

Do czego możemy użyć AI?

Scenariusz: manualna anotacja

Hope you are doing well. I'm writing to you because we want to know if you had a bad experience with our services/website the last time you visited us.

Amazon recognizes the impact of any bad situation in our community. You are worthy member of Amazon community and we will continue to work on improving our services by giving convenience and top notch technology. We are obligated to take steps to protect our beloved customers.

Like our way of saying sorry, please accept this complimentary voucher worth 50 GBP.

CLAIM HERE

Scenariusz: manualna anotacja

Hope you are doing well. I'm writing to you because we want to know if you had a bad experience with our services/website the last time you visited us.

Amazon recognizes the impact of any bad situation in our community. You are worthy member of Amazon community and we will continue to work on improving our services by giving convenience and top notch technology. We are obligated to take steps to protect our beloved customers.

Like our way of saying sorry, please accept this complimentary voucher worth 50 GBP.

CLAIM HERE

Scenariusz: manualna anotacja

ML vs Tradycyjne programowanie

Tradycyjne programowanie


```
funkcja klasyfikuj_email(tresc_emaila):
    jeśli "darmowy" w tresc_emaila:
        zwróć "spam"
    jeśli "wygraj nagrodę" w tresc_emaila:
        zwróć "spam"
    jeśli "kliknij tutaj" w tresc_emaila:
        zwróć "spam"
    w przeciwnym razie:
        zwróć "nie-spam"
```

Uczenie maszynowe


```
# Trening modelu
DANE_TRENINGOWE = zbiór e-maili oznaczonych jako SPAM lub NIE_SPAM
MODEL = NAUCZ(NaiwnyBayes, DANE_TRENINGOWE)

# Predykcja dla nowej wiadomości
NOWY_EMAIL = "Otrzymałeś darmowy bilet, kliknij tutaj!"
KLASA = MODEL.PREDYKCJA(NOWY_EMAIL)

jeśli KLASA == SPAM:
    oznacz jako spam
inaczej:
    zostaw w skrzynce odbiorczej
```

A co to są dane?

Dana to zapisana w określonej formie informacja o jakimś zjawisku, obiekcie lub procesie

A co to są dane?

Dana to zapisana w określonej formie informacja o jakimś zjawisku, obiekcie lub procesie

Wypożyczenie książki

tytuł, data, kod biblioteczny

Post na social media

treść, tagi, nazwa użytkownika

Modalności Al

"surowe" dane

Modalności Al

Więcej struktury ~ mniej wysiłku w przygotowanie danych

audio

Próbkowanie, kwantyzacja, transformata Fouriera

Zmiana częstości ramek, filtrowanie

Zamiana na tekst lowercase, usuwanie "stop words", tokenizacja

Przycięcie, zmiana skali wartości

obrazki

Próbkowanie, zamiana siatki na chmurę punktów

3D

Wymiarowość: Każda obserwacja opisana jest przez 6 **zmiennych**

Wielkość: Mamy 10 obserwacji (próbek)

	species	island	bill_length_mm	bill_depth_mm	flipper_length_mm	body_mass_g
0	Adelie	Torgersen	39.1	18.7	181.0	3750.0
1	Adelie	Torgersen	39.5	17.4	186.0	3800.0
2	Adelie	Torgersen	40.3	18.0	195.0	3250.0
3	Adelie	Torgersen	NaN	NaN	NaN	NaN
4	Adelie	Torgersen	36.7	19.3	193.0	3450.0
5	Adelie	Torgersen	39.3	20.6	190.0	3650.0
6	Adelie	Torgersen	38.9	17.8	181.0	3625.0
7	Adelie	Torgersen	39.2	19.6	195.0	4675.0
8	Adelie	Torgersen	34.1	18.1	193.0	3475.0
9	Adelie	Torgersen	42.0	20.2	190.0	4250.0

Wymiarowość: Każda obserwacja opisana jest przez 6 **zmiennych**

Wielkość: Mamy 10 obserwacji (próbek)

	species	island	bill_length_mm	bill_depth_mm	flipper_length_mm	body_mass_g
0	Adelie	Torgersen	39.1	18.7	181.0	3750.0
1	Adelie	Torgersen	39.5	17.4	186.0	3800.0
2	Adelie	Torgersen	40.3	18.0	195.0	3250.0
3	Adelie	Torgersen	NaN	NaN	NaN	NaN
4	Adelie	Torgersen	36.7	19.3	193.0	3450.0
5	Adelie	Torgersen	39.3	20.6	190.0	3650.0
6	Adelie	Torgersen	38.9	17.8	181.0	3625.0
7	Adelie	Torgersen	39.2	19.6	195.0	4675.0
8	Adelie	Torgersen	34.1	18.1	193.0	3475.0
9	Adelie	Torgersen	42.0	20.2	190.0	4250.0

species i island to zmienne kategorialne

bill_length_mm, bill_depth_mm, flipper_length_mm, body_mass_g to zmienne numeryczne

Wymiarowość: Każda obserwacja opisana jest przez 6 **zmiennych**

Wielkość: Mamy 10 obserwacji (próbek)

	species	island	bill_length_mm	$bill_depth_mm$	flipper_length_mm	body_mass_g
0	Adelie	Torgersen	39.1	18.7	181.0	3750.0
1	Adelie	Torgersen	39.5	17.4	186.0	3800.0
2	Adelie	Torgersen	40.3	18.0	195.0	3250.0
3	Adelie	Torgersen	NaN	NaN	NaN	NaN
4	Adelie	Torgersen	36.7	19.3	193.0	3450.0
5	Adelie	Torgersen	39.3	20.6	190.0	3650.0
6	Adelie	Torgersen	38.9	17.8	181.0	3625.0
7	Adelie	Torgersen	39.2	19.6	195.0	4675.0
8	Adelie	Torgersen	34.1	18.1	193.0	3475.0
9	Adelie	Torgersen	42.0	20.2	190.0	4250.0

species	
Adelie	152
Chinstrap	68
Gentoo	124

island
Biscoe 168
Dream 124
Torgersen 52

species i island to zmienne kategorialne

bill_length_mm, bill_depth_mm, flipper_length_mm, body_mass_g to zmienne numeryczne

	bill_length_mm	bill_depth_mm	flipper_length_mm	body_mass_g
mean	43.921930	17.151170	200.915205	4201.754386
std	5.459584	1.974793	14.061714	801.954536

Wymiarowość: Każda obserwacja opisana jest przez 6 **zmiennych**

Wielkość: Mamy 10 obserwacji (próbek)

	species	island	bill_length_mm	bill_depth_mm	flipper_length_mm	body_mass_g
0	Adelie	Torgersen	39.1	18.7	181.0	3750.0
1	Adelie	Torgersen	39.5	17.4	186.0	3800.0
2	Adelie	Torgersen	40.3	18.0	195.0	3250.0
3	Adelie	Torgersen	NaN	NaN	NaN	NaN
1	Adelie	Torgersen	36.7	19.3	193.0	3450.0
5	Adelie	Torgersen	39.3	20.6	190.0	3650.0
6	Adelie	Torgersen	38.9	17.8	181.0	3625.0
7	Adelie	Torgersen	39.2	19.6	195.0	4675.0
8	Adelie	Torgersen	34.1	18.1	193.0	3475.0
9	Adelie	Torgersen	42.0	20.2	190.0	4250.0

species i island to zmienne kategorialne

Dane mają różny zakres wartości bill_length_mm, bill_depth_mm, flipper_length_mm, body_mass_g to zmienne numeryczne

	bill_length_mm	bill_depth_mm	flipper_length_mm	body_mass_g
min	32.1	13.1	172.0	2700.0
max	59.6	21.5	231.0	6300.0

	species
0	Adelie
1	Adelie
2	Adelie
3	Adelie
4	Adelie
5	Adelie
6	Adelie
7	Adelie
8	Adelie
9	Adelie

island	bill_length_mm	bill_depth_mm	flipper_length_mm	body_mass_g
Torgersen	39.1	18.7	181.0	3750.0
Torgersen	39.5	17.4	186.0	3800.0
Torgersen	40.3	18.0	195.0	3250.0
Torgersen	NaN	NaN	NaN	NaN
Torgersen	36.7	19.3	193.0	3450.0
Torgersen	39.3	20.6	190.0	3650.0
Torgersen	38.9	17.8	181.0	3625.0
Torgersen	39.2	19.6	195.0	4675.0
Torgersen	34.1	18.1	193.0	3475.0
Torgersen	42.0	20.2	190.0	4250.0

Klasa (zadanie klasyfikacji)

Ile danych potrzeba?

Populacja

Próbka

Próbka powinna być reprezentatywna!

Ile danych potrzeba?

Populacja

Próbka powinna być reprezentatywna!

Próbka

Próbka

Dane bez anotacji (klas) są szeroko dostępne

Eksploracyjna analiza danych – po co i na co?

EDA (Exploratory Data Analysis)

"Let the data speak" – nie szukamy potwierdzenia konkretnego zjawiska na tym etapie

Celem jest zastosowanie technik statystycznych, grupowania i wizualizacji w celu odkrycia struktury i modelu w danych

Eksploracyjna analiza danych – po co i na co?

EDA (Exploratory Data Analysis)

"Let the data speak" – nie szukamy potwierdzenia konkretnego zjawiska na tym etapie

Celem jest zastosowanie technik statystycznych, grupowania i wizualizacji w celu odkrycia struktury i modelu w danych

Jak zmienne są ze sobą związane?

Czy w danych są pewne anomalie?

Które zmienne mogą być istotne?

Eksploracyjna analiza danych – po co i na co?

EDA

≠

Wizualizacja danych!

Mimo, że EDA w większości używa techniki wizualizacji.

Dane na temat użytkowników

Id	Miasto	Płeć	Wiek	Subskrybuje_aktualnie
101	Chicago, U.S	K	23	Tak
102	CHICAGO, US	М	68	Nie
103	New York	NaN	19	Tak
104	Warsaw, Poland	K	125	Nie
105	chicago, us	М	24	Tak

Załóżmy, że pracujemy w jakiejś firmie, która streamuje filmy/seriale

Jak możemy zwiększyć liczbę subskrybentów?

Dane z wyników ankiety

Id	Strona	Kliknięcie
101	Α	1
102	В	0
104	С	1
106	В	NaN
999	Α	0

Dane na temat użytkowników

Id	Miasto	Płeć	Wiek	Subskrybuje_aktualnie
101	Chicago, U.S	K	23	Tak
102	CHICAGO, US	М	68	Nie
103	New York	NaN	19	Tak
104	Warsaw, Poland	K	125	Nie
105	chicago, us	М	24	Tak

Załóżmy, że pracujemy w jakiejś firmie, która streamuje filmy/seriale ?

Dane z wyników ankiety

ld	Strona	Kliknięcie
101	Α	1
102	В	0
104	С	1
106	В	NaN
999	Α	0

Ta wartość to prawdopodobnie jakiś błąd

Wymaga jednolitego formatu

Ta wartość to prawdopodobnie jakiś błąd

Wymaga jednolitego formatu

Braki wynikają z połączenia po indeksach tabeli "po lewej"

Ta wartość to prawdopodobnie jakiś błąd

Wymaga jednolitego formatu

Braki wynikają z połączenia po indeksach tabeli "po lewej"

Kolumnę docelową możemy zamienić na 0/1

ld	Miasto	Płeć	Wiek	Strona	Kliknięcie	<u>Subskrybuje_aktualnie</u>
101	Chicago	K	23	Α	1	1
102	Chicago	М	68	В	0	0
103	New York	O	19	С	1	1
104	Warsaw	K	35	X	0	0
105	Chicago	M	24	X	0	1

ld	Miasto	Płeć	Wiek	Strona	Kliknięcie	<u>Subskrybuje_aktualnie</u>
101	Chicago	K	23	Α	1	1
102	Chicago	М	68	В	0	0
103	New York	O	19	С	1	1
104	Warsaw	K	35	X	0	0
105	Chicago	М	24	X	0	1

Jak możemy zwiększyć liczbę subskrybentów?

- Jaki jest profil typowego subskrybenta? (np. czy to kobieta w średnim wieku z New York?)
- Jakie są cechy nie-subskrybentów, którzy wzięli udział w ankiecie?
- Czy potrzebujemy więcej danych z jakiejś konkretnej grupy, aby wyciągnąć sensowny wniosek?
- Braki w danych i błędy występują zarówno dla subskrybujących jak i nie?

Przerwa

Wizualizacja w danych

Podział rozkładów danych

Symmetric (normal) vs skewed and uniform distriutions

Normal distribution (unimodal, symmetric, the "bell curve")

Right-skewed distribution (Positively-skewed)

Left-skewed distribution (Negatively-skewed)

Uniform distribution (equal spread, no peaks)

Moda – najczęściej występująca wartość **Mediana** – wartość środkowa w uporządkowanym zbiorze danych **Średnia** - suma wszystkich wartości podzielona przez ich liczbę

Wartości odstające

outlier - obserwacja, która znacząco odstaje od reszty danych

1.5 * IQR – to standardowy próg, najczęściej używany

3.0 * IQR - to próg używany do wykrywania ekstremalnych outlierów

Co zrobić z outlierami?

zostawić - jeśli są prawdziwe i istotne **flooring** – ograniczyć wartość poniżej progu **capping** – ograniczyć wartość powyżej górnego progu

przekształcić – aby lepiej dopasować dane do skali **zastąpić** – medianą lub średnią, kiedy dane są błędne

Uwaga! Niezbalansowane dane!

Czy brak balansu zawsze jest zły?

Model dostaje 95 zdjęć kotków i 5 piesków, ale...

Przewiduje, że wszystkie to kotki!

50 piesków

Accuracy = 95%, ale... model nie rozpoznaje żadnego pieska!

1 zmienna kategoryczna

Kilka zmiennych na jednym wykresie słupkowym!

Zmienna nie jest sama – czyli o zależnościach

$$r = rac{\sum \left(x_i - ar{x}
ight)\left(y_i - ar{y}
ight)}{\sqrt{\sum \left(x_i - ar{x}
ight)^2 \sum \left(y_i - ar{y}
ight)^2}}$$

Where,

r = Pearson Correlation Coefficient

$$x_{i}$$
 = x variable samples

$$y_{i_{\,=\, ext{y variable sample}}}$$

$$ar{x}_{ ext{= mean of values in x variable}}$$

$$ar{y}_{ ext{=mean of values in y variable}}$$

Dawanie kilku zmiennych na wykresie daje ciekawe rezultaty :)

Correlation Matrix

- 1.0

- 0.8

- 0.6

- 0.4

- 0.2

- 0.0

- -0.2

To my:))

- Julia Farganus 266564@student.pwr.edu.pl
- Julia Słowińska 268313@student.pwr.edu.pl