Stage de Master 2 Université Claude Bernard

Modélisation des observations de spectroscopie sans fente de l'Auxtel dans le cadre de LSST

Supervisé par Yannick Copin Equipe Cosmos de l'IPNL

Introduction

Univers ≈ énergie noire + matière noire ≈ 69 % ≈ 26 %

Responsable de l'accélération de l'expansion de l'univers

Supernovæ de type la

"chandelles standard"

contraindre à 0,1% les erreurs de calibration

Auxtel

L'impact de l'atmosphère

Diffusion rayleigh Vapeur d'eau Aerosols Ozone

Modélisation end-to-end et forward

Obtention du spectre

Spectroscopie sans fente

Loi de dispersion $\Delta(\lambda)$

Réseau (Ronchi)

Réponse impulsionnelle (PSF)

Modélisation mathématique

Effets modélisés

PSF instrumentale

Défocalisation

Turbulences atmosphériques

Réfraction différentielle atmosphérique

Libraries utilisées:

- HCIPy
- POPPy
- Soapy

PSF instrumentale

POPPy

HCIPy

Polynômes de Zernike

- Extraire les valeurs du polynôme de Zernike \mathbb{Z}_2^0
- Calculer la différence de phase Φ due à la défocalisation
- Renormaliser Z_2^0 par Φ

Simulation de l'effet d'une lentille convergente

- Extraire l'équation complexe du front d'onde
- La multiplier par la transmission d'une lentille convergente $\frac{x^2+y^2}{2}$

$$T_0(f) = e^{i\pi \frac{x-y}{f}}$$

HCIPy

POPPy

HCIPy

POPPy

HCIPy

POPPy

Turbulences atmosphériques (seeing)

Une réalisation: speckles

Temps de calcul 15 minutes

Soapy

Turbulences atmosphériques (seeing)

Equation de structure de phase de Kolmogorov:

$$D_{\Phi}(\vec{r}) = 2 \left[\frac{24}{5} \Gamma \left(\frac{6}{5} \right) \right]^{\frac{5}{6}} \left(\frac{\vec{r}}{r_0} \right)^{\frac{5}{3}}$$
 Paramètre de Fried

Fonction de transfert optique: $T_0(f) = e^{-\frac{1}{2}D_{\Phi}(\lambda f)}$

$$PSF = TF(T_0(f))$$

Si symétrie cylindrique:

$$\left[PSF = TH_0(T_0(f)) \right]$$

seeing ≈ 1

Turbulences atmosphériques (seeing)

Comparaison avec HCIPy

$$\log T_0(f) = -\left[\frac{8}{i}\Gamma\left(\frac{2}{i}\right)\right]^{\frac{i}{2}}\left(\frac{\vec{r}}{r_0}\right)^{i}$$

Courbes similaires mais écart notable

Causes potentielles:

- moyenne faite sur seulement 100 réalisations
- modèle plus développé utilisé dans HCIPy.

 $parallactic = -60.02^{\circ}$ airmass = 1.917

Réfraction différentielle atmosphérique (ADR)

Illustration du phénomène

Effet sur le spectrogramme

Réfraction différentielle atmosphérique (ADR)

Effet testé sur des observations

Axis	x (pixels)	y (pixels)
Maximum	3.291	2.630
Moyenne	1.279	0.616
Médiane	1.082	0.633

1 pixel = 0.401 arcsecondes

Code développé et documenté pour intégrer cet effet.

Effet similaire à la loi de dispersion.

$$\rightarrow \Delta_{total} = \Delta_{ADR} + \Delta_{r\acute{e}seau}$$

En train d'être implémenté dans Spectractor.

Résumé et conclusion

Défocalisation

- Trouver d'où vient la différence d'échelle (HCIPy en $\frac{\lambda}{D}$ et POPPy en arcseconde).

- Vérifier implémentation des polynômes de Zernike avec HCIPy et avec POPPy:
 - → Erreur dans un calcul ?
 - → Comparer les deux.
- Faire des tests avec une ouverture plus simple: sans obscuration centrale ni araignées.

0

- Tenter de simuler l'effet d'une lentille convergente.

Turbulences

- Comparer plus en détail HCIPy et l'utilisation de la fonction de transfert optique:
 - → Moyenner les couches d'atmosphère et pas les PSF résultantes
 - → Moyenner sur un plus grand nombre de réalisation.
 - → Voir comment HCIPy exploite le modèle utilisé.
 - → Implémenter le modèle de Von-Karman.

- Globalement satisfaisant

Résumé et conclusion

ADR

- Fonctionne.
- Testée et comparée à des précédents résultats.
- En implémentation

Développement personnel

- Code en Python:
 - → Analyse de codes source, utilisation et adaptations de bibliothèques.
 - → Développement de scripts documentés et robustes
 - → Automatisation des scripts et de leur analyse
- Utilisation de Git:
 - → "Versionnage" des codes
 - → Signalement et corrections d'erreurs

