Exercices:

Ils porteront sur les probabilités.

Cours

Toutes les définitions générales, et les points marqués d'une astérisque peuvent faire l'objet d'une aléatoire réelle, question de cours.

La démonstration des réciproques pour l'existence des moments d'ordre 1, 2 pour les variables entières sont uniquement exigibles dans le groupe 2.

CONTENUS

CAPACITÉS & COMMENTAIRES

h) Espérance d'une variable aléatoire réelle ou complexe : Révisions

Si X est une variable aléatoire à valeurs dans $\mathbb{R}^+ \cup \{+\infty\}$, l'espérance de X est la somme, dans $[0, +\infty]$, de la famille $(x P(X = x))_{x \in X(\Omega)}$.

Pour une variable aléatoire à valeurs dans

$$\mathbb{N} \cup \{+\infty\}$$
, égalité $\mathrm{E}(X) = \sum_{n=1}^{+\infty} P(X \ge n)$.

Une variable aléatoire complexe X est dite d'espérance finie si la famille $(x P(X = x))_{x \in X(\Omega)}$ est sommable, dans ce cas, la somme de cette famille est l'espérance de X.

Espérance d'une variable géométrique, d'une variable de Poisson.

Formule de transfert : soit X une variable aléatoire discrète, f une fonction définie sur $X(\Omega)$ à valeurs complexes; alors f(X) est d'espérance finie si et seulement si la famille $\left(f(x)\,P(X=x)\right)_{x\in X(\Omega)}$ est sommable; si tel est le cas : $\mathrm{E}\left(f(X)\right)=\sum_{x\in X(\Omega)}f(x)\,P(X=x).$

Linéarité, positivité, croissance, inégalité triangulaire.

Si $|X| \le Y$ et si $Y \in L^1$, alors $X \in L^1$.

Si X et Y sont dans L^1 et indépendantes, alors XY est dans L^1 et :

E(XY) = E(X) E(Y).

Notation E(X).

Notation E(X). Variables centrées.

La notation $X \in L^1$ signifie que X est d'espérance finie. On ne soulèvera aucune difficulté quant à la définition précise de L^1 .

Caractérisation des variables aléatoires à valeurs dans \mathbb{R}^+ d'espérance nulle.

Extension au cas de *n* variables aléatoires.

i) Variance d'une variable aléatoire réelle, écart type et covariance

(★) Si $E(X^2)$ < +∞, X est d'espérance finie.

(*) Inégalité de Cauchy-Schwarz : (*) si X et Y sont dans L^2 , XY est dans L^1 et $\mathrm{E}(XY)^2 \leq \mathrm{E}(X^2)\,\mathrm{E}(Y^2)$.

La notation $X \in L^2$ signifie que X^2 est d'espérance finie. On ne soulèvera aucune difficulté quant à la définition précise de L^2 .

Cas d'égalité.

Contenus

Pour $X \in L^2$, variance et écart type de X.

Relation $V(X) = E(X^2) - E(X)^2$. Relation $V(aX + b) = a^2V(X)$.

(★) Variance d'une variable géométrique, d'une variable de Poisson.

Covariance de deux variables aléatoires de L^2 . Relation Cov(X, Y) = E(XY) - E(X)E(Y). Cas de variables indépendantes.

 (\star) Variance d'une somme de n variables aléatoires, cas de variables décorrélées.

CAPACITÉS & COMMENTAIRES

Notations V(X), $\sigma(X)$. Variables réduites. Caractérisation des variables aléatoires de variance nulle.

Si $\sigma(X) > 0$, la variable aléatoire $\frac{X - \mathrm{E}(X)}{\sigma(X)}$ est centrée réduite.

j) Inégalités probabilistes et loi faible des grands nombres

Inégalité de Markov.

- (★) Inégalité de Bienaymé-Tchebychev.
- (\star) Loi faible des grands nombres : (\star) si $(X_n)_{n\geqslant 1}$ est une suite i.i.d. de variables aléatoires de variance finie, alors, pour tout $\varepsilon>0$,

$$P\left(\left|\frac{S_n}{n}-m\right|\geqslant\varepsilon\right)\underset{n\to\infty}{\longrightarrow}0,$$

où
$$S_n = \sum_{k=1}^n X_k$$
 et $m = E(X_1)$.

Utilisation des inégalités de Markov et de Bienaymé-Tchebychev pour établir des inégalités de concentration.

k) Fonctions génératrices

(*) Fonction génératrice de la variable aléatoire X à valeurs dans \mathbb{N} : $G_X(t) = \mathrm{E}\left(t^X\right) = \sum_{k=0}^{+\infty} P(X=k) \ t^k.$

Détermination de la loi de X par G_X .

- (\star) La variable aléatoire X est d'espérance finie si et seulement si G_X est dérivable en 1, dans ce cas $\mathrm{E}(X) = G_X{}'(1)$.
- (\star) La variable aléatoire X admet un second moment si et seulement si G_X est deux fois dérivable en 1.
- (\star) Fonction génératrice d'une somme finie de variables aléatoires indépendantes à valeurs dans \mathbb{N} .

La série entière définissant G_X est de rayon supérieur ou égal à 1 et converge normalement sur le disque fermé de centre 0 et de rayon 1. Continuité de G_X .

La démonstration des réciproques n'est pas exigible pour le groupe 1.

Utilisation de G_X pour le calcul de E(X) et V(X). Les étudiants doivent savoir retrouver l'expression de la variance de X à l'aide de $G_X''(1)$ et $G_X''(1)$.

Les étudiants doivent savoir calculer rapidement la fonction génératrice d'une variable aléatoire de Bernoulli, binomiale, géométrique, de Poisson.