전기이론

문 1. 교류 회로에서 유효전력이 400 [W]이고 무효전력이 300 [Var]일 때. 피상전력[VA]과 역률은?

	피상전력[VA]	역률
1	50	0.6
2	50	0.8
3	500	0.6
4	500	0.8

- 문 2. (가)와 (나)에 대한 전기현상을 바르게 연결한 것은?
 - (가) 두 종류의 금속을 고리 모양으로 양끝을 접속하고 두 접속점에 서로 다른 온도를 가하면 기전력이 발생하여 일정한 방향으로 전류가 흐른다.
 - (나) 전기 분해에 의해서 석출되는 물질의 양은 전해액을 통과한 총 전기량에 비례하며, 같은 전기량에 의해서 여러 가지 화합물이 전해될 때 석출되는 물질의 양은 각 물질의 화학 당량에 비례한다.

(가) (나) ① 제베크 효과 렌츠의 법칙 ② 제베크 효과 패러데이의 법칙 ③ 펠티에 효과 렌츠의 법칙 ④ 펠티에 효과 패러데이의 법칙

문 3. 그림의 발전기 회로에서 역률이 1이 되기 위한 부하 임피던스 $Z_L[\Omega]$ 로 적절한 것은? (단, $Z_q = 1.3 + j2[\Omega], Z_l = 1.7 + j3$ [Ω]이다)

3 + j5

① 3

4 3 - j5

문 4. 그림과 같이 전력계 두 대를 사용하여 3상 평형 회로의 전력을 측정하였다. 3상 전력이 800 [kW]이고 $W_1 = 400 [kW]$ 일 때, 측정 전력 W₂[kW]는?

① 100

400

③ 300

- 문 5. 다음의 전압과 전류에 대한 설명으로 옳은 것은?
 - $e(t) = 100 \cos(120\pi t + 30^{\circ})$ [V]
 - $0 i(t) = 20 \sqrt{2} \sin(120\pi t + 60)$ [A]
 - ① e와 i의 위상차는 30 °이다.
 - ② e와 i의 주파수는 모두 60 [Hz]이다.
 - ③ e의 실횻값은 100 [V]이고, i의 실횻값은 $20\sqrt{2} [A]$ 이다.
 - ④ e의 평균값은 $\frac{100}{\pi}$ [V]이고, i의 평균값은 $\frac{20\sqrt{2}}{\pi}$ [A]이다.
- 문 6.3상 평형 회로의 $\Delta \Delta$ 결선과 Y Y 결선에 대한 설명으로 옳은
 - ① $\Delta \Delta$ 결선의 선간 전압의 위상은 상전압의 위상과 같다.
 - ② $\Delta \Delta$ 결선은 3상 4선식으로 사용한다.
 - ③ Y-Y 결선의 선전류 크기는 상전류 크기의 $\sqrt{3}$ 배이다.
 - ④ Y-Y 결선은 상이 모이는 중성점이 없다.
- 문 7. R-L 직렬 회로에 $e(t) = 1000 \sqrt{2} \sin \omega t + 500 \sqrt{2} \sin 3\omega t +$ $200\sqrt{2}\sin 5\omega t$ [V]를 인가할 때, 제5고조파 전류의 실횻값[A]은? (단, 기본 각주파수 ω 에서 $R=80[\Omega], X_L=12[\Omega]$ 이다)

③ 3

4

문 8. 그림의 회로에서 단자 a, b 사이의 전압 $V_{ab}[V]$ 는?

문 9. 그림의 R-L 부하 회로에서 스위치를 a와 연결했을 때 저항계의 측정값이 5[Ω]이고, 스위치를 b와 연결했을 때 전류계의 측정값이 10 [A]이다. 부하 인덕턴스[H]는? (단. $e(t) = 100\sqrt{2} \sin 120\pi t$ [V]이고, 전류계와 저항계의 내부 저항은 무시한다)

- 문 10. 100 [W] 전열기를 10분간 사용하면 20 [°C]의 물 1 [kg]을 몇 도[°C]로 올릴 수 있는가? (단, 물의 비열은 1이고 1 [J]은 0.24 [cal]이다)
 - ① 34.4
 - ② 36.5
 - ③ 38.0
 - ④ 39.8
- 문 11. 그림의 회로에서 단자 a, b 사이의 합성 인덕턴스[H]는?

- ① 1
- ② 2
- 3 3
- 4
- 문 12. 자기 인덕턴스가 각각 L_1 , L_2 인 두 개의 코일이 직렬로 접속되어 있다. 여기서 각 코일이 만드는 자속 방향이 같을 때 측정된 합성 인덕턴스는 $100\,[\mathrm{mH}]$ 이고, 각 코일이 만드는 자속 방향이 반대일 때 측정된 합성 인덕턴스는 $60\,[\mathrm{mH}]$ 이다. 이때 두 코일의 자기 인덕턴스 합 $L_1 + L_2\,[\mathrm{mH}]$ 와 상호 인덕턴스 $M\,[\mathrm{mH}]$ 은? (단, 두 개의 자기 인덕턴스는 전자 결합이 있고, 상호 인덕턴스는 양의 값을 갖는다)

	$L_1 + L_2 [mH]$	M [mH]
1	80	10
2	80	20
3	160	10
4	160	20

문 13. 그림의 직렬 연결된 커패시터 회로에서 합성 정전 용량 $C_{ab}[\mu F]$ 와 $4[\mu F]$ 커패시터 양단의 전압 $V_1[V]$ 은?

	$C_{ab}[\mu F]$	$V_1[V]$	
1	2.4	8	
2	2.4	12	
3	10	8	
4	10	12	

문 14. 그림과 같은 삼각형 꼭짓점에 있는 진공 중의 점 전하 +Q, -Q가 각각 +10 [nC], -16 [nC]일 때, A지점의 전기장 세기[V/m]는? $(\text{단}, \ 진공의 \ 유전율은} \ \epsilon_0 = 8.855 \times 10^{-12} \, [\text{F/m}] \text{이고}, \ \frac{1}{4\pi\epsilon_0} = 9 \times 10^9 \text{이다})$

- ① 1
- ② $\sqrt{19}$
- $\sqrt{3}$ $\sqrt{181}$
- $4) \sqrt{361}$

문 15. 그림의 R-L-C 회로에서 단자 a, b 사이의 합성 임피던스가 1 [Ω]일 때, 커패시턴스 C[μ F]는? (단, 회로의 동작 주파수는 $\frac{1000}{2\pi}$ [Hz]이다)

- ① 1
- ② 2
- 3 5
- 4 10

문 16. 그림의 회로에서 전류계의 측정값이 10[A]일 때, 전압 E[V]와 저항 $R[\Omega]$ 는? (단, 전류계의 내부 저항은 무시한다)

	E[V]	$R[\Omega]$
1	120	7
2	120	8
3	160	7

160

문 17. 그림과 같이 두 개의 코일이 하나의 원통에 감겨 있으며 시간에 따라 전류 i_1 과 i_2 가 증가하고 있다. 이에 대한 설명으로 옳지 않은 것은?

- ① 전류 i_1 과 i_2 에 의한 자속 방향은 같다.
- ② 각 코일에 흐르는 전류 방향과 자속 방향은 앙페르의 오른나사의 법칙이 적용된다.
- ③ 전류 i_1 에 의해 발생되는 자속은 A 방향이다.
- ④ 각 코일의 단자 간에 걸리는 전압은 코일을 쇄교하는 자속의 시간당 변화율에 비례한다.

문 18. 비사인파전압 $e(t)=10\sqrt{2}\sin\omega t+4\sqrt{2}\sin3\omega t+3\sqrt{2}\sin5\omega t$ [V]의 실횻값[V]과 왜형률[%]은? (단, ω 는 기본 각주파수이다)

	실횻값[V]_	왜형률[%]
1	$2\sqrt{5}$	50
2	$2\sqrt{5}$	100
3	$5\sqrt{5}$	50
4	$5\sqrt{5}$	100

- 문 19. 1[A]의 전류를 60초간 흘리면 6,000[J]의 열량이 발생하는 전열기가 있다. 같은 전열기에 2[A]의 전류를 흘려 같은 크기의 열량을 얻었을 때, 전류가 흐른 시간[sec]은?
 - 15

20 20

3 25

4 30

문 20. 그림의 회로에서 전류 $i_1[A]$, $i_2[A]$, $i_3[A]$ 는?

	i_1 [A]	$\underline{i_{2}\left[\mathbf{A}\right] }$	i_3 [A]
1	6	2	3
2	6	3	3
3	9	2	3
4	9	3	3