EPITA / InfoS1#	Juin 2018
NOM:	Pránom :

Partiel Architecture des systèmes – Semestre 1

Les calculatrices et les documents ne sont pas autorisés. Le barème est donné à titre indicatif.

Réponses exclusivement sur le sujet. Si vous manquez de place, vous pouvez utiliser le verso des feuilles

Exercice 1. Conversion (2 points)

Convertir les nombres suivants de la base d'origine vers la base indiquée. (Résultat sous forme décimale : pas de fraction) Le résultat seul est attendu ici. Si la conversion est impossible, noter *Erreur*.

nombre à convertir	base d'origine	base indiquée	résultat
1110 1001	Binaire signé sur 1	Décimale	
	octet		
AB3,C	Hexadécimale	Décimale	
101001010110,0111	Binaire	Octal	
-96	Décimale	Binaire signé sur 1 octet	

Exercice 2. Opérations (4 points)

Effectuer les opérations suivantes en binaire et convertir le résultat en décimal selon qu'on travaille en nombres signés (sur 8 bits y compris le bit de signe) ou non (toujours sur 8 bits). S'il y a <u>erreur</u> de débordement, le noter dans les cases "valeur décimale" <u>à la place du résultat</u>.

	Résultat binaire	valeur décimale	
		non signés Signés	
1011 1001 + 0100 1011			
1011 1000 + 0100 1000			
1100 1010 - 0101 1110			
0101 1001 - 0111 0111			

Exercice 3. Problème (9 points)

On veut réaliser un circuit qui multiplie par 3 un nombre N (= DCBA) écrit en code BCD sur un seul chiffre. Le résultat doit être obtenu directement en code BCD et donc sur 2 chiffres (H'G'F'E' pour le chiffre des dizaines et D'C'B'A' pour celui des unités, le poids fort étant toujours à gauche).

Compléter les tables de vérité et les tableaux de Karnaugh correspondant pour donner les équations simplifiées de chaque sortie (les "bulles" doivent être clairement repérées). Si des simplifications à

l'aide de OU EXCLUSIFS sont possibles, les faire apparaître! 3 sorties sont évidentes et ne nécessitent pas de faire des tableaux de Karnaugh. Les noter ci-dessous :

					dizaines				uni	tés		
N	D	С	В	Α	H'	G'	F'	E'	D'	C'	B'	A'
0	0	0	0	0								
1	0	0	0	1								
2	0	0	1	0								
3	0	0	1	1								
4	0	1	0	0								
5	0	1	0	1								
6	0	1	1	0								
7	0	1	1	1								
8	1	0	0	0								
9	1	0	0	1								

H'	G'	A'

F'				В	Α	
			00	01	11	10
		00				
D (С	01				
		11				
		10				

E'			В	Α	
		00	01	11	10
	00				
D C	01				
	11				
	10				

F' =

E' =

D'			В	Α	
		00	01	11	10
	00				
D C	01				
	11				
	10				

C'			В	Α	
		00	01	11	10
	00				
D C	01				
	11				
	10				

ď

EPITA / InfoS1# Juin 2018

B	,			В	А	
			00	01	11	10
		00				
D	С	01				
		11				
		10				

B' =

Exercice 4. Additionneur2 bits (5 points + 1 point bonus)

On souhaite réaliser un circuit qui additionne 2 nombres A (A_1A_0) et B (B_1B_0) de 2 bits. Ce circuit doit donc générer la somme S (sur 2 bits) et une éventuelle retenue R.

1. Compléter la table de vérité suivante.

B_1	B_0	A_1	A_0	R	\mathcal{S}_1	S_0
0	0	0	0			
0	0	0	1			
0	0	1	0			
0	0	1	1			
0	1	0	0			
0	1	0	1			
0	1	1	0			
0	1	1	1			
1	0	0	0			
1	0	0	1			
1	0	1	0			
1	0	1	1			
1	1	0	0			
1	1	0	1			
1	1	1	0			
1	1	1	1			

2. Donner la première forme canonique de la sortie S_1 .

BONUS: Simplifier S_1 à l'aide de OU EXCLUSIF

<u> </u>		

3. Remplissez les tableaux de Karnaugh ci-dessous et donnez les expressions simplifiées des sorties R et S_0 . Faites apparaître clairement les bulles! Aucun point ne sera attribué à une expression si son tableau est faux. Si des simplifications à l'aide de OU EXCLUSIFS sont possibles, les faire apparaître!

R			A_1	Α	
		00	01	11	10
	00				
B_1 B_0	01				
	11				
	10				

S_0			A_1	A_0	
		00	01	11	10
	00				
B_1 B_0	01				
	11				
	10				

 $R = S_0 =$