Formula sheet for testing materials

Izaak van Dongen

October 17, 2017

Contents

	Material properties				
	1.1	Strength	1		
		Young's Modulus			
	Formulas				
		Stress			
	2.2	Strain	2		
	2.3	Area of a circle	2		

1 Material properties

1.1 Strength

Strength is actually a stress value. Strength is the stress at which a material "fails".

- The "yield strength" of a material is when it starts to plastically deform.
- The "breaking strength" of a material is when it actually breaks.

1.2 Young's Modulus

Young's modulus is an indication of the stiffness of a material (how much strain is produced by a stress while deforming elastically). It is given by stress over strain, and denoted as E:

$$E = \frac{\sigma}{\epsilon} \tag{1}$$

As the units of σ are Pa and ϵ is dimensionless, we can conclude that E has units Pa.

Also, as we know formulas for both σ and ϵ , we can substitute in:

$$E = \frac{\sigma}{\epsilon}$$

$$= \frac{\frac{F}{A}}{\frac{x}{l}}$$

$$= \frac{Fl}{Ax}$$

2 Formulas

2.1 Stress

The stress is defined as force applied divided by cross-sectional area and denoted as σ :

$$\sigma = \frac{F}{A} \tag{2}$$

Hence, stress is measured in Nm^{-2} , which is called Pa (scals).

2.2 Strain

Strain is a measure of the deformation of a material. It denoted as ϵ and given by extension over original length:

$$\epsilon = \frac{x}{l_0} \tag{3}$$

As the units of both x and l_0 are m,

units =
$$\frac{m}{m}$$
= dimensionless

2.3 Area of a circle

This is given by

$$A_{circle} = \pi r^2 \tag{4}$$

We can also make some substitutions, as we know

$$r = \frac{d}{2}$$

$$\Rightarrow A_{circle} = \frac{\pi d^2}{4}$$