

MA1014 CALCULUS AND ANALYSIS TUTORIAL 16

Dr. Andrew Tonks: apt12@le.ac.uk

Ben Smith: bjs30@le.ac.uk

SEQUENCES

- A sequence is a function, $a: \mathbb{N} \to \mathbb{R}$ with $a_n = a(n), n \in \mathbb{N}$ e.g. $a_n = n^2 \Rightarrow a_1 = 1, a_2 = 4, a_3 = 9, ...$
- Monotonic: If $\forall n \in \mathbb{N}, a_n \leq a_{n+1}$ (increasing) or $a_n \geq a_{n+1}$ (decreasing)
- Bounded: If $\exists m, M \in \mathbb{R} : m \leq a_n \leq M \ \forall n \in \mathbb{N}$

lf

$$\forall \varepsilon > 0, \exists K \in \mathbb{N} : |a_n - L| < \varepsilon \ \forall n \ge K$$

then $\lim_{n\to\infty} a_n = L$ (convergent)

EXAMPLE

Prove that

$$\lim_{n \to \infty} \frac{2n+4}{n} = 2$$

EXERCISE

Let

$$a_n = \frac{3n - 8}{4n + 1}$$

- a) Determine $K \in \mathbb{N}$ such that $\left| a_n \frac{3}{4} \right| < 0.01$ for all $n \ge K$
- b) Given $\varepsilon > 0$, determine $K \in \mathbb{N}$ such that $\left| a_n \frac{3}{4} \right| < \varepsilon$ for all $n \ge K$
- c) Prove that $\lim_{n\to\infty} a_n = \frac{3}{4}$

lf

$$a_n = \frac{4n+1}{n}$$

Calculate a_{10} , a_{100} and a_{1000} and make a guess for the limit, L, as $n \to \infty$.

Prove a_n tends to this limit.

٦

Prove the following limits:

a)
$$a_n = \frac{\cos(an)}{n} \to 0$$
 as $n \to \infty$ where $a \in \mathbb{R}$

b)
$$b_n = \frac{n^2 + 1}{n^2 - 1} \to 1 \text{ as } n \to \infty$$

$$c_n = \left(\sqrt{n+1} - \sqrt{n}\right) \to 0 \text{ as } n \to \infty$$

$$rac{d}{dx}\int_a^x f(t)\,dt = f(x)$$

$$\int_a^b \! f(x) dx = F(b) \! - \! F(a)$$

ANY QUESTIONS?

$$m\frac{d^2x}{dt^2} = -kx$$

$$\int \frac{dx}{1+x^2} = \tan^{-1}(x) + C$$

