Air Motion and Emissions

Guoqiang Zhang

Department of Engineering, Sciences and Technology, Aarhus University, Denmark. Email: guoqiang.zhang@eng.au.dk

Guogiang Zhang

Related Issues

- Can we estimate emission from a surface with contamination sources?
 What are the challenges?
- pH, TAN, T, V...?

Fundamentals

- Characteristics of ventilation in Livestock Buildings
- Inlet air momentum, velocity decay and air speed at floor level

Guogiang Zhang

Inlet air momentum, velocity decay and air speed at floor level

Isothermal Jet in air space

A surprising similarity among the shape of jets exists at a short distance from the inlet face, whether the inlet is round, rectangular, grille-like or a perforated panel.

Angle of Divergence: 20-24 deg

Free jet: $X \le 1.5 A_R^{0.5}$

Four zones in jet expansion:

- 1. A short corne zone: $x \le 4d(h)$; $v_x = v_0$
- 2. A transition zone: $x \le 8d(h)$;
- 3. A long zone: of full established turbulent flow;
- 4. A terminal zone

Guoqiang Zhang

Jet velocity decay in a ventilated space

Axis symmetric jet

$$\frac{v_x}{v_o} = K_a \sqrt{\frac{A_o}{2x}}$$

Free wall jet

$$\frac{v_x}{v_o} = K_p \sqrt{\frac{h}{2x}}$$

Plan wall jet

$$\frac{v_x}{v_o} = K_p \sqrt{\frac{h}{x}}$$

Estimate floor air speed based on inlet air velocity

$$u_s = u_o \cdot C_p \cdot \sqrt{\frac{h_e}{s + s_o}}$$

$$u_s = \frac{\operatorname{Re} \mu}{\rho} \cdot C_p \cdot \sqrt{\frac{1}{h_e(s + s_o)}}$$

Estimate floor air speed using jet decay theory

- C_p : velocity decay constant Re : $\rho \cdot u_o \cdot h_e / \mu$

Guogiang Zhang

Estimate floor air speed based on inlet jet momentum

Hypothesis: Floor air velocity is function of

- Inlet air jet momentum and
- Floor area
- Numbers of animals in room

$$J = \frac{U \cdot u_o}{g \cdot V}$$

Definition of Jet momentum number

- U is the supply airflow rate
- V is the room volume

Floor air velocity can be expressed in terms of the jet momentum number or the inlet height and the pressure difference

Inlet air momentum, velocity decay and air speed at floor level

References:

12. Morsing, S., J. S. Str¢m, and G. Zhang. 1996. Make space for the return air in ventilated rooms. AgEng Paper: 96B-057. Ref ID: 279

Nielsen, P. V. 1981. Ventilation of working areas (in Danish: Luftstrømning i ventilerede arbejdslokaler). SBI Report No. 128. Hørsholm, Denmark: Danish Building Research Institute.

Guoqiang Zhang

Linearization of jet traveling distance

Secondary Thermal Zone

- Creep Design & Control
- Temperature & Air motion in creeps
- Heating control in creeps
-

Take home questions

- Modelling Floor/Pit air speed in a system with
 - MV?
 - NV?
 - With different farm animals?
 - In diffeferent building designs?
-

