Merge Sort

Merge Sort는 가장 효율적인 알고리즘 중 하나

정렬 알고리즘 시간복잡도 비교

Name	Best	Avg	Worst	Run-time(정수60,000개) 단위: sec
삽입정렬	n	n ²	n ²	7.438
선택정렬	n ²	n ²	n ²	10.842
버블정렬	n ²	n ²	n ²	22.894
셸 정렬	n	n ^{1.5}	n²	0.056
퀵정렬	nlog₂ n	nlog₂n	n ²	0.014
힙 정렬	nlog₂ n	nlog₂n	nlog₂ n	0.034
병합정렬	nlog₂n	nlog₂n	nlog₂n	0.026

안정 정렬에 속하며, 분할 정복 알고리즘의 하나

분할 정복 알고리즘?

문제를 작은 2개의 문제로 분리하고 각각을 해결한 다음, 결과를 모아서 원래의 문제를 해결하는 전략

대개 순환 호출을 이용한다.

안정 정렬?

https://godgod732.tistory.com/10

안정 정렬(Stable Sort)

안정 정렬의 경우에는 정렬 후에도 원래의 순서가 유지되며, 결과는 다음과 같습니다.

정렬된 결과에서 <u>하트4와 스페이스4의 순서가 그대로 유지</u>되고 있음을 확인 할 수 있습니다.

불안정 정렬(Unstable Sort)

불안정 정렬의 경우에는 정렬 후에도 <u>원래의 순서가 유지된다는 보장을 할 수 없으며</u>, 결과는 다음과 같을 수 있습니다.

안정 정렬의 결과와는 달리 <u>스페이스4와 하트4의 순서가 바뀐 모습</u>을 확인 할 수 있습니다.

Merge sort 예시

정렬되지 않은 카드 뭉치가 있다고 가정합니다.

병합 정렬 알고리즘은 다음과 같이 작동합니다.

1. 먼저 반으로 나눕니다. 이제 정렬되지 않은 두 개의 더미가 있습니다.

2. 이제 더 이상 분리 할 수 없을 때까지 결과 더미를 계속 분할하십시오. 결국, 당신은 각 더미에 하나의 (정렬된) 카드를 갖게 될 것입니다

3. 마지막으로 파일을 분리한 역순으로 파일을 병합합니다. 병합 할 때마다 내용을 정렬 된 순서로 넣습니다. 각 개별 파일이 이미 정렬되어 있기 때문에 쉽습니다.

• **분할(Divide)**: 입력 배열을 같은 크기의 2개의 부분 배열로 분할한다.

다시 분할 정복 방법을 적용한다.

• 정복(Conquer): 부분 배열을 정렬한다. 부분 배열의 크기가 충분히 작지 않으면 순환 호출 을 이용하여

결합(Combine): 정렬된 부분 배열들을 하나의 배열에 합병한다.

