# Chapitre 3

# Résolution numérique des équations non linéaires

#### Sommaire

| 3.1 | Méthode de dichotomie                              |                                                           |    |  |  |
|-----|----------------------------------------------------|-----------------------------------------------------------|----|--|--|
| 3.2 | Méthodes itératives pour la résolution de $F(x)=x$ |                                                           |    |  |  |
| 3.3 | Facteur de convergence                             |                                                           |    |  |  |
| 3.4 | Méthodes itératives à 1 pas                        |                                                           |    |  |  |
|     | 3.4.1                                              | Méthodes de base                                          | 8  |  |  |
|     | 3.4.2                                              | Méthode de Newton                                         | 9  |  |  |
| 3.5 | Mét                                                | hodes multi-point : méthode de la sécante et regula falsi | 11 |  |  |

Soit f une fonction continue sur  $\mathbb{R}$ . Nous cherchons à localiser les zéros de f, c'est-à-dire les valeurs de x telles que f(x) = 0. En général x ne peut pas être calculé explicitement (penser à  $e^{x \operatorname{tgx}} - 4 = 0$ !). On cherche donc à calculer x de façon approchée.

#### 3.1 Méthode de dichotomie

Elle repose sur le théorème des valeurs intermédiaires : une fonction continue f prend toutes les valeurs comprises entre ses bornes. Donc si une fonction définie sur [a, b] prend des valeurs de signe opposé en a et b, elle s'annule entre les deux. Écrivons un script matlab élémentaire.

```
function [c,nit] = dicho(f,a,b)
% dicho calcule un zéro de la fonction f dans l'intervalle [a,b]
% au moyen de la méthode de dichotomie
% juqu'à la précision machine
c=(a+b)/2;
nit=0;
```

```
while c>a & c<b,
  if feval(f,a)*feval(f,c) > 0,%alors la racine est dans ]c,b[
    a=c;
  else
    b=c;
  end;
c=(a+b)/2;
nit=nit+1;
end
```



Fig. 3.1 – méthode de dichotomie

Soit le polynôme  $P(x)=10^{-7}*x^3+x^2-1$ . Utilisons le script roots de matlab. Nous obtenons 3 racines

ans =

- -9.9999999999898e+06
- -1.0000005000001e+00
- 9.9999950000014e-01

Si nous voulons maintenant utiliser la méthode de dichotomie précédente pour calculer ces racines, nous devons d'abord les localiser. Nous calculons

$$P(-10^7) = -1, P(-\frac{1}{2}10^7) = 1.249999999999900e + 13.$$
 Donc  $-10^7 < x_1 < -\frac{1}{2}10^7.$ 

$$P(-2) = 2.999999200000000e + 00, P(0) = -1.$$
  
Donc  $-2 < x_2 < 1$ ,

$$P(0) = -1, P(1) = 1.000000000583867e - 07.$$

Donc  $0 < x_3 < 1$ .

Nous appliquons alors dicho.

[c,nit]=dicho('f1',a,b)

- 1. a=-1.0e+07;b=-0.5e+07;
  c = -9.999999999999903e+06
  nit = 51.
- 2. a=-2;b=0;
   c = -1.000000050000006e+00
   nit = 53
- 3. a=0;b=1;
  c = 9.999999500000063e-01
  nit =53

Remarquons qu'il a fallu 53 itérations pour calculer  $x_3$  qui est très proche de l'une des bornes de l'intervalle! Mais peut-être n'avons nous pas besoin de la précision machine. Revenons sur la méthode. Supposons que nous avons isolé un intervalle ]a,b[ dans lequel il y a un seul zéro de f.

1. Si 
$$f(\frac{a+b}{2}) = 0$$
, alors  $x = \frac{a+b}{2}$ ,

2. Si 
$$f(a)f(\frac{a+b}{2}) < 0$$
, alors  $x \in ]a, \frac{a+b}{2}[$ ,

3. Si 
$$f(a)f(\frac{a+b}{2}) > 0$$
, alors  $x \in ]\frac{a+b}{2}, b[$ .

Nous créons ainsi un nouvel intervalle  $]a_1,b_1[$  auquel appartient x et dont la longueur est la moitié de celle de ]a,b[. En itérant nous avons une suite de segment emboîtés  $]a_n,b_n[$  dont la longueur est  $(b-a)/2^n$ , qui converge donc vers le point x tel que f(x)=0. Pratiquement ce processus doit avoir une fin. Supposons que nous voulons connaître x avec une précision absolue de  $\varepsilon$ . A l'étape n, nous choisirons comme approximation de x la valeur  $\frac{a_n+b_n}{2}$ .



Fig. 3.2 – convergence de la méthode de dichotomie

Puisque l'on a  $x - \frac{a_n + b_n}{2} \le \frac{b_n - a_n}{2}$ , le test d'arrêt sera  $\frac{b_n - a_n}{2} \le \varepsilon$ , c'est-à-dire  $\frac{b - a}{2^{n+1}} \le \varepsilon$ , ce qui donne un nombre d'itérations

$$n \ge \log_2(\frac{b-a}{\varepsilon}) - 1$$

Dans notre cas, pour avoir une précision de  $10^{-7}$  sur toutes les racines, nous devons utiliser :

23 itérations pour la deuxième racine. On obtient  $x_D = -1.000000029802322e + 00, x_E = -1.000000050000006e + 00.$ 

22 itérations pour la deuxième racine. On obtient  $x_D = 9.99999701976776e - 01, x_E = 9.999999500000063e - 01.$  où dans chaque cas,  $x_E$  est la valeur présumée exacte calculée par roots de matlab.

La méthode de dichotomie converge toujours, mais la convergence est linéaire : l'erreur à chaque pas est divisée par 2. Nous allons introduire une méthode plus rapide.

### 3.2 Méthodes itératives pour la résolution de F(x)=x

Nous présentons ici la méthode des approximations successives. Elle consiste, à partir d'un point  $x_0$ , de calculer les itérées  $x_n$  par la formule de récurrence

$$x_{n+1} = F(x_n)$$

Sous des hypothèses convenables sur la fonction F et sur  $x_0$ , cette suite va converger vers un point fixe unique, i.e. qui vérifie

$$F(X) = X$$
.

Voici une représentation graphique du processus :



Fig. 3.3 – méthode des approximations successives

**Définition 3.1** Soit f une fonction continue sur [a,b]. On dit que f est lipschitzienne de constante de Lipschitz L si

$$\forall (x,y) \in [a,b], |f(x) - f(y)| \le L|x - y|.$$

**Théorème 3.1** SI f est dérivable sur [a,b] et si sa dérivée y est bornée par L, f est lipschitzienne de constante de Lipschitz L.

**Théorème 3.2** Soit F une application de [a,b] dans [a,b], lipschitzienne de constante de Lipschitz L < 1. Alors pour tout  $x_0$  la suite définie par  $x_{n+1} = F(x_n)$  converge vers un point fixe unique.



Fig. 3.4 – méthode des approximations successives divergente

## 3.3 Facteur de convergence

Nous avons déjà vu que pour la méthode de dichotomie on a  $|x_{n+1}-x| \leq |x_n-x|/2$ . L'erreur à l'itération n est définie par  $e_n = x_n - x$  et on a  $|e_{n+1}| \leq |e_n|/2$ . On parle de convergence linéaire parce que l'erreur à l'itération n est une fonction linéaire de la précédente. Dans le cas de la méthode des approximations successives, nous avons écrit dans la démonstration du théorème

$$|x_{n+1} - x| = |F(x_n) - F(x)| \le L|x_n - x|$$

la convergence est encore linéaire, et puisque L est le maximum de |F'| sur l'intervalle considéré, l'algorithme converge d'autant plus vite que sa dérivée est petite (i.e. plate). Nous parlerons de convergence quadratique si  $e_k \sim Ce_k^2$ , etc.. Ecrivons la formule de Taylor

$$x_{n+1} - x = F(x_n) - F(x) = F'(x)(x_n - x) + \frac{1}{2!}F'(x)(x_n - x)^2 + \cdots$$

Si  $F'(x) \neq 0$ , on peut écrire formellement, que si la suite converge on a

$$\lim_{n \to \infty} \frac{e_{n+1}}{e_n} = F'(x)$$

et la convergence est linéaire. Mais si F'(x)=0 et  $F''(x)\neq 0,$  on a

$$\lim_{n\to\infty}\frac{e_{n+1}}{e_n^2}=F''(x),$$

et la convergence est quadratique, etc...



Fig. 3.5 – courbe  $f(x) = xe^x - 1$ 

Tab. 3.1 – Approximations successives pour résoudre l'équation  $x=e^{-x}$ , dont la solution est 0.5671432904

#### 3.4 Méthodes itératives à 1 pas

Toutes les méthodes que nous allons décrire pour résoudre f(x) = 0 reposent sur l'application de la méthode des approximations successives à une fonction obtenue à partir de f.

#### 3.4.1 Méthodes de base

On peut évidemment écrire

$$f(x) = 0 \iff x + f(x) = x,$$

et résoudre cette dernière équation par la méthode des approximations successives pour F := 1 + f, donc définir la suite

$$x_{n+1} = x_n + f(x_n).$$

La condition de convergence sur l'intervalle [a, b] s'écrit

$$\max_{[a,b]} |1 + f'(x)| < 1.$$

Remarque 3.1 Pour toute fonction  $\varphi$  régulière, on a aussi  $f(x) = 0 \iff x + \varphi(x)f(x) = x$ .

**Exemple 3.1** Reprenons l'exemple  $xe^x = 1$ , réécrit sous la forme x = x + F(x). Choisissons d'abord  $F(x) = x - xe^x + 1$ .

| n | $x_n$         | n  | $x_n$         | n  | $x_n$         |
|---|---------------|----|---------------|----|---------------|
| 0 | 0.5000000000  | 6  | -0.6197642518 | 12 | -0.1847958494 |
| 1 | 0.6756393646  | 7  | 0.7137130874  | 13 | 0.9688201302  |
| 2 | 0.3478126785  | 8  | 0.2566266491  | 14 | -0.5838599569 |
| 3 | 0.8553214091  | 9  | 0.9249206769  | 15 | 0.7417828828  |
| 4 | -0.1565059553 | 10 | -0.4074224055 | 16 | 0.1842794222  |
| 5 | 0.9773264227  | 11 | 0.8636614202  | 17 | 0.9627107382  |
|   |               |    |               |    |               |

Tab. 3.2 – Approximations successives pour résoudre l'équation x = F(x), avec  $F(x) = 1 - xe^x$ . Comportement chaotique

$$Puis F(x) = x + xe^x - 1.$$

| n | $x_n$         | n  | $x_n$          | n  | $x_n$          |
|---|---------------|----|----------------|----|----------------|
| 0 | 0.5000000000  | 6  | -5.0052139570  | 12 | -11.0632898863 |
| 1 | 0.3243606353  | 7  | -6.0387634409  | 13 | -12.0634633300 |
| 2 | -0.2270012400 | 8  | -7.0531629066  | 14 | -13.0635328927 |
| 3 | -1.4079030215 | 9  | -8.0592615633  | 15 | -14.0635606029 |
| 4 | -2.7523546383 | 10 | -9.0618095809  | 16 | -15.0635715770 |
| 5 | -3.9278929674 | 11 | -10.0628608673 | 17 | -16.0635759012 |

Tab. 3.3 – Approximations successives pour résoudre l'équation x = F(x), avec  $F(x) = xe^x - 1$ . Divergence

#### 3.4.2 Méthode de Newton

Nous supposons ici f dérivable sur [a, b], nous supposons que f a un seul zéro dans [a, b], noté x. Pour cela nous nous donnons un point initial  $x_0$ , et nous traçons à partir du point  $(x_0, f(x_0))$  la tangente à la courbe. Elle coupe l'axe des x en  $x_1$  (si  $f'(x_0) \neq 0$ ). Et on itère.



Fig. 3.6 – méthode de Newton

Cette méthode converge beaucoup plus vite que la méthode de dichotomie, mais elle ne converge pas toujours.



Fig. 3.7 – convergence de la méthode de Newton

La fonction est  $f(x) = xe^{-x}$ . La racine est x = 0. Pour  $0 < x_0 < 1$ , la méthode converge. Pour  $x_0 > 1$ , elle diverge.

Définition 3.1 La méthode de Newton s'écrit

$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$$

Remarque 3.2 La méthode de Newton est une méthode de point fixe associée à la fonction  $F(x) = x - \frac{f(x)}{f'(x)}$ . Calculons

$$F'(x) = 1 - \frac{(f'(x))^2 - f(x)f''(x)}{(f'(x))^2}.$$

 $Si\ x\ est\ un\ z\'ero\ de\ f$ , alors  $F'(x)=0\ et\ d$ 'après le paragraphe 3.3, la méthode sera quadratique.

 $\begin{array}{ccc} n & x_n \\ 0 & 0.5 \\ 1 & 0.5710204398 \\ 2 & 0.5671555687 \\ 3 & 0.5671432905 \\ 4 & 0.5671432904 \\ 5 & 0.5671432904 \end{array}$ 

Tab. 3.4 – Méthode de Newton pour résoudre  $xe^x = 1$ .

**Exemple 3.2**  $f(x) = x^3 - 2x - 5$ . C'est l'exemple proposé par Newton lui-même en 1669. Pour une tolérance de  $10^{-7}$ , il faut 9 itérations pour calculer x = 2.094551481542327e + 00 à partir de  $x_0 = 1$ , et 4 itérations à partir de  $x_0 = 2$ . A titre de comparaison, la méthode de dichotomie sur l'intervalle [1,2] nécessiterait au moins  $\log_2(10^7) - 1 = 23$  itérations.

**Théorème 3.1** Soit f une fonction  $C^2$  dans un voisinage  $]r - \alpha, r + \alpha[$  d'une racine r de f, avec  $f'(r) \neq 0$ . Alors il existe  $\delta < \alpha$  tel que si  $x_0 \in ]r - \delta, r + \delta[$ , alors :

- 1.  $x_n$  est défini pour tout n,
- 2.  $x_n \in ]r \delta, r + \delta[$  pour tout n,
- 3.  $x_n$  converge quadratiquement vers r, c'est-à-dire que

$$|x_{n+1} - r| \le C(\delta)|x_n - r|^2$$

# 3.5 Méthodes multi-point : méthode de la sécante et regula falsi

Ce sont des méthodes du type

$$x_{n+1} = F(x_n, x_{n-1}, \cdots, x_{n-N})$$

. La méthode de Newton est rapide, mais nécessite le calcul de la dérivée de f en tout point  $x_n$ , ce qu'on n'a pas toujours. La plus simple et plus ancienne est la méthode de la sécante. Elle consiste à se donner deux points  $x_0$  et  $x_1$ , tracer la droite qui passe par les points  $(x_0, f(x_0))$  et  $(x_1, f(x_1))$ , elle coupe l'axe des x en  $x_2$ , et on recommence avec les points  $x_1$  et  $x_2$ .



Fig. 3.8 – méthode de la sécante

l'algorithme s'écrit

$$x_{n+1} = x_n - \frac{x_n - x_{n-1}}{f(x_n) - f(x_{n-1})} f(x_n)$$
(3.1)

Remarque 3.3 Une autre formulation est

$$x_{n+1} = \frac{f(x_n)x_{n-1} - f(x_{n-1})x_n}{f(x_n) - f(x_{n-1})}$$

Les deux formulations sont mathématiquement équivalentes. Par contre la deuxième formulation est moins stable car elle divise deux termes petits, alors que dans la première, le terme de ce type est une perturbation.

La convergence est **superlinéaire** :

**Théorème 3.2** Soit f une fonction  $C^2$  dans un voisinage  $]r - \alpha, r + \alpha[$  d'une racine r de f, avec  $f'(r) \neq 0$ . Alors il existe  $\delta < \alpha$  tel que si  $x_0$  et  $x_1 \in ]r - \delta, r + \delta[$ , alors  $x_n$  converge vers r, et

$$|x_{n+1} - r| \le C(\delta)|x_n - r||x_{n-1} - r|, C(\delta)|x_n - r| \le (\delta C(\delta))^{\lambda_n}$$

 $où \lambda_n$  est la suite de Fibonacci définie par

$$\lambda_{n+1} = \lambda_n + \lambda_{n-1}, \lambda_0 = \lambda_1 = 1$$

 $\begin{array}{cccc} n & x_n \\ 0 & 0.5000000000 \\ 1 & 1.0000000000 \\ 2 & 0.5463692378 \\ 3 & 0.5607946775 \\ 4 & 0.5672523630 \\ 5 & 0.5671427219 \\ 6 & 0.5671432903 \\ 7 & 0.5671432904 \end{array}$ 

Tab. 3.5 – Méthode de la sécante pour résoudre  $xe^x = 1$ .

Une variante de cette méthode est la méthode de la fausse position ou *regula falsi*. Elle consiste à mélanger dichotomie et sécante.

#### http://fr.wikipedia.org/wiki/Méthode\_de\_la\_fausse\_position

Nous avons ainsi introduit 3 méthodes.

1. La méthode de dichotomie : elle converge toujours, mais lentement. L'erreur vérifie

$$|e_{n+1}| \le \frac{1}{2}|e_n|$$
 : convergence linéaire.

2. La méthode de Newton : elle ne converge que si l'on part suffisamment près de la racine,

$$|e_{n+1}| \le C|e_n|^2$$
: convergence quadratique.

Elle nécessite le calcul de f'.

3. La méthode de la sécante : elle ne converge aussi que si l'on part suffisamment près de la racine,

$$|e_{n+1}| \leq C |e_n|^{\lambda}, \lambda \approx 1.6$$
 (nombre d'or) : convergence superlinéaire.