Um Modelo para Tese, Qualificações e Dissertações Exemplo de título Longo

Nome completo do autor

Universidade Federal de Uberlândia
Faculdade de Computação
Programa de Pós-Graduação em Ciência da Computação

Nome completo do autor

Um Modelo para Tese, Qualificações e Dissertações Exemplo de título Longo

Dissertação de mestrado apresentada ao Programa de Pós-graduação da Faculdade de Computação da Universidade Federal de Uberlândia como parte dos requisitos para a obtenção do título de Mestre em Ciência da Computação.

Área de concentração: Ciência da Computação

Orientador: Nome completo do orientador Coorientador: Nome completo do coorientador

Dados Internacionais de Catalogação na Publicação (CIP) Sistema de Bibliotecas da UFU, MG, Brasil.

A474m Sobrenome, Nome do aluno, 1979-

2014 Título do Trabalho / Nome e Sobrenome do aluno. - 2014. 81 f. : il.

Orientador: Nome do Orientador.

Dissertação (mestrado) - Universidade Federal de Uberlândia, Programa de Pós-Graduação em Ciência da Computação. Inclui bibliografia.

1.Computação - Teses. 2. Simulação (Computadores) - Teses. I. Sobrenome, Nome do orientador. II. Universidade Federal de Uberlândia. Programa de Pós-Graduação em Ciência da Computação. III. Título.

CDU: 681.3

UNIVERSIDADE FEDERAL DE UBERLÂNDIA FACULDADE DE COMPUTAÇÃO PROGRAMA DE PÓS-GRADUAÇÃO EM CIÊNCIA DA COMPUTAÇÃO

Os abaixo assinados, por meio deste, certificam que leram e recomendam para a Faculdade de Computação a aceitação da dissertação intitulada "**Título do trabalho**" por **Nome do aluno** como parte dos requisitos exigidos para a obtenção do título de **Mestre em Ciência da Computação**.

	Uberlândia,	de	de
Orientador:			
		Nome do o	rientador le Uberlândia
	Ulliversidad	e reuerar c	ie Oberiandia
Coorientador:		Nama da a	oorientador
			le Uberlândia
	(qu		
	\1		,
Banca Examinadora:			
	Duof Du	Membro da	
		de Ensino	
	mstrarçae	de Ensino	Superior
		Membro da	
	Instituição	de Ensino	Superior

Este trabalho é dedicado às crianças adultas que, quando pequenas, sonharam em se tornar cientistas.

Agradecimentos

Faça os agradecimentos àqueles que direta ou indiretamente contribuíram para que você tivesse obtido êxito. Inclua na sua lista agradecimentos aos órgãos de fomento, quando for o caso.

Resumo

Segundo a ABNT (2003, 3.1-3.2), o resumo deve ressaltar o objetivo, o método, os resultados e as conclusões do documento. A ordem e a extensão destes itens dependem do tipo de resumo (informativo ou indicativo) e do tratamento que cada item recebe no documento original. O resumo deve ser precedido da referência do documento, com exceção do resumo inserido no próprio documento. (...) As palavras-chave devem figurar logo abaixo do resumo, antecedidas da expressão Palavras-chave:, separadas entre si por ponto e finalizadas também por ponto.

Para auxiliá-lo com o latex, o Apêndice A apresenta os resultados dos comandos incluídos no arquivo ape_comandos/abntex2-modelo-include-comandos.tex

Palavras-chave: Latex. Abntex. Normas USP.

Abstract

This is the english abstract.

 ${\bf Keywords:}\ {\rm Latex.}\ {\rm Abntex.}.$

Lista de ilustrações

Figura 1 –	Fronteira de Pareto	38
Figura 2 –	Tabelas do AEMMT	45
Figura 3 –	Tabelas do AEMMD	46
Figura 4 –	Exemplo de rede retirado de [1-plano]	53
Figura 5 –	Exemplos de árvores multicast relativos ao grafo da figura 4.2. Retirado	
	do trabalho de [2-plano]	53
Figura 6 –	Exemplo de árvore multicast no PRM multiobjetivo	54
Figura 7 –	Exemplo de crossover uniforme	58
Figura 8 –	Exemplo de cruzamento por caminho	62
Figura 9 –	A delimitação do espaço	76
Figura 10 –	Gráfico produzido em Excel e salvo como PDF	77

Lis	ta	de	tal	bel	las

Tabala 1 Nízzaia da investima	~~~												70	3
Tabela 1 – Níveis de investiga	ıçao												11	J

Lista de siglas

 ${\bf NBR}\;$ Denominação de norma da Associação Brasileira de Normas Técnicas

Sumário

1	INTRODUÇÃO	25
1.1	Objetivos	27
1.2	Contribuições	27
1.3	Organização do texto	28
2	OTIMIZAÇÃO BIO-INSPIRADA	29
2.1	Algoritmos Genéticos (AGs)	30
2.1.1	Representação do indivíduo	31
2.1.2	Operadores Genéticos	32
2.2	Colônia de formigas (ACO)	33
2.2.1	Representação da solução	34
2.2.2	Construção da solução	34
2.2.3	Atualização dos feromônios	35
3	OTIMIZAÇÃO MULTIOBJETIVO	37
3.1	Algoritmos Multiobjetivo	39
3.1.1	Non-dominated Sorting Genetic Algorithm II (NSGA-II)	36
3.1.2	Strength Pareto evolutionary algorithm 2 (SPEA2)	41
3.2	Algoritmos Many-objectives	4 3
3.2.1	Multiobjective evolutionary algorithm based on decomposition ($MOEA/D$)	43
3.2.2	Non-dominated Sorting Genetic Algorithm III (NSGA-III)	44
3.2.3	Algoritmo Evolutivo Multiobjetivo com Muitas Tabelas (AEMMT)	44
3.2.4	Algoritmo Evolutivo Multiobjetivo com Múltiplas Dominâncias (AEMMD)	45
3.3	Algoritmos many-objectives baseados em colônias de formigas.	46
3.3.1	Multi-Objective Ant Colony Optimization Algorithm (MOACS)	47
4	PROBLEMAS DE TESTE	51
4.1	Problema da mochila multiobjetivo	51

4.2	Problema do roteamento multicast (PRM)	52
5	ESTRATÉGIAS EVOLUTIVAS PARA O PMM	57
5.1	Representação da solução	57
5.2	Cruzamento e mutação (AGs)	58
5.3	Construção da solução (ACOs)	58
6	ESTRATÉGIAS EVOLUTIVAS PARA O PRM	61
6.1	Representação da solução	61
6.2	Inicialização dos indivíduos	62
6.3	Cruzamento (AG)	62
6.4	Mutação (AG)	63
6.5	Construção da solução (ACO)	63
7	A SUA PROPOSTA	65
8	EXPERIMENTOS E ANÁLISE DOS RESULTADOS	67
8.1	Método para a Avaliação	67
8.2	Experimentos	67
8.3	Avaliação dos Resultados	67
9	CONCLUSÃO	69
9.1	Principais Contribuições	69
9.2	Trabalhos Futuros	69
9.3	Contribuições em Produção Bibliográfica	69
REFERÊ	NCIAS	71
	APÊNDICES	73
APÊNDI	CE A – RESULTADOS DE COMANDOS	7 5
A.1	Citações	7 5
A.2	Remissões internas	7 5
A.3	Tabelas	7 5
A.4	Expressões matemáticas	7 6
A.5	Figuras	76
A.6	Enumerações: alíneas e subalíneas	77
A.7	Inclução de outros arquivos	78
A.8	Compilar o documento \LaTeX	7 9
A.9	Divisões do documento: seção	7 9
A.9.1	Divisões do documento: subseção	79

A.9.2	Divisões do documento: subseção	79	
A.10	Este é um exemplo de nome de seção longo. Ele deve estar		
	alinhado à esquerda e a segunda e demais linhas devem iniciar		
	logo abaixo da primeira palavra da primeira linha	80	
A.11	Consulte o manual da classe abntex2	80	
A.12	2 Referência a Acrônimos		
	ANEXOS	81	
ANEXO	A – MORBI ULTRICES RUTRUM LOREM	83	
A.1	Test	88	

Introdução

Qual o menor caminho para atingir um destino? Qual o melhor carro para se comprar dado um orçamento? Qual a forma mais rápida de se executar uma tarefa? Enfim, dado um conjunto de soluções possíveis, qual melhor resolve um dado problema? A pergunta é simples, mas encontrar a resposta correta em um tempo viável é complexo e configura um dos principais campos de pesquisa da computação: busca e otimização.

Só há uma forma de se saber qual é, indubitavelmente, a melhor solução para um problema: gerando e comparando todas as possibilidades. Para a maioria dos problemas interessantes, essa é uma tarefa difícil, se não impossível. Para um grafo com muitas arestas, por exemplo, combinar e testar todas as possibilidades é um problema NP-completo, ou seja, não será resolvido em tempo hábil considerando o atual estado da arte da computação. Sendo assim, a busca e otimização se concentra em desenvolver meios para se encontrar soluções suficientemente próximas à melhor possível, ou seja, trabalha-se com estratégias de aproximação. Dentre as estratégias de aproximação, destacam-se os algoritmos gulosos [] e os algoritmos evolutivos [].

Os problemas de otimização se tornam ainda mais complexos quando deseja-se otimizar múltiplas métricas, por exemplo, ao comprar um carro, não deseja-se apenas o mais barato ou o mais potente, mas considera-se preço, potência, aparência, eficiência, quilometragem, etc. Isto é, não basta otimizar um único objetivo, mas sim, vários. A maneira mais simples de se contornar este problema é transformar as diversas métricas em uma única função, fazendo uma média ponderada dos objetivos. Infelizmente, reduzir os múltiplos objetivos em uma única função não é ideal, pois é necessário ter um conhecimento prévio do problema para se decidir os pesos de cada métrica e um único peso mal escolhido pode impedir as melhores soluções de serem encontradas. Na realidade, se todos os objetivos são considerados igualmente importantes, existirão várias soluções possíveis, algumas terão melhor desempenho em uma métrica enquanto outras se darão melhor em outras. Devido à natureza dos problemas multiobjetivos (PMOs) de envolverem diversas soluções, se tornou natural a escolha dos algoritmos genéticos, já que envolvem evoluir uma população de soluções de acordo com um objetivo.

Neste trabalho investigou-se diversos algoritmos genéticos para os PMOs e afim de colocá-los à prova utilizou-se dois problemas discretos bem conhecidos na literatura de busca e otimização multiobjetivo: o problema da mochila multiobjetivo (PMM) e o problema do roteamento multicast (PRM). O primeiro é uma versão multiobjetivo do clássico problema da mochila 0/1, onde ao invés de um único valor de lucro, todo item possui m valores, onde m é o número de objetivos. O PMM é uma abordagem teórica e apesar de testar os algoritmos em seus extremos devido a seu enorme espaço de busca, nem sempre reflete a realidade dos problemas cotidianos. O PRM, por sua vez, é um problema prático geralmente encontrado em comunicações de rede, nele deseja-se transmitir uma mensagem de um dispositivo fonte para múltiplos dispositivos em uma rede de computadores de forma a utilizar os recursos disponíveis da forma mais eficiente possível, o que é de extrema importância considerando o grande número de transmissões multimídia e aplicações em tempo real que se beneficiariam muito de algoritmos eficientes para cálculos de rota.

Problemas com dois e três objetivos são considerados bem resolvidos, mas a partir de quatro, torna-se difícil encontrar boas soluções com os algoritmos evolutivos multiobjetivos (AEMOs) clássicos. Chama-se de "many-objectives" os problemas com 4 ou mais funções de otimização e, para resolvê-los, necessita-se de métodos mais robustos que consideram o acréscimo no número de objetivos com estratégias de decomposição em funções escalares, evolução de indicadores, cálculos de distância mais eficientes, etc. Neste trabalho testamos vários algoritmos em diversas formulações de objetivos, variando entre 2 e 6 funções, analisando a qualidade das soluções obtidas em cada um dos casos e discutindo as características que permitem um ou outro atingir determinado resultado.

A maior parte dos trabalhos em busca e otimização multiobjetivo utilizam algoritmos genéticos, mas na mesma linha existem os métodos baseados em colônias de formigas (ACO) e os algoritmos inspirados em inteligência de enxame (PSO). Os PSO's são indicados especialmente para problemas contínuos e a utilização de seus cálculos vetoriais se torna difícil em problemas discretos. Por outro lado, os ACOs lidam especialmente com problemas discretos e representações em grafos. Como ambos os problemas estudados neste trabalho (PMM e PRM) são discretos, decidiu-se concentrar apenas nos algoritmos genéticos e nas colônias de formigas, dando prioridade a este último a fim de se propor um novo modelo para a resolução de problemas many-objectives que fugisse um pouco da já extensa lista de proposições baseadas em algorítimos genéticos. Com uma proposta que utiliza uma metodologia relativamente pouco explorada, surge a esperança de se desenvolver um modelo único que aborda de forma diferente o espaço de busca, possibilitando tanto ganhos de desempenho em tempo quanto em qualidade das soluções.

O modelo baseado em ACO proposto foi chamado de Many-Objective Ant Colony Optimization Based on Decomposed Pheromones (MACO/D), em português, otimização para muitos objetivos com colônia de formigas baseada em decomposição de feromônios.

1.1. Objetivos 27

O algoritmo proposto foi comparado tanto com algoritmos genéticos quanto outros ACOs encontrados na literatura. A partir dos resultados dos experimentos mostrados mais adiante no texto, foi possível comprovar a eficácia do método na maior parte dos cenários e analisar possíveis melhorias para pesquisas futuras.

1.1 Objetivos

Esta dissertação tem como objetivo principal estender os trabalhos de [Fialho] e [Bueno] sobre o problema do roteamento multicast (PRM), mas dando ênfase maior nos algoritmos e modelos multiobjetivos em sí, utilizando o PRM como exemplo de aplicação. Afim de enriquecer o estudo, introduz-se uma nova aplicação, o problema da mochila multiobjetivo. Em linhas gerais, esta pesquisa objetiva:

- □ Adotar de um novo problema suficientemente diferente do roteamento multicast a fim de melhor suportar os resultados até então obtidos para os algoritmos estudados e propostos. o novo problema introduzido por este trabalho é o Problema da Mochila Multiobjetivo (PMM) e, apesar de ter aplicações mais restritas, apresenta diferenças interessantes em sua formulação capazes de aprofundar a análise do comportamento dos vários algoritmos.
- ☐ Introduzir e estudar os resultados obtidos pelo hipervolume, uma métrica de desempenho de algoritmos multiobjetivos até então não explorada pelo grupo de pesquisa.
- ☐ Analisar em ambos PMM e PRM o comportamento de cada algoritmo em relação à complexidade do espaço de busca e ao número de objetivos.
- ☐ Propor um modelo para a construção de soluções em algoritmos baseados em colônias de formigas para ambos os problemas da mochila e do roteamento multicast.

1.2 Contribuições

Este trabalho contribui para os campos de busca e otimização multiobjetivo e comunicações em rede (através do problema do roteamento multicast). os principais resultados desta pesquisa são resumidos nos seguintes tópicos:

- □ O AEMMT foi proposto originalmente para sequenciamento de proteínas [] e em [] foi utilizado para resolver o problema do roteamento multicast (PRM). Neste trabalho exploramos uma terceira aplicação do algoritmo, aplicando-no sobre o problema da mochila objetivo.
- □ O AEMMD foi proposto e analisado em [] para resolver o PRM. Sua eficácia como algoritmo multiobjetivo separado do problema do roteamento ainda não havia sido

comprovada. Neste trabalho mostramos como é possível aplicar o AEMMD ao PMM e fazemos uma análise sobre os limites do algoritmo em relação ao tamanho do espaço de busca.

- Através da execução de vários algoritmos multi e many-objectives sobre 2 problemas diferentes em diversos níveis de complexidade, foi feita uma análise sobre o comportamento desses algoritmos à medida em que se aumenta o número de objetivos e a complexidade do espaço de busca, desta forma, possibilitando uma comparação profunda entre os principais algoritmos da literatura multi-objetivo.
- □ Neste trabalho propõe-se um algoritmo eficiente para a construção de soluções para o PRM a partir de uma tabela de feromônios, parte essencial de qualquer algoritmo embasado em colônia de formigas. A fim de propor tal estratégia, apresenta-se mais a frente no texto outros métodos e diversos testes que permitiram o desenvolvimento do algoritmo proposto.
- ☐ A principal contribuição desta dissertação está no novo algoritmo proposto Manyobjective Ant Colony Optimization with Decomposed Pheromones (MACO/D). Uma estratégia baseada em colônia de formigas e decomposição de objetivos para de forma rápida e eficiente resolver problemas com muitos objetivos. O novo método foi aplicado aos problemas PPM e PRM e comparado com os demais algoritmos.

1.3 Organização do texto

Este trabalho está dividido em capítulos divididos da seguinte forma:

- ☐ Capítulo 2: ...
- ☐ Capítulo 3: ...
- ☐ Capítulo 4: ...
- ☐ Capítulo 5: ...
- □ Capítulo 6:

Otimização bio-inspirada

Grande parte dos problemas de otimização envolvem encontrar a melhor opção num conjunto de possibilidades que cresce de maneira exponencial. Tais problemas são impossíveis de se resolver em tempo viável e necessitam de estratégias inteligentes para aproximar-se da solução ótima em tempo hábil. Dentre essas estratégias destacam-se os algoritmos gulosos [] e os algoritmos de busca bio-inspirados [].

Os algoritmos gulosos são algoritmos relativamente simples que, apesar de nem sempre obterem a solução ótima, normalmente aproximam-se bem dela [14]. Tais métodos são geralmente utilizados quando apenas um critério é envolvido na otimização, quando mais de um objetivo deve ser analisado, o problema se torna bem mais complexo e essa abordagem deixa de ser indicada.

A otimização bio-inspirada lança mão de estratégia baseadas na natureza para se encontrar boas soluções de forma eficiente. Assim como os algoritmos gulosos, não é possível garantir que se encontre exatamente a solução ótima, mas com uma boa modelagem do problema, é possível encontrar soluções suficientemente próximas. Na natureza, o processo de encontrar uma melhor solução aparece a todo momento, desde a forma como os primeiros animais surgiram, até a maneira como uma simples formiga encontra o caminho mais curto entre a colônia e uma fonte de comida. Ao observar processos comuns da natureza, estudiosos encontraram maneiras simples e eficientes de se resolver diversos problemas de otimização matemática [].

Os principais métodos bio-inspirados na literatura de otimização matemática são os algoritmos genéticos (AG), as colônias de formigas (ACO) e os enxames de partículas (PSO). Os algoritmos genéticos se inspiram na teoria da evolução de Darwin. Segundo [], cada indivíduo possui um material genético que é cruzado com os genes de outro representante da espécie para gerar um novo indivíduo, durante tal cruzamento ainda podem ocorrer mutações aleatórias que podem tanto gerar características benéficas quanto maléficas. O ambiente determina a parte da população que sobrevive e a parte que perece. Os indivíduos sobreviventes, ou seja, aqueles bem adaptados ao ambiente, possuem maiores chances de se reproduzir e espalhar suas boas características genéticas. Desta forma, o

processo de evolução das espécies nada mais faz do que gerar indivíduos e selecionar os melhores, repetindo o processo até que se obtenha indivíduos bem adaptados ao ambiente em questão.

Os ACOs são inspirados no comportamento das formigas, organismos simples que quando analisados em conjunto (colônia) apresentam comportamento complexo. O interesse nas formigas vem da observação de que ao buscarem por comida, acabam por encontrar o caminho mais rápido entre a fonte de alimento e o formigueiro. Como podem seres tão simples resolverem eficientemente um problema de otimização? Estudos revelaram que as formigas se baseiam no depósito de feromônios para se guiarem, quanto mais forte o feromônio em um caminho, maior a chance do mesmo ser tomado. Tal comportamento serviu de inspiração para os algoritmos de otimização bio-inspirados, dando origem ao ACO. Os PSOs, assim como os ACOs são inspirados no comportamento emergente de populações de animais simples. A otimização por enxame de partículas se inspira na navegação de pássaros, onde cada elemento da formação se guia através dos pássaros à frente. O algorítimo se baseia na direção e velocidade de cada elemento do enxame, determinando a exploração do espaço de busca através de operações vetoriais, portanto é uma estratégia indicada para problemas contínuos, que não é o caso dos problemas explorados nesta dissertação.

Em geral, todo algoritmo de otimização bio-inspirado inicia sua busca através da geração de soluções aleatórias e então entra em um laço, onde as melhores soluções guiam a construção de novas soluções que serão submetidas ao mesmo processo até que uma condição de parada seja atingida. Como não é necessário gerar todas as soluções possíveis, são métodos eficazes que, quando bem modelados, encontram um conjunto de boas soluções que resolvem o problema. Uma das principais diferenças entre os algoritmos bio-inspirados e as demais estratégias de otimização é o fato de que os primeiros produzem um conjunto de soluções aproximadas, o que oferece ao usuário uma gama de boas solução para que possa ele mesmo decidir qual utilizar.

2.1 Algoritmos Genéticos (AGs)

Os algoritmos genéticos são métodos de busca baseados na teoria da evolução de Charles Darwin [6]. A teoria de Darwin, hoje já endossada por diversas observações no campo da biologia, parte do princípio de que os organismos se adaptam ao ambiente em que vivem através de mutação, cruzamento e seleção natural. De maneira aleatória, um indivíduo em uma população pode ter alguma característica alterada, esse novo atributo pode ajudá-lo a sobreviver em seu habitat ou atrapalhá-lo. Os indivíduos com mutações favoráveis têm maiores chances de sobreviver e reproduzir, passando suas características benéficas para a geração seguinte. Dessa forma, ao longo de milhões de anos, organismos simples se tornam complexos e extremamente adaptados ao meio.

A ideia dos algoritmos genéticos é aplicar o mesmo conceito da evolução natural na computação, a ideia é partir de soluções aleatórias e após várias iterações de mutação, crossover e seleção encontrar um conjunto de soluções que resolvem bem o problema. Nesta ideia, o indivíduo na população representa uma solução, o meio representa o problema e as operações de mutação e crossover devem ser definidas, respectivamente, de forma a permitir uma alteração aleatória em uma solução e a combinação de duas soluções.

Em um algoritmo genético, primeiramente gera-se uma população inicial com indivíduos aleatórios e calcula-se a aptidão de cada um. No caso de um problema de otimização para uma função objetivo f, a aptidão de um indivíduo x é dada por f(x). Após esse processo de inicialização parte-se para a execução do laço do AG. O laço do AG consiste em:

- 1. Sortear os pares de pais;
- 2. Aplicar o crossover em cada par e gerar os filhos;
- 3. Aplicar a mutação aos filhos de acordo com uma taxa de mutação pré-estabelecida;
- 4. Avaliar os filhos;
- 5. Selecionar os melhores entre pais e filhos para formar a população da iteração seguinte (elitismo).

O laço do AG termina quando uma condição de término estabelecida pelo usuário é atingida, e.g., 100 iterações.

2.1.1 Representação do indivíduo

A principal dificuldade ao se elaborar um algoritmo genético é definir a representação do indivíduo, cada um representa uma possível solução para o problema e deve ser codificado em uma estrutura que permita a mutação e a troca de características com outro indivíduo (cruzamento). Na proposição original do AG [], o indivíduo é representado de forma binária, ou seja, a solução para o problema é codificada em bits, que podem facilmente ser invertidos (mutação) ou copiados de um elemento para outro (cruzamento).

No problema da mochila 0/1, por exemplo, existe um conjunto de itens I com pesos e valores e uma mochila com capacidade limitada. Deve-se descobrir qual a melhor forma de se arranjar os itens de maneira que o soma dos valores de cada um seja máxima e que a capacidade da mochila não seja excedida. Para representar uma solução deste problema em um AG, basta assumir um vetor binário de tamanho igual a |I|, onde diz-se que o item está na mochila se sua posição correspondente no vetor binário é 1 e não está, caso contrário.

Outras representações de indivíduos que não binárias também são possíveis, mas apresentam novos desafios. Em problemas de menores caminhos, por exemplo, normalmente

trabalha-se com grafos. Logo, um indivíduo é um grafo e tanto a mutação quanto o cruzamento deverão ser operações em grafos.

para elaborar a representação do indivíduo no AG, deve-se levar em consideração a facilidade de manipulação da estrutura, a possibilidade de se introduzir um fator aleatório (mutação) e, principalmente, a representação das características de ambos os pais nos filhos, se a estrutura não permite a herança de características, não é uma boa escolha para se utilizar num algoritmo genético. Além disso, é preciso se certificar que cada solução pode ser representada de uma única maneira e que cada indivíduo pode representar uma única solução (relação um-para-um).

2.1.2 Operadores Genéticos

Nos algoritmos genéticos destacam-se três operações principais: cruzamento (ou crossover), mutação e seleção. O cruzamento e a mutação estão diretamente ligados com a escolha da representação do indivíduo, enquanto a seleção opera sobre a avaliação (fitness) de cada elemento da população.

Num algoritmo genético, cada iteração do laço principal é chamada de de geração. No início de cada geração, sorteia-se pares de pais de acordo com suas aptidões para que seja gerada uma nova população de filhos. Cada par é composto de duas cadeias genéticas, uma correspondente a cada indivíduo do par. Para gerar o filho, cruza-se os dois materiais a fim de obter uma nova solução que compartilhe características de ambos genitores. Este processo é conhecido como cruzamento, ou crossover. Existem várias maneira de se cruzar cadeias genéticas, a escolha depende principalmente da estrutura de dados usada para representar um indivíduo. A estrutura mais comum e proposta no artigo original de Goldberg [] é a cadeia binária, onde uma solução é codificada em bits. Dispondo de uma sequência de bits, a forma mais trivial de se efetuar o crossover é gerando um novo array onde a primeira metade dos bits pertence a um pai e a segunda pertence a outro. Existem diversas formas de se combinar duas cadeias de bits, dentre elas pode-se destacar:

- \Box Ponto de cruzamento único: uma posição i de uma das cadeias é sorteada. O filho herda os i primeiros genes do pai 1 e restante do pai 2.
- Dois pontos de cruzamento: ao invés de se utilizar apenas um ponto para dividir o material genético, este método divide a cadeia binária em três partes. O filho herda a primeira parte do pai 1, a segunda parte do pai 2 e a terceira novamente do pai 1.
- ☐ Cruzamento uniforme: cada bit do filho é obtido de forma aleatória, pode vir tanto do pai 1 quanto do pai 2. Em termos de implementação, sorteia-se uma máscara binária e para cada bit 0 da máscara, copia-se o bit na mesma posição do pai 1 para o filho. Para cada bit 1, copia-se o bit do pai 2.

☐ Cruzamento aritmético: realiza-se uma operação binária entre a cadeia do pai 1 e do pai 2, e.g. AND, OR, XOR, etc.

Após gerar os materiais genéticos de cada filho, é preciso permitir que ocorra uma mutação, ou seja, uma mudança aleatória no material genético. A chance de uma mutação ocorrer depende de um parâmetro do AG chamado de "taxa de mutação". O processo de alteração genética aleatória em uma cadeia binária é simples, basta sortear um bit e invertê-lo.

O cruzamento normalmente gera um ou dois filhos para cada pai. Em todos os métodos descritos anteriormente é possível obter um segundo filho com o material genético não utilizado. Independente do número de filhos, o fato é que, após o processo de crossover, a população será maior que seu limite máximo e por esta razão deve-se eliminar parte dela. A seleção natural sem elitismo, simplesmente elimina a população mais velha (pais). A seleção natural com elitismo é normalmente mais interessante, pois permite a sobrevivência dos indivíduos mais aptos considerando a totalidade da população, sendo assim, avalia-se todos os pais e filhos e mantém-se aqueles com melhor aptidão. A aptidão de cada indivíduo é dada por seu desempenho relativo à função de otimização.

2.2 Colônia de formigas (ACO)

A otimização por colônia de formigas (ACO) é um modelo de busca bio-inspirado que parte da ideia de que estruturas simples, com alguma espécie de comunicação, podem gerar um comportamento complexo quando colocadas em conjunto. A inspiração do ACO é o forrageamento em uma colônia de formigas. Na natureza, observa-se que as formigas, mesmo sendo seres vivos simples, conseguem encontrar o melhor caminho entre o formigueiro e a fonte de comida. A partir do estudo desse comportamento, descobriu-se que tal faceta é possível através de uma comunicação indireta entre os animais. Ao fazer um caminho, as formigas depositam uma substância chamada feromônio, a qual pode ser sentida por outros membros da espécie. Uma formiga ao decidir qual caminho percorrer, tem maior chance de escolher aquele com a maior quantidade de feromônios. Além disso, a substância evapora com o tempo. Dessa forma, quanto menor o caminho, maior a frequência com a qual as formigas depositarão feromônio e, portanto, maior será a chance de ser escolhido, criando um ciclo vicioso.

Ao trazer o conceito de colônia de formigas para a computação, observa-se um grande potencial para se resolver problemas em grafo. Por exemplo, para descobrir o caminho de um vértice A a um vértice B que visita o menor número de vértices em um grafo G sem pesos, bastaria simular várias formigas que partem de A e chegam em B fazendo um caminho baseado na quantidade de feromônios em cada aresta. Ao final de cada iteração, atualiza-se o valor do feromônio em cada aresta de acordo com a evaporação e com as arestas que foram de fato escolhidas pelas formigas. Dessa forma, espera-se que, após

várias iterações, a quantidade de feromônios sejam suficientes para guiar uma formiga pelo melhor caminho entre A e B.

O primeiro passo de um ACO é inicializar as arestas do grafo com quantidade zero de feromônios. O passo seguinte é o laço principal, onde a cada iteração cada formiga na colônia percorre o caminho do vértice de partida (formigueiro) ao nó destino (fonte de comida). Dependendo da formulação do problema, o caminho de volta também pode ser realizado. Ao final de cada iteração atualiza-se os feromônios em cada aresta. O laço termina quando uma condição de parada pré-determinada é atingida, normalmente um número máximo de iterações.

2.2.1 Representação da solução

No ACO, a solução é representada pelo caminho feito pela formiga no grafo, normalmente uma lista de vértices, uma árvore ou um subgrafo do grafo de entrada. No caso onde o problema é encontrar o menor caminho, o indivíduo pode ser uma lista de vértices. Caso deseja-se encontrar caminhos entre a raiz e diversos destinos, pode-se representar a solução como uma árvore. Nem sempre é claro decidir a codificação da solução, como, por exemplo, no problema da mochila, onde não é trivial a visualização de um grafo no processo da construção da solução.

2.2.2 Construção da solução

Independente da representação escolhida, deve-se ser possível relacionar cada partícula da solução a um depósito de feromônio na estrutura principal. Por exemplo, no caso de grafos, as arestas escolhidas para montar a solução devem ter seus feromônios incrementados a fim de guiar a próxima geração de formigas. Em cada época (iteração do laço principal) constrói-se um número pré-determinado de soluções, onde cada formiga, a partir dos valores de feromônios, decide as partículas que vão compor sua solução. De forma geral, dado um grafo G e um nó inicial, o processo de construção da solução sempre verifica todos os movimentos possíveis para a formiga, tomando sua decisão de acordo com os feromônios e as heurísticas de cada uma das possibilidades.

Além dos feromônios, as formigas ainda utilizam as informações de heurística para decidir o próximo passo. Uma heurística é uma função que estima a qualidade do caminho e normalmente representa o peso de uma aresta. Estando em um vértice i de um grafo G, uma formiga tem probabilidade p(i,j) de escolher a aresta que leva ao vértice j.

$$p(i,j) = \frac{\tau_{i,j}^{\alpha} * \eta_{i,j}^{\beta}}{\sum_{v \in vizinhança(i)} \tau_{i,v}^{\alpha} * \eta_{i,v}^{\beta}}$$

Onde:

- $\Box \tau_{i,j}^{\alpha}$: feromônio na aresta (i,j) elevado à constante pré-determinada α . α representa a importância que deve ser dada ao valor do feromônio.
- \square $\eta_{i,j}^{\beta}$: heurística da aresta (i,j) elevada à constante pré-determinada β . β representa a importância que deve ser dada à heurística. A heurística de uma aresta é dada em função do peso, normalmente 1/peso.
- \square vizinhança(i): todo vértice em G para o qual é possível construir um caminho para i com apenas uma aresta.

2.2.3 Atualização dos feromônios

Existem duas ocasiões onde o feromônio das arestas pode ser atualizado: no momento em que a formiga passa pela aresta e no fim de cada iteração. A maioria das implementações considera apenas o segundo caso, pois assim é possível que se avalie as soluções e que se incremente o feromônio de acordo com os desempenhos. Ao fim de cada época, utiliza-se a seguinte fórmula para atualizar a estrutura de feromônios τ :

$$\tau_{i,j} = (1 - \rho) * \tau_{i,j} + \sum_{k \in formigas} \Delta \tau_{i,j}(k)$$

Onde:

- \Box ρ : coeficiente de evaporação. Determina o quão rápido o feromônio deve desaparecer das arestas após depositado.
- ☐ formigas: conjunto de todas as formigas na iteração.
- \square $\Delta \tau_{i,j}(k)$: quantidade de feromônio depositada pela formiga k na aresta i,j.

A quantidade de feromônio depositada por uma formiga k em uma aresta i, j é dada por:

$$\Delta \tau_{i,j}(k) = \begin{cases} \frac{Q}{L_k}, & \text{if } x \ge 1\\ 0, & \text{otherwise} \end{cases}$$

Onde:

- \square Q: Quantidade máxima de feromônio que pode ser depositada por uma formiga.
- \square L_k : Custo da solução gerada pela formiga k.

O ACO é normalmente utilizado para encontrar o menor caminho ou árvore de menor custo em um grafo. A esperança é que após várias gerações, as formigas percorram sempre o melhor caminho possível.

Otimização multiobjetivo

A otimização multiobjetivo consiste em selecionar as melhores soluções de acordo com múltiplos critérios ao invés de apenas um. Por exemplo, ao estabelecer um melhor caminho entre duas cidades pode-se não estar interessado apenas na menor distância, mas também no tráfego, segurança das vias, quantidade de pedágios, etc. A otimização de apenas um objetivo é simples, para que uma solução seja considerada melhor que a outra, basta que ela tenha uma melhor avaliação. Por outro lado, quando se trabalha com mais de uma função de otimização, é preciso usar o conceito de dominância de Pareto.

A dominância de Pareto diz que uma solução A é melhor que uma solução B, ou A domina B ($A \prec B$), se, e somente se:

- \square A é melhor avaliado que B em pelo menos um dos objetivos;
- \square A não tem avaliação pior que B em nenhum dos objetivos.

Considerando um problema de minimização e ${\cal F}$ como o conjunto de funções objetivo, tem-se, matematicamente:

$$A \prec B \Leftrightarrow (\forall (f \in F) f(A) < f(B)) \land (\exists (f \in F) f(A) < f(B))$$

Em problemas de otimização multiobjetivo, o interesse está em encontrar o conjunto de todas as soluções que não são dominadas por nenhuma outra, ou seja, a fronteira de Pareto. Graficamente, a fronteira de Pareto representa a linha formada pelas soluções não-dominadas existentes para o problema. Na figura 3 apresenta-se um exemplo de uma fronteira de Pareto para um problema de minimização com dois objetivos (F1 e F2), a fronteira de Pareto está representada em vermelho. Observe que nenhum círculo vermelho possui ambos F1 e F2 menores que alguma outra solução em vermelho, ou seja, são não-dominadas. Em contra-partida, toda solução acima da fronteira, em cinza, é dominada, pois existe alguma solução em vermelho que possui ambos valores de F1 e F2 menores. Caso o problema em questão fosse de maximização, a fronteira de Pareto estaria acima de qualquer solução não-dominada ao invés de abaixo.

Figura 1 – Fronteira de Pareto

Não existe limite para o número de funções objetivo em um problema de otimização, mas quanto maior ele for, mais complexa é a busca. Os algoritmos clássicos de otimização multiobjetivo NSGA-II e SPEA2 lidam bem com até dois objetivos, mas a partir de quatro critério de otimização, ambos os métodos sofrem para encontrar soluções relevantes. Desta forma, criou-se a classificação "many-objective". Problemas many-objectives (4 ou mais objetivos) apresentam diversas novas dificuldades e precisam de novas técnicas para que sejam resolvidos eficientemente. Como observado por Deb em [nsga3], os problemas trazidos pelo alto número de objetivos são:

- 1. Grande parte da população é não dominada: a maioria dos algoritmos multiobjetivos classifica a população de acordo com a dominação de Pareto. Se existem muitas funções objetivo, se torna muito comum que uma solução seja melhor que outra em pelo menos uma das funções. Desta forma, a maior parte das soluções se torna não-dominada, o que impede os algoritmos de evoluírem a população, já que todos os indivíduos são considerados igualmente bons.
- 2. Avaliar a diversidade da população se torna computacionalmente caro: afim de garantir uma boa diversidade populacional, alguns algoritmos medem alguma espécie de distância entre as soluções e removem as que são consideradas mais similares. A maior dimensionalidade traz consequentemente um maior impacto no cálculo da proximidade entre os indivíduos.
- 3. Crossover ineficiente: a alta dimensionalidade do espaço de busca faz com que os indivíduos na população sejam muito distante uns dos outros e, normalmente, o cruzamento entre duas soluções muito diferentes resultam num filho muito distante dos pais, o que prejudica a convergência da busca. Portanto, pode ser necessário redefinir os operadores de recombinação afim de restringir as possibilidades de pareamento.

- 4. População demasiadamente grande: quanto maior o número de objetivos, maior o número de soluções na fronteira de Pareto, portanto, para obter-se bons resultados, é necessário que se manipule grandes populações de indivíduos, o que é computacionalmente caro e dificulta o trabalho do usuário que deverá escolher uma única solução ao final do processo.
- 5. Métricas de avaliação se tornam difíceis de se calcular: a avaliação das soluções está diretamente relacionada ao número de objetivos, quanto maior ele for, maior será o esforço computacional necessário. A complexidade do hiper-volume, por exemplo, cresce exponencialmente com o número de objetivos.
- 6. Dificuldade de visualização: é fácil representar graficamente as soluções e a fronteira de Pareto em problemas de até três objetivos. Com 4 funções em diante, se torna difícil tal visualização.

A maior parte dos algoritmos many-objectives (todos mencionados neste trabalho) lidam apenas com os três primeiros problemas. Sobre a quarta dificuldade fazemos um breve estudo mais adiante [citar seção] e as duas últimas não são responsabilidade dos algoritmos de otimização em sí.

3.1 Algoritmos Multiobjetivo

3.1.1 Non-dominated Sorting Genetic Algorithm II (NSGA-II)

O NSGA-II [] é o algoritmo evolutivo multiobjetivo (AEMO) mais frequente na literatura. A atribuição de aptidão (fitness) se dá pela classificação da população em rankings de dominância (fronteiras), de forma que o primeiro contenha todas as soluções não dominadas, o segundo todos os indivíduos não-dominados excluindo a primeira fronteira, e assim por diante. Quanto melhor o ranking de uma solução, melhor sua aptidão e maior sua chance de sobreviver para a próxima geração. Várias soluções, pertencem à mesma fronteira, a fim de diferenciá-las utiliza-se um cálculo de distância (crowding distance), o qual confere melhor avaliação às soluções mais diferenciadas umas das outras, garantindo assim a diversidade da população.

O processo do NSGA-II é semelhante ao do algoritmo genético comum, com diferença no cálculo de aptidão, que é feito por ranks, e no cálculo de distâncias, que é inexistente na proposta original do AG. O primeiro passo continua sendo a geração aleatória dos indivíduos, em seguida classifica-se a população em ranks de dominância e inicia-se o laço principal, o qual termina assim que a condição de parada é atingida. O laço principal do NSGA-II é dado pelo pseudo-código do algoritmo 1.

A seleção de pais utiliza torneio simples para sorteá-los, ou seja, dois elementos da população são escolhidos de forma aleatória, o indivíduo com melhor avaliação é selecio-

Algoritmo 1 Laço principal do NSGA-II

- 0: while número máximo de gerações não for atingido do
- 0: selecione os pares de pais para o crossover
- 0: efetue o cruzamento para cada par de pais, gerando os filhos
- 0: combine a população de pais com a população de filhos
- 0: classifique todas as soluções em fronteiras (ranks) de dominância
- 0: calcule a crowding distance para cada uma das soluções
- 0: aplique a seleção natural sobre a totalidade da população, preservando os indivíduos de melhor rank e, em segundo lugar, crowding distance.
- 0: end while=0

nado como um dos pais, sorteia-se mais dois indivíduos, e o melhor dentre eles se torna o segundo pai.

Na linha 2 do pseudo-código, através dos pares de pais, gera-se os filhos através do crossover e da mutação. Após a geração dos filhos, a população corrente e o conjunto de filhos são concatenados (linha 3) e submetidos à classificação em ranks de dominância (linha 4).

A classificação em ranks de dominância recebe um conjunto de soluções e verifica quais dentre elas não são dominadas. O conjunto de soluções não dominadas forma o primeiro rank de dominância. Do conjunto restante (excluindo o primeiro rank), retira-se as soluções não dominadas para formar o segundo rank. Esse processo se repete até que todos os indivíduos tenham sido classificados.

Após toda a população ter sido classificada em ranks, antes de selecionar os indivíduos que vão compor a população na próxima iteração, deve-se calcular a distância de aglomeração (crowding distance) para cada indivíduo em cada rank de dominância. O cálculo de distância, para cada objetivo, ordena o conjunto de soluções e faz uma relação entre as distâncias de cada indivíduo para os vizinhos imediatamente anterior e posterior. Soma-se as distâncias obtidas em cada objetivo para cada solução e define-se aquelas com maior valor de distância como as mais diferentes entre sí.

Com toda a população classificada em ranks e todas as distâncias calculadas, basta formar a nova população com os melhores indivíduos. Para isso, analisa-se fronteira a fronteira, da melhor para a pior, até que o tamanho máximo da população seja atingido. Para cada fronteira aplica-se o seguinte processo de decisão:

Se $tamanho(rank) + tamanho(nova_população) < tam_max_pop$: adiciona-se todos os
membros do rank à nova população.
Caso contrário, se $tamanho(nova_popula$ ção) $< tam_max_pop$: adiciona-se à nova população os $tam_max_pop-tamanho(nova_popula$ ção) elementos do rank com os maiores valores de distância. Termine o processo, a nova população está formada.
Caso contrário, termine o processo, a nova população está formada.

Desta forma, ao final do algoritmo obtém-se a fronteira de Pareto aproximada no primeiro rank da população gerada na última iteração do algoritmo.

3.1.2 Strength Pareto evolutionary algorithm 2 (SPEA2)

O SPEA2 é um AEMO que calcula, para cada membro da população, sua força (strength) e densidade. A força de uma solução é dada pelo número de indivíduos que ela domina, enquanto a densidade é uma medida de distância para os vizinhos mais próximos, quanto maior a densidade mais próximo o indivíduo está das demais soluções. A aptidão (fitness) de uma solução é definida por sua densidade mais a soma das forças de todo indivíduo que a domina. As principais diferenças entre o SPEA2 e um AG comum estão no cálculo de aptidão e na utilização de uma população extra: o arquivo.

O arquivo é responsável por guardar as melhores soluções já encontradas até o momento, funciona como uma espécie de elitismo. Os pais, no cruzamento, são sempre escolhidos do arquivo e os filhos substituem 100% da população corrente. A cada iteração, os melhores indivíduos entre a população e o arquivo compõe o arquivo da geração seguinte. A quantidade de indivíduos no repositório de soluções não-dominadas é limitada e, portanto, quando se excede o tamanho máximo, deve-se executar um processo de truncamento.

O processo de truncamento do arquivo ocorre na seleção natural, a última função executada na iteração do laço principal de um AG. A seleção no SPEA2 se dá pelo cálculo do arquivo da próxima geração: ambas as populações da iteração corrente (população e arquivo) são submetidas à seleção, extrai-se do conjunto total de soluções aquelas que não são dominadas por nenhuma outra e com esse subconjunto (n_d) constrói-se o novo arquivo através do seguinte processo de decisão:

- \square Se $tamanho(n_d) = capacidade_arquivo$, o novo arquivo é formado por n_d ;
- \square Caso contrário, se $tamanho(n_d) < capacidade_arquivo$, o novo arquivo é formado pela união de n_d com os $capacidade_arquivo tamanho(n_d)$ indivíduos restantes com melhor aptidão;
- \square Caso contrário, se $tamanho(n_d) > capacidade_arquivo$, o novo arquivo é formado por n_d e deve-se truncá-lo em $tamanho(n_d) capacidade_arquivo$ passos, onde em cada passo elimina-se o indivíduo com menor variabilidade genética em relação aos demais.

Os indivíduos mais aptos no SPEA2 são aqueles dominados pela menor quantidade de soluções e que possuem maior variabilidade genética. O algoritmo calcula a aptidão em três etapas: cálculo de força (strength), do raw fitness e densidade.

A força de um indivíduo i (s(i)) é o número de soluções que ele domina, ou seja, considerando E o arquivo e P a população:

$$s(i) = |j| : j \in P \cup E \land i \prec j$$

Tendo calculado a força de cada indivíduo, parte-se para o raw fitness. O raw fitness de um indivíduo i (r(i)) é dado pela soma das forças de cada elemento que o domina. Veja a fórmula a seguir:

$$r(i) = \sum_{j \in E \cup P | j \prec i} s(j)$$

Observe que, caso o indivíduo seja não-dominado, seu raw fitness será o menor possível: zero. Após determinar o raw fitness, para finalizar o cálculo de aptidão deve-se descobrir a densidade de cada indivíduo (d(i)). A densidade é computada de acordo com a distância da solução para seus vizinhos e é dada pela seguinte fórmula:

$$d(i) = \frac{1}{\sigma_i^k + 2}$$

Na fórmula acima, σ_i^k é a k-ésima menor distância entre o indivíduo i e o restante da população. k é a raiz quadrada do tamanho do conjunto de soluções em avaliação, i.e. $k = \sqrt{|P \cup E|}$. O valor de d(i) sempre está no intervalo (0,1). Referencia-se o leitor ao artigo original do SPEA2 [] para mais detalhes sobre o cálculo de densidade.

Finalmente, a aptidão do indivíduo (f(i)) é dada pela soma do raw fitness e a densidade: f(i) = r(i) + d(i). Como, $\forall i, d(i) < 1$ e, $\forall i, r(i) = 0$ se a solução é não-dominada, f(i) < 1 sempre que i é não-dominado.

O laço principal do SPEA2 é explicitado no pseudo-código 2 e como resposta para o problema, retorna-se o arquivo da última geração computada. Espera-se que, após as diversas iterações, o algoritmo tenha conseguido uma boa aproximação da fronteira de Pareto.

Algoritmo 2 Laço principal do SPEA2

- 0: while número máximo de gerações não for atingido do
- 0: a partir do arquivo, selecione os pares de pais para o crossover
- 0: efetue o cruzamento para cada par de pais, gerando os filhos
- 0: substitua a população corrente pelos filhos
- 0: calcule o fitness de todos indivíduos no arquivo e na população
- 0: aplique a seleção natural e trunque o arquivo, caso necessário
- 0: **end while**=0

3.2 Algoritmos Many-objectives

3.2.1 Multiobjective evolutionary algorithm based on decomposition (MOEA/D)

O MOEA/D é um algoritmo que avalia os objetivos através de uma função escalarizadora, se baseando na dominância de Pareto apenas para atualizar o conjunto de soluções não dominadas geradas em cada iteração (arquivo). No MOEA/D, um problema multiobjetivo é decomposto em múltiplos problemas mono-objetivos chamados de células. Cada célula é definida por um vetor de pesos gerado aleatoriamente e representa um indivíduo, ou seja, o número de células é igual ao tamanho da população. Além dos pesos, a célula, ou indivíduo, é composta de uma solução e uma vizinhança. A vizinhança é formada pelos k indivíduos mais próximos de acordo com o vetor de pesos, onde k é um parâmetro do algoritmo que representa o tamanho das vizinhanças. A aptidão (fitness) de uma solução é calculada de acordo com sua avaliação em cada objetivo, a função escalarizadora, e o vetor de pesos da célula. Em toda geração, uma nova solução é gerada para cada célula, onde a vizinhança é levada em consideração para a escolha do pai e seleção natural.

O primeiro passo do MOEA/D é gerar a estrutura de células e vizinhanças, para isso, sorteia-se os vetores de pesos (a soma de cada vetor deve ser igual a um) e para cada um deles, calcula-se os k vetores mais próximos (vizinhança). Essa estrutura é imutável e é utilizada no decorrer de todo o algoritmo. A geração dos vetores de pesos pode ser tanto aleatória quanto seguir uma distribuição pré-definida. Antes de começar o laço principal, gera-se aleatoriamente uma solução para cada célula e calcula-se as aptidões.

Uma parte fundamental do MOEA/D é a escolha da função escalarizadora, ela é a principal responsável pelo cálculo de aptidão. Em todos experimentos realizados neste trabalho, foi utilizada a soma ponderada, mas outras estratégia como *Penalty-Based Boundary Intersection* e Tchebycheff também podem ser utilizadas [moead]. A aptidão de uma solução é calculada através da função escalarizadora e do vetor de pesos, por exemplo, se os valores [2,9,5] representam a solução s no espaço de objetivos, [0.3,0.2,0.5] é o vetor de pesos da célula c, e a soma ponderada é a função escalarizadora, então a aptidão de s em c é dada por 2*0.3+9*0.2+5*0.5=4.9.

No laço principal do MOEA/D, seleciona-se os pais e gera-se os filhos. Para cada célula c_i , dois pais são selecionados aleatoriamente em sua vizinhança. Sempre que um filho é gerado, o processo de seleção é realizado logo em seguida. A aptidão do filho é calculada para cada uma das células na vizinhança de c_i , substituindo a solução anterior da célula caso seu fitness seja melhor. Após o processo de geração de filhos e seleção, atualiza-se o arquivo com as soluções novas soluções não-dominadas.

3.2.2 Non-dominated Sorting Genetic Algorithm III (NSGA-III)

O NSGA-III é uma extensão do NSGA-II que permite o framework funcionar melhor para mais de três objetivos. Ele se diferencia do original apenas na fase de seleção, onde ao invés de usar a distância de aglomeração para diferenciar soluções em uma mesma fronteira, utiliza um método de clusterização, onde os indivíduos são divididos em nichos de acordo com suas similaridades. O NSGA-III é caracterizado pelo processo de atribuição de nicho chamado de classificação não-dominada baseada em pontos de referência. Sua ideia é traçar uma figura geométrica de uma dimensão a menos que o número de objetivos nos pontos extremos da primeira fronteira. Um número pré-definido de pontos de referência equidistantes é distribuído sobre a figura e passa a representar cada um, um nicho. Para classificar uma solução, define-se como nicho o ponto de referência mais próximo. Ao final, toma-se como sobreviventes os pontos nas regiões menos lotadas do espaço de busca. Para mais detalhes sobre o processo de clusterização, referencia-se o leitor ao artigo original [NSGA-III].

3.2.3 Algoritmo Evolutivo Multiobjetivo com Muitas Tabelas (AEMMT)

O AEMMT, assim como o MOEA/D, decompõe o problema multiobjetivo em subproblemas menores e para isso utiliza um esquema de tabelas, onde cada tabela representa uma combinação diferente de objetivos. A função que transforma os múltiplos objetivos em um valor escalar é sempre a média e cada tabela mantém os melhores indivíduos considerando a média dos objetivos que representa. A cada geração, duas tabelas são selecionadas para o cruzamento. Dois pais, um de cada tabela, são sorteados aleatoriamente para gerarem um único filho, que será testado em todas as tabelas, entrando naquelas em que representar uma melhor aptidão em relação aos demais indivíduos. Naturalmente, como um único crossover é realizado a cada iteração, o AEMMT precisa de mais gerações para efetuar o mesmo número de comparações que os algoritmos citados nas seções anteriores.

A quantidade de tabelas é determinada pelo número de combinações possíveis de objetivos. Para quatro objetivos (f_1, f_2, f_3, f_4) , por exemplo, como ilustrado na figura 3.2.3 serão criadas 15 tabelas de combinações mais uma tabela extra, usada para guardar os indivíduos não-dominados.

Cada tabela possui um limite máximo de indivíduos e no início do algoritmo gera-se soluções aleatórias de forma que todas as tabelas sejam completamente preenchidas. No laço principal, um indivíduo só entra em uma tabela t se for melhor que a pior solução na população de t. Com relação a tabela de dominância, sempre que um filho é gerado e não-dominado por nenhum outro indivíduo na tabela, ele é incluído. A restrição no

 f_1 f_2 f_3 f4 1 a 1 f_1,f_2 f_1,f_3 f_1,f_4 f_2, f_3 f_2, f_4 f_3, f_4 2 a 2 f_1, f_2, f_3 f_1, f_3, f_4 f_2, f_3, f_4 f_1, f_2, f_4 3 a 3 f_1, f_2, f_3, f_4 4 a 4 Não-dominância Tabela extra

Figura 2 – Tabelas do AEMMT

tamanho da tabela de dominância é independente das demais e sempre que o limite for atingido, é feito um truncamento priorizando a permanência das soluções com maior valor de média aritmética entre todos os objetivos.

O primeiro passo do AEMMT é gerar as tabelas e preenchê-las com soluções aleatórias. Em seguida, inicia-se o laço principal, onde em cada iteração são escolhidas duas tabelas vai torneio duplo de acordo com suas pontuações. A pontuação tem valor inicial zero e sempre que uma tabela gera um filho que sobrevive para a geração seguinte, sua pontuação é incrementada. As pontuações são zeradas a cada 100 gerações. Considerando as duas tabelas que vencem os torneios, sorteia-se um indivíduo de cada e efetua-se o cruzamento entre os dois. O filho gerado é então comparado tabela à tabela, entrando naquelas em que representar uma melhoria. Após a execução de todas as gerações, espera-se que a população da tabela extra de não-dominância tenha convergido para a fronteira de Pareto.

3.2.4 Algoritmo Evolutivo Multiobjetivo com Múltiplas Dominâncias (AEMMD)

O AEMMD é uma modificação do AEMMT que, apesar de usar o mesmo processo de divisão do problema multi-objetivo, abandona a ideia de escalarização e volta a utilizar o conceito de dominância dos métodos mais antigos (e.g. NSGA-II e SPEA2). No AEMMD, ao invés de se utilizar a média dos objetivos da tabela para avaliar o indivíduo, lança-se

Figura 3 – Tabelas do AEMMD

mão da relação de dominância de Pareto, um indivíduo novo s só entra na tabela t, se s não for dominado por nenhuma solução em t considerando apenas os objetivos de t. Além disso, se s entra em t, todas as soluções em t dominadas por s são removidas.

O primeiro passo do AEMMD é gerar o conjunto de tabelas, que é composto por todas as combinações de objetivos possíveis a partir de dois a dois. Combinações de um único objetivo não são criadas, pois o conceito de dominância é válido apenas para a partir de dois valores. Diferentemente do AEMMT, as tabelas não possuem limite de tamanho e podem crescer indefinidamente. Para um problema de quatro objetivos (f_1, f_2, f_3, f_4) , por exemplo, 11 tabelas seriam geradas, veja a figura 3.2.4.

Com as tabelas criadas, gera-se um número pré-definido de soluções aleatórias, distribuindonas pelas tabelas de acordo com a relação de dominância de Pareto. O próximo passo é o laço principal, onde a cada iteração, através de um torneio duplo, sorteia-se duas tabelas de acordo com suas pontuações. A pontuação das tabelas no AEMMD é diferente do AEMMT, ao invés de conceder um ponto sempre que se gera um indivíduo sobrevivente, pontua-se quando uma tabela recebe um indivíduo. Tendo escolhido as duas populações pais, sorteia-se um representante de cada e gera-se um único filho, o qual é comparado tabela à tabela e entra naquelas onde representa uma solução não dominada. Outra diferença em relação ao método original, é que o AEMMD não reinicia as pontuações em momento algum do algoritmo. Espera-se que ao final das gerações, a população da tabela principal, com todos os objetivos, tenha convergido para a fronteira de Pareto.

3.3 Algoritmos many-objectives baseados em colônias de formigas

A maior parte dos métodos de busca multiobjetivo são baseados em algoritmos genéticos, mas uma boa alternativa pouco explorada é a inteligência coletiva, representada

por estratégias como as colônias de formigas (ACOs) e enxame de partículas (PSOs). Neste trabalho, devido ao fato de explorar-se dois problemas discretos (problema da mochila multiobjetivo e problema do roteamento multicast), optou-se por utilizar as colônias de formigas, que foram desenvolvidas especialmente para lidar com esse tipo de problema. Como explicado em [secao formigas], ao invés de utilizar emos operado resgenéticos para gerar eme evolus seo MOACS, ...

3.3.1 Multi-Objective Ant Colony Optimization Algorithm (MO-ACS)

O MOACS foi proposto pela primeira vez em [Baran 2003] para o problema de roteamento de veículos com janelas de tempo e posteriormente foi aplicado no problema do roteamento multicast [Baran 2005]. A última versão do algoritmo foi proposta em [Baran 2016] e essa é a variação utilizada neste trabalho. O MOACS é uma adaptação do ACO original que torna possível a otimização de múltiplos objetivos utilizando uma única estrutura de feromônios, múltiplas heurísticas e um arquivo de soluções não dominadas. Veja o código do algoritmo 3.

Algoritmo 3 Algoritmo MOACS

```
0: Inicialize a estrutura de feromônios \tau_{ij} com \tau_0 /* \tau_0 é o valor inicial */
```

- 0: Crie um conjunto vazio de soluções não-dominadas ND
- 0: while Número máximo de iterações não for atingido do
- 0: $\mathbf{for}\ i = 0\ at\'em \ i = tamanho_população\ \mathbf{do}$
- 0: Sorteie valores no intervalo $[0, w_{max}[$ para formar um vetor de pesos W com |H| posições
- 0: Construa uma solução de acordo com a tabela de feromônios τ_{ij} , as heurísticas (H) e os pesos W
- 0: Atualize ND com a nova solução
- 0: end for
- 0: **if** ND foi modificado **then**
- 0: Reinicie a estrutura de feromônios fazendo $\tau_{ij} = \tau_0 \forall (i,j)$
- 0: **else**
- 0: Atualize a estrutura de feromônios com todas as soluções em ND
- 0: end if
- 0: end while
- 0: return ND = 0

O processo de construção da solução depende do problema e, no MOACS, os principais componentes para o processo são:

 \Box Feromônios (τ_{ij}): estrutura que guarda a quantidade de feromônios em cada partícula que pode formar a solução. No caso de problemas em grafos, representa a quantidade da substância em cada uma das arestas;

- Heurísticas (H): conjunto de funções que estimam a qualidade de uma dada partícula que pode formar a solução. No caso de problemas em grafos, representa os vários pesos em uma aresta. Por exemplo, num grafo que representa uma rede de computadores com informações de custo, distância e tráfego, H poderia ser formado de três funções que recebem uma aresta (i,j) e devolvem, respectivamente, os valores de peso, distância e tráfego na aresta.
- Peso máximo de uma heurística (w_{max}) : representa o valor máximo que o peso de uma heurística pode atingir. Em [Baran 2016], propõe-se $w_{max} = 3$, de forma que cada função possa ser classificada como 0 (não importante), 1 (importante), 2 (muito importante).
- Uteor de pesos (W): O vetor de pesos atribui a importância de cada heurística e é gerado aleatoriamente em cada iteração. Cada função de heurística recebe um peso variando no intervalo $[0, w_{max}]$.

Ao construir uma solução, utiliza-se o mesmo processo de decisão do ACO original, explicado na seção [secao aco]. A única diferença é que as múltiplas heurísticas do MOACS (H) deve ser unificada em uma única função h(x), para isso utiliza-se o vetor de pesos W para se aplicar uma média ponderada. Veja a equação a seguir:

$$h(x) = \frac{\sum_{i \leftarrow 0}^{size(H)} H_i(x) * W_i}{\sum_{v \in W} w}$$

Em cada época (iteração do laço principal), atualiza-se o arquivo de soluções não dominadas com as novas soluções geradas. Se o arquivo foi atualizado após criar-se todas as soluções, reinicia-se as informações de feromônio, redefinindo todos os valores na estrutura τ_{ij} para o valor inicial de feromônio τ_0 . Caso o arquivo tenha se mantido estável, ou seja, nenhuma das novas soluções seja não-dominada, atualiza-se as quantidades de feromônio na estrutura de acordo com as soluções no arquivo.

Considerando um problema em grafos, para atualizar a estrutura τ_{ij} com uma solução s, faz-se:

$$\tau_{ij} = (1 - \rho) * \tau_{ij} + \rho * \Delta \tau(s) \forall (i, j) \in s$$

Onde:

- \square ρ : coeficiente de evaporação;
- $\ \ \square \ \Delta \tau(s)$: Quantidade de feromônios depositados pela solução s.

A quantidade de feromônio depositado pela solução s ($\Delta \tau(s)$) é definida por:

$$\Delta \tau(s) = \frac{1}{performance(s)}$$

Na fórmula anterior, performance(s), é dado pela soma dos valores de s no espaço de objetivos. Neste caso, considera-se um problema de minimização, para problemas de maximização, basta inverter a equação. Se os objetivos são reduzir o custo, o tráfego e o delay de uma rede, por exemplo, performance(s) = custo(s) + trafego(s) + delay(s).

Após todas as iterações do laço principal, espera-se obter no arquivo uma boa aproximação da fronteira de Pareto.

Problemas de teste

São vários os problemas em que se pode aplicar os algoritmos multiobjetivos e pode-se dividi-los em duas categorias: contínuos ou discretos. O comportamento e até a própria possibilidade de se aplicar o algoritmo depende dessa classificação. A fim de testar os métodos multiobjetivos, normalmente se utiliza problemas de teste, dentre os contínuos, destacam-se: SCH [], FON [], POL [], KUT [] e ZDT []. Os problemas contínuos são funções contínuas e não necessariamente representam um problema real. Os problemas discretos, por outro lado, possuem um enunciado bem definido e nem todas as soluções possíveis são válidas, ou seja, existem buracos no contradomínio das funções. Exemplos de problemas discretos comummente usados na literatura multiobjetivo são: cacheiro viajante, roteamento de veículos com janelas de tempo, problema da mochila, sequenciamento de proteínas e problemas de roteamento em redes. Neste trabalho focou-se em dois problemas discretos: o problema da mochila multiobjetivo (PMM) e o problema do roteamento multicast (PRM).

4.1 Problema da mochila multiobjetivo

O problema da mochila (PM) é um problema teórico muito conhecido na computação e geralmente utilizado para se introduzir o conceito de otimização. Apesar disso, existem problemas reais equivalentes que podem ser resolvidos com as mesmas técnicas, como o escalonamento de tarefas em um sistema operacional.

O problema da mochila consiste em arranjar um conjunto de itens em uma mochila de forma a não exceder a capacidade da mesma e ao mesmo tempo maximizar o valor (lucro) dos objetos carregados. Matematicamente, dado uma mochila de capacidade C e um conjunto de itens O, onde cada $O_i \in O$ possui um peso $peso(O_i)$ e um lucro $lucro(O_i)$, encontrar o conjunto $S \subset O$, tal que $\sum_{o \in S} peso(o) <= C$ e $\sum_{o \in S} lucro(o)$ seja o maior possível.

Existem diversas estratégias para se resolver o problema da mochila, dentre elas as mais usadas são algoritmos gulosos e algoritmos genéticos. Uma coletânea de algoritmos gulosos

para o PM são explicados, implementados e analisados em [Bracis 15]. Em [Bracis 21], um AG é proposto e se demonstra o potencial da estratégia para a resolução de problemas de otimização NP-completos com restrições. Apesar de existirem múltiplas estratégias, para se resolver o problema, os algoritmos gulosos são os mais rápidos e eficientes para resolver o PM mono-objetivo, em contra-partida, a complexidade adicionada pela versão multiobjetivo do problema inviabiliza a utilização dos mesmos, tornando os AG's e demais métodos bio-inspirados as melhores opções.

O problema da mochila multiobjetivo (PMM) é similar ao original, sua única diferença está no fato de que cada item, ao invés de possuir um único valor (lucro), é composto de múltiplos valores. No PMM, a função $lucro(O_i)$ retorna um vetor ao invés de um escalar, onde cada componente representa o valor do item O_i em um dos objetivos. Por exemplo, no PMM de 3 objetivos, cada $O_i \in O$ possui um vetor tri-dimensional de lucros. O objetivo do problema passa a ser maximizar todos os lucros ao invés de um único valor.

O PMM já foi utilizado várias vezes para avaliar algoritmos multi-objetivos, podendose destacar os trabalhos de [SPEA] [SPEA2] [MOEA/D].

4.2 Problema do roteamento multicast (PRM)

O problema do roteamento multicast aparece na engenharia de tráfego em redes de computadores e consiste em transmitir uma mensagem multicast. Uma transmissão de rede pode ser do tipo unicast, multicast ou broadcast. Em transmissões unicast conecta-se um ponto da rede a um outro ponto qualquer, para fazer isso de forma eficiente basta encontrar o melhor caminho entre os dois pontos. As comunicações broadcast caracterizam-se pelo fato de um nó da rede (servidor) enviar o conteúdo a todos os demais, para obter as melhores rotas para trafegar os dados, basta verificar a árvore geradora de custo mínimo. As transmissões multicast desejam, a partir de um nó da rede, transmitir o conteúdo para alguns outros, o que apresenta maior complexidade, pois é necessário obter uma árvore de Steiner de custo mínimo, o que é mais difícil que calcular uma única rota ou construir a árvore geradora de custo mínimo [1-plano].

O PRM é um problema além de ser um problema prático, é muito importante, pois significaria um grande avanço na geração de rotas em redes de computadores, proporcionando uma comunicação mais rápida, menos custosa e mais confiável entre dispositivos, o que é de essencial em uma era onde a maioria das pessoas consomem informação e entretenimento pela Internet. Dado que deseja-se transmitir um conteúdo via uma rede de computadores, o problema consiste em encontrar a melhor rota possível entre a fonte de dados e o destino. Matematicamente, dado uma rede representada pelo grafo G = (V, E), um nó raiz $s \in V$ (nó transmissor) e um conjunto de nós destinos $D \subset V$ (nós receptores), o PRM consiste em determinar a subárvore T de G enraizada em r que inclui todos os vértices em D e apresenta o menor custo possível. Veja o exemplo da figura 4.2.

Figura 4 – Exemplo de rede retirado de [1-plano]

Figura 5 – Exemplos de árvores multicast relativos ao grafo da figura 4.2. Retirado do trabalho de [2-plano]

Figura 6 – Exemplo de árvore multicast no PRM multiobjetivo

Na figura 4.2 apresenta-se exemplos de árvores multicast criadas a partir do grafo mostrado na figura 4.2 considerando a raiz (r) como sendo o vértice 0 e os nós destinos (D) igual a 1, 8, 12, 13. O custo de cada árvore é dado pela soma dos custos de suas arestas, dentre os exemplos, a árvore mais à direita possui o menor custo total: 65.

O PRM original é proposto com apenas um objetivo a se otimizar, mas o intuito deste trabalho é utilizar uma versão mais realista do problema. A qualidade de um enlace de rede não pode ser medida através de uma única métrica, um custo genérico não é capaz de dizer se um link é bom ou ruim, características como distância, delay, capacidade de tráfego e uso do tráfego são melhores indicadores, portanto, propõe-se como objeto de estudo deste trabalho, o problema do roteamento multicast multiobjetivo. Nesta versão do problema, as árvores apresentadas como solução devem representar o melhor compromisso entre as métricas utilizadas. Veja um exemplo para a otimização de "custo" e "delay" na figura 4.2.

Na figura 4.2 apresenta-se um exemplo de rede com as métricas "custo" (primeiro valor) e "delay" (segundo valor) nas arestas. As arestas em negrito representam uma árvore multicast ótima (não-dominada) para o seguinte conjunto de objetivos:

- 1. Minimizar custo total: soma dos valores de custo para cada aresta da árvore;
- 2. Maximizar delay fim-a-fim atendidos: número de ramos da árvore em que a soma dos delays nas arestas não ultrapassa um valor d_{max} pré-definido, neste caso 25. Em outras palavras, quantidade de conexões cliente-servidor que mantém limite aceitável de atraso.

Neste trabalho considera-se até quatro valores de peso para um enlace rede: custo,

delay, capacidade de tráfego e tráfego corrente, representados nas fórmulas a seguir respectivamente pelas funções: c(), d(), z() e t(). Através dessas medidas são formulados os seguintes objetivos:

- 1. Custo total: soma dos valores de custo para cada aresta da árvore;
- 2. Delay fim-a-fim atendidos: número de ramos da árvore em que a soma dos delays nas arestas não ultrapassa um valor d_{max} pré-definido;
- 3. Delay total: soma dos valore de delay para cada aresta da árvore;
- 4. Delay fim-a-fim médio: média da soma dos delays em cada ramo da árvore. Em outras palavras, média do atraso em cada uma das comunicações cliente-servidor;
- Delay fim-a-fim máximo: maior valor para a soma de delays dentre todos os ramos da árvore;
- 6. Hops count: número de vértices na árvore;
- 7. Utilização máxima de enlaces: considerando todas as arestas na árvore, qual delas atinge a maior utilização de banda? Matematicamente, considerando E o conjunto de arestas da árvore e ϕ o tamanho da mensagem, $\max_{e \in E} \frac{t(e) + \phi}{z(e)}$;
- 8. Utilização média dos enlaces: média entre a utilização de banda entre todas as arestas da árvore. Similar à definição anterior.

Afim de possibilitar diversos cenários de teste para o PRM, os objetivos acima podem ser combinados de diversas maneiras, criando vários ambientes multi-objetivos. Tais combinações são exploradas na seção de experimentos.

Estratégias evolutivas para o PMM

Uma das partes mais importantes de um algoritmo de busca bio-inspirado é a modelagem da solução. Para os algoritmos genéticos é necessário definir a representação da solução, a geração aleatória de indivíduos, o cruzamento e a mutação. Para os ACOs, é possível utilizar a mesma representação de solução do AG, mas deve-se desenvolver um algoritmo que constrói a solução a partir de uma estrutura de feromônios e uma heurística.

A implementação de um AG para o problema da mochila mono-objetivo é trivial, pois a solução é representada por um vetor binário e a literatura está repleta de exemplos que podem ser resolvidos dessa maneira []. Um AG para o problema da mochila original pode ser encontrado em []. A versão many-objective do problema não requer nenhuma modificação no modelo, fazendo com que o mesmo processo de cruzamento e mutação possam ser utilizados. No entanto, a implementação de um ACO para o mesmo problema pode ser desafiador, já que as colônias de formigas esperam trabalhar com grafos e não arrays de bits. Um estudo extensivo relativo ao uso de ACOs para a resolução do problema da mochila com ACOs é apresenta em []. Nas seções a seguir detalhe-se a representação da solução, os operadores genéticos e a construção de soluções para o PMM usados neste trabalho.

5.1 Representação da solução

Em ambas as estratégias bio-inspiradas, AGs e ACOs, uma solução para o PMM é representada da mesma maneira: um vetor binário. Se a instância do problema da mochila apresenta 10 itens ao total, por exemplo, um vetor com 10 bits representa a solução. As posições do vetor onde o valor é 0 dizem que aquele item não será incluído na mochila, enquanto as posições que valem 1, dizem que o item será incluído na mochila. E.g. se a solução é representada pelo vetor [1,0,0,1,0,1,1,0,0,0], apenas os itens 0, 3, 5 e 6 serão colocados na mochila, os outros ficarão de fora.

5.2 Cruzamento e mutação (AGs)

O cruzamento entre duas soluções binárias, como explicado em [ref. secao ags], pode ser efetuado de diversas maneiras. Neste trabalho, foi utilizado crossover uniforme, ou seja, o filho herda de forma aleatória os bits do pai 1 ou do pai 2. Veja o exemplo da figura 5.2.

Figura 7 – Exemplo de crossover uniforme

Como pode ser visto na figura 5.2, o crossover uniforme pode ser implementado com uma máscara, que é um vetor aleatório de bits que controla os genes herdados de cada filho. Se o bit na posição i da máscara vale 0, então o filho na posição i herda o valor do pai 1, caso contrário, o pai 2 fornece o valor. Dessa forma, ainda é possível gerar 2 filhos, um com a regra de que o bit 0 da máscara representa o pai 1 e o bit 1 representa o pai 2 (filho 1 na imagem), e outro com a regra inversa (filho 2).

Após o crossover, existe uma chance definida pelo AG de se mutar a solução. A mutação utilizada para o PMM foi o processo mais simples possível para vetores binários, a inversão de bit: sorteia-se uma posição aleatória do vetor, se o valor for 0, troca-se para um, caso contrário, troca-se para 0.

5.3 Construção da solução (ACOs)

As colônias de formigas foram propostas inicialmente para problemas em grafos, portanto, soa contra-intuitivo utilizá-las para o problema do mochila. Mas, como mostrado em [mkp-aco-ke], não é necessário ter um grafo para se utilizar a técnica, é possível manipular os feromônios de diversas outras formas. Para o PMM, a literatura traz três principais formas de lidar com o feromônio:

1. Depositar feromônios em cada um dos itens. Sempre que se escolher um objeto para compor a solução, incrementa-se a quantidade de feromônios nele presente. Dessa forma, a quantidade de feromônio em cada item representa a preferência para se escolhê-lo em relação aos demais. [Leguizamon and Michalewicz 1999].

- 2. Criar um grafo direcionado que representa a preferência de se incluir um item b logo após ter incluído um item a. Dessa forma, sempre que se escolher um item a e posteriormente um b, deposita-se feromônio na aresta (a, b) do grafo. Ao construir uma solução, analisa-se o último item incluído e todas as arestas no grafo que partem dele, o destino com a maior quantidade de feromônios representa o item preferível. [Fidanova 2002].
- 3. A terceira estratégia proposta por [Alaya et al. 2004] utiliza um conceito semelhante a ideia anterior, mas ao invés de depositar feromônios apenas em pares consecutivos, os deposita para todos os pares de objetos existentes na solução. Por exemplo, se na solução os itens a, d e f já foram incluídos na mochila e no passo corrente adiciona-se o item c, o depósito de feromônios é feito nas arestas (a, c), (d, c) e (f, c), de forma que o grafo represente a preferência de se escolher um item dado que algum outro item já tenha sido adicionado. Assim, ao construir a solução, deve-se analisar todas as arestas com origem em algum objeto já presente na solução, o destino da aresta com maior quantidade de feromônios representa o item mais desejável.

Neste trabalho utilizou-se a estratégia 1, os feromônios são depositados nos items. Além dos feromônios, outra importante fonte de informação para se construir uma solução no ACO é a heurística, que estima o quão vantajoso é escolher um item em relação a outro. Tomando como inspiração o estudo de [mkp-aco-ke], propôs-se como heurísticas o seguinte modelo de funções:

- Para cada objetivo k (lucro do item), cria-se uma função de heurística h_k que recebe dois parâmetros, a capacidade restante (cr) e o item que se deseja incluir. A capacidade restante é a diferença entre a capacidade da mochila e a soma dos pesos dos itens que já foram incluídos. A heurística é então dada por: $h_k(item, cr) = lucro_k(item) * (1 peso(item)/cr)$.
- Uma heurística extra é usada exclusivamente para se referir ao peso do item: $h_{peso}(item) = 1 peso(item)/peso_maximo$.

Logo, o número de heurísticas no PMM é sempre o número de objetivos + 1. Tendo definido a estrutura de feromônios e as heurísticas, cabe ao algoritmo baseado em colônia de formigas construir a solução.

Estratégias evolutivas para o PRM

A modelagem de um algoritmo genético para o problema do roteamento multicast não é trivial, pois a solução não pode ser representada por um vetor. De fato, como deve representar os caminho entre o servidor e os múltiplos destinos em uma rede de computadores, a solução para o PRM é uma árvore. Dessa forma, é preciso desenvolver o processo de crossover e de mutação de acordo com a estrutura. O cruzamento deve receber duas árvores e gerar uma nova que compartilha características de ambos os pais, enquanto a mutação precisa criar uma pequena alteração na árvore que permita melhor explorar o espaço de busca, mas que não a descaracterize completamente.

Em contrapartida, o PRM se aproxima da definição original do ACO, pois trabalha com grafos. A diferença está no fato de que a solução é representada por uma árvore ao invés de um simples caminho, fazendo com que o depósito de feromônio e a escolha de arestas sejam desenvolvidas conforme a nova estrutura.

6.1 Representação da solução

Como mostrado na seção [seção do prm], considerando que em cada nó da rede a mensagem pode ser replicada e enviada aos próximos nós conectados, o PRM deseja encontrar a árvore que representa o processo de transmissão de menor custo que parte do nó fonte (servidor) e atinge todos os destinos. Existem duas maneiras de se representar a solução:

- Representação em árvore: o AG evolui a própria árvore que se deseja encontrar como solução. É um processo mais complicado que a alternativa a seguir, mas nenhum pós-processamento é necessário.
- 2. Representação em conjunto: o AG evolui um conjunto de caminhos C, ou seja, para cada nó destino d no problema deve existir uma lista de nós $L \in C$ que contém a sequência de nós, onde o primeiro elemento é o servidor e o último é d. A representação em conjuntos é mais fácil de se gerenciar, mas exige a transformação

em árvore ao final do processo. Como diferentes árvores podem ser formadas a partir de um conjunto de caminhos, essa representação não é tão eficiente quanto a anterior ao explorar o espaço de busca.

Neste trabalho optou-se por utilizar a representação 1, árvores.

6.2 Inicialização dos indivíduos

6.3 Cruzamento (AG)

O modelo de cruzamento para o PRM utilizado neste trabalho é chamado de cruzamento por caminho e foi proposto em [dissertacao do Fialho] como uma alternativa ao cruzamento por similaridade utilizado em trabalhos anteriores [Bueno e Oliveira, 2010].

O cruzamento por caminho é realizado entre duas árvores P_1 e P_2 e produz um único filho F. O processo consiste em separar cada um dos pais em ramos e então, para cada nó destino d do PRM, acrescentar a F ou o ramo de P_1 que leva a d, ou o ramo de P_2 . A escolha entre P_1 e P_2 é feita de forma aleatória. Assim que todos os nós destinos são atingíveis em F, para-se a seleção de ramos, remove-se os ciclos que possivelmente foram incluídos e poda-se a árvore, excluindo qualquer nó folha que não seja um destino.

Figura 8 – Exemplo de cruzamento por caminho

A figura 6.3, retirada do trabalho de [dissertacao Fialho], representa o processo de cruzamento por caminho entre duas árvores (Pai 1 e Pai 2). No exemplo, o nó raiz (servidor) é o vértice 0 e os destinos são o conjunto {1,8,11}. As setas em "ramos do pai 1" e "ramos do pai 2" representam os caminhos escolhidos em cada um dos pais para compor a árvore filha. O grafo nomeado "reconexão" representa o filho após a inclusão de todos os ramos, e como foi gerado um ciclo, deve-se removê-lo afim de obter-se uma árvore

 $6.4. \quad Mutação \ (AG)$

válida. Em "tratando factibilidade" apresenta-se o filho após a remoção dos ciclos, como o nó folha "5" não é um destino, deve-se podá-lo, resultando na última árvore, "poda", que é o filho retornado pelo processo.

Durante o processo de cruzamento por caminho, para remover os ciclos, percorre-se a árvore em largura removendo qualquer aresta que adicione ciclo. No processo de poda, verifica-se todas as folhas, se alguma não for um destino, remove-se o nó, repetindo o processo até que todos os nós folhas sejam destinos.

6.4 Mutação (AG)

A mutação em uma árvore que representa uma solução para o PRM consiste em remover parte dos nós da árvore e então reconectá-los de maneira aleatória utilizando o grafo correspondente à rede em questão. Veja o algoritmo 4.

Algoritmo 4 Mutação para uma árvore $(A, G, qte_{arestas}, r, D)$

- 0: Selecione aleatoriamente $qte_{arestas}$ e remova-as de A
- 0: Retire de A a componente conexa que contém a raiz e chame-a de C
- 0: Crie um grafo vazio M para guardar o resultado da mutação
- 0: Adicione todas as arestas de C a M
- 0: **while** |D| > 0 **do**
- 0: Selecione aleatoriamente um destino $d \in D$ e remova-o da lista D
- 0: Remova de A a componente conexa correspondente ao destino d e coloque-a em C
- 0: **if** M não possui o vértice d **then**
- 0: Tendo G como referência, crie um caminho aleatório P entre M e a componente conexa C
- 0: Adicione todas as arestas de P a M
- 0: end if
- 0: Adicione todas as arestas de C a M
- 0: end while
- 0: Remova os ciclos em M, caso existam
- 0: Pode a árvore M, removendo todos os nós folhas que não são destinos
- 0: return M=0

No algoritmo 4 recebe-se como parâmetros a árvore a se mutar (A), o grafo da rede (G), a quantidade de arestas a se remover na mutação $(qte_{arestas})$, o vértice raiz (r), e o conjunto de destinos (D). Na linha 7, se não existe componente conexa com o vértice d, C será uma árvore vazia. Na linha 9, o caminho aleatório é construído nó a nó até se encontrar uma sequência de arestas entre as duas componentes. Ao final, o mesmo pós-processamento do cruzamento por caminho é realizado: remove-se os ciclos e poda-se a árvore.

6.5 Construção da solução (ACO)

Proposta

Escreva aqui de forma clara e objetiva a sua proposta. Procure formalizar a sua proposta. Deixe claro, dentro de um arcabouço abrangente, em que você está efetivamente contribuindo. Atribua um nome para o método, o meta-método ou o sistema que você desenvolveu. Conceitos criados por você devem ser colocados nesse capítulo. A partir dessa seção, a menos que seja vital para o que pretende descrever, não faça mais citações de outros trabalhos. Comparações com outros trabalhos devem fazer referência ao capítulo de revisão bibliográfica.

Experimentos e Análise dos Resultados

Faça uma breve introdução para o capítulo.

8.1 Método para a Avaliação

Descreva os métodos utilizados para validar a sua hipótese incluindo as medidas de avaliação, conjunto de parâmetros, bases de dados e os trabalhos com os quais a sua proposta será comparada.

8.2 Experimentos

De acordo com o que foi descrito na Seção 8.1, apresente os resultados dos seus experimentos. A apresentação dos resultados pode ser feita via gráficos ou tabelas. O importante é que haja clareza.

8.3 Avaliação dos Resultados

A avaliação dos resultados pode ser feita à medida em que os resultados dos experimentos são apresentados, ou em uma seção separada. É importante que você aponte os acertos e as limitações da sua proposta e justifique os resultados obtidos. É fundamental apresentar evidências de que sua hipótese é verdadeira.

Conclusão

Faça uma breve introdução para o capítulo. Observe os objetivos geral e específicos do trabalho no capítulo de introdução e coloque aqui um comentário sobre como o desenvolvimento ajudou a chegar a cada um desses objetivos, ou seja, como a pesquisa permitiu concluir que cada um dos objetivos foi atingido.

9.1 Principais Contribuições

Nessa seção destaque ainda mais as suas contribuições, mostrando que sua hipótese foi validada pelos experimentos executados.

9.2 Trabalhos Futuros

Destaque nessa seção o que pode ser melhorado no método proposto para resolver as possíveis falhas que você identificou e descreveu na seção 8.3. Indique quais outros projetos podem ser gerados a partir do seu trabalho.

9.3 Contribuições em Produção Bibliográfica

Liste a produção bibliográfica resultante do seu trabalho.

Referências

ABNTEX2. A classe abntex2: Modelo canônico de trabalhos acadêmicos brasileiros compatível com as normas ABNT NBR 14724:2011, ABNT NBR 6024:2012 e outras. [S.l.], 2013. Disponível em: http://code.google.com/p/abntex2/>.

ARAUJO, L. C. Configuração: uma perspectiva de Arquitetura da Informação da Escola de Brasília. Dissertação (Mestrado) — Universidade de Brasília, Brasília, Março 2012.

ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. NBR 10520: Informação e documentação — apresentação de citações em documentos. Rio de Janeiro, 2002. 7 p.

_____. NBR 6028: Resumo - apresentação. Rio de Janeiro, 2003. 2 p.

_____. NBR 14724: Informação e documentação — trabalhos acadêmicos — apresentação. Rio de Janeiro, 2011. 15 p. Substitui a Ref. ??).

_____. NBR 6024: Numeração progressiva das seções de um documento. Rio de Janeiro, 2012. 4 p.

van GIGCH, J. P.; PIPINO, L. L. In search for a paradigm for the discipline of information systems. **Future Computing Systems**, v. 1, n. 1, p. 71–97, 1986.

72 Referências

Apêndices

Resultados de comandos

Isto é uma sinopse de capítulo. A ABNT não traz nenhuma normatização a respeito desse tipo de resumo, que é mais comum em romances e livros técnicos.

A.1 Citações

Utilize o ambiente citação para incluir citações diretas com mais de três linhas:

As citações diretas, no texto, com mais de três linhas, devem ser destacadas com recuo de 4 cm da margem esquerda, com letra menor que a do texto utilizado e sem as aspas. No caso de documentos datilografados, deve-se observar apenas o recuo (ABNT, 2002, 5.3).

Citações simples, com até três linhas, devem ser incluídas com aspas. Observe que em LATEX as aspas iniciais são diferentes das finais: "Amor é fogo que arde sem se ver".

A.2 Remissões internas

Ao nomear a Tabela 1, apresentamos um exemplo de remissão interna, que também pode ser feita quando indicamos o Apêndice A¹ (Resultados de comandos, página 75), por exemplo.

A.3 Tabelas

Apresenta-se um exemplo de tabela a ser confeccionada. Atente-se para as normas de tabela exigidas pela Universidade.

A Tabela 1 é um exemplo de tabela construída em LATEX.

O número do capítulo indicado é A, que se inicia à página 75.

Nível de Inves-	Insumos	Sistemas de	Produtos
tigação		Investigação	
Meta-nível	Filosofia da Ciência	Epistemologia	Paradigma
Nível do objeto	Paradigmas do metanível e evidências	Ciência	Teorias e modelos
	do nível inferior		
Nível inferior	Modelos e métodos do nível do objeto e	Prática	Solução de problemas
	problemas do nível inferior		

Tabela 1 – Níveis de investigação.

Fonte: van Gigch e Pipino (1986)

A.4 Expressões matemáticas

Use o ambiente equation para escrever expressões matemáticas numeradas:

$$\forall x \in X, \quad \exists \, y \le \epsilon \tag{1}$$

Escreva expressões matemáticas entre \$ e \$, como em $\lim_{x\to\infty} \exp(-x) = 0$, para que fiquem na mesma linha.

Também é possível usar colchetes para indicar o início de uma expressão matemática que não é numerada.

$$\left| \sum_{i=1}^{n} a_i b_i \right| \le \left(\sum_{i=1}^{n} a_i^2 \right)^{1/2} \left(\sum_{i=1}^{n} b_i^2 \right)^{1/2}$$

Consulte mais informações sobre expressões matemáticas em http://code.google.com/p/abntex2/w/edit/Referencias.

A.5 Figuras

Figuras podem ser criadas diretamente em LATEX, como o exemplo da Figura 9.

Figura 9 – A delimitação do espaço

Fonte: os autores

Ou então figuras podem ser incorporadas de arquivos externos, como é o caso da Figura 10. Se a figura que ser incluída se tratar de um diagrama, um gráfico ou uma ilustração que você mesmo produza, priorize o uso de imagens vetoriais no formato PDF. Com isso, o tamanho do arquivo final do trabalho será menor, e as imagens terão uma apresentação melhor, principalmente quando impressas, uma vez que imagens vetorias são perfeitamente escaláveis para qualquer dimensão. Nesse caso, se for utilizar o Microsoft Excel para produzir gráficos, ou o Microsoft Word para produzir ilustrações, exporte-os como PDF e os incorpore ao documento conforme o exemplo abaixo. No entanto, para manter a coerência no uso de software livre (já que você está usando LATEXe abnTEX2), teste a ferramenta InkScape (<http://inkscape.org/>). Ela é uma excelente opção de código-livre para produzir ilustrações vetoriais, similar ao CorelDraw ou ao Adobe Illustrator. De todo modo, caso não seja possível utilizar arquivos de imagens como PDF, utilize qualquer outro formato, como JPEG, GIF, BMP, etc. Nesse caso, você pode tentar aprimorar as imagens incorporadas com o software livre Gimp (<http://www.gimp.org/>). Ele é uma alternativa livre ao Adobe Photoshop.

Figura 10 – Gráfico produzido em Excel e salvo como PDF

Fonte: Araujo (2012, p. 24)

A.6 Enumerações: alíneas e subalíneas

Quando for necessário enumerar os diversos assuntos de uma seção que não possua título, esta deve ser subdividida em alíneas (ABNT, 2012, 4.2):

 a) os diversos assuntos que não possuam título próprio, dentro de uma mesma seção, devem ser subdivididos em alíneas²;

² As notas devem ser digitadas ou datilografadas dentro das margens, ficando separadas do texto por um espaço simples de entre as linhas e por filete de 5 cm, a partir da margem esquerda. Devem ser alinhadas, a partir da segunda linha da mesma nota, abaixo da primeira letra da primeira palavra, de forma a destacar o expoente, sem espaço entre elas e com fonte menor. ABNT (2011, 5.2.1)

- b) o texto que antecede as alíneas termina em dois pontos;
- c) as alíneas devem ser indicadas alfabeticamente, em letra minúscula, seguida de parêntese. Utilizam-se letras dobradas, quando esgotadas as letras do alfabeto;
- d) as letras indicativas das alíneas devem apresentar recuo em relação à margem esquerda;
- e) o texto da alínea deve começar por letra minúscula e terminar em ponto-e-vírgula, exceto a última alínea que termina em ponto final;
- f) o texto da alínea deve terminar em dois pontos, se houver subalínea;
- g) a segunda e as seguintes linhas do texto da alínea começa sob a primeira letra do texto da própria alínea;
- h) subalíneas (ABNT, 2012, 4.3) devem ser conforme as alíneas a seguir:
 - as subalíneas devem começar por travessão seguido de espaço;
 - as subalíneas devem apresentar recuo em relação à alínea;
 - o texto da subalínea deve começar por letra minúscula e terminar em ponto-evírgula. A última subalínea deve terminar em ponto final, se não houver alínea subsequente;
 - a segunda e as seguintes linhas do texto da subalínea começam sob a primeira letra do texto da própria subalínea.
- i) no abnTEX2 estão disponíveis os ambientes incisos e subalineas, que em suma são o mesmo que se criar outro nível de alineas, como nos exemplos à seguir:
 - Um novo inciso em itálico;
- j) Alínea em **negrito**:
 - Uma subalínea em itálico;
 - Uma subalínea em itálico e sublinhado;
- k) Última alínea com *ênfase*.

A.7 Inclução de outros arquivos

É uma boa prática dividir o seu documento em diversos arquivos, e não apenas escrever tudo em um único. Esse recurso foi utilizado neste documento. Para incluir diferentes arquivos em um arquivo principal, de modo que cada arquivo incluído fique em uma página diferente, utilize o comando:

\include{documento-a-ser-incluido} % sem a extensão .tex

Para incluir documentos sem quebra de páginas, utilize:

\input{documento-a-ser-incluido}

% sem a extensão .tex

A.8 Compilar o documento LaTeX

Geralmente os editores L⁴T_EX, como o TeXlipse³, o Texmaker⁴, entre outros, compilam os documentos automaticamente, de modo que você não precisa se preocupar com isso.

No entanto, você pode compilar os documentos LaTeXusando os seguintes comandos, que devem ser digitados no *Prompt de Comandos* do Windows ou no *Terminal* do Mac ou do Linux:

```
pdflatex ARQUIVO_PRINCIPAL.tex
bibtex ARQUIVO_PRINCIPAL.aux
makeindex ARQUIVO_PRINCIPAL.idx
makeindex ARQUIVO_PRINCIPAL.nlo -s nomencl.ist -o ARQUIVO_PRINCIPAL.nls
pdflatex ARQUIVO_PRINCIPAL.tex
pdflatex ARQUIVO_PRINCIPAL.tex
```

A.9 Divisões do documento: seção

Esta seção testa o uso de divisões de documentos. Isto é uma seção.

A.9.1 Divisões do documento: subseção

Isto é uma subseção.

A.9.1.1 Divisões do documento: subsubseção

Isto é uma subsubseção.

A.9.1.2 Divisões do documento: subsubseção

Isto é outra subsubseção.

A.9.2 Divisões do documento: subseção

Isto é uma subseção.

A.9.2.1 Divisões do documento: subsubseção

Isto é mais uma subsubseção da subseção A.9.2.

^{3 &}lt;http://texlipse.sourceforge.net/>

^{4 &}lt;http://www.xm1math.net/texmaker/>

A.10 Este é um exemplo de nome de seção longo. Ele deve estar alinhado à esquerda e a segunda e demais linhas devem iniciar logo abaixo da primeira palavra da primeira linha

Isso atende à norma ABNT (2011, seções de 5.2.2 a 5.2.4) e ABNT (2012, seções de 3.1 a 3.8).

A.11 Consulte o manual da classe abntex2

Consulte o manual da classe abntex2 (ABNTEX2, 2013) para uma referência completa das macros e ambientes disponíveis. Além disso, o manual possui informações adicionais sobre as normas ABNT observadas pelo abnTFX2.

A.12 Referência a Acrônimos

Denominação de norma da Associação Brasileira de Normas Técnicas (NBR) é uma referência a um acrônimo.

Anexos

Morbi ultrices rutrum lorem.

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna. Donec vehicula augue eu neque. Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Mauris ut leo. Cras viverra metus rhoncus sem. Nulla et lectus vestibulum urna fringilla ultrices. Phasellus eu tellus sit amet tortor gravida placerat. Integer sapien est, iaculis in, pretium quis, viverra ac, nunc. Praesent eget sem vel leo ultrices bibendum. Aenean faucibus. Morbi dolor nulla, malesuada eu, pulvinar at, mollis ac, nulla. Curabitur auctor semper nulla. Donec varius orci eget risus. Duis nibh mi, congue eu, accumsan eleifend, sagittis quis, diam. Duis eget orci sit amet orci dignissim rutrum.

Nam dui ligula, fringilla a, euismod sodales, sollicitudin vel, wisi. Morbi auctor lorem non justo. Nam lacus libero, pretium at, lobortis vitae, ultricies et, tellus. Donec aliquet, tortor sed accumsan bibendum, erat ligula aliquet magna, vitae ornare odio metus a mi. Morbi ac orci et nisl hendrerit mollis. Suspendisse ut massa. Cras nec ante. Pellentesque a nulla. Cum sociis natoque penatibus et magnis dis parturient montes, nascetur ridiculus mus. Aliquam tincidunt urna. Nulla ullamcorper vestibulum turpis. Pellentesque cursus luctus mauris.

Nulla malesuada porttitor diam. Donec felis erat, congue non, volutpat at, tincidunt tristique, libero. Vivamus viverra fermentum felis. Donec nonummy pellentesque ante. Phasellus adipiscing semper elit. Proin fermentum massa ac quam. Sed diam turpis, molestie vitae, placerat a, molestie nec, leo. Maecenas lacinia. Nam ipsum ligula, eleifend at, accumsan nec, suscipit a, ipsum. Morbi blandit ligula feugiat magna. Nunc eleifend consequat lorem. Sed lacinia nulla vitae enim. Pellentesque tincidunt purus vel magna. Integer non enim. Praesent euismod nunc eu purus. Donec bibendum quam in tellus. Nullam cursus pulvinar lectus. Donec et mi. Nam vulputate metus eu enim. Vestibulum pellentesque felis eu massa.

Quisque ullamcorper placerat ipsum. Cras nibh. Morbi vel justo vitae lacus tincidunt ultrices. Lorem ipsum dolor sit amet, consectetuer adipiscing elit. In hac habitasse platea

dictumst. Integer tempus convallis augue. Etiam facilisis. Nunc elementum fermentum wisi. Aenean placerat. Ut imperdiet, enim sed gravida sollicitudin, felis odio placerat quam, ac pulvinar elit purus eget enim. Nunc vitae tortor. Proin tempus nibh sit amet nisl. Vivamus quis tortor vitae risus porta vehicula.

Fusce mauris. Vestibulum luctus nibh at lectus. Sed bibendum, nulla a faucibus semper, leo velit ultricies tellus, ac venenatis arcu wisi vel nisl. Vestibulum diam. Aliquam pellentesque, augue quis sagittis posuere, turpis lacus congue quam, in hendrerit risus eros eget felis. Maecenas eget erat in sapien mattis porttitor. Vestibulum porttitor. Nulla facilisi. Sed a turpis eu lacus commodo facilisis. Morbi fringilla, wisi in dignissim interdum, justo lectus sagittis dui, et vehicula libero dui cursus dui. Mauris tempor ligula sed lacus. Duis cursus enim ut augue. Cras ac magna. Cras nulla. Nulla egestas. Curabitur a leo. Quisque egestas wisi eget nunc. Nam feugiat lacus vel est. Curabitur consectetuer.

Suspendisse vel felis. Ut lorem lorem, interdum eu, tincidunt sit amet, laoreet vitae, arcu. Aenean faucibus pede eu ante. Praesent enim elit, rutrum at, molestie non, nonummy vel, nisl. Ut lectus eros, malesuada sit amet, fermentum eu, sodales cursus, magna. Donec eu purus. Quisque vehicula, urna sed ultricies auctor, pede lorem egestas dui, et convallis elit erat sed nulla. Donec luctus. Curabitur et nunc. Aliquam dolor odio, commodo pretium, ultricies non, pharetra in, velit. Integer arcu est, nonummy in, fermentum faucibus, egestas vel, odio.

Sed commodo posuere pede. Mauris ut est. Ut quis purus. Sed ac odio. Sed vehicula hendrerit sem. Duis non odio. Morbi ut dui. Sed accumsan risus eget odio. In hac habitasse platea dictumst. Pellentesque non elit. Fusce sed justo eu urna porta tincidunt. Mauris felis odio, sollicitudin sed, volutpat a, ornare ac, erat. Morbi quis dolor. Donec pellentesque, erat ac sagittis semper, nunc dui lobortis purus, quis congue purus metus ultricies tellus. Proin et quam. Class aptent taciti sociosqu ad litora torquent per conubia nostra, per inceptos hymenaeos. Praesent sapien turpis, fermentum vel, eleifend faucibus, vehicula eu, lacus.

Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Donec odio elit, dictum in, hendrerit sit amet, egestas sed, leo. Praesent feugiat sapien aliquet odio. Integer vitae justo. Aliquam vestibulum fringilla lorem. Sed neque lectus, consectetuer at, consectetuer sed, eleifend ac, lectus. Nulla facilisi. Pellentesque eget lectus. Proin eu metus. Sed porttitor. In hac habitasse platea dictumst. Suspendisse eu lectus. Ut mi mi, lacinia sit amet, placerat et, mollis vitae, dui. Sed ante tellus, tristique ut, iaculis eu, malesuada ac, dui. Mauris nibh leo, facilisis non, adipiscing quis, ultrices a, dui.

Morbi luctus, wisi viverra faucibus pretium, nibh est placerat odio, nec commodo wisi enim eget quam. Quisque libero justo, consectetuer a, feugiat vitae, porttitor eu, libero. Suspendisse sed mauris vitae elit sollicitudin malesuada. Maecenas ultricies eros

sit amet ante. Ut venenatis velit. Maecenas sed mi eget dui varius euismod. Phasellus aliquet volutpat odio. Vestibulum ante ipsum primis in faucibus orci luctus et ultrices posuere cubilia Curae; Pellentesque sit amet pede ac sem eleifend consectetuer. Nullam elementum, urna vel imperdiet sodales, elit ipsum pharetra ligula, ac pretium ante justo a nulla. Curabitur tristique arcu eu metus. Vestibulum lectus. Proin mauris. Proin eu nunc eu urna hendrerit faucibus. Aliquam auctor, pede consequat laoreet varius, eros tellus scelerisque quam, pellentesque hendrerit ipsum dolor sed augue. Nulla nec lacus.

Suspendisse vitae elit. Aliquam arcu neque, ornare in, ullamcorper quis, commodo eu, libero. Fusce sagittis erat at erat tristique mollis. Maecenas sapien libero, molestie et, lobortis in, sodales eget, dui. Morbi ultrices rutrum lorem. Nam elementum ullamcorper leo. Morbi dui. Aliquam sagittis. Nunc placerat. Pellentesque tristique sodales est. Maecenas imperdiet lacinia velit. Cras non urna. Morbi eros pede, suscipit ac, varius vel, egestas non, eros. Praesent malesuada, diam id pretium elementum, eros sem dictum tortor, vel consectetuer odio sem sed wisi.

Sed feugiat. Cum sociis natoque penatibus et magnis dis parturient montes, nascetur ridiculus mus. Ut pellentesque augue sed urna. Vestibulum diam eros, fringilla et, consectetuer eu, nonummy id, sapien. Nullam at lectus. In sagittis ultrices mauris. Curabitur malesuada erat sit amet massa. Fusce blandit. Aliquam erat volutpat. Aliquam euismod. Aenean vel lectus. Nunc imperdiet justo nec dolor.

Etiam euismod. Fusce facilisis lacinia dui. Suspendisse potenti. In mi erat, cursus id, nonummy sed, ullamcorper eget, sapien. Praesent pretium, magna in eleifend egestas, pede pede pretium lorem, quis consectetuer tortor sapien facilisis magna. Mauris quis magna varius nulla scelerisque imperdiet. Aliquam non quam. Aliquam porttitor quam a lacus. Praesent vel arcu ut tortor cursus volutpat. In vitae pede quis diam bibendum placerat. Fusce elementum convallis neque. Sed dolor orci, scelerisque ac, dapibus nec, ultricies ut, mi. Duis nec dui quis leo sagittis commodo.

Aliquam lectus. Vivamus leo. Quisque ornare tellus ullamcorper nulla. Mauris porttitor pharetra tortor. Sed fringilla justo sed mauris. Mauris tellus. Sed non leo. Nullam elementum, magna in cursus sodales, augue est scelerisque sapien, venenatis congue nulla arcu et pede. Ut suscipit enim vel sapien. Donec congue. Maecenas urna mi, suscipit in, placerat ut, vestibulum ut, massa. Fusce ultrices nulla et nisl.

Etiam ac leo a risus tristique nonummy. Donec dignissim tincidunt nulla. Vestibulum rhoncus molestie odio. Sed lobortis, justo et pretium lobortis, mauris turpis condimentum augue, nec ultricies nibh arcu pretium enim. Nunc purus neque, placerat id, imperdiet sed, pellentesque nec, nisl. Vestibulum imperdiet neque non sem accumsan laoreet. In hac habitasse platea dictumst. Etiam condimentum facilisis libero. Suspendisse in elit quis nisl aliquam dapibus. Pellentesque auctor sapien. Sed egestas sapien nec lectus. Pellentesque vel dui vel neque bibendum viverra. Aliquam porttitor nisl nec pede. Proin mattis libero vel turpis. Donec rutrum mauris et libero. Proin euismod porta felis. Nam

lobortis, metus quis elementum commodo, nunc lectus elementum mauris, eget vulputate ligula tellus eu neque. Vivamus eu dolor.

Nulla in ipsum. Praesent eros nulla, congue vitae, euismod ut, commodo a, wisi. Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Aenean nonummy magna non leo. Sed felis erat, ullamcorper in, dictum non, ultricies ut, lectus. Proin vel arcu a odio lobortis euismod. Vestibulum ante ipsum primis in faucibus orci luctus et ultrices posuere cubilia Curae; Proin ut est. Aliquam odio. Pellentesque massa turpis, cursus eu, euismod nec, tempor congue, nulla. Duis viverra gravida mauris. Cras tincidunt. Curabitur eros ligula, varius ut, pulvinar in, cursus faucibus, augue.

Nulla mattis luctus nulla. Duis commodo velit at leo. Aliquam vulputate magna et leo. Nam vestibulum ullamcorper leo. Vestibulum condimentum rutrum mauris. Donec id mauris. Morbi molestie justo et pede. Vivamus eget turpis sed nisl cursus tempor. Curabitur mollis sapien condimentum nunc. In wisi nisl, malesuada at, dignissim sit amet, lobortis in, odio. Aenean consequat arcu a ante. Pellentesque porta elit sit amet orci. Etiam at turpis nec elit ultricies imperdiet. Nulla facilisi. In hac habitasse platea dictumst. Suspendisse viverra aliquam risus. Nullam pede justo, molestie nonummy, scelerisque eu, facilisis vel, arcu.

Curabitur tellus magna, porttitor a, commodo a, commodo in, tortor. Donec interdum. Praesent scelerisque. Maecenas posuere sodales odio. Vivamus metus lacus, varius quis, imperdiet quis, rhoncus a, turpis. Etiam ligula arcu, elementum a, venenatis quis, sollicitudin sed, metus. Donec nunc pede, tincidunt in, venenatis vitae, faucibus vel, nibh. Pellentesque wisi. Nullam malesuada. Morbi ut tellus ut pede tincidunt porta. Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Etiam congue neque id dolor.

Donec et nisl at wisi luctus bibendum. Nam interdum tellus ac libero. Sed sem justo, laoreet vitae, fringilla at, adipiscing ut, nibh. Maecenas non sem quis tortor eleifend fermentum. Etiam id tortor ac mauris porta vulputate. Integer porta neque vitae massa. Maecenas tempus libero a libero posuere dictum. Vestibulum ante ipsum primis in faucibus orci luctus et ultrices posuere cubilia Curae; Aenean quis mauris sed elit commodo placerat. Class aptent taciti sociosqu ad litora torquent per conubia nostra, per inceptos hymenaeos. Vivamus rhoncus tincidunt libero. Etiam elementum pretium justo. Vivamus est. Morbi a tellus eget pede tristique commodo. Nulla nisl. Vestibulum sed nisl eu sapien cursus rutrum.

Nulla non mauris vitae wisi posuere convallis. Sed eu nulla nec eros scelerisque pharetra. Nullam varius. Etiam dignissim elementum metus. Vestibulum faucibus, metus sit amet mattis rhoncus, sapien dui laoreet odio, nec ultricies nibh augue a enim. Fusce in ligula. Quisque at magna et nulla commodo consequat. Proin accumsan imperdiet sem. Nunc porta. Donec feugiat mi at justo. Phasellus facilisis ipsum quis ante. In ac elit eget ipsum pharetra faucibus. Maecenas viverra nulla in massa.

Nulla ac nisl. Nullam urna nulla, ullamcorper in, interdum sit amet, gravida ut, risus. Aenean ac enim. In luctus. Phasellus eu quam vitae turpis viverra pellentesque. Duis feugiat felis ut enim. Phasellus pharetra, sem id porttitor sodales, magna nunc aliquet nibh, nec blandit nisl mauris at pede. Suspendisse risus risus, lobortis eget, semper at, imperdiet sit amet, quam. Quisque scelerisque dapibus nibh. Nam enim. Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Nunc ut metus. Ut metus justo, auctor at, ultrices eu, sagittis ut, purus. Aliquam aliquam.

Etiam pede massa, dapibus vitae, rhoncus in, placerat posuere, odio. Vestibulum luctus commodo lacus. Morbi lacus dui, tempor sed, euismod eget, condimentum at, tortor. Phasellus aliquet odio ac lacus tempor faucibus. Praesent sed sem. Praesent iaculis. Cras rhoncus tellus sed justo ullamcorper sagittis. Donec quis orci. Sed ut tortor quis tellus euismod tincidunt. Suspendisse congue nisl eu elit. Aliquam tortor diam, tempus id, tristique eget, sodales vel, nulla. Praesent tellus mi, condimentum sed, viverra at, consectetuer quis, lectus. In auctor vehicula orci. Sed pede sapien, euismod in, suscipit in, pharetra placerat, metus. Vivamus commodo dui non odio. Donec et felis.

Etiam suscipit aliquam arcu. Aliquam sit amet est ac purus bibendum congue. Sed in eros. Morbi non orci. Pellentesque mattis lacinia elit. Fusce molestie velit in ligula. Nullam et orci vitae nibh vulputate auctor. Aliquam eget purus. Nulla auctor wisi sed ipsum. Morbi porttitor tellus ac enim. Fusce ornare. Proin ipsum enim, tincidunt in, ornare venenatis, molestie a, augue. Donec vel pede in lacus sagittis porta. Sed hendrerit ipsum quis nisl. Suspendisse quis massa ac nibh pretium cursus. Sed sodales. Nam eu neque quis pede dignissim ornare. Maecenas eu purus ac urna tincidunt congue.

Donec et nisl id sapien blandit mattis. Aenean dictum odio sit amet risus. Morbi purus. Nulla a est sit amet purus venenatis iaculis. Vivamus viverra purus vel magna. Donec in justo sed odio malesuada dapibus. Nunc ultrices aliquam nunc. Vivamus facilisis pellentesque velit. Nulla nunc velit, vulputate dapibus, vulputate id, mattis ac, justo. Nam mattis elit dapibus purus. Quisque enim risus, congue non, elementum ut, mattis quis, sem. Quisque elit.

Maecenas non massa. Vestibulum pharetra nulla at lorem. Duis quis quam id lacus dapibus interdum. Nulla lorem. Donec ut ante quis dolor bibendum condimentum. Etiam egestas tortor vitae lacus. Praesent cursus. Mauris bibendum pede at elit. Morbi et felis a lectus interdum facilisis. Sed suscipit gravida turpis. Nulla at lectus. Vestibulum ante ipsum primis in faucibus orci luctus et ultrices posuere cubilia Curae; Praesent nonummy luctus nibh. Proin turpis nunc, congue eu, egestas ut, fringilla at, tellus. In hac habitasse platea dictumst.

Vivamus eu tellus sed tellus consequat suscipit. Nam orci orci, malesuada id, gravida nec, ultricies vitae, erat. Donec risus turpis, luctus sit amet, interdum quis, porta sed, ipsum. Suspendisse condimentum, tortor at egestas posuere, neque metus tempor orci, et tincidunt urna nunc a purus. Sed facilisis blandit tellus. Nunc risus sem, suscipit nec,

eleifend quis, cursus quis, libero. Curabitur et dolor. Sed vitae sem. Cum sociis natoque penatibus et magnis dis parturient montes, nascetur ridiculus mus. Maecenas ante. Duis ullamcorper enim. Donec tristique enim eu leo. Nullam molestie elit eu dolor. Nullam bibendum, turpis vitae tristique gravida, quam sapien tempor lectus, quis pretium tellus purus ac quam. Nulla facilisi.

A.1 Test

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna. Donec vehicula augue eu neque. Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Mauris ut leo. Cras viverra metus rhoncus sem. Nulla et lectus vestibulum urna fringilla ultrices. Phasellus eu tellus sit amet tortor gravida placerat. Integer sapien est, iaculis in, pretium quis, viverra ac, nunc. Praesent eget sem vel leo ultrices bibendum. Aenean faucibus. Morbi dolor nulla, malesuada eu, pulvinar at, mollis ac, nulla. Curabitur auctor semper nulla. Donec varius orci eget risus. Duis nibh mi, congue eu, accumsan eleifend, sagittis quis, diam. Duis eget orci sit amet orci dignissim rutrum.

Nam dui ligula, fringilla a, euismod sodales, sollicitudin vel, wisi. Morbi auctor lorem non justo. Nam lacus libero, pretium at, lobortis vitae, ultricies et, tellus. Donec aliquet, tortor sed accumsan bibendum, erat ligula aliquet magna, vitae ornare odio metus a mi. Morbi ac orci et nisl hendrerit mollis. Suspendisse ut massa. Cras nec ante. Pellentesque a nulla. Cum sociis natoque penatibus et magnis dis parturient montes, nascetur ridiculus mus. Aliquam tincidunt urna. Nulla ullamcorper vestibulum turpis. Pellentesque cursus luctus mauris.

Nulla malesuada porttitor diam. Donec felis erat, congue non, volutpat at, tincidunt tristique, libero. Vivamus viverra fermentum felis. Donec nonummy pellentesque ante. Phasellus adipiscing semper elit. Proin fermentum massa ac quam. Sed diam turpis, molestie vitae, placerat a, molestie nec, leo. Maecenas lacinia. Nam ipsum ligula, eleifend at, accumsan nec, suscipit a, ipsum. Morbi blandit ligula feugiat magna. Nunc eleifend consequat lorem. Sed lacinia nulla vitae enim. Pellentesque tincidunt purus vel magna. Integer non enim. Praesent euismod nunc eu purus. Donec bibendum quam in tellus. Nullam cursus pulvinar lectus. Donec et mi. Nam vulputate metus eu enim. Vestibulum pellentesque felis eu massa.

Quisque ullamcorper placerat ipsum. Cras nibh. Morbi vel justo vitae lacus tincidunt ultrices. Lorem ipsum dolor sit amet, consectetuer adipiscing elit. In hac habitasse platea dictumst. Integer tempus convallis augue. Etiam facilisis. Nunc elementum fermentum wisi. Aenean placerat. Ut imperdiet, enim sed gravida sollicitudin, felis odio placerat quam, ac pulvinar elit purus eget enim. Nunc vitae tortor. Proin tempus nibh sit amet

A.1. Test 89

nisl. Vivamus quis tortor vitae risus porta vehicula.

Fusce mauris. Vestibulum luctus nibh at lectus. Sed bibendum, nulla a faucibus semper, leo velit ultricies tellus, ac venenatis arcu wisi vel nisl. Vestibulum diam. Aliquam pellentesque, augue quis sagittis posuere, turpis lacus congue quam, in hendrerit risus eros eget felis. Maecenas eget erat in sapien mattis porttitor. Vestibulum porttitor. Nulla facilisi. Sed a turpis eu lacus commodo facilisis. Morbi fringilla, wisi in dignissim interdum, justo lectus sagittis dui, et vehicula libero dui cursus dui. Mauris tempor ligula sed lacus. Duis cursus enim ut augue. Cras ac magna. Cras nulla. Nulla egestas. Curabitur a leo. Quisque egestas wisi eget nunc. Nam feugiat lacus vel est. Curabitur consectetuer.

Suspendisse vel felis. Ut lorem lorem, interdum eu, tincidunt sit amet, laoreet vitae, arcu. Aenean faucibus pede eu ante. Praesent enim elit, rutrum at, molestie non, nonummy vel, nisl. Ut lectus eros, malesuada sit amet, fermentum eu, sodales cursus, magna. Donec eu purus. Quisque vehicula, urna sed ultricies auctor, pede lorem egestas dui, et convallis elit erat sed nulla. Donec luctus. Curabitur et nunc. Aliquam dolor odio, commodo pretium, ultricies non, pharetra in, velit. Integer arcu est, nonummy in, fermentum faucibus, egestas vel, odio.

Sed commodo posuere pede. Mauris ut est. Ut quis purus. Sed ac odio. Sed vehicula hendrerit sem. Duis non odio. Morbi ut dui. Sed accumsan risus eget odio. In hac habitasse platea dictumst. Pellentesque non elit. Fusce sed justo eu urna porta tincidunt. Mauris felis odio, sollicitudin sed, volutpat a, ornare ac, erat. Morbi quis dolor. Donec pellentesque, erat ac sagittis semper, nunc dui lobortis purus, quis congue purus metus ultricies tellus. Proin et quam. Class aptent taciti sociosqu ad litora torquent per conubia nostra, per inceptos hymenaeos. Praesent sapien turpis, fermentum vel, eleifend faucibus, vehicula eu, lacus.

Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Donec odio elit, dictum in, hendrerit sit amet, egestas sed, leo. Praesent feugiat sapien aliquet odio. Integer vitae justo. Aliquam vestibulum fringilla lorem. Sed neque lectus, consectetuer at, consectetuer sed, eleifend ac, lectus. Nulla facilisi. Pellentesque eget lectus. Proin eu metus. Sed porttitor. In hac habitasse platea dictumst. Suspendisse eu lectus. Ut mi mi, lacinia sit amet, placerat et, mollis vitae, dui. Sed ante tellus, tristique ut, iaculis eu, malesuada ac, dui. Mauris nibh leo, facilisis non, adipiscing quis, ultrices a, dui.

Morbi luctus, wisi viverra faucibus pretium, nibh est placerat odio, nec commodo wisi enim eget quam. Quisque libero justo, consectetuer a, feugiat vitae, porttitor eu, libero. Suspendisse sed mauris vitae elit sollicitudin malesuada. Maecenas ultricies eros sit amet ante. Ut venenatis velit. Maecenas sed mi eget dui varius euismod. Phasellus aliquet volutpat odio. Vestibulum ante ipsum primis in faucibus orci luctus et ultrices posuere cubilia Curae; Pellentesque sit amet pede ac sem eleifend consectetuer. Nullam

elementum, urna vel imperdiet sodales, elit ipsum pharetra ligula, ac pretium ante justo a nulla. Curabitur tristique arcu eu metus. Vestibulum lectus. Proin mauris. Proin eu nunc eu urna hendrerit faucibus. Aliquam auctor, pede consequat laoreet varius, eros tellus scelerisque quam, pellentesque hendrerit ipsum dolor sed augue. Nulla nec lacus.

Suspendisse vitae elit. Aliquam arcu neque, ornare in, ullamcorper quis, commodo eu, libero. Fusce sagittis erat at erat tristique mollis. Maecenas sapien libero, molestie et, lobortis in, sodales eget, dui. Morbi ultrices rutrum lorem. Nam elementum ullamcorper leo. Morbi dui. Aliquam sagittis. Nunc placerat. Pellentesque tristique sodales est. Maecenas imperdiet lacinia velit. Cras non urna. Morbi eros pede, suscipit ac, varius vel, egestas non, eros. Praesent malesuada, diam id pretium elementum, eros sem dictum tortor, vel consectetuer odio sem sed wisi.

Sed feugiat. Cum sociis natoque penatibus et magnis dis parturient montes, nascetur ridiculus mus. Ut pellentesque augue sed urna. Vestibulum diam eros, fringilla et, consectetuer eu, nonummy id, sapien. Nullam at lectus. In sagittis ultrices mauris. Curabitur malesuada erat sit amet massa. Fusce blandit. Aliquam erat volutpat. Aliquam euismod. Aenean vel lectus. Nunc imperdiet justo nec dolor.

Etiam euismod. Fusce facilisis lacinia dui. Suspendisse potenti. In mi erat, cursus id, nonummy sed, ullamcorper eget, sapien. Praesent pretium, magna in eleifend egestas, pede pede pretium lorem, quis consectetuer tortor sapien facilisis magna. Mauris quis magna varius nulla scelerisque imperdiet. Aliquam non quam. Aliquam porttitor quam a lacus. Praesent vel arcu ut tortor cursus volutpat. In vitae pede quis diam bibendum placerat. Fusce elementum convallis neque. Sed dolor orci, scelerisque ac, dapibus nec, ultricies ut, mi. Duis nec dui quis leo sagittis commodo.

Aliquam lectus. Vivamus leo. Quisque ornare tellus ullamcorper nulla. Mauris porttitor pharetra tortor. Sed fringilla justo sed mauris. Mauris tellus. Sed non leo. Nullam elementum, magna in cursus sodales, augue est scelerisque sapien, venenatis congue nulla arcu et pede. Ut suscipit enim vel sapien. Donec congue. Maecenas urna mi, suscipit in, placerat ut, vestibulum ut, massa. Fusce ultrices nulla et nisl.

Etiam ac leo a risus tristique nonummy. Donec dignissim tincidunt nulla. Vestibulum rhoncus molestie odio. Sed lobortis, justo et pretium lobortis, mauris turpis condimentum augue, nec ultricies nibh arcu pretium enim. Nunc purus neque, placerat id, imperdiet sed, pellentesque nec, nisl. Vestibulum imperdiet neque non sem accumsan laoreet. In hac habitasse platea dictumst. Etiam condimentum facilisis libero. Suspendisse in elit quis nisl aliquam dapibus. Pellentesque auctor sapien. Sed egestas sapien nec lectus. Pellentesque vel dui vel neque bibendum viverra. Aliquam porttitor nisl nec pede. Proin mattis libero vel turpis. Donec rutrum mauris et libero. Proin euismod porta felis. Nam lobortis, metus quis elementum commodo, nunc lectus elementum mauris, eget vulputate ligula tellus eu neque. Vivamus eu dolor.

Nulla in ipsum. Praesent eros nulla, congue vitae, euismod ut, commodo a, wisi.

A.1. Test

Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Aenean nonummy magna non leo. Sed felis erat, ullamcorper in, dictum non, ultricies ut, lectus. Proin vel arcu a odio lobortis euismod. Vestibulum ante ipsum primis in faucibus orci luctus et ultrices posuere cubilia Curae; Proin ut est. Aliquam odio. Pellentesque massa turpis, cursus eu, euismod nec, tempor congue, nulla. Duis viverra gravida mauris. Cras tincidunt. Curabitur eros ligula, varius ut, pulvinar in, cursus faucibus, augue.

Nulla mattis luctus nulla. Duis commodo velit at leo. Aliquam vulputate magna et leo. Nam vestibulum ullamcorper leo. Vestibulum condimentum rutrum mauris. Donec id mauris. Morbi molestie justo et pede. Vivamus eget turpis sed nisl cursus tempor. Curabitur mollis sapien condimentum nunc. In wisi nisl, malesuada at, dignissim sit amet, lobortis in, odio. Aenean consequat arcu a ante. Pellentesque porta elit sit amet orci. Etiam at turpis nec elit ultricies imperdiet. Nulla facilisi. In hac habitasse platea dictumst. Suspendisse viverra aliquam risus. Nullam pede justo, molestie nonummy, scelerisque eu, facilisis vel, arcu.

Curabitur tellus magna, porttitor a, commodo a, commodo in, tortor. Donec interdum. Praesent scelerisque. Maecenas posuere sodales odio. Vivamus metus lacus, varius quis, imperdiet quis, rhoncus a, turpis. Etiam ligula arcu, elementum a, venenatis quis, sollicitudin sed, metus. Donec nunc pede, tincidunt in, venenatis vitae, faucibus vel, nibh. Pellentesque wisi. Nullam malesuada. Morbi ut tellus ut pede tincidunt porta. Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Etiam congue neque id dolor.

Donec et nisl at wisi luctus bibendum. Nam interdum tellus ac libero. Sed sem justo, laoreet vitae, fringilla at, adipiscing ut, nibh. Maecenas non sem quis tortor eleifend fermentum. Etiam id tortor ac mauris porta vulputate. Integer porta neque vitae massa. Maecenas tempus libero a libero posuere dictum. Vestibulum ante ipsum primis in faucibus orci luctus et ultrices posuere cubilia Curae; Aenean quis mauris sed elit commodo placerat. Class aptent taciti sociosqu ad litora torquent per conubia nostra, per inceptos hymenaeos. Vivamus rhoncus tincidunt libero. Etiam elementum pretium justo. Vivamus est. Morbi a tellus eget pede tristique commodo. Nulla nisl. Vestibulum sed nisl eu sapien cursus rutrum.

Nulla non mauris vitae wisi posuere convallis. Sed eu nulla nec eros scelerisque pharetra. Nullam varius. Etiam dignissim elementum metus. Vestibulum faucibus, metus sit amet mattis rhoncus, sapien dui laoreet odio, nec ultricies nibh augue a enim. Fusce in ligula. Quisque at magna et nulla commodo consequat. Proin accumsan imperdiet sem. Nunc porta. Donec feugiat mi at justo. Phasellus facilisis ipsum quis ante. In ac elit eget ipsum pharetra faucibus. Maecenas viverra nulla in massa.

Nulla ac nisl. Nullam urna nulla, ullamcorper in, interdum sit amet, gravida ut, risus. Aenean ac enim. In luctus. Phasellus eu quam vitae turpis viverra pellentesque. Duis feugiat felis ut enim. Phasellus pharetra, sem id porttitor sodales, magna nunc aliquet

nibh, nec blandit nisl mauris at pede. Suspendisse risus risus, lobortis eget, semper at, imperdiet sit amet, quam. Quisque scelerisque dapibus nibh. Nam enim. Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Nunc ut metus. Ut metus justo, auctor at, ultrices eu, sagittis ut, purus. Aliquam aliquam.