<u>INTESTAZIONE</u>

NOME: Elia

COGNOME: Maggi

CLASSE: 2Cs

LUOGO DELL'ESPERIMENTO: Scuola

DATA DELL'ESPERIMENTO: 21/12/2020

TITOLO DELL'ESPERIMENTO: Verifica della legge di Hooke

1.INTRODUZIONE

1.1 formulazione della legge di hooke

La legge di Hooke afferma che l'allungamento(Δx) subito da un corpo elastico e' direttamente proporzionale alla forza ad esso applicata; la costante di proporzionalità viene detta costante elastica (k) e dipende dalla natura del materiale stesso. La legge:

$$F = - k\Delta x$$

fu formulata da Robert Hooke nel 1675, ed afferma che:

"la forza applicata alla molla elastica e' direttamente proporzionale alla variazione di lunghezza che subisce la molla."

1.2 limiti di applicazione della legge di hooke

Questa legge descrive il comportamento di una molla quando gli allungamenti sono piccoli rispetto alla sua lunghezza: con un allungamento eccessivo, la molla reagisce con una forza non proporzionale all'allungamento e può anche deformarsi in modo permanente, perdendo la sua elasticità.

2.DESCRIZIONE ESPERIMENTO

2.1 materiale impiegato

- Asta graduata (sensibilità=0,1 cm; portata=0,1 cm)
- Molla
- Pesi (F(N)=0,245N); 4 pesi tutti della stessa Forza Peso
- Bilancia

DESCRIZIONE	Forza Peso	
PESO 1	0,245N	
PESO 2	0,245N	
PESO 3	0,245N	
PESO 4	0,245N	

3.FASI OPERATIVE

3.1 Allestimento dell'esperimento

- a) Sull'asta graduata si posiziona la molla in modo che il suo estremo inferiore coincida con lo 0 della scala graduata.
- b) Calcolare il peso dei quattro pesi e del porta-pesi.
- c) Appoggiare il porta-pesi alla molla e appoggiare il primo peso. Rilevare il primo allungamento
- d) Ripetere il procedimento al punto c per i rimanenti pesi.
- e) Calcolare la massa totale di quanto caricato (massa 1 + massa 2 + massa... + massa porta pesi).

4.RACCOLTA RISULTATI

4.2 tabelle

NUMERO	F(N)	lo(m)	IN(m)	△l(m)	k
STEP 1	0,245	0,1	0,178	0,078	3,141
STEP 2	0,490	0,1	0,250	0,150	3,266
STEP 3	0,735	0,1	0,330	0,230	3,195
STEP 4	0,980	0,1	0,415	0,315	3,111

4.3 grafici

5.CONCLUSIONE