Avaliação N1 Teoria de TIC

Nome: VITOR AUGUSTO GONCALVES SIQUEIRA TIA: 31712746

Para responder as perguntas poste o arquivo texto com as respostas conforme abaixo.

- 1. Nome do Arquivo de respostas com o seu TIA: p1115665.txt
- 2. Formato das respostas conforme o modelo: Modelo de respostas

Questão 1

	<pre>mpg = sns.load_dataset('mpg') mpg.head()</pre>										
	mpg	cylinders	displacement	horsepower	weight	acceleration	model_year	origin	name		
0	18.0	8	307.0	130.0	3504	12.0	70	usa	chevrolet chevelle malibu		
1	15.0	8	350.0	165.0	3693	11.5	70	usa	buick skylark 320		
2	18.0	8	318.0	150.0	3436	11.0	70	usa	plymouth satellite		
3	16.0	8	304.0	150.0	3433	12.0	70	usa	amc rebel sst		
4	17.0	8	302.0	140.0	3449	10.5	70	usa	ford torino		

Considere o dataframe acima com 398 registros.

Você deseja normalizar os dados de mpg e horsepower que encontram-se em escalas muito diferentes.Qual procedimento parece ser o melhor?

- a. mpg = mpg.mpg / mpg.mpg.max(); mpg.horsepower = mpg.horsepower / mpg.horsepower.max()
- b. mpg = mpg.mpg / mpg.max(horsepower, mpg); mpg.horsepower = mpg.horsepower / mpg.max(horsepower, mpg)
- c. mpg = mpg.mpg / mpg.horsepower ; mpg.horsepower = mpg.horsepower / mpg.mpg
- d. mpg = mpg.mpg / mpg.horsepower.max() ; mpg.horsepower = mpg.horsepower /
 mpg.horsepower.max()
- e. mpg = mpg.mpg / mpg.mpg.max(); mpg.horsepower = mpg.horsepower / mpg.mpg.max()

Questão 2

Este código:

```
aluno = { 'Adriana' : { 'P1' : 10 } }
é:
```

- a. Uma lista contendo uma lista.
- b. Um dicionário contendo uma lista.
- c. Um dicionário contendo um dicionário.
- d. Uma tupla contendo uma lista.
- e. Uma tupla contendo uma tupla.

Questão 3

Você trabalha em uma grande empresa de Análise de Dados e é consultadosobre a aplicação da Ciência de Dados, com Modelos de Aprendizado de Máquina, para as seguintes iniciativas:

i. Estimar a qualidade de peças produzidas em uma montadora com base em medidas fornecidas para as peças e um histórico de dados da Produção

- ii. Definir um modelo de preços variável mais flexível com base em um grande volume de dados histórico e de previsão dos fornecedores
- iii. Estimar a resistência de uma estrutura metálica com base nos dados de milhares de outras estruturas metálicas da empresa e dados detalhados dos produtos e peças empregadas

Você recomendaria a aplicação de Modelos de Aprendizado de Máquina para:

- a. Todas
- b. Somente i, ii
- c. Somente ii
- d. Somente ii, iii
- e. Somente iii

Questão 4

<pre>mpg = sns.load_dataset('mpg') mpg.head()</pre>										
	mpg	cylinders	displacement	horsepower	weight	acceleration	model_year	origin	name	
0	18.0	8	307.0	130.0	3504	12.0	70	usa	chevrolet chevelle malibu	
1	15.0	8	350.0	165.0	3693	11.5	70	usa	buick skylark 320	
2	18.0	8	318.0	150.0	3436	11.0	70	usa	plymouth satellite	
3	16.0	8	304.0	150.0	3433	12.0	70	usa	amc rebel sst	
4	17.0	8	302.0	140.0	3449	10.5	70	usa	ford torino	

Considere o dataframe acima e os comandos.

- i. mpg.origin.value counts()
- ii. mpg.groupby('origin').origin.count()
- iii. mpg.origin.count()

Os comandos que mostram o páis de origem e a quantidade de veículos por país de origem são:

- a. Somente i, ii
- b. Somente ii
- c. Somente iii
- d. Somente i, iii
- e. Todos

Questão 5

Você é responsável por análise de dados de uma Beneficiadora de Café para exportação. A empresa está interessada identificar os países mais consumidores de Café e sua participaçãodentro dentro desse consumo para identificar os mercados onde ela ainda teria espaço paraatuar. Sua opção para apresentar graficamente essa informação é um gráfico de:

- a. Distribuição
- b. Evolução
- c. Correlação
- d. Ranking
- e. Partes de um todo /

Questão 6

Considere o dataframe acima.

Você deseja mostrar que os veículos produzidos no Japão e Europa são em geral mais econômicosque os produzidos nos Estados Unidos. Você então quer mostrar que a distriuição dos veículos japonesese europeus são produzidos em uma faixa predominantemente de maior de milhas por galão que os veículos americanos. Você pode apresentar isso com?

- a. sns.boxplot(mpg.mpg,mpg.origin)
- b. sns.lineplot(mpg.mpg,mpg.origin)
- c. sns.distplot(mpg.mpg,mpg.origin)
- d. sns.histplot(mpg.mpg,mpg.origin)
- e. sns.scatterplot(mpg.mpg,mpg.origin)

Questão 7

Considere as seguintes afirmativas sobre aprendizado de máquina supervisionado.

- i. São aplicados para tarefas de classificação ou regressão (predição de valores)
- iii. Permitem somente classificação binária xiv.

São corretas:

- a. Somente i, ii, iii
- b. Somente i
- c. Somente ii, iii
- d. Somente i, iii
- e. Somente i, ii

Questão 8

Considere as seguintes afirmativas sobre a acuracidade de modelos supervisionados.

- i. Um modelo knn sempre apresenta acuracidade maior para maiores valores de k
- ii. Um modelo de árvore de decisão sempre apresenta maior acuracidade que um modelo knn
- iii. Dois modelos supervisionados podem apresentar resultados diferentes de classificação iv.

São corretas:

- a. Somente i, ii, iii
- b. Somente i
- c. Somente ii, iii
- d. Somente iii
- e. Somente i, ii

Ao fazer e submeter esta avaliação você concorda que:

- 1. Minhas respostas são resultado do seu próprio trabalho, exceto para as tarefas que permitem explicitamente colaboração.
- 2. Não compartilharei soluções ou farei uso de soluções de outros, a menos que explicitamente permitido.
- 3. Não me envolverei em nenhuma atividade que melhore desonestamente seus resultados ou desonestamente melhore ou danifique os resultados de outras pessoas.
- 4. Sigo e aceito as condições de submissão das atividades, como formato, forma de submissão, procedimentos etc.