Lower bound for read-once nondeterministic branching program for satisfiable Tseitin formula using tree-width

Ludmila Glinskih, Dmitry Itsykson

St. Petersburg Department of V. A. Steklov Institute of Mathematics

Summer School on Algorithms and Lower Bounds 2018
Prague
July 9, 2018

Outline

- Branching programs
- ► Tseitin formulas
- Lower bounds

Branching program

- ▶ BP is a way to represent Boolean function
 - directed graph without cycles;
 - two sinks: labeled with 0 and 1, one source;
 - every internal vertex labeled with a variable and has two outgoing edges: labeled with 0 and 1;
 - ▶ the value of function equals label of the sink in the end of corresponding path.

Branching program

- ▶ BP is a way to represent Boolean function
 - directed graph without cycles;
 - two sinks: labeled with 0 and 1, one source;
 - every internal vertex labeled with a variable and has two outgoing edges: labeled with 0 and 1;
 - the value of function equals label of the sink in the end of corresponding path.
- BP size is between circuit and formula sizes
 - $C(f) \leq 3BP(f) \leq O(L^{1+\epsilon}(f)),$
 - C(f) circuit complexity of f, L(f) size of minimal formula, BP size of minimal branching program.

- NBP additionally has non-deterministic nodes:
 - non-deterministic nodes are unlabeled
 - ► the value equals 1 iff there exists a path to 1-sink

- NBP additionally has non-deterministic nodes:
 - non-deterministic nodes are unlabeled
 - the value equals 1 iff there exists a path to 1-sink
- ▶ BP corresponds to L/poly
- NBP corresponds to NL/poly

- NBP additionally has non-deterministic nodes:
 - non-deterministic nodes are unlabeled
 - the value equals 1 iff there exists a path to 1-sink
- ▶ BP corresponds to L/poly
- ▶ NBP corresponds to NL/poly
- k-(N)BP if for every path every variable occurs no more than k times

- NBP additionally has non-deterministic nodes:
 - non-deterministic nodes are unlabeled
 - the value equals 1 iff there exists a path to 1-sink
- ▶ BP corresponds to L/poly
- NBP corresponds to NL/poly
- k-(N)BP if for every path every variable occurs no more than k times
- OBDD is 1-BP with fixed order for variables in every path

Known lower bounds for k-BPs

- ▶ (Borodin, Razborov, Smolensky, 1993) $CLIQUE_ONLY_n(G): \{0,1\}^{\frac{n\cdot(n-1)}{2}} \rightarrow 0,1$
 - ► CLIQUE_ONLY_n(G) = 1 iff graph G on n vertices is exactly $\frac{n}{2}$ -clique
 - ▶ 1-NBP($CLIQUE_ONLY_n$) = $2^{\Omega(n)}$
 - ▶ $2-BP(CLIQUE_ONLY_n) = poly(n)$

Known lower bounds for k-BPs

- ▶ (Borodin, Razborov, Smolensky, 1993) $CLIQUE_ONLY_n(G): \{0,1\}^{\frac{n\cdot(n-1)}{2}} \rightarrow 0,1$
 - ► CLIQUE_ONLY_n(G) = 1 iff graph G on n vertices is exactly $\frac{n}{2}$ -clique
 - ▶ 1-NBP($CLIQUE_ONLY_n$) = $2^{\Omega(n)}$
 - ▶ 2-BP($CLIQUE_ONLY_n$) = poly(n)
- (Borodin, Razborov, Smolensky, 1993) first strongly exponential lower bound
 - f artificially constructed function
 - ▶ 1-NBP $(f) = 2^{\Omega(n)}$

Known lower bounds for k-BPs

- ▶ (Borodin, Razborov, Smolensky, 1993) $CLIQUE_ONLY_n(G): \{0,1\}^{\frac{n\cdot(n-1)}{2}} \rightarrow 0,1$
 - ► CLIQUE_ONLY_n(G) = 1 iff graph G on n vertices is exactly $\frac{n}{2}$ -clique
 - ▶ 1-NBP($CLIQUE_ONLY_n$) = $2^{\Omega(n)}$
 - ▶ $2-BP(CLIQUE_ONLY_n) = poly(n)$
- (Borodin, Razborov, Smolensky, 1993) first strongly exponential lower bound
 - f artificially constructed function
 - ▶ 1-NBP $(f) = 2^{\Omega(n)}$
- ► (Thathachar, 1998) an explicit functions f_k for every k:
 - k-NBP $(f_k) = 2^{\Omega(n^{1/k})}$
 - $(k+1)-\mathsf{BP}(f_k) = O(n)$

Known lower bounds for k-BPs (2)

- ▶ (Duris, Hromkovic, Jukna, Sauerhoff, Schnitger, 2004)
 - lackbox parity of the number of triangles in a graph, $\overline{\triangle}$ is 1 iff graph has no triangles
 - ▶ 1-NBP(\oplus) = $2^{\Omega(n)}$
 - ▶ 1-NBP $(\overline{\triangle}) = 2^{\Omega(n)}$

Known lower bounds for k-BPs (2)

- ▶ (Duris, Hromkovic, Jukna, Sauerhoff, Schnitger, 2004)
 - \blacktriangleright \oplus parity of the number of triangles in a graph, $\overline{\triangle}$ is 1 iff graph has no triangles
 - ▶ 1-NBP(\oplus) = $2^{\Omega(n)}$
 - ▶ 1-NBP($\overline{\triangle}$) = $2^{\Omega(n)}$
- ▶ (Juhna, 1995)
 - $ightharpoonup f_k$ characteristic function of error-correcting codes
 - \blacktriangleright k-NBP $(f_k) = 2^{\Omega(\sqrt{n})}$

Tseitin formulas

- ▶ Tseitin $TS_{G,c}$ formula defined for a graph
 - every edge is labeled with a variable
 - every vertex has a 0-1 label: $c:V \rightarrow 0,1$
 - $ightharpoonup TS_{G,c}(x) = 1 \iff$

$$\bigwedge_{v \in V} \left(\sum_{e \text{ incident } v} x_e = c(v) \bmod 2 \right)$$

Tseitin formulas

- ▶ Tseitin $TS_{G,c}$ formula defined for a graph
 - every edge is labeled with a variable
 - every vertex has a 0-1 label: $c: V \rightarrow 0, 1$
 - $ightharpoonup TS_{G,c}(x) = 1 \iff$

$$\bigwedge_{v \in V} \left(\sum_{e \text{ incident } v} x_e = c(v) \bmod 2 \right)$$

A Tseitin formula is satisfiable iff for every connected component the sum of labels is even

Tseitin formulas

- ▶ Tseitin $TS_{G,c}$ formula defined for a graph
 - every edge is labeled with a variable
 - every vertex has a 0-1 label: $c:V \rightarrow 0,1$
 - $ightharpoonup TS_{G,c}(x) = 1 \iff$

$$\bigwedge_{v \in V} \left(\sum_{e \text{ incident } v} x_e = c(v) \bmod 2 \right)$$

- ► A Tseitin formula is satisfiable iff for every connected component the sum of labels is even
- Unsatisfiable Tseitin formulas are classical hard examples for proof systems:
 - Resolution [Tseitin, 1968], [Urquhart, 1987]
 - ▶ Bounded depth Frege [Ben-Sasson, 2002], [Pitassi, Rossman, Servedio, Tan, 2016]
 - ▶ Polynomial Calculus over field with char != 2 [Alekhnovich, Razborov, 2001]
 - ► Tree-like Lovasz-Schrijver [Itsykson, Kojevnikov, 2006]

Tseitin formulas (2)

- (Itsykson, Knop, Romashchenko, Sokolov, 2017) Exponential lower bound for OBDD(join) proof systems for unsatisfiable Tseitin formulas
 - key step: satisfiable Tseitin formulas are hard for OBDDs.
 - $DBDD(TS_{G,c}) = 2^{\Omega(n)}$

Tseitin formulas (2)

- (Itsykson, Knop, Romashchenko, Sokolov, 2017) Exponential lower bound for OBDD(join) proof systems for unsatisfiable Tseitin formulas
 - key step: satisfiable Tseitin formulas are hard for OBDDs.
 - $DBDD(TS_{G,c}) = 2^{\Omega(n)}$
- ▶ OBDD is a partial case of 1-BP
 - ► (Bryant, 1991) (Sieling, Wegener, 1995) $f: OBDD(f) = 2^{\Omega(n)}$, 1-BP(f)=poly(n)

The goal: what is the size of 1-BP for satisfiable Tseitin formulas?

Lower bound for Tseitin formula on an expander

Theorem:

1-NBP for satisfiable Tseitin formula for (n, d, α)-expander is $2^{\Omega(n)}$, where

- $ightharpoonup \alpha < \frac{1}{3}$
- ▶ (n, d, α) -expander is a d-regular graph on n vertices with absolute value of the second largest eigenvalue $\leq d \cdot \alpha$

Lower bound for Tseitin formula on an expander

Theorem:

1-NBP for satisfiable Tseitin formula for (n, d, α) -expander is $2^{\Omega(n)}$, where

- $ightharpoonup \alpha < \frac{1}{3}$
- ▶ (n, d, α) -expander is a d-regular graph on n vertices with absolute value of the second largest eigenvalue $\leq d \cdot \alpha$

Generalized theorem: 1-NBP for a satisfiable Tseitin formula on a connected graph G has at least $2^{|V|-k_G(I)-k_G(|E|-I)+1}$ nodes, where the value $k_G(I)$ denotes the maximal number of connected components that can be obtained from G by deleting of I edges.

The comparison with other results

Satisfiable Tseitin formulas $TS_{G,w}$ on (n,d,α) -expander can be represented by:

- $ightharpoonup CNF(TS_{G,c})=O(n)$
- ▶ 1-NBP($\rceil TS_{G,c}$)=O(n)
- \triangleright 2-BP($TS_{G,c}$)=O(n)

▶ 1-NBP($TS_{G,c}$)= $2^{\Omega(n)}$

The comparison with other results

Satisfiable Tseitin formulas $TS_{G,w}$ on (n,d,α) -expander can be represented by:

- $ightharpoonup CNF(TS_{G,c})=O(n)$
- ▶ 1-NBP($\rceil TS_{G,c}$)=O(n)

▶ 1-NBP($TS_{G,c}$)= $2^{\Omega(n)}$

▶ 2-BP($TS_{G,c}$)=O(n)

Best previously known gaps:

$CNF(f) = O(n^3)$	1-NBP(f)= $2^{\Omega(n)}$ (Duris et al, 2004)
1-NBP(T f)=O(n)	1-NBP(f)= $2^{\Omega(\sqrt{n})}$ (Juhna, 2009) ex-
	plicit construction
$1-NBP(\rceil f)=O(n)$	$1-NBP(f)=2^{\Omega(n)}$ (Duris et al, 2004)
	probabilistic construction
2-BP(f) = O(n)	1-NBP(f)= $2^{\Omega(\sqrt{n})}$ (Thathachar, 1998)

Theorem: 1-NBP for a satisfiable Tseitin formula on a connected graph G has at least $2^{|V|-k_G(I)-k_G(|E|-I)+1}$ nodes, where the value $k_G(I)$ denotes the maximal number of connected components that can be obtained from G by deleting of I edges.

Theorem: 1-NBP for a satisfiable Tseitin formula on a connected graph G has at least $2^{|V|-k_G(I)-k_G(|E|-I)+1}$ nodes, where the value $k_G(I)$ denotes the maximal number of connected components that can be obtained from G by deleting of I edges.

Idea of the proof:

Choose level / of the 1-NBP

Theorem: 1-NBP for a satisfiable Tseitin formula on a connected graph G has at least $2^{|V|-k_G(I)-k_G(|E|-I)+1}$ nodes, where the value $k_G(I)$ denotes the maximal number of connected components that can be obtained from G by deleting of I edges.

Idea of the proof:

Choose level / of the 1-NBP

ightharpoonup show that there are at least 2^{C_1n} different non-zero paths to level I

Theorem: 1-NBP for a satisfiable Tseitin formula on a connected graph G has at least $2^{|V|-k_G(I)-k_G(|E|-I)+1}$ nodes, where the value $k_G(I)$ denotes the maximal number of connected components that can be obtained from G by deleting of I edges.

Idea of the proof:

Choose level / of the 1-NBP

- ightharpoonup show that there are at least 2^{C_1n} different non-zero paths to level I
- Show that for every node v on the I-th level only 2^{C2n} non-zero paths go from source to the same node v

Theorem: 1-NBP for a satisfiable Tseitin formula on a connected graph G has at least $2^{|V|-k_G(I)-k_G(|E|-I)+1}$ nodes, where the value $k_G(I)$ denotes the maximal number of connected components that can be obtained from G by deleting of I edges.

Idea of the proof:

Choose level / of the 1-NBP

- ightharpoonup show that there are at least 2^{C_1n} different non-zero paths to level I
- Show that for every node v on the I-th level only 2^{C₂n} non-zero paths go from source to the same node v

Get that at least $2^{(C_1-C_2)n}$ different nodes are on the *I*-th level, so is in the 1-NBP

Tree (path) decomposition of a graph G = (V, E) is a graph T that is a tree (path)

Tree (path) decomposition of a graph G = (V, E) is a graph T that is a tree (path)

1. Vertices of T (called "bags") correspond to sets of vertices of G

Tree (path) decomposition of a graph G = (V, E) is a graph T that is a tree (path)

- 1. Vertices of *T* (called "bags") correspond to sets of vertices of *G*
- 2. If $(a, b) \in E$ then there is a bag with a and b

Tree (path) decomposition of a graph G = (V, E) is a graph T that is a tree (path)

- 1. Vertices of *T* (called "bags") correspond to sets of vertices of *G*
- 2. If $(a, b) \in E$ then there is a bag with a and b
- All bags with the same vertex form a tree (path)

Tree (path) decomposition of a graph G = (V, E) is a graph T that is a tree (path)

- 1. Vertices of *T* (called "bags") correspond to sets of vertices of *G*
- 2. If $(a, b) \in E$ then there is a bag with a and b
- All bags with the same vertex form a tree (path)

Width of a decomposition is the size of a maximal bag in it.

Tree (path) decomposition of a graph G = (V, E) is a graph T that is a tree (path)

- 1. Vertices of *T* (called "bags") correspond to sets of vertices of *G*
- 2. If $(a, b) \in E$ then there is a bag with a and b
- All bags with the same vertex form a tree (path)

Width of a decomposition is the size of a maximal bag in it.

Tree-width (path-width) of a graph is the minimal width among all its tree (path) decompositions minus 1.

Graph minor

Minor of a graph G is a that can be obtained from G by sequence of edge contractions, edge and vertex deletion.

Graph minor

Minor of a graph G is a that can be obtained from G by sequence of edge contractions, edge and vertex deletion.

Grid Minor Theorem [Robertson, Seymour 1986], [Chuzhoy 2015]:

Every graph G of a tree-width t has a grid minor of size t^{δ} , where $\delta < \frac{1}{36}$.

Lower bound for any graph based on its tree-width

Lower bound using tree-width: 1-NBP for satisfiable Tseitin formula on a graph G has size $\Omega(2^{t^{\delta}})$, where t is a tree-width of G, $\delta < \frac{1}{36}$.

Lower bound using tree-width: 1-NBP for satisfiable Tseitin formula on a graph G has size $\Omega(2^{t^{\delta}})$, where t is a tree-width of G, $\delta < \frac{1}{36}$.

Lower bound using tree-width: 1-NBP for satisfiable Tseitin formula on a graph G has size $\Omega(2^{t^{\delta}})$, where t is a tree-width of G, $\delta < \frac{1}{36}$.

Sketch of the proof:

 \blacktriangleright Take the smallest 1-NBP for a Tseitin formula on a graph G

Lower bound using tree-width: 1-NBP for satisfiable Tseitin formula on a graph G has size $\Omega(2^{t^{\delta}})$, where t is a tree-width of G, $\delta < \frac{1}{36}$.

- ▶ Take the smallest 1-NBP for a Tseitin formula on a graph G
- Apply sequence of edge contractions, edge and vertex deletions that could lead only to a smaller 1-NBP

Lower bound using tree-width: 1-NBP for satisfiable Tseitin formula on a graph G has size $\Omega(2^{t^{\delta}})$, where t is a tree-width of G, $\delta < \frac{1}{36}$.

- ▶ Take the smallest 1-NBP for a Tseitin formula on a graph G
- ► Apply sequence of edge contractions, edge and vertex deletions that could lead only to a smaller 1-NBP
- ▶ Obtain 1-NBP for a $s \times s$ grid-minor of a graph G

Lower bound using tree-width: 1-NBP for satisfiable Tseitin formula on a graph G has size $\Omega(2^{t^{\delta}})$, where t is a tree-width of G, $\delta < \frac{1}{36}$.

- ▶ Take the smallest 1-NBP for a Tseitin formula on a graph G
- Apply sequence of edge contractions, edge and vertex deletions that could lead only to a smaller 1-NBP
- ▶ Obtain 1-NBP for a $s \times s$ grid-minor of a graph G
- ▶ Show that 1-NBP for $s \times s$ grid graph has size $2^{\Omega(s)}$

We want to show that 1-NBP for $s \times s$ grid graph has size $2^{\Omega(s)}$

▶ Use theorem: 1-NBP for a satisfiable Tseitin formula on a graph G has at least $2^{|V|-k_G(I)-k_G(|E|-I)+1}$ nodes

We want to show that 1-NBP for $s \times s$ grid graph has size $2^{\Omega(s)}$

▶ Use theorem: 1-NBP for a satisfiable Tseitin formula on a graph G has at least $2^{|V|-k_G(I)-k_G(|E|-I)+1}$ nodes

We want to show that 1-NBP for $s \times s$ grid graph has size $2^{\Omega(s)}$

- ▶ Use theorem: 1-NBP for a satisfiable Tseitin formula on a graph G has at least $2^{|V|-k_G(I)-k_G(|E|-I)+1}$ nodes
- We set $I = \frac{|E|}{2}$

We want to show that 1-NBP for $s \times s$ grid graph has size $2^{\Omega(s)}$

▶ Use theorem: 1-NBP for a satisfiable Tseitin formula on a graph G has at least $2^{|V|-k_G(I)-k_G(|E|-I)+1}$ nodes

- We set $I = \frac{|E|}{2}$
- ▶ We want to show that the number of connected components that can be obtained after deleting of half of edges is at most $\frac{|V|}{2} \varepsilon \sqrt{|V|}$

We want to show that 1-NBP for $s \times s$ grid graph has size $2^{\Omega(s)}$

- We set $I = \frac{|E|}{2}$
- ▶ We want to show that the number of connected components that can be obtained after deleting of half of edges is at most $\frac{|V|}{2} \varepsilon \sqrt{|V|}$

After that we get a lower bound $2^{\Omega(2\varepsilon\sqrt{|V|})} = 2^{\Omega(s)}$

We need to check that all operations can only reduce the size of a 1-NBP

We need to check that all operations can only reduce the size of a 1-NBP

▶ **Deletion of edge** *x_i*: substitute any value that will not break the satisfiability of the formula

We need to check that all operations can only reduce the size of a 1-NBP

- ▶ **Deletion of edge** *x_i*: substitute any value that will not break the satisfiability of the formula
- ▶ **Deletion of vertex** *v*: delete all connected edges one-by-one

We need to check that all operations can only reduce the size of a 1-NBP

- ▶ **Deletion of edge** *x_i*: substitute any value that will not break the satisfiability of the formula
- ▶ **Deletion of vertex** *v*: delete all connected edges one-by-one
- ▶ Contraction of edge x_i : the same as the satisfiability of the formula $\exists x_i : Ts_{G,w}(x)$
 - in 1-NBP all nodes labeled with x_i should be changed to non-deterministic nodes

Upper bound using path-width

Theorem: a satisfiable Tseitin formula on graph G can be computed by an OBDD of size $O(m2^{p+1})$, where m is the number of edges and p is the path-width of G.

Upper bound using path-width

Theorem: a satisfiable Tseitin formula on graph G can be computed by an OBDD of size $O(m2^{p+1})$, where m is the number of edges and p is the path-width of G.

Plan of the proof: We build OBDD layer-by-layer, each layer corresponds to one edge. Each edge corresponds to the first bag where it appears in the decomposition.

Upper bound using path-width

Theorem: a satisfiable Tseitin formula on graph G can be computed by an OBDD of size $O(m2^{p+1})$, where m is the number of edges and p is the path-width of G.

Plan of the proof: We build OBDD layer-by-layer, each layer corresponds to one edge. Each edge corresponds to the first bag where it appears in the decomposition. For every edge and its bag we add at most 2^{p+1} vertices that correspond to all possible values of parity in vertices from that bag.

- Currently we have a lower bound using tree-width and upper bound using path-width. Can we close this gap?
 - $tw(G) \leq pw(G) \leq tw(G) \cdot \log(tw(G))$

- Currently we have a lower bound using tree-width and upper bound using path-width. Can we close this gap?
 - $tw(G) \le pw(G) \le tw(G) \cdot \log(tw(G))$
- Prove non-trivial lower bound for semantic 1-NBP
 - only consistent paths should contain every variable no more than once
 - that means that all paths that consist repeated variable should not be reachable by any assignment

- Currently we have a lower bound using tree-width and upper bound using path-width. Can we close this gap?
 - $tw(G) \le pw(G) \le tw(G) \cdot \log(tw(G))$
- Prove non-trivial lower bound for semantic 1-NBP
 - only consistent paths should contain every variable no more than once
 - that means that all paths that consist repeated variable should not be reachable by any assignment

No exponential lower bounds for semantic 1-NBP for a boolean function

All known results with exponential lower bounds are for functions with non-boolean domain [Cook, Edmonds, Medabalimi, Pitassi, 2016], [Jukna, 2009]