MA 350 Number Theory—Spring 2024

Homework 2

Due: February 23, 2024

Submit your written work in Canvas as a single PDF file, and be sure to show your work. Answers without accompanying work will receive zero credit.

- 1. Prove that $8^n + 125$ is never a prime for $n \in \mathbb{Z}^+$. (Hint: think of factoring.)
- 2. If gcd(a, b) = 1, then show that gcd(a b, a + b) = 1 or 2.
- 3. Using the Euclidean algorithm and showing each step, find gcd (2394, 846). Hence, find lcm (2394, 846).
- 4. Prove that $gcd(F_n, F_{n+1}) = 1$ where F_n is the n^{th} Fibonacci number. (Hint: Use induction.)
- 5. Let $n = 2^2 \times 3^5 \times 5 \times 7^6 \times 13^4$.
 - (a) Find the largest perfect cube that divides n. Write the number explicitly.
 - (b) Find the smallest positive perfect cube that is a multiple of n. (No need to write the number explicitly.)
- 6. (a) Let k_i be an integer for each $i \in \mathbb{Z}^+$. Show that, for $n \in \mathbb{Z}^+$, the product $(6k_1+1)(6k_2+1)\cdots(6k_n+1)$ is of the form 6k+1 for some $k \in \mathbb{Z}^+$. (Hint: use induction on n.)
 - (b) Explain why any prime greater than 5 should be of the form either 6k + 1 or 6k + 5. (Hint: use division algorithm.)
 - (c) Show that there are infinitely many primes of the form 6k+5. (Hint: assume there is a finite number of them, say $5, q_1, q_2, \cdots, q_n$ and then consider the number $6q_1q_2\cdots q_n+5$. Claim that this number has a prime divisor of the form 6k+5.)