2022 年 4 月 26 日 实变函数 强基数学 002 吴天阳 2204210460 59

习题 1.4

5. 记 $A' = A^{(1)}, (A^{(1)})' = A^{(2)}, \cdots, (A^{(n)})' = A^{(n+1)}, \cdots$. 试作一集 A, 使 $A^{(n)}(n = 1, 2, \cdots)$ 彼此互异.

解答. 设 A_i 为直线上的一孤立点集,将 A_i 中的元素从小到大排成一行,即

$$A_i = \{x_1, x_2, \cdots, x_{i-1}, x_i, x_{i+1}, \cdots\}$$

记 $d_i = x_{i+1} - x_i$ 即为第 j 个间距的大小. 于是可以做出如下构造

$$A_{i+1} = \left\{ x_j + \frac{d_j}{k} : x_j \in A_i, \ k = 2, 3, \dots \right\}$$

下证 $A_i \cap A_{i+1} = \emptyset$ 且 $(A_{i+1})' = A_i$.

反设 $\exists x_j \in A_i \cap A_{i+1}$, 则由 A_{i+1} 的定义可知, $x_j = x_{j-1} + \frac{d_j}{k} = x_{j-1} + \frac{1}{k}(x_j - x_{j-1})$, 则 k = 1, 与 $k \ge 2$ 矛盾, 则 $A_i \cap A_{i+1} = \emptyset$.

对于 $\forall x_j \in A_i$, 存在 A_{i+1} 中的点列 $\left\{ x_j + \frac{d_j}{2}, x_j + \frac{d_j}{3}, \cdots, x_j + \frac{d_j}{n}, \cdots \right\}$ 收敛于 x_j , 所以 $A_i \subset (A_{i+1})'$. 相应的,对于 $\forall a \in (A_{i+1})'$, 一定存在 j, 使得 $x_{j-1} \leqslant a < x_j$, 由于 A_{i+1} 在 区间 $\left[x_{j-1}, x_j \right]$ 中仅有唯一一个收敛子列 $\left\{ x_j + \frac{d_j}{2}, x_j + \frac{d_j}{3}, \cdots, x_j + \frac{d_j}{n}, \cdots \right\}$ 收敛于 x_j , 所以 $a = x_j \in A_i$, 于是 $(A_{i+1})' \subset A_i$. 综上 $(A_{i+1})' = A_i$.

取 $A_1 = \{0, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \cdots\}$,则可根据上述构造方法得到一孤立点集列 $\{A_1, A_2, \cdots, A_n, \cdots\}$,对于 $\forall i = 1, 2, \cdots$,满足 $(A_{i+1})' = A_i$ 且 $A_{i+1} \cap A_i = \emptyset$,于是当 $i \to \infty$ 时,取 $A = A_{\infty}$,满足题目要求.

更严谨地, 由于 $A_i \subset [0,1)$, 记 $A_i+i=\{a+i:a\in A_i\}$, 则 $\{A_i+i\}\subset [i,i+1)$, 所以 $\{A_i+i\}$ 是一列两两不交的集列, 取 $A=\bigcup_{i=1}^{\infty}(A_i+i)$ 即可.

6. 证明直线上的孤立点集必是有限集或可列集.

证明. 设 A 为直线上的孤立点集,由孤立点集的定义,不妨令

$$A = \{x_1, x_2, \cdots, x_n, \cdots\}$$

其中 $0 < x_1 < x_2 < \dots < x_n < \dots$,令 $x_0 = 0$,对于 $\forall i = 1, 2, \dots$,若 x_i 为无理点,取 x_i' 为 (x_{i-1}, x_i) 中的一个有理点;若 x_i 为有理点,取 $x_i' = x_i$,于是有

$$B = \{x_1', x_2', \cdots, x_n', \cdots\}$$

与 A ——对应, 由于 $B \subset \mathbb{Q}$, 则 B 为至多可列集, 所以 A 也为至多可列集.

7. 证明每个闭集必是可列个开集的通集,每个开集可以表示成可列个闭集的和集.

证明. 设 F 为闭集, 令 $G_n = \bigcup_{x \in F} (x - \frac{1}{n}, x + \frac{1}{n})$, 则 $F \subset \bigcap_{n=1}^{\infty} G_n$. 对于 $\forall x \in \bigcap_{n=1}^{\infty} G_n$, 对于每个 $n = 1, 2, \dots$, 一定 $\exists x_n \in F$, 使得 $x \in \left(x_n - \frac{1}{n}, x_n + \frac{1}{n}\right)$, 则存在 F 的点列 $\{x_n\}$ 使得 $\lim_{n \to \infty} x_n = x$, 由于 $F' \subset F$, 则 $x \in F$, 于是 $\bigcap_{n=1}^{\infty} G_n \subset F$. 综上, $F = \bigcap_{n=1}^{\infty} G_n$.

设 G 为开集, 不妨令 G 的构成区间为 $\{(a_i,b_i): i=1,2,\cdots\}$, 根据开集的性质可知 $(a_i,b_i)\cap(a_j,b_j)=\varnothing, (i\neq j)$. 如下定义 a_i',b_i' :

$$a_i' = \begin{cases} a_i + \frac{1}{n}, & a_i \neq -\infty, \\ -n, & a_i = -\infty. \end{cases} \qquad b_i' = \begin{cases} b_i - \frac{1}{n}, & b_i \neq \infty, \\ n, & b_i = \infty. \end{cases}$$

设 $F_n = \bigcup_{i=1}^{\infty} [a_i', b_i']$,则 $\bigcup_{n=1}^{\infty} F_n \subset G$. 对于 $\forall x \in G$,一定 $\exists i$ 使得 $x \in (a_i, b_i)$,存在一个尽可能大的 N,使得 $\forall n \geqslant N$,有 $x \in [a_i', b_i'] \in \bigcup_{n=1}^{\infty} F_n$,则 $G \subset \bigcup_{n=1}^{\infty} F_n$. 综上, $G = \bigcup_{n=1}^{\infty} F_n$.

10. 证明直线上闭集全体所成的集的势是 ⋈, 直线上完全集全体所成的集的势也是 ⋈.

证明. 设直线上开集全体所成之集为 A, 闭集全体所成之集为 B, 完全集所成之集为 S.

令 G 为开集,不妨令 G 的构成区间为 $\{(a_i,b_i):i=1,2,\cdots\}$,若 a_i,b_i 均为无理数,则存在有理数列 $\left\{\left(\frac{[na_i]+1}{n},\frac{[nb_i]}{n}\right)\right\}$ 收敛于 (a_i,b_i) ,若 a_i,b_i 中存在无限点,则只考虑有理点趋于有限点一端. 由于有理点全体的基数为 \aleph_0 ,所以 $\overline{\overline{A}}=2^{\aleph_0}=\aleph$. 又由于闭集与开集一一对应 (互为余集),所以 $\overline{\overline{B}}=\overline{\overline{A}}=\aleph$.

任一完全集都是自密闭集,所以 $S \subset B$,由于将开集的构成区间都加上端点,可以构成一完全集 $S' \subset S$,而且 A 可以与 S' ——对应,所以

$$\aleph = \overline{\overline{A}} = \overline{\overline{S'}} \leqslant \overline{\overline{S}} \leqslant \overline{\overline{B}} = \aleph$$

综上可知, $\overline{\overline{S}} = \aleph$.

15. 定义 1.4.14 设 A 是直线上点集, x 是直线上的一点, 如果在 x 的任何环境中总含有 A 中不可列无限的点, 那么称 x 是 A 的**凝聚点**.

证明: (i) 对任何不可列无限集 A, 必有凝聚点, 而且在 A 中必有一个点是 A 的凝聚点.

- (ii) 如果 x 是 A 的凝聚点, 那么 x 是 A 的凝聚点的极限点.
- (iii) 直线上闭集 F 的势除了有限、可列外必为 ⊗.

证明. (i) 由于 A 为不可列无限集,则存在 $-\infty < a_1 < b_1 < \infty$,使得 $(a_1,b_1) \cap A$ 为不可列无限集,将开区间 (a_1,b_1) 分为两半 $\left(a_1,\frac{a_1+b_1}{2}\right)$, $\left(\frac{a_1+b_1}{2},b_1\right)$,则二者中至少有一个与 A 交集为不可列无限集,记为 (a_2,b_2) . 依此类推,可得一开区间列 $\{(a_n,b_n)\}$,满足 $b_n-a_n\leqslant \frac{b_1-a_1}{2^{n-1}}$,且 $(a_n,b_n)\cap A$ 为不可列无限集,由区间套定理可知,存在唯一的 $x_0\in E^1$,使得 $x_0\in (a_n,b_n)$ ($n=1,2,\cdots$),则 x_0 为 A 的凝聚点.

反设 A 中没有凝聚点,则 $\forall x \in A$,存在 x 的邻域 (a_x, b_x) ,使得 $(a, b) \cap A$ 为至多可列集,不妨令 a_x, b_x 均为有限数,则 $A = \bigcup_{x \in A} ((a_x, b_x) \cap A)$,则 A 为至多可列集,与 A 为不可列无限集矛盾.

- (ii) 记 S 为凝聚点全体,只需证 S 为自密集,令 x 为 A 的凝聚点,下证 $x \in S'$. 对于 $n = 1, 2, \cdots$ 有 $\left(x \frac{1}{n}, x + \frac{1}{n}\right) \cap A$,为不可列无限集,则 $\left(x \frac{1}{n}, x\right) \cap A$ 和 $\left(x, x + \frac{1}{n}\right) \cap A$ 中至少有一个是不可列无限集,有 (i) 可知,不可列无限集中必存在凝聚点,记为 x_n ,则 $x_n \in \left(x \frac{1}{n}, x + \frac{1}{n}\right) \{x\}$ 且 $x_n \in S$,根据上述方法,可以构造出 S 中一列收敛点列 $\{x_n\}$ 且 $\lim_{n \to \infty} x_n = x$,则 $x \in S'$.
- (iii) 设 F 为非空闭集,则 F 为不可列无限集,于是存在两个凝聚点 a_1,a_2 ,由闭集的性质,存在 a_1,a_2 的邻域包含于 F,且也是不可列无限点集,于是可以找到 a_{11},a_{12} 属于 a_1 的邻域, a_{21},a_{22} 属于 a_2 的邻域,以此类推,可得 F 的一子集 $F'=\{a_1,a_2,a_{11},a_{12},a_{21},a_{22},\cdots\}$,且 $\overline{F'}=2^{\aleph_0}=\aleph$,又由于全体闭集的势为 \aleph ,所以 $\aleph=\overline{F'}\leqslant\overline{F}\leqslant\aleph$,故 $\overline{F}=\aleph$.

18. 直线上的完全集 A, 如果具有如下性质: 任何两个余区间之间必至少夹有一个余区间. 问是 否 A 必是疏朗的.

证明. 不一定, 设 C 为 (0,1) 上的康托集, 取 $A = (-\infty,0] \cup C \cup [1,\infty)$, 由于康托集的性质, 两个余区间之间必至少夹有一个余区间, 但 $(-\infty,0]$ 不是疏朗的, 则 A 不是疏朗的.

22. 证明无理数全体不能表示成可列个闭集的和集.

证明. 反设 \mathbb{Q}^c 可以表示成可列个闭集的和集, 即 $\mathbb{Q}^c = \bigcup_{i=1}^{\infty} F_i$, 记 $\mathbb{Q} = \{x_1, x_2, \dots\} = \bigcup_{j=1}^{\infty} x_j$, 则 $\mathbb{R} = \left(\bigcup_{i=1}^{\infty} F_i\right) \cup \left(\bigcup_{j=1}^{\infty} x_j\right)$, 由 Baire 定理可知, \mathbb{R} 没有内点, 矛盾. 原命题得证.