Apprentissage et circulation de l'information

Antoine Cornuéjols

Laboratoire de Recherche en Informatique Université de Paris-Sud, Orsay

Soutenance d'Habilitation à diriger des Recherches

Plan

- 1 Un point de vue sur l'apprentissage
 - Etat de l'art et limites
 - Des applications
 - Gain d'information et transition de phase
- 2 Pour une science de la dynamique de l'apprentissage
 - Le cadre i.i.d.
 - Les effets de séquences
 - Contributions
- Bilan et perspectives
 - Bilan
 - Perspectives

L'essence du problème

Définition [Mitchell, 82]

Apprentissage = Recherche dans un espace d'hypothèses

Sous la contrainte des exemples d'apprentissage

Définition (Apprentissage)

Apprentissage = Problème inverse mal posé

 À partir d'observations, trouver la loi f à laquelle obéissent ces observations

Définition (Apprentissage)

Apprentissage = Problème inverse mal posé

 À partir d'observations, trouver la loi f à laquelle obéissent ces observations

Hypothèses

- Les observations sont des réalisations (i.i.d.) d'une variable aléatoire de loi f
- On cherche un estimateur \hat{h} aussi proche que possible de la loi f

Apprentissage = Problème inverse mal posé

• ... chercher \hat{h} aussi proche que possible de la loi f

Proximité : Espérance de risque

$$R(h) = \mathbb{E}_{D_{\mathcal{X} \times \mathcal{Y}}}[h] = \int_{\mathcal{X} \times \mathcal{Y}} \underbrace{\ell(h(\mathbf{x}), f(\mathbf{x}))}_{coult \ pour \ une \ observation} d\mathbf{x} d\mathbf{y}$$

Apprentissage = Problème inverse mal posé

• ... chercher \hat{h} aussi proche que possible de la loi f

Proximité : Espérance de risque

$$R(h) = \mathbb{E}_{D_{\mathcal{X} \times \mathcal{Y}}}[h] = \int_{\mathcal{X} \times \mathcal{Y}} \underbrace{\ell(h(\mathbf{x}), f(\mathbf{x}))}_{coût \ pour \ une \ observation} d\mathbf{x} d\mathbf{y}$$

MRE

Choisir l'hypothèse \hat{h} telle que $\hat{h} = \operatorname{ArgMin}_{h \in \mathcal{H}}[R_{Emp}(h)]$

$$R_{\text{Emp}}(h) = \frac{1}{m} \sum_{(\boldsymbol{x}_i, \boldsymbol{u}_i) \in S} \ell(h(\boldsymbol{x}_i), \boldsymbol{u}_i)$$

La théorie statistique de l'apprentissage

Consistance du MRE

Conditions sous lesquelles le critère de MRE est correct?

La théorie statistique de l'apprentissage

Consistance du MRE

Conditions sous lesquelles le critère de MRE est correct?

ightarrow Diversité de l'espace des hypothèses ${\cal H}$ limitée

La théorie statistique de l'apprentissage

Consistance du MRE

Conditions sous lesquelles le critère de MRE est correct?

ightarrow Diversité de l'espace des hypothèses ${\cal H}$ limitée

Qualité de l'estimation

$$|R(h) - R_{\text{Emp}}(h)| \leq_P fct(\text{diversit\'e}_{\mathcal{H}}, m)$$

La théorie statistique de l'apprentissage : actualités

Théorie

- Estimations plus fines de la diversité (capacité)
- Apprentissage actif : modification de la distribution en apprentissage

La théorie statistique de l'apprentissage : actualités

Théorie

- Estimations plus fines de la diversité (capacité)
- Apprentissage actif : modification de la distribution en apprentissage

... de nouvelles méthodes

- Minimisation du ϕ -risque empirique
 - Méthodes de votes (bagging, boosting, ...)
 - Méthodes à noyaux (SVM, ...)

Le paradigme est adapté à ...

... l'analyse de données

BD ⇒ régularités / prédictions

		#Cycles	Masse	PH	Carboxyle	Activité
A	ΜI	1	faible	<5	non	nulle
Λ	м2	2	moyen	<5	oui	toxique
Λ	M3	0	moyen	>8	oui	toxique
Δ	И4	0	moyen	<5	non	nulle
Λ	И5	1	lourd	~7	non	nulle
λ	Иб	2	lourd	>8	non	toxique
λ	И7	1	lourd	>8	non	toxique
Λ	M8	0	faible	<5	oui	toxique

[CM02]

A. Cornuéjols and L. Miclet.

Apprentissage Artificiel. Concepts et Méthodes. Evrolles 2002

Le paradigme est adapté si ...

... peu de connaissances a priori

Seul critère : fidélité aux données

- lacktriangle Prise en compte de la structure de $\mathcal H$ très pauvre
 - Relations de généralité
 - Niveaux d'abstraction
 - ...
- 2 Pas d'articulation à ce qui est déjà connu
 - Incrémentalité / Révision de théorie / Transfert
 - Critère de compréhensibilité

... monde supposé statique

Cadre i.i.d.

Centralité du théorème central limite (et variantes)

Des problèmes difficiles

Évolution (dépendances) dans le temps

«Nouveaux »apprentissages

- Dérive de la dépendance cible
- agents autonomes
- par «démonstration »/ guidé par un professeur
- à long terme (long-life learning)
 - Articulation
 - Transfert

Projet INDANA (2001-2004)

Prédiction du risque cardio-vasculaire

- Divers types de bruit : description et classes
- Une classe «sûre », l'autre mal déterminée
- Déséquilibre entre classes
- Classification et régression

Contributions

- Application de EM (apprentissage non supervisé)
- 2 Extension de EM à des étiquettes réelles

[Col02] I. Colombet.

Aspects méthodologiques de la prédiction du risque cardiovasculaire : apports de l'apprentissage automatique.

FISICA (2001-2003)

Reconnaissances de scènes naturelles

- Données en très grandes dimensions (> 10⁴)
- Recherche de bons descripteurs

Contributions

- Nouveau système de codage clairsemé
- à partir de motifs fréquents

[JCSTL03] S. Jouteau, A. Cornuéjols, M. Sebag, P. Tarroux and J.-S. Liénard.

Nouveaux résultats en classification à l'aide d'un codage par motifs fréquents.

Revue d'Intelligence Artificielle (Proc. of the EGC-03 Conf.), vol. 17, No.1-3, 521-532, 2003.

[ASM04] A. Cornuéjols, M. Sebag and J. Mary. Classification d'images à l'aide d'un codage par motifs fréquents. RFIA-04. (Workshop sur la fouille d'images), Toulouse, France, 2004.

Analyse du transcriptome (2002- ...)

- Données en très grandes dimensions (> 10³)
- Très peu de données
- Très bruitées

Contributions

- Développement d'une méthode d'évaluation d'attributs
- 2 Combinaison de méthodes

[NAR-04] G. Mercier, N. Berthault, J. Mary, A. Antoniadis, J-P. Comet, A. Cornuéjols, Ch. Froidevaux and M. Dutreix.

Comparing and combining feature estimation methods for the analysis of microarray data. Nucleic Acids Research (NAR), vol.32, No.1, 1-8 (2004).

[CFM05] A. Cornuéjols, Ch. Froidevaux and J. Mary. Biological detection of low radiation by combining results of two analysis methods. JOBIM-05 (Poster), Lyon, France, 2005.

ACCAMBA (2004-2007)

Prédiction de bio-activité de molécules

- Données structurées
- Recherche de bons descripteurs

[MRL05] Maréchal E., Roy S., Lafanechère L.(éditeurs).

Le criblage pharmacologique automatisé : du haut-débit au haut-contenu d'information. Une introduction à l'usage des biologistes, des chimistes et des informaticiens.

Ouvrage collectif, en cours d'édition (PUG).

Sous quelles conditions l'induction est-elle possible? Des conditions sur le gain d'information

Les entrées doivent **se traduire en « différences »** sur les hypothèses

Des conditions sur le gain d'information Gradient et taux de couverture

• Le gradient est lié aux variations du taux de couverture

Variations du taux de couverture

La mesure du taux de couverture apporte-t-elle de l'information ?

Variations du taux de couverture

La mesure du taux de couverture apporte-t-elle de l'information ?

Definition (Taux de couverture)

$$\tau(h) = P_{\mathcal{D}_{\mathcal{X}}}(h)$$

Variations du taux de couverture

La mesure du taux de couverture apporte-t-elle de l'information ?

Definition (Taux de couverture)

$$\tau(h) = P_{\mathcal{D}_{\mathcal{X}}}(h)$$

Étude des **variations de** $\tau(h)$ en fonction des **variations de** h (partie de \mathcal{X})

Des conditions sur le gain d'information Un cas limite ... mais ...

Un cas limite ... mais ...

Distribution uniforme suivant des paramètres de contrôle : le cas de l'ILP

Paramètres de contrôle :

- n : nombre de variables dans l'hypothèse h testée,
- m : nombre de symboles de prédicats dans h,
- L: nombre total de constantes dans l'exemple e,
- N : nombre de littéraux construits sur chaque symbole de prédicat dans e.

Transition de phase et espace des versions

Une distribution uniforme ... suspecte?

- ∃ transition de phase dans les variations de taux de couverture
 - observé en ILP
- Impact considérable sur les performances
- Non prévu par l'analyse statistique

Ce phénomène dépend de :

- $\mathbf{0}$ $\mathcal{L}_{\mathcal{H}}$: langage des hypothèses
- 2 $\mathcal{L}_{\mathcal{X}}$: langage des exemples

Des conditions sur le gain d'information Questions ouvertes

1. Quels sont les langages affectés ?

2. Peut-on contourner le problème ?

Inférence grammaticale: rappels

- Entrée : chaînes sur un alphabet Σ, de longueur ℓ
- Sortie : Automate fini (langage régulier)
 - DFA: Deterministic Finite Automata
 - NFA: Non deterministic Finite Automata

Échantillon positif : $S^+ = \{ba, baa, baba, \lambda\}$

Gain d'information en inférence grammaticale Distribution uniforme avec paramètres de contrôle

Paramètres de contrôle :

- Q états
- B d'arcs sortants / état
- L lettres / arc
- Fraction a ∈ [0, 1] d'états acceptants
- Taille |Σ| de l'alphabet
- Longueur \(\ell\) des exemples testés.

[Pin01] S. Pinto.

Etude du phénomène de transition de phase dans l'induction supervisée. Rapport de DEA (LRI, Univ. Paris-Sud, Orsay), 2001.

Gain d'information en inférence grammaticale

Distribution uniforme avec paramètres de contrôle

Paramètres de contrôle :

- Q états
- B d'arcs sortants / état
- L lettres / arc
- Fraction a ∈ [0, 1] d'états acceptants
- Taille |Σ| de l'alphabet
- Longueur \(\ell\) des exemples testés.

$$P(\text{accept}) = \left\{ \begin{array}{ll} a \cdot (\frac{B \cdot L}{|\Sigma|})^{\ell} & \text{pour un DFA} \\ a \cdot [1 - (1 - \frac{L}{|\Sigma|})^{B}]^{\ell} & \text{pour un NFA} \end{array} \right.$$

[Pin01] S. Pinto.

Etude du phénomène de transition de phase dans l'induction supervisée. Rapport de DEA (LRI, Univ. Paris-Sud, Orsay), 2001.

Gain d'information en **inférence grammaticale**Principe des algorithmes d'apprentissage

Gain d'information en inférence grammaticale

Étude sur l'espace d'hypothèses effectivement exploré

Protocole expérimental

- Génération aléatoire d'un *échantillon d'apprentissage* : $|S^+|$ (= 200) chaînes de taille ℓ
- Construction du PTA pour chaque échantillon S+
- 3 Calcul de chemins de généralisation partant du PTA :
 - Fusions aléatoires
 - Couverture calculée pour chaque automate engendré (sur un ensemble test : 1000 chaînes aléatoires ∉ ens. d'apprentissage)

Expériences

- $|\Sigma| = \{2, 4, 8\}$
- \bullet $\ell = \{4, 8, 16, 32\}$
- 50 PTAs x 20 trajectoires aléatoires = 1000 trajectoires (≈ 270 000 automates)

Gain d'information en inférence grammaticale Cas non-déterministe : NFA

Gain d'information en inférence grammaticale Cas non-déterministe : NFA

Gain d'information en inférence grammaticale Cas déterministe : DFA

Gain d'information en inférence grammaticale Cas déterministe : DFA

$$|\Sigma|=8$$
 ; $\ell=8$

Gain d'information en **inférence grammaticale** Variété de situations

$$|\Sigma| = 4$$

$$\ell = 16$$

$$|S^+| = 100$$

Test sur 1000 chaînes de tailles : 4, 16 et 32

Gain d'information en **inférence grammaticale** Le défi *Abbadingo*

$$\begin{array}{rcl} |\Sigma| & = & 2 \\ & \ell & = & 17 \\ S^+| & = & 4382 \end{array}$$

Test sur 1000 chaînes de taille : 17

Conclusions pour l'inférence grammaticale

Bilan

- Importance de l'étude des variations du taux de couverture
- 2 ... par rapport à l'espace de recherche effectif

- Permet d'expliquer des comportements
- Orienter les recherches

[PCS05] N. Pernot, A. Cornuéjols and M. Sebag.

Phase transition within grammatical inference.

Int. Joint Conf. on Artificial Intelligence (IJCAI-05), Edinburgh, UK, 2005, (Ed. L. P. Kaelbling), pp.811-816.

[CS05] A. Cornuéjols and M. Sebag.

Phase transition, induction and grammatical inference.

Second Franco-Japanese Workshop on Information Search, Integration and Personalization (ISIP-05), Lyon, France, 2005.

Conclusions pour l'inférence grammaticale

Perspectives

- Autres opérateurs ou heuristiques pour modifier le paysage apparent
- Possibilités d'apprentissage guidé ou actif
 - Modification de l'espace des exemples
 - longueur des chaînes (e.g. les longues avant les courtes!)
 - ignorer des lettres de l'alphabet (?)
 - dynamiquement

Conclusions générales

- Étude plus fine de l'induction
- prenant en compte le gain d'information $(\frac{\partial \tau_{\mathbf{S}}(h)}{\partial h})$
- et l'espace explorable

Conclusions générales

- Étude plus fine de l'induction
- prenant en compte le gain d'information $(\frac{\partial \tau_{\mathbf{S}}(h)}{\partial h})$
- et l'espace explorable

Mais reste dans le cadre i.i.d.!!

Plan

- Un point de vue sur l'apprentissage
 - Etat de l'art et limites
 - Des applications
 - Gain d'information et transition de phase
- Pour une science de la dynamique de l'apprentissage
 - Le cadre i.i.d.
 - Les effets de séquences
 - Contributions
- Bilan et perspectives
 - Bilan
 - Perspectives

Le cadre i.i.d.

Definition (Le cadre i.i.d.)

Pour faire une prédiction sur la prochaine entrée, il suffit de connaître la distribution génératrice sous-jacente.

Corollaire

La connaissance d'autres entrées n'apporte aucune information supplémentaire.

1er exemple (du à Laurent Chaudron [HDR,2005])

Exercice(1) Soit $\left(\frac{p_n}{q_n}\right)_{n\in\mathbb{N}}$ une séquence de nombres rationnels convergeant vers x irrationnel. Prouver que (p_n) et (q_n) convergent tous les deux vers l'infini.

1er exemple (du à Laurent Chaudron [HDR,2005])

Exercice(1) Soit $\left(\frac{p_n}{q_n}\right)_{n\in\mathbb{N}}$ une séquence de nombres rationnels convergeant vers x irrationnel. Prouver que (p_n) et (q_n) convergent tous les deux vers l'infini.

Exercice(2) Prouver que l'image de n'importe quelle séquence finie de nombres naturels est un ensemble fini.

2ème exemple

[Sur 24 étudiants de DEA, 1996]

- Long et difficile
- Grande variété de réponses

2ème exemple

[Sur 24 étudiants de DEA, 1996]

- Long et difficile
- Grande variété de réponses

- Beaucoup plus rapide
- Spectre de réponses beaucoup plus serré

2ème exemple

[Sur 24 étudiants de DEA, 1996]

- Long et difficile
- Grande variété de réponses

 Chemin rouge : plus difficile et réponses plus confuses

3ème exemple

[Sur quelques étudiants de Polytechnique, 1994]

Consigne : découper la figure suivante en *n* parties superposables.

En 2:

3ème exemple

[Sur quelques étudiants de Polytechnique, 1994]

Consigne : découper la figure suivante en *n* parties superposables.

En 2:

3ème exemple

[Sur quelques étudiants de Polytechnique, 1994]

3ème exemple

[Sur quelques étudiants de Polytechnique, 1994]

3ème exemple

[Sur quelques étudiants de Polytechnique, 1994]

3ème exemple

[Sur quelques étudiants de Polytechnique, 1994]

3ème exemple

[Sur quelques étudiants de Polytechnique, 1994]

3ème exemple

[Sur quelques étudiants de Polytechnique, 1994]

Effets de séquences : constatations

Dépendance sur l'histoire

De la vitesse de résolution

Du résultat

Effets de séquences : constatations

Dépendance sur l'histoire

• De la vitesse de résolution

Du résultat

Courbure de l'espace des états

--- ce n'est plus un espace euclidien

Mesure de courbure

Le «crochet de Lie » $[x_1, x_2]_{\text{état}}$

Remarque

Le crochet de Lie (la courbure) s'annule si :

- Ressources de calcul suffisantes
- 2 Ressources *mémoire* suffisantes

Hors-ligne vs. en-ligne

Il faut aborder de front les effets de séquences

- Quelles sont les entrées utiles (les plus utiles)?
- Quelles sont les entrées nuisibles?

Nouvelles questions

- Ordres de présentation les plus favorables?
- Quels sont les systèmes sensibles aux effets de séquence?

... Il faut de nouveaux outils

Outils nécessaires

- 1 Une *métrique* (entre programmes)
 - pour mesurer la distance entre états
 - pour mesurer la corrélation entre des entrées
- 2 Une mesure de courbure de l'espace

... Il faut de nouveaux outils

Outils nécessaires

- 1 Une *métrique* (entre programmes)
 - pour mesurer la distance entre états
 - pour mesurer la corrélation entre des entrées
- 2 Une *mesure de courbure* de l'espace

Outils existants

• Entropie relative / information mutuelle / complexité algorithmique

... Il faut de nouveaux outils

Outils nécessaires

- 1 Une *métrique* (entre programmes)
 - pour mesurer la distance entre états
 - pour mesurer la corrélation entre des entrées
- 2 Une *mesure de courbure* de l'espace

Outils existants

Entropie relative / information mutuelle / complexité algorithmique

Limites

- Ne permettent pas de rendre compte de corrélations négatives
- 2 Inadaptés à espaces courbes

Le *problème* : *évaluation (tri) d'attributs* (analyse du transcriptome)

Le *problème* : *évaluation (tri) d'attributs* (analyse du transcriptome)

Inférence très précaire

- Beaucoup plus d'attributs que de dimensions
- 2 Nombreuses sources de «bruit »

Le *problème* : *évaluation (tri) d'attributs* (analyse du transcriptome)

Inférence très précaire

- Beaucoup plus d'attributs que de dimensions
- Nombreuses sources de «bruit »

Comment évaluer le résultat ?

Le *problème* : *évaluation (tri) d'attributs* (analyse du transcriptome)

Inférence très précaire

- Beaucoup plus d'attributs que de dimensions
- Nombreuses sources de «bruit »

Comment évaluer le résultat ?

Deux méthodes (non supervisées)

valent-elles mieux qu'une?

Illustration

- 10 6135 gènes; 18 exemples (6+, 12-)
- Deux méthodes d'évaluation : ANOVA et Bio-RELIEF

Comment juger ces 281 gènes en commun ?

Illustration

- 10 6135 gènes; 18 exemples (6+, 12-)
- 2 Deux méthodes d'évaluation : ANOVA et Bio-RELIEF

Comment juger ces 281 gènes en commun?

L'intersection est due :

- **1** au hasard (k): $H(d, n, k) = \frac{\binom{n}{k} \cdot \binom{d-n}{n-k}}{\binom{d}{n}}$
- 2 à la corrélation des méthodes a priori
- aux régularités dans les données

Sorte d'hypothèse nulle :

$$\langle M1, M_2 \rangle = \mathsf{E}_{\mathcal{D}}(|\mathsf{top}_n(M_1) \cap \mathsf{top}_n(M_2)|)$$

$$\langle M1, M_2 \rangle = \mathsf{E}_{\mathcal{D}}(|\mathsf{top}_n(M_1) \cap \mathsf{top}_n(M_2)|)$$

0 :?

40 :?

281 :?

$$\langle M1, M_2 \rangle = \mathsf{E}_{\mathcal{D}}(|\mathsf{top}_n(M_1) \cap \mathsf{top}_n(M_2)|)$$

0 :? Anticorrélés

40 :?

281 :?

$$\langle M1, M_2 \rangle = \mathsf{E}_{\mathcal{D}}(|\mathsf{top}_n(M_1) \cap \mathsf{top}_n(M_2)|)$$

0 :? Anticorrélés

40 :? Décorrélés

281 :?

$$\langle M1, M_2 \rangle = \mathsf{E}_{\mathcal{D}}(|\mathsf{top}_n(M_1) \cap \mathsf{top}_n(M_2)|)$$

0 :? Anticorrélés

40 :? Décorrélés

281 :? Pas de sur-représentation des régularités

$$\langle M1, M_2 \rangle = \mathsf{E}_{\mathcal{D}}(|\mathsf{top}_n(M_1) \cap \mathsf{top}_n(M_2)|)$$

0 :? Anticorrélés

40 :? Décorrélés

281 :? Pas de sur-représentation des régularités

500 :? Méthodes totalement corrélées

$$\langle M1, M_2 \rangle = \mathsf{E}_{\mathcal{D}}(|\mathsf{top}_n(M_1) \cap \mathsf{top}_n(M_2)|)$$

0 :? Anticorrélés

40 :? Décorrélés

281 :? Pas de sur-représentation des régularités

500 :? Méthodes totalement corrélées

Ici : 170 ± 40

Une nouvelle mesure de corrélation entre programmes Application

$$\begin{array}{ccc} p(\cap = k | d, p, n, m, \mu_{\mathcal{H}_0}) = & \\ & \frac{\binom{p}{m}\binom{d-p}{n-m}\sum_{k^+=2m-p}^{m}\binom{m}{k^+}\binom{p-m}{m-k^+}\binom{n-m}{k-k^+}\binom{d-n-(p-m)}{n-m-(k-k^+)}}{\binom{d}{n}\cdot\binom{d}{n}} \middle/ C(\mu_{\mathcal{H}_0}) \end{array}$$

Une nouvelle mesure de corrélation entre programmes Application

$$p(\cap = k|d, p, n, m, \mu_{\mathcal{H}_0}) = \frac{\binom{p}{m}\binom{d-p}{n-m}\sum_{k+2m-p}^{m}\binom{m}{k+1}\binom{p-m}{m-k+1}\binom{n-m}{k-k+1}\binom{d-n-(p-m)}{n-m-(k-k+1)}}{\binom{d}{n}\cdot\binom{d}{n}} / C(\mu_{\mathcal{H}_0})$$

Résultats

- $p = 420 \pm 20$
- $m = 340 \pm 20$
- $\bullet \approx 265$ des 281 sont pertinents! (précision = 0.94)

Une nouvelle mesure de corrélation entre programmes

Permet de rendre compte de corrélations négatives

 Applicable aussi à des algorithmes d'apprentissage supervisé

ICFM051 A. Cornue

A. Cornuéjols, Ch. Froidevaux and J. Mary.

Comparing and combining feature estimation methods for the analysis of microarray data.

JOBIN-05: Journées Ouvertes Biologie Informatique Mathématiques (poster), Lyon, France,
2005.

Changement de référentiel

Espace courbe

- Pour comparer deux états du système en deux situations-problèmes différents
 - → Notion de *transport parallèle*

Propriétés des trajectoires d'apprentissage

Caractéristiques d'une trajectoire d'apprentissage fonction de :

- Propriétés de l'apprenant
- Caractéristiques de la séquence d'entrées

Quelle séquence idéale pour passer d'un état à un autre?

Propriétés des trajectoires d'apprentissage Systèmes insensibles à l'ordre

[Cor93b] A. Cornuéjols.

Getting Order Independence in Incremental Learning.

Propriétés des trajectoires d'apprentissage Systèmes insensibles à l'ordre

Espace mémoire :

- Calcul du Max :
- Calcul de la Moyenne :
- ID5R :
- Espace des versions :

[Cor93b] A. Cornuéjols.

Getting Order Independence in Incremental Learning.

Propriétés des trajectoires d'apprentissage Systèmes insensibles à l'ordre

Espace mémoire :

- Calcul du Max : max(t)
- Calcul de la Moyenne :
- ID5R:
- Espace des versions :

[Cor93b] A. Cornuéjols.

Getting Order Independence in Incremental Learning.

Propriétés des trajectoires d'apprentissage

Systèmes insensibles à l'ordre

Espace mémoire :

- Calcul du Max : max(t)
- Calcul de la Moyenne : moy(t) et t
- ID5R :
- Espace des versions :

[Cor93b] A. Cornuéjols.

Getting Order Independence in Incremental Learning.

Propriétés des trajectoires d'apprentissage

Systèmes insensibles à l'ordre

Espace mémoire :

- Calcul du Max : max(t)
- Calcul de la Moyenne : moy(t) et t
- ID5R : $\mathcal{O}(t)$
- Espace des versions :

[Cor93b] A. Cornuéjols.

Getting Order Independence in Incremental Learning.

Propriétés des trajectoires d'apprentissage Systèmes insensibles à l'ordre

Espace mémoire :

- Calcul du Max : max(t)
- Calcul de la Moyenne : moy(t) et t
- ID5R : $\mathcal{O}(t)$
- Espace des versions : $\leq \mathcal{O}(t)$

[Cor93b] A. Cornuéjols.

Getting Order Independence in Incremental Learning.

Propriétés des trajectoires d'apprentissage Systèmes insensibles à l'ordre

Espace mémoire :

- Calcul du Max : max(t)
- Calcul de la Moyenne : moy(t) et t
- ID5R : $\mathcal{O}(t)$
- Espace des versions : $\leq \mathcal{O}(t)$

Oubli \equiv exemples supplémentaires!

[Cor93b]

A. Cornuéjols.

Getting Order Independence in Incremental Learning.

Propriétés des trajectoires d'apprentissage Trajectoires et systèmes dynamiques

Trajectoire ←⇒ *Lagrangien* (moindre action)

Application

Symétrie / permutation des entrées \iff courant associé

Théorème de Noether

[Cor93a] A. Cornuéjols

Training Issues in Incremental Learning.

AAAI Press, 1993.

[Cor06] A. Cornuéjols

Machine Learning: The Necessity of Order.

In Order to Learn: How ordering processes and sequencing effects in machines illuminate human learning and vice-versa, E. Lehtinen and F. Richter (Eds.), Cambridge University press, 2006.

Plan

- Un point de vue sur l'apprentissage
 - Etat de l'art et limites
 - Des applications
 - Gain d'information et transition de phase
- Pour une science de la dynamique de l'apprentissage
 - Le cadre i.i.d.
 - Les effets de séquences
 - Contributions
- 3 Bilan et perspectives
 - Bilan
 - Perspectives

Dans le cadre actuel : approche statistique

Encore d'immenses problèmes pratiques :

- Apprentissage semi-supervisé
- Types de bruit
- Grandes dimensions / nb exemples
- Déséquilibre des classes
 → apprentissage actif
- Très grandes bases de données
- Données semi-structurées

Conceptuellement, loin d'être fini :

Conditions de gain d'information?

Possibilité de *modification* dynamique de $\mathcal{L}_{\mathcal{H}}$ et de $\mathcal{L}_{\mathcal{X}}$

Données non i.i.d. : vers une dynamique de l'apprentissage

Inévitabilité des effets de séquence

Étude de l'apprentissage comme un système dynamique

Développer des outils pour des **espaces** de programmes

- Produit scalaire
- Changement de référentiel
- Lagrangien

Propriétés déterminantes :

- capacités de calcul et de mémoire limitées
- ... la structure de la connaissance

Données non i.i.d. : vers une dynamique de l'apprentissage

Mieux comprendre la nature de l'information et de sa circulation

En bas, quiétude immobile. La clé est peut-être sous le réverbère.

En haut, le ciel. Espace, transparence et mystère. Nuages et turbulences.

L'empire des lumières. Magritte, 1954

Plan

- Systèmes d'inférence grammaticale
- Changement de référentiel et analogie
- Changement de référentiel et effet tunnel

Table des Appendices

- 4 Annexe
 - Systèmes d'inférence grammaticale
 - Changement de référentiel et analogie
 - Changement de référentiel et effet tunnel

Gain d'information en inférence grammaticale Algorithmes avec stratégies de recherche

- Par fusion d'états
- Jusqu'à la couverture d'exemples négatifs

RPNI [OG92][Lan92]

• Choix des états en largeur d'abord

EDSM [Lan et al.98][Lan98]

 Choix des états dont la fusion conduit au maximum de fusions pour déterminisation

Gain d'information en inférence grammaticale

Algorithmes avec stratégies de recherche : résultats

RPNI

EDSM

Gain d'information en inférence grammaticale Algorithmes avec stratégies de recherche : résultats

Changement de référentiel et analogie

$$Co\hat{u}t((\mathbf{x} \to \mathbf{y}), \mathbf{x'}) = K(C_S) + K(C_T|C_S) + K(\mathbf{x}|C_S) + K(h_X|C_S) + K(\mathbf{x'}|C_T)$$

Changement de référentiel et analogie

$$Co\hat{u}t((x \rightarrow y), x') = K(C_S) + K(C_T|C_S) + K(x|C_S) + K(h_x|C_S) + K(x'|C_T)$$

Induction = cas particulier de l'analogie

Changement de référentiel et analogie

[Cor96a] A. Cornuéjols.

Analogie, principe d'économie et complexité algorithmique.

Journées Francophones d'Apprentissage (JFA-96), Sètes, France, 1996, pp.233-247.

A. Cornuéjols and J. Ales-Bianchetti.

[CAB98] Analogy and Induction: which (missing) link?

Workshop Advances in Analogy research: Integration of theory ans data from cognitive, computational and neural sciences, Sofia, Bulgaria, 1998. New Bulgarian University Series (Eds. K. Holyoak, D. Gentner and B. Kokinov), pp. 365-372.

[ECML-94 (wkp)], [COLT-94 (wkp)], [Dagstuhl,94], [Book-chapter,96]

Changement de référentiel Transferts entre domaines conceptuels

L'effet tunnel cognitif

Apprentissage du concept d'énergie chez des lycéens

[CTC00] A. Cornuéjols, A. Tiberghien and G. Collet

A new mechanism for transfer between conceptual domains in scientific discovery and education Foundations of Science, vol.5, No.2, (2000), 129-155.

[ECCS'97], [MBR'98], [AISB'99], [CAP'99], [Book-chapter,02]