Program Optimization

CSE 238/2038/2138: Systems Programming

Instructor:

Fatma CORUT ERGİN

Slides adapted from Bryant & O'Hallaron's slides

Today

- Overview
- Generally Useful Optimizations
 - Code motion/precomputation
 - Strength reduction
 - Sharing of common subexpressions
 - Removing unnecessary procedure calls
- Optimization Blockers
 - Procedure calls
 - Memory aliasing
- Exploiting Instruction-Level Parallelism
- Dealing with Conditionals

Performance Realities

■ There's more to performance than asymptotic complexity

Constant factors matter too!

- Easily see 10:1 performance range depending on how code is written
- Must optimize at multiple levels:
 - algorithm, data representations, procedures, and loops

Must understand system to optimize performance

- How programs are compiled and executed
- How modern processors + memory systems operate
- How to measure program performance and identify bottlenecks
- How to improve performance without destroying code modularity and generality

Optimizing Compilers

Provide efficient mapping of program to machine

- register allocation
- code selection and ordering (scheduling)
- dead code elimination
- eliminating minor inefficiencies

Don't (usually) improve asymptotic efficiency

- up to programmer to select best overall algorithm
- big-O savings are (often) more important than constant factors
 - but constant factors also matter

Have difficulty overcoming "optimization blockers"

- potential memory aliasing
- potential procedure side-effects

Limitations of Optimizing Compilers

- Operate under fundamental constraint
 - Must not cause any change in program behavior
 - Except, possibly when program making use of nonstandard language features
 - Often prevents it from making optimizations that would only affect behavior under pathological conditions.
- Behavior that may be obvious to the programmer can be obfuscated by languages and coding styles
 - e.g., Data ranges may be more limited than variable types suggest
- Most analysis is performed only within procedures
 - Whole-program analysis is too expensive in most cases
 - Newer versions of GCC do interprocedural analysis within individual files
 - But, not between code in different files
- Most analysis is based only on *static* information
 - Compiler has difficulty anticipating run-time inputs
- When in doubt, the compiler must be conservative

Generally Useful Optimizations

 Optimizations that you or the compiler should do regardless of processor / compiler

Code Motion

- Reduce frequency with which computation performed
 - If it will always produce same result
 - Especially moving code out of loop

Compiler-Generated Code Motion (-01)

```
void set_row(double *a, double *b,
    long i, long n)
{
    long j;
    for (j = 0; j < n; j++)
        a[n*i+j] = b[j];
}</pre>
```

```
set row:
       testq %rcx, %rcx
                                      # Test n
                                   # If 0, goto done
       jle .L1
       imulq %rcx, %rdx
                                    # ni = n*i
       leaq (%rdi,%rdx,8), %rdx # rowp = A + ni*8
       movl $0, %eax
                                      # i = 0
.L3:
                                      # loop:
       movsd (%rsi, %rax, 8), %xmm0 # t = b[j]
       movsd %xmm0, (%rdx, %rax, 8) # M[A+ni*8 + j*8] = t
       addq $1, %rax
                                     # j++
       cmpq %rcx, %rax
                                      # j:n
                                     # if !=, goto loop
       jne .L3
                                      # done:
.L1:
       rep ; ret
```

Reduction in Strength

- Replace costly operation with simpler one
- Shift, add instead of multiply or divide

```
16*x --> x << 4
```

- Utility machine dependent
- Depends on cost of multiply or divide instruction
 - On Intel Nehalem, integer multiply requires 3 CPU cycles
- Recognize sequence of products

```
for (i = 0; i < n; i++) {
  int ni = n*i;
  for (j = 0; j < n; j++)
    a[ni + j] = b[j];
}

int ni = 0;
for (i = 0; i < n; i++) {
    for (j = 0; j < n; j++)
        a[ni + j] = b[j];
    ni += n;
}</pre>
```

Share Common Subexpressions

- Reuse portions of expressions
- GCC will do this with –O1

```
/* Sum neighbors of i,j */
up = val[(i-1)*n + j ];
down = val[(i+1)*n + j ];
left = val[i*n + j-1];
right = val[i*n + j+1];
sum = up + down + left + right;
```

3 multiplications: i*n, (i-1)*n, (i+1)*n

```
leaq 1(%rsi), %rax # i+1
leaq -1(%rsi), %r8 # i-1
imulq %rcx, %rsi # i*n
imulq %rcx, %rax # (i+1)*n
imulq %rcx, %r8 # (i-1)*n
addq %rdx, %rsi # i*n+j
addq %rdx, %rax # (i+1)*n+j
addq %rdx, %r8 # (i-1)*n+j
```

```
long inj = i*n + j;
up = val[inj - n];
down = val[inj + n];
left = val[inj - 1];
right = val[inj + 1];
sum = up + down + left + right;
```

1 multiplication: *i*n*

```
imulq %rcx, %rsi # i*n
addq %rdx, %rsi # i*n+j
movq %rsi, %rax # i*n+j
subq %rcx, %rax # i*n+j-n
leaq (%rsi,%rcx), %rcx # i*n+j+n
```

Optimization Blocker #1: Procedure Calls

Procedure to Convert String to Lower Case

```
void lower1(char *s)
{
    size_t i;
    for (i = 0; i < strlen(s); i++)
        if (s[i] >= 'A' && s[i] <= 'Z')
        s[i] -= ('A' - 'a');
}</pre>
```

Lower Case Conversion Performance

- Time quadruples when double string length
- Quadratic performance

Convert Loop To Goto Form

```
void lower(char *s)
   size t i = 0;
   if (i >= strlen(s))
     goto done;
 loop:
   if (s[i] >= 'A' \&\& s[i] <= 'Z')
       s[i] -= ('A' - 'a');
   i++;
   if (i < strlen(s))</pre>
    goto loop;
 done:
```

strlen executed every iteration

Calling Strlen

```
/* My version of strlen */
size_t strlen(const char *s)
{
    size_t length = 0;
    while (*s != '\0') {
        s++;
        length++;
    }
    return length;
}
```

Strlen performance

- Only way to determine length of string is to scan its entire length, looking for null character.
- Overall performance, string of length N
 - N calls to strlen
 - Require times N, N-1, N-2, ..., 1
 - Overall O(N²) performance

Improving Performance

```
void lower2(char *s)
{
    size_t i;
    size_t len = strlen(s);
    for (i = 0; i < len; i++)
        if (s[i] >= 'A' && s[i] <= 'Z')
        s[i] -= ('A' - 'a');
}</pre>
```

- Move call to strlen outside of loop
- Since result does not change from one iteration to another
- Form of code motion

Lower Case Conversion Performance

- Time doubles when double string length
- Linear performance of lower2

Optimization Blocker: Procedure Calls

- Why couldn't compiler move strlen out of inner loop?
 - Procedure may have side effects
 - Alters global state each time called
 - Function may not return same value for given arguments
 - Depends on other parts of global state
 - Procedure lower could interact with strlen

Warning:

- Compiler treats procedure call as a black box
- Weak optimizations near them

Remedies:

- Use of inline functions
 - GCC does this with –O1
 - Within single file
- Do your own code motion

```
size_t lencnt = 0;
size_t strlen(const char *s)
{
    size_t length = 0;
    while (*s != '\0') {
        s++; length++;
    }
    lencnt += length;
    return length;
}
```

Memory Matters

```
/* Sum rows of n X n matrix a
    and store in vector b */
void sum_rows1(double *a, double *b, long n) {
    long i, j;
    for (i = 0; i < n; i++) {
        b[i] = 0;
        for (j = 0; j < n; j++)
            b[i] += a[i*n + j];
    }
}</pre>
```

- Code updates b [i] on every iteration
- Why couldn't compiler optimize this away?

Memory Aliasing

```
/* Sum rows of n X n matrix a
    and store in vector b */
void sum_rows1(double *a, double *b, long n) {
    long i, j;
    for (i = 0; i < n; i++) {
        b[i] = 0;
        for (j = 0; j < n; j++)
            b[i] += a[i*n + j];
    }
}</pre>
```

```
double A[9] =
    { 0,     1,     2,
        4,     8,     16,
        32,     64,     128};

double B[3] = A+3;

sum_rows1(A, B, 3);
```

Value of B:

```
init: [4, 8, 16]

i = 0: [3, 8, 16]

i = 1: [3, 22, 16]

i = 2: [3, 22, 224]
```

- Code updates b [i] on every iteration
- Must consider possibility that these updates will affect program behavior

Removing Aliasing

```
/* Sum rows of n X n matrix a
    and store in vector b */
void sum_rows2(double *a, double *b, long n) {
    long i, j;
    for (i = 0; i < n; i++) {
        double val = 0;
        for (j = 0; j < n; j++)
            val += a[i*n + j];
        b[i] = val;
}</pre>
```

```
# sum_rows2 inner loop
.L10:
        addsd (%rdi), %xmm0  # FP load + add
        addq $8, %rdi
        cmpq %rax, %rdi
        jne .L10
```

No need to store intermediate results

Optimization Blocker: Memory Aliasing

Aliasing

- Two different memory references specify single location
- Easy to have happen in C
 - Since allowed to do address arithmetic
 - Direct access to storage structures
- Get in habit of introducing local variables
 - Accumulating within loops
 - Your way of telling compiler not to check for aliasing

Exploiting Instruction-Level Parallelism

- Need general understanding of modern processor design
 - Hardware can execute multiple instructions in parallel
- Performance limited by data dependencies
- Simple transformations can yield dramatic performance improvement
 - Compilers often cannot make these transformations
 - Lack of associativity and distributivity in floating-point arithmetic

Benchmark Example: Data Type for Vectors

```
/* data structure for vectors */
typedef struct{
    size_t len;
    data_t *data;
} vec;
```


■Data Types

- Use different declarations for data t
- int
- long
- float
- double

```
/* retrieve vector element
   and store at val */
int get_vec_element
   (*vec v, size_t idx, data_t *val)
{
    if (idx >= v->len)
        return 0;
    *val = v->data[idx];
    return 1;
}
```

Benchmark Computation

```
void combine1(vec_ptr v, data_t *dest)
{
    long int i;
    *dest = IDENT;
    for (i = 0; i < vec_length(v); i++) {
        data_t val;
        get_vec_element(v, i, &val);
        *dest = *dest OP val;
    }
}</pre>
```

Compute sum or product of vector elements

■Data Types

- Use different declarations for data t
- int
- long
- float
- double

Operations

- Use different definitions of OP and IDENT
- + / 0
- * / 1

Cycles Per Element (CPE)

- Convenient way to express performance of program that operates on vectors or lists
- Length = n
- In our case: CPE = cycles per OP
- T = CPE*n + Overhead
 - CPE is slope of line

Benchmark Performance

```
void combine1(vec_ptr v, data_t *dest)
{
    long int i;
    *dest = IDENT;
    for (i = 0; i < vec_length(v); i++) {
        data_t val;
        get_vec_element(v, i, &val);
        *dest = *dest OP val;
    }
}</pre>
```

Compute sum or product of vector elements

Method	Integer		Double FP	
Operation	Add	Mult	Add	Mult
Combine1 unoptimized	22.68	20.02	19.98	20.18
Combine1 -O1	10.12	10.12	10.17	11.14

Basic Optimizations

```
void combine4(vec_ptr v, data_t *dest)
{
  long i;
  long length = vec_length(v);
  data_t *d = get_vec_start(v);
  data_t t = IDENT;
  for (i = 0; i < length; i++)
     t = t OP d[i];
  *dest = t;
}</pre>
```

- Move vec_length out of loop
- Avoid bounds check on each cycle
- Accumulate in temporary

Effect of Basic Optimizations

```
void combine4(vec_ptr v, data_t *dest)
{
  long i;
  long length = vec_length(v);
  data_t *d = get_vec_start(v);
  data_t t = IDENT;
  for (i = 0; i < length; i++)
    t = t OP d[i];
  *dest = t;
}</pre>
```

Method	Inte	ger	Double FP	
Operation	Add Mult		Add	Mult
Combine1 -O1	10.12	10.12	10.17	11.14
Combine4	1.27	3.01	3.01	5.01

Eliminates sources of overhead in loop

Superscalar Processor

- Definition: A superscalar processor can issue and execute multiple instructions in one cycle. The instructions are retrieved from a sequential instruction stream and are usually scheduled dynamically.
- Benefit: without programming effort, superscalar processor can take advantage of the instruction level parallelism that most programs have
- Most modern CPUs are superscalar.
- Intel: since Pentium (1993)

Pipelined Functional Units

```
long mult_eg(long a, long b, long c) {
    long p1 = a*b;
    long p2 = a*c;
    long p3 = p1 * p2;
    return p3;
}
```


	Time						
	1	2	3	4	5	6	7
Stage 1	a*b	a*c			p1*p2		
Stage 2		a*b	a*c			p1*p2	
Stage 3			a*b	a*c			p1*p2

- Divide computation into stages
- Pass partial computations from stage to stage
- Stage i can start on new computation once values passed to i+1
- E.g., complete 3 multiplications in 7 cycles, even though each requires 3 cycles

x86-64 Compilation of Combine4

Inner Loop (Case: Integer Multiply)

```
void combine4(vec_ptr v, data_t *dest)
{
  long i;
  long length = vec_length(v);
  data_t *d = get_vec_start(v);
  data_t t = IDENT;
  for (i = 0; i < length; i++)
    t = t OP d[i];
  *dest = t;
}</pre>
```

Method	Inte	eger	Double FP	
Operation	Add	Mult	Add	Mult
Combine4	1.27	3.01	3.01	5.01

Combine4 = Serial Computation (OP = *)

Computation (length=8)

Sequential dependence

Loop Unrolling (2x1)

```
void unroll2a combine(vec ptr v, data_t *dest)
{
    long length = vec length(v);
    long limit = length-1;
    data t *d = get vec start(v);
    data t x = IDENT;
    long i;
    /* Combine 2 elements at a time */
    for (i = 0; i < limit; i+=2) {
       x = (x OP d[i]) OP d[i+1];
    /* Finish any remaining elements */
    for (; i < length; i++) {
       x = x OP d[i];
    *dest = x;
```

Perform 2x more useful work per iteration

Effect of Loop Unrolling

Method	Integer		Double FP	
Operation	Add Mult		Add	Mult
Combine4	1.27	3.01	3.01	5.01
Unroll 2x1	1.01	3.01	3.01	5.01

Helps integer add

Achieves latency bound

$$x = (x OP d[i]) OP d[i+1];$$

- Others don't improve.
 - Still sequential dependency

Loop Unrolling with Reassociation (2x1a)

```
void unroll2aa combine(vec ptr v, data_t *dest)
{
    long length = vec length(v);
    long limit = length-1;
    data t *d = get vec start(v);
    data t x = IDENT;
    long i;
    /* Combine 2 elements at a time */
    for (i = 0; i < limit; i+=2) {
       x = x OP (d[i] OP d[i+1]);
    /* Finish any remaining elements */
    for (; i < length; i++) {
       x = x OP d[i];
                                  Compare to before
                                  x = (x OP d[i]) OP d[i+1];
    *dest = x;
```

Can this change the result of the computation?

Effect of Reassociation

Method	Integer		Double FP	
Operation	Add Mult		Add	Mult
Combine4	1.27	3.01	3.01	5.01
Unroll 2x1	1.01	3.01	3.01	5.01
Unroll 2x1a	1.01	1.51	1.51	2.51

- Nearly 2x speedup for Int *, FP +, FP *
 - Reason: Breaks sequential dependency

$$x = x OP (d[i] OP d[i+1]);$$

Why is that? (next slide)

Reassociated Computation

```
x = x OP (d[i] OP d[i+1]);
```


What changed:

 OPs in the next iteration can be started early (no dependency)

Loop Unrolling with Separate Accumulators

(2x2)

```
void unroll2a combine(vec ptr v, data_t *dest)
    long length = vec length(v);
    long limit = length-1;
    data t *d = get vec start(v);
    data t x0 = IDENT;
    data t x1 = IDENT;
    long i;
    /* Combine 2 elements at a time */
    for (i = 0; i < limit; i+=2) {
       x0 = x0 \text{ OP d[i]};
       x1 = x1 \text{ OP } d[i+1];
    /* Finish any remaining elements */
    for (; i < length; i++) {
        x0 = x0 \text{ OP d[i]};
    *dest = x0 OP x1;
```

Different form of reassociation

Effect of Separate Accumulators

Method	Integer		Double FP	
Operation	Add	Mult	Add	Mult
Combine4	1.27	3.01	3.01	5.01
Unroll 2x1	1.01	3.01	3.01	5.01
Unroll 2x1a	1.01	1.51	1.51	2.51
Unroll 2x2	0.81	1.51	1.51	2.51

"Int addition" makes use of two load units

```
x0 = x0 OP d[i];
x1 = x1 OP d[i+1];
```

2x speedup (over unroll2) for Int *, FP +, FP *

Separate Accumulators

```
x0 = x0 OP d[i];
x1 = x1 OP d[i+1];
```


What changed:

Two independent "streams" of operations