Introduction

Lecture 1

ME EN 415
Andrew Ning
aning@byu.edu

Syllabus

http://flow.byu.edu/me415/

515 (595R): Aerodynamics 510: Compressible Fluid Flow

541: Computational Fluid Dynamics

415: Flight Vehicle
Design

523: Aircraft Structures

456/602: Composites

426: Gas Turbine and Jet Engine Design

431: Control Systems

634: Flight
Dynamics and
Control

575: Design Optimization ChE 693R: Dynamic Optimization

Grading

Homework	400
Exams	400
Project	150
Quizzes	50
Total	1000

Aircraft Industry

Air travel has proved to be resilient to external shocks

Air Transportation Economics

787 Cashflow profile [constant learning curve 75%; parameterized for discount factor]

Air Transportation Safety

Air Transportation Efficiency

U.S. Refiners' Acquistion Cost

Source: IHS Global Insight

Fuel efficiency gains since the early jet age

	Time (h)	Speed Cmply	e ficiency (purpg)	COST (A) Pax)
37-75				

Average passenger load factor for aircraft worldwide

www.bdl.aero

Source: International Air Transport Association (IATA)

Design

The Future of Airplanes

The Future of Space Exploration

