Date: Mar 13 Made by Eric

Definitions and Theorems

Definition 1. Let G be a group, X be a G-set, and $x \in X$

We call $O_x = \{gx | g \in G\}$ the **orbit** containing x

Definition 2. $G_x = \{g \in G | gx = x\}$

Definition 3. $X_g = \{x \in X | gx = x\}$

Definition 4. $X_G = \{x \in X | \forall g \in G, gx = x\}$

Definition 5. A group G is a **p-group** if $\forall g \in G, ord(g) = p^q, \exists q \in \mathbb{N}$

Lemma 1. G_x is a subgroup and $|O_x| = (G:G_x)$

Proof. We now prove G_x is a subgroup

 $\forall g, h \in G_x, (gh)x = g(hx) = gx = x \implies gh \in G_x G_x \text{ is closed under}$

 $ex = x \implies e \in G_x$ Identity

 $g \in G_x \implies gx = x \implies g^{-1}x = g^{-1}(gx) = (g^{-1}g)x = ex = x \implies g^{-1} \in G_x$ Inverses

We now prove If the two elements n, r are in the same left coset of G_x , nx = rx

$$n^{-1}r \in G_x \iff n^{-1}rx = x \iff nx = rx \text{ done}$$

Let $S = \{gG_x | g \in G\}$ be the set of left cosets of H in G. By definition, $|S| = (G:G_x)$

We now prove the equation:

$$|O_x| = |S| = (G:G_x)$$

Let $\psi: O_x \to S$ be defined by $\psi(gx) = gH$ mapping

$$\psi(nx) = \psi(rx) \implies nH = rH \implies nx = rx \text{ one-to-one}$$

$$\forall gH \in S, \psi(gx) = gH \text{ onto}$$

Corollary 1.1. Let G be a finite group, and X be a finite G-set.

$$|O_x| = \frac{|G|}{|G_x|}$$

Lemma 2. Let G be a finite group, X be a finite G-set, and r denote the amount of orbits subset to X

$$r|G| = \sum_{g \in G} |X_g|$$

Proof.
$$\sum_{g \in G} |X_g| = |\{(g, x) | gx = x\}| = \sum_{x \in X} |G_x| = \sum_{x \in X} \frac{|G|}{|O_x|} = |G| \sum_{x \in X} \frac{1}{|O_x|} = |G| r$$

Lemma 3. Let p be a prime number, and G be a finite p-group, and X be a G-set.

$$|X| \equiv_p |X_G|$$

Proof. Pick $\{x_1, x_2, \cdots, x_r\}$ from each orbits of X, where $|O_{x_i}| = 1 \iff 1 \le i \le n$

We now prove $|O_{x_i}| = 1 \iff x_i \in X_G$

$$|O_{x_i}| = 1 \iff O_{x_i} = \{x_i\} \iff \forall g \in G, gx_i = x_i \iff x_i \in X_G \text{ done}$$

We know
$$|X| = \sum_{i=1}^r |O_{x_i}| = \sum_{i=1}^n |O_{x_i}| + \sum_{i=n+1}^r |O_{x_i}| = |X_G| + \sum_{i=n+1}^r |O_{x_i}|$$

We now prove $\sum_{i=n+1}^{r} |O_x| \equiv_p 0 \Longrightarrow |X| \equiv_p |X_G|$

Let $i \ge n+1$

By Lemma 1, $|O_{x_i}| = \frac{|G|}{|G_{x_i}|}$

Because G_{x_i} is a subgroup of G, for which $|G| = p^n$ and $|O_{x_i}| = \frac{|G|}{|G_{x_i}|} \neq 1$, so $|O_{x_i}| = \frac{|G|}{|G_{x_i}|} = p^k \equiv_p 0, \exists 0 < k \leq n$ done

Theorem 4. (If a prime divides the order of a group, then that group contain a cycilic subgroup of order p) Let p be a prime, and p divides |G|.

There exists an element $a \in G$, such ord(a) = p

Proof. Let
$$X = \{(g_1, g_2, \dots, g_p) | g_1 g_2 \cdots g_p = e\}$$

We now prove $|X| = |G|^{p-1} \Longrightarrow |X| \equiv_p 0$

Arbitrarily filling random g into g_1,g_2,\ldots,g_{p-1} we see $(g_1,g_2,\ldots g_p)\in X\iff g_p=(g_1g_2\cdots g_{p-1})$

So There are $|G|^{p-1}$ distinct ways to construct elements in X done

We now prove $\exists (a, a, ..., a) \in X$, where $a \neq e$, which give us $a^p = e \implies ord(a) = p$

Let $\psi: X \to X$ be defined by $\psi(g_1, g_2, \dots g_p) = (g_p, g_1, g_2, \dots g_{p-2}, g_{p-1})$

 ψ is well defined, since $g_p g_1 g_2 \cdots g_{p-2} g_{p-1} = (g_1 g_2 \cdots g_{p-1})^{-1} (g_1 g_2 \cdots g_{p-2} g_{p-1}) = e$

Because all ψ do is simply moving every coordinates a slot after, $|\langle \psi \rangle| = p$

By Lemma 3, $0 \equiv_p |X| \equiv_p |X_{\langle \psi \rangle}|$

$$e^p = e \implies (e, e, \dots, e) \in X$$

$$\forall q \in \mathbb{Z}, \psi^q(e, e, \dots, e) = (e, e, \dots, e) \implies (e, e, \dots, e) \in X_{\langle \psi \rangle}$$

So,
$$|X_{\langle\psi\rangle}|>0$$

Because $0 \equiv |X_{\langle \psi \rangle}|$, so $\exists (a, a, \dots, a) \in X_{\langle \psi \rangle} \subseteq X$, where $a \neq e$

Corollary 4.1. Let G be a finite group. Then G is a p-group if and only if $|G| = p^k, \exists k \in \mathbb{N}$

Proof. (\longleftarrow)

 $\forall g \in G, ord(g) \text{ divides } |G| = p^k \implies ord(g) = p^q, \exists 0 \le q \le k$ (\longrightarrow)

Assume $|G| = p^k r, \exists r \in \mathbb{N} \text{ such } p \not| r$

There exists a prime number $p_c \neq p$, such that $p_c|r$, so p_c divides |G|

Then by Theorem 4, $\exists g \in G, ord(g) = p_c \text{ CaC}$

Theorem 5. Let G be a group, and X = G (as a set), and be a G-set defined by $\forall g \in G, \forall x \in X, g(x) = gxg^{-1}$

$$|G| = |Z(G)| + \sum_{O_x \subseteq X, |O_x| > 1} |O_x|$$

Proof. We now prove X is well defined

$$\forall x \in X, g(g^{-1}xg) = gg^{-1}xgg^{-1} = x$$

$$e(x) = exe^{-1} = x$$
 done

$$\begin{array}{ll} |O_x|=1 \iff O_x=\{x\} \iff \forall g \in G, g(x)=gxg^{-1}=x \iff gx=xg \iff x \in Z(G) \end{array}$$

$$|G| = |X| = \sum_{O_x \subseteq X} |O_x| = |Z(G)| + \sum_{O_x \subseteq X, |O_x| > 1} |O_x|$$

Definition 6. $N[H] = \{g \in G | gHg^{-1} = H\}$ is the normalizer of H

Theorem 6. N[H] is a subgroup of G, and $H \leq N[H]$

Proof. $\forall g_1, g_2 \in N[H], (g_1g_2)H(g_1g_2)^{-1} = g_1g_2Hg_2^{-1}g_1^{-1} = g_1Hg_1^{-1} = H \implies g_1g_2 \in N[H] \ N[H]$ is closed under

$$eHe^{-1} = H \implies e \in N[H]$$

$$\forall g \in N[H], g^{-1}Hg = g^{-1}(gHg^{-1})g = H \implies g^{-1} \in N[H] \text{ Inverses }$$

$$\forall g \in N[H], gHg^{-1} = H \implies H \leq N[H]$$

Lemma 7. If |H| is finite, then $\forall h \in H, ghg^{-1} \in H \implies g \in N[H]$

Proof. $\forall h \in H, ghg^{-1} \in H \implies gHg^{-1} \subseteq H$

$$|gHg^{-1}| = |H| < \infty \implies gHg^{-1} = H$$

Notice If |H| is finite, $ghg^{-1} \in H \iff g \in N[H]$, but if |H| is infinite, it may happen $ghg^{-1} \iff N[H]$ and $ghg^{-1} \not\longrightarrow g \in N[H]$

Lemma 8. Let H be a p-group of a finite group G. Then

$$(N[H]:H) \equiv_p (G:H)$$

Proof. Let $S = \{gH \subseteq G | g \in G\}$

Let S be a H-set defined by h(gH) = (hg)H

S is well defined, since $\forall h_1,h_2\in H, \forall gH\in S, h_1h_2(gH)=h_1(h_2gH)=h_1h_2(gH)$ and $\forall gH\in S, e(gH)=egH=gH$

We now prove the equation:

$$(G:H) =_{(i)} |S| \equiv_{p}^{(ii)} |S_{H}| =_{(iii)} (N[H]:H)$$

- (i) S is the set of all left cosets of H.
- (ii) H is a p-group, clearly the order of H is a power of p, so by Lemma 3, this is true.

(iii) Let
$$U = \{gH \subseteq G | g \in N[H]\}$$

$$\forall gH \in U, \forall h \in H, h(gH) = h(Hg) = Hg = gH \implies \forall gH \in U, gH \in S_H \implies U \subseteq S_H$$

 $\forall gH \in S_H, \forall h \in H, hgH = gH \implies \forall gH \in S_H, \forall h \in H, g^{-1}hgH = H \implies \forall gH \in S_H, \forall h \in H, g^{-1}hg \in H \implies \forall gH \in S_H, g \in N[H] \implies \forall gH \in S_H, gH \in U \implies S_H \subseteq U$

$$\Longrightarrow U = S_H$$

Theorem 9. Let G be a finite group, where $|G| = p^n m$, where $p \not\mid m$ and $n \ge 1$

G contains some subgroup of order p^i of each $1 \le i \le n$, where the subgroup H of order p^i , where i < n, is the normal subgroup of some subgroup of order p^{i+1}

Proof. We prove by induction.

Base step:
$$\exists H_1 \leq G, |H_1| = p^1$$

By Theorem 4, this is true.

Induction step:
$$\exists H_i \leq G, |H_i| = p^i \implies \exists H_{i+1}, |H_{i+1}| = p^{i+1}$$

We now prove p divides $|N[H_i]/H_i|$, so, by Theorem 4, there exists a subgroup $K \leq N[H_1]/H_1$ of order p

By Lemma 8, $(N[H_i]: H_i) \equiv_p (G: H_i) = p^{n-i}m \equiv_p 0$ (Notice we only repeat to the case i = n - 1)

Because
$$(N[H_i]: H_i) \ge 1$$
, so $p|(N[H_i]: H_i) = |N[H_i]/H_i|$ (done)

We now prove $\bigcup K \subseteq G$ is a subgroup of order p^{i+1}

$$k_1, k_2 \in \bigcup K \implies k_1 H_1, k_2 H_2 \in K \implies (k_1 k_2) H_1 \in K \implies k_1 k_2 \in \bigcup K$$

$$e \in eH_1 = H_1 \in K \implies e \in \bigcup K$$

$$k_1 \in \bigcup K, k_1 H_1 \in K \implies k_1^{-1} H_1 \in K \implies k_1^{-1} \in \bigcup K$$

$$|\bigcup K| = |K||H_i| = pp^i = p^{i+1}$$
 (done)

We now prove $H_i \subseteq \bigcup K$

$$\forall k \in \bigcup K, kH_i \in K, \text{ and } K \leq N[H_i]/H_i \implies kH_i \in N[H_i]/H_i \implies k \in N[H_i] \implies kH_i = H_ik \text{ (done)}$$

Theorem 10. Let P_1 and P_2 be two maximal p-subgroup of a finite group G

$$\exists g \in G, gP_1g^{-1} = P_2$$

Proof. Let $S=\{gP_1|g\in G\}$, and let S be a P_2 -set defined by $\forall y\in P_2, \forall gP_1\in S, y(gP_1)=(yg)P_1$

By Lemma 3, P_2 is a p-group $\Longrightarrow |S| \equiv_p |S_{P_2}|$

Because P_1 is a maximal p-subgorup, S, as a collection of left-cosets of P_1 , satisfy |S| = m, where $|G| = p^n m$ and $p \not | m$.

This give us $|S_{P_2}| \equiv_p |S| = m \not\equiv_p 0$

So
$$\exists gP_1 \in S_{P_2}, \forall y \in P_2, y(gP_1) = g(P_1) \implies g^{-1}ygP_1 = P_1 \implies g^{-1}yg \in P_1 \implies \exists gP_1 \in S_{P_2}, gP_2g = P_1$$

Theorem 11. Let G be a finite subgroup of order divided by prime p. Let $X = \{P_1, \ldots, P_n\}$ be the set of maximal p-subgroup of G

$$|X| \equiv_p 1$$
 and $|X|$ divides $|G|$

Proof. Let X be a G-set defined by $\forall g \in G, \forall P_i \in X, g(P_i) = gP_ig^{-1}$

We now prove *X* is well defined

$$\forall g \in G, \forall P_i \in X, \forall p, q \in g(P_i), p, q \in gP_ig^{-1} \implies p = gp_0g^{-1}, q = gq_0g^{-1}, \exists p_0, q_0 \in P_i \implies pq = gp_0g^{-1}gq_0g^{-1} = gp_0q_0g^{-1} \in gP_ig^{-1} = g(P_i)$$

$$\forall g \in G, \forall P_i \in X, e = geg^{-1} \in g(P_i)$$

 $\forall p \in g(P_i), p = gp_0g^{-1}, \exists p_0 \in P_i, \implies p^{-1} = gp_0^{-1}g^{-1} \in g(P_i)$ (G-action does send a maximal p-subgroup to another subgroup, of which we don't know the order yet)

Because
$$gpg^{-1}=gqg^{-1}\Longrightarrow gp=gq\Longrightarrow p=q$$
, so $|g(P_i)=gP_ig^{-1}|=|P_i|=p^n$, where $|G|=p^nm$, $\exists m:p\not\mid m\in\mathbb{N}$

Assume $g(P_i)$ is not a maximal p-subgroup, There is a p-subgroup H properly containing $g(P_i)$, so $|H|=p^{n+k}, \exists k>0$, this CaC to $|G|=p^nm$, since $|H|=p^{n+k}$ does not divide $|G|=p^nm$ (done)

We now prove $|X_{P_1}| = 1$, and since P_1 is a p-group, $|X| \equiv_p |X_{P_1}| = 1$

Let $P_i \in X_{P_1}$

$$\forall p_1 \in P_1, p_1 P_i p_1^{-1} = P_i \implies \forall p_1 \in P_1, p_1 \in N[P_i] \implies P_1 < N[P_i]$$

 P_1 and P_i are obviously both maximal p-subgroup of $N[P_i]$, so by Theorem 9, $\exists g \in N[P_i], gP_ig^{-1} = P_1 \implies P_i = gP_ig^{-1} = P_1$

So
$$X_{P_1} = \{P_1\}$$
 (done)

We now prove |X| divides |G|

By Theorem 10, every maximal p-group is conjugate to each other, so |X| have only one orbit.

Then by Lemma 1,
$$|X|=|O_{P_1}|=(G:G_{P_1})=\frac{|G|}{|G_{P_1}|}$$
 (done)

Exercises