CURSO DE AMBIENTACIÓN INGRESO 2017 FACULTAD DE INGENIERÍA ÁREA MATEMÁTICA

Trabajo práctico nº 1

Objetivos Propuestos:

En el siguiente práctico el alumno deberá:

- Representar conjuntos numéricos e intervalos en la recta.
- Traducir del lenguaje coloquial al simbólico y viceversa.
- Formular y resolver ejercicios con números reales, distancia entre puntos e intervalos.
- Resolver operaciones con números reales: Logaritmación y Exponenciación.
- 1 Dados los conjuntos $A = \{x \mid x \in IN \land x < 5\}$, $B = \{x \mid x \in Z \land -1 \le x < 5\}$ C = $\{x \mid x \in \mathbb{R} \land 0 \le x < 5\}$. Complete con los signos \in , $\not\in$, \subset , $\not\subset$, según corresponda:
 - a) 5... A
- b) **-1...B**

- c) 2/3...C d) A...B e) {-1, 0, 1}...A
- 2 Enuncie por extensión los siguientes conjuntos

$$A = \{ x/x \in Z \land -1 \le x < 3 \} \ y \ B = \{ x/x \in Z \land | x | \le 1 \}$$

3 – Exprese por comprensión los conjuntos:

$$A = \{ -1, 0, 1 \}$$

$$B = [-2, 4]$$

$$B = [-2, 4]$$
 $C = [3, \infty[$ $D =]-\infty, 10[$

4- Dados los siguientes intervalos en |R:

$$A = [-3; 8[B = [0; 10] C =]-\infty; 0] y D =]-5; 2[$$

Hallar: a) A ∩ B

b) AUC c) BUD

d) $C \cap D$

5- Completar la siguiente tabla

Intervalo	Valores de x	Grafico en la recta
[-2 , 6[
		-1 8
	2 < x < ∞	

- 6- Expresar los siguientes conjuntos como intervalo y si es posible como entorno.
 - a) $A = \{x : x \in IR ; x > 1/3 \}$
 - b) $C = \{x: x \in IR; -1,5 < x \le 0 \}$
 - c) D = $\{x: x \in IR; | 1 2x | < 4 \}$
 - d) $E = \{x: x \in IR; 0 < |3x 1/3| < 9\}$

7- Resolver las siguientes inecuaciones lineales, y exprese el conjunto solución como intervalo

a)
$$3x-1 > 2x +4$$

b)
$$3.(x-2)-1>6.(x-1)$$

c)
$$5x - \frac{1}{2}(x-1) \le \frac{1}{2}(x+1)$$

d)
$$2(x+2)-1 \ge 2x-2$$

e)
$$\frac{4x-2}{2} + 2x < 3(x-1)$$

f)
$$4(2x-1) + 2x < 3(4x-2)$$

g)
$$6-2(x+4) \ge \underline{x-2}$$

h)
$$\frac{x+2}{3} + \frac{x+1}{2} \ge 4(x-1)$$

i)
$$\frac{2x-3}{4} - \frac{x+4}{2} < 3(6-x)$$

8- Resolver las siguientes inecuaciones cuadráticas, y exprese el conjunto solución como intervalo

a)
$$(x-2).x < 2.(8-x)$$

b)
$$2x^2 - 18 > 0$$

c)
$$2.(x-1).(x+1) \ge 4$$

d)
$$10x.(x-2) \le 4x.(x-5)+24$$

e)
$$9 - x^2 < 0$$

Aplicaciones:

- **9-** Expresar en cada caso, la solución, como conjunto o intervalo según corresponda y representarla gráficamente.
 - a) En una camioneta se cargan tres cajas tres cajas de igual peso y otro bulto de 4 kg. Indique entre qué valores puede oscilar el peso de cada caja sabiendo que la carga máxima de la camioneta no puede superar los 19 kg.
 - b) La medida del perímetro de un rectángulo debe estar comprendida entre 48 y 80 metros, ¿si se sabe que la base mide el doble de la altura, entre qué medidas están comprendidas las longitudes de los lados?
 - c) La suma de dos números impares consecutivos está comprendida entre 12 y 26 ¿Cuáles son dichos números? Verifique el resultado reemplazando por un número del conjunto solución.

CURSO DE AMBIENTACIÓN INGRESO 2017 FACULTAD DE INGENIERÍA ÁREA MATEMÁTICA

Ecuaciones logarítmicas y exponenciales

10- Calcule aplicando definición de logaritmo

a)
$$\log_4 1 =$$

b)
$$\log_5 125 =$$

a)
$$\log_4 1 =$$
 b) $\log_5 125 =$ c) $\log_{81} 3 =$ d) $\log_{9} 0.1 =$

d)
$$\log 0.1 =$$

11- Aplicando definición y propiedades de logaritmo determine la incógnita en las siguientes expresiones:

a)
$$\log_3 x = 2$$

a)
$$\log_3 x = 2$$
 b) $\log_x \left(\frac{16}{81}\right) = 4$ c) $\log_5 x = -2$

c)
$$\log_5 x = -2$$

12- Resuelva las siguientes ecuaciones exponenciales y logarítmicas aplicando propiedades:

a)
$$\log (5-x) = 1 - \log (2-x)$$

b)
$$\log(x+3) + \log(x-3) = \log 7$$

c)
$$\log(9x-3) - \log 5 = \log(x+2)$$

d)
$$\log (x-4) + \log (x-2) = \log 48 - 4 \log 2$$

e)
$$\log (x+3) + \log (2x-1) = \log [2.(x^2+4)]$$

$$f) 9^{2x} = 27^{3x-4}$$

q)
$$8^{6+3x} = 4$$

h)
$$9^{x-1} = \left(\frac{1}{3}\right)^{2x}$$

i)
$$\sqrt{5} \cdot \left(\frac{1}{5}\right)^{2x-4} = 25^{3x}$$