Automorphisms, Connections, and Motivic Cohomology

Contents

1	Con	npactification and Derived Representations
	1.1	Fixed Points and Invariants
	1.2	Linearization and Matrix Representations with Lie Groups
	1.3	Abelianization and Completions
	1.4	Sieves, Filtrations, Spectral Sequences
	1.5	Projections, Ramifications, and Cohomology
	1.6	Extensions, Closures, and Automorphisms
	1.7	Quotients and Reductions
	1.8	Diffusion, Gaussian Isotropy Group, Skeleton Category
	1.9	Inverse Limits, Profinite Groups, Absolute Galois Groups
		Energy Minimization, Moduli Spaces, and Flat Connections
		Instantons and Poles in Extended Supersymmetry
		Complexification, Embeddings, and Motivic Stabilizations
		Covariant, Geometric, Deformation Quantization (Gluing and Intersections)
	1.10	Covariant, Oconicule, Delormation Quantization (Gluing and Intersections)
2	Line	earization of Abelian Categories and Commutative Geometry
	2.1	Zariski Topology, Borel subgroups
	2.2	Fields, Rings, Spectrum of Prime Ideals
	2.3	Adeles and Ideles
	2.4	Abelian Categories, Schemes
	2.5	Homotopy Abelianization of Homology
	2.6	Grothendieck Completion and K-Theory
9	Tina	varigation of Automorphisms Under Complexification
3	3.1	carization of Automorphisms Under Complexification Connections as automorphisms
	$\frac{3.1}{3.2}$	
	3.3	
		Absolute Galois Group
	3.4	Moduli stack of elliptic curves and modular forms
	3.5	Automorphic forms
	3.6	Moduli spaces, Sheaves, Stacks, Cohomology of Shtukas
4	Line	earization of Non-Abelian Manifolds Under Extended Supersymmetry
	4.1	Differential Algebras, Lie gauges, Differential Galois Theory
	4.2	Connections as differential forms on tangent bundles
	4.3	Quotient spaces and Moduli Spaces
	4.4	Non-Abelian Yang-Mills theory and Lagrangian Mechanics
	4.5	Irreducible connections, Instantons and Monopoles
	4.6	Torsion, Holonomy, spectral and mass gaps
	4.7	Donaldson Theory and Exotic R4
	4.8	Floer Homology
	4.9	ADHM Monad Construction (Penrose twistor theory)
		Seiberg-Witten Theory and Invariants
_	a	
5	-	applectic Geometry as weak Abelianization
	5.1	Solder form, cotangent bundle
	5.2	Hamiltonian Mechanics vs Lagrangian Mechanics
	5.3	Symplectification, symplectic reduction

CONTENTS 2

	5.4	Interpreting symplectic reduction with Galois theory			4			
	5.5	Symplectic connection, deformation quantization			4			
	5.6	Covariant phase space			4			
6	Linearization with Graphs Under Complexification							
	6.1	CW complex			6			
	6.2	Chains, Cochains, Cycles, Cocycles			6			
	6.3	Simplicial complex			6			
	6.4	Lefschetz fixed-point theorem			6			
	6.5	Cellular complex			6			
	6.6	Laplacians and spectral theory			6			
	6.7	Triangulated categories			6			
	6.8	Quivers and Representations			6			
	6.9	Dynkin Diagrams, Gabriel's theorem, Root systems			6			
	6.10	Dessin d'enfant, Belyi's theorem, moduli spaces			6			
7	Linearization with Cohomology Derived Invariants							
	7.1	de Rham Cohomology			6			
	7.2	Betti cohomology			6			
	7.3	Étale Cohomology			6			
	7.4	Weil cohomology			6			
	7.5	Crystalline cohomology			6			
	7.6	Hodge theory			6			
	7.7	Chern–Weil theory			6			
8	Gro	othendieck's Dream - A Universal Cohomology and Derived Invari	ant	t	6			
	8.1	Chain-complex			6			
	8.2	Exact and Closed Sequences, Spectral Sequences, Filtrations			6			
	8.3	Stable infinity-category			6			
	8.4	Derived Categories, Coherent Sheaves			6			
	8.5	Projective categories, Pure and Mixed Motives			6			
	8.6	Derived Category of Motives			6			
	8.7	Derived Invariants			6			
9		rthest extent			6			
	9.1	Grothendieck-Teichmüller space			6			
	9.2	Motivic Galois group, cosmic Galois group, renormalization			6			
	9.3	Motivic stablization of Symplectic manifolds			6			
		Shimura Variety, L-functions, and Zariski closure			6			
	9.5	Nekrasov Instanton Partition Function, Young Diagrams			6			
	9.6	Triangulated categories of mixed motives			6			
	9.7	Motives over simplicial schemes			6			
	9.8	Probability by Homology, Gromov p-widths			6			
	9.9	Weinstein symplectic category			6			
	9.10				6			
	9.11	Kähler Manifolds, hyperkähler manifold, Calabi–Yau manifold			6			
	9.12	2 Amplituhedron, poles, factorization, gauge quivers			6			
	9.13	B Homological mirror symmetry			6			
	9.14	Topological Recursion			6			

1 Compactification and Derived Representations

- 1.1 Fixed Points and Invariants
- 1.2 Linearization and Matrix Representations with Lie Groups
- 1.3 Abelianization and Completions
- 1.4 Sieves, Filtrations, Spectral Sequences
- 1.5 Projections, Ramifications, and Cohomology
- 1.6 Extensions, Closures, and Automorphisms
- 1.7 Quotients and Reductions
- 1.8 Diffusion, Gaussian Isotropy Group, Skeleton Category
- 1.9 Inverse Limits, Profinite Groups, Absolute Galois Groups
- 1.10 Energy Minimization, Moduli Spaces, and Flat Connections
- 1.11 Instantons and Poles in Extended Supersymmetry
- 1.12 Complexification, Embeddings, and Motivic Stabilizations
- 1.13 Covariant, Geometric, Deformation Quantization (Gluing and Intersections)
- 2 Linearization of Abelian Categories and Commutative Geometry
- 2.1 Zariski Topology, Borel subgroups
- 2.2 Fields, Rings, Spectrum of Prime Ideals
- 2.3 Adeles and Ideles

2.3 Adeles and Ideles 4

- 2.4 Abelian Categories, Schemes
- 2.5 Homotopy Abelianization of Homology
- 2.6 Grothendieck Completion and K-Theory
- 3 Linearization of Automorphisms Under Complexification
- 3.1 Connections as automorphisms
- 3.2 Galois Group, Galois Representations
- 3.3 Absolute Galois Group
- 3.4 Moduli stack of elliptic curves and modular forms
- 3.5 Automorphic forms
- 3.6 Moduli spaces, Sheaves, Stacks, Cohomology of Shtukas
- 4 Linearization of Non-Abelian Manifolds Under Extended Supersymmetry
- 4.1 Differential Algebras, Lie gauges, Differential Galois Theory
- 4.2 Connections as differential forms on tangent bundles
- 4.3 Quotient spaces and Moduli Spaces
- 4.4 Non-Abelian Yang-Mills theory and Lagrangian Mechanics
- 4.5 Irreducible connections, Instantons and Monopoles
- 4.6 Torsion, Holonomy, spectral and mass gaps
- 4.7 Donaldson Theory and Exotic R4
- 4.8 Floer Homology
- 4.9 ADHM Monad Construction (Penrose twistor theory)
- 4.10 Seiberg-Witten Theory and Invariants
- 5 Symplectic Geometry as weak Abelianization
- 5.1 Solder form, cotangent bundle
- 5.2 Hamiltonian Mechanics vs Lagrangian Mechanics

6.1 CW complex 7

- 6.1 CW complex
- 6.2 Chains, Cochains, Cycles, Cocycles
- 6.3 Simplicial complex
- 6.4 Lefschetz fixed-point theorem
- 6.5 Cellular complex
- 6.6 Laplacians and spectral theory
- 6.7 Triangulated categories
- 6.8 Quivers and Representations
- 6.9 Dynkin Diagrams, Gabriel's theorem, Root systems
- 6.10 Dessin d'enfant, Belyi's theorem, moduli spaces

7 Linearization with Cohomology Derived Invariants

- 7.1 de Rham Cohomology
- 7.2 Betti cohomology
- 7.3 Étale Cohomology
- 7.4 Weil cohomology
- 7.5 Crystalline cohomology
- 7.6 Hodge theory
- 7.7 Chern–Weil theory

8 Grothendieck's Dream - A Universal Cohomology and Derived Invariant

- 8.1 Chain-complex
- 8.2 Exact and Closed Sequences, Spectral Sequences, Filtrations
- 8.3 Stable infinity-category
- 8.4 Derived Categories, Coherent Sheaves
- 8.5 Projective categories, Pure and Mixed Motives
- 8.6 Derived Category of Motives