MTH1004M Linear Algebra

- ▶ Let x and y denote the horizontal and vertical axis
- \triangleright Let O be the origin of the axes.

Now pick up a point A in the plane. We say that this point has coordinates the numbers u_1 and u_2 .

By drawing an arrow from O to A, you create a vector \mathbf{u} :

$$\mathbf{u} = [u_1, u_2] \text{ or } \mathbf{u} = \begin{bmatrix} u_1 \\ u_2 \end{bmatrix}$$

- \triangleright We denote the plane by \mathbb{R}^2
- \triangleright The exponent 2 denotes the number of coordinates we have, i.e. here we have x and y.
- \triangleright You understand that, to specify a vector in \mathbb{R}^2 , you need to know its entries, i.e. u_1 and u_2 .

Can you draw the vectors

$$\mathbf{u} = \begin{bmatrix} 3 \\ 1 \end{bmatrix}$$
 and $\mathbf{w} = \begin{bmatrix} 2 \\ -2 \end{bmatrix}$?

Which is the vector from O to O? We denote by $\mathbf{0}$ the zero-vector:

$$\mathbf{0} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

Remarks

- \triangleright Points are with brackets, i.e. A(1, 1.5)
- \triangleright Vectors are with square brackets i.e. $\mathbf{a} = [1, 1.5]$

All vectors with origin other than *O* are transferable to their *standard position*. Example:

$$\mathbf{a} = \vec{BC} = \begin{bmatrix} 1 \\ 1.5 \end{bmatrix} = \begin{bmatrix} 2-1 \\ 2-0.5 \end{bmatrix}$$

- \triangleright The individual coordinates, 1 and 1.5, are called *components* of the vector **a**.
- \triangleright If not otherwise stated, the origin of the vector is O.

Linear Combinations

The heart of Linear Algebra is in two operations :

♦ We add vectors and we multiply them by numbers.

These two operations gives the **linear combination** of vectors.

If
$$\mathbf{u} = \begin{bmatrix} u_1 \\ u_2 \end{bmatrix}$$
 and $\mathbf{w} = \begin{bmatrix} w_1 \\ w_2 \end{bmatrix}$, then $\mathbf{u} + \mathbf{w} = \begin{bmatrix} u_1 + w_1 \\ u_2 + w_2 \end{bmatrix}$.

We add the first component of \mathbf{u} to the first component of \mathbf{w} , i.e. $(u_1 + w_1)$ and the second component of \mathbf{u} to the second component of \mathbf{w} , i.e. $(u_2 + w_2)$ to get the vector $\mathbf{u} + \mathbf{w}$

Scalar Multiplication:

If
$$c$$
 is a real number and $\mathbf{u} = \begin{bmatrix} u_1 \\ u_2 \end{bmatrix}$, then $c\mathbf{u} = \begin{bmatrix} cu_1 \\ cu_2 \end{bmatrix}$.

We multiply each component of the vector \mathbf{u} with the real number c and this is how we get the vector $c\mathbf{u}$.

Vector Addition

Here it is
$$\mathbf{u} = \begin{bmatrix} 2 \\ 2 \end{bmatrix}$$
 and $\mathbf{w} = \begin{bmatrix} -1 \\ 1 \end{bmatrix}$.

$$\mathbf{u} + \mathbf{w} = \begin{bmatrix} 2 \\ 2 \end{bmatrix} + \begin{bmatrix} -1 \\ 1 \end{bmatrix} = \begin{bmatrix} 2 - 1 \\ 2 + 1 \end{bmatrix} = \begin{bmatrix} 1 \\ 2 \end{bmatrix}.$$

To calculate $\mathbf{u} - \mathbf{w}$ we find the vector $-\mathbf{w} = \begin{bmatrix} 1 \\ -1 \end{bmatrix}$ and then we add the vectors \mathbf{u} and $-\mathbf{w}$, as before. So, $\begin{bmatrix} 2 \end{bmatrix} \begin{bmatrix} 1 \end{bmatrix} \begin{bmatrix} 2+1 \end{bmatrix} \begin{bmatrix} 3 \end{bmatrix}$

$$\mathbf{u} - \mathbf{w} = \begin{bmatrix} 2 \\ 2 \end{bmatrix} + \begin{bmatrix} 1 \\ -1 \end{bmatrix} = \begin{bmatrix} 2+1 \\ 2-1 \end{bmatrix} = \begin{bmatrix} 3 \\ 1 \end{bmatrix}.$$

Scalar Multiplication

We calculate the scalar multiplication of the number c=2 with the vector \mathbf{u} :

vector
$$\mathbf{u}$$
: $2\mathbf{u} = 2\begin{bmatrix} 1\\2 \end{bmatrix} = \begin{bmatrix} 2\\4 \end{bmatrix}$.

Similarly, the vector $-\frac{1}{2}\mathbf{u}$ is:

$$-\frac{1}{2}\mathbf{u} = -\frac{1}{2}\begin{bmatrix} 1\\2 \end{bmatrix} = \begin{bmatrix} -1/2\\-1 \end{bmatrix}.$$

Linear Combination of Vectors

This is a key concept of Linear Algebra

Definition

Let c and d be real numbers. Let \mathbf{u} and \mathbf{w} be vectors in the plane (\mathbb{R}^2). The sum of $\mathbf{c}\mathbf{u}$ and $\mathbf{d}\mathbf{w}$ is a linear combination of \mathbf{u} and \mathbf{w} .

Examples

We calculated $\mathbf{u} + \mathbf{w}$ and $\mathbf{u} - \mathbf{w}$. These were both linear combinations of the vectors \mathbf{u} and \mathbf{w} . What are the real numbers c and d here?

Linear combinations of \mathbf{u} and \mathbf{w}

$$\begin{array}{c} 2\mathbf{u} + 3\mathbf{w} \\ \mathbf{u} - 1/2\mathbf{w} \\ -2\mathbf{u} + 4\mathbf{w} \\ -1\mathbf{u} + 1\mathbf{w} \\ 0\mathbf{u} + \mathbf{w} \end{array}$$

Example: Calculate and Draw $2\mathbf{u} + 3\mathbf{w}$

$$2\mathbf{u} + 3\mathbf{w} = 2\begin{bmatrix} 2\\2 \end{bmatrix} + 3\begin{bmatrix} -1\\1 \end{bmatrix} = \begin{bmatrix} 1\\7 \end{bmatrix}.$$

Example: Calculate and Draw $\mathbf{u}-1/2\mathbf{w}$

Example: Calculate and Draw $-2\mathbf{u} + 4\mathbf{w}$

 \diamond Let that c, d be real numbers and $\mathbf{u}, \mathbf{v}, \mathbf{w}$ vectors in the plane.

▶ The zero vector 0:

$$0\mathbf{u} = \mathbf{0}$$

$$0\mathbf{u} + \mathbf{w} = \mathbf{w}$$

$$c\mathbf{u} + 0\mathbf{w} = c\mathbf{u}$$

$$c\mathbf{0} = \mathbf{0}$$

 \triangleright Commutativity: $\mathbf{u} + \mathbf{w} = \mathbf{w} + \mathbf{u}$

In other words, the order of vector addition makes no difference.

Proof:

$$\mathbf{u} + \mathbf{w} = \begin{bmatrix} u_1 \\ u_2 \end{bmatrix} + \begin{bmatrix} w_1 \\ w_2 \end{bmatrix} = \begin{bmatrix} u_1 + w_1 \\ u_2 + w_2 \end{bmatrix} = \begin{bmatrix} w_1 + u_1 \\ w_2 + u_2 \end{bmatrix} = \begin{bmatrix} w_1 \\ w_2 \end{bmatrix} + \begin{bmatrix} u_1 \\ u_2 \end{bmatrix} = \mathbf{w} + \mathbf{u}$$

Example: Let $\mathbf{u} = \begin{bmatrix} 2 \\ 3 \end{bmatrix}$ and $\mathbf{w} = \begin{bmatrix} 1 \\ 4 \end{bmatrix}$. Show that $\mathbf{u} + \mathbf{w} = \mathbf{w} + \mathbf{u}$.

It is,
$$\mathbf{u} + \mathbf{w} = \begin{bmatrix} 2 \\ 3 \end{bmatrix} + \begin{bmatrix} 1 \\ 4 \end{bmatrix} = \begin{bmatrix} 3 \\ 7 \end{bmatrix}$$

while also
$$\mathbf{w} + \mathbf{u} = \begin{bmatrix} 1 \\ 4 \end{bmatrix} + \begin{bmatrix} 2 \\ 3 \end{bmatrix} = \begin{bmatrix} 3 \\ 7 \end{bmatrix}$$
.

$$\triangleright \textit{Associativity:} \quad (\mathbf{u} + \mathbf{v}) + \mathbf{w} = \mathbf{u} + (\mathbf{v} + \mathbf{w}).$$

Example: Let
$$\mathbf{u} = \begin{bmatrix} -2 \\ 1 \end{bmatrix}$$
, $\mathbf{v} = \begin{bmatrix} 0 \\ -1 \end{bmatrix}$ and $\mathbf{w} = \begin{bmatrix} 3 \\ -2 \end{bmatrix}$. Show that $(\mathbf{u} + \mathbf{v}) + \mathbf{w} = \mathbf{u} + (\mathbf{v} + \mathbf{w})$.

It is,
$$\mathbf{u} + \mathbf{v} = \begin{bmatrix} -2 \\ 1 \end{bmatrix} + \begin{bmatrix} 0 \\ -1 \end{bmatrix} = \begin{bmatrix} -2 \\ 0 \end{bmatrix}$$
.
So, then $(\mathbf{u} + \mathbf{v}) + \mathbf{w} = \begin{bmatrix} -2 \\ 0 \end{bmatrix} + \begin{bmatrix} 3 \\ -2 \end{bmatrix} = \begin{bmatrix} 1 \\ -2 \end{bmatrix}$.
On the other hand, it is $\mathbf{v} + \mathbf{w} = \begin{bmatrix} 0 \\ -1 \end{bmatrix} + \begin{bmatrix} 3 \\ -2 \end{bmatrix} = \begin{bmatrix} 3 \\ -3 \end{bmatrix}$,
so, $\mathbf{u} + (\mathbf{v} + \mathbf{w}) = \begin{bmatrix} -2 \\ 1 \end{bmatrix} + \begin{bmatrix} 3 \\ -3 \end{bmatrix} = \begin{bmatrix} 1 \\ -2 \end{bmatrix}$

$$\triangleright$$
 Distributivity (1): $c(\mathbf{u} + \mathbf{v}) = c\mathbf{u} + c\mathbf{v}$.

Example: Let
$$\mathbf{u} = \begin{bmatrix} 2 \\ 0 \end{bmatrix}$$
 and $\mathbf{v} = \begin{bmatrix} 1 \\ -4 \end{bmatrix}$. Show that $3(\mathbf{u} + \mathbf{v}) = 3\mathbf{u} + 3\mathbf{v}$.

It is,
$$3(\mathbf{u} + \mathbf{v}) = 3(\begin{bmatrix} 2 \\ 0 \end{bmatrix} + \begin{bmatrix} 1 \\ -4 \end{bmatrix}) = 3\begin{bmatrix} 3 \\ -4 \end{bmatrix} = \begin{bmatrix} 9 \\ -12 \end{bmatrix}$$
, while it is $3\mathbf{u} + 3\mathbf{v} = 3\begin{bmatrix} 2 \\ 0 \end{bmatrix} + 3\begin{bmatrix} 1 \\ -4 \end{bmatrix} = \begin{bmatrix} 6 \\ 0 \end{bmatrix} + \begin{bmatrix} 3 \\ -12 \end{bmatrix} = \begin{bmatrix} 9 \\ -12 \end{bmatrix}$

- $\triangleright \textit{ Distributivity (II):} \qquad (c+d)\mathbf{u} = c\mathbf{u} + d\mathbf{u}.$
- Do Other properties:

$$c(d\mathbf{u}) = (cd)\mathbf{u}$$
$$\mathbf{u} + (-\mathbf{u}) = \mathbf{0}$$
$$1\mathbf{u} = \mathbf{u}$$

Example: Simplify the vector expression

$$3(\mathbf{u} - 4\mathbf{v}) + 2((2+1)\mathbf{w} + 3\mathbf{v}) + 0(1\mathbf{u} + 5\mathbf{w}).$$

Alternatively one can ask, which is the simplest linear combination of the above expression?

$$3(u - 4v) + 2(3w + 3v) + 0(1u + 5w) =$$

 $3u - 12v + 6w + 6v + 0 =$
 $3u - 6v + 6w$

Spanning of two vectors in \mathbb{R}^2

Definition Let \mathbf{u}_1 and \mathbf{u}_2 be two vectors in \mathbb{R}^2 . The set of all linear combinations

$$S = \{c_1\mathbf{u}_1 + c_2\mathbf{u}_2 : c_1, c_2 \text{ in } \mathbb{R}\}$$

is called *span* of \mathbf{u}_1 and \mathbf{u}_2 and is denoted by $span(\mathbf{u}_1, \mathbf{u}_2)$.

Definition If the linear combination of \mathbf{u}_1 and \mathbf{u}_2 can produce any vector in the plane, then the vectors $\{\mathbf{u}_1,\mathbf{u}_2\}$ span the plane. We denote by

$$span(\mathbf{u}_1, \mathbf{u}_2) = \mathbb{R}^2$$

Examples spanning \mathbb{R}^2

 \rightarrow Find the span of the standard vectors \mathbf{e}_1 and \mathbf{e}_2

It is

$$span(\mathbf{e}_1, \mathbf{e}_2) = \{c_1\mathbf{e}_1 + c_2\mathbf{e}_2 : c_1, c_2 \text{ in } \mathbb{R}\}$$

The linear combinations of e_1 and e_2 are:

$$c_1\mathbf{e}_1 + c_2\mathbf{e}_2 = c_1 \begin{bmatrix} 1 \\ 0 \end{bmatrix} + c_2 \begin{bmatrix} 0 \\ 1 \end{bmatrix} = \begin{bmatrix} c_1 \\ c_2 \end{bmatrix}.$$

So,

$$span(\mathbf{e}_1, \mathbf{e}_2) = \{ \begin{bmatrix} c_1 \\ c_2 \end{bmatrix} : c_1, c_2 \text{ in } \mathbb{R} \}$$

→ Show that the standard vectors \mathbf{e}_1 and \mathbf{e}_2 span the plane.

We check whether the linear combinations of $\mathbf{e}_1, \mathbf{e}_2$ can produce any vector $\mathbf{x} = \begin{bmatrix} x \\ y \end{bmatrix}$ in \mathbb{R}^2 . Let $c_1\mathbf{e}_1 + c_2\mathbf{e}_2 = \mathbf{x}$, then $\begin{bmatrix} c_1 \\ c_2 \end{bmatrix} = \begin{bmatrix} x \\ y \end{bmatrix}$. So, for $c_1 = x$ and $c_1 = y$ any vector $\mathbf{x} = \begin{bmatrix} x \\ y \end{bmatrix}$ can be expressed as the linear combination of \mathbf{e}_1 and \mathbf{e}_2 , therefore they span the plane:

$$span(\mathbf{e}_1, \mathbf{e}_2) = \mathbb{R}^2$$

Example spanning a line in \mathbb{R}^2

$$\rightarrow$$
 Find span($e_1, -2e_1$)

The linear combinations of e_1 , $-2e_1$ are:

$$c_1\mathbf{e}_1 + c_2(-2\mathbf{e}_1) = (c_1 - 2c_2)\mathbf{e}_1 = (c_1 - 2c_2)\begin{bmatrix} 1 \\ 0 \end{bmatrix} = \begin{bmatrix} c_1 - 2c_2 \\ 0 \end{bmatrix}$$

Let $d = c_1 - 2c_2$, then:

$$span(\mathbf{e}_1, -2\mathbf{e}_1) = \{d\mathbf{e}_1 : d \text{ in } \mathbb{R}\} = \left\{ \begin{bmatrix} d \\ 0 \end{bmatrix} : d \text{ in } \mathbb{R} \right\},$$

which is the x-axis and is a line \mathbb{R}^2 (whose equation is y = 0).

Therefore, $span(\mathbf{e}_1, -2\mathbf{e}_1) \neq \mathbb{R}^2$ because \mathbf{e}_1 and $-2\mathbf{e}_1$ cannot produce all vectors in \mathbb{R}^2 .

$$\rightarrow$$
 Find span($\mathbf{e}_1 + 3\mathbf{e}_2, \mathbf{e}_2$)

The linear combinations of $\mathbf{e}_1 + 3\mathbf{e}_2$ and \mathbf{e}_2 are:

$$c_1(\mathbf{e}_1 + 3\mathbf{e}_2) + c_2\mathbf{e}_2 = c_1\mathbf{e}_1 + (3c_1 + c_2)\mathbf{e}_2 = c_1\begin{bmatrix} 1 \\ 0 \end{bmatrix} + (3c_1 + c_2)\begin{bmatrix} 0 \\ 1 \end{bmatrix} = \begin{bmatrix} c_1 \\ 3c_1 + c_2 \end{bmatrix}$$

So:

$$span(\mathbf{e}_1+3\mathbf{e}_2,\mathbf{e}_2)=\left\{\begin{bmatrix}c_1\\3c_1+c_2\end{bmatrix}:c_1,c_2\text{ in }\mathbb{R}\right\}$$

 \Rightarrow Show that $span(\mathbf{e}_1 + 3\mathbf{e}_2, \mathbf{e}_2) = \mathbb{R}^2$.

We check whether the linear combinations of $\mathbf{e}_1+3\mathbf{e}_2$ and \mathbf{e}_2 can produce any vector $\mathbf{x}=\begin{bmatrix}x\\y\end{bmatrix}$ in \mathbb{R}^2 . Setting $c_1(\mathbf{e}_1+3\mathbf{e}_2)+c_2\mathbf{e}_2=\mathbf{x}$, it yields that:

$$\begin{bmatrix} c_1 \\ 3c_1 + c_2 \end{bmatrix} = \begin{bmatrix} x \\ y \end{bmatrix}$$

So $c_1=x$ and $3c_1+c_2=y$ or better, $c_1=x$ and $c_2=y-3c_1=y-3x$. So, since there are $c_1=x$ and $c_2=y-3x$, then any vector $\mathbf{x}=\begin{bmatrix}x\\y\end{bmatrix}$ can be expressed as the linear combination of $\mathbf{e}_1+3\mathbf{e}_2$ and \mathbf{e}_2 , therefore they span the plane, namely $span(\mathbf{e}_1+3\mathbf{e}_2,\mathbf{e}_2)=\mathbb{R}^2$.

→ Find span(
$$\mathbf{u}$$
, \mathbf{v}) where $\mathbf{u} = \begin{bmatrix} 3/2 \\ 1 \end{bmatrix}$ and $\mathbf{v} = \begin{bmatrix} -3/4 \\ -1/2 \end{bmatrix}$

The linear combinations of \mathbf{u}, \mathbf{v} read:

$$c_1\mathbf{u} + c_2\mathbf{v} = c_1 \begin{bmatrix} 3/2 \\ 1 \end{bmatrix} + c_2 \begin{bmatrix} -3/4 \\ -1/2 \end{bmatrix} = \begin{bmatrix} 3/2c_1 - 3/4c_2 \\ c_1 - 1/2c_2 \end{bmatrix} = \begin{bmatrix} 3/2(c_1 - 1/2c_2) \\ c_1 - 1/2c_2 \end{bmatrix}$$

Let $d = c_1 - 1/2c_2$, then

$$span(\mathbf{u}, \mathbf{v}) = \left\{ \begin{bmatrix} 3/2d \\ d \end{bmatrix} : d \text{ in } \mathbb{R} \right\} = \left\{ d \begin{bmatrix} 3/2 \\ 1 \end{bmatrix} : d \text{ in } \mathbb{R} \right\} = span(\mathbf{u})$$

which is a line in plane \mathbb{R}^2 . (By setting x=3/2d and y=d one finds that the line is x=3/2y).

So, $span(\mathbf{u}, \mathbf{v})$ is **not** the whole plane \mathbb{R}^2 .

Linear Independence

Definition Two vectors $\mathbf{u}_1, \mathbf{u}_2$ are called *linearly independent* if the linear combination

$$c_1\mathbf{u}_1+c_2\mathbf{u}_2=\mathbf{0}$$

implies that all scalars are zero $c_1 = c_2 = 0$.

It actually means that whose vectors are not related. They are, simply, independent.

→ Show that the vectors $\mathbf{u} = \begin{bmatrix} 1 \\ -1 \end{bmatrix}$ and $\mathbf{v} = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$ are linearly independent.

The standard methodology is to start with the vector equation

$$c_1\mathbf{u}+c_2\mathbf{v}=\mathbf{0}$$

and try to find possible solutions in terms of scalars c_1 and c_2 . It is:

$$c_1\mathbf{u}+c_2\mathbf{v}=c_1\begin{bmatrix}1\\-1\end{bmatrix}+c_2\begin{bmatrix}1\\0\end{bmatrix}=\begin{bmatrix}c_1+c_2\\-c_1\end{bmatrix}.$$

The equation $c_1\mathbf{u} + c_2\mathbf{v} = \mathbf{0}$ is equivalent to

$$\begin{bmatrix} c_1 + c_2 \\ -c_1 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \rightarrow \left\{ \begin{array}{c} 0 + c_2 = 0 \\ c_1 = 0 \end{array} \right.$$

So, $c_1=c_2=0$ therefore we conclude that the vectors ${\bf u},{\bf v}$ are linearly independent.

→ Determine whether the vectors $\mathbf{u} = \begin{bmatrix} 1 \\ -1 \end{bmatrix}$ and $\mathbf{v} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$ are linearly independent.

Like in the previous example, we start with the vector equation

$$c_1\mathbf{u}+c_2\mathbf{v}=\mathbf{0}$$

and solve it in terms of the scalars c_1 and c_2 . We find:

$$c_1\mathbf{u} + c_2\mathbf{v} = c_1\begin{bmatrix}1\\-1\end{bmatrix} + c_2\begin{bmatrix}1\\1\end{bmatrix} = \begin{bmatrix}c_1+c_2\\-c_1+c_2\end{bmatrix}.$$

The equation $c_1\mathbf{u} + c_2\mathbf{v} = \mathbf{0}$ gives

$$\begin{bmatrix} c_1 + c_2 \\ -c_1 + c_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \rightarrow \left\{ \begin{array}{c} 0 + c_2 = 0 \\ c_1 = 0 \end{array} \right.$$

Hence, $c_1 = c_2 = 0$ and we conclude that \mathbf{u}, \mathbf{v} are linearly independent.

→ Determine whether the vectors $\mathbf{u}_1 = \begin{bmatrix} 1 \\ -1 \end{bmatrix}$, $\mathbf{u}_2 = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$ and $\mathbf{u}_3 = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$ are linearly independent.

Again, we consider the vector equation

$$c_1 \mathbf{u}_1 + c_2 \mathbf{u}_2 + c_3 \mathbf{u}_3 = \mathbf{0}$$

which we solve in terms of the scalars c_1 , c_2 and c_3 . We find:

$$c_1\mathbf{u}_1 + c_2\mathbf{u}_2 + c_3\mathbf{u}_3 = c_1\begin{bmatrix} 1 \\ -1 \end{bmatrix} + c_2\begin{bmatrix} 1 \\ 1 \end{bmatrix} + c_3\begin{bmatrix} 1 \\ 0 \end{bmatrix} = \begin{bmatrix} c_1 + c_2 + c_3 \\ -c_1 + c_2 \end{bmatrix}.$$

Then, the equation $c_1\mathbf{u}_1 + c_2\mathbf{u}_2 + c_3\mathbf{u}_3 = \mathbf{0}$ gives

$$\begin{bmatrix} c_1 + c_2 + c_3 \\ -c_1 + c_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \rightarrow \left\{ \begin{array}{c} c_3 = -2c_1 \\ c_2 = c_1 \end{array} \right.$$

Since, c_1, c_2, c_3 can take non-zero values, we conclude that $\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3$ are linearly dependent.

Key-concepts of vectors in the plane

- Vector Operations (Vector Addition, Scalar Multiplication)
- Linear Combinations of Vectors
- Spanning of Vectors:
 - 1. One nonzero vector in \mathbb{R}^2 spans a line
 - 2. Two nonzero vectors in \mathbb{R}^2 span the whole plane \mathbb{R}^2 , provided that they are not collinear (do not lie on the same line)
- Linear Independence of vectors