Building a Stroke Classifier Model with Machine Learning

-Ryan Bernstein

What do we know about strokes?

- Typically caused by either insufficient blood flow to the brain or by excessive bleeding within the brain
- Best indicator of stroke risk is high blood pressure
- More than 795,000 Americans have a stroke every year
- Individuals who suffer a stroke are highly likely to develop a serious long-term disability
- A good place to find data on stroke victims is Kaggle.com!

First Look At the Dataset

<class 'pandas.core.frame.DataFrame'> RangeIndex: 5110 entries, 0 to 5109 Data columns (total 12 columns): Column Non-Null Count Dtype id 5110 non-null int64 object gender 5110 non-null 5110 non-null float64 age hypertension 5110 non-null int64 heart disease 5110 non-null int64 ever married 5110 non-null object work type 5110 non-null object Residence type 5110 non-null object avg glucose level 5110 non-null float64 bmi 4909 non-null float64 smoking status 5110 non-null object stroke 5110 non-null int64 dtypes: float64(3), int64(4), object(5) memory usage: 479.2+ KB

- 3 Float Variables
- 3 Indicator Variables
- 5 Categorical Variables
- 1 Variable with Null Values

	id	gender	age	hypertension	heart_disease	ever_married	work_type	Residence_type	avg_glucose_level	bmi	smoking_status	stroke
	9046	Male	67.0	0	1	Yes	Private	Urban	228.69	36.6	formerly smoked	1
	51676	Female	61.0	0	0	Yes	Self-employed	Rural	202.21	NaN	never smoked	1
-	31112	Male	80.0	0	1	Yes	Private	Rural	105.92	32.5	never smoked	1
[60182	Female	49.0	0	0	Yes	Private	Urban	171.23	34.4	smokes	1
ŀ	1665	Female	79.0	1	0	Yes	Self-employed	Rural	174.12	24.0	never smoked	1

Looking For Correlations

The Impact of Age on Stroke Incidence:

Age and Frequency of those who Had a Stroke

Age and Frequency of those who Did Not

Preprocessing

- Transform categorical variables into dummy variables. This makes it easier to find where our correlations lie.
- Split data into a training set and a test set with a 70/30 split. This allows us to avoid overfitting the model on the original data
- Standardize the features with MinMaxScaler. This helps us more accurately measure the impact of our numerical features
- Impute missing values for BMI with the median BMI so that we don't have to get rid of those observations

Modeling Process

- Compared two different modeling methods: Logistic Regression and Random Forest
- First ran both models without using any hyperparameters
- Next ran both models with the class_weight hyperparameter
- Finally, tuned both models by using GridSearchCV on a hyperparameter grid
- Displayed 6 metrics: accuracy, F1 Score, a confusion matrix, a classification report, average
 precision score, and the Matthews Correlation Coefficient
- Generated a Beeswarm Plot

Classification + ROC for Original Models

Logistic Regression

Rand	lom F	orest

	precision	recall	f1-score	support		precision	recall	f1-score	support
0 1	0.95 0.00	1.00 0.00	0.97 0.00	1454 79	0 1	0.96 0.00	1.00	0.98 0.00	1465 68
accuracy macro avg weighted avg	0.47 0.90	0.50 0.95	0.95 0.49 0.92	1533 1533 1533	accuracy macro avg weighted avg	0.48 0.91	0.50 0.95	0.95 0.49 0.93	1533 1533 1533

Classification + ROC for class_weight 1:99

Logistic Regression

Ralluolli Foles	m Forest
-----------------	----------

support

	precision	recall	f1-score	support		precision	recall	f1-score
0 1	0.99 0.09	0.46 0.94	0.63 0.16	1453 80	0 1	0.95 0.00	1.00	0.97 0.00
accuracy macro avg weighted avg	0.54 0.95	0.70 0.49	0.49 0.39 0.60	1533 1533 1533	accuracy macro avg weighted avg	0.47 0.89	0.50 0.95	0.95 0.49 0.92

Classification + ROC for tuned class_weight

Logistic Regression

prec		support	f1-score	recall	precision	
0		1461	0.80	0.67	0.99	0
1		72	0.20	0.85	0.11	1
acy	accur	1533	0.68			accuracy
avg	macro	1533	0.50	0.76	0.55	macro avg
avg	weighted	1533	0.77	0.68	0.95	weighted avg

Random Forest

	precision	recall	f1-score	support
0	0.95	1.00	0.97	1458
1	0.00	0.00	0.00	75
racy			0.95	1533
avg	0.48	0.50	0.49	1533
avg	0.90	0.95	0.93	1533

Beeswarm Plot

Conclusions

- The best performing model was Logistic Regression with a 1:25 class weight. This model had a recall of .85 for positives, which means that it accurately identified 85% of positive cases (while misidentifying 15% of positive cases as negative cases).
- Not many features on their own had strong correlations with the stroke target variable. Age was the best performing feature by far.
- It seemed that the tangible health metrics provided had a similar impact on stroke risk as the provided categorical features that focused on a patient's personal life had on stroke risk.

Future Research

- Add more features? Look for more data? Consider diversity of location or ethnicity?
- What would happen if we took preemptive action? Would the patients who underwent preemptive action have a lower incidence of stroke?