Lecture 17

(S^2 , ds^2), then discussed $R_{P,\theta} \in$ Iso (S^2), here $R_{P,\theta} = R_{\vec{e},\theta}$.

Det: A set L C S² is said to be a line if $\exists P,Q$ s.t. L is equidistant Set to P,Q.

i.e. L= { R & S2, ds2(R, P) = ds2(R-Q)}

Trample (1) Consider the Set E $A = 0 in X^2 + y^2 + z^2 = 1 in E$ Consider the Set E Consider the Set E Consider the Set E

Q: Is E a line? \triangle $ds(P,Q) = \pi$ NOT 2 A: Yes. Choose P=(0,0,1), Q=(0,0,-1), then $\forall R \in E$, we have to compute $ds^2(R,P) = \frac{\pi}{2}$ $ds^2(R,Q) = \frac{\pi}{2}$ (2) Let 1 = {x+y+2=0} 1 S2 = S2 (1) Orthogonal

Ls A a line? Normal ventur

We could choose

P=(1,1,1)/53

Q=-p. Atternatively.

I isomerey bring ing

1 to E in Example 1. S'nce E is a line, the 1 is a line.

(3) Non-Ex) Consider 1=92== 40 52 ES2

Q: is A a line

No, it's not a line.

₽ PiQ ← S2 Sit. A is equid. to p, Q p

(0,1,0)

intercection part.

· interceution past 切入

Prop Let $L \leq S^2$ be a line. Then $\exists A \subseteq R^2$ a = 2 - plane = through the origin S.t. $L = A \cap S^2$

If By def a line is the equidistant set to $P = (\alpha, \beta, \gamma)$, $Q = (\alpha', \beta', \gamma')$ i.e. $L = \{(x, y, z) \in S^2 : (x-\alpha)^2 + (y-\beta)^2 + (z-\gamma)^2 = (x-\alpha')^2 + (y-\beta')^2 + (z-\gamma')^2\}$

From simplifying, we will get d-planes $A \subseteq \mathbb{R}^3$ S.t. $A \cap S^2 = L$.

The equality (#) reads as follows $-2\times x + (x^{2} - y)\beta + (\beta^{2} - 2x)\gamma + (\gamma^{2} - 2x)\gamma + (\gamma^$

(=) $(N-\alpha') \times + (\beta-\beta') y + (\gamma-\gamma') = 0$ linearity gives 2-plane

the origin

our $A \subset \mathbb{R}^3$

\$2. Reflections in S2 along a line.

Def let $E=97=03 \ \Lambda S^2$ be the equator (Which is a line)

Then, the reflection $\Gamma_E: S^2 \longrightarrow S^2 \mathcal{V}$ the isometry given by $X \longrightarrow X$

y -> 4

2 ->-2