

Faculty of Engineering & Technology Group J

MATLAB Group Assignment
Mr. Ben Maseruka

Group J

Name	Reg Number	Program	
AHAISIBWE CHRISTOPHER	BU/UP/2024/0824	AMI	
GIFT EMMANUEL	BU/X/2024/3250	WAR	
ADWONG CALEB	BU/UP/2024/3813	MEB	
TWALE JOSHUA	BU/UP/2024/5259	APE	
OWINO POSH	BU/UP/2024/1067	WAR	
OULE SADDOCK	BU/UP/2024/0844	AMI	
MUKYALA ROSE MIRIAM	BU/UP/2024/1041	WAR	
AHEREZA FAITH	BU/UG/2024/2673	APE	
ARACH GLADYS	BU/UP/2024/1016	WAR	
ACIPA BRIDGET	BU/UP/2024/1078	WAR	

Group J

Name	Reg Number	Program	
NABUKEERA ANNET RIONAH	BU/UG/2024/2676	AMI	
AMASO SUZAN	BU/UP/2024/5435	PTI	
MUWUBYA WYCLIFFE	BU/UP/2024/1045	WAR	
AKELLO BARBRA	BU/UP/2024/1001	WAR	
WANGUSI DAVID	BU/UP/2024/5350	MEB	
AWENE SOLOMON	BU/UP/2024/1021	WAR	
OPOKA VINCENT	BU/UG/2024/2675	AMI	
ATATI EDWINE	BU/UP/2024/3730	AMI	
BULUMA DANIEL	BU/UP/2024/4323	AMI	
OCAA ELI	BU/UP/2024/1058	WAR	

Exercise 1

Exercise 2

Each group has different members from different backgrounds, home districts , religions , tribes , villages, courses , interests, ages, names and facial representations.

Write a MATLAB code that can store each members

attributes into a single variable. Ensure the code saves the value.

Group J

Exercise 2

Exercise 1

Retrieve a unique data set from kaggle.com in Excel format.

Write a single MATLAB script to:

- Read the dataset into MATLAB
- 2. Copy variables for each year
- 3. Display data for each year in separate tables
- 4. Convert the tables from (3) into structural arrays
- 5. Output the variables from the structural arrays into one Excel workbook and separate sheets for data of each year with clear column headings

In simple terms

First get a dataset from <u>kaggle.com</u> in Excel format

We cleaned it to remove missing values and errors

Import the excel file into MATLAB for processing using a script

Part of	ath	letes.	CSV
---------	-----	--------	-----

ID	Name	Sex	Team	NOC	Year	Season
1	A Dijiang	М	China	CHN	1992	Summer
2	A Lamusi	М	China	CHN	2012	Summer
3	Gunnar Nielsen	М	Denmark	DEN	1920	Summer
4	Edgar Lindenau	М	Denmark/Sweden	DEN	1900	Summer
5	Christine Jacoba	F	Netherlands	NED	1988	Winter
5	Christine Jacoba	F	Netherlands	NED	1988	Winter
5	Christine Jacoba	F	Netherlands	NED	1992	Winter
						· · · · · · · · · · · · · · · · · · ·

Sort them by the Year value and isolate the records of data by Year ...

Put each year's data records into separate respective tables

Convert the tables to structural arrays

Add each year's data into an Excel workbook, with separate sheets for each year

```
1 % Input and output file paths
 2 kaggle_data_file = "C:\Users\Cp9-30\Desktop\exercise one\athlete_events.csv";
 3 output_file = "C:\Users\Cp9-30\Desktop\exercise one\output.xlsx";
 4
 5 % Load data and initialize structure
 6 kaggle_data = readtable(kaggle_data_file);
 7 struct_arrays = struct();
 8 unique_years = unique(kaggle_data.Year);
10 % Process data for each year
11 for i = 1:length(unique_years)
       year = unique_years(i);
12
       year_data = kaggle_data(kaggle_data.Year == year, :);
13
       currentYear = sprintf('Year_%d', year);
14
15
       % Store data in struct and Excel
```

Here we setup the files we will utilize by declaring their paths in the local computer where our MATLAB environment is installed

Here we load the dataset as a table in line 6 Create the empty parent structural array in line 7 And create an array of the unique years in our dataset

```
10 % Process data for each year
11 for i = 1:length(unique_years)
       year = unique_years(i);
12
13
       year_data = kaggle_data(kaggle_data.Year == year, :);
       currentYear = sprintf('Year_%d', year);
14
15
      % Store data in struct and Excel
16
       S = table2struct(year_data);
17
       struct_arrays(i).(currentYear) = S;
18
       writetable(year_data, output_file, 'Sheet', currentYear);
19
20 end
21
```

This block of code runs the loop that performs the core operation

For each year; it runs through the dataset and picks out rows that have that year, saves them to a new filtered table, converts the table to a structural array and puts the array into a sheet in Excel

Until all years are done through!

```
10 % Process data for each year
11 for i = 1:length(unique_years)
       year = unique_years(i);
       year_data = kaggle_data(kaggle_data
13
       currentYear = sprintf('Year_%d', ye
14
15
       % Store data in struct and Excel
16
       S = table2struct(year_data);
17
       struct_arrays(i).(currentYear) = S;
18
       writetable(year_data, output_file,
19
20 end
21
```

```
- \( \times\) \( \times\)

22 % Display results

23 disp('Loop finished. Displaying the final struct:');

24 disp(struct_arrays);

25 disp('All field names in the struct:');

26 disp(fieldnames(struct_arrays));

27 disp('Data has been written to Excel file.');
```

This part of the code displays the result to the console simply for verification

Our result for Exercise 1

Exercise 2

Each group has different members from different backgrounds, home districts, religions, tribes, villages, courses, interests, ages, names and facial representations.

Write a MATLAB code that can store each members attributes into a single variable. Ensure the code saves the value.


```
%%designingstruct
members=struct('name',{},'age',{},'course',{},'district',{},'tribe',{},
'village',{},'religion',{},'interest',{},'facialrepresentation',{});
%member(1
members(1).name='gift_emmanuel';
members(1).age='20';
members(1).course='war';
members(1).district='koboko';
members(1).tribe='kakwa';
members(1).religion='anglican';
members(1).interest='prayers';
members(1).facialrepresentation=imread('ngc6543a.jpg');
                (2).name='ahaisibwe_christopher';
(2).age='22';
(2).course='ami';
(2).district='wakiso';
(2).tribe='munyankole';
(2).village='bujjuuko';
                     ).interest='swimming'
members(2).faci
                                       Continues for every member
mempers(3).name="121";
mempers(3).age='21';
```

In these lines, we create an empty structural array to contain all the members' attributes; we create the field labels as well to have it store the different attributes we are interested in

```
3
 4 %member(1)
 5 members(1).name='gift_emmanuel';
 6 members(1).age='20';
 7 members(1).course='war';
8 members(1).district='koboko';
 9 members(1).tribe='kakwa';
10 members(1).village='keri';
11 members(1).religion='anglican';
12 members(1).interest='prayers';
13 members(1).facialrepresentation=imread('ngc6543a.jpg');
14
```

This portion of the code enters the attributes of one member of the group.

And stores them appropriately in the fields of the struct where they belong.

The rest of the code, does the same; for the different members

```
3
 4 %member(1)
 5 members(1).name='git
 6 members(1).age='20':
 7 members(1).course='v
 8 members(1).district=
 9 members(1).tribe='ka
10 members(1).village=
11 members(1).religion=
12 members(1).interest=
13 members(1).facialrep
14
```

Our result for Exercise 2

Our result for Exercise 2

Fields	name	age age	course	district	tribe	village village	religion	interest interest	facialrepresentation	
	'gift_emma	'20'	'war'	'koboko'	'kakwa'	'keri'	'anglican'	'prayers'	650x600x3 uint8	
	'ahaisibwe	'22'	'ami'	'wakiso'	'munyankole'	'bujjuuko'	'catholic'	'swimming'	650x600x3 uint8	
	'arach_glad	'21'	'war'	'gulu'	'acholi'	'bardege'	[]	'music'	650x600x3 uint8	
	'adwong_ca	'22'	'meb'	'tororo'	'japadhola'	'paya'	'born_again'	'basketball'	650x600x3 uint8	
	'rose_miriam'	'22'	'war'	'trinyi'	'bugwere'	'kibuku'	'pentacostal'	'dancing'	650x600x3 uint8	
	'posh'	'23'	'war'	'tororo'	'japadhola'	'kisoko'	'catholic'	'gaming'	650x600x3 uint8	
	'amaso_sus	'23'	'pti'	'amuria'	'iteso'	'odekere'	'catholic'	'learning'	650x600x3 uint8	
2	'opoka_vinc	'22'	'ami'	'lamwo'	'acholi'	'lugu'	'catholic'	'football'	650x600x3 uint8	
	'ahereza_fai	'22'	'ape'	'isingiro'	'munyankole'	'watching'	'anglican'	'music'	650x600x3 uint8	
0	'wangusi_d	'21'	'meb'	'busia'	'samia'	'mayombe'	'catholic'	'football'	650x600x3 uint8	
1	'twale_josh	'2'	'ape'	'mbale'	'gishu'	'namakwek	'catholic'	'football'	650x600x3 uint8	
2	'acipa_brid	'21'	'war'	'lira'	'langi'	'bardege'	'catholic'	'music'	650x600x3 uint8	
3	'oule_saddo	'22'	'meb'	'busia'	'samia'	'bukedi'	'catholic'	'travelling'	650x600x3 uint8	
4	'nabukeera	'21'	'ami'	'jinja'	'musoga'	'town'	'catholic'	'reading'	650x600x3 uint8	
5	'muwubya	'23'	'war'	'kampala'	'mugandan'	'busega'	'born_again'	'prayers'	650x600x3 uint8	
6	'akello_barb	'22'	'war'	'busia'	'samia'	'shaule'	'catholic'	'business'	650x600x3 uint8	
7	'atati_edwine'	'25'	'ami'	'maracha'	'lugbara'	'nyandi'	'anglican'	'gym'	650x600x3 uint8	
8	'ocaa_eli'	'21'	'war'	'lira'	'langi'	'town'	'catholic'	'singimg'	650x600x3 uint8	
9	'awene_sol	'24'	'war'	'lira'	'langi'	'bardege'	'catholic'	'riding'	650x600x3 uint8	
0	'buluma da	'23'	'ami'	'busia'	'samia'	'nyandi'	'anglican'	'readin'	650x600x3 uint8	

In conclusion

CHALLENGES

- Limited references on the internet
- Disturbances of the eduroam network

ACHIEVEMENTS

- We learnt new academic websites like Kaggle.com
- We had a new knowledge about the use of MATLAB

CONCLUSION

We hope to have a deeper insight on the use of the MATLAB

We appreciate you listening

Group J