2024-28-CSE-A

Aim:

Implement the Floyd-Warshall algorithm in C for finding the shortest distances between all pairs of vertices in a weighted directed graph. Prompt the user to input the number of vertices (N) and edges (E), and then accept edge information (source, destination, and weight) to build the adjacency matrix.

Source Code:

Warshall.c

```
#include <stdio.h>
#define INF 99999
#define MAX_N 20 // Maximum value for N
#include <limits.h>
void floydWarshall(int dist[][10],int N)
   int i, j, k;
   for(k =0; k< N; k++)
         for(i = 0; i<N; i++)
               for(j =0 ; j< N;j++)</pre>
                      if(dist[i][k]!= INF && dist[k][j] != INF && dist[i][k] + dist[k]
[j] < dist[i][j]){</pre>
                         dist[i][j]= dist[i][k]+dist[k][j];
                      }
                   }
            }
      }
}
void printSolution(int dist[][10], int N)
   printf("The following matrix shows the shortest distances between all pairs of the
vertices.\n");
   for(int i = 0; i < N; i++)
         for(int j = 0; j < N; j++)
               if(dist[i][j] == INF){
                  printf("%5s","INF");
               }else{
                   printf("%5d",dist[i][j]);
               }
            }
         printf("\n");
      }
}
int main(){
   int N,E;
```

```
printf("Enter the number of vertices : ");
   scanf("%d",&N);
   int dist[10][10];
   for(int i = 0; i< N; i++)</pre>
         for(int j = 0; j < N; j++)
            {
               if(i == j){
                  dist[i][j] = 0;
               }else{
                  dist[i][j] = INF;
               }
      }
   printf("Enter the number of edges : ");
   scanf("%d",&E);
   for(int i = 0; i < E; i++)
         int src, dest, weight;
         printf("Enter source : ");
         scanf("%d",&src);
         printf("Enter destination : ");
         scanf("%d",&dest);
         printf("Enter weight : ");
         scanf("%d",&weight);
         src -= 1;
         dest -= 1;
         dist[src][dest] = weight;
      }
   floydWarshall(dist,N);
   printSolution(dist,N);
   return 0;
}
```

Execution Results - All test cases have succeeded!

Test Case - 1 User Output Enter the number of vertices : 4 Enter the number of edges : 5 Enter source : 1 Enter destination : 2 Enter weight: 4 Enter source : 1 Enter destination : 4 Enter weight: 10

```
Enter source : 1
Enter destination : 3
Enter weight: 6
Enter source : 2
Enter destination : 4
Enter weight : 5
Enter source : 3
Enter destination : 4
Enter weight: 2
The following matrix shows the shortest distances between all pairs of the vertices.
   0
        4
                   8
             6
 INF
           INF
                   5
                   2
 INF
      INF
             0
 INF
      INF
           INF
                   0
```

Test Case - 2
User Output
Enter the number of vertices : 5
Enter the number of edges : 6
Enter source : 1
Enter destination : 2
Enter weight: 2
Enter source : 1
Enter destination : 5
Enter weight: 3
Enter source : 2
Enter destination : 4
Enter weight : 4
Enter source : 2
Enter destination : 3
Enter weight: 7
Enter source : 4
Enter destination : 3
Enter weight: 2
Enter source : 5
Enter destination : 4
Enter weight: 1
The following matrix shows the shortest distances between all pairs of the vertices.
0 2 6 4 3
INF 0 6 4 INF
INF INF 0 INF INF
INF INF 2 0 INF
INF INF 3 1 0

	Test Case - 3
Ū	Jser Output
E	nter the number of vertices : 4
E	nter the number of edges : 5
E	nter source : 1
E	nter destination : 2

Enter weight: 4
Enter source : 3
Enter destination : 2
Enter weight : 5
Enter source : 4
Enter destination : 1
Enter weight : 1
Enter source : 4
Enter destination : 2
Enter weight : 3
Enter source : 4
Enter destination : 3
Enter weight : 8
The following matrix shows the shortest distances between all pairs of the vertices.
0 4 INF INF
INF 0 INF INF
INF 5 0 INF
1 3 8 0

Test Case - 4
User Output
Enter the number of vertices : 4
Enter the number of edges : 6
Enter source : 1
Enter destination : 2
Enter weight : 1
Enter source : 1
Enter destination : 4
Enter weight : 3
Enter source : 2
Enter destination : 3
Enter weight : 6
Enter source : 3
Enter destination : 1
Enter weight : -2
Enter source : 4
Enter destination : 2
Enter weight : 5
Enter source : 4
Enter destination : 3
Enter weight : 10
The following matrix shows the shortest distances between all pairs of the vertices.
0 1 7 3
4 0 6 7
-2 -1 0 1
8 5 10 0