Lab 2

Part 1: Sizing Chart

Sizing Assistant

V* & Vov vs VGS

Mag
$$(A_v) = 2V_{RD}/V_Q^* \rightarrow 8 = (2(1.8/2))/V^* \rightarrow V_Q^* = 0.225 V$$

$$RD = V_{RD}/ID = (1.8/2)/100\mu = 9 \text{ k}\Omega$$

From Graph: $VGS_Q = 617.26 \text{ mV}$, $Vov_Q = 234.6 \text{ mV}$

ID, gm & gds vs VGS

From Graph: ID_X = 28.93 μA , gm_X = 257.057 μS , gds_X = 1.439 μS

Width Sizing

$$W = \frac{(100\mu)(10\mu)}{28.93\mu} = 34.566 \approx 34.6 \ \mu m$$

$$gm_Q = \frac{(257.057\mu)(34.6\mu)}{10\mu} = 889.4 \ \mu S$$

$$gds_Q = \frac{(1.439\mu)(34.6\mu)}{10\mu} = 4.979 \ \mu S$$

$$r_o = 1/gds_Q = \frac{1}{(4.979\mu)} = 200.8 \text{ k}\Omega$$

Gain =
$$|Av|$$
 = gm_Q (RD $||r_0|$ = $\frac{889.4\mu}{\frac{1}{9k} + \frac{1}{200.8k}}$ = 7.66 \approx 8

Part 2: CS Amplifier

1) OP & AC Analysis

Schematic

DC OP (Q-point)

		ID (μA)	gm (µS)	gds (µS)	VDS (mV)	r _o (kΩ)	Region
	Part 1	100.0	889.4	4.98	900.0	200.8	Sat.
I	Part 2	100.4	893.0	4.997	896.6	200.1	Sat.

RD & ro

- We notice that RD (9 k Ω) << r_o (200 k Ω), and gain = -gm (RD | | r_o). Therefore, we can justify ignoring r_o since that the smaller resistance is more dominant in parallel connection.
- If min. L is used, r_0 decreases, as $r_0 = \frac{v_A}{I_{DS}}$ & Early voltage is directly proportional with L ($V_A \propto L$). Moreover, smaller L causes short channel effects which lead to lower drain current.

Intrinsic Gain

Intrinsic gain = -gm (r_0) = -(896.6 μ)(200.1k) = -179.4 \approx -179

Analytical Amplifier Gain

- Av = -gm (RD | | r_0) = = $\frac{-896.6\mu}{\frac{1}{9k} + \frac{1}{200.1k}}$ = -7.72 \approx -8 (per Part 2)
- Av = -7.66 (per Part 1)
- |Amplifier gain| << |Intrinsic Gain|

AC Analysis

Magnitude = 7.69

2) Gain Non-Linearity

Vout vs Vin (DC)

Comment:

- It is a non-linear relation.
- Gain = -gm (RD) & gm = f(Vin), which means that any change in input voltage would change gm, thus changing the Q-point on the quadratic ID vs VGS curve.

Small Signal Gain

Comment: It is a non-linear relation due to dependence of gm on the input voltage, thus changing the Q-point on the quadratic ID vs VGS curve. The absence of source resistance increases the non-linearity.

gm vs Time

Comments:

- gm has the same waveform as Vin, so gm = f(Vin)
- The amplifier is non-linear as it is function of gm and gm varies with Vin

3) Maximum Gain

Gain vs RD

Behavior Justification

At the beginning, the relation is linear since Av = (2*VRD)/Vov per square-law. This relation holds until the voltage drop on RD incredibly increases making the transistor go out from saturation region, so this relation is not valid anymore.

Highest Gain

RD =
$$14.86 \text{ k}\Omega$$
 and Av = 11.539

Analytical Analysis

Maximum gain happens when Vout = Vov = VGS - Vth = 0.617-0.38 = 0.24

$$(VDD - Vov)/ID = \frac{1.8 - 0.24}{100.4 \mu} = 15.54 \text{ k}\Omega$$

$$|A_V| = 889.4 \text{m} * \frac{200.8 \times 15.54}{200.8 + 15.54} \approx 12.8$$

	RD (kΩ)	Av
Simulation	14.86	15.54
Analytical	11.54	12.8

Signal Swing at Maximum Gain

Available swing zero since output is set to Vov. Any swing would lead to driving the transistor out of saturation.

Supply Voltage Scaling Down

From this equation Av = (2*VRD)/Vov, decreasing VDD would lead to a lower voltage drop on drain resistance leading to a smaller gain.

4) Gain Linearization (Feedback)

Sizing

From Graph: $VGS_Q = 616.19 \text{ mV}$, $Vov_Q = 222.84 \text{ mV}$, $ID_X = 7.175 \mu A$

$$W = \frac{(100\mu)(10\mu)}{7.175\mu} = 139.37 \approx 139.4 \ \mu m$$

Schematic

Vin and Vout vs Vsig

- V = 620.75 mV is the voltage where the two curves cross. Note that this voltage is approximately equal to VGS_{M1} . At this point Vout is also equal to Vin because no current flows in the two resistors.
- Vout vs Vsig is non-linear per square law as gm is non-linear and function in input voltage.

Small Signal Gain

- Small signal gain = -7.3
- The gain is approximately **linear** only in the part where the derivative is constant (saturation region). Despite the non-linearity in large signal, we linearize the curve around the operating point making a linear relation in small signal. The gain is non-linear in triode and cutoff regions.

Simulation Input Range

 $Vin \approx 610 \text{ mV} - 625 \text{ mV}$

Analytical Input Range

Input range = (1.8 - 2* 0.225)/8 = 168 mV

From graph: Vsig range = 660 - 500 = 160 mV

	Input Range (mV)
Analytic	168
Simulation	160