

학습목표

- 정렬(소트, sort)의 개념 및 필요성
- 다양한 정렬 알고리즘
- 선택 정렬(Selection Sort) 알고리즘 상세
- 스크래치에서 선택 정렬 알고리즘을 활용하여 정렬 기능을 구현한다.

학습목차

1. 정렬의 개념 및 필요성

2. 다양한 정렬 알고리즘

3. 선택 정렬 알고리즘 상세

4. [예제] 선택 정렬 알고리즘 구현

정렬(소트) _{Sort}

- 정렬: 순서 없이 저장된 데이터를 일정한 순서대로 열거하는 행위
 - ▶ 오름차순 : 값이 작은 것부터 큰 순으로 정렬
 - ▶ 내림차순 : 값이 큰 것부터 작은 순으로 정렬

일상 생활에서의 정렬된 데이터 활용

. 정렬의 개념 및 필요성

영어 사전

(출처: https://news.joins.com/article/4412924)

순위	변동	게임명	장르	점유율(%)	사용시간(시)
1		리그 오브 레전드	RTS	45.28%	1,454,960
2	Δ1	서든어택	FPS	7.49%	240,508
3	Δ1	배틀그라운드	FPS	7.01%	225,139
4	▼2	피파온라인4	스포츠	6.64%	213,438
5		오버워치	FPS	4.51%	145,052
6		메이플 스토리	RPG	4.41%	141,663
7		아이온	RPG	3.12%	100,349
8	Δ1	던전앤파이터	RPG	2.27%	73,037
9	▼1	스타크래프트	RTS	2.20%	70,577
10		월드 오브 워크래프트	RPG	1.29%	41,333

게임 순위

(출처: http://www.gametrics.com/news/News02_View.aspx?segid=45080)

코로나 현황

(출처: https://coronaboard.kr/)

	조희순	평점순 (현재상영영화)	평점순(모든영화)	1		2021,02	14	<
위		영화명		Ī	평점		변	동폭
	그린 북			***	9.59	<u>평점주기</u>	_	0
	가버나움			***	9.59	<u>평점주기</u>	_	0
	디지몬 어드번	!처 라스트 에볼루션 : 인	1면	***	9.53	<u>평점주기</u>	_	0
1	베일리 어게인	<u>!</u>		***	9.53	<u>평점주기</u>	_	0
	먼 훗날 우리			***	9.51	평점주기	-	0
	원더			***	9.51	<u>평점주기</u>	_	0
	극장판 바이올	한렛 에버가든		***	9.50	평점주기	_	0
	아일라			***	9.48	평점주기	_	0
	당갈			****	9.48	평점주기	ŧ	1

영화 순위

(출처: https://movie.naver.com/movie/sdb/rank/rmovie.nhn?sel=pnt&date=20210214)

정렬의 필요성

- 원하는 정보를 <mark>검색</mark>하는데 드는 시간 단축
 - ▶ 만약 영어 사전에 단어들이 순서 없이 기록되어 있다면, 내가 원하는 단어를 찾으려면?→ 순차 탐색
 - ▶ 영어 사전에는 단어들이 알파벳 순서로 기록되어 있기 때문에 내가 원하는 단어를 쉽게 찾을 수 있음
- 정보를 보다 가치 있게 활용 가능
 - ▶ 사용자의 의사결정에 도움을 줄 수 있음

정렬 알고리즘명	정렬 방식
선택 정렬(Selection sort)	정렬되지 않은 데이터 중에서 <mark>가장 작은 값을 찾아</mark> 앞자리 숫자와 <mark>교환</mark> 하는 방법
버블 정렬(Bubble sort)	이웃한 데이터끼리 크고 작음을 따져 서로 위치를 교환하는 방법
버킷 정렬(Bucket sort)	첫째자리 수만큼 통(버킷)을 준비하여 그곳에 데이터를 분류하고 정렬하는 방법
삽입 정렬(Insertion sort)	새로운 데이터의 크기를 따져 이미 정렬된 데이터 사이에 삽입하는 방법
퀵 정렬(Quick sort)	임의의 기준 값을 선택하고 작은 데이터는 기준 값 왼쪽에, 큰 데이터는 기준 값 오른쪽에 가져다 놓는 방법

정렬 알고리즘명	정렬 방식	
선택 정렬(Selection sort)	정렬되지 않은 데이터 중에서 가장 작은 값을 찾아 앞자리 숫자와 교환하는 방법	
버블 정렬(Bubble sort)	이웃한 데이터끼리 크고 작음을 따져 <mark>서로 위치를</mark> 교 <mark>환</mark> 하는 방법	
버킷 정렬(Bucket sort)	첫째자리 수만큼 통(버킷)을 준비하여 그곳에 데이터를 분류하고 정렬하는 방법	
삽입 정렬(Insertion sort)	새로운 데이터의 크기를 따져 이미 정렬된 데이터 사이에 삽입하는 방법	
퀵 정렬 (Quick sort)	임의의 기준 값을 선택하고 작은 데이터는 기준 값 왼쪽에, 큰 데이터는 기준 값 오른쪽에 가져다 놓는 방법	

정렬 알고리즘명	정렬 방식
선택 정렬(Selection sort)	정렬되지 않은 데이터 중에서 가장 작은 값을 찾아 앞자리 숫자와 교환하는 방법
버블 정렬(Bubble sort)	이웃한 데이터끼리 크고 작음을 따져 서로 위치를 교환하는 방법
버킷 정렬(Bucket sort)	첫째자리 수만큼 <mark>통(버킷)</mark> 을 준비하여 그곳에 데이터를 분류하고 정렬하는 방법
삽입 정렬(Insertion sort)	새로운 데이터의 크기를 따져 이미 정렬된 데이터 사이에 삽입하는 방법
퀵 정렬 (Quick sort)	임의의 기준 값을 선택하고 작은 데이터는 기준 값 왼쪽에, 큰 데이터는 기준 값 오른쪽에 가져다 놓는 방법

정렬 알고리즘명	정렬 방식		
선택 정렬(Selection sort)	정렬되지 않은 데이터 중에서 가장 작은 값을 찾아 앞자리 숫자와 교환하는 방법		
버블 정렬(Bubble sort)	이웃한 데이터끼리 크고 작음을 따져 서로 위치를 교환하는 방법		
버킷 정렬(Bucket sort)	첫째자리 수만큼 통(버킷)을 준비하여 그곳에 데이터를 분류하고 정렬하는 방법		
삽입 정렬(Insertion sort)	새로운 데이터의 크기를 따져 <mark>이미 정렬된 데이터 사이에</mark> 삽입하는 방법		
퀵 정렬 (Quick sort)	임의의 기준 값을 선택하고 작은 데이터는 기준 값 왼쪽에, 큰 데이터는 기준 값 오른쪽에 가져다 놓는 방법		

정렬 알고리즘명	정렬 방식
선택 정렬(Selection sort)	정렬되지 않은 데이터 중에서 가장 작은 값을 찾아 앞자리 숫자와 교환하는 방법
버블 정렬(Bubble sort)	이웃한 데이터끼리 크고 작음을 따져 서로 위치를 교환하는 방법
버킷 정렬(Bucket sort)	첫째자리 수만큼 통(버킷)을 준비하여 그곳에 데이터를 분류하고 정렬하는 방법
삽입 정렬(Insertion sort)	새로운 데이터의 크기를 따져 이미 정렬된 데이터 사이에 삽입하는 방법
퀵 정렬 (Quick sort)	임의의 <mark>기준 값을 선택</mark> 하고 작은 데이터는 기준 값 왼쪽에, 큰 데이터는 기준 값 오른쪽에 가져다 놓는 방법

선택 정렬(Selection Sort) 알고리즘 소개

- ① 미정렬 리스트에서 가장 작은 수 찾기
- ② 미정렬 리스트의 맨 앞 항목과 가장 작은 수를 교환
- ③ 모두 정렬될 때까지 1, 2번 반복

문제정의 – 선택 정렬 구현하기

- '점수로 정렬' 버튼을 클릭하면, 점수 순으로 오름차순 정렬을 수행한다.
- '플레이어명으로 정렬' 버튼을 클릭하면, 플레이어명 순으로 오름차순 정렬을 수행한다. (가나다 순)

12

사전 준비물

- 점수와 플레이어 데이터를 리스트에 저장하기 (9-1주차. 이진 탐색 실습과 동일한 파일)
 - ▶ 점수.txt → 점수 리스트에 저장
 - ▶ 플레이어.txt → 플레이어 리스트에 저장
- first, last 변수 생성하기 : 미정렬 리스트의 처음과 끝을 가르키는 변수
- min: 미정렬 리스트에서 최소값을 갖는 항목 인덱스를 저장하기 위한 변수
- n: 최소값을 찾을 때 사용하는 반복횟수
- temp : 두 값의 위치를 바꿀 때 사용하는 임시 변수

사전 준비물

• '플레이어명으로 정렬' 버튼 스프라이트 준비하기

① 스프라이트 〉 그리기

② 직사각형 선택 후, 사각형 박스 그리기

③ 텍스트 선택 후, 입력

- 실행 버튼(▶)을 클릭했을 때
 - ▶ 변수초기화하기
 - ▶ 오름차순정렬하기

• 변수초기화하기 함수 정의

처음에는 리스트 전체가 모두 미정렬 상태이므로,
First는 리스트의 첫번째 항목을 가르키도록 1로,
Last는 리스트의 마지막을 가르키도록 리스트의 길이로 초기화

- 오름차순정렬하기
 - 1 모두 정렬할 때까지 반복하기 (first = last)

- 오름차순정렬하기
 - 2 first부터 last까지의 숫자 중 최소값이 들어있는 위치를 찾기 위해 n과 min을 first값으로 초기화

- 오름차순정렬하기
 - ③ 미정렬 리스트(first~last)에서 최소값 찾기

- 오름차순정렬하기
 - 4 미정렬 리스트의 맨 앞에 있는 항목과 최소값을 교환하기

1. 스크립트 작성

• 전체 스크립트


```
변수초기화하기 정의하기

first ▼ 을(를) 1 로 정하기

last ▼ 을(를) 플레이어 ▼ 의 길이 로 정하기
```


1. 스크립트 작성

• 점수로 정렬하기

플레이어 정렬 스프라이트 복사하기

```
오름차순정렬하기 정의하기
  first = last 까지 반복하기
                                     최소값 항목 인덱스를 찾는
                                     조건만 플레이어 리스트에서
                                         점수 리스트로 변경
         last 까지 반복하기
      플레이어 ▼ 리스트의 n 번째 항목 <
                              플레이어 ▼ 리스트의 min 번째 항목 (이)라면
   n ▼ 을(를) 1 만큼 바꾸기
             이(가) 아니다 (이)라면
    temp ▼ 을(를) 플레이어 ▼ 리스트의 first 번째 항목 로 정하기
    플레이어 ▼ 리스트의 first 번째 항목을 플레이어 ▼ 리스트의 min 번째 항목 으로 바꾸기
    플레이어 ▼ 리스트의 min 번째 항목을 temp 으로 바꾸기
    temp ▼ 을(를) 점수 ▼ 리스트의 first 번째 항목 로정하기
    점수 ▼ 리스트의 first 번째 항목을 점수 ▼ 리스트의 min 번째 항목 으로 바꾸기
    점수 ▼ 리스트의 min 번째 항목을 temp 으로 바꾸기
  first ▼ 을(를) 1 만큼 바꾸기
```


2. 스크립트 실행

• 스크립트 실행

2. 스크립트 실행

• 프로젝트 저장

프로젝트명

9-2-선택정렬알고리즘구현.sb3

학습정리

<mark>정렬</mark>은 순서 없이 저장된 데이터를 일정한 순서대로 열거하는 행위이다.

▶ 오름차순 : 값이 작은 것부터 큰 순으로 정렬

▶ 내림차순 : 값이 큰 것부터 작은 순으로 정렬

정렬이 필요성한 이유는 다음과 같다.

- ▶ 원하는 정보를 <mark>검색</mark>하는 데 드는 **시간 단축**
- ▶ 정보를 보다 가치 있게 활용 가능

본 수업자료는 저작권법 제 25조 2항에 따라 학교 수업을 목적으로 이용되었으므로, 본 수업자료를 외부에 공개, 게시하는 것을 금지하며, 이를 위반하는 경우 저작권 침해로서 관련법에 따라 처벌될 수 있습니다.