

Universidade de Brasília - UnB Faculdade UnB Gama - FGA

Engenharia Eletrônica, Engenharia Automotiva, Engenharia de Software, Engenharia de Energia, Engenharia Aeroespacial

Sistema automatizado de transporte de órgãos

Autor: Karla Ribeiro, Adrianny Viana, Igor Silva, Arilson Junior, Daniel de Souza, Anne Caselato, Lucas Couto, Anna Larissa, Cristiano Costa, Marcos Christian, Jarbas Costa, Paulo Augusto, João Paulo

> Brasília, DF 2017

Karla Ribeiro, Adrianny Viana, Igor Silva, Arilson Junior, Daniel de Souza
Anne Caselato, Lucas Couto, Anna Larissa, Cristiano Costa, Marcos
Christian, Jarbas Costa, Paulo Augusto, João Paulo

Sistema automatizado de transporte de órgãos

Universidade de Brasília - UnB

Faculdade UnB Gama - FGA

Lista de ilustrações

Figura 1 –	EAP - estrutura analítica do projeto	20
Figura 2 -	Cronograma do projeto	21
Figura 3 –	Cronograma do projeto	22
Figura 4 -	Mecanismos de transferência de calor	24
Figura 5 -	Modelo de um CMV	26
Figura 6 -	Modelo de um compressor	26
Figura 7 -	Modelo de um condensador	27
Figura 8 -	Modelo de um filtro secador	27
Figura 9 -	Modelo de um evaporador	28
Figura 10 –	Modelo cliente-servidor	28
Figura 11 –	Mensagens trocadas entre um processo cliente e um processo servidor	29
Figura 12 –	TERMOVIDA - Caixa térmica para transporte de órgãos para trans-	
	plantes	30
Figura 13 –	Testes iniciais utilizando a célula Peltier	36
Figura 14 –	Diagrama esquemático do sistema com compressor	36
Figura 15 –	Tabela com os possíveis valores de K	39
Figura 16 –	Volume de controle aplicado ao evaporador e a indicação do processo $$.	40
Figura 17 –	Estrutura do sistema de refrigeração	41
Figura 18 –	Especificações Técnicas do Compressor	42
Figura 19 –	Diagrama Elétrico Preliminar	43
Figura 20 –	Diagrama Elétrico Preliminar	45
Figura 21 –	Estrutura básica da transportadora de órgãos	47
Figura 22 –	Dimensões da estrutura principal do carrinho	47
Figura 23 –	Dimensões da base de apoio da estrutura	48
Figura 24 –	Dimensões dos elementos estruturais internos	48
Figura 25 –	Perfis de Metalon	49
Figura 26 –	Chapa de Aço Inox 304	49
Figura 27 –	Chapas de Policloreto de Vinila	50
Figura 28 –	Vista superior da Raspberry	51
Figura 29 –	Circuito de proteção	52
Figura 30 –	Circuito responsável pelo controle PWN	53
Figura 31 –	Tabela de custos	54

Lista de tabelas

Tabela 1 – Tempo máximo de preservação extracorpórea (ABTO, 2011)	10
Tabela 2 – Tempo de isquemia por órgão (ABTO, 2009)	11
Tabela 3 – Plano de comunicações	15
Tabela 4 – Tecnologias de comunicação	16
Tabela 5 – Riscos para todos os subsistemas	16
Tabela 6 – Condutividade térmica dos materiais a 300K. Fonte: BENNETT, 2008	23
Tabela 7 — Sistema interno - requisito funcional 001	31
Tabela 8 — Sistema interno - requisito funcional 002	31
Tabela 9 — Sistema interno - requisito funcional 003	31
Tabela 10 – Sistema interno - requisito funcional 004	32
Tabela 11 – Sistema interno - requisito funcional 005	32
Tabela 12 – Sistema interno - requisito funcional 006	32
Tabela 13 — Sistema interno - requisito funcional 007	32
Tabela 14 — Sistema Web - requisito funcional 008 $\ \ldots \ \ldots \ \ldots \ \ldots \ \ldots$	33
Tabela 15 – Sistema Web - requisito funcional 009 $\ \ldots \ \ldots \ \ldots \ \ldots \ \ldots$	33
Tabela 16 – Sistema Web - requisito funcional 010 $\ \ldots \ \ldots \ \ldots \ \ldots \ \ldots$	33
Tabela 17 – Sistema Web - requisito funcional 011 	33
Tabela 18 — Sistema Web - requisito funcional 012 $\ \ldots \ \ldots \ \ldots \ \ldots$	34
Tabela 19 – Sistema Web - requisito funcional 013 $\ \ldots \ \ldots \ \ldots \ \ldots \ \ldots$	34
Tabela 20 — Sistema Web - requisito funcional 014 $\ \ldots \ \ldots \ \ldots \ \ldots \ \ldots$	34
Tabela 21 – Sistema Web - requisito funcional 015 $\ \ldots \ \ldots \ \ldots \ \ldots \ \ldots$	34
Tabela 22 – Consumo energético dos componentes	44

Sumário

1	INTRODUÇÃO	9
1.1	Contexto	9
1.2	Justificativa	11
1.3	Escopo do projeto	12
1.3.1	Premissas	12
1.3.2	Restrições	12
1.4	Detalhamento do escopo	12
1.4.1	Projeto	12
1.4.2	Produto	13
1.5	Objetivos	13
1.5.1	Objetivo Geral	13
1.5.2	Objetivos Específicos	13
1.6	Metodologia de gerenciamento	14
1.6.1	Plano de gerenciamento de comunicação	15
1.6.1.1	Agenda semanal/Reuniões	15
1.6.1.2	Tecnologia de comunicação	16
1.6.1.3	Monitoramento e Controle	16
1.6.2	Plano de gerenciamento de riscos	16
1.6.3	EAP	20
1.6.4	Cronograma	20
2	REFERENCIAL TEÓRICO	23
2.1	Fenômenos de Transporte de Calor	23
2.1.1	Condução	23
2.1.2	Convecção	23
2.1.3	Radiação	24
2.2	Calorimetria	24
2.2.1	Calor Sensível e Latente	24
2.3	Sistemas de Refrigeração	25
2.3.1	Sistema de Compressão Mecânica de Vapor (CMV)	25
2.4	Modelo cliente-servidor/sistema web	28
2.5	Framework Django	29
2.6	Sistema interno	29
2.7	Ergonomia de carregamento de peso	29

2.8	TERMOVIDA – Caixa térmica para transporte de órgãos para trans-	
	plantes	30
3	SOLUÇÃO PROPOSTA	31
3.1	Arquitetura de Software	31
3.1.1	Sistema Interno	31
3.1.1.1	Requisitos funcionais	31
3.1.2	Sistema Web	32
3.1.2.1	Requisitos funcionais	33
3.2	Sistema de Refrigeração	34
3.2.1	Dimensionamento do Sistema	36
3.2.1.1	Cálculo de Carga Térmica	36
3.2.1.2	Cálculo da energia e potência térmica do órgão:	37
3.2.1.3	Cálculo da energia e potência térmica da embalagem com solução Viaspan na	
	qual o órgão está contido	37
3.2.2	Cálculo da energia e potência térmica do alumínio da caixa interna	38
3.2.2.1	Cálculo da resistência térmica $\left(Rt\right)$ e o coeficiente global de transferência de	
	calor (U)	38
3.2.3	Evaporador	39
3.2.4	Compressor	40
3.3	Estrutura do Conjunto de Refrigeração	40
3.4	Sistema de Alimentação	42
3.4.1	Diagrama do Sistema	42
3.4.2	Dimensionamento das Baterias	43
3.4.3	Dimensionamento do Inversor	45
3.4.4	Requisitos	45
3.4.4.1	Requisitos Funcionais	46
3.4.4.2	Requisitos Não Funcionais	46
3.5	Estrutura	46
3.5.1	Arquitetura da estrutura	46
3.5.2	Materiais principais	48
3.5.3	Requisitos	50
3.5.3.1	Requisitos Funcionais	50
3.5.3.2	Requisitos não-funcionais	50
3.5.4	Desafios Técnicos	50
3.5.4.1	Isolamento térmico da câmara	50
3.5.4.2	Esterilização do sistema	51
3.5.4.3	Mobilidade do sistema	51
3.6	Sistemas Eletrônicos	51
3.6.1	Servidor	51

	REFERÊNCIAS
3.7	Tabela de custos
3.6.3.3	Subsistema de Comunicação e Análise
3.6.3.2	Subsistema de Proteção
3.6.3.1	Subsistema de Controle
3.6.3	Controle PWM
3.6.2	Circuito Preventivo

1 Introdução

De acordo com o SNT (Sistema Nacional de Transplante), o Brasil possui um dos maiores programas públicos de transplante de órgãos e tecidos do mundo. Apesar deste importante avanço, a estrutura de processos administrativos e operacionais ainda é deficiente e causa grande impacto na viabilidade e ocorrência do transplante. Em 2005 existiam cerca de 60 mil brasileiros na fila de espera por um transplante de órgãos, sendo que destes apenas 20% seriam atendidos, sendo o maior fator contribuinte para a não realização do procedimento, a estrutura deficiente de captação e distribuição de órgãos (Bergamo, 2005), e não a falta de doadores. Desta forma, sabe-se que a melhoria no processo logístico causará impactos positivos no cenário brasileiro de transplante de órgãos, beneficiando os milhares de brasileiros que se encontram na fila de espera por um órgão.

1.1 Contexto

A história da transplantação de órgãos é recente, iniciada na década de 1960 no Brasil e marcada por grandes avanços no enfoque da medicina e da tecnologia desde então, o que atualmente permite melhores perspectivas sobre saúde e longevidade. A regulamentação dos transplantes de órgãos aconteceu no Brasil no ano de 1997 pela Lei nº 9.434, e adicionalmente a ela o Decreto nº 2.268/1997 criou o Sistema Nacional de Transplantes responsável pela captação e distribuição de órgãos e tecidos. O Registro Brasileiro de Transplantes (RBT) mostra o crescimento dos casos de transplantação no ano de 2016, com destaque para o transplante hepático, com aumento nacional de 3,9%, e para o transplante de pâncreas, com aumento nacional de 11,7%, se comparados ao ano de 2015.

Para melhor compreensão deste estudo, define-se transplante como uma substituição cirúrgica de um órgão ou tecido afetado por lesão progressiva e irreversível por um outro sadio, de doador falecido ou vivo (NETO; AFONSO; THOMé, 2017). O êxito nas atividades de transplantação está atrelado não só ao procedimento cirúrgico, mas anteriormente, e também, ao bom manejo do órgão que envolve a excelência no procedimento de acondicionamento para transporte. Uma falha na logística de transporte e/ou em seu armazenamento podem apresentar riscos ao futuro transplantado, além da falência do órgão.

Neste contexto, aprimorar os recursos tecnológicos, a fim de tornar as condições de armazenamento tão excelentes quanto o necessário para garantir o funcionamento e integridade ao recurso vindo de um doador é fundamental. Os riscos que podem vir a tornar inviável a transplantação devem ser drasticamente minimizados, pois os dados

mostram que a proporção é de um doador para cada 8 potenciais doadores de órgão (ABTO, 2009), ou seja, os recursos têm de ser manejados da melhor forma possível para eliminar as possibilidades de inutilização do órgão.

Para o desenvolvimento de um equipamento de acondicionamento de órgãos adequado, torna-se imprescindível o conhecimento de todas as normas e requisitos que garantem as melhores condições de armazenamento durante o transporte. A Associação Brasileira de Transporte de Órgãos traz informações sobre os máximos tempos de permanência extracorpórea dos recursos, como mostra a tab. 1:

Órgão/Tecido	Tempo máximo	Tempo máximo de
Orgao/ recido	para retirada	preservação extracorpórea
Córneas	6 horas após PC*	7 dias
Coração	Antes da PC*	4 a 6 horas
Pulmão	Antes da PC*	4 a 6 horas
Rins	Até 30 min. pós PC*	Até 48 horas
Fígado	Antes da PC*	12 a 24 horas
Pâncreas	Antes da PC*	12 a 24 horas
Ossos	6 horas pós PC*	Até 5 anos

Tabela 1 – Tempo máximo de preservação extracorpórea (ABTO, 2011)

A Agência Nacional de Vigilância Sanitária (ANVISA) estabeleceu, pela Resolução RDC nº 66/2009, as condições sanitárias de transporte de órgãos humanos, e regulamenta o funcionamento da acomodação e transporte destes recursos. Os principais requisitos desta norma quanto ao sistema de armazenagem são:

Art. 31. A embalagem primária deve conter o órgão e a solução de preservação, e ter capacidade proporcional ao volume do órgão a ser embalado.

Art. 32. A embalagem primária deve ser acondicionada em duas embalagens secundárias.

Art. 36. As embalagens secundárias devem ser acondicionadas na embalagem terciária.

Art. 37. A embalagem terciária será constituída de caixa isotérmica confeccionada de material rígido, resistente e impermeável, deverá promover isolamento térmico, ser revestida internamente com material liso, durável, impermeável, lavável e resistente a soluções desinfetantes e conter um dispositivo de segurança que impeça sua abertura acidental.

Art. 38. A embalagem terciária deve ser preenchida com gelo (ponto de fusão a 0° C) em quantidade suficiente para envolver a embalagem secundária e garantir a manutenção da temperatura pelo tempo necessário do processo de transporte.

Art. 39. O gelo com ponto de fusão a $0^{\circ}\mathrm{C}$ utilizado não deve entrar em contato direto com os órgãos.

Art. 40. É vedado o emprego de solução salina congelada como material refrigerante no acondicionamento, para prevenir congelamento do órgão.

1.2. Justificativa

Ademais, cada órgão possui suas próprias especificações que devem ser respeitadas. O armazenamento do fígado e pâncreas, por exemplo, são realizados sob as mesmas condições, entretanto, separadamente. O órgão é colocado separadamente no interior de um saco plástico estéril contendo 1 litro de solução Viaspan (solução para conservação de órgãos) a 4°C e lacrado com fita cardíaca. Após, o saco é posto no interior de outro saco plástico estéril com gelo moído e novamente lacrado com fita cardíaca. Identifica-se com um cartão que contém o horário de clampeamento, e este conjunto deve permanecer em geladeira térmica, coberto com gelo não estéril até a utilização dos enxertos (NETO; AFONSO; THOMÉ, 2010).

Alternativamente ao emprego de um sistema de refrigeração manual, este projeto visa a concretização de uma caixa, em concordância com a embalagem terciária do artigo 37 da Resolução RDC nº 66/2009, com um sistema de resfriamento que não se utiliza de gelo não estéril e com a possibilidade de controle e verificações de suas condições de atuação, visando propiciar melhores condições de armazenamento e transporte de órgãos.

1.2 Justificativa

Atualmente no transporte de órgãos, utilizam-se caixas térmicas, onde o órgão é depositado em soro e coberto por embalagens com gelo. Observaram-se casos de perda e deterioração prematura do órgão, devido à queima do tecido pelo contato não homogêneo com as embalagens de gelo. De acordo com o Dr. Fernando A. G. Guimarães, em sua tese de mestrado "Câmara Hiperbárica refrigerada para a preservação de órgãos e tecidos", é notável uma melhor preservação do órgão em sistemas pressurizados com oxigênio puro e temperatura controlada.

Além dos processos de acondicionamento, armazenagem e transporte, é necessário levar em consideração o tempo de isquemia de cada órgão, que consiste no intervalo entre a retirada e acondicionamento em solução própria e a inserção do órgão no corpo do receptor, e as distâncias entre os doadores e os receptores. Este tempo será monitorado pelo sistema de acompanhamento de órgão, para que não haja atraso e a consequente deterioração do tecido antes da chegada ao destino.

Órgão	Tempo de Isquemia Fria
Coração	4 horas
Pulmão	4-6 horas
Fígado	12 horas
Rim	Até 24 horas
Pâncreas	Até 20 horas

Tabela 2 – Tempo de isquemia por órgão(ABTO, 2009)

1.3 Escopo do projeto

1.3.1 Premissas

- Os órgão devem ser condicionados em uma câmara selada hermeticamente.
- A câmara deverá ser resfriada e manter-se entre 2 e 4 graus Celsius.
- O transportador só poderá ser aberto no seu destino.
- Haverá comunicação com a internet para que o hospital que receberá o órgão possa acompanhar o andamento da entrega.

1.3.2 Restrições

- O órgão não poderá ser necrosado por falta de refrigeração nem queimado por excesso dela.
- A caixa transportadora deverá ser dimensionada de forma que duas pessoas adultas possam carregá-la.
- O sistema de fechamento não será aberto até a chegada no destino do órgão.
- O sistema de transporte deverá estar de acordo com a legislação vigente, se for aplicável.

1.4 Detalhamento do escopo

1.4.1 Projeto

O grupo do Transportador de Órgãos da disciplina de Projeto Integrador 2, visa suprir a necessidade de um controle maior na importantíssima atividade de transportar órgãos humanos para transplante, buscando o maior controle das características do transporte para que a chance real do órgão chegar a tempo e de forma útil para quem irá recebê-lo. O órgão será acondicionado dentro de três camadas de materiais que tratarão de isolar termicamente e hermeticamente de forma que o órgão chegue saudável a seu destino.

O público alvo do projeto são as equipes de transplante que agem para salvar vidas levando essa importante carga por todo o país, seja de avião, helicóptero, ambulância ou qualquer outro meio de locomoção. O objetivo é facilitar o controle e a entrega dos órgãos para seus recebedores.

1.5. Objetivos

1.4.2 Produto

O sistema de automatização do recipiente do transporte facilitará o controle de temperatura, que ocorrerá automaticamente, terá sistema energético próprio aumentando sua autonomia e se conectará com a internet para que o seu destino saiba onde o órgão está e quais suas características em tempo real. Se o lugar for remoto e não houver conexão, assim que a conexão for estabelecida os dados serão atualizados.

O sistema funcionará da seguinte forma: O órgão será introduzido dentro da câmara de resfriamento que por sua vez será selada hermeticamente. O resfriamento da câmara já deve ter ocorrido para que o órgão seja resfriado o mais rápido possível. O segundo invólucro que terá o isolamento térmico será fechado e trancado para que só possa ser aberto em seu destino. No trajeto o órgão será observado por sensores de temperatura e pressão enquanto a localização do sistema e esses dados são transmitidos pela internet para um servidor que pode ser acessado via um aplicativo na internet. Chegado em seu destino o órgão poderá ser retirado para o transplante.

O sistema completo poderá ficar pesado para uma pessoa levar, por isso a estrutura poderá ter rodas que facilitam sua locomoção, mas será dimensionado, o projeto, de forma que duas pessoas possam levantá-lo sem problemas para colocá-lo em qualquer veículo.

Para que o projeto seja considerado um sucesso este deverá atender aos seguintes quesitos: manter a temperatura o isolamento e a pressão do órgão até sua chegada no destino, não podendo ser aberto até então e que passe todas essas informações para que os interessados saibam as características do órgão e onde está o transporte.

1.5 Objetivos

1.5.1 Objetivo Geral

Tendo em vista os obstáculos e desafios enfrentados no transporte de órgãos hodiernamente, sem deixar de levar em consideração a sua relevância social, o presente trabalho propõe a concepção de um sistema automatizado de transporte de órgãos, levando em conta as condições específicas de contorno necessárias para a preservação de cada órgão durante o tempo de translado. O grupo, então, orientará seus esforços no sentido de conceber um sistema que preserva órgãos específicos, contando com o trabalho harmônico e sinérgico de cada uma das áreas do conhecimento de seus membros.

1.5.2 Objetivos Específicos

Levando em consideração os objetivos gerais acima propostos, e utilizando-os como diretriz, citam-se os objetivos específicos logo abaixo:

- Projetar e construir a estrutura da câmara onde o órgão será acondicionado, seguindo todas as normas de assepsia e acondicionamento propostas pela ANVISA;
- Projetar e implementar o sistema de controle e coleta de dados em tempo real, utilizando o microcontrolador MSP430g2553;
- Projetar e implementar o sistema que analisará, processará e enviará os dados coletados para uma plataforma WEB através de uma plataforma GPRS, com auxílio da RaspBerry PI;
- Projetar o sistema que fará a tomada de decisões, que se dará através da comunicação entre o RaspBerry PI e MSP430g2553;
- Projeto e implementação da plataforma WEB;
- Análise de transferência de calor da câmara, de forma que tal transferência ocorra da forma correta, sem danificar o tecido do órgão.

1.6 Metodologia de gerenciamento

A metodologia ágil, mais especificamente o SCRUM, tem como princípio agregar valor ao cliente de maneira mais rápida possível a partir de uma gerência eficiente das pessoas envolvidas e suas respectivas funções. O PMBOK é referência em gerenciamento de projetos por conter artefatos e boas práticas que ajudam a desenvolver um projeto de maneira eficaz. Na realização do projeto do transporte de órgãos será utilizada uma combinação do SCRUM e do PMBOK.

O SCRUM será utilizado para organizar o esforço de trabalho dos participantes em sprints semanais, que terão planejamento e retrospectiva, além disso teremos reuniões diárias através da plataforma online SLACK tendo visibilidade do trabalho executado por cada membro e frente de trabalho.

Do PMBOK utilizaremos alguns artefatos para documentação do projeto como:

- Plano de gerenciamento de comunicação
- Plano de gerenciamento de requisitos
- Plano de gerenciamento de riscos
- Plano de gerenciamento de custos

1.6.1 Plano de gerenciamento de comunicação

O plano de gerenciamento das comunicações tem a finalidade de abordar os meios de comunicação utilizados no desenvolvimento do transportador de órgãos desenvolvido como projeto da disciplina de Projeto Integrador de Engenharia 2. A comunicação se faz importante para o sucesso ou falha de projeto e interfere diretamente no conhecimento compartilhado entre a equipe.

Nesta subseção será descrito aspectos relevantes para o gerenciamento de comunicação como a frequência de encontros e as ferramentas utilizadas para obter uma forte integração entre a equipe.

1.6.1.1 Agenda semanal/Reuniões

A equipe trabalha no contexto de reunião física durante as aulas e no contexto de comunicação externa fora das aulas, portanto as reuniões são estruturadas de forma a extrair a maior produtividade dos integrantes durante as aulas. As reuniões permitem trocas de informações entre a equipe, proporcionando melhorias no desenvolvimento geral do time.

Motivo	Participantes	Método	Frequência	Dia
Reunião fixa	Todos os membros	Presencial	Uma vez por semana. 16:00 às 18:00	Quarta-feira
Reunião fixa	Todos os membros	Presencial	Uma vez por semana. 14:00 às 18:00	Sexta-feira
Reuniões de frentes de trabalho	Frentes de trabalho	Reunião digial (hangout)	Quando forem necessárias	-
Reunião de gerência	Equipes de gerência	Reunião digital (hnagout)	2 vezes por semana	-

Tabela 3 – Plano de comunicações

1.6.1.2 Tecnologia de comunicação

Tecnologia	Urgência das informações	Objetivo	Métodos de comunicação
Whatsapp	Alta	Comunicação rápida e informal	Comunicação interativa
Slack	Alta	Acompanhamento de desenvolvimento	Comunicação interativa
Google Drive	Baixa	Armazenamento, compartilhamento e produção de documentos	Comunicação passiva
Hangouts	Média	Reuniões online	Comunicação interativa
Git	Baixa	Versionar as informações dos relatórios do grupo	Comunicação passiva
Trello	Alta	Acompanhamento do processo de desenvolvimento e atividades	Comunicação passiva

Tabela 4 – Tecnologias de comunicação

1.6.1.3 Monitoramento e Controle

Os integrantes devem ser pontuais e comunicativos nas reuniões, fazendo o uso das ferramentas e meios de comunicação definidos a priori. Será feito um Registro de Presença para monitorar a presença dos integrantes e está diretamente relacionada à participação dos membros no projeto. Para controle de trabalho e comunicação será utilizada como ferramenta principal o Trello, onde todo o trabalho terá responsável e tempo para ser terminado.

1.6.2 Plano de gerenciamento de riscos

Os riscos do projeto foram avaliados e estão descritos na Tabela 5. Foram analisados a probabilidade de acontecerem os eventos e quão impactante eles serão, caso ocorram.

		1		
Risco	Consequência	Probabilidade	Impacto	Ação/estratégia
		Geral		
Atraso no crono- grama	Sobrecarregamento em certos períodos do projeto e/ou atraso na entrega do produto final.	Provável.	Razoavelmente impactante.	Ajuste ou remodelamento de atividades a serem desenvolvidas.

Tabela 5 – Riscos para todos os subsistemas

Erro de planeja- mento	Replanejamento do pro- jeto e/ou atraso na en- trega do produto final.	Razoavelmente provável.	Muito impactante.	Replanejar o subsistema e/ou o sistema inteiro.
Necessidade de uma carga de trabalho pesada	Sobrecarregamento de in- tegrantes e/ou desistência descumprimento de inte- grantes.	Pouco provável.	Razoavelmente impactante.	Rever a forma de gerenciamento e a possível necessidade de mais reuniões para redistribuir atividades.
Falta de experiência necessária	Sobrecarregamento de in- tegrantes e/ou erro de pla- nejamento e/ou desistên- cia.	Pouco provável.	Pouco impactante.	Busca de pessoal capacitado a ajudar e ensinar.
Mudança no pro- jeto	Atraso na entrega do produto final.	Provável.	Muito impactante.	Replanejamento de escopo.
Desistência de integrantes	Sobrecarregamento de integrantes e/ou atraso no cronograma.	Pouco provável.	Muito impactante.	Fazer nova distribuição de tarefas de acordo com a necessidade de trabalho.
Descumprimento de integrantes.	Sobrecarregamento de integrantes e/ou atraso no cronograma.	Pouco provável.	Razoavelmente impactante.	Verificar o problema com o integrante e oferecer a ajuda necessária.
Atraso na entrega de materiais (com- pra).	Atraso no cronograma do projeto e/ou atraso na entrega do produto final.	Razoavelmente provável.	Muito impactante.	Tornar compra prioridade e pesquisar mais forne- cedores que entregam de forma mais eficiente.
Danificação de componentes ou subsistemas do protótipo.	Atraso no cronograma do projeto e/ou mudança no projeto.	Razoavelmente provável.	Muito impactante.	Rever o motivo da danifi- cação e realizar uma nova compra, ou novo planeja- mento de projeto, caso ne- cessário.
Falta de recursos para compra de materiais	Atraso no cronograma e/ou mudança no projeto.	Pouco provável.	Razoavelmente impactante.	Métodos alternativos de obtenção de recursos.
Dificuldade de integração eletrônica/energia.	Diferença da potência for- necida pra potência consu- mida.	Razoavelmente provável.	Muito impactante.	Replanejamento de fontes de energia ou do sistema eletrônico.
Dificuldade de integração eletrônica/software.	Dificuldade de integração do software com microcontrolador.	Razoavelmente provável.	Muito impactante.	Revisão do sistema e/ou substituição dos mesmos.
Dificuldade de integração estrutura/eletrônica ou energia.	Falta do espaço necessário.	Pouco provável.	Muito impactante.	Redimensionamento da estrutura ou alteração dos sistemas eletrôni- cos/energéticos.
Eletrônica				

Queima de componente. Perda de tempo e de dinheiro. Perda tempo com reprogramação Perda tempo com reprogramação Perda de tempo com reprogramação QRRS/GSM ou WIFI(se for o caso) Não cumprimento do programa da equipo. Risco de curtos no sistema eléctrico/eletrônico. Falta de recursos para compra de materiais. Falta de experiência de recipreação das experiencia de experiência de refrigeração do a desistência integrantes. Pouco provável. Provável. Provável. Pouco impactante. Pouco impactante. Pouco impactante. Pouco impactante. Provável. Pouco impactante. Pouco impactante. Provável. Pouco provável. Pouco provável. Pouco provável. Pouco provável. Pouco impactante. Razoavelmente provável. Pouco provável. Pouco impactante. Pouco impactante. Provável. Provável. Provável. Provável. Pouco provável. Pouco provável. Pouco provável. Pouco impactante. Razoavelmente impactante. Razoavelmente impactante. Pouco impactante. Pouco impactante. Razoavelmente impactante. Razoavelmente provável. Pouco provável. Pouco provável. Pouco impactante. Razoavelmente provável. Razoavelmente provável. Razoavelmente provável. Pouco provável. Pouco provável. Provável. Razoavelmente provável. Procura não adquirir provável. Procura n								
Erro de layout da pei de layout da pei de layout de pei de layout de gramação Perda tempo com reprogramação Risalha na co- municação GPRS/GSM ou WIFI(se for o caso) Perda de tempo e comuni- cação. Provável. Provável. Pouco impac- tante. Per um gerenciamento de fre um gerenciamento de fre um gerenciamento de provável. Perda de tempo e com internet mével ou wifi lo- cal com redundância en- tre os métodos e sincro- tre os métodos e	-	_	Provável.	_	rente e voltagem preci- samente e verificar da- tasheet com valores nomi-			
Falha na co- municação GPRS/GSM ou WIFI(se for o caso) **Perda de tempo e comuni- ação. **Provável.** **Provável.* **Provável.** **Provável.** **Provável.* **Provável.* **Provável.* **Provável.* **Provável.* **Provável.* **Provável.*	_		Provável.		Necessidade de refazer layout e esquemático da placa pci e Verifica- ção e validação anterior			
Atrasos no cronograma da equipe. Risco de curtos no sistema elétrico/eletrônico. Falta de recursos para compra de materiais. Baixa eficiência de refigeração da câmara. O sistema não ser capaz de alimentar a refrigeração odo sorgão. Estrutura Design preliminar não atende aos requisitos do ror sistema de equips. Não cumprimento do provável. Razoavelmente provável. Razoavelmente provável. Razoavelmente provável. Pouco provável. Pouco provável. Razoavelmente impactante. Pouco provável. Razoavelmente impactante. Pouco provável. Pouco provável. Razoavelmente impactante. Pouco provável. Pouco impactante. Pouco impactante. Pouco impactante. Razoavelmente provável. Muito impactante. Razoavelmente impactante. Pouco impactante. Pouco impactante. Pouco impactante. Pouco impactante. Razoavelmente provável. Estrutura Porcurar não adquirir equipamentos usados ou com origem duvidosa. Procurar não adquirir equipamentos usados ou com origem duvidosa. Razoavelmente provável. Muito impactante. Procurar não adquirir equipamentos usados ou com origem duvidosa. Procurar não adquirir equipamentos usados ou com origem duvidosa. Pouco provável. Muito impactante. Muito impactante. Procurar não adquirir equipamentos usados ou com origem duvidosa.	municação GPRS/GSM ou WIFI(se for o		Provável.	_	ternet móvel ou wifi lo- cal com redundância en- tre os métodos e sincro- nia quando for conectado, além dos testes anteriores			
Atrasos no cronograma da equipe. Risco de curtos no sistema elétrico/eletrônico. Falta de recursos para compra de materiais. Falta de experiência necessária. Baixa eficiência de refrigeração da câmara. Design preliminar não atende aos requisitos do proplemente grands and aduntar da equisitos do proplemente provável. Não cumprimento do projeto. Razoavelmente provável. Razoavelmente provável. Pouco provável. Pouco provável. Pouco provável. Razoavelmente impactante. Pouco provável. Razoavelmente impactante. Pouco provável. Razoavelmente impactante. Pouco provável. Razoavelmente impactante. Razoavelmente impactante. Pouco provável. Razoavelmente impactante. Pouco impactante. Muito impactante. Pouco impactante. Procurar não adquirir equipamentos usados ou com origem duvidosa. Procurar não adquirir equipamentos usados ou com origem duvidosa. Razoavelmente provável. Muito impactante. Muito impactante. Procurar não adquirir equipamentos usados ou com origem duvidosa. Procurar não adquirir equipamentos usados ou com origem duvidosa. Estrutura Design preliminar não aceitação do design preliminar pelos clientes. Provável. Muito impactante. Muito impactante. Muito impactante. Muito impactante. Muito impactante. Muito impactante. Procurar não adquirir equipamentos usados ou com origem duvidosa.			Energia					
Razoavelmente provável. Razoavelmente tante. Razoavelmente de proteção com fusíveis. Razoavelmente arrecadação dos membros do grupo para custear o projeto. Pouco provável. Pouco provável. Pouco provável. Pouco provável. Pouco provável. Pouco impactante. Pouco impactante. Pouco impactante. Procurar não adquirir equipamentos usados ou com origem duvidosa. Procurar não adquirir equipamentos usados ou com origem duvidosa. Posign preliminar não aceitação do design preliminar pelos clientes. Razoavelmente provável. Pouco provável. Pouco impactante. Procurar não adquirir equipamentos usados ou com origem duvidosa. Procurar não adquirir equipamentos usados ou com origem duvidosa. Razoavelmente provável. Razoavelmente provável. Muito impactante. Procurar não adquirir equipamentos usados ou com origem duvidosa. Razoavelmente provável. Razoavelmente provável. Razoavelmente provável. Procurar não adquirir equipamentos usados ou com origem duvidosa. Razoavelmente tante. Procurar não adquirir equipamentos usados ou com origem duvidosa.				_	projeto eficiente e plane- jar um cronograma facil-			
Pouco provável. Razoavelmente impactante. Pouco provável. Pouco impactante. Pouco impactante. Pouco impactante. Pouco impactante. Pouco provável. Busca de pessoal capacitado e disposto a ajudar o grupo. Procurar não adquirir equipamentos usados ou com origem duvidosa. Pouco provável. Baixa eficiência de refrigeração da câmara. Pouco provável. Razoavelmente provável. Muito impactante. Pouco impactante. Procurar não adquirir equipamentos usados ou com origem duvidosa. Procurar não adquirir equipamentos usados ou com origem duvidosa. Estrutura Poesign preliminar não atende aos requisitos do propreliminar pelos clientes. Pouco provável. Pouco impactante. Muito impactante. Pouco provável. Procurar não adquirir equipamentos usados ou com origem duvidosa.	no sistema elé-	Queima de equipamentos.		_				
Falta de experiência mecessária. Erro de planejamento ou desistência integrantes. Baixa eficiência de refrigeração da câmara. Design preliminar não aceitação do properiminar pelos clientes. Erro de planejamento ou desistência integrantes. Pouco provável. Pouco provável. Pouco impactado e disposto a ajudar o grupo. Procurar não adquirir equipamentos usados ou com origem duvidosa. Estrutura Elaboração de um design que atenda à que atenda à todos os requisitos do pro-	para compra de	Atrasos no projeto.	Pouco provável.		arrecadação dos membros do grupo para custear o			
Baixa eficiência de refrigeração da câmara. de alimentar a refrigeração da câmara. Razoavelmente provável. Muito impactante. Estrutura Design preliminar não atende aos requisitos do propreliminar pelos clientes. Não aceitação do design provável. Razoavelmente provável. Muito impactante. Muito impactante. Elaboração de um design que atenda à todos os requisitos do protonomos requisitos do protonomos requisitos do protonomos references.	_	1 "	Pouco provável.	_	tado e disposto a ajudar o			
Design preliminar não atende aos re-quisitos do pro-preliminar pelos clientes. Design preliminar pelos clientes Comparison Compa	refrigeração da câ-	de alimentar a refrigera- ção ocasionando perda do		1	equipamentos usados ou			
não atende aos re- quisitos do pro- preliminar pelos clientes. Razoavelmente Muito impac- provável. duito impac- tante. que atenda que atenda à todos os requisitos do pro-		Estrutura						
	não atende aos requisitos do pro-	, ,		_	que atenda que atenda à todos os requisitos do pro-			

Mecanismo de transporte não aguenta os esfor- ços aplicados.	Deformação plástica do mecanismo, perda de recursos.	Pouco provável.	Razoavelmente impactante.	Calcular esforços gerados na estrutura de transporte; simular numericamente as deformações na estrutura; considerar um coeficiente de segurança de, no mínimo 2,5 na construção do mecanismo de transporte.		
Atrasos no cronograma.	Não cumprimento do projeto no tempo esperado.	Razoavelmente provável.	Muito impactante.	Ter um gerenciamento de projeto eficiente e plane- jar um cronograma facil- mente executável.		
Falha no mecanismo de selamento da câmara de transporte de orgãos.	Possibilita a perda do órgão transportado	Razoavelmente provável.	Muito impactante.	Planejar um mecanismo de fácil construção e grande eficiência, além de realizar testes com antecedência.		
Material de isolamento não apropriado para o intervalo de temperaturas recomendado.	Impossibilita a refrigera- ção adequado da câmara de resfriamento.	Razoavelmente provável.	Muito impactante.	Fazer uma pesquisa acurada por possíveis materials a serem utilizados no sistema de refrigeração, além de testar o sistema com antecedência para ser possível a mudança do material à tempo.		
Abertura da câmara de transporte antes da hora.	Perdas em energia para re- frigeração adequada.	Muito provável.	Pouco impactante.	Alertar o transportador caso haja falha no sistema de selamento.		
Órgãos não permanecerem em suas posições durante o transporte ou devido às vibrações.	Órgãos são danificados e podem prejudicar funcio- namento da máquina.	Razoavelmente provável.	Muito impactante.	Planejar disposição dos órgãos de forma a prevenir graus de liberdade que possam vira causar o deslocamento deles durante o transporte ou vibrações da máquina.		
	Software					
Não terminar o software de con- trole dos sensores	Não conseguir entregar o produto	Pouqíssimo provável	Muitíssimo impactanto	Rever o escopo do projeto		
Não terminar o webapp	Não conseguir entregar o produto	Pouquíssimo provável	Muitíssimo impactante	Rever o escopo do projeto		
Perder um integrante do grupo	Sobrecarregar o resto do grupo	Pouco provável	Muito impactante	Rever o escopo e redistri- buir as responsabilidades		

Perder uma má-	Impossibilidade de traba-	Razoavelmente	Razoavelmente	Paraamanta
quina	lhar sozinho	provável	impactante	Pareamento
Não conseguir in-				
tegração com os	O webapp não mostrará as		Muitíssimo	Ter uma opções de cone-
sensores do trans-	informações	Pouco provável	impactante	xão e revisar a solução
portador de ór-	miormações		Impactante	xao e revisar a sorução
gãos				

1.6.3 EAP

A estrutura analítica do projeto foi definida baseada nos marcos principais e quais atividades deverão ser entregues. Conforme citado na metodologia Top/Down, as atividades foram divididas em módulos de entrega conforme a fig. 1.

Figura 1 – EAP - estrutura analítica do projeto

1.6.4 Cronograma

Abaixo segue o cronograma proposto para elaboração do projeto, dividido pelas fases de iniciação, elaboração, construção e transição, seus respectivos marcos e datas limites.

	0	Nome	Duração	Ínicio	Fim
1		⊟Iniciação	5d?	18/08/2017	24/08/2017
2	100	Definição Tema e Grupo	5d	18/08/2017	24/08/2017
3	100	Definição do Escopo do Sistema	4d	21/08/2017	24/08/2017
4	-	Levantamento de Requisitos	4d	21/08/2017	24/08/2017
5	100	Planejamento de Custos	1d?	23/08/2017	23/08/2017
6	-	Cronograma	1d?	23/08/2017	23/08/2017
7	100	Relação de Subsistemas	2d	23/08/2017	24/08/2017
8		⊟Elaboração	17d?	25/08/2017	18/09/2017
9		Elaboração do Relatório PC1	2d	25/08/2017	28/08/2017
10	-	Apresentação PC1	3d?	30/08/2017	01/09/2017
11		⊟Estrutura	17d	25/08/2017	18/09/2017
12	100	Definição de Material	11d	04/09/2017	18/09/2017
13	100	Cálculo de Volume Interno	5d	06/09/2017	12/09/2017
14	-	Prototipação	10d	04/09/2017	15/09/2017
15		Definição de Layout	6.88d	25/08/2017	04/09/2017
16		Simulação	4d	12/09/2017	15/09/2017
17		⊟Resfriamento	16d	25/08/2017	15/09/2017
18		Definição dos componentes para resfriamento	7d	25/08/2017	04/09/2017
19	100	Cálculo numérico de potência	10d	04/09/2017	15/09/2017
20		Simulação computacional	5d	25/08/2017	31/08/2017
21		⊟Isolamento	10d	25/08/2017	07/09/2017
22		Definição de tipo de material de isolamento	10d	25/08/2017	07/09/2017
23		Orçar Custos	7d	25/08/2017	04/09/2017
24		Simulação computacional	10d	25/08/2017	07/09/2017

Figura 2 – Cronograma do projeto

25		☐ Alimentação e Armazenamento Energético	14d	25/08/2017	13/09/2017
26		Definir fonte de alimentação	5d	25/08/2017	31/08/2017
27		Especificação dos componentes	14d	25/08/2017	13/09/2017
28		Projeto do sistema de alimentação	14d	25/08/2017	13/09/2017
29		Definição do sistema de armazenamento	7d	25/08/2017	04/09/2017
30		Definição das baterias	14d	25/08/2017	13/09/2017
31		☐ Sistema Eletrônico	14d?	25/08/2017	13/09/2017
32		Definição do módulo de controle	7d	25/08/2017	04/09/2017
33		Definição do módulo de comunicação	7d	25/08/2017	04/09/2017
34		Definição dos componentes eletrônicos	11d?	25/08/2017	08/09/2017
35		Layout	14d	25/08/2017	13/09/2017
36		Simulação	14d	25/08/2017	13/09/2017
37		⊟ Software	10d	25/08/2017	07/09/2017
38		Definição da arquitetura de software	7d	25/08/2017	04/09/2017
39		Levantamento de requisitos	10d	25/08/2017	07/09/2017
40		Definição de tecnologia	1d	25/08/2017	25/08/2017
41		□Construção	40d?	19/09/2017	13/11/2017
42	-	Estrutura	39d?	20/09/2017	13/11/2017
43	100	Resfriamento	39 d ?	20/09/2017	13/11/2017
44		Isolamento	39d	19/09/2017	10/11/2017
45		Alimentação e Armazenamento Energético	39d	19/09/2017	10/11/2017
46		Sistema Eletrônico	39d	19/09/2017	10/11/2017
47		Software	39d	19/09/2017	10/11/2017
48	10	Prova	1d	06/10/2017	06/10/2017
49	100	Elaboração Relatório PC2	7d?	26/10/2017	03/11/2017
50	-	Apresentação Relatório PC2	3d?	08/11/2017	10/11/2017
51		⊟Transição	17d?	14/11/2017	06/12/2017
52	100	Integração dos módulos	14d?	14/11/2017	01/12/2017
53	<u></u>	Testes	1d?	30/11/2017	30/11/2017
54	100	Elaboração Relatório PC3	9d?	21/11/2017	01/12/2017
55	10	Entrega e Apresentação do Projeto	4d?	01/12/2017	06/12/2017

Figura 3 – Cronograma do projeto

2 Referencial Teórico

2.1 Fenômenos de Transporte de Calor

A transferência de calor é um fenômeno em que, na física, dois corpos com temperaturas diferentes trocam suas energias térmicas quando estão em contato ou em um mesmo ambiente, para que atinjam o equilíbrio.

Alguns materiais são isolantes térmicos e tendem a evitar transferência. São importantes para prevenir gasto energético desnecessário e manter sistemas sem troca de calor se necessário.

Para o projeto proposto, é necessário uma temperatura interna entre 2 e 4 graus Celsius para preservar as características desejadas e não danificar o órgão colocado. Além disso, a caixa deve ser isolada termicamente para que minimize ao máximo as trocas de calor e não afete o órgão transportado.

Essa transferência de calor pode ser classificada de três formas diferentes: Condução, convecção e radiação.

2.1.1 Condução

Ocorre entre corpos que estão em contato físico e está relacionada com a energia cinética, a colisão entre os átomos realiza a transferência de energia cinética (calor) para as moléculas próximas. Com isso, o calor flui do local com temperaturas mais altas para o local com temperatura mais baixa.

A facilidade com que o calor transferido pode ser medido através da condutividade, normalmente, sólidos conduzem melhor que líquidos, e líquidos conduzem melhor do que sólidos.

Material	Condutibilidade Térmica (k)
Cobre (puro)	339
Ouro (puro)	317
Alumínio (puro)	237
Ferro (puro)	80,2
Aço Carbono (1%)	43
Aço Inoxidável (18/18)	15,1
Vidro	0,81
Plásticos	0.2 - 0.3
Água (liquido)	0,6

Tabela 6 – Condutividade térmica dos materiais a 300K. Fonte: BENNETT, 2008

2.1.2 Convecção

A convecção ocorre em líquidos ou gases somente. Ocorre pela diferença de densidades, o ar frio é mais denso e tom ao lugar do ar quente, o ar frio lentamente ganha calor e realiza o ciclo novamente.

Existem dois tipos de convecção: a natural (explicada acima) e a forçada, a qual utiliza aspiradores e bombas para fazer o deslocamento do fluído. (BENNETT, 2008; TIPLER, 2009).

2.1.3 Radiação

São ondas eletromagnéticas que se movem na velocidade da luz, por ser a única capaz de percorrer o espaço, é a principal maneira de transferência de calor do Sol com o planeta terra.

Figura 4 – Mecanismos de transferência de calor

2.2 Calorimetria

A calorimetria é o estudo do calor como energia térmica em trânsito. Com dois corpos em temperaturas diferentes, a transmissão ocorre do corpo mais quente para o mais frio até atingirem o equilíbrio térmico. Uma das medidas mais usadas é a quantidade de calor (Q), ao receber energia térmica, essa quantidade de calor é positiva, ao perder é negativa.

2.2.1 Calor Sensível e Latente

Um corpo pode receber dois tipos de calor, o latente e o sensível. O calor latente é obtido quando o corpo muda de estado físico por causa dessa transferência, já o calor sensível é apenas mudança na temperatura do corpo.

Podemos representar seus cálculos com a fórmula fundamental da calorimetria e a equação para calcular o calor latente. Que são:

$$Q_S = m \cdot c \cdot \Delta T \tag{2.1}$$

$$Q_L = m \cdot L \tag{2.2}$$

Onde:

- Q_S = Quantidade de calor sensível (em joules)
- $\bullet \ \ m = Massa do corpo em gramas$
- \bullet c = Calor sensível
- $\Delta T = Diferença de temperatura em °C$
- Q_L = Quantidade de calor Latente (em joules)
- \bullet L = Constante de calor latente

2.3 Sistemas de Refrigeração

A área de refrigeração se desenvolveu de uma maneira extraordinária no último século, o que ocasionou sua atuação nos mais diversos campos da indústria. Para fins de estudos, as aplicações da refrigeração podem ser classificadas da seguinte forma: doméstica, comercial, industrial, para transporte e para condicionamento de ar. A primeira, refrigeração doméstica, abrange principalmente a fabricação de refrigeradores de uso doméstico e de freezers. A capacidade destes refrigeradores varia muito, mas se encontram na faixa de temperaturas entre $-8^{o}C$ a $-18^{o}C$ (no compartimento dos congelados) e $+2^{o}C$ a $+7^{o}C$ (no compartimento dos produtos resfriados).

A refrigeração comercial envolve os refrigeradores especiais ou de grande porte utilizados principalmente em restaurantes, sorveterias, bares, açougues, laboratórios, entre outros. As suas temperaturas de congelamento e estocagem, são geralmente entre $-5^{\circ}C$ e $-30^{\circ}C$.

Os equipamentos industriais, em sua maioria, são maiores que os comerciais (com relação ao tamanho) e possuem como característica principal a necessidade de um operador de serviço. São exemplos de aplicações industriais as fábricas de gelo, grandes instalações de empacotamento de gêneros alimentícios, como carnes, peixes e aves, cervejarias, fábricas de laticínios, de processamento de bebidas, dentre outras.

A refrigeração marítima é referente à refrigeração a bordo de embarcações e inclui, por exemplo, a refrigeração realizada em barcos de pesca e em embarcações de transporte de cargas perecíveis. A refrigeração de transporte, por outro lado, envolve equipamentos de refrigeração para caminhões e vagões ferroviários refrigerados.

Como se pode analisar, as aplicações na área da refrigeração são bem variadas, sendo difícil de uma certa maneira estabelecer de forma precisa as barreiras de cada uma dessas divisões.

2.3.1 Sistema de Compressão Mecânica de Vapor (CMV)

O sistema de compressão mecânica de vapor, utilizado na maioria dos sistemas de refrigeração atual, inclusive nos refrigeradores domésticos, funciona a partir da aplicação dos conceitos de calor e trabalho, utilizando um fluido refrigerante. Este fluido é uma substância que, circulando dentro de um circuito fechado, tem a capacidade de retirar o calor de um meio ao mesmo tempo em que se vaporiza em baixa pressão. O fluido entra no evaporador a baixa pressão, na forma de mistura de líquido-vapor, e retira energia do meio interno refrigerado (energia dos alimentos) enquanto passa para o seu estado de vapor. O vapor entra no compressor onde é comprimido e bombeado, transformando-se em vapor superaquecido e movimentando-se para o condensador, que possui a função de liberar a energia retirado dos alimentos e resultante do trabalho de compressão para o meio exterior. O fluido, ao liberar essa energia, passa do estado de vapor superaquecido para líquido, ou seja ocorre o processo de condensação, e finalmente entra no dispositivo de expansão, onde a sua pressão é reduzida, para novamente ingressar no evaporador e reiniciar o ciclo. Esse processo é ilustrado na figura a seguir (Fig. 5):

Figura 5 – Modelo de um CMV

Os principais componentes desse sistema e suas funções estão definidas a seguir:

• COMPRESSOR: Sua principal função é succionar o fluido refrigerante a baixa pressão da linha de sucção e comprimí-lo em direção ao condensador a alta pressão e temperatura na fase gasosa (vapor superaquecido).

Figura 6 – Modelo de um compressor

• CONDENSADOR: Por meio do condensador e suas aletas, o fluido refrigerante advindo do compressor a alta temperatura, efetua a troca de calor com o ambiente externo, liberando o calor que foi absorvido no evaporador e no processo de compressão. Nesta etapa, ocorre uma transformação de vapor superaquecido para líquido sub resfriado a alta pressão.

Figura 7 – Modelo de um condensador

• FILTRO SECADOR: Executa duas funções muito importantes: A primeira é reter as partículas sólidas que em circulação no circuito, podem provocar obstruções ou danos ao componentes mecânicos do compressor. A segunda é absorver totalmente a umidade residual do circuito que ocasionalmente não tenha sido retirada pelo processo de vácuo, poupando danos ao sistema, como por exemplo, a formação de ácidos, corrosão, aumento das pressões de trabalho e obstrução do tubo capilar por congelamento das gotículas de umidade.

Figura 8 – Modelo de um filtro secador

- TUBO CAPILAR: É um tubo de cobre com o diâmetro reduzido que tem como finalidade receber o fluido refrigerante do condensador e proporcionar a perda de carga do fluido refrigerante separando os lados de alta e baixa pressão.
- EVAPORADOR: Recepciona o fluido refrigerante proveniente do tubo capilar, em seu estado líquido a baixa pressão e temperatura. Desta forma, o fluido evapora absorvendo o calor da superfície da tubulação do evaporador, ocorrendo a transformação de líquido sub resfriado para vapor saturado a baixa pressão. Este efeito ocasiona a diminuição de temperatura do ambiente interno do refrigerador.

Figura 9 – Modelo de um evaporador

De forma parecida funcionam também os grandes sistemas de refrigeração, como as câmaras frigoríficas por exemplo. O que difere entre esses sistemas é o número de unidades compressoras, evaporadoras, de expansão e condensadoras compreendidas, que nestes últimos podem ser múltiplos, bem como o sistema de controle que pode se tornar altamente complexo.

2.4 Modelo cliente-servidor/sistema web

Em um modelo cliente-servidor, os dados de um sistema são armazenados em poderosos computadores chamados servidores. Os usuário utilizam máquinas mais simples, chamadas de clientes. As máquinas cliente e servidor são conectadas entre si por uma rede, conforme ilustrado pela Fig. 10.

Figura 10 – Modelo cliente-servidor.

Em uma aplicação web, o servidor fornece páginas Web com base em seu banco de dados em resposta a solicitação do cliente. Sob a maioria das condições, um único servidor pode lidar com um grande número (centenas ou milhares) de clientes simultaneamente.

Examinando o modelo cliente-servidor em detalhes, é possível perceber que existem dois processos em execução, um na máquina cliente e outro na máquina servidor. A comunicação toma a forma do processo cliente enviando uma mensagem pela rede ao processo servidor. Então, o processo cliente espera por uma mensagem de resposta. Quando processo servidor recebe a solicitação, ele executa o trabalho solicitado ou procura pelos dados solicitados e envia uma resposta de volta (Fig.) (TENENBAUM, 2011).

Figura 11 – Mensagens trocadas entre um processo cliente e um processo servidor

2.5 Framework Django

Django é um framework gratuito e de código aberto para a criação de aplicações web, escrito em Python, uma linguagem de programação multiparadigma. É um framework web, ou seja, é um conjunto de componentes que ajuda a desenvolver sites de forma mais rápida e mais fácil.

Quando se está construindo um site, o desenvolvedor sempre precisa de um conjunto similar de componentes: uma maneira de lidar com a autenticação do usuário (inscrever-se, realizar login, realizar logout), painel de gerenciamento para o seu site, formulários, upload de arquivos, etc. Há muito tempo, outras pessoas notaram várias semelhanças nos problemas enfrentados pelos desenvolvedores web quando estão criando um novo site, então eles uniram-se e criaram os frameworks (Django é um deles) que lhe dão componentes prontos, que você pode usar. O framework Django utiliza o padrão MTV (model-template-view), onde as views funcionam como controllers e templates funcionam como views.

2.6 Sistema interno

Sistema responsável por se comunicar com o aparato eletrônico, recebendo dados e interpretá-los. Para isso, será utilizado a linguagem de programação C++. C++ é uma linguagem de programação de alto nível com facilidades para o uso em baixo nível. Foi desenvolvida por Bjarne Stroustrup (foto) como uma melhoria da linguagem C, e desde os anos 1990 é uma das linguagens mais populares do mundo.

Alguns profissionais afirmam que C++ é a linguagem mais poderosa que existe, veja algumas características dela:

- É um superconjunto da linguagem C, e contém vários melhoramentos;
- É a porta para a programação orientada a objetos;
- C++ pode virtualmente ser efetivamente aplicado a qualquer tarefa de programação;
- Há vários compiladores para diversas plataformas tornando a linguagem uma opção para programas multiplataforma.

2.7 Ergonomia de carregamento de peso

Para uma pessoa de 18 a 35 anos, os limites de pesos que podem ser levantados sem causar problemas à sua saúde são 40 kg para homens e 20 kg para mulheres. Portanto em média 30 kg por pessoa. Deste modo, um objeto carregado por duas pessoas poderia pesar um máximo de 60 kg. Aplicando um fator de segurança de 30%, o peso máximo para um objeto carregado por duas pessoas é aproximadamente 40 kg.

2.8 TERMOVIDA – Caixa térmica para transporte de órgãos para transplantes

O projeto TERMOVIDA consiste em uma caixa térmica para transporte de órgãos para transplantes com um sistema de refrigeração autônoma.

A legislação da ANVISA regulamenta como deve se dar o transporte de órgãos para transplante, as informações que devem ser coletadas que constatam o tempo de vida e a temperatura ideal a ser mantida para que os órgãos que sejam transportados em segurança por este dispositivo puderam indicar como deve ser o recipiente e quais sao os equipamentos necessário para que o mesmo funcione corretamente.

Neste projeto, é utilizada uma pastilha de efeito Peltier para a refrigeração da caixa, controlada por histerese, via um micro-controlador. O equipamento, utilizado durante o transporte em veículos, utiliza alimentação elétrica do sistema de 12V do veículo.

A estrutura da caixa é feita de material isolante térmico. Esta possui uma porta de ventilação na lateral, onde está posicionada a pastilha Peltier, e um espaço no qual um painel LCD sensível ao toque está alocado. O painel é responsável por mostrar as condições monitoradas.

Figura 12 – TERMOVIDA - Caixa térmica para transporte de órgãos para transplantes

3 Solução Proposta

3.1 Arquitetura de Software

O projeto proposto irá dispor de sistemas de softwares distintos que se comunicam entre si, ao qual irão ser responsáveis pelo controle, recepção e apresentação dos dados aos usuários, oriundos do sensoriamento da transportadora de órgãos.

3.1.1 Sistema Interno

Para o sistema implementado junto ao módulo eletrônico da transportadora será utilizado a linguagem de programação C++, que será responsável pela transmissão e recepção dos dados por meio dos sensores e circuitos. Este sistema será integrado junto ao sistema web por meio de arquitetura cliente-servidor ao qual será especificado posteriormente.

3.1.1.1 Requisitos funcionais

Identificador	RF001		
Nome	Apresentar o nível de pressão da caixa transportadora		
Módulo	Sistema interno		
Versão	2 Prioridade Essencial		
Descrição	O sistema deve ser capaz de apresentar o nível de pressão registrado		
Descrição	pelo sensor de pressão integrado na caixa transportadora		

Tabela 7 – Sistema interno - requisito funcional 001

Identificador	RF002		
Nome	Apresentar o nível de temperatura da caixa transportadora		
Módulo	Sistema interno		
Versão	2 Prioridade Essencial		
Descrição	O sistema deve ser capaz de apresentar o nível de temperatura regi		
Descrição	trado pelo sensor de temperatura integrado na caixa transportadora		

Tabela 8 – Sistema interno - requisito funcional 002

Identificador	RF003		
Nome	Controlar o nível de temperatura manualmente		
Módulo	Sistema interno		
Versão	2 Prioridade Essencial		
Descrição	O usuário é capaz de controlar o nível de temperatura da caixa trans-		
Descrição	portadora manua	llmente	

Tabela 9 – Sistema interno - requisito funcional 003

Identificador	RF004			
Nome	Сс	Controlar o nível de pressão manualmente		
Módulo	Sis	Sistema interno		
Versão	2	Prioridade	Essencial	
Descrição	0	O usuário é capaz de controlar o nível de pressão da caixa trans-		
Descrição	po	rtadora manua	lmente	

Tabela 10 – Sistema interno - requisito funcional 004

Identificador	RF005		
Nome	Controlar o nível da temperatura automaticamente		
Módulo	Sistema interno		
Versão	2 Prioridade Essencial		
	O sistema deve ser capaz de sensoriar e controlar a o nível de		
Descrição	temperatura da caixa transportadora automaticamente de acordo		
	com o órgão a ser transportado		

Tabela 11 – Sistema interno - requisito funcional 005

Identificador	RF006	
Nome	Controlar o nível da pressão automaticamente	
Módulo	Sistema interno	
Versão	2 Prioridade Essencial	
	O sistema deve ser capaz de sensoriar e controlar a o nível de pres-	
Descrição	são da caixa transportadora automaticamente de acordo	
	com o órgão a ser transportado	

Tabela 12 – Sistema interno - requisito funcional 006

Identificador	RF007		
Nome	Selecionar parâmetros pré-definidos de acordo com o órgão		
Módulo	Sistema interno		
Versão	1 Prioridade Desejável		
Descrição	Quando o usuário escolher o tipo de órgão a ser transportado, o sistema deve ser capaz de selecionar automaticamente parâmetros de pressão e temperatura pré-definidos para aquele tipo de órgão.		

Tabela 13 – Sistema interno - requisito funcional 007

3.1.2 Sistema Web

Para a construção da aplicação proposta foi definido a implementação de um sistema web no qual ficarão dispostas as informações do sensoriamento da transportadora, além de informações de localização pelo GPS integrado. Este sistema terá como servidor a Raspberry Pi e os usuários poderão se conectar e visualizar o transporte do órgão.

Dessa forma, a implementação deste sistema utilizará das seguintes tecnologias:

- Linguagem de Programação Python linguagem de programação de alto nível, multiparadigma, interpretada e de tipagem dinâmica e forte;
- Django Framework framework para desenvolvimento web, escrito em Python, open source, que utiliza o padrão model-template-view. (MTV), utiliza por padrão banco de dados Sqlite3.

3.1.2.1 Requisitos funcionais

Identificador	RF008	
Nome	Apresentar o nível de pressão da caixa transportadora	
Módulo	Sistema Web	
Versão	2 Prioridade Essencial	
Descrição	O web app deve ser capaz de apresentar ao usuário a informação do nível de pressão advindo do sensor de pressão da caixa transportadora	

Tabela 14 – Sistema Web - requisito funcional 008

Identificador	RF009	
Nome	Apresentar o nível de temperatura da caixa transportadora	
Módulo	Sistema Web	
Versão	Prioridade Essencial	
	web app deve ser capaz de apresentar ao usuário a in	ıformação
Descrição	do nível de temperatura advindo do sensor de temperatura da	
	caixa transportadora	

Tabela 15 – Sistema Web - requisito funcional 009

Identificador	RF010		
Nome	Apresentar a localização em tempo real da caixa transportadora		
Módulo	Sistema Web		
Versão	2 Prioridade Essencial		
Descrição	O web app deve ser capaz de apresentar a localização em tempo		
Descrição	real advindo do GPS integrado na caixa transportadora		

Tabela 16 – Sistema Web - requisito funcional 010

Identificador	RF011		
Nome	Cadastrar médicos		
Módulo	Sistema Web		
Versão	2 Prioridade Essencial		
Descrição	O web app deve permitir o cadastro de médicos certificados com CRM		

Tabela 17 – Sistema Web - requisito funcional 011

Identificador	RF012			
Nome	Po	Possuir nível de acesso admin		
Módulo	Sis	Sistema Web		
Versão	2	2 Prioridade Essencial		
Descrição	О	O web app deve possuir um nível de acesso de administrador con		
Descrição	pr	ivilégios própri	os	

Tabela 18 – Sistema Web - requisito funcional 012

Identificador	RF	RF013		
Nome	Po	Possuir nível de acesso médico		
Módulo	Sis	Sistema Web		
Versão	2	2 Prioridade Essencial		
Descrição	О	O web app deverá possuir um nível de acesso para médicos, o qual		
Descrição	é i	nferior o nível	de acesso admin	

Tabela 19 – Sistema Web - requisito funcional 013

Identificador	RF014		
Nome	Apresentar informações do órgão a ser transportado		
Módulo	Sistema Web		
Versão	1 Prioridade Desejável		
Descrição	O web app deve ser capaz de apresentar algumas informações do ór-		
Descrição	gão que está sendo transportado no momento		

Tabela 20 – Sistema Web - requisito funcional 014

Identificador	RF015		
Nome	Gerar relatório do processo de transporte do órgão		
Módulo	Sistema Web		
Versão	1 Prioridade Desejável		
	O web app deve ser capaz de gerar um relatório final com registros		
Descrição	do processo de transporte de algum órgão específico.		
Descrição	Como por exemplo: a variação de temperatura e pressão, o		
	registro do deslocamento (origem, destino e percurso)		

Tabela 21 – Sistema Web - requisito funcional 015

3.2 Sistema de Refrigeração

O sistema de refrigeração é uma etapa crucial do projeto da transportadora de órgãos, atendendo ao requisitos definidos o recipiente em que o órgão é armazenado e transportado deve se manter refrigerado durante o período de transporte. Refrigeração pode ser definida como todo processo de remoção de calor, redução e manutenção de temperatura de um espaço ou material abaixo da temperatura ambiente (JÚNIOR, 2003). Portanto, a partir da análise das características da demanda de refrigeração e do conhecimento para a construção e integração do produto, foram levantadas duas opções de resfriamento:

- Refrigeração Termoelétrica Células Peltier;
- Refrigeração por Compressão Mecânica de Vapor Compressor.

O refrigerador termoelétrico utiliza-se de dois materiais distintos, como pares termoelétricos convencionais. Há duas junções entre esses dois materiais em um refrigerador termoelétrico, uma está localizada no espaço refrigerado e a outra no meio ambiente. Quando se aplica uma diferença de potencial, a temperatura da junção que se encontra no espaço refrigerado diminui e a temperatura da outra junção aumenta. Operando em regime permanente, ocorrerá uma transmissão de calor do espaço refrigerado para a junção fria. A outra junção se encontrará a uma temperatura acima à ambiente e haverá então uma transmissão de calor para o local.

A utilização dos módulos de peltier tem as seguintes vantagens:

- Ausência de peças móveis e gases refrigerantes para refrigeração;
- Aquece e resfria dependendo apenas da polaridade da alimentação;
- Ausência de barulho e vibrações;
- Tecnologia 100 por cento estado sólido;
- Tamanho da solução reduzido e alta durabilidade;
- Funcionam em qualquer orientação com / sem gravidade diferente dos refrigeradores baseados em compressores.

Já o sistema de refrigeração por compressão mecânica de vapor funciona simplificadamente da seguinte forma, o fluido refrigerante que percorre um circuito fechado para absorver e remover o calor de um espaço que necessita de arrefecimento. Em qualquer processo de refrigeração, ocorre a transferência de calor de um ambiente para outro com a ajuda de um agente externo, que no caso deste sistema é o compressor (FERRAZ, 2008).

Ao se optar por este tipo de sistema de refrigeração, têm-se como vantagens:

- Baixo consumo;
- Maior eficiência.

Em um primeiro momento optou-se pela refrigeração termoelétrica, realizaram-se vários testes de configurações para a célula peltier, entretanto não obtivemos resultados satisfatórios com relação à temperatura atingida dentro da câmara a ser refrigerada, apesar de conseguirmos uma temperatura adequada na face da módulo termoelétrico. A figura abaixo apresenta alguns dos testes realizados.

Figura 13 – Testes iniciais utilizando a célula Peltier

Devido aos resultados insatisfatórios, optou-se então pelo sistema por compressão mecânica de vapor, tendo como fonte de fornecimento uma bateria estacionária. O funcionamento do sistema de refrigeração construído está expresso na figura a seguir:

Figura 14 – Diagrama esquemático do sistema com compressor

3.2.1 Dimensionamento do Sistema

3.2.1.1 Cálculo de Carga Térmica

Os cálculos da carga térmica objetivam determinar a quantidade de calor que deverá ser removida da caixa transportadora de órgãos, para que se atinja as condições adequadas para o armazenamento e transporte do órgão.

Para desenvolver os cálculos da carga térmica do sistema, foram levantados os seguintes dados do sistema:

1. Dimensões da caixa interna (que contém o órgão):

• Altura: 0,2 m.

• Largura: 0,25 m.

• Profundidade: 0,25 m.

2. Dimensões da caixa externa:

• Altura: 0,3 m

• Largura: 0,3 m.

• Profundidade: 0,3 m.

3. Capacidade (volume) da caixa térmica: $0,0027 \ m^3 \ (27 \ L)$

4. Temperatura interna de operação: $2^{o}C$

5. Temperatura externa à caixa: $35^{\circ}C$.

6. Material de isolamento térmico: Poliestireno expandido.

7. Espessura do material de isolamento térmico: 0,07 m.

8. Tempo de resfriamento: 45 minutos.

3.2.1.2 Cálculo da energia e potência térmica do órgão:

Este cálculo se refere à quantidade de calor associada ao órgão e pode ser calculada pela equação:

$$Q = m \times c \times \Delta T \tag{3.1}$$

Sendo: Q = energia térmica (KJ)

m = massa (g)

 $c = \text{calor específico } (\frac{cal}{g^oC)}$

 $\Delta T = \text{Variação da temperatura } (^{o}C)$

Logo, a energia térmica do órgão é:

$$Q_{\circ rg\tilde{a}o} = 13,8KJ$$

Logo, a energia térmica do órgão é:

$$P_{\acute{o}rg\~{a}o} = \frac{13,8}{\Delta t} \approx 5,1W$$

3.2.1.3 Cálculo da energia e potência térmica da embalagem com solução Viaspan na qual o órgão está contido

Aplicando a equação para a energia térmica, tem-se:

$$Q = 500 \times 0,97 \times 33 \approx 67KJ$$

Aplicando a equação para a potência térmica, tem-se:

$$P = \frac{67KJ}{2700} \approx 24,8W$$

3.2.2 Cálculo da energia e potência térmica do alumínio da caixa interna

Aplicando a equação para a energia térmica, tem-se:

$$Q_{aluminio} = 3000 \times 0, 22 \times 33 \approx 91, 2KJ$$

Aplicando a equação para a energia térmica, tem-se:

$$P_{aluminio} \approx 33.8$$

A soma das potências térmicas do órgão, da embalagem contendo a solução Viaspan e do alumínio fornecem a potência térmica total do interior da caixa, necessária ao resfriamento.

A caixa externa também está envolvida nos cálculos de potência térmica devido a transferência de calor que ocorre entre a vizinhança e o sistema.

3.2.2.1 Cálculo da resistência térmica (Rt) e o coeficiente global de transferência de calor (U)

A resistência térmica é calculada a partir da equação

$$R_t = \frac{L_{isopor}}{K_{isopor}}$$

Sendo: R_t = resistência térmica $\frac{m^2K}{W}$

L = espessura (m)

 $\mathbf{K}=\text{condutibilidade}$ térmica $\frac{W}{mK}$

Aplicando a equação, tem-se:

$$R_t = \frac{0.7}{0.007} \approx 2 \frac{m^2 K}{W}$$

O coeficiente global de transferência de calor é calculado a partir da equação.

$$U = \frac{1}{R_t} \tag{3.2}$$

Aplicando a equação acima, tem-se:

$$U=0,5\frac{W}{m^2K}$$

A quantidade de calor que atravessa as paredes da caixa externa é dada pela equação a seguir:

$$Q = U \times A \times \Delta T \tag{3.3}$$

Aplicando a equação, considerando-se a área total da caixa, tem-se:

$$Q = 0, 5 \times 0, 54 \times 33K$$

Por fim, a potência térmica total do sistema é calculada pela soma da potência térmica interna da caixa junto a quantidade de calor que atravessa as paredes da caixa externa.

Desta forma, conclui-se que o sistema de refrigeração deve suprir a potência de 72,61 W para o resfriamento às condições desejadas.

3.2.3 Evaporador

Para determinar a área do trocador de calor, podemos utilizar o Método de Média Logarítmica das Diferenças de Temperatura que é dado pela seguinte relação:

$$Q = k \times A \times \Delta T_{ln} \tag{3.4}$$

Onde:

Q - taxa de transferência térmica

K - coeficiente de transferência de calor global

A - área de superfície de transferência de calor

 ΔT_{ln}

Como o valor do coeficiente global de transferência de calor (K) pode variar, conforme a tabela abaixo,

Descrição	K (kcal/m².h.ºC)		
Evaporador tubular inundado	244,15 - 732,45		
Resfriador de salmoura tubular afogado	146,49 - 488,30		
Evaporador de água seco tubular, com Freon nos tubos, água na carcaça	244,15 - 561,55		
Evaporador Baudelot, água, inundado	488,30 - 976,6		
Evaporador Baudelot, água, seco	292,98 - 732,45		
Evaporador de tubo duplo, água	244,15 - 732,45		
Evaporador de tubo duplo, salmoura	244,15 - 610,38		
Evaporador de serpentina e carcaça	48,83 - 122,08		
Evaporador de água, tubular de aspersão	732,45 - 1220,75		

Figura 15 – Tabela com os possíveis valores de K

e considerando o pior dos casos de transferência de calor, obtemos um valor de 48,83 para um evaporador de serpentina e carcaça, que é o nosso caso.

A capacidade frigorífica (Q_0) é a quantidade de calor por unidade de tempo retirada do meio que se quer resfriar (produto) através do evaporador do sistema frigorífico. Para o sistema operando em regime permanente desprezando-se a variação de energia e potencial, pela primeira lei da termodinâmica obtém-se:

$$Q = m_f \times (h_1 - h_4) \tag{3.5}$$

Figura 16 – Volume de controle aplicado ao evaporador e a indicação do processo

 Q_0 é a capacidade frigorífica do ciclo operando em temperaturas TC e T_0 para m_f , entalpia específica h_1 e h_4 . O fluxo de massa de refrigerante (mf) deve ser mantido pelo compressor. Normalmente se conhece a capacidade frigorífica que deve ter o sistema de refrigeração, que deve ser igualada à carga térmica, se estabelecermos o ciclo de refrigeração que deve operar o sistema podendo assim determinar o fluxo de massa e, consequentemente, o compressor necessário ao sistema (JÚNIOR, 2005).

A quantidade de calor retirado por um quilo de refrigerante através do evaporador é denominada "Efeito Frigorífico - E.F.", isto é :

$$EF = h_1 - h_4 (3.6)$$

Então, substituindo pelos dados coletados:

$$m_f = 9,81 \frac{Kg}{h}$$

3.2.4 Compressor

Para o dimensionamento do compressor, é necessário calcular a potência necessária para fazer o fluido refrigerante circular pela serpentina. Essa potência foi encontrada a partir da formulação:

$$W_c = m_f \times (h_2 - h_1) \tag{3.7}$$

Sendo: W_c - potência teórica do compressor);

 m_f - fluxo de massa refrigerante;

 h_2 - entalpia no início da compressão;

 h_1 - entalpia no final da compressão;

3.3 Estrutura do Conjunto de Refrigeração

Após o dimensionamento do Sistema de Refrigeração, ocorreu a montagem do sistema final. O sistema dimensionado foi acoplado a estrutura geral do projeto, conforme demonstrado na Figura abaixo

Figura 17 – Estrutura do sistema de refrigeração

O compressor escolhido que satisfazia todas as necessidades dimensionadas, possui as seguintes especificações:

embraco)	COMPRESSOR TECHNICAL DA					
COMPRESSOR DEFINITION							
Designation Nominal Voltage/Frequency	EM 128HER 220-240 V 50-60 Hz						
Engineering Number A - APPLICATION / LIMIT WORKIN	51330: NG CONDITI						
1 Type		Hermetic reciprocating	compressor				
2 Refrigerant		R-134a					
3 Nominal voltage and frequency		220-240 / 50-60	[V/Hz]				
4 Application type		Low Back Pressure	Low Back Pressure				
4.1 Evaporating temperature range		-35°C to -10°C	(-31°F to 14°F)				
5 Motor type		RSIR-CSIR	RSIR-CSIR				
6 Starting torque		LST - Low Starting Torq	LST - Low Starting Torque				
7 Expantion device		Capillary tube	122				
8 Compressor cooling			Operating vol	tage range			
			50 Hz	60 Hz			
8.1 LBP (32°C Ambient temper	ature)	Static	198 to 255 V	198 to 255 V			
8.2 LBP (43°C Ambient temperature)		Static	198 to 255 V	198 to 255 V			
8.3 HBP (32°C Ambient temperature)		-		-			
B.4 HBP (43°C Ambient temper	rature)	*	- 3				
9 Maximum condensing pressure	ss/temperat	ure	- 40				
9.1 Operating (gauge)		16.2	[kgf/cm²] (230 psig)	/ °C - °F			
9.2 Peak (gauge)		20.6	[kgf/cm²] (293 psig)	/ °C - °F			
10 Maximum winding temperature		130	[*C]				

Figura 18 – Especificações Técnicas do Compressor.

3.4 Sistema de Alimentação

As fontes de energia que serão utilizadas para alimentar o produto, incluindo o sistema de refrigeração e os componentes elétricos e eletrônicos, são a rede elétrica comum brasileira e um banco de baterias. O banco de baterias será dimensionada a fim de manter os subsistemas em perfeita operação durante o período solicitado de 48 horas.

3.4.1 Diagrama do Sistema

A Figura a seguir apresenta o diagrama elétrico simplificado do produto. Ele representa o circuito de alimentação utilizado, desde a fonte de energia — rede elétrica padrão — até o uso final em seus componentes elétricos e eletrônicos. É importante ressaltar que este diagrama será refinado ao longo dos pontos de controle, pois o sistema pode ser retificado para melhor atender às condições de contorno que forem encontradas durante a execução do projeto.

Figura 19 – Diagrama Elétrico Preliminar

O sistema foi dimensionado com um fator de segurança elevado, pois a proposta de projeto é de um sistema de acondicionamento de órgãos para transplante. Sendo assim, o nível de confiabilidade do produto deve ser extremamente alto, para isso todo o sistema de alimentação foi dimensionado relacionando o sistema ao tempo de operação necessário ao transporte e diretamente ao consumo de energia advinda da bateria.

3.4.2 Dimensionamento das Baterias

Baterias têm a finalidade de armazenar energia e liberá-la em determinada periodicidade, e de forma controlada. Sua escolha deve ser adequada às necessidades de consumo energético do projeto, e

considera os dados de corrente elétrica e tensão. Para a seleção da bateria adequada deve-se estudar se ela é capaz de armazenar a energia total demandada às necessidades do projeto, e se ela consegue entregar toda a energia necessária ao funcionamento do equipamento. O processo de dimensionamento do banco de baterias deve ser realizado inicialmente e depois sucessivamente aperfeiçoado, em função dos demais dimensionamentos e ajustado em função dos custos, disponibilidade de mercado, entre outros.

O processo de dimensionamento deve seguir algumas etapas, a primeira delas é definir o tipo de bateria a ser utilizado. Dentre as opções de bateria disponíveis no mercado, optou-se pela bateria estacionária. Sua vida útil é de aproximadamente 5 anos, devido à sua composição com materiais internos mais sobres se comparada às baterias automotivas, por exemplo. Podem, também, suportar descargas de até 80% de sua capacidade, sem prejudicar sua vida útil, e resistem a ciclos de carga ou descarga mais profundos. Tais características proporcionam maior confiabilidade ao funcionamento do projeto pelo uso da bateria estacionaria.

Após a escolha do tipo de bateria, deve ser analisada a profundidade de descarga com que se vai trabalhar. Quanto mais profundos os ciclos de descarga-carga, menor a vida útil da bateria. Ou seja, reduzir-se a capacidade da bateria, gasta-se menos no início, porém as baterias durarão menos e os gastos com reposição serão maiores. Um valor usado para essa profundidade de descarga para ciclos diários com baterias de chumbo-ácido é de 10% a 20%. Para ciclos esporádicos, podem ser utilizados ciclos mais profundos, da ordem de 60%.

A capacidade do banco de baterias em Ah pode ser calculada conforme a expressão abaixo:

$$Capacidade(Ah) = \frac{Consumo(\frac{Wh}{dia}) \times Autonomia(dias)}{V_{Baterias}(V) \times profundidade(pu)} \tag{3.8}$$

O dimensionamento da bateria requer inicialmente a relação de potência demandada para suprir as necessidades dos componentes elétricos do projeto, como mostra a tabela a seguir:

COMPONENTE	ALIMENTAÇÃO (V)	CORRENTE (A)	POTÊNCIA (W)
MSP430g2553	5	330μ	1,65 mW
RASPBERRY PI	5	2,5	12,5
PROTETOR	12	26,5m	318m
COMPRESSOR	12	2,4	28,33
$\frac{1}{10}HP$			
MICRO MOTOR	12	$260,9 {\rm m}$	3,6

Tabela 22 – Consumo energético dos componentes

Ao somar todas as cargas necessárias, o total foi de 229,819 Wh, já o consumo de corrente fica em 3,5365 A/h. O principal problema é o alto valor de partida do motor-compressor, o que é chamado de corrente de pico, no caso do motor-compressor utilizado, a corrente pode atingir um o valor entre 2-3 Ampères, o que requer atenção ao dimensionar a bateria para que ela suporte esse aumento inicial.

Com relação a profundidade da descarga no final da autonomia (pu) - utilizamos 0,6 (descargas mais profundas significam vida útil menor para a bateria e menos profundas um investimento inicial maior). Sendo que o consumo total é obtido a partir do levantamento das cargas, a autonomia de 5 horas.

Logo,

3.4.3 Dimensionamento do Inversor

Inversores são conversores estáticos que, segundo Matakas Jr. E Komatsu (2011) transformam corrente ou tensão de forma contínua para a alternada. Muitos equipamentos operam em corrente/tensão contínua, sendo que a rede elétrica opera em corrente/tensão contínua. Portanto, a maneira mais simples de se trabalhar sem necessidade de mudanças drásticas em nenhum dos dois sistemas é se utilizar um inversor.

Este equipamento pode ser monofásico ou trifásico, sendo que o modelo utilizado no projeto será monofásico, e irá converter 12V da bateria que alimenta o sistema para 220V, valor de tensão que os outros componentes do sistema trabalham. Neste caso, com apenas duas chaves eletrônicas e uma fonte de tensão CC dividida é possível obter o inversor desejado.

Os inversores podem operar com duas tecnologias, senóide modificada ou senóide pura. No primeiro caso, formam uma onda quadrática, aproximando-se da senoidal AC, bom custo x benefício e pode ser aplicado na maioria dos casos, exceto para motores. O segundo caso pode ser usado como suprimento de energia AC em qualquer sistema, o que difere é o valor e o tamanho.

Um inversor bem dimensionado tem a potência maior que o consumo dos equipamentos para evitar que este trabalhe sempre em máxima potência, em suma um inversor é projetado em 3 estágios, oscilador, driver de corrente e transformador.

Figura 20 – Diagrama Elétrico Preliminar

Em primeiro lugar o oscilador transforma a corrente contínua em uma onda quadrada de 60Hz, que precisa ser adequada para uma onda senoidal, para isso é utilizado um filtro passa faixa centrado em 60Hz para eliminar as harmônicas indesejadas e obter uma onda senoidal mais eficaz possível. Entretanto, a saída do oscilador possui uma corrente muito baixa, por isso é necessário um ganho de corrente, para que seja entregue uma potência satisfatória na entrada do primário do transformador. Como a potência requerida é muito alta, se faz necessário que sejam inseridos vários transistores em paralelo para aumentar o ganho de corrente.

Na última fase o transformador faz a elevação da tensão para 220V que é a tensão necessária para ligar o compressor.

3.4.4 Requisitos

Com vistas à concepção e validação da solução, foram definidos os requisitos relativos ao subsistema de alimentação e refrigeração do produto:

3.4.4.1 Requisitos Funcionais

O sistema de alimentação deve ser capaz de:

- Armazenar energia elétrica;
- Fornecer energia para os componentes elétricos e eletrônicos de controle e monitoramento do produto;
- Fornecer energia para o sistema de refrigeração.

3.4.4.2 Requisitos Não Funcionais

O sistema de alimentação deve ser capaz de:

- Prover a energia necessária para o bom funcionamento do produto durante um período máximo de 48 horas, com armazenamento de energia em baterias;
- O sistema deve ser capaz de controlar a potência que será entregue as placas de peltier;
- Possuir eficiência energética aceitável, através de um controle de potência no sistema de refrigeração, escolha de componentes eletrônicos de baixa potência e sistemas de standby em determinados
 componentes não críticos do produto;
- Ser estável energeticamente, evitando picos de potência com componentes e segurança de circuitos.

3.5 Estrutura

3.5.1 Arquitetura da estrutura

A estrutura da transportadora de órgãos será feita considerando como principais fatores a mobilidade e a capacidade de comportar todos os sistemas cumprindo os requisitos de projeto. Além disso, desejou-se aproximar o centro de massa o mais no centro possível da estrutura geral para gerar estabilidade.

Os esquemáticos a seguir mostram de forma simplificada as dimensões, composição e disposição dos elementos estruturais.

3.5. Estrutura 47

Figura 21 – Estrutura básica da transportadora de órgãos

Figura 22 – Dimensões da estrutura principal do carrinho

Figura 23 – Dimensões da base de apoio da estrutura

Figura 24 – Dimensões dos elementos estruturais internos

3.5.2 Materiais principais

O material estrutural tem como objetivo resistir aos esforços durante a utilização da transportadora de órgãos. As cargas de ocorrências durante sua utilização são puramente estáticas, além disso, o projeto deve conciliar baixo custo com baixo peso. Portanto, uma boa opção é o metalon, um aço carbono com costura de baixo custo comumente utilizado em estruturas mecânicas.

3.5. Estrutura 49

Figura 25 – Perfis de Metalon

Para a caixa de alocação de órgãos, foi escolhido o aço inox, devido suas propriedades anticorrosivas e térmicas, aliadas ao baixo custo e maior facilidade de aquisição quando comparado com o aço cirúrgico.

Figura 26 – Chapa de Aço Inox 304

A carenagem em volta da estrutura será feita de Policloreto de Vinila (PVC), por ser um material leve e de fácil maneabilidade.

Figura 27 – Chapas de Policloreto de Vinila

3.5.3 Requisitos

3.5.3.1 Requisitos Funcionais

- Ser capaz de armazenar o órgão hermeticamente
- Comportar todos os outros subsistemas
- Ser móvel e carregável
- Todas as partes internas do compartimento de carga devem ser capazes de passar por processo de esterilização

3.5.3.2 Requisitos não-funcionais

- Possuir compartimento que possa ser completamente vedado
- Possuir sistema de rodas para movimentação em solo e alças para carregamento manual
- Pesar um máximo de 40 kg
- As peças que serão refrigeradas devem ser resistentes a corrosão
- Os elementos responsáveis por suportar cargas devem ter resistência para isto
- O sistema de rodas deve ser capaz de fácil anexagem e desanexagem
- O compartimento de carga de órgãos deve ser facilmente anexado e desanexado em seu local

3.5.4 Desafios Técnicos

3.5.4.1 Isolamento térmico da câmara

Para ajudar a manter uma baixa temperatura estável na câmara fria, é necessário que haja um isolamento térmico em volta do compartimento resfriado. Para isto será feito um revestimento de poliestireno expandido (isopor) ou espuma de poliuretano ao redor da câmara fria.

3.5.4.2 Esterilização do sistema

De acordo com as normas o compartimento no qual o órgão estará contido deve ser esterilizado, portanto deve ser capaz de fácil montagem e desmontagem, o cria um desafio para a fabricação de um compartimento que seja facilmente retirado quando necessário, mas ao mesmo tempo deve estar fixo durante todo o transporte do órgão. Em vista disso, o compartimento estará anexado a estrutura através de peças centralizadoras de seção quadrada com as dimensões da câmara fria e um furo cujo diâmetro é o mesmo do compartimento de carga.

3.5.4.3 Mobilidade do sistema

A transportadora possui fácil mobilidade como requisito, o que traz como desafio técnico como será feito o sistema de mobilização de modo estável. A solução que será adotada consiste em módulo que pode ser anexado e desanexado da estrutura principal. Deste modo, quando necessário colocar a transportadora em cima de uma bancada ou algo semelhante, é possível desanexar o módulo de mobilização. O módulo possuirá rodas de baixa vibração e boa capacidade de carga com travas.

3.6 Sistemas Eletrônicos

Com vistas à concepção e validação da solução, foram definidos os requisitos relativos ao subsistema de alimentação e refrigeração do produto:

3.6.1 Servidor

O servidor será construído com auxílio do Rasberry Pi,que é um computador que praticamente o tamanho de um cartão de crédito. Ele foi desenvolvido primeiramente com o intuito de se aprender programação. Pode ser usado como um substituto para grandes computadores, pois ele permite a instalação de um sistema operacional, baseado em Linux, como o Raspbian. Com a sua boa capacidade de processamento ele permite inclusive que se possa jogar certos jogos e ver vídeos em alta definição. Os pinos de propósito geral de entrada/saída (GPIO, general purpose input/output) permitem que ela seja usada pra uma grande variedade de várias aplicações. Esses pinos são pinos de entrada e saída digitais.

Figura 28 – Vista superior da Raspberry

A Raspberry Pi 3 possui um processador quad core de 1.2GHz, 64 bits, uma placa de rede wireles, módulo Bluetooth, 4 portas USB, 40 pinos de entrada e saídas digitais, GPIOs, porta HDMI, por Ethernet, conector de áudio 3.5mm, P2, um slot para cartão micro SD. Para a sua alimentação, é necessário uma

fonte de 5V e de 2A, totalizando um gasto de energia de 10W. Se a fonte não consegue fornecer uma tensão e essa corrente especificada, a placa de desenvolvimento pode funcionar de uma maneira inadequada e não conseguindo tomar todas as ações necessárias comprometendo o funcionamento do sistema que depende dela como um todo.

A sua utilização, será feita conjunto com outros microcontroladores, pois mesmo havendo uma alta capacidade de processamento, ela não é muito adequada para situações em que se necessite processamento quase em tempo real. Isso ocorre pois ela está em amplo funcionamento com um sistema operacional, o que consome muitos recursos do processamento.

Para a sua utilização em conjunto, será necessária o uso de um protocolo de comunicações, como o I2C, SPI ou UART, essa escolha será feita para que se tenha um melhor aproveitamento da velocidade de comunicação. I2C e SPI, levam uma vantagem, pois ela permite que seja feito uma rede de comunicação com vários dispositivos. Isso é permitido, pois se pode haver um mestre, que determina a velocidade de transmissão, e vários escravos que vão se comunicando com o mestre.

3.6.2 Circuito Preventivo

O circuito preventivo visa proteger o sistema como um todo da ocorrência de sobretensão, evitando assim que se danifique o produto. Ele é feito tendo como base um relé e um diodo Zener. Sua função é interromper a passagem de corrente no momento em que a tensão de entrada ultrapassa um valor limiar. O circuito está ilustrado logo abaixo:

Figura 29 – Circuito de proteção

3.6.3 Controle PWM

O controle PWM — tanto o que agirá sobre o cooler quanto o que agirá sobre a célula peltier — está ilustrado na figura logo abaixo:

Figura 30 – Circuito responsável pelo controle PWN

Ligado a esse circuito, está o controlador MSP430, responsável por utilizar um dos seus pinos como saída PWM para que o circuito acima o amplifique com auxílio do MOSFET. Conforme o datasheet, o pino PWM do MSP430 é o P1.6

3.6.3.1 Subsistema de Controle

O sistema de controle deve ser capaz de:

- Realizar a aquisição de dados através de sensores;
- Realizar o controle de potência fornecida para os coolers e placa peltier;
- Transmitir os dados dados recebidos para outra placa;
- Tomada de decisão de acordo com os dados.

3.6.3.2 Subsistema de Proteção

O sistema de proteção deve ser capaz de:

- Proteger o circuito de sobretensão;
- Proteger o circuito de sobrecorrente.

3.6.3.3 Subsistema de Comunicação e Análise

O sistema de proteção deve ser capaz de:

- Analisar todos os dados advindos de sensores e outros componentes;
- Transmitir dados para um servidor WEB;
- Transmitir dados usando algum tipo de rede sem fio.

3.7 Tabela de custos

Е	STIMATIV	A DE CUS	TOS DO PROJ	ЕТО				
Custos Alimentação e Refrigeração								
MATERIAL UTILIZADO	QUANT	Unitário	Fornecedor	Total	FRETE	Desconto (%)	V. Final	
Bateria estacionária Freedom Df1000 70 Ah	3	R\$ 303,90	Americanas	R\$ 911,70	COMBINAR		R\$ 911,70	
Fonte	1	R\$ 80,00	Contato	R\$ 80,00	COMBINAR		R\$ 80,00	
Dissipadores de Calor	2	R\$ 10,00	Contato	R\$ 20,00	COMBINAR		R\$ 20,00	
Cooler	2	R\$ 10,00	Contato	R\$ 20,00	COMBINAR		R\$ 20,00	
Pasta Térmica CDA 15g	2	R\$ 5,00	Mercado Livre	R\$ 10,00	COMBINAR		R\$ 10,00	
Cabos e conectores em geral			Contato	R\$ 60,00	COMBINAR		R\$ 60,00	
SOMA				R\$ 1.101,70			R\$ 1.101,70	
	CUST	OS DE EI	ETRÔNICA					
MATERIAL UTILIZADO	QUANT	Unitário	Fornecedor	Total	FRETE	Desconto (%)	V. Final	
lm7805	2	R\$ 3,00	Contato	R\$ 6,00	COMBINAR		R\$ 6,00	
lm7812	2	R\$ 3,00	Contato	R\$ 6,00	COMBINAR		R\$ 6,00	
TIC106C	4	R\$ 7,50	Contato	R\$ 30,00	COMBINAR		R\$ 30,00	
Fusiveis	10	R\$ 1,00	Contato	R\$ 10,00	COMBINAR		R\$ 10,00	
Resistores variados	10	R\$ 1,50	Contato	R\$ 15,00	COMBINAR		R\$ 15,00	
apacitores variados	10	R\$ 1,00	Contato	R\$ 10,00	COMBINAR		R\$ 10,00	
módulo PWM	3	R\$ 30,00	Contato	R\$ 90,00	COMBINAR		R\$ 90,00	
DIODO ZENER 1N4733 (5,1V/1W)	2	R\$ 0,40	Contato	R\$ 0,80	COMBINAR		R\$ 0,80	
DIODO ZENER 1N4742 (12V/1W)	2	R\$ 0,40	Contato	R\$ 0,80	COMBINAR		R\$ 0,80	
SENSOR DE TEMPERATURA	1	R\$ 22,00	Mercado Livre	R\$ 22,00	COMBINAR		R\$ 22,00	
Display Touchscreen Raspberry	1	R\$ 54,00	Merc ad o Livi€	- -3 54,00	COMBINAR		R\$ 54,00	
MSP430	1	R\$ 60,00	Mercado Livre	R\$ 60,00	COMBINAR		R\$ 60,00	

Figura 31 – Tabela de custos

Referências

NETO, B.-h. F.; AFONSO, R. C.; THOMÉ, T. Curso prático de extração, perfusão e acondicionamento de múltiplos órgãos para transplante. 2017. Disponível em: http://docplayer.com.br/7523519-Curso-pratico-de-extracao-perfusao-e-acondicionamento-de-multiplos-orgaos-para-transplante.html>. Acesso em: 24 out. 2017. Citado na página 9.