

US	N:	_					

HKBK College of Engineering Department of Engineering Mathematics Second Internal Assessment Test

AY: 2021-22

Subject: CALCULUS AND DIFFERENTIAL EQUATIONS

Code:21MAT11

Semester: I

Date: 28/02/2022

Time: 9:00am - 10:15 am

Max Marks:40

Modules Included for Test: 2 & 3

Answer any two full Questions selecting at least ONE question from each part. Each question carries 20 marks

Q.n	Mo d#	C O#	B	Questions	Marks
1a	2	2	2	Examine the function $f(x,y) = xy(1-x-y)$ for extreme values	7
1b	2	2	5	If $U = f(2x - 3y, 3y - 4z, 4z - 2x)$, show that $6u_x + 4u_y + 3u_z = 0$	7
1c	2	2	5	If $x = rsin\theta \cos \phi$, $y = rsin\theta \sin \phi$, $z = rcos\theta$ show that $\frac{\partial(x,y,z)}{\partial(r,\theta,\phi)} = r^2 sin\theta$	6
				OR	
2a	2	2	2	If $x + y + z = u$, $y + z = uv$ and $z = uvw$, find $\frac{\partial(x,y,z)}{\partial(u,v,w)}$	7
2b	2	2	2	If $U = Tan^{-1}(\frac{y}{x})$, $x = e^t - e^{-t}$; $y = e^t + e^{-t}$. Find $\frac{du}{dt}$ by using partial derivatives.	7
2c	2	2	2	Find the extreme values of $x^3 + y^3 - 3axy$, $a \ge 0$	6
				A CONTROL OF THE STATE OF THE S	
3a			2	A copper ball originally at 80° C cools down to 60° C in 20 minutes, if the temperature of the air being 40° C, what will be the temperature	7
	3	3	2.	of the ball after 40 minutes from the original?	
3b	3	3	5		7
3b			5		7
	3	3	5	Solve $\frac{dy}{dx} + y Tan x = y^3 Sec x$	
	3	3	5	Solve $\frac{dy}{dx} + y Tan x = y^3 Sec x$ Solve $(1 + e^{\frac{x}{y}}) dx + e^{\frac{x}{y}} \left(1 - \frac{x}{y}\right) dy = 0$ OR	
3c	3	3	5	Solve $\frac{dy}{dx} + y Tan x = y^3 Sec x$ Solve $(1 + e^{\frac{x}{y}}) dx + e^{\frac{x}{y}} \left(1 - \frac{x}{y}\right) dy = 0$ OR	6
3c 4a	3 3	3	5 5	Solve $\frac{dy}{dx} + y Tan x = y^3 Sec x$ Solve $(1 + e^{\frac{x}{y}}) dx + e^{\frac{x}{y}} \left(1 - \frac{x}{y}\right) dy = 0$ OR Solve $y(x+y) dx + (x+2y-1) dy = 0$	7

HKBK COLLEGE OF ENGINEERING, BANGALORE - 560045 2nd IA SCHEME DEPT. OF ENGINEERING MATHEMATICS COMMON TO ALL COMMON TO ALL
BRANCHES

SCHEME & SOLUTIONS

0

Subject Code: 21MATII Subject Name: CALEULUS & DIFFERENTIAL EQUATIONS

0		Marks
#	Solution	located
ya)	$f(x_1y) = xy(1-x-y)$ =) $f(x_1y) = xy - x^2y - xy^2$ $f_x = y - 2xy - y^2, f_y = x - x^2 - 2xy$ $f_x = 0 = y - 2xy - y^2, f_y = 0 = y - 0 & 2x + y = 1$ $f_x = 0 = y - 2x - y = 0 = y - 0 & 2x + y = 1$ $f_y = 0 = y - 2x - 2y = 0 = y - 0 & 2x + 2y = 1$ On failing the equations $f_y = 0 - y - 2y - 0 - 2x + 2y = 1 - 2x + 2y = 1$ $f_y = 0 - 2y - 2y - 0 - 2x + 2y = 1 - 2x + 2y = 1$ $f_y = 0 - 2y - 2y - 0 - 2x + 2y = 1 - 2x + 2y = 1$ $f_y = 0 - 2y - 2y - 0 - 2x + 2y = 1 - 2x + 2y = 1$ $f_y = 0 - 2y - $	
	A = - $\frac{\partial y}{\partial x}$, B = $\frac{\partial y}{\partial x} = 1 - \frac{\partial x}{\partial x}$, C = $-\frac{\partial x}{\partial x}$ points $(0,0)$ $(1,0)$ $(0,1)$ $(\frac{1}{3},\frac{1}{3})$ A = - $\frac{\partial y}{\partial x}$ 0 0 0 0 0 0 0 0 0 0	
	$f(V_{31}/3) = (\frac{1}{3})(\frac{1}{3})(1-\frac{1}{3}-\frac{1}{3}) = \frac{1}{27}$, .

Please Turn Over

	Q#	Solution	Marks Allocated	
		$ \begin{aligned} M &= \{(2x - 3y, 3y - 43, 43 - 2x) \\ M &= \{(2x - 3y, 3y - 43, 43 - 2x) \\ M &= \{(2x - 3y, -2y, 3) \\ M &= \{(2x - 3y, -2y, 3) \\ M &= \{(2x - 3y, -2y, 3) \\ M &= \{(2x - 3y, -2y, -2y, 3) \\ M &= \{(2x - 3y, -2y, -2y, -2y, -2y, 3) \\ M &= \{(2x - 3y, -2y, -2y, -2y, -2y, -2y, -2y, -2y, -2$		
	,	$4uy = f_{p}(-3) + f_{q}(3) + f_{q}(3) + f_{q}(4)$ $4uy = -12f_{p} + 12f_{q}(4) + f_{q}(4)$ $4u_{3} = f_{p}(0) + f_{q}(-4) + f_{q}(4)$ $4u_{3} = f_{p}(0) + f_{q}(-4) + f_{q}(4)$	4	
		64x + 44y + 343 = 0 64x + 44y + 343 = 0		
ij)()	7 = 918/20 Slnd 3 = 910080.		

She_ Faculty Name & Sign

Q#	Solution	Marks Allocated
i.	9(21016) = 3x	,
	J(71413) = Sino cos & recosocos - 918 inos J(91014) Sino sin & recosopin & resino Cos Cos o - 918 in O On expanding about the last sow, J = cos o [912 sino cos o cos 2 + 912 sino coso frisho (918 in 20 cos 2 + 912 sino coso frisho (918 in 20 cos 2 + 912 sino coso frisho (918 in 20 cos 2 + 912 sino 20 sin 2)	98 p
2)	$= 7 \times = 4 - 4 - 3$, $y = 4 - 4 - 3$ $y = 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4$	
	1(11413) = 34 34 34 34 34 34 34 34 34 34 34 34 34	+3

HOH-9-7
Academic Year

She Faculty Name & Sign

Q#	Solution	Marks Allocated
	J= 1-12 -1 0t 1-10 0t	<u>3</u>
2) 6) $u = tan^{-1}[y_{1}]; \chi = e^{t} - e^{t}, y = e^{t} + e^{-t}$ $u = (x_{1}, y_{1}) - y_{1} + y_{2} + y_{3} + y_{4}$ $du = \frac{1}{1+y_{3}}[-y_{1},y_{3}] = -\frac{y}{x_{3}+y_{3}}$ $du = \frac{1}{1+y_{3}}[-y_{1},y_{3}] = -\frac{y}{x_{3}+y_{3}}$ $du = \frac{1}{1+y_{3}}[-y_{1},y_{3}] = \frac{y}{x_{3}+y_{3}}$ $du = \frac{1}{1+y_{3}}[-y_{1},y_{3}] = \frac{y}{x_{3}+y_{3}}[y_{3}] + \frac{y}{x_{3}+y_{3}}[x_{3}]$ $du = \frac{y}{x_{3}+y_{3}}[y_{3}] + \frac{y}{x_{3}+y_{3}}[x_{3}]$	(i) (3)

She Faculty Name & Sign

Subject Name: CALEULUS AND DIFFEREN PHIDJECT Code: 21MATII

	C 4011/10/03	Marka
#	Solution	Marks located
2)	F(114) = $\chi^3 + y^3 - 3a\eta y$; $a > 0$ $f_{\chi} = 3\chi^2 - 3ay$ Ond $f_{\chi} = 3y^2 - 3a\eta$ We shall find the stationary froints such that $f_{\chi} = 0$ and $f_{\chi} = 0$ $f_{\chi} = 0 = 3\chi^2 - 3a\eta = 0 = 3\chi^2 = a\eta - 0$ $f_{\chi} = 0 = 3\chi^2 - 3a\eta = 0 = 3\chi^2 = a\eta = 3\chi = 3$	
	Minimum value of $f(x,y)$ is $f(a,a)$ $f(a,a) = a^3 + a^3 - 3a^3 = -a^3$ at (a,a)	
		lease Turn Over

	Q#	Solution	Marks Allocated
	3)	a) we have T= t2+(t1-t2) = kt	Į
		By data, t= 80°C, t= 40°C, T=60	
		[(n = 40+ /80-40) 0 000	
-		$\frac{20}{40} = 0.5 = e^{20k} = \log_{e} 0.5 = -20k$ =) $\neq 0.6931 = \neq 20k$	
		-1 b -0 0346	(4)
		-7 = 40 + (80 - 40) = 0.0346(40)	
	Đ.	=) 7=50.0+	
	3)	b) dy + y tanx = y 3 seex = 'y3'	
		J dy + J kanz = Secx	
		1 dy + Intant = sect	
		1 (5) Ot = - 13 Th 7 Ton 4 Ton	
		dt attand = - aseex	
		$=$ $\frac{1}{2}$	3
		an : LasPdx = Spdx dx+C	
		=) \frac{1}{ydsec\chi\chi} = \int_2 \frac{1}{8ec\chi\chi} d\chi+C	
			4)

G#	Solution	Marks Allocated
March & Co.	=> Cos2n = -2 & Cnx + c	0.
3)) (1-ten/y) ax + -en/y (1-n/y) dy = 0'. [M=1-ten/y, N=en/y (1-n/y)	,
	dn = eng(-1/g2); dn = eng(-1/g)+(1-1/g)-en/g(1/g)	
	Soudant SN(4) dy = C Soudant SN(4) dy = C	-4
	S(1+e/4)dx+ Sody=e -> x+e/4)dx+ Sody=e -> x+e/4)=e= > x+ye/4=e	
4-)(a) y(x+y)dx+ (x+2y-1)dy=0 M=xy+yd=).dm=x+2y	
	N: X+2y-1 =) IN = 1 IM - IN = X+2y-1 near to N	a
	N[dm-dn]= x+dy-1 = 1= f(x)	7

2021-22-Academic Year She Faculty Name & Sign

Q#	Solution	Marks Allocated
	esf(x)dx = esidx = ex	*
	mulichy the ausen serly I'm we have,	
	m= ex(xy+y2) and N= ex(x+2y-1)	• 1
	IM = ex. x+ex 24	ı,
	IN = ex (x+2y-1)+en.	# B
	JU = Z	
	dr = xex + 2.2y	
	dm = dN =) Equation is exact	(2)
	Solvie Smart SN(y) dy = c	
	1 = 1 = 1 = 1 = C	
	=) /(xyerey=) 0 =) y (xexdx+ y2 sexdx=e	, = =
	=> y (x e x 0 x 7) 0 x = c	
	$\frac{1}{2}$	
	1 2201-42 + 7 -	
	=) ex[24-4+42]=c	
4).	b) dy + y cosx + siny + y = 0	
	sink in wig in	i

Jo H - J 2 Academic Year She

Faculty Name & Sign

1

HKBK COLLEGE OF ENGINEERING, BANGALORE - 560045

DEPT. OF ENGINEERING MATHEMATICS

Subject Name: CALCULUS & DIFFERENTIAL

EQUATIONS

Code:

Subject 2/MAT1

	Code:	
Q #	Solution Allocated	Marks
Т	(y cosx + siny + y) dx + (sinx + x cosy + x) dy Let m = y cosx + siny + y	= 0
	AM = COSX + CLOSY + 1 N = Sin X + X CLOSY + X N = EUSX + CLOSY + 1 TH = EUSX + CLOSY + 1 TH = FN =) EXACT PY - TY - PY - TY TY - TY - PY - TY	
	Smort SN(y)dy=C => ysinxt xsiny + xy=C -	P
4)	e) we have $T = t_2 + (t_1 - t_2) = -kt$ By data, $t_1 = 100$, $t_2 = 25$, $T = 75$ when.	+D
	$T = 25 + 75 = kt$ $= 25 + 75 = k \text{ or } = \frac{3}{3} = 1.5$	<u>-</u>
	=> k= loge(1.5) = 0.4055 cel have lo find T when k=3 -0.4055k 1.7=.25+75e	
	-102166	3
	=) $(7)_{t=3} = 47.22$ $(2q)_{extres}$	26/2/2021

Please Turn Over