Math 17: Exercise Set 7 – Posted 11/5/15

17.1 & 17.2: Normal Distributions – Basic Properties

- 1. Compute μ , σ , Q_1 , and Q_3 for the following normal distributions.
 - (a) $\mu = 80$ and upper point of inflection P = 90.
 - (b) $\mu = 32$ and lower point of inflection P' = 18.
 - (c) upper point of inflection P = 400 and lower point of inflection P' = 220.
 - (d) $Q_1 = 950$ and $Q_3 = 1020$.
 - (e) $Q_3 = 105$ and upper point of inflection P = 120.
- 2. Suppose we have a dataset $\{x_1, x_2, \dots, x_N\}$ of N datapoints, which is normal with mean μ and standard deviation σ .
 - (a) Let a be a number and consider the dataset $\{ax_1, ax_2, \dots ax_N\}$. Verify the mean is $a\mu$ and the standard deviation is $a\sigma$.
 - (b) Let b be a number and consider the dataset $\{x_1 + b, x_2 + b, \dots, x_N + b\}$. Verify the mean is $\mu + b$ and the standard deviation is σ .
 - (c) Consider the dataset $\{ax_1 + b, ax_2 + b, \dots, ax_N + b\}$. Combine the last two results to verify the mean is $a\mu + b$ and the standard deviation is $a\sigma$.
 - (d) Suppose we have a dataset of temperatures in Fahrenheit that is normal with $\mu = 60^{\circ}$ and standard deviation $\sigma = 10^{\circ}$. The formula to go from Fahrenheit (F) to Celsius (C) is $C = (5/9) * (F 32^{\circ})$ Find the mean and standard deviation of the dataset in Celsius. *Hint*: Use part (c) after identifying a, b.

3.

- (a) Explain why a distribution with $\mu = 195$, $Q_1 = 180$, and $Q_3 = 220$ cannot be a normal distribution.
- (b) Explain why a distribution with $\mu = 47$, $Q_1 = 35$, and $\sigma = 10$ cannot be a normal distribution.
- 4. Consider a normal distribution with $\mu = 110$ and $\sigma = 12$. Find the z-value of each of the following:
 - (a) x = 98.
 - (b) x = 110.
 - (c) x = 128.
- 5. Consider a normal distribution with $\mu = 183.5$ and $\sigma = 31.2$. Find the data value corresponding to each of the following z-values.
 - (a) z = 0.

- (b) z = 1.5.
- (c) z = -2.2.
- 6. In a normal distribution, what percent of data have z-values satisfying
 - (a) $z \le 2$.
 - (b) $1 \le z \le 2$.
 - (c) $-3 \le z \le 1$.

17.3 & 17.4: Normal Distributions – Applications

- 7. Packaged foods are not always the weight indicated on the package. Suppose the exact weight of a "12-ounce" bag of potato chips follows a normal distribution with $\mu = 12$ ounces and $\sigma = 0.5$ ounces.
 - (a) If a bag is chosen at random, what is the chance that it weighs:
 - between 11 and 13 ounces.
 - between 12 and 12.5 ounces.
 - less than 11 ounces.
 - (b) Suppose 1500 "12-ounce" bags are chosen at random. Estimate the number of bags that weigh less than 11 ounces.
- 8. Clinical data. Suppose the weight of six-month-old boys is normal with $\mu = 17.5$ lbs and $\sigma = 1.0$ lbs, and the weight of six-month-old girls is normal with $\mu = 16.1$ lbs and $\sigma = 0.9$ lbs.
 - (a) If a six-month-old boy weighs 19.5lbs, what percentile is he in?
 - (b) If a six-month-old boy weighs 15.5lbs, what percentile is he in?
 - (c) If a six-month-old girl weighs 17lbs, what percentile is she in?
 - (d) What is the range of weights for six-month-old girls with weights in the middle 68% of the data.
 - (e) Find the interquartile range for the weight of six-month-old boys.
 - (f) Is it more unlikely that a six-month-old boy weighs 18.5lbs or that a six-month-old girl weighs 13.4lbs.

Some Useful Formulas:

upper point of inflection: $P = \mu + \sigma$. lower point of inflection: $P' = \mu - \sigma$. third quartile: $Q_3 = \mu + 0.675\sigma$. first quartile: $Q_1 = \mu - 0.675\sigma$. z-value: $z = (x - \mu)/\sigma$. x-value: $x = \sigma z + \mu$. 68 - 95 - 99.7 rule.