

Two ways of implementing pack-switched networks

- Virtual-circuits
 - Wide Area Networks (WANs)
- Datagrams
 - Local Area Networks
 - Internet

Virtual-circuits or Datagrams?

Two Questions:

- 1. Are bits always delivered in the same order in which they are sent?
- 2. Can we distinguish three phases in the life of a circuit, i.e. setting it up, using it and tearing it down?
- Answer "yes"
 - Virtual-circuits a fixed route (or circuit) is established
 - Set up route and reserve resources
 - Use it
 - Tear it down
- Answer "no"
 - Datagrams -- each packet is an independent event

Virtual Circuits (VCs)

- Two things happen when a virtual circuit is set up in a packet-switched network (very similar to a circuitswitched network)
 - A route is chosen (through a selection of switches)
 - Route will not change during the life of the VC
 - Route selection is common to many technologies
 - Resources are reserved
 - Link capacity
 - Sufficient buffer space for queuing packets

VCs -- Addresses and Identifiers

- Each hosts must have a unique addresses
 - Like phone number
 - Needed when a connection is set up
 - Where a VC is set up to
 - Millions of hosts, millions of addresses
 - Long addresses (128 bits => ~10³⁸ addresses)
- We can not use addresses to distinguish between VCs
 - There may be many VCs to a host.
 - Need to identify each VC!
- Solution: All VCs on any particular link have distinct VC Identifiers (VCIs)
 - Thousands of VCs per link, thousands of VCls per link
 - Short VCIs (24 bits => $\sim 10^7$ VCs)
 - VCIs are also called Logical Channel Numbers (X.25), Data-Link Channel Identifiers (Frame Relay), Virtual Channel Numbers, Virtual Path Numbers (ATM) ...

Virtual Circuits

- Example: the VC between B and D (orange line) has VCI 5 between B and S, VCI 8 between S and T and so on.
- Switches must keep a record of
- the links being used by each VC
- the VCIs being used on each link.

Source			Destination	
Link from	VCI		Link to	VCI
T	7	®	V	5
T	8	R	В	5
V	5	R	Т	7
В	5	R	Т	8

Forwarding table for switch S

Virtual Circuits – Advantages

- Small headers
 - Minimises packet overhead
- Efficient forwarding
 - Simple table look-up
- Easy to ensure sequenced delivery
 - All packets follow the same route
- Admission control
 - Host specifies requirements when asking for a connection
 - Network only accepts if it has resources
 - In contrast to the Internet: all traffic is accepted and everyone suffers when the network is overloaded.
- Traffic Policing
 - "Contract" for each VC
 - Can police on a per-VC basis

Virtual Circuits - Disadvantages

- VCI field in packet header must change at each switch
- May need to re-calculate checksum
 - Extra bits for bit-error discovery
- Processing overhead?
- VC set-up overhead
- At least two PDUs to set up a VC (PDU: protocol data unit)
- At least two PDUs to disconnect VC
- Suppose you only want to send one Data PDU?
- Impossible to repair a VC if a link or a switch breaks.
- Adjacent switches cannot repair (they do not retain end-point addresses
- Hosts must request new VCs

Datagram

- A self-contained unit of transmission
- Global addresses
- Each datagram is routed independently
- Treated as a separate event
- Without reference to any other datagrams which many have preceded it.
- Rather as letters flow through the postal service

Datagram Networks

- LANs
- Datagrams are usually be delivered to their final destination in one "hop".
- Mesh-type networks, e.g. the Internet
- Datagrams travel along several "hops"
- Packet-switches are called routers or bridges
- Switch processing: choose "next hop" on basis of destination address
- At a switch the next hop for a particular destination may change with time and events in the network.
- No circuit is set up. No concept of "setting up a route" or "reserving resources for a connection".
- Datagrams are not necessarily delivered in the same order in which they are sent.

Datagram forwarding

- Internet router (has a routing table)
- Must know which link to use for each and every destination address
- Looking up a routing table is complex
 - Routing table maybe huge
 - Search for every incoming datagram
 - Several entries may match

Example of a routing table

Address	Mask	Link
128.16.0.0	255.255.0.0	4
128.16.5.2	255.255.255.255	1
128.16.5.0	255.255.255.0	2
•••	•••	• • •

Datagrams – disadvantages

- Heavy processing in switches
 - Fortunately clever look-up algorithms exist
- Global addresses are big large per-packet overhead
- Admission control and policing must be per-host, not per-connection
 - Fortunately, addressed by Internet Quality-of-Service (QoS) techniques
- Independent routing cannot guarantee sequenced delivery
 - Mark datagrams with sequence numbers and re-order them when received.

Datagrams - advantages

- Datagram networks often use "dynamic routing"
 - Routing table continually updated by information from other switches
 - New routes are learnt when switches break or become congested
 - No need for end-points to act to recover the situation.
 - Robust!
- No connection set-up overhead
 - Good for short transactions
- Datagram service is very simple
 - Cheap to implement
 - No unwanted "features"

Summary

- Sharing links
 - Circuit-switching
 - Fixed allocations
 - FDM, TDM
 - Statistical multiplexing
 - packet-switching
- Sharing networks
 - Circuit-switching network
 - Packet-switching network
 - Global address
 - 1. Virtual Circuits
 - 2. Datagrams