K. J. SOMAIYA COLLEGE OF ENGINEERING DEPARTMENT OF ELECTRONICS ENGINEERING ELECTRONIC CIRCUITS

Power Amplifier Circuits

Numerical 1: In a Class B power amplifier, load R_L is 8 Ω , supply voltage $V_{CC} = 20$ V, $V_{EE} = -20$ V, AC input voltage is 18 V peak, frequency is 1000 Hz. Calculate the efficiency of the circuit.

Figure 1: Circuit 1

Solution:

The given circuit is a class B power amplifier.

$$V_i = V_m \sin(\omega t)$$

$$V_i = V_m \sin(2\pi f t)$$

$$V_i = 18\sin(2\pi \times 1000 \times t)$$

$$\therefore V_m = 18 \text{ V}$$

$$P_o(AC) = \frac{V_m^2}{2R_L}$$

$$P_o(AC) = \frac{18^2}{2 \times 8} =$$
20.25 W

$$I_m = \frac{V_m}{R_L} = \frac{18}{8} = \mathbf{2.25} \ \mathbf{A}$$

$$P_i(DC) = \frac{2V_{CC}I_m}{\pi}$$

$$P_i(DC) = \frac{2 \times 20 \times 2.25}{\pi} =$$
28.64 W

% Efficiency =
$$\frac{P_o(AC)}{P_i(DC)} \times 100$$

% Efficiency =
$$\frac{20.25}{28.64} \times 100 = \textbf{70.7}$$
 %

SIMULATED RESULTS:

Above circuit is simulated in LTspice. The results are presented below:

Q1 and Q2 are Power Transistors with IC = 5A and VCEO = 30V

Figure 2: Circuit Schematic 1: Results

Figure 3: Input & Output waverforms

Comparison of theoretical and simulated values:

Parameters	Theoretical Values	Simulated Values
Input DC power	28.64 W	27.3364 W
Output AC power	20.25 W	18.4427 W
% Efficiency	70.7 %	67.4657 %

Table 1: Numerical 1

