

Computer Vision

Lecture 9 Panorama

School of Computer Science and Technology

Ying Fu

Outline

- Quick review of keypoints and RANSAC
- Panorama formulation
- Matching corresponding keypoints
- Stitching images together with affine transformation

Outline

- Quick review of keypoints and RANSAC
- Panorama formulation
- Matching corresponding keypoints
- Stitching images together with affine transformation

What are keypoints?

Reliable, unique points in images which can be used to find corresponding regions in different images of the same scene

Finding keypoints

Harris Corner Detector
Use gradient Eigenvalues to find
corners at a certain scale

Harris-Laplacian
Find keypoints using Harris and
scale using Laplacian filter

DoGUse DoG filters to find keypoints
across space and scale

Describing keypoints

SIFT Descriptor

Keypoints as histogram of normalize gradient orientation

HoGRegion (or image) as histograms
of local gradients

- Repeat n times:
 - Sample and form hypothesis
 - Find number of inliers
 - If max_inliers, save model
- Recompute model on inliers

- Repeat n times:
 - Sample and form hypothesis
 - Find number of inliers
 - If max_inliers, save model
- Recompute model on inliers

- Repeat n times:
 - Sample and form hypothesis
 - Find number of inliers
 - If max_inliers, save model
- Recompute model on inliers

- Repeat n times:
 - Sample and form hypothesis
 - Find number of inliers
 - If max_inliers, save model
- Recompute model on inliers

- Repeat n times:
 - Sample and form hypothesis
 - Find number of inliers
 - If max_inliers, save model
- Recompute model on inliers

Outline

- Quick review of keypoints and RANSAC
- Panorama formulation
- Matching corresponding keypoints
- Stitching images together with affine transformation

Panorama

Panorama

Key insight: leverage corresponding keypoints

Problem 1: how to match keypoints?

Problem 2: how to fit images?

Outline

- Quick review of keypoints and RANSAC
- Panorama formulation
- Matching corresponding keypoints
- Stitching images together with affine transformation

How to know if keypoints are "the same"?

Use keypoint descriptors!

Matching result

Outline

- Quick review of keypoints and RANSAC
- Panorama formulation
- Matching corresponding keypoints
- Stitching images together with affine transformation

Easy case: pictures taken from same angle

Hard case: pictures taken from diffangles

Find transformation between matches

Given:

p1

$m_{1,\chi}^1$	$m_{1,\mathcal{Y}}^1$	1
$m_{1,x}^2$	$m_{1,\mathcal{Y}}^2$	1
$m_{1,x}^3$	$m_{1,y}^3$	1
$m_{1,\chi}^4$	$m_{1,y}^4$	1

*p*2

$m_{2,\chi}^1$	$m_{2,y}^1$	1
$m_{2,x}^2$	$m_{2,y}^2$	1
$m_{2,x}^3$	$m_{2,y}^3$	1
$m_{2,\chi}^4$	$m_{2,y}^4$	1

Find transformation matrix H such that:

$$p2 \cdot H = p1$$

What if we have noisy matches

Refine transformation matrix with RANSAC!

Pick subset

Fit affine matrix and find inliers

Recompute matrix with all inliers and stitch!

Reading

• Szeliski (2st edition): Chapter 8