Assignment: Section 4.3 Homework

1.

Determine whether the set $\left\{ \begin{bmatrix} 1\\0\\-3 \end{bmatrix}, \begin{bmatrix} -3\\1\\7 \end{bmatrix}, \begin{bmatrix} -5\\2\\11 \end{bmatrix} \right\}$ is a basis for \mathbb{R}^3 . If the set is not a basis, determine whether the

set is linearly independent and whether the set spans \mathbb{R}^3 .

Which of the following describe the set? Select all that apply.

- A. The set is linearly independent.
- \square **B.** The set spans \mathbb{R}^3 .
- \square **C.** The set is a basis for \mathbb{R}^3 .
- **D**. None of the above

•

Determine if the set of vectors shown to the right is a basis for \mathbb{R}^3 . If the set of vectors is not a basis, determine whether it is linearly independent and whether the set spans \mathbb{R}^3 .

$$\left\{ \begin{bmatrix} 3 \\ -1 \\ 1 \end{bmatrix}, \begin{bmatrix} 3 \\ -3 \\ 3 \end{bmatrix}, \begin{bmatrix} -6 \\ 4 \\ 2 \end{bmatrix} \right\}$$

Which of the following describe the set? Select all that apply.

- A. The set spans A.
- **瞥B.** The set is linearly independent.
- **C.** The set is a basis for \mathbb{R}^3 .
- D. None of the above

3. Determine if the set of vectors shown to the right is a basis for \mathbb{R}^3 . If the set of vectors is not a basis, determine whether it is linearly independent and whether the set spans \mathbb{R}^3 .

$$\left\{ \begin{bmatrix} 1\\2\\-8 \end{bmatrix}, \begin{bmatrix} -5\\4\\16 \end{bmatrix} \right\}$$

Which of the following describe the set? Select all that apply.

- \square **A.** The set spans \mathbb{R}^3 .
- \square **B.** The set is a basis for \mathbb{R}^3 .
- **C.** The set is linearly independent.
- **D.** None of the above

4. Find a basis for the null space of the matrix given below.

A basis for the null space is
$$\left\{ \begin{bmatrix} -2 \\ 3 \\ 0 \\ 1 \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} -2 \\ 1 \\ 1 \\ 0 \\ 1 \end{bmatrix} \right\}.$$

(Use a comma to separate answers as needed.)

5. Find a basis for the set of vectors in \mathbb{R}^3 in the plane x - 5y + 4z = 0. [Hint: Think of the equation as a "system" of homogeneous equations.]

A basis for the set of vectors in \mathbb{R}^3 in the plane x - 5y + 4z = 0 is $\left\{ \begin{bmatrix} 5 \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} -4 \\ 0 \\ 1 \end{bmatrix} \right\}$.

6. Assume that, below, A is row equivalent to B. Find bases for Nul A and Col A.

$$A = \begin{bmatrix} 1 & 2 & 4 & -2 & 5 \\ 1 & 2 & 0 & 2 & 5 \\ 2 & 4 & -5 & 9 & 8 \\ 4 & 8 & 0 & 8 & 8 \end{bmatrix}, B = \begin{bmatrix} 1 & 2 & 0 & 2 & 3 \\ 0 & 0 & 4 & -4 & 4 \\ 0 & 0 & 0 & 0 & -7 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

A basis for Col A is
$$\left\{ \begin{bmatrix} 1\\1\\2\\4 \end{bmatrix} \begin{bmatrix} 4\\0\\-5\\8\\8 \end{bmatrix} \right\}.$$

(Use a comma to separate answers as needed.)

A basis for Nul A is
$$\left\{ \begin{bmatrix} -2\\1\\0\\0\\0 \end{bmatrix}, \begin{bmatrix} -2\\0\\1\\1\\0 \end{bmatrix} \right\}.$$

(Use a comma to separate answers as needed.)

YOU ANSWERED:
$$\begin{bmatrix} -2 \\ 1 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} -2 \\ 0 \\ 1 \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} -3 \\ -\frac{3}{4} \\ 0 \\ 0 \end{bmatrix}$$

7. Find a basis for the space spanned by the given vectors.

$$\begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \\ 1 \end{bmatrix} \begin{bmatrix} 6 \\ 0 \\ 0 \\ -6 \end{bmatrix} \begin{bmatrix} 4 \\ -3 \\ 3 \\ -1 \end{bmatrix} \begin{bmatrix} 19 \\ -12 \\ 12 \\ -10 \end{bmatrix} \begin{bmatrix} 17 \\ -6 \\ 6 \\ -11 \end{bmatrix}$$

A basis for the space spanned by the given vectors is $\left\{ \begin{array}{c|c} 1 & 0 & 4 \\ 0 & 0 & -3 \\ 0 & 0 & 3 \\ 1 & -6 & 4 \end{array} \right\}$

(Use a comma to separate answers as needed.)

a. A linearly independent set in a subspace H is a basis for H.
○ A. The statement is false because the set must be linearly dependent.
○ B. The statement is true by the Spanning Set Theorem.
○ C. The statement is true by the definition of a basis.
♥ D. The statement is false because the subspace spanned by the set must also coincide with H.
b. If a finite set S of nonzero vectors spans a vector space V, then some subset of S is a basis for V.
○ A. The statement is false because the subset must be independent.
→ B. The statement is true by the Spanning Set Theorem.
○ C. The statement is true by the definition of a basis.
O. The statement is false because the subspace spanned by the set must also coincide with V.
c. A basis is a linearly independent set that is as large as possible.
○ A. The statement is false because a basis is a linearly dependent set.
B. The statement is false because a basis is the smallest independent set that spans the subspace.
○ C. The statement is true by the Spanning Set Theorem.
♥ D. The statement is true by the definition of a basis.
d. The standard method for producing a spanning set for Nul A sometimes fails to produce a basis for Nul A.
○ A. The statement is true because the set produced may not be independent.
○ B. The statement is false because a spanning set for Nul A also spans A.
○ C. The statement is true because the only set produced may be the trivial solution.
D. The statement is false because the method always produces an independent set.
e. If B is an echelon form of a matrix A, then the pivot columns of B form a basis for Col A.
○ A. The statement is true by the Invertible Matrix Theorem.
B. The statement is false because the columns of an echelon form B of A are not necessarily in the column space of A.
○ C. The statement is false because the pivot columns of A form a basis for Col B.
O. The statement is true by the definition of a basis.
In the vector space of all real-valued functions, find a basis for the subspace spanned by {sin t, sin 2t, sin t cos t}.
A basis for this subspace is {sin t, sin 2t}.

8. Determine if each statement a. through e. below is true or false. Justify each answer.

9.

10. Suppose that $\{\mathbf{v}_1, \dots, \mathbf{v}_p\}$ is a subset of V and T is a one-to-one linear transformation, so that an equation $T(\mathbf{u}) = T(\mathbf{v})$ always implies $\mathbf{u} = \mathbf{v}$. Show that if the set of images $\{T(\mathbf{v}_1), \dots, T(\mathbf{v}_p)\}$ is linearly dependent, then $\{\mathbf{v}_1, \dots, \mathbf{v}_p\}$ is linearly dependent.

If the set $\{T(\mathbf{v}_1), ..., T(\mathbf{v}_p)\}$ is linearly dependent, which statement below is true?

- A. For scalars c_1 , ..., c_p , the vector equation $c_1 \mathbf{v}_1 + \cdots + c_p \mathbf{v}_p = \mathbf{0}$ has only the trivial solution, $c_1 = 0$, ..., $c_p = 0$.
- **B.** There exist scalars c_1, \dots, c_p , not all zero, such that $c_1 T(\mathbf{v}_1) + \cdots + c_p T(\mathbf{v}_p) = \mathbf{0}$.
- \bigcirc **C.** For scalars $c_1, ..., c_p$, the vector equation $c_1 v_1 + \cdots + c_p v_p = 0$ has no solution.
- **D.** There exist scalars c_1, \dots, c_p , not all zero, such that the vector equation $c_1 \mathbf{v}_1 + \cdots + c_p \mathbf{v}_p = \mathbf{0}$.

Since T is linear, which statement below is true?

A.
$$c_1 v_1 + \cdots + c_p v_p = (c_1 + \cdots + c_p)(v_1 + \cdots + v_p)$$

B.
$$c_1 T(\mathbf{v}_1) + \cdots + c_p T(\mathbf{v}_p) = T(c_1 \mathbf{v}_1 + \cdots + c_p \mathbf{v}_p)$$

$$\bigcirc$$
 C. $c_1T(v_1) + \cdots + c_pT(v_p) = c_1v_1 + \cdots + c_pv_p$

$$\bigcirc$$
 D. $c_1 \mathbf{v}_1 + \cdots + c_p \mathbf{v}_p = T(c_1 \mathbf{v}_1 + \cdots + c_p \mathbf{v}_p)$

Which statement below follows from the true statements found previously?

A.
$$T(c_1v_1 + \cdots + c_nv_n) = 0$$

B.
$$c_1 v_1 + \cdots + c_p v_p = T(0)$$

$$\bigcirc \mathbf{C}. \quad \mathbf{c}_1 \mathbf{v}_1 + \cdots + \mathbf{c}_p \mathbf{v}_p = \mathbf{v}_1 + \cdots + \mathbf{v}_p$$

D.
$$T(c_1v_1 + \cdots + c_pv_p) = T(c_1 + \cdots + c_p) + T(v_1 + \cdots + v_p)$$

Complete the statement below so it follows from the true statements found previously and leads to the conclusion.

Since T is linear , $T(\mathbf{0}) = \mathbf{0}$. Since T is one-to-one , $c_1 \mathbf{v}_1 + \cdots + c_p \mathbf{v}_p = \mathbf{0}$, where c_1, \dots, c_p are not all zero. Therefore, $\{\mathbf{v}_1, \dots, \mathbf{v}_p\}$ is linearly dependent.