Exemplo Prático Diodo Zener:

Um circuito bastante empregado em iluminação pública é o relé fotoeletrônico microcontrolado, aos quais são instalados nos postes das ruas, avenidas e etc. Este equipamento funciona da seguinte maneira: Ao anoitecer anoiteceu e o relé fotoeletrônico acende a lâmpada de vapor de sódio ou LED que se encontra no poste. Ao amanhecer, o sensor retira o sinal de tensão do pino do microcontrolador e o relé fotoeletrônico apaga a lâmpada.

No entanto, para o microcontrolador funcionar adequadamente, o mesmo necessita de uma fonte de tensão contínua nominal de 5,0 V e tensão máxima de 5,5 V (Parâmetros elétricos do microcontrolador modelo 12F675 se encontram na tabela 1).

Tabela 1 – Parâmetros elétricos do microcontrolador.

Modelo	PIC12F675
Fabricante	Microchip
Número de Pinos	8
Potência	0,8 W
Tensão de alimentação nominal	5,0 V
Máxima tensão de alimentação (Vcc_max)	5,5 V
Mínima tensão de alimentação (Vcc_min)	4,5 V
Pino Vcc	pino 1
Pino GND	pino 8
Pino escolhido para entrada do sensor de	pino 7
corrente	

Uma aplicação bastante comum do diodo zener se dá em fonte regulada de tensão para alimentação de circuitos eletrônicos de baixa potência.

Neste sentido, um técnico em eletrônica precisa projetar a fonte do microcontrolador com um diodo zener (D_z) , sendo que a tensão contínua disponível no circuito é de 18 V fixa, conforme o circuito esquemático a seguir.

Figura 05: Esquemático Microcontrolador Relé Fotoeletrônico

Análise os seguintes tópicos e responda:

- Escolha um diodo zener da tabela 2 que melhor se enquadra neste projeto, justificando a escolha
- Apresentar os cálculos do resistor máximo (R_{max}) e do resistor mínimo (R_{min}) em série com o diodo zener escolhido, necessário para o funcionamento adequado da fonte regulada.

Tabela 2 – Diodos zener disponíveis para escolha.

Tensão de Zener	Potência máxima do	Referência
(V_z)	Zener (P _{zmax})	Comercial
3,9 V	1 W	1N4730A
4,3 V	1 W	1N4731A
4,7 V	1 W	1N4732A
5,1 V	1 W	1N4733A
5,6 V	1 W	1N4734A
6,2 V	1 W	1N4735A
6,8 V	1 W	1N4736A

Tolerância Tensão do Diodo Zener: ±5%

Assumir valores comerciais de resistores (5%): 10Ω , 12Ω , 15Ω , 18Ω , 22Ω , 27Ω , 33Ω , 39Ω , 47Ω , 56Ω , 68Ω , 82Ω e múltiplos de 10. Assumir Potência Nominal dos Resistores Comerciais: 1/8 W, 1/4 W, 1 W, 2 W, 3 W, 5 W.