GEO3D

A SMARTHUB JOURNEY

Analysing Smart Cities & Big Data in 3D

About SmartHub

A STARTUP WITHIN STARHUB SINCE 2012

BIG DATA PRODUCT DEVELOPER

Leveraging on StarHub's rich datasets,

Machine Learning, and Deep Learning to create
consumable products for end-users

DeepSense

DRIVER OF CONTINUOUS INNOVATION

Delivering first-of-its-kind projects across commercial and government sectors

Vector-borne Disease Transmission

Crowd Mobility

Real-time Geo-fenced Public Address System Transport Competitive Intelligence

Geolocation Data Makes These Possible

Vector-borne Disease Transmission

Crowd Mobility

Real-time Geo-fenced Public Address System Transport Competitive Intelligence

Fragmented Ecosystem of Geolocation

INDOORS IS A CHALLENGE

Line-of-sight to satellites
Worldwide range (outdoors)
Requires active app

Proximity to routers
Short-range (indoors)
Requires active app

Camera sensing of LED flashes

Very short-range (indoors)

Requires active app

Proximity to beacons
Very short-range (indoors)
Requires active app

Fragmented Ecosystem of Geolocation

INDOORS IS A CHALLENGE

GPS

Line-of-sight to satellites
Worldwide range (outdoors)
Requires active app

Proximity to routers Short-range (indoors) Requires **active** app

Camera sensing of LED flashes

Very short-range (indoors)

Requires active app

Proximity to beacons
Very short-range (indoors)
Requires **active** app

Fragmented Ecosystem of Geolocation

INDOORS IS A CHALLENGE

GPS

Line-of-sight to satellites
Worldwide range (outdoors)
Requires active app

Camera sensing of LED flashes

Very short-range (indoors)

Requires active app

Proximity to routers
Short-range (indoors)
Requires **active** app

Proximity to beacons
Very short-range (indoors)
Requires active app

Nationwide range (indoors / outdoors)
Works passively

Vector-borne Disease Transmission

GEOLOCATION USE CASE

HOTSPOTS IDENTIFICATION

Dwelling points with the potentially highest risk of Zika transmission

PEOPLE'S MOVEMENT

Understanding movement dynamics in areas with persistent Zika transmission

Optimize public cleanliness
Optimize public health operations

Above: 4 potential Zika hotspots based on construction workers' dwell points (night)

Crowd Mobility

GEOLOCATION USE CASE

MOBILITY PATTERNS

Includes bus, MRT, driving, walking
Travel times per route
Crowd levels per route

ORIGIN-DESTINATION

Find where are the popular origins or destinations for segments

e.g. Professionals: offices

e.g. Tourists: hotels, attractions

Optimize transport resources
Predict effects of route diversions

2D Geospatial Models!

BUT WHAT DO CITIES ACTUALLY LOOK LIKE?

Cities are **Vertical** Concrete Jungles

TOKYO, JAPAN

THE NEXT DIMENSION OF GEOLOCATION

Sneak Peek

THE NEXT DIMENSION OF GEOLOCATION

A Joint Research Collaboration Between

Network Optimisation

THE QUEST FOR BETTER 3G, LTE PHONE SERVICE!

GOALS

To ensure full network coverage per floor
To ensure sufficient network capacity for occupants
To avoid interference between small cells

CONSIDERATIONS

To strike a balance between cost vs. coverage How many small cells are needed? Where are the best locations to place each cell?

3D Geolocation – Best in Class Event Detection Accuracy

70%-80% of the traffic is in-building

3D model locates events at different heights in-building and outdoor

3D vision of real traffic with outdoor vs indoor traffic and height with massive geolocation brings unparalleled opportunities Best in class accuracy horizontally and vertically Drill down from network map to any single event /call

Continuous 3D geolocation monitoring

3D RSS
Fingerprint &
Adaptive
Learning
Algorithm for
Geolocation

3D hotspot location for:

- Crowd Sourcing
- Traffic Monitoring
- Network Planning for superior End User Experience
- Enabling new business model and revenue (Telecom Data as a service)

3D RSS Fingerprinting & Adaptive Learning Algorithm for Geolocation

Ray Tracing

- Receive Strength Signal
 - Transmitter power
 - Antenna gain
 - Path loss
- Free Space
- Fresnel Zone
- Multiple Knife Edge
- Proprietary prediction model: HEX3D B

3D Geolocation

- Create 3D prediction grid
- For each MR
 - Calculate zone boundaries from TA derived distance using geometry
 - Calculate matching factor to 3D prediction grid
- Adaptive learning algorithm selects exact location

In-Building density maps

- Locate multiple MR and events for each call
- Observe speed and cell changes during the call
- Trace to building and calculate event density
 - Set performance threshold (e.g. EcNo -14 dB)
 - Extract number and proportion of samples above and below threshold
- Produce performance density maps

Public Safety

Real-time Situation Monitoring

Public Safety

IN SMART CITIES

POLICE

Theft
Housebreaking
Crimes against persons

PARAMEDIC

Medical emergencies Road traffic accidents Industrial accidents

FIRE & RESCUE

Residential fires
Commercial fires
Industrial fires

Public Safety

IN SMART CITIES

SITUATIONAL AWARENESS

In near-real time Per floor, per building

ACCESSIBLE ON-THE-GO

Mobile and web ready
View from a command centre
View from a mobile device

Optimize deployment of emergency services personnel

Pulse of the Economy

With Near Real-time Indicators

Pulse of the Economy

INSPIRED BY A GOVTECH INITIATIVE

"The use of high-frequency big data ... to develop new indicators for better economic and urban planning"

- GovTech Singapore, 7th Oct 2016

Pulse of the Economy

INSPIRED BY A GOVTECH INITIATIVE

"The use of high-frequency big data ... to develop new indicators for better economic and urban planning"

- GovTech Singapore, 7th Oct 2016

Electricity consumption

Public transport

Online job listings

CLUES & SIGNALS

TRADITIONAL INDICATORS

After-the-fact, occasional statistical reports

Gross Domestic Product (GDP)

Employment Rate

Consumer Price Index

Broadband Penetration

•••

- "Are people earning / spending more?"
- "Is there inflation?"
- "Is the city's infrastructure sufficient?"

CLUES & SIGNALS

CLUES & SIGNALS

Near real-time, behavioural analysis

"How's the demand for healthcare services?"

Healthcare Visit Model

Examine healthcare facilities (e.g. hospitals)

Gather frequency of visits to these facilities by floor

Contextualize the intent of visits to these floors

Examine historical trend of visits

Aggregate and estimate demand for healthcare services

CLUES & SIGNALS

Near real-time, behavioural analysis

"Are businesses in this part of the city productive?"

Business Productivity Model

Examine buildings with different businesses per floor

Gather frequency of visits to these floors during working hours

Examine historical trend of visits

Compare against building occupancy and business directories

Aggregate and estimate manpower of businesses in this part of the city

CLUES & SIGNALS

Near real-time, behavioural analysis

"How are different industries interacting with one another?"

Industry Network Model

Examine buildings with different businesses per floor

Gather frequency of visits to these floors during working hours

Differentiate between employees / visitors via historical trends

Examine visits by employees to other businesses during office hours

Aggregate and infer links between industries

CLUES & SIGNALS

Pulse of the Economy

WITH FLOOR-BY-FLOOR GEOLOCATION

Insights in the Palm of Your Hand

Goals for Visualization

GEO3D IN A DASHBOARD

SCALABLE

Usable in a command centre Usable on the street

LOW LATENCY

Rapid dissemination of insights Optimized for near real-time

MODULAR

Interchangeable 2D / 3D map vis. Easy to add-on other visualizations

Goals for Visualization

GEO3D IN A DASHBOARD

SCALABLE

Usable in a command centre Usable on the street

LOW LATENCY

Rapid dissemination of insights Optimized for near real-time

MODULAR

Interchangeable 2D / 3D map vis. Easy to add-on other visualizations

OpenStreetMap

Raw base maps Building heights

Post-process 3D Models
UV Mapping

WebGL Layer
Map Projection in 3D
Position 3D models

Goals for Visualization

GEO3D IN A DASHBOARD

SCALABLE

Usable in a command centre Usable on the street

LOW LATENCY

Rapid dissemination of insights Optimized for near real-time

MODULAR

Interchangeable 2D / 3D map vis. Easy to add-on other visualizations

OpenStreetMap

Raw base maps Building heights

Custom 3D Tiles

Post-process 3D Models
UV Mapping

Custom Texturing

WebGL Layer
Map Projection in 3D
Position 3D models

Custom Shaders

Custom 3D Tiles

PERFORMANCE OPTIMIZATIONS

Nationwide Tiling

~ 50 buildings per tile
One mesh per tile
One draw call per tile
Fade in/out over distance

Scalable across the country whilst maintaining a **smooth frame rate**

Custom Textures

PARALLELIZING VISUALS

Scalable

~2500 buildings 10000+ floors Rendered in parallel

One pixel per floor via UV Mapping

Texturing a Model

TRY THIS IN BLENDER

UV Mapping

Mapping each vertex to a normalised coordinate on a texture

Texturing a Model

TRY THIS IN BLENDER

UV Mapping

Mapping each vertex to a normalised coordinate on a texture

Custom Shaders

TRANSITIONING BETWEEN TEXTURES

Texture 1:

Current timestamp

Texture 2:

Next timestamp

Texture 3:

Highlighted Building / Floor

Custom Shaders

TRANSITIONING BETWEEN TEXTURES

Texture 1:

Current timestamp

Texture 2:

Next timestamp

Texture 3:

Highlighted Building / Floor

Custom Shaders

TRANSITIONING BETWEEN TEXTURES

Texture 1:

Current timestamp

Texture 2:

Next timestamp

Texture 3:

Highlighted Building / Floor

In Summary

THREE KEY TAKEAWAYS

Key Takeaways

THE FUTURE OF GEOLOCATION FOR SMART CITIES

GEO3D: A NEW DIMENSION

A big leap in geolocation technology A research collaboration between StarHub and Nokia

NEW OPPORTUNITIES

Understand cities like never before Many exciting use cases incoming

Public Safety

Pulse of the Economy

INSIGHTS IN THE PALM OF YOUR HAND

Building a scalable 3D engine to serve Geo3D insights Scale up to command centres or down to phones

JOIN US IN OUR JOURNEY!

victor.bh.chua@starhub.com

Victor Chua, Senior Data Analyst

