<u>Application de réseau de neurones à l'imagerie</u> <u>médicale:</u>

Radiographie pulmonaire

Introduction et présentation des données

Objectif: Classification d'images de radiographie pulmonaire de patient (normal vs pneumonie)

Introduction et présentation des données

- 2 datasets: Train (5228 images) et Test (624 images)
- Images redimensionnées (150x150) et coloré uniquement en gris
- Conversion des images en array et normalisation des valeurs de l'array
- Observation: déséquilibre entre les 2 classes à prévoir, 74% de "pneumonie" (1) dans le train

Méthode de recherche

- Implémentation de modèles de réseaux existants
- Réalisation de différents tests et modifications des modèles :
 - Paramètre de la Data augmentation
 - Structure des réseaux
 - Hyperparamètre (Learning Rate)
- Conservation des modèles les plus performants
- Transfert Learning (VGG, ResNet...)
- Comparaisons des modèles les plus performants

1. Meilleur modèle sans Data Augmentation (DA)

Layer (type)	Output		Param #
input_14 (InputLayer)		, 150, 150, 1)]	Θ
conv2d_52 (Conv2D)	(None,	148, 148, 16)	160
batch_normalization_52 (Batc	(None,	148, 148, 16)	64
max_pooling2d_52 (MaxPooling	(None,	74, 74, 16)	0
conv2d_53 (Conv2D)	(None,	72, 72, 32)	4640
batch_normalization_53 (Batc	(None,	72, 72, 32)	128
max_pooling2d_53 (MaxPooling	(None,	36, 36, 32)	0
conv2d_54 (Conv2D)	(None,	34, 34, 64)	18496
batch_normalization_54 (Batc	(None,	34, 34, 64)	256
max_pooling2d_54 (MaxPooling	(None,	17, 17, 64)	0
conv2d_55 (Conv2D)	(None,	15, 15, 128)	73856
batch_normalization_55 (Batc	(None,	15, 15, 128)	512
max_pooling2d_55 (MaxPooling	(None,	7, 7, 128)	0
flatten_13 (Flatten)	(None,	6272)	0
dense_26 (Dense)	(None,	32)	200736
dropout_13 (Dropout)	(None,	32)	0
dense 27 (Dense)	(None,	1)	33

Total params: 298,881 Trainable params: 298,401 Non-trainable params: 480

Modèle TF:

Obtient de bonnes performances sur le jeu de test après entraînement sans DA

Accuracy val: 0.95

Accuracy test: 0.78

2. Recherche des meilleurs paramètres pour la DA

- Plusieurs paramètres sont testés un à un
 - Rotation_range
 - Zoom_range
 - Brightness_range
 - Shear_range
 - height_range et width_range

Rotation

Déformation

Zoom

2. Recherche des meilleurs paramètres pour la DA

- Plusieurs paramètres sont testés un à un
- A la fin, 3 paramètres sont conservés :
 - > la rotation des images
 - > la déformation des images
 - > le zoom sur les images

3. Data augmentation finale

Modèle simplifié auquel est ajouté la DA des données d'entraînement

Accuracy train: 0.956

Accuracy test: 0.904 ± 0.019

92.4% de bonnes prédictions sur le test (après le meilleur entrainement)

4. Comparaison des différentes performances

	Accuracy test	Sensiti.(%)	Specifi.(%)	Number of	Param	eter	rs
Model TF	0.924	93.076923	91.452991		29	88 8	81
Model DC	0.846	99.230769	60.256410		39	6 65	57
Model K1	0.868	98.717949	67.094017		56	5 76	61
Model DK	0.873	98.717949	68.376068		96	6 78	85
TL_VGG	0.877	87.435897	88.034188		14 72	2 88	81
TL ResNet50V2	0.888	93.333333	81.196581		23 61	6 00	91
TL_InceptionV3	0.859	95.384615	70.085470		21 82	1 21	17
TL DenseNet201	0.881	93.846154	78.632479		18 35	2 76	95

5. Exemple de bonne et mauvaise prédiction

Predicted Class 1 | True Class 1 | Predicted Class 0 | True Class 0 | Predicted Class 1 | True Class 0 |

Predicted Class 0 | True Class 1 | Predicted Class 1 | True Class 1 |

Predicted Class 0 |

Predicted Class 1 |

Conclusion

- Réseau de neurones capables de classifier correctement la majorité des radiographies pulmonaires selon leur cas
- ★ Modèle avec relativement peu de couches et de paramètres à entraîner
- ★ Entrainement rapide du réseau (~3 minutes en GPU)
- ★ Performance globalement supérieure à celles de modèles avec plus de paramètres

<u>Poursuite possible</u>:

- Possible améliorations supplémentaires du modèle
- Adapter le modèle pour différencier 3 classes (normal, pneumonie bactérienne et pneumonie virale)

Merci pour votre attention

Layer (type)	Output Shape	Param #
input_22 (InputLayer)	[(None, 150, 150, 1)]	0
conv2d_102 (Conv2D)	(None, 148, 148, 16)	160
conv2d_103 (Conv2D)	(None, 146, 146, 16)	2320
batch_normalization_79 (Batc	(None, 146, 146, 16)	64
max_pooling2d_79 (MaxPooling	(None, 73, 73, 16)	0
conv2d_104 (Conv2D)	(None, 71, 71, 32)	4640
conv2d_105 (Conv2D)	(None, 69, 69, 32)	9248
batch_normalization_80 (Batc	(None, 69, 69, 32)	128
max_pooling2d_80 (MaxPooling	(None, 34, 34, 32)	0
conv2d_106 (Conv2D)	(None, 32, 32, 64)	18496
conv2d_107 (Conv2D)	(None, 30, 30, 64)	36928
batch_normalization_81 (Batc	(None, 30, 30, 64)	256
max_pooling2d_81 (MaxPooling	(None, 15, 15, 64)	0
conv2d_108 (Conv2D)	(None, 13, 13, 128)	73856
conv2d_109 (Conv2D)	(None, 11, 11, 128)	147584
	(None, 11, 11, 128)	512
max_pooling2d_82 (MaxPooling	(None, 5, 5, 128)	0

Modèle DC

flatten_20 (Flatten)	(None,	3200)	0
dense_40 (Dense)	(None,	32)	102432
dropout_20 (Dropout)	(None,	32)	0
dense_41 (Dense)	(None,	1)	33

Total params: 396,657 Trainable params: 396,177 Non-trainable params: 480

Layer (type)	Output Shape	Param #
input_28 (InputLayer)	[(None, 150, 150, 1)]	0
conv2d_136 (Conv2D)	(None, 144, 144, 16)	800
batch_normalization_96 (Batc	(None, 144, 144, 16)	64
max_pooling2d_96 (MaxPooling	(None, 72, 72, 16)	0
conv2d_137 (Conv2D)	(None, 66, 66, 32)	25120
batch_normalization_97 (Batc	(None, 66, 66, 32)	128
max_pooling2d_97 (MaxPooling	(None, 33, 33, 32)	0
conv2d_138 (Conv2D)	(None, 27, 27, 64)	100416
batch_normalization_98 (Batc	(None, 27, 27, 64)	256
max_pooling2d_98 (MaxPooling	(None, 13, 13, 64)	0
conv2d_139 (Conv2D)	(None, 7, 7, 128)	401536
batch_normalization_99 (Batc	(None, 7, 7, 128)	512
max_pooling2d_99 (MaxPooling	(None, 3, 3, 128)	0

Modèle K1

flatten_23 (Flatten)	(None,	1152)	0
dense_46 (Dense)	(None,	32)	36896
dropout_23 (Dropout)	(None,	32)	0
dense_47 (Dense)	(None,	1)	33

Total params: 565,761 Trainable params: 565,281 Non-trainable params: 480

Layer (type)	Output Shape	Param #
input_23 (InputLayer)	[(None, 150, 150, 1)]	0
conv2d_110 (Conv2D)	(None, 144, 144, 16)	800
conv2d_111 (Conv2D)	(None, 138, 138, 32)	25120
batch_normalization_83 (Batc	(None, 138, 138, 32)	128
max_pooling2d_83 (MaxPooling	(None, 69, 69, 32)	0
conv2d_112 (Conv2D)	(None, 65, 65, 32)	25632
conv2d_113 (Conv2D)	(None, 61, 61, 64)	51264
batch_normalization_84 (Batc	(None, 61, 61, 64)	256
max_pooling2d_84 (MaxPooling	(None, 30, 30, 64)	0
conv2d_114 (Conv2D)	(None, 28, 28, 64)	36928
conv2d_115 (Conv2D)	(None, 26, 26, 128)	73856
batch_normalization_85 (Batc	(None, 26, 26, 128)	512
max_pooling2d_85 (MaxPooling	(None, 13, 13, 128)	0

Modèle DK

flatten_21 (Flatten)	(None,	21632)	0
dense_42 (Dense)	(None,	32)	692256
dropout_21 (Dropout)	(None,	32)	0
dense_43 (Dense)	(None,	1)	33

Total params: 906,785 Trainable params: 906,337 Non-trainable params: 448