Chapitre $12 \blacksquare$

Intégrales à paramètre

Notations.

- $\blacksquare \mathbb{K}$ désigne \mathbb{R} ou \mathbb{C} .
- $\blacksquare I, J$ désignent des intervalles de \mathbb{R} non vides et non réduits à un point.

Exercice 1.

1. Soit $f_n = \frac{1}{n} \mathbb{1}_{[0,n]}$. Montrer que (f_n) converge uniformément sur \mathbb{R} . Déterminer $\lim_n \int_{\mathbb{D}} f_n$ puis $\int_{\mathbb{T}} \left(\lim_{n} f_{n} \right)$.

2. Pour tout entier naturel n, on pose $f(x) = n^2 x$ si $x \in \left[0, \frac{1}{n}\right]$ et $f(x) = n^2 \left(\frac{2}{n} - x\right)$ si $x \in \left[\frac{1}{n}, \frac{2}{n}\right]$ et f(x) = 0 sinon. Montrer que (f_n) converge simplement sur [0,1]. Déterminer $\lim_{n} \left(\int_{[0,1]} f_n \right)$ puis $\int_{[0,1]} \left(\lim_{n} f_n \right)$.

I. Suites & Séries de fonctions

Théorème 1 (Théorème de convergence dominée, Admis).

Soient (f_n) et f des fonctions de I dans K telles que

- (i). Régularité. $\forall n \in \mathbb{N}, f_n \in \mathscr{C}^-(I, \mathbb{K}).$
- (ii). Convergence. (f_n) converge simplement vers f.
- (iii). Régularité de la limite. f est continue par morceaux.
- (iv). **Domination.** Il existe une fonction φ définie sur I telle que
 - * φ est à valeurs positives.

 - $* \varphi \in \mathcal{L}^1(I, \mathbb{R}_+).$ $* \forall n \in \mathbb{N}, |f_n| \leqslant \varphi.$

Alors, pour tout entier naturel $n,\,f_n$ est intégrable, f est intégrable et

$$\int_{I} \left(\lim_{n \to +\infty} f_n \right) = \lim_{n \to +\infty} \left(\int_{I} f_n \right).$$

Exercice 2.

1. Montrer que
$$\lim_{n \to +\infty} \int_{\mathbb{R}_+} \frac{\mathrm{d}t}{1 + nt^n} = 1$$
.

- **2. Intégrale de GAUSS.** Pour tout $n \in \mathbb{N}$ et $x \in \mathbb{R}$, on pose $f_n(x) = \left(1 \frac{x^2}{n}\right)^n \mathbb{1}_{[0,\sqrt{n}[}(x)$.
 - **a)** Montrer que $\int_{\mathbb{R}} f_n \to \int_0^{+\infty} e^{-x^2} dx$.
 - **b)** Déterminer $\int_{0}^{+\infty} e^{-x^2} dx$.

On rappelle le résultat sur les intégrales de WALLIS : $\sqrt{n} \int_0^{\frac{\pi}{2}} \cos^{2n+1}(t) dt \to \frac{\sqrt{\pi}}{2}$.

Théorème 2 (Théorème d'intégration terme à terme, Admis).

Soit (f_n) une suite de fonctions définies sur I à valeurs dans \mathbb{K} telle que

- (i). Régularité & Intégrabilité. $\forall \ n \in \mathbb{N}, \ f_n \in \mathscr{L}^1(I,\mathbb{K})$
- (ii). Convergence. $\sum f_n$ converge simplement sur I.
- $(iii). \ \ \textbf{R\'egularit\'e de la limite.} \ \sum_{n=0}^{+\infty} f_n \in \mathscr{C}^-(I,\mathbb{K}).$
- (iv). **Domination.** $\sum \int_I |f_n|$ converge.

Alors, $\sum_{n=0}^{+\infty} f_n$ est intégrable sur I et

$$\int_{I} \left(\sum_{n=0}^{+\infty} f_n \right) = \sum_{n=0}^{+\infty} \left(\int_{I} f_n \right).$$

Exercice 3. Montrer que

1.
$$\int_0^{+\infty} \left(\sum_{n=1}^{+\infty} \frac{e^{-nt}}{n^2} \right) dt = \sum_{n=1}^{+\infty} \frac{1}{n^3}.$$

2. $\int_0^1 \frac{\ln(1+x)}{x} dx = \sum_{n=0}^{+\infty} \frac{(-1)^n}{(n+1)^2}$. Déterminer une approximation à 10^{-3} près de cette intégrale.

- 3. On souhaite montrer que $\int_0^{+\infty} \left(\sum_{n=1}^{+\infty} (-1)^n e^{-\sqrt{n}t} \right) dt = \sum_{n=1}^{+\infty} \frac{(-1)^n}{\sqrt{n}}.$
 - a) Montrer que le théorème précédent ne s'applique pas.
 - b) Conclure en appliquant le théorème de convergence dominée à la suite des sommes partielles.

II. Intégrales dépendant d'un paramètre

Théorème 3 (Continuité sous le signe intégral).

Soit $f: I \times J \to \mathbb{K}$ telle que

- (i). Régularité en le paramètre. $\forall t \in J, x \mapsto f(x,t)$ est continue sur I.
- (ii). **Régularité.** $\forall x \in I, t \mapsto f(x,t)$ est continue par morceaux sur J.
- (iii). Domination. Il existe $\varphi \in \mathscr{L}^1(J,\mathbb{R}_+)$ tel que $\forall (x,t) \in I \times J, |f(x,t)| \leqslant \varphi(t)$.

Alors, $x \mapsto \int_I f(x,t) dt$ est continue sur I.

Exercice 4.

1. Soit
$$F: x \mapsto \int_1^{+\infty} \frac{\mathrm{d}t}{x+t^3}$$
.

- a) Montrer que F est continue sur \mathbb{R}_+ .
- **b)** Déterminer un équivalent de F en $+\infty$.

On pourra utiliser le changement de variables $\varphi: u \mapsto u/\sqrt[3]{x}$.

- **2. Fonction Gamma.** Montrer que la fonction $\Gamma: x \mapsto \int_0^{+\infty} t^{x-1} e^{-t} dt$ est continue sur \mathbb{R}_+^* .
- 3. Soit $F: x \mapsto \int_0^{+\infty} e^{-xt} \frac{\sinh(t)}{t} dt$.
 - a) Déterminer l'ensemble de définition de F.

b) Déterminer la limite de F en $+\infty$.

Théorème 4 (Dérivation sous le signe intégral).

Soit $f: I \times J \to \mathbb{K}$ telle que

- (i). Régularité en le paramètre. $\forall t \in J, x \mapsto f(x,t)$ est de classe \mathscr{C}^1 sur I.
- (ii). Intégrabilité. $\forall x \in I, t \mapsto f(x,t)$ est continue par morceaux et intégrable sur J.
- (iii). Régularité de la dérivée. $\forall x \in I, t \mapsto \frac{\partial f}{\partial x}(x,t)$ est continue par morceaux sur J.
- (iv). Domination de la dérivée. Il existe $\varphi \in \mathcal{L}^1(J, \mathbb{R}_+)$ t.q. $\forall (x, t) \in I \times J, \left| \frac{\partial f}{\partial x}(x, t) \right| \leqslant \varphi(t)$.

Alors, $F: x \mapsto \int_I f(x,t) dt$ est de classe \mathscr{C}^1 sur I et

$$\forall x \in I, F'(x) = \int_{J} \frac{\partial f}{\partial x}(x, t) dt.$$

Exercice 5.

- **1.** Montrer que pour tout x > 0, $\int_0^{+\infty} \frac{\sinh t}{t} e^{-xt} dt = \frac{1}{2} \ln \left| \frac{x+1}{x-1} \right|$.
- **2.** Soit $F_n(x) = \int_0^{+\infty} \frac{\mathrm{d}t}{(t^2 + x^2)^{n+1}}$. Montrer que $F'_n(x) = -2(n+1)xF_{n+1}(x)$. En déduire que, pour tout réel non nul, $F_n(x) = \frac{\pi(2n)!}{(2x)^{2n+1}(n!)^2}$.

Corollaire 5.

Soient $f:I\times J\to \mathbb{K}$ et $k\in \mathbb{N}^*$ tels que

- (i). Régularité en le paramètre. $\forall t \in J, x \mapsto f(x,t)$ est de classe \mathscr{C}^k sur I.
- (ii). **Régularité des dérivées.** $\forall j \in [0, k], \forall x \in I, t \mapsto \frac{\partial^j f}{\partial x^j}(x, t)$ est continue par morceaux sur J.
- (iii). Domination des dérivées.

$$\forall j \in [0, k], \exists \varphi_j \in \mathcal{L}^1(J, \mathbb{R}_+) ; \forall (x, t) \in I \times J, \left| \frac{\partial^j f}{\partial x^j}(x, t) \right| \leqslant \varphi_j(t).$$

Alors, $g: x \mapsto \int_I f(x,t) dt$ est de classe \mathscr{C}^k sur I et

$$\forall j \in [0, k], \forall x \in I, g^{(j)}(x) = \int_{J} \frac{\partial^{j} f}{\partial x^{j}}(x, t) dt.$$

Exercice 6.

- **1.** Calculer les dérivées successives de la fonction Γ .
- **2. Fonction de STIELTJES.** Calculer les dérivées successives sur \mathbb{R}_+ de $S(x) = \int_0^{+\infty} \frac{\mathrm{e}^{-t}}{1+xt} \, \mathrm{d}t$.

Transformée de LAPLACE

Exercice 7. Pour toute fonction $f \in \mathscr{C}(\mathbb{R}_+, \mathbb{R})$, on note, lorsqu'elle converge, $\mathscr{L}(f)(p) = \int_0^{+\infty} e^{-pt} f(t) dt$. La fonction $\mathscr{L}(f)$ est la transformée de LAPLACE de f.

1. Soient $\lambda \in \mathbb{C}$ et $n \in \mathbb{N}$. Pour chacune des fonctions suivantes, déterminer leur transformée de LAPLACE en précisant son domaine de définition :

a)
$$t \mapsto 1$$
.

b)
$$t \mapsto e^{\lambda t}$$
.

c)
$$t \mapsto t^n$$
.

- **2.** On suppose que f est bornée. Montrer que $\mathscr{L}(f)$ est définie et de classe \mathscr{C}^{∞} sur \mathbb{R}_{+}^{*} .
- 3. Théorème de la valeur finale. On suppose qu'il existe un réel ℓ non nul tel que $\lim_{t\to\infty} f(x) = \ell$. Déterminer un équivalent de $\mathcal{L}(f)$ en 0.

On suppose qu'il existe $p_0 > 0$ tel que, pour pour tout $p > p_0$, $t \mapsto e^{-pt} f(t)$ est intégrable sur \mathbb{R}_+ .

- **4.** Montrer que $\mathcal{L}(f)$ est définie et continue sur $p_0, +\infty$.
- 5. Théorème de la valeur initiale. On note $\ell = \lim_{t\to 0^+} f(t)$. Déterminer un équivalent de $\mathcal{L}(f)$ en $+\infty$.

Programme officiel (PSI)

Intégration - e, f (p. 18, 19)

Mathématiciens

Wallis John (23 nov. 1616 à Ashford-28 oct. 1703 à Oxford).

LAPLACE Pierre-Simon (23 mar. 1749 à Beaumon-en-Auge-5 mar. 1827 à Paris).

GAUSS Johann Carl Friedrich (30 avr. 1777 à Brunswick-23 fév. 1855 à Göttingen).

STIELTJES Thomas Jan (29 déc. 1856 à Zwolle-31 déc. 1894 à Toulouse).