SQL Data Definition Language

Create and Insert

SQL Create and Use Database

Let's create a database named "mystore"

Item_no	Item_name	Unit_Price	Inventory
2321	Dell Laptop	1500	56
5432	5432 Seagate Drive		100
5674	5674 Kingston USB Drive		500
8542	Backpack	100	45

Introduction to Data Science: SQL

-- Create database for mystore

CREATE SCHEMA mystore;

-- Create table named inventory in mystore

CREATE TABLE mystore.inventory(Item_no INT NOT NULL, Item_name VARCHAR(100) NOT NULL, Unit_Price INT NOT NULL, Inventory INT, PRIMARY KEY (Item_no));

-- Populate table with values/data

INSERT INTO mystore.inventory (Item_no, Item_name, Unit_Price, Inventory) VALUES (2321, 'Dell Laptop', 1500, 56);

INSERT INTO mystore.inventory (Item_no, Item_name, Unit_Price, Inventory) VALUES (5432, 'Seagate Drive', 200, 100);

INSERT INTO mystore.inventory (Item_no, Item_name, Unit_Price, Inventory) VALUES (5674, 'Kingston USB Drive', 70, 500);

INSERT INTO mystore.inventory (Item_no, Item_name, Unit_Price, Inventory) VALUES (8542, 'Backpack', 100, 45);

Item_no	Item_name	Unit_Price	Inventory
2321	Dell Laptop	1500	56
5432	Seagate Drive	200	100
5674	Kingston USB Drive	70	500
8542	Backpack	100	45

Introduction to Data Science: SQL DDL -- Select database to use USE mystore;

/* once USE mystore is executed, we can eliminate the dot operator and database name */
CREATE TABLE inventory(Item_no INT NOT NULL,
Item_name VARCHAR(100) NOT NULL, Unit_Price INT
NOT NULL, Inventory INT, PRIMARY KEY (Item_no));

- -- Insert new product with null value INSERT INTO inventory (Item_no, Item_name, Unit_Price, Inventory) VALUES (2348, 'HP Laptop', 1000, null);
- -- Insert new product with no null columns only INSERT INTO inventory (Item_no, Item_name, Unit_Price) VALUES (7344, 'Lenovo Laptop', 988);

Item_no	Item_name	Unit_Price	Inventory
2321	Dell Laptop	1500	56
5432	5432 Seagate Drive		100
5674	Kingston USB Drive	70	500
8542	Backpack	100	45


```
Cookies Sample - Notepad
File Edit Format View Help
Sales_Date,Day_of_Week,Salesman,Temperature,Tweets,Price,Sales
1/1/2019, Tuesday, John, 72, 2, 0.5, 177
1/2/2019, Wednesday, John, 82, 3, 0.5, 127
1/3/2019, Thursday, John, 69, 5, 0.5, 172
1/4/2019, Friday, John, 100, 7, 0.5, 150
1/5/2019, Saturday, Ada, 69, 6, 0.3, 103
1/6/2019, Sunday, Ada, 91, 8, 0.5, 120
1/7/2019, Monday, Ada, 81, 3, 0.3, 96
1/8/2019, Tuesday, John, 88, 6, 0.5, 150
1/9/2019, Wednesday, John, 69, 8, 0.5, 177
1/10/2019, Thursday, John, 61, 10, 0.5, 190
1/11/2019, Friday, John, 79, 1, 0.5, 154
1/12/2019, Saturday, John, 94, 9, 0.5, 160
1/13/2019, Sunday, John, 80, 5, 0.5, 161
1/14/2019, Monday, John, 64, 8, 0.5, 185
1/15/2019, Tuesday, Ada, 94, 6, 0.5, 137
1/16/2019, Wednesday, Ada, 68, 6, 0.3, 106
1/17/2019, Thursday, Ada, 74, 2, 0.3, 85
1/18/2019, Friday, John, 89, 4, 0.5, 122
1/19/2019, Saturday, John, 87, 6, 0.5, 187
1/20/2019, Sunday, John, 100, 7, 0.5, 165
1/21/2019, Monday, John, 89, 8, 0.5, 158
1/22/2019, Tuesday, John, 82, 6, 0.5, 192
1/23/2019, Wednesday, Ada, 60, 7, 0.3, 87
```

Step 1: Understand the structure (column heading, data type)

Step 2: Create SQL script

- Create database
- Create table with the same structure observed from CSV file
- Load data from CSV file

Step 3: Run SQL script

IGNORE 1 ROWS;

CREATE TABLE cookies.sales
(Sales_Date varchar(10),
Day_of_Week varchar(10),
Salesman varchar(10),
Temperature INT,
Tweets INT,
Price INT,
Sales INT);
LOAD DATA INFILE 'C:/ProgramData/MySQL/MySQL Server 8.0/Uploads/Cookies Sample.csv'
INTO TABLE cookies.sales
FIELDS TERMINATED BY ','
LINES TERMINATED BY '\n'

	Sales_Date	Day_of_Week	Salesman	Temperature	Tweets	Price	Sales
•	1/1/2019	Tuesday	John	72	2	1	177
	1/2/2019	Wednesday	John	82	3	1	127
	1/3/2019	Thursday	John	69	5	1	172
	1/4/2019	Friday	John	100	7	1	150
	1/5/2019	Saturday	Ada	69	6	0	103
	1/6/2019	Sunday	Ada	91	8	1	120

Python MySQL Load Data from CSV File

Python MySQL Load Data from CSV File

```
Cookies Sample - Notepad
File Edit Format View Help
Sales_Date,Day_of_Week,Salesman,Temperature,Tweets,Price,Sales
1/1/2019, Tuesday, John, 72, 2, 0.5, 177
1/2/2019, Wednesday, John, 82, 3, 0.5, 127
1/3/2019, Thursday, John, 69, 5, 0.5, 172
1/4/2019, Friday, John, 100, 7, 0.5, 150
1/5/2019, Saturday, Ada, 69, 6, 0.3, 103
1/6/2019, Sunday, Ada, 91, 8, 0.5, 120
1/7/2019, Monday, Ada, 81, 3, 0.3, 96
1/8/2019, Tuesday, John, 88, 6, 0.5, 150
1/9/2019, Wednesday, John, 69, 8, 0.5, 177
1/10/2019, Thursday, John, 61, 10, 0.5, 190
1/11/2019, Friday, John, 79, 1, 0.5, 154
1/12/2019, Saturday, John, 94, 9, 0.5, 160
1/13/2019, Sunday, John, 80, 5, 0.5, 161
1/14/2019, Monday, John, 64, 8, 0.5, 185
1/15/2019, Tuesday, Ada, 94, 6, 0.5, 137
1/16/2019, Wednesday, Ada, 68, 6, 0.3, 106
1/17/2019, Thursday, Ada, 74, 2, 0.3, 85
1/18/2019, Friday, John, 89, 4, 0.5, 122
1/19/2019, Saturday, John, 87, 6, 0.5, 187
1/20/2019, Sunday, John, 100, 7, 0.5, 165
1/21/2019, Monday, John, 89, 8, 0.5, 158
1/22/2019, Tuesday, John, 82, 6, 0.5, 192
1/23/2019, Wednesday, Ada, 60, 7, 0.3, 87
```

```
import mysql.connector as sq
mydb=sq.connect(host="localhost",user="root",passwd="ucla", buffered=True)

mycursor = mydb.cursor()
mycursor.execute('CREATE SCHEMA cookies')

SQLCMD = 'CREATE TABLE cookies.sales (Sales_Date varchar(10), \
Day_of_Week varchar(10), Salesman varchar(10), Temperature INT, \
Tweets INT, Price FLOAT, Sales INT)'

mycursor.execute(SQLCMD)

SQLCMD = "LOAD DATA INFILE 'C:/ProgramData/MySQL/MySQL Server 8.0/Uploads/Cookies Sample.csv' \
INTO TABLE cookies.sales FIELDS TERMINATED BY ',' LINES TERMINATED BY '\\n' IGNORE 1 ROWS"

mycursor.execute(SQLCMD)
mydb.commit()
```

Python MySQL Load Data from CSV File

	Sales_Date	Day_of_Week	Salesman	Temperature	Tweets	Price	Sales
>	1/1/2019	Tuesday	John	72	2	1	177
	1/2/2019	Wednesday	John	82	3	1	127
	1/3/2019	Thursday	John	69	5	1	172
	1/4/2019	Friday	John	100	7	1	150
	1/5/2019	Saturday	Ada	69	6	0	103
	1/6/2019	Sunday	Ada	91	8	1	120

DataFrame is a 2-dimensional labeled data structure with columns of potentially different types

Data Science: Python Pandas DataFrame

	Α	В	C	D	Е	F	G	Н
1								
2								
3								
4								
5								
6								
7								
8								
9								
10								
11								
12								
13								
14								
15								

```
import pandas as pd
from matplotlib import pyplot as plt

grades = [90.5, 100.0, 75.8, 25.6]
studytime = [40, 50, 35, 10]
# Convert the List of Grades into Excel Spreadsheet Lookalike Column Format
# Use Pandas DataFrame to convert ONE list to start with (One Column)
df = pd.DataFrame(grades, columns = ["Grades"])
# Now we can add another List as second column to the dataframe created
df["Studytime"]=studytime
# Take a look at the dataframe. Doesn't it look just like Excel?
print (df)
# Use Pandas DataFrame Correlation to perform Pearson R
print(df.corr())
plt.scatter(grades,studytime)
plt.show()
```

Data Science: Python Pandas DataFrame and Correlation

```
Grades Studytime
0 90.5 40
1 100.0 50
2 75.8 35
3 25.6 10
Grades Studytime
Grades 1.00000 0.99219
Studytime 0.99219 1.00000
```


Data Science: Python Pandas DataFrame and Correlation Demo

```
import pandas as pd
from matplotlib import pyplot as plt
%matplotlib inline
grades = [90.5, 100.0, 75.8, 25.6]
studytime = [40, 50, 35, 10]
# Convert the List of Grades into Excel Spreadsheet Lookalike Column Format
data = list(zip(grades, studytime))
df = pd.DataFrame(data, columns = ["Grades", "StudyTime"])
print (df)
# Use Pandas DataFrame Correlation
print (df.corr())
plt.scatter(studytime, grades)
plt.show()
```

Data Science: Python Pandas DataFrame and Correlation

```
Grades Studytime
0 90.5 40
1 100.0 50
2 75.8 35
3 25.6 10
Grades Studytime
Grades 1.00000 0.99219
Studytime 0.99219 1.00000
```



```
import pandas as pd
```

```
MyClass = {'students':['Bruce', 'Jane', 'Nancy', 'Bill'], 'grades':[10, 9, 9, 8]}
```

df = pd.DataFrame(MyClass)

	students	grades
0	Bruce	10
1	Jane	9
2	Nancy	9
3	Bill	8

```
import pandas as pd
```

```
MyClass = {'students':['Bruce', 'Jane', 'Nancy', 'Bill'], 'grades':[10, 9, 9, 8]}
```

```
df = pd.DataFrame(MyClass, index
=["ID1","ID2","ID3","ID4"])
```

	students	grades
ID1	Bruce	10
ID2	Jane	9
ID3	Nancy	9
ID4	Bill	8

import pandas as pd

MyClass =

{'John':10,'Jake':9,'Jackie':8,'Jack':7,'Jane':6,'Jo'

:10,'Ja':9,'Jac':8,'Jacky':7,'Jan':6}

df = pd.DataFrame(MyClass, index=[1, 2, 3])

	John	Jake	Jackie	Jack	Jane	Jo	Ja	Jac	Jacky	Jan
1	10	9	8	7	6	10	9	8	7	6
2	10	9	8	7	6	10	9	8	7	6
3	10	9	8	7	6	10	9	8	7	6

```
MyInventory = {
  "Item": ["coffee", "chocolate", "tea",
  "water"],
  "Promotion": [False, False, True, False],
  "Price": [5.95, 5.95, 3.95, 2.95],
  "Stock": [100, 250, 1000, 1200]
}

ddf = pd.DataFrame(MyInventory)
ddf
```

	Item	Promotion	Price	Stock
0	coffee	False	5.95	100
1	chocolate	False	5.95	250
2	tea	True	3.95	1000
3	water	False	2.95	1200

```
Inv2 = {
   "Item": ["coffee", "chocolate", "tea",
   "water"],
   "Promotion": ["no","no","yes","yes"],
   "Price": [5.95, 5.95, 3.95, 2.95],
   "Stock": [100, 250, 1000, 1200]
}
InvDF = pd.DataFrame(Inv2)
InvDF
```

	Item	Promotion	Price	Stock
0	coffee	no	5.95	100
1	chocolate	no	5.95	250
2	tea	yes	3.95	1000
3	water	yes	2.95	1200

```
Inv2 = {
    "Item": ["coffee", "chocolate", "tea",
    "water"],
    "Promotion": ["no","no","yes","yes"],
    "Price": [5.95, 5.95, 3.95, 2.95],
    "Stock": [100, 250, 1000, 1200]
}
InvDF = pd.DataFrame(Inv2)
InvDF
InvDF = InvDF.replace({'Promotion': {'no': False,'yes': True}})
```

	Item	Promotion	Price	Stock
0	coffee	no	5.95	100
1	chocolate	no	5.95	250
2	tea	yes	3.95	1000
3	water	yes	2.95	1200

	Item	Promotion	Price	Stock
0	coffee	False	5.95	100
1	chocolate	False	5.95	250
2	tea	True	3.95	1000
3	water	True	2.95	1200

InvDF[InvDF["Promotion"] == False]

	Item	Promotion	Price	Stock
0	coffee	False	5.95	100
1	chocolate	False	5.95	250

InvDF[InvDF["Price"] < 5]

		Item	Promotion	Price	Stock
:	2	tea	True	3.95	1000
;	3	water	True	2.95	1200

	Item	Promotion	Price	Stock
0	coffee	False	5.95	100
1	chocolate	False	5.95	250
2	tea	True	3.95	1000
3	water	True	2.95	1200

Pandas **DataFrame** Review

DataFrame is a 2-dimensional labeled data structure with columns of potentially different types

☐ 5·0·4·=						
Fi	ile	Home	Inse	rt	Page Layout	
Past	te	Cut Copy 🕶 Format Pa	inter	Calil B	bri ▼	
	Clipb	ooard	Ľ		Font	
E6		-	:	×	✓ fx	
	Α	В	C		D	
1	Price	Sales	Quar	ntity		
2	50	9		7.1		
3	50	9		5.7		
4	60	11		5.7		
5	60	11		6.6		
6	70	13		13.2		
7	70	13		9.7		
8	80	15		11.3		
9	80	15		15.6		
10						
11						

STEPS:

- 1. import the pandas library
- 2. Create a variable for the data frame to store all columns and values from the Excel worksheet
- 3. Use the API from pandas pandas.read_excel("filename.xlsx") to read the file "filename.xlsx" and assign all columns and values to the data frame variable

```
In [19]: import pandas as pd
         df = pd.read_excel ("QtyDemand.xlsx")
         print(df)
            Price Sales Quantity
               50
                               7.1
                               5.7
               50
                               5.7
               60
                      11
               60
                      11
                               6.6
               70
                      13
                              13.2
                              9.7
               70
                      13
               80
                      15
                              11.3
                              15.6
               80
                      15
 In [ ]:
```

- You can access the specific column by referencing the index (column label) of that column
 - df["Price"] will return the values for the entire column "Price"
 - You can also use the form df.Price
- 0, 1, 2, 3, 4, 5, 6, 7 on the left most column is the index for the rows. You can access the value stored in column Price row 0 using df.Price[index]
 - df.Price[0] will return the value of the first element of column "Price" = 50
 - df.Price[6] will return the value of the seventh element of column "Price" = 80
 - df.Sales[2] = 11
 - df.Quantity[4] = 13.2

```
In [19]: import pandas as pd
         df = pd.read_excel ("QtyDemand.xlsx")
         print(df)
            Price Sales Quantity
               50
                                7.1
               50
                                5.7
                      11
                                5.7
                      11
                                6.6
                               13.2
               70
                               9.7
                      13
                      15
                               11.3
                      15
                               15.6
In [ ]:
```

```
print(df.Price[0])
In [22]:
                                            In [21]:
                                                     print(df["Price"])
          50
                                                          50
                                                          50
                                                          60
          print(df.Price[6])
In [23]:
                                                          60
                                                          70
          80
                                                          70
                                                          80
          print(df.Sales[2])
                                                          80
In [24]:
                                                     Name: Price, dtype: int64
          11
          print(df.Quantity[4])
In [25]:
          13.2
```


pandas.read_excel("filename.xlsx")

What if we only want to read column "Price" into the dataframe variable?

STEPS:

- import the pandas library
- 2. Create a variable for the data frame to store all columns and values from the Excel worksheet
- 3. Use the API from pandas pandas.read_excel("filename.xlsx") to read the file "filename.xlsx" and assign all columns and values to the data frame variable.
 - 1. This time we will use an additional argument named usecols.
 - 2. pandas.read_excel("filename.xlsx", usecols=[0]) to read first column only
 - 3. pandas.read_excel("filename.xlsx", usecols=[0, 1]) to read first column and second column only

```
import pandas as pd

df = pd.read_excel ("QtyDemand.xlsx", usecols = [0])
print(df)
```

```
import pandas as pd

df = pd.read_excel ("QtyDemand.xlsx", usecols = [0, 2])
print(df)
```

```
Price
0 50
1 50
2 60
3 60
4 70
5 70
6 80
7 80
```

```
Price Quantity
      50
               7.1
      50
               5.7
     60
               5.7
              6.6
      60
     70
              13.2
              9.7
     70
              11.3
      80
7
              15.6
      80
```

Data Science: Python Pandas DataFrame Saving to Excel File


```
Price, Sales, Quantity 50,9,7.1 50,9,5.7 60,11,5.7 60,11,6.6 70,13,13.2 70,13,9.7 80,15,11.3 80,15,15.6
```

STEPS:

- 1. import the pandas library
- 2. Create a variable for the data frame to store all columns and values from the csv file
- 3. Use the API from pandas pandas.read_csv("filename.csv") to read the file "filename.csv" and assign all data to the data frame variable

```
import pandas as pd

df = pd.read_csv ("QtyDemand.csv")
print(df)
```

	Price	Sales	Quantity
0	50	9	7.1
1	50	9	5.7
2	60	11	5.7
3	60	11	6.6
4	70	13	13.2
5	70	13	9.7
6	80	15	11.3
7	80	15	15.6

```
import pandas as pd

df = pd.read_csv ("QtyDemand.csv", usecols = [0])

print(df)

Price
0    50
1    50
2    60
3    60
4    70
5    70
6    80
7    80
```

Specific Column

Data Science: Python Pandas DataFrame Saving to a csv file

