Devoir Maison « Complexes »

Ce devoir maison est **obligatoire**. Les exercices 1 à 3 ont une cohérence thématique (autour de l'astuce du demi-angle) et ont vocation à vous faire travailler l'exponentielle complexe et la manipulation de puissances. Il est **vivement** recommandé de les faire dans l'ordre (le 3 est le plus difficile du point de vue *calculatoire*, il sera uniquement noté en points bonus). Les exercices 4 à 7 sont indépendants et de difficultés comparables.

Exercice 1: Astuce du demi-angle

1. Soit $\theta \in \mathbb{R}$ un nombre complexe. En factorisant par $e^{i\theta/2}$, donner un argument et le module de

$$z_1 = 1 + e^{i\theta} = e^{i\theta/2} (e^{-i\theta/2} + e^{i\theta/2})$$

On rappelle que le module d'un nombre complexe est positif.

2. Donner de même un argument et un module de

$$z_2 = 1 - e^{i\theta}$$

Exercice 2: Complexes et Binôme

Soit $\theta \in \mathbb{R}$ un nombre et n un entier naturel. On veut calculer les quantités R_n et I_n définies par

$$R_n = \sum_{k=0}^{n} {n \choose k} \cos(k\theta)$$
 et $I_n = \sum_{k=0}^{n} {n \choose k} \sin(k\theta)$

- 1. Montrer que $S_n = R_n + iI_n = (1 + e^{i\theta})^n$
- En utlisant l'astuce du demi-angle, simplifier l'expression précédente. On cherchera à faire apparaître le produit d'un nombre réel (pas forcément le module) et d'un nombre complexe de module 1.
- 3. En déduire R_n et I_n

Exercice 3: Complexes et Courants (facultatif, non noté)

Soit $\theta \in \mathbb{R}$ un nombre et n un entier naturel. On veut calculer les quantités R_n et I_n définies par

$$R_n = \sum_{k=0}^n \cos(k\theta)$$
 et $I_n = \sum_{k=0}^n \sin(k\theta)$

- 1. Montrer que $S_n = R_n + iI_n = \frac{1 e^{i(n+1)\theta}}{1 e^{i\theta}}$
- 2. En utilisant l'astuce du demi-angle, simplifier l'expression précédente. On cherchera à faire apparaître le produit d'un nombre réel (pas forcément le module) et d'un nombre complexe de module 1.
- 3. En déduire

$$R_n = \frac{\cos\left(\frac{n\theta}{2}\right)\sin\left(\frac{(n+1)\theta}{2}\right)}{\sin\left(\frac{\theta}{2}\right)} \text{ et } I_n = \frac{\sin\left(\frac{n\theta}{2}\right)\sin\left(\frac{(n+1)\theta}{2}\right)}{\sin\left(\frac{\theta}{2}\right)}$$

NB: Ces quantités interviennent quand on superpose plusieurs courants qui ont des fréquences croissantes (par exemple 10 Hz, 20 Hz, 30 Hz, etc) et qu'on veut connaître le courant résultant.

Exercice 4: Complexes et Linéarisation

Linéariser $\sin(x)\cos^3(x)$

Exercice 5: Complexes et Plan Local d'Urbanisme

En consultant le Plan Local d'Urbanisme, on a trouvé une maison en forme de parallélépipède rectangle (boîte à chaussure) de volume 504m^3 , de surface au sol 168m^2 et de périmètre au sol 52m. Ouelles sont ses dimensions?

Exercice 6 : Complexes et Racine Carrée

Trouver une racine carré de Z=3+4i. Il **faut** passer par la méthode algébrique (Z n'a pas de forme exponentielle simple).

Exercice 7: Complexes et Crustacés

Soit $A = \exp\left(\frac{1+2i}{100}\right)$. On considère la suite complexe (z_n) définie par $z_0 = 0.1$ et $z_{n+1} = Az_n$ pour tout $n \ge 0$. On cherche à exprimer $x_n = Re(z_n)$ et $y_n = Im(z_n)$ en fonction de n.

- 1. Exprimer z_n en fonction de n, z_0 et A uniquement.
- 2. En déduire une forme simple pour x_n et y.

Remarque : si vous voulez comprendre l'intérêt de ce genre de suite, essayer d'afficher la trajectoire de (z_n) dans le plan complexe (de n = 0 à n = 300 par exemple).