UNIVERSIDADE CATÓLICA DOM BOSCO Centro de Computação e Engenharias

ELETRÔNICA I

FUNDAMENTOS DE CIRCUITOS DE CORRENTE CONTÍNUA

POR

Prof^o Msc. Alexsandro Monteiro Carneiro Prof^o Dr. Mauro Conti Pereira

> Material de apoio à disciplina Eletrônica I, onde aborda os fundamentos de circuitos de fonte contínua

UNIVERSIDADE CATÓLICA DOM BOSCO

Centro de Ciências Exatas e Tecnológicas

Curso de Engenharia de Computação, Mecatrônica e Mecânica

SUMÁRIO

BIPOLOS ELÉTRICOS			
2. CIRCUITOS ELÉTRICOS	4		
2.1 Definições	5		
3. LEIS DE KIRCHOFF	8		
3.1 Primeira lei de Kirchoff (Lei dos Nós)	8		
3.2 Segunda Lei de Kirchoff (Lei das Malhas)	10		
4. ASSOCIAÇÃO DE RESISTORES	11		
4.1 Associação em Série	12		
4.2 Associação em Paralelo			
4.3 Associação Mista			
PEFEDÊNCIA RIRI IOCDÁFICA	15		

UNIVERSIDADE CATÓLICA DOM BOSCO

Centro de Ciências Exatas e Tecnológicas

Curso de Engenharia de Computação, Mecatrônica e Mecânica

1. BIPOLOS ELÉTRICOS

É um dispositivo qualquer que possui dois pólos ou terminais, aos quais podem ser ligados outros bipolos, formando um circuito elétrico. Geralmente representado da seguinte forma:

Figura 1 - Bipolo elétrico Genérico

Os bipolos elétricos podem ser classificados em <u>geradores</u> (ativo) ou <u>receptores</u> (passivos) de acordo com a função dos sentidos convencionais de tensão e corrente relacionados e ele.

- Ativo (gerador): fornece energia (Ex: pilha, bateria), transforma um tipo de energia qualquer em energia elétrica. A I(A) vai do potencial menor para o maior, coincide como sentido da tensão sobre ele.
- Passivo (receptor): retira energia do circuito (resistor, capacitor, indutor).
 Neste tipo de bipolo a I(A) tem o sentido do potencial maior para o menor

Principais símbolos utilizados em eletricidade.

Figura 2 - (capacitor, resistor, potenciômetro e Lâmpada)

UNIVERSIDADE CATÓLICA DOM BOSCO

Centro de Ciências Exatas e Tecnológicas

Curso de Engenharia de Computação, Mecatrônica e Mecânica

2. CIRCUITOS ELÉTRICOS

Considerando que uma fonte só pode gerar I(A) se existir um **CAMINHO FECHADO** para a I(A) sair pelo pólo + e retornar pelo -, podemos definir um circuito elétrico como:

• Circuito elétrico: Um conjunto de bipolos interligados por condutores, formando um ou mais caminhos fechados.

Exemplo de um Circuito Elétrico

Circuito Elétrico Real

UNIVERSIDADE CATÓLICA DOM BOSCO

Centro de Ciências Exatas e Tecnológicas

Curso de Engenharia de Computação, Mecatrônica e Mecânica

2.1 Definições

Algumas definições importantes aplicadas em eletricidade e eletrônica. Considere o circuito abaixo:

- Ramo: Conjunto formado por um ou mais bipolos ligados serialmente sem derivação entre eles, de modo que a I(A) seja a mesma em todos os bipolos e a V(v) seja distinta (depende do circuito elétrico).
- Nó: Ponto onde 3 ou mais elementos tem uma conexão em comum. A I(A) se divide entre os ramos.
- Laço ou Malha: Linha fechada contínua, passando apenas uma vez em cada nó, e terminando no nó de partida.

UNIVERSIDADE CATÓLICA DOM BOSCO

Centro de Ciências Exatas e Tecnológicas

Curso de Engenharia de Computação, Mecatrônica e Mecânica

Figura 5.7 - Análise das Malhas, Ramos e Nós do Circuito Elétrico

Analisando-se este circuito, conclui-se que ele é constituído por:

4 nós: A, B, C e D

6 ramos: $AB - R_1 e R_2$

AC - R3

AD - E₁ e R₄

BC - E2

CD - R₅

BD - E₃, R₆ e E₄

4 malhas de 3 ramos: \rightarrow **AB - BC - CA**

→ AC - CD - DA

→ BC - CD - DB

 \rightarrow AB - BD - DA

3 malhas de 4 ramos \rightarrow AB - BC - CD - DA

→ AB - BD - DC - CA

→ AD - DB - BC - CA

UNIVERSIDADE CATÓLICA DOM BOSCO

Centro de Ciências Exatas e Tecnológicas

Curso de Engenharia de Computação, Mecatrônica e Mecânica

Dado o circuito abaixo informe que são os nós, ramos e malhas.

DEFINIÇÕES	PONTOS	QUANTIDADE
Nó:		
Ramos		
Malhas:		

UNIVERSIDADE CATÓLICA DOM BOSCO

Centro de Ciências Exatas e Tecnológicas

Curso de Engenharia de Computação, Mecatrônica e Mecânica

3. LEIS DE KIRCHOFF

Usada para analisar um circuito elétrico, isto é, achar todas as I(A) e V(v).

3.1 Primeira lei de Kirchoff (Lei dos Nós)

Visa o equacionamento das I(A) nos diversos nós de um circuito elétrico. Este equacionamento pode ser feito considerando-se as correntes como **variáveis**, através da seguinte convenção:

- I(A) positiva: Correntes que chegam ao nó.
- I(A) negativa: Correntes que saem do nó.

Lei dos nós:

A soma algébrica das I(A) em nó é igual à zero ou a soma das I(A) que chegam é
igual à soma das I(A) que saem.

EXEMPLO:

Calcular a corrente I2, conhecendo as demais correntes relativas ao nó A do circuito elétrico mostrado na figura abaixo.

UNIVERSIDADE CATÓLICA DOM BOSCO

Centro de Ciências Exatas e Tecnológicas

Curso de Engenharia de Computação, Mecatrônica e Mecânica

Pela Lei dos Nós, a equação das correntes fica:

$$I_1 + I_2 - I_3 - I_4 + I_5 - I_6 = 0 \implies$$

$$250 + I_2 - 200 - 300 + 80 - 150 = 0 \implies$$

$$I_2 = -250 + 200 + 300 - 80 + 150 \implies$$

$$I_2 = + 320 \text{ mA}$$

UNIVERSIDADE CATÓLICA DOM BOSCO

Centro de Ciências Exatas e Tecnológicas

Curso de Engenharia de Computação, Mecatrônica e Mecânica

3.2 Segunda Lei de Kirchoff (Lei das Malhas)

"A soma algébrica das tensões em uma malha é igual à zero" ou "a soma das tensões no sentido horário é igual à soma das tensões no sentido anti-horário."

Variáveis algébricas:

o Tensões positivas: sentido anti-horário

Tensões negativas: sentido horário

Observe o exemplo abaixo:

UNIVERSIDADE CATÓLICA DOM BOSCO

Centro de Ciências Exatas e Tecnológicas

Curso de Engenharia de Computação, Mecatrônica e Mecânica

4. ASSOCIAÇÃO DE RESISTORES

Vários circuitos possuem resistores ligados por vários motivos, entre eles podemos dizer:

- Obter valor de resistor diferente do achado no mercado.
- Obter divisão de Corrente em vários ramos do circuito.
- Obter divisão de tensão entre os bipolos de um circuito.

Para este artifício é feito o que denomina-se de associação de resistores. Trata-se da ligação de dois ou mais resistores nas configurações série, paralela ou mista. A seguir detalha-se cada uma das opções.

UNIVERSIDADE CATÓLICA DOM BOSCO

Centro de Ciências Exatas e Tecnológicas

Curso de Engenharia de Computação, Mecatrônica e Mecânica

4.1 Associação em Série

Neste modelo, cada resistor está ligado em seguida de um resistor anterior, semelhante a uma fila de veículos em um semáforo. Esta ligação faz com que a I seja a mesma em TODOS os resistores, e a tensão total dada pela fonte se dissipe em cada resistor. Vela a figura abaixo:

EQUAÇÕES					
Resistência	Tensão	Corrente			
Req = r1+r2++rn	 V1 = R1*I_{circuito} V2 = R2*I_{circuito} V3 = R3*I_{circuito} Vn = Rn*I_{circuito} 	<u>E</u> = R1+R2++Rn I <u>E</u> = Req I			
	E = R1*I + R2*I + R3*I ++ Rn*I E = I * (R1+R2+R3++Rn)				
	E = V1+V2++Vn				

UNIVERSIDADE CATÓLICA DOM BOSCO

Centro de Ciências Exatas e Tecnológicas

Curso de Engenharia de Computação, Mecatrônica e Mecânica

4.2 Associação em Paralelo

Nesta associação, todos os resistores encontram-se interligados de forma que a tensão sobre eles seja a mesma e a corrente total seja distribuída conforme figura abaixo.

UNIVERSIDADE CATÓLICA DOM BOSCO

Centro de Ciências Exatas e Tecnológicas

Curso de Engenharia de Computação, Mecatrônica e Mecânica

EQUAÇÕES						
Resis	tência	Corrente		Tensão		
Para n Res. em //						
		I ₁ =	E			
1 = 1	<u></u>	_	R1			
Req R1	Rn			E= V1=V2==Vn		
David 00 ama //		l ₂ =	$I_2 = E$			
Para 02 em //		_	R2			
Dog	D4 * D0					
Req =						
	R1 + R2		••			
		I _n =	E			
		_	Rn			
Para N	res. em					
// de mesmo valor.		Observe mais:				
Req =	R	I _{total} = E * (1 ++ 1)		
	N	_	R1 Rn			
			2. Jn			
Itotal = I1+I2++In						

UNIVERSIDADE CATÓLICA DOM BOSCO

Centro de Ciências Exatas e Tecnológicas

Curso de Engenharia de Computação, Mecatrônica e Mecânica

4.3 Associação Mista

Formado por uma ou mais associação série e paralelo de resistores. Neste caso os cálculos devem ser feitos por etapas, minimizando o circuito inicial de forma que o circuito reduzido seja mais simples e permita uma melhor referência para desenvolver os valores de cada nó do circuito original.

Etapas:

- o Minimize o circuito achando a Req
 - Use as referências (nós) para separar série de //
- Calcule a I_{total} do circuito
- o Realize os cálculos restantes usando todo referencial anterior

REFERÊNCIA BIBLIOGRÁFICA

LORENÇO, Antonio C., CRUZ, Eduardo C. A., JÚNIOR, Salomão C. Circuitos em Corrente Contínua. Editora Érica, 200. São Paulo.