TD ALM HARD

Le Multiplieur (document enseignant)

1- Opérandes en base 2

Comment calculer 6*5?

Pour l'instant entiers naturels

Exemple en base 2 de multiplication :

Notons en binaire A=a2,a1,a0 le multiplicande et B= b2,b1,b0 le multiplieur S=s4,s3,s2,s1,s0

Combien de bits nécessaires pour coder le résultat ? si A et B sur n bits.

Analyse des opérations effectuées : Et booléen, additions et décalages

Réalisation à l'aide d'additionneurs.

Taille des additionneurs ?

Dessin à l'aide d'additionneurs 3 bits :

Si on revient à l'additionneur 1 bits, on arrive au circuit régulier suivant (avec n=3):

* 111	a2 a1 a0				
* 111	* b2 b1 b0				
0111 + 111.	0 b0.a2 b0.a1 b0.a0 + b1.a2 b1.a1 b1.a0 0				
1 0 1 0 1	x3 x2 x1 x0 b0.a0				
1 1 1 +	b2.a2 b2.a1 b2.a0 0 0				
110001	s5 s4 s3 s2 s1 s0				

2- Et si le multiplicande est négatif?

Le multiplieur est en base 2, le multiplicande est en complément à 2, le résultat aussi.

Il faut propager le bit de poids fort si il est à 1 dans l'étage suivant pour garder des sommes intermédiaires négatives (et cela seulement si le multiplicande est négatif)

Ex	emple:							
	111					a2	a1 a0	
*	101			* b2 b1 b0				
	1 1 1 1			1	b0.a2	2 b0.a	a2 b0.a	1 b0.a0
+	000.		+	•	b1.a2	2 b1.a	1 b1.a0	0
1	1 1 1 1 1		x 3	3	x2	x1	x0	b0.a0
1	111	+	b2.	a2	b2.a	1 b2.a	0 0	0
1	1 1 0 1 1	s:	5 s ²	1	s3	s2	s1	s0

.

Point de départ : la somme intermédiaire (notée sn ... s1) obtenue est juste ou non sur n bits en complément à 2.

Il faut rajouter un bit pour faire la somme suivante (ou pour le résultat final) de façon à que cela soit juste sur n+1 bits.

Dans l'exemple sur 3 bits, on doit rajouter x3 puis s5 (j'oublie le premier cas qui est plus simple).

Il faut donc que la valeur reste juste sur n+1 bits en complément à 2.

Quelle est la valeur de ce bit x que l'on rajoute?

On peut étudier tous les cas pour ce bit à rajouter suivant le flag Overflow V (complément à 2) et la valeur de la dernière retenue sn+1.

Si V = 1 alors résultat faux sur n bits mais juste sur n+1 bits (à admettre ou à démontrer) donc x = sn+1

Si V=0 alors le résultat est juste sur n bits il faut donc que x soit égal au signe de la somme(donc sn) pour que la somme reste juste sur n+1 bits.

D'ou x = V.sn+1 + not V.sn

On remplace la formule de V= Ri xor sn+1

On trouve : x=(Ri not sn+1 + not Ri. Sn+1)sn+1 + (Ri.sn+1 + not Ri.not Sn+1)sn

X = not Ri. sn + 1 + sn + 1 + sn + not Ri sn

Autre façon de raisonner en fonction des deux derniers bits des opérandes an et bn.

On remarque ici que les signes des opérandes sont corrélés.

En effet:

-si le premier opérande est négatif (somme précédente non nulle donc multiplicande négatif) alors le deuxième opérande est forcément nul ou négatif.

-de la même façon si le deuxième opérande est négatif (multiplicande négatif) alors forcément le 1^{er} opérande est négative ou nul.

an bn x

0 0 0 si an=0 alors le premier opérande est \ge 0. Auquel on ajoute un deuxième opérande \ge 0 donc résultat \ge 0 donc x=0

0 1 1 cas ou le deuxième opérande est négatif (multiplicande négatif) donc si an=0 forcément le premier opérande est nul (voir remarque) donc le résultat est négatif donc x=1

1 0 1 somme précédente négative donc 2eme opérande est soit négatif soit nul, donc forcément x=1

1 1 somme précédente négative et 2eme opérande négative donc x=1

D'où x = an + bn

1eme solution : Multiplieur 4 bits avec $1^{\rm ere}$ opérande et résultat en complément à 2 : x= an+bn

2eme solution : Multiplieur 4 bits avec $1^{\rm ere}$ opérande et résultat en complément à 2 :

 $\mathbf{x} = \text{signe.sn} + \text{sn+1}$

Solution qui semble juste mais que l'on a du mal à justifier

Pour finir une autre façon de faire :

Une petite réflexion théorique proposée Goran (revue par Pascal) :

Le complément a 2 sur m bits d'un entier positif x sur n bits $(2^{(n-1)} \le x \le 2^{(n-1)})$, m>n, est $C2(x) = (2^m + x)$ modulo 2^m (Souvent on prendra m = n + 1, c.a.d., on ajoute un bit pour le signe) L'argument suivant montre que la multiplication binaire est correcte pour les entiers relatifs exprimes en C2 si $m \ge 2n$. Formellement, il faut montrer que (C2(x).C2(y)) modulo $2^m = C2(x.y)$ si $m \ge 2n$.

Ce qui donne sur m bits

Pour $x < 0 : C2(x) = 2^m - |x|$

Pour $x \ge 0$: C2(x) = x

Etudions les différents cas :

- Si on fait le produit de 2 entiers négatifs :

$$(2^m-|x|)*(2^m-|y|)= 2^(2m)-(|x|+|y|)*2^m+|x||y|$$

En regardant sur m bits (c'est à dire modulo 2^m) on obtient (si $|x||y| < 2^m$):

$$|x||y| = x.y = C2(x.y)$$

- Si on fait le produit d'un entier négatif et d'un positif :

$$x*(2^m-|y|) = x*2^m - x|y|$$

En regardant sur m bits (c'est à dire modulo 2^m) on obtient (si $-x |y| < 2^m$):

$$-x |y| = C2(x.y)$$

- Si on fait le produit de 2 entiers positifs : x*y

En regardant sur m bits (c'est à dire modulo 2^m) on obtient (si x y < 2^m): x.y= C2(x.y)

En résumé, pour que le calcul soit correct, il suffit d'exprimer x et y en complément à 2 sur m bits avec m>=2n *avant* la multiplication pour x.y < 2^m (on vérifie que m>=2n implique m>n). La multiplication même s'effectue comme pour les entiers naturels. On ne garde que les m bit de poids faible du résultat.

ANNEXE: Description lustre:

Sur 4 bits avec variables intermédiaires pour comprendre :

Réalisation en Lustre (à voir plus tard avec les étudiants quand ils auront appris le Lustre) Faux générique sur 4 bits en base 2

```
--multiplieur 4 bits non générique realise a partir de and 2 entrees et d'add 1 bit
--2 opérandes n bits, résultats 2*n bits le tout en base 2
-- Additionneur 1 bit
node add1bit(x, y, rin : bool) returns (s, rout : bool);
let
     s = x x or y x or rin;
     rout = (x \text{ and } y) \text{ or } (x \text{ and rin}) \text{ or } (y \text{ and rin});
tel
----- multiplieur 4 bits
--Voir le dessin 1er indice : colonne, 2eme: ligne
node multibits(const nn: int; A, B: bool^nn) returns (S: bool^(2*nn));
var x0,x1,x2, r0,r1,r2: bool^(nn+1); --resultat et retenues intermediaires
let
--premier etage
r0[0] = false;
(x0[0..nn-2], r0[1..nn-1]) = add1bit(B[0]^{(nn-1)}) and A[1..nn-1], B[1]^{(nn-1)}) and A[0..nn-2],
r0[0..nn-2]);
(x0[nn-1],r0[nn])=add1bit(B[1]) and A[nn-1], 0, r0[nn-1]);
x0[nn] = r0[nn];
-- etages de 1 a nn-2
r1[0] = false;
r2[0] = false;
x1[nn]=r1[nn];
x2[nn]=r2[nn];
(x1[0..nn-1],r1[1..nn]) = add1bit(B[2]^nn and A[0..nn-1], x0[1..nn], r1[0..nn-1]);
```

```
(x2[0..nn-1], r2[1..nn]) = add1bit(B[3]^nn and A[0..nn-1], x1[1..nn], r2[0..nn-1]);
--les sorties
S[0] = A[0] and B[0];
S[1] = x0[0];
S[2] = x1[0];
S[nn-1..(2*nn-1)] = x2[0..nn];
tel;
-- instantiation du multnbits
const a=4;
node instmultnbits(op1, op2: bool^a)
returns(res: bool^(2*a));
let
res= multnbits(a, op1, op2);
tel;
Vrai générique (plus compliqué tableau de tableau) :
--multiplieur n bits realise a partir de and 2 entrees et d'add 1 bit
-- 2 opérandes n bits, résultats 2*n bits
--le multiplicande est en complément à 2, il peut etre négatif
--le multiplieur est en base 2
--Le resultat est en complement à 2
--tableau de tableau m*n
--S[i][j] = A[j] and B[i])
--réalisation recursive
node tabandrec(const n,m: int; A: bool^n; B: bool^m) returns (S: bool^n^m);
--attention tableau de tableau : 1er indice contenu des tableau, 2eme indice :tableau de tableau
--indice inverse dans l'utilisation par rapport à la declaration: ici m tableau de n élements: S[0..m-
1,0..n-1
```

```
let
-- attention utiliser with au lieu de if sinon le compilateur produit un code qui boucle ??
S=with (m=1) then ([B[0]^n \text{ and } A])
       else ( tabandrec(n, m-1, A, B[0..m-2])|[B[m-1]^n and A]);
        --l est l'opération de concatenation de tableau
tel;
-----multiplieur base sur des tableaux de tableaux
--Voir le dessin 1er indice : colonne, 2eme: ligne
node multibits(const nn: int; A, B: bool^nn)
returns(S: bool^(2*nn));
var r, x: bool^(nn+1)^nn-1; --resultat et retenues intermediaires
taband:bool^nn^(nn-2); --tableau des and ai bj
let
--premier etage-----
r[0,0] = false;
(x[0,0..nn-2], r[0,1..nn-1]) = add1bit(B[0]^{(nn-1)}) and A[1..nn-1], B[1]^{(nn-1)}) and A[0..nn-2],
r[0,0..nn-2]);
(x[0, nn-1], r[0, nn]) = add1bit(B[1]) and A[nn-1], A[nn-1] and B[0], r[0, nn-1]);
-- remplace A[nn-1] and B[0] par 0 pour un multiplicande en base 2 (non signe)
x[0,nn] = r[0,nn] \text{ or } ((x[0,nn-1]) \text{ and } (A[nn-1]));
-- remplace x[0,nn-1] and A[nn-1] par 0 pour un multiplicande en base 2 (non signe)
-- etages de 1 a nn-2-----
r[1..nn-2,0] = false^{(nn-2)};--attention parenthese obligatoire
```

x[1..nn-2,nn]=r[1..nn-2,nn] or (x[1..nn-2,nn-1] and $(A[nn-1])^{(nn-2)}$;

--attention ecriture S[0..m-1][0..n-1] autre semantique

```
-- remplace x[1..nn-2,nn-1] and (A[nn-1])^(nn-2) par 0 pour un multiplicande en base 2 (non
signe)
taband=tabandrec(nn, nn-2, A[0..nn-1],B[2..nn-1]);
(x[1..nn-2,0..nn-1],r[1..nn-2,1..nn]) = add1bit(taband, x[0..nn-3,1..nn], r[1..nn-2,0..nn-1]);
--les sorties
S[0] = A[0] and B[0];
S[1..nn-1] = x[0..nn-2,0];
S[nn..(2*nn-1)] = x[nn-2,1..nn];
tel;
-- instantiation du multnbits generique
const a=3;
node instmultnbits(op1, op2: bool^a)
returns(res: bool^(2*a));
let
res= multnbits(a, op1, op2);
tel;
```