Bike Sharing:A Review of the Literature

Filipe Gonçalves, 98083

Table of Contents

Introduction

Search and Screening Methodology

Introduction

Bike sharing is the shared use of a bicycle fleet.

Some benefits of a bike sharing system (BSS) are:

- Enhanced mobility
- Lower implementation cost compared to other modes of transportation
- Reduced traffic congestion, fuel consumption and greenhouse gas emissions
- Improved public health
- Increased environmental awareness.

Their primary travel purposes are:

- Work-related activities
- Leisure across different age groups
- Residential consumption

Bike Sharing Systems

There are two types of BSSs:

- Standard BSSs allow users to rent a bike from a docking station and return it to another
- Dockless BSSs provide rapid and flexible mobility, as bikes can be found and parked anywhere

The literature can be divided into two domains:

- The analysis, review and synthesis of different BSSs
- Comparison of different rebalancing models for the bike repositioning problem

Methodology

Complete Search

Search based on all the literature

Search th more specific parameters

Screening Process

Check the resulting papers by relevance

Complete Search

TITLE-ABS-KEY (bike-sharing OR bikesharing OR "bike sharing") AND LANGUAGE (english) AND PUBYEAR < 2025

Resulting in 2,738 papers

Advanced Search

TITLE-ABS-KEY (bike-sharing OR bikesharing OR "bike sharing") AND SRCTYPE (j) AND LANGUAGE (english) AND PUBYEAR < 2025 Percentage of Documents from the Advanced Search

Resulting in 1,800 papers

Resulted in 1,316 Included papers

Inclusion Themes

Case Study: Studies on the impacts, problems, etc, and analysis of different types of BSSs.

Rebalancing: Studies on prediction models and algorithms for BSSs.

Examples: Studies on BSSs in a specific city, of their failure or success.

First/Last Mile: Studies on the correlation between BSSs and any transportation method.

Sustainability: Studies on the green impact of BSSs.

Excluded Conditions

Mobility: Studies on mobility as a service problems and mobility sharing.

Not Focused on Bike Sharing: Studies that use BSSs as an example or use data from a BSS.

Error: Any Erratum study.

Screening Process

Impact of the

 $\mathit{impact} = \frac{number_of_citations}{number_of_years_since_publication}$

500 Selected Papers

Generations

IT-Based
Introduced in Rennes
1998-2009

Coin-Deposit

Introduced in Copenhagen 1995-1997

Demand-Responsiv

9009-2015

Generations

White Bikes	Coin-Deposit	IT-Based	Demand
Free bikes	Unlocked with a coin	Innovative technologies	Electric bikes
Bikes randomly parked	Docking stations	Bikes with locks	More efficient stations and a redistribution system
Bikes thrown into channels and stolen	Continued theft and vandalism	Anti-theft program	GPS to reduce theft and vandalism

Evolution - Until 2012

The Fifth Generation

The Dockless Bike Sharing Systems

The Dockless Station:

- Easier for a user to pick up or drop off a bike
- Bikes can be parked anywhere and the users can access them instantly
- A reallocation team is needed to gather all randomly parked bikes into different parking areas

Increased cycling in urban areas and significantly reduced car usage and carbon emissions.

Modal Shift

Defined as, mode of transportation substituted.

Positive

Replacing private vehicles or taxis

Negative

Replacing schedule based transportation, like bus, or walking

Parked Bikes Problem

In Dockless BSSs

Repositioning randomly parked bikes into different areas

In Standard BSSs

Relocating existing or new bikes into stations

Bike Repositioning Problem

Calculation of ideal truck routes at each station

Demand Prediction

Prediction of the number of bikes left in a station at a certain point in time

Demand Prediction

City-Level

Focused on predicting the total bike usage for an entire city

Doesn't utilize all available data

Cluster-Level

Focused on grouping stations into clusters

Clusters based on geographical locations or temporal demand patterns

Station-Level

Focused on predicting demand for each station

Much more challenging to implement

Demand Prediction Models

	Name	# Papers	Metrics	
LSTM	Long Short-Term Memory	11	RMSE, MAE, MAPE, MSE, PCC SMAPE	
ARIMA	Autoregressive Integrated Moving Average	11	RMSE, MAE, MAPE, R², RMSEF MAER, RMSLE, ER	
НА	Historical Average	9	RMSE, MAE, MAPE, R², PCC, RMSLE, ER	
RF	Random Forest Algorithm	9	RMSE, MAE, R², CV, MAE, RMSE, RMSLE	
LR	Linear Regression	9	RMSE, MAE, R², CV, RMSER, MAER	

Demand Prediction Models

	Name	# Papers	Metrics
XGBoost	Extreme Gradient Boosting	6	RMSE, MAE, MAPE, PCC
KNN	K-Nearest Neighbours	5	RMSE, MAE, MAPE, R²
SVM	Support Vector Machine	5	RMSE, MAE, MAPE, R², CV
ANN	Artificial Neural Network	4	RMSE, MAE, MAPE, MAE, RMSE, RMSLE
RNN	Recurrent Neural Network	4	RMSE, MAE, MAPE, R ² , PCC, SMAPE, MSE

Models

ANN

One of the most common, but doesn't account for temporal dependencies

ARIMA

Commonly used for forecasting time series, applied in traffic prediction

RNN

Can overcome the Limitation, but it is still not fit for the time series data

HA

Uses historical average data for prediction

XGBoost

Based on gradient boosted decision tree

LSTM

Solves the Problem, can be used with neural networks and different layers

RF

Used to overcome the problem of a model having large amount of predictors

KNN

Predicts based on it's K closes neighbours

SVM

Developed to seek the finest hyperplane classification of data

LR

The simplest model, taking one or more input features, and outputting one value

Metrics

MSE and RMSE

$$MSE = \frac{1}{n} \sum_{i=1}^{n} (x_i - y_i)^2$$

$$RMSE = \sqrt{\frac{1}{n} \sum_{i=1}^{n} (x_i - y_i)^2}$$

Mostly applied when large errors must be penalized

MAE and MAPE

$$MAE = \frac{1}{n} \sum_{i=1}^{n} |x_i - y_i|$$

$$MAPE = \frac{1}{n} \sum_{i=1}^{n} |\frac{x_i - y_i}{x_i}| \times 100$$

Used when all the errors are treated equally

Infrastructur

Ss incorporate more than just bikes, stations, trucks and demand prediction models.

The Infrastructure:

- Dashboards with various information on bikes, stations, users, trips, etc.
- Communicating bikes suggest a service oriented architecture
- Database to save all the information, including the messages exchanged
- Mobile application for the user to rent a bike
- Reallocation application for the redistributor to know where to load and unload the bikes

Summary

Screening Process

From 2700 searched to 500 screened papers

Literature Review

Five generations of BSSs were devised and studied

Reallocation

Pirelem two different categories: BRP and DP

Demand Prediction

Different models and metrics were analysed

Thanks!

CREDITS: This presentation template was created by **Slidesgo**, including icons by **Flaticon**, infographics & images by **Freepik** and illustrations by **Stories**

Please keep this slide for attribution