

Data Review

Yi Xie

April 11, 2022

Yi Xie | April 11, 2022 1/13

Table of contents

Overview

SAPT(DFT) Implementation Introduction

Intermolecular Energies

Supermolecular approach

$$E_{int} = E_{AB} - E_A - E_B$$

- ► Straightforward, but cannot separate different types of interactions
- ► Can adopt to different electronic structure methods
- ► DFT-D3 with proper functional can be both cheap and accurate
- Symmetry-Adapted Perturbation Theory
 - ► Can give details about different types of interactions; important in understanding their nature
 - ▶ Not as cheap as DFT-D3
 - SAPT0 is somewhat cheap, but does not include intramonomer correlation

Yi Xie | April 11, 2022 3/13

SAPT(DFT)

- Attempt to inlude intramonomer correlation in a cheap way
- Replaces HF orbitals with KS orbitals
- Needs to consider orbital response for dispersion terms
- Exchange-dispersion term needs to be estimated from scaling
- Investigate the accuracy and efficiency of SAPT(DFT)

Yi Xie | April 11, 2022 4/13

Three-Body Interaction

- Crucial in computing lattice energies
- DFT-D3 does not perform well for three-body interaction
- ▶ MP2.5 scales as $O(N^6)$, MP2 $O(N^5)$ but lacks three-body dispersion
- Three-body dispersion can be implemented with SAPT(DFT) in ${\cal O}(N^5)$

Yi Xie | April 11, 2022 5/13

Table of contents

Overview

SAPT(DFT) Implementation Introduction

Table of contents

Overview

SAPT(DFT) Implementation Introduction

Idea of SAPT(DFT)

SAPT energy in orders of interaction and fluctuation potentials; n denotes order in V and k, l for W_A, W_B

$$H = F_A + F_B + V + W_A + W_B$$

$$E_{int} = \sum_{n=1}^{\infty} \sum_{k=0}^{\infty} \sum_{l=0}^{\infty} \left(E_{pol}^{(nkl)} + E_{exch}^{(nkl)} \right)$$

- SAPT0: n = 2, k = l = 0, no intramonomer correlation, $O(N^5)$ cost
- ▶ Many-body SAPT: $k, l \ge 2$, $O(N^7)$ or higher cost
- SAPT(DFT): Use Kohn-Sham operator $K_{A,B}$ instead of Fock operator $F_{A,B},\,O(N^5)$ cost
- Primitive SAPT(DFT) works well on 1st-order terms but not 2nd-order terms (especially dispersion terms), needs orbital response for them

Yi Xie | April 11, 2022 8/13

Dispersion Term

$$E_{disp}^{(2)} = -\sum_{m \neq 0, n \neq 0} \frac{\left| \langle \Psi_0^A \Psi_0^B | V_{AB} | \Psi_m^A \Psi_n^B \rangle \right|^2}{E_m^A - E_0^A + E_n^B - E_0^B} \tag{1}$$

$$= -4 \sum_{ia \in A, jb \in B} \frac{\left| \left(i^A a^A | j^B b^B \right) \right|^2}{\epsilon_a^A - \epsilon_i^A + \epsilon_b^B - \epsilon_j^B} \tag{2}$$

- ALDA kernel good for pure GGA functional but not for hybrid functional
- lacktriangle Exact exchange in $v_{xc}
 ightarrow$ increased $\epsilon^{ab}_{ij}
 ightarrow$ decreased $E^{(2)}_{disp}$
- Either hybrid ALDA kernel or localized HF (LHF) exchange to compensate

$$f_{xc} = \alpha f_{xc}^{HF} + (1 - \alpha) f_{xc}^{ALDA}$$

Yi Xie | April 11, 2022 9/13

Test 5

Test0	Test1	Test2
Test1	Test2	Test3 LATEX
Test4	Test5	Test6

Test 6

Example block

Test0	Test1	Test2
Test1	Test2	Test3 LATEX
Test4	Test5	Test6

Block

Test0	Test1	Test2
Test1	Test2	Test3 LATEX
Test4	Test5	Test6

Yi Xie | April 11, 2022 11/13

Test 7

Block A

short Short stuff

long Longer stuff

longest label Longest stuff (insert cat)

- item1
- ▶ item2
- item3

Frame with Columns

Block 1

Text here

Block 2

More text here

Frame without Columns

Block

Even more text here

Yi Xie | April 11, 2022 14/13