안전성과 효율성을 고려한 강화학습 기반 세종시 자율주행 버스 경로 최적화

5조 Tayoing 이재연 이상하 방현성 최세진

CONTENTS

프로젝트 개요

- 주제 분석 배경
- 분석 방향 및 목표

데이터 분석

- 데이터 전처리 및 모델링
- 심층 강화학습 활용

결과

- 시뮬레이션
- 기대효과 및 활용방안

01. 프로젝트 개요

프로젝트 개요

자율주행차 시장 규모(전망)

자료 : 소프트웨어정책연구소, 한국과학기술정보 연구원(KISTI)

■ 네이트 뉴스

테슬라, 세계 3위급 슈퍼컴 출범...완전자율주행 기술 가속화

한눈에 보는 오늘 : 경제 - 뉴스 : 테슬라가 자율주행 기술 발전을 위한 AI(인공지능) 투자를 본격화하고 있다. 태슬라는 29일(현지시간) 세계 3위급...

8시간 전

구글 운전자 없는 자율주행차 웨이모, 미 텍사스에서 시범운 영 시작

구글의 완전 자율 주행차 업체인 웨이모가 운전자 없는 자율주행차 시범 운영을 미국에서 시작한...

▲ 조선일보

현대차·삼성·KT·카카오 '자율주행 어벤저스'... 2400조 시장 공략

현대차·삼성·KT·카카오 자율주행 어벤저스 2400조 시장 공략 한국 경제의 뉴 엔진 3 미래기술 탑재, 질주하는 한국車 지난 5월 24일 경기 화성 현대차...

martcity.go.kr

https://smartcity.go.kr > 정책 > 보도자료

세종시, 자율주행 빅데이터 관제센터로 미래차산업 선도

2021. 11. 26. — - 차량관제, 데이터 수집·분석 등 **자율주행** 생태계 조성 기대 -. **세종**특별자치**시** (시장 이춘희)가 중소벤처기업부 규제자유특구 사업 일환으로 '**자율주행** ...

세종시, 자율주행산업 선도도시 '쾌속 질주'

△ 최형순기자 │ ② 승인 2022.12.16 13:59

자율주행 BRT 버스, 국내 최초로 세종·충북 도로 달린다

○ 곽중희기자 | ② 승인 2022 12 27 09:35 | ⊙ 댓글 0

프로젝트 배경

- 1. 계속해서 성장할 것으로 기대되는 자율 주행차 시장
- 2. 자율 주행 시대를 준비하는 세종시

프로젝트 개요

자율주행차 관련 감정 분석

[Base= 자율주행차 관련 감정 키워드(832,783)] 자료 : 빅데이터 분석 전문업체 버즈메트릭스

👆 한겨레

'자율주행 사고=제2의 급발진'...'천만원 옵션'인데 핸들 못 놓 는 운전자

레벨3, 위급·개입 요청 땐 운전자가 운행운전주체 바뀔 때 사고 책임소재 불분명레벨업 미루거나 레벨2.9까지만 고도화.

2023. 4. 5.

🔘 국민일보

자율주행차 사고나면 누구 책임?… 현행법으론 못 따진다

자율주행차가 스스로 주행하다 교통법규를 위반하거나 사고를 유발하면 책임은 운전자와 차량 제조 사 중 어디에 있을까. 현행법으로는 책임 소재를...

시내버스 배차간격

세종시 교통 분담률

자료: KBS 뉴스 / 한국 교통연구원

계속되는 자율주행 사고 사고 책임에 대한 불확실성

다른 시 대비 긴 세종시 시내버스 배차 간격 승용차 대비 부족한 버스의 교통 분담률

프로젝트 배경

2022. 1. 10.

프로젝트 개요

프로젝트 목적

계속되는 자율주행 사고 사고 책임에 대한 불확실성

불안전한 자율주행

교통사고 위험지역을 피해 안정성을 높이고

다른 시 대비 긴 세종시 시내버스 배차 간격 승용차 대비 부족한 버스의 교통 분담률

비효율적 세종시 교통

이동시간과 주변시설을 고려하여 접근성과 효율성을 높인

세종시 버스 경로 최적화 모델 구축

02. 데이터 분석

활용 데이터

데이터	출처	수집년도
세종시 표준노드링크	ITS 국가교통정보센터	2023
세종시 차량통행 속도정보	교통정보시스템, TOPIS	2023-08-10 20:55
세종시 교통량 정보	교통정보시스템, TOPIS	2023-08-10 20:55
세종시 교통사고 정보	교통사고 분석 시스템 (TASS)	2019~2022
세종시 버스 정류장	공공데이터포털	2022
세종시 초등학교 및 유치원	공공데이터포털	2022

세종시 버스 정류장 EDA

세종시 유치원 & 초등학교 EDA

초등학교: Green , 유치원: Red

세종시 도로 위험도 EDA

산출 절차

도로위험도지수 = $10 \times \text{도로위험도(Basic)} \times \text{X_whether} \times \text{X_traffic} \times \text{X_time}$

-10x : 산출되는 도로위험도 지수 값이 적어 계산값에 10을 곱하여 지수 선정

-도로위험도(Basic) : 링크 단위길이(KM)당 사고 심각도 유형별 위험도지수 ∑ (사고건수 x 사상자수 x 사상자 환산계수)

<사상자 환산계수>

구분	사망자	중상자수	경상자수	부강신고
사상자 환산계수 (사고비용 고려)	1.0000	0.1168	0.0068	0.0033

-X_whether : 기상 수정계수(맑음, 강우, 강설, 안개)

-X_traffic : 소통상황 수정계수(원활, 지체, 정체)

-X_time : 주야시간대 수정계수(주간, 야간)

데이터 전처리 및 속성결합

2. 세종시 격자 단위별 주변시설 표시

3. 세종시 격자단위별 도로 위험도 표시

>> 4. 좌표를 매치 시켜 세종시 링크 위에 주변시설 수와 도로 위험도 속성을 결합

모델 설계

전처리가 끝난 노드와 링크 데이터를 위경도 기반하여 지도에 시각화

	LINK_ID	Source	Target	ROAD_NAME	MAX_SPD	LENGTH	S_latitude	S_longitude	t_latitude	t_longitude
0	4130111700	4130109600	4130111200	성덕영곡길	40	226.414079	36.458554	127.273199	36.459599	127.275363
1	4130099600	4130044900	4130050200	금암길	40	1178.671271	36.439330	127.206689	36.438242	127.218718
2	4130222300	4130103600	4130105000	다솜3로	30	250.094336	36.500094	127.268189	36.502198	127.269190
3	4130256100	4130082400	4130086300	절재로	50	173.849428	36.507375	127.255996	36.507823	127.257856
4	4130321300	4130163800	4130163200	청연로	60	362.215130	36.534298	127.352849	36.535404	127.349043
	•••					***		***		
4780	4130118200	4130107400	4130106900	종합터미널로	40	162.094000	36.468066	127.271059	36.466638	127.270678
4781	4130118700	4130103100	4130103700	종합경기장로	40	85.571944	36.466779	127.267891	36.467505	127.268216
4782	4130267500	4130096800	4130101700	보듬2로	30	272.994648	36.511053	127.263871	36.511606	127.266840
4783	4130375200	4130136200	4130136000	죽림본로	30	56.539412	36.590624	127.295192	36.591132	127.295138
4784	4130469401	4130174401	4130174201	수목원로	50	419.064420	36.496079	127.292620	36.493028	127.289859
4785 rows × 10 columns										

모델 설계

• 차량 통행속도 < 20 : red

• 차량 통행속도 < 40 : yellow

• 차량 통행속도 < 60 : blue

• 차량 통행속도 > 60 : green

	LINK_ID	통행속도
0	4130000100	15.0
1	4130000200	21.0
2	4130000299	16.0
3	4130000300	18.0
4	4130000399	42.0
5058	4130649599	30.0

```
for _, row in df.iterrows():
source_location = [row['S_latitude'], row['S_longitude']]
target_location = [row['t_latitude'], row['t_longitude']]
speed=row['통행속도']
if speed <= 20:
    polyline=folium.PolyLine(locations=(source_location, target_location), color='red')
elif speed<=40:
    polyline=folium.PolyLine(locations=(source_location, target_location), color='yellow')
elif speed<=60:
    polyline=folium.PolyLine(locations=(source_location, target_location), color='blue')
else:
    polyline=folium.PolyLine(locations=(source_location, target_location), color='green')
m.add_child(polyline)
```


모델 설계

• 국토교통부 – 정부세종컨벤션센터 – 국립세종도서관 –산업통상자원부 를 지나는 도로의 노드들을 표시

모델 설계 - 강화학습

What Q-learning?

행동을 수행하는 학습자가 어떤 행동을 해야 하는지 알지 못하는 상태에서 행동에 대한 시행착오를 통해 보상을 극대화하기 위해 어떻게 행동해야 할 지 방향을 찾는 학습 방법

Why Q-learning?

비지도 학습: 목표에 대한 엄격한 지침 X 제한적인 결과 초래

>> 생명이 걸린 자율주행 분야의 부적합

지도 학습: 사전적인 지식을 요구하고 학습 데이터가 많아야 하는 한계

>> 자율 주행 시나리오에 따른 모든 데이터 수집X, 부족한 자율 주행 데이터

강화학습: 시행착오를 통해 최적의 행동을 스스로 학습, 더 확장된 학습 방법 제공

모델 설계 - 강화학습

Defining the rewards

〈접근성〉

-버스정류장: 1점

-초등학교 및 유치원 있는 곳 : 1점

〈안전성〉

-위험도 7 이상: -2

-위험도 3이상 7이하: -1

〈효율성〉

-구간 전체 빨간색: 2점

-부분적으로 빨간색: 3점

-구간 전체 노란색 : 4점

-부분적으로 파란색: 5점

-위 보상점수를 기본으로 하여 최적경로 확인 후 되돌아

가는 길에는 마이너스 점수를 줌

03. 결과

최종 결과

최적 노선

특정 출발지/목적지별 최적 경로

회종 결과

웹페이지 구현

https://jaeyeon2854.github.io/ex_web/

최종 결과

기대 효과

COST

- -경로 최적화 (불필요한 이동거리 감소)
- -도로 혼잡도 개선
- -자율주행 사고 감소
- -자율주행 인프라 구축으로 인한 새로운 시장 형성

ENV

-경로 최적화 및 대중교통(버스) 이용률 증가로 인한 탄소 배출량 감소

DATA

- -지속적인 자율주행 데이터 수집 기대
- -구축 모델을 기반으로 버스 경로 외 승용차 등 다른 상황에서의 확대 적용 기대

