MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION

(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

SUMMER- 17 EXAMINATION Model Answer

Subject Code:

17216

Important Instructions to examiners:

- 1) The answers should be examined by key words and not as word-to-word as given in the model answer scheme.
- 2) The model answer and the answer written by candidate may vary but the examiner may try to assess the understanding level of the candidate.
- 3) The language errors such as grammatical, spelling errors should not be given more Importance (Not applicable for subject English and Communication Skills.
- 4) While assessing figures, examiner may give credit for principal components indicated in the figure. The figures drawn by candidate and model answer may vary. The examiner may give credit for any equivalent figure drawn.
- 5) Credits may be given step wise for numerical problems. In some cases, the assumed constant values may vary and there may be some difference in the candidate's answers and model answer.
- 6) In case of some questions credit may be given by judgement on part of examiner of relevant answer based on candidate's understanding.
- 7) For programming language papers, credit may be given to any other program based on equivalent concept.

Q. No.	Sub Q. N.	Answer	Marking Scheme
1		Solve any <u>TEN</u> of the following:	20
	a)	Find the value of: $i^{20} + i^{30} + i^{40} + i^{50}$	02
	Ans	$i^{20} + i^{30} + i^{40} + i^{50}$	1/2
		$= (i^2)^{10} + (i^2)^{15} + (i^2)^{20} + (i^2)^{25}$	1/2
		$= (-1)^{10} + (-1)^{15} + (-1)^{20} + (-1)^{25}$	1/2
		= 1 - 1 + 1 - 1	1/2
		=0	/-
	b)		02
	b)	Express: $(2+3i)(1-4i)$ in the form $a+ib$	02
	Ans	(2+3i)(1-4i)	1
		$= 2 - 8i + 3i - 12i^2$	1
		=2-5i-12(-1)	
		=2-5i+12	1
		= 14 - 5i	
	c)	Find 'a' if $f(x) = ax + 10$ and $f(1) = 13$	02
	Ans	$f\left(x\right) = ax + 10$	1/2
		$\therefore f(1) = a(1) + 10$	/2

SUMMER – 17 EXAMINATION

Model Answer

Q. No.	Sub Q. N.	Answer	Marking Scheme
1	c)	$\therefore 13 = a + 10$	1/2
		$\therefore 13 - 10 = a$	
		$\therefore a = 3$	1
	d)	Define : Even and odd function	02
	Ans	Even function: If $f(-x) = f(x)$, then the function	
	Alls	is an even function	1
		Odd function: If $f(-x) = -f(x)$, then the function	
		is an odd function	1
	e)	Evaluate : $\lim_{x \to 3} \frac{\sqrt{x} + \sqrt{3}}{x + 3}$	02
		$ \begin{array}{ccc} x \to 3 & x + 3 \end{array} $	02
	Ans	$\lim_{x \to 3} \frac{\sqrt{x} + \sqrt{3}}{x + 3}$	
		$=\frac{\sqrt{3}+\sqrt{3}}{\sqrt{3}}$	
		2 . 2	1
		$=\frac{2\sqrt{3}}{6}$	
		$={6}$	
		$=\frac{1}{\sqrt{3}}$	1
		√3	
			00
	f)	Evaluate : $\lim_{x\to 0} x.\cos ecx$	02
	Ans	$\lim_{x\to 0} x.\cos e cx$	
		$= \lim_{x \to 0} \frac{x}{\sin x}$	1
		= 1	1
		Evaluate: $\lim_{x\to 0} \frac{a^x + b^x - 2}{x}$	
	g)	Evaluate: $\lim_{x\to 0} {x}$	02
	Ans	$\lim_{x \to \infty} \frac{a^x + b^x - 2}{x^2 + b^x}$	
		$x \to 0$ $x \to 0$	
		$= \lim_{x \to 0} \frac{a^x - 1 + b^x - 1}{x}$	1
		Page No.0	

SUMMER – 17 EXAMINATION

Model Answer

Subject Code:

17216

Q. No.	Sub Q. N.	Answer	Marking Scheme
1			
1	g)	$= \lim_{x \to 0} \left(\frac{a^x - 1}{x} + \frac{b^x - 1}{x} \right)$ $= \lim_{x \to 0} \frac{a^x - 1}{x} + \lim_{x \to 0} \frac{b^x - 1}{x}$ $= \log a + \log b$ $= \log ab$	1
	h)	Evaluate: $\lim_{x\to 0} \frac{\log(1+5x)}{x}$	02
	Ans		
		$\lim_{x \to 0} \frac{\log(1+5x)}{x}$	
		$=\lim_{x\to 0}\frac{1}{x}\log\left(1+5x\right)$	
		$= \lim_{x \to 0} \log \left(1 + 5x\right)^{\frac{1}{x}}$	
		$= \log \left[\lim_{x \to 0} \left(1 + 5x \right)^{\frac{1}{x}} \right]$	1/2
			1/2
		$= \log \left[\lim_{x \to 0} \left(1 + 5x \right)^{\frac{1}{5x}} \right]^5$	
		$= \log e^{5}$	1
		$=5 \log e$	
		= 5	
	i)	If $y = 2e^{3x} + \tan x - \cos 2x + 9 \sin^{-1} x$, find $\frac{dy}{dx}$	02
	Ans	$y = 2e^{3x} + \tan x - \cos 2x + 9\sin^{-1} x$	
		$\frac{dy}{dx} = 2(3)e^{3x} + \sec^2 x - (-\sin 2x.2) + 9.\frac{1}{\sqrt{1-x^2}}$	1
		$\therefore \frac{dy}{dx} = 6e^{3x} + \sec^2 x + 2\sin 2x + \frac{9}{\sqrt{1 - x^2}}$	
		$\sqrt{1-x^2}$	1
	:\	$\log x$ dy	
	j)	If $y = \frac{\log x}{x}$, find $\frac{dy}{dx}$	02
	Ans	$y = \frac{\log x}{x}$	
		x	
<u> </u>	1	Page No 0	

SUMMER – 17 EXAMINATION

Model Answer

	Cl-		Mandrina
Q. No.	Sub Q. N.	Answer	Marking Scheme
1	j)	$\frac{dy}{dx} = \frac{x \frac{d}{dx} (\log x) - \log x \frac{d}{dx} (x)}{x^2}$	1/2
		$\therefore \frac{dy}{dx} = \frac{x \frac{1}{x} - \log x \cdot 1}{x^2}$ $\therefore \frac{dy}{dx} = \frac{1 - \log x}{x^2}$	1
		$\frac{dx}{dx} = x^2$	1/2
	k)	Differentiate $7x^{5} - 11x^{2}$ w.r.t. $7x^{2} - 15$	02
	Ans	Let $u = 7x^5 - 11x^2$, $v = 7x^2 - 15x$	
		$\therefore \frac{du}{dx} = 35x^4 - 22x \text{and} \frac{dv}{dx} = 14x - 15$	1/2 +1/2
		$\therefore \frac{du}{dv} = \frac{\frac{du}{dx}}{\frac{dv}{dx}} = \frac{35x^4 - 22x}{14x - 15}$	1
	l)	Differentiate w.r.t.: $tan^{-1} \left(\frac{2x}{1-x^2} \right)$	02
	Ans	Let $y = \tan^{-1}\left(\frac{2x}{1-x^2}\right)$	
		Put $x = \tan \theta$ $\therefore \theta = \tan^{-1} x$	
		$\therefore y = \tan^{-1} \left(\frac{2 \tan \theta}{1 - \tan^2 \theta} \right)$	1/2
		$\therefore y = \tan^{-1} (\tan 2\theta)$	1/2
		$\therefore y = 2\theta$ $\therefore y = 2 \tan^{-1} x$	1/2
		$\therefore \frac{dy}{dx} = 2\left(\frac{1}{1+x^2}\right)$	1/2
		$\therefore \frac{dy}{dx} = \frac{2}{1+x^2}$	
		O R	
		$y = \tan^{-1}\left(\frac{2x}{1-x^2}\right)$	
		$\therefore \tan y = \frac{2x}{1-x^2}$	1/2

SUMMER – 17 EXAMINATION

Model Answer

		L	
Q. No.	Sub Q. N.	Answer	Marking Scheme
1	I)	$\therefore \sec^{2} y \frac{dy}{dx} = \frac{\left(1 - x^{2}\right) 2 - 2x\left(-2x\right)}{\left(1 - x^{2}\right)^{2}}$ $\therefore \sec^{2} y \frac{dy}{dx} = \frac{2 - 2x^{2} + 4x^{2}}{\left(1 - x^{2}\right)^{2}}$ $\therefore \sec^{2} y \frac{dy}{dx} = \frac{2 + 2x^{2}}{\left(1 - x^{2}\right)^{2}}$ $dy \qquad 2\left(1 + x^{2}\right)$	1
	m)	$\frac{dy}{dx} = \frac{2(1+x^2)}{\sec^2 y(1-x^2)^2}$ Prove that the root of the equation $x^3 - x - 4 = 0$ lies between 0 and 2	02
	Ans	Let $f(x) = x^3 - x - 4$ f(0) = -4 < 0	1
		f(2) = 2 > 0	1
	n) Ans	root lies between 0 and 2 Find the first iteration by using Jacobi's method for the following system of equations: $10x + y + 2z = 13$, $3x + 10y + z = 14$, $2x + 3y + 10z = 15$ $x = \frac{13 - y - 2z}{10}$	02
		$y = \frac{14 - 3x - z}{10}$ $z = \frac{15 - 2x - 3y}{10}$	1/2
		Let $x_0 = y_0 = z_0 = 0$ $x_1 = 1.3$	1/2
		$y_1 = 1.4$	1/2
2		z ₁ = 1.5	16
	a)	Solve any <u>FOUR</u> of the following:	04
	Ans	If $f(x) = ax^2 + bx + 2$ and $f(1) = 3$, $f(4) = 42$, find a and b	
	AIIS	$f(x) = ax^{2} + bx + 2$ $\therefore f(1) = a(1)^{2} + b(1) + 2$	

SUMMER – 17 EXAMINATION

Model Answer

No. Q. N. Answer Scheme 2 a) $\therefore 3 = a + b + 2$ $\therefore a + b = 1$ $\therefore f(4) = a(4)^2 + b(4) + 2$ $\therefore 4 \cdot 2 - 16a + 4b + 2$ $\therefore 4 \cdot 4a + b = 10$ $\therefore a + b = 1$ $\Rightarrow a = 3$ $\Rightarrow b = -2$ b) If $f(x) = \frac{2x + 3}{3x - 2}$ prove that $f[f(x)] = x$ Ans $f[f(x)] = f(\frac{2x + 3}{3x - 2}) + 3$ $\Rightarrow \frac{2(2x + 3) + 3}{3(2x + 3) - 2(3x - 2)}$ $\Rightarrow \frac{2(2x + 3) + 3(3x - 2)}{3(2x + 3) - 2(3x - 2)}$ $\Rightarrow \frac{3x - 2}{3(2x + 3) - 2(3x - 2)}$ $\Rightarrow \frac{4x + 6 + 9x - 6}{6x + 9 - 6x + 4}$ $\Rightarrow x$ $\Rightarrow f[f(x)] = x$ C) Separate into real and imaginary parts of: $\frac{2 + i}{(3 - i)(1 + 2i)}$ O4			<u>Model Allswel</u> Subject Code.	1/210
$\begin{array}{c} \therefore a+b=1 \\ \therefore f(4)-a(4)^2+b(4)+2 \\ \therefore 42-16a+4b+2 \\ \therefore 40=16a+4b \\ \therefore 4a+b=10 \\$			Answer	Marking Scheme
Ans $f[f(x)] = f(\frac{2x+3}{3x-2})$ $= \frac{2(\frac{2x+3}{3x-2}) + 3}{3(\frac{2x+3}{3x-2}) - 2}$ $= \frac{\frac{2(2x+3)+3(3x-2)}{3x-2}}{\frac{3(2x+3)-2(3x-2)}{3x-2}}$ $= \frac{\frac{4x+6+9x-6}{6x+9-6x+4}}{\frac{13}{13}}$ $= x$ $\therefore f[f(x)] = x$ C) Separate into real and imaginary parts of: $\frac{2+i}{(3-i)(1+2i)}$ O4	2	a)		1
Ans $ f [f(x)] = f (\frac{3x-2}{3x-2}) $ $ = \frac{2(\frac{2x+3}{3x-2})+3}{3(\frac{2x+3}{3x-2})-2} $ $ = \frac{\frac{2(2x+3)+3(3x-2)}{3(2x+3)-2(3x-2)}}{\frac{3x-2}{3(2x+3)-2(3x-2)}} $ $ = \frac{4x+6+9x-6}{6x+9-6x+4} $ $ = \frac{13x}{13} $ $ = x $ $ \therefore f[f(x)] = x $		b)		
$= \frac{3x-2}{3(2x+3)-2(3x-2)}$ $3x-2$ $= \frac{4x+6+9x-6}{6x+9-6x+4}$ $= \frac{13x}{13}$ $= x$ $\therefore f\left[f(x)\right] = x$ C) Separate into real and imaginary parts of: $\frac{2+i}{(3-i)(1+2i)}$ O4		Ans	$= \frac{2\left(\frac{2x+3}{3x-2}\right)+3}{3\left(\frac{2x+3}{3x-2}\right)-2}$	
$= \frac{13}{13}$ $= x$ $\therefore f [f(x)] = x$ $= x$ Separate into real and imaginary parts of: $\frac{2+i}{(3-i)(1+2i)}$ $= x$			$= \frac{3x-2}{3(2x+3)-2(3x-2)}$ $= \frac{4x+6+9x-6}{}$	1
2+i			13 = x	
Ans $\frac{2+i}{(3-i)(1+2i)}$		c)	Separate into real and imaginary parts of: $\frac{2+i}{(3-i)(1+2i)}$	04
		Ans	$\frac{2+i}{(3-i)(1+2i)}$	

SUMMER – 17 EXAMINATION

Model Answer

_	T		
Q. No.	Sub Q. N.	Answer	Marking Scheme
			30.10.110
2	c)	$=\frac{2+i}{2}$	
		$3+6i-i-2i^2$	
		$=\frac{2+i}{2+5+i}$	
		3+5i+2 $2+i$	
		$=\frac{2+i}{5+5i}$	1
		$= \frac{2+i}{2} \times \frac{5-5i}{2}$	1/2
		$= \frac{1}{5+5i} \times \frac{1}{5-5i}$	
		$-\frac{10-10i+5i-5i^2}{}$	
		$=\frac{10-10i+5i-5i^2}{\left(5\right)^2-\left(5i\right)^2}$	
		$=\frac{10-5i-5(-1)}{}$	1/2
		$={25+25}$	/2
		$=\frac{10-5i+5}{}$	
		50	
		$=\frac{15-5i}{}$	
		50	
		$=\frac{3-i}{10}$	1
		$= \frac{3}{3} - \frac{i}{3}$	
		$=\frac{10}{10}-\frac{10}{10}$	
		\therefore Real part = $\frac{3}{100}$	1/2
		10	72
		Imaginary part = $\frac{-1}{10}$	1/2
		10	
			0.4
	d)	Solve: $(4-5i)x + (2+3i)y = 10-7i$	04
	Ans	(4-5i)x + (2+3i)y = 10-7i	
		$\therefore 4x - 5ix + 2y + 3iy = 10 - 7i$	1
		(4x + 2y) + (-5x + 3y)i = 10 - 7i	
		$\therefore 4x + 2y = 10$	
		-5x + 3y = -7	
		$\therefore 20x + 10y = 50$	1
		-20x + 12y = -28	
		22 y = 22	
		y = 1	1
		x = 2	1
			7/24

SUMMER – 17 EXAMINATION

Model Answer

	_		
Q. No.	Sub Q. N.	Answer	Marking Scheme
2	e)	Simplify: $\frac{\left(\cos 3\theta + i\sin 3\theta\right)^{4} \left(\cos 4\theta - i\sin 4\theta\right)^{5}}{3}$	04
		Simplify: $\frac{(\cos 3\theta + i \sin 3\theta) (\cos 4\theta + i \sin 5\theta)^{-4}}{(\cos 4\theta + i \sin 4\theta)^{3} (\cos 5\theta + i \sin 5\theta)^{-4}}$	
	Ans	$\frac{\left(\cos 3\theta + i\sin 3\theta\right)^{4} \left(\cos 4\theta - i\sin 4\theta\right)^{5}}{\left(\cos 4\theta - i\sin 4\theta\right)^{5}}$	
		$(\cos 4\theta + i\sin 4\theta)^3 (\cos 5\theta + i\sin 5\theta)^{-4}$	
		$(\cos\theta + i\sin\theta)^{12} (\cos\theta + i\sin\theta)^{-20}$	2
		$= \frac{\left(\cos\theta + i\sin\theta\right)^{12} \left(\cos\theta + i\sin\theta\right)^{-20}}{\left(\cos\theta + i\sin\theta\right)^{12} \left(\cos\theta + i\sin\theta\right)^{-20}}$	2
		= 1	
	f)	Find all the cube roots of (-1)	04
	Ans	$Let x = \sqrt[3]{-1}$	
		$\therefore x^3 = -1$	
		Let z = -1	
		$\therefore z = -1 + 0i$	
		Re(z) = -1, Im(z) = 0	
		$r = \left z \right = \sqrt{\left(-1\right)^2 + 0} = 1$	1/2
		$\theta = \pi - \tan^{-1} \left(\left \frac{0}{1} \right \right)$	1/2
		$ heta=\pi-0=\pi$	
		$z = r(\cos\theta + i\sin\theta)$	
		$z = 1(\cos \pi + i \sin \pi)$	1/2
		In general polar form , $z=r\left(\cos\left(2\pik+ heta ight)+i\sin\left(2\pik+ heta ight) ight)$	
		$z = 1(\cos(2\pi k + \pi) + i\sin(2\pi k + \pi))$	1/2
		$z^{\frac{1}{3}} = (\cos(2\pi k + \pi) + i\sin(2\pi k + \pi))^{\frac{1}{3}}$	
		$z^{\frac{1}{3}} = \cos\left(\frac{2\pi k + \pi}{3}\right) + i\sin\left(\frac{2\pi k + \pi}{3}\right) ; k = 0, 1, 2$	1/2
		when k = 0	
		$z_1 = \cos\left(\frac{\pi}{3}\right) + i\sin\left(\frac{\pi}{3}\right)$	1/2
		w h e n k = 1	
		$z_2 = \cos \pi + i \sin \pi = -1 + 0 = -1$	1/2
		when k = 2	
		$z_3 = \cos\left(\frac{5\pi}{3}\right) + i\sin\left(\frac{5\pi}{3}\right)$	1/2
		Page No. 0	

SUMMER – 17 EXAMINATION

Model Answer

Q.	Sub	Answer	Marking
No.	Q. N.		Scheme
3		Solve any <u>FOUR</u> of the following:	16
		(π)	
	a)	If $f(x) = \log [1 + \tan x]$, show that $f\left(\frac{\pi}{4} - x\right) = \log 2 - f(x)$	04
	Ans	$f\left(\frac{\pi}{4} - x\right) = \log\left[1 + \tan\left(\frac{\pi}{4} - x\right)\right]$	1/2
		$= \log \left[1 + \frac{\tan \frac{\pi}{4} - \tan x}{1 + \tan \frac{\pi}{4} \tan x} \right]$	1
		$= \log \left[1 + \frac{1 - \tan x}{1 + \tan x} \right]$	1/2
		$= \log \left[\frac{1 + \tan x}{1 + \tan x} \right]$	
		$= \log \left[\frac{2}{1 + \tan x} \right]$	1
		$= \log 2 - \log \left[1 + \tan x \right]$	1/2
		$= \log 2 - f(x)$	1/2
	b)	If $f(x) = x^2 - 3x + 4$, then solve $f(1-x) = f(2x+1)$	04
	Ans	$f(1-x) = (1-x)^2 - 3(1-x) + 4$	
		$= 1 - 2x + x^2 - 3 + 3x + 4$	
		$= x^2 + x + 2$	_
		f(2x+1)	1
		$= (2x+1)^2 - 3(2x+1) + 4$	
		$= 4x^2 + 4x + 1 - 6x - 3 + 4$	
		$=4x^2-2x+2$	1
		Given $f(1-x) = f(2x+1)$	
		$\therefore x^2 + x + 2 = 4x^2 - 2x + 2$	1/2
		$\therefore -3x^2 + 3x = 0$	
		$\therefore 3x^2 - 3x = 0$	1/
		3x(x-1)=0	1/2
		$\therefore x = 0,1$	1
	1		<u> </u>

SUMMER – 17 EXAMINATION

Model Answer

		<u> </u>	1
Q. No.	Sub Q. N.	Answer	Marking Scheme
3	c)	Evaluate: $\lim_{x \to 5} \frac{x^2 - 9x + 20}{x^2 - 6x + 5}$	04
	Ans	$\lim_{x \to 5} \frac{x^2 - 9x + 20}{x^2 - 6x + 5}$	
		$= \lim_{x \to 5} \frac{\left(x - 4\right)\left(x - 5\right)}{\left(x - 1\right)\left(x - 5\right)}$	2
		$=\lim_{x\to 5}\frac{(x-4)}{(x-1)}$	
		$=\frac{5-4}{5-1}$	1
		$=\frac{1}{4}$	1
	d)	Evaluate: $\lim_{x \to 3} \frac{\sqrt{x^2 + 1} - \sqrt{10}}{x + 2}$	04
		x - 3	
	Ans	$\lim_{x \to \infty} \frac{\sqrt{x^2 + 1} - \sqrt{10}}{x^2 + 1}$	
		$= \lim_{x \to 3} \frac{\sqrt{x^2 + 1} - \sqrt{10}}{x - 3} \times \frac{\sqrt{x^2 + 1} + \sqrt{10}}{\sqrt{x^2 + 1} + \sqrt{10}}$	1
		$= \lim_{x \to 3} \frac{x^2 + 1 - 10}{\left(x - 3\right)\left(\sqrt{x^2 + 1} + \sqrt{10}\right)}$	1/2
		$= \lim_{x \to 3} \frac{x^2 - 9}{\left(x - 3\right)\left(\sqrt{x^2 + 1} + \sqrt{10}\right)}$	
		$= \lim_{x \to 3} \frac{(x-3)(x+3)}{(x-3)(\sqrt{x^2+1} + \sqrt{10})}$	1
		$= \lim_{x \to 3} \frac{x+3}{\sqrt{x^2+1} + \sqrt{10}}$	
		$= \frac{3+3}{\sqrt{(3)^2+1}+\sqrt{10}}$	1/2
		$=\frac{6}{2\sqrt{10}}$	
		$=\frac{3}{\sqrt{10}}$	1

SUMMER – 17 EXAMINATION

Model Answer

		<u> Moder Answer</u>	
Q.	Sub		Marking
No.	Q. N.	Answer	Scheme
	,		
3	e)	Evaluate: $\lim_{x \to a} \frac{\sin x - \sin a}{x - a}$	04
		Evaluate: $\lim_{x \to a} {x - a}$	
	Ans	$\sin x - \sin a$	
	Alls	$\lim_{x \to a} {x - a}$	
		Put $x = a + h$ as $x \to a$, $h \to 0$	
			1
		$= \lim_{h \to 0} \frac{\sin(a+h) - \sin a}{a+h-a}$	_
		a + h - a	
		$2\cos\left(\frac{a+h+a}{a+h-a}\right)\sin\left(\frac{a+h-a}{a+h-a}\right)$	1
		$= \lim_{h \to 0} \frac{2 \cos \left(\frac{a+h+a}{2}\right) \sin \left(\frac{a+h-a}{2}\right)}{h}$	1
		$= \lim_{h \to 0} h$	
		(2a+h) (h)	
		$= 2 \lim_{h \to 0} \frac{\cos\left(\frac{2a+h}{2}\right) \sin\left(\frac{h}{2}\right)}{h}$	
		$=2\lim_{h\to 0}\frac{2}{h}$	
		(
		$= 2 \left(\lim_{h \to 0} \cos \left(\frac{2a+h}{2} \right) \right) \left(\lim_{h \to 0} \frac{\sin \left(\frac{h}{2} \right)}{\frac{h}{2}} \cdot \frac{1}{2} \right)$	1
		$=2\left \limsup_{n\to\infty}\cos\left(\frac{2n+n}{2}\right)\right \left \lim_{n\to\infty}\frac{2n+n}{2}\right $	
		$\begin{pmatrix} n \rightarrow 0 & \begin{pmatrix} 2 & 1 \end{pmatrix} \end{pmatrix} \begin{pmatrix} n \rightarrow 0 & \frac{n}{2} & 2 \\ \frac{n}{2} & \frac{n}{2} & \frac{n}{2} \end{pmatrix}$	
		$=2(\cos a)\frac{1}{2}$	
			1
		$= \cos a$	
		$15^{x} 5^{x} 2^{x} + 1$	04
	f)	Evaluate: $\lim_{x\to 0} \frac{15^x - 5^x - 3^x + 1}{r \sin r}$	
	A 100 a	X.5111 X	
	Ans	$\lim_{x \to 0} \frac{15^x - 5^x - 3^x + 1}{1}$	
		$x \to 0$ $x.\sin x$	
		$= \lim_{x \to 0} \frac{5^{x} 3^{x} - 5^{x} - 3^{x} + 1}{1}$	
		$x \to 0$ $x.\sin x$	
		$= \lim_{x \to 0} \frac{5^{x} (3^{x} - 1) - (3^{x} - 1)}{1 + 1}$	
		$= \lim_{x \to 0} \frac{1}{x \cdot \sin x}$	
		$=\lim \frac{(5^x-1)(3^x-1)}{}$	1
		$x \to 0$ $x.\sin x$	
		$(5^x-1)(3^x-1)$	
		$= \lim \frac{x^2}{x^2}$	1
		$x \to 0$ $x.\sin x$	
		x^2	
		Dogo No. 1	L

SUMMER – 17 EXAMINATION

Model Answer

		<u>iviodei Aliswei</u> Subject Code.	1/210
Q. No.	Sub Q. N.	Answer	Marking Scheme
3	f)	$= \frac{\left(\lim_{x \to 0} \frac{5^x - 1}{x}\right) \left(\lim_{x \to 0} \frac{3^x - 1}{x}\right)}{\lim_{x \to 0} \frac{\sin x}{x}}$ $= (\log 5)(\log 3)$	1
4		Solve any <u>FOUR</u> of the following:	16
	a)	Differentiate w.r.t. $x : x^{\sin 2x}$	04
	Ans	Consider $y = x^{\sin 2x}$	1/2
		$\therefore \log y = \log x^{\sin 2x}$ $\therefore \log y = \sin 2x \log x$	1/2
		$\therefore \frac{1}{y} \frac{dy}{dx} = \sin 2x \frac{1}{x} + \log x (\cos 2x)(2)$	2
		$\therefore \frac{1}{y} \frac{dy}{dx} = \frac{\sin 2x}{x} + 2\log x (\cos 2x)$ $\therefore \frac{dy}{dx} = y \left[\frac{\sin 2x}{x} + 2\log x (\cos 2x) \right]$ $\therefore \frac{dy}{dx} = x^{\sin 2x} \left[\frac{\sin 2x}{x} + 2\log x (\cos 2x) \right]$	1
	b)	If $x = 3\cos\theta - \cos 3\theta$, $y = 3\sin\theta - \sin 3\theta$, then find $\frac{dy}{dx}$	04
	Ans	$x = 3\cos\theta - \cos 3\theta$	
		$\frac{dx}{d\theta} = -3\sin\theta + 3\sin3\theta$	1½
		$y = 3\sin\theta - \sin 3\theta$	1½
		$\therefore \frac{dy}{d\theta} = 3\cos\theta - 3\cos3\theta$	
		$\therefore \frac{dy}{dx} = \frac{\frac{dy}{d\theta}}{\frac{dx}{d\theta}} = \frac{3\cos\theta - 3\cos3\theta}{-3\sin\theta + 3\sin3\theta}$ $\therefore \frac{dy}{dx} = \frac{\cos\theta - \cos3\theta}{-\sin\theta + \sin3\theta}$	1

SUMMER – 17 EXAMINATION

Model Answer

Q. No.	Sub Q. N.	Answer	Marking Scheme
4	c)	Differentiate w.r.t. $x (\tan x)^x$	04
	Ans	$Consider y = (tan x)^{x}$	
		$\therefore \log y = \log (\tan x)^{x}$	1/2
		$\therefore \log y = x \log (\tan x)$	1/2
		$\therefore \frac{1}{y} \frac{dy}{dx} = x \frac{1}{\tan x} \sec^2 x + \log(\tan x)(1)$	2
		$\therefore \frac{1}{y} \frac{dy}{dx} = \frac{x \sec^2 x}{\tan x} + \log \left(\tan x \right)$	
		$\therefore \frac{dy}{dx} = y \left[\frac{x \sec^2 x}{\tan x} + \log (\tan x) \right]$	1
		$\therefore \frac{dy}{dx} = \left(\tan x\right)^x \left[\frac{x \sec^2 x}{\tan x} + \log\left(\tan x\right)\right]$	
	d)	Differentiate $x^{\sin^{-1} x}$ w.r.t. $\sin^{-1} x$	04
	Ans	Let $u = x^{\sin^{-1} x}$, $v = \sin^{-1} x$	
		Consider $u = x^{\sin^{-1} x}$	
		$\therefore \log u = \log x^{\sin^{-1} x}$	1/2
		$\therefore \log u = \sin^{-1} x \log x$	_
		$\therefore \frac{1}{u} \frac{du}{dx} = \sin^{-1} x \left(\frac{1}{x} \right) + \log x \left(\frac{1}{\sqrt{1 - x^2}} \right)$	1
		$\therefore \frac{1}{u} \frac{du}{dx} = \frac{\sin^{-1} x}{x} + \frac{\log x}{\sqrt{1 - x^2}}$	
		$\therefore \frac{du}{dx} = u \left[\frac{\sin^{-1} x}{x} + \frac{\log x}{\sqrt{1 - x^2}} \right]$	
		$\therefore \frac{du}{dx} = x^{\sin^{-1}x} \left[\frac{\sin^{-1}x}{x} + \frac{\log x}{\sqrt{1-x^2}} \right]$	1/2
		$v = \sin^{-1} x$	1
		$\therefore \frac{dv}{dx} = \frac{1}{\sqrt{1-x^2}}$	
		$\therefore \frac{du}{dv} = \frac{\frac{du}{dx}}{\frac{dv}{dx}} = \frac{x^{\sin^{-1}x} \left[\frac{\sin^{-1}x}{x} + \frac{\log x}{\sqrt{1-x^2}} \right]}{\frac{1}{\sqrt{1-x^2}}}$	1

SUMMER – 17 EXAMINATION

Model Answer

		<u>iviouei Aliswei</u> Subject Code.	1/210
Q. No.	Sub Q. N.	Answer	Marking Scheme
4	d)	$\therefore \frac{dy}{dz} = x^{\sin^{-1}x} \left(\sqrt{1 - x^2} \right) \left[\frac{\sin^{-1}x}{x} + \frac{\log x}{\sqrt{1 - x^2}} \right]$	
	e)	If $xy = \log(xy)$ show that $\frac{dy}{dx} = -\frac{y}{x}$	04
	Ans	$xy = \log(xy)$	
		$\therefore x \frac{dy}{dx} + y(1) = \frac{1}{xy} \left(x \frac{dy}{dx} + y(1) \right)$	1
		$\therefore x \frac{dy}{dx} + y = \frac{1}{y} \frac{dy}{dx} + \frac{1}{x}$	1/2
		$\therefore x \frac{dy}{dx} - \frac{1}{y} \frac{dy}{dx} = \frac{1}{x} - y$	1
		$\therefore \left(x - \frac{1}{y}\right) \frac{dy}{dx} = \frac{1}{x} - y$	
		$\therefore \left(\frac{xy-1}{y}\right) \frac{dy}{dx} = \frac{1-xy}{x}$	1/2
		$\therefore \frac{dy}{dx} = \frac{-(xy-1)}{x} \times \frac{y}{xy-1}$	1
		$\therefore \frac{dy}{dx} = -\frac{y}{x}$	
	f)	If u and v are differentiable functions of x and $y = u + v$ then prove that: dv = du = dv	04
		$\frac{dy}{dx} = \frac{du}{dx} + \frac{dv}{dx}$	
	Ans	Given $y = u + v$	
		Let $\delta u, \delta v, \delta y$ are small increments in u, v, y respectively corresponding	
		to increment δx in x .	
		$\therefore y + \delta y = u + \delta u + v + \delta v$	1
		$\therefore \delta y = u + \delta u + v + \delta v - y$	
		$\therefore \delta y = u + \delta u + v + \delta v - (u + v)$	
		$\therefore \delta y = u + \delta u + v + \delta v - u - v$	4
		$\therefore \delta y = \delta u + \delta v$	1
		$\therefore \frac{\delta y}{\delta x} = \frac{\delta u + \delta v}{\delta x}$	
		$\lim_{\delta x \to 0} \frac{\delta y}{\delta x} = \lim_{\delta x \to 0} \frac{\delta u}{\delta x} + \lim_{\delta x \to 0} \frac{\delta v}{\delta x}$	1
•	•	Page No.	1 / / 2 /

SUMMER – 17 EXAMINATION

Model Answer

		<u>iviouel Allswel</u> Subject Code.	1/210
Q. No.	Sub Q. N.	Answer	Marking Scheme
4	f)	$\therefore \frac{dy}{dx} = \frac{du}{dx} + \frac{dv}{dx}$	1
5		Solve any <u>FOUR</u> of the following:	16
	a)	Evaluate: $\lim_{x\to 0} \frac{\log(2+x) - \log(2-x)}{x}$	04
	Ans	$\lim_{x \to 0} \frac{\log(2+x) - \log(2-x)}{x}$	
		$= \lim_{x \to 0} \frac{1}{x} \log \left(\frac{2+x}{2-x} \right)$	1/2
		$= \lim_{x \to 0} \frac{1}{x} \log \left \frac{1 + \frac{x}{2}}{\frac{2}{x}} \right $ $\left \frac{1 - \frac{x}{2}}{2} \right $	
		$= \lim_{x \to 0} \log \left \frac{1 + \frac{x}{2}}{2} \right ^{\frac{1}{x}}$ $\left \frac{1 - \frac{x}{2}}{2} \right $	1/2
		$= \log \left \frac{\left(\lim_{x \to 0} \left(1 + \frac{x}{2} \right)^{\frac{2}{x}} \right)^{\frac{1}{2}}}{\left(\lim_{x \to 0} \left(1 - \frac{x}{2} \right)^{-\frac{1}{2}} \right)} \right $	1
		$= \log \left[\frac{e^{\frac{1}{2}}}{e^{-\frac{1}{2}}} \right]$	1
		$=\log\left(e\right)^{\frac{1}{2}+\frac{1}{2}}$	1
		$= \log e$ $= 1$	
	b)	Show that the roots of the equation $x^3 - 9x + 1 = 0$ lies between 2 and 3. Obtain the roots by Bisection method (3 iterations only)	04
	Ans	$\operatorname{Let} f(x) = x^3 - 9x + 1$	
		Page No.	1 - / 2 /

SUMMER – 17 EXAMINATION

Model Answer

Q. No.	Sub Q. N.			,	Answ	ver			Marking Scheme	
5	b)	$f\left(2\right) = -9 < 0$								
		f(3) = 1 > 0							1	
		∴ root lies in (2,3)							
		$x_1 = \frac{a+b}{2} = \frac{2+3}{2}$	= 2.5						1	
		$f(x_1) = -5.875 <$	0							
		the root lies in (2	.5,3)						1	
		$x_2 = \frac{a + x_1}{2} = \frac{2.5 + 2}{2}$	$\frac{3}{2} = 2.75$							
		$f(x_2) = -2.953 <$	0							
		the root lies in (2	.75,3)						1	
		$x_3 = \frac{a + x_2}{2} = \frac{2.75}{2}$	$\frac{+3}{}$ = 2.875							
		OR								
		$Let f(x) = x^3 - 9x$	c + 1							
		f(2) = -9 < 0								
		f(3) = 1 > 0							1	
		∴ root lies in (2,3)						1	
			Iterations	a	b	$x = \frac{a+b}{2}$	f(x)			
			I	2	3	2.5	-5.875		1+1+1	
			II	2.5	3	2.75	-2.953			
			III	2.75	3	2.875				
	c)	Use Newton-Rapl	hson method	, Evalua	ite:	∛100 (Upt	o three ite	rations only)	04	
	Ans	$Let x = \sqrt[3]{100}$								
		$\therefore x^3 = 100$								
		$\therefore x^3 - 100 = 0$								
		$\therefore f(x) = x^3 - 100$								
		f(4) = -36 < 0 f(5) = 25 > 0							1	
		$f(3) = 23 > 0$ $f'(x) = 3x^{2}$								
		$\int (x) - 3x$								

SUMMER – 17 EXAMINATION

Model Answer

Q. No.	Sub Q. N.	Answer	Marking Scheme
5	c)	Initial root $x_0 = 5$	
	C)	$\therefore f'(5) = 75$	
		$x_{1} = x_{0} - \frac{f(x_{0})}{f(x_{0})} = 5 - \frac{f(5)}{f(5)} = 4.667$	1
		$x_2 = 4.667 - \frac{f(4.667)}{f(4.667)} = 4.642$	1
		$x_3 = 4.642 - \frac{f(4.642)}{f(4.642)} = 4.642$	1
		O R	
		Let $x = \sqrt[3]{100}$	
		$\therefore x^3 = 100$	
		$\therefore x^3 - 100 = 0$	
		$\therefore f(x) = x^3 - 100$	
		f(4) = -36 < 0	1
		$f\left(5\right)=25>0$	1/2
		$f'(x) = 3x^2$	/2
		Initial root $x_0 = 5$	
		$x_{i} = x - \frac{f(x)}{f(x)}$ $x_{i} = x - \frac{x^{3} - 100}{3x^{2}}$ $x_{i} = \frac{3x^{3} - x^{3} + 100}{3x^{2}}$	
		$x_{i} = \frac{2x^{3} + 100}{3x^{2}}$	1
		$x_1 = 4.667$	1/2
		$x_1 = 4.667$ $x_2 = 4.642$	1/2
		$x_3 = 4.642$	1/2
	d)	Using Regula-Falsi method, find the root of $xe^x - 3 = 0$ (three iterations only)	
	Ans	$Let f(x) = xe^x - 3$	04
		Page No.	

SUMMER – 17 EXAMINATION

Model Answer

Q. No.	Sub Q. N.				A	nswer			Marking Scheme		
5	d)	d) $f(1) = -0.282 < 0$ f(2) = 11.778 > 0 \therefore the root lies in $(1, 2)$									
	$x_{1} = \frac{af(b) - bf(a)}{f(b) - f(a)} = \frac{1(11.778) - 2(-0.282)}{11.778 + 0.282} = 1.023$ $f(x_{1}) = -0.154 < 0$										
		the root lies in $x_2 = \frac{1.023(11.7)}{11.7}$	(778) - 2(•	54) = 1.036				1		
		$f(x_2) = -0.08$ the root lies in $x_3 = \frac{1.036(11.7)}{11.7}$	(1.036,2	,	$\frac{81)}{}=1.043$				1		
		OR Let $f(x) = xe^{x}$ $f(1) = -0.282$	< 0								
		$f(2) = 11.778$ $\therefore \text{ the root lies}$					af(b) - bf(a)		1		
		Iterations	a 1	b 2	f (a) -0.282	f (b)	$x = \frac{af(b) - bf(a)}{f(b) - f(a)}$ 1.023	f(x) $= 0.154$			
		III	1.023	2	- 0.154 - 0.081	11.778	1.036 1.043	- 0.081	1+1+1		
	e)		n method	, fin			ot of $x^3 - 2x - 5 = 0$ in	the interval	04		
	Ans	Let $f(x) = x^3 - f(2) = -1 < 0$	-2x-5								
		$f(3) = 16 > 0$ $\therefore \text{ root lies in } ($,						1		
		$x_{1} = \frac{a+b}{2} = \frac{2-a}{2}$ $f(x_{1}) = 5.625$							1		
								Dogo No 1			

SUMMER – 17 EXAMINATION

Model Answer

	Т										
Q. No.	Sub Q. N.				Ansv	ver			Marking Scheme		
5	e)	the root lies in $(2,2.5)$)								
		$x_2 = \frac{2+2.5}{2} = 2.25$	$-\frac{2+2.5}{2}$								
		$f(x_2) = 1.891 > 0$									
		the root lies in $(2,2.2)$	5)								
		$x_3 = \frac{2 + 2.25}{2} = 2.125$							1		
		O R									
		Let $f(x) = x^3 - 2x - 5$									
		$f\left(2\right) = -1 < 0$							1		
		f(3) = 16 > 0									
		\therefore root lies in $(2,3)$									
		T.			,	$x = \frac{a+b}{}$	2 ()				
		Ito	erations	a	b	$x = \frac{}{2}$	f(x)				
			I	2	3	2.5	5.625				
			II	2	2.5	2.25	1.891		1+1+1		
			III	2	2.25	2.125					
	f)	Find the root of the eq	quation us:	 ing N	 Newtor	 1-Raphson me	ethod				
		$x^2 - 4x - 6 = 0$ near to	5.(three i	tera	tions or	nly)			04		
	Ans	Let $f(x) = x^2 - 4x - 6$,					
		f(5) = -1 < 0									
		f'(x) = 2x - 4									
		$\therefore f'(5) = 6$							1		
		Initial root $x_0 = 5$									
		$x_1 = x_0 - \frac{f(x_0)}{f(x_0)} = 5 -$	$\frac{f(5)}{f(5)} = 5$.167					1		
		$x_2 = 5.167 - \frac{f(5.167)}{f(5.167)}$	$\frac{1}{1}$ = 5.162						1		
		$x_2 = 5.162 - \frac{f(5.162)}{f(5.162)}$	$\frac{1}{2} = 5.162$						1		
								Page No 1	0.40.4		

SUMMER – 17 EXAMINATION

Model Answer

		<u>iviodei Aliswei</u> Subject Code.	
Q. No.	Sub Q. N.	Answer	Marking Scheme
5	f)	O R	
		Let $f(x) = x^2 - 4x - 6$	
		$f\left(5\right) = -1 < 0$	
		f(6) = 6 > 0	1
		f'(x) = 2x - 4	1/2
		Initial root $x_0 = 5$	
		$\therefore f'(5) = -1$	
		$x_{i} = x - \frac{f(x)}{f(x)}$	
		$x_{i} = x - \frac{x^{2} - 4x - 6}{2x - 4}$	
		$x_{i} = \frac{2x^{2} - 4x - x^{2} + 4x + 6}{2x - 4}$	
		$x_i = \frac{x^2 + 6}{2x - 4}$	1
		$\therefore f'(5) = -1$	1/2
		$x_1 = 5.167$	1/2
		$x_2 = 5.162$	
		$x_3 = 5.162$	1/2
6		Solve any <u>FOUR</u> of the following:	16
		Solve the following equations by Gauss elimination method	04
		x + y + z = 6, $3x - y + 3z = 10$, $5x + 5y - 4z = 3$	
	a)		
		x + y + z = 6 $3x - y + 3z = 10$	
	Ans	5x - y + 3z = 10 $5x + 5y - 4z = 3$	
	Alls		
		x + y + z = 6 5x + 5y + 5z = 30	
		3x - y + 3z = 10 and $5x + 5y - 4z = 3$	
		$ \begin{array}{r} $	1/2 +1/2
		$\therefore x + z = 4 \qquad \qquad \therefore z = 3$	

SUMMER – 17 EXAMINATION

Model Answer

Q. No.	Sub Q. N.	Answer	Marking Scheme
6	a)	$\therefore x = 1$	1
		y = 2	1
		z = 3	1
		Note: In the above solution, first y is eliminated and then x is eliminated to find the value of z first. If in case the problem is solved by elimination of another unknown i. e., either first x or z, appropriate marks to be given as per above scheme of marking.	
	b)	By using first principle, prove that $\frac{d}{dx}(\sin x) = \cos x$	04
	Ans	$\frac{dy}{dx} = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$	
			1
		$\frac{dy}{dx} = \lim_{h \to 0} \frac{\sin(x+h) - \sin x}{h}$	
		$\frac{dy}{dx} = \lim_{h \to 0} \frac{2\cos\left(\frac{x+h+x}{2}\right)\sin\left(\frac{x+h-x}{2}\right)}{h}$	1
		$\frac{dy}{dx} = 2\lim_{h \to 0} \frac{\cos\left(\frac{2x+h}{2}\right)\sin\left(\frac{h}{2}\right)}{h}$	
		$\frac{dy}{dx} = 2\left(\lim_{h\to 0}\cos\left(\frac{2x+h}{2}\right)\right) \left(\lim_{h\to 0}\frac{\sin\left(\frac{h}{2}\right)}{\frac{h}{2}}\cdot\frac{1}{2}\right)$	1
		$\frac{dy}{dx} = 2\left(\cos x\right)\frac{1}{2}$	
		$\frac{dy}{dx} = \cos x$	1
	c)	Solve by Jacobi's method upto 3 iterations only: 30x + y + z = 32, $x + 30y + z = 32$, $x + y + 30z = 32$	04
	Ans	$x = \frac{1}{30}(32 - y - z)$	
		$y = \frac{1}{30} (32 - x - z)$	1
		$z = \frac{1}{30}(32 - x - y)$	
		30	

SUMMER – 17 EXAMINATION

Model Answer

		<u>Model Allower</u>	
Q. No.	Sub Q. N.	Answer	Marking Scheme
6	c)	Starting with $x_0 = y_0 = z_0 = 0$	
		1.067	
		$x_1 = 1.067$	
		$y_1 = 1.067$	1
		$z_{_{1}} = 1.067$	_
		$x_2 = 0.996$	4
		$y_2 = 0.996$	1
		$z_2 = 0.996$	
		$x_3 = 1$	
		$y_3 = 1$ $z_3 = 1$	1
		$\mathcal{L}_3 = 1$	
	d)	Solve by Gauss-Seidal method (3 iterations only)	
	l u,	6x + y + z = 105, $4x + 8y + 3z = 155$, $5x + 4y - 10z = 65$	04
	Ans	$x = \frac{1}{6}(105 - y - z)$ $y = \frac{1}{8}(155 - 4x - 3z)$	
		$y = \frac{1}{2}(155 - 4x - 3z)$	
		8	1
		$z = \frac{1}{-10} (65 - 5x - 4y)$	
		Starting with $y_0 = z_0 = 0$	1
		$x_1 = 17.5$	_
		$y_1 = 10.625$	
		$z_1 = 6.5$	
			1
		$x_2 = 14.646$	
		$y_2 = 9.615$	
		$z_2 = 4.669$	
		$x_3 = 15.119$	
		$y_3 = 10.065$	1
		$z_3 = 5.086$	
		Page No. 2	

SUMMER – 17 EXAMINATION

Model Answer

	T c :		
Q. No.	Sub Q. N.	Answer	Marking Scheme
6	e)	Solve by Gauss elimination method	04
		x + y + z = 4 , $2x + y + z = 5$, $3x + 2y + z = 7$	
	Ans	x + y + z = 4	
		2x + y + z = 5	
		3x + 2y + z = 7	
		x + y + z = 4 2x + 2y + 2z = 8	
		2x + y + z = 5 and $3x + 2y + z = 7$	
			1/2 +1/2
		$-x = -1 \qquad \qquad -x + z = 1$	1
		$\therefore x = 1$	
		y = 1	1
		z = 2	1
		Note: In the above solution, first y is eliminated and then z is eliminated to find the value of x first. If in case the problem is solved by elimination of another unknown i. e., either first x or z, appropriate marks to be given as per above scheme of marking.	
	f)	Solve by Jacobi's method	04
		4x + y + 2z = 12 , $-x + 11y + 4z = 33$, $2x - 3y + 8z = 20$ (3 iterations only)	
	Ans	$x = \frac{1}{4}(12 - y - 2z)$	
		$y = \frac{1}{11} (33 + x - 4z)$	1
		$z = \frac{1}{8} (20 - 2x + 3y)$	_
		Starting with $x_0 = y_0 = z_0 = 0$	
		$x_1 = 3$	
		$y_1 = 3$	1
		$z_1 = 2.5$	
		$x_2 = 1$	
		$y_2 = 2.364$	1
		$z_2 = 2.875$	
L	1	1	l .

Page No.23/24

SUMMER - 17 EXAMINATION

Model Answer

Subject Code:

17216

Q. No.	Sub Q. N.	Answer	Marking Scheme
6	f)	$x_3 = 0.972$ $y_3 = 2.045$ $z_3 = 3.137$	1
		Important Note In the solution of the question paper, wherever possible all the possible alternative methods of solution are given for the sake of convenience. Still student may follow a method other than the given herein. In such case, first see whether the method falls within the scope of the curriculum, and then only give appropriate marks in accordance with the scheme of marking.	

Page No.24/24