<u>20053722</u> Bryan Hoang
Student Number Name

2.

(a) Solution:

Proof. Since each X_i in the sequence has the mean $\mu = \frac{1}{\lambda}$, then by the strong law of large numbers, $\overline{X}_n \xrightarrow{a.s.} \frac{1}{\lambda}$. Let $f(x) = \frac{1}{x}$. Then $f(\cdot)$ is continuous on $(0, \infty)$, the support of each X_i . Then from the lectures, we have that

$$f(\overline{X}_n) \xrightarrow{a.s.} f\left(\frac{1}{\lambda}\right)$$

$$\Longrightarrow Y_n \xrightarrow{p} \lambda$$

$$\Longrightarrow Y_n \xrightarrow{p} \lambda$$

(b) Solution:

Proof. We have that

$$E[\overline{X}_n - \mu)^2] = Var(\overline{X}_n)$$

$$= Var(\frac{1}{n} \sum_{i=1}^n X_i)$$

$$= \frac{1}{n^2} \sum_{i=1}^n Var(X_i)$$

$$= \frac{1}{n^2} \cdot n\sigma^2$$

$$= \frac{\sigma^2}{n}$$

which implies that $\lim_{n\to\infty} \mathbb{E}[\overline{X}_n - \mu)^2] = 0.$

Therefore, \overline{X}_n converges to μ in mean square.