

- Investor Kathy Allen has \$70,000 to divide across multiple investments
 - Municipal bonds with 8.5% return
 - Certificate of deposit with 5% return
 - Treasury bills with 6.5% return
 - Growth stock with 13% return
- Q: How much should Kathy invest to maximize return?
- Guidelines for diversification
 - No more than 20% of the total investment should be in municipal bonds
 - Amount invested in CDs shouldn't exceed amount invested in the rest
 - At least 30% of the investment should be in treasury bills and CDs
 - More invested in CDs & treasury bills than in the other two by a ratio of at least 1.2 to 1
 - Kathy wants to invest the entire \$70,000

- $x_1 = Dollars invested in municipal bonds$
- $x_2 = Dollars$ invested in CDs
- $x_3 = Dollars$ invested in Treasury Bills
- $x_4 = Dollars invested in Growth Stock$

Linear program

Maximize
$$0.085x_1 + 0.05x_2 + 0.065x_3 + 0.13x_4$$

Subject to
$$x_1 + x_2 + x_3 + x_4 = 70000$$

$$x_1/(x_1 + x_2 + x_3 + x_4) \le 0.2$$

$$x_2 \le x_1 + x_3 + x_4$$

$$(x_2 + x_3)/(x_1 + x_2 + x_3 + x_4) \ge 0.3$$

$$(x_2 + x_3)/(x_1 + x_4) \ge 1.2$$

$$x_1, x_2, x_3, x_4 \ge 0$$

Linear program in standard form

Maximize
$$0.085x_1 + 0.05x_2 + 0.065x_3 + 0.13x_4$$

Subject to
$$x_1 + x_2 + x_3 + x_4 = 70000$$

$$0.8x_1 - 0.2x_2 - 0.2x_3 - 0.2x_4 \le 0$$

$$-x_1 + x_2 - x_3 - x_4 \le 0$$

$$0.3x_1 - 0.7x_2 - 0.7x_3 + 0.3x_4 \le 0$$

$$1.2x_1 - x_2 - x_3 + 1.2x_4 \le 0$$

$$x_1, x_2, x_3, x_4 \ge 0$$

- Download Investment-1.xlsx from course website from link Sheet 1
- Optimal solution $(x_1, x_2, x_3, x_4) = (0,0,38181,3181.18)$

Variable (/ariable Cells									
		Final	Reduced	Objective	Allowable	Allowable				
Cell	Name	Value	Cost	Coefficient	Increase	Decrease				
\$B\$15	Municipal bonds = (\$)	0	-0.045	0.085	0.045	1E+30				
\$B\$16	CDs = (\$)	0	-0.015	0.05	0.015	1E+30				
\$B\$17	Treasury bills = (\$)	38181.81818	0	0.065	0.065	0.015				
\$B\$18	Growth stock = (\$)	31818.18182	0	0.13	1E+30	0.045				

Constraints

		Final	Shadow	Constraint	Allowable	Allowable
Cell	Name	Value	Price	R.H. Side	Increase	Decrease
\$F\$7	Total investment Usage	70000	0.094545455	70000	1E+30	70000
\$F\$8	Constraint 1 Usage	-14000	0	0	1E+30	14000
\$F\$9	Constraint 2 Usage	-70000	0	0	1E+30	70000
\$F\$10	Constraint 3 Usage	-17181.81818	0	0	1E+30	17181.81818
\$F\$11	Constraint 4 Usage	6.54836E-11	0.029545455	0	37800	70000

Created variables

1	1	1	1	Edit Name		?	×
0.8	-0.2	-0.2	-0.2	<u>N</u> ame:	А		
-1	1	-1	-1		Workbook	×.	
0.3	-0.7	-0.7	0.3	C <u>o</u> mment:			^
1.2	-1	-1	1.2				
				<u>R</u> efers to:	=Sheet1!\$B\$8:\$E\$11		<u>*</u>
					ОК	Cano	

Created variables

Workbook

=Sheet1!\$H\$8:\$H\$11

OK

Cancel

Edit Name

Name:

Scope:

Comment:

Refers to:

• Usage of variables

Products:	Municipal bonds	CDs	Treasury bills	Growth stock			
	(\$)	(\$)	(\$)	(\$)			
Return:	0.085	0.05	0.065	0.13			
Constraints:					Usage	Constraint	R.H.S.
Total investment	1	1	1	1	0	=	70000
Constraint 1	0.8	-0.2	-0.2	-0.2	=MMULT(A,	<)	0
Constraint 2	-1	1	-1	-1	0	<=	0
Constraint 3	0.3	-0.7	-0.7	0.3	0	<=	0
Constraint 4	1.2	-1	-1	1.2	0	<=	0
Production:							
Municipal bonds =	0						
CDs =	0						
Treasury bills =	0						
Growth stock =	0						
Return =	0						

• Usage of variables

• Q: What other variable was created and how is it being used?

- Best Boy retail chain ships televisions from 3 of its distribution warehouses to three of its retail stores monthly
- Each warehouse has a fixed supply per month and fixed demand per month
- Q: How many TVs should be shipped from each warehouse to each store to minimize the total cost of transportation?
- Supply (700 TVs) and Demand (600 TVs)

Warehouse Supply (TVs)		Store	Demand (TVs)
 Cincinnati 	300	A. New York	150
2. Atlanta	200	B. Dallas	250
Pittsburgh	200	C. Detroit	200

• Shipping cost per TV for each route

Warehouse

- 1. Cincinnati
- 2. Atlanta
- 3. Pittsburgh

Store

- A. New York
- B. Dallas
- C. Detroit

	To Store			
From Warehouse	Α	В	C	
1	\$16	\$18	\$11	
2	14	12	13	
3	13	15	17	

Visual of all routes (supply > demand)

- Decision variables
 - Need to have one for each of the 9 routes
 - x_{ij} = number of televisions from warehouse i to store j
 - i = 1,2,3 & j = A, B, C
- Linear program in standard form

Minimize
$$16x_{1A} + 18x_{1B} + 11x_{1C} + 14x_{2A} + 12x_{2B} + 13x_{2C} + 13x_{3A} + 15x_{3B} + 17x_{3C}$$

Subject to
$$x_{1A} + x_{1B} + x_{1C} \le 300$$
 (Cincinnati supply)

$$x_{2A} + x_{2B} + x_{2C} \le 200$$
 (Atlanta supply)

$$x_{3A} + x_{3B} + x_{3C} \le 200$$
 (Pittsburgh supply)

$$x_{1A} + x_{2A} + x_{3A} \ge 150$$
 (New York demand)

$$x_{1B} + x_{2B} + x_{3B} \ge 250$$
 (Dallas demand)

$$x_{1C} + x_{2C} + x_{3C} \ge 200$$
 (Detroit demand)

- Download Transportation-1.xlsx from course website from link Sheet 2
- Sheet called Standard contains the standard linear program format and the sheet called Alternative contains a more compact form of the same linear program
- Focus on Alternative sheet

\mathbb{Z}	Α	В	С	D	Е	F	G
4	Warehouse	New York	Dallas	Detroit	TV sets shipped	Constraint	Supply
5	Cincinatti	0	0	200	200	<=	300
6	Altanta	0	200	0	200	<=	200
7	Pittsburgh	150	50	0	200	<=	200
8	TV sets shipped	150	250	200			
9	Constraint	>=	>=	>=			
10	Demand	150	250	200			
11	Cost (\$)	7300					
12							
13							
14	Warehouse	New York	Dallas	Detroit			
15	Cincinatti	16	18	11			
16	Altanta	14	12	13			
17	Pittsburgh	13	15	17			

	А	В	С	D
4	Warehouse	New York	Dallas	Detroit
5	Cincinatti	0	0	200
6	Altanta	0	200	0
7	Pittsburgh	150	50	0
8	TV sets shipped	150	250	200
9	Constraint	>=	>=	>=
10	Demand	150	250	200
11	Cost (\$)	7300		
12		=SUMPF	RODUCT(B5:	D7, B15,D17)
13				
14	Warehouse	New York	Dallas	Detroit
15	Cincinatti	16	18	11
16	Altanta	14	12	13
17	Pittsburgh	13	15	17

Searching for minimum of objective function

- Optimal solution $(x_{1A},x_{1B},x_{1C},x_{2A},x_{2B},x_{2C},x_{3A},x_{3B},x_{3C})=(0,0,200,0,200,0,150,50,0)$
- Textbook uses equality for demand instead of greater than or equal to

- PM Computers assembles its own brand of laptops from component parts purchased overseas and domestically
- Most computers sold locally to the university, individuals, and businesses
- PM has production capacity to produce 160 computers per week with an additional 50 computers with overtime
- Cost per computer is \$190 during regular time and \$260 during overtime
- Additionally, it costs \$10 per computer per week to hold a computer in inventory for future delivery
- PM wants to meet all customer orders with no shortages and quality service

Week	Computer Orders
1	105
2	170
3	230
4	180
5	150
6	250

• Q: How much regular time and overtime production is needed each week to meet its orders at the minimum total production cost?

- Each week, PM can produce computers either during regular time or during overtime.
- Each week, computers not used for an order are rolled over to the next week
- After the 6-week period, PM wants no inventory left over
- Decision variables
 - $r_i = regular \ production \ of \ computers \ per \ week \ j$
 - $o_j = overtime\ production\ of\ computers\ per\ week\ j$
 - $i_i = extra\ computers\ carried\ over\ as\ inventory\ in\ week\ j$
 - j = 1,2,3,4,5,6

Minimize
$$190(r_1 + r_2 + r_3 + r_4 + r_5 + r_6) + 260(o_1 + o_2 + o_3 + o_4 + o_5 + o_6) + 10(i_1 + i_2 + i_3 + i_4 + i_5)$$

$$r_1 + o_1 - i_1 = 105$$

$$r_2 + o_2 + i_1 - i_2 = 170$$

$$r_3 + o_3 + i_2 - i_3 = 230$$

$$r_4 + o_4 + i_3 - i_4 = 180$$

$$r_5 + o_5 + i_4 - i_5 = 150$$

$$r_6 + o_6 + i_5 = 250$$

$$r_i \le 160 \ for \ i \in \{1,2,3,4,5,6\}$$

 $o_i \le 50 \ for \ i \in \{1,2,3,4,5,6\}$

$$r_i, o_i, i_i \ge 0$$
 for $i \in \{1,2,3,4,5,6\}$

- Download Multischedule-1.xlsx from course website from link Sheet 3
- Sheet called Standard contains the standard linear program format and the sheet called Alternative contains a more compact form of the same linear program
- From Standard, see the following solution from Excel Solver

	Week 1	Week 2	Week 3	Week 4	Week 5	Week 6
Regular	160	160	160	160	160	160
Overtime	0	0	25	20	30	50
Inventory	55	45	0	0	40	
Total	160	215	230	180	190	250
Required	105	170	230	180	150	250

Try to acquire the same solution from the Alternative format

The End

