Grenzwerte von Funktionen und Stetigkeit

$$g = \lim_{x \to x_0} f(x)$$

Sei f eine Funktion mit $D_f \to R$. Eine Zahl g heißt **Grenzwert von f an der Stelle x_0**, falls es zu jedem $\delta > 0$ ein $\varepsilon > 0$ gibt mit $|f(x) - g| < \delta$ für alle $x \neq x_0$ mit $|x - x_0| < \varepsilon$.

Grenzwerte von Funktionen und Stetigkeit

Existiert der Grenzwert spricht man von Konvergenz, andernfalls von Divergenz.

Gilt bei $x \to x_0$ zusätzlich:

 $x < x_0$ linksseitiger Grenzwert $x \to x_0 - 0$ $x > x_0$ rechtsseitiger Grenzwert $x \to x_0 + 0$

Falls linksseitiger und rechtsseitiger Grenzwert existieren und gleich sind, ist dieser Wert auch Grenzwert.

Es ist unwesentlich ob f an der Stelle x_0 definiert ist oder nicht.

Es wird auch die Bewegung von $x \to \infty$ bzw. $x \to -\infty$ untersucht.

Grenzwertsätze

Seien zwei Funktionen f_1 und f_2 sowie ein Punkt x_0 gegeben mit

$$g_1 = \lim_{x \to x_0} f_1(x) \text{ und } g_2 = \lim_{x \to x_0} f_2(x).$$

Dann gilt für $x \to x_0$

$$\lim_{x \to x_0} (f_1(x) \pm f_2(x)) = \lim_{x \to x_0} f_1(x) \pm \lim_{x \to x_0} f_2(x) = g_1 + g_2$$

$$\lim_{x \to x_0} (f_1(x) \cdot f_2(x)) = \lim_{x \to x_0} f_1(x) \cdot \lim_{x \to x_0} f_2(x) = g_1 \cdot g_2$$

$$\lim_{x\to x_0}(f_1(x)/f_2(x))=\lim_{x\to x_0}f_1(x)/\lim_{x\to x_0}f_2(x)=g_1/g_2 \qquad \qquad \text{falls } g_2\neq 0$$

Grenzwerte von Funktionen und Stetigkeit

Stetigkeit in einem Punkt:

Eine Funktion $f: D_f \to R$ heißt in einem Punkt $x_0 \in D_f$ stetig, wenn gilt $\lim_{x \to x_0} f(x) = f(x_0)$.

Existiert der Grenzwert nur als linksseitiger oder rechtsseitiger Grenzwert, spricht man von linksseitiger bzw. rechtsseitiger Stetigkeit.

Stetigkeit einer Funktion:

Eine Funktion $f\colon D_f\to R$ heißt auf $D\subseteq D_f$ stetig, wenn f in jedem Punkt $x\in D$ stetig ist. Im Fall $D=D_f$ heißt f stetig.

Stetigkeit zusammengesetzter Funktion:

Linearkombinationen, Produkte, Quotienten, Umkehrfunktionen und Verschachtelungen stetiger Funktionen sind auf den sich ergebenden Definitionsbereichen stetig.

Arten von Unstetigkeiten

Hebbare Unstetigkeit:

Falls der Grenzwert $g=\lim_{x\to x_0}f(x)$ existiert, aber $f(x_0)$ nicht existiert oder ungleich g ist. Eine hebbare Unstetigkeit kann durch die Definition von

 $f(x_0) = g$ aufgehoben werden.

Sprungstelle:

Falls die einseitigen Grenzwerte existieren, aber unterschiedlich sind.

Polstelle:

Falls die einseitigen Grenzwerte nur als uneigentliche Grenzwerte (Bsp. $\pm \infty)$ existieren.

Eigenschaften stetiger Funktionen

Satz von Bolzano

Sei f auf dem Intervall [a,b] stetig und gelte $f(a)\cdot f(b)<0$. Dann besitzt f im Intervall [a,b] eine Nullstelle.

(Anmerkung: Dies ist nicht der Beweis, dass keine Nullstelle existiert!)

Definition absolute Extrema:

Ein Punkt $x_m \in D_f$ heißt Stelle des **absoluten Minimums** $m = f(x_m)$ von f, wenn gilt $f(x_m) \le f(x) \ \forall \ x \in D_f$.

Ein Punkt $x_M \in D_f$ heißt Stelle des **absoluten Maximums** $M = f(x_M)$ von f, wenn gilt $f(x_M) \geq f(x) \ \forall \ x \in D_f$.

Satz von Weierstraß

Sei f auf dem abgeschlossenen Intervall [a,b] stetig, dann nimmt f dort ihr absolutes Minimum und ihr absolutes Maximum an.

Differenzenquotient:

Als **Differenzenquotient** wird das Verhältnis $\frac{\Delta y}{\Delta x}$ bezeichnet.

Dies beschreibt den Anstieg der Sekante.

$$m_{Sek} = \frac{\Delta y}{\Delta x} = \tan \alpha$$

$$\frac{\Delta y}{\Delta x} = \frac{f(x + \Delta x) - f(x)}{(x + \Delta x) - x}$$

$$\frac{\Delta y}{\Delta x} = \frac{f(x + \Delta x) - f(x)}{\Delta x}$$

Betrachtet man den **Grenzwert** des **Differenzenquotienten** für $\Delta x \to 0$ kommt man zum **Differentialquotient**.

Differentialrechnung

Differentialquotient:

Sei $f\colon D_f\to R$ eine Funktion und $x_0\in D_f$. Dann heißt der Grenzwert

$$f'(x_0) = \lim_{\Delta x \to 0} \frac{f(x_0 + \Delta x) - f(x_0)}{\Delta x}$$

falls er existiert, **Differentialquotient** von f an der Stelle x_0 .

Die Funktion f heißt an der Stelle x_0 differenzierbar.

Definition 1. Ableitung

Eine Funktion $f\colon D_f\to R$ heißt auf der Menge $D\subset D_f$ differenzierbar, wenn f in jedem Punkt von D differenzierbar ist.

Ordnet man jedem $x \in D$ einen Differentialquotienten zu, so ist eine neue Funktion – die 1.Ableitung f' der Funktion f definiert.

Der Wert der 1. Ableitung an einer bestimmten Stelle heißt auch Anstieg der Funktion (Anstieg der Tangente an den Graph der Funktion) im Punkt $(x_0,f(x_0))$.

Die Ableitung von f' nennt man 2. Ableitung. Diese liefert ein Maß für die Krümmung des Graphen im Punkt $(x_0,f(x_0))$.

Schreibweisen für eine Funktion y = f(x):

$$y' = f'(x) = \frac{df}{dx} = \frac{dy}{dx} = \frac{d}{dx}f(x)$$

$$y'' = f''(x) = \frac{d^2f}{dx^2} = \frac{d^2y}{dx^2} = \frac{d^2}{dx^2}f(x)$$

Die Größen dx und dy bezeichnet man als Differentiale.

Differentialrechnung

Differentiationsregeln (Auswahl)

f(x)	f'(x)	Bemerkung
C	0	c beliebig
x	1	
<i>x</i> ²	2 <i>x</i>	
x^n	nx^{n-1}	$n \in R, n \neq 0$
sin(x)	cos(x)	
cos(x)	-sin(x)	
e^x	e^x	
a^x	$\ln a \cdot a^x$	$a > 0$, $a \neq 1$
$\ln a $	1/x	
tan(x)	$\frac{1}{\cos^2 x}$ $-1/\sin^2 x$	
$\cot(x)$	$^{-1}/_{\sin^2 x}$	

Scharen werden nicht gemacht

innere und äußere Ableitung

Differentiationsregeln

f(x)	f'(x)	Bemerkung
y = u(x) + v(x)	y' = u' + v'	Summenregel
$y = u(x) \cdot v(x)$	y' = uv' + u'v	Produktregel
$y = \frac{u(x)}{v(x)}$	$y' = \frac{u'v - uv'}{v^2}$	Quotientenregel
y = f(u(x))	$y' = \frac{df}{du} \cdot \frac{du}{dx}$	Kettenregel

Differentialrechnung

Zusammenhang zwischen Stetigkeit und Differenzierbarkeit

Eine differenzierbare Funktion ist auch stetig.
Aber, eine stetige Funktion muss nicht differenzierbar sein.

Zusammenhang zwischen Differenzierbarkeit und Monotonie

Gilt für ein Intervall (a,b) $f'(x) \ge 0 \ \forall \ x$, so ist f dort **monoton wachsend.** Gilt für ein Intervall (a,b) $f'(x) \le 0 \ \forall \ x$, so ist f dort **monoton fallend.**

Bzw.

Gilt für ein Intervall (a,b) f'(x) > 0 $\forall x$, so ist f dort **streng monoton wachsend.** Gilt für ein Intervall (a,b) f'(x) < 0 $\forall x$, so ist f dort **streng monoton fallend.**

Monotonie (grafische Beispiele)

Differentialrechnung

Ermittlung von Extremwerten

Hinreichende Bedingung für relative Extrema:

Wenn $f'(x_0) = 0$ und $f''(x_0) \neq 0$ dann ist x_0 Stelle eines **relativen Extremums** und zwar eines **Minimums**, wenn $f''(x_0) < 0$ oder Vorzeichen müssen andersrum (also größer 0 Minimum; kleiner 0 Maximum) eines **Maximums**, wenn $f''(x_0) > 0$.

Die Punkte $(x_0, f(x_0))$ bezeichnet man als stationäre Punkte.

Die Differentialrechnung kann relative Extrema aufspüren, findet im Allgemeinen aber keine Extrema am Rand des Definitionsbereichs oder an nicht differenzierbaren Stellen.

Satz über absolute Extrema:

Sei $f\colon [a,b]\to R$ differenzierbar. Dann besitzt f dort eine Stelle des absoluten Minimums und eine Stelle des absoluten Maximums. Diese Stellen sind entweder stationäre Punkte oder Randpunkte.

Ermittlung von Extremwerten - Vorgehen:

Sei $f: [a, b] \rightarrow R$ differenzierbar.

- 1. Ermittlung von f'(x)
- 2. Berechnung aller Stellen $x_k, k=1,2,\dots$ durch Lösung der Gleichung f'(x)=0
- 3. Ermittlung von f''(x)
- 4. Testen der gefundenen Stellen auf $f''(x_k) \neq 0$
- 5. Bestimmen der Funktionswerte $f(x_k), f(a), f(b)$
- 6. Der größte dieser Werte ist das absolute Maximum, der kleinste dieser Werte ist das absolute Minimum.

Grenzwerte von Funktionen und Stetigkeit

Grenzwertberechnung

Bei stetigen Funktionen kann die Berechnung von Grenzwerten

$$\lim_{x\to x_0}f(x)$$

durch Berechnung des Funktionswertes erfolgen, es sei denn f(x) ist an der Stelle x_0 nicht definiert oder $x_0=\infty$.

Beispiel:

$$\lim_{x \to 0} \frac{\sin x}{x} = \frac{0}{0}$$
?

oder

$$\lim_{x \to \infty} \frac{e^x}{x} = \frac{\infty}{\infty} ?$$

Eine Möglichkeit zur Berechnung solcher unbestimmter Grenzwerten liefert die **Regel von Bernoulli-de l'Hospital**

Grenzwerte von Funktionen und Stetigkeit

Regel von Bernoulli-de l'Hospital

Bedingung:

1. f(x) und g(x) im Intervall [a, b] differenzierbar

$$2. x_0 \in [a, b]$$

3.
$$\lim_{x \to x_0} f(x) = \lim_{x \to x_0} g(x) = 0 \quad oder \, \infty$$

Dann gilt

$$\lim_{x \to x_0} \frac{f(x)}{g(x)} = \lim_{x \to x_0} \frac{f'(x)}{g'(x)}$$

Diese Regel kann auch nach Umformung auf folgende unbestimmte Ausdrücke angewendet werden:

$$"0\cdot\infty", "\infty-\infty,, "0^0,, "\infty^0,, "1^\infty,$$

Mitunter muss obige Regel mehrfach angewendet werden (Betrachtung $\frac{f^{\prime\prime}}{g^{\prime\prime}}$). Es gibt aber keine Garantie.