Universidade de Santa Cruz do Sul Curso Ciência da Computação

Análises com Machine Learning em dados de redes sociais

Prof. Evandro Franzen Júlia Roberta Quoos Alves

> Santa Cruz do Sul 2023

1. Introdução

Para a realização do trabalho foram selecionados dois conjuntos de dados disponibilizados através do site UCI Machine Learning Repository: *Online Shoppers Purchasing Intention Dataset Data Set* e *Buzz in social media Data Set*. Ambos possuem como tema dados coletados em redes sociais.

O conjunto Online Shoppers Purchasing Intention Dataset Data Set possui informações extraídas do Google Analytics sobre a navegação de um usuário em um site de e-commerce. Segundo os autores, os valores dos atributos são derivados das informações de URL das páginas visitadas pelo usuário e atualizadas em tempo real quando um usuário realiza uma ação (por exemplo, passando de uma página para outra).

O conjunto *Buzz in social media Data Set* contém dados extraídos do Twitter. Segundo os autores: *"a natureza desequilibrada deste conjunto de dados deixa espaço para melhorias. Os dados podem ser dimensionados e normalizados"* (tradução própria).

O trabalho foi dividido em: introdução, análise dos atributos, limpeza e transformação, classificação e resultados e interpretação do modelo.

1.1 Preparação do ambiente

O ambiente utilizado para o desenvolvimento foi o Jupyter Notebook versão 6.5.4 no sistema operacional Windows 10. Bibliotecas Python necessárias: pandas, numpy, matplotlib, sklearn, seaborn e pycaret. As bases podem ser baixadas através dos links nas referências.

2. Análise dos atributos

Nesta seção consta a análise dos atributos do conjunto de dados (significado dos atributos, valores assumidos e outras informações relevantes) e a definição de quais foram usados no processo de classificação.

2.1 Conjunto 1: Online Shoppers Purchasing Intention Dataset Data Set

No conjunto *Online Shoppers Purchasing Intention Dataset Data Set,* os atributos "Administrative", "Administrative Duration", "Informational", "Informational Duration", "Product Related" e "Product Related Duration" representam o número de diferentes tipos de páginas visitadas pelo usuário na sessão e o tempo total gasto em cada categoria de página.

Os atributos "Bounce Rate", "Exit Rate" e "Page Value" representam as métricas medidas pelo Google Analytics para cada página do site de comércio eletrônico.

"Exit Rate" refere-se à porcentagem de visitantes que entram no site a partir dessa página e depois saem ("BounceRates") sem acionar nenhuma outra solicitação ao servidor analítico durante essa sessão.

"Special Day" indica a proximidade da visita ao site com uma data comemorativa específica (natal, dia das mães, etc) em que as sessões têm maior probabilidade de serem finalizadas com vendas.

O atributo a ser previsto será "Revenue" e os tipos de dados podem ser melhor observados na Tabela 1.

Tabela 1: Análise de atributos do Conjunto 1

Lista de Atributos	In [11]:	dados.dtypes	-
Allibutos	Out[11]:	Administrative Administrative_Duration Informational Informational_Duration ProductRelated ProductRelated_Duration BounceRates ExitRates PageValues SpecialDay Month OperatingSystems Browser Region TrafficType VisitorType Weekend Revenue dtype: object	int64 float64 int64 float64 float64 float64 float64 float64 int64 object int64 int64 int64 object bool
Nº Atributos	18 (10 atrib	outos numéricos e 8 cate	góricos)
Nº Instâncias	12330		

No processo de classificação serão utilizados os atributos: "ProductRelated", ProductRelated_Duration", "BounceRates", "ExitRates", "SpecialDay", "Month", "OperatingSystems", "Browser", "Region", "TrafficType", "VisitorType" e "Weekend".

2.2 Conjunto 2: Buzz in social media Data Set

O conjunto foi disponibilizado com 4 arquivos: *TomsHardware.data*, *TomsHardware.names*, *Twitter.data* e *Twitter.names*. Para a realização do trabalho foi utilizado o *Twitter.data* acrescido das informações de cabeçalho encontradas no *Twitter.names*.

Todos atributos são do tipo inteiro, exceto "Annotation". O atributo a ser previsto é "Mean Number of active discussion" (NAD), que descreve a popularidade de um tópico.

Tabela 2: Análise de atributos do conjunto 2

			•		
Lista de Atributos	In [6]:	dados.dtypes	3		
	Out[6]:	NCD Ø	int64		
		NCD_1	int64		
		NCD_2	int64		
		NCD_3	int64		
		NCD_4	int64		
		NAD_3	int64		
		NAD_4			
		NAD_5	int64		
		NAD_6			
		Annotation			
		Length: 78, dtype: object			
	NCD_0,NCD_1,NCD_2,NCD_3,NCD_4,NCD_5,NCD_6 AI_0,AI_1,AI_2,AI_3,AI_4,AI_5,AI_6 AS(NA)_0,AS(NA)_1,AS(NA)_2,AS(NA)_3,AS(NA)_4,AS(NA)_5,AS(NA)_6 BL_0,BL_1,BL_2,BL_3,BL_4,BL_5,BL_6 NAC_0,NAC_1,NAC_2,NAC_3,NAC_4,NAC_5,NAC_6 AS(NAC)_0,AS(NAC)_1,AS(NAC)_2,AS(NAC)_3,AS(NAC)_4,AS(NAC)_5,AS(NAC)_6 CS_0,CS_1,CS_2,CS_3,CS_4,CS_5,CS_6,A T_0,AT_1,AT_2,AT_3,AT_4,AT_5,AT_6, NA_0,NA_1,NA_2,NA_3,NA_4,NA_5,NA_6, ADL_0,ADL_1,ADL_2,ADL_3,ADL_4,ADL_5,ADL_6, NAD_0,NAD_1,NAD_2,NAD_3,NAD_4,NAD_5,NAD_6 Annotation				
Nº Atributos	78				
Nº Instâncias	583250				

O significado das variáveis e a associação nome/sigla pode ser encontrado na Tabela 3.

Tabela 3: Significado dos atributos do Conjunto 2

Nome do atributo	Sigla	Significado
Number of Created Discussions	NCD	número de discussões criadas
Author Increase	Al	número de novos autores interagindo no tópico
Attention Level (measured with number of authors)	AS(NA)	nível de atenção dada ao tópico de acordo com o número de autores
Burstiness Level	BL	fluxos de dados gerados
Number of Atomic Containers	NAC	relativo a um atributo do google

		analytics
Attention Level (measured with number of contributions)	AS(NAC)	nível de atenção dada ao tópico de acordo com o número de contribuições
Contribution Sparseness	CS	medida de disseminação das contribuições sobre a discussão do tópico
Author Interaction	AT	número médio de autores interagindo com o tópico
Number of Authors	NA	número de autores interagindo com o tópico
Average Discussions Length	ADL	mede diretamente o comprimento médio de uma discussão pertencente ao tópico
Mean Number of active discussion	NAD	o número de discussões envolvendo o tópico
Annotation	-	

3. Limpeza e transformação

Os dados foram analisados para verificar a necessidade de realizar tarefas de limpeza e transformação conforme a Tabela 3.

No Conjunto 1 foi constatada uma discrepância entre a quantidade de resultados em Revenue. Para solucionar o problema, o particionamento dos dados foi feito de modo que os dados ficassem mais equilibrados.

No Conjunto 2 foram encontrados outliers e um problema com a categorização dos atributos (cada atributo estava dividido em 7 grupos). Cada subgrupo foi analisado separadamente e os outliers foram removidos.

Tabela 3: Limpeza dos dados

Tabela 3: Limpeza dos dados					
Conjunto	Análise				
Online Shoppers	<pre>In [9]: dados.isnull().sum()</pre>				
Purchasing Intention Dataset Data Set	Out[9]: Administrative 0 Administrative_Duration 0 Informational 0 Informational_Duration 0 ProductRelated 0 ProductRelated_Duration 0 BounceRates 0 ExitRates 0 PageValues 0 SpecialDay 0 Month 0 OperatingSystems 0 Browser 0 Region 0 TrafficType 0 VisitorType 0 Weekend 0 Revenue 0 dtype: int64				
	O conjunto não possui valores nulos.				
	<pre>In [37]: dados.groupby(["Revenue"]).size() Out[37]: Revenue</pre>				
	Foi necessário realizar um particionamento melhor dos dados de treinamento porque o número de visitantes que não comprou (Revenue = 0) era 80% superior, prejudicando a predição no primeiro teste realizado.				
	<pre>In [19]: dados.groupby(['VisitorType']).size()</pre>				
	Out[19]: VisitorType New_Visitor 1694 Other 85 Returning_Visitor 10551 dtype: int64				
	<pre>In [20]: #mudando o tipo de variável do VisitorType labelencoder = LabelEncoder() dados['VisitorType'] = labelencoder.fit_transform(dados['VisitorType']) dados['VisitorType']</pre>				
	Out[20]: 0 2 1 2				
	As variáveis VisitorType e Month foram ajustadas de Object para int.				
Buzz in social media Data Set	O conjunto não possui valores nulos e os atributos já foram categorizados, mas há outliers e todos os atributos estão divididos em 7 subcategorias.				

4. Classificação

Devido ao grande número de instâncias, não consegui aplicar os algoritmos de Árvore de Decisão e Random Forest (MemoryError). O mesmo erro ocorreu outras vezes durante o processo de treinamento do conjunto 2, então diminuí o número de dados do conjunto.

Para determinar os algoritmos a serem utilizados no processo de classificação, foi utilizado um algoritmo de AutoML.

Conjunto 1 Accuracy AUC Kappa MCC TT (Sec) Gradient Boosting Classifier 0.9042 0.9317 0.6220 0.7255 0.6679 0.6124 0.6160 1.1940 **lightgbm** Light Gradient Boosting Machine 0.8992 0.9300 0.5997 0.7066 0.6477 0.5894 0.5927 0.5500
 rf
 Random Forest Classifier
 0.9051
 0.9246
 0.5974
 0.7404
 0.6598
 0.6054
 0.6110
 1.2110
 Extra Trees Classifier 0.8992 0.9192 0.5068 0.7610 0.6077 0.5527 0.5681 1.0040
 ada
 Ada Boost Classifier
 0.8902
 0.9128
 0.5828
 0.6682
 0.6213
 0.5575
 0.5601
 0.6130
 Linear Discriminant Analysis 0.8824 0.8978 0.3491 0.7630 0.4781 0.4221 0.4637 0.3980 lda Logistic Regression 0.8869 0.8866 0.3994 0.7555 0.5219 0.4646 0.4954 2.3370 nb Naive Baves Quadratic Discriminant Analysis 0.8312 0.8382 0.6299 0.4670 0.5359 0.4356 0.4432 0.4310 Decision Tree Classifier 0.8613 0.7503 0.5895 0.5492 0.5679 0.4856 0.4864 0.7540 **knn** K Neighbors Classifier 0.8563 0.7484 0.2606 0.5786 0.3585 0.2906 0.3204 1.0540 dummy Dummy Classifier SVM - Linear Kernel 0.8480 0.0000 0.5024 0.6473 0.4819 0.4085 0.4539 0.5900 ridge Ridge Classifier Melhor algoritmo: gbc Melhor métrica: auc

Tabela 4: AutoML

4.1 Naive Bayes

Tabela 5: Métricas com o algoritmo Naive Bayes

```
sortea(scores.keys())
Conjunto 1
                           print(scores['test_recall_macro'])
                           print(scores['test_precision_macro'])
                           [0.59517975 0.57820119 0.58924389 0.57419039 0.58914061]
                           [0.56006423 0.55305197 0.55718155 0.54639351 0.55712376]
                  In [55]: predicted = nb.predict(validacao_x)
                           expected = validacao_y.values
                           print(confusion_matrix(expected, predicted))
                           print(classification_report(expected, predicted))
                           print(accuracy_score(expected, predicted))
                           [[3096 1073]
                            [ 433 330]]
                                        precision
                                                    recall f1-score
                                                                     support
                                     0
                                            0.88
                                                     0.74
                                                               0.80
                                                                        4169
                                            0.24
                                                     0.43
                                                               0.30
                                                                         763
                              accuracy
                                                               0.69
                                                                        4932
                             macro avg
                                            0.56
                                                     0.59
                                                               0.55
                                                                        4932
                           weighted avg
                                            0.78
                                                     0.69
                                                               0.73
                                                                        4932
                           0.694647201946472
Conjunto 2
                                            Tentativa 1:
                        accuracy
                                                                 0.17
                                                                           30000
                                         0.00
                                                                 0.00
                                                                           30000
                       macro avg
                                                     0.00
                                         0.08
                                                                 0.09
                                                                           30000
                   weighted avg
                                                     0.17
                   0.166533333333333334
                                            Tentativa 2:
                      accuracy
                                                                 0.16
                                                                            15000
                     macro avg
                                         0.00
                                                     0.00
                                                                 0.00
                                                                            15000
                                                                 0.09
                                                                            15000
                  weighted avg
                                         0.08
                                                     0.16
                  0.1622666666666667
```

4.2 Gradient Boosting Classifier

Tabela 6: Métricas com o algoritmo GBC

1										
Conjunto 1	In [72]:	pri	nt(confu nt(class	ificat:	ion_rep	ort(y_	test,	predic)
		pri	nt(accur	acy_sc	ore(y_t	est, p	redict	ions))		
			090 37 543 29] :]]						
		•			cision	red	all ·	f1-scor	e su	pport
				0	0.85		9.99	0.9		3127
				1	0.44	•	0.05	0.0	9	572
			accurac	•				0.8		3699
			macro av ghted av	_	0.64 0.79		9.52 9.84	0.5 0.7		3699 3699
					•					
		0.8	43200865	098675	3					
Conjunto 1 com AutoML		old	Accuracy	AUC	Recall	Prec.	F1	Kappa	МСС	
		0	0.8020	0.8834	0.5889	0.6795	0 6310	0.5687	0.5707	
		1	0.8895		0.5667	0.6711		0.5505	0.5532	
		2		0.9172			0.6550		0.5959	
		3	0.8997		0.5730				0.5851	
		4	0.8824		0.5843	0.6265			0.5361	
		5	0.8979	0.9376	0.5393	0.7273	0.6194	0.5619	0.5703	
		6	0.9100	0.9391	0.5730	0.7846	0.6623	0.6119	0.6219	
		7	0.8997	0.9448	0.6404	0.6867	0.6628	0.6039	0.6044	
		8	0.9048	0.9277	0.5667	0.7612	0.6497	0.5960	0.6047	
		9	0.9083	0.9349	0.6000	0.7606	0.6708	0.6184	0.6243	
	M	ean	0.8983	0.9244	0.5862	0.7099	0.6408	0.5822	0.5867	
		Std	0.0080	0.0184	0.0288	0.0467	0.0217	0.0261	0.0276	
Conjunto 2					_					

4.3 Método 3: Logistic Regression

Tabela 7: Métricas com o algoritmo Logistic Regression

Conjunto 1		confusion_ma	trix(y	test,	y pred)		
		array([[3115	, 12],	ype=int64)		
	In [39]:	<pre>In [39]: print(classification_report(y_test, y_pred)) print(accuracy_score(y_test, y_pred))</pre>					
			prec	ision	recall	f1-score	support
		0 1		0.85 0.37			3127 572
		accuracy				0.84	
		macro avg weighted avg				0.47 0.78	
		0.8440118951	.067856	•			
Conjunto 2	accur	racy				0.17	6000
	macro	-	a aa		0.00		6000
		avg	0.08		0.17		6000
	0.17						

5. Resultados e interpretação dos modelos

Nesta seção serão apresentados os resultados e interpretações dos modelos desenvolvidos, bem como algumas considerações finais.

5.1 Conjunto 1

O conjunto tem alguns problemas que não consegui resolver e, no geral, não prediz bem a classe 1. Com o AutoML a feature mais importante é PageValues, mas optei por não utilizar durante a construção do modelo.

Com a análise foi possível constatar que o mês influencia bastante na hora da compra. Esperava que o tipo de visitante tivesse mais impacto durante a análise (hipoteticamente, visitantes recorrentes tenderiam a comprar mais) e foi o que aconteceu na regressão logística.

Tabela 8: Métricas para o Conjunto 1

	Feature mais importante	Acurácia	Recall
Naive Bayes	-	0.694	0,74 classe 0 0,42 classe 1

Gradient Boosting Classifier	PageValues	0.9056	0.5592
Logistic Regression	VisitorType	0.8846	0.3960

5.2 Conjunto 2

Este conjunto tinha muitos dados, então com frequência tive erros por falta de memória. O classificador com pior desempenho foi o Naive Bayes.

Tabela 9: Métricas para o Conjunto 2

	Acurácia	Recall
Naive Bayes	0.176	
Gradient Boosting Classifier		
Logistic Regression	0.188	

Referências

UCI Machine Learning Repository: Online Shoppers Purchasing Intention Dataset Data Set. Disponível em:

https://archive.ics.uci.edu/ml/datasets/Online+Shoppers+Purchasing+Intention+Dataset>. Acesso em 28 abr 2023.

UCI Machine Learning Repository: Buzz in social media Data Set. Disponível em: http://archive.ics.uci.edu/ml/datasets/Buzz+in+social+media+#. Acesso em 28 abr 2023.

SAKAR, C. Okan; POLAT, S. Olcay; KATIRCIOGLU, Mete; KASTRO, Yomi. Real-time prediction of online shoppers' purchasing intention using multilayer perceptron and LSTM recurrent neural networks. Disponível em: https://link.springer.com/article/10.1007/s00521-018-3523-0. Acesso em 09 maio 2023.

NELSON, Dan. Gradient Boosting Classifiers in Python with Scikit-Learn. Disponível em:

https://stackabuse.com/gradient-boosting-classifiers-in-python-with-scikit-learn/. Acesso de 10 maio 2023.