Taller 03

David Gómez

VIGILADA MINEDUCACIÓN

Índice

1.	Punto 1: tabla de verdad y función	2
	1.1. $p = \phi$	
	1.2. $(p \equiv r) = \phi$	
	1.3. $((p \to (\neg q)) \to r) = \phi$	
	1.4. $((p \to q) \lor ((\neg p) \to (\neg q))) = \phi$	
	1.6. $(p \lor (q \to p)) = \phi$	
	1.0. $((p \lor r) \land (p \to q)) = \phi \lor \lor$	3
2.	Punto 2: Tabla de verdad	4
3.	Punto 3: Justificar que la implicación no es asociativa	5
4.	Punto 4: Tabla de verdad	5
5.	Punto 5: Nuevo conector	5
	5.1. Definir * en conectores lógicos clásicos	5
	5.2. Hallar una proposición equivalente a $(\neg p)$ usando únicamente $\{p,*\}$	6
	5.3. Hallar una proposición equivalente a $(p \land q)$ usando únicamente $\{p,q,*\}$	6
	5.4. Justificar o refutar propiedades de *	6
	5.4.1. Conmutativa	6
	5.4.2. Asociativa	6
6.	Punto 6: Nuevo conector	7
	6.1. Definir $*$ en conectores lógicos clásicos	
	6.2. Justificar o refutar propiedades de *	
	6.2.1. Asociativa	7
	6.2.2. Transitiva	8
7.	Punto 7: considere las valuaciones v y w	8
8.	Punto 8: Demuestre que $\mathbf{v}[\phi] \neq \mathbf{v}[(\neg \phi)]$ para cualquier valuación v	8

1. Punto 1: tabla de verdad y función

1.1. $p = \phi$

$$H_{\phi}(\mathtt{T}) = \mathtt{T}$$

 $H_{\phi}(\mathtt{F}) = \mathtt{F}$

1.2.
$$(p \equiv r) = \phi$$

p	r	$(p \equiv r)$
F	F	T
F	Т	F
Т	F	F
T	T	T

$$\begin{split} H_{\phi}(\mathtt{F},\mathtt{T}) &= H_{\phi}(\mathtt{T},\mathtt{F}) = \mathtt{F} \\ H_{\phi}(\mathtt{F},\mathtt{F}) &= H_{\phi}(\mathtt{T},\mathtt{T}) = \mathtt{F} \end{split}$$

1.3.
$$((p \to (\neg q)) \to r) = \phi$$

p	q	r	$(\neg q)$	$(p \to (\neg q))$	$((p \to (\neg q)) \to r)$
F	F	F	T	T	F
F	F	Т	T	Т	T
F	Т	F	F	Т	F
F	Т	Т	F	Т	T
Т	F	F	T	Т	F
Т	F	Т	T	Т	Т
Т	Т	F	F	F	Т
Т	Т	T	F	F	T

$$\begin{split} H_{\phi}(\mathbf{F},\mathbf{F},\mathbf{T}) &= H_{\phi}(\mathbf{F},\mathbf{T},\mathbf{T}) = H_{\phi}(\mathbf{T},\mathbf{F},\mathbf{T}) = H_{\phi}(\mathbf{T},\mathbf{T},\mathbf{F}) = H_{\phi}(\mathbf{T},\mathbf{T},\mathbf{T}) \\ H_{\phi}(\mathbf{F},\mathbf{F},\mathbf{F}) &= H_{\phi}(\mathbf{F},\mathbf{T},\mathbf{F}) = H_{\phi}(\mathbf{T},\mathbf{F},\mathbf{F}) \end{split}$$

1.4.
$$((p \rightarrow q) \lor ((\neg p) \rightarrow (\neg q))) = \phi$$

p	q	$(\neg p)$	$(\neg q)$	$(p \rightarrow q)$	$((\neg p) \to (\neg q))$	$((p \to q) \lor ((\neg p) \to (\neg q)))$
F	F	T	T	T	Т	T
F	Т	T	F	T	F	T
T	F	F	T	F	Т	T
Т	Т	F	F	Т	Т	T

$$H_\phi(\mathtt{F},\mathtt{F}) = H_\phi(\mathtt{F},\mathtt{T}) = H_\phi(\mathtt{T},\mathtt{F}) = H_\phi(\mathtt{T},\mathtt{T}) = \mathtt{T}$$

Página 2 Taller 02

1.5. (p -	$\rightarrow (q \rightarrow$	(p)) =	ϕ
------------------	------------------------------	--------	--------

p	q	$(q \rightarrow p)$	$(p \to (q \to p))$
F	F	T	T
F	Т	F	Т
Т	F	T	T
Т	T	Т	T

$$H_\phi(\mathtt{F},\mathtt{F}) = H_\phi(\mathtt{F},\mathtt{T}) = H_\phi(\mathtt{T},\mathtt{F}) = H_\phi(\mathtt{T},\mathtt{T}) = \mathtt{T}$$

1.6.
$$((p \lor r) \land (p \to q)) = \phi$$

p	q	r	$(p \lor r)$	$(p \rightarrow q)$	$((p \lor r) \land (p \to q))$
F	F	F	F	T	F
F	F	Т	T	T	T
F	Т	F	F	T	F
F	Т	Т	Т	T	T
Т	F	F	T	F	F
Т	F	Т	T	F	F
Т	Т	F	T	T	T
Т	Т	T	Т	T	Т

$$\begin{split} H_{\phi}(\mathtt{F},\mathtt{F},\mathtt{F}) &= H_{\phi}(\mathtt{F},\mathtt{T},\mathtt{F}) = H_{\phi}(\mathtt{T},\mathtt{F},\mathtt{F}) = H_{\phi}(\mathtt{T},\mathtt{F},\mathtt{T}) = \mathtt{F} \\ H_{\phi}(\mathtt{F},\mathtt{F},\mathtt{T}) &= H_{\phi}(\mathtt{F},\mathtt{T},\mathtt{T}) = H_{\phi}(\mathtt{T},\mathtt{T},\mathtt{F}) = H_{\phi}(\mathtt{T},\mathtt{T},\mathtt{T}) = \mathtt{T} \end{split}$$

1.7.
$$(\neg((r \to (r \land (p \lor s))) \equiv (\neg((p \to q) \lor (r \land (\neg r)))))) = \phi$$

Debido a la longitud de la proposición, decidí añadir subíndices a los conectores, para así no tener que hacer mención de las variables que hacen parte del mismo:

$$(\neg_0((r \to_2 (r \land_3 (p \lor_4 s))) \equiv_1 (\neg_2((p \to_4 q) \lor_3 (r \land_4 (\neg_5 r)))))))$$

Posición	p	q	r	s
0	F	F	F	F
1		F	F	Т
2	F	F	F T	F
3	F	F	Т	Т
4	F	Т	T F	F
5	F F F F	Т	F	Т
6	F	Т	Т	F
7	F	Т	Т	Т
8	Т	F		F
9	Т	F	F F	Т
10	Т	F	Т	F
11	Т	F	T	Т
12	Т	Т	F	F
13	F T T T T T	F F T T T F F F T T	F	T
14	Т	Т	T T	F
15	T	T	T	T

Página 3 Taller 02

Posición	\neg_5	\vee_4	\rightarrow_4	\wedge_4	\wedge_3	\vee_3	\rightarrow_2	\neg_2	\equiv_1	\neg_0
0	T	F	Т	F	F	T	T	F	F	T
1	F	Т	Т	F	F	Т	Т	F	F	T
2	Т	F	Т	F	F	Т	F	F	Т	F
3	F	Т	Т	F	Т	Т	Т	F	F	T
4	Т	F	Т	F	F	Т	Т	F	F	Т
5	F	Т	Т	F	F	Т	Т	F	F	Т
6	Т	F	Т	F	F	Т	F	F	T	F
7	F	Т	Т	F	Т	Т	Т	F	F	Т
8	Т	Т	F	F	F	F	Т	Т	T	F
9	F	Т	Т	F	F	F	Т	Т	T	F
10	Т	Т	Т	F	Т	F	Т	Т	T	F
11	F	Т	F	F	Т	F	Т	Т	T	F
12	Т	Т	Т	F	F	Т	Т	F	F	Т
13	F	Т	Т	F	F	Т	Т	F	F	Т
14	Т	Т	Т	F	Т	Т	Т	F	F	Т
15	F	Т	Т	F	Т	Т	Т	F	F	Т

$$\begin{split} H_{\phi}(\mathbf{F},\mathbf{F},\mathbf{F},\mathbf{F}) &= H_{\phi}(\mathbf{F},\mathbf{F},\mathbf{F},\mathbf{T}) = H_{\phi}(\mathbf{F},\mathbf{F},\mathbf{T},\mathbf{F}) = H_{\phi}(\mathbf{F},\mathbf{T},\mathbf{F},\mathbf{F}) = H_{\phi}(\mathbf{F},\mathbf{T},\mathbf{F},\mathbf{T}) = H_{\phi}(\mathbf{F},\mathbf{T},\mathbf{T},\mathbf{T}) \\ &= H_{\phi}(\mathbf{T},\mathbf{T},\mathbf{F},\mathbf{F}) = H_{\phi}(\mathbf{T},\mathbf{T},\mathbf{F},\mathbf{T}) = H_{\phi}(\mathbf{T},\mathbf{T},\mathbf{T},\mathbf{T}) = \mathbf{H}_{\phi}(\mathbf{T},\mathbf{T},\mathbf{T},\mathbf{T}) = \mathbf{H}_{\phi}(\mathbf{T},\mathbf{T$$

$$H_{\phi}(\mathtt{F},\mathtt{F},\mathtt{T},\mathtt{F}) = H_{\phi}(\mathtt{T},\mathtt{F},\mathtt{F},\mathtt{F}) = H_{\phi}(\mathtt{T},\mathtt{T},\mathtt{F},\mathtt{T}) = H_{\phi}(\mathtt{T},\mathtt{F},\mathtt{T},\mathtt{F}) = H_{\phi}(\mathtt{T},\mathtt{F},\mathtt{T},\mathtt{T}) = \mathtt{F}$$

2. Punto 2: Tabla de verdad

$$((p \lor (q \lor r)) \equiv ((p \lor q) \lor r))$$

p	q	r	$(q \lor r)$	$(p \lor q)$	$(p \lor (q \lor r))$	$((p \vee q) \vee r)$	$((p \lor (q \lor r)) \equiv ((p \lor q) \lor r))$
F	F	F	F	F	F	F	T
F	F	Т	Т	F	Т	Т	T
F	Т	F	T	Т	Т	Т	T
F	Т	Т	T	Т	Т	Т	T
Т	F	F	F	Т	Т	Т	T
Т	F	Т	T	Т	Т	Т	T
Т	Т	F	T	Т	Т	Т	T
Т	Т	Т	Т	Т	Т	Т	Т

Página 4 Taller 02

3. Punto 3: Justificar que la implicación no es asociativa

$$(\forall \phi, \psi, \tau \in \mathbb{B} : ((\phi \to \psi) \to \tau) \equiv (\phi \to (\psi \to \tau)))$$
 propiedad a refutar negación de la propiedad
$$\mathbf{v}[((\phi \to \psi) \to \tau)] = \mathbf{F}$$
 suposición
$$\equiv (\mathbf{v}[(\phi \to \psi)] = \mathbf{T}) \wedge (\mathbf{v}[\tau] = \mathbf{F})$$
 Metateorema 2.23
$$\equiv ((\mathbf{v}[\phi] = \mathbf{F}) \vee (\mathbf{v}[\psi] = \mathbf{T})) \wedge (\mathbf{v}[\tau] = \mathbf{F})$$

$$\mathbf{Tomando} \ \mathbf{v} = \{\phi \mapsto \mathbf{F}, \psi \mapsto \mathbf{T}, \tau \mapsto \mathbf{F}\}$$

$$\mathbf{v}[(\phi \to (\psi \to \tau))] = H_{\to}[\mathbf{F}, \mathbf{v}[(\psi \to \tau)]]$$

$$= H_{\to}[\mathbf{F}, H_{\to}(\mathbf{T}, \mathbf{F})]$$

$$= H_{\to}[\mathbf{F}, \mathbf{F}]$$

$$= \mathbf{T}$$

$$\therefore (\exists \phi, \psi, \tau \in \mathbb{B} : \mathbf{v}[((\phi \to \psi) \to \tau)] \neq \mathbf{v}[(\phi \to (\psi \to \tau))])$$
 por suposición

4. Punto 4: Tabla de verdad

$$(((p \to q) \land (\neg true)) \equiv (r \lor q))$$

p	q	r	true	$(\neg true)$	$(p \to q)$	$(r \lor q)$	$((p \to q) \land (\neg true))$	$(((p \to q) \land (\neg true)) \equiv (r \lor q))$
F	F	F	T	F	Т	F	F	T
F	F	Т	Т	F	Т	Т	F	F
F	Т	F	Т	F	Т	Т	F	F
F	Т	Т	Т	F	Т	Т	F	F
T	F	F	Т	F	F	F	F	Т
T	F	Т	Т	F	F	Т	F	F
Т	Т	F	Т	F	Т	Т	F	F
Т	Т	Т	Т	F	Т	Т	F	F

5. Punto 5: Nuevo conector

5.1. Definir * en conectores lógicos clásicos

$$H_*(\phi, \psi) = H_{\neg}[H_{\lor}(\phi, \psi)]$$
$$(\phi * \psi) \equiv (\neg(\phi \lor \psi))$$

Página 5 Taller 02

5.2. Hallar una proposición equivalente a $(\neg p)$ usando únicamente $\{p,*\}$

$$(\phi * \psi) \equiv (\neg(\phi \lor \psi))$$
 sub-punto 1 tabla de verdad
$$(p \lor p) \equiv p$$
 tabla de verdad

5.3. Hallar una proposición equivalente a $(p \land q)$ usando únicamente $\{p,q,*\}$

$$(\phi * \psi) \equiv (\neg(\phi \lor \psi))$$
 sub-punto 1
$$(p * p) \equiv (\neg p)$$
 sub-punto 2
$$(\neg(\phi \lor \psi)) \equiv ((\neg \phi) \land (\neg \psi))$$
 tabla de verdad
$$((p * p) * (q * q)) \equiv (p \land q)$$

5.4. Justificar o refutar propiedades de *

Metateorema 2.23 para *
$$\mathbf{v}[(\phi*\psi)] = \mathtt{T} \text{ si y solo si } \mathbf{v}[\phi] = \mathtt{F} \text{ y } \mathbf{v}[\psi] = \mathtt{F} \text{ ; de lo contrario } \mathbf{v}[(\phi*\psi)] = \mathtt{F}$$

5.4.1. Conmutativa

$$(\forall \phi, \psi \in \mathbb{B} : \mathbf{v}[(\phi * \psi)] = \mathbf{v}[(\psi * \phi)])$$
 def. propiedad conmutativa
$$\mathbf{v}[(\phi * \psi)] = \mathbf{T}$$
 suposición
$$(\mathbf{v}[\phi] = \mathbf{F}) \wedge (\mathbf{v}[\psi] = \mathbf{F})$$

$$(\mathbf{v}[\psi] = \mathbf{F}) \wedge (\mathbf{v}[\phi] = \mathbf{F})$$
 Propiedad conmutativa de \wedge
$$\mathbf{v}[(\psi * \phi)] = \mathbf{T}$$
 Metateorema 2.23
$$(\forall \phi, \psi \in \mathbb{B} : \mathbf{v}[(\phi * \psi)] = \mathbf{v}[(\psi * \phi)])$$
 Es conmutativa

Se puede ver que cualquier otra valuación cumple la propiedad (negar el metatorema y aplicar propiedad conmutativa sobre \vee)

5.4.2. Asociativa

$$\begin{aligned} (\forall \phi, \psi, \tau \in \mathbb{B} : \mathbf{v}[(\phi * \psi) * \tau] &= \mathbf{v}[(\phi * (\psi * \tau))]) & \text{def. propiedad asociativa} \\ \mathbf{v}[(\phi * \psi) * \tau] &= \mathbf{T} & \text{suposición} \\ (\mathbf{v}[(\phi * \psi)] &= \mathbf{F}) \wedge (\mathbf{v}[\tau] &= \mathbf{F}) \\ (\mathbf{v}[\phi] &= \mathbf{T} \vee \mathbf{v}[\psi] &= \mathbf{T}) \wedge (\mathbf{v}[\tau] &= \mathbf{F}) \end{aligned}$$

Página 6 Taller 02

Tomando $\mathbf{v} = \{\phi \mapsto \mathtt{T}, \psi \mapsto \mathtt{T}, \tau \mapsto \mathtt{F}\}$

$$\begin{split} \mathbf{v}[(\phi*(\psi*\tau))] &= H_*[\phi,(\psi*\tau)] \\ &= H_*[\mathtt{T},H_*(\mathtt{T},\mathtt{F})] \\ &= H_*[\mathtt{T},\mathtt{F}] \\ &= \mathtt{F} \end{split}$$

$$\therefore (\exists \phi, \psi, \tau \in \mathbb{B} : \mathbf{v}[(\phi * \psi) * \tau] \neq \mathbf{v}[(\phi * (\psi * \tau))])$$

No es asociativa

6. Punto 6: Nuevo conector

6.1. Definir * en conectores lógicos clásicos

$$H_*(\phi, \psi) = H_{\neg}[H_{\leftarrow}(\phi, \psi)]$$
$$(\phi * \psi) \equiv (\neg(\phi \leftarrow \psi))$$

6.2. Justificar o refutar propiedades de *

Metateorema 2.23 para \ast

$$\mathbf{v}[(\phi * \psi) = \mathtt{T} \text{ si y solo si } \mathbf{v}[\phi] = \mathtt{F} \text{ y } \mathbf{v}[\psi] = \mathtt{T} \text{ ; de lo contrario } \mathbf{v}[(\phi * \psi)] = \mathtt{F}]$$

6.2.1. Asociativa

$$(\forall \phi, \psi, \tau \in \mathbb{B} : \mathbf{v}[(\phi * \psi) * \tau] = \mathbf{v}[(\phi * (\psi * \tau))])$$

$$\mathbf{v}[(\phi * \psi) * \tau] = \mathbf{T}$$

$$(\mathbf{v}[\phi] = \mathbf{F}) \wedge (\mathbf{v}[\psi] = \mathbf{T})$$

$$(\mathbf{v}[\psi] = \mathbf{T}) \wedge (\mathbf{v}[\phi] = \mathbf{F})$$

$$\mathbf{v}[(\psi * \phi)] = \mathbf{F}$$

def. propiedad asociativa suposición

Propiedad conmutativa de \wedge

$$\therefore (\exists \phi, \psi, \tau \in \mathbb{B} : \mathbf{v}[(\phi * \psi) * \tau] \neq \mathbf{v}[(\phi * (\psi * \tau))])$$

No es asociativa

Página 7 Taller 02

6.2.2. Transitiva

$$(\mathbf{v}[(\phi,\psi,\tau\in\mathbb{B}:((\mathbf{v}[(\phi*\psi)]=\mathbf{T})\wedge(\mathbf{v}[(\psi*\tau)]=\mathbf{T}))\Rightarrow(\mathbf{v}[(\phi*\tau)]=\mathbf{T})) \\ \wedge \\ (\forall\phi,\psi,\tau\in\mathbb{B}:((\mathbf{v}[(\phi*\psi)]=\mathbf{F})\wedge(\mathbf{v}[(\psi*\tau)]=\mathbf{F}))\Rightarrow(\mathbf{v}[(\phi*\tau)]=\mathbf{F})) \end{aligned} \ \text{def. propiedad transitiva}$$

$$(\mathbf{v}[(\phi*\psi)]=\mathbf{T})\wedge(\mathbf{v}[(\psi*\tau)]=\mathbf{T}) \\ ((\mathbf{v}[\phi]=\mathbf{F})\wedge(\mathbf{v}[\psi]=\mathbf{T}))\wedge((\mathbf{v}[\psi]=\mathbf{F})\wedge(\mathbf{v}[\tau]=\mathbf{T}))$$
 suposición
$$(\mathbf{v}[\phi]=\mathbf{F})\wedge(\mathbf{v}[\psi]=\mathbf{T})\wedge(\mathbf{v}[\psi]=\mathbf{T}) \\ (\mathbf{v}[\phi]=\mathbf{F})\wedge false \wedge (\mathbf{v}[\tau]=\mathbf{T})$$
 Propiedad asociativa de \wedge
$$false$$

$$(\exists \phi, \psi, \tau \in \mathbb{B} : ((\mathbf{v}[(\phi * \psi)] = \mathbf{T}) \land (\mathbf{v}[(\psi * \tau)] = \mathbf{T})) \not\Rightarrow (\mathbf{v}[(\phi * \tau)] = \mathbf{T}))$$

$$(\exists \phi, \psi, \tau \in \mathbb{B} : ((\mathbf{v}[(\phi * \psi)] = \mathbf{F}) \land (\mathbf{v}[(\psi * \tau)] = \mathbf{F})) \not\Rightarrow (\mathbf{v}[(\phi * \tau)] = \mathbf{F}))$$

No es transitiva

7. Punto 7: considere las valuaciones v y w ...

$$\mathbf{v} = \{ p \mapsto \mathsf{T}, \ q \mapsto \mathsf{F}, \ r \mapsto \mathsf{F}, \ \ldots \}$$
$$\mathbf{w} = \{ p \mapsto \mathsf{T}, \ q \mapsto \mathsf{F}, \ r \mapsto \mathsf{T}, \ \ldots \}$$

Demostrar que $\mathbf{v}[(p \equiv (\neg q))] = \mathbf{w}[(p \equiv (\neg q))]$

Tomando \mathbf{v} ...

$$\begin{aligned} \mathbf{v}[(p \equiv (\neg q))] &= H_{\equiv}[p, (\neg q)] \\ &= H_{\equiv}[\mathbf{v}[p], H_{\neg}(\mathbf{v}[q])] \\ &= H_{\equiv}[\mathbf{w}[p], H_{\neg}(\mathbf{w}[q])] \\ &= \mathbf{w}[(p \equiv (\neg q))] \end{aligned}$$

8. Punto 8: Demuestre que $\mathbf{v}[\phi] \neq \mathbf{v}[(\neg \phi)]$ para cualquier valuación v

$$\mathbf{v}[(\phi \equiv (\neg \phi))] = \mathbf{F}$$

$$\mathbf{v}[\phi] \neq \mathbf{v}[(\neg \phi)]$$

$$\therefore \mathbf{v}[(\phi \equiv (\neg \phi))] = \mathbf{F}$$

Enunciado/ proposición a probar negación de Metateorema 2.23

Página 8 Taller 02