Lezione 02

1.1.7. Intorno - definizione

Dico $U\subseteq \mathbb{R}^n$ intorno di $p\in \mathbb{R}^n$ se contiene una palla di centro p: $\exists \delta>0: B(p,\delta)\subseteq U$

1.1.7.1 Esempi

Sono intorni di (0,0) gli insiemi \mathbb{R}^2 , $\{(x,y)\in\mathbb{R}^2:|x-y|\leq \frac{1}{10^6}\}$, $Q\left((0,0),\frac{1}{10^6}\right]$.

Invece l'insieme $\{(x,y)\in\mathbb{R}^2:y\geq x\}$ non è un intorno dell'origine.

1.1.8. Punti interni, esterni, di fontiera - definizione

Dico $p \in U$ interno a U se U è un intorno di p.

Dico $p \notin U$ esterno a U se $\mathbb{R}^n \setminus U$ è un intorno di \underline{p} .

Dico $p \in \mathbb{R}^n$ di frontiera per U se $\forall \delta > 0$ $B(p,\delta) \cap U \neq 0$ e $B(p,\delta) \setminus U \neq \emptyset$ (tutti i casi rimanenti).

1.1.8.1. Esempi

1.1.9. Insiemi di U - definizione

Sia $U\subseteq \mathbb{R}^n$, si dicono

 $Int U = U^0 = \{ \text{punti interni di } U \}$

 $EstU = \{ \texttt{punti esterni di } U \}$

Frontiera: $\partial U = \{ \text{punti di frontiera di } U \}$

Chiusura: $Clos(U) = \bar{U} = U \cup \partial U$

1.1.9.1. Proposizione

 $EstU = \mathbb{R}^n \backslash Clos(U) = (\mathbb{R}^n \setminus U)^0 \ \partial U \cup IntU \cup EstU = \mathbb{R}^n \ Int(U) = U \backslash \partial U$

B(p,r) o Q(p,r) hanno tutti punti interni.

1.1.10. Insiemi aperti e chiusi - definizione

Un insieme $D\subseteq\mathbb{R}^n$ è aperto se ogni suo punto è interno, chiuso se $\mathbb{R}^n\backslash D$ è aperto

B(p,r] e Q(p,r] sono chiusi

1.1.10.1. Proposizione

Se $\partial D \subseteq D$ allora D è chiuso.

Se $D \cap \partial D = \emptyset$ allora D è aperto.

 $Clos(D) = D \cup \partial D$ è il più piccolo insieme chiuso che contiene la frontiera.

1.1.10.1.1 Esempio

Non è né chiuso né aperto

1.1.11. Prodotto scalare

Siano $x,y\in\mathbb{R}^n$ due vettori

Il prodotto scalare è un numero dato da

$$x \cdot y = x_1 y_1 + \ldots + x_n y_n$$

Si vede quindi che $||x|| = \sqrt{x \cdot x}$.

Nota bene

Due vettori si dicono ortogonali se $x \cdot y = 0$.

1.1.11.1. Esempio

$$(1,2) \cdot (3,2) = 1 * 3 + 2 * 2 = 3 + 4 = 7 \le ?$$

1.1.11.2. Visualizzazione

(!) Osservazione

Se u è unitario, ossia ||u||=1, $x\cdot u$ è la "lunghezza" della proiezione di x lungo la retta passante per u.

Nota bene

In \mathbb{R}^2 $x\cdot u=||x||\cos\theta$, $x\cdot y=||x||\cdot||y||\cos\theta$, con θ angolo compreso tra i due vettori.

1.1.11.3. Proposizione (disuguaglianza di Cauchy-Schwarz)

Dati $x,y\in\mathbb{R}^n$ vale $x\cdot y\leq ||x||\cdot ||y||$. La disuguaglianza vale anche con il valore assoluto, quindi il prodotto scalare è compreso tra il prodotto delle norme e il suo opposto.

L'uguaglianza vale soltanto quando x e y sono proporzionali

(!) Osservazione

Quando $x \cdot y$ è massimo, se $x, y \neq 0$?

Se $y = \lambda x$, $\lambda > 0$

Quando è minimo?

Se $y=\lambda x$, $\lambda<0$

1.1.12. Insiemi notevoli di \mathbb{R}^n

1.1.12.1. Ellisse

$$rac{(x-a)^2}{A^2} + rac{(y-b)^2}{B^2} = 1$$
 , $A,B>0$

1.1.12.2. Esercizio

$$x^2 - 4x + 3y^2 + 18y + 6 = 0$$

Prima studio le coppie di termini:

$$(x-2)^2 = x^2 - 4x + 4$$

$$3(y+3)^2 = 3(y^2+6y+9) = 3y^2+18y+27$$

Ora rimetto insieme:

$$(x-2)^2+rac{(y+3)^2}{rac{1}{\sqrt{3}}}=25$$
 che diventa $rac{(x-2)^2}{5^2}+rac{(y+3)^2}{\left(rac{5}{\sqrt{3}}
ight)^2}=1$

1.1.12.2. Retta

Sia r una retta in \mathbb{R}^2 perpendicolare al vettore (a,b), ha equazione ax+by=c.

1.1.12.3. Piano

Sia π piano in \mathbb{R}^3 perpendicolare al vettore (a,b,c), ha equazione ax+by+cz=d.

1.1.12.4 Cilindro

Sia γ un cilindro di asse parallelo all'asse z per (a,b,0), ha equazione $(x-a)^2+(y-b)^2=r^2$, $r\geq 0$.

1.2. Curve parametriche

1.2.1. Curva parametrica - definizione

Dico curva parametrica una funzione $\gamma:I\subseteq\mathbb{R} o\mathbb{R}^n$,

$$\gamma(t) = (\gamma_1(t), \gamma_2(t), \ldots, \gamma_n(t))$$

con $\gamma_1,\dots,\gamma_n:I\subseteq\mathbb{R}\to\mathbb{R}$ continue, I intervallo. $\gamma:I\to\mathbb{R}^n$ continua.

Se il dominio ha una sola variabile, allora la funzione vettoriale è continua se ogni componente è continua.

Chiamo sostegno/supporto/immagine l'insieme dei punti di \mathbb{R}^n visitati dalla curva, cioè l'immagine della curva, ovvero $\gamma(I)=\{x\in\mathbb{R}^n:\exists t\in I:\gamma(t)=x\}$

Se $\gamma:[a,b] o \mathbb{R}^n$, si chiama $\gamma(a)$ punto iniziale e $\gamma(b)$ punto finale.

(!) Osservazione

Mentre una curva ha un unico sostegno, la sua immagine, un sottoinsieme di \mathbb{R}^n può essere il sostegno di varie curve. Ad esempio il cerchio unitario è sostegno di $f(t)=(\cos t,\sin t)$, $t\in[0,2\pi]$, ma anche di $g(t)=(\cos(2t),\sin(2t))$, $t\in[0,200\pi]$

1.2.2. Proprietà

1.2.2.1. Chiusa

Una curva si dice chiusa se I=[a,b], $\gamma(a)=\gamma(b)$, con $\gamma(a)$ punto iniziale e $\gamma(b)$ punto finale.

1.2.2.2. Piana

Una curva si dive piana se esiste un piano $\subseteq \mathbb{R}^n$ che contiene il supporto.

1.2.2.3. Semplice

Una curva si dice semplice se $\gamma:I\to\mathbb{R}^n$ è *iniettiva*, eccetto al più la possibilità $\gamma(a)=\gamma(b)$ se I=[a,b].

∧ Ricorda

In genere una funzione f:X o Y è iniettiva se $orall x_1
eq x_2 \implies f(x_1)
eq f(x_2)$, $x_1,x_2\in X$.

1.3. Derivate di curve

1.3.1. Vettore derivato - definizione

Definisco vettore derivato/vettore tangente/vettore velocità di $\gamma:I\to\mathbb{R}^n$ il vettore $\gamma'(t)=\dot{\gamma}(t)=(\gamma_1'(t),\ldots,\gamma_n'(t))$, se γ_1,\ldots,γ_n sono derivabili in $t\in I$.

Analogamente, la derivata seconda è $\gamma''(t)=(\gamma_1''(t),\ldots,\gamma_n''(t))$, se γ_1,\ldots,γ_n sono derivabili due volte.

La retta tangente a γ in t è l'insieme dei punti $\{\gamma(t)+\gamma'(t)\lambda,\lambda\in\mathbb{R}\}$

Si parla di tangente alla curva, non al suo sostegno. Può capitare che γ ripassi sullo stesso punto in due istanti diversi con derivate diverse.

1.3.1.1. Esercizio

$$\gamma(t)=(t,t^2)$$
 , $\ t\in [0,1]=I$, $\gamma:I o \mathbb{R}^2$ $\gamma_1(t)=t$, $\gamma_2(t)=t^2$

Calcolo il sostegno:

$$t = x$$

$$y=t^2=x^2$$

Vediamo facilmente che è piana (ha solo due componenti).

Semplice? Sì, la prima componente non si ripete $\Longrightarrow \gamma$ non si ripete (è iniettiva). Altrimenti avrei trovato $\gamma(t_1)=\gamma(t_2)$.

Chiusa? No! $\gamma(0)=0 \neq \gamma(1)=(1,1)$

Velocità? $\gamma'(t)=(1,2t)$

Accelerazione? $\gamma''(t)=(0,2)$

1.3.2. Derivata e approssimazione

Sia $\gamma:I o\mathbb{R}^n$ derivabile in t_0 , allora

$$\gamma(t) = \gamma(t_0) + \gamma'(t_0)(t - t_0) + o_{t_0}(t - t_0)$$

dove con $o_{t_0}(s)$ si indica una funzione R(t) tale che $\lim_{t o t_0} rac{R(t)}{t - t_0} = 0$.

Geometricamente si tratta di un'approssimazione (detta al primo ordine) di $\gamma(t)$ con il punto $\gamma(t_0)+\gamma'(t_0)(t-t_0)$ della retta tangente a γ in t_0 .

1.3.3. Calcolo delle derivate di una curva

Come detto prima, una curva è derivabile solo se le sue componenti sono derivabili. Per calcolare quindi la derivata di una curva si deriva componente per componente.

1.3.3.1. Regole di derivazione

Siano $f,g:I\subseteq\mathbb{R} o\mathbb{R}^n$, $\phi I\subseteq\mathbb{R} o\mathbb{R}$ derivabili in $t\in\mathbb{R}$, e sia $\alpha\in\mathbb{R}$. Allora:

- 1. $\frac{d}{dt}(cost=0)$;
- 2. $rac{d}{dt}(lpha f)=lpha f'$;
- 3. $rac{d}{dt}(\phi(t)f(t))=\phi'(t)f(t)+\phi(t)f'(t)$;
- 4. $\frac{d}{dt}(f+g)=f'+g+;$
- 5. $rac{d}{dt}(f\cdot g)=f'\cdot g+f\cdot g'$;
- 6. Se $u:J\subset \mathbb{R} o I$ è derivabile, $rac{d}{dt}(f\circ u)=f'(u)u'$.

/ Attenzione

Nel punto 5. si parla di prodotto scalare, non di prodotto (che si trova al punto 3.).