ω/β モデルが帰納法公理/超限帰納法公理図式を充足することの証明.

橋本 航気

2022年6月6日

命題 **0.1** (Simpson [1]Lemma VII.2.2). 各 L_2 文 σ (これはゲーデル数ではない) に対して、 ACA_0 で次が証明可能. すべての coded ω モデル M に対し、ただひとつの付値 $f \colon \mathrm{Sub}_M(\varphi) \to \{0,1\}$ が存在する.

証明. 文の構成に関するの帰納法はまわしにくいので、少し一般的に論理式の構成に関して帰納法をまわす. 手間は多いが素朴にやればできる. □

命題 0.2. 任意の ω モデルは全ての L_2 論理式の帰納法公理を充足する. つまり, 以下のモデルである.

$$\{\varphi(0) \land \forall x(\varphi(x) \to \varphi(x+1)) \to \forall x\varphi(x) \mid \varphi$$
は L₂論理式. $\}$

証明. M を ω モデルとする. もし M が可算でないなら Löwenheim—Skolem の下降定理により可算なものに帰着すればよいので,以降 M は可算とする.このとき $W \in \mathcal{P}(\omega)$ を $\{(W)_n | n \in \omega\} = M$ (の二階部分) となるように取れる.任意に L_2 論理式 $\varphi(x)$ をとって固定する. σ を φ の帰納法公理を表す L_2 文とすれば,命題 0.1 より f: $\mathrm{Sub}_M(\sigma) \to \{0,1\}$ なる $f \in \mathcal{P}(\omega)$ が存在し, σ の任意の部分論理式 θ に,M のパラメータを任意に代入した θ について

$$\mathcal{P}(\omega) \models f(\theta) = 1 \Leftrightarrow M \models \theta$$

が成り立つ. $M \models \varphi(0) \land \forall x (\varphi(x) \to \varphi(x+1))$ とすれば, $\mathcal{P}(\omega) \models f(\varphi(0)) \land \forall x (f(\varphi(x)) \to f(\varphi(x+1)))^{*1}$ であるので, $\mathcal{P}(\omega)$ における(Σ_0^0)帰納法で $\mathcal{P}(\omega) \models \forall x f(\varphi(x))$,すなわち付値の定義から $\mathcal{P}(\omega) \models f(\forall x \varphi(x))$ を得る.よって $M \models \forall x \varphi(x)$ が成り立つ.

 β モデルはより強く,すべての超限帰納法公理のモデルになる. β モデルや coded β モデルの定義,基本的性質は [1] の VII 章を見て欲しい.

^{*1} ここで f の中の φ はゲーデル数である。つまり、例えばここで $f(\varphi(0))$ と書いているのは、 $f(Substitute(\lceil \varphi \rceil, 0))$ である。ただし Substitute はゲーデル数として表された論理式の特定の変数に(変数や定数の)代入を行う関数であり、それは再帰的内包公理のもとで作ることができる。実際に定義をきちんと書き下す(= プログラムを書き下し、それが正しく実装されているかを証明する)ことは手間だが、そのような関数が作れることは容易にわかるだろう。

命題 ${\bf 0.3.}$ 任意の β モデルは全ての ${\bf L}_2$ 論理式の超限帰納法公理を充足する.つまり,以下のモデルである.ただし ${
m WO}({\bf X})$ は「X は整列順序のコードである」を意味する Π^1_1 論理式である. *2

$$\{ \operatorname{WO}(X) \to [\forall j (\forall i (i <_X j \to \varphi(i)) \to \varphi(j)) \to \forall j \varphi(j)] \mid \varphi$$
は L₂論理式. $\}$

証明. 命題 0.2 と同様の方針で示せる. β の条件は $\mathcal{P}(\omega) \models \mathrm{WO}(\mathrm{X}) \Leftrightarrow M \models \mathrm{WO}(\mathrm{X})$ に使う.

参考文献

[1] S. G. Simpson, Subsystems of Second Order Arithmetic, Perspectives in Mathematical Logic. Springer-Verlag, 1999.

 $^{^{*2}}$ その形式的定義は [1] の ${
m V}$ 章を見よ.