厦门大学高等代数教案 网站 IP 地址: 59.77.1.116; 域名: gdjpkc.xmu.edu.cn

第三章 总复习题

1. 设 $\alpha_1,\alpha_2,\cdots,\alpha_s$ 线性无关,问 $\alpha_1+\alpha_2,\alpha_2+\alpha_3,\cdots,\alpha_{s-1}+\alpha_s,\alpha_s+\alpha_1$ 是否线性无关?

解: 设 $c_1(\alpha_1 + \alpha_2) + c_2(\alpha_2 + \alpha_3) + \dots + c_{s-1}(\alpha_{s-1} + \alpha_s) + c_s(\alpha_s + \alpha_1) = 0$. 整理得,

$$(c_1+c_s)\alpha_1+(c_1+c_2)\alpha_2+\cdots+(c_{s-2}+c_{s-1})\alpha_{s-1}+(c_{s-1}+c_s)\alpha_s=0.$$

因 $\alpha_1, \alpha_2, \dots, \alpha_s$ 线性无关, 所以上式与如下齐次线性方程组 AX = 0 同解, 其中

$$A = \begin{pmatrix} 1 & 0 & 0 & \cdots & 0 & 1 \\ 1 & 1 & 0 & \cdots & 0 & 0 \\ 0 & 1 & 1 & \cdots & 0 & 0 \\ \vdots & \vdots & \ddots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & \ddots & 1 & 0 \\ 0 & 0 & 0 & \cdots & 1 & 1 \end{pmatrix}.$$

又 $\det A = 1 + (-1)^{s+1} = \left\{ egin{array}{ll} 2 & , & \mbox{$ \pm s$ 为奇数时 } \\ 0 & , & \mbox{$ \pm s$ 为偶数时 } \end{array} \right.$

- (1) 当 s 为奇数时, r(A)=s, AX=0 只有零解,从而向量组 $\alpha_1+\alpha_2,\alpha_2+\alpha_3,\cdots,\alpha_{s-1}+\alpha_s,\alpha_s+\alpha_1$ 线性无关;
- (2) 当 s 为偶数时, r(A) < s, AX = 0 有非零解,因此向量组 $\alpha_1 + \alpha_2, \alpha_2 + \alpha_3, \dots, \alpha_{s-1} + \alpha_s, \alpha_s + \alpha_1$ 线性相关.
- 2. 设 $A \in F^{n \times n}$, $A^m = 0$, $A^{m-1} \neq 0$. 求证: 存在 $X \in F^n$, 使得 X, AX, A^2X , \cdots , $A^{m-1}X$ 线性无关.

证明: 由 $A^{m-1} \neq 0$ 知 A^{m-1} 至少存在一列不为零,不妨设第 j 列不为零,记这一列为 ξ ,下证 ε_i 就是我们要找的 α . 设

$$k_1 \varepsilon_i + k_2 A \varepsilon_i + \dots + k_m A^{m-1} \varepsilon_i = 0 \tag{1}$$

对 (1) 式两边同时左乘 A^{m-1} , 因为 $A^m=0$, 所以得 $k_1A^{m-1}\varepsilon_j=k_1\xi=0$, 而 $\xi\neq 0$, 故 $k_1=0$. 从而 (1) 变为

$$k_2 A \varepsilon_j + \dots + k_m A^{m-1} \varepsilon_j = 0, \tag{2}$$

再对 (2) 式两边同时左乘 A^{m-2} , 得 $k_2A^{m-1}\varepsilon_j=k_2\xi=0$, 故 $k_2=0$. 依此类推可得 $k_1=k_2=\cdots=k_m=0$, 命题得证. \square

3. 向量 β 可以由 $\alpha_1, \alpha_2, \dots \alpha_s$ 线性表出,但不能由 $\alpha_1, \alpha_2, \dots \alpha_{s-1}$ 线性表出. 求证: 向量组 $\alpha_1, \dots, \alpha_{s-1}, \alpha_s$ 和 $\alpha_1, \dots, \alpha_{s-1}, \beta$ 等价.

证明: 由已知条件知, 只要证明 α_s 可由 $\alpha_1, \dots, \alpha_{s-1}, \beta$ 线性表出即可.

事实上,由 β 可以由 $\alpha_1, \alpha_2, \cdots \alpha_s$ 线性表出,知存在一组数 k_1, k_2, \cdots, k_s ,使 得 $\beta = k_1\alpha_1 + k_2\alpha_2 + k_3 + \cdots + k_s\alpha_s$,且 $k_s \neq 0$. 若不然, $k_s = 0$,则 $\beta = k_1\alpha_1 + k_2\alpha_2 + k_3 + \cdots + k_{s-1}\alpha_{s-1}$,说明 β 可由 $\alpha_1, \alpha_2, \cdots \alpha_{s-1}$ 线性表出,与已知矛盾.因此, $\alpha_s = \frac{1}{k_s}\beta - \frac{k_1}{k_s}\alpha_1 - \frac{k_2}{k_s}\alpha_2 - \cdots - \frac{k_{s-1}}{k_s}\alpha_{s-1}$. 命题得证. \square

4. 设 $A \in F^{m \times n}$ 且 $A = (A_1, A_2, \dots, A_n)$, 其中 $A_i \in F^m (1 < i < n)$. 求证:

- (1) $V = \{AX \mid X \in F^n\}$ 是 F^m 的子空间;
- (2) $V = \langle A_1, A_2, \cdots, A_n \rangle$;
- (3) $\dim V = r(A)$.

证明: (1) 显然 $0 \in V$, 故 V 是非空的.

对任意的 $Y, Z \in V$, 分别存在相应的 X_1, X_2 使得 $Y = AX_1, Z = AX_2$. 则 $Y + Z = AX_1 + AX_2 = A(X_1 + X_2) \in V$. 且对任意的 $c \in F$, $cY = cAX_1 = A(cX) \in V$. 故证 $V = \{AX \mid X \in F^n\}$ 是 F^m 的子空间.

(2) 首先证 $V \subseteq \langle A_1, A_2, \dots, A_n \rangle$. 对任意的 $Y \in V$, 存在 X_1 使得 $Y = AX_1 = (A_1, A_2, \dots, A_n)X_1 = x_1A_1 + x_2A_2 + \dots + x_nA_n \in \langle A_1, A_2, \dots, A_n \rangle$.

再证 $\langle A_1, A_2, \dots, A_n \rangle \subseteq V$. 对任意 $Y \in \langle A_1, A_2, \dots, A_n \rangle$, 有 $Y = x_1 A_1 + x_2 A_2 + \dots + x_n A_n = (A_1, A_2, \dots, A_n) X_1 = A X_1 \in V$. 故 $V = \langle A_1, A_2, \dots, A_n \rangle$.

- (3) 由 (2) 可得. □
- 5. 在 F^{2×2} 中, 证明

$$A = \left(\begin{array}{cc} 3 & 1 \\ 2 & 0 \end{array}\right), B = \left(\begin{array}{cc} 1 & 2 \\ 1 & 2 \end{array}\right)$$

线性无关, 并扩为 $F^{2\times 2}$ 的一个基.

证明:显然 A和 B所对应的元素不成比例,故得 A和 B是线性无关的.

因为 E_{11} , E_{12} , E_{21} , E_{22} , 为 $F^{2\times 2}$ 的一个基,且

$$(A, B, E_{21}, E_{22}) = (E_{11}, E_{12}, E_{21}, E_{22}) \begin{pmatrix} 3 & 1 & 0 & 0 \\ 1 & 2 & 0 & 0 \\ 2 & 1 & 1 & 0 \\ 0 & 2 & 0 & 1 \end{pmatrix},$$

而
$$\det A = \begin{vmatrix} 3 & 1 & 0 & 0 \\ 1 & 2 & 0 & 0 \\ 2 & 1 & 1 & 0 \\ 0 & 2 & 0 & 1 \end{vmatrix} = 5 \neq 0$$
 知 A 可逆,从而 A, B, E_{21}, E_{22} 是 $F^{2\times 2}$ 的一个基.

6. 设 V_1, V_2 是 V 的非平凡子空间,求证存在 $\alpha \in V$,使得 $\alpha \notin V_1 \cup V_2$.

证明: (法一) 由 V_1 是 V 的非平凡子空间, 故存在 $\alpha \notin V_1$. 对这个 α , 若 $\alpha \notin V_2$, 则命题得证.

现设 $\alpha \in V_2$, 因 V_2 是 V 的非平凡子空间, 必另有 $\beta \notin V_2$. 若 $\beta \notin V_1$, 则命题的证.

若 $\beta \in V_1$, 这时有 $\alpha \notin V_1$ 且 $\beta \in V_1$, 或 $\alpha \in V_2$ 且 $\beta \notin V_2$, 可证 $\alpha + \beta \notin (V_1 \cup V_2)$. 否则如果 $\alpha + \beta \in V_1$, 因为 $\beta \in V_1$, 则 $(\alpha + \beta) - \beta = \alpha \in V_1$, 矛盾,所以 $\alpha + \beta \notin V_1$. 类似可证 $\alpha + \beta \notin V_2$.

(法二) 若 $V_1\subseteq V_2$, 则 $V_1\bigcup V_2=V_2$. 由于 V_2 是 V 的非平凡子空间,故存在 $\alpha\not\in V_2$, 从而 $\alpha\not\in V_1$, α 为所求. 同理可证 $V_2\subseteq V_1$ 情形.

若 $V_1 \nsubseteq V_2$ 且 $V_2 \nsubseteq V_1$,又 V_1, V_2 是 V 的非平凡子空间,则存在 $\alpha \in V_1$ 且 $\alpha \notin V_2$, $\beta \in V_2$ 且 $\beta \notin V_1$.则同法一证明知 $\alpha + \beta \notin V_1 \bigcup V_2$. \square

7. 设 $V_i(i=1,2,\cdots,m)$ 是线性空间 V 的 m 个非平凡子空间. 求证: 存在 $\alpha \in V$, 它不属于 $\bigcup_{i=1}^m V_i$.

证明: (归纳法) 当 m=1 时显然成立. 归纳假设结论当 m=k 时成立. 现要证明 m=k+1 时也成立.

由归纳假设,存在向量 α , 它不属于任何一个 $V_i(i=1,\cdots,k)$. 若 α 也不属于 V_{k+1} , 则结论已成立,

因此可设 $\alpha \in V_{k+1}$. 在 V_{k+1} 外选一个向量 β . 若 β 不属于每个 $V_i(i=1,\cdots,k)$, 则结论已成立. 故设 β 属于某个 V_i . 做集合 $M = \{t\alpha + \beta | t \in F\}$.

首先, M 和 V_{k+1} 的交为空集. 因为若 $t\alpha + \beta \in V_{k+1}$, 从 $t\alpha \in V_{k+1}$, 可推出 $\beta \in V_{k+1}$, 与假设矛盾.

又若 $t_1\alpha + \beta \in V_i$, $t_2\alpha + \beta \in V_i$ (i < k+1), 则 $(t_1 - t_2)\alpha \in V_i$.

若 $t_1 \neq t_2$, 将导致 $\alpha \in V_i$, 与假设矛盾.

由此可以看到,M 中只有有限个向量属于 V_i 的并集,而t 有无穷多个选择,由此即得结论. \square

- 8. (1) 设 $A \in F^{n \times n}$, 求证: $V = \{B \in F^{n \times n} | BA = AB\}$ 构成 $F^{n \times n}$ 的子空间.
 - (2) 在(1)中令

$$A = \left(\begin{array}{ccc} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 0 & 1 & 1 \end{array}\right),$$

求 V 的一个基与维数.

解: (1) 显然有 $0 \cdot A = A \cdot 0$, 则 $0 \in V$, 故 V 是非空的.

对任意 $B_1, B_2 \in V$, 有 $B_1A = AB_1, B_2A = AB_2$, 则 $(B_1 + B_2)A = B_1A + B_2A = AB_1 + AB_2 = A(B_1 + B_2)$, 所以 $B_1 + B_2 \in V$.

对任意的 $c \in F$, (cB)A = cBA = cAB = A(cB), 即 $cB \in V$.

故 $V = \{B \in F^{n \times n} | BA = AB \}$ 构成 $F^{n \times n}$ 的子空间.

(2) 因为
$$A = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 0 & 1 & 1 \end{pmatrix} = E + C$$
, 其中 $C = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}$, 所以 $BA = AB$

等价于 BC = CB. 不妨设 $B = (b_{ij})_{3\times 3}$. 直接计算得 $b_{11} = b_{22} - b_{13}$, $b_{33} = b_{22}$, $b_{23} = b_{12} = b_{32}$, $b_{21} = b_{31} = 0$. 故得

$$\left(\begin{array}{ccc} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{array}\right), \left(\begin{array}{ccc} -1 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{array}\right), \left(\begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{array}\right)$$

是 V 的一个基, $\dim V = 3$.

9. 在 $F^{n\times n}$ 中,记

$$U = \{A \in F^{n \times n} \mid \text{tr}(A) = 0\}, W = \{\text{diag}(a, a, \dots, a) \mid a \in F, i = 1, 2, \dots, n\}.$$

(1) 求证: $U,W \neq F^{n\times n}$ 的子空间;

- (2) 求 *U*, *W* 的一个基和维数;
- (3) 证明: $F^{n \times n} = U \oplus W$.

证明: (1) 显然 $0 \in U$, 故 U 是非空的. 对任意的 $A, B \in U$, $\operatorname{tr}(A) = 0$, $\operatorname{tr}(B) = 0$, 则 $\operatorname{tr}(A+B) = \operatorname{tr}(A) + \operatorname{tr}(B) = 0$, 即 $A+B \in U$. 对于任意的 $c \in F$, $\operatorname{tr}(cA) = c\operatorname{tr}(A) = 0$, 即 $cA \in U$. 故 U 是 $F^{n \times n}$ 的子空间. 同理可证 W 是 $F^{n \times n}$ 的子空间.

(2) $E_{ij}(1 \le i \ne j \le n)$, $E_{ii} - E_{nn}(i = 1, 2, \dots, n-1)$ 为 U 的一个基, $\dim U = n^2 - 1$.

 $E_{11} + E_{22} + \cdots + E_{nn} \ni W \text{ in } - \uparrow E_{nn} = 1.$

(3) 对任意的 $A \in F^{n \times n}$, 令 $a = \frac{a_{11} + a_{22} + \dots + a_{nn}}{n}$, B = A - aE, C = aE, 则 A = B + C, 且 $B \in U$, $C \in W$. 即 $F^{n \times n} = U + W$.

若 $A\in (U\bigcap W)$, 则 $A\in U$ 即 $\mathrm{tr}(A)=0$, 且 $A\in W$, 即 A=aE, 从而 $0=\mathrm{tr}(A)=na$, 因此 a=0, 进而 A=0.

综上即得 $F^{n \times n} = U \oplus W$. \square

10. 记

$$F^{n \times n} E_{ii} = \{AE_{ii} \mid A \in F^{n \times n}\} (i = 1, 2, \dots, n).$$

求证:

- (1) $F^{n\times n}E_{ii}$ 是 $F^{n\times n}$ 的子空间;
- (2) $F^{n \times n} = F^{n \times n} E_{11} \oplus F^{n \times n} E_{22} \oplus \cdots \oplus F^{n \times n} E_{nn}$.

证明: (1) $0 = 0E_{ii} \in F^{n \times n}E_{ii}$, 故 $F^{n \times n}E_{ii}$ 是非空的.

对任意的 $B, C \in F^{n \times n} E_{ii}$, 存在相应的 A_1, A_2 使得 $B = A_1 E_{ii}, C = A_2 E_{ii}$, 则 $B + C = A_1 E_{ii} + A_2 E_{ii} = (A_1 + A_2) E_{ii} \in F^{n \times n} E_{ii}$.

对于任意的 $c \in F$, 有 $cB = cA_1E_{ii} = (cA_1)E_{ii} \in F^{n \times n}E_{ii}$.

故 $F^{n\times n}E_{ii}$ 是 $F^{n\times n}$ 的子空间.

(2) 对任意的 $A \in F^{n \times n}$, 将 A 按列分块为 $A = (\alpha_1, \alpha_2, \cdots, \alpha_n)$, 则 $AE_{ii} = A\varepsilon_i\varepsilon_i^T = \alpha_i(0, \cdots, 0, 1, 0, \cdots, 0) = (0, \cdots, 0, \alpha_i, 0, \cdots, 0)$. 从而 $E_{ji}(j = 1, 2, \cdots, n)$ 是 $F^{n \times n}E_{ii}$ 的一个基, dim $F^{n \times n}E_{ii} = n$. 进而 dim $F^{n \times n} = n^2 = \sum_{i=1}^n \dim F^{n \times n}E_{ii}$. 此外,对任意 $A \in F^{n \times n}$, $A = A_1 + A_2 + \cdots + A_n$, 其中 $A_i = (0, \cdots, \alpha_i, \cdots, 0) \in F^{n \times n}E_{ii}$, $(i = 1, 2, \cdots, n)$.

这就证明了 $F^{n\times n} = F^{n\times n}E_{11} \oplus F^{n\times n}E_{22} \oplus \cdots \oplus F^{n\times n}E_{nn}$. □

11. 在 F^{2×2} 中, 记

$$V_1 = \left\{ \left(\begin{array}{cc} a & -a \\ b & c \end{array} \right) \mid a, b, c \in F \right\}, \ V_2 = \left\{ \left(\begin{array}{cc} a & b \\ -a & c \end{array} \right) \mid a, b, c \in F \right\}.$$

- (1) 求证 V_1, V_2 是 V 的子空间;
- (2) 分别写出 $V_1 + V_2$ 和 $V_1 \cap V_2$ 的一个基和维数.

证明: (1) 显然 $0 \in V_1$, 故 V_1 是非空的. 对任意的 $A, B \in V_1$, $A = \begin{pmatrix} a_1 & -a_1 \\ b_1 & c_1 \end{pmatrix}$, $B = \begin{pmatrix} a_2 & -a_2 \\ b_2 & c_2 \end{pmatrix}, A + B = \begin{pmatrix} a_1 + a_2 & -(a_1 + a_2) \\ b_1 + b_2 & c_1 + c_2 \end{pmatrix} \in V_1.$ 且对于任意的 $c \in F$, $cA = \begin{pmatrix} ca_1 & -ca_1 \\ cb_1 & cc_1 \end{pmatrix} \in V_1$. 故 V_1 是 V 的子空间.

同理可证
$$V_2$$
 是 V 的子空间.
$$(2) \ \eta_1 = \begin{pmatrix} 1 & -1 \\ 0 & 0 \end{pmatrix}, \ \eta_2 = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}, \ \eta_3 = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$$
 是 V_1 的一个基, $\dim V_1 = 3$.

$$\gamma_1 = \begin{pmatrix} 1 & 0 \\ -1 & 0 \end{pmatrix}$$
, $\gamma_2 = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$, $\gamma_3 = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$ 是 V_2 的一个基, $\dim V_2 = 3$.

 $V_1 + V_2 = \langle \eta_1, \eta_2, \eta_3, \gamma_1, \gamma_2, \gamma_3 \rangle = \langle \eta_2, \eta_3, \gamma_1, \gamma_2 \rangle$, it dim $(V_1 + V_2) = 4$. \overrightarrow{m} η_2 , $η_3, γ_2, γ_3 \neq V_1 + V_2$ 的一个基.

由维数公式可得 $\dim(V_1 \cap V_2) = 2$. 构造齐次线性方程组

$$x_1\eta_1 + x_2\eta_2 + x_3\eta_3 + y_1\gamma_1 + y_2\gamma_2 + y_3\gamma_3 = 0.$$

可得基础解系为 $\zeta_1=(-1,1,0,1,-1,0)^T,\zeta_2=(0,0,-1,0,0,1)^T$, 从而 $V_1\cap V_2$ 的一个基为 $\alpha_1=-\eta_1+\eta_2=\begin{pmatrix} -1&1\\1&0\end{pmatrix},$ $\alpha_2=-\eta_3=\begin{pmatrix} 0&0\\0&-1\end{pmatrix}.$

(李小凤解答)