Module 1 Enterprise Architecture

ENCOR (350-401) Topics

- Enterprise Architecture
- Virtualization Technologies
- Infrastructure Technologies
- Network Management
- Network Security
- Network Automation
- Exam Preparation

- Kevin Wallace
- CCIEx2 Emeritus #7945 (Collaboration and R/S)
- Working with Cisco gear since 1989

- Taught courses with a CLP for nearly 14 years
- Network Design Specialist at Walt Disney World

- Written a bunch of books & made a ton of video courses for Cisco Press
- 2x Cisco Live Distinguished Speaker

Enterprise Network Design Considerations

Three-Tier vs. Collapsed Core Architectures

Collapsed Core Architecture

A two-tier topology where the Core and Distribution Layers have been consolidated.

Spine-Leaf Design for Data Centers

Logically, One Switch

On-Premise vs. Cloud Designs

Internet VPN

Private WAN
MPLS
Metro Ethernet

Cloud Provider

On-Premise vs. Cloud Designs

Considerations

- With a Cloud deployment, there's no need to maintain local redundant power or hardware.
- With a Cloud deployment, you pay for resource usage instead of purchasing physical hardware.
- With an On-Premise deployment, it might be easier to meet compliance requirements.
- With an On-Premise deployment, it might be easier to maintain a good user experience.
- Many deployments, called Hybrid deployments, combine both On-Premise and Cloud deployments.

Fabric Capacity Planning

Nexus 7000 Series Switches

- How much data do we need to push through a data center switch?
- How much data can we push through a specific hardware configuration?
- What is the anticipated bandwidth demand increase over time?

Fabric Capacity Planning

Fabric Capacity Planning

Nexus 7000 Series Switches

Switch BW Capacity = (Inter-slot Switching Capacity * Number of I/O Slots) + ((Number of SE Modules * Inter-slot Switching Capacity) / 21

Switch BW Capacity = (550 Gbps * 16) + I(2 * 550 Gbps) / 21

Switch BW Capacity = (8800 Gbps) + 550 Gbps

Switch BW Capacity = 9350 Gbps

Full Duplex Switch BW Capacity = (9350 Gbps) * 2

Full Duplex Switch BW Capacity = 18.7 Tbps

Redundant Design

'The 5 Nines of Availability'

99.999 Percent Uptime

Approx. 5 Min. of Downtime/Year

Higher Costs

- Redundant Components
- UPS/Generator
- FHRP

Redundant Design

Enterprise Data Center

Backup Storage

Redundant Design

Enterprise Data Center

- Power
- HVAC
- Floor Space
- Server Hardware
- Synchronized Data

Hot Site

- **Cold Site**
- - **Warm Site**

- Power
- HVAC
- Floor Space

- Power
- HVAC
- Floor Space
- Server Hardware

Hot Standby Router Protocol (HSRP)

Virtual Router Redundancy Protocol (VRRP)

Gateway Load Balancing Protocol (GLBP)

The MAC address of 10.1.1.1 is 1111.1111.1111.

The MAC address of 10.1.1.1 is 2222.2222.2222.

Internet

AVG

- Round-Robin
- Host-Dependent
- Weighted

What is the MAC address

PC1

Active Virtual Forwarder (AVF)

Re

Forwards traffic off of the local subnet

ay.

Default Gateway: 10.1.1.1

Default Gateway: 10.1.1.

Stateful Switchover (SSO)

The Main Issue: Failing over to a backup route processor might cause routing protocol neighborships to reset.

Stateful Switchover (SSO)

SSO: Sync (Config and State Information)

The Secondary Issue: Packets might be dropped until the forwarding table is rebuilt.

Stateful Switchover (SS0)

SSO: Sync (Config and State Information)

Nonstop Forwarding (NSF): Makes the routing information maintained by CEF available to the backup route processor

Wireless LAN (WLAN) Design Considerations

Autonomous Access Points (APs)

- Standalone, independent devices
- Home or small office environments
- Controller-less deployment model
- Not commonly used in large enterprise networks

Management IP address: 10.1.1

Management IP address: 20.1.1.1

Lightweight Access Points (APs)

- Requires central wireless LAN controller (WLC)
- Controller-based deployment model
- WLCs can be physical or virtual
- Controller communicates changes to the APs
- Control and Provisioning of Wireless Access Points (CAPWAP)

Cisco FlexConnect:

- Configure and control remote wireless network
- Similar to Layer 3 roaming with CAPWAP

Central Switched:

- Normal CAPWAP mode of operation
- Typically not the recommended mode

Local Switched:

- Map user traffic to VLAN on adjacent switch
- Control and management traffic still sent over CAPWAP to WLC

RSS = Received Signal Strength

-45 dBm

Software-Defined WAN

(SD-WAN)

Overview of SD-WAN Technology

Enterprise WAN:

- Dedicated circuits traditionally used
- Provide reliability and security
- Rise in cloud usage requires simplicity

Software-Defined Wide Area Network (SD-WAN)

Traffic backhauling no longer required

- End-to-end traffic encryption and inspection through SD-WAN
- Next generation security mechanisms added
- Anti-malware systems, botnet control intervention, etc.

Cisco SD-WAN:

- Data plane
- Control plane
- Management plane
- Orchestration plane

vManage: User interface

vBond: Orchestration and provisioning

Management & Orchestration Plane

vSmart: SD-WAN - Policy Enforcement

◆ Communicates via Overlay Management Protocol (OMP)

Control Plane

Cisco vEdge: Edge routers

Data Plane

Edge Router Hardware Platforms:

- Cisco vEdge routers running Viptela OS
- ISR 1000 and 4000 Series routers
- ASR 1000 Series routers

Edge Router Software Platforms:

- CSR 1000v Router
- vEdge Cloud Router running Viptela OS

Software-Defined Access (SD-Access)

SD-Access Advantages:

- Next-generation policy enforcement
- Security Group Access Control Lists (SGACLs)
- Policies are based on identity rather than addresses

SD-Access Advantages:

- Secure network segmentation
- Virtualization of physical network
- Separate virtual networks can have separate policies

- Virtual overlay network
- Ideally used with Cisco DNA Center
- NETCONF/YANG management
- Overcomes limitations found in traditional network architecture

SD-Access Fabric

Control Plane

- LISP encapsulation
- Simplified routing

Data Plane

- VXLAN Tunneling
- Virtual networks

Policy Plane

- Cisco TrustSec
- Security groupings

Cisco DNA Center GUI

MANAGEMENT

Cisco DNA Center

Cisco ISE

CONTROLLER

Underlay Network

SD-Access Overlay

NETWORK

PHYSICAL

Fabric Border Nodes

Internal Border Node

Connects only to known areas or the organization

Default Border Node

Connects only to unknown external networks

Anywhere Border Node

Connectivity to both inside and outside public networks

End User Devices

Fabric (

Fabric I

Fabric E

,.......................

Quality of Service (QoS)

Do You Need QoS?

Do You Need QoS?

Periodic Congestion

3 Categories of QoS

Wi-Fi Multimedia (WMM)

- IEEE 802.1P markings map to WMM access categories
- Access category determines Interframe
 Space (IFS) and Random Backoff Timer

Class of Service (CoS)

IEEE 802.1Q Frame

Type of Service (ToS) Byte

Traffic Class Byte in IPv6

IPv4 or IPv6 Packet

RED Drop Ranges

RED Profiles

CIR = Bc / Tc

CIR (Committed Information Rate) = AVERAGE speed over the period of a second

Switching Mechanisms

Process Switching:

- Oldest method for Cisco IOS switching
- Every packet is inspected by CPU

Process Switching:

- Processor is directly involved with every packet
- Not ideal in modern networks
- Available on every Cisco router platform
- Debugging uses process switching

Cisco Express Forwarding (CEF):

- Most preferred Cisco IOS switching process
- Default in most modern Cisco IOS devices
- Optimized lookup and efficient packet handling

CEF Benefits:

- Less CPU-intensive than older switching methods
- Distributed CEF (dCEF) allows line card forwarding
- CEF Forwarding Information Base (FIB)
- CEF Adjacency Table

CEF Forwarding Information Base (FIB):

- Similar to a routing table
- FIB is updated with each routing table update
- Processor is not involved with route lookup
- FIB is a more efficient lookup structure

CEF Adjacency Table:

- Information about directly connected devices
- Adjacency = reachable via single link-layer hop
- Layer 2 next-hop address maintained in table

CEF Demo

Content Addressable Memory (CAM)

- Layer 2 switching
- Source MAC addresses recorded in CAM table
- Used to determine ports for frame delivery

Content Addressable Memory (CAM)

- Arrival port number, source MAC address, and arrival timestamp
- Stale entries removed after aging timer expires
- Default aging timer is 300 seconds
- Switch(config)#mac address-table aging-time <seconds>

Content Addressable Memory (CAM)

- True (1) or False (0) value returned upon lookup
- Searches for exact binary match

Ternary Content Addressable Memory (TCAM):

- Some L2 switches use TCAM for QoS
- Primarily a multilayer switch component
- Access Control Lists (ACLs) commonly use TCAM

Ternary Content Addressable Memory (TCAM):

- Extension of the Content Addressable Memory (CAM)
- Returns True (1), False (0), or Do Not Care (X)
- Ternary = mathematical value based in three

Ternary Content Addressable Memory (TCAM):

- TCAM uses VMR format (value, mask, and result)
- Value = IP addresses, protocol ports, etc.
- Mask = mask bits associated with matching values
- Result = permit, deny, QoS policing, etc.

CAM and TCAM Demo

Forwarding Information Base (FIB)

- IP forwarding table or CEF table
- IP destination prefix-based switching decisions

Forwarding Information Base (FIB)

- FIB capacity can dictate forwarding efficiency
- Modern ASICs provide line-speeds
- dCEF offloads the FIB to line card modules

Routing Information Base (RIB)

- IP routing related information stored
- Used by all routing protocols (OSPF, BGP, etc.)
- Learned routes inserted into RIB
- Unreachable routes removed and RIB updated
- Dynamic, static, and directly connected routes

