

Astroinformatics school - "Rise of the machines"

4 to 6 February 2019 Presented by Rebecca Lange and Dan Marrable

Comparison of supervised machine learning techniques

Factors	Decision Trees	Neural Networks	Naïve Bayes	kNN	SVM	Rule Learners
General accuracy	**	***	*	**	****	**
Learning speed	***	*	****	****	*	**
Classification speed	****	****	***	*	****	***
Tolerance to missing values	***	*	****	*	**	**
Tolerance to irrelevant features	***	*	**	**	****	**
Tolerance to redundant features	**	**	*	**	***	**
Tolerance to highly related features	**	***	*	*	***	**
Dealing with discrete, binary and continuous features	****	***	***	***	**	***
Tolerance to noise	**	**	***	*	**	*
Dealing with model overfitting	**	*	***	***	**	**
Attempts for incremental learning	**	***	****	****	**	*
Explanation of classification	****	*	***	**	*	***
Model parameter handling	***	*	****	***	*	***

^{*} kNN = k-Nearest Neighbours

Source: Kotsiantis et al., Supervised machine learning: A review of classification techniques, Conference on Emerging Artificial Intelligence Applications 2007.

^{*} SVM = Support Vector Machines

- Supervised learning
 - http://scikit-learn.org/stable/supervised_learning.html#supervised-learning
- Performance metrics
 - http://scikit-learn.org/stable/modules/classes.html/module-sklearn.metrics
- Feature selection
 - http://scikit-learn.org/stable/modules/feature_selection.html
- Model selection (cross validation, learning curves, hyperparameter tuning)
 - http://scikit-learn.org/stable/modules/classes.html#module-sklearn.model_selection
- Clustering
 - http://scikit-learn.org/stable/modules/clustering.html#clustering
- Dimensionality reduction
 - http://scikit-learn.org/stable/modules/classes.html#module-sklearn.decomposition
- Deep Learning with Python
 - https://github.com/fchollet/deep-learning-with-python-notebooks

- Anomaly detection
 - http://scikit-learn.org/stable/modules/outlier_detection.html
- Time series
 - http://machinelearningmastery.com/arima-for-time-series-forecasting-with-python/
 - https://machinelearningmastery.com/time-series-prediction-lstm-recurrent-neural-networks-pyth on-keras/
 - http://www.statsmodels.org/dev/generated/statsmodels.tsa.arima_model.ARIMA.html
- ML blogs:
 - https://www.analyticsvidhya.com/blog/2015/08/common-machine-learning-algorithms/
 - http://machinelearningmastery.com/a-tour-of-machine-learning-algorithms/

- Online courses
 - Machine learning
 - https://www.coursera.org/learn/machine-learning
 - https://www.udacity.com/course/intro-to-machine-learning--ud120
 - Deep learning
 - https://www.coursera.org/specializations/deep-learning
 - https://www.udacity.com/course/deep-learning--ud730
 - http://course.fast.ai/
- "Playgrounds"
 - Tensorflow playground https://playground.tensorflow.org/
 - Visualising the mnist data going through a network http://scs.ryerson.ca/~aharley/vis/