

PREVENTION OF HYPERPHOSPHATEMIA
IN KIDNEY DISORDER PATIENTS

Inventors: **Hector F. DeLuca**
Eduardo Slatopolsky

\$730⁰⁰
10/08 50 2288 A

- 1 -

PREVENTION OF HYPERPHOSPHATEMIA

IN KIDNEY DISORDER PATIENTS

Background of the Invention

JWAI7
5 Vitamin D is essential for life in higher animals. It is one of the important regulators of calcium and phosphorus and is required for proper development and maintenance of bone. However, during the past decade, the spectrum of activities promoted by 1,25-(OH)₂D₃ has been found to extend far beyond a role in calcium homeostasis. In addition to its action on the intestine, bone, kidney, and parathyroid glands to control serum calcium, this hormone has been shown to have important cell differentiating activity. Receptors for this hormone have been identified in dozens of different target cells that respond to 1,25-(OH)₂D₃ with a diverse range of biological action. These 10 newly discovered activities have suggested other therapeutic applications of 1,25-(OH)₂D₃ including hyperparathyroidism, 15 psoriasis, cancer, and immune regulation.

PS 6/96
Secondary hyperparathyroidism ^{is} a universal 20 complication in patients with chronic renal failure. Because of its ability to suppress parathyroid hormone (PTH), 1,25-(OH)₂D₃ has been used with success in the treatment of secondary 25 hyperparathyroidism, Slatopolsky et al, "Marked Suppression of Secondary Hyperparathyroidism by Intravenous Administration of 1,25-dihydroxycholecalciferol in Uremic Patients", J. Clin. Invest. 74:2136-2143, 1984. Its use is often precluded, however, by the development of hypercalcemia resulting from its potent action on intestinal absorption and bone mineral mobilization.

Hyperphosphatemia is also a persistent problem in 30 chronic hemodialysis patients and can be further aggravated by therapeutic doses of 1,25-(OH)₂D₃. Delmez et al, "Hyperphosphatemia: Its Consequences and Treatment in Patients with Chronic Renal Disease", Am. J. Kidney Dis. 19:303-

317, 1992; Quarles et al, "Prospective Trial of Pulse Oral versus
Intravenous Calcitriol Treatment of Hyperparathyroidism in
ESRD", Kidney Int. 45:1710-1721, 1994. In addition, the control
of phosphate absorption with large doses of calcium carbonate,
5 Meyrier et al, "The Influence of a High Calcium Carbonate Intake
on Bone Disease in Patients Undergoing Hemodialysis", Kidney
Int. 4:146-153, 1973; Moriniere et al, "Substitution of Aluminum
Hydroxide by High Doses of Calcium Carbonate in Patients on
Chronic Hemodialysis: Disappearance of Hyperaluminaemia and
10 Equal Control of Hyperparathyroidism", Proc. Eur. Dial
Transplant Assoc. 19:784-787, 1983; Slatopolsky et al, "Calcium
Carbonate as a Phosphate Binder in Patients with Chronic Renal
Failure Undergoing Dialysis", New Engl. J. Med. 315:157-161,
1986, only increases the risk of hypercalcemia from 1,25-
15 (OH)₂D₃ therapy. Thus, an analog of 1,25-(OH)₂D₃ that can
suppress PTH with minor effects on calcium and phosphate
metabolism would be an ideal tool for the control of secondary
hyperparathyroidism.

Summary of the Invention

20 A method of preventing hyperphosphatemia in a patient
having a kidney disorder comprising administering to said
patient a vitamin D compound that suppresses PTH and
minimizes intestinal phosphorus absorption. Preferably, the
vitamin D compound is a 19-nor-vitamin D compound and most
25 preferably is 19-nor-1 α ,25-dihydroxyvitamin D₂.

Brief Description of the Drawings

Figure 1 illustrates the effects of 1,25-(OH)₂D₃ and 19-nor-1,25-(OH)₂D₂ on PTH secretion in primary culture of bovine parathyroid cells.

30 Figure 2 illustrates the comparative effects of 1,25-(OH)₂D₃ and 19-nor-1,25-(OH)₂D₂ on serum calcium in uremic rats.

Figure 3 illustrates the comparative effects of 1,25-(OH)₂D₃ and 19-nor-1,25-(OH)₂D₂ on ionized calcium in uremic rats.

5

Figure 4 illustrates the comparative effects of 1,25-(OH)₂D₃ and 19-nor-1,25-(OH)₂D₂ on serum phosphorus.

10

Figure 5 illustrates the effects of 1,25-(OH)₂D₃ on pre-pro PTH mRNA.

Figure 6 illustrates the effects of 19-nor-1,25-(OH)₂D₂ on pre-pro PTH mRNA.

Figure 7 illustrates the effects of 1,25-(OH)₂D₃ on serum PTH.

Figure 8 illustrates the effects of 19-nor-1,25-(OH)₂D₂ on serum PTH.

Description of the Invention

15

Compounds useful in the present invention are those vitamin D compounds that can suppress PTH while at the same time having minimal or no effects on calcium and phosphate metabolism. A class of vitamin D compounds which satisfy such criteria are the 19-nor-analogs, i.e. compounds in which the ring A exocyclic methylene group (carbon 19) typical of all vitamin D system has been removed and replaced by two hydrogen atoms. Structurally these novel analogs are characterized by the general formula I shown below:

20

25

30

where X^1 and X^2 each represent, independently, hydrogen or a hydroxy-protecting group.

The side chain group R in the above-shown structure I may represent any of the presently known steroid side chain types. More specifically R can represent a saturated or unsaturated hydrocarbon radical of 1 to 35 carbons, that may be straight-chain, branched or cyclic and that may contain one or more additional substituents, such as hydroxy- or protected-hydroxy groups, fluoro, carbonyl, ester, epoxy, amino or other heteroatomic groups. Preferred side chains of this type are represented by the structure below:

T50X

15

20

where the stereochemical center (corresponding to C-20 in steroid numbering) may have the R or S configuration, (i.e. either the natural configuration about carbon 20 or the 20-*epi* configuration), and where Z is selected from Y, -OY, -CH₂OY, -C ≡ CY and -CH = CHY, where the double bond may have the cis or trans geometry, and where Y is selected from hydrogen, methyl, -CR⁵O and a radical of the structure.

T51X 25

15

where m and n, independently, represent integers from 0 to 5, where R¹ is selected from hydrogen, hydroxy, protected hydroxy, fluoro, trifluoromethyl, and C₁₋₅-alkyl, which may be straight chain or branched and, optionally, bear a hydroxy or protected-hydroxy substituent, and where each of R², R³, and R⁴,

independently, is selected from hydrogen, fluoró,
trifluoromethyl and C₁₋₅ alkyl, which may be straight-chain or
branched, and optionally, bear a hydroxy or protected-hydroxy
substituent, and where R¹ and R², taken together represent an
5 oxo group, or an alkylidene group, =CR²R³, or the group
-(CH₂)_p-, where p is an integer from 2 to 5, and where R³ and
R⁴, taken together, represent an oxo group, or the group
-(CH₂)_q-, where q is an integer from 2 to 5, where R⁵ represents
10 hydrogen, hydroxy, protected hydroxy, or C₁₋₅ alkyl, and where
any of the groups at positions 20, 22 and 23, respectively in the
side chain may be replaced by an oxygen atom.

As used in the description, and in the claims, the term
"hydroxy-protecting group" refers to any group commonly used
for the protection of hydroxy functions during subsequent
15 reactions, including, for example, acyl or alkylsilyl groups such
as trimethylsilyl, triethylsilyl, t-butyldimethylsilyl and analogous
alkyl or arylsilyl radicals, or alkoxyalkyl groups such as
methoxymethyl, ethoxymethyl, methoxyethoxymethyl,
tetrahydrofuranyl or tetrahydropyranyl. A "protected-hydroxy" is
20 a hydroxy function derivatized by one of the above hydroxy-
protecting groupings. "Alkyl" represents a straight-chain or
branched hydrocarbon radical of 1 to 10 carbons in all its
isomeric forms, such as methyl, ethyl, propyl, isopropyl, butyl,
isobutyl, pentyl, etc., and the terms "hydroxyalkyl," "fluoroalkyl"
25 and "deuteroalkyl" refer to such an alkyl radical substituted by
one or more hydroxy, fluoro or deuterium groups respectively.
An "acyl" group is an alkanoyl group of 1 to 6 carbons in all its
isomeric forms, or an aroyl group, such as benzoyl, or halo-,
nitro- or alkyl-substituted benzoyl groups, or an alkoxy carbonyl
30 group of the type Alkyl-O-CO-, such as methoxycarbonyl,
ethoxycarbonyl, propyloxycarbonyl, etc., or a dicarboxylic acyl
group such as oxanyl, malonyl, succinoyl, glutaroyl, or adiopoyl.

The term "aryl" signifies a phenyl-, or an alkyl, nitro- or halo-substituted phenyl group. The term alkoxy signifies the group alkyl-O-.

5

Specific important examples of side chains are the structures represented by formulas (a), (b), (c), (d) and (e) below, i.e., the side chain as it occurs in 25-hydroxyvitamin D₃ (a); vitamin D₃ (b); 25-hydroxyvitamin D₂ (c); vitamin D₂ (d); and the C-24-epimer of 25-hydroxyvitamin D₂ (e).

T70X₁₀

15

20

(d)

(e)

25

More specifically, a preferred compound for use in the present invention is 19-nor-1 α ,25-dihydroxyvitamin D₂, i.e. formula I wherein X¹ and X² are both hydrogen together with side chain (c) shown above.

30

A method of synthesis of 19-nor-vitamin D compounds has been reported by Perlman et al, Tetrahedron Letters 13, 1823 (1990). This method involves the removal of the C-19-methylene group in an existing vitamin D compound, and is also disclosed in U.S. Patents 5,237,110 and 5,246,925. Another method involves a convergent synthesis of 19-nor-vitamin D

compounds, and is disclosed in U.S. Patent 5,281,731. Still another method involves the condensation of a bicyclic ketone with a phosphine oxide derivative, and is disclosed in U.S. Patent 5,086,191.

5 For treatment purposes, the active compounds of this invention can be formulated as solutions in innocuous solvents, or as emulsions, suspensions or dispersions in suitable innocuous solvents or carriers, or as pills, tablets or capsules, containing solid carriers according to conventional methods known in the
10 art. For topical applications the compounds are advantageously formulated as creams or ointments or similar vehicle suitable for topical applications. Any such formulations may also contain other pharmaceutically-acceptable and non-toxic excipients such as stabilizers, anti-oxidants, binders, coloring agents or
15 emulsifying or taste-modifying agents.

The compounds are advantageously administered by injection, or by intravenous infusion of suitable sterile solutions, or in the form of oral doses via the alimentary canal, or topically in the form of ointments, lotions, or in suitable transdermal patches. In the treatment of hyperparathyroidism, the
20 compounds are administered in dosages sufficient to suppress parathyroid activity, so as to achieve parathyroid hormone levels in the normal range. Suitable dosage amounts are from 1 to 500 µg of compound per day, such dosages being adjusted,
25 depending on diseases to be treated, its severity and the response or condition of the subject as well-understood in the art.

This invention is more specifically described by the following illustrative examples.

Materials and Methods

PTH secretion in culture or bovine parathyroid cells

Primary monolayer cell cultures of bovine parathyroid cells were prepared according to the method of MacGregor et al with minor modifications. MacGregor et al, "Primary Monolayer Cell Culture of Bovine Parathyroids: Effects of Calcium Isoproterenol and Growth Factors", Endocrinology 30:313-328, 1983. Briefly, bovine parathyroid glands were trimmed of extraneous tissue, sliced to ~0.5 mm thickness with a Stadie-Riggs tissue slicer (Thomas Scientific, Swedesboro, NJ) and placed in DME (HG)/Ham's F-12 culture medium (50/50) containing 2.5 mg/ml collagenase (Boehringer Mannheim, Indianapolis, IN) and 0.5 mM total calcium. The suspension (1 g tissue per 10 ml media) was agitated in a shaking water bath at 37° for 90 minutes, and periodically aspirated through a large bore hole cut in an Eppendorf pipet tip attached to a 60-ml syringe. The digested tissue was filtered through gauze, resuspended, and washed three times with culture medium containing DME (HG)/Ham's F12 medium (50/50), 1 mM total calcium, 4% newborn calf serum, 15 mM Hepes, 100 IU/ml penicillin, 100 µg/ml streptomycin, 5 µg/ml insulin, 2 mM glutamine, and 1% nonessential amino acids. Cells were plated at 80,000 cells/cm². After 24 hours, the medium was replaced with the same medium as described above, with the exception that the serum was replaced with 1 mg/ml bovine serum albumin and 5 µg/ml holotransferrin. This medium was replenished every 24 to 48 hours.

PTH Secretion Studies

The test media, containing various concentrations of 1,25-(OH)₂D₃ or 19-nor-1,25-(OH)₂D₂ were prepared by adding the indicated ethanol solutions of the compounds to the media; final ethanol concentration was 0.1%. After incubation, media were collected, centrifuged, and then stored at -20°C until

analyzed for PTH. PTH was assayed using antibody CH9, which
recognizes intact, mid-region, and carboxy-terminal fragments of
PTH. Details of the recognition characteristics of the antisera
and the radioimmunoassay (RIA) methodology have been
5 described previously in Hruska et al, "Metabolism of
Immunoreactive Parathyroid Hormone in the Dog. The Role of
the Kidney and the Effects of Chronic Renal Disease", J. Clin.
Invest. 56:39-48, 1975. Cellular protein in each sample was
determined by sonicating the cells into 1 mM NaOH and assaying
10 an aliquot by using a protein assay kit (Bio-Rad Laboratories,
Richmond, CA). All PTH values were corrected for cell protein.

Reverse Transcriptase-Polymerase Chain Reaction (RT-PCR)

The pair of parathyroid glands from a single animal was
homogenized in 250 µl of RNazol (Cinna Biotech, Houston, TX),
15 mixed with 25 µl of chloroform, vortexed and centrifuged in a
microfuge to separate phases. The upper aqueous phase (125 µl)
was mixed with 20 µl of 1 mg/ml glycogen, 145 µl of 2-propanol
and placed at -20° C overnight. The coprecipitated total RNA
and glycogen were gathered by centrifugation (microfuge) and
20 washed twice with 70% ethanol. Oligo dT primed cDNA was
prepared from 40% of the total RNA with the aid of a kit
obtained from Promega (Madison, WI). One sixth of each cDNA
preparation was amplified by PCR using oligonucleotide primers
sense 5'(ATG TCT GCA AGC ACC ATG GCT AAG)3', representing
25 amino acids -30 to -23 and antisense 5'(CTG AGA TTT AGC CTT
AAC TAA TAC)3' representing amino acids 77 to 84 of rat pre-
pro PTH mRNA. PCR conditions were denaturation 94 C x 1
min., annealing 60 C x 1 min. and extension 72 C x 2 min. for 18
cycles. Amplification of β-actin mRNA from the cDNA was
30 achieved using the same conditions with primers sense 5'(GAT
GAT ATC GCC GCG CTC GTC GTC GAC)3' and antisense 5'(AGC
CAG GTC CAG ACG CAG GAT GGC ATG)3' with a total of 26
cycles. PCR products were separated by means of 1.2% agarose

gels in TAE buffer containing ethidium bromide. The gels were photographed on an ultraviolet light box with Polaroid type 665 film to yield a negative. The Polaroid negative of each gel was scanned (Omni Media 6cx/csx, X-ray Scanner Corporation, Torrance, CA) and analyzed using Sepra Scan 2001 software (Integrated Separation Systems, Natick, MA). The amount of pre-pro PTH and β -actin mRNA from up to 32 different animals could be processed simultaneously to eliminate potential interassay variation. Sequencing of plasmids (pCRII, Invitrogen) containing the PCR products established their identity as rat pre-pro PTH and rat β -actin.

Calcemic response to 1,25-(OH)₂D₃ and 19-nor-1,25-(OH)₂D₂

Renal insufficiency was induced in a group of 150 female Sprague-Dawley rats by 5/6 nephrectomy. The procedure entails the ligation of most of the branches of the left renal artery and right nephrectomy. The rats were fed a diet containing 0.6% calcium and 0.7% phosphorus for a period of eight weeks. At the end of this period, all the rats weighed approximately the same amount (range 260 to 280 gm).

To determine the response to 1,25-(OH)₂D₃ or 19-nor-1,25-(OH)₂D₂ on serum calcium, uremic rats were injected intraperitoneally (IP) on a daily basis for a period of 10 days with vehicle (propylene glycol 100 μ l), 1,25-(OH)₂D₃, 10 ng/rat, or 19-nor-1,25-(OH)₂D₂ (10, 100, or 1,000 ng/rat).

To determine the response of the parathyroid glands to 1,25-(OH)₂D₃ or 19-nor-1,25-(OH)₂D₂, rats with chronic renal insufficiency were divided into three main groups: 1) Vehicle; 2) 1,25-(OH)₂D₃ (2.0, 4.0, or 8.0 ng/rat), and 3) 19-nor-1,25-(OH)₂D₂ (8.0, 25, or 75 ng/rat) given IP every other day for a period of eight days. In addition, studies were performed in normal animals.

Analytical Determinations

Total calcium was determined by atomic absorption spectrophotometry (Perkin Elmer, Model 1100B, Norwalk, CT), and ICa by an ionized-calcium-specific electrode (Model ICA-1, Radiometer, Copenhagen). Plasma phosphorus and creatinine were determined by autoanalyzer (COBAS MIRA Plus, Branchburg, NJ). Intact PTH was measured by an IRMA specific for intact rat PTH from Nichols Institute (San Capistrano, CA). The diet was purchased from DYETS, Inc. (Bethlehem, PA).

10 1,25-(OH)₂D₃ was provided by Dr. Milan Uskokovic (Hoffman La Roche Laboratories, Nutley, New Jersey, USA), and 19-nor-1,25-(OH)₂D₂ was provided by Abbott Laboratories, Abbott Park, Illinois, USA.

Statistical Analysis

15 All data are expressed as mean \pm SEM. One-way analysis of variance (ANOVA) was used for comparisons between groups.

Results

20 Formula 1 where X¹ and X² are both hydrogen and R is side chain (c) illustrates the chemical structure of 19-nor-1,25-(OH)₂D₂. This analog has the carbon 28 and the double bond at carbon 22 that are characteristic of vitamin D₂ compounds, but it lacks carbon 19 and the exocyclic double bond found in all natural vitamin D metabolites.

25 The effect of 1,25-(OH)₂D₃ and 19-nor-1,25-(OH)₂D₂ on PTH secretion in primary culture of bovine parathyroid cells are described in Figure 1. All groups had PTH secretion measured at the same time on the final day in culture (72 hours). Both compounds have a significant dose-dependent suppressive effect on PTH secretion ($p < 0.001$). The maximum suppressive effect was obtained with both compounds at a concentration of 10⁻⁷M. There was no significant difference in the suppressive effect on PTH secretion in vitro between the two compounds.

30

Comparative effects of 1,25-(OH)₂D₃ and 19-nor-1,25-(OH)₂D₂ on total serum calcium are shown in Figure 2. The rats were injected IP on a daily basis for a period of 10 days with vehicle (propylene glycol 100 µl), 1,25-(OH)₂D₃ (10 ng/rat), or 19-nor-1,25-(OH)₂D₂ (10, 100 or 1,000 ng/rat). Daily injections (IP) or 19-nor-1,25-(OH)₂D₂ (10 ng/rat) did not significantly increase serum calcium. When the dose of 19-nor-1,25-(OH)₂D₂ was increased to 100 ng/rat, the increment on serum calcium was the same as that induced by 1,25-(OH)₂D₃ at 10 ng/rat. All the biochemical parameters measured at the time of sacrifice (two months of renal insufficiency) are depicted in Table 1 and Figures 3 and 4. Serum creatinine increased from 0.64 ± 0.02 in the normal rats to 1.15 ± 0.05 mg/dl in uremic animals ($p<0.001$). Neither 1,25-(OH)₂D₃ nor 19-nor-1,25-(OH)₂D₂ modified the serum creatinine in the uremic animals.

As shown in Figure 3, serum ionized calcium increased in the uremic rats receiving 8 ng 1,25-(OH)₂D₃ every other day for eight days ($5.08 \pm .06$ vs. 4.81 ± 0.08 mg/dl in the uremic control animals, $p<0.02$). 19-nor-1,25-(OH)₂D₂ did not increase serum ionized calcium even at the larger dose (75 ng/rat x 4 times).

As shown in Figure 4, 1,25-(OH)₂D₃ (8 ng dose) increased serum phosphorus from $5.57 \pm .5$ (uremic control) to 8.64 ± 1.15 mg/dl ($p<0.01$). None of the doses of 19-nor-1,25-(OH)₂D₂ increased serum phosphorus (Table I, Figure 4). Parathyroid hormone in the normal rats was 40 ± 8.6 pg/ml and increased to 243 ± 83 pg/ml in the uremic rats. The only dose of 1,25-(OH)₂D₃ that produced a statistically significant ($p<0.01$) decrease in levels of PTH was the 8 ng dose. PTH decreased from 202 ± 31 to 90 ± 20 pg/ml. (However, ICa increased from 4.81 ± 0.08 to 5.08 ± 0.06 mg/dl ($p<0.02$) (Figure 5). All the doses of 19-nor-1,25-(OH)₂D₂ (8, 25, 75) produced a significant decrease in the levels of circulating PTH. The greater effect was

observed with the 75 ng dose. PTH decreased from 225 ± 60 to 53 ± 16 pg/ml (Figure 6) (7.5% decrease); however, none of the doses of 19-nor-1,25-(OH)₂D₂ increased ionized calcium.

5 The results of reverse transcriptase (PCR on pre-pro PTH mRNA are depicted in Figures 7 and 8, 1,25-(OH)₂D₃ suppressed pre-pro PTH mRNA in a dose-dependent manner (Figure 7). Similar results were obtained with 19-nor-1,25-(OH)₂D₂ (Figure 8).

Discussion

10 Chronic renal insufficiency is characterized by changes in mineral homeostasis, with secondary hyperparathyroidism appearing even in the early stages of renal insufficiency leading to the development of renal osteodystrophy. Both low levels of 1,25-(OH)₂D₃ and phosphate retention are responsible for the 15 development of secondary hyperparathyroidism. Although serum phosphorus is usually normal in patients with early renal insufficiency, phosphate restriction can reduce secondary hyperparathyroidism. Dietary phosphate restriction increases 20 1,25-(OH)₂D₃ levels, Portale et al, "Effect of Dietary Phosphorus on Circulating Concentrations of 1,25-dihydroxyvitamin D and Immunoreactive Parathyroid Hormone in Children with Moderate Renal Insufficiency", J. Clin. Invest. 73:1580-1589, 1984, which in turn decreases PTH by directly suppressing PTH gene transcription and by increasing intestinal calcium absorption. In later stages of renal failure, the extent of 25 hyperparathyroidism and 1,25-(OH)₂D₃ deficiency increases, and phosphate restriction has little effect on 1,25-(OH)₂D₃ levels, Lopez-Hilker et al, "Phosphorus Restriction Reverses Hyperparathyroidism in Uremia Independent of Changes in Calcium and Calcitriol", Am. J. Physiol. 259:F432-F437, 1990, presumably, due to the decreased renal mass available for 1,25-(OH)₂D₃ synthesis.

Several vitamin D analogs with low calcemic activity have been found to be nearly as effective as 1,25-(OH)₂D₃ in suppressing PTH secretion by cultured bovine parathyroid cells. This includes 22-oxacalcitriol (OCT), Brown et al, "The Non-Calcemic Analog of Vitamin D, 22-oxacalcitriol (OCT) Suppresses Parathyroid Hormone Synthesis and Secretion", J. Clin. Invest. 84:728-732, 1989, as well as 1,25-(OH)₂-16-ene-23-yne-D₃, 1,25-(OH)₂-24-dihomo-D₃, and 1,25-(OH)₂-24-trihomo-22-ene-D₃ (unpublished data). To date, only 22-oxacalcitriol has been examined in detail for this action in vivo. Brown and collaborators, Brown et al, "Selective Vitamin D Analogs and their Therapeutic Applications", Sem. Nephrol 14:156-174, 1994, reported that 22-oxacalcitriol, despite its rapid clearance in vivo, could suppress PTH mRNA. Low, submaximal doses of calcitriol and OCT produced comparable inhibition. OCT has also been shown to suppress serum PTH in uremic rats and dogs. In the current study, we used an analog of 1,25-(OH)₂D₃ with low calcemic and phosphatemic action, 19-nor-1,25-(OH)₂D₂. This analog of calcitriol has the carbon 28 and the double bond at carbon 22 that are characteristic of vitamin D₂ compounds, but it lacks carbon 19 and the exocyclic double bond found in all natural vitamin D compounds. We first performed studies in vitro, utilizing a primary culture of bovine parathyroid cells. 19-nor-1,25-(OH)₂D₂ had a similar suppressive effect on PTH as 1,25-(OH)₂D₃. A 52% suppression on PTH release was obtained with 19-nor-1,25-(OH)₂D₂, 10⁻⁷M. There was no significant difference in the suppressive effect of PTH secretion between the two compounds. Thereafter, preliminary studies were performed in vivo to determine the calcemic activity of 19-nor-1,25-(OH)₂D₂. It was found that 1,25-(OH)₂D₃ (10 ng/rat/10 days) increased serum calcium to the same magnitude as 19-nor-1,25-(OH)₂D₂ (100 ng/rat/10 days). Because of this, three different doses of 1,25-(OH)₂D₃ (2, 4, and 8 ng) and 19-nor-

1,25-(OH)₂D₂ (8, 25, and 75 ng) were selected for the chronic studies. After two months of renal insufficiency, the animals received the above two compounds at the three indicated doses four times during a period of eight days. As expected, 1,25-(OH)₂D₃ suppressed pre-pro PTH mRNA and PTH secretion. However, this decrease was statistically significant only with the 8 ng dose. This dose induced hypercalcemia and hyperphosphatemia. On the other hand, none of the doses of 19-nor-1,25-(OH)₂D₂ produced statistically significant changes in serum ionized calcium or serum phosphorus. However, all doses of 19-nor-1,25-(OH)₂D₂ were effective in suppressing both pre-pro PTH mRNA and PTH secretion. Since a radioactive form of 19-nor-1,25-(OH)₂D₂ was not available during these studies, we were unable to determine protein binding and a half-life of the analog. However previous studies by DeLuca indicate that 19-nor-1,25-(OH)₂D₂ binds approximately 1/3 as well as 1,25-(OH)₂D₃ to the porcine intestinal vitamin D receptor when compared to 1,25-(OH)₂D₃ (unpublished results).

From the clinical point of view, one of the most difficult biochemical alterations to correct in hemodialysis patients is hyperphosphatemia. Patients on dialysis usually ingest approximately 1.0 to 1.4 grams of phosphorus per day. Since the maximum amount of phosphorus that is removed during each dialysis approximates 800 to 1,000 mg, Hou et al, "Calcium and Phosphorus Fluxes During Hemodialysis with Low Calcium Dialysate", Am. J. Kidney Dis. 18:217-224, 1991, the remaining 2.5 to 3.5 grams of phosphorus ingested per week must be removed by other means. Thus, the use of phosphate binders such as calcium carbonate and calcium acetate are usually utilized to correct the hyperphosphatemia, Emmett et al, "Calcium Acetate Control of Serum Phosphorus in Hemodialysis Patients", Am. J. Kidney Dis. 27:544-550, 1991; Schaefer et al, "The Treatment of Uraemic Hyperphosphataemia with Calcium

Acetate and Calcium Carbonate: A Comparative Study", Nephrol Dial Transplant 6:170-175, 1991; Delmez et al, "Calcium Acetate as a Phosphorus Binder in Hemodialysis Patients", J. Am. Soc. Nephrol 3:96-102, 1992. Unfortunately, $1,25\text{-(OH)}_2\text{D}_3$ not only increases the absorption of calcium, but also of phosphorus, making hyperphosphatemia more difficult to be treated. Thus, the hyperphosphatemia induced in part by the action of $1,25\text{-(OH)}_2\text{D}_3$ requires a further addition of calcium carbonate or calcium acetate, which can greatly increase the levels of serum ionized calcium. The high calcium-phosphate product that the patient may develop imposes a tremendous risk for the development of metastatic calcifications, Arora et al, "Calcific Cardiomyopathy in Advanced Renal Failure", Arch. Intern. Med. 1335:603-605 1975; Rostand et al, "Myocardial Calcification and Cardiac Dysfunction in Chronic Renal Failure", Am. J. Med. 85: 651-657, 1988; Gipstein et al, "Calciphylaxis in Man A Syndrome of Tissue Necrosis and Vascular Calcifications in 11 Patients with Chronic Renal Failure", Arch. Intern. Med. 136:1273-1280, 176; Milliner et al, "Soft Tissue Calcification in Pediatric Patients with End-stage Renal Disease", Kidney Int. 38:931-936, 1990.

Therefore, the treatment demands a decrease in the amount of $1,25\text{-(OH)}_2\text{D}_3$ administered to the patient thus decreasing the effectiveness of $1,25\text{-(OH)}_2\text{D}_3$ therapy for controlling PTH secretion.

The development of an analog of $1,25\text{-(OH)}_2\text{D}_3$ with minimal effect on calcium and phosphorus, such as 19-nor- $1,25\text{-(OH)}_2\text{D}_2$, is an ideal tool for the treatment of secondary hyperparathyroidism and renal osteodystrophy. This analog (19-nor- $1,25\text{-(OH)}_2\text{D}_2$) has been shown to be as effective as $1,25\text{-(OH)}_2\text{D}_3$ in suppressing PTH in vitro and in rats with chronic renal insufficiency. In addition, the effects on calcium and phosphorus are minimal, allowing the use of larger doses of this compound to suppress secondary hyperparathyroidism.

17

Although no studies have been performed in humans up to this point, the fact that all three doses of 19-nor-1,25-(OH)₂D₂ were effective in suppressing PTH secretion indicates a large therapeutic window for this compound.

5 In summary, we have demonstrated that 19-nor-1,25-(OH)₂D₂, a new analog of calcitriol with a low calcemic and phosphatemic effect, is effective in suppressing parathyroid hormone in uremic rats with secondary hyperparathyroidism.

Table 1

BLOOD CHEMISTRIES ^a								
	Normal	Uremic	Uremic + 1,25-(OH) ₂ D ₃			Uremic + 19-nor-1,25-(OH) ₂ D ₂		
	n = 8	n = 11	2 ng n = 13	4 ng n = 11	8 ng n = 13	8 ng n = 14	25 ng n = 12	75 ng n = 12
Serum Creatinine mg/dl	0.64 ± .02*	1.15 ± .05	1.18 ± .06	1.12 ± .04	1.15 ± .07	1.20 ± .06	1.18 ± .05	1.16 ± .16
ICa mg/dl	4.77 ± .07	4.81 ± .08	4.80 ± .10	4.95 ± .06	5.08 ± .06†	4.79 ± .09	4.96 ± .05	4.96 ± .06
Phosphorus mg/dl	3.76 ± .27	5.57 ± .50	5.47 ± .52	7.45 ± .80	8.64 ± 1.15*	5.68 ± .57	5.98 ± .49	6.17 ± .68
PTH pg/ml	40 ± 8.6	247 ± 83	152 ± 45	166 ± 40	90 ± 20*	137 ± 47*	111 ± 38†	53 ± 16*

All data are mean ± SEM, n = 11-14 per group.

* P<0.01 vs. uremic control.

† P<0.02 vs. uremic control.