V^2=\int_0^1\|Lv_t\|_2^2\;dt$$

Geodesic Distances

Distance between an optimal $\,arphi\,$ and $\,Id$:

$$d(Id,arphi)_V^2=\int_0^1\|Lv_t\|_2^2\;dt$$

Distance between two diffeomorphisms:

$$d(arphi_1,arphi_2)_V^2=d(Id,arphi_2\circarphi_1^{-1})_V^2$$

Geodesic Distances

Distance between an optimal $\,arphi\,$ and $\,Id$:

$$d(Id, arphi)_V^2 = \int_0^1 \|Lv_t\|_2^2 \ dt$$

Distance between two diffeomorphisms:

$$d(arphi_1,arphi_2)_V^2=d(Id,arphi_2\circarphi_1^{-1})_V^2$$

Image registration!

Distance between two images:

$$d(I_1,I_2)_V^2 = \inf_{arphi} \ \{d(Id,arphi)_V^2: I_1 \circ arphi^{-1} = I_2\}$$

Statistics based on Geodesic Distances

Average shape (first order moment)

- no closed form solution!
- Alternative: Fréchet mean

$$\overline{I} = rg \min_{I} \ \sum_{i=1}^{N} \ d(I,I_i)^2$$

Statistics based on Geodesic Distances

Average shape (first order moment)

- no closed form solution!
- Alternative: Fréchet mean

$$\{\overline{v}_i,\overline{I}\} = rg\min_{v_i,I} \sum_{i=1}^N \mathcal{D}(I\circarphi_i^{-1},I_i) + lpha\mathcal{S}(v_i)$$

Template of an orbit!

Problem: Statistics based on original LDDMM formulation difficult to use

Alternative: Flow can be parameterized by initial velocity (momentum)!

Problem: Statistics based on original LDDMM formulation difficult to use

Alternative: Flow can be parameterized by initial velocity (momentum)!

$$\int_0^1 \|v_t\|_V^2 \ dt = \int_0^1 \|Lv_t\|_2^2 \ dt$$
 Kinetic energy spent during the deformation

Problem: Statistics based on original LDDMM formulation difficult to use

Alternative: Flow can be parameterized by initial velocity (momentum)!

$$\int_0^1 \|v_t\|_V^2 \, dt = \int_0^1 \|Lv_t\|_2^2 \, dt$$
 Kinetic energy spent during the deformation $m_t = Lv_t$ Kinetic momentum

Problem: Statistics based on original LDDMM formulation computationally expensive

Alternative: Flow can be parameterized by initial velocity (momentum)!

$$\int_0^1 \|v_t\|_V^2 \ dt = \int_0^1 \|Lv_t\|_2^2 \ dt$$
 Kinetic energy spent during the deformation

$$m_t = L v_t$$
 Kinetic momentum

Assumption: No external forces = conservation of momentum

$$v_t = L^{-1}J(m_0\circ arphi_t^{-1})$$

Reformulation of LDDMM

arg min
$$\mathcal{D}(I_1\circ arphi^{-1},I_2)+lpha\int_0^1\|Lv_t\|_2^2\,dt$$
 becomes $m_0=Lv_0$ arg min $\mathcal{D}(I_1\circ arphi^{-1},I_2)+lpha\|Lv_0\|_2^2$

Reformulation of LDDMM

arg
$$\min_v~\mathcal{D}(I_1\circ \varphi^{-1},I_2)+lpha\int_0^1\|Lv_t\|_2^2~dt$$
 becomes
$$m_0=Lv_0$$
 arg $\min_v~\mathcal{D}(I_1\circ \varphi^{-1},I_2)+lpha\|Lv_0\|_2^2$

Advantage:

Space of initial momentum fields (velocity fields) is linear! → Euclidean statistics

Example: Diffeomorphic Shape Models

- Mean shape and PCA computed on initial momenta
- Correctly handle the nonlinearity of the shape manifold

Possible linear combinations

1st eigenvector

Mean shape

3rd eigenvector

Standard:

Diffeomorphic:

Basic Concepts of Riemannian Geometry

Some properties:

- Smooth manifold M (e.g. sphere)
- $\circ\quad$ Tangent space $\mathcal{T}_x\mathcal{M}$ defined at $x\in\mathcal{M}$
- Tangent space and manifold are connected via maps:

$$\exp_x: \mathcal{T}_x \mathcal{M} \to \mathcal{M}$$

$$\log_x:\mathcal{M} o \mathcal{T}_x\mathcal{M}$$

Tangent spaces are linear!

Log-Euclidean Framework

Key ideas:

 Parameterization of diffeomorphisms using stationary velocity fields

$$rac{\partial}{\partial t}\phi_t(\mathbf{x}) = v(\phi_t(\mathbf{x}), \mathbf{x})$$

- \circ (Diff (Ω) , \circ) interpreted as a Lie group
- $\circ\quad$ Lie algebra is isomorphic to $\mathcal{T}_{Id}\mathrm{Diff}\left(\Omega
 ight)$

$$egin{aligned} arphi &= \phi_1 = \exp_{Id}(v) \ v &= \log_{Id}(arphi) \ arphi^{-1} &= \exp_{Id}(-v) \end{aligned}$$

Image Registration based on Stationary Velocities

Energy minimization:

Image Registration based on Stationary Velocities

Energy minimization:

$$\sup_v \ \mathcal{D}(I_1 \circ arphi^{-1}, I_2) + lpha \mathcal{S}(v)$$

Exponentiation can be solved efficiently using "Scaling and Squaring"!

$$\exp_{Id}(v) = \exp_{Id}(rac{v}{2^N})^{2N}$$
 $arphi = (rac{v}{2^2} \circ rac{v}{2^2}) \circ (rac{v}{2^2} \circ rac{v}{2^2})$

Statistics based on Stationary Velocities

Distance defined in \mathcal{T}_{Id} Diff (Ω):

$$egin{aligned} d(arphi_1,arphi_2)^2 &= \|\log_{Id}(arphi_1) - \log_{Id}(arphi_2)\|_2^2 \ &= \|v_1 - v_2\|_2^2 \end{aligned}$$

⇒ Euclidean statistics useable!

Limitation: Not all diffeomorphisms can be generated/reached when using stationary fields!

Geodesic Regression

Goal: Generalization of linear regression to manifold-valued data

$$(\hat{lpha},\hat{eta}) = rg\min_{lpha,eta} \, \sum_{i=1}^N \|y_i - lpha - eta x_i\|_2^2$$

Geodesic Regression

Goal: Generalization of linear regression to manifold-valued data

$$(\hat{lpha},\hat{eta}) = rg\min_{lpha,eta} \, \sum_{i=1}^N \|y_i - lpha - eta x_i\|_2^2 \qquad (\hat{p},\hat{v}) = rg\min_{p,v} \, \sum_{i=1}^N d(y_i, \exp_p(x_i v))^2$$

39

Geodesic Regression: Example

Age-related shape changes of the corpus callosum

Sampled function

Training data

Age 19→Age 90

old patient = thin shape

Software

LDDMM-like registration:

- Advanced Normalization Tools (ANTs)
- <u>Lagomorph</u> (PyTorch)

Registration based on stationary velocity fields:

- ➤ VariationalRegistration toolkit (part of ITK)
- DARTEL (part of <u>SPM</u>)

Geodesic regression and more:

- > <u>pyCA</u> (Python 2 only)
- Deformetrica

Additional Sources and Further Reading

- Presentation by S. Allassonière at Ecole GEOMDATA, September 2018
 https://geomdata.sciencesconf.org/data/AnatComput_Cours1.pdf
- Presentation by X. Pennec at IPAM Workshop on Geometric Processing, April 2019
- MICCAI Educational Challenge 2014 entry by N. Miolane & B. Khanal https://www.youtube.com/watch?v=XUz59y6HDEk
- New Book: Riemannian Geometric Statistics in Medical Image Analysis, Elsevier 2019. Edited by X. Pennec, S. Sommer, and T. Fletcher. Many chapters have been made available online (use google!)
- PhD thesis by N. Molane, Geometric statistics for computational anatomy, U Côte d'Azur, 2016 https://tel.archives-ouvertes.fr/tel-01411886v2
- PhD thesis by T. Polzin, Large Deformation Diffeomorphic Metric Mappings Theory, Numerics, and Applications, U Lübeck, 2018
 https://www.researchgate.net/publication/328042072_Large_Deformation_Diffeomorphic_Metric_Ma

ppings - Theory Numerics and Applications