COMPARATIVE ANALYSIS OF DETECTION OF TEXT FROM MORSE CODE IN HANDWRITTEN IMAGES USING CONVOLUTIONAL NEURAL NETWORKS

A Project Report Submitted

in partial fulfillment of the requirements for the award of the Degree of

BACHELOR OF TECHNOLOGY

in
COMPUTER SCIENCE & ENGINEERING
By

Karavadi Raviteja 19761A0528 Mangam Surya Prakash 19761A0537 Kasturi Karthik 20765A0505

Under the esteemed guidance of

Shaik Johny Basha

Sr. Assistant Professor

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

LAKIREDDY BALI REDDY COLLEGE OF ENGINEERING (AUTONOMOUS)

Accredited by NAAC with 'A' Grade & NBA (Under Tier - I), ISO 9001:2015 Certified Institution Approved by AICTE, New Delhi and Affiliated to JNTUK, Kakinada L.B. REDDY NAGAR, MYLAVARAM, NTR DIST., A.P.-521 230. 2019-2023

LAKIREDDY BALI REDDY COLLEGE OF ENGINEERING (AUTONOMOUS)

Accredited by NAAC with 'A' Grade & NBA (Under Tier - I), ISO 9001:2015 Certified Institution Approved by AICTE, New Delhi and Affiliated to JNTUK, Kakinada L.B. REDDY NAGAR, MYLAVARAM, NTR DIST., A.P.-521 230.

Department of COMPUTER SCIENCE & ENGINEERING

CERTIFICATE

This is to certify that the project entitled "Comparative Analysis of Detection of Text from Morse Code in Handwritten Images using CNN" is being submitted by

Karavadi Raviteja 19761A0528 Mangam Surya Prakash 19761A0537 Kasturi Karthik 20765A0505

in partial fulfillment of the requirements for the award of degree of **B.Tech** in **Computer Science & Engineering** from **Jawaharlal Nehru Technological University Kakinada** is a record of bonafide work carried out by them at **Lakireddy Bali Reddy College of Engineering (A).**

The results embodied in this Project report have not been submitted to any other University or Institute for the award of any degree or diploma.

PROJECT GUIDE

HEAD OF THE DEPARTMENT

Sk. Johny Basha

Dr. D. Veeraiah

EXTERNAL EXAMINER

ACKNOWLEDGEMENT

We take great pleasure to express our deep sense of gratitude to our Project Guide **Mr. Shaik Johny Basha,** Sr. Assistant Professor, Department of CSE for his valuable guidance during our project work.

We would like to thank **Dr. D. Veeraiah**, Professor & Head of the Department of Computer Science & Engineering for his encouragement.

We would like to express our heart-felt thanks to **Dr K. Appa Rao**, Principal, Lakireddy Bali Reddy College of Engineering for providing all the facilities for our project.

Our utmost thanks to all the faculty members and Non-Teaching Staff of the Department of Computer Science & Engineering for their support throughout our project work.

Our Family Members and Friends receive our deepest gratitude and love for their support throughout our academic year.

Karavadi Raviteja 19761A0528

Mangam Surya Prakash 19761A0537

Kasturi Karthik 20765A0505

DECLARATION

We are here by declaring that the project entitled "Comparative Analysis of Detection of Text from Morse Code in Handwritten Images using CNN" work done by us. We certify that the work contained in the report is original and has been done by me under the guidance of supervisor. The work has not been submitted to any other institute in preparing for any degree or diploma. We have followed the guidelines provided by the institute in preparing the report. We have conformed to the norms and guidelines given in the Ethical Code of Conduct of the institute. Whenever we have used materials (data, theoretical analysis, figures, and text) from other sources, we have given due credit to them by citing them in the text of the report and giving their details in the references. Further, we have taken permission from the copyright's owner of the sources, whenever necessary.

Name(s) of the Student(s)

Signature(s) of the students(s)

Karavadi Raviteja (19761A0528)

Mangam Surya Prakash (19761A0537)

Kasturi Karthik (20765A0505)

ABSTRACT

Morse code is a method used in telecommunication to encode text characters as standardized sequences of two different electronic pulses usually represented as short pulse(dot) and long pulse(dash). Detection of text from images of morse code is a complex process and there is no active research on this area. As these are morse code images, different images have different style of strokes. This project aims to develop an automated Morse code recognition system by training a convolutional neural network (CNN) model using a self-built dataset. The proposed approach involves collecting and preprocessing images of Morse code characters and creating a labeled dataset for training and testing the CNN model. The dataset creation process includes capturing images of different Morse code characters, augmenting the data to increase the dataset size, and annotating the images to label them correctly. The CNN model is then trained using the created dataset and evaluated for its accuracy in recognizing Morse code characters in images. The results demonstrate that the proposed approach achieves high accuracy in recognizing Morse code characters in images, making it a promising solution for automated Morse code recognition systems.

LIST OF CONTENTS

CONTENTS	PAGE NO.
1. INTRODUCTION	
1.1.Overview of the Project1.2.Feasibility Study1.3.Scope	1 – 2
2. LITERATURE SURVEY	2 15
2.1.Existing System & Drawbacks	3 – 15
2.2.Proposed System & Advantages	
2.3. Dataset	
2.4. Machine Learning	
2.5.Deep Learning	
2.5.1. Convolutional Neural Networks	
2.5.2. LeNet-5	
2.5.3. AlexNet	
3. SYSTEM ANALYSIS	16 - 24
3.1.Overview of System Analysis	
3.1.1 Requisites Accumulating and Analysis	
3.1.2 System Design	
3.1.3 Implementation	
3.1.4 Testing	
3.1.5 Deployment of System	
3.1.6 Maintenance	
3.2.Software(s) used in the project	
3.2.1 Python	
3.2.2 Jupyter Notebook	
3.2.3 Google Colab	

	3.3.System Requirements	
	3.3.1 Software Requirements	
	3.3.2 Hardware Requirements	
	3.3.3 Packages Required	
4.	SYSTEM DESIGN	25 – 34
	4.1.Overview of System Design	
	4.2.Splitting the Dataset	
	4.3. Classification Algorithms	
	4.4.System Design Functions	
5.	CODING & IMPLEMENTATION	35 – 50
6.	SYSTEM TESTING	51 – 53
7.	RESULTS	54 – 60
8.	CONCLUSION	61
9.	REFERENCES	62 – 63

3.2.4 Packages

LIST OF TABLES

S. NO.	DESCRIPTION	PAGE NO.
1.	Morse Code Characters	07
2.	LeNet-5 Model Analysis	43
3.	AlexNet Model Analysis	50

LIST OF FIGURES

S. NO.	DESCRIPTION	PAGE NO.
1.	Flowchart of Existing System	04
2.	Splitting of Data	08
3.	Training Dataset	08
4.	CNN Architecture	11
5.	LeNet-5 Architecture	13
6.	AlexNet Architecture	14
7.	Jupyter Notebook Environment	20
8.	Google Colab Environment	21
9.	System Architecture	25
10.	Splitting of Data	26
11.	Layers in Working of LeNet-5 Architecture	27
12.	Layers in Working of AlexNet Architecture	30
13.	Sigmoid Activation Function	32
14.	ReLU Activation Function	33
15.	Data Splitting	35
16.	Recognition of Letter P	36
17.	Recognition of Letter D	36
18.	LeNet Training with 5 Epochs	38
19.	Accuracy of LeNet-5 with 5 Epochs	39
20.	LeNet-5 Training with 10 Epochs	40
21.	Accuracy of LeNet-5 with 10 Epochs	41
22.	LeNet-5 Training with 15 Epochs	42
23.	Accuracy of LeNet-5 with 15 Epochs	43
24.	AlexNet Training with 5 Epochs	45

S. NO.	DESCRIPTION	PAGE NO.
25.	Accuracy of AlexNet with 5 Epochs	46
26.	AlexNet Training with 10 Epochs	47
27.	Accuracy of AlexNet with 10 Epochs	48
28.	AlexNet Training with 15 Epochs	49
29.	Accuracy of AlexNet with 15 Epochs	50
30.	Prediction of Letter I using LeNet-5	54
31.	Prediction of Letter N using LeNet-5	54
32.	Prediction of Letter D using LeNet-5	55
33.	Prediction of Letter M using LeNet-5	55
34.	Prediction of Letter J using LeNet-5	56
35.	Prediction of Letter U using LeNet-5	56
36.	Prediction of Letter S using AlexNet	57
37.	Prediction of Letter K using AlexNet	57
38.	Prediction of Letter Z using AlexNet	58
39.	Prediction of Letter U using AlexNet	58
40.	Prediction of Letter J using AlexNet	59
41.	Prediction of Letter W using AlexNet	59
42.	Prediction of Word ON	60
43.	Prediction of Word MAN	60

LIST OF ABBREVATIONS

1. CNN: Convolutional Neural Networks

2. GPU: Graphics Processing Unit

3. BLSTM: Bi-Directional Long Short-Term Memory

4. RNN: Recurrent Neural Networks

5. CTC: Connectionist Temporal Classification

6. ML: Machine Learning

7. AI: Artificial Intelligence

8. ReLU: Rectified Linear Unit

9. TPU: Tensor Processing Unit

10. OpenCV: Open-Source Computer Vision

11. SSD: Solid State Drive

12. ILSVRC: ImageNet Large Scale Visual Recognition Challenge

13. HTML: Hyper Text Markup Language