ML HW7

Date: 10/15/2025

Week: 7

Author: Alvin B. Lin Student ID: 112652040

Problem 1: Understanding Score Matching

Explain the concept of score matching and describe how it is used in score-based (diffusion) generative models.

Solution:

1. **Background:** The **MNIST** (Modified National Institute of Standards and Technology) dataset is a standard benchmark for generative models. It consists of thousands of small, grayscale images of handwritten digits (0 through 9).

Figure 1: 28×28 Handwritten Digit 1 from MNIST Dataset

- The Data Point x Dimensionality: Each image is a 28×28 grayscale image. The total dimension of a single data point x is $28 \times 28 = 784$.
- Value Space: Each pixel intensity x_i can be treated as a value between 0 (black) and 1 (white). Thus, \mathbf{x} is a vector in a 784-dimensional space, $\mathcal{X} \subset \mathbb{R}^{784}$.

The distribution $p(\mathbf{x})$ is the true, fixed, **unknown** probability density function that governs the formation of all possible handwritten digits.

- **Definition:** $p(\mathbf{x})$ assigns a probability density to every possible image \mathbf{x} .
- **Structure:** This distribution is highly complex:
 - It has very high density only in tiny, manifold-like regions of the 784-dimensional space (where the points look like well-formed digits).
 - It has near-zero density everywhere else (e.g., in regions where images are pure noise or unintelligible scribbles).
- 2. The Traditional Goal—Maximum Likelihood Estimation: The optimal parameters θ^* are found by maximising the Log-Likelihood of the data, which is equivalent to minimising the Negative Log-Likelihood (NLL):

$$NLL(\theta) = -\mathbb{E}_{\mathbf{x} \sim p(\mathbf{x})} \log p(\mathbf{x}; \theta),$$

where $p(\mathbf{x})$ is the actual distribution, $p(\mathbf{x}; \theta)$ is our model/hypothesis function. So,

$$\theta^* = \operatorname*{argmin}_{\theta} \operatorname{NLL}(\theta) = \operatorname*{argmax}_{\theta} \mathbb{E}_{\mathbf{x} \sim p(\mathbf{x})} \left[\log p(\mathbf{x}; \theta) \right]$$

3. The Failure of Traditional MLE for High-Dimensional Data: When the model $p(\mathbf{x}; \theta)$ is a **deep neural network**, it is often defined through an unnormalised probability density function $q(\mathbf{x}; \theta)$:

$$p(\mathbf{x}; \theta) = \frac{q(\mathbf{x}; \theta)}{Z(\theta)},$$

where $q(\mathbf{x}; \theta)$ is a function that neural network is easy to compute, e.g. exponential, $Z(\theta)$ be the normalisation constant:

$$Z(\theta) = \int_{\mathbb{R}^{784}} p(\mathbf{x}; \theta) \, d\mathbf{x} = \int_{\mathcal{X}} p(\mathbf{x}; \theta) \, d\mathbf{x}$$

Therefore our goal becomes:

$$\theta^* = \operatorname*{argmax}_{\theta} \mathbb{E}_{\mathbf{x} \sim p(\mathbf{x})} \left[\log q(\mathbf{x}; \theta) - \log Z(\theta) \right]$$

The Bottleneck: The Intractable Normalisation Constant $\mathbf{Z}(\theta)$: For MNIST, the space \mathcal{X} is \mathbb{R}^{784} . Computing the integral $Z(\theta)$ to get the model's true probability $p(\mathbf{x}; \theta)$ is computationally intractable.

Therefore, when we try to find θ^* , we need to compute $\nabla_{\theta} NLL(\theta)$:

$$\nabla_{\theta} \text{NLL}(\theta) = \nabla_{\theta} \mathbb{E}_{\mathbf{x} \sim p(\mathbf{x})} \left[\log q(\mathbf{x}; \theta) - \log Z(\theta) \right] = \mathbb{E}_{\mathbf{x} \sim p(\mathbf{x})} \left[\nabla_{\theta} \log q(\mathbf{x}; \theta) - \nabla_{\theta} \log Z(\theta) \right]$$

the term $\nabla_{\theta} \log \mathbf{Z}(\theta)$ makes the entire MLE optimisation process impossible using standard gradient descent.

4. The Score Matching Is Born: Score Matching ignores the intractable probability function $p(\mathbf{x}; \theta)$ and instead focuses on the score function,

$$S(\mathbf{x}; \theta) := \nabla_{\mathbf{x}} \log p(\mathbf{x}; \theta).$$

Hence,

$$S(\mathbf{x}; \theta) = \nabla_{\mathbf{x}} \log \mathbf{p}(\mathbf{x}; \theta) = \nabla_{\mathbf{x}} (\log q(\mathbf{x}; \theta) - \log Z(\theta)) = \nabla_{\mathbf{x}} \log q(\mathbf{x}; \theta),$$

which is always computable. We then define two score matchings:

Definition 1: ESM & ISM

The **explicit score matching** is defined as:

$$L_{\text{ESM}} = \mathbb{E}_{\mathbf{x} \sim p(\mathbf{x})} || S(\mathbf{x}; \theta) - \nabla_{\mathbf{x}} \log p(\mathbf{x}) ||^2$$

And the **implicit score matching** is defined as:

$$L_{\text{ISM}} = \mathbb{E}_{\mathbf{x} \sim p(\mathbf{x})} \left(||S(\mathbf{x}; \theta)||^2 + 2\nabla_{\mathbf{x}} \cdot S(\mathbf{x}; \theta) \right)$$

We can see that it is impossible to calculate **ESM** directly due to the unknown term $\nabla_{\mathbf{x}} \log p(\mathbf{x})$ when we don't know the actual distribution; hence we need the aid of **ISM**.

5. Why Does Score Matching Works?

To answer this question, if our model is accurate, we have the following relation:

$$\underset{\theta}{\operatorname{argmin}} \ \operatorname{NNL}(\theta) \overset{(1)}{=} \underset{\theta}{\operatorname{argmin}} \ D_{\operatorname{KL}}(p(\mathbf{x}) \| p(\mathbf{x}; \theta)) \overset{(2)}{=} \underset{\theta}{\operatorname{argmin}} \ L_{\operatorname{ESM}}(\theta) \overset{(3)}{=} \underset{\theta}{\operatorname{argmin}} \ L_{\operatorname{ISM}}(\theta)$$

We will show equation (1) and (2), equation (3) has been shown in the lecture note[1].

Theorem 1: Demonstration of Equation (1)

By definition of the Kullback-Leibler divergence

$$D_{\mathrm{KL}}(p(\mathbf{x}) || p(\mathbf{x}; \theta)) = \mathbb{E}_{\mathbf{x} \sim p(\mathbf{x})} \left(\log p(\mathbf{x}) - \log p(\mathbf{x}; \theta) \right)$$

Hence

$$\underset{\theta}{\operatorname{argmin}} \ D_{\mathrm{KL}}(p(\mathbf{x}) \| p(\mathbf{x}; \theta)) = -\underset{\theta}{\operatorname{argmin}} \ \mathbb{E}_{\mathbf{x} \sim p(\mathbf{x})} \log p(\mathbf{x}) = \underset{\theta}{\operatorname{argmin}} \ \mathrm{NNL}(\theta) \qquad \Box$$

Definition 2: Almost Everywhere

We say a **Borel-measurable** function f(x) = K a.e. (almost everywhere) on \mathbb{R} , when

$$\mu\left(\left\{x \in \mathbb{R} | f(x) \neq K\right\}\right) = 0,$$

where $\mu(\cdot)$ is the **Borel/Lebesgue** measure.

Lemma 1

If \mathbf{f} , $\mathbf{g}: \mathbb{R}^n \to \mathbb{R}$, it follows that

$$\mathbf{f} - \mathbf{g} = K$$
 a.e. $\iff \nabla_{\mathbf{x}} \mathbf{f} - \nabla_{\mathbf{x}} \mathbf{g} = \mathbf{0}$ a.e.

Proof. By fundamental theorem of calculus, for any path C with starting point and end point fixed \mathbf{a} , \mathbf{b} ,

$$\mathbf{h}(\mathbf{b}) - \mathbf{h}(\mathbf{a}) = \int_C \nabla_{\mathbf{x}} \mathbf{h} \cdot d\mathbf{x}$$

 (\Rightarrow) Take $\mathbf{h} = \mathbf{f} - \mathbf{g}$, we get $\mathbf{h}(\mathbf{b}) - \mathbf{h}(\mathbf{a}) = K - K = 0$ **a.e.** $\forall \mathbf{a}, \mathbf{b} \in \mathbb{R}^n$, then

$$\int_C \nabla_{\mathbf{x}} \mathbf{h} \cdot d\mathbf{x} = 0 \quad \text{a.e.} \quad \forall \text{ path } C \in \mathbb{R}^n \iff \nabla_{\mathbf{x}} \mathbf{h} = \nabla_{\mathbf{x}} \mathbf{f} - \nabla_{\mathbf{x}} \mathbf{g} = \mathbf{0} \quad \text{a.e.}$$

(\Leftarrow) Take $\mathbf{h} = \mathbf{f} - \mathbf{g}$ again, therefore $\nabla_{\mathbf{x}} \mathbf{h} = \mathbf{0}$ a.e.; then $\forall \ \mathbf{a}, \ \mathbf{b}$, we have

$$\mathbf{h}(\mathbf{b}) - \mathbf{h}(\mathbf{a}) = \int_C \nabla_{\mathbf{x}} \mathbf{h} \cdot d\mathbf{x} = 0 \implies \mathbf{f} - \mathbf{g} = \mathbf{h} = K \quad \mathbf{a.e.},$$

which completes the proof.

Theorem 2: Demonstration of Approximation/Equation (2)

Given our model is **accurate enough**, *i.e.* $\exists \theta^* \in \Theta$, *s.t.* $p(\mathbf{x}) = p(\mathbf{x}; \theta^*)$ **a.e.**, then it follows that

$$\underset{\theta}{\operatorname{argmin}} \ D_{\mathrm{KL}}(p(\mathbf{x}) \| p(\mathbf{x}; \theta)) = \underset{\theta}{\operatorname{argmin}} \ L_{\mathrm{ESM}}(\theta).$$

Proof. We first know that $0 \le D_{\text{KL}}(p(\mathbf{x})||p(\mathbf{x};\theta))$ and $0 \le L_{\text{ESM}}(\theta)$, by definition. Also, by definition of the two divergence, we have:

$$D_{KL}(p(\mathbf{x})||p(\mathbf{x};\theta)) = 0 \iff p(\mathbf{x};\theta) = p(\mathbf{x}) \text{ a.e.} \iff \log p(\mathbf{x};\theta) = \log p(\mathbf{x}) \text{ a.e.}$$

and

$$L_{\text{ESM}}(\theta) = 0 \iff \nabla_{\mathbf{x}} \log p(\mathbf{x}; \theta) = \nabla_{\mathbf{x}} \log p(\mathbf{x})$$
 a.e.

By assigning $\log p(\mathbf{x}) = \mathbf{f}$ and $\log p(\mathbf{x}; \theta) = \mathbf{g}$ and applying to **Lemma 1**, we get:

$$\log p(\mathbf{x}) - \log p(\mathbf{x}; \theta) = K$$
 a.e. $\iff \nabla_{\mathbf{x}} \log p(\mathbf{x}) - \nabla_{\mathbf{x}} \log p(\mathbf{x}; \theta) = \mathbf{0}$ a.e.

So if $\log p(\mathbf{x}) - \log p(\mathbf{x}; \theta) = K$ a.e., we have $p(\mathbf{x}) = e^K p(\mathbf{x}; \theta)$ a.e.. Recall that $p(\mathbf{x})$ and $p(\mathbf{x}; \theta)$ are both **p.d.f.**, hence

$$e^K = \frac{\int_{\mathcal{X}} p(\mathbf{x}) d\mathbf{x}}{\int_{\mathcal{Y}} p(\mathbf{x}; \theta) d\mathbf{x}} = \frac{1}{1} = 1 \implies K = 0$$

Therefore we have:

$$\log p(\mathbf{x}) = \log p(\mathbf{x}; \theta)$$
 a.e. $\iff \nabla_{\mathbf{x}} \log p(\mathbf{x}) = \nabla_{\mathbf{x}} \log p(\mathbf{x}; \theta)$ a.e.

Finally, combine everything together, we get:

$$L_{\text{ESM}}(\theta) = 0 \iff D_{KL}(p(\mathbf{x}) || p(\mathbf{x}; \theta)) = 0$$

Also by the initial assumption that $p(\mathbf{x}) = p(\mathbf{x}; \theta^*)$ a.e., we get the final result:

$$\underset{\theta}{\operatorname{argmin}} D_{KL}(p(\mathbf{x}) || p(\mathbf{x}; \theta)) = 0 = \underset{\theta}{\operatorname{argmin}} L_{ESM}(\theta)$$

So in short, for an accurate enough hypothesis function $p(\mathbf{x}; \theta)$, we heve:

$$\underset{\theta}{\operatorname{argmin}} \operatorname{NNL}(\theta) = \underset{\theta}{\operatorname{argmin}} L_{\operatorname{ISM}}(\theta),$$

which means our definition to $S(\mathbf{x}; \theta) = \log p(\mathbf{x}; \theta)$ is **reasonable** and can make the computation to the loss **computable** and **tractable** based on the lecture note.

6. The Practical Solution: Denoising Score Matching

Although $L_{\text{ISM}}(\theta)$ is theoretically tractable, but it is generally computationally inefficient ("intractable for large-scale problems") due to its reliance on the **Hessian trace**.

The General Perturbation Process

- Original Data \mathbf{x}_0 : We start with a clean data point $\mathbf{x}_0 \sim p_0(\mathbf{x}_0)$.
- Perturbation $\mathbf{x}|\mathbf{x}_0$: We corrupt \mathbf{x}_0 by a general noise kernel, $p(\mathbf{x}|\mathbf{x}_0)$, to generate a noisy data point, \mathbf{x} .
 - $-\mathbf{x}$ is the noisy data.
 - $-p(\mathbf{x}|\mathbf{x}_0)$ is the known conditional (noise) distribution.
- Noisy Data Distribution $(p_{\sigma}(\mathbf{x}))$: The resulting distribution of noisy points is the marginal distribution, $p_{\sigma}(\mathbf{x})$, found by integrating over all possible clean inputs:

$$p_{\sigma}(\mathbf{x}) = \int_{\mathbb{R}^d} p(\mathbf{x}|\mathbf{x}_0) p_0(\mathbf{x}_0) d\mathbf{x}_0$$

The objective becomes training $S_{\theta}(\mathbf{x})$ to match the score of this noisy distribution, $\nabla_{\mathbf{x}} \log p_{\sigma}(\mathbf{x})$, which is still intractable in the ESM form.

The key mathematical step is to use the **Hyvärinen Score Matching theorem** on the noisy distribution $p_{\sigma}(\mathbf{x})$, which proves that minimizing the intractable $L_{\text{ESM}}(p_{\sigma}||p_{\theta})$ is equivalent to minimising the practical $L_{\text{DSM}}(\theta)$ loss:

$$L_{\text{DSM}}(\theta) := \mathbb{E}_{\mathbf{x}_0 \sim p_0(\mathbf{x}_0)} \mathbb{E}_{\mathbf{x} \sim p(\mathbf{x}|\mathbf{x}_0)} \left[\|S_{\sigma}(\mathbf{x}; \theta) - \nabla_{\mathbf{x}} \log p(\mathbf{x}|\mathbf{x}_0)\|^2 \right]$$

Both the mentioned theorem and the lecture note[1] have shown that:

$$\underset{\theta}{\operatorname{argmin}} \ L_{\text{DSM}}(\theta) = \underset{\theta}{\operatorname{argmin}} \ L_{\text{ESM}}(\theta)$$

Fortunately, the calculation of $L_{\text{DSM}}(\theta)$ is tractable, meaning that we don't need to calculate the **trace of the Hessian matrix**.

7. The Practical Form: Gaussian Noise

In nearly all modern score-based generative models (diffusion models), the noise kernel $p(\mathbf{x}|\mathbf{x}_0)$ is chosen to be a simple **isotropic Gaussian distribution** with mean \mathbf{x}_0 and variance $\sigma^2 I$.

$$\mathbf{x} = \mathbf{x_0} + \varepsilon, \quad \text{where } \varepsilon \sim \mathcal{N}(\mathbf{0}, \sigma^2 \mathbf{I})$$

Under this specific Gaussian perturbation:

• The conditional distribution is defined:

$$p(\mathbf{x}|\mathbf{x}_0) = \mathcal{N}(\mathbf{x}; \mathbf{x}_0, \sigma^2 I)$$

• The tractable target is derived: Gradient of the conditional log-density:

$$\nabla_{\mathbf{x}} \log p(\mathbf{x}|\mathbf{x}_0) = \nabla_{\mathbf{x}} \left(C - \frac{1}{2\sigma^2} \|\mathbf{x} - \mathbf{x}_0\|^2 \right) = -\frac{\mathbf{x} - \mathbf{x}_0}{\sigma^2}$$

• The DSM Loss Simplifies: Since the noise is $\varepsilon = \mathbf{x} - \mathbf{x}_0$, the loss becomes:

$$L_{\text{DSM}}(\theta) = \mathbb{E}_{\mathbf{x}_0 \sim p_0(\mathbf{x}_0)} \mathbb{E}_{\varepsilon \sim \mathcal{N}(0, \sigma^2 I)} \left[\left\| S_{\theta}(\mathbf{x}_0 + \varepsilon) - \left(-\frac{\varepsilon}{\sigma^2} \right) \right\|^2 \right]$$

8. How Score Matching is Used in Generative Models

Score Matching is the engine behind modern Score-Based Generative Models (SGM), which are primarily built on the Diffusion Model architecture.

I've run a simple implementation on the concept of **DSM**, instructed from the note on Song Yang's website[2], as a **scored-based generative model** to help understand the full process and how **DSM** can be used. Here is the detail:

(a) The Setup: Multi-Level Perturbation Process

The simulation begins by creating a multi-modal 2D dataset (\mathbf{x}_0) composed of two distinct Gaussian clusters (the "Two Modes").

• Original Data $p_0(\mathbf{x}_0)$: The initial plot shows the true, unknown density function, $p_0(\mathbf{x}_0)$.

Figure 2: Original Data Distribution

This represents the complex, high-density regions we want the model to learn. The code then simulates the general perturbation process described in **section 7**, using Gaussian Noise $\epsilon \sim \mathcal{N}(0, \sigma^2 I)$. Instead of just one σ , the code uses a discrete noise schedule $\sigma \in \{0.75, 0.5, \dots, 0.01\}$. This is the foundation of **Score-Based Generative Models**.

(b) Training with DSM

The central objective is to find a neural network like our ScoreModel2D or S_{θ} that accurately approximates the true score function $\nabla_{\mathbf{x}} \log p_{\sigma}(\mathbf{x})$, the full training process has been drawn as a flow chart and appended to the appendix 6.

i. **Tractable Loss Calculation:** The code explicitly minimises the DSM Loss, which is made tractable by using the specific Gaussian noise kernel:

$$L_{DSM}(\theta) \propto \mathbb{E}_{\mathbf{x}_0,\epsilon} \left[\left\| S_{\theta}(\mathbf{x}_0 + \epsilon, \sigma) - \left(\frac{-\epsilon}{\sigma^2} \right) \right\|^2 \right]$$

- The term $\mathbf{x} = \mathbf{x}_0 + \epsilon$ is the noisy data.
- The term $-\frac{\epsilon}{\sigma^2}$ is the tractable target score $\nabla_{\mathbf{x}} \log p(\mathbf{x}|\mathbf{x}_0)$.
- ii. Learning Multi-Scale Structure (NCSN): The model is trained to learn the correct score field for every σ in the schedule, giving it two distinct "skills" visualised in the plots:

Table 1: Interpretation of The Trained Model with Different Noises

Fig. #	Noise Level	Interpretation by the Model S_{θ}
2	High, $\sigma = 0.75$	Inward toward the centre, Global, Rough Guide
3	Low, $\sigma = 0.01$	Directly into the nearest cluster centre, Local, Fine-Tuning Guide

Figure 3: Learned High Noise Score Field

Figure 4: Learned Low Noise Score Field

(c) The Application: Annealed Langevin Dynamics

The model is used for generation by applying the **Annealed Langevin Dynamics** [2] sampling process. This process starts with pure noise and then iteratively reduces the noise level σ , using the corresponding learned score function $S_{\theta}(\mathbf{x}, \sigma)$ at each level.

The update rule simulated in the code is:

$$\mathbf{x}_{t+1} = \mathbf{x}_t + \alpha \cdot S_{\theta}(\mathbf{x}_t, \sigma) + \sqrt{2\alpha} \cdot \mathbf{z},$$

where α is the step size and $\mathbf{z} \sim \mathcal{N}(0, I)$.

The process starts by initialising samples from large Gaussian noise and then sequentially runs the **Langevin Dynamics** update for every σ in the schedule, from largest to smallest (annealing). In each step, the sample \mathbf{x} is moved toward regions of **higher probability density**, guided by the **score** $S_{\theta}(\mathbf{x}, \sigma)$, while a small amount of **diffusion noise is added**. The final samples, once the noise level reaches its minimum, represent the generated data from the **target distribution**.

Figure 5: Final Sampling Visualisation

Around 50,000 iterations for the annealing Langevin Dynamics, we get the following result, which shows that the score learned is fairly close to the original distribution in **Figure** 2, which means the process is successful.

In particular, we can see some random starting noises eventually follow the **grey trajectory** to the clusters, which is a clear visualisation of the validation of the method.

References

- [1] Tesheng Lin. 2025_ml_week_7. https://hackmd.io/@teshenglin/2025_ML_week_7, 2025. Accessed: 15 October 2025.
- [2] Yang Song. Generative modeling by estimating gradients of the data distribution. https://yang-song.net/blog/2021/score/, 2021. Accessed: 15 October 2025.

A Training Process Flowchart

Figure 6: Flow Chart of The Training Process