

Winning Space Race with Data Science

Kough Teryila Gabriel *March*, 2025

Outline

- Executive Summary
- Introduction
- Methodology
- Results
- Conclusion
- Appendix

Executive Summary

 This report provides insights into SpaceX Falcon 9 launches, analyzing launch data using API collection, web scraping, data wrangling, SQL, exploratory data analysis (EDA), interactive visualizations, and machine learning classification models to predict landing outcomes.

Introduction

 The SpaceX Falcon 9 program aims to revolutionize space travel by enabling reusable rocket landings. This project explores historical launch data to analyze success factors and predict future landing outcomes using datadriven methods.

Methodology

Data Collection:

- API Calls: SpaceX REST API was used to retrieve rocket, launchpad, payload, and core data.
- Web Scraping: Additional historical launch data was extracted using BeautifulSoup.
- Data Wrangling: Processed API and scraped data, handling missing values and formatting issues.

Exploratory Data Analysis (EDA) with SQL:

- SQL Queries: Analyzed launch success rates, payload mass effects, and orbit types.
- Data Visualizations: Used histograms, scatter plots, and bar charts for insights.

Machine Learning:

- Feature Engineering: Created relevant predictors from launch data.
- Model Training: Tested multiple classifiers to predict landing success.
- Model Evaluation: Compared models using accuracy metrics.

Data Collection

- **Web Scraping:** Additional historical launch data was extracted using BeautifulSoup.
- Data Wrangling: Processed API and scraped data, handling missing values and formatting issues.

Data Collection - SpaceX API

 API Calls: SpaceX REST API was used to retrieve rocket, launchpad, payload, and core data.

Data Collection - Scraping

- **Step 1:** Send request to target web page.
- **Step 2:** Parse HTML using BeautifulSoup.
- **Step 3:** Extract relevant data elements (e.g., launch details).
- **Step 4:** Store data in structured format for further analysis.
- **Step 5:** Clean and integrate data with existing datasets.

 Add the GitHub URL of the completed web scraping notebook, as an external reference and neer-review

Data Wrangling

Data Cleaning:

- Removed duplicate entries and null values.
- Standardized column names and formats.

• Feature Engineering:

- Extracted useful fields such as launch year, payload category, and booster type.
- Created binary success/failure labels for classification tasks.

Data Transformation:

- Converted categorical values to numerical representations.
- Normalized payload mass and other numerical attributes.

• Integration:

- Merged datasets from API, web scraping, and existing historical data.
- https://github.com/Gabby210992/Machine-Learning/blob/main/SpaceX_data_wrangling.ipynb

EDA with Data Visualization

- Flight Number vs. Launch Site: Scatter plot analysis to show their relationship.
- Payload vs. Launch Site: Scatter plot visualization.
- Orbit Type vs. Success Rate: Bar chart of success rates.
- Yearly Launch Success Trend: Line chart of launch success over time.

EDA with SQL

Data Cleaning:

- Removed duplicate entries and null values.
- Standardized column names and formats.

• Feature Engineering:

- Extracted useful fields such as launch year, payload category, and booster type.
- Created binary success/failure labels for classification tasks.

• Data Transformation:

- Converted categorical values to numerical representations.
- Normalized payload mass and other numerical attributes.

Integration:

- Merged datasets from API, web scraping, and existing historical data.
- Add the GitHub URL of your completed EDA with SQL notebook, as an external reference and peer-review purpose

Interactive Map with Folium

Folium Maps:

- Global launch site markers.
- Launch outcomes color-coded.
- Launch site proximity analysis.
- https://github.com/Gabby210992/Machine-Learning/blob/main/spaceX_map.ipynb

Build a Dashboard with Plotly Dash

Plotly Dash Dashboards:

- Pie charts of launch success rates.
- Payload vs. Launch Outcome scatter plots.
- · Explain why you added those plots and interactions
- Add the GitHub URL of your completed Plotly Dash lab, as an external reference and peer-review purpose

Predictive Analysis (Classification)

- Classification Models: Built machine learning models to predict landing success.
- Model Evaluation: Accuracy comparison across models.
- Best Model: Displaying accuracy and confusion matrix.
- You need present your model development process using key phrases and flowchart
- Add the GitHub URL of your completed predictive analysis lab, as an external reference and peer-review purpose

Results

- The SpaceX Falcon 9 Landing Prediction project combined data collection, exploratory analysis, and machine learning to derive meaningful insights about launch success factors. The key results are as follows:
- The increasing trend in successful landings highlights the effectiveness of SpaceX's iterative design improvements.
- Certain launch conditions, payload characteristics, and booster versions significantly influence landing success.
- Predictive modeling provides a reliable approach to assessing future landing probabilities.

Flight Number vs. Launch Site

 Show a scatter plot of Flight Number vs. Launch Site

Payload vs. Launch Site

 Show a scatter plot of Payload vs. Launch Site

Success Rate vs. Orbit Type

 Show a bar chart for the success rate of each orbit type

Flight Number vs. Orbit Type

 Show a scatter point of Flight number vs. Orbit type

Payload vs. Orbit Type

 Show a scatter point of payload vs. orbit type

Launch Success Yearly Trend

 Show a line chart of yearly average success rate

All Launch Site Names

- · Find the names of the unique launch sites
- · Present your query result with a short explanation here

Launch Site Names Begin with 'CCA'

- · Find 5 records where launch sites begin with `CCA`
- · Present your query result with a short explanation here

Total Payload Mass

- · Calculate the total payload carried by boosters from NASA
- · Present your query result with a short explanation here

Average Payload Mass by F9 v1.1

- Calculate the average payload mass carried by booster version F9
 v1.1
- · Present your query result with a short explanation here

First Successful Ground Landing Date

- Find the dates of the first successful landing outcome on ground pad
- · Present your query result with a short explanation here

Successful Drone Ship Landing with Payload between 4000 and 6000

• List the names of boosters which have successfully landed on drone ship and had payload mass greater than 4000 but less than 6000

· Present your query result with a short explanation here

Total Number of Successful and Failure Mission Outcomes

- Calculate the total number of successful and failure mission outcomes
- · Present your query result with a short explanation here

Boosters Carried Maximum Payload

- List the names of the booster which have carried the maximum payload mass
- · Present your query result with a short explanation here

2015 Launch Records

• List the failed landing_outcomes in drone ship, their booster versions, and launch site names for in year 2015

• Present your query result with a short explanation here

Rank Landing Outcomes Between 2010-06-04 and 2017-03-20

• Rank the count of landing outcomes (such as Failure (drone ship) or Success (ground pad)) between the date 2010-06-04 and 2017-03-20, in descending order

· Present your query result with a short explanation here

<Folium Map Screenshot 1>

• Replace <Folium map screenshot 1> title with an appropriate title

• Explore the generated folium map and make a proper screenshot to include all launch sites' location markers on a global map

<Folium Map Screenshot 2>

• Replace <Folium map screenshot 2> title with an appropriate title

• Explore the folium map and make a proper screenshot to show the colorlabeled launch outcomes on the map

<Folium Map Screenshot 3>

• Replace <Folium map screenshot 3> title with an appropriate title

• Explore the generated folium map and show the screenshot of a selected launch site to its proximities such as railway, highway, coastline, with distance calculated and displayed

< Dashboard Screenshot 1>

• Replace < Dashboard screenshot 1> title with an appropriate title

• Show the screenshot of launch success count for all sites, in a piechart

< Dashboard Screenshot 2>

• Replace <Dashboard screenshot 2> title with an appropriate title

• Show the screenshot of the piechart for the launch site with highest launch success ratio

< Dashboard Screenshot 3>

Replace < Dashboard screenshot 3> title with an appropriate title

 Show screenshots of Payload vs. Launch Outcome scatter plot for all sites, with different payload selected in the range slider

• Explain the important elements and findings on the screenshot, such as which payload range or booster version have the largest success rate, etc.

Classification Accuracy

• Visualize the built model accuracy for all built classification models, in a bar chart

• Find which model has the highest classification accuracy

KNN Confusion Matrix

Conclusions

- This project provided valuable insights into SpaceX Falcon 9 landings using a combination of web scraping, SQL analysis, and machine learning.
- The results highlighted key success factors such as launch site performance, payload impact, and orbit type.
- The predictive model demonstrated promising accuracy in forecasting landing success, which could help optimize future launches.
- Further improvements can be made by integrating more real-time data sources and refining feature engineering techniques.

Appendix

- Python code snippets
- SQL queries
- Data visualizations
- Model outputs

