# QRB power requirements & simulation

## Objective

Specify high-level power system requirements and simulation of modular data centers in an electrical substation.

## Background

QRB is deploying modular data centers for energy-intensive computation.

- Each module is a shipping container, loaded with 100-300 high power computers.
- The computers run on direct current 12V DC, drawing 3-4kW. They come with power supply units (PSUs) drawing 10-20A at 240V.
- Datacenter modules are deployed in electrical network substation compounds.
- Power supplied is AC 3-phase Δ configuration (3-wire) at 15kV, 50Hz.
- Transformer steps down to AC 240V Y config (4-wire): three 240V circuits plus neutral.
- Via switchboard, each circuit feeds 1/3 of the machines in the datacenter
- Inside the data center, each rack is supplied via one power distribution unit (PDU)



## Single machine circuit model

A single machine (computer+PSU) can be modeled by the following circuit.

- PSU input :
  - 240V AC single phase
  - Coming over a AWG18 gauge wire with resistance 20.8 Ohms/km;
- Load:
  - 12V DC
  - Expect 3400W power consumption
  - Model the load as a pure resistance 12\*12/3400 = 0.042 Ohms.
- PSU simulation parameters:
  - N=21 turns
  - Primary resistance R1=0.7 Ohms
  - Inductance L=10H.



## Single data center 3-phase power system ( $\Delta$ -Y)

- Supply: 50Hz, 3-phase 15kV
- Delta primary: input amplitude is 15000√2 = 21,213V (line to line)
- Load: 240V single phase, 120 machines, 40 on each phase
- Transformer: delta-wye configuration step down transformer
- Output: 40 machines x 3.4kW each = 136kW per phase.
- Rating: Assuming power ratio = 0.8 => rating 136/0.8 = 170kVA per phase (510kVA total)
- Phase current Delta-Wye
  - Primary: 170/15 = 11A (rms) = 16A amplitude
  - Secondary: 170kVA/240V = 708A (rms) = 1kA amplitude

#### Transformer model parameters

- Windings ratio:  $N = 15000\sqrt{3}/240 = 108$
- Transformer Inductance:
  - Delta-Wye: L=  $(V/I)/2\pi f = (21213/16)/(2\pi*50) = 4.2H$
- Transformer load-loss/Impedance: Assuming 5% loss
  - Simulate with 5% primary voltage (1060 V amplitude) and short circuit on secondary. Rated current in primary (16A amplitude) achieved when  $R_{primary} = 32$  Ohms and  $R_{secondary} = R_{primary}/N^2 = 0.008$  Ohms
  - Load-loss simulation circuit
- Transformer No-load loss: Assuming 2%
  - Simulate with 240V on secondary and open circuit on primary. Exciting current of 2% of rated = 708\*0.02 = 14.16A (rms) = 20A amplitude achieved when  $R_c = 17\Omega$  on secondary, or equivalently,  $R_c = 17*63^2 = 68k\Omega$  on primary.
  - No-load loss simulation circuit

# Simulation circuit





## Simulation graphs

### Input line voltage and current



### Transformer input and output power (per phase)





### Transformer output voltage per phase



### Transformer output current per phase





### 40 machine load voltage, current and power

