```
In [370]: import pandas as pd
          import numpy as np
          import seaborn as sns
          import time
          from scipy.stats import pearsonr
          import matplotlib.pyplot as plt
          from sklearn.linear model import LogisticRegression
          from sklearn.ensemble import RandomForestClassifier
          from sklearn.model selection import KFold
          from sklearn.model_selection import GridSearchCV
          from sklearn.tree import plot tree
          from sklearn.metrics import confusion matrix
          from sklearn.metrics import precision score
          from sklearn.metrics import recall score
          from sklearn.metrics import roc curve
          from sklearn.metrics import accuracy score
          from sklearn.ensemble import BaggingClassifier
          from imblearn.over sampling import RandomOverSampler
          pd.set_option('display.max_columns', None)
```

```
In [257]: #Load All Scraped Data
    user_stats = pd.read_csv("userStats.csv")
    trending = pd.read_csv("trendingStats.csv", index_col=[0])
    trending1718 = pd.read_csv("trendingStats-1718.csv", index_col=[0])
    users_updated = pd.read_csv("users_updated.csv", index_col=[0])

users_4th = pd.read_csv('userStats5_4.csv')
    trending_4th = pd.read_csv('trendingStats5_4.csv')
    trending_4th.head()
```

Out[257]:

	Unnamed: 0	date_run	songTitle	authorName	private	duration	album	scheduleSea
(0 6926430057246280453	05/04/21	Моя голова винтом	; Марго ⊌	False	9	NaN	
	1 6956939305335933701	05/04/21	suono originale	Khabane lame	False	23	NaN	
;	2 6945541245435381761	05/04/21	deja vu	Olivia Rodrigo	False	45	deja vu	
;	3 6840149587802475270	05/04/21	sonido original	George-G	False	8	NaN	
	4 6757872491160406017	05/04/21	Teach Me How To Dougie	Classics Reborn	False	30	Teach Me How To Dougie	

```
In [258]: #Reformat Indices and Column Names for Consistency
    users_updated.rename(columns = {'Unnamed: 0.1': 'userID'}, inplace = Tru
    e)
    users_updated.reset_index(drop=True, inplace=True)
    trending1718.reset_index(drop=True, inplace=True)
    trending.reset_index(drop=True, inplace=True)
    user_stats.rename(columns = {'Unnamed: 0': 'userID'}, inplace = True)
    users_4th.rename(columns = {'Unnamed: 0': 'userID'}, inplace = True)
    trending_4th.rename(columns = {'Unnamed: 0': 'soundID'}, inplace = True)
    users_updated.head()
```

Out[258]:

	userID	soundID	date_run	followingCount	followerCount	heartCo
0	6953076077749161222	6947333417029733126	04/29/21	163	607200	106000
1	6952496938612755717	6947333417029733126	04/29/21	117	1100000	265000
2	6956386359766420742	6947333417029733126	04/29/21	13	45300000	10000000
3	6951737718888025346	6947333417029733126	04/29/21	2	418800	47000
4	6953055168808226054	6947333417029733126	04/29/21	455	2900000	1191000

```
In [259]: #Concatenate our two user tables
    users = pd.concat([user_stats, users_updated]).drop_duplicates()
    users_29 = users[users['date_run'] == '04/29/21']
    users_30 = users[users['date_run'] == '04/30/21']
    users_29.head()
```

Out[259]:

	userID	soundID	date_run	followingCount	followerCount	heartCo
0	6953076077749161222	6947333417029733126	04/29/21	163	607200	106000
1	6952496938612755717	6947333417029733126	04/29/21	117	1100000	265000
2	6956386359766420742	6947333417029733126	04/29/21	13	45300000	10000000
3	6951737718888025346	6947333417029733126	04/29/21	2	418800	47000
4	6953055168808226054	6947333417029733126	04/29/21	455	2900000	1191000

```
In [260]: #Get mean song data by user statistic
    song_data_agg_29 = users_29.groupby(by=["soundID"]).mean()
    song_data_agg_30 = users_30.groupby(by=["soundID"]).mean()
    song_data_agg_4 = users_4th.groupby(by=["soundID"]).mean()
    song_data_agg_29.head()
```

Out[260]:

	soundID						
	37696	6.837558e+18	980.090	359312.595	9.207480e+06	422.975	17:
	118053679	6.846653e+18	511.705	1636966.990	5.334481e+07	387.040	10!
	158840031	6.826014e+18	474.555	252015.535	6.184097e+06	443.345	12
153013	783613878272	6.864727e+18	1787.285	11544.580	1.825210e+05	202.750	12:
222450	775220682752	6.840913e+18	504.020	363976.810	8.794654e+06	445.860	231

userID followingCount followerCount

heartCount videoCount dig

```
In [261]: def data reformatter(df, columns list):
              def binary_converter(col):
                  convert = []
                  for x in np.arange(len(col)):
                      if col[x] == True:
                           convert.append(1)
                      else:
                          convert.append(0)
                  return convert
              for x in columns list:
                  df[x] = binary converter(list(df[x]))
              return df
          trending1718f = data reformatter(trending1718, ['private', 'verified',
          'openFavorite', 'privateAccount']).drop(columns = ['songTitle', 'uniqueI
          d', 'nickname', 'authorName', 'album', 'secUid'])
          trending 4ths = data reformatter(trending 4th, ['private', 'verified',
          'openFavorite', 'privateAccount']).drop(columns = ['songTitle', 'uniqueI
          d', 'nickname', 'authorName', 'album', 'secUid'])
          trending1718f['privateAccount'].unique()
```

Out[261]: array([0, 1])

```
In [262]: artist_avg = pd.DataFrame(trending1718f.groupby(by = ['artist_id']).mean
    ()['numTimesUsed'])
    artist_avg_4th = pd.DataFrame(trending_4ths.groupby(by = ['artist_id']).
    mean()['numTimesUsed'])

artist_avg = artist_avg.rename(columns = {'numTimesUsed': 'artistAvgPlay s'})

artist_avg_4th = artist_avg_4th.rename(columns = {'numTimesUsed': 'artistAvgPlays'})

trending1718a = pd.merge(trending1718f, artist_avg, left_on = 'artist_i d', right_on = 'artist_id', how = 'left').drop(columns = ['artist_id'])
    trending_4thf = pd.merge(trending_4ths, artist_avg_4th, left_on = 'artist_id', right_on = 'artist_id', how = 'left').drop(columns = ['artist_id', 'date_run'])

trending1718a.head()
```

Out[262]:

	soundID	date_run	private	duration	scheduleSearchTime	numTimesUsed	crea
0	6947333417029733126	04/29/21	0	18	0	1700000	1.4709
1	6853737142045231878	04/29/21	0	9	0	79900	1.5718
2	6947428005501668101	04/29/21	0	8	0	627200	
3	6418356150286158594	04/29/21	0	39	0	202100	1.5849
4	6956564930254457606	04/29/21	0	16	0	418	1.4708

```
In [263]: trending_29 = trending1718a[trending1718a['date_run'] == '04/29/21'].dro
    p(columns = ['date_run'])
    trending_30 = trending1718a[trending1718a['date_run'] == '04/30/21'].dro
    p(columns = ['date_run'])

train_29th = pd.merge(song_data_agg_29, trending_29, left_on = 'soundID',
    right_on = 'soundID', how='left').drop_duplicates(subset = 'soundID').
    drop(columns = 'userID')
    test_30th = pd.merge(song_data_agg_30, trending_30, left_on = 'soundID',
    right_on = 'soundID', how='left').drop_duplicates(subset = 'soundID').dr
    op(columns = 'userID').replace([np.inf, -np.inf], np.nan).dropna(axis=0)
    fourth = pd.merge(song_data_agg_4, trending_4thf, left_on = 'soundID', r
    ight_on = 'soundID', how='left').drop_duplicates(subset = 'soundID').dro
    p(columns = 'userID').replace([np.inf, -np.inf], np.nan).dropna(axis=0)
    train_29th.head()
```

Out[263]:

	soundID	followingCount	followerCount	heartCount	videoCount	diggCount	
0	37696	980.090	359312.595	9.207480e+06	422.975	17265.790	9.2
1	118053679	511.705	1636966.990	5.334481e+07	387.040	10901.685	5.3
2	158840031	474.555	252015.535	6.184097e+06	443.345	12472.935	6.1
3	153013783613878272	1787.285	11544.580	1.825210e+05	202.750	12240.250	1.8
4	222450775220682752	504.020	363976.810	8.794654e+06	445.860	23047.290	8.7

In [264]: top25_29 = train_29th.sort_values(by = 'numTimesUsed', ascending = False).reset_index().loc[:,["soundID", "numTimesUsed"]][0:25] top25_30 = test_30th.sort_values(by = 'numTimesUsed', ascending = False) .reset_index().loc[:,["soundID", "numTimesUsed"]][0:25] top_25_4 = fourth.sort_values(by = 'numTimesUsed', ascending = False).re set_index().loc[:,["soundID", "numTimesUsed"]][0:25] top25_29.head()

Out[264]:

	soundID	numTimesUsed
0	6800996740322297858	24000000
1	6857275312967796738	14700000
2	6586947002464996102	14600000
3	6791619226181306369	13500000
4	6842582526297393154	11400000

```
In [265]: #Verify that the top 25 for the 29th and 30th are quite distinct from on
    e another
    similar = []
    for x in list(top25_29):
        if x in list(top25_30):
            similar.append(1)
        else:
            similar.append(0)

#Since there are only two songs that overlap in these days out of the to
    p 25, it's okay to use the 29th as train and
    #30th as test
    sum(similar)
```

Out[265]: 2

```
In [266]: top 25 29th = []
          for x in list(train_29th['soundID']):
              if x in list(top25_29['soundID']):
                   top 25 29th.append(1)
              else:
                   top 25 29th.append(0)
          top 25 30th = []
          for x in list(test_30th['soundID']):
              if x in list(top25 30['soundID']):
                   top_25_30th.append(1)
              else:
                   top 25 30th.append(0)
          top_25_4th = []
          for x in list(fourth['soundID']):
              if x in list(top_25_4['soundID']):
                   top 25 4th.append(1)
              else:
                   top 25 4th.append(0)
          sum(top 25 30th)
```

Out[266]: 25

```
In [267]: train_29th['top25'] = top_25_29th
    test_30th['top25'] = top_25_30th
    fourth['top25'] = top_25_4th

train_29th = train_29th.drop(columns = ['numTimesUsed'])
    test_30th = test_30th.drop(columns = ['numTimesUsed'])
    fourth = fourth.drop(columns = ['numTimesUsed'])
train_29th.head()
```

Out[267]:

	soundID	followingCount	followerCount	heartCount	videoCount	diggCount	
0	37696	980.090	359312.595	9.207480e+06	422.975	17265.790	9.2
1	118053679	511.705	1636966.990	5.334481e+07	387.040	10901.685	5.3
2	158840031	474.555	252015.535	6.184097e+06	443.345	12472.935	6.1
3	153013783613878272	1787.285	11544.580	1.825210e+05	202.750	12240.250	1.8
4	222450775220682752	504.020	363976.810	8.794654e+06	445.860	23047.290	8.7

```
In [268]: #See if there's any deviance in average stats between top songs and not
    top songs in training set
    train_29th_top_25 = train_29th[train_29th['top25'] == 1]
    train_29th_not_25 = train_29th[train_29th['top25'] == 0]

train_29th_top_25.describe().apply(lambda s: s.apply(lambda x: format(x,
    'f'))).drop(columns = ['soundID', 'top25'])
```

Out[268]:

	followingCount	followerCount	heartCount	videoCount	diggCount	
count	25.000000	25.000000	25.000000	25.000000	25.000000	25.
mean	481.871600	5019598.257400	133299180.520000	524.735400	13281.972400	170124100.
std	171.301201	2620586.597350	59949940.153053	112.619519	7280.686805	144594687.
min	170.835000	1301581.020000	33230104.000000	342.295000	3810.610000	33230104.
25%	383.390000	3365115.995000	85846500.000000	433.325000	9971.985000	108846500.
50%	475.820000	4986643.900000	130368516.000000	531.115000	11548.950000	141368516.
75%	554.445000	5699672.500000	158095000.000000	579.930000	14477.485000	168209180.
max	975.470000	15035555.755000	289498725.500000	754.695000	42405.880000	784208725.

Out[269]:

	followingCount	followerCount	heartCount	videoCount	diggCount	
count	614.000000	614.000000	614.000000	614.000000	614.000000	614.0
mean	864.638853	1137462.854232	35645926.486519	498.892005	16330.551606	40276399.6
std	607.567530	1357039.254676	45005660.255641	266.657496	8922.155117	54223856.
min	13.000000	574.000000	3224.181818	49.000000	63.000000	3224. ⁻
25%	451.093750	206119.110000	4043681.437500	355.438750	10027.031250	4043681.4
50%	621.377500	660109.861285	17737955.500000	464.298485	14484.656543	18577936.2
75%	1110.042500	1630977.286250	53294209.875000	596.407500	20777.965000	57307454.
max	4121.666667	9877157.465000	316556770.500000	4429.245000	81069.100000	420333599.

In [225]: #Visualize our training set with pairplots and correlations between feat def pairplotter_with_corr(dataset): def correlation_plot(x, y, ax=None, **kws): $r, _ = pearsonr(x, y)$ ax = ax or plt.gca() $ax.annotate(f'Q = \{r:.2f\}', xy=(.1, .9), xycoords=ax.transAxes)$ pairplot = sns.pairplot(dataset, diag kind = 'scatter') pairplot.map_lower(correlation_plot) plt.show() #Drop irrelevant columns from above analysis irr_cols = ['private', 'scheduleSearchTime', 'relation', 'stitchSetting' , 'duetSetting', 'soundID'] train_visualizer = train_29th.copy().drop(columns = irr_cols) train_vis = train_visualizer.replace([np.inf, -np.inf], np.nan).dropna(a xis=0)pairplotter_with_corr(train_vis)

/Library/Frameworks/Python.framework/Versions/3.8/lib/python3.8/site-packages/scipy/stats/stats.py:3845: PearsonRConstantInputWarning: An input array is constant; the correlation coefficient is not defined. warnings.warn(PearsonRConstantInputWarning())


```
In [336]: #Drop all irrelevant columns
          #This includes both the columns we deemed irrelevant before and features
          with lower than 0.03 correlation with top25
          irrelevant = ['private', 'scheduleSearchTime', 'relation', 'stitchSettin
          g', 'duetSetting', 'followingCount', 'videoCount', 'diggCount', 'openFav
          orite', 'commentSetting', 'privateAccount']
          train final = train 29th.drop(columns = irrelevant).replace([np.inf, -np
          .inf], np.nan).dropna(axis=0)
          test final = test_30th.drop(columns = irrelevant).replace([np.inf, -np.i
          nf], np.nan).dropna(axis=0)
          fourth final = fourth.drop(columns = irrelevant).replace([np.inf, -np.in
          f], np.nan).dropna(axis=0)
          train y = train final['top25']
          train x = train final.drop(columns = ['top25'])
          test_y = test_final['top25']
          test_x = test_final.drop(columns = ['top25'])
          fourth y = fourth final['top25']
          fourth_x = fourth_final.drop(columns = ['top25'])
          sum(train_y)
Out[336]: 18
In [337]: #Since our data is way too unbalanced, we must sample bootstrap from the
          training set in order to more accurately train
          #Use imblearn to resample our data
          ros = RandomOverSampler(random state=42)
          train x1, train y1 = ros.fit resample(train x, train y)
  In [ ]: #Cross validation for our ccp alpha parameter
          grid values = {'ccp alpha': np.linspace(0, 0.01, 61),
                          'min samples leaf': [10],
                          'min samples split': [20],
                          'max_depth': [100],
                          'random state': [2]}
          dtr = RandomForestClassifier()
          best ccps = []
          #Bootstrap the optimal parameter value from different random states
          for x in np.arange(300, 310):
              cv = KFold(n splits = 5, random state = x, shuffle = True)
              dtr cv = GridSearchCV(dtr, param grid = grid values, scoring = 'accu
          racy', cv=cv, verbose=1)
              dtr_cv.fit(train_x, train_y)
              best ccps.append(dtr cv.best params ['ccp alpha'])
          acc = dtr_cv.cv_results_['mean_test_score']
          ccp = dtr cv.cv results ['param ccp alpha'].data
```

```
In [343]: model = RandomForestClassifier(ccp_alpha = 0.05, min_samples_leaf = 10,
        min samples split = 20, max depth = 100)
        model.fit(train x1, train y1)
        predictions = model.predict(test_x)
        predictions
0,
              1, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 1, 0, 0, 0,
        0,
              0,
              0,
              0, 0, 0, 0, 0, 0, 0, 0, 0)
In [344]: | #Show confusion matrix results
        confusion = confusion matrix(test y, predictions)
        print ("Confusion Matrix: \n", confusion)
        Confusion Matrix:
         [[72 0]
         [14 11]]
In [375]: #Calculate Precision
        precision = precision score(test y, predictions)
        precision
Out[375]: 1.0
In [373]: #Calculate Recall
        recall = recall score(test y, predictions)
Out[373]: 0.44
In [374]: #Calculate Accuracy Score
        acc = accuracy score(test y, predictions)
        acc
Out[374]: 0.8556701030927835
In [357]: #Calculate FPR
        tnr = recall_score(test_y, predictions, pos_label = 0)
        fpr = 1 - tnr
        fpr
Out[357]: 0.0
```

```
In [371]: #Bootstrap Validation
          def bootstrap validation(test_data, test_label, model, metrics_list, sam
          ple=500, random state=66):
              tic = time.time()
              n \text{ sample} = \text{sample}
              n_metrics = len(metrics_list)
              output_array=np.zeros([n_sample, n_metrics])
              output array[:]=np.nan
              print(output_array.shape)
              for bs_iter in range(n_sample):
                   bs index = np.random.choice(test data.index, len(test data.index
          ), replace=True)
                   bs_data = test_data.loc[bs_index]
                   bs label = test label.loc[bs index]
                   bs_predicted = model.predict(bs_data)
                   for metrics_iter in range(n_metrics):
                       metrics = metrics list[metrics iter]
                       output_array[bs_iter, metrics_iter]=metrics(bs_label,bs_pred
          icted)
          #
                     if bs iter % 100 == 0:
          #
                         print(bs iter, time.time()-tic)
              output_df = pd.DataFrame(output_array)
              return output df
          bootstrap = bootstrap_validation(test_x, test_y, model, metrics_list = [
          accuracy score, precision_score, recall_score], sample = 500)
          bootstrap
```

(500, 3)

Out[371]:

0	1	2
0.876289	1.0	0.538462
0.824742	1.0	0.346154
0.845361	1.0	0.347826
0.886598	1.0	0.450000
0.886598	1.0	0.560000
0.814433	1.0	0.437500
0.865979	1.0	0.458333
0.865979	1.0	0.409091
0.896907	1.0	0.545455
0.865979	1.0	0.500000
	0.876289 0.824742 0.845361 0.886598 0.886598 0.814433 0.865979 0.865979	0.876289 1.0 0.824742 1.0 0.845361 1.0 0.886598 1.0 0.886598 1.0 0.814433 1.0 0.865979 1.0 0.865979 1.0

500 rows × 3 columns

```
In [388]: #Visualize our Bootstrap - Accuracy
fig, axs = plt.subplots(ncols=2, figsize=(12,5))
axs[0].set_xlabel('Bootstrap Accuracy', fontsize=16)
axs[1].set_xlabel('Boot Acc - Test Set Acc', fontsize=16)
axs[0].set_ylabel('Count', fontsize=16)
axs[0].hist(bootstrap.iloc[:,0], bins=20,edgecolor='green', linewidth=2,
color = "grey")
axs[0].set_xlim([0.7,1.1])
axs[1].hist(bootstrap.iloc[:,0]-acc, bins=20,edgecolor='green', linewidth=2,color = "grey")
axs[1].set_xlim([-0.08,0.08])
```

Out[388]: (-0.08, 0.08)


```
In [385]: #Visualize our Bootstrap - Precision
    fig, axs = plt.subplots(ncols=2, figsize=(12,5))
    axs[0].set_xlabel('Bootstrap Precision', fontsize=16)
    axs[1].set_xlabel('Boot Prec - Test Set Prec', fontsize=16)
    axs[0].set_ylabel('Count', fontsize=16)
    axs[0].hist(bootstrap.iloc[:,1], bins=20,edgecolor='green', linewidth=2,
    color = "grey")
    axs[0].set_xlim([0.9,1.1])
    axs[1].hist(bootstrap.iloc[:,1]-precision, bins=20,edgecolor='green', linewidth=2,color = "grey")
    axs[1].set_xlim([-0.03,0.07])
```

Out[385]: (-0.03, 0.07)


```
In [381]: #Visualize our Bootstrap - Precision
    fig, axs = plt.subplots(ncols=2, figsize=(12,5))
    axs[0].set_xlabel('Bootstrap Recall', fontsize=16)
    axs[1].set_xlabel('Boot Recall - Test Set Recall', fontsize=16)
    axs[0].set_ylabel('Count', fontsize=16)
    axs[0].hist(bootstrap.iloc[:,2], bins=20,edgecolor='green', linewidth=2, color = "grey")
    axs[0].set_xlim([0.1,0.8])
    axs[1].hist(bootstrap.iloc[:,2]-recall, bins=20,edgecolor='green', linewidth=2,color = "grey")
    axs[1].set_xlim([-0.3,0.5])
```

Out[381]: (-0.3, 0.5)

In []: