Fourier Series

Harmonic Analysis:

$$f(x) = sa_0$$
 $f(x) = sa_0$
 $f(x) = sa_0$

Example 24. Find the Fourier series as far as the second harmonic to represent the function given by table below: \mathcal{R}_{2} \mathcal{R}_{2}

 0^{o} 240° 300° х 30° 60° 120° 150° 180° 330° f(x)2.34 3.01 3.69 4.15 3.69 2.20 0.83 0.51 0.88 1.09 1.19 1.64

Solution									
x°	sin x	sin 2x	cos x	cos 2x	f(x)	$f(x)$. $\sin x$	$f(x)$. $\sin 2x$	$f(x)$. $\cos x$	f(x). $cos 2x$
00	0	0	1	1	2.34	0	0	2.340	2.340
<u>30°</u>	0.50	0.87	0.87	0.50	3.01	1.505	2.619	2.619	1.505
60°	0.87	0.87	0.50	-0.50	3.69	3.210	3.210	1.845	-1.845
90°	1.00	0	0	-1.00	4.15	4.150	0	0	-4.150
120°	0.87	- 0.87	- 0.50	-0.50	3.69	3.210	- 3.210	- 1.845	-1.845
150°	0.50	- 0.87	- 0.87	0.50	2.20	1.100	- 1.914	- 1.914	1.100
180°	0	0	- 1	1.00	0.83	0	0	- 0.830	0.830
210°	- 0.50	0.87	- 0.87	0.50	0.51	-0.255	0.444	- 0.444	0.255
240°	-0.87	0.87	- 0.50	-0.50	0.88	-0.766	0.766	- 0.440	-0.440
270°	- 1.00	0	0	-1.00	1.09	-1.090	0	0	-1.090
300°	-0.87	- 0.87	0.50	-0.50	1.19	-1.035	- 1.035	0.595	-0.595
330°	-0.50	- 0.87	0.87	0.50	1.64	-0.820	- 1.427	1.427	0.820
					25.22	9.209	- 0.547	3.353	-3.115

$$a_0 = 2 \times \text{Meanof } f(x) = 2 \times \frac{25.22}{12} = 4.203$$
 $a_1 = 2 \times \text{Meanof } f(x) \cos x = 2 \times \frac{3.353}{12} = 0.559$
 $a_2 = 2 \times \text{Meanof } f(x) \cos 2x = 2 \times \frac{-3.115}{12} = -0.519$
 $b_1 = 2 \times \text{Meanof } f(x) \sin x = 2 \times \frac{9.209}{12} = 1.535$
 $b_2 = 2 \times \text{Meanof } f(x) \sin 2x = 2 \times \frac{-0.547}{12} = 0.091$

Fourier series is

$$f(x) = \frac{a_0}{2} + a_1 \cos x + a_2 \cos 2x + \dots + b_1 \sin x + b_2 \sin 2x + \dots$$

= 2.1015 + 0.559 \cos x - 0.519 \cos 2x + \dots + 1.535 \sin x - 0.091 \sin 2x + \dots \text{Ans.}