MA4703 Control Óptimo: Teoría y Laboratorio. Semestre Primavera 2022

Profesor: Héctor Ramírez C. Auxiliar: Javier Madariaga R. Ayudante: Pablo Araya Z.

Laboratorio #5

Principio de Pontryaguin & Ecuaciones de HJB.

Descripción En este laboratorio se estudiará el control de una economía utilizando el Principio del Máximo del Pontryagin. Luego se estudia la solución mediante la ecuación de Hamilton-Jacobi-Bellman asociada al problema.

Considere una economía muy simple en la que x(t) representa la producción valorizada al instante $t \geq 0$. Suponemos que se consume una fracción de la producción en cada instante y que podemos reinvertir la fracción restante, denotada por $u(t) \in [0,1]$, para hacer crecer la capacidad productiva. La dinámica viene dada por

$$\dot{x}(t) = x(t)u(t); \quad x(0) = x_0 > 0,$$

y el consumo instantáneo por c(t) = (1 - u(t))x(t). Se desea maximizar el consumo total en un horizonte de tiempo T > 1 fijo.

Parte A. Métodos numéricos basados en Pontryaguin.

El **método de tiro** consiste en un método de resolución de problemas de control óptimo, ligado al principio de Pontryagin, el cual consiste en encontrar la condición inicial del estado adjunto p_0 asociado a la trayectoria óptima $x(\cdot)$. En efecto, si $z(\cdot) = (x(\cdot), p(\cdot))$, el principio de Pontryagin se puede reescribir como el sistema acoplado

$$\dot{z}(t) = F(t, z(t)), \text{ con } z(t_0) = z_0 := (x_0, p_0),$$

donde F queda completamente determinada por el sistema Hamiltoniano, y al cual se le incluye una condición final de la forma $R(z(t_0), z(1)) = 0$ dada por las condiciones de transversalidad. Notando que el valor z(1) depende de $z(t_0) = z_0$, se define así la función de tiro como $G(t_f, z_0) := R(z_0, z(t_f))$, es decir, para un tiempo final t_f (que para este caso será idénticamente igual a 1) y una condición inicial z_0 , se retorna el valor de la condición final asociada al sistema adjunto. El problema a resolver es entonces el de determinar un cero de la función de tiro como función de z_0 .

Ejercicio 1 Implemente un algoritmo que resuelva numéricamente el problema planteado basado en el método de tiro. Muestre sus resultados para distintos valores de T y de x_0 .

Parte B. Estudio de Hamilton-Jacobi-Bellman para el problema de la partícula.

La ecuación de Hamilton-Jacobi-Bellman asociada al problema estudiado (de tiempo final fijo), viene dada por

$$\partial_t V(s,y) + y + y \max_{w \in [0,1]} \left\{ w \left(\partial_x V(s,y) - 1 \right) \right\} = 0, \quad V(T,y) = 0.$$
 (1)

Ejercicio 2 Considere la función

$$V(s,y) = \begin{cases} ye^{-s+T-1} & (s,y) \in [0, T-1) \times (0, \infty), \\ y(T-s) & (s,y) \in [T-1, T] \times (0, \infty) \end{cases}$$
 (2)

Pruebe **computacionalmente** que esta función resuelve la ecuación (1). Para ello haga simulaciones, y establezca un criterio para justificar que efectivamente es solución.

Ejercicio 3 Considere el control definido por

$$u(t) := \underset{w \in \mathbb{R}}{\operatorname{argmin}} \left\{ H\left(x(t), w, \partial_x V\left(t, x(t)\right)\right) \right\} \text{ para } t \in [t_0, T].$$
 (3)

Resuelva el sistema utilizando este control feedback. Genere las trayectorias y funciones de costo asociadas. Comente los resultados obtenidos pensando en la materia vista en cátedras.

Ejercicio 4 Resuelva el problema mediante el uso de BOCOP. Muestre sus resultados.

Ejercicio 5 Compare la solución dada por los tres métodos, tanto en el control encontrado, las trayectorias, y el tiempo de ejecución. Entregue un resumen de estos resultados.