CSoC IG Assignment Report

Comparative Study of Multivariable Linear Regression Implementations

Vivek Garg Roll Number: 24075096

May 2025

Introduction

This report presents three implementations of multivariable linear regression on the California Housing Price Dataset:

- Part 1: Pure Python implementation with gradient descent.
- Part 2: Optimized NumPy vectorized implementation.
- Part 3: scikit-learn's LinearRegression.

We compare convergence speed, predictive accuracy (MAE, RMSE, R^2), and training time.

Dataset and Preprocessing

The dataset contains numerical features and one categorical feature, ocean_proximity, which was dropped. Remaining columns plus the target median_house_value were converted to float. All features were normalized using Z-score normalization. In Parts 1–3, the target was also Z-scored before training; for interpretability, MAE and RMSE are reported both in normalized units and rescaled to dollars.

The data was split 80%/20% into training and validation sets.

Part 1: Pure Python Implementation

Implementation Details

• Hypothesis: $\hat{y} = \mathbf{w}^{\top} \mathbf{x} + b$

• Loss: $J = \frac{1}{2m} \sum (\hat{y} - y)^2$

• Optimization: Gradient descent, learning rate $\alpha = 0.01$, 1000 epochs.

• RNG: random.shuffle() (no seed).

Convergence Plot

Figure 1: Cost vs. Epochs, Pure-Python Implementation

Results

• Training time: 45.584 seconds

 $\bullet \ \, \textbf{Final weights:} \,\, [-0.3714, \, -0.4169, \, 0.1742, \, -0.0456, \, 0.1876, \, -0.2717, \, 0.1918, \, 0.6828] \,\,$

• Final bias: -0.0043

Evaluation (Validation Set)

• MAE (norm): 0.4646

• RMSE (norm): 0.6498

• R^2 : 0.6015

• MAE (dollars): $0.4646 \times \sigma_y$

• RMSE (dollars): $0.6498 \times \sigma_y$

Part 2: Optimized NumPy Implementation

Implementation Details

Vectorized operations with NumPy arrays for hypothesis, cost, and gradients. Same hyper-parameters and data split, RNG seeded (np.random.seed(42)).

Convergence Comparison

Figure 2: Cost vs. Epochs: Pure-Python vs. NumPy Implementations

Results

• Training time: 1.053 s

• Final weights: (vectorized) e.g. [-0.372, -0.418, 0.173, -0.046, 0.188, -0.272, 0.192, 0.683]

• Final bias: (same logic) -0.004

Evaluation (Validation Set)

• MAE (dollars): 52,481.48

• RMSE (dollars): 71,754.60

• R^2 : 0.6112

Part 3: scikit-learn Implementation

Implementation Details

Used sklearn.linear_model.LinearRegression(), fitting on the same normalized data.

Results

• Training time: 0.0026 s

• MAE (norm): 0.4399

• RMSE (norm): 0.6006

• R^2 : 0.6370

• MAE (dollars): 50,774.85

• RMSE (dollars): 69,327.89

Overall Comparison

Implementation	MAE (dollars)	RMSE (dollars)	R^2	Time (s)
Pure Python (Part 1)	$0.4646 \times_y$	$0.6498 \times_y$	0.6015	45.584
NumPy (Part 2)	52,481.48	71,754.60	0.6112	1.053
scikit-learn (Part 3)	50,774.85	$69,\!327.89$	0.6370	0.0026

Table 1: Performance and Run-Time Comparison

Discussion and Conclusion

- All three implementations converge to similar \mathbb{R}^2 (0.60–0.64), demonstrating correctness.
- The pure-Python version serves as a clear didactic baseline but is slow.
- NumPy vectorization yields a $\sim 10 \times$ speedup.

- \bullet scikit-learn's solver is orders of magnitude faster and matches predictive performance.
- Minor differences in weights and costs stem from different RNGs and floating-point summation order.