

From Basics to Bytecode: A Guide to Computers and Programming

Set Lonnert with AI Collaboration

Adobe and PostScript are either registered trademarks or trademarks of Adobe Systems Incorporated in the United States and/or other countries.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective owners.

Raspberry Pi is a trademark of Raspberry Pi Ltd.

All other trademarks are the property of their respective owners.

All images are in the public domain unless otherwise stated.

Cover illustration in: Journal for Manufactures and Household Management, Scheutz, Stockholm, 1825, third issue, between pp. 96–97. Uppsala University Library. https://urn.kb.se/resolve?urn=urn:nbn:se:alvin:portal:record-95006 An illustration of the Jacquard mechanism. A device that uses punched cards to control the lifting of individual warp threads on a loom, making it possible to automate the weaving of intricate patterns with precision.

This work is marked with CC0 1.0 Universal. To view a copy of this license, visit: https://creativecommons.org/publicdomain/zero/1.0/

Authors: Set Lonnert with Al Collaboration 2025 Publisher: BoD, Books on Demand, Stockholm, Sweden Printer: Libri Plureos GmbH, Hamburg, Germany ISBN: 978-91-XXXX-XXX-X

Contents

Introduction												
1	Four	ndations	8	1								
	1.1	Prerequ	uisites	1								
	1.2	-	tions of Programming	1								
	1.3		data types	2								
		1.3.1	Integers in binary	2								
		1.3.2	Floating-point numbers	4								
		1.3.3	Characters and ASCII	4								
		1.3.4	Strings	5								
		1.3.5	Representations and types	5								
		1.3.6	Summary	6								
	1.4	Variable	es	7								
		1.4.1	Assignment	7								
		1.4.2	Mutable and immutable variables	9								
		1.4.3	Summary	12								
	1.5	Contro	I structures	13								
		1.5.1	Conventional control structures	13								
		1.5.2	Control structures in computers	17								
		1.5.3	Summary	18								
	1.6	Functio	,	19								
		1.6.1	Calling functions	20								
		1.6.2	Summary	23								
	1.7	Practice	e	24								
2	Und	erstandi	ing VMs	29								
	2.1	Simple	VMs	29								
		2.1.1	The stack	30								
		2.1.2	Interpreter technique	31								
		2.1.3	VM1 implementation	31								

CONTENTS

		2.1.4	REGVM implementation	33
		2.1.5	Portability	36
		2.1.6	Summary	38
	2.2	Stack-b	ased VM	39
		2.2.1	Comparisons	41
		2.2.2	Iterations	42
		2.2.3	Error handling	43
		2.2.4	Summary	45
	2.3	Memor	y and functions	46
		2.3.1		51
		2.3.2	Local storage	53
		2.3.3	Memory management	54
		2.3.4	Frame stack	55
		2.3.5	Summary	60
	2.4	Practice	2	62
2	D	. 1	4.5	- -
3	3.1	-		6 7
	3.1			67
	3.3			68
	3.3	3.3.1		70
		3.3.2		70 71
		3.3.3		78
	3.4	Optimis	,	78
	J. 4	3.4.1		83
		3.4.2	,	85
		3.4.3		87
		3.4.4		93
	3.5		,	93
	5.5	3.5.1		97
		3.5.2	9	00
	3.6		•	01
	5.0	ractice		•
4	Build	_	1 6)5
	4.1			05
	4.2		nputer as hardware	05
		4.2.1	Hardware	80
		4.2.2	The Pico	10
		4.2.3	,	13
		4.2.4		14
	4.3	Input/C	Output	15

	4.3.1	The Pico pins
	4.3.2	Light switching circuit
	4.3.3	Programmable I/O
	4.3.4	State machines
	4.3.5	Circuit for traffic lights
	4.3.6	Pedestrian crossing
	4.3.7	Temperature measurements
	4.3.8	Temperature indicator
	4.3.9	Summary
	4.3.10	Practice
4.4	Seconda	ary memory
	4.4.1	Save and load temperatures
	4.4.2	Summary
	4.4.3	Practice
4.5	Externa	communication
	4.5.1	UART
	4.5.2	Connect Two Picos
	4.5.3	Client-Server
	4.5.4	Wireless
4.6	Security	[,]
	4.6.1	Encryption/Decryption
	4.6.2	Example
	4.6.3	Program 1: Encrypting Program
	4.6.4	Program 2: Decrypting Program
	4.6.5	Secure communication
	4.6.6	Data integrity
	4.6.7	Hashing for Security
	4.6.8	Symmetric/Asymmetric Encryption
	4.6.9	Summary
	4.6.10	Practice
4.7	Direct n	nemory access
	4.7.1	Pico and DMA
	4.7.2	Pico and PicoDisplay
	4.7.3	Text
	4.7.4	Pixel graphics
	4.7.5	Vector graphics
	4.7.6	Summary
	4.7.7	Practice
4.8	Combin	ing I/O
	4.8.1	Simplified web server
	482	Summary 160

		4.8.3	Practice	9
	4.9	Handli	ing errors	9
		4.9.1	Types	0
		4.9.2	Approaches	0
		4.9.3	Summary	3
	4.10	Timing	g and timers	4
		4.10.1	Timing and Timers in the Pico	5
		4.10.2	Interrupt handling	7
		4.10.3	Summary	7
		4.10.4	Practice	7
	4.11	Concu	rrency and multithreading	8
	4.12		management	3
	4.13	Practio		8
5	The	Compil	ler Pipeline 18	9
	5.1	Prereq	uisites	9
	5.2	Compi	ilers, Interpreters, Assembler, and VMs	9
	5.3	Syntax	c	2
		5.3.1	Tokenisation or Lexical Analysis	3
		5.3.2	Parsing	4
		5.3.3	Production Rules and Grammars 19	6
		5.3.4	Bottom-up	8
		5.3.5	Top-down	4
		5.3.6	Building Abstract Syntax Trees (ASTs) 20	8
		5.3.7	Summary	0
	5.4	Seman	itic Analysis	1
		5.4.1	Symbol Table	4
		5.4.2	Type System	4
		5.4.3	Use of Abstract Syntax Trees (ASTs)	4
		5.4.4	Rules and Constraints	4
		5.4.5	Semantic Analysis Techniques	5
	5.5	Interm	nediate Representations (IR)	5
		5.5.1	Three-Address Code (TAC)	0
		5.5.2	Role of IR in Optimisation	1
		5.5.3	Summary	4
	5.6	Code (Generation Techniques	4
	5.7		r and Linker . .	5
	5.8		ce	0
6			and Methodology 23	
	6.1	Philos	only and style	7

		6.1.1 Programming as craft
		6.1.2 Building process
		6.1.3 Blending philosophies
		6.1.4 Methodologies
		6.1.5 References
		6.1.6 A personal note
		6.1.7 Risks
		6.1.8 Summary
	6.2	Problems and methods
		6.2.1 Example: Low customer satisfaction 253
		6.2.2 Example: Thermostat
		6.2.3 Generalisations
		6.2.4 Methodology in the craft philosophy 259
	6.3	Reflections on the history and future
		6.3.1 Al example: LLMs
		6.3.2 Summary
	6.4	Method examples
		6.4.1 Mock-ups and prototypes 267
		6.4.2 Code review
		6.4.3 Null hypothesis in programming 279
		6.4.4 Summary
	6.5	Practice
_	_	0.4
7		e Studies 285
	7.1	JVM
	7.2	PostScript
	7.3	Language and Virtual Machine Projects
	7.4	Systems Programming Projects
	7.5	Tools and Frameworks
	7.6	Simulators and Emulators
	7.7	Data Science and Al Projects
	7.8	Creative and Visual Projects
8	Adv	anced Topics 295
Ū	8.1	Abstract data structures
	8.2	Object-orientation
	8.3	Functional languages
	0	8.3.1 Design patterns
	8.4	Design patterns
		8.4.1 Factory
		8.4.2 Observer 300

CONTENTS

	8.4.3	Comman	d.											311
	8.4.4	Strategy									 			314
	8.4.5	Adapter									 			316
	8.4.6	Composit	е.								 			319
	8.4.7	Decorato	r.								 			320
8.5	Security										 			322
8.6	Garbage	collection	١.								 			322
8.7	Memory	manager manager	nent								 			323
8.8	Graphic	s									 			323
8.9	Differen	t VMs												323
Register														326