Big Data Übungsblatt 08

Anton Bulat, Josephine Geiger, Julia Siekiera

December 8, 2017

Aufgabe 1: Kommunikationskosten

Bestimmen Sie die Kommunikationskosten der folgenden Probleme in Abhängigkeit der genannten Eingabegrößen:

a)

Schnitt zweier Relationen $R \cap S$ mit r bzw. s Tupeln (Folie 38, Vorlesung 5): Die Eingabe in den Mapper besteht aus allen Tupeln aus beiden Relationen, also sind die Kommunikationskosten hier in $\mathcal{O}(r+s)$. Da der Mapper nur die Identität ist, ist die Eingabe in den Reducer genauso groß. Also sind die Gesamtkommunikationskosten dieses Problems in $\mathcal{O}(2r+2s) = \mathcal{O}(r+s)$.

b)

Gruppenbasierter Similarity-Join mit n Bildern und Gruppengröße h (Folie 39, Vorlesung 7):

Die Eingabe in den Mapper besteht aus Tupeln (i, P_i) mit dem Bildindex und dem Bild. Bei n Bildern sind diese Kommunikationskosten also in $\mathcal{O}(n)$. Die Eingabe in den Reducer ist höher. Es werden die n Bilder an jeweils g-1 Reducer geschickt, also liegen diese Kommunikationskosten in $\mathcal{O}(n \times \frac{n}{h})$. Die Gesamtkommunikationskosten dieses Problems liegen somit in $\mathcal{O}(\frac{n^2}{h} + n)$.

Aufgabe 2: Graphische Modelle

a)

Grundsätzlich lassen sich anhand eines graphischen Modells Aussagen treffen über

 \bullet die minimal mögliche Reducergröße q:

$$q \ge \max_{n \in B} deg(n).$$

Das heißt, man braucht mindestens so viele Eingaben in einem Reducer wie die höchste Anzahl an Eingangskanten in einen Ausgabeknoten.

 \bullet die maximal benötigte Replikationsrate r:

$$r \leq \sum_{n \in A} deg(n) = \sum_{n \in B} deg(n).$$

Das heißt, man braucht höchstens so viele Replikationen einer einzelnen Eingabe wie Kanten insgesamt. (Noch öfter braucht eine Eingabe nicht geschickt zu werden.)

b)

Natürlicher Join $R(A,B)\bowtie S(B,C)$ mit a möglichen Werten für A,b möglichen Werten für B und c möglichen Werten für C:

i)

Das zugehörige graphische Modell besitzt a*b+b*c Eingabeknoten und a*b*c Ausgabeknoten.

ii)

Modell für $a=2,\,b=3$ und c=1:

Eingabe:

iii)

Schranken für q und r in Abhängigkeit von a, b und c:

$$q \ge \max_{n \in B} deg(n) \Rightarrow q \ge 2.$$

Die untere Schranke für q hängt hier nicht von a,b und c ab, sondern ist hier fest ≥ 2 , weil zwei Relationen gejoint werden und deshalb zwei Eingabetupel für ein mögliches Ausgabetupel benötigt werden.

$$r \leq \sum_{n \in B} deg(n) \Rightarrow r \leq 2*a*b*c.$$

c)

Gruppierung $\gamma_{A,SUM(B)}R(A,B)$ mit a möglichen Werten für A und b möglichen Werten für B:

i)

Das zugehörige graphische Modell besitzt a*b Eingabeknoten (gleich der Anzahl an Tupeln in der Relation R) und a Ausgabeknoten, da für jeden Wert von A eine Summe berechnet wird.

ii)

Eingabe:

iii)

Schranken für q und r in Abhängigkeit von a und b:

$$q \ge \max_{n \in B} deg(n) \Rightarrow q \ge b.$$

Für jeden Wert von A gibt es bis zu b Summanden, wofür jeweils ein Tupel an den Reducer geschickt werden muss.

$$r \leq \sum_{n \in B} deg(n) \Rightarrow r \leq a * b.$$