Missing Data Workshop Exercises

Data For Workshop Exercises

The examples are inspired by an Institute of Educational Sciences-funded project featuring a cluster-randomized trial of a novel math problem-solving intervention

Variables include baseline and end-of-year problem-solving test scores and a number of student covariates and background variables

exercise.csv

Variable	Description	Missing	Metric
student	Student identifier		Nominal
abilitygrp	Ability grouping (3-group classification)	*	Nominal
female	Female dummy code		Nominal
stanmath	Standardized math test scores	*	Numeric
frlunch	Lunch assistance dummy code	*	Nominal
efficacy	Math self-efficacy rating scale	*	Ordinal
probsolve1	Math problem-solving score at baseline	*	Numeric
probsolve7	Math problem-solving score at final wave	*	Numeric

The analysis model is a multiple regression with baseline problem-solving scores, gender, and standardized math scores predicting end-of-year problem-solving

$$Probsolve7_i = \beta_0 + \beta_1 (Probsolve1_i) + \beta_2 (Female_i) + \beta_3 (Stanmath_i) + e_i$$

- 1. Perform a diagnostic analysis to evaluate convergence of the MCMC algorithm
- 2. Using the information that you gleaned from the diagnostic run, generate 20 or more imputations for analysis in the software package of your choosing
- 3. Estimate the model and pool the estimates and standard errors in the software package of your choosing

The analysis model is a multiple regression with a mixture of categorical and continuous variables

Ability group is a three-group nominal variable (1 = learning disabled, 2 = low achieving, 3 = average achieving) represented as two dummy variables in the analysis model

$$Probsolve7_i = \beta_0 + \beta_1 (Probsolve1_i) + \beta_2 (LearnDis_i) + \beta_3 (LowAch_i) + \beta_4 (Efficacy_i) + e_i$$

- 1. Perform a diagnostic analysis to evaluate convergence of the MCMC algorithm. Use standardized math scores and the lunch assistance dummy variable as auxiliary variables.
- 2. Using the information that you gleaned from the diagnostic run, generate 20 or more imputations for analysis in the software package of your choosing
- 3. Estimate the model and pool the estimates and standard errors in the software package of your choosing

The analysis model is a multiple regression with an interaction effect involving math self-efficacy and gender (dummy coded as 0 = male and 1 = female)

$$Probsolve7_i = \beta_0 + \beta_1 (Probsolve1_i) + \beta_2 (Efficacy_i) + \beta_3 (Female_i)$$

 $+\beta_4 (Efficacy_i) (Female_i) + e_i$

- 1. Perform a diagnostic analysis to evaluate convergence of the MCMC algorithm. Use standardized math scores and the lunch assistance dummy variable as auxiliary variables.
- 2. Using the information that you gleaned from the diagnostic run, generate 20 or more imputations for analysis in the software package of your choosing
- 3. Estimate the model and pool the estimates and standard errors in the software package of your choosing

The analysis model is a multiple regression with baseline problem-solving scores, gender, and standardized math scores predicting end-of-year problem-solving

$$Probsolve7_i = \beta_0 + \beta_1 (Probsolve1_i) + \beta_2 (Female_i) + \beta_3 (Stanmath_i) + e_i$$

1. Write an Mplus program to fit the analysis model with full information maximum likelihood estimation. Specify a normal distribution for all predictor variables to avoid excluding observations.

- 1. Write an Mplus program to fit the analysis model with full information maximum likelihood estimation. Specify a normal distribution for all predictor variables to avoid excluding observations.
- 2. Use either the saturated correlates or the extra dependent variable approaches to include the lunch assistance indicator and math self-efficacy as auxiliary variables.