0

SOME STANDARD GRAPHS AND THEIR EQUATIONS

> 2

Slope = m= tans= -2

0 = tan'(-2)

Intercept = 5

$E \times y = 2x - 5$

Slope = m = tand = 2 => 0 = tan-1(2)

Inkrept = -5

at t=2se

(ii) velocity

3j = 4x+9

Er Position - time Rein of Particle moving along x-axis as

Shown
$$\chi(m)$$

Find (1) $\chi - \chi$ Rein (1), $\chi - \chi$ Rein (1),

Position-time curve slope = Velocity

V-t conve slope = Acceleration

$$\chi = t^2 + 3$$

Which of the following statement is not correct for following straight line graph :-

The slope of graph in figure at point A, B and C is m_A , m_B and m_C respectively, then :

- (1) Line (2) has negative y intercept
- (2) Line (1) has positive y intercept
- (3) Line (2) has positive slope
- (4) Line (1) has negative slope

(1)
$$m_A > m_B > m_C$$

$$(2) m_A < m_B < m_C$$

(3)
$$m_A = m_B = m_C$$

(4)
$$m_A = m_C < m_B$$

The equation of graph shown in figure is $y = 2x^2$. The slope of graph at point P is :

- (1) 1
- (2) 2
- $(3) \ 3$
- (4) 4

At x = 0, value of $\frac{dy}{dx}$ is :

- (1) 0
- (2) 1
- (3) -1
- (4) Infinite

$$\frac{dy}{dn} = 4n$$

at p