10-605/805 – ML for Large Datasets Lecture 10: Randomized Algorithms

Front Matter

- HW3 released 9/23, due 10/4 at 11:59 PM
- Midterm exam on 10/11, two weeks from today!
 - Lecture on 10/6 (next Thursday) will be an optional practice exam - these will not be collected/graded
 - Recitation on 10/7 (next Friday) will go through the solutions
 - Both the practice exam and the solutions will be released after the Recitation
- Lecture on 10/4 (next Tuesday) will be an AWS tutorial;
 please bring your laptops to class on that day

Two Specific Applications of Feature Hashing

- 1. Count-min sketch for logistic regression
- 2. Locality sensitive hashing for nearest neighbors/clustering

Two Specific Applications of Feature Hashing

- 1. Count-min sketch for logistic regression
- 2. Locality sensitive hashing for nearest neighbors/clustering

Count-min Sketch

- Data structure used to estimate the frequency of items in some stream of inputs
 - Running example: finding "viral" terms in Google searches (https://trends.google.com/trends/?geo=US)
 - Naïve approach: just keep an array with an index for every possible search term and add one to that index when the term appears
 - Massive array
 - Could be dynamic/need to grow if unseen search terms arrive

Count-min Sketch: Connection to Logistic Regression

• If x is a (sparse) one-hot encoded vector, then we can efficiently compute $\mathbf{w^{(t)}}^T x$ as

$$\sum_{j:x_j\neq 0} w_j^{(t)} x_j \approx \sum_{j:x_j\neq 0} \left(\min_i C[i, h_i(j)] \right) x_j$$

1	2	3	•••	m
C[1,1]	<i>C</i> [1,2]	<i>C</i> [1,3]	•••	C[1,m]
:	:	:	٠.	:
C[r,1]	C[r, 2]	C[r,3]	•••	C[r,m]

• This matrix holds a compact representation of $oldsymbol{w}^{(t)}$ at each iteration

Count-min Sketch: Algorithm

- Input: r independent hash functions h_1, \dots, h_r that each map to m buckets
- 1. Initialize an $r \times m$ count matrix, C, to all zeros
- 2. For each item, *s*, in some stream of data:
 - a. For $i \in \{1, ..., r\}$:
 - i. $C[i, h_i(s)] += 1$
- 3. For any item s, return $\hat{c}_s = \min_i (C[i, h_i(s)])$ as an approximation c_s , the true number of occurrences of s

Observation: Count-min sketch can only overestimate counts!

But by how much?

- Input: r independent hash functions h_1, \dots, h_r that each map to m buckets
- 1. Initialize an $r \times m$ count matrix, C, to all zeros
- 2. For each item, *s*, in some stream of data:
 - a. For $i \in \{1, ..., r\}$:
 - i. $C[i, h_i(s)] += 1$
- 3. For any item s, return $\hat{c}_s = \min_i (C[i, h_i(s)])$ as an approximation c_s , the true number of occurrences of s

Count-min Sketch: Theoretical Guarantees

• Given $r>\log_2 1/\delta$ hash functions that each map to $m>2/\epsilon$ buckets, then $\forall s$

$$P(\hat{c}_S \ge c_S + \epsilon || \boldsymbol{c} ||_1) \le \delta$$

where $\|c\|_1$ is the total number of items in the stream.

- Key assumptions:
 - All hash functions are independent of each other

$$P\left(h_i(s) \mid h_j(s')\right) = P\left(h_i(s)\right) \,\forall \, i, j \in \{1, \dots, r\} \text{ and } s, s'$$

• Each hash function is pairwise independent

$$P(h_i(s) = b \cap h_i(s') = b') = \frac{1}{m^2} \ \forall \ i \in \{1, ..., r\},\ b, b' \in \{0, ..., m\} \text{ and } s, s'$$

$$\Rightarrow P(h_i(s) = h_i(s')) = \frac{1}{m} \forall i \in \{1, ..., r\} \text{ and } s, s'$$

Count-min Sketch: Theoretical Guarantees Proof

• Given $r>\log_2 1/\delta$ hash functions that each map to $m>2/\epsilon$ buckets, then $\forall s$

$$P(\hat{c}_S \ge c_S + \epsilon || \boldsymbol{c} ||_1) \le \delta$$

where $\|c\|_1$ is the total number of items in the stream.

- Proof:
 - For an arbitrary hash function, h_i , and item, s:

$$\mathbb{E}[C[i, h_i(s)] = c_s + \sum_{s' \neq s} P(h_i(s) = h_i(s')) c_{s'}$$

(by pairwise independence)
$$= c_S + \sum_{S' \neq S} \frac{1}{m} c_{S'} = c_S + \frac{1}{m} \sum_{S' \neq S} c_{S'}$$

(by definition of
$$m$$
 and $\|\mathbf{c}\|_1$) $\leq c_s + \frac{\epsilon}{2} \sum_{s' \neq s} c_{s'} \leq c_s + \frac{\epsilon}{2} \|\mathbf{c}\|_1$

Count-min Sketch: Theoretical Guarantees Proof (Cont.)

• Given $r>\log_2 1/\delta$ hash functions that each map to $m>2/\epsilon$ buckets, then $\forall s$

$$P(\hat{c}_S \ge c_S + \epsilon || \boldsymbol{c} ||_1) \le \delta$$

where $\|c\|_1$ is the total number of items in the stream.

- Proof:
 - For an arbitrary hash function, h_i , and item, s:

$$P(C[i, h_i(s)] \ge c_S + \epsilon ||c||_1) = P(C[i, h_i(s)] - c_S \ge \epsilon ||c||_1)$$

(by Markov's inequality)
$$\leq \frac{\mathbb{E}[C[i, h_i(s)]] - c_s}{\epsilon ||c||_1}$$

(by bound on
$$\mathbb{E}[C[i, h_i(s)]]$$
) $\leq \frac{c_s + \frac{\epsilon}{2} ||\boldsymbol{c}||_1 - c_s}{\epsilon ||\boldsymbol{c}||_1} = \frac{1}{2}$

Count-min Sketch: Theoretical Guarantees Proof (Cont.)

• Given $r>\log_2 1/\delta$ hash functions that each map to $m>2/\epsilon$ buckets, then $\forall s$

$$P(\hat{c}_S \ge c_S + \epsilon || \boldsymbol{c} ||_1) \le \delta$$

where $\|c\|_1$ is the total number of items in the stream.

- Proof:
 - For an arbitrary item, s:

$$P(\hat{c}_S \ge c_S + \epsilon || \mathbf{c} ||_1) = P\left(\min_i C[i, h_i(s)] \ge c_S + \epsilon || \mathbf{c} ||_1\right)$$
$$= P\left(\bigcap_i C[i, h_i(s)] \ge c_S + \epsilon || \mathbf{c} ||_1\right)$$

(by independence) =
$$\prod_{i} P(C[i, h_i(s)] \ge c_s + \epsilon ||c||_1)$$

(by definition of
$$\delta$$
) $\leq \frac{1}{2^r} = \delta$

Count-min Sketch: Summary

- Key idea: use multiple (independent) hash functions to negate the effect of collisions in any single hash function
- Nice theoretical guarantees
- Can address overestimation bias to make unbiased count estimators (see HW3)
- Can be extended to handle weighted updates as in SGD logistic regression \rightarrow efficient model updates in high-dimensional settings (large k)
 - For more details see:
 https://arxiv.org/pdf/1711.02305.pdf

Two Specific Applications of Feature Hashing

- 1. Count-min sketch for logistic regression
- 2. Locality sensitive hashing for nearest neighbors/clustering

Two Specific Applications of Feature Hashing

- 1. Count-min sketch for logistic regression
- 2. Locality sensitive hashing for nearest neighbors/clustering

Locality-Sensitive Hashing

- Key idea: use hash functions that map "similar" items to the same function
 - Plot twist: collisions are the goal!
- Enables efficient comparison between points
- In the context of large-scale machine learning, can be used for clustering or nearest neighbor models in highdimensional space

16

LocalitySensitive Hashing: Formal Definition

- A family of hash functions \mathcal{F} that map $\mathbb{R}^k \to \{0, ..., m\}$ is $(\varepsilon, c\varepsilon, \delta_1, \delta_2)$ -sensitive with respect to some distance metric d iff $\forall x, y \in \mathbb{R}^k$, a hash function h chosen uniformly at random from \mathcal{F} has the property that
 - if $d(\mathbf{x}, \mathbf{y}) \le \epsilon$, then $P(h(\mathbf{x}) = h(\mathbf{y})) \ge \delta_1$
 - "Points close to each other (according to some distance metric d) are likely to collide"
 - if $d(x, y) \ge c\epsilon$, then $P(h(x) = h(y)) \le \delta_2$
 - "Points far apart (according to some distance metric d) are unlikely to collide"

- Random projection:
 - m=1 so our hash functions map \mathbb{R}^k to $\{0,1\}$
 - Let \mathcal{F} be the set of all linear decision boundaries:

$$\mathcal{F} = \left\{ h : h_{\mathbf{w}}(\mathbf{x}) = \begin{cases} 1 & \mathbf{w}^T \mathbf{x} \ge 0 \\ 0 & \text{otherwise} \end{cases} \right\}$$

- $d(x, y) = 1 \frac{x^T y}{\|x\|_2 \|y\|_2}$, the cosine distance
 - Recall that one way to define a dot product is

$$x^{T}y = ||x||_{2}||y||_{2}\cos\theta \to \cos\theta = \frac{x^{T}y}{||x||_{2}||y||_{2}}$$

where θ is the angle between the vectors \boldsymbol{x} and \boldsymbol{y}

- Random projection:
 - m=1 so our hash functions map \mathbb{R}^k to $\{0,1\}$
 - Let \mathcal{F} be the set of all linear decision boundaries:

$$\mathcal{F} = \left\{ h : h_{\mathbf{w}}(\mathbf{x}) = \begin{cases} 1 & \mathbf{w}^T \mathbf{x} \ge 0 \\ 0 & \text{otherwise} \end{cases} \right\}$$

- $d(x, y) = 1 \frac{x^T y}{\|x\|_2 \|y\|_2}$, the cosine distance
- For a random weight vector \mathbf{w} (e.g., weights sampled independently from a standard Gaussian)

$$P(h_{\mathbf{w}}(\mathbf{x}) = h_{\mathbf{w}}(\mathbf{y})) = 1 - \frac{\arccos 1 - d(\mathbf{x}, \mathbf{y})}{\pi}$$

•
$$\mathcal{F}$$
 is $\left(\epsilon, c\epsilon, 1 - \frac{\arccos 1 - \epsilon}{\pi}, 1 - \frac{\arccos 1 - c\epsilon}{\pi}\right)$ -sensitive

- Random projection:
 - m=1 so our hash functions map \mathbb{R}^k to $\{0,1\}$
 - Let F be the set of all linear decision boundaries:

$$\mathcal{F} = \begin{cases} h : h_{\mathbf{w}}(\mathbf{x}) = \begin{cases} 1 & \mathbf{w}^T \mathbf{x} \ge 0 \\ 0 & \text{otherwise} \end{cases}$$

- $d(x, y) = 1 \frac{x^T y}{\|x\|_2 \|y\|_2}$, the cosine distance
- For a random weight vector \mathbf{w} (e.g., weights sampled independently from a standard Gaussian)

$$P(h_{\mathbf{w}}(\mathbf{x}) = h_{\mathbf{w}}(\mathbf{y})) = 1 - \frac{\theta}{\pi}$$

•
$$\mathcal{F}$$
 is $\left(\epsilon, c\epsilon, 1 - \frac{\arccos 1 - \epsilon}{\pi}, 1 - \frac{\arccos 1 - c\epsilon}{\pi}\right)$ -sensitive

What does the decision boundary corresponding to w look like?

Random projection:

Random projection:

Random projection:

Random projection:

Random projection:

Random projection:

But why stop at just one weight vector? Random projection:

- Random projections:
 - m=1 so our hash functions map \mathbb{R}^k to $\{0,1\}$
 - Let \mathcal{F} be the set of all linear decision boundaries:

$$\mathcal{F} = \left\{ h : h_{\mathbf{w}}(\mathbf{x}) = \begin{cases} 1 & \mathbf{w}^T \mathbf{x} \ge 0 \\ 0 & \text{otherwise} \end{cases} \right\}$$

- $d(x, y) = 1 \frac{x^T y}{\|x\|_2 \|y\|_2}$, the cosine distance
- Sample r weight vectors w_1, \dots, w_r and define a new *bit vector* representation for x as

$$\mathbf{x}' = [h_{\mathbf{w}_1}(\mathbf{x}), h_{\mathbf{w}_2}(\mathbf{x}), \dots, h_{\mathbf{w}_r}(\mathbf{x})]$$

Random projections:

- Random projections:
 - m=1 so our hash functions map \mathbb{R}^k to $\{0,1\}$
 - Let \mathcal{F} be the set of all linear decision boundaries:

$$\mathcal{F} = \left\{ h : h_{\mathbf{w}}(\mathbf{x}) = \begin{cases} 1 & \mathbf{w}^T \mathbf{x} \ge 0 \\ 0 & \text{otherwise} \end{cases} \right\}$$

- $d(\mathbf{x}, \mathbf{y}) = 1 \frac{\mathbf{x}^T \mathbf{y}}{\|\mathbf{x}\|_2 \|\mathbf{y}\|_2}$, the cosine distance
- Sample r weight vectors $w_1, ..., w_r$ and define a new *bit vector* representation for x as

$$\mathbf{x}' = [h_{\mathbf{w}_1}(\mathbf{x}), h_{\mathbf{w}_2}(\mathbf{x}), \dots, h_{\mathbf{w}_r}(\mathbf{x})]$$

The Hamming distance between two bit vectors is

$$d_h(\mathbf{x}', \mathbf{y}') = \sum_{i=1}^{r} \mathbb{1}(x_i' \neq y_i') = \|\mathbf{x}' - \mathbf{y}'\|_1$$

Random projections:

LocalitySensitive Hashing: Evaluation

Cheaper, less accurate approximation

Expensive, more accurate approximation

Locality-Sensitive Hashing: Summary

- Key idea: use hash functions that map "similar" items to the same function
 - Plot twist: collisions are the goal!
- Random projections can be used to efficiently approximate the cosine distance between points
 - Reduces to computing the Hamming distance between bit vectors consisting of multiple hash functions
- Can be used to efficiently cluster data and compute the nearest neighbors to a query point

Distributed k-NN

- Distribute training dataset across some number of worker machines
- 2. Communicate query point x to each worker machine
- 3. Map: compute distance between x and each training data point
 - If the data is high-dimensional, first compute random projection bit vectors to approximate distances
- 4. Reduce: return the k nearest neighbors from each worker (and their distances)
- 5. Driver computes the global k nearest neighbors

Key Takeaways

- Non-numeric data can be a challenge for many machine learning models
- One-hot encodings are impractical for large datasets
 - Feature hashing is a reasonable alternative
 - Hash kernels are unbiased estimators of dot products that preserve distances (with high probability)
- For algorithms where updates are weighted counts of feature values, we can use a weighted version of count-min sketch, an application of hashing with nice theoretical guarantees and good empirical performance
- For algorithms where distances between points is relevant, locality sensitive hashing can be used to efficiently approximate certain distance metrics

Looking unreasonably far ahead...

- Let's talk about HW4!
- Main goals:
 - Give you all hands-on experience working with cloud computing, specifically Amazon Web Services
 - Work with an actual large dataset in Spark (the entire Million Song Dataset ~280 GB)
 - Execute an end-to-end machine learning pipeline in a distributed manner
- Warning: this homework will be more open-ended than previous ones

Looking unreasonably far ahead...

- Let's talk about HW4!
- Main goals:
 - Give you all hands-on experience working with cloud computing, specifically Amazon Web Services
 - Work with an actual large dataset in Spark (the entire Million Song Dataset ~280 GB)
 - Execute an end-to-end machine learning pipeline in a distributed manner
- Warning: this homework will be more open-ended than previous ones

Recall: Cloud Computing

- Enables distributed processing by democratizing access to storage and computational resources
- Similar to a public utility, you can access as much or as little of it as you need

Recall: Cloud Computing

 Cloud computing relies on sharing of resources to achieve coherence and typically using a "pay-asyou-go" model which can help in reducing capital expenses but may also lead to

unexpected operating expenses for users.

Data Centers: Amazon Data Center in Ashburn, Virginia

Data Centers:
Facebook Data
Center in
Prineville,
Oregon

Data Centers: Amazon Data Center in Brétigny-sur-Orge, France

Cloud Computing: Pros and Cons

• Pros:

- On-demand computing/storage allows for scalability and elasticity (only pay for what you use)
- Eliminates infrastructure and **maintenance** costs

• Cons:

- Depending on usage, overall (monetary) costs may be higher than being "on-perm", i.e., buying your own compute resources
- Data gravity difficult to switch providers once a lot of resources have been committed to a single one
- Data privacy do you really trust Amazon?
- Environmental impacts densely packed computing resources require a lot of energy to run and cool

Cloud Computing: Maintenance

Florida Data Centers Brace for Powerful Hurricane Ian

BY RICH MILLER - SEPTEMBER 28, 2022 — LEAVE A COMMENT

Data Center Fire: Google Suffers 'Electrical Incident,' 3 Injured

News of yet another data center fire in just two years: OVH in 2021 and now Google. Here's how to make sure you're not next.

Apple Recovers From Massive Outage TECH · FACEBOOK

Faceho

Yet another example rely heavily on the cla

Facebook's outage cost the company nearly \$100 million in revenue

BY CHRIS MORRIS

Jeff Baumgartner | Mar 22, 1 October 4, 2021 4:30 PM EDT Updated October 5, 2021 11:25 AM EDT

Source: https://www.datacenterknowledge.com/google-alphabet/data-center-fire-google-suffers-electrical-incident-3-injured

Cloud Computing: Pros and Cons

• Pros:

- On-demand computing/storage allows for scalability and elasticity (only pay for what you use)
- Eliminates infrastructure and maintenance costs

• Cons:

- Depending on usage, overall (monetary) costs may be higher than being "on-perm", i.e., buying your own compute resources
- Data gravity difficult to switch providers once a lot of resources have been committed to a single one
- Data privacy do you really trust Amazon?
- Environmental impacts densely packed computing resources require a lot of energy to run and cool

Cloud Computing: Services

- Cloud computing services can be thought of as different levels of abstraction
 - Software as a service (SaaS)
 - Platform as a service (PaaS)
 - Infrastructure as a service (laaS)

Cloud Computing: Market

Cloud Computing: Market

