Table S1. Parameters and variables for the dynamical model

Name	Definition	MATLAB notation	Value	Unit	References	Etc.
κ	pMHC-TCR association rate	kappa	10^{-4}	s^{-1}	(Altan-Bonnet and Germain, 2005; François et al., 2013)	
ν	pMHC-TCR dissociation rate	nu	0.1~1	s^{-1}	(Altan-Bonnet and Germain, 2005; François et al., 2013)	0.1~0.4 for MAPPA
N	Number of phosphorylation steps	N	5		(François et al., 2013)	
$oldsymbol{\phi}_{max}$	Phosphorylation rate	phi_max	0.09	s^{-1}	(François et al., 2013)	
b	Spontaneous dephosphorylation rate	b	0.04	s^{-1}	(François et al., 2013)	
γ	Phosphatase efficiency	gamma	1.2×10^{-6}	s^{-1}	(François et al., 2013)	
$S_{SHP1,T}$	Number of phosphatase (SHP-1) per cell	S_SHP1_t	60,000		(François et al., 2013	
$C^*_{TCR,1}$	Half saturation level of $C_{TCR.1}$ for S_{SHP1} activation	C_TCR_1_star	500		(François et al., 2013)	
$oldsymbol{k_{costim}^{on}}$	Association rate of CD80/CD86 and CD28	k_on_costim	0.77 ± 0.06	$\mu m^2 s^{-1}$	(Collins et al., 2002)	Converted to 2D rate following (Jansson and Davis, 2011)
$oldsymbol{k_{costim}^{off}}$	dissociation rate of CD80/CD86 and CD28	k_off_costim	28 ± 2	s^{-1}	(Collins et al., 2002)	
$oldsymbol{k_{CTAL4}^{on}}$	Association rate of CD80/CD86 and CTLA $min^{-1}4$	k_on_CTLA4	1.09	$\mu m^2 s^{-1}$	(Collins et al., 2002)	Converted to 2D rate following (Jansson and Davis, 2011)
$k_{\scriptscriptstyle CTLA4}^{off}$	Dissociation rate of CD80/CD86 and CTLA4	k_off_CTLA4	5.1	s^{-1}	(Collins et al., 2002)	
k_{CTLA4}^{endo}	Rate of CTLA4 endocytosis	k_endo_CTLA4	0.291	m^{-1}	(Khailaie et al., 2017)	
$m{k}_{mIL2Rlpha}^{transcription(basal)}$	Basal transcription rate of IL2R α	k_transc_basal_ mlL2R_alpha	$0.03 imes k_{IL2\alpha}^{deg}$	h^{-1}	(Voisinne et al., 2015)	

$m{k}_{mIL2Rlpha}^{transcription(TCR,costim)}$	Transcription rate of IL2R α downstream of TCR	k_transc_TCR_ costim_mIL2R_ alpha	$10 imes k_{IL2lpha}^{deg}$	h^{-1}	(Voisinne et al., 2015)	
$k_{mIL2Rlpha}^{transcription(pSTAT5)}$	Transcription rate of IL2R α downstream of pSTAT5	k_transc_ pSTAT5_mlL2R_ alpha	$4 \times 10^2 \times k_{IL2\alpha}^{deg}$	h^{-1}	(Voisinne et al., 2015)	
$K_{TCR o 1L2R\alpha}$	Half saturation level of TCR activation for IL2R α production	K_TCR_IL2R_ alpha	0.2 0.3		(François et al., 2013) (Voisinne et al., 2015)	0.1∼1 for MAPPA
$n_{TCR o IL2Rlpha}$	Hill coefficient of TCR activation for IL2Rα production	n_TCR_IL2R_ alpha	1		(Voisinne et al., 2015)	
$K_{costim o IL2Rlpha}$	Half saturation level of costimulation for IL2Rα production	K_costim_IL2R_ alpha	10~100		This study	Varied for MAPPA
$n_{costim o IL2Rlpha}$	Hill coefficient of costimulation for IL2R α production	n_costim_IL2R_ alpha	1		This study	
$K_{JAK o pSTAT5}$	Half saturation level of JAK activation for IL2Rα production	K_JAK_pSTAT5	0.05		(Voisinne et al., 2015)	
$n_{JAK o pSTAT5}$	Hill coefficient of JAK activation for IL2R α production	n_JAK_pSTAT5	2		(Busse et al., 2010; Feinerman et al., 2010; Voisinne et al., 2015)	For bistability of IL2Rα
$K^{high}_{IL2 o JAK}$	Half saturation level of IL2 for JAK activation (for high IL2Rα level)	K_IL2_JAK_high	1	рМ	(Voisinne et al., 2015)	
$K^{low}_{IL2 o JAK}$	Half saturation level of IL2 for JAK activation (for low IL2Rα level)	K_IL2_JAK_low	50	рМ	(Voisinne et al., 2015)	
$R_{IL2Rlpha,0}$	Half saturation level of IL2Rα for JAK activation	R_IL2R_alpha_0	2×10^4		(Voisinne et al., 2015)	
$k_{mIL2lpha}^{deg}$	Degradation rate of IL2R α mRNA	k_deg_mlL2R_ alpha	0.2	h^{-1}	(Voisinne et al., 2015)	
$k_{IL2Rlpha}^{translation}$	Translation rate of IL2R α	k_transl_IL2R_ alpha	$10^2 imes oldsymbol{k_{mIL2lpha}^{deg}}$	h^{-1}	(Voisinne et al., 2015)	
$\pmb{k}^{deg}_{IL2Rlpha}$	Rate of IL2R α endocytosis	k_deg_IL2R_ alpha	ln(2)/5 0.05	h^{-1}	(Duprez et al., 1988; Tkach et al., 2014)	Set to 0.05 in this study

(Duprez and Dautry-Varsat, 1986; Voisinne et al., 2015)

					2013)	
$K_{IL2R\alpha:eta\gamma,d}$	$k_{IL2lpha;eta\gamma}^{off}/k_{IL2lpha;eta\gamma}^{on}$	K_IL2R_a_bg	2700		(Cotari et al., 2013)	
$k^{on}_{IL2\alpha;\beta\gamma}$	Association rate of IL2R α and IL2R $\beta\gamma$		Not needed			
$k_{IL2lpha;eta\gamma}^{off}$	Dissociation rate of IL2R α -IL2R $\beta\gamma$ complexes		Not needed			
$oldsymbol{k_{C_{IL2R}}^{endo}}$	Rate of endocytosis of IL2-IL2R complexes	k_endo_C_IL2R	ln(2)/0.25 1.7	h^{-1}	(Duprez et al., 1988) (Busse et al., 2010)	Set to 2 in this study
k_{IL2R}^{on}	Association rate of IL2 and IL2R	k_on_IL2R	1.1×10^{11}	$M^{-1}h^{-1}$	(Wang and Smith, 1987)	
k_{IL2R}^{off}	Dissociation rate of IL2-IL2R complexes	k_off_IL2R	0.83	h^{-1}	(Wang and Smith, 1987)	
$K_{C_{IL2R},d}$	Equilibrium dissociation constant $(k_{IL2R}^{off}/k_{IL2R}^{on})$	K_IL2_tr	1.0×10^{-11}	М	(Wang and Smith, 1987)	Used only for Tregs
$oldsymbol{k}_{mIL2}^{transcription(TCR)}$	Transcription rate of IL2 downstream of TCR and costimulation	k_transc_TCR_ mlL2	162	h^{-1}	(Ferguson et al., 2001)	
$m{k}_{mIL2}^{transcription(costim)}$	Transcription rate of IL2 downstream of costimulation	k_transc_costim_ mlL2				
$oldsymbol{k}_{mIL2}^{deg}$	Degradation rate of IL-2 mRNA molecules	k_deg_mIL2	0.2	h^{-1}	(Shim et al., 2002)	
$oldsymbol{k_{IL2}^{translation}}$	Translation rate of IL-2	k_transl_IL2	266	h^{-1}	(Ferguson et al., 2001; Voisinne et al., 2015)	
k_{IL2}^{sec}	$rac{k_{mIL2}^{transcription(TCR,costim)}k_{IL2}^{transl}}{k_{mIL2}^{deg}}$		60 7.5×3600 $1,200 \pm 500$	$\begin{array}{c} s^{-1} \\ h^{-1} \\ min^{-1} \end{array}$	(Voisinne et al., 2015) (Tkach et al., 2014) (Huang et al., 2013)	Dynamical variable in this study $(q_{{\scriptscriptstyle IL2}})$
$K_{TCR o IL2}$	Half saturation level of TCR activation for IL2 production	K_TCR_IL2	0.2 0.8		(François et al., 2013) (Voisinne et al., 2015)	0.1~1 for MAPPA
$n_{TCR o IL2}$	Hill coefficient of TCR activation for IL2 production	n_TCR_IL2	1		(Voisinne et al., 2015)	

$K_{costim o IL2}$	Half saturation level of costimulation for IL2 production	K_costim_IL2	10~100		This study	
$n_{costim o IL2}$	Hill coefficient of costimulation for IL2 production	n_costim_IL2	1		This study	
$K_{pSTAT5 \rightarrow IL2}$	Half saturation level of pSTAT5 for IL2 production	K_pSTAT5_IL2	$1/3\cdot 10^5$		(Tkach et al., 2014)	$0.1{\sim}1$ for MAPPA
$n_{pSTAT5 o IL2}$	Hill coefficient of pSTAT5 for IL2 production	n_pSTAT5_IL2	1		This study	
D_{IL2}	Diffusion constant of IL2	D_IL2	(aq) 100 (ext) 16 10 (T cell zone) 100	$\mu m^2 s^{-1}$	(Weidemann et al., 2011) (Höfer et al., 2012) (Busse et al., 2010) (Ross and Pompano, 2018)	aq: aqueous buffer ext: extracellular matrix 10~100 For MAPPA
$k_{IL2,extr}^{deg}$	Degradation rate of IL2 in the extracellular space of lymph nodes	k_deg	0.1	h^{-1}	(Busse et al., 2010)	
ρ	Radius of a T cell		4~10	μm		Set to 5 in this study
n_{tr}	Number density of regulatory T cells	n_tr, n_tr0	0.0001~0.001	μm^{-3}	This study	0.001: gastric lymph nodes
S_{DC}	Surface area of dendritic cells	S_DC	1,800~2,400	μm^2	(Miller et al., 2004)	Set to 2000 in this study
$S_{DC:T}$	Surface area of dendritic cell-T cell contacts	S_DC_TR	1~8 (avg)~70 12.6	μm^2	(Miller et al., 2004) (Jansson and Davis, 2011)	Set to 8 in this study
S_T	Surface area of T cells	S_T	314.16	μm^2		$4\pi ho^2$
D_{tr}	Motility coefficient of Tregs	D_tr	0.83~1.76 0.17 (free Treg) 0.017 (Treg in contact with DC)	$\mu m^2 min$ $\mu m^2 s^{-1}$	(Wu et al., 2015) This study	JURKAT T-cells 3D In vivo Tregs
χ_0	Chemotactic constant	chi_0	0~100		This study	Set to 0 in this study
K_{cc}	Carrying capacity of Treg	K_cc	0.003	μm^{-3}	This study	
$m{k}^{prolif}_{IL2 o treg}$	Proliferation rate of Tregs induced by IL2	k_prolif_max	$0.0385 \\ 1.07 \times 10^{-5}$	h^{-1} s^{-1}	This study	Doubling time: 18 hours

$K^{prolif}_{IL2 o treg}$	Half maximum level of pSTAT5 for Treg proliferation	K_prolif_IL2	0.1		This study	
U_{min}	Minimum attractive potential between DCs and Tregs	U_min	0.05		This study	To simulate adhesive force between DCs and Tregs
$oldsymbol{n}_U$	Steepness of the potential	n_U	5		This study	
r_{half}	Distance leading to half U_{min}	r_half	15	μm	This study	
$K_{CD28,tr o Umin}$	Half saturation CD28 signaling strength for adhesion	K_CD28_tr_U_ min			This study	
$K_{pstat5,tr o Umin}$	Half saturation pSTAT5 signaling strength for adhesion	K_pSTAT5_tr_U _min			This study	
$f_{\it cont_low} \ f_{\it cont_high}$	Contact efficiency between Tregs and DCs	f_contact_low f_contact_high	$0.1 \sim 0.4$ $1 \sim 2.5$		This study	Varied for MAPPA
$oldsymbol{V}_{neighbor}$	Volume of space encompassing the region where Tregs are in the engagement with DCs	V_neighbor	837.8	μm^3		$\frac{3}{4}\pi(15^2-5^2)$
$L_{antigen}$	Number of peptide-MHC per cell	L_antigen	1~10 ⁵		(Altan-Bonnet and Germain, 2005; François et al., 2013)	100~1000 for MAPPA
R_{TCR}	Number of TCR per cell	R_TCR	30,000		(Altan-Bonnet and Germain, 2005; François et al., 2013)	
$C_{TCR,j}, j = 0,, N$		C_TCR_N			(François et al., 2013)	
S_{SHP1}	Number of activated phosphatase (SHP-1) per cell	S_SHP_1			(François et al., 2013)	
$\boldsymbol{\phi}$	Phosphorylation rate			s^{-1}	(François et al., 2013)	
R_{CD28}	Number of CD28 molecules per cell	R_CD28	30,000		(Sugár et al., 2017)	Similar to TCR

$L_{CD80 CD86}$	Number of CD80/CD86 molecules per cell	L_CD80_86, L_CD80_86_i	CD86: 400,000 CD80/CD86: 300,000	(Qureshi et al., 2011) (Khailaie et al., 2017)	100,000~1,000,000 for MAPPA
R _{CTLA4}	Number of CTLA-4 molecules on plasma membrane per cell	R_CTLA4	24500	(Khailaie et al., 2017)	
C_{CTLA4}	Number of CD80 CD86- CTLA-4 complexes per cell	C_CTLA4			
C_{costim}	Number of CD80 CD86- CD28 complexes per cell	C_costim			
$mR_{IL2R\alpha}$	Number of IL2R α mRNA	mR_IL2R_alpha			
$P^{on}_{TCR o IL2Rlpha}$	Activation function of TCR for IL2Rα production	P_on_TCR_IL2			
$P^{on}_{JAK o pSTAT5}$	Activation function of JAK for pSTAT5 signaling	P_on_JAK_pSTA T5			
$P^{on}_{costim ightarrow IL2Rlpha}$	Activation function of costimulation for IL2Rα production	P_on_costim_ IL2R_alpha			
S_{JAK}	Normalized level of activated JAK	S_JAK		(Voisinne et al., 2015)	
$R_{IL2Rlpha}$	Number of IL2Rα molecules on plasma membrane per cell	R_IL2R_alpha	Tconv (basal): 3 Tconv (TCR): 1000 Tconv (IL2 max): 4×10^4 Treg (basal): 10^3 Treg (IL2 max): 4×10^4 Treg (constant): 10^4	(Voisinne et al., 2015) (Feinerman et al., 2010)	
$R_{IL2Reta\gamma}$	Number of IL2Rβγ molecules on plasma membrane per cell	R_IL2R_bg	Basal (w/o TCR activation): 1000 Max (with TCR activation): 10000	(Cotari et al., 2013) (Tkach et al., 2014)	w/o: without

R_{IL2R}	Number of IL2R molecules (IL2R α -IL2R $\beta\gamma$ complexes) on plasma membrane per cell	R_IL2R		
C_{IL2R}	Number of IL2-IL2R complexes on plasma membrane per cell	C_IL2R		
I_{mIL2}	Number of IL2 mRNA per cell	ml_IL2		
I_{IL2}	Concentration of IL2 in extracellular space in lymph node	I_IL2	$\mu m^{-3} \ pM$	
$q_{{\scriptscriptstyle IL2}}$	Secretion rate of IL2 to extracellular space	q_IL2	s^{-1}	$k_{IL2}^{translation} \cdot I_{mIL2}$
n_{tr}	Number density of Tregs in extracellular space surrounding a priming Tconv in lymph node	n_tr	μm^{-3}	

References

Altan-Bonnet, G., and Germain, R.N. (2005). Modeling T Cell Antigen Discrimination Based on Feedback Control of Digital ERK Responses. PLOS Biol. 3, e356.

Busse, D., de la Rosa, M., Hobiger, K., Thurley, K., Flossdorf, M., Scheffold, A., and Hofer, T. (2010). Competing feedback loops shape IL-2 signaling between helper and regulatory T lymphocytes in cellular microenvironments. Proc. Natl. Acad. Sci. *107*, 3058–3063.

Collins, A.V., Brodie, D.W., Gilbert, R.J.C., Iaboni, A., Manso-Sancho, R., Walse, B., Stuart, D.I., van der Merwe, P.A., and Davis, S.J. (2002). The Interaction Properties of Costimulatory Molecules Revisited. Immunity *17*, 201–210.

Cotari, J.W., Voisinne, G., Dar, O.E., Karabacak, V., and Altan-Bonnet, G. (2013). Cell-to-Cell Variability Analysis Dissects the Plasticity of Signaling of Common y Chain Cytokines in T Cells. Sci Signal *6*, ra17–ra17.

Duprez, V., and Dautry-Varsat, A. (1986). Receptor-mediated endocytosis of interleukin 2 in a human tumor T cell line. Degradation of interleukin 2 and evidence for the absence of recycling of interleukin receptors. J. Biol. Chem. 261, 15450–15454.

Duprez, V., Cornet, V., and Dautry-Varsat, A. (1988). Down-regulation of high affinity interleukin 2 receptors in a human tumor T cell line. Interleukin 2 increases the rate of surface receptor decay. J. Biol. Chem. 263, 12860–12865.

Feinerman, O., Jentsch, G., Tkach, K.E., Coward, J.W., Hathorn, M.M., Sneddon, M.W., Emonet, T., Smith, K.A., and Altan-Bonnet, G. (2010). Single-cell quantification of IL-2 response by effector and regulatory T cells reveals critical plasticity in immune response. Mol. Syst. Biol. 6, 437.

Ferguson, H.A., Kugel, J.F., and Goodrich, J.A. (2001). Kinetic and mechanistic analysis of the RNA polymerase II transcription reaction at the human interleukin-2 promoter. J. Mol. Biol. *314*, 993–1006.

François, P., Voisinne, G., Siggia, E.D., Altan-Bonnet, G., and Vergassola, M. (2013). Phenotypic model for early T-cell activation displaying sensitivity, specificity, and antagonism. Proc. Natl. Acad. Sci. *110*, E888–E897.

Höfer, T., Krichevsky, O., and Altan-Bonnet, G. (2012). Competition for IL-2 between Regulatory and Effector T Cells to Chisel Immune Responses. Front. Immunol. 3.

Huang, J., Brameshuber, M., Zeng, X., Xie, J., Li, Q., Chien, Y., Valitutti, S., and Davis, M.M. (2013). A Single Peptide-Major Histocompatibility Complex Ligand Triggers Digital Cytokine Secretion in CD4+ T Cells. Immunity *39*, 846–857.

Jansson, A., and Davis, S.J. (2011). Quantitative analysis predicts the relative therapeutic efficacy of different forms of CTLA4lg. Mol. Immunol. 49, 527–536.

Jansson, A., Barnes, E., Klenerman, P., Harlén, M., Sørensen, P., Davis, S.J., and Nilsson, P. (2005). A Theoretical Framework for Quantitative Analysis of the Molecular Basis of Costimulation. J. Immunol. *175*, 1575–1585.

Khailaie, S., Rowshanravan, B., Robert, P.A., Walker, L.S.K., Sansom, D.M., and Meyer-Hermann, M. (2017). Quantitative characterization of CTLA4 trafficking and turnover using a combined in vitro and in silico approach. BioRxiv 106898.

Miller, M.J., Hejazi, A.S., Wei, S.H., Cahalan, M.D., and Parker, I. (2004). T cell repertoire scanning is promoted by dynamic dendritic cell behavior and random T cell motility in the lymph node. Proc. Natl. Acad. Sci. 101, 998–1003.

Qureshi, O.S., Zheng, Y., Nakamura, K., Attridge, K., Manzotti, C., Schmidt, E.M., Baker, J., Jeffery, L.E., Kaur, S., Briggs, Z., et al. (2011). Trans-Endocytosis of CD80 and CD86: A Molecular Basis for the Cell-Extrinsic Function of CTLA-4. Science *332*, 600–603.

Ross, A.E., and Pompano, R.R. (2018). Diffusion of cytokines in live lymph node tissue using microfluidic integrated optical imaging. Anal. Chim. Acta 1000, 205–213.

Shim, J., Lim, H., R.Yates, J., and Karin, M. (2002). Nuclear Export of NF90 Is Required for Interleukin-2 mRNA Stabilization. Mol. Cell 10, 1331–1344.

Sugár, I.P., Das, J., Jayaprakash, C., and Sealfon, S.C. (2017). Multiscale Modeling of Complex Formation and CD80 Depletion during Immune Synapse Development. Biophys. J. 112, 997–1009.

Tkach, K.E., Barik, D., Voisinne, G., Malandro, N., Hathorn, M.M., Cotari, J.W., Vogel, R., Merghoub, T., Wolchok, J., Krichevsky, O., et al. (2014). T cells translate individual, quantal activation into collective, analog cytokine responses via time-integrated feedbacks. ELife *3*, e01944.

Voisinne, G., Nixon, B.G., Melbinger, A., Gasteiger, G., Vergassola, M., and Altan-Bonnet, G. (2015). T Cells Integrate Local and Global Cues to Discriminate between Structurally Similar Antigens. Cell Rep. 11, 1208–1219.

Wang, H.M., and Smith, K.A. (1987). The interleukin 2 receptor. Functional consequences of its bimolecular structure. J. Exp. Med. *166*, 1055–1069.

Weidemann, T., Worch, R., Kurgonaite, K., Hintersteiner, M., Bökel, C., and Schwille, P. (2011). Single Cell Analysis of Ligand Binding and Complex Formation of Interleukin-4 Receptor Subunits. Biophys. J. 101, 2360–2369.

Wu, P.-H., Giri, A., and Wirtz, D. (2015). Statistical analysis of cell migration in 3D using the anisotropic persistent random walk model. Nat. Protoc. 10, 517–527.