L'énoncé de cette épreuve, particulière aux candidats de la filière MP, comporte 3 pages. L'usage de la calculatrice est interdit.

Les candidats sont informés que la précision des raisonnements ainsi que le soin apporté à la rédaction et à la présentation des copies seront des éléments pris en compte dans la notation. Il convient en particulier de rappeler avec précision les références des questions abordées.

Si, au cours de l'épreuve, un candidat repère ce qui lui semble être une erreur d'énoncé, il le signale sur se copie et poursuit sa composition en expliquant les raisons des initiatives qu'il est amené à prendre.

Pour tout $(p,q) \in \mathbb{N}^{*2}$, on note $\mathcal{M}_{p,q}(\mathbb{R})$ l'espace vectoriel des matrices à coefficients réels, à p lignes et q colonnes ; si $M \in \mathcal{M}_{p,q}(\mathbb{R})$, tM désigne la matrice transposée de M et $\operatorname{rg}(M)$ son rang.

Notations

Pour tout entier naturel k, \mathcal{P}_k désigne l'espace vectoriel des polynômes à coefficients réels et de degré $\leq k$.

Dans ce problème, n désigne un entier naturel non nul et $x_0, x_1, ..., x_n$ des réels deux à deux distincts ; on note π le polynôme $\pi = (X - x_0)(X - x_1)...(X - x_n)$.

Enfin, pour tout entier naturel m, on définit l'application

$$f_m: \mathcal{P}_n \longrightarrow \mathbb{R}^{n+1}$$

 $P \longmapsto (P(x_0), ..., P(x_n))$

N.B. : La première et la deuxième partie du problème sont indépendantes, la troisième utilise les résultats des deux premières.

$1^{\grave{e}re}$ Partie : Étude de l'application f_m

Soit m un entier naturel.

- 1. Si $R \in \mathcal{P}_n$ est tel que pour tout $i \in \{0, 1, ..., n\}$, $R(x_i) = 0$, montrer que R est le polynôme nul.
- 2. Vérifier que f_m est une application linéaire.
- 3. Dans cette question, on suppose que $m \ge n + 1$.
 - (a) Montrer que $\operatorname{Ker} f_m = \{Q\pi; \ Q \in \mathcal{P}_{m-n-1}\}.$
 - (b) Montrer que les sous-espaces vectoriels $\operatorname{Ker} f_m$ et \mathcal{P}_n sont supplémentaires dans \mathcal{P}_m .
 - (c) En déduire la dimension de $\operatorname{Ker} f_m$ puis en donner une base.
 - (d) Déterminer le rang de f_m ; l'application f_m est-elle surjective?
- 4. Dans cette question, on suppose que $m \leq n$.
 - (a) Montrer que f_m est injective.
 - (b) Quel est le rang de f_m ?
 - (c) À quelle condition sur les entiers n et m l'application f_m est-elle surjective?

- 5. (a) Montrer que pour tout $y=(y_0,y_1,...,y_n)\in\mathbb{R}^{n+1}$, il existe un unique polynôme $P_y\in\mathcal{P}_n$ tel que $f_n(P_y)=(y_0,y_1,...,y_n)$.
 - (b) Pour tout $i \in \{0, 1, ..., n\}$, on note L_i l'unique polynôme de \mathcal{P}_n tel que $f_n(L_i) = \varepsilon_i$ où $(\varepsilon_0, ..., \varepsilon_n)$ désigne la base canonique de \mathbb{R}^{n+1} ; on rappelle que $\varepsilon_0 = (1, 0, ..., 0), \varepsilon_0 = (0, 1, ..., 0), ..., \varepsilon_n = (0, 0, ..., n)$.
 - i. Vérifier que pour tout couple (i,j) d'élements de $\{0,1,...,n\}$, $L_i(x_j)=\delta_{i,j}$ avec $\delta_{i,j}=1$ si i=j et 0 sinon.
 - ii. Montrer que la famille $(L_0, L_1, ..., L_n)$ est une base de \mathcal{P}_n .
 - (c) Si $y=(y_0,y_1,...,y_n)$ est un élément de \mathbb{R}^{n+1} , exprimer le polynôme P_y en fonction de $L_0,L_1,...,L_n$ et $y_0,y_1,...,y_n$. Que vaut $\sum_{i=0}^n L_i$?

2ème Partie: Problème aux moindres carrés

Soient p et q deux entiers naturels non nuls ; on muni l'espace vectoriel $\mathcal{M}_{p,1}(\mathbb{R})$ (resp. $\mathcal{M}_{q,1}(\mathbb{R})$) de son produit scalaire canonique noté $< ., .>_p$ (resp. $< ., .>_q$) et on note $\|.\|_p$ (resp. $\|.\|_q$) la norme associée. On rappelle que $< u, v>_p=^t vu$, $u, v\in \mathcal{M}_{p,1}(\mathbb{R})$.

Si $M \in \mathcal{M}_{p,q}(\mathbb{R})$, on note encore M l'application linéaire de $\mathcal{M}_{q,1}(\mathbb{R})$ dans $\mathcal{M}_{p,1}(\mathbb{R})$ canoniquement associée à M; ainsi $\operatorname{Ker} M = \{x \in \mathcal{M}_{q,1}(\mathbb{R}); \quad Mx = 0\}$ et $\operatorname{Im} M = \{Mx; \quad x \in \mathcal{M}_{p,1}(\mathbb{R})\}.$

On considère $A \in \mathcal{M}_{p,q}(\mathbb{R})$ et $b \in \mathcal{M}_{p,1}(\mathbb{R})$; le problème aux moindres carrés associé à A et b est la recherche des vecteurs de $\mathcal{M}_{q,1}(\mathbb{R})$ minimisant la quantité $||b - Ax||_p^2$ lorsque x décrit $\mathcal{M}_{q,1}(\mathbb{R})$.

- 1. Si $u \in \mathcal{M}_{q,1}(\mathbb{R})$ est un vecteur tel que ${}^tAAu = {}^tAb$.
 - (a) Montrer que le vecteur b-Au est orthogonal à Im(A) et en déduire que Au est la projection orthogonale de b sur Im(A).
 - (b) Justifier que $||b Au||_p^2 = \min\{||b Au||_p^2; x \in \mathcal{M}_{q,1}(\mathbb{R})\}$ et préciser tous les éléments $v \in \mathcal{M}_{q,1}(\mathbb{R})$ en lesquels ce minimum est atteint.
- 2. Réciproquement, si $u \in \mathcal{M}_{q,1}(\mathbb{R})$ est un vecteur qui réalise le minimum de la quantité $||b-Ax||_p^2$ lorsque x décrit $\mathcal{M}_{q,1}(\mathbb{R})$, prouver que ${}^tAAu = {}^tAb$; on montrera pour cela que le vecteur ${}^tAAu {}^tAb$ est orthogonal à tous les vecteurs de $\mathcal{M}_{q,1}(\mathbb{R})$.
- 3. (a) Montrer que si $x \in \text{Ker}(^t AA)$ alors $\langle Ax, Ax \rangle_p = 0$.
 - (b) En déduire que $\operatorname{Ker} A = \operatorname{Ker} ({}^{t}AA)$.
 - (c) Comparer alors $\operatorname{rg}(^t A) = \operatorname{rg}(^t A A)$.
 - (d) Montrer que ${\rm Im}(^tAA)\subset {\rm Im}^tA$ et en déduire que ces deux sous-espaces vectoriels sont égaux.
- 4. (a) Montrer qu'une solution du problème aux moindres carrés cité ci-dessus existe toujours et qu'elle est exactement une solution d'un système linéaire à préciser.
 - (b) Montrer que le problème a une unique solution si et seulement si $\operatorname{Ker} A = \{0\}$

3ème Partie: Approximation polynômiale au sens des moindres carrés

On considère des réels $y_0, y_1, ..., y_n$ qui sont respectivement les images des réels $x_0, x_1, ..., x_n$ par une fonction φ , et on cherche à déterminer les polynômes $P \in \mathcal{P}_m$ tels que la quantité

$$\Phi_m(P) := \sum_{i=0}^n (y_i - P(x_i))^2$$

soit minimale, et à préciser la valeur minimale λ_m de ladite quantité.

On parle alors d'approximation polynômiale au sens des moindres carrés de la fonction φ aux points $x_0, x_1, ..., x_n$; ce type d'approximation est particulièrement utilisé dans les problèmes d'optimisation et de contrôle de qualité.

On utilise les notations des parties précédentes.

A. Étude dans le cas $m \ge n + 1$

- 1. Donner un polynôme $Q_0 \in \mathcal{P}_m$ tel que $f_m(Q_0) = (y_0, y_1, ..., y_n)$.
- 2. En déduire la valeur minimale λ_m de $\Phi_m(P)$ lorsque P décrit \mathcal{P}_m , et préciser l'ensemble des polynômes en lesquels ce minimum est atteint.

B. Étude dans le cas $m \geq n$

Dans cette section, on pose

$$A = \begin{pmatrix} 1 & x_0 & \cdots & x_0^m \\ 1 & x_1 & \cdots & x_1^m \\ \vdots & \vdots & \ddots & \vdots \\ 1 & x_n & \cdots & x_n^m \end{pmatrix} \in \mathcal{M}_{n+1,m+1}(\mathbb{R}), \quad b = \begin{pmatrix} y_0 \\ y_1 \\ \vdots \\ y_n \end{pmatrix} \in \mathcal{M}_{n+1,1}(\mathbb{R})$$

- 1. (a) Expliciter les coefficients de la matrice tAA .
 - (b) Montrer que la matrice A est de rang m+1; on pourra montrer que ces colonnes sont linéairement indépendantes ou utiliser une autre méthode.
 - (c) En déduire que la matrice tAA est inversible.

2. Soit
$$P = \sum_{k=0}^{m} a_k X^k \in \mathcal{P}_m$$
, on pose $V_p = \begin{pmatrix} a_0 \\ a_1 \\ \vdots \\ a_m \end{pmatrix}$

- (a) Exprimer le produit AV_p à l'aide des valeurs prises par P aux points $x_0, x_1, ..., x_n$.
- (b) En déduire que $\Phi_m(P) = \|b AV_p\|_{n+1}^2$.
- 3. (a) Justifier qu'il existe un unique polynôme $P_0 \in \mathcal{P}_m$ qui réalise le minimum de la quantité $\Phi_m(P)$ lorsque P décrit \mathcal{P}_m .
 - (b) Montrer que V_{p_0} est l'unique solution du système linéaire ${}^tAAZ = {}^tAb$, d'inconnue Z.
 - (c) Que vaut λ_m ?

4. Application

On prend
$$n = 3$$
, $m = 3$, $x_0 = -1$, $x_1 = 0$, $x_2 = 1$, $x_3 = 2$, $y_0 = 1$, $y_1 = 2$, $y_2 = 1$, $y_3 = 0$

- (a) Calculer les matrices A et tAA .
- (b) Calculer le vecteur ${}^{t}Ab$.
- (c) Résoudre le système linéaire ${}^tAAZ = {}^tAb$, d'inconnue Z, par la méthode de pivot de Gauss.
- (d) Quel est le polynôme P_0 de degré ≤ 3 qui minimise Φ_3 sur \mathcal{P}_3 ? Que vaut λ_3 ?
- (e) Tracer le graphe de la fonction $t \mapsto P_0(t)$ et représenter les points (x_i, y_i) sur le même graphique.

FIN DE L'ÉPREUVE

• • • • • • • • • • •

M.Tarqi-Centre Ibn Abdoune des classes préparatoires-Khouribga. Maroc E-mail : medtarqi@yahoo.fr