

?

Tτ

6

Two City Scheduling

Try to solve the Two City Scheduling problem.

Statement

A recruiter plans to hire n people and conducts their interviews at two different locations of the company. He evaluates the cost of inviting candidates to both these locations. The plan is to invite 50% at one location, and the rest at the other location, keeping costs to a minimum.

We are given an array, \mathtt{costs} , where $costs[i] = [aCost_i, bCost_i]$, the cost of inviting the i^{th} person to City Ais $aCost_i$, and the cost of inviting the same person to City B is $bCost_i$.

You need to determine the minimum cost to invite all the candidates for the interview such that exactly n/2people are invited in each city.

Constraints:

- $2 \leq \text{costs.length} \leq 100$
- costs.length is even
- $1 \leq aCost_i, bCost_i \leq 1000$

Examples

Understand the problem

Let's take a moment to make sure you've correctly understood the problem. The quiz below helps you check if you're solving the correct problem:

Figure it out

We have a game for you to play. Rearrange the logical building blocks to develop a clearer understanding of how to solve this problem.

Try it yourself

Implement your solution in TwoCityScheduling, iava in the following coding playground.

?

Тт

C

?

Тт

6