

Dokumentation Integrationsprojekt

im Studiengang Informatik

von

Studiengruppe HFP424

Prüfer: Name des Erstprüfers Zweitprüfer: Name des Zweitprüfers (Bei Praxisprojekt frei lassen)

Hannover, 24. August 2025

Erklärung der Selbstständigkeit

Hiermit versichere ich, dass ich die vorliegende selbständig verfasst und keine anderen als die angegebenen Quellen verwendet habe. Alle Textstellen und andere Inhalte wie Bilder, Quellcode oder Daten, die wörtlich oder sinngemäß aus anderen Quellen entnommen sind, habe ich eindeutig mit korrekten Quellenangaben versehen. Über Zitierrichtlinien bin ich schriftlich informiert worden. Diese Arbeit wurde bisher in gleicher oder ähnlicher Form, auch nicht in Teilen, keiner anderen Prüfungsbehörde vorgelegt.

Falls ich während der Erstellung dieser Arbeit generative KI oder andere KI-gestützte Technologien verwendet habe, die über grundlegende Werkzeuge für Übersetzungen und zur Überprüfung von Grammatik oder Rechtschreibung hinausgehen, erkläre ich, nach der Nutzung dieser Tools den Inhalt meiner überprüft und bearbeitet zu haben und übernehme die volle Verantwortung für die diesbezüglichen Ausführungen. Eine Verwendung solcher Werkzeuge habe ich in meiner Arbeit dokumentiert (bspw. im Abschnitt "Struktur der Arbeit, Methodik" oder durch Erläuterungen zur Nutzung im Anhang).

Hannover, den 24. Augu	ıst 2025
Studiengruppe HFP424	

Inhaltsverzeichnis

1	Motivation	1
2	Verwandte Arbeiten	3
3	Grundlagen 3.1 Testtypen beim autonomen Fahren 3.2 Test-Szenarien 3.3 Behavioral Programming 3.4 OpenScenario 3.5 Simulations-Engines 3.5.1 HighwayEnv	4 4 4 4 4 4
4	3.5.2 Sumo	5
5	Umsetzung 5.1 Simulationsumgebungen	6 6 6 6 6
6	Evaluierung	7
7	Fazit	8
8	Ausblick	9
Α	Anhang	10

Motivation

Autonomes Fahren ist in der heutigen Zeit keine ferne Vision mehr, sondern bereits Realität. Unternehmen wie Waymo in San Francisco, Baidu in Wuhan oder Volkswagen in Hamburg zeigen, dass fahrerlose Fahrzeuge am Straßenverkehr teilnehmen können. Hierdurch wachsen jedoch auch die Herausforderungen, die Sicherheit solcher Systeme zu gewährleisten und dementsprechend zu validieren. Die Vielzahl potenzieller Verkehrssituationen ist praktisch unbegrenzt, von einfachen Überholmanövern bis hin zu komplexen Interaktionen mit Fußgängern, Radfahrern, Ampeln und mehreren Fahrzeugen gleichzeitig. Hinzu kommen länderspezifische Verkehrsregeln und Regularien, die eine vollständige Erprobung im Realverkehr nahezu unmöglich machen.

Simulationen stellen daher einen unverzichtbaren Baustein in der Validierung autonomer Fahrfunktionen dar, da reale Testfälle nicht in der notwendigen Breite und Tiefe skalierbar sind. Mit Standards wie ASAM OpenScenario existieren bereits Ansätze, Szenarien in strukturierter Form zu beschreiben. Allerdings sind die XML-basierten Szenarien sehr aufwändig zu modellieren und müssen für jedes Testziel individuell erstellt werden. Neuere domänenspezifische Sprachen, wie die auf Constraints basierende OpenScenario DSL, versprechen zwar leichtere Handhabung, sind aber noch nicht weit verbreitet und erfordern ebenfalls manuelle Anpassungen. Industrielle Lösungen wie Fortellix Foretify nutzen Constraint-Solver und Planungsalgorithmen, erweisen sich in der Praxis jedoch häufig als starr und schwer automatisierbar.

Vor diesem Hintergrund ist die Entwicklung neuer, flexiblerer Ansätze zu automatisierten Szenariengenerierung von zentraler Bedeutung. Behavioral Programming bietet hierfür eine attraktive Grundlage. Es erlaubt eine modulare Modullierung von Szenarien und bildet konkurrierende Verhaltensweisen auf natürliche Weise ab. Ergänzend eröffent Reinforcement Learning die Möglichkeit, aus abstrakten Szenariobeschreibungen, etwa ein Auto überholt das VUT und bremst anschließend, konkrete, ausführbare

Szenarien zu generieren, die den abstrakten Vorgaben genügen.

Dieses Projekt verfolgt das Ziel, die Kombination von Behavioral Programming und Reinforcement Learning als neuartigen Ansatz zur automatisierten Szenariengenerierung zu untersuchen. Dabei sollen nicht nur Methoden zur Modellierung abstrakter und konkreter Szenarien entwickelt werden, sondern auch Verfahren, wie die ausgeführten Szenarien geloggt und visuell aufbereitet werden können, um Test-Engineers eine transparente Analyse zu ermöglichen.

Das Vorhaben versteht sich als Machbarkeitsstudie. Es geht nicht darum, ein industrietaugliches Framework zu entwicklen, sondern vielmehr um die grundlegende Frage, ob sich durch die Kombination von Behavioral Programming und Reinforcement Learning ein flexibler, automatisierbarer Ansatz zur Generierung konkreter Testszenarien aus abstrakten Vorgaben realisieren lässt.

Verwandte Arbeiten

Grundlagen

- 3.1 Testtypen beim autonomen Fahren
- 3.2 Test-Szenarien
- 3.3 Behavioral Programming
- 3.4 OpenScenario
- 3.5 Simulations-Engines
- 3.5.1 HighwayEnv
- 3.5.2 Sumo

Problemanalyse

Umsetzung

- 5.1 Simulationsumgebungen
- 5.2 Modellierung von Szenarien mit BPpy
- 5.3 Visualisierung von ausgeführten konkreten Szeanrien
- 5.4 Reinforcement Learning
- 5.5 Gesamt-Architektur

Evaluierung

Fazit

Ausblick

Anhang A

Anhang

Die Zitate habe ich nur hinzugefügt, weil ich sonst einen Error bekomme, dass ich keine citations nutze... [FHD18, FHD21]

Der Anhang stellt eine Ergänzung zur eigentlichen Arbeit dar. Denkbare Einsatzmöglichkeiten sind:

- Dokumentation von Materialien, die dem Leser üblicherweise nicht zugänglich sind (Herstellung der Zitierfähigkeit): Dieser Punkt kommt bspw. zum Tragen, wenn in der Arbeit unternehmensinterne Unterlagen eingearbeitet werden (z.B. Organigramme, Auszüge aus Organisationshandbüchern, Texte von Betriebsvereinbarungen, Verkaufsunterlagen, Produktbeschreibungen).
- Detaillierte Beschreibungen von hergestellten Artefakten, z.B. ausführliche Anwendungsfallbeschreibungen, wenn im Hauptteil Anwendungsfälle schon grob beschrieben sind und dies für das primäre Verständnis ausreicht, oder ausführliche Klassendiagramme, die übersichtsartige Diagramme im Hauptteil ergänzen. Hier können auch Code-Listings, von Algorithmen oder Skripten, die Sie entwickelt haben.
- Ergebnisse von Gesprächen mit Experten in Form von Gesprächsnotizen oder Interviewprotokolle (z. B. in Frage-Antwort-Form).

Ein Anhang kann eine sinnvolle Ergänzung der eigentlichen Arbeit sein. Material sollte jedoch nicht beliebig angehängt werden, sondern durch geeignete Beschreibungen mit dem Inhalt der Arbeit in Verbindung gebracht werden. Es gilt auch hier: Beschränken Sie sich auf Wichtiges. Im Regelfall sollte der Anhang nicht 50% des Seitenumfangs des Inhaltsteils überschreiten. Im Zweifel kann eine Arbeiten auch ohne Anhang auskommen.

Der Anhang ist insbesondere kein Ort für Abbildungen, die aus dem Hauptteil ausgelagert werden – insbesondere nicht zu dem Zweck, dadurch den vorgegebenen Seitenumfang des hauptinhaltlichen Teils einzuhalten. Es erschwert unnötig die Lesbarkeit der Arbeit, wenn zwischen Hauptteil und Anhang hin- und hergeblättert werden muss. Die Arbeit muss auch ohne Anhang vollständig und verständlich sein!

Literaturverzeichnis

- [FHD18] FHDW Hannover. Modulhandbuch Bachelor (mit Studienbeginn ab Oktober 2018). Interne Quelle der FHDW Hannover, 2018. Stand 17.2.2020.
- [FHD21] FHDW Hannover. Modulhandbuch Master Information Engineering (Modulhandbuch HFP). Interne Quelle der FHDW Hannover, 2021. Stand Mai 2021.