$$y(n) = h(n) * x(n)$$

Convolution of Finite Length Sequences:

Example 1.10:

The impulse response of a LTI system

$$h(n) = \begin{Bmatrix} 1, \frac{1}{2} \end{Bmatrix}$$

Find the response of the system when input

$$x(n) = \{1, 2, 3\}$$

by (1) Fold, shift, multiply and sum concept

(2) Tabulation technique.

Solution:

$$y(n) = x(n) * h(n)$$

$$y(n) = \sum_{k=-\infty}^{\infty} x(k) h(n-k)$$

$$y(1) = \sum x(k) h(1-k)$$
$$= 1 \times \frac{1}{2} + 2 \times 1$$
$$= \frac{5}{2}$$

Tabulation Method:

Students should note that the length of the input array $x(n) = \{1, 2, 3\}$ $N_x = 3$ and the length the impulse response array $h(n) = \left\{1, \frac{1}{2}\right\}$ $N_h = 2$ and the length of the output array y $\left\{1, \frac{5}{2}, 4, \frac{3}{2}\right\}$ is $N_x + N_h - 1 = 4$.

Convolution of Infinite Length Sequences:

Example 1.11:

The impulse response of a LTI system

$$h(n) = \left(\frac{1}{2}\right)^n u(n)$$

Find the response of the system when input

$$x(n) = (2)^n u(n) by$$

- Fold, shift, multiply and sum concept
- (2) Tabulation technique.

Solution:

$$y(n) = \sum_{k=-\infty}^{\infty} x(k) h(n-k)$$

$$x(n)$$

$$y(n) = \sum_{k=-\infty}^{\infty} x(k) h(n-k)$$

$$y(0) = \sum_{k=-\infty}^{\infty} x(k) h(-k)$$

$$= 1 \times 1$$

$$= 1$$

$$y(1) = \sum x(k) h(1-k)$$

$$= 1 \times \frac{1}{2} + 2 \times 1$$

$$= \frac{5}{2}$$

This will be a never ending process

$$y(n) = \left\{1, \frac{5}{2}, \frac{21}{4}, \dots\right\}$$

Tabulation Method:

10110					
_x(n) 1	(0) 2 y	(1) 4 y((2) 8	
h(n) → 1	-21	2	4	8	
1/2	$\frac{1}{2}$	1	2	4	
1/4	1/4	1/2	1	2	
1/8	1/8	1/4	1/2	1	
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		1			

$$y(n) = \begin{cases} 1, \frac{5}{2}, \frac{21}{4}, \dots \end{cases}$$