Multivariate EEG analysis via generalized eigendecomposition

(Fischer's linear discriminant analysis)

Why multivariate analyses?

• Neural data are multivariate (but we often pretend they're univariate)

for c in channel:
for t in time
perform computations

Differences in EEG activity across conditions at one channel

Why multivariate analyses?

- Neural data are multivariate
- Different EEG channels/sensors contain overlapping info

activity from one **source** propagates via **volume conduction** to multiple **channels/sensors**

Why multivariate analyses?

- Neural data are multivariate
- Different EEG channels/sensors contain overlapping info
- Need to "unmix" or separate different neural sources
 - Statistical, anatomical, computational sources
 - Spectral/frequency analyses also separate sources

What is source separation?

Principal components analysis (unsupervised)

https://sebastianraschka.com/faq/docs/lda-vs-pca.html

Linear discriminant analysis (supervised)

https://sebastianraschka.com/faq/docs/lda-vs-pca.html

Linear discriminant analysis (supervised)

Why linear discriminant analysis?

- Uses data from all channels (each channel is one feature)
- Reduces dimensionality of EEG data
- Separates overlapping spatiotemporal activity
- Produces meaningful neural components/sources (independent but non-orthogonal components)
- Computationally cheap (generalized eigendecomposition)
- Flexible hypothesis testing! (supervised machine learning)

