

Language Theory and Infinite Graphs

Colin Stirling
School of Informatics
University of Edinburgh

$$\mathsf{P} = \{p,q,r\}$$
, $\mathsf{S} = \{X\}$, $\mathsf{A} = \{a,b\}$ and T is

$$pX \xrightarrow{a} pXX \qquad pX \xrightarrow{b} r\epsilon \qquad rX \xrightarrow{\epsilon} r\epsilon$$
$$pX \xrightarrow{b} q\epsilon \qquad qX \xrightarrow{b} q\epsilon$$

$\mathsf{G}(pX)$ is

Pushdown grammars

Real-time single-state PDA

A pushdown grammar, PDG, consists of

- A finite set of stack symbols S
- A finite alphabet A
- A finite set of basic transitions T

Basic transition $X \stackrel{a}{\longrightarrow} \alpha$ where $X \in S$, $a \in A$ and $\alpha \in S^*$

Configurations

- A configuration, $\beta \in S^*$
- Transitions of a configuration

If
$$X \xrightarrow{a} \alpha \in T$$
 then $X\delta \xrightarrow{a} \alpha\delta$

Normal form

Assume that a PDG is in normal form

- If $X \xrightarrow{a} \alpha \in T$ then $|\alpha| \leq 2$ (To ensure this, add extra stack symbols.)
- Normed: for every $X \in S$ there is a word u such that $u \in L(X)$

Some definitions

Assume a fixed total ordering on A

Word u is smaller than v, if |u|<|v| or |u|=|v| and u is lexicographically less than v with respect to the ordering on A

For stack symbol X, if $L(X) \neq \emptyset$ then w(X) is the smallest word in $\{u: X \xrightarrow{u} \epsilon\}$

The norm of X is |w(X)|

Ensuring normedness

Can compute w(X), if it exists

- Identify stack symbols with norm 1: $X \xrightarrow{a} \epsilon \in T$
- Identify stack symbols with norm 2: $X \stackrel{a}{\longrightarrow} Z \in \mathsf{T}$ and Z has norm 1
- Identify stack symbols with norm 3: $X \xrightarrow{a} Z \in \mathsf{T}$ and Z has norm 2 or $X \xrightarrow{a} YZ \in \mathsf{T}$ and both Y and Z have norm 1

• . . .

ullet Either w(X) is calculated for each stack symbol X or X can not have a norm: the current largest norm is k and no stack symbol has norm between k and 2k+1

Normedness continued

If X is unnormed then it is deleted from S, and all transitions $Z \stackrel{a}{\longrightarrow} \alpha \in \mathsf{T}$ with X = Z or α containing X are deleted from T

Result a normed PDG that preserves language equivalence (for configurations α such that $L(\alpha) \neq \emptyset$)

Maximum norm M of a PDG: $\max\{|w(X)|: X \in S\}$

M can be exponential in the number of stack symbols

Norm extends to configurations: $w(\alpha)$ is the unique smallest word v such that $\alpha \xrightarrow{v} \epsilon$. Norm of α is $|w(\alpha)|$.

Simple Grammars

As a first step towards solving the DPDA equivalence problem, we prove decidability of language equivalence for simple grammars, which was first shown by Korenjak and Hopcroft in 1966 using a similar method to that presented here.

A simple grammar is a deterministic PDG in normal form

Determinism: if $X \stackrel{a}{\longrightarrow} \alpha \in T$ and $X \stackrel{a}{\longrightarrow} \beta \in T$ then $\alpha = \beta$

Recognition power of simple grammars is less than that of DPDA:

 $L = \{a^nb^n : n > 0\} \cup \{a^nc : n > 0\}$ is generable by a DPDA but not by a simple grammar

$$X \xrightarrow{a} YX \quad X \xrightarrow{b} \epsilon \quad Y \xrightarrow{b} X \qquad A \xrightarrow{a} C \quad A \xrightarrow{b} \epsilon \quad C \xrightarrow{b} AA$$

 $\mathsf{G}(X)$ and $\mathsf{G}(A)$ are

$$w(X) = b$$
 and $w(A) = b$ and $w(Y) = bb$ and $w(C) = bbb$

Maximum norm M=3

Notation

- ullet Add an extra configuration \emptyset which is unnormed, $|\emptyset|$, is 0 and $L(\emptyset)=\emptyset$
- $\alpha \cdot u$ is either the configuration β such that $\alpha \stackrel{u}{\longrightarrow} \beta$ or it is the deadlocked configuration \emptyset

So, for every α and u, $\alpha \cdot u$ is unique

$$(YX \cdot bab) = XXX$$

$$(AA \cdot aa) = \emptyset$$

Decision Problem

Given
$$\alpha, \beta \in S^*$$
, is $L(\alpha) = L(\beta)$?

The problem $L(\alpha) \subseteq L(\beta)$? is undecidable

Because simple grammars are deterministic and normed language equivalence coincides with bismulation equivalence

$$L(\alpha) = L(\beta)$$
 iff $\alpha \sim \beta$

$A \sim X$. The bisimulation justifying equivalence is infinite

$$\{(X^n, A^n) : n \ge 0\} \cup \{(YX^{n+1}, CA^n) : n \ge 0\}$$

Decision Procedure

- Decision procedure is a tableau proof system, consisting of proof rules which allow goals to be reduced to subgoals
- Goals and subgoals are all of the form $\alpha = \beta$, is $\alpha \sim \beta$?

Rules: UNF (unfold)

Goal, $\alpha \doteq \beta$ reduces to subgoals $(\alpha \cdot a) \doteq (\beta \cdot a)$ for each $a \in A$

$$\frac{\alpha \stackrel{\cdot}{=} \beta}{(\alpha \cdot a_1) \stackrel{\cdot}{=} (\beta \cdot a_1) \dots (\alpha \cdot a_k) \stackrel{\cdot}{=} (\beta \cdot a_k)} A = \{a_1, \dots, a_k\}$$

Fact If $\alpha \sim \beta$, then for all $a \in A$, $(\alpha \cdot a) \sim (\beta \cdot a)$

Fact If $\alpha \sim_n \beta$ and $\alpha \not\sim_{n+1} \beta$, then for some $a \in A$, $(\alpha \cdot a) \not\sim_n (\beta \cdot a)$

marktoberdorf today cps

$$\begin{array}{c|c} A \stackrel{.}{=} X \\ \hline C \stackrel{.}{=} YX & \text{UNF} \\ \hline \emptyset \stackrel{.}{=} \emptyset & \begin{array}{c} AA \stackrel{.}{=} XX \\ \hline CA \stackrel{.}{=} YXX & A \stackrel{.}{=} X \end{array} \end{array} \text{UNF}$$

Imbalance

- Imbalance of a goal $\alpha \doteq \beta$ is the length of the largest prefix of α or β before they have a common tail
- If $\alpha = \alpha_1 \delta$ and $\beta = \beta_1 \delta$ and the only common suffix of α_1 and β_1 is the empty sequence, then the imbalance between α and β is $\max\{|\alpha_1|, |\beta_1|\}$
- If the imbalance between α and β is 0, then $\alpha = \beta$, so $\alpha \sim \beta$

Rules: BAL(L) and BAL(R) (balance)

where C is the condition

- 1. $|\alpha| > 0$ and $|\alpha'| > 0$, and
- 2. there are precisely |w(X)| consecutive applications of UNF between the top goal, $X\alpha \doteq \beta$ ($\beta \doteq X\alpha$), and the bottom goal, $\alpha'\alpha \doteq \beta'$ ($\beta' \doteq \alpha'\alpha$), and no applications of any other rule

$$\frac{AA^{220} \stackrel{.}{=} X^{221}}{CA^{220} \stackrel{.}{=} YX^{221}} \text{ BAL } \cdots \text{ UNF}$$

$$\frac{CA^{220} \stackrel{.}{=} YX^{221}}{C(X^{221} \cdot w(A)) \stackrel{.}{=} YX^{221}} \text{ BAL } \cdots$$

w(A) = b and so last goal is balanced: $C(X^{221} \cdot b)$ is CX^{220}

BAL continued

Fact

- 1. If $X\alpha \sim \beta$ then $\alpha \sim (\beta \cdot w(X))$
- 2. If $\alpha \sim \beta$ then $\delta \alpha \sim \delta \beta$

Fact

- 1. If $X\alpha \sim_n \beta$ and $n \geq |w(X)|$ then $\alpha \sim_{n-|w(X)|} (\beta \cdot w(X))$
- 2. If $\alpha \sim_n \beta$ and $|\delta| \geq k$ then $\delta \alpha \sim_{n+k} \delta \beta$

Rules: CUT

The final rule CUT allows common tails to be cut from a goal:

$$\frac{\alpha\delta \stackrel{\cdot}{=} \beta\delta}{\alpha \stackrel{\cdot}{=} \beta} \delta \neq \epsilon$$

Example

$$\frac{CX^{220} \stackrel{\cdot}{=} YX^{221}}{C \stackrel{\cdot}{=} YX} \text{CUT}$$

CUT cont

Fact If $\alpha\delta\sim\beta\delta$ then $\alpha\sim\beta$

Fact If $\alpha\delta \not\sim_n \beta\delta$ then $\alpha \not\sim_n \beta$

Final goals

Successful final goals

$$\begin{array}{ccc} \alpha \stackrel{.}{=} \beta \\ & \vdots & \text{UNF at least once} \\ \alpha \stackrel{.}{=} \alpha & \alpha \stackrel{.}{=} \beta \end{array}$$

Unsuccessful final goals

$$\alpha \doteq \beta$$
 (exactly one of α, β is \emptyset)

Procedure

- Start with an initial goal, $\alpha = \beta$, and deterministically build a proof tree by applying the tableau rules (there is an ordering on the rules)
- Goals are thereby reduced to subgoals. Rules are not applied to final goals

A successful tableau is a finite proof tree all of whose leaves are successful final goals

Otherwise a tableau is unsuccessful

Rule order

We assume that a BAL rule applies to a goal using the premise above which is the closest

Order on applying tableau rules

- 1. Apply BAL(L) followed immediately, if applicable, by CUT, or
- 2. Apply BAL(R) followed immediately, if applicable, by CUT, or
- 3. Apply UNF

Fact Any goal $\alpha \doteq \beta$ has a unique tableau

$$\frac{A \stackrel{.}{=} X}{\frac{C \stackrel{.}{=} YX}{AA \stackrel{.}{=} XX}} \text{UNF}$$

$$\frac{A \stackrel{.}{=} X}{AA \stackrel{.}{=} XX} \text{UNF}$$

$$\frac{CA \stackrel{.}{=} YXX}{CX \stackrel{.}{=} YXX} \text{BAL(L)} \qquad A \stackrel{.}{=} X$$

$$\frac{CX \stackrel{.}{=} YXX}{C \stackrel{.}{=} YX} \text{CUT}$$

Decidability

Propositions

- Every tableau is finite
- $\alpha \sim \beta$ iff the tableau with root $\alpha = \beta$ is successful

Main point, given $\alpha \doteq \beta$, then every goal in the tableau has a bounded size (in terms of $|\alpha|, |\beta|$ and the size of the PDG)

(Better procedure uses unique prime decomposition: leads to a polynomial time procedure.)

Comments

What are key features that underpin decidability?

Bisimulation equivalence is a congruence with respect to stack prefixing

if
$$L(\alpha) = L(\beta)$$
 then $L(\delta\alpha) = L(\delta\beta)$

Congruence allows us to tear apart a configuration $\alpha'\alpha$ and replace its tail with a potentially equivalent configuration β , $\alpha'\beta$

• Bisimulation equivalence supports cancellation of postfixed stacks

if
$$L(\alpha\delta)=L(\beta\delta)$$
 then $L(\alpha)=L(\beta)$

Cancellation, as used in CUT, has the consequence that goals become small

Back to DPDA

• How can we tear apart DPDA (stable) configurations $p\alpha$ and replace parts with parts? What is a part of a configuration?

A configuration has state as well as stack

- $L(p\alpha) = L(q\beta)$ does not, in general, imply $L(p\delta\alpha) = L(q\delta\beta)$
- $L(p\alpha\delta) = L(q\beta\delta)$ does not, in general, imply $L(p\alpha) = L(q\beta)$

- A main attack on the decision problem in the 1960/70s examined differences between stack lengths and potentially equivalent configurations that eventually resulted in a proof of decidability for real-time DPDAs
- However, $L(pY^nX) = L(pY^mX)$ for every m and n

marktoberdorf today

However

Many of these problems disappear with pushdown grammars. Despite nondeterminism, stacking is a congruence with respect to pre and postfixing for language and bisimulation equivalence and both equivalences support pre and postfixed cancellation

1.
$$L(\alpha) = L(\beta)$$
 iff $L(\alpha\delta) = L(\beta\delta)$

2.
$$L(\alpha) = L(\beta)$$
 iff $L(\delta \alpha) = L(\delta \beta)$

3.
$$\alpha \sim \beta$$
 iff $\alpha \delta \sim \beta \delta$

4.
$$\alpha \sim \beta$$
 iff $\alpha \delta \sim \beta \delta$

Therefore ...

- This suggests that we should try to remain with PDGs
- Deterministic PDGs are too restricted
- Arbitrary PDGs are too rich (as they generate all the non-empty context-free languages)
- What is needed is a mechanism for constraining nondeterminism in a PDG