Homework 9

MATH 123 - Fall 2018

Tufts University, Department of Mathematics Due: November 20, 2018

Question 1

Download the data 'HW9_TwoClass.mat' to reveal data $\{x_i\}_{i=1}^n \subset \mathbb{R}^2$ together with labels $\{y_i\}_{i=1}^n$.

- (a) Let $F(w,b) = ||w||_2^2 + \lambda \sum_{i=1}^n \max(0, 1 y_i(w^T x_i + b))$ be the hinge loss. Use MATLAB's black box optimization function 'fminunc.m' to estimate the hyperplane that minimizes the hinge loss for different choices of λ . Plot the results on the data and interpret.
- (b) Let $G(w,b) = ||w||_2^2 + \lambda \sum_{i=1}^n \max(0, 1 y_i(w^Tx_i + b)^2)$ be the squared loss. Use MATLAB's black box optimization function 'fminunc.m to estimate the hyperplane that minimizes the hinge loss for different choices of λ . Plot the results on the data and interpret.

QUESTION 2

Suppose the data $\{(x_i, y_i)\}_{i=1}^n$, $x_i \in \mathbb{R}^d$, $y_i \in \{-1, 1\}$ are linearly separable, i.e. there is a hyperplane such that all points with label -1 are on one side, all point with label -1 on the other side.

- (a) Phrase the linear separability condition mathematically in terms of the parameters of the hyperplane.
- (b) Prove that there are infinitely many separating hyperplanes, as soon as there is one.
- (c) Let $F(w,b) = ||w||_2^2 + \lambda \sum_{i=1}^n \max(0, 1 y_i(w^T x_i + b))$ be the soft-margin hinge loss with regularization parameter λ . Describe what kind of hyperplane is learned by minimizing F for $\lambda \to 0$? For $\lambda \to +\infty$?
- (d) Suppose (w^*, b^*) are the minimizing hyperplane parameters for a fixed choice of λ . How can we use w^*, b^* to classify a new, unlabeled test point x_{test} ?

QUESTION 3

Use the dual optimization formulation to solve the following optimization problems, currently written in their primal form.

- (a) Minimize $x^2 + y^2$ subject to the constraints $x \le y, x \le 1 2y$.
- (b) Minimize $x^2 + y^2 + z^2$ subject to the constraints $x + y + z \ge 1$.