Summary

- Calculating the EVSI using non-parametric regression
 - Sampling future datasets
 - Summary Statistics
 - Using non-parametric regression
- Calculating the EVSI in R.
- Calculating the EVSI in SAVI

References

Strong et al. (2015) Estimating the Expected Value of Sample Information Using the Probabilistic Sensitivity Analysis Sample: A Fast, Nonparametric Regression-Based Method.

ullet We are considering collecting an additional dataset $oldsymbol{X}.$

- ullet We are considering collecting an additional dataset $oldsymbol{X}$.
- What is expected value of collecting data X?

- ullet We are considering collecting an additional dataset X.
- What is expected value of collecting data X?

EVSI

$$\mathsf{EVSI} = \mathsf{E}_{\boldsymbol{X}} \left[\max_t \mathsf{E}_{\boldsymbol{\theta} \mid \boldsymbol{X}} \{ \mathsf{NB}(d, \boldsymbol{\theta}) \} \right] - \max_t \mathsf{E}_{\boldsymbol{\theta}} \{ \mathsf{NB}_t(\boldsymbol{\theta}) \}$$

As we did with the expression for EVPPI, we can rewrite EVSI as

$$\begin{aligned} \mathsf{EVSI} &= \mathsf{E}_{\boldsymbol{X}} \left[\max_t \mathsf{E}_{\boldsymbol{\theta} \mid \boldsymbol{X}} \{ \mathsf{NB}(d, \boldsymbol{\theta}) \} \right] - \max_t \mathsf{E}_{\boldsymbol{\theta}} \{ \mathsf{NB}_t(\boldsymbol{\theta}) \} \\ &= \mathsf{E}_{\boldsymbol{X}} \left[\max_t \mathsf{E}_{\boldsymbol{\theta} \mid \boldsymbol{X}} \{ \mathsf{NB}(d, \boldsymbol{\theta}) \} \right] - \max_t \mathsf{E}_{\boldsymbol{X}} \left[\mathsf{E}_{\boldsymbol{\theta} \mid \boldsymbol{X}} \{ \mathsf{NB}(d, \boldsymbol{\theta}) \} \right] \end{aligned}$$

• This is helpful when it comes to Monte Carlo estimation

The PSA sample

- The probability sensitivity analysis (PSA) sample
 - lacktriangleright Samples from $p(oldsymbol{ heta})$ and corresponding net benefits

 \bullet How do we sample from the marginal distribution $p(\boldsymbol{X})?$

5/16

- How do we sample from the marginal distribution p(X)?
- \bullet Firstly, recognise that $p(\boldsymbol{X},\boldsymbol{\theta}) = p(\boldsymbol{X}|\boldsymbol{\theta})p(\boldsymbol{\theta})$

- How do we sample from the marginal distribution p(X)?
- Firstly, recognise that $p(X, \theta) = p(X|\theta)p(\theta)$
- ullet Then, recognise that if we sample from the joint distribution $p(m{ heta}, m{X})$ then the samples $m{x}$ drawn from this joint distribution have a marginal distribution $p(m{X})$

- How do we sample from the marginal distribution p(X)?
- ullet Firstly, recognise that $p(X, m{ heta}) = p(X|m{ heta})p(m{ heta})$
- Then, recognise that if we sample from the joint distribution $p(\theta, X)$ then the samples x drawn from this joint distribution have a marginal distribution p(X)
- So we can do the following:

- How do we sample from the marginal distribution p(X)?
- ullet Firstly, recognise that $p(X, m{ heta}) = p(X|m{ heta})p(m{ heta})$
- Then, recognise that if we sample from the joint distribution $p(\theta, X)$ then the samples x drawn from this joint distribution have a marginal distribution p(X)
- So we can do the following:
 - ▶ Define study of interest to give us $p(X|\theta)$

- How do we sample from the marginal distribution p(X)?
- ullet Firstly, recognise that $p(m{X}, m{ heta}) = p(m{X}|m{ heta})p(m{ heta})$
- ullet Then, recognise that if we sample from the joint distribution $p(m{ heta}, m{X})$ then the samples $m{x}$ drawn from this joint distribution have a marginal distribution $p(m{X})$
- So we can do the following:
 - ▶ Define study of interest to give us $p(X|\theta)$
 - Generate samples $oldsymbol{ heta}^{(1)}, \dots, oldsymbol{ heta}^{(N)}$ from $p(oldsymbol{ heta})$

- How do we sample from the marginal distribution p(X)?
- \bullet Firstly, recognise that $p(\boldsymbol{X},\boldsymbol{\theta}) = p(\boldsymbol{X}|\boldsymbol{\theta})p(\boldsymbol{\theta})$
- ullet Then, recognise that if we sample from the joint distribution $p(m{ heta}, m{X})$ then the samples $m{x}$ drawn from this joint distribution have a marginal distribution $p(m{X})$
- So we can do the following:
 - ▶ Define study of interest to give us $p(X|\theta)$
 - Generate samples $oldsymbol{ heta}^{(1)}, \dots, oldsymbol{ heta}^{(N)}$ from $p(oldsymbol{ heta})$
 - Generate a single sample of \boldsymbol{x} from $p(\boldsymbol{x}|\boldsymbol{\theta}^{(i)})$ for each $i=1,\ldots,N$

- How do we sample from the marginal distribution p(X)?
- \bullet Firstly, recognise that $p(\boldsymbol{X},\boldsymbol{\theta}) = p(\boldsymbol{X}|\boldsymbol{\theta})p(\boldsymbol{\theta})$
- ullet Then, recognise that if we sample from the joint distribution $p(m{ heta}, m{X})$ then the samples $m{x}$ drawn from this joint distribution have a marginal distribution $p(m{X})$
- So we can do the following:
 - ▶ Define study of interest to give us $p(X|\theta)$
 - Generate samples $\boldsymbol{\theta}^{(1)}, \dots, \boldsymbol{\theta}^{(N)}$ from $p(\boldsymbol{\theta})$
 - Generate a single sample of x from $p(x|\theta^{(i)})$ for each $i=1,\ldots,N$
 - lacktriangleright This gives us a sample $m{x}^{(1)},\ldots,m{x}^{(N)}$ from $p(m{X})$

- How do we sample from the marginal distribution p(X)?
- \bullet Firstly, recognise that $p(\boldsymbol{X},\boldsymbol{\theta}) = p(\boldsymbol{X}|\boldsymbol{\theta})p(\boldsymbol{\theta})$
- ullet Then, recognise that if we sample from the joint distribution $p(m{ heta}, m{X})$ then the samples $m{x}$ drawn from this joint distribution have a marginal distribution $p(m{X})$
- So we can do the following:
 - ▶ Define study of interest to give us $p(X|\theta)$
 - Generate samples $\boldsymbol{\theta}^{(1)}, \dots, \boldsymbol{\theta}^{(N)}$ from $p(\boldsymbol{\theta})$
 - Generate a single sample of x from $p(x|\theta^{(i)})$ for each $i=1,\ldots,N$
 - ▶ This gives us a sample $x^{(1)}, \dots, x^{(N)}$ from p(X)
- ullet Note that any single sample x is a sample dataset from the proposed study.

- How do we sample from the marginal distribution p(X)?
- \bullet Firstly, recognise that $p(\boldsymbol{X},\boldsymbol{\theta}) = p(\boldsymbol{X}|\boldsymbol{\theta})p(\boldsymbol{\theta})$
- ullet Then, recognise that if we sample from the joint distribution $p(m{ heta}, m{X})$ then the samples $m{x}$ drawn from this joint distribution have a marginal distribution $p(m{X})$
- So we can do the following:
 - ▶ Define study of interest to give us $p(X|\theta)$
 - Generate samples $\boldsymbol{\theta}^{(1)}, \dots, \boldsymbol{\theta}^{(N)}$ from $p(\boldsymbol{\theta})$
 - Generate a single sample of x from $p(x|\theta^{(i)})$ for each $i=1,\ldots,N$
 - lacktriangle This gives us a sample $m{x}^{(1)},\ldots,m{x}^{(N)}$ from $p(m{X})$
- ullet Note that any single sample x is a sample dataset from the proposed study.
- ullet Each sample x may be a vector of values

- Define study of interest
- This gives us $p(\boldsymbol{X}|\boldsymbol{\theta})$
- ullet For each row in the PSA, sample a dataset $oldsymbol{x}^{(i)}$ from $p(oldsymbol{X}|oldsymbol{ heta}^{(i)})$

- Define study of interest
- ullet This gives us $p(oldsymbol{X}|oldsymbol{ heta})$
- ullet For each row in the PSA, sample a dataset $oldsymbol{x}^{(i)}$ from $p(oldsymbol{X}|oldsymbol{ heta}^{(i)})$

EVSI

$$\mathsf{EVSI} = \mathsf{E}_{\boldsymbol{X}} \left[\max_{t} \mathsf{E}_{\boldsymbol{\theta} \mid \boldsymbol{X}} \{ \mathsf{NB}(d, \boldsymbol{\theta}) \} \right] - \max_{t} \mathsf{E}_{\boldsymbol{X}} \left[\mathsf{E}_{\boldsymbol{\theta} \mid \boldsymbol{X}} \{ \mathsf{NB}(d, \boldsymbol{\theta}) \} \right]$$

8/16

EVSI

$$\mathsf{EVSI} = \mathsf{E}_{\boldsymbol{X}} \left[\max_{t} \mathsf{E}_{\boldsymbol{\theta} \mid \boldsymbol{X}} \{ \mathsf{NB}(d, \boldsymbol{\theta}) \} \right] - \max_{t} \mathsf{E}_{\boldsymbol{X}} \left[\mathsf{E}_{\boldsymbol{\theta} \mid \boldsymbol{X}} \{ \mathsf{NB}(d, \boldsymbol{\theta}) \} \right]$$

 $\mathsf{E}_{\boldsymbol{\theta}|\boldsymbol{X}}\{\mathsf{NB}(d,\boldsymbol{\theta})\}$ potentially difficult

EVSI

$$\mathsf{EVSI} = \mathsf{E}_{\boldsymbol{X}} \left[\max_t \mathsf{E}_{\boldsymbol{\theta} \mid \boldsymbol{X}} \{ \mathsf{NB}(d, \boldsymbol{\theta}) \} \right] - \max_t \mathsf{E}_{\boldsymbol{X}} \left[\mathsf{E}_{\boldsymbol{\theta} \mid \boldsymbol{X}} \{ \mathsf{NB}(d, \boldsymbol{\theta}) \} \right]$$

EVSI

$$\mathsf{EVSI} = \mathsf{E}_{\boldsymbol{X}} \left[\max_t \mathsf{E}_{\boldsymbol{\theta} \mid \boldsymbol{X}} \{ \mathsf{NB}(d, \boldsymbol{\theta}) \} \right] - \max_t \mathsf{E}_{\boldsymbol{X}} \left[\mathsf{E}_{\boldsymbol{\theta} \mid \boldsymbol{X}} \{ \mathsf{NB}(d, \boldsymbol{\theta}) \} \right]$$

Write the following

Regression equation

$$\begin{aligned}
\mathsf{NB}_t(\boldsymbol{\theta}) &= \mathsf{E}_{\boldsymbol{\theta}|\boldsymbol{X}} \{ \mathsf{NB}_t(\boldsymbol{\theta}) \} + \varepsilon \\
&= g_t(\boldsymbol{X}) + \varepsilon
\end{aligned}$$

EVSI

$$\mathsf{EVSI} = \mathsf{E}_{\boldsymbol{X}} \left[\max_t \mathsf{E}_{\boldsymbol{\theta} \mid \boldsymbol{X}} \{ \mathsf{NB}(d, \boldsymbol{\theta}) \} \right] - \max_t \mathsf{E}_{\boldsymbol{X}} \left[\mathsf{E}_{\boldsymbol{\theta} \mid \boldsymbol{X}} \{ \mathsf{NB}(d, \boldsymbol{\theta}) \} \right]$$

Write the following

Regression equation

$$\mathsf{NB}_{t}(\boldsymbol{\theta}) = \mathsf{E}_{\boldsymbol{\theta}|\boldsymbol{X}} \{ \mathsf{NB}_{t}(\boldsymbol{\theta}) \} + \varepsilon
= q_{t}(\boldsymbol{X}) + \varepsilon$$

ullet Where $g_t(oldsymbol{X})$ is some unknown *smooth* function of $oldsymbol{X}$

EVSI

$$\mathsf{EVSI} = \mathsf{E}_{\boldsymbol{X}} \left[\max_t \mathsf{E}_{\boldsymbol{\theta} \mid \boldsymbol{X}} \{ \mathsf{NB}(d, \boldsymbol{\theta}) \} \right] - \max_t \mathsf{E}_{\boldsymbol{X}} \left[\mathsf{E}_{\boldsymbol{\theta} \mid \boldsymbol{X}} \{ \mathsf{NB}(d, \boldsymbol{\theta}) \} \right]$$

Write the following

Regression equation

$$\mathsf{NB}_{t}(\boldsymbol{\theta}) = \mathsf{E}_{\boldsymbol{\theta}|\boldsymbol{X}}\{\mathsf{NB}_{t}(\boldsymbol{\theta})\} + \varepsilon
= q_{t}(\boldsymbol{X}) + \varepsilon$$

- ullet Where $g_t(oldsymbol{X})$ is some unknown *smooth* function of $oldsymbol{X}$
- ullet Treat as non-parametric regression of $\mathsf{NB}_t(oldsymbol{ heta})$ on $oldsymbol{X}$

EVSI

$$\mathsf{EVSI} = \mathsf{E}_{\boldsymbol{X}} \left[\max_t \mathsf{E}_{\boldsymbol{\theta} \mid \boldsymbol{X}} \{ \mathsf{NB}(d, \boldsymbol{\theta}) \} \right] - \max_t \mathsf{E}_{\boldsymbol{X}} \left[\mathsf{E}_{\boldsymbol{\theta} \mid \boldsymbol{X}} \{ \mathsf{NB}(d, \boldsymbol{\theta}) \} \right]$$

Write the following

Regression equation

$$\begin{aligned}
\mathsf{NB}_t(\boldsymbol{\theta}) &= \mathsf{E}_{\boldsymbol{\theta}|\boldsymbol{X}} \{ \mathsf{NB}_t(\boldsymbol{\theta}) \} + \varepsilon \\
&= g_t(\boldsymbol{X}) + \varepsilon
\end{aligned}$$

- Where $g_t({m X})$ is some unknown *smooth* function of ${m X}$
- ullet Treat as non-parametric regression of $\mathsf{NB}_t(oldsymbol{ heta})$ on $oldsymbol{X}$
- ullet If $oldsymbol{X}$ is vector, summarise $S(oldsymbol{X})$ and regress on $S(oldsymbol{X})$

PSA plus datasets

PSA plus datasets

- ullet For each dataset calculate scalar summary statistic $S(oldsymbol{x}^{(i)})$
- ullet Regress net benefits $\mathsf{NB}_t(oldsymbol{ heta}^{(i)})$ on $S(oldsymbol{x}^{(i)})$

¹Strong M, Oakley JE, Brennan A, Breeze P. Estimating the Expected Value of Sample Information using the Probabilistic Sensitivity Analysis Sample. A Fast Non-Parametric Regression Based Method. *Medical Decision Making*. 2015;35(5):570-583

- ullet For each dataset calculate scalar summary statistic $S(oldsymbol{x}^{(i)})$
- ullet Regress net benefits $\mathsf{NB}_t(oldsymbol{ heta}^{(i)})$ on $S(oldsymbol{x}^{(i)})$
- Repeat for each $t \in \{1, \dots, T\}$
- Extract fitted values $\hat{g}_t\{S(\boldsymbol{x}^{(i)})\}$
- ullet These are estimates of $\mathsf{E}_{m{ heta}|m{X}^{(i)}}\{\mathsf{NB}_t(m{ heta})\}$

¹Strong M, Oakley JE, Brennan A, Breeze P. Estimating the Expected Value of Sample Information using the Probabilistic Sensitivity Analysis Sample. A Fast Non-Parametric Regression Based Method. *Medical Decision Making*. 2015;35(5):570-583

- ullet For each dataset calculate scalar summary statistic $S(oldsymbol{x}^{(i)})$
- ullet Regress net benefits $\mathsf{NB}_t(oldsymbol{ heta}^{(i)})$ on $S(oldsymbol{x}^{(i)})$
- Repeat for each $t \in \{1, \dots, T\}$
- Extract fitted values $\hat{g}_t\{S(\boldsymbol{x}^{(i)})\}$
- \bullet These are estimates of $\mathsf{E}_{\boldsymbol{\theta}|\boldsymbol{X}^{(i)}}\{\mathsf{NB}_t(\boldsymbol{\theta})\}$
- EVSI estimator is now just¹

$$\frac{1}{N} \sum_{i=1}^{N} \max_{t} \hat{g}_{t} \{ S(\boldsymbol{x}^{(i)}) \} - \max_{t} \frac{1}{N} \sum_{i=1}^{N} \hat{g}_{t} \{ S(\boldsymbol{x}^{(i)}) \}$$

¹Strong M, Oakley JE, Brennan A, Breeze P. Estimating the Expected Value of Sample Information using the Probabilistic Sensitivity Analysis Sample. A Fast Non-Parametric Regression Based Method. *Medical Decision Making*. 2015;35(5):570-583

```
library(mgcv)
model <- gam(INB ~ s(Sx))
g.hat <- fitted(model)
evsi <- mean(pmax(0, g.hat)) - max(0, mean(g.hat))</pre>
```

Empirical case study results

Sample sizes			Coefficient	Computation
Outer	Inner	Total	of variation	time (s)
Two-le	vel Mont	e Carlo m	ethod	
10^{4}	10^{4}	10^{8}	1.9%	4,456
10^{5}	10^{4}	10^{9}	0.6%	43,303
10^{6}	10^{4}	10^{10}	0.2%	424,686
Non-pa	rametric	regression	method	
10^{4}	-	10^{4}	2.4%	0.1
10^{5}	-	10^{5}	0.8%	0.7
10^{6}	-	10^{6}	0.2%	8

Empirical case study results

Sample sizes			Coefficient	Computation
Outer	Inner	Total	of variation	time (s)
Two-le	∕el Mont	e Carlo m	ethod	
10^{4}	10^{4}	10^{8}	1.9%	4,456
10^{5}	10^{4}	10^{9}	0.6%	43,303
10^{6}	10^{4}	10^{10}	0.2%	424,686
Non-pa	rametric	regression	method	
10^{4}	-	10^{4}	2.4%	0.1
10^{5}	-	10^{5}	0.8%	0.7
10^{6}	-	10^{6}	0.2%	8

50,000 times speed up!

Example in SAVI

Summary

- Fast and efficient method for EVSI
- Only the PSA sample required
- No need to run the model again
- 'Black box' Value of Information