BEST AVAILABLE COPY

(19) SU (19) 1474843 A1

(5D 4 H 03 M 1/24

ГОСУДАРСТВЕННЫЙ НОМИТЕТ ПО ИЗОБРЕТЕНИЯМ И ОТНРЫТИЯМ ПРИ ПРИТ ССОР

ОПИСАНИЕ ИЗОБРЕТЕНИЯ

АВТОРСНОМУ СВИДЕТЕЛЬСТВУ

- (21) 4251343/24-24
- (22) 27.05.87

c. 81-82,

- (46) 23,04,89, Empr. P 15
- (71) Ленинградский институт точной механики и оптики
- (72) А.К.Азов, Л.Н.Мальцев,
- A.A.Ожиганов и И.В.Меськин (53) 681.325 (088.8)
- (56) Патент СИА № 317209В, кд. 340-347, опублик, 1965. Авторское свидетельство СССР № 1156256, кл. Н ОЗ М 1/24, 1983. Жугная ТИЙЭР, т. 64, 1967, № 12,

- (54) преобразователь угол -код
- (57) Изобретение относится к вналогоинфровому преобразованию информации,
 в именно к преобразователям угля поворота вала в код. Цель изобретения —
 повышение точности и упрощение преобразователя достигается тем, что
 в преобразователе угол-ход, содержашем кодовый диск, и считывающих элементов 2, дополнительный считывающий
 элемент 3, сумнатор 5 по модулю два,
 блок 7 обработки информации, информационная дорожка 1 кодового диска
 выполнена в виде псевдослучайной
 двоичной последовательности макси-

SU on 1474843

1474843

мальной длины с периодом M=2ⁿ-1, лолученной при помого примитивного многочлена h(x) степени п, считывающие элементы 2 установлены вдоль информадионной дорожки 1 с постоянным шагом kx, saganham многочленом $r(x) = \sum_{i=0}^{n-1} x^{ik}$ где $x = \frac{360^9}{M}$ — величина кванта преобразователя, а k=1,2,3,..., причем k(n-1) < M, дополнительный считывающий элемент 3 установлен относительно первого считывающего элемента 2 вдоль информационной дорожки 1 на расстоя-

248-594-9519

ние $\kappa = x[(n-1)k+(M-1)]$, где 1 - степень одночлена, полученного при деленин по модулю два со стороны младших степеней многочлена г(х) на многочлен h(x), 1 и к берутся по модулю М. Выход сумматора 5 по модулю два соединен с шиной 14 преобразователя, Дополнительный считывающий элемент 3 позволяет осуществлять контроль на четность. За счет построения информационной дорожки и расположения считывающих элементов повышается точность преобразователя. З ил.

Изобретение относится к области аналого-шифрового преобразования информации, а именно к преобразователям угла поворота вала в код.

Цель изобретения - повышение точности и упрожение преобразователя.

На фиг. 1 приведена структурная скема преобразователя угол-код; на фиг. 2 - линейная развертка информаци- 10 онной дорожки кодового диска с раз--личным расположением считывающих элементов и соответствующие расположе--элс отэровантиро отоннологичество элемента; на фиг.3 - скема блока обра- 15 . нашвифофна натор

Преобразователь угол-код (фиг.1) содержит кодовый диск с информационной дорожкой 1, считывающие элементы 2, дополнительный считывающий эле- 20 мент 3, пороговые элементы 4, сумматор 5 по модулю два, элемент НЕ 6, блок 7 обработки информации, выходы 8 которого являются информационными выходам преобразователя. Блок 7 обработки информации содержит Пэлементы НЕ 9, элементы И 10, триггеры 11, имеет информационные входы 12 и управляющий вход 13, соединенный с імной 14 контроля преобразователя.

Рассмотрии четырехразрядный преобразователь угол-код, т.е. п=4.

. Способы получения псевдослучанных двоичных последовательностей максимальной длины (ПСДПМД) с периодом М*2"-1 известкы. Например, известен способ получения такой последователькости при помощи сдвигающего регистра с суюматорами по модулю два в цепи обратной связи, где дана таблица

для 1≤ п ≤ 40. Для получения последо~ вательности с периодом М=24-1=15 необходим примитивный многочлен h(x) степени 4. Выбирают многочлен h(x)-=x⁴+x+1 из таблицы. При получении соответствующей последовательности необходимо использовать четырехразрядный сдвигающий регистр с суюматором по модулю два в цепя обратной связи, где характер обратных связей определяется многочленом h(x). В данном случае четырекразрядный сдвигаюлий регистр будет генерировать последоветельность $M = 2^4 - 1 = 15$ 111101011001000,... При построения информационной дорожки 1 кодового диска последовательность с пернодом М=15 наносится на кодовый диск в виде активных (единицы) и пассивных (нули) участков информационной дорожки 1. например, по ходу часовой стрелки, причем на информационную дорожку 1 кодового днека наносится только один период последовательности. Последовательность с периодом $M=2^{h}-1$ определяет число квантов преобразователя, которое в данном примере равно 15: Отсюда величина кванта

$$x = \frac{360^{\circ}}{15} = 24,0^{\circ}$$

В общем случае размещение и считывающих элементов 2 вдоль информационной дорожки 1 кодового диска с постоянным шагом, например, по ходу движення часовой стрелки ножет быть эадано многочленом

30

 $\mathbf{r}(\mathbf{x}) = \sum_{i=1}^{n+1} \mathbf{x}^{ik},$

где k=1,2,3,... и $k(n-1) \le M$.

Дополнительный считывающий элемент 3 смещается вдоль информационной дорожки 1 кодового диска относительно первого считывающего элемента 2 по ходу движения часовой стрелки на величину угла « » (m-1) k +
+(M-1), где 1 - степень одночлена,
являющегося остатком от деления по
модулю два со стороны младших степеней многочлена х(х) на многочлен
h(х), причем степень 1 одночлена, в
также величина [(n-1)k+(M-1)] при
превышении ими числа (M-1) берутся
по модулю М,

Приведем примеры определения местоположения дополнительного считываю—20 щего элемента 3 относительно переого считывающего элемента 2 с использованием математической формулы.

Пусть h(x)=x⁴+x+1, n=4, M=15. a) k=1 (фиг.1);

x₈+x₃+x₄

x₈+x₂+x₄

x₄+x₅

x₄+x₅

x₄+x₅

x₄+x₅

x₄+x₅

x₅+x₆

x₆+x₇

x₈+x₉

x₈

x₈+x₉

x₈

x₈+x₉

x₈

1 = 12 $w_1 = x [(n-1) \cdot k + (M-1)] = [3 \cdot 1 + (15 - 12)] \cdot x = 6x$

6) k=2 (φμr, 2a) κ_ε(x)=1+x²+x⁴+x⁶; 1+x²+x⁴+x⁶ 1+x+x⁴ 1+x+x⁴ x+x²+x⁶ x+x²+x⁵ x⁵+x⁶

 $\frac{x^{4}}{x^{4}}$ 1=9; $\alpha_{2} = [(n-1)k+(M-1)] \times [3\cdot 2+$ + $(15-9)] \cdot x=12x$,

в) k=3 (фиг, 26);
 г₉ (х)=1+х³+х⁶+х⁷;
 1+х³+х⁶+х⁸ | 1+х+х⁹ | 1+x+х²+х⁴+х | 1+x+x²+x⁴+х
 x+x³+x⁴+x⁶+x⁸

 $\frac{x_{+}x_{4}+x_{2}}{x_{1}+x_{2}+x_{4}+x_{4}+x_{4}+x_{4}}$

1474843

25

30

35

x⁴+x⁷+x⁴ x⁴+x⁵+x⁸ x⁵+x⁷ x⁵+x⁷+x¹²

x2+x3+x4

 $1=12; d_3=x \cdot [(n-1)k+(M-1)] = [3 \cdot 3+ +(15-12) x=12x,$

r) k=4 (фиг,2в); r₄ (x)=1+x⁴+x⁶+x¹²; 1+x⁴+x⁵+x¹¹[1+x+x⁴

x²+x³+x⁸+x⁴ x²+x³+x⁶ x³+x⁸+x⁶+x⁸+x⁶ x³+x⁴+x⁷

x⁴+x⁵+x⁶+x¹+x⁸+x⁶ x⁶+x⁷+x⁹

x¹⁰+x¹⁰ x¹⁰+x¹¹+x¹⁴ x¹¹+x¹¹+x¹⁴ x¹¹+x¹²+x¹⁵

1=18; 18 (mod 15)=3; $\alpha_4 = x [(n-1) \cdot k + (M-1)] = x [3 \cdot 4 + (15-3)] = \frac{24x}{10}$

724x; $24x \pmod{15} = 9;$ 4 = 9x.

Информация с дополнительного считырамиего элемента 3 позволяет организовать контроль на четность инфор-

мации со считывающих элементов 2. Преобразователь угол-код работает

Преобразователь угол-код работает следующим образом.

При определенном положении кодового диска с информационной дорожки 1 считывается посредством считывающих ,элементов 2 и дополнительного считываю щего элемента 3 через пороговые элементы 4 соответствующий цифровой код. Последний в виде элемтрических сигналов подается на входы сумматора 5 по модулю

рва и без сигнала с дополнительного считывающего элемента 3 на информационные входы 12 блока 7 обработки информации. На управляющий вход 13 блока 7 обработки информации поступает сигнал с выхода сумматора 5 по

модулю два через эленент НЕ 6. Если при данном положении кодового диска с информационной дорожки 1 снимается цифровой код, содержащий четное число

5

248-594-0610

1474843

единиц, то на управляющем входе 13 блока 7 обработки информации и на тине 14 присутствует сигнал логичес-кой "1" и пифровой код со считывающих элементов 2 без изменения проходит черва блок 7 обработки информации на выходы 8 преобразователя, а наличие сигнала на шине 14 говорит с том, что информация достоверва.

При дальнейшем перемещении колового диска с информационной дорожки 1
может сниматься цифровой код, содержащий нечетное число единиц. При этом
на управляющем входе 13 блока 7.обработки информации присутствует сигнал логического "О", а на выходах 8
преобразователя фиксируется предыдущий цифровой код, поскольку отсутствие сигнала на шине 14 говорит о недостоверности текущей информации. При
реверсе преобразователь работает таким же образом.

Формула изобретения

Преобразователь угол-код, содержаший имиу контроля, кодовый диск с информационной дорожкой, п считываюших элементов, где п - число разрядов преобразователя, выкоды которых совдинены с одноименными входами сумматора по модулю два и с одноименными информационными выходами блока обработки информационными выходами преобразователя, дополнительный считывающий элемент, выход которого соединен с (n+1)-м входом сумматора по модулю два, о т л и ч а ю щ и й с я тем, что, с целью повышения точности и упрощения преобразователя, в нем на информационной дорожке кодового диска нанесен код, соответствующий одному периоду M=2ⁿ-1 псевдослучайной двоичной последовательности максимальной длины, полученной на основании примитивного многочлена h(x) степери п, считывающие элементы установлены вдоль информационной дорожки кодового диска с постоянным шагом kx,

заданным многочленом r(x) - величина кванта преобразователя, a k=1,2,3,..., причем k(n-1) < M, дополнительный считывающий элемент установлен относительно первого считывающего элемента вдоль информационной дорожки кодового диска на расстоянии $\lambda = \kappa [(n-1) k+(M-1)]$, где 1 - степень одночлена, являющегося остатком от деления по модулю два со стороны младших степеней многочлена г(ж) на многочлен h(ж), причем 1 и [(n-1)k+(M-1)] взяты по модулю М, выход сумматора по модулю два соединен с управляющим вкодом блока обработки информации и шиной контроля.

1474843

Редактор А.Козориз	Техред Л.Сердюкова	Корректор М.Васильева
	Тираж 880 ого комитета по изобретени 35, Москва, Ж-35, Раушская	Подписное ям и открытиям при ГКНТ СССР наб., д. 4/5

Производственно-издательский комбинат "Патент", г. Ужгород, ул. Гагарина, 101

SU 1474843 A1

SHAFT-TO-DIGIT CONVERTER

The invention relates to an analog-digital converter, particularly to a shaft-to-digit converter. The object of the invention - gaining accuracy and making a converter more simple — is achieved by that in a shaft-to-digit converter comprising a code disc, n readout elements 2, an additional read-out element 3, a modulo-two adder 5, and an information processing unit 7, a code disc information track 1 is realized as a maximum length pseudorandom binary sequence having a period $M=2^n-1$ and obtained by the use of a primitive polynomial h(x) of the power n, the read-out elements 2 are arranged along the information track 1 with a constant pitch kx that is defined by a polynomial

$$n=1$$
 $r(x)=\Sigma x^{ik}$, where $x=360^{\circ}/M$ is a converter quantum value, $k=1, 2, 3, ...$ and $k(n-1)< M$, $i=0$

the additional read-out element is spaced $\alpha = x[(n-1)k + (M-l)]$ relative to the first read-out element 2 along the information track 1, where l – the power of the monomial obtained upon lowest terms modulo 2 dividing of the polynomial r(x) by the polynomial h(x), l and α being taken by modulo M. An output of the modulo 2 adder 5 is connected to a bus 14 of the converter. The additional read-out element 3 allows parity check. Thanks to the realization of the information track and arrangement of the read-out elements the accuracy of the converter is enhanced.

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

□ BLACK BORDERS
□ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
□ FADED TEXT OR DRAWING
□ BLURRED OR ILLEGIBLE TEXT OR DRAWING
□ SKEWED/SLANTED IMAGES
□ COLOR OR BLACK AND WHITE PHOTOGRAPHS
□ GRAY SCALE DOCUMENTS
□ LINES OR MARKS ON ORIGINAL DOCUMENT
□ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY
□ OTHER:

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.