CMOS Circuit Design Styles PTL and TG

Outline

- Merits of Static CMOS Circuits
- Bubble Pushing and CMOS circuits
- Ratioed Circuits
- Cascode Voltage Switch Logic (CVSL)
- Pass Transistor Logic (PTL)
- Transmission Gate Circuits

Introduction

- Static CMOS circuits are used for the vast majority of logic gates in integrated circuits as they have
 - Good noise margins,
 - Fast and low power
 - Insensitive to device variations
 - Easy to design
 - Widely supported by CAD tools
 - Readily available in standard cell libraries

Static CMOS

- Designers accustomed to AND and OR functions must learn to think in terms of NAND and NOR to take advantage of static CMOS
- In manual circuit design, this is often done through bubble pushing
- Compound gates are particularly useful to perform complex functions with relatively low logical efforts
- Using smaller pMOS transistors can reduce power, area, and delay

Bubble Pushing

$$\overline{A \cdot B} = \overline{A} + \overline{B}$$

$$\overline{A + B} = \overline{A} \cdot \overline{B}$$

- CMOS stages are inherently inverting, so AND and OR functions must be built from NAND and NOR gates
- NAND gate is equivalent to an OR of inverted inputs
- NOR gate is equivalent to an AND of inverted inputs

Example

Design a circuit to compute F = AB + CD using NANDs and NORs

AOI Gates

Unit Inverter

$$Y = \overline{A}$$

$$Y = \frac{AOI21}{A \cdot B + C}$$

$$AOI22$$

$$V = A \cdot B + C \cdot D$$

$$Y = \overline{A}$$

 $Y = A \cdot B + C \cdot D$

$$\begin{array}{c|c}
A \longrightarrow \boxed{4} & B \longrightarrow \boxed{4} \\
C \longrightarrow \boxed{4} & Y \\
A \longrightarrow \boxed{2} & & \\
B \longrightarrow \boxed{2} & & \\
& & & \\
\end{array}$$

$$g_A = 3/3$$

p = 3/3

$$g_A = 6/3$$

 $g_B = 6/3$
 $g_C = 5/3$
 $p = 7/3$

$$g_A = 6/3$$

$$g_{B} = 6/3$$

$$g_{C} = 6/3$$

$$g_{D} = 6/3$$

$$p = 12/3$$

$$g_A = 5/3$$

$$g_{B} = 8/3$$

$$g_{C} = 8/3$$

$$g_{D} = 8/3$$

$$g_{E} = 8/3$$

$$p = 16/3$$

Introduction

- What makes a circuit fast?
 - I = C dV/dt \rightarrow t_{pd} \propto (C/I) Δ V
 - low capacitance
 - high current
 - small swing
- Logical effort is proportional to C/I
- pMOS are the enemy!
 - High capacitance for a given current
- Can we take the pMOS capacitance off the input?
- Various circuit families try to do this...

Ratioed Logic

Goal: to reduce the number of devices over complementary CMOS

Ratioed Logic

- N transistors + Load
- $\cdot V_{OH} = V_{DD}$
- $V_{OL} = \frac{R_{PDN}}{R_{PDN} + R_L} V_{DD}$
- Assymmetrical response $(t_r > t_f)$
- Static power consumption
- $\cdot t_{\rm pLH} = 0.69 R_{\rm L} C_{\rm L}$

Active Loads

depletion load NMOS

pseudo-NMOS

Pseudo NMOS NOR Gate

Smaller Area and load but Static Power Dissipation

Pseudo-nMOS Power

- Pseudo-nMOS draws power whenever Y = 0
 - Called static power $P = I_{DD}V_{DD}$
 - A few mA / gate * 1M gates would be a problem
- Use pseudo-nMOS sparingly for wide NORs
- Turn off pMOS when not in use

Ganged CMOS

A	В	<i>N</i> 1	<i>P</i> 1	N2	P2	Υ
0	0	OFF	ON	OFF	ON	1
0	1	OFF	ON	ON	OFF	~ 0
1	0	ON	OFF	OFF	ON	~ 0
1	1	ON	OFF	ON	OFF	0

Cascode Voltage Switch Logic

CVSL – XOR Gate 4 Input

4-Input CVSL XOR Gate

Summary CVSL

- A differential CMOS logic style that uses a dual-rail structure to provide both true and complementary outputs.
- High speed, reduced power dissipation, and good noise immunity due to its differential nature.
- Increased transistor count and design complexity compared to standard CMOS.
- Suitable for high-performance VLSI circuits, especially in noisesensitive and high-speed applications

Pass Transistor Logic

NMOS Switch as Pass Gate

PMOS Switch as Pass Gate

AND gate using pass transistor logic

Pass Transistor Gate

AND Gate

NOR Gate

NAND Gate

Pass Transistor Gate

Implement
$$F = (\overline{A+B}).\overline{C}$$

$$\bar{A}.\bar{B}+\bar{C}$$

Problem with PTL

Pass Transistor Logic gates cannot be cascaded by connecting the output of a pass gate to the gate input of another pass transistor

Level Restorer with PTL

A level restorer is typically implemented using PMOS transistors. It works by pulling the degraded high signal back to the full Vdd.

Complimentary/Differential Pass Transistor Logic

NAND Gate (4 Input CPL)

Robust and Efficient Pass-Transistor Design

- Solution for robust and efficient PTL
 - Level Restoration
 - Multiple Threshold Transistors
 - Transmission Gate Logic

Level Restoration

Robust and Efficient Pass-Transistor Design

- Solution for robust and efficient PTL
 - Level Restoration
 - Multiple Threshold Transistors
 - Transmission Gate Logic

Level Restoration

Pass Transistor Logic Design

Controlled Inverter

Inverter with Tristate

Inverter with Tristate

XOR Gate

XNOR Gate

PTL Based Mux

$$F = \overline{A} \overline{B}I0 + \overline{A}BI1 + A\overline{B}I2 + ABI3$$

Transmission Gate Logic

- CMOS transmission gates overcome the weak logic levels of single-pass transistors.
- Use two complementary transistors (nMOS + pMOS) to ensure robust logic levels.

Input Output
$$g = 1, gb = 0$$

$$0 \longrightarrow strong 0$$

$$g = 1, gb = 0$$

$$1 \longrightarrow strong 1$$

Mux using Transmission Gate Logic

Transistor count: 14

- 4 transistors per NAND gate,
- 2 for the inverter

Transistor count: 6

- 4 for transmission gates
- 2 for inverter

XOR Gate using Transmission Gate Logic

Transistor Counts:

- 12 transistors for conventional CMOS
- 6 or 8 Transistors for TG

Thank you!
Happy Learning