Università degli Studi di Cagliari Corso di Laurea in Matematica

Il caos implica dipendenze sensibili dalle condizioni iniziali

Chiara Lenzi

Anno Accademico 2017-2018

Obiettivo

Dimostrare che la nozione metrica di dipendenza sensibile dalle condizioni iniziali è una conseguenza della definizione topologica di caos.

Definizioni utili

Funzione caotica

2 Funzione con dipendenza sensibile dalle condizioni iniziali

Funzione Caotica

Definizione

Sia X uno spazio topologico.

Una funzione $f: \mathbb{X} \to \mathbb{X}$ è detta CAOTICA se:

- un insieme di punti periodici di f è denso in X;
- per ogni U aperto in X, dato V aperto in X, esiste $x \in U$ e $n \in \mathbb{Z}$ tale che $f^n(x) \in V$

Funzione Caotica

Definizione

Sia X uno spazio topologico.

Una funzione $f: \mathbb{X} \to \mathbb{X}$ è detta CAOTICA se:

- un insieme di punti periodici di f è denso in X;
- per ogni U aperto in X, dato V aperto in X, esiste $x \in U$ e $n \in \mathbb{Z}$ tale che $f^n(x) \in V$

Definizione

Un *punto periodico* con periodo n di una funzione f è un punto x_0 nel dominio di f tale che $f^n(x_0) = x_0$

Funzione con dipendenze sensibili dalle condizioni iniziali

Definizione

Sia (X,d) uno spazio metrico.

Una funzione $f: \mathbb{X} \to \mathbb{X}$ ha una dipendenza sensibile dalle condizioni iniziali se esiste $\delta > 0$ tale che

per ogni $x \in X$ e per ogni $\varepsilon > 0$

esiste $y \in B_d(x, \varepsilon)$ e $n \in \mathbb{Z}_+$ tale che

$$d(f^{n}(x), f^{n}(y)) > \delta \tag{1}$$

Teorema (enunciato)

Teorema

Sia X uno spazio metrico infinito e sia $f: \mathbb{X} \to \mathbb{X}$ una funzione continua e caotica.

Allora f ha sensibili dipendenze dalle condizioni iniziali.

Prima parte: scelta di δ

Siano q e q' due punti periodici di f le cui orbite sono disgiunte.

Sia δ_0 la minima distanza fra le orbite

$$\Rightarrow \delta_0 > 0$$

$$\Rightarrow$$
 possiamo porre $\delta = \frac{\delta_0}{8}$

Siano inoltre
$$x \in X$$
 e $\varepsilon > 0$

$$\Rightarrow \varepsilon \leq \delta$$

Prima parte: scelta di δ

I punti periodici di f sono densi \Rightarrow esiste un punto periodico p in $B_d(x,\varepsilon)$

poniamo m = periodo di p

sia
$$z\in$$
 orbita di $q\Rightarrow d(z,x)>rac{\delta_0}{2}$
sia $z'\in$ orbita di $q'\Rightarrow d(z',x)>rac{\delta_0}{2}$

Prima parte: scelta di δ

Se per assurdo non fosse vero, avremmo:

esiste $w \in$ orbita di q esiste $w' \in$ orbita di q'

tali che $d(w, w') < \delta_0$

Assurdo!

Prima parte: scelta di δ

Se per assurdo non fosse vero, avremmo:

esiste $w \in \text{orbita di } q$ esiste $w' \in \text{orbita di } q'$

tali che $d(w, w') < \delta_0$

Assurdo!

Possiamo porre $\frac{\delta_0}{2}=4\delta$

Dimostrazione-Seconda parte

Consideriamo:

$$lacksquare$$
 $B_0 = B_\delta(q)$

■
$$B_j = B_\delta(f^j(q)) \text{ con } j = 1, ..., m$$

Ma f^j é una funzione continua $\Rightarrow (f^j)^{-1}(B_j)$ sono aperti e $q \in (f^j)^{-1}(B_j) \ \forall j = 1,...,m$

$$\Rightarrow V = B_0 \cap (\bigcap_{j=1}^m ((f^j)^{-1}(B_j))$$
 è aperto e contiene q

Dimostrazione-Seconda parte (IDEA)

Vogliamo dimostrare che esiste un intorno di q tale che: per ogni v appartenente all'intorno di q i punti $f^1(v),..,f^m(v)$, distano tutti δ dall'orbita di q.

Dimostrazione-Seconda parte

Per la transitività topologica:

esite
$$w \in B_d(x,\varepsilon)$$
 e $k \in \mathbb{Z}_+$ tale che $f^k(w) \in V$

$$\Rightarrow$$
 esiste $h \in \mathbb{Z}_+$ tale che $k \le hm \le k+m$.

Ma questo
$$\Rightarrow d(f^{hm}(p), f^{hm}(w)) > 2\delta$$
.

Dimostrazione-Seconda parte

Dimostriamo che $d(f^{hm}(p), f^{hm}(w)) > 2\delta$:

- Prendiamo come notazione $p = f^{hm}(p)$.
- Notiamo che $f^k(w) \in V$
- \Rightarrow in particolare abbiamo che $f^{hm}(w) \in B_{hm-k}$
- $\Rightarrow d(f^{hm}(w), f^{hm-k}(q)) < \delta$

Dimostrazione-Seconda parte

Dimostriamo che $d(f^{hm}(p), f^{hm}(w)) > 2\delta$:

- Prendiamo come notazione $p = f^{hm}(p)$.
- Notiamo che $f^k(w) \in V$
- \Rightarrow in particolare abbiamo che $f^{hm}(w) \in B_{hm-k}$
- $\Rightarrow d(f^{hm}(w), f^{hm-k}(q)) < \delta$

..usiamo la disuguaglianza triangolare

$$d(x, f^{hm-k}(q)) \le d(x, p) + d(p, f^{hm}(w)) + d(f^{hm}(w), f^{hm-k}(q))$$

 $\le \delta + d(p, f^{hm}(w)) + \delta$
 $\le 2\delta + d(p, f^{hm}(w))$

Dimostrazione-Seconda parte

Scegliamo:

$$4\delta < d(x, f^{hm-k}(q))$$

$$\Rightarrow$$
 4 δ < 2 δ + $d(p, f^{hm}(w))$

$$\Rightarrow d(p, f^{hm}(w)) > 2\delta$$

$$\Rightarrow d(f^{hm}(p), f^{hm}(w)) > 2\delta$$

Dimostrazione-Terza parte

Abbiamo due possibilità:

•
$$d(f^{hm}(x), f^{hm}(w)) > \delta$$
 o $d(f^{hm}(x), f^{hm}(p)) > \delta$ oppure

Dimostrazione-Terza parte

Abbiamo due possibilità:

•
$$d(f^{hm}(x), f^{hm}(w)) > \delta$$
 o $d(f^{hm}(x), f^{hm}(p)) > \delta$ oppure

Ma se
$$d(f^{hm}(x), f^{hm}(w)) \le \delta$$
 e $d(f^{hm}(x), f^{hm}(p)) \le \delta$ \Rightarrow dalla disuguaglianza triangolare segue che $d(f^{hm}(p), f^{hm}(w)) \le 2\delta$ ASSURDO!

Dimostrazione.

Chiamiamo n = hm

Ma abbiamo che:

$$\mathbf{w} \in B_d(\mathbf{x}, \varepsilon) \Rightarrow$$

■
$$p \in B_d(x, \varepsilon)$$

esiste
$$y \in B_d(x, \varepsilon)$$
 e esiste $n \in \mathbb{Z}_+$ tale che $d(f^n(x), f^n(y)) > \delta$

Completando così la dimostrazione del teorema.

FINE

Grazie per la cortese attenzione.