Math 55, Lecture 20.

GENERATING FUNCTIONS.

The (ordinary) generating function $\mathcal{G}(x)$ for the sequence $\{a_n\}$, $n \in \mathbb{Z}_+$ is the infinite series $(x) = a_0 + a_1 + a_2 + \cdots + a_k + a_k + \cdots = \sum_{i=1}^{k} a_k x^k$

$$G(x) = a_0 + a_1 x + \cdots + a_k \chi^k + \cdots = \sum_{k=0}^{\infty} a_k \chi^k$$

The coefficient of x^n in $\mathcal{G}(x)$ is $\mathbf{d}_{\mathbf{h}}$

[Theorem.] Let
$$\mathcal{G}(x) = \sum_{n=0}^{\infty} a_n x^n$$
 and $\mathcal{H}(x) = \sum_{n=0}^{\infty} b_n x^n$. Then
$$\mathcal{G}(x) + \mathcal{H}(x) = \sum_{k=0}^{\infty} (a_{k+k} b_{k}) \chi^k \quad \mathcal{G}(x) \cdot \mathcal{H}(x) = \sum_{k=0}^{\infty} (\sum_{j=0}^{k} a_j b_{k-j}) \chi^k$$

Q1. If $\mathcal{G}(x)$ is the generating function for the sequence $\{a_n\}$, what is the generating function for each of the following sequences?

(a)
$$0, a_0, a_1, a_2, \ldots : a_0 \chi + a_1 \chi^2 + a_2 \chi^3 + \ldots = \chi (a_0 + a_1 \chi + a_2 \chi^2) = \chi g(x)$$

(b)
$$a_1, 2a_2, 3a_3, \ldots : \mathcal{G}'(X) = \sum_{n=0}^{\infty} n a_n \chi^{n-1} = \sum_{n=0}^{\infty} (n+1) a_{n+1} \chi^n$$

(c)
$$a_0, a_0 + a_1, a_0 + a_1 + a_2, \dots$$
: $A_0 + (A_0 + A_1) \times + (A_0 + A_1 + A_2) \times^2 = \frac{G(X)}{4-X}$

(d)
$$a_0^2$$
, $2a_0a_1$, $2a_0a_2 + a_1^2$, $2a_0a_3 + 2a_1a_2$, $2a_0a_4 + 2a_1a_3 + 2a_2^2$, ...: (a) (x)

THE EXTENDED BINOMIAL THEOREM.

Let
$$u \in \mathbb{R}$$
 and let $k \in \mathbb{Z}_+$. The **extended binomial coefficient** $\binom{u}{k}$ is defined as $\binom{\mathbb{V}}{\mathbb{K}} = \binom{\mathbb{K}(\mathbb{V} - \mathbb{K})}{\mathbb{K}} = \mathbb{V}$ if $\mathbb{K} = \mathbb{V}$

In particular, for $n \in \mathbb{N}$, $r \in \mathbb{Z}_+$, the following equality holds:

$$\binom{-n}{r} = (-1)^r C(n+r-1,r)$$

[Extended Binomial Theorem.] Let $u \in \mathbb{R}$ and let $x \in \mathbb{C}$ with |x| < 1. Then

$$(1+x)^u = \sum_{\mathbf{k} \in \mathbf{D}} \left(\mathbf{k} \right) \mathbf{\chi}^{\mathbf{k}}$$

Q2. Find a closed form of the generating function for the sequence $\{a_n\}$ where

(a)
$$\binom{7}{0}$$
, $2\binom{7}{1}$, $2^2\binom{7}{2}$, ..., $2^7\binom{7}{7}$, 0, 0, 0, ...: $\binom{7}{0} + 2\binom{7}{1} \times + 2^2\binom{7}{2} + \cdots$
 $\binom{7}{2}(x) = (1 + 2x)^{\frac{7}{2}}$

$$\begin{array}{l} \text{(b)} \ a_n = \binom{10}{n+1}, \ n \in \mathbb{Z}_+: \\ & \sum\limits_{\mathbf{n} = \mathbf{0}}^{\infty} \ \left(\left(\ \mathbf{10}_1 \, \mathbf{N} + \mathbf{1} \right) \, \chi^{\mathbf{n}} = \sum\limits_{\mathbf{n} = \mathbf{1}}^{\infty} \, \mathcal{C} \left(\ \mathbf{10}_1 \, \mathbf{n} \right) \, \chi^{\mathbf{n}} = \frac{1}{\mathbf{X}} \, \sum\limits_{\mathbf{n} = \mathbf{1}}^{\infty} \, \mathcal{C} \left(\ \mathbf{10}_1 \, \mathbf{n} \right) \, \chi^{\mathbf{n}} = \frac{1}{\mathbf{X}} \, \left(\left(\mathbf{1} + \mathbf{X} \right)^{\mathbf{10}} - 1 \right)$$

(c)
$$a_n = \binom{n+4}{n}$$
, $n \in \mathbb{Z}_+$:
$$0 = \binom{n+4-1}{n} \text{ has } G(x) = \frac{1}{(l-x)^k}, \text{ given } k=0$$

COUNTING VIA GENERATING FUNCTIONS.

- Q3. What generating functions can be used to find the number of ways in which postage of r cents can be pasted on an envelope using 1-cent, 3-cent, and 20-cent stamps?

(a) Assume that the order the stamps are pasted on does not matter.
1 cent =
$$1 + x + x^2 + x^5$$
... = $\frac{1}{1-x}$
3 cent = $1 + x^3 + x^4 + x^5 + x^{-1} + x^{-1}$

(b) Assume that the stamps are pasted in a row and their order matters.

$$\sum_{r=0}^{\infty} (x_{t} x^{3} + x^{20}) r = \frac{1}{1 - x - x^{5} - x^{20}}$$

RECURRENCES VIA GENERATING FUNCTIONS.

Q4. Use generating functions to solve the recurrence relation $a_k = 4a_{k-1} - 4a_{k-2} + k^2$ with initial conditions

$$a_{0} = 2, a_{1} = 5.$$

$$G(X) = \sum_{k=0}^{\infty} \alpha_{k} x^{k}$$

$$G(X) = \frac{13}{k} \alpha_{k} x^{k} + \frac{1}{(1-X)^{3}} (1-2x^{2})$$

$$= \sum_{k=0}^{\infty} \alpha_{k} x^{k} - \sum_{k=1}^{\infty} ||\alpha_{k-1}|x||^{2} + \sum_{k=2}^{\infty} ||\alpha_{k-2}|x||^{2}$$

$$= \sum_{k=0}^{\infty} \alpha_{k} x^{k} - \sum_{k=1}^{\infty} ||\alpha_{k-1}|x||^{2} + \sum_{k=2}^{\infty} ||\alpha_{k-2}|x||^{2}$$

$$= \sum_{k=0}^{\infty} ||\alpha_{k}||^{2} + \sum_{k=1}^{\infty} ||\alpha_{k-1}|x||^{2} + \sum_{k=2}^{\infty} ||\alpha_{k-2}|x||^{2}$$

$$= \sum_{k=0}^{\infty} ||\alpha_{k}||^{2} + \sum_{k=1}^{\infty} ||\alpha_{k-1}|x||^{2} + \sum_{k=2}^{\infty} ||\alpha_{k-2}|x||^{2}$$

$$= \sum_{k=0}^{\infty} ||\alpha_{k}||^{2} + \sum_{k=1}^{\infty} ||\alpha_{k-1}|x||^{2} + \sum_{k=2}^{\infty} ||\alpha_{k-1}||^{2} + \sum_{k=2}^{\infty} ||\alpha_{k-1}||^$$

Q5. (a) Show that
$$(x^2 + x)/(1 - x)^4$$
 is the generating function for the sequence $\{1^2 + 2^2 + \dots + n^2\}_{n \in \mathbb{Z}_+}$. $G(x) = \sum_{n=0}^{\infty} a_n x^n$ $G(x)$ for $\{n^2\} = \frac{2}{(1-x^3)} \cdot (\frac{3}{1-x})^2 + \frac{1}{1-x}$
$$= \frac{2-3(1-x)+(1-x)^2}{(1-x)^3} = \frac{x^2+x}{(1-x)^5}$$
 $G(x) - xG(x) = \sum_{n=0}^{\infty} a_n x^n - \sum_{n=0}^{\infty} a_{n-1} x^n$ $G(x)(1-x) = \frac{x^2+x}{(1-x)^3}$ $G(x)(1-x) = a_0 + \sum_{n=0}^{\infty} (a_{n-n-1}) x^n = a_0$ $G(x)(1-x) = \frac{x^2+x}{(1-x)^4}$ (b) Use (a) to find an explicit formula for $1^2 + 2^2 + \dots + n^2$.

$$\frac{1}{(1-x)^{n}} = \sum_{k=0}^{\infty} {n+k-1 \choose k} \chi^{k}
= \sum_{k=0}^{\infty} {x^{2} + \chi \choose (1-x)^{4}} + \sum_{n=0}^{\infty} {x^{2} \choose (1-x)^{4}} = \sum_{n=0}^{\infty} {x^{2} \choose (1-x)^{4}} + \sum_{n=0}^{\infty} {x^$$