ASSIGNMENT 1

Question:

A short summary about the conductive heat transfer and solving the same exercise with: L=0.4 m, A=20 m2, 6T=25, and k=0.78 W/m K using both simple method and using the resistance concept.

Summary:

Conductive heat transfer occurs in solids because of the differences in the temperature in different parts of the solid. Thermal energy is transferred due to molecular movement throughout the material.

Solution:

Simple method:

$$\dot{Q} = kA \frac{\Delta T}{L} = 0.78 \frac{W}{mk} * 20m^2 * \frac{25k}{0.4m} = 975W$$

Using the resistence concept:

$$Rwall = \frac{L}{kA} = \frac{0.4m}{0.78 \frac{W}{mK}} * 20m^2 \approx 0.02564 \frac{K}{W}$$

$$\dot{Q} = \frac{\Delta T}{Rwall} = \frac{25K}{0.02564 \frac{K}{W}} \approx 976.6W$$