RECEIVED CENTRAL FAX CENTER

IN THE CLAIMS

DEC 2 2 2006

Please amend the claims of the present application under the provisions of 37 C.F.R. §1.121(c), as indicated below:

1.(Currently amended): Glass-ceramics having an average liner thermal expansion coefficient within a range of $0.0 \pm 0.2 \times 10^{-7}$ / °C within a temperature range from 0° C to 50° C, having difference between the maximum value and the minimum value of $\Delta L/L$ of 10×10^{-7} or below, and comprising SiO₂, Al₂O₃ and P₂O₅ with the total amount thereof in mass % being within a range from 86.7% to 89.0% and further comprising CaO in an amount of 0.5 mass % or more, wherein the ratio of P₂O₅ to Al₂O₃ in mass % is within a range from 0.270 to 0.33 and the ratio of P₂O₅ to SiO₂ in mass % is within a range from 0.1230 to 0.1450.

2. (Cancelled)

- 3. (Currently amended) Glass-ceramics baving an average liner thermal expansion coefficient within a range of $0.0 \pm 0.1 \times 10^{-7}$ / °C within a temperature range from 0° C to 50° C, having difference between the maximum value and the minimum value of $\Delta L/L$ of 8 x 10^{-7} or below, and comprising SiO₂, Al₂O₃ and P₂O₅ with the total amount thereof in mass % being within a range from 86.7% to 89.0% [[%]] and further comprising CaO in an amount of 0.5 mass % or more, wherein the ratio of P₂O₅ to Al₂O₃ in mass % is within a range from 0.270 to 0.33 and the ratio of P₂O₅ to SiO₂ in mass % is within a range from 0.1230 to 0.1450.
- 4. (Cancelled)
- 5. (Original): Glass-ceramics as defined in claim 1 wherein surface roughness (Ra) (arithmetic mean roughness) is 3Å or below.

- 6. (Original): Glass-ceramics as defined in claim 1 wherein an average crystal grain diameter of precipitating crystal phase or phases is within a range from 50 nm to 90 nm.
- 7. (Original): Glass-ceramics as defined in claim 1 which comprise β -quartz (β -SiO₂) and/or β -quartz solid solution (β -SiO₂ solid solution) as a predominant crystal phase.
- 8. (Original): Glass-ceramics as defined in claim 1 which are free of PbO, Na_2O , K_2O and B_2O_3 .
- 9. (Original): Glass-ceramics as defined in claim 1 obtained by heat treating, for crystallization, a base glass which comprises, in mass %,

SiO₂ 53-57% P₂O₅ 7.0-8.5% and Al₂O₃ 23-26%

and is substantially free of PbO, Na₂ O, K₂O and B₂O₃, said glass-ceramics comprising β -quartz (β -SiO₂) and/or β -quartz solid solution (β -SiO₂ solid solution) as a predominant crystal phase.

- 10. (Original): Glass-ceramics as defined in claim 9 comprising, in mass %, Li₂O within a range of 3.5-4.5%.
- 11. (Previously presented): Glass-ceramics as defined in claim 10 comprising, in mass %,

CaO 0.5-1.5% and MgO 0.5-1.5% and/or ZnO 0.1-1.5% and/or BaO 0.5-1.5% and/or TiO 2 1.5-3.0% and/or ZrO2 1.0-3.0% and/or

 As_2O_3 0.5-1.0%.

- 12. (Original): Glass-ceramics as defined in claim 1 wherein the maximum temperature of the heat treatment for crystallization is within a range from 750°C to 800°C.
- 13. (Previously presented): A mask for lithography using glass-ceramics as defined in claim 1.
- 14. (Previously presented): An optical system reflecting mirror for lithography using glass-ceramics as defined in claim 1.
- 15. (Previously presented): A wafer stage or a reticle stage for lithography using glassceramics as defined in claim 1.
- 16. (Previously presented): A component part of a precision instrument using glassceramics as defined in claim 1.
- 17. (Original): Glass-ceramics as defined in claim 3 wherein surface roughness (Ra) (arithmetic mean roughness) is 3Å or below.
- 18. (Original): Glass-ceramics as defined in claim 3 wherein an average crystal grain diameter of precipitating crystal phase or phases is within a range from 50 nm to 90 nm.
- 19. (Original): Glass-ceramics as defined in claim 3 which comprise β-quartz (β-SiO₂) and/or, β -quartz solid solution (β -SiO₂ solid solution) as a predominant crystal phase.
- (Original): Glass-ceramics as defined in claim 3 which are free of PbO, Na₂O, K₂O and B₂O₃.
- 21. (Original): Glass-ceramics as defined in claim 3 obtained by heat treating, for crystallization, a base glass which comprises, in mass %,

SiO ₂	53-57%
P_2O_5	7.0-8.5% and
Al ₂ O ₃	23-26%

and is substantially free of PbO, Na_2 O, K_2 O and B_2 O3, said glass-ceramics comprising β -quartz (β -SiO₂) and/or β -quartz solid solution (β -SiO₂ solid solution) as a predominant crystal phase.

- 22. (Original): Glass-ceramics as defined in claim 21 comprising, in mass %, Li₂O within a range of 3.5-4.5%.
- 23. (Previously presented): Glass-ceramics as defined in claim 22 comprising, in mass %,

CaO	0.5-1/5% and
MgO	0.5-1.5% and/or
$Z_{\rm In}O$	0.1-1.5% and/or
BaO	0.5-1.5% and/or
TiO ₂	1.5-3.0% and/or
ZrO_2	1.0-3.0% and/or
As ₂ O ₃	0.5-1.0%.

- 24. (Original): Glass-ceramics as defined in claim 3 wherein the maximum temperature of the heat treatment for crystallization is within a range from 750° C to 800° C.
- 25. (Previously presented): A mask for lithography using glass-ceramics as defined in claim 3.
- 26. (Previously presented): An optical system reflecting mirror for lithography using glass-ceramics as defined in claim 3.

- 27. (Previously presented): A wafer stage or a reticle stage for lithography using glassceramics as defined in claim 3.
- 28. (Previously presented): A component part of a precision instrument using glassceramics as defined in claim 3.
- 29. (Original): Glass-ceramics as defined in claim 2 obtained by heat treating, for crystallization, a base glass which comprises, in mass %

53-57% SiO₂

 P_2O_5 7.0-8.5% and

2123028998

 Al_2O_3 23-26%

and is substantially free of PbO, Na₂O, K₂O and B₂O₃, said glass-ceramics comprising β quartz (β -SiO₂) and/or β -quartz solid solution (β -SiO₂ solid solution) as a predominant crystal phase.

- 30. (Original): Glass-ceramics as defined in claim 29 comprising, in mass %, Li₂O within a range of 3.5-4.5%.
- 31. (Previously presented): Glass-ceramics as defined in claim 30 comprising, in mass %,

CaO 0.5-1.5% and MgO 0.5-1.5% and/or ZnO 0.1-1.5% and/or BaO 0.5-1.5% and/or TiO₂ 1.5-3.0% and/or ZrO₂ 1.0-3.0% and/or As_2O_3 0.5-1.0%.

32. (Original): Glass-ceramics as defined in claim 4 obtained by heat treating, for

crystallization, a base glass which comprises, in mass %,

SiO₂ 53-57%

 P_2O_5 7.0-8.5% and

Al₂O₃ 23-26%

and is substantially free of PbO, Na₂O, K₂O and B₂O₃, said glass-ceramics comprising β -quartz (β -SiO₂) and/or β -quartz solid solution (β -SiO₂ solid solution) as a predominant crystal phase.

- 33. (Original): Glass-ceramics as defined in claim 32 comprising, in mass %, Li₂O within a range of 3.5-4.5%.
- 34. (Previously presented): Glass-ceramics as defined in claim 33 comprising, in mass %,

CaO	0.5-1.5% and
MgO	0.5-1.5% and/or
ZnO	0.1-1.5% and/or
BaQ	0.5-1.5% and/or
TiO ₂	1.5-3.0% and/or
ZrO ₂	1.0-3.0% and/or
As aOa	0.5-1.0%