Пример:

Вычислить
$$(1+i\sqrt{3})^{150}$$
.

Корни п-й степени из комплексного числа

Определение. Корнем *n*-ой степени из комплексного числа **z** называется комплексное число ω , удовлетворяющее равенству $\omega^n = z, z \neq 0, n \in \mathbb{N}$.

Рассмотрим уравнение $\omega^n=z,\,z\neq 0,\,n\in\mathbb{N}$. Пусть

$$z = |z|(\cos\varphi + i\sin\varphi)$$

$$\omega = |\omega|(\cos\varphi_1 + i\sin\varphi_1)$$

$$\omega^n = z$$
, значит,

$$|\omega|^n (\cos n\varphi_1 + i\sin n\varphi_1) = |z|(\cos \varphi + i\sin \varphi)$$

Отсюда
$$|\omega|^n=|z|$$
 и $n\varphi_1=\varphi+2\pi k,\,k\in Z$. То есть $|\omega|=\sqrt[n]{|z|}$ (арифметический корень), $\varphi_1=\frac{\varphi+2\pi k}{n},\,k=0,1,2...$

Поэтому $\sqrt[n]{z} = \omega$ принимает вид

$$\sqrt[n]{|z|(\cos\varphi + i\sin\varphi)} = \sqrt[n]{|z|}(\cos\frac{\varphi + 2\pi k}{n} + i\sin\frac{\varphi + 2\pi k}{n})$$

$$k = 0, 1, 2..., n-1$$

Замечание. Число корней равно числу степени.

Пример. Найти все корни третьей степени из -1.

Решение. Представим число -1 в показательной форме. Очевидно, $\rho = |-1| = 1$, $\theta = \arg a = \pi$. Следовательно,

$$r = \sqrt[3]{\rho} = \sqrt[3]{1} = 1, \varphi_k = \frac{\pi}{3} + \frac{2\pi}{3}(k-1), k = 1, 2, 3.$$

Таким образом,
$$\varphi_1 = \frac{\pi}{3}$$
, $\varphi_2 = \frac{\pi}{3} + \frac{2\pi}{3} = \pi$, $\varphi_3 = \frac{\pi}{3} + \frac{4\pi}{3} = \frac{5\pi}{3}$,

$$z_1 = e^{i(\pi/3)} = \cos(\pi/3) + i\sin(\pi/3) = \frac{1}{2} + i\frac{\sqrt{3}}{2}, \ z_2 = e^{i\pi} = \cos\pi + i\sin\pi = -1,$$

$$z_3 = e^{i(5\pi/3)} = \cos(5\pi/3) + i\sin(5\pi/3) = \frac{1}{2} - i\frac{\sqrt{3}}{2}.$$

Корни z_1, z_2, z_3 располагаются в вершинах правильного треугольника. Пример. $z = -8 - 8\sqrt{3}i$. Найти $\sqrt[4]{z}$.

Многочлены в комплексной области.

Определение. *Многочленом* (полиномом) п-й степени от комплексной переменной $z \in \mathbb{C}$ называется функция вида

$$P_n(z) = a_n z^n + a_{n-1} z^{n-1} + \ldots + a_1 z + a_0, n \in \mathbb{N} \cup \{0\}, \ a_n \neq 0.$$
 (1)

Число n называется cmenehbo многочлена. Комплексные числа a_0, a_1, \ldots, a_n называются ko = pho = ph

Примеры. $P_4(z) = z^4 - 3z^3 - 2z^2 + 2z + 12$ — многочлен четвертой степени; $P_2(z) = 3z^2 + 5z + 12$ — многочлен второй степени, или квадратный трехчлен.

Замечание. Многочлен нулевой степени $P_0(z)$ равен постоянной a_0 .

Определение. Уравнение

$$a_n z^n + a_{n-1} z^{n-1} + \dots + a_1 z + a_0 = 0, a_n \neq 0$$
 (2)

называется алгебраическим уравнением п-й степени.

Определение. Число z_0 , для которого $P_n(z_0) = 0$, называется *корнем* многочлена (1) или уравнения (2).

Теорема Гаусса (основная теорема алгебры). Всякий многочлен ненулевой степени имеет по крайней мере один корень (вообще говоря, комплексный).

Теорема (Безу). Число z_0 является корнем многочлена $P_n(z)$ в том и только в том случае, когда $P_n(z)$ делится без остатка на двучлен $z-z_0$, т.е.

$$P_{n}(z) = (z - z_{0})P_{n-1}(z)$$
, где $P_{n-1}(z)$ — многочлен $(n-1)$ -й степени.

Определение. Если многочлен $P_n(z)$ делится без остатка на $(z-z_0)^k$, но не делится без остатка на $(z-z_0)^{k+1}$, то z_0 называется корнем многочлена $P_n(z)$ кратности k.

Замечание. Теорема Гаусса может быть уточнена. Многочлен n-й степени имеет ровно n корней, если каждый корень считать столько раз, какова его кратность.

Определение . Корень z_0 многочлена $P_n\left(z\right)$ имеет *кратность* $k\geq 1$, если

$$P_{n}(z) = (z - z_{0})^{k} Q_{n-k}(z), Q_{n-k}(z_{0}) \neq 0.$$

Если k = 1, то корень z_0 называется простым корнем.

Теорема. Пусть многочлен $P_n(z)$ имеет различные корни $z_1, z_1, ..., z_m, m \le n$, соответственно кратностей $k_1, k_2, ..., k_m, k_1 + k_2 + ... + k_m = n$. Тогда его можно разложить на линейные множители:

$$P_n(z) = a_n(z-z_1)^{k_1}(z-z_2)^{k_2} \cdot \dots \cdot (z-z_m)^{k_m}.$$

Рассмотрим многочлен

$$P_n(z) = a_n z^n + a_{n-1} z^{n-1} + \dots + a_1 z + a_0, n \in \mathbb{N} \cup \{0\}, \ a_n \neq 0, \tag{1}$$

с действительными коэффициентами $a_0 \in \mathbb{R}, a_1 \in \mathbb{R}, ..., a_n \in \mathbb{R}$.

Теорема. Если коэффициенты a_0, a_1, \dots, a_n многочлена (1) — действительные числа и $z_0 = x_0 + iy_0$ — его комплексный корень, то сопряженное число $\overline{z}_0 = x_0 - iy_0$ — также корень этого многочлена, причем корни z_0 и \overline{z}_0 имеют одинаковую кратность.

Вернемся к формуле

$$P_n(z) = a_0 (z - z_1)^{k_1} (z - z_2)^{k_2} \cdot \dots \cdot (z - z_m)^{k_m}. \tag{2}$$

Пусть z_0 – комплексный корень многочлена $P_n(z)$ кратности $k \ge 1$, $z_0 = x_0 + iy_0$, $y_0 \ne 0$.

$$(z-z_0)(z-\overline{z_0}) = z^2 - (z_0 + \overline{z_0})z + z \cdot \overline{z_0} = z^2 - 2x_0z + (x_0^2 + y_0^2) = (z-x_0)^2 + y_0^2,$$
(3)

$$\left[(z - z_0) (z - \overline{z_0}) \right]^k = \left[z^2 - 2x_0 z + (x_0^2 + y_0^2) \right]^k = \left[(z - x_0)^2 + y_0^2 \right]^k. \tag{4}$$

Введем обозначения $p = -2x_0 = -(z_0 + \overline{z}_0)$, $q = x_0^2 + y_0^2 = z_0\overline{z}_0$.

Объединяя скобки с сопряженными корнями в формуле (2) и используя формулы (3), (4), заменим линейные множители с сопряженными корнями степеней k в формуле (2) на соответствующие $\kappa в a d p a m u u h b e m h o ж u m e n u h o x u m e n u h o x u m e n$

Вывод: если коэффициенты многочлена — действительные числа, то можно разложить этот многочлен в произведение линейных и квадратичных множителей с действительными коэффициентами. Линейные множители соответствуют действительным корням многочлена. Все квадратичные множители (квадратные трехчлены) имеют отрицательные дискриминанты и соответствуют комплексно сопряженным корням многочлена.

Пусть $z_1, z_2, ..., z_l$ — действительные корни многочлена P(z) кратностей $k_1, k_2, ..., k_l$ соответственно. Пусть многочлен P(z) имеет s пар комплексно сопряженных корней кратностей $k_{l+1}, ..., k_{l+s}$ соответственно. Тогда

$$P_n(z) = a_n(z-z_1)^{k_1}(z-z_2)^{k_2} \cdot \dots \cdot (z-z_l)^{k_l}(z^2+p_1z+q_1)^{k_{l+1}} \cdot \dots (z^2+p_sz+q_s)^{k_{l+s}},$$

$$k_1 + k_2 + ... + k_l + 2(k_{l+1} + ... + k_{l+s}) = n, D_j = (p_j)^2 - 4q_j < 0, j = 1,...,s.$$

Деление многочлена.

Рассмотрим дробно-рациональную функцию

$$\frac{P_n(x)}{Q_m(x)} = \frac{a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0}{b_m x^m + b_{m-1} x^{m-1} + \dots + b_1 x + b_0},$$

где a_i и b_k - действительные коэффициенты.

Если $n \ge m$, то дробь $\frac{P_n(x)}{Q_m(x)}$ называется неправильной. Из этой дроби можно выделить целую часть $M_{n-m}(x)$ и дробь представить в виде:

$$\frac{P_n(x)}{Q_m(x)} = M_{n-m}(x) + \frac{P_r(x)}{Q_m(x)}$$

Примеры.

Пример. Разложить многочлен $P(z) = z^4 - 3z^3 - 2z^2 + 2z + 12$ на линейные и квадратичные множители, если известен его корень -1-i.

Ч Так как -1-i— корень многочлена с действительными коэффициентами, то -1+i — также корень этого многочлена. В формуле (3) положим $z_0 = -1-i$, получим:

$$(z-z_0)(z-\overline{z_0})=(z+1-i)(z+1+i)=(z+1)^2-i^2=z^2+2z+2.$$

Следовательно, многочлен $z^4 - 3z^3 - 2z^2 + 2z + 12$ делится без остатка на квадратный трехчлен $z^2 + 2z + 2$. Выполняя деление, получим

$$z^4 - 3z^3 - 2z^2 + 2z + 12 = (z^2 + 2z + 2)(z^2 - 5z + 6).$$

Многочлен $z^2 - 5z + 6$ имеет действительные корни 2 и 3, следовательно,

$$z^2 - 5z + 6 = (z-2)(z-3)$$
.

Окончательно имеем:

$$z^4 - 3z^3 - 2z^2 + 2z + 12 = (z^2 + 2z + 2)(z - 2)(z - 3).$$

Otbet: $P(z) = (z^2 + 2z + 2)(z-2)(z-3)$.

Пример. Разложить многочлен $P(z) = z^4 + 4z^3 + 6z^2 + 4z + 5$ на линейные и квадратичные множители, если известен его корень -2+i.

Ч Так как -2+i— корень многочлена с действительными коэффициентами, то -2-i — также корень этого многочлена. В формуле (3) положим $z_0 = -2+i$, получим:

$$(z-z_0)(z-\overline{z_0})=(z+2-i)(z+2+i)=(z+2)^2-i^2=z^2+4z+5.$$

Следовательно, многочлен $z^4 + 4z^3 + 6z^2 + 4z + 5$ делится без остатка на квадратный трехчлен $z^2 + 4z + 5$. Выполняя деление, получим

$$z^4 + 4z^3 + 6z^2 + 4z + 5 = (z^2 + 4z + 5)(z^2 + 1).$$

Многочлен $z^2 + 1$ не имеет действительных корней, следовательно, полученное разложение является окончательным.

Otbet:
$$P(z) = (z^2 + 4z + 5)(z^2 + 1)$$
.