Departamento de Matemática da Universidade de Aveiro

CÁLCULO II - Agrupamento 3

10 de julho de 2017

Exame da Época de Recurso

Duração: 2h30m

Justifique todas as respostas. O formulário encontra-se no verso.

- 1. [40] Considere a função $f:\mathbb{R}^2 \to \mathbb{R}$ definida por $f(x,y) = \frac{1}{1+x^2+y^2}$.
 - (a) Determine uma equação do plano tangente ao gráfico de f no ponto (0, 2, f(0, 2)).
 - (b) Mostre que f tem máximo absoluto, mas não tem mínimo absoluto (em \mathbb{R}^2).
 - (c) Justifique que f possui extremos absolutos no círculo

$$C = \{(x, y) \in \mathbb{R}^2 : x^2 + y^2 \le 2\}$$

e calcule tais extremos.

2. [20] Determine e classifique os pontos críticos da função $f: \mathbb{R}^2 \to \mathbb{R}$ dada por

$$f(x,y) = x^2y - xy^2 - x^2 + x.$$

- 3. [20] Considere a equação diferencial $(1+y^2) \sin x + y\varphi(x) y' = 0$ (onde φ é uma função diferenciável em \mathbb{R}).
 - (a) Determine todas as funções φ que transformam a equação dada numa equação diferencial exata.
 - (b) Escolha uma das funções φ encontradas na alínea anterior e resolva a equação correspondente.

(Nota: no caso de não ter resolvido a alínea (a) considere $\varphi(x) = -2\cos x$).

- 4. [35] Resolva as seguintes equações diferenciais.
 - (a) $(x-1)y^4 x^3(y^2 3)y' = 0$;
 - (b) $y'' + y = -xe^x$.
- 5. [25] Resolva o seguinte problema de valores iniciais usando transformadas de Laplace:

$$y'' - y' = 2e^t \cos t$$
, $y(0) = 0$, $y'(0) = 0$.

6. [15] Suponha que a série de potências $\sum_{n=0}^{\infty} a_n \, x^n$ tem raio de convergência R>0 e que ela converge absolutamente em x=R. Diga, justificando, qual é o domínio de convergência da série, indicando se tal convergência é simples ou absoluta em cada ponto desse domínio. Indique também o maior intervalo onde a convergência é uniforme.

v.s.f.f.

7. [30] Seja
$$f(x) = \sum_{n=0}^{\infty} \frac{n+1}{2^n} (x-2)^n$$
.

- (a) Determine o domínio de convergência da série dada, indicando os pontos onde a convergência é simples e absoluta.
- $\text{(b) Justifique que } f \text{ \'e integrável em } [1,2] \text{ e calcule o valor do integral } \int_1^2 f(x) \, dx.$
- 8. [15] Seja f a função periódica de período 2π , dada por f(x)=1-|x| em $[-\pi,\pi]$. Determine a série de Fourier de f e represente graficamente a sua soma no intervalo $[-2\pi,2\pi]$.

Formulário (Transformadas de Laplace)

$$F(s) = \mathcal{L}\lbrace f(t)\rbrace(s), \quad s > s_f; \qquad G(s) = \mathcal{L}\lbrace g(t)\rbrace(s), \quad s > s_g$$

função	transformada
$t^n \ (n \in \mathbb{N}_0)$	$\frac{n!}{s^{n+1}}, \ s > 0$
$e^{at} \ (a \in \mathbb{R})$	$\frac{1}{s-a} , \ s > a$
$\operatorname{sen}\left(at\right)\ \left(a\in\mathbb{R}\right)$	$\frac{a}{s^2 + a^2}, \ s > 0$
$\cos(at) \ (a \in \mathbb{R})$	$\frac{s}{s^2 + a^2}, \ s > 0$
$\operatorname{senh}(at) \ (a \in \mathbb{R})$	$\frac{a}{s^2 - a^2}, \ s > a $
$\cosh(at) \ (a \in \mathbb{R})$	$\frac{s}{s^2 - a^2}, \ s > a $
$e^{\lambda t} f(t) \ (\lambda \in \mathbb{R})$	$F(s-\lambda)$
$H_a(t)f(t-a) \ (a>0)$	$e^{-as}F(s)$
$f(at) \ (a > 0)$	$\frac{1}{a} F\left(\frac{s}{a}\right)$
$t^n f(t) \ (n \in \mathbb{N})$	$(-1)^n F^{(n)}(s)$
$f'(t) \ (n \in \mathbb{N})$	sF(s) - f(0)
$f''(t) \ (n \in \mathbb{N})$	$s^2 F(s) - sf(0) - f'(0)$
$f^{(n)}(t) \ (n \in \mathbb{N})$	$s^{n}F(s) - \sum_{k=1}^{n} s^{n-k}f^{(k-1)}(0)$
(f*g)(t)	F(s)G(s)
$\int_0^t f(\tau) d\tau$	$\frac{F(s)}{s}$