Solución Práctica 2 — Ejercicio 7

Juan Manuel Rabasedas

Enunciado

La clausura reflexo-transitiva de una relación \rightarrow se puede definir como:

$$\frac{x \to y}{x \Rightarrow y}$$
 (R1) $\frac{x \to y \ y \Rightarrow z}{x \Rightarrow z}$ (R2) $\frac{}{x \Rightarrow x}$

- ① Probar que si $x \Rightarrow y$, y $y \Rightarrow z$, entonces $x \Rightarrow z$.
- Probar la equivalencia entre esta forma de clausura reflexo-transitiva y la vista en la práctica. Es decir, probar que:

$$t \to^* u \text{ sii } t \Rightarrow u$$

Probar que si $x \Rightarrow y$, y $y \Rightarrow z$, entonces $x \Rightarrow z$

Demostración por inducción en la derivación $x \Rightarrow y$

• Si la última regla aplicada fue R1, tememos que:

$$\frac{x \to y}{x \Rightarrow y} \tag{R1}$$

entonces $x \to y$, como tengo que $y \Rightarrow z$ puedo aplicar R2:

$$\frac{x \to y \ y \Rightarrow z}{x \Rightarrow z} \tag{R2}$$

de lo cual sigue que $x \Rightarrow z$

Probar que si $x \Rightarrow y$, y $y \Rightarrow z$, entonces $x \Rightarrow z$

• si la última regla aplicada fue R2. Tenemos que:

$$\frac{x \to x' \ x' \Rightarrow y}{x \Rightarrow y} \tag{R2}$$

para algún x' Luego como $x'\Rightarrow y$ y $y\Rightarrow z$ por Hipotesis Inductiva $x'\Rightarrow z$ Aplicando R2

$$\frac{x \to x' \ x' \Rightarrow z}{x \Rightarrow z} \tag{R2}$$

Por lo que $x \Rightarrow z$

• Si la última regla fue R3 entonces significa que x=y, luego como $y\Rightarrow z$ vale que $x\Rightarrow z$

Probar $t \to^* u$ sii $t \Rightarrow u$

⇒)

Demostramos por inducción en la dericación de $t \rightarrow^* u$:

$$\frac{t \to u}{t \to^* u} \quad (R1') \quad \frac{t \to^* t' \ t' \to^* u}{t \to^* u} \quad (R2') \qquad \overline{t \to^* t} \quad (R3')$$

- Si la última regla utilizada fue R1' entonces $t \to u$, luego por R1 tenemos que $t \Rightarrow u$
- Si la última regla aplicada fue R2' entonces:
 - $\bullet \ t \to^* t' \ \mathsf{y} \ t' \to^* u \ \mathsf{del} \ \mathsf{antecedente}$
 - y por HI $t \Rightarrow t'$ y $t' \Rightarrow u$

Luego por el apartado anteriro 7-a) se tiene que $t \Rightarrow u$

• Si la última regla aplicada fue R3' entonces t=u Luego $t\Rightarrow u$ por R3

Probar $t \to^* u$ sii $t \Rightarrow u$

● ←)

Demuestro por inducción en la derivación $t \Rightarrow u$

- Si la última regla aplicada fue R1 entonces $t \to u$, luego por R1' $t \to^* u$
- Si la última regla aplicada fue R2 entonces:

$$\frac{t \to t' \ t' \Rightarrow u}{t \Rightarrow u} \tag{R2}$$

Luego por:

- R1' como $t \to t'$ tenemos que $t \to^* t'$
- HI como $t' \Rightarrow u$ tenemos que $t' \rightarrow^* u$

finalmente por R2' se tiene que $t \rightarrow^* u$

• Si la última regla fue R3

$$\frac{}{x \Rightarrow x}$$
 (R3)

entonces t=u luego por R3' se tiene que $t\to^* u$