Learning with Error and GSW's Homomorphic Encryption

June 19, 2019

• LWE was an attempt to solve lattice problems

- LWE was an attempt to solve lattice problems
- Worst-case lattice problems reduce to LWE

- LWE was an attempt to solve lattice problems
- Worst-case lattice problems reduce to LWE
- Need of new encryption schemes that are at least as hard to break as solving problems difficult for quantum computers

- LWE was an attempt to solve lattice problems
- Worst-case lattice problems reduce to LWE
- Need of new encryption schemes that are at least as hard to break as solving problems difficult for quantum computers
- IWE fits the bill

Intuition of LWE

$$14s_1 + 15s_2 + 5s_3 + 2s_4 \approx 8 \pmod{17}$$
 $13s_1 + 14s_2 + 14s_3 + 6s_4 \approx 16 \pmod{17}$
 $6s_1 + 10s_2 + 13s_3 + s_4 \approx 3 \pmod{17}$
 $10s_1 + 4s_2 + 12s_3 + 16s_4 \approx 12 \pmod{17}$
 $9s_1 + 5s_2 + 9s_3 + 6s_4 \approx 9 \pmod{17}$
 $3s_1 + 6s_2 + 4s_3 + 5s_4 \approx 16 \pmod{17}$
 \vdots
 $6s_1 + 7s_2 + 16s_3 + 2s_4 \approx 3 \pmod{17}$

Let $A_{\vec{s},\chi}$ be a distribution on $\mathbb{Z}_q^n \times \mathbb{Z}_q$ as follows:

Let $A_{\vec{s},\chi}$ be a distribution on $\mathbb{Z}_q^n \times \mathbb{Z}_q$ as follows:

• Pick $\vec{a} \in \mathbb{Z}_q^n$ uniformly randomly

Let $A_{\vec{s},\chi}$ be a distribution on $\mathbb{Z}_q^n \times \mathbb{Z}_q$ as follows:

- Pick $\vec{a} \in \mathbb{Z}_q^n$ uniformly randomly
- ullet Pick e according to χ

Let $A_{\vec{s},\chi}$ be a distribution on $\mathbb{Z}_q^n \times \mathbb{Z}_q$ as follows:

- Pick $\vec{a} \in \mathbb{Z}_q^n$ uniformly randomly
- ullet Pick e according to χ
- Output $(\vec{a}, \langle \vec{a}, \vec{s} \rangle + e)$

Definition (LWE)

Given samples from $A_{\vec{s},\chi}$,

• Search version: Find \vec{s} .

Definition (LWE)

Given samples from $A_{\vec{s},\chi}$,

- Search version: Find \vec{s} .
- Decision version: Distinguish between $A_{\vec{s},\chi}$ and the uniform distribution.

• Assuming $q \in O(poly(n))$ is prime

- Assuming $q \in O(poly(n))$ is prime
- Inductive process; solve variable-by-variable

- Assuming $q \in O(poly(n))$ is prime
- Inductive process; solve variable-by-variable
- Take k, a guess for s_1

- Assuming $q \in O(poly(n))$ is prime
- Inductive process; solve variable-by-variable
- Take k, a guess for s_1
- Pick r uniformly at random

- Assuming $q \in O(poly(n))$ is prime
- Inductive process; solve variable-by-variable
- Take k, a guess for s_1
- Pick r uniformly at random
- Map (\vec{a}, b) to $(\vec{a} + (r, 0, 0, \dots, 0), b + rk)$

- Assuming $q \in O(poly(n))$ is prime
- Inductive process; solve variable-by-variable
- Take k, a guess for s_1
- Pick r uniformly at random
- Map (\vec{a}, b) to $(\vec{a} + (r, 0, 0, \dots, 0), b + rk)$
- The above maps $A_{\vec{s},\chi}$ to itself if $k=s_1$, and to the uniform distribution otherwise.

- Assuming $q \in O(poly(n))$ is prime
- Inductive process; solve variable-by-variable
- Take k, a guess for s_1
- Pick r uniformly at random
- Map (\vec{a}, b) to $(\vec{a} + (r, 0, 0, ..., 0), b + rk)$
- The above maps $A_{\vec{s},\chi}$ to itself if $k=s_1$, and to the uniform distribution otherwise.
- Check using the blackbox for decision version. Try another k until the guess is correct.

GSW's LWE formulation

• Redefine \vec{a}_i as $b_i || \vec{a}_i$

GSW's LWE formulation

- Redefine \vec{a}_i as $b_i || \vec{a}_i$
- Redefine \vec{s} as $(1, -\vec{s})$

GSW's LWE formulation

- Redefine \vec{a}_i as $b_i || \vec{a}_i$
- Redefine \vec{s} as $(1, -\vec{s})$
- $A\vec{s} = \vec{e}$,

Two parties who may have never communicated before may securely exchange information, by using the tools below:

• pk: "public key", used for encryption

- pk: "public key", used for encryption
- $\mathsf{Enc}_{pk}: \Sigma^* \times \mathcal{R} \to \mathcal{U}$

- pk: "public key", used for encryption
- $\mathsf{Enc}_{pk}: \Sigma^* \times \mathcal{R} \to U$
- sk: "secret key", used for decryption

- pk: "public key", used for encryption
- $\mathsf{Enc}_{pk}: \Sigma^* \times \mathcal{R} \to \mathcal{U}$
- sk: "secret key", used for decryption
- $\operatorname{Dec}_{sk}:U\to\Sigma^*$.

- pk: "public key", used for encryption
- $\bullet \ \mathsf{Enc}_{\textit{pk}} : \Sigma^* \times \mathcal{R} \to \textit{U}$
- sk: "secret key", used for decryption
- $\operatorname{Dec}_{sk}:U\to\Sigma^*$.
- $Dec_{sk} \circ Enc_{pk}(x, r) = x$ with overwhelming probability over r

Typical use of such a scheme:

• Alice generates (pk, sk)

- Alice generates (pk, sk)
- Alice sends pk to Bob

- Alice generates (pk, sk)
- Alice sends pk to Bob
- Sob encrypts his message using pk

- Alice generates (pk, sk)
- Alice sends pk to Bob
- Sob encrypts his message using pk
- Bob sends the ciphertext to Alice

- Alice generates (pk, sk)
- Alice sends pk to Bob
- Bob encrypts his message using pk
- Observe to Alice
 Observe the serve to Alice
- Alice decrypts it using sk

Safety

What does it mean for an encryption scheme to be "safe"?

Safety

What does it mean for an encryption scheme to be "safe"?

 Chosen plaintext attack (CPA): The "intuitive" definition. An (efficient) adversary who's able to encrypt anything shouldn't be able to decrypt anything.

Safety

What does it mean for an encryption scheme to be "safe"?

- Chosen plaintext attack (CPA): The "intuitive" definition. An (efficient) adversary who's able to encrypt anything shouldn't be able to decrypt anything.
- Adaptive chosen-ciphertext attack (CCA2): A stronger definition. An (efficient) adversary who's also able to decrypt anything but the target, still cannot decrypt the target.

A cryptographic scheme is malleable if $\exists f: \Sigma^* \to \Sigma^*$ efficiently invertible, an entity given pk and $\operatorname{Enc}_{pk}(x)$ can evaluate $\operatorname{Enc}_{pk}(f(x))$.

A cryptographic scheme is malleable if $\exists f: \Sigma^* \to \Sigma^*$ efficiently invertible, an entity given pk and $\operatorname{Enc}_{pk}(x)$ can evaluate $\operatorname{Enc}_{pk}(f(x))$.

• CCA2 implies non-malleability

A cryptographic scheme is malleable if $\exists f: \Sigma^* \to \Sigma^*$ efficiently invertible, an entity given pk and $\operatorname{Enc}_{pk}(x)$ can evaluate $\operatorname{Enc}_{pk}(f(x))$.

- CCA2 implies non-malleability
- Has many flavors (malleable under CPA vs CCA)

A cryptographic scheme is malleable if $\exists f: \Sigma^* \to \Sigma^*$ efficiently invertible, an entity given pk and $\operatorname{Enc}_{pk}(x)$ can evaluate $\operatorname{Enc}_{pk}(f(x))$.

- CCA2 implies non-malleability
- Has many flavors (malleable under CPA vs CCA)
- Is this always a bad property to have?

Let someone else do the computation for you. Useful when that "someone else" is quantum!

Alice generates (pk, sk, evk)

- Alice generates (pk, sk, evk)
- Alice encrypts her message using pk

- Alice generates (pk, sk, evk)
- Alice encrypts her message using pk
- Alice sends evk and the ciphertext to Bob

- Alice generates (pk, sk, evk)
- Alice encrypts her message using pk
- Alice sends evk and the ciphertext to Bob
- Bob runs computations on the ciphertext

- Alice generates (pk, sk, evk)
- Alice encrypts her message using pk
- Alice sends evk and the ciphertext to Bob
- Observe Bob runs computations on the ciphertext
- Sob sends the encrypted result back to Alice

- Alice generates (pk, sk, evk)
- Alice encrypts her message using pk
- Alice sends evk and the ciphertext to Bob
- Bob runs computations on the ciphertext
- Sob sends the encrypted result back to Alice
- Alice decrypts it using sk.

Intuitive idea as follows:

ullet private key $ec{v}$ is a vector

- private key \vec{v} is a vector
- ullet ciphertexts are matrices with $ec{v}$ approximately as an eigenvector

- private key \vec{v} is a vector
- ullet ciphertexts are matrices with $ec{v}$ approximately as an eigenvector
- plaintexts are corresponding approximate eigenvalues

- private key \vec{v} is a vector
- ullet ciphertexts are matrices with $ec{v}$ approximately as an eigenvector
- plaintexts are corresponding approximate eigenvalues
- $(C_1 + C_2)\vec{v} \approx (\lambda_1 + \lambda_2)\vec{v}$

- private key \vec{v} is a vector
- ullet ciphertexts are matrices with $ec{v}$ approximately as an eigenvector
- plaintexts are corresponding approximate eigenvalues
- $(C_1 + C_2)\vec{v} \approx (\lambda_1 + \lambda_2)\vec{v}$
- $(C_1C_2)\vec{v}\approx(\lambda_1\lambda_2)\vec{v}$

- private key \vec{v} is a vector
- ullet ciphertexts are matrices with $ec{v}$ approximately as an eigenvector
- plaintexts are corresponding approximate eigenvalues
- $(C_1 + C_2)\vec{v} \approx (\lambda_1 + \lambda_2)\vec{v}$
- $(C_1C_2)\vec{v}\approx(\lambda_1\lambda_2)\vec{v}$
- When plaintexts are booleans, $I_N C_1C_2$ encodes NAND.

Define the following functions on \mathbb{Z}_q^* . Easier to understand with examples. Take $q=2^4$.

• Powersof2 $(1_2, 0_2, 11_2) = (1_2, 10_2, 100_2, 1000_2, 0_2, 0_2, 0_2, 0_2, 11_2, 110_2, 1100_2, 1000_2)$

- Powersof2 $(1_2, 0_2, 11_2) = (1_2, 10_2, 100_2, 1000_2, 0_2, 0_2, 0_2, 0_2, 11_2, 110_2, 1100_2, 1000_2)$
- BitDecomp $(1001_2, 0010_2, 1100_2) = (1, 0, 0, 1, 0, 0, 1, 0, 1, 1, 0, 0)$

- Powersof2 $(1_2, 0_2, 11_2) = (1_2, 10_2, 100_2, 1000_2, 0_2, 0_2, 0_2, 0_2, 11_2, 110_2, 1100_2, 1000_2)$
- BitDecomp $(1001_2, 0010_2, 1100_2) = (1, 0, 0, 1, 0, 0, 1, 0, 1, 1, 0, 0)$
- BitDecomp⁻¹ $(1,0,0,1,0,0,1,0,1,1,0,0) = (1001_2,0010_2,1100_2)$

- Powersof2 $(1_2, 0_2, 11_2) = (1_2, 10_2, 100_2, 1000_2, 0_2, 0_2, 0_2, 0_2, 11_2, 110_2, 1100_2, 1000_2)$
- BitDecomp $(1001_2, 0010_2, 1100_2) = (1, 0, 0, 1, 0, 0, 1, 0, 1, 1, 0, 0)$
- BitDecomp⁻¹ $(1,0,0,1,0,0,1,0,1,1,0,0) = (1001_2,0010_2,1100_2)$
- BitDecomp⁻¹ $(0,0,10_2,0,0,1,10_2,1,11_2,0,1,1) = (0100_2,1001_2,1011_2)$

- Powersof2 $(1_2, 0_2, 11_2) = (1_2, 10_2, 100_2, 1000_2, 0_2, 0_2, 0_2, 0_2, 11_2, 110_2, 1100_2, 1000_2)$
- BitDecomp $(1001_2, 0010_2, 1100_2) = (1, 0, 0, 1, 0, 0, 1, 0, 1, 1, 0, 0)$
- BitDecomp⁻¹ $(1,0,0,1,0,0,1,0,1,1,0,0) = (1001_2,0010_2,1100_2)$
- BitDecomp⁻¹ $(0, 0, 10_2, 0, 0, 1, 10_2, 1, 11_2, 0, 1, 1) = (0100_2, 1001_2, 1011_2)$
- Flatten = $BitDecomp \circ BitDecomp^{-1}$

```
\begin{aligned} \mathsf{Flatten} \big( 110_2, 101_2, 1_2, 11_2, \\ 110_2, 101_2, 1_2, 11_2, \\ 110_2, 101_2, 1_2, 11_2 \big) \end{aligned}
```

$$\begin{aligned} \mathsf{Flatten}\big(110_2, 101_2, 1_2, 11_2, \\ 110_2, 101_2, 1_2, 11_2, \\ 110_2, 101_2, 1_2, 11_2\big) \end{aligned}$$

$$= \mathsf{BitDecomp} \circ \mathsf{BitDecomp}^{-1}(110_2, 101_2, 1_2, 11_2, \\ 110_2, 101_2, 1_2, 11_2, \\ 110_2, 101_2, 1_2, 11_2)$$

$$\begin{aligned} \mathsf{Flatten} \big(110_2, 101_2, 1_2, 11_2, \\ &110_2, 101_2, 1_2, 11_2, \\ &110_2, 101_2, 1_2, 11_2 \big) \end{aligned}$$

$$= \mathsf{BitDecomp} \circ \mathsf{BitDecomp}^{-1} \big(110_2, 101_2, 1_2, 11_2, \\ &110_2, 101_2, 1_2, 1_2, \\ &110_2, 101_2, 1_2, 1_2, \\ &110_2, 101_2, 1_2, 1_2, \\ &110_2, 101_2, 1_2, 1_2, \\ &110_2, 101_2, 1_2, 1_2, \\ &110_2, 101_2, 1_2, 1_2, \\ &110_2, 101_2, 1_2, 1_2, \\ &110_2, 101_2, 1_2, 1_2, \\ &110_2, 101_2, 1_2, 1_2, \\ &110_2, 101_2, 1_2, 1_2, \\ &110_2, 1_2, 1_2, 1_2, \\ &110_2, 1_2, 1_2, \\ &110_2, 1_2, 1_2, \\ &$$

$$= \texttt{BitDecomp} \circ \texttt{BitDecomp} \quad \ \ \, \begin{array}{c} \texttt{-(110}_2, 101_2, 1_2, 11_2, \\ 110_2, 101_2, 1_2, 11_2, \\ 110_2, 101_2, 1_2, 11_2 \end{array})$$

$$= \mathsf{BitDecomp} \big(110000_2 + 10100_2 + 10_2 + 11_2, \\ 110000_2 + 10100_2 + 10_2 + 11_2, \\ 110000_2 + 10100_2 + 10_2 + 11_2 \big)$$

```
= \mathsf{BitDecomp}(1001001_2, \\ 1001001_2, \\ 1001001_2)
```

```
= \mathsf{BitDecomp}(1001001_2, \\ 1001001_2, \\ 1001001_2)
```

 $= \mathsf{BitDecomp}(1001_2, 1001_2, 1001_2)$

$$= \mathsf{BitDecomp}(1001001_2, \\ 1001001_2, \\ 1001001_2)$$

$$= \mathsf{BitDecomp}(1001_2, 1001_2, 1001_2)$$

$$= (1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1)$$

GSW's tools cont.

Some basic properties

• $\langle \mathsf{BitDecomp}(\vec{a}), \mathsf{Powersof2}(\vec{b}) \rangle = \langle \vec{a}, \vec{b} \rangle$

GSW's tools cont.

Some basic properties

- $\langle \mathsf{BitDecomp}(\vec{a}), \mathsf{Powersof2}(\vec{b}) \rangle = \langle \vec{a}, \vec{b} \rangle$
- ullet $\langle ec{a}, \mathsf{Powersof2}(ec{b})
 angle = \langle \mathsf{BitDecomp}^{-1}(ec{a}), ec{b}
 angle$

GSW's tools cont.

Some basic properties

- $\langle \mathsf{BitDecomp}(\vec{a}), \mathsf{Powersof2}(\vec{b}) \rangle = \langle \vec{a}, \vec{b} \rangle$
- ullet $\langle ec{a}, \mathsf{Powersof2}(ec{b})
 angle = \langle \mathsf{BitDecomp}^{-1}(ec{a}), ec{b}
 angle$
- = $\langle \mathsf{Flatten}(\vec{a}), \mathsf{Powersof2}(\vec{b}) \rangle$

Choose the following parameters:

• Modulus $q = 2^l$ (to simplify some proofs)

Choose the following parameters:

- Modulus $q = 2^l$ (to simplify some proofs)
- Lattice dimension n

Choose the following parameters:

- Modulus $q = 2^l$ (to simplify some proofs)
- Lattice dimension n
- Error distribution $\chi(\lambda, L)$

Choose the following parameters:

- Modulus $q = 2^l$ (to simplify some proofs)
- Lattice dimension n
- Error distribution $\chi(\lambda, L)$
- $m \in O(n \log q)$

GSW's Construction - Secret Keygen

1 Sample $\vec{s} \leftarrow \mathbb{Z}_q^n$ uniformly. This represents the solution of the LWE system of equations.

GSW's Construction - Secret Keygen

- **①** Sample $\vec{s} \leftarrow \mathbb{Z}_q^n$ uniformly. This represents the solution of the LWE system of equations.
- ② Output sk as 1 on the first coordinate, followed by $-\vec{s}$.

1 Generate $B \leftarrow \mathbb{Z}_q^{m \times n}$ uniformly

- **①** Generate $B \leftarrow \mathbb{Z}_q^{m \times n}$ uniformly
- ② Sample $\vec{e} \leftarrow \chi^m$

- **1** Generate $B \leftarrow \mathbb{Z}_q^{m \times n}$ uniformly
- ② Sample $\vec{e} \leftarrow \chi^m$
- 3 Set pk as $B\vec{s} + \vec{e}$ on the first column, followed by the columns of B.

- $\textbf{9} \ \, \mathsf{Generate} \ \, B \leftarrow \mathbb{Z}_q^{m \times n} \ \, \mathsf{uniformly}$
- ② Sample $\vec{e} \leftarrow \chi^m$
- 3 Set pk as $B\vec{s} + \vec{e}$ on the first column, followed by the columns of B.
- **4** Observe that $pk \cdot sk = \vec{e}$

GSW's Construction - Encryption

Input: μ

• Sample $R \in \{0,1\}^{N \times m}$

GSW's Construction - Encryption

Input: μ

- Sample $R \in \{0,1\}^{N \times m}$
- **②** Output Flatten $(\mu \cdot I + BitDecomp(R \cdot pk))$

$$\mathsf{Flatten}(\mu \cdot I + \mathsf{BitDecomp}(R \cdot pk)) \cdot \mathsf{Powersof2}(sk)$$

```
Flatten(\mu \cdot I + BitDecomp(R \cdot pk)) · Powersof2(sk) = (\mu \cdot I + BitDecomp(R \cdot pk)) · Powersof2(sk)
```

```
Flatten(\mu \cdot I + BitDecomp(R \cdot pk)) · Powersof2(sk) = (\mu \cdot I + BitDecomp(R \cdot pk)) · Powersof2(sk) = \muPowersof2(sk) + R \cdot pk \cdot sk
```

$$\mu$$
Powersof2(sk) + $R \cdot pk \cdot sk$

• The second term is small.

$$\mu$$
Powersof2(sk) + $R \cdot pk \cdot sk$

- The second term is small.
- The first coordinate of sk is 1.

$$\mu$$
Powersof2(sk) + $R \cdot pk \cdot sk$

- The second term is small.
- The first coordinate of sk is 1.
- \Rightarrow The first coordinates of μ Powersof2(sk) + $R \cdot pk \cdot sk$ are $\approx \mu, 2\mu, \dots, 2^{l-2}\mu, 2^{l-1}\mu$

$$\mu$$
Powersof2(sk) + $R \cdot pk \cdot sk$

- The second term is small.
- The first coordinate of sk is 1.
- \Rightarrow The first coordinates of μ Powersof2(sk) + $R \cdot pk \cdot sk$ are $\approx \mu, 2\mu, \dots, 2^{l-2}\mu, 2^{l-1}\mu$
- Recover μ 's least significant bit by $LSB(\mu) = 2^{l-1}\mu$

$$\mu$$
Powersof2(sk) + $R \cdot pk \cdot sk$

- The second term is small.
- The first coordinate of sk is 1.
- \Rightarrow The first coordinates of μ Powersof2(sk) + $R \cdot pk \cdot sk$ are $\approx \mu, 2\mu, \dots, 2^{l-2}\mu, 2^{l-1}\mu$
- Recover μ 's least significant bit by $LSB(\mu) = 2^{l-1}\mu$
- Recover μ 's next bit by $2^{l-2}(\mu LSB(\mu))$

$$\mu$$
Powersof2(sk) + $R \cdot pk \cdot sk$

- The second term is small.
- The first coordinate of sk is 1.
- \Rightarrow The first coordinates of μ Powersof2(sk) + $R \cdot pk \cdot sk$ are $\approx \mu, 2\mu, \dots, 2^{l-2}\mu, 2^{l-1}\mu$
- Recover μ 's least significant bit by $LSB(\mu) = 2^{l-1}\mu$
- Recover μ 's next bit by $2^{l-2}(\mu LSB(\mu))$
- Similar for all other bits of μ .

$$\mu$$
Powersof2(sk) + $R \cdot pk \cdot sk$

- The second term is small.
- The first coordinate of sk is 1.
- \Rightarrow The first coordinates of μ Powersof2(sk) + $R \cdot pk \cdot sk$ are $\approx \mu, 2\mu, \dots, 2^{l-2}\mu, 2^{l-1}\mu$
- Recover μ 's least significant bit by $LSB(\mu) = 2^{l-1}\mu$
- Recover μ 's next bit by $2^{l-2}(\mu LSB(\mu))$
- Similar for all other bits of μ .
- Decryption breaks down when the error reaches q/4.

GSW's Construction - Security

• If $C = \operatorname{Enc}_{pk}(\mu, r)$ hides μ , so does BitDecomp⁻¹(C), since C can be derived from it.

GSW's Construction - Security

- If $C = \operatorname{Enc}_{pk}(\mu, r)$ hides μ , so does BitDecomp⁻¹(C), since C can be derived from it.
- $BitDecomp^{-1}(C) = \mu \cdot BitDecomp^{-1}(I) + R \cdot A$

GSW's Construction - Security

- If $C = \operatorname{Enc}_{pk}(\mu, r)$ hides μ , so does BitDecomp⁻¹(C), since C can be derived from it.
- BitDecomp⁻¹(C) = μ · BitDecomp⁻¹(I) + R · A
- Fact: The joint distribution $(A, R \cdot A)$ is indistinguishable from uniform, if m > 2nl

GSW's Construction - NAND

•
$$(I - C_1 \cdot C_2)\vec{v} = (1 - \mu_1\mu_2)\vec{v} - \mu_2\vec{e}_1 - C_1\vec{e}_2$$

GSW's Construction - NAND

•
$$(I - C_1 \cdot C_2)\vec{v} = (1 - \mu_1\mu_2)\vec{v} - \mu_2\vec{e}_1 - C_1\vec{e}_2$$

• Error increased by a factor of N + 1.

GSW's Construction - NAND

•
$$(I - C_1 \cdot C_2)\vec{v} = (1 - \mu_1\mu_2)\vec{v} - \mu_2\vec{e}_1 - C_1\vec{e}_2$$

- Error increased by a factor of N + 1.
- Final error increase by a factor of $(N+1)^L$

```
Input: C, \alpha
• Set M_{\alpha} = \mathsf{Flatten}(\alpha I)
```

Input: C, α

- Set $M_{\alpha} = \mathsf{Flatten}(\alpha I)$
- Output Flatten $(M_{\alpha} \cdot C)$

Input: C, α

- Set $M_{\alpha} = \mathsf{Flatten}(\alpha I)$
- Output Flatten($M_{\alpha} \cdot C$)
- Observe $M_{\alpha} \cdot C\vec{v} = M_{\alpha} \cdot (\mu \vec{v} + \vec{e}) = \alpha \mu \vec{v} + M_{\alpha} \cdot e$

Input: C, α

- Set $M_{\alpha} = \mathsf{Flatten}(\alpha I)$
- Output Flatten($M_{\alpha} \cdot C$)
- Observe $M_{\alpha} \cdot C\vec{v} = M_{\alpha} \cdot (\mu \vec{v} + \vec{e}) = \alpha \mu \vec{v} + M_{\alpha} \cdot e$
- ullet Error increases by a factor of N

GSW's Construction - Addition

Simply add the ciphertexts

GSW's Construction - Addition

- Simply add the ciphertexts
- Error increases by a factor of 2

GSW's Construction - Multiplication

•
$$C_1 \cdot C_2 \vec{v} = C_1 (\mu_2 \vec{v} + \vec{e}_2) = \mu_1 \mu_2 \vec{v} + \mu_2 \vec{e}_1 + C_1 \vec{e}_2$$

GSW's Construction - Multiplication

•
$$C_1 \cdot C_2 \vec{v} = C_1(\mu_2 \vec{v} + \vec{e}_2) = \mu_1 \mu_2 \vec{v} + \mu_2 \vec{e}_1 + C_1 \vec{e}_2$$

• Error increase depends on what's being encrypted

GSW's Construction - Multiplication

•
$$C_1 \cdot C_2 \vec{v} = C_1(\mu_2 \vec{v} + \vec{e}_2) = \mu_1 \mu_2 \vec{v} + \mu_2 \vec{e}_1 + C_1 \vec{e}_2$$

- Error increase depends on what's being encrypted
- May need to assume bounds on the values being computed

References

- O. Regev. The Learning with Errors Problem.
- C. Gentry, A. Sahai, B. Waters. Homomorphic Encryption from Learning with Errors: Conceptually-Simpler, Asymptotically-Faster, Attribute-Based.