1

NCERT Discrete 10.5.2 -15

EE23BTECH11057 - Shakunaveti Sai Sri Ram Varun

Question: For what value of n, are the nth terms of two A.Ps: 63, 65, 67,... and 3, 10, 17,... equal? **Solution**:

variable	description	value
$x_1(0)$	1^{st} term of 1^{st} A.P.	63
$x_{2}(0)$	1 st term of 2 nd A.P.	3
$x_1(n)$	n^{th} term of 1^{st} A.P.	$63\mathrm{u}(n) + 2\mathrm{n}\mathrm{u}(n)$
$x_2(n)$	n^{th} term of 2^{nd} A.P.	3u(n) + 7nu(n)
TABLE I		

PARAMETERS USED

$$X(z) = x(0)z(z-1)^{-1} + dz(z-1)^{-2} \forall |z| > 1$$
 (1)

- 1) For the 1st A.P. $let x_1(n)$ be nth term:
 - a) Finding $x_1(n)$ for the 1st A.P:

$$x_1(0) = 63$$
 (2)

$$x_1(0) + d = 65 \tag{3}$$

$$\implies x_1(n) = 63 + 2n \tag{4}$$

$$\therefore x_1(n) = 63u(n) + 2n \cdot u(n)$$
 (5)

b) To find $X_1(z)$:

$$x_1(0) = 63 \tag{6}$$

$$d = 2 \tag{7}$$

$$\therefore X_1(z) = 63z(z-1)^{-1} + 2z(z-1)^{-2} \,\forall |z| > 1$$
(8)

- 2) For the 2nd A.P. $let x_2(n)$ be nth term:
 - a) Finding $x_2(n)$ for the for the 1st A.P:

$$x_2(0) = 3$$
 (9)

$$x_2(0) + d = 10 ag{10}$$

$$\implies x_2(n) = 7n + 3 \tag{11}$$

$$\therefore x_2(n) = 3u(n) + 7n \cdot u(n) \tag{12}$$

b) To find $X_2(z)$:

$$x_2(0) = 3 (13)$$

$$d = 7 \tag{14}$$

$$\therefore X_2(z) = 3z (z - 1)^{-1} + 7z (z - 1)^{-2} \,\forall |z| > 1$$
(15)

Fig. 1. Graphs of $x_1(n)$ and $x_2(n)$ and both are equal at n = 12

given,
$$x_1(n) = x_2(n)$$

$$\therefore 63 + 2n = 7n + 3 \tag{16}$$

$$5n = 60$$
 (17)

$$\implies n = 12$$
 (18)

(19)

∴ 13th terms of given two APs are equal.