Welcome to CS 101!

Introduction to Java Programming

Jamal Abdul Nasir

Previous Lectures to watch?

Playlist name: Introduction to Java Programming

System.out.println

- A statement that prints a line of output on the console.
 - pronounced "print-linn"
- Three ways to use System.out.println:
 - System.out.println("text");
 Prints the given message as output.
 - System.out.println(text);
 Prints the value of variable 'text'
 - System.out.println();
 Prints a blank line of output.

Strings

- A sequence of text characters.
 - Starts and ends with a " (quotation mark character).
 - The quotes do not appear in the output.
 - Examples:

```
"hello"
"This is a string. It's very long!"
```


Jamal Nasir

Escape sequences

• escape sequence: A special sequence of characters used to represent certain special characters in a string.

```
\t tab character
\n new line character
\" quotation mark character
\\ backslash character
```


Escape sequences

• Example:

```
System.out.println("\\hello\nhow\tare \"you\"?\\\\");
```

• Output:

```
\hello
how are "you"?\\
```


The computer's view

The computer's view

- Internally, computers store everything as 1's and 0's
 - Example:

```
h → 0110100

"hi" → 01101000110101

104 → 0110100
```

- How can the computer tell the difference between an h and 104?
- type: A category or set of data values.
 - Constrains the operations that can be performed on data
 - Many languages ask the programmer to specify types
 - Examples: integer, real number, string

Java's primitive types

- **Primitive types**: 8 simple types for numbers, text, etc.
 - Java also has **object types**, which we'll talk about later

Name	Description		Examples
int	integers	(up to 2 ³¹ - 1)	42, -3, 0, 926394
double	real numbers	(up to 10 ³⁰⁸)	3.1, -0.25, 9.4e3
char	single text chara	cters	'a', 'X', '?', '\n'
boolean	logical values		true, false

Java's primitive types

Туре	Size (bits)	Minimum	Maximum
byte	8	-2 ⁷	2 ⁷ - 1
short	16	-2 ¹⁵	2 ¹⁵ - 1
int	32	-2 ³¹	2 ³¹ – 1
long	64	-2 ⁶³	2 ⁶³ - 1
float	32	-2 ⁻¹⁴⁹	(2-2 ⁻²³)·2 ¹²⁷
double	64	-2 ⁻¹⁰⁷⁴	(2-2 ⁻⁵²)·2 ¹⁰²³
char	16	0	2 ¹⁶ - 1
boolean	1	_	_

Integer or real number?

· Which category is more appropriate?

integer (int)	real number (double)

- 1. Temperature in degrees Celsius
- 2. The population of lemmings
- 3. Your grade point average
- 4. A person's age in years
- 5. A person's weight in pounds
- 6. A person's height in meters

- 7. Number of miles traveled
- 8. Number of dry days in the past month
- 9. Your locker number
- 10. Number of seconds left in a game
- 11. The sum of a group of integers
- 12. The average of a group of integers

Expressions

• expression: A value or operation that computes a value.

- The simplest expression is a *literal value*.
- A complex expression can use operators and parentheses.

Arithmetic operators

- operator: Combines multiple values or expressions.
 - + addition
 - subtraction (or negation)
 - * multiplication
 - / division
 - % modulus (a.k.a. remainder)

- As a program runs, its expressions are evaluated.
 - 1 + 1 evaluates to 2
 - System.out.println(3 * 4); prints 12
 - How would we print the text 3 * 4?

Integer division with /

- When we divide integers, the quotient is also an integer.
 - 14 / 4 is 3, not 3.5

- More examples:
 - 32 / 5 is
 - 84 / 10 is 8
 - 156 / 100 is 1
 - Dividing by 0 causes an error when your program runs.

Integer remainder with %

- The % operator computes the remainder from integer division.
- **is** 2
- 218 % 5 **is** 3

What is the result?

- Applications of % operator:
 - Obtain last digit of a number: 230857 % 10 **is** 7
 - 658236489 % 10000 is 6489 Obtain last 4 digits:
 - See whether a number is odd: 7 % 2 is 1, 42 % 2 is 0

Remember PEMDAS?

- precedence: Order in which operators are evaluated.
 - Generally operators evaluate left-to-right.

$$1 - 2 - 3$$
 is $(1 - 2) - 3$ which is -4

• But * / % have a higher level of precedence than + -

• Parentheses can force a certain order of evaluation:

$$(1 + 3) * 4$$
 is 16

• Spacing does not affect order of evaluation

$$1+3 * 4-2$$
 is 11

Precedence examples

Precedence questions

- What values result from the following expressions?
 - 9 / 5
 - 695 % 20
 - 7 + 6 * 5
 - 7 * 6 + 5
 - 248 % 100 / 5
 - 6 * 3 9 / 4
 - (5 **-** 7) * 4
 - 6 + (18 % (17 **-** 12))

Real numbers (type double)

- Examples: 6.022, -42.0, 2.143e17
 - Placing . 0 or . after an integer makes it a double.
- The operators + * / % () all still work with double.
 - / produces an exact answer: 15.0 / 2.0 is 7.5
 - Precedence is the same: () before * / % before + −

Real number example

Precision in real numbers

• The computer internally represents real numbers in an imprecise way.

• Example:

```
System.out.println(0.1 + 0.2);
```

• The output is 0.30000000000000004!

Mixing types

- When int and double are mixed, the result is a double.
 - 4.2 * 3 is 12.6
- The conversion is per-operator, affecting only its operands_{2.5} 6 / 4

• 3 / 2 is 1 above, not 1.5.

String concatenation

• **string concatenation**: Using + between a string and another value to make a longer string.

```
"hello" + 42 is "hello42"
1 + "abc" + 2 is "labc2"
"abc" + 1 + 2 is "abc12"
1 + 2 + "abc" is "3abc"
"abc" + 9 * 3 is "abc27"
"1" + 1 is "11"
4 - 1 + "abc" is "3abc"
```

- Use + to print a string and an expression's value together.
 - System.out.println("Grade: " + (95.1 + 71.9) / 2);
 - Output: Grade: 83.5

Receipt example

What's bad about the following code?

- The subtotal expression (38 + 40 + 30) is repeated
- So many println statements

Variables

- Variable: A piece of the computer's memory that is given a name and type, and can store a value.
 - Like preset stations on a car stereo, or cell phone speed dial:

- Steps for using a variable:
 - *Declare* it state its name and type
 - *Initialize* it store a value into it
 - *Use* it print it or use it as part of an expression

Variable Declaration

- variable declaration: Sets aside memory for storing a value.
 - Variables must be declared before they can be used.
- Syntax:

type name;

• int zipcode;

zipcode

• double myGPA;

Variable Assignment

- Assignment: Stores a value into a variable.
 - The value can be an expression; the variable stores its result.
- Syntax:

```
name = expression;
```

- int zipcode; zipcode = 90210;
- double myGPA;
 myGPA = 1.0 + 2.25;

3.25

Using variables

• Once given a value, a variable can be used in expressions:

```
int x;

x = 3;

System.out.println("x is " + x);  // x is 3

System.out.println(5 * x - 1);  // 14
```

• You can assign a value more than once:

```
int x;

x = 3;

System.out.println(x + " here"); // 3 here

x = 4 + 7;

System.out.println("now x is " + x); // now x is 11
```


Declaration/initialization

• A variable can be declared/initialized in one statement.

• Syntax:

• int x = (11 % 3) + 12;

• double myGPA = 3.95;

Assignment vs. algebra

- Assignment uses = , but it is not an algebraic equation.
 - means, "store the value at right in variable at left"
 - x = 3; means, "x becomes 3" or "x should now store 3"
- **ERROR**: 3 = 1 + 2; is an illegal statement, because 3 is not a variable.
- What happens here?

int
$$x = 3;$$

 $x = x + 2;$ // ???

Assignment exercise

What is the output of the following Java code?

```
int x;
x = 3;
int y = x;
x = 5;
y = y + x;
System.out.println(x);
System.out.println(y);
```


Assignment and types

A variable can only store a value of its own type.

```
• int x = 2.5; // ERROR: incompatible types
```

- An int value can be stored in a double variable.
 - The value is converted into the equivalent real number.
 - double myGPA = 4;
 - double avg = **11 / 2**;
 - Why does avg store 5.0 and not 5.5?

5.0

Jamal Nasir

Compiler errors

• A variable can't be used until it is assigned a value.

```
• int x;
System.out.println(x); // ERROR: x has no value
```

You may not declare the same variable twice.

```
int x;
int x;
int x = 3;
int x = 5;
// ERROR: x already exists
```

How can this code be fixed?

Printing a variable's value

• Use + to print a string and a variable's value on one line.

• Output:

```
Your grade was 83.2
There are 65 students in the course.
```


Receipt question

Improve the receipt program using variables.

```
public class Receipt {
    public static void main(String[] args) {
        // Calculate total owed, assuming 8% tax / 15% tip
        System.out.println("Subtotal:");
        System.out.println(38 + 40 + 30);
        System.out.println("Tax:");
        System.out.println((38 + 40 + 30) * .08);
        System.out.println("Tip:");
        System.out.println((38 + 40 + 30) * .15);
        System.out.println(38 + 40 + 30 + (38 + 40 + 30) * .15 + (38 + 40 + 30) * .08);
        }
}
```


Receipt answer

```
public class Receipt {
    public static void main(String[] args) {
        // Calculate total owed, assuming 8% tax / 15% tip
        int subtotal = 38 + 40 + 30;
        double tax = subtotal * .08;
        double tip = subtotal * .15;
        double total = subtotal + tax + tip;

        System.out.println("Subtotal: " + subtotal);
        System.out.println("Tax: " + tax);
        System.out.println("Tip: " + tip);
        System.out.println("Total: " + total);
    }
}
```


The End

- Practice makes a man perfect!
- If you have questions/comments: Comment on Youtube Video.
- Please like this video, share with your friends and keep Learning!!!
 Bye!

SUBSCRIBE

Please subscribe to this Channel!!!