In21-S4-CS3063 - Theory of Computing

Assignment 02

NAME: K.S. RANASINGHE INDEX NO.: 210518H

QUESTION 01

a) The grammar given here could be simplified into a single regular expression.

 $A \rightarrow 0A \mid V$

A → 0*

 $B \rightarrow 1B \mid 0B \mid \Lambda$

B → (0|1)*

Based on the above simplification of A and B, we could write a regular expression for S as follows;

Using this expression, we could draw a state diagram for NFA representing the language.

- b) L1 represents a language which is;
 - Starting with a string of length greater than or equal to zero containing '0's.
 - Followed by the string '10'.
 - Ending with a string of length greater than or equal to zero containing any combination of '0's and '1's.
- c) CFG → CNF

Step 01 – Eliminate Λ-productions

S → A10B | A10 | 10B | 10

 $A \rightarrow 0A \mid 0$

 $B \to 1B \mid 0B \mid 1 \mid 0$

Step 02 - Eliminate unit productions

The modified grammar doesn't contain any unit productions. Therefore, we could skip this step.

Step 03 - Restrict the RHS of productions to single terminals or strings of \geq 2 non-terminals

First we will remove the terminals by introducing two new states as follows;

 $X \rightarrow 0$

Y → 1

The new grammar as follows;

 $S \rightarrow AXYB \mid AXY \mid XYB \mid XY$

 $A \rightarrow XA \mid 0$

 $B \rightarrow YB \mid XB \mid 1 \mid 0$

 $X \rightarrow 0$

 $Y \rightarrow 1$

Step 04 - Replace each production having > 2 non-terminals on RHS by an equivalent set of productions each having exactly 2 nonterminals on the RHS

We will introduce two more states here;

 $P \rightarrow AX$

 $Q \rightarrow YB$

The final modified grammar is as follows;

 $S \rightarrow PQ \mid PY \mid XQ \mid XY$

 $A \rightarrow XA \mid 0$

B → YB | XB | 1 | 0

 $P \rightarrow AX$

 $Q \rightarrow YB$

 $X \rightarrow 0$

Y → 1

QUESTION 02

a)
$$L = \{a^n b b b^{2n} \mid n \ge 0\}$$

b) $L = \{ \Sigma = \{a, b\}, includes : "aabaaabbaaaa", "babbaaabbbbaabb", "babbbaabb" \}$

QUESTION 03

a)

i) This TM reverses the input string.

Initial (S₁)

|--|

Final (S₂)

Δ	Δ	Δ	Δ	Δ	Δ	Δ	Δ	Δ	Δ	Δ	0	0	1	0	1	0	1	1	0	0	Δ	
---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	--

Initial (S₁)

|--|

Final (S₃)

QUESTION 04

