The Complete Treatise on the Multi-Player Metro\Journey Graph

Soumadeep Ghosh

Kolkata, India

Abstract

We develop the $Metro \setminus Journey\ Graph\ (MJG)$ as a unifying graphical and algebraic framework for modeling strategic interaction, monitoring, and enforcement in repeated games with two or more players. A Metro \Journey Graph consists of an origin, a grid of outcome stations indexed by strategy profiles, and a destination, joined by forward edges that encode action-to-outcome flow and backward edges that encode monitoring and punishment dynamics. We show how classical objects in game theory—best replies, minmax punishments, equilibrium paths, and folk-theorem feasibility—admit clean representations on this directed graph. We provide explicit constructions for 2×2 , $n \times m$, and k-player settings, prove incentive-compatibility conditions (including the canonical threshold $\delta \geq (T-R)/(T-P)$ in PD-like environments), and illustrate applications to cartel stability, treaty enforcement, and platform governance. Vector figures and a self-contained bibliography are included.

Contents

1	Introduction	3	
2	The Metro\Journey Graph: Objects and Axioms	3	
3	\times 2 Case and the Prisoner's Dilemma The 2×2 Metro\Journey Graph Payoff Matrix		
4	General $n \times m$ Games		
5	Multi-Player Metro\Journey Graphs		
6	Mechanism Design View	6	
7	Applications in Economics 7.1 Cartel Stability	6 7 7 7 7	
8	Discussion	8	
9	Proof Sketches	8	
10	Design Variants and Robustness	9	
11	Conclusion	9	

List of Figures

1	The 2×2 Metro\Journey Graph	4
2	Cooperation is sustainable when $V_C \geq V_D$, equivalently $\delta \geq (T-R)/(T-P)$	5
3	A 3×3 Metro\Journey Graph	5
4	Illustrative PD-like outcomes in 3D payoff space.	6
5	Cartel enforcement through the Metro–Journey Graph: collusion as blue forward, defec-	
	tion punished by red backward path to (P, P).	8

1 Introduction

The central puzzle of cooperation is simple: why do rational agents forgo short-run temptation for long-run gains? Repeated-game theory resolves this through $credible\ punishment$. This paper develops a compact, visual, and extensible device—the $Metro \setminus Journey\ Graph$ —that embeds the repeated game's logic into a directed graph with forward journeys (choice \rightarrow outcome) and backward journeys (monitoring \rightarrow punishment \rightarrow reset). The Metro \Journey\ Graph\ clarifies: (i) where a play path sits inside the feasible set, (ii) how deviations are detected and routed, and (iii) why thresholds in discounting sustain cooperation.

2 The Metro\Journey Graph: Objects and Axioms

Definition 1 (Metro\Journey Graph). Fix a finite normal-form stage game with players i = 1, ..., k, strategy sets S_i , and payoff functions $u_i : S_1 \times \cdots \times S_k \to \mathbb{R}$. A Metro\Journey Graph is a directed graph

$$G = (V, E) = \Big(\{\mathit{Origin}\} \cup \{v_s : s \in \prod_i S_i\} \cup \{\mathit{Destination}\}, \ E^{\rightarrow} \cup E^{\leftarrow} \Big),$$

with:

- Forward edges $E^{\rightarrow} = \{(Origin, v_s), (v_s, Destination) : s \in \prod_i S_i\},$
- Backward edges $E^{\leftarrow} = \{(Destination, v_s), (v_s, Origin) : s \in \prod_i S_i\}.$

Each station v_s is labeled by the payoff vector $u(s) = (u_1(s), \dots, u_k(s))$.

Remark 1 (Semantics). A period of play corresponds to a forward trip Origin $\rightarrow v_s \rightarrow$ Destination. Monitoring maps the observed s into a backward route that either resets to Origin (continuation) or locks the system into a punishment cycle (grim, finite-length, or automaton-based).

3 The 2×2 Case and the Prisoner's Dilemma

Let players A (row) and B (column) choose C or D, with canonical payoffs T > R > P > S in the PD. The station labels are (R, R), (S, T), (T, S), (P, P).

3.1 The 2×2 Metro\Journey Graph Payoff Matrix

For two players (Row A, Column B), the payoff matrix of the Metro\Journey Graph is:

	B: Cooperate (C)	B: Defect (D)
A: Cooperate (C)	(R,R)	(S,T)
A: Defect (D)	(T,S)	(P,P)

A common numerical example is:

where:

T > R > P > S, the canonical ordering of the Prisoners Dilemma.

Vector Figure: 2×2 Metro\Journey Graph with Payoffs

Figure 1: The 2×2 Metro\Journey Graph.

Blue edges encode action-to-outcome flow. Red edges encode monitoring, punishment, and reset.

3.2 Repeated Play and Incentive Compatibility

Let $\delta \in (0,1)$ be the common discount factor and consider grim-trigger punishments to (P,P) after any deviation.

Proposition 1 (PD Threshold). Cooperation (C, C) is sustained in subgame-perfect equilibrium if and only if

$$\frac{R}{1-\delta} \; \geq \; T + \frac{\delta P}{1-\delta} \quad \Longleftrightarrow \quad \delta \; \geq \; \frac{T-R}{T-P}.$$

Proof. Immediate by comparing the present value from cooperating forever to deviating once and receiving T now and P thereafter. The Metro\Journey Graph renders this as the forward path through (R,R) versus the deviation fork and the ensuing red punishment loop.

Vector Plot: Value Comparison

Figure 2: Cooperation is sustainable when $V_C \geq V_D$, equivalently $\delta \geq (T-R)/(T-P)$.

4 General $n \times m$ Games

Let A have strategies s_1, \ldots, s_n and B have t_1, \ldots, t_m . The station grid is $n \times m$ with labels $u(s_i, t_j) = (a_{ij}, b_{ij})$.

Definition 2 (Minmax and Feasible Set). Player i's minmax payoff is $v_i = \min_{\sigma_{-i}} \max_{\sigma_i} u_i(\sigma_i, \sigma_{-i})$. The feasible set F is the convex hull of $\{u(s_i, t_j)\}_{i,j}$.

Theorem 1 (Folk Theorem, Two Players (Sketch)). For sufficiently large δ , every payoff $(x, y) \in F$ with $x > v_A$ and $y > v_B$ is enforceable in a subgame-perfect equilibrium. The Metro\Journey Graph implements this by choosing a forward path visiting stations that average to (x, y) and by equipping a backward punishment subgraph that realizes (v_A, v_B) after any detected deviation.

Vector Figure: Generalized $n \times m$ Grid (Example 3×3)

Figure 3: A 3×3 Metro\Journey Graph.

Any finite grid is obtained analogously.

5 Multi-Player Metro\Journey Graphs

Let $k \geq 2$ players with strategy sets S_i . Stations are indexed by $s = (s_1, \ldots, s_k) \in \prod_i S_i$ with labels $u(s) \in \mathbb{R}^k$.

Theorem 2 (Folk Theorem, k Players (Sketch)). Let $v = (v_1, \ldots, v_k)$ denote the minmax vector. For δ sufficiently close to 1, any feasible payoff x with $x_i > v_i$ for all i is enforceable. The Metro\Journey

Graph builds a forward itinerary realizing the desired mixture and equips backward subgraphs implementing individualized or coalition punishments to v upon deviation.

Proposition 2 (PD-like δ -Threshold, Any k). In symmetric PD-like environments with (T, R, P, S) and grim punishments to P, cooperation is incentive compatible for each player iff

$$\frac{R}{1-\delta} \ge T + \frac{\delta P}{1-\delta} \quad \Longleftrightarrow \quad \delta \ge \frac{T-R}{T-P},$$

 $independent \ of \ k$.

Vector Plot: 3-Player Feasible Payoffs (Illustrative)

Figure 4: Illustrative PD-like outcomes in 3D payoff space.

The convex hull above (1,1,1) is sustainable for δ high.

6 Mechanism Design View

The Metro\Journey Graph can be read as a finite-state machine: states are stations, forward edges implement allocation rules contingent on reported/observed actions, and backward edges implement transfers and continuation play as incentives. With public monitoring, the red subgraph can be minimal (grim). With private monitoring, richer automata (e.g., belief-based punishments) are embedded as layered red circuits.

7 Applications in Economics

The Metro\Journey Graph (MJG) provides a unifying visual and mathematical framework for interpreting real-world economic coordination problems. In each case, the forward journeys correspond to cooperative equilibria and the backward journeys encode credible punishment and enforcement mechanisms. We illustrate with five domains.

7.1 Cartel Stability

Cartels such as OPEC rely on tacit or explicit cooperation in setting production quotas.

- Forward journey: All firms restrict output to raise price, landing at the collusive payoff station.
- Temptation: A firm secretly overproduces to capture market share (station with (T, S)-like payoffs).
- Backward journey: Rivals punish by flooding the market, triggering a price war (reset to (P, P)).
- Threshold δ : Cartel is stable if firms are sufficiently patient: $\delta \geq (T-R)/(T-P)$.

7.2 International Treaties

Global agreements (climate, nuclear, trade) fit naturally into the MJG framework.

- Forward journey: Countries choose abatement or disarmament, yielding (R, R, \ldots, R) .
- Temptation: A country free-rides, producing emissions or weapons (deviation station with T payoff).
- Backward journey: Sanctions, reputational losses, or withdrawal of treaty benefits enforce compliance.
- Example: The Paris Accord can be read as a forward path to abatement, with red sanction loops available.

7.3 Labor Relations and Wage Bargaining

Unions and firms face repeated dilemmas over wages and strikes.

- Forward journey: Fair wage bargains and stable labor relations correspond to (R, R).
- Temptation: Firm underpays or union calls a strike (deviation payoff).
- Backward journey: Strikes, lockouts, and legal recourse punish deviation, looping system back.
- Historical case: Fordist-era contracts sustained by credible threat of industrial action.

7.4 Banking and Financial Systems

Financial stability depends on repeated trust between banks, depositors, and regulators.

- Forward journey: Banks lend responsibly; depositors keep funds; regulators ensure solvency.
- Temptation: A bank over-leverages, chasing high returns (T payoff).
- Backward journey: Regulatory sanctions, bank runs, or bail-ins serve as punishment resets.
- The 2008 crisis can be interpreted as a failure of the red monitoring subgraph: thieves escaped detection.

7.5 Platform Governance

Digital platforms (YouTube, Uber, Twitter) resemble MJGs.

- Forward journey: Content creators or workers comply with rules, platforms monetize fairly.
- Temptation: A creator violates terms; a platform extracts monopoly rents.
- Backward journey: Enforcement includes bans, demonetization, strikes, or regulation.
- Example: YouTube's demonetization functions as a red loop dragging defectors back to Origin.

7.6 Urban Infrastructure: Literal Metros

The MJG metaphor originates in transport economics.

- Forward journey: Passengers pay fares, operators provide service.
- Temptation: Fare evasion (a defection).
- Backward journey: Ticket inspections, fines, or security checks enforce compliance.
- Philosophical issues: Is surveillance for enforcement legitimate, or "fascist"? Does foreign ownership alter legitimacy?

Vector Illustration: Cartel Enforcement via MJG

Figure 5: Cartel enforcement through the Metro–Journey Graph: collusion as blue forward, defection punished by red backward path to (P, P).

8 Discussion

Across domains, the MJG highlights the universal structure:

- 1. A cooperative path exists, desirable yet fragile.
- 2. Individual temptations yield short-run gains, risking collapse.
- 3. Credible enforcement loops, if salient and strong, sustain cooperation provided δ is large enough.

Thus the MJG is not merely a teaching device but a framework for diagnosing and designing economic institutions.

9 Proof Sketches

Lemma 1 (Minmax Embedding). For each i, there exists a red subgraph that realizes v_i after any on-path deviation by i.

Idea. Select a station (or cycle) that attains the minmax payoff for i and connect Destination to it by a red path that ignores other signals for a fixed horizon or forever; connect back to Origin thereafter. \Box

Theorem 3 (Folk Theorem via Metro\Journey Graph). Given any feasible $x \succ v$, there exists a Metro\Journey Graph policy that sustains x in subgame-perfect equilibrium for δ close to 1.

Sketch. Time-share the desired stations to approximate x (Carathéodory). Punish with minmax upon first deviation. Public strategies and one-deviation principle yield subgame perfection.

10 Design Variants and Robustness

Finite punishments, forgiveness, and noisy monitoring are implemented by adjusting the red subgraph's length, branching, and detection gates. Automata size trades off false positives against deterrence; the Metro\Journey Graph makes these trade-offs *visible*.

11 Conclusion

The Metro\Journey Graph is a compact language for repeated games: a picture that carries the algebra. Its clarity helps in pedagogy, design, and diagnosis of cooperative failure.

References

- [1] S. Ghosh (2005), "The Metro\Journey Graph", Kolkata, India.
- [2] D. Fudenberg and E. Maskin (1986), "The Folk Theorem in Repeated Games with Discounting or with Incomplete Information", *Econometrica*.
- [3] G. J. Mailath and L. Samuelson (2006), Repeated Games and Reputations, Oxford University Press.
- [4] M. J. Osborne and A. Rubinstein (1994), A Course in Game Theory, MIT Press.
- [5] D. Abreu (1988), "On the Theory of Infinitely Repeated Games with Discounting", Econometrica.
- [6] R. B. Myerson (1991), Game Theory: Analysis of Conflict, Harvard University Press.

The End