recall Thm 3.5

if $v_1,...,v_n$ is a basis of V and $T:V \rightarrow W$ is linear then the values of $Tv_1,...,Tv_n$ determine the values of T on arbitrary vectors in V.

TV,..., TUn 决定了 TV VVEV

Def matrix

$$A = \begin{pmatrix} A_{11} & \cdots & A_{1n} \\ \vdots & \vdots & \vdots \\ A_{m1} & \cdots & A_{mn} \end{pmatrix}$$

#3.32 Def Suppose $T \in L(V, W)$ and $v_1, ..., v_n$ is a basis of V and $w_1, ..., w_m$ is a basis of W.

The matrix of T with respect to these bases is the $m \times n$ matrix M(T)

whose entries A_{jk} are defined by $Tv_k = A_{lk} w_l + \cdots + A_{mk} w_m$

insight: TupeW, W中任-同蓋可由W的一千基线性是最低.
(represent as a linear combination)

Suppose TE L(F2, F3) 233 Example is defined by T(x,y) = (x+3y, 2x+5y, 7x+9y)Find the matrix of T with respect to the Standard bases of IF2 and IF3 T(1.0) = (1.2, 7)Solution e1=(1,0) A11 A21 A31 T(0, 1) = (3, 5, 9)e2=(0,1) A12 A22 A32 $\mathcal{M}(\tau) = \begin{pmatrix} 1 & 3 \\ 2 & 5 \\ 7 & 9 \end{pmatrix}$