Atividade 3C - Laboratório Computacional

Gustavo Oliveira¹ e Andrea Rocha¹

¹Departamento de Computação Científica / UFPB

Junho de 2020

1 Problemas propostos

No laboratório computacional, você praticará o que aprendeu. Resolva os problemas com o auxílio do Python pesquisando apenas as informações essenciais de que precisa. Não use respostas prontas.

1.1 Problema

Programe uma função multadd que multiplique cada item de uma lista L lista por k e some c. Por exemplo:

```
L = [1,2,3]
multadd(lista,2,1)
[3,5,7] # este é o resultado neste caso
```

1.2 Problema

Gere uma lista aleatória de 100 inteiros não-nulos L contendo números pares e ímpares. Em seguida, programe uma função f(L) que retorne uma tupla (a,b,c,d,e) em que:

- a é a quantidade de números pares na lista
- *b* é a sublista de *L* que contém apenas números pares
- c é a quantidade de números ímpares na lista
- d é a sublista de L que contém apenas números ímpares
- e é um teste lógico que deve retornar True se a + c = |L|, onde |L| é a cardinalidade (número de elementos de L).

Enfim, crie uma função g(L,t) que imprima os conteúdos da tupla t (exceto b e d) em um template que mostre o seguinte:

```
|L| = .
a = .
c = .
e = True
```

Nota: importe sample ou randint de random. Observe que, acima, os pontos . servem apenas para denotar *placeholders* (substitutos) que devem ser substituídos pelos números inteiros obteníveis no seu cômputo.

1.3 Problema

Na Aula 3B, apresentamos um exemplo relacionado ao teste aleatório de pessoas que entram em um hospital ao longo de um dia. Naquele exemplo, calculamos a probabilidade de a pessoa ser doadora universal, bem como de ter outro tipo sanguíneo no sistema ABO.

Utilize as informações da aula para fazer o que se pede:

1. Defina a probabilidade total diária m_A de uma pessoa que entra no hospital ter sangue do tipo A como:

$$m_A = P(A+) + P(A-)$$

onde

- P(A+) é a probabilidade de pessoas que entram no hospital cujo sangue é A+.
- P(A-) é a probabilidade de pessoas que entram no hospital cujo sangue é A-.
- 2. Crie uma função que calcule m_A a partir de um teste aleatório equivalente ao mostrado na sala. Considere $N \ge 500$ pessoas.
- 3. Melhore o código apresentado criando uma função que realize o teste aleatório e lhe retorne as probabilidades. Seu dado de entrada será praticamente o valor de *N* e a saída um objeto iterável a seu critério (dict, por exemplo).
- 4. Crie uma estrutura de repetição para que a função seja executada por até $q \ge 3$ vezes supondo que o teste aleatório seja repetido a cada novo dia no hospital. Considere que a cada dia subsequente, N novas pessoas entrem no hospital.
- 5. Calcule a probabilidade m_A para o dia 1, dia 2, ... dia q (note que elas podem ser diferentes) e armazene os dados em alguma estrutura que você ache melhor.
- 6. Determine o valor médio de probabilidades

$$M=\frac{m_A^1+m_A^2+\cdots m_A^q}{q},$$

onde m_A^j , $j=1,2,\ldots,q$ é a probabilidade m_A para o j-ésimo dia.

Nota: a solução deste problema não é única, assim como não o é a forma de programar.

1.4 Problema

Considerando o problema anterior, você conseguiria fazer o mesmo para pessoas com sangue tipo *AB*, *B* e *O*? Se sim, quão diferente são os valores de *M* para cada grupo durante períodos de análise iguais de até *q* dias?