SimPL EEG Data Visualization

June 18, 2021

Team members: Matthew Pin, Mo Garoub, Sasha Babicki, Zhanyi (Yiki) Su

Project mentor: Joel Ostblom

Introduction

Main Goal: Package

Main Goal: User Interface

Stretch Goal: Clustering

Conclusion

- A set of external electrodes placed on top of the skull to measure electrical potential in the brain
- Advantages:
 - High temporal resolution
 - Cheap
 - Unobtrusive

Our Capstone Partner

SimPL at UBC

- Sensing in Biomechanical Processes Lab
- Develops advanced sensing and data analytics techniques
- Focused in sport head injuries
- Employs electroencephalograms (**EEG**) for analysis
- Provided EEG data from 8 experiments

Data Provided by SimPL

- 19 electrode nodes (make 19 channels/columns)
- 1.5 hours per experiment measured @ 2048 Hz
- 33 impacts per experiment (measured in timestamps)

A2-T4 T4-C4 C4-Gz C2-C3 C3-T3 T3-A1

Why is visualizing EEG data important?

EEG data is complex

- Thousands of readings per sec
- Multiple channels
- Visualization tools needed to interpret

C3	Р3	Fz	Cz	Pz
-0.022154	1.643101	-14.908266	-3.842329	4.032097
-2.544600	-7.484372	5.960825	-1.607204	-6.082575
-1.294117	1.392850	2.142001	-0.797354	-2.627173
-2.317574	-1.640691	2.578431	-2.599033	-1.800493
-4.060230	-0.980359	-3.455901	1.378618	3.087605

time: -0.4980s

What visualization tools currently exist?

EEG Lab - Toolbox for Matlab

- Limited visualization options
- No animation capability

MNE - Python Package

- Significant pre-processing required
- EEG functionality is secondary

Other Software

- Old
- Barebones

Our Capstone Goals

Main Goals

- Python visualization and metrics package
- Interactive UI using Streamlit (no coding required)

Stretch Goal (in progress)

- Unsupervised clustering for identifying brain states

Introduction

Main Goal: Package

Main Goal: User Interface

Stretch Goal: Clustering

Conclusion

Local Python package for EEG visualizations with 6 modules

- Novel/customized visualizations
- Editable
- Easy to access
- Easy to maintain

```
from simpl_eeg import (
eeg_objects,
raw_voltage,
connectivity,
topomap_2d,
topomap_3d_brain,
topomap_3d_head
```


Package - Documentation

Documentation

Purpose: Communicate detailed instructions to the user on how to install and use the package

Techniques: jupyter {book}

- Jupyter Book
- GitHub Pages

https://ubc-mds.github.io/simpl_eeg_capstone/

Package - raw_voltage module

Raw voltage plot

Purpose: To visualize raw EEG data per node over a specific time section

Techniques: matpletlib

- Plotting (MNE)
- Customization (matplotlib)

Package - topo_3d_head module

3D topographic head map

Purpose: To visualize EEG signal changes on the scalp from a 3D perspective over a given time section

Techniques: MNE

- 3D interpolation (scipy)
- 3D visualization (plotly)
- Animation (plotly)

Package - topo_2d_head module

2D topographic head map

Purpose: To visualize EEG signal changes on the scalp from a 2D perspective

Techniques: matpletlib

- 2D visualization (MNE)
- Customization (matplotlib)
- Animation (matplotlib)

Package - topo_3d_brain module

3D brain map

Purpose: Interpolate and visualize EEG signal changes mapped to a 3D brain to view potential brain signal changes

Techniques: PyVista matpletlib

- Auto-downloads MRI brain model (MNE)
- Maps EEG data to 3D model of a brain (MNE)
- Launches interactive interface (Pyvista)
- Animation (matplotlib)

Package - connectivity module

Connectivity and Connectivity Circle

Purpose: Visualize similarity in signal changes over time between nodes

Techniques: matpletlib

- Correlation and connectivity calculations
- Figure modifications (matplotlib)
- Animation (matplotlib)

Works with

Viewing in

dimensions

UI

true

Short

time

rendering

Animated

Matplotlib 3D

brain

Connectivity

Connectivity

Circle

Advan	tages	and Drawbacks			
Interactive	Static Raw	2D head	3D head	PyVista 3D	

Auvan	ilages	and Drawbacks			
Interactive Raw Voltage	Static Raw Voltage	2D head	3D head	PyVista 3D brain	

Introduction

Main Goal: Package

Main Goal: User Interface

Stretch Goal: Clustering

Conclusion

User Interface

Purpose: Provide easy to use interactive access to package functionality

Techniques: w Streamlit

- Streamlit
- Caching
- Custom CSS

Drawbacks:

Flexibility

User Interface Demo

Introduction

Main Goal: Package

Main Goal: User Interface

Stretch Goal: Clustering

Conclusion

Stretch Goal - Clustering

Clustering Algorithms

Purpose: Identify potential brain states, which are considered as similar patterns of 19 electrodes over a period of time in the EEG data, with unsupervised machine learning techniques

Data attributes:

- No labels or pre-defined brain states
- High dimensionality

Stretch Goal - Single Timesteps

Finding number of clusters:

1) K-means using Elbow Method

Purpose: To find the optimal value of clusters in range of K values

Techniques:

- K-means Algorithm
- Time Series Clustering

Drawbacks:

Needs K as an input

K range =
$$(1, 19)$$

Stretch Goal - Single Timesteps

Finding number of clusters:

2) K-means using Silhouette Method

Purpose: To find the optimal value of clusters in range of K values

Techniques:

- K-means Algorithm
- Time Series Clustering

Drawbacks:

Needs K as an input

Hidden Markov Model

Purpose: Use a probabilistic model to identify similar patterns in EEG data to cluster different brain states in the likelihood sense

Techniques: hmmlearn

Gaussian HMM (hmmlearn)

Drawbacks:

- Output is hard to interpret
- Difficult to evaluate performance

Introduction

Main Goal: Package

Main Goal: User Interface

Stretch Goal: Clustering

Conclusion

Conclusion - Project Overview

Summary

- ✓ Completed both main goals and started stretch goal
 - ✓ Package with 6 modules
 - ✓ Interactive User Interface
 - ✓ Preliminary clustering analysis and recommendations for next steps
- ✓ Created detailed step-by-step instructions
- ✓ Issue tracker on GitHub contains a record of known bugs and suggested improvements

Conclusion - Future Improvements

Ideas for next steps

- Package: Extend functionality (e.g. accept different file types)
- UI: Deploy app to make use of shared caching
- Clustering: Expand upon techniques our stretch goal is just a starting point

• Attributions

- <u>EEGLab</u>
- MNE
- Plotly
- JupyterBook
- Netflix (Firm),. (2017). Stranger things: Season 1.
- Man moving hand with EEG
- Confused Scientist
- <u>UBC SimPL Lab</u>
- Future image
- EEG Koala
- EEG Squid
- EEG Figure from paper
- EEG Cluster Figure