Design and Analysis of Algorithms

CS3230

Lecture 7
Amortized Analysis

Warut Suksompong

Asymptotic notation for multiple parameters

- What does O(m+n) or O(mn) mean?
- For two functions f(m,n) and g(m,n), we say that f(m,n) = O(g(m,n)) if there exist constants c,m_0,n_0 such that $0 \le f(m,n) \le c \cdot g(m,n)$ for all $m \ge m_0$ or $n \ge n_0$.
- Similar definitions for other asymptotic notations (but not our focus). See Exercise 3.1-8 of CLRS.

Amortized Analysis

- There is a sequence of n operations o_1, o_2, \dots, o_n
- Let t(i) be the time complexity of i-th operation o_i
- Let T(n) be the time complexity of <u>all n operations</u>

$$T(n) = \sum_{i=1}^{n} t(i)$$

$$= n f(n)$$
Could be grossly wrong!

f(n) = worst case time complexity of any of the n operations

Amortized Analysis

Binary counter

A motivating example for amortized analysis

k-bit Binary Counter: How do we increment?

Ctr	A[4]	A[3]	A[2]	A [1]	A[0]	
0	0	0	0	0	0,	
1	0	0	0	0,	14	
2	0	0	0	14	0/	
3	0	0	0,	1,	12	
4	0	0	14	0 6	0م	
5	0	0	1	0	1	
6	0	0	1	1	0	
7	0	0	1	1	1	
8	0	1	0	0	0	
9	0	1	0	0	1	
10	0	1	0	1	0	
11	0	1	0	1	1	

Objective: Count total Bit flips $(0 \rightarrow 1, 1 \rightarrow 0)$ during n increments

T(n) = total no. of bit flips during n increments

Aim: To get a tight bound on T(n)

```
INCREMENT(A)

1. i \leftarrow 0

2. while i < length[A] and A[i] = 1 do

3. A[i] \leftarrow 0 \qquad \triangleright flip \ 1 \rightarrow 0

4. i \leftarrow i + 1

5. if i < length[A]

6. then A[i] \leftarrow 1 \qquad \triangleright flip \ 0 \rightarrow 1
```

k-bit Binary Counter: No. of bit flips

Ctr	A[4]	A[3]	A[2]	A [1]	A[0]	Cost
0	0	0	0	0	0	0
1	0	0	0	0	1	1
2	0	0	0	1	0	2
3	0	0	0	1	1	1
4	0	0	1	0	0	3
5	0	0	1	0	1	1
6	0	0	1	1	0	2
7	0	0	1	1	1	1
8	0	1	0	0	0	4
9	0	1	0	0	1	1
10	0	1	0	1	0	2
11	0	1	0	1	1	1

Objective: Count total Bit flips $(0 \rightarrow 1, 1 \rightarrow 0)$ during n increments

T(n) = total no. of bit flips during n increments

Aim: To get a tight bound on T(n)

Attempt 1:

Let t(i) = no. of bit flips during ith increment

$$T(n) = \sum_{i=1}^{n} t(i)$$

In the worst case, t(i) = k

$$\rightarrow$$
 $T(n) = O(n k)$

Is this a tight bound?

k-bit Binary Counter: No. of bit flips

Ctr	A[4]	A[3]	A[2]	A [1]	A[0]	Cost	Total Cost
0	0	0	0	0	0	0	0
1	0	0	0	0	1	1	1
2	0	0	0	1	0	2	3
3	0	0	0	1	1	1	4
4	0	0	1	0	0	3	7
5	0	0	1	0	1	1	8
6	0	0	1	1	0	2	10
7	0	0	1	1	1	1	11
8	0	1	0	0	0	4	15
9	0	1	0	0	1	1	16
10	0	1	0	1	0	2	18
11	0	1	0	1	1	1	19

Objective: Count total Bit flips $(0 \rightarrow 1, 1 \rightarrow 0)$ during n increments

T(n) = total no. of bit flips during n increments

Aim: To get a tight bound on T(n)

Attempt 2:

Let f(i) = no. of times i th bit flips

$$T(n) = \sum_{i=0}^{K-1} f(i)$$

$$f(0) = n$$

$$f(1) - n/2$$

$$f(2) = n/4$$

$$f(i) = n/2^i$$

Much better than O(nk) since $k \approx \log n$

→
$$T(n) = n \sum_{i=0}^{k-1} 2^{-i} < 2n$$

$$v\left(1+\frac{1}{2}+\frac{1}{4}+\dots\right)$$

Amortized Analysis

 Amortized analysis is a strategy for analyzing a sequence of operations to show that the average cost per operation is small, even though a single operation within the sequence might be expensive.

• In our last example, average cost per increment = $\frac{T(n)}{n} < 2 = O(1)$

We say **amortized cost** of each increment = 0(1)

Amortized Analysis

- Amortized analysis is a strategy for analyzing a sequence of operations to show that the average cost per operation is small, even though a single operation within the sequence might be expensive.
- Note, no probability is involved!

Do <u>not get confused</u> with the average-case analysis

- An amortized analysis *guarantees* the <u>average performance</u> of each operation in the worst case.
- In our last example, average cost per increment = $\frac{T(n)}{n} < 2 = O(1)$

We say amortized cost of each increment = O(1)

Another Example: Queues

- Consider a queue with two operations:
 - INSERT(x): Inserting one element x and
 - *EMPTY(): Emptying* the queue, implemented by deleting all the elements one by one.
- What is the worst case running time for a sequence of n operations?
- Cost of a single INSERT: $\Theta(1)$
- Cost of a single EMPTY: ⊕(n) (because at most n elements inserted)

Amortized Analysis: Queues

 An EMPTY is a sequence of DELETE's where each DELETE removes one element from the front of the queue

Notice: #DELETE's ≤ #INSERT's

• If there are k INSERT's in the sequence, sum of cost of all the EMPTY's is $\leq k$.

• Total cost: $\leq k + k = 2k \leq 2n$. Amortized cost is O(1).

Types of Amortized Analyses

- Three common amortization arguments:
 - > Aggregate method
 - > Accounting method
 - > Potential method
- We have just seen two examples of aggregate analysis.
- The aggregate method, though simple, lacks the precision of the other two methods. In particular, the accounting and potential methods allow a specific amortized cost to be allocated to each operation.

Accounting (Banker's) Method

- Charge i th operation a fictitious amortized cost c(i).
- Idea is that the amortized cost c(i) is a fixed cost for each operation, while the true cost t(i) varies depending on when the operation is called.
- The amortized cost c(i) must satisfy:

$$\sum_{i=1}^{n} t(i) \le \sum_{i=1}^{n} c(i) \text{ for all } n$$

The total amortized cost provides an upper bound on the total true cost.

Accounting (Banker's) Method

- Typically, the fixed amortized cost c(i) will be more than the true cost t(i). Only occasionally, the true cost t(i) will be larger than c(i).
- The extra amount we pay for cheap operations early on can be thought of as **credit** paid in advance for the rare, expensive operations later!
- Analysis must ensure that there's always enough credit to pay for true cost.
- NOTE: Different operations can have different amortized costs.

Amortized Analysis of Queues

- For INSERT, set amortized cost to 2. (True cost is 1.)
- For EMPTY, set amortized cost to 0. (True cost is size of queue.)
- Whenever an element is inserted, we pay an extra 1. This extra 1 can be used as credit that can pay for deleting it later.
- Total cost is at most $2*\#INSERT \le 2n$.

First identify the most expensive case

Observe, 5 bits are reset to $1 \rightarrow 0$, and only one bit is set to $0 \rightarrow 1$

k-bit Binary Counter: How to increment?

Ctr	A[4]	A[3]	A[2]	A [1]	A[0]
0	0	0	0	0	0
1	0	0	0	0	1
2	0	0	0	1	0
3	0	0	0	1	1
4	0	0	1	0	0
5	0	0	1	0	1
6	0	0	1	1	0
7	0	0	1	1	1
8	0	1	0	0	0
9	0	1	0	0	1
10	0	1	0	1	0
11	0	1	0	1	1

```
INCREMENT(A)

1. i \leftarrow 0

2. while i < length[A] and A[i] = 1 do

3. A[i] \leftarrow 0 \qquad \triangleright flip \ 1 \rightarrow 0

4. i \leftarrow i + 1

5. if i < length[A]

6. then A[i] \leftarrow 1 \qquad \triangleright flip \ 0 \rightarrow 1
```

First identify the most expensive case

Observe, 5 bits are reset to $1 \rightarrow 0$, and only one bit is set to $0 \rightarrow 1$

- Charge \$2 for each $0 \rightarrow 1$
 - \$1 pays for the actual bit setting.
 - \$1 is stored in the bank.

At some point of time, this bit must have been set

- Observation: At any point, every 1 bit in the counter has \$1 on its bank.
- Use that \$1 as credit to pay for resetting $1 \rightarrow 0$. (reset is "free")

• Invariant we need to keep: Bank balance never drops below 0. Thus, the sum of the amortized costs provides an upper bound on the sum of the true costs.

Observation: At any point, every 1 bit in the counter has \$1 on its bank.

Claim: After i increments, the amount of money in the bank is the number of 1's in the binary representation of i.

• Claim: After i increments, the amount of money in the bank is the number of 1's in the binary representation of i.

Proof:

- Every time we set a bit $0 \rightarrow 1$, we pay \$2.
- \$1 is used to flip the bit while \$1 is stored in bank.
- Every time we reset a bit from $1 \rightarrow 0$, we use \$1 from bank to flip the bit.
- Hence, the amount of money in the bank is the number of 1's in the binary representation of i.

 Since the number of 1's in the binary representation of i is nonnegative, previous slide shows that the bank balance is always nonnegative.

- Conclusion:
 - Amortized cost for each increment = 2 = 0(1)
 - Amortized cost for <u>n</u> increments = 2n = O(n)
 - Actual cost for \underline{n} increments = O(n)

Actual cost ≤ Amortized cost

Potential Method

 ϕ : Potential function associated with the algorithm/data-structure (as opposed to with specific object in data-structure)

 $\phi(i)$: Potential at the end of ith operation

c_i: Amortized cost of **i**th operation

 t_i : True cost of ith operation

Key relation:
$$c_i = t_i + \phi(i) - \phi(i-1)$$

Adding up the above relation for i = 1, 2, ..., n:

$$c_1 + c_2 + \dots + c_n \ge t_1 + t_2 + \dots + t_n + \phi(n) - \phi(0)$$

Potential Method

Key relation: $c_i = t_i + \phi(i) - \phi(i-1)$

$$c_1 + c_2 + \cdots + c_n = t_1 + t_2 + \cdots + t_n + \phi(n) - \phi(0)$$

Typically, we define $\phi(0) = 0$. So as long as $\phi(n) \ge 0$ for all n, the amortized cost is an upper bound of the true cost:

$$c_1 + c_2 + \dots + c_n \ge t_1 + t_2 + \dots + t_n$$

Potential Method on Queue

Potential function: $\phi(i)$ = number of elements in the queue after i-th operation

We have $\phi(0) = 0$. Moreover, $\phi(n) \ge 0$ for all n.

Amortized cost for INSERT:

$$c_i = \underbrace{t_i}_{1} + \underbrace{\phi(i) - \phi(i-1)}_{1} = 1 + 1 = 2$$

Amortized cost for EMPTY (suppose there are k elements in the queue):

$$c_i = t_i + \phi(i) - \phi(i-1) = k+0 - k = 0$$

For binary increment, potential function is the number of 1-bits (see CLRS for analysis)

Dynamic table

For Insertion only

How large should a table be?

• Goal: Make the table as small as possible, but large enough so that it won't overflow (otherwise becomes inefficient).

Problem: What if we don't know the proper size in advance?

How large should a table be?

- Goal: Make the table as small as possible, but large enough so that it won't overflow (or otherwise become inefficient).
- Problem: What if we don't know the proper size in advance?

Solution: *Dynamic tables.*

- IDEA: Whenever the table overflows, "grow" it by allocating (via malloc or new) a new, larger table. Move all items from the old table into the new one, and free the storage for the old table.
- Dynamic tables are implemented as ArrayList in Java or std:vector in C++.

Some Notations

- n: number of elements in the table.
- createTable(k): A system-call that creates a table of size k and returns its pointer.
- size(T): the size of table T.
- copy(T,T'): copies the contents of table T into T'.
- free(T): free the space (return the space to OS) occupied by table T.

A <u>trivial</u> way to perform Insert(x)

```
If (n = 0)
      T \leftarrow \text{createTable}(1);
Else
                                 // Table is full
      \mathsf{lf}(n = \mathsf{size}(T))
     \{ T' \leftarrow \text{createTable}(n+1); \}
          copy(T,T');
          free(T);
          T \leftarrow T'
Insert x into T;
n \leftarrow n + 1;
```

- 1. Insert
- 2. Insert

- 1. Insert
- 2. Insert

1. Insert

2. Insert

1

2

- 1. Insert
- 2. Insert
- 3. Insert

1

overflow

- 1. Insert
- 2. Insert
- 3. Insert

Example of a Dynamic Table

- 1. Insert
- 2. Insert
- 3. Insert

Example of a Dynamic Table

- 1. Insert
- 2. Insert
- 3. Insert

A <u>trivial</u> way to perform lnsert(x)

```
If (n = 0)
      T \leftarrow \text{createTable}(1);
Else
                                 // Table is full
      \mathsf{lf}(\boldsymbol{n} = \mathsf{size}(\boldsymbol{T}))
     { T' \leftarrow \text{createTable}(n+1);}
         copy(T,T');
                                                  Idea: Every time
         free(T);
                                                                               table is full, create
         T \leftarrow T'
                                                                                  a new table of
                                                                                 double the size
Insert x into T;
n \leftarrow n + 1;
Time complexity of n insertions : O(n^2)
```

Proposed way to perform Insert(x)

```
If (n = 0)
      T \leftarrow \text{createTable}(1);
Else
                                // Table is full
      \mathsf{lf}(n = \mathsf{size}(T))
     \{ T' \leftarrow \text{createTable}(2n); 
          copy(T,T');
          free(T);
          T \leftarrow T'
Insert x into T;
n \leftarrow n + 1;
```

- 1. Insert
- 2. Insert

overflow

- 1. Insert
- 2. Insert

1. Insert

2. Insert

1

2

- 1. Insert
- 2. Insert
- 3. Insert

1

- 1. Insert
- 2. Insert
- 3. Insert

- 1. Insert
- 2. Insert
- 3. Insert

2

- 1. Insert
- 2. Insert
- 3. Insert
- 4. Insert

- 2
- 3
- 4

- 1. Insert
- 2. Insert
- 3. Insert
- 4. Insert
- 5. Insert

- 1. Insert
- 2. Insert
- 3. Insert
- 4. Insert
- 5. Insert

- 1. Insert
- 2. Insert
- 3. Insert
- 4. Insert
- 5. Insert

2

3

4

- 1. Insert
- 2. Insert
- 3. Insert
- 4. Insert
- 5. Insert
- 6. Insert
- 7. Insert

- 2
- 3
- 4
- 5
- 6
- 7

Worst-case Analysis

- Consider a sequence of *n* insertions.
- The worst-case time to execute one insertion is O(n).
- So, the worst-case time for *n* insertions is $n \cdot O(n) = O(n^2)$.

Is this tight?

Amortized Analysis

- Observe, once the table is full, we create a table of <u>double</u> the size.
- It will take O(1) time for next many insertions (filling up empty slots) until overflow happens.
- So the heavy operation (copying the table into new table) will occur only when n-1 is a power of 2.

Aggregate Method

```
Let t(i) = the cost of the i th insertion

= \begin{cases} i & \text{if } i-1 \text{ is an exact power of 2,} \\ 1 & \text{otherwise.} \end{cases}
```

size _i 1 2 4 4 8 8 8 8 16 16 t(i) 1	i	1	2	3	4	5	6	7	8	9	10
t(i) 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	size _i	1	2	4	4	8	8	8	8	16	16
1 2 4 8	4(;)	1	1	1	1	1	1	1	1	1	1
	l(l)		1	2		4				8	(

Aggregate Method

Thus, the average cost of each insertion in dynamic table is = O(n)/n = O(1).

Accounting Method

- Charge \$3 for each insertion
 - \$1 for the insertion into the current table
 - \$1 for moving when the table expands
 - \$1 for moving another item (which was moved before) when the table expands
- Suppose the table has size m after an expansion, so it currently holds m/2 elements. Consider the next insertion.
 - \$1 to pay for the insertion itself
 - \$1 stored for moving this item when the table expands
 - \$1 stored for moving one of the existing m/2 items when the table expands

Potential Method for Insert(x)

Operation Insert(x)	Actual Cost	$\Delta oldsymbol{\phi}_i$	Amortized Cost	
Case 1: when table is not full	1			
Case 2: when table is already full	i	3-i	3	
		2-(i-	1) i+(3-i)	

$$\phi(i) = 2i - size(T)$$

Potential Method for Insert(x)

$$\phi(i-1) = 2(i-1) - l$$

Before **Insert**(**x**)

$$\boldsymbol{\phi}(\boldsymbol{i}) = 2i - l$$

After Insert(x)

Operation Insert(x)	Actual Cost	$\Delta oldsymbol{\phi}_i$	Amortized Cost
Case 1: when table is not full	1	(2i-1) - (2(i-1)-1)	1+2 3
Case 2: when table is already full	i	3-i	3

$$\phi(i) = 2i - size(T)$$

Potential Method for Insert(x)

$$\phi(i-1) = 2(i-1) - l$$

Before **Insert**(**x**)

$$\boldsymbol{\phi}(\boldsymbol{i}) = 2\boldsymbol{i} - \boldsymbol{l}$$

After Insert(x)

Operation Insert(x)	Actual Cost	$\Delta oldsymbol{\phi}_i$	Amortized Cost
Case 1: when table is not full	1	2	3
Case 2: when table is already full	i	3-i	3

Amortized cost of n insertions = 3n = O(n)

Actual cost of n insertions = O(n)

Conclusion

- Amortized costs can provide a clean abstraction of data-structure performance.
- Amortized analysis can be performed using all 3 methods: aggregate method, accounting method, potential method.
 - But each method has some situations where it is arguably the simplest or most precise.
 - Choice of potential function can be somewhat tricky, and you sometimes need to play around with different options.
- Different schemes may work for assigning amortized costs in the accounting method, or potentials in the potential method, sometimes yielding radically different bounds.

Acknowledgement

- The slides are modified from
 - The slides from Prof. Surender Baswana
 - The slides from Prof. Erik D. Demaine and Prof. Charles E. Leiserson
 - The slides from Prof. Diptarka Chakraborty
 - The slides from Prof. Arnab Bhattacharyya