

One hidden layer Neural Network

Neural Networks Overview

What is a Neural Network?

One hidden layer Neural Network

Neural Network Representation

of this are not in training set)

One hidden layer Neural Network

Computing a Neural Network's Output

$$z = w^T x + b$$
$$a = \sigma(z)$$

$$z = w^T x + b$$
$$a = \sigma(z)$$

Andrew Ng

Neural Network Representation learning

Given input x:
$$x: \text{ with a[0] as its the layer 0 (its same)}$$

$$z^{[1]} = W^{[1]} + b^{[1]}$$

$$z^{[1]} = \sigma(z^{[1]})$$

$$z^{[1]} = w^{[2]} a^{[1]} + b^{[2]}$$

$$z^{[2]} = w^{[2]} a^{[1]} + b^{[2]}$$

$$z^{[2]} = \sigma(z^{[2]})$$

$$z^{[2]} = \sigma(z^{[2]})$$

$$z^{[2]} = \sigma(z^{[2]})$$

One hidden layer Neural Network

Vectorizing across multiple examples

Vectorizing across multiple examples

We saw previewsly how to calculate the output with one training example, now we will see for m training examples.

Andrew Ng

Vectorizing across multiple examples

One hidden layer Neural Network

Explanation for vectorized implementation

Justification for vectorized implementation

Recap of vectorizing across multiple examples


```
for i = 1 to m
    + z^{[1](i)} = W^{[1]}x^{(i)} + b^{[1]}
    \Rightarrow a^{[1](i)} = \sigma(z^{[1](i)})
   \Rightarrow z^{[2](i)} = W^{[2]}a^{[1](i)} + b^{[2]}
   \Rightarrow a^{[2](i)} = \sigma(z^{[2](i)})
                        A^{[0]} \times = a^{[0]} \times (i) = a^{[0](i)}
Z^{[1]} = W^{[1]}X + b^{[1]} \leftarrow W^{[1]}X^{(0)} + b^{[1]}
A^{[1]} = \sigma(Z^{[1]})
Z^{[2]} = W^{[2]}A^{[1]} + b^{[2]}
A^{[2]} = \sigma(Z^{[2]})
```

Andrew Ng

One hidden layer Neural Network

Activation functions

Activation functions

tanh is centred at 0, when u train u NN u center data with 0 mean, using tanh instead of sigmund

has the effect of centering your data so that mean is closer to 0 rather then 0.5 and this makes learning a bit easyier.

a(tzti) = tanh (zti)

use tanh for hidden layer and signoid for output layer. Activat fct can be

different for different layers x_1

 x_2 [2]

 χ_3 in binary classific u can use sigmoid for output

Given x:

05951 laver

Retefied Linear Unit (very popular) good for hidden layer

this works better but its not used in practice.

Andrew Ng

Pros and cons of activation functions

One hidden layer Neural Network

Why do you need non-linear activation functions?

Activation function

One hidden layer Neural Network

Derivatives of activation functions

When you compute backpropagation u need to compute derivative or slope of the activation function

Sigmoid activation function

Tanh activation function

ReLU and Leaky ReLU

ReLU

$$g(t) = mox(0, t)$$

$$\Rightarrow g'(t) = \begin{cases} 0 & \text{if } t < 0 \\ 1 & \text{if } t > 0 \end{cases}$$

$$\Rightarrow g'(t) = \begin{cases} 0 & \text{if } t > 0 \\ 1 & \text{if } t > 0 \end{cases}$$

$$\Rightarrow g'(t) = \begin{cases} 0 & \text{if } t > 0 \\ 1 & \text{if } t > 0 \end{cases}$$

This works better but its not much used.

Leaky ReLU

$$g(z) = Mox(0.01z, z)$$

 $g'(z) = \{0.01 \text{ if } z < 0 \text{ or } \}$

its undefined for z=0 but u can set it to 1 or 0 it does not matter

One hidden layer Neural Network

Gradient descent for neural networks

Gradient descent for neural networks

Parameters:
$$(n^{(1)}, n^{(2)})$$
 $(n^{(2)}, n^{(2)})$ $(n^{(2)}, n^{(2)})$ $(n^{(2)}, n^{(2)})$ $(n^{(2)}, n^{(2)})$ $(n^{(2)}, n^{(2)})$ $(n^{(2)}, n^{(2)})$ $(n^{(2)}, n^{(2)})$ This is the cost function and we are assuming we are doing binary classification.

Circlust descent:

Separt

we saw previewsly how Compute product $(n^{(2)}, n^{(2)})$ $(n^{(2)}, n^{(2)})$ $(n^{(2)}, n^{(2)})$ $(n^{(2)}, n^{(2)})$ $(n^{(2)}, n^{(2)})$ the key is to compute these derivative terms.

 $(n^{(2)}, n^{(2)})$ $(n^{(2)}, n^{(2)})$ $(n^{(2)}, n^{(2)})$ $(n^{(2)}, n^{(2)})$ the key is to compute these derivative terms.

 $(n^{(2)}, n^{(2)})$ $(n^{(2)}, n^{(2)})$ $(n^{(2)}, n^{(2)})$ $(n^{(2)}, n^{(2)})$ $(n^{(2)}, n^{(2)})$ the key is to compute these derivative terms.

 $(n^{(2)}, n^{(2)})$ $(n^{(2)}, n^{(2)})$

Formulas for computing derivatives

This is not trivial!!!

Formal Cobadquin;

$$S_{CIJ} = P_{CIJ}(S_{CIJ}) = e(S_{CIJ})$$

$$S_{CIJ} = P_{CIJ}(S_{CIJ}) \leftarrow P_{CIJ}$$

$$S_{CIJ} = P_{CIJ}(S_{CIJ}) = e(S_{CIJ})$$

$$S_{CIJ} = P_{CIJ}(S_{CIJ}) = e(S_{CIJ})$$

Andrew Ng

One hidden layer Neural Network

Backpropagation intuition (Optional)

Computing gradients

Logistic regression

this.

Neural network gradients

$$\begin{cases} \chi_1 & > 0 \\ \chi_2 & > 0 \\ & > 0 \end{cases}$$

$$\begin{cases} \chi_1 & > 0 \\ & > 0 \end{cases}$$

$$\begin{cases} \chi_1 & > 0 \\ & > 0 \end{cases}$$

$$\begin{cases} \chi_1 & > 0 \\ & > 0 \end{cases}$$

$$\begin{cases} \chi_1 & > 0 \\ & > 0 \end{cases}$$

$$\begin{cases} \chi_1 & > 0 \\ & > 0 \end{cases}$$

$$\begin{cases} \chi_1 & > 0 \\ & > 0 \end{cases}$$

$$\begin{cases} \chi_1 & > 0 \\ & > 0 \end{cases}$$

$$\begin{cases} \chi_1 & > 0 \\ & > 0 \end{cases}$$

$$\begin{cases} \chi_1 & > 0 \\ & > 0 \end{cases}$$

$$\begin{cases} \chi_1 & > 0 \\ & > 0 \end{cases}$$

$$\begin{cases} \chi_1 & > 0 \\ & > 0 \end{cases}$$

$$\begin{cases} \chi_1 & > 0 \\ & > 0 \end{cases}$$

$$\begin{cases} \chi_1 & > 0 \\ & > 0 \end{cases}$$

$$\begin{cases} \chi_1 & > 0 \\ & > 0 \end{cases}$$

$$\begin{cases} \chi_1 & > 0 \\ & > 0 \end{cases}$$

$$\begin{cases} \chi_1 & > 0 \\ & > 0 \end{cases}$$

$$\begin{cases} \chi_1 & > 0 \\ & > 0 \end{cases}$$

$$\begin{cases} \chi_1 & > 0 \\ & > 0 \end{cases}$$

$$\begin{cases} \chi_1 & > 0 \\ & > 0 \end{cases}$$

$$\begin{cases} \chi_1 & > 0 \\ & > 0 \end{cases}$$

$$\begin{cases} \chi_1 & > 0 \\ & > 0 \end{cases}$$

$$\begin{cases} \chi_1 & > 0 \\ & > 0 \end{cases}$$

$$\begin{cases} \chi_1 & > 0 \\ & > 0 \end{cases}$$

$$\begin{cases} \chi_1 & > 0 \\ & > 0 \end{cases}$$

$$\begin{cases} \chi_1 & > 0 \\ & > 0 \end{cases}$$

$$\begin{cases} \chi_1 & > 0 \\ & > 0 \end{cases}$$

$$\begin{cases} \chi_1 & > 0 \\ & > 0 \end{cases}$$

$$\begin{cases} \chi_1 & > 0 \\ & > 0 \end{cases}$$

$$\begin{cases} \chi_1 & > 0 \\ & > 0 \end{cases}$$

$$\begin{cases} \chi_1 & > 0 \\ & > 0 \end{cases}$$

$$\begin{cases} \chi_1 & > 0 \\ & > 0 \end{cases}$$

$$\begin{cases} \chi_1 & > 0 \\ & > 0 \end{cases}$$

$$\begin{cases} \chi_1 & > 0 \\ & > 0 \end{cases}$$

$$\begin{cases} \chi_1 & > 0 \\ & > 0 \end{cases}$$

$$\begin{cases} \chi_1 & > 0 \\ & > 0 \end{cases}$$

$$\begin{cases} \chi_1 & > 0 \\ & > 0 \end{cases}$$

$$\begin{cases} \chi_1 & > 0 \\ & > 0 \end{cases}$$

$$\begin{cases} \chi_1 & > 0 \\ & > 0 \end{cases}$$

$$\begin{cases} \chi_1 & > 0 \\ & > 0 \end{cases}$$

$$\begin{cases} \chi_1 & > 0 \\ & > 0 \end{cases}$$

$$\begin{cases} \chi_1 & > 0 \\ & > 0 \end{cases}$$

$$\begin{cases} \chi_1 & > 0 \\ & > 0 \end{cases}$$

$$\begin{cases} \chi_1 & > 0 \\ & > 0 \end{cases}$$

$$\begin{cases} \chi_1 & > 0 \\ & > 0 \end{cases}$$

$$\begin{cases} \chi_1 & > 0 \\ & > 0 \end{cases}$$

$$\begin{cases} \chi_1 & > 0 \\ & > 0 \end{cases}$$

$$\begin{cases} \chi_1 & > 0 \\ & > 0 \end{cases}$$

$$\begin{cases} \chi_1 & > 0 \\ & > 0 \end{cases}$$

$$\begin{cases} \chi_1 & > 0 \\ & > 0 \end{cases}$$

$$\begin{cases} \chi_1 & > 0 \\ & > 0 \end{cases}$$

$$\begin{cases} \chi_1 & > 0 \\ & > 0 \end{cases}$$

$$\begin{cases} \chi_1 & > 0 \\ & > 0 \end{cases}$$

$$\begin{cases} \chi_1 & > 0 \\ & > 0 \end{cases}$$

$$\begin{cases} \chi_1 & > 0 \\ & > 0 \end{cases}$$

$$\begin{cases} \chi_1 & > 0 \\ & > 0 \end{cases}$$

$$\begin{cases} \chi_1 & > 0 \\ & > 0 \end{cases}$$

$$\begin{cases} \chi_1 & > 0 \\ & > 0 \end{cases}$$

$$\begin{cases} \chi_1 & > 0 \\ & > 0 \end{cases}$$

$$\begin{cases} \chi_1 & > 0 \\ & > 0 \end{cases}$$

$$\begin{cases} \chi_1 & > 0 \\ & > 0 \end{cases}$$

$$\begin{cases} \chi_1 & > 0 \\ & > 0 \end{cases}$$

$$\begin{cases} \chi_1 & > 0 \\ & > 0 \end{cases}$$

$$\begin{cases} \chi_1 & > 0 \\ & > 0 \end{cases}$$

$$\begin{cases} \chi_1 & > 0 \\ & > 0 \end{cases}$$

$$\begin{cases} \chi_1 & > 0 \\ & > 0 \end{cases}$$

$$\begin{cases} \chi_1 & > 0 \\ & > 0 \end{cases}$$

$$\begin{cases} \chi_1 & > 0 \\ & > 0 \end{cases}$$

$$\begin{cases} \chi_1 & > 0 \\ & > 0 \end{cases}$$

$$\begin{cases} \chi_1 & > 0 \\ & > 0 \end{cases}$$

$$\begin{cases} \chi_1 & > 0 \\ & > 0 \end{cases}$$

$$\begin{cases} \chi_1 & > 0 \\ & > 0 \end{cases}$$

$$\begin{cases} \chi_1 & > 0 \\ & > 0 \end{cases}$$

$$\begin{cases} \chi_1 & > 0 \\ & > 0 \end{cases}$$

$$\begin{cases} \chi_1 & > 0 \\ & > 0 \end{cases}$$

$$\begin{cases} \chi_1 & > 0 \\ & > 0 \end{cases}$$

$$\frac{dz^{n}}{d\omega} = \frac{dz^{n}}{d\omega} = \frac{dz^{n}}{d\omega} = \frac{dz^{n}}{d\omega}$$

$$\frac{dz^{n}}{d\omega} = \frac{dz^{n}}{d\omega} = \frac{dz^{n}}{d\omega}$$

 $z^{[2]} = W^{[2]}x + b^{[2]}$

$$\begin{array}{lll}
5. & & & & \\
W^{(1)} & & & & \\
dW^{(2)} & & & & \\
6. & & & & \\
\end{array} = dz^{(1)} \times \begin{pmatrix}
& & & \\
& & & \\
& & & \\
& & & \\
\end{array} = dz^{(1)} \times \begin{pmatrix}
& & & \\
& & & \\
& & & \\
& & & \\
\end{array} = dz^{(1)} \times \begin{pmatrix}
& & & \\
& & & \\
& & & \\
& & & \\
\end{array} = dz^{(1)} \times \begin{pmatrix}
& & & \\
& & & \\
& & & \\
& & & \\
\end{array} = dz^{(1)} \times \begin{pmatrix}
& & & \\
& & & \\
& & & \\
& & & \\
\end{array} = dz^{(1)} \times \begin{pmatrix}
& & & \\
& & & \\
& & & \\
& & & \\
\end{array} = dz^{(1)} \times \begin{pmatrix}
& & & \\
& & & \\
& & & \\
& & & \\
\end{array}$$

There you have 6 eq to implement successfully a NN. Andrew Ng

Summary of gradient descent

So here are the 6 equation. They are just for one training example.

$$dz^{[2]} = a^{[2]} - y$$

$$dW^{[2]} = dz^{[2]}a^{[1]^T}$$

$$db^{[2]} = dz^{[2]}$$

$$dz^{[1]} = W^{[2]T}dz^{[2]} * g^{[1]'}(z^{[1]})$$

$$dW^{[1]} = dz^{[1]}x^T$$

$$db^{[1]} = dz^{[1]}$$

Here we vectorize the implementation for m training examples.

Here we vectorize the implementation for m training

$$\begin{cases}
2 & \text{Total} = 0 & \text{Total} \\
2 & \text{Total} = 0
\end{cases}$$

$$\begin{cases}
7 & \text{Total} = 0 & \text{Total} \\
2 & \text{Total} = 0
\end{cases}$$

$$\begin{cases}
7 & \text{Total} = 0 & \text{Total} = 0
\end{cases}$$

$$\begin{cases}
7 & \text{Total} = 0 & \text{Total} = 0
\end{cases}$$

$$\begin{cases}
7 & \text{Total} = 0 & \text{Total} = 0
\end{cases}$$

$$\begin{cases}
7 & \text{Total} = 0 & \text{Total} = 0
\end{cases}$$

$$\begin{cases}
7 & \text{Total} = 0 & \text{Total} = 0
\end{cases}$$

$$\begin{cases}
7 & \text{Total} = 0 & \text{Total} = 0
\end{cases}$$

$$\begin{cases}
7 & \text{Total} = 0 & \text{Total} = 0
\end{cases}$$

$$\begin{cases}
7 & \text{Total} = 0
\end{cases}$$

Summary of gradient descent

$$dz^{[2]} = \underline{a}^{[2]} - \underline{y}$$

$$dW^{[2]} = dz^{[2]} a^{[1]^T}$$

$$db^{[2]} = dz^{[2]}$$

$$dz^{[1]} = W^{[2]T} dz^{[2]} * g^{[1]'}(z^{[1]})$$

$$dW^{[1]} = dz^{[1]} x^T$$

$$db^{[1]} = dz^{[1]}$$

$$dz^{[2]} = a^{[2]} - y$$

$$dW^{[2]} = dz^{[2]}a^{[1]^T}$$

$$db^{[2]} = dz^{[2]}$$

$$dz^{[2]} = dz^{[2]}$$

$$dz^{[2]} = \frac{1}{m}dz^{[2]}A^{[1]^T}$$
There is this extra 1/m becouse the cost fct is the above
$$dz^{[1]} = W^{[2]T}dz^{[2]} * g^{[1]'}(z^{[1]})$$

$$dz^{[1]} = W^{[2]T}dz^{[2]} * g^{[1]'}(z^{[1]})$$

$$dW^{[1]} = dz^{[1]}x^T$$

$$dw^{[1]} = dz^{[1]}x^T$$

$$dw^{[1]} = dz^{[1]}$$

$$dz^{[1]} = W^{[2]T}dz^{[2]} * g^{[1]'}(z^{[1]})$$

$$dz^{[1]} = W^{[2]T}dz^{[1]}x^{T}$$

Andrew Ng

One hidden layer Neural Network

Random Initialization

What happens if you initialize weights to

zero?

layers.

For a logistic reg is fine to initialize weights to 0 but for a neural network it wont work.

and say also b is 0.0, and this is ok to initialize to 0.0

say we initialize by 0 $W_{R}^{TI} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$ $W_{R}^{TI} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$

$$\mathcal{L}_{1} = \mathcal{L}_{2} \text{ compute backprop } \mathcal{L}_{3} = \mathcal{L}_{2}$$

$$\int_{\Omega} w = \begin{bmatrix} u & v \\ u & v \end{bmatrix}$$

This is also called the Symetry breaking problem.

It turns out that after every iteration the hidden units will be the same.

it will end up with first row equal to second row.

Random initialization

