

IC Compiler Laboratory Exercise

Design Preparation

unix% tar -zxvf icc_lab_T90.gz

Table I Lab1

DESIGN DATA	FILE OR DIRECTORY	
Gate Level Netlist	~/icc_lab/Lab1/design_data/CHIP_syn.v	
IO Constraint File	~/icc_lab/Lab1/design_data/io.tdf	
Timing Constraint File	~/icc_lab/Lab1/design_data/CHIP.sdc	
Scandef Fille	~/icc_lab/Lab1/design_data/CHIP.scandef	
Technology File (CIC Design Kit)	/cad/CBDK/CBDK_TSMC90GUTM_Arm_v1.2/CIC/ICC/tsmc090_9lm_2thick_cic.tf	
Layer Mapping File /cad/CBDK/CBDK_TSMC90GUTM_Arm_v1.2/CIC/ICC/macro.map		
Antenna Rules	/cad/CBDK/CBDK_TSMC90GUTM_Arm_v1.2/CIC/ICC/antenna_91m_CIC.clf	
Reference Library	~/icc_lab/Lab1/ref_lib/nco_table_cos	
(Memory)	~/icc_lab/Lab1/ref_lib/nco_table_log	
Reference Library	/cad/CBDK/CBDK_TSMC90GUTM_Arm_v1.2/CIC/ICC/tsmc090nvt_fram	
(Core)	/cad/CBDK/CBDK_TSMC90GUTM_Arm_v1.2/CIC/ICC/tsmc090hvt_fram	
Deference Library (10)	/cad/CBDK/CBDK_TSMC90GUTM_Arm_v1.2/CIC/ICC/tpzn90gv3	
Reference Library (IO)	/cad/CBDK/CBDK_TSMC90GUTM_Arm_v1.2/CIC/ICC/tpbn90v	
*TLU+ Data	/cad/CBDK/CBDK_TSMC90GUTM_Arm_v1.2/CIC/ICC/tluplus	
Script Files	~/icc_lab/Lab1/scripts/	
Directory for Physical	~/icc_lab/Lab1/verify/	
Verification		

Lab1-1 Design Setup

1. Change directory to ~/icc_lab/Lab1/run and invoke IC Compiler

unix% cd ~/icc_lab/Lab1/run

unix% Ricc shell -gui

(於 EDA Cloud 環境執行 EDA Tools 需加大寫 R,並且不能加&背景執行)

2. "File > Create Library"

New Library Name	CHIP
Technology File	/cad/CBDK/CBDK_TSMC90GUTM_Arm_v1.2
	/CIC/ICC/tsmc090_9lm_2thick_cic.tf
Bus naming style	[%d]
Open library	enable

在Input reference libraries項目點選視窗 Add

在Select Directory視窗選擇

/cad/CBDK/CBDK_TSMC90GUTM_Arm_v1.2/CIC/ICC/tpbn90v

/cad/CBDK/CBDK_TSMC90GUTM_Arm_v1.2/CIC/ICC/tpzn90gv3

/cad/CBDK/CBDK_TSMC90GUTM_Arm_v1.2/CIC/ICC/tsmc090hvt_fram 按 OK

/cad/CBDK/CBDK_TSMC90GUTM_Arm_v1.2/CIC/ICC/tsmc090nvt_fram 按 OK

../ref_lib /nco_table_cos 按 OK
../ref_lib /nco_table_log 按 OK

按 OK 選擇完成。 按 OK 關閉視窗。

按 OK

按 OK

3. "File > Import Designs"

Import format	verilog
Import verilog files	/design_data/CHIP_syn.v
Top design name	CHIP

點選視窗 Add

在Select File視窗選擇 .../design_data/CHIP_syn.v 按 Open 選擇。

按OK。

可以看到ICC將整個design的CEL View建立出來。

4. "File > Set TLU+..."

Max TLU+ file	/cad/CBDK/CBDK_TSMC90GUTM_Arm_v1.2/CIC/ICC/tluplus/crn90lp_1p09m+alrdl_mim_typical.tluplus
	/cad/CBDK/CBDK_TSMC90GUTM_Arm_v1.2/CIC/ICC/
technology library and ITF file	tluplus/T90.map

5. "File > Import >Read SDC..."

Input file name	/design_data/CHIP.sdc
Version	Latest
Other	default value

6. "File > Save Design"

點選Save All

"File > Save Design"

點選Show advanced options

Save As	Enable
Save As Name	design_setup

按OK。

7. "File > Close Design"

※若 lab1_1 無法完成,可在 Message/Input Area 輸入 *source "../scripts/01_design_setup.tcl"* 以利後面的 lab 進行。

p.s. 執行前請先將 CHIP 資料夾刪除(在 Terminal 利用 rm -rf* 指令)

[&]quot;File > Close Library"

Lab1-2 Design Planning

Invoke IC Compiler (@path "~/icc_lab/Lab1/run ")
unix% Ricc_shell -gui
(於 EDA Cloud 環境執行 EDA Tools 需加大寫 R,並且不能加&背景執行)

2. "File > Open Library"

Library Name	CHIP
open library as read-only	disable
open reference library for writing	disable

按OK。

"File > Open Design"

選擇 CHIP

按OK。

3. 我們要加入 IO 及 Core 的 P/G pad, POC pad 及 Corner pad 在 Message/Input Area 輸入

source ../scripts/create_phy_cell.tcl

按 enter。

4. Read TDF file, 先切换至 LayoutWindows

"Floorplan > Read Pin/Pad Physical Constraints"

	Input file name	/design_data/io.tdf
按OK。		

" Floorplan > Create Floorplan..."

Control type	Aspect ratio
Core utilization	0.6
Aspect ratio (H/W)	1
Horizontal row	Enable
Double back	Enable
Start first row	Disable
Flip first row	Enable
Core to left	90
Core to bottom	90
Core to right	90
Core to top	90

5. Insert pad filler

"Finishing > Insert Pad Filler"

Pin/Blockage cells	PFILLER20G_33 PFILLER10G_33 \	
	PFILLER5G_33 PFILLER1G_33 \	
	PFILLER05G_33 PFILLER0005G_33 (由大至小排序)	
Pin/Blockage overlap cells	PFILLER0005G_33	
Boundary placement (Top)	Enable	
Boundary placement (Bottom)	Enable	
Boundary placement (Left)	Enable	
Boundary placement (Right)	Enable	
Other	Default value	

按**OK**。

6. "File > Save Design"

點選 Save All

"File > Save Design"

點選Show advanced options

•	
Save As	Enable
Save As Name	die_init

按OK。

7. "Placement > Place Macro and Standard Cells"(如找不到選項請設定 File > Task > All Task)

Effort	Low
Congestion driven	disable
Timing driven	disable
Hierarchical gravity	enable

按 OK。

可以觀察到所有的 Macro 與 Standard Cell 皆放置完成

先設定所有的 macro 四周圍各 20um 的 keepout margin

" Placement > Set Keepout Margin..."

Туре	Hard
Cell	All macros
Use specified outer keepout coordinates	Top: 20 Right: 20
	Bottom: 20 Left: 20

為了方便後續步驟,我們將 Macro 統一放置在固定位置

在 Message/Input Area 輸入

move_objects -x 280 -y 446 [get_cells -hier log]

move_objects -x 280 -y 280 [get_cells -hier cos]

擺放完成後將所有 macro fix 住

在 Message/Input Area 輸入

set_dont_touch_placement [all_macro_cells]

接著點選 Macro, 觀察 Macro 連線狀態, 觀察完關閉。

8. 有些 cell overlap 在一起,執行 Incremental placement 將 memory 底下的 cell 擺開

" Placement > Place Macro and Standard Cells "

Effort	Low
Congestion driven	disable
Timing driven	disable
Hierarchical gravity	enable

選取 Advanced Options Tab

Incremental	enable	
Other	Default	Value

按 OK。

可觀察到 memory 底下的 cell 已經擺開。

9. "File > Save Design"

點選 Save All

"File > Save Design"

點選Show advanced options

Save As	Enable
Save As Name	Before_PNS

按OK。

10. 分析 Congestion 狀態,點選 Global Route Congestion 視窗,再按下 reload,觀察完關閉

由於預設只有顯示發生 Congestion 的地方,如果觀察不到東西,可以檢查是否因為沒有 Congestion 發生。

如果要觀察沒有發生 Route Congestion 的地方,可將沒有發生 Congestion(意即 Congestion 為負) 部分打勾,接著按 Apply,之後再 Zoom in 畫面即可觀察到,觀察完關閉。

Note: 如果有 congestion 問題,如發生在 macro 附近,可以試著將 keepout margin 加大,或是將 macro 與 macro 之間的距離加大。如發生在 standard cell,可等至 placement 解決。

11. 連接 Cell 的 P/G nets

" Preroute > Derive PG Connection "

Manual connection	selected
Power net	VDD
Ground net	VSS
Power pin	VDD
Ground pin	VSS
Other	Default value

按 Apply

按OK

可觀察 IC Compiler 的訊息視窗,顯示執行 Power / Ground Connection 後的訊息

12. 設定 PNS Constraints

"Preroute > Power Network Constraints > Strap Layers Constraints"

layer	м5
Direction	Horizontal
Density (By strap number)	Max:10 Min:3
Width	Max:8 Min:8

按 Set 再選

layer	M4
Direction	Vertical
Density (By strap number)	Max:10 Min:3
Width	Max:8 Min:8

按 Set 後按 Close 離開。

"Preroute > Power Network Constraints > Ring Constraints"

按 Set 後按 Close 離開。

"Preroute > Power Network Constraints > Global Constraints"

No routing over hard macros	enable
Other	Default value

按 Set 後按 Close 離開。

"Preroute > Power Network Constraints > Block Ring Constraints"

	<u> </u>
Cell master	selected (nco_table_cos nco_table_log)
Other	Default value
Power Ground nets	VDD VSS
Vertical layer	M4 (Width:8 Offset:1.5)
Horizontal layer	M5 (Width:8 Offset:1.5)

按 Set 後按 Close 離開。

" Preroute > Synthesize Power Network"

By power network by nets	VDD VSS
Supply voltage	1
Target IR drop	10% of supply voltage
Power budget (mW)	80
Other	Default value

按 Apply 觀察 IR drop map 後,接 Commit 連接 P/G net。

IR drop map:

Zoon In 畫面可觀察到 IR drop 的數值

Commit 後,可觀察到先前設定的 Power strap、Power ring 以及 Macro 的 Block ring 已經加上去。

13. 手動建立 CHIP 右邊的 Strap 連接

" Preroute > Create Power Straps..."

Nets	VDD VSS
Layer	м4
Width	8

點選 Configuration

Direction	Vertical
X start	845

點選 Options

Extend for multiple connections for gap	Enable
Gap	16

按 Apply

14. 建立 I/O Pad 到 P/G Ring

" Preroute > Preroute Instances"

Instances	Pad(只勾選 Pad 其餘 disable)
Target directions	default value
Primary routing layer	Pin
Extend for multiple connections	Enable
Gap	16

按 Apply 之後再按 Default

建立 Block Ring 到 P/G Ring 的連接

" Preroute > Preroute Instances"

Instances Types	Macro(只留 Macro 其餘 disable)
Primary routing layer	Pin

接 Apply

按OK

15. 將 rail 與 I/O Pad 到 P/G Ring 之間的 row 刪除

"Floorplan > Cut site Row"

All rows in design	disable
Coordinates	{835 615} {940 640}

接 Apply。

再修改

All rows in design	disable
Coordinates	{835 483} {940 515}

按 Apply。

按 OK

16. Preroute Standard Cell Rail

"Preroute > Preroute Standard Cells..."

選 Routing Option

Extend for multiple connections	Enable
To connections within	16
Keep floating rail segments	disable
Do not route over macro cells	enable
Fill empty rows	enable

按OK 離開。

17. 分析做完整個 Power network synthesis 後的 IR drop 情形

" Preroute > Analyze Power Network"

Power Ground nets	VDD VSS
Supply voltage	1
Power budget (mW)	80
Other	Default value

接 OK 觀察 IR drop map,觀察 IR drop 最嚴重地點為何處? IR drop 最嚴重的量多少? 觀察後關閉 PNA Voltage Drop 選單

18. 設定 Strap 下不要擺放 Standard Cell 在 Message/Input Area 輸入 set_pnet_options -partial "M4 M5" create_fp_placement -incremental all

19. "File > Save Design"

點選 Save All

" File > Save Design "

點選Show advanced options

Save As	Enable
Save As Name	design_planning

按OK。

- 20. "File > Close Design"
 - "File > Close Library"

※若 lab1_2 無法完成,可在 Message/Input Area 輸入 *source "../scripts/02_design_planning.tcl"* 以利後面的 lab 進行。

P

Lab1-3 Placement

1. Invoke IC Compiler

unix% Ricc_shell -gui

(於 EDA Cloud 環境執行 EDA Tools 需加大寫 R,並且不能加&背景執行)

2. "File > Open Library"

Library Name	CHIP
open library as read-only	disable
open reference library for writing	disable

按OK。

"File > Open Design"

選擇 CHIP

按OK。

3. "File > Import >Read SDC..."

Input file name	/design_data/CHIP.sdc
Version	Latest
Other	default value

4. 設定 zero interconnect delay 屬性為 true

"Timing > Timing and Optimization Setup..."

Zero Interconnect delay	enable
Other	default value

5. Report timing

在 Message/Input Area 輸入 report_timing

6. Check all constraint violations:

在 Message/Input Area 輸入 report_constraint -all

7. 設定 zero interconnect delay 屬性為 false

"Timing > Timing and Optimization Setup..."

Zero Interconnect delay	disable
Other	default value

8. Load the SCANDEF file:

在 Message/Input Area 輸入
read_def ../design_data/CHIP.scandef
report_scan_chain
check_scan_chain

9. 點選 Scan Chain[,]在 Scan Chain 選單按 Reload 載入 Scan Chain 的資訊[,]接著在"Update Scan Chain Visual mode 視窗將 <u>Choose Scan Chains to Display 將 Scan In 打勾</u>,按 OK。在 LayoutWindows 觀察 scan chain,觀察完並關閉。

10. 產生 Power report:

在 Message/Input Area 輸入

report_power

Cell Internal Power	
Net Switching Power	
Total Dynamic Power	
Cell Leakage Power	

11. Setup threshold voltage group attribute and report it:

在 Message/Input Area 輸入

source ../scripts/group_MVT.tcl

Threshold voltage group	Number of Cells	Percentage (%)
HVt		
IO		
MACRO		
RVt		

12. Read the SAIF file of the design:

在 Message/Input Area 輸入

read_saif -input ../design_data/CHIP.saif -instance_name test_top/CHIP_1

13. 分析 Congestion 狀態,點選 Global Route Congestion 視窗,並按 reload,觀察完關閉

14. The following commands should be executed before performing place opt.

在 Message/Input Area 輸入

check_physical_design -stage pre_place_opt

15. Setup the tie cell option:

在 Message/Input Area 輸入

source ../scripts/add_tie.tcl

16. "Placement > Core Placement and Optimization..."

Effort	Medium
Power optimization	enable
Optimize DFT	enable

或者

在 Message/Input Area 輸入

place_opt -optimize_dft -power

17. 分析 Congestion 狀態,點選 Global Route Congestion 視窗,並按 reload,觀察完關閉

Note: 如果有 congestion 問題,請參考講義第 4 章後面 Refinement Flow

18. Report timing

在 Message/Input Area 輸入 report_timing

Note: 如果有 timing 問題請下 place_opt

19. 連接 Cell 的 P/G nets

" Preroute > Derive PG Connection "

Manual connect	selected
Power net	VDD
Ground net	VSS
Power pin	VDD
Ground pin	VSS
Other	Default value

按 Apply 。

20. Report power and threshold voltage group:

在 Message/Input Area 輸入

report_power

Cell Internal Power	
Net Switching Power	
Total Dynamic Power	
Cell Leakage Power	

report_threshold_voltage_group

Threshold voltage group	Number of Cells	Percentage (%)
HVt		
IO		
MACRO		
RVt		

比較步驟 31 與 32 的表格數據,造成兩者的差異原因為何?

21. 點選 Scan Chain,在 Scan Chain 選單按 Reload 載入 Scan Chain 的資訊,接著在"Update Scan Chain Visual mode 視窗將 <u>Choose Scan Chains to Display 將 Scan In 打勾</u>,按 OK。在 LayoutWindows 觀察 scan chain,觀察完並關閉。

22. "File > Save Design

點選 Save All

"File > Save Design"

點選Show advanced options

Save As	Enable
Save As Name	placement

按OK。

23. "File > Close Design"

"File > Close Library"

※若 lab1_3 無法完成,可在 Message/Input Area 輸入 *source "../scripts/03_placement.tcl"* 以 利後面的 lab 進行。

Lab1-4 CTS

1. Invoke IC Compiler

unix% Ricc shell -gui

(於 EDA Cloud 環境執行 EDA Tools 需加大寫 R,並且不能加&背景執行)

2. "File > Open Library"

Library Name	CHIP
open library as read-only	disable
open reference library for writing	disable

按OK。

"File > Open Design"

選擇 CHIP

按OK。

3. 由於 design 中含有除頻器,設定 clock pin 為 hierarchical pin. 在 Message/Input Area 輸入 set cts_enable_clock_at_hierarchical_pin true

4. 設定 Clock gating cell 在 Message/Input Area 輸入 identify_clock_gating report_clock_gating

5. 點選 <u>Clock Trees</u>,在 Clock Trees 選單接 <u>Reload</u> 載入 Clock Trees 的資訊,接著在"Clock Tree Visualmode Configuration 按 OK 。在 LayoutWindows 觀察 Clock Tree,觀察完並關閉。

6. The following commands should be executed before performing CTS.

在 Message/Input Area 輸入
check_physical_design -stage pre_clock_opt
檢查是否有 error?

report_constraint -all 觀察是否有 violation?

- 7. Turn on hold time fixing. 在 Message/Input Area 輸入 set_fix_hold [all_clocks]
- 8. Report timing 在 Message/Input Area 輸入 report_timing
- 9. Perform CTS optmization: 在 Message/Input Area 輸入 clock_opt -fix_hold_all_clocks -no_clock_route
- 10. 點選 <u>Clock Trees</u>,在 Clock Trees 選單接 <u>Reload</u> 載入 Clock Trees 的資訊,接著在"Clock Tree Visualmode Configuration 按 OK。在 LayoutWindows 觀察 Clock Tree,觀察完並關閉。

11. Report timing

在 Message/Input Area 輸入

report_timing

12. Review the global skew after CTS.

report_clock_tree -summary

	Skew	Longestpath
ex_clk		
in_clk		
int_clk		

13. 連接 Cell 的 P/G nets

" Preroute > Derive PG Connection "

Manual connect	selected
Power net	VDD
Ground net	VSS
Power pin	VDD
Ground pin	VSS
Other	Default value

接 Apply。

按OK

14. "File > Save Design

點選 Save All

" File > Save Design "

點選Show advanced options

Save As	Enable
Save As Name	cts

Lab1-5 Route

1. Invoke IC Compiler

unix% Ricc shell -gui

(於 EDA Cloud 環境執行 EDA Tools 需加大寫 R,並且不能加&背景執行)

2. "File > Open Library"

Library Name	CHIP
open library as read-only	disable
open reference library for writing	disable

按OK。

"File > Open Design"

選擇 CHIP

按OK。

3. Analyze the design for timing (setup and hold)

在 Message/Input Area 輸入

report_timing

觀察 Timing 有無 violation?

4. Check the routeability of the design

" Route > Check Routability..."

按OK。

觀察是否有 error?

5. 設定在 routing 時的選項,並設定在 routing 時就加入 redundant via

"Route > Routing Setup > Set common Route Option

選 Via Tab

Post detail route redundant via insertion	High
Concurrent redundant via flow	Mode: Insert at High Cost
Concurrent redundant via flow	Effort: High

按OK。

6. To install a set of antenna rules, source the following command file

在 Message/Input Area 輸入

source /cad/CBDK/CBDK_TSMC90GUTM_Arm_v1.2/CIC/ICC/antenna_9lm_CIC.clf

7. Perform clock net routing

"Route > Net Group Route..."

Net to route	All clock nets
other	default value

8. Perform auto routing

"Route > Auto Route..."

按OK。

9. DRC violation error checking and fixing

"Verification > Error Browser..."

按OK。

點取有 DRC error 的地方,會在 layout 中標示出來。

10. Recalculate the number of DRC violations as seen by the router

"Route > Verify Route..."

按OK。

執行後如還有 DRC Violation,訊息如下

Verify Summary:

Total number of nets = 17204, of which 0 are not extracted

Total number of open nets = 0, of which 0 are frozen

Total number of excluded ports = 0 ports of 0 unplaced cells connected to 0 nets

0 ports without pins of 0 cells connected to 0 nets

0 ports of 0 cover cells connected to 0 non-pg nets

Total number of DRCs = $\underline{0}$

Total number of antenna violations = 1

Total number of voltage-area violations = no voltage-areas defined

Total number of tie to rail violations = not checked

Total number of tie to rail directly violations = not checked

如有 Open net 或 DRC Violation 則須執行 Step 11,如沒有 DRC Violation,則可跳至 Step 12 如有 Antenna violation 則在 DFM 階段,加入 Antenna diode 解決

11. Run a search & repair operation

"Route > Detail Route"

Incremental routing	enable
Initial DRC from input cell	enable

注意!! 執行 Detail Route 來修正 DRC violation 時,當 Initial DRC from input cell 選項為 enable 時, 請務必確認有先做過 verify route

如有 DRC violation,可使用 Detail Route 並下 Incremental routing 與 Initial DRC from input cell 選項來修正

12. Analyze the design for timing and fixing

在 Message/Input Area 輸入

report_timing

如有 Timing Violation 則請使用下列方式來修正

"Route > Core Routing and Optimization..."接 OK。(即指 route_opt 或 route_opt -incremental)

13. 連接 Cell 的 P/G nets

" Preroute > Derive PG Connection "

Manual connect	selected
Power net	VDD
Ground net	VSS
Power pin	VDD
Ground pin	VSS
Other	Default value

接 Apply。

14. "File > Save Design

點選 Save All

"File > Save Design"

點選Show advanced options

Save As	Enable
Save As Name	route

按OK。

15. "File > Close Design"

"File > Close Library"

※若 lab1_5 無法完成,可在 Message/Input Area 輸入 *source "../scripts/05_route.tcl"* 以利後 面的 lab 進行。

Lab1-6 DFM

1. Invoke IC Compiler

unix% Ricc shell -gui

(於 EDA Cloud 環境執行 EDA Tools 需加大寫 R,並且不能加&背景執行)

2. "File > Open Library"

Library Name	CHIP
open library as read-only	disable
open reference library for writing	disable

按OK。

"File > Open Design"

選擇 CHIP

接OK。

3. Insert standard cell filler

在 Message/Input Area 輸入

source ../scripts/addCoreFiller_MVT.cmd (請執行兩次以上)

4. Verify insert standard cell filler 後的 DRC violation

"Route > Verify Route..."

5. 如果有 Open net 或 DRC violation 則執行 DRC Violation fixing

"Route > Detail Route"

Incremental routing	enable
Initial DRC from input cell	enable

按OK。

注意!! 執行 Detail Route 來修正 DRC violation 時,當 Initial DRC from input cell 選項為 enable 時,請務必確認有先做過 verify route

6. Analyze the design for timing and fixing 在 Message/Input Area 輸入 report_timing

但如果有 timing violation 時,則請使用下列方式來修正

"Route > Core routing and Optimization..." 按 OK ∘ (即指 route_opt or route_opt -incremental)

7. 如有 Antenna Violation 則需插入 antenna diode,沒有即可跳過此步驟 先設定插入 antenna diode 的設定

"Route > Routing Setup > Set Detail Route Options..."

選擇 Antenna Tab

Diode library cells for antenna fixing	ANTENNA
Insert diode during routing to fix antenna violations	enable
Other	Default value

按OK離開。

再執行 Antenna Violation Fixing

"Route > Verify Route..."

按OK。

"Route > Detail Route"

Incremental routing	enable
Initial DRC from input cell	enable

8. Reconnect PG net

"Preroute > Derive PG Connection"

Manual connect	selected
Power net	VDD
Ground net	VSS
Power pin	VDD
Ground pin	VSS
Other	Default value

9. 將 View Settings Options 裡的 Auto apply 打勾

10. Add IO text

在 Message/Input Area 輸入

source ../scripts/add_io_text.tcl

add_io_text TEXT3 5 portName

將 Core Power 打上 text,必須打在 design 的 Ring上,VDD、VSS 各打 1 個就好。

"Edit >Create > Text..." or Shift+t Auto select 請先 disable

Text	VDD
Height	5
Layer	TEXT5

選定要打上的位置點一下按OK。

"Edit >Create > Text..." or Shift+t auto select 請先 disable

Text	VSS
Height	5
Layer	TEXT5

選定要打上的位置點一下按OK。

將 IO Power 打上 text,必須打在 IO Power Pad 的 true pin 上,IOVDD、IOVSS 各打 1 個就好。

"Edit >Create > Text..." or Shift+t auto select 請先 disable

Tex	t	IOVDD
Hei	ght	5
Lay	er	TEXT3

選定要打上的位置點一下按 OK。

"Edit >Create > Text..." or Shift+t auto select 請先 disable

Text	IOVSS	
Height	5	
Layer	TEXT3	

選定要打上的位置點一下按 OK。

11. Add bonding pad

```
在 Message/Input Area 輸入
source ../bond_pads/createNplace_bondpads.tcl
createNplace_bondpads -inline_pad_ref_name PAD60GU \
-stagger true \
-stagger_pad_ref_name PAD60NU
```

12. "File > Save Design"

點選 Save All

"File > Save Design"

點選Show advanced options

Save As	Enable
Save As Name	dfm

按OK。

13. Stream Out GDS II

```
在 Message/Input Area 輸入
set_write_stream_options \
-map_layer /cad/CBDK/CBDK_TSMC90GUTM_Arm_v1.2/CIC/ICC/macro.map \
-child_depth 20 -flatten_via
```

"File > Export > Write Stream..."

Output file format	GDSII	
Cells to output	Selected cells "CHIP"	
Stream file name to write	CHIP.gds	

按OK。

將 GDS 檔 copy 至 verify 資料夾內

unix% cp ./CHIP.gds ../verify/drc unix% cp ./CHIP.gds ../verify/lvs

14. Verilog Out for post-layout simulation & LVS

"File > Export > Write Verilog..."

先接 Default

Output verilog file name	CHIP_pr.v
Output physical only cells	disable
Unconnected ports	enable
Diode ports	enable
Wire declaration	enable
Backslash before Hierarchy Separator	enable

按OK

將 verilog 檔 copy 至資料夾內

unix% cp ./CHIP_pr.v ../verify/lvs

15. 輸出 SDF 檔

在 Message/Input Area 輸入

write_sdf -version 1.0 -context verilog -load_delay net CHIP_pr.sdf

16. "File > Save Design

點選 Save All

17. "File > Close Design"

"File > Close Library"

Lab1-7 Calibre DRC & LVS

- Change directory to ~/icc_lab/Lab1/verify/drc unix% cd ~/icc_lab/Lab1/verify/drc
- 2. 將 Calibre DRC 的 Rule file copy 至~/icc_lab/Lab1/verify/drc unix% cp /cad/CBDK/CBDK TSMC90GUTM Arm v1.2/CIC/Calibre/drc/TN90GUTM DRC.rule.
- 3. 修改 TN90GUTM_DRC.rule 檔

LAYOUT PATH "CHIP.gds"
LAYOUT PRIMARY "CHIP"

4. 執行 Calibre DRC

unix% Qcalibre -drc -hier -turbo_all TN90GUTM_DRC.rule

當執行"showq"指令觀察 Qentry 執行狀況的 Log 訊息,假若 quser 那行消失,表示 Qcalibre DRC 已經驗證完畢。驗證完畢後會產生" CALIBRE_result"的目錄,可以先觀察 DRC.rep 檔案,觀察 DRC 有無錯誤,應該會看到幾個 DRC error,所有的 density 相關 violation 都可以忽略,可以不予理會這個 DRC error。

執行 Calibre –rve 分析 DRC 錯誤的數量、原因、坐標等資訊 由於 Calibre – rve 在 EDA cloud 系統無法直接開啟,必須透過 Laker 軟體間接呼叫 Calibre RVE 工具,步驟如下

5. 將 Qcalibre DRC 自動產生的 CALIBRE_result 目錄內含 DRC_RES.db 檔案,請先複製到自己可以存取的目錄裡。

例如:unix% cp -r /Queue/Result/14-7-31_xxxxxxx_CALIBRE_st301_4082 ~/icc_lab/Lab1/verify/drc

6. 開啟 Laker 軟體 unix% cd ~/icc_lab/Lab1/verify/drc unix% Rlaker

7. "File > Import Stream

Input File Name	CHIP.gds
Top Cell Name	CHIP
Library Name	CHIP
other	default value

按 OK

Technology file is not specified. Use default?

按 Yes

Library	CHIP	
Cell	CHIP	
View	layout	

按 OK

9. 開啟 Calibre RVE

" Verify > Calibre > Start RVE...

10. 選擇第5步驟複製的目錄下的 DRC_RES.db 檔案

按 OK

即可開啟 Qcalibre DRC 驗證結果。

11. Change directory to ~/icc_lab/Lab1/verify/lvs unix% cd ~/icc_lab/Lab1/verify/lvs

12. 將 Calibre LVS 相關檔案複製到~/icc_lab/Lab1/verify/lvs unix% cp /cad/CBDK/CBDK TSMC90GUTM Arm v1.2/CIC/Calibre/lvs/*.

13. 產生 RAM Black Box 的 Verilog 和 Spice 檔

修改原來的 nco_table_cos.v 檔,只留下 module、input、output 宣告和 endmodule,如還有其 他 Memory 以此類推。

nco_table_cos.v (已編輯完畢)

```
module nco_table_cos (Q, CLK, CEN, A);
output [15:0] Q;
input CLK;
input CEN;
input [9:0] A;
endmodule
```

利用 v2lvs 產生 nco table cos.spi 檔(已產生)

unix% Rv2lvs -v nco_table_cos.v -o nco_table_cos.spi

nco_table_cos.spi

\$ Spice netlist generated by v2lvs

\$ v2012.3 23.18

.SUBCKT nco table cos Q[15] Q[14] Q[13] Q[12] Q[11] Q[10] Q[9] Q[8] Q[7] Q[6]

- + Q[5] Q[4] Q[3] Q[2] Q[1] Q[0] CLK CEN A[9] A[8] A[7] A[6] A[5] A[4] A[3] A[2]
- + A[1] A[0]
- .ENDS

ţ

14. 修改 CHIP pr.v 將所有 PVDD 與 PVSS 關鍵字的 pad 註解

```
//PVSS2DGZ_33 io_vss3 (.VSSPST33 ( SYNOPSYS_UNCONNECTED_156 ) );

//PVSS2DGZ_33 io_vss2 (.VSSPST33 ( SYNOPSYS_UNCONNECTED_157 ) );

//PVSS2DGZ_33 io_vss1 (.VSSPST33 ( SYNOPSYS_UNCONNECTED_158 ) );

//PVDD2DGZ_33 io_vdd11 (.VDDPST33 ( SYNOPSYS_UNCONNECTED_159 ) );

//PVDD2DGZ_33 io_vdd10 (.VDDPST33 ( SYNOPSYS_UNCONNECTED_160 ) );

//PVDD2DGZ_33 io_vdd9 (.VDDPST33 ( SYNOPSYS_UNCONNECTED_161 ) );

.....
```

15. 將 CHIP pr.v 轉換成 spice 格式

```
Rv2lvs -v CHIP_pr.v -l tpzn90gv3_lvs.v -l tsmc090nvt_fram_lvs.v -l tsmc090hvt_fram_lvs.v -l nco_table_cos.v -l nco_table_log.v -s tpzn90gv3_lvs.spi -s tsmc090nvt_fram_lvs.spi -s tsmc090hvt_fram_lvs.spi -s nco_table_cos.spi -s nco_table_log.spi -o source.spi -s1 VDD -s0 VSS
```

16. 修改 TN90GUTM LVS CB.rule

```
LAYOUT PRIMARY "CHIP"

LAYOUT PATH "CHIP.gds"

LAYOUT CASE YES

SOURCE PRIMARY "CHIP"

SOURCE PATH "source.spi"

SOURCE CASE YES

VIRTUAL CONNECT BOX NAME "?"
```

移除 IO Power & Ground 相關

```
//LVS BOX PVDD2DGZ_33
//LVS BOX PVSS2DGZ_33
//LVS BOX PVDD2POC_33
```

再移除 CORE Power & Ground 相關

```
//LVS BOX PVDD1DGZ_33
//LVS BOX PVSS1DGZ_33
//LVS BOX PVDD1ANA_33
```

並在最後新增兩行

```
LVS BOX nco_table_log
LVS BOX nco_table_cos
```

Ç

17. 執行 Calibre LVS

unix% Qcalibre -lvs -spice layout.spi -hier -turbo_all -auto TN90GUTM_LVS_CB.rule

當執行"showq"指令觀察 Qentry 執行狀況的 Log 訊息,假若 quser 那行消失,表示 Qcalibre LVS 已經驗證完畢。驗證完畢後會產生" CALIBRE_result"的目錄,觀察 lvs.rep 找到 OVERALL COMPARISON RESULT 部份是否 match

OVERALL COMPARISON RESULTS

