Compression Sensitivity of the Bijective Burrows-Wheeler transform

Hyodam Jeon、 Dominik Köppl

Published in: Mathematics 2025, 13, 1070

University of Yamanashi Computer science and engineering

International Workshop on Discrete Mathematics and Algorithms 2025

Background

Setting: Need to store large text collections in compressed form

Examples:

- Biological data (ncbi),
- Source code (github),
- Websites (wayback machine)
- Expect that similar data can be stored compressed with similar sizes
- However: small changes of the input can cause large difference in compressed size!
- Difference can cause economic loss!
- Question: how bad can it get?

Research objective

How much impact has a single character edit of the input?

T': Tafter editing one character

Edit: insert/deletion/exchange

Here: exchange a with b

compression sensitivity =

small compressed size

Large compressed size

What is the max. difference between the compressed sizes of the edited text C(T') and the original C(T)?

Related work

Compression sensitivity has been studied for various compressors

Compression method	Related work
Lempel-Ziv 78 (LZ78) (gif image compression)	Lagarde&Perifel '18
Lempel-Ziv 77 (gzip/zip/etc.)	Akagi+ '23
BWT (bzip2, compressed indexes)	Giuliani+ '23
lex-parse	Nakashima+ '24
string attractor, bidirectional macro scheme	Fujie+ '24

however: the sensitivity of the **bijective BWT** (**BBWT**) has not yet been studied

Clustering effect of the BBWT

$$T$$
, $r(T) = 110$

BBWT(7),
$$r(BBWT(7)) = 2$$

 BBWT arranges characters by previous context such that characters in the same context are grouped together

BBWT

- BBWT(7) is likely to be better run-length compressible than the input
- Repetitiveness measure r(T): number of maximal consecutive character occurrences in text T (size of the run-length encoding/compression)

Bijective BWT (BBWT) [Gil&Scott '12]

Lyndon words and factors

- A word S is **Lyndon** if it is smaller than all its conjugates
- If S is not Lyndon, we can factorize it uniquely into Lyndon factors $L_1, L_2, L_3 \dots L_m$ such that the Lyndon factors are in lex. decreasing order $L_1 \ge L_2 \ge \dots \ge L_m$

m

Bijective BWT

- sort the conjugates of all number
 Lyndon factors of S and take the last character of each
 - BBWT(mammal) = lmamam
 - compression measure : $\rho(S) = r(BBWT(S))$

a m m a l m 1 m a m m a malmam mammal m m a l m a

sort

Order: a < l < m

almamm

Inverting the BBWT

To obtain S from BBWT(S), we follow the cycles in the BBWT \rightarrow obtain S's Lyndon factors

Loop to retrieve Lyndon factors

m a m m a l

a m m Sort in descending order

7

Sensitivity: Results

Red: new results, (*x): edit operation with character x

Black: known results due to Giuliani+ '23

Input text method	Edit operation	BWT	BBWT
Fibonacci word	remove last letter	2 <i>k</i>	≥ <i>k</i>
	change last letter	2k +2(*a)	$\geq k + 1(*#)$
• $r(BWT(F_{2k}))=2$ • $\rho(Lyndon conjugate)$		2k +2(*#)	≥ <i>k</i> (*c)
of F_{2k}) =2	insert at specific positions	-	≥ <i>k</i> ≥ <i>k</i> +1

Fibonacci

Fibonacci words

•
$$F_0 = b$$
, $F_1 = a$, $F_k = F_{k-1}F_{k-2}$

- $F_2 = ab$
- $F_3 = aba$
- F_4 = abaab
- F_5 = abaababa
- F_6 = abaababaabaab
- F_7 = abaababaabaabaababa

Fibonacci numbers

•
$$f_0 = 1$$
, $f_1 = 1$, $f_k = f_{k-1} + f_{k-2}$

- $f_2 = 2$
- $f_3 = 3$
- $f_4 = 5$
- $f_5 = 8$
- $f_6 = 13$
- $f_7 = 21$

Fibonacci

Fibonacci words

•
$$F_0 = b$$
, $F_1 = a$, $F_k = F_{k-1}F_{k-2}$

•
$$F_2 = ab$$

•
$$F_3 = aba$$

 X_k : palindrome

•
$$F_4 = abaab$$

•
$$F_5 = abaababa$$

•
$$F_6 = abaababaabaaba$$

•
$$F_7 =$$
 abaababaabaabaaba ba

$$F_k = X_k$$
ab if k is even
= X_k ba if k is odd

Fibonacci numbers

•
$$f_0 = 1$$
, $f_1 = 1$, $f_k = f_{k-1} + f_{k-2}$

•
$$f_2 = 2$$

•
$$f_3 = 3$$

•
$$f_4 = 5$$

•
$$f_5 = 8$$

•
$$f_6 = 13$$

•
$$f_7 = 21$$

What we did: Remove last character of Lyndon conjugate aX_{2k} b of F_{2k} .

Theorem : $\rho(aX_{2k}b) = 2$ but $\rho(aX_{2k}) \ge k$

Proof Idea: Number of distinct Lyndon factors is a lower bound of ρ

$$\begin{vmatrix} x_{2k} \end{vmatrix} = aX_{2k}$$

What we did: Remove last character of Lyndon conjugate aX_{2k} b of F_{2k} .

Theorem : $\rho(aX_{2k}b) = 2$ but $\rho(aX_{2k}) \ge k$

Proof Idea: Number of distinct Lyndon factors is a lower bound of ρ

What we did: Remove last character of Lyndon conjugate aX_{2k} b of F_{2k} .

Theorem : $\rho(aX_{2k}b) = 2$ but $\rho(aX_{2k}) \ge k$

Proof Idea: Number of distinct Lyndon factors is a lower bound of ρ

13

What we did: Remove last character of Lyndon conjugate aX_{2k} b of F_{2k} .

Theorem : $\rho(aX_{2k}b) = 2$ but $\rho(aX_{2k}) \ge k$

Proof Idea: Number of distinct Lyndon factors is a lower bound of ρ

What we did: Remove last character of Lyndon conjugate aX_{2k} b of F_{2k} .

Theorem : $\rho(aX_{2k}b) = 2$ but $\rho(aX_{2k}) \ge k$

Proof Idea: Number of distinct Lyndon factors is a lower bound of ρ

Recap and future work

recap

- 1. compression measure ρ can increase by a factor of $\Theta(\log n)$
- 2. not shown but proved: size can increase by $+\Theta(\sqrt{n})$
- → a single edit can change the compressed size dramatically
- → BWT and BBWT are not well-designed measures for compressibility

future work

- experiments suggest that $\rho(S)=2k$ in the proof of the previous slides, but we could not prove it
- improve the bounds: is there a non-trivial upper bound for ρ ?
- determine the sensitivity of other compression methods

W_k 文字列

•
$$W_k = \prod_{i=2}^{k-1} (P_i E_i) Q_k$$
, $\left(P_i = ab^i aa, E_i = ab^i aba^{i-2}, Q_k = ab^k a\right)$
• $\overline{W_k} = \prod_{i=2}^{k-1} (\overline{P_i} \overline{E_i}) \overline{Q_k}$, $\left(\overline{P_i} = ba^i bb, \overline{E_i} = ba^i bab^{i-2}, \overline{Q_k} = ba^k b\right)$ a bを反転

•
$$|W_k| = (3k^2 + 7k - 18)/2 = \Theta(k^2)$$

k	W_k
3	abbaaabbababba
4	abbaaabbaaabbbaaabbbba
5	abbaaabbbaaabbbaaabbbbaaaabbbbabaaabbbbb

k	$\overline{W_k}$
3	baabbbaabaaab
4	baabbbaaababbaaaab
5	baabbbaababaaabbbaaaabbbaaaabbbaaaaab

Burrows-Wheeler 変換(BWT) [Burrows&Wheeler 1994]

対象文字列のすべての巡回文字列を生成し、 それらをアルファベット順序でソートし、 各行の最後の文字を連結して得られる<u>可逆圧縮法</u>

BWT(mammal) = mmamla

逆変換は、<u>文字の安定ソート</u>が 逆巡回の<u>最初の文字に対応</u>する ことを利用する(LF-mapping)

- ・正確には「環状文字列 → 文字列」の可逆変換。
- → 復元には開始位置が必要

W_k の全反射BWTー最後の文字を「#」に置換する場合

 $C_k^b = W_k$ のLyndon語の最後の文字を削除した文字列

 $C_k^b \# = C_k^b$ の最後に#を追加した文字列 $= W_k$ の最後の文字を#に置換した文字列

1. 文字列をLyndon分解する $C_k^b \#=$ $a^{k-2}b^k a \cdot \left(\prod_{i=2}^{k-2} ab^i a a a b^i a b a^{i-2}\right) \cdot ab^{k-1} a a a b^{k-1}$ a #

$$\rho(D_K)=8k-18$$

2. 各Lyndon要素の圧縮サイズを求める

- ① $D_k = C_k^b$ からさらに最後の文字を削除した文字列 D_k はLyndon語なので、既存研究を応用し、BWTと同じ方法で圧縮サイズを求めると、8k-18になる.
- ② aの圧縮サイズは1
- ③ #の圧縮サイズ1

3. Lyndon要素を辞書順で並べ替えて、足し合わせる

 $\rho\left(C_{k}^{b}\right) = \#$ の圧縮サイズ $\mathbf{1}$ + aの圧縮サイズ $\mathbf{1}$ + D_{k} の圧縮サイズ $\mathbf{8k-18}$ = 8k-16

例 質問された時

○.何故圧縮をしようとしたか??

A. 今のテーマは、私たちにとって身近なものだと感じました。普段よく使う文字列が変形されたとき、どこまで最悪のケースに至るのかを数学的に証明できるのは、とても面白いと思いました。

Q. Fibonacciとwkは良く使われる文字列なの?

Fibonacci文字列と W_k 文字列はよく使われてはいませんが、 規則性があるので追跡しやすい性質があり、下限(少なくてもどれくらい悪くなるか) が特定しやすい。

○. 圧縮効率が悪い文字列はどうなるの?

容量が多くかかるので、保存しにくい

圧縮研究

BBWTのrが増加するFibonacci文字列の編集(2)

<u>定理:</u>

• $2kが十分大きいとき, <math>L_{2k}$ の最後の文字を#に変更した文字列vのBBWTのrの下限はk

$$r(L_{2k} = aX_{2k}b) = 2 \rightarrow r(v) \ge k + 1$$

証明

BBWTのrが増加するFibonacci文字列の編集(3)

<u>定理:</u>

• $2kが十分大きいとき, <math>L_{2k}$ の最後の文字をcに変更した文字列 \emph{v} 'の \emph{BBWT} の \emph{r} の下限は \emph{k}

$$r(L_{2k} = aX_{2k}b) = 2 \rightarrow r(v') \ge k$$

証明

