HANKYU JANG

PhD Candidate | Former Data Science Intern

- @ jhkmath@gmail.com
- @ hankyu-jang@uiowa.edu
- **)** (+1) 319-512-6129
- lowa City, IA

- in hankyujang
- HankyuJang
- hankyujang.github.io

SKILLS

Machine Learning

Submodular Optimization

Deep Learning Database

Data Mining Graph Mining

Classification Clustering

Recommender System

Network Embedding

Social Network Analysis

Predictive Modeling

Reinforcement Learning

Data Visualization

Data Preprocessing

Model Development

EXPERIENCE

Applied Scientist Intern | Amazon.com Services, Inc.

= 05 2022 - 08 2022

Seattle, WA, USA

Machine Learning and Data Science Intern | American Family Insurance

i 05 2021 - 08 2021

- Madison, WI, USA
- Achieved 75% accuracy on classifying 13K claims into over 200 classes
- Applied GAT on claims data to detect then correct suspicious entries
- Transformed unstructured text into vectors using Sentence-BERT and tf-idf

Graduate Research Assistant | University of Iowa

1 01 2019 - Current

- lowa City, IA, USA
- Developed auto-encoding heterogeneous co-evolving dynamic neural networks that learn patient representation for predictive modeling | Achieved 48% gain
- Proposed data mining method for missing case detection on large graphs with 1.5M edges | Achieved 360% gain | IEEE ICDM 21
- Developed disease simulators | PLoS CompBio 21 | IEEE/ACM ASONAM 19

MACHINE LEARNING ALGORITHMS

Random Forest XGBoost

AdaBoost PCA t-SNE

Decision Tree Naive Bayes

Support Vector Machine

Losigtic Regression

K Nearest Neighbors

K-means Clustering

Linear Regression

EDUCATION

Ph.D. in Computer Science | University of Iowa | GPA: 3.94

1 08 2018 - 05 2023

lowa City, IA, USA

M.S. in Data Science | Indiana University | GPA: 3.80

1 08 2016 - 05 2018

Bloomington, IN, USA

B.S. in Computer Science & Management | Handong Global University

a 03 2009 - 06 2016

Pohang, Korea

• GPA: 3.94 | Cum Laude

AWARDS

Data Analysis Winner | 2017 Indiana Medicaid Data Challenge

- 📋 10 2017 | Sponsors: FSSA, Indiana Chapter of HIMSS, Regenstrief Institute, and KSM Consulting
- Discovered imbalance in capacity and demand of mental health treatment in the Indiana state | Published Solution | Tableau Visualization | Presentation

Best Paper Awards | IEEE/ACM ASONAM 2019

6 08 2019

Post-Comprehensive Research Fellowship | University of Iowa

1 02 2021 - 06 2021

DEEP LEARNING ALGORITHMS

GNN GCN GAT

CNN RNN LSTM

ANN Encoder-Decoder

Autoencoder

NATURAL LANGUAGE PROCESSING

TOOLS

PACKAGES

PROFESSIONAL SERVICE

Journal Reviewer | SNAM

iii 11 2019 - Current

Program Committee Member | epiDAMIK Workshop at KDD 21'

08 2021

PUBLICATIONS

Hankyu Jang, S. Pai, B. Adhikari, S. V. Pemmaraju, "Risk-aware Temporal Cascade Reconstruction to Detect Asymptomatic Cases," ICDM 2021 | One of the Best Ranked Papers

Hankyu Jang, P. M. Polgreen, A. M. Segre, S. V. Pemmaraju, "COVID-19 modeling and non-pharmaceutical interventions in an outpatient dialysis unit," PLoS CompBio 2021 | ? | Paper | Data (published in Kaggle)

D.M.H. Hasan, A. Rohwer, *Hankyu Jang*, T. Herman, P. M. Polgreen, D. K. Sewell, B. Adhikari, S. V. Pemmaraju, "*Modeling and Evaluation of Clustering Patient Care into Bubbles*," ICHI 2021 | Paper

Hankyu Jang, P. M. Polgreen, A. M. Segre, D. K. Sewell, S. V. Pemmaraju, "A Data-driven Approach to Identifying Asymptomatic C. diff Cases," epiDAMIK 2020 | Paper

S. Lee, *Hankyu Jang*, K. Zhao, M. Amato and A. Graham, "Link Predictions in an Online Health Community for Smoking Cessation," MLG 2020 | Paper

S. Lee, *Hankyu Jang*, K. Zhao, M. Amato and A. Graham, "Multi-Relational Link Prediction for an Online Health Community," INFORMS Workshop on Data Science 2019 | Paper

Hankyu Jang, S. Justice, P. M. Polgreen, A. M. Segre, D. K. Sewell, and S. V. Pemmaraju, "Evaluating Architectural Changes to Alter Pathogen Dynamics in a Dialysis Unit," ASONAM 2019 | **Best Paper Award Paper**

MACHINE LEARNING CERTIFICATIONS

Deep Learning with Python and PyTorch | edX

= 5 2022 | Show Credential

PyTorch Basics for Machine Learning | edX

= 5 2022 | Show Credential

Deep Learning Specialization (Completed 5 courses) | Coursera

- ## 4 2022 | Show Credential
- 1. Neural Networks and Deep Learning | Show Credential
- 2. Improving Deep Neural Networks: Hyperparameter Tuning, Regularization and Optimization | Show Credential
- 3. Structuring Machine Learning Projects | Show Credential
- 4. Convolutional Neural Networks | Show Credential
- 5. Sequence Models | Show Credential

Data Analysis with R | Udacity

3 2015 | Show Credential

POSTER AND DATA PUBLICATIONS

Healthcare Personnel Movement Data Kaggle 2020 Data

Sensor Data - Inform Mathematical Models ICHE 2020 Abstract | Poster

DATA SCIENCE PROJECTS

Image Captioning | 🖸 | Pdf | Poster

- Implemented encoder-decoder framework that generates image captions
- Applied transfer learning using ResNet50 to encode images
- Used LSTM to decode image embedding to generate text

Dog Breed Classification | 🕤

- Achieved 79% accuracy for classifying 8K dog images into 133 categories
- Used transfer learning to get 315% performance gain over CNN

IMDB Movie Reviews Sentiment Classification | 🜎

• Achieved 86% accuracy of predicting (+) review of 50K IMDB reviews using MLP

Daily Bike Rental Ridership Prediction | 😱

Accurately predicted hourly bike rental counts for 10 days using MLP for regression

Kaggle Competition: Iceberg Classifier Challenge | 🖓 | Pdf

- Achieved 90% accuracy using CNN, classifying satellite images into iceberg or ship
- Evaluated KNN, Random Forests, and SVM on PCA dimension reduced data

Identification and Localization of Ambulance Siren | 🜍 | Pdf

- Proposed a framework to detect ambulance siren in noisy audio signals
- Reduced data dimension using NMF, then trained SVM for detection

Single Cell Classification | • | Pdf

- Achieved 96% accuracy on 3K brain cell classification into 9 categories using SVM
- Reduced data dimension from 5K to 50 using PCA without loss of model accuracy