الجمهورية الجزائرية الديمقراطية الشعبية

الديوان الوطني للامتحانات والمسابقات

وزارة التربية الوطنية

دورة: 2016

امتحان بكالوريا التعليم الثانوي

الشعبة: تسيير واقتصاد

المدة: 30 سا و 30 د

اختبار في مادة: الرياضيات

على المترشِّح أن يختار أحد الموضوعين التاليين: الموضوع الأوّل

التمرين الأوّل: (04 نقاط)

. $f(x) = e^x + 2e^{-x} - 3$ يلي: \mathbb{R} الدالة العددية للمتغيّر الحقيقي x المعرّفة على f

اختر الجواب الصحيح من بين الأجوبة الثلاثة المقترحة مع التعليل.

الإجابة ج)	الإجابة ب)	الإجابة أ)		
ا و ln3	0 و 1n2	0 و 1n2	حلّي المعادلة $f(x)=0$ هما	1
-3	+∞	-∞	نهاية $f(x)$ عندما x يؤول إلى $+\infty$ هي	2
ليست رتيبة	متناقصة تماما	متزايدة تماما	f الدالة $\left[\frac{\ln 2}{2};+\infty\right[$ على المجال	3
-1	2	1	القيمة المتوسطة للدالة f على المجال m المحوّر m إلى الوحدة هو $[0;2]$	4

التمرين الثاني: (04,5 نقطة)

 $V_0+V_1+V_2=38$: والعلاقة: $V_0=18$ والعرقة على الأوّل $V_0=18$ والعلاقة: $V_0+V_1+V_2=38$

 $q=rac{2}{3}$ هو $\left(V_{n}
ight)$ هو المنتالية $\left(1
ight)$

 $\cdot n$ بدلالة V_n أ) اكتب عبارة الحد العام (أ

 $\cdot (V_n)$ ادرس اتجاه تغیّر المتتالیة (ب

 $\cdot (V_n)$ جا احسب نهایة

 $S_n = V_0 + V_1 + \dots + V_{n-1}$ نضع /3

 $+\infty$ احسب S_n بدلالة n ثم استنتج نهاية S_n عندما S_n بدلالة N

 $S_n = \frac{3510}{81}$ ب) جد العدد الطبيعي n بحيث با

التمرين الثالث: (04 نقاط)

الجدول التالي يعطى توزيع 500 تلميذ في إحدى الثانويات.

التلميذ	ذكور	إناث
يملك هاتف نقال	60	240
لا يملك هاتف نقال	120	80

نختار عشوائيا تلميذا من الثانوية ونسمي H الحادثة: " التلميذ المختار ذكرا "، F الحادثة: "التلميذ المختار أنثى " ،

S الحادثة: "التلميذ يملك هاتفا نقالا " ، \overline{S} الحادثة: "التلميذ لا يملك هاتفا نقالا ".

- 1) شكّل شجرة الاحتمالات لهذه التجربة.
 - 2) احسب احتمال الحوادث التالية:
- أ) التلميذ المختار أنثى وتملك هاتفا نقالا.
 - ب) التلميذ المختار لا يملك هاتفا نقالا.
- 3) نفرض أنّ التلميذ المختار لا يملك هاتفا نقالا. ما هو احتمال أن يكون هذا التلميذ ذكرا ؟

التمرين الرابع: (07,5 نقطة)

- . دالة عددية معرّفة على المجال $g(x) = ax + b + \ln x$ كما يلي: $g(x) = ax + b + \ln x$ و $g(x) = ax + b + \ln x$
 - $g'(2) = \frac{3}{2}$ و g(1) = 2 و a عيّن a و a
 - $g(x) = x + 1 + \ln x :$ نضع (2
 - $\lim_{x \to +\infty} g(x)$ احسب $\lim_{x \to \infty} g(x)$ و احسب
 - ب- ادرس اتجاه تغيّر الدالة g ثم شكّل جدول تغيّراتها.
 - 0.0,2<lpha<0.3:ج- بيّن أنّ المعادلة g(x)=0 تقبل حلاّ حقيقيا وحيدا
 - $[0;+\infty[$ على المجال g(x) المارة g(x) على المجال ا $[0;+\infty[$
 - $f(x) = \frac{x \ln x}{x+1}$ نعتبر الدالة f المعرّفة على المجال $f(x) = \frac{x \ln x}{x+1}$ نعتبر الدالة والمعرّفة على المجال
 - $.\left(O; \vec{i}, \vec{j}
 ight)$ سَمُتِلُهَا البِيانِي في المستوي المنسوب إلى المعلم المتعامد والمتجانس $\left(C_{f}
 ight)$
 - . f الدالة $f'(x) = \frac{g(x)}{(x+1)^2}$: g(x) = 0 بيّن أنّه من أجل كلّ عدد حقيقي x من المجال g(x) = 0 الدالة g(x) = 0
 - . ($\lim_{x \to 0} x \ln x = 0$: يُعطى) . $\lim_{x \to +\infty} f(x)$ و $\lim_{x \to 0} f(x)$ احسب (2
 - f نحقق أنّ $f(\alpha) = -\alpha$ ثم شكّل جدول تغيّرات الدالة $f(\alpha)$
 - [0,5] احسب [0,5] و [0,5] ثمّ ارسم [0,5]على المجال [0,5]

انتهى الموضوع الأول

الموضوع الثاني

التمرين الأوّل: (04 نقاط)

الجدول التالي يبيّن كمية الإنتاج السنوي بآلاف الأطنان من البطاطا لتعاونية فلاحية ما بين سنتي 2010 و 2015.

السنة	2010	2011	2012	2013	2014	2015
x_i رتبة السنة	1	2	3	4	5	6
y_i كمية المنتوج بآلاف الأطنان	25	30	33	42	48	55

- مثل سحابة النقط $(x_i; y_i)$ في معلم متعامد و ومتجانس حيث على محور الفواصل كل 1cm يمثل سنة واحدة واحدة واحدة على محور التراتيب كل 1cm يمثل 10 آلاف طن.
 - 2) احسب إحداثيات النقطة المتوسطة G ثم علّمها.
 - . (10^{-2} لمستقيم الانحدار بالمربعات الدنيا. (ثُدوّر a و d إلى y = ax + b أ اكتب معادلة من الشكل
 - (Δ) . أنشئ المستقيم
 - 4) باستعمال هذا التعديل:
 - أ- احسب كمية إنتاج التعاونية سنة 2020.
 - ب- في أيّ سنة يتجاوز الإنتاج 120 ألف طن ؟

التمرين الثاني: (05 نقاط)

 $U_{n+1}=rac{4}{7}U_n+rac{3}{7}$ و $U_0=5$ بعتبر المتتالية U_n المعرّفة على U_n بالمعرّفة على المعرّفة على المعرّف

- $\cdot U_2$ و U_1 احسب الحدّين (1
- $U_n > 1$: n عدد طبیعي أنه من أجل كل عدد طبیعي (2
 - بين أنّ المتتالية (U_n) متناقصة تماما.
 - (U_n) ج ماذا تستنتج بالنسبة لتقارب المتتالية
 - $V_n = U_n 1$: المعرّفة على المتتالية (V_n) المعرّفة على (3
- أ- بيّن أنّ (V_n) متتالية هندسية مُعيّنا أساسها و حدّها الأوّل.

 $U_n=1+4\left(rac{4}{7}
ight)^n$ ، n عدد طبیعی عدد استنتج أنّه من أجل كلّ عدد V_n

 $\cdot(U_n)$ ج- احسب نهایة

التمرين الثالث: (04 نقاط)

C و B ، A وكالة أسفار تقترح على زبائنها ثلاث وجهات

C من الزبائن اختاروا الوجهة A ، C اختاروا الوجهة B والباقى اختار الوجهة C

عند العودة من السفر أجرت الوكالة استجوابا لزبائنها حول مدى إعجابهم بالوجهة واستنتجت ما يلي:

. كانوا معجبين بها A من أصحاب الوجهة A كانوا معجبين بها

. B من أصحاب الوجهة B كانوا غير معجبين بها

. كانوا معجبين بها كانوا معجبين الوجهة C كانوا معجبين الم

نختار عشوائيا أحد الزبائن ونسجل الحوادث التالية:

- S: الزبون معجب بالوجهة المختارة
- و $\overline{\mathbf{S}}$: الزبون غير معجب بالوجهة المختارة.
- 1) انقل شجرة الاحتمالات المقابلة ثم أكمل القيم الناقصة.
 - 2) أ- احسب احتمالات الحوادث الآتية:

$$B \cap S$$
 هو $A \cap S$. $A \cap S$

ب- استنتج احتمال أن يكون الزبون معجب بالوجهة المختارة.

3) نستجوب زبونا غير معجب بالوجهة المختارة،

ما احتمال أن يكون من أصحاب الوجهة B ؟

التمرين الرابع: (07 نقاط)

- $g(x) = -4 + 2x(1 + \ln x)$ نعتبر الدالة $g(x) = -4 + 2x(1 + \ln x)$ نعتبر الدالة و المعرّفة على المجال (I
 - . ($\lim_{x \to \infty} x \ln x = 0$: $\lim_{x \to \infty} g(x)$) . $\lim_{x \to \infty} g(x)$ احسب (1)
 - 2) ادرس اتجاه تغیّر الدالة g علی $g = 0; +\infty$ ثم شکّل جدول تغیّراتها.
 - $1.4 < \alpha < 1.5$: بيّن أنّ المعادلة g(x) = 0 تقبل حلاً وحيدًا α حيث (3
 - .]0;+ ∞ [على المجال وg(x) حدّد إشارة (4
 - $f(x) = (2x-4)\ln x$:ب الدالة f المعرّفة على المجال $f(x) = (2x-4)\ln x$
 - . $\left(O\,; \overrightarrow{i}\,, \overrightarrow{j}\,\right)$ تمثیلها البیاني في معلم متعامد و متجانس $\left(C_f\right)$
 - . فسّر النتيجة هندسيا. $\lim_{x \xrightarrow{>} 0} f(x)$ أ– احسب (1

$$\lim_{x\to +\infty} f(x)$$
ب – احسب

. $f'(x) = \frac{g(x)}{x}$:]0; + ∞ من المجال عدد حقيقي x من المجال 2

ب- استنتج اتجاه تغيّر الدالة f ثم شكّل جدول تغيّراتها.

- . عيّن نقط تقاطع (C_f) مع حامل محور الفواصل (3
- .1 أ- اكتب معادلة للمماس (T) للمنحنى النقطة ذات الفاصلة (C_f) عند النقطة ذات الفاصلة (T)

$$(f(\alpha) \approx -0.41 : (C_f))$$
 و (T) نعطی (T)

 $F(x) = (x^2 - 4x) \ln x - \frac{1}{2}x^2 + 4x$: بعتبر الدالة $F(x) = (x^2 - 4x) \ln x - \frac{1}{2}x^2 + 4x$ بعتبر الدالة $F(x) = (x^2 - 4x) \ln x - \frac{1}{2}x^2 + 4x$ بعتبر الدالة $F(x) = (x^2 - 4x) \ln x - \frac{1}{2}x^2 + 4x$

.]0;+ ∞ ر المجال على المجال f دالة أصلية للدالة f على المجال F

ب- احسب مساحة الحيز المستوي المحدد بالمنحنى (C_f) والمستقيمات التي معادلاتها:

$$x = 2$$
 $y = 1$ $y = 0$

انتهى الموضوع الثاني

الشعبة: ...تسيير واقتصاد

دورة: 2016

مة	العلا	/ byfil - * * * * * * * * * * * * * * * * * *
مجموع	مجزأة	عناصر الإجابة (الموضوع الأوّل)
		التمرين الأول: (04 نقاط)
	01	1 / الاقتراح الأول الإجابة أ/ مع التبرير
04	01	2/ الاقتراح الثاني الإجابة ب/ مع التبرير
	01	3/ الاقتراح الثالث الإجابة أ/ مع التبرير
	01	4/ الاقتراح الرابع الإجابة أ/ مع التبرير
		التمرين الثاني: (04,5 نقطة)
	01	.($q>0$ و $q^2+q-\frac{10}{9}=0$ نحل للمعادلة $q=\frac{2}{3}$ و $q>0$ و $q>0$
	0,50	. $V_n=18igg(rac{2}{3}igg)^n$ عبارة الحد العام (أ/2
04,5	0,50	\mathbb{N} متناقصة تماما على (V_n) (ب
	0,50	$\lim_{n\to+\infty}V_n=0 /\Rightarrow$
	01	$\lim_{n \to +\infty} S_n = 54$ استنتاج أنّ $S_n = 54 \left(1 - \left(\frac{2}{3}\right)^n\right)$ (أ $\sqrt{3}$
	01	$n = 4$ فإن $S_n = \frac{3510}{81}$ (ب
		التمرين الثالث: (04 نقاط)
		1/ شجرة الاحتمالات.
1,50	1,50	$ \begin{array}{c c} & 1 & S \\ \hline & 3 & S \\ \hline & 25 & S \\ \hline & 16 & S \\ \hline & 14 & S \\ \hline & 14 & S \end{array} $

الشعبة: ...تسيير واقتصاد

دورة: 2016

تابع الإجابة النموذجية لموضوع امتحان: شهادة البكالوريا

العلامة						
مجموع	مجزأة	عناصر الإجابة (الموضوع الأوّل)				
	0,75	. $p(F\cap S)=rac{12}{25}$ احتمال أن يكون التلميذ المختار أنثى وتملك هاتفا نقالا هو				
02,5	01	$pig(\overline{S}ig) = rac{2}{5}$ احتمال أن يكون التاميذ المختار لا يملك هاتفا نقالا هو				
	0,75	. $p_{\overline{S}}(H) = \frac{p(H \cap \overline{S})}{p(\overline{S})} = \frac{3}{5}$ احتمال أن يكون التلميذ المختار ذكرا علما أنّه لا يملك هاتفا نقالا هو				
		التمرين الرابع: (07,5 نقطة)				
	0,75	$. \ b = 1$ و $a = 1$ و $a = 1$ و $a = 1$ (I				
	2×0,5	$\lim_{x \to +\infty} g(x) = +\infty \lim_{x \to +\infty} g(x) = -\infty (1) (2)$				
	01	gب) g متزایدة تماما علی g				
	01	جدول التغيرات .				
	0,75	0 <lpha<1< math=""> جيث $lpha<0$ تقبل حلا وحيدا $lpha$ حيث $lpha<0$</lpha<1<>				
07.5	0,50	. $]0;+\infty[$ على $g(x)$ على ا $g(x)$				
	01	$f'(x) = \frac{g(x)}{\left(x+1\right)^2}$ اِثْبات اُنّ: $f'(x) = \frac{g(x)}{\left(x+1\right)^2}$				
		$[lpha;+\infty[$ متناقصة تماما على $[lpha;lpha]$ ومتزايدة تماما على متناقصة تماما على متناقصة المتابعة ومتزايدة المتابعة متناقصة المتابعة ا				
	01	$\lim_{x \to +\infty} f(x) = +\infty \cdot \lim_{x \to 0} f(x) = 0$ لدينا /2				
	0.5	$.f\left(lpha ight)$ التحقق أنّ $-lpha$. $f\left(lpha ight)$				
	0,25	- جدول التغيّرات.				
	0,75	$\left(C_f ight)$ رسم المنحنى $\left(C_f ight)$				

تابع الإجابة النموذجية لموضوع امتحان: شهادة البكالوريا

دورة: 2016

ā.	العلام					
مجموع	مجزأة	عناصر الإجابة (الموضوع الثاني)				
		<u>التمرين الأول:</u> (04 نقاط)				
	0,50	1/ تمثيل السحابة.				
	0,75	مع التعليم $G\left(3,5;38,83 ight)$ مع التعليم				
04	01,25	. $y = 6,09x + 17,52$. $y = 6,09x + 17,52$. النتائج المقرّبة لقيمتي العددين a و b ؛ و ما يترتب عنهما من حسابات في السؤال a .)				
	0,25	ب) رسم مستقيم الانحدار.				
	0,75	4/ أ) كمية الإنتاج سنة 2020 هي 84510 طن.				
	0,50	ب) يتجاوز الإنتاج 120 ألف طن سنة 2026.				
		التمرين الثاني: (05 نقاط)				
	01	$U_2 = \frac{113}{49} \cdot U_1 = \frac{23}{7} / 1$				
	01	2/ أ) البرهان بالتراجع.				
	0,75	ب) إثبات أنّ المتتالية متناقصة.				
05	0,50	 ج) المتتالية متقاربة. 				
	01	$V_0=4$ و حدها الأول $V_0=4$ متتالية هندسية أساسها $V_0=4$				
	0,50	$U_n=4igg(rac{4}{7}igg)^n+1$ و $V_n=4igg(rac{4}{7}igg)^n$: N عدد طبیعی $V_n=4igg(rac{4}{7}igg)^n$				
	0,25	$\lim_{n\to+\infty}U_n=1 \ (\Rightarrow$				
		التمرين الثالث: (04 نقاط)				
01	01	$ \begin{array}{c c} 0,5 & S \\ \hline 0,2 & \overline{S} \\ \hline 0,5 & \overline{S} \\ \hline 0,7 & S \\ \hline 0,5 & B \\ \hline 0,3 & \overline{S} \\ \hline 0,3 & \overline{S} \\ \hline 0,8 & S \\ \hline 0,2 & \overline{S} \end{array} $				

اختبار مادة: ..الرياضيات

شهادة البكالوريا	لموضوع امتحان: ،	تابع الإجابة النموذجية .
------------------	------------------	--------------------------

العلامة		عناصر الإجابة (الموضوع الثاني)		
مجموع	مجزأة	عاصر (هِب: ﴿ الموسوع التالي)		
	01,50	$p(C \cap S) = 0.24$ $p(B \cap S) = 0.35$ $p(A \cap S) = 0.1$ (1/2)		
03	0,75	p(S) = 0.69 (ب		
	0,75	$p_{\overline{S}}(B) = 0.48 / 3$		
		التمرين الرابع: (07 نقاط)		
	0,50	$\lim_{x \to 0} g(x) = -4 \lim_{x \to +\infty} g(x) = +\infty /1 / I$		
	0,50	. $g'(x) = 4 + 2 \ln x$: دراسة اتجاه التغير		
07	0,30	$\left[e^{-2};+\infty ight[$ متناقصة تماما على المجال $\left[e^{-2};+\infty ight[$ و متزايدة تماما على المجال g		
	0,23	جدول التغيرات.		
	0,50	ية المعادلة $g(x)=0$ تقبل حل وحيد.		
	0,50	$+ \stackrel{0}{\longrightarrow} - \stackrel{\alpha}{\longrightarrow} + \stackrel{+\infty}{\longrightarrow} : g(x)$ إشارة $f(x)$		
	0,50	$x=0$ المنحنى يقبل مستقيم مقارب معادلته $\lim_{x \stackrel{>}{\longrightarrow} 0} f(x) = +\infty$ (أ 1 / 1 / 1		
	0,25	$\lim_{x \to +\infty} f(x) = +\infty (\because$		
	0,50	. $f'(x) = \frac{g(x)}{x}$: نبیان أنّ $f'(x) = \frac{g(x)}{x}$		
	0.70	ب) دراسة اتجاه التغيّر: الدالة f متناقصة تماما على المجال $[0;lpha]$ و متزايدة تماما على		
	0,50	$\cdot [lpha; +\infty[$ المجال		
	0,25	جدول التغيرات.		
	0,50	3/ نقط التقاطع مع محور الفواصل.		
	0,50	(T): y = -2x + 2 (1/4)		
	0,75	ب) الرسم		
	0,50	f أ) إثبات أن F أصلية للدالة f		
	0,50	. A = 0,27ua (ب		