The School of Mathematics

Robust Optimisation Monte Carlo for Likelihood-Free Inference

by

Vasileios Gkolemis

Dissertation Presented for the Degree of MSc in Operational Research with Data Science

August 2020

Supervised by Senior Lecturer Michael Gutmann

Abstract

Here comes your abstract \dots

Acknowledgments

Here come your acknowledgments \dots

Own Work Declaration

Here comes your own work declaration

Contents

1	Introduction 1.1 Motivation 1.2 Outline of Thesis 1.3 Notation	1 1 1 1
2	Mathematical Modelling 2.1 Simulator-Based (Implicit) Models	2 3 4 5 5 5 5
3	Implementation3.1Engine for Likelihood-Free Inference (ELFI) Package3.2Implementation of the ROMC algorithm3.2.1Training Part3.2.2Inference Part3.2.3Inspection Tools3.2.4Evaluation and Visualisation3.3Computational Complexity	5 6 6 6 6 6
4 5	Experiments 4.1 Higher-Dimension Example	6 6 7
$\mathbf{A}_{\mathbf{l}}$	5.1 Outcomes	7 7 9
	An Appendix Another Appendix	9
_		

List of Tables

1	Something that doesn't make sense	6
\mathbf{List}	of Figures	
1	Image taken from [4]	1
2	Look at this scenario tree with funny times t_1 and scenarios s_1 etc	6

Figure 1: Image taken from [4]

1 Introduction

1.1 Motivation

A Simulator-Based model is a parameterized stochastic data generating mechanism [2]. The key characteristic is that although we are able to sample (simulate) data points, we cannot evaluate the likelihood of a specific set of observations y_0 . Formally, a simulator-based model is described as a parameterized family of probability density functions $\{p_{y|\theta}(y)\}_{\theta}$, whose closed-form is either unknown or intractable to evaluate. Although, evaluating $p_{y|\theta}(y)$ is intractable, sampling is feasible and frequently without huge computational cost. Practically, if we set as V the vector containing the (unobserved) random state of the process, then as a mapping $M(\theta, V) \to y$

The level of modelling freedom make implicit models particularly captivating; any physical process that can be conceptualized as a computer program of finite (determinstic or stochastic) steps, can be modelled as a Simulator-Based model without any mathematical compromise. This includes any amount of hidden (unobserved) internal variables. On the other hand, this level of freedom comes at a cost; performing inference is particularly demanding from a computational and mathematical perspective. This constraints the dimensionality of $\theta \in \mathbb{R}^D$ to quite low levels (i.e. D < 20).

For underlying the importance of Simulator-Based models, lets use as example the tuberculosis disease spread model as described in [6]. At each stage we can observe the following events; (a) the transmission of a specific haplotype to a new host (b) the mutation to a different haplotype (c) the exclusion of an infectius host (recovers/dies). The random process, which stops when m infectius hosts are reached, can be parameterized; (a) the transmission rate α (b) the mutation rate τ and (c) the exclusion rate δ . The outcome of the process is a variable-sized tuple containg the size of all different infection groups y_{θ} , as described in figure 1. Computing $p(y = y_0 | \theta)$ requires tracking all tree-paths that generate the specific tuple along with their probabilities and summing over them. Computing this probability becomes intractable when m grows larger as in real-case scenarios. On the other hand, modeling the data-generation process at a computer program is simple and light.

1.2 Outline of Thesis

1.3 Notation

Here I will write a very good, precise and brief introduction. Particularly Section 2 is good!

2 Mathematical Modelling

2.1 Simulator-Based (Implicit) Models

${\bf 2.2}\quad {\bf Robust\ Optimistation\ Monte\ Carlo\ (ROMC)\ approach}$

Techniques even better because.

- 1. They're magnificent.
- 2. If they work.

- 2.2.1 Define deterministic optimisation problems
- 2.2.2 Gradient-Based Approach
- 2.2.3 Gaussian Process Approach
- 2.2.4 Weighted Sampling

3 Implementation

Now it's getting very technical . . . I will cite. I will also show my incredible α , β and γ mathematics and do some other fancy stuff.

3.1 Engine for Likelihood-Free Inference (ELFI) Package

For example look at this

$$\min \sum_{s \in \mathcal{S}} Pr_s \left[\sum_{t=1}^{T} \left(\sum_{g \in \mathcal{G}} \left(\alpha_{gts} C_g^0 + p_{gts} C_g^1 + (p_{gts})^2 C_g^2 \right) + \sum_{g \in \mathcal{C}} \gamma_{gts} C_g^s \right) \right], \tag{3.1}$$

and you will see that it has a little number on the side so that I can refer to it as equation (3.1). Now if I do this

$$\sum_{i=1}^{n} k_i = 20$$

$$\sum_{j=20}^{m} \delta_i \geq \eta$$
(3.2)

I can align two formulae and control which one has a number on the side. It is (3.2). I can also do something like this

$$Y_l = \begin{bmatrix} (y_s + i\frac{b_c}{2}) \frac{1}{\tau^2} & -y_s \frac{1}{\tau e^{-i\theta^s}} \\ -y_s \frac{1}{\tau e^{i\theta^s}} & y_s + i\frac{b_c}{2} \end{bmatrix},$$

and it won't have a number on the side. Now if I have to do some huge mathematics I'd better structure it a little and include linebreaks etc. so that it fits on one page.

$$p_{l}^{f} = G_{l11} \left(2v_{F(l)} \bar{v}_{F(l)} - \bar{v}_{F(l)}^{2} \right)$$

$$+ \bar{v}_{F(l)} \bar{v}_{T(l)} \left[B_{l12} \sin \left(\bar{\delta}_{F(l)} - \bar{\delta}_{T(l)} \right) + G_{l12} \cos \left(\bar{\delta}_{F(l)} - \bar{\delta}_{T(l)} \right) \right]$$

$$+ \begin{bmatrix} \bar{v}_{T(l)} \left[B_{l12} \sin \left(\bar{\delta}_{F(l)} - \bar{\delta}_{T(l)} \right) + G_{l12} \cos \left(\bar{\delta}_{F(l)} - \bar{\delta}_{T(l)} \right) \right] \\ \bar{v}_{F(l)} \left[B_{l12} \sin \left(\bar{\delta}_{F(l)} - \bar{\delta}_{T(l)} \right) + G_{l12} \cos \left(\bar{\delta}_{F(l)} - \bar{\delta}_{T(l)} \right) \right] \\ \bar{v}_{F(l)} \bar{v}_{T(l)} \left[B_{l12} \cos \left(\bar{\delta}_{F(l)} - \bar{\delta}_{T(l)} \right) - G_{l12} \sin \left(\bar{\delta}_{F(l)} - \bar{\delta}_{T(l)} \right) \right] \\ \bar{v}_{F(l)} \bar{v}_{T(l)} \left[-B_{l12} \cos \left(\bar{\delta}_{F(l)} - \bar{\delta}_{T(l)} \right) + G_{l12} \sin \left(\bar{\delta}_{F(l)} - \bar{\delta}_{T(l)} \right) \right] \right],$$

$$(3.3)$$

This is a lot of fun!

3.2 Implementation of the ROMC algorithm

Finally we should have a nice picture like this one. However, I won't forget that figures and table are environments which float around in my document. So LaTeX will place them wherever it thinks they fit well with the surrounding text. I can try to change that with a float specifier, e.g. [!ht]. Now I

Figure 2: Look at this scenario tree with funny times t_1 and scenarios s_1 etc.

want to use one of my own environments. I want to define something.

Definition 3.1 *I define*

$$\Gamma_{\eta} := \sum_{i=1}^{n} \sum_{j=i}^{n} \xi(i,j)$$

I definitely need some good tables, so I do this. I should really refer to Table 1.

Case	Generators	Therm. Units	Lines	Peak load: [MW]	[MVar]
6 bus	3 at 3 buses	2	11	210	210
9 bus	3 at 3 buses	3	9	315	115
24 bus	33 at 11 buses	26	38	2850	580
30 bus	6 at 6 buses	5	41	189.2	107.2
39 bus	10 at 10 buses	7	46	6254.2	1387.1
57 bus	7 at 7 buses	7	80	1250.8	336.4

Table 1: Something that doesn't make sense.

- 3.2.1 Training Part
- 3.2.2 Inference Part
- 3.2.3 Inspection Tools
- 3.2.4 Evaluation and Visualisation
- 3.3 Computational Complexity

4 Experiments

Add experiments ...

4.1 Higher-Dimension Example

4.2 Computational Complexity

5 Conclusions

5.1 Outcomes

5.2 Future Research Directions

I have no idea how to conclude, so I don't write much. But the stuff that follows is important. lala

References

- [1] Yanzhi Chen and Michael U Gutmann. "Adaptive Gaussian Copula ABC". In: *Proceedings of Machine Learning Research*. Vol. 89. 2019, pp. 1584–1592. URL: http://proceedings.mlr.press/v89/chen19d.html.
- [2] Michael U. Gutmann and Jukka Corander. Bayesian optimization for likelihood-free inference of simulator-based statistical models. 2016. arXiv: 1501.03291.
- [3] Borislav Ikonomov and Michael U. Gutmann. "Robust Optimisation Monte Carlo". In: (2019). arXiv: 1904.00670. URL: http://arxiv.org/abs/1904.00670.
- [4] Jarno Lintusaari et al. "Fundamentals and recent developments in approximate Bayesian computation". In: Systematic Biology 66.1 (2017), e66–e82. ISSN: 1076836X. DOI: 10.1093/sysbio/syw077.
- [5] Edward Meeds and Max Welling. "Optimization Monte Carlo: Efficient and embarrassingly parallel likelihood-free inference". In: *Advances in Neural Information Processing Systems*. 2015. arXiv: 1506.03693.
- [6] Mark M. Tanaka et al. "Using approximate bayesian computation to estimate tuberculosis transmission parameters from genotype data". In: Genetics (2006). ISSN: 00166731. DOI: 10.1534/genetics.106.055574.

Appendices

A An Appendix

Some stuff.

B Another Appendix

Some other stuff.