Homework 9

The due date for this homework is Tue 7 May 2013 12:00 AM EDT.

Question 1

$$\lim_{x\to +\infty}\frac{x^2+x+1}{x^4-3x^2+2}=$$

- $-\infty$
- $-\infty$
- \circ $\frac{1}{2}$
- o (
- $-\frac{1}{3}$
- ₀ 1

Question 2

$$\lim_{x\to +\infty}\frac{6x^2-3x+1}{3x^2+4}=$$

- \circ $\frac{1}{4}$
- $-\infty$
- o 2
- \bigcirc $\frac{1}{3}$
- \bigcirc $+\infty$
- 0

 $\lim_{x o +\infty} rac{(x^2-3)(x^2+3)}{2x^4-2x^2+1} =$

- 0
- $_{\odot}$ $+\infty$
- -9
- The limit does not exist.
- ₀ 1
- \bigcirc $\frac{1}{2}$

Question 4

$$\lim_{x\to +\infty}\frac{e^{2x}}{x^3+3x^2+4}=$$

- e^2
- 0
- $_{\odot}$ $+\infty$
- $-\infty$

Question 5

$$\lim_{x\to +\infty} \frac{\ln x}{\sqrt{x}} =$$

- $\sqrt{2}$

- 1
- $-\infty$
- o (
- $_{\odot}$ $+\infty$

$$\lim_{x\to +\infty} \frac{x^3 \ln x}{e^x} =$$

- $_{\odot}$ $+\infty$
- The limit does not exist.
- ₀ 1
- e^{-1}
- $-\infty$
- 0

Question 7

$$\lim_{x o +\infty}rac{e^{x^2}}{e^{3x}}=$$

- 0
- $_{\odot}$ $+\infty$
- $_{\odot}~e^{-1/3}$
- e
- The limit does not exist.
- \bigcirc $\frac{1}{3}$

 $\lim_{x o +\infty}rac{e^x(x-1)!}{x!}=$

- 0
- \odot ϵ
- $_{\odot}$ $+\infty$
- ₀ 1
- e^x
- \circ

Question 9

$$\lim_{x\to +\infty}\frac{(x+1)!}{2^x+1}=$$

- $_{\odot}$ $-\infty$
- $_{\odot}$ $+\infty$
- ₀ 1
- \circ $\frac{1}{2}$
- 0
- 2

Question 10

Evaluate the following limit, where n is a positive integer: $\lim_{x \to +\infty} rac{\left(3 \ln x
ight)^n}{\left(2 x
ight)^n}$.

 \bigcirc $\frac{3^n}{2^n}$

- ₀ 3
- $\frac{3}{2}$
- 0
- _ 2
- $+\infty$

Which of the following are in $O(x^2)$ as x o 0? Select all that apply.

Hint: remember $O(x^2)$ consists of those functions which go to zero at least as quickly as Cx^2 for some constant C.

- $\equiv \sinh x$
- $\sin x^2$
- = 5x
- $\ln \ln(1+x)$
- $= 5x^2 + 3x^4$
- $\sqrt{x+3x^4}$

Question 12

Which of the following are in $O(x^2)$ as $x \to +\infty$? Select all that apply.

Hint: recall $O(x^2)$ consists of those functions that are $\leq Cx^2$ for some constant C as $x\to +\infty$.

- $\ln(x^{10}+1)$
- \square $\arctan x^2$
- $\sqrt{x^5-2x^3+1}$

$$5\sqrt{x^2+x-1}$$

$$5\sqrt{x^2 + x - 1}$$

$$x^3 - 5x^2 - 11x + 4$$

$$_{ extstyle \exists} \ e^{\sqrt{x}}$$

Simply the following asymptotic expression:

$$f(x) = \left(x-x^2+O(x^3)
ight)\cdot \left(1+2x+O(x^3)
ight)$$

(here, the big-O means as $x \to 0$)

Hint: do not be intimidated by the notation; simply pretend that ${\cal O}(x^3)$ is a cubic monomial in x and use basic multiplication of polynomials.

$$f(x) = x + x^2 + O(x^4)$$

$$f(x) = x + x^2 + O(x^3)$$

$$f(x) = 1 + x + x^2 + O(x^3)$$

$$f(x) = 1 + 3x - x^2 + O(x^3)$$

$$f(x) = x + x^2 - 2x^3 + O(x^6)$$

$$f(x) = x + x^2 - 2x^3 + O(x^3)$$

Question 14

Simplify the following asymptotic expression:

$$f(x) = \left(x^3 + 2x^2 + O(x)\right) \cdot \left(1 + rac{1}{x} + O\left(rac{1}{x^2}
ight)
ight)$$

(here, the big-O means as $x \to +\infty$)

Hint: do not be intimidated by the notation! Pretend that O(x) is of the form Cxfor some C and likewise with $O(1/x^2)$. Multiply just like these are polynomials, then simplify at the end.

$$f(x) = x^3 + 2x^2 + O(x)$$

$$f(x) = x^3 + 3x^2 + 2x + O(x) + O(1) + O(rac{1}{x})$$
 $f(x) = x^3 + 3x^2 + 2x + O(x)$

$$f(x) = x^3 + 3x^2 + 2x + O(x)$$

$$\int f(x) = x^3 + 3x^2 + O(x)$$

$$f(x) = x^3 + 3x^2 + 2x + O(\frac{1}{x})$$

In accordance with the Honor Code, I certify that my answers here are my own work.

Submit Answers

Save Answers