Práctica 10 - Cálculo de Enunciados L.

1.- Dada la siguiente secuencia de fbfs de L:

- a. $((\neg p) \rightarrow (\neg (q \rightarrow r))) \rightarrow ((q \rightarrow r) \rightarrow p)$
- b. $((\neg p) \rightarrow (\neg (q \rightarrow r)))$
- c. $((q \rightarrow r) \rightarrow p)$

Analizar si se trata de una demostración en L de la forma $\Gamma \mid_{-L} A$ para algún conjunto Γ de fbfs y alguna fbf A. En ese caso:

I. Describir al conjunto Γ y a la fbf A y explicar cada paso de la secuencia (axiomas y reglas de inferencia).

$$\begin{split} \Gamma &= \{((\neg p) \rightarrow (\neg (q \rightarrow r))) \rightarrow ((q \rightarrow r) \rightarrow p), \, ((\neg p) \rightarrow (\neg (q \rightarrow r)))\} \\ A &= ((q \rightarrow r) \rightarrow p) \end{split}$$

Demostración sintáctica:

1	$((\neg p) \to (\neg (q \to r)))$	Hipótesis
2	$((\neg p) \to (\neg (q \to r))) \to ((q \to r) \to p)$	Hipótesis
3	$((q \to r) \to p)$	MP entre 1 y 2

Llegamos a A a partir del conjunto Γ.

II. Decir si A es teorema de L

Γ es un conjunto vacío

$$A = ((q \rightarrow r) \rightarrow p)$$

Por las propiedades de Corrección y Completitud, sabemos qué si A es teorema de L también A es una tautología (viceversa también). Se puede hacer la tabla de verdad para ver si A es una tautología y, si lo es, entonces también es un teorema (además hago los dos incisos de una, el menos vago)

р	q	r	$(q \rightarrow r)$	$((q\tor)\top)$
V	٧	٧	V	V
V	V	F	F	F
V	F	٧	V	V
V	F	F	V	V
F	V	٧	V	V
F	٧	F	F	V

F	F	V	V	V
F	F	F	V	٧

Construimos la tabla de verdad y comprobamos que la fbf A no es una tautología, entonces por la propiedad de Corrección, tampoco es un teorema de L.

- III. Decir si A es tautología Ver inciso anterior.
- 2.- Sean A, B y C tres fbfs de L. Dar una demostración sintáctica en L de los siguientes teoremas. Justificar cada paso en la derivación, indicando cuales son los axiomas instanciados y las reglas de inferencia utilizadas. Intente resolverlos sin usar el metateorema de la deducción y luego usándolo.

i.-
$$|-_{L}((\neg A \rightarrow A) \rightarrow A)$$

Sin metateorema:

1	$((\neg A \to A) \to (\neg A \to A)) \to (((\neg A \to A) \to A))$ $(\neg A)) \to ((\neg A \to A) \to A))$	L2 $A = (\neg A \rightarrow A)$ $B = \neg A$ $C = A$
2		L1 A B

Con metateorema:

$$\Gamma \ U \ \{ (\neg A \to A) \} \mid {\text{-}_L} \ A$$

1	$(\neg A \rightarrow A)$	Hipótesis
2		L1 A = ¬A B = ¬¬(¬A → A)

3	$(\neg\neg(\neg A \to A) \to \neg A) \to (A \to \neg(\neg A \to A))$	L3 A = ¬¬(¬A → A) B = A
4	$(\neg A \to (A \to \neg (\neg A \to A))$	SH entre 3 y 4
5	$ \begin{array}{c} (\neg A \rightarrow (A \rightarrow \neg (\neg A \rightarrow A))) \rightarrow ((\neg A \rightarrow A) \rightarrow (\neg A \rightarrow \neg (\neg A \rightarrow A))) \end{array} $	L2 $A = \neg A$ B = A $C = \neg(\neg A \rightarrow A)$
6	$((\neg A \to A) \to (\neg A \to \neg (\neg A \to A)))$	MP entre 4 y 5
7	$(\neg A \to \neg (\neg A \to A))$	MP entre 1 y 6
8	$(\neg A \rightarrow \neg (\neg A \rightarrow A)) \rightarrow ((\neg A \rightarrow A) \rightarrow A))$	L3 A = A B = ¬A → B
9	$((\neg A \to A) \to A))$	MP entre 7 y 8
10	A	MP entre 1 y 9

Se probó que $|-_L ((\neg A \to A) \to A)$ es un teorema

$$ii.\text{-} \mid \text{-}_L ((A \to B) \to (\neg B \to \neg A))$$

Sin metateorema:

Con metateorema:

$$\Gamma \; U \; \{(A \to B)\} \; | \text{-}_L \; (\neg B \to \neg A)$$

1	$(A \to B) \to (\neg B \to \neg A)$	L3 A = ¬A B = ¬B
2	$(A \rightarrow B)$	Hipótesis
3	$(\neg B \rightarrow \neg A)$	MP entre 1 y 2

3.- Sean A, B y C tres fbfs del sistema formal L. Dar una demostración sintáctica en L de las siguientes deducciones. Justificar cada paso en la derivación, indicando cuales son los axiomas instanciados y las reglas de inferencia utilizadas.

i.-
$$\{((A \rightarrow B) \rightarrow C), B\} \mid -L (A \rightarrow C)$$

1	$(B \to (A \to B))$	L1 A = B B = A
2	В	Hipótesis
3	$(A \rightarrow B)$	MP entre 1 y 2
4	$((A \to B) \to C)$	Hipótesis
5	С	MP entre 3 y 4
6	$(C \to (A \to C))$	L1 A = C B = A
7	$A \rightarrow C$	MP entre 5 y 6

Se llegó a que (A \rightarrow C) es una demostración de L válida a partir de las premisas Γ .

4.- Sea Γ un conjunto de fbfs del C. de Enunciados. Se sabe $\Gamma \mid_{-L} A$. ¿Es cierto que para todo Γ_i , tal que $\Gamma_i \subset \Gamma$, $\Gamma_i \mid_{-L} A$?. Fundamentar.

Sea
$$\Gamma = \{q, \neg r\} y A = p \rightarrow q$$

A se deduce a partir de Γ

1	$d \rightarrow (b \rightarrow d)$	L1 A = q B = p
2	q	Hipótesis
3	$p \rightarrow q$	MP entre 1 y 2

- Ahora queremos probar que $\Gamma_i = \{\neg r\}$
 - $\circ \quad \text{Siendo } \Gamma_i \text{ subconjunto de } \Gamma$
- No hay forma que se cumpla que $\{\neg r\} \mid -L (p \rightarrow q)$

Por lo tanto, no es cierto que para todo Γ_i , tal que $\Gamma_i \subset \Gamma$, $\Gamma_i \mid_{-L} A$

5.- Sean Γ y Γ_0 conjuntos de fbfs del C. de Enunciados ¿Es cierto que para todo Γ existe algún $\Gamma_0 \subseteq \Gamma$ tal que si Γ |- A entonces Γ_0 |- A?- Fundamentar.

El enunciado nos pregunta sí existe al menos un conjunto Γ_0 , tal que $\Gamma_0 \subseteq \Gamma$ y:

- Γ |-_L A.
- Γ₀ |-_L A.

La respuesta es que si, ya que Γ_0 puede ser igual que Γ .

• Si $\Gamma_0 = \Gamma$ y Γ |-L A, entonces Γ_0 |-L A.

6.- Sean A, B y C fbfs del C. de Enunciados. Sea Γ un conjunto de fbfs del C. de Enunciados. Se sabe que Γ U A, B -L C Y también se sabe que Γ -L A

i.- ¿Es cierto que $\Gamma \mid -_{L} (C \rightarrow B)$?. Fundamentar.

Sean:

- Γ = { q }
- $A = (p \rightarrow q)$
- B = { s }
- $C = \{r \rightarrow s\}$

Γ |-*_L A*:

1	$q \rightarrow (p \rightarrow q)$	L1 A = q B = p
2	q	Hipótesis
3	$p \rightarrow q$	MP entre 1 y 2

 $\Gamma \cup \{A, B\} \mid - C \Rightarrow q \cup \{(p \rightarrow q), s\} \mid - (r \rightarrow s):$

1	$s \rightarrow (r \rightarrow s)$	L1 A = s
		B = r

2	s	Hipótesis
3	$r \rightarrow s$	MP entre 1 y 2

- Con este Γ y estos B y C, no es posible que C \rightarrow B se deduzca a partir de Γ
- Por lo tanto, la argumentación es inválida y la afirmación falsa.

ii.- ¿Es cierto que |-∠ (A)?. Fundamentar.

Sean:

- Γ = { q }
- $A = (p \rightarrow q)$
- B = { s }
- $C = \{r \rightarrow s\}$

Si A fuera teorema de L, también debería ser una tautología (Sensatez). ¿A es una tautología?

р	q	$p \rightarrow q$
V	>	V
V	F	F
F	٧	V
F	F	V

• Se construyó la tabla de verdad de A y se comprobó que A no es tautología, por lo tanto, A tampoco es teorema de L.