Нейронные архитектуры в различных задачах. Введение.

Алексей Андреевич Сорокин
Yandex Research,
МГУ, отделение теоретической и прикладной лингвистики.

Школа РАИИ 2021 лекция 3.

Нейронные архитектуры и задачи

- Вход нейронной сети: последовательность векторов (иногда две последовательности).
- Возможные ответы:
 - Вектор (вероятностное распределение на множестве классов).
 - Последовательность векторов (распределений) той же длины.
 - Последовательность векторов (распределений) произвольной длины.

Нейронные архитектуры и задачи

- Вход нейронной сети: последовательность векторов (иногда две последовательности).
- Возможные ответы:
 - Вектор (вероятностное распределение на множестве классов).
 - Последовательность векторов (распределений) той же длины.
 - Последовательность векторов (распределений) произвольной длины.
- Промежуточные операции:
 - Преобразования векторов (полносвязные слои).
 - Локальные преобразования последовательности (свёрточные слои).
 - Глобальные преобразования последовательности (рекуррентные сети).

- Разметка последовательности класс задач, где для каждого элемента текста нужно предсказать метку из некоторого конечного множества.
- Нейросеть предсказывает для каждого элемента распределение вероятностное распределение по классам. • Пример – морфологический анализ:

Fro DFT

NOUN, gender=Neut, case=Nom, number=Plur решение NOUN, gender=Fem, case=Gen, number=Sing задачи

было AUX, tense=Past, aspect=Imp, number=Sing, gender=Neut

ADJ, number=Sing, gender=Neut, case=Ins неправильным

- К задачам разметки последовательности сводятся задача выделения групп.
- Пример распознавание именованных сущностей:

Андрей	B-PER
Николаевич	I-PER
Колмогоров	I-PER
работал	0
В	0
Москве	B-LOC
В	0
Московском	B-ORG
Государственном	I-ORG
Университете	I-ORG
•	0

- Любая задача выделения групп сводится к разметке последователь с помощью BIO-разметки.
- Аналогичные задачи:
 - Извлечение терминов.
 - Извлечение аспекта.

- Любая задача выделения групп сводится к разметке последователь с помощью ВІО-разметки.
- Аналогичные задачи:
 - Извлечение терминов.
 - Извлечение аспекта.
- Также существует BMES-разметка.
- Её используют для разбиения на морфемы:

у ч и т е л ь н и ц а B-ROOT E-ROOT S-SUFF B-SUFF M-SUFF E-SUFF B-SUFF M-SUFF E-SUFF S-END

• Стандартная архитектура для разметки последовательности:

$$X = [x_1, \dots, x_L]$$
 (набор векторов), $x_i - \mathsf{э}\mathsf{м}\mathsf{б}\mathsf{e}\mathsf{д}\mathsf{д}\mathsf{u}\mathsf{h}\mathsf{f}\mathsf{r}\mathsf{u}$ слов (конкатенация эм $\mathsf{б}\mathsf{e}\mathsf{d}\mathsf{g}\mathsf{d}\mathsf{u}\mathsf{h}\mathsf{r}\mathsf{o}\mathsf{e}\mathsf{d}\mathsf{s}$), $[h_1, \dots, h_L] = \mathrm{Encoder}([x_1, \dots, x_L]),$ $p_i = \mathrm{softmax}(W_{K \times d}h_i + b_K),$ $K - \mathsf{ч}\mathsf{u}\mathsf{c}\mathsf{n}\mathsf{o}\mathsf{k}\mathsf{n}\mathsf{a}\mathsf{c}\mathsf{c}\mathsf{o}\mathsf{e}\mathsf{d}$.

Энкодер – рекуррентная или свёрточная сеть.

- Энкодер рекуррентная или свёрточная сеть.
- Разновидность сети зависит от задачи:
 - "Локальные" задачи свёрточные сети.
 - Задачи с нелокальными зависимостями рекурретные сети.

- Энкодер рекуррентная или свёрточная сеть.
- Разновидность сети зависит от задачи:
 - "Локальные" задачи свёрточные сети.
 - Задачи с нелокальными зависимостями рекурретные сети.
- Локальные задачи:
 - Разбиение на морфемы.
- Нелокальные задачи:
 - Распознавание именованных сущностей.

- Вход задачи один эмбеддинг или конкатенация нескольких эмбеддингов:
 - Обучаемый слой эмбеддингов.
 - Предобученные эмбеддинги (для несловарных слов).

- Вход задачи один эмбеддинг или конкатенация нескольких эмбеддингов:
 - Обучаемый слой эмбеддингов.
 - Предобученные эмбеддинги (для несловарных слов).
 - Посимвольные эмбеддинги:
 - Вычисляются отдельной подсетью, идущей по символам слова (рекуррентной или свёрточной).
 - Нужны при морфологическом анализе.

- Вход задачи один эмбеддинг или конкатенация нескольких эмбеддингов:
 - Обучаемый слой эмбеддингов.
 - Предобученные эмбеддинги (для несловарных слов).
 - Посимвольные эмбеддинги:
 - Вычисляются отдельной подсетью, идущей по символам слова (рекуррентной или свёрточной).
 - Нужны при морфологическом анализе.
 - Вектор признаков:
 - Слово с большой буквы (только из больших) нужно в распознавании именованных сущностей.

Порождение последовательности

- Порождение последовательности задачи, где длина ответа заранее неизвестна.
- Базовая задача языковое моделирование (генерация текста).

Порождение последовательности

- Порождение последовательности задачи, где длина ответа заранее неизвестна.
- Базовая задача языковое моделирование (генерация текста).
- Основные проблемы:
 - ullet Ответ на k-ом шаге является частью входа на (k+1)-ом шаге.
 - Длина заранее неизвестна нужно останавливаться после порождения специального токена $\langle \text{END} \rangle$.
 - Жадные алгоритмы порождения могут генерировать неоптимальный ответ.

Языковые модели: введение

 Базовая задача языкового моделирования – предсказание следующего слова по предыдущим:

You know nothing, John Snow. $\langle \operatorname{BEGIN} \rangle \quad \mapsto \quad \text{You}$ $\langle \operatorname{BEGIN} \rangle \quad \text{You} \quad \mapsto \quad \text{know}$ $\langle \operatorname{BEGIN} \rangle \quad \text{You know} \quad \mapsto \quad \text{nothing}$ $\langle \operatorname{BEGIN} \rangle \dots \quad \text{nothing} \quad \mapsto \quad ,$ $\dots \quad \dots \quad \dots \quad \dots$ $\langle \operatorname{BEGIN} \rangle \dots \quad \text{Snow} \quad \mapsto \quad .$

 $\langle \text{BEGIN} \rangle \dots \mapsto \langle \text{END} \rangle$

Языковые модели: введение

 Базовая задача языкового моделирования – предсказание следующего слова по предыдущим:

You know nothing, John Snow.

- Обычно решается энграммными моделями.
- ullet В них учитывается только n-1 предыдущее слово.

$$p(w_N|w_1...w_{N-1}) = p(w_N|w_{N-n+1}...w_{N-1})$$

$$p(w_N|w_1...w_{N-1}) = p(w_N|w_{N-n+1}...w_{N-1})$$

- Чаще всего берут $n \leqslant 3$ (n=1 униграммы, n=2 биграммы, n=3 триграммы).
- Как считать энграммные вероятности?

$$p(w_N|w_1...w_{N-1}) = p(w_N|w_{N-n+1}...w_{N-1})$$

- ullet Чаще всего берут $n\leqslant 3$ (n=1 униграммы, n=2 биграммы, n=3 триграммы).
- Как считать энграммные вероятности?
- Наивный подход: $p(w_n|\mathbf{w}_{1,n-1}) = \frac{c(\mathbf{w}_{1,n})}{c(\mathbf{w}_{1,n-1})} -$ доля w_n среди продолжений истории $w_1 \dots w_{n-1}$.
- Здесь и далее $w_{1,n} = w_1 \dots w_n$.

$$p(w_N|w_1...w_{N-1}) = p(w_N|w_{N-n+1}...w_{N-1})$$

- ullet Чаще всего берут $n\leqslant 3$ (n=1 униграммы, n=2 биграммы, n=3 триграммы).
- Как считать энграммные вероятности?
- Наивный подход: $p(w_n|\mathbf{w}_{1,n-1}) = \frac{c(\mathbf{w}_{1,n})}{c(\mathbf{w}_{1,n-1})}$ доля w_n среди продолжений истории $w_1 \dots w_{n-1}$.
- Здесь и далее $w_{1,n} = w_1 \dots w_n$.
- Недостаток: нулевые вероятности.

Пример

я читал		1864			
я читал	книгу	19	$\frac{19}{1864}$	\approx	0.010
я читал	газету	3	$\frac{3}{1864}$	\approx	0.002
я читал	лекцию	11	$\frac{11}{1864}$	\approx	0.006
я читал	доклад	0	$\frac{0}{1864}$	=	0?
я читал	инструкцию	0	$\frac{0}{1864}$	=	<mark>0</mark> ?

Аддитивное сглаживание

• Можно применить аддитивное сглаживание:

$$p(t_n|t_1\ldots t_{n-1})=\frac{c(t_1\ldots t_{n-1}t_n)+\alpha}{c(t_1\ldots t_{n-1}\bullet)+\alpha|D|},$$

где D — словарь (множество возможных униграмм), $\alpha > 0$ — сглаживающее слагаемое

• При аддитивном сглаживании считается, что каждое слово дополнительно встречается α раз.

Аддитивное сглаживание

• Можно применить аддитивное сглаживание:

$$p(t_n|t_1\ldots t_{n-1})=\frac{c(t_1\ldots t_{n-1}t_n)+\alpha}{c(t_1\ldots t_{n-1}\bullet)+\alpha|D|},$$

где D — словарь (множество возможных униграмм), $\alpha > 0$ — сглаживающее слагаемое

- При аддитивном сглаживании считается, что каждое слово дополнительно встречается α раз.
- Теперь уже нет нулевых вероятностей. Но как выбирать значение α ?
- Маленькая lpha риск переподгонки под обучающую выборку.
- ullet Большая lpha не учитываем наблюдаемые вероятности.

- Недостатки аддитивного сглаживания:
 - непонятно, как подбирать α (зависит от размера корпуса, размера словаря, порядка энграмм и т. д.)

- Недостатки аддитивного сглаживания:
 - непонятно, как подбирать α (зависит от размера корпуса, размера словаря, порядка энграмм и т. д.)
 - метод негибкий, не учитывает историю $t_1 \dots t_{n-1}$ (если история встречалась часто, то сглаживание должно быть более слабым).

- Недостатки аддитивного сглаживания:
 - непонятно, как подбирать α (зависит от размера корпуса, размера словаря, порядка энграмм и т. д.)
 - метод негибкий, не учитывает историю $t_1 \dots t_{n-1}$ (если история встречалась часто, то сглаживание должно быть более слабым).
- ullet Основная идея: будем использовать $p(t_n|t_2\dots t_{n-1})$ для вычисления $p(t_n|t_1\dots t_{n-1})$, если $c(t_n|t_1\dots t_{n-1})=0$.
- Если слово не встречалось после текущей истории, перейдём к более короткой.

- Недостатки аддитивного сглаживания:
 - непонятно, как подбирать α (зависит от размера корпуса, размера словаря, порядка энграмм и т. д.)
 - метод негибкий, не учитывает историю $t_1 \dots t_{n-1}$ (если история встречалась часто, то сглаживание должно быть более слабым).
- ullet Основная идея: будем использовать $p(t_n|t_2\dots t_{n-1})$ для вычисления $p(t_n|t_1\dots t_{n-1})$, если $c(t_n|t_1\dots t_{n-1})=0$.
- Если слово не встречалось после текущей истории, перейдём к более короткой.
- Общая интерполяционная формула:

$$p_I(t_n|t_1...t_{n-1}) = \lambda p_C(t_n|t_{1,n-1}) + (1-\lambda)p_I(t_n|t_{2,n-1})$$

- Недостатки аддитивного сглаживания:
 - непонятно, как подбирать α (зависит от размера корпуса, размера словаря, порядка энграмм и т. д.)
 - метод негибкий, не учитывает историю $t_1 \dots t_{n-1}$ (если история встречалась часто, то сглаживание должно быть более слабым).
- ullet Основная идея: будем использовать $p(t_n|t_2\dots t_{n-1})$ для вычисления $p(t_n|t_1\dots t_{n-1})$, если $c(t_n|t_1\dots t_{n-1})=0$.
- Если слово не встречалось после текущей истории, перейдём к более короткой.
- Общая интерполяционная формула:

$$p_I(t_n|t_1...t_{n-1}) = \lambda p_C(t_n|t_{1,n-1}) + (1-\lambda)p_I(t_n|t_{2,n-1})$$

$$p_C(t_n|t_1\dots t_{n-1})=rac{c(t_1\dots t_{n-1}t_n)}{c(t_1\dots t_{n-1}ullet)}$$
 — "корпусная" вероятность, λ — коэффициент, вообще говоря, зависящий от $t_1\dots t_{n-1}$.

Пример

И	/ ₁ W ₂	W3	$c(w_1w_2w_3)$	$p(w_3 w_1w_2)$	W_2	W ₃	$c(w_2w_3)$	$p(w_3 w_2)$
Я	читал		1832		читал		18149	
Я	читал	газету	3	0.0016	читал	газету	149	0.0082
Я	читал	книгу	19	0.0103	читал	книгу	138	0.0076
Я	читал	лекцию	11	0.0060	читал	лекцию	81	0.0045
Я	читал	доклад	0	0	читал	доклад	22	0.0012

Пример

$W_1 W_2$	W3	$c(w_1w_2w_3)$	$p(w_3 w_1w_2)$	<i>w</i> ₂	W3	$c(w_2w_3)$	$p(w_3 w_2)$
я читал		1832		читал		18149	
я читал	газету	3	0.0016	читал	газету	149	0.0082
я читал	книгу	19	0.0103	читал	книгу	138	0.0076
я читал	лекцию	11	0.0060	читал	лекцию	81	0.0045
я читал	доклад	0	0	читал	доклад	22	0.0012

При
$$\lambda=0.5$$
 получаем

$$p$$
(газету|я читал) = $0.5*0.0016+0.5*0.0082=0.0049$
 p (доклад|я читал) = $0.5*0.0000+0.5*0.0012=0.0006$

- ullet Обозначим $t_{i,j} = t_i \dots t_j$.
- Общая интерполяционная формула:

$$p_I(t_n|t_{1,n-1}) = \lambda p_C(t_n|t_{1,n-1}) + (1-\lambda)p_I(t_n|t_{2,n-1})$$

- ullet Обозначим $t_{i,j} = t_i \dots t_j$.
- Общая интерполяционная формула:

$$p_I(t_n|t_{1,n-1}) = \lambda p_C(t_n|t_{1,n-1}) + (1-\lambda)p_I(t_n|t_{2,n-1})$$

Формула отката (backoff):

$$p_{I}(t_{n}|t_{1}...t_{n-1}) = \begin{cases} \alpha(t_{1,n-1})p_{C}(t_{n}|t_{1,n-1}), & c(t_{1,n-1}t_{n}) > 0, \\ \beta(t_{1,n-1})p_{I}(t_{n}|t_{2,n-1}), & c(t_{1,n-1}t_{n}) = 0 \end{cases}$$

- ullet Обозначим $t_{i,j} = t_i \dots t_j$.
- Общая интерполяционная формула:

$$p_I(t_n|t_{1,n-1}) = \lambda p_C(t_n|t_{1,n-1}) + (1-\lambda)p_I(t_n|t_{2,n-1})$$

Формула отката (backoff):

$$p_I(t_n|t_1\ldots t_{n-1}) = \begin{cases} \alpha(\mathsf{t}_{1,n-1})p_C(t_n|\mathsf{t}_{1,n-1}), & c(\mathsf{t}_{1,n-1}t_n) > 0, \\ \beta(\mathsf{t}_{1,n-1})p_I(t_n|\mathsf{t}_{2,n-1}), & c(\mathsf{t}_{1,n-1}t_n) = 0 \end{cases}$$

• Чем больше λ (α в формуле отката), тем больше мы доверяем истории $\mathbf{t}_{1,n-1}.$

- Обозначим $t_{i,j} = t_i \dots t_i$.
- Общая интерполяционная формула:

$$p_I(t_n|t_{1,n-1}) = \lambda p_C(t_n|t_{1,n-1}) + (1-\lambda)p_I(t_n|t_{2,n-1})$$

• Формула отката (backoff):

$$p_{I}(t_{n}|t_{1}...t_{n-1}) = \begin{cases} \alpha(t_{1,n-1})p_{C}(t_{n}|t_{1,n-1}), & c(t_{1,n-1}t_{n}) > 0, \\ \beta(t_{1,n-1})p_{I}(t_{n}|t_{2,n-1}), & c(t_{1,n-1}t_{n}) = 0 \end{cases}$$

- Чем больше λ (α в формуле отката), тем больше мы доверяем истории $\mathbf{t}_{1,n-1}$.
- Много случайных продолжений у $t_{1,n-1} \lambda$ мало.
- ullet Продолжений мало и они частотные $-\lambda pprox 1$

- Обозначим $t_{i,j} = t_i \dots t_j$.
- Общая интерполяционная формула:

$$p_I(t_n|t_{1,n-1}) = \lambda p_C(t_n|t_{1,n-1}) + (1-\lambda)p_I(t_n|t_{2,n-1})$$

• Формула отката (backoff):

$$p_{I}(t_{n}|t_{1}...t_{n-1}) = \begin{cases} \alpha(t_{1,n-1})p_{C}(t_{n}|t_{1,n-1}), & c(t_{1,n-1}t_{n}) > 0, \\ \beta(t_{1,n-1})p_{I}(t_{n}|t_{2,n-1}), & c(t_{1,n-1}t_{n}) = 0 \end{cases}$$

- Чем больше λ (α в формуле отката), тем больше мы доверяем истории $\mathbf{t}_{1,n-1}$.
- Много случайных продолжений у $\mathsf{t}_{1,n-1} \lambda$ мало.
- ullet Продолжений мало и они частотные $-\lambda pprox 1$
- ullet подбирают, чтобы сумма вероятностей получилась 1.

Нейронные языковые модели: введение

 Нейронные модели перевода генерируют слова на основе уже переведённых слов и исходного предложения.

Нейронные языковые модели: введение

- Нейронные модели перевода генерируют слова на основе уже переведённых слов и исходного предложения.
- Без исходного предложения языковая модель (задача предсказания следующего слова).
- данная задача требует знаний о всех уровнях языка:

```
Я ел вкусную ?
```

ADJ/NOUN - синтаксис,

case=Acc - синтаксис,

... у – морфология,

съедобный объект - семантика

Нейронные языковые модели: введение

- Нейронные модели перевода генерируют слова на основе уже переведённых слов и исходного предложения.
- Без исходного предложения языковая модель (задача предсказания следующего слова).
- данная задача требует знаний о всех уровнях языка:

```
Я ел вкусную?
ADJ/NOUN - синтаксис,
```

case=Acc - синтаксис,

... у – морфология,

съедобный объект - семантика

• Раньше решалась через энграммные модели (масса недостатков).

Недостатки энграммных моделей

- Не учитывают структуру языка.
- Не учитывают схожесть слов.

Недостатки энграммных моделей

- Не учитывают структуру языка.
- Не учитывают схожесть слов.
- Не учитывают дистантный контекст.

 Наиболее частая схема – рекуррентная сеть (часто несколько слоёв):

```
egin{array}{lll} [h_i,c_i]&=&LSTM(c_{i-1},x_i)\ z_i&=&Wh_i+b,\ W\in\mathbb{R}^{D	imes d}\ p_i&=&\mathrm{softmax}(z_i)\ D&-&\mathrm{paзмер\ cловар}\ (10000\text{-}100000),\ d&-&\mathrm{paзмер\ coctoshus}\ (100\text{-}1000) \end{array}
```

 Наиболее частая схема – рекуррентная сеть (часто несколько слоёв):

$$egin{array}{lll} [h_i,c_i] &=& LSTM(c_{i-1},x_i) \ z_i &=& Wh_i+b,\ W\in\mathbb{R}^{D imes d} \ p_i &=& \mathrm{softmax}(z_i) \ D &-& \mathsf{размер\ cловар}\ (10000\text{-}100000), \ d &-& \mathsf{pазмер\ coctonhun}\ (100\text{-}1000) \end{array}$$

По сути, языковая модель предлагает представление следующего слова и сравнивает его со словарными.

$$z_{ij} = \langle W_{j\cdot}, h_i \rangle$$

Языковая модель предлагает представление следующего слова и сравнивает его со словарными.

$$z_{ij} = \langle W_{j\cdot}, h_i \rangle$$

- ullet p_{ij} монотонно зависит от z_{ij} .
- Скалярное произведение мера похожести h_i на каждую из строк матрицы.

Языковая модель предлагает представление следующего слова и сравнивает его со словарными.

$$z_{ij} = \langle W_{j\cdot}, h_i \rangle$$

- ullet p_{ij} монотонно зависит от z_{ij} .
- Скалярное произведение мера похожести h_i на каждую из строк матрицы.
- То есть h_i это "идеальное" векторное представление следующего слова.
- Вероятность словарного слова в этой позиции пропорциональна близости к h_i .

Преимущества нейронных моделей

- Схожие слова схожие входные вектора схожие предсказания следующих слов.
- Дистантный контекст запоминается в состоянии LSTM.

Преимущества нейронных моделей

- Схожие слова схожие входные вектора схожие предсказания следующих слов.
- Дистантный контекст запоминается в состоянии LSTM.
- Лингвистическая информация неявно запоминается в представлениях слов.
- Также её можно явно конкатенировать с входными векторами.

Преимущества нейронных моделей

• Перплексия нейронных моделей существенно ниже, то есть качество лучше (данные на Penn Treebank):

Model	Parameters	Validation	Test
Mikotov & Zweig (2012) - KN-5	2M*	-	141.2
Mikotov & Zweig (2012) - KN5 + cache	2M [±]	_	125.7
Mikolov & Zweig (2012) - RNN	6M ²	-	124.7
Mikolov & Zweig (2012) - RNN-LDA	7M3	_	113.7
Mikolov & Zweig (2012) - RNN-LDA + KN-5 + cache	9M#		92.0
Zaremba et al. (2014) - LSTM (me dium)	20M	86.2	82.7
Zaremba et at. (2014) - LSTM (targe)	66M	82.2	78.4
Gat & Ghahramani (2016) - Variational LSTM (medium)	20M	81.9 ± 0.2	79.7 ± 0.1
Gat & Ghahramani (2016) - Variational LSTM (medium, MC)	20M	-	78.6 ± 0.1
Gal & Ghahramani (2016) - Variational LSTM (large)	66M	77.9 ± 0.3	75.2 ± 0.2
Gat & Ghahramani (2016) - Variational LSTM (large, MC)	66M	-	73.4 ± 0.0
Kim et al. (2016) - CharCNN	19M	-	78.9
Merity et al. (2016) - Pointer Sentinet-LSTM	21M	72.4	70.9

Нейронный машинный перевод

- Нейронный машинный перевод задача условного порождения текста.
- Обычная вероятностная модель порождает текст на основе предыдущих слов.

$$w_i \sim p(w|h_{i-1}) \ h_{i-1} - ext{ состояние языковой модели после } i-1$$
 слова

Нейронный машинный перевод

- Нейронный машинный перевод задача условного порождения текста.
- Обычная вероятностная модель порождает текст на основе предыдущих слов.

$$w_i \sim p(w|h_{i-1}) \ h_{i-1} - ext{ состояние языковой модели после } i-1$$
 слова

• Условная вероятностная модель:

$$w_i \sim p(w|h_{i-1},c)$$
 c – глобальный контекст

• Основная проблема: как вычислять с.

Нейронный машинный перевод

• Базовая модель: кодировщик-декодировщик (encoder-decoder):

$$c = LSTM(x_1, \dots, x_m), \ x_1 \dots x_m -$$
 исходное предложение

 Вектор с запоминает всю информацию об исходном предложении в одном векторе.

Нейронный машинный перевод

 Обычно на каждый шаг декодера явно подаётся предыдущее слово:

$$p(y_t|[y_1,\ldots,y_{t-1}],c)=g(y_{t-1},s_t,c)$$

- Как и энкодер, так и декодер включают в себя несколько слоёв.
- Входом следующего служит выход предыдущего.

Вектора предложений

Секвенцияльные модели Вектора предложений

Нейронный машинный перевод

Обучение нейронных систем

• Многоклассовые нейронные классификаторы обучаются с помощью кросс-энтропии:

$$L(y, y') = -\sum y_i \log y_i'$$

• y_i, y_i' — правильное и предсказанное вероятностное распределения.

Обучение нейронных систем

• Многоклассовые нейронные классификаторы обучаются с помощью кросс-энтропии:

$$L(y, y') = -\sum y_i \log y_i'$$

- y_i, y_i' правильное и предсказанное вероятностное распределения.
- Можно вычислять кросс-энтропию для каждого слова

$$L(t,t') = -\sum_{j} L_0(t_j,t'_j)$$

$$L_0(t_j,t'_j) = -\sum_{j} t_{ij} \log t'_{ij}$$

 Здесь в каждой позиции предсказывается вероятностное распределение для текущего переводного слова.

Обучение нейронных систем

• Многоклассовые нейронные классификаторы обучаются с помощью кросс-энтропии:

$$L(y, y') = -\sum y_i \log y_i'$$

- y_i, y_i' правильное и предсказанное вероятностное распределения.
- Можно вычислять кросс-энтропию для каждого слова

$$L(t,t') = -\sum_{j} L_0(t_j,t'_j)$$

$$L_0(t_j,t'_j) = -\sum_{j} t_{ij} \log t'_{ij}$$

- Здесь в каждой позиции предсказывается вероятностное распределение для текущего переводного слова.
- Конец предложения: специальный символ END.
- Позиции после конца предложения: специальный символ PAD.

Обучение нейронных систем:

некорректная позиция в предложении

• Система может предсказать несколько слов вместо одного:

This is the shortest way home Это кратчайший путь домой Это самый короткий путь домой

 После "самый короткий" правильным словом будет считаться "домой".

Обучение нейронных систем: exposure bias

- Большинство систем машинного перевода использует предыдущее слово при порождении следующего.
- При этом используется корректное предыдущее слово.

Обучение нейронных систем: exposure bias

- Большинство систем машинного перевода использует предыдущее слово при порождении следующего.
- При этом используется корректное предыдущее слово.
- Объяснение: если брать действительно предсказанное слово, то следующее слово в исходном предложении не будет корректным:

This is the shortest way home Это самый путь? домой

Обучение нейронных систем: exposure bias

- Большинство систем машинного перевода использует предыдущее слово при порождении следующего.
- При этом используется корректное предыдущее слово.
- Объяснение: если брать действительно предсказанное слово, то следующее слово в исходном предложении не будет корректным:

This is the shortest way home Это самый путь? домой

• Это означает, что при обучении модель не видит неправильных вариантов.

Обучение нейронных систем: exposure bias

- Большинство систем машинного перевода использует предыдущее слово при порождении следующего.
- При этом используется корректное предыдущее слово.
- Объяснение: если брать действительно предсказанное слово, то следующее слово в исходном предложении не будет корректным:

This is the shortest way home Это самый путь? домой

- Это означает, что при обучении модель не видит неправильных вариантов.
- Как следствие, если неправильный вариант появляется при предсказании, модель запутывается.

Обучение нейронных систем: функции штрафа и метрики

- Модели нейронного машинного перевода обучаются минимизировать кросс-энтропию.
- Эта функция штрафа не имеет отношения к реальному качеству перевода.

Обучение нейронных систем: функции штрафа и метрики

- Модели нейронного машинного перевода обучаются минимизировать кросс-энтропию.
- Эта функция штрафа не имеет отношения к реальному качеству перевода.
- Стандартная метрика для машинного перевода BLEU.
- Основана на точности по словам и энграммам из правильного перевода (проверяет, что перевод не содержит лишних слов).
- Есть дополнительный штраф за слишком короткий ответ.

Обучение нейронных систем: функции штрафа и метрики

- Модели нейронного машинного перевода обучаются минимизировать кросс-энтропию.
- Эта функция штрафа не имеет отношения к реальному качеству перевода.
- Стандартная метрика для машинного перевода BLEU.
- Основана на точности по словам и энграммам из правильного перевода (проверяет, что перевод не содержит лишних слов).
- Есть дополнительный штраф за слишком короткий ответ.
- BLEU неидеально коррелирует с оценкой качества человеком, но ничего лучше не придумано.
- BLEU недифференцируема, поэтому её нельзя оптимизировать градиентным спуском.

Машинный перевод: декодирование

- Стандартный способ декодирования в машинном переводе
 - поиск по лучу:

Машинный перевод: декодирование

- Стандартный способ декодирования в машинном переводе
 поиск по лучу (beam search):
 - Поддерживается k наилучших гипотез (часто $k \in 5 \dots 10$).
 - На каждом шаге считаются все возможные продолжения существующих гипотез и пересчитываются их вероятности.
 - После этого снова выбираются k наилучших продолжений.
- ullet Частный случай k=1 жадный поиск.

Машинный перевод: декодирование

- Стандартный способ декодирования в машинном переводе
 поиск по лучу (beam search):
 - Поддерживается k наилучших гипотез (часто $k \in 5 \dots 10$).
 - На каждом шаге считаются все возможные продолжения существующих гипотез и пересчитываются их вероятности.
 - После этого снова выбираются k наилучших продолжений.
- Частный случай k = 1 жадный поиск.
- Недостатки алгоритма:
 - Небольшое k будет отсекаться много полезного.
 - Большое k будут появляться вероятные ответы "общей тематики" (не связанные с конкретным входом).

Упрощение генерации

- Генерация последовательностей сложная задача (и вычислительно, и алгоритмически).
- Иногда её можно упростить, сведя к классификации или разметке последовательности:

```
корова \mapsto коровой корова \mapsto а-ой.
```

Упрощение генерации

- Генерация последовательностей сложная задача (и вычислительно, и алгоритмически).
- Иногда её можно упростить, сведя к классификации или разметке последовательности:

корова
$$\mapsto$$
 коровой корова \mapsto а-ой.

• Более сложные шаблоны тоже можно упростить:

песок
$$\mapsto$$
 песком $(1+o+2)-(1+2+oM)$ volver \mapsto vuelvo $(1+o+2+er)-(1+ue+2+o)$

Упрощение генерации

- Генерация последовательностей сложная задача (и вычислительно, и алгоритмически).
- Иногда её можно упростить, сведя к классификации или разметке последовательности:

корова
$$\mapsto$$
 коровой корова \mapsto а-ой.

• Более сложные шаблоны тоже можно упростить:

песок
$$\mapsto$$
 песком $(1+o+2)-(1+2+oM)$ volver \mapsto vuelvo $(1+o+2+er)-(1+ue+2+o)$

• Суммаризация (extractive summarization) сводится к разметке последовательности (КЕЕР-DELETE-специальные операции).