Algebra delle matrici #GAL

Denotiamo:

Mat(m,n) = { Insieme delle matrici m*n }
Mat(m,1) = { Insieme dei vettori colonna } ($\sim R^m$)

 $Mat(1,n) = \{ Insieme dei vettori riga \} (\sim R^n)C$

Spesso denotiamo:

$$A = Mat(m,n) con A = (a_{ij})$$

e inoltre (A)_{ii} -> sto considerando l'elemento ij

1. Somma

date due matrici $A = (a_{ij})$, $B = (b_{ij}) \in Mat(m,n)$ definiamo $A+B = (a_{ii} + b_{ii}) \in Mat(m,n)$

somma componente per componente

2. Prodotto per uno scalare

$$A = (a_{ij}) \in Mat(m,n), c \in R$$
$$cA = (c*a_{ii}) \in Mat(m,n)$$

Proprietà di somma e prodotto per uno scalare stesse 8 delle operazioni in Rⁿ: Proprietà della somma:

- 1. Associativa: (A + B) + C = A + (B + C)
- 2. Commutativa: A + B = B + A
- 3. Elemento neutro: $\exists O : A + O = A (O)_{ij} = 0 \forall ij$
- 4. Elemento opposto: ∀A ∃B : A + B = 0

Proprietà del prodotto:

- 5. Associativa: c(d*A) = (cd)*A
- 6. Elemento neutro: 1*A = A
- 7. Distributiva scalare: c(A+B) = c*A + c*B
- 8. Distributiva vettore: (c + d)A = c*A + d*A

3. Trasposta di una matrice

data $A = (aij) \in Mat(m,n)$, definiamo:

$$A^{t} = (a_{ji}) \operatorname{cioè} (A^{t})_{ij} = a_{ji} \operatorname{oppure} (A)_{ji}$$

$$\textbf{A}^t \in \! \mathsf{Mat}(n,m)$$

Proprietà: date due matrici della stessa dimensione A,B \in Mat(m,n), c \in R

$$-(A^{t})^{t}=A$$

$$- (A + B)^{t} = A^{t} + B^{t}$$

$$-(c*A)^{t} = c*A^{t}$$

4. Prodotto tra matrici

Caso speciale: vettore riga x vettore colonna (1,n)*(n,1)

Dati A \in Mat(1,n) e B \in Mat(n,1)

definiamo AB =
$$(a_1^*b_1, a_2^*b_2, a_n^*b_n) \rightarrow \sum_{k=1}^{n} (a_k + b_k)$$

- Caso generale:

Dati
$$m,n,p \in R$$
, $A = (a_{ij}) \in Mat(m,p)$, $B = (b_{ij}) \in Mat(p,n)$
Definiamo AB ponendo $(AB)_{ij} = a_{i1}*b_{1j} + a_{i2}*b_{2j} + a_{ip}*b_{pj} \rightarrow A_{ip}*b_{pj}$

$$p_{\sum_{k=1}(a_{ik}+b_{ki})}$$

cioè = elemento di AB sulla riga i, colonna j = (riga i-esima di A)*(colonna j-esima di B)

AB ∈Mat(m,n)

IMPORTANTE: il prodotto AB è definito se (numero di colonne A)=(numero di righe B)

Proprietà del prodotto tra matrici:

dove A,B,C matrici t.c. i prodotti/somme sono definiti e d ∈R

- Associativa:
 - \diamond (AB)C = A(BC)
 - $d^*(AB) = (dA)^*B = A^*(dB)$
 - \diamond (A+B)C = AC + BC
 - A(B+C) = AB + AC

IMPORTANTE: non vale la proprietà commutativa AB ≠ BA:

- a volte AB è definita e BA no
- a volte AB,BA sono definite, ma hanno forma diversa:
 A ∈Mat(2,3) e B ∈Mat(3,2) -> AB ∈Mat(2,2) mentre BA ∈Mat(3,3)
- A volte AB,BA sono definite, hanno la stessa taglia ma AB \neq BA Può accadere che AB = 0 con A,B \neq 0