1 Regularity and Completeness of Measures

Definition 1.1. Given a measure space (X, \mathcal{A}, μ) , we say that the measure μ (or the measure space itself) is complete if for any $B \subseteq A$ such that $\mu(A) = 0$, then $B \in \mathcal{A}$ and $\mu(B) = 0$.

Example 1.1. The measure space (X, M_{μ^*}, μ^*) mentioned in ??. is complete.

Given a set X and a σ -algebra \mathcal{A} , then we could complete the space through a completion process.

Definition 1.2. Let (X, A) be a measurable space with μ a measure on the pair, the completion of μ is the collection of subsets A of the form:

$$E \subseteq A \subseteq F$$

for $E, F \in \mathcal{A}$ and $\mu(F \setminus E) = 0$. Denote this collection as \mathcal{A}_{μ} .

Remark 1. Note that any subset $A \subseteq E$ where $\mu(E) = 0$ immediately implies that $E \in \mathcal{A}_{\mu}$.

We must check that this construction does not depend on the choice of E, F as above and thus the completion measure will be well-defined. We see that, by definition, $\mu(E) = \mu(F)$. Also, we see that $\mu(F) = \sup\{\mu(B)|B \in \mathcal{A}, B \subseteq A\}$. By symmetry, $\mu(E) = \inf\{\mu(B)|B \in \mathcal{A}, A \subseteq B\}$. Thus, we see that the choice of sets above does not affect the completion construction and we can attempt to extend the measure $\bar{\mu}: \mathcal{A}_{\mu} \to [0, \infty]$ such that $\bar{\mu}(A) = \mu(F) = \mu(E)$. It now suffices to prove that this indeed is a measure on \mathcal{A}_{μ} .

Theorem 1.1. Let (X, \mathcal{A}) be a measurable set and let μ be a measure on the space. Using Definition 1.2, the extended measure $\bar{\mu}: \mathcal{A}_{mu} \to [0, \infty]$ is indeed a complete measure on \mathcal{A}_{μ} which is a σ -algebra containing \mathcal{A} . Furthermore, $\bar{\mu} \upharpoonright_{\mathcal{A}} = \mu$.

Proof. We first proof that \mathcal{A}_{μ} is indeed a σ -algebra. Since $\mathcal{A} \subseteq \mathcal{A}_{\mu}$, $X \in \mathcal{A}_{\mu}$. Given two $A, B \in \mathcal{A}_{\mu}$, there exist $E_A, E_B \in \mathcal{A}$ and $F_A, F_B \in \mathcal{A}$ following the definition given in 1.2 respectively. Since $A \setminus B \subseteq (F_A \setminus E_A) \setminus (F_B \setminus E_B) \in \mathcal{A}$ and $\mu((F_A \setminus E_A) \setminus (F_B \setminus E_B)) = 0$. Next, suppose we had a countable family $\{A_i\} \subseteq \mathcal{A}_{\mu}$. Let $\{F_i\}, \{E_i\}$ be the sets mentioned in 1.2 respective by index. Then it follows that:

$$\bigcup_{i=1}^{\infty} E_i \subseteq \bigcup_{i=1}^{\infty} A_i \subseteq \bigcup_{i=1}^{\infty} F_i$$

and

$$\bigcup_{i=1}^{\infty} F_i \setminus \bigcup_{i=1}^{\infty} E_i \subseteq \bigcup_{i=1}^{\infty} (F_i \setminus E_i)$$

Thus,

$$\mu(\bigcup_{i=1}^{\infty} F_i \setminus \bigcup_{i=1}^{\infty} E_i) \le \sum \mu(F_i \setminus E_i) = 0$$

and it follows that \mathcal{A}_{μ} is a σ -algebra and $\bar{\mu}$ is measure by the properties endowed by μ .

- 1. $\bar{\mu}(\emptyset) = 0$
- 2. Given a countable disjoint family $\{A_i\} \subset \mathcal{A}_{\mu}$, $\bar{\mu}(\cup_i A_i) = \mu(\cup_i E_i) = \sum_i \mu(E_i)$ since $E_i \subseteq A_i$ by our notation in Definition 1.2.

Completeness immediately follows from the construction of \mathcal{A}_{μ} .

Similar to our definition of an outer measure on a measurable space (X, \mathcal{A}, μ) , we can define an inner measure as follows:

Definition 1.3. Let (X, \mathcal{A}, μ) be a measure space. Define the inner measure $\mu_* : 2^X \to [0, \infty]$ as follows:

$$\mu_*(A) = \sup\{\sum_I \mu(B_i) | \{B_i\}_I \subseteq \mathcal{A}, \bigcup_{i \in I}^{\infty} B_i \subseteq A, I \subseteq \mathbb{N}\}$$

In light of the set A_{μ} , we can find conditions in which the inner and outer measures coincide:

Theorem 1.2. Let (X, \mathcal{A}, μ) be a measure space and let $A \subset X$ such that $\mu^*(A) < \infty$. Then $A \in \mathcal{A}_{\mu}$ if and only if $\mu^*(A) = \mu_*(A)$.

Proof. If $A \in \mathcal{A}_{\mu}$, by our remark above and 1.1, it immediately follows that $\mu^*(A) = \mu_*(A)$. Conversely, if $\mu^*(A) = \mu_*(A)$ there exists a countable families $\{E_i\}_{I_1}, \{F_i\}_{I_2}$ such that

$$\sum_{I_1} \mu(E_i) < \mu_*(A) + \epsilon$$

$$\sum_{I_2} \mu(F_i) < \mu^*(A) + \epsilon$$

Thus, $\mu(\bigcup_{I_2} F_i \setminus \bigcup_{I_1} E_i) < 2\epsilon$ for any $\epsilon \geq 0$. Hence, taking countable unions of such families for every $\epsilon < \frac{1}{n}$, there exists $E \subseteq A \subseteq F$ such that $\mu(F \setminus E) = 0$.

Definition 1.4. An outer measure μ on X is called regular if for any $A \subset X$, there exists a μ -measurable set $B \subset X$ such that $\mu(A) = \mu(B)$.

Theorem 1.3. Given an finite regular outer measure μ on X, for all $A \subset X$, A is μ -measurable if and only if $\mu(A) = \mu(A) + \mu(X \setminus A)$.