

Chapitre 4 : La chaîne d'information des systèmes

4.3 : Numération et codage des données

TD - 4h

-	ra	vai	п		n	21	n	М	
	ıa	v a		u	ш	- 1	_	u	

ır	avaii demande								
1.	Si la base n'est pas indiquée, à quelle(s) <i>base(s) usuelle(s)</i> (2, 8, 10 ou 16) peuvent appartenir les nombres a) 321 b) 1010 c) 3CA								
2.	Lister et compter <i>tous les entiers</i> inclus : a) entre $(287)_{16}$ et $(2A0)_{16}$ b) entre $(10)_2$ et $(1010)_2$								
3.	Quel est le <i>poids</i> des digits : a) de rang 9 et 10 en base 2 ? b) de rang 2 et 3 en base 16 ?								
4.	Selon que le type est signé ou non, déterminer les <i>valeurs extrêmes</i> codables d'un entier <i>x</i> sur : a) 16 bits (entier « court », en langage C, short); b) sur 32 bits (entier « long », en langage C, long). Pourquoi n'est-il pas nécessaire de disposer d'un codage d'entiers sur 64 bits ?								
5.	Convertir en <i>base 2</i> par la méthode des divisions, puis par développement en une somme de puissances de la base, les entiers : a) 34 b) 125								
6.	Idem que l'exercice 5 en <i>base 16</i> pour : a) 125 ; b) 517 ; c) 4012. Comparer la commodité des deux méthodes de conversion sans utilisation d'une machine.								
7.	Convertir en <i>base 10</i> les entiers : a) $(10\ 0101)_2$ b) $(111\ 1011)_2$ c) $(1FD)_{16}$ d) $(FAC2)_{16}$ Vérifier les résultats en les comparants à ceux des exercices 5 & 6.								
8.	Convertir en bases 16 ou 2 les entiers : a) $(10\ 0101)_2$ b) $(111\ 1011)_2$ c) $(1FD)_{16}$ d) $(AC8)_{16}$								
9.	Effectuer les <i>additions</i> suivantes directement dans la base de numération : a) $(1101 + 1110)_2$ $(10\ 0101 + 111\ 1011)_2$ $(1111\ 1111 + 1)_2$ b) $(7E + 7C)_{16}$ $(1FF + FAC)_{16}$ $(FF + 1)_{16}$ Vérifier les résultats en base 10.								
10.	Effectuer en <i>base 2</i> les <i>opérations</i> : a) $(1101)_2 \times 2$ b) $(11011)_2 \div 2$ En déduire un algorithme général pour multiplier et diviser par \boldsymbol{b} en base \boldsymbol{b} .								
11.	Décoder en <i>base 10</i> les <i>entiers signés</i> codés sur <i>8 bits</i> : a) $(1110\ 0010)_{2\pm}$ b) $(1001\ 1100)_{2\pm}$								
12.	On montre qu'un entier x négatif sur n bits est codé $(x)_{2\pm} = \overline{(x)_2} + 1$ où $\overline{(x)_2}$ est le code binaire naturel d la valeur absolue de x , complémenté bit par bit à 2 (chaque 0 devient 1 et inversement). Avec cette formule, déterminer le code sur 0 bits des entiers : 0 -28 b) -125								
13.	Convertir en BCD les entiers : a) 128 b) 517 À partir de leur code binaire, donner leur représentation hexadécimale. Que constate-t-on ?								
14.	Déterminer la <i>date</i> codée en BCD au format <i>aaaa-mm-jj</i> (i.e. « <i>année – mois – jour</i> ») ci-dessous : 0001 1001 1000 0111 – 0000 0110 – 0010 0101								
15.	 a) Décoder la <i>chaîne de caractère</i> codée en ASCII 7 bits : 53 74 6F 70 20 21 00. b) Quel est le rôle du dernier caractère ? c) En ASCII, quelle relation vérifient les codes respectifs de la majuscule et de la minuscule d'une lettre ? 								
16	* Soit $\mathbf{x} = (\mathbf{d}_t)_2$ un entier codé sur <i>n</i> hits en hinaire naturel, et $(\mathbf{a}_t)_2$ son code Gray . On montre que :								

c) Vérifier les résultats en construisant le tableau des codes binaire naturel et Gray sur 4 bits.

b) Décoder les valeurs des entiers u et v codés par $u = (0100)_G$ et $v = (1011)_G$.

pour k = 0 à n - 1, $g_k = d_k \oplus d_{k+1}$ et $d_k = g_k \oplus d_{k+1}$ avec $a \oplus b = (a + b) \mod 2$ et $d_n = g_n = 0$. a) Pour n = 4, déterminer dans l'ordre inverse des rangs des bits le code Gray des entiers x = 5 et y = 10.