18CSE390T Computer Vision

Bundle Adjustment

Bundle Adjustment

- The most accurate way to recover structure from motion is to perform robust nonlinear minimization of the measurement (re-projection) errors, which is known as photogrammetry (in computer vision) communities as *bundle adjustment*.
- Our feature location measurement x_{ij} now depends only on the point (track index) i but also on the camera pose index j.
- $x_{ij} = f(p_i, R_j, c_j, K_j)$
- 3D point positions p_i are also updated simultaneously

Bundle Adjustment (cont.)

- The leftmost box performs a robust comparison of the predicted and measured 2D locations \hat{x}_{ij} and \hat{x}_{ij} after re-scaling by the measurement noise covariance \sum_{ij}
- Operation can be $\begin{aligned} \mathbf{r}_{ij} &= \tilde{\mathbf{x}}_{ij} \hat{\mathbf{x}}_{ij}, \\ s_{ij}^2 &= \mathbf{r}_{ij}^T \Sigma_{ij}^{-1} \mathbf{r}_{ij}, \\ e_{ij} &= \hat{\rho}(s_{ij}^2), \end{aligned}$

$$\hat{\rho}(r^2) = \rho(r).$$

Figure: A camera rig and its associate (b) ransform chain. (a) As the mobile rig (robot) moves around in the world, its pose with respect to world at time t is captured by $(R^r_{\ \ \ }c^r_{\ \ \ })$. Each camera's pose with respect to the rig captured by $(R^r_{\ \ \ }c^r_{\ \ \ })$. (b) A 3D point with world coordinates p^w_i is first transformed into rig coordinates p^r_i , and then through rest of the camera-specific chain.