Vol. 30, №. 6 Dec. 2014

若干数学竞赛试题的统一解法

潘 杰, 苏化明 (合肥工业大学 数学学院,合肥 230009)

[摘 要] 给出了一个关于积分的命题,由此命题可以给出若干国内外数学竞赛试题的统一解答.

[关键词] 数学竞赛; 定积分; 换元法

[中图分类号] O172 [文献标识码] C [文章编号] 1672-1454(2014)06-0111-04

首先介绍几道关于定积分计算的数学竞赛试题.

$$(A)^{[1]}$$
 计算 $\int_{0}^{\frac{\pi}{2}} \frac{dx}{1+(\tan x)^{\sqrt{2}}}$. (第四十一届美国大学生数学竞赛试题(A-3),1980 年)

 $(B)^{[1]}$ 计算 $\int_0^4 \frac{\sqrt{\ln(9-x)}}{\sqrt{\ln(9-x)} + \sqrt{\ln(x+3)}}$. (第四十八届美国大学生数学竞赛试题(B-1),

1987年)

$$(C)^{[1]}$$
 计算 $\int_0^1 \frac{\ln(x+1)}{x^2+1} dx$. (第六十六届美国大学生数学竞赛试题(A-5),2005 年)

$$(D)^{[2]}$$
 计算 $\int_{-1}^{1} \frac{dx}{(e^x+1)(x^2+1)}$. (前苏联大学生数学奥林匹克竞赛试题).

 $(E)^{[3]}$ 设 n 为自然数,计算定积分 $\int_{-\pi}^{\pi} \frac{\sin nx}{(1+2^x)\sin x} dx$. (第三届国际大学生数学竞赛试题, 1996年)

 $(F)^{[4]}$ 计算定积分 $\int_{-\pi}^{\pi} \frac{x \sin x \cdot \arctan e^x}{1 + \cos^2 x} dx$. (四川省大学生数学竞赛试题,2010 年;第五届全国大学生数学竞赛试题,2013 年)

本文将给出一个关于定积分的命题,由此命题可以给出以上几道试题的统一解答,然后再通过另外的实例进一步说明此命题的应用.

命題 设 f(x), g(x)为[a,b](b>a)上的连续函数. 若 f(x)=f(a+b-x), g(x)+g(a+b-x)=m(常数),则有

$$\int_a^b f(x)g(x)dx = \frac{m}{2} \int_a^b f(x)dx.$$
 (1)

$$\int_a^b f(x)g(x)dx = \int_a^b f(a+b-t)g(a+b-t)dt$$
$$= \int_a^b f(a+b-x)g(a+b-x)dx,$$

于是

$$\int_{a}^{b} f(x)g(x)dx = \frac{1}{2} \int_{a}^{b} [f(x)g(x) + f(a+b-x)g(a+b-x)]dx.$$

[收稿日期] 2013-12-10

由于 f(a+b-x)=f(x),所以

$$\int_{a}^{b} f(x)g(x) dx = \frac{1}{2} \int_{a}^{b} f(x) [g(x) + g(a+b-x)] dx = \frac{m}{2} \int_{a}^{b} f(x) dx.$$

试题(A)的解答.

在(1)中取
$$a=0,b=\frac{\pi}{2},f(x)=1,g(x)=\frac{1}{1+(\tan x)^{\sqrt{2}}},$$
则有

$$f\left(\frac{\pi}{2}-x\right)=f(x), \quad g\left(\frac{\pi}{2}-x\right)=\frac{(\tan x)^{\sqrt{2}}}{1+(\tan x)^{\sqrt{2}}}, \quad g(x)+g\left(\frac{\pi}{2}-x\right)=1,$$

故由(1)可得

$$\int_0^{\frac{\pi}{2}} \frac{\mathrm{d}x}{1 + (\tan x)^{\sqrt{2}}} = \frac{1}{2} \int_0^{\frac{\pi}{2}} \mathrm{d}x = \frac{\pi}{4}.$$

试题(B)的解答.

在(1)中取
$$a=2,b=4,f(x)=1,g(x)=\frac{\sqrt{\ln(9-x)}}{\sqrt{\ln(9-x)}+\sqrt{\ln(x+3)}}$$
,则有

$$f(6-x) = f(x)$$
, $g(6-x) = \frac{\sqrt{\ln(x+3)}}{\sqrt{\ln(9-x)} + \sqrt{\ln(x+3)}}$, $g(x) + g(6-x) = 1$,

故由(1)可得

$$\int_{2}^{4} \frac{\sqrt{\ln(9-x)}}{\sqrt{\ln(9-x)} + \sqrt{\ln(3+x)}} dx = \frac{1}{2} \int_{2}^{4} dx = 1.$$

试题(C)的解答.

令 x = tant,则有

$$\int_0^1 \frac{\ln(x+1)}{x^2+1} dx = \int_0^{\frac{\pi}{4}} \ln(1+\tan t) dt = \int_0^{\frac{\pi}{4}} \ln(1+\tan x) dx.$$

在(1)中取
$$a=0$$
, $b=\frac{\pi}{4}$, $f(x)=1$, $g(x)=\ln(1+\tan x)$, 则有 $f(\frac{\pi}{4}-x)=f(x)$,

$$g\left(\frac{\pi}{4}-x\right) = \ln\left[1+\tan\left(\frac{\pi}{4}-x\right)\right] = \ln\left(1+\frac{1-\tan x}{1+\tan x}\right) = \ln 2 - \ln(1+\tan x),$$

$$g(x)+g\left(\frac{\pi}{4}-x\right) = \ln 2,$$

故由(1)可得

$$\int_{0}^{\frac{\pi}{4}} \ln(1+\tan x) dx = \frac{\ln 2}{2} \int_{0}^{\frac{\pi}{4}} dx = \frac{\pi}{8} \ln 2,$$

因此 $\int_0^1 \frac{\ln(x+1)}{x^2+1} dx = \frac{\pi}{8} \ln 2.$

注 本试题还有其他解法.

试题(D)的解答.

在(1)中取
$$a=-1$$
, $b=1$, $f(x)=\frac{1}{x^2+1}$, $g(x)=\frac{1}{e^x+1}$, 则有 $f(-1)=f(x)$, $g(-x)=\frac{e^x}{e^x+1}$,

g(x)+g(-x)=1,故由(1)可得

$$\int_{-1}^{1} \frac{\mathrm{d}x}{(e^{x}+1)(x^{2}+1)} = \frac{1}{2} \int_{-1}^{1} \frac{\mathrm{d}x}{x^{2}+1} = \int_{0}^{1} \frac{\mathrm{d}x}{x^{2}+1} = \frac{\pi}{4}.$$

试题(E)的解答.

在(1)中取
$$a = -\pi$$
, $b = \pi$, $f(x) = \frac{\sin nx}{\sin x}$, $g(x) = \frac{1}{1+2^x}$, 则有 $f(-x) = f(x)$, $g(-x) = \frac{2^x}{1+2^x}$,

g(x)+g(-x)=1,故由(1)可得

$$\int_{-\pi}^{\pi} \frac{\sin nx}{(1+2^{x})\sin x} dx = \frac{1}{2} \int_{-\pi}^{\pi} \frac{\sin nx}{\sin x} dx = \int_{0}^{\pi} \frac{\sin nx}{\sin x} dx.$$

$$icl I_n = \int_0^\pi \frac{\sin nx}{\sin x} dx,$$
 则当 $n \ge 2$ 时,

$$I_{n}-I_{n-2}=\int_{0}^{\pi}\frac{\sin nx-\sin (n-2)x}{\sin x}dx=2\int_{0}^{\pi}\cos (n-1)xdx=0,$$

故 $I_n = I_{n-2}$ $(n=2,3,\cdots)$.

由于 $I_0 = 0$, $I_1 = \pi$, 所以

$$I_n = \begin{cases} 0, & n \text{ 为偶数,} \\ \pi, & n \text{ 为奇数.} \end{cases}$$

试题(F)的解答.

在(1)中取
$$a = -\pi$$
, $b = \pi$, $f(x) = \frac{x \sin x}{1 + \cos^2 x}$, $g(x) = \arctan e^x$, 则有 $f(-x) = f(x)$, $g(-x)$

$$g(x)+g(-x) = \arctan e^x + \arctan \frac{1}{e^x} = \frac{\pi}{2}$$
,

故由(1)可得

$$\int_{-\pi}^{\pi} \frac{x \sin x \arctan e^{x}}{1 + \cos^{2} x} dx = \frac{\pi}{4} \int_{-\pi}^{\pi} \frac{x \sin x}{1 + \cos^{2} x} dx = \frac{\pi}{2} \int_{0}^{\pi} \frac{x \sin x}{1 + \cos^{2} x} dx.$$

再次在(1)中取 a=0, $b=\pi$, $f(x)=\frac{\sin x}{1+\cos^2 x}$, g(x)=x, 则有 $f(\pi-x)=f(x)$, $g(x)+g(\pi-x)=\pi$, 故由(1)可得

$$\int_{0}^{\pi} \frac{x \sin x}{1 + \cos^{2} x} dx = \frac{\pi}{2} \int_{0}^{\pi} \frac{\sin x}{1 + \cos^{2} x} dx = -\frac{\pi}{2} \int_{0}^{\pi} \frac{d \cos x}{1 + \cos^{2} x} dx$$
$$= -\frac{\pi}{2} \arctan \cos x \Big|_{0}^{\pi} = \frac{\pi^{2}}{4},$$

因此

$$\int_{-\pi}^{\pi} \frac{x \sin x \arctan e^x}{1 + \cos^2 x} dx = \frac{\pi^3}{8}.$$

下面再举几个例子进一步说明本文所给命题在某些积分计算中的应用.

例 1^[4] 计算定积(分 $\int_0^x \frac{x|\sin x \cos x|}{1+\sin^4 x} dx$. (西安交通大学高等数学竞赛试题,1989 年)

解 在(1)中取 a=0, $b=\pi$, $f(x)=\frac{|\sin x \cos x|}{1+\sin^4 x}$, g(x)=x, 则有 $f(\pi-x)=f(x)$, $g(x)+g(\pi-x)=\pi$, 故由(1)可得

$$\int_0^{\pi} \frac{x \left| \sin x \cos x \right|}{1 + \sin^4 x} dx = \frac{\pi}{2} \int_0^{\pi} \frac{\left| \sin x \cos x \right|}{1 + \sin^4 x} dx.$$

由于

$$\int_{0}^{\pi} \frac{|\sin x \cos x|}{1 + \sin^{4} x} dx = \int_{0}^{\frac{\pi}{2}} \frac{|\sin x \cos x|}{1 + \sin^{4} x} dx + \int_{\frac{\pi}{2}}^{\pi} \frac{|\sin x \cos x|}{1 + \sin^{4} x} dx$$
$$= \int_{0}^{\frac{\pi}{2}} \frac{\sin x \cos x}{1 + \sin^{4} x} dx - \int_{\frac{\pi}{2}}^{\pi} \frac{\sin x \cos x}{1 + \sin^{4} x} dx.$$

$$\int_{\frac{\pi}{2}}^{\pi} \frac{\sin x \cos x}{1 + \sin^4 x} dx = -\int_{0}^{\frac{\pi}{2}} \frac{\sin t \cos t}{1 + \sin^4 t} dt = -\int_{0}^{\frac{\pi}{2}} \frac{\sin x \cos x}{1 + \sin^4 x} dx,$$

故

$$\int_{0}^{\pi} \frac{|\sin x \cos x|}{1 + \sin^{4} x} dx = 2 \int_{0}^{\frac{\pi}{2}} \frac{\sin x \cos x}{1 + \sin^{4} x} dx = \int_{0}^{\frac{\pi}{2}} \frac{d \sin^{2} x}{1 + (\sin^{2} x)^{2}} dx$$
$$= \arctan(\sin^{2} x) \Big|_{0}^{\frac{\pi}{2}} = \frac{\pi}{4},$$

因此 $\int_0^{\pi} \frac{x |\sin x \cos x|}{1 + \sin^4 x} dx = \frac{\pi^2}{8}.$

例 $\mathbf{2}^{[5]}$ 计算 $I = \int_0^{\infty} x |\sin x| \, \mathrm{d}x$,其中 n 为正整数. (上海交通大学高等数学竞赛试题,1994 年)

解 在(1)中取 a=0, $b=n\pi$, $f(x)=|\sin nx|$, g(x)=x, 则有 $f(n\pi-x)=f(x)$, $g(n\pi-x)=n\pi-x$, $g(x)+g(n\pi-x)=n\pi$, 故由(1)可得

$$I = \frac{n\pi}{2} \int_{0}^{n\pi} |\sin x| \, \mathrm{d}x.$$

由于

$$\int_{0}^{\pi\pi} |\sin x| \, \mathrm{d}x = \int_{0}^{\pi} |\sin x| \, \mathrm{d}x + \int_{\pi}^{2\pi} |\sin x| \, \mathrm{d}x + \dots + \int_{(\pi-1)\pi}^{\pi\pi} |\sin x| \, \mathrm{d}x$$
$$= n \int_{0}^{\pi} |\sin x| \, \mathrm{d}x = n \int_{0}^{\pi} \sin x \, \mathrm{d}x = 2n,$$

因此所求积分 $I=n^2\pi$.

例 3[6] 证明:

$$I = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \frac{e^{x} \sin^{2} x \cos^{2} x}{1 + e^{x}} dx = \int_{0}^{\frac{\pi}{2}} \sin^{2} x \cos^{2} x dx,$$

并求 I 的值. (陕西省第八次大学生高等数学竞赛试题,2010年)

解 在(1)中取 $a = -\frac{\pi}{2}$, $b = \frac{\pi}{2}$, $f(x) = \sin^2 x \cos^2 x$, $g(x) = \frac{e^x}{1+e^x}$, 则有 f(x) = f(-x), g(-x) $= \frac{e^{-x}}{1+e^{-x}} = \frac{1}{1+e^x}$, g(x) + g(-x) = 1, 故由(1)可得

$$I = \frac{1}{2} \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \sin^2 x \cos^2 x \, \mathrm{d}x.$$

又 $\sin^2 x \cos^2 x$ 为 $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$ 上的偶函数,所以

$$\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \sin^2 x \cos^2 x dx = 2 \int_0^{\frac{\pi}{2}} \sin^2 x \cos^2 x dx,$$

因此

$$I = \int_0^{\frac{\pi}{2}} \sin^2 x \cos^2 x dx = \frac{1}{4} \int_0^{\frac{\pi}{2}} \sin^2 2x = \frac{1}{8} \int_0^{\frac{\pi}{2}} (1 - \cos 4x) dx$$
$$= \frac{\pi}{16} - \frac{1}{8} \int_0^{\frac{\pi}{2}} \cos 4x dx = \frac{\pi}{16}.$$

「参考文献]

- [1] 刘培杰数学工作室组织编译. 历届 PTN 美国大学生数学竞赛试题集(1938—2007)[M]. 哈尔滨:哈尔滨工业大学出版社,2009.
- [2] 许康,陈强,陈挚,陈娟编译. 前苏联大学生数学奥林匹克竞赛题解(下编)[M]. 哈尔滨:哈尔滨工业大学出版社, 2012.
- [3] 王丽萍编译. 历届 IMC 国际大学生数学竞赛试题集(1994—2010)[M]. 哈尔滨:哈尔滨工业大学出版社,2012.
- [4] 李心灿,季文铎,孙洪祥,邵鸿飞,吴纪桃,张后扬.大学生数学竞赛试题解析选编[M].北京:机械工业出版社, 2011
- [5] 李重华,孙薇荣,景继良,郑麒海.上海交通大学 1982—1995 年高等数学竞赛试题精解[M].上海:上海科学普及出版社,1996.
- [6] 陕西省第八次大学生高等数学竞赛试题[J]. 高等数学研究,2010,13(6):64-65.