作业 11.1 已知在图A、B、C电路中晶体二极管的VCR可近似为 图D 的折线, 其中 $V_{on} = 0.7V$ 。请画出图 A、图 B、图C 电路的转移特性曲线: $V_i \sim V_o$

参考答案:

图 A: 当 $V_{i1} > V_{on}$ 时, D_1 导通,于是 $V_{o1} = V_{i1} - V_{on}$;

(对 D₁ 的导通,可使用反证法来判定:

若不导通 \rightarrow $I_{R1}=0 \rightarrow V_{R1}=0 \rightarrow V_{D1}=V_{i1}-V_{R1}>V_{OD}$ 。这从图 D 上看,不能成立)

当 $V_{i1} \leq V_{on}$ 时, D_1 截止,于是 $V_{o1} = V_{R1} = 0$;

(对 D₁ 的截止,可使用反证法来判定:

若导通 \rightarrow $V_{R1}=V_{i1}-V_{D1}<0$ \rightarrow 则电流从下向上流过 R_1 ,从右向左流过 D_1 。这从图 D 上看,不能成立)。

图 B: 当 $V_{i2} > 8+V_{on}$ 时, $R_2\sim D_3$ 支路导通, $V_{o2}=8+V_{on}$;

当 $V_{i2} < -6 - V_{on}$ 时, $D_{2} \sim R_{2}$ 支路导通, $V_{o2} = -6 - V_{on}$;

当-6- $V_{on} \leq V_{i2} \leq 8+V_{on}$ 时, D_2 和 D_2 都不导通,故 V_{R2} = 0,于是 V_{o2} = V_{i2} ;

【证明通或断的方法也可以用类似上文的反证法】

图 C: 当 $V_{i3} > 2V_{on}$ 时, D_4 和 D_5 导通, $V_{o3} = 2V_{on}$;

当 $V_{i3} < -2V_{on}$ 时, D_6 和 D_7 导通, $V_{o3} = -2V_{on}$;

当 $-2V_{on} \leqslant V_{i3} \leqslant 2V_{on}$ 时,四个二极管均截止,故 V_{R3} =0,于是 V_{o3} = V_{i3} ;

【证明通或断的方法也可以用类似上文的反证法】

11.2 在下面各图中,已知 FET 在 V_{DS} 足够大时的 $V_{GS} \sim I_D$ 特性为 $I_D = (V_{GS} - 3)^2$ mA 请计算各图中的静态工作点(要求计算: V_G , V_S , V_D , I_G , I_S , I_D) 并判断 FET 是否工作于敏感的压控电流状态,后者要求 $V_{GS} > V_{On}$; $V_{DS} > V_{GS} - V_{TH}$

参考答案:

【注 1: I_G 是指从 G 端流向 FET 内部的电流,不是流过外部电阻的电流】 【注 2: 题设中既写了 V_{on} ,也写了 V_{th} ,其实是指同一个数值,抱歉】

- **11.3** 在下面各图中,已知 BJT 的 β =100 (即: BJT 处于压控电流状态时, $I_C \approx 100~I_B$)。
 - ① 请计算各图中的静态工作点 (即: V_B , V_E , V_C , I_B , I_E , I_C)
 - ② 若,为使 BJT 呈 "压控电流"特性,需满足条件 $V_{BE} \ge 0.7V$, $V_C \ge V_B$ 。 为此,在图a 和 b中,在其它元器件和电源既定的条件下,求 R_2 , R_4 的取值范围。

参考答案:

 $V_E = I_E \cdot R_9 = 4.68V$

 $V_{L2} = 0 \rightarrow V_C = 10V$

 $V_C = 10 - I_C \cdot R_8 = 5.38 \text{ V}$

多 写 合		
1		
图 a:	$V_{BE} \approx 0.7 \ \overrightarrow{\text{m}} \ V_E = 0V$ \rightarrow $V_B \approx 0.7V$	[12]
	$I_B = I_{R1} \approx (5 - 0.7) / 200K \approx 21.5 \text{ uA}$	
	$I_C = \beta \cdot I_B = 2.15 \text{ mA} \approx I_E$	[45]
	$V_C = 10 - I_C \bullet R_2 = 5.7 \text{ V}$	
图 b:	若可以认为 $I_B \ll I_{R3}$,则 $V_B \approx 10 \cdot 2K/(8K+2K) = 2V$	
	$V_E \approx V_B - 0.7 = 2 - 0.7 = 1.3V$	
	$I_E = V_E / R_6 = 1 \text{mA} \approx I_C$	[34]
	$V_C = 10 - I_C \bullet R_4 = 7 \text{ V}$	[5]
	$I_{\rm B} \approx I_{\rm C} / \beta = 10 {\rm uA}$	
	补充验证假设: $I_{R3} \approx 10 / (8K + 2K) = 1 \text{mA} >> I_B$,故假设基本成立。	
图 d:	由于: $I_E = (1+\beta)I_B$,代入: $10 = I_B \cdot R_7 + V_{BE} + I_E \cdot R_9$	
	可以求得: $I_B \approx (10-0.7)/(R_7+101 \cdot R_9) = 23uA$	
	$I_{C} = \beta I_{B} = 2.3 \text{mA}$	
	$I_{\rm E} = (1+\beta)I_{\rm B} = 2.34 \mathrm{mA}$	

 $V_B = 10 - I_B \cdot R_7 = 5.4 \text{ V}$ (用 $V_B \approx V_E + V_{BE}$ 则估算为 5.38V)

(4)

[5] [6]

(6)

② 为使得 $V_C > V_B$,需 $V_C = 10 - I_C \cdot R_2 > 0.7$ $\rightarrow R_2 < 4.33K$ 同理 需 $V_C = 10 - I_C \cdot R_4 > 2$ $\rightarrow R_4 < 8K$

- 13.1 请利用 β =100, r_b = 1KΩ, $r_c \approx ∞$ 的 BJT (微扰模型如图 b 所示) 设计和计算放大电路。
 - ① 在图 a 的偏置电路中, C_1 足够大。请计算 BJT 的静态工作点,即其三端的静态电压和静态 电流 V_{BQ} , V_{EQ} , V_{CQ} , I_{EQ} , I_{BQ} , I_{CQ} ; 【注意,该偏置电路中 I_B 不能被忽略】
 - ② 若采用电容耦合进行输入和输出,请绘制出三种组态(CE、CC、CB)的放大电路,已知电压源 V_s 内阻 $r_s=100\Omega$,负载 $R_L=100K\Omega$;
 - ③ 请绘制三种组态放大电路的交流通路(即动态等效电路);
 - ④ 请计算三种组态放大器的电压增益 $A_V = V_{RL}/V_S$,输入电阻 R_i 和 输出电阻 R_o

参考答案:

① 由于: $I_E = (1+\beta)I_B$,代入: $10 = I_B \cdot R_1 + V_{BE} + I_E \cdot (R_3 + R_4)$ 可以求得: $I_{BQ} \approx (10-0.7)/(62.7K+101 \cdot (50+250)) = 100uA$ 【①】 $I_{CQ} = \beta I_{BQ} = 10mA$ 【②】 $I_{EQ} = (1+\beta)I_{BQ} = 10.1mA$ 【③】 $V_{EQ} = I_{EQ} \cdot (R_3 + R_4) = 3.03V$ 【④】 $V_{BQ} = 10 - I_{BQ} \cdot R_1 = 3.73 \, V$ (用 $V_B \approx V_E + V_{BE}$ 也是相同数值) 【⑤】 $V_{CO} = 10 - I_{CO} \cdot R_2 = 5 \, V$

② 三种组态分别如下图

【注:如果要和组态中的最基本形式对应的话,CE 组态中 R_3 可短路; CC 组态中 R_2 可以短路; CB 组态中基极需要动态接地。但这样会改变电路的静态工作点。下面的参考答案按上图制作,如果采取了不同的电路的话,需要相应地修改后面的答案】

③ 交流通路分别如下图:

- - CE: 从基极向内的等效电阻为 R_{i2} = r_b + (1+β) (r_e+R_3) ≈ 6.31 $K\Omega$

 $R_i \approx R_1 / / R_{i2} = 62.7 \text{K} / / 6.31 \text{K} \approx 5.73 \text{K}\Omega$

 $R_o \approx R_2//\infty = R_2 = 500 \Omega$

 $A_{V} \, \approx \, \textbf{-} \, V_{S} \, \bullet \, R_{i} \, / \, \left(\, r_{s} \!\!+\!\! R_{i} \, \right) \, / \, R_{i2} \, \bullet \, \beta \, \bullet \, \left(R_{2} \! / \! / \! R_{L} \right) / \, V_{S}$

 $\approx -5.73 \text{k} / (100+5.73 \text{k}) / 6.31 \text{k} \cdot 100 \cdot (500//100 \text{K}) \approx -7.8$

【注:负号一定不能省】

CC: 从基极向内的等效电阻为 $R_{i2} = r_b + (1+β)(r_e + R_3//R_L) \approx 6.31 \text{ K}\Omega$

 $R_i \approx R_1 / / R_{i2} = 62.7 \text{K} / / 6.31 \text{K} \approx 5.73 \text{K}\Omega$

 $R_o \approx R_3//[r_e + (r_b + R_1//r_s)/(1+\beta)] \approx 10.6 \Omega$

 $A_V \approx V_S \bullet R_i / (r_s + R_i) / R_{i2} \bullet (\beta + 1) \bullet (R_3 / / R_L) / V_S$

 $\approx 5.73 \text{k} / (5.73 \text{k} + 100) / 6.31 \text{k} \cdot 101 \cdot (50 / 100 \text{K}) \approx 0.79$

【注 1:注意上面算式中的 rs,从基极向外看时,能看到非理想源的内阻】

【注 2: 一般 CC 放大器 Av 接近 1, 但本题中 R3 过小,导致增益降低较多】

CB: 从发射极向内的等效电阻为: $R_{i2} = r_e + (r_b + R_1 / / \mathbf{0}) / (1 + \beta) = 12.5 \Omega$

 $R_i \approx R_3 / / R_{i2} = 50 / / 12.5 \approx 10\Omega$

 $R_o \approx R_2//\infty = R_2 = 500 \Omega$

 $A_{\rm V} \approx V_{\rm S} \cdot R_{\rm i} / (r_{\rm s} + R_{\rm i}) / R_{\rm i2} \cdot \beta / (\beta + 1) \cdot (R_2 / / R_{\rm L}) / V_{\rm S}$ $\approx 10 / (10 + 100) / 12.5 \cdot 100 / 101 \cdot (500 / / 100 K) \approx 3.6$

- 13.2 CE放大电路设计:已经给定材料:
 - ☑ 一个内阻为 $R_s = 1k\Omega$ 的电压源
 - ☑ 一个 R₁ = 10kΩ的负载电阻

 - ① 请补充偏置和耦合电路,构造一个单 BJT 的共射极放大器,使其电压放大倍数 $A_V = V_{RL} / V_S$ 的绝对值尽可能大。
 - ② 计算你所设计的放大器的 R_i , R_o 和 A_V
 - 【注1】设计题主要出现在作业中;
 - 【注2】可以考虑用仿真软件来辅助思考和分析

参考答案:

设计题没有唯一答案。

在完成本作业题的时候,最大的增益来自于这样的考虑:

- A) 发射极外部的动态电阻为零(用大电容旁路即可)
- B) 采用类似 11.3 (c) 这样的基极和集电极偏置电路,以免泄露动态电流
- C) 静态发射极电流尽量大些,以便 re 趋于零,只需要使 Re 尽可能小即可(实际电路中基极用5V 电源而 Re 很小的话,可能会烧毁 BJT)

于是,右图这样的电路,

从基极向内的等效电阻为 $R_{i2} = r_b + (1+β) r_e \approx 1 K\Omega$

$$R_i \approx \infty / / R_{i2} = 1 K \Omega$$

$$R_o \approx Z_{L2} /\!/ \infty \approx \infty$$

$$\begin{array}{l} A_{V} \, \approx \, \text{-} \, V_{S} \bullet R_{i} \, / \, \left(\, r_{s} \! + \! R_{i} \, \right) \, / \, R_{i2} \bullet \beta \bullet \left(R_{2} \! / \! / R_{L} \right) / \, V_{S} \\ \approx \, \text{-} \, 1k \, / \, \left(1k \! + \! 1k \right) / \, 1k \, \bullet \, 100 \bullet \left(\infty \! / \! / \! 10K \right) \, \approx \, \text{-500} \end{array}$$

注 1: 后面课程讲了使用恒流源做偏置的方法,结果和使用电感偏置没有明显的不同; 注 2: 如果要获得更大的增益,可以考虑引入变压器耦合(譬如在输出端),这样可以 获得更高的的增益,甚至在估算的条件下,增益绝对值可以远大于上述的500。

作业16.1 若已知两个放大器的频响为:

①
$$A_1(f) = \frac{100f^2}{(1+jf/10^2)(1+10jf)(1+jf/10^8)(1+jf/10^5)}$$

②
$$A_2(f) = \frac{2000 jf}{(1+jf)(1+jf/10^6)^2(1+jf/5000)}$$

请分别绘制二者的波特图的草图(幅频和相频特性),并标出各极点处的频率、增益、相移,以及各直线段的斜率。

参考答案:

①
$$A_1(f) = -1000 \frac{10jf}{1+10jf} \frac{jf/100}{1+jf/100} \frac{1}{1+jf/10^5} \frac{1}{1+jf/10^8}$$
 故波特图如下:

注1: 用圆润的曲线勾勒时,相对会有更多误差。

注 2: 在各个一阶极点处, 绿线相对于红线应该有 -3dB 的下降。

②
$$A_2(f) = 2000 \frac{jf}{1+jf} \frac{1}{1+jf/5000} \left(\frac{1}{1+jf/10^6}\right)^2$$

故波特图草图如下:

注 1: 此图中没有用圆润的曲线去勾勒,没有特别声明的话,这样也是可以的。

注 2: 在双重极点处,相移和相移斜率都加倍,幅频衰减为 6dB。

作业 16.2 反相放大器幅频特性如图中红实线所示。

- ① 写出其频响表达式;
- ②画出相频响应的草图。

[注: 放大器的同相和反相, 都是指其中频增益特性]

参考答案:

中频增益: 90dB, 即 104.5, 但是反相放大器;

低频极点分别在 8Hz (双重极点), 80Hz,

高频极点分别在 20kHz, 200kHz, 故可写频响表达式为:

$$A(f) = -10^{4.5} \left(\frac{jf/8}{1 + jf/8}\right)^2 \frac{jf/80}{1 + jf/80} \frac{1}{1 + jf/20k} \frac{1}{1 + jf/200k}$$

注: 当极点之间靠得比较近时,各个极点之间的相移斜率会相互影响,导致平常所说的"45度/dec"产生较大偏差,甚至各个极点处的相移都不一定准确。

16.3 右图电路中: V_{CC} =10V, R_{B1} =7KΩ, R_{B2} =3KΩ, R_{E} =2.3KΩ, R_{C} =3KΩ

 $R_{I} = 100 K\Omega$, $V_{CC} = 10 V$, $C_{B} = C_{C} = 10 \mu F$

BJT: $\beta=100$, $r_b\approx 0$, $r_e=26mV/I_{EO}$, $C_{B'E}=C_{B'C}=10pF$

请估算和分析:

- ① 中频电压增益 $A_V = V_{RL} / V_S$
- ② 中频输入电阻 R_i 和 输出电阻 R_o
- ③ 低频截止频率 f₁
- ④ 当源Vs幅度逐步增大时,先出现饱和还是截止?
- ⑤ 在输入最大不失真信号时,放大器效率

$$\eta = \overline{P_{RL}} / \overline{P_{VCC}}$$

参考答案:

① 易于计算出 $I_{EQ} \approx (V_{BQ} - V_{BE}) / R_E = (3 - 0.7)/2.3k = 1 mA$,

故 $r_e \approx 26 \text{mV}/1 \text{mA} = 26 \Omega$

基极向内电阻为: $R_{i2} = r_{be} = 0 + (1+β)r_e = 2.6k$

中频增益 A_V $\approx -V_S / R_{i2} \cdot \beta \cdot (R_C / / R_L) / V_S = -100 \cdot (3k / / 100k) / / 2.6k = -112$

② $R_i \approx R_{B1} // R_{B2} // R_{i2} = 7k // 3k // 2.6k = 1.16k$

 $Ro \approx R_c /\!/ \infty \approx 3k$

③ 计算三个大电容导致的时间常数,较小的时间常数会构成低频主极点。

因为三个电容大小一样,故只需比较它们计算时间常数时,分别对应的电阻即可:

 C_{B} : $R_{CB} = 0 + R_i = 1.16k$

 C_E : $R_{CE} = R_E // r_{eb} = 2.3 k // 26 \approx 25.7$

 C_{C} : $R_{CC} = R_{C} + R_{L} = 103k$

故 CE 是构成低频主极点的主要因素,由此:

 $f_L \approx 1/(2\pi R_{CE}C_E) = 1/2/pi/25.7/10u \approx 620Hz$

④ 临界饱和:

因为 $V_{BQ} \approx 3V$, $V_{CQ} \approx V_{CC} - I_{CQ} * R_C = 7V$,

而放大器增益 $|A_V| \approx 112$,

故临界饱和时,集电极动态电压信号 $\approx (V_{CQ}-V_{BQ}) \cdot |A_V|/(1+|A_V|) \approx 3.96V$

临界截止: $I_{CQ} = 1 m A$,而交流负载线的斜率为 $-1/(R_C//R_L)$

因此粗估截止(交流负载线与横线的交点处的动态电压)时,

动态交流电压信号幅度为: $I_{CO} / |-1/(R_C//R_L)| = 2.91V$

综上,先出现截止失真,此时输出信号幅度为 2.91V

⑤ 临界失真时,信号尚未失真,

故电源平均功耗 $P_{VCC} \approx V_{CC} \cdot I_{CQ} = 10V \cdot 1mA = 10mW$ 而此时负载 R_L 所获得的正弦信号功率为: $P_{RL} = (1/2) V_{RL}^2 / R_L = 42.3uW$

故放大器的效率大约为: $P_{RL}/P_{VCC} = 42.3u/10m = 0.423\%$

【注 1,如果允许方波输入,则效率可以相对提升一倍。不过,题目中提到失真的事情,这暗示着信号很可能不是方波(因为不考虑高频响应的时候,方波原则上是不发生失真的】

【注 2, 此题中其实 R_{B1}、R_{B2} 支路消耗的功率也不少——粗估起来,它们的静态电流也是 1mA,故这个支路消耗的功率,也和集电极-BJT-发射极支路消耗的功耗相当。因此如果这样考虑的话, Pvcc 的平均值加倍,放大器效率还要减半。】

- ☑ 已知CE、CC、CB三个放大器内部都不含独立电容。它们在理想电压源驱动、负载空载时,测得指标:
 - ► CE: $A_{VO} = -10$, $R_i = 10k\Omega$, $R_o = 2k\Omega$
 - ► CC: $A_{V0} \approx 1$, $R_i = 50k\Omega$, $R_o = 50\Omega$
 - ► CB: $A_{V0} = 10$, $R_i = 50\Omega$, $R_o = 2k\Omega$
- ☑ 用四个电容(均为10μF),采取电容耦合组成级联电路, 而实际源 R_s=1kΩ,实际负载 R_L=1kΩ。有两种方案:

▶ 方案1: 实际源 → CC → CB → CE → 实际负载
 ▶ 方案2: 实际源 → CE → CB → CC → 实际负载

☑ 请计算上面两个级联方案的: 总 A_V=V_{RL}/V_S, R_i, R_o, f_L

参考答案:

本题没有给 BJT 的特性,下面以 β=100 为例进行试分析。

先对 CC 放大器进行分析:

假设 CC 放大器的交流电路中,基极的外部总等效电阻为 R_b ,发射极的外部总等效电阻为 R_e ,BJT 的 $r_{be} = r_b + (1+\beta)r_e = (1+\beta)$ r_{eb} ;

根据常识, r_b 在 $k\Omega$ 数量级, r_e 在 10Ω 数量级, r_{be} 一般在 $k\Omega$ 数量级

根据题设: $R_b // (r_{be} + \beta R_e) = 50k$,因此 $R_b > 50k$, $r_{be} + \beta R_e > 50k$

由于 r_{be} 按常识不会超过 10k, 故 Re 不会小于 400Ω 。

同样根据题设: $R_o=R_e$ // $(r_{be}/\beta)=50$,而 $R_e>>50\Omega$,故可以估判 $r_{be}/\beta\approx$ 50,即: $r_{be}\approx5k$ 而 $r_{eb}\approx50$

代回不等式 r_{be} + βR_e >50k 可知, βR_e >45k,即 R_e >450

在方案1(CC-CB-CE)的交流通路中:

- $R_i = R_b //[r_{be} + \beta (R_e//R_{i,CB})] \approx R_b // [5k + \beta(450^+ // 50)] \approx 10k$
- $R_o = R_{o,CE} \approx 2k$
- $A_V \approx R_i/(R_s + R_i) \cdot R_{i,CB}/(R_{i,CB} + r_{eb}) \cdot A_{V0,CB} \cdot R_{i,CE}/(R_{o,CB} + R_{i,CE}) \cdot A_{V0,CE} \cdot R_L/(R_{o,CE} + R_L)$ $\approx 10k/(1k+10k) \cdot 50/(50+50) \cdot 10 \cdot 10k/(2k+10k) \cdot (-10) \cdot 1k/(2k+1k) \approx -12.6$
- 在计算时间常数时,从前向后的四个电容对应的电阻分别为:

$$R_{eq1} \approx R_s + R_i \approx 1k + 10k = 11k$$

$$R_{eq2} \approx (R_{o,CC} + R_s/\beta) + R_{i,CB} \approx (50+1k/100) + 50 = 110$$

$$R_{eq3} \; \approx \; R_{o,CB} + R_{i,CE} = 2k + 10k = 12k$$

$$R_{eq4} \approx R_{o,CE} + R_L = 2k + 1k = 3k$$

取其中最小的 R_{eq2} ,可计算出系统的低频主极点在 $f_L \approx 1/(2\pi R_{eq2}C) \approx 145Hz$

在方案 2 (CE-CB-CC) 的交流通路中:

- $R_i = R_{i,CE} \approx 10k$
- $R_o = R_{o,CC} + R_{o,CB}/\beta \approx 50 + 2k/100 \approx 70$
- $\bullet \quad A_{V} \approx R_{i,CE}/(R_s + R_{i,CE}) \bullet A_{V0,CE} \bullet R_{i,CB} / (R_{i,CB} + R_{o,CE}) \bullet A_{V0,CB} \bullet R_{i,CC} / (R_{o,CB} + R_{i,CC}) \bullet A_{V0,CC} \bullet R_{L} / (R_{o,CC} + R_{L})$

$$\approx 10 \text{k}/(1 \text{k}+10 \text{k}) \cdot (-10) \cdot 50 / (50+2 \text{k}) \cdot 10 \cdot 50 \text{k} / (2 \text{k}+50 \text{k}) \cdot 1 \cdot 1 \text{k} / (50+1 \text{k}) \approx -2.4$$

● 在计算时间常数时,从前向后的四个电容对应的电阻分别为:

$$R_{eq1} \approx R_s + R_i \approx 1k + 10k = 11k$$

$$R_{eq2} \, pprox \, R_{o,CE} + R_{i,CB} \, pprox \, 2k + 50 \, pprox \, 2k$$

$$R_{ea3} \approx R_{o,CB} + R_{i,CC} = 2k + 50k = 52k$$

$$R_{eq4} \approx R_{o,CC} + R_L = 50 + 1k \approx 1k$$

取其中最小的 R_{eq4} , 可计算出系统的低频主极点在 $f_L \approx 1/(2\pi R_{eq4}C) \approx 16Hz$

若对β进行缩放,取一个范围,譬如 [50,200],则可以分别对上述过程进行重新演算,得到相应的区间。

【注:本题是新出的题目,编题的时候欠考虑,把题目出得偏难了。在此向同学们郑重道歉】

16.2 推挽放大器

- ☑ 右图中两个BJT均为: β =100, r_b =1K Ω , r_c 非常大。
 而 R_s = 1K Ω , R_1 = R_2 =193k Ω , R_L =1k Ω
- Arr 在 V_{CC} =20V时,经测量, I_{EQ1} = I_{EQ2} = 100 μ A, 且二极管动态电阻可以取 r_D =26mV/ I_{DQ}

☑ 请计算:

- a) 放大器的 R_i, R_o, A_V
- b) R_L上的线性动态范围是多少?
- c) 当 R_L 获得最大不失真正弦信号时,估算放大器的效率 (假设可忽略 T_1 和 T_2 在临界导通时的功耗,并忽略 R_1 - D_1 - D_2 - R_2 支路的功耗)。

参考答案:

- a) 正半周:
 - 二极管动态电阻 $r_{D1} \approx r_{D2} \approx 26 \text{mV/I}_{D10} = 260 \Omega$
 - T_1 和 T_2 的 $r_e \approx 26$ mV/ $I_{EQ1} = 260$ Ω
 - T₁ 基极向内的电阻

 $R_{i2} = r_b + (1+\beta)(r_e + R_L) \approx 1k + 101*(260+1k) = 128k\Omega$

计算正半轴的输入电阻时, R_2 和 D_2 支路是导通的, R_1 和 R_{i2} 并联后与 D_1 串联,故:

$$R_{i+} = (r_{D2} + R_2) / [r_{D1} + (R_1 / / R_{i2})] \approx (260 + 193 K) / / (260 + 193 K / / 128 K) \approx 55 K \Omega$$

T1 基极向外的等效电阻:

 R_{Bo} = $R_1/\!/[r_{D1}+(r_{D2}+R_2)/\!/r_s]$ \approx 193K//[260+(260+193K)//1K] \approx 1.25K 故输出电阻:

$$R_{o+} = r_{e1} + (r_{b1} + R_{Bo})/(1+\beta) \approx 260 + (1K+1.25K)/101 \approx 282\Omega$$

$$\overrightarrow{\text{m}}$$
: $A_{V+} = R_{i+}/(R_{i+} + r_s) \cdot (R_1//R_{i2})/(r_{D1} + R_1//R_{i2}) \cdot (1/R_{i2}) \cdot (\beta + 1) \cdot R_L \approx 0.77$

负半周:与正半周相同(虽然一般会略有不同,但本题的理想假设下,确实相同)。

b) 看似只要 $V_{R1} > 0$, 即可确保 T_1 在线性区。

但正半周 V_{RL} 增加时,需有一定的 I_{C1} 和 I_{B1} ,

而二极管要求 D_1 电流不可能由下向上,即要求: $I_{D1} = I_{R1} - I_{B1} \ge 0$

故可令 IDI = 0 作为临界条件,此时:

$$20 = I_{R1} \cdot R_1 + 0.7 + (1+\beta) I_{R1} R_L \rightarrow I_{R1} = 65.6 \text{uA}$$

于是:

$$V_{R1} = R_1 \cdot I_{R1} = 12.7V$$

故 $V_{\text{omax}} \approx 20 - 12.7 - 0.7 = 6.6 \text{V}$

利用对称性可知, 电路的线性动态范围为: [-6.6V, 6.6V]

注:这个结果只能算是粗糙的估计。因为两个二极管上的电流有大幅度的变化,甚至会从偏置的 100uA 接近截止,其实使用其微扰线性模型已经不太准确。

c) 延续上一个步骤,最大不失真正弦输出信号范围为[-6.6V, 6.6V]时,负载所获得的功率为:

$$P_{RL} = (1/2) V_{max}^2/R_L = 2.2 mW$$

而以正半周为例: $V_{RL} = 6.6 \cdot \sin(2\pi ft) V$,电流为 $I_{RL} = 6.6 \cdot \sin(2\pi ft) / R_L$;

而这个电流基本全部来自于 +Vcc。

因此在正半周期里,正电源的瞬时输出功率约为 Vcc • IRL,

通过半个周期的积分平均可得: $P_{VCC} \approx 6.6 \text{V} * 6.6 \text{mA} * 2 / \pi \approx 27.7 \text{ mW}$

因此,整个电路的效率可以估计为: $P_{RL}/P_{VCC} \approx 2.2 \text{mW}/27.7 \text{mW} = 7.94\%$

【这个推挽电路的效率是非常低的,这主要是因为 R_1 和 R_2 电阻过大(为了追求高输入电阻),导致信号幅度很小,而这导致了系统的效率低迷】

16.3 差分放大器

☑ 右图两个BJT的 β =100, r_b ≈1K Ω , r_c 足够大。 R_c =10K Ω , R_L =10K Ω 。 V_{cc} =20V, V_{EE} =-20V, R_E =19.3K Ω 。 信号源 V_1 和 V_2 是纯正弦电压源。

$\begin{array}{c} V_{cc} \\ R_c \\ V_1 \\ V_1 \\ V_{EE} \end{array}$

请计算:

- a) T_1 和 T_2 的的静态工作点 和 r_a
- b) 差模增益 A_{VD} = V_{RL} / (V₁-V₂)
- c) 共模增益 A_{VC} = V_{RL} / [(V₁+V₂)/2]
- d) 共模抑制比 K_{CMR} = A_{VD}/A_{VC}

【提示:在差模输入时,节点A是交流地; 在共模输入时,可以考虑把 R_E 看成两个 2R_E 电阻的并联,并利用对称性, 二者的顶端之间并无电流 】

参考答案:

- a) $V_{BQ} = 0$; $V_{EQ} = -0.7V$ $I_{EQ} = (-0.7 V_{EE})/R_E/2 = 0.5 \text{mA} \approx I_{CQ} \implies I_{BQ} = 5 \text{uA} \; ; \quad V_{CQ} \approx V_{CC} V_{RC} = 15V$ $r_{e1} = r_{e2} = 26 \text{mV}/I_{EQ} = 52\Omega \qquad , \qquad (此时: \; r_{be} = r_b + (1 + \beta)r_e \approx 6.2 \text{K}\Omega)$
- b) 差模输入时, R_E 上端为动态地(交流电压为零),将电路裂开: $A_{VD} = -\beta (R_C || R_L)/2 r_{be} = -40.3$
- c) 共模输入时,将 RE 看为两个 2RE 电阻的并联,

由于共模输入时信号和电路完全对称(集电极的不对称不会影响发射结),则两个 2RE 电阻之间的导线上是没有电流的,因此可以将电路裂开,成为发射极外部有个 2RE 的共射放大器。此时:

$$\begin{split} A_{\rm VC} &\approx -\beta (R_c || R_L) / [r_b + (1+\beta) (r_c + 2R_E)] \\ &= -100 \, \bullet \, (10k / / 10k) \, / \, (6.2k + 101 * 2 * 19.3k) = - \, 0.128 \\ &_{100} \quad _{5k} \quad _{2^*19.3K * 101} \,) \end{split}$$

d) $K_{CMR} = |AVD/AVC| \approx 314$