

Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare il cerchio di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

= 18800 N	$M_{t} = 14600 \text{ Nmm}$	σ_a	$= 230 \text{ N/mm}^2$	G	$= 76000 \text{ N/mm}^2$
= 8390 N	$M_x = 315000 \text{ Nmm}$	E	$= 200000 \text{ N/mm}^2$		
=	$\sigma(N) =$	$ au_{s}$	=	Θ_{t}	=
=	$\sigma(M_x) =$	σ_{ls}	=	\mathbf{r}_{u}	=
=	$\tau(M_t) =$	σ_{IIs}	=	r_{v}	=
=	$\tau(T_{yc}) =$	σ_{Id}	=	r_{o}	=
=	$\tau(T_{yb})_d =$	σ_{IId}	=	J_p	=
=	$\tau(T_{y})_{s} =$	$\sigma_{ ext{tresca}}$	_a =		
=	$\tau(T_y)_d =$	σ_{mises}	₃ =		
=	σ =				
	= 8390 N = = = = = =	= 8390 N $M_x = 315000 \text{ Nmm}$ = $\sigma(N) =$ = $\sigma(M_x) =$ = $\tau(M_t) =$ = $\tau(T_{yc}) =$ = $\tau(T_{yb})_{d} =$ = $\tau(T_y)_{s} =$ = $\tau(T_y)_{d} =$	$ \begin{array}{llllllllllllllllllllllllllllllllllll$	$ \begin{array}{llllllllllllllllllllllllllllllllllll$	$ \begin{array}{llllllllllllllllllllllllllllllllllll$

Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare il cerchio di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 76000 \text{ N/mm}^2
Ν
          = 21200 N
                                                                M,
                                                                          = 354000 Nmm
                                                                                                                                G
T<sub>y</sub>
M₁
                                                                          = 230 \text{ N/mm}^2
          = 9200 N
                                                                           = 200000 \text{ N/mm}^2
          = 10900 Nmm
                                                                E
                                                                \tau(M_t) =
                                                                                                                                \sigma_{\text{IId}}
                                                                \tau(T_{yc}) =
          =
                                                                                                                                \sigma_{tresca} =
                                                                \tau(T_{yb})_d =
                                                                                                                                \sigma_{\text{mises}} =
                                                                \tau(T_v)_s =
                                                                                                                                \sigma_{\text{st.ven}}
                                                                \tau(T_v)_d =
\sigma(N) =
\sigma(M_x) =
                                                                \sigma_{\text{Id}}
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare il cerchio di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

= 23700 N	M _t	= 12300 Nmm	σ_{a}	= 230 N/mm ²	G	$= 76000 \text{ N/mm}^2$
= 6800 N	M_x	= 394000 Nmm	E	$= 200000 \text{ N/mm}^2$		
=	` '		$ au_{s}$	=	Θ_{t}	=
=	$\sigma(M_x)$) =	σ_{ls}	=	\mathbf{r}_{u}	=
=	$\tau(M_t)$	=	σ_{IIs}	=	r_{v}	=
=	$\tau(T_{yc})$	=	σ_{Id}	=	r_{o}	=
=	$\tau(T_{yb})$	d=	σ_{IId}	=	J_{p}	=
=	$\tau(T_y)_s$, =	σ_{tresca}	_ =		
=	$\tau(T_y)_c$	₁ =	σ_{mises}	=		
=	σ	=				
	= 6800 N = = = = = =	= 6800 N	= 6800 N $M_x = 394000 \text{ Nmm}$ = $\sigma(N) =$ = $\sigma(M_x) =$ = $\tau(M_t) =$ = $\tau(T_{yc}) =$ = $\tau(T_yb)_d =$ = $\tau(T_y)_s =$ = $\tau(T_y)_d =$	$\begin{array}{llllllllllllllllllllllllllllllllllll$	$\begin{array}{llllllllllllllllllllllllllllllllllll$	$\begin{array}{llllllllllllllllllllllllllllllllllll$

Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare il cerchio di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

Ν	= 17800 N	M _t = 13700 Nmm	σ_{a}	$= 230 \text{ N/mm}^2$	G	$= 76000 \text{ N/mm}^2$
T_v	= 7610 N	$M_x = 434000 \text{ Nmm}$	Ē	$= 200000 \text{ N/mm}^2$		
y_g	=	σ(N) =	$ au_{s}$	=	Θ_{t}	=
u_o	=	$\sigma(M_x) =$	σ_{ls}	=	r_u	=
V_{o}	=	$\tau(M_t) =$	σ_{IIs}	=	r_v	=
A_n	=	$\tau(T_{yc}) =$	σ_{Id}	=	r_{o}	=
C_{w}	=	$\tau(T_{yb})_{d} =$	σ_{IId}	=	J_{p}	=
J_{u}	=	$\tau(T_y)_s =$	σ_{tresc}	a =		
J_{v}	=	$\tau(T_{y})_{d} =$	σ_{mise}	s =		
J_t	=	σ =	$\sigma_{\text{st.ve}}$	n =		

Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare il cerchio di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

Ν	= 20300 N	$M_{\star} = 152$	200 Nmm	σ_{a}	$= 230 \text{ N/mm}^2$	G	$= 76000 \text{ N/mm}^2$
T _v	= 8410 N	· ·	2000 Nmm	E	= 200000 N/mm ²		
y_g	=	$\sigma(N) =$		$ au_{s}$	=	θ_{t}	=
u_o	=	$\sigma(M_x) =$		σ_{ls}	=	r_u	=
V_{o}	=	$\tau(M_t) =$		σ_{IIs}	=	r_v	=
A_n	=	$\tau(T_{yc}) =$		σ_{Id}	=	r_{o}	=
C_{w}	=	$\tau(T_{yb})_d =$		σ_{IId}	=	J_p	=
J_u	=	$\tau(T_y)_s =$		σ_{tresca}	=	•	
J_{v}	=	$\tau(T_y)_d =$		σ_{mises}			
J_t	=	σ =		$\sigma_{\text{st.ven}}$	=		
_							

Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare il cerchio di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 76000 \text{ N/mm}^2
          = 22000 N
Ν
                                                                M,
                                                                          = -371000 Nmm
                                                                                                                                G
T<sub>y</sub>
M₁
                                                                          = 230 \text{ N/mm}^2
          = 9230 N
                                                                           = 200000 \text{ N/mm}^2
          = 11700 Nmm
                                                                E
                                                                \tau(M_t) =
                                                                                                                                \sigma_{\text{IId}}
                                                                \tau(T_{yc}) =
                                                                                                                                \sigma_{tresca} =
                                                                \tau(T_{yb})_d =
                                                                                                                                \sigma_{\text{mises}} =
                                                                \tau(T_v)_s =
                                                                                                                                \sigma_{\text{st.ven}} =
                                                                \tau(T_v)_d =
\sigma(N) =
\sigma(M_x) =
                                                                \sigma_{\text{Id}}
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare il cerchio di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 76000 \text{ N/mm}^2
          = 24600 N
Ν
                                                                M,
                                                                          = -432000 Nmm
                                                                                                                                G
T<sub>y</sub>
M₁
                                                                          = 230 \text{ N/mm}^2
          = 6850 N
          = 13200 Nmm
                                                                E
                                                                          = 200000 \text{ N/mm}^2
                                                                \tau(M_t) =
                                                                                                                                \sigma_{\text{IId}}
                                                                \tau(T_{yc}) =
          =
                                                                                                                                \sigma_{tresca} =
                                                                \tau(T_{yb})_d =
                                                                                                                                \sigma_{\text{mises}} =
                                                                \tau(T_v)_s =
                                                                                                                                \sigma_{\text{st.ven}} =
                                                                \tau(T_v)_d =
\sigma(N) =
\sigma(M_x) =
                                                                \sigma_{\text{Id}}
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare il cerchio di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 76000 \text{ N/mm}^2
Ν
          = 18600 N
                                                                 M,
                                                                           = 495000 Nmm
                                                                                                                                  G
T<sub>y</sub>
M₁
                                                                           = 230 \text{ N/mm}^2
          = 7690 N
                                                                            = 200000 \text{ N/mm}^2
          = 14800 Nmm
                                                                 E
                                                                 \tau(M_t) =
                                                                                                                                  \sigma_{\text{IId}}
                                                                 \tau(T_{yc}) =
          =
                                                                                                                                  \sigma_{tresca} =
                                                                 \tau(T_{yb})_d =
                                                                                                                                  \sigma_{\text{mises}} =
                                                                 \tau(T_v)_s =
                                                                                                                                  \sigma_{\text{st.ven}}
                                                                 \tau(T_{v})_{d} =
\sigma(N) =
\sigma(M_x) =
                                                                 \sigma_{\text{Id}}
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare il cerchio di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

Ν	= 21100 N	M ₊ = 16300 Nmm	σ_{a}	$= 230 \text{ N/mm}^2$	G	$= 76000 \text{ N/mm}^2$
T_v	= 8500 N	$M_{x}^{'} = 368000 \text{ Nmm}$	E	$= 200000 \text{ N/mm}^2$		
$y_g^{'}$	=	σ(N) =	$ au_{s}$	=	θ_{t}	=
u_o	=	$\sigma(M_x) =$	σ_{ls}	=	r_u	=
V_{o}	=	$\tau(M_t) =$	σ_{IIs}	=	r_{v}	=
A_n	=	$\tau(T_{yc}) =$	σ_{ld}	=	r_{o}	=
C_{w}	=	$\tau(T_{yb})_{d}=$	σ_{IId}	=	J_p	=
J_{u}	=	$\tau(T_y)_s =$	$\sigma_{ ext{tresc}}$	_a =	-	
J_v	=	$\tau(T_y)_d =$	σ_{mises}			
J_t	=	σ =	$\sigma_{\text{st.ver}}$	n =		

Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare il cerchio di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

= 23800 N	M _t = -12100 Nmm	σ_{a}	= 230 N/mm ²	G	$= 76000 \text{ N/mm}^2$
= 9320 N	$M_x = 413000 \text{ Nmm}$	Ē	$= 200000 \text{ N/mm}^2$		
=	$\sigma(N) =$	$ au_{s}$	=	θ_{t}	=
=	$\sigma(M_x) =$	σ_{ls}	=	\mathbf{r}_{u}	=
=	$\tau(M_t) =$	σ_{IIs}	=	r_{v}	=
=	$\tau(T_{yc}) =$	σ_{Id}	=	r_{o}	=
=	$\tau(T_{yb})_d =$	σ_{IId}	=	J_{p}	=
=	$\tau(T_y)_s =$	$\sigma_{ ext{tresca}}$	_a =		
=	$\tau(T_y)_d =$	σ_{mises}	₃ =		
=					
	= 9320 N = = = = = =	= 9320 N $M_x = 413000 \text{ Nmm}$ = $\sigma(N) =$ = $\sigma(M_x) =$ = $\tau(M_t) =$ = $\tau(T_{yc}) =$ = $\tau(T_{yb})_{d} =$ = $\tau(T_y)_{s} =$ = $\tau(T_y)_{d} =$	$ \begin{array}{llllllllllllllllllllllllllllllllllll$	$ \begin{array}{llllllllllllllllllllllllllllllllllll$	$\begin{array}{llllllllllllllllllllllllllllllllllll$

Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare il cerchio di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

N	= 25300 N	M,	= 14000 Nmm	σ_{a}	$= 230 \text{ N/mm}^2$	G	$= 76000 \text{ N/mm}^2$
T_v	= 6830 N	M_x	= -416000 Nmm	E	= 200000 N/mm ²		
y_g	=	σ(N)		$ au_{s}$	=	Θ_{t}	=
u_o	=	$\sigma(M_x)$		σ_{ls}	=	r_u	=
V_{o}	=	$\tau(M_t)$		σ_{lls}	=	r_v	=
A_n	=	$\tau(T_{yc})$	=	σ_{Id}	=	r_{o}	=
C_{w}	=	$\tau(T_{yb})$	d=	σ_{IId}	=	J_{p}	=
J_u	=	$\tau(T_y)_s$	=	σ_{tresca}	=		
J_{v}	=	$\tau(T_y)_d$	=	σ_{mises}	=		
J_t	=	σ	=	$\sigma_{\text{st.ven}}$	=		

Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare il cerchio di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 76000 \text{ N/mm}^2
Ν
          = 19100 N
                                                                M,
                                                                          = -480000 Nmm
                                                                                                                                G
T<sub>y</sub>
M₁
                                                                          = 230 \text{ N/mm}^2
          = 7670 N
          = 15700 Nmm
                                                                E
                                                                          = 200000 \text{ N/mm}^2
                                                                \tau(M_t) =
                                                                                                                                \sigma_{\text{IId}}
                                                                \tau(T_{yc}) =
          =
                                                                                                                                \sigma_{tresca} =
                                                                \tau(T_{yb})_d =
                                                                                                                                \sigma_{\text{mises}} =
                                                                \tau(T_v)_s =
                                                                                                                                \sigma_{\text{st.ven}} =
                                                                \tau(T_v)_d =
\sigma(N) =
\sigma(M_x) =
                                                                \sigma_{\text{Id}}
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare il cerchio di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

N	= 21800 N	$M_{t} = -17400 \text{ Nmm}$	σ_{a}	= 230 N/mm ²	G	$= 76000 \text{ N/mm}^2$
T_v	= 8510 N	$M_{x}^{\cdot} = -373000 \text{ Nmm}$	E	$= 200000 \text{ N/mm}^2$		
y_g	=	σ(N) =	$ au_{s}$	=	θ_{t}	=
u_o	=	$\sigma(M_x) =$	σ_{ls}	=	r_u	=
V_{o}	=	$\tau(M_t) =$	σ_{IIs}	=	r_{v}	=
A_n	=	$\tau(T_{yc}) =$	σ_{Id}	=	r_{o}	=
C_{w}	=	$\tau(T_{yb})_d =$	σ_{IId}	=	J_{p}	=
J_{u}	=	$\tau(T_y)_s =$	σ_{tresca}	_a =		
J_v	=	$\tau(T_y)_d =$	σ_{mises}	₃ =		
J_t	=	σ =	$\sigma_{\text{st.ver}}$	n =		

Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare il cerchio di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 76000 \text{ N/mm}^2
          = 24600 N
Ν
                                                                M,
                                                                          = -437000 Nmm
                                                                                                                                G
T<sub>y</sub>
M₁
                                                                          = 230 \text{ N/mm}^2
          = 9360 N
                                                                          = 200000 \text{ N/mm}^2
          = 13000 Nmm
                                                                E
                                                                \tau(M_t) =
                                                                                                                                \sigma_{\text{IId}}
                                                                \tau(T_{yc}) =
          =
                                                                                                                                \sigma_{tresca} =
                                                                \tau(T_{yb})_d =
                                                                                                                                \sigma_{\text{mises}} =
                                                                \tau(T_v)_s =
                                                                                                                                \sigma_{\text{st.ven}} =
                                                                \tau(T_v)_d =
\sigma(N) =
\sigma(M_x) =
                                                                \sigma_{\text{Id}}
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare il cerchio di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

Ν	= 27400 N	$M_{t} = 14600 \text{ Nmm}$	σ_{a}	$= 230 \text{ N/mm}^2$	G	$= 76000 \text{ N/mm}^2$
T_v	= 6940 N	$M_x = -505000 \text{ Nmm}$	E	$= 200000 \text{ N/mm}^2$		
y_g	=	σ(N) =	$ au_{s}$	=	θ_{t}	=
u_o	=	$\sigma(M_x) =$	σ_{ls}	=	r_u	=
V_{o}	=	$\tau(M_t) =$	σ_{lls}	=	r_{v}	=
A_n	=	$\tau(T_{yc}) =$	σ_{Id}	=	r_{o}	=
C_{w}	=	$\tau(T_{yb})_{d} =$	σ_{IId}	=	J_{p}	=
J_u	=	$\tau(T_y)_s =$	$\sigma_{ ext{tresc}}$	a =		
J_{v}	=	$\tau(T_y)_d =$	σ_{mises}			
J_t	=	σ =	$\sigma_{\text{st.ve}}$	n =		

Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare il cerchio di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

= 19600 N	$M_{t} = -16600 \text{ Nmm}$	σ_{a}	$= 230 \text{ N/mm}^2$	G	$= 76000 \text{ N/mm}^2$
= 7650 N	M_x = -460000 Nmm		$= 200000 \text{ N/mm}^2$		
=	$\sigma(N) =$	$ au_{s}$	=	Θ_{t}	=
=	$\sigma(M_x) =$	σ_{ls}	=	\mathbf{r}_{u}	=
=	$\tau(M_t) =$	σ_{IIs}	=	r_{v}	=
=	$\tau(T_{yc}) =$	σ_{ld}	=	r_{o}	=
=	$\tau(T_{yb})_{d}=$	σ_{IId}	=	J_p	=
=	$\tau(T_{y})_{s} =$	σ_{tresc}	_a =		
=	$\tau(T_y)_d =$	σ_{mises}	₃ =		
=	σ =	$\sigma_{\text{st.ver}}$	n =		
	= 7650 N = = = = = =	= 7650 N $M_x = -460000 \text{ Nmm}$ = $\sigma(N) =$ = $\sigma(M_x) =$ = $\tau(M_t) =$ = $\tau(T_{yc}) =$ = $\tau(T_y)_d =$ = $\tau(T_y)_d =$		$ \begin{array}{llllllllllllllllllllllllllllllllllll$	$ \begin{array}{llllllllllllllllllllllllllllllllllll$

Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare il cerchio di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

N	= 22300 N	 M₊	= 18300 Nmm	σ_{a}	$= 230 \text{ N/mm}^2$	G	$= 76000 \text{ N/mm}^2$
T_v	= 8490 N	M_x	= -358000 Nmm	Ĕ	= 200000 N/mm ²		
y_g	=	σ(N)		$ au_{s}$	=	Θ_{t}	=
u_o	=	$\sigma(M_x)$		σ_{ls}	=	r_u	=
V_{o}	=	$\tau(M_t)$		σ_{IIs}	=	r_v	=
A_n	=	$\tau(T_{yc})$	=	σ_{Id}	=	r_{o}	=
C_{w}	=	$\tau(T_{yb})$	d=	σ_{IId}	=	J_{p}	=
J_{u}	=	$\tau(T_y)_s$, =	σ_{tresca}	=		
J_{v}	=	$\tau(T_y)_c$	₁ =	σ_{mises}	=		
J_t	=	σ	=	$\sigma_{\text{st.ven}}$	=		

Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare il cerchio di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

Ν	= 25200 N	M_t	= -13700 Nmm	σ_{a}	$= 230 \text{ N/mm}^2$	G	$= 76000 \text{ N/mm}^2$
T_v	= 9330 N	M_x	= -421000 Nmm	E	$= 200000 \text{ N/mm}^2$		
y_g	=	\circ (. •)	=	$ au_{s}$	=	Θ_{t}	=
u_{o}	=	$\sigma(M_x)$	=	σ_{ls}	=	\mathbf{r}_{u}	=
V_{o}	=	$\tau(M_t)$	=	σ_{IIs}	=	r_v	=
A_n	=	$\tau(T_{yc})$	=	σ_{Id}	=	r_{o}	=
C_{w}	=	$\tau(T_{yb})$	d=	σ_{IId}	=	J_{p}	=
J_u	=	$\tau(T_y)_{\xi}$	₃ =	$\sigma_{ ext{tresca}}$	a =		
J_v	=	$\tau(T_y)_c$	_i =	σ_{mises}	; =		
J_t	=	σ	=	$\sigma_{\text{st.ver}}$, =		

Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare il cerchio di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

Ν	= 28100 N	M₁ = -15400 Nmm	_	= 230 N/mm ²	G	$= 76000 \text{ N/mm}^2$
14	= 20100 N		σ_{a}	0	G	= 70000 14/111111
T_y	= 6920 N	$M_x = -488000 \text{ Nmm}$	Е	$= 200000 \text{ N/mm}^2$		
y_g	=	σ(N) =	$ au_{s}$	=	Θ_{t}	=
u_o	=	$\sigma(M_x) =$	σ_{ls}	=	r_u	=
V_{o}	=	$\tau(M_t) =$	σ_{lls}	=	r_v	=
A_n	=	$\tau(T_{yc}) =$	σ_{ld}	=	r_o	=
C_{w}	=	$\tau(T_{yb})_{d}=$	σ_{IId}	=	J_{p}	=
J_{u}	=	$\tau(T_y)_s =$	σ_{tresc}	a =		
J_v	=	$\tau(T_y)_d =$	σ_{mises}	₅ =		
J_t	=	σ =	$\sigma_{\text{st.ve}}$	n =		

Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare il cerchio di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 76000 \text{ N/mm}^2
Ν
          = 21200 N
                                                                M,
                                                                           = -559000 Nmm
                                                                                                                                 G
T<sub>y</sub>
M₁
                                                                           = 230 \text{ N/mm}^2
          = 7760 N
          = 17200 Nmm
                                                                E
                                                                           = 200000 \text{ N/mm}^2
                                                                \tau(M_t) =
                                                                                                                                 \sigma_{\text{IId}}
                                                                 \tau(T_{yc}) =
          =
                                                                                                                                 \sigma_{tresca} =
                                                                 \tau(T_{yb})_d =
                                                                                                                                 \sigma_{\text{mises}} =
                                                                \tau(T_v)_s =
                                                                                                                                 \sigma_{\text{st.ven}} =
                                                                 \tau(T_{v})_{d} =
\sigma(N) =
\sigma(M_x) =
                                                                \sigma_{\text{ld}}
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare il cerchio di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

Ν	= 23100 N	M,	= 20100 Nmm	σ_{a}	$= 230 \text{ N/mm}^2$	G	$= 76000 \text{ N/mm}^2$
T_v	= 10000 N	M_x	= -375000 Nmm	E	= 200000 N/mm ²		
y_g	=	σ(N)	=	$ au_{s}$	=	θ_{t}	=
u_o	=	$\sigma(M_x)$) =	σ_{ls}	=	r_u	=
V_{o}	=	$\tau(M_t)$	=	σ_{IIs}	=	r_v	=
A_n	=	$\tau(T_{yc})$) =	σ_{Id}	=	r_{o}	=
C_{w}	=	$\tau(T_{yb})$) _d =	σ_{IId}	=	J_{p}	=
J_u	=	$\tau(T_y)_{\xi}$	₃ =	σ_{tresca}	_a =	•	
J_v	=	$\tau(T_y)_c$	₃ =	σ_{mises}	, =		
J_t	=	σ	=	$\sigma_{\text{st.ven}}$	_ =		

Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare il cerchio di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

	22222	45400 N		222.11/	_	70000 11/ 2
Ν	= 26300 N	$M_t = -15100 \text{ Nmm}$	$\sigma_{\rm a}$	= 230 N/mm ²	G	$= 76000 \text{ N/mm}^2$
T_y	= 11000 N	$M_x = -422000 \text{ Nmm}$	E	$= 200000 \text{ N/mm}^2$		
y_g	=	σ(N) =	$ au_{s}$	=	Θ_{t}	=
u_o	=	$\sigma(M_x) =$	σ_{ls}	=	\mathbf{r}_{u}	=
V_{o}	=	$\tau(M_t) =$	σ_{IIs}	=	r_{v}	=
A_n	=	$\tau(T_{yc}) =$	σ_{ld}	=	r_{o}	=
C_{w}	=	$\tau(T_{yb})_{d} =$	σ_{IId}	=	J_p	=
J_u	=	$\tau(T_y)_s =$	σ_{tresc}	a =		
J_{v}	=	$\tau(T_y)_d =$	σ_{mise}			
J_t	=	σ =	$\sigma_{\text{st.ve}}$	n =		

Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare il cerchio di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 76000 \text{ N/mm}^2
          = 29600 N
Ν
                                                               M,
                                                                          = -470000 Nmm
                                                                                                                               G
T<sub>y</sub>
M₁
                                                                          = 230 \text{ N/mm}^2
          = 8170 N
                                                                          = 200000 \text{ N/mm}^2
          = 17200 Nmm
                                                               E
                                                               \tau(M_t) =
                                                                                                                               \sigma_{\text{IId}}
                                                               \tau(T_{yc}) =
          =
                                                                                                                               \sigma_{tresca} =
                                                               \tau(T_{yb})_d =
                                                                                                                               \sigma_{\text{mises}} =
                                                               \tau(T_v)_s =
                                                                                                                               \sigma_{\text{st.ven}} =
                                                                \tau(T_y)_d =
\sigma(N) =
\sigma(M_x) =
                                                               \sigma_{\text{ld}}
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare il cerchio di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

= 22500 N	$M_{t} = -19400 \text{ Nmm}$	σ_a	$= 230 \text{ N/mm}^2$	G	$= 76000 \text{ N/mm}^2$
= 9150 N	$M_x = -518000 \text{ Nmm}$	E	$= 200000 \text{ N/mm}^2$		
=	$\sigma(N) =$	$ au_{s}$	=	Θ_{t}	=
=	$\sigma(M_x) =$	σ_{ls}	=	r_u	=
=	$\tau(M_t) =$	σ_{IIs}	=	r_{v}	=
=	$\tau(T_{yc}) =$	σ_{Id}	=	r_{o}	=
=	$\tau(T_{yb})_d =$	σ_{IId}	=	J_p	=
=	$\tau(T_y)_s =$	$\sigma_{ ext{tresca}}$	_a =		
=	$\tau(T_y)_d =$	σ_{mises}	₃ =		
=	σ =				
	= 9150 N = = = = = =	= 9150 N $M_x = -518000 \text{ Nmm}$ = $\sigma(N) =$ = $\sigma(M_x) =$ = $\tau(M_t) =$ = $\tau(T_{yc}) =$ = $\tau(T_y)_d =$ = $\tau(T_y)_d =$	$ \begin{array}{llllllllllllllllllllllllllllllllllll$		$ \begin{array}{llllllllllllllllllllllllllllllllllll$

Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare il cerchio di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

Ν	= 25800 N	M _t = 21600 Nmm	σ_{a}	$= 230 \text{ N/mm}^2$	G	$= 76000 \text{ N/mm}^2$
T_v	= 10100 N	$M_x = -385000 \text{ Nmm}$	E	$= 200000 \text{ N/mm}^2$		
y_g	=	σ(N) =	$ au_{s}$	=	Θ_{t}	=
u_o	=	$\sigma(M_x) =$	σ_{ls}	=	\mathbf{r}_{u}	=
V_{o}	=	$\tau(M_t) =$	σ_{IIs}	=	r_{v}	=
A_n	=	$\tau(T_{yc}) =$	σ_{ld}	=	r_{o}	=
C_{w}	=	$\tau(T_{yb})_{d} =$	σ_{IId}	=	J_{p}	=
J_u	=	$\tau(T_y)_s =$	σ_{tresc}	a =		
J_{v}	=	$\tau(T_y)_d =$	σ_{mise}	_s =		
J_t	=	σ =	$\sigma_{\text{st.ve}}$	n =		

Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare il cerchio di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

	i additativoi ia	PP. 000	inare randamente den		. tangoniziani		
Ν	= 26900 N	M_t	= -15600 Nmm	σ_{a}	$= 230 \text{ N/mm}^2$	G	$= 76000 \text{ N/mm}^2$
T_v	= 11100 N	M_x	= -481000 Nmm	E	$= 200000 \text{ N/mm}^2$		
y_g	=	σ(N)	=	$ au_{s}$	=	Θ_{t}	=
u_o	=	$\sigma(M_x)$	=	σ_{ls}	=	\mathbf{r}_{u}	=
V_{o}	=	$\tau(M_t)$	=	σ_{IIs}	=	r_{v}	=
A_n	=	$\tau(T_{yc})$	=	σ_{Id}	=	r_{o}	=
C_{w}	=	$\tau(T_{yb})$) _d =	σ_{IId}	=	J_{p}	=
J_{u}	=	$\tau(T_y)_{\xi}$	₃ =	σ_{tresca}	_a =		
J_{v}	=	$\tau(T_y)_c$	₁ =	σ_{mises}	, =		
J_t	=	σ	=	$\sigma_{\text{st.ver}}$			
_							

Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare il cerchio di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

	i acontanto i la	PP. 000	maio i anaamonio aoi		. tangoniziani		•
Ν	= 30300 N	M_t	= -17800 Nmm	σ_{a}	$= 230 \text{ N/mm}^2$	G	$= 76000 \text{ N/mm}^2$
T_y	= 8260 N	M_x	= -536000 Nmm	E	$= 200000 \text{ N/mm}^2$		
y_g	=	σ(N)		$ au_{s}$	=	Θ_{t}	=
u_o	=	$\sigma(M_x)$) =	σ_{ls}	=	\mathbf{r}_{u}	=
V_{o}	=	$\tau(M_t)$	=	σ_{IIs}	=	r_{v}	=
A_n	=	$\tau(T_{yc})$	=	σ_{Id}	=	r_{o}	=
C_{w}	=	$\tau(T_{yb})$		σ_{IId}	=	J_{p}	=
J_{u}	=	$\tau(T_y)_{s}$	_s =	$\sigma_{ m tresca}$	_a =	•	
J_{v}	=	$\tau(T_y)_c$	₃ =	σ_{mises}	, =		
J_t	=	σ΄	=	$\sigma_{\text{st.ver}}$			
_							

Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare il cerchio di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 76000 \text{ N/mm}^2
          = 23000 N
Ν
                                                               M,
                                                                          = -590000 Nmm
                                                                                                                               G
T<sub>y</sub>
M₁
                                                                          = 230 \text{ N/mm}^2
          = 9240 N
                                                                          = 200000 \text{ N/mm}^2
          = 20000 Nmm
                                                               E
                                                               \tau(M_t) =
                                                                                                                               \sigma_{\text{IId}}
                                                               \tau(T_{yc}) =
          =
                                                                                                                               \sigma_{tresca} =
                                                               \tau(T_{yb})_d =
                                                                                                                               \sigma_{\text{mises}} =
          =
                                                                \tau(T_v)_s =
                                                                                                                               \sigma_{\text{st.ven}} =
                                                                \tau(T_v)_d =
\sigma(N) =
\sigma(M_x) =
                                                               \sigma_{\text{ld}}
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare il cerchio di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

Ν	= 26400 N	M _* = 22300 Nmm	σ_{a}	= 230 N/mm ²	G	$= 76000 \text{ N/mm}^2$
T_v	= 10200 N	$M_{x}^{'} = -439000 \text{ Nmm}$	É	$= 200000 \text{ N/mm}^2$		
y_g	=	σ(N) =	$ au_{s}$	=	Θ_{t}	=
u_o	=	$\sigma(M_x) =$	σ_{ls}	=	r_u	=
V_{o}	=	$\tau(M_t) =$	σ_{IIs}	=	r_{v}	=
A_n	=	$\tau(T_{yc}) =$	σ_{Id}	=	r_{o}	=
C_{w}	=	$\tau(T_{yb})_d =$	σ_{IId}	=	J_{p}	=
J_u	=	$\tau(T_y)_s =$	σ_{tresc}	a =		
J_v	=	$\tau(T_y)_d =$	σ_{mise}			
J_t	=	σ =	$\sigma_{\text{st.ve}}$	n =		

Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare il cerchio di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

	i accitativo: ia	PP. 000	intare ramaamente aen	0 .00	. tangoniziani		
Ν	= 29900 N	M_t	= 16700 Nmm	σ_{a}	$= 230 \text{ N/mm}^2$	G	$= 76000 \text{ N/mm}^2$
T_v	= 11200 N	M_x	= -493000 Nmm	E	$= 200000 \text{ N/mm}^2$		
y_g	=	σ(N)		$ au_{s}$	=	Θ_{t}	=
u_o	=	$\sigma(M_x)$	=	σ_{ls}	=	\mathbf{r}_{u}	=
V_{o}	=	$\tau(M_t)$	=	σ_{IIs}	=	r_{v}	=
A_n	=	$\tau(T_{yc})$	=	σ_{ld}	=	r_{o}	=
C_{w}	=	$\tau(T_{yb})$) _d =	σ_{IId}	=	J_{p}	=
J_{u}	=	$\tau(T_y)_s$	_s =	σ_{tresca}	_a =		
J_{v}	=	$\tau(T_y)_c$	₁ =	σ_{mises}	, =		
J_t	=	σ	=	$\sigma_{\text{st.ver}}$			
_							

Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare il cerchio di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 76000 \text{ N/mm}^2
Ν
          = 31000 N
                                                               M,
                                                                          = -601000 Nmm
                                                                                                                               G
T<sub>y</sub>
M₁
                                                                          = 230 \text{ N/mm}^2
          = 8330 N
                                                                          = 200000 \text{ N/mm}^2
          = 18300 Nmm
                                                               E
                                                               \tau(M_t) =
                                                                                                                               \sigma_{\text{IId}}
                                                               \tau(T_{yc}) =
          =
                                                                                                                               \sigma_{tresca} =
                                                               \tau(T_{yb})_d =
                                                                                                                               \sigma_{\text{mises}} =
                                                               \tau(T_v)_s =
                                                                                                                               \sigma_{\text{st.ven}} =
                                                                \tau(T_y)_d =
\sigma(N) =
\sigma(M_x) =
                                                               \sigma_{\text{Id}}
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare il cerchio di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

	i additativoi ia	PP. 000	inare randamente den		. tangoniziani		_
Ν	= 23500 N	M_t	= -20600 Nmm	σ_{a}	$= 230 \text{ N/mm}^2$	G	$= 76000 \text{ N/mm}^2$
T_v	= 9320 N	M_x	= -663000 Nmm	E	$= 200000 \text{ N/mm}^2$		
y_g	=	σ(N)		$ au_{s}$	=	θ_{t}	=
u_o	=	$\sigma(M_x)$) =	σ_{ls}	=	\mathbf{r}_{u}	=
V_{o}	=	$\tau(M_t)$	=	σ_{IIs}	=	r_{v}	=
A_n	=	$\tau(T_{yc})$) =	σ_{Id}	=	r_{o}	=
C_{w}	=	$\tau(T_{yb})$) _d =	σ_{IId}	=	J_{p}	=
J_{u}	=	$\tau(T_y)_{s}$; =	$\sigma_{ ext{tresca}}$	_a =	•	
J_{v}	=	$\tau(T_y)_c$	_j =	σ_{mises}	, =		
J_t	=	σ	=	$\sigma_{\text{st.ver}}$			
_							

Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare il cerchio di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

$\sigma_a = 230 \text{ N/mm}^2$	G	$= 76000 \text{ N/mm}^2$
$m = 200000 \text{ N/mm}^2$		
$\tau_s =$	θ_{t}	=
$\sigma_{ls} =$	r_{u}	=
$\sigma_{IIs} =$	r_{v}	=
σ_{ld} =	r_{o}	=
$\sigma_{IId} =$	J_p	=
$\sigma_{tresca} =$		
σ_{mises} =		
$\sigma_{\text{st.ven}}$ =		
	m $E = 200000 \text{ N/mm}^2$ $\tau_s = \sigma_{ls} = \sigma_{lls} = \sigma_{ld} = \sigma_{tresca} = \sigma_{mises} = \sigma_{ls} = \sigma_{ls}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare il cerchio di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

N	= 30500 N	M,	= -17200 Nmm	σ_{a}	= 230 N/mm ²	G	$= 76000 \text{ N/mm}^2$
T _v	= 11200 N	M _v	= -554000 Nmm	о _а Е	$= 200000 \text{ N/mm}^2$	Ü	= 7 0000 T 4 /111111
y_g	=	σ(N)		$ au_{s}$	=	θ_{t}	=
u _o	=	$\sigma(M_x)$	=	σ_{ls}	=	ru	=
V_{o}	=	$\tau(M_t)$	=	σ_{IIs}	=	r_{v}	=
A_n	=	$\tau(T_{vc})$	=	σ_{Id}	=	r_{o}	=
C_{w}	=	$\tau(T_{vb})$	o _d =	σ_{IId}	=	J_p	=
J_{u}	=	$\tau(T_{v})_{s}$; =	σ_{tresca}	_ =	·	
J_{v}	=	$\tau(T_{v})_{c}$	₁ =	σ_{mises}			
J_t	=	σ΄	=	$\sigma_{\text{st.ven}}$			
_							

Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare il cerchio di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

	i accitativo, ia	PP. 000	maio i amaamomo don	0 .00	. tangoniziani		
Ν	= 34200 N	M_t	= -19600 Nmm	σ_{a}	$= 230 \text{ N/mm}^2$	G	$= 76000 \text{ N/mm}^2$
T_v	= 8350 N	M_x	= -615000 Nmm	E	= 200000 N/mm ²		
y_g	=	σ(N)		$ au_{s}$	=	Θ_{t}	=
u_o	=	$\sigma(M_x)$) =	σ_{ls}	=	\mathbf{r}_{u}	=
V_{o}	=	$\tau(M_t)$	=	σ_{IIs}	=	r_{v}	=
A_n		$\tau(T_{yc})$		σ_{ld}	=	r_{o}	=
C_{w}	=	$\tau(T_{yb})$) _d =	σ_{IId}	=	J_{p}	=
J_u	=	$\tau(T_y)_s$	₃ =	$\sigma_{ ext{tresca}}$	_a =		
J_{v}	=	$\tau(T_y)_c$	₁ =	σ_{mises}	, =		
J_t	=	σ	=	$\sigma_{\text{st.ver}}$	_ =		
_							

Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare il cerchio di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

$= 76000 \text{ N/mm}^2$
) _t =
'u =
· _v =
· =
$J_p =$
)

Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare il cerchio di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

Ν	= 27500 N	$M_{t} = -23600 \text{ Nmm}$	σ_{a}	$= 230 \text{ N/mm}^2$	G	$= 76000 \text{ N/mm}^2$
T_v	= 10300 N	$M_x = -546000 \text{ Nmm}$	E	$= 200000 \text{ N/mm}^2$		
y_g	=	$\sigma(N) =$	$ au_{s}$	=	Θ_{t}	=
u_o	=	$\sigma(M_x) =$	σ_{ls}	=	r_u	=
V_{o}	=	$\tau(M_t) =$	σ_{IIs}	=	r_v	=
A_n	=	$\tau(T_{yc}) =$	σ_{Id}	=	r_{o}	=
C_{w}	=	$\tau(T_{yb})_{d} =$	σ_{IId}	=	J_{p}	=
J_{u}	=	$\tau(T_y)_s =$	σ_{tresc}	a =		
J_{v}	=	$\tau(T_y)_d =$	σ_{mise}	s =		
J_t	=	σ =	$\sigma_{\text{st.ve}}$	n =		

Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare il cerchio di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

= 31100 N	M _t = -17700 Nmm	σ_{a}	$= 230 \text{ N/mm}^2$	G	$= 76000 \text{ N/mm}^2$
= 11300 N	M_x = -614000 Nmm		$= 200000 \text{ N/mm}^2$		
=	$\sigma(N) =$	$ au_{s}$	=	θ_{t}	=
=	$\sigma(M_x) =$	σ_{ls}	=	r_u	=
=	$\tau(M_t) =$	σ_{IIs}	=	r_{v}	=
=	$\tau(T_{yc}) =$	σ_{Id}	=	r_{o}	=
=	$\tau(T_{yb})_d =$	σ_{IId}	=	J_p	=
=	$\tau(T_y)_s =$	σ_{tresc}	_a =		
=	$\tau(T_y)_d =$	σ_{mises}	₃ =		
=	σ =				
	= 11300 N = = = = = = =	= 11300 N $M_x = -614000 \text{ Nmm}$ = $\sigma(N) =$ = $\sigma(M_x) =$ = $\tau(M_t) =$ = $\tau(T_{yc}) =$ = $\tau(T_y)_d =$ = $\tau(T_y)_d =$	$ \begin{array}{llllllllllllllllllllllllllllllllllll$	$ \begin{array}{llllllllllllllllllllllllllllllllllll$	$\begin{array}{llllllllllllllllllllllllllllllllllll$

Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare il cerchio di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 76000 \text{ N/mm}^2
          = 34900 N
Ν
                                                                 M,
                                                                           = -682000 Nmm
                                                                                                                                  G
T<sub>y</sub>
M₁
                                                                           = 230 \text{ N/mm}^2
          = 8410 N
          = 20100 Nmm
                                                                 E
                                                                           = 200000 \text{ N/mm}^2
                                                                 \tau(M_t) =
                                                                                                                                  \sigma_{\text{IId}}
                                                                 \tau(T_{yc}) =
                                                                                                                                  \sigma_{tresca} =
                                                                 \tau(T_{yb})_d =
                                                                                                                                  \sigma_{\text{mises}} =
                                                                 \tau(T_v)_s =
                                                                                                                                  \sigma_{\text{st.ven}} =
                                                                 \tau(T_{v})_{d} =
\sigma(N) =
\sigma(M_x) =
                                                                 \sigma_{\text{Id}}
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare il cerchio di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 76000 \text{ N/mm}^2
          = 26400 N
Ν
                                                                M,
                                                                          = -751000 Nmm
                                                                                                                                G
T<sub>y</sub>
M₁
                                                                          = 230 \text{ N/mm}^2
          = 9410 N
                                                                           = 200000 \text{ N/mm}^2
          = 22600 Nmm
                                                                \tau(M_t) =
                                                                                                                                \sigma_{\text{IId}}
                                                                \tau(T_{yc}) =
          =
                                                                                                                                \sigma_{tresca} =
                                                                \tau(T_{yb})_d =
                                                                                                                                \sigma_{\text{mises}} =
                                                                \tau(T_v)_s =
                                                                                                                                \sigma_{\text{st.ven}} =
                                                                \tau(T_v)_d =
\sigma(N) =
\sigma(M_x) =
                                                                \sigma_{\text{Id}}
```