











|   | TensorFlow 2 패키지 사용 가능                                                                                                                                   |  |
|---|----------------------------------------------------------------------------------------------------------------------------------------------------------|--|
|   | tensorflow - CPU와 GPU 지원이 포함된 안정적인 최신 출시( <i>Ubuntu 및 Windows</i> )<br>tf-nightly - 미리보기 빌드( <i>돌안정</i> ). Ubuntu 및 Windows에는 <u>GPU 지원</u> 이 포함되어 있습니다. |  |
| ٠ | tf-nightly - 미리보기 빌드( <i>불안정</i> ). Ubuntu 및 Windows에는 <u>GPU 지원</u> 이 포함되어 있습니다.                                                                        |  |
|   | 이건 버전의 TensorFlow                                                                                                                                        |  |
| • | TensorFlow 1.x의 경우 CPU와 GPU 패키지는 다음과 같이 구분됩니다.                                                                                                           |  |
|   | tensorflow==1.15 - CPU 전용 출시                                                                                                                             |  |
| • | tensorflow-gpu==1.15 - <u>GPU 지원</u> 이 포함된 출시(Ubuntu <i>및\Windows</i> )                                                                                  |  |
|   | 시스템요구사항                                                                                                                                                  |  |
|   | Python 3.5~3.8                                                                                                                                           |  |
|   | Python 3.8 지원에는 TensorFlow 2.2 이상이 필요합니다.                                                                                                                |  |
|   | pip 19.0 이상(manylinux2010 지원 필요)                                                                                                                         |  |
|   | Ubuntu 16.04 이상(64비트)                                                                                                                                    |  |
|   | macOS 10.12.6(Sierra) 이상(64비트)(GPU 지원 없음)                                                                                                                |  |
| • | Windows 7 이상(64비트)                                                                                                                                       |  |
|   | Visual Studio 2015 2017 및 2019은 Microsoft Visual C++ 재비포 가능 파키지                                                                                          |  |
|   | Raspbian 9.0 이상                                                                                                                                          |  |
|   | GPU 지원에는 CUDA® 지원 카드 필요(Ubuntu 写/Windows)                                                                                                                |  |

# 신경망을 위한 데이터 표현 스칼라 (DD 텐서) - 넘파이에서는 float32나 float64 타입의 숫자가 스칼라 텐서 - import numpy as np - x = np.arroy(12) - x - x.ndim

## 

| 3D 텐서                                                                                                                                                                                                                                                                         | 고차원 텐서                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <ul> <li>x = np.array([[[5, 78, 2, 34, 0],</li> <li>[6, 79, 3, 35, 1],</li> <li>[7, 80, 4, 36, 2]],</li> <li>[[5, 78, 2, 34, 0],</li> <li>[6, 79, 3, 35, 1],</li> <li>[7, 80, 4, 36, 2]],</li> <li>[6, 79, 3, 35, 1],</li> <li>[7, 80, 4, 36, 2]])</li> <li>x.ndim</li> </ul> | ** = np.array([ *(  5, 78, 2, 34, 0],   6, 79, 3, 35, 1],   7, 80, 4, 36, 2  , *(  5, 78, 2, 34, 0],   6, 79, 3, 35, 1],   7, 80, 4, 36, 2  , *(  5, 78, 2, 34, 0],   6, 79, 3, 35, 1],   7, 80, 4, 36, 2  , *(  5, 78, 2, 34, 0],   6, 79, 3, 35, 1],   7, 80, 4, 36, 2  , *(  5, 78, 2, 34, 0],   6, 79, 3, 35, 1],   7, 80, 4, 36, 2  , *(  5, 78, 2, 34, 0],   6, 79, 3, 35, 1],   7, 80, 4, 36, 2  , *(  5, 78, 2, 34, 0],   6, 79, 3, 35, 1],   7, 80, 4, 36, 2  , *(  5, 78, 2, 34, 0],   6, 79, 3, 35, 1],   7, 80, 4, 36, 2   , *(  5, 78, 2, 34, 0],   6, 79, 3, 35, 1],   7, 80, 4, 36, 2   , *(  5, 78, 2, 34, 0],   6, 79, 3, 35, 1],   7, 80, 4, 36, 2   , *(  5, 78, 2, 34, 0],   6, 79, 3, 35, 1],   7, 80, 4, 36, 2   , *(  5, 78, 2, 34, 0],   6, 79, 3, 35, 1],   7, 80, 4, 36, 2   , *(  5, 78, 2, 34, 0],   6, 79, 3, 35, 1],   7, 80, 4, 36, 2   , *(  5, 78, 2, 34, 0],   6, 79, 3, 35, 1],   7, 80, 4, 36, 2   , *(  5, 78, 2, 34, 0],   6, 79, 3, 35, 1],   7, 80, 4, 36, 2   , *(  5, 78, 2, 34, 0],   6, 79, 3, 35, 1],   7, 80, 4, 36, 2   , *(  5, 78, 2, 34, 0],   6, 79, 3, 35, 1],   7, 80, 4, 36, 2   , *(  5, 78, 2, 34, 0],   6, 79, 3, 35, 1],   7, 80, 4, 36, 2   , *(  5, 78, 2, 34, 0],   6, 79, 3, 35, 1],   7, 80, 4, 36, 2   , *(  5, 78, 2, 34, 0],   6, 79, 3, 35, 1],   7, 80, 4, 36, 2   , *(  5, 78, 2, 34, 0],   6, 79, 3, 35, 1],   7, 80, 4, 36, 2   , *(  5, 78, 2, 34, 0],   6, 79, 3, 35, 1],   7, 80, 4, 36, 2   , *(  5, 78, 2, 34, 0],   6, 79, 3, 35, 1],   7, 80, 4, 36, 2   , *(  5, 78, 2, 34, 0],   6, 79, 3, 35, 1],   7, 80, 4, 36, 2   , *(  5, 78, 2, 34, 0],   6, 79, 3, 35, 1],   7, 80, 4, 36, 2   , *(  5, 78, 2, 34, 0],   6, 79, 3, 35, 1],   7, 80, 4, 36, 2   , *(  5, 78, 2, 34, 0],   6, 79, 3, 35, 1],   7, 80, 4, 36, 2   , *(  5, 78, 2, 34, 0],   6, 79, 3, 35, 1],   7, 80, 4, 36, 2   , *(  5, 78, 2, 34, 0],   6, 79, 3, 35, 1],   7, 80, 4, 36, 2   , *(  5, 78, 2, 34, 0],   6, 79, 3, 35, 1],   7, 80, 4, 36, 2   , *(  5, 78, 2, 34, 0],   6, 79, 3, 35, 1],   7, 80, 4, 36, 2  , *(  5, 78, 2, 34, 0],   6, 79, 3, 35, 1],   7, 80, 4, |





| 넘파이로 텐서 조작 |                                                    |  |
|------------|----------------------------------------------------|--|
| 슬라         | PONS                                               |  |
|            | 문제: 11번째에서 100번째까지 숫자를 선택하여 (90, 28, 28 크기의 배열 생성) |  |
|            |                                                    |  |
|            |                                                    |  |
|            |                                                    |  |
|            |                                                    |  |
|            |                                                    |  |
|            |                                                    |  |



## 배치 데이터 \* # MNIST 숫자 데이터에서 크기가 128 인 배치 하나는 다음과 같다. \* # 그 다음 배치는 다음과 같다. \* # 그리고 n 번째 배치는 다음과 같다. \* # batch axis or batch dimension

### 텐서의 실제 사례

- 1) 벡터데이터
- : (samples, features) 크기의 2D 텐서
- 2) 시계열데이터 또는 시퀀스 (sequence) 데이터 : (samples, timesteps, features) 크기의 3D 텐서
- 3) 0/0/2/
- : (samples, height, width, channels) 또는 (samples, channels, height, width) 크기의 4D 텐서
- 4) 동영상
- : (samples, frames, height, width, channels) 또는 (samples, frames, channels, height, width) 크기의 5D 텐서

16

### 1) 벡터 데이터

- 사람의 나이, 우편 번호, 소득으로 구성된 인구 통계 데이터
   각 사람은 3개의 값을 가진 벡터로 구성되고 10만 명이 포함된 전체 데이터 셋은 (100000, 3)
- (공통 단어 2만 개로 만든 사건에서) 각 단어가 등장한 횟수로 표현된 텍스트 문서 데이터
   각 문서는 2만 개의 원소를 가진 벡터로 인코딩.
   500개의 문서로 이루어진 전체 데이터셋은 (500, 20000)

17

### 2) 시계열 데이터 또는 시퀀스 데이터

 주식 가격데이터
 1분마다 현재주식 가격, 지난 1분 동안에 최고 가격과 최소 가격을 저장
 1분마다대이터는 3D 벡터로 인코딩, 하루 동안의 거래는 (390, 3), \* 하루 거래 시간. 390분
 250일치 데이터는 (250, 390, 3)
 1일치 데이터가 하나의 샘플 트윗 데이터
 각 트윗은 128개의 알파벳으로 구성된 280개 문자 시퀀스
 각 트윗은 128개의 글기인 이진 벡터로 인코딩 \* 해당 문자의 인덱스만 1이고 나머지는 모두 0 각 트윗은 (280, 128)
 100만개의 트윗은 (1000000, 280, 128)

| 3) ( | 이미지 데이터                                                                                                                        |                                        |
|------|--------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|
| :    | 256 x 256 크기 흑백 이미지에 대한 128개 배치 (<br>256 x 256 크기 컬러 이미지에 대한 128개 배치 (                                                         | 128, 256, 256, 1)<br>128, 256, 256, 3) |
| :    | Tensorflow<br>채널 마지막 방식 channel-last<br>(samples, height, width, color_depth)<br>(128, 256, 25, 5)<br>(128, 256, 256, 3)       | Sci 184                                |
| :    | Pytorch, Theano<br>채널 우선 방식 channel-first<br>(samples, color_depth, height, width)<br>(128, 1, 266, 256)<br>(128, 3, 256, 256) | 201                                    |
|      | Keras: channel_last or channel_first                                                                                           | rip)                                   |

## 4) 비디오 데이터 - 이미지 프레임 (height, width, color\_depth) - 프레임의 연속 (frames, height, width, color\_depth) - 비디오 배치 (samples, frames, height, width, color\_depth) - 60초 짜리 144 x 256 유튜브 비디오 클립을 초당 4 프레임 생플링하면 240 프레임 - (60, 4, 144, 256, 3) - 총 106,168,320 개의 값 - Float32: 106,168,320 x 32bit = 405MB - MPEG, 4K 등 동영상은 압촉변환 사용

## 

| ۔                      | 주택 가격 예측 회귀 문제 with tensorflo                                    | w         |   |
|------------------------|------------------------------------------------------------------|-----------|---|
|                        | , , , , , , , , , , , , , , , , , , , ,                          |           |   |
|                        |                                                                  |           |   |
|                        |                                                                  |           |   |
|                        |                                                                  |           |   |
|                        |                                                                  |           |   |
| 22                     |                                                                  |           |   |
|                        |                                                                  |           |   |
|                        |                                                                  |           |   |
|                        |                                                                  |           |   |
|                        |                                                                  |           |   |
|                        |                                                                  |           |   |
|                        |                                                                  |           |   |
|                        |                                                                  |           |   |
|                        |                                                                  |           |   |
|                        |                                                                  |           |   |
|                        |                                                                  |           |   |
|                        | Tensorflow                                                       |           |   |
|                        | remoon, to the                                                   |           |   |
|                        |                                                                  |           |   |
|                        |                                                                  |           |   |
|                        | tensorflow.estimator.LinearRegresso                              | r         |   |
|                        |                                                                  |           |   |
|                        |                                                                  |           |   |
|                        |                                                                  |           |   |
| 23                     |                                                                  |           |   |
|                        |                                                                  |           |   |
|                        |                                                                  |           |   |
|                        |                                                                  |           |   |
|                        |                                                                  |           |   |
|                        |                                                                  |           |   |
|                        |                                                                  |           |   |
|                        |                                                                  |           |   |
|                        |                                                                  |           |   |
| BostonHousi            | ng features                                                      |           |   |
| BostonHousing          |                                                                  | 총 13개의 변수 |   |
| [01] CRIM              | 자치시(town) 별 1인당 범죄률                                              | 3.0.11    |   |
| [02] ZN<br>[03] INDUS  | 25,000 평방피트클 초과하는 거주지역의 비율<br>비소매상업지역이 점유하고 있는 토지의 비율            |           |   |
| [04] CHAS              | 찰스강에 대한 더미변수(강의 경계에 위치한 경우는 1, 아니면 0)                            |           | - |
| [05] NOX<br>[06] RM    | 10ppm 당 농축 일산화질소<br>주택 1가구당 평균 방의 개수                             |           |   |
| [07] AGE               | 1940년 이전에 건축된 소유주택의 비율                                           |           |   |
| [08] DIS<br>[09] RAD   | 5개의 보스턴 직업센터까지의 접근성 지수<br>방사형 도로까지의 접근성 지수                       |           |   |
| [10] TAX               | 10,000 달러 당 재산세율                                                 |           |   |
| [11] PTRATIO<br>[12] B | 자지시(town)별 학생/교사 비름<br>1000(Bk-0.63)^2, 여기서 Bk는 자치시별 흑인의 비율을 말함. |           |   |

| CRIM    |            |                |                 |                       |                   |                  |
|---------|------------|----------------|-----------------|-----------------------|-------------------|------------------|
| ZN      | $(x_1)$    |                | W               |                       |                   |                  |
| INDUS   |            | W <sub>1</sub> | W               |                       |                   |                  |
| CHAS    | $(x_2)$    |                |                 |                       |                   |                  |
| NOX     |            |                |                 |                       |                   |                  |
| RM      | $(x_3)$    | <b>N</b> 3     |                 |                       |                   |                  |
| AGE     |            |                |                 |                       |                   | ŷ                |
| DIS     |            |                |                 |                       |                   | •                |
| RAD     | $(x_4)$    |                | _               |                       |                   |                  |
| TAX     |            |                |                 |                       |                   |                  |
| PTRATIO | w          | 13             |                 |                       |                   |                  |
| В       |            |                |                 |                       |                   |                  |
| LSTAT   | $(x_{13})$ |                | $\hat{y} = w_0$ | $+ W_1 X_1 + W_2 X_3$ | $(2 + W_3X_3 + +$ | W <sub>n</sub> X |

| W <sub>1</sub> W <sub>2</sub>                             |  |
|-----------------------------------------------------------|--|
| ŷ                                                         |  |
| W <sub>13</sub>                                           |  |
| $\hat{y} = W_0 + W_1 X_1 + W_2 X_2 + W_3 X_3 + + W_n X_n$ |  |









| 딥러닝                             |  |
|---------------------------------|--|
|                                 |  |
| • 일반선형회귀                        |  |
| • 로지스틱 회귀 (Logistic Regression) |  |
| • 신경망 (Neural Network)          |  |
| • CNN                           |  |
| • RNN                           |  |
|                                 |  |