Section B: Kinematic Graphs 1 Unit: One-Dimensional Kinematics

Level: 1

Prerequisites: None

Points to:

Goals:

- to be able to recognize the position-time, velocity-time and acceleration-time graphs of each of these main types of motion:
- 1. constant velocity motion
- 2. not moving
- 3. positive acceleration motion (speeding up)
- 4. negative acceleration motion (slowing down)

Questions on this quiz are entirely *multiple choice*.

Part C: Position-Time Graphs

Position-Time Graph

A position-time graph shows where an object is.

Whenever the position is changing, that means an object is moving.

The faster position changes, the faster something is moving

Important position-time graphs:

Important position-time grap		ln
Type of Motion	Position-Time Graph	Discussion
Constant Velocity Motion	(E) time (s)	A straight line upward. Position is changing at a constant rate.
Not Moving	1	A horizontal line.
	time (s)	Position is not changing.
Positive Acceleration	/	- Curves upward.
	(E) time (s)	The curve shows velocity getting higher and higher.This shape is called a parabola.
Negative Acceleration (Deceleration)	(m) unition (m) time (s)	- This is the <i>most</i> challenging graph. See more explanation below. - This shape is called an upside down parabola.

Matching Activity

The Most Challenging Kinematic Graph

The most *challenging* of the graphs is the position-time graph for something with a *negative acceleration*.

Even though the speed is decreasing, the object is still moving forward, so the position-time graph goes up, not down.

5a. Imagine you are driving and you hit your brake. Does your car continue to move forward?

5b. How is this fact shown in the kinematic graph?

Drawin	g	Activity	

Draw a kinematic graph for each of the following situations.
Whenever you draw a graph, you MUST label both of the two axes of the graph.

- **6.** A person is walking down the hallway at a constant velocity.
- **7.** A car at a stop sign starts driving very fast.

8. A lazy dude does nothing all day.

9. A light ahead of a car turns red and the car slows down to a stop.

Part 3: Velocity-Time Graphs:

Part 3: Velocity-Time Graphs:						
Type of Motion	Velocity-Time Graph	Explanation				
Constant Velocity	velocity (m/s)	- If velocity is constant, it is represented by a horizontal line.				
Positive Acceleration	T					
	velocity (m/s)	- When something is accelerating, velocity is increasing.				
Negative Acceleration	N					
(Deceleration)	velocity (m/s)	- When something is decelerating, velocity is decreasing.				
Not Moving		TA71				
	o velocity (m/s)	-Whenever something is not moving, velocity is zero.				
	0 time (s)					

Matching Activity

For each of the choices 1, 2, 3, and 4 chose which velocity-time graph shows it:

Part 4: Acceleration-Time Graphs

Type of Motion	Acceleration-Time Graph	Explanation
Constant Velocity	o acceleration (m/s/s) time (s)	 If velocity is constant, acceleration is zero. This graph represents an object whose acceleration is always zero.
Positive Acceleration	acceleration (m/s/s) time (s)	 Acceleration is positive. The line <i>above</i> the x-axis represents this.
Negative Acceleration (Deceleration)	acceleration (m/s/s) time (s)	 - Acceleration is negative. - The lien <i>below</i> the x-axis represents this.
Not Moving	o acceleration (m/s/s) (s)	-If something is not moving, acceleration is clearly zero.

1. Which two types of motion have identical acceleration-time graphs? Why?

For questions 2, 3, and 4, chose an acceleration graph that represents the motion.

time (s)

Part 5: A reference of all graphs you must memorize: CONSTANT VELOCITY acceleration (m/s/s) velocity (m/s) position (m) time (s) time (s) time (s) POSITIVE ACCELERATION acceleration (m/s/s) velocity (m/s) position (m) time (s) time (s) time (s) NEGATIVE ACCELERATION acceleration (m/s/s) velocity (m/s) position (m) time (s) time (s) time (s) NOT MOVING acceleration (m/s/s) velocity (m/s) position (m)

time (s)

time (s)