Review for Final Exam Part 1

1st Order Differential Equations

- Separable Equations
 - ▶ Definition. $\frac{dy}{dx} = f(x, y)$ is separable when we can write: f(x, y) = g(x) h(y)
 - Method. (1st) Separate Variables (2nd) Integrate both Sides 3rd: Solve for y

$$\int \frac{1}{h(y)} dy = \int g(x) dx$$

Example. Solve $y^{-1}dy + (ye^{\cos x} \sin x)dx = 0$

Integrale

$$y^{-2} dy = -\int e^{\cos x} \sin x dx$$

$$-y^{-1} = e^{\cos x} + C$$

$$y = -\frac{1}{e^{\cos x} + C}$$
General Solution.

MATH 267

April 23, 2018

2/7

- Linear Equations
 - ▶ Definition/Form: A 1st order DE is linear if it is of the form:

$$a_1(x)\frac{dy}{dx} + a_0(x)y = g(x)$$
 and the standard form is: $\frac{dy}{dx} + P(x)y = Q(x)$

▶ Method. 1st: Find the integrating factor $\mu(x) = e^{\int P dx}$

2nd: Multiply both sides of the equation by $\mu(x)$ so the $(\mu(x)y(x))' = \mu(x)Q(x)$ equation becomes:

 $g(x) = \frac{1}{M} \left(\int \mu Q dx + C \right)$ 3rd: Integrate both sides and solve for y

Example. Solve the IVP: $xy' + 3y = \frac{e^{3x}}{y}$; $y(1) = e^3$

In standard:
$$y' + \frac{3}{x}y = \frac{e^{3x}}{x^2}$$
; $M(x) = e^{3x} = e^{3\ln|x|^2} = e^{\ln|x|^3} = |x|^3 = x^3$

New Equation:
$$(x^3y)' = xe^{3x} \Rightarrow x^3y = \int x e^{3x} dx = \frac{x}{3}e^{3x} - \frac{1}{9}e^{3x} + C$$

Solve for y:
$$y(x) = \frac{e^{3x}}{c^{3x}} + \frac{c}{\sqrt{3}}$$
 (solve for c) $c = \frac{7}{9}e^{3}$

Solve for y:
$$y(x) = \frac{e^{3x}}{3x^2} - \frac{e^{3x}}{9x^3} + \frac{c}{x^3}$$

Solve IVP: $y(1) = \frac{e^3}{3} - \frac{e^3}{9} + c = e^3$

Solve IVP: $y = \frac{e^{3x}}{3x^2} - \frac{e^{3x}}{9x^3} + \frac{7e^3}{9x^3}$

(plug initial cond.) $y(1) = \frac{e^3}{3} - \frac{e^3}{9} + c = e^3$

Solve IVP: $y = \frac{e^{3x}}{3x^2} - \frac{e^{3x}}{9x^3} + \frac{7e^3}{9x^3}$

MATH 267

- Exact Equations
 - ▶ Definition/Form. The DE: M(x,y)dx + N(x,y)dy = 0is exact iff there exists a function f(x, y) such that

$$\frac{\partial f}{\partial x} = M \text{ and } \frac{\partial f}{\partial y} = N$$
 Test: $\frac{\partial M}{\partial y} = \frac{\partial N}{\partial x} = \gamma$ Exact.

▶ Method. 1st: find f(x,y) 2nd: Solution is f(x,y) = c

Example.
$$\frac{dy}{dx} = \frac{\cos(xy) - xy\sin(xy) - y^2e^{-x}}{x^2\sin(xy) - 2ye^{-x}}$$

$$\left[x^2\sin(xy) - 2ye^{-x}\right]dy = \left[\cos(xy) - xy\sin(xy) - y^2e^{-x}\right]dx$$

$$\left[-\cos(xy) + xy\sin(xy) + y^2e^{-x}\right]dx + \left[x^2\sin(xy) - 2ye^{-x}\right]dy = 0$$

$$\frac{\partial M}{\partial y} = x\sin(xy) + x\sin(xy) + x^2y\cos(xy) + 2ye^{-x}$$

$$\frac{\partial N}{\partial y} = 2x\sin(xy) + x^2y\cos(xy) + 2ye^{-x}$$

$$\Rightarrow \tan(xy) + x^2y\cos(xy) + 2ye^{-x}$$

$$\Rightarrow \tan(xy) + x^2y\cos(xy) + 2ye^{-x}$$

April 23, 2018 3/7

Next find
$$f(x_iy)$$
 Such $\frac{\partial f}{\partial x} = M$ and $\frac{\partial f}{\partial y} = N$

From (2):
$$f(x,y) = \int Ndy = \int \chi^2 \sin(xy) - 2ye^{-x} dy = -\chi \cos(xy) - y^2e^{-x} + g(x)$$

And (1) =>
$$\frac{\partial}{\partial x} = \frac{\partial}{\partial x} \left(-x \cos(xy) - y^2 e^{-x} + g(x) \right) = -\cos(xy) + xy \sin(xy) + y^2 e^{-x} + g(x) = M$$

$$\Rightarrow g'(x) = 0 \Rightarrow g(x) = C_1 = 0$$
(\(\tau\) we pick $C_1 = 0$)

Then update
$$f(x,y) = -x \cos(xy) - y^2 e^{-x}$$

• Solutions by Substitutions (3 kinds)

Kind	Form	Substitutions	New Equation
Homogeneous	$\frac{dy}{dx} = G(\frac{y}{x}) = f(x, y)$	y = u x	separable
	f(tx,ty)=t (x,y)	$\frac{dy}{dx} = u + \times \frac{du}{dx}$	
Bernoulli	$\frac{dy}{dx} + P(x)y = f(x)y^n$	$u = y^{1-n}$	linear
	y-ndy + Py-n = f(x)	$\frac{du}{dx} = (1-n)y^{-n} \frac{dy}{dx}$	
Of the form $\frac{dy}{dx}$	$\frac{d}{dx} = f(Ax + By + C)$	u = Ax + By + C	separable
$B \neq 0$		$\frac{du}{dx} = A + B \frac{dy}{dx}$	

MATH 267

Final Review Part

pril 23, 2018 5 / 7

Example.
$$\sqrt{x} y' = \frac{y}{\sqrt{x}} + \sqrt{y-2x}$$
 (=> $y' = \frac{y}{x} + \sqrt{\frac{y}{x}} - 2$)

Homogeneous, Then $u = \frac{y}{x}$ or $y = ux \Rightarrow \frac{dy}{dx} = u + x \frac{du}{dx} = y'$)

Substitute:

Substitute:
$$u+x \frac{du}{dx} = u+\sqrt{u-2} \implies x \frac{du}{dx} = \sqrt{u-2}$$
 (Separable)

Separate:
$$\int \frac{1}{\sqrt{u-2}} du = \int \frac{1}{X} dX \implies 2\sqrt{u-2} = \ln |x| + C$$

Solve for
$$u$$
: $u = \left(\frac{\ln |x| + C}{2}\right)^2 + 2$ deplug back in $\left(u = \frac{4}{x}\right)^2$

$$\frac{y}{x} = \left(\frac{\ln|x| + C}{2}\right)^2 + 2 = 7$$

$$y(x) = \chi\left(\frac{\ln|x| + C}{2}\right)^2 + 2\chi$$

General Solution

April 23, 2018

6 / 7

Applications

Population Dynamics
$$\frac{dP}{dt} = KP(t) \Rightarrow P(t) = P_0 e^{Kt}$$

Radioactive Decay
$$\frac{dA}{dt} = -KA(t) \Rightarrow A(t) = A_0 e^{-Kt}$$

Mixing Problems
$$\frac{dA}{dt} = (lnput vale) - (output vale)$$

Newton's Law of Cooling
$$\frac{dT}{dt} = -K(T - T_m)$$