Método de Newton y Descenso por el gradiente

Introducción a Métodos de Machine Learning 2023

Taylor S

Taylor Series

$$f(x) = \sum_{n=0}^{\infty} \frac{f^{(n)}(a)}{n!} (x-a)^n$$

Show me Taylor

$$f(a) + rac{f'(a)}{1!}(x-a) + rac{f''(a)}{2!}(x-a)^2 + rac{f'''(a)}{3!}(x-a)^3 + \cdots,$$
 Perfect

Better Models of Sine

Programming Taylor's Series $f(x) = \sum_{n=0}^{\infty} \frac{f^{(n)}(a)}{n!} (x-a)^n$

$$f(x) = e^x = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \mathcal{O}(x^4)$$

import numpy as np
import matplotlib.pyplot as plt
%matplotlib inline

```
def graph(formula, x_range):
    x = np.array(x_range)
    y = formula(x)
    plt.plot(x, y)
```


Programming Taylor's Series $f(x) = \sum_{n=0}^{\infty} \frac{f^{(n)}(a)}{n!} (x-a)^n$

$$f(x) = \sum_{n=0}^{\infty} \frac{f^{(n)}(a)}{n!} (x - a)^n$$

$$f(x) = e^x = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \mathcal{O}(x^4)$$

```
import numpy as np
import matplotlib.pyplot as plt
%matplotlib inline
```

```
def graph(formula, x range):
    x = np.array(x range)
    y = formula(x)
    plt.plot(x, y)
```

```
graph(lambda x: 1 + x, np.arange(-3,3,0.1))
graph(lambda x: np.exp(x), np.arange(-3,3,0.1))
```


Programming Taylor's Series $f(x) = \sum_{n=0}^{\infty} \frac{f^{(n)}(a)}{n!} (x - a)^n$

$$f(x) = \sum_{n=0}^{\infty} \frac{f^{(n)}(a)}{n!} (x - a)^n$$

$$f(x) = e^x = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \mathcal{O}(x^4)$$

graph(lambda x: 1 + x, np.arange(-3,3,0.1)) graph(lambda x: np.exp(x), np.arange(-3, 3, 0.1))

graph(lambda x: np.exp(x), np.arange(-3,3,0.1))

Tarea:

Parte 1:

- Intente agregar usted mismo términos de orden superior.
- Cambie la función y calcule su serie de Taylor mediante la fórmula anterior, trace el resultado para diferentes aproximaciones de orden.

Isaac Newton developed a method to exploit the above in order to find roots of a function

That is, for a function f(x), find the value of x such that f(x)=0. Consider a first order expansion of a function:

$$f(x) = \sum_{n=0}^{\infty} \frac{f^{(n)}(a)}{n!} (x - a)^n$$

$$y = f(x_n) + f'(x_n)(x - x_n)$$

Set this equal to zero and solve for the next point in terms of previous points:

$$0 = f(x_n) + f'(x_n)(x_{n+1} - x_n)$$

$$f'(x_n)x_{n+1} = f'(x_n)x_n - f(x_n)$$

$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$$

$$f(x) = \sum_{n=0}^{\infty} \frac{f^{(n)}(a)}{n!} (x - a)^n$$

$$0 = f(x_n) + f'(x_n)(x_{n+1} - x_n) y = f(x_n) + f'(x_n)(x - x_n)$$

$$f'(x_n)x_{n+1} = f'(x_n)x_n - f(x_n)$$

$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$$

This gives an iterative method for finding roots. Write a function that solves for the roots of an equation

```
def dx(f, x):
    return abs(0-f(x))
def newtons method(f, df, x0, epsilon):
    delta = dx(f, x0)
    while delta > epsilon:
        x0 = x0 - f(x0)/df(x0)
        delta = dx(f, x0)
    print 'Root at: ', x0
    print 'f(x) at root: ', f(x0)
    return delta
```

To use Newton's method (for finding roots) we need to know the function f(x) and its derivative f'(x). Let's test it out on the following polynomial

```
Example: f(x) = 6x^5 - 5x^4 - 4x^3 + 3x^2

f'(x) = 30x^4 - 20x^3 - 12x^2 + 6x
```

```
def f(x):
    return 6*x**5-5*x**4-4*x**3+3*x**2

def df(x):
    return 30*x**4-20*x**3-12*x**2+6*x
```

```
0 = f(x_n) + f'(x_n)(x_{n+1} - x_n)
f'(x_n)x_{n+1} = f'(x_n)x_n - f(x_n)
x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}
```

```
def dx(f, x):
    return abs(0-f(x))

def newtons_method(f, df, x0, epsilon):
    delta = dx(f, x0)
    while delta > epsilon:
        x0 = x0 - f(x0)/df(x0)
        delta = dx(f, x0)
        print 'Root at: ', x0
    print 'f(x) at root: ', f(x0)
    return delta
```

To use Newton's method (for finding roots) we need to know the function f(x) and its derivative f'(x). Let's test it out on the following polynomial

Example:
$$f(x) = 6x^5 - 5x^4 - 4x^3 + 3x^2$$

 $f'(x) = 30x^4 - 20x^3 - 12x^2 + 6x$

```
def f(x):
    return 6*x**5-5*x**4-4*x**3+3*x**2

def df(x):
    return 30*x**4-20*x**3-12*x**2+6*x
```

$$0 = f(x_n) + f'(x_n)(x_{n+1} - x_n)$$

$$f'(x_n)x_{n+1} = f'(x_n)x_n - f(x_n)$$

$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$$

To use Newton's method (for finding roots) we need to know the function f(x) and its derivative f'(x). Let's test it out on the following polynomial

Example:
$$f(x) = 6x^5 - 5x^4 - 4x^3 + 3x^2$$

 $f'(x) = 30x^4 - 20x^3 - 12x^2 + 6x$

for x0 in x0s:

We can now find the root for any initial point we are interested in:

$$0 = f(x_n) + f'(x_n)(x_{n+1} - x_n)$$

$$f'(x_n)x_{n+1} = f'(x_n)x_n - f(x_n)$$

$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$$


```
x0s = [0., .5, 1, 1.5]

for x0 in x0s:

newtons_method(f, df, x0, 1e-5)
```

x0: 0.0

Root at: 0.0

f(x) at root: 0.0

x0: 0.5

Root at: 0.6286680781673306

f(x) at root: -1.3785387997788945e-06

x0: 1

Root at: 1

f(x) at root: 0

x0: 1.5

Root at: 1.0000000000540352

f(x) at root: 2.1614132705849443e-10

```
x0s = [0.25, -.65, 0.9, 1.5]

for x0 in x0s:

newtons_method(f, df, x0, 1e-5)
```

x0: 0.25

Root at: 0.001431336200813353

f(x) at root: 6.1344193615743226e-06

x0: -0.65

Root at: -0.7953336554934082

f(x) at root: -9.75177139039829e-08

x0: 0.9

Root at: 1.0000000023517583

f(x) at root: 9.407033374486673e-09

x0: 1.5

Root at: 1.0000000000540352

f(x) at root: 2.1614132705849443e-10

$$f(x) = \sum_{n=0}^{\infty} \frac{f^{(n)}(a)}{n!} (x - a)^n$$

$$0 = f(x_n) + f'(x_n)(x_{n+1} - x_n)$$

$$f'(x_n)x_{n+1} = f'(x_n)x_n - f(x_n)$$

$$y = f(x_n) + f'(x_n)(x - x_n)$$

$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$$

This gives an iterative method for finding roots. Write a function that solves for the roots of an equation

We can also use Newton's method for finding square roots or evaluating functions. Suppose we want to numerically evaluate $\sqrt{612}$. Define a function:

$$f(x) = x^2 - 612$$
$$f'(x) = 2x$$

Tarea:

Parte 1:

- Intente agregar usted mismo términos de orden superior.
- Cambie la función y calcule su serie de Taylor mediante la fórmula anterior, trace el resultado para diferentes aproximaciones de orden.

Parte 2:

• Llame al procedimiento para generar una aproximación a $\sqrt{612}$ resolviendo las raíces de f(x).

• Resuelva para las raíces de las funciones: $f(x) = cos(x) - x^3$ $f'(x) = -sin(s) - 3x^2$

¿Cuál es un buen valor inicial? El coseno está limitado por [0,1], así que pruebe con un valor de x0 de 0,5.

Newton Rhapson Method for Optimization

We can write Taylor's theorem for functions of more than one variable.

For example, let's considier a vector $\mathbf{x} \in \mathbb{R}^d$.

We can state Taylor's theorem in n dimensions as follows:

$$f(\mathbf{x}) = f(\mathbf{a}) + \sum_{k=1}^{d} \frac{\partial f}{\partial x_k}(\mathbf{a})(x_k - a_k) + \frac{1}{2} \sum_{j,k=1}^{d} \frac{\partial^2 f}{\partial x_j \partial x_k}(\mathbf{b})(x_j - a_j)(x_k - a_k) + \mathcal{O}(n^3)$$

$$f(x) = \sum_{n=0}^{\infty} \frac{f^{(n)}(a)}{n!} (x - a)^n$$

Newton Rhapson Method for Optimization

$$f(\mathbf{x}) = f(\mathbf{a}) + \sum_{k=1}^{d} \frac{\partial f}{\partial x_k}(\mathbf{a})(x_k - a_k) + \frac{1}{2} \sum_{j,k=1}^{d} \frac{\partial^2 f}{\partial x_j \partial x_k}(\mathbf{b})(x_j - a_j)(x_k - a_k) + \mathcal{O}(n^3)$$

Now consider a second order approximation of a function. We'll consider multivariate functions and consider the gradient $\nabla f(x_n)$ and hessian $H(x_n)$

$$f(x_n) \approx f(x_n) + \nabla f(x_n)(x_{n+1} - x_n) + \frac{1}{2}(x_{n+1} - x_n)^T H(x_n)(x_{n+1} - x_n)$$

$$H = \begin{bmatrix} \frac{\partial^2 f}{\partial x_1^2} & \frac{\partial^2 f}{\partial x_1 \partial x_2} & \dots & \frac{\partial^2 f}{\partial x_1 \partial x_d} \\ \frac{\partial^2 f}{\partial x_2 \partial x_1} & \frac{\partial^2 f}{\partial x_2^2} & \dots & \frac{\partial^2 f}{\partial x_2 \partial x_d} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial^2 f}{\partial x_d \partial x_1} & \frac{\partial^2 f}{\partial x_d \partial x_2} & \dots & \frac{\partial^2 f}{\partial x_d^2} \end{bmatrix}$$
STUDEN

Newton Rhapson Method for Optimization

$$f(x_n) \approx f(x_n) + \nabla f(x_n)(x_{n+1} - x_n) + \frac{1}{2}(x_{n+1} - x_n)^T H(x_n)(x_{n+1} - x_n)$$

$$H = \begin{bmatrix} \frac{\partial^2 f}{\partial x_1^2} & \frac{\partial^2 f}{\partial x_1 \partial x_2} & \cdots & \frac{\partial^2 f}{\partial x_1 \partial x_d} \\ \frac{\partial^2 f}{\partial x_2 \partial x_1} & \frac{\partial^2 f}{\partial x_2^2} & \cdots & \frac{\partial^2 f}{\partial x_2 \partial x_d} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial^2 f}{\partial x_d \partial x_1} & \frac{\partial^2 f}{\partial x_d \partial x_2} & \cdots & \frac{\partial^2 f}{\partial x_d^2} \end{bmatrix}$$
We want to minimize this quadratic function. What value of $x_n + 1$ minimizes the second order approximation on the RHS? Set this equal to zero, expand terms to simplify and solve for $x_n + 1$.

When $H(x_n)$ is positive definite, then our Newton iteration should be:

our Newton iteration should be:

$$x_{n+1} = x_n - H(x_n)^{-1} \nabla f(x_n)$$

adding a step size
$$\eta$$
: $x_{n+1} = x_n - \eta \times H(x_n)^{-1} \nabla f(x_n)$

