Measurements and Instrumentation [SBE206A] (Fall 2018) Tutorial 7

Dr. Muhammed Rushdi

Asem Alaa

December 11, 2018

Errors during the measurement process

Introduction

- Measurement errors are impossible to avoid.
- we can minimize their magnitude by:
 - good measurement system design.
 - appropriate analysis and processing of measurement data.
- Errors are categorized to:
 - Systematic errors
 - Random errors

Systematic errors

The systematic errors affect the readings in a consistent way, such that all readings are on one side of the true value (either all positive or all negative).

Sources of systematic errors are:

- Loading error: system disturbances due to measurement.
- Environmental changes (results in change of sensitivity drift or zero drift).
- Calibration error: use of uncalibrated instruments.
- Wear in instruments components (can be compensated by calibration).
- Poor cabling practices.

Random errors

In contrast, random errors have stochastic effects on readings; the readings are distributed around a the true value.

Possible sources of random errors are:

- 1. Human reading errors.
- 2. Electrical noise.

Systematic Error	Random Error
Poor accuracy	poor precision
definite causes	indefinite causes
reproducible	not reproducible

Table 1: Comparison between systematic and random errors

Comparison between systematic and random errors

also referred to as radom error

Figure 1: Difference between systematic errors effect and random errors effect.

1. Exercise

Which is more challenging? Systematic errors or random errors?

1. Solution

Aggregation of measurement system errors

The worst-case prediction of maximum error

$$error = \sum_{i}^{n} x_{i} \tag{1}$$

Likely maximum systematic error

error =
$$\sqrt{x_1^2 + x_2^2 + \ldots + x_n^2}$$
 (2)

Problems

Systematic Errors

Systematic erros due to disturbance

System Disturbance

2. Exercise

Figure 2: Effect of applying the voltmeter to the measured quantity.

- 1. Derive the relation of the true and output readings.
- 2. Suppose that the components of the circuit in Figure 2 have the following values: R₁ = 400Ω , R₂ = 600Ω , R₃ = 1000Ω , R₄ = 500Ω , R₅ = 1000Ω

2. Solution

3. Exercise

An inexpensive voltmeter is used to measure the voltage to with 1 % across the power terminals of a stereo system. Such a system typically has an output impedance of 500 Ω and a voltage of 120 V at its power terminals. Assuming that the voltmeter is 100 % accurate such that the instrument and zero-order uncertainties are negligible, determine the minimum input impedance (in Ω) that this voltmeter must have to meet the 1 % criterion.

3. Solution

4. Exercise

Figure 3: Circuit for Exercise 4

In the circuit shown in Figure 4, the resistor values are given by $R_1=1000\Omega;~R_2=1000\Omega;~\text{V}=20$ volts. The voltage across AB (i.e., across R_2) is measured by a voltmeter whose internal resistance is given by $R_m=9500\Omega.$

- 1. What will be the reading on the voltmeter?
- 2. What would the voltage across AB be if the voltmeter was not loading the circuit (i.e., if $R_{\rm m}=\infty$)?

3. show that the voltage $E_{\rm m}$ measured across points AB by the voltmeter is related to the true voltage $(E_{\rm o})$ by the following expression:

$$\frac{E_{\rm m}}{E_{\rm o}} = \frac{R_{\rm m}(R_1 + R_2)}{R_1(R_2 + R_{\rm m}) + R_2 R_{\rm m}}$$
(3)

- 4. What is the measurement error due to the loading effect of the voltmeter?
- 5. If the parameters in Figure 4 have the following values, $R_1=5000\Omega;\ R_2=10000\Omega;$ what value would the voltmeter internal resistance R_m need to be in order not to exceed a measurement error of 1%?

4. Solution

5. Exercise

Figure 4: Circuit for Exercise 5

The voltage across a resistance R_5 in the circuit of Figure 5 is to be measured by a voltmeter connected across it.

- 1. If the voltmeter has an internal resistance ($R_{\rm m}$) of 4750Ω , what is the measurement error?
- 2. What value would the voltmeter internal resistance need to be in order to reduce the measurement error to 1%?

5. Solution

6. Exercise

A requirement for a resistance of 1220Ω in a circuit is satisfied by connecting together resistances of 1000 and 220 Ω in series. If each resistance has a tolerance of $\pm 5\%$, what is the likely tolerance in the total resistance?

6. Solution

7. Exercise

In order to calculate the heat loss through the wall of a building, it is necessary to know the temperature difference between inside and outside walls. Temperatures of 5 and 20 $^{\circ}\text{C}$ are measured on each side of the wall by mercury-in-glass thermometers with a range of 0 to $\pm 50^{\circ}\text{C}$ and a quoted inaccuracy of $\pm 1\%$ of full-scale reading.

- 1. Calculate the likely maximum possible error in the calculated value for the temperature difference.
- 2. Discuss briefly how using measuring instruments with a different measurement range may improve measurement accuracy.

7. Solution