FFE with LMS

Sign-sign LMS DFE with dLev Adaptation (1)

Impulse Response

FFE+CDR

FFE+CDR

Sign-sign LMS FFE with dLev Adaptation (3)

AyarLabs

© Ayar Labs, Inc. All rights

reserved

Sign-sign LMS FFE with dLev Adaptation (4)

split_error

next_data

flip_next_data

Split_error

Transmitter FFE

Have access to data before ISI

Received data already have ISI

• Suppose channel, $H_{tc}(z)$, has impulse response 0.3, 1.0, -0.2, 0.1, 0.0, 0.0

If FFE is a 3-tap FIR filter with

$$y(n) = p_1 u(n) + p_2 u(n-1) + p_3 u(n-2)$$

$$y(1) = 0 = 1.0p_1 + 0.3p_2 + 0.0p_3$$

$$y(2) = 1 = -0.2p_1 + 1.0p_2 + 0.3p_3$$

$$y(3) = 0 = 0.1p_1 + (-0.2)p_2 + 1.0p_3$$
(3)

- Solving results in $p_1 = -0.266$, $p_2 = 0.886$, $p_3 = 0.204$
- Now the impulse response through both channel and equalizer is: 0.0, -0.08, 0.0, 1.0, 0.0, 0.05, 0.02, ...

