Conceitos úteis

Normalização

A necessidade de harmonizar escalas pode ser suprida através da normalização dos valores dos atributos. Este processo corresponde no fundo, numericamente, à inconsciente adaptação de escalas que fazemos ao construir um gráfico XY com duas grandezas muito diferentes. Qualquer que seja a normalização utilizada, no entanto, não deve entender-se este processo como um meio de agregação num atributo único.

Esquemas típicos

As fórmulas seguintes referem-se a um atributo k, onde a alternativa i tem o valor z_i^k . As três primeiras correspondem a transformações lineares do atributo, o que não acontece com a última¹. Note-se que existem outras possibilidades de normalização.

Fórmulas de transformação	Valores normalizados dos	Observações	
	extremos da escala		
$\left(z_{i}^{k}\right)_{N} = \frac{z_{i}^{k} - z_{min}^{k}}{z_{max}^{k} - z_{min}^{k}}$	Máximo = 1	Atributos de maximização	
	Mínimo = 0	Ideal = 1	
$\left(z_{i}^{k}\right)_{N} = \frac{z_{max}^{k} - z_{i}^{k}}{z_{max}^{k} - z_{min}^{k}}$	Máximo = 0	Atributos de minimização	
	Mínimo = 1	Ideal = 1	
$\left(z_i^k\right)_N = \frac{z_i^k}{z_{max}^k}$	Máximo = 1	Atributos de maximização	
	$Minimo = z_{min}^{k}/z_{max}^{k}$	Ideal = 1	
$\left(z_i^k\right)_N = \frac{z_{min}^k}{z_i^k}$	$\mathbf{M}\mathbf{\acute{a}ximo} = z_{max}^k/z_{min}^k$	Atributos de minimização	
	Mínimo = 1	Transformação não-linear	

Métricas

A distância entre duas alternativas (ou entre uma alternativa e o Ideal) é uma *medida de dissemelhança*, podendo usar-se uma métrica L_p para avaliar a dissemelhança entre z_i e z_j na globalidade dos critérios k (k=1..c):

$$L_{p} = \left[\sum_{k=1}^{c} \left(w_{k} \left| z_{i}^{k} - z_{j}^{k} \right| \right)^{p} \right]^{1/p}$$

onde w_k é um factor de adequação de escalas, dispensável se se tiver procedido a normalização prévia (ou se as escalas forem semelhantes). No quadro seguinte explicita-se a fórmula geral para os valores de p mais interessantes, que correspondem a diferentes filosofias na valorização relativa das diferenças nos vários atributos.

¹ Por esse motivo, não é completamente correcto usar o termo "normalização" no último caso.

Fórmula	Designação		
$L_1 = \sum_{k=1}^c w_k \left z_i^k - z_j^k \right $	Distância de Manhattan, de Hamming ou pombalina		
$L_{2} = \sqrt{\sum_{k=1}^{c} \left(w_{k} . \left(z_{i}^{k} - z_{j}^{k} \right) \right)^{2}}$	Distância euclidiana		
$L_{\infty} = \max_{k} \left\{ w_{k} . \left z_{i}^{k} - z_{j}^{k} \right \right\}$	Distância de Chebyshev		

Ignorando os factores de escala para facilidade de raciocínio, não é difícil verificar a diferença entre L_1 e L_∞ : enquanto que no primeiro caso há *compensação completa* entre critérios (tanto faz uma diferença de 8 como duas de 4), no segundo caso só a maior diferença conta (desde que a maior diferença seja 8, todas as outras são irrelevantes). Analisados os extremos, torna-se claro que a distância euclidiana (e qualquer métrica com $p \ge 2$) corresponde a uma situação intermédia, em que existe compensação, mas não completa (com p=2, duas diferenças de 2 correspondem a uma diferença de 8).

A utilização desta métricas para avaliar a distância ao Ideal presta-se a uma descrição gráfica dos diversos casos, conforme se vê na figura seguinte, onde se mostram os lugares geométricos dos pontos à distância 1, 2 e ∞ do Ideal, para o caso de dois atributos (eixos paralelos aos indicados na figura).

Também é esclarecedor, para comparar as diferentes métricas, verificar a sua influência num exemplo simples como o seguinte, onde se mostram as três distâncias para um conjunto limitado de pontos a duas dimensões (atributos x e y), num caso de maximização. As duas colunas dx e dy indicam, em cada componente, as distâncias de cada ponto ao Ideal, que é obviamente o ponto (10,10).

x	У	dx	dy	L1	L2	Linf
10	0	0	10	10	10,0	10
8	2	2	8	10	8,2	8
2	2	8	8	16	11,3	8
5	5	5	5	10	7,1	5
2	5	8	5	13	9,4	8
0	5	10	5	15	11,2	10
0	10	10	0	10	10,0	10