COMPUTATIONS OF MARGINS OF FUSIBLE NUMBERS

JUNYAN XU

The goal of this note is to derive formulas and bounds for the margins $m(3-2^{-n})$ using either Erickson's formula (EF) or the Main Conjecture (MC) (see my earlier paper *Survey on Fusible Numbers*). Some values of $m(3-2^{-n})$ under (EF) and bounds for $m(3-2^{-n})$ appeared in that paper without proof.

Let's fix some notations. Let $M(x) := -\log_2 m(x)$. Let $\langle n; n_1, n_2, \dots, n_k \rangle$ denote the number $n - 2^{-n_1} - 2^{-n_2} - \dots - 2^{-n_k}$, and let $\langle n; n_1, +n_2, +n_3, \dots, +n_k \rangle$ denote $\langle n; n_1, +n_2, +n_3, \dots, +n_k \rangle$.

In this setting, (EF) becomes

$$M(n; n_1, \dots, n_k) = M(n; n_1, \dots, n_k, M(n-1, n_1, \dots, n_k)) + 1$$

and (MC) becomes (for integers $n \ge 0$, $0 < n_1 < n_2 < \cdots < n_k$ and $n' := M(n-1; n_1, \dots, n_k)$)

$$M(n; n_1, \dots, n_k) = \begin{cases} M(n; n_1, \dots, n_k, n') + 1 & \text{if } n' > n_k \\ M(n; n_1, \dots, n_{k-2}, n_{k-1} - 1, n_k) + 1 & \text{if } n' = n_k \end{cases}$$

If $n' < n_k$, it is not hard to see that $2^{-n'} = \sum_{i=l+1}^k 2^{-n_i}$ for some l < k, and we have $M(n; n_1, \dots, n_k) = M(n; n_1, \dots, n_{l-1}, n_l - 1, n_{l+2} - 1, \dots, n_k - 1)$ if n > 0.

(EF) and (MC) give exactly the same fusible numbers below 2, and M has the following simple formulas when n=2, which can be proved easily by induction: for integers

2 JUNYAN XU

$$-2 \le n = n_1 < n_2 < \cdots < n_{k-1} \le n_k,$$

$$M(2;n)=2n+3$$

$$M(2; n_1, n_2, \dots, n_k) = n_1 + 3 - k + n_k$$
 if $2 \le k \le n_1 + 3$
 $m(2; n_1, n_2, \dots, n_k) = \sum_{i=n_1+3}^{k} 2^{-n_i}$ if $k \ge n_1 + 3$

Now let's consider n = 3 and let's start with an example: the calculation of M(3;1,5) under (MC).

$$M(3;1,5) = M(3;1,5,M(2;1,5)) + 1$$

$$= M(3;1,5,7,8) + 1 + 1$$

$$= M(3;1,5,6,8) + 1 + 2$$

$$= M(3;1,5,5,8) + 1 + 3$$

$$= M(3;1,4,8) + 4$$

$$= M(3;1,4,8,9) + 1 + 4$$

$$= M(3;1,4,4,9) + (8-4) + 5$$

$$= M(3;1,\frac{3,9}{2}) + 9$$

$$= M(3;1,\frac{1,11}{2}) + (1+10-2) + 16$$

$$= M(3;0,11) + 25$$

$$= 2 \times 11 + 3 + 25 + 50$$

It follows that M(3;1) = M(3;1,M(2;1)) + 1 = M(3;1,5) + 1 = 51. Now compare the reduction from M(3;1,5,7) = M(3;1,5,+2) to M(3;1,4,8) = M(3;1,4,+4) with the following reduction of M(3;0,+2) = M(3;0,2) to M(3;-1,+4) = M(3;-1,3):

$$M(3;0,2) = M(3;0,2,M(1;2)) + 1$$

$$= M(3;0,2,3) + 1$$

$$= M(3;0,1,3) + 1 + 1$$

$$= M(3;0,0,3) + 1 + 2$$

$$= M(3;-1,3) + 3$$

One sees that the steps exactly correspond. This is due to certain self-similarity of the set of fusible numbers below 2: the interval $[\langle 2;1,4\rangle,\langle 2;1,5\rangle]$ is simply a shrinked copy of $[\langle 2;-1\rangle,\langle 2;0\rangle]$. Similarly, for any $m\geq 1$ and $n\geq 0$, $[\langle 2;m,+n\rangle,\langle 2;m,+(n+1)\rangle]$ is a shrinked copy of $[\langle 2;m-2\rangle,\langle 2;m-1\rangle]$, hence a calculation in the latter interval is equivalent to a calculation in the former.

Now, for $m \ge -1$ and $n \ge 0$, let h(m,n) := M(3;m,+n), let g(m,n) be such that $\langle 3;m,+0,+g(m,n)\rangle = \langle 3;m-1,+(g(m,n)+1)\rangle$ is the first number below $\langle 3;m-1\rangle$ encountered in the calculation of M(3;m,+n), and let f(m,n) denote the number of steps needed to reduce $\langle 3;m,+n\rangle$ to $\langle 3;m-1,+(g(m,n)+1)\rangle$. Clearly

$$h(m,n) = f(m,n) + h(m-1,g(m,n)+1).$$

We shall exploit self-similarity to derive recursive formulas for f and g. Consider the calculation of M(3; m, +n). If n = 0, it takes just one step to reduce to $\langle 3; m, m, 2m + 1 \rangle =$

 $\langle 3, m-1, +(m+2) \rangle$, hence

$$f(m,0) = 1$$
, $g(m,0) = m + 1$.

If n > 0, we observe that $[\langle 2; m, +1 \rangle, \langle 2; m, +(n+1) \rangle]$ is a shrinked copy of $[\langle 2; m, +0 \rangle, \langle 2; m, +n \rangle]$; since it takes f(m, n-1) steps to reduce $\langle 3; m, +(n-1) \rangle$ to $\langle 3; m, +0, +g(m, n-1) \rangle$, it takes the same number of steps to reduce $\langle 3; m, +n \rangle$ to $\langle 3; m, +1, +g(m, n-1) \rangle$. Now, because it takes f(m-1, g(m, n-1)) steps to reduce $\langle 3; m-1, +g(m, n-1) \rangle$ to $\langle 3; m-1, +0, +g(m-1, g(m, n-1)) \rangle$, it also takes the same number of steps to reduce $\langle 3; m, +1, +g(m, n-1) \rangle$ to $\langle 3; m, +1, +g(m, n-1) \rangle$ to $\langle 3; m, +1, +g(m, n-1) \rangle$. Therefore

$$f(m,n) = f(m,n-1) + f(m-1,g(m,n-1)),$$

$$g(m,n) = g(m-1,g(m,n-1)) + 1.$$

For the initial values, one easily verifies that under (EF)

$$g(-1,n) = 0$$
, $f(-1,n) = n+1$, $h(-1,n) = n$

and under (MC)

$$g(-1,n) = n$$
, $f(-1,n) = 1$, $h(-1,n) = n$.

Clearly,

$$M_3(m) := M(3;m) = M(3;m+1,+0) = h(m+1,0)$$

= $f(m+1,0) + h(m,g(m+1,0)+1) = 1 + h(m,m+3),$

hence $h(m-1, m+2) = M_3(m-1) - 1$. Under (EF), the recursive formulas simplify significantly and we obtain

$$g(m,n) = m+1, \quad f(m,n) = 1 + nf(m-1,m+1),$$

$$h(m,n) = f(m,n) + h(m-1,m+2) = f(m,n) + M_3(m-1) - 1,$$

$$M_3(m) = 1 + h(m,m+3) = 1 + f(m,m+3) + M_3(m-1) - 1$$

$$= M_3(m-1) + 1 + (m+3)f(m-1,m+1).$$

Define F(m) := f(m, m + 2) and get

$$F(-1) = 2$$
, $F(m) = 1 + (m+2)F(m-1)$, $M_3(m) = M_3(m-1) + 1 + (m+3)F(m-1) = M_3(m-1) + F(m) + F(m-1)$, $h(m,n) = nF(m-1) + M_3(m-1)$.

It is then easy to see that

$$F(m) = (m+2)! \sum_{i=0}^{m+2} \frac{1}{i!}$$

Clearly $\lim_{n\to\infty} F(n)/e(n+2)! = 1$. We show that also $\lim_{n\to\infty} F(n)/M_3(n) = 1$. First we establish the bound $M_3(n) \le 2F(n)$. For n=-1,0 this follows from direct computation. By induction, for $n \ge 1$ we then have $M_3(n) = 1 + F(n) + F(n-1) + M_3(n-1) \le 1 + F(n) + F(n-1) + 2F(n-1) \le 1 + (n+2)F(n-1) + F(n) = 2F(n)$. Therefore

$$\lim_{n \to \infty} \frac{1 + F(n-1) + M_3(n-1)}{M_3(n)} \le \lim_{n \to \infty} \frac{3F(n-1)}{F(n)} = \lim_{n \to \infty} \frac{3}{n+2} = 0,$$

hence $\lim_{n\to\infty} F(n)/M_3(n) = 1$ and $\lim_{n\to\infty} M_3(n)/e(n+2)! = 1$.

We now establish lower bounds for $M_3(m)$ under (MC). Given the recursive formulas and initial values, it is easily shown that

$$g(0,n) = n+1$$
, $f(0,n) = n+1$, $h(0,n) = 2n+3$,

$$g(1,n) = 2n + 2$$
, $f(1,n) = (n+1)^2$, $h(1,n) = (n+3)^2 + 1$,

$$g(2,n) = 3(2^{n+1}-1), \quad f(2,n) = 3(4^{n+1}-2^{n+3}) + 4n + 13, \quad h(2,n) = 3(4^{n+2}-2^{n+2}) + 4n + 15.$$

In particular, $g(2,n) > 2^n = 2 \uparrow^{2-1} n$ and $h(2,n) > 2^n = 2 \uparrow^{2-1} n$. If $m \ge 3$, then $g(m-1,n) > 2 \uparrow^{m-2} n$ for all $n \ge 0$ implies that

$$g(m,n) = (g(m-1,\cdot)+1)^{\circ n}(g(m,0)) > (2\uparrow^{m-2})^n(m+1) \ge (2\uparrow^{m-2})^n(4) = 2\uparrow^{m-1}(n+2).$$

If in addition $h(m-1,n) > 2 \uparrow^{m-2} n$ for all $n \ge 0$, then

$$h(m,n) > h(m-1,g(m,n)+1) > 2 \uparrow^{m-2} (2 \uparrow^{m-1} (n+2)) = 2 \uparrow^{m-1} (n+3).$$

Therefore, for $m \ge 3$,

$$M_3(m) = 1 + h(m, m+3) > 2 \uparrow^{m-1} (m+6),$$

and there is also the worse but simpler bound

$$M_3(m) = h(m+1,0) > 2 \uparrow^m 3 \quad (= 2 \uparrow^{m-1} 4).$$

The next goals would be finding an upper bound for M_3 and finding bounds for $M(4-2^{-n})$, or even $M(5-2^{-n})$, etc. This note will be updated if progress is made.