Reproducing Kernel Hilbert Spaces

February 20, 2021

Let \mathcal{X} be an arbitrary set and \mathcal{H} be a Hilbert space of real-valued functions on \mathcal{X} , endowed by the inner product $\langle \cdot, \cdot \rangle_{\mathcal{H}}$. Let L_x be the evaluation functional over \mathcal{H} that evaluates each function at a point $x \in :$ a

$$L_x: f \to f(x), \ \forall f \in \mathcal{H}.$$

A Hilbert space \mathcal{H} is called a reproducing kernel Hilbert space if, for all $x \in \mathcal{X}$, the map L_x is continuous at any $f \in \mathcal{H}$, namely, there exists some C > 0 such that

$$|L_x(f)| = |f(x)| \le C||f||_{\mathcal{H}}, \quad \forall f \in \mathcal{H}.$$

By the Riesz representation theorem, for all $x \in \mathcal{X}$, there exists a unique element $K_x \in \mathcal{H}$ with the reproducing property

$$f(x) = L_x(f) = \langle f, K_x \rangle_{\mathcal{U}}, \quad \forall f \in \mathcal{H}.$$

Also

$$K_x \in \mathcal{H} \implies \forall x' \in \mathcal{X}, \exists K_{x'} \in \mathcal{H}, \ni L_{x'}(K_x) \equiv K_x(x') = \langle K_x, K_{x'} \rangle_{\mathcal{H}}.$$

This defines the **reproducing kernel** $K(x, x') = \langle K_x, K_{x'} \rangle_{\mathcal{H}}$.

Define the class of functions

$$\mathcal{H}_0 := \left\{ f : f(x) = \sum_{i=1}^m \alpha_i K(x, x_i), m \in \mathbb{N}, \alpha_i \in \mathbb{R}, x_i \in \mathcal{X} \right\}.$$

For some $f, g \in \mathcal{H}_0$ with $f(\cdot) = \sum_{i=1}^m \alpha_i K(\cdot, x_i)$ and $g(\cdot) = \sum_{j=1}^n \beta_j K(\cdot, z_j)$. Define an inner product on \mathcal{H}_0 by

$$\langle f, g \rangle = \left\langle \sum_{i=1}^{m} \alpha_i K(\cdot, x_i), \sum_{j=1}^{n} \beta_j K(\cdot, z_j) \right\rangle := \sum_{i,j} \alpha_i \beta_j K(x_i, z_j).$$

Let \mathcal{H} be the completion of \mathcal{H}_0 , i.e.

$$\mathcal{H}=\overline{\mathcal{H}}_{0}.$$

Properties

1. $\forall f \in \mathcal{H}, x \in \mathcal{X},$

$$\langle f, K(\cdot, x) \rangle = f(x)$$

Proof. 1. For $f \in \mathcal{H}$, by definition there exists a Cauchy sequence $\{f_n\}_{n \in \mathbb{N}} \subseteq \mathcal{H}_0$ such that $f_n \to f$, namely, $f(x) = \lim_{n \to \infty} f_n(x), \forall x \in \mathcal{X}$. For each f_n , it can be expressed as

$$f_n(\cdot) = \sum_{i=1}^m \alpha_i^n K(\cdot, x_i)$$

So

$$\langle f_n, K(\cdot, x) \rangle = \sum_{i=1}^m \alpha_i^n K(x, x_i)$$

j++j

j++j