H.T.No:						Course Code: 201CS4T05

ADITYA ENGINEERING COLLEGE (A)

FORMAL LANGUAGES AND AUTOMATA THEORY

(Common to CSE & IT)

Time: 3 hours Max. Marks: 70

Answer ONE question from each unit All Questions Carry Equal Marks

All parts of the questions must be answered at one place only

UNIT - I

1 a Define Alphabet, String and Language. K1 CO1 [5M]

b Design a DFA, that accepts all strings of a Language L, with even 0's and K3 CO1 [9M] even 1's over {0, 1}.

OR

2 a Construct a Moore machine for a given Mealy machine?

K2 CO1 [7M]

Q	0	Δ	1	Δ
\rightarrow Q ₀	Q ₁	N	Q ₂	N
Q ₁	Q_2	Y	Q_1	N
Q ₂	Q ₁	N	Q ₂	Y

b Convert the NFA-epsilon into DFA with suitable example.

K2 CO1 [7M]

UNIT - II

3 a Demonstrate basic operations of Regular Expressions. K2 CO2 [7M]

b Derive the regular expression for the following finite automata where q_0 is K2 CO2 [7M] the initial and final state?

OR

4 a Prove that a Language is not regular using pumping lemma.

K3 CO2 [7M]

b Explain about closure properties of regular sets.

K2 CO2 [7M]

UNIT – III

5 a Illustrate Context Free Grammar with suitable example. K2 CO3 [7M]

Construct LMD, RMD and Parse tree for the string: (id+id*id) using the K3 CO3 [7M] CFG E→E+E/E*E/(E)/id.

(P.T.O)

	•	
	-	v
ı	,	•

OR											
6	a	Simplify the following CFG and Convert it into CNF	K4	CO3	[7M]						
		S -> AaB aaB , A -> ϵ , B -> bbA ϵ									
	b	Show that language $L=\{a^n b^n c^n n \ge 0\}$ is not a Context Free.	K2	CO3	[7M]						
	O TOTAL										
UN	IT -	- IV									
7	a	What is Deterministic PDA? Differentiate acceptance by final state and acceptance by empty stack.	K2	CO4	[7M]						
	b	1 7 17	K3	CO4	[7](1]						
	U	Construct a deterministic PDA for accepting language L= $\{0^n 1^n n \ge 1\}$	ΝJ	CO4	[7M]						
		OR									
8	a	Explain the about various components of PDA.	K2	CO4	[5M]						
	b	Show Equivalence of Pushdown Automata and Context Free Grammars	K3	CO4	[9M]						
UN	IT -	- V									
9	a	Design a Turing Machine to accept the language $L = \{WW^R \mid W \in (a+b)^* \}$	K3	CO5	[7M]						
	b	Define Post Correspondence Problem? Explain in brief about PCP with an	K2	CO5	[7M]						
		example?			[,1,1]						
OR											
10	a	Explain about Classes of P and NP, NP- Hard and NP Complete problems.	K2	CO5	[7M]						
	b	Design a Turing Machine to accept the language $L = \{0^n 1^n 2^n n \ge 0\}$	K3	CO5	[7M]						
