Математические основы робототехники

lec-02-dof

05.10.2021

Что будет

- Степени подвижности
- Прямая кинематика
- Параметры Денавита-Хартенберга
- Примеры

Зачем

- Чтобы знать положение и ориентацию звеньев манипулятора
- Чтобы вычислять положение выходного звена, например, зная только углы, на которые повернуты сочленения

Структура робота

Число степеней свободы (степеней подвижности) — количество параметров, необходимое для описания движения твердого тела

Например, у твердого тела в \mathbb{R}^3 6 степеней подвижности: помимо перемещения по координатным осям x,y,z вперед/назад, вправо/влево, вверх/вниз, он может осуществлять повороты

Кинематические пары

Универсальное соединение

Grubler's Criterion

$$F = \lambda (n - j - 1) + \sum_{i=1}^{j} f_i$$

F — число степеней подвижности

n – число звеньев

j – число сочленений

 λ – число степеней свободы в пространстве

 f_i – число степеней свободы, допустимых сочленением i

Универсальное соединение имеет 2 степени подвижности

Grubler's Criterion

$$F = \lambda (n-1) - \sum_{i=1}^{j} c_i$$

F — число степеней подвижности

n – число звеньев

j – число сочленений

 λ – число степеней свободы в пространстве

 c_i — число степеней свободы, ограниченных сочленением i

Универсальное соединение имеет 2 степени подвижности

$$F = \lambda (n-1) - \sum_{i=1}^{J} c_i$$

n — число звеньев

j – число сочленений

λ – число степеней свободы в пространстве

$$F = \lambda (n-1) - \sum_{i=1}^{J} c_i$$

n — число звеньев

j – число сочленений

 λ — число степеней свободы в пространстве

$$F = 6 \cdot (7 - 1) - 6 \cdot 5 = 6$$

$$F = \lambda (n - j - 1) + \sum_{i=1}^{j} f_i$$

n — число звеньев

j – число сочленений

 λ — число степеней свободы в пространстве

 f_i – число степеней свободы, допустимых сочленением i

$$F = \lambda (n - j - 1) + \sum_{i=1}^{j} f_i$$

2 степени подвижности

n — число звеньев

j – число сочленений

 λ — число степеней свободы в пространстве

 f_i – число степеней свободы, допустимых сочленением i

$$F = \lambda (n-1) - \sum_{i=1}^{J} c_i$$

n — число звеньев

j – число сочленений

 λ — число степеней свободы в пространстве

3 степени подвижности

$$F = \lambda (n-1) - \sum_{i=1}^{J} c_i$$

n — число звеньев

j – число сочленений

 λ — число степеней свободы в пространстве

$$F = \lambda (n-1) - \sum_{i=1}^{J} c_i$$

n — число звеньев

j – число сочленений

 λ — число степеней свободы в пространстве

Четырехзвенная замкнутая цепь 1 степень подвижности

$$F = \lambda (n-1) - \sum_{i=1}^{j} c_i$$

n — число звеньев

j – число сочленений

 λ — число степеней свободы в пространстве

«Сложный» пример

$$F = \lambda (n-1) - \sum_{i=1}^{j} c_i$$

F — число степеней подвижности

n — число звеньев

j – число сочленений

 λ — число степеней свободы в пространстве

«Сложный» пример

Две четырехзвенных замкнутых цепи, каждая с 1 степенью подвижности

$$F = \lambda (n-1) - \sum_{i=1}^{J} c_i$$

F — число степеней подвижности

n — число звеньев

j – число сочленений

 λ — число степеней свободы в пространстве

Формула работает не всегда!

1 степень подвижности, но $F = 6 \cdot (6 - 1) - 6 \cdot 5$

$$F = \lambda (n-1) - \sum_{i=1}^{j} c_i$$

F — число степеней подвижности

n — число звеньев

j – число сочленений

 λ — число степеней свободы в пространстве

Вопрос

Сколько степеней подвижности имеет робот?

