PROVA 1 - TERMODINÂMICA - 2014 (Prof. Frederico W. Tavares)

1) (20 pontos)

Pretende-se encher um tanque de 2,0m³ com água a partir de um reservatório cujas propriedades não variam durante o enchimento (condições do reservatório 50KPa e 100°C). Inicialmente o tanque está vazio. Qual deve ser o calor trocado para que a massa final dentro do tanque seja de 5kg?

- 2) (40 pontos) Um mol de um gás, a 27 °C, inicialmente com volume igual a 1,1 L, expande-se isotermicamente para 24,5 L. O comportamento deste gás é bem descrito pela equação de estado de van der Waals: $p = R * T / (V 5,2x10^{-5}) 0,44 / V^2$ (com p em Pa e V em m³/mol). Uma expressão para a determinação da energia interna também é conhecida: $dU = 55,6 * dT + 0,44 * dV / V^2$ (com U em J/mol e V em m³/mol).
- a) Determine o calor fornecido ao gás para se manter a temperatura constante durante a expansão.
- b) Calcule a variação de entropia do gás.
- c) Calcule a variação de entalpia, energia de Helmholtz e energia de Gibbs.
- **3)** (**40 pontos**) Uma central térmica, a vapor, opera de acordo com o ciclo de Rankine como mostrado ao lado. A turbina recebe vapor d'água a 100kPa e 700°C. A pressão de descarga desta é igual a 10kPa. Sabe-se que a **Corrente 1** é líquido saturado e que a eficiência da bomba é de 100 %. A vazão volumétrica de vapor que sai da caldeira é de 500m³/h (**Corrente 3**). Nestas condições operacionais, a potência elétrica produzida é igual a 21750 kJ/h.

- b) Calcule as entalpias e entropias das correntes?
- c) Qual a potência térmica do ciclo?
- d) Qual é a potencia elétrica gasta na bomba?

$$dU = TdS - PdV + \sum_{i} \mu_{i} dN_{i} \qquad dH = TdS + VdP + \sum_{i} \mu_{i} dN_{i} \qquad y_{i} P = x_{i} \gamma_{i} P_{i}^{SAT}$$

$$dA = -SdT - PdV + \sum_{i} \mu_{i} dN_{i} \qquad dG = -SdT + VdP + \sum_{i} \mu_{i} dN_{i} \qquad \Delta S_{n}^{VAP} = 8, 0 + 1,987 \ln(T_{n})$$

$$dH = C_{p} dT + [V - T\left(\frac{\partial V}{\partial T}\right)_{p}] dP \qquad dS = \left(\frac{C_{p}}{T}\right) dT - \left(\frac{\partial V}{\partial T}\right)_{p} dP \qquad \hat{f}_{i} = x_{i} \hat{\phi}_{i} P = x_{i} \gamma_{i} f_{i}^{0}$$

$$K = \exp\left(\frac{-\Delta \overline{G}}{RT}\right) = \prod_{i} \hat{a}_{i}^{V_{i}} \qquad \frac{\Delta H_{2}^{VAP}}{\Delta H_{1}^{VAP}} = \left(\frac{T_{2} - T_{C}}{T_{1} - T_{C}}\right)^{0,38} \qquad \left(\frac{\partial \overline{G}/T}{\partial T}\right) = -\frac{\overline{H}}{T^{2}}$$

$$R = 1,987cal/(gmolK) = 82,05(atmcm^{3})/(gmolK) = 0,082(atmL)/(gmolK) = 8,31J/(gmolK)$$

$$\frac{d(mU)_{S}}{dt} = \sum_{i}^{entradas} {\stackrel{\bullet}{m}}_{i}(H_{i} + \frac{v_{j}^{2}}{2} + gz_{j}) - \sum_{i}^{saidas} {\stackrel{\bullet}{m}}_{i}(H_{i} + \frac{v_{i}^{2}}{2} + gz_{i}) + Q + W_{S}$$

Água saturada: tabela em função da pressão												
		Volume específico (m³/kg)		Energia interna (kJ/kg)			Entalpia (kJ/kg)			Entropia (kJ/kg K)		
Pressão kPa	Temp. °C	Líquido sat.	Vapor sat.	Líquido sat.	Evap.	Vapor sat.	Líquido sat.	Evap.	Vapor sat.	Líquido sat.	Evap.	Vapor sat.
Р	Т	V _I	V_V	u _I	u _{Iv}	u _v	h _l	h _{Iv}	h _v	s _I	s_{lv}	S_V
10	45,81	0,001010	14,67355	191,79	2246,10	2437,89	191,81	2392,82	2584,63	0,6492	7,5010	8,1501
15	53,97	0,001014	10,02218	225,90	2222,83	2448,73	225,91	2373,14	2599,06	0,7548	7,2536	8,0084
20	60,06	0,001017	7,64937	251,35	2205,36	2456,71	251,38	2358,33	2609,70	0,8319	7,0766	7,9085
25	64,97	0,001020	6,20424	271,88	2191,21	2463,08	271,90	2346,29	2618,19	0,8930	6,9383	7,8313
30	69,10	0,001022	5,22918	289,18	2179,22	2468,40	289,21	2336,07	2625,28	0,9439	6,8247	7,7686
40	75,87	0,001026	3,99345	317,51	2159,49	2477,00	317,55	2319,19	2636,74	1,0258	6,6441	7,6700
50	81,33	0,001030	3,24034	340,42	2143,43	2483,85	340,47	2305,40	2645,87	1,0910	6,5029	7,5939
75	91,77	0,001037	2,21711	394,29	2112,39	2496,67	384,36	2278,59	2662,96	1,2129	6,2434	7,4563
100	99,62	0,001043	1,69400	417,33	2088,72	2506,06	417,44	2258,02	2675,46	1,3025	6,0568	7,3593
125	105,99	0,001048	1,37490	444,16	2069,32	2513,48	444,30	2241,05	2685,35	1,3739	5,9104	7,2843
150	111,37	0,001053	1,15933	466,92	2052,72	2519,64	467,08	2226,46	2693,54	1,4335	5,7897	7,2232
175	116,06	0,001057	1,00363	486,78	2038,12	2524,90	486,97	2213,57	2700,53	1,4848	5,6868	7,1717
200	120,23	0,001061	0,88573	504,47	2025,02	2529,49	504,68	2201,96	2706,63	1,5300	5,5970	7,1271
225	124,00	0,001064	0,79325	520,45	2013,10	2533,56	520,69	2191,35	2712,04	1,5705	5,5173	7,0878
250	127,43	0,001067	0,71871	535,08	2002,14	2537,21	535,34	2181,55	2716,89	1,6072	5,4455	7,0526
275	130,60	0,001070	0,65731	548,57	1991,95	2540,53	548,87	2172,42	2721,29	1,6407	5,3801	7,0208
300	133,55	0,001073	0,60582	561,13	1982,43	2543,55	561,45	2163,85	2725,30	1,6717	5,3201	6,9918

Vapor d'água superaquecido													
Т	V	и	h	s	V	и	h	s	V	и	h	s	
,	(m³/kg)	(kJ/kg)	(kJ/kg)	(kJ/kg K)	(m ³ /kg)	(kJ/kg)	(kJ/kg)	(kJ/kg K)	(m³/kg)	(kJ/kg)	(kJ/kg)	(kJ/kg K)	
	P = 10 kPa (45,81)					P = 50 kP	a (81,33)		P = 100 kPa (99,62)				
Sat.	14,67355	2437,89	2584,63	8,1501	3,24034	2483,85	2645,87	7,5939	1,69400	2506,06	2675,46	7,3593	
50	14,86920	2443,87	2592,56	8,1749	=	-	-	=	=	-	-	=	
100	17,19561	2515,50	2687,46	8,4479	3,41833	2511,61	2682,52	7,6947	-	-	-	-	
150	19,51251	2587,86	2782,99	8,6881	3,88937	2585,61	2780,08	7,9400	1,93636	2582,75	2776,38	7,6133	
200	21,82507	2661,27	2879,52	8,9037	4,35595	2659,85	2877,64	8,1579	2,17226	2658,05	2875,27	7,8342	
250	24,13559	2735,95	2977,31	9,1002	4,82045	2734,97	2975,99	8,3555	2,40604	2733,73	2974,33	8,0332	
300	26,44508	2812,06	3076,51	9,2812	5,28391	2811,33	3075,52	8,5372	2,63876	2810,41	3074,28	8,2157	
400	31,06252	2968,89	3279,51	9,6076	6,20929	2968,43	3278,89	8,8641	3,10263	2967,85	3278,11	8,5434	
500	35,67896	3132,26	3489,05	9,8977	7,13364	3131,94	3488,62	9,1545	3,56547	3131,54	3488,09	8,8341	
600	40,29488	3302,45	3705,40	10,1608	8,05748	3302,22	3705,10	9,4177	4,02781	3301,94	3704,72	9,0975	
700	44,91052	3479,63	3928,73	10,4028	8,98104	3479,45	3928,51	9,6599	4,48986	3479,24	3928,23	9,3398	

Tabela B.1.3