	20-P-MOM-DY-35
5pm c	A rocket ship has the mass m= 10000 kg, 5000 kg of
	which is fuel with the density p = 1004 ke/m3 The
	which is fuel with the density p=1004 kg/m³. The exit nozzle of the rocket is a circle with a radius
X	1 = Sm and fuel exits the nozzle at a volumetric rate
	1(x = 50 %, It the escape velocity of tactor is 17 19km/s what
-1	velocity relative to the rocket ship dues the fixed need to
	be ejected to reach the escape yelocity by the time
	velocity relative to the rocket ship does the fuel need to be ejected to reach the escape velocity by the time the fuel runs out. [no need for radius]
	A
	Ve
	M
	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
	Salution is M = M M Company
	Solution: Vmax = Vf/ ln (m) gmf c dm
	$c = \rho Q = 50 200 \text{ kg/s}$
	(1190 = vf/c ln (10000) (9.81) (5000)
	$\frac{1190 = v_{f/r} \ln \left(\frac{10000}{5000} \right) - \frac{(9.81)(5000)}{50200}}{50200}$
	VE/ = 16, MJ km/s
-	
	•