Inter (Part-I) 2019

Mathematics	Group-II	PAPER: I
Time: 30 Minutes	(OBJECTIVE TYPE)	Marks: 20

Note: Four possible answers A, B, C and D to each question are given. The choice which you think is correct, fill that circle in front of that question with Marker or Pen ink in the answer-book. Cutting or filling two or more circles will result in zero mark in that question.

- 1-1- The property $\forall a, b \in \Re, a = b \Rightarrow b = a$ is called:
 - (a) Commutative
- (b) Transitive
- (c) Symmetric √
- (d) Reflexive
- 2- If A and B are two sets, then A B = :
 - (a) A ∪ B^c
- (b) A ∩ B° √
- (c) (A ∪ B)^c
- (d) (A \cap B)c
- 3- A square matrix $A = [a_{ij}]$ in which $a_{ij} = 0$ for all i > j is called:
 - (a) Upper triangular √
 - (b) Lower triangular
 - (c) Symmetric
 - (d) Skew-symmetric
- 4- If $A = [a_{ij}]_{2\times 2}$, then |kA| = :
 - (a) |A|
- (b) k²|A| 1
- (c) k|A|

- (d) k|A|2
- 5- If $b^2 4ac > 0$ but not a perfect square, then roots are:
 - (a) Equal
- (b) Complex
- (c) Rational
- (d) Irrational √
- 6- The sum of the four fourth roots of 81 is:
 - (a) 0 v

(b) 81

(c) -81

- (d) 3
- 7- Partial fractions of $\frac{1}{x^3-1}$ will be of the form:

(a)
$$\frac{A}{x+1} + \frac{Bx+C}{x^2+x+1}$$
 (b) $\frac{A}{x-1} + \frac{Bx+C}{x^2+x+1}$

(c)
$$\frac{A}{x-1} + \frac{Bx+C}{x^2-x+1}$$
 (d) $\frac{A}{x+1} + \frac{Bx+C}{x^2-x+1}$

8-	$\sum_{k=1}^{n} (1)^{k} = :$		
~.	(a) $\frac{n(n-1)}{2}$	(b) $\frac{n}{2}$	
	(c) n √	(d) $\frac{n(n+1)}{2}$	
9-	No term of geometri	ic sequence can be:	
5 11	(a) 0 1/	(b) 1	
	(c) 2	(d) 3	
10-	The value of 4! . 0! .	1! is:	
	(a) 0	(b) 1	
	(c) 4	(d) 24 $\sqrt{}$	
11-	Probability of impossible event is:		
	(a) $\frac{1}{2}$	(b) 1	
	(c) 0 1/	(d) 2	
12-	Middle terms in the	expansion of (x + y)	
	(a) T ₆ , T ₇ 1	(b) T ₅ , T ₆	
	(c) T ₇ , T ₈	(d) T ₈ , T ₉	
13-	Expansion of (3 - 5	x) ^{1/2} is valid if:	
, i			
	(a) $ x < \frac{3}{5} \sqrt{ x }$		
	(c) x < 5	(d) x < 3	
14-	Which angle is quadrantal angle:		
	(a) 45°	(b) 60°	
	(c) 270° √	(d) 120°	
15-	$\cos\left(\frac{3\pi}{2}-\theta\right)$ is equa	ıl to:	
	(a) -sin θ √	(b) sin θ	
	(c) cos θ	(d) -cos θ	
16-	Range of cotangen		
	(a) N	(b) Z	
N	(c) R √	(d) C	

With usual notation R = : 17-

- (a) $\frac{b}{2 \sin \gamma}$
- (b) $\frac{a}{2 \sin \alpha} \sqrt{ }$
- (c) $\frac{c}{2 \sin \alpha}$
- (d) $\frac{a}{2 \sin \beta}$

If Δ is the area of a triangle ABC, then with usual 18--notation $\Delta = :$

- (a) $\frac{1}{2}$ bc sin β (b) $\frac{1}{2}$ ab sin α
- (c) $\frac{1}{3}$ bc sin α
- (d) $\frac{1}{2}$ bc sin $\alpha \sqrt{}$

2 tan-1 A equals: 19-

- (a) $\tan^{-1}\left(\frac{A}{1-A^2}\right)$ (b) $\tan^{-1}\left(\frac{2A}{1-A^2}\right)\sqrt{A^2}$
- (c) $\tan^{-1} \left(\frac{2A}{1 + A^2} \right)$ (d) $\tan^{-1} \left(\frac{A}{1 + A^2} \right)$

Solution of equation tan $x = \frac{1}{\sqrt{2}}$ lies in the 20-

quadrants:

- (a) I and II
- (b) II and III
- (c) I and III v
- (d) I and IV