YaleNUSCollege

YSC2239 Lecture 9

Recap

- Steps for statistical tests of hypotheses
 - Null hypothesis and Alternative hypothesis
 - The test statistic and observed value of the test statistic
 - Distribution of test statistic by simulation under null hypothesis
 - Conclusion: reject or not reject (using p-value)
- p-value: the probability of the observed value or even more extreme results if null hypothesis is true. (in short: p-value if the probability of null hypothesis being true.
- Significant level (also called alpha level)

Today's class

- A/B Testing
- Confidence Intervals

• Reading: Chapter 12 and 13

A/B Testing

Comparing Two Samples

- Compare values of sampled individuals in Group A with values of sampled individuals in Group B.
- Question: Do the two sets of values come from the same underlying distribution?
- Answering this question by performing a statistical test is called A/B testing.

The Groups and the Question

- Random sample of mothers of newborns. Compare:
 - (A) Birth weights of babies of mothers who smoked during pregnancy
 - (B) Birth weights of babies of mothers who didn't smoke
- Question: Could the difference be due to chance alone?

Hypotheses

• Null:

 In the population, the distributions of the birth weights of the babies in the two groups are the same. (They are different in the sample just due to chance.)

Alternative:

 In the population, the babies of the mothers who smoked weighed less, on average, than the babies of the nonsmokers.

Test Statistic

- Group A: smokers
- Group B: non-smokers

- Statistic: Difference between average weights
 Group A average Group B average
- Smaller values of this statistic favor the alternative

Simulating Under the Null

Non-smoker

Non-smoker

Smoker

Non-smoker

Smoker

120 oz

113 oz

128 oz

136 oz

108 oz

Simulating Under the Null

Shuffling Rows

Random Permutation

- tbl.sample(n)
 - Table of n rows picked randomly with replacement
- tbl.sample()
 - Table with same number of rows as original tbl, picked randomly with replacement
- tbl.sample(n, with_replacement = False)
 - Table of n rows picked randomly without replacement
- tbl.sample(with_replacement = False)
 - All rows of tbl, in random order
 - This is what we'll use for A/B testing

Simulating Under the Null

- If the null is true, all rearrangements of labels are equally likely
- Plan:
 - Shuffle all group labels
 - Assign each shuffled label to a birth weight
 - Find the difference between the averages of the two shuffled groups
 - Repeat

A/B Tests are Hypothesis Tests

- Determine the 2 models (Null Hypothesis and Alternative Hypothesis)
 - Ex. Null hypothesis: In the population, the distributions of the birth weights of the babies in the two groups are the same.
- Determine a test statistic that gives evidence for the alternative model
 - Test statistic is often (but not always) the difference or absolute difference between group means
- Simulate the test statistic under the null hypothesis many times and store those values in an array
 - Simulated by shuffling the labels column of the table
- Compare the observed test statistic and its empirical distribution under the null hypothesis
- Draw a conclusion comparing the p-value to the p-value cutoff

Percentiles

Computing Percentiles

Sort the numerical set in increasing order. The 80th percentile is first value on the sorted list that is at least as large as 80% of the elements in the set

```
For s = [1, 7, 3, 9, 5], percentile (80, s) is 7
```

The 80th percentile is ordered element 4: (80/100) * 5

For a percentile that does not exactly correspond to an element, take the next greater element instead

The percentile Function

- The pth percentile is the value in a set that is at least as large as p% of the elements in the set
- Function in the datascience module:

```
percentile(p, values)
```

p is between 0 and 100

Returns the pth percentile of the array

Discussion Question

```
Which are True, when s = [1, 7, 3, 9, 5]?
  percentile(10, s) == 0
  percentile(39, s) == percentile(40, s)
  percentile(40, s) == percentile(41, s)
  percentile(50, s) == 5
                   (Demo)
```

Estimation

Inference: Estimation

- How big is an unknown parameter?
- If you have a census (that is, the whole population):
 - Just calculate the parameter and you're done
- If you don't have a census:
 - Take a random sample from the population
 - Use a statistic as an estimate of the parameter

Variability of the Estimate

- One sample → One estimate
- But the random sample could have come out differently
- And so the estimate could have been different
- Main question:
 - Our How different could the estimate have been?
- The variability of the estimate tells us something about how accurate the estimate is:
 - estimate = parameter + error

Where to Get Another Sample?

- One sample → One estimate
- To get many values of the estimate, we needed many random samples
- Can't go back and sample again from the population:
 - No time, no money
- Stuck?

The Bootstrap

The Bootstrap

- A technique for simulating repeated random sampling
- All that we have is the original sample
 - ... which is large and random
 - Therefore, it probably resembles the population
- So we sample at random from the original sample!

Why the Bootstrap Works

All of these look pretty similar, most likely.

Why We Need the Bootstrap

Key to Resampling

- From the original sample,
 - draw at random
 - with replacement
 - as many values as the original sample contained
- The size of the new sample has to be the same as the original one, so that the two estimates are comparable

95% Confidence Interval

- Interval of estimates of a parameter
- Based on random sampling
- 95% is called the confidence level
 - Could be any percent between 0 and 100
 - Higher level means wider intervals
- The confidence is in the process that generated the interval:
 - It generates a "good" interval about 95% of the time.

Each line here is a confidence interval from a fresh sample from the population

Use Methods Appropriately

Can You Use a CI Like This?

By our calculation, an approximate 95% confidence interval for the average age of the mothers in the population is (26.9, 27.6) years.

True or False:

 About 95% of the mothers in the population were between 26.9 years and 27.6 years old.

Answer: False. We're estimating that their average age is in this interval.

Is This What a CI Means?

An approximate 95% confidence interval for the average age of the mothers in the population is (26.9, 27.6) years.

True or False:

 There is a 0.95 probability that the average age of mothers in the population is in the range 26.9 to 27.6 years.

Answer: False. The average age of the mothers in the population is unknown but it's a constant. It's not random. No chances involved.

When Not to Use The Bootstrap

- If you're trying to estimate very high or very low percentiles, or min and max
- If you're trying to estimate any parameter that's greatly affected by rare elements of the population
- If the probability distribution of your statistic is not roughly bell shaped (the shape of the empirical distribution will be a clue)
- If the original sample is very small

To-do

Assignment 4