Модуль "Прикладная космонавтика" 2.1. Небесная механика. Задачи

Габзетдинов Р.И. Университетская гимназия

Eсли в этой, или других методичках и материалах вы найдете ошибку или опечатку, просъба написать об этом t.me/Samnfuter vk.com/gabzetdinoff crispuscrew71@gmail.com crispuscrew@outlook.com.

Задача №1. Вычисление маневров спутников - ретрансляторов

Рекомендациии к выполнению:

- Решать пункты 1 и 2 только в общем виде.
- В ходе решения пунктов 3 и далее использовать самописное ПО
- Написать функции для вычисления каждого параметра в формуле
- При написании программы использовать минимум 8-байтные переменные (f.e. double)

Формулировка и рисунок к задаче

На целевую (final) орбиту необходимо вывести N спутников, так, чтобы они оказались в углах правильного N-угольника. Требуется совершить каждым из них по n маневров, затратив наименьшее количество характеристической скорости (ΔV) . Для упрощения расчетов влиянием других тел, а так же несферичностью и неравномерностью распределения массы Земли пренебречь.

Дано

$$N=3$$
 (спутников) $a_{final}=R_\oplus+35786$ км $R_\oplus=6371$ км $n=1$ $h_{start}=a_{final}$ $i=0=const$

2.
$$M_{\oplus} = 5.972 \cdot 10^{24} \text{ кг}$$

3.
$$a_0 = R_{\oplus} + 400 \text{ км}$$
 n - произвольное

4.
$$i_0 = 56^{\circ} \neq const$$
$$i_{final} = 0^{\circ}$$

5. Все переменные - параметрические, написать программу

Найти

1.
$$\frac{T_{start}}{T_{final}}$$
, a_{start} , e_{start}

$$2. \Delta V$$

3.
$$\Delta V_1, \Delta V_2, \dots \Delta V_{\Sigma}$$

4.
$$_{\Lambda}V_{1},_{\Lambda}V_{2},...$$
 $_{\Lambda}V_{\Sigma}$

5.
$$\Delta V_1, \Delta V_2, \dots \Delta V_{\Sigma}$$