Ownership Structure and Economic Growth

Koki Okumura

UCLA

Ownership Structure ⇒ Economic Growth?

- Ownership structure is concentrated
 - BlackRock, Vanguard, and State Street exercise 30% of the votes at S&P 500

Ownership Structure ⇒ Economic Growth?

- Ownership structure is concentrated
 - BlackRock, Vanguard, and State Street exercise 30% of the votes at S&P 500
- Firms maximize shareholder value ⇒
 partially internalize externalities across commonly owned firms

Ownership Structure ⇒ Economic Growth?

Ownership structure is concentrated

- BlackRock, Vanguard, and State Street exercise 30% of the votes at S&P 500
- Firms maximize shareholder value ⇒
 partially internalize externalities across commonly owned firms
- Ownership structure (common ownership, cross-ownership, M&A, ...) ⇒ Economic growth?
 - Business-stealing effect
 - + Technology spillover effect

Quantitative Schumpeterian Growth Model with Ownership Structure

- Existing Schumpeterian growth models:
 - Monopolistic competition
 - Very few firms in Markov perfect equilibrium

Quantitative Schumpeterian Growth Model with Ownership Structure

- Existing Schumpeterian growth models:
 - Monopolistic competition
 - Very few firms in Markov perfect equilibrium
- This paper:
 - Many oligopolists engage in a dynamic R&D game
 - Three inter-firm networks:
 - 1. Ownership structure
 - 2. Product-market rivalry
 - 3. Technology spillovers

Quantitative Schumpeterian Growth Model with Ownership Structure

- Existing Schumpeterian growth models:
 - Monopolistic competition
 - Very few firms in Markov perfect equilibrium
- This paper:
 - Many oligopolists engage in a dynamic R&D game
 - Three inter-firm networks:
 - 1. Ownership structure
 - 2. Product-market rivalry
 - 3. Technology spillovers
- Commonly owned firms that are close in ...
 - product space \Longrightarrow internalize the business-stealing effect \Longrightarrow R&D \downarrow
 - technology space \Longrightarrow internalize technology spillovers \Longrightarrow R&D \uparrow

Identification and Findings

Identify networks for publicly listed patenting firms in the U.S. (> 700 firms)

Network	Measurement
Ownership structure	Investor holdings from 13F filings (Backus et al., 2021)
Product-market rivalry	Product proximity (Hoberg and Phillips, 2016): Based on business descriptions in 10-K filings
Technology spillovers	Technology proximity (Jaffe, 1986; Bloom et al., 2013): Based on patent classifications

Identification and Findings

Identify networks for publicly listed patenting firms in the U.S. (> 700 firms)

Network	Measurement
Ownership structure	Investor holdings from 13F filings (Backus et al., 2021)
Product-market rivalry	Product proximity (Hoberg and Phillips, 2016): Based on business descriptions in 10-K filings
Technology spillovers	Technology proximity (Jaffe, 1986; Bloom et al., 2013): Based on patent classifications

- The rise of common ownership from 1999 to 2017 $\Longrightarrow g \downarrow$ by 0.11 p.p., CE welfare \downarrow by 0.54%
- Internalization of business-stealing > Internalization of technology spillover

Related Literature

- Competition & Innovation:
 - d'Aspremont and Jacquemin (1988); Kamien et al. (1992); Aghion et al. (2001, 2005); Acemoglu and Akcigit (2012); Aghion et al. (2013); Bloom et al. (2013); Lopez and Vives (2019); Peters (2020); Akcigit and Ates (2021, 2023); Liu et al. (2022); Cavenaile et al. (2023), **Hopenhayn and Okumura (2024)**
 - Quantitative Schumpeterian growth model with ownership structure
- Hedonic Demand / Empirical IO:
 Lancaster (1966); Rosen (1974); Berry et al. (1995); Nevo (2001), Pellegrino (2024); Ederer and Pellegrino (2024)
 Dynamic general equilibrium / R&D
- Oligopoly / Common Ownership / Market Power:
 Rubinstein and Yaari (1983); Rotemberg (1984); Neary (2003); Atkeson and Burstein (2008); Gutierrez and Philippon (2017); He and Huang (2017); Azar et al. (2018, 2022); Autor et al. (2020); Baqaee and Farhi (2020); De Loecker et al. (2020); Azar and Vives (2021); Edmond et al. (2023), Anton et al. (2023, 2025); Kini et al. (2024)

• Firm $i \in \{1, ..., n\}$ has knowledge capital $z_{i,t}$ and produces a single differentiated product

- Firm $i \in \{1, ..., n\}$ has knowledge capital $z_{i,t}$ and produces a single differentiated product
- Linear inverse demand (Pellegrino, 2024):

$$p_{i,t} = b_{i,t} - \sum_{j \neq i} \sigma_{ij} q_{j,t} - q_{i,t}$$

• $\Sigma = [\sigma_{ij}]$: product-market rivalry matrix (network) $(\sigma_{ii} = 1)$

- Firm $i \in \{1, ..., n\}$ has knowledge capital $z_{i,t}$ and produces a single differentiated product
- Linear inverse demand (Pellegrino, 2024):

$$p_{i,t} = b_{i,t} - \sum_{j \neq i} \sigma_{ij} q_{j,t} - q_{i,t}$$

- $\Sigma = [\sigma_{ij}]$: product-market rivalry matrix (network) $(\sigma_{ii} = 1)$
- CRS production technology:

$$q_{i,t} = a_{i,t} l_{i,t}$$

- Firm $i \in \{1, ..., n\}$ has knowledge capital $z_{i,t}$ and produces a single differentiated product
- Linear inverse demand (Pellegrino, 2024):

$$p_{i,t} = b_{i,t} - \sum_{j \neq i} \sigma_{ij} q_{j,t} - q_{i,t}$$

- $\Sigma = [\sigma_{ij}]$: product-market rivalry matrix (network) $(\sigma_{ii} = 1)$
- CRS production technology:

$$q_{i,t} = a_{i,t} l_{i,t}$$

Each firm allocates knowledge capital to improve labor productivity and product quality:

$$\zeta a_{i,t} + b_{i,t} = z_{i,t}$$

Common Ownership Weights (Networks)

- $K = [\kappa_{ij}]$: common ownership weights that firm i places on the value of firm j $(\kappa_{ii} = 1)$
- More overlapping ownership between firms i and $j \Longrightarrow$ higher κ_{ij}

- K = I: dispersed ownership (each firm maximizes its own value)
- $K = \mathbf{1}_{n \times n}$: monopoly (maximizes total producer surplus)

Law of Motion of Knowledge Capital

$$\dot{z}_t = \underbrace{\Omega z_t}_{\text{Tech Spillover}} + \underbrace{\mu x_t}_{\text{R&D}} - \underbrace{\delta z_t}_{\text{Depreciation}}$$

- $\Omega = [\omega_{ij}]$: technology spillover matrix (network)
- $\bullet \ x_{i,t} = \sqrt{d_{i,t}}$
 - d_{i,t}: R&D input in terms of final good
 - Innovation elasticity is 0.5
- μ , δ : positive scalars
- Can incorporate idiosyncratic & aggregate shocks (not today)

Market Clearing and Preference

Inelastic labor supply:

$$L = \sum_{i} l_{i,t}$$

Linear-quadratic aggregator:

$$Y_t = \boldsymbol{q}_t^T \boldsymbol{b}_t - \frac{1}{2} \boldsymbol{q}_t^T \boldsymbol{\Sigma} \boldsymbol{q}_t$$

Final good market clearing:

$$C_t + \underbrace{\sum_{i} d_{i,t}}_{\mathsf{R\&D input}} = Y_t$$

Risk-neutral representative household:

$$U_t = \int_t^{\infty} \exp\left(-\rho s\right) C_s ds$$

Static Cournot Game

Firm i's static objective is given by:

$$\phi_{i,t} = \sum_{j} \kappa_{ij} \pi_{j,t}$$

where the profit (before R&D cost) of firm i is given by:

$$\pi_{i,t} = p_{i,t}q_{i,t} - w_t l_{i,t} = q_{i,t} \left(b_{i,t} - \sum_{j \neq i} \sigma_{ij}q_{j,t} - q_{i,t} - \frac{w_t}{a_{i,t}} \right)$$

• Given w_t , $z_{i,t}$, and $\left\{a_{j,t},b_{j,t},q_{j,t}\right\}_{j\neq i}$ and $\zeta a_{i,t}+b_{i,t}=z_{i,t}$, firm i chooses $a_{i,t},b_{i,t}$, and $q_{i,t}$ to maximize $\phi_{i,t}$

Linear-Quadratic Differential Game

• Given other firms' R&D $\{x_{j,t}\}_{i\neq i,t\geq 0}$, firm i chooses R&D $\{x_{i,t}\}_{t\geq 0}$ to maximize

$$\max_{\left\{x_{i,t}\right\}_{t\geq0}} V^{i}\left(z_{0}\right) \equiv \int_{0}^{\infty} \exp\left(-\rho t\right) \left\{\sum_{j} \kappa_{ij} \left(\pi_{j,t} - d_{j,t}\right)\right\} dt$$

subject to
$$\dot{z}_t = \Omega z_t + \mu x_t - \delta z_t$$

Linear-Quadratic Differential Game

• Given other firms' R&D $\{x_{j,t}\}_{i\neq i,t\geq 0}$, firm i chooses R&D $\{x_{i,t}\}_{t\geq 0}$ to maximize

$$\max_{\left\{x_{i,t}\right\}_{t\geq0}} V^{i}\left(z_{0}\right) \equiv \int_{0}^{\infty} \exp\left(-\rho t\right) \left\{\sum_{j} \kappa_{ij} \left(\pi_{j,t} - d_{j,t}\right)\right\} dt$$

subject to
$$\dot{z}_t = \Omega z_t + \mu x_t - \delta z_t$$

- Static objective: $\sum_{j} \kappa_{ij} \pi_{j,t} = \mathbf{z}_{t}^{T} \mathbf{Q}^{i} \mathbf{z}_{t}$
- R&D cost: $d_{i,t} = x_{i,t}^2$

Linear-Quadratic Differential Game

• Given other firms' R&D $\{x_{j,t}\}_{i\neq i,t\geq 0}$, firm i chooses R&D $\{x_{i,t}\}_{t\geq 0}$ to maximize

$$\max_{\left\{x_{i,t}\right\}_{t\geq0}} V^{i}\left(z_{0}\right) \equiv \int_{0}^{\infty} \exp\left(-\rho t\right) \left\{\sum_{j} \kappa_{ij} \left(\pi_{j,t} - d_{j,t}\right)\right\} dt$$

subject to $\dot{z}_t = \Omega z_t + \mu x_t - \delta z_t$

- Static objective: $\sum_{j} \kappa_{ij} \pi_{j,t} = z_{t}^{T} \mathbf{Q}^{i} z_{t}$
- R&D cost: $d_{i,t} = x_{i,t}^2$
- Firm *i*'s HJB equation:

$$\rho V^{i}(z) = \max_{x_{i}} \left\{ z^{T} Q^{i} z - \sum_{j} \kappa_{ij} x_{j}^{2} + V_{z}^{i}(z) \left[\mathbf{\Omega} z + \mu x \right] \right\}$$

HJB Equations ⇒ Riccati Equations

- Guess and verify $V^{i}(z) = z^{T}X^{i}z$ (for any z)
- X^i is the solution of stacked algebraic Riccati equations

HJB Equations ⇒ Riccati Equations

- Guess and verify $V^{i}(z) = z^{T}X^{i}z$ (for any z)
- ullet X^i is the solution of stacked algebraic Riccati equations
- Public & patenting firms in the U.S. in our dataset ≈ 700 firms \Longrightarrow $700^3 = 343$ million undetermined coefficients (< 1 min on my laptop)

Oligopolistic Schumpeterian	Computation time	# of firms	Productivity space
Cavenaile et al. (2023) Our model	$O(2^n)$ $O(n^4)$	4 ≈700	6-grid Continuous

BGP

- Linear R&D strategy: $x_t = \mu \widetilde{X} z_t$ where $\widetilde{X} = \begin{bmatrix} X_1^1 & \cdots & X_n^n \end{bmatrix}^T$ and X_i^i is the ith column of X^i
- The law of motion is rewritten as $\dot{z}_t = \Phi z_t$ where

$$\Phi \equiv \underbrace{\Omega}_{\text{Tech Spillover}} + \underbrace{\mu^2 \overline{X}}_{\text{R\&D}} - \underbrace{\delta I}_{\text{Depreciation}}$$

BGP

- Linear R&D strategy: $x_t = \mu \widetilde{X} z_t$ where $\widetilde{X} = \begin{bmatrix} X_1^1 & \cdots & X_n^n \end{bmatrix}^T$ and X_i^i is the *i*th column of X^i
- The law of motion is rewritten as $\dot{z}_t = \Phi z_t$ where

$$\Phi \equiv \underbrace{\Omega}_{\text{Tech Spillover}} + \underbrace{\mu^2 X}_{\text{R\&D}} - \underbrace{\delta I}_{\text{Depreciation}}$$

Theorem

If **Φ** is irreducible, then:

- (i) There exists a largest positive eigenvalue of Φ , g, and an associated positive eigenvector, z^* .
- (ii) There exists a globally stable BGP such that the knowledge capital growth rate of all firms is g, and the knowledge capital distribution is a scalar multiple of z^* .
 - Proof: Perron–Frobenius Theorem

CES on BGP despite Non-CES Demand

- a_i , b_i , q_i (= $a_i l_i$), p_i , and w/a_i grow at the same rate g
- (i) (consumer surplus / producer surplus) and (ii) (cost / revenue) stay the same

Lifetime Utility

Lifetime utility is expressed in quadratic form:

$$\int_{t}^{\infty} \exp(-\rho s) C_{s} ds = z_{t}^{T} X z_{t}$$

- X
- ullet Solve the equilibrium once \Longrightarrow we can compute lifetime utility for any initial z_t

Common Ownership Weights K

- Backus et al. (2021) construct a dataset on investors' holdings based on Form 13F
- Baseline: Rotemberg (1984) proportional influence

Proportional Influence

Product-Market Rivalry Σ

- Hoberg and Phillips (2016) estimates product proximity using business descriptions in 10-K
- Pellegrino (2024) estimates α to align with the cross-price elasticity of demand

$$\sigma_{ij} = \alpha \times \text{product proximity between } i \text{ and } j \quad (i \neq j)$$
substitutability

micro estimates

Technological Proximity $\widetilde{\Omega}$

- Technological profile of firm i
 - The vector of the share of patents held by firm i in each technology class
 - Baseline: group-level patent classifications (≈ 4000), five years window
- Jaffe (1986) technological proximity measure $\tilde{\omega}_{ij}$:
 - ullet Cosine similarity of the technological profiles between firms i and j
 - Impose $\sum_{j\neq i} \tilde{\omega}_{ij} = 1$ for each i

Distribution of Knowledge Capital z_t

Variables	Identification
$\pi_{i,t}$	Gross profit (before R&D cost) = Revenue - Cost of goods sold
q_t	$\pi_{i,t} = \sum_{i} \kappa_{ij} \sigma_{ij} q_{i,t} q_{j,t}$
ζ/L	Matches sample firms' cost share (average markup)
$oldsymbol{z}_t$	$\boldsymbol{z}_t = \left\{ 2\frac{\zeta}{L} 1_{n \times n} + \boldsymbol{\Sigma} + \boldsymbol{K} \circ \boldsymbol{\Sigma} \right\} \boldsymbol{q}_t$

Technology Spillover $\Omega = \beta \times \text{Technological Proximity } \widetilde{\Omega}$

$$\log z_{i,t+1} - \log z_{i,t} = \beta \sum_{j \neq i} \tilde{\omega}_{ij,t} \frac{z_{j,t}}{z_{i,t}} + \mathsf{Controls}_{i,t} + \epsilon_{i,t}$$

	(1)	(2)	(3)	
	$\log z_{i,t+1} - \log z_{i,t}$	$\log z_{i,t+1} - \log z_{i,t}$	$\log z_{i,t+1} - \log z_{i,t}$	
$\nabla = \tilde{c}_{i} \cdot \tilde{c}_{j,t}$	0.026**	0.024**	0.073*	
$\sum_{j\neq i} \tilde{\omega}_{ij,t} \frac{z_{j,t}}{z_{i,t}}$	(0.010)	(0.010)	(0.038)	
$x_{i,t}$		0.514***		
$\frac{x_{i,t}}{z_{i,t}}$		(0.063)		
Firm & Year FEs	✓	✓		
Controls	\checkmark	✓	\checkmark	
IV			\checkmark	
Observations	14,576	14,576	14,576	

SEs clustered by years and 4-digit NAICS industries are reported in parentheses. Control variables include $\log z_{i,t}$, firm fixed effects, and year fixed effects. * p < 0.1, ** p < 0.05, *** p < 0.01.

IV: User cost of R&D, driven by federal and state-specific rules variations (Bloom et al., 2013)

Identification: Summary

Publicly available data + Compustat

Notation	Description	Value	Source
Σ	Product proximity		Form 10-K, Hoberg and Phillips (2016)
$\widetilde{m{\Omega}}$	Technological proximity		USPTO, Patent classification
\boldsymbol{K}	Common ownership weights		Form 13F, Backus et al. (2021)
α	Product proximity → Substitutability	0.120	Pellegrino (2024)
β	Technological proximity → Spillovers	0.024	Estimated from the law of motion
ζ/L	Labor-augmenting efficiency	0.004	Compustat, Cost of goods sold
ρ	Discount rate	0.100	> risk-free rates, < private R&D returns
μ	R&D efficiency	0.066	2.6% R&D share (moment match)
δ	Depreciation rate	0.017	1.2% economic growth rate (moment match)

Model vs. Data: Firm-level Profits, Sales, and R&D

• Comparison of firm-level model-generated values (x-axis) with observed data (y-axis)

Model vs. Data: Firm-level Growth Rates

• Data: Average growth rate of $z_{i,t}$ between 2010 and 2017

Counterfactual Ownership Structures

Ownership Structure	Description
Baseline	Observed common ownership structure in 2017
Dispersed	$K^D = I$
Mean=1999	$\kappa_{ij,2017}^{M1999} = \operatorname{const} \times \kappa_{ij,2017}$ and $E\left[\kappa_{ij,2017}^{M1999}\right] = E\left[\kappa_{ij,1999}\right]$ for $j \neq i$
Uniform	$\kappa_{ij,2017}^{U} = E\left[\kappa_{ij,2017}\right] \text{ for } j \neq i$
Monopoly	$\mathbf{K}^{M} = 1_{n \times n}$

- For the moment, assume:
 - Ownership structure only affects R&D decisions
 - Product-market competition: firms maximize static profits (dispersed ownership)

Total R&D Expenditure (Optimal R&D: 100)

Total R&D in 2017	Ownership (Baseline: 2017)				
(Optimal R&D: 100)	Dispersed	Mean=1999	Uniform	Baseline	Monopoly
Baseline	40.48	38.68	31.56	28.26	21.39
Only Business Steal $\Omega = [0]$					
Only Tech Spill $\Sigma = I$, $\zeta/L = 0$					

Internalization of business-stealing > internalization of technology spillovers

Total R&D Expenditure (Optimal R&D: 100)

Total R&D in 2017	Ownership (Baseline: 2017)				
(Optimal R&D: 100)	Dispersed	Mean=1999	Uniform	Baseline	Monopoly
Baseline	40.48	38.68	31.56	28.26	21.39
Only Business Steal $\Omega = [0]$	52.04	49.73	41.51	36.40	30.69
Only Tech Spill $\Sigma = I$, $\zeta/L = 0$					

Internalization of business-stealing > internalization of technology spillovers

Total R&D Expenditure (Optimal R&D: 100)

Total R&D in 2017		Ownership (Baseline: 2017)					
(Optimal R&D: 100)	Dispersed	Mean=1999	Uniform	Baseline	Monopoly		
Baseline	40.48	38.68	31.56	28.26	21.39		
Only Business Steal	50.04	10.70	44.54	00.40	22.22		
$\mathbf{\Omega} = [0]$	52.04	49.73	41.51	36.40	30.69		
Only Tech Spill							
$\Sigma = I, \zeta/L = 0$	13.61	14.25	18.33	19.33	27.77		

Internalization of business-stealing > internalization of technology spillovers

		Ownership	(Baseline	: 2017)	
	Dispersed	Mean=1999	Uniform	Baseline	Monopoly
Total R&D (Optimal R&D: 100)	40.48	38.68	31.56	28.26	21.39
Economic Growth Rate (%)					
Welfare (Optimal R&D: 100)					
Firm Value Share (%)					
-					

		Ownership	(Baseline	: 2017)	
	Dispersed	Mean=1999	Uniform	Baseline	Monopoly
Total R&D (Optimal R&D: 100)	40.48	38.68	31.56	28.26	21.39
Economic Growth Rate (%)	1.32	1.31	1.24	1.20	1.11
Welfare (Optimal R&D: 100)					
Firm Value Share (%)					

		Ownership	(Baseline	: 2017)	
	Dispersed	Mean=1999	Uniform	Baseline	Monopoly
Total R&D (Optimal R&D: 100)	40.48	38.68	31.56	28.26	21.39
Economic Growth Rate (%)	1.32	1.31	1.24	1.20	1.11
Welfare (Optimal R&D: 100)	94.91	94.86	94.52	94.35	93.47
Firm Value Share (%)					

		Ownership	(Baseline	: 2017)	
	Dispersed	Mean=1999	Uniform	Baseline	Monopoly
Total R&D (Optimal R&D: 100)	40.48	38.68	31.56	28.26	21.39
Economic Growth Rate (%)	1.32	1.31	1.24	1.20	1.11
Welfare (Optimal R&D: 100)	94.91	94.86	94.52	94.35	93.47
Firm Value Share (%)	26.63	26.72	27.20	27.24	27.82
· · · · · · · · · · · · · · · · · · ·					

When Common Ownership Affects Both R&D and Production

Production ownership structure R&D ownership structure		Dispersed Common	
Output (Dispersed: 100)	100.00	100.00	97.26
Total R&D (Dispersed: 100)	100.00	69.81	86.36
Economic Growth Rate (%)	1.323	1.200	1.288
Welfare (Dispersed: 100)	100.00	99.41	97.28
Firm Value Share (%)	26.63	27.24	34.10

- Common & Common:
 - Intermediate R&D expenditure and growth rate
 - Lowest welfare
 - Highest firm value share

Optimal Uniform R&D Subsidy

• Optimal rate is s = 43%, which increases g by 0.57 pp and CE welfare by 1.4%.

Conclusion

- Quantitative Schumpeterian growth model with ownership structure
 - Utilizes micro data and computational capabilities
- Common ownership in the U.S.:
 - 1. Internalization of business-stealing effect $\Longrightarrow g \downarrow \downarrow$
 - 2. Internalization of technology spillover effect $\Longrightarrow g \uparrow$
- Potential applications:
 - Chaebols (Korea)
 - Zaibatsu (Japan)
 - FDI and international technology diffusion
 - Technology licensing

Share of Top 5 Shareholders in Largest Market Cap Firms

Microsoft	
Vanguard	9.20%
Blackrock	7.75%
Steven Ballmer	4.48%
State Street	3.97%
Fidelity	2.66%

Google	
Vanguard	7.36%
Blackrock	6.47%
State Street	3.39%
Fidelity	3.01%
Sergey Brin	2.99%

Nvidia	
Vanguard	8.93%
BlackRock	7.74%
Fidelity	4.12%
State Street	3.97%
Jensen Huang	3.80%

Amazon	
Jeffrey Bezos	8.58%
Vanguard	7.77%
Blackrock	6.50%
State Street	3.44%
Fidelity	3.10%

Apple	
Vanguard	9.29%
Blackrock	7.48%
State Street	3.96%
Fidelity	2.27%
Geode Capital	2.26%

Meta	
Vanguard	7.55%
Blackrock	6.50%
Fidelity	5.38%
Accel IX LP	3.88%
State Street	3.40%

Equity Investments by Big Tech in Al Startups (Back)

Shareholding percentage	Microsoft	Google	Amazon
OpenAl (ChatGPT)	49%	_	_
Anthropic (Claude)	_	14%	23%

Technology & Product Proximity: Example

Tesla vs. Ford	
Technology Proximity	0.11
Product Proximity	0.15

Apple vs. Intel	
Technology Proximity	0.57
Product Proximity	0.00

Rotemberg (1984) Proportional Influence

- $o \in \{1, 2, ..., n_o\}$: owners
- s_{io} : the proportion of shares in firm i owned by owner o where $\sum_{o} s_{io} = 1$
- \widehat{V}_i : value of firm i
- $\widetilde{V}_o \equiv \sum_i s_{io} \widehat{V}_i$: value of owner o
- Firm *i*'s objective:

$$\sum_{o} s_{io} \widetilde{V}_{o} \propto \sum_{j} \kappa_{ij} \widehat{V}_{j}$$

where

$$\kappa_{ij} \equiv \frac{\mathbf{s}_i^T \mathbf{s}_j}{\mathbf{s}_i^T \mathbf{s}_i} = \cos(\mathbf{s}_i, \mathbf{s}_j) \sqrt{\frac{IHHI_j}{IHHI_i}} \quad \text{where} \quad \mathbf{s}_i \equiv [s_{i1}, ..., s_{io}, ..., s_{in_o}]^T$$

Empirical Literature: Common Ownership ⇒ R&D

- Anton et al. (2025):
 - Dependent variables: R&D, citation-weighted patents, market value of patents
 - + Interaction term between common ownership and technology proximity
 - Interaction term between common ownership and product proximity

Empirical Literature: Common Ownership ⇒ R&D

- Anton et al. (2025):
 - Dependent variables: R&D, citation-weighted patents, market value of patents
 - + Interaction term between common ownership and technology proximity
 - Interaction term between common ownership and product proximity
- Kini et al. (2024): DiD that exploits mergers between financial institutions
 - Dependent variables: Investments, new product development
 - + Post (merger) × treatment (common owner) × technology proximity
 - Post (merger) × treatment (common owner) × HHI

R&D Externalities

- 1. Business-stealing effect
 - Innovators steal the business (profits) of other firms
- 2. Technology spillover effect
 - Innovation improves the productivity of other firms
- 3. Appropriability effect (market power)
 - Innovators cannot appropriate the entire consumer surplus

Generalized Hedonic-Linear Demand (Pellegrino, 2024)

- $i \in \{1, 2, ..., n\}$: firms / products
- 1 unit of product i provides
 - 1 unit of idiosyncratic characteristic $k \in \{1, 2, ..., n\}$
 - $\psi_{k,i}$ unit of shared characteristic $k \in \{n+1, n+2, ..., n+n_k\}$ where $\sum_k \psi_{k,i}^2 = 1$
- Aggregate each characteristic:

$$y_{k,t} = \begin{cases} q_{k,t} & k = 1, 2, ..., n \\ \sum_{i} \psi_{k,i} q_{i,t} & k = n+1, n+2, ..., n+n_k \end{cases}$$

Linear-quadratic aggregator over characteristics:

$$Y_t = (1 - \alpha) \sum_{k=1}^n \left(\underbrace{\hat{b}_{k,t} y_{k,t} - \frac{1}{2} y_{k,t}^2}_{\text{idiosyncratic characteristic}} \right) + \alpha \sum_{k=n+1}^{n+n_k} \left(\underbrace{\hat{b}_{k,t} y_{k,t} - \frac{1}{2} y_{k,t}^2}_{\text{shared characteristic}} \right)$$

Generalized Hedonic-Linear Demand (Pellegrino, 2024)

Quality:

$$b_i = (1 - \alpha)\hat{b}_i + \alpha \sum_{k=n+1}^{n+n_k} \psi_k \hat{b}_k$$

Inverse demand:

$$\frac{p}{P} = b - \Sigma q$$

Inverse cross-price elasticity of demand:

$$\frac{\partial \log p_i}{\partial \log q_j} = -\frac{q_j}{p_i} \cdot \sigma_{ij}$$

Cross-price elasticity of demand:

$$\frac{\partial \log q_i}{\partial \log p_j} = -\frac{p_j}{q_i} (\mathbf{\Sigma}^{-1})_{ij}$$

Equilibrium quantities:

$$q_i^* = \frac{1}{2}z_i - \sqrt{\zeta w_t} - \frac{1}{2} \sum_{j \neq i} (\sigma_{ij} + \kappa_{ij}\sigma_{ij}) q_j^*$$

Equilibrium quantities:

$$q_i^* = \frac{1}{2}z_i - \sqrt{\zeta w_t} - \frac{1}{2} \sum_{j \neq i} (\sigma_{ij} + \kappa_{ij}\sigma_{ij}) q_j^*$$

• Assume $\{q_i^*\}_{j\neq i}$ are held constant

Equilibrium quantities:

$$q_i^* = \frac{1}{2}z_i - \sqrt{\zeta w_t} - \frac{1}{2} \sum_{j \neq i} (\sigma_{ij} + \kappa_{ij}\sigma_{ij}) q_j^*$$

- Assume $\{q_i^*\}_{j\neq i}$ are held constant
- By the Envelope Theorem, the marginal value of knowledge capital (R&D incentive) is given by:

$$\frac{\partial \phi_i^*}{\partial z_i} = q_i^*$$

Equilibrium quantities:

$$q_i^* = \frac{1}{2}z_i - \sqrt{\zeta w_t} - \frac{1}{2} \sum_{j \neq i} (\sigma_{ij} + \kappa_{ij}\sigma_{ij}) q_j^*$$

- Assume $\{q_i^*\}_{j\neq i}$ are held constant
- By the Envelope Theorem, the marginal value of knowledge capital (R&D incentive) is given by:

$$\frac{\partial \phi_i^*}{\partial z_i} = q_i^*$$

ullet Greater overlap between ownership and product-market rivalry networks \Longrightarrow R&D \downarrow

$$\frac{\partial^2 (\partial \phi_i^* / \partial z_i)}{\partial \kappa_{ij} \partial \sigma_{ij}} = \frac{\partial^2 q_i^*}{\partial \kappa_{ij} \partial \sigma_{ij}} = -\frac{1}{2} q_j^* < 0$$

Static Profits

- Gross profit: $\pi_{i,t} = \sum_{j} \kappa_{ij} \sigma_{ij} q_{i,t} q_{j,t}$
- Firms choose labor productivity and product quality: $\zeta a_{i,t} = \sqrt{\zeta w_t}$, $b_{i,t} = z_{i,t} \sqrt{\zeta w_t}$
- Labor market clearing: $L = \sum_i \frac{q_{i,t}}{a_{i,t}} \Longrightarrow \sqrt{\zeta w_t} = \frac{\zeta}{L} \sum_i q_{i,t}$
- $q_t = Nz_t$ where $N \equiv \left\{2\frac{\zeta}{L}J + \Sigma + K \circ \Sigma\right\}^{-1}$
- N_i: the ith row of N
- Ownership weighted profit:

$$\sum_{j} \kappa_{ij} \frac{\pi_{j,t}}{P_t} = \sum_{j} \kappa_{ij} \sum_{h} \kappa_{jh} \sigma_{jh} q_{j,t} q_{h,t} = z_t^T \mathbf{Q}^i z_t$$

where

$$Q^{i} = \frac{1}{2} \sum_{j} \kappa_{ij} \sum_{h} \kappa_{jh} \sigma_{jh} \left(N_{j}^{T} N_{h} + N_{h}^{T} N_{j} \right)$$

Riccati Equations

• $V^{i}(z) = z^{T}X^{i}z$ where X^{i} is the solution of the stacked Riccati equation

$$0 = \mathbf{Q}^{i} - \mu^{2} \sum_{j} \kappa_{ij} \mathbf{X}_{j}^{j} \left(\mathbf{X}_{j}^{j} \right)^{T} + \left(\mathbf{\Phi} - \frac{1}{2} \left(\rho - \gamma^{2} \right) \mathbf{I} \right)^{T} \mathbf{X}^{i} + \mathbf{X}^{i} \left(\mathbf{\Phi} - \frac{1}{2} \left(\rho - \gamma^{2} \right) \mathbf{I} \right)$$

- $X_i^i \equiv \text{the } i \text{th column of } X^i$
- $\Phi \equiv \Omega + \mu^2 \begin{bmatrix} X_1^1 & \cdots & X_n^n \end{bmatrix}^T$
- Algorithm: Given $\left[\begin{array}{ccc} X_{\tau}^1 & \cdots & X_{\tau}^n \end{array}
 ight]$, update $\left[\begin{array}{ccc} X_{\tau-\Delta}^1 & \cdots & X_{\tau-\Delta}^n \end{array}
 ight]$ by

$$-\frac{\boldsymbol{X}_{\tau}^{i}-\boldsymbol{X}_{\tau-\Delta}^{i}}{\Delta}=\boldsymbol{Q}^{i}-\mu^{2}\sum_{j}\kappa_{ij}\boldsymbol{X}_{j,\tau}^{j}\left(\boldsymbol{X}_{j,\tau}^{j}\right)^{T}+\left(\boldsymbol{\Phi}_{\tau}-\frac{1}{2}\left(\boldsymbol{\rho}-\boldsymbol{\gamma}^{2}\right)\boldsymbol{I}\right)^{T}\boldsymbol{X}_{\tau}^{i}+\boldsymbol{X}_{\tau}^{i}\left(\boldsymbol{\Phi}_{\tau}-\frac{1}{2}\left(\boldsymbol{\rho}-\boldsymbol{\gamma}^{2}\right)\boldsymbol{I}\right)$$

Summary of Equilibrium

Description	Expression
Production strategy	$q_t = Nz_t$
R&D strategy	$x_t = \mu \tilde{X} z_t$
Law of motion	$dz_t = (\mathbf{\Omega} z_t + \mu x_t) dt + \gamma z_t dW_t$
Profit of final producers	$\Pi_t^F/P_t = \boldsymbol{q}_t^T \left(\frac{1}{2}\boldsymbol{\Sigma}\right) \boldsymbol{q}_t$
Total operating profit of firms	$\Pi_t^T/P_t = \boldsymbol{q}_t^T \left(\frac{1}{2}\boldsymbol{\Sigma} \circ (\boldsymbol{K} + \boldsymbol{K}^T)\right) \boldsymbol{q}_t$
Labor income	$w_t L/P_t = \boldsymbol{q}_t^T \left(\frac{\zeta}{L} \boldsymbol{J} \right) \boldsymbol{q}_t$
Output	$Y_t = \boldsymbol{q}_t^T \left(\frac{\zeta}{L} \boldsymbol{J} + \frac{1}{2} \boldsymbol{\Sigma} + \frac{1}{2} \boldsymbol{\Sigma} \circ \left(\boldsymbol{K} + \boldsymbol{K}^T \right) \right) \boldsymbol{q}_t$
Consumption	$C_t = Y_t - x_t^T x_t$

Output and Expected Utility

• Output: $Y_t = q_t^T Q q_t$ where

$$Q = \frac{\zeta}{L} J + \frac{1}{2} \Sigma + \frac{1}{2} \Sigma \circ (K + K^{T})$$

Expected utility:

$$V(z_t) \equiv E_t \left[\int_t^{\infty} \exp(-\rho s) C_s ds \middle| z_t \right] = z_t^T X z_t$$

where X is the solution of the Lyapunov equation (obtained from households' HJB equation):

$$0 = \mathbf{Q} - \mu^2 \tilde{\mathbf{X}}^T \tilde{\mathbf{X}} + \mathbf{X} \left(\mathbf{\Phi} - \frac{1}{2} \left(\rho - \gamma^2 \right) \mathbf{I} \right) + \left(\mathbf{\Phi} - \frac{1}{2} \left(\rho - \gamma^2 \right) \mathbf{I} \right)^T \mathbf{X}$$

Social Optimum

- Static optimal allocation: $q_t^* = N^* z_t$ where $N^* \equiv \left\{ 2\frac{\zeta}{L} J + \Sigma \right\}^{-1}$
- Optimal output: $Y_t^* = z_t^T Q^* z_t$ where $Q^* = \frac{1}{2} N^*$
- Optimal expected utility:

$$V^*(z_t) \equiv E_t \left[\int_t^{\infty} \exp(-\rho s) C_s ds \middle| z_t \right] = z_t^T X^* z_t,$$

where X^* is the solution of the Riccati equation (obtained from planner's HJB equation):

$$0 = \mathbf{Q}^* - \mu^2 (X^*)^2 + X^* \left(\mathbf{\Phi}^* - \frac{1}{2} (\rho - \gamma^2) \mathbf{I} \right) + \left(\mathbf{\Phi}^* - \frac{1}{2} (\rho - \gamma^2) \mathbf{I} \right) X^*$$

- Optimal R&D: $x_t^* = \mu X^* z_t$
- Optimal technology transition matrix: $\Phi^* = \Omega + \mu^2 X^*$

Property of BGP

• On the BGP, a_t , b_t , z_t , and q_t grow at the same rate

Knowledge Capital: $\zeta a_{i,t} + b_{i,t} = z_{i,t}$ Linear Production Technology: $q_{i,t} = a_{i,t} l_{i,t}$ Inelastic Labor Supply: $L = \sum_i l_{i,t}$

• The linear and quadratic terms in q_t of output grow at the same rate:

$$Y_t = \boldsymbol{q}_t^T \boldsymbol{b}_t - \frac{1}{2} \boldsymbol{q}_t^T \boldsymbol{\Sigma} \boldsymbol{q}_t$$

Growth Decomposition

- Aggregate output: $Y_t = z_t^T Q z_t$
- $dz_t/dt = \Phi z_t$ where $\Phi = \Omega + \mu^2 \widetilde{X} \delta I$

$$\frac{d \log Y_t}{dt} = \underbrace{\frac{z_t^T \left(\mathbf{Q} \mathbf{\Omega} + \mathbf{\Omega} \mathbf{Q} \right) z_t}{Y_t}}_{\text{Tech Spillover}} + \underbrace{\frac{\mu^2 z_t^T \left(\mathbf{Q} \widetilde{\mathbf{X}} + \widetilde{\mathbf{X}}^T \mathbf{Q} \right) z_t}{Y_t}}_{\text{R\&D}} - \underbrace{\frac{2\delta}{\text{Depreciation}}}_{\text{Depreciation}}$$

Number of Sample Firms

Trend of Product Substitutability

Technological Proximity

- Merge USPTO data with Compustat firms using DISCERN 2 dataset (Arora et al., 2024)
- Jaffe measure, group-level patent classification, stacked over 5 years

Microeconometric Estimates vs. GHL (Pellegrino, 2024) (1/2)

Market	Firm i	Firm j	Micro Estimate	GHL
Auto	Ford	Ford	-4.320	-5.197
Auto	Ford	General Motors	0.034	0.056
Auto	Ford	Toyota	0.007	0.017
Auto	General Motors	Ford	0.065	0.052
Auto	General Motors	General Motors	-6.433	-4.685
Auto	General Motors	Toyota	0.008	0.005
Auto	Toyota	Ford	0.018	0.025
Auto	Toyota	General Motors	0.008	0.008
Auto	Toyota	Toyota	-3.085	-4.851

Microeconometric Estimates vs. GHL (Pellegrino, 2024) (2/2)

Market	Firm i	Firm j	Micro Estimate	GHL
Cereals	Kellogg's	Kellogg's	-3.231	-1.770
Cereals	Kellogg's	Quaker Oats	0.033	0.023
Cereals	Quaker Oats	Kellogg's	0.046	0.031
Cereals	Quaker Oats	Quaker Oats	-3.031	-1.941
Computers	Apple	Apple	-11.979	-8.945
Computers	Apple	Dell	0.018	0.025
Computers	Dell	Apple	0.027	0.047
Computers	Dell	Dell	-5.570	-5.110

First Stage Back

R&D
(1)
-1.163320^{***} (0.293931)
-34.298135^{***} (3.649001)
✓
\checkmark
16197

SEs clustered by years and 4-digit NAICS industries are reported in parentheses.

 IV: User cost of R&D, driven by federal and state-specific rules variations (Wilson, 2009; Bloom et al., 2013)

Negative R&D and Output

- Issue with the model: negative output and R&D
 - Inada condition is not satisfied
 - Non-negativity constraint makes model intractable

Negative R&D and Quantity

- Firms with negative values are negligible along the transition path
- The weight on consumption 100 years and beyond is 0.00454% ($\rho = 0.1$)

Alternative Corporate Governance Models: Ederer and Pellegrino (2024)

- 1. Super-proportional influence: $\tilde{\kappa}_{ij}=\frac{\sum_{o}s_{io}\gamma_{io}s_{jo}}{\sum_{o}s_{io}\gamma_{io}s_{io}}$ where $\gamma_{io}=\sqrt{s_{io}}$
- 2. Blockholder influence: $\tilde{\kappa}_{ij} = \frac{\sum_{o} s_{io} b_{io} s_{jo}}{\sum_{o} s_{io} s_{jo}}$ $(i \neq j)$, where $b_{io} = 1$ if $s_{io} > 5\%$
- 3. Governance frictions and entrenchment
 - Azar and Ribeiro (2021) estimate an objective function where the manager of firm i discounts other firms' profit by τ_i

Alternative Corporate Governance Models

	Ownership Structure in 2017					
	Dispersed Ownership	Baseline: Proportional Influence	Super Proportional Influence	Blockholder Influence	Governance Frictions (Uniform)	Governance Frictions (Firm-Specific)
Total R&D Expenditure	100.00	69.81	68.97	77.45	90.32	90.41
Expected Growth Rate (%)	1.323	1.200	1.194	1.234	1.287	1.289
Expected Social Welfare	100.00	99.41	99.37	99.59	99.86	99.86
Firm Value Share (%)	26.63	27.24	27.24	27.09	26.82	26.84

- **Acemoglu, Daron, and Ufuk Akcigit.** 2012. "Intellectual Property Rights Policy, Competition and Innovation." *Journal of the European Economic Association* 10 (1): 1–42.
- **Aghion, P, N Bloom, R Blundell, R Griffith, and P Howitt.** 2005. "Competition and Innovation: An Inverted-U Relationship." *The Quarterly Journal of Economics* 120 (2): 701–728.
- **Aghion, Philippe, Christopher Harris, Peter Howitt, and John Vickers.** 2001. "Competition, Imitation and Growth with Step-by-Step Innovation." *The Review of Economic Studies* 68 (3): 467–492.
- **Aghion, Philippe, John Van Reenen, and Luigi Zingales.** 2013. "Innovation and Institutional Ownership." *American Economic Review* 103 (1): 277–304.
- **Akcigit**, **Ufuk**, **and Sina T Ates.** 2021. "Ten Facts On Declining Business Dynamism and Lessons From Endogenous Growth Theory." *American Economic Journal: Macroeconomics* 13 (1): 257–298.
- **Akcigit, Ufuk, and Sina T Ates.** 2023. "What Happened to US Business Dynamism?" *The Journal of Political Economy* 131 (8): 2059–2124.
- **Anton, Miguel, Florian Ederer, Mireia Gine, and Martin Schmalz.** 2023. "Common Ownership, Competition, and Top Management Incentives." *The journal of political economy* 131 (5): 1294–1355.

- **Anton, Miguel, Florian Ederer, Mireia Gine, and Martin Schmalz.** 2025. "Innovation: The Bright Side of Common Ownership?" *Management science*.
- Arora, Ashish, Sharon Belenzon, Larisa Cioaca, Lia Sheer, Hyun Moh (john) Shin, and Dror Shvadron. 2024. "DISCERN 2: Duke innovation & SCientific Enterprises Research Network."
- **Atkeson, Andrew, and Ariel Burstein.** 2008. "Pricing-to-Market, Trade Costs, and International Relative Prices." *The American Economic Review* 98 (5): 1998–2031.
- Autor, David, David Dorn, Lawrence F Katz, Christina Patterson, and John Van Reenen.
 2020. "The Fall of The Labor Share and The Rise of Superstar Firms." The Quarterly Journal of Economics 135 (2): 645–709.
- **Azar, Jose, Martin C Schmalz, and Isabel Tecu.** 2018. "Anticompetitive Effects of Common Ownership." *The Journal of Finance* 73 (4): 1513–1565.
- **Azar, Jose, and Xavier Vives.** 2021. "General Equilibrium Oligopoly and Ownership Structure." *Econometrica* 89 (3): 999–1048.
- Azar, José, Sahil Raina, and Martin Schmalz. 2022. "Ultimate ownership and bank competition." *Financial management* 51 (1): 227–269.
- **Azar, José, and Ricardo Ribeiro.** 2021. "Estimating oligopoly with shareholder voting models." *SSRN Electronic Journal.*

- **Backus, Matthew, Christopher Conlon, and Michael Sinkinson.** 2021. "Common Ownership in America: 1980-2017." *American Economic Journal. Microeconomics* 13 (3): 273–308.
- **Baqaee**, **David Rezza**, **and Emmanuel Farhi**. 2020. "Productivity and Misallocation in General Equilibrium." *The Quarterly Journal of Economics* 135 (1): 105–163.
- **Berry, Steven, James Levinsohn, and Ariel Pakes.** 1995. "Automobile Prices in Market Equilibrium." *Econometrica* 63 (4): 841.
- Bloom, Nicholas, Mark Schankerman, and John VAN Reenen. 2013. "Identifying Technology Spillovers and Product Market Rivalry." *Econometrica* 81 (4): 1347–1393.
- Cavenaile, Laurent, Murat Alp Celik, and Xu Tian. 2023. "Are Markups Too High? Competition, Strategic Innovation, and Industry Dynamics."
- **d'Aspremont, Claude, and A Jacquemin.** 1988. "Cooperative and noncooperative R&D in duopoly with spillovers." *The American Economic Review* 78 (5): 1133–1137.
- **De Loecker, Jan, Jan Eeckhout, and Gabriel Unger.** 2020. "The Rise of Market Power and The Macroeconomic Implications." *The Quarterly Journal of Economics* 135 (2): 561–644.
- **Ederer, Florian, and Bruno Pellegrino.** 2024. "A Tale of Two Networks: Common Ownership and Product Market Rivalry."
- **Edmond, Chris, Virgiliu Midrigan, and Daniel Yi Xu.** 2023. "How Costly Are Markups?" *The Journal of Political Economy* 000–000.

- **Gutierrez, German, and Thomas Philippon.** 2017. "An Empirical Investigation." *Brookings Papers on Economic Activity* 89–169.
- **He, Jie (jack), and Jiekun Huang.** 2017. "Product Market Competition in a World of Cross-Ownership: Evidence from Institutional Blockholdings." *The Review of Financial Studies* 30 (8): 2674–2718.
- Hoberg, Gerard, and Gordon Phillips. 2016. "Text-Based Network Industries and Endogenous Product Differentiation." *The Journal of Political Economy* 124 (5): 1423–1465.
- **Hopenhayn, Hugo, and Koki Okumura.** 2024. "Dynamic Oligopoly and Innovation: A Quantitative Analysis of Technology Spillovers and Product Market Competition."
- **Jaffe, Adam B.** 1986. "Technological Opportunity and Spillovers of R&D: Evidence from Firms' Patents, Profits, and Market Value." *The American economic review* 76 (5): 984–1001.
- Kamien, Morton I, Eitan Muller, and Israel Zang. 1992. "Research Joint Ventures and R&D Cartels." *The American Economic Review* 82 (5): 1293–1306.
- **Kini, Omesh, Sangho Lee, and Mo Shen.** 2024. "Common Institutional Ownership and Product Market Threats." *Management Science* 70 (5): 2705–2731.
- **Lancaster, Kelvin J.** 1966. "A New Approach to Consumer Theory." *The Journal of Political Economy* 74 (2): 132–157.

- **Liu, Ernest, Atif Mian, and Amir Sufi.** 2022. "Low Interest Rates, Market Power, and Productivity Growth." *Econometrica* 90 (1): 193–221.
- **Lopez**, **Angel L**, **and Xavier Vives**. 2019. "Overlapping Ownership, R&D Spillovers, and Antitrust Policy." *The Journal of Political Economy* 127 (5): 2394–2437.
- **Neary, J Peter.** 2003. "Globalization and market structure." *Journal of the European Economic Association* 1 (2-3): 245–271.
- **Nevo, Aviv.** 2001. "Measuring Market Power in the Ready-to-Eat Cereal Industry." *Econometrica* 69 (2): 307–342.
- **Pellegrino**, **Bruno**. 2024. "Product Differentiation and Oligopoly: A Network Approach." *The American Economic Review*.
- **Peters, Michael.** 2020. "Heterogeneous Markups, Growth, and Endogenous Misallocation." *Econometrica* 88 (5): 2037–2073.
- **Rosen, Sherwin.** 1974. "Hedonic Prices and Implicit Markets: Product Differentiation in Pure Competition." *The Journal of Political Economy* 82 (1): 34–55.
- Rotemberg, Julio. 1984. "Financial transaction costs and industrial performance."
- **Rubinstein, Ariel, and Menahem E Yaari.** 1983. "The Competitive Stock Market as Cartel Maker: Some Examples." *STICERD Theoretical Economics Paper Series*.
- **Wilson, Daniel J.** 2009. "Beggar thy neighbor? The in-state, out-of-state, and aggregate effects of R&D tax credits." *The Review of Economics and Statistics* 91 (2): 431–436.