Compte Rendu de TP - Manipulation N°2 : Oscilloscope

Belittou Mustapha Groupe (B3)

But de la manipulation

— Maîtriser l'utilisation de l'oscilloscope pour visualiser des signaux sinusoïdaux et mesurer des déphasages.

A) Première Partie

FIGURE 1 -

a) Mesures des amplitudes

U_{cc}	ΔU_{cc}	$\frac{\Delta U_{cc}}{U_{cc}}$	U_{eff}	ΔU_{eff}	$\frac{\Delta U_{eff}}{U_{eff}}$
$6.00\mathrm{V}$	$0.2\mathrm{V}$	0,033	2.12 V	$0.07\mathrm{V}$	0,033

b) Mesures de période

T	ΔT	$\frac{\Delta T}{T}$	f_m	Δf_m	$\frac{\Delta f_m}{f_m}$
$0.92\mathrm{ms}$	$0.2\mathrm{ms}$	0,043	$1.09\mathrm{kHz}$	$0.05\mathrm{kHz}$	0,046

c) Points pour le tracé

t (cm)	0	1,15	2,3	3,45	4,6
u(t) (cm)	0	3,00	0	-3,00	0

Courbe u(t)

B) Deuxième Partie

Déphasage (méthode directe)

T	d	Δd	$\frac{\Delta d}{d}$	φ	$\Delta \varphi$	$\frac{\Delta \varphi}{\varphi}$
$0.92\mathrm{ms}$	$0.08\mathrm{ms}$	$0.01\mathrm{ms}$	0,125	$0.546\mathrm{rad}$	$0.091\mathrm{rad}$	0,168

$$\varphi = (0.546 \pm 0.091) \, \text{rad}$$

- comparaison entre φ théorique et φ obtenue par la methode direct :

Les deux valeurs sont compatibles, car la différence (0.014 rad) est bien inférieure à l'incertitude (0.091 rad).

Déphasage (mode XY)

FIGURE 2 -

QQ'	BB'	$\sin \varphi$	φ	$\Delta \varphi$	$\left[\begin{array}{c} \Delta \varphi \\ \varphi \end{array}\right]$
$2.4\mathrm{V}$	5.0 V	0,48	$0.502\mathrm{rad}$	$0.048\mathrm{rad}$	0,096

$$\varphi = (0.502 \pm 0.048) \,\mathrm{rad}$$

Comparaison des valeurs de φ obtenues par différentes méthodes :

- Méthode directe : [0.546 0.091, 0.546 + 0.091] = [0.455, 0.637] rad
- Méthode XY : $[0.502 0.048, 0.502 + 0.048] = [0.454, 0.550] \,\mathrm{rad}$

Les deux intervalles se chevauchent dans [0.454, 0.550] rad, donc les deux mesures sont compatibles dans cette plage.

Conclusion

- La méthode XY est **plus précise** (incertitude plus faible).
- Les deux méthodes donnent des résultats cohérents puisque leurs intervalles d'incertitude se recoupent.
- Si l'on devait choisir une valeur "meilleure", ce serait celle de la méthode XY ($\phi_2 = 0.502 \pm 0.048 \,\mathrm{rad}$), car elle est plus fiable.