Graphen Zusammenfassung

Gerichtete Graphen

gerichteter Graph: ein Paar (V, E) wobei $E \subseteq V \times V$ ist.

Knoten: Die Elemente in V heißen Knoten. (nicht leer und endlich)

Kanten: die Elemente in E heißen Kanten. (darf leer sein)

Adjazente Knoten: Die Knoten X und Y sind adjazent wenn $(X,Y) \in E$. (nicht symmetrisch)

Schlinge: Eine Kante bei der Start und Zielknoten gleich ist.

Schlingenfrei: Wenn ein Graph keine Schlinge beinhaltet.

Teilgraph: G' = (V', E') ist ein Teilgraph von G = (V, E), wenn $V' \subseteq V$ und $E' \subseteq E \cap V' \times V'$

Pfad: eine nichtleere Liste $p = (v_0, \ldots, v_n) \in V^{(+)}$ von Knoten ist ein Pfad in einem gerichteten Graphen G = (V, E), wenn für alle $i \in \mathbb{Z}_n$ gilt: $(v, v_{i+1}) \in E$.

Dabei ist |p| - 1 die Länge eines Pfades.

Man sagt auch dass v_n von v_0 erreichbar ist.

Teilpfad: ein Pfad bei dem von beiden Seiten beliebig viele Knoten entfernt wurden.

widerholungsfreier Pfad: ein Pfad, bei dem die Knoten v_0, \ldots, v_n und die Knoten v_1, \ldots, v_{n-1} jeweils paarweise verschieden sind.

geschlossener Pfad: ein Pfad mit $v_0 = v_n$.

Zyklus: ein geschlossener Pfad mit $n \ge 1$

einfacher Zyklus: Ein Zyklus der wiederholungsfrei ist.

streng zusammenhängend: Ein gerichteter Graph, in dem es für jedes Knotenpaar $(x, y) \in V^2$ einen Pfad von x nach y gibt. (genau dann wenn $E^* = V \times V$)

Gerichteter Baum: ein Graph, in dem es einen Knoten $r \in V$ gibt, von dem es jeweils genau einen Pfad zu allen anderen Knoten gibt. (r ist dabei eindeutig)

Wurzel: r wird auch Wurzel genannt

Grad: Eingangsgrad + Ausgangsgrad

- Eingangsgrad: $d^-(y) = |\{x \mid (x,y) \in E\}|$ (Anzahl der eingehenden Kanten)
- Ausgangsgrad: $d^+(y) = |\{y \mid (x,y) \in E\}|$ (Anzahl der ausgehenden Kanten)

Isomorphie von Graphen: zwei Graphen $G_1 = (V_1, E_1)$ und $G_2 = (V_2, E_2)$ sind isomorph, wenn es eine bijektive Abbildung $\varphi : V_1 \longrightarrow V_2$ gibt, mit der Eigenschaft:

$$\forall x \in V_1 : \forall y \in V_1 : (x,y) \in E_1 \iff (\varphi(x),\varphi(y)) \in E_2 \text{ (Äquivalenz relation)}$$

Ungerichtete Graphen

Ungerichteter Graph: Im gegensatz zu gerichteten Graphen ein Paar (V, E) wobei $E \subseteq \{\{x, y\} \mid x \in V \text{ und } y \in V\}$ ist.

Adjazente Knoten: zwei Knoten sind adjazent, wenn sie mit einer Kante miteinander verbunden sind.

Schlinge: Eine Kante bei der Start und Zielknoten gleich ist. Formal: $\{x,y\} = \{x\}$

Schlingenfrei: Wenn ein Graph keine Schlinge beinhaltet.

Teilgraph: G' = (V', E') ist ein Teilgraph von G = (V, E), wenn $V' \subseteq V$ und $E' \subseteq E \cap \{\{x,y\} \mid x \in V \text{ und } y \in V\}$

Weg: eine nichtleere Liste $p = (v_0, \dots, v_1) \in V^{(+)}$ von Knoten ist ein Weg, wenn für alle $i \in \mathbb{Z}_n$ gilt: $\{v_i, v_{i+1}\} \in E$.

Dabei ist |p|-1 die Länge eines Pfades.

zu ungerichtetem Graphen gehöriger gerichteter Graph: sei G=(V,E) ein gerichteter Graph. Dann ist (V,E_g) der dazugehörige ungerichtete Graph mit $E_g=\{(x,y)\,|\,\{x,y\}\in E\}\in V\times V.$

("pro Kante jeweils einen Pfeil in beide richtungen")

zusammenhängend: wenn der zugehörige Gerichtete Graph streng zusammenhängen ist.

isomorph: zwei ungerichtete Graphen sind isomorph, wenn die dazugehörigen gerichteten Graphen isomorph zueinander sind. (Äquivalenzrelation)

$$\forall x \in V_1 : \forall y \in V_1 : \{x, y\} \in E_1 \iff \{\varphi(x), \varphi(y)\} \in E_2$$

zu gerichtetem Graph gehöriger ungerichteter Graph: sei G = (V, E) ein ungerichteter Graph. Dann ist (V, E_u) der dazugehörige gerichtete Graph mit $E_u = \{\{x, y\} \mid (x, y) \in E\}$.

("entfernen aller Pfeilspitzen")

ungerichteter Baum: Ein ungerichteter Graph G ist ein ungerichteter Baum, wenn es einen gerichteten Baum B gibt, so dass der zu B gehörige ungerichtete Graph gleich G ist.

Grad:

$$f(n) = d(x) = |\{y \mid y \neq x \land \{x, y\} \in E\}| + \begin{cases} 2 & falls\{x, x\} \in E \\ 0 & sonst \end{cases}$$

("Anzahl der verbunden Knoten und +2, falls eine verbindung zu sich selbst besteht")

Algorithmen in Graphen

Adjazenzmatrix (gerichteter Graph): eine $n \times n$ Matrix A mit der Eigenschaft:

(gibt an, welche Knoten adjazent zueinander sind)
$$A_{ij} = \begin{cases} 1 & falls(i,j) \in E \\ 0 & falls(i,j) \notin E \end{cases}$$

Adjazenzmatrix (ungerichteter Graph): Adjazenzmatrix des dazugehörigen gerichteten Graphen.

Wegematrix: eine $n \times n$ Matrix A mit der Eigenschaft:

(gibt an, zwischen welchen Knoten es Wege gibt)
$$A_{ij} = \begin{cases} 1 & falls(i,j) \in E^* \\ 0 & falls(i,j) \notin E^* \end{cases}$$

Berechnung der Wegematrix: sei G ein gerichteter Graph mit Adjazenzmatrix A.

sei $k \geq n-1$, dann ist $W = sgn(\sum_{i=0}^k A^i)$ die Wegematrix von G, die E^* representiert.