Lukas Schäfer

🖫 Lukas Schäfer 🛅 lukas-schaefer 🌎 LukasSchaefer +44 7925 103212

♣ WORK FXPERIENCE

Research Intern 11/2020 -- 03/2021

DEMATIC - TECHNOLOGY AND INNOVATION

REMOTE

> Applying state-of-the-art AI technology to automate large-scale robotic warehouse logistics.

Navigation Software Engineer, University of Edinburgh

09/2018 -- 08/2019

HYPED -- UNIVERSITY OF EDINBURGH HYPERLOOP TEAM

EDINBURGH, UNITED KINGDOM

- > Developing navigation system of "The Flying Podsman" Hyperloop prototype using sensor filtering, processing and control techniques to estimate location, orientation and speed of the pod
- > Finalist for the SpaceX 2019 Hyperloop competition in California in Summer 2019

PUBLICATIONS

- [1] Lukas Schäfer, F. Christianos, J. Hanna, and S. V. Albrecht, "Decoupling exploration and exploitation in reinforcement learning," in ICML Workshop on Unsupervised Reinforcement Learning (URL); (Revised Under Review), 2021.
- [2] G. Papoudakis, F. Christianos, Lukas Schäfer, and S. V. Albrecht, "Benchmarking multi-agent deep reinforcement learning algorithms in cooperative tasks," in Neural Information Processing Systems (NeurIPS), Datasets and Benchmarks Track, 2021.
- [3] R. Zhong, J. Hanna, Lukas Schäfer, and S. V. Albrecht, "Robust on-policy data collection for data efficient policy evaluation," (Under Review), 2021.
- [4] T. McInroe, Lukas Schäfer, and S. V. Albrecht, "Learning temporally-consistent representations for data-efficient reinforcement learning," (Under Review), 2021.
- [5] F. Christianos, Lukas Schäfer, and S. V. Albrecht, "Shared experience actor-critic for multi-agent reinforcement learning," in 34th Conference on Neural Information Processing Systems, 2020.

EDUCATION

PhD Data Science & Artificial Intelligence

12/2019 -- Present

University of Edinburgh

EDINBURGH, UNITED KINGDOM

- > Supervisors: Stefano V. Albrecht (primary) and Amos Storkey (secondary)
- Project: Sample Efficiency and Generalisation in Multi-Agent Reinforcement Learning
- > Receiving Principal's Career Development Scholarship from the University of Edinburgh
- Research: Reinforcement Learning, Multi-Agent Systems, Generalisation, Exploration, Intrinsic Rewards

M.Sc. Informatics

09/2018 -- 08/2019

UNIVERSITY OF EDINBURGH

EDINBURGH, UNITED KINGDOM

- > Degree classification: **Distinction** (77.28%)
- Received DAAD (German Academic Exchange Service) graduate scholarship and Stevenson Exchange Scholarship
- > Modules include: Reinforcement Learning, Algorithmic Game Theory and its Applications, Machine Learning and Pattern Recognition, Probabilistic Modelling and Reasoning, Decision Making in Robots and Autonomous Agents

B.Sc. Computer Science, minor subject Japanese

10/2015 -- 09/2018

SAARLAND UNIVERSITY

SAARBRÜCKEN, GERMANY

> Degree classification: grade of 1.2 (German scale) equivalent to UK 1st class honours

Q reviewing

- > Reviewer for NeurIPS 2021 Datasets and Benchmarks Track
- > Reviewer for NeurIPS 2020 workshop "The pre-registration experiment: an alternative publication model for machine learning research"

Programming

Competent Python · C++

Familiar

C · Java · Rust · SML · HTML · CSS · Matlab · Bash

Technologies and Tools

PyTorch · TensorFlow · Keras · NumPy · UNIX · Git

Languages

Native in German • Fluent in English • Intermediate in French · Beginner in Chinese · Beginner in Japanese

DISSERTATIONS

M.Sc. Dissertation, Autonomous Agents Research Group

05/2019 -- 08/2019

CURIOSITY IN MULTI-AGENT REINFORCEMENT LEARNING (74%)

- Applied curiosity as intrinsically computed exploration bonuses for multi-agent reinforcement learning (MARL)
- > Implemented count- and prediction-based curiosities for value-based and policy-gradient MARL methods using PyTorch
- > Evaluated the influence of curiosity on cooperative and competitive MARL under partial observability and sparse rewards in a multi-agent particle environment
- > Applied curiosity led to improved stability and convergence of policy-gradient MARL trained with sparse reward signals

B.Sc. Dissertation, Foundations of Artificial Intelligence (FAI) Group

04/2018 -- 07/2018

DOMAIN-DEPENDENT POLICY LEARNING USING NEURAL NETWORKS IN CLASSICAL PLANNING (1.0)

- Transferred domain-dependent policy learning Action-Schema Networks to classical automated planning
- Keras implementation, adjusted training for classical planning and extended the FastDownward planning framework
- > Extensive evaluation and analysis on IPC domains identifying limitations in generalisation and scalability

■ TFACHING EXPERIENCE

Teaching Assistant, University of Edinburgh

10/2019 -- Present

REINFORCEMENT LEARNING, SCHOOL OF INFORMATICS

- > Delivering lectures and designing RL coursework covering wide range of topics from single- to multi-agent and deep RL
- > Marking project and exam for reinforcement learning course
- Advising students on various challenges regarding lecture material and content

Voluntary Lecturer and Coach, Saarland University

09/2017 -- 10/2017

MATHEMATICS PREPARATION COURSE

- Assisted the organization of the mathematics preparation course for upcoming computer science students
- \triangleright Explained formal languages and predicate logic to ~ 250 participants in daily lectures of the first week
- > Supervised two groups to provide feedback and further assistance in daily coaching-sessions
- > The course received BESTE-award for special student commitment 2017 of Saarland University

Teaching Assistant, Saarland University

10/2016 -- 03/2017

PROGRAMMING 1, DEPENDABLE SYSTEMS AND SOFTWARE GROUP

- > Taught first-year students concepts of functional programming, basic complexity theory and inductive correctness proofs in weekly tutorials and office hours
- Collectively created learning materials and discussed student progress as part of the whole teaching team

PROJECT EXPERIENCE

Autonomous Robot Localisation, University of Edinburgh

09/2018 -- 12/2018

GROUP PROJECT FOR ROBOTICS: SCIENCE AND SYSTEMS LECTURE

- > Constructed a four-wheel differential steering mobile robot as group of three for autonomous localisation in a known environment using LEGO aside of technical components including a Raspberry Pi computer
- > Implemented particle-filter localisation and obstacle avoidance based on IR and sonar sensors
- > Robot successfully managed to navigate through the constructed arena, detect and communicate points of interest using light sensors and return back to its deployment location

For more projects, see lukaschaefer.com/#projects