

● 1. 考虑上下文无关文法,终结符号集合为 {a,b,c}:

$$S ::= TS \mid \epsilon$$

 $T ::= a T b | b T c | c T a | \epsilon$

设计一个S属性的文法(即S属性的SDD)来计算S.val,表示对应终结符号串中连续的a的段数。

产生规则	属性计算规则	
$S \rightarrow TS_1$	S .val $=T$.val $+S_1$.val $-(T$.right && S_1 .left ? $1:0$) S .empty $=T$.empty && S_1 .empty	
	$S. \text{left} = T. \text{empty} ? S_1. \text{left} : T. \text{left}$ $S. \text{right} = S_1. \text{empty} ? T. \text{right} : S_1. \text{right}$	
$S \to \epsilon$	S. val $=0$ $S.$ empty $=$ true $S.$ left $=$ false $S.$ right $=$ false	
$T ightarrow$ a T_1 b	$T.$ val $= T_1.$ val $+ (T_1.$ left $? \ 0:1)$ $T.$ empty $=$ false $T.$ left $=$ true $T.$ right $=$ false	
$T o b T_1 c$	$T.$ val $= T_1.$ val $T.$ empty $=$ false $T.$ left $=$ false $T.$ right $=$ false	
$T o \operatorname{c} T_1$ a	$T.$ val $= T_1.$ val $+ (T_1.$ right $? \ 0:1)$ $T.$ empty $=$ false $T.$ left $=$ false $T.$ right $=$ true	
$T o \epsilon$	$T.\mathrm{val} = 0$ $T.\mathrm{empty} = \mathrm{true}$ $T.\mathrm{left} = \mathrm{false}$ $T.\mathrm{right} = \mathrm{false}$	

2024年春季学期 《编译原理》 北京大学计算机学院

● 2. 考虑语法制导的翻译方案(SDT),终结符号集合为 {0,1}:

产生规则	语义动作
$S o S_1 0$	{ $S.$ val = $S_1.$ val * 2; }
$S \rightarrow S_1$ 1	$\{ S. val = S_1. val * 2 + 1; \}$
$S \rightarrow 1$	$\{ S. val = 1; \}$

转换这个 SDT, 消除左递归, 但仍计算出相同的 S. val 属性值。

产生规则	语义动作
$S \rightarrow 1$	$\{ S'.inh = 1; \}$
S'	$\{ S.val = S'.syn; \}$
$S' \rightarrow 0$	$\{ S'_1.inh = S'.inh * 2; \}$
S_1'	$\{ S'. syn = S'_1. syn; \}$
$S' \rightarrow 1$	$\{ S'_1.inh = S'.inh * 2 + 1; \}$
S_1'	$\{ S'. syn = S'_1. syn; \}$
$S' o \epsilon$	$\{ S'. syn = S'. inh; \}$

2024年春季学期《编译原理》 北京大学计算机学院

● 3. 考虑课堂上给出的三地址代码的形式, 把下面两个 C 程序翻译为语义等价的三地址代码:

if (x + y > 0) { z = x + y * x; } else { z = y; }
return z;

```
t1 = x + y
if t1 > 0 goto L1
goto L2
L1: t2 = y * x
t3 = x + t2
z = t3
goto L3
L2: z = y
L3: return z
```

2024 年春季学期 《编译原理》 北京大学计算机学院

● 3. 考虑课堂上给出的三地址代码的形式, 把下面两个 C 程序翻译为语义等价的三地址代码:

while (x - y > z) { x = x - 1; z = z + 1; y = y * (x + z); } return y;

```
L1: t1 = x - y
    if t1 > z goto L2
    goto L3
L2: t2 = x - 1
    x = t2
    t3 = z + 1
    z = t3
    t4 = x + z
    t5 = y * t4
    y = t5
    goto L1
L3: return y
```