学生証番号		 	 	 	 			
	子生部金万					氏名	点数	

1 (集合と写像の復習)

(1) 次の写像 $f: X \to Y$ は、全射であるか?単射 | 回答欄 (なるものは \bigcirc を、ならないものには \times であるか?をそれぞれの場合について答えよ. を記入せよ.)

(例)	X =	Y =	$\mathbb{R}_{\geq 0}$,	f(x)	$=\sqrt{x}$
(a)	X =	Y =	$\mathbb{R}_{>0}$	f(x)	$=x^2$

(b)
$$X = Y = \mathbb{R}_{>0}, f(x) = x^2 + 1$$

(c)
$$X = Y = \mathbb{R}, f(x) = x^3 + 1$$

(d)
$$X = \mathbb{Z}, Y = \{-1, 1\}, f(x) = (-1)^x$$

(e)
$$X = Y = \mathbb{R}, f(x) = x(x-1)(x+1)$$

問題	単射?	全射?
(例)	\circ	\circ
(a)		
(b)		
(c)		
(d)		
(e)		

(2) 2つの写像 $f,g:\mathbb{R}\to\mathbb{R}$ を, $f(x)=e^x$, g(x)=3x により定める. 合成写像 $g\circ f$ の $x\in\mathbb{R}$ にお ける値を書け.

- (1) 次の集合のうち乗法 (×) に関し群になるもの (乗法群) を全て選べ.
 - (a) $\mathbb{R}_{>0} = \{ x \in \mathbb{R} \mid x > 0 \}$
 - (b) $\{3^n \in \mathbb{Q} \mid n \in \mathbb{Z}\}$
 - (c) $\{z \in \mathbb{C} \mid |z| = 2\}$

答え	•				
台ん	•				

- (2) 次の集合のうち加法 (+) に関し群になるもの (加法群) を全て選べ.
 - (d) 偶数全体の集合
 - (e) 奇数全体の集合
 - (f) $\{(x,y) \in \mathbb{R}^2 \mid y = 2x\}$
 - (g) $\{(x,y) \in \mathbb{R}^2 \mid y = x+1\}$

$$G = \left\{2^n \mid n \in \mathbb{Z}\right\} = \left\{\dots, \frac{1}{4}, \frac{1}{2}, 1, 2, 4, \dots\right\}$$

が, 乗法 (演算×) に関し, 群になることを示せ. ((0) 演算に関し, 閉じていること, (1) 結合法則を満たすこと, (2) 単位元が存在すること, (3) 逆元が存在すること, を示せ.)

4 実 2 次正則行列のなす乗法群 $GL(2,\mathbb{R})=\left\{A\mid 2\times 2$ 行列, かつ $\det A\neq 0\right\}$ の部分集合

$$SO(2, \mathbb{R}) = \left\{ \begin{pmatrix} \cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha \end{pmatrix} \middle| \alpha \in \mathbb{R} \right\}$$

は, $GL(2,\mathbb{R})$ の部分群になることを示せ. $(SO(2,\mathbb{R})$ が (0) 単位元 E を含むこと, (1) 演算に関し閉じていること, (2) 逆元の存在, を示せ.)