I. Plane Detection

**II. Ground Detection** 

# Preliminaries





### Preliminaries



$$\frac{u}{f_u} = \frac{x}{z} \qquad \qquad \frac{v}{f_v} = \frac{y}{z}$$

### **Preliminaries**

• Plane model in x-y-z domain

$$a_0x + a_1y + a_2z + a_3 = 0$$



• Use image (u-v) and inverse depth  $(d:=z^{-1})$  domain  $a_0'u + a_1'v + a_2' + a_3'd = 0$ 

- I. Plane Detection
  - 1) RANSAC-based Estimation
  - 2) Clustering in Normal Space

II. Ground Detection

### Plane Detection (1) RANSAC-based Estimation

• Plane model in *u-v-d* domain

$$a_0'u + a_1'v + a_2' + a_3'd = 0$$

\*RANSAC: RANdom SAmple Consensus

#### Repeat N times:

- 1) Generate *random* hypothesis
- 2) Score the hypothesis
- 3) Save if it is the best Refine the best hypothesis





### Plane Detection (2) Clustering in Normal Space

- Plane model  $a'_0u + a'_1v + a'_2 + a'_3d = 0$
- Local Plane Estimation (SVD)



: <u>Normal vector</u> can be obtained from the singular vector corresponding to the least singular value

: The least singular value can be used to test "flatness"

Clustering Normal Vectors



### Plane Detection (2) Clustering in Normal Space

- Metric on unit sphere?
- Unsupervised Clustering
  :Design "resolution" instead of K (Number of clusters)
  For example, Mean Shift algorithm.
- Can use spatial information (u,v) as well





## Plane Detection (2) Clustering in Normal Space

Input Depth Image



**3D Point Cloud** 



**Normal Segmentation** 



**Segmented Planes** 



#### I. Plane Detection

#### **II. Ground Detection**

- 1) Aligned Camera
- 2) Rotated Camera

## Ground Detection (1) Aligned Camera



**Ground Plane model** 

$$y = h$$

Projection

$$\frac{v}{f_v} = \frac{y}{z}$$



$$\frac{v}{f_v} = \frac{h}{z}$$

# Ground Detection (2) Rotated Camera



### Ground Detection (2) Rotated Camera



$$a_0x + a_1y + a_2z + a_3 = 0$$



$$a_0'u + a_1'v + a_2' + a_3'd = 0$$

I. Plane Detection

II. Ground Detection



# RGB-Depth Image Alignment

Recall this:

$$\frac{u}{f_u} = \frac{x}{z}$$

• Compute X<sup>IR</sup>

$$x^{IR} = u'z/f^{IR}$$

Transformation

$$X^{RGB} = RX^{IR} + t$$

Reprojection

$$u = f^{RGB} \frac{x^{RGB}}{z^{RGB}}$$

• Read (r,g,b) at  $(u,v)^{RGB}$