Работа 1.1.1

Определение систематических и случайных погрешностей при измерении удельного сопротивления нихромой проволоки

Муляревич Андрей Игоревич

4 октября 2021 г.

В работе используеются: линейка, линейка, штангенциркуль, микрометр, отрезок проволоки из нихрома, амперметр, вольтметр, источник ЭДС, мост постоянного тока, реостат, ключ.

- 1. Точность измерения с помощью штангенциркуля -0.05 мм. Точность измерения с помощью микрометра -0.01 мм.
- 2. Измеряем диаметр проволки с помощью штангенциркуля $(d_1, \text{ табл. } 1)$ и микрометра $(d_2, \text{ табл. } 2)$ на 10 различных участках.

При измерении диаметра проволоки штангенциркулем случайная погрешность отсутствует. Следовательно, точность резульата определяется только точностью штангенциркуля $\Rightarrow d_1 = 0.44 \pm 0.05$ мм.

При измерении микрометром есть как систематичская, так и случайная ошибка:

$$\sigma_{
m chct} = 0,01$$
 мм, $\sigma_{
m ch} = rac{1}{N} \cdot \sqrt{\sum_{i=1}^{N} (d-\overline{d})^2} = \sqrt{7,45 \cdot 10^{-4}} pprox 0,027$ мм
$$\sigma = \sqrt{\sigma_{
m chct}^2 + \sigma_{
m ch}^2} pprox 0,027$$
мм
$$d_2 = 0,375 \pm 0,027$$
мм

Поскольку погрешность микрометра на порядок меньше погрешности штангенциркуля, для расчета площади поперечного сечения проволоки будем использовать значение, полученное измерением с помощью микрометра.

3. Определим площадь поперечного сечения проволоки:

$$S = \frac{\pi d^2}{4} = \frac{3,14 \cdot (0,364)^2}{4} \approx 0,11 \text{ mm}^2$$

Погрешность находим по формуле:

$$\left(\frac{\sigma_s}{S}\right)^2 = \frac{2\ \sigma_{d_2}}{d_2} \Rightarrow \frac{\sigma_s}{S} = \frac{\sqrt{2}\ \sigma_{d_2}}{d_2} \Rightarrow \sigma_s = \frac{\sqrt{2}\ \sigma_{d_2}S}{d_2} \approx 0,011 \text{mm}^2$$

- 4. см. табл. 2
- 5. Очевидно, что надо мерять способом показанным на рис. 1а, так как: для схемы на рисунке 1а: $R_{\rm np}/R_{\rm V}=5/400=0,0125$ а для схемы на рисунке 16: $R_{\rm A}/R_{\rm np}=1,2/5=0,24$

6. Собираем схему рис. 1

Рис. 1. Схема измерения вольт-амперной характеристики проволоки

- 7. Опыт проводим для трех величин: $l_1=(50\pm0,1)~{\rm cm}, l_2=(30\pm0,1)~{\rm cm}, l_3=(10\pm0,1)~{\rm cm}.$ Измерения ведем для возрастающих и убывающих значений тока, все измерения записываем в табл. 3, табл. 4, табл. 5.
- 8. Строим графики зависимостей V=f(I) для всех трех отрезков проволоки, так как 1 прямая не проходит через все точки, но с точность до погрешностей мы ее провести можем, то, ищем график прямой V=f(I) по формуле

$$V = \frac{\langle VI \rangle}{\langle I^2 \rangle} R_{\rm np}$$

9. Запишем в табл. 6 данные средних значений некоторых величин, которые мы в дальнейшем будем использовать.

10. По формулам

$$\begin{split} \sigma_{R_{\rm cp}}^{\rm chyq} &= \frac{1}{\sqrt{N}} \cdot \sqrt{\frac{\left\langle V^2 \right\rangle}{\left\langle I^2 \right\rangle} - R_{\rm cp}^2} \\ \sigma_{R_{\rm cp}}^{\rm chct} &= R_{\rm cp} \sqrt{\left(\frac{\sigma_V}{\left\langle V \right\rangle}\right)^2 + \left(\frac{\sigma_I}{\left\langle I \right\rangle}\right)^2} \\ \sigma_R &= \sqrt{\sigma_{\rm chct}^2 + \sigma_{\rm ch}^2} \\ R_{\rm cp} &= \frac{\left\langle VI \right\rangle}{\left\langle I^2 \right\rangle} \end{split}$$

Находим сопротивления и погрешности для каждого из участков проволоки. Данные заносим в табл. 7. В эту же таблицу заносим результаты измерения сопротивления мостом Уитстона (Р4833), изображенном

11. по формулам

$$\sigma_{\rho} = \rho \sqrt{\left(\frac{\sigma_R}{R}\right)^2 + \left(\frac{\sigma_l}{l}\right)^2 + \left(\frac{\sigma_S}{S}\right)^2}$$
$$\rho = \frac{R \cdot S}{l}$$

находим удельное сопротивление и погрешность для каждой из длин проволоки и заносим эти значения в табл. 8.

Окончательно:
$$\rho=1,15\frac{\mathrm{Om}\cdot\mathrm{mm}^2}{\mathrm{m}}$$

Окончательно: $\rho=1,15\frac{{\rm Om\cdot mm^2}}{{\rm M}}$ Полученное значение удельного сопротивления сравниваем с табличными значениями. В справочнике (Физические велечины. М.: Энергоиздат, 1991. С. 444) для удельного сопротивления нихрома при $20~^{\circ}C$ в зависимости от массового содержания компонента сплава меняются в промежутке $1,05-1,4\frac{{\rm OM}\cdot{\rm MM}^2}{{\rm M}}$. Полученное значение наиболее близко к значению $1,16\frac{{\rm OM}\cdot{\rm MM}^2}{{\rm M}}$ для сплава с содержанием 77 процентов Никеля, 20 процентов Хрома, 2 Марганца и 1 Железа (проценты по массе).

Таблица 1: Результаты измерения диаметра проволоки

	1	2	3	4	5	6	7	8	9	10
d_1 , MM	0,45	0,45	0,40	0,40	0,45	0,50	0,45	0,4	0,45	0,45
d_2 , MM	0,38	0,41	0,36	0,37	0,40	0,41	0,39	0,36	0,32	0,35
	$\overline{d_1}=0,44$ mm					$\overline{d_2}$:	= 0,37	MM		

Таблица 2: Основные характеристики амперметра и вольтметра

	Вольтметр	Амперметр
Система	Магнитоэлектрическая	Электромагнитная
Погрешность	Класс точности: 0,5	$0{,}002{ m X} + 2{ m k},$ где ${ m X}$ - значение
		измеряемой велечини, а k - еди-
		ница младшего разряда
Предел измерений	0,6 B	автоматически настраивается
x_n		в зависимости от силы тока
Число делений	150	-
шкалы п		
Цена делений	4 мВ/дел	_
x_n/n		
Чувствительность	250 дел/В	_
n/x_n		
Абсолютная по-	1,5	_
грешность $\triangle x_M$		
Внутреннее сопро-	400 Ом	1,2 Om
тивление прибора		
(на данном преде-		
ле измерений)		

Таблица 3: Результаты ВАХ для l_1

	1	2	3	4	5	6	7	8	9
V, мВ	168	188	204	240	244	304	388	476	548
V', мВ	548	476	432	384	348	284	260	228	204
І, мА	31.9	36.2	39.3	45.5	50.4	57.9	73.9	90.5	105.8
І', мА	105.8	92.3	82.6	73.4	63.3	54.5	49.6	43.4	38.5

Таблица 4: Результаты ВАХ для l_2

	1	2	3	4	5	6	7
V, мВ	124	148	184	220	264	340	440
V', мВ	440	344	292	260	200	156	120
І, мА	39.2	47.4	59.1	70.1	84.0	106.8	140.5
І', мА	140.5	110.5	92.4	83.4	65.3	50.0	39.2

Таблица 5: Результаты ВАХ для l_3

	1	2	3	4	5	6	7
V, мВ	40	60	72	96	116	148	208
V', мВ	208	140	112	92	72	56	44
І, мА	41.0	53.3	68.3	88.5	110.8	141.0	201.0
І', мА	201.0	133.3	107.3	86.4	66.7	55.3	42.3

Таблица 6: Средние величины

	$\langle V \rangle$, мВ	$\langle I angle ,$ M ${ m A}$	$\left \left\langle I^{2}\right angle ,$ MA^{2}	$\left\langle V^{2}\right angle$, ${ m MB}^{2}$	$\langle IV \rangle$, mA · mB
l_1	324	63	4523	121804	23415
l_2	252,3	80,6	7581	74426	23753
l_3	104,6	100	12573	13739	13141

Таблица 7: Результаты измерения сопротивления провлоки

radinga resjiibrarbi namepenim comportibilenim inpobilenii						
l_1	l_2	l_3				
$R_0 = { m Om} \; ({ m пo} \; { m P4833})$	$R_0 = { m Om} \; ({ m mo} \; { m P4833})$	$R_0 = { m O}$ м (по ${ m P4833}$)				
$R_{ m cp}=5{,}17~{ m O}$ м	$R_{ m cp}=3{,}13~{ m O}$ м	$R_{ m cp}=1{,}05~{ m Om}$				
$\sigma_R^{ m cnyq}=0.11{ m Om}$	$\sigma_R^{ m cn \check{y}^{\scriptscriptstyle q}}=0.04~{ m Om}$	$\sigma_R^{ ext{c.ny ч}}=0.01 ext{O}$ м				
$\sigma_R^{ ext{chct}} = 0.012 \; ext{Om}$	$\sigma_R^{ ext{cuct}} = 0.01 \; ext{Om}$	$\sigma_R^{ ext{cuct}}=0.01\;\mathrm{Om}$				
$\sigma_R=0.11~{ m Om}$	$\sigma_R=0.041~{ m Om}$	$\sigma_R=0.01{ m O}$ м				

l, cm	$\rho, \frac{\mathrm{Om} \cdot \mathrm{mm}^2}{\mathrm{M}}$	$\sigma_{\rho}, \frac{\mathrm{OM} \cdot \mathrm{MM}^2}{\mathrm{M}}$
50	0,114	0,002
30	0,115	0,001
10	0,115	0,001