

Computer Organization & Architecture

Computer Arithmetic

Computer Arithmetic

- Most complex aspect of the Arithmetic and Logic Unit (ALU)
- It is performed on two very different numbers: integer and floating point

Arithmetic and Logic Unit (ALU)

- Does the calculations
- Everything else in the computer is there to service this unit
- Handles integers
- May handle floating point (real) numbers
- May include a separate floating-point unit (FPU), as a math co-processor

ALU Inputs and Outputs

Integer Representation

- Only have 0 & 1 to represent everything
- Positive numbers stored in binary
 - e.g. $41 = 00\overset{32}{1}0\overset{1}{1}001$
- No minus sign
- No radix point (e.g. decimal point for fractional component)
- Sign-Magnitude

54.5 /6/6.1/16 etional 1

Sign-Magnitude

- Used to represent positive and negative integers
- Left most bit is sign bit
 - 0 means positive
 - 1 means negative

• Examples:
$$+18 = 00010010$$
 $0000 = 40$ $0000 = -000$

Problems

- Need to consider both sign and magnitude in arithmetic
- Two representations of zero (+0 and -0)

Twos Complement Notation

$$\bullet$$
 +2 = 0000 0010

$$\bullet$$
 +0 = 0000 0000

Benefits

- Only one representation of zero
- Arithmetic works easily (see later)
- Negating is fairly easy
 - 3 = 0000 0011 <
 - Boolean complement gives 1111 1100
 - Add 1 to LSB

Geometric Depiction of Twos Complement Integers

Negation Special Case 1

- () =
 - Bitwise not
 - Add 1 to LSB
 - Result

- Overflow is ignored, so:
 - - 0 = 0 **✓**

Negation Special Case 2

- -128 = 1000 0000 /
 Bitwise not 0111 1111
 Add 1 to LSB +1
 Result 1000 0000
- So: +

•
$$-(-128) = -128$$
 X

- Monitor MSB (sign bit)
 - It should change during negation

Range of Numbers

• 8 bit 2s complement 2 -1

$$m^{2}$$
 • +127 = 0111 1111 = 2^{-1} -1 m^{2} • -128 = 1000 000 = -2^{7} -2

• 16 bit 2s complement

•
$$-32,768 = 1000\ 0000\ 0000\ 0000 = -2^{15}$$

Conversion Between Lengths

Positive numbers: pad with leading zeros

Negative numbers: pad with leading ones

Pad using the MSB (sign bit)

Addition

- Proceeds as if the two numbers are unsigned integers
 - Normal binary addition

 Overflow - result exceeds the bit-width size (extra bit is ignored)

If two numbers are only if the result has the opposite sign.

Subtraction

- Take twos
 complement of
 subtrahend (S) and
 add to minuend (M)
 - M S = M + (-S)
- When overflow occurs, the ALU send a signal so that no attempt is made to use the result.

$$M = 0/0 = 5$$

$$S = 00/0 = 2$$

$$-5 = 1/0 = 7$$

$$S = 2 = 00/0$$

$$S = 2 = 00/0$$

$$0010 = 2 + 1001 = -7 + 1100 = -7$$

$$S = 2 = 0010$$

$$S = 7 = 0111 - 7 + 1100 = -7$$

$$S = 2 = 0010$$

$$S = 2 = 0010 - 7 + 1110 = -7$$

$$S = 2 = 0010 - 7 + 1110 = -7$$

$$S = 2 = 0010 - 7 + 1110 = -7$$

$$S = 2 = 0010 - 7 + 1110 = -7$$

$$S = 2 = 0010 - 7 + 1110 = -7$$

$$S = 2 = 0010 - 7 + 1110 = -7$$

$$S = 2 = 0010 - 7 + 1110 = -7$$

$$S = 2 = 0010 - 7 + 1110 = -7$$

$$S = 2 = 0010 - 7 + 1110 = -7$$

$$S = 2 = 0010 - 7 + 1110 = -7$$

$$S = 2 = 0010 - 7 + 1110 = -7$$

$$S = 2 = 0010 - 7 + 1110 = -7$$

$$S = 2 = 0010 - 7 + 1110 = -7$$

$$S = 2 = 0010 - 7 + 1110 = -7$$

$$S = 3 = 0010 - 7 + 1110 = -7$$

$$S = 4 = 0100 - 7 + 11100 = -7$$

$$S = 7 = 1001 - 7 + 11100 = -7$$

$$S = 7 = 1001 - 7 + 11100 = -7$$

$$S = 7 = 1001 - 7 + 11100 = -7$$

$$S = 7 = 1001 - 7 + 11100 = -7$$

$$S = 7 = 1001 - 7 + 11100 = -7$$

$$S = 7 = 1001 - 7 + 11100 = -7$$

$$S = 7 = 1001 - 7 + 11100 = -7$$

$$S = 7 = 1001 - 7 + 11100 = -7$$

$$S = 7 = 1001 - 7 + 11100 = -7$$

$$S = 7 = 1001 - 7 + 11100 = -7$$

$$S = 7 = 1001 - 7 + 11100 = -7$$

$$S = 7 = 1001 - 7 + 11100 = -7$$

$$S = 7 = 1001 - 7 + 11100 = -7$$

$$S = 7 = 1001 - 7 + 11100 = -7$$

$$S = 7 = 1001 - 7 + 11100 = -7$$

$$S = 7 = 1001 - 7 + 11100 = -7$$

$$S = 7 = 1001 - 7 + 11100 = -7$$

$$S = 7 = 1001 - 7 + 11100 = -7$$

$$S = 7 = 1001 - 7 + 11100 = -7$$

$$S = 7 = 1001 - 7 + 11100 = -7$$

$$S = 7 = 1001 - 7 + 11100 = -7$$

$$S = 7 = 1001 - 7 + 11100 = -7$$

$$S = 7 = 1001 - 7 + 11100 = -7$$

$$S = 7 = 1001 - 7 + 11100 = -7$$

$$S = 7 = 1001 - 7 + 11100 = -7$$

$$S = 7 = 1001 - 7 + 11100 = -7$$

$$S = 7 = 1001 - 7 + 11100 = -7$$

$$S = 7 = 1001 - 7 + 11100 = -7$$

$$S = 7 = 1001 - 7 + 11100 = -7$$

$$S = 7 = 1001 - 7 + 11100 = -7$$

$$S = 7 = 1001 - 7 + 11100 = -7$$

$$S = 7 = 1001 - 7 + 11100 = -7$$

$$S = 7 = 1001 - 7 + 11100 = -7$$

$$S = 7 = 1001 - 7 + 11100 = -7$$

$$S = 7 = 1001 - 7 + 11100 = -7$$

$$S = 7 = 1001 - 7 + 11100 = -7$$

$$S = 7 = 1001 - 7 + 11100 = -7$$

$$S = 7 = 1001 - 7 + 11100 = -7$$

$$S = 7 = 1001 - 7 + 11100 = -7$$

$$S = 7 = 1001 - 7 + 11100 = -7$$

$$S = 7 = 1001 - 7 + 11100 = -7$$

$$S = 7 = 1001 - 7 + 11100 = -7$$

$$S = 7 = 1001 - 7 + 11100 = -7$$

$$S$$

Hardware for Addition and Subtraction

 For addition and subtraction, we only need addition and complement circuitry

OF = Overflow bit

SW = **Switch** (select addition or subtraction)

Multiplication

- Complex
- Work out a partial product for each digit
- Take care with placing values (column)
- Add partial products

Multiplication Example

1011	Multiplicand	(11_{10})	
x 1101	Multiplier	(13 ₁₀)	
1011	Partial products		
0000	Note: IF multiplier bit is 1, copy multiplicand		
1011	(mu	ltiplicand is the	partial product);
1011	otherwise, zero		
10001111	Product	(143 ₁₀)	

• Note: Need a double-length width result (2n-bit result for n-bit binary integers)

Unsigned Binary Multiplication

Execution of Example

$$1011 (11_{10}) \checkmark M$$
 $\times 1101 (13_{10}) \checkmark Q$
 1011
 0000
 1011
 $10001111 (143_{10})$

Note:

- M = Multiplicand
- Q = Multiplier
- A = Accumulator
- C = Carry bit

С	A	0	М	
0	0000	1101	1011	Initial values
0	1011 0101	1101 1110	1011 1011	Add First Shift cycle
0	0010	1111	1011	Shift } Second cycle
0	1101 0110	1111 1111	1011 1011	Add Third Shift cycle
1 0	0001	1111 1111	1011 1011	Add Fourth Shift cycle

Product in {A, Q}

Flowchart for Unsigned Binary Multiplication

Multiplying Negative Numbers

- This does not work!
- Solution 1
 - Convert to positive, if required
 - Multiply as above
 - If signs were different, negate answer
- Solution 2
 - Booth's algorithm

Booth's Algorithm

$$3_{10} \times 7_{10} = 21_{10}$$

Division

- More complex than multiplication
- Negative numbers are really bad!
- Based on long division

Division of Unsigned Binary Integers

Logical Operations

- NOT
- AND
- OR
- XOR
- Logical Shift Left
- Logical Shift Right
- Arithmetic Shift Left →
- Arithmetic Shift Right
 - Rotate Left/Right

Real Numbers

Unsigned integer

Integer

Signed integer

Sign Integer

Unsigned fixed point

Integer Fraction

Numbers with fractions

Signed fixed point

Sign Fraction Integer

- Could be done in pure binary
 1001.1010 = 2⁴ + 2⁰ +2⁻¹ + 2⁻³ = 9.625

15.

- Where is the binary point?
 - Fixed?
 - Very limited
 - Moving?
 - How do you show where it is?
- Another limitation: Very large and very small numbers may not be represented
 - Solution in decimal is to use scientific notation
 - 976,000,000,000,000 = 9.76 x 10¹⁴
 - $0.0000000000000976 = 9.76 \times 10^{-14}$

Floating-Point (IEEE 754 Standard)

The same approach used with scientific notation:

+/- Significand x 2^{Exponent}

- Binary point is fixed between the sign bit and body of the mantissa
- Exponent indicates the point's place value (point position)
- IEEE 754 Standards for floating point storage:
 - ✓ Single Precision (32 bit): 1 sign bit, 8 bit exponent, and 23 bit mantissa
 - Double Precision (64 bit): 1 sign bit, 11 bit exponent, and 52 bit mantissa

Floating-Point (IEEE 754 Standard)

- Bias is a fixed value that is subtracted from the field to get the true exponent value
 - Biased exponent means exponent is in excess (biased notation)
 - Bias = 2^{k-1} -1
 - k = number of bits for the binary exponent
- For single precision (32 bits): k = 8
 - Bias = $2^7 1 = (127) 8$ bit represents 0 to 255)
 - True exponent values range from -127 to +128
- Leading 1 of the significand is not stored for normalized FP numbers
 - Considered a "hidden bit"

Floating Point Examples (Single Precision)

Conversion Example 1

- Convert 100₁₀ to single precision floating-point
- Convert to binary

```
• 100_{10} = 0110 0100_2
```

- In a binary representation form of 1.xxx:
 - θ 110 0100 = 1.1001 θ 0 x 26 ξ 1 1001 x 26
 - Exponent = 6 ✓
 - Biased Exponent = 6 + 127 = (133) = 1000 0101 (8 bits)
 - Sign = 0 (positive)
 - Significand/mantissa = 100100 (23 bits: pad with trailing 0s)
 - Normalized leading 1 of the significand is not stored
- Final answer:
 - 100₁₀ = 0100 0010 1100 1000 (32 bits in total)
 - $100_{10} = 0x42C80000$ (in hex)

Conversion Example 2

- Convert -175₁₀ to single precision floating-point -175₁₀ = 1010 1111₂

 - 1010 1111 \neq 1.0101111 x 2⁷
 - Exponent = 7
 - Biased Exponent = 7 + 127 = (134) = 1000 0110 (8 bits)
 - Sign = 1 (negative)
 - Significand/mantissa = 0101111 (23 bits: pad with trailing 0s)
 - Normalized leading 1 of the significand is not stored
- Final answer:
 - -175₁₀ = <u>1100 0011 0010 1111</u> 0000 (32 bits in total)
 - $-175_{10} = 0 \times C32F0000$

Example 3: Converting Back

- Convert 0xC32F0000 to decimal
- Extract components from 1100 0011 0010 1111
 - ✓ Sign = 1 (negative) ✓
 - Biased Exponent = 1000 0110 (8 bits) = 134₁₀
 - Unbias: 134 <u>127</u> = 7
 - Exponent = 7
 - Significand/mantissa = 0101111 (23 bits: remove trailing 0s)
 - Denormalized significand = <u>1</u>.0101111
- Move binary point by 7 (exponent) places = 1010 1111.
- Convert to decimal
 - 1010 1111₂ = 175₁₀
 - Sign is negative, so -175₁₀

Conversion Example 4

- Convert 0x41C8000 to decimal
 - 0100 0001 1(100 1000 0000 ...
 - **Sign** = 0 (positive)
 - Biased Exponent = 1000 0011 (8 bits) = 131₁₀
 - Unbias: 131 − 127 = 4
 - Exponent = 4
 - Significand/mantissa = 1001 (23 bits: remove trailing 0s)
 - Denormalized significand = 1,1001
- Move binary point by 4 (exponent) places = 11001
- 11001₂ = **25**₁₀

FP Arithmetic: ADD and SUB

- Check for zeros
- Align significands (adjusting exponents)
- Add or subtract significands
- Normalize result

FP Arithmetic: MUL and DIV

- Check for zeros
- Add/subtract exponents
- Multiply/divide significands (watch sign)
- Normalize
- Round
- All intermediate results should be in double length storage

Floating-Point Multiplication

Floating-Point Division

CpE 3202
Computer Organization & Architecture

End of Lecture

Note: The lecture slide was based on the accompanying lecture material from the Computer Organization and Architecture textbook by William Stallings. All copyright belong to the latter. For instructional use only. **Do not distribute.**

References:

- Stallings, W. Computer Organization and Architecture, 6th edition, Pearson Education, Inc. (2003).
- Stallings, W. Computer Organization and Architecture, 11th edition, Pearson Education, Inc. (2019).
- https://www.tutorialspoint.com/fixed-point-and-floating-point-number-representations
- DeGroat, Joanne. "IEEE Floating Point", Lecture Slides.