Chapter 7

Infrared Astronomy

A.T. Tokunaga

7.1	Useful Equations; Units	143
7.2	Atmospheric Transmission	144
7.3	Background Emission	146
7.4	Detectors and Signal-to-Noise Ratios	148
7.5	Photometry ($\lambda < 30 \ \mu m$)	149
7.6	Photometry ($\lambda > 30 \ \mu m$)	154
7.7	Infrared Line List	155
7.8	Dust	158
7.9	Solar System	161
7.10	Stars	163
7.11	Extragalactic Objects	164

7.1 USEFUL EQUATIONS; UNITS

The Planck function in wavelength units ($\lambda_{\mu m}$ in μm ; T in K) is

$$\begin{split} B_{\lambda} &= 2hc^2\lambda^{-5}/(e^{hc/k\lambda T}-1) \\ &= 1.1910\times 10^8\lambda_{\mu\text{m}}^{-5}/(e^{14\,387.7/\lambda_{\mu\text{m}}T}-1)\,\text{W}\,\text{m}^{-2}\,\mu\text{m}^{-1}\,\text{sr}^{-1}. \end{split}$$

The Planck function in frequency units (ν in Hz) is

$$\begin{split} B_{\nu} &= 2h\nu^3 c^{-2}/(e^{h\nu/kT} - 1) \\ &= 1.4745 \times 10^{-50} \nu^3/(e^{4.79922 \times 10^{-11} \nu/T} - 1) \text{ W m}^{-2} \text{ Hz}^{-1} \text{ sr}^{-1}. \end{split}$$

The Rayleigh–Jeans approximation (for $h\nu \ll kT$) is

$$B_{\lambda} = 2ckT\lambda^{-4} = 8.2782 \times 10^{3} T/\lambda_{\mu m}^{4} \text{ W m}^{-2} \mu \text{m}^{-1} \text{ sr}^{-1},$$

 $B_{\nu} = 2c^{-2}kT\nu^{2} = 3.0724 \times 10^{-40} T\nu^{2} \text{ W m}^{-2} \text{Hz}^{-1} \text{ sr}^{-1}.$

The Stefan-Boltzmann law is

$$B = \int B_{\lambda} d\lambda = (\sigma/\pi) T^4 = 1.8050 \times 10^{-8} T^4 \text{ W m}^{-2} \text{ sr}^{-1}.$$

The wavelength of maximum B_{λ} (Wien law) is

$$\lambda_{\text{max}} = 2898/T, \quad \lambda_{\text{max}} \text{ in } \mu\text{m}.$$

The frequency of maximum B_{ν} is

$$v_{\text{max}} = 5.878 \times 10^{10} \, T$$
, v_{max} in Hz.

The conversion equations (Ω in sr) are $F_{\lambda} = \Omega B_{\lambda}$, $F_{\nu} = \Omega B_{\nu}$, $F_{\lambda} = 3.0 \times 10^{14} F_{\nu}/\lambda_{\mu m}^2$. Other units are 1 Jansky (Jy) = 10^{-26} W m⁻² Hz⁻¹. Units details are given in Table 7.1.

Units	Radiometric name	Astronomical name
W	Flux	Luminosity
$\mathrm{W}\mathrm{m}^{-2}$	Irradiance; radiant exitance	Flux
$\mathrm{W}\mathrm{sr}^{-1}$	Intensity	
${ m W}{ m m}^{-2}{ m sr}^{-1}$	Radiance	Intensity
${ m W}{ m m}^{-2}\mu{ m m}^{-1}; { m W}{ m m}^{-2}{ m Hz}^{-1}$	Spectral irradiance	Flux density
$W m^{-2} \mu m^{-1} sr^{-1}; W m^{-2} Hz^{-1} sr^{-1}$	Spectral radiance	Surface brightness; specific intensity

Table 7.1. *Units* [1–4].

References

- Boyd, R.W. 1983, Radiometry and the Detection of Optical Radiation (Wiley, New York)
- 2. Dereniak, E.L., & Crowe, D.G. 1984, Optical Radiation Detectors (Wiley, New York)
- Wolfe, W.L., & Zissis, G.J. 1985, The Infrared Handbook, rev. ed. (Office of Naval Research, Washington, DC)
- 4. Rieke, G.H. 1994, Detection of Light; From the Ultraviolet to the Submillimeter (Cambridge University Press, Cambridge)

7.2 ATMOSPHERIC TRANSMISSION

The major atmospheric absorbers and central wavelengths of absorption bands are H_2O (0.94, 1.13, 1.37, 1.87, 2.7, 3.2, 6.3, $\lambda > 16~\mu m$); CO_2 (2.0, 4.3, 15 μm); N_2O (4.5, 17 μm); CH_4 (3.3, 7.7 μm); O_3 (9.6 μm). See Figures 7.1 and 7.2.

For atmospheric transmission at airborne and balloon altitudes, see [6, 11]. For water-vapor measurements at observatory sites, see [12–14]. For atmospheric extinction, see [2, 15–17].

Figure 7.1. Atmospheric transmission from 0.9 to 30 μ m under conditions appropriate for Mauna Kea, Hawaii. Altitude = 4.2 km, zenith angle = 30° (air mass = 1.15), precipitable water vapor overhead = 1 mm. $\lambda/\Delta\lambda$ = 300 for 1–6 μ m and 150 for 6–30 μ m. Spectra are calculated by Lord [1]. The infrared filter band passes are shown as horizontal lines; see Table 7.5 for definitions. Note that the filter transmission is modified by the atmospheric absorption. For the atmospheric transmission at Kitt Peak, see [2]. For ESO, see [3]. See also [4].

Figure 7.2. Atmospheric transmission from 0.25 to 3 mm, adapted from [5]. The precipitable water vapor is denoted by w. See also [6–9]. For the South Pole, see [10].

7.3 BACKGROUND EMISSION

7.3.1 Background Emission Sources

Table 7.2 gives the background emission from a ground-based telescope. The main background emission sources are shown in Figure 7.3. Where specified they are blackbody functions reduced by a multiplying factor ϵ . In most cases, only the minimum background levels are plotted.

- OH OH airglow. Average OH emission of 15.6 and 13.8 mag arcsec⁻² at J and H, respectively [18–21].
- GBT Ground-based telescope thermal emission, optimized for the thermal infrared and approximated as a 273 K blackbody with $\epsilon=0.02$. Emission from the Earth's atmosphere at 1.5–25 μm is shown [22].
- ZSL Zodiacal scattered light at the ecliptic pole, approximated as a 5 800 K blackbody with $\epsilon = 3 \times 10^{-14}$ (based on data from [23]).
- ZE Zodiacal emission from interplanetary dust at the ecliptic pole, approximated as a 275 K blackbody with $\epsilon = 7.1 \times 10^{-8}$. Based on observations from the Infrared Astronomical Satellite (IRAS) [24].
- GBE Galactic background emission from interstellar dust in the plane of the Galaxy. In the plane of the Galaxy away from the Galactic Center, it can be approximated by a 17 K blackbody and $\epsilon = 10^{-3}$ [25, 26].
- SEP South ecliptic pole emission as measured by the Cosmic Background Explorer (COBE) spacecraft [27].
- CST Cryogenic space telescope, cooled to 10 K with $\epsilon = 0.05$.
- CBR Cosmic background radiation, 2.73 K blackbody with $\epsilon = 1.0$ [28].

Table 7.2. Combined sky, telescope, and instrument background emission at the 3.0 m IRTF [1].^a

Band	λ (μm)	Δλ	Surface brightness (mag arcsec ⁻²)	Band	λ (μm)	Δλ	Surface brightness (mag arcsec ⁻²)
J	1.26	0.31	15.9	L	3.50	0.61	4.9
H	1.62	0.28	13.4	L'	3.78	0.59	4.5
K_{S}	2.15	0.35	14.1	M'	4.78	0.22	0.3
K	2.21	0.39	13.7	M	4.85	0.62	-0.7

Note

Reference

1. Shure, M. et al. 1994, Proc. SPIE, 2198, 614

7.3.2 OH Emission Spectrum

The OH emission is often given in Rayleigh units. To convert to other units, use the following equations, with $\lambda_{\mu m}$ in μm [29]:

1 Rayleigh unit =
$$10^{10}/4\pi$$
 photons s⁻¹ m⁻² sr⁻¹
= $1.580 \, 8 \times 10^{-10}/\lambda_{um} \, W \, m^{-2} \, sr^{-1}$,

^aTelescope emissivity at the time of the observations was about 7%.

Figure 7.3. Top: Transmission of the Earth's atmosphere at Mauna Kea (4.2 km), airborne (14 km), and balloon altitudes (28 km), adapted from [6]. Bottom: Background emission sources. The surface brightness is calculated from $N_{\phi} = \epsilon \lambda_{\mu \rm m} B_{\lambda}/(hc) = 1.41 \times 10^{16} \epsilon \lambda_{\mu \rm m}^{-4}/(e^{14\,387.7/\lambda_{\mu \rm m}T}-1)$ ($\lambda_{\mu \rm m}$ in $\mu \rm m$, T in K). The intensity is derived from $\lambda_{\mu \rm m} B_{\lambda} = 8.45 \times 10^{-9} N_{\phi}$.

Figure 7.4. Observed OH airglow spectrum adapted from [30]. See also [19, 31–34, 29].

1 Rayleigh unit/Å =
$$1.580 \, 8 \times 10^{-6} / \lambda_{\mu m} \, \text{W m}^{-2} \, \mu \text{m}^{-1} \, \text{sr}^{-1}$$

= $3.718 \, 4 \times 10^{-17} / \lambda_{\mu m} \, \text{W m}^{-2} \, \mu \text{m}^{-1} \, \text{arcsec}^{-2}$.

The OH airglow spectrum is given in Figure 7.4.

7.4 DETECTORS AND SIGNAL-TO-NOISE RATIOS

Tables 7.3 and 7.4 list the basic detector types for infrared observations.

	Table the Basic delector types and typical asoful wavetength ranges [1]						
Material	Type ^a	Wavelength range $(\mu m)^b$	Material	Type ^a	Wavelength range $(\mu m)^b$		
Si Ge HgCdTe PtSi	PD PD PD SD	< 1.1 < 1.8 1–2.5 1–4	Si:Sb Ge:Be Ge:Ga Ge:Ga	IBC PC PC PC (stressed)	14–38 30–50 40–120 120–200		
InSb Si:As	PD IBC	1–5.6 6–27	Ge or Si	TD (bolometer)	200–1000		

Table 7.3. Basic detector types and typical useful wavelength ranges [1–4].

Notes

References

- Rieke, G.H. 1994, Detection of Light: From the Ultraviolet to the Submillimeter (Cambridge University Press, Cambridge)
- 2. Fazio, G.G. 1994, Infrared Phys. Technol., 35, 107
- Herter, T. 1994, in *Infrared Astronomy with Arrays*, edited by I. McLean (Kluwer Academic, Dordrecht), p. 409
- 4. Haller, E.E. 1994, Infrared Phys. Technol., 35, 127

For an object that is distributed over n pixels, the signal photocurrent for photodiodes, photoconductors, and Schottky diodes is [35]

$$\sum_{n} i_{s} = A\tau \eta G \lambda F_{\lambda} \Delta \lambda / (hc) = A\tau \eta G (\Delta \lambda / \lambda) F_{\nu} / h \text{ electrons s}^{-1},$$

where i_s is the photocurrent from an individual pixel, A (m²) is the telescope collecting area, τ is the transmission of instrument, telescope, and atmosphere, η is the detector quantum efficiency, G is the photoconductive gain (= 1 for a photodiode; \leq 0.5 for a photoconductor), $\Delta\lambda/\lambda$ is the fractional spectral bandwidth, F_{λ} (W m⁻² μ m⁻¹) = $\Omega_{\text{source}}B_{\lambda}$ = source flux density, and F_{ν} (W m⁻² Hz⁻¹) = $\Omega_{\text{source}}B_{\nu}$ = source flux density.

The background photocurrent per pixel is

$$i_{\rm bg} = A \tau \eta G N_{\phi} \Delta \lambda \Omega_{\rm pix} \text{ electrons s}^{-1},$$

where N_{ϕ} (photons s⁻¹ m⁻² μ m⁻¹ arcsec⁻²) is the background surface brightness and $\Omega_{\rm pix}$ (arcsec²) is the solid angle on the sky viewed by one pixel.

 $^{^{}a}$ PD = photodiode, PC = photoconductor, SD = Schottky diode, IBC = impurity band conduction photoconductor [also known as blocked impurity band (BIB) photoconductor]; TD = thermal detector.

 $[^]b$ The HgCdTe long-wavelength cutoff is determined by the Hg/Cd ratio and can be extended to 25 μ m.

The RMS noise per pixel is

$$\left[N_r^2 + xG(i_s + i_{\rm bg} + i_{\rm dc}) t\right]^{1/2}$$
electrons,

where N_r (electrons) is the detector read noise, $i_{\rm dc}$ (electrons s⁻¹) is the detector dark current, t (s) is the integration time, and x=1 for a photodiode or IBC photoconductor or x=2 for a photoconductor. The signal-to-noise ratio before sky subtraction is

$$S/N = \left(\sum_{n} i_s\right) t \left(\sum_{n} \left[N_r^2 + xG(i_s + i_{bg} + i_{dc})t\right]\right)^{-1/2}.$$

An alternative signal-to-noise ratio equation including the noise introduced by sky subtraction is [36]:

$$S/N = N_{\text{obj}}[N_{\text{obj}} + n_{\text{pix}}(1 + n_{\text{pix}}/n_{\text{bg}})(N_r^2 + N_{\text{bg}} + N_{\text{dc}} + N_{\text{dig}}^2)]^{-1/2},$$

where $N_{\rm obj}$ is the total number of signal electrons from the object (= $\sum i_s t$), $n_{\rm pix}$ is the number of pixels summed for the object, $n_{\rm bg}$ is the number of pixels summed for the sky subtraction, N_r is the read noise in electrons per pixel, $N_{\rm bg}$ is the sky background in electrons per pixel (= $xGi_{\rm bg}t$), $N_{\rm dc}$ is the dark current in electrons per pixel (= $xGi_{\rm dc}t$), and $N_{\rm dig}$ is the digitization noise in electrons per pixel (usually negligible).

Table 7.4. Far-infrared heterodyne detectors [1,2].

Type	Wavelength range (μ m)
Schottky diode	100–300
Superconducting–insulator–superconducting (SIS)	300–3000

References

- 1. Phillips, T.G. 1988, in *Millimetre and Submillimetre Astronomy*, edited by R.D. Wolstencroft and W.B. Burton (Kluwer Academic, Dordrecht), p. 1
- White, G.J. 1988, in *Millimetre and Submillimetre Astronomy*, edited by R.D. Wolstencroft and W.B. Burton (Kluwer Academic, Dordrecht), p. 27

For a heterodyne receiver [37],

$$S/N = (T_S/T_N)\sqrt{t \Delta \nu}$$

where T_S is the source temperature (K), T_N is the equivalent Rayleigh–Jeans noise temperature (K) of the receiver, and $\Delta \nu$ (Hz) is the channel width of the radio integrator.

7.5 **PHOTOMETRY** ($\lambda < 30 \mu \text{m}$)

There is no common infrared photometric (radiometric) system. As a result, filter central wavelengths, filter bandwidths, and instrumental responses are different at each observatory, as are the effects of the atmospheric transmission. The flux density of Vega established by Cohen et al. [38] is presented in Table 7.5. It is based upon an atmospheric model for Vega and the flux density calibration at $0.5556 \mu m$ given by Hayes [39]. It is consistent with ground-based absolute flux density measurements to within $\leq 2\sigma$ of the measurement errors.

	Table rich Titler rearresting, canal raining, and film densities for regard						
Filter name	$\lambda_{\mathrm{iso}}^{b} (\mu\mathrm{m})$	$\Delta\lambda^c$ (μ m)	$(\text{W m}^{-2} \mu \text{m}^{-1})$	F_{ν} (Jy)	$(\text{photons s}^{-1}\text{m}^{-2}\mu\text{m}^{-1})$		
V	0.5556^d		3.44×10^{-8}	3 540	9.60×10^{10}		
J	1.215	0.26	3.31×10^{-9}	1 630	2.02×10^{10}		
H	1.654	0.29	1.15×10^{-9}	1 050	9.56×10^{9}		
K_{s}	2.157	0.32	4.30×10^{-10}	667	4.66×10^{9}		
K	2.179	0.41	4.14×10^{-10}	655	4.53×10^9		
L	3.547	0.57	6.59×10^{-11}	276	1.17×10^9		
L'	3.761	0.65	5.26×10^{-11}	248	9.94×10^{8}		
M	4.769	0.45	2.11×10^{-11}	160	5.06×10^{8}		
8.7	8.756	1.2	1.96×10^{-12}	50.0	8.62×10^{7}		
N	10.472	5.19	9.63×10^{-13}	35.2	5.07×10^{7}		
11.7	11.653	1.2	6.31×10^{-13}	28.6	3.69×10^{7}		
Q	20.130	7.8	7.18×10^{-14}	9.70	7.26×10^{6}		

Table 7.5. Filter wavelengths, bandwidths, and flux densities for Vega.^a

 a Cohen et al. [1] recommend the use of Sirius rather than Vega as the photometric standard for $\lambda > 20~\mu m$ because of the infrared excess of Vega at these wavelengths. The magnitude of Vega depends on the photometric system used, and it is either assumed to be 0.0 mag or assumed to be 0.02 or 0.03 mag for consistency with the visual magnitude.

 b The infrared isophotal wavelengths and flux densities (except for K_s) are taken from Table 1 of [1], and they are based on the UKIRT filter set and the atmospheric absorption at Mauna Kea. See Table 2 of [1] for the case of the atmospheric absorption at Kitt Peak. The isophotal wavelength is defined by $F(\lambda_{iso}) = \int F(\lambda)S(\lambda) d\lambda / \int S(\lambda) d\lambda$, where $F(\lambda)$ is the flux density of Vega and $S(\lambda)$ is the (detector quantum efficiency) × (filter transmission) × (optical efficiency) × (atmospheric transmission) [2]. λ_{iso} depends on the spectral shape of the source and a correction must be applied for broadband photometry of sources that deviate from the spectral shape of the standard star [3]. The flux density and λ_{iso} for K_s were calculated here. For another filter, K', at 2.11 μ m, see [4].

^cThe filter full width at half maximum.

References

- 1. Cohen, M. et al. 1992, AJ, 104, 1650
- 2. Golay, M. 1974, Introduction to Astronomical Photometry (Reidel, Dordrecht), p. 40
- 3. Hanner, M.S., et al. 1984, AJ, 89, 162
- 4. Wainscoat, R.J., & Cowie, L.L. 1992, AJ, 103, 332
- Hayes, D.S. 1985, in Calibration of Fundamental Stellar Quantities, edited by D.S. Hayes, et al., Proc. IAU Symp. No. 111 (Reidel, Dordrecht), p. 225

Absolute calibration. (a) For 1.2–5 μ m, see [40]. (b) For 10–20 μ m, see [41].

Photometric systems and standard star observations. For AAO, 1.2–3.8 μm, see [42]; for CIT, 1.2–3.5 μm, see [43]; for ESO, 1.2–3.8 μm, see [44]; for ESO, 1.2–4.8 μm, see [45]; for IRTF, 10–20 μm, see [46]; for KPNO, 1.2–2.2 μm, see [47]; for MSO, 1.2–2.2 μm, see [48]; for OAN, 1.2–2.2 μm, see [49]; for SAAO, 1.2–3.4 μm, see [50]; for UA, IRTF, WIRO, 1.2–20 μm, see [51]; for UKIRT, 1–2.2 μm, faint standards, see [52]; for WIRO, 1.2–33 μm, see [53].

Color transformations. For JHKLL'M; SAAO–Johnson, SAAO-ESO, SAAO–AAO, AAO–MSO, AAO–CIT, see [17]; for JHKLM; ESO–SAAO; ESO–AAO; ESO–MSSSO; ESO–CTIO, see [44]; for JHK; OAN–CIT, OAN–AAO, OAN–ESO, OAN–Johnson, see [49]; for JHKL; SAAO–ESO, SAAO–AAO, SAAO–MSSSO, SAAO–CTIO, see [50]; for JHKL; CIT–AAO, CIT–SAAO, CIT–Johnson, see [54]; for JHKLM; Johnson–ESO, Johnson–SAAO, see [55]; for JHK; CIT–IRTF, CIT–UKIRT, CIT–CTIO, CIT–ESO, CIT–KPNO, CIT–HCO, CIT–AAO, CIT–Johnson/Glass, see [56].

Acronyms. AAO = Anglo-Australian Observatory; CIT = California Institute of Technology; CTIO = Cerro Tololo Inter-American Observatory; ESO = European Southern Observatory; HCO =

^dThe wavelength at V is a monochromatic wavelength; see [5].

Harvard College Observatory (Mt. Hopkins); IRTF = NASA Infrared Telescope Facility; KPNO = Kitt Peak National Observatory; MSO = Mt. Stromlo Observatory; MSSSO = Mt. Stromlo/Siding Springs Observatory; OAN = San Pedro Mártir National Observatory; SAAO = South African Astronomical Observatory; UA = University of Arizona; UKIRT = United Kingdom Infrared Telescope; WIRO = Wyoming Infrared Observatory.

Tables 7.6–7.8 give intrinsic colors and effective temperatures for stars.

Table 7.6. Intrinsic colors and effective temperatures for the main sequence (class V).^a

O9 -0.87 -0.14 -0.04 -0.06 35 900 O9.5 -0.83 -0.13 -0.04 -0.06 34 600 B0 -0.83 -0.12 -0.04 -0.06 31 500 B1 -0.74 -0.10 -0.03 -0.05 25 600 B2 -0.66 -0.09 -0.03 -0.05 22 300 B3 -0.56 -0.08 -0.02 -0.05 19 000 B4 -0.49 -0.07 -0.02 -0.05 17 200 B5 -0.42 -0.06 -0.01 -0.04 15 400 B6 -0.36 -0.05 -0.01 -0.04 14 100 B7 -0.29 -0.03 -0.01 -0.04 11 800 B8 -0.24 -0.03 -0.01 -0.04 11 800 B9 -0.13 -0.01 0.00 -0.03 10 700 A0 0.00 0.00 0.00 0.00 0.00 0.00 9 480		Table 7.6. Intrinsic colors and effective temperatures for the main sequence (class v).							
O9.5 -0.85 -0.13 -0.04 -0.06 34 600 B0 -0.83 -0.12 -0.04 -0.06 31 500 B1 -0.74 -0.10 -0.03 -0.05 25 600 B2 -0.66 -0.09 -0.03 -0.05 22 300 B3 -0.56 -0.08 -0.02 -0.05 19 000 B4 -0.49 -0.07 -0.02 -0.05 17 200 B5 -0.42 -0.06 -0.01 -0.04 15 400 B6 -0.36 -0.05 -0.01 -0.04 15 400 B7 -0.29 -0.03 -0.01 -0.04 11 800 B7 -0.29 -0.03 -0.01 -0.04 11 800 B8 -0.24 -0.03 0.00 -0.04 11 800 B9 -0.13 -0.01 0.00 -0.03 10 700 A0 0.00 0.00 0.00 0.00 0.00 0.00 9480	Spectral type	V - K	J-H	H-K	K-L	K-L'	K-M	$T_{\rm eff}{}^b$	
O9.5 -0.85 -0.13 -0.04 -0.06 31 500 B0 -0.83 -0.12 -0.04 -0.05 31 500 B1 -0.74 -0.10 -0.03 -0.05 25 600 B2 -0.66 -0.09 -0.03 -0.05 22 500 B3 -0.56 -0.08 -0.02 -0.05 19 900 B4 -0.49 -0.07 -0.02 -0.05 17 200 B5 -0.42 -0.06 -0.01 -0.04 15 400 B6 -0.36 -0.05 -0.01 -0.04 14 100 B7 -0.29 -0.03 -0.01 -0.04 11 800 B7 -0.29 -0.03 -0.01 -0.04 11 800 B8 -0.24 -0.03 0.00 -0.04 11 800 B9 -0.13 -0.01 0.00 -0.03 10 700 A0 0.00 0.00 0.00 0.00 0.00 0.00 90	O9	-0.87	-0.14	-0.04	-0.06			35 900	
B1 -0.74 -0.10 -0.03 -0.05 22 300 B2 -0.66 -0.09 -0.03 -0.05 22 300 B3 -0.56 -0.08 -0.02 -0.05 19 000 B4 -0.49 -0.07 -0.02 -0.05 17 200 B5 -0.42 -0.06 -0.01 -0.04 15 400 B6 -0.36 -0.05 -0.01 -0.04 14 100 B7 -0.29 -0.03 -0.01 -0.04 13 000 B8 -0.24 -0.03 0.00 -0.04 11 800 B9 -0.13 -0.01 0.00 -0.03 10 700 A0 0.00 0.00 0.00 0.00 0.00 9480 A2 0.14 0.02 0.01 0.01 0.01 0.01 816 A5 0.38 0.06 0.02 0.02 0.02 0.02 0.03 8160 A7 0.50 0.09	O9.5	-0.85		-0.04	-0.06			34 600	
B2 -0.66 -0.09 -0.03 -0.05 22 300 B3 -0.56 -0.08 -0.02 -0.05 19 000 B4 -0.49 -0.07 -0.02 -0.05 17 200 B5 -0.42 -0.06 -0.01 -0.04 15 400 B6 -0.36 -0.05 -0.01 -0.04 14 100 B7 -0.29 -0.03 -0.01 -0.04 13 000 B8 -0.24 -0.03 0.00 -0.04 11 800 B9 -0.13 -0.01 0.00 -0.03 10 700 A0 0.00 0.00 0.00 0.00 0.00 9 480 A2 0.14 0.02 0.01 0.01 0.01 0.01 816 A5 0.38 0.06 0.02 0.02 0.02 0.03 8160 A7 0.50 0.09 0.03 0.03 0.03 0.03 7930 F0 0.70	В0	-0.83	-0.12	-0.04	-0.06			31 500	
B3 -0.56 -0.08 -0.02 -0.05 19 000 B4 -0.49 -0.07 -0.02 -0.05 17 200 B5 -0.42 -0.06 -0.01 -0.04 15 400 B6 -0.36 -0.05 -0.01 -0.04 14 100 B7 -0.29 -0.03 -0.01 -0.04 13 000 B8 -0.24 -0.03 0.00 -0.04 11 800 B9 -0.13 -0.01 0.00 -0.03 10 700 A0 0.00 0.00 0.00 0.00 0.00 9 480 A2 0.14 0.02 0.01 0.01 0.01 0.01 8 10 A5 0.38 0.06 0.02 0.02 0.02 0.03 8 160 A7 0.50 0.09 0.03 0.03 0.03 0.03 7930 F0 0.70 0.13 0.03 0.03 0.03 0.03 750	B1	-0.74	-0.10	-0.03	-0.05			25 600	
B4 -0.49 -0.07 -0.02 -0.05 17 200 B5 -0.42 -0.06 -0.01 -0.04 15 400 B6 -0.36 -0.05 -0.01 -0.04 14 100 B7 -0.29 -0.03 -0.01 -0.04 13 000 B8 -0.24 -0.03 0.00 -0.04 11 800 B9 -0.13 -0.01 0.00 -0.03 10 700 A0 0.00 0.00 0.00 0.00 0.00 9 480 A2 0.14 0.02 0.01 0.01 0.01 0.01 810 A5 0.38 0.06 0.02 0.02 0.02 0.03 8160 A7 0.50 0.09 0.03 0.03 0.03 0.03 7930 F0 0.70 0.13 0.03 0.03 0.03 0.03 7930 F0 0.70 0.13 0.03 0.03 0.03 0.03	B2	-0.66	-0.09	-0.03	-0.05			22 300	
B5 -0.42 -0.06 -0.01 -0.04 15 400 B6 -0.36 -0.05 -0.01 -0.04 14 100 B7 -0.29 -0.03 -0.01 -0.04 13 000 B8 -0.24 -0.03 0.00 -0.04 11 800 B9 -0.13 -0.01 0.00 -0.03 10 700 A0 0.00 0.00 0.00 0.00 0.00 9 480 A2 0.14 0.02 0.01 0.01 0.01 0.01 810 A5 0.38 0.06 0.02 0.02 0.02 0.03 8160 A7 0.50 0.09 0.03 0.03 0.03 0.03 7930 F0 0.70 0.13 0.03 0.03 0.03 0.03 7920 F2 0.82 0.17 0.04 0.03 0.03 0.03 702 F5 1.10 0.23 0.04 0.04 0.04 <td>В3</td> <td>-0.56</td> <td>-0.08</td> <td>-0.02</td> <td>-0.05</td> <td></td> <td></td> <td>19 000</td>	В3	-0.56	-0.08	-0.02	-0.05			19 000	
B6 -0.36 -0.05 -0.01 -0.04 14 100 B7 -0.29 -0.03 -0.01 -0.04 13 000 B8 -0.24 -0.03 0.00 -0.04 11 800 B9 -0.13 -0.01 0.00 -0.03 10 700 A0 0.00 0.00 0.00 0.00 0.00 9 480 A2 0.14 0.02 0.01 0.01 0.01 0.01 810 A5 0.38 0.06 0.02 0.02 0.02 0.03 8160 A7 0.50 0.09 0.03 0.03 0.03 0.03 7930 F0 0.70 0.13 0.03 0.03 0.03 0.03 7920 F2 0.82 0.17 0.04 0.03 0.03 0.03 7520 F5 1.10 0.23 0.04 0.04 0.04 0.02 6530 F7 1.32 0.29 0.05	B4	-0.49	-0.07	-0.02	-0.05			17 200	
B7 -0.29 -0.03 -0.01 -0.04 13 000 B8 -0.24 -0.03 0.00 -0.04 11 800 B9 -0.13 -0.01 0.00 -0.03 10 700 A0 0.00 0.00 0.00 0.00 0.00 9480 A2 0.14 0.02 0.01 0.01 0.01 0.01 0.01 810 A5 0.38 0.06 0.02 0.02 0.02 0.03 8160 A7 0.50 0.09 0.03 0.03 0.03 0.03 7930 F0 0.70 0.13 0.03 0.03 0.03 0.03 7020 F2 0.82 0.17 0.04 0.03	B5	-0.42	-0.06	-0.01	-0.04			15 400	
B8 -0.24 -0.03 0.00 -0.04 11 800 B9 -0.13 -0.01 0.00 -0.03 10 700 A0 0.00 0.00 0.00 0.00 0.00 9480 A2 0.14 0.02 0.01 0.01 0.01 0.01 810 A5 0.38 0.06 0.02 0.02 0.02 0.03 8160 A7 0.50 0.09 0.03 0.03 0.03 0.03 7930 F0 0.70 0.13 0.03 0.03 0.03 0.03 7930 F2 0.82 0.17 0.04 0.03 0.03 0.03 7930 F5 1.10 0.23 0.04 0.04 0.03 0.03 0.03 750 F5 1.10 0.23 0.04 0.04 0.04 0.02 6240 G0 1.41 0.31 0.05 0.05 0.05 0.01 5930	B6	-0.36	-0.05	-0.01	-0.04			14 100	
B9 -0.13 -0.01 0.00 -0.03 10 700 A0 0.00 0.00 0.00 0.00 0.00 9 480 A2 0.14 0.02 0.01 0.01 0.01 0.01 8810 A5 0.38 0.06 0.02 0.02 0.02 0.03 8 160 A7 0.50 0.09 0.03 0.03 0.03 0.03 7 930 F0 0.70 0.13 0.03 0.03 0.03 0.03 7 020 F2 0.82 0.17 0.04 0.03 0.03 0.03 0.03 7 020 F5 1.10 0.23 0.04 0.04 0.04 0.02 6530 F7 1.32 0.29 0.05 0.04 0.04 0.02 6240 G0 1.41 0.31 0.05 0.05 0.05 0.01 5930 G2 1.46 0.32 0.05 0.05 0.05 <	B7	-0.29	-0.03	-0.01	-0.04			13 000	
A0 0.00 0.00 0.00 0.00 0.00 9480 A2 0.14 0.02 0.01 0.01 0.01 0.01 8810 A5 0.38 0.06 0.02 0.02 0.02 0.03 8160 A7 0.50 0.09 0.03 0.03 0.03 0.03 7930 F0 0.70 0.13 0.03 0.03 0.03 0.03 7020 F2 0.82 0.17 0.04 0.03 0.03 0.03 0.03 6750 F5 1.10 0.23 0.04 0.04 0.04 0.02 6530 F7 1.32 0.29 0.05 0.04 0.04 0.02 6530 F7 1.32 0.29 0.05 0.04 0.04 0.02 6240 G0 1.41 0.31 0.05 0.05 0.05 0.01 5930 G2 1.46 0.32 0.05 0.05 0.05 0.01 5740 G6 1.64 0.37 0.06									
A2 0.14 0.02 0.01 0.01 0.01 0.01 8810 A5 0.38 0.06 0.02 0.02 0.02 0.03 8160 A7 0.50 0.09 0.03 0.03 0.03 0.03 7930 F0 0.70 0.13 0.03 0.03 0.03 0.03 7020 F2 0.82 0.17 0.04 0.03 0.03 0.03 0.03 6750 F5 1.10 0.23 0.04 0.04 0.04 0.02 6530 F7 1.32 0.29 0.05 0.04 0.04 0.02 6530 F7 1.32 0.29 0.05 0.04 0.04 0.02 6240 G0 1.41 0.31 0.05 0.05 0.05 0.01 5930 G2 1.46 0.32 0.05 0.05 0.05 0.01 5740 G6 1.64 0.37 0.06 <td></td> <td></td> <td></td> <td></td> <td>-0.03</td> <td></td> <td></td> <td>10 700</td>					-0.03			10 700	
A5				0.00		0.00	0.00	9 480	
A7 0.50 0.09 0.03 0.03 0.03 0.03 7930 F0 0.70 0.13 0.03 0.03 0.03 0.03 7020 F2 0.82 0.17 0.04 0.03 0.03 0.03 6750 F5 1.10 0.23 0.04 0.04 0.04 0.02 6530 F7 1.32 0.29 0.05 0.04 0.04 0.02 6240 G0 1.41 0.31 0.05 0.05 0.05 0.01 5930 G2 1.46 0.32 0.05 0.05 0.05 0.01 5830 G4 1.53 0.33 0.06 0.05 0.05 0.01 5830 G6 1.64 0.37 0.06 0.05 0.05 0.01 5740 G6 1.64 0.37 0.06 0.05 0.05 0.00 5620 K0 1.96 0.45 0.08 0.06 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>									
F0 0.70 0.13 0.03 0.03 0.03 0.03 7020 F2 0.82 0.17 0.04 0.03 0.03 0.03 6750 F5 1.10 0.23 0.04 0.04 0.04 0.02 6530 F7 1.32 0.29 0.05 0.04 0.04 0.02 6240 G0 1.41 0.31 0.05 0.05 0.05 0.01 5930 G2 1.46 0.32 0.05 0.05 0.05 0.01 5830 G4 1.53 0.33 0.06 0.05 0.05 0.01 5740 G6 1.64 0.37 0.06 0.05 0.05 0.00 5620 K0 1.96 0.45 0.08 0.06 0.06 -0.01 5240 K2 2.22 0.50 0.09 0.07 0.07 -0.02 5010 K4 2.63 0.58 0.11 0.09<									
F2		0.50	0.09	0.03	0.03	0.03	0.03	7 930	
F5 1.10 0.23 0.04 0.04 0.04 0.02 6530 F7 1.32 0.29 0.05 0.04 0.04 0.02 6240 G0 1.41 0.31 0.05 0.05 0.05 0.05 0.01 5930 G2 1.46 0.32 0.05 0.05 0.05 0.05 0.01 5830 G4 1.53 0.33 0.06 0.05 0.05 0.05 0.01 5740 G6 1.64 0.37 0.06 0.05 0.05 0.00 50.00 5620 K0 1.96 0.45 0.08 0.06 0.06 0.06 0.00 500 5620 K2 2.22 0.50 0.09 0.07 0.07 0.07 0.02 5010 K4 2.63 0.58 0.11 0.09 0.10 0.11 4340 K7 3.16 0.66 0.15 0.11 0.10 0.11 4340 K7 3.16 0.66 0.15 0.11 0.13 4040 M0 3.65 0.67 0.17 0.14 0.17 3800 M1 3.87 0.66 0.18 0.15 0.21 3680 M2 4.11 0.66 0.20 0.16 0.23 3530 M3 4.65 0.64 0.23 0.20 0.32 380 M4 5.28 0.62 0.27 0.23 0.37 3180 M5 6.17 0.62 0.33 0.29 0.42 3030								7 020	
F7 1.32 0.29 0.05 0.04 0.04 0.02 6240 G0 1.41 0.31 0.05 0.05 0.05 0.05 0.01 5930 G2 1.46 0.32 0.05 0.05 0.05 0.05 0.01 5830 G4 1.53 0.33 0.06 0.05 0.05 0.05 0.01 5740 G6 1.64 0.37 0.06 0.05 0.05 0.00 50.00 5620 K0 1.96 0.45 0.08 0.06 0.06 0.06 0.01 5240 K2 2.22 0.50 0.09 0.07 0.07 0.07 0.02 5010 K4 2.63 0.58 0.11 0.09 0.10 -0.04 4560 K5 2.85 0.61 0.11 0.10 0.11 4340 K7 3.16 0.66 0.15 0.11 0.13 4040 M0 3.65 0.67 0.17 0.14 0.17 3800 M1 3.87 0.66 0.18 0.15 0.21 3680 M2 4.11 0.66 0.20 0.16 0.23 3530 M3 4.65 0.64 0.23 0.20 0.32 3880 M4 5.28 0.62 0.27 0.23 0.37 3180 M5 6.17 0.62 0.33 0.29 0.42 3030									
G0 1.41 0.31 0.05 0.05 0.05 0.01 5930 G2 1.46 0.32 0.05 0.05 0.05 0.05 0.01 5830 G4 1.53 0.33 0.06 0.05 0.05 0.05 0.01 5740 G6 1.64 0.37 0.06 0.05 0.05 0.00 50.00 5620 K0 1.96 0.45 0.08 0.06 0.06 -0.01 5240 K2 2.22 0.50 0.09 0.07 0.07 -0.02 5010 K4 2.63 0.58 0.11 0.09 0.10 -0.04 4560 K5 2.85 0.61 0.11 0.10 0.11 4340 K7 3.16 0.66 0.15 0.11 0.13 4040 M0 3.65 0.67 0.17 0.14 0.17 3800 M1 3.87 0.66 0.18 0.15 0.21 3680 M2 4.11 0.66 0.20 0.16 0.23 3530 M3 4.65 0.64 0.23 0.20 0.32 3880 M4 5.28 0.62 0.27 0.23 0.37 3180 M5 6.17 0.62 0.33 0.29 0.42 3030									
G2 1.46 0.32 0.05 0.05 0.05 0.01 5 830 G4 1.53 0.33 0.06 0.05 0.05 0.01 5 740 G6 1.64 0.37 0.06 0.05 0.05 0.00 5 620 K0 1.96 0.45 0.08 0.06 0.06 -0.01 5 240 K2 2.22 0.50 0.09 0.07 0.07 -0.02 5 010 K4 2.63 0.58 0.11 0.09 0.10 -0.04 4 560 K5 2.85 0.61 0.11 0.10 0.11 4 340 K7 3.16 0.66 0.15 0.11 0.13 4 040 M0 3.65 0.67 0.17 0.14 0.17 3 800 M1 3.87 0.66 0.18 0.15 0.21 3 680 M2 4.11 0.66 0.20 0.16 0.23 3 350 M3 4.65 0.64 0.23 0.20 0.32 3 380									
G4 1.53 0.33 0.06 0.05 0.05 0.01 5740 G6 1.64 0.37 0.06 0.05 0.05 0.00 5620 K0 1.96 0.45 0.08 0.06 0.06 -0.01 5240 K2 2.22 0.50 0.09 0.07 0.07 -0.02 5010 K4 2.63 0.58 0.11 0.09 0.10 -0.04 4560 K5 2.85 0.61 0.11 0.10 0.11 4340 K7 3.16 0.66 0.15 0.11 0.13 4040 M0 3.65 0.67 0.17 0.14 0.17 3800 M1 3.87 0.66 0.18 0.15 0.21 3 680 M2 4.11 0.66 0.20 0.16 0.23 3 350 M3 4.65 0.64 0.23 0.20 0.32 3 380 M4 5.28 0.62 0.27 0.23 0.37 3 180 M5 6.17 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>									
G6 1.64 0.37 0.06 0.05 0.05 0.00 5 620 K0 1.96 0.45 0.08 0.06 0.06 -0.01 5 240 K2 2.22 0.50 0.09 0.07 0.07 -0.02 5 010 K4 2.63 0.58 0.11 0.09 0.10 -0.04 4 560 K5 2.85 0.61 0.11 0.10 0.11 4 340 K7 3.16 0.66 0.15 0.11 0.13 4 040 M0 3.65 0.67 0.17 0.14 0.17 3 800 M1 3.87 0.66 0.18 0.15 0.21 3 680 M2 4.11 0.66 0.20 0.16 0.23 3 530 M3 4.65 0.64 0.23 0.20 0.32 3 380 M4 5.28 0.62 0.27 0.23 0.37 3 180 M5 6.17 0.62 0.33 0.29 0.42 3 030									
K0 1.96 0.45 0.08 0.06 0.06 -0.01 5 240 K2 2.22 0.50 0.09 0.07 0.07 -0.02 5 010 K4 2.63 0.58 0.11 0.09 0.10 -0.04 4 560 K5 2.85 0.61 0.11 0.10 0.11 4 340 K7 3.16 0.66 0.15 0.11 0.13 4 040 M0 3.65 0.67 0.17 0.14 0.17 3 800 M1 3.87 0.66 0.18 0.15 0.21 3 680 M2 4.11 0.66 0.20 0.16 0.23 3 530 M3 4.65 0.64 0.23 0.20 0.32 3 380 M4 5.28 0.62 0.27 0.23 0.37 3 180 M5 6.17 0.62 0.33 0.29 0.42 3 030									
K2 2.22 0.50 0.09 0.07 0.07 -0.02 5010 K4 2.63 0.58 0.11 0.09 0.10 -0.04 4560 K5 2.85 0.61 0.11 0.10 0.11 4340 K7 3.16 0.66 0.15 0.11 0.13 4040 M0 3.65 0.67 0.17 0.14 0.17 3800 M1 3.87 0.66 0.18 0.15 0.21 3680 M2 4.11 0.66 0.20 0.16 0.23 3530 M3 4.65 0.64 0.23 0.20 0.32 3380 M4 5.28 0.62 0.27 0.23 0.37 3180 M5 6.17 0.62 0.33 0.29 0.42 3030									
K4 2.63 0.58 0.11 0.09 0.10 -0.04 4 560 K5 2.85 0.61 0.11 0.10 0.11 4 340 K7 3.16 0.66 0.15 0.11 0.13 4 040 M0 3.65 0.67 0.17 0.14 0.17 3 800 M1 3.87 0.66 0.18 0.15 0.21 3 680 M2 4.11 0.66 0.20 0.16 0.23 3 530 M3 4.65 0.64 0.23 0.20 0.32 3 380 M4 5.28 0.62 0.27 0.23 0.37 3 180 M5 6.17 0.62 0.33 0.29 0.42 3 030									
K5 2.85 0.61 0.11 0.10 0.11 4 340 K7 3.16 0.66 0.15 0.11 0.13 4 040 M0 3.65 0.67 0.17 0.14 0.17 3 800 M1 3.87 0.66 0.18 0.15 0.21 3 680 M2 4.11 0.66 0.20 0.16 0.23 3 530 M3 4.65 0.64 0.23 0.20 0.32 3 380 M4 5.28 0.62 0.27 0.23 0.37 3 180 M5 6.17 0.62 0.33 0.29 0.42 3 030									
K7 3.16 0.66 0.15 0.11 0.13 4 040 M0 3.65 0.67 0.17 0.14 0.17 3 800 M1 3.87 0.66 0.18 0.15 0.21 3 680 M2 4.11 0.66 0.20 0.16 0.23 3 530 M3 4.65 0.64 0.23 0.20 0.32 3 380 M4 5.28 0.62 0.27 0.23 0.37 3 180 M5 6.17 0.62 0.33 0.29 0.42 3 030							-0.04		
M0 3.65 0.67 0.17 0.14 0.17 3 800 M1 3.87 0.66 0.18 0.15 0.21 3 680 M2 4.11 0.66 0.20 0.16 0.23 3 530 M3 4.65 0.64 0.23 0.20 0.32 3 380 M4 5.28 0.62 0.27 0.23 0.37 3 180 M5 6.17 0.62 0.33 0.29 0.42 3 030									
M1 3.87 0.66 0.18 0.15 0.21 3 680 M2 4.11 0.66 0.20 0.16 0.23 3 530 M3 4.65 0.64 0.23 0.20 0.32 3 380 M4 5.28 0.62 0.27 0.23 0.37 3 180 M5 6.17 0.62 0.33 0.29 0.42 3 030									
M2 4.11 0.66 0.20 0.16 0.23 3 530 M3 4.65 0.64 0.23 0.20 0.32 3 380 M4 5.28 0.62 0.27 0.23 0.37 3 180 M5 6.17 0.62 0.33 0.29 0.42 3 030									
M3 4.65 0.64 0.23 0.20 0.32 3 380 M4 5.28 0.62 0.27 0.23 0.37 3 180 M5 6.17 0.62 0.33 0.29 0.42 3 030									
M4 5.28 0.62 0.27 0.23 0.37 3180 M5 6.17 0.62 0.33 0.29 0.42 3030									
M5 6.17 0.62 0.33 0.29 0.42 3 030									
M6 737 0.66 0.38 0.36 0.48 2.850									
1410 7.57 0.00 0.50 0.50 0.40 2.650	M6	7.37	0.66	0.38	0.36	0.48		2 850	

Notes

^aColors given in the Johnson-Glass system as established by Bessell and Brett [1]. References used: O, B, [2]; A, F, G, K, [1]; K, M, [3]. Did not use K-M from [2] because there is a large offset compared to [1]. Approximate uncertainties (one standard deviation): ± 0.02 (O-K); ± 0.03 (M).

^bT_{eff} is an average of values from the following sources: for O, B, [4]; for B, A, F, G, K, [5]; for B, G, K, [6]; for A, F, [7]; for A, F, G, K, [8]; for A, F, G, [9]; for G, K, [10]; for K, M, [3]; for M, [11], [7], [12]. Approximate uncertainties (one standard deviation): ± 1000 $K (O9-B2); \pm 250 K (B3-B9); \pm 100 K (A0-M6).$

^{1.} Bessell, M.S., & Brett, J.M. 1988, PASP, 100, 1134

- 2. Koornneef, J. 1983, A&A, 128, 84
- 3. Bessell, M.S. 1991, AJ, 101, 662
- 4. Vacca, W.D. et al. 1996, ApJ, 460, 914
- 5. Popper, D.M. 1980, ARA&A, 18, 115
- 6. Böhm-Vitense, E. 1981, ARA&A, 19, 295
- 7. Böhm-Vitense, E. 1982, *ApJ*, **255**, 191
- 8. Blackwell, D.E. et al. 1991, A&A, 245, 567
- 9. Fernley, J.A. 1989, MNRAS, 239, 905
- 10. Bell, R.A., & Gustafsson, B. 1989, MNRAS, 236, 653
- 11. Jones, H.R.A. et al. 1995, MNRAS, 277, 767
- 12. Leggett, S.K. et al. 1996, ApJS, 104, 117

Table 7.7. Intrinsic colors and effective temperatures for giant stars (class III).^a

Spectral type	V - K	J-H	H - K	K-L	K-L'	K-M	$T_{\mathrm{eff}}{}^{b}$
G0	1.75	0.37	0.07	0.04	0.05	0.00	5 9 1 0
G4	2.05	0.47	0.08	0.05	0.06	-0.01	5 190
G6	2.15	0.50	0.09	0.06	0.07	-0.02	5 050
G8	2.16	0.50	0.09	0.06	0.07	-0.02	4960
K0	2.31	0.54	0.10	0.07	0.08	-0.03	4810
K1	2.50	0.58	0.10	0.08	0.09	-0.04	4610
K2	2.70	0.63	0.12	0.09	0.10	-0.05	4 500
K3	3.00	0.68	0.14	0.10	0.12	-0.06	4 3 2 0
K4	3.26	0.73	0.15	0.11	0.14	-0.07	4080
K5	3.60	0.79	0.17	0.12	0.16	-0.08	3 980
M0	3.85	0.83	0.19	0.12	0.17	-0.09	3 820
M1	4.05	0.85	0.21	0.13	0.17	-0.10	3 780
M2	4.30	0.87	0.22	0.15	0.19	-0.12	3710
M3	4.64	0.90	0.24	0.17	0.20	-0.13	3 630
M4	5.10	0.93	0.25	0.18	0.21	-0.14	3 560
M5	5.96	0.95	0.29	0.20	0.22	-0.15	3 4 2 0
M6	6.84	0.96	0.30				3 250
M7	7.80	0.96	0.31				

^aColors given in the Johnson-Glass system as established by Bessell and Brett in [1]. Approximate uncertainties (one standard deviation): ±0.02.

 $^{5}T_{\rm eff}$ is an average of values from the following sources: for G, K, M, [2]; for K, M, [3]; for G, K, [4]; for G, K, M, [5]. Approximate uncertainties (one standard deviation): ± 50 K (G2–K5); ± 70 K (M0–M6). For O and B stars, see [6].

- 1. Bessell, M.S., & Brett, J.M. 1988, PASP, 100, 1134
- 2. Ridgway, S.T. et al. 1980, ApJ, 235, 126
- 3. Di Benedetto, G.P., & Rabbia, Y. 1987, A&A, 188, 114
- 4. Bell, R.A., & Gustafsson, B. 1989, MNRAS, 236, 653
- 5. Blackwell, D.E. et al. 1991, A&A, 245, 567
- 6. Vacca, W.D. et al. 1996, ApJ, 460, 914

Table 7.8. Intrinsic colors and effective temperatures for supergiant stars (class I).^a

Spectral type	V - K	J-H	H - K	K-L	$T_{\mathrm{eff}}{}^{b}$
O9	-0.82	-0.05	-0.13	-0.08	32 500
B0	-0.69	-0.04	-0.10	-0.07	26 000
B1	-0.55	-0.03	-0.06	-0.07	20 700
B2	-0.40	-0.04	0.00	-0.07	17 800
В3	-0.28	-0.03	0.03	-0.05	15 600
B4	-0.20	-0.01	0.01	-0.01	13 900

Table 7.8. (Continued.)

	Table 7.6. (Commuted.)							
Spectral type	V - K	J-H	H-K	K-L	$T_{\rm eff}{}^b$			
B5	-0.13	0.01	0.00	0.02	13 400			
B6	-0.07	0.04	-0.02	0.03	12 700			
В7	0.01	0.06	-0.02	0.04	12 000			
B8	0.07	0.07	-0.02	0.05	11 200			
В9	0.13	0.08	-0.02	0.06	10 500			
A0	0.19	0.09	-0.02	0.07	9 730			
A1	0.26	0.11	-0.01	0.07	9 2 3 0			
A2	0.32	0.12	-0.01	0.08	9 080			
A5	0.48	0.13	0.02	0.07	8 5 1 0			
F0	0.64	0.15	0.04	0.06	7 700			
F2	0.75	0.18	0.05	0.06	7 170			
F5	0.93	0.22	0.06	0.07	6 640			
F8	1.21	0.28	0.07	0.07	6 100			
G0	1.44	0.33	0.08	0.08	5 5 1 0			
G3	1.67	0.38	0.09	0.08	4 980			
G8	1.99	0.43	0.11	0.09	4 590			
K0	2.15	0.46	0.12	0.10	4 4 2 0			
K1	2.28	0.49	0.13	0.11	4 3 3 0			
K2	2.43	0.52	0.13	0.12	4 2 6 0			
K3 Iab	2.90	0.59	0.13	0.15	4 130			
K5 Iab	3.50	0.67	0.14	0.18	3 850			
M0 Iab	3.80	0.73	0.18	0.20	3 650			
M1 Iab	3.90	0.73	0.20	0.22	3 550			
M2 Iab	4.10	0.73	0.22	0.24	3 450			
M3 Iab	4.60	0.74	0.24	0.26	3 200			
M4 Iab	5.20	0.78	0.26	0.28	2 980			
M0 Ib	3.80	0.76	0.18	0.12				
M1 Ib	3.90	0.76	0.20	0.14				
M2 Ib	4.10	0.76	0.22	0.16				
M3 Ib	4.60	0.77	0.24	0.18				
M4 Ib	5.20	0.81	0.26	0.20				
M0 Ia	3.80	0.61	0.18	0.27				
M1 Ia	3.90	0.61	0.20	0.29				
M2 Ia	4.10	0.61	0.22	0.31				
M3 Ia	4.60	0.62	0.24	0.33				
M4 Ia	5.20	0.66	0.26	0.35				

^aColors given in the Johnson–Glass system as established by Bessell and Brett [1]. References used: For O, A, [2]; for A, F, G, K, [3]; for K, M, [4]. Approximate uncertainties (one standard deviation): ± 0.03 .

^bT_{eff} is an average of values from the following references: For O-M, [5]; for O-K, [6]; for O, B, [7]. Approximate uncertainties (one standard deviation): ± 1000 K (O9-B2); ± 250 K (B3-B9); ± 200 K (A-M).

- 1. Bessell, M.S., & Brett, J.M. 1988, PASP, 100, 1134
- 2. Whittet, D.C.B., & van Breda, I.G. 1980, MNRAS, 192, 467
- 3. Koornneef, J. 1983, A&A, 128, 84
- 4. Elias, J. et al. 1985, ApJS, 57, 91
- 5. Schmidt-Kaler, Th. 1982, in Landolt-Börnstein, New Series, edited by K. Schaifer & H.H. Voigt (Springer-Verlag, Berlin), Vol. VI/2b, p. 451
- 6. Böhm-Vitense, E. 1981, ARA&A, 19, 295
- 7. Remie, H., & Lamers, H.J.G.L.M. 1982, A&A, 105, 85

7.6 **PHOTOMETRY** ($\lambda > 30 \mu \text{m}$)

The primary flux density calibrator for ground-based submillimeter and millimeter observations is Mars [57]. The main secondary calibrators are Uranus [58, 59] and Jupiter [5, 59, 60]. Other secondary calibrators consist of astronomical sources [59, 61].

Instrument details for the IRAS satellite are given in Table 7.9.

Table 7.0	Infrared Astronomic	al Satellite (IRAS	summary information.a
Table 7.5.	Intrarea Astronomic	ui saieiiie (IIAS)	i summar v miormanon.

Effective wavelength (μ m)	12	25	60	100
Bandwidth (FWHM) (μm) Typical detector field of view,	7.0	11.15	32.5	31.5
$(in scan) \times (cross scan) (arcmin)$	0.76×4.55	0.76×4.65	1.51×4.75	3.03×5.05
Point Source Catalog, with 2 coverages, 90% completeness limits (Jy) ^b Faint Source Catalog	0.45		0.64	•••
median 90% completeness limits $(Jy)^b$	0.18	0.29	0.26	

Notes

References

- Infrared Astronomical Satellite (IRAS) Catalogs and Atlases, 1988, ed. Joint IRAS Science Working Group (U.S. Government Printing Office, Washington, DC), Vols. 1–7
- The Infrared Processing & Analysis Center (IPAC) WWW Home Page (http://www.ipac.caltech.edu/) has numerous databases and information on IRAS catalogs

The following formulas give the IRAS four-band and two-band fluxes. For galactic sources [62]

$$F_{\rm ir}(7-135~\mu{\rm m}) = 1.0 \times 10^{-14} (20.653 f_{12} + 7.538 f_{25} + 4.578 f_{60} + 1.762 f_{100}) \,{\rm W \, m}^{-2}.$$

For extragalactic sources [63, 64]

$$F_{\rm ir}(8 - 1\,000\,\mu{\rm m}) = 1.8 \times 10^{-14}(13.48\,f_{12} + 5.16\,f_{25} + 2.58\,f_{60} + f_{100})\,{\rm W\,m}^{-2},$$

 $F_{\rm fir}(43 - 123\,\mu{\rm m}) = 1.26 \times 10^{-14}(2.58\,f_{60} + f_{100})\,{\rm W\,m}^{-2},$

where f_{12} , f_{25} , f_{60} , and f_{100} are the IRAS flux densities in Jy at 12, 25, 60, and 100 μ m. These formulas are approximations based on assumptions about the intrinsic source spectrum and dust emissivity. It is recommended that the original references be consulted for details.

The luminosity (in solar luminosities) is

$$L_{\rm ir, fir} = 3.127 \times 10^7 D^2 F_{\rm ir, fir} L_{\odot}$$

where *D* is in pc and $F_{ir,fir}$ is in W m⁻².

The far-infrared emission-radio emission correlation [65] is

$$q = \log\{[F_{\text{fir}}/(3.75 \times 10^{12} \text{ Hz})]/f_{1.4 \text{ GHz}}\} = 2.14,$$

where $f_{1.4 \text{ GHz}}$ is the 1.4 GHz flux density in W m⁻² Hz⁻¹.

^aIRAS observations are sensitive to dust with T > 25 K. For IRAS catalogs, see [1, 2].

^bCompleteness limits vary according to the amount of sky coverage obtained.

7.7 **INFRARED LINE LIST**

Table 7.10 presents data for a sample of infrared lines.

 Table 7.10. Selected infrared lines.

$\lambda (\mu m)^a$	$v (\text{cm}^{-1})^a$	Species	Transition ^b	Reference ^c
1.005 21	9 948.17	Ні	$n = 7-3 \text{ (Pa}\delta)$	[1, 2, 3]
1.012 64	9 875.18	Не п	n = 5-4	[1, 3]
1.0833	9 231.2	Не і	$2p^{3}P^{o}-2s^{3}S$	[1, 3]
1.094 11	9 139.85	Ηı	$n = 6-3 \text{ (Pa}\gamma)$	[1, 2, 3]
1.11286	8 985.84	Fe II	$b^4G_{5/2}$ – $z^4F_{3/2}$	[4, 5, 6]
1.1290	8 857.4	Oı	$3d^{3}D^{o}-3p^{3}P$	[2, 3, 4]
1.162 96	8 598.75	Не п	n = 7-5	[1, 3]
1.167 64	8 564.28	Не п	n = 11-6	[1, 7]
1.252	7 987.0	[Si IX]	$^{3}P_{1} - ^{3}P_{2}$	[8, 9, 10, 11]
1.257 02	7 955.30	[Fe II]	$a^{4}D_{7/2}-a^{6}D_{9/2}$	[4, 5, 6]
1.282 16	7 799.34	Ηı	$n = 5-3 (\text{Pa}\beta)$	[1, 2, 3]
1.31682	7 594.03	Oı	$4s^{3}S^{o}-3p^{3}P$	[3, 6]
1.47644	6773.05	Не п	n = 9-6	[1, 3]
1.52647	6 551.08	Ηı	n = 19-4 (Br19)	[1, 2, 3]
1.588 48	6 295.29	ΗI	n = 14-4 (Br14)	[1, 2, 3]
1.611 37	6 205.92	HI	n = 13-4 (Br13)	[1, 2, 3]
1.6189	6 177.0	CO	v = 6-3 band head	[12]
1.62646	6 148.32	OH	$v = 2-0 P_{1d}(15)$	[12]
1.641 17	6 093.21	HI	n = 12-4 (Br12)	[1, 2, 3]
1.644 00	6 082.73	[Fe II]	$a^{4}D_{7/2}-a^{4}F_{9/2}$	[4, 5, 6]
1.681 11	5 948.45	HI	n = 11-4 (Br11)	[1, 2, 3]
1.687 78	5 924.94	Fe II	$c^{4}F_{9/2}-z^{4}F_{9/2}$	[4, 5, 6]
1.692 30	5 909.12	He II	n = 12-7	[1, 7]
1.700 76	5 879.74	Не і	$4d^3D - 3p^3P^0$	[3, 6]
1.736 69	5 758.08	HI	n = 10-4 (Br10)	[1, 2, 3]
1.741 88	5 740.94	FeII	$c^{4}F_{7/2}-z^{4}D_{7/2}$	[3, 6]
1.817 91 1.875 61	5 500.82 5 331.60	H I H I	n = 9-4 (Br9) $n = 4-3 \text{ (Pa}\alpha\text{)}$	[1, 2, 3] [2, 3]
1.945 09	5 141.15	HI	n = 4-3 (Fact) $n = 8-4$ (Br δ)	[1, 2, 3]
1.957 56	5 108.40	H ₂	v = 1-0 S(3)	[13, 14]
1.963 4	5 093.2	[Si VI]	${}^{2}P_{1/2} - {}^{2}P_{3/2}$	[9, 10, 15]
2.033 76	4917.01	H ₂	v = 1 - 0 S(2)	[14, 16]
2.040	4 902.0	[Alix]	${}^{2}P_{3/2}^{o} - {}^{2}P_{1/2}^{o}$	[9, 10]
2.040 65	4 900.39	H_3^+	$v = 2v_2(2) - 0; (4, 6, +2) - (3, 3)$	[17]
2.040 63	4 857.45	He I	$v = 2v_2(2) - 0$, (4, 0, $+2$)-(3, 3) $2p {}^{1}P^{o} - 2s {}^{1}S$	
			*, ·	[3, 18]
2.060 59	4 852.99	Fe II	$c^{4}F_{5/2}-z^{4}F_{3/2}$	[5, 6, 18]
2.089 38	4786.11	Fe II	$c^{4}F_{3/2}-z^{4}F_{3/2}$	[5, 6, 16]
2.093 26	4777.23	H ₃ +	$v = 2v_2(2)-0; (7, 9, +2)-(6, 6)$ $4s^3S-3p^3P^o$	[17]
2.1127	4733.4	He I	v = 1-0 S(1)	[3, 6]
2.121 83	4712.91	H ₂	v = 1 - 0.5(1)	[14, 16]
2.137 48	4 678.41	Mg II	$5p^{2}P_{3/2}^{o}$ $-5s^{2}S_{1/2}$	[18]
2.143 80	4 664.61	Mg II	$5p^2P_{1/2}^o$ $-5s^2S_{1/2}$	[18]
2.166 12	4 616.55	Ні	$n = 7 - 4 (Br \gamma)$	[2, 3, 16]
2.189 11	4 568.07	Не п	n = 10-7	[1, 7]
2.206 24	4 532.59	Na I	$4p^{2}P_{3/2}^{o}-4s^{2}S_{1/2}$	[16, 19, 20]
2.208 97	4 527.00	Naı	$4p^{2}P_{1/2}^{o}$ $-4s^{2}S_{1/2}$	[16, 19, 20]
2.223 29	4 497.84	H_2	v = 1 - 0 S(0)	[14, 16]
2.247 72	4 448.96	H_2	v = 2-1 S(1)	[14, 16]
2.263 11	4418.69	Caı	$4f^{3}F_{3}^{o}$ $-4d^{3}D_{2}$	[19]
			*	

Table 7.10. (Continued.)

Table 7.10. (Continued.)							
$\lambda (\mu m)^a$	$v (\text{cm}^{-1})^a$	Species	Transition ^b	Reference ^c			
2.265 73	4 413.58	Caı	$4f {}^{3}F_{4}^{o}$ $-4d {}^{3}D_{3}$	[19]			
2.293 53	4 360.09	CO	v = 2-0 band head	[16]			
2.322 65	4 305.42	CO	v = 2-0 band head $v = 3-1$ band head	[16]			
2.343 27	4 267.54	CO	v = 3-1 band nead v = 2-0 R(1)	[21]			
2.345 31	4 263.84	CO	v = 2-0 R(1) v = 2-0 R(0)	[21]			
2.349 50	4 256.22	CO	v = 2 - 0 R(0) v = 2 - 0 P(1)	[21]			
2.351 67	4 252.30	CO	v = 2 - 0 P(2)	[21]			
2.352 46	4 250.87	CO	v = 4-2 band head	[16]			
2.382 95	4 196.48	CO	v = 5-3 band head	[16]			
2.406 59	4 155.25	H_2	v = 1 - 0 Q(1)	[13, 14]			
2.413 44	4 143.47	H ₂	v = 1 - 0 Q(2)	[13, 14]			
2.423 73	4 125.87	H ₂	v = 1-0 Q(3)	[13, 14]			
2.4833	4 026.9	[Si VII]	$^{3}P_{1}-^{3}P_{2}$	[9, 10, 15]			
2.499 95	4 000.08	H ₂	v = 1-0 Q(7)	[14, 22]			
2.625 87	3 808.26	ΗI	$n = 6-4 (\text{Br}\beta)$	[2, 22]			
2.62688	3 806.80	H_2	v = 1-0 O(2)	[14, 22]			
3.0 279	3 302.6	[Mg VIII]	${}^{2}P_{3/2}^{o} - {}^{2}P_{1/2}^{o}$	[8, 9, 10, 15]			
3.039 20	3 290.34	HI	$n = 10-5 \text{ (Pf}\epsilon)$	[2]			
3.091 69	3 234.48	He II	n = 10-3 (Tre) n = 7-6	[3]			
3.133	3 192.0	OH	v = 1-0, K=9 multiplet	[23]			
3.29699	3 033.07	HI	$n = 9-5 \text{ (Pf}\delta)$	[2, 24]			
3.418 84	2 924.97	Не п	n = 25-11	[3, 24]			
3.484 01	2 870.26	Не п	n = 17-10	[3, 24]			
3.501 16	2 856.20	ΗI	n = 24-6 (Hu24)	[2, 24]			
3.522 03	2 839.27	ΗI	n = 23-6 (Hu23)	[2, 24]			
3.6246	2 758.9	H_2	v = 0 - 0 S(15)	[25, 26]			
3.645 92	2742.79	ΗĪ	n = 19-6 (Hu19)	[2, 25]			
3.661	2731.0	[Al VI]	$^{3}P_{1} - ^{3}P_{2}$	[8-10]			
3.692 63	2 708.10	Ηı	n = 18-6 (Hu18)	[2, 25]			
3.7240	2 685.3	H_2	$v = 0 - 0 \mathrm{S}(14)$	[26]			
3.740 56	2 673.40	ΗI	$n = 8-5 \text{ (Pf}\gamma)$	[2]			
3.807 41	2 626.46	H_2	v = 1-0 O(7)	[14, 27]			
3.8462	2 600.0	H_2	v = 0-0 S(13)	[26, 27]			
3.935	2 541	[Si IX]	$^{3}P_{1}-^{3}P_{0}$	[9, 10, 15]			
3.953 00	2 529.72	H_3^+	$v = v_2(1) - 0; (1, 0, -1) - (1, 0)$	[28]			
4.004 5	2 497.2	SiO	v = 2 - 0 band head	[29]			
4.020 87	2 487.02	ΗI	n = 14-6 (Hu14)	[2, 16]			
4.037 81	2 476.59	Не І	$5f^3F^o-4d^3D$	[3, 30]			
4.049 00	2 469.75	Не і	$5g^{1}G-4f^{1}F^{o}; 5g^{3}G-4f^{3}F^{o}$	[30]			
4.052 26	2 467.76	ΗI	$n = 5-4 (\mathrm{Br}\alpha)$	[2, 16]			
4.17079	2 397.63	ΗI	n = 13-6	[2, 16]			
4.649 31	2 150.86	CO	v = 1-0 R(1)	[31]			
4.653 78	2 148.79	ΗI	$n = 7-5 (\mathrm{Pf}\beta)$	[2, 16]			
4.657 48	2 147.08	CO	v = 1 - 0 R(0)	[31]			
4.674 15	2 139.43	CO	v = 1-0 P(1)	[31]			
4.682 62	2 135.55	CO	v = 1-0 P(2)	[31]			
4.694 62	2 130.10	H_2	v = 0-0 S(9)	[14]			
5.053 1	1 979.0	H ₂	v = 0-0 S(8)	[14, 26]			
6.634	1 507	[Ni II]	$a^{2}D_{3/2}-a^{2}D_{5/2}$	[32]			
6.985	1 432	[Ar II]	$\begin{array}{cccc} a & D_{3/2} & a & D_{3/2} \\ & 2p_0 & 2p_0 & \\ & & 2p & \\ & & & 2p & \\ & & & & 2p & \\ & & & & & 2p & \\ & & & & & & 2p & \\ & & & & & & & 2p & \\ & & & & & & & & \\ & & & & & & & & $	[33]			
7.642	1 309	[Ne VI]	$-P_{3/2}-P_{1/2}$	[9, 10]			
8.991 35	1 112.18	[Ar III]	${}^{3}P_{1} - {}^{3}P_{2}$	[33, 34]			
10.51	951.5	[SIV]	${}^{2}P_{3/2}^{o} - {}^{2}P_{1/2}^{o}$	[33]			
10.521	950.48	[Co II]	$a^{3}F_{3}-a^{3}F_{4}$	[11, 32]			
12.278 6	814.425	H ₂	v = 0-0 S(2)	[14]			
12.2780	808.283	п ₂ Н і	$n = 7 - 6 \text{ (Hu}\alpha)$	[2]			
12.3720	000.203	111	$n = r \circ (\mathbf{n} \mathbf{u})$	[2]			

 $v (\text{cm}^{-1})^a$ Transition^b $\lambda (\mu m)^a$ Species Reference^c ${}^{2}P_{1/2}^{o} - {}^{2}P_{3/2}^{o}$ 12.8135 780.424 [Ne II] [33, 34] $^{3}P_{1}-^{3}P_{2}$ 15.56 642.7 [Ne III] [33] $v = 0 - 0 \, \mathrm{S}(1)$ 17.0348 587.032 H_2 [14] $^{3}P_{2}-^{3}P_{1}$ 18.7130 534.387 [S III] [34, 35] $^{3}P_{1}-^{3}P_{0}$ 24.3158 411.256 [Ne V] [34, 35] $^{2}P_{3/2}-^{2}P_{1/2}$ 25.87 386.5 [OIV] [33] 354.374 v = 0 - 0 S(0)28.2188 H_2 [14] $^{3}P_{1}-^{3}P_{0}$ 33.482 298.67 [SIII] [35, 36] $^{3}P_{2}-^{3}P_{1}$ 51.816 192.99 [OIII] [33, 35] 57.317 174.47 [NIII] [33] ${}^{3}P_{1} - {}^{3}P_{2}$ 63.1837 158.269 [I O] [37] J = 34-3377.059 129.77 CO [37] $^{3}P_{1}-^{3}P_{0}$ 88.355 113.18 [OIII] [33, 35] $^{2}\Pi_{3/2} J = 5/2-3/2$ 119.23 83.872 OH [37] $^{2}\Pi_{3/2}^{3} J = 5/2-3/2$ 119.44 83.724 OH [37] $^{3}P_{2}-^{3}P_{1}$ 82.0358 121.898 [NII] [33, 38] K = 3, J = 4-3, a - s124.65 80.225 NH_3 [37] $^{3}P_{0}-^{3}P_{1}$ 145.526 68.7162 [I O] [33] ${}^{2}P_{3/2}^{o} - {}^{2}P_{1/2}^{o}$ 157.741 63.3951 [C II] [33] J = 16-15162.81 61.421 CO [37] $^{3}P_{1}-^{3}P_{0}$ 48.7382 205.178 [NII] [38] $^{3}P_{2}-^{3}P_{1}$ 370.415 26.9967 [C1] [33] J = 7 - 6371.65 26.907 CO [39] $^{3}P_{1}-^{3}P_{0}$ 609.135 16.4167 [C1] [33]

Table 7.10. (Continued.)

- 1. Treffers, R.R. et al. 1976, ApJ, 209, 793
- 2. Moore, C.E. 1993, in Tables of Spectra of Hydrogen, Carbon, Nitrogen, and Oxygen Atoms and Ions, edited by J.W. Gallagher (CRC, Boca Raton, FL); van Hoof, P.A.M., private communication
- 3. Bashkin, S., & Stoner, J.O. 1975, Atomic Energy Levels and Grotian Diagrams (North-Holland, Amsterdam); van Hoof, P.A.M., private communication
- 4. Allen, D.A. et al. 1985, ApJ, 291, 280
- 5. Johansson, S. 1978, Phys. Scr., 18, 217
- 6. Hamann, F. et al. 1994, ApJ, 422, 626
- 7. Moore, C.E. 1971, Atomic Energy Levels, NSRDS-NBS Publication No. 35; van Hoof, P.A.M., private communication
- 8. Woodward, C.E. et al. 1995, ApJ, 438, 921
- 9. Greenhouse, M.A. et al. 1993, ApJS, 88, 23
- 10. Gehrz, R.D. 1988, ARA&A, 26, 377
- 11. Roche, P.F. et al. 1993, MNRAS, 261, 522
- 12. Hinkle, K.H. 1978, ApJ, 220, 210
- 13. Gautier III, T.H. et al. 1976, ApJ, 207, L129
- 14. Black, J.H., & van Dishoeck, E.F. 1987, ApJ, 322, 412
- 15. Reconditi, M., & Oliva, E. 1993, A&A, 274, 662; Oliva, E. et al. 1994, A&A, 288, 457
- 16. Scoville, N. et al. 1983, ApJ, 275, 201
- 17. Drossart, P. et al. 1989, Nature, 340, 539; see also Kao, L. et al. 1991, ApJS, 77, 317
- 18. Simon, M., & Cassar, L. 1984, ApJ, 283, 179
- 19. Kleinman, S.G., & Hall, D.N.B. 1986, ApJS, 62, 501

^aVacuum wavelengths and frequencies are given.

^bTransition shown is (upper level)–(lower level).

^cBecause of space limitations, only a few transitions of each species are shown; see references for additional lines. Wavelength and frequencies were calculated or obtained from primary references where possible. For additional information, see [40–45].

- 20. Martin, W.C., & Zalubas, R. 1981, J. Phys. Chem. Ref. Data Ser., 10, 153
- 21. Black, J.H., & Willner, S.P. 1984, ApJ, 279, 673
- 22. Davis, D.S. et al. 1982, ApJ, 259, 166
- 23. Beer, R. et al. 1972, ApJ, 172, 89
- 24. Lowe, R.P. et al. 1991, ApJ, 368, 195
- 25. Sanford, S.A. 1991, ApJ, 376, 599
- 26. Knacke, R.F., & Young, E.T. 1981, ApJ, 249, L65
- 27. Brand, P.W.J.L. et al. 1989, MNRAS, 236, 929
- 28. Oka, T., & Geballe, T.R. 1990, ApJ, 351, L53
- 29. Hinkle, K.H. et al. 1976, ApJ, 210, L141
- 30. Hamann, F., & Simon, M. 1986, ApJ, 311, 909
- 31. Guelachvili, G. 1979, J. Mol. Spectrosc., 75, 251; Mitchell, G.F. et al. 1989, ApJ, 341, 1020
- 32. Wooden, D.H. et al. 1993, ApJS, 88, 477
- Genzel, R. 1988, in *Millimetre and Submillimetre Astronomy*, edited by R.D. Wolstencroft and W.B. Burton (Kluwer Academic, Dordrecht), p. 223
- 34. Kelly, D.M., & Lacy, J.H. 1995, ApJ, 454, L161
- Emery, R.J., & Kessler, M.F. 1984, in Galactic and Extragalactic Infrared Spectroscopy, edited by M.F. Kessler and J.P. Phillips (Reidel, Dordrecht), p. 289
- 36. Stacy, G.J. et al. 1993, Proc. SPIE, 1946, 238
- Watson, D.M. 1984, in *Galactic and Extragalactic Infrared Spectroscopy*, edited by M.F. Kessler and J.P. Phillips (Reidel, Dordrecht), p. 195; Townes, C.H., & Melnick, G. 1990, *PASP*, 102, 357
- 38. Colgan, S.W.J. et al. 1993, ApJ, 413, 237
- 39. Howe, J.E. et al. 1993, ApJ, 410, 179
- H: Wynn-Williams, C.G. 1984, in *Galactic and Extragalactic Infrared Spectroscopy*, edited by M.F. Kessler and J.P. Phillips (Reidel, Dordrecht), p. 133
- 41. H₂: Schwartz, R.D. et al. 1987, *ApJ*, **322**, 403; Black, J.H., & van Dishoeck, E.F. 1987, *ApJ*, **322**, 412
- 42. CO: Goorvitch, D. 1994, ApJS, 95, 535
- 43. Solar atlases: Livingston, W., & Wallace, L. 1991, An Atlas of the Solar Spectrum in the Infrared from 1850 to 9000 cm⁻¹ (1.1–5.4 μm), NSO Technical Report No. 91-001 (NOAO, Tucson); Wallace, L., & Livingston, W. 1992, An Atlas of a Dark Sunspot Umbral Spectrum from 1970 to 8640 cm⁻¹ (1.16–5.1 μm), NSO Technical Report No. 92-001 (NOAO, Tucson)
- 44. Infrared spectra: Jourdain de Muizon, M. et al. 1994, *Database of Astronomical Infrared Spectroscopic Observations* (University of Leiden, Leiden)
- 45. Infrared wavelength calibration: Outred, M. 1978, J. Phys. Chem. Ref. Data Ser., 7, 1; Rao, K.N. et al. 1966, Wavelength Standards in the Infrared (Academic Press, New York)

7.8 DUST

For the infrared interstellar reddening law, see [66–69].

The total to selective absorption ([66–68], for $R = A_V/E(B - V) = 3.1$) is

$$A_V/E(J-K) = 5.82 \pm 0.1,$$
 $A_V/E(H-K) = 15.3 \pm 0.6,$ $A_V/E(V-K) = 1.13 \pm 0.03,$ $A_{\lambda}/E(J-K) = 2.4(\lambda)^{-1.75}$ (for $0.9 < \lambda < 6 \ \mu m$).

The color excess ratio [67] is

$$E(J - H)/E(H - K) = 1.70 \pm 0.05.$$

The ratio of visual extinction to silicate band optical depth (τ_{Si}) [68, 70, 71] is

$$A_V/\tau_{\rm Si} = 19 \pm 1$$
 (local interstellar medium),
 $A_V/\tau_{\rm Si} = 11 \pm 2$ (Galactic Center region).

Figure 7.5. Emission spectrum of interstellar dust. Adapted from [78]. See also [26, 79, 80].

The average visual extinction to the Galactic Center region is 34 mag [72] and to individual sources it ranges from 23 to 35 mag [67].

The extinction cross section per H nucleus in the local interstellar medium [68] is

$$N_{\rm H}/{\rm E}(J-K) = 1.1 \times 10^{22} \, {\rm nuclei \, cm^{-2} \, mag^{-1}}.$$

The interstellar linear polarization [73–75]:

$$\begin{split} P(\lambda)/P_{\text{max}} &= \exp[-K \ln^2(\lambda_{\text{max}}/\lambda)] \quad (\text{for } \lambda < 2 \ \mu\text{m}), \\ P(\lambda) &\propto \lambda^{-\beta}, \qquad \beta = 1.6 - 2.0 \quad (\text{for } 2 < \lambda < 5 \ \mu\text{m}), \end{split}$$

where $P(\lambda)$ is the percentage polarization, P_{max} is the maximum percentage polarization occurring at λ_{max} , and $K = 0.01 \pm 0.05 + (1.66 \pm 0.09)\lambda_{\text{max}}$.

Table 7.11 and Figure 7.5 present data on the interstellar dust emission. Table 7.12 presents far-infrared dust properties.

$0^{-7} \mathrm{W m^{-2} sr^{-1}})$							
0.88							
2.0							
3.8							
2.5							

Table 7.11. Average galactic diffuse emission [1].^a

Note

 a For galactic latitudes -6° to -4° and $+4^{\circ}$ to $+6^{\circ}$. Emission is highly variable on small spatial scales [1, 2].

- 1. Bernard, J.P. et al. 1994, A&A, 291, L5
- Cutri, R.M., & Latter, W.B., editors, 1993, The First Symposium on the Infrared Cirrus and Diffuse Interstellar Clouds, ASP Conf. Ser. (ASP, San Francisco), Vol. 58

The dust mass estimate from the 100 μ m flux density is

$$M_{\text{dust}} = 4.81 \times 10^{-12} f_{100} D^2 (e^{143.88/T_d} - 1) M_{\odot},$$

where f_{100} is the 100 μ m flux density in Jy, D is the distance in pc, and T_d is the dust temperature in K. The derivation follows from [76], using a mass absorption coefficient of 2.5 m² kg⁻¹ at 100 μ m. The dust mass absorption coefficient at submillimeter wavelengths is estimated in [68, 76, 77].

The equilibrium dust temperature of a particle with albedo A at a distance r (in pc) from a source of luminosity L (in L_{\odot}) is

$$T_e = 0.612(1 - A)^{0.25}L^{0.25}r^{-0.5} \text{ K}.$$

The nonequilibrium emission from extremely small particles is discussed in [81-83].

Table 7.12. Galactic dust properties at 140–240 μ m. Mean values in the galactic plane (|b| < 1°) [1].

Quantity	Inner galaxy $(270^{\circ} < \ell < 350^{\circ}; 10^{\circ} < \ell < 90^{\circ})$	Outer galaxy $(90^{\circ} < \ell < 270^{\circ})$	Entire galaxy
Dust temperature (K) 240 μ m optical depth Total FIR radiance (W m ⁻² sr ⁻¹)	20 ± 1 $(5.0 \pm 2.0) \times 10^{-3}$ $(3.7 \pm 0.3) \times 10^{-5}$	17 ± 1 $(9.5 \pm 3.0) \times 10^{-4}$ $(2.4 \pm 0.2) \times 10^{-6}$	19 ± 1 $(3.0 \pm 1.0) \times 10^{-3}$ $(2.0 \pm 0.2) \times 10^{-5}$
Gas-to-dust ratio FIR luminosity per H mass $(L_{\odot}/\mathcal{M}_{\odot})$	140 ± 50 3.0 ± 0.3	190 ± 60 0.9 ± 0.1	160 ± 60 2.0 ± 0.2

Note

Reference

1. Sodroski, T.J. et al. 1994, ApJ, 428, 638

Spectral features of dust and ice in the infrared are listed in Table 7.13.

Table 7.13. *Major dust and ice features* [1–7].

λ (μm)	Identification	Where observed
3.08	H ₂ O ice	Molecular clouds; OH–IR stars
3.29, 6.2, 7.7, 8.65, 11.25	Aromatic hydrocarbons ^a	H II regions, planetary nebulae, reflection nebulae, young and evolved stars, starburst galaxies
4.62	"X-CN"	Molecular clouds
4.67	CO ice	Molecular clouds
6.0	H ₂ O ice	Molecular clouds
6.85	$CH_3OH + other$	Molecular clouds
~ 9.7	Amorphous silicates	H II regions, molecular clouds
~ 11.2	SiC	Circumstellar shells; planetary nebulae
11.5	H ₂ O ice	OH–IR stars
~ 18	Amorphous silicates	H II regions; Galactic center
~ 34	MgS (?)	Planetary nebulae; carbon stars
43	H ₂ O ice	OH–IR stars

Note

^aData from the Cosmic Background Explorer (COBE) satellite; for additional information, see the COBE WWW Home Page: http://www.gsfc.nasa.gov/astro/cobe/cobe_home.html

^aThe nature of the "aromatic hydrocarbons" is not known precisely [7]; it is commonly assumed to be polycyclic aromatic hydrocarbons (PAHs).

References

- 1. Willner, S.P. 1984, in Galactic and Extragalactic Infrared Spectroscopy, edited by M.F. Kessler and J.P. Phillips (Reidel, Dordrecht), p. 37
- 2. Roche, P.F. 1989, in Proc. 22nd ESLAB Symp. on Infrared Spectroscopy in Astronomy, ESA SP-290, p. 79
- 3. Tokunaga, A.T., & Brooke, T.Y. 1990, Icarus, 86, 208
- 4. Whittet, D.C.B. 1992, Dust in the Galactic Environment (Institute of Physics, Bristol), p. 147
- 5. Allamandola, L.J. et al. 1989, ApJS, 71, 733
- 6. Léger, A., & d'Hendecourt, L. 1987, in Polycyclic Aromatic Hydrocarbons and Astrophysics, edited by A. Léger et al. (Reidel, Dordrecht), p. 223
- 7. Sellgren, K. 1994, in The First Symposium on the Infrared Cirrus and Diffuse Interstellar Clouds, edited by R.M. Cutri and W.B. Latter, ASP Conf. Ser. (ASP, San Francisco), Vol. 58, p. 243

7.9 SOLAR SYSTEM

The solar colors are [84]

$$J - H = 0.310$$
, $H - K = 0.060$, $K - L = 0.034$, $L - M = -0.053$, $V - K = 1.486$.

Solar analogs [85] are 16 Cyg B, VB64, HD 105590, HR 2290.

The blackbody temperature of an object without an atmosphere in the solar system is

$$T_b = 278.8(1 - A)^{0.25}r^{-0.5} \text{ K},$$

where A is the albedo and r is the distance from the Sun in AU.

For thermal emission from asteroids, see [86–88].

For the infrared spectra of planetary atmospheres, see [89–92].

For the infrared spectra of comets, see [93, 94].

For near-infrared spectra of satellites, see [95, 96].

For near-infrared spectra of asteroids, see [97, 98].

The infrared magnitudes and colors of many solar system objects are given in Table 7.14.

			0			•				
Object	Ref.	$V(1,0)^{b}$	ΔV^c	V - J	J-H	H - K	K-L	V - N	V-Q	$T(K)^d$
J1 Io	[1-4]	-1.68	0.15	1.3	0.35	0.08	0.00	4.70	9.29	137 ^e
J2 Europa (L)	[1–5]	-1.37	0.3	1.2	-0.31	-0.35	-2.24	3.91	8.81	130^{e}
J2 Europa (T)	[1–5]			1.4	-0.37	-0.53	-2.35			
J3 Ganymede (L)	[1–5]	-2.08	0.15	1.0	-0.10	-0.08	-1.90	5.69	10.26	142^{e}
J3 Ganymede (T)	[1–5]				-0.07	-0.07	-1.44			
J4 Callisto	[1–5]	-0.95	0.13	1.5	-0.27	0.07	-1.01	7.26	11.72	152^{e}
S2 Enceladus	[6-8]	1.9	0.5	1.06	-0.05	-0.24	< -0.5			
S3 Tethys	[4, 6, 7]	0.7	0.1	0.9	-0.20	-0.16				
S4 Dione	[4, 6, 7]	0.88	0.3	0.8	-0.20	-0.12				
S5 Rhea	[4, 5, 8, 9]	0.1	0.2	1.06	-0.05	-0.24	-1.6		8.5	
S6 Titan	[4, 10–13]	-1.3	0.0	0.2	-0.31	-0.38	-1.7	6.3		76^{f}
S8 Iapetus (L)	[13–15]	2.4		1.60	0.4	0.05				
S8 Iapetus (T)	[13–15]	0.6		0.8	-0.11	-0.13				
U1 Ariel	[4, 16]	1.7		1.20	0.21	-0.04				
U2 Umbriel	[7, 9]	2.4		1.30	0.25	-0.09			10.4	
U3 Titania	[4, 7, 9]	1.3		1.30	0.20	-0.14			10.0	
U4 Oberon	[7, 9]	1.6		1.35	0.20	-0.14			10.4	

Table 7.14. Magnitudes of selected solar system bodies.^a

Table 7.14. (Continued.)

Object	Ref.	$V(1,0)^{b}$	ΔV^c	V-J	J-H	H - K	K-L	V-N	V-Q	$T(K)^d$
N1 Triton	[5, 8, 17, 18]	-1.0		1.3	0.31	-0.24			> 8.2	38^d
Pluto, Charon	[17, 19–21]	-0.76	0.30	1.3	-0.01	-0.36			> 9.9	55g
1 Ceres	[22–28]	3.72	0.04	1.2	0.31	0.05		10.0	12.8	245^{h}
2 Pallas	[22–28]	4.45	0.16	1.2	0.21	0.04		9.9	12.4	270^{h}
3 Juno	[22–28]	5.73	0.22			0.05		8.7	12.0	230^{h}
4 Vesta	[22–28]	3.55	0.12	1.4	0.17	0.01		8.4	11.2	250^{h}

^aAverage magnitude given unless indicated otherwise; (L) = leading hemisphere, (T) = trailing hemisphere. Approximate filter wavelengths: V (0.55 μ m), J (1.25 μ m), H (1.65 μ m), K (2.2 μ m), L (3.45 μ m), N (10 μ m), Q (20 μ m); see references for details.

 ${}^bV(1,0)=$ absolute visual magnitude at a distance of 1 AU from the Earth and 1 AU from the Sun at 0° phase angle. The apparent visual magnitude of an object is $V(r,\Delta,\alpha)=V(1,0)+C\alpha+5\log(r\Delta)$, where r is the heliocentric distance and Δ is the geocentric distance (both in AU), C is the phase coefficient in mag deg⁻¹, and α is the phase angle (deg). The opposition effect, occurring when $\alpha\approx0^\circ$, is not included in this table.

 ${}^{c}\Delta V$ = visual light curve amplitude (peak to peak).

 ${}^{d}T_{R}$ = brightness temperature; T_{S} = surface or subsolar temperature.

 $^{e}T_{B}$ (10 μ m).

 $f T_R (100 \ \mu \text{m}).$

 ${}^{g}T_{B}$ (60 μ m).

 ${}^{h}T_{S}$ (10 μ m).

- 1. Morrison, D. et al. 1976, ApJ, 207, L213
- 2. Morrison, D. 1977, in Planetary Satellites, edited by J.A. Burns (University of Arizona, Tuscon), p. 269
- Morrison, D., & Morrison, N.D. 1977, in *Planetary Satellites*, edited by J.A. Burns (University of Arizona, Tuscon), p. 363
- 4. Morrison, D., & Cruikshank, D.P. 1974, SSRv, 15, 641
- 5. Hartmann, W.K. et al. 1982, Icarus, 52, 377
- 6. Franz, O.G., & Millis, R.L. 1975, Icarus, 24, 433
- 7. Cruikshank, D.P. 1980, Icarus, 41, 246, and private communication
- 8. Cruikshank, D.P. et al. 1977, ApJ, 217, 1006
- 9. Brown, R.H. et al. 1982, Nature, 300, 423
- 10. Andersson, L.E. 1977, in Planetary Satellites, edited by J.A. Burns (University of Arizona, Tucson), p. 451
- 11. Noll, K.S., & Knacke, R.F. 1993, Icarus, 101, 272
- 12. Gillett, F.C. 1975, ApJ, 201, L41
- 13. Loewenstein, R.F. et al. 1980, Icarus, 43, 283
- 14. Cruikshank, D.P. et al. 1983, Icarus, 53, 90
- 15. Cruikshank, D.P. et al. 1979, Rev. Geophys. Space Phys., 17, 165
- 16. Nicholson, P.D., & Jones, T.J. 1980, Icarus, 42, 54
- 17. Morrison, D. et al. 1982, Nature, 300, 425
- 18. Tryka, K.A. et al. 1993, Science, 261, 751
- 19. Binzel, R.P., & Mulholland, J.D. 1984, AJ, 89, 1759
- 20. Soifer, B.T. et al. 1980, AJ, 85, 166
- 21. Jewitt, D.C. 1994, AJ, 107, 372
- 22. Veeder, G.J. et al. 1978, AJ, 83, 651, and private communication
- 23. Lagerkvist, C.-I. et al. 1989, in Asteroids II, edited by R.P. Binzel et al. (University of Arizona, Tucson), p. 1162
- 24. Tedesco, E. 1979, in Asteroids, edited by T. Gehrels (University of Arizona, Tuscon), p. 1098
- 25. Johnson, T.V. et al. 1975, ApJ, 197, 527
- 26. Morrison, D. 1974, ApJ, 194, 203
- 27. Lebofsky, L.A. et al. 1986, Icarus, 68, 239
- 28. McCheyne, R.S. et al. 1985, Icarus, 61, 443

7.10 STARS

Molecular features seen in cool stars are listed in Table 7.15.

Table 7.15. *Molecular bands in cool stars* [1, 2].

Molecule	Bands	Wavelength range (μm)	Selected references
СО	$\Delta \nu = 1, 2, 3$	1.5-4.7	[3, 4, 5, 6, 7, 8, 9]
H_2	$\Delta \nu = 1$ (quadrapole vib-rot)	1.7-2.5	[3]
H_2^-O	$v_3, 2v_2, v_2 + v_3 - v_2,$	1.3-3.6	[10, 11]
	$v_2 + v_3, v_1 + v_2$		
CN	$A^2\Pi - X^2\Sigma$	< 4	[3, 4, 6, 12, 13, 14, 15]
C_2	$b^{1}\Pi_{u}-x^{1}\Sigma_{g}^{+}$ (Phillips)	< 2.5	[3, 6, 14, 16]
	$b^{1}\Pi_{u}-x^{1}\Sigma_{g}^{+}$ (Phillips) $A'^{3}\Sigma_{g}^{-}-X'^{3}\Pi_{u}$ (Ballik–Ramsey)		
C_3, C_5	ν_3	4–5	[12, 17, 18]
HCN	$v_2, v_3, 2v_2, 3v_2, 2v_1 + v_2$	2-5, 7.1, 14	[13, 15, 16, 19]
C_2H_2	$v_3, v_5, v_1 + v_5$	2.5-4, 14	[13, 16, 19]
SiO	$\Delta v = 1, 2$	4-4.2, 8.0-8.3	[9, 20, 21, 22, 23]
OH	$\Delta v = 1, 2$	1.6-2.0, 3.1-4.0	[8, 22, 24]
CH	$\Delta v = 1$	3.3-4.0	[3, 22]
CS	$\Delta v = 2$	3.8-4.0	[22, 23]

References

- 1. Merrill, K.M., & Ridgway, S.T. 1979, ARA&A, 17, 9
- 2. Tsuji, T. 1986, ARA&A, 24, 89
- 3. Lambert, D.L. et al. 1986, ApJS, 62, 373
- 4. Thompson, R.I. et al. 1972, PASP, 84, 779
- Ridgway, S.T. et al. 1974, in *Highlights of Astronomy*, edited by G. Contopoulos (Reidel, Dordrecht), Vol. 3, p. 327
- 6. Querci, M., & Querci, F. 1975, A&A, 42, 329
- 7. Geballe, T.R. et al. 1977, PASP, 89, 840
- 8. Hinkle, K.H. 1978, ApJ, 220, 210
- 9. Cohen, M. et al. 1992, AJ, 104, 2045
- 10. Strecker, D.W. et al. 1978, AJ, 83, 26
- 11. Hinkle, K.H., & Barnes, T.G. 1979, ApJ, 227, 923
- 12. Goebel, J.H. et al. 1978, ApJ, 222, L129
- 13. Goebel, J.H. et al. 1981, ApJ, 246, 455
- 14. Goebel, J.H. et al. 1983, ApJ, **270**, 190
- 15. Wiedemann, G.R. et al. 1991, ApJ, 282, 321
- 16. Goebel, J.H. et al. 1980, *ApJ*, **235**, 104
- 17. Hinkle, K.H. et al. 1988, Science, 241, 1319
- 18. Bernath, P.F. et al. 1989, Science, 244, 562
- 19. Ridgway, S.T. et al. 1978, *ApJ*, **255**, 138
- 20. Geballe, T.R. et al. 1979, *ApJ*, **230**, L47
- 21. Rinsland, C.P., & Wing, R.F. 1982, *ApJ*, **262**, 201
- 22. Ridgway, S.T. et al. 1984, ApJS, 54, 177
- 23. Lambert, D.L. et al. 1990, AJ, 99, 1612
- 24. Beer, R. et al. 1972, ApJ, 172, 89

For the spectrophotometry of standard stars, see [99–102].

For the infrared star count models, see [103–105].

Useful catalogs are found in [106–109].

For near-infrared spectra of young stars, see [110–118].

For spectral energy distributions of young stellar objects and pre-main sequence stars, see [119–124].

Figure 7.6 shows the color-color diagram for stars.

Figure 7.6. Color-color diagram for various classes of stars, adapted from [17]. The dark line indicates the location of G5 to M6 main sequence dwarf and giant stars. The dashed lines indicate the boundary for most carbon-rich stars; the carbon long-period variable (LPV) stars lie to the right. The oxygenrich (M type) LPV stars fall within the boundary of the solid line, and the LPV stars with periods greater than 350 days are to the right and overlap the carbon-rich LPV stars. The supergiant M stars (SG) lie in a region below and to the right of the giant sequence. The arrow indicates the direction of the interstellar reddening.

7.11 EXTRAGALACTIC OBJECTS

7.11.1 Energy Distributions and Colors

Infrared energy distributions of galaxies vary widely. Representative examples may be found in [125, 126]. At least five different physical causes have been identified for the continuum infrared emission from galaxies:

- (a) Photospheric emission from evolved stars (usually dominant in the 1–3 μ m region) [127, 128]: Mean colors of elliptical galaxies (CIT photometric system): V-K=3.33 mag; J-H=0.69 mag; H-K=0.21 mag. Molecular absorption bands in elliptical galaxies H₂O (1.95 μ m) = 0.12 mag; CO (2.3 μ m) = 0.16 mag. For additional near-infrared colors, see [129–132].
- (b) Dust shells around evolved stars [133]: This is the main cause of 10–12 μ m emission in elliptical galaxies, for which $f_{\nu}(12 \, \mu \text{m}) = 0.13 f_{\nu}(2.2 \, \mu \text{m})$. Units of f_{ν} are Jy.
- (c) Emission from interstellar dust [134, 135]: Transiently heated "small" grains dominate at about 10 μ m; "large" grains in thermal equilibrium dominate at 50–100 μ m. A typical energy distribution from dust emission in a starburst galaxy normalized to 60 μ m is $f_{\nu}(12~\mu\text{m})$
- = 0.035; $f_{\nu}(25 \,\mu\text{m}) = 0.18$; $f_{\nu}(60 \,\mu\text{m}) = 1.0$; $f_{\nu}(100 \,\mu\text{m}) = 1.41 \,[136]$.
- (d) Seyfert nucleus: Seyfert galaxies exhibit infrared emission from dust heated by the central source, as well as emission from starburst or nonthermal components. Seyfert galaxies tend to be most prominent at 60 μ m, but energy distributions vary widely. The IRAS 25–60 μ m spectral slope has been found useful for selecting Seyfert galaxies [137, 138].
- (e) Blazar component: Nonthermal, approximately power-law emission ($f_{\nu} \propto \nu^{\alpha}$). Mean values are $\alpha(1~\mu\text{m})=-1.42\pm0.95;~\alpha(10~\mu\text{m})=-1.12\pm0.47;~\alpha(100~\mu\text{m})=-0.88\pm0.43;~\alpha(1~\text{mm})=-0.18\pm0.42$ [139].

For far-infrared colors of extragalactic objects, see [125, 140–143].

7.11.2 **Statistics of Galaxies at Infrared Wavelengths**

Galaxy number counts at 2.2 \(\mu\)m. The number of galaxies per square degree per magnitude is [144]:

$$dN/dK = 4000 \times 10^{\alpha(K-17)}$$

where $\alpha = 0.67$ for 10 < K < 17, $\alpha = 0.26$ for 17 < K < 23, and $K = 2.2 \,\mu\text{m}$ mag.

Luminosity function at 60 µm [125, 145]. The density of galaxies per cubic megaparsec per magnitude interval at 60 μ m is

$$\log(\rho) = -3.2 - \alpha \{\log[\nu L_{\nu}(60 \,\mu\text{m})] - 10.2\},$$

where $\nu L_{\nu}(60 \ \mu\text{m})$ is given in units of L_{\odot} , and $\alpha = 0.8$ for $\log[\nu L_{\nu}(60 \ \mu\text{m})] < 10.2$ and $\alpha = 2.0$ for $\log[\nu L_{\nu}(60 \,\mu\text{m})] > 10.2$. H_0 is assumed to be 75 km s⁻¹ Mpc⁻¹.

The total infrared energy output of the local universe from 8 to 1000 μm is 1.24 \times $10^8 L_{\odot} \, \mathrm{Mpc^{-3}}$ [146].

ACKNOWLEDGMENTS

Many people have helped with their comments and suggestions. I thank in particular the following persons for valuable comments and contributions to this chapter: E. Becklin, M. Cohen, D. Cruikshank, M. Hanner, T. Herter, J. Hora, E. Hu, T. Geballe, I. Glass, R. Knacke, S. Leggett, P. Léna, C. Lonsdale, S. Lord, J. Mazzarella, J. Pipher, S. Ridgway, K. Robertson, P. Roche, K. Sellgren, M. Simon, G. Veeder, M. Werner, G. Wynn-Williams, W. Vacca, and D. Van Buren.

REFERENCES

- 1. Lord, S. 1992, NASA Tech, Mem. 103957
- 2. Manduca, A., & Bell, R.A. 1979, PASP, 91, 858
- 3. Bersanelli, M. et al. 1991, A&A, 252, 854
- 4. Wolfe, W.L., & Zissis, G.J. 1985, The Infrared Handbook, rev. ed. (U.S. Government Printing Office, Washington, DC), p. 5-1
- 5. Griffin, M.J. et al. 1986, Icarus, 65, 244
- 6. Traub, W.A., & Stier, M.T. 1976, Appl. Opt., 15, 364
- 7. Taylor, D.A. et al. 1991, MNRAS, 251, 199
- 8. Taylor, D.A. et al. 1994, Proc. SPIE, 2198, 703
- 9. Melnick, G.J. 1993, Adv. Space Res., 13, 535
- 10. Bally, J. 1989, in Astrophysics in Antarctica, AIP Conf. No. 198 (AIP, New York), p. 100; Townes, C.H., & Melnick, G. 1990, PASP, 102, 357
- 11. Buhl, D. 1984, in Galactic and Extragalactic Infrared Spectroscopy, edited by M.F. Kessler and J.P. Phillips (Reidel, Dordrecht), p. 221
- 12. Warner, J.W. 1977, PASP, 89, 724
- 13. Beckers, J.M. 1979, PASP, 91, 857
- 14. Wallace, L. 1984, PASP, 96, 184 & 836
- 15. Krisciunas, K. et al. 1987, PASP, 99, 887
- 16. Volk, K. et al. 1989, in Lecture Notes in Physics, Vol. 341, edited by E.F. Milone (Springer-Verlag, Berlin), p. 15
- 17. Bessell, M.S., & Brett, J.M. 1988, PASP, 100, 1134
- 18. Hodapp, K.-W. et al. 1992, PASP, 104, 441
- 19. Maihara, T. et al. 1993, PASP, 105, 940

- Shure, M. et al. 1994, Proc. SPIE, 2198, 614
- 21. Becklin, E., private communication
- 22. Roche, P.F., & Glasse, A.C.H. 1990, United Kingdom Large Telescope Report
- 23. Binzel, R.P. et al., this volume
- 24. Hauser, M.G. et al. 1984, ApJ, 278, L15
- Sodroski, T.J. et al. 1994, ApJ, 428, 638
- 26. Cox, P., & Mezger, P.G. 1989, A&A Rev., 1, 49
- 27. Wright, E.L. 1993, SPIE, 2019, 158
- 28. Mather, J.C. et al. 1994, ApJ, 420, 439
- 29. Baker, D.J., & Romick, G.J. 1976, Appl. Opt., 15, 1966
- 30. Oliva, E., & Origlia, L. 1992, A&A, 254, 466
- 31. Steed, A.J., & Baker, D.J. 1979, Appl. Opt., 18, 3386
- 32. McCaughrean, M.J. 1988, Ph.D. thesis, University of Edinburgh, Edinburgh
- 33. Ramsay, S.K. et al. 1992, MNRAS, 259, 751
- 34. Osterbrock, D.E., & Martel, A. 1992, PASP, 104, 76
- 35. Gillett, F.C. 1987, in Infrared Astronomy with Arrays, edited by C.G. Wynn-Williams and E.E. Becklin (University of Hawaii, Honolulu), p. 3
- 36. Merline, W.J., & Howell, S.B. 1995, Exp. Astron., 6,
- 37. Phillips, T.G. 1988, in Millimeter and Submillimeter Astronomy, edited by R.D. Wolstencroft and W.B. Burton (Kluwer Academic, Dordrecht), p. 1
- 38. Cohen, M. et al. 1992, AJ, 104, 1650

- Hayes, D.S. 1985, in *Calibration of Fundamental Stellar Quantities*, edited by D.S. Hayes et al., Proc. IAU Symp. No. 111 (Reidel, Dordrecht), p. 225
- Blackwell, D.A. et al. 1990, A&A, 232, 396; 1991,
 ibid., 245, 567; Campins, H. et al. 1985, AJ, 90, 896;
 Mountain, C.M. et al. 1985, A&A, 151, 399
- 41. Rieke, G.H. et al. 1985, AJ, 90, 900
- 42. Allen, D.A., & Cragg, T.A. 1983, MNRAS, 203, 777
- 43. Elias, J.H. et al. 1982, AJ, 87, 1029
- 44. Bersanelli, M. et al. 1991, A&A, 252, 854
- 45. Bouchet, P. et al. 1991, *A&AS*, **91**, 409
- 46. Tokunaga, A.T. 1984, AJ, 89, 172
- 47. Caillault, J.-P., & Patterson, J. 1990, AJ, 100, 825
- 48. Jones, T.J., & Hyland, A.R. 1982, MNRAS, 200, 509
- 49. Carrasco, L. et al. 1991, PASP, 103, 987
- 50. Carter, B.S. 1990, MNRAS, 242, 1
- Hanner, M.S., & Tokunaga, A.T. 1991, in *Comets in the Post-Halley Era*, edited by R.L. Newburn et al. (Kluwer Academic, Dordrecht), p. 67
- Casali, M., & Hawardsen, T. 1992, JCMT-UKIRT Newsletter, No. 4, p. 33
- Gehrz, R.D. et al. 1987, in *Encyclopedia of Physical Science and Technology*, edited by R.A. Meyers (Academic Press, Orlando), Vol. 2, p. 53
- 54. Elias, J. et al. 1985, ApJS, 57, 91
- 55. Koornneef, J. 1983, A&AS, 51, 489
- 56. Leggett, S.K. et al. 1993, IAU Collog., 136, 66
- 57. Wright, E.L. 1976, ApJ, 210, 250
- 58. Orton, G.S. et al. 1986, *Icarus*, **67**, 289
- 59. Ulrich, B.L. 1981, AJ, 86, 1619
- 60. Hildebrand, R.H. et al. 1985, Icarus, 64, 64
- 61. Sandell, G. 1994, MNRAS, 271, 75
- Emerson, J.P. 1988, in Formation and Evolution of Low Mass Stars, edited by A.K. Dupree and M.T.V.T. Lago (Kluwer Academic, Dordrecht), Vol. 241, p. 193
- 63. Helou, G. et al. 1988, ApJS, 68, 151
- Pérault, M. 1987, Ph.D. thesis, University of Paris, Paris; Lonsdale, C., & Mazzarella, J., private communication
- 65. Helou, G. et al. 1985, ApJ, 298, L7
- 66. Mathis, J.S., this volume
- 67. Rieke, G.H., & Lebofsky, M.J. 1985, ApJ, 288, 618
- Draine, B.T. 1989, in Proceedings of the 22nd ESLAB Symposium on Infrared Spectroscopy in Astronomy, edited by B.H. Kaldeich (ESA, Noordwijk), ESA SP-290, p. 93
- 69. He, L. et al. 1995, ApJS, 101, 335
- 70. Roche, P.F., & Aitken, D.K. 1984, MNRAS, 208, 481
- 71. Roche, P.F., & Aitken, D.K. 1985, MNRAS, 215, 425
- 72. Henry, J.P. et al. 1984, ApJ, 285, L27
- 73. Nagata, T. et al. 1994, ApJ, 423, L113
- 74. Martin, P.G. et al. 1992, ApJ, 392, 691
- 75. Whittet, D.C.B. et al. 1992, ApJ, 386, 562
- 76. Hildebrand, R.H. et al. 1983, QJRAS, 24, 267
- Beckwith, S.V.W., & Sargent, A.I. 1991, ApJ, 381, 250
- Draine, B.T. 1994, in First Symposium on the Infrared Cirrus and Diffuse Interstellar Clouds, ASP Conf. Ser. Vol. 58, edited by R.M. Cutri and W.B. Latter (ASP, San Francisco), p. 227
- 79. Désert, F.X. et al. 1990, A&A, 237, 215

- 80. Beichman, C.A. 1987, ARA&A, 25, 521
- 81. Sellgren, K. 1984, ApJ, 277, 623
- 82. Léger, A., & Puget, J.L. 1984, A&A, 137, L5
- 83. Draine, B.T., & Anderson, N. 1985, ApJ, 292, 494
- 84. Campins, H. et al. 1985, AJ, 90, 896
- 85. Hardorp, J. 1982, A&A, 105, 120
- 86. Lebofsky, L.A. et al. 1986, Icarus, 68, 239
- 87. Morrison, D. 1974, ApJ, 194, 203
- 88. Tedesco, E.F. et al. 1992, *The IRAS Minor Planet Survey*, Phillips Laboratory Report No. PL-TR-92-2049
- Hanel, R.A. et al. 1992, Exploration of the Solar System by Infrared Remote Sensing (Cambridge University Press, Cambridge)
- Encrenaz, Th., & Bibring, J.P. 1990, The Solar System (Springer-Verlag, Berlin)
- Encrenaz, Th. 1992, in *Infrared Astronomy with ISO*, edited by Th. Encrenaz and M.F. Kessler (Nova Science, Commack), p. 173
- 92. Larson, H.P. 1980, ARA&A, 18, 43
- Crovisier, J. 1992, in *Infrared Astronomy with ISO*, edited by Th. Encrenaz and M.F. Kessler (Nova Science, Commack), p. 221
- Mumma, M.J. et al. 1993, in *Protostars and Planets* III, edited by E.H. Levy and J.I. Lunine (University of Arizona, Tucson), p. 1177
- Clark, R.N. et al. 1986, in *Satellites*, edited by J.A. Burns and M.S. Matthews (University of Arizona, Tucson), p. 437
- Cruikshank, D.P., & Brown, R.H., in *Satellites*, edited by J.A. Burns and M.S. Matthews (University of Arizona, Tucson), p. 836
- Larson, H.P., & Veeder, G.J. 1979, in Asteroids (University of Arizona, Tucson), p. 724
- Gaffey, M.F. et al. 1989, in *Asteroids* II, edited by R.P. Binzel et al. (University of Arizona, Tucson), p. 98
- 99. Merrill, K.M., & Stein, W.A. 1976, PASP, 88, 285
- 100. Strecker, D.W. et al. 1979, ApJS, 41, 501
- 101. Cohen, M. et al. 1992, AJ, 104, 2030
- Walker, R.G., & Cohen, M. 1992, An Atlas of Selected Calibrated Stellar Spectra, NASA Contractor Report No. 177604
- 103. Wainscoat, R.J. et al. 1992, ApJS, 83, 111
- 104. Cohen, M. 1993, AJ, 105, 1860
- 105. Cohen, M. 1994, AJ, 107, 582
- Gezari, D.Y. et al. 1993, Catalog of Infrared Observations, 3rd ed. NASA Reference Publication No. 1294
- 107. Gezari, D.Y. et al. 1993, Far Infrared Supplement, Catalog of Infrared Observations (λ > 4.6 μm), 3rd ed., Rev. 1, NASA Reference Publication No. 1295
- Jourdain de Muizon, M. et al. 1994, Database of Astronomical Infrared Spectroscopic Observations (Leiden University, Leiden)
- 109. Kleinmann, S.G., & Hall, D.N.B. 1986, ApJS, 62, 501
- 110. Scoville, N.Z. et al. 1983, ApJ, 275, 201
- 111. Simon, M., & Cassar, L. 1984, ApJ, 283, 179
- 112. Persson, S.E. et al. 1984, ApJ, 286, 289
- 113. Hamann, F., & Simon, M. 1986, ApJ, 311, 909
- 114. Schwartz, R.D. et al. 1987, ApJ, 322, 403
- 115. Carr, J.S. 1989, ApJ, 345, 522
- 116. Mitchell, G.F. et al. 1990, ApJ, 363, 554
- 117. Chandler, C.J. et al. 1993, ApJ, 412, L71

- 118. Hamann, F. et al. 1994, ApJ, 422, 626
- 119. Lada, C.J. 1988, in Formation and Evolution of Low Mass Stars, edited by A.K. Dupree and M.T.V.T. Lago (Kluwer Academic, Dordrecht), p. 93
- 120. Shu, F.H. et al. 1987, ARA&A, 25, 23
- 121. Wilking, B.A. 1989, PASP, 101, 229
- 122. Lada, E.A. et al. 1993, in Protostars and Protoplanets III, edited by E.H. Levy and J.I. Lunine (University of Arizona, Tucson), p. 245
- 123. Zinnecker, H. et al. 1993, in Protostars and Protoplanets III, edited by E.H. Levy and J.I. Lunine (University of Arizona, Tucson), p. 429
- 124. André, P., & Montmerle, T. 1994, ApJ, 420, 837
- 125. Soifer, B.T. et al. 1987, ARA&A, 25, 187
- 126. Telesco, C.M. 1988, ARA&A, 26, 343
- 127. Frogel, J.A. et al. 1978, ApJ, 220, 75
- 128. Aaronson, M. et al. 1978, ApJ, 220, 442
- 129. Glass, I.S. 1984, MNRAS, 211, 461
- 130. Glass, I.S., & Moorwood, A.F.M. 1985, MNRAS, 214, 429

- 131. Sanders, D.B. et al. 1988, ApJ, 325, 74
- 132. Carico, D.P. et al. 1988, AJ, 95, 356
- 133. Knapp, G.R. et al. 1992, ApJ, **399**, 76
- 134. Désert, F.X. et al. 1990, A&A, 237, 215
- 135. Knapp, G.R. 1995, in Airborne Astronomy Symposium on the Galactic Ecosystem: From Gas to Stars to Dust, edited by M.R. Haas et al., ASP Conf. Ser. No. 73, p. 121
- 136. Roche, P.F. et al. 1991, MNRAS, 248, 606
- 137. de Grijp, M.H.K. et al. 1985, *Nature*, **314**, 240
- 138. Glass, I.S. 1985, MNASSA, 44, 60
- 139. Impey, C.D., & Neugebauer, G. 1988, AJ, 95, 307
- 140. Soifer, B.T. et al. 1989, AJ, 98, 766
- 141. Mazzarella, J.M. et al. 1991, AJ. 101, 2034
- 142. Cohen, M. 1992, AJ, 103, 1734
- 143. Walker, H.J. et al. 1989, AJ, 98, 2163
- 144. Gardner, J.P. et al. 1993, ApJ, 415, L9
- 145. Soifer, B.T. et al. 1987, ApJ, 320, 238
- 146. Soifer, B.T., & Neugebauer, G. 1991, AJ, 101, 354