锁状态	56 bit			1 bit	4bit	1 bit	2 bit
	25 bit	31	bit			(是否偏向锁)	(锁标志位)
无锁	Unused	对象 hashCode		Cms_free	对象分代年龄	0	01
偏向锁	(锁偏向的线程) thr	read ID (54 bit)	Epoch (2bit)	Cms_free	对象分代年龄	1	01
轻量级锁	指向栈中锁记录的指针						
重量级锁	指向重量级锁的指针						10
GC 标记	空						11

锁状态	优点	缺点	适用场景	优化	
偏向锁	加锁解锁无需额外的消耗,和非同	如果竞争的线程多,那么会带来额外的锁	基本没有线程竞争锁的同步场景	-XX:-UseBiasedLocking 禁用偏向锁(偏向锁是撤销是重	
畑凹坝	步方法时间相关纳秒级别	撤销的消耗(<mark>重操作,会 STW</mark>)		的操作)	
轻量级锁	竞争的线程不会阻塞,使用 CAS	自旋是消耗 CPU 资源的,如果锁的时间长,	适用于少量线程竞争对象,且线程持有锁的	竞争加剧: 有线程超过 10 次自旋, -XX:PreBlockSpin, 或	
	自旋,提高程序响应速度	或者自旋线程多,CPU 会被大量消耗	时间不长,追求响应速度的场景	者自旋线程数超过 CPU 核数的一半,1.6 之后,加入自适应	
				自旋 adapative Self Spinning, jvm 自己控制	
重量级锁	线程竞争不适用 CPU 自旋, 不会	线程阻塞,响应时间长	很 <mark>多线程竞争</mark> 锁,且锁持有的时间长, <mark>追求</mark>	减少上锁时间、减少锁粒度、锁粗化、锁消除、读	
	导致 CPU 空转消耗 CPU 资源		吞吐量的场景	写分离	