- Sustainability score of activities use typically involves assessing various factors such as
 - 1. Carbon footprint reduction
 - 2. Resource conservation (e.g. water saved)
 - 3. Societal impact (e.g. improved health condition by cycling ...)
- Some standard that can be used as guidelines are
 - 1. United Nations Sustainable Development Goals (SDGs)
 - i. SDG 13: Climate Action—Plantation (CO2 level, Climate change)
 - Use of Bicycles (Green House Gas Emission)
 - ii. SDG 15: Life on Land—Plantation (afforestation and reforestation, contributes to restoring and preserving terrestrial ecosystems, enhancing biodiversity)
 - iii. SDG 7: Affordable and Clean Energy (bicycle use)
 - iv. SDG 3: Good Health and Well-being (promoting physical health, use of bicycle)
 - v. SDG 11: Sustainable Cities and Communities
 - 2. Global Reporting Initiative (GRI)
 - 3. ISO 14000 Series
 - I. ISO 140001—Outlines requirements for implementing an environmental management system
 - II. ISO 14064--- For quantifying and reporting greenhouse gas emissions.
 - 4. Natural Capital Protocol
 - 5. Sustainability Accounting Standards Board (SASB)
- Application is based on Co₂ Emission (Reference. ISO 14064)
 - 1. Electricity consumption

Mean value from 4 years = $354.75 \text{ gCO}_2/\text{KWh}$

ELECTRICITY MIX (g CO ₂ / kWh)			
2018	2017	2016	2015
321	392	308	398

2. Fuel consumption

=Natural Gas emission factor has used for coding.

FUEL	EMISSION FACTOR 20
Natural gas (m³)	2.16 kg CO ₂ /Nm ³ of natural gas
Butane gas (kg)	2.96 kg CO₂/kg of butane gas
Butane gas (number of bottles)	37.06 kg CO ₂ /bottle (considering one 12.5 kg
	bottle)
Propane gas (kg)	2.94 kg CO ₂ /kg of propane gas
Propane gas (number of bottles)	102.84 kg CO ₂ /bottle (considering one 35 kg
	bottle)
Gas oil (litres)	2.87 kg CO ₂ /l of gas oil ²¹

FUEL	EMISSION FACTOR 20
Fuel (kg)	3.13 kg CO₂/kg of fuel
Generic LPG (kg)	2.98 kg CO ₂ /kg of generic LPG
Generic LPG (litres)	1.61 kg CO ₂ /I of generic LPG ²²
Domestic coal (kg)	2.23 kg CO ₂ /kg of domestic coal
Imported coal (kg)	2.44 kg CO ₂ /kg of imported coal
Petroleum coke (kg)	3.17 kg CO₂/kg of petroleum coke

3. Transport

----Petrol emission factor has used.

A. Litres or kg of fuel consumed			
AVAILABLE DATA	CALCULATION METHODOLOGY AND EMISSION FACTOR		
Fuel consumption (litres diesel, petrol, biofuel, LPG or kg of CNG)	Calculation of CO ₂ emissions based on the following emission factors ³³ : Petrol 95 RON or 98 RON: 2.157 kg of CO ₂ /litre Diesel: 2.493 kg of CO ₂ /litre Bioethanol: Bioethanol 10 (E10): 2.065 kg of CO ₂ /litre Bioethanol 85 (E85): 0.344 kg of CO ₂ /litre Bioethanol 100 (E100): 0 kg of CO ₂ /litre Other blends: 2.295 kg of CO ₂ /litre ³⁴ - % bioethanol ³⁵ If bioethanol 5 is used, it means the fuel contains 5% of bioethanol (and 95% petrol) and the emissions associated are 2.295 – (0.05 x 2.295) = 2.180 kg of CO ₂ /litre Biodiesel: B10: 2.387 kg of CO ₂ /litre B30: 1.857 kg of CO ₂ /litre B100: 0 kg of CO ₂ /litre B100: 0 kg of CO ₂ /litre Other blends: 2.653 kg of CO ₂ /litre ³⁶ - % biodiesel ³⁷ If biodiesel 20 is used, it means the fuel contains 20% of biodiesel (and 80% diesel) and the emissions associated are = 2.653 – (0.2 x 2.653) = 2.122 kg of CO ₂ /litre Liquefied petroleum gas (LPG): 1.61 kg CO ₂ /litre ³⁸ Natural gas vehicle (NGV) or compressed natural gas (CNG): 2.71 kg CO ₂ /kg of CNG		

There are multiple factors that cause distance-based emissions to vary, like the characteristics of the vehicle and the road speed limits. This table shows aggregate emission factors (g CO2/km).

4. Rail transport

-Long distance emission factor has used for coding.

MEANS	EMISSION FACTOR (g de CO ₂ /passenger *km)
RENFE AVE	31.28
RENFE AVANT	37.25
RENFE LONG DISTANCE	32.77
RENFE MEDIUM DISTANCE (REGIONAL)	34.66
RENFE COMMUTER TRAINS (RODALIES)	46.88
FGC	35.77
TRAM	80.12
METRO	50.13

5. Waste

Average = 242.858

A. kg of generated waste by fractions			
AVAILABLE DATA	CALCULATION METHODOLOGY AND EMISSION FACTOR		
Waste generation (kg	Calculation of CO ₂ emissions based on the following emission factors end Glass containers: 30.50 g of CO ₂ eq / kg waste Lightweight packages 120.09 g of CO ₂ eq / kg waste		
waste)	 Paper/cardboard: 56.41 g of CO₂ eq / kg waste OMSW: 362.11 g of CO₂ eq / kg waste Rest fraction: 645,18 g of CO₂ eq / kg waste 		

6. Emissions derived from water consumption

The GHG emission factor included in this section considers:

☐ The stages of: collection, purification, service reservoir supply and underground distribution, sewage system, wastewater treatment, discharge of filtered water into the environment and reuse.

☐ CO2, CH4 and N2O emissions, expressed in CO2 eq. The water cycle stages are not considered to produce fluorinated gas emissions.

AVAILABLE DATA	EMISSION FACTOR (g of CO ₂ eq/m ³) ⁹⁰
Water consumption (m³ water)	395

• Activities that decrease CO₂ emission:

1. Travelling on foot/bicycle decrease level of carbon dioxide emission that is subtracted by considering equivalent with travelling by vehicle at MEDIUM. --72.16

	CLASSIFICATION	EMISSIONS DEPENDING ON SPEED (g CO₂/km)			
VEHICLE		URBAN (25 km/h)	MEDIUM (69 km/h) Remaining roads	HIGH (102 km/h) Motorways and dual carriageways	
Moped	Conventional	71.29	-	-	
	Average of Euro classes	57.03	-	-	
Motorcycle	Two-stroke < 250 cm ³	94.32	76.57	110.83	
	Four-stroke < 250 cm ³	74.54	72.16	98.54	
	Four-stroke 250-750 cm ³	120.29	93.83	117.74	
	Four-stroke > 750 cm ³	151.09	109.80	128.90	

2. Plantation

Although the carbon absorption capacity can vary, it is generally considered that a tree can store about 167 kg of CO2 per year (242.858 g per day), or 1 ton of CO2 per year for 6 mature trees. This means that more than 67 trees would have to be planted a year to offset the CO2 emissions of a single Brit.

(reference -https://climate.selectra.com/en/news/co2-tree)

• Average value of CO₂ emission per day per person: ----14 kg/person per day (globally)