מבוא לחבורות תרגיל בית מס׳ 8

1. (דומה לתרגיל מסי 5 בדף הקודם)

החבורה הסימטרית S_{π} פועלת על הקבוצה A המורכבת מכל הזוגות הסדורים

$$\sigma \in S_n$$
 כאשר , $\sigma(i,j) = (\sigma i, \sigma j)$, $\sigma(i,j) = (\sigma i, \sigma j)$, $\sigma(i,j) = (\sigma i, \sigma j)$, $\sigma(i,j) = (\sigma i, \sigma j)$

- .(בעלת n^2 איברים) A איברים) על הקבוצה S_n איברים).
 - n=4 כאשר A כאשר (12) אל התמורה של הפעולה של התמורה
 - n=4 כאשר A כאשר (1 2 3) אל התמורה הפעולה של התמורה (ג
- 2. יהי n זוגי. הראו כי D_{2n} פועלת על קבוצת הזוגות של קודקודים מנוגדים n של n-גון רגולרי. מצאו את הגרעין של פעולה זו.
 - .הי G חבורה.
 - א. וודא כי G פועלת על עצמה ע"יי ' $g \cdot x = gxg^{-1}$ א. וודא כי G פועלת על תאמה מייי (פעולה או הצמדה).
 - g ב. הראו כי עבור g קבוע, התמורה של איברי G המושרת ע"י G הראו כי עבור G היא איזומורפיזם מ-G ל-G, כלומר, $g \cdot (xy) = (g \cdot x)(g \cdot y)$

(.G) ל-G נקרא אוטומורפיזם של G ל-G נקרא איזומורפיזם של

 $g \in G$ ולכל G של א של הסיקו כי לכל תת-חבורה א

H-ים הינה איזומורפית לG שהיא הינה תת-חבורה של $gHg^{-1}=\{ghg^{-1}\mid h\in H\}$

- הראו כי חבורת הסימטריות של הטטראדר הרגולרי איזומרופית לתת- S_4 .
- מסדר x, נוצרת ע"יי x. מצא את כל .5 תהא ביקלית (כפלית) מסדר לכל תהארו את כל .5 התת-חבורה. תארו את כל C_{45} באמצעות יוצר לכל תת-חבורה. תארו את כל ההכלות בין תת-חבורות אלו.

- .6 תהא xy = yx, אז y = yx, אז xy = yx מחלק את .6 הכפולה המשותפת המינימלית של |x|,|y|. האם זה נכון בלי הנחת החילופיות! תנו דוגמא של xy = yx, $x, y \in G$ אינו שווה ל כפולה המשותפת המינימלית של |xy|,|y|
- 7. א. יהי p מספר ראשוני אי-זוגי, n שלם חיובי. בשימוש משפט הבינום p א. יהי p מספר ראשוני אי-זוגי, $(1+p)^{p^{n-2}}
 eq 1 \pmod{p^n}$ אבל $(1+p)^{p^{n-2}}
 eq 1 \pmod{p^n}$. הסיקו ש- p^n הוא איבר מסדר p^{n-1} בחבורה (הכפלית) $(\mathbb{Z}/p^n\mathbb{Z})^{\times}$
- ב. יהי $2 \le n$ שלם. בשימוש משפט הבינום הוכיחו כי $n \ge 3$ שלם. בשימוש משפט הבינום הוכיחו כי $(1+2^2)^{2^{n-3}} \ne 1 \pmod{2^n}$ אבל $(1+2^2)^{2^{n-2}} \equiv 1 \pmod{2^n}$ הטיקו ש- $(1+2^n)^{2^n}$ בחבורה (הכפלית) $(1+2^n)^{2^n}$
 - $n \ge 3$ איננה ציקלית עבור $(\mathbb{Z}/2^n\mathbb{Z})^{\times}$ איננה ביקלית עבור