Aulas_teste.github.io

Norah Jones

2024-10-02

Índice

1	Introdução: Problemas de interesse	3
2	Introduction	4
I	Solução Numérica de Equações Motivação - O Estimador de Máxima Verossimilhança	5
3	Método da Bisseção	8
4	Summary	9
Re	eferences	10

1 Introdução: Problemas de interesse

Encontrar soluções de equações não lineares onde não é possível obter uma solução analítica;

Obter integrais que apresentam uma forma complicada que inviabiliza encontrar uma solução analítica;

Gerar artificialmente amostras a partir de modelos estatísticos;

Aplicar a metodologia estudada na resolução de problemas de inferência.

2 Introduction

This is a book created from markdown and executable code.

See Knuth (1984) for additional discussion of literate programming.

Parte I Solução Numérica de Equações

Motivação - O Estimador de Máxima Verossimilhança

No que segue o termo densidade, significa ou uma densidade de probabilidade (caso absolutamente contínuo) ou uma função de probabilidade (caso discreto).

Sejam $X_1, \ldots, X_n \stackrel{iid}{\sim} f(.|\theta), \ \theta \in \Theta$, onde $f(.|\theta)$ é uma densidade, θ é um parâmetro que desejamos estimar e Θ é o espaço paramétrico;

Suponha que observamos os valores x_1, \ldots, x_n . A função de verossimilhança é definida por:

$$L(\theta) = \prod_{i=1}^n f(x_i|\theta), \ \theta \in \Theta$$

A função de log-verossimilhança é dada por:

$$l(\theta) = logL(\theta) = \sum_{i=1}^{n} logf(x_i|\theta), \ \theta \ \in \Theta$$

Seja $\hat{\theta} \in \Theta$ um valor do parâmetro que maximiza a função de verossimilhança, ou seja, tal que

$$L(\hat{\theta}) \geq L(\hat{\theta})$$
, para todo $\theta \in \Theta$

Então dizemos que $\hat{\theta}$ é uma estimativa de máxima verossimilhança de θ .

A interpretação no caso discreto: é mais provável que $\hat{\theta}$ tenha gerado os dados $x_1, \ \dots, \ x_n$

Como $\hat{\theta}$ depende da amostra, escrevemos $\hat{\theta}(x_1, \dots, x_n)$. Neste caso, $\hat{\theta}(X_1, \dots, X_n)$ é o estimador de máxima verossimilhança (EMV).

i Nota

Para cada amostra observada $\mathbf{x} = (x_1, \dots, x_n)$

A definição nos diz que $\hat{\theta}(\mathbf{x})$ é um ponto de máximo global. Podemos ter nenhum ou mais de um máximo global

Suponha que Θ é um intervalo e que o ponto $\hat{\theta}$ é um ponto interior de Θ que é ponto de máximo de L, podendo ser um máximo local. Se L tem derivada em $\hat{\theta}$, então $L'(\hat{\theta}) = 0$. Ou seja, $\hat{\theta}$ é um ponto estacionário de L (também dizemos $\hat{\theta}$ é um zero da função L'). Este resultado é conhecido no Cálculo como Teorema de Fermat para Pontos Estacionários. Ou seja, sob as condições acima, se $\hat{\theta}$ for EMV, então a derivada de L se anula neste ponto. A recíproca pode não ser verdadeira.

Assim, em muitos casos encontrados na prática, encontrar o EMV é um problema relacionado a encontrar soluções em θ para a equação $L'(\hat{\theta}) = 0$ ou $l'(\theta) = 0$.

Por exemplo, considere uma amostra aleatória X_1,\dots,X_n proveniente de uma distribuição $\exp(\theta)$. Assim, cada X_i tem densidade de probabilidade.

$$f(x|\theta) = \begin{cases} \theta \exp(-\theta x), & \text{se} \quad x > 0 \\ 0, & \text{se} \quad x \le 0. \end{cases}$$

3 Método da Bisseção

asdajhduahd

4 Summary

In summary, this book has no content whatsoever.

References

Knuth, Donald E. 1984. «Literate Programming». Comput.~J.~27~(2): 97–111. https://doi.org/10.1093/comjnl/27.2.97.