РОЗДІЛ 1. Множини і відношення. Функції

Пема 2. Відношення еквівалентності

План лекції

- Властивості бінарних відношень на множині
- Відношення еквівалентності.
- Конгруентність за модулем т
- Класи еквівалентності

Властивості бінарних відношень на множині

Розглянемо властивості відношень на множині A.

Відношення R на множині A називають $pe \phi$ лексивним, якщо для будь-якого $a \in A$ виконується $(a, a) \in R$.

Приклад 4. Розглянемо шість відношень на множині $A = \{1, 2, 3, 4\}$:

```
R_1 = \{(1, 1), (1, 2), (2, 1), (2, 2), (3, 4), (4, 1), (4, 4)\};

R_2 = \{(1, 1), (1, 2), (2, 1)\};

R_3 = \{(1, 1), (1, 2), (1, 4), (2, 1), (2, 2), (3, 3), (4, 1), (4, 4)\};

R_4 = \{(2, 1), (3, 1), (3, 2), (4, 1), (4, 2), (4, 3)\};

R_5 = \{(1, 1), (1, 2), (1, 3), (1, 4), (2, 2), (2, 3), (2, 4), (3, 3), (3, 4), (4, 4)\};

R_6 = \{(3, 4)\}.
```

Відношення R_3 та R_5 рефлексивні, бо вони містять **усі** пари вигляду (a, a), тобто пари (1, 1), (2, 2), (3, 3), (4, 4). Решта відношень не рефлексивні. Зокрема, R_1, R_2, R_4, R_6 не містять пари (3, 3).

Відношення R на множині A називають *іррефлексивним*, якщо для будь-якого $a \in A$ виконується $(a, a) \notin R$.

Наприклад, відношення R_4 , R_6 із прикладу 4 іррефлексивні, а R_1 , R_2 – не рефлексивні й не іррефлексивні.

Відношення R на множині A називають *симетричним*, якщо для будь-яких $a, b \in A$ з того, що $(a, b) \in R$, випливає, що $(b, a) \in R$.

У прикладі 4 лише відношення R_2 та R_3 симетричні.

Відношення R на множині A називають *антисиметричним*, якщо для всіх $a, b \in A$ з того, що $(a, b) \in R$ і $(b, a) \in R$, випливає, що a = b.

Інакше кажучи, відношення антисиметриче, якщо в разі $a\neq b$ воно водночас не містить пар (a,b) та (b,a).

У прикладі 4 антисиметричні лише відношення R_4 , R_5 та R_6 . У кожному з них немає таких пар елементів a та b ($a \neq b$), що одночасно (a, b) $\in R$ та (b, a) $\in R$.

Важливо зазначити, що властивості симетричності й антисиметричності не антагоністичні: існують відношення, які мають обидві ці властивості.

Наприклад, відношення $R = \emptyset$ на множині $A = \{a\}$ водночас і симетричне, і антисиметричне.

Ще один приклад: відношення $R = \{(1,1),(2,2),(3,3),(4,4)\}$ (діагональне відношення) на множині $A = \{1,2,3.4\}$ є симетричним і антисиметричним одночасно.

 ε також відношення, які не мають жодної з цих двох властивостей. **Наприклад**, відношення R_1 з прикладу 4 ані симетричне, ані антисиметричне.

Відношення R на множині A називають acumempuчним, якщо для всіх $a, b \in A$ з того, що $(a, b) \in R$, випливає, що $(b, a) \notin R$.

Зрозуміло, що будь-яке асиметричне відношення має бути й антисиметричним. Обернене твердження неправильне. Відношення R_5 із прикладу 4 антисиметричне, проте не асиметричне, бо містить пари (1, 1), (2, 2), (3, 3), (4, 4).

Відношення R на множині A називають *транзитивним*, якщо для будь-яких $a,b,c\in A$ з того, що $(a,b)\in R$ і $(b,c)\in R$, випливає $(a,c)\in R$.

Відношення R_4 , R_5 та (зверніть увагу!) R_6 із прикладу 4 транзитивні. Справді, якщо пари (a, b) та (b, c) належать цим відношенням, то й пара (a, c) теж належить.

Відношення R_1 , R_2 , R_3 із прикладу 4 не транзитивні: $(3, 4) \in R_1$, $(4, 1) \in R_1$, але $(3, 1) \notin R_1$; $(2, 1) \in R_2$, $(1, 2) \in R_2$, але $(2, 2) \notin R_2$; $(2, 1) \in R_3$, $(1, 4) \in R_3$, але $(2, 4) \notin R_3$.

Рис. 3

Розглянемо, як деякі властивості відношень відображаються на матрицях і графах цих відношень. Якщо відношення R рефлексивне, то на головній діагоналі матриці M_R лише одиниці, якщо іррефлексивне — то нулі. Матриця M_R симетричного відношення симетрична. Матриця M_R антисиметричного відношення R має таку властивість: якщо $i\neq j$, то з $m_{ij}=1$, випливає $m_{ii}=0$ (але може бути $m_{ij}=m_{ii}=0$) (рис. 2).

Граф G_R рефлексивного відношення R має петлю в кожній вершині. У графі транзитивного відношення в разі наявності пари дуг (a, b) та (b, c) обов'язково є дуга (a, c) (рис. 3).

Приклад 5. На рис. 4 зображено орієнтовані графи відношень R та S. Для кожного з відношення визначити, чи є воно рефлексивним, симетричним, антисиметричним, транзитивним.

Рис. 4 (a) Орієнтований граф відношення R (б) Орієнтований граф відношення S

Оскільки в кожній вершині графа відношення R є петля, то це відношення рефлексивне. Відношення R ані симетричне, ані антисиметричне, бо дуга від a до b є, а дуги від b до a немає, але є дуги в обох напрямках між вершинами b та c. Нарешті, відношення R не транзитивне, бо є дуга від a до b і є дуга від b до c, але немає дуги від a до c.

Оскільки в графі відношення S петля не в кожній вершині, то відношення S не рефлексивне. Це відношення симетричне і не антисиметричне, бо для кожної дуги між різними вершинами є дуга протилежного напрямку. Неважко побачити, що відношення S не транзитивне, бо (c, a) та (a, b) належать S, але (c, b) не належить S.

Відношення еквівалентності

Розглянемо відношення, які водночає мають декілька зазначених вище властивостей у певній комбінації.

Відношення на множині A називають відношенням еквівалентності, якщо воно рефлексивне, симетричне й транзитивне.

Відношення еквівалентності дуже важливі в математиці та комп'ютерних науках.

Два елементи a та b, зв'язані відношенням еквівалентності, називають eквівалентними. Нотацію a-b часто використовують щоб зазначити, що елементи a та b – еквівалентні елементи за якимось відношенням еквівалентності.

Два елементи множини A, пов'язані відношенням еквівалентності, називають еквівалентними. Оскільки відношення еквівалентності за означенням рефлексивне, то в будь-якому відношенні еквівалентності кожний елемент множини A еквівалентний до самого себе. Симетричність гарантує, що коли a еквівалентне до b, то і b еквівалентне до a, тому є сенс говорити, що a та b еквівалентні (замість a еквівалентне до b). Більше того,

позаяк відношення еквівалентності за означенням транзитивне, то з того, що a та b еквівалентні й b та c еквівалентні, випливає, що a та c також еквівалентні.

Приклад 1. Нехай R – таке відношення на множині цілих чисел: aRb тоді й тільки тоді, коли $(a = b) \lor (a = -b)$. Воно рефлексивне, симетричне й транзитивне, тому, являє собою відношенням еквівалентності.

Приклад 2. Нехай R — таке відношення на множині дійсних чисел: aRb тоді й лише тоді, коли (a-b) — ціле число. Оскільки a-a=0 ціле для всіх дійсних чисел a, то aRa для всіх дійсних чисел a. Отже, відношення R рефлексивне. Нехай тепер aRb. Звідси випливає, a-b — ціле число. Але тоді b-a також ціле, звідси bRa, тобто відношення R симетричне. Якщо aRb і bRc, то числа a-b та b-c цілі. Але тоді число a-c=(a-b)+(b-c) також ціле, звідси aRc, тобто відношення R транзитивне. Отже, R — відношення еквівалентності на множині дійсних чисел.

Приклад 3. Конгруентність за модулем *m***.** Нехай m>1 – ціле число. Доведемо, що $R = \{(a,b) \mid a \equiv b \pmod{m}\}$ – відношення еквівалентності на множині Z цілих чисел.

За означенням $a \equiv b \pmod m$ означає, що m ділить (a-b). Зазначимо, що a-a=0 ділиться на m, бо $0=0\cdot m$. Отже, $a \equiv a \pmod m$, відношення рефлексивне. Далі, $a \equiv b \pmod m$, якщо a-b=km, де k — ціле число. Отже, b-a=(-k)m, тобто $b \equiv a \pmod m$, і відношення симетричне. Нарешті, нехай $a \equiv b \pmod m$, $b \equiv c \pmod m$. Це означає, що a-b=km, b-c=lm, де k, l — цілі числа.

Додамо останні дві рівності: a-b+b-c=(k+l)m, тобто a-c=(k+l)m. Звідси випливає, що $a\equiv c \pmod m$, відношення транзитивне. Отже, конгруентність за модулем m- відношення еквівалентності на множині цілих чисел.

Приклад 4. Нехай R — відношення на множині **рядків українських букв** таке, що aRb тоді й тільки тоді, коли l(a) = l(b), де l(x) — довжина рядка x. Чи ϵ R відношенням еквівалентності?

Для будь-якого рядка a очевидно l(a) = l(a), отже, відношення R рефлексивне. Тепер припустімо, що aRb, тому l(a) = l(b). Але тоді l(b) = l(a), тому bRa, отже, відношення R симетричне. Нарешті припустімо, що aRb і bRc. Тоді l(a) = l(b) і l(b) = l(c). Звідси слідує, що l(a) = l(c) і aRc, тобто відношення R транзитивне. Тому що відношення R рефлексивне, симетричне й транзитивне, воно є відношенням еквівалентності.

Приклад 5. Нехай n – додатне ціле і S – множина двійкових рядків. Припустімо, що R_n – відношення на S таке, що sR_nt тоді й лише тоді, коли s=t або обидва рядки s і t складаються щонайменше з n символів і перші n символів у рядках s і t однакові. Отже, кожен рядок довжиною менше ніж n є у відношенні тільки до самого себе; рядок s із щонайменше s символів є у відношенні до рядка s якщо і тільки якщо перші s символів у ньому ті самі, що і в рядку s. Наприклад, нехай s — 3. Тоді s — 10111s — 10111s — 20101s — 3. (01011, 01110)s — 3.

Покажемо, що для будь-якої множини рядків S і для будь-якого додатного цілого n, R_n є відношенням еквівалентності на S.

Відношення R_n рефлексивне, бо s = s, отже sR_ns для будь-якого рядка з S. Якщо sR_nt , то тоді або s = t, або s і t мають щонайменше n символів і перші n символів однакові. Це означає, що tR_ns . Ми довели, що відношення R_n симетричне.

Тепер припустімо, sR_nt і tR_nu . Тоді або s=t, або s і t мають щонайменше n символів і перші n символів однакові. Аналогічно, або t=u або t і u мають щонайменше n символів і перші n символів однакові. Тому в цьому випадку, як ми розуміємо, s, t і u складаються щонайменше з n символів кожний, та s і u мають першими n символами ті самі, що й t. Отже, sR_nu і відношення R_n транзитивне.

Отже, відношення R_n є відношенням еквівалентності.

У наступному прикладі ми розглянемо відношення, яке не ϵ відношеннями еквівалентності.

Приклад 6. Нехай R — відношення на множині дійсних чисел таке, що xRy тоді й тільки тоді, коли |x-y|<1. Легко побачити, що це відношення рефлексивне, бо |x-x|=0<1 для будь-якого дійсного числа x. Відношення R симетричне, бо коли |x-y|<1, то і |y-x|=|x-y|<1 для будь-яких дійсних чисел x та y. Проте відношення R не ε відношенням еквівалентності, бо воно не транзитивне.

Візьмемо x = 2.8, y = 1.9 і z = 1.1. Тоді |x - y| = |2.8 - 1.9| = 0.9 < 1, |y - z| = |1.9 - 1.1| = 0.8 < 1, але |x - z| = |2.8 - 1.1| = 1.7 > 1.

Класи еквівалентності

Почнемо з розгляду такого простого прикладу. Нехай A — множина учасників наукової конференції. Як R позначимо відношення на множині A яке містить усі пари (x, y), де x та y приїхали на конференцію з одного міста. Маючи на увазі якогось учасника x, ми можемо задати множину всіх учасників цієї конференції, еквівалентних до x за відношенням R. Ця множина містить усіх учасників, які приїхали на конференцію із того самого міста, що й

учасник x. Цю підмножину множини A називають класом еквівалентності за відношенням R. Цей приклад приводить до такого означення.

Нехай R — відношення еквівалентності на множині A. Множину всіх елементів, які еквівалентні до елемента $a \in A$, називають *класом еквівалентності* (елемента a) *за відношенням* R, його позначають як $[a]_R$. Маючи на увазі якесь певне відношення еквівалентності, використовують позначення [a] для цього класу еквівалентності.

Отже: $[a]_R = \{x \in A | (a, x) \in R\}$. Елемент $b \in [a]_R$ називають *представником* цього класу еквівалентності. Будь-який елемент із класу еквівалентності може бути використаний як представник цього класу.

Приклад 7. Знайдемо класи еквівалентності відношення з прикладу 1. Оскільки ціле число еквівалентне до самого до себе та до протилежного числа, то класи еквівалентності за цим відношенням такі: $[a] = \{-a, a\}, a \neq 0$ та $[0] = \{0\}$. Зокрема, $[7] = \{-7, 7\}, [5] = \{-5, 5\},$

Приклад 8. Знайдемо класи еквівалентності елементів 0 і 1 для відношення конгруентності за mod 4 (див. приклад 3). Клас еквівалентності елемента 0 містить усі цілі числа b такі, що $0 \equiv b \pmod 4$, тобто такі, що діляться на 4. Отже, $[0] = \{..., -8, -4, 0, 4, 8, ...\}$. Клас еквівалентності елемента 1 містить усі цілі числа b такі, що $1 \equiv b \pmod 4$. Звідси випливає, що $[1] = \{..., -7, -3, 1, 5, 9, ...\}$. Класи еквівалентності, подібні до розглянутих у цьому прикладі, називають *класами конгруентності за модулем т* і позначають як $[a]_m$.

Отже, $[0]_4$ ={..., -8, -4, 0, 4, 8, ...}, $[1]_4$ ={..., -7, -3, 1, 5, 9, ...}.

Нехай R — відношення еквівалентності на множині A. Важливо зазначити, що класи еквівалентності, породжені двома елементами множини A, або збігаються, або не перетинаються. Про це твердить наступна лема.

Лема. Нехай R — відношення еквівалентності на множині A. Тоді такі твердження еквівалентні:

- (I) aRb,
- (II) [a] = [b],
- (III) $[a] \cap [b] \neq \emptyset$.

Доведення. Спочатку доведемо, що з (I) випливає (II). Припустимо, що aRb. Щоб довести рівність [a]=[b], покажемо, що $[a]\subset[b]$ та $[b]\subset[a]$. Нехай $c\in[a]$, тоді aRc. Оскільки aRb, а R – симетричне відношення, то bRa. Позаяк відношення R транзитивне, то з bRa й aRc випливає bRc, тому $c\in[b]$. Отже, $[a]\subset[b]$. Аналогічно можна довести, що $[b]\subset[a]$.

Доведемо тепер, що з (II) випливає (III). Справді $[a] \neq \emptyset$, бо $a \in [a]$ внаслідок рефлексивності. Отже, з [a] = [b] випливає $[a] \cap [b] \neq \emptyset$.

Нарешті, доведемо, що з (ІІІ) випливає (І). Припустимо, що $[a] \cap [b] \neq \emptyset$. Тоді існує такий елемент c, що $c \in [a]$ та $c \in [b]$, тобто aRc та bRc. Із симетричності відношення R випливає cRb. Оскільки відношення R транзитивне, то з aRc та cRb випливає aRb.

Позаяк з (I) випливає (II), з (II) випливає (III) та з (III) випливає (I), то твердження (I), (II), (III) еквівалентні.

Зауваження. Зверніть увагу на спосіб доведення цієї леми!

- 1) $A_i \neq \emptyset$ для всіх $i \in I$;
- 2) $A_i \cap A_j = \emptyset$ коли $i \neq j$;
- $3) \bigcup_{i \in I} A_i = A.$

(Тут $\bigcup_{i \in I} A_i = A$ репрезентує об'єднання множин A_i для всіх $i \in I$.) Наступний рисунок ілюструє концепцію розбиття множини.

Приклад 9. Нехай $A = \{1, 2, 3, 4, 5, 6\}$. Система множин $S = \{\{1, 2, 3\}, \{4, 6\}, \{5\}\}$ – розбиття цієї множини.

Теорема 1. Кожне відношення еквівалентності R на множині A породжує розбиття множини A на класи еквівалентності.

Доведення. Об'єднання класів еквівалентності за відношенням R — це всі елементи множини A, бо будь-який елемент a з множини A міститься у своєму класі еквівалентності $[a]_R$. Інакше кажучи,

$$\bigcup_{a \in A} [a]_R = A.$$

Із леми випливає, ці класи еквівалентності або співпадають, або не перетинаються, отже, $[a]_R \cap [b]_R = \emptyset$, коли $[a]_R \neq [b]_R$.

Ці два спостереження показують, що класи еквівалентності за відношенням еквівалентності R, заданим на множині A, формують розбиття цієї множини. Терему доведено.

Приклад 10. Відношення конгруентності за mod 4 (див приклад 8) породжує розбиття множини Z цілих чисел на 4 класи еквівалентності: $[0]_4$, $[1]_4$, $[2]_4$ та $[3]_4$. Вони попарно не перетинаються, а їх об'єднання дорівнює множині Z.

Ось ці класи:

```
[0]_4 = \{\dots, -8, -4, 0, 4, 8, \dots\},\
[1]_4 = \{\dots, -7, -3, 1, 5, 9, \dots\},\
[2]_4 = \{\dots, -6, -2, 2, 6, 10, \dots\},\
[3]_4 = \{\dots, -5, -1, 3, 7, 11, \dots\}.
```

Загалом є m різних класів конгруентності за модулем m; вони відповідають m різним остачам, можливим при діленні цілого числа на m. Ці m класів позначають як $[0]_m$, $[1]_m$, ..., $[m-1]_m$. Вони й формують розбиття множини цілих чисел за цим відношенням еквівалентності (тобто за відношенням конгруентності за модулем m).

Теорема 2. Будь-яке розбиття множини A визначає на множині A відношення еквівалентності.

Доведення. Нехай $a, b \in A$, будемо вважати, що aRb тоді й лише тоді, коли a та b належать одній множині розбиття. Залишилося довести, що одержане відношення на множині A являє собою відношенням еквівалентності. Для цього потрібно переконатись, що воно рефлексивне, симетричне й транзитивне. Справді, оскільки a належить якійсь множині розбиття, то aRa, тобто відношення рефлексивне. Нехай A_i — якась множина розбиття та $a, b \in A_i$. Тоді й $b, a \in A_i$, тобто з aRb випливає bRa. Симетричність доведено. Нарешті, із aRb і bRc випливає $a, b, c \in A_i$. Звідси aRc, тобто відношення R транзитивне. Теорему доведено.

Приклад 11. Записати упорядковані пари, які формують відношення еквівалентності, яке породжено розбиттям множини $A = \{1, 2, 3, 4, 5, 6\}$ із прикладу 9:

$$S = \{\{1, 2, 3\}, \{4, 6\}, \{5\}\}.$$

Тут $A_1 = \{1, 2, 3\}$, $A_2 = \{4, 6\}$, $A_3 = \{5\}$. Пара $(a,b) \in R$ якщо і тільки якщо a та b в одній і тій самій множині розбиття. Пари (1,1), (1,2), (1,3), (2,1), (2,2), (2,3), (3,1), (3,2) і (3,3) належать відношенню, бо $A_1 = \{1, 2, 3\}$ — клас еквівалентності. Пари (4,4), (4,6), (6,4) і (6,6) належать відношенню R, бо множина $A_2 = \{4, 6\}$ є класом еквівалентності. Нарешті, пара (5,5) належить відношенню R, бо $A_3 = \{5\}$ є класом еквівалентності. Ніякі інші пари відношенню еквівалентності R не належать.