

Этикетка

КСНЛ.431319.003 ЭТ

Микросхема 1564АП4ТЭП

Микросхема интегральная 1564АП4ТЭП Функциональное назначение:

Два 4 – х канальных формирователя с 3 – мя состояниями на выходе с прямым и инверсным управлением.

Таблица назначения выводов

№	Обозначение	Назначение вывода	№	Обозначение	Назначение
вывода	вывода		вывода	вывода	вывода
1	EZA	Вход управления	13	NC	Не подключен
2	A0	Вход	14	NC	Не подключен
3	QB3	Выход	15	В0	Вход
4	Al	Вход	16	QA3	Выход
5	QB2	Выход	17	B1	Вход
6	A2	Вход	18	QA2	Выход
7	QB1	Выход	19	B2	Вход
8	A3	Вход	20	QA1	Выход
9	QB0	Выход	21	В3	Вход
10	0V	Общий	22	QA0	Выход
11	NC	Не подключен	23	ENB	Вход управления
12	NC	Не подключен	24	V_{cc}	Питание

1 ОСНОВНЫЕ ТЕХНИЧЕСКИЕ ДАННЫЕ

1.1 Основные электрические параметры (при $t = 25\pm10$ °C)

Наименование параметра, единица измерения, режим измерения	Буквенное	Норма	
	обозначение	не менее	не более
1	2	3	4
1. Максимальное выходное напряжение низкого уровня, В, при:			
$U_{CC}=2,0 \text{ B}, U_{IL}=0,3 \text{ B}, U_{IH}=1,5 \text{ B} \text{ I}_{O}=20 \text{ MKA}$	$U_{ m OL\; max}$	-	0,10
U_{CC} =4,5 B, U_{IL} =0,9 B, U_{IH} =3,15 B, I_{O} = 20 мкА		-	0,10
U_{CC} =6,0 B, U_{IL} =1,2 B, U_{IH} =4,2 B, I_{O} = 20 MKA		=	0,10
при:			
U_{CC} =4,5 B, U_{IL} =0,9 B, U_{IH} =3,15 B, I_{O} =6,0 mA		-	0,26
U_{CC} =6,0 B, U_{IL} =1,2 B, U_{IH} =4,2 B, I_{O} = 7,8 mA		-	0,26
2. Минимальное выходное напряжение высокого уровня, В, при:			
$U_{CC}=2.0 \text{ B}, U_{IH}=1.5 \text{ B}, I_{O}=20 \text{ MKA}$	$U_{ m OHmin}$	1,9	-
U_{CC} =4,5 B, U_{IH} =3,15 B, I_{O} = 20 mKA		4,4	-
U_{CC} =6,0 B, U_{IH} =4,2 B, I_{O} = 20 mkA		5,9	-
при:			
U_{CC} =4,5 B, U_{IH} =3,15 B, I_{O} =6,0 mA		3,98	-
$U_{CC}=6.0 \text{ B}, U_{IH}=4.2 \text{ B}, I_{O}=7.8 \text{ MA}$		5,48	-
3. Входной ток низкого уровня, мкА, при:			
$U_{CC} = 6.0 \text{ B}, U_{IL} = 0 \text{ B}, U_{IH} = U_{CC}$	I_{IL}	-	/-0,1/
4. Входной ток высокого уровня, мкА, при:			
$U_{CC} = 6.0 \text{ B}, U_{IL} = 0 \text{ B}, U_{IH} = U_{CC}$	$ m I_{IH}$	-	0,1
5. Ток потребления, мкА, при			
$U_{CC} = 6.0 \text{ B}, U_{IL} = 0 \text{ B}, U_{IH} = U_{CC}$	I_{CC}	-	4,0
6. Выходной ток низкого и высокого уровня в состоянии «Выключено»,			
мкА, при:	I_{OZL}		
U_{CC} =6,0 B, U_{IL} =1,2 B, U_{IH} =4,2 B	I_{OZH}	-	0,5
7. Динамический ток потребления, мА, при:			
$U_{CC} = 6.0 \text{ B, } f = 10 \text{ M} \Gamma \text{ц}$	I_{OCC}	-	
$U_{EZA} = U_{IH} = U_{CC}; U_{ENB} = U_{IL} = 0$			1,0
$U_{EZA} = U_{IL} = 0; U_{ENB} = U_{IH} = U_{CC}$			20,0

8. Время задержки распространения при включении и выключении нс,			
от входов A0A3, B0B3 к выходам QA0QA3, QB0QB3, нс, при:	$t_{\mathrm{PHL}_{\mathrm{c}}}t_{\mathrm{PLH}}$		
$U_{CC} = 2.0 \text{ B}, C_1 = 50 \text{ m}\Phi$	THE, TEH	_	115
$U_{CC} = 4.5 \text{ B}, C_1 = 50 \text{ m}\Phi$		_	23
$U_{CC} = 6.0 \text{ B}, C_L = 50 \text{ m}\Phi$		_	20
при:	t _{PHL} , t _{PLH}		
$U_{CC} = 2.0 \text{ B, } C_1 = 150 \text{ п}\Phi$	THE, TEH	_	165
$U_{CC} = 4.5 \text{ B}, C_1 = 150 \text{ m}\Phi$		_	33
$U_{CC} = 6.0 \text{ B}, C_L = 150 \text{ m}\Phi$		-	28
9. Время задержки распространения при переходе из третьего состояния в			
состояние низкого и высокого уровня, нс, при:	t _{PZL} t _{PZH}		
$U_{CC} = 2.0 \text{ B}, C_L = 50 \text{ n}\Phi, R_L = 1 \text{ kOm}$	1, 1	-	150
$U_{CC} = 4.5 \text{ B}, C_1 = 50 \text{ m}\Phi, R_1 = 1 \text{ kOm}$		-	30
$U_{CC} = 6.0 \text{ B}, C_L = 50 \text{ m}\Phi, R_L = 1 \text{ kOm}$		-	26
$U_{CC} = 2.0 \text{ B}, C_L = 150 \text{ m}\Phi, R_L = 1 \text{ kOm}$		-	200
$U_{CC} = 4.5 \text{ B}, C_{L} = 150 \text{ m}\Phi, R_{L} = 1 \text{ kOm}$		-	40
$U_{CC} = 6.0 \text{ B}, C_L = 150 \text{ m}\Phi, R_L = 1 \text{ kOm}$		-	34
10. Время задержки распространения при переходе из состояния низкого и	t _{PLZ} t _{PHZ}		
высокого уровня в третье состояние, нс, при:	1, 1		
$U_{CC} = 2.0 \text{ B}, C_L = 50 \text{ m}\Phi, R_L = 1 \text{ kOm}$		-	150
$U_{CC} = 4,5 \text{ B}, C_L = 50 \text{ п}\Phi, R_L = 1 \text{кOm}$		-	30
$U_{CC} = 6,0 \text{ B}, C_L = 50 \text{ п}\Phi, R_L = 1 \text{кOm}$		-	26
11. Входная емкость, $\pi\Phi$, π при: $U_{CC} = 0$ В	C_{I}	-	10
12. Выходная емкость в состоянии «Выключено», пФ, при:	C_{OZ}	-	20
$U_{CC} = 4.5 \text{ B}, U_{IL} = 0 \text{ B}, U_{IH} = U_{CC}$			

1.2 Содержание драгоценных металлов в 1000 шт. микросхем:

золото г. серебро г.

в том числе:

золото г/мм на 24 выводах длиной мм.

Цветных металлов не содержится

2 НАДЕЖНОСТЬ

2.1 Наработка микросхем до отказа Тн в режимах и условиях эксплуатации, допускаемых

ТУ исполнения, при температуре окружающей среды (температуре эксплуатации) не более (65+5) $^{\circ}$ C не менее 100000ч., а в облегченном режиме: при $U_{CC} = 5B \pm 10\%$ - не менее 120000ч.

 $2.2\ \Gamma$ амма – процентный срок сохраняемости ($T_{C\gamma}$) при γ = 99% при хранении в упаковке изготовителя в отапливаемом хранилище или хранилище с регулируемыми влажностью и температурой, или в местах хранения микросхем, вмонтированных в защищенную аппаратуру или находящихся в защищенном комплекте ЗИП, должен быть 25 лет.

Гамма – процентный срок сохраняемости в условиях, отличающихся от указанных,- в соответствии с разделом 4 ОСТ В 11 0998.

3 ГАРАНТИИ ИЗГОТОВИТЕЛЯ

Изготовитель гарантирует соответствие качества данного изделия требованиям AEЯР.431200.424-17ТУ при соблюдении потребителем условий и правил хранения, монтажа и эксплуатации, приведенных в ТУ на изделие. Срок гарантии исчисляется с даты изготовления, нанесенной на микросхему.

4 СВЕДЕНИЯ О ПРИЕМКЕ

Микросхемы 1564АП4ТЭП соответствуют техническим условиям АЕЯР.431200.424-17ТУ и признаны годными для эксплуатации.

Приняты по от (извещение, акт и др.)	(дата)
Место для штампа ОТК	Место для штампа ПЗ
Место для штампа « Перепроверка прог	изведена»
Приняты по ${}$ (извещение, акт и др.)	т(дата)
Место для штампа ОТК	Место для штампа П
Цена договорная	

5. УКАЗАНИЯ ПО ЭКСПЛУАТАЦИИ

При работе с микросхемами и монтаже их в аппаратуре должны быть приняты меры по защите их от воздействия электростатических зарядов. Допустимое значение статического потенциала 200 В.

Наиболее чувствительные к статическому электричеству последовательности (пары выводов): 2-10; 22-10; 4-20; 24-10.