CLUSTER ANALYSIS IN R

Dmitriy (Dima) Gorenshteyn
Lead Data Scientist, Memorial Sloan
Kettering Cancer Center

- 22 Occupation Observations
- 15 Measurements of Average Income from 2001-2016

```
print(oes)
                                      2003 2004
                                                  2005 ...
                           2001
                                 2002
                          70800 78870 83400 87090 88450 ...
Management
Business Operations
                          50580 53350 56000 57120 57930 ...
Computer Science
                          60350 61630 64150 66370 67100 ...
Architecture/Engineering
                          56330 58020 60390 63060 63910
Life/Physical/Social Sci. 49710 52380 54930 57550 58030
Community Services
                          34190 34630 35800 37050 37530
```


Next steps: hierarchical clustering

- Evaluate whether pre-processing is necessary
- Create a distance matrix
- Build a dendrogram
- Extract clusters from dendrogram
- Explore resulting clusters

Let's practice!

CLUSTER ANALYSIS IN R

Reviewing the HC results

CLUSTER ANALYSIS IN R

Dmitriy (Dima) Gorenshteyn
Lead Data Scientist, Memorial Sloan
Kettering Cancer Center

The dendrogram

The trends

Connecting the two

Next steps: k-means clustering

- Evaluate whether pre-processing is necessary
- Estimate the "best" k using the elbow plot
- Estimate the "best" k using the maximum average silhouette width
- Explore resulting clusters

Let's cluster!

CLUSTER ANALYSIS IN R

Review K-means results

CLUSTER ANALYSIS IN R

Dmitriy (Dima) Gorenshteyn
Lead Data Scientist, Memorial Sloan
Kettering Cancer Center

Three clustering results

Comparing the two clustering methods

	Hierarchical Clustering	k-means
Distance Used:	virtually any	euclidean only
Results Stable:	Yes	No
Evaluating # of Clusters:	dendrogram, silhouette, elbow	silhouette, elbow
Computation Complexity:	Relatively Higher	Relatively Lower

What have you learned?

- Chapter 1:
 - What is distance
 - Why is scale important

- Chapter 3:
 - How k-means works
 - How to estimate k
 - How to analyze how well
 an observation fits in a cluster

- Chapter 2:
 - How linkage works
 - How the dendrogram is formed
 - How to analyze your

A lot more to learn

- k-mediods
- DBSCAN
- Optics

Congratulations!

CLUSTER ANALYSIS IN R

