Università d' Trento - Dipi di Ingegneria e Scienta dell'informatione CAL in Informatica, Ingegneria dell'informatione e delle comunicationi e Ingegneria dell'informatione e organizzatione d'informatione e organizzatione d'informatione

a.a. 2017-18 - Foglio 16 -..." L'Universo e un'eq. differentiale" [H. Poincare]...

16.1) i)
$$\begin{cases} y'(x) = \frac{x+2}{x+1} & y(x) \\ y(1) = 3 \end{cases}$$

L'eq, data è definita per $x \neq -1$, con un'unica solutione singolare data da $y[x] \equiv 0$, pu x > -1 the pero non violure in plom. di Cauxely. Coloriduremo allora $\begin{cases} y'(x) & dx = \int \frac{x+2}{x+1} \, dx \\ x+1 & dx \end{cases} = \begin{cases} x+2 & dx \\ x+1 & dx \end{cases} = \begin{cases} x+2 & dx \\ x+1 & dx \end{cases} = \begin{cases} x+2 & dx \\ x+1 & dx \end{cases} = \begin{cases} x+2 & dx \\ x+1 & dx \end{cases} = \begin{cases} x+2 & dx \\ x+1 & dx \end{cases} = \begin{cases} x+1 & dx \\$

$$ii) \begin{cases} y'(x) = \underbrace{y(x) \log y(x)}_{x} \\ y'(-1) = 2 \end{cases}$$

L'eq. è definiter per $X \neq 0$ e $y(x) \geq 0$ e ha come solutione singolare $y(x) \equiv 1$ per X < 0. Questa solutione può non soddisfer il dato iliziale. Postiamo allos procedere coundenzado

 $\frac{y'(x)}{y(x)\log y(x)} = \frac{1}{x} \quad \text{e quinoli} \quad \left(\frac{y'(x)}{y(x)\log y(x)}\right) dx = \int \frac{1}{x} dx.$ Rimetra $\log(\log y(x)) = \log|x| + c$, da an $\log y(x) = e^{c}|x|$, cerrelation $y(x) = e^{k|x|}$, k > 0. Imponendo la condinone initiale $2 = e^{k} \quad \text{signature} \quad y(x) = e^{\log x|x|} = e^{-x\log x} \quad \text{and} \quad -\infty, 0 \quad \text{.}$

$$(46.2)$$
 i) $y'(x) - 3y(x) = e^{x}$ $\Rightarrow y'(x) = 3y(x) + e^{x}$

Della formula n'ordetva per le eq. diff. Unean del pormo ordene con a(x) = 3 e $b(x) = e^{x}$ or othere che l'integrale generale e dato da $y(x) = e^{3x} \left(c + \int e^{x} e^{-3x} dx \right) = e^{3x} \left(c + \int e^{-2x} dx \right) =$

$$\frac{1}{\sqrt{|x|}} = e^{3x} \left(c + \frac{e^{-2x}}{-2}\right) = ce^{3x} - \frac{1}{\sqrt{e^{x}}} e^{x}, \quad \text{sur} \quad \text{cord} \quad \text{cord} \quad \text{cord} \quad \text{sur} \quad \text{cord} \quad \text{cord} \quad \text{sur} \quad \text{sur} \quad \text{cord} \quad \text{sur} \quad \text{sur} \quad \text{cord} \quad \text{sur} \quad \text{sur} \quad \text{sur} \quad \text{sur} \quad \text{cord} \quad \text{sur} \quad \text{cord}$$

16.3)
$$\begin{cases} y'(x) = -2y(x) + x^3 \\ y(1) = 1 \end{cases}$$
L'integrale generale dell'eq. Left. data =
$$y(x) = e^{-2\log x} (c + \int x^3 e^{2\log x} dx)$$

$$y(x) = \frac{1}{x^{2}} \left(c + \int x^{3} \cdot x^{2} dx \right)$$

$$= \frac{1}{x^{2}} \left(c + \frac{x^{6}}{6} \right) = \frac{c}{x^{2}} + \frac{x^{4}}{6}$$

$$= \frac{1}{x^{2}} \left(c + \frac{x^{6}}{6} \right) = \frac{1}{x^{2}} \left(c + \frac{x^{6}}{6} \right)$$

$$= \frac{1}{x^{2}} \left(c + \frac{x^{6}}{6} \right) = \frac{1}{x^{2}} \left(c + \frac{x^{6}}{6} \right)$$

Imponendo: $1=y(1)=C+\frac{1}{6}$ seque $C=\frac{5}{6}$ e la soluzionie del plom. di Cauchy in i) \tilde{e} $y(x)=\frac{5}{6x^2}+\frac{x^4}{6}$ son $J_0,+\infty[$

$$\begin{cases} y'(x) = 2xy(x) + x^3 \\ y(0) = 0 \end{cases}$$

L'integrale generale dell'eq. diff. data è $y(x) = e^{x^2} (c + \int x^3 e^{-x^2} dx)$

ora $\int x^3 e^{-x^2} dx = -\frac{1}{2} \int x^2 (-2x) e^{-x^2} dx =$ $= -\frac{1}{2} x^2 e^{-x^2} + \frac{1}{2} \int 2x e^{-x^2} dx = -\frac{1}{2} x^2 e^{-x^2} - \frac{1}{2} e^{-x^2}$ $= -\frac{1}{2} e^{-x^2} (x^2 + 1) \quad \text{Dunque}$ $y(x) = e^{x^2} (c - \frac{1}{2} e^{-x^2} (x^2 + 1)) = c e^{x^2} - \frac{1}{2} x^2 - \frac{1}{2} \text{ on } \mathbb{R}$

Imponendo $0 = y(0) = C - \frac{1}{2}$ n'otherie $c = \frac{1}{2}$ e la soluzione del plom. di Couchy in ii) è $y(x) = \frac{1}{2} e^{x^2} - \frac{1}{2} x^2 - \frac{1}{2}$ on \mathbb{R} .

16A) i) y'' - 4y = 0 : L'eq. caratteristics associate $\overline{z} = \pm 2i$, per cui l'integrale generale \overline{z} dato da $y(x) = c_1 e^{-2x} + c_2 e^{2x}$, $c_1 c_2 \in \mathbb{R}$ $\times \in \mathbb{R}$. \square

ii) y'' + 4y' = 0 i L'eq. carotteristica associata è $Z^2 + 4z = 0$; abbieno $Z_1 = 0$, $Z_2 = -4$, per cui l'integrale generale è dato da $y(x) = c_1 + c_2 e^{-4x}$, $c_1, c_2 \in \mathbb{R}$, $x \in \mathbb{R}$.

iii) y'' - 2y' + 5y = 0: L'eq. cantheriotica associable $Z^2 - 2z + 5 = 0$; alohozino $Z_2 = \frac{2 \pm \sqrt{4 - 20}}{2} = \frac{2 \pm \delta A}{2} = 1 \pm 2\delta$, per

cui l'integrale generale è dato $y(x) = c_1 e^x \cos 2x + c_2 e^x \sin 2x$ $c_1, c_2 \in \mathbb{R}$, $x \in \mathbb{R}$

iv) y'' + 2y = 0 : l'eq. carottenishes associate è $z^2 + 2 = 0$, da cui $z_2 = \pm \sqrt{2}i$. L'integrale generale dell'eq. diff. data è dunque $y(x) = c_1 \cos \sqrt{2}x + c_2 \sin \sqrt{2}x$, $c_1 c_2 eR$, $x \in \mathbb{R}$

v) $\begin{bmatrix} y'' + 4y' + 4y = 0 \end{bmatrix}$: Veq. caratteristica associate $\vec{e} = 2^2 + 4z + 4 = 0$, da cui $\vec{z}_{12} = -2$. L'integrate generale dell'eq. diff. data \vec{e} dunque $y(x) = c_1 e^{-2x} + c_2 x e^{-2x}$, $c_1 c_2 \in \mathbb{R}$, $x \in \mathbb{R}$

16.5) i) $y'' + 4y = x^2$: L'eq. caratt. assocrata all'eq. diff. omogenea e $z^2 + 4 = 0$, da cur $z_{y_2} = \pm 2i$. La poluzione generale dell'eq. diff. omogenea e dernque

 $y(x) = c_1 \cos 2x + c_2 \sin 2x$ $c_1, c_2 \in \mathbb{R}$, $x \in \mathbb{R}$. Cerchismo una polut. particolare $\overline{y}(x)$ dell'eq. completou della forma $\overline{y}(x) = ax^2 + bx + c$, con a,b,c da determinare Abbosimo $\overline{y}'(x) = 2ax + b$, $\overline{y}''(x) = 2a$ e dunque $\overline{y}'' + 4\overline{y} = 2a + 4ax^2 + 4bx + 4c = 4ax^2 + 4bx + 2a + 4c$ \overline{y} pare aduzione dell'eq. completo \overline{x} x = 1, x = 1, x = 1, x = 1, x = 1. In conclusione, la poluzione generale dell'eq. completo \overline{x} \overline{y} $\overline{y$

ii) $y'' + y = 3\cos x$; leq, can ten ships associate all'eq, diff. omogenea è $Z^2 + 1 = 0$, da cen $Z_{12} = \pm i$, la colutione generale dell'eq, diff. omogenea è dunque $y(x) = c_1 \cos x + c_2 \sin x$, $c_{11} c_2 eR$, xeR.

Cerduiamo una voluzione particolare $\overline{y}(x)$ dell'eq. completa della forma $\overline{y}(x) = h \times \sin x + k \times \cos x$ con h, k da deter = minare. Adoramo

 $\overline{y}'(x) = h \sin x + h \times \omega x + k \omega x - k \times \sin x$ $\overline{y}''(x) = 2h \omega x - h \times \sin x - 2k \sin x - k \times \cos x, \quad e \text{ dunque}$ $\overline{y}'' + \overline{y} = 2h \omega x - h \times \sin x - 2k \sin x - k \times \cos x + h \times \sin x + k \times \cos x$ $= 2h \omega x - 2k \sin x.$

of para solutione dell'eq. complete $\neq D$ 2h=3, -2k=0. In condumone, Unitegrale generale dell'eq. complete \neq dato da $y(x) = c_1 \cos x + c_2 \sin x + \frac{3}{2} \times \sin x$, $c_1 c_2 \in \mathbb{R}$

iii) [y"+y=38ni2x]: Aldonavno porovato in ii) che l'integrale

generale dell'eq. diff. Omogenea e dato da y(x)=c105x+c25inx,
c1 C2 ER.

Cercliamo in questo caso una oduz, particolare $\overline{y}(x)$ dell'eq. diff. completa della forma $\overline{y}(x) = h \sin 2x + k \cos 2x$ con h, k da determinare. Aldoramo

 $\bar{y}'(x) = 2h\cos 2x - 2k \sin 2x, \quad \bar{y}''(x) = -4h \sin 2x - 4k \cos 2x e$ dunque $\bar{y}'' + \bar{y} = -3h \sin 2x - 3k \cos 2x$.

 \sqrt{y} sará solutione dell'eq. diff. completar 4=0 -3h=3, -3k=0. In conclusione, l'integrale generale dell'eq. diff. completa ε doto da $\frac{y(x)=c_1 cosx + c_2 sin x - sin 2x}{\sqrt{y}}$

C1, C2 eR, XER,

(si prova come in 16,4) ii)

iv) $y'' + y' = x^2 + x + 1$: L'integrale generale dell'eq. diff. omogeneau me in associata e dato da $y(x) = c_1 + c_2 e^{-x}$, $c_1, c_2 \in \mathbb{R}$, $x \in \mathbb{R}$. Cerdisimo una soluzione particolare y(x) dell'eq. diff.

Completa della forma $y(x) = x(ax^2 + bx + c)$, con a, b, c $= ax^3 + bx^2 + cx$

da determinare. Da $\overline{y}(x) = ax^3 + bx^2 + cx$ m' othère $\overline{y}'(x) = 3ax^2 + 2bx + c$, $\overline{y}''(x) = 6ax + 2be$ dunque $\overline{y}'' + \overline{y}' = 6ax + 2b + 3ax^2 + 2bx + c = 3ax^2 + (2b + 6a)x + 2b + c$ \overline{y} para poluzione dell'eq. completa \Rightarrow $\begin{cases} 3a = 1 \\ 2b + 6a = 1 \\ 2b + c = 1 \end{cases}$ da an $a = \frac{1}{3}$, $b = -\frac{1}{2}$, c = 2. In conclusione, l'integrale generale dell'eq. diff. completa \Rightarrow dato da $y(x) = c_1 + c_2 e^{-x} + \frac{1}{3}x^3 - \frac{1}{2}x^2 + 2x$, $c_1 c_2 \in \mathbb{R}$

vi) y"-2y'-3y=2exx ZER.

L'eq. caratteristical associate all'eq. diff. omogenea \tilde{z} $Z^2 - 2Z - 3 = 0, \text{ ossa} (2-3)(2+1) = 0 \text{ da cui } 2=-1, 2=3.$ Le volutione generale dell'eq. diff. omogenea è dunque $y(x) = c_1 e^{-x} + c_2 e^{3x}, \quad c_1, c_2 e \mathbb{R}, \quad x \in \mathbb{R}.$

Se $x \neq -1,3$ curliamo Uns soluzione particolare $y(x) = he^{dx}$ con hida determinare. Abboramo $y'(x) = dhe^{dx}$ $y''(x) = d^2he^{dx}$ e $y'' - 2y' - 3y = (d^2h - 2hd - 3h)e^{dx}$. y para soluzione dell'eq. completa $x \Rightarrow h(d^2 - 2d - 3) = 2$ ossià $h = \frac{2}{d^2 - 2d - 3}$ In questo caso allora Unitegrale generale dell'eq. $x \Rightarrow 0$. Completa $x \Rightarrow 0$ dato da $y(x) = c_1e^{x} + c_2e^{3x} + \frac{2}{d^2 - 2d - 3} = c_1c_2e^{3x}$

Se d=-1, oppure d=3 dobosmo cercate una polusione participate y(x) selleq, completor della forma $y(x)=h \times e^{dx}$ con h da determinare. Aldorsmo $y'(x)=he^{dx}+hd\times e^{dx}$ $y''(x)=2hde^{dx}+hd^2xe^{dx}$. y para polusione dell'eq. completo 4 e^{dx} $2hd+hd^2x-2h-2hdx-3hx = 2e^{dx}$

$$e^{-x} \left[-2h + hx - 2h + 2hx - 3hx \right] = 2e^{-x}$$

$$e^{-x} \left[-2h + hx - 2h + 2hx - 3hx \right] = 2e^{-x}$$

$$e^{-x} \left[-2h + hx - 2h + 2hx - 3hx \right] = 2e^{-x}$$

$$e^{-x} \left[-2h + hx - 2h + 2hx - 3hx \right] = 2e^{-x}$$

$$4h = 2 \quad h = 3$$

Quindi, per
$$d=-1$$
, l'integrale generale è dato da
$$\frac{y(x)=c_1e^{-x}+c_2e^{3x}-\frac{1}{2}xe^{-x}}{y(x)=c_1e^{-x}+c_2e^{3x}+\frac{1}{2}xe^{3x}}$$
 $c_1,c_2\in\mathbb{R}$, $x\in\mathbb{R}$ per $d=3$ $y(x)=c_1e^{-x}+c_2e^{3x}+\frac{1}{2}xe^{3x}$ $c_1,c_2\in\mathbb{R}$, $x\in\mathbb{R}$

16.6) i)
$$y_1(x) = \sin 2x$$
 $y_2(x) = \cos 2x$ $\longrightarrow z_{1/2} = \pm 2\hat{0}$
 $(2-2\hat{0})(2+2\hat{0}) = Z^2 + 4$
 $\Rightarrow y_1'' + 4y = 0$
ii) $y_1(x) = e^x \sin \sqrt{3}x$ $y_2(x) = e^x \cos \sqrt{3}x$ $\longrightarrow z_{1/2} = 1 \pm \sqrt{3}\hat{0}$

$$(2 - (1 - \sqrt{36}))(2 - (1 + \sqrt{36})) = 2^{2} - 2 - \sqrt{36} \cdot 2 - 2 + \sqrt{36} \cdot 2 + 4$$

$$= 2^{2} - 2z + 4$$

$$= y'' - 2y' + 4y = 0$$

16.7) i) Abborno oltenuto che l'integrale generale dell'eq. diff. data è $y(x)=c_1e^{-x}+c_2e^{3x}-\frac{1}{2}\times e^{-x}$ Imponendo y(0)=0 n'othere $\begin{cases} 0=c_1+c_2 & \text{ otherwise} \\ 1=-c_1+3c_2-\frac{1}{2} & \text{ otherwise} \end{cases}$

16.8) i) F(x) =
$$4 - \frac{1}{2} = \frac{1}{2}$$
 = $\frac{1}{2} = \frac{1}{2}$ = $\frac{1}{2} = \frac{1}{2} = \frac{1}{2}$ = $\frac{1}{2} = \frac{1}{2} = \frac{1}{2}$ = $\frac{1}{2} = \frac{1}{2} = \frac{1}{2} = \frac{1}{2}$ = $\frac{1}{2} = \frac{1}{2} = \frac{1}{2$