Digital logic and circuits Lab [Section - C] Group - 2

PROJECT TITLE

Implementation Of Fire Alarm System

Group Members

NAME	ID	DEPARTMENT
Srabone Raxit	21-45038-2	CSE
Ahnaf Abdullah Zayad	21-45019-2	CSE
Safkat Khan	22-46392-1	CSE
Juhaer Al Mahbub	21-44687-1	CSE
Imtiaz Mahmud	20-43012-1	CSE

Table of contents

4. Circuit 2. Introduction 3. Equipment 1. Abstract Diagram 5. Hardware 7. Working 6. Simulation 8. Result Principle Implementation 9. Discussion & 10. References Conclusion

Abstract

Abstract

 The purpose of the project is to construct a circuit that can detect heat and trigger a periodic alarm when the heat reaches a certain temperature. The properties of 555 timer and thermistor was used to construct the circuit. The heat detection can alarm before the entire system catches fire or the rare and costly electronic components gets damaged beyond repair so that the damage due to overheat remains none to minimal.

Introduction

While running, in a machine, many electrical and mechanical components get heated

Overheat can damage electrical or mechanical components beyond repair

Overheat can start fire

Heat detector circuit can alarm when the heat reaches a certain temperature

It can prevent damage and massive fire

Equipments

The Equipments-

Component Name	Quantity
Resistor 10KΩ	3
Resistor 15KΩ	1
Resistor 1KΩ	1
Resistor 100K Ω	1
IC NE555P	1
Capacitor 10μF	1
Capacitor 0.1μF	1
Thermistor $10 \text{K}\Omega$	1
DC Power Supply (9V)	1
Connecting Wires	-
Breadboard	-

Circuit diagram

Circuit diagram

Figure: Heat and Fire Detection circuit using thermistor and 555 timer

Hardware Implementation

Hardware Implementation

Fig: Top View Fig: Front View

Hardware Implementation(Video)

Simulation

Fig: Thermistor at room temperature(25°C) and **Buzzer** inactive

Fig: Thermistor Heated(70°C-75°C) and buzzer active

Working Principle

Working Principle

- Astable Multivibrator that would make the buzzer buzz periodically
- Reset receives input 0 the IC remains inactive

Fig: Astable Multivibrator

- Astable Multivibrator that would make the buzzer buzz periodically
- Reset receives input 1 the IC gets activated
- Property: IC active/inactive based on Reset input

Fig: Astable Multivibrator

- Heat Detection Property
- Thermistor (NTC MF-52 100KΩ)
- Property: Temperature increase causes its resistance to decrease

R25	10 KΩ	
T(°C) Rt	3950	
-30	181.70	
-25	133.30	
-20	98.88	
-15	74.10	
-10	56.06	
-5	42.80	
0	98.96	
5	25.58	
10	20.00	
15	15.76	
20	12.51	
25	10.00	
30	8.048	
35	6.518	
40	5.312	
45	4.354	
50	3.588	
55	2.974	
60	2.476	
65	2.072	
70	1.743	
75	1.473	
80	1.250	
85	1.065	
90	0.911	
95	0.7824	
100	0.6744	
105	0.5836	
110	0.5066	

Specification Chart for NTC MF-52 $100 \text{K}\Omega$

NMOS Inverter with Resistive Load

Fig: Inverter input = 1, Output = 0

Fig: Inverter input = 0, Output = 1

Periodic Buzzer Circuit

Fig: Final Circuit

WORKING PRINCIPLE

Fig: Thermistor at room temperature(25°C) and Buzzer inactive

Fig: Thermistor Heated(70°C-75°C) and buzzer active

Result

Result

- The designed circuit will alarm when the thermistor gets heated and its temperature reaches 70°C-75°C
- The buzzer will not get triggered if the temperature of the thermistor is below 70°C
- The buzzer receives periodic voltage from the 555 timer and buzzes periodically
- Result: The heat detection project circuit triggers periodic buzzer when the wanted temperature gets above 70°C

Discussion & Conclusion

Discussion & Conclusion

Thank You

Reference

1. Boylestad, Robert L., and Louis Nashelsky. Electronic Devices And Circuit Theory, 2006, Pearson Prentice Hall.

2. Thomas L. Floyd, Digital Fundamentals, 9th Edition, 2006, Prentice Hall.