

The Basics

- Probability is simply how likely something is to happen.
- Whenever we're unsure about the outcome of an event, we can talk about the probabilities of certain outcomes—how likely they are.
- The analysis of events governed by probability is called statistics.

Flipping a Coin

- The best example for understanding probability is flipping a coin:
- There are two possible outcomes heads or tails.
- What's the probability of the coin landing on Heads?
 - You might intuitively know that the likelihood is half/half, or 50%. But how do we work that out?
- Probability = $\frac{\# of \ possibilities \ that \ meet \ our \ condition}{\# of \ equally \ likely \ possibilities}$
- In this case :
 - \circ P (h) = $\frac{1}{2}$ = 50%

Example

- More generally :
 - Probability of an event = (# of ways it can happen) / (total number of outcomes)
- Rolling a die:
 - What is the probability of rolling a 1?
 - What is the probability of rolling a 2 or a 6?
 - What is the probability of rolling an even number?

Sample Space

- Sample space => all of the possible outcomes of an « experiment »
- Example :
 - What is the sample space in the case where our experiment consists in flipping 3 coins?
 - HHH
 - HHT
 - HTH
 - HTT
 - o THH
 - o THT
 - o TTH
 - \circ TTT

Sample Space

• What is the probability of getting exactly 2 heads when flipping 3 coins :

• P(« exactly 2 heads ») =
$$\frac{how\ many\ possible\ outcomes\ are\ associated\ with\ the\ event\ ?}{number\ of\ possible\ outcomes}$$

= 3 / 8

• And the probability of at least 1 head ?

Union, Intersection, and Complement

- What is a set?
 - Fundamentally, just a collection of distinct objects, which can be anything:
 - \circ A = {56, Θ , blue, orange, 99, Jim, Claire}
 - \circ B = {65, $\stackrel{\square}{\smile}$, blue, red, 100, James, Clara}
- The **union** of two sets contains all the elements contained in either set (or both sets).
- ∘ The union is notated A U B.
- \circ More formally, $x \in A \cup B$ if $x \in A$ or $x \in B$ (or both)

Union, Intersection, and Complement

- The **intersection** of two sets contains only the elements that are in both sets.
- \circ The intersection is notated $A \cap B$.
- ∘ More formally, $x ∈ A \cap B$ if x ∈ A and x ∈ B
- The **complement** of a set A contains everything in a given universe that is *not* in the set A.
- \circ The complement is notated A'.

Union

Intersection

VENN DIAGRAMS

Set Operations Example

```
• If:
```

$$\circ$$
 A = {3, 7, -5, 0, 13}

$$\circ$$
 B = {0, 17, 13, \checkmark , Blue}

$$\circ$$
 C = {Pink, \searrow , 3, 17}

∘ Then what would this set be : (A \cap C') \cup (B \cap C) ?

General Addition Rule for Probability

- Imagine we have a bag in which there are:
 - 2 green cubes
 - 3 green spheres
 - 4 yellow cubes
 - 5 yellow spheres
- We consider the event where we pull out an object, each object having the same probability of being pulled out from the bag :
 - What is P (cube)?
 - What is P (yellow)?
 - What is P(yellow cube) ?
 - What is P (yellow or cube)?

General Addition Rule for Probability

• P (yellow or cube) =
$$\frac{\# \ of \ yellow \ objects + \# \ of \ cubes - \# \ of \ elmts \ counted \ twice}{total \ number \ of \ objects}$$

= $(9 + 6 - 4) / 14 = 11/14$

General rule:

 \circ P (A or B) = P (A U B) = P (A) + P (B) - P (A \cap B)

Monty Hall Problem/Brain-teaser

- You are a contestant at a game show:
- There are three doors behind which are hidden
 - A goat
 - A car
 - And another goat
- The rules are that you must first pick a door.
- After that, the game show host opens one of the remaining doors (behind wihich there is a goat) and asks you if you wish to switch and choose the other remaining door...
- So the question is:
 - Should you switch or should you stick to your guns and keep your initial choice?

Door A: Goat Door B: Car Door C: Goat

- We need to compare the probability of winning if we switch our answer with the probability of winning if we don't.
- Let's enumerate the possible outcomes for the 2 scenarios:
 - Scenario 1: we don't switch:
 - Choose door A => ends in a loss
 - Choose door B => ends in a win
 - Choose door C => ends in a loss
 - Therefore P (winning by not switching) = $\frac{how\ many\ possible\ outcomes\ are\ associated\ with\ the\ event\ of\ winning\ ?}{number\ of\ possible\ outcomes} = 1/3$

- Scenario 2, we do decide to switch:
 - Choose door A => ends in a win (since the host has to open one of the remaining doors behind which there is a goat, it means the only door we can switch to is the one with the car, so we necessarily end up winning)
 - Choose door B => ends in a loss (only remaining door will be a goat so we necessarily lose since we'll be switching to that one)
 - Choose door C => ends in a win (same situation as with door A)
 - Therefore P (winning by switching) = $\frac{how\ many\ possible\ outcomes\ are\ associated\ with\ the\ event\ ?}{number\ of\ possible\ outcomes} = 2/3$
- Careful => When the host eliminates one of the possible doors, the probaility of winning does not become $\frac{1}{2}$
- As we saw, there are 3 doors to begin with and in one scenario we have 1 opportunity out of 3 to choose the correct door, while in the other scenario we have 2 opportunities out of 3 to end up on the correct door.
- Winning with a probability of $\frac{1}{2}$ can only be true if the problem was choosing between 2 equiprobable options, in situations such as :
 - There is no third door to begin with
 - o Or you are a spectator arriving mid-game and the third door has already been opened, meaning you don't know which door the player chose initially

- Scenario 2, we do decide to switch:
 - Choose door A => ends in a win (since the host has to open one of the remaining doors behind which there is a goat, it means the only door we can switch to is the one with the car, so we necessarily end up winning)
 - Choose door B => ends in a loss (only remaining door will be a goat so we necessarily lose since we'll be switching to that one)
 - Choose door C => ends in a win (same situation as with door A)
 - Therefore P (winning by switching) = $\frac{how\ many\ possible\ outcomes\ are\ associated\ with\ the\ event\ ?}{number\ of\ possible\ outcomes} = 2/3$
- Careful => When the host eliminates one of the possible doors, the probaility of winning does not become $\frac{1}{2}$
- As we saw, there are 3 doors to begin with and in one scenario we have 1 opportunity out of 3 to choose the correct door, while in the other scenario we have 2 opportunities out of 3 to end up on the correct door.
- Winning with a probability of $\frac{1}{2}$ can only be true if the problem was choosing between 2 equiprobable options, in situations such as :
 - There is no third door to begin with
 - o Or you are a spectator arriving mid-game and the third door has already been opened, meaning you don't know which door the player chose initially

- For more detailed explanations :
- https://www.youtube.com/watch?v=Xp6V IO1ZKA
- https://www.youtube.com/watch?v=XiKMMt3Mm4k
- https://www.youtube.com/watch?v=4Lb-6rxZxx0