Previsão de demanda energética

UM OVERVIEW COMPARATIVO PARA CONSUMIDORES DE PEQUENO PORTE

Orientador: Prof. Saulo Moraes Villela (PPGCC) Coorientador: Prof. Bruno Henriques Dias (PPEE)

Apresentação Pessoal

PAULO BARBOSA

Téc. Informática

• Centro Vocacional Tecnológico

B.Sc. Engenharia Elétrica

• Universidade de Vassouras

Mestrando do PPGCC

• Inteligência Computacional

Sumário

- Apresentação Ok
- Introdução
 - Problemas;
 - Possíveis soluções
 - ▶ DP, como solução
 - Diretivas
- Descrição do método;
 - Implementação
- Resultados preliminares;
- Conclusões

Introdução - Problema

Análise de investimentos em expansão de redes de transmissão

Flexibilização, coordenação e planejamento do despacho das fontes

Garantia da manutenção da qualidade do fornecimento

Implementação de um mercado descentralizado

Introdução – Busca pela solução

- Previsão da Demanda Energética
 - Curto prazo
 - Curtíssimo prazo
 - Médio prazo
 - Longo Prazo

Séries Temporais Univariadas

Séries Temporais Multivariadas

Análise estatística

- Ineficazes com dados ruidosos

Lógica Fuzzy

- Aplicável somente em tomada de decisão
 - Necessidade de regras definidas

Modelos computacionais

- Capacidade de generalização
- Pré-processamento dos dados
 - Feature Selection

Introdução – Deep Learning: a solução

Strengths

- Capacidade de trabalho com dados ruidosos
- Extrema capacidade de generalização

Weaknesses

- Alto poder computacional para treinar
 - Demora no treinamento

Opportunities

- Análise do comportamento dos modelos
 - Futura implementação da descentralização do mercado de energia
 - Abordagem data-driven

Threats

- Altos indicadores de erros (Dependendo da arquitetura)

Introdução – Diretiva da solução

Estabelecimento de foco: colaboração para a descentralização do mercado de energia

Elaboração de um método generalista e que traga bons resultados

Benchmarking e estudo do comportamento de diferentes arquiteturas

Detalhamento do método

Detalhamento do método

Detalhamento do método – Etapa de pré-processamento

Detalhamento do método – Etapa de treinamento

Detalhe dos modelos

- Recorrent Neural Networks (Vanilla RNN)
- Long-Short Term Memory (LSTM)
- Gated Recorrent Unit (GRU)

Multi-Layer Perceptron (MLP)

Temporal Times-Series Transformers (TST)

Implementação

PyTorch Lightning

- Implementação modular das arquiteturas
- Possibilidade de treinamento distribuído
- Fácil de encontrar implementações de novas arquiteturas

	test/MAE		test/MAPE		test/SMAPE		test/MSE	
model								
	All features	PCA Features						
GRU	0,046530	0,032423	0,237822	0,177252	0,147782	0,110306	0,004648	0,003382
LSTM	0,032864	0,038409	0,218857	0,201980	0,138971	0,128410	0,004126	0,003932
RNN	0,034076	0,028427	0,167636	0,165382	0,117375	0,102322	0,003292	0,002986
TST	0,050113	0,068569	0,298159	0,531525	0,176799	0,214967	0,006084	0,010055
MLP	0,094576	0,092615	1,168141	1,217745	0,242437	0,235290	0,028663	0,030206

Resultados preliminares por SHAP Values

Gráfico da força das características para uma única previsão

Conclusões

- Tratativa para o problema utilizando várias features relacionadas ao consumo de energia;
- Possibilidade de verificar a ótima performance das redes recorrentes;
- Construção de um comparativo de treinamento usando préprocessamento da seleção de características;
- Percepção da influência de cada característica para uma única previsão;
- Construção de modelos de previsão prontos a serem implementados em conjunto com blockchain

Obrigado!

- in linkedin.com/in/paulo-vitor-barbosa-870187213/
- (5) lattes.cnpq.br/8129078753251369
- github.com/pv08/consumption-forecasting