

Kubernetes und Container – Aber Sicher!

Container / K8s Security

Andreas Falk

Vorstellung

Andreas Falk Novatec Consulting

andreas.falk@novatec-qmbh.de / @andifalk

https://www.novatec-gmbh.de/beratung/agile-security

Security Training for Developers

by Jim Manico

You want to learn about security from one of the world's most famous application security experts? This training is your chance and extremely rare in Europe!

Always be one step ahead of the hackers!

from March 4 to March 5, 2020

Novatec Consulting GmbH Dieselstraße 18/1, 70771 Leinfelden-Echterdingen

https://www.novatec-gmbh.de/schulung/application-security-training-for-developers-by-jim-manico

Agenda

- 1. What can go wrong
- 2. Application Security
- 3. Container Security
- 4. Kubernetes Security
- 5. Kubernetes Secrets

What can go wrong?

Introduction

Top Challenges in Kubernetes

Source: https://thenewstack.io

Severe Vulnerability in Kubernetes

Source: https://blog.aguasec.com

Severe Privilege Escalation Vulnerability in Kubernetes (CVE-2018-1002105)

Earlier this week, a severe vulnerability in Kubernetes (CVE-2018-1002105) was disclosed that allows an unauthenticated user to perform privilege escalation and gain full admin privileges on a cluster. The CVE was given the high severity score of 9.8 (out of 10) and it affects all Kubernetes versions from 1.0 onwards, but fixes are available for recent versions.

Crypto Mining Via K8s Dashboard

Source: https://blog.heptio.com

On Securing the Kubernetes Dashboard

Recently Tesla (the car company) was <u>alerted</u>, <u>by security firm RedLock</u>, that their Kubernetes infrastructure was compromised. The attackers were using Tesla's infrastructure resources to mine cryptocurrency. This type of attack has been called "cryptojacking".

The vector of attack in this case was a <u>Kubernetes Dashboard</u> that was exposed to the general internet with no authentication and elevated privileges. Not only this, but core AWS API keys and secrets were visible. How do you prevent this from happening to you?

Open ETCD Ports in Kubernetes (1)

Open ETCD Ports in Kubernetes (2)

\$ etcdctl --endpoints=http://xx.xx.xx.xx:2379
cluster-health

member b97ee4034db41d17 is healthy: got healthy result from http://xx.xx.xx.xx:2379

cluster is healthy

Vulnerable Docker Images

Source: The state of open source security report (snyk.io)

Number of OS vulnerabilities by docker image

All is Root

CZnative @ home @pczarkowski

Welcome to Kubernetes where everything runs as root and the security doesn't matter!

14:22 - 8. Mai 2019

Operational / Development Kubernetes Security

https://kubernetes.io/docs/concepts/security/overview/#the-4c-s-of-cloud-native-security

https://learnk8s.io/production-best-practices/

So what can we do as developers?

Application- / Docker- / K8s-Security

The Path for Secure Development on K8s

The Path for Secure Development on K8s

Application Security

Authentication

Authorization

SQL Injection

Cross Site Scripting (XSS)

Cross Site Request Forgery (CSRF)

Data Protection (Crypto)

(1)

Web Application

Application Security

Live Demo: Show me the code

Iteration 1: Application Security

https://github.com/andifalk/secure-development-on-kubernetes

The Path for Secure Development on K8s

Docker Security Basics

Linux Kernel Namespaces

- Process ID (pid)
- Network (net)
- Filesystem/mount (mnt)
- Inter-Process Communication (ipc)
- User (user)
- UTS (hostname)

Linux Control Groups (CGroups)

- Resource Limits
 - CPU
 - Memory
 - Devices
 - Processes
 - Network

For Java this only works with container aware JDK versions as of **OpenJDK 8u192** or above

Linux Capabilities

- Break up root privileges into smaller units
 - CAP_SYS_ADMIN
 - CAP_NET_ADMIN
 - CAP_NET_BIND_SERVICE
 - CAP_CHOWN
 - _

```
$ docker run --cap-drop=ALL --cap-add=NET_BIND_SERVICE
```

http://man7.org/linux/man-pages/man7/capabilities.7.html

Mandatory Access Control (MAC)

- AppArmor
- Security Enhanced Linux (SELinux)

https://gitlab.com/apparmor/apparmor/wikis/home https://github.com/SELinuxProject

Secure Computing Mode (SecComp)

- Deny critical system calls by default
 - reboot
 - mount
 - swapon
 - _

http://man7.org/linux/man-pages/man2/seccomp.2.html https://docs.docker.com/engine/security/seccomp

OWASP Docker Top 10

- Secure User Mapping
- Patch Management Strategy
- 3. Network Segmentation and Firewalling
- Secure Defaults and Hardening
- 5. Maintain Security Contexts
- Protect Secrets
- Resource Protection
- 8. Container Image Integrity and Origin
- Follow Immutable Paradigm
- 10. Logging

https://github.com/OWASP/Docker-Security

Docker Images

Docker Image Security

Say No To Root!

USER directive in Dockerfile

```
FROM openjdk:11-jre-slim

COPY hello-spring-kubernetes-1.0.0-SNAPSHOT.jar app.jar

EXPOSE 8080

RUN addgroup --system --gid 1002 app && adduser

--system --uid 1002 --gid 1002 appuser

USER 1002

ENTRYPOINT java -jar /app.jar
```

https://opensource.com/article/18/3/just-say-no-root-containers

Say No To Root!

Use JIB and Distroless Images

```
plugins {
  id 'com.google.cloud.tools.jib' version '...'
jib {
 container {
   user = 1002
```


Keep Being Secure

- Perform Image Scanning
 - Anchore
 - Clair
 - Trivy
- Regularly Update Base Images

https://anchore.com/opensource/ https://github.com/coreos/clair https://github.com/aguasecurity/trivy

Live Demo: Show me the code

Iteration 2: Container Security

https://github.com/andifalk/secure-development-on-kubernetes

The Path for Secure Development on K8s

Kubernetes Basics

Kubernetes Security

Resource Limits

```
spec:
  containers:
    resources:
      limits:
        cpu: "1"
        memory: "512Mi"
      requests:
        cpu: 500m
        memory: "256Mi"
```

https://kubernetes.io/docs/tasks/configure-pod-container/assign-cpu-resource https://kubernetes.io/docs/tasks/configure-pod-container/assign-memory-resource

Pod/Container Security Context

```
spec:
  securityContext:
    runAsNonRoot: true
  containers:
    securityContext:
      allowPrivilegeEscalation: false
      privileged: false
      runAsNonRoot: true
      readOnlyRootFilesystem: true
      capabilities:
        drop:

    A T.T.
```


Pod Security Policy (Still In Beta!)

```
apiVersion: policy/v1beta1
kind: PodSecurityPolicy
metadata:
  name: no-root-policy
spec:
  privileged: false
  allowPrivilegeEscalation: false
  requiredDropCapabilities:
    - ATITI
  runAsUser:
    rule: 'MustRunAsNonRoot'
```


Pod Security Policy (Policy Order)

Policy order selection criteria:

- 1. Policies which allow the pod as-is are preferred
- 2. If pod must be defaulted or mutated, the first policy (ordered by name) to allow the pod is selected.

https://kubernetes.io/docs/concepts/policy/pod-security-policy/#policy-order https://kubernetes.io/docs/reference/access-authn-authz/admission-controllers

Kubernetes Role Based Access Control (RBAC)

https://kubernetes.io/docs/reference/access-authn-authz/rbac/

Kubernetes Role Based Access Control (RBAC)

apiGroups	extensions, apps, policy,
resources	pods, deployments, configmaps, secrets, nodes, services, endpoints, podsecuritypolicies,
verbs	get, list, watch, create, update, patch, delete, use,

https://kubernetes.io/docs/reference/access-authn-authz/rbac/

Service Account

```
apiVersion: v1
kind: ServiceAccount
metadata:
  name: deploy-pod-security-policy
  namespace: default
```

https://kubernetes.io/docs/concepts/policy/pod-security-policy/#authorizing-policies

Pod Security Policy Role

```
apiVersion: rbac.authorization.k8s.io/v1
kind: Role
metadata:
  name: no-root-policy-role
  namespace: default
rules:
  - apiGroups: ['policy']
    resources: ['podsecuritypolicies']
    verbs: ['use']
    resourceNames:
      - no-root-policy
```

https://kubernetes.io/docs/concepts/policy/pod-security-policy/#authorizing-policies

Pod Security Policy Role Binding

```
apiVersion: rbac.authorization.k8s.io/v1
kind: RoleBinding
metadata:
  name: deploy-pod-security-policy
  namespace: default
roleRef:
  kind: Role
  name: no-root-policy-role
  apiGroup: rbac.authorization.k8s.io
subjects:
  - kind: ServiceAccount
    name: deploy-pod-security-policy
    namespace: default
```

Helm 3 Is Here!

Folge ich

For people who don't pay attention to the Kubernetes ecosystem: Helm 3.0 is a big deal, removing Tiller and drastically improving the security of that project. Great work, y'all!

Live Demo: Show me the code

Iteration 3: Kubernetes Security

https://github.com/andifalk/secure-development-on-kubernetes

The Path for Secure Development on K8s

Kubernetes Secrets

Kubernetes Secrets

```
apiVersion: v1
kind: Secret
metadata:
  name: hello-spring-cloud-kubernetes
  namespace: default
type: Opaque
data:
  user.username: dXNlcq==
  user.password: azhzX3VzZXI=
  admin.username: YWRtaW4=
  admin.password: azhzX2FkbWlu
```

https://kubernetes.io/docs/concepts/configuration/secret

Kubernetes Secrets - Best Practices

- Encrypt Secret Data at Rest
 Only Base64 Encoded by Default!
- Applications interacting with secrets API should be limited using RBAC
- Mount secrets instead of ENV Mapping

https://kubernetes.io/docs/concepts/configuration/secret/#best-practices https://kubernetes.io/docs/tasks/administer-cluster/encrypt-data

Pay Attention to Spring Boot Actuator

```
"name": "applicationConfig: ...",
"properties": {
 "greet.my-sec": {
    "value": "geheim",
    "origin": "class path resource ..."
  "greet.password": {
    "value": "*****",
    "origin": "class path resource ..."
```

Encryption Layers

Envelope Encryption On Kubernetes

https://cloud.google.com/kms/docs/envelope-encryption https://kubernetes.io/docs/tasks/administer-cluster/kms-provider

Key Management System (KMS) Cloud Providers

- Azure Key Vault (Key Vault FlexVolume)
- Google Cloud KMS
- AWS KMS

• • •

https://github.com/Azure/kubernetes-kms https://github.com/Azure/kubernetes-keyvault-flexvol https://cloud.google.com/kms https://aws.amazon.com/de/kms

What about Secrets in **operation**

- Sealed Secrets
- Helm Secrets
- Kamus
- Sops
- Hashicorp Vault

https://learnk8s.io/kubernetes-secrets-in-git https://github.com/bitnami-labs/sealed-secrets https://github.com/futuresimple/helm-secrets https://github.com/Soluto/kamus https://github.com/mozilla/sops https://www.vaultproject.io

Summary

Summary / Key Insights

- Containers use Linux Namespaces+Caps
- Say NO to root on K8s
- "Least privilege" for service accounts
- Keep K8s up-to-date and scan for security
- Ensure your secrets are encrypted in K8s
- Keep K8s and container images up-to-date

Books and Online References

Books and Online References (1)

- Kubernetes Security, O'Reilly, 2018, ISBN: 978-1-492-04600-4
- Cloud Native DevOps with Kubernetes, O'Reilly, 2019, ISBN: 978-1492040767
- https://github.com/andifalk/secure-development-on-kubernetes
- Crafty Requests: Deep Dive Into Kubernetes CVE-2018-1002105 Ian Coldwater (Video)
- Ship of Fools: Shoring Up Kubernetes Security Ian Coldwater (Video)
- https://kubernetes.io/docs/concepts/security/overview/#the-4c-s-of-cloud-native-security
- https://kubernetes.io/docs/tasks/administer-cluster/securing-a-cluster
- https://opensource.com/article/18/3/just-say-no-root-containers
- https://github.com/GoogleContainerTools/jib
- https://anchore.com/opensource/
- https://github.com/coreos/clair
- https://github.com/aquasecurity/trivy
- https://www.owasp.org/index.php/OWASP_Docker_Top_10

Books and Online References (2)

- https://kubernetes.io/docs/tasks/configure-pod-container/assign-cpu-resource
- https://kubernetes.io/docs/tasks/configure-pod-container/assign-memory-resource
- https://kubernetes.io/docs/tasks/configure-pod-container/security-context
- https://kubernetes.io/docs/concepts/policy/pod-security-policy
- https://kubernetes.io/docs/reference/access-authn-authz/rbac/
- https://kubernetes.io/docs/concepts/configuration/secret
- https://kubernetes.io/docs/tasks/administer-cluster/encrypt-data
- https://cloud.google.com/kms/docs/envelope-encryption
- https://kubernetes.io/docs/tasks/administer-cluster/kms-provider
- https://github.com/Azure/kubernetes-kms
- https://cloud.google.com/kms
- https://aws.amazon.com/de/kms

Andreas Falk

Managing Consultant

Mobil: +49 151 46146778

E-Mail: andreas.falk@novatec-gmbh.de

Novatec Consulting GmbH

Dieselstraße 18/1 D-70771 Leinfelden-Echterdingen

T. +49 711 22040-700 info@novatec-gmbh.de www.novatec-gmbh.de

