Tính gần đúng phương trình vi phân – Chương 6

- 1. Giải gần đúng phương trình vi phân cấp 1
- 1.1. Sử dụng phương pháp khai triển Taylor:

Ta có dạng khai triển dãy Taylor của 1 hàm số:

$$y(x) = y(x_0) + \frac{y'(x_0)}{1!}(x - x_0) + \frac{y''(x_0)}{2!}(x - x_0)^2 + \frac{y'''(x_0)}{3!}(x - x_0)^3 + \dots + \frac{y^{(k)}(x_0)}{k!}(x - x_0)^k + \dots$$

Ví dụ 1: Giải gần đúng phương trình vi phân sau bằng phương pháp chuỗi Taylor, tính đến đạo hàm cấp 3 trên lân cận của x = 1:

$$\begin{cases} y' = 3xy - x + 1 \\ y(0) = 1 \end{cases}$$

Giải:

Khai triển chuỗi Taylor đến bậc 3 của hàm y = f(x) là:

$$y(x) = y(x_0) + \frac{y'(x_0)}{1!}(x - x_0) + \frac{y''(x_0)}{2!}(x - x_0)^2 + \frac{y'''(x_0)}{3!}(x - x_0)^3$$

Với
$$x_0 = 0$$
, và $y(x_0) = y(0) = 1$

Từ đó ta có:
$$y'(0) = 3 \times 0 \times 1 - 0 + 1 = 1$$

$$y''(0) = [y'(0)]' = 3y + 3 \times x \times y' - 1 = 3 \times 1 + 3 \times 0 \times 1 - 1 = 2$$

$$y'''(0) = [y''(0)]' = 3y' + 3y' + 3xy'' = 3 \times 1 + 3 \times 1 + 3 \times 0 \times 2 = 6$$

Thay các hệ số tương ứng vào khai triển của chuỗi Taylor trên, ta được:

$$y(x) = 1 + x + x^2 + x^3.$$

Đề bài có thể yêu cầu tính thêm y(1.5) chẳng han thì ta thay 1.5 vào y(x)

$$y(1.5) \approx 1 + 1.5 + 1.5^2 + 1.5^3 \approx 8.125.$$

1.2. Sử dụng phương pháp Euler (O - le):

Ví dụ 2: Cho phương trình vi phân cấp 1:

$$\begin{cases} y' = \frac{xy}{2} \\ y(0) = 1 \end{cases}$$

Hãy tìm nghiệm gần đúng của phương trình trên bằng phương pháp O-le trên đoạn [0, 1], với h = 0.1.

Giải:

Ta có
$$h = \frac{X - x_0}{n} \to n = \frac{X - x_0}{h} = \frac{1 - 0}{0.1} = 10$$

$$x_i = x_0 + h{\times}i = 0.1{\times}i, \ \forall i = \overline{0,\!10}$$

Theo công thức Euler, ta có:

$$y_{i+1} = y_i + h \times f(x_i, y_i) = y_i + 0.1 \times \frac{x_i y_i}{2}$$
, với $y_0 = 1$.

Bảng kết quả:

i	Xi	y i
0	0	1
1	0.1	1
2	0.2	1.005
3	0.3	1.01505
4	0.4	1.03028
5	0.5	1.05088
6	0.6	1.07715
7	0.7	1.10947
8	0.8	1.14829
9	0.9	1.19423
10	1	1.24797

Bấm máy:

- Xóa bộ nhớ máy tính: Shift 93 =
- Gán giá trị $y_0 = 1$ cho biến Y: 1 Shift STO Y
- Bấm AC để lưu dữ liệu.
- Lập công thức:

$$Y = Y + 0.1 \times \frac{X \times Y}{2} : X = X + 0.1$$

- Bấm CALC để thực hiện lệnh (Lưu ý X khi khởi tạo).
- 2. Giải gần đúng hệ phương trình vi phân cấp 1:

Ví dụ 3: Giải gần đúng hệ phương trình vi phân:

$$\begin{cases} y' = (z - y)x \\ z' = (z + y)x' \end{cases}$$

Với điều kiện ban đầu $y(0)=1,\,z(0)=1$ bằng phương pháp O-le trên [0, 1], chọn h=0.1

Giải:

Ta có
$$n = \frac{X - x_0}{h} = \frac{1 - 0}{0.1} = 10$$

$$V\acute{o}i\ h=0.1 \Longrightarrow x_i=x_0+h\times i=0.1\times i,\ \forall i=\overline{0,10}$$

Áp dụng công thức Euler, ta có:

$$\begin{cases} y_{i+1} = y_i + h \times f(x_i, y_i, z_i) = y_i + 0.1 \times (z_i - y_i) \times x_i \\ z_{i+1} = z_i + h \times g(x_i, y_i, z_i) = z_i + 0.1 \times (z_i + y_i) \times x_i \end{cases}$$

Bảng kết quả tính toán:

i	Xi	y i	Zi
0	0	1	1
1	0.1	1	1
2	0.2	1	1.02

3	0.3	1.0004	1.0604
4	0.4	1.0022	1.1222
5	0.5	1.0070	1.2072
6	0.6	1.0170	1.3179
7	0.7	1.0351	1.4580
8	0.8	1.0647	1.6325
9	0.9	1.1101	1.8482
10	1	1.1765	2.1146

Bẩm máy:

- Xóa bộ nhớ máy tính: Shift 93 = 8
- Gán giá trị ban đầu cho y_0 và z_0 (Lưu ý: f(X, Y, Z) thì ta dùng f(X, Y, A))

1 Shift STO Y

1 Shift STO A

• Lập công thức:

$$B = Y + 0.1 \times (A-Y) \times X : C = A + 0.1 \times (A+Y) \times X : Y = B : A = C : X = X + 0.1$$

• Bấm CALC để thực hiện lệnh (Lưu ý X khi khởi tạo)

Bài tập 1: Giải gần đúng phương trình vi phân sau bằng phương pháp chuỗi Taylor, tính đến đạo hàm cấp 3 trên lân cận của x = 2:

$$\begin{cases} y' - xy + x^3 = 0 \\ y(2) = 0 \end{cases}$$

Bài tập 2: Cho phương trình vi phân cấp 1:

$$y' - x^3 + \frac{x}{y} = 0$$
, với y(1) = 0.

Hãy tìm nghiệm gần đúng của phương trình trên bằng phương pháp O-le trên đoạn [1,2], với h=0.2.

Kết quả:

i	Xi	y i
0	1	0
1	1.2	0.2
2	1.4	0.5123
3	1.6	0.9879
4	1.8	1.6836
5	2	2.6629

Bài tập 3: Giải gần đúng hệ phương trình vi phân:

$$\begin{cases} y' = zx \\ z' = \frac{y}{x} \end{cases}$$

Với điều kiện ban đầu y(1) = 2, z(1) = 1 bằng phương pháp O-le trên [1, 1.3], chọn h = 0.1.

3. Giải gần đúng phương trình vi phân cấp 2

Ví dụ 4:

a) Giải gần đúng phương trình vi phân sau: $\begin{cases} y'' - e^x y' + 2y = 1 \\ y(3) = -2; y'(3) = 0 \end{cases}$ (I)

Trên đoạn [3, 4] và chọn h = 0.2.

b) Từ đó tính gần đúng y(4) và y'(4).

Giải:

a)
$$T\dot{u}(I) \leftrightarrow \begin{cases} y'' = e^x y' - 2y + 1\\ y(3) = -2; y'(3) = 0 \end{cases}$$

Đặt y' =
$$z \rightarrow \begin{cases} z' = e^x z - 2y + 1 \\ y' = z \end{cases}$$
, thỏa mãn y(3) = -2; z(3) = 0

Ta có
$$x_0 = 3$$
; $h = 0.2$; $y_0 = -2$; $z_0 = 0 \rightarrow x_i = x_0 + hi = 3 + 0.2i$, $\forall i = 0..5$

Theo công thức Euler, ta có:
$$\begin{cases} y_{i+1} = y_i + 0.2z_i \\ z_{i+1} = z_i + 0.2(e^{x_i}z_i - 2y_i + 1) \end{cases}$$

Bảng kết quả:

i	X	У	z=y'
0	3	-2	0
1	3.2	-2	1
2	3.4	-1.8	6.9065
3	3.6	-0.4187	49.2159
4	3.8	9.4245	409.8268
5	4	91.3899	4070.2060

Bẩm máy:

- *Xóa bộ nhớ: Shift 9 3* = =
- Lập công thức:

$$B = Y + 0.2 \times A : C = A + 0.2 \times (e^{X} \times A - 2 \times Y + 1) :$$

 $Y = B : A = C : X = X + 0.2$

- Bấm CALC để nhập các giá tri khởi tao ban đầu cho biến Y, A và X
- Ghi lại kết quả vào bảng giá trị.
- b) Từ bảng giá trị trên ta có: y(4) ≈ 91.3899 ; y'(4) ≈ 4070.2060 .

Bài tập 4: Cho phương trình vi phân cấp 2:

$$y'' - y' + 3e^{x}y = 0$$
; với $y(0) = 0$; $y'(0) = 0.34$

hãy tìm nghiệm gần đúng của phương trình vi phân trên bằng phương pháp Euler trên đoạn [0, 0.5], chọn h = 0.1.