Modelling of complex, non-linear relationships in time series data while accounting for delayed effects 2

Robbie M Parks, PhD 22nd July 2025

Email: robbie.parks@columbia.edu

BlueSky: @robbiemparks

Website: sparklabnyc.github.io

Outline from previous lecture

- Non-linear exposure-response curves
- Linear regression as an assumption
- Polynomials
- Splines
- Piecewise linear splines
- Natural splines
- Penalized splines
- Which to use?

Outline

- Case crossover design
- Time series design

1. What does it do?

- "A method for studying transient effects on the risk of acute events" (Maclure, 1991)
- Compares a case's exposure during case-defining event with that same person's exposure at otherwise similar "reference" times

2. Why is this useful?

- Only examines cases
- Each person acts as own control
- No confounding by time invariant variables
- Saves effort and time

FEBRUARY 2021								
Sunday	Monday	Tuesday	Wednesday	Thursday	Friday	Saturday		
31	1	2	3	4	5	6		
7	8	9	10	11	12	13 X		
14	15	16	17	18	19	20		
21	22	23	24	25	26	²⁷ O		
28	1	2	3	4	5	6		

- 1. "There can be no confounding by time invariant variables" (Maclure, 1991)
 - What is time-invariant?
 - Sex?
 - Socio-economic status?
 - Education?
 - BMI?
 - Smoking?
 - Other lifestyle factors?
- Above therefore cannot be confounders by design if reasonably thought of as time invariant
 - Time scale important!

- 1. So what *still* could be a confounder?
 - Time-varying variables
 - Day of week, season, long-term trends?
 - Other exposure variables

2. How to deal?

- 1. Adjust as usual in model (i.e., additional terms)
- 2. Also can further match by exposures
 - But lose control days
 - + Good confounding control
 - Loss of power to make inferences

Mean daily temperature, °C May-Sept, 2001-2004

Mean daily temperature, °C 12 May 2004

- Cardiorespiratory deaths
 - (ICD $10 = I^*, J^*$)
 - Total deaths 2001-2004 = 406,697
- Age, sex at individual level

 Mean daily temperature at 5km grid linked via postcode

• Confounders: Pollution (PM_{10}), national holidays

Average cardiorespiratory death rates 2001-2004

- Case crossover design
 - Each case serves as its own control
 - Compare the temp on the day of death with the temp on other days "near" to the day of death
 - Pick control dates on same day of week, within same month of death, either side of Date of death e.g.

- Separate analyses for hot and cold months
- Separate analyses by sex and age group <=74, 75-84, >=85
- Estimate the percentage increase in odds of death per degree increase in temp

 Case crossover design analysed using conditional logistic regression:

$$Y_{indiv i, case/control j} \sim Pois(\lambda_{ij})$$

$$log(\lambda_{ij}) = f(\beta_{0d}, \beta_{1d}, Temp_{ij}) + Confounders_{ij} + \delta_i$$

 δ_i = parameter linking the case/controls of indiv. i

```
\beta_{0 d}
 = Fixed Threshold for cases in District d

\beta_{1 d}
 = Slope (supra-threshold) for cases in District d

= Structured + Unstructured District RE's (BYM)
```


What does it do?

 Examines how variation in exposure over time is associated with variation in number of health outcome events over time

- 2. How is this different from case-crossover design?
 - Unit of analysis is time unit rather than case
 - Implications for confounding association of interest

- How does it work?
 - 1. Obtain counts of health outcomes of interest in time unit in each geographic unit (if spatial)
 - For example, deaths by year in each county in the United States (1999-2015)
 - Obtain concentrations of exposure of interest in each geographic unit (if spatial)
 - For example, annual concentrations of $PM_{2.5}$ by county in the United States (1999-2015)
 - 3. Adjust by appropriate covariates
 - 4. Run Poisson model (if counts) with log-link function

- In time series design, what could be a confounder?
 - 1. Individual-level factors?
 - No, as now unit is not individual, because time the unit of analysis, not individual
 - 2. Population characteristics by spatial unit?
 - Yes, if you can argue that they change by the unit of analysis (e.g., year)
 - E.g., does %poverty in a US county change appreciably year-to-year?
 - 3. Characteristics of spatial unit itself?
 - Potentially, if they change by unit of analysis
 - E.g., does %urban in a county change appreciably year-to-year?
 - 4. Temporal trends
 - Long-term trends
 - Seasonality
 - 5. Other exposures
 - If pollution is exposure of interest, do we also have to include temperature?

 Outcome: deaths by underlying cause of death from vital registration and population from census

• Exposure: annual mean $PM_{2.5}$ (LUR model assimilating observations in universal kriging framework)

Covariates: % poverty, % black, % high-school graduates,
 % living in urban areas, % unemployed, per capita income,
 age-standardised lung-cancer death rates as proxy for smoking,
 annual mean temperature, annual mean relative humidity

Study population, outcome and exposure assessment

Study population

- 18.4 million cardiorespiratory deaths (1999-2015)
- Entire contiguous United States

Outcome assessment

 Annual county-level, cardiorespiratory death counts by principle cause of death diagnosis (I/J ICD-10)

• Exposure assessment:

- Annual mean PM_{2.5} (1999-2015)
- LUR model assimilating observations in universal kriging framework

Statistical model

- Association between annual cardiorespiratory death rates and PM_{2.5}
 - Bayesian spatio-temporal model with Poisson counts
 - Leverages variations over space and time to infer associations
- To quantify association:
 - Death rate ratio per 10μg/m³
- Adjusted for:
 - Longer-term time trends
 - County specific effects

For each age-sex group and where c = county, t = year

 $Deaths_{tc} \sim Poisson[population_{tc}.deathrate_{tc}]$

$$\begin{array}{lll} \log(d_{tc}) &=& (\alpha_0 + \beta_0.\operatorname{t}) & \operatorname{common terms} \\ &+ \nu_t & \operatorname{non-linear time term} \\ &+ \gamma.PM_{tc} & \operatorname{pollution term} \\ &+ \sum_{i=1}^{i=9} \theta_i \cdot X_{itc} & \operatorname{covariates} \\ &+ \alpha_c & \operatorname{county random effect} \\ &+ \epsilon_{tc} & \operatorname{over dispersion} \end{array}$$

Effect size for cardiorespiratory deaths

Statistical model

- Association between monthly injury death rates and anomalous temperature
 - Bayesian spatio-temporal model with Poisson counts
 - Leverages variations over space and time to make inferences
- To quantify association:
 - Age-group-sex-month-cause-specific death rate ratio per 2°C warm anomaly
- Adjusted for:
 - Longer-term time trends
 - State and month specific effects

For each age-sex group and where *s* = *state*, *t* = *time*

 $Deaths_{ts} \sim Poisson[population_{ts}.deathrate_{ts}]$

$$\log(d_{ts}) = (\alpha_0 + \beta_0.t) + (\alpha_s + \beta_s.t) + (\alpha_m + \beta_m.t) + \zeta_{sm} + \psi_{sm}.t + v_t + \gamma.Anomaly_{ts} + \epsilon_{tc}$$

common terms
state random effects
month random effects
state-month interactions
non-linear time term
Temperature anomaly terms
over dispersion

Comparing case-crossover (CC) with time series (TS)

- CC can use individual level exposure data
- TS requires spatial unit-aggregate exposure
- CC can assess effect modification by individual-level data
 - E.g., smoking, BMI
- TS can do this too but careful about interpretation
- CC arguably easier to control for confounding by design (matching)
- TS great care required when building model

Comparing case-crossover (CC) with time series (TS)

- When could CC and TS given (nearly) same results?
- Equivalent if:
 - Spatial unit averages from TS used as exposures in CC (i.e., not individual)
 - Models both correctly specified
 - All things being equal, CC would give wider CIs because of less power

Outline

- Case crossover design
- Time series design

Getting ready for the lab

 This lab will involve taking some models and concepts from the Modelling of complex, non-linear relationships in time series data while accounting for delayed effects 2 lecture and introduce you to the way case crossover and time series design works.

Application

 How can you imagine applying this learning to your data and your research questions?

Questions

• Questions?

Modelling of complex, non-linear relationships in time series data while accounting for delayed effects 2

Robbie M Parks, PhD 22nd July 2025

Email: robbie.parks@columbia.edu

BlueSky: @robbiemparks

Website: sparklabnyc.github.io

