

Mx1100 UMI Serial BTR Installation & User's Manual

For Fanuc Tape Readers

Copyright © 2012 All rights reserved.

Nexas Networks Inc.
627 Main Street East, Suite L09
Hamilton, Ontario
Canada L8M 1J5
www.nexasnet.com

Mx1100 UMI Serial Fanuc BTR

Table of Contents

Introduction.....	VII
About This Manual.....	VII
History of the BTR.....	VII
Installation Instructions.....	1
Package Contents.....	1
Installing the Mx1100 UMI BTR.....	2
Operating The BTR.....	5
Layout Diagram of the Mx1100 UMI Serial BTR.....	6
Reference.....	7
General Troubleshooting.....	7
Nexas Technical Support & Service.....	11
User's Notes.....	12
Glossary.....	13
Appendix A: Configuration & Settings.....	17
DNC Software Configuration Information.....	17
Mx1100 Option Jumper Settings.....	17
Mx1100 Serial Port Pin Configuration.....	18
Serial Data Cable Configurations.....	18
Appendix B: ASCII Code Reference Table.....	19

Introduction

Thank you for purchasing the Mx1100 UMI (Universal Machine Interface) BTR. At Texas we invest substantial effort in the design, manufacture and testing of each unit we build, and back it with a three-year limited warranty. We are confident you will find the Mx1100 an important component of your shop floor communications system.

About this Manual

This manual explains how to install and operate the Mx1100, and consists of the following sections:

Installation Instructions explains how to install the Mx1100 UMI BTR interface board.

Reference contains a troubleshooting section, notes area and contact information for customer service and technical support.

Appendix A, Configuration & Settings provides information for software (DNC) configuration, BTR jumper settings and serial cable configuration (“pin-out”) charts.

Appendix B, ASCII Table lists ASCII values in both Decimal and Hex formats, their corresponding symbol, and keyboard key where applicable. This may be helpful in configuring DNC software in some cases.

The History of the BTR

The “Behind the Tape Reader” board, or BTR as it is commonly called, is an electronic signal processor designed to emulate the function of a paper Tape Reader and provide an RS232 serial port as an alternate method of data entry to an NC or CNC control. RS232 is an international standard for electronic communications, and is a faster and more reliable means of data input than using punch tape or Manual Data Input (MDI). Originally, the only one way that a part program (the “G-code”) could be entered into a machine tool was through MDI mode, which allowed the program to be input using a keypad at the control. The MDI process was fine for small programs, but it was time consuming and error prone for longer programs. It

took time to set up and to prove the MDI code before operation could commence. Machine flexibility was low, since each new program required time to input. With all the wasted time and lack of flexibility, it was not very long before someone invented an alternate form of control input, the paper Tape Reader.

The paper Tape Reader provided a faster, more reliable form of data input to the numerical control. However, these Tape Readers were mechanical in nature, and required regular maintenance and care to perform properly. Tape Readers allowed data and programs that were punched out on a paper tape to be read in by the control at a rate of approximately 300 to 400 characters per second. A few problems inherent in the Tape Reader are: it has limited ability to accept commands and inform the operator of problems and status; it is prone to mechanical problems; it requires cleaning, lubrication and other maintenance; it has a limited capacity of 1000 feet (305 metres) of tape. It was commonly suggested that a busy shop keep a spare reader in inventory in preparation for the time when one broke down.

The process of punching data tapes (whether paper, Mylar or metal) was expensive, time-consuming and brought up storage concerns. Because of the absolute nature of a punched tape, the process had to be redone for every program revision. The programmer and operator had to work closely together to keep the tape accurate and up to date. Old tapes had to be filed or destroyed and the latest version had to be carefully marked and stored. Finally, the tape itself had to be handled with care since it was prone to damage.

Later machine controls had a new mode of operation that allowed their Tape Reader's "endless" spool of tape to surmount memory constraints. Originating on Numerical Controls (NC) that had no memory, Direct Numeric Control (DNC) allowed execution of a program while it was being read. This "drip-feed" method meant that the program was limited in size only by the length of tape used. This

type of operation was very much appreciated later on with the advent of Computerized Numeric Controls (CNC).

With true onboard memory the CNC had much greater capabilities and inevitably programs got longer and the need for more memory grew. With control memory being expensive and limited, DNC has remained the only way some modern manufacturers can operate. Tape Readers are still commonplace on modern controls today. However, thanks to serial DNC capabilities, many shops use Tape Readers for backup purposes only.

The modern equivalent of a Tape Reader is the BTR interface board, which emulates paper Tape Readers. The Mx1100 UMI BTR is a microcontroller-based interface board that allows communications with a machine control for the purposes of loading programs into memory or running DNC. BTRs generally connect to a computer and permit a programmer to send a complete, formatted program to the machine control. The machine then loads the program as if from tape, either to memory for later execution, or for immediate block-by-block execution (DNC). Because the Mx1100 UMI BTR emulates the Tape Reader, the control really has no way of knowing that the source of the program is a computer port instead of a tape.

The Mx1100 UMI BTR eliminates punching of tape, has no moving parts, can handle transfer speeds that exceed that of a Tape Reader, uses the programmed (source) file, is less expensive than a Tape Reader, allows the Tape Reader to still be used, supports the use of the control's punch capability, and does not require maintenance. It's no wonder that the BTR, in combination with DNC software, has become the preferred alternative to using the Tape Reader and (in many cases) to upgrading CNC memory.

While the Nexus BTR gives the machine control the ability to receive programs from a PC, it has nothing to do with the specifics of what is being sent to the control. DNC software, or at the very least some form of serial communications software, is responsible for transmitting the data to the control, and the control expects that data to be in a specific format. The part program must be formatted just as it would be for punching to tape, and the DNC software must be configured to send it as if it were a tape. The BTR acts only as a gateway or port to the control. The required program format is usually described in the control's Operations Manual. Please consult the manual for information on how to configure the part code programs for the control.

Installation Instructions

Unpacking the Mx1100 UMI BTR

Package Contents

- 1 x Mx1100 Serial BTR.....Supplied
- 1 x Fanuc Ribbon Interface Cable..... Supplied
- 1 x Installation & User's Manual.....Supplied

Optional Items

- Facit 4070 Punch Port Interface Cable..... Optional (Nexas SKU-5100: Punch Cable for Fanuc only)
- Serial Interface Cable (PC – BTR)..... Optional
- Serial Transfer (DNC) Software..... Optional

Before You Begin

Please read all instructions before proceeding. We recommended first making a temporary installation, becoming familiarized with the components and orientation of the assembly, testing the functionality, and then making the installation permanent by mounting the BTR and routing and securing the cables where they are out of harm's way.

A shot of our old Mx1000 BTR (now built into the Mx1100) connected to Fanuc 6 (with punch) & to a laptop running Multi-DNC.

Installing the Mx1100 UMI BTR

General

The Mx1100 UMI BTR installation procedure is straightforward and relatively easy to complete – connect the BTR to the CNC where the Tape Reader was connected, optionally connect the Tape Reader to the BTR, and mount the BTR on the inside of the Tape Reader door. All the hardware and accessories are provided. All that's needed are some basic skills and hand tools. Estimated time required: 45 minutes.

1. Prepare the site.

Ensure that the Tape Reader and control are working properly before beginning the installation. When ready, turn OFF all power to the control, machine and computer system.

2. Access the Tape Reader.

Locate the panel on the control that has the Tape Reader mounted on it. Open this door to gain access to the back of the Reader.

3. Disconnect the Tape Reader.

Locate the Tape Reader printed circuit board directly behind the Reader. It has two 50-pin connectors, labelled CNT1 and CNT2. The second (CNT2) has wires going to the Tape Reader head. The cable on **CNT1** is a 50-conductor ribbon cable that goes to the CNC. *Note which side of this connector the cable's red stripe goes on.* Disconnect this cable from CNT1.

4. Connect the BTR.

Connect the cable disconnected in Step 3 to the BTR's 50-pin connector at top right*, labelled “FANUC CONTROL A”, without twisting the cable. Make sure the cable's red stripe is on the left, where Pin 1 is marked with a white square (*see diagram, page 6*). This connects the BTR's Fanuc control port to the control.

Caution: It is **very important** that the cables are installed properly with the correct orientation. If one of the ribbon cables is plugged in upside down, severe damage **will** occur to the BTR, to the Tape Reader and to the control's Master Board.

5. Mount the BTR.

Locate a safe spot on the back of the door and magnetically mount the Mx1100 UMI BTR.

6. Option: Connect the Tape Reader to the BTR.

If you wish to enable the paper Tape Reader, take the new 50-conductor ribbon cable and plug it onto the JP5 connector (labelled “FANUC TAPE READER A”) at the bottom right of the BTR.* *The red side of the cable goes on pin 1 of the connector (see diagram, page 6).* Plug the other end of the cable onto the CNT1 connector on the Fanuc Tape Reader board, from which the cable was removed in Step 3 – *ensuring the red wire on the ribbon cable goes on pin 1 of the connector, as noted in Step 3.*

7. Option: Punch Cable.

If you would like to punch part programs, parameters, etc. from the control to the computer, and you have purchased the optional Fanuc Facit 4070 Punch Cable, connect the control’s punch port to the BTR. Locate the punch port on the control. It’s usually a blue rectangular 20-pin (Honda) connector. Plug the Punch Cable into this port. Plug the 26-pin end onto the BTR’s JP4 connector, labelled “PUNCH IN”. *The red stripe goes on the side with Pin 1 (see diagram on page 6).* Remove the JP17 jumper (labelled “PUNCH DISABLE”) in the upper right corner of the BTR.

8. Configure the BTR.

Set the jumpers on the BTR to configure the communications parameters required for your DNC system. The option jumpers, listed on page 17, include the following:

Jumper A1 and A2 set the **Baud rate**. Typically 9600 baud (both jumpers ON) is used unless your cable doesn’t support that rate reliably. The RS232 specification supports 9600 Baud (Even parity, 7 data bits and 1 stop bit) with a cable length up to 50 feet (15 metres), but it is often possible to exceed that. It’s important to use cable specifically designed for RS232 serial data, 22 AWG, twisted pair, stranded wire (not solid), shielded, low capacitance (a rating of 11 to 15 pF per foot) is best. If you have a long cable run or are have unreliable data transmission, try lowering the Baud rate.

Note:

In our opinion, CAT3 or CAT5 UTP Ethernet cable is not suitable for reliable machine tool serial communications. Use shielded stranded AWG 22-24 serial cable.

Jumper A3 OFF adds **hardware** (RTS/CTS) **handshaking**. A3 ON is **software** (Xon/Xoff) only. Generally it is preferable to use both, which means setting A3 OFF and making sure your cable supports hardware handshaking (*see Note 6 on p 9*).

Jumper A4 OFF uses the standard **Xoff** character, \$13 Hex. Set A4 ON if your terminal software uses \$93 Hex for Xoff.

Jumper A5 OFF uses the standard Xon/Xoff handshaking method (a **Single Xoff**). Setting A5 ON sends a **continuous** stream of Xoff back to the computer until the next Xon. This enables the BTR to be used with some terminal programs that were intended for use with a modem, such as PROCOMM™ although we recommend the use of proper DNC software.

Jumper A6 OFF will **echo** incoming data back to the PC for diagnostic purposes. On reset, the software version is outputted for instance. Set A6 ON for normal use.

Jumper A7 OFF is **ISO** data, and ON converts incoming ISO data to **EIA** format for controls that require EIA data.

Jumper A8 overrides the Tape Reader's selection of **BTR or Tape mode**. If the Tape Reader wasn't reconnected to the BTR, or if the Tape Reader isn't intended to be used often and the BTR will usually in Tape mode, set A8 ON. (Remember to remove it when a tape needs to be read.)

SG JMPR OFF = COM1 Signal Ground **surge suppression**.

PWR P9 DBL ON activates power output on COM1's pin 9, for use with devices such as buffers (*see note on page 18*).

Punch Disable – if you are not using a Facit 4070 punch port (SKU-5100 cable), keep this jumper **ON**.

9. Connect to the Computer.

Connect a serial cable from the 9-pin COM1 on the BTR to the computer's serial port (*see page 18 for cable configurations*).

10. Test the Functionality.

Refer to "Operating the Mx1100 UMI BTR" (page 5), and if necessary, "Reference" (page 7).

Operating the Mx1100 UMI BTR

To use the control's new serial port:

Make sure the cables are connected correctly and prepare your DNC software. Press Reset on the Fanuc control to reset the BTR and ensure that no residual data is present in its input buffer. If BTR option jumper A8 is OFF (switch enabled), and the Tape Reader is connected, switch the BTR into BTR mode either by turning off the Tape Reader or by switching the Tape Reader to Release mode. Start an upload to the control from your DNC software, and then load a program at the control as if from tape. You can put the control in Tape mode and press READ or INPUT to load the program into memory (if it will fit), or put the control in DNC (or External) mode and press Cycle Start to run it in DNC mode – also known as “drip feeding”. (These mode names and key names will vary according to the control model.)

If you have any difficulty or concerns, please refer to “General Troubleshooting” on page 7.

Helpful hints

- Adding a couple of Carriage Returns to the end of the file will ensure that the entire file is transmitted. Some combinations of DNC software and CNC control sometimes miss the end of a file, so it's a good idea to provide some harmless extra characters as a buffer.
- The BTR responds to the Break character by resetting and clearing its buffer. The Break character is ASCII value 3, or HEX 03 (see Appendix B, page 19). If your DNC software can be configured to send control codes, it's a good idea to have it send a Break character at the beginning of every g-code program it sends. This will guarantee that the BTR buffer is reset and ready for a new program each time, regardless of whether the CNC didn't properly finish reading the previous one. (The Break character will not be passed through to the CNC, and the start of the program following it will wait while the BTR is resetting.)

IMPORTANT: If punch cable is connected, JP17 must be OFF. If punch cable is not connected, JP17 must be ON.

Pin 1 indicator: Cable's red stripe always goes on whichever side has this mark

JP33, PWR PG DBL
Enable power output on COM11 pin 9

JP4, PUNCH IN
26-pin header - Connect to CNC's punch port

COM 1
Connect to Computer

Configuration
Jumpers A1-A8

SP1
Mode Switch
Connector

JP16, +24TR
24 Volt selector

JP22, SG JNPR
Disables Signal
Ground Surge
Suppression on COM1

J7, Power Terminal

IMPORTANT: If +5TR is ON, then both +24TR and REG ENBL must be OFF. If +5TR is OFF, then both +24TR and REG ENBL must be ON. (See Note 1 on Page 7.)

Pin 1 indicator: Cable's red stripe always goes on whichever side has this mark

JP8, FANUC CONTROL A
50-pin header - Connect to CNC

JP17
Punch Disable

JP18, +5TR
5 Volt selector

Cable keyway.

If cable has no key, be extra careful orienting the cable

JP5, FANUC Tape Reader A
50-pin header - Connect to Tape Reader (Optional)

JP6, TAPE READER B

JP13
PUNCH IN

JP14
TAPE IN

JP15
FANUC TAPE READER A

JP16
FANUC MACHINE INTERFACE
MX1100 R3
MADE IN CANADA
WWW.MEMEX.CA

JP17
PUNCH DISABLE

JP18
PUNCH

JP19
TAPE

JP20
COM1

JP21
COM2

JP22
SG JNPR

JP23
PWR PG DBL

JP24
PWR ON

JP25
TX

JP26
RX

JP27
CTS

JP28
RTS

JP29
COM3

JP30
COM4

JP31
COM5

JP32
COM6

JP33
PWR PG DBL

JP34
PWR ON

JP35
COM7

JP36
COM8

JP37
COM9

JP38
COM10

JP39
COM11

JP40
COM12

JP41
COM13

JP42
COM14

JP43
COM15

JP44
COM16

JP45
COM17

JP46
COM18

JP47
COM19

JP48
COM20

JP49
COM21

JP50
COM22

JP51
COM23

JP52
COM24

JP53
COM25

JP54
COM26

JP55
COM27

JP56
COM28

JP57
COM29

JP58
COM30

JP59
COM31

JP60
COM32

JP61
COM33

JP62
COM34

JP63
COM35

JP64
COM36

JP65
COM37

JP66
COM38

JP67
COM39

JP68
COM40

JP69
COM41

JP70
COM42

JP71
COM43

JP72
COM44

JP73
COM45

JP74
COM46

JP75
COM47

JP76
COM48

JP77
COM49

JP78
COM50

JP79
COM51

JP80
COM52

JP81
COM53

JP82
COM54

JP83
COM55

JP84
COM56

JP85
COM57

JP86
COM58

JP87
COM59

JP88
COM60

JP89
COM61

JP90
COM62

JP91
COM63

JP92
COM64

JP93
COM65

JP94
COM66

JP95
COM67

JP96
COM68

JP97
COM69

JP98
COM70

JP99
COM71

JP100
COM72

JP101
COM73

JP102
COM74

JP103
COM75

JP104
COM76

JP105
COM77

JP106
COM78

JP107
COM79

JP108
COM80

JP109
COM81

JP110
COM82

JP111
COM83

JP112
COM84

JP113
COM85

JP114
COM86

JP115
COM87

JP116
COM88

JP117
COM89

JP118
COM90

JP119
COM91

JP120
COM92

JP121
COM93

JP122
COM94

JP123
COM95

JP124
COM96

JP125
COM97

JP126
COM98

JP127
COM99

JP128
COM100

JP129
COM101

JP130
COM102

JP131
COM103

JP132
COM104

JP133
COM105

JP134
COM106

JP135
COM107

JP136
COM108

JP137
COM109

JP138
COM110

JP139
COM111

JP140
COM112

JP141
COM113

JP142
COM114

JP143
COM115

JP144
COM116

JP145
COM117

JP146
COM118

JP147
COM119

JP148
COM120

JP149
COM121

JP150
COM122

JP151
COM123

JP152
COM124

JP153
COM125

JP154
COM126

JP155
COM127

JP156
COM128

JP157
COM129

JP158
COM130

JP159
COM131

JP160
COM132

JP161
COM133

JP162
COM134

JP163
COM135

JP164
COM136

JP165
COM137

JP166
COM138

JP167
COM139

JP168
COM140

JP169
COM141

JP170
COM142

JP171
COM143

JP172
COM144

JP173
COM145

JP174
COM146

JP175
COM147

JP176
COM148

JP177
COM149

JP178
COM150

JP179
COM151

JP180
COM152

JP181
COM153

JP182
COM154

JP183
COM155

JP184
COM156

JP185
COM157

JP186
COM158

JP187
COM159

JP188
COM160

JP189
COM161

JP190
COM162

JP191
COM163

JP192
COM164

JP193
COM165

JP194
COM166

JP195
COM167

JP196
COM168

JP197
COM169

JP198
COM170

JP199
COM171

JP200
COM172

JP201
COM173

JP202
COM174

JP203
COM175

JP204
COM176

JP205
COM177

JP206
COM178

JP207
COM179

JP208
COM180

JP209
COM181

JP210
COM182

JP211
COM183

JP212
COM184

JP213
COM185

JP214
COM186

JP215
COM187

JP216
COM188

JP217
COM189

JP218
COM190

JP219
COM191

JP220
COM192

JP221
COM193

JP222
COM194

JP223
COM195

JP224
COM196

JP225
COM197

JP226
COM198

JP227
COM199

JP228
COM200

JP229
COM201

JP230
COM202

JP231
COM203

JP232
COM204

JP233
COM205

JP234
COM206

JP235
COM207

JP236
COM208

JP237
COM209

JP238
COM210

JP239
COM211

JP240
COM212

JP241
COM213

JP242
COM214

JP243
COM215

JP244
COM216

JP245
COM217

JP246
COM218

JP247
COM219

JP248
COM220

JP249
COM221

JP250
COM222

JP251
COM223

JP252
COM224

JP253
COM225

JP254
COM226

JP255
COM227

JP256
COM228

JP257
COM229

JP258
COM230

JP259
COM231

JP260
COM232

JP261
COM233

JP262
COM234

JP263
COM235

JP264
COM236

JP265
COM237

JP266
COM238

JP267
COM239

JP268
COM240

JP269
COM241

JP270
COM242

JP271
COM243

JP272
COM244

JP273
COM245

JP274
COM246

JP275
COM247

JP276
COM248

JP277
COM249

JP278
COM250

JP279
COM251

JP280
COM252

JP281
COM253

JP282
COM254

JP283
COM255

JP284
COM256

JP285
COM257

JP286
COM258

JP287
COM259

JP288
COM260

JP289
COM261

JP290
COM262

JP291
COM263

JP292
COM264

JP293
COM265

JP294
COM266

JP295
COM267

JP296
COM268

JP297
COM269

JP298
COM270

JP299
COM271

JP300
COM272

JP301
COM273

JP302
COM274

JP303
COM275

JP304
COM276

JP305
COM277

JP306
COM278

JP307
COM279

JP308
COM280

JP309
COM281

JP310
COM282

JP311
COM283

JP312
COM284

JP313
COM285

JP314
COM286

JP315
COM287

JP316
COM288

JP317
COM289

JP318
COM290

JP319
COM291

JP320
COM292

JP321
COM293

JP322
COM294

JP323
COM295

JP324
COM296

JP325
COM297

JP326
COM298

JP327
COM299

JP328
COM300

JP329
COM301

JP330
COM302

JP331
COM303

JP332
COM304

JP333
COM305

JP334
COM306

JP335
COM307

JP336
COM308

JP337
COM309

JP338
COM310

JP339
COM311

JP340
COM312

JP341
COM313

JP342
COM314

JP343
COM315

JP344
COM316

JP345
COM317

JP346
COM318

JP347
COM319

JP348
COM320

JP349
COM321

JP350
COM322

JP351
COM323

JP352
COM324

JP353
COM325

JP354
COM326

JP355
COM327

JP356
COM328

JP357
COM329

JP358
COM330

JP359
COM331

JP360
COM332

JP361
COM333

JP362
COM334

JP363
COM335

JP364
COM336

JP365
COM337

JP366
COM338

JP367
COM339

JP368
COM340

JP369
COM341

JP370
COM342

JP371
COM343

JP372
COM344

JP373
COM345

JP374
COM346

JP375
COM347

JP376
COM348

JP377
COM349

JP378
COM350

JP379
COM351

JP380
COM352

JP381
COM353

JP382
COM354

JP383
COM355

JP384
COM356

JP385
COM357

JP386
COM358

JP387
COM359

JP388
COM360

JP389
COM361

JP390
COM362

JP391
COM363

JP392
COM364

JP393
COM365

JP394
COM366

JP395
COM367

JP396
COM368

JP397
COM369

JP398
COM370

JP399
COM371

JP400
COM372

JP401
COM373

JP402
COM374

JP403
COM375

JP404
COM376

JP405
COM377

JP406
COM378

JP407
COM379

JP408
COM380

JP409
COM381

JP410
COM382

JP411
COM383

JP412
COM384

JP413
COM385

JP414
COM386

JP415
COM387

JP416
COM388

JP417
COM389

JP418
COM390

JP419
COM391

JP420
COM392

JP421
COM393

JP422
COM394

JP423
COM395

JP424
COM396

JP425
COM397

JP426
COM398

JP427
COM399

JP428
COM400

JP429
COM401

JP430
COM402

JP431
COM403

JP432
COM404

JP433
COM405

JP434
COM406

JP435
COM407

JP436
COM408

JP437
COM409

JP438
COM410

JP439
COM411

JP440
COM412

JP441
COM413

JP442
COM414

JP443
COM415

JP444
COM416

JP445
COM417

JP446
COM418

JP447
COM419

JP448
COM420

JP449
COM421

JP450
COM422

JP451
COM423

JP452
COM424

JP453
COM425

JP454
COM426

JP455
COM427

JP456
COM428

JP457
COM429

JP458
COM430

JP459
COM431

JP460
COM432

JP461
COM433

JP462
COM434

JP463
COM435

JP464
COM436

JP465
COM437

JP466
COM438

JP467
COM439

JP468
COM440

JP469
COM441

JP470
COM442

JP471
COM443

JP472
COM444

JP473
COM445

JP474
COM446

JP475
COM447

JP476
COM448

JP477
COM449

JP478
COM450

JP479
COM451

JP480
COM452

JP481
COM453

JP482
COM454

JP483
COM455

JP484
COM456

JP485
COM457

JP486
COM458

JP487
COM459

JP488
COM460

JP489
COM461

JP490
COM462

JP491
COM463

JP492
COM464

JP493
COM465

JP494
COM466

JP495
COM467

JP496
COM468

JP497
COM469

JP498
COM470

JP499
COM471

JP500
COM472

JP501
COM473

JP502
COM474

JP503
COM475

JP504
COM476

JP505
COM477

JP506
COM478

JP507
COM479

JP508
COM480

JP509
COM481

JP510
COM482

JP511
COM483

JP512
COM484

JP513
COM485

JP514
COM486

JP515
COM487

JP516
COM488

JP517
COM489

JP518
COM490

JP519
COM491

JP520
COM492

JP521
COM493

JP522
COM494

JP523
COM495

JP524
COM496

JP525
COM497

JP526
COM498

JP527
COM499

JP528
COM500

JP529
COM501

JP530
COM502

JP531
COM503

JP532
COM504

JP533
COM505

JP534
COM506

JP535
COM507

JP536
COM508

JP537
COM509

JP538
COM510

JP539
COM511

JP540
COM512

JP541
COM513

JP542
COM514

JP543
COM515

JP544
COM516

JP545
COM517

JP546
COM518

JP547
COM519

JP548
COM520

JP549
COM521

JP550
COM522

JP551
COM523

JP552
COM524

JP553
COM525

JP554
COM526

JP555
COM527

JP556
COM528

JP557
COM529

JP558
COM530

JP559
COM531

JP560
COM532

JP561
COM533

JP562
COM534

JP563
COM535

JP564
COM536

JP565
COM537

JP566
COM538

JP567
COM539

JP568
COM540

JP569
COM541

JP570
COM542

JP571
COM543

JP572
COM544

JP573
COM545

JP574
COM546

JP575
COM547

JP576
COM548

JP577
COM549

JP578
COM550

JP579
COM551

JP580
COM552

JP581
COM553

JP582
COM554

JP583
COM555

JP584
COM556

JP585
COM557

JP586
COM558

JP587
COM559

JP588
COM560

JP589
COM561

JP590
COM562

JP591
COM563

JP592
COM564

JP593
COM565

JP594
COM566

JP595
COM567

JP596
COM568

JP597
COM569

JP598
COM570

JP599
COM571

JP600
COM572

JP601
COM573

JP602
COM574

JP603
COM575

JP604
COM576

JP605
COM577

JP606
COM578

JP607
COM579

JP608
COM580

JP609
COM581

JP610
COM582

JP611
COM583

JP612
COM584

JP613
COM585

JP614
COM586

JP615
COM587

JP616
COM588

JP617
COM589

JP618
COM590

JP619
COM591

JP620
COM592

JP621
COM593

JP622
COM594

JP623
COM595

JP624
COM596

JP625
COM597

JP626
COM598

JP627
COM599

JP628
COM600

JP629
COM601

JP630
COM602

JP631
COM603

JP632
COM604

JP633
COM605

JP634
COM606

JP635
COM607

JP636
COM608

JP637
COM609

JP638
COM610

JP639
COM611

JP640
COM612

JP641
COM613

JP642
COM614

JP643
COM615

JP644
COM616

JP645
COM617

JP646
COM618

JP647
COM619

JP648
COM620

JP649
COM621

JP650
COM622

JP651
COM623

JP652
COM624

JP653
COM625

JP654
COM626

JP655
COM627

JP656
COM628

JP657
COM629

JP658
COM630

JP659
COM631

JP660
COM632

JP661
COM633

JP662
COM634

JP663
COM635

JP664
COM636

JP665
COM637

JP666
COM638

JP667
COM639

JP668
COM640

JP669
COM641

JP670
COM642

JP671
COM643

JP672
COM644

JP673
COM645

JP674
COM646

JP675
COM647

JP676
COM648

JP677
COM649

JP678
COM650

JP679
COM651

JP680
COM652

JP681
COM653

JP682
COM654

JP683
COM655

JP684
COM656

JP685
COM657

JP686
COM658

JP687
COM659

JP688
COM660

JP689
COM661

JP690
COM662

JP691
COM663

JP692
COM664

JP693
COM665

JP694
COM666

JP695
COM667

JP696
COM668

JP697
COM669

JP698
COM670

JP699
COM671

JP700
COM672

JP701
COM673

JP702
COM674

JP703
COM675

JP704
COM676

JP705
COM677

JP706
COM678

JP707
COM679

JP708
COM680

JP709
COM681

JP710
COM682

JP711
COM683

JP712
COM684

JP713
COM685

JP714
COM686

JP715
COM687

JP716
COM688

JP717
COM689

JP718
COM690

JP719
COM691

JP720
COM692

JP721
COM693

JP722
COM694

JP723
COM695

JP724
COM696

JP725
COM697

JP726
COM698

JP727
COM699

JP728
COM700

JP729
COM701

JP730
COM702

JP731
COM703

JP732
COM704

JP733
COM705

JP734
COM706

JP735
COM707

JP736
COM708

JP737
COM709

JP738
COM710

JP739
COM711

JP740
COM712

JP741
COM713

JP742
COM714

JP743
COM715

JP744
COM716

JP745
COM717

JP746
COM718

JP747
COM719

JP748
COM720

JP749
COM721

JP750
COM722

JP751
COM723

JP752
COM724

JP753
COM725

JP754
COM726

JP755
COM727

JP756
COM728

JP757
COM729

JP758
COM730

JP759
COM731

JP760
COM732

JP761
COM733

JP762
COM734

JP763
COM735

JP764
COM736

JP765
COM737

JP766
COM738

JP767
COM739

JP768
COM740

JP769
COM741

JP770
COM742

JP771
COM743

JP772
COM744

JP773
COM745

JP774
COM746

JP775
COM747

JP776
COM748

JP777
COM749

JP778
COM750

JP779
COM751

JP780
COM752

JP781
COM753

JP782
COM754

JP783
COM755

JP784
COM756

JP785
COM757

JP786
COM758

JP787
COM759

JP788
COM760

JP789
COM761

JP790
COM762

JP791
COM763

JP792
COM764

JP793
COM765

JP794
COM766

JP795
COM767

JP796
COM768

JP797
COM769

JP798
COM770

JP799
COM771

JP800
COM772

Reference

This chapter contains troubleshooting hints and information about Nexus Technical Support and Service.

General Troubleshooting

The Mx1100 UMI BTR is designed to install easily and quickly. However, if experiencing difficulty in the procedures, please check the following to isolate and resolve the problem:

1. Check that the “PWR ON” LED on the BTR (leftmost LED in the LED block at bottom centre*) is on and bright.

The RTS LED for COM1 should also be on. If there is no power to the BTR, ensure that the cables from the Control (and from the Tape Reader if connected) are oriented properly and are well secured. Also, check that one of the following is true:

- a) The “+5TR” jumper (JP18 at bottom right) is ON and the “+24TR” jumper (JP16 at middle left) and “REG ENBL” (JP10 near middle bottom) are OFF; *-or-*
- b) The “+5TR” jumper (JP18) is OFF and the “+24TR” jumper (JP16) and “REG ENBL” (JP10) are ON

In case “a” above, the BTR is sourcing 5 volts from the CNC; in case “b” it is sourcing 24 volts and reducing it to 5 volts. Typically 5V (setting “a”) is used with a Fanuc control.

Note: The default power source setting is “a” above, 5 volts. However, in some CNCs the 5-volt supply has faded to below the threshold that will power the BTR. If the BTR won’t power on, try using 24 volts by setting the jumpers as in “b” above.

Note:

* All references made to objects located on the BTR are made with respect to the BTR being oriented horizontally so that the “Universal Machine Interface” label can be read at the bottom right. *See diagram, page 6.*

2. Alternate source of power.

If the PWR LED still does not come on, carefully find a source of power on the control between 7 and 24VDC and wire it in to screw-down terminal block J7 at the lower left corner of the BTR. *When power is brought in through the terminal block, the jumpers must be set as in “b” above.*

3. Check that the BTR is working properly.

When the control is powered up or reset, the BTR’s STATUS LED (2nd LED in LED block at middle bottom) should blink. One blink indicates that the Mx1100 is in BTR Mode. This means that it is ready to receive information through the serial port and to send it to the control. Two blinks indicate that the Mx1100 is in TAPE Mode. This means that it is ready to pass information through the BTR from the Tape Reader to the Control. (The leftmost TX LED will also blink, as the BTR sends out a status message on its COM1 port during power up.) With most Tape Readers, turning the Tape Reader on/off or switching it between Load and Release will switch the BTR between modes.

4. Check the status message.

When the BTR is powered on or reset, it sends a short message on its COM1 port, indicating which mode it’s in. The STATUS and first TX LEDs will blink during output. If the computer is properly connected, and your DNC software is configured to match the BTR communication settings and is set to receive a file, it should be possible to capture and read the status message. If the message is clearly readable then the BTR’s communications are good, and so is the cable, the settings, the computer and the DNC software.

5. The Status and Tx LEDs flash but there is no status message.

First the computer has to be watching for the status message with DNC software, or at least with a terminal program or utility. After installing your software, verify that the correct communication parameters are set and check that the correct computer COM port is being used. Check that the BAUD RATE is properly set and matches the baud rate on the BTR (check option jumpers A1 and A2 – *see pg. 17*) and that the STOP BITS are set to 1. Make sure that the cable connecting the BTR to the computer is a properly configured RS-232 serial data cable and that it is properly connected (*see Step 6 below*). Also verify that the PC’s COM port is functioning properly.

6. Check the serial data cable and handshaking settings.

First, make sure the cable matches the appropriate diagram under “Mx1100 UMI BTR Cable Configurations” (page 18).

Second, make sure the cable, BTR settings and software settings match with regard to handshaking method. If using *software* handshaking (Xon/Xoff) only (see *table A* on page 18), make sure that BTR Jumper A3 is ON and your DNC software is set for Xon/Xoff handshaking only. If using *hardware* handshaking (see *table B* on page 18), make sure that BTR Jumper A3 is OFF, your DNC software is set for RTS/CTS and Xon/Xoff handshaking, and the cable supports it by having the wires for RTS and CTS connected for a total of five wires connected at each end. (Note: Software handshaking can be used with a hardware handshaking cable, but *not* the other way around.)

Third, make sure every wire connection at each end of the cable is solid, there are no breaks in the wires, no wire insulation is pulled back far enough to allow bare wire to touch another wire or any other metal parts, and no solder or debris is touching more than one pin. If everything looks good at the ends, it may be necessary to use a multi-meter to determine whether there is a break or a short in the wires somewhere along the length of the cable.

If a hardware handshaking cable is being used, the leftmost CTS LED (in the STATUS LED bank at bottom centre of the BTR) will light up when a properly configured cable is connected between the BTR and a computer and both are powered on. The leftmost RTS LED will always be on, indicating that the BTR is active and the port is ready. Regardless of which type of handshaking is being used, the leftmost RX LED will blink when data is sent to the BTR, and the leftmost TX LED will blink during any Xon/Xoff handshaking that might occur during the send.

7. The whole file sends before pressing Cycle Start.

The most common cause of this is incorrect handshaking settings. Refer to Note 6 above. In addition, some terminal programs expect the XOFF character, normally Hex 13, to include even parity, making it Hex 93. Try setting jumper A4 ON (see page 17).

8. **A CNC error occurs shortly after pressing “Cycle Start”.**
Try removing the CR (carriage return) characters from the program. Some controls only accept “pure” ISO or EIA code, which does not contain CR characters. Also try changing BTR jumper A7 in case it’s a matter of ISO / EIA format mismatch.
9. **The control generates a Tape Vertical (TV) alarm.**
Tape Vertical checking was a way that controls verified the accuracy of the program code they read in through the Tape Reader. It is usually an option and does not apply when you are using a BTR. Turn this option off in the control’s parameters.
10. **The control generates a Tape Horizontal (TH) alarm.**
Tape Horizontal is equivalent to Even parity. Use Even parity when sending the programs from the terminal or PC. Also see Notes 7 and 8 above – jumper A4 and/or A7 may resolve this.
11. **The Power LED lights but the STATUS LED doesn’t flash.**
Check the supply voltage to the BTR. If using a 5VDC supply and it is less than 4.6VDC, the BTR may actually be protecting itself from under-voltage. Find a better 5V supply, or switch to 24V (see Note 1 “b”) or use the screw-down terminal in the bottom left corner with a supply of 7 to 24VDC. Always be sure to set up the power jumpers correctly (see Notes 1 and 2).
12. **Other machine errors**
Ensure that the proper tape codes are being used at the beginning and/or end of the program. Some machines require a “%” (percent sign) as the first and/or last character in the program. Check the CNC Operator’s Manual for any termination characters that may be required.
13. **What if the BTR “Locks Up”?**
Near the upper left corner of the BTR are the four pins labelled RESET and LOAD. Of those four pins, the top two are the reset pins. Momentarily shorting the two RESET pins by touching them with a metal object such as a screwdriver or coin (while the power is on) will reset the BTR and make the STATUS LED flash. This action is the equivalent of pressing the reset button on a PC. This should not have to be done on a regular basis, but, as with anything electronic, lockup can happen.

Technical Support & Service

In case of technical difficulty with the Mx1100 UMI BTR, be sure to review the troubleshooting section of this manual prior to calling for technical support. If the issue cannot be resolved after reading through the troubleshooting section, please contact Nexas Networks Technical Support at **1-905-581-3718**. Page 12 of this manual may be used to record technical information, service advice, etc. as needed.

If you have any other questions or concerns, need answers to technical questions, or need information about Nexas products and/or services, please contact your local Nexas dealer or us at:

Nexas Networks Inc.
627 Main Street East, Suite L09
Hamilton, Ontario
Canada L8M 1J5

Phone: 905-581-3717
Fax: 877-293-7105
Web: www.nexasnet.com
Email: sales@nexasnet.com
support@nexasnet.com

Notes:

Glossary:

ANSI American National Standards Institute. The official US agency and voting representative for ISO. This institute develops information exchange standards above 50 Mbps.

ASCII American Standard Code for Informational Interchange. A seven bit alphanumeric code used extensively in data communications. A parity bit is often added to the seven-bit code for error detection.

See Appendix B, page 19 for a table of ACSII values.

ASYNCHRONOUS TRANSMISSION The transmission of characters separated by time intervals that vary in length, usually in accordance with the key entries of a terminal operator. Start and stop bits are used to identify (frame) the beginning and end of the asynchronously transmitted character.

BAUD RATE The rate at which a signal is changed or modulated. Refers to the number of bits transmitted per second.

BTR Behind the Tape Reader. An electronic input device that emulates a Tape Reader's signals on a machine control, usually converting serial communications to parallel Tape Reader signals.

CNC Computerized Numerical Control. An industrial computer that is used to control the movement of a machine. A CNC usually uses programs coded with G-codes and M-codes.

CONTROL Refers to a Computerized Numerical Control (CNC).

CTS Clear To Send. One of the control lines used in RS232 communication. Found on pin 4 or 5 on a DB25 and pin 7 or 8 on a DB9 depending whether the port is DTE or DCE.

DCE Data Communication Equipment. Typically a modem or data set used to interface a terminal or computer to the telephone lines.

DNC Direct/Distributed Numeric Control. A means of communicating or “drip feeding” a program to a CNC through a Tape Reader or serial interface. The program code is immediately executed, block by block, as it is read by the control.

DTE Data Terminal Equipment. In data communications, it is an end user or termination circuit, typically a terminal or computer.

ECHO A reflected signal. Information is sent back to the transmitter from the receiver, often for verification purposes.

EIA Electronic Industries Alliance. A United States organization of manufacturers that establishes and recommends industrial standards. They developed the EIA standard code used in early NC and CNC communications. Also refers to a form of 7 bit ASCII with data encryption and Odd parity, used largely on CNCs.

FRAMING The procedure used to identify the beginning and end of a group of data bits.

FRAMING ERROR An error that occurs when a receiver loses synchronism to the incoming data.

G CODE The instructions used to dictate the movement of a machine. A list of these codes is commonly called a “part program”.

HANDSHAKING A process that regulates the flow of data between two devices. Also called “flow control”.

HARDWARE HANDSHAKING Handshaking (flow control) by use of the RTS and CTS control lines on an RS232 serial interface.

ISO International Standards Organization. One of the world’s largest standards organizations. Also refers to a form of 7 bit ASCII with data encryption and Even parity, used largely on CNCs.

LOCAL ECHO Refers to when a terminal is configured to internally route its transmitted character around to its receiver section for display.

MODEM A contraction of modulator/demodulator. The modem converts a computer's digital bit stream into an analog signal suitable for telephone lines and vice versa.

PAPER TAPE A media of part program storage. Holes were punched in a one-inch paper tape to represent G codes. These tapes were then read through a Tape Reader to be loaded into machine control memory.

PARITY An error detection method whereby a single bit is added to a group of bits to make the total number of 1 bits either even or odd (depending on the type of parity; even or odd).

PART PROGRAM A list of G codes that control the movement of the machine. May be typed into the machine control or produced as a computer text file and transmitted to the control.

PARITY ERROR Indicates that the total number of 1 bits in a received character does not agree with the type of parity expected.

RS232-C An asynchronous serial interface standard that specifies an electrical, functional, and mechanical interface specification between data communication devices.

RTS Request To Send. One of the control lines used in RS232 communication. Found on pin 4 or 5 on a DB25 and pin 7 or 8 on a DB9 connector depending on whether the port is DCE or DTE.

RTS/CTS Hardware handshaking (flow control) using the RTS and CTS control lines.

Rx Receive Data. Refers to the input for the data signal.

SG Signal Ground. Refers to the ground for the data signal. Not the same as the cable's shield ground or a device's frame ground.

START BIT The first bit used to frame an asynchronously transmitted character. Its logic level is a 0 (space).

STOP BIT The last bit used to frame an asynchronously transmitted character. Its logic level is a 1 (mark).

SYNCHRONOUS TRANSMISSION High-speed communication whereby data characters are sent in direct succession to each other without the use of Start and Stop bits.

TAPE READER An input device used on CNC Machines and other industrial equipment. Used to read coded data on a punched tape. Older Tape Readers were a mechanical device, whereas newer ones use optical devices that sense light passing through the holes in the tape.

TERMINAL An input/output device used by an operator to communicate with a host computer. It consists of a keyboard and a display to monitor alphanumeric characters entered at the keyboard or received from a remote device.

TERMINAL SOFTWARE Computer software that enables a computer to act as a terminal, usually used with modems. Can be used to exchange data over a serial cable between two computers or a computer and a machine control, but does not provide the level of flow control necessary to prevent dangerous miscommunications with a machine control. Specific purpose DNC software is highly preferable.

TIME-OUT ERROR An error that occurs when a device fails to respond to a message within an expected period of time.

Tx Transmit Data. Refers to the output for the data signal.

XOFF Transmit Off. A device control character (DC3 or \$13 hex) used to control the flow of data between two devices. XOFF is used together with XON as a handshake.

XON Transmit On. A device control character (DC1 or \$11 hex) used to control the flow of data between two devices. XON is used together with XOFF as a handshake.

XON/XOFF Software handshaking using the XON and XOFF control characters.

Appendix A: Configuration & Settings

Mx1100 UMI BTR Serial Configuration

Baud Rate..... 9600 (default; set by jumpers A1 & A2)
Parity..... Even
Data Bits..... 7
Stop Bits..... 1
Handshake..... See note 6, page 9

If using terminal software, these settings may also apply:

Duplex..... FULL
ASCII transfer options.... Strip the High Bit = ON

Option Jumpers on the Mx1100 UMI Serial BTR

A1			= 1200 Baud			= 2400 Baud			= 4800 Baud			= 9600 * Baud
A2												
A3			Add CTS/RTS flow control									Xon/Xoff flow control *
A4			Xoff = \$13 hex									Xoff = \$93 hex
A5			Single Xoff									Continuous (strobed) Xoff
A6			Echo									No Echo *
A7			No conversion									ISO – EIA conversion
A8			BTR Mode controlled by Tape Reader Switch									Force BTR mode **

+24TR	JP16	Enable 24V power from Tape Reader
+5TR	JP18	Enable 5V power from Tape Reader
REG ENBL	JP10	Enable 5V Power Regulator
Punch Disable	JP17 *	Use if Punch Port not connected
SG JMPR	JP22	Disable COM1 signal ground surge suppression
PWR P9 DBL	JP23	Enable power output on COM1 pin 9 **

* Default Settings (9600, E71, XON/XOFF, no Echo, no punch)

** In some versions of Mx1100 software this TAPE/BTR mode is reversed – with Echo on (A6) note the software version sent when reset – if it is “MXFAN-B” then one is in BTR only mode, if it is “MXFAN-T” it is in auto sensing tape mode.

NOTE:

= NO Jumper

= Jumper ON

Mx1100 9-pin RS232-C Serial Port Pin Functions

Pin 2.....	Receive Data
Pin 3.....	Transmit Data
Pin 4.....	DTR
Pin 5.....	Signal Ground
Pin 7.....	RTS
Pin 8.....	CTS
Pin 9.....	DC Power Out **

Note: ** Texas has enabled Pin 9 to be a power source for external devices. It is enabled by jumpering JP33, "PWR P9 DBL" (see diagram, page 6). The output voltage depends how the BTR is being powered: 5V from CNC or Tape Reader = no output; 24V from CNC or TR = 24V output; input from screw-down terminal J7 = same voltage output on pin 9.

Mx1100 UMI Serial BTR Cable Configurations

A – Software Handshaking Only

<i>Computer</i>	<i>Mx1100 BTR</i>
25-pin Female	9-pin Male
Tx – 2	2 – Rx
Rx – 3	3 – Tx
SG – 7	5 – SG
FG – 1	No Connection

<i>9-pin Female</i>	<i>9-pin Male</i>
Tx – 3	2 – Rx
Rx – 2	3 – Tx
SG – 5	5 – SG
FG – (D-shell)	No Connection

B - Hardware Handshaking Enabled

<i>Computer</i>	<i>Mx1100 BTR</i>
25-pin Female	9-pin Male
Tx – 2	2 – Rx
Rx – 3	3 – Tx
RTS – 4	8 – CTS
CTS – 5	7 – RTS
SG – 7	5 – SG
FG – 1	No Connection

<i>9-pin Female</i>	<i>9-pin Male</i>
Tx – 3	2 – Rx
Rx – 2	3 – Tx
RTS – 7	8 – CTS
CTS – 8	7 – RTS
SG – 5	5 – SG
FG – (D-shell)	No Connection

NOTE: The cable's shield should be **grounded at one end** of the cable and not at the other, so it does provide a noise drain but does not form a ground loop. On 25-pin connectors, Pin 1 is a Frame Ground. On 9-pin connectors, there is no Frame Ground so the D-shell or other ground may be used (but not the Signal Ground).

Appendix B: ASCII Table

DEC	HEX	SYM	KEY	DEC	HEX	SYM	DEC	HEX	SYM
0	0	NUL	ctrl @	43	2B	+	86	56	V
1	1	SOH	ctrl A	44	2C	,	87	57	W
2	2	STX	ctrl B	45	2D	-	88	58	X
3	3	ETX	ctrl C	46	2E	.	89	59	Y
4	4	EOT	ctrl D	47	2F	/	90	5A	Z
5	5	ENQ	ctrl E	48	30	0	91	5B	[
6	6	ACK	ctrl F	49	31	1	92	5C	\
7	7	BEL	ctrl G	50	32	2	93	5D]
8	8	BS	ctrl H	51	33	3	94	5E	^
9	9	HT	ctrl I	52	34	4	95	5F	_
10	A	LF	ctrl J	53	35	5	96	60	a
11	B	VT	ctrl K	54	36	6	97	61	b
12	C	FF	ctrl L	55	37	7	98	62	c
13	D	CR	ctrl M	56	38	8	99	63	d
14	E	SO	ctrl N	57	39	9	100	64	e
15	F	SI	ctrl O	58	3A	:	101	65	f
16	10	DLE	ctrl P	59	3B	,	102	66	g
17	11	DC1	ctrl Q	60	3C	<	103	67	h
18	12	DC2	ctrl R	61	3D	=	104	68	i
19	13	DC3	ctrl S	62	3E	>	105	69	j
20	14	DC4	ctrl T	63	3F	?	106	6A	k
21	15	NAK	ctrl U	64	40	@	107	6B	l
22	16	SYN	ctrl V	65	41	A	108	6C	m
23	17	ETB	ctrl W	66	42	B	109	6D	n
24	18	CAN	ctrl X	67	43	C	110	6E	o
25	19	EM	ctrl Y	68	44	D	111	6F	p
26	1A	SUB	ctrl Z	69	45	E	112	70	q
27	1B	ESC	ctrl [70	46	F	113	71	r
28	1C	FS	ctrl \	71	47	G	114	72	s
29	1D	GS	ctrl]	72	48	H	115	73	t
30	1E	RS	ctrl ^	73	49	I	116	74	u
31	1F	US	ctrl _	74	4A	J	117	75	v
32	20	SP		75	4B	K	118	76	w
33	21	!		76	4C	L	119	77	x
34	22	"		77	4D	M	120	78	y
35	23	#		78	4E	N	121	79	z
36	24	\$		79	4F	O	122	7A	{
37	25	%		80	50	P	123	7B	-
38	26	&		81	51	Q	124	7C	}
39	27	:		82	52	R	125	7D	~
40	28	(83	53	S	126	7E	
41	29)		84	54	T	127	7F	
42	2A	*		85	55	U			DEL

Nexas Networks Inc.
627 Main Street East, Suite L09
Hamilton, Ontario
Canada L8M 1J5
Phone: 905-581-3717 Fax: 877-291-7105
www.nexasnet.com

**Thank you for choosing Nexas
for your**

Computer Integrated Manufacturing Solutions