1 Inhaltsschwerpunkte

- 1. Einleitung
- 2. Renormierung und running coupling (genauere Betrachtung)
- 3. Allgemeine β -Funktionen
- 4. *β*-Funktion im \mathbb{R}^2
- 5. β -Funktion für QCD×dQCD
- 6. Entwicklung von n-Schleifen-Diagrammen

2 Inhalte

- **zu 1** Ideen der QFT (inkl. Funktionalintegral, LSZ-Formel, connected functional, proper vertices, Feynmandiagramme)
 - das SM der Teilchenphysik
 - mögliche Erweiterungen: dunke Materie und dQCD
 - Renormierung und Renormierbarkeit
 - running couplings im SM, insb. QCD
 - Problem der Quantengravitation und Weinbergs Lösungsvorschlag
 - · asymptotic safety
- zu 2 Quantenwirkung
 - Cut-off Regularisierung
 - Callan-Symanzik Gleichung
 - running coupling als Konsequenz der Renormierung
 - asymptotic safety Szenario
- **zu 3** Allgemeine Parametriesierung von β -Funktionen für bestimmte Eichgruppen, Mahacheck-Vaughn
 - Autonomes System, RG-Zeit, α
 - Fixpunkte, Landaupole
 - Linearisierung, Stabilität von Fixpunkten, Lösungsideen
 - Kritische Hyperflächen
- zu 4 Stabilitätsmatrix, Eigenwerte, Eigenvektoren
 - Entwicklung 2.Ordnung um einen Fixpunkt
 - Explizite (asymptotische) Lösung in der Nähe eines Fixpunktes
 - Stabilitätskriterien

- Landaupole
- **zu 5** Explizite Form der β -Funktion
 - Fixpunkte und Landaupole
 - Bedingung an die Koeffizienten für bestimmte Stabilitätseigenschaften
 - Einschränkung auf sinnvolle Materieinhalte
 - Anwendung auf fundamental×fundamental Darstellung ohne/mit Skalare.
 - Extrapolation der Fixpunkte
- **zu 6** Einschränkung auf QCD×dQCD für eine explizite Darstellung
 - 1-Schleife (Propagator und Vertex)
 - n + 1-Schleife (Rekursion)
 - Form (insb. $g_i(\mu)$ Abhängigkeit) der β -Funktion durch Diagramme
 - Genaue Form der β -Funktion

3 gewonnene Erkenntnisse (Ideen)

3.1 1-dim. β -Funktion und Landau-Pol

Für eine β -Funktion der Form

$$\beta(\alpha) = \sum_{i=0}^{N} X_i \alpha^i \tag{1}$$

definiere die Stammfunktion

$$\mathfrak{A}(\alpha) := \int \left(\sum_{i=0}^{N} X_i \alpha^i\right)^{-1} d\alpha \quad . \tag{2}$$

Mit der Wahl $t_0 = 0$ und $\alpha_0 = \alpha(0)$ beliebig lässt sich die implizite Gleichung

$$t + \mathfrak{A}(\alpha_0) = \mathfrak{A}(\alpha) \tag{3}$$

ableiten. Der Landau-Pol wird mit dem Startwert (t_0, α_0) dann bei

$$t_{\infty} := \lim_{\alpha \to \infty} \mathfrak{A}(\alpha) - \mathfrak{A}(\alpha_0) \tag{4}$$

erreicht.

Beispiel 3.1

$$\beta = X\alpha \tag{5}$$

dann ist

$$\mathfrak{A} = \frac{1}{X} \ln(\alpha) \tag{6}$$

und

$$t_{\infty} = \lim_{\alpha \to \infty} \frac{1}{X} \ln(\alpha) - \mathfrak{A}(\alpha_0) = sgn(X) \cdot \infty \quad . \tag{7}$$

Die explizite Lösung (5) kann als $\alpha(t) = \alpha_0 e^{Xt}$ geschrieben werden. Das Verhalten entspricht also dem von (4) vorhergesagten.

Beispiel 3.2

$$\beta = X\alpha^n$$
 , $n \ge 2$ (8)

dann ist

$$\mathfrak{A} = \frac{1}{(1-n)X}\alpha^{1-n} \tag{9}$$

und

$$t_{\infty} = \lim_{\alpha \to \infty} \frac{1}{(1-n)X} \alpha^{1-n} - \mathfrak{A}(\alpha_0) = -\mathfrak{A}(\alpha_0) = -\frac{1}{(1-n)X} \alpha_0^{1-n}.$$
 (10)

Die allgemeine Lösung von (8) ist ¹

$$\alpha(t) = [(n-1)(c_1 - tX)]^{\frac{1}{1-n}}$$
(11)

¹Wolfram Alpha

mit Startwert $\alpha_0 := \alpha(0) = ((n-1)c_1)^{\frac{1}{1-n}}$. Setzten wir diesen Starwert in (10) ein, ergibt sich

$$t_{\infty} = -\frac{1}{(1-n)X}(n-1)c_1 = \frac{c_1}{X} \quad . \tag{12}$$

Auch hier hat die explizite Lösung (11) genau an diesem Wert einen Pol.

Beispiel 3.3

$$\beta = X\alpha^2 + Y\alpha^3$$
 , $Y > 0$, $X < 0$ (13)

dann ist

$$\mathfrak{A} = -\frac{Y \ln \alpha}{X^2} + \frac{Y \ln(Y\alpha + X)}{X^2} - \frac{1}{X\alpha}$$
 (14)

und

$$t_{\infty} = \lim_{\alpha \to \infty} \mathfrak{A} - \mathfrak{A}(\alpha_0) = \frac{Y}{X^2} \ln Y - \mathfrak{A}(\alpha_0) \quad . \tag{15}$$

Für $\alpha = -X/Y + \epsilon$ ergibt sich

$$-\mathfrak{A}(\alpha) = \frac{Y \ln \alpha}{X^2} - \frac{Y \ln(Y\epsilon)}{X^2} - \frac{Y}{X^2}$$
 (16)

$$= \frac{Y}{X^2} \left(\ln \frac{\alpha}{\epsilon} \right) - \frac{Y \ln Y}{X^2} - \frac{Y}{X^2}$$
 (17)

und damit für t_{∞}

$$t_{\infty} = \frac{Y}{X^2} \left(\ln \frac{\alpha}{\epsilon} - 1 \right) \quad , \tag{18}$$

wobei wegen $\ln \alpha/\epsilon = \ln(-XY^{-1} + \epsilon)/\epsilon$

Eine numerische Lösung mit X =, Y =und $\alpha_0 =$ zeigt das in Abbildung $\ref{Mathematical Points}$ darge-stellte Verhalten.

Literatur

[1] Test author. Testtitle, testjahr.