

FCC TEST REPORT

Test report
On Behalf of
BeSound Technology Co.,Ltd.
For
BLUETOOTH SPEAKER
Model No.: Rugby, BTM-720

FCC ID: 2AHX8-RUGBY

Prepared for: BeSound Technology Co.,Ltd.

Rm.2139B, Tian Sha International Center, No. 8 Taoyuan Rd., Nanshan Dist.,

Shenzhen, Guangdong Province, China

Prepared By: WST Certification & Testing (HK) Limited

12/F., San Toi Building,137-139 Connaught Road Central,Hong Kong

Date of Test: Apr. 03, 2016 ~ Apr. 08, 2016

Date of Report: Apr. 08, 2016

Report Number: WST160403063-E

TEST RESULT CERTIFICATION

Applicant's name...... BeSound Technology Co.,Ltd. Rm.2139B, Tian Sha International Center, No. 8 Taoyuan Rd., Nanshan Dist., Shenzhen, Guangdong Province, China Manufacture's Name. DONGGUAN CITY YUANYU ELECTRONIC TECHNOLOGY CO., LIMITED JINDUOGANG DEVELOPMENT ZONE, DATANG VILLAGE, DALINGSHAN Address..... TOWN, DONGGUAN CITY, GUANGDONG, CHINA **Product description** Trade Mark: **BeSound** Product name BLUETOOTH SPEAKER Model and/or type Rugby, BTM-720 reference FCC Rules and Regulations Part 15 Subpart C Section 15.249 **Standards**...... ANSI C63.10: 2013 This publication may be reproduced in whole or in part for non-commercial purposes as long as the WST Certification & Testing (HK) Limited is acknowledged as copyright owner and source of the material. WST Certification & Testing (HK) Limited takes no responsibility for and will not assume liability for damages resulting from the reader's interpretation of the reproduced material due to its placement and context. Date of Test..... Date (s) of performance of tests Apr. 03, 2016 ~ Apr. 08, 2016 **Testing Engineer** Technical Manager (Dora Qin)

Authorized Signatory:

(Kait Chen)

Table of Contents	Page
1. TEST SUMMARY	4
2 . GENERAL INFORMATION	5
2.1 GENERAL DESCRIPTION OF EUT	5
Operation of EUT during testing	6
2.2 DESCRIPTION OF TEST SETUP	6
2.3 MEASUREMENT INSTRUMENTS LIST	7
3. CONDUCTED EMISSIONS TEST	9
3.1 Conducted Power Line Emission Limit	9
3.2 Test Setup	9
3.3 Test Procedure	9
3.4 Test Result	10
4 RADIATED EMISSION TEST	12
4.1 Radiation Limit	12
4.2 Test Setup	12
4.3 Test Procedure	13
25GHz per FCC PART 15.33(a)	13
4.4 Test Result	13
5 Duty cycle measurement	17
6 BAND EDGE	18
5.1 Limits	18
5.2 Test Procedure	18
5.3 Test Result	18
7 OCCUPIED BANDWIDTH MEASUREMENT	18
7.1 Test Setup	19
7.2 Test Procedure	19
7.3 Measurement Equipment Used	19
6.4 Test Result	19
8 ANTENNA REQUIREMENT	21
9 PHOTOGRAPH OF TEST	22
9.1 Radiated Emission	22
9.2 Conducted Emission	23

1. TEST SUMMARY

1.1 TEST PROCEDURES AND RESULTS

DESCRIPTION OF TEST RESULT

CONDUCTED EMISSIONS TEST COMPLIANT

RADIATED EMISSION TEST COMPLIANT

BAND EDGE COMPLIANT

OCCUPIED BANDWIDTH MEASUREMENT COMPLIANT

ANTENNA REQUIREMENT COMPLIANT

1.2 TEST FACILITY

Test Firm : Shenzhen WST Testing Technology Co., Ltd.

Certificated by FCC, Registration No.: 939433

Address : 1F,No.9 Building,TGK Science & Technology Park,Yangtian Rd.,

NO.72 Bao'an Dist., Shenzhen, Guangdong, China. 518101

Tel : (86)755-33916437 Fax : (86)755-27822175

1.3 MEASUREMENT UNCERTAINTY

Measurement Uncertainty

Conducted Emission Expanded Uncertainty = 2.23dB, k=2 Radiated emission expanded uncertainty(9kHz-30MHz) = 3.08dB, k=2 Radiated emission expanded uncertainty(30MHz-1000MHz) = 4.42dB, k=2 Radiated emission expanded uncertainty(Above 1GHz) = 4.06dB, k=2

2. GENERAL INFORMATION

2.1 GENERAL DESCRIPTION OF EUT

Equipment	BLUETOOTH SPEAKER
Model Name	Rugby, BTM-720
Serial No	N/A
	All model's the function, software and electric circuit are the
Model Difference	same, only with a product color and model named
	different.Test sample model: Rugby.
FCC ID	2AHX8-RUGBY
Antenna Type	Internal Antenna
BT Operation frequency	2402-2480MHz
Number of Channels	40CH
Modulation Type	GFSK
Power Source	DC 12V from adapter
Power Rating	/
	EP29-120100WUCZ
Adapter Model	Input: 100-240V, 50-60Hz, 0.35A;
	Output 12V,1A

2.1.1 Carrier Frequency of Channels

Channel	Frequeeny (MHz)	Channel	Frequeeny (MHz)	Channel	Frequeeny (MHz)	Channe 1	Frequeeny (MHz)
0	2402	10	2422	20	2442	30	2462
1	2404	11	2424	21	2444	31	2464
2	2406	12	2426	22	2446	32	2466
3	2408	13	2428	23	2448	33	2468
4	2410	14	2430	24	2450	34	2470
5	2412	15	2432	25	2452	35	2472
6	2414	16	2434	26	2454	36	2474
7	2416	17	2436	27	2456	37	2476
8	2418	18	2438	28	2458	38	2478
9	2420	19	2440	29	2460	39	2480

Operation of EUT during testing

Operating Mode

The mode is used: Transmitting mode

Low Channel: 2402MHz Middle Channel: 2442MHz High Channel: 2480MHz

2.2 DESCRIPTION OF TEST SETUP

Operation of EUT during testing

2.3 MEASUREMENT INSTRUMENTS LIST

Item	Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Interval
1.	EMI Receiver	Rohde & Schwarz	ESCI	100627	May 19, 2015	1 Year
2.	LISN	SchwarzBeck	NSLK 8126	8126377	May 19, 2015	1 Year
3.	RF Switching Unit	Compliance Direction	RSU-M2	38303	May 19, 2015	1 Year
4.	EMI Test Software ES-K1	Rohde & Schwarz	N/A	N/A	N/A	N/A
5.	EMI Test Receiver	Rohde & Schwarz	ESCI	100627	May 19, 2015	1 Year
6.	Trilog Broadband Antenna	Schwarzbeck	VULB9163	VULB 9163-289	May 17, 2015	1 Year
7.	Pre-amplifier	Compliance Direction	PAP-0203	22008	May 19, 2015	1 Year
8.	EMI Test Software EZ-EMC	SHURPLE	N/A	N/A	N/A	N/A
9.	EMI Receiver	Rohde & Schwarz	ESCI	100627	May 19, 2015	1 Year
10.	LISN	SchwarzBeck	NSLK 8126	8126377	May 19, 2015	1 Year
11.	RF Switching Unit	Compliance Direction	RSU-M2	38303	May 19, 2015	1 Year
12.	EMI Test Software ES-K1	Rohde & Schwarz	N/A	N/A	N/A	N/A
13.	EMI Receiver	Rohde & Schwarz	ESCI	100627	May 19, 2015	1 Year
14.	EMI Receiver	Rohde & Schwarz	ESCI	100627	May 19, 2015	1 Year
15.	LISN	SchwarzBeck	NSLK 8126	8126377	May 19, 2015	1 Year
16.	RF Switching Unit	Compliance Direction	RSU-M2	38303	May 19, 2015	1 Year
17.	EMI Test Software ES-K1	Rohde & Schwarz	N/A	N/A	N/A	N/A
18.	Programmable AC Power source	SOPH POWER	PAG-1050	630250	May 26, 2015	1 Year
19.	Harmonic and Flicker Analyzer	LAPLACE	AC2000A	272629	May 26, 2015	1 Year
20.	Harmonic and Flicker Test Software AC 2000A	LAPLACE	N/A	N/A	N/A	N/A
21.	ESD Simulators	KIKUSUI	KES4021	LJ003477	May 25, 2015	1 Year
22.	EFT Generator	EMPEK	EFT-4040B	0430928N	May 19, 2015	1 Year
23.	Shielding Room	ChangZhou ZhongYu	JB88	SEL0166	May 19, 2015	1 Year
24.	Signal Generator 9KHz~2.2GHz	R&S	SML02	SEL0143	May 19, 2015	1 Year
25.	Signal Generator 9KHz~1.1GHz	R&S	SML01	SEL0135	May 19, 2015	1 Year
26.	Power Meter	R&S	NRVS	SEL0144	May 19, 2015	1 Year
27.	RF Level Meter		URV35	SEL0137	May 19, 2015	1 Year
28.	Audio Analyzer	R&S	UPL	SEL0136	May 19, 2015	1 Year
29.	RF-Amplifier 150KHz~150MH z	BONN Elektronik	BSA1515-25	SEL0157	May 19, 2015	1 Year

Stripline Test Cell Erika Fiedler VDE0872 SEL0167 N/A 30. N/A TV Test Transmitter R&S SFM SEL0159 May 17, 2015 1 Year 31. TV Generator PAL R&S SGPF SEL0138 32. May 19, 2015 1 Year TV Generator Ntsc R&S SGMF SEL0140 33. May 19, 2015 1 Year TV Generator R&S **SGSF** SEL0139 34. May 19, 2015 1 Year Secam TV Test Transmitter R&S SFQ SEL0142 35. May 19, 2015 1 Year 0.3MHz~3300MHz MPEG2 R&S DVG SEL0141 36. Measurement May 19, 2015 1 Year Generator Spectrum Analyzer R&S **FSP** SEL0177 37. May 19, 2015 1 Year SEL0146 N/A Matching R&S RAM N/A 38. R&S RAM SEL0148 N/A N/A Matching 39. Absorbing Clamp R&S MDS21 SEL0158 May 17, 2015 40. 1 Year N/A N/A Coupling Set Erika Fiedler Rco, Rci, SEL0149 41. MC, AC, LC N/A Filters SEL0150 42. Erika Fiedler Sr. LBS N/A N/A N/A Matching Network SEL0151 Erika Fiedler MN, T1 43. Fully Anechoic ChangZhou SEL0169 Jun. 10, 2015 44. 854 1 Year Room ZhongYu Signal Generator SEL0068 May 17, 2015 1 Year 45. R&S SML03 RF-Amplifier Amplifier SEL0066 Oct. 24, 2015 46. 250W1000A 1 Year 30M~1GHz Reasearch SEL0065 **RF-Amplifier** Amplifier Oct. 24, 2015 1 Year 47. 60S1G3 0.8~3.0GHz Reasearch Power Meter R&S NRVD SEL0069 May 17, 2015 1 Year 48. Power Sensor R&S SEL0071 May 17, 2015 1 Year URV5-Z2 49. **Power Sensor** R&S SEL0072 May 17, 2015 50. URV5-Z2 1 Year Software R&S SEL0082 N/A N/A 51. EMC32-S EMC32 Amplifier SEL0073 N/A Log-periodic 52. AT1080 N/A Antenna Reasearch Amplifier SEL0074 N/A N/A Antenna Tripod 53. TP1000A Reasearch High Gain Horn SEL0075 N/A 54. Amplifier Antenna(0.8-5G AT4002A N/A Reasearch Hz)

CONDUCTED EMISSIONS TEST

3.1 Conducted Power Line Emission Limit

For unintentional device, according to § 15.107(a) Line Conducted Emission Limits is as following

Fraguenav	Maximum RF Line Voltage (dΒμV)							
Frequency (MHz)	CLAS	SS A	CLASS B					
(11112)	Q.P.	Ave.	Q.P.	Ave.				
0.15 - 0.50	79	66	66-56*	56-46*				
0.50 - 5.00	73	60	56	46				
5.00 - 30.0	73	60	60	50				

* Decreasing linearly with the logarithm of the frequency
For intentional device, according to §15.207(a) Line Conducted Emission Limit is same as above table.

3.2 Test Setup

3.3 Test Procedure

- 1, The equipment was set up as per the test configuration to simulate typical actual usage per the user's manual. The EUT is a tabletop system, a wooden table with a height of 0.8 meters is used and is placed on the ground plane as per ANSI C63.10.
- 2, Support equipment, if needed, was placed as per ANSI ANSI C63.10.
- 3, All I/O cables were positioned to simulate typical actual usage as per ANSI C63.10.
- 4, If a EUT received DC power from the USB Port of Notebook PC, the PC's adapter received AC120V/60Hz power through a Line Impedance Stabilization Network (LISN) which supplied power source and was grounded to the ground plane.
- 5, All support equipments received AC power from a second LISN, if any.
- 6, The EUT test program was started. Emissions were measured on each current carrying line of the EUT using a spectrum Analyzer / Receiver connected to the LISN powering the EUT. The LISN has two monitoring points: Line 1 (Hot Side) and Line 2 (Neutral Side). Two scans were taken: one with Line 1 connected to Analyzer / Receiver and Line 2 connected to a 50 ohm load; the second scan had Line 1 connected to a 50 ohm load and Line 2 connected to the Analyzer / Receiver.
- 7, Analyzer / Receiver scanned from 150 KHz to 30MHz for emissions in each of the test modes

3.4 Test Result

PASS

All the test modes completed for test. The worst case of Radiated Emission is CH2402; the test data of this mode was reported.

Report No.: WST160403063-E

MEASUREMENT RESULT:

Frequency MHz	Level dBµV	Transd dB	Limit dBµV	Margin dB	Detector	Line	PE
0.154501	44.50	10.2	66	21.3	OP	L1	GND
0.276001	38.50	10.2	61	22.4		L1	GND
8.587501	36.30	10.6	60	23.7		L1	GND
8.988001	35.40	10.6	60	24.6	QP	L1	GND
26.052001	32.30	11.2	6.0	27.7	QP	L1	GND
26.592001	31.80	11.2	60	28.2	QP	ь1	GND

MEASUREMENT RESULT:

Frequency MHz	Level dBµV	Transd dB	Limit dBµV	Margin dB	Detector	Line	PE
0.294001	32.60	10.2	50	17.8	VA	L1	GND
0.442501	28.60	10.2	47	18.4	AV	L1	GND
0.654001	26.20	10.2	4.6	19.8	AV	L1	GND
0.730501	28.70	10.2	46	17.3	AV	L1	GND
1.018501	26.30	10.3	46	19.7	AV	L1	GND
1.387501	27.40	10.3	4.6	18.6	VA	Ll	GND

MEASUREMENT RESULT:

PE	Line	Detector	Margin dB	Limit dBµV	Transd dB	Level dBµV	Frequency MH2
GND	N	OP	18.6	65	10.2	46.00	0.177001
GND	N	QP.	17.8	64	10.2	46.60	0.181501
GND	N	QP	22.9	61	10.2	38.50	0.262501
GND	N	QP	20.0	61	10.2	41.20	0.267001
GND	N	QP	38.8	60	11.0	21.20	22.623001
GND	N	OP	20.0	6.0	11.2	40.00	26.412001

MEASUREMENT RESULT:

Frequency MHz	Level dBµV	Transd dB	Limit dBµV	Margin dB	Detector	Line	PE
0.366001	32.80	10.2	49	15.8	AV	N	GND
1.387501	29.60	10.3	46	16.4	VA	N	GND
1.563001	19.30	10.3	46	26.7	VA	N	GND
1.828501	28.90	10.3	46	17.1	AV	N	GND
2.035501	23.70	10.4	46	22.3	VA	N	GND
13.735501	26.30	10.6	5.0	23.7	AV	N	GND

4 RADIATED EMISSION TEST

4.1 Radiation Limit

For unintentional device, according to § 15.109(a), except for Class A digital devices, the field strength of radiated emissions from unintentional radiators at a distance of 3 meters shall not exceed the following values:

Frequency (MHz)	Distance (Meters)	Radiated (dBµV/m)	Radiated (µV/m)
30-88	3	40	100
88-216	3	43.5	150
216-960	3	46	200
Above 960	3	54	500

For intentional device, according to § 15.209(a), the general requirement of field strength of radiated emissions from intentional radiators at a distance of 3 meters shall not exceed the above table.

4.2 Test Setup

(1) Radiated Emission Test-Up Frequency Below 30MHz

(2) Radiated Emission Test-Up Frequency 30MHz~1GHz

(3) Radiated Emission Test-Up Frequency Above 1GHz

4.3 Test Procedure

- 1, The EUT is placed on a turntable, which is 0.8m above ground plane below 1GHz and 1.5m above ground plane above 1GHz..
- 2, The turntable shall be rotated for 360 degrees to determine the position of maximum emission level.
- 3, EUT is set 3m away from the receiving antenna, which is varied from 1m to 4m to find out the highest emissions
- 4, For the radiated emission test above 1GHz: Place the measurement antenna away from each area of the EUT determined to be a source of emissions at the specified measurement distance, while keeping the measurement antenna aimed at the source of emissions at each frequency of significant emissions, with polarization oriented for maximum response. The measurement antenna may have to be higher or lower than the EUT, depending on the radiation pattern of the emission and staying aimed at the emission source for receiving the maximum signal. The final measurement antenna elevation shall be that which maximizes the emissions. The measurement antenna elevation for maximum emissions shall be restricted to a range of heights of from 1 m to 4 m above the ground or reference ground plane.
- 5, Maximum procedure was performed on the six highest emissions to ensure EUT compliance
- 6, And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical
- 7, Repeat above procedures until the measurements for all frequencies are complete.
- 8, Based on the Frequency Generator in the device include 16MHz. The test frequency range from 9KHz to 25GHz per FCC PART 15.33(a)

4.4 Test Result

PASS

All the test modes completed for test. The worst case of Radiated Emission is CH 2480; the test data of this mode was reported.

Below 1GHz Test Results: Antenna polarity: H

MEASUREMENT RESULT:

Frequency MHz	Level dBµV/m	Transd dB	Limit dBµV/m	Margin dB	Det.	Height cm	Azimuth deg	Polarization
30.000000	25.30	20.8	40.0	14.7		0.0	0.00	HORIZONTAL
55.220000	13.40	8.0	40.0	26.6		0.0	0.00	HORIZONTAL
163.860000	17.30	13.6	43.5	26.2		0.0	0.00	HORIZONTAL
258.920000	19.80	14.6	46.0	26.2		0.0	0.00	HORIZONTAL
546.040000	23.80	20.8	46.0	22.2		0.0	0.00	HORIZONTAL
959.260000	30.20	26.6	46.0	15.8		0.0	0.00	HORIZONTAL

Antenna polarity: V

MEASUREMENT RESULT:

Frequency MHz	Level dBµV/m	Transd dB	Limit dBµV/m	Margin dB	Det.	Height cm	Azimuth deg	Polarization
30.000000	25.00	20.8	40.0	15.0		0.0	0.00	VERTICAL
82.380000	14.40	8.7	40.0	25.6		0.0	0.00	VERTICAL
146.400000	17.70	14.0	43.5	25.8		0.0	0.00	VERTICAL
196.840000	16.90	13.6	43.5	26.6		0.0	0.00	VERTICAL
528.580000	24.00	20.4	46.0	22.0		0.0	0.00	VERTICAL
943.740000	30.80	26.4	46.0	15.2		0.0	0.00	VERTICAL

Remark:

- (1) Measuring frequencies from 9 KHz to the 1 GHz, Radiated emission test from 9KHz to 30MHz was verified, and no any emission was found except system noise floor.
- (2) * denotes emission frequency which appearing within the Restricted Bands specified in provision of 15.205, then the general radiated emission limits in 15.209 apply.
- (3) The IF bandwidth of EMI Test Receiver between 30MHz to 1GHz was 120KHz, 1 MHz for measuring above 1 GHz, below 30MHz was 10KHz.

Above 1 GHz Test Results: CH Low

Lower Channel 2402MHz	Freq.	Receiver Reading	Detector	Polar	Corrected Factor	Emission Level	Limit	Result	
	(MHz)	(dBµV)	(PK/QP/Ave)	(H/V)	(dB)	(dBµV/m)	(dBµV/m)		
	2402	91.35	PK	Н	13.85	105.2	114	Pass	
	2402	74.05	Ave	Н	13.85	87.9	94	Pass	
	4804	51.12	PK	Н	19.36	70.48	74	Pass	
	4804	28.47	Ave	Н	19.36	47.83	54	Pass	
	2402	90.99	PK	٧	13.85	104.84	114	Pass	
	2402	73.86	Ave	٧	13.85	87.71	94	Pass	
	4804	50.18	PK	٧	19.36	69.54	74	Pass	
	4804	28.59	Ave	٧	19.36	47.95	54	Pass	
	2442	90.75	PK	Н	13.94	104.69	114	Pass	
Middle Channel 2442MHz	2442	71.85	Ave	Н	13.94	85.79	94	Pass	
	4884	48.69	PK	Н	19.43	68.12	74	Pass	
	4884	28.78	Ave	Н	19.43	48.21	54	Pass	
	2442	91.83	PK	٧	13.94	105.77	114	Pass	
	2442	69.45	Ave	٧	13.94	83.39	94	Pass	
	4884	46.62	PK	٧	19.43	66.05	74	Pass	
	4884	27.53	Ave	V	19.43	46.96	54	Pass	
		Ι							
Upper Channel 2480MHz	2480	91.39	PK	Н	14.02	105.41	114	Pass	
	2480	73.78	Ave	Н	14.02	87.8	94	Pass	
	4960	44.39	PK	Н	19.51	63.9	74	Pass	
	4960	28.35	Ave	Н	19.51	47.86	54	Pass	
	2480	91.59	PK	V	14.02	105.61	114	Pass	
	2480	74.63	Ave	V	14.02	88.65	94	Pass	
	4960	44.56	PK	٧	19.51	64.07	74	Pass	
	4960	27.63	Ave	٧	19.51	47.14	54	Pass	

Remark:

- (1) Measuring frequencies from 1 GHz to the 25 GHz.
- (2) "F" denotes fundamental frequency; "H" denotes spurious frequency. "E" denotes band edge frequency.
- (3) * denotes emission frequency which appearing within the Restricted Bands specified in provision of 15.205, then the general radiated emission limits in 15.209 apply.
- (4) Data of measurement within this frequency range shown "--- " in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- (5) The IF bandwidth of EMI Test Receiver between 30MHz to 1GHz was 120KHz, 1 MHz for measuring above 1 GHz, below 30MHz was 10KHz.
- (6) When the test results of Peak Detected below the limits of Average Detected, the Average Detected is not need completed. For example: Top Channel at Fundamental 73.16dBuV/m(PK Value) <93.98(AV Limit), at harmonic 53.20 dBuV/m(PK Value) <54 dBuV/m(AV Limit), the Average Detected not need to completed.

5 Duty cycle measurement

Fundamental field strength measurement:

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector	Antenna
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре	polarization
2402.000	94.13	-5.68	88.45	114.00	-25.55	Peak	V
2402.000	81.62	-5.68	75.94	94.00	-18.06	AVG	V
2402.000	95.30	-5.68	89.62	114.00	-24.38	Peak	Н
2402.000	81.79	-5.68	76.11	94.00	-17.89	AVG	Н
2440.000	94.36	-5.36	89.00	114.00	-25.00	Peak	V
2440.000	80.58	-5.36	75.22	94.00	-18.78	AVG	V
2440.000	96.37	-5.36	91.01	114.00	-22.99	Peak	Н
2440.000	81.25	-5.36	75.89	94.00	-18.11	AVG	Н
2480.000	96.04	-5.01	91.03	114.00	-22.97	Peak	V
2480.000	82.57	-5.01	77.56	94.00	-16.44	AVG	V
2480.000	95.47	-5.01	90.46	114.00	-23.54	Peak	Н
2480.000	82.36	-5.01	77.35	94.00	-16.65	AVG	Н

Note: Measurement Level = Reading Level + Factor Factor=Ant Factor + Cable Loss- Pre-amplifier.

6 BAND EDGE

5.1 Limits

FCC PART 15.249(d) Emissions radiated outside of the specified frequency bands, except for harmonics, shall be attenuated by at least 50 dB below the level of the fundamental or to the general radiated emission limits in §15.209, whichever is the lesser attenuation.

5.2 Test Procedure

The band edge compliance of RF radiated emission should be measured by following the guidance in ANSI C63.10 with respect to maximizing the emission by rotating the EUT, measuring the emission while the EUT is situated in three orthogonal planes (if appropriate), adjusting the measurement antenna height and polarization etc. Set RBW to 100KHz and VBM to 300KHz to measure the peak field strength and set RBW to 1MHz and VBW to 10Hz to measure the average radiated field strength. The conducted RF band edge was measured by using a spectrum analyzer. Set span wide enough to capture the highest in-band emission and the emission at the band edge. Set RBW to 100 KHz and VBM to 300 KHz, to measure the conducted peak band edge.

5.3 Test Result

PASS

Frequency (MHz)	Antenna polarization (H/V)	Meter Reading (dBµV)	Factor (dB)	Emission (dBuV/m)	Lir	edge mit V/m) AV	Result
<2400	Н	36.05	13.83	49.88	74.00	54.00	Pass
<2400	V	35.65	13.83	49.48	74.00	54.00	Pass
>2483.5	Н	35.48	13.85	49.33	74.00	54.00	Pass
>2483.5	V	35.57	13.85	49.42	74.00	54.00	Pass
<2400	Н	34.71	14.02	48.73	74.00	54.00	Pass
<2400	V	34.37	14.02	48.39	74.00	54.00	Pass
>2483.5	Н	34.56	14.04	48.60	74.00	54.00	Pass
>2483.5	V	34.38	14.04	48.42	74.00	54.00	Pass

7.1 Test Setup

Same as Radiated Emission Measurement

7.2 Test Procedure

- 1. The EUT was placed on a turn table which is 1.5m above ground plane.
- 2. Set EUT as normal operation.
- 3. Based on FCC Part15 C Section 15.239(a): RBW= 10KHz. VBW= 30 KHz, Span=1MHz.
- 4. The useful radiated emission from the EUT was detected by the spectrum analyser with peak detector.

7.3 Measurement Equipment Used

Same as Radiated Emission Measurement

6.4 Test Result

PASS

CH: 2402MHz

CH: 2480MHz

8 ANTENNA REQUIREMENT

Standard Applicable

For intentional device, according to FCC 47 CFR Section 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. And according to FCC 47 CFR Section 15.249, if transmitting antennas of directional gain greater than 6dBi are used, the power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6dBi.

Refer to statement below for compliance.

The manufacturer may design the unit so that the user can replace a broken antenna, but the use of a standard antenna jack or electrical connector is prohibited. Further, this requirement does not apply to intentional radiators that must be professionally installed.

Antenna Connected Construction

The antenna used in this product is a PCB Antenna, The directional gains of antenna used for transmitting is 0dBi.

ANTENNA

9 PHOTOGRAPH OF TEST

9.1 Radiated Emission

9.2 Conducted Emission

