Retiming

لم: فرض کنید S یک مدار نیمه تپنده و f یک تابع تأخیر (lag) است به طوری که

- $lag(host) = \circ \bullet$
- $weight_S(e) + lag(head(e)) lag(tail(e)) \ge \circ e$ برای هر یال •

e هم چنین فرض کنید S' یک مدار با همان گراف پایهی S باشد به طوری که برای هر یال آن

 $weight_{S'}(e) = weight_{S}(e) + lag(head(e)) - lag(tail(e))$

در آنg نیمه تپینده و معادل S است.

اثبات:

- نشان می دهیم که S' را با تعدادی از عملهای قابل قبول \log قابل تبدیل به S است.
- اثبات با استقرا بر روی L مجموع مقدار مطلق تابع \log بر روی همه گرههای گراف.
 - . اگر $\circ = L = \circ$ معادلند.
 - فرض استقرا: برای مقدار $K \geq 1$ حکم برای L = K بر قرار است.
 - مجموعهی رأسهایی بنام A^+ را در نظر بگیرید که تابع \log برای آنها مثبت است.
- retime v وزن تمام یالهای خروجی یک رأس $v \in A^+$ مثبت باشد، می توان v راهای کرد و از هر یال خروجی یک میانگیر برداشت و به هر یال ورودی آن یک عدد اضافه کرد. در آنصورت $v \in A^+$ و در نتیجه $v \in A^+$ یک واحد کم می شود. پس با استقرا می توان $v \in A^+$ راصفر کرد.

- اگر رأس v وجود نداشته باشد، یعنی هر رأس در A^+ دارای دست کم یک یال $u \in A^+$ و باشد و $e = u \longrightarrow v$ یال خروجی با درجه صفر است. اگر وزن یال $v \in A^+$ صفر باشد و $v \in A^+$ حتماً $v \in A^+$ پس این دور ایجاد می کند که غیر ممکن است.
- اگر A^+ تهی باشد. مجموعه رأسهایی را در نظر می گیریم که تابع \log در آنها منفی است (A^-) . مشابه ی استدلال فوق در این جا هم بر قرار است.

تبدیل یک مدار نیمه تپینده به مدار تپندهی معادل

قضیه: فرض کنید G گراف وزندار یک مدار نیمه تپنده است. یک تابع G برای رأسهای این گراف وجود دارد که اعمال آن باعث تولید یک مدار تپینده معادل G شود، اگر و فقط اگر گراف G و ور با وزن نامنفی نداشته باشد.

گراف G-1 همان گراف G است که وزن هر یال آن یک واحد کم شده باشد.

اثبات:

• فرض کنید که گراف G-1 یک دور با وزن کل منفی داشته باشد. در آنصورت در G-1 تعداد یالهای این دور از مجموع وزن آن بیش تر است. این دور را نمی توان تپنده کرد.

اگر G-1 چنین دوری نداشته باشد، ما تابع $\log(v)$ را برای هر رأس v به صورت زیر تعریف می کنیم:

G-1 برابر وزن کوتاه ترین مسیر از v به $\log(v)$ برابر وزن کوتاه ترین مسیر e=(u,v) و برای هر یال $\log(host)=\circ$ با این ترتیب

newweight(e) = oldweight(e) + lag(v) - lag(u)

مىدانيم كه

$$lag(u) \le (oldweight(e) - 1) + lag(v)$$

بنابراين

$$newweight(e) = oldweight(e) + lag(v) - lag(u) \ge 1$$

اگر G-1 دارای دور منفی بود کوچکترین عدد صحیح k را پیدا می کنیم که گراف kG-1 دور منفی نداشته باشد.