## CS-224

(Computer Networks)

# Assignment-4

Name: Sravan K Suresh

Roll No: 22B3936

Instructor: Prof. Vinay Ribeiro



### Solution 1:

Requirements needed for the newly designed TCP variant:

- (a) It is purely an end-to-end congestion control protocol, that is, it does not require any special information from routers or explicit information about other TCP flows in order to perform congestion control.
- (b) It behaves like TCP-Vegas if all other competing flows on its network path employ TCP-Vegas. Let us assume that all TCP flows have the same RTT on the network path.
- (c) It behaves like TCP-Reno if there are some competing flows on its network path that employ TCP-Reno.
- (d) It adjusts its Congestion\_Window based on inference of packet losses and/or queuing delays in the network.

#### My proposal for such a TCP-variant:

TCP\_New: It behaves like TCP-Vegas whensoever all of the other flows in its network are employing TCP-Vegas. If not, then we switch it to TCP-Reno.

Now, as we know that packet loss doesn't occur if all the other flows are using TCP-Vegas for congestion control, therefore if a packet loss is detected, it simply implies that someone among the flows has switched to TCP-Reno. This is exactly when we switch our protocol to TCP-Reno. In this manner, we ensure that criterions b) and c) are met. Also, since we are employing a mix of TCP-Reno and TCP-Vegas in a tactful manner with the help of packet-loss detection, it is purely an end-to-end congestion control protocol (working without the aid of any explicit information from the routers).

Now, congestion window is adjusted following the rules just as in TCP-Vegas



but with an additional feature, that is:

During packet loss, CW = 1 MSS and SS\_Threshold = CW/2, thereby adjusting its Congestion\_Window based on inference of packet losses and/or queuing delays in the network.

### Solution 2:

| sol To sheek for "ATT-farmers" = (do two TCP flow give same bandwidth                                                                   |
|-----------------------------------------------------------------------------------------------------------------------------------------|
| we compate and compate for different RTTE)                                                                                              |
| the total ant of data transmitted by the two TCP flows:                                                                                 |
| b/w contenting "book" events.                                                                                                           |
| For flow $\pm :$ $dw_{(t)} = 1 \Rightarrow \int dw_{(t)} = 1 \int dt$ $dt = T, \qquad T_{1} \circ$                                      |
| $dw(t) = 1 \Rightarrow \int dw(t) = 1 \int dt$                                                                                          |
|                                                                                                                                         |
| : given that we (0) = 0, w (6) - w (0) = 6/T,                                                                                           |
| Bitrate   = w, (t) = t/T,2.                                                                                                             |
|                                                                                                                                         |
| Similarly, for flow 2:  dw. (6) = 1 four  dw. (6) = 1 four                                                                              |
| all To other to                                                                                                                         |
| waln 10 - 10 - 11                                                                                                                       |
| = ghun w <sub>2</sub> (0)=0, w <sub>2</sub> (t)-w <sub>2</sub> (0)=0 = t/T <sub>2</sub>                                                 |
| i Ritch   = 12 (1) = 1/2                                                                                                                |
| $\therefore \text{ Sittate } = \text{ wo. } (t) = t/\tau^*.$                                                                            |
|                                                                                                                                         |
| Now as given in On,                                                                                                                     |
| both flows facing "loss" at time t' ( ) [no. (t) 17]+ [no. (t) 17] = C (bite)                                                           |
| $\therefore \iff C = t \left( \underbrace{1}_{T_1^2} + \underbrace{1}_{T_2^2} \right).$                                                 |
| T <sub>2</sub> T <sub>2</sub>                                                                                                           |
| Also, given that the RTTX To of both the TCB flows are constant,  i. $t_{\perp} = C \cdot T_{\perp}^{2} T_{\perp}^{2}$ CONSTANT         |
| ; t = C.T.2T2 -> CONSTANT                                                                                                               |
| $\left( T_{1}^{2}+T_{2}^{2}\right)$                                                                                                     |
| Now, computing the total data loss up until to of both the flow to compare:                                                             |
| (TDL): Total data local $TCP_1$ $T_1^2$ $T_2^2$ $T_1^2$ $T_2^2$ $T_1^2$ $T_2^2$ $T_2^2$ $T_1^2$ $T_2^2$ $T_2^2$ $T_2^2$ $T_2^2$ $T_2^2$ |
| (TDL): Total data love = $\int_{T_c}^{t} t dt = t^2/2T^2$ .                                                                             |
|                                                                                                                                         |
| (TD12): Total data low   = 1 t dt = t2/272                                                                                              |
| P 1 <sub>2</sub>                                                                                                                        |
| From the derivation, clearly, TDL; & 1                                                                                                  |
| RTT;2                                                                                                                                   |
| (Total data loss is invelsely planol final to the square of RTT)                                                                        |
| and thur,                                                                                                                               |
| TCP Reno is NOT fasi as the throughputs of both are                                                                                     |
| not the some for different RTTA.                                                                                                        |
| Objectivations: RTT, < RTT, > PDL, > TDL,                                                                                               |
| RTT, 7RTT, > TDL, < TDL.                                                                                                                |
| RTT = RTT = TDL = TDL                                                                                                                   |
|                                                                                                                                         |
|                                                                                                                                         |