PROVA SCRITTA DI ELETTRONICA 25 GIUGNO 2009

1) Nel circuito in figura, i transistori MOS sono caratterizzati dalle tensioni di soglia V_{T1} , V_{T2} , V_{T3} e dai coefficienti β_1 , β_2 , β_3 Si determini il margine d'immunità ai disturbi N_M della rete.

 V_{dd} = 3.5 V, V_{T1} = 0.65 V, V_{T2} = 0.5 V, V_{T3} = 0.65 V, β_1 = 10 mA/V², β_2 = 0.1 mA/V², β_3 = 0.1 mA/V², R_1 = 500 Ω .

2) Nel circuito in figura, i transistori MOS sono caratterizzati dalla tensione di soglia $V_{Tn}=|V_{Tp}|=V_{T}$ e dai coefficienti β_n e β_p .

I segnali di ingresso (V_a , V_b e V_c) hanno l'andamento mostrato in figura.

- Si determini il corrispondente andamento di Vu
- Si calcoli il tempo di propagazione relativo <u>alla</u> <u>prima</u> transizione di V_u.

 V_{dd} = 3.3 V, C= 50 fF, V_{T} = 0.45 V, β_{n} =600 μ A/V², β_{p} =450 μ A/V².

Esame di ELETTRONICA AB (mod. B): svolgere l'esercizio 1 (tempo disponibile 1h 15m). Esame di ELETTRONICA DEI SISTEMI DIGITALI A: l'esercizio 2 (tempo disponibile 1h 15m). Esame di FONDAMENTI DI ELETTRONICA A: svolgere gli esercizi 1 e 2 (tempo disponibile 2h).

- Indicare su ciascun foglio nome, cognome, data e numero di matricola
- Non usare penne o matite rosse
- L'elaborato deve essere contenuto in un unico foglio (4 facciate) protocollo

Compito del 25-06-2009 - Esercizio #1

Osservazioni preliminari: i transistori M2 ed M3 quando ON sono SAT, essendo rispettivamente vgs(M2)=vu<vds(M2)+vt2=vu+vt2 sempre verificata, e vgs(M3)=vdd-vu<vds(M3)+vt2=vdd-vu+vt3 sempre verificata.

Quindi M2 on e sat quando vu>vt2, e M3 on e sat quando vdd-vu>vt3.

Regione 1: vi<vt1, allora M1 OFF. Suppongo M2 on(da verificare) e M3 off (da verificare).

Si rimane in regione 1 fintantochè M1 non va on, ovvero per vi>vt1.						
ir1=(vdd-vu)/r1	da cui si ricava che vu=-42.303 V e vu=3.303V.					
$im2sat=\beta_2/2*(vu-vt2)^2$	La soluzione vu=3.303 V soddisfa l'hp di accensione di M2: vu(=3.303V) >					
Ma	vt2 (=0.5 V) e l'hp di spegnimento di M3 (vdd-vu (=0.197 V) < vt3(= 0.65					
ir1=im2sat	V)					

Regione 2: vi>vt1, quindi M1 ON e SAT sse vu>vi-vt1 (da verificare), e M2 on e sat, M3 off.

Cerco se in questa regione esistono punti della caratteristica statica di trasferimento a pendenza –1 (cioè							
cerco i punti tali che dvu/dvi=-1							
ir1=(vdd-vu)/r1	d(ir1)/dvi = d(im1sat)/dvi + d(im2sat)/dvi						
$im2sat = \beta_2/2*(vu-vt2)^2$	Risolvendo si ricava si ricavano le seguenti coppie di valori (vi, vu):						
$im1sat = \beta_1/2*(vi-vt1)^2$	(vi=0.423097 V,vu=-42.1903 V)						
d(ir1)/dvi=1/r1	(vi=0.877 V,vu=3.190 V)						
$d(im2sat)/dvi = \beta_2*(vu-vt2)*-1$	Delle due soluzioni quella accettabile è la seconda, quindi:						
$d(im1sat)/dvi = \beta_1 * (vi-vt1)$	V_{ILMAX} =0.877 V, e V_{OHMIN} =3.190V.						
Ma	Tale coppia di valori soddisfa le HP fatte sulla regione di						
ir1=im1sat+im2sat	funzionamento di M1 vu (=3.190 V) > vi-vt1 (=0.227 V), e di M2						
	(vu>vt2) e di M3: $vdd-vu(=0.310V) < vt3 (=0.65 V)$						

(eq.1)

Regione 3: vi>vt1, quindi M1 e SAT se vu>vi-vt1, e M2 on e sat, M3 ON e SAT.

Cerco se in questa regione esistono punti della caratteristica statica di trasferimento a pendenza –1 (cioè cerco i punti tali che dvu/dvi=-1). ir1=(vdd-vu)/r1 $d(im3sat)/dvi = \beta_3*(vcc-vu-vt3)$ im2sat= $\beta_2/2*(vu-vt2)^2$ ir1+im3sat=im1sat+im2sat d(ir1)/dvi+d(im3sat)/dvi=d(im1sat)/dvi+ d(im2sat)/dvi $im1 sat = \beta_1/2*(vi-vt1)^2$ da cui si ricava la seguente coppia di valori (vi, vu): $im3sat=\beta_3/2*(vcc-vu-vt3)^2$ (vi=0.8735, vu=3.19636V), La soluzione non è compatibile d(ir1)/dvi=1/r1con la regione di funzionamento di M3, che sarebbe spento: $d(im2sat)/dvi = \beta_2*(vu-vt2)*-1$ vdd-vu(=3.036 V)<vt3(=0.65 V). $d(im1sat)/dvi = \beta_1*(vi-vt1)$

Regione 4: vi>vt1, quindi M1 on e LIN se vu<vi-vt1, e M2 on e sat, M3 ON e SAT.

Cerco se in questa regione esistono punti della caratte	ristica statica di trasferimento a pendenza –1 (cioè						
cerco i punti tali che dvu/dvi=-1).							
ir1=(vcc-vu)/r1	(vi=-0.978 V,vu=-0.702 V)						
$im2sat = \beta_2/2*(vu-vt2)^2$	(vi=1.831 V, vu=0.702 V)						
$im1lin=\beta_1*((vi-vt1)*vu-1/2*vu^2)$	Delle due soluzioni quella accettabile è la seconda.						
$im3sat = \beta_3/2*(vcc-vu-vt3)^2$	Tale coppia di valori soddisfa le HP fatte sulla						
d(ir1)/dvi=1/r1	regione di funzionamento di M1 vu (=0.702 V) < vi-						
$d(im2sat)/dvi = \beta_2*(vu-vt2)*-1$	vt1 (= 1.281 V), e di M2 (vu>vt2) e di M3: vdd-						
$d(im1lin)/dvi = \beta_1*((vi-vt1)*-1+vu-vu*-1)$	$vu(=2.798 \text{ V}) < vt3 (=0.65 \text{ V}). \text{ Quindi: V}_{IHMIN}=1.831$						
$d(im3sat)/dvi = \beta_3*(vcc-vu-vt3)$	V , e V_{OLMAX} =0.702 V .						
ir1+im3sat=im1lin+im2sat							
d(ir1)/dvi+d(im3sat)/dvi=d(im1lin)/dvi+d(im2sat)/dvi							
da cui si ricavano le seguenti coppie di valori (vi, vu):							
Si ricava allora che: $NM_{U}=3.190V-1.831 V=1.359V e. NM_{U}=0.877 V-0.702 V=0.175 V=NM$							

25/6/2009 Esercizio 2

La funzione svolta dal circuito può essere descritta come segue

V _a	V_b	V_c	M ₁	M ₂	M ₃	M_4	M_5	M_6	PD	PU	V_u	
0	0	0	off	off	off	on	on	on	off	on	V_{dd}	(a)
0	0	V_{dd}	off	off	on	on	on	off	off	off	A.I.	(b)
0	V_{dd}	0	off	on	off	on	off	on	off	on	V_{dd}	(c)
0	V_{dd}	V_{dd}	off	on	on	on	off	off	off	off	A.I.	(d)
V_{dd}	0	0	on	off	off	off	on	on	off	on	V_{dd}	(e)
V_{dd}	0	V_{dd}	on	off	on	off	on	off	on	off	0	(f)
V_{dd}	V_{dd}	0	on	on	off	off	off	on	on	off	0	(g)
V_{dd}	V_{dd}	V_{dd}	on	on	on	off	off	off	on	off	0	(h)

Sulla base della tabella, è possibile determinare l'andamento del segnale di uscita, nelle diverse fasi successive:

In particolare, per 2 ns < t < 2.25 ns l'uscita si trova in condizioni di alta impedenza (d,b), e mantiene quindi il valore basso precedentemente stabilito.

Occorre quindi calcolare il tempo di propagazione relativo alla prima transizione di V_u ; si tratta di un transitorio di discesa, ed occorre valutare l'intervallo di tempo fra la variazione dell'ingresso (1.25 ns) e la corrispondente variazione dell'uscita, convenzionalmente considerata all'istante in cui il segnale di uscita assume il valore medio della propria escursione, cioè $V_{dd}/2$.

Per t < 1.2 ns: (a,e) $\rightarrow V_u = V_{dd}$

1.2~ns < t < 1.25~ns: (g) M₁ on, M₂ on, M₃ off \rightarrow il pull-down equivale a un MOSFET con $\beta_{eq} = \beta_n/2$. Inizialmente il PD è in saturazione ($V_{dd} - V_T < V_u < V_{dd}$) e si ha:

$$\int_{1.2ns}^{t_{sat}} dt = -\frac{2C}{\beta_{eq}(V_{dd} - V_T)^2} \int_{V_{dd}}^{V_{dd} - V_T} dV_u \rightarrow t_{sat} = 1.218 \, ns$$

Quindi il PD esce in saturazione prima che si accenda M_3 . Il transitorio prosegue quindi con il PD (M_1, M_2) in regione lineare di funzionamento:

$$I_{D} = \beta_{eq} \left((V_{dd} - V_{T})V_{u} - \frac{V_{u}^{2}}{2} \right)$$

$$I_{C} = C \frac{dV_{u}}{dt}$$

$$I_{D} = -I_{C}$$

$$\int_{t_{sat}}^{t} dt = -\frac{2C}{\beta_{eq}} \int_{V_{dd} - V_{T}}^{V_{u}(t)} \frac{1}{(V_{dd} - V_{T})2 - V_{u}} dV_{u}$$

Risolvendo l'integrale si ottiene:

$$t = t_{sat} + \frac{C}{\beta_{ea}(V_{dd} - V_T)} \ln \frac{(V_{dd} - V_T)2 - V_u(t)}{V_u(t)}$$

Da cui, imponendo $V_u(t_{fin}) = V_{dd}/2$ si ricava l'istante di commutazione:

$$t_{fin} = 1.271 ns$$

Tuttavia, poiché tale istante è successivo a 1.25 ns, viene meno l'ipotesi che M_3 sia spento. La relazione sopra ricavata è valida fino a che M_3 si accende, per t=1.25 ns. In tale istante, si ha:

1.25
$$ns = t_{sat} + \frac{C}{\beta_{eq}(V_{dd} - V_T)} \ln \frac{(V_{dd} - V_T)2 - V_u^*}{V_u^*} \rightarrow V_u^* = 2.1 V$$

Per t > 1.25 ns, il PD è composto dal parallelo fra M_2 e M_3 , in serie a M_1 . Si ha quindi:

$$\beta_{eq} = \frac{1}{\frac{1}{\beta_{er}} + \frac{1}{2\beta_{er}}} = \frac{2}{3}\beta_n$$

Il transitorio si completa quindi per

$$\int_{1.25 \, ns}^{t_{fin}} dt = -\frac{2C}{\beta_{eq}} \int_{V_u^*}^{V_{dd}/2} \frac{1}{(V_{dd} - V_T)2 - V_u} dV_u$$

da cui si ricava

$$t_{fin} = 1.25 \, ns + \frac{C}{\beta_{eq}(V_{dd} - V_T)} \ln \left(\frac{(V_{dd} - V_T)2 - \frac{V_{dd}}{2}}{\frac{V_{dd}}{2}} \cdot \frac{V_u^*}{(V_{dd} - V_T)2 - V_u^*} \right) = 1.266 \, ns$$

e quindi:

$$t_{p,HL} = t_{fin} - 1.2 \, ns = 66 \, ps$$