

Contenido

ESP8266	2
PROTOCOLOS WIFI	2
WiFi	3
HARDWARE	3
SOFTWARE	3
PROCESADOR	4
PIN DEFINITIONS	4
DIAGRAMA FUNCIONAL	
CPU MEMORIA, FLASH	7
PLACAS ESP8266 UTILIZADAS	7
NodeMCU	7
WEMOS D1 ESP12	<u>c</u>
PLATAFORMA	<u>c</u>
REFERENCIAS	

ESP8266

ESP8266 es un micro controlador diseñado por Espressif Systems, una compañía china con sede en Shangai. El volumen de producción de estos micro controladores no empezó hasta principios de 2014.

El ESP8266 es una solución autónoma de redes WiFi que se ofrece como un puente entre los microcontroladores que hasta ahora existían hasta los MCU con WiFi, siendo además capaz de ejecutar aplicaciones independientes.

Existen distintos formatos de ESP8266, ESP-01, ESP-02, hasta llegar a ESP-12 pero todas con el mismo procesador, lo que las diferencian son el número de pines GPIO expuestos, la cantidad de memoria flash, las dimensiones, la forma de exponer los pines, y otras consideraciones varias relativas a su construcción.

PROTOCOLOS WIFI

- ✓ 802.11 b/g/n/e/i support.
- ✓ Wi-Fi Direct (P2P) support.
- ✓ P2P Discovery, P2P Group Owner mode, P2P Power Management.
- ✓ Infrastructure BSS Station mode / P2P mode / softAP mode support.
- ✓ Hardware accelerators for CCMP (CBC-MAC, counter mode), TKIP (MIC, RC4), WAPI (SMS4), WEP (RC4), CRC.
- ✓ WPA/WPA2 PSK, and WPS driver.
- ✓ Additional 802.11i security features such as pre-authentication, and TSN.
- ✓ Open Interface for various upper layer authentication schemes over EAP such as TLS, PEAP, LEAP, SIM, AKA, or customer specific.
- √ 802.11n support (2.4 GHz).
- ✓ Supports MIMO 1×1 and 2×1, STBC, A-MPDU and A-MSDU aggregation and 0.4µs guard interval.
- ✓ WMM power save U-APSD.
- ✓ Dual and single antenna Bluetooth co-existence support with optional simultaneous receive (Wi-Fi/Bluetooth) capability.

WiFi

	Standards	FCC/CE/TELEC/SRRC
	Protocols	802.11 b/g/n/e/i
	Frequency Range	2.4 G ~ 2.5 G (2400M ~ 2483.5M)
	Tx Power	802.11 b: +20 dBm
Wi-Fi		802.11 g: +17 dBm
**!-! !		802.11 n: +14 dBm
	Rx Sensitivity	802.11 b: -91 dbm (11 Mbps)
		802.11 g: -75 dbm (54 Mbps)
		802.11 n: -72 dbm (MCS7)
	Antenna	PCB Trace, External, IPEX Connector, Ceramic Chip

HARDWARE

Hardware	CPU	Tensilica L106 32-bit micro controller
	Peripheral Interface	UART/SDIO/SPI/I2C/I2S/IR Remote Control
		GPIO/ADC/PWM
	Operating Voltage	3.0 V – 3.6 V
	Operating Current	Average value: 80 mA
	Operating Temperature Range	-40°C – 125°C
	Storage Temperature Range	-40°C – 125°C
	Package Size	QFN32-pin (5 mm x 5 mm)
	External Interface	-

SOFTWARE

	Wi-Fi Mode	station/softAP/SoftAP+station
	Security	WPA/WPA2
	Encryption	WEP/TKIP/AES
Software	Firmware Upgrade	UART Download / OTA (via network)
	Software Development	Supports Cloud Server Development / Firmware and SDK for fast on-chip programming
	Network Protocols	IPv4, TCP/UDP/HTTP/FTP
	User Configuration	AT Instruction Set, Cloud Server, Android/iOS App

PROCESADOR

El system on a chip (SoC) ESP9266EX usa un microcontrolador Tensilica Xtensa L106, que es un procesador de 32 bit con instrucciones de 16 bit.

PIN DEFINITIONS

Pin	Name	Туре	Function
1	VDDA	Р	Analog Power 3.0 V - 3.6 V
2	LNA	I/O	RF Antenna Interface. Chip Output Impedance=50 Ω No matching required. It is suggested to retain the π -type matching network to match the antenna.
3	VDD3P3	Р	Amplifier Power 3.0 V – 3.6 V
4	VDD3P3	Р	Amplifier Power 3.0 V – 3.6 V
5	VDD_RTC	Р	NC (1.1 V)
6	TOUT	I	ADC pin. It can be used to test the power-supply voltage of VDD3P3 (Pin3 and Pin4) and the input power voltage of TOUT (Pin 6). However, these two functions cannot be used simultaneously.
7	CHIP_PU	I	Chip Enable High: On, chip works properly Low: Off, small current consumed
8	XPD_DCDC	I/O	Deep-sleep wakeup (need to be connected to EXT_RSTB); GPIO16

Pin	Name	Туре	Function
9	MTMS	I/O	GPIO14; HSPI_CLK
10	MTDI	I/O	GPIO12; HSPI_MISO
11	VDDPST	Р	Digital/IO Power Supply (1.8 V – 3.3 V)
12	MTCK	I/O	GPIO13; HSPI_MOSI; UARTO_CTS
13	MTDO	I/O	GPIO15; HSPI_CS; UART0_RTS
14	GPIO2	I/O	UART Tx during flash programming; GPIO2
15	GPIO0	I/O	GPIO0; SPI_CS2
16	GPIO4	I/O	GPIO4
17	VDDPST	Р	Digital/IO Power Supply (1.8 V – 3.3 V)
18	SDIO_DATA_2	I/O	Connect to SD_D2 (Series R: 200Ω); SPIHD; HSPIHD; GPIO9
19	SDIO_DATA_3	I/O	Connect to SD_D3 (Series R: 200Ω); SPIWP; HSPIWP; GPIO10
20	SDIO_CMD	I/O	Connect to SD_CMD (Series R: 200Ω); SPI_CS0; GPIO11
21	SDIO_CLK	I/O	Connect to SD_CLK (Series R: 200Ω); SPI_CLK; GPIO6
22	SDIO_DATA_0	I/O	Connect to SD_D0 (Series R: 200Ω); SPI_MSIO; GPIO7
23	SDIO_DATA_1	I/O	Connect to SD_D1 (Series R: 200Ω); SPI_MOSI; GPIO8
24	GPIO5	I/O	GPIO5
25	UORXD	I/O	UART Rx during flash programming; GPIO3
26	U0TXD	I/O	UART Tx during flash progamming; GPIO1; SPI_CS1
27	XTAL_OUT	I/O	Connect to crystal oscillator output, can be used to provide BT clock input
28	XTAL_IN	I/O	Connect to crystal oscillator input
29	VDDD	Р	Analog Power 3.0 V – 3.6 V
30	VDDA	Р	Analog Power 3.0 V – 3.6 V
31	RES12K	I	Serial connection with a 12 $k\Omega$ resistor and connect to the ground
32	EXT_RSTB	I	External reset signal (Low voltage level: Active)

DIAGRAMA FUNCIONAL

Functional Block Diagram

CPU MEMORIA, FLASH

ESP8266, integra un microcontrolador Tensilica L106 de 32 bits con un ultra RISC de 16 bit. EL Clock de la CPU es de 80 MHz

En memoria vienen datoados de 1 MB, o de 4 MB

ESP8266EX radio está formada por los siguientes bloques

- ✓ 2.4 GHz receiver
- ✓ 2.4 GHz transmitter
- ✓ High speed clock generators and crystal oscillator
- ✓ Real time clock
- ✓ Bias and regulators
- ✓ Power management

PLACAS ESP8266 UTILIZADAS

NodeMCU

Existen distintas variantes en el mercado, el alumno puede optar por cualquiera de ellas, como comentaba anteriormente, las diferencias radican en la cantidad de pines de entrada y salida que se ofrecen por cada uno de los distintos diseños.

O dependiendo del gusto...

WEMOS D1 ESP12

Ambas son similares la diferencia radica en la librería a utilizar y principalmente el tamaño.

PLATAFORMA

Para trabajar con ESP podemos utilizar varias plataformas, si deseáramos programas con más conocimiento de lo que estamos haciendo con librerías de bajo nivel deberíamos utilizar LUA, y valiéndonos de la ayuda del sitio https://nodemcu.readthedocs.io/en/dev/

Podríamos desarrollar nuestro código, este sitio nos ofrece ejemplos de uso para sensores, manejo de timer interno, lesctura y escritura de la eeprom, etc.

LUA, básicamente realiza la programación del ESP por medio de comandos AT, como era su uso inicialmente, es decir, como un dispositivo que se conectaba a la UART de un microcontrolador y recibía órdenes a través de este puerto.

El curso, de todos modos, va a estar basado en el entorno de desarrollo (IDE) que ofrece Arduino.

Para comenzar a trabajar en esta plataforma primeramente debemos descargar el Plugin que nos permite asociar las placas ESP comercialmente activas a este IDE.

Esto se hace desde HERRAMIENTAS >PLACAS> GESTOR DE TARJETAS

Una vez allí debo buscar ESP8266, e instalarla.

Una vez realizado estos pasos al conectar nuestra placa podemos observar que la misma ha sido detectada.

En las clases prácticas que están subidas a este Campus, vamos a comprender a manejar el ESP utilizándolos como Server, configurándolo para tal fin, y posteriormente conectándolo Publicando y Suscribiendo datos a cuatro plataformas:

ADAFRUIT

CAYENNE

UBIDTOS

CLOUDMQTT

Mg.Ing. Marcos Politi

REFERENCIAS

- [1] Documentos, Maestría en Internet de las Cosas Universidad de Salamanca.
- [2] https://ubidots.com/docs/
- [3] https://io.adafruit.com/api/docs/#section/Authentication

Contacto: consultas@elearning-total.com Web: www.elearning-total.com