rs_driver教程——Nanny版

rs_driver教程

驱动简介

rs_driver为rslidar_sdk工程的子模块,主要负责解析计算雷达数据,rs_driver可作为单独的工程 编译运行,二次开发以及作为子模块进行嵌入式开发,并且rs driver不依赖ros。

rs_driver在rslidar_sdk的路径为: rslidar_sdk/src/rs_driver

1.rs_driver适配系统

支持的操作系统及编译器如下。注意编译器需支持 C++14 标准。

- Ubuntu (16.04, 18.04, 20.04)
 - o gcc (4.8+)

2.支持雷达型号

RS-LiDAR-16

RS-LiDAR-32

RS-Bpearl

RS-Helios

RS-Helios-16P

RS-Ruby-Plus-80

RS-Ruby-128

RS-Ruby-80

RS-Ruby-48

RS-Ruby-Plus-128

RS-Ruby-Plus-48

RS-LiDAR-M1

RS-LiDAR-M2

RS-LiDAR-E1

3.支持点的类型

- XYZI x, y, z, intensity(反射率)
- XYZIRT x, y, z, intensity(反射率), ring(激光通道), timestamp(时间戳)

二、驱动剖析

1.导言请查看: rs_driver/doc/intro

02目录结构 _{Augo} xu _{Augo} xu	02_directories_and_files.md 02_directories_and_files_CN.md		
03线程模型与接口设计	03_thread_model_CN.md		
0 XU			

		Hnão Xn	■ 03_thread_model.md			
04配置参数介绍	Hnão _{Xri} Hnão _{Xri}	Hugo Xu	04_parameter_intro.md04_parameter_intro_CN.md	HnR _{O Xn}	Hugo _{Xu}	Hugo Xu
05CMake编译宏介	Hugo Xu Hugo Xu	Hugo Xu	05_cmake_macros_intro.md05_cmake_macros_intro_CN.md	Hnão Xn	Hugo Xu	Hugo Xu
06错误码介绍	Hnão xn Hnão _{xn}	Hugo Xu	06_error_code_intro.md 06_error_code_intro_CN.md	Hnão _{Xn}	Hugo Xu	Hn&o Xn

2.使用说明请查看: rs_lidar/doc/dowto

07如何从rs_driver v1.3.x升级到v1.5.x	
	07_how_to_port_your_app_from_rs_driver_1.3.x_to_1.5.x.md
	07_how_to_port_your_app_from_rs_driver_1.3.x_to_1.5.x_CN
	.md
08如何连接在线雷达。	■ 08_how_to_decode_online_lidar_CN.md
00如问廷按任线由处	08_how_to_decode_online_lidar.md
09在线雷达 - 高级主题	■ 09_online_lidar_advanced_topics.md
09位线曲处 - 向级工题	■ 09_online_lidar_advanced_topics_CN.md
104E/TATTE DC 4 Dr7 /H	■ 10_how_to_decode_pcap_file_CN.md
10如何解码PCAP文件	10_how_to_decode_pcap_file.md
11DCAD文件	■ 11_pcap_file_advanced_topics.md
11PCAP文件 - 高级主题	11_pcap_file_advanced_topics_CN.md
12根据PCAP文件确定rs_driver的网络	函 12_how_to_configure_by_pcap_file.md
置选项	12_how_to_configure_by_pcap_file_CN.md
	13_how_to_capture_pcap_file.md
13如何为rs_driver录制一个PCAP文件	13_how_to_capture_pcap_file_CN.md
	14_how_to_use_rs_driver_viewer.md
14如何可视化点云	14_how_to_use_rs_driver_viewer_CN.md
15 to 1777 b = 16 44 t = ++ 47	15_how_to_transform_pointcloud_CN.md
15如何对点云作坐标转换	15_how_to_transform_pointcloud.md 15_how_to_transform_pointcloud.md
-40 -40	240 240 240

16如何在Windows上编记	¥rs_drive	HnBo Xn	16_how_to_compile_on_windows_CN.md	
			16_how_to_compile_on_windows.md	
17如何解决丢包问题		Hugo Xu	17_how_to_avoid_packet_loss_CN.md17_how_to_avoid_packet_loss.md	
18点云格式与点布局		Hugo Xu	18_about_point_layout_CN.md	
19分帧策略	Hugo _{XII}	Hn&o Xn	19_about_splitting_frame.md 19_about_splitting_frame_CN.md	Hnão _{Xr}
20CPU占用与内存占用		Hn&o Xn	20_about_usage_of_cpu_and_memory.md 20_about_usage_of_cpu_and_memory_CN.md	
21如何解析DIFOP中的配	置和状态数	_{Hugo} xu 【据	21_how_to_parse_difop_CN.md	Hn8 _{0 Xn}

3.源码解析请查看: rs_driver/doc/src_intro

			Hallo Xa
rs_driver v1.5.* 源代	:码解析		

三、使用步骤方法

步骤一: 主机接收雷达数据

查看rslidar_sdk使用教程步骤一,确保主机能正常接收到雷达数据,并确定雷达MSOP/DIFOP端口号。

步骤二:下载rs_driver最新工程包

工程包链接: https://github.com/RoboSense-LiDAR/rs_driver/tree/release

建议使用命令下载,如下:

1 user@user:~\$ git clone https://github.com/RoboSense-LiDAR/rs_driver.git

步骤三:编译与启动

a. rs_driver提供三个示例程序与两个工具:

demo_online	解析在线雷达的数据,输出点云。	
demo_online_multi_lidars	解析组播模式在线雷达的数据,输出点云。	ngo _{Ya}
demo_pcap	解析PCAP文件,输出点云。	
rs_driver_pcdsaver	点云数据保存为pcd格式工具	
rs_driver_viewer	点云可视化工具	

b. 编译前安装环境依赖

```
1 user@user:~$ sudo apt-get install libpcap-dev
2 user@user:~$ sudo apt-get install libeigen3-dev
3 user@user:~$ sudo apt-get install libboost-dev
```

4 user@user:~\$ sudo apt-get install libpcl-dev

1.1直接编译

```
1 user@user:~$ cd rs_driver
```

2 user@user:~/rs_driver\$ mkdir build && cd build

3 user@user:~/rs_driver/build\$ cmake -DCOMPILE_DEMOS=ON .. #编译demo程序,编译

前请在源码里面配置好雷达参数,路径rs_driver/demo/***.cpp.

4 user@user:~/rs_driver/build\$ cmake -DCOMPILE_TOOLS=ON .. #编译工具

5 user@user:~/rs_driver/build\$ make -j4

1.2 运行节点

1.2.1 示例程序运行

```
1 user@user:~$ cd rs_driver/build/demo
```

2 user@user:~/rs_driver/build/demo\$./demo_online

3 user@user:~/rs_driver/build/demo\$./demo_online_multi_lidars

4 user@user:~/rs_driver/build/demo\$./demo_pcap

```
eidv@eidv:~/rs_driver/build/tool$ ./rs_driver_viewer -type RS16 -msop 6699 -difop 7788
            RS_Driver_Viewer Version: v1.5.10
             RoboSense Driver Parameters
             RoboSense Input Parameters
difop_port: 7788
group_address: 0.0.0.0
pcap path:
pcap rate: 1
pcap_repeat: 👊
use_vlan: 0
user_layer_bytes: 0
             RoboSense Decoder Parameters
wait for difop: 0
min distance: 0
max_distance: 0
dense_points: 0
angle_path:
split_frame_mode: 1
             RoboSense Transform Parameters
x: 0
roll: "0"
pitch: 0
yaw: 0
RoboSense Lidar-Driver Viewer start.....
```

1.2.2 rs_driver_viewer工具启动命令

```
1 user@user:$ cd rs_driver/build/tool
2 user@user:~/rs_driver/build/tool$ ./rs_driver_viewer -h #查看配置项
```

```
-type = LiDAR type(RS16, RS32, RSBP, RSHELIOS, RS128, RS80, RSM1)
             = The path of the pcap file, off-line mode if it is true, else online
 6
     -рсар
    mode.
     -msop = LiDAR msop port number, the default value is 6699
7
     -difop = LiDAR difop port number, the default value is 7788
 8
     -group = LiDAR destination group address if multi-cast mode.
 9
     -host
             = Host address.
10
             = Transformation parameter, unit: m
11
     -\chi
             = Transformation parameter, unit: m
12
     -y
             = Transformation parameter, unit: m
13
     -z
             = Transformation parameter, unit: radian
14
     -pitch = Transformation parameter, unit: radian
15
             = Transformation parameter, unit: radian
16
```

例:在线可视化RS16,MSOP端口号为6699,DIFOP端口号为7788的雷达数据。

```
1 user@user:~/rs_driver/build/tool$ ./rs_driver_viewer -type RS16 -msop 6699 -
    difop 7788
```

1.2.3 rs_driver_pcdsaver工具启动命令

```
1 user@user:~$ cd rs_driver/build/tool
2 user@user:~/rs_driver/build/tool$ ./rs_driver_pcdsaver -h #查看配置项
```

```
2
               RS Driver Viewer Version: v1.5.10
4 Arguments:
5
   type = LiDAR type(RS16, RS32, RSBP, RSHELIOS, RS128, RS80, RSM1)
6
     -pcap
             = The path of the pcap file, off-line mode if it is true, else online
    mode.
           = LiDAR msop port number, the default value is 6699
7
     -difop = LiDAR difop port number, the default value is 7788
8
     -group = LiDAR destination group address if multi-cast mode.
9
            = Host address.
10
     -host
             = Transformation parameter, unit: m
11
           = Transformation parameter, unit: m
12
     -у
             = Transformation parameter, unit: m
13
            = Transformation parameter, unit: radian
14
     -roll
15
     -pitch = Transformation parameter, unit: radian
             = Transformation parameter, unit: radian
16
```

例:在线录取RS16,MSOP端口号为6699,DIFOP端口号为7788的雷达pcd数据。

```
1 user@user:~/rs_driver/build/tool$ ./rs_driver_pcdsaver -type RS16 -msop 6699 -
    difop 7788
```

```
eidv@eidv:~/rs_driver/build/tool$ ./rs_driver_pcdsaver--type RS16 -msop 6699 -difop 7788
            RoboSense Driver Parameters
            RoboSense Input Parameters
pcap_repeat: 0
tail layer bytes: 0
            RoboSense Decoder Parameters
split_angle: 0
            RoboSense Transform Parameters
roll: 0
pitch: 0
RoboSense Lidar-Driver PCD Saver start.....
```

如经过以上步骤在线解析雷达数据仍不能显示点云,节点终端持续报MSOP TIMEOUT和DIFOP TIMEOUT,请将系统防火墙关掉,参考*rslidar_sdk使用说明——ubuntu防火墙*。

四、ubuntu防火墙

如经过以上步骤在线解析雷达数据仍不能显示点云,节点终端持续报MSOP TIMEOUT和DIFOP TIMEOUT,请将系统防火墙关掉,ubuntu常见防火墙如下:

1. UFW

```
1 user@user:~$ sudo ufw status #查看防火墙状态
2 user@user:~$ sudo ufw disable #关闭防火墙
```

3 user@user:~\$ sudo ufw enable #打开防火墙

2. Firewall

```
1 user@user:~$ sudo firewall-cmd --state #查看防火墙状态
2 user@user:~$ sudo systemctl stop firewalld.service #关闭防火墙
3 user@user:~$ sudo systemctl disable firewalld.service #关闭自启动
4 user@user:~$ sudo systemctl restart firewalld.service #打开防火墙
5 user@user:~$ sudo systemctl enable firewalld.service #打开自启动
```

3. Iptables

```
1 user@user:~$ sudo service iptables status
                                                       #查看防火墙状态
2 user@user:~$ sudo iptables -F
                                                       #清空所有规则
3 user@user:~$ sudo iptables -X
                                                       #删除所有用户自定义链
4 user@user:~$ sudo iptables -Z
                                                       #将所有计数器清零
                                                       #开放所有端口
5 user@user:~$ sudo iptables -P INPUT ACCEPT
6 user@user:~$ sudo iptables -P INPUT OUTPUT ACCEPT
                                                       #开放所有端口
7 user@user:~$ sudo iptables -P OUTPUT ACCEPT
                                                       #开放所有端口
8 user@user:~$ sudo iptables -P FORWARD ACCEPT
9 user@user:~$ sudo modprode -r iptables
10 user@user:~$ sudo service iptables stop
                                                        #暂时关闭防火墙
11 user@user:~$ sudo chkconfig iptables off
                                                        #永久关闭防火墙
```