# **Zusammenfassung NuS D-ITET**

# Manuel Meier

# 24. Dezember 2016

# **Elektrostatik**

| Elementarladung       | e               | $+1.602 \cdot 10^{-19}$ | As            |
|-----------------------|-----------------|-------------------------|---------------|
| Dielektrizitätskonst. | $\varepsilon_0$ | $8.854 \cdot 10^{-12}$  | $\frac{A}{V}$ |
| Magn. Permeabilität   | $\mu_0$         | $4\pi \cdot 10^{-7}$    | $\frac{V}{A}$ |
| Ruhemasse Elektron    | $m_{0,e}$       | $9.1094 \cdot 10^{-31}$ | kg            |
| Ruhemasse Proton      | $m_{0,p}$       | $1.6726 \cdot 10^{-27}$ | kg            |
| Lichtgeschwindigkeit  | $c_{Vak}$ .     | $2.99792 \cdot 10^{8}$  | <u>m</u>      |

Sinussatz:  $\frac{a}{\sin \alpha} = \frac{b}{\sin \beta} = \frac{c}{\sin \gamma} = \frac{abc}{2A} = 2R$ Kosinussatz:  $c^2 = a^2 + b^2 - 2ab\cos \gamma$ 

#### 1.1 Ladungsdichten

- Linienladungsdichte:  $\lambda = \frac{dQ}{dl} = \left[\frac{As}{m}\right], Q = \int_{l} \lambda dl$
- Flächenladungsdichte:  $\sigma = \frac{dQ}{dA} = \begin{bmatrix} \frac{As}{-2} \end{bmatrix}, Q = \iint_A \sigma dA$
- Raumladungsdichte:  $\rho = \frac{dQ}{dV} = \left[\frac{As}{vv^3}\right], Q = \iiint_V \rho dV$

#### 1.2 Grundgrössen

- E-Feld einer Punktladung:  $\vec{E} = \frac{1}{4\pi\epsilon_0} \frac{Q}{r^2}$   $\left[\frac{V}{m}\right]$
- Kraft mehre. zweier Ladungen:  $\vec{F} = \frac{Q_1 Q_2}{4\pi \epsilon_0 r^2} \vec{e_r}$  [N]
- E-Feld Punktldgn:  $\vec{E}(\vec{r_p}) = \frac{1}{4\pi\epsilon_0} \cdot \sum_k \frac{Q_k}{|\vec{r_p} \vec{r_k}|^2} \frac{\vec{r_p} \vec{r_k}}{|\vec{r_p} \vec{r_k}|} \frac{\vec{r_p} \vec{r_k}}{|\vec{r_p} \vec{r_k}|}$
- E-Feld  $\infty$ -langer Leiter:  $E = \frac{1}{2\pi\epsilon_0} \frac{\lambda}{r_{\perp}}$
- Spannung, Innen-/Aussenleiter:  $\vec{E}(\rho) = \frac{Q}{2\pi c l} \frac{1}{\rho} \vec{e_{\rho}}$  $U = \int_{r_1}^{r_2} \vec{E}(\rho) d\vec{\rho} = \int_{r_1}^{r_2} \frac{Q}{2\pi \cdot \varepsilon \cdot l} \frac{1}{\rho} d\rho = \frac{Q}{2\pi \cdot \varepsilon \cdot l} \ln \left| \frac{r_2}{r_1} \right|$
- Leckstrom:  $I = \int_{0}^{2\pi} \int_{0}^{l} \vec{J}(\rho) \rho dz d\varphi = 2\pi \kappa \rho l E(\rho) \Rightarrow E(\rho) = \frac{1}{2\pi \kappa l} \frac{1}{\rho}$
- Elektr. Flussdichte  $\vec{D}(\vec{r}) = \varepsilon_0 \cdot \varepsilon_r \cdot \vec{E}(\vec{r}) = \varepsilon \cdot \vec{E}(\vec{r})$  [As 2]

#### 1.2.1 Arbeit & Potential (1-33)

$$\begin{array}{ll} \textit{WP}_{1 \rightarrow P_{2}} = - \int_{P_{1}}^{P_{2}} \vec{F} \cdot d\vec{s} & \text{weg-unabh"angig} \\ \textit{We} = - Q \int_{P_{1}}^{P_{2}} \vec{E} \cdot d\vec{s} = Q \left( \varphi(P_{2}) - \varphi(P_{1}) \right) = - U_{12}Q \\ \rightarrow \left[ W \right] = \textit{Ws} = \textit{J}, \left[ P \right] = \frac{\textit{J}}{=} = \textit{W} \end{array}$$

Offmals 
$$P_{ref} = \infty$$
  

$$\varphi(P_1) = \frac{W(P_{ref} \to P_1)}{Q_1} = - \int_{P_{ref}}^{P_1} \vec{E} \cdot d\vec{s} \quad [V]$$

#### 1.2.2 Spannung

$$U_{12} = \varphi(P_1) - \varphi(P_2) = \int_{P_1}^{P_2} \vec{E} \cdot d\vec{s} = \frac{W_{12}}{Q}$$

#### 1.3 Das Gauss'sche Gesetz (1-45)

$$\oint_{A} \vec{D}(\vec{r}) d\vec{A} = \oint_{A} \vec{e_r} D(r) \vec{e_r} dA = Q$$

E-Feldlinien von idealen Leitern, stehen senkrecht auf der Oberfläche

#### 1.4 Kondensator (1-61)

$$C = \frac{Q}{U} = \frac{\iint_A \vec{D} \cdot d\vec{A}}{\int_S \vec{E} \cdot d\vec{s}} = \frac{\iint_A \sigma dA}{\int_S \vec{E} \cdot d\vec{s}} \quad [F] = \left[\frac{As}{V}\right]$$

Einfache Kondensatorentladung:  $U = U_0 e^{i\vec{R}\vec{C}}$ 

• Plattenkondensator:

$$E = \frac{D}{\varepsilon} = \frac{\sigma}{\varepsilon} = \frac{Q}{\varepsilon A}, \quad U = Ed \to C = \frac{Q}{U} = \frac{\varepsilon A}{d}$$

Das Feld einer Platte ist E/2

• Kugel(schalen)kondensator: (1-62)(1-73)

$$U_{ab} = \int\limits_{r_i}^{r_a} \vec{E} \cdot d\vec{s} = \frac{Q}{4\pi\varepsilon} \int\limits_{r_i}^{r_a} \frac{1}{r^2} dr = \frac{Q}{4\pi\varepsilon} \frac{r_a - r_i}{r_a r_i} = \frac{Q}{C} \rightarrow C = 4\pi\varepsilon \frac{r_i r_a}{r_a - r_i}$$

- Vielschichtenkondensator aus n Platten:  $C_{ges} = (2n - 1)C$
- Drehkondensator (1-68)  $C_{ges} = (2n-1)\frac{\varepsilon A}{d} = (2n-1)\frac{\varepsilon}{d}\frac{\alpha}{2\pi}(\pi r_{\alpha}^2 - \pi r_i^2)$

Für unendlich dünne Platten:  $D = \sigma/2$ 

### 1.5 Energie im E-Feld (1-70)(1-72)

$$W_e = \frac{1}{2} \frac{Q^2}{C} = \frac{1}{2} Q U = \frac{1}{2} C U^2 = \iiint_V \frac{1}{2} \vec{E} \cdot \vec{D} dV$$

# 2 Elektr., stationäres Strömungsfeld

$$\begin{split} I &= \frac{dQ}{dt} = \iint_{A} \vec{J} \cdot d\vec{A}, \quad [I] &= A, \quad J = \frac{dI}{dA}, \quad [J] = \frac{A}{m^2} \\ \text{Stat. Strömungsfeld, wenn } I \text{ konst.: } \iint_{A} \vec{J} \cdot d\vec{A} = 0 \text{ (1-86)} \end{split}$$

• Spezifische Leitfähigkeit:

Driftgeschw.  $\vec{v}_{Drift} = -\mu_e \vec{E}$  wobei  $\mu_e =$  "Beweglichkeit"  $\vec{J} = \vec{V}_{Drift} \rho = -\rho \mu_e \vec{E}$ , wobei  $\mu_e = \text{Beweglichkeit}^t$  $\vec{J} = \vec{V}_{Drift} \rho = -\rho \mu_e \vec{E}$ ,  $\kappa = \text{spez.Leitf.}$ ,  $[\kappa] = \frac{A}{Vm} = \frac{1}{\Omega m}$ 

- Spezifischer Widerstand:  $\rho_R = \frac{1}{\kappa}$ ,  $[\rho_R] = \Omega m = \frac{Vm}{\Lambda}$
- Temperaturabhängigkeit:

 $\rho_R(T) = \rho_{R,20} \circ_C (1 + \alpha (T - 20 \circ C))$ 

- Ohmsches Gesetzt:  $U = R \cdot I$ ,  $[R] = \frac{V}{A} = \Omega$  $\vec{J} = \kappa \vec{E}, \quad R = \frac{U}{I} = \frac{1}{\kappa A} = \frac{\rho_R l}{A} = \frac{\int_S \vec{E} \cdot d\vec{s}}{\kappa \prod_i \vec{F}_i \cdot d\vec{s}}$
- Leitwert:  $G = \frac{1}{R}$  [G] = S (Siemens)

#### 2.2 Sprungstellen bei Materialübergängen (1-99)

- Normalkomponenten.:  $J_{n1=J_{n2}}$ ,  $\kappa_1 E_{n1} = \kappa_2 E_{n2}$ Die Normalkomponente der Stromdichte ist stetig.
- Tangentialkomp.:  $E_{t1} = E_{t2}$ Die Tangentialkomponente des E-Feldes ist stetig

#### 2.3 Energie und Leistung (1-102)

$$W_e = \int_0^t P(\tau)d\tau \text{ und } P(t) = \frac{dW_e}{dt}$$
  
 $P = UI = I^2R = U^2/R$   
Verlustleistungsdichte:  $p_V = \frac{dP}{dV} = \vec{E} \cdot \vec{J}$   
 $P = \iiint_{t=0}^{t} p_t dV = \iiint_{t=0}^{t} \vec{F} \cdot \vec{J} dV$ 

# $P = \iiint_V p_V dV = \iiint_V \vec{E} \cdot \vec{J} dV$

#### 3 DC-Netzwerke

#### 3.1 Spannungs- und Stromquellen

# • Ideale Quellen:



- → Keine Verlustlei-
- Reale Stromquelle Leerlaufspannung:  $U_0 = R_i \cdot I_0$
- Reale Spannungsquelle Kurzschlussstrom:  $I_K = \frac{U_0}{R}$



Umwandlung: [U-Quelle]  $U_0 = R_i \cdot I_0$  [I-Quelle]

- Kirchhoff'sche Maschenregel: ∑Masche Uk = 0
- Kirchhoff'sche Knotenregel: ∑<sub>Knoten</sub> I<sub>k</sub> = 0
- Leistungsanpassung

Die Leistung wird maximiert, wenn gilt:  $R_L = R_i$ 

#### Wechselwirkung Quelle Verbraucher

- Gleichmässige Energieabgabe ist nur bei identischen Quellen möglich.
- Leistungsabgabe von zusammengeschalteten Spannungsquellen ist unterschiedlich, wenn sie über versch.  $R_i$  oder
- Quellen können zu Verbrauchern werden.

# 3.2 Einfache Netzwerkberechnungen

[R] Seriell: 
$$R_{ges} = \sum_{k=1}^{n} R_k$$

[R] Parallel: 
$$\frac{1}{R_{ges}} = \sum_{k=1}^{n} \frac{1}{R_k}$$
  $n=2 \rightarrow R_{ges} = \frac{R_1 R_2}{R_1 + R_2}$ 

[C] Seriell: 
$$\frac{1}{Cges} = \sum_{k=1}^{n} \frac{1}{C_k} \quad n = 2 \rightarrow C_{ges} = \frac{C_1 C_2}{C_1 + C_2}$$

- [C] Parallel:  $C_{ges} = \sum_{k=1}^{n} C_{k}$
- [L] Seriell:
- $\frac{1}{L_{ges}} = \sum_{i=1}^{n} \frac{1}{L_{i}}$   $n = 2 \rightarrow L_{ges} = \frac{L_{1}L_{2}}{L_{1} + L_{2}}$ [L] Parallel:

#### 3.3 Spannungs-/Stromteiler

# Spannungsteiler

Stromteiler

#### Belasteter Spannungsteiler:

$$R_2' = \frac{R_2 R_L}{R_2 + R_L} \to \frac{U_2}{U} = \frac{R_2'}{R_1 + R_2'} = \frac{R_2 R_L}{R_1 (R_2 + R_L) + R_2 R_L}$$

## 3.4 Wirkungsgrad

$$\eta = \frac{P_L}{P_{out}} \cdot 100\% = \frac{I^2 R_L}{I^2 (R_i + R_I)} \cdot 100\% = \frac{R_L / R_i}{1 + R_I / R_i} \cdot 100\%$$

Umgeformt (1-140):  $\eta = (1 - \frac{I}{I}) \cdot 100\%$ 

Bei der Leistungsanpassung beträgt der Wirkungsgrad 50%

#### 3.5 Widerstandsmessung (1-131)

- $R = \frac{U_R}{I_R} = \frac{U_V}{I_R I_V} = \frac{U_V}{I_R I_V/R_V} = \frac{U_V R_V}{I_R R_V I_V}$
- Mit korrekter Strommessung:  $R = \frac{U_R}{I_R} = \frac{U_V U_A}{I_A} = \frac{U_V R_A I_A}{I_A}$

# 3.6 Analyse umfangreicherer Netzwerke (1-143)

1. Darstellung des Netzwerkgraphen:



- 2. Zählrichtung festlegen: Für jeden Zweig die Richtung festlegen (muss konsequent beibehalten werden!).
- 3. Knotengleichungen aufstellen: k-1 lin. un. Gleichu.:
- 4. Aufstellen der Maschengleichungen: #Maschengl.=#Zweige-(#Knoten-1)
- Prinzip des vollständigen Baumes:

Ein vollständiger Baum ist eine Verbindung aller Knoten ohne einen geschlossenen Kreis. Danach muss jede Maschengleichung genau einen Zweig enthalten, der nicht zum vollständigen Baum gehört.

#### • Prinzip der Auftrennung der Maschen:

Dabei wird nach dem Aufstellen einer Maschengl. Jeweils einer der verwendeten Zweige aufgetrennt und nie mehr verwendet.

#### 3.7 Superpositionsprinzip

Für jede Quelle das Netzwerk analysieren, die Anderen ausschalten, Resultate addieren.

• Spannungsquellen → Kurzschliessen

• Stromquellen  $\rightarrow$  Leerlauf

# 4 Magnetostatik

Magnetfeld: Feldlinien von N nach S (innen S → N)
 Magnetfelder sind immer geschlossen.





- Mag. Flussdichte eines Leiters:  $\vec{B} = \frac{\mu_0}{2\pi} \frac{I}{\rho}$ ,  $[T] = [\frac{V_S}{m^2}]$   $\rho$  Abstand zum Leiter
- Mag. Feldstärke eines Leiters:  $\vec{H} = \frac{1}{\mu_0} \vec{B} = \frac{1}{2\pi} \frac{1}{\rho}$ ,  $[H] = \frac{A}{m}$
- Lorenzkraft (1-180):  $\vec{F} = q\vec{v} \times \vec{B} = I\vec{l} \times \vec{B}$
- F auf Ladung (1-183):  $\vec{F}_L = Q \cdot \vec{v} \times \vec{B}$   $\vec{F} = Q \cdot (\vec{E} + \vec{v} \times \vec{B})$

# Analogie: Elektrisch, Magnetisch (1-209)

| Analogie: Elektrisch, Magnetisch (1-209) |                                                    |                                 |                                                     |                         |  |  |
|------------------------------------------|----------------------------------------------------|---------------------------------|-----------------------------------------------------|-------------------------|--|--|
| Grösse                                   | Elektrisch                                         |                                 | Magnetisch                                          |                         |  |  |
| Leitfähigkeit                            | κ                                                  |                                 | μ                                                   |                         |  |  |
| Widerstand                               | $R = \frac{1}{\kappa \cdot A}$                     |                                 | $R_m = \frac{1}{\mu \cdot A}$                       |                         |  |  |
| Spannung                                 | $U_{12} = \int_{P_1}^{P_2} \vec{E} \cdot d\vec{s}$ |                                 | $V_{m12} = \int_{P_1}^{P_2} \vec{H} \cdot d\vec{s}$ |                         |  |  |
|                                          |                                                    |                                 | $=R_{m12}\cdot\Phi_{12}$                            |                         |  |  |
| Strom/Fluss                              | $I = \iint_{\vec{A}} \vec{J} \cdot d\vec{A}$       |                                 | $\Phi = \iint_A \vec{B} \cdot d\vec{A}$             |                         |  |  |
| Strom/Fluss                              | $=\iint_{A}^{JJ} \vec{E} \cdot d\vec{A}$           |                                 | $= \mu \iint_A \vec{H} \cdot d\vec{A}$              |                         |  |  |
| Ohm. Gesetzt                             | $U = R \cdot I$                                    |                                 | $V_m = R_m \cdot \Phi$                              |                         |  |  |
| Maschengl.                               | $U_0 = \sum_{Masche} RI$                           |                                 | $\Theta = \sum_{Masche} R_m \Phi$                   |                         |  |  |
| Knotengl.                                | $\sum_{Knoten} I = 0$                              |                                 | $\sum_{Knoten} \Phi = 0$                            |                         |  |  |
| Feldgrössen                              |                                                    | Elekt                           | risch                                               | Magnetisch              |  |  |
| Intensität/Wirkung(Kraft)                |                                                    | Ē                               |                                                     | $\vec{B} = \mu \vec{H}$ |  |  |
| Quantität/Ursache(Ladung)                |                                                    | $\vec{D} = \varepsilon \vec{E}$ |                                                     | $\vec{H}$               |  |  |

#### 4.1 Oersted'sches Gesetz (Durchfl.satz)(1-187)

$$NI = \iint_A \vec{J} \cdot d\vec{A} = \Theta = \oint_{\partial A} \vec{H} \cdot d\vec{s} = \sum_k H_k l_k$$

 $\Theta$  Durchflutung, N Windungszahl

Prinzip gilt insbesondere für N = 1, sprich Einzelne Leiter

#### 4.2 Verschiedene magnetische Komponenten

• ∞-langer Leiter (1-189):

$$ec{H}(
ho) = ec{e}_{arphi} \cdot rac{I}{2\pi} egin{cases} 
ho/R^2 & 
ho \leq R \ 1/
ho & 
ho \geq R \end{cases}$$

• Toroidspule (1-190):

$$NI = \Theta = \int_{0}^{2\pi} \vec{e}_{\varphi} H_{\varphi} \rho d\varphi = 2\pi \rho H_{\varphi}(\rho) \rightarrow \vec{H} = \frac{NI}{2\pi o} \vec{e}_{\varphi}$$

- Reluktanzmodell:  $H = \frac{NI}{I}\vec{e}_x$
- Spannung über Spule: Wenn sich die Spule bewegt, gilt nach dem Induktionsgesetz:  $U_s = N \cdot \frac{d\Phi}{2}$  Dies vereinfacht sich zu:  $U_s = l_s \cdot B \cdot v$  mit  $l_s$ : Leiterlänge im B-Feld, v: Geschwindigkeit mit der sich die Spule über den Kern bewegt.

#### 4.3 Reluktanzmodell (1-206)

- Magn. Spannung:  $V_m = \int_{P_1}^{P_2} \vec{H} \cdot d\vec{s} = \Theta = NI \quad [\Theta] = A$
- Magn. Strom:  $\Phi = \iint_A \vec{B} \cdot d\vec{A}$ ,  $[\Phi] = Vs = Wb$  (Weber)
- Magn. Widerstand:  $R_m = \frac{1}{\mu A}$ ,  $[R_m] = \frac{1}{H} = \frac{A}{Vs}$

- Magnetische spezifische Leitfähigkeit: μ
- Magnetischer Leitwert:  $\Lambda_m = \frac{1}{R_m}, \quad [\Lambda_m] = \frac{V_S}{A}$
- Ohm'sches Gesetz:  $V_m = R_m \Phi$ ,  $[V_m] = A$

#### 4.4 Magnetische Polarisation(1-199)

Magnetische Polarisation:  $\vec{J_m} = \mu_0 \mu_r \vec{H} - \mu_0 \vec{H}$ Magnetisierung:  $\vec{M} = \mu_r \vec{H} - \vec{H}$ 

Diamagnetismus:

Materialien, die das B-Feld schwächen,  $\mu_r < 1$ 

Paramagnetismus:

Materialien, die das B-Feld leicht stärken,  $\mu_r > 1$ 

Ferromagnetismus:

Nebenan die Hysteresekurve eines Ferrit Materials

Remanenz: oberer Schnittpunkt mit y-Achse,  $\mu_r >> 1,~\mu_r$ nicht konstant

**Dauermagnete:** Ferromagnetische Stoffe im Remanenzzustand.

# 4.5 Sprungstellen bei Materialübergängen (1-205)

• Normalkomponenten:  $B_{n1} = B_{n2}$ 

$$B_{n1} = B_{n2}$$
,  $\frac{H_{n1}}{H_{n2}} = \frac{\tan(\alpha_2)}{\tan(\alpha_1)}$ 

• Tangentialkomp.:  $H_{t1} = H_{t2}$ 

$$\frac{B_{t1}}{H_{t2}} = \frac{\mu_1}{\mu_2} = \frac{\tan(\alpha_1)}{\tan(\alpha_2)}$$

#### 4.6 Induktivität (1-211)

$$L = \frac{\Psi}{I} = \frac{N\Phi}{I} = \frac{N^2}{R_{\text{tot}}}, \quad [L] = \frac{V_{\delta}}{A} = H \text{ (Henry)}$$

- $A_L$ -Wert:  $L = N^2 A_L = N^2 \Lambda_m$ ,  $A_L = \Lambda_m = \frac{1}{R_m} = [nH]$
- Toroidspule:  $L = \frac{\Phi}{I} = \frac{N\Phi_A}{I} = N^2 \frac{\mu H}{2\pi} \ln \left( \frac{r_{aussen}}{r_{innen}} \right)$
- Kraft Magnetfeld:  $F_A = \frac{B^2}{2\mu_0} A$

#### 4.7 Induktion und Selbstinduktion(1-249)

- Induktionsgesetz:  $u(t) = -\frac{d\Phi}{dt} = -\frac{d}{dt} \iint_A \vec{B} \cdot d\vec{A}$
- Selbstinduktion:  $u_L(t) = L \frac{di_L}{dt}$  (vgl.  $i_C = C \frac{du_C}{dt}$ )
- Energie:  $W_m = W_L = \frac{1}{2}LI^2 = \frac{1}{2}\Phi I = \iiint_V \frac{1}{2}\vec{B}\cdot\vec{H}dV$

# 5 Allgemeines

# 5.1 Einheiten

|                 | Einheit            | Bedeutung                        |  |  |
|-----------------|--------------------|----------------------------------|--|--|
| $\vec{B}$       | $Vs/m^2$           | Magnetische Flussdichte          |  |  |
| $B_r$           | $Vs/m^2$           | Remanenz                         |  |  |
| С               | As/V = F           | Kapazität                        |  |  |
| $\vec{D}$       | $As/m^2$           | Elektr. Flussdichte, el. Erregun |  |  |
| Ē               | V/m                | Elektrische Feldstärke           |  |  |
| G               | $1/\Omega = A/V$   | Elektr. Leitwert                 |  |  |
| $\vec{H}$       | A/m                | Magn. Feldstärke                 |  |  |
| $H_c$           | A/m                | Koerzitivfeldstärke              |  |  |
| I               | A                  | Gleichstrom                      |  |  |
| IK              | A                  | Kurzschlussstrom                 |  |  |
| i               | A                  | Zeitabhängiger Strom             |  |  |
| $\vec{J}$       | $A/m^2$            | (räuml. vert.) Stromdichte       |  |  |
| $\vec{J}$       | $V_S/m^2$          | ,                                |  |  |
| $\vec{J}$       | ,                  | Magn. Polarisation               |  |  |
|                 | Vsm                | Magn. Dipolmoment                |  |  |
| k               | X7. / A            | Koppelfaktor                     |  |  |
| L               | Vs/A               | Induktivität                     |  |  |
| $\vec{M}$       | A/m                | Magnetisierung                   |  |  |
| $\vec{m}$       | $Am^2$             | Magnetisches Moment              |  |  |
| N               |                    | Windungszahl                     |  |  |
| P               | VA = W             | Leistung                         |  |  |
| $p_V$           | $W/m^3$            | Verlustleistungsdichte           |  |  |
| $\vec{P}$       | $As/m^2$           | Dielektr. Polarisation           |  |  |
| $\vec{p}$       | Asm                | Elektr. Dipolmoment              |  |  |
| Q               | As = C             | Ladung, Punktladung              |  |  |
| R               | $V/A = \Omega$     | Ohmscher Widerstand              |  |  |
| $R_m$           | A/Vs               | Magn. Widerstand                 |  |  |
| U               | V                  | Gleichspannung                   |  |  |
| и               | V                  | Zeitlich veränderliche Spannung  |  |  |
| ü               |                    | Übersetzungsverhältnis           |  |  |
| $V_m$           | A                  | Magnetische Spannung             |  |  |
| W               | VAs = J            | Energie                          |  |  |
| w               | $WAs/m^3$          | Energiedichte                    |  |  |
| Φ               | Vs                 | Magnetischer Fluss               |  |  |
| $\Lambda_m$     | Vs/A               | Magnetischer Leitwert            |  |  |
| Θ.              | Á                  | Durchflutung                     |  |  |
| Ψ               | As                 | Elektr. Fluss                    |  |  |
| α               | 1/K                | Temperaturkoeffizient            |  |  |
| χ               | ,                  | Dielekt. & magn. Suszeptibilität |  |  |
| ε               | As/Vm              | Dielektrizitätskonstante         |  |  |
| $\varepsilon_r$ | ,                  | Dielektrizitätszahl              |  |  |
| φ               |                    | Phasenwinkel                     |  |  |
| $\varphi_e$     | V                  | Elektrostatisches Potential      |  |  |
| η               |                    | Wirkungsgrad                     |  |  |
| K               | A/Vm               | Spezifische Leitfähigkeit        |  |  |
| λ               | As/m               | Linienladungsdichte              |  |  |
| μ               | Vs/Am              | Permeabilität                    |  |  |
| $\mu_e$         | $m^2/Vs$           | Beweglichkeit der Ladungsträger  |  |  |
|                 | $\frac{m}{As/m^3}$ | Raumladungsdichte                |  |  |
| ρ               | Vm/A               | Spezifischer Widerstand          |  |  |
| $\rho_R$        |                    |                                  |  |  |
| σ               | $As/m^2$           | Flächenladung                    |  |  |
|                 |                    |                                  |  |  |
| σ               | $1/s \cdot 2\pi$   | Streugrad<br>Kreisfrequenz       |  |  |