Homework 2

Stat 151A, Fall 2017

Due: September 26

- 1. (1.0 points) Problem 9.6 in Fox
- 2. (1.0 points) Problem 11.2 in Fox
- 3. (a) (0.5 points) Show that the mean of the response values is equal to the mean of the fitted values,

$$\bar{y} = \bar{\hat{y}}$$

- (b) (0.5 points) Show that $\mathbf{y}^T \hat{\mathbf{y}} = \hat{\mathbf{y}}^T \hat{\mathbf{y}}$.
- (c) (0.5 points) Use these facts to show that $\widehat{Cov}(y, \hat{y})$ is equal to $\widehat{Var}(\hat{y})$, where

$$\widehat{Cov}(x,y) = \frac{1}{n} \sum_{i} (x_i - \bar{x})(y_i - \bar{y})$$

4. (1.5 points) In the following regression output, the value of the F-statistic (last line) and its p-value are missing. Fill them in, providing proper reasoning, based on the available information.

Call:

$$lm(formula = y ~ x1 + x2 + x3 + x4 + x5, data)$$

Residuals:

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept)	1.63014	5.95379	0.274	0.784	
x1	0.85682	0.05065	16.916	< 2e-16	***
x2	-2.02587	0.39720	-5.100	6.77e-07	***
x3	0.04083	0.14899	0.274	0.784	
x4	-0.33431	0.08191	-4.082	6.05e-05	***
x5	0.24481	0.18236	1.342	0.181	

Signif. codes: 0 $\hat{a}\ddot{A}\ddot{Y}***\hat{a}\ddot{A}\acute{Z}$ 0.001 $\hat{a}\ddot{A}\ddot{Y}**\hat{a}\ddot{A}\acute{Z}$ 0.01 $\hat{a}\ddot{A}\ddot{Y}*\hat{a}\ddot{A}\acute{Z}$ 0.05 $\hat{a}\ddot{A}\ddot{Y}.\hat{a}\ddot{A}\acute{Z}$ 0.1 $\hat{a}\ddot{A}\ddot{Y}$

Residual standard error: 4.122 on 246 degrees of freedom Multiple R-squared: 0.7228, Adjusted R-squared: 0.7172 F-statistic: XXXXX on X and 246 DF, p-value: XXXXX

- 5. (2.5 points) Problem 9.14 in Fox. Note that all the values you need for (c) and (d) are given in the section 5.2.
- 6. In the Bodyfat dataset, see here https://rstudio-pubs-static.s3.amazonaws.com/65314_c0d1e5696cdd4e93a3784ea67f9e3d34.html, consider the linear model:

BODYFAT =
$$\beta_0 + \beta_1 \text{KNEE} + \beta_2 \text{THIGH} + \beta_3 \text{HIP} + \beta_4 \text{ANKLE} + e$$

Assume that the errors are i.i.d normal.

- (a) (1 points) Construct an F-test for testing $H_0: \beta_1 + \beta_2 = \beta_3 + \beta_4$. Describe your method and report the value of the F-statistic, its degrees of freedom and the p-value.
- (b) (1 points) Construct a t-test for testing $H_0: \beta_1 + \beta_2 = \beta_3 + \beta_4$. Describe your method and report the value of the t-statistic, its degrees of freedom and the p-value.
- (c) (0.5 points) How is the value of your t-test statistic related to the value of the F-test statistic?