Robótica

Pablo González

Noviembre, 2018

Contenido

Actuadores y Sensores

Control de Posición

Actuadores y Sensores

Motor de CC

Modelo Motor de CC

Servomotores

Servomotores.

Construcción

Transmisiones

Reductores Planetarios

Reductores Armónicos

Ejemplo de

Transmisiones en

Brazo Superior

Codificadores Opticos

Absolutos

Codificadores Opticos

Incrementales

Disco Ranurado

Resolvers

Control de Posición

Actuadores y Sensores

Motor de CC

Actuadores y Sensores

Motor de CC

Modelo Motor de CC

Servomotores

Servomotores.

Construcción

Transmisiones

Reductores Planetarios

Reductores Armónicos

Ejemplo de

Transmisiones en

Brazo Superior

Codificadores Opticos

Absolutos

Codificadores Opticos

Incrementales

Disco Ranurado

Resolvers

Modelo Motor de CC

Actuadores y Sensores

Motor de CC

Modelo Motor de CC

Servomotores

Servomotores.

Construcción

Transmisiones

Reductores Planetarios

Reductores Armónicos

Ejemplo de

Transmisiones en

Brazo Superior

Codificadores Opticos

Absolutos

Codificadores Opticos

Incrementales

Disco Ranurado

Resolvers

Control de Posición

Ecuaciones del motor de CC

Parte eléctrica

$$V_a = R_a I_a + L \frac{dI_a}{dt} + E_a \tag{1}$$

Conversión de energía

$$\tau_m = K_T I_a \tag{2}$$

$$E_a = K_V \dot{\theta}_m \tag{3}$$

Parte mecánica: dinámica del motor

$$\tau_m = J_m \ddot{\theta}_m + B_m \dot{\theta}_m + \tau_{\text{carga}} \tag{4}$$

Ecuación del actuador (motor controlado por corriente de armadura y equipo de electrónica de potencia):

$$\tau_m(t) = K_m u(t) \tag{5}$$

Motor de CC

Modelo Motor de CC

Servomotores

Servomotores.

Construcción

Transmisiones

Reductores Planetarios

Reductores Armónicos

Ejemplo de

Transmisiones en

Brazo Superior

Codificadores Opticos

Absolutos

Codificadores Opticos

Incrementales

Disco Ranurado

Resolvers

Control de Posición

Características:

- Muy baja inercia
- Elevado torque pico instantáneo $(300\%\tau_{nom})$
- Elevadas velocidades máximas instantáneas (6000RPM)
- Incluye sensor de posición y freno de mantenimiento.

Servomotores. Construcción

Actuadores y Sensores

Motor de CC

Modelo Motor de CC

Servomotores

Servomotores.

Construcción

Transmisiones

Reductores Planetarios

Reductores Armónicos

Ejemplo de

Transmisiones en

Brazo Superior

Codificadores Opticos

Absolutos

Codificadores Opticos

Incrementales

Disco Ranurado

Resolvers

Servomotor compacto

Servomotor con encoder incorporado

Servomotor extraplano

Transmisiones

Actuadores y Sensores

Motor de CC

Modelo Motor de CC

Servomotores

Servomotores.

Construcción

Transmisiones

Reductores Planetarios

Reductores Armónicos

Ejemplo de

Transmisiones en

Brazo Superior

Codificadores Opticos

Absolutos

Codificadores Opticos

Incrementales

Disco Ranurado

Resolvers

Control de Posición

Relaciones entre entrada y salida

$$\dot{\theta}_m = N\dot{\theta} \tag{6}$$

$$N\tau_m = \tau \tag{7}$$

Ecuación dinámica del motor + reducción visto en el eje del robot.
Combinando las ecs. 4, 6 y 7:

$$N\tau_m = J_m N^2 \ddot{\theta} + B_m N^2 \dot{\theta} + \tau_{\text{eje}} \tag{8}$$

Reductores Planetarios

Actuadores y Sensores

Motor de CC

Modelo Motor de CC

Servomotores

Servomotores.

Construcción

Transmisiones

Reductores Planetarios

Reductores Armónicos

Ejemplo de

Transmisiones en

Brazo Superior

Codificadores Opticos

Absolutos

Codificadores Opticos

Incrementales

Disco Ranurado

Resolvers

Reductores Armónicos

Actuadores y Sensores

Motor de CC

Modelo Motor de CC

Servomotores

Servomotores.

Construcción

Transmisiones

Reductores Planetarios

Reductores Armónicos

Ejemplo de Transmisiones en

Brazo Superior

Codificadores Opticos

Absolutos

Codificadores Opticos

Incrementales

Disco Ranurado

Resolvers

Control de Posición

Nombre genérico: Strain wave gearing.

- Sin juego mecánico (zero backslash)
- Altísima precisión
- Altísimas reducciones en poco espacio (N=100)
- Diseño de eje concéntrico
- Alta capacidad de torque en relación al peso o volumen.

Ejemplo de Transmisiones en Brazo Superior

Actuadores y Sensores

Motor de CC

Modelo Motor de CC

Servomotores

Servomotores.

Construcción

Transmisiones

Reductores Planetarios

Reductores Armónicos

Ejemplo de

Transmisiones en

Brazo Superior

Codificadores Opticos

Absolutos

Codificadores Opticos

Incrementales

Disco Ranurado

Resolvers

Control de Posición

Video muñeca Kuka KR-500.

Codificadores Opticos Absolutos

Actuadores y Sensores

Motor de CC

Modelo Motor de CC

Servomotores

Servomotores.

Construcción

Transmisiones

Reductores Planetarios

Reductores Armónicos

Ejemplo de

Transmisiones en

Brazo Superior

Codificadores Opticos

Absolutos

Codificadores Opticos

Incrementales

Disco Ranurado

Resolvers

Codificadores Opticos Incrementales

Actuadores y Sensores

Motor de CC

Modelo Motor de CC

Servomotores

Servomotores.

Construcción

Transmisiones

Reductores Planetarios

Reductores Armónicos

Ejemplo de

Transmisiones en

Brazo Superior

Codificadores Opticos

Absolutos

Codificadores Opticos

Incrementales

Disco Ranurado

Resolvers

Control de Posición

Características:

- Digitales.
- Canal A, B y Z. Determina sentido de giro.
- Alta resolución 13bits@1500RPM.
- Incrementales: requiere contador de pulsos con retención.
- Estrategia de homing para el eje.

Disco Ranurado

Actuadores y Sensores

Motor de CC

Modelo Motor de CC

Servomotores

Servomotores.

Construcción

Transmisiones

Reductores Planetarios

Reductores Armónicos

Ejemplo de

Transmisiones en

Brazo Superior

Codificadores Opticos

Absolutos

Codificadores Opticos

Incrementales

Disco Ranurado

Resolvers

Motor de CC

Modelo Motor de CC

Servomotores

Servomotores.

Construcción

Transmisiones

Reductores Planetarios

Reductores Armónicos

Ejemplo de

Transmisiones en

Brazo Superior

Codificadores Opticos

Absolutos

Codificadores Opticos

Incrementales

Disco Ranurado

Resolvers

Control de Posición

Características:

- Absolutos.
- Analógicos. Uso de RDC (Resolver to Digital Converter)
- RDC de Altísima resolución 16bits@10000RPM.
- lacksquare Exactitud del sistema (RDC+sensor primario) $\sim 2.5'$
- Medición de posición y velocidad.
- Muy robustos.

Control de Posición

Diagrama en Bloques

Dinámica del Robot + Actuadores

Modelo Simplificado

Control PD

Control PID

Técnicas de Control

No Lineal

Torque Computado

Diagrama en Bloques

Actuadores y Sensores

Control de Posición

Diagrama en Bloques

Dinámica del Robot + Actuadores

Modelo Simplificado

Control PD

Control PID

Técnicas de Control No Lineal

NO LINEAL

Torque Computado

Figure 1: Diagrama en bloques del robot

Dinámica del Robot + Actuadores

Actuadores y Sensores

Control de Posición

Diagrama en Bloques

Dinámica del Robot + Actuadores

Modelo Simplificado

Control PD

Control PID

Técnicas de Control No Lineal

Torque Computado

Formas de modelar:

- Newton-Euler
- Resolución de la Ec. de Lagrange $\tau_s = \frac{d}{dt} \left(\frac{\partial L}{\partial \dot{\theta}_s} \right) \frac{\partial L}{\partial \theta_s}$

Modelo Completo:

$$\boldsymbol{\tau} = M(\boldsymbol{\theta})\ddot{\boldsymbol{\theta}} + \mathbf{H}(\boldsymbol{\theta}, \dot{\boldsymbol{\theta}}) + \mathbf{G}(\boldsymbol{\theta})$$
$$N\boldsymbol{\tau}_m = J_m N^2 \ddot{\boldsymbol{\theta}} + B_m N^2 \dot{\boldsymbol{\theta}} + \boldsymbol{\tau}$$

Simplificación del modelo para el eje s:

$$N_s \tau_{ms} = J_{ms} N_s^2 \ddot{\theta}_s + B_{ms} N_s^2 \dot{\theta}_s + \overline{m}_{ss} \ddot{\theta}_s + \tau_s^{\text{pert}}$$

$$N_s \tau_{ms} = \left(J_{\text{ef}} \ddot{\theta}_s + B_{\text{ef}} \dot{\theta}_s \right) + \tau_s^{\text{pert}}$$

$$N \tau_m - \tau^{\text{pert}} = \left(J_{\text{ef}} \ddot{\theta} + B_{\text{ef}} \dot{\theta} \right)$$

Modelo Simplificado

Actuadores y Sensores

Control de Posición

Diagrama en Bloques

Dinámica del Robot + Actuadores

Modelo Simplificado

Control PD

Control PID

Técnicas de Control No Lineal

Torque Computado

Figure 2: Diagrama en bloques simplificado

Aproximación válida cuando:

- Altas reducciones $N \approx 100$
- Velocidades y aceleraciones bajas
- Pesos balanceados

Todo ésto produce τ^{pert} baja.

Control de Posición

Diagrama en Bloques

Dinámica del Robot + Actuadores

Modelo Simplificado

Control PD

Control PID

Técnicas de Control No Lineal

Torque Computado

Ley de control:

$$u = K_p \left(\theta^d - \theta\right) - K_d \dot{\theta} \tag{10}$$

- Seguimiento de referencias tipo escalón
- Seguimiento de perturbaciones escalón !!

Control de Posición

Diagrama en Bloques

Dinámica del Robot + Actuadores

Modelo Simplificado

Control PD

Control PID

Técnicas de Control No Lineal

Torque Computado

Ley de control:

$$u = K_p \left(\theta^d - \theta\right) + K_i \int \left(\theta^d - \theta\right) dt - K_d \dot{\theta} \tag{11}$$

- Seguimiento de referencias tipo escalón y rampa
- Rechazo de perturbaciones escalón

Técnicas de Control No Lineal

Actuadores y Sensores

Control de Posición

Diagrama en Bloques

Dinámica del Robot + Actuadores

Modelo Simplificado

Control PD

Control PID

Técnicas de Control No Lineal

Torque Computado

Modelo del manipulador y actuadores, que no conocemos con exactitud:

$$\tau = M\ddot{\theta} + \mathbf{h}$$

Si proponemos una ley de control donde \hat{M} y $\hat{\mathbf{h}}$ son aproximaciones a los valores reales M y \mathbf{h} :

$$\boldsymbol{\tau} = \hat{M}\mathbf{v} + \hat{\mathbf{h}}$$

Si el conocimiento de la planta es exacto queda un sistema con dos polos en el origen:

$$\mathbf{v} = \ddot{\boldsymbol{\theta}}$$

Luego se puede calcular la señal v con una ley de control lineal (PD+FF).

$$\mathbf{v} = K_p \left(\boldsymbol{\theta}^d - \boldsymbol{\theta} \right) + K_d \left(\dot{\boldsymbol{\theta}}^d - \dot{\boldsymbol{\theta}} \right) + \ddot{\boldsymbol{\theta}}^d$$

Torque Computado

Actuadores y Sensores

Control de Posición

Diagrama en Bloques

Dinámica del Robot + Actuadores

Modelo Simplificado

Control PD

Control PID

Técnicas de Control No Lineal

Torque Computado

$$\ddot{\mathbf{e}} + K_d \dot{\mathbf{e}} + K_p \mathbf{e} = \mathbf{0}$$