**CSD Practical FYIT** 

# **Practical No 5** Implement Adder and Subtractor Arithmetic circuits

## Aim:

- a) Design and implement Half adder and Full adder.
- b) Design and implement binary subtractor.
- c) Design and implement BCD adder.d) Design and implement BCD subtractor.
- e) Design and implement XS 3 adder.
- f) Design and implement XS 3 subtractor.

## Theory:

a) Design and implement Half adder and Full adder.

#### Half-Adder:

A half-adder is an arithmetic circuit block that can be used to add two one-bit numbers. Such a circuit thus has two inputs and two outputs (sum and carry).

The following is the truth table representing the working of a half-adder

| Inp | uts | Out | puts |  |
|-----|-----|-----|------|--|
| Α   | В   | S   | С    |  |
| 0   | 0   | 0   | 0    |  |
| 0   | 1   | 1   | 0    |  |
| 1   | 0   | 1   | 0    |  |
| 1   | 1   | 0   | 1    |  |

From the above truth table we write the Boolean expression for sum and carry as follows

$$S = A \cdot \overline{B} + \overline{A} \cdot B = A \oplus B$$
  
 $C = A \cdot B$ 

Hence to implement the Sum (S) we need an EXOR gate and for Carry (C) we need a AND gate



The above circuit can be used to design and verify the working of half-adder

#### Full Adder:

A full-adder is a combinational circuit which has 3-inputs and 2-outputs. It adds 3-bits at a time A, B and  $C_{in}$ , where  $C_{in}$  is a carry generated by previous addition. The outputs are Sum(S) and Carry (CY)

The following is the truth table of a full-adder

|          | Inputs | Out | puts |    |
|----------|--------|-----|------|----|
| Α        | В      | Cin | S    | CY |
| 0        | 0      | 0   | 0    | 0  |
| 0        | 0      | 1   | 1    | 0  |
| 0        | 1      | 0   | 1    | 0  |
| <b>0</b> | 1      | 1   | 0    | 1  |
| 1 .      | 0      | 0   | 1    | 0  |
| 1        | 0      | 1   | 0    | 1  |
| 1        | 1      | 0   | 0    | 1  |
| 1        | 1      | 1   | 1    | 1  |

In order to implement the full-adder, we need to design the circuit using K-maps, we draw the K-maps separately for Sum(S) and Carry(CY) and then solve the K-maps to get the required output





Hence the equation for the Sum from the K-map is

$$S = A.B.C + A.B.C + A.B.C + \overline{A.B.C}$$

Therefore for realising the Sum circuit of the Full-adder we require the following



# K - Map for Carry (CY):

|   | Ā.B | Ā.B | A.B | A.B |
|---|-----|-----|-----|-----|
| c | 0   | 0   | 1   | 0   |
| C | 0   | 1   | 1   | 1   |

From the above K-map we see that we get 3-pairs, and since a pair eliminates a variable hence equation for Carry is as follows

$$CY = A.B + B.C + A.C$$

Therefore for realizing the Carry circuit of the Full-adder we require the following



## b) Design and implement binary subtractor.

A full-subtractor is a combinational circuit which has 3-inputs and 2-outputs. The third input is the borrow generated from previous subtraction.

The outputs are Difference (D) and Borrow out (Bo)

The following is the truth table of a full-subtractor

|   | Inputs | Out | puts |    |
|---|--------|-----|------|----|
| Α | В      | Bin | D    | Во |
| 0 | 0      | 0   | 0    | 0  |
| 0 | 0      | 1   | 1    | 1  |
| 0 | 1      | 0   | 1    | 1  |
| 0 | 1      | 1   | 0    | 1  |
| 1 | 0      | 0   | 1    | 0  |
| 1 | 0      | 1   | 0    | 0  |
| 1 | 1      | 0   | 0    | 0  |
| 1 | 1      | 1   | 1    | 1  |

In order to implement the full-subtractor, we need to design the circuit using K-maps, we draw the K-maps separately for Difference (D) and Borrow  $out(B_{\odot})$  and then solve the K-maps to get the required output

## K - Map for Difference (D):

$$\overline{A}.\overline{B} \qquad \overline{A}.B \qquad A.B \qquad A.\overline{B}$$

$$\overline{B}_{in} \qquad 0 \qquad 1 \qquad 0 \qquad 1$$

$$B_{in} \qquad 1 \qquad 0 \qquad 1 \qquad 0$$

Hence the equation for the Difference from the K-map is

$$D = A.\overline{B}.\overline{B}_{in} + \overline{A}.\overline{B}.B_{in} + A.B.B_{in} + \overline{A}.B.\overline{B}_{in}$$
.

Therefore for realizing the Difference circuit of the Full-subtractor we require the following



# K - Map for Borrow out (B):



From the above K-map we see that we get 3-pairs, and since a pair eliminates a variable hence equation for Borrow out is as follows

$$B_o = \overline{A}.B_{in} + B.B_{in} + \overline{A}.B$$

Therefore for realizing the Borrow out circuit of the Full-subtractor we require the following



For video demonstration of the above practical part follow the link or scan the QR-code

https://youtu.be/seHYDjQRNds



## c) Design and implement BCD adder.

A BCD (Binary-Coded Decimal) adder is a digital circuit that adds two BCD numbers. BCD is a way of representing each decimal digit (0-9) using its equivalent 4-bit binary value. In BCD addition, the result must also be in valid BCD form. This requires special handling since a simple binary addition of two BCD digits can produce a result that is not a valid BCD digit.

#### Rules for BCD addition:

 i) If addition of two BCD numbers result in a sum less than 9 (1001) and no carry is generated, then the given result is the final result For e.g

|   | 3 | 0 | 0 | 1 | 1 |           |
|---|---|---|---|---|---|-----------|
| + | 4 | 0 | 1 | 0 | 0 |           |
|   | 7 | 0 | 1 | 1 | 1 | Valid BCI |

 ii) If addition of two BCD numbers result in a sum less than 9 (1001) and a carry is generated, then add 6(0110) to the sum for the final result For e.g

Add 6 (0 1 1 0) to the sum we get

| 0 | 0 | 1 | 0 |
|---|---|---|---|
| 0 | 1 | 1 | 0 |
| 1 | 0 | 0 | 0 |

We substitute the corrected sum in the above and get the correct result

|   |    | 1       |   |   | 1 |   |                              |
|---|----|---------|---|---|---|---|------------------------------|
|   | 9  | CY      | 1 | 0 | 0 | 1 |                              |
| + | 9  | 2750000 | 1 | 0 | 0 | 1 |                              |
|   | 18 | 1       | 1 | 0 | 0 | 0 | Valid BCD and correct result |
|   |    |         |   |   |   |   | and correct result           |

iii) If addition of two BCD numbers result in a sum greater than 9 (invalid BCD), then add 6(0110) to the result.

For e.g

|   |    |    | 1 | 1 | 1 |   |                                  |
|---|----|----|---|---|---|---|----------------------------------|
| 4 | 7  | CY | 0 | 1 | 1 | 1 |                                  |
| + | 5  |    | 0 | 1 | 0 | 1 |                                  |
|   | 12 | 0  | 1 | 1 | 0 | 0 | Invalid BCD and incorrect result |

Add 6 (0 1 1 0) to the sum we get

|    | 1 |   |   |   |
|----|---|---|---|---|
| CY | 1 | 1 | 0 | 0 |
|    | 0 | 1 | 1 | 0 |
| 1  | 0 | 0 | 1 | 0 |

We substitute the corrected sum along with the carry and get the correct result

Truth Table: For implementing the correction part, assuming the given Sums

|                                                      | Inp                        | Output                                                                |                                                                                      |                                           |
|------------------------------------------------------|----------------------------|-----------------------------------------------------------------------|--------------------------------------------------------------------------------------|-------------------------------------------|
| <b>S</b> <sub>3</sub>                                | S <sub>2</sub>             | S <sub>1</sub>                                                        | So                                                                                   | Υ                                         |
| 0                                                    | 0                          | 0                                                                     | 0                                                                                    | 0                                         |
| 0                                                    | 0                          | 0                                                                     | 1                                                                                    | 0                                         |
| 0                                                    | S <sub>2</sub> 0 0 0 1 1 1 | S <sub>1</sub><br>0<br>0<br>1<br>1<br>0<br>0<br>1<br>1<br>0<br>0<br>1 | 0                                                                                    | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 |
| 0                                                    | 0                          | 1                                                                     | 1                                                                                    | 0                                         |
| 0                                                    | 1                          | 0                                                                     | 0                                                                                    | 0                                         |
| 0                                                    | 1                          | 0                                                                     | 1                                                                                    | 0                                         |
| 0                                                    | 1                          | 1                                                                     | 0                                                                                    | 0                                         |
| 0                                                    | 1                          | 1                                                                     | 1                                                                                    | 0                                         |
| 1                                                    | 1<br>0<br>0<br>0<br>0      | 0                                                                     | 0                                                                                    | 0                                         |
| 1                                                    | 0                          | 0                                                                     | 1                                                                                    | 0                                         |
| 1                                                    | 0                          | 1                                                                     | 0                                                                                    | 1                                         |
| 1                                                    | 0                          | 1                                                                     | 1                                                                                    | 1                                         |
| 1                                                    | 1                          | 0                                                                     | 0                                                                                    | 1                                         |
| 1                                                    | 1                          | 0                                                                     | 1                                                                                    | 1                                         |
| S <sub>3</sub> 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 |                            | 0<br>0<br>1                                                           | S <sub>0</sub><br>0<br>1<br>0<br>1<br>0<br>1<br>0<br>1<br>0<br>1<br>0<br>1<br>0<br>1 | 1 1 1                                     |
| 1                                                    | 1                          | 1                                                                     | 1                                                                                    | 1                                         |

Prof Ismail H. Popatia

We need to draw the K-map to realize the correction logic



$$Y = S_2S_3 + S_1S_3$$

# Circuit Diagram:



## d) Design and implement BCD subtractor.

A BCD subtractor can be designed from the BCD adder, by just adding the logic to find the 2'complement of the minuend.

For e.g if we want to perform the subtraction A - B then we find the 2's complement of B (B') and add it with A (A + B' = S), the resulting sum (S) will give the given difference



For video demonstration of the above practical part follow the link or scan the QR-code

https://youtu.be/UNjCJwtVKYM



# e) Design and implement XS - 3 adder.

An XS-3 (Excess-3) adder is a digital circuit that adds two XS-3 numbers. XS-3 is a way of representing decimal digits (0-9) by adding 3 (0011) to their binary equivalent, resulting in a 4-bit code. In XS-3 addition, the result must also be in valid XS-3 form. This requires special handling since a simple binary addition of two XS-3 digits can produce a result that is not a valid XS-3 digit or an incorrect value.

#### Rules for XS-3 addition:

i) If addition of two XS-3 numbers result in a sum less than 9 (1001), then subtract 3(0011) from the given result to get the final result For e.g

|   | 1 | 0 | 1 | 0 | 0 | XS-3 of 1        |
|---|---|---|---|---|---|------------------|
| + | 3 | 0 | 1 | 1 | 0 | XS-3 of 3        |
|   | 4 | 1 | 0 | 1 | 0 | Incorrect Result |

The expected result was 0111 (XS-3) of 4, so to get the proper result we need to subtract 3(0011) from the above result

|   | 4 | 1 | 0 | 1 | 0 | Incorrect Result |
|---|---|---|---|---|---|------------------|
| - | 3 | 0 | 0 | 1 | 1 | Subtract 3       |
|   |   | 0 | 1 | 1 | 1 | Correct Result   |

Hence the result is

 ii) If addition of two XS-3 numbers result in a sum greater than 9 (1001), then add 3(0011) to the all the digits, for the final result
 For e.g

The expected result was 0100 0100 (XS-3) of 11, so to get the proper result we need to add 3(0011) to each digit of the above result

Adding 3 (0 1 1 0) to the result we get

|   | 1 | 1 | X |   | 1 | 1 |   |                |
|---|---|---|---|---|---|---|---|----------------|
| 0 | 0 | 0 | 1 | 0 | 0 | 0 | 1 | Carry and Sum  |
| 0 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | Adding 3       |
| 0 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | Correct Result |

Prof Ismail H. Popatia

# Circuit diagram:

For implementing the correction part, we need to subtract 3(0011) when sum is less than 9, as in adder circuits addition is done using 2's complement which means subtracting 3 is same as adding 2's complement of 3 which is 1101

While when sum is greater than 9, we need to add 3(0011), the following is the logic diagram for XS-3 adder



#### f) Design and implement XS - 3 subtractor.

XS-3 Subtractor can be designed from XS-3 adder, with some added logic. For subtraction we use the 2's complement method and hence for performing A-B, we find 2's complement of B (B') and add it with A, the resulting sum may need some corrections which are applied as done in XS-3 Adder



For video demonstration of the above practical part follow the link or scan the QR-code

https://youtu.be/kSKNxnNpk24



Result: The following Circuits were designed, implemented and verified using the simulator

- a) Design and implement half adder and Full adder.
- b) Design and implement binary subtractor.
- c) Design and implement BCD adder.
- d) Design and implement BCD subtractor.
- e) Design and implement XS 3 adder.
- f) Design and implement XS 3 subtractor.