Dualumas tiesiniame programavime

Turime bendrąjį tiesinio programavimo uždavinį:

$$f(x) = \sum_{i=1}^{n} c_i x_i \to \max$$

$$kai$$

$$\begin{cases} \sum_{i=1}^{n} a_{ji} x_i \le b_j, & j = 1, 2, ..., m_1; \\ \sum_{i=1}^{n} a_{ji} x_i = b_j, & j = m_1 + 1, m_1 + 2, ..., m; \\ x_i \ge 0, & i = 1, 2, ..., n_1; \\ m_1 \le m; & n_1 \le n. \end{cases}$$

(0.1)

Tiesinio programavimo uždavinys, kuriame reikia rasti:

$$F(y) = \sum_{i=1}^{m} b_i y_i \to \min$$

$$kai \begin{cases} \sum_{i=1}^{m} a_{ij} y_i \geq c_j, & j = 1, 2, ..., n_1; \\ \sum_{i=1}^{m} a_{ij} y_i = c_j, & j = n_1 + 1, n_1 + 2, ..., n; \\ y_i \geq 0, & i = 1, 2, ..., m_1; \\ m_1 \leq m, & n_1 \leq n \end{cases}$$

vadinamas tiesioginio uždavinio dualiuoju uždaviniu.

Jei tiesioginiame uždavinyje tikslo funkcija maksimizuojama, tai dualiajame – minimizuojama, ir atvirkščiai. Jeigu tiesioginiu uždaviniu imtume antrąjį uždavinį, tai pirmasis būtų jo dualusis uždavinys. Todėl sakoma, kad abu uždaviniai yra tarpusavyje dualūs.

Dualiojo uždavinio sudarymo taisyklės

Tiesioginį uždavinį užrašome šitaip:

1. Jeigu ieškomas uždavinio tikslo funkcijos maksimumas, tai visos apribojimų nelygybės užrašomos su ženklu≤, jeigu ieškomas minimumas – su ženklu≥. (Tai galima padaryti atitinkamas nelygybes dauginant iš -1).

2. Dualiajame uždavinyje imama tiek kintamųjų y_i , kiek tiesioginiame uždavinyje yra apribojimų; it tiek apribojimų, kiek tiesioginiame uždavinyje yra kintamųjų x_i . Kiekvieno uždavinio apribojimą atitinka jam dualiojo uždavinio kintamasis.

- 3. Jeigu tiesioginio uždavinio tikslo funkcija maksimizuojama, tai dualiojo minimizuojama ir atvirkščiai.
- 4. Dualiojo uždavinio tikslo funkcijos koeficientai yra tiesioginio uždavinio apribojimų laisvieji nariai ir atvirkščiai.

5. Dualiojo uždavinio apribojimų matrica gaunama transponuojant tiesioginio uždavinio apribojimų matricą.

6. Jeigu tiesioginio uždavinio kintamasis x_i yra neneigiamas, tai atitinkamas dualiojo minimizavimo uždavinio apribojimas yra nelygybė \geq . Jeigu kintamasis x_i gali įgyti bet kokias reikšmes, tai atitinkamas apribojimas yra lygtis. Analogiškas ryšys yra ir tarp dualiojo uždavinio kintamųjų ir tiesioginio uždavinio apribojimų.

1 pavyzdys

Parašykite dualųjį uždavinį duotajam:

$$x_{1} + 2x_{2} + 5x_{3} + 4x_{4} \rightarrow \max$$

$$kai$$

$$\begin{cases} 2x_{1} - x_{2} + 4x_{3} - 3x_{4} \leq 2; \\ 3x_{1} + x_{2} + x_{3} + 2x_{4} = 1; \\ x_{1} - 4x_{2} + 5x_{4} \geq -6; \\ x_{1} \geq 0, \ x_{4} \geq 0. \end{cases}$$

<u>Sprendimas</u>

Pertvarkome uždavinio formą, padaugindami trečiąją nelygybę iš -1:

$$x_1 + 2x_2 + 5x_3 + 4x_4 \longrightarrow \max$$

kai

$$\begin{cases} 2x_1 - x_2 + 4x_3 - 3x_4 \le 2; \\ 3x_1 + x_2 + x_3 + 2x_4 = 1; \\ -x_1 + 4x_2 - 5x_4 \le 6; \\ x_1 \ge 0, \ x_4 \ge 0. \end{cases}$$

Šalia gautojo uždavinio apribojimų surašome dualiojo uždavinio kintamuosius y_i :

$$x_1 + 2x_2 + 5x_3 + 4x_4 \longrightarrow \max$$

kai

$$\begin{cases} 2x_1 - x_2 + 4x_3 - 3x_4 \le 2; \\ 3x_1 + x_2 + x_3 + 2x_4 = 1; \\ -x_1 + 4x_2 - 5x_4 \le 6; \\ x_1 \ge 0, \ x_4 \ge 0. \end{cases}$$

Remdamiesi taisyklėmis užrašome dualųjį uždavinį:

$$2y_{1} + y_{2} + 6y_{3} \rightarrow \min$$

$$kai$$

$$\begin{cases} 2y_{1} + 3y_{2} - y_{3} \ge 1; \\ -y_{1} + y_{2} + 4y_{3} = 2; \\ 4y_{1} + y_{2} = 5; \\ -3y_{1} + 2y_{2} - 5y_{3} \ge 4; \\ y_{1} \ge 0, \ y_{3} \ge 0. \end{cases}$$

Kanoninio uždavinio dualusis uždavinys

Pasinaudoję uždavinių matricų forma galime parašyti tiesioginį kanoninį uždavinį

$$CX \rightarrow \max$$

kai

$$AX = B, x \ge 0.$$

Tuomet jo dualusis bus toks

$$BY \rightarrow \min$$

kai

$$A^T Y \geq C$$
.

Jame jau nebėra kintamųjų neneigiamumo sąlygų.

Standartinio uždavinio dualusis uždavinys

Pasinaudoję uždavinių matricų forma galime parašyti tiesioginį standartinį uždavinį

$$CX \rightarrow \max$$

kai

$$AX \leq B$$
, $x \geq 0$.

Tuomet jo dualusis bus toks

$$BY \rightarrow \min$$

kai

$$A^T Y \geq C$$
,

$$Y \ge 0$$
.

Šis uždavinys jau turi kintamųjų neneigiamumo sąlygas.

Dualumo teoremos

Tarkime, kad turime standartinį maksimizavimo uždavinį:

$$f(x) = \sum_{i=1}^{n} c_i x_i \to \max$$

$$kai$$

$$\begin{cases} \sum_{i=1}^{n} a_{ji} x_i \le b_j, & j = 1, 2, ..., m; \\ x_i \ge 0, & i = 1, 2, ..., n; \end{cases}$$

Jam dualusis uždavinys yra:

$$F(\mathcal{Y}) = \sum_{i=1}^{m} b_i y_i \longrightarrow \min$$
kai

$$\begin{cases} \sum_{i=1}^{m} a_{ij} y_i \ge c_j, & j = 1, 2, \dots, n; \\ y_i \ge 0, & i = 1, 2, \dots, m; \end{cases}$$

Tiesioginio uždavinio leistinųjų sprendinių aibę pažymėkime X, o dualiojo – Y. Tuomet yra teisingi šie teiginiai:

- 1. Jeigu $x \in X$ ir $y \in Y$ yraleistinieji sprendiniai, tai $f(x) \le F(y)$. (Pagrindinė dualumo nelygybė).
- 2. Jeigu $x^* \in X$ ir $y^* \in Y$ yraleistinieji sprendiniai, ir $f(x^*) = F(y^*)$ x^* yra tiesioginio uždavinio sprendinys, o y^* yra dualiojo uždavinio sprendinys.
- 3. Dualieji uždaviniai turi sprendinius tada ir tik tada, kai kiekvienas jų turi bent vieną leistinąjį sprendinį.

- 4. Jeigu tiesioginio uždavinio tikslo funkcija f(x) leistinųjų sprendinių aibėje X yra neaprėžta, tai dualiojo uždavinio leistinųjų sprendinių aibė yra tuščia.
- 5. Jeigu vienas iš dualiųjų uždavinių turi sprendinį x^* , tai ir kitas turi sprendinį y^* , be to $f(x^*)=F(y^*)$. (Pirmoji dualumo teorema).
- 6. Leistinieji sprendiniai x^* ir y^* yra dualiųjų uždavinių sprendiniai tada ir tik tada, jei

$$x_{j}^{*}\left(\sum_{i=1}^{m}a_{ij}y_{i}^{*}-c_{j}\right)=0, \ \ j=1,2,\ldots,n;$$

$$y_i^* \left(\sum_{i=1}^n a_{ij} x_j^* - b_i \right) = 0, \ i = 1, 2, \dots, m.$$
 (Antroji dualumo teorema).

7. Dualiųjų uždavinių leistinieji sprendiniai x* ir y* tada ir tik tada yra tų uždavinių sprendiniai, kai su jais atitinkamų uždavinių tikslo funkcijų reikšmės yra lygios.(Pirmasis Kantorovičiaus optimalumo kriterijus).

8. Dualiųjų uždavinių leistinieji sprendiniai x* ir y* tada ir tik tada yra tų uždavinių sprendiniai, kai teisingi šie sąryšiai: griežtą apribojimo nelygybę atitinka lygi nuliui dualiojo kintamojo reikšmė ir atvirkščiai. (Antrasis Kantorovičiaus optimalumo kriterijus).

Dualiojo uždavinio sprendinio radimas

Norint rasti dualiųjų uždavinių sprendinius, pakanka simplekso metodu išspręsti vieną iš jų.

Tegul turime kanoninį maksimizavimo uždavinį

$$f(X) = CX \rightarrow \max$$

kai

$$AX = B, X \ge 0.$$

ir jam dualų uždavinį

$$F(Y) = BY \rightarrow \min$$

kai

$$A^T Y \geq C$$
.

2 pavyzdys

Rasti uždavinio

$$30x_{1} + 20x_{2} \rightarrow \max$$

$$kai$$

$$\begin{cases} 2x_{1} + x_{2} \leq 10, \\ x_{1} + x_{2} \leq 8, \\ x_{1} \leq 4, \\ x_{1} \geq 0, x_{2} \geq 0 \end{cases}$$

dualiuosius sprendinius.

3 pavyzdys

Išspręsti tiesinio programavimo uždavinį

$$f(x) = x_1 + x_2 + 2x_3 \to \max$$

$$kai$$

$$\begin{cases} x_1 + x_2 + x_3 = 8; \\ x_1 - x_2 \ge 4; \\ x_1 + 2x_2 \ge 6; \\ x_1 \ge 0, x_2 \ge 0, x_3 \ge 0. \end{cases}$$
(0.5)

dualiojo simplekso metodo pagalba.

Sprendimas

Uždavini pertvarkome i kanonine forma

$$f(x) = x_1 + x_2 + 2x_3 \longrightarrow \max$$

kai

kai

$$\begin{cases}
x_1 + x_2 + x_3 = 8; \\
x_1 - x_2 - x_4 = 4; \\
x_1 + 2x_2 - x_5 = 6; \\
x_1 \ge 0, x_2 \ge 0, x_3 \ge 0, x_4 \ge 0, x_5 \ge 0.
\end{cases}$$

(0.6)

Arba padauginus antrają ir trečiąją ribojimų sistemos lygtį iš -1 $f(x) = x_1 + x_2 + 2x_3 \rightarrow \max$

arba padauginus antrąją ir treciąją ribojimų sistemos lygtį is -1
$$f\left(x\right) = x_1 + x_2 + 2x_3 \rightarrow \max$$

$$kai$$

$$\begin{cases} x_1 + x_2 + x_3 = 8; \\ -x_1 + x_2 + x_4 = -4; \\ -x_1 - 2x_2 + x_5 = -6; \\ x_1 \ge 0, \ x_2 \ge 0, \ x_3 \ge 0, x_4 \ge 0, \ x_5 \ge 0. \end{cases}$$

(0.7)

Jam dualus yra uždavinys

Jam duaius yra uzdavinys
$$F(y)$$
 –

$$F(y) = 8y_1 - 4y_2 - 6y_3 \rightarrow \min$$

$$kai$$

(0.8)

$$\begin{cases} y_1 - y_2 - y_3 \ge 1; \\ y_1 + y_2 - 2y_3 \ge 1; \\ y_1 \ge 2; \\ y_2 \ge 0, \ y_3 \ge 0. \end{cases}$$

$$I(y) = oy_1$$

$$F(y) = 8y$$

Parinkę baziniais kintamaisiais x_3 , x_4 ir x_5 , sudarome simplekso lentelę

			, ,	
B_0	$-x_1$	$-x_2$	b	c_b
$x_3 =$	1	1	8	2
$x_4 =$	-1	1	-4	0
$x_5 =$	-1	-2	-6	0
f =	1	1	16	

kuri nusako pseudosprendinį $X^0=\left(0;0;8;-4;-6\right)$ bei dualųjį sprendinį $Y^0=\left(2;0;0\right)$, nes $y_1=\Delta_3+c_3$, $y_2=\Delta_4+c_4$ bei $y_3=\Delta_5+c_5$, o tikslo funkcijos reikšmė $f_{\max}=F_{\min}=16$.

Joje mažiausias elementas iš laisvųjų narių stulpelio yra -6, t. y. atitinka kintamąjį x_5 . Mažiausias santykis

$$\min_{j} \left(-\frac{\Delta_{j}}{a_{5j}} \right) = \min \left(-\frac{1}{-1}; -\frac{1}{-2} \right) = \frac{1}{2}, \tag{0.9}$$

nusako kintamąjį x_2 . Todėl sprendžiamasis elementas yra a_{52} .

Atlikus Žordano žingsnį gauname naująją lentelę

B_1	$-x_1$	$-x_{5}$	b	c_{b}
$x_3 =$	$\frac{1}{2}$	$\frac{1}{2}$	5	2
$x_4 =$	$-\frac{3}{2}$	$\frac{1}{2}$	-7	0
$x_{2} =$	$\frac{1}{2}$	$-\frac{1}{2}$	3	1
f =	1/2	$\frac{1}{2}$	13	

kuri nusako pseudosprendinį $X^1=\left(0;3;5;-7;0\right)$ bei dualųjį sprendinį $Y^1=\left(2;0;\frac{1}{2}\right)$ ir tikslo funkcijos reikšmė $f_{\max}=F_{\min}=13$. Joje mažiausias elementas iš laisvųjų narių stulpelio yra -7, t. y. atitinka kintamąjį x_4 . Mažiausias santykis

$$\min_{j} \left(-\frac{\Delta_{j}}{a_{4j}} \right) = \min\left(-\frac{\frac{1}{2}}{\frac{-3}{2}} \right) = \frac{1}{3}, \tag{0.10}$$

nusako kintamąjį \mathcal{X}_1 . Todėl sprendžiamasis elementas yra \mathcal{A}_{41} .

Atlikus Žordano žingsnį gauname naująją lentelę

B_3	$-x_4$	$-x_{5}$	b	c_{b}
$x_3 =$	$\frac{1}{3}$	$\frac{2}{3}$	$\frac{8}{3}$	2
$x_1 =$	$-\frac{2}{3}$	$-\frac{1}{3}$	$\frac{14}{3}$	1
$x_{2} =$	$\frac{1}{3}$	$-\frac{1}{3}$	<u>2</u> 3	1
f =	$\frac{1}{3}$	$\frac{2}{3}$	$\frac{32}{3}$	

kuri nusako optimalųjį sprendinį $X^* = \left(\frac{14}{3}; \frac{2}{3}; \frac{8}{3}\right)$ bei dualųjį sprendinį $Y^* = \left(2; \frac{1}{3}; \frac{2}{3}\right)$ ir tikslo funkcijos reikšmė $f_{\text{max}} = F_{\text{min}} = \frac{32}{3} = 10\frac{2}{3}$.

4 pavyzdys

Išspręsti tiesinio programavimo uždavinį

$$F = 2x_1 + 3x_2 + 5x_3 \longrightarrow \max$$

kai

$$\begin{cases}
-2x_1 + x_2 - x_3 = 12; \\
x_1 + 2x_2 + x_4 = 10; \\
3x_1 - 2x_2 - x_5 = 18; \\
x_1 \ge 0, x_2 \ge 0, x_3 \ge 0, x_4 \ge 0, x_5 \ge 0.
\end{cases}$$
(0.11)

dualiojo simplekso metodo pagalba.

Sprendimas

Uždavinį pertvarkome į kanoninę formą, padaugindami pirmąją ir trečiąją ribojimų sistemos lygtį iš -1

$$F = 2x_1 + 3x_2 + 5x_3 \rightarrow \max$$

$$kai$$

$$\begin{cases} 2x_1 - x_2 + x_3 = -12; \\ x_1 + 2x_2 + x_4 = 10; \\ -3x_1 + 2x_2 + x_5 = -18; \\ x_1 \ge 0, \ x_2 \ge 0, \ x_3 \ge 0, x_4 \ge 0, \ x_5 \ge 0. \end{cases}$$

$$(0.12)$$

Parinkę baziniais kintamaisiais x_3 , x_4 ir x_5 , sudarome simplekso lentelę

	3 /		,	
B_0	$-x_1$	$-x_2$	b	c_{b}
$x_3 =$	2	-1	-12	0
$x_4 =$	1	2	10	5
$x_5 =$	-3	2	-18	0
F =	3	7	50	

kuri nusako pseudosprendinį $X^0=(0;0;-12;10;-18)$. Joje mažiausias elementas iš laisvųjų narių stulpelio yra -18, t. y. atitinka kintamąjį x_5 . Mažiausias santykis

$$\min_{j} \left(-\frac{\Delta_{j}}{a_{5j}} \right) = \min \left(-\frac{3}{-3} \right) = 1, \tag{0.13}$$

nusako kintamąjį x_1 . Todėl sprendžiamasis elementas yra a_{51} .

Atlikus Žordano žingsnį gauname naująją lentelę

185117 84 41141110 114 41 47 47 10114				
$B_{_1}$	$-x_5$	$-x_2$	b	c_b
$x_3 =$	$\frac{2}{3}$	$\frac{1}{3}$	-24	0
$x_4 =$	$\frac{1}{3}$	8/3	4	5
$x_1 =$	$-\frac{1}{3}$	$-\frac{2}{3}$	6	2
F =	1	9	32	

kuri nusako pseudosprendinį $X^1 = (6;0;-24;4;0)$. Joje mažiausias elementas iš laisvųjų narių stulpelio yra -24, t. y. atitinka kintamąjį x_3 . Kadangi šio kintamojo eilutėje nėra neigiamų skaičių tarp visų a_{3i} , tai uždavinys (0.11) sprendinių neturi.