ESERCIZI DI ANALISI REALE - FOGLIO 3

CORSO DI LAUREA TRIENNALE IN MATEMATICA

A.A. 2017-18

ANDREA DAVINI

SOMMARIO. Eventuali commenti, suggerimenti e segnalazioni di errori sono graditi. Gli esercizi contrassegnati con un asterisco sono più difficili

In questo foglio indicheremo con λ^* la misura esterna di Lebesgue su \mathbb{R}^d , con $\mathcal{L}(\mathbb{R}^d)$ la σ -algebra degli insiemi Lebesgue-misurabili e con $\mathcal{L}^d := \lambda_{|\mathcal{L}(\mathbb{R}^d)}^*$ la misura di Lebesgue in \mathbb{R}^d . Indicheremo con $\mathscr{B}(\mathbb{R}^d)$ la σ -algebra dei Boreliani di \mathbb{R}^d .

Un insieme si dice G_{δ} se è una intersezione numerabile di aperti, F_{σ} se è una unione numerabile di chiusi.

Esercizio 1. Sia $\mu: \mathcal{B}(\mathbb{R}^d) \to [0, +\infty]$ una misura sui Boreliani di \mathbb{R}^d che sia invariante per traslazioni e finita sui compatti (cioè $\mu(K) < +\infty$ per ogni compatto $K \subset \mathbb{R}^d$). Si dimostri che $\mu = \gamma \mathcal{L}^d$ per una opportuna costante $\gamma \geqslant 0$ (cioè μ è proporzionale alla misura di Lebesgue su \mathbb{R}^d). Si trovi un'espressione per γ .

[Suggerimento: è sufficiente dimostrare l'uguaglianza sui cubi $[0,1/k)^d$ per $k\in\mathbb{N}^+$ (perchè?)]

Esercizio 2. Sia E un sottoinsieme di \mathbb{R}^d . Dimostrare che esiste un insieme G di tipo G_δ con $E \subseteq G$ e $\lambda^*(E) = \mathcal{L}^d(G)$.

Esercizio 3 (Caratterizzazione della misurabilità secondo Lebesgue). Sia $E \subset \mathbb{R}^d$ un insieme. Dimostrare che le seguenti affermazioni sono tra loro equivalenti:

- (i) E è misurabile secondo Lebesgue;
- (ii) per ogni $\varepsilon > 0$ esiste un aperto $A \supseteq E$ tale che $\lambda^*(A \setminus E) < \varepsilon$;
- (iii) per ogni $\varepsilon > 0$ esiste un chiuso $C \subseteq E$ tale che $\lambda^*(E \setminus C) < \varepsilon$;
- (iv) per ogni $\varepsilon > 0$ esiste un chiuso C e un aperto A in \mathbb{R}^d tali che $C \subseteq E \subseteq A$ e $\mathcal{L}^d(A \setminus C) < \varepsilon$;
- (v) esiste un insieme G di tipo G_{δ} ed un insieme N di misura nulla tale che $E = G \setminus N$;
- (vi) esiste un insieme F di tipo F_{σ} ed un insieme Z di misura nulla tale che $E=F\cup Z$

Esercizio 4. Sia E un insieme di \mathbb{R}^d tale che $\lambda^*(\partial E) = 0$. Dimostrare che E è misurabile secondo Lebesgue.

Esercizio* 5. Sia K un insieme compatto di \mathbb{R}^d . Dimostrare che $\lambda^*(K) = m^*(K)$, dove abbiamo indicato con m^* la misura esterna di Peano–Jordan.

Esercizio* 6. Sia E un insieme limitato di \mathbb{R}^d . Dimostrare che E è misurabile secondo Peano–Jordan se e solo se $\lambda^*(\partial E) = 0$.

Date: 28 ottobre 2017.

Esercizio* 7. Dato $\varepsilon > 0$, trovare un insieme aperto e denso in $\mathbb R$ di misura uguale a ε .

Esercizio 8. Sia E un insieme in \mathbb{R} di misura di Lebesgue nulla. Provare che E é totalmente sconnesso (cioè non contiene intervalli aperti).

Esercizio 9. Si trovi un insieme Boreliano E contenuto nell'intervallo [0,1] che sia totalmente sconnesso e tale che $\mathcal{L}^1(E)=1$.

Esercizio* 10. Sia $0 < \delta < 1$. Si trovi un insieme Boreliano E contenuto e denso nell'intervallo [0,1] totalmente sconnesso e tale che $\delta < \mathcal{L}^1(E) < 1$.

[Suggerimento: usare l'insieme ottenuto intersecando i razionali gonfiati con l'intervallo (0,1).]