Stretching

When you pull a spring, it gets .

The extra length is called _____ and is measured in ___ or _.

If it goes back to its when you let it go, it is .

- A new spring is 6.0 cm long. You pull it, and it is now 8.0 cm long.
 - (a) Calculate the extension.
 - (b) You now pull it harder, and make it 10.0 cm long. What is the extension now?
 - (c) When you let it go, it is now 6.4 cm long. Was the stretch elastic?
- 2 An athlete trains using a chest expander. The table shows the force needed to stretch it.

Force (N)	0	50	100	150	200	250
Length (cm)	42.5	46.5	50.5	54.5		62.5
Extension (cm)	0.0		8.0			20.0

- (a) How long was the chest expander before they stretched it?
- (b) Fill in the missing length.
- (c) Fill in the row with the extensions.
- (d) How much longer does an extra force of $100\,\mathrm{N}$ make it?
- (e) How much extra force is needed to make it 1 cm longer?
- 3 A spring gets 1 cm longer each time the force is made 4 N larger.
 - (a) Complete the equation: force (in newtons) = \times extension (in cm).
 - (b) Use your equation to calculate the force needed to make the spring $7\,\mathrm{cm}$ longer.
 - (c) Use your equation to calculate the force needed to make the spring 10 cm longer.

4	A spring has a 3 N/cm spring constant.					
	(a) How much force is needed to stretch it $4\mathrm{cm}$? Use the equation					
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$					
	= 3 ×					
	(b) How much force is needed to stretch it $11\ \mathrm{cm}$? Use the equation					
	$force (N) = spring constant (N/cm) \times extension (cm)$					
	= 3 ×					
5	A spring has a 5 N/cm spring constant.					
	(a) How far will a 30 N force stretch it? Use the equation					
	$force (N) = spring constant (N/cm) \times extension (cm)$					
	= 5 ×					
	(b) How far will a 45 N force stretch it? Use the equation					
	$force (N) = spring constant (N/cm) \times extension (cm)$					
	= 5 ×					
	(c) Complete the word equation: extension $=$ \div .					
6	A spring gets 10 cm longer when stretched by a 60 N force.					
	(a) Force to stretch it by $1 \text{ cm} = \boxed{} \div \boxed{} = \boxed{} \text{newtons}.$					
	(b) Complete the sentence: The spring constant (in N/cm) is					
	(c) A different spring gets 12 cm longer when pulled with a 36 N force. Work out the spring constant using an equation.					
	force (N) = spring constant (N/cm) × extension (cm) =					
	(d) Complete the word equation: spring constant $=$ \div					

A spring constant of 3 N/cm means that it takes $__$ to make the spring 1 cm longer.

Below the	, each $1\mathrm{N}$ force gives the	extra	. The spring
Hooke's law. The line	orce is		

When a spring passes its ______, each additional 1 N force does not give the extra . The spring obey Hooke's law.

7 The extension of a spring for different forces is given in the table.

Force (N)	Extension (cm)
0.0	0.0
2.0	1.2
4.0	2.5
6.0	3.8
8.0	5.1
10.0	8.2

- (a) Plot a graph of the data. Add a best fit line to your points.
- (b) Label the limit of proportionality on your graph.
- (c) Is the spring obeying Hooke's law with a 5 N force?
- (d) If the spring were stiffer, would the line on the graph be steeper?
- 8 Complete the word equations using **force**, **extension** and **spring constant**.

9 Rewrite your word equations using symbols. *F* is the force, *e* is the extension and *k* is the spring constant.

(a)
$$F =$$

(b)
$$k =$$

(c)
$$e =$$

- 10 Calculate the force needed to extend a k=20 N/cm spring by 7.0 cm.
- 11 Calculate the spring constant if a $10\,\mathrm{N}$ force causes a $0.20\,\mathrm{cm}$ extension.
- 12 Calculate the extension caused by a $400\,\mathrm{N}$ force on a a $k=8\,\mathrm{N/cm}$ spring.