Lecture-21

Control Units

Control of Motor

A DC motor is connected at each joint of a robot, where torque is proportional of the armature current.

$$au_m \propto I_A$$

$$au=K_m.\,I_A$$

Control of Motor

A DC motor is connected at each joint of a robot, where torque is proportional of the armature current.

• Joint torque τ can be represented as follows:

$$au = D(heta) \ddot{ heta} + h \Big(heta, \dot{ heta}\Big) + C(heta)$$

where

 $D(\theta)$: inertia terms

 $h\left(heta,\dot{ heta}
ight)$: Coriolis and centrifugal terms

 $C(\theta)$: gravity terms

• Joint torque au can be represented as follows:

$$au = D(heta) \ddot{ heta} + h \Big(heta, \dot{ heta}\Big) + C(heta) \, + F \Big(heta, \dot{ heta}\Big)$$

where

 $D(\theta)$: inertia terms

 $h\Big(heta,\dot{ heta}\Big)$: Coriolis and centrifugal terms

 $C(\theta)$: gravity terms

Let us consider partitioned control scheme

$$au = \alpha au' + eta$$

where
$$lpha = D(heta)$$
 $eta = hig(heta,\dot{ heta}ig) + C(heta) + Fig(heta,\dot{ heta}ig)$

Now, τ' can be written as follows:

 $\dot{E}=\dot{ heta}_d+\dot{ heta}$

Now, τ' can be written as follows:

$$au'=\ddot{ heta}_d+K_pE+K_D\dot{E}$$
 (For Proportional Derivative (PD) control law) $au'=\ddot{ heta}_d+K_pE+K_I\int Edt+K_D\dot{E}$ For PID control law where $E=\mathrm{error}= heta_d- heta$

where θ_d : Desired value of θ

 θ : Actually obtained value of θ

ziegler nicholas (K_p, K_I, K_D)

Control Architecture

PUMA

