Tema 5: Variables Aleatorias. Distribuciones de Probabilidad

Tema 5b: Distribuciones de Probabilidad.

Departamento Matemática Aplicada

Universidad de Málaga

Curso 2020-2021

Introducción

Una vez conocido el concepto de variable aleatoria, vamos a ver aquellas que mejor sirven para describir fenómenos naturales y modelos teóricos que ayudan a simular y describir a aquellos.

Al igual que las variables aleatorias los separaremos en dos tipos:

- Discretos (Finitos o Numerables)
- Continuos

Distribución uniforme discreta

Definición

Una variable aleatoria X que toma valores en x_1, x_2, \ldots, x_n con probabilidades: $p(x_k) = P(X = x_k) = \frac{1}{n}$ con $k = 1, 2, \ldots, n$ recibe el nombre de variable aleatoria uniforme discreta y se denota por:

$$X \rightsquigarrow U(x_1, x_2, \dots, x_n)$$

Si la variable toma valores en los n primeros números naturales $\mathbb{N}=\{1,2,\ldots,n\}$, se denota por $\mathsf{U}(\mathsf{n})$.

Ejemplo '

Ejemplo

- Lanzar un dado será una U(6), ya que $p(k) = \frac{1}{6}$ con $k \in \{1, 2, 3, 4, 5, 6\}$.
- Sacar una carta de una baraja española será una U(40), entendiendo que las cartas numeradas de 1 a 10 son 'oros', del 11 al 20, son 'copas', del 21 al 30 'espadas' y el resto 'bastos. Además si termina en 8 es 'sota', si en 9 es 'caballo' y si en 0 es 'rey'.

Media y Varianza distribución uniforme discreta U(n)

Media:
$$\mu = E(X) = \frac{n+1}{2}$$

$$E(X) = \sum_{k} kp(k) = \sum_{i} \frac{1}{n} = \frac{1}{n}(1 + 2 + ... + n)$$

$$=\frac{1}{n}\left(\frac{(1+n)n}{2}\right)=\frac{n+1}{2}$$

Varianza:
$$V(X) = \frac{n^2-1}{12}$$

Desviación típica:
$$\sigma(x) = \sqrt{\frac{n^2-1}{12}}$$

$$m_2 = \sum_k k^2 p(k) = \sum_i \frac{1}{n} = \frac{1}{n} (1 + 4 + 9 + \dots + n^2) = \frac{1}{n} a_n$$

donde:

$$a_n = 1 + 4 + 9 + 16 + 25 \dots + n^2 = \{1, 5, 14, 30, 55, 91, \dots\}.$$

Continuación-Ejemplo

Para hallar el término general, a_n , formamos la tabla de i a_i Δ Δ^2 Δ^3 Δ^4

Distribución de Bernouilli

Definición

Un experimento solo puede presentar dos resultados: A y A, con probabilidades P(A) = p y $P(\bar{A}) = 1 - p = q$. Decimos que la variable aleatoria X asociada al experimento y toma el valor 1 si ocurre el suceso A y el valor cero cuando ocurre \bar{A} sigue una distribución de Bernouilli.

Función de probabilidad:
$$p(1) = p$$
, $p(0) = q$, con $p + q = 1$.

Media:
$$\mu = E(X) = p$$

$$E(X) = 1 \cdot p + 0 \cdot q = p$$

Varianza:
$$V(X) = pq$$

$$m_2 = 1^2 p + 0^2 q = p \Rightarrow V(X) = p - p^2 = p(1 - p) = pq$$

Desviación típica: $\sigma_X = \sqrt{pq}$

Distribución Binomial

Definición

Supangamos que realizamos n pruebas de Bernouilli de forma sucesiva e independientes. A la variable aleatoria: X="N'umero de veces que ha ocurrido el suceso A" se le denomina distribución binomial

Función de probabilidad:

$$p(k) = P(X = k) = {n \choose k} p^k q^{n-k}$$
 $(n \in \mathbb{N}, k = 0, 1, ..., n, 0 \le p \le 1)$

Media: $\mu = E(X) = np$ Varianza: V(X) = npq

Desviación típica: $\sigma_X = \sqrt{npq}$

Propiedades de la Binomial

- Está caracterizada por los valores de n y p. Se denota por: B(n,p).
- Para valores pequeños de n, la probabilidad P(X = k) se encuentra tabulada para $p \le 0.5$.
- Si p > 0.5 se puede considerar que $P(X = k) = P(\psi = n k)$ donde $\psi \rightsquigarrow B(n, q)$.
- La binomial B(n, p) puede considerarse como la suma de n distribuciones de Bernouilli independientes de igual probabilidad p.
- La Bernouilli (Ber(p)) puede considerarse como una binomial con n = 1. Ber(p) = B(1, p)
- Reproductiva en n: Si $X_1 \rightsquigarrow B(n_1, p)$ y $X_2 \rightsquigarrow B(n_2, p)$, entonces: $X_1 + X_2 \rightsquigarrow B(n_1 + n_2, p)$

Aproximaciones de la binomial

Cuando n es grande la distribución binomial se aproxima a otras distribuciones. En general se acepta que:

- Si n > 30 y np < 5 entonces $B(n, p) \approx P(np)$
- Si n > 30 y nq < 5 entonces $B(n,q) \approx P(nq)$
- Si n > 30, $np \ge 5$ y $nq \ge 5$ entonces $B(n, p) \approx N(np, \sqrt{npq})$

donde:

P(np) y P(nq) son la distribución de Poisson de parámetro $\lambda = np$ y $\lambda = nq$ respectivamente, y $N(np, \sqrt{npq})$ es la distribución normal de media $\mu = np$ y desviación típica $\sigma = \sqrt{npq}$.

Ejemplo

La probabilidad de que una máquina fabrique una pieza defectuosa es 0.02. Determinado día ha fabricado 15 piezas. Hallar la probabilidad de:

- Exactamente 2 sean defectuosas.
- 2 Al menos 2 sean defectuosas.
- 3 Si las piezas se agrupan en lotes de 4. Probabilidad de que el lote tenga 1 defectuosa.

1: Si se considera que la fabricación de una pieza no influye en la siguiente (sucesos independientes). X='Num. Defect' es típicamente una binomial $X \rightsquigarrow B(15,0.02)$.

$$p(2) = P(X = 2) = {15 \choose 2} (0.02)^2 (0.98)^{13} = 0.0323$$

Solución-Ejemplo

2: Es más fácil calcular la probabilidad del suceso contrario. $P(B) = 1 - P(\bar{B})$, pero el suceso \bar{B} es que todas sean correctas o solo 1 defectuosa, luego:

$$P(\bar{B}) = p(\{0,1\}) = p(0) + p(1)$$

$$= {15 \choose 0} (0.02)^{0} (0.98)^{15} + {15 \choose 1} (0.02)^{1} (0.98)^{14} = 0.9647 \Rightarrow$$

$$P(B) = 1 - 0.9647 = 0.0353$$

3: Ahora es una nueva v.a. $\eta \rightsquigarrow B(4,0.02)$ y se pide $p(1) = P(\eta = 1) = 4(0.02)(0.98)^3 = 0.0753$

Distribución Geométrica o de Pascal

Definición

Un experimento aleatorio consiste en la realización sucesiva e independientes de experimentos de Bernouilli. La variable X="Lugar de la primera aparición del suceso A" sigue una **distribución de Pascal** (o geométrica).

Función de probabilidad:
$$p(k) = P(\bar{A} \cap \bar{A} \cap \underbrace{\bar{A} \cap \bar{A}}_{-1} \cap \bar{A} \cap A) = q^{k-1}p$$

Media:
$$\mu = E(X) = \frac{1}{p}$$

Varianza: $V(X) = \frac{q}{p^2}$

Desviación típica:
$$\sigma_X = \frac{\sqrt{q}}{p}$$

Ejemplo: El 2% de las piezas fabricadas son defectuosas ¿Cuál es la probabilidad de sacar la primera correcta después de la 3ª extracción?

$$p(4) + p(5) + \ldots = 1 - p(1) - p(2) - p(3)$$

$$= 1 - (0.98) - 0.02(0.98) - (0.02)^2 \cdot 0.98 = 8(10)^{-6}$$

Distribución binomial negativa

Definición

Consideremos el experimento aleatorio consistente en la realización independiente y sucesiva de experimentos de Bernouilli. La variable aleatoria X="Numero de veces que aparece \bar{A} antes de la n-ésima aparición del suceso A.

Función de probabilidad:
$$p(k) = \binom{n-1+k}{k} p^n q^k$$

La podemos deducir considerando:

p(k) = P('En los lanzamientos anteriores hayan aparecido n-1 veces A')P(A), donde la primera probabilidad es p(k) en una binomial de

parámetros n-1+k y p, luego p(k)=
$$\left[\binom{n-1+k}{k}p^{n-1}q^k\right]p$$
.

Media:
$$\mu = E(x) = \frac{nq}{p}$$

Varianza:
$$V(X) = \frac{nq}{p^2}$$
 Desviación típica: $V(X) = \frac{\sqrt{nq}}{p}$

Distribución de Poisson

Definición

Una variable aleatoria X sigue una **distribución de Poisson** de parámetro $\lambda > 0$ si su soporte es el conjunto $S_X = \mathbb{N} \cup \{0\}$ y $p(k) = \frac{\lambda^k}{k!} e^{-\lambda}$, para todo $k \in S_X$

Desarrollando en serie de Taylor
$$y=e^x$$
 en $x=0$, se obtiene: $e^x=1+\frac{x}{1!}+\frac{x^2}{2!}+\frac{x^3}{3!}+\dots$ luego $e^\lambda=1+\frac{\lambda}{1!}+\frac{\lambda^2}{2!}+\frac{\lambda^3}{3!}+\dots$ de donde: $1=e^\lambda e^{-\lambda}=\left[1+\frac{\lambda}{1!}+\frac{\lambda^2}{2!}+\frac{\lambda^3}{3!}+\dots\right]e^{-\lambda}=\sum_{k\in\mathcal{S}_X}p(k)$

Media: $\mu = E(X) = \lambda$ Varianza: $V(X) = \lambda$

Desviación típica: $\sigma_X = \sqrt{\lambda}$

Proceso de Poisson

La distribución de Poisson modeliza la probabilidad de que un suceso ocurra n veces en un intervalo de tiempo $P(n, [T_0, T_0 + \Delta T])$, cuando se verifican estas condiciones:

- **1 Proceso estacionario:** La probabilidad de que ocurran k sucesos no depende del punto de inicio del intervalo, solo de Δt . $P(n, [T_0, T_0 + \Delta T]) = P(n, [T_1, T_1 + \Delta T]) = P(n, \Delta T)$
- ② La probabilidad de que ocurra un suceso en un intervalo dT es λdT : $P(1, dT) = \lambda dT$
- **3** La probabilidad de que ocurra más de un suceso en un intervalo dT es de orden superior a dT: $P(k, dT) \rightsquigarrow 0(dT)$, (k > 1)
- Oiferenciabilidad respecto a T: La probabilidad de que se produzcan n sucesos aumenta o disminuye de forma continua respecto a la amplitud del intervalo.

Cuando se cumplen estas condiciones resulta una distribución de Poisson de parámetro $\lambda \Delta T$ y la media y varianza de ocurrencias en un intervalo de amplitud ΔT es $\mu = E(X) = Var(X) = \lambda \Delta T$.

Propiedades

- $X \rightsquigarrow P(\lambda)$ indica que X sigue la distribución de Poisson.
- Depende de un solo parámetro λ (media y varianza).
- Es límite de la binomial: $B(n, p) \rightsquigarrow P(\lambda)$. Se acepta la aproximación cuando n > 30 y np < 5.
- Reproductiva: Si $X_1 \rightsquigarrow P(\lambda_1)$ y $X_2 \rightsquigarrow P(\lambda_2)$, entonces: $X_1 + X_2 \rightsquigarrow P(\lambda_1 + \lambda_2)$
- Se encuentra tabulada para diversos valores de λ .
- **Propiedad markoviana:** La probabilidad de que ocurra un suceso en Δt es independiente de lo ocurrido en cualquier otro intervalo.

La distribución de Poisson modela muchos fenómenos de espera (colas), entre ellas: Llegadas de una llamada telefónica, de un coche a un cruce, de un paquete a un servidor, También modela el número de ocurrencias de un fenómeno de probabilidad pequeña, que se repite muchas veces: ocurrencia de averías, emisión de una partícula radioactiva, etc.

Ejemplo

Ejercicio

La lotería primitiva consiste en extraer 6 números al azar, a continuación un séptimo (complementario) del conjunto de los 49 primeros números naturales. Una apuesta consiste en señalar 6 números. Hallar:

- Probabilidad de ganar un premio de primera categoría (los 6 de la apuesta coinciden exactamente con los extraidos en primer lugar).
- 2 Probabilidad de que si se juegan 8.176.049 apuestas:
 - Haya exactamente 3 apuestas ganadoras.
 - Haya alguna apuesta ganadora.
- 3 El premio de segunda categoría consiste en acertar 5 de los iniciales y el complementario. ¿Cuál es su probabilidad?
- Responde a las mismas preguntas que en el segundo apartado para la 2ª categoría.
- **Solution** El premio de tercera categoría consiste en acertar 5 de los iniciales, pero no el complementario. ¿Cúal es su probabilidad?
- Responde a las mismas preguntas que en el segundo apartado para la 3ª categoría.

Ejemplo

1: Se trata de una hipergeométrica donde los números se dividen en dos clases,

los 6 de mi apuesta y los 43 restantes:
$$p(6) = \frac{\binom{6}{6}\binom{43}{0}}{\binom{49}{6}} \approx 7.15112(10)^{-8}$$

2: Ahora la v.a. X sigue una binomial de parámetros n=8176049 y $p=7.15112(10)^{-8}$ y se pide p(3). Como n>30 y $np\approx0.5847<5$ podemos aproximarla por una p(0.5847) luego: $p(3)=e^{-0.5847}\frac{0.5847^3}{3!}\approx0.0186$

2b: Ahora se pide
$$\sum_{k=1}^{n} p(k) = 1 - p(0) = 1 - e^{-\lambda} \frac{\lambda^{0}}{0!} \approx 0.4227$$

3:
$$P(segunda) = p(5)P(compl) = \frac{\binom{6}{5}\binom{43}{1}}{\binom{49}{6}} \frac{1}{43} \approx 4.2907(10)^{-7}$$

Ejemplo-cont2

- 4: Ahora la v.a. X sigue una binomial de parámetros n=8176049 y $p=4.2907(10)^{-7}$ y se pide p(3). Como n>30 y $np\approx 3.5081<5$ podemos aproximarla por una P(3.5081) luego: $p(3)=e^{-3.5081}\frac{3.5081^3}{3!}\approx 0.2155$
- **4b:** Ahora se pide $\sum_{k=1}^{n} p(k) = 1 p(0) = 1 e^{-3.5081} \frac{3.5081^{0}}{0!} \approx 0.97$
- 5: $P(segunda) = p(5)P(compl) = \frac{\binom{6}{5}\binom{43}{1}}{\binom{49}{6}} \frac{42}{43} \approx 1.8021(10)^{-5}$
- **6:** Ahora la v.a. X sigue una binomial de parámetros n=8176049 y $p=1.8021(10)^{-5}$ y se pide p(3). Como n>30, pero $np\approx 147.33920>5$ no podemos aproximarla por una distribución de Poisson (se podrá por una Normal, como se verá después), y vale:

$$p(3) = \binom{8176049}{3} \left(1.8021(10)^{-5}\right)^3 \left(1 - 1.8021(10)^{-5}\right)^{8176046} \approx 5.4657(10)^{-59}.$$

6b: Ahora se pide

$$P(X > 0) = 1 - P(0) = 1 - {8176049 \choose 0} (1.8021(10)^{-5})^0 (1 - 1.8021(10)^{-5})^{8176049} \approx 1 - 1.025225(10)^{-64} \approx 1$$

Distribución uniforme continua

Definición

Se dice que una variable aleatoria continua X sigue una distribución uniforme en el intervalo [a,b] y se denota por $X \rightsquigarrow U[a,b]$, cuando su función de densidad es:

$$f(x) = \begin{cases} \frac{1}{b-a} & x \in [a,b] \\ 0 & x \notin [a,b] \end{cases}$$

Media: $\mu = E(X) = \frac{a+b}{2}$

Varianza: $V(x) = \frac{(b-a)^2}{12}$

Desviación típica: $\sigma_X = \frac{b-a}{\sqrt{12}}$

En casi todos los lenguajes de programación existe una instrucción para

generar números aleatorios siguiendo una U[0,1],

Distribución Normal o de Laplace-Gauss

Definición

Una variable aleatoria continua X sigue una distribución normal si su función de densidad es:

$$f(x) = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$

donde $-\infty < \mu < \infty$ y $\sigma > 0$

- Depende de dos parámetros μ (media) y σ (desviación típica). Diremos que X sigue una $N(\mu, \sigma)$: (X \rightsquigarrow N(μ, σ)).
- Su función de distribución es: $(-\infty < x < \infty)$

$$F(x) = \frac{1}{\sigma\sqrt{2\pi}} \int_{-\infty}^{x} e^{-\frac{(x-\mu)^2}{2\sigma^2}} dx$$

Propiedades

- Presenta un máximo en $x = \mu$ y dos puntos de inflexión en $x = \mu \sigma$ y $x = \mu + \sigma$.
- Es simétrica respecto a $x = \mu$ y:
 - Media = Moda = Mediana = μ
 - Varianza = σ^2
- **Reproductiva:** Si $X_1 \rightsquigarrow N(\mu_1, \sigma_1)$ y $X_2 \rightsquigarrow N(\mu_2, \sigma_2)$, su suma es normal $X_1 + X_2 \rightsquigarrow N(\mu_1 + \mu_2, \sigma)$
- Aditividad: Si $X_1 \rightsquigarrow \mathcal{N}(\mu_1, \sigma_1)$ y $X_2 \rightsquigarrow \mathcal{N}(\mu_2, \sigma_2)$ (independientes), entonces:

$$\mathsf{X}_1 \pm \mathsf{X}_2 \sim \mathsf{N}\left(\mu_1 \pm \mu_2, \sqrt{\sigma_1^2 + \sigma_2^2}\right)$$

• Si $X \rightsquigarrow N(\mu, \sigma)$ entonces la variable

$$\psi = a + bX \rightsquigarrow N(a + b\mu, |b|\sigma)$$

• **Tipificación:** Si $X \rightsquigarrow \mathcal{N}(\mu, \sigma)$, entonces $Z = \frac{X - \mu}{\sigma} \rightsquigarrow \mathcal{N}(0, 1)$

Propiedades-2

- Para la variable $Z \rightsquigarrow N(0,1)$, la función de distribución $F_Z(x)$ ó $1 F_Z(x)$ se encuentra tabulada y permite calcular probabilidades de que la variable aleatoria se encuentre en un intervalo.
- Límite de la binomial: La distribución normal es límite de la binomial cuando el número de repeticiones *N* tiende a ∞. Así:

$$\mathsf{B}(\mathsf{n},\mathsf{p}) \rightsquigarrow \mathsf{N}(\mathsf{np},\sqrt{\mathsf{npq}})$$

En la práctica se exige que n > 30, np > 5 y nq > 5.

Tablas

~										
z_{α}	0,00	0,01	0,02	0,03	0,04	0,05	0,06	0,07	80,0	0,09
^ 0.0	0.5000	0.4960	0.4920	0.4880	0.4840	0.4801	0.4761	0.4721	0.4681	0.4641
0,1	0,4602	0,4562	0,4522	0,4483	0,4443	0,4404	0,4364	0,4325	0,4286	0,4247
0.2	0.4207	0.4168	0.4129	0.4090	0.4052	0.4013	0.3974	0.3936	0.3897	0.3859
0,3	0.3821	0.3783	0,3745	0.3707	0.3669	0.3632	0.3594	0.3557	0.3520	0,3483
0,4	0.3446	0.3409	0.3372	0.3336	0.3300	0.3264	0.3228	0.3192	0.3156	0.3121
-/-	.,						.,			
0.5	0.3085	0.3050	0.3015	0.2981	0.2946	0.2912	0.2877	0.2843	0.2810	0.2776
0,6	0.2743	0.2709	0.2676	0.2643	0.2611	0.2578	0.2546	0.2514	0.2483	0.2451
0.7	0.2420	0.2389	0.2358	0.2327	0.2296	0.2266	0.2236	0.2206	0.2177	0.2148
0,8	0.2119	0.2090	0.2061	0.2033	0.2005	0.1977	0.1949	0.1922	0.1894	0.1867
0,9	0.1841	0.1814	0.1788	0.1762	0.1736	0.1711	0.1685	0.1660	0.1635	0.1611
0,0	0,1011	0,1011	0,1100	0,1102	0,1100	0,1111	0,1000	0,1000	0,1000	0,1011
1,0	0.1587	0,1562	0.1539	0.1515	0.1492	0.1469	0.1446	0.1423	0.1401	0.1379
1,1	0,1357	0,1335	0,1314	0,1292	0,1271	0,1251	0,1230	0,1210	0.1190	0,1170
1.2	0.1151	0.1131	0.1112	0.1093	0.1075	0.1056	0.1038	0.1020	0.1003	0.0985
1,3	0.0968	0.0951	0.0934	0.0918	0.0901	0.0885	0.0869	0.0853	0.0838	0.0823
1,4	0.0808	0.0793	0.0778	0.0764	0.0749	0.0735	0.0721	0.0708	0.0694	0.0681
.,	0,0000	0,0100	0,0110	0,0101	0,0110	0,0100	0,0121	0,0100	0,0001	0,0001
1.5	0.0668	0.0655	0.0643	0.0630	0.0618	0.0606	0.0594	0.0582	0.0571	0.0559
1,6	0.0548	0.0537	0,0526	0.0516	0.0505	0.0495	0.0485	0,0475	0.0465	0,0455
1.7	0.0446	0.0436	0.0427	0.0418	0.0409	0.0401	0.0392	0.0384	0.0375	0.0367
1,8	0,0359	0,0351	0,0344	0,0336	0,0329	0,0322	0,0314	0,0307	0,0301	0,0294
1,9	0.0287	0.0281	0.0274	0.0268	0.0262	0.0256	0.0250	0.0244	0.0239	0.0233
2,0	0,0228	0,0222	0,0217	0,0212	0,0207	0,0202	0,0197	0,0192	0,0188	0,0183
2,1	0,0179	0,0174	0,0170	0,0166	0,0162	0,0158	0,0154	0,0150	0,0146	0,0143
2,2	0,0139	0,0136	0,0132	0,0129	0,0125	0,0122	0,0119	0,0116	0,0113	0,0110
2,3	0,0107	0,0104	0,0102	0,0099	0,0096	0,0094	0,0091	0,0089	0,0087	0,0084
2,4	0,0082	0,0080	0,0078	0,0075	0,0073	0,0071	0,0069	0,0068	0,0066	0,0064
2,5	0,0062	0,0060	0,0059	0,0057	0,0055	0,0054	0,0052	0,0051	0,0049	0,0048
2,6	0,0047	0,0045	0,0044	0,0043	0,0041	0,0040	0,0039	0,0038	0,0037	0,0036
2,7	0,0035	0,0034	0,0033	0,0032	0,0031	0,0030	0,0029	0,0028	0,0027	0,0026
2,8	0,0026	0,0025	0,0024	0,0023	0,0023	0,0022	0,0021	0,0021	0,0020	0,0019
2,9	0,0019	0,0018	0,0018	0,0017	0,0016	0,0016	0,0015	0,0015	0,0014	0,0014

Distribución Normal N(0,1)

Directo: Dado x, hallar $P(Z \ge x)$

a:
$$P(Z \ge 1.27) = 0.1020$$

b: $P(Z \le 2.12) = F(2.12) = 1 - 0.0170 = 0.9830$

c:
$$P(Z > 3.1) = 9.68(10)^{-4}$$

d:
$$P(Z \le 4.3) = F(4.3) = 1 - 8.55(10)^{-6}$$

Inverso: Dado p = $P(Z \ge x)$, hallar x

a: Hallar x, tal que
$$P(Z \ge x) = 0.025$$
.
Encontramos que x=1.96

b: Hallar x, tal que
$$P(Z \ge x) = 0.05$$
.

Encontramos que $P_{Z \ge 1.64} = 0.0505$ y $p(Z \ge 1.65) = 0.495$.

Interpolando $p(Z \ge 1.645) = 0.05$

Ejemplo

Ejemplo

Se sabe que la v.a. $X \rightsquigarrow N(4,2)$, hallar:

- **1** a) P(X > 5), b) $P(X \le 6)$, c) $P(X \ge 3.5)$, d) P(X < 2)
- ② a) $P(4.5 \le X < 5)$, b) $P(1 < X \le 3)$, c) P(0 < 5).

1-a)
$$A = P(X > 5) = 1 - P(X \le 5) = 1 - F_X(5)$$

Mediante tablas: $P(X > 5) = P\left(\frac{X-4}{2} > \frac{5-4}{2}\right) = P(Z > 0.5) = 0.3085$

ejemplo-cont

1-b)
$$P(X \le 6) = F_X(6)$$
,

Mediante tablas:
$$P(X \le 6) = P\left(\frac{X-4}{2} \le \frac{6-4}{2}\right) = P(Z \le 1) = F_Z(1) = 1 - 0.1587$$

1-c)
$$P(X \ge 3.5) = 1 - P(X < 3.5) = 1 - F_X(3.5)$$
,

Mediante tablas:
$$P(X \ge 3.5) = P\left(\frac{X-4}{2} \ge \frac{3.5-4}{2}\right) = P(Z \ge -0.25) = P(Z \le -0.25)$$

$$(0.25) = 1 - P(Z > 0.25) = 1 - 0.4013 = 0.5987$$

Ejemplo-cont2

1-d)
$$P(X < 2) = F_X(2)$$
,

Mediante tablas:
$$P(X < 2) = P\left(\frac{X-4}{2} < \frac{2-4}{2}\right) = P(Z < -1) = P(Z > 1) = 0.1587$$

2-a)
$$P(4.5 \le X \le 5) = 0.0928$$
 $P(4.5 \le X \le 5) = P(\frac{4.5 - 4}{2} \le \frac{X - 4}{2} \le \frac{5 - 4}{2}) = P(0.25 \le Z \le 0.5) = P(Z > 0.25) - P(Z > 0.5) = 0.4013 - 0.3085 = 0.0928$

Ejemplo-cont3

2-b)
$$P(1 < X \le 3) = F_X(3) - F_X(1)$$
,

Mediante tablas:
$$P(1 < X \le 3) = P\left(\frac{1-4}{2} < \frac{X-4}{2} \le \frac{3-4}{2}\right) = P(-1.5 < Z \le -0.5) = P(0.5 \le Z < 1.5) = P(Z \ge 0.5) - P(Z \ge 1.5) \approx 0.3085 - 0.0668 = 0.2417$$

2-c)
$$P(0 \le X < 5) = F_X(5) - F_X(0) = 0.6687.$$

$$P(0 \le X < 5) = P\left(\frac{0-4}{2} \le \frac{X-4}{2} \le \frac{5-4}{2}\right) = P(-2 \le Z < 0.5) = 1 - P(Z < -2) - P(Z > 0.5) = 1 - P(Z > 2) - P(Z > 0.5) \approx 1 - 0.0228 - 0.3085 = 0.6687$$

Ejemplo 2

Ejemplo

La probabilidad de que una cámara fotográfica altere un píxel es de $2.5(10)^{-6}$. Una fotografía digital tiene $6(10)^6$ píxeles. Hallar:

- 1 Probabilidad de que resulten alterados exactamente 15 píxeles.
- 2 Probabilidad de que resulten alterados más de 10 píxeles.
- hallar x tal que la probabilidad de que resulten alterados, más de x píxeles sea de 0.001.

Solución-Ejemplo

= P(14.5 < X' < 15.5)

la v.a. X= 'Número de píxeles alterados' sigue una binomial. $X \rightsquigarrow B(6(10)^6, 2.5(10)^{-6})$, que se aproxima por una normal pues $n>30, \ \mu=np=15\geq 5$ y $nq\geq 5$. Calculamos $\sigma=\sqrt{npq}=3.873$, luego $X \rightsquigarrow B(6(10)^6, 2.5(10)^{-5}) \approx N(15, 3.873)$ 1: $P(X=15)=\{\text{Por la corrección de continuidad}\}$

Si suponemos que la alteración de dos píxeles son independientes,

$$= P\left(\frac{14.5 - 15}{3.873} < Z \le \frac{15.5 - 15}{3.873}\right) = P(-0.1291 < Z \le 0.1291)$$
$$= 1 - 2P(Z > 0.1291) = 0.1027$$

Ejemplo 2

2:

$$P(X > 10) = \{ \text{Por la corrección de continuidad} \} = P(X' \ge 10.5)$$

= $P(Z \ge \frac{10.5 - 15}{3.873}) = P(Z \ge -1.1619) = P(Z < 1.1619)$
= $1 - P(Z \ge 1.1619) = P(X' \ge 10.5)$
= 0.8774

3: Debemos resolver: $P(X \ge x) = 0.001$

Mediante tablas:
$$P(X \ge x) = P(Z \ge \frac{x-15}{3.873}) = P(Z \ge a) = 0.001$$
,

con
$$a = \frac{x-15}{3.873}$$
.

Buscando en la tabla encontramos: p(3) = 1.35E - 3 > 0.001 y

$$p(3.1) = 9.68E - 4 < 0.001$$
. Interpolando:

$$a = 3 + \frac{0.1}{0.000968 - 0.00135} * (0.001 - 0.00135) \approx 2.9638 \Rightarrow x = 26.4789$$

El cálculo mediante tablas no puede precisar más debido a la poca precisión de las mismas (sólo 3 dígitos).

Teorema Central del Límite

Existen varias versiones del mismo, según sean las hipótesis para la convergencia.

Teorema

Sea $\{X_i\}$ una sucesión de variables aleatorias independientes e idénticamente distribuidas con media μ y desviación típica σ , ambas finitas. Sea $S_n = X_1 + X_2 + \ldots + X_n$ la sucesión de sumas parciales. (Sabemos que $E(S_n) = n\mu$ y $V(S_n) = n\sigma^2$). Entonces: $Z_n = \frac{S_n - n\mu}{\sigma \cdot S_n} \text{ converge a una } N(0,1).$

Para n suficientemente grande, $Z_n = \frac{S_n - n\mu}{\sigma\sqrt{n}} \rightsquigarrow N(0,1)$

Consecuencia: La media de las n variables aleatorias $\bar{X}_n = \frac{\sum_{i=1}^n X_i}{n}$ converge también a una normal. Es decir, para n suficientemente grande:

$$\bar{X}_n = \frac{X_1 + X_2 + \ldots + X_n}{n} \rightsquigarrow N\left(\mu, \frac{\sigma}{\sqrt{n}}\right)$$

Distribución Gamma

Definición

Una variable aleatoria continua sigue una **gamma** de parámetros α y β , $(\Gamma(\alpha, \beta))$, si su función de densidad es:

$$f(x) = \frac{x^{\alpha - 1} e^{-\frac{x}{\beta}}}{\beta^{\alpha} \Gamma(\alpha)}$$

para $0 \le x < \infty$, $\alpha > 0$ y $\beta > 0$. Y donde $\Gamma(\alpha) = \int_0^\infty x^{\alpha-1} e^{-x} dx$

Propiedades

- Depende de dos parámetros α y β .
- Media: $\mu = E(x) = \alpha \beta$
- Varianza: $V(X) = \alpha \beta^2$
- $\Gamma(\alpha) = (\alpha 1)\Gamma(\alpha 1)$
- Cuando $\alpha \in \mathbb{N}$, se cumple $\Gamma(\alpha) = (\alpha 1)!$

Forma de la $G(\alpha, \beta)$

Distribución χ^2 de Pearson

Definición

La distribución χ^2 es el caso particular de la Gamma, $(\Gamma(\alpha, \beta))$ cuando $\beta = 2$ y $2\alpha \in \mathbb{N}$. Al valor $n = 2\alpha$ se le llama grados de libertad de la χ^2 .

La función de densidad de la χ_n^2 es:

$$f(\chi_n^2) = \frac{1}{2^{\frac{n}{2}} \Gamma(\frac{n}{2})} e^{-\frac{x}{2}} x^{\frac{n}{2} - 1}$$

para $0 < x < \infty$.

Al ser una Gamma su media es $\mu=\alpha\beta=n$ y su varianza $V(\chi_n^2)=\alpha\beta^2=2n$

Forma de la χ^2

Propiedades

- Si X_1, X_2, \ldots, X_n , son n variables aleatorias independientes siguiendo una N(0,1), entonces $\sum_{i=1}^n X_i^2 = X_1^2 + X_2^2 + \ldots + X_n^2$ sigue una χ_n^2 (χ^2 con n grados de libertad).
- Si sumamos dos chi cuadrado independientes de n_1 y n_2 g.d.l., resulta una χ^2 con $n_1 + n_2$ g.d.l. $(\chi^2_{n_1} + \chi^2_{n_2} = \chi^2_{n_1+n_2})$
- Si tomamos una muestra de tamaño n de una población $N(\mu, \sigma)$, entonces la variable: $X = (n-1)\frac{S^2}{\sigma^2} \rightsquigarrow \chi^2_{n-1}$ (chi cuadrado con n-1 g.d.l.), donde S^2 es la cuasivarianza de la muestra (v.a.).
- Al aumentar el número de grados de libertad, la variable $\sqrt{2\chi_n^2} \rightsquigarrow N(\sqrt{2n-1},1)$. En la práctica se usa cuando n>30.
- La variable χ_n^2 se encuentra tabulada para $n \leq 30$. Para determinados valores de α y de n g.d.l. proporciona el valor x tal que: $P(\chi_n^2 \geq x) = \alpha$

Tablas χ^2

Distribución exponencial

Definición

Cuando $\alpha=1$ la distribución gamma se conoce como **distribución exponencial**. Solo depende de un parámetro $\lambda=\frac{1}{\beta}$ quedando la función de densidad de la $E(\lambda)$ como:

$$f(x) = \lambda e^{-\lambda x} \qquad (x > 0)$$

Función de distribución: $F(x) = 1 - e^{-\lambda x}$ Media: $\mu = \frac{1}{\lambda}$, Varianza: $V(X) = \frac{1}{\lambda^2}$

Sirve para modelar el tiempo transcurrido entre 2 sucesos "raros". Así, cuando el número de éstos en un intervalo de tiempo sigue una distribución de Poisson P(a), el tiempo transcurrido entre 2 sucesivos sigue una exponencial E(a) (media $\frac{1}{a}$).

Siendo típico el caso de que en una cola (de procesos, llamadas telefónicas, piezas para ser ensambladas, supermercado,...), las llegadas sigan una distribución de Poisson y el tiempo de servicio una Exponencial.

Propiedad

Propiedad: (Falta de memoria) Dada una exponencial

 $X \rightsquigarrow E(\lambda)$, se verifica:

$$P(X \in (t_0, t_0 + \Delta t]/X > t_0) = P(X \leq \Delta t).$$

Esto significa que si el suceso "raro" no se ha producido transcurrido un tiempo t_0 , la probabilidad de que ocurra en el siguiente Δt , es la misma que para el intervalo inicial Δt .

Ejemplo: Si
$$X \rightsquigarrow E(2)$$
, hallar $P(X \le 1)$, $P(X \ge 2)$ y $P(X < 3/X \ge 2)$ $P_a = P(X \le 1) = F_X(1) = \int_0^1 2e^{-2x} dx = \left[-e^{-2x}\right]_0^1 = -e^{-2} + e^0$

= 0.8647

$$P_b = P(X \ge 2) = 1 - F_X(2) = 0.0183$$

$$P_c = P(X < 3/X \ge 2) = \frac{P(X \le [2,3))}{P(X \ge 2)} = \frac{0.0158}{0.0183} = 0.8634$$

$$P(X \in [2,3)) = \int_2^3 2e^{-2x} dx = F_X(3) - F_X(2) = 0.0158$$

Nota: Aunque parecidos, los valores obtenidos 0.8647 y 0.8634 no coinciden por errores de cálculo y redondeos a 4 decimales.

Distribución T-Student

Definición

Si X y X_i son variables aleatorias independientes que siguen todas una $N(0, \sigma)$, entonces la variable aleatoria:

$$T = \frac{X}{\sqrt{\frac{\sum_{i=1}^{n} X_{i}^{2}}{n}}}$$

sigue una t de Student con n grados de libertad.

La función de densidad de la t de Student es:

$$f(x) = \frac{1}{\sqrt{n}\beta \left(\frac{1}{2}, \frac{n}{2}\right)} \left(1 + \frac{x^2}{n}\right)^{-\frac{n+1}{2}} \qquad (-\infty < x < \infty, \ n \in \mathbb{N})$$

donde: $\beta(p,q) = \frac{\Gamma(p)\Gamma(q)}{\Gamma(p+q)}$

Media $=\mu=0$ y varianza $V=\frac{n}{n-2}$ para $n\geq 3$.

Propiedades

Propiedades

- **1** La variable $T = \frac{Z}{\sqrt{\frac{\chi_n^2}{n}}}$ sigue una t de Student con n g.d.l, donde $Z \rightsquigarrow N(0,1)$ y χ_n^2 es una χ^2 con n g.d.l.
- 2 Depende sólo del parámetro n (grados de libertad).
- Simétrica con centro 0.
- **3** Se encuentra tabulada para valores de n y α , proporcionando el valor $a=t_{\alpha,n}$ tal que $P(t_n\geq a)=\alpha=1-F_t(a)$
- **5** Se aproxima a la N(0,1) cuando n es grande. (Se considera que para n > 30).
- **5** Si de una población $N(\mu, \sigma)$ tomamos muestras de tamaño n y cuasivarianza S^2 entonces la v.a. $\frac{\bar{X}_n \mu}{S} \sqrt{n} \rightsquigarrow t_{n-1}$

Gráfica T-Student

La gráfica muestra la convergencia de la t de Student hacia la N(0,1) cuando crece n.

Gráfica T-Student 2

Ejemplo: Hallar $t_{0.05,12}$, $t_{0.01,25}$, $t_{0.99,25}$ y $t_{0.05,1000}$.

- **a:** $t_{0.05,12} = 1.782$,
- **b**: $t_{0.01.25} = 2.485$
- **c**: $t_{0.99,25} = -t_{0.01,25} = -2.485$
- **d:** $t_{0.05,1000}$ Como n > 30 se mira en la N(0,1) y resulta: 1.645.

Distribución F de Fisher-Snedecor

Definición

Si tenemos dos variables aleatorias $\chi^2_{n_1}$ y $\chi^2_{n_2}$ independientes entre sí (ambas χ^2 y, respectivamente, con n_1 y n_2 g.d.l.), entonces la variable aleatoria:

$$\mathsf{F} = \frac{\frac{\chi_{n_1}^2}{n_1}}{\frac{\chi_{n_2}^2}{n_2}}$$

sigue una F de Fisher-Snedecor con n₁ y n₂ grados de libertad.

La función de densidad es:

$$f(x) = \frac{\Gamma\left(\frac{n_1 + n_2}{2}\right)}{\Gamma\left(\frac{n_1}{2}\right)\Gamma\left(\frac{n_2}{2}\right)} \left(n_1\right)^{\frac{n_1}{2}} \left(n_2\right)^{\frac{n_2}{2}} \frac{x^{\frac{n_1}{2} - 1}}{\left(n_1 x + n_2\right)^{\frac{n_1 + n_2}{2}}} \; \mathsf{para} \; x > 0$$

Media= $\mu = \frac{n_2}{n_2 - 2}$ para $n_2 > 2$.

Varianza: $V = \frac{2n_2^2(n_1+n_2+2)}{n_1(n_2-2)^2(n_2-4)}$ para $n_2 > 4$.

Propiedades

- Asimétrica a la derecha.
- ② Depende de dos parámetros n_1 y n_2 denominándose $F(n_1, n_2)$
- **3** Se encuentra tabulada para valores de n_1 y n_2 , existiendo múltiples tablas, una para cada α . Así, la tabla para $\alpha=0.25$ proporciona el valor de $a=F_{\alpha,n_1,n_2}$, tal que $P(F(n_1,n_2)\geq a)=\alpha$.
- \P Verifica la propiedad: $\mathsf{F}_{\alpha,\mathsf{n}_1,\mathsf{n}_2} = \frac{1}{\mathsf{F}_{1-\alpha,\mathsf{n}_2,\mathsf{n}_1}}$

Tablas F Fisher-Snedecor

Distribución F de Fisher-Snedecor para $\,\alpha=0'025\,$

Hallar: a) F(0.025,5,7), b) F(0.025,7,5) c) F(0.975,5,7)

a: F(0.025,5,7)=5.285, **b:** F(0.025,7,5)=6.853

c:
$$F(0.975,5,7) = \frac{1}{F(0.025,7.5)} = \frac{1}{6.853} = 0.146$$

Distribución Log-normal

<u>De</u>finición

Una variable X sigue una **distribución log-normal** si los logaritmos neperianos de sus valores están normalmente distribuidos. Es decir: $\eta = ln(X)$ es una $N(\mu, \sigma)$

La función de densidad es:

$$f(x) = \frac{1}{x\sigma\sqrt{2\pi}}e^{-\frac{(\log(x)-\mu)^2}{2\sigma^2}} \qquad (0 < x < \infty)$$

Depende de los parámetros μ y σ .

Media: $E(X) = e^{\mu + \frac{\sigma^2}{2}}$

Varianza: $V(X) = e^{2\mu+2\sigma^2} - e^{2\mu+\sigma^2}$