

ПРОГРАММИРОВАНИЕ CUDA C/C++, АНАЛИЗ ИЗОБРАЖЕНИЙ И DEEP LEARNING

Лекция №5

Спасёнов Алексей

Введение в Машинное обучение

Кластеризация (обучение без учителя)

- 1. Задача кластеризации
- 2. Алгоритм K-Means
- 3. ЕМ-алгоритм
- 4. Иерархическая кластеризация
- 5. Алгоритм DBSCAN
- 6. Оценка качества

Примеры задачи кластеризации (1/3)

Анализ текста

Примеры задачи кластеризации (2/3)

Анализ геоданных

Задача кластеризации (1/3)

Дано:

 $x_i, ..., x_l$ — объекты обучающей выборки X ho — функция расстояния между объектами

Задача:

Поиск меток y_i, \dots, y_l , таких, чтобы объекты с одинаковыми метками были близки по ρ , а с разными метками существенно различались

Задача кластеризации (2/3)

Цели:

- 1) Упрощение обработки данных за счёт разбиения исходного набора данных на схожие подгруппы
- 2) Уменьшение объёма хранимых данных
- 3) Поиск объектов, не относящихся ни к одному из исследуемых классов
- 4) Построение иерархии множества объектов

Задача кластеризации (3/3)

Проблемы:

1) Выбор критерия качества кластеризации

- 2) Выбор метода кластеризации
- 3) Выбор числа кластеров, на которые требуется разбить исходное множество объектов
- 4) Выбор функции расстояния ρ (метрики)

Конфигурации кластеров (1/4)

Кластеры с центром

Расстояние между объектами внутри кластера меньше межкластерного

Конфигурации кластеров (2/4)

Ленточные кластеры

Кластеры с перемычками

Конфигурации кластеров (3/4)

Присутствие фона

Кластеры с перекрытием

Конфигурации кластеров (4/4)

Внутренние особенности

Отсутствие кластеров

Типы кластеризации

Жёсткая и мягкая кластеризация

В «мягкой» кластеризации объект можно отнести к нескольким кластерам с разным весом

Типы кластеризации

Алгоритмы кластеризации

ЕМ-алгоритм

Имеется выборка X^l , состоящая из смеси распределений

$$p(x) = \sum_{y=1}^{M} w_y p_y(x), \sum_{y=1}^{M} w_y = 1$$

 $p_{\nu}(x)$ - плотность

 w_{v} - априорная вероятность кластера y

ЕМ-алгоритм

$$X = R^n$$
,

Кластеры п-мерные гауссовские:

$$p_y = (2\pi)^{-\frac{n}{2}} (\sigma_{y1} \dots \sigma_{yn})^{-1} \exp\left(-\frac{1}{2}\rho_y^2(x,\mu_y)\right)$$

$$\mu_{y} = (\mu_{y1} ... \mu_{yn})$$
 - центр кластера y ,

 $\Sigma_y = diag(\sigma_{y_n}^2, ..., \sigma_{y_n}^2)$ – диагональная матрица ковариаций,

$$\rho_y^2(x, x') = \sum_{j=1}^{\infty} \sigma_{yj}^{-1} |f_j(x) - f_j(x')|^2$$

ЕМ-алгоритм

Шаг 1: Выбираем начальные приближения для w_y, μ_y, Σ_y

Шаг 2: do

War 2.1: E-war (expectation)

$$g_{iy} = P(y|x_i) = \frac{w_y p_y(x_i)}{\sum_{j=1}^{M} w_z p_z(x_i)}, y \in Y, i = 1, ..., l$$

War 2.2: М-шаг (maximization)

$$\begin{split} w_y &= \frac{1}{l} \sum_{i=1}^l g_{iy}, y \in Y \\ \mu_{yj} &= \frac{1}{lw_y} \sum_{i=1}^l g_{iy} f_j(x_i), y \in Y, j = 1, ..., n \\ \sigma_{yj}^2 &= \frac{1}{lw_y} \sum_{i=1}^l g_{iy} (f_j(x_i) - \mu_{yj})^2, y \in Y , j = 1, ..., n \\ y_i &= \arg\max_{y \in Y} g_{iy}, i = 1, ..., l \end{split}$$

while He будут изменяться y_i

ЕМ-алгоритм

Алгоритм K-Means

Шаг 1: Выбираем начальные приближения для $\mu_{\scriptscriptstyle V}$ (положения центров)

Шаг 2: do

Шаг 2.1: Аналог Е-шага

Относим каждый объект x_i к ближайшему центру:

$$y_i = \arg\min \rho(x_i, \mu_y), y \in Y, i = 1, ..., l$$

Шаг 2.2: Аналог М-шага

Вычисляем новые положения центров

$$\mu_{y} = \frac{\sum_{i=1}^{l} [y_{i} = y] f_{j}(x_{i})}{\sum_{i=1}^{l} [y_{i} = y]}, y \in Y, j = 1, \dots, n$$

while Не будут изменяться y_i

Алгоритм K-Means

Алгоритм K-Means

Оптимизируем среднее внутриклассовое расстояние:

$$F = \frac{\sum_{i < j} [y_i = y_j] \rho(x_i, x_j)}{\sum_{i < j} [y_i = y_j]} \to min$$

Алгоритм K-Means

64 цвета (кластера)

Bag of visual words

Алгоритм K-Means

Алгоритм K-Means

Алгоритм K-Means

Алгоритм K-Means

Модификации K-Means Mini-Batch K-Means

1) Если данных достаточно много, то вычисление расстояний от всех объектов до центов кластеров может занять достаточно много времени

2) Решение: На каждом шаге выбирать из набора данных случайную подвыборку

Модификации K-Means K-Means++

- 1) Выбор начального приближения центров кластеров значительно влияет на скорость сходимости алгоритма
- 2) Выбираем начальные положения центров на максимальном расстоянии друг от друга
- 3) Решение:
 - 1)Выбираем начальные центры из равномерного распределения на выборке
 - 2) Каждый следующий центр выбираем случайно из оставшихся точек так, чтобы вероятность выбора точки была пропорциональна квадрату расстояний от неё до ближайшего центра

Иерархическая кластеризация

- 1) Агломеративная
- 2) Дивизионная

Агломеративная кластеризация

Агломеративная кластеризация

Агломеративная кластеризация

Агломеративная кластеризация

Агломеративная кластеризация

Агломеративная кластеризация

Агломеративная кластеризация

Агломеративная кластеризация

Агломеративная кластеризация

Агломеративная кластеризация

Агломеративная кластеризация

Агломеративная кластеризация

Формула Ланса-Уильямса

$$R(U \cup V, S) = \alpha_U \cdot R(U, S) +$$

$$+ \alpha_V \cdot R(V, S) +$$

$$+ \beta \cdot R(U, V) +$$

$$+ \gamma \cdot |R(U, S) - R(V, S)|,$$

где α_U , α_V , β , γ — числовые параметры.

Расстояние ближайшего соседа

$$R^{6}(W,S) = \min_{w \in W, s \in S} \rho(w,s);$$

$$\alpha_{U} = \alpha_{V} = \frac{1}{2}, \quad \beta = 0, \quad \gamma = -\frac{1}{2}.$$

Расстояние дальнего соседа

$$R^{\mu}(W,S) = \max_{w \in W, s \in S} \rho(w,s);$$

 $\alpha_U = \alpha_V = \frac{1}{2}, \quad \beta = 0, \quad \gamma = \frac{1}{2}.$

Групповое среднее расстояние

$$R^{r}(W,S) = \frac{1}{|W||S|} \sum_{w \in W} \sum_{s \in S} \rho(w,s);$$

$$\alpha_{U} = \frac{|U|}{|W|}, \quad \alpha_{V} = \frac{|V|}{|W|}, \quad \beta = \gamma = 0.$$

Алгоритм DBSCAN

Шаг 1: Помечаем все точки как основные, пограничные или шумовые

Шаг 2: Отбрасываем точки шума

Шаг 3: Соединяем все основные точки, находящиеся на расстоянии Eps друг от друга

Шаг 4: Соединяем каждую группу объединённых точек в отдельный кластер

Алгоритм DBSCAN

Оценка качества кластеризации

Внутриклассовое расстояние:

$$F = \frac{\sum_{i < j} [y_i = y_j] \rho(x_i, x_j)}{\sum_{i < j} [y_i = y_j]} \to min$$

Межкластерное расстояние:

$$F = \frac{\sum_{i < j} [y_i \neq y_j] \rho(x_i, x_j)}{\sum_{i < j} [y_i \neq y_j]} \to min$$

Оценка качества кластеризации

Коэффициент силуэта (Silhouette Coefficient)

 D_{1i} - среднее расстояние от объекта i до всех остальных объектов внутри кластера, в котором находится объект i

 D_{2i} - среднее расстояние от объекта i до всех остальных объектов внутри ближайшего кластера, в котором <u>не</u> находится объект i

$$S = \frac{D_{2i} - D_{1i}}{\max(D_{1i}, D_{2i})}$$

Оценка качества кластеризации

labels_true, labels_pred

Однородность (Homogeneity) Кластеры состоят из объектов одного класса

homogeneity_score([0, 0, 1, 1], [0, 0, 1, 2])	1.0
homogeneity_score([0, 0, 1, 1], [0, 1, 2, 3])	1.0
homogeneity_score([0, 0, 1, 1], [0, 1, 0, 1])	0.0
homogeneity_score([0, 0, 1, 1], [0, 0, 0, 0])	0.0

Полнота (Completeness)
Объекты из одного класса
принадлежат одному кластеру

completeness_score([0, 0, 1, 1], [0, 0, 0, 0])	1.0
completeness_score([0, 1, 2, 3], [0, 0, 1, 1])	1.0
completeness_score([0, 0, 1, 1], [0, 1, 0, 1])	0.0
completeness_score([0, 0, 0, 0], [0, 1, 2, 3])	0.0

V-мера: $V = 2 * \frac{H*C}{H+C}$

Разметка используется для проверки результата кластеризации

Контакты:

a.spasenov@corp.mail.ru
alex_spasenov (Skype)

Спасибо за внимание!