Math 22 Workshop II 15 July 2010

- 1. For each of the following, decide if the assertion is true or false. Justify your answer with a proof or example, as appropriate.
 - (a) If $\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3, \mathbf{v}_4\}$ is linearly independent, then so is the set $\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}$.
 - (b) If $\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}$ and $\{\mathbf{v}_2, \mathbf{v}_3, \mathbf{v}_4\}$ are both linearly independent, then so is $\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3, \mathbf{v}_4\}$.
 - (c) Suppose that \mathbf{v}_1 and \mathbf{v}_2 are nonzero vectors which are not multiplies of each other and that $\mathbf{u} \notin \text{span}\{\mathbf{v}_1, \mathbf{v}_2\}$. Then $\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{u}\}$ is linearly independent.¹
- 2. Suppose that V and W are vector spaces and that $T: V \to W$ is a linear transformation. If $\{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_p\}$ are vectors in V and if $\{T(\mathbf{v}_1), T(\mathbf{v}_2), \dots, T(\mathbf{v}_p)\}$ is linearly independent, then show that $\{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_p\}$ is linearly independent.²
- 3. Suppose that V and W are vector spaces and that $T:V\to W$ is a linear transformation. Suppose that $\{\mathbf{v}_1,\mathbf{v}_2,\ldots,\mathbf{v}_p\}$ is a linearly independent set of vectors in V. Must it be the case that $\{T(\mathbf{v}_1),T(\mathbf{v}_2),\ldots,T(\mathbf{v}_p)\}$ is linearly independent?

¹Note that in the version passed out in class, the \mathbf{u} in the last set was incorrectly listed as \mathbf{v}_3 .

²Start your argument with "Suppose that $c_1\mathbf{v}_1 + \dots c_p\mathbf{v}_p = \mathbf{0}$." You need to show that this forces $c_1 = \dots = c_p = 0$. To do this, think about what happens when you evaluate T at the vector $c_1\mathbf{v}_1 + \dots c_p\mathbf{v}_p$.