1. Les bases de Fourier

Ce chapitre présente les transformées, séries de FOURIER et introduit la transformée deFOURIER Discrète en se basant sur une analogie entre les espaces vectoriels Euclidiens et les espaces de Hilbert où :

- un vecteur est un signal sous forme d'une fonction de $\mathbb{R} \to \mathbb{C}$;
- le produit scalaire de deux vecteurs est sous forme d'intégrale (ou somme) du produit;
- les coefficients peuvent être complexe \mathbb{C} -espace vectoriel et non \mathbb{R} -espace vectoriel comme pour les Euclidiens, ce qui change la propriété de symétrie du produit scalaire.

La Fig. 1.1 mets en évidence cette analogie et souligne le fait que transformer un signal avec un produit scalaire revient à a effectuer un changement de base.

FIGURE 1.1 – Changement de base d'un vecteur dans un espace Euclidien de \mathbb{R}^3 et transformation d'une fonction de $\mathbb{R} \to \mathbb{C}$ dans un espace de Hilbert.

On utilise par habitude la variable *t* car l'espace de départ est souvent des *fonctions du temps*. On nomme *espace primal* ce premier espace considéré.

En décomposant un signal vecteur dans une base, on va pouvoir représenter ce signal par ses coordonnées dans la base d'arrivée, on dit plutôt composantes pour un signal. On obtient alors un « signal des composantes » dans un espace que l'on appelle $espace \ dual$. Comme l'on utilise la plupart des temps des bases dites fréquentielles, la variable de l'espace dual est notée f et correspond aux $fonctions \ de \ la \ fréquence$.

R

Pourquoi du complexe pour du réel?

On considère le cas général des fonctions à valeurs dans $\mathbb C$ car cela permet :

- de représenter des signaux de type phaseur (vecteurs en rotation)
- de représenter facilement des signaux réels dont la bande de fréquence est finie (signaux dits bande étroite)
- de pouvoir appliquer la trasnformée de FOURIER à une transformée de FOURIER (qui est complexe même pour des signaux réels) et de voir l'opération de transformée comme un isomorphisme et de jouer avec la notion de dual.

La base de vecteurs utilisée dans les transformées de FOURIER $(t \mapsto e^{2\pi ft})_{f \in \mathbb{R}}$ va être déclinée en différentes bases selon que l'on va discrétiser une des variables :

temps discret où la variable $t \in \mathbb{R}$ sera remplacée par une variable discrète $k \in \mathbb{N}$ avec la relation $t = kT_e$ où T_e est la valeur qui sépare deux échantillons en temps est nommé *période* d'échantillonnage.

frequences discrètes où la variable $f \in \mathbb{R}$ sera remplacée par une variable discrète $n \in \mathbb{N}$ avec la relation $f = n\Delta_f$ où Δ_f est la valeur qui sépare deux échantillons en fréquence est nommé *résolution fréquentielle*

Selon la dimention continue (infinie indénombrable) ou discrète (infinie dénombrable ou finie) des espaces primal et dual, on utiliser différents produis scalaires pour effectuer différente transformées entre primal et dual.

1.1 Les espaces et produits scalaires associés

Nous allons considérer des espaces de fonctions tantôt à variables continues puis discrètes, et en même temps sur des supports infinis ou bornés. Dans le cas de fonctions bornées (définies sur un intervalle $[a, a+T_0[$ en continu ou [a, a+N[]] en discret), on peut **toujours** prolonger cette fonction en dehors du support de manière périodique, plutôt que par des zéros, car cela permet d'avoir une représentation en séries de FOURIER (SdF) (cas continu) ou en Transformée de Fourier Discrète (TFD) dans le cas discret.

Les produits scalaires pour différents espaces de fonctions sont définis et illustrés dans la Tab. 1.1 en prenant :

- en rangées du tableau les signaux de la *variable continue* (intégrale continue) ou bien de la *variable discrète* (somme discrète);
- en colonnes du tableau les *supports infinis* (de $-\infty$ à ∞) ou bien support *périodiques/borné* (de 0 à T_0 ou N).

Exercice 1.1 Propriété de scalaire et norme dans le cas général

On aurait pu définir ces produits scalaires en ne prenant jamais le conjugué d'une fonction g (ou en considérant des fonction à valeurs réelles de manière à ignorer ce conjugué car $\overline{g} = g$).

- 1. Vérifiez dans le cas réel (sans conjugué) que le produit $\langle f,g\rangle$ à les propriété d'un produit scalaire, en déduire la norme induite $\|f\|^2 = \langle f,f\rangle$ et déterminer la dimention de $\|f\|^2$: est-ce de la puissance ou de l'énergie, est-ce une valeur ou une densité?
- 2. Appliquez cette norme (toujours sans le conjugué) au signal imaginaire pur $f: t \mapsto i$.

TABLE 1.1 – Les produits scalaires adaptés aux différents espaces de fonctions. Par clarté, on ne représente que le module de la fonction qui est dans la cas général complexe.

Quelle propriétée de la norme n'est pas respectée?

- 3. Refaites de même en prenant cette fois-ci les formules de Tab. 1.1 avec le conjugué de *g* et vérifiez que cette propriété est vérifiée dans le cas général des fonctions à variables complexes.
- 4. Vérifiez que $\langle f,g\rangle=\overline{\langle g,f\rangle}$ et que donc le produit scalaire est linéaire à gauche $\forall \lambda \in \mathbb{C},\ \langle \lambda f,g\rangle=\lambda \langle f,g\rangle$ et à moitié linéaire à droite $\forall \lambda \in \mathbb{C},\ \langle f,\lambda g\rangle=\overline{\lambda} \langle f,g\rangle$

On comprend maintenant pourquoi, dans le cas général des fonctions à valeurs complexes, on utilise le conjugué dans l'expression des produit scalaires et pourquoi on parle de produit sesqui-linéaire pour ces produits scalaires : sesqui en latin voulant dire « un et demi » en latin.

Le produit scalaire est très utile car il permet d'obtenir :

- de mesurer des longueurs de signaux avec la norme induite par le produit scalaire $\|\overrightarrow{s}\| = \langle \overrightarrow{s'}, \overrightarrow{s'} \rangle$, et de mesurer des distances entre signaux avec la norme de la différence $\|\overrightarrow{u} \overrightarrow{v}\|$;
- de projeter un vecteur sur un autre ou sur un sous-espace vectoriel : cela revient à minimiser une distance $P_v(u) = \min_{x \in \text{vect}(u)} (\|u x\|)$ par simple calcul direct;
- trouver les meilleures, au sens de la distance avec la norme engendrée, décompositions d'un signal *u* sur une base de vecteurs données : calculer des transformées de signaux.

La Tab. 1.2 montre le parallèle entre l'utilisation du produit scalaire sur des vecteurs et sur des signaux, chacune permet de retrouver des formules bien connues des SdF et des TF.

1.2 Les transformations

En prenant la base des ondes complexes adaptée à chaque espaces de signaux (discrétisée ou non, sur un intervalle infini ou borné/périodique), et en utilisant les produits scalaires adaptés, on peut définir quatre types de transformations et leur réciproques entre un primal avec une base canonique purement localisée dans le temps (et infiniment étendue en fréquence) et un dual composé d'une base d'ondes purement localisées fréquentielles (et infiniment étendue en dans le temps).

Le schéma ci dessous résume ces transformées, leurs base et les produits scalaires associés à chaque transformation :

1.2.1 Base de la TF

La TF (Transformée de Fourier), ou FT (Fourier Transform) en anglais, s'applique aux fonction continues et utilise une base d'ondes complexes $B_F = \underbrace{\left(t \mapsto e^{i2\pi ft}\right)}_{w_f}$.

Exercice 1.2 Tentez de retrouver la formule de la transformée et son inverse et d'esquisser le schéma ci-dessous sans le regarder, en se rappelant juste que c'est une application de

$$\mathbb{R} \to \mathbb{C} \xrightarrow{TF} \mathbb{R} \to \mathbb{C}$$

basée sur le produit scalaire continu noté \langle, \rangle avec la base continue $B_F = (w_f)_{f \in \mathbb{R}}$

On peut faire l'analogie avec les espaces Euclidiens mais pas l'amalgame, car :

- le produit scalaire \langle , \rangle est défini dans le cas de fonctions de carré intégrable, ou *fonction* à *énergie finie*, que nous notons \mathcal{L}_2 ,
- les vecteurs de la base ne sont pas normés car de norme infinie;
- la base n'est pas finie, ni infinie dénombrable mais infinie indénombrable.

Mais lorsque l'on se place dans le cas de fonctions de carré intégrable, ou fonction à énergie finie, que nous notons \mathcal{L}_2 , l'espace est complet (les suites de Cauchy convergent) dont les sommes infinies se comporte bien dans \mathcal{L}_2 : c'est une espace de Banach. De plus le produit scalaire associé à la norme 2 existe et on a donc un espace de HILBERT où la norme et le produit scalaire sont des application linéaire dans \mathcal{L}_2 . Comme il s'agit d'une espace de dimention infinie, il ne suffit pas d'avoir une base de dimention infinie pour couvrir tout l'espace, mais dans le cas de \mathcal{L}_2 avec la base B_F on montre que tout l'espace est engendré.

Bref! ça fonctionne tout comme un espace Euclidien sans en être un.

Exercice 1.3 Prendre la base $B_F = (w_f)_{f \in \mathbb{R}}$ et utiliser la partie espace indénombrable de la Tab. 1.2 pour retrouver les formules de PLANCHEREL et PARSEVAL.

1.2.2 Base des SdF

Les SdF (Séries de FOURIER), ou FS (Fourier Series) s'appliquent aux fonctions continues pério-

diques et utilisent une base dénombrable
$$B_F = \left(\underbrace{t \mapsto W^{nt}_{T_0} = e^{i\frac{2\pi}{T_0}nt}}_{w^n_{T_0}}\right)_{n \in \mathbb{N}}$$
 avec $W_{T_0} = e^{i\frac{2\pi}{T_0}}$.

Exercice 1.4 Tentez de retrouver la formule de la décomposition et recomposition en SdF et d'esquisser le schéma ci-dessous sans le regarder, en se rappelant juste que c'est une application de

$$\mathbb{R}_{T_0} \to \mathbb{C} \stackrel{SdF}{\longrightarrow} \mathbb{N} \to \mathbb{C}$$

basée sur le produit scalaire continu périodique noté \langle , \rangle_P et avec la base discrète $B_F = (W_{T_0}^n)$.

On peut faire l'analogie avec les espaces Euclidiens mais pas l'amalgame, car :

- le produit scalaire \langle , \rangle_P est défini dans le cas de fonctions périodiques de carré intégrable, fonctions de puissance moyenne finie, que nous notons \mathcal{L}_{p2}
- ce n'est pas un isomorphisme car on passe d'un espace continu périodique à un espace discret! La transformée inverse se fait avec le produit scalaire discret $\langle \langle , \rangle \rangle$
- la base n'est pas finie, mais infinie dénombrable;

Bref! cela fonctionne un peu comme un espace Euclidien fini sans en être un...

Exercice 1.5 Prendre la base

$$B_{F} = \left(\underbrace{t \mapsto \cos\left(\frac{2\pi}{T_{0}} n t\right)}_{\cos_{n}}\right)_{n \geq 1} \cup \left(\underbrace{t \mapsto \sin\left(\frac{2\pi}{T_{0}} n t\right)}_{\sin_{n}}\right)_{n > 1} \cup (t \mapsto 1)$$

et voir que l'on retrouve les formules des coefficients a[n], b[n] et a_0 à un facteur 2 près!

Et oui! La base n'est pas normée car un rapide calcul montre que la norme des vecteurs vaut $\frac{1}{2}$ (on peut se rappeler que la valeur efficace d'un cosinus d'amplitude 1 est $\frac{\sqrt{2}}{2}$; sa puissance moyenne sur une période est donc le carré de $\frac{\sqrt{2}}{2}$)

En prenant la base normée

$$\mathbf{B_F}' = \left(\underbrace{\sqrt{2}\cos_n}_{\cos_n'}\right)_{n>1} \cup \left(\underbrace{\sqrt{2}\sin_n}_{\sin_n'}\right)_{n\in\mathbb{Z}^*} \cup (t\mapsto 1)$$

on obtient une définition des SdF chère aux physiciennes :

$$s(t) = \begin{pmatrix} \underbrace{\frac{\langle s, t \mapsto 1 \rangle_{P}}{a_{0}}} & 1 \\ + \sum_{n=1}^{+\infty} \underbrace{\langle s, \cos'_{n} \rangle_{P}}_{a'[n]} & \cos'_{n}(t) \\ + \sum_{n=1}^{+\infty} \underbrace{\langle s, \sin'_{n} \rangle_{P}}_{b'[n]} & \sin'_{n}(t) \end{pmatrix} = \begin{pmatrix} a_{0} \\ + \sum_{n=1}^{+\infty} \underbrace{\langle s, \sqrt{2}\cos_{n} \rangle_{P}}_{\sqrt{2}a[n]} & \sqrt{2}\cos_{n}(t) \\ + \sum_{n=1}^{+\infty} \underbrace{\langle s, \sqrt{2}\sin_{n} \rangle_{P}}_{\sqrt{2}b[n]} & \sqrt{2}\sin_{n}(t) \end{pmatrix}$$
(1.1)

Avec
$$||t \mapsto 1||^2 = 1$$
, $||\cos_n'||^2 = ||\sqrt{2}\cos_n||^2 = 1$ et $||\sqrt{2}\sin_n||^2 = 1$

On peut ne pas normer les vecteurs, et c'est le plus fréquent, mais introduire un facteur 2 dans la formule de calcul des coefficients a[n] et b[n] qui n'apparait pas dans les coefficients c[n]:

$$s(t) = \begin{pmatrix} \underbrace{\frac{2\langle s, t \mapsto 1 \rangle_{P}}{a_{0}}} & 1 \\ + \sum_{n=1}^{+\infty} \underbrace{\frac{2\langle s, \cos_{n} \rangle_{P}}{a[n]}} & \cos_{n}(t) \\ + \sum_{n=1}^{+\infty} \underbrace{\frac{2\langle s, \sin'_{n} \rangle_{P}}{a[n]}} & \sin_{n}(t) \end{pmatrix} = \begin{pmatrix} \underbrace{\frac{a_{0}}{2}} \\ + \sum_{n=1}^{+\infty} \underbrace{\frac{2\langle s, \cos_{n} \rangle_{P}}{a[n]}} & \cos_{n}(t) \\ + \sum_{n=1}^{+\infty} \underbrace{\frac{2\langle s, \sin_{n} \rangle_{P}}{b[n]}} & \sin_{n}(t) \end{pmatrix}$$
(1.2)

Avec
$$||t \mapsto 1||^2 = 1$$
, $||\cos_n||^2 = ||\sin_n||^2 = \frac{1}{2}$.

1.2.3 Base de la TFSD

La TFSD (Transformée de FOURIER des Signaux Discrets), ou DTFT (*Discrete Time Fourrier Transform* en anglais, s'applique aux fonctions à variable discrète et utilise une base d'ondes

complexes indénombrable
$$B_F = \left(\underbrace{k \mapsto W_{T_e}^{f\,k} = e^{i2\pi\,T_e\,f\,k}}_{w_{T_e}^f}\right)_{f \in [0,\,F_e[}$$
 avec $W_{Te} = e^{i2\pi\,T_e}$.

Exercice 1.6 Tentez de trouver la formule de cette TFSD et son inverse, d'esquisser le schéma ci-dessous sans le regarder, en pensant que c'est la « duale » de la SdF. Il s'agit d'une application de

$$\mathbb{N} \to \mathbb{C} \stackrel{TFSD}{\longrightarrow} \mathbb{R}_{F_e} \to \mathbb{C}$$

basée sur le produit scalaire discret noté $\langle\!\langle,\rangle\!\rangle$ avec la base continue $B_F = \left(w_{T_e}^f\right)_{f\in[0,\,F_e[}$

On peut difficilement faire l'analogie avec les espaces Euclidiens car :

— le produit scalaire \langle , \rangle fonctionne dans le cas de suites discretes absoluement convergentes;

- ce n'est pas un isomorphisme car on passe d'un espace discret à un espace continu périodique! La transformée inverse se fait avec le produit scalaire continu périodique \langle , \rangle_P (Attention la période dans l'espace des fréquences est F_e);
- la base n'est pas finie, ni dénombrable mais infinie indénombrable.

Exercice 1.7 On admet pour le moment que la TFSD d'un signal s[k] quelconque est une fonction S(f) de période F_e . On peut donc voir S(f) comme une fonction de période F_e de la variable réelle f et y appliquer une décomposition en séries de FOURIER!

Faites-le et comparez avec la TFSD inverse. Vous venez de basculer dans un dual! D'ailleurs on peut voir s[k] comme les coefficients de FOURIER d'une fonction de fréquence fondamentale T_E et appliquer une recomposition de la série et trouver S(f).

Donc TFSD=SdF⁻¹ et inversement SdF=TFSD⁻¹

1.2.4 Base de la TFD et FFT

La TFD (Transformée de FOURIER Discrète), ou DFT (*Direct Fourier Transform*) en anglais, s'applique aux fonctions discrètes à support fini et utilisent une base d'ondes complexes discrète

finie
$$B_F = \left(\underbrace{k \mapsto W_N^{nk} = e^{i\frac{2\pi}{N}nk}}_{W_N^n}\right)_{n \in [\![0,N_0[\![}]\!]} \text{avec } W_N = e^{i\frac{2\pi}{N}}.$$

La FFT (Fast Fourier Transform en anglais uniquement) est un algorithme efficace de calcul de la TFD : c'est donc la même transformation avec les mêmes valeurs!

Exercice 1.8 Tentez de trouver la formule de cette TFD et son inverse, d'esquisser le schéma ci-dessous sans le regarder. Il s'agit d'une application de

$$\llbracket 0, N_0 \llbracket \to \mathbb{C} \stackrel{TFD}{\longrightarrow} \llbracket 0, N_0 \llbracket \to \mathbb{C}$$

basée sur le p.s. discret périodique noté $\langle\!\langle,\rangle\!\rangle_P$ avec la base continue $\mathbf{B}_{\mathrm{F}} = \left(\overrightarrow{w_N^H}\right)_{n\in[\![0,N_0[\![}$

On peut faire l'analogie avec les espaces Euclidiens finis et on peut faire l'amalgame! car c'en est un mais dans \mathbb{C} donc :

— le produit scalaire n'est pas symétrique mais « symétrique et demi » c.-à-d.sesquilinéaire car

$$\langle u, v \rangle = \overline{\langle v, u \rangle}.$$

R

Base pas normée

Le terme $W_N = e^{-i\frac{2\pi}{N}}$ est en fait une racine Nième de l'unité. Le calcul de la norme $||w_n||$ du vecteur de la base $w_n = k \mapsto W_N^{-nk}$ devient donc :

$$\langle \langle w_n, w_n \rangle \rangle_P = \sum_{k=0}^{N-1} e^{i\frac{2\pi}{N}nk} \cdot e^{-i\frac{2\pi}{N}nk} = \sum_{k=0}^{N-1} 1 = N$$

La formulation normée et symétrique de la TFD (1.3) fait donc intervenir un facteur $\frac{1}{\sqrt{N}}$ pour la TFD et son inverse :

$$s[k] = \sum_{n \in \mathbb{N}} \underbrace{\langle \langle s, w_n' \rangle \rangle}_{S[n]} w_n' = \sum_{n \in \mathbb{N}} \langle \langle s, \frac{w_n}{\sqrt{N}} \rangle \rangle_P \frac{w_n}{\sqrt{N}} \quad \text{avec } \|w_n'\|^2 = \left\| \frac{w_n}{\sqrt{N}} \right\|^2 = 1 \qquad (1.3)$$

Pour des raisons de simplicité et de contrainte de calcul numérique, la formulation non normée (1.4) est largement utilisée. Cela fait donc apparaître le terme $\frac{1}{N}$ dans la TFD inverse.

$$s[k] = \sum_{n \in \mathbb{N}} \underbrace{\langle \langle s, w_n \rangle \rangle_P}_{S[n]} \frac{w_n}{N} = \sum_{n \in \mathbb{N}} \langle \langle s, w_n \rangle \rangle_P \frac{w_n}{N} \quad \text{avec } ||w_n||^2 = N$$
 (1.4)

La transformée s'écrit aisément sous forme matricielle soit en considérant la transformée comme une application linéaire effectuant le changement de coordonnées entre les vecteur de la base canonique et la base fréquentielle, soit en faisant le changement de repère sous forme vectorielle :

$$TFD \left[\overrightarrow{s}\right] = \hat{S} = s_{B_{F}} = \begin{pmatrix} \langle \langle s, w_{0} \rangle \rangle_{P} \\ \vdots \\ \langle \langle s, w_{N-1} \rangle \rangle_{P} \end{pmatrix}_{B_{F}}$$

$$= \begin{pmatrix} T_{S} \cdot \overline{w_{0}} \\ \vdots \\ T_{S} \cdot \overline{w_{N-1}} \end{pmatrix}_{B_{F}} = \begin{pmatrix} T_{\overline{w_{0}} \cdot s} \\ \vdots \\ T_{\overline{w_{N-1}} \cdot s} \end{pmatrix}_{B_{F}}$$

$$= \begin{bmatrix} w_{0}[0] & \dots & w_{0}[N-1] \\ \vdots \\ w_{N-1}[0] & \dots & w_{N-1}[N-1] \end{bmatrix} \cdot \begin{pmatrix} s[0] \\ \vdots \\ s[N-1] \end{pmatrix}_{B_{C}}$$

$$S_{B_{F}} = M_{\mathcal{F}} \cdot s_{B_{C}}$$

$$(1.5)$$

On peut donc calculer la TFD d'un signal en multipliant le vecteur du signal temporel par une matrice $M_{\mathcal{T}}$ pour obtenir le vecteur des composantes fréquentielle : la TFD du signal.

Donc la matrice $M_{\mathcal{F}}$ représente un changement de base d'une base orthonormée canonique B_c vers la base orthogonale fréquentielle B_F , c'est donc la matrice de l'application identité Id du signal d'une base vers l'autre, ou plus simplement la matrice de passage $M_{\mathcal{F}} = P_{B_F \leftarrow B_c} = \max (\mathrm{Id}, B_F, B_c)$

1.3 Dualité des transformées

On remarque que la TF et la TFD sont des endomorphismes (de E dans E) isomorphiques (il existe une réciproque), on parle d'automorphisme :

- la TF transforme une fonction complexe du primal en fonction complexe du dual et la transformée inverse du dual vers le primal existe;
- la TFD transforme une suite périodique complexe du primal en suite périodique complexe du Dual et la transformée inverse du primal vers le dual existe.

Contrairement aux SdF et TFSD qui sont des isomorphismes (de E dans F et elles sont réciproques entre-elles) :

- la SdF transforme une fonction complexe périodique du primal en suite complexe du dual, sa réciproque est la TFD du dual;
- la TFSD transforme une suite complexe du primal en fonction complexe périodique du Dual.

Sans rentrer dans la véritable définition d'un dual et de la dualité, nous pouvons garder cette notion de transformation d'un espace primal en son espace dual, et que si l'on retransforme le dual de la même manière alors on obtient à nouveau le primal. Le dual est comme une application qui est sa propre réciproque mais cela à l'échelle de la transformation d'ensemble qui est sa propre réciproque.

L'idée d'appliquer la TFSD à la SdF $n \mapsto \hat{S}[n]$ de la fonction primale $t \mapsto s(t)$, soit de faire le dual du dual, nous laisse espérer retomber sur la fonction primale s. Et cela marche car ces espaces sont duaux.

Exercice 1.9 Prenons le signal constant périodique $s: t \mapsto 1$, toutes ses projections $\langle s, t \mapsto e^{i2\pi t n F_0} \rangle_P$ sont nulles pour $n \neq 0$ sauf pour le vecteur $w_0: t \mapsto 1$. Donc sa SdF est la suite complexes nulle partout sauf pour n=0 soit l'impulsion unité en $0: n \mapsto \delta_0[n]$.

Si l'on applique la TFSD à la SdF \hat{S} on obtient la fonction périodique constante et égale 1 soit la fonction de départ du primal s!

Essayez de faire cela pour un fonction périodique s(t) quelconque : soit montrer que TFSD[SdF[s]] = s et donc $TFSD \circ SdF = Id$ où Id est l'application identité des fonctions périodiques. Ou son dual : soit pour une suite complexe s[k] montrer que $SdF \circ TFSD = Id$ où Id est l'application identité des suite complexes.

La SdF permet de créer l'espace dual des fonctions périodiques, en utilisant le produit scalaire avec les signaux de la base de FOURIER, qui est alors un espace des suites complexes. La TFSD permet de créer le dual des suites complexes, en utilisant le produit scalaire avec la base de FOURIER, qui est un espace des fonctions périodiques.

L'idée d'appliquer la TF à la transformée \hat{S} d'une fonction s primale, soit de faire le dual du dual, nous laisse espérer retomber sur la même fonction du primal s: cela est vrai au signe près!

Exercice 1.10 Prenons un signal pair de transformée connue (comme la fonction porte et son sinus cardinal) et calculez la transformée de la transformée (aussi connue à tout les coup). Vous vérifierez que **pour les fonction paires réelles** $\mathcal{F} \circ \mathcal{F} = \mathrm{Id}$ des fonctions réelles paires.

On pourrait faire de même avec des fonctions imaginaires impaires et montrer que le dual du dual est le primal.

Dans le cas général ce n'est pas vrai, nous allons voir que le signal est retourné dans le temps.

Si on calcule la transformée de Sy [s]: $t \mapsto s(-t)$, où Sy est l'opérateur qui retourne une fonction dans le temps, on obtient par changement de variable x = -t la transformée inverse :

$$\mathcal{F}\left[\operatorname{Sy}\left[s\right]\right](f) = \mathcal{F}\left[t \mapsto s(-t)\right](f) = \int_{-\infty}^{\infty} s(-t) e^{-i2\pi f t} \, \mathrm{d}t \quad = \int_{\infty}^{-\infty} s(x) e^{i2\pi f x} \, \mathrm{d}x = \mathcal{F}^{-1}\left[s\right](f)$$

$$\mathcal{F} \circ \operatorname{Sy} \quad = \quad \mathcal{F}^{-1} \tag{1.6}$$

En appliquant cette relation au signal s; à son symétrique; au signal \hat{S} et à son symétrique, on trouve le graphique Fig. 1.2.

FIGURE 1.2 – Dualité de la transformation symétrie temporelle Sy car le symétrique du symétrique est lui même et bi-dualité de la transformée de FOURIER car transformer deux fois un signal c'est le retourner donc \mathcal{F}^2 = Sy est duale et \mathcal{F} est dite biduale.

Exercice 1.11 Si on applique (1.6) au primal (flèches vertes), puis au dual (flèches oranges) et à leurs symétriques on obtient les 4 relations :

- $$\begin{split} & \mathcal{F} \circ \operatorname{Sy}[s] = \mathcal{F}^{-1}[s] = ? \\ & \mathcal{F} \circ \operatorname{Sy}[\hat{S}] = \mathcal{F}^{-1}[\hat{S}] = ? \\ & \mathcal{F} \circ \operatorname{Sy}[\hat{S}] = \mathcal{F}^{-1}[\hat{S}] = \mathcal{F}^{-1}[\mathcal{F}[s]] = ? \\ & \mathcal{F} \circ \operatorname{Sy}[t \mapsto s(-t)] = \mathcal{F}^{-1}[t \mapsto s(-t)] = ? \\ & \mathcal{F} \circ \operatorname{Sy}[f \mapsto \hat{S}(-f)] = \mathcal{F}^{-1}[f \mapsto \hat{S}(-f)] = ? \end{split}$$

Associez ces 4 relations aux quatre couleurs de flèches (vert, orange, cyan, rose) du diagramme et remplacez les «?»

Prenez en primal le signal porte $s(t) = \Pi(t) = u(t + \frac{1}{2}) - u(t - \frac{1}{2})$ (signal nul partout sauf entre -0.5 et 0.5) dont on connaît la transformée sous forme de sinus cardinal $\hat{S}(f) = \text{sinc}(\pi f)$ (utiliser la transformée de LAPLACE, le théorème du retard et la passage à la transformée avec $p = i2\pi f$). Appliquez ces formules pour trouver la transformée d'un sinus cardinal (fonction paire!)

On obtient ainsi des relations intéressantes du point de vue des opérateurs \mathcal{F} et Sy, notamment sur le fait qu'ils commutent bien :

$$\begin{split} \mathcal{F}^2 \circ \mathcal{F}^2 &= \text{Sy} \circ \text{Sy} = \text{Id} = \text{Sy}^2 = \mathcal{F}^4 \\ \mathcal{F}^{-1} &= \mathcal{F} \circ \text{Sy} = \text{Sy} \circ \mathcal{F} \\ \mathcal{F} &= \mathcal{F}^{-1} \circ \text{Sy} = \text{Sy} \circ \mathcal{F}^{-1} \end{split}$$

R

De même pour la TFD

On obtient le même type de diagramme avec la TFD mais avec un retournement temporel discret périodique $Sy: k \mapsto s[-k] = s[N-k]$ ce qui permet de conserver la relation TFD $\circ Sy = TFD^{-1}$ mais avec une base normalisée! Il faut donc faire attention et préférer la TFD normalisée en la divisant par \sqrt{N} .

Il suffit de partir de la TFD de s[-k] et retrouver la formule de la TFD inverse. On a de plus pour les signaux discrets une représentation matricielle. Ce qui donne pour le retournement temporel d'un signal à 4 points :

$$\operatorname{Sy}[s_4] = \underbrace{\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \end{bmatrix}}_{M_{\text{Sy}}} \cdot s_4 \tag{1.7}$$

avec $M_{Sy}^{-1} = M_{Sy}$ car $Sy = Sy^{-1}$

Et pour la TFD normalisée à 4 points :

$$TFD[s_4] = \widehat{S}_4 = \underbrace{\frac{1}{2} \begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & -i & -1 & i \\ 1 & -1 & 1 & -1 \\ 1 & i & -1 & -i \end{bmatrix}}_{M_{\mathcal{T}}} . s_4$$
(1.8)

avec $M_{\mathcal{F}}^{-1} = {}^T M_{\mathcal{F}}$ la matrice transposée. Car lors d'un changement entre base orthonormées, la matrice de passage est symétrique et orthogonale : la transposée est aussi l'inverse. L'équation (1.6) devient alors $TFD \circ Sy = TFD^{-1}$ ce qui donne en matriciel $M_{\mathcal{F}} M_{Sy} = M_{\mathcal{F}}^{-1} = {}^T M_{\mathcal{F}}$

	Euclidien fini	Espace de fonctions
Base Ortho- normée	une base finie de vecteurs $\mathbf{B} = (\overrightarrow{e_n})_{n \in \mathbb{Z}_{N_0}}$ normés $\ \overrightarrow{e_n}\ = 1$ et orthogonaux $\langle \overrightarrow{e_n}, \overrightarrow{e_n} \rangle = 0$	base dénombrable de fonctions $(\overrightarrow{w_n})_{n\in\mathbb{N}}$ ou indénombrable $(\overrightarrow{w_f})_{f\in\mathbb{R}}$ repérées par leur fréquences f ou un indice n associé; fonctions d'énergie unitaire $\ \overrightarrow{w_n}\ = 1$ ou $\ \overrightarrow{w_f}\ = 1$, et orthogonales $\langle \overrightarrow{w_n}, \overrightarrow{w_m} \rangle_P = 0$ ou $\langle \overrightarrow{w_f}, \overrightarrow{w_{f'}} \rangle = 0$
Analyse	décomposer un vecteurs dans cette base en coefficients $V_n = \langle \overrightarrow{v}, \overrightarrow{e_n} \rangle$ et en donner les coordonnées $ V _{\mathbf{B}} = \begin{pmatrix} V_0 = \langle \overrightarrow{v}, \overrightarrow{e_0} \rangle \\ \vdots \\ V_{N-1} = \langle \overrightarrow{v}, \overrightarrow{e_{N-1}} \rangle \end{pmatrix} $	décomposer une fonction \overrightarrow{u} en fréquentiel avec la transformée $U(f)$ ou avec les coéfficients $U(n)$ de la série : $U(f) = \langle \overrightarrow{u}, \overrightarrow{w_f} \rangle = \int\limits_{-\infty}^{\infty} u(t) \overline{w_f(t)} dt$ $U(n) = \langle \overrightarrow{u}, \overrightarrow{w_n} \rangle_P = \frac{1}{T_0} \int\limits_{0}^{T_0} u(t) \overline{w_n(t)} dt$
Synthèse	recomposer un vecteur dans cette base $\overrightarrow{v} = \sum_{k \in \mathbb{Z}_{N_0}} \underbrace{U_0}_{\langle \overrightarrow{v}, \overrightarrow{e_0} \rangle} \cdot \overrightarrow{e_0}$	recomposer une fonction par transformation inverse de $U(f)$ ou recompostion de série $U(n)$: $\overrightarrow{u}(t) = \int_{-\infty}^{\infty} \underbrace{U(f)}_{\langle \overrightarrow{u}, \overrightarrow{w_f} \rangle} . \overrightarrow{w_f}(t) \mathrm{d}t$ $\overrightarrow{u}(t) = \sum_{n \in \mathbb{N}} \underbrace{U(n)}_{\langle \overrightarrow{u}, \overrightarrow{w_n} \rangle_P} . \overrightarrow{w_n}(t)$
Projeter avec Plan- cherel	calculer le produit scalaire de vecteurs par leurs composantes : $\langle \overrightarrow{u}, \overrightarrow{v} \rangle = \langle U_{\rm B}, V_{\rm B} \rangle = {}^T U _{\rm B} \cdot V _{\rm B}$ $\underbrace{\left(\begin{array}{cc} U_0 & \dots & U_{N-1} \\ \end{array}\right)}_{TU _{\rm B}} \cdot \left(\begin{array}{cc} V_0 \\ \vdots \\ V_{N-1} \end{array}\right)$	on peut calculer un produit scalaire (utile aux correlations et convolutions) à partir de sa transformée ou composantes de la série : $ \langle \overrightarrow{u}, \overrightarrow{v} \rangle = \int_{-\infty}^{\infty} u(t) \overline{v(t)} dt = \langle U, V \rangle = \int_{-\infty}^{\infty} U(f) \overline{V(f)} df $ $ \langle \overrightarrow{u}, \overrightarrow{v} \rangle_P = \frac{1}{T_0} \int_0^{T_0} u(t) \overline{v(t)} dt = \langle U, V \rangle_P = \sum_{k=0}^{N_0 - 1} U(k) \overline{V(k)} $
Normer avec Parseval	Calculer la norme en sommant les carrés des coordonnées : $\ \overrightarrow{u}\ ^2 = \ U_{\rm B}\ ^2 = \sum U_n^2$	calculer la puissance moyenne par la transformée $u(f)$ ou en sommant celle des composantes fréquentielles $U(n)$: $\ \overrightarrow{u}\ ^2 = \ U\ ^2 = \int\limits_{-\infty}^{\infty} u(t) ^2 \mathrm{d}t = \int\limits_{-\infty}^{\infty} U(f) ^2 \mathrm{d}f$ $\ \overrightarrow{u}\ ^2 = \ U\ _P^2 = \frac{1}{T_0} \int\limits_0^{T_0} u(t) ^2 \mathrm{d}t = \sum_{k \in \mathbb{N}} U(k) ^2$

TABLE 1.2 – Structure Euclidiene à structure de Hilbert

2. Systèmes discrets

L'analogie avec les systèmes continus est forte, nous étudions de même le cas des sysèmes linéaires invariants dans le temps avec une vision par opérateurs.

2.1 Systèmes linéaires

Definition 2.1.1 Système

Un système discret (resp. continu) relie à chaque signal d'entrée x un signal de sortie unique y. Les signaux x et y sont des fonctions de la variables réelle discrète k (resp. t) appartenant à un espace de fonction le plus général possible noté ici L_E . La relation entrée-sortie est donc modélisée par une application mathématique de L_E dans L_E notée L (resp. L_c en continu) et définie ainsi:

$$L: \qquad \begin{array}{ccc} L_E & \longrightarrow & L_E \\ x: k \mapsto x[k] & \longmapsto & y: k \mapsto y[k] \end{array} \tag{2.1}$$

$$L: \qquad \begin{array}{ccc} L_E & \longrightarrow & L_E \\ x: k \mapsto x[k] & \longmapsto & y: k \mapsto y[k] \end{array}$$

$$L_c: \qquad \begin{array}{ccc} L_E & \longrightarrow & L_E \\ x: t \mapsto x(t) & \longmapsto & y: t \mapsto y(t) \end{array}$$

$$(2.1)$$

Une classe de système fondamentale est la classe des systèmes linéaires car elle offre de nombreux outils et propriétés mathématiques.

Definition 2.1.2 Système linéaire

Une système est dit linéaire si et seulement si l'application L associée est linéaire, soit pour tout $(x_1, x_2, \lambda) \in L_E^2 \times \mathbb{R}$:

$$\forall t \in \mathbb{R} \qquad L[x_1 + \lambda x_2](t) = L[x_1](t) + \lambda L[y_2](t)$$
ou bien
$$L[x_1 + \lambda x_2] = L[x_1] + \lambda L[x_2]$$
(2.3)

Une des conséquences de la linéarité est la possibilité d'appliquer le principe de superposition cher à l'électronicienne : la réponse du système à une entrée est la combinaison linéaire des réponses à chaque signaux composant l'entrée par combinaison la même combinaison linéaire.

Les trois systèmes linéaires de base que nous considérons dans l'étude des systèmes linéaires continus sont:

le gain $a.x: t \mapsto ax(t)$ où a est une constante

le dérivateur $D[x] = D \circ x : t \mapsto \frac{dx}{dt}(t)$

l'intégrateur I[x] = I o x :
$$t \mapsto \int_{0}^{t} x(v) dv$$

On peut aisément vérifier que ces systèmes respectent la condition de linéarité 2.3. On aimerait que les opérateurs dérivateur D et intégrale I commutent et soient réciproque : $D \circ I = I \circ D = Id$. Pour que cela soit vrai même avec les fonctions discontinues, il faut introduire les distributions de DIRAC voir Chap. 3.2.

Dans le cas des systèmes discret, les systèmes élémentaires sont :

le gain $a.x : k \mapsto ax[k]$ où a est une constante.

le retard unité $T[x] = T \circ x : k \mapsto x[k-1]$.

l'avance unité $A[x] = A \circ x : k \mapsto x[k+1]$

On peut aisément vérifier que ces systèmes respectent la condition de linéarité 2.3. La commutation et réciprocité des opérateurs retard T et avance A est évidente et ne pose pas de problème théorique.

■ Exemple 2.1 L'effet du système différentiateur sur le signal d'entrée est d'écrit par l'opérateur :

$$L: x \mapsto y = \frac{x - T[x]}{T_e}$$

Vérifions d'abord que cet opérateur est linéaire :

$$L[x_1 + \lambda x_2][k] = L[x_1 + \lambda x_2][k]$$

$$= \frac{x_1[k] + \lambda x_2[k] - T[x_1 + \lambda x_2][k]}{T_e}$$

$$= \frac{x_1[k] + \lambda x_2[k] - (x_1[k-1] + \lambda x_2[k-1])}{T_e} = A$$

$$L[x_1][k] + \lambda L[x_2][k] = \frac{x_1[k] - x_1[k-1]}{T_e} + \lambda \frac{x_2[k] - x_2[k-1]}{T_e} = A$$

Le système est donc linéaire.

2.2 Systèmes invariants

Il est fréquent, et surtout théoriquement utile, qu'un système réagisse de la même manière indépendemment de l'instant où est appliqué le signal d'entrée. Ce qui conduit à la définition suivante:

Definition 2.2.1 Système invariant dans le temps Un système discrète (resp. continu) est dit invariant dans le temps si et seulement si son application associée L (resp. L_c) vérifie :

$$\forall x \in L_E, \forall (k, k_0) \in \mathbb{N}^2, \quad L[k \mapsto x(k - k_0)] = L[x](k - k_0)$$
(2.4)

$$\forall x \in L_E, \forall (t, t_0) \in \mathbb{R}^2, \quad L_c[t \mapsto x(t - t_0)] = L[x](t - t_0)$$

$$\tag{2.5}$$

En terme d'opérateur; un système L est invariant dans le temps si, et seulement si, son opérateur commute avec tout opérateur retard de k_0 noté $\mathbf{T}_{k_0} = \mathbf{T}^{k_0}\left[x\right] = k \mapsto x\left[k - k_0\right]$:

$$L \circ \mathsf{T}_{k_0} = \mathsf{T}_{k_0} \circ L \qquad \Longleftrightarrow \qquad L[\mathsf{T}_{k_0}[x]] = \mathsf{T}_{k_0}[L[x]] \tag{2.6}$$

$$L \circ T_{k_0} = T_{k_0} \circ L \qquad \Longleftrightarrow \qquad L[T_{k_0}[x]] = T_{k_0}[L[x]]$$

$$L_c \circ T_{\tau} = T_{\tau} \circ L_c \qquad \Longleftrightarrow \qquad L_c[T_{\tau}[x]] = T_{\tau}[L_c[x]]$$

$$(2.6)$$

Autrement dit « la réponse du système à un signal retardé est le retard de la réponse du système. »

En d'autres termes, la réponse du système ne dépend pas de l'origine des temps choisie.

■ Exemple 2.2 Reprenons l'exemple du différentiateur 2.1 d'écrit par l'opérateur :

$$L: x \mapsto y = \frac{x - T[x]}{T_e}$$

Vérifions qu'il est invariant :

$$\forall k_0 \quad L[T_{k_0}[x]][k] = L[k \mapsto x[k-k_0]][k]$$

$$= \frac{x[k-k_0] - x[k-k_0-1]}{T_e} = B$$

$$\forall k_0 \quad T_{k_0}[L[x]][k] = T_{k_0}\left[k \mapsto \frac{x[k-1] - x[k]}{T_e}\right][k]$$

$$= \frac{x[k-k_0] - x[k-k_0-1]}{T_e} = B$$

On a bien exprimé le fait que L commute avec tout retard T_{k_0} , en d'autres termes : la différence du retard est le retard de la différence.

Il est facile de vérifier que les systèmes discrets élémentaires que sont le gain; le retard unitaire et l'avance unitaire (gain, dérivateur et intégrateur pour le continu) sont invariants. Il en est de même pour tout système constitué de combinaisons linéaires et de composition de systèmes élémentaires.

Il suffit alors de montrer que le système se décompose avec des *coefficients constants* avec des systèmes élémentaires en le mettant sous forme *d'équation aux différence* ou *récurrence* à coefficients constants (*equations différentielle* en continu) ou en un schéma bloc à coefficients constant.

f 2.3 Calcul opérationnel : transformée en z

Nous allons présenter les signaux discrets de base et assimiler un signal à un système en utilisant la réponse impulsionnelle comme dans le calcul opérationnel développé par HEAVISIDE.

Tout système discret linéaire invariant possédant une seule entrée x et une seule sortie y se représente par une équation aux différences du type suivant :

$$a_n y[k-n] + \dots + a_1 y[k-1] + a_0 y[k] = b_m x[k-m] + \dots + b_0 x[k]$$
, $\forall k \in \mathbb{Z}$ (2.8)

Les opérateurs discrets de base, retard unitaire, avance unitaire, gain commutent entre-eux (pour les systèmes invariants) et se combinent linéairement (pour les systèmes linéaires). On peut donc représenter la relation entrée/sortie par une combinaison linéaire de ces opérateurs de base :

$$\left(a_{n} \circ \underbrace{\mathsf{T} \circ \dots \circ \mathsf{T}}_{\mathsf{n} \; \mathsf{fois}}\right) [y] + \dots + \underbrace{\left(a_{1} \circ \mathsf{T}\right) [y]}_{k \mapsto a_{1}, y[k-1]} + \underbrace{\left(a_{0} \circ \mathsf{Id}\right) [y]}_{a_{0}, y} \tag{2.9}$$

$$= \left(b_m \circ \underbrace{\mathbf{T} \circ \dots \circ \mathbf{T}}_{\text{m fois}}\right) [x] + \dots + (b_0 \circ \text{Id}) [x]$$
 (2.10)

Remarquons bien que dans (2.8) les termes sont des scalaires réels ou complexe; alors que dans l'écriture opérationnelle (2.9) les termes sont des fonctions (ou signaux ou plutôt des suites réelles ou complexes). Au lieu de prendre une égalité valable pour tout entier *k*; nous passons à une équation de systèmes (ou opérateurs) prenant en argument des signaux.

Comme l'opérateur gain est invariant et qu'il commute avec l'opérateur retard on peut noter la composition o comme un simple produit car elle possède les mêmes propriétés de commutativité, associativité etc. La récurrence devient ainsi :

$$\underbrace{(a_n.\mathsf{T}^n)}_{\text{opérateur de fonction}} \underbrace{[y]}_{+ \dots + (a_1.\mathsf{T})} \underbrace{[y]}_{k \mapsto a_0 y[k]} = (b_m.\mathsf{T}^m)[x] + \dots + b_0[x]$$
(2.11)

■ Exemple 2.3 Reprenons l'exemple du différentiateur 2.1 d'écrit par l'opérateur :

$$L: x \mapsto y = \frac{x - T[x]}{T_e}$$

Nous obtenons avec la notation algébrique la relation entrée/sortie :

$$T_e.y = x - T[x]$$

Qui correspond à l'équation aux différences :

$$y[k] = \underbrace{\frac{1}{T_e}}_{b_0} x[k] - \underbrace{\frac{1}{T_e}}_{b_1} x[k-1]$$

On ne peut pas noter des produits du type $a_n cdot T^n cdot y$, car cela signifierait que les termes de $a_n \circ T^n \circ y$, qui est bien la fonction $k \mapsto a_n y [k-n]$ attendue, commutent. Or les systèmes gain et retard commutent mais pas la composition avec la fonction y qui n'est pas un opérateur de fonctions : $a_n \circ T^n \circ y \neq y \circ a_n \circ T^n$ car $y \circ a_n \circ T^n$ n'as pas de sens comme y est une fonction $\mathbb{N} \to \mathbb{C}$ qui doit avoir un entier en argument alors que $a_n \circ T^n$ est un opérateur qui renvoie une fonction.

Pour mener une approche par calcul opérationnel, il faut transformer la fonction y en un opérateur qui puisse commuter avec les autres. Or une fonction discrète prend un entier en argument pour donner un complexe, alors qu'un opérateur (ou système) prend une fonction pour la transformer en fonction.

Pour contourner ce problème, on remplace le signal y par un système noté Y dont la réponse à une excitation unitaire est le signal y lui-même. Dans le cas de systèmes discrets, on choisi comme signal unitaire l'impulsion unité δ_0

Definition 2.3.1 L'impulsion unité, notée δ_0 ou simplement δ , est le signal discret tel que :

$$\delta_0[k] = \begin{cases} 1 & \text{si } k = 0 \\ 0 & \text{sinon} \end{cases} \quad k \in \mathbb{Z}$$

L'impulsion unités centrée en a est notée δ_a et définie par :

$$\delta_a[k] = \delta_0[k-a] = \begin{cases} 1 & \text{si } k = a \\ 0 & \text{sinon} \end{cases}$$

Bien qu'utilisant le même symbole δ , il ne faut pas confondre l'impulsion unité discrète avec l'impulsion de DIRAC. L'impulsion unité est un signal discret tout à fait classique d'amplitude égale à 1 alors que l'impulsion de DIRAC est une fonction généralisée ou distribution, voir Chap. 3, d'amplitude infinie et de poids unité.

Ainsi au lieu de considérer un signal y, on considère le système discret Y dont la réponse impulsionnelle est :

$$y = Y[\delta_0] \tag{2.12}$$

On exprime ainsi l'équation aux différences sous la forme pure d'opérateurs, ou systèmes, qui commutent entre-eux et se distribuent avec l'addition tout comme une multiplication classique :

$$a_n.T^n.Y + ... + a_1.T.Y + a_0.Y = b_m.T^m.X + ... + b_0.X$$
 (2.13)

Dans le cas des systèmes continus, on exprime les équations différentielles sous forme opérationnelle en remplaçant l'opérateur discret de retard T par l'opérateur de dérivation D. Un signal y est de même remplacé par un système Y dont la réponse impulsionnelle (à une impulsion de DIRAC cette fois-ci) est le signal y.

Initialement, HEAVISIDE avait introduit l'échelon unité, ou échelon éponyme, comme signal d'excitation de référence à la place de l'impulsion de DIRAC qui n'était pas encore définie à l'époque. Voir le §3.3 pour une définition de l'opérateur réciproque de la dérivée nécessitant l'impulsion de DIRAC.

Nous obtenons avec cette notation une écriture de l'équation aux différences qui ressemble à une équation algébrique polynomiale classique. Dans le calcul opérationnel, l'opérateur d'avance A (resp. T) est assimilé à un nombre que l'on notera z (resp. z^{-1}), les signaux x et y sont remplacés par leurs systèmes générateurs X et Y à partir de leur réponse impulsionnelle. Les systèmes générateurs X et Y pouvant être eux-même exprimés en fonction de l'opérateur z, ils sont représentés comme des fonctions de z soit X(z) et Y(z). Nous verrons dans la suite que les fonctions X(z) et Y(z) sont les transformées en Z des signaux (ou systèmes) x et y.

Nous obtenons finalement l'équation algébrique associée à la récurrence (2.8) :

$$a_n z^{-n} Y(z) + ... + a_1 z^{-1} Y(z) + a_0 Y(z) = b_m z^{-m} X(z) + ... + b_0 X(z)$$
 (2.14)

Les opérateurs réciproques T et A sont associés aux nombres z et z^{-1} car la division et la multiplication sont réciproques : comme la composition d'une avance et d'un retard $A \circ T = \operatorname{Id}$ donne le système identité, le produit algébrique $zz^{-1} = z\frac{1}{z} = 1$ donne l'unité. L'unité algébrique 1 est donc associée au « système identité » (qui ne change pas le signal) dont la réponse impulsionnelle est l'impulsion unité δ_0 .

La résolution de l'équation aux différences peut alors se faire en traitant l'équation algébrique sous forme de fraction rationnelle puis de décomposition en éléments simples :

$$\frac{Y(z)}{X(z)} = \frac{b_m z^{-m} + \dots + b_0}{a_n z^{-n} + \dots + a_1 z^{-1} + a_0} = \underbrace{\frac{\beta_0}{z - \alpha_0}}_{\text{premier ordre}} + \dots + \underbrace{\frac{\mu_0 + \nu_0 z}{z^2 + b_0 z + c_0}}_{\text{second ordre}} + \dots$$
(2.15)

On décompose alors un système linéaire invariant comme une combinaison linéaire de systèmes de premier ordre et de second ordre. La résolution se fait alors par lecture de table de transformée en *Z* comme pour les transformées de LAPLACE dans le cas des systèmes continus.

■ Exemple 2.4 Dans l'exemple du différentiateur 2.1 d'écrit par $T_e.y = x - T[x]$, nous pouvons remplacer x et y par les systèmes générateurs X(z) et Y(z) et finalement remplacer la composition avec T par une multiplication par z^{-1} . On obtient la fonction de transfert du système différentiateur :

$$H_d(z) = \frac{Y(z)}{X(z)} = \frac{1 - z^{-1}}{T_c}$$

Il est alors facile de trouver l'opérateur intégrateur H_i réciproque du différentiateur H_d en se basant sur la propriété $H_i \circ H_d = H_d \circ H_i = \text{Id qui donne en équation algébrique}$:

$$H_i(z) H_d(z) = 1 \implies H_i(z) = \frac{1}{H_d(z)} = \frac{Y(z)}{X(z)} = \frac{T_e}{1 - z^{-1}}$$

On obtient ainsi l'équation de récurrence de l'intégrateur dit Backward Euler :

$$Y(z) (1-z^{-1}) = T_e X(z) \iff Y(z) = z^{-1} Y(z) + T_e X(z)$$

$$y[k] = y[k-1] + T_e x[k] \qquad , \forall k \in \mathbb{Z}$$
ou bien
$$y[k+1] = y[k] + T_e x[k+1] \qquad , \forall k \in \mathbb{Z}$$

$$(2.16)$$

Exercice 2.1 Trois intégrateurs différents et trois différentiateurs associés

L'exemple 2.4 pécédent de l'intégrateur Backward Euler est illustré ci-dessous avec deux autres méthodes. On identifie alors dans (2.16) que l'incrément de surface ds ajouté à l'intégrale de x à l'instant k+1 est la surface du rectangle bleu : $y[k+1] = y[k] + T_e x[k+1]$

- Écrivez alors les récurrences correspondantes aux intégrateurs Forward Euler et trapézoïdale en adaptant la valeur de l'incrément de surface ds en fonction de T_e , x[k] et/ou x[k+1].
- De manière inverse à l'exemple précédent, retrouvez les fonctions de transfert $H_i(z)$ de ces trois intégrateurs (remplacer x[k] par X(z), x[k+1] par zX(z) car z est associé à l'avance unitaire).

On remarque que l'écriture de la récurrence en $y[k+1] = y[k] + \dots$ donne naturellement une fonction de transfert exprimée en z, alors que l'écriture en $y[k] = y[k-1] + \dots$ donne une écriture en z^{-1} parfaitement équivalente : par exemple pour le *Backward Euler* on obtient les fonctions de transfert $H_i(z) = \frac{T_e}{1-z^{-1}} = \frac{T_e z}{z-1}$ — On peut alors inverser algébriquement ces fonctions de transfert d'intégrateur H_i pour

- obtenir des fonctions de transfert de dérivateurs $H_d(z) = H_i(z)^{-1}$ associées.
- On peut, de même, donner les récurrences $y_d[k] = \dots$ à partir des fonctions de transfert $H_d(z)$ permettant d'obtenir différentes approximations de la dérivée du signal d'entrée x. On obtient ainsi des approximations linéaires discrètes exprimées en z (l'avance unitaire) de

l'opérateur dérivée en continue p (ou variable de LAPLACE notée s):

$$D = \frac{d}{dt} \leftrightarrow p \leftrightarrow \underbrace{\frac{1}{T_e} \left(1 - z^{-1} \right)}_{\text{Forward Euler}} \leftrightarrow \underbrace{\frac{1}{T_e} \left(z - 1 \right)}_{\text{Backward Euler}} \leftrightarrow \underbrace{\frac{2}{T_e} \frac{1 - z^{-1}}{1 + z^{-1}}}_{\text{Bilinéaire ou Tustin}} \tag{2.17}$$

2.4 Transformée en z de systèmes élémentaires

Nous allons définir les signaux élémentaires, associés à des systèmes élémentaires, permettant de constituer une table de transformées en \mathcal{Z} utile à la résolution d'équations aux différences (2.8) par la méthode de calcul opérationnel vue au chapitre précédent.

2.4.1 Transformée en z d'un signal quelconque

Soit un signal quelconque s[k], il peut être généré par des retards et des avances unitaires de l'impulsion unité δ_0 d'amplitude s[k].

FIGURE 2.1 – Décomposition d'un signal en combinaison linéaire d'opérateurs unitaires T appliquée au signal unité δ_0 . La notation en calcul opérationnel, avec z^{-1} le nombre associé à l'opérateur T, donne la transformée en \mathbb{Z} .

Le système *S*, composé d'opérateurs avance A et retard T unitaires, générant le signal quelconque *s* en réponse à l'impulsion unité est donc le suivant :

$$s = \dots + s[-1]\underbrace{\delta_{-1}}_{A[\delta_0]} + s[0]\underbrace{\delta_0}_{Id[\delta_0]} + s[1]\underbrace{\delta_1}_{T[\delta_0]} + s[2]\delta_2 + \dots = \sum_{k=-\infty}^{\infty} s[k]\delta_k$$
 (2.18)

$$S[T] = \dots + s[-1] \underbrace{A}_{T^{-1}} + s[0] \underbrace{Id}_{T^0} + s[1]T + s[2]T^2 + \dots = \sum_{k=-\infty}^{\infty} s[k]T^k$$
 (2.19)

On obtient ainsi la définition de la transformée en Z bilatérale en utilisant la variable opérationnelle $z^{-1} \leftrightarrow T$ associée au retard unitaire.

Definition 2.4.1 La *transformée en Z bilatérale* d'un signal discret *s* quelconque est la fonction holomorphe

$$\mathcal{Z}[s] = \widehat{S}: \quad z \mapsto \sum_{k=-\infty}^{+\infty} s[k] z^{-k} \qquad z \in \mathcal{D}_s = \left\{ z \in \mathbb{C} \mid \sum_{k=-\infty}^{+\infty} s[k] z^{-k} \quad \text{converge} \right\}$$
 (2.20)

où \mathcal{D}_s est le domaine de convergence de la transformée.

La transformée en Z unilatérale d'un signal discret s quelconque est la fonction holomorphe

$$\mathcal{Z}[s] = \widehat{S}: \quad z \mapsto \sum_{k=0}^{+\infty} s[k] z^{-k} \qquad z \in \mathcal{D}_s$$
 (2.21)

Tout comme la transformée de LAPLACE bilatérale, la convergence sur la branche en $-\infty$ est souvent assurée en considérant un signal causal dont les termes sont tous nuls avant le rang k=0, sans perte de généralité. Cela revient à utiliser systématiquement l'échelon unité pour annuler les signaux considérés. L'écriture est alors facilitée en utilisant la transformée unilatérale considérant par définition le signal nul aux rangs négatifs.

(R)

La transformée en Z est bien une série entière de terme général $u_n = a_n x^n$ où la suite a_n est le signal s[k]; et où la variable x est la variable z complexe. Rappelons que le domaine de convergence des séries entières possèdent un rayon de convergence R pour lequel

$$|z| < R \implies \sum a_n z^n$$
 converge
 $|z| > R \implies \sum a_n z^n$ diverge
 $|z| = R$ conclure au cas par cas

On peut retrouver aisément le rayon R et cette propriété en utilisant, par exemple, le critère de d'Alembert : si $a_n \neq 0$ à partir d'un certain rang et si $\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = l \in \overline{\mathbb{R}_+}$, alors $R = \frac{1}{l}$.

2.4.2 Impulsion unité et retard

L'impulsion unité δ_0 définie dans Def. 2.3.1 est utilisée comme signal de référence pour associer un système à un signal en prenant sa réponse impulsionnelle : $y = Y[\delta_0]$.

Le système dont la réponse impulsionnelle est l'impulsion unité elle-même est donc l'opérateur identité Id. On a donc pour ce système $\frac{Y(z)}{X(z)} = \frac{X(z)}{X(z)} = 1$ puisque la sortie y du système identité pour une entrée x est le signal y = x.

On a donc par définition:

$$Z[\delta_0] = \hat{\delta_0}: \quad z \mapsto 1$$

$$\hat{\delta_0}(z) = 1 \qquad |z| < R = \infty \qquad (2.22)$$

De même le système avance A (resp. retard T) est associé par calcul opérationnel au nombre complexe z (resp. z^{-1}). La réponse impulsionnelle du système retard T^m est donc l'impulsion retardée de m unitées de temps soit δ_m . On obtient ainsi la transformée en z de δ_m :

$$\mathcal{Z}[\delta_m] = \widehat{\delta_m}: \quad z \mapsto z^{-m}$$
 , $m \in \mathbb{Z}$
$$\widehat{\delta_m}(z) = z^{-m} \qquad |z| < R = \infty \qquad (2.23)$$

Exercice 2.2 Retrouvez les transformées (2.22) et (2.23) en employant la formule générale (2.20). Vous remarquerez la similitude de rôle de « sélection ou mesure » de l'impulsion unité sous la somme avec le rôle du DIRAC sous l'intégrale vu au §3.4.

- 2.4.3 Exponentielle complexe et suite géométrique
- 2.4.4 Echelon unité, rampes et ses intégrales

3. La distribution de Dirac

L'impulsion de DIRAC est incontournable en traitement du signal et système; nous allons progressivement lever le voile!

3.1 La notion de densité

Retournons sur 3 notions de densité avec phénomène de localisation intense :

la densité de masse – est une notion physique que l'on peut comprendre aisément avec l'exemple d'une mousse au chocolat dont la *densité de masse* est plus ou moins aérée *selon une position réelle* sur un axe de découpe du gateau. On considère la pépite pure de chocolat de 1g *concentrée à un endroit* infinitésimallement bon du gateau.

la densité de probabilité – on considère la *densité de probabilité* d'un nombre tiré au hasard entre 1 et 10 selon la valeur réelle de ce nombre. Le tirage d'un dé à 6 faces sera la *concentration infinie autour de valeurs précises* de la densité de probabilité.

la densité d'amplitude (ou de puissance) – dans le cas d'une transformation de FOURIER, on considère la *densité d'amplitude* des composantes d'un signal *selon une fréquence réelle*. La décomposition en série de FOURIER sera la *concentration infinie autour de fréquences* harmoniques de cette densité d'amplitude.

Dans les année 20, DIRAC a eu besoin de représenter la concentration de densité de probabilité de particules élémentaires autour de valeurs précises et discrètes pour développer la mécanique quantique.

Une densité f n'as de sens, ou est utile, uniquement en l'intègrant pour avoir une « mesure » de la masse, ou de la probabilité ou de l'amplitude sur un segment de valeurs [a,b]:

$$M_{[a,b]} = \int_a^b f(x) \, \mathrm{d}x$$
 (3.1)

On voit que dans le cas discret, il faut dériver une fonction cumulative « en escalier » et donc dériver des discontinuités pour obtenir une densitée continue d'une variable discrète. Or la dérivée d'ubne discontinuité est mal définie! Nous allons le voir dans la section suivante.

FIGURE 3.1 – A gauche une variable aléatoire continue [0, 6]. A droite une variable aléatoire discrète [1, 6]. En bas une mesure de probabilité de tirer une valeur autour de 3 dans]2,4[; au milieu la fonction cumulative F_x ou probabilité d'avoir une valeur inférieure à t, en haut une tentative de densité de probabilité.

QUIZZ

En regardant la Fig. 3.1 répondez à ces questions :

- Q1 la probabilité d'avoir un tirage unique à exactement 3 est de
 - 1. 0 pour t=3 en continu et 1/6 pour k=3 en discret
 - 2. 1/6 pour t=3 en continu et 1/6 pour k=3 en discret
 - 3. 1/6 pour t=3 en continu et ∞ pour k=3 en discret
 - 4. c'est pas 3 que je veux mais 20/20!
- **Q2** la probabilité d'avoir un tirage unique < 3 est de
 - 1. 1/2 pour <t=3 en continu et 1/2 pour <k=3 en discret
 - 2. 1/2 pour <t=3 en continu et 1/3 pour <k=3 en discret
 - 3. pareil que pour $t \le 3$ en continus et pareil que pour $k \le 3$ en discret
 - 4. si on met la bonne réponse toujours au début c'est débile!
- Q3 la densité de probabilité pour la valeur exacte 3 est de
 - 1. 0 pour t=3 en continu et 1/6 pour k=3 en discret
 - 2. 1/6 pour t=3 en continu et 1/6 pour k=3 en discret
 - 3. 1/6 pour t=3 en continu et ∞ pour k=3 en discret
 - 4. je préfère rester discrète sur la question...
- **Q4** Parmi les transformées représentées sur la figure suivante, lesquelles sont des densitées et dans quelles unités (on suppose un signal primal temporel en Volts) :
 - 1. $\hat{S}(f)$ de la TF est une densité continue en V;
 - 2. $\hat{S}(f)$ de la TF est une densité continue en V/Hz;
 - 3. $\hat{S}(n)$ (impulsions unités) de la SdF est une densité discrète V/Hz;
 - 4. $\hat{S}(f)$ (diracs) de la SdF est une densité en V/Hz;
 - 5. au moins avec un choix unique, je fais qu'une erreur par question...

3.2 Dérivée de fonctions discontinues

La densité de fonction discrètes nous pousse à dériver des fonctions discontinues de première espèce (pas d'infinité à droite ni à gauche).

Prenon la fonction de HEAVISIDE ou échelon unité noté u(t) pour modéliser toute discontinuité dans un signal, le but est de définir une dérivée de cette fonction, voir Fig. 3.2 et d'obtenir à nouveau u(t) par intégration.

FIGURE 3.2 – Dérivées de l'échelon, de fonctions constantes et d'une fonction continue convergeant vers l'échelons pour $T \to 0$

Or la dérivée u'(t) n'est pas définie en 0 (elle vaudrait $+\infty$), il faut donc trouver un prolongement pour la définir partout :

- u'(0) = 0 par continuité, on obtient alors la fonction nulle. Sa primite est la fonction nulle et donc on ne retrouve pas u(t) en intégrant la dérivée;
- $u'(0) = a, a \in \mathbb{R}$, la fonction est discontinue en 0, on doit intégrer en deux fois

$$u(t>0) = \int_{-\infty}^{t>0} u'(x) \, dx = \lim_{\varepsilon \to 0} \int_{-\infty}^{-\varepsilon} \underbrace{u'(x)}_{t=0} \, dx + \lim_{\varepsilon \to 0} \int_{\varepsilon}^{t} \underbrace{u'(x)}_{t=0} \, dx = 0$$

La dérivée de l'échelon est donc la fonction nulle « presque partout » ($||u'||_2 = 0$).

On peut essayer d'aprocher l'échelon avec deux fonctions rampes comme illustré sur la figure, et obtenir une dérivée définie partout (sauf en $-\frac{T}{2}$ et $\frac{T}{2}$) sous la forme de la fonction porte $\Pi_{\left[-\frac{T}{2};\frac{T}{2}\right]}(t)$. Mais la limite de cette fonction porte reste la fonction nulle presque partout!

3.3 Opérateur dérivée et sa réciproque

Le fait que plusieurs fonctions ont pour image la même fonction nulle, rend l'opérateur dérivée (noté p en calcul opérationnel ou D) font que l'application dérivée qui transforme une fonction de L_1 n'est pas injective.

$$p = D = \frac{\mathrm{d}}{\mathrm{dt}}: \begin{array}{ccc} L_1 & \longrightarrow & L_1 \\ t \mapsto u(t) & \longmapsto & t \mapsto u'(t) \end{array}$$
(3.2)

Elle est donc non bijective et une application réciproque unique n'existe pas (l'opérateur primitive qui s'annule en 0). Pourtant l'intuition montre que l'on a besoin d'établir un objet mathématique qui soit la dérivée de l'échelon et dont une primitive soit u(t). Cette fonction généralisée ou fonction imaginaire est l'impulsion de DIRAC introduite et utilisée par le scientifique éponyme dans les année 1920 et établie mathématiquement par Schwartz dans les année 1950.

Comme l'indique la Fig. 3.3 on crée une fonction imaginaire étant la dérivée de discontinuité et dont l'intégrale réciproque donne une discontinuité.

FIGURE 3.3 – L'espace des fonctions usuelles où l'opérateur dérivée n'est pas injectif, et l'espace des distributions où l'opérateur est bijectif.

Cela permet de définir un opérateur inversible et d'introduire le calcul opérationnel où l'opérateur D possède une réciproque D^{-1} permettant de représenter une équation différentielle

$$a_n y^{[n]} + \ldots + a_1 y' + a_0 = e$$

sous forme opérationnelle :

$$a_n \underbrace{D \circ \ldots \circ D}_{\text{n fois}} \circ y + \ldots + a_1 D \circ y + a_0 \text{ Id} = e$$

et en notant la composition \circ comme un produit et n compositions comme en puissance :

$$a_n D^n . y + \ldots + a_1 D . y + a_0 \operatorname{Id} = e$$

Comme l'opérateur D possède une réciproque notée D^{-1} puisque $D \circ D^{-1} = Id$ est noté $D.D^{-1} = Id$ et que ces opérateurs commutent on peut factoriser :

$$(a_n D^n + \ldots + a_1 D + a_0 \operatorname{Id}) y = e$$

C'est ainsi que HEAVISIDE à remarqué que la composition des dérivées de fonctions et leurs associations linéaires dans les équations différentielle se comportait comme une algèbre classique. L'idée est venue de manipuler D comme un nombre ce qui l'a conduit à l'utilisation du calcul opérationnel comme celui effectué avec la transformée de LAPLACE où p joue le rôle de l'opérateur dérivé mais est une nombre complexe.

Et donc passer le pas et de calculer la solution en faisant une fraction rationnelle d'opérateur dérivés et une décomposition en éléments simples d'opérateurs dérives :

$$y = \frac{1}{(a_n D^n + \ldots + a_1 D + a_0 \operatorname{Id})} e = \frac{\beta_n}{D + \alpha_n} e + \ldots + \frac{\beta_0}{D + \alpha_0} e$$

Le tout sans avoir défini la transformée de LAPLACE qui est venue plus tard avec la formule de Carson.

3.4 Propriété sous l'intégrale de l'impulsion de DIRAC et de l'impulsion unité

Nous avons donc une fonction de densité δ_0 qui une fois intégrée peut enfin donner une fonction de répartition discontinue en 0. On peut appliquer l'opérateur de retard sur cet objet et définir δ_a la densité d'une fonction u(t-a) discontinue en a. On peut définir par abus de notation :

$$\delta_a(t) = \delta_0(t-a)$$

Cela permet aussi de représenter l'opérateur d'échantillonnage idéal d'un signal continu à un instant a donné en multipliant le signal s(t) par la densité de mesure en a ce qui est représenté par la Fig. 3.4

Nous avons donc les propriétés :

$$\langle s, \delta_a \rangle = s(a)$$
 en continu et en discret $\langle s, \delta_a \rangle = s[a]$

3.5 Propriété de convolution avec le DIRAC et impulsion unité

On peut définir l'opérateur de convolution, noté *, à l'aide du produit scalaire puisque :

$$u * v(t) = \int_{-\infty}^{\infty} u(x) \overline{v(t-x)} \, dx = \langle u, x \mapsto u(t-x) \rangle$$
(3.3)

De même pour les signaux discret à support infini, on définit la convolution :

$$u * v[k] = \sum_{-\infty}^{\infty} u[l] \overline{v[k-l]} = \langle \langle u, l \mapsto u(k-l) \rangle \rangle$$
 (3.4)

Et la convolution cyclique pour les signaux discrets périodiques de N points :

$$u * v[k] = \sum_{0}^{N-1} u[l] \overline{v[k-l]} = \langle \langle u, l \mapsto u(k-l) \rangle \rangle_{P}$$
 (3.5)

FIGURE 3.4 – A droite l'impulsion unitaire discrète qui effectue une mesure "sous la somme" ou à travers le produit scalaire. A gauche l'impulsion de DIRAC qui effectue la mesure idéale d'une fonction continue.