TP: Acidité

Ewen Le Bihan

2019-10-07

1 Protocole

1.1 Matériel requis

- Blouse
- PHmètre
- $\bullet\,$ Solution tampon de ph4
- Solution tampon de ph 7
- Pissette d'eau
- 3 Erlen meyer

1.2 Mode opératoire

- $1. \ \, \text{On \'etalonne le phm\`etre en r\'eglant l'} \textit{offset} \,\, \text{et la } \textit{slope} \,\, \text{avec--} \text{respectivement--} \text{les solutions de ph} \,\, 4 \,\, \text{et} \,\, 7 \,\, \text{et} \,\, \text{$
- 2. On nettoie la sonde du phmètre à l'aide de la pissette d'eau
- 3. On plonge la sonde dans le erlen meyer contenant la solution à mesurer

2 Réalisation

Solution		HNO_3	$\mathrm{CH_{3}CO_{2}H}$	$\mathrm{NH_4^+NO_3^-}$	
PH-mètre	$\pm 0, 1$	2,0	3,9	6, 1	
papier PH	± 1	2	4	6	

Table 1: Résultats de l'expérience

3 Réponse à la problématique

En solution aqueuse, le PH des différentes solutions diffère.

4 Interprétation

$$\begin{split} &HNO_{3}(aq) + H_{2}O(l) \longrightarrow NO_{3}^{-}(aq) + H_{3}O^{+}(aq) \\ &NH_{4}^{+}NO_{3}^{-}(aq) + H_{2}O(l) \longrightarrow N_{2}O^{-}(aq) + H_{3}O^{+}(aq) \\ &H_{4}C_{2}O_{2}(aq) + H_{2}O(l) \longrightarrow C_{2}O_{2}^{-}(aq) + H_{3}O^{+}(aq) \end{split}$$

5 Tableau d'avancement

		$HA(aq) + H_2O(l) \longrightarrow A^-(aq) + H_3O^+(aq)$				
État	Avancement	Quantité de matière [mol]				
Initial	x = 0	n_0		0	0	
En cours	x	$n_0 - x$	en excès	x	x	
Final	x_{max}	$n_0 - x_{\text{max}}$		x_{max}	x_{max}	

6

$$n(\mathrm{HA})_0 = C_0 \cdot V = x_{\mathrm{max}}$$

7

 x_{\max} étant égal pour les différentes réactions (tout les réactifs sont dans les mêmes proportions), calculons x_{\max} :

$$x_{\text{max}} = C_0 \cdot V$$
$$= 0,010 \cdot 50 \cdot 10^{-3}$$
$$\approx 5,0 \cdot 10^{-4} \text{ mol}$$

8

$$pH = -\log[H_3O^+]$$

$$-pH = \log[H_3O^+]$$

$$10^{-pH} = [H_3O^+]$$

$$[H_3O^+] = 10^{-pH}$$

Calculons ainsi

8.1 Acide nitrique

$$[H_3O^+] = 10^{-2,0}$$

 $\approx 10^{-2} \text{ mol} \cdot L^{-1}$

8.2 Acide éthanoïque

$$\begin{split} [\mathrm{H_3O}^+] &= 10^{-3,9} \\ &\approx 1,25 \cdot 10^{-4} \; \mathrm{mol} \cdot \mathrm{L}^{-1} \end{split}$$

8.3 Nitrate d'ammonium

$$\begin{split} [\mathrm{H_3O^+}] &= 10^{-6,1} \\ &\approx 7,94 \cdot 10^{-7} \; \mathrm{mol} \cdot \mathrm{L}^{-1} \end{split}$$

9

	Acide nitrique	Acide éthanoïque	Nitrate d'ammonium
pH mesuré	2,0	3, 9	6,1
Concentration finale théorique de H_3O^+ en mol· L^{-1}	$5,0\cdot 10^{-4}$	$5,0 \cdot 10^{-4}$	$5,0\cdot 10^{-4}$
Concentration réelle mesurée de H_3O^+ en mol· L^{-1}	10^{-2}	$1,25 \cdot 10^{-4}$	$7,94 \cdot 10^{-7}$

Non, le réactif limitant n'est pas toujours consommé. Oui, x_{\max} représente la valeur finale

$$\begin{split} &HNO_{3}(aq) + H_{2}O(l) & \Longrightarrow NO_{3}^{-}(aq) + H_{3}O^{+}(aq) \\ &NH_{4}^{+}NO_{3}^{-}(aq) + H_{2}O(l) & \Longrightarrow N_{2}O^{-}(aq) + H_{3}O^{+}(aq) \\ &H_{4}C_{2}O_{2}(aq) + H_{2}O(l) & \Longrightarrow C_{2}O_{2}^{-}(aq) + H_{3}O^{+}(aq) \end{split}$$