Теория меры

Определение. $\mu:\mathcal{P}\to\mathbb{R}$ — продолжает $\mu_0:\mathcal{P}_0\to\overline{\mathbb{R}},\mathcal{P}_0\subset\mathcal{P}$, если $\mu\big|_{\mathcal{P}_0}=\mu_0$

Теорема 1 (о Лебеговском продолжении меры).

- $\mathcal{P}_0 \subset X$ полукольцо
- $\mu_0: \mathcal{P}_0 \to \mathbb{R} \sigma$ -конечная мера

Тогда $\exists \sigma$ -алгебра $\mathfrak{A} \supset \mathcal{P}_0$, $\exists \mu$ — мера на \mathfrak{A} :

- 1. μ продолжение μ_0 на $\mathfrak A$
- 2. μ полная мера
- 3. Если $\tilde{\mu}$ полная мера на σ -алгебре $\tilde{\mathfrak{A}}$ и $\tilde{\mu}$ продолжение μ_0 , то $\tilde{\mathfrak{A}}\supset\mathfrak{A}$ и при этом $\tilde{\mu}$ продолжает $\mu:\tilde{\mu}\big|_{\mathfrak{A}}=\mu$
- 4. Если $\mathcal{P}-$ полукольцо, такое что $\mathcal{P}_0\subset\mathcal{P}\subset\mathfrak{A}$ и мера $\upsilon-$ продолжение μ_0 на \mathcal{P} , то $\forall A\in\mathcal{P}\ \ \upsilon(A)=\mu(A)$

5.
$$\forall A \in \mathfrak{A} \ \mu A = \inf\{\sum \mu P_k : P_k \in \mathcal{P} : A \subset \bigcup_{k=1}^{+\infty} P_k\}$$

Доказательство. Не будет, это слишком сложно.

Общая идея следующая:
$$\forall A\subset X$$
 положим $\mu^*(A)=\inf\{\dots\}$ — не аддитивна. $A\subset \bigcup A_k\ \mu^*A=\sum \mu^*A_k$

Следствие 1.1.

- $A \in \mathfrak{A}$
- $\mu A < +\infty$
- $\varepsilon > 0$

Тогда $\exists P_k \in \mathcal{P}_0 : A \subset \bigcup P_k \;\; \mu A < \sum \mu P_k < \mu A + \varepsilon$

Мера Лебега

Теорема 2.

• $\mu: \mathcal{P}^m \to \mathbb{R}$ — классический объем в \mathbb{R}^m

Тогда μ это σ -конечная мера

Доказательство. σ -конечность очевидна, т.к. можно дизъюнктно разбить \mathbb{R}^m на ячейки.

Докажем счётную аддитивность μ .

Для этого достаточно проверить счётную полуаддитивность:

$$P = [a, b), P_n = [a_n, b_n) \ P \subset \bigcup P_n \ \mu P \stackrel{?}{\leq} \sum \mu P_n$$

Если $P=\varnothing$, то утверждение тривиально. Пусть P непустое.

Фиксируем $\varepsilon>0$. Чуть уменьшим координаты вектора b, так что $[a,b']\subset [a,b)$ и $\mu(P\setminus [a,b'))<\varepsilon$. Последняя формула некорректна, т.к. $P\setminus [a,b')$ не обязательно ячейка. Но оно представимо в виде $\bigsqcup D_j$, поэтому под $\mu(P\setminus [a,b'))$ подразумевается $\sum \mu D_j$. Также можно было записать $\mu P-\mu[a,b')<\varepsilon$ вместо этих трюков.

Уменьшим слегка координаты векторов a_n , так что $(a'_n,b_n)\supset [a_n,b_n)$, $\mu([a'_n,b_n)\backslash [a_n,b_n))<\frac{\varepsilon}{2^n}$. Эта запись также некорректна, поэтому напишем $\mu[a'_n,b_n)-\mu[a_n,b_n)<\frac{\varepsilon}{2^n}$

$$\underbrace{[a,b']}_{\text{гоуп}} \subset \bigcup (a'_n,b_n) \Rightarrow \exists \text{ конечное подпокрытие: } [a,b'] \subset \bigcup_{n=1}^N (a'_n,b_n) \Rightarrow [a,b') \subset \bigcup_{n=1}^N [a'_n,b_n)$$

Тогда $\mu[a,b') \leq \sum\limits_{n=1}^N \mu[a'_n,b_n)$

$$\mu P - \varepsilon \le \sum_{n=1}^{N} \left(\mu P_n + \frac{\varepsilon}{2^n} \right)$$
$$\mu P - \varepsilon \le \sum_{n=1}^{+\infty} \mu P_n + \varepsilon$$

Определение. Мера Лебега в \mathbb{R}^m — лебеговское продолжение классического объема.

 $\mathfrak{M}^m - \sigma$ -алгебра, на которой задана мера Лебега. Тогда множество называется измеримым по Лебегу

Свойства меры Лебега:

1. (a) $A_1,A_2\ldots$ — измеримы $\Rightarrow A_1\cap A_2,A_1\cup A_2,A_1\cap A_2\cap A_3\ldots,A_1\cup A_2\cup A_3\ldots$ — измеримы.

(b)
$$\forall n \ \lambda A_n = 0 \Rightarrow \lambda(\bigcup A_n) = 0$$

(c)
$$\lambda A_n = 0, B \subset A \Rightarrow B$$
 — измеримо, $\lambda B = 0$

Пример. $\mathbb{Q} \subset \mathbb{R}$ — измеримо, $\lambda_1 \mathbb{Q} = 0$

Доказательство. $\forall x \in \mathbb{R} \ \{x\} = \bigcap_n [x, x + \frac{1}{n})$

$$0 \le \lambda\{x\} \le \lambda[x, x + \frac{1}{n}) = \frac{1}{n} \Rightarrow \lambda\{x\} = 0$$

 \mathbb{Q} — объединение одноточечных множеств.

2. \mathfrak{M}^{m} содержит все открытые и замкнутые множества.

Лемма 1.

- (a) $O \subset \mathbb{R}^m$ открытое. Тогда $O = \coprod Q_i$, где Q_i ячейки с рациональными координатами. Можно считать, что ячейки кубические.
- (b) Можно считать, что $\overline{Q}_i \subset O$
- (c) E измеримо, $\lambda E=0$. Тогда $\forall \varepsilon>0$ $E\subset \bigcup Q_i:Q_i-$ кубические ячейки и $\sum \lambda Q_i<\varepsilon$

Примечание. $\forall \varepsilon > 0 \ \exists (B_i) -$ шары: $E \subset \bigcup B_i, \sum \lambda B_i < \varepsilon$

$$Q\left(x, \frac{R}{\sqrt{m}}\right) \subset B(x, R) \subset Q(x, R)$$
$$\left(\frac{2R}{\sqrt{m}}\right)^m \le \lambda B \le \lambda Q(x, R) = (2R)^m$$

Доказательство.

(a, b) $\forall x \in O$ пусть Q(x) — какая угодно ячейка с рациональными координатами, $Q(x) \subset O$ (можно потребовать $\overline{Q(x)} \subset O, Q$ — куб, координаты двоичнорациональны для второго пункта).

 $O = \bigcup_{x \in O} Q(x)$ — здесь не более чем счётное множество различных ячеек.

 $\Rightarrow O = \bigcap_{i=1}^\infty Q(x_i)$. Сделаем ячейки дизъюнктными: $Q_1 := Q(x_1), Q(x_2) \setminus Q(x_1) = \bigcup D_j$. Переобозначим D_j как $Q_2, Q_3 \dots Q_k$. Аналогично для всех $Q(x_i)$.

Можно считать, что координаты всех ячеек двоично рациональны.

Ячейки можно подразбить, чтобы они стали кубическими: пусть 2^l — самый крупный знаменатель. Тогда $[a_i,b_i]$ — конечное объединение кубических ячеек со стороной $\frac{1}{2^l}$

(с) Следует из пункта 5 теоремы о продолжении Лебега:

$$orall arepsilon > 0 \;\; \exists$$
 ячейки $P_k \;\; E \subset igl| \; igr| P_k \;\; 0 = \lambda E \leq \sum \lambda P_k \leq arepsilon$

 $\exists \tilde{P}_k$ — двоично-рациональные ячейки:

$$P_k \subset \tilde{P}_k \ 0 = \lambda E \le \sum \lambda_k \tilde{P}_k \le 2\varepsilon$$

Можно разбить \tilde{P}_k на конечное число кубов.

Определение. \mathfrak{B} — борелевская σ -алгебра (в \mathbb{R}^m или в метрическом пространстве) — минимальная σ -алгебра, которая содержит все открытые множества.

$$\mathfrak{M}^m\supset \mathfrak{B}$$

Пример. Канторово множество в \mathbb{R} :

$$K_0 = \begin{bmatrix} 0, 1 \end{bmatrix}$$

$$K_1 = \begin{bmatrix} 0, \frac{1}{3} \end{bmatrix} \cup \begin{bmatrix} \frac{2}{3}, 1 \end{bmatrix}$$

$$K_2 = \begin{bmatrix} 0, \frac{1}{9} \end{bmatrix} \cup \begin{bmatrix} \frac{2}{9}, \frac{1}{3} \end{bmatrix} \cup \begin{bmatrix} \frac{2}{3}, \frac{7}{9} \end{bmatrix} \cup \begin{bmatrix} \frac{8}{9}, 1 \end{bmatrix}$$

$$\vdots$$

Рис. 1: Множество Кантора

$$\mathcal{K} = \bigcup K_i$$
 — измеримо, $\lambda \mathcal{K} = 0, \lambda(K_i) = \left(\frac{2}{3}\right)^i$

Также можно задать множество Кантора следующим образом:

$$\mathcal{K} = \{x \in [0,1]: \text{ троичная запись } x \text{ содержит только цифр } 0 \text{ и } 2\}$$

3. \exists неизмеримые по Лебегу множества, т.е. не принадлежащие $\mathfrak M$

Зададим отношение \sim на \mathbb{R} : $x \sim y \Leftrightarrow x - y \in \mathbb{Q}$

 $\mathbb{R}/\mathbb{Q}=A$ — из каждого класса эквивалентности взяли по одной точке. Можно считать, что $A\subset [0,1]$

Очевидно, что $\bigsqcup_{q\in\mathbb{Q}}(A+q)=\mathbb{R}$

$$[0,1] \stackrel{(1)}{\subset} \bigsqcup_{q \in \mathbb{Q} \cap [-1,1]} (A+q) \stackrel{(2)}{\subset} [-1,2]$$

Измеримо ли А? Предпололжим, что да.

Очевидно $\forall q \ \lambda A = \lambda (A+q)$ по пункту 5 теоремы о продолжении меры.

14.12.2020

M3137y2019

$$\lambda[0,1] = 1 \le \sum_{q} \lambda(A+q) = \sum_{q} \lambda(A) \Rightarrow \lambda A > 0$$

Из (2):

$$\lambda\left(\bigcup(A+q)\right) = \sum_{q} \lambda A \le \lambda[-1,2] = 3 \Rightarrow \lambda A = 0$$

Противоречие $\Rightarrow A$ неизмеримо.

- 4. $A \in \mathfrak{M}$
 - A ограничено $\Rightarrow \lambda A < +\infty$
 - A- открыто $\Rightarrow \lambda A>0-$ из леммы.
 - $\lambda A = 0 \Rightarrow A$ не имеет внутренних точек.
- 5. $A \in \mathfrak{M}^m$. Тогда $\forall \varepsilon > 0$
 - \exists открытое $G_{\varepsilon} \supset A : \lambda(G_{\varepsilon} \setminus A) < \varepsilon$
 - \exists замкнутое $F_{\varepsilon} \subset A: \lambda(A \setminus F_{\varepsilon}) < \varepsilon$

Доказательство.

(a) $\lambda A - \text{кон}$.

$$\lambda A = \inf \left\{ \sum_{i} \lambda P_i : A \subset \bigcup P_i, P_i \in \mathcal{P} \right\}$$

Чуть "раздуем" эти $P_i = [a_i, b_i) \leadsto (a_i', b_i) \subset [a_i', b_i)$

$$\lambda[a_i', b_i) \le \lambda P_i + \frac{\varepsilon}{2^i}$$

$$A \subset \underbrace{\bigcup(a_i',b_i)}_{G_{2r}} \subset [a_i',b_i]$$

$$\lambda A \le \lambda G_{2\varepsilon} \le \sum \lambda [a_i', b_i] \le \sum \left(\lambda P_i + \frac{\varepsilon}{2^i}\right) \le \lambda A + 2\varepsilon$$

(b)
$$\lambda A=+\infty$$
. Используем σ -конечность: $\mathbb{R}^m=\coprod_{j=1}^{+\infty}Q_j$

$$\exists G_{\varepsilon,j} - \text{otkp.} \ \ (A \cap Q)j \subset G_{\varepsilon,j} \ \ \lambda(G_{\varepsilon,j} \setminus (A \cap Q_j)) < \frac{\varepsilon}{2^j}$$

$$A = \bigsqcup (A \cap Q_j) \subset \bigcup G_{\varepsilon,j} =: G_{\varepsilon}$$

$$\lambda(G_{\varepsilon} \setminus A) \leq \sum \lambda(G_{\varepsilon,j} \setminus (A \cap Q_j)) \leq \varepsilon$$

Очевидно: $G_{\varepsilon} \setminus A \subset \bigcup_{j} (G_{\varepsilon,j} \setminus (A \cap Q_{j}))$

(c) Для F_{ε} — переходим к дополнению:

Для A^c подбираем $G_{\varepsilon}, A^c \subset G_{\varepsilon}$

$$A\supset (G_{\varepsilon})^c=:F_{\varepsilon}$$

$$G_{\varepsilon} \setminus A^C = A \setminus (G_{\varepsilon})^c$$

$$\lambda(G_{\varepsilon} \setminus A^c) < \varepsilon \Rightarrow \lambda(A \setminus F) < \varepsilon$$