

PONTIFICIA UNIVERSIDAD CATÓLICA DE CHILE Escuela de Ingeniería DEPARTAMENTO DE CIENCIA DE LA COMPUTACIÓN

IIC1253 — Matemáticas Discretas — 1'2018

GUIA 5 Notación asintótica

- 1. Determine cuál de las siguientes funciones son O(n):
 - $f(n) = \lceil \frac{n}{2} \rceil$

 - $f(n) = \frac{n^2 + 1}{n + 1}$ $f(n) = \frac{n}{\log(n)}$
- 2. Determine cuál de las siguientes funciones son $O(n^2)$:
 - $f(n) = \lfloor \frac{n}{2} \rfloor \cdot \lceil \frac{n}{2} \rceil$
 - $f(n) = n \cdot \log(n)$
 - $f(n) = \frac{n^3 + 1}{n \cdot \log(n)}$
- 3. Determine cuál de las siguientes funciones son $O(\log(n))$:
 - $f(n) = \log(n+1)$
 - $f(n) = \log(n^2 + 1)$
 - $f(n) = \frac{x}{\log(x)}$
- 4. Demuestre que $n^2 + 4n + 17 \in O(n^3)$ pero $n^3 \notin O(n^2 + 4n + 17)$.
- 5. Demuestre que $n \log(n) \in O(n^2)$ pero $n^2 \notin O(n \log(n))$.
- 6. Demuestre que $2^n \in O(3^n)$ pero $3^n \notin O(2^n)$.
- 7. Ordene las siguientes funciones:

$$\sqrt{n}$$
, $(1.5)^n$, n^{100} , $(\log(n))^3$, $\sqrt{n} \cdot \log(n)$, 10^n , $(n!)^2$, $n^{99} + n^{98}$

- 8. Demuestre una buena estimación O para las siguientes funciones:
 - $(n^2+8)(n+1)$
 - $(n \log(n) + n^2)(n^3 + 2)$
 - $(n! + 2^n)(n^3 + \log(n^2 + 1))$
 - $(n^3 + n^2 \log(n))(\log(n) + 1) + (17\log(n) + 19)(n^3 + 2)$
- 9. Demuestre que si $f(n) \in O(g(n))$, entonces $f(n)^n \in O(g(n)^n)$ para todo n > 0.
- 10. Suponga que $f(n) \in O(g(n))$ con f y g son funciones crecientes y no-acotadas. Demuestre que $\log(f(n)) \in O(\log(g(n))).$

- 11. Sean f y g funciones crecientes y sea c > 0 una constante tal que para todo n > 0 se cumple que:
 - $4g(n) \le g(2n) \le 8g(n)$ y
 - $f(2n) \le 2f(n) + cg(n).$

Demuestre que $f(n) \in O(g(n))$.

- 12. Sean f y g dos funciones. Demuestre que O(f) = O(g) si, y solo si, $\Theta(f) = \Theta(g)$.
- 13. ¿Es verdad que $2^{\log_a(n)} \in O(2^{\log_b(n)})$ para b < a?
- 14. Demuestre que $\sum_{i=1}^{k} i^k \in \Theta(n^{k+1})$.
- 15. Demuestre que $\sum_{i=1}^{k} i^{-1} \in \Theta(\log(n))$.
- 16. Demuestre que $n! \in O(n^n)$ pero que $n^n \notin O(n!)$.
- 17. Sean f(n) y g(n) dos funciones de \mathbb{N} a \mathbb{R}_0^+ (reales no-negativos). Demuestre o refute las siguientes afirmaciones:
 - a) Si lím $_{n\to\infty}\frac{f(n)}{g(n)}$ existe y es distinto de ∞ , entonces $f(n)\in O(g(n))$.
 - b) $f(n) \notin O(g(n))$, entonces $g(n) \in O(f(n))$.
 - c) $f(n) \in O(g(n))$, entonces $2^{f(n)} \in O(2^{g(n)})$.
- 18. Para los siguientes pares de funciones f y g, Les verdad que $f \in O(g)$? Demuestre su afirmación.
 - a) $(\log(n))^k$ y n^{ϵ} para $k \ge 1$ y $\epsilon > 0$.
 - b) \sqrt{n} y $n^{\sin(n)}$.
 - c) $\log(n!)$ y $n \cdot \log(n)$.
 - $d) \ (\log(n))^{\log(n)} \ \ \mathbf{y} \ \ n^{\epsilon} \ \ \mathrm{para\ algún} \ \epsilon > 0.$
 - $e) n^{\log(n)} y \log(n)^n.$