Question Number	Scheme	Marks
4(i)	$\frac{16}{\log_4 r} = \log_4 r \Rightarrow 16 = (\log_4 r)^2 \Rightarrow \log_4 r = \pm 4$	M1
(ii)	$r = 4^4 = 256$ or $r = 4^{-4} = \frac{1}{256}$ $\log_5 9 + \log_5 12 + \log_5 15 + \log_5 18 = \log_5 (9 \times 12 \times 15 \times 18) = \log_5 29160$	A1 (2) M1
	$1 + \log_5 x + \log_5 x^2 = \log_5 5 + \log_5 x + \log_5 x^2 = \log_5 5x^3$	M1A1
A V TD 4	$5x^3 = 29160$ $x = 18$	dM1 A1 (5) [7]
ALT 1	LHS = $\log_5 29160$ RHS = $1 + \log_5 x^3$	M1 M1
	$\left(\frac{\log_{10} 29160}{\log_{10} 5}\right) = 6.387\left(=\log_5 x^3 + 1\right)$	A1
	$5.387 = 3\log_5 x$ $\log_5 x = 1.795$ x = 18	dM1 A1
ALT 2	LHS = $\log_5 29160$	M1
	RHS = $\log_5 5 + \log_5 x^3$ $\log_5 29160 = \log_5 5 + \log_5 5832$	M1A1
	$5832 = x^3$ $x = 18$	dM1 A1
ALT 3	LHS = $\log_5 5832 + \log_5 5$ RHS = $1 + \log_5 x^3$ LHS = $\log_5 5832 + 1$ $\log_5 5832 = \log_5 x^3$	M1 M1 A1
	$5832 = x^3$ $x = 18$	dM1 A1
ALT 4	$\log_5 29160 - \log_5 x^3 = 1$	M1M1
	$\log_5 \frac{29160}{x^3} = 1$ $\frac{29160}{x^3} = 5 \Rightarrow x^3 = 5832$	A1 dM1
	$\frac{x^3}{x^3} - 3 \Rightarrow x - 3832$ $x = 18$	A1

(i) M1	Change base (can have base 4 or base r provided the same for both logs), multiply to remove the fraction and solve to $\log_4 r =$ (or $\log_7 4 =$) (One answer only is sufficient)	
A1	Complete to the correct answers, both needed	
(ii)		
M1	Combine the LHS logs to a single log. Numbers should be multiplied – if added award M0	
M1 A1	Change 1 to log ₅ 5 and obtain a single log for the RHS Correct single log for RHS (Requires second M mark, not first)	
dM1	Use LHS = RHS to obtain an equation without logs Depends on both previous M marks	
A1	Correct answer	
ALT 1		
M 1	Combine the LHS logs to a single log. Numbers should be multiplied – if added award M0	
M1	Combine the two logs on RHS	
A1	Correct numerical value for LHS . This will need a calculator so change of base need not be seen. Equation need not be formed yet. Correct final answer implies correct value here. Otherwise min 3 sf needed	
	This mark requires the first M mark to have been given – the second M mark can be M0	
dM1	Use LHS = RHS to obtain a value for $3\log_5 x$ or $\log_5 x$	
A 1	Depends on both previous M marks Correct answer. This will be exact if all numbers stored on the calculator so accept 18 only.	
ALT 2	Correct answer. This will be exact if all numbers stored on the calculator so accept 18 only.	
M1	Combine the LHS logs to a single log. Numbers should be multiplied – if added award M0	
1,11	Alternatively we may see LHS = $\log_5 5 + \log_5 5832$ without ever seeing LHS = $\log_5 29160$	
M 1	Combine the 2 logs on RHS and change 1 to log ₅ 5	
A1	Correct RHS (Requires second M mark, not first)	
dM1 A1	Use LHS = RHS to obtain a value for x^3 Depends on both previous M marks	
ALT 3	Correct answer	
M1	Split log ₅ 15 and combine all logs apart from log ₅ 5 to a single log	
M 1	Combine the two logs on RHS	
A1	Change log ₅ 5 to 1 and have the correct log on LHS	
	This mark requires the first M mark to have been given – the second M mark can be M0	
dM1	Use LHS = RHS to obtain a value for x^3 Depends on both previous M marks	
A1 ALT 4	Correct answer	
M1	Combine the LHS logs to a single log. Numbers should be multiplied – if added award M0	
M1	Combine the two logs from the RHS	
A1	Obtain the equation shown	
dM1	Obtain a value for x^3 Depends on both previous M marks	
A1	Correct answer	