UNIVERSITY OF TWENTE.

SECURE DATA MANAGEMENT

Multiple Writer – Multiple Reader Example

Public Key Encryption with Conjunctive Keyword Search and Its Extension to a Multi-user System

Source:

Hwang, Y., & Lee, P. (2007). Public key encryption with conjunctive keyword search and its extension to a multi-user system. *Pairing-Based Cryptography—Pairing 2007*, 2-22.

OUTLINE

- Context of mPECK scheme
- Generic PECK scheme and its adversarial models
- Limitation of PECK
- Generic mPECK scheme and its adversarial model
- Concrete construction of mPECK using ElGamal Multi-receiver Encryption
 Scheme

Context of mPECK SCHEME

mPECK: multi-user Public-Key Encryption Conjunctive Keyword Search

- ☐ Data of multiple users is stored encrypted on a minimally trusted server
- ☐ Multiple users can make queries for conjunctive keyword searches
 - e.g. 'documents containing keyword1 AND keyword2 AND keyword3'
- ☐ Simplifications
 - Same keyword never appears in two different keyword fields
 - Example of field names in emails: 'to', 'from', 'subject', 'time', etc.
 - Embed field names within keywords (e.g. concatenate: 'from.Alice', 'subject.report')
 - Every keyword field is defined for every document
 - 'to.Null' for a field that doesn't have a valid keyword
 - Don't mark field names in keywords!

PECK SECURITY MODEL: DLDH ASSUMPTION

DECISION LINEAR DIFFIE-HELLMAN ASSUMPTION

*PPT: Probabilistic Polynomial Time

- Let $g_1, g_2, g_3 \in G_1$ and $x, y, z \in \mathbb{Z}_q$ Given $(g_1, g_2, g_3, g_1^x, g_2^y, g_3^z)$ decide whether z = x + y.
- The advantage of an algorithm \mathcal{A} in solving DLDH in G_1 is: $Adv(DLDH_{\mathcal{A}}) = \left| \Pr \left[\mathcal{A} \left(g_1, g_2, g_3, g_1^x, g_2^y, g_3^{x+y} \right) = 1 \right] \Pr \left[\mathcal{A} \left(g_1, g_2, g_3, g_1^x, g_2^y, g_4 \right) = 1 \right] \right|$ where $g_1, g_2, g_3, g_4 \in_R G_1$ and $x, y, z \in_R \mathbb{Z}_q$
- \square The DLDH assumption holds if no PPT algorithm has a non-negligible advantage in solving the DLDH problem in G_1 .

GENERIC PECK SCHEME

Overview - Upload

Stores $\langle \text{Enc}(pk, m), \text{PECK}(pk, W) \rangle$

 $W = \{w_1, ..., w_\ell\}$ set of all possible searchable keywords

GENERIC PECK SCHEME

Overview - Query

Test $(pk, PECK(pk, W), T_Q) \rightarrow 1 \text{ or } 0$ If 1 sends Enc(pk, m)

$$T_Q$$
 query trapdoor $Q = \{I_1, \dots, I_N, w_{I_1}, \dots, w_{I_N}\}$ conjunctive keyword query, $\{w_{I_1}, \dots, w_{I_N}\} \subseteq W$

GENERIC PECK SCHEME (1)

PECK scheme consists of four polynomial time algorithms:

- **□** KeyGen
 - Input
 - 1^k : security parameter
 - Output
 - params: system's parameters
 - (pk, sk): public/private keypair
- ☐ PECK: "Run by the sender (data owner) to encrypt a keyword set"
 - Input
 - *pk*: public key
 - $W = \{w_1, \dots, w_\ell\}$: keyword set
 - Output
 - S: a searchable keyword encryption of W (under public key pk)

GENERIC PECK SCHEME (2)

PECK scheme consists of four polynomial time algorithms:

- \square **Trapdoor:** "Run by the **sender** to enable the **server** to retrieve the keywords of S"
 - Input
 - *sk*: secret key
 - Query: $Q = \{I_1, \dots, I_m, w_{I_1}, \dots, w_{I_m}\}$ for $m \le \ell$ where I_i is an index of a location of w_{I_i}
 - Output
 - T_Q : a trapdoor for the conjunctive search of the given keyword query Q
- \square **Test:** "Run by the **server** to search the documents with the keywords of a trapdoor T_Q "
 - Input
 - pk, S, T_Q
 - Output
 - '1' if S includes Q, and '0' otherwise

ADVERSARIAL MODEL FOR PECK: CHOSEN KEYWORD ATTACK

Semantic security against two variants of chosen keyword attacks

- ☐ IND-CC-CKA (indistinguishability of **ciphertext** from **ciphertext**)
- ☐ IND-CR-CKA (indistinguishability of **ciphertext** from **random**)

IND-CC-CKA GAME

Challenger

Probing 1

Adversary

Setup

 $(params, pk, sk) \leftarrow KeyGen(1^k)$

params, pk

• Chooses keyword sets Q_1, \dots, Q_d

• Queries $\mathcal{O}^{\text{Trapdoor}}$ and gets trapdoors:

$$T_{Q_1} \coloneqq Trapdoor(sk, Q_1)$$

$$\vdots$$

$$T_{Q_d} \coloneqq Trapdoor(sk, Q_d)$$

Challenge

Chooses
$$\beta \in_R \{0,1\}$$
, and
Sets $S_\beta = PECK(pk, W_\beta)$

Chooses W_0 , W_1 target keywords

None of T_{Q_1}, \dots, T_{Q_N} should distinguish W_0 from $W_1!$

IND-CC-CKA Security definition PECK is secure, if for any t-time adversary $\mathcal A$ who makes at most q_t trapdoor queries, we have:

$$Adv_{\text{PECK}, \mathcal{A}}^{\text{IND-CC-CKA}}(1^k) = \left| \Pr[\beta' = \beta] - \frac{1}{2} \right| < \epsilon$$

Probing 2

- Chooses keyword sets $Q_{d+1}, ..., Q_N$
- Queries $\mathcal{O}^{\text{Trapdoor}}$ and gets trapdoors:

$$T_{Q_{d+1}} := Trapdoor(sk, Q_{d+1})$$

$$\vdots$$

$$T_{Q_N} := Trapdoor(sk, Q_N)$$

Guess

Outputs
$$\beta' \in \{0,1\}$$

The Adversary wins if $\beta' = \beta$

IND-CR-CKA GAME

Challenger

Setup

$$(params, pk, sk) \leftarrow KeyGen(1^k)$$

params, pk

Adversary

Probing 1

- Chooses keyword sets $Q_1, ..., Q_d$
- Queries $\mathcal{O}^{\text{Trapdoor}}$ and gets trapdoors:

$$T_{Q_1} \coloneqq Trapdoor(sk, Q_1)$$

. . .

 $T_{Q_d} \coloneqq Trapdoor(sk, Q_d)$

Challenge

Chooses random keyword W_1 and $\beta \in_R \{0,1\}$ Sets $S_\beta = PECK(pk, W_\beta)$

Chooses W_0 target keyword

None of T_{Q_1}, \dots, T_{Q_N} should distinguish W_0 from W_1 !

IND-CR-CKA Security definition PECK is secure, if for any t-time adversary \mathcal{A} who makes at most q_t trapdoor queries, we have:

$$Adv_{\text{PECK}, \mathcal{A}}^{\text{IND-CR-CKA}}(1^k) = \left| \Pr[\beta' = \beta] - \frac{1}{2} \right| < \epsilon$$

Probing 2

- Chooses keyword sets $Q_{d+1}, ..., Q_N$
- Queries $\mathcal{O}^{\text{Trapdoor}}$ and gets trapdoors:

$$T_{Q_{d+1}} \coloneqq Trapdoor(sk, Q_{d+1})$$

•

 $T_{Q_N} := Trapdoor(sk, Q_N)$

Guess

Outputs $\beta' \in \{0,1\}$

The Adversary wins if $\beta' = \beta$

Limitation of PECK

☐ Situation

Suppose that a data owner wants to share its data with n different users

- \square In **PECK**, the encrypted data is stored in form $\langle Enc(pk_i, m), PECK(pk_i, W) \rangle$
 - He has to upload to the server

$$\langle Enc(pk_1, m), PECK(pk_1, W) \rangle$$

 \vdots
 $\langle Enc(pk_n, m), PECK(pk_n, W) \rangle$

The server stores them separately

mPECK solves this limitation

GENERIC mPECK SCHEME

Overview – Upload

*Recall: mEnc($pk_1, ..., pk_n, \cdot$) Multi-receiver PKE: Encrypt in a way that allows several users to decrypt

GENERIC mPECK SCHEME

Overview – Query

GENERIC mPECK SCHEME (1)

mPECK scheme consists of four polynomial time algorithms:

□ KeyGen

- Input
 - 1^k: security parameter
- Output
 - params: system's parameters
 - $(pk_1, sk_1), \dots, (pk_n, sk_n)$: public/private keypairs
- ☐ mPECK: "Run by the sender (data owner) to encrypt a keyword set"
 - Input
 - pk_1, \dots, pk_n : public keys
 - $W = \{w_1, \dots, w_\ell\}$: keyword set
 - Output
 - S: a searchable keyword encryption of W (under public keys pk_1, \dots, pk_n)

GENERIC mPECK SCHEME (2)

mPECK scheme consists of four polynomial time algorithms:

- \square **Trapdoor:** "Run by the **sender** to enable the **server** to retrieve the keywords of S
 - Input
 - sk_i : secret key
 - Query: $Q = \{I_1, ..., I_m, w_{I_1}, ..., w_{I_m}\}$ for $m \le \ell$ where I_i is an index of a location of w_{I_i}
 - Output
 - $T_{j,Q}$: a trapdoor for the conjunctive search of the given keyword query Q
- \square **Test:** "Run by the **server** to search the documents with the keywords of a trapdoor $T_{j,Q}$ "
 - Input
 - pk_j , S, $T_{j,Q}$
 - Output
 - '1' if S includes Q, and '0' otherwise

IND-mCR-CKA GAME

Challenger

Setup

$$\begin{pmatrix} params, pk_1, \dots, pk_n \\ , sk_1, \dots, sk_n \end{pmatrix} \leftarrow KeyGen(1^k)$$
 params, pk_1, \dots, pk_n

Adversary

Probing 1

- Chooses a fixed user j
- Chooses keyword sets $Q_1, ..., Q_d$
- Queries $\mathcal{O}^{\text{Trapdoor}}$ and gets trapdoors:

$$T_{j,Q_1} \coloneqq Trapdoor(sk_j, Q_1)$$
 \vdots
 $T_{j,Q_d} \coloneqq Trapdoor(sk_j, Q_d)$

Challenge

Chooses random keyword W_1 and $\beta \in_R \{0,1\}$ Sets $S_\beta = PECK(pk_1, ..., pk_n, W_\beta)$

Chooses W_0 target keyword

None of T_{Q_1}, \dots, T_{Q_N} should distinguish W_0 from W_1 !

IND-mCR-CKA Security definition: mPECK is secure, if for any t-time adversary \mathcal{A} who makes at most q_t trapdoor queries, we have:

$$Adv_{\text{mPECK}, \mathcal{A}}^{\text{IND-mCR-CKA}}(1^k) = \left| \Pr[\beta' = \beta] - \frac{1}{2} \right| < \epsilon$$

Probing 2

- Chooses keyword sets $Q_{d+1}, ..., Q_N$
- Queries $\mathcal{O}^{\text{Trapdoor}}$ and gets trapdoors:

$$T_{j,Q_{d+1}} \coloneqq Trapdoor(sk_j, Q_{d+1})$$

$$\vdots$$

$$T_{j,Q_N} := Trapdoor(sk_j, Q_N)$$

Guess

Outputs $\beta' \in \{0,1\}$ **The Adversary wins if** $\beta' = \beta$

CONCRETE mPECK SCHEME CONSTRUCTION (1)

□ KeyGen

- Input
 - 1^k : security parameter
- Output
 - params
 - $\hat{\mathbf{e}}: \mathbb{G}_1 \times \mathbb{G}_1 \to \mathbb{G}_2$
 - $\mathbb{G}_1 = \langle g \rangle$
 - $H_1, H_2: \{0,1\}^{\log(w)} \to \mathbb{G}_1$ are two different collision-resistant hash functions
 - Public/private keypairs $(pk_1, sk_1), \dots, (pk_n, sk_n)$
 - $(pk_i, sk_i) = (y_i, x_i)$ where for $i = 1 \dots n$
 - $x_i \in_R \mathbb{Z}_p^*$ and $y_i = g^{x_i}$

CONCRETE mPECK SCHEME CONSTRUCTION (2)

- ☐ mPECK: "Run by the sender to encrypt a keyword set"
 - Input
 - pk_1, \dots, pk_n : public keys $(pk_i = y_i)$
 - $W = \{w_1, \dots, w_\ell\}$: keyword set
 - Algorithm
 - Compute: $h_i = H_1(w_i)$ and $f_i = H_2(w_i)$ for all $w_i \in W$
 - Select: $s, r \in_R \mathbb{Z}_p^*$
 - Compute
 - $A = g^r$ and $B_j = y_j^s$ for all $1 \le j \le n$
 - $C_i = h_i^r f_i^s$ for all $1 \le i \le \ell$
 - Output
 - $S = \langle A, B_1, \dots, B_n, C_1, \dots, C_\ell \rangle$

CONCRETE mPECK SCHEME CONSTRUCTION (3)

- \square **Trapdoor:** "Run by the **sender** to enable the **server** to retrieve the keywords of S"
 - Input
 - $sk_i = x_i$: secret key
 - Query: $Q = \{I_1, ..., I_m, w_{I_1}, ..., w_{I_m}\}$ for $m \le \ell$ where I_i is an index of a location of w_{I_i}
 - Algorithm
 - Select: $t \in_R \mathbb{Z}_p^*$
 - Compute
 - $T_{j,Q_1} = g^t$
 - $T_{j,Q_2} = (h_{I_1} \dots h_{I_m})^t$ where $h_{I_i} = H_1(w_{I_i})$
 - $T_{j,Q_3} = (f_{I_1} \dots f_{I_m})^{\frac{t}{x_j}}$ where $f_{I_i} = H_2(w_{I_i})$
 - Output
 - $T_{j,Q} = (T_{j,Q_1}, T_{j,Q_2}, T_{j,Q_3}, I_1, \dots, I_m)$

CONCRETE mPECK SCHEME CONSTRUCTION (4)

*Recall: $\hat{\mathbf{e}}(g^a, h^b) = \hat{\mathbf{e}}(g, h)^{ab}$

- \square **Test:** "Run by the **server** to search the documents with the keywords of a trapdoor $T_{i,O}$ "
 - Input
 - $pk_i = y_i$
 - $S = \langle A, B_1, \dots, B_n, C_1, \dots, C_\ell \rangle$
 - $T_{j,Q} = (T_{j,Q_1}, T_{j,Q_2}, T_{j,Q_3}, I_1, \dots, I_m)$
 - Check
 - Output '1' if the equation holds and '0' otherwise
 - $\hat{\mathbf{e}}(T_{j,Q_1}, \prod_{i=1}^m C_{I_i}) = \hat{\mathbf{e}}(A, T_{j,Q_2}) \cdot \hat{\mathbf{e}}(B_j, T_{j,Q_3})$

*Remember:

$$\overline{y_j} = g^{x_j}$$
 and $B_j = y_j^s$
 $B_j = g^{s \cdot x_j}$

Why does it work?

$$\hat{\mathbf{e}}(T_{j,Q_1}, \prod_{i=1}^m C_{I_i}) = \hat{\mathbf{e}}(g^t, \prod_{i=1}^m (h_{I_i}^t f_{I_i}^s)) = \hat{\mathbf{e}}(g^t, \prod_{i=1}^m h_{I_i}^t) \cdot \hat{\mathbf{e}}(g^t, \prod_{i=1}^m f_{I_i}^s) = \hat{\mathbf{e}}(g, \prod_{i=1}^m h_{I_i})^{t \cdot r} \cdot \hat{\mathbf{e}}(g, \prod_{i=1}^m f_{I_i})^{t \cdot s}$$

 $\stackrel{\circ}{} (A, T_{j,Q_2}) \cdot \hat{\mathbf{e}}(B_j, T_{j,Q_3}) = \hat{\mathbf{e}}(g^r, \prod_{i=1}^m h_{I_i}^t) \cdot \hat{\mathbf{e}}\left(g^{s \cdot \mathbf{x}_j}, \prod_{i=1}^m f_{I_i}^{\frac{t}{\mathbf{x}_j}}\right) = \hat{\mathbf{e}}(g, \prod_{i=1}^m h_{I_i})^{t \cdot r} \cdot \hat{\mathbf{e}}(g, \prod_{i=1}^m f_{I_i})^{t \cdot s}$

ElGamal Type Multi-receiver Encryption Scheme

In mPECK, encrypted data is uploaded as:

$$(E,S) \leftarrow \langle mEnc(y_1, \dots, y_n, msg), mPECK(y_1, \dots, y_n, W) \rangle$$

- ☐ The Data owner uses the same random $s, r \in_R \mathbb{Z}_p^*$ used to generate $\mathbf{S} \coloneqq mPECK(y_1, ..., y_n, W)$ to encrypt message msg via ElGamal Multi-receiver Encryption Scheme
- \square Encrypts msg as follows
 - $E := mEnc(y_1, ..., y_n, msg) = H_0(\hat{e}(g, g)^{rs}) \oplus msg$
 - where
 - $H_0: \mathbb{G}_2 \to \mathcal{M}$ is another one-way hash function
 - $\hat{\mathbf{e}}: \mathbb{G}_1 \times \mathbb{G}_1 \to \mathbb{G}_2$
 - $\mathbb{G}_1 = \langle g \rangle$

ElGamal Type Multi-receiver Encryption Scheme

Stored encrypted data of the form:

$$(\boldsymbol{E}, \boldsymbol{S}) \leftarrow \langle mEnc(y_1, \dots, y_n, \boldsymbol{msg}), mPECK(y_1, \dots, y_n, W) \rangle$$

 \square A user u_i makes a query by sending a trapdoor to the server

*Remember: $A = g^r$ $B_j = y_j^s = g^{s \cdot x_j}$ $E = H_0(\hat{e}(g, g)^{rs}) \oplus msg$

- \square The server returns (A, B_i, E)
- \square User u_i uses his private key x_i to decrypt E as follow
 - Computes: $X_j = H_0\left(\hat{\mathbf{e}}(A, B_j)^{1/x_j}\right) = H_0\left(\hat{\mathbf{e}}(g^r, g^{s \cdot x_j})^{1/x_j}\right)$ $= H_0\left(\hat{\mathbf{e}}(g, g)^{\frac{r \cdot s \cdot x_j}{x_j}}\right) = H_0\left(\hat{\mathbf{e}}(g, g)^{rs}\right)$
 - Outputs: $mDec(x_j, E, B_j) = E \oplus X_j = H_0(\hat{e}(g, g)^{rs}) \oplus msg \oplus H_0(\hat{e}(g, g)^{rs}) = msg$
- \square If user u_i is a legitimate, he will output "msg" otherwise random