

上海交通大学

计算机视觉

教师: 赵旭

班级: AI4701

2024 春

8. 双目几何总结

主要内容

双目系统的几何结构: 对极几何

- * X, x, x'
- * X, X'是X在两幅 视图上的图像 点,如果给定 点,如果给定 其中一点,则 另外一个点在 哪里? (对极 约束)

双目系统的几何结构

- 基线 (Baseline): 两个光学中心的连线
- * 对极点(Epipole):基线与图像平面的交点
- * 对极平面(Epipolar plane):包含基线的平面(族)
- * 对极线 (Epipolar line):对极平面 与图像平面的交线
- * 所有的对极线在对极点交汇
- * 对极平面与左右图像交于左右对极线

基本矩阵:双目几何结构的代数表示

从点到线的射影映射

$$\mathbf{x} \mapsto \mathbf{l}'$$

$$\mathbf{x}' = \mathbf{H}_{\boldsymbol{\pi}}\mathbf{x}$$

$$\mathbf{l}' = \mathbf{e}' \times \mathbf{x}' = [\mathbf{e}']_{\times} \mathbf{x}'$$

$$\mathbf{l}' = [\mathbf{e}']_{\times} \mathtt{H}_{\boldsymbol{\pi}} \mathbf{x} = \mathtt{F} \mathbf{x}$$

基本矩阵

$$\mathtt{F} = [\mathbf{e}']_ imes \mathtt{H}_{oldsymbol{\pi}}$$

基本矩阵:双目系统几何结构的代数表示

$$\mathbf{l}' = \mathbf{F}\mathbf{x}$$

x'在l'上

$$0 = \mathbf{x}'^\mathsf{T} \mathbf{l}' = \mathbf{x}'^\mathsf{T} \mathbf{F} \mathbf{x}$$

$$\mathbf{x}'^\mathsf{T} \mathbf{F} \mathbf{x} = 0$$

* 基本矩阵的性质

$$Fe = 0$$
.

$$\mathbf{l'} = \mathbf{F}\mathbf{x}$$

$$\mathbf{F}^{\mathsf{T}}\mathbf{e}'=\mathbf{0}$$

$$l = F^T \mathbf{x}'$$

$$\mathbf{F} = [\mathbf{e}']_{\times} \mathbf{P}' \mathbf{P}^{+}$$

 $\mathbf{e}' = \mathbf{P}' \mathbf{C}$,
 $\mathbf{P} \mathbf{C} = \mathbf{0}$

本质矩阵

$$P = K[R \mid t]$$

$$\mathbf{x} = P\mathbf{X}$$

若K已知

$$\hat{\mathbf{x}} = \mathbf{K}^{-1}\mathbf{x}$$

$$\hat{\mathbf{x}} = [R \mid \mathbf{t}]\mathbf{X}$$

$$\mathtt{K}^{-1}\mathtt{P} = [\mathtt{R} \mid \mathbf{t}]$$

$$P = [I \mid \mathbf{0}]$$
 $P' = [R \mid \mathbf{t}]$

$$\mathbf{E} = [\mathbf{t}]_{\times} \mathbf{R} = \mathbf{R} [\mathbf{R}^{\mathsf{T}} \mathbf{t}]_{\times}$$
 3×3矩阵,秩2,5个自由度

$$\hat{\mathbf{x}}'^{\mathsf{T}} \mathbf{E} \hat{\mathbf{x}} = 0$$

$$E = K'^T F K$$
.

基本矩阵的求解

- ❖ 已知:
 - 1. 点对应 $\mathbf{x}_i \leftrightarrow \mathbf{x}_i'$
 - $2. \mathbf{x}'^T \mathbf{F} \mathbf{x}$
- * 求解: F
- * 齐次线性方程组:

$$\mathbf{Af} = \begin{bmatrix} x_1'x_1 & x_1'y_1 & x_1' & y_1'x_1 & y_1'y_1 & y_1' & x_1 & y_1 & 1 \\ \vdots & \vdots \\ x_n'x_n & x_n'y_n & x_n' & y_n'x_n & y_n'y_n & y_n' & x_n & y_n & 1 \end{bmatrix} \mathbf{f} = \mathbf{0}$$

基本矩阵的求解-8点法

- * 已知:
 - 1. 点对应 $\mathbf{x}_i \leftrightarrow \mathbf{x}_i'$
 - $2. \mathbf{x}'^T \mathbf{F} \mathbf{x}$
- * 求解: F

* 齐次线性方程组:

$$\mathbf{Af} = \begin{bmatrix} x_1'x_1 & x_1'y_1 & x_1' & y_1'x_1 & y_1'y_1 & y_1' & x_1 & y_1 & 1 \\ \vdots & \vdots \\ x_n'x_n & x_n'y_n & x_n' & y_n'x_n & y_n'y_n & y_n' & x_n & y_n & 1 \end{bmatrix} \mathbf{f} = \mathbf{0}$$

A-n×9矩阵 **f**-9维向量

- * rank(A) = 8, 存在唯一线性解
- * *rank*(*A*) = 9,线性最小二乘解,通 过SVD分解求解:

min
$$\| \mathbf{Af} \| s.t. \| f = 1 \|$$

基本矩阵的求解-8点法

- * 奇异性约束的处理: $rank(\mathbf{F}) = 2$ 或者 $det \mathbf{F} = 0$
- * 已知: F, 找到: F', 使得
 - * min $\|\mathbf{F} \mathbf{F}'\| s.t. \det \mathbf{F}' = 0$
- * SVD分解:
 - * $\mathbf{F} = UDV^T, D = diag(r, s, t), r \ge s \ge t$
 - * $\mathbf{F}' = Udiag(r, s, 0)V^T$
 - * 用F′取代F

基本矩阵的求解-归一化8点法

- * 目标: 给定 $n \geq 8$ PCs, $\{\mathbf{x}_i \leftrightarrow \mathbf{x}_i'\}$, 求解基本矩阵**F**
- * 算法:
 - ① 归一化: $\hat{\mathbf{x}}_i = \mathbf{T}\mathbf{x}_i$, $\hat{\mathbf{x}}_i' = \mathbf{T}\mathbf{x}_i'$, \mathbf{T} 和 \mathbf{T}' 是归一化变换(平移+尺度缩放)
 - ② 根据下列步骤,得到对应于 $\{\hat{\mathbf{x}}_i \leftrightarrow \hat{\mathbf{x}}_i'\}$ 的基本矩阵 $\hat{\mathbf{F}}'$
 - a) 首先得到线性解(SVD)
 - b) 考虑秩的约束
 - ③ 去归一化: $\mathbf{F} = \mathbf{T}'^T \hat{\mathbf{F}}' \mathbf{T}$

相机矩阵求解

- * $\mathbf{x} = \mathbf{P}\mathbf{X}, \mathbf{x}' = \mathbf{P}'\mathbf{X}, \mathbf{E}$ 已知基本矩阵 \mathbf{F} , 求解: \mathbf{P}, \mathbf{P}'
- * 求解步骤:
 - * 据: $\mathbf{E} = \mathbf{K}'^T \mathbf{F} \mathbf{K}$, 得到本质矩阵 \mathbf{E} (针对已标定相机, 内参矩阵 \mathbf{K} , \mathbf{K}' 已知)
 - ⇒ P = [I | 0], 计算P′
 - * SVD: $\mathbf{E} = \mathbf{U} diag(1,1,0)\mathbf{V}^T$

$$\mathbf{W} = \left[\begin{array}{ccc} 0 & -1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{array} \right]$$

 $P' = [\mathbf{U}\mathbf{W}\mathbf{V}^\mathsf{T} \mid +\mathbf{u}_3] \text{ or } [\mathbf{U}\mathbf{W}\mathbf{V}^\mathsf{T} \mid -\mathbf{u}_3] \text{ or } [\mathbf{U}\mathbf{W}^\mathsf{T}\mathbf{V}^\mathsf{T} \mid +\mathbf{u}_3] \text{ or } [\mathbf{U}\mathbf{W}^\mathsf{T}\mathbf{V}^\mathsf{T} \mid -\mathbf{u}_3]$

场景结构求解: 线性法

Find the solution using DLT via SVD

场景结构求解:光束法 (Bundle adjustment)

- * 非线性方法: 结构和运动的优化求解
- * 最小化重投影误差

$$E(\mathbf{M}, \mathbf{X}) = \sum_{i=1}^{m} \sum_{j=1}^{n} \mathbf{D} \mathbf{x}_{ij}, \mathbf{M}_{i} \mathbf{X}_{j}^{2}$$

