```
# Importing necessary libraries for EDA
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
import string
import nltk
from nltk.corpus import stopwords
from wordcloud import WordCloud
nltk.download('stopwords')
\ensuremath{\mathtt{\#}} Importing libraries necessary for Model Building and Training
import tensorflow as tf
from tensorflow.keras.preprocessing.text import Tokenizer
from tensorflow.keras.preprocessing.sequence import pad_sequences
from sklearn.model_selection import train_test_split
from \ keras. callbacks \ import \ Early Stopping, \ Reduce LROn Plateau
import warnings
warnings.filterwarnings('ignore')
     [nltk_data] Downloading package stopwords to /root/nltk_data...
     [nltk_data] Unzipping corpora/stopwords.zip.
data = pd.read_csv('/content/spam_ham_dataset.csv')
data.head(10)
```

	Unnamed: 0	label	text	label_num	
0	605	ham	Subject: enron methanol ; meter # : 988291\r\n	0	11
1	2349	ham	Subject: hpl nom for january 9 , 2001\r\n(see	0	
2	3624	ham	Subject: neon retreat\r\nho ho ho , we ' re ar	0	
3	4685	spam	Subject: photoshop , windows , office . cheap \dots	1	
4	2030	ham	Subject: re : indian springs\r\nthis deal is t	0	
5	2949	ham	Subject: ehronline web address change\r\nthis	0	
6	2793	ham	Subject: spring savings certificate - take 30	0	
7	4185	spam	Subject: looking for medication ? we ` re the	1	
8	2641	ham	Subject: noms / actual flow for 2 / 26\r\nwe a	0	
9	1870	ham	Subject: nominations for oct . 21 - 23 , 2000\	0	

data.shape

(5171, 4)

sns.countplot(x='label_num', data=data)
plt.show()

Text(0.5, 0, 'Message types')

balanced_data['text'] = balanced_data['text'].str.replace('Subject', '')
balanced_data.head()

	label_num	text	label	Unnamed: 0	
11.	0	: conoco - big cowboy\r\ndarren :\r\ni ' m not	ham	3444	0
	0	: feb 01 prod : sale to teco gas processing\r\	ham	2982	1
	0	: california energy crisis\r\ncalifornia $\hfill\Box$, s	ham	2711	2
	0	: re : nom / actual volume for april 23 rd\r\n	ham	3116	3
	0	: eastrans nomination changes effective 8 / 2	ham	1314	4

```
punctuations_list = string.punctuation
def remove_punctuations(text):
    temp = str.maketrans('', '', punctuations_list)
    return text.translate(temp)

balanced_data['text']= balanced_data['text'].apply(lambda x: remove_punctuations(x))
balanced_data.head()
```

```
Unnamed: 0
                      label
                                                                  text label num
      0
                3444
                       ham
                              conoco big cowboy\r\ndarren \r\ni m not sur...
                                                                                0
                2982
                              feb 01 prod sale to teco gas processing\r\ns...
                                                                                0
      1
                       ham
      2
                2711
                                 california energy crisis\r\ncalifornia □ s p...
                                                                                0
                       ham
      3
                3116
                               re nom actual volume for april 23 rd\r\nwe ...
                                                                                0
                       ham
      4
                1314
                       ham eastrans nomination changes effective 8 2 0...
                                                                                0
def remove_stopwords(text):
  stop_words = stopwords.words('english')
  imp\_words = []
  # Storing the important words
  for word in str(text).split():
    word = word.lower()
    if word not in stop_words:
      imp_words.append(word)
  output = " ".join(imp_words)
  return output
balanced_data['text'] = balanced_data['text'].apply(lambda text: remove_stopwords(text))
balanced_data.head()
         Unnamed: 0 label
                                                                      text label_num
      0
                3444
                       ham
                             conoco big cowboy darren sure help know else a...
                                                                                    0
                2982
                               feb 01 prod sale teco gas processing sale deal...
                                                                                    0
                       ham
      2
                2711
                       ham
                                  california energy crisis california □ power cr...
                                                                                    0
      3
                3116
                       ham
                               nom actual volume april 23 rd agree eileen pon...
      4
                1314
                       ham
                               eastrans nomination changes effective 8 2 00 p...
                                                                                    0
def plot_word_cloud(data, typ):
    email_corpus = " ".join(data['text'])
    plt.figure(figsize=(7, 7))
    wc = WordCloud(background_color='black',
                 max_words=100,
                 width=800,
                 height=400,
                 collocations=False).generate(email corpus)
    plt.imshow(wc, interpolation='bilinear')
    plt.title(f'WordCloud for {typ} emails', fontsize=15)
    plt.axis('off')
    plt.show()
plot_word_cloud(balanced_data[balanced_data['label_num'] == 0], typ='Non-Spam')
plot_word_cloud(balanced_data[balanced_data['label_num'] == 1], typ='Spam')
```

WordCloud for Non-Spam emails

WordCloud for Spam emails


```
Q W br g color / Offer best C Cwithin o
```

```
# Tokenize the text data
tokenizer = Tokenizer()
tokenizer.fit_on_texts(train_X)
# Convert text to sequences
train_sequences = tokenizer.texts_to_sequences(train_X)
test_sequences = tokenizer.texts_to_sequences(test_X)
# Pad sequences to have the same length
max_len = 100 # maximum sequence length
train_sequences = pad_sequences(train_sequences,
                                maxlen=max_len,
                                padding='post',
                                truncating='post')
test_sequences = pad_sequences(test_sequences,
                            maxlen=max_len,
                            padding='post',
                            truncating='post')
# Build the model
model = tf.keras.models.Sequential()
model.add(tf.keras.layers.Embedding(input_dim=len(tokenizer.word_index) + 1,
                  output dim=32,
                  input_length=max_len))
model.add(tf.keras.layers.LSTM(16))
model.add(tf.keras.layers.Dense(32, activation='relu'))
```

Model: "sequential_1"

Print the model summary

model.summary()

Output Shape	Param #
(None, 100, 32)	1274912
(None, 16)	3136
(None, 32)	544
(None, 1)	33
	(None, 100, 32) (None, 16) (None, 32)

Total params: 1278625 (4.88 MB)

model.add(tf.keras.layers.Dense(1, activation='sigmoid'))

```
Trainable params: 1278625 (4.88 MB)
   Non-trainable params: 0 (0.00 Byte)
model.compile(loss = tf.keras.losses.BinaryCrossentropy(from_logits = True),
       metrics = ['accuracy'],
       optimizer = 'adam')
es = EarlyStopping(patience=3,
          monitor = 'val_accuracy',
          restore_best_weights = True)
lr = ReduceLROnPlateau(patience = 2,
            monitor = 'val_loss',
             factor = 0.5.
             verbose = 0)
# Train the model
history = model.fit(train_sequences, train_Y,
             validation_data=(test_sequences, test_Y),
             epochs=20,
            batch_size=32,
            callbacks = [lr, es]
          )
   Epoch 1/20
   75/75 [================] - 12s 65ms/step - loss: 0.6895 - accuracy: 0.5580 - val_loss: 0.6536 - val_accuracy: 0.6017 - lr:
   75/75 [===========] - 4s 59ms/step - loss: 0.2831 - accuracy: 0.9099 - val_loss: 0.1362 - val_accuracy: 0.9700 - lr:
   Epoch 3/20
   Epoch 4/20
   75/75 [===========] - 4s 58ms/step - loss: 0.0763 - accuracy: 0.9842 - val_loss: 0.1153 - val_accuracy: 0.9767 - lr:
   Epoch 5/20
   75/75 [========================== ] - 5s 69ms/step - loss: 0.0562 - accuracy: 0.9896 - val_loss: 0.1187 - val_accuracy: 0.9767 - lr:
   Epoch 6/20
              75/75 [====
   Epoch 7/20
   75/75 [===========] - 4s 57ms/step - loss: 0.0422 - accuracy: 0.9925 - val loss: 0.1299 - val accuracy: 0.9750 - lr:
# Train the model
history = model.fit(train_sequences, train_Y,
             validation_data=(test_sequences, test_Y),
             epochs=20,
            batch_size=32,
            callbacks = [lr, es]
   Epoch 1/20
   Epoch 2/20
   Epoch 3/20
   Epoch 4/20
   4
# Evaluate the model
test_loss, test_accuracy = model.evaluate(test_sequences, test_Y)
print('Test Loss :',test_loss)
print('Test Accuracy :',test_accuracy)
   Test Loss: 0.1089741513133049
   Test Accuracy : 0.9783333539962769
plt.plot(history.history['accuracy'], label='Training Accuracy')
plt.plot(history.history['val_accuracy'], label='Validation Accuracy')
```

plt.title('Model Accuracy')
plt.ylabel('Accuracy')
plt.xlabel('Epoch')
plt.legend()
plt.show()

