PRACOVNÍ LIST

Jméno a příjmení	Datum měření	Skupina
Jan Kaska	4.11.2015	4

YTE2 – Laboratorní měření

Zadané hodnoty: (2V4)

 $R_{\mathrm{ref}} = 100 \, \Omega$

 $R = 1 k\Omega$

C = 10 nF

 $f = 200 \, Hz$

 $U_{0m} = 4 V$

Výsledky:

Úkol 1 – V-A charakteristika

Tabulka A

i	y ₁ ; y ₂ [mA]	$R_{di}[\Omega]$	$U_{0i}\left[V\right]$
1	-1,020 ; -1,315	254	-1,75
2	-11,742 ; -14,163	31	-2,5

Úkol 2 – Přechodný děj

Graf 1 - časové průběhy napětí na kapacitoru pro Zenerovu diodu a linearizovaný model

Diskuze: Z grafu přechodového děje vidíme, že nejdelší dobu ustálení má obvod se Zenerovo diodou. Pro linearizované modely platí, že s rostoucím odporem se prodlužuje doba ustálení. Stejnosměrný zdroj napětí posouvá napětí tak, aby se blížilo průběhu v obvodu se Zenerovo diodou. Linearizovaný model však tomuto průběhu neodpovídá zcela a nahrazuje Zenerovu diodu pouze v oblasti pracovního bodu.

PRACOVNÍ LIST

0,2

0

Úkol 3 – Frekvenční spektrum

Graf 2 – frekvenční spektrum

6

Graf 3 – časové průběhy

Diskuze: V obvodu se Zenerovo diodou dochází ke zkreslení signálu. V jedné půlvlně je signál omezen Zenerovým napětím, v druhé půlvlně se Zenerova dioda chová jako usměrňovací dioda v propustném směru, čímž vzniká stejnosměrná složka napětí. Výskyt vyšších harmonicích ve frekvenčním spektru je způsoben právě zkreslením sinusového průběhu na Zenerově diodě. Z průběhů je také zřetelný fázový posun, který je ovlivňován RC konstantou, tedy měnícím se odporem.

10

k