EN 605.744 Information Retrieval Proposal Ting He Oct 15, 2021

Title:

Content analysis of COVID-19 vaccine side effects on Twitter

Primary Objectives:

- Identify self-report side effects and their modality from Twitter for COVID-19 Pfizer,
 Moderna and Janssen vaccines along with the times
- Conduct sentiment analysis for 3 vaccines along with the times
- Map to standard concept IDs in Unified Medical Language System
- Compare the distribution to those reported in Vaccine Adverse Event Reporting System

Why this is an interesting or important problem:

Many people who got vaccines might suffer mild or moderate side effects and didn't seek clinical care and reported in the official system.[5]To better understand the full spectrum of symptoms experienced by vaccinated people, I plan to look into Twitter for additional resources.

Sources of data:

Twitter using hashtag #vaccineSideEffects in USA

Experimental design:

Evaluation design:

Compare the distribution in Vaccine Adverse Event Reporting System

Relevant literature:

Research:

VAERS

- 1. Griffith, J., Marani, H., & Monkman, H. (2021). COVID-19 Vaccine Hesitancy in Canada: Content Analysis of Tweets Using the Theoretical Domains Framework. Journal of medical Internet research, 23(4), e26874. https://doi.org/10.2196/26874
- H. Jelodar, Y. Wang, R. Orji and S. Huang, "Deep Sentiment Classification and Topic Discovery on Novel Coronavirus or COVID-19 Online Discussions: NLP Using LSTM Recurrent Neural Network Approach," in IEEE Journal of Biomedical and Health Informatics, vol. 24, no. 10, pp. 2733-2742, Oct. 2020, doi: 10.1109/JBHI.2020.3001216.
- 3. Chen, Q., Leaman, R., Allot, A., Luo, L., Wei, C. H., Yan, S., & Lu, Z. (2020). Artificial Intelligence (AI) in Action: Addressing the COVID-19 Pandemic with Natural Language Processing (NLP). arXiv preprint arXiv:2010.16413.
- 4. Luo, Y. (2021). Using tweets to understand how COVID-19–Related health beliefs are affected in the age of social media: Twitter data analysis study. J Med Internet Res, 23(2), e26302.
- Abeed Sarker, Sahithi Lakamana, Whitney Hogg-Bremer, Angel Xie, Mohammed Ali Al-Garadi, Yuan-Chi Yang, Self-reported COVID-19 symptoms on Twitter: an analysis and a research resource, Journal of the American Medical Informatics Association, Volume 27, Issue 8, August 2020, Pages 1310–1315, https://doi.org/10.1093/jamia/ocaa116
- Karami, A., Zhu, M., Goldschmidt, B., Boyajieff, H. R., & Najafabadi, M. M. (2021).
 COVID-19 Vaccine and Social Media in the U.S.: Exploring Emotions and Discussions on Twitter. Vaccines, 9(10), 1059. doi:10.3390/vaccines9101059
- 7. Lyu, J. C., Le Han, E., & Luli, G. K. (2021). COVID-19 vaccine–related discussion on Twitter: topic modeling and sentiment analysis. Journal of medical Internet research, 23(6), e24435.

Research(discussion part):

- 8. Kolokythas, A. (2021). What do the aftermath of the 2010 Haiti earthquake, Hurricane Sandy, the Boston Marathon bombing, the 2013 Ebola outbreak, and the COVID-19 pandemic have in common?. Oral surgery, oral medicine, oral pathology and oral radiology, 132(4), 371-372.
- 9. Spiteri, J. (2021). Media bias exposure and the incidence of COVID-19 in the USA. BMJ global health, 6(9), e006798.
- Ayers, J. W., Chu, B., Zhu, Z., Leas, E. C., Smith, D. M., Dredze, M., & Broniatowski, D. A. (2021). Spread of Misinformation About Face Masks and COVID-19 by Automated Software on Facebook. JAMA Internal Medicine.

Technical(Pre-processing part):

1. How did Twitter react to the COVID vaccine side effect?

https://medium.com/geekculture/how-did-twitter-react-to-the-covid-vaccine-side-effect-d8
543798263f

Technical(Modality and negation part):

- Modality and Negation in Natural Language Processing. https://mirror.aclweb.org/iicnlp11/downloads/tutorial/tu3_present.pdf
- 2. Mood & modality and dialogue sentiment

<u>https://towardsdatascience.com/mood-modality-and-dialogue-sentiment-b06cd36eca88</u> Technical(Sentiment analysis part):

1. https://towardsdatascience.com/extracting-patient-sentiment-for-pharmaceutical-drugs-fr om-twitter-2315870a0e3c

Technical(Time series analysis part):

1. Sentiment Analysis of COVID-19 Vaccine Tweets
https://towardsdatascience.com/sentiment-analysis-of-covid-19-vaccine-tweets-dc6f41a5
e1af

Outline planned work for the project

Task	Pull data (Twitter and VAERS)	Write into Database (Twitter only)	Pre-process ing (Twitter and VAERS)	Define modality and negation	Submit Milestone report	Sentiment analysis	Evaluation	Presentation (video and written report)
Module 7, Oct 16 - 17								
Module 8, Oct 23 - 24								
Module 9, Oct 30 - 31								
Module 10, Nov 6 -7								
Module 11, Nov 13 -14								
Module 12, Nov 20-21								
Module 13, Nov 27-28								
Module 14, Dec 4-5								