CS61B Lecture #24: Hashing

Last modified: Tue Mar 24 11:25:12 2020

Back to Simple Search

- Linear search is OK for small data sets, bad for large.
- So linear search would be OK if we could rapidly narrow the search to a few items.
- Suppose that in constant time could put any item in our data set into a numbered bucket, where # buckets stays within a constant factor of # keys.
- Suppose also that buckets contain roughly equal numbers of keys.
- Then search would be constant time.

Hash functions

 To do this, must have way to convert key to bucket number: a hash function.

"hash /hash / 2a a mixture; a jumble. b a mess." Concise Oxford Dictionary, eighth edition

• Example:

- N=200 data items.
- keys are longs, evenly spread over the range $0..2^{63}-1.$
- Want to keep maximum search to L=2 items.
- Use hash function h(K) = K % M, where M = N/L = 100 is the number of buckets: $0 \le h(K) < M$.
- So 100232, 433, and 10002332482 go into different buckets, but 10, 400210, and 210 all go into the same bucket.

External chaining

- ullet Array of M buckets.
- Each bucket is a list of data items.

- ullet Not all buckets have same length, but average is N/M=L, the load factor.
- To work well, hash function must avoid collisions: keys that "hash" to equal values.

Ditching the Chains: Open Addressing

- Idea: Put one data item in each bucket.
- When there is a collision, and bucket is full, just use another.
- Various ways to do this:
 - Linear probes: If there is a collision at h(K), try h(K)+m, h(K)+m2m, etc. (wrap around at end).
 - Quadratic probes: $h(K) + 1 \cdot m$, $h(K) + 2^2 \cdot m$, $h(K) + 3^2 \cdot m$, ... (corrected 3/24)
 - Double hashing: h(K) + h'(K), h(K) + 2h'(K), etc.
- Example: h(K) = K % M, with M = 10, linear probes with m = 1.
 - Add 1, 2, 11, 3, 102, 9, 18, 108, 309 to empty table.

108 1 2 11	3 102	309 18	9
------------	-------	--------	---

- Things can get slow, even when table is far from full.
- Lots of literature on this technique, but
- Personally, I just settle for external chaining.

Filling the Table

- To get (likely to be) constant-time lookup, need to keep #buckets within constant factor of #items.
- So resize table when load factor gets higher than some limit.
- In general, must re-hash all table items.
- Still, this operation constant time per item,
- So by doubling table size each time, get constant amortized time for insertion and lookup
- (Assuming, that is, that our hash function is good).

Hash Functions: Strings

- For String, " $s_0s_1\cdots s_{n-1}$ " want function that takes all characters and their positions into account.
- What's wrong with $s_0 + s_1 + \ldots + s_{n-1}$?
- For strings, Java uses

$$h(s) = s_0 \cdot 31^{n-1} + s_1 \cdot 31^{n-2} + \ldots + s_{n-1}$$

computed modulo 2^{32} as in Java intarithmetic.

- To convert to a table index in 0..N-1, compute h(s)%N (but don't use table size that is multiple of 31!)
- Not as hard to compute as you might think; don't even need multiplication!

```
int r; r = 0;
for (int i = 0; i < s.length (); i += 1)
  r = (r << 5) - r + s.charAt (i);</pre>
```

Hash Functions: Other Data Structures I

• Lists (ArrayList, LinkedList, etc.) are analogous to strings: e.g., Java uses

```
hashCode = 1; Iterator i = list.iterator();
while (i.hasNext()) {
   Object obj = i.next();
   hashCode =
     31*hashCode
     + (obj==null ? 0 : obj.hashCode());
```

- Can limit time spent computing hash function by not looking at entire list. For example: look only at first few items (if dealing with a List or SortedSet).
- Causes more collisions, but does not cause equal things to go to different buckets

Hash Functions: Other Data Structures II

- \bullet Recursively defined data structures \Rightarrow recursively defined hash functions.
- For example, on a binary tree, one can use something like

```
hash(T):
    if (T == null)
       return 0;
    else return someHashFunction (T.label ())
                ^ hash(T.left ()) ^ hash(T.right ());
```

Identity Hash Functions

- Can use address of object ("hash on identity") if distinct (!=) objects are never considered equal.
- But careful! Won't work for Strings, because .equal Strings could be in different buckets:

```
String H = "Hello",
       S1 = H + ", world!",
       S2 = "Hello, world!";
```

• Here S1.equals(S2), but S1 != S2.

What Java Provides

- In class Object, is function hashCode().
- By default, returns the identity hash function, or something similar. [Why is this OK as a default?]
- Can override it for your particular type.
- For reasons given on last slide, is overridden for type String, as well as many types in the Java library, like all kinds of List.
- The types Hashtable, HashSet, and HashMap use hashCode to give you fast look-up of objects.

```
HashMap<KeyType,ValueType> map =
    new HashMap<>(approximate size, load factor);
map.put(key, value);  // Map KEY -> VALUE.
... map.get(someKey) // VALUE last mapped to by SOMEKEY.
... map.containsKey(someKey) // Is SOMEKEY mapped?
                // All keys in MAP (a Set)
... map.keySet()
```

Special Case: Monotonic Hash Functions

- Suppose our hash function is monotonic: either nonincreasing or nondescreasing.
- So, e.g., if key $k_1 > k_2$, then $h(k_1) \ge h(k_2)$.
- Example:
 - Items are time-stamped records; key is the time.
 - Hashing function is to have one bucket for every hour.
- In this case, you can use a hash table to speed up range queries [How?]
- Could this be applied to strings? When would it work well?

Perfect Hashing

- Suppose set of keys is fixed.
- A tailor-made hash function might then hash every key to a different value: perfect hashing.
- In that case, there is no search along a chain or in an open-address table: either the element at the hash value is or is not equal to the target key.
- For example, might use first, middle, and last letters of a string (read as a 3-digit base-26 numeral). Would work if those letters differ among all strings in the set.
- Or might use the Java method, but tweak the multipliers until all strings gave different results.

Characteristics

- Assuming good hash function, add, lookup, deletion take $\Theta(1)$ time, amortized.
- Good for cases where one looks up equal keys.
- Usually bad for range queries: "Give me every name between Martin and Napoli." [Why?]
- Hashing is probably not a good idea for small sets that you rapidly create and discard [why?]

Comparing Search Structures

Here, N is #items, k is #answers to query.

			Bushy	"Good"	
	Unordered	Sorted	Search	Hash	
Function	List	Array	Tree	Table	Heap
find	$\Theta(N)$	$\Theta(\lg N)$	$\Theta(\lg N)$	$\Theta(1)$	$\Theta(N)$
add (amortized)	$\Theta(1)$	$\Theta(N)$	$\Theta(\lg N)$	$\Theta(1)$	$\Theta(\lg N)$
range query	$\Theta(N)$	$\Theta(k + \lg N)$	$\Theta(k + \lg N)$	$\Theta(N)$	$\Theta(N)$
find largest	$\Theta(N)$	$\Theta(1)$	$\Theta(\lg N)$	$\Theta(N)$	$\Theta(1)$
remove largest	$\Theta(N)$	$\Theta(1)$	$\Theta(\lg N)$	$\Theta(N)$	$\Theta(\lg N)$