Tecnologias e Arquitecturas de Computadores

Licenciatura em Engenharia Informática - Ramos

Tecnologia da Informática

Licenciatura em Engenharia Informática

Exame - Época Normal

Duração Total Exame (T + P) : 2h:30m / Sem consulta

2 de Julho de 2013

Parte Teórica

1 A Memória Virtual é uma inovação tecnológica introduzida no processador 80286.

a) Descreva os aspectos funcionais da Memória Virtual.

(1 Val)

b) Quais as vantagens desta tecnologia?

(1 Val)

2 Faça uma descrição da memória Flash no que respeita:

(2 Val)

- a) Tecnologia de gravação da informação.
- b) Descrição dos diversos tipos.
- c) Diferentes tipos de codificação (SLC e MLC)
- **3** Considere os dois circuitos integrados de memória RAM representados na figura, onde A₃, A₂, A₁, A₀ representam linhas de endereço, D₁, D₀ representam linhas de dados, R/W representa a linha de leitura/escrita e CS a linha de *Chip Selection*.

Faça um esboço associando múltiplos circuitos integrados iguais de forma a obter uma memória RAM com 32 endereços com 4 bits cada. Deverá ser indicada explicitamente a linha de CS (*Chip Selection*) da memória resultante, bem como as linhas de dados e endereços:

d) Utilizando apenas circuitos de memória do tipo IC1.

(1 Val)

e) Utilizando apenas circuitos de memória do tipo IC2.

(1 Val)

4 DRAM e SRAM são duas tecnologias alternativas utilizadas em memória de acesso aleatório. Caracterize cada uma destas tecnologias, fazendo referencia à arquitectura interna, princípio de funcionamento e vantagens de cada uma delas. (1 Val)

Equivalente ao teste de 2 valores (responder numa folha separada)

- 1. Converta o número 11001,012 para decimal.
- 2. Converta o número -39₁₀ para um número binário de 8 bits segundo a representação de Complementos de 2.
- 3. Represente o número decimal –0,250 no formato IEEE 754 de precisão simples. Apresente o resultado em Hexadecimal.
- 4. A janela abaixo representa a extração de parte do segmento de dados de um programa, no codeview. A sua declaração foi feita da forma apresentada abaixo:

```
dseg
                                'data'
          segment
                    para
                real4
                          ?
          num1
                byte
                          ?
          num2
                          ?
          num3
                word
   dseg
          ends
0D5B:0000 B8 5C 0D 8E D8 B4 4C CD 21 00 00 00 00 00 00 00
0D5B:0010 5C 06 00 00 48 CO 4E 42 4E 42 30 38 68 02 00 00
0D5B:0020 00 00 00 00 01 00 43 56 02 00 00 00 00 00 00 00
```

Indique, através da análise dos dados em memória (conteúdo do rectângulo) qual o valor em hexadecimal correspondente a cada uma das variáveis num1, num2 e num3. Assuma que o registo DS contém o valor OD5Ch.

Parte Prática (Realize cada uma das perguntas em Folhas separadas)

Realize um programa em Assembly que execute operações aritméticas tendo como base um vetor de bytes que termina com o caracter '\$'. Os elementos do vetor são intercalados (elemento sim, elemento não) por um byte que representa um caracter associado a uma das quatro operações matemáticas elementares ('+', '-', '*', '/'). Estes caracteres nunca estão presentes na primeira, nem na posição que precede o '\$'. Para além disso, nunca coexistem em posições contíguas. As operações aritméticas deverão começar a ser executadas da esquerda para a direita, pelo que a operação mais à esquerda deverá ser aplicada aos seus elementos adjacentes. Cada resultado deverá ser utilizado como o 1º operando da operação seguinte. O resultado obtido deverá ser armazenado numa variável que nunca excederá o valor 65535. Um possível vetor e o resultado obtido são apresentados abaixo. (3,5 Val)

2 Realize um programa em Assembly que, recorrendo à memória de vídeo, imprima em cada um dos quatro quadrantes do ecrã um determinado caracter. O caracter a imprimir em cada quadrante é obtido a partir de um vetor definido no segmento de dados. Assuma que o primeiro elemento desse vetor preencherá o primeiro quadrante, o segundo elemento preencherá o segundo quadrante e assim sucessivamente para os restantes quadrantes. Considere que os quadrantes inferiores possuem mais uma linha do que os superiores. Assim, se for definido o vetor:

vector1 db '*', '+','-','%'

NOTAS:

- A memória de vídeo, no caso de sistemas policromáticos, tem início na localização B800h:0000h.
- Implementações com recurso a interrupções não serão avaliadas.

Template Base

```
.8086
.model small
.stack 2048
      segment para public 'data'
dseg
dseg
       ends
     segment para public 'code'
cseg
 assume cs:cseg, ds:dseg, ss:stack
Main proc
       ax, dseg
  mov
       ds, ax
 mov
       ah,4CH
 mov
  int
        21H
Main
       endp
        ends
cseg
end
       main
```