IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

Applicant:

KNAPPIK et al.

Title:

PROTEIN (POLY) PEPTIDE

LIBRARIES

Prior Appl. No.: 09/025,769

Prior Appl. Filing Date: 2/18/1998

Examiner:

Unassigned

Art Unit:

Unassigned

CONTINUING PATENT APPLICATION TRANSMITTAL LETTER

Assistant Commissioner for Patents Box PATENT APPLICATION Washington, D.C. 20231

Sir:

Transmitted herewith for filing under 37 C.F.R. § 1.53(b) is a:

[] Continuation [X] Division [] Continuation-In-Part	(CIP)
--	-------

of the above-identified copending prior application in which no patenting, abandonment, or termination of proceedings has occurred. Priority to the above-identified prior application is hereby claimed under 35 U.S.C. § 120 for this continuing application. The entire disclosure of the above-identified prior application is considered as being part of the disclosure of the accompanying continuing application and is hereby incorporated by reference therein.

Enclosed are:

[X]	Specification, Claim(s), and Abstract (225 pages).
[X]	Informal drawings (204 sheets, Figures 1-40).
[X]	Declaration and Power of Attorney (4 pages).
[]	Assignment of the invention to MORPHOSYS AG.
[]	Assignment Recordation Cover Sheet.
[]	Check in the amount of \$40.00 for Assignment recordation.
[]	Small Entity statement.

- [] Information Disclosure Statement.
- [] Form PTO-1449 with copies of ___ listed reference(s).

The filing fee is calculated below:

	Claims as Filed		ncluded in Basic Fee		Extra Claims		Rate		Fee Totals
Basic Fee							\$690.00		\$690.00
Total Claims:	6	-	20	=	0	x	\$18.00	=	\$0.00
ndependents:	1	-]	3	_ =	0	×	\$78.00	=	\$0.00
f any M ultiple D	Dependent C	laim(s) present	:		+	\$260.00	=	\$0.00
							SUBTOTAL:	= '	\$690.00
]	Small	Enti	ty Fees	Apply	/ (subtra	ct ½	of above):	=	\$0.00
					TOT	AL F	ILING FEE:	= '	\$690.00

- [X] A check in the amount of \$690.00 to cover the filing fee is enclosed.
- [] The required filing fees are not enclosed but will be submitted in response to the Notice to File Missing Parts of Application.
- [X] The Assistant Commissioner is hereby authorized to charge any additional fees which may be required regarding this application under 37 C.F.R. §§ 1.16-1.17, or credit any overpayment, to Deposit Account No. 06-1447. Should no proper payment be enclosed herewith, as by a check being in the wrong amount, unsigned, post-dated, otherwise improper or informal or even entirely missing, the Assistant Commissioner is authorized to charge the unpaid amount to Deposit Account No. 06-1447.

Please direct all correspondence to the undersigned attorney or agent at the address indicated below.

Respectfully submitted,

Date λ

FOLEY & LARDNER

Washington Harbour

3000 K Street, N.W., Suite 500 Washington, D.C. 20007-5109

Telephone:

(202) 672-5412

Facsimile:

(202) 672-5399

Colin G. Sandercock

Attorney for Applicant Registration No. 31,298

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

Atty. Docket No: 047744/0106

In re patent application of KNAPPIK, Achim *et al.*

Serial No.: Unassigned

Filed: Concurrently herewith

For: PROTEIN/(POLY)PEPTIDE LIBRARIES

PRELIMINARY AMENDMENT

Assistant Commissioner for Patents Washington, D.C. 20231

Sir:

Prior to calculating the filing fee for the captioned application, please amend the application as follows:

IN THE SPECIFICATION:

IN THE CLAIMS:

Please cancel claims 1-55 without prejudice or disclaimer and add the following claims:

- 56. A (poly)peptide comprising an amino acid consensus sequence capable of being identified by the steps of:
 - (a) deducing from a collection of at least three homologous proteins one or more (poly)peptide sequences comprising at least one amino acid consensus sequence;
 - (b) optionally, identifying amino acids in said (poly)peptide sequences to be modified so as to remove unfavorable interactions between amino acids within or between said or other (poly)peptide sequences;
 - (c) identifying at least one structural sub-element within each of said (poly)peptide sequences;

- (d) backtranslating each of said (poly)peptide sequences into a corresponding coding nucleic acid sequence;
- (e) setting up cleavage sites in regions adjacent to or between the ends of subsequences encoding said sub-elements, each of said cleavage sites:
 - (ea) being unique within each of said coding nucleic acid sequences;
 - (eb) being common to the corresponding sub-sequences of any said coding nucleic acids.
- 57. A collection of (poly)peptides comprising a plurality of (poly)peptides according to claim 56.
 - 58. A kit comprising a (poly)peptide according to claim 56.
 - 59. A kit comprising a collection of (poly)peptides according to claim 57.
- 60. A collection of (poly)peptides according to claim 57, comprising specific (poly)peptides wherein the genes encoding said specific (poly)peptides
 - (a) are either homologous, or represent consensus gene sequences derived from at least three homologous genes, and
 - (b) carry cleavage sites, each of which:
 - (ba) lie at or adjacent to the ends of genetic sub-sequences which encode structural sub-elements,
 - (bb) are unique within each gene sequence,
 - (bc) do not form compatible sites with respect to any single subsequence, and
 - (bd) are common to all homologous sub-sequences.
 - 61. A kit comprising a collection of (poly)peptides according to claim 60.

REMARKS

Added claims 56-61 are fully supported throughout the specification of the captioned application, and by the original claims. Entry of the foregoing amendments prior to examination is respectfully requested.

Respectfully submitted,

Paul M. Booth Reg. No. 40,244

FOLEY & LARDNER

3000 K Street, N.W., Suite 500 Washington, D.C. 20007-5109 Telephone: (202) 672-5300

Facsimile:

(202)672-5399

ABSTRACT

The present invention relates to synthetic DNA sequences which encode one or more collections of homologous proteins/(poly)peptides, and methods for generating and applying libraries of these DNA sequences. In particular, the invention relates to the preparation of a library of human-derived antibody genes by the use of synthetic consensus sequences which cover the structural repertoire of antibodies encoded in the human genome. Furthermore, the invention relates to the use of a single consensus antibody gene as a universal framework for highly diverse antibody libraries.

Protein/(Poly)peptide Libraries

Field of the Invention

The present invention relates to synthetic DNA sequences which encode one or more collections of homologous proteins/(poly)peptides, and methods for generating and applying libraries of these DNA sequences. In particular, the invention relates to the preparation of a library of human-derived antibody genes by the use of synthetic consensus sequences which cover the structural repertoire of antibodies encoded in the human genome. Furthermore, the invention relates to the use of a single consensus antibody gene as a universal framework for highly diverse antibody libraries.

Background to the Invention

All current recombinant methods which use libraries of proteins/(poly)peptides, e.g. antibodies, to screen for members with desired properties, e.g. binding a given ligand, do not provide the possibility to improve the desired properties of the members in an easy and rapid manner. Usually a library is created either by inserting a random oligonucleotide sequence into one or more DNA sequences cloned from an organism, or a family of DNA sequences is cloned and used as the library. The library is then screened, e.g. using phage display, for members which show the desired property. The sequences of one or more of these resulting molecules are then determined. There is no general procedure available to improve these molecules further on.

Winter (EP 0 368 684 B1) has provided a method for amplifying (by PCR), cloning, and expressing antibody variable region genes. Starting with these genes he was able to create libraries of functional antibody fragments by randomizing the CDR3 of the heavy and/or the light chain. This process is functionally equivalent to the natural process of VJ and VDJ recombination which occurs during the development of B-cells in the immune system.

However the Winter invention does not provide a method for optimizing the binding affinities of antibody fragments further on, a process which would be functionally equivalent to the naturally occurring phenomenon of "affinity maturation", which is provided by the present invention. Furthermore, the Winter invention does not provide for artificial variable region genes, which represent a whole family of

structurally similar natural genes, and which can be assembled from synthetic DNA oligonucleotides. Additionally, Winter does not enable the combinatorial assembly of portions of antibody variable regions, a feature which is provided by the present invention. Furthermore, this approach has the disadvantage that the genes of all antibodies obtained in the screening procedure have to be completely sequenced, since, except for the PCR priming regions, no additional sequence information about the library members is available. This is time and labor intensive and potentially leads to sequencing errors.

The teaching of Winter as well as other approaches have tried to create large antibody libraries having high diversity in the complementarity determining regions (CDRs) as well as in the frameworks to be able to find antibodies against as many different antigens as possible. It has been suggested that a single universal framework may be useful to build antibody libraries, but no approach has yet been successful.

Another problem lies in the production of reagents derived from antibodies. Small antibody fragments show exciting promise for use as therapeutic agents, diagnostic reagents, and for biochemical research. Thus, they are needed in large amounts, and the expression of antibody fragments, e.g. Fv, single-chain Fv (scFv), or Fab in the periplasm of E. coli (Skerra & Plückthun, 1988; Better et al., 1988) is now used routinely in many laboratories. Expression yields vary widely, however. While some fragments yield up to several mg of functional, soluble protein per liter and OD of culture broth in shake flask culture (Carter et al., 1992, Plückthun et al. 1996), other fragments may almost exclusively lead to insoluble material, often found in so-called inclusion bodies. Functional protein may be obtained from the latter in modest yields by a laborious and time-consuming refolding process. The factors influencing antibody expression levels are still only poorly understood. Folding efficiency and stability of the antibody fragments, protease lability and toxicity of the expressed proteins to the host cells often severely limit actual production levels, and several attempts have been tried to increase expression yields. For example, Knappik & Plückthun (1995) could show that expression yield depends on the antibody sequence. They identified key residues in the antibody framework which influence expression yields dramatically. Similarly, Ullrich et al. (1995) found that point mutations in the CDRs can increase the yields in periplasmic antibody fragment expression. Nevertheless, these strategies are only applicable to a few antibodies. Since the Winter invention uses existing repertoires of antibodies, no influence on expressibility of the genes is possible.

¥.

WO 97/08320 PCT/EP96/03647

Furthermore, the findings of Knappik & Plückthun and Ullrich demonstrate that the knowledge about antibodies, especially about folding and expression is still increasing. The Winter invention does not allow to incorporate such improvements into the library design.

The expressibility of the genes is important for the library quality as well, since the screening procedure relies in most cases on the display of the gene product on a phage surface, and efficient display relies on at least moderate expression of the gene.

These disadvantages of the existing methodologies are overcome by the present invention, which is applicable for all collections of homologous proteins. It has the following novel and useful features illustrated in the following by antibodies as an example:

Artificial antibodies and fragments thereof can be constructed based on known antibody sequences, which reflect the structural properties of a whole group of homologous antibody genes. Therefore it is possible to reduce the number of different genes without any loss in the structural repertoire. This approach leads to a limited set of artificial genes, which can be synthesized de novo, thereby allowing introduction of cleavage sites and removing unwanted cleavages sites. Furthermore, this approach enables (i), adapting the codon usage of the genes to that of highly expressed genes in any desired host cell and (ii), analyzing all possible pairs of antibody light (L) and heavy (H) chains in terms of interaction preference, antigen preference or recombinant expression titer, which is virtually impossible using the complete collection of antibody genes of an organism and all combinations thereof.

The use of a limited set of completely synthetic genes makes it possible to create cleavage sites at the boundaries of encoded structural sub-elements. Therefore, each gene is built up from modules which represent structural sub-elements on the protein/(poly)peptide level. In the case of antibodies, the modules consist of "framework" and "CDR" modules. By creating separate framework and CDR modules, different combinatorial assembly possibilities are enabled. Moreover, if two or more artificial genes carry identical pairs of cleavage sites at the boundaries of each of the genetic sub-elements, pre-built libraries of sub-elements can be inserted in these genes simultaneously, without any additional information related to any particular gene sequence. This strategy enables rapid optimization of, for example, antibody affinity, since DNA cassettes encoding libraries of genetic sub-elements can be (i), pre-built, stored and reused and (ii), inserted in any of these

sequences at the right position without knowing the actual sequence or having to determine the sequence of the individual library member.

Additionally, new information about amino acid residues important for binding, stability, or solubility and expression could be integrated into the library design by replacing existing modules with modules modified according to the new observations.

The limited number of consensus sequences used for creating the library allows to speed up the identification of binding antibodies after screening. After having identified the underlying consensus gene sequence, which could be done by sequencing or by using fingerprint restriction sites, just those part(s) comprising the random sequence(s) have to be determined. This reduces the probability of sequencing errors and of false-positive results.

The above mentioned cleavage sites can be used only if they are unique in the vector system where the artificial genes have been inserted. As a result, the vector has to be modified to contain none of these cleavage sites. The construction of a vector consisting of basic elements like resistance gene and origin of replication, where cleavage sites have been removed, is of general interest for many cloning attempts. Additionally, these vector(s) could be part of a kit comprising the above mentioned artificial genes and pre-built libraries.

The collection of artificial genes can be used for a rapid humanization procedure of non-human antibodies, preferably of rodent antibodies. First, the amino acid sequence of the non-human, preferably rodent antibody is compared with the amino acid sequences encoded by the collection of artificial genes to determine the most homologous light and heavy framework regions. These genes are then used for insertion of the genetic sub-elements encoding the CDRs of the non-human, preferably rodent antibody.

Surprisingly, it has been found that with a combination of only one consensus sequence for each of the light and heavy chains of a scFv fragment an antibody repertoire could be created yielding antibodies against virtually every antigen. Therefore, one aspect of the present invention is the use of a single consensus sequence as a universal framework for the creation of useful (poly)peptide libraries and antibody consensus sequences useful therefor.

Detailed Description of the Invention

The present invention enables the creation of useful libraries of (poly)peptides. In a first embodiment, the invention provides for a method of setting up nucleic acid sequences suitable for the creation of said libraries. In a first step, a collection of at least three homologous proteins is identified and then analyzed. Therefore, a database of the protein sequences is established where the protein sequences are aligned to each other. The database is used to define subgroups of protein sequences which show a high degree of similarity in both the sequence and, if information is available, in the structural arrangement. For each of the subgroups a (poly)peptide sequence comprising at least one consensus sequence is deduced which represents the members of this subgroup; the complete collection of (poly)peptide sequences represent therefore the complete structural repertoire of the collection of homologous proteins. These artificial (poly)peptide sequences are then analyzed, if possible, according to their structural properties to identify unfavorable interactions between amino acids within said (poly)peptide sequences or between said or other (poly)peptide sequences, for example, in multimeric proteins. Such interactions are then removed by changing the consensus sequence accordingly. The (poly)peptide sequences are then analyzed to identify subelements such as domains, loops, helices or CDRs. The amino acid sequence is backtranslated into a corresponding coding nucleic acid sequence which is adapted to the codon usage of the host planned for expressing said nucleic acid sequences. A set of cleavage sites is set up in a way that each of the sub-sequences encoding the sub-elements identified as described above, is flanked by two sites which do not occur a second time within the nucleic acid sequence. This can be achieved by either identifying a cleavage site already flanking a sub-sequence of by changing one or more nucleotides to create the cleavage site, and by removing that site from the remaining part of the gene. The cleavage sites should be common to all corresponding sub-elements or sub-sequences, thus creating a fully modular arrangement of the sub-sequences in the nucleic acid sequence and of the subelements in the corresponding (poly)peptide.

In a further embodiment, the invention provides for a method which sets up two or more sets of (poly)peptides, where for each set the method as described above is performed, and where the cleavage sites are not only unique within each set but also between any two sets. This method can be applied for the creation of (poly)peptide libraries comprising for example two α -helical domains from two different proteins, where said library is screened for novel hetero-association domains.

In yet a further embodiment, at least two of the sets as described above, are derived from the same collection of proteins or at least a part of it. This describes libraries comprising for example, but not limited to, two domains from antibodies such as VH and VL. or two extracellular loops of transmembrane receptors.

In another embodiment, the nucleic acid sequences set up as described above, are synthesized. This can be achieved by any one of several methods well known to the practitioner skilled in the art, for example, by total gene synthesis or by PCR-based approaches.

In one embodiment, the nucleic acid sequences are cloned into a vector. The vector could be a sequencing vector, an expression vector or a display (e.g. phage display) vector, which are well known to those skilled in the art. Any vector could comprise one nucleic acid sequence, or two or more nucleic sequences, either in different or the same operon. In the last case, they could either be cloned separately or as contiguous sequences.

In one embodiment, the removal of unfavorable interactions as described above, leads to enhanced expression of the modified (poly)peptides.

In a preferred embodiment, one or more sub-sequences of the nucleic acid sequences are replaced by different sequences. This can be achieved by excising the sub-sequences using the conditions suitable for cleaving the cleavage sites adjacent to or at the end of the sub-sequence, for example, by using a restriction enzyme at the corresponding restriction site under the conditions well known to those skilled in the art, and replacing the sub-sequence by a different sequence compatible with the cleaved nucleic acid sequence. In a further preferred embodiment, the different sequences replacing the initial sub-sequence(s) are genomic or rearranged genomic sequences, for example in grafting CDRs from nonhuman antibodies onto consensus antibody sequences for rapid humanization of non-human antibodies. In the most preferred embodiment, the different sequences are random sequences, thus replacing the sub-sequence by a collection of sequences to introduce variability and to create a library. The random sequences can be assembled in various ways, for example by using a mixture of mononucleotides or preferably a mixture of trinucleotides (Virnekäs et al., 1994) during automated oligonucleotide synthesis, by error-prone PCR or by other methods well known to the practitioner in the art. The random sequences may be completely randomized or biased towards or against certain codons according to

the amino acid distribution at certain positions in known protein sequences. Additionally, the collection of random sub-sequences may comprise different numbers of codons, giving rise to a collection of sub-elements having different lengths.

In another embodiment, the invention provides for the expression of the nucleic acid sequences from a suitable vector and under suitable conditions well known to those skilled in the art.

In a further preferred embodiment, the (poly)peptides expressed from said nucleic acid sequences are screened and, optionally, optimized. Screening may be performed by using one of the methods well known to the practitioner in the art, such as phage-display, selectively infective phage, polysome technology to screen for binding, assay systems for enzymatic activity or protein stability. (Poly)peptides having the desired property can be identified by sequencing of the corresponding nucleic acid sequence or by amino acid sequencing or mass spectrometry. In the case of subsequent optimization, the nucleic acid sequences encoding the initially selected (poly)peptides can optionally be used without sequencing. Optimization is performed by repeating the replacement of sub-sequences by different sequences, preferably by random sequences, and the screening step one or more times.

The desired property the (poly)peptides are screened for is preferably, but not exclusively, selected from the group of optimized affinity or specificity for a target molecule, optimized enzymatic activity, optimized expression yields, optimized stability and optimized solubility.

In one embodiment, the cleavage sites flanking the sub-sequences are sites recognized and cleaved by restriction enzymes, with recognition and cleavage sequences being either identical or different, the restricted sites either having blunt or sticky ends.

The length of the sub-elements is preferably, but not exclusively ranging between 1 amino acid, such as one residue in the active site of an enzyme or a structure-determining residue, and 150 amino acids, as for whole protein domains. Most preferably, the length ranges between 3 and 25 amino acids, such as most commonly found in CDR loops of antibodies.

The nucleic acid sequences could be RNA or, preferably, DNA.

In one embodiment, the (poly)peptides have an amino acid pattern characteristic of a particular species. This can for example be achieved by deducing the consensus sequences from a collection of homologous proteins of just one species, most preferably from a collection of human proteins. Since the (poly)peptides comprising consensus sequences are artificial, they have to be compared to the protein sequence(s) having the closest similarity to ensure the presence of said characteristic amino acid pattern.

In one embodiment, the invention provides for the creation of libraries of (poly)peptides comprising at least part of members or derivatives of the immunoglobulin superfamily, preferably of member or derivatives of the immunoglobulins. Most preferably, the invention provides for the creation of libraries of human antibodies, wherein said (poly)peptides are or are derived from heavy or light chain variable regions wherein said structural sub-elements are framework regions (FR) 1, 2, 3, or 4 or complementary determining regions (CDR) 1, 2, or 3. In a first step, a database of published antibody sequences of human origin is established where the antibody sequences are aligned to each other. The database is used to define subgroups of antibody sequences which show a high degree of similarity in both the sequence and the canonical fold of CDR loops (as determined by analysis of antibody structures). For each of the subgroups a consensus sequence is deduced which represents the members of this subgroup; the complete collection of consensus sequences represent therefore the complete structural repertoire of human antibodies.

These artificial genes are then constructed e.g. by total gene synthesis or by the use of synthetic genetic subunits. These genetic subunits correspond to structural sub-elements on the (poly)peptide level. On the DNA level, these genetic subunits are defined by cleavage sites at the start and the end of each of the sub-elements, which are unique in the vector system. All genes which are members of the collection of consensus sequences are constructed such that they contain a similar pattern of corresponding genetic sub-sequences. Most preferably, said (poly)peptides are or are derived from the HuCAL consensus genes: $V\kappa1$, $V\kappa2$, $V\kappa3$, $V\kappa4$, $V\lambda1$, $V\lambda2$, $V\lambda3$, VH1A, VH1B, VH2, VH3, VH4, VH5, VH6, $C\kappa$, $C\lambda$, CH1 or any combination of said HuCAL consensus genes.

This collection of DNA molecules can then be used to create libraries of antibodies or antibody fragments, preferably Fv, disulphide-linked Fv, single-chain Fv (scFv), or Fab fragments, which may be used as sources of specificities against new target antigens. Moreover, the affinity of the antibodies can be optimized using pre-built library cassettes and a general procedure. The invention provides a method for identifying one or more genes encoding one or more antibody fragments which

binds to a target, comprising the steps of expressing the antibody fragments, and then screening them to isolate one or more antibody fragments which bind to a given target molecule. Preferably, an scFv fragment library comprising the combination of HuCAL VH3 and HuCAL Vλ2 consensus genes and at least a random sub-sequence encoding the heavy chain CDR3 sub-element is screened for binding antibodies. If necessary, the modular design of the genes can then be used to excise from the genes encoding the antibody fragments one or more genetic sub-sequences encoding structural sub-elements, and replacing them by one or more second sub-sequences encoding structural sub-elements. The expression and screening steps can then be repeated until an antibody having the desired affinity is generated.

Particularly preferred is a method in which one or more of the genetic subunits (e.g. the CDRs) are replaced by a random collection of sequences (the library) using the said cleavage sites. Since these cleavage sites are (i) unique in the vector system and (ii) common to all consensus genes, the same (pre-built) library can be inserted into all artificial antibody genes. The resulting library is then screened against any chosen antigen. Binding antibodies are selected, collected and used as starting material for the next library. Here, one or more of the remaining genetic subunits are randomized as described above.

A further embodiment of the present invention relates to fusion proteins by providing for a DNA sequence which encodes both the (poly)peptide, as described above, as well as an additional moiety. Particularly preferred are moieties which have a useful therapeutic function. For example, the additional moiety may be a toxin molecule which is able to kill cells (Vitetta et al., 1993). There are numerous examples of such toxins, well known to the one skilled in the art, such as the bacterial toxins Pseudomonas exotoxin A, and diphtheria toxin, as well as the plant toxins ricin, abrin, modeccin, saporin, and gelonin. By fusing such a toxin for example to an antibody fragment, the toxin can be targeted to, for example, diseased cells, and thereby have a beneficial therapeutic effect. Alternatively, the additional moiety may be a cytokine, such as IL-2 (Rosenberg & Lotze, 1986), which has a particular effect (in this case a T-cell proliferative effect) on a family of cells. In a further embodiment, the additional moiety may confer on its (poly)peptide partner a means of detection and/or purification. For example, the fusion protein could comprise the modified antibody fragment and an enzyme commonly used for detection purposes, such as alkaline phosphatase (Blake et al., 1984). There are numerous other moieties which can be used as detection or purification tags, which are well known to the practitioner skilled in the art. Particularly preferred are peptides comprising at least five histidine residues (Hochuli et al., 1988), which are able to bind to metal ions,

and can therefore be used for the purification of the protein to which they are fused (Lindner et al., 1992). Also provided for by the invention are additional moieties such as the commonly used C-myc and FLAG tags (Hopp et al., 1988; Knappik & Plückthun, 1994).

By engineering one or more fused additional domains, antibody fragments or any other (poly)peptide can be assembled into larger molecules which also fall under the scope of the present invention. For example, mini-antibodies (Pack, 1994) are dimers comprising two antibody fragments, each fused to a self-associating dimerization domain. Dimerization domains which are particularly preferred include those derived from a leucine zipper (Pack & Plückthun, 1992) or helix-turn-helix motif (Pack et al., 1993).

All of the above embodiments of the present invention can be effected using standard techniques of molecular biology known to anyone skilled in the art.

In a further embodiment, the random collection of sub-sequences (the library) is inserted into a singular nucleic acid sequence encoding one (poly)peptide, thus creating a (poly)peptide library based on one universal framework. Preferably a random collection of CDR sub-sequences is inserted into a universal antibody framework, for example into the HuCAL H3x2 single-chain Fv fragment described above.

In further embodiments, the invention provides for nucleic acid sequence(s), vector(s) containing the nucleic acid sequence(s), host cell(s) containing the vector(s), and (poly)peptides, obtainable according to the methods described above.

In a further preferred embodiment, the invention provides for modular vector systems being compatible with the modular nucleic acid sequences encoding the (poly)peptides. The modules of the vectors are flanked by restriction sites unique within the vector system and essentially unique with respect to the restriction sites incorporated into the nucleic acid sequences encoding the (poly)peptides, except for example the restriction sites necessary for cloning the nucleic acid sequences into the vector. The list of vector modules comprises origins of single-stranded replication, origins of double-stranded replication for high- and low copy number plasmids, promotor/operator, repressor or terminator elements, resistance genes, potential recombination sites, gene III for display on filamentous phages, signal sequences, purification and detection tags, and sequences of additional moieties.

The vectors are preferably, but not exclusively, expression vectors or vectors suitable for expression and screening of libraries.

In another embodiment, the invention provides for a kit, comprising one or more of the list of nucleic acid sequence(s), recombinant vector(s), (poly)peptide(s), and vector(s) according to the methods described above, and suitable host cell(s) for producing the (poly)peptide(s).

In a preferred embodiment, the invention provides for the creation of libraries of human antibodies. In a first step, a database of published antibody sequences of human origin is established. The database is used to define subgroups of antibody sequences which show a high degree of similarity in both the sequence and the canonical fold (as determined by analysis of antibody structures). For each of the subgroups a consensus sequence is deduced which represents the members of this subgroup; the complete collection of consensus sequences represent therefore the complete structural repertoire of human antibodies.

These artificial genes are then constructed by the use of synthetic genetic subunits. These genetic subunits correspond to structural sub-elements on the protein level. On the DNA level, these genetic subunits are defined by cleavage sites at the start and the end of each of the subelements, which are unique in the vector system. All genes which are members of the collection of consensus sequences are constructed such that they contain a similar pattern of said genetic subunits.

This collection of DNA molecules can then be used to create libraries of antibodies which may be used as sources of specificities against new target antigens. Moreover, the affinity of the antibodies can be optimised using pre-built library cassettes and a general procedure. The invention provides a method for identifying one or more genes encoding one or more antibody fragments which binds to a target, comprising the steps of expressing the antibody fragments, and then screening them to isolate one or more antibody fragments which bind to a given target molecule. If necessary, the modular design of the genes can then be used to excise from the genes encoding the antibody fragments one or more genetic subsequences encoding structural sub-elements, and replacing them by one or more second sub-sequences encoding structural sub-elements. The expression and screening steps can then be repeated until an antibody having the desired affinity is generated.

Particularly preferred is a method in which one or more of the genetic subunits (e.g. the CDR's) are replaced by a random collection of sequences (the library) using the said cleavage sites. Since these cleavage sites are (i) unique in the vector system and (ii) common to all consensus genes, the same (pre-built) library can be inserted into all artificial antibody genes. The resulting library is then screened against any chosen antigen. Binding antibodies are eluted, collected and used as starting material for the next library. Here, one or more of the remaining genetic subunits are randomised as described above.

Definitions

Protein:

The term protein comprises monomeric polypeptide chains as well as homo- or heteromultimeric complexes of two or more polypeptide chains connected either by covalent interactions (such as disulphide bonds) or by non-covalent interactions (such as hydrophobic or electrostatic interactions).

Analysis of homologous proteins:

The amino acid sequences of three or more proteins are aligned to each other (allowing for introduction of gaps) in a way which maximizes the correspondence between identical or similar amino acid residues at all positions. These aligned sequences are termed homologous if the percentage of the sum of identical and/or similar residues exceeds a defined threshold. This threshold is commonly regarded by those skilled in the art as being exceeded when at least 15% of the amino acids in the aligned genes are identical, and at least 30% are similar. Examples for families of homologous proteins are: immunoglobulin superfamily, scavenger receptor superfamily, fibronectin superfamilies (e.g. type II and III), complement control protein superfamily, cytokine receptor superfamily, cystine knot proteins, tyrosine kinases, and numerous other examples well known to one of ordinary skill in the art.

Consensus sequence:

Using a matrix of at least three aligned amino acid sequences, and allowing for gaps in the alignment, it is possible to determine the most frequent amino acid residue at each position. The consensus sequence is that sequence which comprises the amino acids which are most frequently represented at each position. In the event that two or more amino acids are equally represented at a single position, the consensus sequence includes both or all of those amino acids.

Removing unfavorable interactions:

The consensus sequence is per se in most cases artificial and has to be analyzed in order to change amino acid residues which, for example, would prevent the resulting molecule to adapt a functional tertiary structure or which would block the interaction with other (poly)peptide chains in multimeric complexes. This can be done either by (i) building a three-dimensional model of the consensus sequence using known related structures as a template, and identifying amino acid residues within the model which may interact unfavorably with each other, or (ii) analyzing the matrix of aligned amino acid sequences in order to detect combinations of amino

acid residues within the sequences which frequently occur together in one sequence and are therefore likely to interact with each other. These probable interaction-pairs are then tabulated and the consensus is compared with these "interaction maps". Missing or wrong interactions in the consensus are repaired accordingly by introducing appropriate changes in amino acids which minimize unfavorable interactions.

Identification of structural sub-elements:

Structural sub-elements are stretches of amino acid residues within a protein/(poly)peptide which correspond to a defined structural or functional part of the molecule. These can be loops (e.g. CDR loops of an antibody) or any other secondary or functional structure within the protein/(poly)peptide (domains, achelices, B-sheets, framework regions of antibodies, etc.). A structural sub-element can be identified using known structures of similar or homologous (poly)peptides, or by using the above mentioned matrices of aligned amino acid sequences. Here the variability at each position is the basis for determining stretches of amino acid residues which belong to a structural sub-element (e.g. hypervariable regions of an antibody).

Sub-sequence:

A sub-sequence is defined as a genetic module which is flanked by unique cleavage sites and encodes at least one structural sub-element. It is not necessarily identical to a structural sub-element.

Cleavage site:

A short DNA sequence which is used as a specific target for a reagent which cleaves DNA in a sequence-specific manner (e.g. restriction endonucleases).

Compatible cleavage sites:

Cleavage sites are compatible with each other, if they can be efficiently ligated without modification and, preferably, also without adding an adapter molecule.

Unique cleavage sites:

A cleavage site is defined as unique if it occurs only once in a vector containing at least one of the genes of interest, or if a vector containing at least one of the genes of interest could be treated in a way that only one of the cleavage sites could be used by the cleaving agent.

Corresponding (poly)peptide sequences:

Sequences deduced from the same part of one group of homologous proteins are called corresponding (poly)peptide sequences.

Common cleavage sites:

A cleavage site in at least two corresponding sequences, which occurs at the same functional position (i.e. which flanks a defined sub-sequence), which can be hydrolyzed by the same cleavage tool and which yields identical compatible ends is termed a common cleavage site.

Excising genetic sub-sequences:

A method which uses the unique cleavage sites and the corresponding cleavage reagents to cleave the target DNA at the specified positions in order to isolate, remove or replace the genetic sub-sequence flanked by these unique cleavage sites.

Exchanging genetic sub-sequences:

A method by which an existing sub-sequence is removed using the flanking cleavage sites of this sub-sequence, and a new sub-sequence or a collection of sub-sequences, which contain ends compatible with the cleavage sites thus created, is inserted.

Expression of genes:

The term expression refers to in vivo or in vitro processes, by which the information of a gene is transcribed into mRNA and then translated into a protein/(poly)peptide. Thus, the term expression refers to a process which occurs inside cells, by which the information of a gene is transcribed into mRNA and then into a protein. The term expression also includes all events of post-translational modification and transport, which are necessary for the (poly)peptide to be functional.

Screening of protein/(poly)peptide libraries:

Any method which allows isolation of one or more proteins/(poly)peptides having a desired property from other proteins/(poly)peptides within a library.

Amino acid pattern characteristic for a species:

A (poly)peptide sequence is assumed to exhibit an amino acid pattern characteristic for a species if it is deduced from a collection of homologous proteins from just this species.

Immunoglobulin superfamily (IgSF):

The IgSF is a family of proteins comprising domains being characterized by the immunoglobulin fold. The IgSF comprises for example T-cell receptors and the immunoglobulins (antibodies).

Antibody framework:

A framework of an antibody variable domain is defined by Kabat et al. (1991) as the part of the variable domain which serves as a scaffold for the antigen binding loops of this variable domain.

Antibody CDR:

The CDRs (complementarity determining regions) of an antibody consist of the antigen binding loops, as defined by Kabat et al. (1991). Each of the two variable domains of an antibody Fv fragment contain three CDRs.

HuCAL:

Acronym for <u>Human Combinatorial Antibody Library</u>. Antibody Library based on modular consensus genes according to the invention (see Example 1).

Antibody fragment:

Any portion of an antibody which has a particular function, e.g. binding of antigen. Usually, antibody fragments are smaller than whole antibodies. Examples are Fv, disulphide-linked Fv, single-chain Fv (scFv), or Fab fragments. Additionally, antibody fragments are often engineered to include new functions or properties.

Universal framework:

One single framework which can be used to create the full variability of functions, specificities or properties which is originally sustained by a large collection of different frameworks, is called universal framework.

Binding of an antibody to its target:

The process which leads to a tight and specific association between an antibody and a corresponding molecule or ligand is called binding. A molecule or ligand or any part of a molecule or ligand which is recognized by an antibody is called the target.

Replacing genetic sub-sequences

A method by which an existing sub-sequence is removed using the flanking cleavage sites of this sub-sequence, and a new sub-sequence or collection of sub-

sequences, which contains ends compatible with the cleavage sites thus created, is inserted.

Assembling of genetic sequences:

Any process which is used to combine synthetic or natural genetic sequences in a specific manner in order to get longer genetic sequences which contain at least parts of the used synthetic or natural genetic sequences.

Analysis of homologous genes:

The corresponding amino acid sequences of two or more genes are aligned to each other in a way which maximizes the correspondence between identical or similar amino acid residues at all positions. These aligned sequences are termed homologous if the percentage of the sum of identical and/or similar residues exceeds a defined threshold. This threshold is commonly regarded by those skilled in the art as being exceeded when at least 15 per cent of the amino acids in the aligned genes are identical, and at least 30 per cent are similar.

Legends to Figures and Tables

- Fig. 1: Flow chart outlining the process of construction of a synthetic human antibody library based on consensus sequences.
- Fig. 2: Alignment of consensus sequences designed for each subgroup (amino acid residues are shown with their standard one-letter abbreviation). (A) kappa sequences, (B) lambda sequences and (C), heavy chain sequences. The positions are numbered according to Kabat (1991). In order to maximize homology in the alignment, gaps (—) have been introduced in the sequence at certain positions.
- Fig. 3: Gene sequences of the synthetic V kappa consensus genes. The corresponding amino acid sequences (see Fig. 2) as well as the unique cleavage sites are also shown.
- Fig. 4: Gene sequences of the synthetic V lambda consensus genes. The corresponding amino acid sequences (see Fig. 2) as well as the unique cleavage sites are also shown.
- Fig. 5: Gene sequences of the synthetic V heavy chain consensus genes. The corresponding amino acid sequences (see Fig. 2) as well as the unique cleavage sites are also shown.
- Fig. 6: Oligonucleotides used for construction of the consensus genes. The oligos are named according to the corresponding consensus gene, e.g. the gene Vκ1 was constructed using the six oligonucleotides O1K1 to O1K6. The oligonucleotides used for synthesizing the genes encoding the constant domains Cκ (OCLK1 to 8) and CH1 (OCH1 to 8) are also shown.
- Fig. 7A/B: Sequences of the synthetic genes encoding the constant domains Cκ (A) and CH1 (B). The corresponding amino acid sequences as well as unique cleavage sites introduced in these genes are also shown.
- Fig. 7C: Functional map and sequence of module M24 comprising the synthetic Cλ gene segment (huCL lambda).
- Fig. 7D: Oligonucleotides used for synthesis of module M24.
- Fig. 8: Sequence and restriction map of the synthetic gene encoding the consensus single-chain fragment VH3-Vk2. The signal sequence (amino acids 1 to 21) was derived from the *E. coli* phoA gene (Skerra &

Plückthun, 1988). Between the phoA signal sequence and the VH3 domain, a short sequence stretch encoding 4 amino acid residues (amino acid 22 to 25) has been inserted in order to allow detection of the single-chain fragment in Western blot or ELISA using the monoclonal antibody M1 (Knappik & Plückthun, 1994). The last 6 basepairs of the sequence were introduced for cloning purposes (EcoRl site).

- Fig. 9: Plasmid map of the vector pIG10.3 used for phage display of the H3κ2 scFv fragment. The vector is derived from pIG10 and contains the gene for the lac operon repressor, lacl, the artificial operon encoding the H3κ2-gene3ss fusion under control of the lac promoter, the lpp terminator of transcription, the single-strand replication origin of the *E. coli* phage f1 (F1_ORI), a gene encoding β-lactamase (bla) and the ColEI derived origin of replication.
- Fig. 10: Sequencing results of independent clones from the initial library, translated into the corresponding amino acid sequences. (A) Amino acid sequence of the VH3 consensus heavy chain CDR3 (position 93 to 102, Kabat numbering). (B) Amino acid sequences of 12 clones of the 10-mer library. (C) Amino acid sequences of 11 clones of the 15-mer library, *: single base deletion.
- Fig. 11: Expression test of individual library members. (A) Expression of 9 independent clones of the 10-mer library. (B) Expression of 9 independent clones of the 15-mer library. The lane designated with M contains the size marker. Both the gp3-scFv fusion and the scFv monomer are indicated.
- Fig. 12: Enrichment of specific phage antibodies during the panning against FITC-BSA. The initial as well as the subsequent fluorescein-specific sublibraries were panned against the blocking buffer and the ratio of the phage eluted from the FITC-BSA coated well vs. that from the powder milk coated well from each panning round is presented as the "specificity factor".
- Fig. 13: Phage ELISA of 24 independent clones after the third round of panning tested for binding on FITC-BSA.
- Fig. 14: Competition ELISA of selected FITC-BSA binding clones. The ELISA signals (OD_{405nm}) of scFv binding without inhibition are taken as 100%.
- Fig. 15: Sequencing results of the heavy chain CDR3s of independent clones after 3 rounds of panning against FITC-BSA, translated into the corresponding amino acid sequences (position 93 to 102. Kabat numbering).

Fig. 16: Coomassie-Blue stained SDS-PAGE of the purified anti-fluorescein softy fragments: M: molecular weight marker, A: total soluble cell extract after induction, B: fraction of the flow-through, C, D and E: purified scFv fragments 1HA-3E4, 1HA-3E5 and 1HA-3E10, respectively.

- Fig. 17: Enrichment of specific phage antibodies during the panning against β-estradiol-BSA, testosterone-BSA, BSA, ESL-1, interleukin-2, lymphotoxin-β, and LeY-BSA after three rounds of panning.
- Fig. 18: ELISA of selected ESL-1 and β-estradiol binding clones
- Fig. 19: Selectivity and cross-reactivity of HuCAL antibodies: in the diagonal specific binding of HuCAL antibodies can be seen, off-diagonal signals show non-specific cross-reactivity.
- Fig. 20: Sequencing results of the heavy chain CDR3s of independent clones after 3 rounds of panning against β-estradiol-BSA, translated into the corresponding amino acid sequences (position 93 to 102, Kabat . numbering). One clone is derived from the 10mer library.
- Fig. 21: Sequencing results of the heavy chain CDR3s of independent clones after 3 rounds of panning against testosterone-BSA, translated into the corresponding amino acid sequences (position 93 to 102, Kabat numbering).
- Fig. 22: Sequencing results of the heavy chain CDR3s of independent clones after 3 rounds of panning against lymphotoxin-ß, translated into the corresponding amino acid sequences (position 93 to 102, Kabat numbering). One clone comprises a 14mer CDR, presumably introduced by incomplete coupling of the trinucleotide mixture during oligonucleotide synthesis.
- Fig. 23: Sequencing results of the heavy chain CDR3s of independent clones after 3 rounds of panning against ESL-1, translated into the corresponding amino acid sequences (position 93 to 102, Kabat numbering). Two clones are derived from the 10mer library. One clone comprises a 16mer CDR, presumably introduced by chain elongation during oligonucleotide synthesis using trinucleotides.
- Fig. 24: Sequencing results of the heavy chain CDR3s of independent clones after 3 rounds of panning against BSA, translated into the corresponding amino acid sequences (position 93 to 102, Kabat numbering).
- Fig. 25: Schematic representation of the modular pCAL vector system.
- Fig. 25a: List of restriction sites already used in or suitable for the modular HuCAL genes and pCAL vector system.
- Fig. 26: List of the modular vector elements for the pCAL vector series: shown are only those restriction sites which are part of the modular system.

Fig. 27: Functional map and sequence of the multi-cloning site module (MCS)

- Fig. 28: Functional map and sequence of the pMCS cloning vector series.
- Fig. 29: Functional map and sequence of the pCAL module M1 (see Fig. 26).
- Fig. 30: Functional map and sequence of the pCAL module M7-III (see Fig. 26).
- Fig. 31: Functional map and sequence of the pCAL module M9-II (see Fig. 26).
- Fig. 32: Functional map and sequence of the pCAL module M11-II (see Fig. 26).
- Fig. 33: Functional map and sequence of the pCAL module M14-Ext2 (see Fig. 26).
- Fig. 34: Functional map and sequence of the pCAL module M17 (see Fig. 26).
- Fig. 35: Functional map and sequence of the modular vector pCAL4.
- Fig. 35a: Functional maps and sequences of additional pCAL modules (M2, M3, M7I, M7II, M8, M10II, M11II, M12, M13, M19, M20, M21, M41) and of low-copy number plasmid vectors (pCALO1 to pCALO3).
- Fig. 35b:List of oligonucleotides and primers used for synthesis of pCAL vector modules.
- Fig. 36: Functional map and sequence of the B-lactamase cassette for replacement of CDRs for CDR library cloning.
- Fig. 37: Oligo and primer design for Vk CDR3 libraries
- Fig. 38: Oligo and primer design for Vλ CDR3 libraries
- Fig. 39: Functional map of the pBS13 expression vector series.
- Fig. 40: Expression of all 49 HuCAL scFvs obtained by combining each of the 7 VH genes with each of the 7 VL genes (pBS13, 30°C): Values are given for the percentage of soluble vs. insoluble material, the total and the soluble amount compared to the combination H3κ2, which was set to 100%. In addition, the corresponding values for the McPC603 scFv are given.
- Table 1: Summary of human immunoglobulin germline sequences used for computing the germline membership of rearranged sequences. (A) kappa sequences, (B) lambda sequences and (C), heavy chain sequences. (1) The germline name used in the various calculations, (2) the references number for the corresponding sequence (see appendix for sequence related citations), (3) the family where each sequence belongs to and (4), the various names found in literature for germline genes with identical amino acid sequences.
- Table 2: Rearranged human sequences used for the calculation of consensus sequences. (A) kappa sequences, (B) lambda sequences and (C), heavy chain sequences. The table summarized the name of the sequence (1),

the length of the sequence in amino acids (2), the germline family (3) as well as the computed germline counterpart (4). The number of amino acid exchanges between the rearranged sequence and the germline sequence is tabulated in (5), and the percentage of different amino acids is given in (6). Column (7) gives the references number for the corresponding sequence (see appendix for sequence related citations).

- Table 3: Assignment of rearranged V sequences to their germline counterparts.

 (A) kappa sequences, (B) lambda sequences and (C), heavy chain sequences. The germline genes are tabulated according to their family (1), and the number of rearranged genes found for every germline gene is given in (2).
- Table 4: Computation of the consensus sequence of the rearranged V kappa sequences. (A), V kappa subgroup 1, (B), V kappa subgroup 2, (C), V kappa subgroup 3 and (D), V kappa subgroup 4. The number of each amino acid found at each position is tabulated together with the statistical analysis of the data. (1) Amino acids are given with their standard one-letter abbreviations (and B means D or N, Z means E or Q and X means any amino acid). The statistical analysis summarizes the number of sequences found at each position (2), the number of occurrences of the most common amino acid (3), the amino acid residue which is most common at this position (4), the relative frequency of the occurrence of the most common amino acid (5) and the number of different amino acids found at each position (6).
- Table 5: Computation of the consensus sequence of the rearranged V lambda sequences. (A), V lambda subgroup 1, (B), V lambda subgroup 2, and (C), V lambda subgroup 3. The number of each amino acid found at each position is tabulated together with the statistical analysis of the data. Abbreviations are the same as in Table 4.
- Table 6: Computation of the consensus sequence of the rearranged V heavy chain sequences. (A), V heavy chain subgroup 1A, (B), V heavy chain subgroup 1B, (C), V heavy chain subgroup 2, (D), V heavy chain subgroup 3, (E), V heavy chain subgroup 4, (F), V heavy chain subgroup 5, and (G), V heavy chain subgroup 6. The number of each amino acid found at each position is tabulated together with the statistical analysis of the data. Abbreviations are the same as in Table 4.

Examples

Example 1: Design of a Synthetic Human Combinatorial Antibody Library (HuCAL)

The following example describes the design of a fully synthetic human combinatorial antibody library (HuCAL), based on consensus sequences of the human immunoglobulin repertoire, and the synthesis of the consensus genes. The general procedure is outlined in Fig. 1.

1.1 Sequence database

1.1.1 Collection and alignment of human immunoglobulin sequences

In a first step, sequences of variable domains of human immunoglobulins have been collected and divided into three sub bases: V heavy chain (VH), V kappa (V κ) and V lambda (V λ). For each sequence, the gene sequence was then translated into the corresponding amino acid sequence. Subsequently, all amino acid sequences were aligned according to Kabat et al. (1991). In the case of V λ sequences, the numbering system of Chuchana et al. (1990) was used. Each of the three main databases was then divided into two further sub bases: the first sub base contained all sequences derived from rearranged V genes, where more than 70 positions of the sequence were known. The second sub base contained all germline gene segments (without the D- and J- minigenes; pseudogenes with internal stop codons were also removed). In all cases, where germline sequences with identical amino acid sequence but different names were found, only one sequence was used (see Table 1). The final databases of rearranged sequences contained 386, 149 and 674 entries for V κ , V λ and VH, respectively. The final databases of germline sequences contained 48, 26 and 141 entries for V κ , V λ and VH, respectively.

1.1.2 Assignment of sequences to subgroups

The sequences in the three germline databases where then grouped according to sequence homology (see also Tomlinson et al., 1992, Williams & Winter, 1993, and Cox et al., 1994). In the case of $V\kappa$, 7 families could be established. $V\lambda$ was divided into 8 families and VH into 6 families. The VH germline genes of the VH7 family (Van Dijk et al., 1993) were grouped into the VH1 family, since the genes of the two families are highly homologous. Each family contained different numbers of germline genes, varying from 1 (for example VH6) to 47 (VH3).

1.2 Analysis of sequences

1.2.1 Computation of germline membership

For each of the 1209 amino acid sequences in the databases of rearranged genes, the nearest germline counterpart, i.e. the germline sequence with the smallest number of amino acid differences was then calculated. After the germline counterpart was found, the number of somatic mutations which occurred in the rearranged gene and which led to amino acid exchanges could be tabulated. In 140 cases, the germline counterpart could not be calculated exactly, because more than one germline gene was found with an identical number of amino acid exchanges. These rearranged sequences were removed from the database. In a few cases, the number of amino acid exchanges was found to be unusually large (>20 for VL and >25 for VH), indicating either heavily mutated rearranged genes or derivation from germline genes not present in the database. Since it was not possible to distinguish between these two possibilities, these sequences were also removed from the database. Finally, 12 rearranged sequences were removed from the database because they were found to have very unusual CDR lengths and composition or unusual amino acids at canonical positions (see below). In summary, 1023 rearranged sequences out of 1209 (85%) could be clearly assigned to their germline counterparts (see Table 2).

After this calculation, every rearranged gene could be arranged in one of the families established for the germline genes. Now the usage of each germline gene, i.e. the number of rearranged genes which originate from each germline gene, could be calculated (see Table 2). It was found that the usage was strongly biased towards a subset of germline genes, whereas most of the germline genes were not present as rearranged genes in the database and therefore apparently not used in the immune system (Table 3). This observation had already been reported in the case of $V\kappa$ (Cox, et al., 1994). All germline gene families, where no or only very few rearranged counterparts could be assigned, were removed from the database, leaving 4 Vk, 3 V λ , and 6 VH families.

1.2.2 Analysis of CDR conformations

The conformation of the antigen binding loops of antibody molecules, the CDRs, is strongly dependent on both the length of the CDRs and the amino acid residues located at the so-called canonical positions (Chothia & Lesk, 1987). It has been found that only a few canonical structures exist, which determine the structural

repertoire of the immunoglobulin variable domains (Chothia et al., 1989). The canonical amino acid positions can be found in CDR as well as framework regions. The 13 used germline families defined above (7 VL and 6 VH) were now analyzed for their canonical structures in order to define the structural repertoire encoded in these families.

In 3 of the 4 V κ families (V κ 1, 2 and 4), one different type of CDR1 conformation could be defined for every family. The family V κ 3 showed two types of CDR1 conformation: one type which was identical to V κ 1 and one type only found in V κ 3. All V κ CDR2s used the same type of canonical structure. The CDR3 conformation is not encoded in the germline gene segments. Therefore, the 4 V κ families defined by sequence homology and usage corresponded also to 4 types of canonical structures found in V κ germline genes.

The 3 V λ families defined above showed 3 types of CDR1 conformation, each family with one unique type. The V λ 1 family contained 2 different CDR1 lengths (13 and 14 amino acids), but identical canonical residues, and it is thought that both lengths adopt the same canonical conformation (Chothia & Lesk, 1987). In the CDR2 of the used V λ germlines, only one canonical conformation exists, and the CDR3 conformation is not encoded in the germline gene segments. Therefore, the 3 V λ 4 families defined by sequence homology and usage corresponded also to 3 types of canonical structures.

The structural repertoire of the human VH sequences was analyzed in detail by Chothia et al., 1992. In total, 3 conformations of CDR1 (H1-1, H1-2 and H1-3) and 6 conformations of CDR2 (H2-1, H2-2, H2-3, H2-4, H2-5 and H2-x) could be defined. Since the CDR3 is encoded in the D- and J-minigene segments, no particular canonical residues are defined for this CDR.

All the members of the VH1 family defined above contained the CDR1 conformation H1-1, but differed in their CDR2 conformation: the H2-2 conformation was found in 6 germline genes, whereas the conformation H2-3 was found in 8 germline genes. Since the two types of CDR2 conformations are defined by different types of amino acid at the framework position 72, the VH1 family was divided into two subfamilies: VH1A with CDR2 conformation H2-2 and VH1B with the conformation H2-3. The members of the VH2 family all had the conformations H1-3 and H2-1 in CDR1 and CDR2, respectively. The CDR1 conformation of the VH3 members was found in all cases to be H1-1, but 4 different types were found in CDR2 (H2-1, H2-3, H2-4 and H2-x). In these CDR2 conformations, the canonical framework residue 71 is aiways

defined by an arginine. Therefore, it was not necessary to divide the VH3 family into subfamilies, since the 4 types of CDR2 conformations were defined solely by the CDR2 itself. The same was true for the VH4 family. Here, all 3 types of CDR1 conformations were found, but since the CDR1 conformation was defined by the CDR itself (the canonical framework residue 26 was found to be glycine in all cases), no subdivisions were necessary. The CDR2 conformation of the VH4 members was found to be H2-1 in all cases. All members of the VH5 family were found to have the conformation H1-1 and H2-2, respectively. The single germline gene of the VH6 family had the conformations H1-3 and H2-5 in CDR1 and CDR2, respectively.

In summary, all possible CDR conformations of the $V\kappa$ and $V\lambda$ genes were present in the 7 families defined by sequence comparison. From the 12 different CDR conformations found in the used VH germline genes, 7 could be covered by dividing the family VH1 into two subfamilies, thereby creating 7 VH families. The remaining 5 CDR conformations (3 in the VH3 and 2 in the VH4 family) were defined by the CDRs themselves and could be created during the construction of CDR libraries. Therefore, the structural repertoire of the used human V genes could be covered by 49 (7 x 7) different frameworks.

1.2.3 Computation of consensus sequences

The 14 databases of rearranged sequences (4 Vκ, 3 Vλ and 7 VH) were used to compute the HuCAL consensus sequences of each subgroup (4 HuCAL- Vκ, 3 HuCAL- Vλ, 7 HuCAL- VH, see Table 4, 5 and 6). This was done by counting the number of amino acid residues used at each position (position variability) and subsequently identifying the amino acid residue most frequently used at each position. By using the rearranged sequences instead of the used germline sequences for the calculation of the consensus, the consensus was weighted according to the frequency of usage. Additionally, frequently mutated and highly conserved positions could be identified. The consensus sequences were crosschecked with the consensus of the germline families to see whether the rearranged sequences were biased at certain positions towards amino acid residues which do not occur in the collected germline sequences, but this was found not to be the case. Subsequently, the number of differences of each of the 14 consensus sequences to each of the germline sequences found in each specific family was calculated. The overall deviation from the most homologous germline sequence was found to be 2.4 amino acid residues (s.d. = 2.7), ensuring that the "artificial" consensus seguences

can still be considered as truly human sequences as far as immunogenicity is concerned.

1.3 Structural analysis

So far, only sequence information was used to design the consensus sequences. Since it was possible that during the calculation certain artificial combinations of amino acid residues have been created, which are located far away in the sequence but have contacts to each other in the three dimensional structure, leading to destabilized or even misfolded frameworks, the 14 consensus sequences were analyzed according to their structural properties.

It was rationalized that all rearranged sequences present in the database correspond to functional and therefore correctly folded antibody molecules. Hence, the most homologous rearranged sequence was calculated for each consensus sequence. The positions where the consensus differed from the rearranged sequence were identified as potential "artificial residues" and inspected.

The inspection itself was done in two directions. First, the local sequence stretch around each potentially "artificial residue" was compared with the corresponding stretch of all the rearranged sequences. If this stretch was found to be truly artificial, i.e. never occurred in any of the rearranged sequences, the critical residue was converted into the second most common amino acid found at this position and analyzed again. Second, the potentially "artificial residues" were analyzed for their long range interactions. This was done by collecting all available structures of human antibody variable domains from the corresponding PDB files and calculating for every structure the number and type of interactions each amino acid residue established to each side-chain. These "interaction maps" were used to analyze the probable side-chain/side-chain interactions of the potentially "artificial residues". As a result of this analysis, the following residues were exchanged (given is the name of the gene, the position according to Kabat's numbering scheme, the amino acid found at this position as the most abundant one and the amino acid which was used instead):

VH2: S₆₅T Vκ1: N₃₄A,

Vκ3: G₉A, D₆₀A, R₇₇S

Vλ3: V₇₈T

1.4 Design of CDR sequences

The process described above provided the complete consensus sequences derived solely from the databases of rearranged sequences. It was rationalized that the CDR1 and CDR2 regions should be taken from the databases of used germline sequences, since the CDRs of rearranged and mutated sequences are biased towards their particular antigens. Moreover, the germline CDR sequences are known to allow binding to a variety of antigens in the primary immune response, where only CDR3 is varied. Therefore, the consensus CDRs obtained from the calculations described above were replaced by germline CDRs in the case of VH and V_K . In the case of V_A , a few amino acid exchanges were introduced in some of the chosen germline CDRs in order to avoid possible protease cleavage sites as well as possible structural constraints.

The CDRs of following germline genes have been chosen:

HuCAL gene	CDR1	CDR2
HuCAL-VH1A	VH1-12-1	VH1-12-1
HuCAL-VH1B	VH1-13-16	VH1-13-6,-7,-8,-9
HuCAL-VH2	VH2-31-10,-11,-12,-13	VH2-31-3,-4
HuCAL-VH3	VH3-13-8,-9,-10	VH3-13-8,-9,-10
HuCAL-VH4	VH4-11-7 to -14	VH4-11-8,-9,-11,-12,-14,-16
		VH4-31-17,-18,-19,-20
HuCAL-VH5	VH5-12-1,-2	VH5-12-1,-2
HuCAL-VH6	VH6-35-1	VH6-35-1
HuCAL-Vκ1	Vκ1-14, -1 5	Vκ1-2,-3,-4,-5,-7,-8,-12,-13,-18,-19
HuCAL-Vκ2	Vĸ2-6	Vĸ2-6
HuCAL-Vκ3	Vκ3-1,-4	Vκ3-4
HuCAL-Vκ4	Vĸ4-1	Vκ4-1
HuCAL-Vλ1	HUMLV117,DPL5	DPL5
HuCAL-Vλ2	DPL11,DPL12	DPL12
HuCAL-Vλ3	DPL23	HUMLV318

In the case of the CDR3s, any sequence could be chosen since these CDRs were planned to be the first to be replaced by oligonucleotide libraries. In order to study the expression and folding behavior of the consensus sequences in *E. coli*, it would be useful to have all sequences with the same CDR3, since the influence of the CDR3s on the folding behavior would then be identical in all cases. The dummy sequences QQHYTTPP and ARWGGDGFYAMDY were selected for the VL chains (kappa and lambda) and for the VH chains, respectively. These sequences are known to be compatible with antibody folding in *E. coli* (Carter et al., 1992).

1.5 Gene design

The final outcome of the process described above was a collection of 14 HuCAL amino acid sequences, which represent the frequently used structural antibody repertoire of the human immune system (see Figure 2). These sequences were back-translated into DNA sequences. In a first step, the back-translation was done using only codons which are known to be frequently used in E. coli. These gene sequences were then used for creating a database of all possible restriction endonuclease sites, which could be introduced without changing the corresponding amino acid sequences. Using this database, cleavage sites were selected which were located at the flanking regions of all sub-elements of the genes (CDRs and framework regions) and which could be introduced in all HuCAL VH, Vκ or Vλ genes simultaneously at the same position. In a few cases it was not possible to find cleavage sites for all genes of a subgroup. When this happened, the amino acid sequence was changed, if this was possible according to the available sequence and structural information. This exchange was then analyzed again as described above. In total, the following 6 amino acid residues were exchanged during this design (given is the name of the gene, the position according to Kabat's numbering scheme, the amino acid found at this position as the most abundant one and the amino acid which was used instead):

VH2: T₃Q

VH6: S42G

Vκ3: E,D, IseV

Vκ4: K₂₄R

Vλ3: T₂S

In one case (5'-end of VH framework 3) it was not possible to identify a single cleavage site for all 7 VH genes. Two different type of cleavage sites were used instead: BstEII for HuCAL VH1A, VH1B, VH4 and VH5, and NspV for HuCAL VH2, VH3, VH4 and VH6.

Several restriction endonuclease sites were identified, which were not located at the flanking regions of the sub-elements but which could be introduced in every gene of a given group without changing the amino acid sequence. These cleavage sites were also introduced in order to make the system more flexible for further improvements. Finally, all but one remaining restriction endonuclease sites were removed in every gene sequence. The single cleavage site, which was not removed was different in all genes of a subgroup and could be therefore used as a "fingerprint" site to ease the identification of the different genes by restriction digest. The designed genes, together with the corresponding amino acid sequences and the group-specific restriction endonuclease sites are shown in Figure 3, 4 and 5, respectively.

1.6 Gene synthesis and cloning

The consensus genes were synthesized using the method described by Prodromou & Pearl, 1992, using the oligonucleotides shown in Fig. 6. Gene segments encoding the human constant domains $C\kappa$, $C\lambda$ and CH1 were also synthesized, based on sequence information given by Kabat et al., 1991 (see Fig. 6 and Fig. 7). Since for both the CDR3 and the framework 4 gene segments identical sequences were chosen in all HuCAL $V\kappa$, $V\lambda$ and VH genes, respectively, this part was constructed only once, together with the corresponding gene segments encoding the constant domains. The PCR products were cloned into pCR-Script KS(+) (Stratagene, Inc.) or pZErO-1 (Invitrogen, Inc.) and verified by sequencing.

Example 2: Cloning and Testing of a HuCAL-Based Antibody Library

A combination of two of the synthetic consensus genes was chosen after construction to test whether binding antibody fragments can be isolated from a library based on these two consensus frameworks. The two genes were cloned as a single-chain Fv (scFv) fragment, and a VH-CDR3 library was inserted. In order to test the library for the presence of functional antibody molecules, a selection procedure

was carried out using the small hapten fluorescein bound to BSA (FITC-BSA) as antigen.

2.1 Cloning of the HuCAL VH3-Vk2 scFv fragment

in order to test the design of the consensus genes, one randomly chosen combination of synthetic light and heavy gene (HuCAL-Vk2 and HuCAL-VH3) was used for the construction of a single-chain antibody (scFv) fragment. Briefly, the gene segments encoding the VH3 consensus gene and the CH1 gene segment including the CDR3 - framework 4 region, as well as the Vk2 consensus gene and the Ck gene segment including the CDR3 - framework 4 region were assembled yielding the gene for the VH3-CH1 Fd fragment and the gene encoding the Vκ2-Cκ light chain, respectively. The CH1 gene segment was then replaced by an oligonucleotide cassette encoding a 20-mer peptide linker with the sequence AGGGSGGGGGGGGGGGG. The two oligonucleotides encoding this linker TGGCGGTGGTGCTCCGATATCGGTCCACGTACGG-3' and 5'-AATTCCGTACG-TGGACCGATATCGGAACCACCACCGCCAGAACCACCGCCACCGCTCCCACCGC CGCCAGAACCGCCACCGC-3', respectively. Finally, the HuCAL-Vk2 gene was inserted via EcoRV and BsiWI into the plasmid encoding the HuCAL-VH3-linker fusion, leading to the final gene HuCAL-VH3-Vk2, which encoded the two consensus sequences in the single-chain format VH-linker-VL. The complete coding sequence is shown in Fig. 8.

2.2 Construction of a monovalent phage-display phagemid vector pIG10.3

Phagemid pIG10.3 (Fig. 9) was constructed in order to create a phage-display system (Winter et al., 1994) for the H3κ2 scFv gene. Briefly, the EcoRI/HindIII restriction fragment in the phagemid vector pIG10 (Ge et al., 1995) was replaced by the c-myc followed by an amber codon (which encodes an glutamate in the amber-suppresser strain XL1 Blue and a stop codon in the non-suppresser strain JM83) and a truncated version of the gene III (fusion junction at codon 249, see Lowman et al., 1991) through PCR mutagenesis.

2.3 Construction of H-CDR3 libraries

Heavy chain CDR3 libraries of two lengths (10 and 15 amino acids) were constructed using trinucleotide codon containing oligonucleotides (Virnekäs et al., 1994) as templates and the oligonucleotides complementing the flanking regions as primers. To concentrate only on the CDR3 structures that appear most often in functional antibodies, we kept the salt-bridge of R_{H94} and D_{H101} in the CDR3 loop. For the 15-mer library, both phenylalanine and methionine were introduced at position 100 since these two residues were found to occur quite often in human CDR3s of this length (not shown). For the same reason, valine and tyrosine were introduced at position 102. All other randomized positions contained codons for all amino acids except cystein, which was not used in the trinucleotide mixture.

The CDR3 libraries of lengths 10 and 15 were generated from the PCR fragments using oligonucleotide templates O3HCDR103T (5'- GATACGGCCGTGTATTA-TTGCGCGCGT (TRI), GATTATTGGGGCCAAGGCACCCTG-3') and O3HCDR153T (5'-GATACGGCCGT GTATTATTGCGCGCGT(TRI), (TTT/ATG)GAT(GTT/TAT)TGGG-GCCAAGGCACCCTG-3'), and primers O3HCDR35 (5'-GATACGGCCGTGTATTA-TTGC-3') and O3HCDR33 (5'-CAGGGTGCCTTGGCCCC-3'), where TRI are trinucleotide mixtures representing all amino acids without cystein, (TTT/ATG) and trinucleotide mixtures encoding (GTT/TAT) phenylalanine/methionine and valine/tyrosine, respectively. The potential diversity of these libraries was 4.7 x 10⁷ and 3.4 x 10¹⁰ for 10-mer and 15-mer library, respectively. The library cassettes were first synthesized from PCR amplification of the oligo templates in the presence of both primers: 25 pmol of the oligo template O3HCDR103T or O3HCDR153T, 50 pmol each of the primers O3HCDR35 and O3HCDR33, 20 nmol of dNTP, 10x buffer and 2.5 units of Pfu DNA polymerase (Stratagene) in a total volume of 100 μ l for 30 cycles (1 minute at 92°C, 1 minute at 62°C and 1 minute at 72°C). A hot-start procedure was used. The resulting mixtures were phenol-extracted, ethanol-precipitated and digested overnight with Eagl and Styl. The vector pIG10.3-scH3κ2cat, where the Eagl-Styl fragment in the vector pIG10.3-scH3κ2 encoding the H-CDR3 was replaced by the chloramphenicol acetyltransferase gene (cat) flanked with these two sites, was similarly digested. The digested vector (35 µg) was gel-purified and ligated with 100 µg of the library cassette overnight at 16°C. The ligation mixtures were isopropanol precipitated, airdried and the pellets were redissolved in 100 µl of ddH2O. The ligation was mixed with 1 ml of freshly prepared electrocompetent XL1 Blue on ice. 20 rounds of electroporation were performed and the transformants were diluted in SOC medium, shaken at 37°C for 30 minutes and plated out on large LB plates (Amp/Tet/Glucose)

at 37°C for 6-9 hrs. The number of transformants (library size) was 3.2x10⁷ and 2.3x10⁷ for the 10-mer and the 15-mer library, respectively. The colonies were suspended in 2xYT medium (Amp/Tet/Glucose) and stored as glycerol culture. In order to test the quality of the initial library, phagemids from 24 independent colonies (12 from the 10-mer and 12 from the 15-mer library, respectively) were isolated and analyzed by restriction digestion and sequencing. The restriction analysis of the 24 phagemids indicated the presence of intact vector in all cases. Sequence analysis of these clones (see Fig. 10) indicated that 22 out of 24 contained a functional sequence in their heavy chain CDR3 regions. 1 out of 12 clones of the 10-mer library had a CDR3 of length 9 instead of 10, and 2 out of 12 clones of the 15-mer library had no open reading frame, thereby leading to a non-functional scFv; one of these two clones contained two consecutive inserts, but out of frame (data not shown). All codons introduced were presented in an even distribution.

Expression levels of individual library members were also measured. Briefly, 9 clones from each library were grown in 2xYT medium containing Amp/Tet/0.5% glucose at 37°C overnight. Next day, the cultures were diluted into fresh medium with Amp/Tet. At an OD_{600nm} of 0.4, the cultures were induced with 1 mM of IPTG and shaken at RT overnight. Then the cell pellets were suspended in 1 ml of PBS buffer + 1 mM of EDTA. The suspensions were sonicated and the supernatants were separated on an SDS-PAGE under reducing conditions, blotted on nylon membrane and detected with anti-FLAG M1 antibody (see Fig. 11). From the nine clones of the 10-mer library, all express the scFv fragments. Moreover, the gene III / scFv fusion proteins were present in all cases. Among the nine clones from the 15-mer library analyzed, 6/9 (67%) led to the expression of both scFv and the gene III/scFv fusion proteins. More importantly, all clones expressing the scFvs and gene III/scFv fusions gave rise to about the same level of expression.

2.4 Biopanning

Phages displaying the antibody libraries were prepared using standard protocols. Phages derived from the 10-mer library were mixed with phages from the 15-mer library in a ratio of 20:1 (1×10^{10} cfu/well of the 10-mer and 5×10^8 cfu/well of the 15-mer phages, respectively). Subsequently, the phage solution was used for panning in ELISA plates (Maxisorp, Nunc) coated with FITC-BSA (Sigma) at concentration of 100 μ g/ml in PBS at 4°C overnight. The antigen-coated wells were blocked with 3% powder milk in PBS and the phage solutions in 1% powder milk were added to each

well and the plate was shaken at RT for 1 hr. The wells were then washed with PBST and PBS (4 times each with shaking at RT for 5 minutes). The bound phages were eluted with 0.1 M triethylamine (TEA) at RT for 10 minutes. The eluted phage solutions were immediately neutralized with 1/2 the volume of 1 M Tris-Cl, pH 7.6. Eluted phage solutions (ca. 450 μ l) were used to infect 5 ml of XL1 Blue cells at 37°C for 30 min. The infected cultures were then plated out on large LB plates (Amp/Tet/Glucose) and allowed to grow at 37°C until the colonies were visible. The colonies were suspended in 2xYT medium and the glycerol cultures were made as above described. This panning round was repeated twice, and in the third round elution was carried out with addition of fluorescein in a concentration of 100 μ g/ml in PBS. The enrichment of specific phage antibodies was monitored by panning the initial as well as the subsequent fluorescein-specific sub-libraries against the blocking buffer (Fig. 12). Antibodies with specificity against fluorescein were isolated after 3 rounds of panning.

2.5 ELISA measurements

One of the criteria for the successful biopanning is the isolation of individual phage clones that bind to the targeted antigen or hapten. We undertook the isolation of anti-FITC phage antibody clones and characterized them first in a phage ELISA format. After the 3rd round of biopanning (see above), 24 phagemid containing clones were used to inoculate 100 μ l of 2xYT medium (Amp/Tet/Glucose) in an ELISA plate (Nunc), which was subsequently shaken at 37°C for 5 hrs. 100 μ l of 2xYT medium (Amp/Tet/1 mM IPTG) were added and shaking was continued for 30 minutes. A further 100 μ l of 2xYT medium (Amp/Tet) containing the helper phage (1 x 10° cfu/well) was added and shaking was done at RT for 3 hrs. After addition of kanamycin to select for successful helper phage infection, the shaking was continued overnight. The plates were then centrifuged and the supernatants were pipetted directly into ELISA wells coated with 100 μ l FITC-BSA (100 μ g/ml) and blocked with milk powder. Washing was performed similarly as during the panning procedure and the bound phages were detected with anti-M13 antibody-POD conjugate (Pharmacia) using soluble POD substrate (Boehringer-Mannheim). Of the 24 clones screened against FITC-BSA, 22 were active in the ELISA (Fig. 13). The initial libraries of similar titer gave rise to no detectable signal.

Specificity for fluorescein was measured in a competitive ELISA. Periplasmic fractions of five FITC specific scFvs were prepared as described above. Western blotting indicated that all clones expressed about the same amount of scFv fragment

(data not shown). ELISA was performed as described above, but additionally, the periplasmic fractions were incubated 30 min at RT either with buffer (no inhibition), with 10 mg/ml BSA (inhibition with BSA) or with 10 mg/ml fluorescein (inhibition with fluorescein) before adding to the well. Binding scFv fragment was detected using the anti-FLAG antibody M1. The ELISA signal could only be inhibited, when soluble fluorescein was added, indicating binding of the scFvs was specific for fluorescein (Fig. 14).

2.6 Sequence analysis

The heavy chain CDR3 region of 20 clones were sequenced in order to estimate the sequence diversity of fluorescein binding antibodies in the library (Fig. 15). In total, 16 of 20 sequences (80%) were different, showing that the constructed library contained a highly diverse repertoire of fluorescein binders. The CDR3s showed no particular sequence homology, but contained on average 4 arginine residues. This bias towards arginine in fluorescein binding antibodies had already been described by Barbas et al., 1992.

2.7 Production

E. coli JM83 was transformed with phagemid DNA of 3 selected clones and cultured in 0.5 L 2xYT medium. Induction was carried out with 1 mM IPTG at OD_{600nm} = 0.4 and growth was continued with vigorous shaking at RT overnight. The cells were harvested and pellets were suspended in PBS buffer and sonicated. The supernatants were separated from the cell debris via centrifugation and purified via the BioLogic system (Bio-Rad) by with a POROS®MC 20 column (IMAC, PerSeptive Biosystems, Inc.) coupled with an ion-exchange chromatography column. The jon-exchange column was one of the POROS®HS, CM or HQ or PI 20 (PerSeptive Biosystems, Inc.) depended on the theoretical pl of the scFv being purified. The pH of all the buffers was adjusted to one unit lower or higher than the pl of the scFv being purified throughout. The sample was loaded onto the first IMAC column, washed with 7 column volumes of 20 mM sodium phosphate, 1 M NaCl and 10 mM imidazole. This washing was followed by 7 column volumes of 20 mM sodium phosphate and 10 mM imidazole. Then 3 column volumes of an imidazole gradient (10 to 250 mM) were applied and the eluent was connected directly to the ion-exchanger. Nine column volumes of isocratic washing with 250 mM imidazole was followed by 15 column volumes of 250 mM to 100 mM and 7 column volumes of an imidazole / NaCl gradient (100 to 10 mM imidazole, 0 to 1 M NaCl). The flow rate was 5 ml/min. The purity of scFv fragments was checked by SDS-PAGE Coomassie

staining (Fig. 16). The concentration of the fragments was determined from the absorbance at 280 nm using the theoretically determined extinction coefficient (Gill & von Hippel, 1989). The scFv fragments could be purified to homogeneity (see Fig. 16). The yield of purified fragments ranged from 5 to 10 mg/L/OD.

Example 3: HuCAL H3x2 Library Against a Collection of Antigens

In order to test the library used in Example 2 further, a new selection procedure was carried out using a variety of antigens comprising ß-estradiol, testosterone, Lewis-Y epitope (LeY), interleukin-2 (IL-2), lymphotoxin-ß (LT-ß), E-selectin ligand-1 (ESL-1), and BSA.

3.1 Biopanning

The library and all procedures were identical to those described in Example 2. The ELISA plates were coated with β -estradiol-BSA (100 μ g/ml), testosterone-BSA (100 μ g/ml), LeY-BSA (20 μ g/ml) IL-2 (20 μ g/ml), ESL-1 (20 μ g/ml) and BSA (100 μ g/ml), LT- β (denatured protein, 20 μ g/ml). In the first two rounds, bound phages were eluted with 0.1 M triethylamine (TEA) at RT for 10 minutes. In the case of BSA, elution after three rounds of panning was carried out with addition of BSA in a concentration of 100 μ g/ml in PBS. In the case of the other antigens, third round elution was done with 0.1 M triethylamine. In all cases except LeY, enrichment of binding phages could be seen (Figure 17). Moreover, a repetition of the biopanning experiment using only the 15-mer library resulted in the enrichment of LeY-binding phages as well (data not shown).

3.2. ELISA measurements

Clones binding to ß-estradiol, testosterone, LeY, LT-ß, ESL-1 and BSA were further analyzed and characterized as described in Example 2 for FITC. ELISA data for anti-ß-estradiol and anti-ESL-1 antibodies are shown in Fig. 18. In one experiment, selectivity and cross-reactivity of binding scFv fragments were tested. For this purpose, an ELISA plate was coated with FITC, testosterone, ß-estradiol, BSA, and ESL-1, with 5 wells for each antigen arranged in 5 rows, and 5 antibodies, one against each of the antigens, were screened against each of the antigens. Fig. 19

shows the specific binding of the antibodies to the antigen it was selected for, and the low cross-reactivity with the other four antigens.

3.3 Sequence analysis

The sequencing data of several clones against β -estradiol (34 clones), testosterone (12 clones), LT- β (23 clones), ESL-1 (34 clones), and BSA (10 clones) are given in Figures 20 to 24.

Example 4: Vector Construction

To be able to take advantage of the modularity of the consensus gene repertoire, a vector system had to be constructed which could be used in phage display screening of HuCAL libraries and subsequent optimization procedures. Therefore, all necessary vector elements such as origins of single-stranded or double-stranded replication, promotor/operator, repressor or terminator elements, resistance genes, potential recombination sites, gene III for display on filamentous phages, signal sequences, or detection tags had to be made compatible with the restriction site pattern of the modular consensus genes. Figure 25 shows a schematic representation of the pCAL vector system and the arrangement of vector modules and restriction sites therein. Figure 25a shows a list of all restriction sites which are already incorporated into the consensus genes or the vector elements as part of the modular system or which are not yet present in the whole system. The latter could be used in a later stage for the introduction of or within new modules.

4.1 Vector modules

A series of vector modules was constructed where the restriction sites flanking the gene sub-elements of the HuCAL genes were removed, the vector modules themselves being flanked by unique restriction sites. These modules were constructed either by gene synthesis or by mutagenesis of templates. Mutagenesis was done by add-on PCR, by site-directed mutagenesis (Kunkel et al., 1991) or multisite oligonucleotide-mediated mutagenesis (Sutherland et al., 1995; Perlak, 1990) using a PCR-based assembly method.

Figure 26 contains a list of the modules constructed. Instead of the terminator module M9 (HindIII-lpp-PacI), a larger cassette M9II was prepared to introduce Fsel as additional restriction site. M9II can be cloned via HindIII/BsrGI.

All vector modules were characterized by restriction analysis and sequencing. In the case of module M11-II, sequencing of the module revealed a two-base difference in positions 164/65 compared to the sequence database of the template. These two different bases (CA → GC) created an additional BanII site. Since the same two-base difference occurs in the f1 origin of other bacteriophages, it can be assumed that the two-base difference was present in the template and not created by mutagenesis during cloning. This BanII site was removed by site-directed mutagenesis, leading to module M11-III. The BssSI site of module M14 could initially not be removed without impact on the function of the CoIE1 origin, therefore M14-Ext2 was used for cloning of the first pCAL vector series. Figures 29 to 34 are showing the functional maps and sequences of the modules used for assembly of the modular vector pCAL4 (see below). The functional maps and sequences of additional modules can be found in Figure 35a. Figure 35b contains a list of oligonucleotides and primers used for the synthesis of the modules.

4.2 Cloning vector pMCS

To be able to assemble the individual vector modules, a cloning vector pMCS containing a specific multi-cloning site (MCS) was constructed. First, an MCS cassette (Fig. 27) was made by gene synthesis. This cassette contains all those restriction sites in the order necessary for the sequential introduction of all vector modules and can be cloned via the 5'-Hindll site and a four base overhang at the 3'-end compatible with an Aatll site. The vector pMCS (Figure 28) was constructed by digesting pUC19 with Aatll and Hindll, isolating the 2174 base pair fragment containing the bla gene and the CoIE1 origin, and ligating the MCS cassette.

4.3 Cloning of modular vector pCAL4

This was cloned step by step by restriction digest of pMCS and subsequent ligation of the modules M1 (via AatII/XbaI), M7III (via EcoRI/HindIII), and M9II (via HindIII/BsrGI), and M11-II (via BsrGI/NheI). Finally, the bla gene was replaced by the cat gene module M17 (via AatII/BgIII), and the wild type CoIE1 origin by module M14-Ext2 (via BgIII/NheI). Figure 35 is showing the functional map and the sequence of pCAL4.

4.4 Cloning of low-copy number plasmid vectors pCALO

A series of low-copy number plasmid vectors was constructed in a similar way using the p15A module M12 instead of the ColE1 module M14-Ext2. Figure 35a is showing the functional maps and sequences of the vectors pCALO1 to pCALO3.

Example 5: Construction of a HuCAL scFv Library

5.1. Cloning of all 49 HuCAL scFv fragments

All 49 combinations of the 7 HuCAL-VH and 7 HuCAL-VL consensus genes were assembled as described for the HuCAL VH3-Vκ2 scFv in Example 2 and inserted into the vector pBS12, a modified version of the pLisc series of antibody expression vectors (Skerra et al., 1991).

5.2 Construction of a CDR cloning cassette

For replacement of CDRs, a universal ß-lactamase cloning cassette was constructed having a multi-cloning site at the 5'-end as well as at the 3'-end. The 5'-multi-cloning site comprises all restriction sites adjacent to the 5'-end of the HuCAL VH and VL CDRs, the 3'-multi-cloning site comprises all restriction sites adjacent to the 3' end of the HuCAL VH and VL CDRs. Both 5'- and 3'-multi-cloning site were prepared as cassettes via add-on PCR using synthetic oligonucleotides as 5'- and 3'-primers using wild type ß-lactamase gene as template. Figure 36 shows the functional map and the sequence of the cassette bla-MCS.

5.3. Preparation of VL-CDR3 library cassettes

The VL-CDR3 libraries comprising 7 random positions were generated from the PCR fragments using oligonucleotide templates $V\kappa1\&V\kappa3$, $V\kappa2$ and $V\kappa4$ and primers O_K3L_5 and O_K3L_3 (Fig. 37) for the $V\kappa$ genes, and $V\lambda$ and primers O_L3L_5 (5'-GCAGAAGGCGAACGTCC-3') and O_L3LA_3 (Fig. 38) for the $V\lambda$ genes. Construction of the cassettes was performed as described in Example 2.3.

5.4 Cloning of HuCAL scFv genes with VL-CDR3 libraries

Each of the 49 single-chains was subcloned into pCAL4 via Xbal/EcoRI and the VL-CDR3 replaced by the B-lactamase cloning cassette via Bbsl/Mscl, which was then replaced by the corresponding VL-CDR3 library cassette synthesized as described above. This CDR replacement is described in detail in Example 2.3 where the cat gene was used.

5.5 Preparation of VH-CDR3 library cassette

The VH-CDR3 libraries were designed and synthesized as described in Example 2.3.

5.6 Cloning of HuCAL scFv genes with VL- and VH-CDR3 libraries

Each of the 49 single-chain VL-CDR3 libraries was digested with BssHII/Styl to replace VH-CDR3. The "dummy" cassette digested with BssHII/Styl was inserted, and was then replaced by a corresponding VH-CDR3 library cassette synthesized as described above.

Example 6: Expression tests

Expression and toxicity studies were performed using the scFv format VH-linker-VL. All 49 combinations of the 7 HuCAL-VH and 7 HuCAL-VL consensus genes assembled as described in Example 5 were inserted into the vector pBS13, a modified version of the pLisc series of antibody expression vectors (Skerra et al., 1991). A map of this vector is shown in Fig. 39.

E. coli JM83 was transformed 49 times with each of the vectors and stored as glycerol stock. Between 4 and 6 clones were tested simultaneously, always including the clone H3κ2, which was used as internal control throughout. As additional control, the McPC603 scFv fragment (Knappik & Plückthun, 1995) in pBS13 was expressed under identical conditions. Two days before the expression test was performed, the clones were cultivated on LB plates containing 30 μ g/ml chloramphenicol and 60 mM glucose. Using this plates an 3 ml culture (LB medium

containing 90 μg chloramphenicol and 60 mM glucose) was inoculated overnight at 37 °C. Next day the overnight culture was used to inoculate 30 ml LB medium containing chloramphenicol (30 μ g/ml). The starting OD_{600nm} was adjusted to 0.2 and a growth temperature of 30 °C was used. The physiology of the cells was monitored by measuring every 30 minutes for 8 to 9 hours the optical density at 600 nm. After the culture reached an OD_{600nm} of 0.5, antibody expression was induced by adding IPTG to a final concentration of 1 mM. A 5 ml aliquot of the culture was removed after 2 h of induction in order to analyze the antibody expression. The cells were lysed and the soluble and insoluble fractions of the crude extract were separated as described in Knappik & Plückthun, 1995. The fractions were assayed by reducing SDS-PAGE with the samples normalized to identical optical densities. After blotting and immunostaining using the $\alpha\text{-FLAG}$ antibody M1 as the first antibody (see Ge et al., 1994) and an Fc-specific anti-mouse antiserum conjugated to alkaline phosphatase as the second antibody, the lanes were scanned and the intensities of the bands of the expected size (appr. 30 kDa) were quantified densitometrically and tabulated relative to the control antibody (see Fig. 40).

Example 7: Optimization of Fluorescein Binders

7.1. Construction of L-CDR3 and H-CDR2 library cassettes

A L-CDR3 library cassette was prepared from the oligonucleotide template CDR3L (5'-TGGAAGCTGAAGACGTGGGCGTGTATTATTGCCAGCAG(TR5)(TRI)₄CCG(TRI)-TTTGGCCAGGGTACGAAAGTT-3') and primer 5'-AACTTTCGTACCCTGGCC-3' for synthesis of the complementary strand, where (TRI) was a trinucleotide mixture representing all amino acids except Cys, (TR5) comprised a trinucleotide mixture representing the 5 codons for Ala, Arg, His, Ser, and Tyr.

A H-CDR2 library cassette was prepared from the oligonucleotide template CDRsH (5'-AGGGTCTCGAGTGGGTGAGC(TRI)ATT(TRI)₂₋₃(6)₂(TRI)ACC(TRI)TATGCGGATA-GCGTGAAAGGCCGTTTTACCATTTCACGTGATAATTCGAAAAACACCA-3'), and primer 5'-TGGTGTTTTTCGAATTATCA-3' for synthesis of the complementary strand, where (TRI) was a trinucleotide mixture representing all amino acids except Cys, (6) comprised the incorporation of (A/G) (A/C/G) T, resulting in the formation of 6 codons for Ala, Asn, Asp, Gly, Ser, and Thr, and the length distribution being obtained by performing one substoichiometric coupling of the (TRI) mixture during synthesis, omitting the capping step normally used in DNA synthesis.

DNA synthesis was performed on a 40 nmole scale, oligos were dissolved in TE buffer, purified via gel filtration using spin columns (S-200), and the DNA concentration determined by OD measurement at 260 nm (OD 1.0 = 40 μ g/ml). 10 nmole of the oligonucleotide templates and 12 nmole of the corresponding primers were mixed and annealed at 80°C for 1 min, and slowly cooled down to 37°C within 20 to 30 min. The fill-in reaction was performed for 2 h at 37°C using Klenow polymerase (2.0 μ l) and 250 nmole of each dNTP. The excess of dNTPs was removed by gel filtration using Nick-Spin columns (Pharmacia), and the double-stranded DNA digested with Bbsl/Mscl (L-CDR3), or Xhol/Sful (H-CDR2) over night at 37°C. The cassettes were purified via Nick-Spin columns (Pharmacia), the concentration determined by OD measurement, and the cassettes aliquoted (15 pmole) for being stored at -80°C.

7.2 Library cloning:

DNA was prepared from the collection of FITC binding clones obtained in Example 2 (approx. 10^4 to clones). The collection of scFv fragments was isolated via Xbal/EcoRl digest. The vector pCAL4 (100 fmole, $10~\mu g$) described in Example 4.3 was similarly digested with Xbal/EcoRl, gel-purified and ligated with 300 fmole of the scFv fragment collection over night at 16° C. The ligation mixture was isopropanol precipitated, air-dried, and the pellets were redissolved in $100~\mu l$ of dd H_2 O. The ligation mixture was mixed with 1 ml of freshly prepared electrocompetent SCS 101 cells (for optimization of L-CDR3), or XL1 Blue cells (for optimization of H-CDR2) on ice. One round of electroporation was performed and the transformants were eluted in SOC medium, shaken at 37°C for 30 minutes, and an aliquot plated out on LB plates (Amp/Tet/Glucose) at 37°C for 6-9 hrs. The number of transformants was 5 x 10^4 .

Vector DNA (100 μ g) was isolated and digested (sequence and restriction map of scH3 κ 2 see Figure 8) with Bbsl/Mscl for optimization of L-CDR3, or Xhol/NspV for optimization of H-CDR2. 10 μ g of purified vector fragments (5 pmole) were ligated with 15 pmole of the L-CDR3 or H-CDR2 library cassettes over night at 16°C. The ligation mixtures were isopropanol precipitated, air-dried, and the pellets were redissolved in 100 μ l of dd H₂O. The ligation mixtures were mixed with 1 ml of freshly prepared electrocompetent XL1 Blue cells on ice. Electroporation was performed and the transformants were eluted in SOC medium and shaken at 37°C for 30 minutes. An aliquot was plated out on LB plates (Amp/Tet/Glucose) at 37°C for 6-9

hrs. The number of transformants (library size) was greater than 10⁸ for both libraries. The libraries were stored as glycerol cultures.

7.3. Biopanning

This was performed as described for the initial H3k2 H-CDR3 library in Example 2.1. Optimized scFvs binding to FITC could be characterized and analyzed as described in Example 2.2 and 2.3, and further rounds of optimization could be made if necessary.

References

- Barbas III, C.F., Bain, J.D., Hoekstra, D.M. & Lerner, R.A., PNAS <u>89</u>, 4457-4461 (1992).
- Better, M., Chang, P., Robinson, R. & Horwitz, A.H., Science 240, 1041-1043 (1988).
- Blake, M.S., Johnston, K.H., Russel-Jones, G.J. & Gotschlich, E.C., Anal. Biochem. 136, 175-179 (1984).
- Carter, P., Kelly, R.F., Rodrigues, M.L., Snedecor, B., Covrrubias, M., Velligan, M.D., Wong, W.L.T., Rowland, A.M., Kotts, C.E., Carver, M.E., Yang, M., Bourell, J.H., Shepard, H.M. & Henner, D., Bio/Technology 10, 163-167 (1992).
- Chothia, C. & Lesk, A.M., J. Biol. Chem. 196, 910-917 (1987).
- Chothia, C., Lesk, A.M., Gherardi, E., Tomlinson, I.A., Walter, G., Marks, J.D., Liewelyn, M.B. & Winter, G., J. Mol. Biol. 227, 799-817 (1992).
- Chothia, C., Lesk, A.M., Tramontano, A., Levitt, M., Smith-Gill, S.J., Air, G., Sheriff, S., Padlan, E.A., Davies, D., Tulip, W.R., Colman, P.M., Spinelli, S., Alzari, P.M. & Poljak, R.J., Nature 342, 877-883 (1989).
- Chuchana, P., Blancher, A., Brockly, F., Alexandre, D., Lefranc, G & Lefranc, M.-P., Eur. J. Immunol. 20, 1317-1325 (1990).
- Cox, J.P.L., Tomlinson, I.M. & Winter, G., Eur. J. Immunol. 24, 827-836 (1994).
- Ge, L., Knappik, A., Pack, P., Freund, C. & Plückthun, A., In: Antibody Engineering. Borrebaeck, C.A.K. (Ed.). p.229-266 (1995), Oxford University Press, New York, Oxford.)
- Gill, S.C. & von Hippel, P.H., Anal. Biochem. 182, 319.326 (1989).
- Hochuli, E., Bannwarth, W., Döbeli, H., Gentz, R. & Stüber, D., Bio/Technology <u>6</u>, 1321-1325 (1988).
- Hopp, T.P., Prickett, K.S., Price, V.L., Libby, R.T., March, C.J., Cerretti, D.P., Urdal, D.L. & Conlon, P.J. Bio/Technology <u>6</u>, 1204-1210 (1988).
- Kabat, E.A., Wu, T.T., Perry, H.M., Gottesmann, K.S. & Foeller, C., Sequences of proteins of immunological interest, NIH publication 91-3242 (1991).
- Knappik, A. & Plückthun, A., Biotechniques 17, 754-761 (1994).
- Knappik, A. & Plückthun, A., Protein Engineering 8, 81-89 (1995).
- Kunkel, T.A., Bebenek, K. & McClary, J., Methods in Enzymol. 204, 125-39 (1991).
- Lindner, P., Guth, B., Wülfing, C., Krebber, C., Steipe, B., Müller, F. & Plückthun, A., Methods: A Companion to Methods Enzymol. 4, 41-56 (1992).
- Lowman, H.B., Bass, S.H., Simpson, N. and Wells, J.A., Biochemistry <u>30</u>, 10832-10838 (1991).
- Pack, P. & Plückthun, A., Biochemistry 31, 1579-1584 (1992).

- Pack, P., Kujau, M., Schroeckh, V., Knüpfer, U., Wenderoth, R., Riesenberg D. & Plückthun, A., Bio/Technology 11, 1271-1277 (1993).
- Pack, P., Ph.D. thesis, Ludwig-Maximilians-Universität München (1994).
- Perlak, F. J., Nuc. Acids Res. 18, 7457-7458 (1990).
- Plückthun, A., Krebber, A., Krebber, C., Horn, U., Knüpfer, U., Wenderoth, R., Nieba, L., Proba, K. & Riesenberg, D., A practical approach. Antibody Engineering (Ed. J. McCafferty). IRL Press, Oxford, pp. 203-252 (1996).
- Prodromou, C. & Pearl, L.H., Protein Engineering 5, 827-829 (1992).
- Rosenberg, S.A. & Lotze, M.T., Ann. Rev. Immunol. 4, 681-709 (1986).
- Skerra, A. & Plückthun, A., Science 240, 1038-1041 (1988).
- Skerra, A., Pfitzinger, I. & Plückthun, A., Bio/Technology 9, 273-278 (1991).
- Sutherland, L., Davidson, J., Glass, L.L., & Jacobs, H.T., BioTechniques 18, 458-464, 1995.
- Tomlinson, I.M., Walter, G., Marks, J.D., Llewelyn, M.B. & Winter, G., J. Mol. Biol. 227, 776-798 (1992).
- Ullrich, H.D., Patten, P.A., Yang, P.L., Romesberg, F.E. & Schultz, P.G., Proc. Natl. Acad. Sci. USA <u>92</u>, 11907-11911 (1995).
- Van Dijk, K.W., Mortari, F., Kirkham, P.M., Schroeder Jr., H.W. & Milner, E.C.B., Eur. J. Immunol. 23, 832-839 (1993).
- Virnekäs, B., Ge, L., Plückthun, A., Schneider, K.C., Wellnhofer, G. & Moroney, S.E., Nucleic Acids Research 22, 5600-5607 (1994).
- Vitetta, E.S., Thorpe, P.E. & Uhr, J., Immunol. Today 14, 253-259 (1993).
- Williams, S.C. & Winter, G., Eur. J. Immunol. 23, 1456-1461 (1993).
- Winter, G., Griffiths, A.D., Hawkins, R.E. & Hoogenboom, H.R., Ann. Rev. Immunol. 12, 433-455 (1994).

Table 1A: Human kappa germline gene segments

Used Name¹	Reference ²	Family ³	Germline genes ⁴
Vk1-1	9	1	08; 018; DPK1
.Vk1-2	1	1	L14; DPK2
Vk1-3	2	1	L15(1); HK101; HK146; HK189
Vk1-4	9	1	L11
Vk1-5	2	1	A30
Vk1-6	1	1	LPVK5
Vk1-7	1	1	LFVK431
Vk1-8	1	1	L1; HK137
Vk1-9	1	1	A20; DPK4
Vk1-10	1	1	L18; Va"
Vk1-11	1	1	L4; L18; Va'; V4a
Vk1-12	2	1	L5; L19(1); Vb; Vb4; DPK5; L19(2); Vb"; DPK6
Vk1-13	2	1	L15(2); HK134; HK166; DPK7
Vk1-14	8	1	L8; Vd; DPK8
Vk1-15	8	1	L9; Ve
Vk1-16	1	1	L12(1); HK102; V1
Vk1-17	2	1	L12(2)
Vk1-18	1	1	012a (V3b)
Vk1-19	6	1	02; 012; DPK9
Vk 1-20	2	1	L24; Ve"; V13; DPK10
Vk1-21	1	1	04; 014
Vk1-22	2	1	L22
Vk1-23	2	1	L23
Vk2-1	1	2	A2; DPK12
Vk2-2	6	2	01; 011(1); DPK13
Vk2-3	6	2	012(2); V3a
Vk2-4	2	2	L13
Vk2-5	1	2	DPK14
Vk2-6	4	2	A3; A19; DPK15
Vk2-7	4	2	A29; DPK27
Vk2-8	4	2	A13
Vk2-9	1	2	A23

Table 1A: (continued)

Used Name ¹	Reference ²	Family ³	Germline genes
Vk2-10	4	2	A7; DPK17
Vk2-11	4	2	A17; DPK18
Vk2-12	4	2	A1; DPK19
Vk3-1	11	3	A11; humkv305; DPK20
Vk3-2	1	3	L20; Vg"
Vk3-3	2	3	L2; L16; humkv328; humkv328h2; humkv328h5; DPK21
Vk3-4	11	. 3	A27; humkv325; VkRF; DPK22
Vk3-5	2	3	L25; DPK23
Vk3-6	2	3	L10(1)
Vk3-7	7	3	L10(2)
Vk3-8	7	3	L6; Vg
Vk4-1	3	4	B3; VkIV; DPK24
Vk5-1	10	5	B2; EV15
Vk6-1	12	6	A14; DPK25
Vk6-2	12	6	A10; A26; DPK26
Vk7-1	5	7	B1

Table 1B: Human lambda germline gene segments

Used Name ¹	Reference ²	Family ³	Germline genes
DPL1	1	1	
DPL2	1	1	HUMLV1L1
DPL3	1	1	HUMLV122
DPL4	1	1	VLAMBDA 1.1
HUMLV117	2	1	
DPL5	1	1	HUMLV117D
DPL6	1	1	
DPL7	1	1	IGLV1S2
DPL8	1	1	HUMLV1042
DPL9	1	1	HUMLV101
DPL10	1	2	
VLAMBDA 2.1	3	2	
DPL11	1	2	•
DPL12	1	2	
DPL13	1	2	
DPL14	1	2	
DPL16	1	3	Humlv418; IGLV3S1
DPL23	1	3	VI III.1
Humlv318	4	3	
DPL18	1	7	4A; HUMIGLVA
DPL19	1	7	
DPL21	1	8	VL8.1
HUMLV801	5	8	
DPL22	1	9	
DPL24	1	unassigned	ULAMBDA N.2
gVLX-4.4	6	10	

4 8 SUBSTITUTE SHEET (RULE 26)

Table 1C: Human heavy chain germline gene segments

Used Name ¹	Reference ²	Family ³	Germline genes
VH1-12-1	19	1	DP10; DA-2; DA-6
VH1-12-8	22	1	RR.VH1:2
VH1-12-2	6	1	hv1263
VH1-12-9	7	1	YAC-7; RR.VH1.1; 1-69
VH1-12-3	19	1	DP3
VH1-12-4	19	1	DP21; 4d275a; VH7a
VH1-12-5	18	1	1-4.1b; V1-4.1b
VH1-12-6	21	1	1D37; VH7b; 7-81; YAC-10
VH1-12-7	19	1	DP14; VH1GRR; V1-18
VH1-13-1	10	1	71-5; DP2
VH1-13-2	10	1	E3-10
VH1-13-3	19	1	DP1
VH1-13-4	12	1	V3 5
VH1-13-5	8	1	V1-2b
VH1-13-6	18	1	I-2; DP75
VH1-13-7	21	1	V1-2
VH1-13-8	19	1	DP8
VH1-13-9	3	1	1-1
VH1-13-10	19	1	DP12
VH1-13-11	15	1	V13C
VH1-13-12	18	1	I-3b; DP25; V1-3b
VH1-13-13	3	1	1-92
VH1-13-14	18	1	1-3; V1-3
VH1-13-15	19	1	DP15; V1-8
VH1-13-16	3	1	21-2; 3-1; DP7; V1-46
VH1-13-17	16	1	HG3
VH1-13-18	19	1	DP4; 7-2; V1-45
VH1-13-19	27	1	COS 5
VH1-1X-1	19	1	DP5; 1-24P
VH2-21-1	18	2	11-5b
VH2-31-1	2	2	VH2S12-1
VH2-31-2	2	2	VH2S12-7
VH2-31-3	2	2	VH2S12-9; DP27
VH2-31-4	2	2	VH2S12-10
VH2-31-5	14	2	V2-26; DP26; 2-26
VH2-31-6	15	2	VF2-26

Table 1C: (continued)

Used Name ¹	Reference ²	Family³	Germline genes
VH2-31-7	19	2	DP28; DA-7
VH2-31-14	7	2	YAC-3; 2-70
VH2-31-8	2	2	VH2S12-5
VH2-31-9	2	2	VH2S12-12
VH2-31-10	18	2	II-5; V2-5
VH2-31-11	2	2	VH2S12-2; VH2S12-8
VH2-31-12	2	2	VH2S12-4; VH2S12-6
VH2-31-13	2	2	VH2S12-14
VH3-11-1	13	3	v65-2; DP44
VH3-11-2	19	3	DP45
VH3-11-3	3	3	13-2; DP48
VH3-11-4	19	3	DP52
VH3-11-5	14	3	v3-13
VH3-11-6	19	3	DP42
VH3-11-7	3	3	8-1B; YAC-5; 3-66
VH3-11-8	14	3	V3-53
VH3-13-1	3	3	22-2B; DP35; V3-11
VH3-13-5	19	3	DP59; VH19; V3-35
VH3-13-6	25	3	f1-p1; DP61
VH3-13-7	19	3	DP46; GL-SJ2; COS 8; hv3005; hv3005f3; 3d21b; 56p1
VH3-13-8	24	3.	VH26
VH3-13-9	5	3	vh26c
VH3-13-10	19	3	DP47; VH26; 3-23
VH3-13-11	3	3	1-91
VH3-13-12	19	3	DP58
VH3-13-13	3	3	1-9III; DP49; 3-30; 3d28.1
VH3-13-14	24	3	3019B9; DP50; 3-33; 3d277
VH3-13-15	27	3	COS 3
VH3-13-16	19	3	DP51
VH3-13-17		3	H11
VH3-13-18	19	3	DP53; COS 6; 3-74; DA-8
VH3-13-19	19	3	DP54; VH3-11; V3-7
VH3-13-20		3	V3-64; YAC-6
VH3-13-21	14	3	V3-48
VH3-13-22		3	V3-43; DP33
VH3-13-23	14	3	V3-33

Table 1C: (continued)

Used Name ¹	Reference ²	Family ³	Germline genes
VH3-13-24	14	3	V3-21; DP77
VH3-13-25	14	3	V3-20; DP32
VH3-13-26	14	3	V3-9; DP31
VH3-14-1	3	3	12-2; DP29; 3-72; DA-3
VH3-14-4	7	3	YAC-9; 3-73; MTGL
VH3-14-2	4	3	VHD26
VH3-14-3	19	3	DP30
VH3-1X-1	1	3	LSG8.1; LSG9.1; LSG10.1; HUM12IGVH; HUM13IGVH
VH3-1X-2	1	3	LSG11.1; HUM4IGVH
VH3-1X-3	3	3	9-1; DP38; LSG7.1; RCG1.1; LSG1.1; LSG3.1; LSG5.1; HUM15IGVH; HUM2IGVH; HUM9IGVH
VH3-1X-4	1	3	LSG4.1
VH3-1X-5	1	3	LSG2.1
VH3-1X-6	1	3	LSG6.1; HUM10IGVH
VH3-1X-7	18	3	3-15; V3-15
VH3-1X-8	1	3	LSG12.1; HUM5IGVH
VH3-1X-9	14	3	V3-49
VH4-11-1	22	4	Tou-VH4.21
VH4-11-2	17	4	VH4.21; DP63; VH5; 4d76; V4-34
VH4-11-3	23	4	4.44
VH4-11-4	23	4	4.44.3
VH4-1 1- 5	23	4	4.36
VH4-11-6	23	4	4.37
VH4-11-7	18	4	IV-4; 4.35; V4-4
VH4-11-8	17	4	VH4.11; 3d197d; DP71; 58p2
VH4-1 1- 9	20	4	H7
VH4-11-10	20	4	H8
VH4-11-11	20	4	Н9
VH4-11-12	17	4	VH4.16
VH4-11-13	23	4	4.38
VH4-11-14	17	4	·VH4.15
VH4-11-15	11	4	58
VH4-11-16	10	4	71-4; V4-59
VH4-21-1	11	4	11
VH4-21-2	17	4	VH4.17; VH4.23; 4d255; 4.40; DP69
VH4-21-3	17	4	VH4.19; 79, V4-4b
			51

Table 1C: (continued)

Used Name ¹	Reference ²	Family ³	Germline genes
VH4-21-4	19	4	DP70; 4d68; 4.41
VH4-21-5	19	4	DP67; VH4-4B
VH4-21-6	17	4	VH4.22; VHSP; VH-JA
VH4-21-7	17	4	VH4.13; 1-9II; 12G-1; 3d28d; 4.42; DP68; 4-28
VH4-21-8	26	4	hv4005; 3d24d
VH4-21-9	17	4	VH4.14
VH4-31-1	23	4	4.34; 3d230d; DP78
VH4-31-2	23	4	4.34.2
VH4-31-3	19	4	DP64; 3d216d
VH4-31-4	19	4	DP65; 4-31; 3d277d
VH4-31-5	23	4	4.33; 3d75d
VH4-31-6	20	4	H10
VH4-31-7	20	4	HII
VH4-31-8	23	4	4.31
VH4-31-9	23	4	4.32
VH4-31-10	20	4	3d277d
VH4-31-11	20	4	3d216d
VH4-31-12	20	4	3d279d
VH4-31-13	17	4	VH4.18; 4d154; DP79
VH4-31-14	8	4	V4-39
VH4-3 :-15	11	4	2-1; DP79
VH4-31-16	23	4	4.30
VH4-31-17	17	4	VH4.12
VH4-31-18	10	4	71-2; DP66
VH4-31-19	23	4	4.39
VH4-31-20	8	4	V4-61
VH5-12-1	9	5	VH251; DP73; VHVCW; 51-R1; VHVLB; VHVCH; VHVTT; VHVAU; VHVBLK; VhAU; V5-51
VH5-12-2	17	5	VHVJB
VH5-12-3	3	5	1-v; DP80; 5-78
VH5-12-4	9	5	VH32; VHVRG; VHVMW; 5-2R1
VH6-35-1	4	6	VHVI; VH6; VHVIIS; VHVITE; VHVIJB; VHVICH; VHVICW; VHVIBLK; VHVIMW; DP74; 6-1G1; V6-1

Table 2A: rearranged human kappa sequences

	aa²	Computed family ³	Germline gene ⁴	Diff. to germline ⁵	% diff. to germline ⁶	Reference'
1II-3R	108	1	08	1	1,1%	70
No.86	109	1	08	3	3,2%	80
AU	108	1	08	6	6,3%	103
ROY	108	1	08	6	6,3%	43
IC4	108	1	08	6	6,3%	70
HIV-B26	106	1	08	3	3,2%	8
GRI	108	1	08	8	8,4%	30
AG	106	1	08	8	8,6%	116
REI	108	1	08	9	9,5%	86
CLL PATIENT 16	88	1	08	2	2,3%	122
CLL PATIENT 14	87	1	08	2	2,3%	122
CLL PATIENT 15	8 8	1	08	2	2,3%	122
GM4672	108	1	08	11	11,6%	24
HUM. YFC51.1	108	1	08	12	12,6%	110
LAY	108	1	08	12	12.6%	48
HIV-b13	106	1	80	9	9,7%	8
MAL-NaCl	108	1	08	13	13,7%	102
STRAb SA-1A	108	1	02	0	0,0%	120
HuVHCAMP	108	1	08	13	13,7%	100
CRO	108	1	02	10	10,5%	30
Am107	108	1	02	12	12,6%	108
WALKER	107	1	02	4	4,2%	57
III-2R	109	1	A20	0	0,0%	70
FOG1-A4	107	1	A20	4	4,2%	41
HK137	95	1	L1	0	0,0%	10
CEA4-8A	107	1	02	7	7,4%	41
Va'	95	1	L4	0	0,0%	90
TR1.21	108	1	02	4	4,2%	92
HAU	108	3 1	02	6	6,3%	123
HK102	95	1	L12(1)	0	0.0%	9
H20C3K	108	3 1	L12(2)	3	3,2%	125
СНЕВ	108	3 1	02	7	7,4%	5
HK134	95	1	L15(2)	0	0,0%	10
TEL9	108	3 1	02	9	9,5%	73

Table 2A: (continued)

Name¹	aa²	Computed family ³	Germline gene ⁴	Diff. to germline ⁵	% diff. to germline ⁶	Reference
TR1.32	103	1	02	3	3,2%	92
RF-KES1	97	1	A20	4	4.2%	121
WES	108	1	L5	10	10,5%	61
DILp1	95	1	04	1	1,1%	7 0
SA-4B	107	1	L12(2)	8	8,4%	120
HK101	95	1	L15(1)	0	0.0%	9
TR1.23	108	1	02	5	5,3%	92
HF2-1/17	108	1	A 30	0	0,0%	4
2E7	108	1	A30	1	1,1%	62
33.C9	107	1	L12(2)	7	7,4%	126
3D6	105	1	L12(2)	2	2,1%	34
1-2a	108	1	L8	8	8,4%	·· 7 0
RF-KL1	97	1	L8	4	4,2%	121
TNF-E7	108	1	A30	9	9,5%	41
TR1.22	108	1	02	7	7,4%	92
HIV-B35	106	1	02	2	2,2%	8
HIV-b22	106	1	02	2	2,2%	8
HIV-b27	106	1	02	2	2,2%	8
HIV-B8	107	1	02	10	10,8%	8
HIV-b8	107	1	02	10	10,8%	8
RF-SJ5	95	1	· A30	5	5,3%	113
GAL(I)	108	1	A30	6	6,3%	64
R3.5H5G	108	1	02	6	6,3%	70
HIV-b14	106	1	A20	2	2,2%	8
TNF-E1	105	1	L5	8	8,4%	41
WEA	108	1	A30	8	8,4%	37
EU	108	1	L12(2)	5	5,3%	40
FOG1-G8	108	1	L8	11	11,6%	41
1X7RG1	108	1	L1	8	8,4%	70
BLI	108	1	L8	3	3,2%	72
KUE	108	1	L12(2)	11	11,6%	32
LUNm01	108	1	L12(2)	10	10,5%	6
HIV-b1	106	1	A20	4	4,3%	8
HIV-s4	103	1	02	2	2,2%	8

Table 2A: (continued)

Name ¹	aa²	Computed family ³	Germline gene⁴	Diff. to germline ⁵	% diff. to germline ⁵	Reference ⁷
CAR	107	1	L12(2)	11	11,7%	79
	107	1	L12(2)	11	11,6%	50
BR. CLL PATIENT 10	88	1	02	0	0,0%	122
CLL PATIENT 12	88	1	02	0	0,0%	122
	108	1	L12(2)	12	12,6%	30
KING	95	1	L12(2)	0	0,0%	46
V13	87	1	02	0	0,0%	122
CLL PATIENT 11		1	02	0	0,0%	122
CLL PATIENT 13	87	•		1	1, 1 %	122
CLL PATIENT 9	88	1	012			8
HIV-B2	106	1	A20	9	9,7%	
HIV-b2	106	1	A20	9	9,7%	8
CLL PATIENT 5	88	. 1	A20	1	1,1%	122
CLL PATIENT 1	8 8	1	L8	2	2,3%	122
CLL PATIENT 2	88	1	L8	0	0,0%	122
CLL PATIENT 7	88	1	L5	0	0,0%	122
CLL PATIENT 8	88	1	L5	0	0,0%	122
HIV-b5	105	1	L5	11	12,0%	8
CLL PATIENT 3	87	1	L8	1	1,1%	122
CLL PATIENT 4	88	1	L9	0	0,0%	122
CLL PATIENT 18	85	1	L9	6	7,1%	122
CLL PATIENT 17	86	1	L12(2)	7	8,1%	122
HIV-b20	107	3	A27	11	11,7%	8
2C12	108	1 ′	L12(2)	20	21,1%	68
1B11	108	1	L12(2)	20	21,1%	68
1H1	108	1	L12(2)	21	22,1%	68
2A12	108	1	L12(2)	21	22,1%	68
CUR	109	3	A27	. 0	0,0%	66
GLO	109	3	A27	0	0.0%	16
RF-TS1	96	3	A27	0	0,0%	121
GAR'	109	3	A27	0	0,0%	67
FLO	109	3	A27	0	0,0%	66
PIE	109	3	A27	0	0,0%	91
HAH 14.1	109	3	A27	1	1,0%	51
HAH 14.2	109		A27	1	1,0%	51

Table 2A: (continued)

Name'	aa²	Computed family ³	Germline gene⁴	Diff. to germline ⁵	% diff. to germline ⁶	Reference ⁷
HAH 16.1	109	3	A27	1	1,0%	51
NOV	109	3	A27	1	1,0%	5 2
33.F12	108	3	A27	1	1,0%	126
8E10	110	3	A27	1	1,0%	25
TH3	109	3	A27	1	1,0%	2 5
HIC (R)	108	3	A27	0	0,0%	51
SON	110	3	A27	1	1,0%	6 7
PAY	109	3	A27	1	1,0%	6 6
GOT	109	3	A27	1	1,0%	67
mAbA6H4C5	109	3	A27	1	1,0%	12
BOR'	109	3	A27	2	2,1%	84
RF-SJ3	96	3	A27	2	2,1%	121
SIE	109	3	A27	2	2,1%	15
ESC	109	3	A27	2	2,1%	9 8
HEW'	110	3	A27	2	2,1%	9 8
YES8c	109	3	A27	3	3,1%	3 3
TI	109	3	A27	3	3,1%	114
mAb113	109	3	A27	3	3,1%	71
HEW	107	3	A27	0	0,0%	94
BRO	106	3	A27	0 -	0,0%	94
ROB	106	3	· A27	0	0,0%	94
NG9	96	3	A27	4	4,2%	11
NEU	109	3	A27	4	4,2%	6 6
WOL	109	3	A27	4	4,2%	2
35G6	109	3	A27	4	4,2%	59
RF-SJ4	109	3	A11	0	0,0%	88
KAS	109	3	A27	4	4,2%	84
BRA	106	3	A27	1	1,1%	94
НАН	106	3	A27	1	1,1%	94
HIC	105	3	A 27	0	0,0%	94
FS-2	109	3	A27	6	6,3%	87
JH,	107	3	A27	6	6,3%	38
EV1-15	109		A27	6	6,3%	83
SCA	108		A27	6	6,3%	65
			56			

Table 2A: (continued)

Name ¹	aa²	Computed family ³	Germline gene ⁴	Diff. to germline ⁵	% diff. to germline ⁶	Reference'
mAb112	109	3	A27	6	6,3%	71
SIC	103	3	A27	3	3,3%	94
SA-4A	109	3	A27	6	6,3%	120
SER	108	3	A27	6	6,3%	9 8
GOL'	109	3	A27	7	7,3%	82
B5G10K	105	3	A27	9	9,7%	125
HG2B10K	110	3	A27	-9	9,4%	125
Taykv322	105	3	A27	5	5,4%	52
CLL PATIENT 24	89	3	A27	1	1,1%	122
HIV-b24	107	3	A27	7	7,4%	8
HIV-b6	107	3	A27	7	7,4%	8
Taykv310	99	3	A27	1	1,1%	52
KA3D1	108	3	L6	0	0,0%	85
19.E7	107	3	L6	0	0,0%	126
rsv6L	109	3	A27	12	12,5%	7
Taykv320	98	3	A27	1	1,2%	52
Vh	96	3	L10(2)	0	0.0%	89
LS8	108	3	L6	1	1,1%	109
LS1	108	3	L6	1	1,1%	109
LS2S3-3	107	3	L6	2	2,1%	99
LS2	· 108	3	L6	1.	1,1%	109
LS7	108	3	L6	1	1,1%	109
LS2S3-4d	107	3	L6	2	2,1%	99
LS2S3-4a	107	3	16	2	2.1%	9 9
LS4	108	3	L6	1	1,10/0	109
LS6	108	3	L6	1	1,1%	109
LS2S3-10a	107	3	L6	2	2,1%	99
LS2S3-8c	107	3	L6	2	2,1%	99
LS5	108	3	L6	1	1,1%	109
LS2S3-5	107	3	L6	3	3,2%	9 9
LUNm03	109	3	A27	13	13,5%	6
IARC/BL41	108	3	A27	13	13,7%	55
slkv22	99	3	A27	3	3,5%	13
POP	108	3	L6	4	4,2%	111

Table 2A: (continued)

Name ¹	aa²	Computed family ³	Germline gene ⁴	Diff. to germline ⁵	% diff. to germline ⁶	Reference ⁷
LS2S3-10b	107	3	L6	3	3,2%	99
LS2S3-8f	107	3	L 6	3	3,2%	9 9
LS2S3-12	107	3	L6	3	3,2%	9 9
HIV-B30	107	3	A27	11	11,7%	8
HIV-B20	107	3	A27	11	11,7%	8
HIV-b3	108	3	A27	11	11,7%	8
HIV-s6	104	3	A27	9	9,9%	8
YSE	107	3	L2/L16	1	1,1%	72
POM	109	3	L2/L16	9	9,4%	53
Humkv328	95	3	L2/L16	1	1,1%	19
CLL	109	3	L2/L16	3	3,2%	47
LES	96	3	L2/L16	3	3,2%	38
HIV-s5	104	3	A27	11	12,1%	8
HIV-s7	104	3	A27	11	12,1%	8
slkv1	99	3	A27	7	8,1%	13
Humka31es	95	3	L2/L16	4	4,2%	18
sikv12	101	3	A27	8	9,2%	13
RF-TS2	95	3	L2/L16	3	3,2%	121
11-1	109	3	L2/L16	4	4,2%	70
HIV-s3	105	3	A27	13	14,3%	8
RF-TMC1	96	3 .	L6	10	10,5%	121
GER	109	3	L2/L16	7	7,4%	75
GF4/1.1	109	3	L2/L16	8	8,4%	36
mAb114	109	3	L2/L16	6	6,3%	71
HIV-loop13	109	3	L2/L16	7	7,4%	8
bkv16	86	3	L6	1	1,2%	13
CLL PATIENT 29	86	3	L6	1	1,2%	122
slkv9	98	3	L6	3	3,5%	13
bkv17	99	3	L6	1	1,2%	13
slkv14	9 9	3	L6	1	1,2%	13
slkv16	101	3	L6	2	2,3%	13
bkv33	101	3	L6	4	4,7%	13
slkv15	99	3	L6	2	2,3%	13
bkv6	100	3	L 6	3	3,5%	13

Table 2A: (continued)

Name ¹	aa²	Computed family ³	Germline gene ⁴	Diff. to germline ⁵	% diff. to germline ⁶	Reference'
R6B8K	108	3	L2/L16	12	12,6%	125
AL 700	107	3	L2/L16	9	9,5%	117
slkv11	10 0	3	L2/L16	3	3,5%	13
slkv4	97	3	L6	4	4,8%	13
CLL PATIENT 26	87	3	L2/L16	1	1,1%	122
AL Se124	103	3	L2/L16	9	9,5%	117
slkv13	100	3	L2/L16	6	7,0%	13
bkv7	100	3	L2/L16	5	5,8%	13
bkv22	100	3	L2/L16	6	7,0%	13
CLL PATIENT 27	84	3	L2/L16	0	0,0%	122
bkv35	100	3	L6	8	9,3%	13
CLL PATIENT 25	87	3	L2/L16	4	4,6%	122
slkv3	86	3	L2/L16	7	8,1%	13
slkv7	99	1	02	7	8,1%	13
HuFd79	111	3	L2/L16	24	24,2%	21
RAD	99	3	A27	9	10,3%	78
CLL PATIENT 28	83	3	L2/L16	4	4,8%	122
REE	104	3	L2/L16	2 5	27,2%	95
FR4	99	3	A27	8	9,2%	77
MD3.3	92	3	L6	1	1,3%	54
MD3.1	92	3	L6	0	0,0%	54
GA3.6	92	3	L6	2	2,6%	54
M3.5N	92	3	L6	3	3,8%	54
WEI'	82	3	A27	0	0,0%	65
MD3.4	92	3	L2/L16	1	1,3%	54
MD3.2	91	3	L6	3	3,8%	54
VER	97	3	A27	19	22,4%	20
CLL PATIENT 30	78	3	L6	3	3,8%	122
M3.1N	92	3	L2/L16	1	1,3%	54
MD3.6	91	3	L2/L16	0	0,0%	54
MD3.8	91	3	L2/L16	0	0,0%	54
GA3.4	92	3	L6	7	9,0%	54
M3.6N	92	3	A27	0	0,0%	54
MD3.10	92	3	A27	0	0,0%	54

WO 97/08320

Table 2A:

(continued)

Name¹	aa²	Computed family ³	Germline gene⁴	Diff. to germline ^s	% diff. to germline ⁶	Reference
MD3.13	91	3	A27	0	0,0%	54
MD3.7	93	3	A27	. 0	0,0%	54
MD3.9	93	3	A27	0	0,0%	54
GA3.1	93	3	A27	6	7,6%	54
bkv32	101	3	A27	5	5,7%	13
GA3.5	93	3	A27	5	6,3%	54
GA3.7	92	3	A27	_7	8,9%	54
MD3.12	92	3	A27	2	2,5%	54
M3.2N	90	3	L6	6	7,8%	54
MD3.5	92	3	A27	1	1,3%	54
M3.4N	91	3	L2/L16	8	10,3%	54
M3.8N	91	3	L2/L16	7	9,0%	54
M3.7N	92	3	A27	3	3,8%	54
GA3.2	92	3	A27	9	11,4%	54
GA3.8	93	3	A27	4	5,1%	54
GA3.3	92	3	A27	8	10.1%	54
M3.3N	92	3	A27	5	6,3%	54
B6	83	3	A27	8	11,3%	78
E29.1 KAPPA	78	3	L2/L16	0	0,0%	22
SCW	108	1	80	12	12,6%	31
REI-based CAMPATH-9	107	1	08	14	14,7%	39
RZ	107	1	08	14	14,7%	50
BI	108	1	08	14	14,7%	14
AND	107	1	02	13	13,7%	6 9
2A4	109	1	02	12	12,6%	23
KA	108	1	08	19	20,0%	107
MEV	109	1	02	14	14,7%	29
DEE	106	1	02	13	14,0%	76
OU(IOC)	108	1	02	18	18,9%	60
HuRSV19VK	111	1	08	21	21,0%	115
SP2	108	1	02	17	17,9%	93
BJ26	99	1	08	21	24,1%	1
NI	112	1	08	24	24,2%	106
BMA 0310EUCIV2	106	1	L12(1)	21	22,3%	105

WO 97/08320

Table 2A:

(continued)

Name¹	a a²	Computed family ³	Germline gene⁴	Diff. to germline ^s	% diff. to germline ⁶	Reference
CLL PATIENT 6	71	1	A20	0	0,0%	122
BJ19	85	1	80	16	21,9%	1
GM 607	113	2	A3	0	0,0%	58
R5A3K	114	2	A3	1	1,0%	125
R1C8K	114	2	A3	1	1,0%	125
VK2.R149	113	2	A3	2	2,0%	118
TR1.6	109	2	A3	4	4,0%	92
TR1.37	104	2	A3	5	5,0%	92
FS-1	113	2	A 3	6	6,0%	87
TR1.8	110	2	A3	6	6,0%	92
NIM	113	2	A3	8	8,0%	28
Inc	112	2	A3	11	11,0%	35
TEW	107	2	A3	6	6,4%	96
CUM	114	2	01	7	6,9%	44
HRF1	71	2	A 3	4	5,6%	124
CLL PATIENT 19	87	2	A3	0	0,0%	122
CLL PATIENT 20	87	2	A3	0	0,0%	122
MIL	112	2	A 3	16	16,2%	26
FR	113	2	А3	20	20,0%	101
MAL-Urine	83	1	G2	6 ·	8,6%	102
Taykv306	73	3	A27	1	1,6%	52
Taykv312	75	3	A27	1	1,6%	52
HIV-b29	93	3	A27	14	17,5%	8
1-185-37	110	3	A27	0	0,0%	119
1-187-29	110	3	A27	0	0.0%	119
Π117	110	3	A27	9	9,4%	63
HIV-loop8	108	3	A27	16	16,8%	8
rsv23L	108	3	A27	16	16,8%	7
HIV-b7	107	3	A27	14	14,9%	8
HIV-b11	107	3	A27	15	16,0%	8
HIV-LC1	107	3	A27	19	20,2%	8
HIV-LC7	107	3	A27	20	21,3%	8
HIV-LC22	107	3	A27	21	22,3%	8
HIV-LC13	107	3	A27	21	22,3%	8

WO 97/08320

Table 2A: (continued)

Name¹	aa²	Computed family ³	Germline gene⁴	Diff. to germline ⁵	% diff. to germline ⁶	Reference
HIV-LC3	107	3	A27	21	22,3%	8
HIV-LC5	107	3	A27	21	22,3%	8
HIV-LC28	107	3	A27	21	22,3%	8
HIV-b4	107	3	A27	22	23,4%	8
CLL PATIENT 31	87	3	A27	15	17,2%	122
HIV-loop2	108	3	L2/L16	17	17,9%	8
HIV-loop35	108	3	L2/L16	17	17,9%	8
HIV-LC11	107	3	A27	23	24,5%	8
HIV-LC24	107	3	A27	23	24,5%	8
HIV-b12	107	3	A27	24	25,5%	8
HIV-LC25	107	3	A27	24	25,5%	8
HIV-b21	107	3	A 27	24	25,5%	8
HIV-LC26	107	3	A27	26	27,7%	8
G3D10K	108	1	L12(2)	12	12,6%	125
TT125	108	1	L5	8	8,4%	63
HIV-s2	103	3	A27	28	31,1%	8
265-695	108	1	L5	7	7,4%	3
2-115-19	108	1	A30	2	2,1%	119
rsv13L	107	1	02	20	21,1%	7
HIV-b18	106	1	02	14	15,1%	8
RF-KL5	98	3	L6	36	36,7%	97
ZM1-1	113	2	A17	7	7,0%	3
HIV-s8	103	1	08	16	17,8%	8
K- EV15	95	5	B2	0	0,0%	112
RF-TS3	100	2	A23	0	0,0%	121
HF-21/28	111	2	A17	1	1,0%	17
RPM16410	113	2	A17	1	1,0%	42
JC11	113	2	A17	1	1,0%	49
0-81	114	2	A17	5	5,0%	45
FK-001	113	4	В3	0	0,0%	81
CD5+.28	101	4	B 3	1	1,0%	27
LEN	114	4	В3	1	1,0%	104
UC	114	4	В3	1	1,0%	111
CD5+.5	101	4	B3	1	1,0%	27

62

Table 2A: (continued)

Name ¹	aa²	Computed	Germline	Diff. to germline ⁵	% diff. to germline ⁶	Reference
		family ³	gene⁴	germine	germine	
CD5+.26	101	4	В3	1	1,0%	27
CD5+.12	101	4	B 3	2	2,0%	27
CD5+.23	101	4	B3	2	2,0%	27
CD5+.7	101	4	B 3	2	2.0%	27
VJI	113	4	B 3	3	3,0%	56
LOC	113	4	B3	3	3,0%	72
MAL	113	4	В3	3	3,0%	72
CD5+.6	101	4	В3	3	3,0%	27
H2F	113	4	В3	3	3,0 %	70
PB17IV	114	4	В3	4	4,0%	74
CD5+.27	101	4	B3	4	4,0%	27
CD5+.9	101	4	В3	4	4,0%	27
CD528	101	4	В3	5	5,0%	27
CD526	101	4	В3	6	5,9%	27
CD5+.24	101	4	В3	6	5,9%	27
CD5+.10	101	4	В3	6	5,9%	27
CD519	101	4	В3	6	5,9%	27
CD518	101	4	B3	7	6,9%	27
CD516	101	4	В3	8	7,9%	27
CD524	101	4	В3	8	7,9%	27
CD517	101	4	B3	10	9,9%	27
MD4.i	92	4	. B3	0	0,0%	54
MD4.4	92	4	B3	0	0.0%	54
MD4.5	92	4	В3	0	0,0%	54
MD4.6	92	4	В3	0	0,0%	54
MD4.7	92	4	В3	0	0,0%	- 54
MD4.2	92	4	B3	1	1,3%	54
MD4.3	92	4	B3	5	6,3%	54
CLL PATIENT 22	87	2	A17	2	2,3%	122
CLL PATIENT 23	84	2	A17	2	2.4%	122

Table 2B: rearranged human lambda sequences

Name ¹	aa²	Computed family ³	Germline gene ⁴	Diff. to germline ⁵	% diff. to germline ⁶	Reference'
WAH	110	1	DPL3	7	7%	68
1B9/F2	112	1	DPL3	7	7%	9
DIA	112	1	DPL2	7	7%	36
mAb67	8 9	1	DPL3	0	0 %	29
HiH2	110	1	DPL3	12	11%	3
NIG-77	112	1	DPL2	9	9%	72
OKA	112	1	DPL2	7	7%	84
KOL	112	1	DPL2	12	11%	40
T2:C5	111	1	DPL5	0	0 %	6
T2:C14	110	1	DPL5	0	0%	6
PR-TS1	110	1	DPL5	0	0%	55
4G12	111	1	DPL5	1	1%	35
KIM46L	112	1	HUMLV117	0	0%	8
Fog-B	111	1	DPL5	3	30/0	31
9F2L	111	1	DPL5	3	3%	79
mAb111	110	1	DPL5	3	3%	48
PHOX15	111	1	DPL5	4	4%	49
BL2	111	1	DPL5	4	4%	74
NIG-64	111	1	DPL5	4	4%	72
RF-S12	100	1	DPL5	6	6%	78
AL EZI	112	1	DPL5	7	7%	41
ZIM	112	1	HUMLV117	7	7%	18
RF-SJ1	100	1	DPL5	9	9%	78
IGLV1.1	98	1	DPL4	0	0%	1
NEW	112	1	HUMLV117	11	10%	4 2
CB-201	87	1	DPL2	1	1%	62
MEM	109	1	DPL2	6	6%	50
H210	111	2	DPL10	4	4%/0	45
NOV	110	2	DPL10	8	8%	25
NEI	111	2	DPL10	8_	8%	24
AL MC	110	2	DPL11	6	6%	28
MES	112	2	DPL11	8	8%	84
FOG1-A3	111	2	DPL11	9	9%	27
AL NOV	112	2	DPL11	7	7%	28

Table 2B: (continued)

Name¹	aa²	Computed family ³	Germline gene ⁴	Diff. to germline ⁵	% diff. to germline ⁶	Reference'
HMST-1	110	2	DPL11	4	4%	82
HBW4-1	108	2	DPL12	9	9%	52
WH	110	2	DPL11	11	11%	34
11-50	110	2	DPL11	7	7%	82
HBp2	110	2	DPL12	8	8%	3
NIG-84	113	2	DPL11	12	11%	73
VIL	112	2	DPL11	9	9%	58
TRO	111	2	DPL12	10	10%	61
ES492	108	2	DPL11	15	15%	76
mAb216	8 9	2	DPL12	1	1%	7
BSA3	109	3	DPL16	0	0 %	49
THY-29	110	3	DPL16	0	0%	27
PR-TS2	108	3	DPL16	0	0%	55
E29.1 LAMBDA	107	3	DPL16	1	1%	13
mAb63	1 0 9	3	DPL16	2	2%	29
TEL14	110	3	DPL16	6	6%	49
6H-3C4	108	3	DPL16	7	7%	39
SH	109	3	DPL16	7	7%	70
AL GIL	109	3	DPL16	8	8%	23
H6-3C4	108	3	DPL16	8	8%	83
V-lambda-2.DS	111	2	DPL11	3	3%	15
8.12 ID	110	2	DPL11	3	3%	81
DSC	111	2	DPL11	3	3%	56
PV11	110	2	DPL11	1	1%	56
33.H11	110	2	DPL11	4	40/0	81
AS17	111	2	DPL11	7	7%	56
SD6	110	2	DPL11	7	7%	56
KS3	110	2	DPL11	9	9%	56
PV6	110	2	DPL12	5	5%	. 56
NGD9	110	2	DPL11	7	7 %	56
MUC1-1	111	2	DPL11	11	10%	27
A30c	111	2	DPL10	6	6%	56
KS6	110) 2	DPL12	6	6%	56
TEL13	111	2	DPL11 65	11	10%	49

Table 2B: (continued)

Name ¹	a a²	Computed family ³	Germline gene ⁴	Diff. to germline ⁵	% diff. to germline ⁶	Reference ⁷
AS7	110	2	DPL12	6	6%	56
MCG	112	2	DPL12	12	11%	20
U266L	110	2	DPL12	13	12%	7 7
PR-SJ2	110	2	DPL12	14	13%	55
вон	112	2	DPL12	11	10%	37
TOG	111	2	DPL11	19	18%	5 3
TEL16	111	2	DPL11	19	18%	49
No.13	110	2	DPL10	14	13%	52
во	112	2	DPL12	18	17%	80
WIN	112	2	DPL12	17	16%	11
BUR	104	2	DPL12	15	15%	46
NIG-58	110	2	DPL12	20	19%	69
WEIR	112	2	DPL11	26	25%	21
THY-32	111	1	DPL8	8	8%	27
TNF-H9G1	111	1	DPL8	9	9%	27
mAb61	111	1	DPL3	1	10/0	29
LV1L1	98	1	DPL2	0	0%	54
НА	113	1	DPL3	14	13%	63
LA1L1	111	1	DPL2	3	3%	54
RHE	112	1	DPL1	1.7	16%	22
K1B12L	113	1	DPL8	17	16%	79
LOC	113	1	DPL2	15	14%	84
NIG-51	112	1	DPL2	12	11%	67
NEWM	104	1	DPL8	23	22%	10
MD3-4	106	3	DPL23	14	13%	4
COX	112	1	DPL2	13	12%	84
HiH10	106	3	DPL23	13	12%	3
VOR	112	1	DPL2	16	15%	16
AL POL	113	1	DPL2 ·	16	15%	57
CD4-74	111	1	DPL2	19	18%	27
AMYLOID MOL	102	3	DPL23	15	15%	30
OST577	108	3	Humlv318	10	10%	4
NIG-48	113	1	DPL3	42	40%	66
CARR	108	3	DPL23	18	17%	19
			66			

Table 2B: (continued)

Name ¹	aa²	Computed family ³	Germline gene⁴	Diff. to germline ⁵	% diff. to germline ⁶	Reference'
mAb60	108	3	DPL23	14	13%	29
NIG-68	9 9	3	DPL23	25	26%	32
KERN	107	3	DPL23	26	25%	59
ANT	106	3	DPL23	17	16%	19
LEE	110	3	DPL23	18	17%	85
CLE	94	3	DPL23	17	17%	19
VL8	98	8	DPL21	0	0%	81
MOT	110	3	Humlv318	23	22%	38
GAR	108	3	DPL23	26	25%	33
32.B9	98	8	DPL21	5	5%	81
PUG	108	3	Humlv318	24	23%	19
T1	115	8	HUMLV801	52	50%	6
RF-TS7	96	7	DPL18	4	4%	60
YM-1	116	8	HUMLV801	51	49%	75
K6H6	112	8	HUMLV801	20	19%	44
K5C7	112	8	HUMLV801	20	19%	44
K5B8	112	8	HUMLV801	20	19%	44
K5G5	112	8	HUMLV801	20	19%	44
K4B8	112	8	HUMLV801		18%	44
K6F5	112	8	HUMLV801		16%	44
HIL	108		DPL23	22	21%	47
KIR	109		DPL23	20	19%	19
CAP	109		DPL23	19	18%	84
1B8	110		DPL23	22	21%	43
SHO	108		DPL23	19	18%	19
HAN	108		DPL23	20	19%	: 19
cML23	96		DPL23	3	3%	12
PR-SJ1	96	3	DPL23	7	7%	55
BAU	107		DPL23	9	9%	5
TEX	99		DPL23	8	8%	19
X(PET)	107		DPL23	9	9%	51
DOY	106		DPL23	9	9%	19
COT	100		DPL23	13	12%	19
Pag-1	11		Humlv318		5%	31

Name¹	aa²	Computed family ³	Germline gene⁴	Diff. to germline ⁵	% diff. to germline ⁶	Reference ⁷
DIS	107	3	Humlv318	2	2%	19
WIT	108	3	Humlv318	7	7%	19
I.RH	108	3	Humlv318	12	11%	19
S1-1	108	3	Humlv318	12	11%	52
DEL	108	3	Humlv318	14	13%	17
TYR	108	3	Humiv318	11	10%	19
J.RH	109	3	Humlv318	13	12%	19
THO	112	2	DPL13	38	36%	26
LBV	113	1	DPL3	38	36%	2
WLT	112	1	DPL3	33	31%	14
SUT	112	2	DPL12	37	35%	65

Name ¹	aa²	Computed family ³	Germline gene ⁴	Diff. to germline ⁵	% diff. to germline ⁶	Reference
21/28	119	1	VH1-13-12	0	0,0%	31
8E10	123	1	VH1-13-12	0	0,0%	31
MUC1-1	118	1	VH1-13-6	4	4,1%	42
gF1	9 8	1	VH1-13-12	10	10,2%	7 5
VHGL 1.2	98	1	VH1-13-6	2	2,0%	26
HV1L1	98	1	VH1-13-6	0	0,0%	81
RF-TS7	104	1	VH1-13-6	3	3,1%	96
E55 1.A15	106	1	VH1-13-15	1	1,0%	26
HA1L1	126	1	VH1-13-6	7	7,1%	81
UC	123	1	VH1-13-6	5	5,1%	115
WIL2	123	1	VH1-13-6	6	6,1%	5 5
R3.5H5G	122	1	VH1-13-6	10	10,2%	70
N89P2	123	1	VH1-13-16	11	11,2%	77
mAb113	126	1	VH1-13-6	10	10,2%	71
LS253-3	125	1	VH1-12-7	5	5,1%	98
LS2S3-12a	125	1	VH1-12-7	5	5,1%	98
LS2S3-5	125	1	VH1-12-7	-5	5,1%	98
LS2S3-12e	125	1	VH1-12-7	5	5,1%	98
LS2S3-4	125	1	VH1-12-7	5	5,1%	98
LS2S3-10	125	1	VH1-12-7	5	5,1%	9 8
LS2S3-12d	125	1	VH1-12-7	6	6,1%	98
LS2S3-8	125	1	VH1-12-7	5	5,1%	98
LS2	125	1	VH1-12-7	6	6,1%	113
LS4	105	1	VH1-12-7	6	6,1%	113
LS5	125	1	VH1-12-7	6	6,1%	113
LS1	125	1	VH1-12-7	6	6,1%	113
LS6	125	1	VH1-12-7	6	6,1%	113
LS8	125	1	VH1-12-7	7	7,1%	113
THY-29	122	1	VH1-12-7	0	0.0%	42
1B9/F2	122	1	VH1-12-7	10	10,2%	21
51P1	122	1	VH1-12-1	0	0,0%	105
NEI	127	1	VH1-12-1	0	0,0%	55
AND	127	1	VH1-12-1	0	0.0%	55
L7	127	3	VH1-12-1	0	0,0%	54
L2 2	124	1	VH1-12-1	0	0.0%	54
L24	127	1	VH1-12-1	0	0,0%	54

Table 2C: (continued)

Name ¹	aa²	Computed family ³	Germline gene ⁴	Diff. to germline ⁵	% diff. to germline ⁶	Reference ²
L26	116	1	VH1-12-1	0	0,0%	54
L33	119	1	VH1-12-1	0	0,0%	54
L34	117	1	VH1-12-1	0	0,0%	54
L36	118	1	VH1-12-1	0	0,0%	54
L39	120	1	VH1-12-1	0	0.0%	54
L41	120	1	VH1-12-1	0	0,0%	54
L42	125	1	VH1-12-1	0	0.0%	54
VHGL 1.8	101	1	VH1-12-1	0	0,0%	26
783 c	127	1	VH1-12-1	0	0,0%	22
X17115	127	1	VH1-12-1	0	0,0%	37
L25	124	1	VH1-12-1	0	0,0%	54
L17	120	1	VH1-12-1	1	1.0%	54
L30	127	1	VH1-12-1	1	1,0%	54
L37	120	1	VH1-12-1	i	1,0%	54
TNF-E7	116	1	VH1-12-1	2	2.0%	42
mAb111	122	1	VH1-12-1	7	7,1%	71
III-2R	122	1	VH1-12-9	3	3,1%	70
KAS	121	1	VH1-12-1	7	7,1%	79
YES8c	122	1	VH1-12-1	8	8,2%	34
RF-TS1	123	1	VH1-12-1	8	8,2%	82
BOR'	121	1	VH1-12-8	7	7,1%	79
VHGL 1.9	101	1 .	VH1-12-1	8	8,2%	26
mAb410.30F305	117	1	VH1-12-9	5	5,1%	52
EV1-15	127	1	VH1-12-8	10	10,2%	78
mAb112	122	1	VH1-12-1	11	11,2%	71
EU	117	.1	VH1-12-1	11	11,2%	28
H210	127	1	VH1-12-1	12	12,2%	66
TRANSGENE	104	1	VH1-12-1	0	0,0%	111
CLL2-1	93	1	VH1-12-1	0	0,0%	30
CLL10 13-3	97	1	VH1-12-1	0	0,0%	29
LS7	99	1	VH1-12-7	4	4,1%	113
ALL7-1	87	1	VH1-12-7	0	0,0%	30
CLL3-1	91	1	VH1-12-7	1	1,0%	30
ALL56-1	85	1	VH1-13-8	0	0,0%	30
ALL1-1	87	1	VH1-13-6	1	1,0%	30
ALL4-1	94	1	VH1-13-8	0	0,0%	30

WO 97/08320

Table 2C:

(continued)

Name¹	aa²	Computed family ³	Germline gene⁴	Diff. to germline ⁵	% diff. to germline ⁶	Reference
ALL56 15-4	85	1	VH1-13-8	5	5,1%	2 9
	88	1	VH1-13-1	1	1,0%	30
CLL4-1	98	1	VH1-12-5	0	0,0%	49
Au92.1	120	1	VH1-12-5	1	1,0%	82
RF-TS3	98	1	VH1-12-5	1	1,0%	49
Au4.1	121	1	VH1-13-6	13	13,3%	110
HP1	127	1	VH1-13-15	5	5,1%	72
BLI	127	1	VH1-12-2	19	19,4%	76
No.13	122	1	VH1-13-2	23	23,5%	88
TR1.23	125	1	VH1-12-2	18	18,4%	76
S1-1	119	1	VH1-13-12	14	14,3%	88
TR1.10	102	1	VH1-13-15	3	3,1%	26
E55 1.A2	119	1	VH1-13-6	15	15,3%	89
SP2	111	1	VH1-13-18	2	2,0%	42
TNF-H9G1	127	1	VH1-13-16	19	19.4%	127
G3D10H	118	1	VH1-13-12	14	14,3%	88
TR1.9	121	1	VH1-12-1	24	24,5%	88
TR1.8	127		VH1-13-6	22	22,4%	9
LUNm01	127		VH1-12-7	23	23,5%	127
K1B12H	99	1	VH1-13-6	2	2,0%	46
L3B2	100		VH1-13-6	2.	2,0%	46
SS2	124		VH1-12-1	20	20,4%	76
No.86	124		VH1-12-1	19	19,4%	88
TR1.6	99		VH1-12-7	3	3.1%	46
ss7	102		VH1-12-1	0	0.0%	46
s5B7	97		VH1-12-1	0	0,0%	46
s6A3	99		VH1-12-1	0	0,0%	46
ss6 L2H7	10:		VH1-13-12		0,0%	46
s6BG8	93		VH1-13-12		0,0%	46
s6C9	10		VH1-13-12		0,0%	46
HIV-b4	12		VH1-13-12		21,4%	12
HIV-b12	12		VH1-13-12		21,4%	12
L3G5	98		VH1-13-6		1,0%	46
22	11		VH1-13-6		11,2%	118
L2A12	99		VH1-13-1		3,1%	46
PHOX15	12		VH1-12-7		20,4%	73
HOATS	,-	•	71			

SUBSTITUTE SHEET (RULE 26)

Table 2C: (continued)

Name ¹	aa²	Computed family ³	Germline gene⁴	Diff. to germline ⁵	% diff. to germline ⁶	Reference ⁷
LUNm03	127	1	VH1-1X-1	18	18,4%	9
CEA4-8A	129	1	VH1-12-7	1	1,0%	42
M60	121	2	VH2-31-3	3	3,0%	103
HiH10	127	2	VH2-31-5	9	9.0%	4
COR	119	2	VH2-31-2	11	11,0%	91
2-115-19	124	2	VH2-31-11	8	8,1%	124
OU 0U	125	2	VH2-31-14	20	25,6%	92
HE	120	2	VH2-31-13	19	19,0%	27
CLL33 40-1	78	2	VH2-31-5	2	2,0%	29
E55 3.9	88	3	VH3-11-5	7	7,2%	· 26
MTFC3	125	3	VH3-14-4	21	21,0%	131
MTFC11	125	3	VH3-14-4	21	21,0%	131
MTFJ1	114	3	VH3-14-4	21	21,0%	131
MTFJ2	114	3	VH3-14-4	21	21,0%	131
MTFUJ4	100	3	VH3-14-4	21	21,0%	131
MTFUJ5	100	3	VH3-14-4	21	21,0%	131
MTFUJ2	100	3	VH3-14-4	22	22,0%	131
MTFC8	125	3	VH3-14-4	23	23,0%	131
TD e Vq	113	3	VH3-14-4	0	0,0%	16
rMTF	114	3	VH3-14-4	5	5,0%	131
MTFUJ6	100		VH3-14-4	10	10,0%	131
RF-KES	107	3	· VH3-14-4	9	9,0%	85
N51P8	126	3	VH3-14-1	9	9,0%	7 7
TEI	119		VH3-13-8	21	21,4%	20
33.H11	115		VH3-13-19	10	10,2%	129
SB1/D8	101		VH3-1X-8	14	14,0%	2
38P1	119	3	VH3-11-3	0	0,0%	104
BRO'IGM	119	3	VH3-11-3	13	13,4%	19
NIE	119	3	VH3-13-7	15	15,3%	87
3D6	126	3	VH3-13-26	5	5,1%	35
ZM1-1	112		VH3-11-3	8	8,2%	5
E55 3.15	110		VH3-13-26	0	0,0%	26
gF9	108		VH3-13-8	15	15,3%	75
THY-32	120		VH3-13-26	3	3,1%	42
RF-KL5	100		VH3-13-26	5 5	5.1%	96
OST577	122		VH3-13-13 メ <u>ヱ</u>	6	6,1%	5

=======================================
21 200
), <u>"</u>
End Rus
IJ
ř.
202
21
12
g, ±
ľЦ
225 225 135
1
:: ::::

Name ¹	aa²	Computed family ³	Germline gene⁴	Diff. to germline ⁵	% diff. to germline ⁶	Reference
BO	113	3	VH3-13-19	15	15,3%	10
Π125	121	3	VH3-13-10	15	15,3%	64
2-115-58	127	3	VH3-13-10	11	11,2%	124
KOL	126	3	VH3-13-14	16	16,3%	102
mAb60	118	3	VH3-13-17	14	14,3%	45
RF-AN	106	3	VH3-13-26	8	8,2%	8 5
BUT	115	3	VH3-11-6	13	13,4%	119
KOL-based CAMPATH-						
	118	3	VH3-13-13	16	16,3%	41
B1	119	3	VH3-13-19	13	13,3%	53
N98P1	127	3	VH3-13-1	13	13,3%	7 7
Π117	107	3	VH3-13-10	12	12.2%	64
WEA	114	3	VH3-13-12	15	15,3%	40
HIL	120	3	VH3-13-14	14	14,3%	23
s5A10	97	3	VH3-13-14	0	0,0%	46
s5D11	98	3	VH3-13-7	0	0,0%	46
s6C8	100	3	VH3-13-7	0	0.0%	46
s6H12	98	3	VH3-13-7	0	0,0%	46
VH10.7	119	3	VH3-13-14	16	16,3%	128
HIV-loop2	126	3	VH3-13-7	16	16,3%	12
HIV-loop35	126	3	VH3-13-7	16	16,3%	12
TRO	122	3	' VH3-13-1	13	13,3%	61
SA-4B	123	3	VH3-13-1	15	15,3%	125
L2B5	98	3	VH3-13-13	0	0,0%	46
s6E11	95	3	VH3-13-13	0	0,0%	46
s6H7	100	3	VH3-13-13	0	0,0%	46
ss 1	102	3	VH3-13-13	0	0,0%	46
822	94	3	VH3-13-13	0	0,0%	46
DOB	120	3	VH3-13-26	21	21,4%	116
THY-33	115	3	VH3-13-15	20	20.4%	42
NOV	118	3	VH3-13-19	14	14,3%	38
rsv13H	120	3	VH3-13-24	20	20,4%	11
L3G11	98	3	VH3-13-20	2	2,0%	46
L2E8	9 9	3	VH3-13-19	0	0,0%	46
L2D10	101	3	VH3-13-10	1	1,0%	46
L2E7	98	3	VH3-13-10	1	1,0%	46

Bash Arte it war right

WO 97/08320 PCT/EP96/03647

Table 2C: (continued)

Name¹	aa²	Computed family ³	Germline gene⁴	Diff. to germline ⁵	% diff. to germline ⁶	Reference ⁷
L3A10	100	3	VH3-13-24	0	0,0%	46
L2E5	97	3	VH3-13-2	1	1,0%	46
BUR	119	3	VH3-13-7	21	21,4%	67
s4D5	107	3	VH3-11-3	1	1,0%	46
19	116	3	VH3-13-16	4	4,1%	118
s5D4	99	3	VH3-13-1	0	0,0%	46
s6A8	100	3	VH3-13-1	0	0,0%	46
HIV-loop13	123	3	VH3-13-12	17	17,3%	12
TR1.32	112	3	VH3-11-8	18	18,6%	88
L2B10	97	3	VH3-11-3	1	1,0%	46
TR1.5	114	3	VH3-11-8	21	21,6%	88
s6H9	101	3	VH3-13-25	0	0,0%	46
8	112	3	VH3-13-1	6	6,1%	118
2 3	115	3	VH3-13-1	6	6,1%	118
7	115	3	VH3-13-1	4	4,1%	118
TR1.3	120	3	VH3-11-8	20	20,6%	88
18/2	125	3	VH3-13-10	0	0,0%	32
18/9	125	3	VH3-13-10	0	0.0%	31
30P1	119	3	VH3-13-10	0	0,0%	106
HF2-1/17	125	3	VH3-13-10	0	0,0%	8
A77	109	3	VH3-13-10	0	0,0%	44
B19.7	108	3 .	VH3-13-10	0	0,0%	44
M43	119	3	VH3-13-10	0	0,0%	103
1/17	125	3	VH3-13-10	0	0,0%	31
18/17	125	3	VH3-13-10	0	0,0%	31
E54 3.4	109	3	VH3-13-10	0	0,0%	26
LAMBDA-VH26	98	3	VH3-13-10	1	1,0%	9 5
E54 3.8	111	3	VH3-13-10	1	1,0%	26
GL16	106	3	VH3-13-10	1	1,0%	44
4G12	125	3	VH3-13-10	1	1,0%	56
A73	106	3	VH3-13-10	2	2,0%	44
AL1.3	111	3	VH3-13-10	3	3,1%	117
3.A290	118	3	VH3-13-10	2	2,0%	108
Ab18	127	3	VH3-13-8	2	2,0%	100
E54 3.3	105	3	VH3-13-10	3	3,1%	26
35G6	121	3	VH3-13-10	3	3,1%	57

月4 SUBSTITUTE SHEET (RULE 26)

WO 97/08320 PCT/EP96/03647

Table 2C: (continued)

Name ¹	aa²	Computed family ³	Germline gene ⁴	Diff. to germline⁵	% diff. to germline ⁶	Reference ⁷
A95	107	3	VH3-13-10	5	5,1%	44
Ab25	128	3	VH3-13-10	5	5.1%	100
N87	126	3	VH3-13-10	4	4,1%	77
ED8.4	99	3	VH3-13-10	6	6,1%	2
RF-KL1	122	3	VH3-13-10	6	6,1%	82
AL1.1	112	3	VH3-13-10	2	2,0%	117
AL3.11	102	3	VH3-13-10	1	1,0%	117
32.B9	127	3	VH3-13-8	6	6,1%	129—
TK1	109	3	VH3-13-10	2	2,0%	117
POP	123	3	VH3-13-10	8	8,2%	115
9F2H	127	3	VH3-13-10	9	9,2%	127
VD	115	3	VH3-13-10	9	9.2%	10
Vh38Cl.10	121	3	VH3-13-10	8	8,2%	74
Vh38Cl.9	121	3	VH3-13-10	8	8,2%	74
Vh38Cl.8	121	3	VH3-13-10	8	8,2%	74
63P1	120	3	VH3-11-8	0	0,0%	104
60P2	117	3	VH3-11-8	0	0,0%	104
AL3.5	90	3	VH3-13-10	`2	2,0%	117
GF4/1.1	123	3	VH3-13-10	10	10,2%	39
Ab21	126	3	VH3-13-10	12	12,2%	100
TD d Vp	118	3	VH3-13-17	2	2,0%	16
Vh38Cl.4	119	3	VH3-13-10	8	8,2%	74
Vh38Cl.5	119	3	VH3-13-10	8	8,2%	74
AL3.4	104	3	VH3-13-10	1	1,0%	117
FOG1-A3	115	3	VH3-13-19	2	2,0%	42
HA3D1	117	3	VH3-13-21	1	1.0%	81
E54 3.2	112	3	VH3-13-24	0	0.0%	26
mAb52	128	3	VH3-13-12	2	2,0%	51
mAb53	128	3	VH3-13-12	2	2,0%	51
mAb56	128	3	VH3-13-12	2	2,0%	51
mAb57	128	3	VH3-13-12	2	2,0%	51
mAb58	128	3	VH3-13-12	2	2,0%	51
mAb59	128	3	VH3-13-12	2	2,0%	51
mAb105	128	3 .	VH3-13-12	2	2,0%	51
mAb107	128	3	VH3-13-12	2	2,0%	51
E55 3.14	110	3	VH3-13-19	0	0,0%	26

75

Table 2C: (continued)

Name ¹	aa²	Computed family ³	Germline gene ⁴	Diff. to germline ⁵	% diff. to germline ⁶	Reference'
F13-28	106	3	VH3-13-19	1	1,0%	94
mAb55	127	3	VH3-13-18	4	4,1%	51
YSE	117	3	VH3-13-24	6	6,1%	72
E55 3.23	106	3	VH3-13-19	2	2,0%	26
RF-TS5	101	3	VH3-13-1	3	3,1%	85
N42P5	124	3	VH3-13-2	7	7,1%	77
FOG1-H6	110	3	VH3-13-16	7	7,1%	42
0-81	115	3	VH3-13-19	11	11,2%	47
HIV-s8	122	3	VH3-13-12	11	11,2%	12
mAb114	125	3	VH3-13-19	12	12,2%	71
33.F12	116	3	VH3-13-2	4	4,1%	129
4B4	119	3	VH3-1X-3	0	0,0%	101
M26	123	3	VH3-1X-3	0	0,0%	103
VHGL 3.1	100	3	VH3-1X-3	0	0,0%	26
E55 3.13	113	3	VH3-1X-3	1	1,0%	26
SB5/D6	101	3	VH3-1X-6	3	3,0%	2
RAY4	101	3	VH3-1X-6	3	3,0%	2
82-D V-D	106	3	VH3-1X-3	5	5,0%	112
MAL	129	3	VH3-1X-3	5	5,0%	72
LOC	123	3	VH3-1X-6	5	5.0%	72
LSF2	101	3	VH3-1X-6	1.1	11,0%	2
HIB RC3	100	3	· VH3-1X-6	11	11,0%	1
56P1	119	3	VH3-13-7	0	0,0%	104
M72	122	3	VH3-13-7	0	0,0%	103
M74	121	3	VH3-13-7	0	0,00/0	103
E54 3.5	105	3	VH3-13-7	0	0,0%	26
2E7	123	3	VH3-13-7	0	0,0%	63
2P1	117	3	VH3-13-7	0	0,0%	104
RF-SJ2	127	3	VH3-13-7	1	1,0%	83
PR-TS1	114	3	VH3-13-7	1	1,0%	85
KIM46H	127	3	VH3-13-13	0	0,0%	18
E55 3.6	108	3	VH3-13-7	2	2,0%	26
E55 3.10	107	3	VH3-13-13	. 1	1,0%	26
3.B6	114	. 3	VH3-13-13	1	1,0%	108
E54 3.6	110	3	VH3-13-13	1	1,0%	26
FL2-2	114		VH3-13-13	1	1,0%	80
			_		•	-

Table 2C: (continued)

Name¹	aa ²	Computed family ³	Germline gene⁴	Diff. to germline ⁵	% diff. to germline	Reference
RF-SJ3	112	3	VH3-13-7	2	2,0%	85
E55 3.5	105	3	VH3-13-14	1	1,0%	26
BSA3	121	3	VH3-13-13	1	1,0%	73
HMST-1	119	3	VH3-13-7	3	3,1%	130
RF-TS2	126	3	VH3-13-13	4	4,1%	8 2
E55 3.12	109	3	VH3-13-15	0	0,0%	26
19.E7	126	3	VH3-13-14	3	3.1%	129
11-50	119	3	VH3-13-13	6	6,1%	130
E29.1	120	3	VH3-13-15	2	2,0%	25
E55 3.16	108	3	VH3-13-7	6	6.1%	26
TNF-E1	117	3	VH3-13-7	7	7,1%	42
RF-SJ1	127	3	VH3-13-13	6	6,1%	83
FOG1-A4	116	3	VH3-13-7	8	8,2%	42
TNF-A1	117	3	VH3-13-15	4	4.1%	42
PR-SJ2	107	3	VH3-13-14	8	8,2%	85
HN,14	124	3	VH3-13-13	10	10,2%	33
CAM'	121	3	VH3-13-7	12	12,2%	65
HIV-B8	125	3	VH3-13-7	9	9,2%	12
HIV-b27	125	3	VH3-13-7	9	9,2%	12
HIV-b8	125	3	VH3-13-7	9	9,2%	12
HIV-s4	125	3	VH3-13-7	9	9,2%	12
HIV-B26	125	3	VH3-13-7	9	9,2%	12
HIV-B35	125	3	VH3-13-7	10	10,2%	12
HIV-b18	125	3	VH3-13-7	10	10,2%	12
H!V-b22	125	3	VH3-13-7	11	11,2%	.12
HIV-b13	125	3	VH3-13-7	12	12,2%	12
33 3	117	3	VH3-14-4	24	24,0%	24
1H1	120	3	VH3-14-4	24	24,0%	24
1B11	120	3	VH3-14-4	23	23,0%	24
CLL30 2-3	86	3	VH3-13-19	1	1,0%	2 9
GA	110	3	VH3-13-7	19	19,4%	36
JeB	99	3	VH3-13-14	3	3,1%	7
GAL	110	3	VH3-13-19	10	10,2%	126
K6H6	119	3	VH3-1X-6	18	18,0%	60
K4B8	119	3	VH3-1X-6	18	18,0%	60
K5B8	119	3	VH3-1X-6	18	18,0%	60

Table 2C: (continued)

Name¹	aa²	Computed family ³	Germline gene⁴	Diff. to germline ⁵	% diff. to germline ⁶	Reference ⁷
K5C7	119	3	VH3-1X-6	19	19,0%	60
K5G5	119	3	VH3-1X-6	19	19,0%	6 0
K6F5	119	3	VH3-1X-6	19	19 ,0 %	60
AL3.16	98	3	VH3-13-10	1	1,0%	117
N86P2	98	3	VH3-13-10	3	3,1%	77
N54P6	95	3	VH3-13-16	7	7,1%	77
LAMBDA HT112-1	126	4	VH4-11-2	0	0,0%	3
HY18	121	4	VH4-11-2	0	0,0%	43
mAb63	126	4	VH4-11-2	0	0,0%	45
FS-3	105	4	VH4-11-2	0	0,0%	86
FS-5	111	4	VH4-11-2	0	0,0%	86
FS-7	107	4	VH4-11-2	0	0,0%	86
FS-8	110	4	VH4-11-2	0	0,0%	86
PR-TS2	105	4	VH4-11-2	0	0,0%	85
RF-TMC	102	4	VH4-11-2	0	0,0%	85
mAb216	122	4	VH4-11-2	1	1,0%	15
mAb410.7.F91	122	4	VH4-11-2	1	1,0%	52
mAbA6H4C5	124	4	VH4-11-2	1	1,0%	15
Ab44	127	4	VH4-11-2	2	2,1%	100
6H-3C4	124	4	VH4-11-2	3	3,1%	59
FS-6	108	4	VH4-11-2	6	6,2%	86
FS-2	114	4	VH4-11-2	6	6,2%	84
HIG1	126	4	VH4-11-2	7	7,2%	62
FS-4	105	4	VH4-11-2	8	8,2%	86
SA-4A	123	4	VH4-11-2	9	9,3%	125
LES-C	119	4	VH4-11-2	10	10,3%	99
DI	78	4	VH4-11 - 9	16	16,5%	58
Ab26	126	4	VH4-31-4	8	8,1%	100
TS2	124	4	VH4-31-12	15	15,2%	110
265-6 95	115	4	VH4-11-7	16	16,5%	5
WAH	129	4	VH4-31-13	19	19,2%	93
268-D	122	4	VH4-11-8	22	22,7%	6
58P2	118	4	VH4-11-8	0	0,0%	104
mAb67	128	4	VH4-21-4	1	1,0%	45
4.L39	115	4	VH4-11-8	2	2.1%	108
mF7	111	4	VH4-31-13	3	3,0%	75

Table 2C: (continued)

Name ¹	aa ²	Computed family ³	Germline gene	Diff. to germline ⁵	% diff. to germline ⁶	Reference ²
33.C9	122	4	VH4-21-5	7	7,1%	129
Pag-1	124	4	VH4-11-16	5	5,2%	50
B3	123	4	VH4-21-3	8	8,2%	53
IC4	120	4	VH4-11-8	6	6,2%	70
C6B2	127	4	VH4-31-12	4	4,0%	48
N78	118	4	VH4-11-9	11	11,3%	77
B2	109	4	VH4-11-8	12	12,4%	53
WRD2	123	4	VH4-11-12	6	6,2%	90
mAb426.4.2F20	126	4	VH4-11-8	2	2,1%	52
E54 4.58	115	4	VH4-11-8	1	1,0%	26
WRD6	123	4	VH4-11-12	10	10,3%	90
mAb426.12.3F1.4	122	4	VH4-11-9	·4	4,1%	52
E54 4.2	108	4	VH4-21-6	2	2,0%	26
WIL	127	4	VH4-31-13	0	0,0%	90
COF	126	4	VH4-31-13	0	0,0%	90
LAR	122	4	VH4-31-13	2	2,0%	90
WAT	125	4	VH4-31-13	4	4,0%	90
mAb61	123	4	VH4-31-13	5	5,1%	45
WAG	127	4	VH4-31-4	0	0,0%	90
RF-SJ4	108	4	VH4-31-12	2	2,0%	85
E54 4.4	110	4	VH4-11-7	0	0,0%	26
E55 4.A1	108	4	VH4-11-7	0	0,0%	26
PR-SJ1	103	4	VH4-11-7	1	1,0%	85
E54 4.23	111	4	VH4-11-7	1	1,0%	26
CLL7 7-2	97	4	VH4-11-12	0	0,0%	29
37P1	9 5	4	VH4-11-12	0	0,0%	104
ALL52 30-2	91	4	VH4-31-12	4	4,0%	29
EBV-21	98	5	VH5-12-1	0	0,0%	13
CB-4	98	5	VH5-12-1	0	0,0%	13
CLL-12	98	5	VH5-12-1	0	0,0%	13
L3-4	98	5	VH5-12-1	0	0,0%	13
CLL11	98	5	VH5-12-1	0	0,0%	17
CORD3	98	5	VH5-12-1	0	0,0%	17
CORD4	98	5	VH5-12-1	0	0,0%	17
CORD8	98	5	VH5-12-1	0	0,0%	17
CORD9	98	5	VH5-12-1	0	0,0%	17

ヌら

Table 2C: (continued)

Name ¹	aa²	Computed family ³	Germline gene⁴	Diff. to germline ⁵	% diff. to germline ⁶	Reference ⁷
CD+1	98	5	VH5-12-1	0	0,0%	17
CD+3	98	5	VH5-12-1	0	0,0%	17
CD+4	9 8	5	VH5-12-1	0	0,0%	17
CD-1	98	5	VH5-12-1	0	0.0%	17
CD-5	9 8	5	VH5-12-1	0	0,0%	17
VERG14	9 8	5	VH5-12-1	0	0,0%	17
PBL1	98	5	VH5-12-1	0	0,0%	17
PBL10	98	5	VH5-12-1	0	0,0%	17
STRAb SA-1A	127	5	VH5-12-1	0	0,0%	125
DOB'	122	5	VH5-12-1	0	0,0%	97
VERG5	98	5	VH5-12-1	0	0,0%	17
PBL2	9 8	5	VH5-12-1	1	1,0%	17
Tu16	119	5	VH5-12-1	1 -	1,0%	49
PBL12	98	5	VH5-12-1	1	1,0%	17
CD+2	9 8	5	VH5-12-1	1	1,0%	17
CORD10	9 8	5	VH5-12-1	1	1,0%	17
PBL9	98	5	VH5-12-1	1	1,0%	17
CORD2	9 8	5	VH5-12-1	2	2,0%	17
PBL6	9 8	5	VH5-12-1	2	2,0%	17
CORD5	98	5	VH5-12-1	2	2,0%	17
CD-2	9 8	5	VH5-12-1	2	2,0%	17
CORD1	98	5	VH5-12-1	2	2,0%	17
CD-3	98	5	VH5-12-1	3	3,1%	17
VERG4	98	5	VH5-12-1	3	3,1%	17
PBL13	98	5	VH5-12-1	3	3,1%	17
PBL7	9 8	5	VH5-12-1	3	3,1%	17
HAN	119	5	VH5-12-1	3	3.1%	97
VERG3	9 8	5	VH5-12-1	3	3,1%	17
PBL3	98	5	VH5-12-1	3	3,1%	17
VERG7	98	5	VH5-12-1	3	3,1%	17
PBL5	94	5	VH5-12-1	0	0,0%	17
CD-4	98	5	VH5-12-1	4	4,1%	17
CLL10	98	5	VH5-12-1	4	4,1%	17
PBL11	98	5	VH5-12-1	4	4,1%	17
CORD6	9 8	5	VH5-12-1	4	4,1%	17
VERG2	9 8	5	VH5-12-1	5	5,1%	17

පිථ

Table 2C: (continued)

Name ¹	aa²	Computed family ³	Germline gene ⁴	Diff. to germline ⁵	% diff. to germline ⁶	Reference ⁷
83P2	119	5	VH5-12-1	0	0,0%	103
VERG9	98	5	VH5-12-1	6	6,1%	17
CLL6	98	5	VH5-12-1	6	6,1%	17
PBL8	9 8	5	VH5-12-1	7	7,1%	17
Ab2022	120	5	VH5-12-1	3	3,1%	100
CAV	127	5	VH5-12-4	0	0,0%	97
HOM.	120	5	VH5-12-4	0	0,0%	97
PET	127	5	VH5-12-4	0	0,0%	97
ANG	121	5	VH5-12-4	0	0,0%	97
KER	121	5	VH5-12-4	0	0,0%	97
5.M13	118	5	VH5-12-4	0	0,0%	107
Au2.1	118	5	VH5-12-4	7	1,0%	49
WS1	126	5	VH5-12-1	9	9,2%	110
TD Vn	98	5	VH5-12-4	1	1,0%	16
TEL13	116	5	VH5-12-1	9	9,2%	73
E55 5.237	112	5	VH5-12-4	2	2,0%	26
VERG1	98	5	VH5-12-1	10	10,2%	17
CD4-74	117	5	VH5-12-1	10	10,2%	42
257-D	125	5	VH5-12-1	11	11,2%	6
CLL4	98	5	VH5-12-1	11	11,2%	17
CLL8	98	5	VH5-12-1	11	11,2%	17
Ab2	124	5	VH5-12-1	12	12,2%	120
Vh383ex	98	5	VH5-12-1	12	12,2%	120
CLL3	98	5	VH5-12-2	11	11,2%	17
Au59.1	122	5	VH5-12-1	12	12,2%	49
TEL16	117	5	VH5-12-1	12	12,2%	73
M61	104	5	VH5-12-1	0	0,0%	103
TuO	99	5	VH5-12-1	5	5,1%	49
P2-51	122	5	VH5-12-1	13	13,3%	121
P2-54	122	5	VH5-12-1	11	11,2%	121
P1-56	119	5	VH5-12-1	9	9,2%	121
P2-53	122	5	VH5-12-1	10	10,2%	121
P1-51	123	5	VH5-12-1	19	19,4%	121
P1-54	123	5	VH5-12-1	3	3,1%	121
P3-69	127	5	VH5-12-1	4	4,1%	121
P3-9	119	5	VH5-12-1	4	4,1%	121

Table 2C: (continued)

Name ¹	aa²	Computed family ³	Germline gene⁴	Diff. to germline ⁵	% diff. to germline ⁶	Reference
1-185-37	125	5	VH5-12-4	0	0,0%	124
1-187-29	125	5	VH5-12-4	0	0.0%	124
P1-58	128	5	VH5-12-4	10	10,2%	121
P2-57	118	5	VH5-12-4	3	3,1%	121
P2-55	123	5	VH5-12-1	5	5,1%	121
P2-56	123	5	VH5-12-1	20	20,4%	121
P2-52	122	5	VH5-12-1	11	11,2%	121
P3-60	122	5	VH5-12-1	8	8,2%	121
P1-57	123	5	VH5-12-1	4	4,1%	121
P1-55	122	5	VH5-12-1	14	14,3%	121
MD3-4	128	5	VH5-12-4	12	12,2%	5
P1-52	121	5	VH5-12-1	11	11,2%	121
CLL5	98	5	VH5-12-1	13	13,3%	17
CLL7	98	5	VH5-12-1	14	14,3%	17
L2F10	100	5	VH5-12-1	1	1,0%	46
L3B6	9 8	5	VH5-12-1	1	1,0%	46
VH6.A12	119	6	VH6-35-1	13	12,9%	122
s5A9	102	6	VH6-35-1	1	1,0%	46
s6G4	99	6	VH6-35-1	1	1,0%	46
ss3	99	6	VH6-35-1	1	1,0%	46
6-1G1	101	6	VH6-35-1	0	0.0%	14
F19L16	107	6	VH6-35-1	0	0,0%	68
L16	120	6	VH6-35-1	0	0,0%	69
M71	121	6	VH6-35-1	0	0,0%	103
ML1	120	6	VH6-35-1	0	0,0%	69
F19ML1	107	6	VH6-35-1	0	0,0%	68
15P1	127	6	VH6-35-1	0	0,0%	104
VH6.N1	121	6	VH6-35-1	0	0,0%	122
VH6.N11	123	6	VH6-35-1	0	0,0%	122
VH6.N12	123	6	VH6-35-1	0	0,0%	122
VH6.N2	125	6	VH6-35-1	0	0,0%	122
VH6.N5	125	6	VH6-35-1	0	0,0%	122
VH6.N6	127	6	VH6-35-1	0	0.0%	122
VH6.N7	126	6	VH6-35-1	0	0,0%	122
VH6.N8	123	6	VH6-35-1	0	0.0%	122
VH6.N9	123	6	VH6-35-1	0	0,0%	122

(continued)

Name ¹	aa²	Computed family ³	Germline gene⁴	Diff. to germline ⁵	% diff. to germline ⁶	Reference ⁷
VH6.N10	123	6	VH6-35-1	0	0,0%	122
VH6.A3	123	6	VH6-35-1	0	0,0%	122
VH6.A1	124	6	VH6-35-1	0	0,0%	122
VH6.A4	120	6	VH6-35-1	0	0,0%	122
E55 6.16	116	6	VH6-35-1	0	0,0%	26
E55 6.17	120	6	VH6-35-1	0	0,0%	2 6
E55 6.6	120	6	VH6-35-1	0	0,0%	26
VHGL 6.3	102	6	VH6-35-1	0	0,0%	26
CB-201	118	6	VH6-35-1	0	0,0%	109
VH6.N4	122	6	VH6-35-1	0	0,0%	122
E54 6.4	109	6	VH6-35-1	1	1,0%	26
VH6.A6	126	6	VH6-35-1	1	1,0%	122
E55 6.14	120	6	VH6-35-1	1	1,0%	26
E54 6.6	107	6	VH6-35-1	1	1,0%	26
E55 6.10	112	6	VH6-35-1	1	1,0%	26
E54 6.1	107	6	VH6-35-1	2	2,0%	26
E55 6.13	120	6	VH6-35-1	2	2,0%	26
E55 6.3	120	6	VH6-35-1	2	2,0%	26
E55 6.7	116	6	VH6-35-1	2	2,0%	26
E55 6.2	120	6	VH6-35-1	2	2,0%	26
E55 6.X	111	6	VH6-35-1	2	2,0%	26
E55 6.11	111	6	VH6-35-1	3	3,0%	26
VH6.A11	118	6	VH6-35-1	3	3,0%	122
A10	107	6	VH6-35-1	3	3,0%	68
E55 6.1	120	6	VH6-35-1	4	4,0%	26
FK-001	124	6	VH6-35-1	4	4,0%	65
VH6.A5	121	6	VH6-35-1	4	4,0%	122
VH6.A7	123	6	VH6-35-1	4	4,0%	122
HBp2	119	6	VH6-35-1	4	4,0%	4
Au46.2	123	6	VH6-35-1	5	5,0%	49
A431	106	6	VH6-35-1	5	5,0%	68
VH6.A2	120	6	VH6-35-1	5	5,0%	122
VH6.A9	125	6	VH6-35-1	. 8	7,9%	122
VH6.A8	118	6	VH6-35-1	10	9,9%	122
VH6-FF3	118	6	VH6-35-1	2	2,0%	123
VH6.A10	126	6	VH6-35-1	12	11,9%	122

.....

Table 2C: (continued)

Name ¹	aa²	Computed family ³	Germline gene⁴	Diff. to germline ⁵	% diff. to germline ⁶	Reference ⁷
VH6-EB10	117	6	VH6-35-1	3	3,0%	123
VH6-E6	119	6	VH6-35-1	6	5,9%	123
VH6-FE2	121	6	VH6-35-1	6	5,9%	123
VH6-EE6	116	6	VH6-35-1	6	5,9%	123
VH6-FD10	118	6	VH6-35-1	6	5,9%	123
VH6-EX8	113	6	VH6-35-1	6	5,9%	123
VH6-FG9	121	6	VH6-35-1	_ 8	7,9%	123
VH6-E5	116	6	VH6-35-1	9	8,9%	123
VH6-EC8	122	6	VH6-35-1	9	8,9%	123
VH6-E10	120	6	VH6-35-1	10	9,9%	123
VH6-FF11	122	6	VH6-35-1	11	10,9%	123
VH6-FD2	115	6	VH6-35-1	11	10,9%	123
CLL10 17-2	88	6	VH6-35-1	4	4,0%	29
VH6-BB11	94	6	VH6-35-1	4	4,0%	123
VH6-B41	93	6	VH6-35-1	7	6,9%	123
JU17	102	6	VH6-35-1	3	3,0%	114
VH6-BD9	96	6	VH6-35-1	11	10,9%	123
VH6-BB9	94	6	VH6-35-1	12	11,9%	123

WO 97/08320 PCT/EP96/03647

Table 3A: assignment of rearranged V kappa sequences to their germline counterparts

Family ¹	Name	Rearranged ²	Sum
I	VkI-I	28	
1	Vk1-2	0	
1	Vk1-3	ì	
1	Vk1-4	0	
1	Vk1-5	7	
1	VkI-6	0	
1	Vk1-7	0	
1	Vk1-8	2	
1	Vk1-9	9	
1	Vk1-10	0	
1	Vk1-11	1	
1	Vk1-12	7	
1	Vk1-13	1	
1	Vk1-14	7	
1	Vk1-15	2	
ı	Vk1-16	2	
j	Vk1-17	16	
1	Vk1-18	1	
i	Vk1-19	33	
I	Vk1-20	1	
1	Vk1-21	1	
1	Vk1-22	0	
1	Vk1-23	00	119 entries
2	Vk2-1	0	
2	Vk2-2	1	
2	Vk2-3	0	
2	Vk2-4	0	
2	Vk2-5	0	
2	Vk2-6	-16	
2	Vk2-7	0	
2	Vk2-8	0	
2	Vk2-9	i	
2	Vk2-10	0	
2	Vk2-11	7	
2	Vk2-12	0	25 entrie.
3	Vk3-l	1	
	Vk3-2	0	

Table 3A:

Sum	Rearranged ²	Name	Family 1
	35	Vk3-3	3
	115	Vk3-4	3
	0	Vk3-5	3
	0	Vk3-6	. 3
	1	Vk3-7	3
192 entries	40	Vk3-8	3
33 entries	33	Vk4-1	4
1 entry	1	Vk5-1	5
	0	Vk6-1	6
0 entries	0	Vk6-2	6
0 entries	0	Vk7-1	7

(continued)

Table 3B: assignment of rearranged V lambda sequences to their germline counterparts

Family ¹	Name	Rearranged ²	Sum
1	DPL1	1	
1	DPL2	14	
1	DPL3	6	
1	DPL4	1	
1	HUMLV117	4	
1	DPL5	13	
1	DPL6	0	
1	DPL7	0	
1	DPL8	3	
1	DPL9	0	42 entries
2	DPL10	5	
2	VLAMBDA 2.1	0	
2	DPL11	23	
2	DPL12	15	
· 2	DPL13	0	
2	DPL14	0	43 entries
3	DPL16	10	
3	DPL23	19	
3	Humlv318	9	38 entries
7	DPL18	1	······································
7	DPL19	0	1 entries
8	DPL21	, 2	
8	HUMLV801	6	8 entries
9	DPL22	0	0 entries
unassigned	DPL24	0	0 entries
10	gVLX-4.4	0	0 entries

WO 97/08320 PCT/EP96/03647

Table 3C: assignment of rearranged V heavy chain sequences to their germline counterparts

Name	Rearranged ²	Sum
VH1-12-1	38	
VH1-12-8	2	
VH1-12-2	2	
VH1-12-9	2	
VH1-12-3	0	
VH1-12-4	0	
VH1-12-5	3	
VH1-12-6	0	
VH1-12-7	23	
VH1-13-1	1	
VH1-13-2	1	
VH1-13-3	0	
VH1-13-4	0	
VH1-13-5	0	
VH1-13-6	17	
VH1-13-7	0	
VH1-13-8	3	
VH1-13-9	0	
VH1-13-10	0	
VH1-13-11	0	
VH1-13-12	10	
VH1-13-13	0	
VH1-13-14	0	
VH1-13-15	4	
VH1-13-16	2	
VH1-13-17	0	
VH1-13-18	1	
VH1-13-19	0	
VH1-1X-1	1	110 entries
VH2-21-1	0	
VH2-31-1	0	
VH2-31-2	. 1	
VH2-31-3	1	
VH2-31-4	0	
VH2-31-5	2	
VH2-31-6	0	
VH2-31-7	0	
	VH1-12-1 VH1-12-8 VH1-12-2 VH1-12-9 VH1-12-3 VH1-12-4 VH1-12-5 VH1-12-6 VH1-12-7 VH1-13-1 VH1-13-2 VH1-13-3 VH1-13-3 VH1-13-6 VH1-13-7 VH1-13-8 VH1-13-9 VH1-13-10 VH1-13-11 VH1-13-12 VH1-13-13 VH1-13-15 VH1-13-17 VH1-13-18 VH1-13-19 VH1-13-17 VH1-13-18 VH1-13-19	VH1-12-1 38 VH1-12-8 2 VH1-12-2 2 VH1-12-9 2 VH1-12-3 0 VH1-12-4 0 VH1-12-5 3 VH1-12-6 0 VH1-13-1 1 VH1-13-2 1 VH1-13-3 0 VH1-13-4 0 VH1-13-5 0 VH1-13-6 17 VH1-13-8 3 VH1-13-9 0 VH1-13-10 0 VH1-13-11 0 VH1-13-12 10 VH1-13-13 0 VH1-13-14 0 VH1-13-15 4 VH1-13-16 2 VH1-13-17 0 VH1-13-18 1 VH1-13-19 0 VH1-13-1 1 VH2-31-1 0 VH2-31-2 1 VH2-31-3 1 VH2-31-4 0 VH2-31-6 0

SUBSTITUTE SHEET (RULE 26)

Table 3C: (continued)

2	Family ¹	Name	Rearranged ²	Sum
2	2	VH2-31-14	1	
2	2	VH2-31-8	0	
2 VH2-31-11 1 2 VH2-31-13 1 7 entries 3 VH3-11-1 0 3 VH3-11-2 0 3 VH3-11-3 5 3 VH3-11-4 0 3 VH3-11-5 1 3 VH3-11-6 1 3 VH3-11-7 0 3 VH3-11-8 5 3 VH3-13-1 9 3 VH3-13-2 3 3 VH3-13-3 0 3 VH3-13-3 0 3 VH3-13-4 0 3 VH3-13-5 0 3 VH3-13-6 0 3 VH3-13-7 32 3 VH3-13-9 0 3 VH3-13-10 46 3 VH3-13-11 0 3 VH3-13-12 11 3 VH3-13-14 8 3 VH3-13-16 3 3 VH3-13-19 13 3 VH3-13-19 13	2	VH2-31-9	0	
2 VH2-31-12 0 2 VH2-31-13 1 7 entries 3 VH3-11-1 0 3 VH3-11-2 0 3 VH3-11-3 5 3 VH3-11-4 0 3 VH3-11-5 1 3 VH3-11-6 1 3 VH3-11-7 0 3 VH3-13-1 9 3 VH3-13-2 3 3 VH3-13-5 0 3 VH3-13-6 0 3 VH3-13-7 32 3 VH3-13-8 4 3 VH3-13-9 0 3 VH3-13-10 46 3 VH3-13-10 46 3 VH3-13-11 0 3 VH3-13-12 11 3 VH3-13-14 8 3 VH3-13-15 4 3 VH3-13-15 4 3 VH3-13-16 3 3 VH3-13-16 3 3 VH3-13-17 2 3 VH3-13-17 2 3 VH3-13-17 2 3 VH3-13-19 13 3 VH3-13-19 13 3 VH3-13-20 1	2	VH2-31-10	0	
2 VH2-31-13 1 7 entries 3 VH3-11-1 0 3 VH3-11-2 0 3 VH3-11-3 5 3 VH3-11-4 0 3 VH3-11-5 1 3 VH3-11-6 1 3 VH3-11-7 0 3 VH3-13-1 9 3 VH3-13-2 3 3 VH3-13-4 0 3 VH3-13-5 0 3 VH3-13-6 0 3 VH3-13-7 32 3 VH3-13-8 4 3 VH3-13-9 0 3 VH3-13-10 46 3 VH3-13-10 46 3 VH3-13-11 0 3 VH3-13-12 11 3 VH3-13-14 8 3 VH3-13-15 4 3 VH3-13-16 3 3 VH3-13-16 3 3 VH3-13-17 2 3 VH3-13-17 2 3 VH3-13-18 1 3 VH3-13-19 13 3 VH3-13-19 13 3 VH3-13-20 1 3 VH3-13-20 1	2	VH2-31-11	1	
3 VH3-11-1 0 3 VH3-11-2 0 3 VH3-11-3 5 3 VH3-11-4 0 3 VH3-11-5 1 3 VH3-11-6 1 3 VH3-11-7 0 3 VH3-13-1 9 3 VH3-13-2 3 3 VH3-13-2 3 3 VH3-13-5 0 3 VH3-13-6 0 3 VH3-13-7 32 3 VH3-13-8 4 3 VH3-13-9 0 3 VH3-13-10 46 3 VH3-13-10 46 3 VH3-13-11 0 3 VH3-13-12 11 3 VH3-13-14 8 3 VH3-13-15 4 3 VH3-13-16 3 3 VH3-13-16 3 3 VH3-13-17 2 3 VH3-13-18 1 3 VH3-13-19 13 3 VH3-13-19 13 3 VH3-13-19 13 3 VH3-13-20 1	2	VH2-31-12	0	
3 VH3-11-2 0 3 VH3-11-3 5 3 VH3-11-4 0 3 VH3-11-5 1 3 VH3-11-6 1 3 VH3-11-7 0 3 VH3-11-8 5 3 VH3-13-1 9 3 VH3-13-2 3 3 VH3-13-2 3 3 VH3-13-5 0 3 VH3-13-6 0 3 VH3-13-7 32 3 VH3-13-8 4 3 VH3-13-9 0 3 VH3-13-10 46 3 VH3-13-11 0 3 VH3-13-11 0 3 VH3-13-12 11 3 VH3-13-14 8 3 VH3-13-15 4 3 VH3-13-16 3 3 VH3-13-16 3 3 VH3-13-17 2 3 VH3-13-18 1 3 VH3-13-19 13 3 VH3-13-19 13 3 VH3-13-20 1	2	VH2-31-13	1	7 entries
3 VH3-11-3 5 3 VH3-11-4 0 3 VH3-11-5 1 3 VH3-11-6 1 3 VH3-11-7 0 3 VH3-11-8 5 3 VH3-13-1 9 3 VH3-13-2 3 3 VH3-13-3 0 3 VH3-13-5 0 3 VH3-13-6 0 3 VH3-13-7 32 3 VH3-13-8 4 3 VH3-13-9 0 3 VH3-13-10 46 3 VH3-13-11 0 3 VH3-13-12 11 3 VH3-13-12 11 3 VH3-13-14 8 3 VH3-13-15 4 3 VH3-13-16 3 3 VH3-13-16 3 3 VH3-13-17 2 3 VH3-13-18 1 3 VH3-13-19 13 3 VH3-13-19 13 3 VH3-13-19 13 3 VH3-13-20 1	3	VH3-11-1	0	
3 VH3-11-4 0 3 VH3-11-5 1 3 VH3-11-6 1 3 VH3-11-7 0 3 VH3-11-8 5 3 VH3-13-1 9 3 VH3-13-2 3 3 VH3-13-3 0 3 VH3-13-5 0 3 VH3-13-5 0 3 VH3-13-6 0 3 VH3-13-7 32 3 VH3-13-8 4 3 VH3-13-9 0 3 VH3-13-10 46 3 VH3-13-11 0 3 VH3-13-12 11 3 VH3-13-14 8 3 VH3-13-15 4 3 VH3-13-16 3 3 VH3-13-17 2 3 VH3-13-17 2 3 VH3-13-18 1 3 VH3-13-19 13 3 VH3-13-19 13 3 VH3-13-20 1 3 VH3-13-20 1	3	VH3-11-2	0	
3 VH3-11-5 1 3 VH3-11-6 1 3 VH3-11-7 0 3 VH3-11-8 5 3 VH3-13-1 9 3 VH3-13-2 3 3 VH3-13-3 0 3 VH3-13-5 0 3 VH3-13-6 0 3 VH3-13-7 32 3 VH3-13-8 4 3 VH3-13-9 0 3 VH3-13-10 46 3 VH3-13-11 0 3 VH3-13-12 11 3 VH3-13-13 17 3 VH3-13-14 8 3 VH3-13-15 4 3 VH3-13-16 3 3 VH3-13-17 2 3 VH3-13-17 2 3 VH3-13-18 1 3 VH3-13-19 13 3 VH3-13-20 1 3 VH3-13-20 1	3	VH3-11-3	5	
3 VH3-11-6 1 3 VH3-11-7 0 3 VH3-11-8 5 3 VH3-13-1 9 3 VH3-13-2 3 3 VH3-13-3 0 3 VH3-13-5 0 3 VH3-13-6 0 3 VH3-13-7 32 3 VH3-13-8 4 3 VH3-13-9 0 3 VH3-13-10 46 3 VH3-13-11 0 3 VH3-13-12 11 3 VH3-13-14 8 3 VH3-13-15 4 3 VH3-13-15 4 3 VH3-13-16 3 3 VH3-13-17 2 3 VH3-13-18 1 3 VH3-13-19 13 3 VH3-13-20 1 3 VH3-13-20 1	3	VH3-11-4	0	
3 VH3-11-7 0 3 VH3-11-8 5 3 VH3-13-1 9 3 VH3-13-2 3 3 VH3-13-3 0 3 VH3-13-5 0 3 VH3-13-6 0 3 VH3-13-7 32 3 VH3-13-8 4 3 VH3-13-9 0 3 VH3-13-10 46 3 VH3-13-11 0 3 VH3-13-12 11 3 VH3-13-14 8 3 VH3-13-15 4 3 VH3-13-16 3 VH3-13-16 3 VH3-13-17 2 VH3-13-18 1 3 VH3-13-19 13 VH3-13-20 1 3 VH3-13-21 1	3	VH3-11-5	1	
3 VH3-11-8 5 3 VH3-13-1 9 3 VH3-13-2 3 3 VH3-13-3 0 3 VH3-13-4 0 3 VH3-13-5 0 3 VH3-13-6 0 3 VH3-13-7 32 3 VH3-13-8 4 3 VH3-13-9 0 3 VH3-13-10 46 3 VH3-13-11 0 3 VH3-13-12 11 3 VH3-13-13 17 3 VH3-13-14 8 3 VH3-13-15 4 3 VH3-13-16 3 3 VH3-13-16 3 3 VH3-13-17 2 3 VH3-13-18 1 3 VH3-13-19 13 3 VH3-13-20 1 3 VH3-13-20 1	3	VH3-11-6	1	
3 VH3-13-1 9 3 VH3-13-2 3 3 VH3-13-3 0 3 VH3-13-4 0 3 VH3-13-5 0 3 VH3-13-6 0 3 VH3-13-7 32 3 VH3-13-8 4 3 VH3-13-9 0 3 VH3-13-10 46 3 VH3-13-11 0 3 VH3-13-12 11 3 VH3-13-14 8 3 VH3-13-15 4 3 VH3-13-16 3 3 VH3-13-16 3 3 VH3-13-17 2 3 VH3-13-18 1 3 VH3-13-19 13 3 VH3-13-20 1 3 VH3-13-20 1	3	VH3-11-7	0	
3 VH3-13-2 3 3 VH3-13-3 0 3 VH3-13-4 0 3 VH3-13-5 0 3 VH3-13-6 0 3 VH3-13-7 32 3 VH3-13-8 4 3 VH3-13-9 0 3 VH3-13-10 46 3 VH3-13-11 0 3 VH3-13-12 11 3 VH3-13-14 8 3 VH3-13-15 4 3 VH3-13-16 3 3 VH3-13-16 3 3 VH3-13-17 2 3 VH3-13-19 13 3 VH3-13-20 1 3 VH3-13-20 1 3 VH3-13-21 1	3	VH3-11-8	5	
3 VH3-13-3 0 3 VH3-13-4 0 3 VH3-13-5 0 3 VH3-13-6 0 3 VH3-13-7 32 3 VH3-13-8 4 3 VH3-13-9 0 3 VH3-13-10 46 3 VH3-13-11 0 3 VH3-13-12 11 3 VH3-13-14 8 3 VH3-13-15 4 3 VH3-13-16 3 3 VH3-13-16 3 3 VH3-13-17 2 3 VH3-13-18 1 3 VH3-13-19 13 3 VH3-13-20 1 3 VH3-13-20 1	3	VH3-13-1	9	
3 VH3-13-4 0 3 VH3-13-5 0 3 VH3-13-6 0 3 VH3-13-7 32 3 VH3-13-8 4 3 VH3-13-9 0 3 VH3-13-10 46 3 VH3-13-11 0 3 VH3-13-12 11 3 VH3-13-14 8 3 VH3-13-15 4 3 VH3-13-16 3 3 VH3-13-17 2 3 VH3-13-18 1 3 VH3-13-19 13 3 VH3-13-20 1 3 VH3-13-21 1	3	VH3-13-2	3	
3 VH3-13-5 0 3 VH3-13-6 0 3 VH3-13-7 32 3 VH3-13-8 4 3 VH3-13-9 0 3 VH3-13-10 46 3 VH3-13-11 0 3 VH3-13-12 11 3 VH3-13-14 8 3 VH3-13-15 4 3 VH3-13-16 3 3 VH3-13-16 3 3 VH3-13-17 2 3 VH3-13-19 13 3 VH3-13-20 1 3 VH3-13-21 1	3	VH3-13-3	0	
3 VH3-13-6 0 3 VH3-13-7 32 3 VH3-13-8 4 3 VH3-13-9 0 3 VH3-13-10 46 3 VH3-13-11 0 3 VH3-13-12 11 3 VH3-13-14 8 3 VH3-13-15 4 3 VH3-13-16 3 3 VH3-13-17 2 3 VH3-13-18 1 3 VH3-13-19 13 3 VH3-13-20 1 3 VH3-13-21 1	3	VH3-13-4	0	
3 VH3-13-7 32 3 VH3-13-8 4 3 VH3-13-9 0 3 VH3-13-10 46 3 VH3-13-11 0 3 VH3-13-12 11 3 VH3-13-13 17 3 VH3-13-14 8 3 VH3-13-15 4 3 VH3-13-16 3 3 VH3-13-17 2 3 VH3-13-18 1 3 VH3-13-19 13 3 VH3-13-20 1 3 VH3-13-21 1	3		0	
3 VH3-13-8 4 3 VH3-13-9 0 3 VH3-13-10 46 3 VH3-13-11 0 3 VH3-13-12 11 3 VH3-13-13 17 3 VH3-13-14 8 3 VH3-13-16 3 3 VH3-13-16 3 3 VH3-13-17 2 3 VH3-13-18 1 3 VH3-13-19 13 3 VH3-13-20 1 3 VH3-13-21 1	3	VH3-13-6	0	
3 VH3-13-9 0 3 VH3-13-10 46 3 VH3-13-11 0 3 VH3-13-12 11 3 VH3-13-13 17 3 VH3-13-14 8 3 VH3-13-15 4 3 VH3-13-16 3 3 VH3-13-17 2 3 VH3-13-18 1 3 VH3-13-19 13 3 VH3-13-20 1 3 VH3-13-21 1	3	VH3-13-7		
3 VH3-13-10 46 3 VH3-13-11 0 3 VH3-13-12 11 3 VH3-13-13 17 3 VH3-13-14 8 3 VH3-13-15 4 3 VH3-13-16 3 3 VH3-13-17 2 3 VH3-13-18 1 3 VH3-13-19 13 3 VH3-13-20 1 3 VH3-13-21 1	3			
3 VH3-13-11 0 3 VH3-13-12 11 3 VH3-13-13 17 3 VH3-13-14 8 3 VH3-13-15 4 3 VH3-13-16 3 3 VH3-13-17 2 3 VH3-13-18 1 3 VH3-13-19 13 3 VH3-13-20 1 3 VH3-13-21 1				
3 VH3-13-12 11 3 VH3-13-13 17 3 VH3-13-14 8 3 VH3-13-15 4 3 VH3-13-16 3 3 VH3-13-17 2 3 VH3-13-18 1 3 VH3-13-19 13 3 VH3-13-20 1 3 VH3-13-21 1	3			
3 VH3-13-13 17 3 VH3-13-14 8 3 VH3-13-15 4 3 VH3-13-16 3 3 VH3-13-17 2 3 VH3-13-18 1 3 VH3-13-19 13 3 VH3-13-20 1 3 VH3-13-21 1				
3 VH3-13-14 8 3 VH3-13-15 4 3 VH3-13-16 3 3 VH3-13-17 2 3 VH3-13-18 1 3 VH3-13-19 13 3 VH3-13-20 1 3 VH3-13-21 1				
3 VH3-13-15 4 3 VH3-13-16 3 3 VH3-13-17 2 3 VH3-13-18 1 3 VH3-13-19 13 3 VH3-13-20 1 3 VH3-13-21 1				
3 VH3-13-16 3 3 VH3-13-17 2 3 VH3-13-18 1 3 VH3-13-19 13 3 VH3-13-20 1 3 VH3-13-21 1				
3 VH3-13-17 2 3 VH3-13-18 1 3 VH3-13-19 13 3 VH3-13-20 1 3 VH3-13-21 1				
3 VH3-13-18 1 3 VH3-13-19 13 3 VH3-13-20 1 3 VH3-13-21 1				
3 VH3-13-19 13 3 VH3-13-20 1 3 VH3-13-21 1				
3 VH3-13-20 1				
3 VH3-13-21 1				
-				•
3 VH3-13-22 0			·	
	3	VH3-13-22	0	

Table 3C: (continued)

Family ¹	Name	Rearranged ²	Sum
3	VH3-13-23	0	
3	VH3-13-24	4	
3	VH3-13-25	1	
3	VH3-13-26	6	
3	VH3-14-1	1	
3	VH3-14-4	15	
3	VH3-14-2	0	
3	VH3-14-3	0	
3	VH3-1X-1	0	
3	VH3-1X-2	0	
3	VH3-1X-3	6	
3	VH3-1X-4	0	
3	VH3-1X-5	0	
3	VH3-1X-6	11	
3	VH3-1X-7	0	
3	VH3-1X-8	1	
3	VH3-1X-9	0	212 entries
4	VH4-11-1	0	
4	VH4-11-2	20	
4	VH4-11-3	0	
4	VH4-11-4	0	
4	VH4-11-5	0	
4	VH4-11-6	0	
4	VH4-11-7	5	
4	VH4-11-8	7	
4	VH4-11-9	3	
4	VH4-11-10	0	
4	VH4-11-11	0	
4	VH4-11-12	4	
4	VH4-11-13	0	
4	VH4-11-14	0	
4	VH4-11 -1 5	0	
4	VH4-11-16	1	
4	VH4-21-1	0	
4	VH4-21-2	0	
4	VH4-21-3	1	
4	VH4-21-4	1	

Table 3C: (continued)

Family ¹	Name	Rearranged ²	Sum
4	VH4-21-5	1	
4	VH4-21-6	1	
. 4	VH4-21-7	0	
4	VH4-21-8	0	
4	VH4-21-9	0	
4	VH4-31-1	0	
4	VH4-31-2	0	
4	VH4-31-3	0	
4	VH4-31-4	2	
4	VH4-31-5	0	
4	VH4-31-6	0	
4	VH4-31-7	0	
4	VH4-31-8	0	
4	VH4-31-9	0	
4	VH4-31-10	0	
4	VH4-31-11	0	
4	VH4-31-12	4	
4	VH4-31-13	7	
4	VH4-31-14	0	
4	VH4-31-15	0	
4	VH4-31-16	0	
4	VH4-31-17	. 0	
4	VH4-31-18	0	
4	VH4-31-19	0	
4	VH4-31-20	0	57 entries
5	VH5-12-1	82	
5	VH5-12-2	1	
5	VH5-12-3	0	
5	VH5-12-4	14	97 entries
6	VH6-35-1	74	74 entries

WO 97/08320 Table 4A: Analysis of V kappa subgroup 1

•												Fra	mewo	ork l		
amino acid'	-	7	(L)	4	ស	9	7	₩.	6	10	-	12	13	14	15	16
А		1							1				102	2	1	
В		<u> </u>	1	<u>.</u>		1	<u> </u>		<u> </u>	<u></u>	<u>.</u>					
С		<u>.</u>		<u>.</u>			<u>.</u>		<u> </u>						1	:
D	64		<u></u>	<u> </u>	<u> </u>											<u> </u>
E	8		14	<u>.</u>					<u>.</u>						1	
F		ļ	<u> </u>	<u>.</u>			<u> </u>		1	6				1		<u>.</u>
G		<u> </u>		<u> </u>	<u></u>	<u> </u>	<u> </u>	<u></u>								105
Н				<u>.</u>	ļ										7	
	<u> </u>	65		<u></u>	<u></u>	<u> </u>	<u> </u>	: :	<u> </u>	<u>!</u>					4	
К	<u> </u>	<u> </u>	1	<u> </u>		<u> </u>	<u> </u>	<u>.</u>								: 1
L		6		21						•	9 6		1	<u> </u>	<u> </u>	
M	1	ļ	ļ	6 6	ļ	<u> </u>	<u> </u>			<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	:	
N	 	<u></u>				ļ	<u>.</u>	: : 		<u> </u>	<u></u>	<u> </u>	<u> </u>	<u> </u>		<u>.</u>
P	ļ							103		1	<u>.</u>	2	<u> </u>	<u> </u>	1	
Q	ļ		62			8 8	<u></u>			<u> </u>	1	<u></u>	<u>.</u>			
R								•••••	**********	ļ				<u> </u>		
5							89		102	80		103		103	<u> </u>	
<u> </u>		1		······	88				••••••	18	***********	· · · · · · · · · · · · · · · · · · ·				
V		1	9	••••••	*****				······································		8	***********	2		9 8	
<u> </u>												••••		••••••		
X	1	······································												••••••		
Υ																
- (2)																
unknown (?)								<u>-</u>								
not sequenced																
sum of seq ²																
		:	:		:	:	:	•		:	96		:	:	9 8	105
mcaa*		1	·····	М		·····-	·····	······	S	5	L	S	Α	S	V	G
rel. oomcaa⁵	%98	9/88	71%	9/9/	100%	%66	100%	100%	98%	76%	91%	986/0	97%	98%	93%	100%
pos occupied ⁶	4	5	5	2	1	2	1	1	3	4	3	2	3	3	:	1

WO 97/08320Table 4A: Analysis of V kappa subgroup 1

PCT/EP96/03647

amino acid¹	17	138	19	20	21	22	23	24	^c 25	26	27	⋖	ထ	ပ	۵
А		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	1	1		1			103	.,				<u> </u>	
В		444444					<u></u>				1	<u>.</u>			
. C							105				ļ		ļ		<u> </u>
D	101													<u></u>	
E	2							1	1	•••••	2	ļ	ļ	ļ.,,	
F					2					•••••				ļ 	<u> </u>
G										1			<u> </u>		
Н		•									1				: :
1			6	4	101	1							<u></u>		
<u>K</u>								2	*********		1	! ! !			
L		*********						1							:
M		•••••	•••••						**********						
N		**********		·····						1			······		
Р		******	***********				*,********	*** ********	•••••	*******				•••••	
Q								20		······	10 0	···········	•••••••	,,	
R		94				······		81			••••••				•••••
<u>S</u>		5.		1	*********					102		***********			
T		6		99	********	103	•••••		1	1	••••••				•••••••••••••••••••••••••••••••••••••••
V			98	····	2	····	······	••••••		********		**********	•••••••	••••••	
W					********	••••••	•••••••						••••••		••••••
X	1		•••••••••••••••••••••••••••••••••••••••		*******	•••••••	•••••••			••••					
Y	1														
- (2)					•	•						105	105	105	105
unknown (?)					•••••	•••••									
not sequenced sum of seq ²		105	105	105	105	105	105	105	105	105	105	165			
oomcaa ³	103	:			: :				105				***********	***********	************
mcaa*	D	94 R	98 V						103		•	105	105	105	105:
шсаа			V	T		T	C	R	<u>A</u>	S	Q		-	-	- :
rel. oomcaa ^s	%96	%06	93%	94%	%96	%86	100%	77%	%86	97%	95%	100%	100%	100%	100%
pos occupied ⁶	4	:	3	4	3	3	1	5	3	4	5	1	1	1	1

WO 97/08320

Table 4A: Analysis of V kappa subgroup 1

	CDR														
amino acid¹	ш	ш	28	29	30	31	32	33	34	35	36	37	38	39	40
А					1	1		1	42						
В												1	1		
. C							1								
D			25		1	5	7					1			
E		<u></u>					1					2			
F		ļ	<u> </u>	1	1	<u></u>	7	<u> </u>			6				
G	ļ	<u> </u>	25	<u> </u>	7	3	<u></u>	<u> </u>	4		<u> </u>		<u> </u>	<u> </u>	
H	Į		ļ	ļ	1	2	2	<u></u>	1		ļ	2			
		<u> </u>	<u></u>	98	1	4			1	<u> </u>		<u> </u>			
K		ļ	ļ	<u></u>		7								95	
<u>L</u>	ļ		ļ		2	1		101	<u></u>	<u></u>		<u></u>			
M		ļ	<u> </u>	ļ	•			<u>.</u>	<u> </u>	-	-	<u></u>		<u> </u>	
NN	ļ		6		16	42			50			ļ			
Р			<u> </u>				***************************************		<u> </u>	ļ		<u>.</u>	<u></u>	<u> </u>	102
Q		<u></u>	<u> </u>						ļ	ļ		98	103	2	
R			ļ		16	3	2		ļ					3	1
S			41	2	57	32	3	1	1						1
T			7		••••••	4	******	•••••••••••••	4					1	
V			1	4	1			1				•••••	••••		
W					••••		21		•••••	104			••••••		
X		#101******	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		· ······			••••••	1	•••••			******		
Y					1		60				98				
-	105	105							•••••••						
unknown (?)														3	
not sequenced						1									
sum of seq ²		•	:	:	:	:						**********	*********		**********
	105	105	**********	······			:	:	50		:	98	103	95	102
mcaa'	-		5		S	N	Υ	L	N	W	Υ	Q	Q	Κ	Р
rel. oomcaa ^s	100%	100%	39%	930%	540%	40%	58%	97%	48%	100%	94%	94%	%66	910%	%86
pos occupied ⁶	1	1	6	4	12	11	9	4	:	1		5	2	4	3

WO 97/08320

Table 4A: Analysis of V kappa subgroup 1

	Frar	newo	rk II										CDR I	(
amino acid'	41	42	43	44	45	46	47	48	49	20	21	52	53	54	52
А			94							50	95				
В															
. C															
D										21	1	1	1		
E	1	3		,	1	1				1	********	1	**********	.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	33
F						1			3			1			
G	100		1							9	2				
Н		*****							2	***********					1
1		1				1		100		*******	···		1		
K		95			86					16			2		5
L		1				89	103						*******	101	
M		******		••••••				2				•••••	*******	.,,	
N		***********			10					2	,.,	1	25		
Р			******	104	.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,					1			*********		1
٥		1			1								*******		62
R			•••••••		3	3	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,						1	1	2
S					1				5	1	1	99	41	2	
Ţ		3			1					1	4	1	31		
VV			9			9					1		1		
W							**********								
X					1								1		
Y									92	1					
_															
unknown (?)	3		•••••											:	
not sequenced												1			
sum of seq ²	104	104	104	104	104	104	103	102	102	103	104	104	104	104	104
oomcaa ³	100	95	94	104	86	89	103	10 0	92	50	95	99	41	101	62
mcaa*	G	Κ	Α	Р	K	L	L	1	Υ	Α	Α	S	S	L	0
rel. oomcaas	%9 6	91%	900%	100%	83%	%98	100%	%86	%06	49%	910%	920%	39%	97%	%09
pos occupied ⁶	2	6	3	1	8	6		. ;	4	10	6	•	9	3	

9,5

WO 97/08320
Table 4A: Analysis of V kappa subgroup 1

amino acid' E A B C D E F G H K L	3 1 2 3	105	1	***********	09	61	103	63	64	65	99 2	1 3	1		67 30
B C D E F G H I	1 2	105					103				2		1		67
C D E F G H I	2	105					103					3	<u></u>		
D E F G H I K	2	105		***********			103					3	<u></u>		
E F G H	2	105		***********			103					3	<u></u>		
F G H I	3			***********			103					3	<u></u>		30
G H I K	3			***********			103	********				3			
H I K	3					<u></u>									
l K			4			ļ		******	105	4	101		102		
К			4			; }							: : : :		3
	1	**********					1	3							
L						1									1
[1		•••••					
М														1	
N L	6		••••••••	••••••						**********					
Р	1			101	2			•••••			•				
Q				••••••						1	********				
R	1			*******		103		1		1	1			2	
S	68			2	103			98		96		100			
Т	19			1		1	**********	2		3				101	
V			99		•	2011020,202	1	••••••				***********			1
W				***********							***********	********			
X			1								1		1		2
Y	_											1			1
_											··········				
unknown (?)															
not sequenced	_														
sum of seq ² 10	05	105	105	105	105	105	105	105	105	105	105	105	105	105	105
oomcaa ³	68	105	99	101	103	103	103	98	105	96	101	100	102	101	67:
mcaa' <u> </u>	S	G	V	Р	S	R	F_	S	G	S	G	S	G	T	D
rel. oomcaas	65%	100%	94%	96%	9686	% 8 6	%86	93%	100%	91%	96%	95%	97%	%96	64%
pos occupied ⁶	10	1	4	4	2	3	3			5	4	4	4	4	7

Table 4A: Analysis of V kappa subgroup 1

	F	rame	work	111											
amino acid'	11	72	73	74	75	9/	77	78	79	80	81	82	83	84	85
А		3				1				2	<u></u>		<u> </u>	1 01	1
В			<u></u>		1			••••••	3		2				
. C								•••••••	<u>.</u>	: : : :	: :		<u>.</u>		
D				<u> </u>		1					16	101			
E								•			8 3				
F	102	1	21	<u>.</u>									73		
G			<u>.</u>	<u>.</u>			4		<u></u>		1			2	
Н			<u>.</u>				************	•••••					: :		
					99	5		**********					17	,	
K															
L			81					103	1				1		:
M															1
N					•••••	7	4	********							1
Р										97					1
Q		••••••			•••••			********	97		**********				
R				•	•••••	2	1	-/	2		******		•		
S		2		1		8 6	94	*******		4	************		1		
Ţ		98		102	*****	2	1	••••••							97
V	1		2		4	**********		1			***************************************	••••	11		1
W			******			**********		*********			***				
X				1		**********					1	2			
ΥΥ	1														

unknown (?)														i	
not sequenced															
sum of seq²	104	104	104	104	104	104	104	104	103	103	103	103	103	103	102
oomcaa ³	102	98	81	102	99	86	94	103	97	97	83	101	73	101	97 ¹
mcaa'	F	Ţ	L	T		S	S	L	Q	Р	Ε	D	F	Α	T
rel. oomcaa ^s	98%	94%	78%	0/086	95%	83%	9006	9666	94%	94%	810%	98%	71%	980%	95%
pos occupied ⁶	3	4	3	3	3	7	:	•					•••••••••••••••••••••••••••••••••••••••	*************	

WO 97/08320Table 4A: Analysis of V kappa subgroup 1

										CDR	11					
amino acid'	98	87	88	68	90	91	92	93	94	95	٧	8	υ	۵	ш	ட
Α					1	7	1		5	1						
В		ļ		2	3			<u> </u>							<u>.</u>	
, C			102													
D							23	5	1							
E		<u>.</u>					1	1		1	1					
F		7				3			13							
G		<u>.</u>	<u>.</u>	: : : :		1		1	2	1		1				
Н		1		4	6	7	3	1								
		<u> </u>			<u> </u>		4	1	2	1						
K	1	ļ			7		1									
L		ļ ,		7	<u></u>	6	2		18	2						
M																
N			<u></u>	/ 01/01 1		6	31	19	1							
Р				***********	: : : :				1	82	6					
Q				90	86	1	2									
R				****		1		2	2							
S	1					27	3	58	5	10						
T		***********				3	1	15	25							
V									5	*******						
W							*********	********	1	*****						
X																
Y	101	93				42	32	1	23							
		********								3	82	88	89	8 9	89	89
unknown (?)		1														
not sequenced	2	3	3	2	2	1	1	1	1	4	16	16	16	16	16	16
sum of seq ²	103	102	102	103	103	104	104	104	104	101	89	89	89	89	89	89
oomcaa³	101		102	· ·	3		1		:	82	:	:	:	••••••	••••••	
mcaa¹	Υ	Υ	С	Q	Q	Υ	Υ	S	Т	Р	- [-	-	-	-	-
rel. oomcaas	986%	910/0	100%	87%	83%	40%	31%	56%	24%	81%	95%	%66	100%	100%	100%	100%
pos occupied ⁵	3	3	1	4	5	71	12	•	:		3	······································	•••••••	7		1

WO 97/08320Table 4A: Analysis of V kappa subgroup 1

							Fra	me	work	٠IV					1
amino acid'	96	97	98	66	100	101	102	103	104	105	106	¥	107	108	sum
Α	1														627
В					1					1					19
С															209
D	1									15					459
Е					2					65					258
F	6		86								2				451
G				87	29	87								2	894
Н	2	1													40
l	5								1		72				606
K	1	1						77					79		480
L	18	1	1						22	4	2				793
M		1							,		5				77
N	1										1		2		232
Р	6				7									1	620
Q	1				48					1					865
R	6	********	*******	****				6	•••••				2	7 0	413
S	2	2									•••••				1636
T	2	82					87	3	••••				2		1021
V	2							1	63		3				440
W	15														141
X	ļ							····							14
Y	16														564
-	4	1										8 5		1	1250
unknown (?)		•••••				•••••									7
not sequenced			=		_										589
sum of seq ²	:		***********			*********		•••••			************			•••••••••••••••••••••••••••••••••••••••	
oomcaa ³	18	82	86	87	48	87	87	77	63	65	72	85	79	70	
mcaa*	Ĺ	Ţ	F	G	G	G	T	Κ	٧	Ε		-	Κ	R	
rel. oomcaa ^s	20%	920%	%66	100%	55%	100%	100%	89%	73%	76%	85%	100%	93%	95%	
pos occupied ^e		: :	:	. :	: :	: :	: :			:				4	

 \mathcal{CC}

PCT/EP96/03647 WO 97/08320

100

2

pos occupied⁶

Υ

unknown (?)

WO 97/08320 PCT/EP96/03647

Table 4B: Analysis of V kappa subgroup 2 **CDRI** amino acid' Α В C 22 11 1 Ε F G 22 1 16 Н 1 22 22 13 L M 9 10 7 12 Ν 21 Q 1 2 R 21 22 22 19 S 21 22 8: ٧ 8 22 W 1

not sequenced sum of seq² oomcaa¹ 21 22 21: 22 22 21 22 22 13 16 19 22 10 22 11 12 21 22 11 22 15 G Y N Y ! L ! D | W ! Y . mcaa* C R S S Q S L $L \stackrel{!}{\cdot} H \stackrel{!}{\cdot} S$ N rei. oomcaas 1 2 1 1 3 4 3 1 5 1 5 4 2 1 4 1 2 pos occupied" 2 2: 1

101

11

22

21

WO 97/08320

PCT/EP96/03647

Table 4B: Analysis of V kappa subgroup 2

· •				Fi	ram	ewo	rk II									С	DR	1			
amino acid'	37	38	39	40	4	42	43	44	45	46	47	48	49	20	5	52	53	54	55	99	57
Α																			14		
В																					
- C																					
D														`					7		
E									1												
F																					
G					22										12		•••••		1	-4-1111-	22
Н																				ļ	ļ
L						: : :				1		22								! L	ļ ;
K			15											5							<u></u> ;
L	16									14	21			14	1					<u></u>	<u></u>
M			ļ <u>.</u>								.								ļ		<u> </u>
N									•••								18		<u></u>		<u> </u>
Р			ļ	22	•••••			21											ļ		; j
Q	6	22	ļ			22			12				:	1				<u></u>	ļ	<u></u>	
R		<u></u>	7						8	7				1	<u></u>		 	22	<u> </u>	ļ	
5		ļ	ļ	ļ	,		21						ļ		2	22	2	ļ	<u></u>	22	<u> </u>
T		ļ	ļ	ļ				<u></u>			ļ		<u> </u>		: : :		1	<u> </u>	1	<u> </u>	ļ
V		<u></u>	<u></u>			<u> </u>		i. 7		<u>.</u>	1		: : :		6	<u> </u>	<u> </u>	<u> </u>	: 	<u>:</u>	<u>:</u>
W		<u>.</u>			<u> </u>			ļ			ļ		<u> </u>			<u>.</u>		ļ	ļ	<u></u>	<u>:</u>
X		<u> </u>	<u></u>				ļ	ļ		<u> </u>	<u></u>			<u> </u>		<u> </u>		<u> </u>	<u>!</u>	ļ	<u>:</u> :
Y									_	<u> </u>			21		<u> </u>	<u> </u>	1		<u> </u>	<u> </u>	· -
-		ļ	<u> </u>	ļ	<u> </u>	<u></u>	ļ	ļ		<u> </u>	<u> </u>	<u></u>	<u> </u>	<u></u>	ļ	<u> </u>	ļ	ļ	ļ	ļ	
unknown (?)		ļ	ļ		: ! 	ļ	: 	·		<u>.</u>			ļ	ļ		ļ	ļ	ļ	<u> </u>	ļ	
not sequenced	?	<u> </u>	<u>!</u>	<u> </u>			+	1			<u> </u>	<u> </u>		:	1	: -		 	!	!	
sum of seq?			••••••••	*:	÷	:	·÷	·····	•••••••	•		• • • • • • • • • • • • • • • • • • • •	÷	:	· · · · · · · · ·	:	:	•	••••••		
oomcaa,	······	•••••	•••••••		******		·:	· · · · · · · · ·	.;	. i		• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •		********	••••••	• • • • • • • • • • • • • • • • • • • •		2 22
mcaa*	L	·÷	********	••••••••			•••••••		-:	÷	•••••••	•		······	· · · · · · · · · · · · · · · · · · ·			• • • • • • • • • • • • • • • • • • • •	•		G
rel. oomcaa ^s	73%	100%	0/089	100%	100%	100%	100%	100%	57%	64%	95%	100%	100%	%29	57%	100%	82%	100%	640/0	100%	100%
pos occupied ⁶	. 2	:	;			:						;				:					

WO 97/08320

Table 4B: Analysis of V kappa subgroup 2

amino acid' & A B C D E F G H I K			222		21		94		99	29	89		22	71	72	73	74	75	9/	77	87
B C D E F G H			22		21		1				1		22								
· C D E F G H			22		21		1				1		22								
D E F G H			22		21		1				1		22								
E F G H			22		21		1				1		22								
F G H					21						Ì	1	:		:		•				
G H I					21			•				<u>.</u>									
H													_	22							·
1							21		22		21										ļ
									•••••												
K I		•	<u>:</u> .	<u> </u>											<u>.</u>	•••••		21			: :
																•••••	19			i 	<u></u>
L																21	1				<u></u>
M										ļ										<u></u>	<u> </u>
N										ļ						•••••	<u> </u>			ļ	<u> </u>
Р		22					·····		<u> </u>	<u> </u>										ļ	<u>!</u>
Q				<u>.</u>					ļ	<u> </u>							<u></u>	ļ			<u>!</u>
R				20				1	<u></u>	<u> </u>							ļ	<u> </u>		20	†
S				1		22	: : :	21		22								: 		1	ļ
Т	<u>!</u>			1			<u></u>	ļ		ļ	<u></u>	22			21			ļ	1		<u> </u>
	22				1	ļ	ļ	<u> </u>	<u> </u>	<u> </u>	<u> </u>					<u></u>		<u> </u>	<u> </u>		21
W						ļ	ļ	ļ	-	ļ	<u></u>					: 	<u> </u>	<u> </u>	ļ	ļ	<u>:</u>
X								<u> </u>	ļ	· 	<u></u>			.,	•••••	<u></u>	ļ	ļ	ļ	ļ	<u>.i</u>
Y								<u> </u>	!		_						 	-	<u> </u>	 	-
		·	•••••		<u></u>	ļ	<u></u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>				1	<u></u>		ļ	ļ		<u>.</u>
unknown (?)			••••••		ļ	ļ		ļ	-	<u> </u>	<u></u>			ļ 	1	÷		. <u>.</u> 1	ļ		 1
not sequenced sum of seq?	22	22	22	22	22	22	22	22	2 2	7:22	22	22	22	22	22		; 	===	-		
ļ	••••••			:	÷	•	• • • • • • • • • • • • • • • • • • • •	·÷·····	••••••••		•••••••	22	······	:	;	-		•	······		:
<u>:</u> -				ţ	•			********	•		•••••••	. <u></u> T	:		:			:			
:		r %001	:		:	•••	•	· ·	•			100%			;	:		- %O			
pos occupied		÷	·····	:	:		:	:											97.0		···

WO 97/08320

PCT/EP96/03647

																	CI	DR I	11	
amino acid'	79	80	81	82	83	84	82	98	87	88	83	6	9	92	93	94	95	⋖	ω	ں
Α		20											14			1				
В												1			1					
· C									<u> </u>	21										
D			1	21																
E	19		20																	
F																				
G	1					21							6			1		2		
Н		<u></u>											1		7					•••••
1	1						1									1				••••
K															••••					
L	I	<u> </u>	<u>.</u>		<u>.</u>		1						<u></u>	12		ļ	2			
М	. 	<u>.</u>			<u>.</u>	.					21	<u> </u>	<u>.</u>			<u> </u>				
N		<u> </u>	<u></u>	<u> </u>	<u></u>		<u></u>						<u> </u>			<u></u>				
Р		1	ļ	ļ	<u></u>		ļ				<u>.</u>	ļ	ļ			2	16	1		
Q	1	ļ	ļ		ļ		<u> </u>	<u> </u>			ļ	20	<u> </u>	<u></u>	13	<u></u>				
R	. .	<u>.</u>	<u> </u>	ļ	<u> </u>	<u></u>	ļ	ļ			ļ	<u> </u>	<u> </u>	1		<u> </u>				
S		<u>.</u>	ļ	ļ	<u></u>		ļ	<u>.</u>			ļ					3	2			
<u> </u>		ļ	ļ	ļ	<u> </u>	<u> </u>	! !	: <u>:</u>	<u> </u>	: <u> </u>	<u>:</u> <u>:</u>	<u>.</u>	<u> </u>	8	<u> </u>	7				
<u>V</u>		<u> </u>	<u> </u>	ļ	21	<u></u>	19	<u> </u>	<u>.</u>	: : :	<u> </u>	<u> </u>	<u> </u>	ļ	<u> </u>	<u> </u>			<u></u>	
W		ļ	ļ		<u></u>			<u></u>		<u></u>	: 		<u> </u>	ļ	ļ	6			<u> </u>	<u> </u>
X		ļ		ļ	<u> </u>	ļ		<u> </u>		<u> </u>	<u> </u>		ļ		<u></u>	ļ			<u> </u>	: ! !
Y		<u> </u>	<u> </u>	<u> </u>	_	<u> </u>	<u> </u>	21	21	<u> </u>	<u> </u>		<u> </u>	_		-	-			<u> </u>
-	-			<u></u>						<u> </u>	<u></u>		<u> </u>	<u></u>		<u> </u>		14	17	1
unknown (?)	P			<u> </u>	-	ļ	<u> </u>	-		······	<u> </u>		<u>.</u>			<u> </u>				
not sequence				-		-	; -			; 	: -			 	:	†	2	-	:	: =
sum of seq ²					÷		· ! · · · · · ·	7	·:····	Ŧ		••••••		:	•	Ť				•••••
oomcaa ¹			•••••••		*		• • • • • • • • • • • • • • • • • • • •		:	:			7	*********	:	********	16	<u>.</u>	•	<u>: 1</u>
mcaa ⁴		- 			*********				•;•••••		••••••		•		•		Р		:	· :
rel. oomcaa	%O	9500	50%	%00	100%	%00	0/00(100%	%00	00 	%00	15%	37%	2/0/2	:2%	33%	%0	82%	%00	: 0
pos occupied		7	•																.: . .	.

WO 97/08320

Table 4B: Analysis of V kappa subgroup 2

narysis or v kapp				Ī					Fra	mev	vork	١٧					
amino acid'	ш	ᄔ	96	97	86	66	90	101	102	103	104	105	106	V	107	108	sum
А	Ī																71
В												1					3
С		1															43
D																	112
Е									1 0 000 000			13					71
F			1		17												72
G						17	2	16			: : 	1					233
Н								<u> </u>			<u>.</u>	<u></u>					26
			3								: -	! 	14				94
K								ļ		12	<u>:</u>	<u></u>			13		66
L			2						ļ		11	ļ					219
М								<u>.</u>	<u></u>	<u> </u>	:					-	37
N					···			<u> </u>	<u> </u>	<u></u>	<u> </u>	ļ					56
Р			1		. 			ļ		ļ	<u> </u>	ļ	<u> </u>				159
Q	••••••		1				14	ļ	<u></u>	<u></u>	ļ	ļ	-	<u></u>			159
R								<u> </u>	<u> </u>	4	<u> </u>	ļ		<u> </u>		12	1
5			•••••	•••••			ļ	ļ	ļ		<u>:</u>	ļ	: -}	ļ		ļ	325
T				17		ļ	ļ	<u> </u>	16	<u> </u>	<u> </u>	<u> </u>	:	<u> </u>		<u> </u>	140
V		ļ				<u> </u>	ļ	ļ	<u>.</u>	ļ		<u> </u>	· 	<u>!</u>	<u></u> .	<u> </u>	146
W			2			<u>.</u>	ļ	<u>.</u>			<u>:</u> 			<u> </u>		ļ	31
X						<u></u>	ļ	ļ	-		<u> </u>	ļ	ļ	<u> </u>		<u> </u>	3
Y	<u> </u>	<u> </u>	7		<u> </u>	<u> </u>	 	<u> </u>	_	<u> </u>	-	╄	-	-		_	123
-	17	17			<u> </u>	ļ	ļ	ļ	<u> </u>	<u></u>	<u>:</u>			13	<u></u>	<u> </u>	134
unknown (?)		-	· •								:				-		2
not sequenced	•		-		:	:	-	÷		6 6	-		7 8	: -	-	10	<u>پ</u>
sum of seq?					:	·÷					·	:		:		Ţ	<u> </u>
oomcaa,	17	17	7	-		*	·-:: ····			- !				13	:		
mcaa*	-	-	Y	T	F	• • • • • • • • • • • • • • • • • • • •				K	·· · ·····		··•	-	K	- i	
rel. oomcaa ^s	:	100%	· · · · · · · · · · · · · · · · · · ·		;			····		••••••••	***************************************			100%	100%	100%	
pos occupied	1	1 1	7	1		1	1	2	1	1	2	2	3	1 1	:	<u> </u>	! ·

105 **SUBSTITUTE SHEET (RULE 26)**

Table 4C: Analysis of V kappa subgroup 3

											Fran	newo	rk I			
amino acid'	_	2	င	4	5	9	7	∞	6	10	Ξ	12	13	14	15	16
Α		5					2		27						1	
В	1															
. C												2			: <u></u>	
D	2		Ī	į					14				<u>.</u>			
E	76		27				<u></u>									
F		1								<u></u>				1		
G	1								82						1	152
Н										1			; ; 			
ı		75								: 						
К	3															
L		· 4	1	104			1				150		129		1	
М	5			13												
N														5		
Р								124							147	
0						123										
R					1	••••										
S							119		3	1		150	1	141		
T		2			117					147				5	1	
V		1	8 9	1			1				1		22		1	
W											•••••					
X						•										
Υ																
-		•••••					<u></u>									
unknown (?)						<u></u>	<u></u>	<u></u>			•••••	••••••				
not sequenced										-					- 10-	
sum of seq ²	88	88	117	118	118	123	123	124	126	149	151	152	152	152	152	152
oomcaa,	76	75		104	117	······	÷	÷	••••••••••••••••••••••••••••••••••••••	147	150	·····	, :	••••••••••••••••••••••••••••••••••••••	· · · · · · · · ·	152
mcaa ⁴	E	1	٧	L	T	Q	S	Р	G	T	L	S	L	S	Р	<u>G</u>
rel. oomcaas	%98	85%	26%	88%	%66	100%	97%	100%	65%	966	%66	%66	85%	93%	97%	100%
pos occupied ⁶	6	6	3	3	:		. 4	: : 1	: 4	3	2	2	3	. 4	6	1

Table 4C: Analysis of V kappa subgroup 3

														·····		CDRI
amino acidi	17	18	19	20	21	22	23	24	25	26	27	∢	В	U	٥	щ
Α			178	2					166	1						
В																
. с		••••••					181			1						
D	6													<u> </u>		
E	146	1									1					
F ·					7	1										
G	1	1							71	1		1				
Н											17	•				
		1		5	2							•				
K		1						5								
L					173						1	1	•••••			
M																
N												9				
Р																
Q											159					
R		175						176		1	1	10	**\			
S						180			7	175		87				
T		1		174					7	. 2		1	•••••			
V		1	4	1					1			1	*			
W								1					*******			
X																
Y						1					1					
-												72	182	182	182	182
unknown (?)											1					
not sequenced																
sum of seq²	153	181	182	182	182	182	181	182	182	181	181	182	182	182	182	182
oomcaa,	146	175	178	174	173	180	181	176	166	175	159	87	182	182	182	182
mcaa*	Ε	R	Α	T	L	S	С	R	Α	S	Q	S	-	-	-	-
rel. oomcaa'	95%	97%	%86	0/096	92%	%66	100%	97%	91%	97%	9/088	48%	100%	100%	100%	100%
pos occupied	3					3	107	. 3		6				1	1	

Table 4C: Analysis of V kappa subgroup 3

															Fram	ew
amino acid'	u_	28	29	30	31	32	33	34	35	36	37	38	33	4	4	42
A		į		1	1			181								
В				İ	ľ											
. C				i					<u> </u>							
D			1	1	2	1					<u></u>					
E		<u> </u>				1							1			······
F		1	<u> </u>	<u></u>		7				1						
G			2	7	3	1		2						1	184	
Н			1			2				1		12	1	1		
		24	4	1	1			<u></u>	<u></u>							
<u> </u>				1	1								153			
<u> </u>		8	1			1	176					3				
М		<u> </u>														
N			3	12	25	32										
Р					1									170		
<u>Q</u>					1	1					183	167	1			18
R			10	3	18	16		1			1		27	5		
5		72	86	151	118	4								5		
T		1	1	3	8	1							1			
<u>V</u>		76	68		1		7					3	· · · · · · · · · · · · · · · · · · ·	2		
W			5						185							
X																
Y				1	1	115				183						
-	182			ļ	<u>.</u>	ļ	ļ									
unknown (?)		ļ		ļ	<u>.</u>	<u></u>					1			!		
not sequence	4				:											
sum of seq ²	182	182	182	181	181	182	183	184	185	185	185	185	184	184	184	18
oomcaa¹	182	76	86	151	118	115	176	181	185			· · · · · · · · · · · · · · · · · · ·	• • • • • • • • • • • • • • • • • • •	********	184	.
mcaa'	-	ν	S	S	<u>S</u>	Υ	L	Α	W	Υ	Q	Q	K	Р	G	C
rel. oomcaa ^s	100%	42%	47%	83%	65%	63%	%96	%86	100%	%66	%66	%06	83%	92%	100%	:
pos occupied	r 1	6	11	10	13	12	<u> </u>	:	:	:	:		:		1	:

	rk II									С	DR II					
amino acid	43	44	45	46	47	48	49	20	51	52	23	54	55	26	57	28
Α	176							4	147				176	1		
В														.	<u>.</u>	
С					<u> </u>				1					.	.	•••••
D					į			43					2		4:	
E															<u> </u>	
F				1		1	4									
G								125					2	10	179	
Н							9		1							
1						178		<u>.</u>						1		16
K			1					<u>.</u>	<u></u>		7	1			<u></u>	
L		1		179	174	1										
М						3		<u> </u>	<u>!</u>		1					
N	THE STATE OF THE S		1			<u>.</u> 	<u></u>	1	:		53			2		
Р	5	184			<u>.</u>	<u>.</u>	<u></u>			2			2	2		
Q					<u> </u>	<u> </u>	1	<u> </u>	<u>.</u>							
R			182		<u> </u>	<u> </u>	<u> </u>	1			4	180	<u></u>			
S			<u>.</u>		<u></u>	<u> </u>	3	E	3 4	179	74	1	ļ	5		
T	3	<u>.</u>	<u>.</u>		<u> </u>	<u> </u>	<u> </u>	<u>.</u>	11	2	44		ļ	164	<u></u>	
V		<u>.</u>	<u> </u>	3	9	<u> </u>	<u> </u>] 3	19)	<u> </u>	ļ	3			<u> </u>
W		<u>.</u>	<u> </u>	<u> </u> 	<u> </u>	<u>.</u>		ļ		<u> </u>	ļ	1	ļ		ļ	ļ
X		<u>.</u>	<u> </u>	<u> </u>	<u></u>	<u> </u>	<u>.</u>			ļ	<u> </u>	<u> </u>		······································	<u> </u>	<u></u>
Υ							16	5				<u> </u>	<u> </u>		2	_
			<u>.</u>	<u></u>	<u>.</u>	: :	<u>.</u>	<u>.</u>	; ;	<u>.</u>	<u> </u>	<u> </u>		ļ	<u> </u>	: :
unknown (?)		1	:	ļ			: : :			<u> </u>	ļ	<u>.</u>	<u> </u>	ļ	<u>:</u>
not sequenc				!			<u> </u>				<u> </u>	<u> </u>	-			<u>_</u>
sum of sec	' 18	4 185	185	183	183	3 18	3 18	3 18	3:18:	3 183	183	183	185	185	185	1
oomcaa3	17	6 184	182	179	17	4 17	3 16	5 12	5 14	7 179	74	180	176	164	179	1
mcaa'	Α	Р	R	L	L	1	Y	G	A	S	S	R	. A	: T	G	. <u>.</u> . . .
rel. oomca	a' d	9000 0606	080%	080	05.00 05.00	0700		0.000	0/0/0	0,000	40%	980%	0/26	89%	970%	1
pos occupio		:	2 :	3	••••	··· [···· ··	4			:	3. (5. 7	7. (3

WO 97/08320

Table 4C: Analysis of V kappa subgroup 3

P 177 Q R S T 1		1		1 184		3 1 178		5	3	1 152 30	183	1	2 182	3
B C C D 1112 E F G G H 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1	1	2	1184		1 178		1		152 30	183	1	182	3:
C D D 1112 E F G H I K L M N P 177 Q R S 7 T 1 V W X Y unknown (?)	1	1	2	1184		178				3 0	183		182	3
D 112 E F G G H I I I K L M N P 177 Q R S 7 T 1 V W X Y unknown (?)	1	1	2	1184		178				3 0	183		182	3:
E F G H I I K L M N P 177 Q R S 7 T 1 V W X Y unknown (?)	1	1	2	1184		178				3 0	183		182	3:
F G H I I K L M N P 177 Q R S 7 T 1 V W X Y unknown (?)	1	1	2			178			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		183		182	3:
F G H I I K L M N P 177 Q R S 7 T 1 V W X Y unknown (?)	1	1	2					177			183		182	3
H 1 1 1 K L . M N P 1777 Q R S 7 T 1 1 V W W X Y Y L unknown (?)	1	1	2					177					<u></u>	3
I K L M N N N N N N N N N N N N N N N N N N	1	1	2		1	1							<u></u>	3
K L M N P 177 Q R S 7 T 1 V W X Y unknown (?)	1	1	2		1	1							<u></u>	3
L M N N P 1777 Q N N N N N N N N N N N N N N N N N	1	1	2		1	1							<u></u>	
M N P 1777 Q P 1777 Y P P 1777 Y P P P P P P P P P P P P P P P P P			2		1	1							<u></u>	
N P 177 O P 177 O P 177 O P 177 O P P 177 O P P P P P P P P P P P P P P P P P P			†		1	1						1		
P 177 Q			†		1				<u>i</u>	<u>i</u>		1		
Q R 7 7 7 1 1 V V V V V V V V V V V V V V V	182		†		1									
R S 7 T 1 1 V W X Y Y Unknown (?)	182		†		1			·····	····					
S 7 T 1 V W X Y - unknown (?)	182		†		1					1				
T 1 V W X Y unknown (?)			190						2	····				
V W X Y - unknown (?)	- 	:	100		179	,	185	:	3			7	·····	2
W X Y - unknown (?)	2	2	3		2		<u> </u>		177			172		179
X Y - unknown (?)	3		<u> </u>			1	<u> </u>	1						
Y - unknown (?)	<u> </u>	<u>.</u>	<u> </u>	<u> </u>	<u> </u>	<u></u>	<u>:</u>	1						
- unknown (?)	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>		: 					<u> </u>		:
		-	<u> </u>		<u> </u>						1			
			ļ	<u> </u>	<u> </u>	<u></u>	<u></u>	ļ				<u> </u>		
not sequenced		<u>.</u>		<u></u>	<u> </u>	1		<u> </u>				<u></u>		
		-	-	<u> </u>				<u>:</u>				<u> </u>		
sum of seq ² 185 18				-	1	· · · · · · · · · · · · · · · · · · ·	:		:		:	:	}	•
oomcaa ³ 177 11	2: 101		•••	:	:	• • • • • • • • • • • • • • • • • • • •		-			*******	: _	182	:
mcaa ⁴ P D		F	S	G	<u>S</u>	G		:	: T	D	F	<u> </u>	<u> </u>	T
rel. oomcaa' %96		:		•	:		0			:		93%	%	970%
pos occupied ⁶ 3		%66 99%	97%	%66	97%	%96	100%	%96	%96	83%	%66	93	9,066	97

	••			<u> </u>				~			10	·-	~		6	
amino acid'	75	9/	77	78	79	80	8	82	8	84	82	98	84	88	68	6
A							3			174						
В			,		1											
. C									2				1	182		
D			1				3	182								
E					149		175									2
F		1							178		2	1	4			
G			3					1		2						
Н											1				1	7
1	178							1	1		9				:	
K							1								:	
L				178		1			1		7		1			1
М										1	5					*********
N	1	5														********
Р			•••••	•••••••		149										,
Q			•	•••••	34									1	181	155
R		1	111							3						1
S		169	65			34		•	1				2			
T		8	4							1						8
V	4			6					1	3	159					7
W																
Χ	******	******	• • • • • • • • • • • • • • • • • • • •													*******
Υ	1										1	183	176		1	2
-																
unknown (?)			•												;	*********
not sequenced				••••••											:	
sum of seq²	-	184	184	184	184	184	182	184	184	184	184	184	184	183	183	183
	:			:					:	174						•••••••
mcaa ⁴	:			L		:	E	D		Α						
			······································											•		
rel. oomcaa ^s	97%	92%	9/09	97%	81%	81%	%96	99%	97%	95%	86%	99%	%96	%66	966	85%
pos occupied			.	 :												ىي 8

Table 4C: Analysis of V kappa subgroup 3

4C: Affaiysis of	КОР	pa 30	og. o	ир с		DR II	1									
amino acid'	91	92	93	94	95	٧	8	ပ	۵	ш	u_	96	97	86	66	100
А		1	8	3	3											1
В																
· C	2			1								2				
D		8	5										1			
E		2										1				
F	5		2									7		166		
G	1	104	15		1	1	2					1			166	41
Н	4	1										2				
1			1			1						4				
Κ			2			1						1				1
L				2	7	5						42				
М		1			1	2										
N		28	71									1				
Р				1	139	24						7	2	, 		9
Q	1		1		3	1						3				114
R	34	2	3		2	2						19				
S	2	33	58	102	15	2						1	8	•••••		
T		2	13	1	1	2				-		1	154			
V					3	· 1						2				
W				6 9								24				
Χ																:
Y	134	1	1									43				
-			3	3	7	127	167	169	169	169	169	8	1	1	1	1
unknown (?)								••••								
not sequenced						14	14	14	14	14	14	14	17	16	16	16
sum of seq²	183	183	183	182	182	169	169	169	169	169	169	169	166	167	167	167
oomcaa¹	134	104	71	102	139	127	167	169	169	169	169	43	154	166	166	114
mcaa'	Y	G	N	S	Р	-	-	-	-	_	-	Υ	T	F	G	Q
rel. oomcaa'	73%	57%	39%	26%	76%	75%	%66	100%	100%	100%	100%	25%	93%	%66	%66	68%
pos occupied ⁶	8	11	:	:	11	12	:	•	1	1	1	18	5	. 2	2	

Table 4C: Analysis of V kappa subgroup 3

		Fra	mev	ork 1	V					
amino acid'	101	102	103	104	105	106	A	107	108	sum
Α										134
В										
С	:									37
D					2 3		Ī			56
E	Ì		3		141					75
F						6				76
G	166								1	180
Н					1					6
1						143				80
K			152	<u></u>	,			157		48
L				54		1			2	159
M						3				3
N		1						3		25
Р		1		1						114
Q			1		1					131
R			9			2		4	134	132
<u> </u>		2								262
T		162	1					1		159
V			•••••	111		11				64
W							· · · · · · · · · · · · · · · · · · ·			28
X			••••••							
Y			1							101
-	1	1	1	1	1	1	166	1	1	215
unknown (?)					*********			••••		
not sequenced										33
sum of seq ²				:	 :				:	
	166			111		143	166	···	<u> </u>	
mcaa'	G	T	K	V	E	1		K	R	!
rel. oomcaa ⁶	%66	97%	90%	0/099	84%	96%	100%	95%	97%	
pos occupied ⁶	2	5	7	4	5	•	;	5	. 4	

WO 97/08320

Table 4D: Analysis of V kappa subgroup 4

											Fran	iew	ork I					
amino acidi		2	က	4	S.	9	7	©	6	2	=	12	13	14	15	91	12	18
А												24					1	
В																		
. С										1	į					1		
D	25			į					26		į							
E																	25	
F		<u> </u>																
G												1				24		
Н		į																
l		26																
К						1												
L				1							26				26			
M				24														
N	1																	
Р								26				1						
Q			1			25												
R																		26
S	ļ						26	•••••		25		*********		26		1		
T					26			•••••				•••••				••••••		
V			2 5	1									26			•••••		<u> </u>
W					••••••													
X	ļ							*******						••••••		••••••		
Ý	<u> </u>																	
_	 							· 		ļ								
unknown (?)	ļ			••••••	: 					ļ						••••	:	
not sequenced	7			7			7			: -	-		7		-			_
sum of seq²		26	······		••••••• :	:	:	:		i			*********			*********		
oomcaa3					,	•	•	} :	······································	·}					26	·····	·	26
mcaa*	D	<u> </u>		М	.	ļ <u>-</u>	- :		D	······	:		V	 :	L	G	E	R
rel. oomcaa ^s	%96	100%	%96	92%	100%	%96	100%	100%	100%	%96	100%	92%	100%	100%	100%	92%	%96	100%
pos occupied ⁶	2	1	2	3	1	2	1	1	. 1	2	1	3	1	1	1	3	2	1

Table 4D: Analysis of V kappa subgroup 4

															DRI				
amino acid'	6	20	21	22	23	24	25	56	27	×	8	C	, ر	_	ш	ᄔ	28	29	30
А	26						1					1							
В																			
С					3 3							<u></u>							
D			į									1		1			1		
E											<u> </u>								
F											<u> </u>								····
G										<u></u>	<u> </u>	<u>.</u>							
Н										<u></u>		,							
			26							<u> </u>	<u></u>	1		<u></u>					
K						33								: : <u>:</u>			2		30
L												2	31						
M										<u></u>									<u> </u>
N				26		<u></u>	<u> </u>	<u> </u>	<u>:</u>	<u>.</u>					•••••		30	31	
Р	<u></u>						1				ļ					1			
0						ļ	<u> </u>	<u></u>	32	<u> </u>	<u> </u>							ļ	
R		<u>.</u>	<u> </u>		<u>.</u>	<u>.</u>	<u> </u>		1	<u> </u>								1	
S .		<u>.</u>			ļ		31	33		3	3				32	32	<u>.</u>	1	
Ţ		26	<u> </u>	<u> </u>	<u> </u>		<u> </u>	<u> </u>	<u>.</u>	<u>.</u>	<u></u>				1			<u></u>	: : :
V	<u>.</u>	<u> </u>	<u> </u>	<u> </u>		<u></u>	<u> </u>	<u></u>	<u> </u>	<u> </u>	2	8	2				ļ 	<u></u>	! :
W	ļ	<u>.</u>	<u></u>	<u> </u>			<u> </u>	ļ								ļ	<u> </u>	<u> </u>	:
X		<u> </u>	<u> </u>	ļ	<u> </u>		<u>.</u>	ļ	ļ									<u> </u>	:
Y														32				<u> </u>	
_							<u>.</u>	<u>.</u>			_					<u></u>	<u> </u>	<u> </u>	<u>.</u>
unknown (?)		<u> </u>	<u>.</u>				<u> </u>			<u></u>				,	<u>.</u>	ļ	<u></u>	<u>.</u>	
not sequenced		7 7	7	7	<u> </u>	<u> </u>		<u> </u>							<u> </u>				<u>:</u>
sum of seq²	26	3 2€	26	26	3.	3 3:	3	3: 3:	3: 3:	3 3	3 :	33	33	33	33	33	33	33	3
oomcaa3	20	3 26	26	26	3	3 3	3 3	1: 3	3. 3	2 3	3	28	31	32	32	32	30	31	3
mcaa*	Α	Ţ	1	N	C	K	S	: S	<u>: 0</u>		5	٧	L	Y	S	S	N	N	
rel. oomcaas	1000	100%	1000%	100%	1000%	100%	940%		0.70%	0000	0/20	85%	94%	97%	920%	0/0/b	9 10%	94%	
pos occupied ⁶		1	1		١ أ	1 :	 1			··· ·	1	5		:	Ţ		Ī		. 3:

Table 4D: Analysis of V kappa subgroup 4

											ram							
amino acid'	3.	32	33	34	35	36	37	38	33	4	14	42	43	44	45	46	47	48
Α				32						2								
В																		
C						<u> </u>												
D																		••••
E											1							
F						<u> </u>		<u> </u>										
G			į			İ					32							
Н						2												
																		32
K						<u></u>			33						32			
L			33									i				29	33	•••••
М								<u></u>										
N	33		<u> </u>											.,				
Р										31			31	33				****
Q							32	33				32						
R							1					1			1			
S													2			.		
T	<u> </u>			1														
V	ļ															4	ļ	
<u> </u>					33													
X				******			*******		********								ļ	
Υ		3 3				31												
_														<u></u>	<u>.</u>	<u> </u>	<u></u>	
unknown (?)	<u>[</u>													<u>.</u>	<u></u>	<u> </u>	<u>;</u>	
not sequenced																		:
sum of seq ²	33	33	33	33	33	33	33	33	3 3	33	33	33	33	33	33	33	33	3
oomcaa³	33	33	33	32	33	31	32	33	33	31	32	32	31	33	32	29	: 33	: 3
mcaa'	N	Υ	L	Α	W	Υ	Q	Q	Κ	Р	G	Q	Р	Р	K	L	L	1
rel. oomcaa ⁵	100%	100%	100%	97%	100%	94%	97%	100%	100%	94%	970%	97%	94%	100%	97%	%88	100%	070%
pos occupied ⁶	1	1	1	2	1	;		1	1	2	2	•		1	2	. 2	1	;

Table 4D: Analysis of V kappa subgroup 4

• -				C	DR I	l												
amino acid'	49	20	51	52	53	54	52	56	57	58	59	99	61	62	63	64	65	99
Α			30															
В																		
· C						į												******
D												33						
E							32											,
F			<u> </u>			<u>i</u>								33				
G									33						1	3 3		33
Н																		
1					1													
K																		
L																		
М																		
N					2													
Р				1	••••				- 		33		1					
Q																		
R						33							32					
S	ļ		1	31	1			3 3							32		33	
T	.	<u>.</u>	2	1	29		<u>.</u>			<u></u>						·		
V		<u> </u>					1	<u> </u>		33						<u> </u>		<u> </u>
W		33	ļ				ļ			ļ							ļ	
X	!	ļ	ļ		ļ	ļ	<u></u>	ļ		ļ		•••••			<u> </u>	:	<u></u>	:
Y	33	<u> </u>				<u></u>												
_	ļ	ļ	ļ 	<u></u>	<u> </u>		ļ		<u>.</u>					: : : :	ļ	:	<u> </u>	<u>.</u>
unknown (?)		ļ	ļ		<u> </u>		<u> </u>	ļ	•		ļ				<u></u>	·	ļ	
not sequenced	<u> </u>				<u> </u>	<u> </u>	<u> </u>	<u> </u>		<u> </u>	<u> </u>				<u></u>	! !	<u> </u>	<u> </u>
sum of seq ²	33	33	33	33	33	33	33	33	33	33	33	33	33	33	33	33	33	3
oomcaaı		•	:	:	·	· · · · · · · · · · · · · · · · · · ·	·	······	33	.,	33	33	32	33	32	33	33	: 3
mcaa ⁴	Y	W	<u> </u>	S	T	R	E	S	G	V	Р	D	R	F	S	G	S	G
rel. oomcaa'	100%	100%	91%	94%	%88	100%	97%	100%	100%	100%	100%	100%	9/0/6	100%	97%	100%	100%	1000%
pos occupied ^a	1	1	3	3	:		:	:		1	1	1	2	1	2	1	1	: :

WO 97/08320

Table 4D: Analysis of V kappa subgroup 4

					Fra	mev	ork	111										
amino acid'	29	89	69	70	7	72	73	74	75	9/	77	78	79	8	8	82	83	84
Α														33				32
В																		
. C																		
D				32												33		
E															33			
F					32						İ						.,	
G		33		1														1
Н																		
l									33		<u></u>							
K																		
L		-					33					32						
· M												1						
N										2	1						.	
Р						•••••								•••••	••••			
Q													32					
R	<u> </u>						•••						1					
S	33									30	32							••••
<u> </u>			33			33		33		1				••••••		<u> </u>		
<u>V</u>		<u></u>			1										•••••	<u> </u>	3 3	
W	.					•••••										<u></u>		
X	.			•••••												<u> </u>		
Y	<u> </u>																	
_	ļ	<u> </u>														<u> </u>		
unknown (?)	Į	ļ														: : •		
not sequenced	<u> </u>																	
sum of seq ²	33	33	33	33	33	33	33	33	33	33	33	33	33	33	33	33	33	33
oomcaa ³	33	33	33	32	32	33	33	33	····	30	32	32	32	33	33	33	33	32
mcaa ⁴	S	G	T	D	F	Ţ	L	Ţ	1	S	S	L	Q	Α	E	D	V	Α
rel. oomcaa ^s	100%	100%	100%	92%	97%	100%	100%	100%	. %001	91%	97%	97%	97%	100%	100%	100%	100%	97%
pos occupied ⁶	1	1	1	•		:	1	:	:		: .	. :		:	: 1	1	: : 1	

WO 97/08320

Table 4D: Analysis of V kappa subgroup 4

: 40, Allalysis of V			<u> </u>								С	DR I						
amino acid'	82	98	87	88	83	90	91	92	93	94	95	A	8	ပ	0	ш	ш_	96
А										1								
В																		
С				33											.,			
D								1	1									
E																		
F			1					1										
G									2	_								
Н			1		3													
1										2								
K																		
L						1		2		1	3							1
· M																		
N									4	4								
Р										1	29	1						4
Q					30	32					1							1
R									1			1						2
S							2		23	2								1
T									2	22					£1100138			
V	33																	
W																,		2
X																		
Y		3 3	31				31	29										1
_												13	15	15	15	15	15	3
unknown (?)	Į															******		
not sequenced												18	18	18	18	18	18	18
sum of seq'	33	33	33	33	33	33	33	33	33	33	33	15	15	15	15	15	15	15
oomcaa³	33	33	31	33	30	32	31	29	23	22	29	13	15	15	15	15	15	4
mcaa¹	V	Υ	Υ	С	Q	Q	Υ	Υ	S	T	Р	-	-	-	_	_	-	Р
rel. oomcaa ⁵	100%	100%	94%	100%	91%	97%	94%	9/088	70%	67%	9/88	87%	100%	100%	100%	100%	100%	27%
pos occupied ⁶	1	1	3	1	2	2	2	4	:		3				1	1	1	8

Table 4D: Analysis of V kappa subgroup 4

						Fra	mev	vork	IV				
amino acid'	97	86	66	100	101	102	103	104	105	106	٧	107	108
Α													
В													
С													
D													
E									14				
F		15											
G			15	4	15								
Н													
										14			
K							14					13	
L		ļ						4					
M	1	<u> </u>						:					
N		<u> </u>										1	
Р						1						•••••••	
Q		ļ		11				1					
R		ļ					1		1			1	11
S	2	 						· • • • • • • • • • • • • • • • • • • •		1		•••••	
<u> </u>	12	<u> </u>				14							
V		<u> </u>						9					
W		ļ					-	1					
X		ļ											
Y													
-		ļ									15		
unknown (?)		ļ										•••••••	
not sequenced	18	18	18	18	18	18	18	18	18	18	18	18	22
sum of seq ²	15	15	15	15	15	15	15	15	15	15	15	15	11
oomcaa ³	12	15	15	11	15	14	14	9	14	14	15	13	11
mcaa*	Ţ	F	G	Q	G	Ţ	К	٧	Е		_	Κ	R
rel. oomcaa'	%08	100%	100%	73%	100%	93%	93%	%09	93%	93%	100%	87%	100%
pos occupied	3	1	1	2	1	2	2	4	2			3	1

Table 5A: Analysis of V lambda subgroup 1

											Fran	iewo	ork l						
amino acid'		2	က	4	5	9	7	ထ	6	10	=	12	13	14	15	16	11	28	19
Α											19		18	20					
В				Ì															
· C												<u> </u>							
D																			.,
E															.,			1	
F												<u></u>							•••••
G									<u> </u>			<u></u> į	22			42			·····
Н	2		<u></u>						<u></u>										
1			1						<u></u>		1								
К									ļ									14	•••••
L			1	41		·····		<u></u>	<u></u>		1								*******
М									<u> </u>										
N							ļ		<u>.</u>										·•••
Р							41	41	<u></u>					1	41				
Q	22		1			41	<u></u>	<u> </u>									42		
R							ļ	<u> </u>	ļ	ļ								25	
S	<u> </u>	39					ļ	<u> </u>	41	ļ		41			1		<u> </u>	1	
T	<u> </u>				41		ļ	ļ	ļ	<u>.</u>				19			ļ	1	
V	<u> </u>	1	38		ļ		ļ	<u></u>	ļ	: :	20		1	1	:		ļ		42
W	<u> </u>	ļ			ļ		ļ	<u></u>	ļ						: :			: [
X		ļ				ļ	ļ	ļ	<u></u>		ļ				: 				
Y		ļ			: 	ļ		ļ	ļ	ļ	<u></u>				<u> </u> 	ļ	<u> </u>	: 	
Z	16	<u> </u>		<u> </u>	<u> </u>	<u> </u>	-	<u> </u>	<u> </u>	<u>:</u>	<u> </u>					<u> </u>	<u> </u>	<u> </u>	
-		<u> </u>	ļ	<u> </u>	ļ	<u> </u>	ļ	<u> </u>	ļ	41	! 		<u> </u>	ļ	<u>:</u>	ļ	[T	: } -	ļ
unknown (?)			<u> </u>	<u> </u>		<u> </u> 	ļ	<u>.</u>			ļ		<u> </u>	ļ	.	<u>.</u>			:
not sequenced		-	;				+		+	1		:				<u> </u>	<u> </u>	:	
sum of seq'		• • • • • • • • • • • • • • • • • • • •	·	÷·····	• • • • • • • • • • • • • • • • • • • •	·	• ••••••	••••••	•••••••		**********	*********	*******	:	*********	•	• • • • • • • • • • • • • • • • • • • •	••• •••••	
oomcaa,		39		:		· 4			•••		• • • • • • • • • • • • • • • • • • • •	*********	,		*	• • • • • • • • • • • • • • • • • • • •		•	
mcaa'	Q	<u>S</u>	·	÷		:		· :		-	7		·	:	····	:	· · · · · · · · · · · · · · · · · · ·	,	···· · ·
rel. oomcaa ^s	55%	%86	93%	100%	100%	100%	100%	100%	100%	100%	49%	100%	54%	49%	%86	100%	100%	. %09	100%
pos occupied	3 ا			:		:	:	:		1 1						:	;	*	

WO 97/08320
Table 5A: Analysis of V lambda subgroup 1

PCT/EP96/03647

													CDF	₹ 1							
amino acid	20	21	22	7 (7.3	24	25	26	27	۵	ΙĻ	, 8	87	29	20	3	⋖	32	33	34	35
Α	2								1					2	2			1			
В			<u>.</u>								<u> </u>										
С			<u> </u>		42																
D			ļ									3		<u></u>	3	1		3		1	
E			<u>.</u>												1						
F			<u> </u>			1				1				ļ			1	1			
G							42	3	1	<u></u>	<u></u>		2	39	4	2					
Н				·						<u> </u>	<u> </u>					2		2		2	
ļ	1	41	١			Ì				<u> </u>	<u>.</u>	1	37							1	
K												1			1				<u> </u>	<u></u>	
L			1							<u> </u>			1						ļ		ļ
М										<u>.</u>			1						ļ	<u> </u>	
N									2	1	3	37			13	31	2		1	9	<u> </u>
Р									<u> </u>	<u>.</u>								1	ļ	ļ	ļ
Q									<u> </u>					<u> </u>				1	<u> </u>	<u> </u>	
R								1	1	<u> </u>	L			<u> </u>	5				<u> </u>	ļ	ļ
S	1			42		38		34	34	38	3				13	1	1	3	<u> </u>	19	<u> </u>
Ţ	38	3				3		4	3	3 :	2			1		1		7	<u> </u>	2	1
V	<u> </u>					****				<u> </u>			1	<u></u>				2	40	<u> </u>	-
W						•••••		ļ.	ļ	<u>.</u>								<u> </u>	ļ	ļ	4
Χ										<u>.</u>		į					<u> </u>	ļ			ļ
Y										<u>.</u>						4	1	20)		_
Z																	<u> </u>	<u> </u>	<u> </u>		1
-																<u></u>	36	<u> </u>	<u>.</u>	ļ	
unknown (?)																ļ		<u> </u>	ļ	<u> </u>	<u> </u>
not sequence																	1	<u> </u>	<u> </u>	1	<u> </u>
sum of seq ²	4	2 4	2	42	42	42	42	4:	2 4	2 4	2	42	42	42	42	42	41	4	1 4	1 4	1
oomcaa¹) 19	
mcaa ⁴	T		١	S	С	S	G	S	S	, ,	,	N	ı	G	N	N	_	Υ	۷	S	-
rel. oomcaa	500	0200	0/n8/	100%	%00	%0	%000	70%	201	0,-10	0/-0/	38%	38%	93%	31%	74%	38%	100%	380%	460%	2
pos occupied			•••••	*******		••••••		•					•	•	:	:	:	1			7

Table 5A: Analysis of V lambda subgroup 1

						Fran	iewo	rk II											
amino acid'	36	37	38	39	40	41	42	43	44	45	46	47	48	49	20	51	25	53	54
А							4	40									1		
В																		:	
. C																		: :	
D						1									13	10	8		
E										2					5			1	
F	1			4										1					
G						39									1				•••••
Н	1	1	6	1										1				1	•••••
1													40		1				******
K							1			35					1	1		18	******
L			1	31							41	40						1	1
М							1						1					1	******
N							•••••			1			********		3	28	30	2	******
Р					42	1			42										
Q		39	34															15	•••••
R		2		1		1				4					7			2	4(
S								1			*******		***************************************	********	9	2	3	1	
T							36	1							1				•••••
V			1	5							1	2	1						
W				<u> </u>															
X				-															•
Y	40													40	1	1			
Z																			
-																			
unknown (?)						······································			**********										
not sequenced															_				•••••
sum of seq ⁷	42	42	42	42	42	42	42	42	42	42	42	42	42	42	42	42	42	42	42
oomcaa¹	40	39	34	31	42	39	36	40	42	35	41	40	40	40	13	28	30	18	4(
mcaa*	Υ													*********	h		*********	*********	
rel. oomçaa ^s												95%							
pos occupied ⁶	3	3	4	5	1	. 4	<u>4</u>	3	1	ىں 4	2	2	3	<u>ა</u>	က 10		4		

WO 97/08320 ·

Table 5A: Analysis of V lambda subgroup 1

•	CDI	R 11																	
amino acid	55	26	٧	ω	ပ	۵	w	27	-28	29	8	19	62	ස	64	65	99	⋖	8
Α	1														5				
В												į				<u></u>			
. С			Ī																
D					i						38								
E																			<u> </u>
F													38						
G			•••••••••••••••••••••••••••••••••••••••					41			2			Ì	36				
Н											1								
I									17				3	1					
к							Ī										38		
L		1					1			1.									
М				····	Ì														
N																			
Р	38									38									
Q																			
R												42					4		
S	2	40								2				42	•••••	42			
T									,						1				
V									24				1			<u> </u>			
W		ļ <u>.</u>					,			! !						<u>.</u>			
X		ļ								! !	<u></u>		,		•••••				
Y		<u> </u>								<u></u>	<u></u>					<u>.</u>			
Z																			
_			41	41	41	41	42			: !								42	42
unknown (?)											:	:							
not sequenced	1	1						1	1	1	1					ŀ			
sum of seq²	41	41	41	41	41	41	42	41	41	41	41	42	42	42	42	42	42	42	42
oomcaa'	38	40	41	41	41	41	42	41	24	38	38	42	38	42	36	42	38	42	42
mcaa*	Р	S	<u> </u>	_	-	-	-	G	٧	: P	D	R	F	S	: G	S	K	: : : :	: -
rel. oomcaa ^s	93%	%86	100%	100%	100%	100%	100%	100%	59%	93%	93%	100%	%06	100%	8	100%	%06	100%	100%
pos occupied ⁶	1	•	,	1		•	i	:	2		3	;		1			:	:	

WO 97/08320

Table 5A: Analysis of V lambda subgroup 1

-				Fra	mev	ork	III												
amino acid'	29	68	69	20	71	72	73	74	75	9/	77	78	79	8	8	82	83	84	82
Α		1	3		41			24						2				38	1
В												<u></u>							•••••
· C							į												
D		1													1	41			37
E													1		24		42		1
F																			
G		40						17		1	42			<u></u>	15				
Н												<u></u>	1						2
1									41			· <u>:</u>	<u></u>				<u> </u>	 .	
К												<u> </u>					<u></u>	ļ ,	
L							42					41	: 	:			<u></u>	<u></u>	:
М																		<u>.</u>	ļ
N																1	<u>.</u>	<u>.</u>	<u></u>
Р												:		2		<u></u>	<u> </u>	<u></u>	<u></u>
Q				·									31			<u></u>	<u></u>	<u></u>	<u> </u>
R													8			<u></u>	<u> </u>	<u> </u>	<u> </u>
5	42		1	42		24				20				20	: 		<u> </u>	1	<u>.</u>
T			38	<u> </u>		18			ļ	21				17	· · · · · · · · · · · · · · · · · · ·	ļ	<u>.</u>	3	<u> </u>
V				<u> </u>	1			1	1			1		1		<u> </u>	<u>.</u>	<u> </u>	<u> </u>
W		<u>.</u>	<u> </u>	ļ	<u> </u>	<u>.</u>	<u> </u>	ļ <u>.</u>	ļ <u>.</u>	<u>;</u>	ļ		1		2	<u></u>	<u> </u>	<u>.</u>	<u></u>
X	<u> </u>	<u></u>	<u>.</u>	ļ	<u></u>	<u>.</u>	ļ	<u></u>	ļ	<u></u>	<u>.</u>				<u>:</u>	ļ	<u>.</u>	ļ	
Y	<u> </u>	<u></u>	<u> </u>	<u></u>	<u>.</u>	<u> </u>	<u> </u>	<u>!</u> !	<u>.</u>	! !	<u></u>				: !	<u></u>	<u>.</u>	ļ	<u></u>
Z			<u> </u>			Ŀ			<u> </u>	<u> </u>					:				<u> </u>
-								<u></u>		<u>:</u>	<u> </u>				:	<u> </u>	<u> </u>	<u> </u>	<u>.</u>
unknown (?)		<u> </u>	<u> </u>	<u>.</u>	<u> </u>	<u> </u>	<u>:</u>	<u> </u>	<u> </u>	: :	<u>.</u>	<u>:</u>	:	: : :	: :	ļ	<u> </u>	<u>.</u>	<u>.</u>
not sequenced	1								<u> </u>	<u>. </u>			<u> </u>		:	<u> </u>	<u> </u>	<u> </u>	<u> </u>
sum of seq²	42	42	42	42	42	42	42	42	42	42	42	42	42	42	42	42	2 42	42	2 4
oomcaa'	42	4(38	42	41	24	42	24	41	21	42	41	31	20	. 24	41	42	38	3 3
mcaa*	S	G	T	S	A	S	L	ΕA	<u>:</u> 1	T	G	L	<u>Q</u>	<u>.</u> S	Ε.	D	E	A]
rel. oomcaas	100%	70°C	%Ob	100%	38%	57%	100%	57%	%8¢	20%	100%	%86	74%	48%	27%	980%	100%	%O6	
pos occupied	:	:		:		2 2	:	:	3: 1	.,		•		•		:	:		3 :

WO 97/08320
Table 5A: Analysis of V lambda subgroup 1

PCT/EP96/03647

•										CDI	3 111								
amino acid'	98	87	88	68	06	91	92	93	94	92	⋖	മ	ں ا	۵	u,	ш.	96	97	98
Α				22	15			1				16					4	1	
В																			
С			4 2																
D							39	17			7								
E												1					1		
F		2								1									36
G				14				1				-17	1				5	1	
Н		1											1						
]											1							1	
K								.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			1								
L				1						37			1					1	
M																		1	
N							2	2			9	1							
Р										1							6		
Q				3			,,												
R				,					5	1	2						2		
S					4			17	35		18		1				1		
T					22			1	1		1								
V				1				1		1		2					9	34	
W						38											7		
Χ																			
Y	42	39				3		1									3		
Z																			
_											2	4	35	39	38	3 8	1		
unknown (?)																••••••			
not sequenced				1	1	1	1	1	1	1	1	1	3	3	3	3	3	3	4
sum of seq ²	42	42	42	41	41	41	41	41	41	41	41	41	39	39	38	38	39	39	36
oomcaa3	42	39	42	2 2	22	38	39	17	35	37	18	17	35	39	38	38	9	34	36
mcaa*	Υ	Υ	С	Α	Ţ	W	Đ	D	S	L	5	G	_	_	_	-	٧	٧	F
rel. oomcaas	100%	93%	100%	54%	54%	93%	95%	41%	85%	%06	44%	41%	%06	100%	100%	100%	23%	87%	100%
pos occupied	1	;	: :						3	: :		: :	:	1	1	1	10		1

Table 5A: Analysis of V lambda subgroup 1

•			F	ram	ewo	rk IV	i					
amino acid'	66	001	101	102	103	104	105	106	۷	107	108	su
Α												28
В					Ī							
С			<u></u> :		Ì					<u>-</u>		8
D			•••••	••••••								22
E		1	-					1	••••••			8
F								••••••				8
G	36	31	36				••••••		•••••••	26		55
Н		*******	<u>†</u>	·····	i		<u>†</u>	†	•••••	·····		2
1		*******							•••••			18
K			-		30			1				14
L					····· ·	25			34			34
M					•		*******					
N				********	1							17
P											1	29
Q		********			3				1		18	2:
R					1			i		2		15
S		1							*******	2		72
Т		3		36	1		36					35
V						11		36	1			28
W								Ĭ		1		5
Χ												
Y												20
Z												
_												52
unknown (?)										.,,,,		
not sequenced	4	6	6	_ 6	6	6	6	6	6	10	22	14
sum of seq ²	36	36	36	36	36	36	36	36	36	31	19	
oomcaa3	36	31	36	36	30	25	36	36	34	26	18	
mcaa'	G	G	G	Ţ	Κ	L	Τ	٧	L	G	0	: ; ;
rel. oomcaa¹	100%	96%	100%	100%	83%	9/069	100%	100%	94%	84%	92%	
pos occupiedº	1	:	••••••	1	5	7	1	1	7	4	2	:

127

WO 97/08320

Table 5B: Analysis of V lambda subgroup 2

											Fram	iewo	rk I						
amino acid¹	-	2	3	4	2	9	7	8	6	2	=	12	13	14	15	16	17	18	19
Α			35					30			6		1	1					
В												<u> </u>							
· C																	.,		
D			1													1			
E			1																
F.		1																	
G				·····		••••••							42			42			
Н	2																1		
l			1																28
К							,												
L		******		40											3				1
М																			
N							İ												
Р			*********				42	6							40				
Q	22		4			41											42		
R								6	1								<u>.</u>		
S		41							40			42		42		<u></u>		43	
T					42				1							<u></u>	<u></u>	.,	
V		1	2								36					<u> </u>	<u> </u>		14
W																<u></u>	<u></u>		
X				<u></u>				ļ 								<u>.</u>	<u></u>	<u> </u>	
Y					: ! !		<u>.</u>	<u></u>								: ;	: [! 	
Z	16			<u> </u>		<u> </u>		<u> </u>	<u> </u>							<u> </u>	<u> </u>		
			<u></u>		<u> </u>	<u> </u>	<u> </u>	<u></u>	<u></u>	42					<u></u>	ļ	<u></u>	ļ	
unknown (?)		<u></u>		<u>.</u> [<u> </u>	1	<u></u>	<u> </u>	<u></u>	<u></u>	<u></u>				<u> </u>	! ! 		<u>.</u>	
not sequenced	3	1	1	3	1	1	1	1	1	1	1	1							
sum of seq ²	40	42	42	40	42	42	42	42	42	42	42	42	43	43	43	43	43	43	43
oomcaa ₃	22	41	35	40	42	41	42	30	40	42	36	42	42	42	40	42	42	43	28
mcaa ⁴	Q	S	Α	L	Ţ	Q	Р	Α	S	_	٧	S	G	S	Р	G	Q	S	:
rel. oomcaas	55%	%86	83%	100%	100%	%86	100%	71%	95%	100%	%98	100%	98%	98%	93%	%86	98%	100%	65%
pos occupied ⁶		:	:	:	:			3	:	:				:	•	:	•	<u>:</u>	

120

WO 97/08320

Table 5B: Analysis of V lambda subgroup 2

,											CC	RI							
amino acid'	20	21	22	23	24	25	56	27	۵	ш	28	29	30	31	¥	32	33	34	35
Α					3		1						1			1			
В																	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		
· C				42					1					1				•••••••	
D				•••••						39		1	4		5				
E													***************************************		1				
F.		1				*******			••••				1			4		*******	
G						43		1				39	26					****	
Н								1	*******	-			••••		1	1			
1		41			1						6							******	•••••
К															4				*******
L		1														4			
М																			
N								1	3	4		1	4	3	28				•••••
Р								1											•••••
Q																			•••••
R									1				2					*******	
5			42		3		3	35	38				5	1	2	4	1	42	
Т	43				36		39	3				1		1					
V											37						41		
W																			43
X																			
Y								1				1		37		29			
Z																			
_	,														1				
unknown (?)				·											1				-
not sequenced			1	1													1	1	
sum of seq ²	43	43	42	42	43	43	43	43	43	43	43	43	43	43	43	43	42	42	43
oomcaa³	43	41	42	42	36	43	39	35	38	39	37	39	26	37	28	29	41	42	43
	Ţ		: .		: •									*********	********	*********	*********	*********	~ • • • • • • • • • • • • • • • • • • •
rel. oomcaas	: :	: :			84%							91%	:				······		
pos occupied ⁶																			1

Table 5B: Analysis of V lambda subgroup 2

						Fram													
amino acid'	36	37	38	33	40	4	42	43	44	45	46	47	48	49	S S	ក្ន	52	53	54
Α					1	4		40											
В				<u>!</u>	<u>.</u>						<u>-</u>								
С			<u></u>	<u> </u>	<u>.</u>													<u>.</u>	
D				1	<u> </u>	2									20	1	2	1	
E				<u> </u>	<u>.</u>			<u></u> i							20			2	
F	2		<u> </u>	<u>.</u>	<u>.</u>									7		1			
G						36									2	2		1	
Н			7	34										<u></u>				1	
1							1				1	9	43	<u></u>			1		
K							40			41		<u>i</u>					1	21	
L				1		<u> </u>					38	6	<u></u>						
М				•		<u> </u>						26	<u>-</u> †				1		
N					2	<u>.</u>									1		8	12	
Р		<u></u>			4	<u>.</u>	<u> </u>		43										<u></u>
Q		41	3	9		<u>.</u>	<u> </u>			2									
R		1		<u> </u>		<u>.</u>	1	<u> </u>									2	ļ	4
S		<u> </u>		<u> </u>				ļ						2		••••	21	3	! !
T		<u>.</u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	1										7	<u> </u>	<u></u>
V		<u> </u>	<u> </u>			1	ļ	3			4	2				39	<u> </u>	ļ	: : :
W	<u></u>	<u>.</u>	<u>.</u>	<u>.</u>		<u> </u>		ļ									<u> </u>	ļ	! <u>!</u> .
X		ļ	ļ			<u>.</u>		ļ									<u> </u>	<u> </u>	-
ΥΥ	41	<u> </u>			5		ļ							34			ļ	2	
Z					<u> </u>	<u> </u>			<u> </u>									<u> </u>	_
			<u> </u>			<u>.</u>		<u>.</u>	<u></u>	<u>.</u>						<u> </u>	<u></u>	<u></u>	<u>.</u>
unknown (?)			1	1		<u>.</u>		<u>.</u>	ļ	! !		:				<u> </u>	<u> </u>	<u> </u>	:
not sequence	d	<u> </u>	╧	ᆜ_		<u> </u>	<u> </u>	<u> </u>	<u> </u>										<u> </u>
sum of seq	43	3 4	3 4	3 4	3 4	3 43	43	43	43	43	43	43	43	43	43	43	43	43	4
oomcaa³	4	1 4	1 3	9 3	4 4	1 36	40	40	43	41	38	26	43	34	20	39	21	21	<u>.</u>
mcaa*	Y	0	() H	l F	G	K	Α	Р	Κ	L	М	١	Υ	D	٧	S	ŀΚ	<u>:</u>
rel. oomcaa	95%	9010	200	9000	7350	840%	93%	93%	100%	95%	98%	%09	100%	79%	47%	91%	49%	49%	
pos occupied		2	2	3	5	3 4	1 4	2	1	•	•					:		3 8	}

Table 5B: Analysis of V lambda subgroup 2

	CD	R II																	
amino acid'	52	26	¥	മ	ပ	٥	ш	57	28	59	09	61	62	63	64	65	99	V	8
А															2				
В																			
. C																1			
D		,									17							,	
E												<u>i</u>							
F													42						•,
G							,,,,,,,	43	1						41				
Н						-					2								
1									3										
K																	42		
L											1		1						
М		-																	
N											19								
Р	43									15									*****
Q																			
R												43					1		,
S		43								28	2			43		42			
Ţ																			
V									39										
<u>W</u>																			
X													•••				•••••		
Υ		: }									2					*******			
<u>Z</u>																			
-			43	43	43	43	43											43	43
unknown (?)				ļ															
not sequenced	-						<u> </u>												
	43		:	-	:····	-	•					*********		********	• • • • • • • • • • • • • • • • • • • •	*******		*********	
oomcaa¹	:	:	43	43	43	43	43	43	39	28	19	**********		********		*********		********	4
mcaa'	Р	S	-		-	<u> </u>		*******	V	S	N	R	F	S	G	S	Κ	_	-
rel. oomcaa'	100%	100%	100%	100%	100%	100%	100%	100%	31%	35%	44%	100%	%86	%001)5%	%8(38%		
pos occupied"	1	1		:	:	:		****		2		1					•	•	

Table 5B: Analysis of V lambda subgroup 2

				Fra	ame	work	: 111								··				~
amino acid¹	29	89	69	70	71	72	73	74	75	92	77	78	79	80	81	82	83	84	82
А		3		1	43									36				43	
В																			
C																			
D		1	2												3	42			39
E											1				3 8		43		
F																			
G		39									42				1				
Н																			2
ı									35										
K			1																
L							43					43							
M																			
N			38												1	1			1
P														2					
Q													41						
R													2						
S	42			1		43				42									
T			1	41				43		1				2					
V									8					3					
W							•												
X																			
Y																		:	
Z																			
-															ļ				
unknown (?)			1									<u> </u>						:	1
not sequenced	1																	:	
sum of seq'	42	43	43	43	43	43	43	43	43	43	43	43	43	43	43	43	43	43	43
oomcaa³	42	39	38	41	43	43	43	43	35	42	42	43	41	36	38	42	43	43	39
mcaa'	S	G	N	Т	Α	S	L	T	1	S	G	L	Q	Α	Ε	D	Ε	Α	D
rel. oomcaa⁵	100%	910%	988%	95%	100%	100%	100%	100%	81%	%86	%86	100%	92%	84%	38%	38%	100%	100%	91%
pos occupied ^a																			3,

Table 5B: Analysis of V lambda subgroup 2

										CDR	Ш								
amino acid'	98	87	88 9	83	8	9	92	93	94	95	⋖	മ	ပ ၊	_	u	ш	96	97	86
Α				2	1		21		1								1	1	
В												<u> </u>							
· C			43	11	<u></u>														
D						<u>.</u>		3	1	2							1		
E		į				<u></u> į.	1	1											
F		3				3				1		1					5		42
G							1	21	3	4							1		•••••
Н		<u></u>			<u></u>]	1	į												
l			<u></u>		<u></u>		1	1		1	2						1	7	
K		<u></u>	<u></u>		<u> </u>		<u></u>			3				<u></u>					
L					<u> </u>			<u></u>				1	1	<u> </u>			6	5	
М					<u> </u>									<u> </u>			1	1	
N					į				5	7	5						1		
Р					<u>i</u>			1				4							
Q									*********	1	2								
R					<u></u>		2		3			1					5		
S		1		30	41			12	23	14	9			<u></u>			1		<u>.</u>
T							16	4	4	3	21							ļ	<u>.</u>
V		<u> </u>					1			<u>:</u>	<u> </u>						11	28	<u> </u>
W							*******	: : :			<u>.</u>						5	<u> </u>	ļ
Х								: 	•••••		<u></u>							ļ	<u>.</u>
Υ	43	39				39	····		1	6						ļ	4	<u> </u>	ļ
Z											<u> </u>								
_									<u></u>	1	3	36	42	43	43	43		ļ	
unknown (?)									2	<u>:</u>	<u> </u>					ļ	<u> </u>	<u> </u>	<u> </u>
not sequenced					1						1					<u> </u>	<u></u>	1	<u> </u>
sum of seq ²	43	43	43	43	42	43	43	43	43	43	42	43	43	43	43	43	43	42	2 4
oomcaa ³	43	39	43	30	41	39	21	21	23	14	21	36	42	43	43	43	11	28	3 4
mcaa*	Υ	Υ	С	S	S	Υ	Α	G	S	S	T	-	<u> </u>	<u> </u>	_		٧	V	11
rel. oomcaas	100%	91%	100%	70%	980%	910%	49%	49%	53%	33%	50%	84%	98%	100%	100%	100%	76%	670%	
pos occupied	, .	7	:		ŧ	, 3	:			<u> </u>	1 6	:	:	:	1	Ţ		}· !	= :

Table 5B: Analysis of V lambda subgroup 2

•			F	ram	ewo	rk IV	,					
amino acid'	66	100	101	102	103	104	105	106	∢	107	108	sum
Α		1								į		2 80
В		,										
С			·····							1		99
D										Ī		188
E				******	<u>-</u>		Ī					107
F				•••••								113
G	42	33	42				_			19		567
Н												48
1							1					184
K					36							189
L						28			40			264
М												29
N					1							146
Р												238
Q					1						14	250
R		1			2					4		121
S							1			2		831
Т		7		41			40					398
V						14		42	1			327
W												48
X												
Y					1							285
Z												16
-												555
unknown (?)												8
not sequenced	1	1	1	2	2	1	1	1	2	15	28	80
sum of seq ²	42	42	42	41	41	42	42	42	41	25	14	[]
oomcaa ³	42	33	42	41	36	28	40	42	40	19	14	
mcaa*	G	G	G	T	Κ	Ĺ	T	٧	L	G	Q	
rel. oomcaa ⁵	100%	79%	100%	100%	88%	67%	95%	100%	%86	76%	100%	
pos occupied ⁶	1	4	1	1	:			1	2	3	1	

134

WO 97/08320

Table 5C: Analysis of V lambda subgroup 3

										1	ram	ewo	rk I						
amino acid'	- (7 (. در	4 r	ດ	o 1	_	∞	о	2	Ξ	12		4	5	16	17	18	19
Α					1		1	2	7					20	1				27
В							<u></u>					<u></u>							
. С																			
D			5				10												
E			2 0										1			1			
F .	1	1										1			1				
G			1													37			
Н																<u>.</u>	<u>.</u>		.,
												<u> </u>				<u> </u>	<u></u>		
К		Ī			Ī											<u> </u>	2	<u> </u>	
L	Ī	i		37							4	i	1		9	ļ	<u> </u>	<u> </u>	!
М																ļ	<u> </u>	<u> </u>	ļ
N																<u> </u>			<u>.</u>
Р							26	35	1						27	ļ		ļ	
Q	4		4			38					<u></u>				<u></u>	<u>.</u>	36		
R										<u></u>	<u> </u>				<u></u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>
S	13	14			1		1		28	<u> </u>	<u> </u>	37		18	<u> </u>	ļ	ļ	<u> </u>	<u> </u>
T					36			1		<u> </u>	ļ			•••••	<u> </u>	<u> </u>	<u> </u>	38	
V		.,	8	1					2	<u> </u>	34		36		ļ		<u> </u>	ļ	1
W									<u> </u>	<u> </u>	<u> </u>	ļ		•••••	ļ	ļ	<u> </u>	<u> </u>	
Χ					<u> </u>				ļ	<u></u>	ļ	ļ			<u> </u>		<u> </u>		
Y		23						<u></u>	ļ	ļ					ļ		ļ		
Z								<u> </u>				<u> </u>			<u> </u>	<u> </u>	<u> </u>	<u> </u>	
-	20							<u> </u>	<u> </u>	38	1	<u></u>	ļ		<u>.</u>		<u></u>	<u>.</u>	
unknown (?)		<u> </u>	<u> </u>					<u>.</u>	<u> </u>	<u> </u>	<u>.</u>	<u></u>	<u> </u>	<u></u>	<u>.i</u>	<u>.</u>	<u> </u>	<u>.</u>	<u>.</u>
not sequenced			<u> </u>					<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>				<u></u>		<u> </u>
sum of seq²		**********	**********				•		•	•	•	•	:	•	•				
oomcaa3	******	*******		37	********								1				:	:	
mcaa*	_	Υ	E	L	T	Q	Р	Р	S	_	V	S	V	A	Р	G	C	Ţ	
rel. oomcaas	53%	61%	53%	97%	95%	100%	9689	9026	7.40%	100%	890%	97%	95%	53%	7 10%	0/1/0	37.40	33%0	2
pos occupied ⁶	:	:	:		·	ė.	•	:	:	:	:	:	:	:	•	:		:	1:

WO 97/08320

Table 5C: Analysis of V lambda subgroup 3

•		******		\neg							CD	RI							
amino acid'	70	21	22	23	24	25	56	27	۵	ய	78	29	೫	31	⋖	32	33	34	35
Α			1					5					1	1			21	3	
В												<u> </u>							
· C				38														5	
D					Ī		30	1				<u> </u>	10			3		1	
Е							2	2	İ			1	3	6					
F .														1		2			
G					9	38		1				23	4						
Н				.,,			1									2		9	<u></u>
l		38									9			1				<u></u>	
к				*******				7					2	13					
L			Ī								28								; ,
М	1													1					
N			2				4	9			1		2			1		2	<u></u>
P			1									3							
Q					10									4					
R	25							2				10	1				1		
S	9		1		19			10					11	2		8		14	
Т	3		33		<u> </u>			1				1	4						
ν					<u> </u>											1	15		
W						<u> </u>	٠								<u> </u>	<u> </u>	ļ Ļ		38
X			••••••			<u> </u>									<u> </u>	<u></u>	<u> </u>	ļ	
Y						<u>.</u>	1							8	:	20	1	4	
Z	<u> </u>																<u> </u>	<u> </u>	
-						<u> </u>			38	38			<u> </u>		37	<u> </u>	<u> </u>	<u></u>	
unknown (?)			<u> </u>	<u>.</u>	<u>.</u>	<u> </u>		<u></u>						<u></u>	<u> </u>	<u>.</u>		<u>.</u>	
not sequenced						<u> </u>									1	1		<u> </u>	
sum of seq²	38	38	38	38	38	38	38	38	38	38	38	38	38	37	37	37	38	38	38
oomcaa'	25	38	33	38	19	38	30	10	38	38	28	23	11	13	37	20	21	14	38
mcaa*	R		T	С	S	G	D	S		-	L	G	S	K	: : -	Υ	Α	S	W
rel. oomcaas	9/99	100%	87%	100%	50%	100%	79%	26%	100%	100%	74%	61%	29%	35%	100%	54%	55%	37%	100%
pos occupied ^a	4	1	5	1	3	1	5	9	1	1	3	5	9	:	:	7	4	7	1

WO 97/08320Table 5C: Analysis of V lambda subgroup 3

PCT/EP96/03647

						Fran	iewo	ork II											
amino acid¹	36	37	38	39	40	41	42	43	44	45	46	47	48	49	20	21	25	23	54
Α								23								1		1	
В																			
С																			
D															9	22	2	8	
E			1												5	3		3	
F	3													2			1		
G						36									9	2			
Н							1							1	3			1	
										1			28				1		
K				32											2	6	1	13	
L			2							6	3 3	1							
M											1		1						
N																1	19	9	
Р					36		1		38										
Q		37	35	1			36								9			1	
R		1		4		2	,,,,								1	1		1	38
S				1	2			14									10	1	[
Т																2	4		
V								1		31	4	37	9						
W																			
X																			
Y	35													3 5					
Z																			
-																			
unknown (?)																		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
not sequenced																			
sum of seq ²																			
	35								***********				*******	*********	*********	*******	***************************************	********	
mcaa.	Υ	Q	Q	K	Р	G	Q	Α	Ρ	٧	L	V	1	Υ	D	D	N	K	R
rel. oomcaa ⁵	92%	97%	92%	84%	95%	95%	95%	61%	100%	82%	87%	97%	74%	92%	24%	58%	50%	34%	100%
pos occupied ⁶	:	:		į	•														1

WO 97/08320

Table 5C: Analysis of V lambda subgroup 3

. <i>'</i>	CDI	3 II																	
amino acid'	52	26	⋖	മ	ပ	۵	ш	27	28	23	8	61	62	63	64	65	99	∢	۵
Α		1																	
В					į					į			<u> </u>	į					
С														<u> </u>	<u> </u>				
D											9			İ					
E											27								
F													38						
G								38							38				<u></u>
Н																			
1									37										
К												İ		<u> </u>					
L														<u> </u>					
М																			
N																	21		
Р	37	1								36									
Q																			
R												38		<u>j</u>					
S	1	36								1				38		38	12		
Т																	5		<u> </u>
V							,				•••••								
W																			
X																			
Y	ļ																		
Z																			
-	ļ		38	38	38	38	38											38	38
unknown (?)	.	<u> </u>	<u></u>							: : :	1				*****				
not sequenced									1	1	1								
sum of seq?	38	38	38	38	3 8	38	38	38	37	37	37	38	38	38	38	38	38	38	38
oomcaa ³	37	36	38	38	38	38	38	38	37	36	27	38	38	38	38	38	21	38	38
mcaa*	Р	S		-			-	G	1	Р	E	R	F	S	G	S	Ν	-	_
rel. oomcaas	97%	92%	100%	1000%	100%	100%	100%	100%	100%	97%	73%	100%	100%	100%	100%	100%	55%	100%	100%
pos occupied⁵	:	:	:	1	1	1	1	•		:	:	1 1	1	1	1	1	 :		1

138

WO 97/08320

VV () 3 // (00.52)

Table 5C: Analysis of V lambda subgroup 3

•				Fra	mev	vork	111												
amino acid'	29	88	69	02	11	72	73	74	75	9/	77	28	79	8	81	82	83	84	82
Α				1	36	1		1				11	1	34				38	
В																			
· C									į										
D																38			37
E													10		14		38		1
F																			
G		37									28				10				
Н			1																
ı						1		1	37	1					1				
K			1																
L							38					<u></u>			2				:
M															10				
N			28							1									
Р																			
Q		1											25						
R					·					1	10		1						
S	37		2			11				23				1					
Т	1		6	37		25		36		12		13		2					
V					2				1			14	1	1	1				
W																			:
X																			
Y																			
Z																			
-								.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,											
unknown (?)																			: :
not sequenced																			
sum of seq ²	38	38	38	38	38	38	38	38	38	38	38	38	38	38	38	38	38	38	38
oomcaa,	37	37	28	37	36	25	38	36	37	23	28	14	25	34	14	38	38	38	37
mcaa*	S	G	N	T	Α	Ţ	L	Ţ	ı	S	G	٧	Q	Α	Ε	D	Ε	Α	D
rel. oomcaas	97%	97%	74%	97%	95%	%99	100%	95%	92%	61%	74%	37%	%99	89%	37%	100%	100%	100%	970/6
pos occupied ⁶	2	2	5					:		5		:		4					2

WO 97/08320

Table 5C: Analysis of V lambda subgroup 3

-										CDF	111								
amino acid¹	98	87	88	83	6	91	92	93	94	95	⋖	&	ပ	٥	w	ш.	96	6	86
Α					13	3	2			1	2						4		
В																			
· C			38																
D							32	1	1		6								
E				1								2					2		
F		2						2											35
G									3	14	3			1			3	1	
Н												12	1						
			<u> </u>			ļ												4	
K			<u> </u>					.,			1								
L			<u></u>	1		<u> </u>		1		1		1	1				4	2	
М				<u></u>		<u> </u>		ļ	1								1	1	
N				10		<u> </u>	2	1	2		10	1							
Р		ļ	<u> </u>	ļ	ļ	<u></u>		ļ	1				3				1	<u> </u>	
Q		ļ	ļ	25	ļ	ļ	<u> </u>	<u> </u>	<u> </u>	1	1							ļ 	
R		ļ	ļ	ļ	ļ	10		1	2	ļ	ļ	2				ļ		<u></u>	ļ
<u>S</u>		ļ	<u> </u>	1	14	1	ļ	28	26	:	ļ	:				1	<u></u>	ļ	<u></u>
T		<u> </u>	<u> </u>	ļ	ļ	1	ļ	3		7	2					ļ		<u> </u>	<u></u>
V		<u> </u>	<u> </u>	<u> </u>	11	<u> </u>	ļ	<u> </u>	ļ	<u> </u>	<u> </u>	<u></u>		•••••	ļ	ļ	18	28	ļ
W		ļ	ļ	ļ	ļ	23	ļ. 	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u></u>			ļ		1	<u></u>	<u> </u>
X	.	ļ	ļ	<u>.</u>	ļ	ļ	ļ	ļ	ļ	ļ	<u> </u>				ļ	ļ 	ļ	ļ	ļ
Y	38	36	<u> </u>	ļ	ļ	ļ	1 1	<u> </u>	1	ļ	1	3	1		ļ	ļ	3	ļ	
Z	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	-				<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>
-	ļ		<u>.</u>	ļ	ļ	ļ	ļ	ļ	<u> </u>	<u> </u>	10	15	31	36	37	36		1	ļ
unknown (?)	ļ	<u> </u>	<u>.</u>	<u> </u>	ļ	ļ	ļ	ļ	ļ	<u> </u>	<u> </u>	ļ			ļ	ļ	<u></u>	ļ	ļ
not sequenced	-		<u> </u>	 -	<u> </u>			1				1		•					3
sum of seq²	:	•••••••	•••••••		•••••••	• • • • • • • • • • • • • • • • • • • •	•••••••	::::::::::		•••••••••••••••••••••••••••••••••••••••		***********	7	:	:		:	:	:
oowcas,				·•••	•••••••		•••••••	••••••		· · · · · · · · · · · · · · · · · · ·	•••••••••	15	31	36	37	36	18		···········
mcaa¹	Υ	Y	C	0	S	W	D	S	S	G	N	· _	<u> </u>	-	-	<u> </u>	٧	V	F
rel. oomcaas	100%	95%	100%	9099	37%	61%	86%	76%	70%	38%	28%	41%	84%	92%	100%	920%	49%	76%	100%
pos occupied	1			1 5	5	3	5	1 7	7 8	3 6	5 9	8	:	:	:	: 2	_) (3 1

14-0

Table 5C: Analysis of V lambda subgroup 3

			F	ram	ewo	rk IV	,				
amino acid'	66	100	101	102	103	104	105	106	<	107	108
Α											
В											
С							ĺ			1	
D							<u>-</u>	•	•••••	······	
£					2			1			
F							1	•••••			
G	35	31	35							24	
Н											
К				******	30						
L ·						28			33		
M											
N											
P									1		
Q											7
R					2						
5										2	
Ţ		4		35			35				
V				<u> </u>		7		35			
W											
Χ		ļ <u>.</u>		<u></u>							
Y		ļ		ļ	ļ						
Z	<u> </u>			<u> </u>	<u> </u>						
***	ļ	ļ		<u> </u>	<u> </u>	ļ		********			
unknown (?)	.	<u> </u>		ļ	ļ	ļ				<u>.</u>	
not sequenced	3	3	3	3	4	3	3	3	4	11	28
sum of seq²	35	35	35	35	34	35	35	35	34	27	7
oomcaa3	35	31	35	35	30	28	35	35	33	24	7
mcaa*	G	G	G	T	K	L	Т	٧	L	G	Q
rel. oomcaas	100%	89%	100%	100%	9/088	80%	100%	100%	97%	39%	%00°t
pos occupied	1	····		1	·:	÷	····	1	2	3	1

141

WO 97/08320

Table 6A: Analysis of V heavy chain subgroup 1A

														Fr	ame	wor	kΙ			
amino acid¹	-	7	က	4	5		7	ဆ	6	10	11	12	13	14	15	16	17	18	19	20
Α					1	14			60							24	1			
В																				
· c																			,.,.	
D		**********																		
E	1				2	1		2		64										
F					-															
G								58	1						64					
Н			2																	
l		2																		
K		2										57	64						60	
L			2	5 9			••••••			*******	3	*******	********	*******			******		*****	
М		1								•••••			*****							
N						••••						6					.,			
Р													***********	63						
Q	53		56		2	45											••••			
R												1							3	
S							60		3					1		40	63			
T																			1	
V	2	55		1	5 5						61	·						64		6
W																***************************************	*******			
Χ										•						*******				
Y										****										
Z	3															********				
_																				
unknown (?)		,																		
not sequenced	11	10	10	10	10	10	10	10	6	6	6	6	6	6	6	6	6	6	6	*****
sum of seq ²	59	60	60	60	60	60	60	60	64	64	64	64	64	64	64	64	64	64	64	6
	53		:				***************************************	*******		******										
	Q			******			******	*********		*****	*********	********		*******	********		••••••	٧		*****
rel. oomcaa'	9006	32%	33%	98%	32%	75%	%00 ₁	37%)4%	%00	5%	906	%00 ₋	%8	%00	3%	%8	%00	40%	000
pos occupied ⁶																				

WO 97/08320

Table 6A: Analysis of V heavy chain subgroup 1A

														CD	RI					
amino acid'	21	22	23	24	25	26	27	28	53	30	31	∢	80	32	33	34	35	36	37	38
Α				62				1							41					
В																				
· с		63																		
D							1													
E																				
F									69					3		3				
G				1		69	41		1		_				23					_
Н										1				1		********	1			-
1								1								61	1		1	
K			63							1	1									
L		•			.,,		•••								1	2				
M					•••••	*********			•							4				
N						***********	********			2	5						4		*******	
P						********									1					
Q																			********	
R		1	1							1	1								*******	7
S	6 3				68		1		,,,,,	40	60			2			60			
T	1			2				68		25	3				3	******	4		**********	
V															1				69	
W																		70		
Χ																				
Υ							27							64						-
Z																				-
•												70	70							_
unknown (?)								! !								******				
not sequenced	6	6	6	5	2	1														
sum of seq²	64	64	64	65	68	69	70	70	70	70	70	70	70	70	70	70	70	70	70	7
oomcaa ³	63	63	63	62	68	69	41	68	69	40	60	70	70	64	41	61	60	70	69	
mcaa ⁴											S									
rel. oomcaas	%86	38%	98%	35%	%001	%00ı	%65	37%	%6(2,7%	%9(%00	%00	10%	%6	7%	%9,	%00	%6	
pos occupied ⁶																				

SUBSTITUTE SHEET (RULE 26)

tal tal I tan be tal

WO 97/08320

Table 6A: Analysis of V heavy chain subgroup 1A

				Fra	me	work	C II		=		_			-						
amino acid¹	33	40	41				45	46	47	48	49	20	51	52	4	8	U	53	54	55
Α		70									1				5					
В					•••••		******													
· C																				
D								1												
E							*******	69		.,,,,,,,,				•••••						
F .								4					2	********				3	39	
G			1	6 8		69			1		69	39			1					68
Н			1													,				
1													65	38				34		
K																				
L				1			68			1		1		*******	,	,		2	4	
M							.,			67				2		•		4		
N														4				3	22	
P			68				1								44					
Q	6 9		*******		69		•••••	•••••	•••••					••••••		•••••		1	1	1
R	1		•••••	1		1						4		••••		*******		1		
S					1				1	1				22		******			1	1
T													1	2	4			1	3	
<u> </u>										1			2	2	16	*******		1		
W			•••••				1		67			26								
X						••••••	•••••	******								*******				
Y									1							*******		20		
Z																-				
-			•••••											••••••		70	70			
unknown (?)					••••••		h q p . }*			•••••										
not sequenced	•	70	70	70													-			
	70				********			*******				•••••••••••••••••••••••••••••••••••••••	•••••••	•••••••						
oomcaa ¹	69 Q		68 P		*********	69 G	••••••	*********	67 W	********	69 G		65	38	*********	70	70	34		
mcaa'							L				G	G	1		Р	-	-	1	····	G
rel. oomcaa ^s	%66	100%	97%	97%	%66	%66	92%	99%	%96	%96	%66	26%	93%	54%	63%	100%	100%	49%	26%	970/6
pos occupied				3				: :			2							10		

Table 6A: Analysis of V heavy chain subgroup 1A

	C	DR	11																	
amino acid'	99	22	28	23	09	61	62	63	64	65	99	29	89	69	70	71	72	73	74	75
Α	1	34			6 9											43				
В																				*****
· C																				
D	15		1							2							70			
E									1									33		
F				1				48				3		4						
G	1						3			67								4		
Н			1																	*****
1	4												1	44				1		
К	1		2	1			47		1		1							8		
L	1	1						2 2				2		1		3				
M														21						
N	9		59				18													
Р	1	7																		
Q	1	1				70	••••••		64											
R	2						2		1		69							1		
S ·		1	2		1										5				70	
Т	34	26	4						3				66		65	24		27		67
V										1		65	3							3
W																				
X																				
Y			1	6 8		•••••	********													
Z					_															
					********	·í.														
unknown (?)	.		<u></u>																	
not sequenced																				
sum of seq ²	70	70	70	70	70	70	70	70	70	70	70	70	70	70	70	70	70	70	70	70
oomcaa,	34																			
mcaa*	T	Α	N	Υ	Α	Q	K	F	Ω	G	R	٧	T	1	T	Α	D	Ε	S	Τ
rel. oomcaa ^s	49%	49%	84%	92%	%66	100%	67%	%69	91%	%96	%66	93%	94%	63%	93%	61%	100%	47%	100%	96%
pos occupied ⁶	ż	•	•		•	•	:	:	;	:	:	:	: :					·····		

Table 6A: Analysis of V heavy chain subgroup 1A

				F	ram	ewo	rk i	1	-											
amino acid'	92	11	28	79	80	8	82	٧	ω	ပ	83	84	82	98	87	88	68	90	91	92
А			64			1						3			1	70				•••••
В																				,
· C																				70
D						2							26	70						
E						64							44							
F																	1	1	2	
G									1			_								
Н				1				1												
ſ		1					3	1	1								2			
К											3									
L					3		63			70							2		,	
М					67										1		1			
N	4							1	16											
ρ																				
Q				1		3														
R	3							2 3	1		62									
S	62		1			- 60000000		41	49			67			1					••••
T	.1	69	2					3	2		4				67					
V			3				4				1						64			
W				.,		*********														
X						•••••														
Y				68														69	68	
Z																				
_						*******				••••				•						•••••
unknown (?)																				•••••
not sequenced																				
sum of seq²	70	70	70	70	70	70	70	7 0	70	70	70	70	70	70	70	70	70	70	70	70
oomcaa,	**********			**********	**********	****	63	*********	********	*******	********	********	********	******	******	*********	********	********	*********	*******
mcaa*	S	T	Α	Υ	М	Ε	L	S	S	L	R	S	Ε	D	T	Α	٧	Υ	Υ	С
rel. oomcaaʻ	9068	%66	91%	97%	%96	91%	%06	59%	0/00/	100%	99%	96%	53%	100%	96%	%001	31%	99%	37%	100%
pos occupied ⁶			• •							. :			:							

Table 6A: Analysis of V heavy chain subgroup 1A

										CDI	R III									
amino acid'	93	94	92	96	97	98	66	100	V	8	ပ	۵	m	u_	9	I	_	_	~	101
Α	66	2	16		1	1	1	4	1	2	2	1	1		1	1	1	2		1
В																				
. С					1	1	16	2		1	1	7	2	1						
D			16	5	3		3	5	4	3	4			1	1	14				59
E			9				2			1			1			1				
F					1	3		2		3	1	2		2	1				28	2
G		2	14	13	20	10	14	5	20	15	16	3	3	4	15	1	1	7		
Н										1	1	1		1						
1				2	5	2	2		2	2	1	1			1					
К		5			2	1			1											
L		1	4	4	2	5	2	1	1		4	2		1			1		1	
М			1		2		1		1			1	1						10	
N				2	2	1	2	1	2	2	2	2			1	1	4	*********		
Р				20	3		1	3	2	2	2	4	2	1	4	1		1		1
Q				1			1		1	1	1									
R		55	1	5	7	8	1	4		2		1		16						
S		1	1	5	5	5	5	21	5	11	8	4	3		2	1		2		1
T	1	3	3	5	4	1	3	4	2	5	2		1			1	1			
V	3		3	2	4	3	3	3	4	2	2	2	1	2	1					
W				1	1	3	1	1			2		3				1	5	1	
X																				
Y		1		2	3	20	5	4	9	1	2	11	20	10	6	9	10	7	1	
Z																				
-				1	2	2	3	6	11	11	14	23	26	26	31	34	46	39	21	1
unknown (?)													1		1	1		2	3	
not sequenced			2	2	2	4	4	4	4	5	5	5	5	5	5	5	5	5	5	5
sum of seq?	70	70	68	68	68	66	66	66	66	65	65	65	65	65	65	65	65	65	65	6 5
oomcaa3	66	55	16	20	20	20	16	21	20	15	16	23	26	26	31	34	46	39	28	59
mcaa*	Α	R	Α	Р	G	Υ	С	5	G	-	-	-	-	-	-	-	-	-	F	D
rel. oomcaa'	94%	79%	24%	29%	29%	30%	24%	32%	30%	23%	25%	35%	40%	40%	48%	52%	71%	%09	43%	910%
pos occupied	:	:	:	:		•	•								,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		*******			

Table 6A: Analysis of V heavy chain subgroup 1A

		·			Fra	mew	ork	IV					
amino acid ¹	102	103	104	105	901	107	108	109	110	Ξ	112	113	sum
Α		1											670
В													
С		i							Ī				165
D		1	1	*****	*******			Ī					308
Е	1	1					1						297
F	2	******											226
G			58		59	1	1						928
Н		*******		1									14
1	3		********						4				286
К				3		1							325
L	.3			1			40	1					386
М	1						3						189
N				1									176
Р	5											1	238
Q			ļ	52		ļ							494
R			<u> </u>	1		ļ	į 						351
S		ļ	<u> </u>	ļ	ļ	ļ	ļ				5 3	51	972
Т	.	<u> </u>	ļ	<u> </u>		54	-	<u> </u>	51		1		736
V	15	<u> </u>	1	ļ	<u> </u>	ļ	1	54		54		1	699
W	ļ	59	ļ	1	<u></u>	ļ	<u> </u>	<u> </u>					243
X	ļ	ļ	ļ	ļ		<u> </u>	ļ	ļ					
Y	34	ļ	1	ļ		ļ	ļ	<u> </u>				ļ	542
Z	<u></u>	<u> </u>	<u>!</u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>						3
_	1 1	ļ		ļ		ļ	ļ	ļ					578
unknown (?)		<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	ļ	<u> </u>				ļ	8
not sequenced	=;===	:	· · · ·	-	-	•	· · · · · ·	·	•	:	-	:	7
sum of seq ²	·	•=	··:····	•••••••	·:	••••••••	•	Ţ	Ţ	:	1		"]
oomcaa,	*******	*******					•	· · · · · · · · · · · · · · · · · · ·	·÷	····	********	·;····· ·	-
mcaa'	Y	W	G	Q	G	1	<u> </u>	V	T	V	S	S	
rel. oomcaa ^s	52%	970%	920	87%	100%	%96	71%	%96	93%	100%	98%	%96	. .
pos occupied		;		•		•		3	1	1	2	3	<u> </u>

148

Table 6B: Analysis of V heavy chain subgroup 1B

														Fr	ame	wor	kІ			
amino acid'	-	2	က	4	S	9	7	œ	6	2	Ξ	12	13	14	15	16	17	18	19	20
А									32							34				
В																				
. C																				
D																				
E		1			5	1				35										
F																*******				
G								27					•••••	*********	35		•••	•		
H			1											1					-	••••
•																				
K		3	1									34	33						33	
L			3	26	1															••••
М				1	1															•
N																				
Р									1					33			1			
Q	21		20			26														
R	1											1	2							
<u>S</u>							27									1	34			
T									1					1					2	
<u>V</u>	3	21			20						-35							35		3
W																				
Χ																				
Υ																				
Z																				
	ļ																			
unknown (?)						····						<u></u>								****
not sequenced	15	15	15	13	13	13	13	13	6	5	5	5	5	5	5	5	5	5	5	
sum of seq ²	25	25	25	27	27	27	27	27	34	35	35	35	35	35	35	35	35	35	35	3
oomcaa,																				
mcaa*	0	٧	Q	L	٧	Q	S	G	Α	Ε	٧	K	K	Р	G	Α	S	٧	K	١
rel. oomcaas	84%	84%	%08	%96	7 40%	%96	100%	100%	34%	100%	%00 ₁	92%	34%	34%	%001	0/0/(0/0/(%00	140%	100
pos occupied ⁿ																				

Table 6B: Analysis of V heavy chain subgroup 1B

														CI	DRI					
amino acid'	21	22	23	24	25	56	27	28	53	30	31	⋖	20	32	33	34	35	36	37	38
Α				30							2				6					
В																				
. C		35																		
D											1	<u></u>	<u></u>		5	<u> </u>	1			1
E			3								1									
F .				<u>.</u>			2		39					2	2					
G			<u>.</u>	1		40			ļ	1	14				1					1
Н				<u></u>										3	1		34			
1								1	ļ <u>.</u>	1						9				
K			28																	
L									1		1					5			2	
M																23	,			••••••
N							1			1	3					1	3	******		
Р															1					
Q			2								1				1		1			1
R			2					2						1	*******					37
S	3 5				40			5		2	15			2	1			,,,,,		
T				3				32		34					1					
V				1			1			1	1				2	2			38	
W							•••••											40		
X																				
Y							36	********			1			32	19		1			******
<u>Z</u>																				
-							••••••					40	٠40							•••••
unknown (?)				-																
not sequenced	=									_					_			_		
sum of seq ²	:							*********	**********			********	********	******	***********	*********		********		*******
oomcaa ³												********	********	*********	**********	********	*****		*****	******
mcaa*	·			Α				••••••		·····	5					М	-	W	٧	R
rel. oomcaas	100%	100%	%08	%98	100%	100%	%06	%08	%86	85%	38%	100%	100%	%08	48%	28%	85%	100%	95%	93%
pos occupied ⁶	: :			4	:					:	:		•					1		

Table 6B: Analysis of V heavy chain subgroup 1B

	***************************************			Fra	me	worl	(II													
amino acid'	39	40	4	42	43	44	45	46	47	48	49	20	5	52	Α	8	U	23	54	22
Α		39				1					1				7			1		
В					,															
. C		_	******																	
D														1					1	
E				1				39										1	1	
F							2						1					1		
G				39		2 8					39	1			1			9	1	3
Н																		2		
l										3			34							
K					1														1	
L			. 1				37						1							
M										37		2	4							
N														35				20	12	
Р		1	34				1								31					
Q	3 9				39			1												
R	1					10						4						3	1	
S			1			1								2				1	2 0	
T			4											1					3	
V														1	1					
W									40			33								
X																				
Y																		2		
Z																				
-																40	40			
unknown (?)					.,,,,,,,,,															
not sequenced																				
sum of seq ²	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	4
oomcaa ³	39	39	34	39	39	28	37	39	40	37	39	33	34	35	31	40	40	20	20	3
mcaa'	Q	Α	Р	G	Q	G	L	E	W	М	G	W	ı	N	Ρ	-	-	Ν	5	(
rel. oomcaas	%86	38%	35%	%8€	38%	20%	33%	38%	0001	33%	98%	83%	35%	38%	,8%	%00 00%	%00.	%0%	%0%	7007
pos occupied	:	:	:	:	:	:		:										-,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		

Table 6B: Analysis of V heavy chain subgroup 1B

,	C	DR	II																	
amino acid'	26	22	28	23	9	61	62	63	64	65	99	29	89	69	20	7.1	72	73	74	75
А	1	2			27	2				1		1				2				12
В						********														
· c																				
D	1				******					4							35			
E	2		2			1	******			1						1				
F				4				39						3		,				
G	15		6		1					34										
Н			1	1													1			
ı		1	1									1	1	13						22
· K	2	2	8				36		1							1				
L						1		1						1						
М														23				1		1
N	17		18				1										4			
Р							•••••••							****					3	
Ω						36			37											
R			2				1		2		37					34		1		
5	1			2	11		1									1			37	
T		35	2		1		1						39		40	1		38		5
V	1											38								
W											3									
X							*******							*******						
Y				33			••••													
Z		-																		
-																				
unknown (?)					******	*******	•••••		••••							*******				
not sequenced																				
sum of seq²	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40
oomcaa,																			37	22
mcaa'	N	T	N	Υ	Α	Q	K	F	Q	G	R	٧	Ţ	М	T	R	D	T	S	1
rel. oomcaa ^s	43%	88%	45%	83%	0,89	%06	%06	980%	93%	85%	93%	95%	98%	58%	100%	85%	88%	920%	93%	55%
pos occupied ^a																				

Table 6B: Analysis of V heavy chain subgroup 1B

•				F	ram	ewo	rk II													
amino acid'	9/	11	78	79	80	81	83	⋖	₽	ر س	83	84	82	98	87	88	68	90	91	92
Α			35									1	2			40				
В																				
· c							ĺ													37
D	1					4							19	40			1			
E						35				•			19	***************************************						
F			1						•	Ī		2	••••						2	1
G						1		1	2											
Н					***************************************															
		1					••••••	.,	,						••••••	•••••	1			
К											1								***************************************	
L			·		2	•••••	3 9	1	1	39					······i		2	•••••		1
М					37		1			···			-	-			2			
N	7					••••		1	2	••••••						.,,,				
Р												1					1		1	
Q																				
R	4							2	16		37									
S	27			1				35	20		1	36						1	1	
Т	1	3 9						1			1				40					
V			4		1					1							33			
W							٠													
Х																		·		
Υ				39														38	35	
Z																				
-																				
unknown (?)																				
not sequenced																	1	1	1	1
sum of seq ²	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	39	39	39	39
oomcaa¹	27	39	35	39	37	35	39	35	20	39	37	36	19	40	40	40	33	38	35	37
mcaa'	S	T	Α	Υ	М	Ε	L	S	S	L	R	S	D	D	T	Α	٧	Υ	Υ	C
rel. oomcaa ^s	9689	%86	98%	98%	93%	98%	%86	88%	20%	%86	93%	%06	48%	100%	100%	100%	85%	9/0/6	%06	95%
pos occupied ⁶																				

WO 97/08320

Table 6B: Analysis of V heavy chain subgroup 1B

										CD	R III									
amino acid'	93	94	92	96	97	86	66	9	⋖	8	ပ	۵	ш	u_	တ	王		_	×	101
Α	37	1	6		1	1		2	3	1	3		1					5		
В																				
. С		1				3		•••		2	1	••••								
D			7	********	5	2	3	1	5	4		1		2	2	1	2			27
E			2		1			1	1		2		1		1					
F .				1	1	3			2	1	1	1	1					2	15	
G		1	7	7	5	5	9	4	7	1	3		2	2	1		1	3		1
Н			1				2			1	1									
1		1		1	1	3	1	1	1	1	1	1		••••••		: :			1	
K		1			1				1	1		1		1			1			
L			2	4	4	4	3			1	2	1	1	2		1			2	******
M				2		1	1							•••••	1				4	
N					1			1		1	1	1			3		1			1
Р				6	4				1	1		3	2				1			
Q					1	********						1	2	1						
R	1	31		5	1	1	3					1		1				1		
S		1	3	3	1	4	3	6	3	2	2	1		1						
T		2	1	1	2	2	1	5	1	1	1		1			1		1		
V	1		7	1	1		1	3	1	2		1			1	2	1			1
W			1		1		2	2		1	1					1		4		
X																				
Y				5	5	4	2	3		4	3	3	2	1	2	· 5	6	2		
Z																				
				1	1	4	6	8	10	11	14	20	23	25	25	25	23	18	11	6
unknown (?)		:									<u></u>								3	
not sequenced	1	1	3	3	3	3	3	3	4	4	4	4	4	4	4	4	4	4	4	4
sum of seq ²	39	39	37	37	37	37	37	37	36	36	36	36	36	36	36	36	36	36	36	36
oomcaa ³											14	20	23	25	25	25	23	18	15	27
mcaa*	Α	R	D	G	D	G	G	-	-	-	-	-	-	-	-	-	-	-	F	D
rel. pomcaas	95%	79%	19%	19%	14%	14%	24%	22%	28%	31%	39%	999	64%	%69	%69	%69	64%	20%	42%	75%
pos occupied"	3	8	10	12	18	13	13	12	12	17	14	13	10	9	8	7	8	8	5	5

WO 97/08320

Table 6B: Analysis of V heavy chain subgroup 1B

					Fra	mev	vork	IV					
amino acid'	102	103	104	105	106	107-	108	109	110	111	112	113	su
Α													34
В													
С													:
D	2												1
E				1									1
F	1												1:
G			27		26					1			4.
Н	1												
l	7								3				1
K				2									1:
L							12	<u></u>		1			2
М							2						1.
N	1												1
Р	1			1									1
Q				23									2
R							1						2
S	3								1		18	18	4
T						21	6		16		1		3
V	6							21		18			3
W		29		,									1
Χ	ļ												
Y	11									, <u>.</u>			2
Z													
	3												3
unknown (?)	ļ	<u></u>		ļ	<u> </u>	ļ							
not sequenced	4	11	13	13	14	19	19	19	20	20	21	22	4
sum of seq ²	36	29	27	27	26	21	21	21	20	20	19	18	
oomcaa3													
mcaa*	Υ	W	G	Q	G	T	L	٧	T	٧	S	S	
rel. oomcaas	31%	100%	100%	85%	100%	100%	57%	100%	%08	%06	95%	100%	
pos occupied ⁶	10	1	1	4	1	1 15		1	•	:	2	1	

Ant drive a main

WO 97/08320

PCT/EP96/03647

Table 6C: Analysis of V heavy chain subgroup 2

														CD	RI					_
amino acid'	21	22	23	24	22	26	27	28	29	30	31	٨	8	32	33	34	35	36	37	38
Α								1				1			1					
В										İ										
. C		7													2					•••••
D											-	1								
E																				
F				3			6		1											
G						7					-		4		3		3			
Н				,																
										Ī			1						7	
K												,						•		
L				2			1		6											*****
M				•••••	*******	•••••	******							5	•••••	.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,				•••••
N							******				2			*******		4,516+17				••••
Р		Ī													***********		*********	*******		
Q	1							•••••				•••••					·····	•••••		****
R				, , , , , , , , , , , , , , , , , , , ,		••••••							2		1					
S			1		6	********		6		6	2	4			•••••••		4	•••••		
T	6		6							1	3	1				*********				•••••
٧		Ī		2		••••••	•••••		•					2		7				
W		Ţ										*******			••••			7		*****
Χ		-						•				•••••								•
Y					1	•••••						•					Ì			•••••
Z															•					•••••
_																				
unknown (?)																		<u></u>		
not sequenced	1														••••••					
sum of seq ²	6	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	
oomcaa3	6	;	1		 											:	:			
mcaa*	T	С	T	÷	·				********		********	*******	G	********		********	·	·	ī	F
rel. oomcaas	100%	100%	86%	43%	86%	100%	%98	86%	96%	%98	43%	57%	57%	71%	43%	100%	57%	100%	100%	1000%
pos occupied							2		2				3							
	*********						*******		~		5 Z			********		\	•••••	÷		•••

WO 97/08320

Table 6C: Analysis of V heavy chain subgroup 2

,				Fra	me	worl	c II													
amino acid'	33	40	41	42	43	44	45	46	47	48	49	20	51	25	A	8	J	53	54	52
Α						6					7									
В																				:
. С							•													
D]				2			~		3	6
Ε								7												
F							•							2						
G		1		7		1														
Н						•••••	4.0100011					2	•••••	********	••••		******			1
ı													6		••••					
К		•			6					1										
L							7			7	·	2	1	1	•••••					
M																				
N										1	•				-			`	3	
P		5	7				********			•			*******							
Q	6					*******	********	•••••		1				•••••	********		••••			
R	1				1							2								
5		1																2		
T																				
V																				
W									7			1						4		
X														1				1	1	
Y														1	1					
Z																				
-			,												6	7	7			
unknown (?)																				
not sequenced	8 9																			
sum of seq ²	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7
oomcaa³	6	5	7	7	6	6	7	7	7	7	7	2	6	2	6	7	7	4	3.	6
mcaa*	Q	Ρ	Ρ	G	K	Α	L	Ε	W	L	Α	Н	1	D	-	-	-	W	D	D
rel. oomcaa'	96%	71%	100%	100%	%98	86%	100%	100%	100%	100%	100%	29%	96%	29%	86%	100%	100%	57%	43%	%98
pos occupied ⁶	2	3	: :	: :					1	1								3		

Table 6C: Analysis of V heavy chain subgroup 2

	C	DR I	1																	
amino acid'	26	57	28	29	09	61	62	63	64	65	99	29	89	69	20	71	72	73	74	75
А																				
В																	.,			
. С																<u></u>	,			
D	5								<u>i</u>								6	1		
E	1								1		<u> </u>									
F		1		1																
G																				
Н				1																
l														6						
K	1	6							4							6				6
L								7				7								
М																				
N																	1			
Р						2	•••••••													
Q						*******	•													
R			2			1			2		7					1				1
S			2		6		7			4			1		5				7	
T						4				3			6		2			6		
V							••••			••••				1						
W				1			,													
Χ					1	•••••		*******					••••••		••••••••	,				******
Υ			3	4												••••••				
Z								}												
_																				
unknown (?)		Ī	<u> </u>													•				
not sequenced	B																			
sum of seq?	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7
oomcaa³	5	6	3	4	6	4	7	7	4	4	7	7	6	6	5	6	6	6	7	6
mcaa*	D	K	Υ	Υ	S	T	S	L	Κ	S	R	L	T	ı	S	К	D	T	S	Κ
rel. oomcaas	71%	%98	43%	57%	%98	57%	100%	100%	57%	57%	100%	100%	%98	%98	71%	96%	%98	86%	100%	%98
pos occupied ⁶									3			1			2		2			2

Table 6C: Analysis of V heavy chain subgroup 2

				F	ram	ewo	rk I	ı												
amino acid'	92	11	78	79	8	81	82	⋖	8	U	83	84	82	98	87	88	83	90	91	92
Α													1			5				
В																				
. С																				7
D											6			7						
E																				
F .					1															
G																2				
Н																				
l						2		1												
К						•														
L					6							•••••		******		••••			********	
М							7			5										
N	5								6		1									
Р												7								
Q		7																		
R																				
S	2																			
T	·					5		5							7		7			
V			7	7						1			6	•						
l W																				
X														-,						
Y													*********					7	7	
Z																				
-								1	1	1										_
unknown (?)									•••••		· · · · · · · · · · · · · · · · · · ·			*********						
not sequenced			,												***************************************	*********	•			
sum of seq?	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7
oomcaa³	5	7	7	7	6	5	7	5	6	5	6	7	6	7	7	5	7	7	7	7
mcaa*	N	Q	٧	٧	L	Τ	М	T	N	М	D	Ρ	٧	D	T	Α	Т	Υ	Υ	С
rel. oomcaaʻ	71%	100%	100%	100%	%98	71%	100%	71%	%98	71%	86%	100%	%98	100%	100%	71%	100%	100%	100%	100%
pos occupied"				:	:	:	:						•••••			2	1	1	1	1
					•			********	60	***************************************					*********	•••••				

Table 6C: Analysis of V heavy chain subgroup 2

									CDI	3 111									
93	94	95	96	97	98	66	100	٧	В	U	۵	ш	ш	၁	I	_	~	×	101
5							1	2	1										
																			€
							2			1									
															***********			3	
					1	1		1	2	1	1	1	1						
	1		1																
		3			2														
						1													
							1		1									1	
							1											2	
			1	2]		1			
			1	1		1		1											******
		1											•						
	6	1			1			1											
			1		1	1													
			1			1		1											
2		1	1	1		1	1			1									
					1									1			1		
				2						1	2	1	1	1			2		
									2	2	3	4	4	4	6	5	3		
		1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
7	7	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6
5	6	3	1	2	2	1	2	2	2	2	3	4	4	4	6	5	3	3	(
Α	R	ı	Н	N	ı	G	E	Α	-	-	-	-	-	-	-	-			D
71%	96%	20%	17%	33%	33%	17%	33%	33%	33%	33%	20%	67%	67%	%29	100%	83%	20%	50%	100%
	•		: :	:	•		:	5		5				:				3	
	7 5 A 0/1/2	5	5	5	5	5	5	5	5	E6 F6 F6<	5	SS SS<	SS SS<	SS 45 SS 65 86 68 68 69 Q 40 B C G	SS 45 95 65 86 86 96 68 86 90 4 80 CO 11 12 11 12 11 12 11 12 11 12 11 12 11 12 11 12 11 12 11 12 11 12 11 12 11 12 11 12 11 12 11 12 11 12 </td <td>Signet Signet</td> <td>Signature Signature <t< td=""><td>Signet Signet</td><td>Signature Signature <t< td=""></t<></td></t<></td>	Signet Signet	Signature Signature <t< td=""><td>Signet Signet</td><td>Signature Signature <t< td=""></t<></td></t<>	Signet Signet	Signature Signature <t< td=""></t<>

And the proof is a companion than the proof from the part of the p

WO 97/08320 PCT/EP96/03647

Table 6C: Analysis of V heavy chain subgroup 2

	Γ				Fra	mev	vork	: IV					
amino acid'	102	103	104	105	106	107	108	109	110	111	112	113	sum
Α									1				35
В													
С													16
D													43
Ε													21
F													18
G			6		6								55
Н										-			6
1													29
К				1			1						42
L	1						3						78
М													20
N													23
Р	1						1						41
Q				3									23
R				2									41
S											6	3	82
Т						6	1		5				102
V	3							6		6			68
W		6		*1******									29
X										.,	.,		4
Υ	1												35
Z													3
-													56
unknown (?)													
not sequenced	1	1	1	1	1	1	1	1	1	1	1	4	54
sum of seq'	6	6	6	6			6	6	6	6	6	3	
oomcaa¹	3			********		6	3	6		6	*******	*******	
mcaa'	٧	W	G	Q	G	Ţ	L	٧	T	٧	S	S	
rel. oomcaa ^s	50%	100%	100%	20%	100%	100%	20%	100%	83%	100%	100%	100%	
pos occupied"	4	1	1	3	1	1	4	1	2	1	1	1	
					1	60	_						

														F	rame
amino acid'	-	2	က	4	ស	9	7	œ	6	10	Ξ	12	13	14	15
Α					1		1			12		1		3	1
В			1			1							1		
. C															
D	1					1				16					
E	110		9		15	16 6			9				8		2
F											4				
G						:		181	193	174		1			202
Н			5										4		
1												9			
K		5	3										26		
L		1	5	176	43		************	************			140			1	•••••
М		12		1			***************************************								** *** *
N							***************************************	**********		1	••••••				**********
Р										:			1	194	•••••
Q	41		138	1	3	12							162		
R			6										4		
S							178			2				8	
Ţ							1								
٧	5	147		1	118						62	195			
W					•										1
Χ	·							,							
Y										,,,,					
Z	8													:	
_															
unknown (?)															
not sequenced	47	47	45	33	32	32	32	31	10	7	6	6	6	6	(
sum of seq?	165	165	167	179	180	180	180	181	202	205	206	206	206	206	206
oomcaa¹	:										***********	************************		***********	
mcaa*	Ε	٧	Q	L	٧	E	S	G	G	G	L	٧	Q	Ρ	G
rel. oomcaa'	67%	%68	83%	98%	9099	92%	%66	100%	%96	85%	9/89	95%	79%	940/0	988
pos occupied	5	4	•				:		2			4			

A The State of the Bear H H Bear Bear

Table 6D: Analysis of V heavy chain subgroup 3

	work	1													
amino acid'	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30
Α								183	192		1				
В		<u> </u>		<u></u>		<u></u>	<u> </u>								
. C		<u>.</u>	<u> </u>			1	209								
D		<u> </u>		<u> </u>		<u> </u>									7
E	8	ļ						8		<u> </u>	3		1		
F		1	1			1		************	<u></u>			201		201	
G	134		, 			ļ			2		207				3
Н						ļ			<u></u>						1
1								2	: : : :	<u>.</u>		3	17	1	
K			,	15						<u></u>					4
L			205	-,	201				<u> </u>	<u></u>		6		3	
M			1					••••••					1		
N				,				**********					10		10
Р								1					2		
Q			1					************							
R	62			191									******		11
5		206				207		4	2	209			15		174
T	4	1		2				4	4		,,,,,,	1	163		
V					8			7	9				1	6	
W			·····		••••••						***********				
X		***********	**********												
Y			***********								******				
Z															
-			•												
unknown (?)		********			**********							**********			
not sequenced							`;		3						
sum of seq ²	: .		:									***********	************		**********
	134										207	201	163	201	174
mcaa*	G	S	L	R	L	S	С	Α	Α	S	G	F	T	F	S
rel. oomcaaʻ	64%	%66	%66	92%	%96	%66	100%	9688	92%	100%	98%	95%	78%	95%	83%
pos occupied ^a	4	3	4	3	2	3	***********	7 64	5	1	***************************************		:	4	

Table 6D: Analysis of V heavy chain subgroup 3

				CDF	RI									Fr	ame
amino acid'	31	⋖	മ	32	33	34	35	36	37	38	33	40	41	42	43
А	1			17	80		1			1		187		1	
В															
· C												1		1	,
D	26			3	7		2								
E	1				10									1	1
F				5											
G	13				31		1					2		209	
Н				4			88								
1	1	<u></u>		1		15			12						
K	7				<u></u>						1				20
L	3					3			2	3	1	2	1		
М						193									
N	35			8	3		34								
Р				1			1					4	191		
Q											209	••••	1		
R	7									207		7			
S	103			17	8		72					3	14	ļ <u>.</u>	
T	9				15		10					4	5	ļ	
V	2				7	1			197			2		<u></u>	
W					30			212					ļ	ļ	<u> </u>
X	1												ļ		
Υ	1			154	19		3	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,							: :
Z												<u> </u>		<u> </u>	
-		210	210			ļ								ļ	ļ
unknown (?)					ļ	ļ		<u></u>							ļ
not sequence				2		•			1				<u> </u>	<u> </u>	<u> </u>
sum of seq²	j	••••••	·····	·······			·:	:	·····	211				:	•
oomcaa,	·	210	210	·····	**********	•;••••	•;•••••	• • • • • • • • • • • • • • • • • • • •	•;•••••	207			7 191	209	
mcaa*	S	-	-	Υ	Α	M	Н	W	V	R	Q	Α	Р	G	; k
rel. oomcaa	49%	100%	100%	73%	38%	91%	42%	100%	93%	%86	%66	%088	wo06	%66	
pos occupie	J ⁶ 14	1	1	ξ	10						1				 1 :

WO 97/08320

PCT/EP96/03647

Table 6D: Analysis of V heavy chain subgroup 3

	work	11													
amino acid'	44	45	46	47	48	49	50	51	52	V	8	U	53	54	55
Α	1					77	42		1	2		14		7	
В			3							1					
· C													1		
D			1							7			94	8	3
E			198						3	2	1		2		1
F							7	1	2	1				1	8
G	207					33	11		10	46			4	163	85
Н							6			1					
					3		3	191		1					1
K								1	37	2	30		3	1	
L		211			5		12	1							
М							1	1							
N							13		7	9	2		13	1 1	1:
Р		1								1			1	•	
Q			7				7			10					
R	1						24	1	17	5	1		2		16
S	3			1	******	102	11	9	118	43		1	74	17	8 2
T							3	5	4	2	·	13	12	3	3
V			3	******	204		49	2		1		6			
W				210			1		8	6					
X													4		3
Υ				1			22		5	58			•		8
Z															
_				*********						14	178	178	2	1	1
unknown (?)															
not sequenced															
sum of seq ²	212	212	212	212	212	212	212	212	212	212	212	212	212	212	212
oomcaa³	207	211	198	210	204	102	49	191	118	58	178	178	94	163	85
mcaa*	G	L	E	W	٧	S	٧	1	S	Υ	-	-	D	G	G
rel. oomcaa ^s	98%	100%	93%	%66	%96	48%	23%	900%	26%	27%	84%	84%	44%	77%	40%
pos occupied ⁶	4	2	5	3	3		15	9		19		5		9	12
							16	3	*************					[;] .	

WO 97/08320

Table 6D: Analysis of V heavy chain subgroup 3

-	(CDR II													
amino acid'	26	57	28	23	09	61	62	63	64	65	99	67	89	69	70
А	9	1	2	į	174	33							1		
В	1	2													
. С															
D	11		17			160									
E	8	3	2			1			2						
F	1		3	2								207			
G	5	1	5		4	5				212	1				
Н	1		4												
ì	3	37	2					8					14	208	
Κ	1	61							199		8				
L	1	1	1		1							1		1	
М	8		2		1										***
N	51		4			2			2						•••••
Р	1	1			6	8	18		1						
Q	3	2							2		2				
R	5	4			5				6		201				
S	48		11		4		193					2	7		211
T	42	97	5		7								189		1
V		2			10	2		204				1		3	
W			2								48488448				
Χ	4		1			1									
Υ	9		151	210			1					1	1		
Z															
-						_			******						
unknown (?)					,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,				*******				*****		
not sequenced															<u> </u>
sum of seq ²	212	212	212	212	212	212	212	212	212	212	212	212	212	212	212
oomcaa ³	51	97	151	210	174	160	193	204	199	212	201	207	189	208	211
mcaa*	N	Ţ	Υ	Υ	Α	D	S	٧	K	G	R	F	T	1	S
rel. oomcaa ^s	24%	46%	71%	%66	82%	75%	910%	%96	94%	100%	95%	980%	89%	98%	100%
pos occupied ⁶	19	12	15	2	9	8	3			:	4		,, , ,		:
							16		***************************************			*********			*********

Table 6D: Analysis of V heavy chain subgroup 3

										Fran	newo	rk III			
amino acid'	7.1	72	73	74	75	9/	77	78	79	80	81	82	∢	8	ں
А			-	57			1	8						1	*******
В											2				
. C															
D		199	38		2	2			1				10		
E		6			4						5				
F									13						
G							• • • • • • • • • • • • • • • • • • • •						1	4	
Н						1			1		2		2		
1			1	••••••			2	2				3	1	1	
К					186	6							3		
L			**********			**********	*******	188	.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	209	*********	3	1		212
М	1				2		10	3		2	-	205			
N		5	170	•••••••	2	188	•••••	•		*********	3		181	10	*******
Р					••••••		1				**********				
Q		••••	**********	•,••••••••	7				************	***********	199	*********			
Ř	211	************			1		************				********		2	8	
\$				153	8	10	56		3	***********	•••••••••••••••••••••••••••••••••••••••		6	186	*******
T							142				1		4	2	
٧				1				11		1		1			
W															
Х		2	2			4							1		
Y									194		•		,		
Z											••••••		••••••		*********
-															
unknown (?)											•				
not sequenced			1	1										************	
sum of seq'	212	212	211	211	212	212	212	212	212	212	212	212	212	212	212
oomcaa ³	211	199	170	153	186	188	142	188	194	209	199	205	181	186	212
mcaa¹	R	D	N	S	K	N	T	L	Υ	L	Q	М	N	S	L
rel. oomcaa'	100%	940/0	81%	73%	88%	89%	67%	%68	92%	%66	94%	97%	85%	88%	100%
pos occupied ^a	2			3											1

Table 6D: Analysis of V heavy chain subgroup 3

amino acid¹	83	84	85	98	87	88	83	90	91	35	93	94	92	96	6
Α		149	1		1	207					173	2	15	9	11
В															
. С									1	210		5	2		1
D		5	15	209								2	54	7	6
E	1		190										11	2	11
F .							1		15			1		9	6
G	1	1	6			4	1				2	8	34	26	35
Н		1							1					3	11
		8					2						4	15	10
K	30											60	4	3	5
L				**********			18					1	6	11	7
M			********	.,,,,,	2		1							6	1
N		1		1		**********						2	20	4	3
Р		9		,,.							1	3	4	29	10
Q			********	1								5	3	9	2
R	177		*****									103	9	30	19
S		1			_ 1							3	9	8	11
T	3	28			207		1				25	15	7	6	20
V		9					187				10	1	7	7	15
W					•	*********				1			3	4	3
X			**********	1	•••••		••••••								
Y					*********	***********	********	211	194				12	9	8
Z															
					*********						•••••		1	3	4
unknown (?)										<u>.</u>					
not sequenced					1	1	1	1	1	1	1	1	7	12	13
sum of seq'	212	212	212	212	211	211	211	211	211	211	211	211	205	200	199
oomcaa,	177	:		209	207	207	187	211	194	210	173	103	54	30	35
mcaa*	R	Α	E	D	T	Α	٧	Y	Υ	С	Α	R	D	R	G
rel. oomcaas	83%	70%	%06	%66	98%	98%	9/068	100%	92%	100%	82%	49%	26%	15%	18%
pos occupied ⁶	5	10	4	4	ŧ	:		1		2				20	21

169

Table 6D: Analysis of V heavy chain subgroup 3

•					CDI	R III									
amino acid¹	86	66	100	⋖	æ	ပ	۵	ш	ų.	9	Ξ		_	×	101
Α	7	13	7	9	6	2	3	5	5		9		13		2
В															
· C	13	5		1	2	11	3		2		*****			1	
D	11	7	10	4	2	3	10	3	3	1		3	2		146
Е	6	3	1	13		1	1								1
F .	3	5	4	5	5	6	3	5	7	2		1	1	6 5	1
G	34	17	35	17	14	23	10	5	1	5	3	2	32		6
Н	3	4	3	2	9	2		1	3	1	2	8	1		
ſ	6	11	4	4	3	1	3	10	3	3	2		1	2	
К	2	11			3	1									
L	26	13	4	12	8	2	6	3	10	3				2	1
М		1	2								1			32	
N	4	6	4	3	2	2	6				2	5			2
Р	6	5	5	6	9	8	2	3	2	1	*********	3		9	•••••••••••••••••••••••••••••••••••••••
Q	4		1	1	1	1	. 1	***********			***********	1			
R	4	10	9	7	5	5	2	3	1		1		2		4
S	16	2 8	27	25	24	8	11	9	3		2	3	1	1	1
Т	6	12	9	17	17	1	2	5	1	9	3	1			
V	13	7	15	4	3	6	2	12		1	1	1	1		
W	6	5	6	7	2	4				1		6	10		
X				1											1
Υ	16	14	17	5	8	18	20	13	20	25	2 8	32	28		
Z															
-	12	21	35	54	73	87	102	110	126	135	134	120	91	71	21
unknown (?)							3	2	1	1			3	2	
not sequenced	14	14	14	14	15	19	21	22	23	23	23	25	25	26	25
sum of seq²	198	198	198	197	196	192	190	189	188	188	188	186	186	185	186
oomcaa ³	34	28	35	54	73	87	102	110	126	135	134	120	91	71	146
mcaa'	G	S	G	-	-	-	-	-	-	-	-	-	-	-	D
rel. oomcaas	17%	14%	18%	27%	37%	45%	54%	58%	67%	72%	71%	65%	49%	38%	78%
pos occupied ⁶	20		**********		***********	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	*********	•••••	·····	••••••••	********	*********			11

Table 6D: Analysis of V heavy chain subgroup 3

					Fr	amev	vork I	٧					
amino acid'	102	103	104	105	106	107	108	109	110	Ξ	112	113	sum
Α	1		1			2							1767
В		i		1									13
С	·····												470
D	2												1121
E					1		.,,						832
F	2												807
G			140		130		1						2743
Н	4												179
	15								1	1			651
K				13									933
L	10			1			91					2	1881
, M							6						496
N	1					1							844
Р	17					1	1						56 8
Q				111									949
R				8									1413
5	7	1									118	110	3009
TT			*********			123	27		122			1	1426
V	34		1			1		125		119			1851
W		158	•••••••										686
X													26
Y	82		**********										1598
Z													8
_	9	2	2	2	2	2	2	2	2	2	1	1	2023
unknown (?)			,								.,		12
not sequenced	27	50	67	75	78	81	83	84	86	8 9	92	97	1650
sum of seq?	184	161	144	136	133	130	128	127	125	122	119	114	
oomcaa3	82			111	130	123	91	125	122	119	118	110	! :
wcaa,	Υ	W	G	Q	G	T	L	٧	T	V	S	5	
rel. oomcaas	45%	%86	97%	82%	%86	95%	71%	98%	98%	98%	%66	%96	
pos occupied ⁶	12	3	4	6	3	6	6	2					

WO 97/08320

Table 6E: Analysis of V heavy chain subgroup 4

														Fra	mev	vorl	(
amino acid'	_	7	က	4	2	9	7	æ	6	10	Ξ	12	13	7	5	9	17	13	19	20
Α									19					1			1		1	
В			<u> </u>																	
· C			<u> </u>																	
D																				
E						32										44				
F																				
G								54	1	53		-				2				
Н			4		2															
ı																				
K												1	54						1	
L		7		54							53	19		1				53		50
M																•				
N																				ļ
Р	<u> </u>	ļ							33					51	1			ļ		2
Q	52		50		51	20					ļ					7		ļ		ļ
R	1	ļ 		ļ									ļ					ļ		<u> </u>
S	 	<u></u>	<u> </u>	ļ			33				ļ	ļ			52			ļ	52	
T	ļ	ļ	ļ	<u> </u>		<u> </u>	ļ		1		<u> </u>						52	ļ	<u></u>	ļ
<u> </u>	<u> </u>	47	<u> </u>	<u> </u>		1	ļ				ļ	34					<u> </u>	<u> </u>	<u>.</u>	1
W	 	<u> </u>	<u> </u>	ļ	ļ	<u> </u>	20	ļ			<u> </u>						<u></u>	ļ		<u> </u>
X	<u> </u>	<u> </u>	<u></u>	ļ			ļ	<u> </u>	ļ		ļ						ļ	ļ	<u> </u>	ļ
Y	<u> </u>	<u> </u>	<u> </u>	<u> </u>	ļ <u>.</u>	<u></u>	<u>.</u>	ļ	ļ		ļ						ļ	ļ	<u></u>	ļ
Z	. 1	<u> </u>		<u> </u>	<u> </u>		<u> </u>	<u> </u>			<u> </u>						<u> </u>	_		<u>!</u>
-		ļ	<u> </u>	<u> </u>			ļ	ļ	<u> </u>	ļ	ļ	ļ				<u></u>	ļ	<u> </u>	: <u>:</u>	ļ
unknown (?)		<u> </u>	<u> </u>	ļ		ļ	ļ	ļ	<u> </u>	<u> </u>	ļ	ļ					ļ	ļ	ļ	<u>.</u>
not sequenced		·			 		 -	-	!	; 	4				_	-		÷	:	
sum of seq ²		·	• • • • • • • • • • • • • • • • • • • •	•••••	· · · · · · · · · · · · · · · · · · ·	••••••		***********				· Ţ · · · · · · · ·	:	:	:	·		7		•
oomcaa¹	*******	٠٠٠٠٠٠٠	. ~	·•••••	••••••	••••••	********	**********	~~~~	÷	••••••	34	· · · · · · · · · · · · · · · · · · ·	:	·	÷	~~~~~			
mcaa*		. 	Q	ļ		·		. .	ļ	G	· †	. <u>.</u>		<u></u>	S		÷	.	. S	. <u></u>
rel. oomcaa ^s	%96	87%	93%	100%	%96	%09	62%	100%	61%	100%	100%	63%	100%	%96	%86	83%	98%	100%	0/096	94%
pos occupied	1		;		•	:	3 2	•	4	÷	1	•	1	i	ŧ		:	•		3

Table 6E: Analysis of V heavy chain subgroup 4

														CD	RI					
amino acid'	21	22	23	24	25	26	27	28	29	30	31	V	&	32	33	34	35	36	37	38
Α			22											1						
В																				
- C		53													1					
D			1								4	1	1	1			1			
E																				
F					1				22					1	1				1	
G						53	53				21	3	4				8			
H							1							2						
j			1					1	32										51	
К																				
Ĺ																			1	
М																				
N										1	1		2	2			1			
Р								3												
Q											1									
R						1				3	2		1							57
5			2		35			51	1	52	25	5	9	1			44		1	
Т	53		2 9								2	1					3			
V				5 5		1			1										3	
W							-					1			2	56		57		
Χ									****,***									********		••••••••••••••••••••••••••••••••••••••
Υ					19		1		****					48	52					
Z																-1-4		••••		
_	Г											45	39							
unknown (?)		•	-											••••••						
not sequenced	1 4	4	2	2	2	2	2	2	1	1	1			1	1	1				
sum of seq ²	53	53	5 5	55	55	55	55	55	56	56	56	56	56	56	56	56	57	57	57	5
oomcaa³	53	53	29	55	35	53	53	51	32	52	25	45	39	48	52	56	44	57	51	5
mcaa'	T	С	T	٧	S	G	G	S	1	S	S	-	-	Υ	Υ	W	5	W	ı	R
rel. oomcaa'	100%	100%	53%	100%	64%	%96	%96	93%	57%	93%	45%	80%	70%	86%	93%	100%	77%	100%	%68	1000%
pos occupied	1	1	5	1	3	3	3	3	4	3	7	6	6	7		·	5	1		

WO 97/08320

Table 6E: Analysis of V heavy chain subgroup 4

				Fra	mev	vork	11													
amino acid'	33	40	41	42	43	44	45	46	47	48	49	20	21	25	⋖	B	ں	53	54	55
Α			8	1							1								<u></u>	
В .	<u> </u>		<u></u>																	
. С		<u> </u>	<u> </u>												_		<u></u>			
Ð	<u> </u>													1				1		
E				1				56				22			_					
F												1		1						
G				55		55					56	1						1		5
Н		2																24		•••••
l		<u></u>								54		1	54							
К					54															
L		1	<u>.</u>				55			2							, 			
M					<u> </u>															
N					<u></u>	<u> </u>		ļ						21						
Р		50	49		ļ	ļ	2	ļ								, 				
Q	56		<u></u>	<u></u>	ļ	ļ		1				1						<u></u>	<u></u>	
R	<u></u>	<u></u>	<u>.</u>	ļ	3	2	ļ		ļ			9		1				<u> </u>	ļ	<u>.</u>
S	<u> </u>	3		<u> </u>	<u> </u>	ļ	<u> </u>	ļ	ļ	ļ	<u> </u>	7		1			<u></u>	ļ	52	ļ
T	1	1	<u> </u>	ļ	<u> </u>	<u>.</u>	<u> </u>	<u> </u>	ļ	ļ <u>.</u>	<u> </u>						<u></u>	8	5	<u> </u>
V	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u>.</u>	<u> </u>	<u> </u>	ļ	1	ļ		3				<u> </u>	<u> </u>	<u> </u>	<u> </u>
W		<u> </u>	<u> </u>	<u> </u>	<u>.</u>	<u></u>	ļ	<u> </u>	56	ļ	ļ						<u> </u>	ļ 	<u> </u>	
X	<u></u>	ļ	<u> </u>	<u>.</u>	ļ	ļ	ļ		ļ	ļ	ļ						<u></u>	ļ	<u> </u>	
Υ		<u>.</u>	<u>.</u>		ļ		<u>.</u>		1	ļ		15		32		ļ <u>.</u>	<u></u>	23	ļ	ļ
Z			<u> </u>					<u> </u>	<u> </u>								<u> </u>	<u> </u>	<u> </u>	Ļ
**		<u> </u>	<u> </u>	<u> </u>	<u>.</u>	ļ		ļ	<u> </u>	<u></u>	ļ	ļ			57	57	57	ļ	<u>.</u>	<u> </u>
unknown (?)		<u> </u>	<u> </u>		ļ		ļ	ļ	ļ	ļ	ļ	<u> </u>				ļ	<u> </u>	<u> </u>	<u>!</u>	<u> </u>
not sequenced		<u> </u>		<u>!</u>			<u> </u>			_								<u> </u>	<u> </u>	Ļ
sum of seq ²	*******	· · · · · · · · · · · ·	·÷			;		•		•		•		:		:	: "	:	:	:
oomcaai	******			******	** *******	********	*******		********	•••••	· - · · · · · · · · · · · · ·	22	******		*********	57	·····			÷
mcaa*	Q	Р	P	G	K	G	L	E	W	1	G	E	1	Y	-	-	<u> </u>	H	S	(
rel. oomcaas	38%	38%	%98	%9t	95%	%96 96%	%96 6	%86	%86	95%	%86	39%	95%	56%	100%	100%	100%	470%	91%	
pos occupied																			5 2	·

mercandinalisman dancarianimes

first, fres. flash flash

Table 6E: Analysis of V heavy chain subgroup 4

	С	DR																		
amino acid'	26	27	28	23	99	61	62	83	64	65	99	63	89	69	20	71	72	73	74	. 75
Α		1									1		1			1				1
В																				
· C																				
Ð			2									1					5 5			
E																	1			
F .				3														1		
G	1					P-2-14 P-2-16				1				****						
Н			2																	
	1	1										1	1	48		3				
K					1				53									1		51
L						1		55				1				3				1
М														7				2		
N	2		40		53								2							1
Р						54		1												
Q																	1			
R	2								3		56									2
S	49		1		2		56			56			1		56			1	57	
T	1	54	1	.,		1			1				51		1			52		
V	1	1										53		2		50				1
W						••••	·													
X																				
Y			11	54		•••••														
Z																				
_																				
unknown (?)						••••••														
not sequenced					1		1					1								
sum of seq?	57	57	57	57	56	56	56	56	57	57	57	56	56	57	57	57	57	57	57	57
oomcaa ³								*******	******			********	*******	*******	********	50	55	52	57	51
mcaa*	S	T	N	Υ	N	Р	S	L	K	S	R	٧	T	l	S	V	D	T	5	K
rel. oomcaas	86%	92%	70%	95%	95%	96%	100%	%86	93%	98%	%86	95%	91%	84%	98%	98%	96%	91%	100%	89%
pos occupied ⁶																	3	:	1	

Table 6E: Analysis of V heavy chain subgroup 4

•				Fı	am	ewo	rk II													
amino acid'	9/	77	78	79	8	8	82	∢	8	ပ	83	84	82	98	87	88	83	8	91	92
А												55	57			57				
В								į	<u> </u>	<u></u>	<u></u> į									
· C								į			İ	<u> </u>								57
D				Ī	1									57						
E						1														
F .			54						1											
G								1												
Н		******												į	į					
			1					1			3								<u></u>	
K	3				*******	46		2												
L L		3	1		55		53			2							1	<u> </u>	<u> </u>	
М		,	<u> </u>		•••••	1	1			1							1		<u> </u>	
N	54		<u> </u>			3	••••••••••••••••••••••••••••••••••••••	3	1	,									<u></u>	
P			<u> </u>		********				1	************										
Q		54	•••••		1	1		ļ												
R			Ĭ			2		2				1					<u> </u>	<u> </u>	<u> </u>	
S			1	57		2	1	44	5 5		1				2		<u> </u>	<u> </u>	1	
T						1		4			53				55		<u> </u>	<u> </u>	<u> </u>	
V							2			54		1					55	<u> </u>	<u> </u>	
W																	<u>.</u>	<u> </u>	<u> </u>	
X																	<u> </u>		<u>.</u>	
Y																		57	56	
Z .																		<u>!</u>	<u> </u>	
-																			<u>.</u>	
unknown (?)		İ									<u></u>	<u> </u>				<u> </u>	<u>.</u>	<u> </u>		<u> </u>
not sequenced	1																<u> </u>	<u> </u>		
sum of seq ²	57	57	57	57	57	57	57	57	57	57	57	57	57	57	57	57	57	57	57	57
oomcaa'	54	54	1 54	57	55	46	53	44	55	54	53	55	57	57	55	57	55	57	7 56	57
mcaa ⁴	N	Q	F	S	L	K	L	S	S	٧	T	Α	Α	D	T	Α	٧	Υ	Υ	С
rel. oomcaas	95%	950	95%	100%	%96	8 1%	93%	77%	%96	95%	93%	%96	100%	100%	96%	100%	9 6%	100%	98%	100%
pos occupied	•	:	2 4	:	:	3 8	1	1 7	1	:	3	ž	1	:	2		-			2 1

WO 97/08320 PCT/EP96/03647

Table 6E: Analysis of V heavy chain subgroup 4

										CDF	3 111									
amino acid'	93	94	95	96	97	98	66	100	A	8	ပ	0	ш	щ.	G	I		_	¥	101
Α	56		3	3	3	2	5	4	2	2	4		2	1		1	1	12		
В																				
C					1				1											
D			6		5	5	5	4	3	2	4	3	1		1	2	1			41
E			6	1	1	2	1			1	3	1	2	1						
F				4	1	1		2	3	2	2		1	1					31	
G			25	9	10	8	10	11	4	7	7	6	1	1	1	2	1	9		
Н			1				1						1			1				2
				1		2	4	1	3	2	3		1						1	
К			2	1						2	2			1						
L			2	6	7	3	5	, 3	2	4	1	5	3	3		1				
М				1	4		3	1		2	1			-					9	
N				3					2	1	1	5	1	1			2			
Р				4	5	3	1	1	2	1	1	1	2	3	1	2	1		*******	
Q					1	1		1			1	1			3					1
R		54	4	12	2	5	5	3	2	3	1	2			2	1				
S		1	1	4	8	8	1	2	5	7	4	2	1	1	1					
T		1	1	2	1	3	4	4	3	3			1	1	1					
V	1	1	4	2	2	5	4	4	7	3	1	2	1							
W			1	2	1	2	2	4	5	1	1	2		2	1		3	2		
X																				
Y				1	4	5	3	6	4	2	3	4	8	4	8	3	5	8		2
Z																				
-						1	2	4	6	9	11	16	23	27	29	34	31	14	4	
unknown (?)														1			1	1	1	
not sequenced			1	1	1	1	1	2	3	3	6	7	8	9	9	10	11	11	11	11
sum of seq ²	57	57	56	56	56	56	56	55	54	54	51	50	49	48	48	47	46	46	46	46
oomcaa¹	56	54	25	12	10	8	10	11	7	9	11	16	23	27	29	34	31	14	31	41
mcaa*	Α	R	G	R	G	G	G	G	٧	-	-	+	-	-	-	-	-	_	F	D
rel. oomcaas	98%	95%	45%	21%	18%	14%	18%	20%	13%	17%	22%	32%	17%	9696	900%	,2%	37%	0,00	37%	39%
pos occupied ^s	i .	:	:		:	:	:	:	Ė									;	:	

Table 6E: Analysis of V heavy chain subgroup 4

					Fra	mew	ork	IV					
amino acid'	102	103	104	105	106	107	108	109	19	Ξ	112	113	sum
Α						1		i	1				3 32
В		T		•••••		Ī	i						
C	<u> </u>						- †				*****		113
D							†			<u>-</u>			210
E		_					-		·····†	T			176
F							1						135
G			41		40	1							674
Н	1	<u>-</u>							1				45
1	9					1							282
K				3									278
L	4						19				*******		540
M							9						43
N				•••••		1							204
P	3			2						******		2	281
Q				29									334
R	1		•••••	4			1						250
S	1			1		ļ	<u> </u>				36	33	986
Т				1		33	8		34				532
٧	12							36		36			488
W		46											267
X													
Y	16												455
Z													1
-													466
unknown (?)								<u> </u>	<u> </u>	<u> </u>	<u></u>	<u></u>	4
not sequenced	10	11	16	17	17	20	20	21	21	21	21	22	426
sum of seq²	47	46	41	40	40	37	37	36	36	36	36	35	
oomcaa ³	16	46	41	29	40	33	19	36	34	36	36	33	<u>.</u>
mcaa*	Υ	W	G	Q	G	T	L	٧	T	٧	\$	S	
rel. oomcaa'	34%	100%	100%	73%	100%	89%	51%	100%	940%	100%	100%	94%	
pos occupied	8	1	1		:			1	7	-	1	2	2

178

WO 97/08320

Table 6F: Analysis of V heavy chain subgroup 5

																Fra	me	wor	k l			
amino acid¹	_	2	، د	·	4	ည	9	7	8	6	2	: :	=	12	5	14	15	16	17	₩	19	20
Α						1			1	89)		1			1				<u> </u>	<u></u>	ļ
В	٠									<u> </u>	<u> </u>	<u>.</u>								<u> </u>	ļ	<u> </u>
· C								1	<u> </u>	<u> </u>										<u> </u>	<u> </u>	<u> </u>
D									<u> </u>			2							ļ	ļ	<u> </u>	·
E	88		1			2			<u></u>		4 9	3						92	ļ		<u>.</u>	<u>.</u>
F																			1	ļ	ļ	<u>.</u>
G	1								92	2							94		ļ	ļ	<u>.</u>	ļ
Н									<u> </u>	<u>.</u>									<u> </u>	<u> </u>	<u>.</u>	ļ
}							******		<u> </u>		<u>.</u>							ļ	<u> </u>	<u> </u>	<u>.</u>	9
K									<u>.</u>	<u>.</u>	<u>.</u>			94	94			<u></u>	<u>.</u>	<u>.</u>	77	<u> </u>
L			1		91		2				<u> </u>				<u> </u>	<u> </u>		<u> </u>	<u> </u>	9	5	<u>.</u>
M									<u>.</u>	<u>.</u>			3		<u> </u>	ļ	<u> </u>	<u> </u>	<u> </u>	<u> </u>	. 1	Ĺ
N									<u> </u>		<u> </u>				<u>.</u>		<u></u>		<u>.</u>			
Р		Ī			1						1					94		ļ	ļ	ļ	<u> </u>	
Q	3	3		92		1	90							<u></u>		<u> </u>		3			ļ	<u> </u>
R							1			1	<u> </u>			1	1		1		<u>.</u>	<u>.</u>	1	<u> </u>
5								92	2	<u></u>		<u></u>		<u> </u>	<u> </u>		<u> </u>	<u>.</u>	94	4	<u> </u>	_
T							<u>.</u>				<u> </u>			<u> </u>	<u> </u>	<u>.</u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>		-
V			90			89		<u> </u>		<u>.</u>	1		91	<u>.</u>	<u>.</u>	<u>.</u>	<u> </u>	<u> </u>	ļ	<u>.</u>	<u>.</u>	<u>.</u>
W							<u> </u>		.	<u>.</u>				<u> </u>	ļ		ļ	<u>.</u>	ļ	<u>.</u>		
Х		1											<u>.</u>	<u>.</u>	ļ					_		
Υ											<u></u>	******		<u></u>								
Z																		<u> </u>	<u> </u>	<u> </u>	_	<u> </u>
*						<u></u>							<u> </u>	<u> </u>					<u>.</u>	<u></u>		
unknown (?)						<u> </u>							ļ	<u>.</u>	<u>.</u>		ļ	<u> </u>	- 			<u>.</u>
not sequence		_					_		4	4	2	2			=						÷	1
sum of seq?			********		•	•	:	•	•	:	:		:			i	•	•		•	:	:
oomcaa,					******			****	*****			*****				;	••••	•••••			5 7	
mcaa'		E	٧	Q	L	V	() !	5	G į	A	Ε	V	K	K	Р	G	3 E		5	L i I	< :
rel. oomcaa	5	0/09	98%	100%	99%	%9°C		07.40	99%	%66	94%	%86	960%	9000	9000	9000	9000	93%0	9/20	9990	100%	0/ ₀ 08
pos occupied	•	:		:	:	:	:	3		2	4			:	•		•	•	•	:	1	

179

SUBSTITUTE SHEET (RULE 26)

m. anna bara of. all

WO 97/08320

Table 6F: Analysis of V heavy chain subgroup 5

br. Analysis of														CD	RI					
amino acid¹	21	22	23	24	25	56	27	28	29	9	31	⋖	80	32	33	34	35	36	37	38
Α				3	2					4							8		1	
В										<u> </u>							.,,			
· C		96						1			1									
D								2			2						1			
E						2				<u></u>	1									
F .					3		6		97					2						,
G				92		93					1						72			
Н											1			4				;		1
										4						93				
K			8 9					1												
L															1				2	
M			1										-			1			1	
N			1					2		4	14			2						
Р					1															1
Q			4																	
R			1			1		2							1					95
S	94			1	90			84		10	61			2	2		15			
T	2							5		75	16					2	1			
V												·				1			93	
W															93			97		
Х																				
Y							90							87						
Z																				
-												97	97							
unknown (?)																				
not sequenced	1	1	1	1	1	1	1													
sum of seq ²	96	96	96	96	96	96	96	97	97	97	97	97	97	97	97	97	97	97	97	97
oomcaa1	94	96	89	92	90	93	90	84	97	75	61	97	97	87	93	93	72	97	93	95
mcaa'	S	С	Κ	G	S	G	Υ	S	F	T	S	-	-	Υ	W	1	G	W	٧	R
rel. oomcaa ^s	%86	100%	93%	%96	94%	97%	94%	87%	100%	77%	63%	100%	100%	%06	%96	%96	74%	100%	%96	%86
pos occupied ^a			:	:	:	:	:	:	1	:	8	:	•	:		;	:	:	4	

WO 97/08320 PCT/EP96/03647

Table 6F: Analysis of V heavy chain subgroup 5

•						vork													<u> </u>	
amino acid'	33	40	41	42	43	44	45	46	47	48	49	20	51	25	Ψ	8	ں —	53	54	55
Α		į	1			1									1			2	1	
В																				
- C														1				1		
D														14				8	9 3	
E					3			97	<u> </u>										2	
F												1		2						
G				97		96					95							69	1	
Н				<u> </u>										3	1			ļ	<u></u>	<u>.</u>
			<u></u>	<u> </u>						1		75	92					<u> </u>	<u> </u>	<u> </u>
K		1	<u> </u>	<u> </u>	94													<u> </u>	ļ	<u></u>
L			<u> </u>	<u> </u>	<u> </u>	<u></u>	94	<u> </u>		2		2	1			ļ		<u> </u>	<u>!</u>	:
М		92	<u> </u>	<u> </u>	<u> </u>	ļ	<u></u>			89			1			<u> </u>	<u></u>	ļ	<u> </u>	ļ
N			ļ	<u> </u>		ļ	<u></u>									<u> </u>	ļ	ļ		ļ
P			96	ļ			2							1	93	ļ	ļ	ļ		ļ
Q	97	ļ	ļ	<u> </u>	ļ	ļ	1	ļ									ļ	ļ	ļ	ļ
R	 	1	ļ	<u> </u>			ļ				1	14				ļ	<u> </u>	1	÷	<u> </u>
<u>S</u>	[<u> </u>	<u>.</u>	<u> </u>	<u> </u>	ļ	ļ	ļ				1			1	<u> </u>	<u> </u>	16	<u> </u>	9
<u> </u>	Į	1	<u> </u>	<u> </u>	<u> </u>	<u> </u>	ļ	<u> </u>				3	1		1	<u> </u>	ļ	ļ	<u> </u>	
<u>V</u>	ļ	2		<u>.</u>	<u> </u>	<u> </u>	ļ	<u> </u>		5	1	1	2			ļ	<u> </u>	<u> </u>	<u>.</u>	<u> </u>
W		<u> </u>	<u> </u>	<u> </u>	ļ		ļ	<u> </u>	94							ļ	ļ	<u> </u>	<u>:</u>	<u> </u>
X	<u> </u>	<u> </u>	 	<u>.</u>			ļ		ļ						ļ	<u>.</u>	ļ	ļ	<u> </u>	<u> </u>
Y		<u> </u>	<u> </u>		-		ļ		3		ļ			76		ļ	<u> </u>	<u> </u>	<u> </u>	
Z	.	<u> </u>	<u> </u>	 	-	<u> </u>	 _	<u> </u>	<u> </u>		<u> </u>		<u> </u>		<u> </u>	-	<u> </u>	-	1	! -
-		<u>.</u>		.ļ					ļ	<u></u>	ļ	<u>.</u> 	<u> </u>	<u>-</u>		97	97	7	:	: :
unknown (?)		<u> </u>	<u>.</u>	<u>. </u>	<u> </u>		-		<u> </u>	<u></u>	<u> </u>	<u></u>	<u> </u>	ļ	ļ	<u> </u>	<u> </u>		<u>;</u>	:
not sequence	===	-	-	-	-								<u> </u>			<u> </u>		 		<u> </u>
sum of seq'	*******			···						·	÷	÷	••••••		•;•••••					
oomcaa¹		,. ,						1 97		÷		********	••••••				•••••••		9; 9: D	*******
mcaa ⁴	·	·		G			L		W	÷		<u></u>				•••••••	-			
rel. oomcaa ^s	1000%	050%	9000	1000%	070%	0000	97.00	100%	97%	92%	986	77%	95%	78%	96%	3000	800	7 10%	0,000	2
pos occupied	4	1	5	າ	1	₂	ว!	2 1	1 2		1 2	,				_	1	1	6	A :

Table 6F: Analysis of V heavy chain subgroup 5

•	С	DR	I																	
amino acid'	26	21	28	23	99	61	62	63	64	65	99	29	89	69	70	71	72	73	74	75
Α		6					1									8 8				
В																				
. C					1					1										
D	77									2							97			
E	3								2									2		
F				2				91				1		3						
G	1									94										
Н											15									
		4	1					1				3		88						9
K			2															93	•••••	
<u>L</u>						1		4							2					ļ
M														3						
N	2		14	2																
Р						95	1		1										1	
<u>Q</u>	ļ		ļ						91		81							1		
R			78			-			3		1			1				1		
<u>S</u>	2	2	÷		95	1	95	1					1	•••••••••••••••••••••••••••••••••••••••	95				96	<u>:</u>
T		85	2		1		<u> </u>						96	,						-
V	ļ	<u></u>	ļ	1	<u> </u>		ļ <u>.</u>					93		2		9		<u></u>		<u> </u>
W		ļ	<u> </u>	ļ	ļ												<u> </u>	<u></u>	<u> </u>	<u> </u>
X			<u> </u>	!	!		ļ			ļ							······	<u></u>	<u></u>	<u></u>
Y	12	ļ	ļ	92	ļ		ļ										ļ		<u></u>	
Z	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>		<u> </u>	<u> </u>		<u> </u>							<u> </u>			<u> </u>
-		<u> </u>	<u> </u>	ļ	ļ		ļ	ļ		ļ	<u> </u>	<u></u>					ļ	ļ	<u></u>	<u> </u>
unknown (?)		<u> </u>	ļ	<u> </u>	ļ			ļ	<u></u>	<u> </u>	<u> </u>	ļ					<u> </u>	<u> </u>	<u> </u>	<u>!</u>
not sequenced	÷	<u> </u>	!	<u> </u>	<u> </u>		<u> </u>	<u> </u>		-									_	<u> </u>
sum of seq ²		÷	†	!	<u> </u>	·····		†	:		:	}	97			: :	:	÷	:	÷
oomcaa ¹	·····	÷	**********	÷	·	•	•••••••	••••••	******	<u> </u>	÷	÷	96			********	-	÷	÷	9
mcaa'	D	ļ	·	<u> </u>	S		5	F	ļ	G	Q	٧	:		S		D	K	S	: !
rel. oomcaa ⁵	79%	88%	80%	95%	98%	98%	%86	94%	94%	92%	84%	%96	%66	91%	%86	91%	100%	%96	%66	7070
pos occupied ⁶				Δ	3	3	. 3	4	Δ	ર	3	ર	2				1		2	1

Table 6F: Analysis of V heavy chain subgroup 5

					Fr	am	ewo	rk II	1												
amino acid'	9/	77	70	8/	79	8	81	87	¥	8	ر ا	8	84	82	98	8/	88	88	8	91	92
Α		1	ç)1								1	96				9 3				
В			<u> </u>						<u> </u>												
. С			<u> </u>					1													95
D					1										96						
E							1					1									
F					1														2	6	
G									3	1							4				
Н							3												.		
1		<u>.</u>														2		9			<u>.</u>
K		<u> </u>	<u> </u>	<u></u>								91						1		<u> </u>	<u> </u>
Ł		<u>!</u>				96					97							2			<u> </u>
М									<u> </u>									84		<u> </u>	ļ
N	7							<u></u>	2	2						2				<u></u>	ļ
P				1					<u></u>	ļ			<u>.</u>							ļ	
Q		<u>.</u>					93		ļ	ļ			ļ						ļ	<u> </u>	
R	1	<u>.</u>			•••••			1	1	3	ļ	3	ļ						ļ	ļ	<u> </u>
<u> </u>	87	<u>.</u>	2	1	1	ļ	ļ	ļ	90	91	: : :	<u></u>	<u> </u>	96		5		ļ	ļ	ļ	ļ
T		9	4	2		ļ		<u> </u>	1	<u> </u>	<u>.</u>	1	1	1		88		1	<u> </u>	ļ	ļ
<u>V</u>		<u>.</u>		2		1	<u></u>	<u> </u>	<u> </u>	<u>.</u>	<u> </u>	<u> </u>	<u> </u>		1	:		<u> </u>	<u></u>	<u> </u>	<u> </u>
W		<u>.</u>				<u> </u>	<u></u>	95	.	<u> </u>	ļ	<u> </u>	<u>.</u>					ļ	<u> </u>	<u>.</u>	<u> </u>
X		<u>.</u>				<u> </u>	ļ	<u>.</u>		<u> </u>	ļ	<u> </u>	<u>.</u>					<u></u>	<u> </u>	<u>.</u>	ļ
Y		<u>.</u>			94	<u>.</u>		ļ	<u>.ļ</u>	.j	<u></u>					*********			94	89)
Z		1	-					<u> </u>		<u> </u>	<u> </u>		<u> </u>					<u> </u>	!		<u> </u>
-			_			<u>.</u>	ļ	<u>.</u>	<u> </u>	ļ	ļ	ļ	<u> </u>			,.,	ļ	ļ	<u> </u>	<u> </u>	ļ
unknown (?)		<u>.</u>				<u> </u>	ļ	<u>.</u>	<u>. </u>	ļ	<u> </u>	<u> </u>	<u> </u>	<u></u>			<u> </u>	<u> </u>	<u> </u>	<u>.</u>	<u>.</u>
not sequence	_	Ļ	_					<u> </u>	-	<u> </u>	<u> </u>	<u> </u>	<u> </u>					<u>!</u>			2
sum of seq ²	•••••	···÷····	•••••	*******	÷	••••••	•••••••	••••••••	;	••••••	********	••••••		97	:	:	•	•••••••	•=••••		7
oomcaa'	· · · · ·	···÷···	·····÷	*******	÷		••••••	•••••••	••••					96	*********	• • • • • • • • • • • • • • • • • • • •	••••••			··· · ······	••••••
mcaa*	2		T	A	Y	L	0	N	/ S	S	L	K	A	S	D	T	Α	M	Y	Y	
rel. oomcaa	, %CO	200	97%	94%	97%	0,000	90%	9000	%0C 6	94%	100%	940%	% 66	9,066	%66	91%	%96	87%		940%	2
pos occupied		···Ţ		5	1					5 4			;	2 2	:	:	. 2	:	••••••••	2	:

Table 6F: Analysis of V heavy chain subgroup 5

										CDR	111									
amino acid'	93	94	95	96	6	86	66	9	⋖	8	ပ	٥	u	<u>u</u>	9	I		_	×	101
Α	92		1	1	2		3	4	3	2		1			1			4		2
В									<u> </u>											
. C						1	1	1	<u> </u>		2		1							
D				3	3	3	3	1	2	1	1	2		2	1	1	2			37
Е			1	1	1	2			1	1				1			1			
F		<u> </u>			1		3			3	2		_1						26	
G			1	9	11	12	12	5	2	4	3	10	2	1				5		
Н		<u></u>	10	1		2			1	1		1								
		<u> </u>	<u> </u>	3		2	2	1	1	4	1	1		1	1					
K		1	1	1		1	3	1							<u></u>	2				
L		<u> </u>	11	2	3	1	1	2	5		1		1		1				ļ	
М					2	1	1		1	1	1	1							10	<u> </u>
N				1		2		1	1	2			1					2	ļ	ļ
Р			5	1	4	3	1	2				1	1	1	1				<u></u>	ļ
Q		1	3	2	ļ	1	1	4	2	1	2				: :::				ļ	
R		92	7	9	2	2	<u> </u>	2	1		2								ļ	<u> </u>
S		1	1	3	2	6	4	4	5	3	5	3	2	2			1		1	<u> </u>
Ţ	1	<u> </u>	1	3	2	1	2	6	3	3	6	1		1					<u> </u>	<u> </u>
V	2	<u> </u>	2	4	4	<u> </u>	1		1	2			1						<u> </u>	<u> </u>
W			1		2	1	<u> </u>	<u>.</u>			1		2		1		1	1	<u> </u>	<u> </u>
Χ				<u> </u>		<u>.</u>	<u> </u>	<u> </u>											<u>.</u>	<u>.</u>
Y				1	E	3	6	9	8	7	2	1	2	6	8	9	9	10	<u> </u>	<u></u>
Z								<u> </u>											<u> </u>	<u> </u>
-						1	1	2	8	10	16	23	30	30	31	32	30	22	7	<u>.</u>
unknown (?)									<u> </u>	<u> </u>		<u>.</u>	1			1	1	1	<u>.</u>	<u> </u>
not sequence	d 2	2 2	52	52	52	52	52	52	52	52	52	52	52	52	52	52	52	52	53	5
sum of seq ²	9	95	45	45	45	45	45	45	45	45	45	45	45	45	45	45	45	45	44	4
oomcaa³	92	2 92	2 11	ç) 1	12	12	9	8	10	16	23	30	30	31	32	30	22	26	3
mcaa*	Α	R	L	G	G	G	G	Υ	Υ	-	-	-	-	-	-	: -	-	-	F	J
rel. oomcaa'	9.20V	9026	24%	20%	240%	27%	27%	20%	18%	22%	36%	51%	9029	67%		71%	9029	49%	59%	
pos occupied				:	:		********	:	:	:		· 	· · · · · · · · · · · · · · · · · · ·	:		··	7	7	· -	1

WO 97/08329

Table 6F: Analysis of V heavy chain subgroup 5

					Fran	new	ork	IV				\neg	
amino acid'	102	103	104	105	106	107	108	109	110	=	112	113	sum
А												1	611
В													
С													205
D	1		Ī										458
E				1									404
F	2												256
G			41		41								1065
Н													44
1	9								2				5 88
K				3									650
L	2						25	1					549
M					İ		8						303
N													64
Р	2				į	1					1		414
Q				34									612
R				3									351
S	2										40	39	1545
Т	1					40	8		39				604
V	11							40		41			594
W		43											432
. X	ļ	<u></u>											
Y	13	<u> </u>											738
Z													
_	2					•••••	ļ	<u></u>					63 5
unknown (?)	ļ	ļ	ļ				<u> </u>	<u> </u>			<u> </u>	<u> </u>	4
not sequenced	52	54	56	56	56	56	56	56	56	56	56	57	1678
sum of seq?	45	43	41	41	41	41	41	41	41	41	41	40	1
oomcaa3		********	·•••••••	*	•••••••	********	********	40			:···	·····	i. -{
mcaa*	Y	W	÷	ļ	G	÷	L	. 	· T	ļ	S	S	:
rel. oomcaa ^s	29%	100%	100%	83%	100%	98%	61%	98%	95%	100%	98%	98%	
pos occupied	10) 1	1	4	1	2	3	3 2	2	1	<u>:</u> 2	2	<u>, </u>
					1	25							

SUBSTITUTE SHEET (RULE 26)

WO 97/08320

PCT/EP96/03647

Table 6G: Analysis of V heavy chain subgroup 6

														Fr	ame	wor	kΙ			
amino acidi	_	2	က	4	2	9	7	8	6	01	Ξ	12	13	14	15	16	17	18	19	20
А												1								
В			<u> </u>																	
. С																				
D																				
E												-								
F		<u> </u>																		
G		<u> </u>						52		67										
Н																				
ı																				
K													68							
L				52							68	1						67	1	68
М																				
N																				
Р									68					67					1	
Q	52		52		51	52										6 8				
R					1					1										
S	.					******	52							1	68				66	
T																	68			
V		52										66						1		
W																				
X																				
Υ																				
Z																				
unknown (?)													:							:
not sequenced	22	22	22	22	22	22	22	22	6	6	6	6	6	6	6	6	6	6	6	6
sum of seq ²	52	52	52	52	52	52	52	52	68	68	68	68	68	68	68	68	68	68	68	68
oomcaa ³	52	52	52	52	51	52	52	52	68	67	68	66	68	67	68	68	68	67	66	68
mcaa*	۵	٧	а	L	Q	Q	S	G	Р	G	L	٧	Κ	Р	S	Q	Т	L	S	L
rel. oomcaas	100%	100%	100%	100%	98%	100%	100%	100%	100%	99%	100%	9/0/6	100%	966	%001	%001	%00	99%	92%	100%
pos occupied ⁶	,	1	1	1	2	1	1	1	1	2	1	3	1	2	1	1	1	2	3:	1

WO 97/08320

PCT/EP96/03647

Table 6G: Analysis of V heavy chain subgroup 6

									CDRI											
amino acid'	21	22	23	24	25	76	27	28	53	30	31	⋖	82	32	33	34	35	36	37	38
А	1		67											66	67					
В																				
С		6 8																		
D							68				1						1			
E																				
F										2				1	1				1	
G			1			69							3	1	2					
Н																	1			
				64								2					1		70	
K			.,									3								
L																				
М																				
N							1				2	66					70			
Р								********												
Q			.,,,,,,																	
R											2	1			•••••					74
S	1			1	69			69		68	6 6		67		3		1			
	67										2	1	4		1					:
V			1	4					70					6					2	
W	 	1														74		74		
X	ļ													*******	*******	m.				
ΥΥ												1				,			1	
Z																				
-		ļ	ļ																	<u></u>
unknown (?)	ļ	<u></u>	ļ						,		1				••••••					
not sequenced	5	5	5	5	5	5	5	5	4	4										
sum of seq ²	69	69	69	69	69	69	69	69	70	70	74	74	74	74	74	74	74	74	74	74
oomcaa ³			·	~			·····	*********	*********		*******	******		*******	********	********	********			~ * * * * * *
mcaa'	T	C	Α	1	S	G	D	S	V	S	S	N	S	Α	Α	W	N	W		R
rel. oomcaa'	97%	9666	97%	93%	100%	100%	%66	100%	100%	9266	%68	%68	910%	%68	910%	100%	92%	100%	95%	1000%
pos occupied ^e								1												

Table 6G: Analysis of V heavy chain subgroup 6

	Framework II																			
amino acid'	39	40	41					46	47	48	49	20	51	52	∢	8	υ	53	54	55
Α				1									1					1		
В																				
- с																				
D																				
E								74												
F .														2	1			1		
G					*******	74					74	1							1	
Н															1					
1																				
K	1				1									.,		1			66	
L	1						74			74										
M								``												
N																			1	
Р			73																	
Q	72																			
R					73							73				72			1	1
S		74	1	73									••••••			1		72	<u>-</u>	
T													73						5	
V																				
W									74						••••••					73
X		,							******					••••••						
Y		·····												72	72					
Z																				
-						••••••								41444444			74			
unknown (?)														••••••						
not sequenced																				
	74	74	74	74	74	74	74	74	74	74	74	74	74	74	74	74	74	74	74	74
	72			********			74			74	• • • • • • • • • • • • • • • • • • • •				*********				•••••••••	•••••
mcaa ⁴	Q	S	Р	S	R	G	L	Ł	W	L	G	R	Т	Y	Υ	R	-	S .	K	:
rel. oomcaas	9/0/6	100%	9066	%66	966	100%	100%	100%	100%	100%	100%	990%	990%	9/0/6	97%	97%	%001	92%	9008	%66
pos occupied ⁶	3	1	2	2	2	1	1		ා ව රි		1	2	2	2	3	3			:	2:

WO 97/08320

Table 6G: Analysis of V heavy chain subgroup 6

•	С	DR	II _																	
amino acid'	26	27	28	23	8	19	62	ß	64	65	99	29	89	69	70	71	72	73	74	7.5
А					73	1							2			6		1		
В																				
· c				1																
D			68			1									2		73			
E	1		3			7			1											2
F	7																			
G			1				1			8										
Н	1																1			
[1						65	2	71				1		
К		1							67						1					70
L	1					5		2				4						1		
М												1								
N	2	65	1						1						69					
Р					1	1										66				
Q									2		1									
R		1							3		73									
S	2	2	1	1			73			66			1		2	1			73	
ТТ		4											6 9	1				71	1	2
V						58		72				4		2		1		•		
W									••••											
X																				
Y	60	1		72																
Z																				
_			<u> </u>	<u></u>																
unknown (?)													.,	,,,,,,,,,						
not sequenced																				
sum of seq ²	74	74	74	74	74	74	74	74	74	74	74	74	74	74	74	74	74	74	74	74
oomcaa³	60	65	68	72	73	58	73	72	67	66	73	65	69	71	69	66	73	71	73	70
mcaa'	Υ	N	D	Y	Α	٧	S	٧	K	5	R	1	T	1	N	Р	D	T	S	K
rel. oomcaa ^s	81%	88%	95%	97%	966	78%	%66	97%	91%	89%	%66	88%	93%	96%	93%	89%	%66	96%	99%	95%
pos occupied ⁶			Ţ	i	i .	:		;	:	:			4	3	4					3

WO 97/08320

Table 6G: Analysis of V heavy chain subgroup 6

	Framework III																			
amino acidi	9/	77	78	79	80	81	82	A	മ	U	83	84	85	98	87	88	89	90	91	92
Α													1			74				
В																				
· C																				73
D								3						73						
E						•••••							73							
F			71						1			*****			*****				3	
G										,,,,,,,,,		********		1	.,					
Н						2		1												-
			1														2			
K						*******		4				.,								
L		1			74		72													
M							1			1				,			2			•••••
N	74					•••••		63	•••••										1	
Р												70								
0		72				71														
R		1				1		1												1
<u>S</u>				74		••••••		1	73		1	3								
T								1			73				74			1		•••••
V			2				1			73							70			
W						•••••														
X																				
Y																		73	70	
Z						-														
_						*******														·•••
unknown (?)																				
not sequenced	-											1						-		
sum of seq ²	74	74	74	74	74	74	74	74	74	74	74	73	74	74	74	74	74	74	74	74
	74																			
mcaa*					•••••	*********				·····		Р			••••••		٧	Υ	Υ	С
rel. oomcaas	100%	92%	%96	100%	100%	96%	97%	85%	%66	%66	9666	96%	%66	%66	100%	100%		9,666	92%	99%
pos occupied ⁶	1	3	3	1	1	3	3	7	2	2	2	2	2	2	1	1		2	3	2

190

SUBSTITUTE SHEET (RULE 26)

er er er er er er er er er en mille Mannell i er mille die die den daarden verde alle dighet men er en er er er

The second of the second of the second of the second of the second of the second of the second of the second of

WO 97/08320 PCT/EP96/03647

Table 6G: Analysis of V heavy chain subgroup 6

	CDR III																			
amino acid	93	94	95	96	97	98	66	100	∢	В	ပ	۵	ш	Ų.	9	Ŧ	_	_	×	101
Α	69		11	1	3	12	4	3	2	5		8						10	1	
В																				
· c					1		1			1		1	1			*******				
D			19	4	3	7	4	3	1	6	1	1	1							62
Е			10	4	2	1	2	2	1	2				*******			1			
F .	1		1	1	1		1	2	3		2	**********	••••••	1					38	4
G	1		16	4	15	15	11	8	6	2	5	1	8	6	1	*******		17		
Н				1		1			1	1	1	1				1	1	1		
,				1	2		2		5	1										
K		1	1	1	1	1	1	1				1								
L			1	8	4	2	3	2	1					1	5				8	
М				1				1			5								11	
N			1	3	1	2	1	1	1	3		2		1		1	3			
Р				10	4		5	3		5	1		1							
Q			1	1	1	1					1									1
R		69	1	7	8	1	8	8	3		1	1	5							1
5		3	5	5	5	7	6	7	3	4	2					1	1			
T			1	1	4	3	4	4	6	3	1			1						
V	3	1	4	5	1	9			4		9	5	1	1					2	
W			1	6	8		3	2	4								4	4		
X																				
Y				6	4	2	2	2	6	6	2	4	2	1	8	8	12	12		
Z																				
_				2	3	7	14	23	25	33	41	47	53	54	57	56	50	28	12	4
unknown (?)														6	1	5				
not sequenced				1	2	2	1	1	1	1	1	1	1	1	3	1	1	1	1	1
sum of seq ²	74	74	73	72	71	71	72	72	72	72	72	72	72	72	72	72	72	72	72	72
oomcaa¹	69	69	19	10	15	15	14	23	25	33	41	47	53	54	57	56	50	·28	38	62
mcaa*	Α	R	D	Р	G	G	-	_	-	-	-	-	-	-	-	-	-	-	F	D
rel. oomcaa'	93%	93%	26%	14%	21%	21%	19%	32%	35%	16%	57%	65%	74%	75%	79%	,8%	9069	%61	33%	36%
pos occupied ⁶	4	4	14	20	19	15	17	16	16	13	13	11	8	8	4	5	7	6	6	5

SUBSTITUTE SHEET (RULE 26)

Table 6G: Analysis of V heavy chain subgroup 6

					Fra	mev	vorl	١V					
amino acid'	102	103	104	105	106	107	108	109	110	=	112	113	sum
Α							2						494
В		•••••											
С			******					•••••					147
D								1					403
E													186
F	2										2		150
G			49		50								571
НН	2												18
1	9					3		1					304
K				1			1						29 3
LL	5						26						632
<u>M</u>					••••••		8	••••••	•••••				31
N		•••••								•••••			436
Р	4			6								1	387
Q				40	,						······		539
R				2									495
S	4		1			1					43	46	1271
T						45			45				640
<u> </u>	21							46		48			647
W		65					5						398
X			•••••										
Y	19									.,			518
Z												_	
- (5)	2												585
unknown (?)			•	0.4	00								13
not sequenced												_	580
sum of seq ²									••••••				
	21 V	********	49 G	********		********		46 V	• • • • • • • • • • • • • • • • • • • •		**********	46 S	
mcaa'												د	
rel. oomcaa ^s	31%	100%	%86	82%	100%	92%	54%	%96	100%	100%	%96	%86	
pos occupied [®]	9	1	2	4	1		:	:	1		2	2	

Appendix to Tables 1A-C

A. References of rearranged sequences

References of rearranged human kappa sequences used for alignment

- 1 . Alescio-Zonta, L. & Baglioni, C. (1970) Eur.J.Biochem., 15, 450-463.
- 2 Andrews, D.W. & Capra, J.D. (1981) Biochemistry, 20, 5816-5822.
- 3 Andris, J.S., Ehrlich, P.H., Ostberg, L. & Capra, J.D. (1992) J.Immunol., 149, 4053-4059.
- 4 Atkinson, P.M., Lampman, G.W., Furie, B.C., Naparstek, Y., Schwartz, R.S., Stollar, B.D. & Furie, B. (1985) J.Clin.Invest., 75, 1138-1143.
- Aucouturier, P., Bauwens, M., Khamlichi, A.A., Denoroy, L, Spinelli, S., Touchard, G., Preud'homme, J.-L. & Cogne, M. (1993) J.Immunol., 150, 3561-3568.
- 6 Avila, M.A., Vazques, J., Danielsson, L., Fernandez De Cossio, M.E. & Borrebaeck, C.A.K. (1993) Gene, 127, 273-274.
- Barbas lii, C.F., Crowe, Jr., J.E., Cababa, D., Jones, T.M., Zebedee, S.L., Murphy, B.R., Chanock, R.M. & Burton, D.R. (1992) Proc.Natl.Acad.Sci.Usa, 89, 10164-10168.
- 8 Barbas, C.F., lii, et al. (1993) J-Mol-Biol., 230, 812-23.
- 9 Bentley, D.L. & Rabbitts, T.H. (1980) Nature, 288, 730-733.
- 10 Bentley, D.L. & Rabbitts, T.H. (1983) Cell, 32, 181-189.
- 11 Bentley, D.L. (1984) Nature, 307, 77-80.
- 12 Bhat, N.M., Bieber, M.M., Chapman, C.J., Stevenson, F.K. & Teng, N.N.H. (1993) J.Immunol., 151, 5011-5021.
- 13 Blaison, G., Kuntz, J.-L. & Pasquali, J.-L. (1991) Eur.J.Immunol., 21, 1221-1227.
- Braun, H., Leibold, W., Barnikol, H.U. & Hilschmann, N. (1971) Z.Physiol.Chem., 352, 647-651; (1972) Z.Physiol.Chem., 353, 1284-1306.
- 15 Capra, J.D. & Kehoe, J.M. (1975) Adv.Immunology, 20, 1-40.; Andrews, D.W. & Capra, J.D. (1981) Proc.Nat.Acad.Sci.Usa, 78, 3799-3803.
- Capra, J.D. & Kehoe, J.M. (1975) Adv.Immunology, 20, 1-40.; Ledford, D.K., Goni, F., Pizzolato, M., Franklin, E.C., Solomon, A. & Frangione, B. (1983) J.Immunol., 131, 1322-1325.
- 17 Chastagner, P., Theze, J. & Zouali, M. (1991) Gene, 101, 305-306.

- 18 Chen, P.P., Robbins, D.L., Jirik, F.R., Kipps, T.J. & Carson, D.A. (1987) J.Exp.Med, 166, 1900–1905.
- 19 Chen, P.P., Robbins, D.L., Jirik, F.R., Kipps, T.J. & Carson, D.A. (1987) J.Exp.Med, 166, 1900-1905; Liu, M.-F., Robbins, D.L., Crowley, J.J., Sinha, S., Kozin, F., Kipps, T.J., Carson, D.A. & Chen.P.P. (1989) J.Immunol., 142, 688-694.
- 20 Chersi, A. & Natali, P.G. (1978) Immunochemistry, 15, 585-589.
- 21 Co, M.S., Deschamps, M., Whitley, R.J. & Queen, C. (1991) Proc.Natl.Acad.Sci.Usa, 88, 2869–2873.
- 22 Cuisinier, A.-M., Fumoux, F., Fougereau, M. & Tonnelle, C. (1992) Mol.Immunol., 29, 1363-1373.
- Davidson, A., Manheimer-Lory, A., Aranow, C., Peterson, R., Hannigan, N. & Diamond, B. (1990) J.Clin.Invest., 85, 1401-1409.
- Denomme, G.A., Mahmoudi, M., Edwards, J.Y., Massicotte, H., Cairns, E. & Bell, D.A. (1993) Hum.Antibod.Hybridomas, 4, 98-103.
- Dersimonian, H., Mcadam, K.P.W.J., Mackworth-Young, C. & Stollar, B.D. (1989) J.Immunol., 142, 4027-4033.
- Dreyer, W.J., Gray, W.R. & Hood, L. (1967) Cold Spring Harbor Symp. Quantitative Biol., 32, 353-367.
- 27 Ebeling, S.B., Schutte, M.E.M. & Logtenberg, T. (1993) Eur.J.Immunol., 23, 1405-1408.
- 28 Eulitz, M. & Kley, H.-P. (1977) Immunochem., 14, 289-297.
- 29 Eulitz, M. & Linke, R.P. (1982) Z.Physiol.Chem., 363, 1347-1358.
- 30 Eulitz, M., Breuer, M., Eblen, A., Weiss, D.T. & Solomon, A. (1990) In Amyloid And Amyloidosis, Eds. J.B.Natvig, O.Forre, G.Husby, A.Husebekk, B.Skogen, K.Sletten & P.Westermark, Kluwer Academic
- 31 Eulitz, M., Gotze, D. & Hilschmann, N. (1972) Z.Physiol.Chem., 353, 487-491; Eulitz, M. & Hilschmann, N. (1974) Z.Physiol.Chem., 355, 842-866.
- 32 Eulitz, M., Kley, H.P. & Zeitler, H.J. (1979) Z.Physiol.Chem., 360, 725-734.
- Ezaki, I., Kanda, H., Sakai, K., Fukui, N., Shingu, M., Nobunaga, M. & Watanabe, T. (1991)
 Arthritis And Rheumatism, 34, 343-350.
- 34 Felgenhauer, M., Kohl, J. & Ruker, F. (1990) Nucl. Acids Res., 18, 4927.
- Ferri, G., Stoppini, M., Iadarola, P., Bellotti, V. & Merlini, G. (1989) Biochim.Biophys.Acta, 995, 103-108.

- 36 Gillies, S.D., Dorai, H., Wesolowski, J., Majeau, G., Young, D., Boyd, J., Gardner, J. & James, K. (1989) Bio/Tech., 7, 799-804.
- 37 Goni, F. & Frangione, B. (1983) Proc.Nat.Acad.Sci.Usa, 80, 4837-4841.
- Goni, F.R., Chen, P.P., Mcginnis, D., Arjonilla, M.L., Fernandez, J., Carson, D., Solomon, A., Mendez, E. & Frangione, B. (1989) J.Immunol., 142, 3158–3163.
- 39 Gorman, S.D., Clark, M.R., Routledge, E.G., Cobbold, S.P. & Waldmann, H. (1991) Proc.Natl.Acad.Sci.Usa, 88, 4181-4185.
- Gottlieb, P.D., Cunningham, B.A., Rutishauser, U. & Edelman, G.M. (1970) Biochemistry, 9, 3155–3161.
- Griffiths, A.D., Malmqvist, M., Marks, J.D., Bye, J.M., Embleton, M.J., Mccafferty, J., Baier, M., Holliger, K.P., Gorick, B.D., Hughes-Jones, N.C., Hoogenboom, H.R. & Winter, G. (1993) Embo J., 12, 725-734.
- 42 Hieter, P.A., Max, E.E., Seidman, J.G., Maizel, J.V., Jr. & Leder, P. (1980) Cell, 22, 197-207;
 Klobeck, H.G, Meindl, A., Combriato, G., Solomon, A. & Zachau, H.G. (1985) Nucl. Acids
 Res., 13, 6499-6513; Weir, L. & Leder, P. (1986)
- 43 Hilschmann, N. & Craig, L.C. (1965) Proc.Nat.Acad.Sci.Usa, 53, 1403–1409; Hilschmann, N. (1967) Z.Physiol.Chem., 348, 1077–1080.
- Hilschmann, N. & Craig, L.C. (1965) Proc.Nat.Acad.Sci.Usa, 53, 1403-1409; Hilschmann, N. (1967) Z.Physiol.Chem., 348, 1718-1722; Hilschmann, N. (1969) Naturwissenschaften, 56, 195-205.
- 45 Hirabayashi, Y., Munakata, Y., Sasaki, T. & Sano, H. (1992) Nucl. Acids Res., 20, 2601.
- Jaenichen, H.-R., Pech, M., Lindenmaier, W., Wildgruber, N. & Zachau, H.G. (1984) Nuc.Acids Res., 12, 5249–5263.
- 47 Jirik, F.R., Sorge, J., Fong, S., Heitzmann, J.G., Curd, J.G., Chen, P.P., Goldfien, R. & Carson, D.A. (1986) Proc.Nat.Acad.Sci.Usa, 83, 2195-2199.
- Kaplan, A.P. & Metzger, H. (1969) Biochemistry, 8, 3944-3951.; Klapper, D.G. & Capra,
 J.D. (1976) Ann.Immunol.(Inst.Pasteur), 127c, 261-271.
- 49 Kennedy, M.A. (1991) J.Exp.Med., 173, 1033-1036.
- 50 Kim, H.S. & Deutsch, H.F. (1988) Immunol., 64, 573-579.
- 51 Kipps, T.J., Tomhave, E., Chen, P.P. & Carson, D.A. (1988) J.Exp.Med., 167, 840-852.
- 52 Kipps, T.J., Tomhave, E., Chen, P.P. & Fox, R.I. (1989) J.immunol., 142, 4261-4268.
- 53 Klapper, D.G. & Capra, J.D. (1976) Ann. Immunol. (Inst. Pasteur), 127c, 261–271.

- 54 Klein, U., Kuppers, R. & Rajewsky, K. (1993) Eur.J.Immunol., 23, 3272–3277.
- Klobeck, H.G, Meindl, A., Combriato, G., Solomon, A. & Zachau, H.G. (1985) Nucl. Acids Res., 13, 6499–6513.
- Klobeck, H.G., Bornkammm, G.W., Combriato, G., Mocikat, R., Pohlenz, H.D. & Zachau, H.G. (1985) Nucl. Acids Res., 13, 6515–6529.
- 57 Klobeck, H.G., Combriato, G. & Zachau, H.G. (1984) Nuc. Acids Res., 12, 6995-7006.
- 58 Klobeck, H.G., Solomon, A. & Zachau, H.G. (1984) Nature, 309, 73-76.
- 59 Knight, G.B., Agnello, V., Bonagura, V., Barnes, J.L., Panka, D.J. & Zhang, Q.-X. (1993) J.Exp.Med., 178, 1903-1911.
- Kohler, H., Shimizu, A., Paul, C. & Putnam, F.W. (1970) Science, 169, 56-59. (Kaplan, A.P.
 & Metzger, H. (1969) Biochemistry, 8, 3944-3951.)
- 61 Kratzin, H., Yang, C.Y., Krusche, J.U. & Hilschmann, N. (1980) Z.Physiol.Chem., 361, 1591-1598.
- 62 Kunicki, T.J., Annis, D.S., Gorski, J. & Nugent, D.J. (1991) J.Autoimmunity, 4, 433-446.
- 63 Larrick, J.W., Wallace, E.F., Coloma, M.J., Bruderer, U., Lang, A.B. & Fry, K.E. (1992) Immunological Reviews, 130, 69–85.
- 64 Laure, C.J., Watanabe, S. & Hilschmann, N. (1973) Z.Physiol.Chem., 354, 1503-1504.
- Ledford, D.K., Goni, F., Pizzolato, M., Franklin, E.C., Solomon, A. & Frangione, B. (1983) J.Immunol., 131, 1322–1325.
- 66 Ledford, D.K., Goni, F., Pizzolato, M., Franklin, E.C., Solomon, A. & Frangione, B. (1983)
 J.Immunol., 131, 1322-1325.
- 67 Ledford, D.K., Goni, F., Pizzolato, M., Franklin, E.C., Solomon, A. & Frangione, B. (1983)

 J.Immunol., 131, 1322–1325. Pons-Estel, B., Goni, F., Solomon, A. & Frangione, B. (1984)

 J.Exp.Med., 160, 893.
- 68 Levy, S., Mendel, E., Kon, S., Avnur, Z. & Levy, R. (1988) J.Exp.Med., 168, 475-489.
- 69 Liepnieks, J.J., Dwulet, F.E. & Benson, M.D. (1990) Mol.Immunol., 27, 481-485.
- 70 Manheimer-Lory, A., Katz, J.B., Pillinger, M., Ghossein, C., Smith, A. & Diamond, B. (1991)
 J.Exp.Med., 174, 1639-1652.
- 71 Mantovani, L., Wilder, R.L. & Casali, P. (1993) J.Immunol., 151, 473-488.
- 72 Mariette, X., Tsapis, A. & Brouet, J.-C. (1993) Eur.J.Immunol., 23, 846-851.
- Marks, J.D., Hoogenboom, H.R., Bonnert, T.P., Mccafferty, J., Griffiths, A.D. & Winter, G. (1991) J.Mol.Biol., 222, 581-597.

- 74 Marsh, P., Mills, F. & Gould, H. (1985) Nuc. Acids Res., 13, 6531-6544.
- 75 Middaugh, C.R. & Litman, G.W. (1987) J.Biol.Chem., 262, 3671-3673.
- 76 Milstein, C. & Deverson, E.V. (1971) Biochem.J., 123, 945-958.
- 77 Milstein, C. (1969) Febs Letters, 2, 301-304.
- 78 Milstein, C. (1969) Febs Letters, 2, 301-304.
- 79 Milstein, C.P. & Deverson, E.V. (1974) Eur.J.Biochem., 49, 377-391.
- 80 Moran, M.J., Andris, J.S., Matsumato, Y.-I., Capra, J.D. & Hersh, E.M. (1993) Mol.Immunol., 30, 1543-1551.
- Nakatani, T., Nomura, N., Horigome, K., Ohtsuka, H. & Noguchi, H. (1989) Bio/Tech., 7, 805-810.
- 82 Newkirk, M., Chen, P.P., Carson, D., Posnett, D. & Capra, J.D. (1986) Mol.Immunol., 23, 239-244.
- 83 Newkirk, M.M., Gram, H., Heinrich, G.F., Ostberg, L., Capra, J.D. & Wasserman, R.L. (1988) J.Clin.Invest., 81, 1511–1518.
- 84 Newkirk, M.M., Mageed, R.A., Jefferis, R., Chen, P.P. & Capra, J.D. (1987) J.Exp.Med., 166, 550–564.
- 85 Olee, B.T., Lu, E.W., Huang, D.-F., Soto-Gil, R.W., Deftos, M., Kozin, F., Carson, D.A. & Chen, P.P. (1992) J.Exp.Med., 175, 831-842.
- Palm, W. & Hilschmann, N. (1973) Z.Physiol.Chem., 354, 1651-1654; (1975)
 Z.Physiol.Chem., 356, 167-191.
- Pascual, V., Victor, K., Lelsz, D., Spellerberg, M.B., Hamblin, T.J., Thompson, K.M., Randen, I., Natvig, J., Capra, J.D. & Stevenson, F.K. (1991) J.Immunol., 146, 4385-4391.
- Pascual, V., Victor, K., Randen, I., Thompson, K., Steinitz, M., Forre, O., Fu, S.-M., Natvig, J.B. & Capra, J.D. (1992) Scand.J.Immunol., 36, 349-362.
- 89 Pech, M. & Zachau, H.G. (1984) Nuc. Acids Res., 12, 9229-9236.
- 90 Pech, M., Jaenichen, H.-R., Pohlenz, H.-D., Neumaier, P.S., Klobeck, H.-G. & Zachau, H.G. (1984) J.Mol.Biol., 176, 189-204.
- 91 Pons-Estel, B., Goni, F., Solomon, A. & Frangione, B. (1984) J.Exp.Med., 160, 893-904.
- 92 Portolano, S., Mclachlan, S.M. & Rapoport, B. (1993) J.Immunol., 151, 2839-2851.
- 93 Portolano, S., Seto, P., Chazenbalk, G.D., Nagayama, Y., Mclachlan, S.M. & Rapoport, B. (1991) Biochem.Biophys.Res.Commun., 179, 372-377.

- 94 Pratt, L.F., Rassenti, L., Larrick, J., Robbins, B., Banks, P.M. & Kipps, T.J. (1989) J.Immunol., 143, 699-705.
- 95 Prelli, F., Tummolo, D., Solomon, A. & Frangione, B. (1986) J.Immunol., 136, 4169-4173.
- 96 Putnam, F.W., Whitley, E.J., Jr., Paul, C.& Davidson, J.N. (1973) Biochemistry, 12, 3763-3780.
- 97 Randen, I., Pascual, V., Victor, K., Thompson, K.M., Forre, O., Capra, J.D. & Natvig, J.B. (1993) Eur.J.Immunol., 23, 1220–1225.
- 98 Rassenti, L.Z., Pratt, L.F., Chen, P.P., Carson, D.A. & Kipps, T.J. (1991) J.Immunol., 147, 1060–1066.
- 99 Reidl, L.S., Friedman, D.F., Goldman, J., Hardy, R.R., Jefferies, L.C. & Silberstein, L.E. (1991)
 J.Immunol., 147, 3623-3631.
- 100 Riechmann, L., Clark, M., Waldmann, H. & Winter, G. (1988) Nature, 332, 323-327.
- Riesen, W., Rudikoff, S., Oriol, R. & Potter, M. (1975) Biochemistry, 14, 1052-1057; Riesen,
 W.F., Braun, D.G. & Jaton, J.C. (1976) Proc.Nat.Acad.Sci.Usa, 73, 2096-2100; Riesen, W.F.
 & Jaton, J.C. (1976) Biochemistry, 15, 3829.
- 102 Rodilla Sala, E., Kratzin, D.H., Pick, A.I. & Hilschmann, N. (1990) In Amyloid And Amyloidosis, Eds. J.B.Natvig, O.Forre, G.Husby, A.Husebekk, B.Skogen, K.Sletten & P.Westermark, Kluwer Academic
- Schiechl, H. & Hilschmann, N. (1971) Z.Physiol.Chem., 352, 111–115; (1972)Z.Physiol.Chem., 353, 345–370.
- 104 Schneider, M. & Hilschmann, N. (1974) Z.Physiol.Chem., 355, 1164-1168.
- 105 Shearman, C.W., Poliock, D., White, G., Hehir, K., Moore, G.P., Kanzy, E.J. & Kurrle, R. (1991) J.Immunol., 147, 4366-4373.
- 106 Shinoda, T. (1973) J.Biochem., 73, 433-446.
- 107 Shinoda, T. (1975) J.Biochem., 77, 1277-1296.
- 108 Shinoda, T., Takenawa, T., Hoshi, A. & Isobe, T. (1990) In Amyloid And Amyloidosis, Eds. J.B.Natvig, O.Forre, G.Husby, A.Husebekk, B.Skogen, K.Sletten & P.Westermark, Kluwer Academic Publishers, Dordrecht/Boston/London, Pp.157-
- 109 Silberstein, L.E., Litwin, S. & Carmack, C.E. (1989) J.Exp.Med., 169, 1631-1643.
- 110 Sims, M.J., Hassal, D.G., Brett, S., Rowan, W., Lockyer, M.J., Angel, A., Lewis, A.P., Hale, G., Waldmann, H. & Crowe, J.S. (1993) J.Immunol., 151, 2296-2308.

- 111 Spatz, L.A., Wong, K.K., Williams, M., Desai, R., Golier, J., Berman, J.E., Alt, F.W. & Latov, N. (1990) J.immunol., 144, 2821–2828.
- Stavnezer, J., Kekish, O., Batter, D., Grenier, J., Balazs, I., Henderson, E. & Zegers, B.J.M. (1985) Nucl.Acids Res., 13, 3495–3514.
- 113 Straubinger, B., Thiebe, R., Pech, M. & Zachau, H.G. (1988) Gene, 69, 209-214.
- Suter, L., Barnikol, H.U., Watanabe, S. & Hilschmann, N. (1969) Z.Physiol.Chem., 350, 275-278; (1972) Z.Physiol.Chem., 353, 189-208.
- 115 Tempest, P.R., Bremner, P., Lambert, M., Taylor, G., Furze, J.M., Carr, F.J. & Harris, W.J. (1991) Bio/Tech., 9, 266-271.
- 116 Titani, K., Shinoda, T. & Putnam, F.W. (1969) J.Biol.Chem., 244, 3550-3560.
- Toft, K.G., Olstad, O.K., Sletten, K. & Westermark, P. (1990) In Amyloid And Amyloidosis, Eds. J.B.Natvig, O.Forre, G.Husby, A.Husebekk, B.Skogen, K.Sletten & P.Westermark, Kluwer Academic
- 118 Van Es, J.H., Aanstoot, H., Gmelig-Meyling, F.H.J., Derksen, R.H.W.M. & Logtenberg, T. (1992) J.Immunol., 149, 2234–2240.
- 119 Victor, K.D., Pascual, V., Lefvert, A.K. & Capra, J.D. (1992) Mol.Immunol., 29, 1501-1506.
- 120 Victor, K.D., Pascual, V., Williams, C.L., Lennon, V.A. & Capra, J.D. (1992) Eur.J.Immunol., 22, 2231–2236.
- 121 Victor, K.D., Randen, I., Thompson, K., Forre, O., Natvig, J.B., Fu, S.M. & Capra, J.D. (1991) J.Ciin.Invest., 87, 1603-1613.
- 122 Wagner, S.D. & Luzzatto, L. (1993) Eur.J.immunol., 23, 391-397.
- . 123 Watanabe, S. & Hilschmann, N. (1970) Z.Physiol.Chem., 351, 1291-1295.
- Weisbart, R.H., Wong, A.L., Noritake, D., Kacena, A., Chan, G., Ruland, C., Chin, E., Chen, L.S.Y. & Rosenblatt, J.D. (1991) J.Immunol., 147, 2795–2801.
- 125 Weng, N.-P., Yu-Lee, L.-Y., Sanz, I., Patten, B.M. & Marcus, D.M. (1992) J.Immunol., 149, 2518-2529.
- 126 Winkler, T.H., Fehr, H. & Kalden, J.R. (1992) Eur.J.Immunol., 22, 1719-1728.

References of rearranged human lambda sequences used for alignment

Alexandre, D., Chuchana, P., Brockly, F., Blancher, A., Lefranc, G. & Lefranc, M.-P. (1989) Nuc.Acids Res., 17, 3975.

- 2 Anderson, M.L.M., Brown, L., Mckenzie, E., Kellow, J.E. & Young, B.D. (1985) Nuc. Acids Res., 13, 2931-2941.
- 3 Andris, J.S., Brodeur, B.R. & Capra, J.D. (1993) Mol.Immunol., 30, 1601-1616.
- 4 Andris, J.S., Ehrlich, P.H., Ostberg, L. & Capra, J.D. (1992) J.Immunol., 149, 4053-4059.
- Baczko, K., Braun, D.G., Hess, M. & Hilschmann, N. (1970) Z.Physiol.Chem., 351, 763-767; Baczko, K., Braun, D.G. & Hilschmann, N. (1974) Z.Physiol.Chem., 355, 131-154.
- 6 Berinstein, N., Levy, S. & Levy, R. (1989) Science, 244, 337-339.
- 7 Bhat, N.M., Bieber, M.M., Chapman, C.J., Stevenson, F.K. & Teng, N.N.H. (1993) J.Immunol., 151, 5011-5021.
- 8 Cairns, E., Kwong, P.C., Misener, V., Ip, P., Bell, D.A. & Siminovitch, K.A. (1989) J.Immunol., 143, 685-691.
- 9 Carroll, W.L., Yu, M., Link, M.P. & Korsmeyer, S.J. (1989) J.Immunol., 143, 692-698.
- 10 Chen, B.L. & Poljak, R.J. (1974) Biochemistry, 13, 1295-1302.
- 11 Chen, B.L., Chiu, Y.Y.H., Humphrey, R.L. & Poljak, R.J. (1978) Biochim.Biophys.Acta, 537, 9-21.
- 12 Combriato, G. & Klobeck, H.G. (1991) Eur.J.Immunol., 21, 1513-1522.
- 13 Cuisinier, A.-M., Fumoux, F., Fougereau, M. & Tonnelle, C. (1992) Mol.Immunol., 29, 1363-1373.
- 14 Dwulet, F.E., Strako, K. & Benson, M.D. (1985) Scand.J.Immunol., 22, 653-660.
- 15 Elahna, P., Livneh, A., Manheimer-Lory, A.J. & Diamond, B. (1991) J.Immunol., 147, 2771-2776.
- Engelhard, M., Hess, M. & Hilschmann, N. (1974) Z.Physiol.Chem., 355, 85-88; Engelhard,
 M. & Hilschmann, N. (1975) Z.Physiol.Chem., 356, 1413-1444.
- 17 Eulitz, M. (1974) Eur.J.Biochem., 50, 49-69.
- 18 Eulitz, M., Breuer, M. & Linke, R.P. (1987) Biol.Che.Hoppe-Seyler, 368, 863-870.
- 19 Eulitz, M., Murphy, C., Weiss, D.T. & Solomon, A. (1991) J.Immunol., 146, 3091-3096.
- 20 Fett, J.W. & Deutsch, H.F. (1974) Biochemistry, 13, 4102-4114.
- 21 Fett, J.W. & Deutsch, H.F. (1976) Immunochem., 13, 149-155.; Jabusch, J.R. & Deutsch, H.F. (1982) Mol.Immunol., 19, 901-906.
- 22 Furey, W. Jr., Wang, B.C., Yoo, C.S. & Sax, M. (1983) J.Mol.Biol., 167, 661-692.
- 23 Fykse, E.-M., Sletten, K., Husby, G. & Cornwell, G.G., Iii (1988) Biochem.J., 256, 973-980.

- 24 Garver, F.A. & Hilschmann, N. (1971) Febs Letters, 16, 128-132; (1972) Eur.J.Biochem., 26, 10-32.
- 25 Gawinowicz, M.A., Merlini, G., Birken, S., Osserman, E.F. & Kabat, E.A. (1991) J.Immunol., 147, 915–920.
- 26 Ghiso, J., Solomon, A. & Frangione, B. (1986) J.Immunol., 136, 716-719.
- 27 Griffiths, A.D., Malmqvist, M., Marks, J.D., Bye, J.M., Embleton, M.J., Mccafferty, J., Baier, M., Holliger, K.P., Gorick, B.D., Hughes-Jones, N.C., Hoogenboom, H.R. & Winter, G. (1993) Embo J., 12, 725-734.
- Gullasken, N., Idso, H., Nilsen, R., Sletten, K., Husby, G. & Cornwell, G.G. (1990) In Amyloid And Amyloidosis, Eds. J.B.Natvig, O.Forre, G.Husby, A.Husebekk, B.Skogen, K.Sletten & P.Westermark, Kluwer Academic
- Harindranath, N., Goldfarb, I.S., Ikematsu, H., Burastero, S.E., Wilder, R.L., Notkins, A.L. & Casali, P. (1991) Int.Immunol., 3, 865-875.
- 30 Holm, E., Sletten, K. & Husby, G. (1986) Biochem.J., 239, 545-551.
- 31 Hughes-Jones, N.C., Bye, J.M., Beale, D. & Coadwell, J. (1990) Biochem.J., 268, 135-140.
- 32 Kametani, F., Yoshimura, K., Tonoike, H., Hoshi, A., Shinoda, T. & Isobe, T. (1985) Biochem.Biophys.Res.Commun., 126, 848-852.
- 33 Kiefer, C.R., Mcguire, B.S., Jr., Osserman, E.F. & Garver, F.A. (1983) J.Immunol., 131, 1871-1875.
- 34 Kiefer, C.R., Patton, H.M., Jr., Mcquire, B.S., Jr. & Garver, F.A. (1980) J.Immunol., 124, 301-306.
- 35 Kishimoto, T., Okajima, H., Okumoto, T. & Taniguchi, M. (1989) Nucl. Acids Res., 17, 4385.
- 36 Klafki, H.-W., Kratzin, H.D., Pick, A.I., Eckart, K. & Hilschmann, N. (1990) In Amyloid And Amyloidosis, Eds. J.B.Natvig, O.Forre, G.Husby, A.Husebekk, B.Skogen, K.Sletten & P:Westermark, Kluwer Academic
- 37 Kohler, H., Rudofsky, S. & Kluskens, L. (1975) J.Immunology, 114, 415-421.
- 38 Kojima, M., Odani, S. & Ikenaka, T. (1980) Mol.Immunol., 17, 1407-1414.
- 39 Komori, S., Yamasaki, N., Shigeta, M., Isojima, S. & Watanabe, T. (1988) Clin.Exp.Immunol., 71, 508-516.
- Kratzin, H.D., Palm, W., Stangel, M., Schmidt, W.E., Friedrich, J. & Hilschmann, N. (1989) Biol.Chem.Hoppe-Seyler, 370, 263-272.

- Kratzin, H.D., Pick, A.I., Stangel, M. & Hilschmann, N. (1990) In Amyloid And Amyloidosis, Eds. J.B.Natvig, O.Forre, G.Husby, A.Husebekk, B.Skogen, K.Sletten & P.Westermark, Kluwer Academic Publishers, Dordrecht/Boston/London, Pp.181-
- 42 Langer, B., Steinmetz-Kayne, M. & Hilschmann, N. (1968) Z.Physiol.Chem., 349, 945-951.
- 43 Larrick, J.W., Danielsson, L., Brenner, C.A., Wallace, E.F., Abrahamson, M., Fry, K.E. & Borrebaeck, C.A.K. (1989) Bio/Tech., 7, 934-938.
- 44 Levy, S., Mendel, E., Kon, S., Avnur, Z. & Levy, R. (1988) J.Exp.Med., 168, 475-489.
- Lewis, A.P., Lemon, S.M., Barber, K.A., Murphy, P., Parry, N.R., Peakman, T.C., Sims, M.J., Worden, J. & Crowe, J.S. (1993) J.Immunol., 151, 2829-2838.
- Liu, V.Y.S., Low, T.L.K., Infante, A. & Putnam, F.W. (1976) Science, 193, 1017–1020; Infante, A. & Putnam, F.W. (1979) J.Biol.Chem., 254, 9006–9016.
- 47 Lopez De Castro, J.A., Chiu, Y.Y.H. & Poljak, R.J. (1978) Biochemistry, 17, 1718-1723.
- 48 Mantovani, L., Wilder, R.L. & Casali, P. (1993) J.Immunol., 151, 473-488.
- Marks, J.D., Hoogenboom, H.R., Bonnert, T.P., Mccafferty, J., Griffiths, A.D. & Winter, G. (1991) J.Mol.Biol., 222, 581-597.
- 50 Mihaesco, E., Roy, J.-P., Congy, N., Peran-Rivat, L. & Mihaesco, C. (1985) Eur.J.Biochem., 150, 349–357.
- 51 Milstein, C., Clegg, J.B. & Jarvis, J.M. (1968) Biochem.J., 110, 631-652.
- 52 Moran, M.J., Andris, J.S., Matsumato, Y.-I., Capra, J.D. & Hersh, E.M. (1993) Mol.Immunol., 30, 1543–1551.
- 53 Nabeshima, Y. & Ikenaka, T. (1979) Mol.Immunol., 16, 439-444.
- Olee, B.T., Lu, E.W., Huang, D.-F., Soto-Gil, R.W., Deftos, M., Kozin, F., Carson, D.A. & Chen, P.P. (1992) J.Exp.Med., 175, 831-842.
- Pascual, V., Victor, K., Randen, I., Thompson, K., Steinitz, M., Forre, O., Fu, S.-M., Natvig, J.B. & Capra, J.D. (1992) Scand.J.Immunol., 36, 349-362.
- 56 Paul, E., Iliev, A.A., Livneh, A. & Diamond, B. (1992) J.Immunol., 149, 3588-3595.
- Pick, A.I., Kratzin, H.D., Barnikol-Watanabe, S. & Hilschmann, N. (1990) in Amyloid And Amyloidosis, Eds. J.B.Natvig, O.Forre, G.Husby, A.Husebekk, B.Skogen, K.Sletten & P.Westermark, Kluwer Academic
- 58 Ponstingl, H. & Hilschmann, N. (1969) Z.Physiol.Chem., 350, 1148-1152; (1971) Z.Physiol.Chem., 352, 859-877.

4

202 11: 533

WO 97/08320 PCT/EP96/03647

Ponstingl, H., Hess, M. & Hilschmann, N. (1968) Z.Physiol.Chem., 349, 867-871; (1971)
 Z.Physiol.Chem., 352, 247-266.

- 60 Randen, I., Pascual, V., Victor, K., Thompson, K.M., Forre, O., Capra, J.D. & Natvig, J.B. (1993) Eur.J.Immunol., 23, 1220–1225.
- 61 Scholz, R. & Hilschmann, N. (1975) Z.Physiol.Chem., 356, 1333-1335.
- 62 Settmacher, U., Jahn, S., Siegel, P., Von Baehr, R. & Hansen, A. (1993) Mol.Immunol., 30, 953-954.
- 63 Shinoda, T., Titani, K. & Putnam, F.W. (1970) J.Biol.Chem., 245, 4475-4487.
- 64 Sletten, K., Husby, G. & Natvig, J.B. (1974) Scand.J.Immunol., 3, 833–836.; Sletten, K., Natvig, J.B., Husby, G. & Juul, J. (1981) Biochem.J., 195, 561–572.
- Solomon, A., Frangione, B. & Franklin, E.C. (1982) J.Clin.Invest., 70, 453-460.; Frangione,
 B., Moloshok, T. & Solomon, A. (1983) J.Immunol., 131, 2490-2493.
- Takahashi, N., Takayasu, T., Isobe, T., Shinoda, T., Okuyama, T. & Shimizu, A. (1979)
 J.Biochem., 86, 1523-1535.
- 67 Takahashi, N., Takayasu, T., Shinoda, T., Ito, S., Okuyama, T. & Shimizu, A. (1980) Biomed.Res., 1, 321-333.
- Takahashi, Y., Takahashi, N., Tetaert, D. & Putnam, F.W. (1983) Proc.Nat.Acad.Sci.Usa, 80, 3686–3690.
- 69 Takayasu, T., Takahashi, N., Shinoda, T., Okuyama, T. & Tomioka, H. (1980) J.Biochem., 89, 421-436.
- 70 Titani, K., Wikler, M., Shinoda, T. & Putnam, F.W. (1970) J.Biol.Chem., 245, 2171-2176.
- 71 Toft, K.G., Sletten, K. & Husby, G. (1985) Biol.Chem.Hoppe-Seyler, 366, 617-625.
- 72 Tonoike, H., Kametani, F., Hoshi, A., Shinoda, T. & Isobe, T. (1985) Biochem.Biophys.Res.Commun., 126, 1228-1234.
- 73 Tonoike, H., Kametani, F., Hoshi, A., Shinoda, T. & Isobe, T. (1985) Febs Letters, 185, 139-141.
- 74 Tsujimoto, Y. & Croce, C.M. (1984) Nucl. Acids Res., 12, 8407-8414.
- 75 Tsunetsugu-Yokota, Y., Minekawa, T., Shigemoto, K., Shirasawa, T. & Takemori, T. (1992) Mol.Immunol., 29, 723-728.
- 76 Tveteraas, T., Sletten, K. & Westermark, P. (1985) Biochem.J., 232, 183-190.
- 77 Vasicek, T.J. & Leder, P. (1990) J.Exp.Med., 172, 609-620.

- Victor, K.D., Randen, I., Thompson, K., Forre, O., Natvig, J.B., Fu, S.M. & Capra, J.D. (1991)
 J.Clin.Invest., 87, 1603-1613.
- 79 Weng, N.-P., Yu-Lee, L.-Y., Sanz, I., Patten, B.M. & Marcus, D.M. (1992) J.Immunol., 149, 2518-2529.
- 80 Wikler, M. & Putnam, F.W. (1970) J.Biol.Chem., 245, 4488-4507.
- 81 Winkler, T.H., Fehr, H. & Kalden, J.R. (1992) Eur J. Immunol., 22, 1719-1728.
- Yago, K., Zenita, K., Ohwaki, I., Harada, Y., Nozawa, S., Tsukazaki, K., Iwamori, M., Endo, N., Yasuda, N., Okuma, M. & Kannagi, R. (1993) Mol.Immunol., 30, 1481-1489.
- 83 Yamasaki, N., Komori, S. & Watanabe, T. (1987) Mol.Immunol., 24, 981-985.
- 84 Zhu, D., Kim, H.S. & Deutsch, H.F. (1983) Mol.Immunol., 20, 1107-1116.
- 85 Zhu, D., Zhang, H., Zhu, N. & Luo, X. (1986) Scientia Sinica, 29, 746-755.

References of rearranged human heavy chain sequences used for alignment

- Adderson, E.E., Azmi, F.H., Wilson, P.M., Shackelford, P.G. & Carroll, W.L. (1993)
 J.Immunol., 151, 800-809.
- 2 Adderson, E.E., Shackelford, P.G., Quinn, A. & Carroll, W.L. (1991) J.Immunol., 147, 1667-1674.
- 3 Akahori, Y., Kurosawa, Y., Kamachi, Y., Torii, S. & Matsuoka, H. (1990) J.Clin.Invest., 85, 1722–1727.
- 4 Andris, J.S., Brodeur, B.R. & Capra, J.D. (1993) Mol.Immunol., 30, 1601-1616.
- 5 Andris, J.S., Ehrlich, P.H., Ostberg, L. & Capra, J.D. (1992) J.Immunol., 149, 4053-4059.
- Andris, J.S., Johnson, S., Zolla-Pazner, S. & Capra, J.D. (1991) Proc.Natl.Acad.Sci.Usa, 88, 7783-7787.
- 7 Anker, R., Conley, M.E. & Pollok, B.A. (1989) J.Exp.Med., 169, 2109-2119.
- Atkinson, P.M., Lampman, G.W., Furie, B.C., Naparstek, Y., Schwartz, R.S., Stollar, B.D. & Furie, B. (1985) J.Clin.Invest., 75, 1138–1143.;Lampman, G.W., Furie, B., Schwartz, R.S., Stollar, B.D. & Furie, B.C. (1989)
- 9 Avila, M.A., Vazques, J., Danielsson, L., Fernandez De Cossio, M.E. & Borrebaeck, C.A.K. (1993) Gene, 127, 273–274.
- Bakkus, M.H.C., Heirman, C., Van Riet, I., Van Camp, B. & Thielemans, K. (1992) Blood, 80, 2326-2335.

WO 97/08320 PCT/EP96/03647

Barbas Iii, C.F., Crowe, Jr., J.E., Cababa, D., Jones, T.M., Zebedee, S.L., Murphy, B.R., Chanock, R.M. & Burton, D.R. (1992) Proc.Natl.Acad.Sci.Usa, 89, 10164-10168.

- Barbas, C.F., Iii, Collet, T.A., Amberg, W., Roben, P., Binley, J.M., Hoekstra, D., Cababa, D., Jones, T.M., Williamson, R.A., Pilkington, G.R., Haigwood, N.L., Cabezas, E., Satterthwait, A.C., Sanz, I. & Burton, D.R. (1993) J.Mol.Biol., 230, 812–823.
- 13 Berman, J.E., Humphries, C.G., Barth, J., Alt, F.W. & Tucker, P.W. (1991) J.Exp.Med., 173, 1529–1535.
- Berman, J.E., Mellis, S.J., Pollock, R., Smith, C.L., Suh, H., Heinke, B., Kowal, C., Surti, U., Chess, L., Cantor, C.R & Alt, F.W. (1988) Embo J., 7, 727-738.
- Bhat, N.M., Bieber, M.M., Chapman, C.J., Stevenson, F.K. & Teng, N.N.H. (1993) J.Immunol., 151, 5011-5021.
- 16 Bird, J., Galili, N., Link, M., Stites, D. & Sklar, J. (1988) J.Exp.Med., 168, 229-245.
- 17 Cai, J., Humphries, C., Richardson, A. & Tucker, P.W. (1992) J.Exp.Med., 176, 1073-1081.
- 18 Cairns, E., Kwong, P.C., Misener, V., Ip, P., Bell, D.A. & Siminovitch, K.A. (1989) J.Immunol., 143, 685–691.
- 19 Capra, J.D. & Hopper, J.E. (1976) Immunochemistry, 13, 995-999; Hopper, J.E., Noyes, C., Heinrikson, R. & Kessel, J.W. (1976) J.Immunol., 116, 743-746.
- 20 Capra, J.D. & Kehoe, J.M. (1974) Proc.Nat.Acad.Sci.Usa, 71, 845-848.
- 21 Carroll, W.L., Yu, M., Link, M.P. & Korsmeyer, S.J. (1989) J.Immunol., 143, 692-698.
- 22 Chen, P.P., Liu, M.-F., Glass, C.A., Sinha, S., Kipps, T.J. & Carson, D.A. (1989) Arthritis & Rheumatism, 32, 72–76; Kipps, T.J., Tomhave, E., Pratt, L.F., Duffy, S., Chen, P.P. & Carson, D.A. (1989) Proc.Natl.Acad.Sci.Usa, 86, 5913–5917.
- 23 Chiu, Y.Y.H., Lopez De Castro, J.A. & Poljak, R.J. (1979) Biochemistry, 18, 553–560.
- 24 Cleary, M.L., Meeker, T.C., Levy, S., Lee, E., Trela, M., Sklar, J. & Levy, R. (1986) Cell, 44, 97-106.
- 25 Cuisinier, A.-M., Fumoux, F., Fougereau, M. & Tonnelle, C. (1992) Mol.Immunol., 29, 1363-1373.
- Cuisinier, A.-M., Gauthier, L., Boubli, L., Fougereau, M. & Tonnelle, C. (1993) Eur J.Immunol., 23, 110-118.
- 27 Cunningham, B.A., Gottlieb.P.D., Pflumm, M.N. & Edelman, G.M. (1971) Progress In Immunology (B.Amos, Ed.), Academic Press, N.Y., Pp.3-24.

- Cunningham, B.A., Rutishauser, U., Gall, W.E., Gottlieb, P.D., Waxdal, M.J. & Edelman, G.M. (1970) Biochemistry, 9, 3161-3170.
- 29 Deane, M. & Norton, J.D. (1990) Eur.J.Immunol., 20, 2209-2217.
- 30 Deane, M. & Norton, J.D. (1991) Leukemia, 5, 646-650.
- 31 Dersimonian, H., Schwartz, R.S., Barrett, K.J. & Stollar, B.D. (1987) J.Immunol., 139, 2496-2501.
- 32 Dersimonian, H., Schwartz, R.S., Barrett, K.J. & Stollar, B.D. (1987) J.Immunol., 139, 2496-2501; Chen, P.P., Liu, M.-F., Sinha, S. & Carson, D.A. (1988) Arth.Rheum., 31, 1429-1431.
- Desai, R., Spatz, L., Matsuda, T., Ilyas, A.A., Berman, J.E., Alt, F.W., Kabat, E.A. & Latov, N. (1990) J.Neuroimmunol., 26, 35-41.
- Ezaki, I., Kanda, H., Sakai, K., Fukui, N., Shingu, M., Nobunaga, M. & Watanabe, T. (1991)

 Arthritis And Rheumatism, 34, 343-350.
- 35 Felgenhauer, M., Kohl, J. & Ruker, F. (1990) Nucl. Acids Res., 18, 4927.
- 36 Florent, G., Lehman, D. & Putnam, F.W. (1974) Biochemistry, 13, 2482-2498.
- 37 Friedlander, R.M., Nussenzweig, M.C. & Leder, P. (1990) Nucl. Acids Res., 18, 4278.
- 38 Gawinowicz, M.A., Merlini, G., Birken, S., Osserman, E.F. & Kabat, E.A. (1991) J.Immunol., 147, 915-920.
- 39 Gillies, S.D., Dorai, H., Wesolowski, J., Majeau, G., Young, D., Boyd, J., Gardner, J. & James, K. (1989) Bio/Tech., 7, 799–804.
- 40 Goni, F. & Frangione, B. (1983) Proc.Nat.Acad.Sci.Usa, 80, 4837-4841.
- 41 Gorman, S.D., Clark, M.R., Routledge, E.G., Cobbold, S.P. & Waldmann, H. (1991) Proc.Natl.Acad.Sci.Usa, 88, 4181-4185.
- Griffiths, A.D., Malmqvist, M., Marks, J.D., Bye, J.M., Embleton, M.J., Mccafferty, J., Baier, M., Holliger, K.P., Gorick, B.D., Hughes-Jones, N.C., Hoogenboom, H.R. & Winter, G. (1993) Embo J., 12, 725-734.
- 43 Grillot-Courvalin, C., Brouet, J.-C., Piller, F., Rassenti, L.Z., Labaume, S., Silverman, G.J., Silberstein, L. & Kipps, T.J. (1992) Eur.J.Immunol., 22, 1781–1788.
- Guillaume, T., Rubinstein, D.B., Young, F., Tucker, L., Logtenberg, T., Schwartz, R.S. & Barrett, K.L. (1990) J.Immunol., 145, 1934-1945; Young, F., Tucker, L., Rubinstein, D., Guillaume, T., Andre-Schwartz, J., Barrett, K.J., Schwartz, R.S. & Logtenberg, T. (1990)
- Harindranath, N., Goldfarb, I.S., Ikematsu, H., Burastero, S.E., Wilder, R.L., Notkins, A.L. & Casali, P. (1991) Int.Immunol., 3, 865-875.

- 46 Hillson, J.L., Oppliger, I.R., Sasso, E.H., Milner, E.C.B. & Wener, M.H. (1992) J.Immunol., 149, 3741–3752.
- 47 Hirabayashi, Y., Munakata, Y., Sasaki, T. & Sano, H. (1992) Nucl. Acids Res., 20, 2601.
- 48 Hoch, S. & Schwaber, J. (1987) J.Immunol., 139, 1689–1693.
- 49 Huang, C., Stewart, A.K., Schwartz, R.S. & Stollar, B.D. (1992) J.Clin.Invest., 89, 1331-1343.
- 50 Hughes-Jones, N.C., Bye, J.M., Beale, D. & Coadwell, J. (1990) Biochem.J., 268, 135-140.
- 51 Ikematsu, H., Harindranath, N., Ueki, Y., Notkins, A.L. & Casali, P. (1993) J.Immunol., 150, 1325–1337.
- 52 Ikematsu, H., Kasaian, M.T., Schettino, E.W. & Casali, P. (1993) J.Immunol., 151, 3604-3616.
- 53 Kelly, P.J., Pascual, V., Capra, J.D. & Lipsky, P.E. (1992) J.Immunol., 148, 1294-1301.
- 54 Kipps, T.J. & Duffy, S.F. (1991) J.Clin.Invest., 87, 2087-2096.
- 55 Kipps, T.J., Tomhave, E., Pratt, L.F., Duffy, S., Chen, P.P. & Carson, D.A. (1989) Proc.Natl.Acad.Sci.Usa, 86, 5913-5917.
- 56 Kishimoto, T., Okajima, H., Okumoto, T. & Taniguchi, M. (1989) Nucl. Acids Res., 17, 4385.
- 57 Knight, G.B., Agnello, V., Bonagura, V., Barnes, J.L., Panka, D.J. & Zhang, Q.-X. (1993) J.Exp.Med., 178, 1903-1911.
- 58 Kohler, H., Shimizu, A., Paul, C., Moore, V. & Putnam, F.W. (1970) Nature, 227, 1318-1320; Florent, G., Lehman, D. & Putnam, F.W. (1974) Biochemistry, 13, 2482-2498
- Komori, S., Yamasaki, N., Shigeta, M., Isojima, S. & Watanabe, T. (1988) Clin.Exp.Immunol., 71, 508-516.
- 60 Kon, S., Levy, S. & Levy, R. (1987) Proc.Natl.Acad.Sci.Usa, 84, 5053-5057.
- Kratzin, H., Altevogt, P., Ruban, E., Kortt, A., Staroscik, K. & Hilschmann, N. (1975) Z.Physiol.Chem., 356, 1337-1342; Kratzin, H., Altevogt, P., Kortt, A., Ruban, E. & Hilschmann, N. (1978) Z.Physiol.Chem., 359, 1717-1745.
- 62 Kudo, A., Ishihara, T., Nishimura, Y. & Watanabe, T. (1985) Gene, 33, 181-189.
- 63 Kunicki, T.J., Annis, D.S., Gorski, J. & Nugent, D.J. (1991) J.Autoimmunity, 4, 433-446.
- Larrick, J.W., Wallace, E.F., Coloma, M.J., Bruderer, U., Lang, A.B. & Fry, K.E. (1992) Immunological Reviews, 130, 69–85.
- 65 Lehman, D.W. & Putnam, F.W. (1980) Proc.Nat.Acad.Sci.Usa, 77, 3239-3243.

- 66 Lewis, A.P., Lemon, S.M., Barber, K.A., Murphy, P., Parry, N.R., Peakman, T.C., Sims, M.J., Worden, J. & Crowe, J.S. (1993) J.immunol., 151, 2829-2838.
- 67 Liu, V.Y.S., Low, T.L.K., Infante, A. & Putnam, F.W. (1976) Science, 193, 1017-1020.
- 68 Logtenberg, T., Young, F.M., Van Es, J., Gmelig-Meyling, F.H.J., Berman, J.E. & Alt, F.W. (1989) J.Autoimmunity, 2, 203–213.
- 69 Logtenberg, T., Young, F.M., Van Es, J.H., Gmelig-Meyling, F.H.J. & Alt, F.W. (1989) J.Exp.Med., 170, 1347-1355.
- 70 Manheimer-Lory, A., Katz, J.B., Pillinger, M., Ghossein, C., Smith, A. & Diamond, B. (1991) J.Exp.Med., 174, 1639-1652.
- 71 Mantovani, L., Wilder, R.L. & Casali, P. (1993) J.Immunol., 151, 473-488.
- 72 Mariette, X., Tsapis, A. & Brouet, J.-C. (1993) Eur.J.Immunol., 23, 846-851.
- 73 Marks, J.D., Hoogenboom, H.R., Bonnert, T.P., Mccafferty, J., Griffiths, A.D. & Winter, G. (1991) J.Mol.Biol., 222, 581-597.
- 74 Meeker, T.C., Grimaldi, J., O'rourke, R., Loeb, J.Juliusson, G. & Einhorn, S. (1988) J.Immol., 141, 3994–3998.
- 75 Milili, M., Fougereau, M., Guglielmi, P. & Schiff, C. (1991) Mol.Immunol., 28, 753-761.
- 76 Moran, M.J., Andris, J.S., Matsumato, Y.-l., Capra, J.D. & Hersh, E.M. (1993) Mol.Immunol., 30, 1543-1551.
- 77 Mortari, F., Wang, J.-Y. & Schroeder, Jr., H.W. (1993) J.Immunol., 150, 1348-1357.
- 78 Newkirk, M.M., Gram, H., Heinrich, G.F., Ostberg, L., Capra, J.D. & Wasserman, R.L. (1988) J.Clin.Invest., 81, 1511-1518.
- 79 Newkirk, M.M., Mageed, R.A., Jefferis, R., Chen, P.P. & Capra, J.D. (1987) J.Exp.Med., 166, 550-564.
- 80 Nickerson, K.G., Berman, J., Glickman, E., Chess, L. & Alt, F.W. (1989) J.Exp.Med., 169, 1391-1403.
- 81 Olee, B.T., Lu, E.W., Huang, D.-F., Soto-Gil, R.W., Deftos, M., Kozin, F., Carson, D.A. & Chen, P.P. (1992) J.Exp.Med., 175, 831-842.
- Pascual, V., Randen, I., Thompson, K., Sioud, M.Forre, O., Natvig, J. & Capra, J.D. (1990)
 J.Clin.Invest., 86, 1320-1328.
- Pascual, V., Randen, I., Thompson, K., Sioud, M.Forre, O., Natvig, J. & Capra, J.D. (1990) J.Clin.Invest., 86, 1320-1328; Randen, I., Brown, D., Thompson, K.M., Hughes-Jones, N., Pascual, V., Victor, K., Capra, J.D., Forre, O. & Natvig, J.B. (1992)

- Pascual, V., Victor, K., Lelsz, D., Spellerberg, M.B., Hamblin, T.J., Thompson, K.M., Randen, I., Natvig, J., Capra, J.D. & Stevenson, F.K. (1991) J.Immunol., 146, 4385-4391.
- Pascual, V., Victor, K., Randen, I., Thompson, K., Steinitz, M., Forre, O., Fu, S.-M., Natvig, J.B. & Capra, J.D. (1992) Scand.J.Immunol., 36, 349-362.
- Pascual, V., Victor, K., Spellerberg, M., Hamblin, T.J., Stevenson, F.K. & Capra, J.D. (1992) J.Immunol., 149, 2337-2344.
- 87 Ponstingl, H., Schwarz, J., Reichel, W. & Hilschmann, N. (1970) Z.Physiol.Chem., 351, 1591-1594.; Ponstingl, H. & Hilschmann, N. (1976) Z.Physiol.Chem., 357, 1571-1604.
- 88 Portolano, S., Mclachlan, S.M. & Rapoport, B. (1993) J.Immunol., 151, 2839-2851.
- Portolano, S., Seto, P., Chazenbalk, G.D., Nagayama, Y., Mclachlan, S.M. & Rapoport, B. (1991) Biochem.Biophys.Res.Commun., 179, 372–377.
- 90 Pratt, L.F., Szubin, R., Carson, D.A. & Kipps, T.J. (1991) J.Immunol., 147, 2041-2046.
- 91 Press, E.M. & Hogg, N.M. (1970) BiochemJ., 117, 641-660.
- 92 Putnam, F.W., Shimizu, A., Paul., C., Shinoda, T. & Kohler, H. (1971) Ann.N.Y.Acad.Sci., 190, 83–103.
- 93 Putnam, F.W., Takahashi, N., Tetaert, D., Debuire, B. & Lin, L.C. (1981)
 Proc.Nat.Acad.Sci.Usa; 78, 6168-6172.;Takahashi, N., Tetaert, D., Debuire, B., Lin, L. & Putnam, F.W. (1982) Proc.Nat.Acad.Sci.Usa, 79, 2850-2854.
- 94 Raaphorst, F.M., Timmers, E., Kenter, M.J.H., Van Tol, M.J.D., Vossen, J.M. & Schuurman, R.K.B. (1992) Eur.J.Immunol., 22, 247-251.
- 85 Rabbitts, T.H., Bentley, D.L., Dunnick, W., Forster, A., Matthyssens, G. &t Milstein, C. (1980) Cold Spring Harb.Symp.Quanti.Biol., 45, 867-878; Matthyssens, G. &t Rabbitts, T.H. (1980) Proc.Nat.Acad.Sci.Usa, 77, 6561-6565.
- 96 Randen, I., Pascual, V., Victor, K., Thompson, K.M., Forre, O., Capra, J.D. & Natvig, J.B. (1993) Eur.J.Immunol., 23, 1220-1225.
- 97 Rassenti, L.Z. & Kipps, T.J. (1993) J.Exp.Med., 177, 1039-1046.
- 98 Reidl, L.S., Friedman, D.F., Goldman, J., Hardy, R.R., Jefferies, L.C. & Silberstein, L.E. (1991)
 J.Immunol., 147, 3623-3631.
- 99 Roudier, J., Silverman, G.J., Chen, P.P., Carson, D.A. & Kipps, T.J. (1990) J.Immunol., 144, 1526–1530.
- 100 Sanz, I., Casali, P., Thomas, J.W., Notkins, A.L. & Capra, J.D. (1989) J.Immunol., 142, 4054-4061.

- 101 Sanz, I., Dang, H., Takei, M., Talal, N. & Capra, J.D. (1989) J.Immunol., 142, 883-887.
- 102 Schmidt, W.E., Jung, H-.D., Palm, W. & Hilschmann, N. (1983) Z.Physiol.Chem., 364, 713-747.
- 103 Schroeder, H.W., Jr. & Wang, J.Y. (1990) Proc.Natl.Acad.Sci.Usa, 87, 6146-6150.
- 104. Schroeder, H.W., Jr., Hillson, J.L. & Perlmutter, R.M. (1987) Science, 238, 791-793.
- Schroeder, H.W., Jr., Hillson, J.L. & Perlmutter, R.M. (1987) Science, 238, 791-793; Chen, P.P., Liu, M.-F., Glass, C.A., Sinha, S., Kipps, T.J. & Carson, D.A. (1989) Arthritis & Rheumatism, 32, 72-76.
- 106 Schroeder, H.W., Jr., Hillson, J.L. & Perlmutter, R.M. (1987) Science, 238, 791-793; Chen, P.P., Liu, M.-F., Sinha, S. & Carson, D.A. (1988) Arth.Rheum., 31, 1429-1431.
- 107 Schutte, M.E., Ebeling, S.B., Akkermans, K.E., Gmelig-Meyling, F.H. & Logtenberg, T. (1991) Eur.J.Immunol., 21, 1115-1121.
- Schutte, M.E., Ebeling, S.B., Akkermans, K.E., Gmelig-Meyling, F.H.J. & Logtenberg, T. (1991) Eur.J.Immunol., 21, 1115-1121.
- 109 Settmacher, U., Jahn, S., Siegel, P., Von Baehr, R. & Hansen, A. (1993) Mol.Immunol., 30, 953-954.
- 110 Shen, A., Humphries, C., Tucker, P. & Blattner, F. (1987) Proc.Natl.Acad.Sci.Usa, 84, 8563-8567.
- 111 Shimizu, A., Nussenzweig, M.C., Mizuta, T.-R., Leder, P. & Honjo, T. (1989) Proc.Natl.Acad.Sci.Usa, 86, 8020-8023.
- 112 Shin, E.K., Matsuda, F., Fujikura, J., Akamizu, T., Sugawa, H., Mori, T. & Honjo, T. (1993) Eur.J.Immunol., 23, 2365–2367.
- 113 Silberstein, L.E., Litwin, S. & Carmack, C.E. (1989) J.Exp.Med., 169, 1631-1643.
- 114 Singal, D.P., Frame, B., Joseph, S., Blajchman, M.A. & Leber, B.F. (1993) Immunogenet., 38, 242.
- 115 Spatz, L.A., Wong, K.K., Williams, M., Desai, R., Golier, J., Berman, J.E., Alt, F.W. & Latov, N. (1990) J.Immunol., 144, 2821-2828.
- 116 Steiner, L.A., Garcia-Pardo, A. & Margolies, M.N. (1979) Biochemistry, 18, 4068-4080.
- 117 Stewart, A.K., Huang, C., Stollar, B.D. & Schwartz, R.S. (1993) J.Exp.Med., 177, 409-418.
- 118 Thomas, J.W. (1993) J.Immunol., 150, 1375-1382.
- 119 Torano, A. & Putnam, F.W. (1978) Proc.Nat.Acad.Sci.Usa, 75, 966-969.

120 Van Der Heijden, R.W.J., Bunschoten, H., Pascual, V., Uytdehaag, F.G.C.M., Osterhaus, A.D.M.E. & Capra, J.D. (1990) J.Immunol., 144, 2835–2839.

- 121 Van Der Stoep, N., Van Der Linden, J. & Logtenberg, T. (1993) J.Exp.Med., 177, 99-107.
- 122 Van Es, J.H., Gmelig-Meyling, F.H.J. & Logtenberg, T. (1992) Eur.J.Immunol., 22, 2761-2764.
- 123 Varade, W.S., Marin, E., Kittelberger, A.M. & Insel, R.A. (1993) J.Immunol., 150, 4985-4995.
- 124 Victor, K.D., Pascual, V., Lefvert, A.K. & Capra, J.D. (1992) Mol.Immunol., 29, 1501-1506.
- 125 Victor, K.D., Pascual, V., Williams, C.L., Lennon, V.A. & Capra, J.D. (1992) Eur.J.Immunol., 22, 2231-2236.
- Watanabe, S., Barnikol, H.U., Horn, J., Bertram, J. & Hilschmann, N. (1973)
 Z.Physiol.Chem., 354, 1505-1509.
- 127 Weng, N.-P., Yu-Lee, L.-Y., Sanz, I., Patten, B.M. & Marcus, D.M. (1992) J.Immunol., 149, 2518-2529.
- 128 White, M.B., Word, C.J., Humphries, C.G., Blattner, F.R. & Tucker, P.W. (1990) Mol.Cell.Biol., 10, 3690-3699.
- 129 Winkler, T.H., Fehr, H. & Kalden, J.R. (1992) Eur.J.Immunol., 22, 1719-1728.
- Yago, K., Zenita, K., Ohwaki, I., Harada, Y., Nozawa, S., Tsukazaki, K., Iwamori, M., Endo, N., Yasuda, N., Okuma, M. & Kannagi, R. (1993) Mol.Immunol., 30, 1481-1489.
- 131 Zelenetz, A.D., Chen, T.T. & Levy, R. (1992) J.Exp.Med., 176, 1137-1148.

B. References of germline sequences

References of human germline kappa sequences

- 1 Cox, J.P.L., Tomlinson, I.M. & Winter, G. (1994) Eur.J.Immunol., 24, 827-836.
- 2 Huber, C., Et Al. (1993) Eur.J.Immunol., 23, 2868.
- 3 Klobeck, H.G., Bornkammm, G.W., Combriato, G., Mocikat, R., Pohlenz, H.D. & Zachau, H.G. (1985) Nucl.Acids Res., 13, 6515-6529.
- 4 Lautner-Rieske, A., Huber, C., Meindl, A., Pargent, W., Schäble, K.F., Thiebe, R., Zocher, I. & Zachau, H.G. (1992) Eur.J.Immunol. 22, 1023.
- 5 Lorenz, W., Schäble, K.F., Thiebe, R., Stavnezer, J. & Zachau, H.G. (1988) Mol.Immunol., 25, 479.

- 6 Pargent, W., Meindl, A., Thiebe, R., Mitzel, S. & Zachau, H.G. (1991) Eur.J.Immunol., 21, 1821-1827.
- 7 Pech, M. & Zachau, H.G. (1984) Nuc. Acids Res., 12, 9229-9236.
- 8 Pech, M., Jaenichen, H.-R., Pohlenz, H.-D., Neumaier, P.S., Klobeck, H.-G. & Zachau, H.G. (1984) J.Mol.Biol., 176, 189-204.
- Scott, M.G., Crimmins, D.L., Mccourt, D.W., Chung, G., Schable, K.F., Thiebe, R., Quenzel, E.-M., Zachau, H.G. & Nahm, M.H. (1991) J.Immunol., 147, 4007-4013.
- Stavnezer, J., Kekish, O., Batter, D., Grenier, J., Balazs, I., Henderson, E. & Zegers, B.J.M. (1985) Nucl.Acids Res., 13, 3495–3514.
- Straubinger, B., Huber, E., Lorenz, W., Osterholzer, E., Pargent, W., Pech, M., Pohlenz, H.-D., Zimmer, F.-J. & Zachau, H.G. (1988) J.Mol.Biol., 199, 23-34.
- Straubinger, B., Thiebe, R., Huber, C., Osterholzer, E. & Zachau, H.G. (1988) Biol.Chem.Hoppe-Seyer, 369, 601-607.

References of human germline lambda sequences

- 1 Williams, S.C. & Winter, G. (1993) Eur.J.Immunol., 23, 1456-1461.
- 2 Siminovitch, K.A., Misener, V., Kwong, P.C., Song, Q.-L. & Chen, P.P. (1989) J.Clin.Invest., 84, 1675-1678.
- Brockly, F., Alexandre, D., Chuchana, P., Huck, S., Lefranc, G. & Lefranc, M.-P. (1989) Nuc.Acids.Res., 17, 3976.
- 4 Daley, M.D., Peng, H.-Q., Misener, V., Liu, X.-Y., Chen, P.P. & Siminovitch, K.A. (1992) Mol.Immunol., 29, 1515–1518.
- 5 Deftos, M., Soto-Gil, R., Quan, M., Olee, T. & Chen, P.P. (1994) Scand. J. Immunol., 39, 95.
- 6 Stiernholm, N.B.J., Kuzniar, B. & Berinstein, N.L. (1994) J. Immunol., 152, 4969-4975.
- 7 Combriato, G. & Klobeck, H.G. (1991) Eur.J.immunol., 21, 1513-1522.
- 8 Anderson, M.L.M., Szajnert, M.F., Kaplan, J.C., Mccoll, L. & Young, B.D. (1984) Nuc. Acids Res., 12, 6647-6661.

References of human germline heavy chain sequences

- 1 Adderson, E.E., Azmi, F.H., Wilson, P.M., Shackelford, P.G. & Carroll, W.L. (1993) J.Immunol., 151, 800-809.
- 2 Andris, J.S., Brodeur, B.R. & Capra, J.D. (1993) Mol.Immunol., 30, 1601-1616.

- Berman, J.E., Mellis, S.J., Pollock, R., Smith, C.L., Suh, H., Heinke, B., Kowal, C., Surti, U., Chess, L., Cantor, C.R & Alt, F.W. (1988) Embo J., 7, 727-738.
- Buluwela, L. & Rabbitts, T.H. (1988) Eur.J.Immunol., 18, 1843–1845.; Buluwela, L.,
 Albertson, D.G., Sherrington, P., Rabbitts, P.H., Spurr, N. & Rabbitts, T.H. (1988) Embo J., 7,
 2003–2010.
- 5 Chen, P.P., Liu, M.-F., Sinha, S. & Carson, D.A. (1988) Arth.Rheum., 31, 1429-1431.
- 6 Chen, P.P., Liu, M.-F., Glass, C.A., Sinha, S., Kipps, T.J. & Carson, D.A. (1989) Arthritis & Rheumatism, 32, 72-76.
- 7 Cook, G.P. et al. (1994) Nature Genetics 7, 162-168.
- 8 Haino, M. et al., (1994). J. Biol. Chem. 269, 2619-2626
- 9 Humphries, C.G., Shen, A., Kuziel, W.A., Capra, J.D., Blattner, F.R. & Tucker, P.W. (1988) Nature, 331, 446-449.
- 10 Kodaira, M., Kinashi, T., Umemura, I., Matsuda, F., Noma, T., Ono, Y. & Honjo, T. (1986)
 J.Mol.Biol., 190, 529-541.
- 11 Lee, K.H., Matsuda, F., Kinashi, T., Kodaira, M. & Honjo, T. (1987) J.Mol.Biol., 195, 761-768.
- 12 Matsuda, F., Lee, K.H., Nakai, S., Sato, T., Kodaira, M., Zong, S.Q., Ohno, H., Fukuhara, S. & Honjo, T. (1988) Embo J., 7, 1047-1051.
- 13 Matsuda, F., Shin, E.K., Hirabayashi, Y., Nagaoka, H., Yoshida, M.C., Zong, S.Q. & Honjo, T. (1990) Embo J., 9, 2501–2506.
- Matsuda, F., Shin, E.K., Nagaoka, H., Matsumura, R., Haino, M., Fukita, Y., Taka-Ishi, S., Imai, T., Riley, J.H., Anand, R. Et, Al. (1993) Nature Genet. 3, 88-94
- Nagaoka, H., Ozawa, K., Matsuda, F., Hayashida, H., Matsumura, R., Haino, M., Shin, E.K., Fukita, Y., Imai, T., Anand, R., Yokoyama, K., Eki, T., Soeda, E. & Honjo, T. (1993). (Temporal)
- Rechavi, G., Bienz, B., Ram, D., Ben-Neriah, Y., Cohen, J.B., Zakut, R. & Givol, D. (1982) Proc.Nat.Acad.Sci.Usa, 79, 4405–4409.
- 17 Sanz, I., Kelly, P., Williams, C., Scholl, S., Tucker, P. & Capra, J.D. (1989) Embo J., 8, 3741-3748.
- 18 Shin, E.K., Matsuda, F., Fujikura, J., Akamizu, T., Sugawa, H., Mori, T. & Honjo, T. (1993) Eur.J.Immunol., 23, 2365–2367.
- 19 Tomlinson, Im., Walter, G., Marks, Jd., Llewelyn, Mb. & Winter. G. (1992) J.Mol.Biol. 227, 776-798.

- Van Der Maarel, S., Van Dijk, K.W., Alexander, C.M., Sasso, E.H., Bull, A. & Milner, E.C.B. (1993) J.Immunol., 150, 2858-2868.
- Van Dijk, K.W., Mortari, F., Kirkham, P.M., Schroeder, Jr., H.W. & Milner, E.C.B. (1993) Eur.J.Immunol., 23, 832-839.
- Van Es, J.H., Aanstoot, H., Gmelig-Meyling, F.H.J., Derksen, R.H.W.M. & Logtenberg, T. (1992) J.Immunol., 149, 2234–2240.
- 23 Weng, N.-P., Snyder, J.G., Yu-Lee, L.-Y. & Marcus, D.M. (1992) Eur.J.Immunol., 22, 1075-1082.
- 24 Winkler, T.H., Fehr, H. & Kalden, J.R. (1992) Eur.J.Immunol., 22, 1719-1728.
- Olee, T., Yang, P.M., Siminovitch, K.A., Olsen, N.J., Hillson, J.L., Wu, J., Kozin, F., Carson, D.A.&Chen, P.P. (1991) J. Clin. Invest. 88, 193–203.
- 26 Chen, P.P.& Yang, P.M. (1990) Scand. J. Immunol. 31, 593-599.
- 27 Tomlinson, M., Walter, G., Cook&Winter, G. (Unpublished)

Claims

- 1. A method of setting up one or more nucleic acid sequences encoding one or more (poly)peptide sequences suitable for the creation of libraries of (poly)peptides said (poly)peptide sequences comprising amino acid consensus sequences, said method comprising the following steps:
 - deducing from a collection of at least three homologous proteins one or more (poly)peptide sequences comprising at least one amino acid consensus sequence;
 - optionally, identifying amino acids in said (poly)peptide sequences to (b) be modified so as to remove unfavorable interactions between amino acids within or between said or other (poly)peptide sequences;
 - identifying at least one structural sub-element within each of said (c) (poly)peptide sequences;
 - backtranslating each of said (poly)peptide sequences into a (d) corresponding coding nucleic acid sequence;
 - setting up cleavage sites in regions adjacent to or between the ends of (e) sub-sequences encoding said sub-elements, each of said cleavage sites:
 - (ea) being unique within each of said coding nucleic acid sequences;
 - (eb) being common to the corresponding sub-sequences of any said coding nucleic acids.
- 2. A method of setting up two or more sets of one or more nucleic acid sequences comprising executing the steps described in claim 1 for each of said sets with the additional provision that said cleavage sites are unique between said sets.
- 3. The method of claim 2 in which at least two of said sets are deduced from the same collection of at least three homologous proteins.
- 4. The method according to any one of claims 1 to 3, wherein said setting up further comprises the synthesis of said nucleic acid coding sequences.
- The method according to any one of claims 1 to 4, further comprising the 5. cloning of said nucleic acid coding sequences into a vector.

- 6. The method according to any one of claims 1 to 5, wherein said removal of unfavorable interactions results in enhanced expression of said (poly)peptides.
- 7. The method according to any one of claims 1 to 6, further comprising the steps of:
 - (f) cleaving at least two of said cleavage sites located in regions adjacent to or between the ends of said sub-sequences; and
 - (g) exchanging said sub-sequences by different sequences; and
 - (h) optionally, repeating steps (f) and (g) one or more times.
- 8. The method according to claim 7, wherein said different sequences are selected from the group of different sub-sequences encoding the same or different sub-elements derived from the same or different (poly)peptides.
- 9. The method according to claims 7 or 8, wherein said different sequences are selected from the group of:
 - (i) genomic sequences or sequences derived from genomic sequences;
 - (ii) rearranged genomic sequences or sequences derived from rearranged genomic sequences; and
 - (iii) random sequences.
- 10. The method according to any one of claims 1 to 9 further comprising the expression of said nucleic acid coding sequences.
- 11. The method according to any one of claims 1 to 10 further comprising the steps of:
 - screening, after expression, the resultant (poly)peptides for a desired property;
 - (k) optionally, repeating steps (f) to (i) one or more times with nucleic acid sequences encoding one or more (poly)peptides obtained in step (i).
- 12. The method according to claim 11, wherein said desired property is selected from the group of optimized affinity or specificity for a target molecule, optimized enzymatic activity, optimized expression yields, optimized stability and optimized solubility.

13. The method according to any one of claims 1 to 12, wherein said cleavage sites are sites cleaved by restriction enzymes.

- 14. The method according to any one of claims 1 to 13, wherein said structural sub-elements comprise between 1 and 150 amino acids.
- 15. The method according to claim 14, wherein said structural sub-elements comprise between 3 and 25 amino acids.
- 16. The method according to any one of claims 1 to 15, wherein said nucleic acid is DNA.
- 17. The method according to any one of claims 1 to 16, wherein said (poly)peptides have an amino acid pattern characteristic of a particular species.
- 18. The method according to claim 17, wherein said species is human.
- 19. The method according to any one of claims 1 to 18, wherein said (poly)peptides are at least part of members or derivatives of the immunoglobulin superfamily.
- 20. The method according to claim 19, wherein said members or derivatives of the immunoglobulin superfamily are members or derivatives of the immunoglobulin family.
- 21. The method according to claim 19 or 20, wherein said (poly)peptides are or are derived from heavy or light chain variable regions wherein said structural sub-elements are framework regions (FR) 1, 2, 3, or 4 or complementary determining regions (CDR) 1, 2, or 3.
- 22. The method according to claim 20 or 21, wherein said (poly)peptides are or are derived from the HuCAL consensus genes:
 Vκ1, Vκ2, Vκ3, Vκ4, Vλ1, Vλ2, Vλ3, VH1A, VH1B, VH2, VH3, VH4, VH5, VH6, Cκ, Cλ, CH1 or any combination of said HuCAL consensus genes.
- 23. The method according to any one of claims 20 to 22, wherein said derivative of said immunoglobulin family or said combination is an Fv, disulphide-linked Fv, single-chain Fv (scFv), or Fab fragment.

- 24. The method according to claims 22 to 23, wherein said derivative is an scFv fragment comprising the combination of HuCAL VH3 and HuCAL Vλ2 consensus genes that comprises a random sub-sequence encoding the heavy chain CDR3 sub-element.
- 25. The method according to any one of claims 1 to 24, wherein at least part of said (poly)peptide sequences or (poly)peptides is connected to a sequence encoding at least one additional moiety or to at least one additional moiety, respectively.
- 26. The method according to claim 25, wherein said connection is formed via a contiguous nucleic acid sequence or amino acid sequence, respectively.
- 27. The method according to claims 25 to 26, wherein said additional moiety is a toxin, a cytokine, a reporter enzyme, a moiety being capable of binding a metal ion, a peptide, a tag suitable for detection and/or purification, or a homo- or hetero-association domain.
- 28. The method according to any one of claims 10 to 27, wherein the expression of said nucleic acid sequences results in the generation of a repertoire of biological activities and/or specificities, preferably in the generation of a repertoire based on a universal framework.
- 29. A nucleic acid sequence obtainable by the method according to any of claims 1 to 28.
- 30. A collection of nucleic acid sequences obtainable by the method according to any of claims 1 to 28.
- 31. A recombinant vector obtainable by the method according to any of claims 5 to 28.
- 32. A collection of recombinant vectors obtainable by the method according to any of claims 5 to 30.
- 33. A host cell transformed with the recombinant vector according to claim 31.

34. A collection of host cells transformed with the collection of recombinant vectors according to claim 32.

- 35. A method of producing a (poly)peptide or a collection of (poly)peptides as defined in any of claims 1 to 28 comprising culturing the host cell according to claim 33 or the collection of host cells according to claim 34 under suitable conditions and isolating said (poly)peptide or said collection of (poly)peptides.
- 36. A (poly)peptide devisable by the method according to any one of claims 1 to 3, encoded by the nucleic acid sequence according to claim 29 or obtainable by the method according to any one of claims 4 to 28 or 35.
- 37. A collection of (poly)peptides devisable by the method according to any one of claims 1 to 3, encoded by the collection of nucleic acid sequences according to claim 30 or obtainable by the method according to any one of claims 4 to 28 or 35.
- 38. A vector suitable for use in the method according to any of claims 5 to 28 and 35 characterized in that said vector is essentially devoid of any cleavage site as defined in claim 1(e) and 2.
- 39. The vector according to claim 38 which is an expression vector.
- 40 A kit comprising at least one of:
 - (a) a nucleic acid sequence according to claim 29;
 - (b) a collection of nucleic acid sequences according to claim 30;
 - (c) a recombinant vector according to claim 31;
 - (d) a collection of recombinant vectors according to claim 32;
 - (e) a (poly)peptide according to claim 36;
 - (f) a collection of (poly)peptides according to claim 37;
 - (g) a vector according to claim 38 or 39; and optionally,
 - (h) a suitable host cell for carrying out the method according to claim 35.
- **41**. A method of designing two or more genes encoding a collection of two or more proteins, comprising the steps of:

2/9

(a) eille	(a)	either
-----------	-----	--------

- (aa) identifying two or more homologous gene sequences, or
- (ab) analyzing at least three homologous genes, anddeducing two or more consensus gene sequences therefrom,
- optionally, modifying codons in said consensus gene sequences to remove unfavourable interactions between amino acids in the resulting proteins,
- (c) identifying sub-sequences which encode structural subelements in said consensus gene sequences
- (d) modifying one or more bases in regions adjacent to or between the ends of said sub-sequences to define one or more cleavage sites, each of which:
 - (da) are unique within each consensus gene sequence,
 - (db) do not form compatible sites with respect to any single sub-sequence,
 - (dc) are common to all homologous sub-sequences.
- **42**. A method of preparing two or more genes encoding a collection of two or more proteins, comprising the steps of :
 - (a) designing said genes according to claim 41, and
 - (b) synthesizing said genes.
- 43. A collection of genes prepared according to the method of claim 42.
- 44. A collection of two or more genes derived from gene sequences which:
 - (a) are either homologous, or represent consensus gene sequences derived from at least three homologous genes, and

220

- (b) carry cleavage sites, each of which:
 - (ba) lie at or adjacent to the ends of genetic sub-sequences which encode structural sub-elements,
 - (bb) are unique within each gene sequence,
 - (bc) do not form compatible sites with respect to any single subsequence, and
 - (bd) are common to all homologous sub-sequences.
- 45. The collection of genes according to either of claims 43 or 44 in which each of said gene sequences has a nucleotide composition characteristic of a particular species.
- 46. The collection of genes according to claim 45 in which said species is human.
- 47. The collection of genes according to any of claims 43 to 46 in which one or more of said gene sequences encodes at least part of a member of the immunoglobulin superfamily, preferably of the immunoglobulin family.
- 48. The collection of genes according to claim 47 in which said structural subelements correspond to any combination of framework regions 1, 2, 3, and 4, and/or CDR regions 1, 2, and 3 of antibody heavy chains.
- 49. The collection of genes according to claim 47 in which said structural subelements correspond to any combination of framework regions 1, 2, 3, and 4, and/or CDR regions 1, 2, and 3 of antibody light chains.
- **50**. A collection of vectors comprising a collection of gene sequences according to any of claims 43 to 49.

- 51. The collection of vectors according to claim 50 comprising the additional feature that the vector does not comprise any cleavage site that is contained in the collection of genes according to any of claims 43 to 49.
- 52. A method for identifying one or more genes encoding one or more proteins having a desirable property, comprising the steps of:
 - (a) expressing from the collection of vectors according to either of claims 50 or 51 a collection of proteins.
 - (b) screening said collection to isolate one or more proteins having a desired property,
 - (c) identifying the genes encoding the proteins isolated in step (b),
 - (d) optionally, excising from the genes encoding the proteins isolated in step (b) one or more genetic sub-sequences encoding structural subelements, and replacing said sub-sequence(s) by one or more second sub-sequences encoding structural sub-elements, to generate new vectors according to either of claims 50 or 51,
 - (e) optionally, repeating steps (a) to (c).
- **53**. A method for identifying one or more genes encoding one or more antibody fragments which binds to a target, comprising the steps of:
 - (a) expressing from the collection of vectors according to either of claims50 or 51 a collection of proteins,
 - (b) screening said collection to isolate one or more antibody fragments which bind to said target,
 - (c) identifying the genes encoding the proteins isolated in step (b).
 - (d) optionally, excising from the genes encoding the antibody fragments isolated in step (b) one or more genetic sub-sequences encoding structural sub-elements, and replacing said sub-sequence(s) by one or

more second sub-sequences encoding structural sub-generate new vectors according to either of claims 50 or 51,

- (e) optionally, repeating steps (a) to (c).
- 54. A kit comprising two or more genes derived from gene sequences which:
 - (a) are either homologous, or represent consensus gene sequences derived from at least three homologous genes, and
 - (b) carry cleavage sites, each of which:
 - (ba) lie at or adjacent to the ends of genetic sub-sequences which encode structural sub-elements,
 - (bb) are unique within each gene sequence,
 - (bc) do not form compatible sites with respect to any single subsequence, and
 - (bd) are common to all homologous sub-sequences.
- 55. A kit comprising two or more genetic sub-sequences which encode structural sub-elements, which can be assembled to form genes, and which carry cleavage sites, each of which:
 - (a) lie at or adjacent to the ends of said genetic sub-sequences,
 - (b) do not form compatible sites with respect to any single sub-sequence, and
 - (d) are common to all homologous sub-sequences.

Figure 1: construction of a synthetic human antibody library based on consensus sequences

SS
aneuce
Sus Se
consen
appa (
: VL k
ure 2A
Ë

										fra	framework	×	돗	-									\vdash			CDRI	\mathbb{Z}		
	l	3 t S Z 1	3	7	9	9	L	8	6	01	11	12	13	カレ	91	91	21 21	81	61	50	22	73	77	52	97	77	A	8	J
VK1 D		-	0	I Q M T	 	O	S		S	S		S	K	S	>	9		R	>	 -	_		C R	* A	5 1	O	1	1	1
£ 2	۵	_	>	Σ	-	Ö	S	۵	_	S		۵	>	—	٥	9	ш	Ь	∀	S		S (ر آ	R S	5.	O	2		
VK3 D I V L	Ω		>	لــــا		O	S	Δ.	\triangleleft	⊢	_	S		S	ے	9	ш	- W	\	 		S	ر آ	R A	S	Ö	2 S	1	i
VK4 D 1	٥		>	∑ >	—	0	S	٩	0	S	<u></u> .	V	>	S	_	Ð	Ш	R	< <	—		N N	ر د	R S	5.5	0	S	>	_
					5	CDRI										fra	framework	0 M		2	İ				-		CDR	=	
		78 78 E E	4	82	5 67	30	31	32	33	34	35	36	37	38	39	07	17	77	Et	44	57	97	124	8 1	09	19	25	23	75
\K1	1		1	9	-		E.			K	≥	>	0	d	4	Ь	9	×	A	Ъ	$ $ \times				ΥA	i	A	S S	<u>ا</u>
/k2	工	S	1	Z	9	>	Z	>	1	Q	≥	>	_	O	×	Д	Ö	O	S	۵.	O	_		_	_		9	S	- B
VK3	1	t	1	>	2	2	S	>		V	≥	>	0	O	\checkmark	٩	Ð	Ö	A	Д	R			_	>	9	⋖	S	SR
VK4 Y	<u>></u>	S S	S	Z	Z	\checkmark	Z	>	_	\forall	≥	>-	O	O	\checkmark	۵	9	O	۵	Ь	\checkmark	۔۔		_	≻	/ M	Α.	. S	_ R

Figure 2A: VL kappa consensus sequences

	78	V	9 /	∀	/ A						
	83	<u>H</u>	>) F	>						
	82	D :	<u> </u>								
	18	H	ш	LLI C	ш ~						
	08) P	Α	ПР	0 A		601	—		—	-
	64	0	/ E				108	82	<u>~</u>	æ	æ
	87		R >	S	S		201	~	×	\checkmark	\mathbf{x}
	LL	S	S	5,	5		901	_	_		_
	94	S			_	4	901	ш	ш	نس	ш
	97		\leq	 	<u></u>	독	10t	>	>	>	>
	47		_	· 		framework 4	103	~	\checkmark	\vee	\succeq
3	73		—	_	—	me	102	-	—	-	-
5	12	ш	L	ш.	حلا	fra	101	9	9	9	C
framework	07			Ω	Q		100	0	O	O	\subset
am	69	_	_ _	-	—		66	9	9	G	C
4	89	9	g	9	9		86	<u></u>	ய	ட	L
	Z9	S	S	2	S		۷6	-	-		H
	99	į	9	Ð	9		96	٩	٥	ط	۵
	99		S	S	S		96	٩	Ь	Д	۵
	179	1	9	9	9		⊅ 6	 -	<u> </u>	—	1-
	63		S	S	S	CDRIII	93	-	_	-	1-
	79	1	Ц.	ш.	Щ		76	 	>	>	>
	19		<u>~</u>	<u>~</u>	α		16	工	工	工	
	09			< <			06	O	O	Q	
ĺ	69	; <u>a</u>		. Д			68	O	O	Q	(
	85	>	· >	· >	>	×	88	0	\mathcal{O}	ر ر	ر
L	29 29 29 29	3 5	<u>ن</u> د	<u>ت</u>) (<u>C</u>	Vor	88 28 98 58	>	≻	>-	>
R	99		\ \C) -		lew	98	>	> -	≻	>
CORII	99		<i>y</i> ⊲	< A		framework 3	58				
		V 5 6 V	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	VK2 / J G V F	VK7 F S G V	-		VK1 T Y Y	VK2 V Y Y	VK3 V Y Y	> > > :

Figure 2B: VL lambda consensus sequences

87 -> -		ا ۱۷	9	9	9
		99	S	S	S
S D E		99	Д	٥	۵
CDRI S S S	_	75	\simeq	\propto	\propto
0 → S 26	CDR II	23	O	Z	
97 0 0 0	[5]	25	Z	S	S
\sqrt{24}		l9	Z	>	0
C C C C 23		90	0	0	
\\ \sigma \sima \sigma \sigma \sigma \sigma \sigma \sigma \sigma \sigma \sigma \sigma \sigma \sigma \sigma		6t	>-	>	>
		· 84	_		
20 ⊢ ⊢ ∝		L t		Σ	>
6t > - <		97		_	
81 x v -		57	$ $ \vee	\checkmark	>
	x 2	77	۵	۵	٥
91 0 0 0	framework 2	43	×	V	7 A
	Jev	77		~ ×	G 0
A A A A	ran	lt	9	P G	Ь
framework 1	4	07	<u>ا</u> ا	工	\preceq
		38	0	0	0
fram 11 1 1 1 1 1 1 1 1	1	37	1	d	Ö
2 S S S S S S S S S S S S S S S S S S S		98		>	>-
8 4 4 4		35		≥	≥
1 L a a a		34	1	S	S
		100	· >	>	\forall
$ g \vdash \vdash \vdash$	_	32	: >	>	>-
) BC	A	1	Z	1
ш > < 3		' L8	z	: > -	\succeq
Z \ \ \ \ \ \ \		08	10	9	
l a a v		<u> </u>		<u> </u>	<u> </u>
M1 0 S V L T 0 M2 0 S A L T 0 M3 S Y E L T 0		08 08 18 78	2	W > G N \	702 G D K -

Figure 2B: VL lambda consensus sequences

Figure 2C: V heavy chain consensus sequences

			LS		-					_	
			99		9					/	
	N → N N → N 30		99	ł	9					>	
	67 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4		75	ഥ	S					\checkmark	
	82 2 - 2 2 2	8	23	-	Z	≥	S	>	9	S	
	72 0 > 4 4 0 > 0	CDR	Э	ı	1	1	ŧ	ı	1	ı	
	97 0 0 0 0 0 0 0		8		1.	ı	i	i	ł	\propto	
	N N N N N N N S2		A		۵-	1	G	1		>-	
	17 < < L < > O -		25	-	Z		S	>	>	>-	
	N X - Y - X X Z3		ls	-		_	_				
	77 0000000	İ	09	1	≥				_	\simeq	1
	12 N N H N H N H		67	9	9	A	S	9			
	< < 50		84	≥				_	Σ	_	1
	81 ×× - & ~ × ~		LÞ	i	≥						١.
l	81>>	7	97	ш	ш	ئىنا	ш	ш	لسلسا	لبا	
\ <u>\</u>	VINS H S H S H	논	97	•							1
framework	91 N K Q Q H H Q	framewo	77	9	9						
le V	3100-0000	ne l	£†	- 1			\times				- 1
ran	110000000	E L	77	1	9						- 1
14-	E1 × × × Q × × ×		lt	1 .	۵.						- 1
	71 × × > > × >		Ot	- 1	<						- 1
		-	68	´	d						- 1
	01 m m 4 0 0 m 0		88	1	: œ	· ~	_		_		-
	9 A A G G A A G	_	_ \ _ \ 28	-			· >		-		_
	8 6 6 6 6 6 6 6		98	⁻ 1	: ≥						
	7 N N N N N N N	İ	98		I =					_	
		_						_	-		
	$ \varsigma >> \times > 0 > 0$	au	3 5	- 1	. >	- ජ - ~	> <	. <i>></i>	- >	,	<u> </u>
	 	اد	1	- 1	- >	تر - رو	> <i>></i>	- <i>-</i>			<u> </u>
			8				י כ			. –	,
	7 > > > > >		∀	1			·) (•	· ~	_
		L	_ l	_	7) H		, <i>O</i>	, 0		
<u> </u>	14 118 2 3 3 4 4 6			<u> </u>	A117/	<u> </u>	71	2 5	<u>† 1</u>	<u>င</u> ်	9
•	VH1A VH1B VH2 VH3 VH4					> >	7H7	> 3	5 5	> >	>
	SUBSTIT	TUTE S 6 <i>I</i>	HEET 204	(F.UL)	E 26)						
		- ,									

	28 28 28 28 28 28 28 28 28 28 28 28 28 2	4 111 > > > > > > > > > > > > > > > > >
	A N N N N N N N N N N N N N N N N N N N	framework 1
lework 3	87 A A > 1 7 8 87 Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y	901 S S S S S S S S S S S S S S S S S S S
frame	5/ 3 - 1 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2	CDRIII CDRIII
	07	76 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
sednences	66 66 66 66 66 66 66 66 66 66 66 66 66	33
S	19 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	framework
Figure 2C: V heavy chain consens	09	98 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Figu	VH1A VH1B VH2 VH3 VH4	A H H SHEET (RULE 26)

~ ~ ~ ~ ~

Last the state of the last three control of the state of

U > ഗ Ø വ П S ഗ BanII ഗ Figure 3A: V kappa 1 (Vk1) gene sequence O Ŏ ECORV

ACTGGGTCTC GGGCAGATCG GACTCGCGCT CGCACCCACT TGACCCAGAG CCCGTCTAGC CTGAGCGCGA GCGTGGGTGA CTATAGGTCT GATATCCAGA

~~~~~

ഗ ഗ <del>---</del>-- $\mathcal{O}$ Ö S K ĸ PstI U ⊱ > K

GGGCATTAGC AGCTATCTGG TCGATAGACC TAATGGACGT CTCGCTCGGT CCCGTAATCG ATTACCTGCA. GAGCGAGCCA TCGTGTGACC AGCACACTGG

AseI X Д K × U SexAI Сι × Ö Ø ~ ~ ~ ~ ~ ~ KpnI Y W K

GCAGAAACCA GGTAAAGCAC CGAAACTATT AATTTATGCA GCTTTGATAA TTAAATACGT CGTCTTTGGT CCATTTCGTG CGTGGTACCA GCACCATGGT

BamHI G ഗ U ഗ بعا  $\alpha$ ഗ Ы SanDI > G S Ø 口 S S Ø

GCCAGCAGCT TGCAAAGCGG GGTCCCGTCC CGTTTTAGCG GCTCTGGATC

CGGTCGTCGA ACGTTTCGCC CCAGGGCAGG GCAAAATCGC CGAGACCTAG Figure 3A: V kappa 1 (Vk1) gene sequence (continued)

ĪΉ P E Eco57I Ø 口 S S  $\vdash$ 口 Н Ŀ H G

BbsI ~~~~~~

GAAGACTTTG CTTCTGAAAC AAATGGGACT GGTAATCGTC GGACGTTGGA TTTACCCTGA CCATTAGCAG CCTGCAACCT

Д Н E

 $\succ$ 

耳

Õ

Ø

 $\circ$ 

₽

Ø

CGGCACTGAT

BamHI

GCCGTGACTA

MscI

Ŋ

ہتا

⊱

Д

CATTATACCA CCCCCCCGAC CTTTGGCCAG GAAACCGGTC GGGCGGCTG GTAATATGGT TTGCCAGCAG AACGGTCGTC

BSIWI  $\bowtie$ 

国

×

 $\vdash$ 

G

ACGTACG TGCATGC AACTTTAATT GGTACGAAAG TTGAAATTAA CCATGCTTTC

SUBSTITUTE SHEET (RULE 26)

CGACCTATTA

GCTGGATAAT

The fight of the state and then at the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state

į

. Il is est a minimilar of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the contr

Figure 3B: V kappa 2 (VK2) gene sequence

GAGGCCCGCT CTCCGGGCGA 团 C Д H GACGGTCACT CTGCCAGTGA Ц ACTGGGTCTC GGGTGACTCG GATATCGTGA TGACCCAGAG CCCACTGAGC വ Н Д BanII Ø O  $\vdash$  $\Xi$ CTATAGCACT  $\gt$ EcoRV

Z ഗ I Ц Ц Ŋ Ø W വ ĸ PstI ပ S Н S Ø Д

CATAGCAACG GTATCGTTGC TAATCGACGT CTTCGTCGGT TTCGGACGAC GAAGCAGCCA AAGCCTGCTG ATTAGCTGCA CGGACGCTCG GCCTGCGAGC

S Ø Ö SexAI Д ¥ O Ц Y Y KpnI Z Ω П × Z  $\succ$ 

Ø

Д

AACCAGGTCA AAGCCCGCAG TTGGTCCAGT TTCGGGCGTC TCTGGATTGG TACCTTCAAA CGATATTGAT AGACCTAACC ATGGAAGTTT GCTATAACTA

Ľ Д Д SanDI > O S K 民 Z വ G 口 AseI Ц П

AGTGGGGTCC CGGATCGTTT GCCTAGCAAA TCACCCCAGG CAACCGTGCC GTTGGCACGG TAGACCCGTC ATCTGGGCAG CTATTAATTT GATAATTAAA

G

The first of the state was the time to the same and the same to the same to the same to the same to the same to the same to the same to the same to the same to the same to the same to the same to the same to the same to the same to the same to the same to the same to the same to the same to the same to the same to the same to the same to the same to the same to the same to the same to the same to the same to the same to the same to the same to the same to the same to the same to the same to the same to the same to the same to the same to the same to the same to the same to the same to the same to the same to the same to the same to the same to the same to the same to the same to the same to the same to the same to the same to the same to the same to the same to the same to the same to the same to the same to the same to the same to the same to the same to the same to the same to the same to the same to the same to the same to the same to the same to the same to the same to the same to the same to the same to the same to the same to the same to the same to the same to the same to the same to the same to the same to the same to the same to the same to the same to the same to the same to the same to the same to the same to the same to the same to the same to the same to the same to the same to the same to the same to the same to the same to the same to the same to the same to the same to the same to the same to the same to the same to the same to the same to the same to the same to the same to the same to the same to the same to the same to the same to the same to the same to the same to the same to the same to the same to the same to the same to the same to the same to the same to the same to the same to the same to the same to the same to the same to the same to the same to the same to the same to the same to the same to the same to the same to the same to the same to the same to the same to the same to the same to the same to the same to the same to the same to the same to the same to the same to the same to th

of the contraction of the second contraction of the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second

Figure 3B: V kappa 2 (Vk2) gene sequence (continued)

 $\triangleright$ 区 ഗ Н × ᆸ Н ĮΤ  $\vdash$ Ö BamHI Ŋ O S G S

AGCCGTGTGG TCGGCACACC CCTAGGCCGT GGCTAAAATG GGACTTTTAA CCTGAAAATT CCGATTTTAC GGATCCGGCA TAGCGGCTCT ATCGCCGAGA

Д H H  $\succ$ 耳 Ø Ø C ⊱ × > C > BbsI Eco57I Ø 口

AGCAGCATTA TACCACCCG ATGGTGGGGC TCGTCGTAAT TATTATTGCC ATAATAACGG TTCGACTTCT GCACCCGCAC AAGCTGAAGA CGTGGGCGTG

BsiWI 召 × 团 幺 E Ç Ø MscI Ö H Н Д

S ATTAAACGTA TAATTTGCAT GAAAGTTGAA CTTTCÄACTT GCCAGGGTAC GGCTGGAAAC CGGTCCCATG CCGACCTTTG

U

ACTGGGTCTC GGGCCGCTGG GACTCGGACA GAGGCCCGCT CCCGGCGACC CTGAGCCTGT CTCCGGGCGA 뙤 ტ Д ഗ 口 S 口 E Ø ш BanII TGACCCAGAG ഗ Figure 3C: V kappa 3 (Vk3) gene sequence O П GATATCGTGC CTATAGCACG ~~~~~ ECORV

ഗ ഗ S > S Ö ഗ K Ц PstI Ö ഗ Н E Ø  $\alpha$ 

GACTCGACGT CTCGCTCGGT CTCGCACTCG TCGTCGATAG CTGAGCTGCA. GAGCGAGCCA GAGCGTGAGC AGCAGCTATC ACGTGCGACC TGCACGCTGG

~~~~~ AseI 니 口 ĸ Ы Z, Ø ~~~~~~ ᠐ SexAI М × Ø O KpnI 3 Ø

TAATTAAATA CCAGCAGAAA CCAGGTCAAG CACCGCGTCT ATTAATTTAT GTGGCGCAGA GGTCCAGTTC ACCGCACCAT GGTCGTCTTT TGGCGTGGTA

BamHI ഗ O S [T K Ø М SanDI C V ₽ Ø K ഗ S Ø G

GGCGCGAGCA GCCGTGCAAC TGGGGTCCCG GCGCGTTTTA GCGGCTCTGG

~~~~~~

Д

The construction of the table of the table of the table of the table of the table of the table of the table of the table of the table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of t A. J. L. H. H. H. H. J. J. H. H.

Figure 3C: V kappa 3 (Vx3) gene sequence (continued)

CCGCGCTCGT CGGCACGTTG ACCCCAGGGC CGCGCAAAAT CGCCGAGACC

Eco57I Д 口 Н ഗ ഗ H 口 Н ш E

~ ~ ~ ~ ~ ~ BbsI ~ ~ ~ ~ ~ ~ G BamHI ഗ

GGACTTCTGA CCTGAAGACT U لتا CAGCCTGGAA GTCGGACCTT GATTTTACCC TGACCATTAG ACTGGTAATC CTAAAATGGG TAGGCCGTGC ATCCGGCACG 

Е Ы Д  $\vdash$ ⊱ ≻ 二 O O Ö  $\succ$  $\succ$ > Ø

MscI

CTGGAAACCG GACCTTTGGC CAGCATTATA CCACCCGGCC GGTGGGGCGG GTCGTAATAT AACGCCACAT AATAACGGTC TTGCGGTGTA TTATTGCCAG

BsiWI 24 又 되 > X E U MscI O

ATTTGCATGC TAAACGTACG TTCAACTTTA CAGGGTACGA AAGTTGAAAT GTCCCATGCT

لتا

召

Figure 3D: V kappa 4 (Vk4) gene sequence

CGGACCCGCT GCCTGGGCGA 口  $\mathcal{O}$ Ц S CTGGCGGTGA GACCGCCACT  $\gt$ Ø Ц CCCGGATAGC GGGCCTATCG വ Д Д BanII TGACCCAGAG S Ø Н  $\mathbf{z}$ GATATCGTGA  $\gt$ EcoRV Д

S W  $\succ$ 口 > W Ø S S 又 ACTGGGTCTC PstI ပ Z Н CTATAGCACT H K  $\alpha$ 

ATATCGTCGT TATAGCAGCA GAAGCAGCCA GAGCGTGCTG CTCGCACGAC CTTCGTCGGT ATTAACTGCA TAATTGACGT TGCACGCTGG ACGTGCGACC

N K N Y L A W Y Q Q K P G KpnI SexAI

Д

Д

Ø

AGAAACCAGG TCAGCCGCCG AGTCGGCGGC TCTTTGGTCC TGGTACCAGC ACCATGGTCG GATAGACCGC CTATCTGGCG TGTTGTTTT ACAACAAAA

Ω Д SanDI > ტ Ŋ H ĸ Н S Ø 3  $\succ$ AseI 口 Ц ×

TCCCGGATCG CTTTCGCCCC AGGGCCTAGC GAAAGCGGGG ATCCACCCGT TAGGTGGGCA TTTATTGGGC TTTGATAATT AAATAACCCG AAACTATTAA

Z

Figure 3D: V kappa 4 (Vk4) gene sequence (continued)

TAAAGCAGGG ATTTCGTCCC S S Н CGTGACTAAA ATGGGACTGG GCACTGATTT TACCCTGACC E  $\vdash$ H Ľ Ö TCTGGATCCG BamHI Ŋ G S TTTTAGCGGC  $\Omega$ ഗ ഥ

H  $\succ$ 工 Ø Ø Ö  $\succ$ × > AGACCTAGGC ø > Д Eco57I AAAATCGCCG 团 Ø Ø Д

AATATGGTGG GCCAGCAGCA TTATACCACC CGGTCGTCGT GTGTATTATT CACATAATAA TGCAAGCTGA AGACGTGGCG ACGITCGACI ICTGCACCGC

BsiWI ~~~~~ 只 × Н 口  $\gt$ × E Ç Ø MscI <sub>ල</sub> L H Д

Д

GAAATTAAAC GTACG CTTTAATTTG CATGC TACGAAAGTT ATGCTTTCAA AACCGGTCCC TTGGCCAGGG CCGCCGACCT GGCGGCTGGA

SUBSTITUTE SHEET (RULE 26)

BbsI

~~~~~~

X

Ö

S

ш

又

Ω

Д

 \gt

G

ഗ

凸

民

Ø

Z

Z

Д

Bsu36I

BamHI S

THE STREET STREE

III. ot illiali oossa ee tiik hillia illiahaan illiahaan saadiing akuli osati saa ka saa kosta illianiinii oosaa oosaa oosaa oosaa illian oosaa

GCTGATTTAT CGACTAAATA TCGTTGATAC AGCAACTATG AGTGGCGCAC CAGGTCAGCG TCACCGCGTG GTCCAGTCGC α Ø Н Z O Ц SexAI ß CGCCGAAACT GCGGCTTTGA Д CAACATTGGC GTTGTAACCG П U × Ø Н Д Ö Z BbeI ഗ Ø CCCGGGACGG GGGCCCTGCC GCAGCAGCAG CGTCGTCGTC ഗ CGGAAGTCAC GCCTTCAGTG E > Eco57I 2222 S 2 2 2 2 2 2 2 ෆ XmaI വ S Д Д ACTCGACCAT GGTCGTCAAC U TGAGCTGGTA CCAGCAGTTG TGTGACCATC TCGTGTAGCG AGCACATCGC ACTGGGTCGG TGACCCAGCC Ц Д S Ø Figure 4A: V lambda 1 (Vλ1) gene sequence BssSI C Ŏ വ KpnI ACACTGGTAG X M CAGAGCGTGC GTCTCGCACG E S > >

Figure 4A: V lambda 1 (VA.1) gene sequence (continued)

| GCGGATCCAA | CGCCTAGGTT |
|--------------|------------|
| GATCGTTTTA | CTAGCAAAAT |
| AGGCGTGCCG | TCCGCACGGC |
| C AGCGTCCCTC | TCGCAGGGAG |
| GATAACAACC | CTATTGTTGG |

| GTT | | , |
|------------|-----------|-------------|
| 4GG. | DST | 2 2 2 2 2 2 |
| CLZ | 田田 | 2 |
| CGCCTAGG | Ŋ | |
| | Q | |
| CAA | 니 | |
| CTAGCAAAAT | I T G L Q | |
| | ₽ | |
| ₽CG(| H | |
| TCCGCACGGC | Ø | |
| <i>r</i> h | H | |
| 3GA(| W | |
| CAG | S A S L | |
| TCGCAGGGAC | W | |
| | S G T | |
| ATTGTTGG | O | |
| AT | Ø | |

| GICGIAATAT GGIGGGGCGG ACACAAACCG | 0
0
0
0 | Š | GTGC | r
L | ATA! | GTA | GTC | GTC | ACG | TTCGCCTAAT AATAACGGTC | AT | CTA | CGC | hД | |
|----------------------------------|------------------|--------|-----------------------|--------|------------|-----|-----|-----|--------------|-----------------------|----------|-----|-----|------|--|
| TGTGTTTGGC | S
C
C
C | Ď
Č | CAGCATTATA CCACCCCGCC | U | TAT! | CAT | CAG | CAG | TGC | AAGCGGATTA TTATTGCCAG | TA | GAT | 000 | AA | |
| EADYYCQQHYTTPPVFG | Д | Д | ⊟ | H | × | H | Q | Ø | _ت | ≯ | × | Ω | Ø | 闰 | |
| TCGCTTCTGC | | 'AC | CCCGGACGTT | C) | AACGCTAATG | GCT | | 550 | GCT | TTCGCCGTGG TCGCGCTCGG | <u> </u> | CGI | CGC | m LL | |
| TTGCGATTAC GGGCCTGCAA AGCGAAGACG | CAA | ĎĮ. | 3255 | r) | TTA(| CGA | TTG | GCC | CGA | AAGCGGCACC AGCGCGAGCC | SCC | GCA | 505 | AA | |

| ت
ن | MscI | 2 |
|--------|------|------|
| \ \ | ٠ | |
| LT | HpaI | 2222 |
| × | Ħ | ? |
| Ħ | | |
| t) | | |
| J | | |

GGCGCCACGA AGTTAACCGT TCTTGGC CCGCCGTGCT TCAATTGGCA AGAACCG

| Ŋ | | |
|---|-------------------------|------------------------|
| Ø | | |
| Ö | | 222222 |
| Д | Sex | 2 2 |
| ഗ | | l |
| ტ | | |
| ß | | |
| > | | |
| ß | | |
| Ø | | |
| ር | | |
| O | ł | |
| | | |
| H | | |
| Ø | | |
| Ŋ | | |
| 0 | ĸ | |
| | L T O P A S V S G S P G | A S V S G S P
SexAI |

CAGGTCAGAG GTCCAGTCTC AGCGGCTCAC TCGCCGAGTG AGCTTCAGTG TCGAAGTCAC Eco57I TGACCCAGCC ACTGGGTCGG CAGAGCGCAC GTCTCGCGTG

~ ~ ~ ~ ~ ~

GGCTATAACT CCGATATTGA Z × Ö CGATGTGGGC GCTACACCCG G \gt GTACTAGCAG CATGATCGTC S S \vdash Ç TCGTGTACGG AGCACATGCC \mathcal{O} BssSI S GTAATGGTAG CATTACCATC 딛 H

П K Д BbeI K K O XmaI Д 二 Ø Ø KpnI \succ 3 S \gt

 \mathbf{z}

ACTGATGATT TGACTACTAA AGGCGCCGAA TCCGCGGCTT CATCCGGGA GTAGGGCCCT ATGTGAGCTG GTACCAGCAG CATGGTCGTC TACACTCGAC

BamHI ~ ~ ~ ~ ~ G ß ы 又 Z S \gt Ö Bsu36I S Д 又 Z S > \succ

TTAGCGGATC AATCGCCTAG AGCAACCGTT TCGTTGGCAA GCAACCGTCC CTCAGGCGTG CGTTGGCAGG GAGTCCGCAC TATGATGTGA ATACTACACT

Figure 4B: V lambda 2 (VA.2) gene sequence (continued)

| H | ~
AG
TC |
|---|--|
| E
Bbs I | SGAAG
CCTTC |
| A | ညည္ |
| Ø | CAAGCGGAAG
GTTCGCCTTC |
| H | CTG
GAC |
| Ŋ | 922
299 |
| K S G N T A S L T I S G L Q A E
amhi | GCCTGACCAT TAGCGGCCTG
CGGACTGGTA ATCGCCGGAC |
| Н | AT |
| H | ACC
TGG |
| 니 | CCTG |
| Ω | ₹ ₽ |
| Ø | 929 |
| ⊱ | ACC |
| Z | AACACCGCGA
TTGTGGCGCT |
| Ö | 522
255 |
| S | AGC
TCG |
| K
BamHI | ~
CAAAAGCGGC
GTTTTCGCCG |

CGGACACAAA GCCTGTGTTT ATACCACCCC TATGGTGGGG CAGCAGCATT GTCGTCGTAA TTATTATTGC AATAATAACG ACGAAGCGGA TGCTTCGCCT D E BbsI

[1,

Д

Д

Е

H

 \succ

耳

Ø

Ø

Ø

MSCI L G **>** H HpaI H × H O Ç Ö

CGTTCTTGGC GCAAGAACCG GGCGGCGCA CGAAGTTAAC CCGCCGCCGT GCTTCAATTG The transfer of the state of th

Figure 4C: V lambda 3 (VA3) gene sequence

| L T Q P P S V A P G Q T SexAI | AGCGTTGCAC CAGGTCAGAC
TCGCAACGTG GTCCAGTCTG | W | TACGCGAGCT
ATGCGCTCGA | Q A P V L V I Y D D Bber | TTATGATGAT
AATACTACTA |
|-------------------------------|--|--------------|--|--------------------------|--|
| <u> </u> | TCZ
AG: | Ø | 1007
1007 | Ω | 'GA' |
| AI G | AC CAGGT | DALGDKYAS | ACG
TGC | ⊱ | TAT
ATA |
| P
Sex <i>i</i> | 1 0 b | • | | | |
| Ø1
≪ | CAC | × | AAA
TTT | П | GAT
CT? |
| | AGCGTTGCAC
TCGCAACGTG | Ω | GGGCGATAAA
CCCGCTATTT | > | TTCTGGTGAT
AAGACCACTA |
| | CGJ
GC7 | Ŋ |)
000 | 니 | CTC |
| Ω | AG | | 99 | . > | TT |
| > | TG | 니 | CT | • | AG
FTC |
| S | GCCTTCAGTG
CGGAAGTCAC
Eco57I | Ø | GCGATGCGCT
CGCTACGCGA | A P
BbeI | CAGGCGCCAG |
| 0. | TTT
SAA
SCO | А | BAT
STA | A
Bb | 360 |
| н | 900
000 | |)
900
900 | ο ` | CA(
GT(|
| Д | D 0 | დ
ტ | უ
ე ე | ტ ⊢ ≀ | 900 |
| ŏ | ZAG
STC | W | PAG
ATC | P G
XmaI | ,
100
100
100
100
100
100
100
100
100
10 |
| ⊱ | TGACCCAGCC
ACTGGGTCGG | S C
3ssSI | TCGTGTAGCG | Q K P G
XmaI | GAAACCCGGG |
| | IGA
ACT | SCBSSSI | ICG
AGC | × | GAA |
| H | • | | ည်
ညီ
ညီ | õ | |
| 田 | GAA | H | TAT
AT <i>P</i> | | AGC |
| > | rat | 以 | 900
000 | | ACC
rgg |
| Ω | AGCTATGAAC
TCGATACTTG | A | CGCGCGTATC TCGTGTAGCG
GCGCGCATAG AGCACATCGC | W Y
KpnI
~~~~~~~ | GGTACCAGCA
CCATGGTCGT |
| | A H | | 0 0 | <u> </u> | 0 0 |

Hard through the first sense from the first order from a first from the first fro

Figure 4C: V lambda 3 (VA.3) gene sequence (continued)

TTTAGCGGAT CCAACAGCGG GGTTGTCGCC Ç വ Z BamHI S AAATCGCCTA Ö ഗ ſщ GGGCCTTGCG CCCGGAACGC K 口 Д GGAGTCCGTA CCTCAGGCAT Ç Bsu36I S Д AGACTGGCAG TCTGACCGTC α П S

K 口 Q BbsI 回 Ø Ø Н ෆ S H Ц H Ø Н Z

GACGAAGCGG CTGCTTCGCC ACCCTGACCA TTAGCGGCAC TCAGGCGGAA AGTCCGCCTT TGGGACTGGT AATCGCCGTG CAACACCGCG GTTGTGGCGC

TGGCGGCGGC ACCGCCGCCG Ç Ö Ö ATATGGTGGG GCGGACACAA CGCCTGTGTT > Д Д TATACCACCC E EH × GGTCGTCGTA Q Q H CCAGCAGCAT ATTATTATTG TAATAATAAC \succ

T K L T V L G Hpal MscI ACGAAGTTAA CCGTTCTTGG C TGCTTCAATT GGCAAGAACC G

| i | Ŋ |
|---------------------|-------------|
| i | W |
| | ರ |
| | E V K K P |
| | Ø |
| | ტ |
| e e | ß |
| sednenc | Ø |
|) gene | > |
| A (VH1 | IJ F |
| chain 1 | Q L
Mfat |
| 5A: V heavy chain 1 | > |
| Figure 5A: V | Ø |
| Figu | |

GCCCGTCGTC CGGCCAGCAG CACTTTTTG GTGAAAAAAC TGGCGCGGAA ACCGCCCCTT ACCAAGTCAG TGGTTCAGTC GTCCACGTTA CAGGTGCAAT

K S S H Е Ç BspEI G വ Ø K S \gt >

AGCTATGCGA TCGATACGCT GTGAAAATCG CACTTTTAGC CCTCCGGAGG GGAGGCCTCC TCGACGTTTC AGCTGCAAAG CGTGAAAGTG GCACTTTCAC

 \mathbf{z} ⋈ XhoI 口 Ç Ø Ö Дι BstXI Ø O ĸ \triangleright 3 S H

 \Box

 \mathcal{O}

CTACCCGCCG GATGGGCGGC CAGAGCTCAC GTCTCGAGTG CGCGGTTCGG GGACCCGTCC CCTGGGCAGG GCGCCAAGCC AATCGACCCA TTAGCTGGGT

AAGTCCCGGC GCGCAGAAGT TTCAGGGCCG G Ø L CGCGTCTTCA A . Q GGCGAACTAC CCGCTTGATG Z. Ø H TTTTGGCAC TAATAAGGCT AAAAACCGTG Ö ATTATTCCGA Д

 \Box 口 \mathbf{z} **>**: Ø H S \vdash S 口 Д K Н BStEII >

Figure 5A: V heavy chain 1.A (VH1A) gene sequence (continued)

|--|

| | Ö | | GCGTTGGGGC |
|---|-------------------------------|---------------------------------------|--|
| i
I | S | | J.T. |
|)
4
4 | M
H | \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ | GCGI |
| 4 | AHI | } | S |
| | C A
Bashtt | 1 1 | TGC |
| | X | | TTAT |
| 5 | \Rightarrow | | Α, |
| 7 1 9 9 1 | > | | GTGT |
| ק.
ל | A P | EAG+
~~~~~~~ | gC |
| 1.1.1. | [- | ⊒ }
} | ACG |
| TAC | Д | | GAT |
| | 禸 | | 3AA |
| CACTGGTAA TGGCGCCTAC TTTCGIGGIC GIGGCGCTTTT | S L R S E D T A V Y C A R W G | | CARCUTTOR TAGCGAAGAT ACGGCCGTGT ATTATTGCGC |
| AA | K | | ۲ |
| GGT | H | | ئالانا ر |
| AC1 | W | | 7 |
| Ü | | | ر |

S

| T ATTATTGCGC GCG'I'I'GGGGGC
A TAATAACGCG CGCAACCCCG | |
|--|-----|
| ATTATTGCGC
TAATAACGCG | E- |
| 'TGC | _ |
| TAT
ATA | ۔ |
| AT
TA | ۲. |
| rgt
ACA | [4] |
| 7007
3007 | > |
| GCAGCCTGCG TAGCGAAGAT ACGGCCGTGT A | ۲ |
| AT
TA | 2 |
| AAG
TTC | ۴ |
| GCAGCCTGCG TAGCGAAGAT AC | ; |
| TA | í |
| 3CG | , |
| CTC | , |
| AGC | |
| 90 | |

| ⊱ | 3AC
CTG |
|--|--|
| > | 3GTC |
| Ы | CCCTGGTGAC
GGGACCACTG |
| H | A.
T. |
| o H | 0990 |
| Q (
Styl | CCAAGG |
| <u>ග</u> | 99
00 |
| M | TGG
ACC |
| ⊱ | TAT
ATA |
| Ω | GGATTATTGG
CCTAATAACC |
| Ξ | AT |
| A | 929
1929 |
| G D G F Y A M D Y W G Q G T L V T Styl | GGCGATGGCT TTTATGCGAT
CCGCTACCGA AAATACGCTA |
| ĬΤι | T. |
| ග | 000 |
| Ω | GAT |
| ტ | 922
299 |
| | |

E 2 S V S S BlpI

GGTTAGCTCA

Figure 5B: V heavy chain 18 (VH18) gene sequence

S K G Д ¥ × > 团 K G ഗ Õ > O L MfeI > O

CGGGCGCGAG CCCCCCCCTC CACTTTTTG GTGAAAAAAC CGGCGCGGAA GICCACGITA ACCAAGICIC GCCGCGCCII CAGGTGCAAT TGGTTCAGAG

ഗ Н ہتا Е × BSPEI G വ K × C S ×

>

AGCTATTATA TCGATAATAT TACCTTTACC ATGGAAATGG CCTCCGGATA GGAGGCCTAT TCGACGTTTC AGCTGCAAAG CGTGAAAGTG GCACTTTCAC

 Σ Z 团 XhoI C Ø G д BstXI Ø O K > ⋈ 工

3

C

CTACCCGACC GATGGGCTGG GTCTCGAGTG CAGAGCTCAC CCGCCAAGCC CCTGGGCAGG GGACCCGTCC GGCGGTTCGG TGCACTGGGT ACGTGACCCA α TTCAGGGCCG CGCGTCTTCA AAGTCCCGGC Ö ഥ GCGCAGAAGT Ø Ø CACGAACTAC GTGCTTGATG Z Н ATTAACCCGA ATAGCGGCGG TAATTGGGCT TATCGCCGCC r ഗ Z Ч z

SUBSTITUTE SHEET (RULE 26)

 $\mathbf{\Sigma}$

| | | | | & 1 | \vdash | | | |
|--|----------|--------|----------|----------------|------------|-----------------|-----|--|
| | П | | i | T C | AC | Ŋ | | |
| | F+7 | | | AAC | r'T'G | M | | |
| | | | | ATGGAACTGA | TACCTTGACT | 껖 | | |
| | Σ | | | AT | TA | | H | |
| | ₩ | | | AT | TA | ¥ | SH. | |
| | ₫: | ^ | | CACCGCGTAT | GTGGCGCATA | ပ | BS | |
| | .~ | | | S
S
S | ပ္ပိ | × | | |
| | Η | | | CAC | GTG | | | |
| Figure 5B: V heavy chain 1B (VH1B) gene sequence (continued) | ល | | | | | X | | |
| | ы | | | rTA | AAI | > | | |
| | | | | CCAGCATTAG | GGTCGTAATC | Ø | IgI | |
| | Ø | | | CAG | GTC | E | 团 | |
| | E | | | | | | | |
| | Д | | | ATA | TAI | Ω | | |
| | ~ | | | ACCCGTGATA | TGGGCACTAT | 团 | | |
| | 14 | | | CC | 999 | LRSEDTAVYYCARWG | ! | |
| | Η | | | AC | ΤG | | | |
| | Σ | | | TG | AC | Ω. | i | |
| | <u>-</u> | | 1 | CCA | CCACTGGTAC | F | 1 | |
| | | 日日 | } | 'GA(| CT | ď. | Ω | |
| ure 5B | ;> | BstEII | ~~~~~~ | GGTGACCATG | CCA | U. |) | |
| Fig | | | - | | - | | | |

ATTATTGCGC GCGTTGGGGC TAATAACGCG CGCAACCCCG Ц \vdash ט Õ TGCCGGCACA ACGGCCGTGT GCAGCCTGCG TAGCGAAGAT CGTCGGACGC ATCGCTTCTA

G ß × \mathbf{z} Ø F G G

Styl

GGGACCACTG CCCTGGTGAC CCGGTTCCGT GGCCAAGGCA CCTAATAACC GGATTATTGG TTTATGCGAT AAATACGCTA GGCGATGGCT CCGCTACCGA

S S BlpI ഗ \gt

_U CCAATCGAGT GGTTAGCTCA

G

E

Ø ⊏ Д \simeq > П Ø Д G S Figure 5C: V heavy chain 2 (VH2) gene sequence Q L MfeI

GCTGGGTTTG CGACCCAAAC GICCACGITA ACTITICITIC GCCGGCCGG GACCACITIG CTGGTGAAAC CAGGTGCAAT TGAAAGAAAG CGGCCCGGCC

C ഗ H S Ц S استا S G BspEI Ĺτι ⊟ \mathcal{O} ᆔ Е Н

TTTCCGGATT TAGCCTGTCC ACGTCTGGCG TGCAGACCGC AAAGGCCTAA ATCGGACAGG TGGACATGGA ACCTGTACCT CCTGACCCTG GGACTGGGAC

3 ഥ XhoI Ø X G Д BstXI വ Ø 1 Н 3 G > U >

GACCTAAGCG GTCGGCGGAC CCTTTCGGGA GCTCACCGAC GGAAAGCCCT CGAGTGGCTG TIGGCGIGGG CIGGATICGC CAGCCGCCIG AACCGCACCC

MluI Ц S H ഗ \succ × × Ω Ω 3 H Ц K

GCCTGAAAAC CGGACTTTG TATAGCACCA ATATCGTGGT TGATAAGTAT ACTATTCATA ATTGGGATGA TAACCCTACT GCTCTGATTG CGAGACTAAC

| | H | | | CTA | GAT | M |
|--|----------|------|----------|------------|-------------|-----------------------------|
| | 'n | | | TGA | ACGACTGAT | 멌 |
| | > | | | GTGCTGACTA | CACG | M D P V D T A T Y Y C A R W |
| | > | | | | | ပ |
| | ŏ | | | AGG | TCC | × |
| | Z | | | AAATCAGGTG | TTTAGTCCAC | × |
| Figure 5C: V heavy chain 2 (VHZ) gene sequence (continued) | | | | | | H |
| | ,
124 | ρV | 1 | ATACTTCGAA | CLI | ¥ |
| | യ | NS | 1 | TIC | AAG | 딘 |
| | [- | | | TAC | TATGAAGCTT | Д |
| | Ω | | | | 63 | |
| | × | | | AAA | TTT | \triangleright |
| | ഗ | | | AGC | rcg | Д |
| | Н | | | ATTAGCAAAG | TAATCGTTT | Ω |
| | H | | | ည | GG | Σ |
| | 口 | | | TGA | ACT | Z |
| | α. | πI | } | GCGTCTGACC | CGCAGACTGG | E |
| Figu | ,1 | MluI | 1 | Ü | S
S
S | Σ |
| | | | | | | |

CCTATTATTG CGCGCGTTGG GGATAATAAC GCGCGCAACC > \vdash G Õ G ⋈ TGACCAACAT GGACCCGGTG GATACGGCCA CTATGCCGGT CCTGGGCCAC ACTGGTTGTA

BSSHII

 \succ Ω Σ Ø × H O Ω G

G

Styl

ACCCCGGTTC CGTGGGACCA TGGGCCAAG GCACCCTGGT CTACCTAATA GATGGATTAT GCTTTTATGC CGAAAATACG GGCGGCGATG CCGCCGCTAC

s S BlpI S > Е

AGTC GACGGTTAGC TCAG CTGCCAATCG

Figure 5D: V heavy chain 3 (VH3) gene sequence

S U G Д Ø > Н G G G S 臼 > 口 MfeI > 团

CGGCGGCGC CIGGTGCAAC CGGGCGGCAG GCCGCCGTC CITCACGITA ACCACCITIC GCCGCCGCCG GACCACGIIG GAAGTGCAAT TGGTGGAAAG

A × S S H H FI S G BspEI -----Ø ď Ö ഗ ᆸ 又 Н

TCGATACGCT CCTGCGTCTG AGCTGCGCGG CCTCCGGATT TACCTTTAGC AGCTATGCGA TCGACGCGC GGAGGCCTAA ATGGAAATCG GGACGCAGAC

W V R Q A P G K G L E W BstXI

K

S

GGTGAGCGCG CAGAGCTCAC CCACTCGCGC GTCTCGAGTG ACTCGACCCA CGCGGTTCGG GGACCCTTCC GCGCCAAGCC CCTGGGAAGG TGAGCTGGGT

GCGGATAGCG TGAAAGGCCG CGCCTATCGC ACTITCCGGC > လ Ω Ø CACCTATTAT GTGGATAATA × \succ E I S G S G G S ATTAGCGGTA GCGGCGGCAG TAATCGCCAT CGCCGCCGTC

S

 \mathbf{z}

Figure 5D: V heavy chain 3 (VH3) gene sequence (continued)

Z Ö Н × П EH Z NspVഗ Z D PmlI K S E Įτι

CTGCAAATGA GACGTTTACT CACCCTGTAT GTGGGACATA TAAGCTTTTT ATTCGAAAAA TCACGTGATA AGTGCACTAT AAAATGGTAA TTTACCATT

U Z K BSSHII Ø U \succ \succ > EagI Ø 터 Ω 国 Ø 召 П

S

Z

ATTATTGCGC GCGTTGGGGC TAATAACGCG CGCAACCCCG ACGCCCGTGT TGCCGGCACA TGTCGGACGC ACGCCTTCTA ACAGCCTGCG TGCGGAAGAT

Н O Styl Ç 3 \succ Ω Σ Ø [I r Ω U

H

GGCCAAGGCA CCCTGGTGAC GGGACCACTG CCGGTTCCGT GGATTATTGG CCTAATAACC GGCGATGGCT TTTATGCGAT CCGCTACCGA AAATACGCTA

V S S BlpI

GGTTAGCTCA G

gove, govern in more owner govern in a more govern

Figure 5E: V heavy chain 4 (VH4) gene sequence

E 回 ഗ Д × > 口 C Д G വ 团 Ø MfeI Oi \gt Õ

CGAGCGAAAC GCTCGCTTTG CTGGTGAAAC GACCACTTTG CAGGTGCAAT TGCAAGAAAG TGGTCCGGGC ACGITCITIC ACCAGGCCCG GTCCACGTTA

S S HS Ö BSPEI 111111 G ഗ > H ပ \vdash Н S Н

AGCTATTATT TCGATAATAA CAGCATTAGC GTCGTAATCG TTTCCGGAGG AAAGGCCTCC TGGACGTGGC CCTGAGCCTG ACCTGCACCG GGACTCGGAC

C Н 3 XhoI 团 Д C × Ö Д BstXI д Ø K 3 ഗ 3

GATIGGCTAT CTAACCGATA GTCTCGAGTG CAGAGCTCAC GGACCCTTCC CCTGGGAAGG GGAGCTGGAT TCGCCAGCCG AGCGGTCGGC CCTCGACCTA

BSTEII R വ × Ц S Д Z \succ Z S C വ

CCGAGCCTGA AAAGCCGGGT TTTCGGCCCA GGCTCGGACT CAACTATAAT GTTGATATTA GCGGCAGCAC CGCCGTCGTG ATTTATTA TAAATAATAT

Rad by the graves of ways, may seem to the seem street grows of the graves and the seem seems of the seems that

Figure 5E: V heavy chain 4 (VH4) gene sequence (continued)

| ß | | | GCA | CGT | | ೮ |
|------------------|------|-----|------------|---------------|---|-----------------------------------|
| <u>ا</u> | | | TGAGC | ACTCG | | Ŋ |
| TISVDTSKNQFSLKLS | | | AAAC | TTTG. | | S V T A A D T A V Y Y C A R W G G |
| | | | | | | ~ |
| Н | | | CT | GAC | | _ |
| വ | | | AGC | ıcg | | Ø |
| দ | | | TTTAGCCTG | CAAATCGG | | U |
| \sim | | | G | D
H | ^ | ⊱ |
| O. | | | ACCA | 3G | | H |
| Z | | | CGAAAAA(| CTTTTT(| | |
| × | | 1 | AAA | TTI | | > |
| 70 | Napv | 111 | CG | ي
ور | | Ø |
| 01 | Ž | ? | TT | AA | | H |
| H | | | AC | \TG | | _ |
| Ω | | | GA1 | CT^{Z} | | |
| > | | | GTTGATACTT | CAACTATGAA | | A |
| S | | | CC | SS | | Ø |
| | | | ACCATTAGC | TGGTAATC | | H |
| 1-1 | EII | 1 | CA1 | GT? | | > |
| H | Bst | 1 1 | GAC | CTG | | ťΩ |
| | | • | | $\overline{}$ | | J 2 |

TAACGCGCGC AACCCCGCCG TIGGGGCGGC ATTGCGCGCG CGGCACATAA GCCGTGTATT GGCGGATACG CCGCCTATGC CGCACTGCCG GCGTGACGGC

BSSHII

EagI

Н Н ŋ Q (StyI G ⋈ Σ Ø × ĮΉ Ç

>

TTATTGGGGC CAAGGCACCC TGGTGACGGT AATAACCCCG GTTCCGTGGG ACCACTGCCA ATGCGATGGA TACGCTACCT GATGGCTTTT CTACCGAAAA

S S BlpI ~~~~ TAGCTCAG ATCGAGTC

ഗ 되 G ш × \bowtie \gt 되 Ø Ö Figure 5F: V heavy chain 5 (VH5) gene sequence S ı Ö MfeI CGGGCGAAAG GCCCCCTTTC CACTTTTTG GTGAAAAAAC CGGCGCGGAA GCCCCCCTT GAAGTGCAAT TGGTTCAGAG CTTCACGITA ACCAAGICIC

3 ഗ H L S BSPEI G ഗ G × Ö **M** . Н X 口

~ ~ ~ ~ ~ ~ ~

TCGATAACCT AGCTATTGGA GTTCCGGATA TTCCTTTACG CAAGGCCTAT AAGGAAATGC AGCTGCAAAG TCGACGTTTC CCTGAAAATT GGACTTTTAA

GATGGGCATT U Σ 3 ~ ~ ~ ~ ~ ~ XhoI Ι G × G Д BstXI Σ O ĸ > 3 G

TCTCCGAGCT TTCAGGGCCA CAGAGCICAC CIACCCGIAA ᠐ O ᄺ GTCTCGAGTG PS ഗ AACCGACCCA CGCGGTCTAC GGACCCTTCC TACCCGTTAT CCTGGGAAGG R ⊣ GCGCCAGATG ATTTATCCGG GCGATAGCGA ഗ Ω U PTGGCTGGGT Ы

TAAATAGGCC CGCTATCGCT ATGGGCAATA AGAGGCTCGA AAGTCCCGGT

3

H TO THE THE TANK IN HER IN THE BOLD And other to many regime graph

O Ø ₽ S S Figure 5F: V heavy chain 5 (VH5) gene sequence (continued) \succeq Ø ഗ

BStEII

CTTCAATGGA GAAGTTACCT TTTCGTAATC GTGGCGCATA GGTGACCATT AGCGCGGATA AAAGCATTAG CACCGCGTAT TCGCGCCTAT CCACTGGTAA

G 3 \mathbb{K} BSSHII Ø ပ Σ K <u>-</u> ഗ Ø \simeq 二 S

S

ATTATTGCGC GCGTTGGGGC TAATAACGCG CGCAACCCCG ACGGCCATGT TGCCGGTACA GCAGCCTGAA AGCGAGCGAT CGTCGGACTT TCGCTCGCTA

G StyI O C ≥ Σ K Ŀı G G

드

口

H

CCCTGGTGAC CCGGTTCCGT GGGACCACTG GGCCAAGGCA CCTAATAACC GGATTATTGG CCGCTACCGA AAATACGCTA GGCGATGGCT TTTATGCGAT

BlpI S >

CCAATCGAGT GGTTAGCTCA

~~~~~

Figure 5G: V heavy chain 6 (VH6) gene sequence

₽ Ø S Д  $\bowtie$ >П C Д G S Ø Ø 口 MfeI Ø

CGAGCCAAAC GCTCGGTTTG GACCACTTTG CTGGTGAAAC ACCAGGCCCG TGGTCCGGGC GICCACGITA ACGITGICAG CAGGTGCAAT TGCAACAGTC

S Z S S  $\gt$ S S G BspEI ~ ~ ~ ~ ~ ~ ~ Н Ø <u>ر</u>  $\Box$ S Щ

AGCAACAGCG TCGTTGTCGC TTTCCGGAGA TAGCGTGAGC ATCGCACTCG AAAGGCCTCT ACCTGTGCGA TGGACACGCT CCTGAGCCTG GGACTCGGAC

Z 띠 XhoI Ç 以 G S P BstXI Ø K 3 Z 3 K Ø

CGAGTGGCTG CCGCACCGGA GCTCACCGAC GGCGTGGCCT CAGTCTCCTG GTCAGAGGAC GACCTAAGCG CTGGATTCGC CGGCGTGGAA GCCGCACCTT

CGGTGAGCGT GCCACTCGCA S > Ø TTGCTAATAC AACGATTATG Ω Z CAAATGGTAT GTTTACCATA 3 × GGCCGTACCT ATTATCGTAG CCGGCATGGA TAATAGCATC ഗ ₽ 区 G

S

[±

Ø Z × ഗ  $\vdash$ Figure 5G: V heavy chain 6 (VH6) gene sequence (continued) Z K ഗ

BsaBI

~~~~~~~~~

NspV

TTCGAAAAAC ~ ~ ~ ~ ~ ~ ~

GTCAAATCGG CAGTTTAGCC TGGGCCTATG AAGCTTTTTG ACCCGGATAC GAAAAGCCGG ATTACCATCA

Ö M Д CTTTTCGGCC TAATGGTAGT ₽ > ഗ \mathbf{z}

> EagI Ø E

BSSHII

CGGCCGTGTA

GCCGCCACAT AATAACGCGC TTATTGCGCG GGCCTTCTAT CCGGAAGATA CAGCGTGACC

TGCAACTGAA

Ц

Ø

Д

ACGTTGACTT

G \geq \succ Σ GTCGCACTGG

E

G

O

StyI

Ø \succ بتا G

G

G

3

K

CGTTGGGGCG GCGATGGCTT

CGCTACCGAA GCAACCCCGC

CGGTTCCGTG

GCCAAGGCAC

GATTATTGGG CTAATAACCC

TTATGCGATG AATACGCTAC

> BlpI . S > E >

> > П

GTTAGCTCAG CAATCGAGTC ~~~~~ CCTGGTGACG GGACCACTGC

SUBSTITUTE SHEET (RULE 26)

BSSHII

35 / 204

Figure 6: oligonucleotides for gene synthesis

- O1K1 5'- GAATGCATACGCTGATATCCAGATGACCCAGAG-CCCGTCTAGCCTGAGC -3'
 - O1K2 5'- CGCTCTGCAGGTAATGGTCACACGATCACCCAC-GCTCGCGCTCAGGCTAGACGGGC -3'
 - O1K3 5'- GACCATTACCTGCAGAGCGAGCCAGGGCATTAG-CAGCTATCTGGCGTGGTACCAGCAG -3'
 - **O1K4** 5'- CTTTGCAAGCTGCTGGCTGCATAAATTAATAGT-TTCGGTGCTTACCTGGTTTCTGCTGGTACCACGCCAG -3'
- **O1K5** 5'- CAGCCAGCAGCTTGCAAAGCGGGGTCCCGTCCC-GTTTTAGCGGCTCTGGATCCGGCACTGATTTTAC -3'
- **O1K6** 5'- GATAATAGGTCGCAAAGTCTTCAGGTTGCAGGC-TGCTAATGGTCAGGGTAAAATCAGTGCCGGATCC -3'
- **02K1** 5'- CGATATCGTGATGACCCAGAGCCCACTGAGCCT-GCCAGTGACTCCGGGCGAGCC -3'
- **O2K2** 5'- GCCGTTGCTATGCAGCAGGCTTTGGCTGCTTCT-GCAGCTAATGCTCGCAGGCTCGCCCGGAGTCAC -3'
- **O2K3** 5'- CTGCTGCATAGCAACGGCTATAACTATCTGGAT-TGGTACCTTCAAAAACCAGGTCAAAGCCC -3'
- **O2K4** 5'- CGATCCGGGACCCCACTGGCACGGTTGCTGCCC-AGATAAATTAATAGCTGCGGGCTTTGACCTGGTTTTTG -3'
- **02K5** 5'- AGTGGGGTCCCGGATCGTTTTAGCGGCTCTGGA-TCCGGCACCGATTTTACCCTGAAAATTAGCCGTGTG -3'
- **O2K6** 5'- CCATGCAATAATACACGCCCACGTCTTCAGCTT-CCACACGGCTAATTTTCAGGG -3'
- O3K1 5'- GAATGCATACGCTGATATCGTGCTGACCCAGAG-CCCGG -3'
- O3K2 5'- CGCTCTGCAGCTCAGGGTCGCACGTTCGCCCGG-AGACAGGCTCAGGGTCGCCGGGCTCTGGGTCAGC -3'
- **O3K3** 5'- CCCTGAGCTGCAGAGCGAGCCAGAGCGTGAGCA-GCAGCTATCTGGCGTGGTACCAG -3'

Figure 6: (continued)

- O3K4 5'- GCACGGCTGCTCGCGCCATAAATTAATAGACGC-GGTGCTTGACCTGGTTTCTGCTGGTACCACGCCAGATAG -3'
- **O3K5** 5'- GCGCGAGCAGCCGTGCAACTGGGGTCCCGGCGC-GTTTTAGCGGCTCTGGATCCGGCACGGATTTTAC -3'
- **O3K6** 5'- GATAATACACCGCAAAGTCTTCAGGTTCCAGGC-TGCTAATGGTCAGGGTAAAATCCGTGCCGGATC -3'
- **O4K1** 5'- GAATGCATACGCTGATATCGTGATGACCCAGAG-CCCGGATAGCCTGGCG -3'
- **O4K2** 5'- GCTTCTGCAGTTAATGGTCGCACGTTCGCCCAG-GCTCACCGCCAGGCTATCCGGGC -3'
- **O4K3** 5'- CGACCATTAACTGCAGAAGCAGCCAGAGCGTGC-TGTATAGCAGCAACAACAAAAACTATCTGGCGTGGTACCAG 3'
- **O4K4** 5'- GATGCCCAATAAATTAATAGTTTCGGCGGCTGA-CCTGGTTCTGCTGGTACCACGCCAGATAG -3'
- **O4K5** 5'- AAACTATTAATTTATTGGGCATCCACCCGTGAA-AGCGGGTCCCGGATCGTTTTAGCGGCTCTGGATCCGGCAC-3'
- **O4K6** 5'- GATAATACACCGCCACGTCTTCAGCTTGCAGGG-ACGAAATGGTCAGGGTAAAATCAGTGCCGGATCCAGAGCC -3'
- **O1L1** 5'- GAATGCATACGCTCAGAGCGTGCTGACCCAGCC-GCCTTCAGTGAGTGG -3'
- **O1L2** 5'- CAATGTTGCTGCTGCTGCCGCTACACGAGATGG-TCACACGCTGACCTGGTGCGCCACTCACTGAAGGCGGC -3'
- **O1L3** 5'- GGCAGCAGCAGCAACATTGGCAGCAACTATGTG-AGCTGGTACCAGCAGTTGCCCGGGAC -3'
- **O1L4** 5'- CCGGCACGCCTGAGGGACGCTGGTTGTTATCAT-AAATCAGCAGTTTCGGCGCCGTCCCGGGCAACTGC -3'
- **O1L5** 5'- CCCTCAGGCGTGCCGGATCGTTTTAGCGGATCC-AAAAGCGGCACCAGCGCGAGCCTTGCG -3'

Figure 6: (continued)

- O1L6 5'- CCGCTTCGTCTTCGCTTTGCAGGCCCGTAATCG-CAAGGCTCGCGCTGG -3'
- **O2L1** 5'- GAATGCATACGCTCAGAGCGCACTGACCCAGCC-AGCTTCAGTGAGCGGC -3'
- **O2L2** 5'- CGCTGCTAGTACCCGTACACGAGATGGTAATGC-TCTGACCTGGTGAGCCGCTCACTGAAGCTGG -3'
- **O2L3** 5'- GTACGGGTACTAGCAGCGATGTGGGCGGCTATA-ACTATGTGAGCTGGTACCAGCAGCATCCCGG -3'
- **O2L4** 5'- CGCCTGAGGGACGGTTGCTCACATCATAAATCA-TCAGTTTCGGCGCCCTTCCCGGGATGCTGCTGGTAC -3'
- **O2L5** 5'- CAACCGTCCCTCAGGCGTGAGCAACCGTTTTAG-CGGATCCAAAAGCGGCAACACCGCGAGCC -3'
- **O2L6** 5'- CCGCTTCGTCTTCCGCTTGCAGGCCGCTAATGG-TCAGGCTCGCGGTGTTGCCG -3'
- **O3L1** 5'- GAATGCATACGCTAGCTATGAACTGACCCAGCC-GCCTTCAGTGAGCG-3'
- **O3L2** 5'- CGCCCAGCGCATCGCCGCTACACGAGATACGCG-CGGTCTGACCTGGTGCAACGCTCACTGAAGGCGGC -3'
- **O3L3** 5'- GGCGATGCGCTGGGCGATAAATACGCGAGCTGG-TACCAGCAGAAACCCGGGCAGGCGC -3'
- O3L4 5'- GCGTTCCGGGATGCCTGAGGGACGGTCAGAATC-ATCATAAATCACCAGAACTGGCGCCTGCCCGGGTTTC -3'
- **O3L5** 5'- CAGGCATCCCGGAACGCTTTAGCGGATCCAACA-GCGGCAACACCGCGACCCTGACCATTAGCGG -3'
- O3L6 5'- CCGCTTCGTCTTCCGCCTGAGTGCCGCTAATGG-TCAGGGTC -3'
- O1246H1 5'- GCTCTTCACCCCTGTTACCAAAGCCCAG-GTGCAATTG -3'
- O1AH25'- GGCTTTGCAGCTCACTTTCACGCTGCTGCCCGG-TTTTTTCACTTCCGCGCCAGACTGAACCAATTGCACCTGGGC-TTTG -3'

Figure 6: (continued)

- **O1AH3** 5 '- GAAAGTGAGCTGCAAAGCCTCCGGAGGCACTTT-TAGCAGCTATGCGATTAGCTGGGTGCGCCAAGCCCCTGGGCAGGCTC -3'
- **O1AH4** 5'- GCCCTGAAACTTCTGCGCGTAGTTCGCCGTGCC-AAAAATCGGAATAATGCCGCCCATCCACTCGAGACCCTGCCC-AGGGGC -3'
- **O1AH5** 5 '- GCGCAGAAGTTTCAGGGCCGGGTGACCATTACC-GCGGATGAAAGCACCAGCACCGCGTATATGGAACTGAGCAGCCTGCG -3 '
- **Olabh6** 5'- GCGCGCAATAATACACGGCCGTATCTTCGCT-ACGCAGGCTGCTCAGTTCC -3'
- **O1BH2** 5 '- GGCTTTGCAGCTCACTTTCACGCTCGCGCCCGG-TTTTTTCACTTCCGCGCCGCCTCTGAACCAATTGCACCTGGGC-TTTG -3'
- **Olbh3** 5'- GAAAGTGAGCTGCAAAGCCTCCGGATATACCTT-TACCAGCTATTATATGCACTGGGTCCGCCAAGCCCCTGGGCAGGCCCTGGGCAGGCCC-3'
- **O1BH4** 5 ' GCCCTGAAACTTCTGCGCGTAGTTCGTGCCGCC-GCTATTCGGGGTTAATCCAGCCCATCCACTCGAGACCCTGCCCAGGGGC 3 '
- **O1BH5** 5 ' GCGCAGAAGTTTCAGGGCCGGGTGACCATGACC-CGTGATACCAGCATTAGCACCGCGTATATGGAACTGAGCAGCCTGCG -3 '
- **O2H2** 5'- GGTACAGGTCAGGGTCAGGGTTTGGGTCGGTTT-CACCAGGGCCGGCCGCTTTCTTTCAATTGCACCTGGGCTTTG
- **O2H3** 5'- CTGACCCTGACCTGTACCTTTTCCGGATTTAGC-CTGTCCACGTCTGGCGTTGGCGTGGGCTGGATTCGCCAGCCGCCTGGGAAAG -3'
- **O2H4** 5'- GCGTTTTCAGGCTGGTGCTATAATACTTATCAT-CATCCCAATCAATCAGAGCCAGCCACTCGAGGGCTTTCCCAGGCGCTGG -3'

WO 97/08320 PCT/EP96/03647

Figure 6: (continued)

- **02H5** 5'- GCACCAGCCTGAAAACGCGTCTGACCATTAGCA-AAGATACTTCGAAAAATCAGGTGGTGCTGACTATGACCAACAT GG -3'
- **O2H6** 5'- GCGCGCAATAATAGGTGGCCGTATCCACCGGGT-CCATGTTGGTCATAGTCAGC -3'
- O3H1 5'- CGAAGTGCAATTGGTGGAAAGCGGCGGCGCCT-GGTGCAACCGGGCGGCAG -3'
- O3H2 5'- CATAGCTGCTAAAGGTAAATCCGGAGGCCGCC-AGCTCAGACGCAGGCTGCCGCCCGGTTGCAC -3'
- **O3H3** 5'- GATTTACCTTTAGCAGCTATGCGATGAGCTGGG-TGCGCCAAGCCCCTGGGAAGGGTCTCGAGTGGGTGAG -3'
- **O3H4** 5'- GGCCTTTCACGCTATCCGCATAATAGGTGCTGC-CGCCGCTACCGCTAATCGCGCTCACCCACTCGAGACCC -3'
- **O3H5** 5'- CGGATAGCGTGAAAGGCCGTTTTACCATTTCAC-GTGATAATTCGAAAAACACCCTGTATCTGCAAATGAACAG-3'
- **O3H6** 5'- CACGCGCGCAATAATACACGGCCGTATCTTCCG-CACGCAGGCTGTTCATTTGCAGATACAGG -3'
- **O4H2** 5'- GGTCAGGCTCAGGGTTTCGCTCGGTTTCACCAG-GCCCGGACCACTTTCTTGCAATTGCACCTGGGCTTTG -3'
- **O4H3** 5'- GAAACCCTGAGCCTGACCTGCACCGTTTCCGGA-GGCAGCATTAGCAGCTATTATTGGAGCTGGATTCGCCAGCCGC-3'
- **O4H4** 5'- GATTATAGTTGGTGCTGCCGCTATAATAATAT-AGCCAATCCACTCGAGACCCTTCCCAGGCGGCTGGCGAATCCAGG-3'
- **04H5** 5'- CGGCAGCACCAACTATAATCCGAGCCTGAAAAG-CCGGGTGACCATTAGCGTTGATACTTCGAAAAACCAGTTTAGCCTG -3'
- **O4H6** 5'- GCGCGCAATAATACACGGCCGTATCCGCCGCCG-TCACGCTGCTCAGTTTCAGGCTAAACTGGTTTTTCG -3'

ijij ji de

Figure 6: (continued)

- O5H1 5'- GCTCTTCACCCCTGTTACCAAAGCCGAAGTGCA-ATTG -3'
- O5H2 5'- CCTTTGCAGCTAATTTTCAGGCTTTCGCCCGGT-TTTTTCACTTCCGCGCCCCTCTGAACCAATTGCACTTCGGCTT TGG -3'
- O5H3 5'- CCTGAAAATTAGCTGCAAAGGTTCCGGATATTC-CTTTACGAGCTATTGGATTGGCTGGGTGCGCCAGATGCCTGG -3 '
- O5H4 5'- CGGAGAATAACGGGTATCGCTATCGCCCGGATA-AATAATGCCCATCCACTCGAGACCCTTCCCAGGCATCTGGCGC AC -3'
- O5H5 5'- CGATACCCGTTATTCTCCGAGCTTTCAGGGCCA-GGTGACCATTAGCGCGGGATAAAAGCATTAGCACCGCGTATCTT C - 3'
- O5H6 5'- GCGCGCAATAATACATGGCCGTATCGCTCGCTT-TCAGGCTGCTCCATTGAAGATACGCGGTGCTAATG -3'
- O6H2 5'- GAAATCGCACAGGTCAGGCTCAGGGTTTGGCTC-GGTTTCACCAGGCCCGGACCAGACTGTTGCAATTGCACCTGG-GCTTTG -3'
- O6H3 5'- GCCTGACCTGTGCGATTTCCGGAGATAGCGTGA-GCAGCAACAGCGCGGCGTGGAACTGGATTCGCCAGTCTCCTGG GCG -3'
- O6H4 5'- CACCGCATAATCGTTATACCATTTGCTACGATA-ATAGGTACGCCCAGCCACTCGAGGCCACGCCCAGGAGACTG-GCG -3'
- O6H5 5'- GGTATAACGATTATGCGGTGAGCGTGAAAAGCC-GGATTACCATCAACCCGGATACTTCGAAAAACCAGTTTAGCCT GC -3'
- O6H6 5'- GCGCGCAATAATACACGGCCGTATCTTCCGGGG-TCACGCTGTTCAGTTGCAGGCTAAACTGGTTTTTC -3'
- OCLK15'- GGCTGAAGACGTGGGCGTGTATTATTGCCAGCA-GCATTATACCACCCCGCCGACCTTTGGCCAGGGTAC -3' **SUBSTITUTE SHEET (RULE 26)**

WO 97/08320 PCT/EP96/03647

Figure 6: (continued)

OCLK2 5 '- GCGGAAAAATAAACACGCTCGGAGCAGCCACCG-TACGTTTAATTTCAACTTTCGTACCCTGGCCAAAGGTC -3'

- OCLK3 5 ' GAGCGTGTTTATTTTTCCGCCGAGCGATGAACA-ACTGAAAAGCGGCACGGCGAGCGTGTGTGCCTGCTG -3 '
- OCLK4 5 ' CAGCGCGTTGTCTACTTTCCACTGAACTTTCGC-TTCACGCGGATAAAAGTTGTTCAGCAGGCACACCACGC -3 '
- OCLK5 5 ' GAAAGTAGACAACGCGCTGCAAAGCGGCAACAG-CCAGGAAAGCGTGACCGAACAGGATAGCAAAGATAG -3 '
- OCLK6 5'- GTTTTTCATAATCCGCTTTGCTCAGGGTCAGGG-TGCTGCTCAGAGAATAGGTGCTATCTTTGCTATCCTGTTCG -3'
- **OCLK7** 5 ' GCAAAGCGGATTATGAAAAACATAAAGTGTATG-CGTGCGAAGTGACCCATCAAGGTCTGAGCAGCCCGGTG -3'
- OCLK8 5 ' GGCATGCTTATCAGGCCTCGCCACGATTAAAAGATTTAGTCACCGGGCTGCTCAGAC -3 '
- **OCH1** 5'- GGCGTCTAGAGGCCAAGGCACCCTGGTGACGGT-TAGCTCAGCGTCGAC -3'
- OCA 2 5 GTGCTTTTGCTGCTCGGAGCCAGCGGAAACACG-CTTGGACCTTTGGTCGACGCTGAGCTAACC -3 '
- **OCH3** 5'- CTCCGAGCAGCAAAAGCACCAGCGGCGCACGG-CTGCCCTGGGCTGCCTGGTTAAAGATTATTTCC -3'
- **OCH4** 5'- CTGGTCAGCGCCCCGCTGTTCCAGCTCACGGTG-ACTGGTTCCGGGAAATAATCTTTAACCAGGCA -3'
- **OCH5** 5'- AGCGGGCGCTGACCAGCGGCGTGCATACCTTT-CCGGCGGTGCTGCAAAGCAGCGGCCTG -3'
- **OCH6** 5'- GTGCCTAAGCTGCTCGGCACGGTCACAACG-CTGCTCAGGCTATACAGGCCGCTGCTTTGCAG -3'
- OCH7 5'- GAGCAGCAGCTTAGGCACTCAGACCTATATTTG-CAACGTGAACCATAAACCGAGCAACACC -3'
- **OCH8** 5'- GCGCGAATTCGCTTTTCGGTTCCACTTTTTAT-CCACTTTGGTGTTGCTCGGTTTATGG -3'

Ē

Figure 7A: sequence of the synthetic Ck gene segment

Ö <u>.</u> Ω S щ Д H > S <u>ب</u> A Ø

BsiWI

TTTCCGCCGA GCGATGAACA CGCTACTTGT AAAGGCGGCT CGTGTTTATT GCACAAATAA CTGCTCCGAG GACGAGGCTC GCATGCCACC CGTACGGTGG

TTGAAAATAG AACTTTTATC z GGACGACTTG GGCACGGCGA GCGTGTGTG CCTGCTGAAC I. CCGTGCCGCT CGCACCACAC A C တ A ŋ ACTGAAAAGC TGACTTTTCG S L K

CGTTTCGCCG GCAAAGCGGC O, TGTTGCGCGA W K V D N A L TGGAAAGTAG ACAACGCGCT ACCTTTCATC CTTTCAAGTC GAAAGTTCAG Ø KV GCGCACTTCG CGCGTGAAGC Ø 자 편 ہم

CGTGGATAAG GCACCTATTC ಭ TCGTTTCTAT AGCAAAGATA × വ GCTTGTCCTA CGAACAGGAT 区 AACAGCCAGG AAAGCGTGAC TTTCGCACTG S 回 TTGTCGGTCC Ø വ Z

AAACATAAAG TTTGTATTTC ACCCTGACCC TGAGCAAAGC GGATTATGAA CCTAATACTT Δ . TGGGACTGGG ACTCGTTTCG K A വ Н ⊱ TCTGAGCAGC AGACTCGTCG Figure 7A: sequence of the synthetic Ck gene segment (continued)

GGTGACTAAA CCACTGATTT H GTAGTICCAG ACTCGTCGGG H Q G L S S P CATCAAGGTC TGAGCAGCCC GCTTCACTGG TGTATGCGTG CGAAGTGACC > H ACATACGCAC ø

S F N R G E A * SphI

TCTTTTAATC GTGGCGAGGC CTGATAAGCA TGC AGAAAATTAG CACCGCTCCG GACTATTCGT ACG

Figure 7B: sequence of the synthetic CH1 gene segment

S ഗ ρц Ø 口 Д بتآ > S Ц G × E SalI ഗ Ø BlpI

GGTTCGCACA AAGGCGACCG AGGCTCGTCG TICCGCTGGC ICCGAGCAGC CCAAGCGTGT CTGGTTTCCA GCTCAGCGTC GACCAAAGGT CGAGTCGCAG

GGCTGCCTGG TTAAAGATTA CCGACGGACC AATTTCTAAT × > C G CGCCGCCGTG CCGACGGGAC GGCTGCCCTG A A AAAAGCACCA GCGGCGGCAC S G G T TTTCGTGGT E-ഗ

CTGACCAGCG GACTGGTCGC GICCCCCCC CAGCGGGCG Ŋ ഗ GGTCAGTGGC ACTCGACCTT CCAGTCACCG TGAGCTGGAA 3 ഗ > P V T AAAGGGCCTT TTTCCCGGAA H Д Ŀ

GIGCIGCAAA GCAGCGGCCI GIAIAGCCIG CGTCGCCGGA CATATCGGAC SGL ഗ CACGACGTTT Ŏ CTTTCCGGCG CGCACGTATG GAAAGGCCGC Д ഥ GCGTGCATAC H > ŋ

TTAGGCACTC AGACCTATAT AATCCGTGAG TCTGGATATA Ø Ľ Ü CTCGTCGTCG GAGCAGCAGC ഗ ഗ ഗ AGCAGCGTTG TGACCGTGCC TCGTCGCAAC ACTGGCACGG Д T > ഗ

Figure 78: sequence of the synthetic CH1 gene segment (continued)

TTGGTATTTG GCTCGTTGTG GTTTCACCTA N H K P S N T K V D AACCATAAAC CGAGCAACAC CAAAGTGGAT . ئى AACGTTGCAC TTGCAACGTG

E P K S E F * ECORI H:

EcoRI HindIII

AACCGAAAAG CGAATTCTGA TAAGCTT TTGGCTTTTC GCTTAAGACT ATTCGAA

Figure 7C: functional map and sequence of module 24 comprising the synthetic CA gene segment (huCL lambda)

Figure 7C; functional map and sequence of module 24 comprising the synthetic CI gene segment (huCL lambda) (continued)

BbsI

 1	CTTCTGCTTC	GAAGACGAAG CGGATTATTA TTGCCAGCAG CTTCTGCTTC GCCTAATAAT AACGGTCGTC		TTGCCAGCAG CATTATACCA AACGGTCGTC GTAATATGGT	CCCCGCCTGT GGGGCGGACA
51	GTTTGGCGGC	HP CAPACCGCCG CGCACGAAGT CAAACCGCCG CCGTGCTTCA	HpaI ~~~~~~ T TAACCGTTCT A ATTGGCAAGA	Hpal MscI DrallI	Dralll ~~~ AAAGCCGCAC TTTCGGCGTG
101	Dralll ~~~~~~ CGAGTGTGAC GCTCACACTG	Dralli ~~~~~ CGAGTGTGAC GCTGTTTCCG CCGAGCAGCG GCTCACACTG CGACAAAGGC GGCTCGTCGC	CCGAGCAGCG	Dralli ~~~~~ cgagtgtgac gctgtttccg ccgagcagcg aagaattgca ggcgaacaaa gctcacactg cgacaaaggc ggctcgtcgc ttcttaacgt ccgcttgttt	GGCGAACAAA CCGCTTGTTT
151	GCGACCCTGG	TGTGCCTGAT ACACGGACTA	TAGCGACTTT ATCGCTGAAA	TGTGCCTGAT TAGCGACTTT TATCCGGGAG CCGTGACAGT ACACGGACTA ATCGCTGAAA ATAGGCCCTC GGCACTGTCA	CCGTGACAGT GGCACTGTCA
201	GGCCTGGAAG	GCAGATAGCA CGTCTATCGT	GCCCCGTCAA	AAG GCAGATAGCA GCCCCGTCAA GGCGGGAGTG GAGACCACCA	GAGACCACCA

Figure 7C: functional map and sequence of module 24 comprising the synthetic CI gene segment (huCL lambda) (continued)

CACCCTCCAA ACAAAGCAAC AACAAGTACG CGGCCAGCAG CTATCTGAGC TIGITCAIGC GCCGGICGIC GATAGACICG GIGGGAGGIT IGTITCGIIG 251

RleAI

~~~~~

GICCCACAGA AGCIACAGCI GCCAGGICAC CTGACGCCTG AGCAGTGGAA

301

CGGTCCAGTG TCGATGTCGA CAGGGTGTCT GACTGCGGAC TCGTCACCTT

StuI

GCATGAGGGG AGCACCGTGG AAAAAACCGT TGCGCCGACT GAGGCCTGAT CTCCGGACTA ACGCGGCTGA TTTTTGGCA TCGTGGCACC CGTACTCCCC 351

SphI

401 AAGCATGC TTCGTACG

Figure 7D: oligonucleotides used for synthesis of module M24 containing CA gene segment

## M24: assembly PCR

M24-A: GAAGACAAGCGGATTATTATTGCCAGCAGTATATACCACCCCGCCTGTGTTTGGCGGCG-

GCACGAAGTTAACCGTTC

M24-B: CAATTCTTCGCTGCTCGGCGGAAACAGCGTCACACTCGGTGCGGCTTTCGGCTGGCCAA-

GAACGGTTAACTTCGTGCCGC

M24-C: CGCCGAGCAGCAAGAATTGCAGGCGAACAAAGCGACCCTGGTGCCTGATTAGCGACT-

TTATCCGGGAGCCGTGACA

M24-D: TGTTTGGAGGGTGTGGTCTCCACTCCCGCCTTGACGGGGCTGCTATCTGCCTTCCAG-

GCCACTGTCACGGCTCCCGG

M24-E: CCACACCCTCCAAACAAAGCAACAAGTACGCGGCCAGCAGCTATCTGAGCCTGACGC-

CTGAGCAGTGGAAGTCCCACAGAAGCTACAGCTG

M24-F: GCATGCTTATCAGGCCTCAGTCGGCGCAACGGTTTTTCCACGGTGCTCCCCCTCATGCGT-

GACCIGGCAGCTGTAGCTTC

Д H Figure 8: sequence and restriction map of the synthetic gene encoding the consensus single-chain fragment VH3-VK2 SapI Ц П Н Ø Ц Ø S ×

AGAAGTGGGG TTACCGTTGC TCTTCACCCC AATGGCAACG CGTGATAACG TGACCGTGAG GCACTATTGC ACTGGCACTC TACTTTGTTT ATGAAACAAA

C S 团 22222 口 Q L MfeI  $\Rightarrow$ 回 Ω ¥  $\succ$ Ω ø X Н

>

GAAAGCGGCG CTTTCGCCGC CGTTAACCAC GCAATTGGTG GCCGACTACA AAGATGAAGT TTCTACTTCA CGGCTGATGT ACAATGGTTT TGTTACCAAA

BSPEI Ø Ø Ö ß Ц K 口 ß C C Д Ø > Н Ŋ

CGCGGCCICC GCGCCGGAGG CAGACTCGAC GTCTGAGCTG GCGGCCTGGT GCAACCGGGC GGCAGCCTGC CGTTGGCCCG CCGTCGGACG CGCCGGACCA G BstXI Ø Ö K > 3 S  $\mathbf{z}$ K വ ഗ Ľ Н BSPEI Ľ C

CCTAAATGGA AATCGTCGAT ACGCTACTCG ACCCACGCGG TTCGGGGACC TGGGTGCGCC AAGCCCCTGG TGCGATGAGC GGATTTACCT TTAGCAGCTA

SUBSTITUTE SHEET (RULE 26)

G

And the H will be had been the the H was the the had the H had

Figure 8: sequence and restriction map of the synthetic gene encoding the consensus single-chain fragment VH3-VK2 (continued) S G Ö ഗ C S Н Ø ß > 3 Ö

GGCAGCACCT CGGTAGCGGC XhoI

CCGTCGTGGA GCCATCGCCG GCGCGATTAG CGCGCTAATC CTTCCCAGAG CTCACCCACT GAAGGGTCTC GAGTGGGTGA

NspV1111 Z Ω Pm1I 民 ഗ H Н ہتا ĸ C × > വ Ω

K

 $\succ$ 

×

TGATAATTCG GGTAAAGTGC ACTATTAAGC CCATTTCACG TAGCGTGAAA GGCCGTTTTA CCGGCAAAAT TAATACGCCT ATCGCACTTT ATTATGCGGA

EagI Н Ω 团 ø K П S Z  $\mathbf{z}$ Õ Н  $\succ$ П 댐 Z NspV ×

TTCTATGCCG AAGATACGGC CTGCGTGCGG GACGCACGCC AAAAACACCC TGTATCTGCA AATGAACAGC TTACTTGTCG TITITGIGG ACATAGACGI

Ω Σ Ø ہتا C C G 3  $\alpha$ K ပ

Eagl BSSHII

GCGATGGATT TGCGCGCGTT GGGGCGCGA TGGCTTTTAT CGTGTATTAT Figure 8: sequence and restriction map of the synthetic gene encoding the consensus single-chain fragment VH3-VK2 (continued) CGCTACCTAA C GCACATAATA ACGCGCGCAA CCCCGCCGCT ACCGAAAATA BlpI S > Ö Styl Oi Ö

CGAGTCGCCC ACCGCCAAGA TGGCGGTTCT GCTCAGCGGG GTGACGGTTA ATTGGGGCCA AGGCACCCTG

ECORV Ω ഗ C U C C TAACCCCGGT TCCGTGGGAC CACTGCCAAT വ G G S r S C G C c

GTTCCGATAT CAAGGCTATA GGCGGTGGTG CCGCCACCAC GGAGCGGTGG CGGTGGTTCT GCCACCAAGA CCTCGCCACC GGCGCCGGTG CCGCCGCCAC

11111

Д 团 G Д Н > Д Н S Н Щ BanII 2 2 2 2 2 2 တ  $\vdash$ V M ECORV

GGCGAGCCTG CCGCTCGGAC TGAGCCTGCC AGTGACTCCG ACTCGGACGG TCACTGAGGC CAGAGCCCAC GTCTCGGGTG CGTGATGACC GCACTACTGG

C Z ß 田 Ц 口 വ Ò S ß 召 PstI U S S K

111111

GTTGCCGATA CAACGGCTAT TGCTGCATAG ACGACGTATC AGCCAAAGCC TCGGTTTCGG CTGCAGAAGC GACGICTICG CGAGCATTAG GCTCGTAATC Figure 8: sequence and restriction map of the synthetic gene encoding the consensus single-chain fragment VH3-Vk2 (continued) AseI д ß SexAI Н KpnI Ω П

CGCAGCTATT GCGTCGATAA ATTGGTACCT TCAAAAACCA GGTCAAAGCC TAACCATGGA AGTTTTTGGT CCAGTTTCGG AACTATCTGG TTGATAGACC

S K Ω Д Eco01091 ŋ ഗ K K Z വ G Ц AseI CGTTTTAGCG GCAAAATCGC TTAAATAGAC CCGTCGTTGG CACGGTCACC CCAGGGCCTA GTGCCAGTGG GGTCCCGGAT AATTTATCTG GGCAGCAACC

团 > K S 又 Н H ſΞι Ω H Ö BamHI ល U S G

Ø

TTTACCCTGA AAATTAGCCG TGTGGAAGCT ACACCTTCGA TTTAATCGGC CGAGACCIAG GCCGTGGCTA AAATGGGACT GCTCTGGATC CGGCACCGAT

Н Д Д H H × 田 Ø Ø Ö × G > Ω BbsI

11111

GGGGGGGCTG CCCGCCGAC CATTATACCA GTAATATGGT TTGCCAGCAG AACGGTCGTC GAAGACGIGG GCGIGIATIA CGCACATAAT CTTCTGCACC Figure 8: sequence and restriction map of the synthetic gene encoding the consensus single-chain fragment VH3-Vk2 (continued) ¥ 闰 × Н G ŋ

>

MscI

E Ecori R T BsiwI

TGCATGCCTT AAG ACGTACGGAA TTC TTGAAATTAA AACTTTAATT CTTTGGCCAG GGTACGAAAG GAAACCGGTC CCATGCTTTC



SUBSTITUTE SHEET (RULE 26) 56 / 204

Figure 10: Sequence analysis of initial libraries

| E01        | >            | >         | ≥         | <u> </u>  | ≥            | ≥        | ≥         | ≥         | ≥         | ≥            | <u> </u> | <u> </u>  | <u>≥</u> |
|------------|--------------|-----------|-----------|-----------|--------------|----------|-----------|-----------|-----------|--------------|----------|-----------|----------|
| 105        | <del>-</del> | >         | >         | >         | >            | >        | >-        | >-        | >-        | >            | >-       | >         | >        |
| 101        |              |           |           |           |              |          |           |           |           |              |          |           | Ω        |
| 100E       | . Σ          | š         | ı         | 1         | ı            | 1        | 1         | ı         | ı         | i            | 1        | ı         | ı        |
| J001       | 1            | ı         | 1         | ı         | i            | 1        | ŧ         | t         | 1         | i            | ı        | ŀ         | ı        |
| J001       | 1            | ı         | ı         | ı         | ı            | t        | t         | 1         | ı         |              | ı        | ı         |          |
| 100B       | ⋖            | i         | i         | ı         | i            | 1        | 1         | 1         | ŧ         | ı            | ı        | ı         | ı        |
| A001       | >            | ŧ         | 1         | 1         | 1            | 1        | ı         | 1         | 1         | 1            | 1        | 1         | ı        |
| 001        | ட            | >         | 工         | I         | $\propto$    | >        | ۵         | ı         | S         | $\checkmark$ | 4        |           | Σ        |
| 66         | Ö            | Z         | ≥         | >         | ⋖            | 9        | 0         | $\simeq$  | Z         | S            | ⋖        | >         | ≥        |
| 86         |              | Σ         | ш         | _         | $\succeq$    | H        | ⋖         | $\vdash$  | $\propto$ |              | ட        | 0         | ш        |
| <i>∠6</i>  | G            | $\succeq$ | H         | ш         | لــ          | <b>—</b> | ш         |           | Z         | 9            | <b>—</b> | ۵         | S        |
| 96         | 9            | G         | $\propto$ | $\propto$ | خنا          | Z        | Z         | X         | >         | >            | $\prec$  | A         | 0        |
| <i>S6</i>  | ≥            | LL.       | エ         | >         | $\checkmark$ | ≥        | _         | $\vdash$  | ≥         | S            | S        | >         | Σ        |
| <b>≯</b> 6 | $\simeq$     | $\propto$ | <u>~</u>  | $\propto$ | $\propto$    | $\simeq$ | $\propto$ | $\propto$ | $\simeq$  | $\propto$    | $\simeq$ | $\propto$ | $\simeq$ |
| £6         | <u> </u>     | ⋖         | ⋖         | ⋖         | ⋖            | ⋖        | $\forall$ | ∀         | ⋖         | ⋖            | ⋖        | ⋖         | <u> </u> |
| <i>Z</i> 6 | O            | ပ         | O         | S         | C            | S        | S         | S         | S         | S            | S        | C         | S        |
| ⋖          |              | B         |           |           |              |          |           |           |           |              |          |           |          |

33333333333 >>>>>>>  $\Sigma \Sigma \Gamma \Sigma \Sigma \Gamma \Gamma \Gamma \Sigma \Sigma \Sigma \Sigma$ > - ス > σ - エ ト > - σ  $\Sigma \succ \kappa \times \Sigma \circ \neg \circ \circ \neg \circ \circ$  $\vdash \lor \lor \lor \lor \bot \lor \bot \lor \vdash \lor \lor \lor$  $\succ$  O I O L I Z Z Z L L Z Z **」SFENE>NLYF**  $\Gamma A > \emptyset$   $O S A J <math>\Gamma D \vdash$ IXZIXQ S Z II Z F $\succ \Sigma \times \vdash \succ * \ltimes \Sigma \times \circ \succ$ R R R R R R R R R R R R R R 4444444444 0000000000000

Figure 10: Sequence analysis of initial libraries

 $\mathbf{C}$ 

Figure 11: Expression analysis of initial library





Figure 12: Increase of specificity during the panning rounds



Figure 13: Phage ELISA of clones after the 3rd round of panning



Figure 14: Competition ELISA



**図** No Inhibition

- Inhibition with BSA
- ☐ Inhibition with Fluorescein

701 >>>>>>> 101 00000000000000000 3001 LLLLLLZLLLLLLLLLLLL 9001 xxxx00>x>xxx-0xx 0001 LRIKZO4> YOZLYY4001 Z X I X X D J  $\rightarrow$  S X D L  $\bigcirc$  Y X  $\rightarrow$  Y  $\rightarrow$  S X D L  $\bigcirc$  Y X  $\rightarrow$  Y  $\rightarrow$  Y  $\rightarrow$  Y  $\rightarrow$  Y  $\rightarrow$  Y  $\rightarrow$  Y  $\rightarrow$  Y  $\rightarrow$  Y  $\rightarrow$  Y  $\rightarrow$  Y  $\rightarrow$  Y  $\rightarrow$  Y  $\rightarrow$  Y  $\rightarrow$  Y  $\rightarrow$  Y  $\rightarrow$  Y  $\rightarrow$  Y  $\rightarrow$  Y  $\rightarrow$  Y  $\rightarrow$  Y  $\rightarrow$  Y  $\rightarrow$  Y  $\rightarrow$  Y  $\rightarrow$  Y  $\rightarrow$  Y  $\rightarrow$  Y  $\rightarrow$  Y  $\rightarrow$  Y  $\rightarrow$  Y  $\rightarrow$  Y  $\rightarrow$  Y  $\rightarrow$  Y  $\rightarrow$  Y  $\rightarrow$  Y  $\rightarrow$  Y  $\rightarrow$  Y  $\rightarrow$  Y  $\rightarrow$  Y  $\rightarrow$  Y  $\rightarrow$  Y  $\rightarrow$  Y  $\rightarrow$  Y  $\rightarrow$  Y  $\rightarrow$  Y  $\rightarrow$  Y  $\rightarrow$  Y  $\rightarrow$  Y  $\rightarrow$  Y  $\rightarrow$  Y  $\rightarrow$  Y  $\rightarrow$  Y  $\rightarrow$  Y  $\rightarrow$  Y  $\rightarrow$  Y  $\rightarrow$  Y  $\rightarrow$  Y  $\rightarrow$  Y  $\rightarrow$  Y  $\rightarrow$  Y  $\rightarrow$  Y  $\rightarrow$  Y  $\rightarrow$  Y  $\rightarrow$  Y  $\rightarrow$  Y  $\rightarrow$  Y  $\rightarrow$  Y  $\rightarrow$  Y  $\rightarrow$  Y  $\rightarrow$  Y  $\rightarrow$  Y  $\rightarrow$  Y  $\rightarrow$  Y  $\rightarrow$  Y  $\rightarrow$  Y  $\rightarrow$  Y  $\rightarrow$  Y  $\rightarrow$  Y  $\rightarrow$  Y  $\rightarrow$  Y  $\rightarrow$  Y  $\rightarrow$  Y  $\rightarrow$  Y  $\rightarrow$  Y  $\rightarrow$  Y  $\rightarrow$  Y  $\rightarrow$  Y  $\rightarrow$  Y  $\rightarrow$  Y  $\rightarrow$  Y  $\rightarrow$  Y  $\rightarrow$  Y  $\rightarrow$  Y  $\rightarrow$  Y  $\rightarrow$  Y  $\rightarrow$  Y  $\rightarrow$  Y  $\rightarrow$  Y  $\rightarrow$  Y  $\rightarrow$  Y  $\rightarrow$  Y  $\rightarrow$  Y  $\rightarrow$  Y  $\rightarrow$  Y  $\rightarrow$  Y  $\rightarrow$  Y  $\rightarrow$  Y  $\rightarrow$  Y  $\rightarrow$  Y  $\rightarrow$  Y  $\rightarrow$  Y  $\rightarrow$  Y  $\rightarrow$  Y  $\rightarrow$  Y  $\rightarrow$  Y  $\rightarrow$  Y  $\rightarrow$  Y  $\rightarrow$  Y  $\rightarrow$  Y  $\rightarrow$  Y  $\rightarrow$  Y  $\rightarrow$  Y  $\rightarrow$  Y  $\rightarrow$  Y  $\rightarrow$  Y  $\rightarrow$  Y  $\rightarrow$  Y  $\rightarrow$  Y  $\rightarrow$  Y  $\rightarrow$  Y  $\rightarrow$  Y  $\rightarrow$  Y  $\rightarrow$  Y  $\rightarrow$  Y  $\rightarrow$  Y  $\rightarrow$  Y  $\rightarrow$  Y  $\rightarrow$  Y  $\rightarrow$  Y  $\rightarrow$  Y  $\rightarrow$  Y  $\rightarrow$  Y  $\rightarrow$  Y  $\rightarrow$  Y  $\rightarrow$  Y  $\rightarrow$  Y  $\rightarrow$  Y  $\rightarrow$  Y  $\rightarrow$  Y  $\rightarrow$  Y  $\rightarrow$  Y  $\rightarrow$  Y  $\rightarrow$  Y  $\rightarrow$  Y  $\rightarrow$  Y  $\rightarrow$  Y  $\rightarrow$  Y  $\rightarrow$  Y  $\rightarrow$  Y  $\rightarrow$  Y  $\rightarrow$  Y  $\rightarrow$  Y  $\rightarrow$  Y  $\rightarrow$  Y  $\rightarrow$  Y  $\rightarrow$  Y  $\rightarrow$  Y  $\rightarrow$  Y  $\rightarrow$  Y  $\rightarrow$  Y  $\rightarrow$  Y  $\rightarrow$  Y  $\rightarrow$  Y  $\rightarrow$  Y  $\rightarrow$  Y  $\rightarrow$  Y  $\rightarrow$  Y  $\rightarrow$  Y  $\rightarrow$  Y  $\rightarrow$  Y  $\rightarrow$  Y  $\rightarrow$  Y  $\rightarrow$  Y  $\rightarrow$  Y  $\rightarrow$  Y  $\rightarrow$  Y  $\rightarrow$  Y  $\rightarrow$  Y  $\rightarrow$  Y  $\rightarrow$  Y  $\rightarrow$  Y  $\rightarrow$  Y  $\rightarrow$  Y  $\rightarrow$  Y  $\rightarrow$  Y  $\rightarrow$  Y  $\rightarrow$  Y  $\rightarrow$  Y  $\rightarrow$  Y  $\rightarrow$  Y  $\rightarrow$  Y  $\rightarrow$  Y  $\rightarrow$  Y  $\rightarrow$  Y  $\rightarrow$  Y  $\rightarrow$  Y  $\rightarrow$  Y  $\rightarrow$  Y  $\rightarrow$  Y  $\rightarrow$  Y  $\rightarrow$  Y  $\rightarrow$  Y  $\rightarrow$  Y  $\rightarrow$  Y  $\rightarrow$  Y  $\rightarrow$  Y  $\rightarrow$  Y  $\rightarrow$  Y  $\rightarrow$  Y  $\rightarrow$  Y  $\rightarrow$  Y  $\rightarrow$  Y  $\rightarrow$  Y  $\rightarrow$  Y  $\rightarrow$  Y  $\rightarrow$  Y  $\rightarrow$  Y  $\rightarrow$  Y  $\rightarrow$  Y  $\rightarrow$  Y  $\rightarrow$  Y  $\rightarrow$  Y  $\rightarrow$  Y  $\rightarrow$  Y  $\rightarrow$  Y  $\rightarrow$  Y  $\rightarrow$  Y  $\rightarrow$  Y  $\rightarrow$  Y  $\rightarrow$  Y  $\rightarrow$  Y  $\rightarrow$  Y  $\rightarrow$  Y  $\rightarrow$  Y  $\rightarrow$  Y  $\rightarrow$  Y  $\rightarrow$  Y  $\rightarrow$  Y  $\rightarrow$  Y  $\rightarrow$  Y  $\rightarrow$  Y  $\rightarrow$  Y  $\rightarrow$  Y  $\rightarrow$  Y  $\rightarrow$  Y  $\rightarrow$  Y  $\rightarrow$  Y  $\rightarrow$  Y  $\rightarrow$  Y  $\rightarrow$  Y  $\rightarrow$  Y  $\rightarrow$  Y  $\rightarrow$  Y  $\rightarrow$  Y  $\rightarrow$  Y  $\rightarrow$  Y  $\rightarrow$  Y  $\rightarrow$  Y  $\rightarrow$  Y  $\rightarrow$  Y  $\rightarrow$  Y  $\rightarrow$  Y  $\rightarrow$  Y  $\rightarrow$  Y  $\rightarrow$  Y  $\rightarrow$  Y  $\rightarrow$  Y  $\rightarrow$  Y  $\rightarrow$  Y  $\rightarrow$  Y  $\rightarrow$  Y  $\rightarrow$  Y  $\rightarrow$  Y  $\rightarrow$  Y  $\rightarrow$  Y  $\rightarrow$  Y  $\rightarrow$  Y  $\rightarrow$  Y  $\rightarrow$  Y  $\rightarrow$  Y  $\rightarrow$  Y  $\rightarrow$  Y  $\rightarrow$  Y  $\rightarrow$  Y  $\rightarrow$  Y  $\rightarrow$  Y  $\rightarrow$  Y  $\rightarrow$  Y  $\rightarrow$  Y  $\rightarrow$  Y  $\rightarrow$  Y  $\rightarrow$  Y  $\rightarrow$  Y  $\rightarrow$  Y  $\rightarrow$  Y  $\rightarrow$  Y  $\rightarrow$  Y  $\rightarrow$  Y  $\rightarrow$  Y  $\rightarrow$  Y  $\rightarrow$  Y  $\rightarrow$  Y  $\rightarrow$  Y  $\rightarrow$  Y  $\rightarrow$  Y  $\rightarrow$  Y  $\rightarrow$  Y  $\rightarrow$  Y  $\rightarrow$  Y  $\rightarrow$  Y  $\rightarrow$  Y  $\rightarrow$  Y  $\rightarrow$  Y  $\rightarrow$  Y  $\rightarrow$  Y  $\rightarrow$  Y  $\rightarrow$  Y  $\rightarrow$  Y  $\rightarrow$  Y  $\rightarrow$  Y  $\rightarrow$  Y 990igure 15: Sequence analysis of fluorescein binders  $89 \ge Q \times x ->$   $\ge$   $1 \ge$   $0 \times x =$  1 -  $x \times$ 16 Z Y O Z Y M O L F K O Y > I F J 96 ~ W Z Y ~ - Y Y Y Y Z U Z Y \ Y  $26 \times \text{KKK} \times \text{TKKK} \times \text{KKKK} \times$  $^{46}$  KKKKKKKKKKKKKKKKKKK 

Figure 16: Purification of fluorescein binding scFv fragments



Figure 17: Enrichment factors after three rounds of panning



anti-B-estradiol antibodies D4-6 04-1 6-60 Figure 18; ELISA of anti-ESL-1 and anti-β-estradiol antibodies anti-ESL-1 antibodies *D*9-2 0.2 9.0 0 0.8 Jay-(mugo+)do
substitute sheet (rule 26)
66 / 204

Figure 19: Selectivity and cross-reactivity of HuCAL antibodies



Figure 20: Sequence analysis of estradiol binders

| Frequency  | က            | ∞            | 7          | <del></del> | <del>L.</del> | <del></del>  | -            | <b>.</b>     |          | 2         | 4            | <b>~</b>     |
|------------|--------------|--------------|------------|-------------|---------------|--------------|--------------|--------------|----------|-----------|--------------|--------------|
| 103        | ≥            | 3            | ≥          | ≥           | ≷             | ≥            | ≥            | <u>≥</u>     | <u> </u> | <u>≥</u>  | ≥            | <u>×</u>     |
| 105        | >            | >            | >          | >           | >             | >-           | >-           | >-           | >-       | >-        | >            | >            |
| 101        | Ω            | 0            | ۵          | 0           |               |              |              |              | 0        |           | ۵            |              |
| 100E       | ய            | Σ            | ш          | <b>L</b>    | Σ             | Σ            | 1            | Σ            | ≥        | Σ         | ≥            | ட            |
| 100D       | 9            | $\checkmark$ | æ          | ட           | エ             | Σ            | ı            | $\propto$    | >        | ட         | ш            | Z            |
| J001       | $\checkmark$ | 8            | ¥          | >           | ≥             | $\checkmark$ | 1            | $\checkmark$ | >-       | $\simeq$  | $\checkmark$ | $\checkmark$ |
| 100B       | æ            | <u>«</u>     | 9          | ш           | S             | ~            | ì            | >-           | >        | ~         | 9            | $\propto$    |
| A001       | <u> </u>     | z            |            |             | ≥             | 工            | ı            | ட            | O        | ட         | $\propto$    | Σ            |
| 100        | A            | ¥            | ۵.         |             | ட             | ~            | ط            | ≥            | S        | $\propto$ | S            | $\propto$    |
| 66         | O            | LL.          | ≥          | œ           | 0             | ۵            | مـ           | 工            | ≥        | ≥         |              | ≥            |
| 86         | ≥            | ш            | Σ          | ≥           | 9             | ш            | Ø            | ≥            | Σ        | O         | $\forall$    |              |
| <b>Z</b> 6 | ۵            | 3            | ≥          |             | ≥             | _            | $\checkmark$ | <b>—</b>     |          | O         |              | 8            |
| 96         | <u>α</u>     | O            | 8          | S           | م             | 9            | Σ            | $\leq$       | $\prec$  | $\prec$   | Σ            | Σ            |
| <i>9</i> 6 | <b>—</b>     | Z            | : <b>~</b> | >-          | >             | Z            |              | 8            | ≥        | Z         | Z            | Z            |
| <b>7</b> 6 | α.           | : ∝          | · ~        | 8           | ~             | <u>~</u>     | ~            | · œ          | ∝        | $\propto$ | $\propto$    | $\propto$    |
| 63         | Ø            | < ∢          | < <        | A           | . ⋖           | < <          | < ✓          | < ∀          | V        | V         | ∀            | < <          |
| 76         | ر            | ر ر          | ے ر        |             | ٠ ر           | ے ر          | ت ر          | ت ر          |          |           |              | C            |

Figure 21: Sequence analysis of testosterone binders

| Frequency  | 4            | က            | 2            | <del></del>  |            | <del></del>   |
|------------|--------------|--------------|--------------|--------------|------------|---------------|
| 103        | <u> </u>     | ≥            | ≥            | 3            | ≥          | <u>≷</u>      |
| 105        | >            | >            | >            | >            | >          | >             |
| 101        |              |              |              |              |            |               |
| 100E       | ட            | L.           | <u></u>      | ட            | ட          | ц.            |
| J001       | A            | Ö            | O            | Σ            | ≥          | O             |
| J001       |              | Σ            | Σ            | <del></del>  | $\prec$    | Σ             |
| 1008       | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ | Σ          | 0             |
| A001       | 8            | Ö            | Z            | Σ            |            | $\propto$     |
| 001        | $\checkmark$ | ≥            |              | 3            | ~          | ٠v            |
| 66         | ⋖            | ( <b>4</b>   | <b>(</b>     | < <          | \ \        | <             |
| 86         | C            | , <u>T</u>   | : >-         | - C          | · —        | <u>~</u>      |
| <u></u>    | $\succeq$    | : 🗠          | : >          | <u> </u>     | ـ مـ       | . ⊻           |
| 96         |              | - Z          | : >          | <b>&gt;</b>  | <b>:</b> × | <u> </u>      |
| 96         | >            | - >          | - >          | - >          | ∝          | : <b>&gt;</b> |
| <b>7</b> 6 | ~            | <u> </u>     | = ~          | = ~          | <u> </u>   | <u> </u>      |
| 83         | <            | < <          | < <          | ( <          | < 0        | < <           |
| <i>7</i> 6 | ر            | ر ر          | ے ر          | ے ر          | ی ر        | ں ر           |

Figure 22: Sequence analysis of lymphotoxin-13 binders

| Frequency  | 16           | _   |          | - ,           | _        | <del></del> | <del></del> | <del></del>  | <b>~</b> |
|------------|--------------|-----|----------|---------------|----------|-------------|-------------|--------------|----------|
| 103        | ≥            | ≥   | 3        | <b>&gt;</b> : | <u>≷</u> | <u>≥</u>    | ≊           | <u>≥</u>     | <u>≥</u> |
| 105        | >            | >-  | >        | - :           | >        | >-          | >           | >            | >-       |
| 101        |              |     |          | ، د           |          |             |             |              |          |
| 100E       | ட            | Σ   | <u> </u> | _             | Σ        | Σ           | ட           | Σ            | <u> </u> |
| 1000       | エ            | ۵   | . c      | J             | ≥        | >           | S           | ≥            | ≥        |
| J001       | 9            |     | ) >      | >             | 工        | エ           | O           | ш            | >        |
| 1008       | $\checkmark$ | >   | - 3      | 3             | 工        | 0           | <del></del> | Z            | ≥        |
| A001       |              | v   | ) >      | <b>&gt;</b>   | ۵        | <u>~</u>    | ட           | ш            | ட        |
| 001        | $\checkmark$ | Z   | 2 2      | Z             | ¥        | A           | O           | <del> </del> |          |
| 66         | S            | , L | - (      | $\supset$     | لـــا    | O           | S           | O            |          |
| 86         | 8            | : _ | - د      |               | >        | ш           | Z           | ш.           | <b>—</b> |
| ۷6         | >            | - 0 | < 1      | $\Box$        | 4        | _           | 工           | 工            | ۵        |
| 96         | $\simeq$     | : 3 | >        | ⋖             | O        |             | · ≥         |              | $\geq$   |
| 96         | <b>C</b>     | j   | 1        | ≥             |          | <u>~</u>    | · •         | >            | 0        |
| <b>7</b> 6 | $\alpha$     | = = | ~        | <u>~</u>      | α.       | Ω           | : 🗠         | : 🗠          | <u>~</u> |
| 63         | <            | ( < | Ζ_       | ×             | Ø        | ∶           | < ∀         | . Δ          | < <      |
| 76         |              | ٠ ر | ر        | ں             | ر        | ى ر         | ے ر         | ے ر          | , U      |

Figure 23: Sequence analysis of ESL-1 binders

| Frequency  | 4         | 4        | 2          | <del></del> | _        | 2        | <del></del>  | 13           | က            | _            | <del></del> | <del></del> |
|------------|-----------|----------|------------|-------------|----------|----------|--------------|--------------|--------------|--------------|-------------|-------------|
| 103        | ≥         | ≥        | >          | ≥           | 3        | ≥        | <u>&gt;</u>  | ≥            | ≥            | ≥            | ≥           | <u> </u>    |
| 105        | >         | >        | >          | >-          | >        | >-       | >-           | >            | >            | >            | >-          | >           |
| 101        |           |          | ٥          |             |          |          |              |              |              |              |             |             |
| 100E       | ı         | ட        | ≥          | ≥           | Σ        | ≥        | ᄔ            | ட            | ≥            | ட            | ŧ           | ≥           |
| 000 l      | ı         | ~        | O          |             | O        |          | $\checkmark$ | $\checkmark$ | $\propto$    | <u></u>      | ı           | _           |
| 100Ca      | ŧ         | ŧ        | ı          | 1           | œ        | ı        | 1            | 1            | ı            | 1            | 1           | 1           |
| J001       | i         | <u>~</u> | œ          | $\alpha$    | Œ        | _        | $\propto$    | $\propto$    | ≥            | $\propto$    | 1           | $\propto$   |
| 1008       | ı         | >        | S          | _           | ط        |          | >            | æ            | 0            | $\times$     | 1           | æ           |
| A001       | ı         | ட        | $\prec$    | V           | ≥        | Σ        | ≥            | <del></del>  | 工            | S            | ł           | O           |
| 100        | ш         | S        | S          | 9           | S        |          | 8            | $\prec$      | >            | $\checkmark$ | بيا         | <b>'</b>    |
| 66         | <b>—</b>  | 0        | S          | >           | V        | >        | <del> </del> | S            | >-           | <b>—</b>     | ш           | <b>—</b>    |
| 86         | ட         | ш        | ш          | ш           | LL.      | ≥        | لیا          | لنا          | Ö            | ш            | Σ           | ندا         |
| <b>Z</b> 6 | 9         |          | <u> </u>   |             | ட        | ш        | S            | ¥            | <del></del>  | $\propto$    | _           | ш           |
| 96         | L         |          |            | O           | 工        | Z        | >-           | ட            | ¥            | ≥            | >           | ட           |
| <i>9</i> 6 | 9         | 0        | <b>—</b>   | ш           | Z        | ىب       | O            | Ö            | $\checkmark$ | <u>~</u>     |             | O           |
| <b>7</b> 6 | $\propto$ | . œ      | : œ        | <u>~</u>    | <u>~</u> | <u>~</u> | ~            | æ            | 8            | $\propto$    | <u>~</u>    | ~           |
| 63         | Ø         | ∶ ⊲      | : <b>d</b> | < ∠         | ∶        | < <      | <            | K            | A            | ⋖            | ∀           | ⋖           |
| 76         | ر         | ر ر      | ر ر        | ر<br>ا      | ر ر      | ت ر      | ت ا          | ر<br>ا       | <u>ں</u>     | <i>ن</i>     | <u>ں</u>    | S           |

| bind         |
|--------------|
| f BSA t      |
|              |
| e analysis o |
| nce a        |
| Sequence     |
| 24: 5        |
| Figure       |
| ιΞ           |

| Freq       |     |            |     |              |          |              |
|------------|-----|------------|-----|--------------|----------|--------------|
| 103        | ≊   | ≷          | ≷   | ≥            | ≥        | <u> </u>     |
| 105        | >   | >          | >   | >            | >        | >            |
| 101        |     |            | ۵   | ۵            |          |              |
| 100E       | Σ   | ш.         | Σ   | Σ            | Σ        | ш.           |
| 100D       | >   | ~          | æ   | O            | >-       | ட            |
| J001       | >   | ட          | >   | S            | ≥        | エ            |
| 1008       |     | >-         | >   | ≥            | Z        | <del></del>  |
| A001       |     | Z          | ш   | S            | ۵.       |              |
| 100        | V   | >          | Σ   | _            | A        | ٥            |
| <b>6</b> 6 | >   | ≥          | O   | œ            | ≶        | $\checkmark$ |
| 86         | LL_ | >          | ш   | >            | ~        | ட            |
| ۷6         | 9   | -          | ш.  | ш            | S        | G            |
| 96         | Ö   | ய          | ட   | $\checkmark$ | ۵        | G            |
| 96         |     | >          | >   | ш            | >-       |              |
| <b>7</b> 6 | 8   | · œ        | · œ | ~            | $\alpha$ | <u>~</u>     |
| 63         | <   | : <b>A</b> | : ⋖ | < <          | _        | <b>A</b>     |
| <i>7</i> 6 | ر   | , ر        | ت ر | ت د          | <u> </u> | , U          |
|            |     |            |     |              |          |              |

||IS\*

ompa Nal Xbal BgIII • lox site lox site ColEI Ext2 origin p15A module -Aatll Jac p/o cat pCAL system Nhel fl ori lox' site Fsel BsrGI gIII ss Pacl\_lpp-Terminator-(His, myc) Find F taiis domains module IMP-Figure 25: modular pCAL vector system functions (IL2) lacI effector long SUBSTITUTE SHEET (RULE 26)

WO 97/08320 PCT/EP96/03647

Figure 25a: List of unique restriction sites used in or suitable for HuCAL genes or pCAL vectors

| unique restriction site | Isoschizomers                     |
|-------------------------|-----------------------------------|
| Aatll                   | 1                                 |
| AfIII                   | Bfrl, BspTl, Bst98l               |
| Ascl                    | 1                                 |
| Asel                    | Vspl, Asnl, PshBl                 |
| BamHl                   | Bstl                              |
| Bbel                    | Ehel, Kasl, Narl                  |
| Bbsl                    | BpuAl, Bpil                       |
| BgIII                   | 1                                 |
| Blpl                    | Bpu1102i,Celli, Bipi              |
| BsaBI                   | Maml, Bsh1365l, BsrBRl            |
| BsiWl                   | Pfl23II, SpII, SunI               |
| BspEl                   | Accill, BseAl, BsiMl, Kpn2l, Mrol |
| BsrGI                   | Bsp1407l, SspBl                   |
| BssHII                  | Paul                              |
| BstEll                  | BstPl, Eco91l, Eco0651            |
| BstXI                   |                                   |
| Bsu36l                  | Aocl, Cvnl, Eco811                |
| Dralll                  |                                   |
| DsmAl                   |                                   |
| Eagl                    | BstZI, EclXI, Eco52I, XmaIII      |
| Eco57l                  |                                   |
| Eco01091                | Drall                             |
| EcoRI                   |                                   |
| EcoRV                   | Eco32I                            |
| Fsel                    |                                   |
| HindIII                 | 1                                 |
| Hpal                    |                                   |
| Kpnl                    | Acc651, Asp7181                   |
| Miul                    | /                                 |
| Mscl                    | Ball, MluNl                       |

Figure 25a: List of unique restriction sites used in or suitable for HuCAL genes or pCAL vectors

| unique restriction site | Isoschizomers                      |
|-------------------------|------------------------------------|
| Muni                    | Mfel                               |
| Nhel                    | 1                                  |
| Nsil                    | Ppu10l, EcoT22l, Mph1103l          |
| NspV                    | Bsp1191, BstBl, Csp451, Lspl, Sful |
| Pacl                    | 1                                  |
| Pmel                    | 1                                  |
| PmII                    | BbrPl, Eco72l, PmaCl               |
| Psp5II                  | PpuMl                              |
| Pstl                    | 1                                  |
| RsrII                   | (Rsril), Cpol, Cspl                |
| SanDI                   |                                    |
| Sapl                    |                                    |
| SexAI                   | 1                                  |
| Spel                    | 1                                  |
| Sfil                    | 1                                  |
| Sphl                    | Bbul, Pael,Nspl                    |
| Stul                    | _ Aatl, Eco147l                    |
| Styl                    | Eco130l, EcoT14l                   |
| Xbal                    | BspLU11II                          |
| Xhol                    | PaeR7I                             |
| Xmal                    | Aval, Smal, Cfr9l, PspAl           |

| WO 97/08320                                                    |                                                      |                                                        |                             | T CI/EI > 0.000                                                                                                                     |
|----------------------------------------------------------------|------------------------------------------------------|--------------------------------------------------------|-----------------------------|-------------------------------------------------------------------------------------------------------------------------------------|
| reference                                                      | Skerra et al. (1991)<br>Bio/Technology 9,<br>273–278 | Hoess et al. (1986)<br>Nucleic Acids Res.<br>2287–2300 | see M2                      | Ge et al., (1994) Expressing antibodies in E. coli. In: Antibody engineering: A practical approach. IRL Press, New York, pp 229-266 |
| template                                                       | vector<br>pASK30                                     | (synthetic)                                            | (synthetic)                 | vector<br>plG10                                                                                                                     |
| sites to be<br>inserted                                        | Aatil                                                | lox, BgIII                                             | lox', Sphl                  | none                                                                                                                                |
| sites to be<br>removed                                         | 2x Vspl<br>(Asel)                                    | 2x Vspl<br>(Asel)                                      | none                        | Sphl,<br>BamHl                                                                                                                      |
| functional element                                             | lac<br>promotor/opera or                             | Cre/lox<br>recombination site                          | Cre/lox' recombination site | glllp of filamentous<br>phage with N-<br>terminal<br>myctail/amber<br>codon                                                         |
| Figure 26: list of pCAL vector modules  module/flan- king func | sites<br>Aatil-lacp/o-<br>Xbal                       | BgIII-lox-<br>Aatll                                    | Xbal-lox'-<br>Sphl          | EcoRI-<br>gIIIIong-<br>HindIII                                                                                                      |
| Figure 28<br>No                                                | M M                                                  | M2                                                     | M3                          | M7-I                                                                                                                                |

|                                        | see M7-I                                                                      | see M7-I                                                                 | see M3                        | see M1               | see M1                       | see M1                                    | see M1                                    |
|----------------------------------------|-------------------------------------------------------------------------------|--------------------------------------------------------------------------|-------------------------------|----------------------|------------------------------|-------------------------------------------|-------------------------------------------|
|                                        | vector<br>plG10                                                               | vector<br>plG10                                                          | (synthetic)                   | (synthetic)          | pASK30                       | pASK30                                    | pASK30                                    |
|                                        |                                                                               | ·                                                                        | kol                           | Pacl, Fsel           | Pacl, Fsel,<br>BsrGl         | BsrGl, Nhel                               | BsrGl, Nhel                               |
|                                        | Sphl                                                                          | Sphl, Bbsl                                                               | none                          | none                 | Vspl,<br>Eco571,<br>BssSl    | Dralll<br>(Banll not<br>removed)          | DrallI,<br>BanlI                          |
| nodules                                | truncated gillp of<br>filamentous phage<br>with N-termina! Gly-<br>Ser linker | truncated gillp of filamentous phage with N-terminal myctail/amber codon | Cre/lox<br>recombination site | lpp-terminator       | beta-lactamase/bla<br>(ampR) | origin of single-<br>stranded replication | origin of single-<br>stranded replication |
| Figure 26: list of pCAL vector modules | M7-II EcoRI-gillss-                                                           | M7-III EcoRI-gillss-<br>Hindill                                          | Sphl-lox-<br>HindIII          | HindIII-lpp-<br>Pacl |                              | BsrGI-f1 ori-<br>Nhel                     | BsrGI-f1 ori-<br>Nhel                     |
| Figure 26                              | M7-11                                                                         | <u> </u>                                                                 |                               | II-6W                | -01W<br>RULE 26)             | M11-                                      | M11-                                      |

Figure 26: list of pCAL vector modules

| v                                      | VO 97/08320                               | )                          |                                                |                                                                              |                                  | PCT/EP96/03                                                 |
|----------------------------------------|-------------------------------------------|----------------------------|------------------------------------------------|------------------------------------------------------------------------------|----------------------------------|-------------------------------------------------------------|
| Dec DE (1000)                          | Nucleic Acids Res.<br>16, 355             | see M3                     | Yanisch-Peron, C.<br>(1985) Gene<br>33,103-119 | Cardoso, M. Et<br>Schwarz,S. (1992)<br>J. Appl.<br>Bacteriol.72, 289-<br>293 | see M1                           | Knappik, A & Plückthun, A. (1994) BioTechniques 17, 754-761 |
|                                        | pACYC184                                  | (synthetic)                | pUC19                                          | pACYC184                                                                     | (synthetic)                      | (synthetic)                                                 |
|                                        | Nhel, Bgill                               | BgIII, lox,<br>Xmnl        | BgIII, Nhel                                    |                                                                              |                                  | ·                                                           |
|                                        | BssSI, VspI,<br>NspV                      | none                       | Eco57l<br>(BssSl not<br>removed)               | BspEI, MscI,<br>Styl/Ncol                                                    | (synthetic)                      | (synthetic)                                                 |
| E COURCE                               | origin of double-<br>stranded replication | Cre/lox recombination site | origin of double-<br>stranded replication      | chloramphenicol-<br>acetyltransferase/<br>cat (camR)                         | signal sequence of phosphatase A | signal sequence of<br>phosphatase A +<br>FLAG detection tag |
| rigurezo: IIst oi pear vectoi inoduica | Nhel-p15A-<br>BgIII                       | BgIII-lox-<br>BgIII        | BgIII-ColEI-<br>Nhel                           | Aatll-cat-<br>BgIII                                                          | Xbal-phoA-<br>EcoRI              | Xbal-phoA-<br>FLAG-EcoRI                                    |
| rigurez                                | M12                                       | M13                        | M14-<br>Ext2                                   | M17                                                                          | M19                              | M20                                                         |

| 11111 | #<br>#<br># |
|-------|-------------|
| ì,    | 7           |
|       | ***         |
| ;;    | ==          |
|       | 100         |
| 400   | 1           |
| ij,   | ű           |
| ľ     | Hom         |
|       | 222         |
| :::   | ===         |
| H     |             |
| ď.    | 11111       |

off the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of t

Figure 26: list of DCAL vector modules

| WO 97/08320                                                  |                                                                  |                                                                                         |
|--------------------------------------------------------------|------------------------------------------------------------------|-----------------------------------------------------------------------------------------|
| Lee et al. (1983)<br>Infect. Immunol.<br>264-268             | see M1                                                           | Lindner et al.,<br>(1992) Methods: a<br>companion to<br>methods in<br>enzymology 4, 41- |
| (synthetic)                                                  | pASK30                                                           | (synthetic)                                                                             |
|                                                              |                                                                  |                                                                                         |
| (synthetic)                                                  | BstXI,<br>MluI,BbsI,<br>BanII,<br>BstEII,<br>HpaI, BbeI,<br>VspI | (synthetic)                                                                             |
| heat-stable<br>enterotoxin II signal (synthetic)<br>sequence | lac-repressor                                                    | poly-histidine tail                                                                     |
| A21 Xbal-stll- enter                                         | AfIII-laci-<br>Nhel                                              | EcoRI-Histail-<br>HindIII                                                               |
| M21                                                          | M41                                                              | M42                                                                                     |

SUBSTITUTE SHEET (RULE 25) 79 / 204 re betilde eller energy or energy or energy and addition





| BsrGI<br>~~~~~<br>cccccccc rgracacccc<br>gggggggg acargrgggg                                                                                  | Aatii Xbai<br>CCCCCCGA CGTCCCCCT<br>GGGGGGCT GCAGGGGGGA      | ECORI AAtII<br>CGAATTCGAC GTC<br>GCTTAAGCTG CAG                                                |
|-----------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|------------------------------------------------------------------------------------------------|
| PacI<br>~~~~<br>!TAATTAA                                                                                                                      | BgllI<br>~~~~~~<br>CCAGATCTCC<br>GGTCTAGAGG                  | 9999999999<br>222222222<br>~                                                                   |
| Figure 27: functional map and sequence of MCS module (continued)  HindIII  ACATGTAAGC TTCCCCCCCC CCTTAATTAA  TGTACATTCG AAGGGGGGGG GGAATTAATT | CCCCCGCTA GCCCCCCCC CCAGATCTCC CCCCCCGA CGTCCCCCT GGGGGGGGGG | xbai EcoRI AatII  cTAGACCCCC CCCCCCCCCC CGAATTCGAC GTC GATCTGGGG GGGGGGGGGGGGGGGGGGGGGGCTG CAG |
| igure 27: function: 1 ACAT TGTZ                                                                                                               | 51 CCC                                                       | XbaI<br>~~~~~<br>101 CTAGA<br>GATCT                                                            |

Figure 28: functional map and sequence of pMCS cloning vector



The first at the gard and the gard at the gard at the gard at the gard at the gard at the gard at the gard at the gard at the gard at the gard at the gard at the gard at the gard at the gard at the gard at the gard at the gard at the gard at the gard at the gard at the gard at the gard at the gard at the gard at the gard at the gard at the gard at the gard at the gard at the gard at the gard at the gard at the gard at the gard at the gard at the gard at the gard at the gard at the gard at the gard at the gard at the gard at the gard at the gard at the gard at the gard at the gard at the gard at the gard at the gard at the gard at the gard at the gard at the gard at the gard at the gard at the gard at the gard at the gard at the gard at the gard at the gard at the gard at the gard at the gard at the gard at the gard at the gard at the gard at the gard at the gard at the gard at the gard at the gard at the gard at the gard at the gard at the gard at the gard at the gard at the gard at the gard at the gard at the gard at the gard at the gard at the gard at the gard at the gard at the gard at the gard at the gard at the gard at the gard at the gard at the gard at the gard at the gard at the gard at the gard at the gard at the gard at the gard at the gard at the gard at the gard at the gard at the gard at the gard at the gard at the gard at the gard at the gard at the gard at the gard at the gard at the gard at the gard at the gard at the gard at the gard at the gard at the gard at the gard at the gard at the gard at the gard at the gard at the gard at the gard at the gard at the gard at the gard at the gard at the gard at the gard at the gard at the gard at the gard at the gard at the gard at the gard at the gard at the gard at the gard at the gard at the gard at the gard at the gard at the gard at the gard at the gard at the gard at the gard at the gard at the gard at the gard at the gard at the gard at the gard at the gard at the gard at the gard at the gard at the gard at the gard at the gard at the gard at the THE REAL REST. IN 18,30 MIN.

TO BE THE CONTROL OF THE WINE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTRO

The state of the state of

Figure 28: functional map and sequence of pMCS cloning vector (continued)

- TTGTTTATT AACAAATAAA CTTGGGGATA GAACCCCTAT AATGTGCGCG TTACACGCGC CAGGTGGCAC TTTTCGGGGA GTCCACCGTG AAAAGCCCCT GTCCACCGTG
- TTGGGACTAT AACCCTGATA TACTCTGTTA ATGAGACAAT GTATCCGCTC CATAGGCGAG TAAGTTTATA ATTCAAATAT TTCTAAATAC AAGATTTATG 51
- CAACATTTCC GTTGTAAAGG ATACTCATAA TATGAGTATT TTTCCTTCTC AAAGGAAGAG TAATATTGAA ATTATAACTT AATGCTTCAA TTACGAAGTT 101
- TGTTTTGCT ACAAAAACGA AAACGCCGTA AAACGGAAGG TTTGCCTTCC TATTCCCTTT TTTGCGGCAT ATAAGGGAAA CACAGCGGGA GTGTCGCCCT 151

Eco57I

BssSI AGTTGGGTGC TCAACCCACG CGACTTCTAG GCTGAAGATC TCATTTTCTA AGTAAAAGAT GCGACCACTT CGCTGGTGAA CACCCAGAAA GIGGGICTIT 201

TAGGAACTCT ATCCTTGAGA CAGCGGTAAG GTCGCCATTC ACCTAGAGTT TGGATCTCAA ACGAGTGGGT TACATCGAAC ATGTAGCTTG TGCTCACCCA BssSI 1111 251

Figure 28: functional map and sequence of pMCS cloning vector (continued)

|   | _  |
|---|----|
|   | -1 |
| r | -  |
| ۲ | 4  |
| • | -  |
| č | =  |
| ď | コ  |
| > | C  |

| 301 | GTTTTCGCCC | CGAAGAACGT               | TTTCCAATGA               | TGAGCACTTT               | TAAAGTTCTG               |
|-----|------------|--------------------------|--------------------------|--------------------------|--------------------------|
|     | CAAAAGCGGG | GCTTCTTGCA               | AAAGGTTACT               | ACTCGTGAAA               | ATTTCAAGAC               |
| 351 | CTATGTGGCG | CGGTATTATC               | CCGTATTGAC               | GCCGGGCAAG               | AGCAACTCGG               |
|     | GATACACCGC | GCCATAATAG               | GGCATAACTG               | CGGCCCGTTC               | TCGTTGAGCC               |
| 401 | TCGCCGCATA | CACTATTCTC<br>GTGATAAGAG | AGAATGACTT<br>TCTTACTGAA | GGTTGAGTAC<br>CCAACTCATG | TCACCAGTCA<br>AGTGGTCAGT |
| 451 | CAGAAAAGCA | TCTTACGGAT               | GGCATGACAG               | TAAGAGAATT               | ATGCAGTGCT               |
|     | GTCTTTTCGT | AGAATGCCTA               | CCGTACTGTC               | ATTCTCTTAA               | TACGTCACGA               |
| 501 | GCCATAACCA | TGAGTGATAA               | CACTGCGGCC               | AACTTACTTC               | TGACAACGAT               |
|     | CGGTATTGGT | ACTCACTATT               | GTGACGCCGG               | TTGAATGAAG               | ACTGTTGCTA               |
| 551 | CGGAGGACCG | AAGGAGCTAA<br>TTCCTCGATT | CCGCTTTTTT<br>GGCGAAAAAÄ | GCACAACATG<br>CGTGTTGTAC | GGGGATCATG<br>CCCCTAGTAC |
| 601 | TAACTCGCCT | TGATCGTTGG               | GAACCGGAGC               | TGAATGAAGC               | CATACCAAAC               |
|     | ATTGAGCGGA | ACTAGCAACC               | CTTGGCCTCG               | ACTTACTTCG               | GTATGGTTTG               |
| 651 | GACGAGCGTG | ACACCACGAT               | GCCTGTAGCA               | ATGGCAACAA               | CGTTGCGCAA               |

AAATCTAACT AAATTTTGAA GTAAAAATTA

AGTATATATG

GGTTCAAATG

CTGCTCGCAC TGTGGTGCTA CGGACATCGT TACCGTTGTT GCAACGCGTT Figure 28: functional map and sequence of pMCS cloning vector (continued)

|        | AseI | ~~~~ | CAATTAATAG<br>GTTAATTATC | CTCGGCCCTT<br>GAGCCGGGAA | AGCGTGGGTC<br>TCGCACCCAG | TCCCGTATCG<br>AGGGCATAGC | ACGAAATAGA<br>TGCTTTATCT | AACTGTCAGA<br>TTGACAGTCT | CATTTTAAT                   |
|--------|------|------|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|-----------------------------|
|        |      |      | TTCCCGGCAA<br>AAGGGCCGTT | CACTTCTGCG<br>GTGAAGACGC | GGAGCCGGTG<br>CCTCGGCCAC | TGGTAAGCCC<br>ACCATTCGGG | CTATGGATGA<br>GATACCTACT | AAGCATTGGT<br>TTCGTAACCA | TTTAAAACTT                  |
|        |      |      | TTACTCTAGC<br>AATGAGATCG | GTTGCAGGAC               | TGATAAATCT<br>ACTATTTAGA | TGGGGCCAGA<br>ACCCCGGTCT | AGTCAGGCAA<br>TCAGTCCGTT | CTCACTGATT<br>GAGTGACTAA | ATAC TITAGATIGA TITIAAAACTI |
| ;<br>; |      |      | GGCGAACTAC<br>CCGCTTGATG | GGCGGATAAA<br>CCGCCTATTT | GGTTTATTGC<br>CCAAATAACG | ATTGCAGCAC<br>TAACGTCGTG | CACGACGGGG               | AGATAGGTGC<br>TCTATCCACG | CCAAGTTTAC TCATATATAC       |
|        |      |      | ACTATTAACT<br>TGATAATTGA | ACTGGATGGA<br>TGACCTACCT | CCGGCTGGCT<br>GGCCGACCGA | TCGCGGTATC<br>AGCGCCATAG | TAGTTATCTA<br>ATCAATAGAT | CAGATCGCTG<br>GTCTAGCGAC | CCAAGTTTAC                  |
|        |      |      | 701                      | 751                      | 801                      | 851                      | 901                      | 951                      | 1001                        |

AAGTTCTTGA

TCCGGTGGTG

TCGGCATCAA

GAAGATCACA

TTTATGACAG

GCCTACATAC CGGATGTATG

GACATCGTGG

CTGTAGCACC

1351

CTCGCTCTGC TAATCCTGTT ACCAGTGGCT GAGCGAGACG ATTAGGACAA TGGTCACCGA

GAGCGAGACG

Figure 28: functional map and sequence of pMCS cloning vector (continued)

| GACCAAAATC<br>CTGGTTTTAG | TAGAAAAGAT<br>ATCTTTTCTA | TGCTGCTTGC<br>ACGACGAACG | GGATCAAGAG<br>CCTAGTTCTC                     | CGCAGATACC<br>GCGTCTATGG                                 |                  | TTCAAGAACT            |
|--------------------------|--------------------------|--------------------------|----------------------------------------------|----------------------------------------------------------|------------------|-----------------------|
| ATAATCTCAT<br>TATTAGAGTA | TCAGACCCCG<br>AGTCTGGGGC | GCGCGTAATC<br>CGCGCATTAG | TTTGTTTGCC<br>AAACAAACGG                     | GGTAACTGGC TTCAGCAGAG<br>CCATTGACCG AAGTCGTCTC<br>Eco57I | <b>? ? ? ? ?</b> | AGCCGTAGTT AGGCCACCAC |
| ATCCTTTTTG<br>TAGGAAAAAC | CCACTGAGCG<br>GGTGACTCGC | CTTTTTTCT<br>GAAAAAAAGA  | CCAGCGGTGG                                   | GGTAACTGGC<br>CCATTGACCG<br>EC                           | ?                | AGCCGTAGTT            |
| CTAGGTGAAG<br>GATCCACTTC | AGTTTTCGTT<br>TCAAAAGCAA | TCTTGAGATC<br>AGAACTCTAG | ACCACCGCTA<br>TGGTGGCGAT                     | TTTTTCCGAA<br>AAAAAGGCTT                                 |                  | AAATACTGTC CTTCTAGTGT |
| TTAAAAGGAT<br>AATTTTCCTA | CCTTAACGTG<br>GGAATTGCAC | CAAAGGATCT<br>GTTTCCTAGA | AAACAAAAA ACCACCGCTA<br>TTTGTTTTT TGGTGGCGAT | CTACCAACTC<br>GATGGTTGAG                                 | 4                | AAATACTGTC            |
| 1051                     | 1101                     | 1151                     | 1201                                         | 1251                                                     |                  | 1301                  |
|                          |                          | 4                        | ייייני וידודים חוווי                         | - Urinami (Uris) E                                       | 001              |                       |

| <b>-</b>                                                      |
|---------------------------------------------------------------|
| unctional map and sequence of pMCS cloning vector (continued) |
| vector                                                        |
| cloning                                                       |
| f pMCS                                                        |
| ice of                                                        |
| i sequence                                                    |
| o and                                                         |
| al ma                                                         |
| Figure 28: functiona                                          |
| 28:                                                           |
| Figure                                                        |

|   | GCTGCCAGTG GCGATAAGTC GTGTCTTACC GGGTTGGACT CAAGACGATA | STCAC CGCTATTCAG CACAGAATGG CCCAACCTGA GTTCTGCTAT |
|---|--------------------------------------------------------|---------------------------------------------------|
| 1 | GGGTTGGACT                                             | CCCAACCTGA                                        |
|   | GTGTCTTACC                                             | CACAGAATGG                                        |
| • | GCGATAAGTC                                             | CGCTATTCAG                                        |
| - | GCTGCCAGTG                                             | CGACGGTCAC                                        |
|   | 1401                                                   | <del>!</del><br>><br>1                            |

| SAT AAGGCGCAGC GGTCGGGCTTG AACGGGGGGT TCGTGCACAC | OTT GGAGCGAACG ACCTACACCG AACTGAGATA CCTACAGCGT |
|--------------------------------------------------|-------------------------------------------------|
| SAT AAGGCGCAGC GGTCGGGCTG AACGGGGGGT TCGTGCACAC  | TT GGAGCGAACG ACCTACACCG AACTGAGATA CCTACAGCGT  |
| GGTCGGGCTG<br>CCAGCCCGAC                         | ACCTACACCG                                      |
| AAGGCGCAGC<br>TTCCGCGTCG                         | GGAGCGAACG                                      |
| GTTACCGGAT<br>CAATGGCCTA                         | AGCCCAGCTT                                      |
| 1451                                             | 1501                                            |

| TCGGGTCGAA CCTCGCTTGC TGGATGTGGC TTGACTCTAT GGATGTCGCA | GCTTCCCGAA GGGAGAAAGG CGGACAGGTA                                     | HEADEL TOURS OF THE PROPERTY OF THE PROPERTY OF THE COME. |
|--------------------------------------------------------|----------------------------------------------------------------------|-----------------------------------------------------------|
| ${ m TTG}$                                             | 2000                                                                 | CCC.                                                      |
| TGGATGTGGC                                             | GCTTCCCGAA<br>CGAAGGGCTT                                             | GAACAGGAGA                                                |
| GAA CCTCGCTTGC                                         | GAGCTATGAG AAAGCGCCAC GCTTCCCGAA<br>CTCGATACTC TTTCGCGGTG CGAAGGGCTT | むし止むむむなしむむ                                                |
| TCGGGTCGAA                                             | GAGCTATGAG AAAGCGCCAC<br>CTCGATACTC TTTCGCGGTG                       | プラダダ中ででして出                                                |
| +<br>><br>-                                            | 1551                                                                 | 1601                                                      |

|     | AACGC CTGGTATCTT TATAGTCCTG TCGGGTTTCG CCACCTCTGA | CITITGCG GACCATAGAA ATATCAGGAC AGCCCAAAGC GGTGGAGACT |
|-----|---------------------------------------------------|------------------------------------------------------|
| •   | TCGGGTTTCG                                        | AGCCCAAAGC                                           |
|     | TATAGTCCTG                                        | ATATCAGGAC                                           |
|     | CTGGTATCTT                                        | GACCATAGAA                                           |
|     | GGGGAAACGC                                        | CCCCTTTGCG                                           |
| 261 | 1651                                              |                                                      |

BssSI

| SCGTC GATTTTTGTG ATGCTCGTCA GGGGGGGGGG GCCTATGGAA | GCAG CTAAAAACAC TACGAGCAGT CCCCCCGCCT CGGATACCTT |
|---------------------------------------------------|--------------------------------------------------|
| GGGGGGCGGA                                        | CCCCCCGCCT                                       |
| ATGCTCGTCA                                        | TACGAGCAGT                                       |
| GATTTTTGTG                                        | CTAAAAACAC TAC                                   |
| CTTGAGCGTC                                        | GAACTCGCAG                                       |
| 1701                                              |                                                  |

| TGCTGGCCTT  |
|-------------|
| CCTGGCCTTT  |
| TTTACGGTT C |
| AACGCGGCCT  |
| AAACGCCAGC  |
| 1751        |

|                                                                           | GGACCGGAAA ACGACCGGA                                  |
|---------------------------------------------------------------------------|-------------------------------------------------------|
| Figure 28: functional map and sequence of pMCS cloning vector (continued) | TTTGCGGTCG TTGCGCCGGA AAAATGCCAA GGACCGGAAA AUGAUUGGA |

|             | BsrGI<br>~~~~<br>CCCCCTGTA<br>GGGGGACAT      | Aatii<br>ccccaacerc<br>ggggcrgcag                                                   | ECORI<br>SAA TTCACGT<br>CTT AAGTGCA                                        |
|-------------|----------------------------------------------|-------------------------------------------------------------------------------------|----------------------------------------------------------------------------|
|             | HindIII  ZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZ   | Nhel Bglll Aatll CCGCTAGCC CCCCGACGTC GGCGATCGTC GGCGGGGGGGTC TAGAGGGGGG GGGGCTGCAG | 555555555555555555555555555555555555555                                    |
|             | CCCCCCCTT                                    | Bg<br>CCCCCCCCAG<br>GGGGGGGTC                                                       | xbal Sphi<br>ccccrcrag Accccccc ccargccc<br>gggggagarc rgggggggg gcgracggg |
| ;<br>;<br>; | HindIII<br>~~~~~<br>GTAAGCTTCC<br>CATTCGPAGG |                                                                                     | ACCCCCCCC                                                                  |
|             | TTGCTCACAT                                   | BsrGI<br>~~<br>CACCCCCCC<br>GTGGGGGGGG                                              | XbaI<br>CCCCCTCTAG A                                                       |
|             | 1801                                         | 1851                                                                                | 1901                                                                       |
|             |                                              | SUBSTIT                                                                             | UTE SHEET (RULE 26                                                         |

Figure 29: functional map and sequence of pCAL module M1



SUBSTITUTE SHEET (RULE 26) 89 / 204

Figure 29: functional map and sequence of pCAL module M1

AatII

2222

CCGAAATGTG GGCTTTACAC AGGCACCCCA TCCGTGGGGT CTCACTCATT GAGTGAGTAA TGTGAGTTAG CTGCAGAATT ACACTCAATC GACGTCTTAA  $\leftarrow$ 

GATAACAATT CTATTGTTAA TAACACTCGC ATTGTGAGCG GTTGTGTGGA CAACACACCT CGGCTCGTAT GCCGAGCATA TTTATGCTTC AAATACGAAG 51

XbaI

12222

GA CICGAATTTCTA GCTTAAAGAT ACCATGATTA TGGTACTAAT AACAGCTATG TTGTCGATAC TCACACAGGA AGTGTGTCCT

SUBSTITUTE SHEET (RULE 26)

101



M7-III (ss/myc/TAG) 520 bp

SUBSTITUTE SHEET (RULE 26)

Figure 30: functional map and sequence of pCAL module M7-II (continued)

| ragg grggrggcrc<br>arcc caccaccgag | CGCT AATAAGGGGG<br>GCGA TTATTCCCCC                                                         | CTGA CGCTAAAGGC<br>GACT GCGATTTCCG                                                                                                                                                       | ATCG ATGGTTTCAT<br>TAGC TACCAAAGTA                                                                                                                                                                                                                                                  | TACT GGTGATTTTG<br>ATGA CCACTAAAAC                                                                                                                                                                                                                                                                                                                                              | GTGA TAATTCACCT<br>CACT ATTAAGTGGA                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | CCTC AATCGGTTGA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|------------------------------------|--------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                    |                                                                                            |                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ATAITIACCI TCCCICCCIC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| CTCTGAGGAG<br>GAGACTCCTC           | ATGAAAAGAT<br>TACTTTTCTA                                                                   | GAAAACGCGC<br>CTTTTGCGCG                                                                                                                                                                 | TGATTACGGT<br>ACTAATGCCA                                                                                                                                                                                                                                                            | CTAATGGTAA<br>GATTACCATT                                                                                                                                                                                                                                                                                                                                                        | GCTCAAGTCG<br>CGAGTTCAGG                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ATATTTACCT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| AGAAGCTGAT<br>TCTTCGACTA           | GATTTTGATT<br>CTAAAACTAA                                                                   | AAATGCCGAT<br>TTTACGGCTA                                                                                                                                                                 | CTGTCGCTAC<br>GACAGCGATG                                                                                                                                                                                                                                                            | TCCGGCCTTG<br>AGGCCGGAAC                                                                                                                                                                                                                                                                                                                                                        | TTCCCAAATG<br>AAGGGTTTAC                                                                                                                                                                                                                                                                                                                                                                                                                                             | H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | A ATTTCCGTCA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| GAATTCGAGC<br>CTTAAGCTCG           | TGGTTCCGGT<br>ACCAAGGCCA                                                                   | CTATGACCGA<br>GATACTGGCT                                                                                                                                                                 | AAACTTGATT<br>TTTGAACTAA                                                                                                                                                                                                                                                            | TGGTGACGTT<br>ACCACTGCAA                                                                                                                                                                                                                                                                                                                                                        | CTGGCTCTAA<br>GACCGAGATT                                                                                                                                                                                                                                                                                                                                                                                                                                             | rumX                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $\widetilde{\mathbb{Z}}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| <b>←i</b>                          | 21                                                                                         | 101                                                                                                                                                                                      | 151                                                                                                                                                                                                                                                                                 | 201                                                                                                                                                                                                                                                                                                                                                                             | 251                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 301                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                    | GAATTCGAGC AGAAGCTGAT CTCTGAGGAG GATCTGTAGG<br>CTTAAGCTCG TCTTCGACTA GAGACTCCTC CTAGACATCC | GAATTCGAGC AGAAGCTGAT CTCTGAGGAG GATCTGTAGG<br>CTTAAGCTCG TCTTCGACTA GAGACTCCTC CTAGACATCC<br>TGGTTCCGGT GATTTTGATT ATGAAAAGAT GGCAAACGCT<br>ACCAAGGCCA CTAAAACTAA TACTTTTCTA CCGTTTGCGA | 1 GAATTCGAGC AGAAGCTGAT CTCTGAGGAG GATCTGTAGG CTTAAGCTCG TCTTCGACTA GAGACTCCTC CTAGACATCC CTAGACATCC CTAGACATCC CTAGAACGCT ACCAAGGCCA CTAAAACTAA TACTTTTCTA CCGTTTGCGA ACCAGGCCA GAAATGCCGAT GAAAACGCGC TACAGTCTGA GATACTGGCT TTTACGGCTA CTTTTGCGC ATGTCAGACT CTTTTGCGCC ATGTCAGACT | 1 GAATTCGAGC AGAAGCTGAT CTCTGAGGAG GATCTGTAGG CTTAAGCTCG TCTTCGACTA GAGACTCCTC CTAGACATCC  51 TGGTTCCGGT GATTTTGATT ATGAAAAGAT GGCAAACGCT ACCAAGGCCA CTAAAACTAA TACTTTTCTA CCGTTTGCGA  101 CTATGACCGA AAATGCCGAT GAAAACGCGC TACAGTCTGA GATACTGGCT TTTACGGCTA CTTTTGCGCG ATGTCAGACT  151 AAACTTGATT CTGTCGCTAC TGATTACGGT GCTGCTATCG TTTGAACTAA GACAGCGATG ACTAATGCCA CGACGATAGC | 1 GAATTCGAGC AGAAGCTGAT CTCTGAGGAG GATCTGTAGG CTTAAGCTCC TTAAGCTCC CTAGACATCC CTAGACATCC CTAGACATCC CTAGACATCC CTAGACATCC CTAGACATCC CTAGACATCC CTAGACATCC CTAGACATCC CTAGACATCCC CTAGACGCT ACCAGGCCA TACATTTCTA CCGTTTGCGA AAATGCCGAT GAAAACGCC TACAGTCTGA GATACTGGCT TTTACGGCTA CTTTTGCGC ATGTCAGACT CTTTGAACTAA GACAGCGATG ACTAATGCCA CGACGATAGC ACCACGATGA ACCACGCATG ACTAATGCTAA TGGTGCTATCG ACTAATGCTAA TGGTGCTACT ACCACGATGA AGGCCGGAAC GATTACCATT ACCACGATGA | GAATTCGAGC AGAAGCTGAT CTCTGAGGAG GATCTGTAGG CTTAAGCTCG TCTTCGACTA GAGACTCCTC CTAGACATCC CTAGACATCC CTAGACATCC CTAGACATCC CTAGACTCC CTAGACTCC CTAGACTCC CTAGACTCC CTAGACTCC CTAGACTCCGA TACTTTTCTA CCGTTTGCGA TACTTTTCTA CCGTTTGCGA TACTTTTCTA CCGTTTGCGA TTTTACGGCTA CTTTTGCGC ATGTCAGACT CAAACTTGATT CTGTCGCTAC TGATTACGGT GCTGCTATCG TTTTGAACTTAA GACAGCGATG ACTAATGCTAA TGGTGCTACT ACCACGACTA AGGCCGGAAC GATTACCATT ACCACGATGA CTGGCTCTAA TGCTCCAAATG GCTCCAAGTCG GTGACGGTGA GACCGAGATTAC CGAGTTTAC CGAGTTTAC CGAGTTCAGC CACTGCCACT | 1 GAATTCGAGC AGAAGCTGAT CTCTGAGGAG GATCTGTAGG CTTAAGCTCG TCTTCGACTA GAGACTCCTC CTAGACATCC CTTAAGCTTCGAT ATGAAAAGAT GGCAAACGCT ACCAAGGCCA CTAAAACTAA TACTTTTCTA CCGTTTGCGA AAATGCCGAT GAAAACGCG TACAGTCTGA GATACTGGCT TTTACGGCTA CTTTTGCGC ATGTCAGACT CTTTTGCGC ATGTCAGACT CTTTTGCGCT CTGTCGCTAC TGATTACGGC GTGCTATCG ATGTCAGACT TTTGAACTTGAT TCCGGCCTTG ACTAATGGTAA TGGTGCTATCG ACCACTGCAA AGGCCGGAAC GATTACCATT ACCACGATGA ACCACTGCAA AGGCCGGAAC GATTACCATT ACCACGATGA GACCGCGAAC GATTACCATT ACCACGGTGA GACCGAGAC CATTACCATT ACCACGATGA AGGCCGCAAC GATTACCATT ACCACGATGA AGGCCGCAAC GATTACCATT ACCACGATGA AGGCCCGAAC CATTACCATT ACCACGATGA AGGCCTTAC CGAGTTCAGC CACTGCCACTT AMBIERT AAGGGTTTAC CGAGTTCAGC CACTGCCACTT AMBIER AAGGGTTTAC CGAGTTCAGC CACTGCCACTT AMBIERT AAGGGTTTAC CGAGTTCAGC CACTGCCACTT AMBIERT AAGGGTTTAC CGAGTTCAGC CACTGCCACTT AMBIERT AAGGGTTTAC CGAGTTCAGC CACTGCCACTT AMBIERT AAGGGTTTAC CGAGTTCAGC CACTGCCACTT AMBIERT AAGGGTTTAC CGAGTTCAGC CACTGCCACTT AMBIERT AAGGGTTTAC CGAGTTCAGC CACTGCCACTT AMBIERT AAGGGTTTAC CGAGTTCAGC CACTGCCACTT AMBIERT AAGGGTTTAC CGAGTTCAGC CACTGCCACTT AMBIERT AAGGGTTTAC CGAGTTCAGC CACTGCCACTT AMBIERT AAGGGTTTAC CGAGTTCAGC CACTGCCACTT AMBIERT AAGGGTTTAC CGAGTTCAGC CACTGCCACTT AMBIERT AAGGGTTTAC CGAGTTCAGC CACTGCCACTT AMBIERT AAGGGTTTAC CGAGTTCAGC CACTGCCACTT AMBIERT AAGGGTTTAC CGAGTTCAGC CACTGCCACTT AMBIERT AAGGGTTTAC CGAGTTCAGC CACTGCCACTT AMBIERT AAGGGTTTAC CGAGTTCAGC CACTGCCACTT AMBIERT AAGGGTTTAC CGAGTTCAGC CACTGCCACTT AMBIERT AAGGGTTTAC CGACGATGA CACTGCCACTT AMBIERT AAGGGTTTAC CGACGATGA CACTGCCACT AMBIERT AAGGGTTTACACT CACTGCCACT AMBIERT AAGGGTTTACC CACTGCCACT AMBIERT AAGGCTTACACT CACTGCCACT AMBIERT AAGGCTTACACT CACTGCCACT AMBIERT AAGGCTTACACT CACTGCCACT AMBIERT AAGGCTTACACT CACTGCCACT AMBIERT AAGGCTTACACT AMBIERT AAGGCTTACACT CACTGCCACT AMBIERT AAGGCTACT AMBIERT AAGGCTTACACT AMBIERT AAGGCTACT AAGGCTTACACT AMBIERTACACT AAGGCTACT AAGGCTACT AAGGCTACT AAGGCTACT AAGGCTACT AAGGCTACACT AAGGCTACT AAGGCTACT AAGGCTACT AAGGCTACT AAGGCTACT AAGGCTACT AAGGCTACT AAGGCTACT AAGGCTACT AAGGCTACT AAGGCTACT AAGGCTACT AAGGC |

Figure 30: functional map and sequence of pCAL module M7-II (continued)

| TTTTCTATTG<br>AAAAGATAAC                                   | TCTTTTATAT<br>AGAAAATATA                       | TACTGCGTAA<br>ATGACGCATT                               |
|------------------------------------------------------------|------------------------------------------------|--------------------------------------------------------|
| ACCATATGAA TTTTCTATTG<br>TGGTATACTT AAAAGATAAC             | TCTTTGCGTT TCTTTTATAT<br>AGAAACGCAA AGAAAATATA | TTTGCTAACA<br>AAACGATTGT                               |
| ATGTCGCCCT TTTGTCTTTG GCGCTGGTAA                           | ATTGTGACAA AATAAACTTA TTCCGTGGTG               | GTTGCCACCT TTATGTATGT ATTTTCTACG TTTGCTAACA TACTGCGTAA |
| TTTGTCTTTG<br>AAACAGAAAC                                   | AATAAACTTA<br>TTATTTGAAT                       | TTATGTATGT<br>AATACATACA                               |
| 351 ATGTCGCCCT TTTGTCTTTG GCGCTGGTAA ACCATATGAA TTTTCTATTG | ATTGTGACAA                                     | GTTGCCACCT<br>CAACGGTGGA                               |
| 351                                                        | 401                                            | 451                                                    |

HindIII

----501 TAAGGAGTCT TGATAAGCTT
ATTCCTCAGA ACTATTCGAA





Figure 31: functional map and sequence of pCAL module M9-II (continued)

HindIII

AGATTGTGCG TCTAACACGC AAAATGGCGC TTTTACCGCG TGTGAAGTGA ACACTTCACT AAGCTTGACC TTCGAACTGG 5555555555 c

PacI

FseI

CGGCCGGACC GGGGGGGG GCCGGCCTGG 

cccccccc

TTAATTAAAG AATTAATTTC TGTCTGCCGT ACAGACGGCA TGTAAAAAA ACATTTTTT

51

BsrGI

GGGGGGTGT ACAGGGGGG

TGTCCCCCC

CCCCCCACA

SUBSTITUTE SHEET (AULE 25)

101





SUBSTITUTE SHEET (RULE 26) 96 / 204

Figure 32: functional map and sequence of pCAL module M11-III (continued)

NheI

| ⊣   | GCTAGCACGC | GCCCTGTAGC<br>CGGGACATCG | GGCGCATTAA<br>CCGCGTAATT | 2225225252<br>55525252525 | TGTGGTGGTT<br>ACACCACCAA |
|-----|------------|--------------------------|--------------------------|---------------------------|--------------------------|
| 51  | ACGCGCAGCG | TGACCGCTAC               | ACTTGCCAGC               | GCCCTAGCGC                | CCGCTCCTTT               |
|     | TGCGCGTCGC | ACTGGCGATG               | TGAACGGTCG               | CGGGATCGCG                | GGCGAGGAAA               |
| 101 | CGCTTTCTTC | CCTTCCTTTC               | TCGCCACGTT               | CGCCGGCTTT                | CCCCGTCAAG               |
|     | GCGAAAGAAG | GGAAGGAAAG               | AGCGGTGCAA               | GCGGCCGAAA                | GGGGCAGTTC               |
| 151 | CTCTAAATCG | GGGCATCCCT               | TTAGGGTTCC               | GATTTAGTGC                | TTTACGGCAC               |
|     | GAGATTTAGC | CCCGTAGGGA               | AATCCCAAGG               | CTAAATCACG                | AAATGCCGTG               |
| 201 | CTCGACCCCA | AAAAACTTGA               | TTAGGGTGAT               | GGTTCTCGTA                | GTGGGCCATC               |
|     | GAGCTGGGGT | TTTTTGAACT               | AATCCCACTA               | CCAAGAGCAT                | CACCGGGTAG               |
| 251 | GCCCTGATAG | ACGGTTTTTC               | GCCCTTTGAC               | GTTGGAGTCC                | ACGTTCTTTA               |
|     | CGGGACTATC | TGCCAAAAAG               | CGGGAAACTG               | CAACCTCAGG                | TGCAAGAAAT               |
| 301 | ATAGTGGACT | CTTGTTCCAA               | ACTGGAACAA               | CACTCAACCC                | TATCTCGGTC               |
|     | TATCACCTGA | GAACAAGGTT               | TGACCTTGTT               | GTGAGTTGGG                | ATAGAGCCAG               |
| 351 | TATTCTTTTG | ATTTATAAGG               | GATTTTGCCG               | ATTTCGGCCT                | ATTGGTTAAA               |

Figure 32: functional map and sequence of pCAL module M11-III (continued)

CTAAAACGGC TAAAGCCGGA TAACCAATTT TAAATATTCC ATAAGAAAAC

TTTATAATT AAAATATTAA ATTTAACAAA AATTTAACGC GAATTTTAAC CTTAAAATTG TTAAATTGCG AAATGAGCTG 401

BsrGI

TAAATTGTTT

TTTACTCGAC

CGTTTACAAT TTCATGTACA 2222 451

AAGTACATGT GCAAATGTTA

SUBSTITUTE SHEET (NULE 26)

Figure 33: functional map and sequence of pCAL module M14-Ext2



SUBSTITUTE SHEET (CULE 26)

GAATGGCCCA

GGTCACCGCT ATTCAGCACA

CACCGACGAC

GGACAATGGT

351

CCTGTTACCA GTGGCTGCTG

301

CCAGTGGCGA TAAGTCGTGT

CTTACCGGGT

TGGACTCAAG ACGATAGTTA CCGGATAAGG CGCAGCGGTC GGGCTGAACG

Figure 33: functional map and sequence of pCAL module M14-Ext2 (continued)

BglII

| <b>—</b> | AGATCTGACC | AAAATCCCTT            | AACGTGAGTT | TTCGTTCCAC | TGAGCGTCAG |
|----------|------------|-----------------------|------------|------------|------------|
|          | TCTAGACTGG | TTTTAGGGAA            | TTGCACTCAA | AAGCAAGGTG | ACTCGCAGTC |
| 51       | ACCCCGTAGA | AAAGATCAAA            | GGATCTTCTT | GAGATCCTTT | TTTTCTGCGC |
|          | TGGGGCATCT | TTTCTAGTTT            | CCTAGAAGAA | CTCTAGGAAA | AAAAGACGCG |
| 101      | GTAATCTGCT | GCTTGCAAAC AAAAAAACCA | AAAAAAACCA | CCGCTACCAG | CGGTGGTTTG |
|          | CATTAGACGA | CGAACGTTTG TTTTTTGGT  | TTTTTTGGT  | GGCGATGGTC | GCCACCAAAC |
| 151      | TTTGCCGGAT | CAAGAGCTAC            | CAACTCTTTT | TCCGAAGGTA | ACTGGCTACA |
|          | AAACGGCCTA | GTTCTCGATG            | GTTGAGAAAA | AGGCTTCCAT | TGACCGATGT |
| 201      | GCAGAGCGCA | GATACCAAAT            | ACTGTTCTTC | TAGTGTAGCC | GTAGTTAGGC |
|          | CGTCTCGCGT | CTATGGTTTA            | TGACAAGAAG | ATCACATCGG | CATCAATCCG |
| 251      | CACCACTICA | AGAACTCTGT            | AGCACCGCCT | ACATACCTCG | CTCTGCTAAT |
|          | GIGGIGAAGI | TCTTGAGACA            | TCGTGGCGGA | TGTATGGAGC | GAGACGATTA |

SUBSTITUTE SHEET (RULE 26) 100 / 204

|                     | Figure 33: | Figure 33: functional map and sequence of pCAL module M14-Ext2 (continued) ACCTGAGTTC TGCTATCAAT GGCCTA' | ce of pCAL module M14-Ei<br>TGCTATCAAT | xt2 (continued) GGCCTATTCC | GCGTCGCCAG               | CCCGACTTGC                        |
|---------------------|------------|----------------------------------------------------------------------------------------------------------|----------------------------------------|----------------------------|--------------------------|-----------------------------------|
|                     | 401        | GGGGGTTCGT<br>CCCCCAAGCA                                                                                 | GCACACAGCC<br>CGTGTGTCGG               | CAGCTTGGAG<br>GTCGAACCTC   | CGAACGACCT<br>GCTTGCTGGA | ACACCGAACT<br>TGTGGCTTGA          |
|                     | 451        | GAGATACCTA<br>CTCTATGGAT                                                                                 | CAGCGTGAGC<br>GTCGCACTCG               | TATGAGAAAG<br>ATACTCTTTC   | CGCCACGCTT<br>GCGGTGCGAA | CCCGAAGGGA<br>GGGCTTCCCT          |
| SUBSTITU            | 501        | GAAAGGCGGA<br>CTTTCCGCCT                                                                                 | CAGGTATCCG<br>GTCCATAGGC               | GTAAGCGGCA<br>CATTCGCCGT   | GGGTCGGAAC<br>CCCAGCCTTG | AGGAGAGCGC<br>TCCTCTCGCG<br>BSSSI |
| ITE SHEET (RULE 26) | 551        | ACGAGGGAGC<br>TGCTCCCTCG<br>BSSSI                                                                        | TTCCAGGGGG                             | AAACGCCTGG<br>TTTGCGGACC   | TATCTTTATA<br>ATAGAAATAT | GTCCTGTCGG<br>CAGGACAGCC          |
|                     | 601        | GTTTCGCCAC                                                                                               | CTCTGACTTG<br>GAGACTGAAC               | AGCGTCGATT                 | TTTGTGATGC<br>AAACACTACG | TCGTCAGGGG<br>AGCAGTCCCC          |
|                     | 651        | GGCGGAGCCT<br>CCGCCTCGGA                                                                                 | ATGGAAAAAC<br>TACCTTTTTG               | GCCAGCAACG                 | CGGCCTTTTT<br>GCCGGAAAAA | ACGGTTCCTG<br>TGCCAAGGAC          |

SUBSTITUTE SHEET (RULE 26)

Figure 33: functional map and sequence of pCAL module M14-Ext2 (continued)

NheI

701 GCCTTTTGCT GGCCTTTTGC TCACATGGCT AGC CGGAAAACGA CCGGAAAACG AGTGTACCGA TCG

SUBSTITUTE SHEET (RULE 26) 102 / 204





SUBSTITUTE SHEET (RULE 26)
103 / 204

GIGITCACCC TIGITACACC GITITICCAIG AGCAAACIGA

ATATGGGATA

351

Figure 34: functional map and sequence of pCAL module M17 (continued)  $\mbox{\sc AatII}$ 

| AAGATCACTA | AGGAAGCTAA | TCCCAATGGC | ATGTACCTAT | CCGTAAAGAA | GCCCGCCTGA | TGAGCTGGTG |
|------------|------------|------------|------------|------------|------------|------------|
| TTCTAGTGAT | TCCTTCGATT | AGGGTTACCG | TACATGGATA | GGCATTTCTT | CGGGCGGACT | ACTCGACCAC |
| ATAATGAAAT | TCAGGAGCTA | CGTTGATATA | CAGTTGCTCA | TTTTTAAAGA | TCACATTCTT | TGAAAGACGG |
| TATTACTTTA | AGTCCTCGAT | GCAACTATAT | GTCAACGAGT | AAAATTTCT  | AGTGTAAGAA | ACTTTCTGCC |
| AACTTTCACC | ATCGAGATTT | GATATACCAC | GCATTTCAGT | TATTACGGCC | CGGCCTTTAT | CGTATGGCAA |
| TTGAAAGTGG | TAGCTCTAAA | CTATATGGTG | CGTAAAGTCA | ATAATGCCGG | GCCGGAAATA | GCATACCGTT |
| GTGAGGTTCC | TTTTTGAGTT | AAAATCACTG | ACATTTTGAG | TTCAGCTGGA | AAGTTTTATC | CCCGGAGTTC |
| CACTCCAAGG | AAAAACTCAA | TTTTAGTGAC | TGTAAAACTC | AAGTCGACCT | TTCAAAATAG | GGGCCTCAAG |
| GGGACGTCGG | CCGGGCGTAT | AATGGAGAAA | ATCGTAAAGA | AACCAGACCG | AAATAAGCAC | TGAATGCTCA |
|            | GGCCCGCATA | TTACCTCTTT | TAGCATTTCT | TTGGTCTGGC | TTTATTCGTG | ACTTACGAGT |
| 7          | 51         | 101        | 151        | 201        | 251        | 301        |

SUBSTITUTE SHEET (RULE 26) 104 / 204

GTACTGCGAT GAGTGGCAGG CATGACGCTA CTCACCGTCC

TGTCGGCAGA ATGCTTAATG AATTACAACA ACAGCCGTCT TACGAATTAC TTAATGTTGT

701

751

TTAATGTTGT

GCGGGGCGTA ATTTTTTAA GGCAGTTATT GGGTGCCCTT AAACGCCTGG

| inved)                         |
|--------------------------------|
| (cont                          |
| : M17                          |
| module I                       |
| r pCAL                         |
| ial map and sequence of pCAL m |
| and s                          |
| al mag                         |
| functions                      |
| 34:                            |
| Figure                         |

Figure 34: functional map and sequence of pCAL module M17 (continued)

CGCCCCGCAT TAAAAAATT CCGTCAATAA CCCACGGGAA TTTGCGGACC

BglII

801

TGCTAGATCT TCC ACGATCTAGA AGG

SUBSTITUTE SHEET (RULE 26) 106 / 204

Ban !! (919)

Nhe! (1876)

replication start

BssSI (1254)

Colel Ext2 origin

functional ssori Bsr61 (612) Hind111 (515) Fsel (599) glll supershort Pac1 (579) GenII-Nick **Kmnl** (310) EcoRI (1) 2755 bp pCAL4 Sph1 (2749) **Kbal** (2739) Hatii (2608) lac p/o BgIII (1803) cat

Figure 35: functional map and sequence of modular vector pCAL4

SUBSTITUTE SHEET (RU'LE 28) 107 / 204

ATCGGTTGAA TAGCCAACTT

CCCTCCCTCA GGGAGGGAGT

TATTTACCTT ATAAATGGAA

TAATGAATAA TTTCCGTCAA ATTACTTATT AAAGGCAGTT

301

Figure 35: functional map and sequence of modular vector pCAL4 (continued)

EcoRI

| TGGTGGCTCT<br>ACCACCGAGA          | ATAAGGGGGC<br>TATTCCCCCG | GCTAAAGGCA<br>GATTTCCGT  | TGGTTTCATT<br>ACCAAAGTAA | GTGATTTTGC               | : AATTCACCTT<br>A TTAAGTGGAA |      |
|-----------------------------------|--------------------------|--------------------------|--------------------------|--------------------------|------------------------------|------|
| ATCTGTAGGG                        | GCAAACGCTA               | ACAGTCTGAC               | CTGCTATCGA               | GGTGCTACTG               | TGACGGTGAT                   |      |
| TAGACATCCC                        | CGTTTGCGAT               | TGTCAGACTG               | GACGATAGCT               | CCACGATGAC               | ACTGCCACTA                   |      |
| TCTGAGGAGG                        | TGAAAAGATG               | AAAACGCGCT               | GATTACGGTG               | TAATGGTAAT               | CTCAAGTCGG                   |      |
| AGACTCCTCC                        | ACTTTTCTAC               | TTTTGCGCGA               | CTAATGCCAC               | ATTACCATTA               | GAGTTCAGCC                   |      |
| GAAGCTGATC                        | ATTTTGATTA               | AATGCCGATG               | TGTCGCTACT               | CCGGCCTTGC               | TCCCAAATGG                   |      |
| CTTCGACTAG                        | TAAAACTAAT               | TTACGGCTAÇ               | ACAGCGATGA               | GGCCGGAACG               | AGGGTTTACC                   |      |
| ~~~~~<br>AATTCGAGCA<br>TTAAGCTCGT | GGTTCCGGTG<br>CCAAGGCCAC | TATGACCGAA<br>ATACTGGCTT | AACTTGATTC<br>TTGAACTAAG | GGTGACGTTT<br>CCACTGCAAA | TGGCTCTAAT<br>ACCGAGATTA     | IumX |
| ₽                                 | 51                       | 101                      | 151                      | 201                      | 251                          |      |

SUBSTITUTE SHEET (RULE 26) 108 / 204

Figure 35: functional map and sequence of modular vector pCAL4 (continued)

| TTTCTATTGA<br>AAAGATAACT      | CTTTTATATG<br>GAAAATATAC     | ACTGCGTAAT<br>TGACGCATTA     | CGCAGATTGT<br>GCGTCTAACA                     | FseI     | <u> </u>                 |       | GTTAAAATTC<br>CAATTTTAAG    |
|-------------------------------|------------------------------|------------------------------|----------------------------------------------|----------|--------------------------|-------|-----------------------------|
| CCATATGAAT T'<br>GGTATACTTA A | CTTTGCGTTT C<br>GAAACGCAAA G | TTGCTAACAT A<br>AACGATTGTA T | TGAAAAATGG C<br>ACTTTTTACC G                 | }        | AAGGGGGGGG G             |       | TTAATATTT (<br>AATTATAAAA ( |
| CGCTGGTAAA<br>GCGACCATTT      | TCCGTGGTGT<br>AGGCACCACA     | TTTTCTACGT<br>AAAAGATGCA     | ACCTGTGAAG<br>TGGACACTTC                     | PacI     | CGTTTAATTA<br>GCAAATTAAT |       | ATTGTAAACG<br>TAACATTTGC    |
| TTGTCTTTGG<br>AACAGAAACC      | ATAAACTTAT<br>TATTTGAATA     | TATGTATGTA<br>ATACATACAT     | HindIII<br>~~~~~<br>GATAAGCTTG<br>CTATTCGAAC | <u>~</u> | TTTTGTCTGC<br>AAAACAGACG | BsrGI | TGTACATGAA<br>ACATGTACTT    |
| TGTCGCCCTT<br>ACAGCGGGAA      | TTGTGACAAA<br>AACACTGTTT     | TTGCCACCTT<br>AACGGTGGAA     | AAGGAGTCTT<br>TTCCTCAGAA                     |          | GCGACATTTT<br>CGCTGTAAAA |       | TGGGGGGGGG                  |
| 351                           | 401                          | 451                          | 501                                          |          | 551                      |       | 601                         |

SUBSTITUTE SHEET (RULE 26) 109 / 204

Figure 35: functional map and sequence of modular vector pCAL4 (continued)

| 651 | GCGTTAAATT               | TTTGTTAAAT               | CAGCTCATTT               | TTTAACCAAT               | AGGCCGAAAT               |
|-----|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|
|     | CGCAATTTAA               | AAACAATTTA               | GTCGAGTAAA               | AAATTGGTTA               | TCCGGCTTTA               |
| 701 | CGGCAAAATC               | CCTTATAAAT               | CAAAAGAATA               | GACCGAGATA               | GGGTTGAGTG               |
|     | GCCGTTTTAG               | GGAATATTTA               | GTTTTCTTAT               | CTGGCTCTAT               | CCCAACTCAC               |
| 751 | TTGTTCCAGT               | TTGGAACAAG<br>AACCTTGTTC | AGTCCACTAT<br>TCAGGTGATA | TAAAGAACGT<br>ATTTCTTGCA | GGACTCCAAC<br>CCTGAGGTTG |
| 801 | GTCAAAGGGC<br>CAGTTTCCCG | GAAAAACCGT<br>CTTTTTGCA  | CTATCAGGGC<br>GATAGTCCCG | GATGGCCCAC               | TACGAGAACC<br>ATGCTCTTGG |
| 851 | ATCACCCTAA               | TCAAGTTTTT               | TGGGGTCGAG               | GTGCCGTAAA               | GCACTAAATC               |
|     | TAGTGGGATT               | AGTTCAAAAA               | ACCCCAGCTC               | CACGGCATTT               | CGTGATTTAG               |
|     |                          | BanII                    |                          |                          |                          |
| 901 | GGAACCCTAA               | AGGGAGCCCC               | CGATTTAGAG               | CTTGACGGGG               | AAAGCCGGCG               |
|     | CCTTGGGATT               | TCCCTCGGGG               | GCTAAATCTC               | GAACTGCCCC               | TTTCGGCCGC               |
| 951 | AACGTGGCGA<br>TTGCACCGCT | GAAAGGAAGG               | GAAGAAAGCG<br>CTTCTTTCGC | AAAGGAGCGG<br>TTTCCTCGCC | GCGCTAGGGC<br>CGCGATCCCG |

SUBSTITUTE SHEET (RULE 26)

5252552555 AACCACCACA CCCGCCGCGC TTGGTGGTGT GCTGGCAAGT GTAGCGGTCA CGCTGCGCGT CGACCGTTCA CATCGCCAGT GCGACGCGCA Figure 35: functional map and sequence of modular vector pCAL4 (continued) 1001

NheI

|      | TTAATGCGCC GCTACAGGGC GCGTGCTAGC CATGTGAGCA AAAGGCCAGC<br>AATTACGCGG CGATGTCCCG CGCACGATCG GTACACTCGT TTTCCGGTCG |
|------|------------------------------------------------------------------------------------------------------------------|
|      | CATGTGAGCA<br>GTACACTCGT                                                                                         |
| ???? | GCGTGCTAGC<br>CGCACGATCG                                                                                         |
|      | GCTACAGGGC<br>CGATGTCCCG                                                                                         |
|      | TTAATGCGCC<br>AATTACGCGG                                                                                         |
|      | .051                                                                                                             |

| COLOR OF A PACIFICATION OF A PACIFICATION OF THE TRUCCATION OF THE TRUCCATION OF THE TRUCCATION OF THE TRUCCATION OF THE TRUCCATION OF THE TRUCCATION OF THE TRUCCATION OF THE TRUCCATION OF THE TRUCCATION OF THE TRUCCATION OF THE TRUCCATION OF THE TRUCCATION OF THE TRUCCATION OF THE TRUCCATION OF THE TRUCCATION OF THE TRUCCATION OF THE TRUCCATION OF THE TRUCCATION OF THE TRUCCATION OF THE TRUCCATION OF THE TRUCCATION OF THE TRUCCATION OF THE TRUCCATION OF THE TRUCCATION OF THE TRUCCATION OF THE TRUCCATION OF THE TRUCCATION OF THE TRUCCATION OF THE TRUCCATION OF THE TRUCCATION OF THE TRUCCATION OF THE TRUCCATION OF THE TRUCCATION OF THE TRUCCATION OF THE TRUCCATION OF THE TRUCCATION OF THE TRUCCATION OF THE TRUCCATION OF THE TRUCCATION OF THE TRUCCATION OF THE TRUCCATION OF THE TRUCCATION OF THE TRUCCATION OF THE TRUCCATION OF THE TRUCCATION OF THE TRUCCATION OF THE TRUCCATION OF THE TRUCCATION OF THE TRUCCATION OF THE TRUCCATION OF THE TRUCCATION OF THE TRUCCATION OF THE TRUCCATION OF THE TRUCCATION OF THE TRUCCATION OF THE TRUCCATION OF THE TRUCCATION OF THE TRUCCATION OF THE TRUCCATION OF THE TRUCCATION OF THE TRUCCATION OF THE TRUCCATION OF THE TRUCCATION OF THE TRUCCATION OF THE TRUCCATION OF THE TRUCCATION OF THE TRUCCATION OF THE TRUCCATION OF THE TRUCCATION OF THE TRUCCATION OF THE TRUCCATION OF THE TRUCCATION OF THE TRUCCATION OF THE TRUCCATION OF THE TRUCCATION OF THE TRUCCATION OF THE TRUCCATION OF THE TRUCCATION OF THE TRUCCATION OF THE TRUCCATION OF THE TRUCCATION OF THE TRUCCATION OF THE TRUCCATION OF THE TRUCCATION OF THE TRUCCATION OF THE TRUCCATION OF THE TRUCCATION OF THE TRUCCATION OF THE TRUCCATION OF THE TRUCCATION OF THE TRUCCATION OF THE TRUCCATION OF THE TRUCCATION OF THE TRUCCATION OF THE TRUCCATION OF THE TRUCCATION OF THE TRUCCATION OF THE TRUCCATION OF THE TRUCCATION OF THE TRUCCATION OF THE TRUCCATION OF THE TRUCCATION OF THE TRUCCATION OF THE TRUCCATION OF THE TRUCCATION OF THE TRUCCATION OF THE TRUCCATION OF THE TRUCCATION OF THE TRUCCATION OF THE TRUCCATION OF THE TRUCCATION OF THE | して上々上げげるるる        | CCGGTC CTTGGCATTT TTCCGGCGCA ACGACCGCAA ATTICCTTTCC |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|-----------------------------------------------------|
| TGCTGGCGTT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | K K C C C K C C K | ACGACCGCAA                                          |
| TOUCUCA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                   | TTCCGGCGCA                                          |
| A A A POLO A A C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | GAACCGIAGG        | CTTGGCATTT                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | AAAAGGCCAG        | TTTCCGGTC                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1101              |                                                     |

| TOCCOCCO CIGAGGA TCACAAAAT CGACGCTCAA GTCAGAGGTG | CACCICICAC                                                                                         | GAGGGGGG GACTGCTCGT AGTGTTTTA GCIGCGAGII CIICIA GAL |
|--------------------------------------------------|----------------------------------------------------------------------------------------------------|-----------------------------------------------------|
| CGACGCTCAA                                       | 出出さんびとて出てて                                                                                         | T T DC D J D T J D                                  |
| TCACAAAAAT                                       |                                                                                                    | AGTGTTTTA                                           |
| ないとなってもいれて                                       |                                                                                                    | GACTGCTCGT                                          |
|                                                  | )<br>ハラン<br>の<br>エ<br>い<br>に<br>の<br>に<br>に<br>に<br>に<br>に<br>に<br>に<br>に<br>に<br>に<br>に<br>に<br>に | GAGGCGGGGG                                          |
| ŗ                                                | ITPT                                                                                               |                                                     |
|                                                  | 1                                                                                                  | 11                                                  |

| A A A C C C C C C C C C C C C C C C C C | TTTGGGC TGTCCTGATA TTTCTATGGT CCGCAAAGGG GGACCTTCGA |
|-----------------------------------------|-----------------------------------------------------|
| GGCGTTTCCC                              | CCGCAAAGGG                                          |
| AAAGATACCA                              | TTTCTATGGT                                          |
| ACAGGACTAT                              | TGTCCTGATA                                          |
|                                         |                                                     |
| -7 OC -                                 | TO 7 T                                              |
| · /1                                    |                                                     |

| ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( | ATACCTGTCC                                          | TATGGACAGG                                          |
|-----------------------------------------|-----------------------------------------------------|-----------------------------------------------------|
|                                         | HORINGO CHOMOCHGIT COGACCOTGC CGCTTACCGG ATACCTGTCC | AGCACGC GAGAGGACAA GGCTGGGACG GCGAATGGCC TATGGACAGG |
|                                         | CCGACCCTGC                                          | GGCTGGGACG                                          |
|                                         | CTCTCTGTT                                           | GAGAGGACAA                                          |
| 2 2 2 2 2 2                             | じしじしじししして                                           |                                                     |
|                                         | 7                                                   | TCZT                                                |

BssSI

| TOTATAL CHACGGAAG CGTGGCGCTT TCTCATAGCT CACGCTGTAG | AAGAGG GAAGCCTTC GCACCGCGAA AGAGTATCGA GTGCGACATC |
|----------------------------------------------------|---------------------------------------------------|
| TCTCATAGCI                                         | AGAGTATCGA                                        |
| CGTGGCGCTT                                         | GCACCGCGAA                                        |
| CTTCGGGAAG                                         | GAAGCCCTTC                                        |
|                                                    |                                                   |
| 1001                                               | T 0 C T                                           |

SUBSTITUTE SHEET (RULE 26)

Figure 35: functional map and sequence of modular vector pCAL4 (continued)

| TGTGTGCACG            | CTATCGTCTT | CAGCCACTGG               | GAGTTCTTGA               | TGGTATCTGC               | GCTCTTGATC               | TGCAAGCAGC              | GATCTTTTCT               |
|-----------------------|------------|--------------------------|--------------------------|--------------------------|--------------------------|-------------------------|--------------------------|
| ACACGTGC              | GATAGCAGAA | GTCGGTGACC               | CTCAAGAACT               | ACCATAGACG               | CGAGAACTAG               |                         | CTAGAAAAGA               |
| CAAGCTGGGC 'GTTCGACCG | TATCCGGTAA | CCACTGGCAG<br>GGTGACCGTC | CGGTGCTACA<br>GCCACGATGT | GAACAGTATT<br>CTTGTCATAA | AGAGTTGGTA<br>TCTCAACCAT | TTTTTTGTT<br>AAAAAAACAA | AAGATCCTTT<br>TTCTAGGAAA |
| TCGTTCGCTC            | CGCTGCGCCT | CGACTTATCG               | GGTATGTAGG               | TACACTAGAA               | CTTCGGAAAA               | GTAGCGGTGG              | GGATCTCAAG               |
| AGCAAGCGAG            | GCGACGCGGA | GCTGAATAGC               |                          | ATGTGATCTT               | GAAGCCTTTT.              | CATCGCCACC              | CCTAGAGTTC               |
| TCGGTGTAGG            | TCAGCCCGAC | CGGTAAGACA               | AGCAGAGCGA               | TAACTACGGC               | AGCCAGTTAC               | ACCACCGCTG              | CAGAAAAAAA               |
| AGCCACATCC            | AGTCGGGCTG | GCCATTCTGT               | TCGTCTCGCT               | ATTGATGCCG               | TCGGTCAATG               | TGGTGGCGAC              | GTCTTTTTTT               |
| GTATCTCAGT            | AACCCCCCGT | GAGTCCAACC               | TAACAGGATT               | AGTGGTGGCC               | GCTCTGCTGT               | CGGCAAACAA              | AGATTACGCG               |
| CATAGAGTCA            | TTGGGGGGCA | CTCAGGTTGG               | ATTGTCCTAA               | TCACCACCGG               | CGAGACGACA               | GCCGTTTGTT              | TCTAATGCGC               |
| 1351                  | 1401       | 1451                     | 1501                     | 1551                     | 1601                     | 1651                    | 1701                     |

SUBSTITUTE SHEET (RULE 26) 112 / 204

Figure 35: functional map and sequence of modular vector pCAL4 (continued)

| GGATTTTGGT               | TTAAAAAAAT                                  | CATTAAGCAT | TGAATCGCCA | CATAGTGAAA               | CAAAACTGGT               | TCAATAAACC               |
|--------------------------|---------------------------------------------|------------|------------|--------------------------|--------------------------|--------------------------|
| CCTAAAACCA               | AATTTTTTA                                   | GTAATTCGTA | ACTTAGCGGT | GTATCACTTT               | GTTTTGACCA               | AGTTATTTGG               |
| TCACGTTAAG               | AATAACTGCC                                  | TGTTGTAATT | ATGATGAACC | AATATTTGCC               | ACGTTTAAAT               | AAACATATTC               |
| AGTGCAATTC               | TTATTGACGG                                  | ACAACATTAA | TACTACTTGG | TTATAAACGG               | TGCAAATTTA               | TTTGTATAAG               |
| GAACGAAAAC               | TAAGGGCACC                                  | ATCGCAGTAC | CACAAACGGC | CCTTGCGTAT               | CATATTGGCT               | CTGAGACGAA               |
| CTTGCTTTTG               | ATTCCCGTGG                                  | TAGCGTCATG | GTGTTTGCCG | GGAACGCATA               | GTATAACCGA               | GACTCTGCTT               |
| ACGCTCAGTG               | ACCAGGCGTT                                  | CCTGCCACTC | TGGAAGCCAT | CACCTTGTCG               | AGAAGTTGTC               | CAGGGATTGG               |
| TGCGAGTCAC               | TGGTCCGCAA                                  | GGACGGTGAG | ACCTTCGGTA | GTGGAACAGC               | TCTTCAACAG               | GTCCCTAACC               |
| ACGGGGTCTG<br>TGCCCCAGAC | BglII<br>~~~~~~<br>CAGATCTAGC<br>GTCTAGATCG | TACGCCCCGC | TCTGCCGACA | GCGGCATCAG<br>CGCCGTAGTC | ACGGGGGCGA<br>TGCCCCCGCT | GAAACTCACC<br>CTTTGAGTGG |
| 1751                     | 1801                                        | 1851       | 1901       | 1951                     | 2001                     | 2051                     |

SUBSTITUTE SHEET (RULE 26)

|                                                                                                                                          |                          |                          |                          | r. 14                    | ~ <u>~</u>               | F1 4.                    | HÆ                       |
|------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|
| GAA                                                                                                                                      | GCT                      | ACAC<br>IGTG             | 0000<br>0000             | ACT'I<br>'TGA            | TGA                      | ATG'                     | ATTT<br>PAAA             |
| ATCTTGCGAA<br>TAGAACGCTT                                                                                                                 | TCCAGAGCGA<br>AGGTCTCGCT | GGGTGAACAC<br>CCCACTTGTG | GAACTCCGGG<br>CTTGAGGCCC | GATAAAACTT<br>CTATTTTGAA | TCCAGCTGAA<br>AGGTCGACTT | CTCAAAATGT<br>GAGTTTTACA | CAGTGATTTT<br>GTCACTAAAA |
| ATC<br>TAG                                                                                                                               | TCC                      | 000                      | GA1                      | GAC                      |                          |                          |                          |
| AACACGCCAC<br>TTGTGCGGTG                                                                                                                 | TGGTATTCAC<br>ACCATAAGTG | GGTGTAACAA<br>CCACATTGTT | TTGCCATACG<br>AACGGTATGC | ATAAAGGCCG<br>TATTTCCGGC | GGCCGTAATA<br>CCGGCATTAT | ACTGAAATGC<br>TGACTTTACG | GTGGTATATC<br>CACCATATAG |
| ACCGT                                                                                                                                    | GAAATCGTCG<br>CTTTAGCAGC | CATGGAAAAC<br>GTACCTTTTG | CCGTCTTTCA<br>GGCAGAAAGT | AAGAATGTGA<br>TTCTTACACT | TCTTTAAAAA<br>AGAAATTTTT | TGAGCAACTG<br>ACTCGTTGAC | TATATCAACG<br>ATATAGTTGC |
| of modular vector pCAL4<br>ATAGGCCAGG 7<br>TATCCGGTCC 7                                                                                  | GAAACTGCCG<br>CTTTGACGGC | TCAGTTTGCT<br>AGTCAAACGA | CACCAGCTCA<br>GTGGTCGAGT | TCAGGCGGGC<br>AGTCCGCCCG | TTCTTTACGG<br>AAGAAATGCC | ATAGGTACAT<br>TATCCATGTA | GCCATTGGGA<br>CGGTAACCCT |
| Figure 35: functional map and sequence of modular vector pCAL4 (continued) 2101 CTTTAGGGAA ATAGGCCAGG TTTTC? GAAATCCCTT TATCCGGTCC AAAAG | TATATGTGTA<br>ATATACACAT | TGAAAACGTT<br>ACTTTTGCAA | TATCCCATAT<br>ATAGGGTATA | TGAGCATTCA<br>ACTCGTAAGT | GTGCŸTATTT<br>CACGAATAAA | CGGTCTGGTT<br>GCCAGACCAA | TCTTTACGAT<br>AGAAATGCTA |
| E 101                                                                                                                                    | 2151                     | 2201                     | 2251                     | 2301                     | 2351                     | 2401                     | 2451                     |
|                                                                                                                                          |                          |                          | SUBSTI                   | TUTE SHEET               | ์ (RULE 26 <b>)</b>      |                          |                          |

| AAATCTCGAT AACTCAAAAA<br>TTTAGAGCTA TTGAGTTTTT                                                                                               | GGTGAAAGTT GGAACCTCAC<br>CCACTTTCAA CCTTGGAGTG | TAGGCACCCC AGGCTTTACA<br>ATCCGTGGGG TCCGAAATGT | AATTGTGAGC GGATAACAAT<br>TTAACACTCG CCTATTGTTA | Xbal SphI<br>~~~~~~~~~~<br>ACGAATTTCT AGAGCATGCG<br>TGCTTAAAGA TCTCGTACGC |       |       |
|----------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------|------------------------------------------------|------------------------------------------------|---------------------------------------------------------------------------|-------|-------|
| AAATC<br>TTTAG                                                                                                                               | GGTG2<br>CCAC1                                 | TAGG(                                          | AATT(<br>TTAA(                                 | ACGA,<br>TGCT                                                             |       |       |
| CTGA                                                                                                                                         | ATTTCATTAT<br>TAAAGTAATA                       | GCTCACTCAT<br>CGAGTGAGTA                       | TGTTGTGTGG<br>ACAACACACC                       | Xbares ACGAATTTCT CTGGTACTAA TGCTTAAAGA                                   |       |       |
| ctional map and sequence of modular vector pCAL <sup>2</sup><br>TTTCTCCATT TTAGCTTCCT<br>AAAGAGGTAA AATCGAAGGA                               | TAGTGATCTT<br>ATCACTAGAA                       | ATGTGAGTTA<br>TACACTCAAȚ                       | CCGGCTCGTA<br>GGCCGAGCAT                       | AAACAGCTAT<br>TTTGTCGATA                                                  |       |       |
| Figure 35: functional map and sequence of modular vector pCAL4 (continued) 2501 TTTCTCCATT TTAGCTTCCT TAGCTC AAAGAGGTAA AATCGAAGGA ATCGAAGGA | ATACGCCCGG<br>TATGCGGGCC                       | Aatli<br>~~~~~~<br>CCGACGTCTA<br>GGCTGCAGAT    | CTTTATGCTT<br>GAAATACGAA                       | TTCACACAGG                                                                | EcoRI | 00000 |
| Figure 35: fu<br>2 5 0 1                                                                                                                     | 2551                                           | 2601                                           | 2651                                           | 2701                                                                      |       | 2751  |
|                                                                                                                                              |                                                | SUB                                            | STITUTE SH                                     | EET (RULE 26)                                                             |       |       |



**M2** 173 bp

SUBSTITUTE SHEET (RULE 26) 116 / 204 Figure 35a: Functional maps and sequences of additional pCAL vector modules and pCAL vectors (continued)

.. 7 Σ AatII

22222

GGCTTTACAC CCGAAATGTG TCCGTGGGGT CTCACTCATT AGGCACCCCA GAGTGAGTAA ACACTCAATC TGTGAGTTAG GACGICTTAA CTGCAGAATT

GATAACAATT CTATTGTTAA TAACACTCGC ATTGTGAGCG GTTGTGTGGA GCCGAGCATA CAACACACCT CGGCTCGTAT TTTATGCTTC AAATACGAAG 51

XmnI

XbaI

CATATTACAT GTATAATGTA GAATAACTTC CTTATTGAAG ACCATGTCTA TGGTACAGAT TCACACAGGA AACAGCTATG TTGTCGATAC AGTGTGTCCT

SphI

TGC TCAATAGCGT AGTTATCGCA CGCTATACGA GCGATATGCT

151

SUBSTITUTE SHEET (RULE 26) 117 / 204

101



**M3** 47 bp

SUBSTITUTE SHEET (RULE 26)

AatII

Figure 35a: Functional maps and sequences of additional pCAL vector modules and pCAL vectors (continued)

ж ж Bglii

TACGAAGTTA TGACGTC ATGCTTCAAT ACTGCTGCAG ACTTCGTATA ATGTATGCTA TACGAAGTTA TGAAGCATAT TACATACGAT ATGCTTCAAT AGATCTCATA TCTAGAGTAT 111111

SUBSTITUTE SHEET (RULE 26)



SUBSTITUTE SHEET (RULE 26)

Figure 35a: Functional maps and sequences of additional pCAL vector modules and pCAL vectors (continued)

### M 7-I (long):

ECORI

| 1 GAATTCGGTG GTGGTGGATC TGCGTGCGCT G<br>CTTAAGCCAC CACCACCTAG ACGCACGCGA C | 51 AGCAAAATCC CATACAGAAA ATTCATTTAC T<br>TCGTTTTÄGG GTATGTCTTT TAAGTAAATG A | 101 AAACTTTAGA TCGTTACGCT AACTATGAGG<br>TTTGAAATCT AGCAATGCGA TTGATACTCC | 151 GGCGTTGTAG TTTGTACTGG TGACGAAACT C | 201 TCCTATTGGG CTTGCTATCC CTGAAAATGA<br>AGGATAACCC GAACGATAGG GACTTTTACT | 251 GCGGTTCTGA GGGTGGCGGT TCTGAGGGTG G<br>CGCCAAGACT CCCACCGCCA AGACTCCCAC | 301 TACGGTGATA CACCTATTCC GGGCTATACT 1 ATGCCACTAT GTGGATAAGG CCCGATATGA |
|----------------------------------------------------------------------------|-----------------------------------------------------------------------------|--------------------------------------------------------------------------|----------------------------------------|--------------------------------------------------------------------------|----------------------------------------------------------------------------|-------------------------------------------------------------------------|
| T GAAACGGTTG<br>A CTTTGCCAAC                                               | C TAACGTCTGG                                                                | G GCTGTCTGTG                                                             | T CAGTGTTACG                           | A GGGTGGTGGC                                                             | C CCCCATGATT                                                               | T TATATCAACC                                                            |
| AAAGTTGTTT<br>TTTCAACAAA                                                   | AAAGACGACA<br>TTTCTGCTGT                                                    | GAATGCTACA<br>CTTACGATGT                                                 | GTACATGGGT<br>CATGTACCCA               | TCTGAGGGTG<br>AGACTCCCAC                                                 | ACCTCCTGAG<br>TGGAGGACTC                                                   | CTCTCGACGG<br>GAGAGCTGCC                                                |

SUBSTITUTE SHEET (RULE 26)

Figure 35a: Functional maps and sequences of additional pCAL vector modules and pCAL vectors (continued)

| ARG<br>ARG | rtc<br>AAG | AGG<br>ICC | AAG<br>ITC | CAT        | GTC        | GTT<br>CAA | GGT<br>CCA |
|------------|------------|------------|------------|------------|------------|------------|------------|
| AATCCTTCTC | TAATAGGTTC | TTACTCAAGG | TCATCAAAAG | CGCTTTCCAT | GCCAATCGTC | GGTGGTGGTT | TTCTGAGGGT |
| TTAGGAAGAG | ATTATCCAAG | AATGAGTTCC | AGTAGTTTTC | GCGAAAGGTA | CGGTTAGCAG | CCACCACCAA | AAGACTCCCA |
| CGCTAATCCT | TGTTTCAGAA | ACGGGCACTG | CACTCCTGTA | TCAGAGACTG | GAATATCAAG | CGGCGGCTCT | AGGGTGGCGG |
| GCGATTAGGA | ACAAAGTCTT | TGCCCGTGAC | GTGAGGACAT | AGTCTCTGAC | CTTATAGTTC | GCCGCCGAGA | TCCCACCGCC |
| AGCAAAACCC | AATACTTTCA | AACTGTTTAT | ATTACCAGTA | AACGGTAAAT | ATTTGTTTGT | TCAATGCTGG | GGTGGCTCTG |
| TCGTTTTGGG | TTATGAAAGT | TTGACAAATA | TAATGGTCAT | TTGCCATTTA | TAAACAAACA | AGTTACGACC | CCACCGAGAC |
| CCTGGTACTG | TCAGCCTCTT | AGGGGGCATT | GTTAAAACTT | CGCTTACTGG | ATGAGGATTT | CAACCTCCTG | CTCTGAGGGT |
| GGACCATGAC | AGTCGGAGAA | TCCCCCGTAA | CAATTTTGAA | GCGAATGACC | TACTCCTAAA | GTTGGAGGAC | GAGACTCCCA |
| CACTTATCCG | TTGAGGAGTC | CGAAATAGGC | CACTGACCCC | CCATGTATGA | TCTGGCTTTA | TGACCTGCCT | CTGGTGGCGG |
| GTGAATAGGC | AACTCCTCAG | GCTTTATCCG | GTGACTGGGG | GGTACATACT | AGACCGAAAT | ACTGGACGGA |            |
| 351        | 401        | 451        | 501        | 551        | 601        | 651        | 701        |

SUBSTITUTE SHEET (RULE 26) 122 / 204

Figure 35a: Functional maps and sequences of additional pCAL vector modules and pCAL vectors (continued)

| VO 97/08320              |                          |            |                          |                          |      | Pe                       | CT/EP96/03               |
|--------------------------|--------------------------|------------|--------------------------|--------------------------|------|--------------------------|--------------------------|
| CCGGTGATTT               | ACCGAAAATG               | TGATTCTGTC | ACGTTTCCGG               | TCTAATTCCC               | XmnI | GAATAATTTC               | GCCCTTTTGT               |
| GGCCACTAAA               | TGGCTTTTAC               | ACTAAGACAG | TGCAAAGGCC               | AGATTAAGGG               |      | CTTATTAAAG               | CGGGAAAACA               |
| GGCTCTGGTT               | GGGGCCTATG               | AAGGCAAACT | TTCATTGGTG               | TTTTGCTGGC               |      | CACCTTTAAT               | GTTGAATGTC               |
| CCGAGACCAA               | CCCCCGATAC               | TTCCGTTTGA | AAGTAACCAC               | AAAACGACCG               |      | GTGGAAATTA               | CAACTTACAG               |
| TTCCGGTGGT               | ACGCTAATAA               | TCTGACGCTA | TATCGATGGT               | CTACTGGTGA               |      | GGTGATAATT               | TACCTTCCAT CCCTCAATCG    |
| AAGGCCACCA               | TGCGATTATT               | AGACTGCGAT | ATAGCTACCA               | GATGACCACT               |      | CCACTATTAA               | ATGGAAGGTA GGGAGTTAGC    |
| AGGGAGGCGG<br>TCCCTCCGCC | AAGATGGCAA<br>TTCTACCGTT | CGCGCTLCAG | ACGGTGCTGC<br>TGCCACGACG | GGTAATGGTG<br>CCATTACCAC |      | AGTCGGTGAA<br>TCAGCCACTT | TACCTTCCAT<br>ATGGAAGGTA |
| GGCGGCTCTG               | TGATTATGAA               | CCGATGAAAA | GCTACTGATT               | CCTTGCTAAT               |      | AAATGGCTCA               | CGTCAATATT               |
| CCGCCGAGAC               | ACTAATACTT               | GGCTACTTTT | CGATGACTAA               | GGAACGATTA               |      | TTTACCGAGT               | GCAGTTATAA               |
| 751                      | 801                      | 851        | 901                      | 951                      |      | 1001                     | 1051                     |
|                          |                          |            | CUDOTITUE                | 011                      |      |                          |                          |

SUBSTITUTE SHEET (RULE 26) 123 / 204

Figure 35a: Functional maps and sequences of additional pCAL vector modules and pCAL vectors (continued)

CCATTIGGGA TACTIAAAAG ATAACTAACA CTGTTTTATT GACAAAATAA GGTAAACCCT ATGAATTTTC TATTGATTGT CTTTGGCGCT (GAAACCGCGA ( 1101

CACCTTTATG TGGTGTCTTT GCGTTTCTTT TATATGTTGC ACTTATTCCG TGAATAAGGC 1151

CGCAAAGAAA ATATACAACG GTGGAAATAC ACCACAGAAA

HindIII

CGTAATAAGG AGTCTTGATA TATGTATTT 1201

GCATTATTCC TCAGAACTAT CTACGTTTGC TAACATACTG GATGCAAACG ATTGTATGAC ATACATAAAA

SUBSTITUTE SHEET (RULE 26)

and the second of the high including the black of the black of the second of the black of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second

Figure 35a: Functional maps and sequences of additiona! pCAL vector modules and pCAL vectors (continued)



SUBSTITUTE SHEET (RULE 26) 125 / 204

XmnI

CGGTGACGGT GATAATTCAC CTTTAATGAA TAATTTCCGT GCCACTGCCA CTATTAAGTG GAAATTACTT ATTAAAGGCA

TGGCTCAAGT ACCGAGTTCA

251

Figure 35a: Functional maps and sequences of additional pCAL vector modules and pCAL vectors (continued)

# M 7-II (SS-TAG):

| Н  |  |
|----|--|
| ፙ  |  |
| Ö  |  |
| 田口 |  |
| •  |  |
|    |  |

| 4 E4                     | ריז די                | HÆ             | HA                                             | A H                      |
|--------------------------|-----------------------|----------------|------------------------------------------------|--------------------------|
| GTGATTTTGA               | GAAAATGCCG            | TTCTGTCGCT     | TTTCCGGCCT                                     | AATTCCCAAA               |
| CACTAAAACT               | CTTTTACGGC            | AAGACAGCGA     | AAAGGCCGGA                                     | TTAAGGGTTT               |
| TCTGGTTCCG GTGATTTTTGA   | GGCTATGACC GAAAATGCCG | GCAAACTTGA     | ATTGGTGACG                                     | CIGGIGATIT IGCIGGCICI    |
| AGACCAAGGC CACTAAAACT    | CCGATACTGG CTTTTACGGC | CGTTTGAACT     | TAACCACTGC                                     | GACCACIAAA ACGACCGAGA    |
| CGGTGGTGGC               | CTAATAAGGG            | GACGCTAAAG     | CGATGGTTTC                                     | CTGGTGATTT               |
|                          | GATTATTCCC            | CTGCGATTTC     | GCTACCAAAG                                     | GACCACTAAA               |
| GAGGCGGTTC<br>CTCCGCCAAG |                       | CGC GCTACAGTCT | ACTGATTACG GTGCTGCTAT<br>TGACTAATGC CACGACGATA | AATGGTGCTA<br>TTACCACGAT |
| CGGGAATTCG               | TTATGAAAG ATGGCAAACG  | ATGAAAACGC     | ACTGATTACG                                     | TGCTAATGGT               |
| GCCCTTAAGC               | AATACTTTTC TACCGTTTGC | TACTTTTGCG     | TGACTAATGC                                     | ACGATTACCA               |
| ←                        | 51                    | 101            | 151                                            | 201                      |
|                          |                       | CHECTIT        | e queet /ei                                    | U F 28\                  |

SUBSTITUTE SHEET (RULE 26)
126 / 204

|                                                                | CTTTTGTCI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | GAAAACAGA                                     |
|----------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------|
| ntinued)                                                       | GAATGTCGCC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | CTTACAGCGG                                    |
| of additional pCAL vector modules and pCAL vectors (continued) | maps and sequences of accompany of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of t | AC CITICCCTCCC ICARTCCCT CTTACAGCGG GAAAACAGA |
| Iditional pCAL vector mod                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | いいことにいいた。                                     |
| of Jo sacromon First                                           | maps and sequences of a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | CAATATTAC                                     |
|                                                                | Figure 35a: Functional maps and sequ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 301                                           |

GAAAACAGAA CTTACAGCGG

GAAGGGAGGG AGTTAGCCAA CAATATTAC

AAAATAAACT GTTATAAATG

TTTTATTTGA ACTAACACTG TGATTGTGAC AAACCATATG AATTTTCTAT TTAAAAGATA TTTGGTATAC ACCGCGACCA TGGCGCTGGT

CTTTATGTAT ATGTTGCCAC TTTCTTTAT 351

HindIII GAAATACATA TACAACGGTG AAAGAAAATA TGTCTTTGCG ACAGAAACGC TATTCCGTGG ATAAGGCACC 401

GAACTATTCG CTTGATAAGC AATAAGGAGT TTATTCCTCA CATACTGCGT GTATGACGCA CGTTTGCTAA GCAAACGATT GTATTTTCTA CATAAAAGAT 451

Ηì

TT AA 501

SUBSTITUTE SHEET (RULE 26) 127 / 204





**S**UBSTITUTE SHEET (RULE 26) 128 / 204 HindIII 1111

Figure 35a: Functional maps and sequences of additional pCAL vector modules and pCAL vectors (continued)

.. ∞ Σ

11111 SphI

TAAGCTT ATTCGAA ATGTACGCTA TACGAAGTTA TACATGCGAT ATGCTTCAAT ACTTCGTATA TGAAGCATAT GCATGCCATA CGTACGGTAT

SUBSTITUTE SHEET (RULE 26)

Figure 35a: Functional maps and sequences of additional pCAL vector modules and pCAL vectors (continued)



SUBSTITUTE SHEET (RULE 26) 130 / 204

Dimensional Management of the

Figure 35a: Functional maps and sequences of additional pCAL vector modules and pCAL vectors (continued)

### M 10-II:

#### BsrGI

| AACCCTGATA<br>TTGGGACTAT                                   |
|------------------------------------------------------------|
| ATGAGACAAT<br>TACTCTGTTA                                   |
| GIATCCGCTC<br>CATAGGCGAG                                   |
| rgrac attcaaatat gratccgctc<br>acarg raagtrrata cataggcgag |
| GGGGGTGTAC<br>CCCCCACATG                                   |
| 1                                                          |

| AACATTTC   | GTTGTAAAGG |
|------------|------------|
| TATGAGTATT | ATACTCATAA |
| AAAGGAAGAG | TITCCITCIC |
| TAATATTGAA | ATTATAACTT |
| AATGCTTCAA | TTACGAAGTT |
| 51         |            |

| TGTTTI       | ACAAAAACGA |
|--------------|------------|
| TTTGCCTTCC   | AAACGGAAGG |
| r TTTGCGGCAT | AAACGCCGTA |
| TATICCCTIT   | ATAAGGGAAA |
| GTGTCGCCCT   | CAGCGG     |
| 101          |            |

| AGTTGGGTGC                         | TCAACCCACG |
|------------------------------------|------------|
| GCTGAGGATC                         | CTCCTAG    |
| A CGCTGGTGAA AGTAAAAGAT GCTGAGGATC | TCATTTTCTA |
| CGCTGGTGAA                         | GCGACCACTT |
| CACCCAGAAA                         | GIGGGICITI |
| 151                                |            |
| EE                                 | T (RUL     |

## CAGCGGTAAG ATCCTTGAGA GTCGCCATTC TAGGAACTCT TACATCGAAC TGGATCTCAA ATGTAGCTTG ACCTAGAGTT GCGAGTGGGT CGCTCACCCA 201

#### XmnI

| TAAAGTTCTG                   | ATTTCAAGAC |
|------------------------------|------------|
| ACGT TTTCCAATGA TGAGCACTTT ? | ACTCGTGAAA |
| TTTCCAATGA                   | AAAGGTTACT |
| SCCC CGAAGAACGT              | GCTTCTTGCA |
| GTTTTCGCCC                   | CAAAAGCGGG |
| 251                          |            |

SUBSTITUTE SHEET (RULE 26)

| AGCAACTCGG | TCACCAGTCA               | ATGCAGTGCT               | TGACAACGAT               | GGGGATCATG               | CATACCAAAC               | CGTTGCGCAA | CAGTTAATAG               |
|------------|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|------------|--------------------------|
| TCGTTGAGCC | AGTGGTCAGT               | TACGTCACGA               | ACTGTTGCTA               | CCCCTAGTAC               | GTATGGTTTG               | GCAACGCGTT | GTCAATTATC               |
|            |                          |                          |                          |                          |                          |            |                          |
| GCCGGGCAAG | GGTTGAGTAC<br>CCAACTCATG | TAAGAGAATT<br>ATTCTCTTAA | AACTTACTTC<br>TTGAATGAAG | GCACAACATG<br>CGTGTTGTAC | TGAATGAAGC<br>ACTTACTTCG | ATGGCAACAA | TTCCCGGCAA<br>AAGGGCCGTT |
| CCGTATTGAC | AGAATGACTT               | GGCATGACAG               | CACTGCGGCC               | CCGCTTTTTT               | GAACCGGAGC               | GCCTGTAGCA | TTACTCTAGC               |
| GGCATAACTG | TCTTACTGAA               | CCGTACTGTC               | GTGACGCCGG               | GGCGAAAAAA               | CTTGGCCTCG               | CGGACATCGT | AATGAGATCG               |
| CGGTATTATC | CACTATTCTC               | TCTTACGGAT               | TGAGTGATAA               | AAGGAGCTAA               | TGATCGTTGG               | ACACCACGAT | GGCGAACTAC               |
| GCCATAATAG | GTGATAAGAG               | AGAATGCCTA               | ACTCACTATT               | TTCCTCGATT               | ACTAGCAACC               | TGTGGTGCTA | CCGCTTGATG               |
| CTATGTGGCG | TCGCCGCATA               | CAGAAAAGCA               | GCCATAACCA               | CGGAGGACCG               | TAACTCGCCT               | GACGAGCGTG | ACTATTAACT               |
| GATACACCGC | AGCGGCGTAT               | GTCTTTTCGT               | CGGTATTGGT               |                          | ATTGAGCGGA               | CTGCTCGCAC | TGATAATTGA               |
| 301        | 351                      | 401                      | 451                      | 501                      | 551                      | 601        | 651                      |
| 3          |                          |                          | OUDC:                    |                          |                          |            |                          |

SUBSTITUTE SHEET (MULE 28)

Figure 35a: Functional maps and sequences of additional pCAL vector modules and pCAL vectors (continued)

GAGCCGGGAA CICGGCCCTI GTGAAGACGC GTTGCAGGAC CACTTCTGCG CAACGICCIG GGCGGATAAA CCGCCTATTT ACTGGATGGA TGACCTACCT 701

TCGCACCCAG AGCGTGGGTC CCTCGGCCAC GGAGCCGGTG ACTATTAGA TGATAAATCT GGTTTATTGC CCAAATAACG CCGGCTGGCT GGCCGACCGA 751

AGGGCATAGC TCCCGTATCG ACCATTCGGG TGGTAAGCCC ACCCCGGTCT TGGGGCCAGA TAACGTCGTG ATTGCAGCAC AGCGCCATAG TCGCGGTATC 801

CTATGGATGA ACGAAATAGA TGCTTTATCT GATACCTACT TCAGICCGIT AGTCAGGCAA GTGCTGCCCC CACGACGGGG TAGTTATCTA ATCAATAGAT

851

AAGCATTGGG TTCGTAACCC CTCACTGATT GAGTGACTAA TCTATCCACG AGATAGGTGC CAGATCGCTG GTCTAGCGAC

ATTGACAGTC

TAACTGTCAG

AGTAAAAATT TCATTTTAA ATTTAAAACT TAAATTTTGA CTTTAGATTG GAAATCTAAC CTCATATATA GAGTATATAT ACCAAGTTTA TGGTTCAAAT 951

TGACCAAAAT ACTGGTTTTA GATAATCTCA CTATTAGAGT GATCCTTTTT CTAGGAAAAA TCTAGGTGAA AGATCCACTT AAATTTTCCT TTTAAAAGGA 1001

GTAGAAAAGA CATCTTTCT GTCAGACCCC CAGTCTGGGG GAGTTTTCGT TCCACTGAGC AGGTGACTCG CTCAAAAGCA CCCTTAACGT GGGAATTGCA 1051

SUBSTITUTE SHEET (RULE 26)

133 / 204

901

PacI

FseI

| _                    |
|----------------------|
| 5                    |
| ຮ                    |
| Ξ                    |
| ☱                    |
| 8                    |
| tors (continu        |
| Š                    |
| 욛                    |
| ຍ                    |
| CAL vect             |
| ₹                    |
| Q                    |
| _                    |
| 2                    |
| G                    |
| S                    |
| 3                    |
| 8                    |
| Ē                    |
| =                    |
| 2                    |
| မွ                   |
| >                    |
| ¥                    |
| Q                    |
| al pCAL vector modul |
| E                    |
| ă                    |
| ΞΞ                   |
| Þ                    |
| ĕ                    |
| Ĕ                    |
| S                    |
| ည                    |
| Ē                    |
| ps and sequenc       |
| þ                    |
| Š                    |
| g                    |
| 8                    |
| S                    |
| 2                    |
| ⊨                    |
| <u></u>              |
| 5                    |
| :≝                   |
| 2                    |
| Ē                    |
| •••                  |
| 53                   |
| رة<br>ع              |
| ıre 35a:             |
| Ē                    |
| ιΞ                   |
| _                    |
|                      |

| CCCCCCCTT  | GGGGGGGAA  |
|------------|------------|
| AATGGCCGGC | TTACCGGCCG |
| CCTTTTTGAT | SAAAAACTA  |
| THCTTGAGAT | AAGAACTCTA |
|            | STTTCCTAG  |
| ,          | T 0 T T    |

PacI
~~~~~~
1151 AATTAAGGGG GGG
TTAATTCCCC CCC

SUBSTITUTE SHEET (RULE 26)
134 / 204

Figure 35a: Functional maps and sequences of additional pCAL vector modules and pCAL vectors (continued)

SUBSTITUTE SHEET (RULE 26) 135 / 204

Figure 35a; Functional maps and sequences of additional pCAL vector modules and pCAL vectors (continued)

M11-II:

NheI

TGTGGTGGTT	CCGCTCCTTT	CCCCGTCAAG	TTTACGGCAC	GTGGGCCATC	ACGTTCTTTA
ACACCACCAA	GGCGAGGAAA	GGGGCAGTTC	AAATGCCGTG	CACCCGGTAG	TGCAAGAAAT
ວລວອວວອວອວ	GCCCTAGCGC	CGCCGGCTTT	GATTTAGTGC	GGTTCTCGTA	GTTGGAGTCC
ອອອວອອວອວອວ	CGGGATCGCG	GCGGCCGAAA	CTAAATCACG	CCAAGAGCAT	CAACCTCAGG
GGCGCATTAA	ACTTGCCAGC	TCGCCACGTT	TTAGGGTTCC	TTAGGGTGAT	GCCCTTTGAC
	TGAACGGTCG	AGCGGTGCAA	AATCCCAAGG	AATCCCACTA	CGGGAAACTG
GCCCTGTAGC CGGGACATCG	TGACCGCTAC ACTGGCGATG	CCTTCCTTTC GGAAGGAAAG	Banll ~~~~~ GGGCTCCCT CCCCGAGGGA	AAAAACTTGA TTTTTGAACT	ACGGTTTTTC TGCCAAAAAG
GCTAGCACGC	ACGCGCAGCG	CGCTTTCTTC	CTCTAAATCG	CTCGACCCCA	GCCCTGATAG
CGATCGTGCG	TGCGCGTCGC	GCGAAAGAAG	GAGATTTAGC	GAGCTGGGGT	CGGGACTATC
Н	51	101	151	201	251
-		SUBSTITUTE	SHEET (PULE 26)		

ਰ	1
Jue	
∄	ì
Ē	
S	
5	
>	
S	
D.	
au	
es	
pg	
E	
tor	
Æ	
بَ	
Š	
unctional maps and sequences of additional pCAL vector modules and pCAL vecto	
Ęį	
ğ	
f ac	
2.0	
ยู	
힐	
Seq	
pu	
S.	
de	
=	
ü	
i:	
Fun	
Figure 35a: Functiona	
35	
ure	
Fig	

TATCTCGGTC	ATAGAGCCAG
CACTCAACCC	GTGAGTTGGG
ACTGGAACAA	TGACCTTGTT
CTTGTTCCAA	GAACAAGGTT
ATAGTGGACT	TATCACCTGA
301	,

1	TAACCAATTT
ATTTCGGCCT	TAAAGCCGGA
GATTTTGCCG	CTAAAACGGC
ATTTATAAGG	TAAATATTCC
TATTCTTTG	ATAAGAAAAC
351	

AAAATATTAA	TTTATAATT
AATTTAACGC GAATTTTAAC A	TTGCG CTTAAAATTG
AATTTAACGC	C TAAATTGTTT TTAAATTGCG (
SCTG ATTTAACAAA	TAAATTGTTT
AAATGAGCTG ATTTAACA	TTTACTCGAC TA
401	

451 CGTTTACAAT TTCATGTACA GCAAATGTTA AAGTACATGT

SUBSTITUTE SHEET (RULE 26)

SUBSTITUTE SHEET (RULE 26)

uences of additional pCAL vector modules and pCAL vectors (continued)

			CGCGTAATCT GCGCATTAGA	TTCGTAGGTT AAGCATCCAA	GAGGAGCGCA CTCCTCGCGT	CATGACTTCA GTACTGAAGT	GTGGTGCTTT CACCACGAAA	GATAAGGCGC CTATTCCGCG	CTTGGAGCGA GAACCTCGCT
			TTTTGGTCTG (AAAACCAGAC (AGGGCGGTTT : TCCCGCCAAA i	AACTGGCTTG (TTGACCGAAC	TTAACCGGCG	GCTGCTGCCA CGACGACGGT	ATAGTTACCG TATCAATGGC	TACAGTCCAG ATGTCAGGTC
sequences of additional pCAL vector incourts and pCAL vector			CTTGAGATCG	ACCGCCTTGC TGGCGGAACG	GAACCGAGGT CTTGGCTCCA	CAGTTTAGCC GTCAAATCGG	ATTACCAGTG TAATGGTCAC	ACTCAAGACG TGAGTTCTGC	GGTTCGTGCA CCAAGCACGT
s of additional pual veric			AGATGATCTT TCTACTAGAA	AAACGAAAAA TTTGCTTTTT	CCAACTCTTT GGTTGAGAAA	CTTGTCCTTT GAACAGGAAA	CTCTAAATCA GAGATTTAGT	TCCGGGTTGG AGGCCCAACC	CTGAACGGGG GACTTGCCCC
Figure 35a: Functional maps and sequence	•••	рдттр	AGATCTAATA TCTAGATTAT	CTTGCTCTGA GAACGAGACT	CTCTGAGCTA GAGACTCGAT	GTCACTAAAA CAGTGATTTT	AGACTAACTC TCTGATTGAG	TGCATGTCTT ACGTACAGAA	AGCGGTCGGA TCGCCAGCCT
igure 35a: Fun	M 12		⊣	51	101	151	201	251	301
Ξ.					SUBST	TUTE SHEE	T (RULE 26)		

and all the control of the control o

TTTGCGCCGG AAACGCGGCC CCTTACTCTG GGAATGAGAC Figure 35a: Functional maps and sequences of additional pCAL vector modules and pCAL vectors (continued) TGTCAGGCGT ACAGTCCGCA GCCTTGACTC CGGAACTGAG TGACGGATGG ACTGCCTACC

AgeI

GTCCTGTCGG TCCTCTCGCG AGGAGAGCGC AGGCAGGAAC TCCGTCCTTG AATGACACCG GTAAACCGAA TTACTGTGGC CATTTGGCTT TATTGTCGCC ATAACAGCGG AGGAGGGAGC 51 401

CAGGACAGCC TATCTTATA ATAGAAATAT AAACGCCTGG TTTGCGGACC CGCCAGGGGG GCGGTCCCCC

TCCTCCTCG

AACAGTCCCC TTGTCAGGGG TTCGTGATGC AAGCACTACG TCGCAGTCTA AGCGTCAGAT CACTGATTTG GTGACTAAAC GTTTCGCCAC CAAAGCGGTG 501

ACTTCCCTGT TGAAGGGACA CGGCCCTCTC GCCGGGAGAG GGCTTTGCCG CCGAAACGGC TACCTTTTTG ATGGAAAAAC GGCGGAGCCT CCGCCTCGGA 551

TTCGTAAGCC AAGCATTCGG CICCGCCCCG GAGGCGGGGC CCTGGCATCT TCCAGGAAAT AGGTCCTTTA GGACCGTAGA TAAGTATCTT ATTCATAGAA 601

CAGTGAGCGA GTCACTCGCT CGTAGCGAGT GCATCGCTCA GCCGCAGTCG AACGACCGAG TTGCTGGCTC CGGCGTCAGC ATTTCCGCTC TAAAGGCGAG 651

SUBSTITUTE SHEET (RU'LE 26)

AgeI

Figure 35a. Functional maps and sequences of additional pCAL vector modules and pCAL vectors (continued)

~ ~ ~ ~ ~ ~ ~	GGAAGCGGAA TATATCCTGT ATCACATATT CTGCTGACGC ACCGGTGCAG CCTTCGCCTT ATATAGGACA TAGTGTATAA GACGACTGCG TGGCCACGTC	XmnI CCTTTTTTTCT CCTGCCACAT GAAGCACTTC ACTGACACCC TCATCAGTGC GGAAAAAAAGA GGACGGTGTA CTTCGTGAAG TGACTGTGGG AGTAGTCACG	
	CTGCTGA	ACTGACA TGACTGT	ეე ეე
	ATCACATATT TAGTGTATAA	XmnI CONTICTOR A CUTCGTGAAG I NheI	CACTCCGCTA
	TATATCCTGT ATATAGGACA	CCTGCCACAT GGACGGTGTA	CAACATAGTA AGCCAGTATA CACTCCGCTA GCGTTGTATCAT TCGGTCATAT GTGAGGCGAT CG
	GGAAGCGGAA CCTTCGCCTT	CCTTTTTTCT GGAAAAAAGA	CAACATAGTA GTTGTATCAT
	701	751	801

SUBSTITUTE SHEET (RULE 26)

Figure 35a: Functional maps and sequences of additional pCAL vector modules and pCAL vectors (continued)

SUBSTITUTE SHEET (RULE 23)

BgliI

Here there is not being sign for all the street for the street of the street street of the street st

Figure 35a: Functional maps and sequences of additional pCAL vector modules and pCAL vectors (continued)

M 13:

TTCAGATCT AAGTCTAGA TACGAAGTTA ATGCTTCAAT ATGTATGCTA TACATACGAT ACTTCGTATA TGAAGCATAT TCTAGAGTAT AGATCTCATA

SUBSTITUTE SHEET (RULE 26)

SUBSTITUTE SHEET (AULE 26)

CTATTGCACT

AAACAAAGCA

AAATAAAATG

Figure 35a: Functional maps and sequences of additional pCAL vector modules and pCAL vectors (continued)

19: Z SphI

XbaI

AGATCTCGTA TCTAGAGCAT

GATAACGTGA ECORI TTTGTTTCGT TTTATTTAC GCGTAGGAGA CGCATCCTCT

SapI

11111

GAATTC CTTAAG ATGGTTTCGG TACCAAAGCC CCGTTGCTCT TCACCCCTGT GGCAACGAGA AGTGGGGACA GGCACTCTTA CCGTGAGAAT

SUBSTITUTE SHEET (RULE 26)

51

Figure 35a: Functional maps and sequences of additional pCAL vector modules and pCAL vectors (continued)

SUBSTITUTE SHEET (RULE 26)
146 / 204

The first of the f

Figure 35a: Functional maps and sequences of additional pCAL vector modules and pCAL vectors (continued)

M 20:

XbaI SphI

GATAACGTGA CTATTGCACT AAACAAAGCA TTTGTTTCGT GCGTAGGAGA AAATAAAATG TTTATTTAC AGATCTCGTA CGCATCCTCT TCTAGAGCAT

SapI

ATGGTTTCGG TACCAAAGCC GGCACTCTTA CCGTTGCTCT TCACCCCTGT CCGTGAGAAT GGCAACGAGA AGTGGGGACA

51

GACTACAAAG

MunI EcoRI

ATGAAGTGCA ATTGGAATTC TACTTCACGT TAACCTTAAG

SUBSTITUTE SHEET (RULE 26)

101

SUBSTITUTE SHEET (RULE 26) 148 / 204 Figure 35a: Functional maps and sequences of additional pCAL vector modules and pCAL vectors (continued)

21: Σ XbaI

TTCTTCCTTGC TTATAGCGTA AAGAAGAACG AATATCGCAT TATGAAAAAG CTCCACTAAA ATACTTTTC TCTAGAGGTT GAGGTGATTT AGATCTCCAA 11111

NsiI

ECORI

~~~~

GAATTC

CTTAAG

AACGATGTTT ACGTATGCGA TIGCTACAAA IGCATACGCI GTTTTTTCTA CAAAAAAGAT

51

ATCTATGTTC TAGATACAAG

SUBSTITUTE SHEET (P.ULE 26)

Figure 35a: Functional maps and sequences of additional pCAL vector modules and pCAL vectors (continued)



SUBSTITUTE SHEET (RULE 26) 150 / 204

Figure 35a: Functional maps and sequences of additional pCAL vector modules and pCAL vectors (continued)

M 41:

NheI

ATCAACTGGG ACCTTCGCCG GTTGACCGCC GGCCCTGCAC CCGGGACGTG TAGTTGACCC ACGTTATACG CCGCGTGGTG CAACTGGCGG GATAGCGCCC CTATCGCGGG TGCAATATGC GGCGCACCAC TGGAAGCGGC CCTCCAGTCT TCTCGCGCCG TCTGGCAAAG CGTGGCACAA GGAGGTCAGA CCATACCGTA GAAACCAGTA CTTTGGTCAT CGGGAAAAAG GCCCTTTTTC GCACCGTGTT AGAGCGCGGC AGACCGTTTC GGTATGGCAT ACGCTTTTGC GGCGTTGCCA GGCGATTAAA ACCACTTACA CAGAGAATAG TTCCTAACCG AAGGATTGGC TTGGAAAGCG CCGCAACGGT CCGCTAATTT AATGGCGCAA AACCTTTCGC GTCTCTTATC TGCGAAAACG TGGTGAATGT TTACCGCGTT CGGTGCAAAG GTTAAGTCCC CATACGGCCA GACTTAATGT AAATTGTCGC TTTAACAGCG CAATTCAGGG GTATGCCGGT GCCACGTTTC CTGAATTACA GTTGCTGATT CAACGACTAA GCGCCGTCGC GGAAGAGAGT CCTTCTCTCA ATGTCGCAGA TACAGCGTCT AACCAGGCCA TTGGTCCGGT GATGGCGGAG CTACCGCCTC GCAAACAGTC CGTTTGTCAG CGCGGCAGCG GCTAGCATCG CGATCGTAGC 251 301 101 201 51 51

> SUBSTITUTE SHEET (FULE 26) 151 / 204

Figure 35a: Functional maps and sequences of additional pCAL vector modules and pCAL vectors (continued)

|                          |                          |                          | 4 -                      | - m                      | , h                      | <b>4</b> = .             | F 3 FF                   |
|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|
| TGTA                     | TATT<br>ATAA             | GCAC                     | AACA                     | TCTC                     | GTTC                     | CGCA                     | GTC                      |
| GAAGCCTGTA<br>CTTCGGACAT | GCTGATTATT<br>CGACTAATAA | CTGCCTGCAC<br>GACGGACGTG | CCCATCAACA<br>GGGTAGTTGT | GGAGCATCTG<br>CCTCGTAGAC | CATTAAGTTC<br>GTAATTCAAG | CTCACTCGCA<br>GAGTGAGCGT | TGCCATGTCC<br>ACGGTACAGG |
| GA                       | 99                       | CT                       | 0 0                      | ဗ္ဗ ၁                    | <del>-</del> -           |                          |                          |
| AAGCGGCGTC<br>TTCGCCGCAG | GTGTCAGTGG               | GCTGTGGAAG<br>CGACACCTTC | TGACCAGACA<br>ACTGGTCTGT | GACTGGGCGT<br>CTGACCCGCA | TTAGCTGGCC               | GCATAAATAT<br>CGTATTTATA | GCGACTGGAG<br>CGCTGACCTC |
| TGGTAGAACG<br>ACCATCTTGC | CTCGCGCAAC<br>GAGCGCGTTG | GGATGCTATT<br>CCTACGATAA | TTGATGTCTC<br>AACTACAGAG | GACGGTACGC<br>CTGCCATGCG | AATCGCGCTG<br>TTAGCGCGAC | TGGCTGGCTG<br>ACCGACCGAC | GAACGGGAAG<br>CTTGCCCTTC |
| GTCGTGTCGA<br>CAGCACAGCT | GCACAATCTT<br>CGTGTTAGAA | TGGATGACCA<br>ACCTACTGGT | GCGTTATTTC<br>CGCAATAAAG | CTCCCATGAG<br>GAGGGTACTC | GCCACCAGCA<br>CGGTGGTCGT | CGTCTGCGTC<br>GCAGACGCAG | GCCGATAGCG               |
| TGCCAGCGTG<br>ACGGTCGCAC | AAGCGGCGGT<br>TTCGCCGCCA | AACTATCCGC<br>TTGATAGGCG | TAATGTTCCG<br>ATTACAAGGC | GTATTATTTT<br>CATAATAAAA | GTCGCATTGG<br>CAGCGTAACC | TGTCTCGGCG<br>ACAGAGCCGC | ATCAAATTCA<br>TAGTTTAAGT |
| 351                      | 401                      | 451                      | 501                      | 551                      | 601                      | 651                      | 701                      |
|                          |                          |                          | SUBSTITU                 | TE SHEET (F              | ULE 26)                  |                          |                          |
|                          |                          |                          |                          |                          |                          |                          |                          |

Figure 35a: Functional maps and sequences of additional pCAL vector modules and pCAL vectors (continued)

| TTCCCACTGC | CGTGCCATTA | GGGATACGAC | CCATCAAACA | CTGCAACTCT | CTCACTGGTG | CTCCCCGCGC | CGACTGGAAA |
|------------|------------|------------|------------|------------|------------|------------|------------|
| AAGGGTGACG | GCACGGTAAT | CCCTATGCTG | GGTAGTTTGT | GACGTTGAGA | GAGTGACCAC |            | GCTGACCTTT |
| GAGGCCATCG | GGGCGCAATG | TCTCGGTAGT | CCGCTGACCA | GGACCGCTTG | TGTTGCCCGT | CAAACCGCCT | ACAGGTTTCC |
| CTCCCGTAGC | CCCGCGTTAC | AGAGCCATCA | GGCGACTGGT | CCTGGCGAAC | ACAACGGGCA |            | TGTCCAAAGG |
| AATGCTGAAT | AGATGGCGCT | GGTGCGGACA | TTATATCCCG | AAACCAGCGT | GGCAATCAGC | TCCCAATACG | AGCTGGCACG |
| TTACGACTTA | TCTACCGCGA | CCACGCCTGT | AATATAGGGC | TTTGGTCGCA | CCGTTAGTCG |            | TCGACCGTGC |
| AAACCATGCA | GCCAACGATC | GCTGCGCGTT | ACAGCTCATG | CTGCTGGGGC | GGCGGTGAAG | CCACCCTGGC | TCACTGATGC |
| TTTGGTACGT | CGGTTGCTAG | CGACGCGCAA | TGTCGAGTAC | GACGACCCCG | CCGCCACTTC | GGTGGGACCG | AGTGACTACG |
| GGTTTTCAAC | GATGCTGGTT | CCGAGTCCGG | GATACCGAGG | GGATTTTCGC | CTCAGGGCCA | AAAAGAAAAA | GTTGGCCGAT |
| CCAAAAGTTG | CTACGACCAA | GGCTCAGGCC | CTATGGCTCC | CCTAAAAGCG | GAGTCCCGGT | TTTTCTTTTT | CAACCGGCTA |
| 751        | 801        | 851        | 901        | 951        | 1001       | 1051       | 1101       |

SUBSTITUTE SHEET (RULE 26) 153 / 204 Figure 35a; Functional maps and sequences of additional pCAL vector modules and pCAL vectors (continued)

GCGGGCAGTG AGGCTACCCG ATAAAAGCGG CTTCCTGACA GGAGGCCGTTTCGCC GAAGGACTGT CCTCCGGCAA 1151

AfllI

GCCCACTTAA 1201

<u>က</u> ပ CGGGTGAATT TTGTTTTGCA AACAAACGT

> SUBSTITUTE SHEET (RULE 26) 154 / 204



SUBSTITUTE SHEET (RULE 26) 155 / 204

Figure 35a: Functional maps and sequences of additional pCAL vector modules and pCAL vectors (continued)

| <u>::</u> |
|-----------|
| 0         |
| Ž         |
| -         |

|    | 2          |                   |              |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|----|------------|-------------------|--------------|--------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ~  | プタプマサンE 47 | T ATTAC CACAMAN A | AGGCACCAA    | TAACTGCCTT   | LTTA AGGGCACCAA TAACTGCCTT AAAAAATTA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| -1 | うけつりはずつませり |                   |              | 不不つびであり出出る   | サスト中中中中中中 マイククストクロル・ HECCARCA TELESTRICATION OF THE TELESTRICATION OF THE TELESTRICATION OF THE TELESTRICATION OF THE TELESTRICATION OF THE TELESTRICATION OF THE TELESTRICATION OF THE TELESTRICATION OF THE TELESTRICATION OF THE TELESTRICATION OF THE TELESTRICATION OF THE TELESTRICATION OF THE TELESTRICATION OF THE TELESTRICATION OF THE TELESTRICATION OF THE TELESTRICATION OF THE TELESTRICATION OF THE TELESTRICATION OF THE TELESTRICATION OF THE TELESTRICATION OF THE TELESTRICATION OF THE TELESTRICATION OF THE TELESTRICATION OF THE TELESTRICATION OF THE TELESTRICATION OF THE TELESTRICATION OF THE TELESTRICATION OF THE TELESTRICATION OF THE TELESTRICATION OF THE TELESTRICATION OF THE TELESTRICATION OF THE TELESTRICATION OF THE TELESTRICATION OF THE TELESTRICATION OF THE TELESTRICATION OF THE TELESTRICATION OF THE TELESTRICATION OF THE TELESTRICATION OF THE TELESTRICATION OF THE TELESTRICATION OF THE TELESTRICATION OF THE TELESTRICATION OF THE TELESTRICATION OF THE TELESTRICATION OF THE TELESTRICATION OF THE TELESTRICATION OF THE TELESTRICATION OF THE TELESTRICATION OF THE TELESTRICATION OF THE TELESTRICATION OF THE TELESTRICATION OF THE TELESTRICATION OF THE TELESTRICATION OF THE TELESTRICATION OF THE TELESTRICATION OF THE TELESTRICATION OF THE TELESTRICATION OF THE TELESTRICATION OF THE TELESTRICATION OF THE TELESTRICATION OF THE TELESTRICATION OF THE TELESTRICATION OF THE TELESTRICATION OF THE TELESTRICATION OF THE TELESTRICATION OF THE TELESTRICATION OF THE TELESTRICATION OF THE TELESTRICATION OF THE TELESTRICATION OF THE TELESTRICATION OF THE TELESTRICATION OF THE TELESTRICATION OF THE TELESTRICATION OF THE TELESTRICATION OF THE TELESTRICATION OF THE TELESTRICATION OF THE TELESTRICATION OF THE TELESTRICATION OF THE TELESTRICATION OF THE TELESTRICATION OF THE TELESTRICATION OF THE TELESTRICATION OF THE TELESTRICATION OF THE TELESTRICATION OF THE TELESTRICATION OF THE TELESTRICATION OF THE TELESTRICATION OF THE TELESTRICATION OF THE TELESTRICATION OF THE TELESTRICATION OF THE TELESTRICATION OF THE TELESTRICATI |
|    | び出びて出るとく目で | LA A A しじしし Le    | TCCCCTCCT.T. | A.II.GACGGAA | TUUTTITIT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|    | フィワンゴばりばゴン |                   | 1 1 1        |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |

| PORCO TECCACTCAT CECAGIACIE TIGIAATICA TIAAGCATIC | GCGGGGCGGG ACGGTGAGTA GCGTCATGAC AACATTAAGT AATTCGTAAG | • |
|---------------------------------------------------|--------------------------------------------------------|---|
| TTGTAATTCA                                        | AACATTAAGT                                             |   |
| CGCAGTACTG                                        | GCGTCATGAC                                             |   |
| TGCCACTCAT                                        | ACGGTGAGTA                                             |   |
|                                                   | 9990999909                                             |   |
| Д<br>С                                            | 1                                                      |   |

| AATCGCCAGC<br>TTAGCGGTCG                       | TTGCGTATAA TATTTGCCCA TAGTGAAAACAACGCATATT ATAAACGGGT ATCACTTTTG |
|------------------------------------------------|------------------------------------------------------------------|
| GATGAACCTG                                     | TTGCGTATAA TATTTGCCCA                                            |
| CTACTTGGAC                                     | AACGCATATT ATAAACGGGT                                            |
| CAAACGGCAT                                     | TTGCGTATAA                                                       |
| GTTTGCCGTA                                     | AACGCATATT                                                       |
| GAAGCCATCA                                     | AGCA CCTTGTCGCC                                                  |
| CTTCGGTAGT                                     | FCGT GGAACAGCGG                                                  |
| TGCCGACATG GAAGCCATCA CAAACGGCAT GATGAACCTG A. | GGCATCAGCA                                                       |
| ACGGCTGTAC CTTCGGTAGT GTTTGCCGTA CTACTTGGAC T  | CCGTAGTCGT                                                       |
| 101                                            | 151                                                              |
| SUBSTIT                                        | UTE SHEE                                                         |

| GCGAAG AAGTTGTCCA TATTGGCTAC GTTTAAATCA AAACTGGTGA | SECTIC TICAACAGGI ALAACCGAIG CAAAITIAGI TITGACCACI |
|----------------------------------------------------|----------------------------------------------------|
| GTTTAAATCA                                         | CAAATTTAGT                                         |
| TATTGGCTAC                                         | ATAACCGATG                                         |
| AAGTTGTCCA                                         | GCTTC TTCAACAGGT                                   |
| ָרָ<br>ט                                           | CCCCCGCTTC                                         |
| 201                                                | i<br>><br>1                                        |
| RULE                                               | - 06)                                              |

| CACCCA GGGATTGGCT GAGACGAAAA ACATATTCTC AATAAACCCT | GTGGGT CCCTAACCGA CTCTGCTTTT TGTATAAGAG TTATTTGGGA |
|----------------------------------------------------|----------------------------------------------------|
| ACATATTC                                           | TGTATAAG                                           |
| GAGACGAAAA                                         | CTCTGCTTTT                                         |
| GGGATTGGCT                                         | CCCTAACCGA                                         |
| AACTCACCCA                                         | TTGAGTGGGT                                         |
| 251                                                | 1                                                  |

CTTGCGAATA GAACGCTTAT TTAGGGAAAT AGGCCAGGTT TTCACCGTAA CACGCCACAT AATCCCTTTA TCCGGTCCAA AAGTGGCATT GTGCGGTGTA 301

SUBSTITUTE SHEET (RULE

|                           | į |
|---------------------------|---|
|                           |   |
|                           | i |
| <del>=</del>              | - |
| μG                        | i |
| n <u>t</u> i              | į |
| <u> </u>                  | i |
| ors                       |   |
| d pCAL vecto              | i |
| بِ                        |   |
| స్ట                       |   |
| nd                        |   |
| Sa                        |   |
| ğ                         |   |
| Ď                         |   |
| jo                        |   |
| /ec                       |   |
| چ<br>ا                    |   |
| I pCAL vector modules and |   |
|                           |   |
| iţi                       |   |
| f additiona               |   |
| maps and sequences of a   |   |
| SS                        |   |
| en                        |   |
| Gdn                       |   |
| d s                       |   |
| sar                       |   |
| det                       |   |
| u le                      |   |
| iou                       |   |
| nct                       |   |
| Figure 35a: Functi        |   |
| 53.                       |   |
| آء<br>ج                   |   |
| ign                       | 1 |
| تت                        |   |
|                           |   |

| TG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | TA         | TG         | 'GT<br>ICA | ACG<br>FGC | rtc<br>vag | rtt<br>AAA | AAT<br>ITA |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|------------|------------|------------|------------|------------|------------|
| CAGAGCGATG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | GTGAACACTA | ACTCCGGGTG | TAAAACTTGT | CAGCTGAACG | CAAAATGTTC | GTGATTTTT  | CTCAAAAAAT |
| GTCTCGCTAC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | CACTTGTGAT | TGAGGCCCAC | ATTTTGAACA | GTCGACTTGC | GTTTTACAAG | CACTAAAAAA | GAGTTTTTTA |
| GTATTCACTC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | TGTAACAAGG | GCCATACGGA | AAAGGCCGGA | CCGTAATATC | TGAAATGCCT | GGTATATCCA | ATCTCGATAA |
| CATAAGTGAG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ACATTGTTCC | CGGTATGCCT | TTTCCGGCCT | GGCATTATAG | ACTTTACGGA | CCATATAGGT | TAGAGCTATT |
| AATCGTCGTG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | TGGAAAACGG | GTCTTTCATT | GAATGTGAAT | TTTAAAAAGG | AGCAACTGAC | TATCAACGGT | GCTCCTGAAA |
| TTAGCAGCAC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ACCTTTTGCC | CAGAAAGTAA | CTTACACTTA | AAATTTTTCC | TCGTTGACTG | ATAGTTGCCA | CGAGGACTTT |
| AACTGCCGGA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | AGTTTGCTCA | CCAGCTCACC | AGGCGGGCAA | CTTTACGGTC | AGGTACATTG | CATTGGGATA | AGCTTCCTTA |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | TCAAACGAGT | GGTCGAGTGG | TCCGCCCGTT | GAAATGCCAG | TCCATGTAAC | GTAACCCTAT | TCGAAGGAAT |
| UNE 3537: FUNCTIONIAN MAPS AND 35 YEACH STATE TO THE ATTACK ATTACK ATTACK ATTACK ATTACK ATTACK ATTACK ATTACK ATTACK ATTACK ATTACK ATTACK ATTACK ATTACK ATTACK ATTACK ATTACK ATTACK ATTACK ATTACK ATTACK ATTACK ATTACK ATTACK ATTACK ATTACK ATTACK ATTACK ATTACK ATTACK ATTACK ATTACK ATTACK ATTACK ATTACK ATTACK ATTACK ATTACK ATTACK ATTACK ATTACK ATTACK ATTACK ATTACK ATTACK ATTACK ATTACK ATTACK ATTACK ATTACK ATTACK ATTACK ATTACK ATTACK ATTACK ATTACK ATTACK ATTACK ATTACK ATTACK ATTACK ATTACK ATTACK ATTACK ATTACK ATTACK ATTACK ATTACK ATTACK ATTACK ATTACK ATTACK ATTACK ATTACK ATTACK ATTACK ATTACK ATTACK ATTACK ATTACK ATTACK ATTACK ATTACK ATTACK ATTACK ATTACK ATTACK ATTACK ATTACK ATTACK ATTACK ATTACK ATTACK ATTACK ATTACK ATTACK ATTACK ATTACK ATTACK ATTACK ATTACK ATTACK ATTACK ATTACK ATTACK ATTACK ATTACK ATTACK ATTACK ATTACK ATTACK ATTACK ATTACK ATTACK ATTACK ATTACK ATTACK ATTACK ATTACK ATTACK ATTACK ATTACK ATTACK ATTACK ATTACK ATTACK ATTACK ATTACK ATTACK ATTACK ATTACK ATTACK ATTACK ATTACK ATTACK ATTACK ATTACK ATTACK ATTACK ATTACK ATTACK ATTACK ATTACK ATTACK ATTACK ATTACK ATTACK ATTACK ATTACK ATTACK ATTACK ATTACK ATTACK ATTACK ATTACK ATTACK ATTACK ATTACK ATTACK ATTACK ATTACK ATTACK ATTACK ATTACK ATTACK ATTACK ATTACK ATTACK ATTACK ATTACK ATTACK ATTACK ATTACK ATTACK ATTACK ATTACK ATTACK ATTACK ATTACK ATTACK ATTACK ATTACK ATTACK ATTACK ATTACK ATTACK ATTACK ATTACK ATTACK ATTACK ATTACK ATTACK ATTACK ATTACK ATTACK ATTACK ATTACK ATTACK ATTACK ATTACK ATTACK ATTACK ATTACK ATTACK ATTACK ATTACK ATTACK ATTACK ATTACK ATTACK ATTACK ATTACK ATTACK ATTACK ATTACK ATTACK ATTACK ATTACK ATTACK ATTACK ATTACK ATTACK ATTACK ATTACK ATTACK ATTACK ATTACK ATTACK ATTACK ATTACK ATTACK ATTACK ATTACK ATTACK ATTACK ATTACK ATTACK ATTACK ATTACK ATTACK ATTACK ATTACK ATTACK ATTACK ATTACK ATTACK ATTACK ATTACK ATTACK ATTACK ATTACK ATTACK ATTACK ATTACK ATTACK ATTACK ATTACK ATTACK ATTACK ATTACK ATTACK ATTACK ATTACK ATTACK ATTACK ATTACK ATTACK ATTACK ATTACK ATTACK ATTACK ATTACK ATTACK ATTACK ATTACK ATTACK ATTACK ATTACK ATTACK ATTACK ATTACK ATTACK ATTACK ATTACK ATTAC | AAAACGTTTC | TCCCATATCA | AGCATTCATC | GCTTATTTT  | GTCTGGTTAT | TTTACGATGC | TCTCCATTTT |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | TTTTGCAAAG | AGGGTATAGT | TCGTAAGTAG | CGAATAAAAA | CAGACCAATA | AAATGCTACG | AGAGGTAAAA |
| 351                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 401        | 451        | 501        | 551        | 601        | 651        | 701        |
| lure 3:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |            |            | SUBSTI     | TUTE SHEET | (RULE 26)  |            |            |

TATGCTTCAA

TTACATGCGA

TTGAAGCATA

GCGTACGGTA

GCAGATTGTG

CGTCTAACAC

CTTTTTACCG GAAAAATGGC

CCTGTGAAGT

1001

GGACACTTCA

AAACAGACGG TTTGTCTGCC

GCTGTAAAAA CGACATTTT

ATAAGCTTGA TATTCGAACT GAATTTCTAG ACCCCCCCC CTTAAAGATC TGGGGGGGGG ATAACAATTT TATTGTTAAA GCTTTACACT CGAAATGTGA TTGGAGTGGG AACCTCACCC HindIII ATACGAAGTT TTGTGAGCGG AACACTCGCC GGCACCCCAG CCGTGGGGTC TGAAAGTTGG ACTTTCAACC Xbal Figure 35a: Functional maps and sequences of additional pCAL vector modules and pCAL vectors (continued) AACTTCGTAT AATGTACGCT AAGTAATACC CCATGATTAC GGTACTAATG TTGTGTGGAA AACACACCTT GTGATCTTAT TTCATTATGG TCACTCALTA AGTGAGTAAT CACTCAATCG TGTCGATACT CACTAGAATA GGCTCGTATG ACAGCTATGA GACGTCTAAT GTGAGTTAGC CCGAGCATAC CGCATGCCAT CACACAGGAA AATACGAAGG GTGTGTCCTT CTGCAGATTA TTATGCTTCC TGCGGGCCAT ACGCCCGGTA ~~~~~ SphI AatII 901 951 851 751 801 SUBSTITUTE SHEET (RULE 23) 158 / 204

| or modules an           | - (1) |
|-------------------------|-------|
| pCAL vect               |       |
| PCA                     |       |
| <sup>*</sup> additional |       |
| sequences of            |       |
| maps and                |       |
| Functional              |       |
| Figure 35a:             | `     |
|                         |       |

| 77/08320                          |                          |                          |                          |                          | •                        | C1/11/20/02/                               |
|-----------------------------------|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------------------------|
| ~~~~~<br>GTACATGAAA<br>CATGTACTTT | TTGTTAAATC<br>AACAATTTAG | CTTATAAATC<br>GAATATTTAG | TGGAACAAGA<br>ACCTTGTTCT | AAAAACCGTC<br>TTTTTGGCAG | CAAGTTTTTT<br>GTTCAAAAAA | Banll<br>~~~~~<br>GGGAGCCCCC<br>CCCTCGGGGG |
| GGGGGGGGT                         | CGTTAAATTT<br>GCAATTTAAA | GGCAAAATCC<br>CCGTTTTAGG | TGTTCCAGTT<br>ACAAGGTCAA | TCAAAGGGCG<br>AGTTTCCCGC | TCACCCTAAT<br>AGTGGGATTA | GAACCCTAAA<br>CTTGGGATTT                   |
| GGGCCGGCCT                        | TTAAAATTCG<br>AATTTTAGC  | GGCCGAAATC<br>CCGGCTTTAG | GGTTGAGTGT<br>CCAACTCACA | GACTCCAACG<br>CTGAGGTTGC | ACGAGAACCA<br>TGCTCTTGGT | CACTAAATCG<br>GTGATTTAGC                   |
| AGGGGGGGGG                        | TAATATTTTG<br>ATTATAAAAC | TTAACCAATA<br>AATTGGTTAT | ACCGAGATAG<br>TGGCTCTATC | AAAGAACGTG<br>TTTCTTGCAC | ATGGCCCACT<br>TACCGGGTGA | TGCCGTAAAG<br>ACGGCATTTC                   |
| CAAATTAATT  CAAATTAATT            | TTGTAAACGT<br>AACATTTGCA | AGCTCATTTT<br>TCGAGTAAAA | AAAAGAATAG<br>TTTTCTTATC | GTCCACTATT<br>CAGGTGATAA | TATCAGGGCG<br>ATAGTCCCGC | GGGGTCGAGG                                 |
| 1051                              | 1101                     | 1151                     | 1201                     | 1251                     | 1301                     | 1351                                       |
|                                   |                          | SUE                      | BSTITUTE SH              | HEET (RULE               | 26)                      |                                            |

| Figure 35a: Functional maps and sequences of additional pCAL vector modules and pCAL vectors (continued).  CATGGAGCC AGCAAGCTGA CGCCGCTCGC CTTTACCGAA TGCTTGCCCC | CCAGGAAGAT ACTTAACAGG GAAGTGAGAG<br>GGTCCTTCTA TGAATTGTCC CTTCACTCTC | TCCATAGGCT CCGCCCCCT GACAAGCATC<br>AGGTATCCGA GGCGGGGGA CTGTTCGTAG | CAGTGGTGGC GAAACCCGAC AGGACTATAA<br>GTCACCACCG CTTTGGGCTG TCCTGATATT | TGGCGGCTCC CTCCTGCGCT CTCCTGTTCC<br>ACCGCCGAGG GAGGACGCGA GAGGACAAGG | TCATTCCGCT GTTATGGCCG CGTTTGTCTC<br>AGTAAGGCGA CAATACCGGC GCAAACAGAG | TTCCGGGTAG GCAGTTCGCT CCAAGCTGGAAAGGCCCATC CGTCAAGCGA GGTTCGACCT | TTCAGTCCGA CCGCTGCGCC TTATCCGGTA |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|--------------------------------------------------------------------|----------------------------------------------------------------------|----------------------------------------------------------------------|----------------------------------------------------------------------|------------------------------------------------------------------|----------------------------------|
| ditional pCAL vector modules and pCAL vectors (co<br>AGCAAGCTGA CGCCGCTCGC                                                                                       | CTGGAAGATG C<br>GACCTTCTAC 6                                         | AAGCCGTTTT T<br>TTCGGCAAAA                                         | ACGCTCAAAT (<br>TGCGAGTTTA (                                         | CGTTTCCCCC                                                           | AgeI<br>~~~~~~<br>TTTACCGGTG<br>AAATGGCCAC                           | TGACACTCAG<br>ACTGTGAGTC                                         | GAACCCCCCG                       |
| naps and sequences of addit                                                                                                                                      | _                                                                    | •                                                                  |                                                                      | AGATACCAGG<br>TCTATGGTCC                                             | TGCCTTTCGG                                                           | ATTCCACGCC<br>TAAGGTGCGG                                         | CTGTATGCAC                       |
| igure 35a: Functional m                                                                                                                                          | 1751                                                                 | 1801                                                               | 1851                                                                 | 161 / 161                                                            | 1501<br>204                                                          | 2001                                                             | 2051                             |

The first is not the first in the first is not then the first in the first in the first in the first in the first in the first in the first in the first in the first in the first in the first in the first in the first in the first in the first in the first in the first in the first in the first in the first in the first in the first in the first in the first in the first in the first in the first in the first in the first in the first in the first in the first in the first in the first in the first in the first in the first in the first in the first in the first in the first in the first in the first in the first in the first in the first in the first in the first in the first in the first in the first in the first in the first in the first in the first in the first in the first in the first in the first in the first in the first in the first in the first in the first in the first in the first in the first in the first in the first in the first in the first in the first in the first in the first in the first in the first in the first in the first in the first in the first in the first in the first in the first in the first in the first in the first in the first in the first in the first in the first in the first in the first in the first in the first in the first in the first in the first in the first in the first in the first in the first in the first in the first in the first in the first in the first in the first in the first in the first in the first in the first in the first in the first in the first in the first in the first in the first in the first in the first in the first in the first in the first in the first in the first in the first in the first in the first in the first in the first in the first in the first in the first in the first in the first in the first in the first in the first in the first in the first in the first in the first in the first in the first in the first in the first in the first in the first in the first in the first in the first in the first in the first in the first in the f

Figure 35a: Functional maps and sequences of additional pCAL vector modules and pCAL vectors (continued)

| 97/08320                 |                          |                          |                                           |        |                                      |                          |            |
|--------------------------|--------------------------|--------------------------|-------------------------------------------|--------|--------------------------------------|--------------------------|------------|
| AAAGGAAGGG<br>TTTCCTTCCC | TAGCGGTCAC<br>ATCGCCAGTG | CTACAGGGCG<br>GATGTCCCGC | GATGAGGGTG<br>CTACTCCCAC                  | AgeI   | CCGGTGCGTC<br>GGCCACGCAG             | CACTGACTCG<br>GTGACTGAGC | ACGAACGGGG |
| ACGTGGCGAG<br>TGCACCGCTC | CTGGCAAGTG<br>GACCGTTCAC | TAATGCGCCG<br>ATTACGCGGC | TGTTGGCACT<br>ACAACCGTGA                  | }      | AAAGGCTGCA<br>TTTCCGACGT             | CTTCCTCGCT               | GAAATGGCTT |
| AAGCCGGCGA               | CGCTAGGGCG<br>GCGATCCCGC | CCGCCGCGCT               | TGGCTTACTA                                |        | GCAGGAGAAA<br>CGTCCTCTTT             | ATATATTCCG<br>TATATAAGGC | GCGGCGAGCG |
| TTGACGGGGA A             | AAGGAGCGGG<br>TTCCTCGCCC | ACCACCACAC<br>TGGTGGTGTG | GAGTGTATAC<br>CTCACATATG                  | It     | GAAGT GCTTCATGTG<br>CTTCA CGAAGTACAC | GTGATACAGG<br>CACTATGTCC | TCGTTCGACT |
| GATTTAGAGC<br>CTAAATCTCG | AAGAAAGCGA<br>TTCTTTCGCT | GCTGCGCGTA               | NheI<br>~~~~~<br>CGTGCTAGCG<br>GCACGATCGC | ImmX   | TCAGTGAAGT<br>AGTCACTTCA             | AGCAGAATAT<br>TCGTCTTATA | CTACGCTCGG |
| 1401                     | 1451                     | 1501                     | 1551                                      |        | 1601                                 | 1651                     | 1701       |
|                          |                          |                          | SUBSTITUTE SHEE                           | T (RUL | E 26)                                |                          |            |

Figure 35a: Functional maps and sequences of additional pCAL vector modules and pCAL vectors (continued)

| 9//00320                                       |                          |                                                |                                                |                                                |         |                          |
|------------------------------------------------|--------------------------|------------------------------------------------|------------------------------------------------|------------------------------------------------|---------|--------------------------|
| ACCACTGGCA<br>TGGTGACCGT                       | TCATGCGCCG<br>AGTACGCGGC | TCCTCCAAGC<br>AGGAGGTTCG                       | CAGAGAACCT ACGAAAAACC<br>GTCTCTTGGA TGCTTTTTGG | ACGCGCAGAC<br>TGCGCGTCTG                       |         |                          |
| ATGCAAAAGC ACCACTGGCA<br>TACGTTTTCG TGGTGACCGT | AGTCTTGAAG<br>TCAGAACTTC | GTGACTGCGC<br>CACTGACGCG                       |                                                | CGTTTTCAGA GCAAGAGATT<br>GCAAAAGTCT CGTTCTCTAA |         |                          |
| CCGGAAAGAC<br>GGCCTTTCTG                       | TAGAGGAGTT<br>ATCTCCTCAA |                                                | GGTTCAAAGA GTTGGTAGCT<br>CCAAGTTTCT CAACCATCGA | CGTTTTCAGA<br>GCAAAAGTCT                       | BglII   | CATCTTATTA<br>GTAGAATAAT |
| TGAGTCCAAC<br>ACTCAGGTTG                       | GTAATTGATT<br>CATTAACTAA | AACTGAAAGG ACAAGTTTTA<br>TTGACTTTCC TGTTCAAAAT | GGTTCAAAGA<br>CCAAGTTTCT                       | GCGGTTTTTT<br>CGCCAAAAAA                       |         | TCAAGAAGAT<br>AGTTCTTCTA |
| ACTATCGTCT<br>TGATAGCAGA                       | GCAGCCACTG               | GTTAAGGCTA<br>CAATTCCGAT                       | CAGTTACCTC<br>GTCAATGGAG                       | GCCCTGCAAG<br>CGGGACGTTC                       |         | CAAAACGATC               |
| 2101                                           | 2151                     | 2201                                           | 2251                                           | 2301                                           |         | 2351                     |
|                                                |                          |                                                |                                                | E SHETT (A)<br>62 / 204                        | JLE 23) |                          |
|                                                |                          |                                                |                                                |                                                |         |                          |

Figure 35a: Functional maps and sequences of additional pCAL vector modules and pCAL vectors (continued)



SUBSTITUTE SHEET (RULE 26) 163 / 204

Figure 35a: Functional maps and sequences of additional pCAL vector modules and pCAL vectors (continued)

pCALO-2: BsrGI

11111

CGTTAAATTT GCAATTTAAA CATGTACTTT AACATTTGCA ATTATAAAAC AATTTTAAGC TTAAAATTCG TTGTAAACGT TAATATTTTG GTACATGAAA

CCGTTTTAGG GGCAAAATCC CCGGCTTTAG GGCCGAAATC TCGAGTAAAA AATTGGTTAT TTAACCAATA AGCTCATTTT AACAATTTAG TTGTTAAATC 51

GGTTGAGTGT TGTTCCAGTT CCAACTCACA ACAAGGTCAA TTTTCTTATC TGGCTCTATC ACCGAGATAG AAAAGAATAG GAATATTTAG CTTATAAATC 101

CTGAGGTTGC AGTTTCCCGC GACTCCAACG TCAAAGGGCG GTCCACTATT AAAGAACGTG CAGGTGATAA TTTCTTGCAC ACCTTGTTCT TGGAACAAGA 151

TATCAGGGCG ATGGCCCACT ACGAGAACCA TCACCCTAAT AGTGGGATTA TGCTCTTGGT ATAGTCCCGC TACCGGGTGA TTTTGGCAG AAAACCGTC 201

GAACCCTAAA CTTGGGATTT CACTAAATCG GTGATTTAGC GGGGTCGAGG TGCCGTAAAG CCCCAGCTCC ACGCCATTTC CAAGTTTTTT GTTCAAAAA 251

BanII

GGGAGCCCCC GATTTAGAGC TTGACGGGGA AAGCCGGCGA ACGTGGCGAG 301

SUBSTITUTE SHEET (RULE 20)

|                                                                                                          | TGCACCGCTC                                             |
|----------------------------------------------------------------------------------------------------------|--------------------------------------------------------|
| Figure 35a: Functional maps and sequences of additional pCAL vector modules and pCAL vectors (continued) | CCCTCGGGGG CTAAATCTCG AACTGCCCCT TTCGGCCGCT TGCACCGCTC |

| APPER AAGAAAGCGA AAGGAGCGGG CGCTAGGGCG CTGGCAAGTG | TICCC TICITITICGCI TICCTCGCCC GCGAICCCGC GACCGTICAC |
|---------------------------------------------------|-----------------------------------------------------|
| CGCTAGGGCG                                        | GCGATCCCGC                                          |
| AAGGAGCGGG                                        | TTCCTCGCCC                                          |
| AAGAAAGGGA                                        | TTCTTTCGCT                                          |
|                                                   | 30                                                  |
| с<br>1                                            | T C C                                               |

| TAATGUGUUG                               | CGACGCCAT TGGTGGTGTG GGCGGCGCGA ATTACGCGGC |
|------------------------------------------|--------------------------------------------|
| C CCGCCGCGCT TAATGCGCCC                  | re eeceececay                              |
| C GCTGCGCGTA ACCACACAC CCGCCGCGCT TAATGC | SCAT TGGTGGTGTG (                          |
| GCTGCGCGTA                               | CGACGCGCAT                                 |
| TAGCGGTCAC                               | ATCGCCAGTG                                 |
| 401                                      | i<br>)<br>H                                |

| NheI | ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ |
|------|-----------------------------------------|

| AGA          |                           | ŀ          | T          |            |        | QH2      |
|--------------|---------------------------|------------|------------|------------|--------|----------|
| : ACAACCGTGA | CTCACATATG ACCGAATGAT ?   | CTCACATATG | GCACGATCG  | TGTCCCGC   |        | 111: 17E |
| TGTTGGCACT   | S GAGTGTATAC TGGCTTACTA T | GAGTGTATAC | CGTGCTAGCG | 50555404F0 | ۸<br>1 | רספו     |

| (A            |            | ~~~~~~~    | 2222       |            |                                                   |
|---------------|------------|------------|------------|------------|---------------------------------------------------|
| 105<br>105    | GATGAGGGTG | TCAGTGAAGT | GCTTCATGTG | GCAGGAGAAA | SGGTG TCAGTGAAGT GCTTCATGTG GCAGGAGAAA AAAGGCTGCA |
| i<br>)<br>26) | H          | AGTCACTTCA | CGAAGTACAC | CGTCCTCTT  | CCCAC AGTCACTTCA CGAAGTACAC CGTCCTCTTT TTTCCGACGT |

|      |                | CGTC AGCAGAATAT GTGATACAGG ATATATTCCG CTTCCTCGCT |
|------|----------------|--------------------------------------------------|
|      |                | ATATATTCCG<br>TATATAAGGC                         |
|      |                | GTGATACAGG<br>CACTATGTCC                         |
|      |                | AGCAGAATAT<br>TCGTCTTATA                         |
| AgeI | <b>? ? ? ?</b> | CCGGTGCGTC<br>GGCCACGCAG                         |
|      |                | 551                                              |

SUBSTITUTE SHEET (RULE 28

|                                                                                                   | CTTTACC                                             |
|---------------------------------------------------------------------------------------------------|-----------------------------------------------------|
| 35a: Functional maps and sequences of additional pCAL vector modules and pCAL vectors (continued) | GTGACTGAGC GATGCGAGCC AGCAAGCTGA CGCCGCTCGC CTTTACC |
| Figu                                                                                              |                                                     |

| ACTTAACAGG<br>TGAATTGTCC                                                                           | SAG GGCCGCGCA AAGCCGTTTT TCCATAGGCT CCGCCCCCT                                                              |
|----------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|
| ggg cggagatttc ctggaagatg ccaggaagat acttaacagg<br>ccc gcctctaaag gaccttctac ggtccttcta tgaattgtcc | GAAGTGAGAG GGCCGCGCA AAGCCGTTTT TCCATAGGCT CCGCCCCCT CTTCACTCT CCGCCGCGCGT TTCGGCAAAA AGGTATCCGA GGCGGGGGA |
| CTGGAAGATG<br>GACCTTCTAC                                                                           | AAGCCGTTTT<br>TTCGGCAAAA                                                                                   |
| CGGAGATTTC<br>GCCTCTAAAG                                                                           | GGCCGCGGCA                                                                                                 |
| ACGAACGGGG<br>TGCTTGCCCC                                                                           | GAAGTGAGAG<br>CTTCACTCTC                                                                                   |
| 651                                                                                                | 701                                                                                                        |

| SCATC ACGAAATCTG ACGCTCAAAT CAGTGGTGGC GAAACCCGAC | CGTAG TGCTTTAGAC TGCGAGTTTA GTCACCACCG CTTTGGGGCTG |
|---------------------------------------------------|----------------------------------------------------|
| CAGTGGTGGC                                        | GICACCACCG                                         |
| ACGCTCAAAT                                        | TGCGAGTTTA                                         |
| ACGAAATCTG                                        | TGCTTTAGAC                                         |
| GACAAGCATC                                        | CTGTTCGTAG                                         |
| 751                                               |                                                    |
|                                                   | SU                                                 |

|                                         |   | AGGACTATAA AGATACCAGG CGTTTCCCCC TGGCGGCTCC CTCCTGCGCT | TCCTGATATT TCTATGGTCC GCAAAGGGGG ACCGCCGAGG GAGGACGCGA |
|-----------------------------------------|---|--------------------------------------------------------|--------------------------------------------------------|
|                                         |   | TGGCGGCTCC                                             | ACCGCCGAGG                                             |
| 111111111111111111111111111111111111111 |   | CGTTTCCCCC                                             | GCAAAGGGGG                                             |
|                                         | ٠ | AGATACCAGG                                             | TCTATGGTCC                                             |
|                                         |   | AGGACTATAA                                             | TCCTGATATT                                             |
|                                         |   | 801                                                    | I<br>)                                                 |

|       |             | GTTATGGCCG |
|-------|-------------|------------|
|       |             | TCATTCCGCT |
| AgeI  | ~ ~ ~ ~ ~ ~ | TTTACCGGTG |
|       | -           | TGCCTTTCGG |
|       |             | CTCCTGTTCC |
|       |             | 851        |
| T /01 | ;; <u>r</u> | 021        |

| CAATACCGGC                                             | GCAGTTCGCT                                      | GGA CTGTATGCAC GAACCCCCCG TTCAGTCCGA CCGCTGCGCC<br>CCT GACATACGTG CTTGGGGGGC AAGTCAGGCT GGCGACGCGG |
|--------------------------------------------------------|-------------------------------------------------|----------------------------------------------------------------------------------------------------|
| GAGGACAAGG ACGGAAAGCC AAATGGCCAC AGTAAGGCGA CAATACCGGC | CTC ATTCCACGCC TGACACTCAG TTCCGGGTAG GCAGTTCGCT | GGA CTGTATGCAC GAACCCCCCG TTCAGTCCGA CCGCTGCGCC<br>CCT GACATACGTG CTTGGGGGGC AAGTCAGGCT GGCGACGCGG |
| AAATGGCCAC                                             | TGACACTCAG<br>ACTGTGAGTC                        | GAACCCCCCG                                                                                         |
| AGG ACGGAAAGCC AAATGGCCAC                              | CTC ATTCCACGCC                                  | CTGTATGCAC<br>GACATACGTG                                                                           |
| GAGGACAAGG                                             | CGTTTGTCTC<br>GCAAACAGAG                        | CCAAGCTGGA<br>GGTTCGACCT                                                                           |
| ተ<br>)<br>)                                            | 901                                             | 951                                                                                                |

SUBSTITUTE SHEET (RULE 28)

Figure 35a: Functional maps and sequences of additional pCAL vector modules and pCAL vectors (continued)

| 97/08320                   |                          |                          | •                        |                          |       | PC                       | /EP96/036                |
|----------------------------|--------------------------|--------------------------|--------------------------|--------------------------|-------|--------------------------|--------------------------|
| ATGCAAAAGC<br>TACGTTTTCG   | AGTCTTGAAG<br>TCAGAACTTC | GTGACTGCGC<br>CACTGACGCG | CAGAGAACCT<br>GTCTCTTGGA | GCAAGAGATT<br>CGTTCTCTAA | Bglii | GATCTAGCAC<br>CTAGATCGTG | 9992999999<br>2229222299 |
| CCGGAAAGAC<br>GGCCTTTCTG   | TAGAGGAGTT<br>ATCTCCTCAA | ACAAGTTTTA<br>TGTTCAAAAT | GTTĞGTAGCT<br>CAACCATCGA | CGTTTTCAGA<br>GCAAAAGTCT | ì     | CATCTTATTA               | AAAAAAATTA<br>TTTTTTAAT  |
| TGAGTCCAAC<br>ACTCAGGTTG   | GTAATTGATT<br>CATTAACTAA | AACTGAAAGG<br>TTGACTTTCC | GGTTCAAAGA<br>CCAAGTTTCT | GCGGTTTTTT<br>CGCCAAAAAA |       | TCAAGAAGAT<br>AGTTCTTCTA | TAACTGCCTT<br>ATTGACGGAA |
| ACTATCGTCT<br>TGATAGCAGA   | GCAGCCACTG               | GTTAAGGCTA<br>CAATTCCGAT | CAGTTACCTC<br>GTCAATGGAG | GCCCTGCAAG<br>CGGGACGTTC |       | CAAAACGATC<br>GTTTTGCTAG | AGGCCACCAA<br>TCCCGTGGTT |
| TTATCCGGTA<br>AATAGGCCAT   | ACCACTGGCA<br>TGGTGACCGT | TCATGCGCCG<br>AGTACGCGGC | TCCTCCAAGC<br>AGGAGGTTCG | ACGAAAAACC<br>TGCTTTTTGG |       | ACGCGCAGAC<br>TGCGCGTCTG | CAGGCGTTTA<br>GTCCGCAAAT |
| 1001                       | 1051                     | 1101                     | 1151                     | 1201                     |       | 1251                     | 1301                     |
| SUBSTITUTE SHEET (RULE 26) |                          |                          |                          |                          |       |                          |                          |

SUBSTITUTE SHEET (RULE 26

|                      | E |
|----------------------|---|
|                      |   |
|                      | Ì |
| ਉ                    | • |
| nue                  | į |
| onti                 | ١ |
| S (C                 |   |
| cfo                  | 1 |
| ķ                    | 1 |
| is and pCAL ve       | 1 |
| d b                  | - |
| sar                  |   |
| lue                  |   |
| JOE                  |   |
| for                  |   |
| Vec                  |   |
| I pCAL vect          |   |
| <u>_</u>             |   |
| ous                  |   |
| ăit                  |   |
| Ę ac                 |   |
| es o                 |   |
| enc                  |   |
| Gdn                  |   |
| nd s                 |   |
| I maps and sequences |   |
| mag                  |   |
| <u>1</u>             |   |
| ij                   |   |
| uncti                |   |
| ā                    |   |
| 35                   |   |
| dure                 | ı |
| Figure 35a: Fu       |   |
|                      |   |

| TGCCGACATG                                                                      | GGCATCAGCA               | GGGGCGAAG                | AACTCACCCA               | TTAGGGAAAT               | TATGTGTAGA               | AAAACGTTTC               | TCCCATATCA               |
|---------------------------------------------------------------------------------|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|
| ACGGCTGTAC                                                                      | CCGTAGTCGT               | CCCCCGCTTC               | TTGAGTGGGT               | AATCCCTTTA               | ATACACATCT               | TTTTGCAAAG               | AGGGTATAGT               |
| TTAAGCATTC                                                                      | AATCGCCAGC               | TAGTGAAAAC               | AAACTGGTGA               | AATAAACCCT               | CTTGCGAATA               | CAGAGCGATG               | GTGAACACTA               |
| AATTCGTAAG                                                                      | TTAGCGGTCG               | ATCACTTTTG               | TTTGACCACT               | TTATTTGGGA               | GAACGCTTAT               | GTCTCGCTAC               | CACTTGTGAT               |
| TTGTAATTCA                                                                      | GATGAACCTG               | TATTTGCCCA               | GTTTAAATCA               | ACATATTCTC               | CACGCCACAT               | GTATTCACTC               | TGTAACAAGG               |
|                                                                                 | CTACTTGGAC               | ATAAACGGGT               | CAAATTTAGT               | TGTATAAGAG               | GTGCGGTGTA               | CATAAGTGAG               | ACATTGTTCC               |
| AT CGCAGTACTG                                                                   | CAAACGGCAT               | TTGCGTATAA               | TATTGGCTAC               | GAGACGAAAA               | TTCACCGTAA               | AATCGTCGTG               | TGGAAAACGG               |
|                                                                                 | GTTTGCCGTA               | AACGCATATT               | ATAACCGATG               | CTCTGCTTTT               | AAGTGGCATT               | TTAGCAGCAC               | ACCTTTTGCC               |
| gure 358: runctional maps and sequences of acc<br>1351 TGCCACTCAT<br>ACGGTGAGTA | GAAGCCATCA<br>CTTCGGTAGT | CCTTGTCGCC<br>GGAACAGCGG | AAGTTGTCCA<br>TTCAACAGGT | GGGATTGGCT<br>CCCTAACCGA | AGGCCAGGTT<br>TCCGGTCCAA | AACTGCCGGA<br>TTGACGGCCT | AGTTTGCTCA<br>TCAAACGAGT |
| gure 358; runctional<br>1351                                                    | 1401                     | 1451                     | 1501                     | 1551<br>1551             | (RULE 26)                | 1651                     | 1701                     |

| cd)             |
|-----------------|
| continu         |
| ectors (        |
| J pCAL          |
| ules and        |
| tor mod         |
| CAL vecto       |
| tional p        |
| s of addi       |
| duences         |
| s and sec       |
| nal map         |
| re 35a: Functio |
| ıre 35a:        |
| Figure          |

| ភ ស្                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ΪĀ                       | T.<br>A:                 | ပ္က ပ္                   | ŢŢ<br>Ā                  | ra<br>Tr                 | \T<br>[A                                    | Ç          |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|---------------------------------------------|------------|
| AGCATTCATC<br>TCGTAAGTAG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | GCTTATTTT<br>CGAATAAAAA  | GTCTGGTTAT<br>CAGACCAATA | TTTACGATGC<br>AAATGCTACG | TCTCCATTTT<br>AGAGGTAAAA | ACGCCCGGTA<br>TGCGGGCCAT | Aatii<br>~~~~~~<br>GACGTCTAAT<br>CTGCAGATTA | TTATGCTTCC |
| ACTCCGGGTG<br>TGAGGCCCAC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | TAAAACTTGT<br>ATTTTGAACA | CAGCTGAACG<br>GTCGACTTGC | CAAAATGTTC<br>GTTTTACAAG | GTGATTTTT<br>CACTAAAAAA  | CTCAAAAAAT<br>GAGTTTTTTA | AACCTCACCC<br>TTGGAGTGGG                    | GCTTTACACT |
| or additional pual, vector modules and pual, vectors (continued)  C GTCTTTCATT GCCATACGGA ACT(  GG CAGAAAGTAA CGGTATGCCT TGA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | AAAGGCCGGA<br>TTTCCGGCCT | CCGTAATATC<br>GGCATTATAG | TGAAATGCCT<br>ACTTTACGGA | GGTATATCCA<br>CCATATAGGT | ATCTCGATAA<br>TAGAGCTATT | TGAAAGTTGG<br>ACTTTCAACC                    | GGCACCCCAG |
| GTCTTTCATT<br>CAGAAAGTAA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | GAATGTGAAT<br>CTTACACTTA | TTTAAAAAGG<br>AAATTTTTCC | AGCAACTGAC<br>TCGTTGACTG | TATCAACGGT<br>ATAGTTGCCA | GCTCCTGAAA<br>CGAGGACTTT | TTCATTATGG                                  | TCACTCATTA |
| maps and sequences of additional comments of the comments of the comments of the comments of the comments of the comments of the comments of the comments of the comments of the comments of the comments of the comments of the comments of the comments of the comments of the comments of the comments of the comments of the comments of the comments of the comments of the comments of the comments of the comments of the comments of the comments of the comments of the comments of the comments of the comments of the comments of the comments of the comments of the comments of the comments of the comments of the comments of the comments of the comments of the comments of the comments of the comments of the comments of the comments of the comments of the comments of the comments of the comments of the comments of the comments of the comments of the comments of the comments of the comments of the comments of the comments of the comments of the comments of the comments of the comments of the comments of the comments of the comments of the comments of the comments of the comments of the comments of the comments of the comments of the comments of the comments of the comments of the comments of the comments of the comments of the comments of the comments of the comments of the comments of the comments of the comments of the comments of the comments of the comments of the comments of the comments of the comments of the comments of the comments of the comments of the comments of the comments of the comments of the comments of the comments of the comments of the comments of the comments of the comments of the comments of the comments of the comments of the comments of the comments of the comments of the comments of the comments of the comments of the comments of the comments of the comments of the comments of the comments of the comments of the comments of the comments of the comments of the comments of the comments of the comments of the comments of the comments of the comments of the comments of the comments of the comments of t | AGGCGGGCAA<br>TCCGCCCGTT | CTTTACGGTC<br>GAAATGCCAG | AGGTACATTG<br>TCCATGTAAC | CATTGGGATA<br>GTAACCCTAT | AGCTTCCTTA<br>TCGAAGGAAT | GTGATCTTAT<br>CACTAGAATA                    | GTGAGTTAGC |
| igure 35a: Functional maps and sequences 1751 CCAGCTCAC GGTCGAGTV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1801                     | 1851                     | SUBSTIT                  | ALE SHEET (              | 7007<br>(RULE 26)        | 2051                                        | 2101       |

SphI

| re 35a: Functional maps and sequences of additional pCAL vector modules and pCAL vectors (continued) |            | 1 |
|------------------------------------------------------------------------------------------------------|------------|---|
| 35a: Functional maps and sequences of additional pC/                                                 | (pən       |   |
| 35a: Functional maps and sequences of additional pC/                                                 | rs (contir | 1 |
| 35a: Functional maps and sequences of additional pC/                                                 | AL vector  | 1 |
| 35a: Functional maps and sequences of additional pC/                                                 | s and pC   | 1 |
| 35a: Functional maps and sequences of additional pC/                                                 | r module:  |   |
| 35a: Functional maps                                                                                 | AL vector  |   |
| 35a: Functional maps                                                                                 | ional pC/  |   |
| 35a: Functional maps                                                                                 | of addit   |   |
| 35a: Functional maps                                                                                 | ednences   |   |
| re 35a: Functional m                                                                                 | s pue sdei |   |
| re 35a: Fun                                                                                          | ictional m |   |
| ي                                                                                                    | 35a: Fun   |   |
| Figu                                                                                                 | Figure ?   |   |

| AATACGAAGG                                      | CACACAGGAA                         | GTGTGTCCTT                                                        |
|-------------------------------------------------|------------------------------------|-------------------------------------------------------------------|
| TCG AGTGAGTAAT CCGTGGGGTC CGAAATGTGA AATACGAAGG | ATG TTGTGGAA TTGTGAGCGG ATAACAATTT | CONTRACTION AND AND AND THE PACACHER TO THE TRACTICATE OF CHETCHE |
| CCGTGGGGTC                                      | TTGTGAGCGG                         | DAPACHCACC                                                        |
| AGTGAGTAAT                                      | TTGTGTGGAA                         | THUNDED A DA VA                                                   |
| CACTCAATCG                                      | GGCTCGTATG                         | して生べつけるけって                                                        |
|                                                 | 2151                               |                                                                   |

| \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ | ACAGCTATGA CCATGATTAC GAATTTCTAG ACCCCCCCC CGCATGCCAT | GCGTACGGTA                           |
|---------------------------------------|-------------------------------------------------------|--------------------------------------|
| }                                     | ACCCCCCCC                                             | TGGGGGGGGG                           |
| ~~~~                                  | GAATTTCTAG                                            | CTTAAAGATC                           |
|                                       | CCATGATTAC                                            | ACT GGTACTAATG CTTAAAGATC TGGGGGGGGG |
|                                       | ACAGCTATGA                                            | TGTCGATACT                           |
|                                       | 2201                                                  |                                      |

|         |      | 用でなるで用で出てい                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|---------|------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| HindIII | ~~~~ | スプロログラス ネロネ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|         |      | 出出しなることを用る                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|         |      | <b>人び中中のなる。 ままりょうがくまる まりりりょうしょう まっています まってい こうかい こうかい こうかい こうかい しょうしょう しょうしょう しょうしょう しょうしょう しょうしょう しょうしょう しょうしょう しょうしょう しょうしょう しょうしょう しょうしょう しょうしょう しょうしょう しょうしょう しょうしょう しょうしょう しょうしょう しょうしょう しょうしょう しょうしょう しょうしょう しょうしょう しょうしょう しょうしょう しょうしょう しょうしょう しょうしょう しょうしょう しょうしょう しょうしょう しょうしょう しょうしょう しょうしょう しょうしょう しょうしょう しょうしょう しょうしょう しょうしょう しょうしょう しょうしょう しょうしょう しょうしょう しょうしょう しょうしょう しょうしょう しょうしょう しょうしょう しょうしょう しょうしょう しょうしょう しょうしょう しょうしょう しょうしょう しょうしょう しょうしょう しょうしょう しょうしょう しょうしょう しょうしょう しょうしょう しょうしょう しょうしょう しょうしょう しょうしょう しょうしょう しょうしょう しょうしょう しょうしょう しょうしょう しょうしょう しょうしょう しょうしょう しょうしょう しょうしょう しょうしょう しょうしょう しょうしょう しょうしょう しょうしょう しょうしょう しょうしょう しょうしょう しょうしょう しょうしょう しょうしょう しょうしょう しょうしょう しょうしょう しょうしょう しょうしょう しょうしょう しょうしょう しょうしょう しょうしょう しょうしょう しょうしょう しょうしょう しょうしょう しょうしょう しょうしょう しょう </b> |
|         |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|         |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|         |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |

|          | CCTGTGAAGT<br>GGACACTTCA                                                                         | PacI  | ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ | GTTTAATTAA                                     | CAAATTAATT                                              |
|----------|--------------------------------------------------------------------------------------------------|-------|-----------------------------------------|------------------------------------------------|---------------------------------------------------------|
| HindIII  | AT AATGTACGCT ATACGAAGTT ATAAGCTTGA CCTGTGAAGT<br>TA TTACATGCGA TATGCTTCAA TATTCGAACT GGACACTTCA |       |                                         | GC GCAGATTGTG CGACATTTTT TTTGTCTGCC GTTTAATTAA | THAPTHAPCO CONCINAACAC CONCINAAAA AAACAGACGG CAAATHAATH |
|          | ATACGAAGTT<br>TATGCTTCAA                                                                         |       |                                         | CGACATTTTT                                     | GCTGTAAAAA                                              |
|          | AATGTACGCT<br>TTACATGCGA                                                                         |       |                                         | GCAGATTGTG                                     | CGTCTAACAC                                              |
|          | AACTTCGTAT<br>TTGAAGCATA                                                                         | -     |                                         | GAAAAATGGC                                     | じししなかかかかししじ                                             |
|          | 2251                                                                                             |       |                                         | 2301                                           |                                                         |
| SUBSTITU | TE SHEET                                                                                         | (RULE | 26)                                     |                                                |                                                         |
| 1        | 70 / 204                                                                                         |       |                                         |                                                |                                                         |

| CAAATTAATT                                      |      |                                         | TCCTTTGATC                                      | AGGAAACTAG                                     |
|-------------------------------------------------|------|-----------------------------------------|-------------------------------------------------|------------------------------------------------|
| CCG CGICTAACAC GCTGTAAAAA AAACAGACGG CAAATTAATT |      |                                         | GGC CGCCCATTAT CAAAAAGGAT CTCAAGAAGA TCCTTTGATC | CCG GCCGGTAATA GTTTTCCTA GAGTTCTTCT AGGAAACTAG |
| GCTGTAAAAA                                      | ٠    |                                         | CAAAAAGGAT                                      | GTTTTTCCTA                                     |
| CGTCTAACAC                                      | FseI | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | CGGCCATTAT                                      | GCCGGTAATA                                     |
| CI"I"I"I"IOCG                                   | F    | \ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \ | 2555555555                                      | 500000000                                      |
|                                                 |      |                                         | 2351                                            |                                                |
|                                                 |      |                                         |                                                 |                                                |

Figure 35a: Functional maps and sequences of additional pCAL vector modules and pCAL vectors (continued)

| GTTAAGGGAT                 | CTTTTAAATT | AACTTGGTCT | GCGATCTGTC | GATAACTACG | TACCGCGAGA | CCAGCCGGAA | CATCCAGTCT |
|----------------------------|------------|------------|------------|------------|------------|------------|------------|
| CAATTCCCTA                 | GAAAATTTAA | TTGAACCAGA | CGCTAGACAG | CTATTGATGC | ATGGCGCTCT | GGTCGGCCTT | GTAGGTCAGA |
| GAAAACTCAC                 | CACCTAGATC | TATATGAGTA | ACCTATCTCA | CCGTCGTGTA | GCTGCAATGA | AATAAACCAG | TATCCGCCTC |
| CTTTTGAGTG                 | GTGGATCTAG | ATATACTCAT | TGGATAGAGT | GGCAGCACAT |            | TTATTTGGTC | ATAGGCGGAG |
| TCAGTGGAAC                 | AAAGGATCTT | ATCTAAAGTA | TCAGTGAGGC | GCCTGACTCC | TGGCCCCAGT | ATTTATCAGC | CCTGCAACTT |
| AGTCACCTTG                 | TTTCCTAGAA | TAGATTTCAT | AGTCACTCCG | CGGACTGAGG |            | TAAATAGTCG | GGACGTTGAA |
| GGTCTGACGC                 | AGATTATCAA | TTTTAAATCA | CAATGCTTAA | ATCCATAGTT | GCTTACCATC | CCGGCTCCAG | CAGAAGTGGT |
| CCAGACTGCG                 | TCTAATAGTT | AAAATTTAGT | GTTACGAATT | TAGGTATCAA | CGAATGGTAG | GGCCGAGGTC | GTCTTCACCA |
| TTTTCTACGG                 | TTTGGTCATG | AAAAATGAAG | GACAGTTACC | TATTTCGTTC | ATACGGGAGG | CCCACGCTCA | GGGCCGAGCG |
| AAAAGATGCC                 | AAACCAGTAC | TTTTTACTTC | CTGTCAATGG | ATAAAGCAAG | TATGCCCTCC |            | CCCGGCTCGC |
| 2401                       | 2451       | 2501       | 2551       | 2601       | 2651       | 2701       | 2751       |
| SUBSTITUTE SHEET (RULE 26) |            |            |            |            |            |            |            |

Figure 35a: Functional maps and sequences of additional pCAL vector modules and pCAL vectors (continued)

| ТТААТАСТТТ<br>ААТТАТСААА   | CGCTCGTCGT<br>GCGAGCAGCA | GCGAGTTACA<br>CGCTCAATGT | GTCCTCCGAT<br>CAGGAGGCTA | GTTATGGCAG<br>CAATACCGTC | CTTTTCTGTG<br>GAAAAGACAC | TGCGGCGACC<br>ACGCCGCTGG | CCACATAGCA<br>GGTGTATCGT |
|----------------------------|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|
| AGTTCGCCAG<br>TCAAGCGGTC   | CGTGGTGTCA<br>GCACCACAGT | AACGATCAAG<br>TTGCTAGTTC | AGCTCCTTCG<br>TCGAGGAAGC | ATCACTCATG<br>TAGTGAGTAC | CCGTAAGATG<br>GGCATTCTAC | GAATAGTGTA<br>CTTATCACAT | TAATACCGCG<br>ATTATGGCGC |
| TAGAGTAAGT<br>ATCTCATTCA   | CTACAGGCAT<br>GATGTCCGTA | TCCGGTTCCC               | AAAAGCGGTT<br>TTTTCGCCAA | CCGCAGTGTT<br>GGCGTCACAA | GTCATGCCAT               | GTCATTCTGA               | CAATACGGGA<br>GTTATGCCCT |
| GCCGGGAAGC<br>CGGCCCTTCG   | GTTGCCATTG<br>CAACGGTAAC | TTCATTCAGC<br>AAGTAAGTCG | TGTTGTGCAA<br>ACAACACGTT | AGTAAGTTGG<br>TCATTCAACC | TTCTCTTACT               | ACTCAACCAA<br>TGAGTTGGTT | TGCCCGGCGT               |
| ATTAACTGTT<br>TAATTGACAA   | GCGCAACGTT<br>CGCGTTGCAA | TTGGTATGGC<br>AACCATACCG | TGATCCCCCA<br>ACTAGGGGGT | CGTTGTCAGA<br>GCAACAGTCT | CACTGCATAA<br>GTGACGTATT | ACTGGTGAGT<br>TGACCACTCA | GAGTTGCTCT<br>CTCAACGAGA |
| 2801                       | 2851                     | 2901                     | 2951                     | 3001                     | 3051                     | 3101                     | 3151                     |
| SUBSTITUTE SHEET (RULE 20) |                          |                          |                          |                          |                          |                          |                          |

SUBSTITUTE SHEET (RULE 20)
172 / 204

Figure 35a: Functional maps and sequences of additional pCAL vector modules and pCAL vectors (continued)

## XmnI

| GCGAAAACTC                                             | CCACTCGCGC                       | TCTGGGTGAG               | GGCGACACGG                                             | GAAGCATTTA               |             |
|--------------------------------------------------------|----------------------------------|--------------------------|--------------------------------------------------------|--------------------------|-------------|
| CGCTTTTGAG                                             | GGTGAGCGCG                       | AGACCCACTC               | CCGCTGTGCC                                             | CTTCGTAAAT               |             |
| GAACTTTAAA AGTGCTCATC ATTGGAAAAC GTTCTTCGGG GCGAAAACTC | GAGATCCAGT TCGATGTAAC CCACTCGCGC | CACCAGCGTT               | CAAAAACAGG AAGGCAAAAT GCCGCAAAAA AGGGAATAAG GGCGACACGG | СААТАТТАТТ               | T.C. T.C. T |
| CTTGAAATTT TCACGAGTAG TAACCTTTTG CAAGAAGCCC CGCTTTTGAG | CTCTAGGTCA AGCTACATTG GGTGAGCGCG | GTGGTCGCAA               | GTTTTTGTCC TTCCGTTTTA CGGCGTTTTT TCCCTTATTC CCGCTGTGCC | GTTATAATAA               |             |
| AGTGCTCATC ATTGGAAAAC<br>TCACGAGTAG TAACCTTTTG         |                                  | CTTTTACTTT<br>GAAAATGAAA | GCCGCAAAAA<br>CGGCGTTTTT                               | CTTCCTTTTT<br>GAAGGAAAAA |             |
| AGTGCTCATC                                             | TACCGCTGTT                       | TCCTCAGCAT CTTTTACTTT    | AAGGCAAAAT                                             | TACTCATACT               |             |
| TCACGAGTAG                                             | ATGGCGACAA                       | AGGAGTCGTA GAAAATGAAA    | TTCCGTTTTA                                             | ATGAGTATGA               |             |
| GAACTTTAAA                                             | TCAAGGATCT                       | ACCCAACTGA               | CAAAAACAGG                                             | AAATGTTGAA               |             |
| CTTGAAATTT                                             | AGTTCCTAGA                       | TGGGTTGACT               | GTTTTTGTCC                                             | TTTACAACTT               |             |
| 3201                                                   | 3251                             | 3301                     | 3351                                                   | 3401                     |             |
|                                                        |                                  | SUBSTITE                 | UTE SHEET                                              | (NULE 26)                |             |

173 / 204

# BsrGI

TCAGGGTTAT TGTCTCATGA GCGGATACAT ATTTGAAT AGTCCCAATA ACAGAGTACT CGCCTATGTA TAAACTTA 3451

**Kmn1 (1180)** 

Bsr61 (1439)

functional ssori

Gen11-Nick

hpp-Terminator Pacl (298) Fsel (314) Hind111 (234) Sph1 (197) bla-term **State (177)** lac p/o Ratll (46) pCALO-3 2728 bp Bg111 (1 BNA I ds-ori **Age!** (2313) P15A origin Agel (1989) Kmn1 (1959) Nhe! (1983)

Figure 35a: Functional maps and sequences of additional pCAL vector modules and pCAL vectors (continued) Ban11 (1746)

SUBSTITUTE SHEET (RULE 26) 174 / 204

PacI

AatII

Figure 35a: Functional maps and sequences of additional pCAL vector modules and pCAL vectors (continued)

|                          |                           |                          |                                            | 1 C1/E1 70/030                                |
|--------------------------|---------------------------|--------------------------|--------------------------------------------|-----------------------------------------------|
| GACGTCTAAT<br>CTGCAGATTA | TTATGCTTCC<br>AATACGAAGG  | CACACAGGAA<br>GTGTGTCCTT | SphI<br>~~~~~~<br>cgcargccar<br>gcgracggra | CCTGTGAAGT<br>GGACACTTCA                      |
| ACGAAGTTAT<br>TGCTTCAATA | GCTTTACACT<br>CGAAATGTGA  | ATAACAATTT<br>TATTGTTAAA | ACCCCCCCC<br>TGGGGGGGG                     | HindIII<br>~~~~~~<br>ATAAGCTTGA<br>TATTCGAACT |
| TGTATGCTAT<br>ACATACGATA | GGCACCCCAG<br>CCGTGGGGGTC | TTGTGAGCGG               | XbaI<br>~~~~~<br>GAATTTCTAG<br>CTTAAAGATC  | ATACGAAGTT<br>TATGCTTCAA                      |
| CTTCGTATAA<br>GAAGCATATT | TCACTCATTA                | TTGTGTGGAA<br>AACACACCTT | CCATGATTAC<br>GGTACTAATG                   | AATGTACGCT<br>TTACATGCGA                      |
| GATCTCATAA<br>CTAGAGTATT | GTGAGTTAGC<br>CACTCAATCG  | GGCTCGTATG<br>CCGAGCATAC | ACAGCTATGA<br>TGTCGATACT                   | AACTTCGTAT<br>TTGAAGCATA                      |
| ⊣                        | 51                        | 101                      | 151                                        | 201                                           |
|                          |                           |                          |                                            |                                               |

SUBSTITUTE SHEET (RULE 20) 175 / 204

ATAAAGCAAG

Figure 35a: Functional maps and sequences of additional pCAL vector modules and pCAL vectors (continued)

| GTTTAATTAA<br>CAAATTAATT |      | TCCTTTGATC<br>AGGAAACTAG                    | GTTAAGGGAT<br>CAATTCCCTA | CTTTTAAATT<br>GAAAATTTAA | AACTTGGTCT<br>TTGAACCAGA | GCGATCTGTC<br>CGCTAGACAG | GATAACTACG<br>CTATTGATGC |
|--------------------------|------|---------------------------------------------|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|
| TTTGTCTGCC<br>AAACAGACGG |      | CTCAAGAAGA<br>GAGTTCTTCT                    | GAAAACTCAC<br>CTTTTGAGTG | CACCTAGATC<br>GTGGATCTAG | TATATGAGTA<br>ATATACTCAT | ACCTATCTCA<br>TGGATAGAGT | CCGTCGTGTA<br>GGCAGCACAT |
| CGACATTTTT<br>GCTGTAAAAA |      | CAAAAAGGAT<br>GTTTTTCCTA                    | TCAGTGGAAC<br>AGTCACCTTG | AAAGGATCTT<br>TTTCCTAGAA | ATCTAAAGTA<br>TAGATTTCAT | TCAGTGAGGC<br>AGTCACTCCG | GCCTGACTCC<br>CGGACTGAGG |
| GCAGATTGTG<br>CGTCTAACAC | eΙ   | GGC CGCCATTAT<br>CCG GCCGGTAATA             | GGTCTGACGC<br>CCAGACTGCG | AGATTATCAA<br>TCTAATAGTT | TTTTAAATCA<br>AAAATTTAGT | CAATGCTTAA<br>GTTACGAATT | ATCCATAGTT<br>TAGGTATCAA |
| GAAAAATGGC<br>CTTTTTACCG | FseI | GGGGGGGC CGGCCATTAT<br>CCCCCCCCG GCCGGTAATA | TTTTCTACGG<br>AAAAGATGCC | TTTGGTCATG<br>AAACCAGTAC | AAAAATGAAG<br>TTTTTACTTC | GACAGTTACC               | TATTTCGTTC<br>ATAAAGCAAG |
| 251                      |      | 301                                         | 351                      | 401                      | 451                      | 501                      | 551                      |
|                          |      |                                             | SUBSTI                   | TUTE SHEET               | (RULE 20)                |                          |                          |
|                          |      |                                             |                          |                          |                          |                          |                          |

|               | • |
|---------------|---|
|               | ( |
| €             |   |
| nue           | į |
| ınti          | ( |
| <u>S</u>      | 1 |
| ors           | ( |
| AL vecto      | 1 |
| <u>`</u>      |   |
| β             |   |
| pu            |   |
| Š.            |   |
| 풀             |   |
| μ             |   |
| o r           |   |
| ect           |   |
|               |   |
| ğ             |   |
| 19            |   |
| Ęį            |   |
| ë             |   |
| ∑f a          |   |
| d sequences o |   |
| Guc           |   |
| Ď             |   |
| รู            |   |
| ä             |   |
| aps           |   |
| Ε             |   |
| na            |   |
| .≓            |   |
| Ë             |   |
| .e.           |   |
| Figure 35     |   |
| JUR           |   |
| Fio           | • |
|               |   |

| 601 ATACGGAGG GCTTACCATC TGGCCCCAGT GCTGCAATGA TACCGCGAGA<br>TATGCCCTCC CGAATGGTAG ACCGGGGTCA CGACGTTACT ATGGCGCTCT |
|---------------------------------------------------------------------------------------------------------------------|
| TGGCCCCAGT GCTGCAATGA<br>ACCGGGGTCA CGACGTTACT                                                                      |
| GCTGCAATGA                                                                                                          |
| _ ,                                                                                                                 |
| TACCGC                                                                                                              |
| GAGA<br>GCTCT                                                                                                       |

SUBSTITUTE SHEET (RULE 26)

| 11000                                                                                                                | -20                      |                          |       |                          |                          |                          |                           | -          |
|----------------------------------------------------------------------------------------------------------------------|--------------------------|--------------------------|-------|--------------------------|--------------------------|--------------------------|---------------------------|------------|
| CTTTTCTGTG<br>GAAAAGACAC                                                                                             | TGCGGCGACC<br>ACGCCGCTGG | CCACATAGCA<br>GGTGTATCGT |       | GCGAAAACTC<br>CGCTTTTGAG | CCACTCGCGC<br>GGTGAGCGCG | TCTGGGTGAG<br>AGACCCACTC | GGCGACACGG<br>CCGCTGTGCC  | GAAGCATTTA |
| ntinued)<br>CCGTAAGATG<br>GGCATTCTAC                                                                                 | GAATAGTGTA<br>CTTATCACAT | TAATACCGCG<br>ATTATGGCGC |       |                          | TCGATGTAAC<br>AGCTACATTG | CACCAGCGTT<br>GTGGTCGCAA | AGGGAATAAG<br>TCCCTTATTC  | CAATATTATT |
| additional pCAL vector modules and pCAL vectors (continued) A TTCTCTTACT GTCATGCCAT CCG' P AAGAGAATGA CAGTACGGTA GGC | GTCATTCTGA<br>CAGTAAGACT | CAATACGGGA<br>GTTATGCCCT | IcumX | ATTGGAAAAC<br>TAACCTTTTG | GAGATCCAGT<br>CTCTAGGTCA | CTTTTACTTT<br>GAAAATGAAA | GCCGCAAAAA<br>CGGCGTTTTT  | CTTCCTTTTT |
| ditional pCAL vector mod<br>TTCTCTTACT<br>AAGAGAATGA                                                                 | ACTCAACCAA<br>TGAGTTGGTT | TGCCCGGCGT               |       | AGTGCTCATC<br>TCACGAGTAG | TACCGCTGTT<br>ATGGCGACAA | TCCTCAGCAT<br>AGGAGTCGTA | AAGGCAAAAT.<br>TTCCGTTTTA | TACTCATACT |
| Figure 35a: Functional maps and sequences of ad<br>1001 CACTGCATAA<br>GTGACGTATT                                     | ACTGGTGAGT<br>TGACCACTCA | GAGTTGCTCT<br>CTCAACGAGA |       | GAACTTTAAA<br>CTTGAAATTT | TCAAGGATCT<br>AGTTCCTAGA | ACCCAACTGA<br>TGGGTTGACT | CAAAAACAGG<br>GTTTTTGTCC  | AAATGTTGAA |
| ia: Functional<br>1001                                                                                               | 1051                     | 1101                     |       | 1151                     | 1201                     | 1251                     | 1301                      | 1351       |
| Jure 35                                                                                                              |                          |                          | SUE   | BSTITUTE OF              | EET (RULE                | 26)                      |                           |            |
| Ę.                                                                                                                   |                          |                          |       | 178 / 2                  | 04                       |                          |                           |            |

BanII

TITACAACIT AIGAGIAIGA GAAGGAAAAA GITATAAIAA CITCGIAAAI Figure 35a: Functional maps and sequences of additional pCAL vector modules and pCAL vectors (continued)

BsrGI

| TT<br>AA              | AG         | AA<br>TT   | GT<br>CA    | TA         | 1GG        |
|-----------------------|------------|------------|-------------|------------|------------|
| GAAA                  | AATC       | AATC       | AAGA        | CGTC       | TTTI       |
| CTTT                  | TTAG       | TTAG       | TTCI        |            | AAA?       |
| ACATGAAATT            | GTTAAATCAG | TATAAATCAA | GAACAAGAGT  | AAACCGTCTA | AGTTTTTGG  |
| TGTACTTTAA            | CAATTTAGTC | ATATTTAGTT | CTTGTTCTCA  | TTTGGCAGAT | TCAAAAAACC |
|                       | ТТАААТТТТТ | CAAAATCCCT | TTCCAGTTTG  | AAAGGGCGAA | ACCCTAATCA |
|                       | ААТТТААААА | GTTTTAGGGA | AAGGTCAAAC  | TTTCCCGCTT | TGGGATTAGT |
| GCGGATACAT ATTTGAATGT | AAAATTCGCG | CCGAAATCGG | TTGAGTGTTG  | CTCCAACGTC | GAGAACCATC |
| CGCCTATGTA TAAACTTACA | TTTTAAGCGC | GGCTTTAGCC | AACTCACAAC  | GAGGTTGCAG | CTCTTGGTAG |
| TGTCTCATGA            | ATATTTTGTT | AACCAATAGG | CGAGATAGGG  | AGAACGTGGA | GGCCCACTAC |
| ACAGAGTACT            | TATAAAACAA | TTGGTTATCC | GCTCTATCCC  | TCTTGCACCT |            |
| TCAGGGTTAT            | GTAAACGTTA | CTCATTTTT  | AAGAATAGAC  | CCACTATTAA | TCAGGGCGAT |
| AGTCCCAATA            | CATTTGCAAT | GAGTAAAAAA | TTCTTATCTG  | GGTGATAATT | AGTCCCGCTA |
| 1401                  | 1451       | 1501       | 1551        | 1601       | 1651       |
|                       |            | SUBSTITUT  | E SHEET (RI | JLE 26)    |            |

SUBSTITUTE SHEET (RULE 26) 179 / 204

CTGACTCGCT

CAGAATATGT GATACAGGAT ATATTCCGCT TCCTCGCTCA

GTCTTATACA CTATGTCCTA

2001

GACTGAGCGA

TATAAGGCGA AGGAGCGAGT

GGTGCGTCAG

AGGCTGCACC TCCGACGTGG

AGTGAAGTGC TTCATGTGGC AGGAGAAAA

1951

TCACTTCACG AAGTACACCG

TCCTCTTTTT

| GAGCCCCCGA<br>CTCGGGGGGCT                                                                                                                           | AGGAAGGGAA<br>TCCTTCCCTT | GCGGTCACGC<br>CGCCAGTGCG | ACAGGGCGCG<br>TGTCCCGCGC                                            | TGAGGGTGTC<br>ACTCCCACAG                   | AgeI |
|-----------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|--------------------------|---------------------------------------------------------------------|--------------------------------------------|------|
| ditional pCAL vector modules and pCAL vectors (continued) CCGTAAAGCA CTAAATCGGA ACCCTAAAGG GGCATTTCGT GATTTAGCCT TGGGATTTCC                         | GTGGCGAGAA<br>CACCGCTCTT | GGCAAGTGTA<br>CCGTTCACAT | GCCGCGCTTA ATGCGCCGCT<br>CGGCGCGAAT TACGCGGCGA                      | TTGGCACTGA                                 | AgeI |
| ules and pCAL vectors (cor<br>CTAAATCGGA<br>GATTTAGCCT                                                                                              | GCCGGCGAAC<br>CGGCCGCTTG | CTAGGGCGCT<br>GATCCCGCGA | CACCACACCC GCCGCGTTA ATGCGCCGCT<br>GTGGTGTGGG CGGCGCGAAT TACGCGGCGA | GCTTACTATG<br>CGAATGATAC                   |      |
| Jitional pCAL vector modu<br>CCGTAAAGCA<br>GGCATTTCGT                                                                                               | GACGGGGAAA<br>CTGCCCCTTT | GGAGCGGGCG<br>CCTCGCCCGC | CACCACACCC<br>GTGGTGTGGG                                            | GTGTATACTG<br>CACATATGAC                   |      |
| Figure 35a: Functional maps and sequences of additional pCAL vector modules and pCAL vectors (continued) 1701 GGTCGAGGTG CCGTAAAGCA CTAAATCGGA ACCC | TTTAGAGCTT<br>AAATCTCGAA | GAAAGCGAAA<br>CTTTCGCTTT | TGCGCGTAAC<br>ACGCGCATTG                                            | NheI<br>~~~~~~<br>TGCTAGCGGA<br>ACGATCGCCT | XmnI |
| 35a: Functional<br>1701                                                                                                                             | 1751                     | 1801                     | 1851                                                                | 1901                                       |      |
| Figure ;                                                                                                                                            |                          |                          | SUBSTITE                                                            | JTE SHEET (RULE 26)<br>180 / 204           | )    |

Figure 35a: Functional maps and sequences of additional pCAL vector modules and pCAL vectors (continued)

| GAACGGGGCG               | AGTGAGAGGG<br>TCACTCTCCC | CAAGCATCAC<br>GTTCGTAGTG | GACTATAAAG<br>CTGATATTTC | CCTGTTCCTG<br>GGACAAGGAC |        | TTTGTCTCAT<br>AAACAGAGTA  | AAGCTGGACT<br>TTCGACCTGA |
|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|--------|---------------------------|--------------------------|
| AATGGCTTAC<br>TTACCGAATG | TTAACAGGGA<br>AATTGTCCCT | GCCCCCTGA<br>CGGGGGGACT  | AACCCGACAG<br>TTGGGCTGTC | CCTGCGCTCT<br>GGACGCGAGA |        | TATGGCCGCG                | AGTTCGCTCC<br>TCAAGCGAGG |
| GGCGAGCGGA<br>CCGCTCGCCT | AGGAAGATAC<br>TCCTTCTATG | CATAGGCTCC<br>GTATCCGAGG | GTGGTGGCGA<br>CACCACCGCT | GCGGCTCCCT<br>CGCCGAGGGA |        | ATTCCGCTGT.<br>TAAGGCGACA | CCGGGTAGGC<br>GGCCCATCCG |
| GTTCGACTGC<br>CAAGCTGACG | GGAAGATGCC<br>CCTTCTACGG | GCCGTTTTTC<br>CGCCAAAAAG | GCTCAAATCA<br>CGAGTTTAGT | TTTCCCCCTG<br>AAAGGGGGAC | AgeI   | TACCGGTGTC<br>ATGGCCACAG  | ACACTCAGTT<br>TGTGAGTCAA |
| ACGCTCGGTC<br>TGCGAGCCAG | GAGATTTCCT<br>CTCTAAAGGA | CCGCGGCAAA               | GAAATCTGAC<br>CTTTAGACTG | ATACCAGGCG<br>TATGGTCCGC |        | CCTTTCGGTT<br>GGAAAGCCAA  | TCCACGCCTG               |
| 2051                     | 2101                     | 2151                     | 2201                     | 2251                     |        | 2301                      | 2351                     |
|                          |                          | 5                        | SUBSTITUTE               | SHEET (RU                | LE 26) |                           |                          |

| (continued)  |
|--------------|
| . vectors    |
| nd pCAL      |
| s and        |
| module       |
| . vector     |
| pCAL         |
| f additional |
| ces o        |
| d sequen     |
| and:         |
| map          |
| Functional   |
| 35a:         |
| Figure 3     |

| CA       | CTCCAAGCCA            | TAAGGCTAAA CTGAAAGGAC AAGTTTTAGT GACTGCGCTC CTCCAAGCCA                                                           | AAGTTTTAGT               | CTGAAAGGAC               | TAAGGCTAAA               | 2551 | SUE |
|----------|-----------------------|------------------------------------------------------------------------------------------------------------------|--------------------------|--------------------------|--------------------------|------|-----|
| GT<br>CA | ATGCGCCG<br>TACGCGGC  | AGCCACTGGT AATTGATTTA GAGGAGTTAG TCTTGAAGTC ATGCGCCGGT<br>TCGGTGACCA TTAACTAAAT CTCCTCAATC AGAACTTCAG TACGCGGCCA | GAGGAGTTAG<br>CTCCTCAATC | AATTGATTTA<br>TTAACTAAAT | AGCCACTGGT<br>TCGGTGACCA | 2501 |     |
| 00<br>00 | CACTGGCA(<br>GTGACCGT | TATCGTCTTG AGTCCAACCC GGAAAGACAT GCAAAAGCAC CACTGGCAGC<br>ATAGCAGAAC TCAGGTTGGG CCTTTCTGTA CGTTTTCGTG GTGACCGTCG | GGAAAGACAT<br>CCTTTCTGTA | AGTCCAACCC<br>TCAGGTTGGG | TATCGTCTTG<br>ATAGCAGAAC | 2451 |     |
| AC<br>IG | ATCCGGTAL             | GTATGCACGA ACCCCCCGTT CAGTCCGACC GCTGCGCCTT ATCCGGTAAC<br>CATACGTGCT TGGGGGCAA GTCAGGCTGG CGACGCGGAA TAGGCCATTG  | CAGTCCGACC<br>GTCAGGCTGG | ACCCCCCGTT<br>TGGGGGGCAA | GTATGCACGA<br>CATACGTGCT | 2401 |     |

GCGCAGACCA CGCGTCTGGT CCTGCAAGGC GGTTTTTTCG TTTTCAGAGC AAGAGATTAC TTCTCTAATG CCAAAAAGC AAAAGTCTCG GGACGTTCCG 2651

GAGGTTCGGT

CTGACGCGAG

TTCAAAATCA

GACTTTCCTG

ATTCCGATTT

CTTTTTGGCG

CTCTTGGATG

GAGAACCTAC

TTCAAAGAGT TGGTAGCTCA AAGTTTCTCA ACCATCGAGT

GAAAAACCGC

BglII

2701 AAACGATCTC AAGAAGATCA TCTTATTA TTTGCTAGAG TTCTTCTAGT AGAATAAT

SUBSTITUTE SHEET (AULE 26)
182 / 204

2601

GTTACCTCGG CAATGGAGCC WO 97/08320 PCT/EP96/03647

Figure 35b: List of oligonucleotides used for synthesis of modules

M1: PCR using template

NoVspAatII: TAGACGTC

M2: synthesis

BloxA-A: TATGAGATCTCATAACTTCGTATAATGTACGCTATACG-

**AAGTTAT** 

BloxA-B: TAATAACTTCGTATAGCATACATTATACGAAGTTATG-

**AGATCTCA** 

M3: PCR, NoVspAatil as second oligo

XloxS-muta: CATTITTTGCCCTCGTTATCTACGCATGCGATAACTTCGTA-TAGCGTACATTATACGAAGTTATTCTAGACATGGTCATAGCTGTTTCCTG

M7-1: PCR

gIIINEW-fow: GGGGGGAATTCGGTGGTGGTGGATCTGCGTGCGCTG-

**AAACGGTTGAAAGTTG** 

gllinew-rev: CCCCCCAAGCTTATCAAGACTCCTTATTACG

M7-II: PCR

glllss-fow: GGGGGGGAATTCGGAGGCGGTTCCGGTGGTGGC

M7-III: PCR

glllsupernew-fow: GGGGGGGGAATTCGAGCAGAAGCTGATCTCT-

GAGGAGGATCTGTAGGGTGGTGGCTCTGGTTCCGGTGATTTTG

SUBSTITUTE SHEET (RULE 25)

Figure 35b: List of oligonucleotides used for synthesis of modules (continued)

M8: synthesis

Iox514-A: CCATAACTTCGTATAATGTACGCTATACGAAGTTATA

lox514-B: AGCTTATAACTTCGTATAGCGTACATTATACGAAGT-

**TATGGCATG** 

M9II: synthesis

M9II-fow: AGCTTGACCTGTGAAGTGAAAAATGGCGCAGATT-

M9II-rev: GTACACCCCCCCCAGGCCGGCCCCCCCCCCTTTAA-

TTAAACGGCAGACAAAAAAAAATGTCGCACAATCTGCG

M10II: assembly PCR with template

bla-fow: GGGGGGGTGTACATTCAAATATGTATCCGCTCATG

bla-seq4: GGGTTACATCGAACTGGATCTC

bla1-muta: CCAGTTCGATGTAACCCACTCGCGCACCCAACTGATC-

CTCAGCATCTTTTACTTTCACC

blall-muta: ACTCTAGCTTCCCGGCAACAGTTAATAGACTGGATG-

**GAGGCGG** 

bla-NEW: CTGTTGCCGGGAAGCTAGAGTAAG

bla-rev: CCCCCCTTAATTAAGGGGGGGGGCCGGCCATTATCAAA-

**AAGGATCTCAAGAAGATCC** 

M11II/III: PCR, site-directed mutagenesis

SUBSTITUTE SHEET (RULE 28)

WO 97/08320 PCT/EP96/03647

Figure 35b: List of oligonucleotides used for synthesis of modules (continued)

f1-fow: GGGGGGGGCTAGCACGCCCCTGTAGCGGCGCATTAA

f1-rev: CCCCCCTGTACATGAAATTGTAAACGTTAATATTTTG

f1-t133.muta: GGGCGATGGCCCACTACGAGAACCATCACCCTAATC

#### M12: assembly PCR using template

p15-fow: GGGGGGAGATCTAATAAGATGATCTTCTTGAG

p15-NEWI: GAGTTGGTAGCTCAGAGAACCTACGAAAAACCGCCCTG-

**CAAGGCG** 

p15-NEWII: GTAGGTTCTCTGAGCTACCAACTC

p15-NEWIII: GTTTCCCCCTGGCGCTCCCTCCTGCGCTCTCCTGTTCCT-

GCC

p15-NEWIV: AGGAGGGAGCCGCCAGGGGGAAAC

p15-rev: GACATCAGCGCTAGCGGAGTGTATAC

#### M13: synthesis

BloxXB-A: GATCTCATAACTTCGTATAATGTATGCTATACGAAGTTA-

TTCA

BloxXB-B: GATCTGAATAACTTCGTATAGCATACATTATACGAAGTTA-

**TGAGA** 

#### M14-Ext2: PCR, site-directed mutagenesis

ColEXT2-fow: GGGGGGGAGATCTGACCAAAATCCCTTAACGTGAG

Col-mutal: GGTATCTGCGCTCTGCTGTAGCCAGTTACCTTCGG

SUBSTITUTE SHEET (RULE 28)

Figure 35b: List of oligonucleotides used for synthesis of modules (continued)

Col-rev: CCCCCCGCTAGCCATGTGAGCAAAAGGCCAGCAA

M17: assembly PCR using template

CAT-1: GGGACGTCGGGTGAGGTTCCAAC

CAT-2: CCATACGGAACTCCGGGTGAGCATTCATC

CAT-3: CCGGAGTTCCGTATGG

CAT-4: ACGTTTAAATCAAAACTGG

CAT-5: CCAGTTTTGATTTAAACGTAGCCAATATGGACAACTTCTTC-

GCCCCGTTTTCACTATGGGCAAATATT

CAT-6: GGAAGATCTAGCACCAGGCGTTTAAG

M41: assembly PCR using template

LAC1: GAGGCCGGCCATCGAATGGCGCAAAAC

LAC2: CGCGTACCGTCCTCATGGGAGAAAATAATAC

LAC3: CCATGAGGACGGTACGCGACTGGGCGTGGAGCATCTGGTCGCA-

TTGGGTCACCAGCAAATCCGCTGTTAGCTGGCCCATTAAG

LAC4: GTCAGCGGCGGGATATAACATGAGCTGTCCTCGGTATCGTCG

LAC5: GTTATATCCCGCCGCTGACCACCATCAAAC

LAC6: CATCAGTGAATCGGCCAACGCGCGGGGAGAGGCGGTTTGCGT4TTG-

**GGAGCCAGGGTGGTTTTTC** 

LAC7: GGTTAATTAACCTCACTGCCCGCTTTCCAGTCGGGAAACCTGTCGTGCC-

AGCTGCATCAGTGAATCGGCCAAC

M41-MCS-fow: CTAGACTAGTGTTTAAACCGGACCGGGGGGGGGCTT-

AAGGGGGGGGGGG

SUBSTITUTE SHEET (RULE 20)

WO 97/08320 PCT/EP96/03647

Figure 35b: List of oligonucleotides used for synthesis of modules (continued)

M41-MCS-rev: CTAGCCCCCCCCCCCTTAAGCCCCCCCCGGTCCGGT-

TTAAACACTAGT

M41-fow: CTAGACTAGTGTTTAAACCGGACCGGGGGGGGGGCTTAA-

GGGGGGGGGGG

M41-rev: CCCCCCTTAAGTGGGCTGCAAAACAAACGGCCTCC-

TGTCAGGAAGCCGCTTTTATCGGGTAGCCTCACTGCCCGCTTTCC

M41-A2: GTTGTTGTGCCACGCGGTTAGGAATGTAATTCAGCTCCGC

M41-B1: AACCGCGTGGCACAACAAC

M41-B2: CTTCGTTCTACCATCGACACGACCACGCTGGCACCCAGTTG

M41-C1: GTGTCGATGGTAGAACGAAG

M41-CII: CCACAGCAATAGCATCCTGGTCATCCAGCGGATAGTT-

AATAATCAGCCCACTGACACGTTGCGCGAG

M41-DI: GACCAGGATGCTATTGCTGTGG

M41-DII: CAGCGCGATTTGCTGGTGGCCCAATGCGACCAGATGC

M41-EI: CACCAGCAAATCGCGCTG

M41-EII: CCCGGACTCGGTAATGGCACGCATTGCGCCCAGCGCC

M41-FI: GCCATTACCGAGTCCGGG

M42: synthesis

Eco-H5-Hind-fow: AATTCCACCATCACCATTGACGTCTA

Eco-H5-Hind-rev: AGCTTAGACGTCAATGGTGATGGTGG

Figure 36: functional map and sequence of ß-lactamase-MCS module

|             | Ase I (1364)              | Eco 571 (1366)           | Xho 1 (1371)        | Bes HII (1376)  |               | Bbs I (1386) | Bsp El (1397) | Bsr GI (1403) |               |                      |             |             |         |
|-------------|---------------------------|--------------------------|---------------------|-----------------|---------------|--------------|---------------|---------------|---------------|----------------------|-------------|-------------|---------|
| _           | Kpn I (202) Bss SI (1346) | Fse I (210) Eag I (1340) | -35 (bla)           | (Pla) 01        | (pig) 01-     | ā.           | <b>plq</b>    | bla-term      |               | · ·                  |             | bla MCS     | 1289 bp |
| Pml 1 (189) | Bsa Bl (182)              | Nsp V (173)              | <i>Bsi</i> WI (166) | Eco 01091 (161) | Psp 5II (161) | Stv 1 (157)  | Msc 1 (156)   | Bst XI (152)  | Bst Ell (140) | <i>Bsu</i> 36i (136) | Hpa I (132) | Mlu 1 (126) |         |

SUBSTITUTE SMEET (RULE 28)

Figure 36: functional map and sequence of B-lactamase-MCS module (continued)

| BsiwI NspV                   | C GTACGTTCGA<br>C CATGCAAGCT     |      |           | TCAAAAAGGA<br>AGTTTTTCCT                       | CTCAGTGGAA<br>GAGTCACCTT | AAAAGGATCT<br>TTTTCCTAGA                       |
|------------------------------|----------------------------------|------|-----------|------------------------------------------------|--------------------------|------------------------------------------------|
| Psp5II<br>~~~~~<br>Eco0109   | AGGTCCC<br>TCCAGGG               |      | FseI      | CGGTACCAGG CCGGCCATTA<br>GCCATGGTCC GGCCGGTAAT | GGGTCTGACG<br>CCCAGACTGC | GAGATTATCA AAAAGGATCT<br>CTCTAATAGT TTTTCCTAGA |
| BstXI<br>~~~~~~~~~~~         | AAGCCCCTGG CCA<br>TTCGGGGACC GGT |      | KpnI      |                                                | CTTTTCTACG<br>GAAAAGATGC | TTTTGGTCAT<br>AAAACCAGTA                       |
| ~~<br>BstEI                  | TCAGGTGACC<br>AGTCCACTGG         | PmlI |           | CACGTGGATC<br>GTGCACCTAG                       | ATCCTTTGAT<br>TAGGAAACTA | CGTTAAGGGA                                     |
| MluI Bsu36I<br>~~~~~<br>HpaI | CGCGTTAACC<br>GCGCAATTGG         |      | NspVBsaBI | AGATTACCAT C<br>TCTAATGGTA G                   | TCTCAAGAAG<br>AGAGTTÖTTC | CGAAAACTCA<br>GCTTTTGAGT                       |
|                              | 126                              |      |           | 176                                            | 226                      | 276                                            |

SUBSTITUTE SHEET (RULE 26) 189 / 204

Figure 36: functional map and sequence of B-lactamase-MCS module (continued)

| TC AATCTAAAGT<br>AG TTAGATTTCA | AA TCAGTGAGGC<br>TT AGTCACTCCG | TT GCCTGACTCC            | NTC TGGCCCCAGT           | CAG ATTTATCAGC | BGT CCTGCAACTT<br>CCA GGACGTTGAA | AGC TAGAGTAAGT<br>FCG ATCTCATTCA | TTG CTACAGGCATA          |
|--------------------------------|--------------------------------|--------------------------|--------------------------|----------------|----------------------------------|----------------------------------|--------------------------|
| GTTTTAAATC<br>CAAAATTTAG       | CAATGCTTAA<br>GTTACGAATT       | ATCCATAGTT<br>TAGGTATCAA | GCTTACCATC<br>CGAATGGTAG | CCGGCTCCAG     | CAGAAGTGGT<br>GTCTTCACCA         | GCCGGGAAGC                       | GTTGCCATTG<br>CAACGGTAAC |
| TAAAAATGAA                     | TGACAGTTAC                     | TATTTCGTTC               | ATACGGGAGG               | CCCACGCTCA     | GGGCCGAGCG                       | ATTAACTGTT                       | GCGCAACGTT               |
| ATTTTTACTT                     | ACTGTCAATG                     | ATAAAGCAAG               | TATGCCCTCC               | GGGTGCGAGT     | CCCGGCTCGC                       | TAATTGACAA                       | CGCGTTGCAA               |
| CCTTTTAAAT                     | AAACTTGGTC                     | GCGATCTGTC               | GATAACTACG               | TACCGCGAGA     | CCAGCCGGAA                       | CATCCAGTCT                       | TTAATAGTTT               |
| GGAAAATTTA                     | TTTGAACCAG                     | CGCTAGACAG               | CTATTGATGC               | ATGGCGCTCT     | GGTCGGCCTT                       | GTAGGTCAGA                       | AATTATCAAA               |
| TCACCTAGAT                     | ATATATGAGT                     | ACCTATCTCA               | CCGTCGTGTA               | GCTGCAATGA     | AATAAACCAG                       | TATCCGCCTC                       | AGTTCGCCAG               |
| AGTGGATCTA                     | TATATACTCA                     | TGGATAGAGT               | GGCAGCACAT               | CGACGTTACT     | TTATTTGGTC                       | ATAGGCGGAG                       | TCAAGCGGTC               |
| 326                            | 376                            | 426                      | 476                      | 526            | 576                              | 626                              | 919                      |

SUBSTITUTE SHEET (RULE 26)

Figure 36: functional map and sequence of B-lactamase-MCS module (continued)

|            | 726  | CGTGGTGTCA<br>GCACCACAGT | CGCTCGTCGT<br>GCGAGCAGCA | TTGGTATGGC<br>AACCATACCG | TTCATTCAGC<br>AAGTAAGTCG | TCCGGTTCCC<br>AGGCCAAGGG |
|------------|------|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|
|            | 176  | AACGATCAAG<br>TTGCTAGTTC | GCGAGTTACA<br>CGCTCAATGT | TGATCCCCCA<br>ACTAGGGGGT | TGTTGTGCAA               | AAAAGCGGTT<br>TTTTCGCCAA |
| S          | 826  | AGCTCCTTCG<br>TCGAGGAAGC | GTCCTCCGAT               | CGTTGTCAGA<br>GCAACAGTCT | AGTAAGTTGG<br>TCATTCAACC | CCGCAGTGTT<br>GGCGTCACAA |
| URSTITLITE | 876  | ATCACTCATG<br>TAGTGAGTAC | GTTATGGCAG<br>CAATACCGTC | CACTGCATAA<br>GTGACGTATT | TTCTCTTACT<br>AAGAGAATGA | GTCATGCCAT<br>CAGTACGGTA |
| SHEET (RU! | 926  | CCGTAAGATG<br>GGCATTCTAC | CTTTTCTGTG<br>GAAAAGACAC | ACTGGTGAGT<br>TGACCACTCA | ACTCAACCAA<br>TGAGTTGGTT | GTCATTCTGA<br>CAGTAAGACT |
| F 26)      | 916  | GAATAGTGTA<br>CTTATCACAT | TGCGGCGACC<br>ACGCCGCTGG | GAGTTGCTCT<br>CTCAACGAGA | TGCCCGGCGT               | CAATACGGGA<br>GTTATGCCCT |
|            | 1026 | TAATACCGCG<br>ATTATGGCGC | CCACATAGCA<br>GGTGTATCGT | GAACTTTAAA<br>ÇTTGAAATTT | AGTGCTCATC<br>TCACGAGTAG | ATTGGAAAAC<br>TAACCTTTTG |
|            | 1076 | GTTCTTCGGG<br>CAAGAAGCCC | GCGAAAACTC<br>CGCTTTTGAG | TCAAGGATCT<br>AGTTCCTAGA | TACCGCTGTT<br>ATGGCGACAA | GAGATCCAGT<br>CTCTAGGTCA |

SUBSTITUTE SHEET (RULE 26)

Figure 36: functional map and sequence of B-lactamase-MCS module (continued)

| -                                  |                          |                          |                          |                           |                          |             |
|------------------------------------|--------------------------|--------------------------|--------------------------|---------------------------|--------------------------|-------------|
| CTTTTACTTT<br>GAAAATGAAA           | GCCGCAAAAA<br>CGGCGTTTTT | CTTCCTTTTT<br>GAAGGAAAAA | GCGGATACAT<br>CGCCTATGTA | XhoI<br>~~~~~<br>I BssHII | ATGGCTCGAG<br>TACCGAGCTC |             |
| TCTTCAGCAT<br>AGAAGTCGTA<br>Eco57I | AAGGCAAAAT<br>TTCCGTTTTA | TACTCATACT<br>ATGAGTATGA | TGTCTCATGA<br>ACAGAGTACT | .~<br>Bbel Asel           | GGCGCCATTA AT            | H 2         |
| ACCCAACTGA<br>TGGGTTGACT           | CAAAAACAGG<br>GTTTTTGTCC | AAATGTTGAA<br>TTTACAACTT | TCAGGGTTAT<br>AGTCCCAATA | PstI<br>~~~~~~~<br>BssSI  | ACGAGCTGCA<br>TGCTCGACGT | BspEI BsrGI |
| CCACTCGTGC<br>GGTGAGCACG<br>BSSSI  | TCTGGGTGAG<br>AGACCCACTC | GGCGACACGG<br>CCGCTGTGCC | GAAGCATTTA<br>CTTCGTAAAT | Eag I                     | ACTCGGCCGC               |             |
| TCGATGTAAC<br>AGCTACATTG           | CACCAGCGTT<br>GTGGTCGCAA | AGGGAATAAG<br>TCCCTTATTC | CAATATTATT<br>GTTATAATAA |                           | ATTTGAATGT<br>TAAACTTACA | BssHII      |
| 1126                               | 1176                     | 1226                     | 1276                     |                           | 1326                     |             |
|                                    |                          | SUBSTIT                  | UTE SHEET                | (RULE 26)                 |                          |             |

CATGAAATT GTACTTTAA CGCTTTGTCT TCCGGATGTA GCGAAACAGA AGGCCTACAT Figure 36: functional map and sequence of  $\beta$ -lactamase-MCS module (continued) CGCGCTTCAG GCGCGAAGTC Eco571 2 2 2 2 2 2 2 1376

> SUBSTITUTE SHEET (RULE 26) 193 / 204

Figure 37: Oligo and primer design for  $\mbox{V}\kappa$  CDR3 libraries

|           |     | <del></del> |   |   |   |   |   |   |   |   | 10 |   |          |   |    |    |   |                         |
|-----------|-----|-------------|---|---|---|---|---|---|---|---|----|---|----------|---|----|----|---|-------------------------|
| O_K3L_5   | 5'- | G           | C | C | C | T | G | C | Α | Α | G  | C | GG       | Α | Α  | G  | A | $\overline{\mathbb{C}}$ |
|           |     |             |   |   |   |   |   |   |   |   |    |   |          |   | Bb | sl |   |                         |
|           |     |             |   |   |   |   |   |   |   |   |    |   | <b>*</b> | E |    |    | D |                         |
| Vk1 & Vk3 | 5'- | G           | С | С | С | Τ | G | C | Α | Α | G  | C | GG       | Α | Α  | G  | A | C                       |
|           |     |             |   |   |   |   |   |   |   |   |    |   |          |   |    |    |   |                         |
|           |     |             |   |   |   |   |   |   |   |   |    |   |          | Ε |    |    | D |                         |
| Vk2       | 5'- | G           | C | C | Ć | T | G | C | Α | Α | G  | C | GG       | Α | Α  | G  | Α | C                       |
|           |     |             |   |   |   |   |   |   |   |   |    |   |          | E |    |    | D |                         |
| Vk4       | 5'- | G           | C | C | C | T | G | C | Α | Α | G  | C | GG       | Α | Α  | G  | Α | C                       |

Figure 37: Oligo and primer design for Vx CDR3 libraries

30 20 40 -3' Α Q TGCGACTTATTATTGC CA G GGGCGTGTA T CA TGGCGGTGTATTATTGC G CAΑ C D E F G Н CAT I K AT M N P CAG

SUBSTITUTE SHEET (RULE 26)

R S T

W

80% Q

Figure 37: Oligo and primer design for  $V\kappa$  CDR3 libraries

50

9

3'- G G A

G

T A C C T

G

T A C C T

G

T A C C T

| J                                       |         |     |   |        |          |          |            |                                         |   |           |   |   |    |    |   |   |   |   |
|-----------------------------------------|---------|-----|---|--------|----------|----------|------------|-----------------------------------------|---|-----------|---|---|----|----|---|---|---|---|
| *************************************** | G       | С   | T |        |          |          | ********** |                                         |   | G         | С | Τ |    |    |   | G | C | Τ |
|                                         |         |     |   |        |          |          |            |                                         |   |           |   |   |    |    |   |   |   |   |
|                                         | G       | Α   | Ţ | G      | Α        | T        | G          | Α                                       | Τ | G         | Α | Τ |    |    |   | G | A | T |
|                                         | G       | Α   | G |        |          |          |            |                                         |   | G         | Α | G |    |    |   | G | Α | G |
|                                         | T       | T   | T |        |          |          |            |                                         |   | T         | T | T |    |    |   | T | T | T |
| •                                       | G       | G   |   | G      | G        | T        | G          | G                                       | T | G         | G | T |    |    |   | G | G | T |
|                                         | C       | A   | T |        | ******   |          |            |                                         |   | C         | Α | T |    |    |   | C | Α | T |
|                                         | A       | T   | T |        |          |          |            |                                         |   | Α         | T | Ţ |    |    |   | Α | T | T |
| *************************************** | A       | Α   | - |        |          |          |            |                                         |   | Α         | Α | G |    |    |   | Α | Α | G |
|                                         | C       | T   | T |        |          |          |            | *****                                   |   | С         | T | Τ |    |    |   | С | T | T |
|                                         | Α       | T   | G | ;<br>; |          |          |            | ***********                             |   | Α         | T | G |    |    |   | Α | T | G |
| *************************************** | Α       | Α   | T | Α      | Α        | T        | Α          | Α                                       | T | Α         | A | T |    |    |   | Α | Α | T |
|                                         | ******* |     |   |        |          |          |            |                                         |   | C         | C | T | C  | C  | T | C | C | T |
|                                         | C       | Α   | G |        |          | •••••    |            |                                         |   | С         | Α | G |    |    |   | С | Α | G |
|                                         | C       | G   | T |        |          | ******** |            |                                         |   | С         | G | Τ |    |    |   | С | G | T |
|                                         | T       | С   | T | Τ      | C        | T        | T          | С                                       | T | Τ         | C | Τ | T  | С  | T | T | C | T |
|                                         | Α       | _   | T |        |          |          |            |                                         |   | Α         | C | T |    |    |   | Α | C | T |
|                                         | G       | Ť   | T |        | ,        | *******  |            |                                         |   | G         | T | T |    |    |   | G | T | Т |
|                                         | T       | G   | _ |        | ******** |          |            |                                         |   | Τ         | G | G |    |    |   | Τ | G | G |
|                                         | T       | Α   | T | T      | Α        | T        |            | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, |   | Τ         | Α | T |    |    |   | T | Α | T |
|                                         | 50      | O%C | Y |        |          | ******** | ••••••     |                                         |   | ********* |   |   | 80 | )% | P |   |   |   |
|                                         |         |     |   | -      |          |          |            |                                         |   |           |   |   |    |    |   |   |   |   |

SUBSTITUTE SHEET (RULE 26) 196 / 204

Figure 37: Oligo and primer design for Vk CDR3 libraries

|    |   |   |   |      | 70 |   |   |   |   |   |   |   |   |   | 80 | 81 |     |    |     |    |
|----|---|---|---|------|----|---|---|---|---|---|---|---|---|---|----|----|-----|----|-----|----|
| Α  | Α | C | C | G    | G  | T | Α | Α | G | C | T | T | T | C | G  | G  | -5' | 0_ | K3L | _3 |
|    |   |   | N | lscl |    |   |   |   |   |   |   |   |   |   |    |    |     |    |     |    |
| F  |   |   | G |      |    | Q |   |   |   |   |   |   |   |   |    |    |     |    |     |    |
| T  | Τ | G | G | С    | С  | A | T | T | C | G | Α | Α | Α | G | C  | C  | -3' |    |     |    |
|    |   |   |   |      |    |   |   |   |   |   |   |   |   |   |    |    |     |    |     |    |
| F  |   |   | G |      |    | Q |   |   |   |   |   |   |   |   |    |    |     |    |     |    |
| T[ | T | G | G | С    | С  | A | T | T | C | G | Α | Α | Α | G | С  | С  | -3' |    |     |    |
| F  |   |   | G |      |    | Q |   |   |   |   |   |   |   |   |    |    |     |    |     |    |
| T  | T | G | G | С    | С  | A | T | T | C | G | Α | Α | Α | G | C  | C  | -3' |    |     |    |

WO 97/08320

PCT/EP96/03647

Figure 38: Oligo and primer design for VA CDR3 libraries

E D E A D
5'- C C T G C A A G C G G A A G A G C G G A T T -

SUBSTITUTE SHEET (RULE 26) 198 / 204

The party of the party of the party of the party of the party of the party of the party of the party of the party of the party of the party of the party of the party of the party of the party of the party of the party of the party of the party of the party of the party of the party of the party of the party of the party of the party of the party of the party of the party of the party of the party of the party of the party of the party of the party of the party of the party of the party of the party of the party of the party of the party of the party of the party of the party of the party of the party of the party of the party of the party of the party of the party of the party of the party of the party of the party of the party of the party of the party of the party of the party of the party of the party of the party of the party of the party of the party of the party of the party of the party of the party of the party of the party of the party of the party of the party of the party of the party of the party of the party of the party of the party of the party of the party of the party of the party of the party of the party of the party of the party of the party of the party of the party of the party of the party of the party of the party of the party of the party of the party of the party of the party of the party of the party of the party of the party of the party of the party of the party of the party of the party of the party of the party of the party of the party of the party of the party of the party of the party of the party of the party of the party of the party of the party of the party of the party of the party of the party of the party of the party of the party of the party of the party of the party of the party of the party of the party of the party of the party of the party of the party of the party of the party of the party of the party of the party of the party of the party of the party of the party of the party of the party of the party of the party of the party of the party of the party of the p

Figure 38: Oligo and primer design for VA CDR3 libraries



SUBSTITUTE SHEET (RULE 28) 199 / 204

Figure 38: Oligo and primer design for  $V\lambda$  CDR3 libraries

| 09                                         | !                        | 0/       | 80     |
|--------------------------------------------|--------------------------|----------|--------|
|                                            | G G                      | G T      |        |
| an an                                      | GGCGG                    | CGGCACG  | AAGTTA |
| gap gap - G C T G C T G                    | СТ                       |          |        |
|                                            |                          |          |        |
| GATGATGATG                                 | AT                       |          |        |
| GAGGAGG                                    |                          |          |        |
|                                            |                          |          |        |
| G G T G G T G G T G<br>C A T C A T C A T C | <b>.</b>                 |          |        |
| ATTATTATTA                                 | į                        |          |        |
| AAGAAGAAGA                                 | A G                      |          |        |
| CTTCTTCTTC                                 | T·T                      |          |        |
| ATGATGATGA                                 | · •                      |          |        |
| AATAATAATA                                 |                          |          |        |
| C C T C C T C C T C                        | į                        |          |        |
| CGTCGTCGTC                                 | _                        |          |        |
| TCTTCTTCTT                                 | · ·                      |          |        |
| ACTACTACTA                                 | CT                       |          |        |
| GTTGTTGTTG                                 | •                        | •        |        |
|                                            | GG                       |          |        |
| 18 TATTATT                                 |                          |          |        |
| 18 18                                      | 19 3.32E+0<br>19 5.98E+0 |          |        |
|                                            | 19 1.08E+0               |          |        |
|                                            | SUBSTITUTE SHEET (       | RULE 26) |        |

Figure 38: Oligo and primer design for VA CDR3 libraries





SUBSTITUTE SHEET (RULE 25)
202 / 204

Figure 40: Expression data for HuCAL scFvs (pBS13, 30°C)

| % soluble | χ<br>7 | $\mathcal{Z}$ | Ā          | К4    | 71   | 77  | ಭ   |
|-----------|--------|---------------|------------|-------|------|-----|-----|
| H1A       | 61%    | 58%           | 52%        | 42%   | 0006 | 61% | %09 |
| H1B       | 39%    | 48%           | <b>%99</b> | 48%   | 47%  | 39% | 36% |
| H2        | 47%    | 57%           | 46%        | 49%   | 37%  | 36% | 45% |
| H3        | 85%    | 9/0/9         | 76%        | 61%   | 80%  | 71% | 83% |
| H4        | %69    | 52%           | 51%        | 44%   | 45%  | 33% | 42% |
| H5        | 49%    | 49%           | 46%        | 9/0/9 | 54%  | 46% | 47% |
| H6        | %06    | 58%           | 54%        | 47%   | 45%  | 50% | 51% |

| Total amount | ע    | 72   | £ £  | К4   | λ1   | λ2   | λ3   |
|--------------|------|------|------|------|------|------|------|
| H1A 289%     | 289% | 94%  | 166% | 272% | 20%  | 150% | 78%  |
| H1B          | 219% | 122% | 89%  | 139% | 117% | 158% | 101% |
| H2           | 186% | 223% | 208% | 182% | 126% | %09  | 92%  |
| H3           | 20%  | •    | 71%  | 54%  | 29%  | 130% | 47%  |
| H4           | 37%  | 55%  | %09  | 77%  | 195% | 107% | 251% |
| H5           | 98%  | 201% | 167% | 83%  | 93%  | 128% | 115% |
| 9H           | 65%  | 117% | 89%  | 109% | 299% | 215% | 278% |

Figure 40: Expression data for HuCAL scFvs (pBS13, 30°C)

| Soluble amount   | •        | Ž    | 5    | 73     | 71    | 72   | 73    |
|------------------|----------|------|------|--------|-------|------|-------|
| compared to H3K2 | <b>Z</b> | צ    | 2    | †<br>2 | 3     | 776  | 3     |
| HTA              | 191%     | 88%  | 121% | 122%   | 26%   | 211% | 0/09/ |
| H18              | 124%     | 95%  | 83%  | 107%   | 29%   | 142% | 29%   |
| H2               | 126%     | 204% | 139% | 130%   | 0/099 | 20%  | 002   |
| H3               | 63%      | 1    | 81%  | 49%    | %69   | 143% | 61%   |
| H4               | 40%      | 47%  | 49%  | 54%    | 95%   | 25%  | 125%  |
| H2               | %69      | 158% | 116% | 80%    | 72%   | 84%  | 84%   |
| %58 He 82%       | 85%      | 122% | 87%  | 17%    | 162%  | 162% | 212%  |
|                  | McPC     |      |      |        |       |      |       |
| soluble          | 38%      |      |      |        |       |      |       |
| %H3k2 total      | 117%     |      |      |        |       |      |       |
| %H3k2 soluble    | %69      |      |      |        |       |      |       |

### DECLARATION AND POWER OF ATTORNEY FOR PATENT APPLICATION

As a below named inventor, I hereby declare that:

My residence, post office address and citizenship are as stated below next to my name;

I believe I am the original, first and sole inventor (if only one name is listed below) or an original, first and joint inventor (if plural names are listed below) of the subject matter which is claimed and for which a patent is sought on the invention entitled:

Protein/(Poly)pentide Libraries

the specification of which

(check one)

[ ] is attached hereto

[X] was filed on February 18, 1998 as Application Serial No. Not Yet Assigned and was amended on

(if applicable)

I hereby state that I have reviewed and understand the contents of the above-identified specification, including the claims, as amended by any amendment referred to above.

I do not know and do not believe that the invention was ever patented or described in any printed publication in any Country before my or our invention thereof or more than one year prior to this application.

I do not know and do not believe that the invention was in public use or on sale in the United States of America more than one year prior to this application.

I acknowledge the duty to disclose to the United States Patent and Trademark Office all information known by me to be material to patentability as defined in Title 37, Code of Federal Regulations, § 1.55.

I hereby claim foreign priority benefits under Title 35, United States Code, \$ 119 of any foreign application(s) for patent or inventor's certificate listed below and have also identified below any foreign application for patent or inventor's certificate having a filing date before that of the application on which priority is claimed:

| Prior Foreign             | Application(s)         |                                          | Prio       |           |
|---------------------------|------------------------|------------------------------------------|------------|-----------|
| •                         |                        |                                          | Clai       | mec       |
| EP 95 11 3021<br>(Number) | .0 Europe<br>(Country) | 18 August 1995<br>(Day/Month/Year Filed) | [X]<br>Yes | [ ]<br>oa |
| (Number)                  | (Country)              | (Day/Month/Year Filed)                   | [ ]<br>Yes | []        |

I hereby claim the benefit under Title 35, United States Code, \$ 120 of any United States application(s) listed below and, insofar as the subject matter of each of the claims of this application is not disclosed in the prior United States application in the manner provided by the first paragraph of Title 35, United States Code, \$ 112, I acknowledge the duty to disclose to the United States Patent and Trademark Office all information known by me to be material to patentability as defined in Title 37, Code of Federal Regulations, \$ 1.56 which became available between the filing date of the prior application and the national or PCT international filing date of this application:

| PCT/EP96/03647           | 19 August 1996 | Pending                                 |
|--------------------------|----------------|-----------------------------------------|
| (Application Serial No.) | (Filing Date)  | (Status) (patented, pending, abandoned) |
| (Application Serial No.) | (Filing Date)  | (Status) (patented.                     |

pending, abandoned)

As a named inventor, I hereby appoint the following attorneys or agents to prosecute this application and transact all business in the United States Patent and Trademark Office connected therewith:

James F. Haley, Jr. (Reg. No. 27,794)

Margaret A. Pierri. (Reg. No. 30 709)

Send correspondence to:

James F. Haley, Jr.

FISH & NEAVE

1251 Avenue of the Americas

New York, New York 10020-1104

Direct telephone calls to: James F. Halev, Jr. (212) 596-9000

I nereby declare that all statements made herein of my own knowledge are true and that all statements made on information and belief are believed to be true; and further that these statements were made with the knowled ethat willful false statements and the like so made are punishable by fine or statements and the like so made are punishable by fine or imprisonment, or both, under Section 1001 of Title 18 of the United States Code and that such willful false statements may jeopardize the validity of the application or any patent issued thereon.

| Full name of first inventor Knappik. Achim First Inventor's signature                                                                                                                                                                                                                                                                                                                                      | 24.4.38<br>Date          |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|
| Residence Gräfelfing  Citizenship German  Post Öffice Address Killerstr. 16, D-82166 Gräfelfing                                                                                                                                                                                                                                                                                                            | ·<br>                    |
| Full name of second joint inventor Peter Pack Second Inventor's signature                                                                                                                                                                                                                                                                                                                                  | 5.5.98<br>Date           |
| Residence München  Citizenship German Wangener Str. 75, D-823/3 Lautstenex  Post Office Address Frank Wolter Str. 1. D-81915 Mins  Germany                                                                                                                                                                                                                                                                 | hen.                     |
| Full name of third joint inventor Ilag. Vis Third In Intor's signature                                                                                                                                                                                                                                                                                                                                     | Date                     |
| Residence München  Citizenship Philippines  Post Office Address Knorrati 65, D-80807 Künchen                                                                                                                                                                                                                                                                                                               | Cormany                  |
| As an inventor named on the parent patent application PCT/EP96/03647. I hereby declare that: In the course of assigning the individual inventor's contribution to the invention underlying the application, it was identified that the input of Dr. Vic liag did not contribute to the invention, by technical assistance. Therefore, the assignment of Dr. Vic liag as original, first and joint inventor | of was milit             |
| Withdrawn.  What I are 5.598  Knappik, Achim Date Pack, Peter Date Hay, Vic Da                                                                                                                                                                                                                                                                                                                             | 28.7.78<br>10<br>12.5.98 |
| Ge, Liming Date Moroney, Simon Date Plückthun, Andreas Da                                                                                                                                                                                                                                                                                                                                                  | oic                      |

| Full name of fourth joint inventor Ge. Liming  Fourth Inventor's signature                     | 18.4.48                                       |
|------------------------------------------------------------------------------------------------|-----------------------------------------------|
| Fourth Inventor a significant                                                                  | 15.4.48<br>Date                               |
| Residence_Minchen_                                                                             |                                               |
| Citizenship China Cortiastr. 12 84545                                                          |                                               |
| Post Office Address Nestroyett 17, D-81272 München                                             | . Germany                                     |
| Full name of fifth joint inventor Moroney, Simon Fifth Inventor's signature                    | <u> ∕6                                   </u> |
| Residence München                                                                              |                                               |
| Citizenship New Zealand  Ficatenship D-82064 Neurice  Post Office Address Coton Minch  Germany | d<br>≎n.                                      |
| Full name of sixth joint inventor, Plückthun, Andreas Sixth Inventor's signature               | Jan 6                                         |
| Residence Zürich                                                                               |                                               |
| Citizenship German                                                                             |                                               |
| Post Office Address Möhrlistr. 97. CH-8006. Zürich. Sw                                         | itzerland                                     |