### Overview of Probability

### Probability and Statistics for Data Science

Carlos Fernandez-Granda





These slides are based on the book Probability and Statistics for Data Science by Carlos Fernandez-Granda, available for purchase here. A free preprint, videos, code, slides and solutions to exercises are available at https://www.ps4ds.net

### Motivation

Describing uncertain phenomena

Who will win the next presidential election?

How much will a certain stock cost tomorrow?

Will the New York Knicks win the next NBA championship?

### Strategy

Interpret uncertain phenomenon as an experiment that can be repeated over and over

$$P\left(\mathsf{Knicks\ win}\right) = \frac{\mathsf{times\ Knicks\ win}}{\mathsf{total\ repetitions}}$$

### Plan

- Probability spaces
- Conditional probability
- Estimating probabilities from data
- ► Independence
- ► Conditional independence
- ► The Monte Carlo method

### Probability space

- 1. Model phenomenon of interest as experiment with mutually exclusive outcomes
- 2. Group outcomes in sets called events
- 3. Assign a probability to each event

## Six-sided die

Set of outcomes (sample space)  $\Omega = \{1, 2, 3, 4, 5, 6\}$ 

Examples of events:

 $A := \{1,3,5\}$ 

 $B:=\{4\}$ 

 $C := \{1, 2, 3, 4, 5, 6\}$ 

## Probability measure

Assigns probability to each event

Intuitive definition: If we repeat the experiment many times

$$P(\mathsf{event}) = \frac{\mathsf{number} \ \mathsf{of} \ \mathsf{times} \ \mathsf{event} \ \mathsf{occurs}}{\mathsf{total} \ \mathsf{repetitions}}$$

### Rule 1

We must assign a probability to the whole sample space  $\boldsymbol{\Omega}$ 

 $P(\mathsf{sample space}) = 1$ 

### Rule 2

If we assign a probability to A then we need to assign a probability to  $A^c$ 



$$\mathrm{P}(A^c) = 1 - \mathrm{P}(A)$$

#### Rule 3

If we assign a probability to A and B we need to assign a probability to  $A \cup B$  and  $A \cap B$ 





If A and B are disjoint  $P(A \cup B) = P(A) + P(B)$ 



Probability spaces might look very abstract, but they just implement our intuitive definition of probability

# Conditional probability

Imagine that Knicks are first seed in playoffs

We need to update the probability that they win

$$P\left(\mathsf{Knicks\ win}\,|\,\mathsf{Knicks\ are\ 1st\ seed}\right) = \frac{\mathsf{times\ Knicks\ are\ 1st\ seed\ and\ win}}{\mathsf{times\ Knicks\ are\ 1st\ seed}}$$

## Conditional probability

The conditional probability of an event B given A is

$$P(B|A) := \frac{P(B \cap A)}{P(A)}$$





### Chain rule

From definition of conditional probability  $\mathrm{P}\left(B\,|\,A\right):=\frac{\mathrm{P}\left(B\cap A\right)}{\mathrm{P}(A)}$ 

$$P(A \cap B) = P(A)P(B|A)$$

# Law of Total Probability



# $P(A|B) \neq P(B|A)$



# Bayes' Rule

For any events A and B

$$P(A|B) = \frac{P(A)P(B|A)}{P(B)}$$

as long as P(B) > 0



How do we estimate estimate probabilities from data?

# Intuitive definition of probability

$$P(\mathsf{event}) = \frac{\mathsf{number} \ \mathsf{of} \ \mathsf{times} \ \mathsf{event} \ \mathsf{occurs}}{\mathsf{total} \ \mathsf{repetitions}}$$

Six-sided die

Data collection: We roll the die 60 times and observe 8 twos

Probability of event Rolling a two?

## Empirical probability

Let A be an event and  $X := \{x_1, x_2, \dots, x_n\}$  a dataset

The empirical probability of A is

$$P_X(A) := \frac{\sum_{i=1}^n 1_{x_i \in A}}{n}$$

where  $1_{x_i \in A}$  is one if  $x_i \in A$  and zero otherwise



Data collection: We roll the die 60 times and observe 8 twos, 6 fours and 10 sixes

Conditional probability of event Rolling a two given Roll is even?

# Empirical conditional probability

Let A and B be events, and  $X := \{x_1, x_2, \dots, x_n\}$  a dataset

The empirical conditional probability of B given A is

$$P_X(B|A) := \frac{\sum_{i=1}^n 1_{x_i \in A \cap B}}{\sum_{i=1}^n 1_{x_i \in A}}$$

where  $1_{x_i \in S}$  is one if  $x_i \in S$  and zero otherwise

## Independence of two events

Two events A, B are independent if

$$P(B|A) = P(B)$$

or equivalently

$$P(A \cap B) = P(A)P(B|A) = P(A)P(B)$$

## Multiple events

If A, B and C are pairwise independent, then

$$P(C | A \cap B) = P(C)$$
?

### Independence of multiple events

The events  $A_1, A_2, \ldots, A_n \in \mathcal{F}$  are mutually independent if and only if for any  $\{i_1, i_2, \ldots, i_m\} \subseteq \{1, 2, \ldots, n\}$ 

$$P\left(\cap_{j=1}^{m}A_{i_{j}}\right)=\prod_{i=1}^{m}P\left(A_{i_{j}}\right)$$

### Conditional independence

A, B are conditionally independent given C if

$$P(A \mid B, C) = P(A \mid C)$$

or equivalently

$$P(A \cap B \mid C) = P(A \mid C) P(B \mid C)$$



Does independence imply conditional independence? No!

Does conditional independence imply independence? No!



In practice, we often cannot compute probabilities exactly, even when we have all the necessary information!

### **Tournament**

### Group stage followed by bracket



# Intuitive definition of probability

$$P(\mathsf{event}) = \frac{\mathsf{number} \ \mathsf{of} \ \mathsf{times} \ \mathsf{event} \ \mathsf{occurs}}{\mathsf{total} \ \mathsf{repetitions}}$$

### Monte Carlo method

To approximate the probability of an event A, we

- 1. Generate n simulated outcomes:  $s_1, s_2, \ldots, s_n$
- 2. Compute the fraction of the outcomes in A,

$$P_{\mathsf{MC}}(A) := rac{\sum_{i=1}^{n} 1_{s_i \in A}}{n}$$

where  $1_{x_i \in A}$  is one if  $s_i \in A$  and zero otherwise

### Summary

- Probability spaces
- Conditional probability
- Estimating probabilities from data
- ► Independence
- ► Conditional independence
- ▶ The Monte Carlo method