Curriculum Vitae Sheng Chen, DVM, MPVM, Ph.D

I) CONTACT INFORMATION

Department of Infectious Diseases and Public Health Jockey Club College of Veterinary Medicine and Life Sciences City University of Hong Kong

Kowloon, Hong Kong

Office Phone: (852) 3442-5782; Cell phone: 95706298

Email: shechen@cityu.edu.hk

II) EDUCATION

Ph.D., Food Microbiology, University of Maryland at College Park, MD USA (2004) Master of Preventive Vet. Medicine, China Agriculture University, Beijing, China (2000) D.V.M., China Agriculture University, Beijing, China (1997)

III) PROFESSIONAL EXPERIENCE

Present academic position and other positions:

2020.1~present	Professor and Associate Dean, College of Veterinary Medicine and Life Science,
	The City University of Hong Kong
2021.5 ~present	Member, Advisory Council on Food and Environmental Hygiene (appointed by
	Chief Executive), Food and Health Bureau, Hong Kong Government
2010~present	Shenzhen Expert Committee on pharmacology and biotechnology, Shenzhen,
	China

Previous aca	demic positions and other positions:
2019.8~12	Professor and Acting Head, Department of Infectious Diseases and Public Health,
	College of Veterinary Medicine and Life Science, The City University of Hong
	Kong
2017~2019.8	
	University, Hong Kong
2014~2017	Associate Professor, Applied Biology and Chemical Technology, The Hong Kong
	Polytechnic University, Hong Kong
$2009 \sim 2014$	Assistant Professor, Applied Biology and Chemical Technology, The Hong Kong
	Polytechnic University, Hong Kong
2004~ 2009	Post-doctoral Fellow, Microbiology and Molecular Genetics, Medical College of
	Wisconsin, Milwaukee, WI, USA
2012 ~2019	Distinguished Professor, The Hong Kong PolyU Shenzhen Research Institute,
	Shenzhen, P. R. China
2015~2019	Director, Shenzhen Key lab for Food Biological Safety Control, The Hong Kong
	PolyU Shenzhen Research Institute, Shenzhen, China
2015~2017	Chairman, Animal Subject Ethics Sub-Committee, The Hong Kong Polytechnic
	University, Hong Kong
2015~2019	Director, Central Animal Facility, The Hong Kong PolyU Shenzhen Research
	Institute, Shenzhen, China
2010~2019	Associate Director, Food Safety and Technology Research Center, The Hong Kong
	Polytechnic University, Hong Kong
2010~2020	Ad Hoc working group on the microbial guidelines for ready-to-eat food, Food
	Safety Center, Department of Food and Environmental Hygiene, Hong Kong

IV) RESEARCH PUBLICATION: * Corresponding author

A total of 202 peer reviewed papers were published in top journals in the field of Microbiology, Biochemistry and Infectious Diseases and received a total citation of **5163** (Scopus) by Oct. 2021. My H-index is **35** (Scopus) and i10-index is **120** (Google scholar) even though a lot of my papers were published recently, which have not received a lot of citations yet. My citations in 2020 was over 900 and it should be over 1000 in 2021 and onward. Among these 207 papers published, I am the corresponding author for **170** papers, first author for 8 and co-author for 29 papers. Among these 206 papers, **10** of them are **A++** (IF>15.00 including 5 in *The Lancet Infectious Diseases* with IF of 25.071), **78** are **A+** (top 9.99%), 53 are A (19.99%), 24 are B+ (29.99%) and 28 are B (39.99%). The detail publication list is shown as follow:

No.	Publications	IF (JCR)	Author -ship	Scopus Citations	CityU category
	2021				
202	Wei R, Yang X, Liu H, Wei T, Chen S*, Li X*. Synthetic Pseudaminic-Acid-Based Antibacterial Vaccine Confers Effective Protection against Acinetobacter baumannii Infection. ACS Cent Sci. 2021 Sep 22;7(9):1535-1542.	14.553	Cor		A+
201	Cheng Q, Zheng Z, Ye L, <u>Chen S*.</u> Identification of a novel metallo-β-lactamase, VAM-1, in a foodborne Vibrio alginolyticus isolate from China. Antimicrob Agents Chemother. 2021 Aug 23:AAC0112921.	5.191	Cor		A+
200	Wang M, Chan EWC, Wan Y, Wong MH, <u>Chen S*.</u> Active maintenance of proton motive force mediates starvation-induced bacterial antibiotic tolerance in Escherichia coli. Commun Biol. 2021 Sep 14;4(1):1068.	6.268	Cor		A+
199	Xiao, H., Yu, X., Yang, C., Chan, C., Lu, L., Cao, S., Wan, S., Lan, Z., Mok, D. K. W., Chen, S. & Wong, M., Prenylated isoflavonoids-rich extract of erythrinae cortex exerted bone protective effects by modulating gut microbial compositions and metabolites in ovariectomized rats Sep 2021, Nutrients. 13, 9, 2943.	5.717	Со		A
198	Yi, L., Zeng, P., Wong, K. Y., Chan, K. F. & <u>Chen, S*</u> ., Controlling Listeria monocytogenes in ready-to-eat leafy greens by amphipathic α-helix peptide zp80 and its antimicrobial mechanisms. Dec 2021, LWT-Food Science and Technology. 152, 112412.	4.952	Cor		A
197	Po HL, Chow HY, Cheng QP, Chan KW, Deng X, Wang SP, Chan WC, Kong HK, Chan KF, Li XC, Chen S*, Daptomycin Exerts Bactericidal Effect through Induction of Excessive ROS Production and Blocking the Function of Stress Response Protein Usp2. Natural Sciences, First published: 27 July 2021. https://doi.org/10.1002/ntls.10023	A flagship journal in Wiley	Cor		
196	Yang XM, Liu XX, Yang C., Chan WC. Zhang R, Chen S*. A conjugative IncI1 plasmid carrying erm(B) and blaCTX-M-104 that mediates resistance to azithromycin and cephalosporins. Microbiology Spectrum. 2021. In press.	7.171	Cor		A
195	Liu XB, Li RC, Dong N, Ye LW, Chan WC, Chen S*., Complete genetic analysis of plasmids carried by two non-clonal blaNDM-5-and mcr-1-bearing Escherichia coli strains: insight into plasmid	7.171	Cor		A

	transmission among foodborne bacteria. Microbiology Spectrum.				
	2021. In press.				
194^	Xu Q, Yang X, Chan EWC, <u>Chen S*.</u> The hypermucoviscosity of hypervirulent K. pneumoniae confers the ability to evade neutrophil-mediated phagocytosis. Virulence. 2021 Dec; 12(1):2050-2059.	5.882	Cor		A
193^	Wang J, Lin D, Liu M, Liu H, Blasco P, Sun Z, Cheung YC, <u>Chen S</u> , Li X.Total Synthesis of Mannopeptimycin β via β-Hydroxyenduracididine Ligation. J Am Chem Soc. 2021 Aug 5. doi: 10.1021/jacs.1c05922.	15.419	Co		A++
192^	Liu, X., Chan, E. W. & <u>Chen, S*.,</u> Transmission and stable inheritance of carbapenemase gene (blaKPC-2 or blaNDM-1)-encoding and mcr-1-encoding plasmids in clinical Enterobacteriaceae strains. 7 Jul 2021, (Online published). Journal of Global Antimicrobial Resistance.	4.035	Cor		В
191^	Yi, L., Zeng, P., Liu, J., Wong, K., Chan, E. W., Lin, Y., Chan, K. &, Chen, S*. Antimicrobial peptide zp37 inhibits Escherichia coli 0157:H7 in alfalfa sprouts by inflicting damage in cell membrane and binding to DNA Jul 2021, LWT - Food Science and Technology. 146, 111392.	4.952	Cor		A
190^	Li, W., Yan, Y., Chen, J., Sun, R., Wang, Y., Wang, T., Feng, Z., Peng, K., Wang, J., <u>Chen, S.,</u> Luo, Y., Li, R. & Yang, B., Genomic characterization of conjugative plasmids carrying the mcr-1 gene in foodborne and clinical strains of Salmonella and Escherichia coli. Jul 2021, Food Control. 125, 108032.	5.548	Co		A+
189^	Chen, K., Yang, C., Chan, E. W. & <u>Chen, S*.</u> , Emergence of conjugative IncC type plasmid simultaneously encoding resistance to ciprofloxacin, ceftriaxone and azithromycin in Salmonella. <i>Antimicrobial Agents and Chemotherapy.</i> 2021 Jun 14;AAC0104621.	5.191	Cor		A+
188^	Zeng, P., Yi, L., Cheng, Q., Liu, J., <u>Chen, S</u> *., Chan, K. & Wong, K., An ornithine-rich dodecapeptide with improved proteolytic stability selectively kills gram-negative food-borne pathogens and its action mode on Escherichia coli O157:H7. 16 Aug 2021, International Journal of Food Microbiology. 352, 109281.	5.277	Cor		A
187^	Zeng, P., Yi, L., Xu, J., Gao, W., Xu, C., <u>Chen, S*.</u> , Chan, K., Wong, K., Investigation of antibiofilm activity, antibacterial activity, and mechanistic studies of an amphiphilic peptide against Acinetobacter baumannii. 1 Jun 2021, Biochimica et Biophysica Acta - Biomembranes . 1863, 6, 183600.	3.747	Cor	3	B+
186^	Zhang, R., Cheung, C. Y., Seo, S., Liu, H., Pardeshi, L., Wong, K. H., Chow, L. M. C., Chau, M. P., Wang, Y., Lee, A. R., Kwon, W. Y., Chen, S., Chan, B. K., Wong, K., Choy, R. K. W. & Ko, B. C. B.,RUVBL1/2 Complex Regulates Pro-Inflammatory Responses in Macrophages via Regulating Histone H3K4 Trimethylation. Jun 2021, <i>Frontiers in Immunology.</i> 12, 679184.	7.561	Co		A
185^	Hou, C., Xu, C., Yi, B., Huang, X., Cao, C., Lee, Y., <u>Chen, S*.</u> & Yao X. others, Mechano-Induced Assembly of a Nanocomposite for "Press-N-Go" Coatings with Highly Efficient Surface Disinfection. 28 Apr 2021, <i>ACS Applied Materials and Interfaces</i> . 13, 16, p. 19332–19341 10 p.	9.229	Cor	1	A
	Yang, X., Ye, L., Chan, E. W., Zhang, R. & <u>Chen, S*.</u> , Characterization of an IncFIB/IncHI1B Plasmid Encoding Efflux Pump TMexCD1-TOprJ1 in a Clinical Tigecycline- and	5.191	Cor		A+

	Carbapenem-Resistant Klebsiella pneumoniae Strain. Apr 2021,				
	Antimicrobial Agents and Chemotherapy. 65, 4, e02340-20.				
183^	Zheng, Z., Ye, L., Li, R. & <u>Chen, S*</u> ., Whole-genome sequencing of strains of Vibrio spp. from China reveals different genetic contexts of blaCTX-M-14 among diverse lineages. Apr 2021, <i>Journal of antimicrobial chemotherapy.</i> 76, 4, p. 950–	5.790	Cor		A+
182^	Jin, W. B., Xu, C., Qi, X. L., Zeng, P., Gao, W., Lai, K. H., Chiou, J., Chan, E. W. C., Leung, Y., Chan, T. H., Wong, K., <u>Chen, S*.</u> & Chan, K. Synthesis of 1,3,4-trisubstituted pyrrolidines as meropenem adjuvants targeting New Delhi metallo-β-lactamase. 21 Feb 2021, <i>New Journal of Chemistry</i> . 45, 7, p. 3515-3534	3.591	Cor		В
181^	Chen, J#., <u>Chen, S</u> #., Jiang, Y., Zhang, R. & Cai, J., Fecal Carriage and Genetic Characterization of CTX-M-1/9/1-Producing Escherichia coli From Healthy Humans in Hangzhou, China. Feb 2021, <i>Frontiers in Microbiology</i> . 12, 616687.	5.640	Cor		A
180^	Yang, X., Dong, N., Chan, E. W., Zhang, R. & Chen, S*., Carbapenem Resistance-Encoding and Virulence-Encoding Conjugative Plasmids in Klebsiella pneumoniae. 21 May 2020, Trends in Microbiology. 29, 1, p. 65-83	17.079	Cor	9	A++
179^	Xie, M., Yang, X., Xu, Q., Ye, L., Chen, K., Zheng, Z., Dong, N., Sun, Q., Shu, L., Gu, D., Chan, E. W., Zhang, R. & Chen, S.Clinical evolution of ST11 carbapenem resistant and hypervirulent Klebsiella pneumoniae. 2021, <i>Communications Biology</i> . 4, 650.	6.268	Cor		A+
	2020				
	Xie, M., Dong, N., Chen, K., Yang, X., Ye, L., Chan, E. W., Zhang, R. & Chen, S*, A hybrid plasmid formed by recombination of a virulence plasmid and a resistance plasmid in Klebsiella pneumoniae Dec 2020, <i>Journal of Global Antimicrobial Resistance</i> . 23, p. 466-470	4.035	Cor	2	В
177^	Guo, J., Liu, D., Yang, Z., Weng, W., Chan, E. W. C., Zeng, Z., Wong, K., Lin, P. & <u>Chen, S</u> *., A photoelectrochemical biosensor for rapid and ultrasensitive norovirus detection. 1 Jul 2020, Bioelectrochemistry . 136, 107591.	5.373	Cor	2	A+
176^	Chen, K., Yang, C., Dong, N., Xie, M., Ye, L., Chan, E. W. C. & Chen, S*., Evolution of Ciprofloxacin Resistance-Encoding Genetic Elements in Salmonella. Dec 2020, <i>mSystems</i> . 5, 6, e01234-20.	6.496	Cor		A+
175^	Yang, X., Dong, N., Chan, E. W. & Chen, S*, Genetic cluster analysis of SARS-CoV-2 and the identification of those responsible for the major outbreaks in various countries. 11 Jun 2020, <i>Emerging Microbes and Infections.</i> 9, 1, p. 1287-1299 13 p.	7.163	Cor	17	A
174^	Yang, X., Ye, L., Li, Y., Chan, E. W., Zhang, R. & <u>Chen, S*.,</u> Identification of a Chromosomal Integrated DNA Fragment Containing the rmpA2 and iucABCDiutA Virulence Genes in Klebsiella pneumoniae Dec 2020, mSphere . 5, 6, e01179-20.	4.389	Cor		B+
173^	Wang, M., Chan, E. W. C., Yang, C., Chen, K., So, P. & <u>Chen, S*.</u> , N-Acetyl-D-Glucosamine Acts as Adjuvant that Re-Sensitizes Starvation-Induced Antibiotic-Tolerant Population of E. Coli to β-Lactam. 20 Nov 2020, iScience. 23, 11, 101740.	5.458	Cor		A
	Sun, Z., Shang, Z., Forelli, N., Po, K. H. L., Chen, S., Brady, S. F. & Li, X., Total Synthesis of Malacidin A by β-Hydroxyaspartic Acid Ligation Mediated Cyclization and Absolute Structure Establishment. 29 Jul 2020, Angewandte Chemie-International Edition. 59, 45, p. 19868–19872	15.336	Со	3	A++

171^	Lin, D., Chen, K., Guo, J., Ye, L., Li, R., Chan, E. W. C. & <u>Chen, S*.</u> , Contribution of biofilm formation genetic locus, pgaABCD, to antibiotic resistance development in gut microbiome. Nov 2020, Gut Microbes . 12, 1, p. 1-12 12 p.	10.245	Cor		A+
170^	Zhang R, Dong N, Zeng Y, Shen ZQ, Lu JY, Liu CC, Huang Z, Sun QL, Cheng QP, Shu LB, Cai JC, Chan EWC, Liu DJ, Chen GX, Wang Y, Chen S*. Chromosomal and plasmid-borne tigecycline resistance genes tet(X3) and tet(X4) in dairy cows in a Chinese farm. Antimicrob Agents Chemother. 2020 Oct 0;64(11):e00674-20.	5.191	Cor		A+
169^	Chen, D., Tian, L., Po, K. H. L., <u>Chen, S</u> *. & Li, X., Total synthesis and a systematic structure-activity relationship study of WAP-8294A2. 15 Sep 2020, Bioorganic and Medicinal Chemistry . 28, 18, 115677.	3.641	Cor	1	B+
168^	Huang, Z., Dong, N., Shu, L., Wang, H., Sun, Q., Zhou, H., Chan, E. W., Chen, S*. & Gu, D., Detection and genetic characterization of the colistin resistance gene mcr-3.3 in an Aeromonas veronii strain isolated from alligator feces. 15 Jul 2020, Journal of Global Antimicrobial Resistance. DOI: 10.1016/j.jgar.2020.07.003	4.035	Cor	3	B+
167^	Xu, C., Chen, K., Chan, K. F., Chan, E. W. C., Guo, X., Chow, H. Y., Zhao, G., Zeng, P., Wang, M., Zhu, Y., Li, X., Wong, K-Y. & Chen, S*., Imidazole Type Antifungal Drugs Are Effective Colistin Adjuvants That Resensitize Colistin-Resistant Enterobacteriaceae. 22 Jun 2020, Advanced Therapeutics. UNSP 2000084.	28/352 in Parmacolo gy and pharmacy (92.7%)	Cor		A+
166^	Lu, J., Dong, N., Liu, C., Zeng, Y., Sun, Q., Zhou, H., Hu, Y., <u>Chen, S.</u> , Shen, Z. & Zhang, R., Prevalence and molecular epidemiology of mcr-1-positive Klebsiella pneumoniae in healthy adults from China. 9 Jun 2020, <i>Journal of antimicrobial chemotherapy</i> . DOI: 10.1093/jac/dkaa210	5.790	Со	1	A+
165^	Yang, C., Chen, K., Chan, E. W., Yao, W. & <u>Chen, S*.</u> , Transmission of Chromosomal MDR DNA Fragment Encoding Ciprofloxacin Resistance by a Conjugative Helper Plasmid in Salmonella Sep 2020, Frontiers in Microbiology . 11, 556227.	5.640	Cor		A
164^	Chow, H. Y., Po, K. H. L., Jin, K., Qiao, G., Sun, Z., Ma, W., Ye, X., Zhou, N., Chen, S*. & Li, X., Establishing the Structure-Activity Relationship of Daptomycin. 9 Jul 2020, ACS Medicinal Chemistry Letters. 11, 7, p. 1442-1449 8 p.	4.345	Cor	5	B+
163^	Jin, W. B., Xu, C., Cheung, Q., Gao, W., Zeng, P., Liu, J., Chan, E. W., Leung, Y., Chan, T. H., Wong, K., <u>Chen, S*</u> . & Chan, K., Bioisosteric investigation of ebselen: Synthesis and in vitro characterization of 1,2-benzisothiazol-3(2H)-one derivatives as potent New Delhi metallo-β-lactamase inhibitors. Jul 2020, Bioorganic Chemistry . 100, 103873.	5.275	Cor	7	A
162^	Yang, X., Ye, L., Chan, E. W., Zhang, R. & Chen, S*., Tracking Recombination Events That Occur in Conjugative Virulence Plasmid p15WZ-82_Vir during the Transmission Process. Jul 2020, mSystems. 5, 4, e00140-20.	6.496	Cor	2	A
161^	Chen, D., Po, K. H. L., Blasco, P., Chen, S. & Li, X., Convergent Synthesis of Calcium-Dependent Antibiotic CDA3a and Analogues with Improved Antibacterial Activity via Late-Stage Serine Ligation. 19 Jun 2020, <i>Organic Letters</i> . 22, 12, p. 4749-4753 5 p.	6.005	Co	1	A+
160^	Wong, M., Lin, D., Li, R., Chan, E. & <u>Chen, S*.</u> , Genomic and transcriptomic analyses of the Salmonella virulence regulatory network: abridged secondary publication. Hong Kong medical journal = Xianggang yi xue za zhi , 26, 3 (Supplement 4), p. 39-42	2.227	Cor		В

159^	Chen, S.*, Chan EWC., Po KHL., Ye L., Li R., Molecular mechanisms of fluoroquinolone and expanded-spectrum cephalosporin resistance in Vibrio parahaemolyticus: abridged secondary publication. Hong Kong medical journal = Xianggang yi xue za zhi , Vol. 26, No. 3 (Supplement 4), 06.2020, p. 43-47.	2.227	Cor		В
	Pan, Y., Zeng, J., Li, L., Yang, J., Tang, Z., Xiong, W., Li, Y., Chen. S*. & Zeng, Z., Coexistence of Antibiotic Resistance Genes and Virulence Factors Deciphered by Large-Scale Complete Genome Analysis. May 2020, mSystems. 5, 3, e00821-19.	6.496	Cor	7	A
157^	Cheng, Q., Xu, C., Chai, J., Zhang, R., Chan, E. W. C. & Chen, S*., Structural Insight into the Mechanism of Inhibitor-Resistance in CTX-M-199, a CTX-M-64 Variant Carrying the S130T Substitution. 10 Apr 2020, ACS Infectious Diseases. 6, 4, p. 577-587	5.084	Cor	3	A+
	Xie, M., Chen, K., Ye, L., Yang, X., Xu, Q., Yang, C., Dong, N., Chan, E. W., Sun, Q., Shu, L., Gu, D., Lin, X., Zhang, R. & Chen, S*., Conjugation of Virulence Plasmid in Clinical Klebsiella pneumoniae Strains through Formation of a Fusion Plasmid. 1 Apr 2020, Advanced Biosystems. 4, 4, 1900239.	New journal	Cor	9	
155^	Chow, H. Y., Po, K. H. L., Gao, P., Blasco, P., Wang, X., Li, C., Ye, L., Jin, K., Chen, K., Chan, E. W. C., You, X., Yi Tsun Kao, R., Chen, S*. & Li, X., Methylation of Daptomycin Leading to the Discovery of Kynomycin, a Cyclic Lipodepsipeptide Active against Resistant Pathogens. 26 Mar 2020, Journal of Medicinal Chemistry. 63, 6, p. 3161-3171	7.446	Cor	9	A+
	Zeng, P., Xu, C., Liu, C., Liu, J., Cheng, Q., Gao, W., Yang, X., Chen, S*., Chan, K. & Wong, K., De Novo Designed Hexadecapeptides Synergize Glycopeptide Antibiotics Vancomycin and Teicoplanin against Pathogenic Klebsiella pneumoniae via Disruption of Cell Permeability and Potential. 16 Mar 2020, ACS Applied Bio Materials. 3, 3, p. 1738-1752	New journal	Cor	7	
153^	Qiu, J., Nie, Y., Zhao, Y., Zhang, Y., Li, L., Wang, R., Wang, M., Chen, S., Wang, J., Li, Y. & Xia, J., Safeguarding intestine cells against enteropathogenic Escherichia coli by intracellular protein reaction, a preventive antibacterial mechanism. 10 Mar 2020, Proceedings of the National Academy of Sciences of the United States of America. 117, 10, p. 5260-5268	11.205	Со	1	A+
	Zeng, Y., Dong, N., Zhang, R., Liu, C., Sun, Q., Lu, J., Shu, L., Cheng, Q., Chan, E. W. & <u>Chen, S*</u> ., Emergence of an Empedobacter falsenii strain harbouring a tet(X)-variant-bearing novel plasmid conferring resistance to tigecycline. Mar 2020, Journal of antimicrobial chemotherapy . 75, 3, p. 531-536 6 p.	5.790	Cor	1	A+
151^	Zheng, Z., Cheng, Q., Chan, E. W. & Chen, S*., Genetic and Biochemical Characterization of VMB-1, a Novel Metallo-β-Lactamase Encoded by a Conjugative, Broad-Host Range IncC Plasmid from Vibrio spp Mar 2020, Advanced Biosystems. 4, 3, 1900221.	New journal	Cor		
150^	Li, R., Xie, M., Liu, L., Huang, Y., Wu, X., Wang, Z., Chan, E. W. C., Chen, S*., Characterisation of a cointegrate plasmid harbouring blaNDM-1 in a clinical Salmonella Lomita strain. Jan 2020, International Journal of Antimicrobial Agents. 55, 1, 105817.	5.283	Cor		A
149^	Huang, H., Dong, N., Shu, L., Lu, J., Sun, Q., Chan, E. W., Chen, S*., Zhang, R., Colistin-resistance gene mcr in clinical carbapenem-resistant Enterobacteriaceae strains in China, 2014–2019. 2020, Emerging Microbes and Infections. 9, 1, p.	7.163	Cor		A

	237-245 9 p.				
148^	Zhang R, Dong N, Shen ZQ, Zeng Y, Lu JY, Liu CC, Zhou HW, Hu YY, Sun QL, Cheng QP, Shu LB, Cai JC, Chan EWC, Chen GX, Chen S*. Epidemiological and phylogenetic analysis reveals Flavobacteriaceae as potential ancestral source of tigecycline resistance gene tet(X). Nature Communications. 2020, Sep 16;11(1):4648	14.919	Cor		A+
	2019				
147^	Yang X., Wai-Chi Chan E., Zhang R., <u>Chen S</u> *. (2019). A conjugative plasmid that augments virulence in Klebsiella pneumoniae. <i>Nature Microbiology</i> . https://doi.org/10.1038/s41564-019-0566-7	17.745	Cor	27	A++
146^	Wong, M. H., Chan, B. K., Chan, E. W. & Chen, S*. Over-Expression of ISAba1-Linked Intrinsic and Exogenously Acquired OXA Type Carbapenem-Hydrolyzing-Class D-\(\beta\)-Lactamase-Encoding Genes Is Key Mechanism Underlying Carbapenem Resistance in Acinetobacter baumannii. 2019, Frontiers in Microbiology. 10, 2809.	5.640	Cor	9	A
145	Sun Q, Wang Y, Dong N, Shen L, Zhou H, Hu YY, Gu D, Chen S, Zhang R, Ji Q. The application of CRISPR/Cas9-based genome editing in studying the mechanism of pandrug resistance in Klebsiella pneumoniae. Antimicrob Agents Chemother. 2019 Apr 15.	5.191	Co	2	A+
144	Dong N., Sun Q., Huang Y., Shu L., Ye L., Zhang R., <u>Chen S</u> *. (2019). Evolution of carbapenem-resistant serotype k1 hypervirulent klebsiella pneumoniae by acquisition of blaVIM-1-bearing plasmid. <i>Antimicrobial Agents and Chemotherapy</i> , v.63, n.9. https://doi.org/10.1128/AAC.01056-19	5.191	Cor	7	A+
143	Zeng P., Xu C., Cheng Q., Liu J., Gao W., Yang X., Wong KY., Chen S*., Chan KF. (2019). Phenol-Soluble-Modulin-Inspired Amphipathic Peptides Have Bactericidal Activity against Multidrug-Resistant Bacteria. ChemMedChem, v.14, n.16, p.1547-1559. https://doi.org/10.1002/cmdc.201900364	3.124	Cor	6	В
142	Chen D, Chow HY, Po KHL, Ma W, Leung ELY, Sun Z, Liu M, Chen S, Li X. Total Synthesis and Structural Establishment/Revision of Antibiotics A54145. Org Lett. 2019 Jul 19;21(14):5639-5644.	6.005	Co	10	A+
141	Sun, Q., Wang, H., Shu, L., Dong, N., Yang, F., Zhou, H., Chen, S., Zhang, R., Leclercia adecarboxylata From Human Gut Flora Carries mcr-4.3 and blaIMP-4-Bearing Plasmids. 5 Dec 2019. <i>Frontiers in Microbiology.</i> 10, 2805.	5.640	Cor	4	A
140	Li R., Chen K., Chan E.WC., <u>Chen S</u> *. (2019). Characterization of the stability and dynamics of Tn6330 in an Escherichia coli strain by nanopore long reads. <i>Journal of Antimicrobial Chemotherapy</i> , v.74, n.7, p.1807-1811. https://doi.org/10.1093/jac/dkz117	5.790	Cor	4	A+
139	Zheng Z., Ye L., Chan E.WC., Chen S*. (2019). Identification and characterization of a conjugative blaVIM-1-bearing plasmid in Vibrio alginolyticus of food origin. Journal of Antimicrobial Chemotherapy, v.74, n.7, p.1842-1847. https://doi.org/10.1093/jac/dkz140	5.790	Cor	2	A+
138	Ye L., Chan E.W.C., <u>Chen S</u> *. (2019). Selective and suppressive effects of antibiotics on donor and recipient bacterial strains in gut microbiota determine transmission efficiency of blaNDM-1-bearing plasmids. <i>Journal of Antimicrobial Chemotherapy</i> , v.74, n.7,	5.790	Cor	2	A+

129	Lin P., Liu D., Wei W., Guo J., Ke S., Zeng X., <u>Chen S</u> *. (2018). A novel protein binding strategy for energy-transfer-based photoelectrochemical detection of enzymatic activity of botulinum neurotoxin A. <i>Electrochemistry Communications</i> , v.97, p.114-118.	4.724	Cor	4	A
	2018	,	1		1
130	ciprofloxacin resistance in Salmonella mediated by a novel type of conjugative helper plasmids. Emerg Microbes Infect. 2019;8(1):857-865.Chen K, Dong N, Chan EW, Chen S*. Transmission of ciprofloxacin resistance in Salmonella mediated by a novel type of conjugative helper plasmids. <i>Emerg Microbes Infect</i> . 2019;8(1):857-865.	7.163	Cor	12	A
131	Shu LB., Lu Q., Sun RH., Lin LQ., Sun QL., Hu J., Zhou HW., Chan E.WC., Chen S*., Zhang R. (2019). Prevalence and phenotypic characterization of carbapenem-resistant klebsiella pneumoniae strains recovered from sputum and fecal samples of ICU patients in Zhejiang Province, China. Infection and Drug Resistance, v.12, p.11-18. https://doi.org/10.2147/IDR.S175823 Chen K, Dong N, Chan EW, Chen S*.(2019) Transmission of	4.003	Cor	9	B+
132	Chen K., Chan E.W.C., <u>Chen S</u> *. (2019). Evolution and transmission of a conjugative plasmid encoding both ciprofloxacin and ceftriaxone resistance in Salmonella. <i>Emerging Microbes and Infections</i> , v.8, n.1, p.396-403. https://doi.org/10.1080/22221751.2019.1585965	7.163	Cor	7	A
133	Lui H.K., Gao W., Cheung K.C., Jin W.B., Sun N., Kan J.W.Y., Wong I.L.K., Chiou J., Lin D., Chan E.W.C., Leung YC., Chan T.H., Chen S., Chan KF., Wong KY. (2019). Boosting the efficacy of anti-MRSA β-lactam antibiotics via an easily accessible, non-cytotoxic and orally bioavailable FtsZ inhibitor. European Journal of Medicinal Chemistry, v.163, p.95-115. https://doi.org/10.1016/j.ejmech.2018.11.052	6.514	Cor	14	A+
134	Shu L., Dong N., Lu J., Zheng Z., Hu J., Zeng W., Sun Q., Chan E.WC., Zhou H., Hu F., Chen S*, Zhang R*. (2019). Emergence of OXA-232 Carbapenemase-Producing Klebsiella pneumoniae That Carries a pLVPK-Like Virulence Plasmid among Elderly Patients in China. Antimicrobial Agents and Chemotherapy, v.63, n.3. https://doi.org/10.1128/AAC.02246-18	5.191	Cor	30	A+
135	Dong N., Liu L., Zhang R., Chen K., Xie M., Chan E.W.C., Chen S*. (2019). An IncR plasmid harbored by a hypervirulent carbapenem-resistant klebsiella pneumoniae strain possesses five tandem repeats of the blaKPC-2::NTEKPC-Id Fragment. Antimicrobial Agents and Chemotherapy, v.63, n.3. https://doi.org/10.1128/AAC.01775-18	5.191	Cor	5	A+
136	Liu X., Geng S., Chan E.WC., Chen S*. (2019). Increased prevalence of escherichia coli strains from food carrying blaNDM and mcr-1-bearing plasmids that structurally resemble those of clinical strains, China, 2015 to 2017. Eurosurveillance, v.24, n.13. https://doi.org/10.2807/1560-7917.ES.2019.24.13.1800113	6.307	Cor	6	A+
137	Zheng Z., Li R., Ye L., Chan E.WC., Xia X., Chen S*. (2019). Genetic characterization of blaCTX-M-55-bearing plasmids harbored by food-borne cephalosporin-resistant Vibrio parahaemolyticus Strains in China. Frontiers in Microbiology, v.10, n.JUN. https://doi.org/10.3389/fmicb.2019.01338	5.640	Cor	2	A

	1.4//1.:/10.1016/:1				
	https://doi.org/10.1016/j.elecom.2018.11.004 Dong N., Lin D., Zhang R., Chan E.WC., Chen S*. (2018).				
	Carriage of bla KPC-2 by a virulence plasmid in hypervirulent				
128	Klebsiella pneumoniae. <i>Journal of Antimicrobial Chemotherapy</i> ,	5.790	Cor	35	A+
	v.73, n.12, p.3317-3321. https://doi.org/10.1093/jac/dky358				
	Wang J., Shao X., Zhang Y., Zhu Y., Yang P., Yuan J., Wang T., Yin				
	C., Wang W., Chen S*, Liang H., Deng X. (2018). HrpS is a global				
	regulator on Type III Secretion System (T3SS) and non-T3SS genes				
127	in pseudomonas savastanoi pv. phaseolicola. <i>Molecular</i>	4.171	Co	5	A
	Plant-Microbe Interactions, v.31, n.12, p.1232-1243.				
	https://doi.org/10.1094/MPMI-02-18-0035-R				
	Zheng Z., Li R., Ye L., Chan E.WC., <u>Chen S</u> *. (2018).				
	Identification and characterization of IncA/C conjugative,				
126	blaNDM-1-bearing plasmid in vibrio alginolyticus of food origin.	5.191	Cor	3	A+
	Antimicrobial Agents and Chemotherapy, v.62, n.12.				
	https://doi.org/10.1128/AAC.01897-18				
	Andolina G., Wei R., Liu H., Zhang Q., Yang X., Cao H., Chen S.,				
	Yan A., Li X.D., Li X. (2018). Metabolic Labeling of Pseudaminic				
125	Acid-Containing Glycans on Bacterial Surfaces. ACS Chemical	5.100	Co	14	B+
	<i>Biology</i> , v.13, n.10, p.3030-3037.				
	https://doi.org/10.1021/acschembio.8b00822				
	<i>Li R., Chen K., Chi Chan E.W.,</i> <u><i>Chen S</i></u> *. (2018). Resolution of				
	dynamic Mdr structures among the plasmidome of salmonella using				
124	MinION single-molecule, long-read sequencing. <i>Journal of</i>	5.790	Cor	8	A+
	Antimicrobial Chemotherapy, v.73, n.10, p.2691-2695.				
	https://doi.org/10.1093/jac/dky243				
	Kuang D., Zhang J., Xu X., Shi W., <u>Chen S.</u> , Yang X., Su X., Shi X.,				
	Meng J. (2018). Emerging high-level ciprofloxacin resistance and		~		
123	molecular basis of resistance in Salmonella enterica from humans,	5.277	Co	26	A
	food and animals. <i>International Journal of Food Microbiology</i> ,				
	v.280, p.1-9. https://doi.org/10.1016/j.ijfoodmicro.2018.05.001				
	Zhang Z., Cao C., Liu B., Xu X., Yan Y., Cui S., Chen S., Meng J.,				
	Yang B. (2018). Comparative Study on Antibiotic Resistance and				
122	DNA Profiles of Salmonella enterica Serovar Typhimurium Isolated from Humans, Retail Foods, and the Environment in Shanghai,	3.171	Co	11	В
	China. <i>Foodborne Pathogens and Disease</i> , v.15, n.8, p.481-488.				
	https://doi.org/10.1089/fpd.2017.2414				
	Chen K, Dong N, Zhao S, Liu L, Li R, Xie M, Lin D, Chan EW, Meng				
	J, McDermott PF, Chen S*. 2018. Identification and				
121	characterization of conjugative plasmids that encode ciprofloxacin	5.191	Cor	8	A+
	resistance in Salmonella. Antimicrob Agents Chemother				
	doi:10.1128/AAC.00575-18.				
	Li R., Xie M., Chan E.W.C., Chen S. * (2018). Rapid resolution of				
	multi-drug resistance bacterial genome harbouring mcr-1 and				
120	blaCMY-2 using MinION sequencing platform. <i>International</i>	5.283	Cor		A
	Journal of Antimicrobial Agents, v.52, n.2, p.303-304.				
	https://doi.org/10.1016/j.ijantimicag.2018.05.011				
	Shao X., Zhang X., Zhang Y., Zhu M., Yang P., Yuan J., Xie Y., Zhou				
	T., Wang W., Chen S., Liang H., Deng X. (2018). RpoN-dependent				
119	direct regulation of quorum sensing and the type VI secretion system	3.490	Co	16	В
	in Pseudomonas aeruginosa PAO1. <i>Journal of Bacteriology</i> , v.200,				
	n.16. https://doi.org/10.1128/JB.00205-18				
118	Jin W.B., Xu C., Cheng Q., Qi X.L., Gao W., Zheng Z., Chan E.W.C.,	6.514	Cor	19	A+
	Leung YC., Chan T.H., Wong KY., <u>Chen S</u> *, Chan KF. (2018).		-	_	

		T			1
	Investigation of synergistic antimicrobial effects of the drug				
	combinations of meropenem and 1,2-benzisoselenazol-3(2H)-one				
	derivatives on carbapenem-resistant Enterobacteriaceae producing				
	NDM-1. European Journal of Medicinal Chemistry, v.155,				
	p.285-302. https://doi.org/10.1016/j.ejmech.2018.06.007				
	Zhang, Y., Zheng, Z., Chan, E. W., Dong, N., Xia, X. & Chen, S.,				
	Molecular Characterization of qnrVC Genes and Their Novel Alleles				
117	in Vibrio spp. Isolated from Food Products in China. Jul 2018,	5.191	Cor	7	A+
	Antimicrobial Agents and Chemotherapy. 62, 7, e00529-18.	05/110			
116	Po, K. H., Chan, E. W. and <u>Chen, S</u> *. 2018. Characterization of	87/112			
116	Protein Domain Function via in vitro DNA Shuffling. <i>Bio-protocol</i>	In	Cor		В
	8(11): e2873. DOI: 10.21769/BioProtoc.2873.	Biology			
	Zheng Z., Li R., Wong M.HY., Chan E.WC., Xia X., Chen S *.				
115	(2018). First detection of a blaCTX-M-15-carrying plasmid in Vibrio	4.035	Cor	4	В
113	alginolyticus. Journal of Global Antimicrobial Resistance, v.13,	4.055	COI	7	В
	p.206-208. https://doi.org/10.1016/j.jgar.2018.04.007				
	Xie M., Li R., Liu Z., Chan E.W.C., Chen S*. (2018). Recombination				
	of plasmids in a carbapenem-resistant NDM-5-producing clinical		~		
114	Escherichia coli isolate. <i>Journal of Antimicrobial Chemotherapy</i> ,	5.790	Cor	23	A+
	v.73, n.5, p.1230-1234. https://doi.org/10.1093/jac/dkx540				
	Fan ZT, Po KH, Wong K.K, Chen S, Lau S.P. (2018)				
	Polyethylenimine-Modified Graphene Oxide as a Novel	5 007		17	D.
113	Antibacterial Agent and Its Synergistic Effect with Daptomycin for	5.097	Cor	17	B+
	MethicillinResistant Staphylococcus aureus. ACS Applied Nano				
	<i>Materials</i> . Epub. DOI:10.1021/acsanm.8b00219				
		35/126 in			
110	Comparative characterization of nontyphoidal Salmonella isolated	Multidisc			D.
112	from humans and food animals in China, 2003–2011. <i>Heliyon</i> , v.4,	iplinary Sciences	Cor	6	B+
	n.4. https://doi.org/10.1016/j.heliyon.2018.e00613	Sciences			
	Li R., Yu H., Xie M., Chen K., Dong N., Lin D., Chan E.WC., Chen				
	<u>S</u> *. (2018). Genetic basis of chromosomally-encoded mcr-1 gene.				
111		5.439	Cor	22	A
	International Journal of Antimicrobial Agents, v.51, n.4,				
	p.578-585. https://doi.org/10.1016/j.ijantimicag.2017.11.015				
	Qiao J., Alali W.Q., Liu J., Wang Y., <u>Chen S</u> *., Cui S., Yang B.				
	(2018). Prevalence of Virulence Genes in Extended-Spectrum				
110	β-lactamases (ESBLs)-Producing Salmonella in Retail Raw Chicken	3.167	Cor	7	A
	in China. <i>Journal of Food Science</i> , v.83, n.4, p.1048-1052.				
	https://doi.org/10.1111/1750-3841.14111				
	Jin K., Po K.H.L., Kong W.Y., Lo C.H., Lo C.W., Lam H.Y.,				
	Sirinimal A., Reuven J.A., Chen S*., Li X. (2018). Synthesis and				
100	antibacterial studies of teixobactin analogues with non-isostere	2 (44	~		.
1119	substitution of enduracididine. <i>Bioorganic and Medicinal</i>	3.641	Cor	23	B+
	Chemistry , v.26, n.5, p.1062-1068.				
	https://doi.org/10.1016/j.bmc.2018.01.016				
	Li R., Xie M., Dong N., Lin D., Yang X., Wong M.H.Y., Chan E. W. C. Chan S* (2018) Efficient generation of generality				
100	E.WC., <u>Chen S</u> *. (2018). Efficient generation of complete	(524		60	
108	sequences of MDR-encoding plasmids by rapid assembly of	6.524	Cor	69	A+
	MinION barcoding sequencing data. <i>GigaScience</i> , v.7, n.3, p.1-9.				
	https://doi.org/10.1093/gigascience/gix132				
	Gu D., Dong N., Zheng Z., Lin D., Huang M., Wang L., Chan				
	E.WC., Shu L., Yu J., Zhang R., <u>Chen S</u> *. (2018). A fatal outbreak				
107		25.071	Cor	279	A++
	in a Chinese hospital: a molecular epidemiological study. <i>The</i>				
	Lancet Infectious Diseases, v.18, n.1, p.37-46.				
		ı l	١		I

	T //1 ' //10.101//G1473.2000/17/20400.0				
	https://doi.org/10.1016/S1473-3099(17)30489-9				
	Wong M.H.Y., Shum HP., Chen J.H.K., Man MY., Wu A., Chan				
	<i>E.WC.</i> , <i>Yuen KY.</i> , <i>Chen S</i> *. (2018). Emergence of				
106	carbapenem-resistant hypervirulent Klebsiella pneumoniae. <i>The</i>	25.071	Cor	13	A++
	Lancet Infectious Diseases, v.18, n.1, p.24.				
	https://doi.org/10.1016/S1473-3099(17)30629-1				
	Yao H., Qin S., Chen S., Shen J., Du XD. (2018). Emergence of				
105	carbapenem-resistant hypervirulent Klebsiella pneumoniae. The	2.5.054	~	20	
105	Lancet Infectious Diseases, v.18, n.1, p.25.	25.071	Co	29	A++
	https://doi.org/10.1016/S1473-3099(17)30628-X				
	Zhang R., Dong N., Huang Y., Zhou H., Xie M., Chan E.WC., Hu				
	Y., Cai J., Chen S*. (2018). Evolution of tigecycline- and				
	colistin-resistant CRKP (carbapenem-resistant Klebsiella				
104		7.163	Cor	21	A
	pneumoniae) in vivo and its persistence in the GI tract. <i>Emerging</i>				
	Microbes and Infections, v.7, n.1.				
	https://doi.org/10.1038/s41426-018-0129-7				
	Dong N., Zhang R., Liu L., Li R., Lin D., Chan E.WC., <u>Chen S</u> *.				
103	(2018). Genome analysis of clinical multilocus sequence Type 11	5.237	Cor		B+
105	Klebsiella Pneumoniae from China. <i>Microbial Genomics</i> , v.4, n.2.	3.237	Cor	31	D .
	https://doi.org/10.1099/mgen.0.000149				
	Dong N., Yang X., Zhang R., Chan E.WC., <u>Chen S</u> *. (2018).				
	Tracking microevolution events among ST11				
102	carbapenemase-producing hypervirulent Klebsiella pneumoniae	7.163	Cor	24	A
	outbreak strains. <i>Emerging Microbes and Infections</i> , v.7, n.1.				
	https://doi.org/10.1038/s41426-018-0146-6				
	· •				1
	2017				
	Po K.H.L., Chan E.W.C., Chen S*, (2017), Functional				
	Po K.H.L., Chan E.W.C., <u>Chen S</u> *. (2017). Functional characterization of CTX-M-14 and CTX-M-15 β-lactamases by in		_		
101	characterization of CTX-M-14 and CTX-M-15 β-lactamases by in	5.191	Cor	4	A+
101	characterization of CTX-M-14 and CTX-M-15 β-lactamases by in vitro DNA shuffling. <i>Antimicrobial Agents and Chemotherapy</i> ,	5.191	Cor	4	A+
101	characterization of CTX-M-14 and CTX-M-15 β-lactamases by in vitro DNA shuffling. <i>Antimicrobial Agents and Chemotherapy</i> , v.61, n.12. https://doi.org/10.1128/AAC.00891-17	5.191	Cor	4	A+
101	characterization of CTX-M-14 and CTX-M-15 β-lactamases by in vitro DNA shuffling. <i>Antimicrobial Agents and Chemotherapy</i> , v.61, n.12. https://doi.org/10.1128/AAC.00891-17 Cui M., Wu C., Zhang J., Zhang C., Li R., Wai-Chi Chan E., Wu C.,	5.191	Cor	4	A+
	characterization of CTX-M-14 and CTX-M-15 β-lactamases by in vitro DNA shuffling. <i>Antimicrobial Agents and Chemotherapy</i> , v.61, n.12. https://doi.org/10.1128/AAC.00891-17 <i>Cui M., Wu C., Zhang J., Zhang C., Li R., Wai-Chi Chan E., Wu C., Chen S*</i> (2017). Distinct mechanisms of acquisition of mcr-1				A+
	characterization of CTX-M-14 and CTX-M-15 β-lactamases by in vitro DNA shuffling. <i>Antimicrobial Agents and Chemotherapy</i> , v.61, n.12. https://doi.org/10.1128/AAC.00891-17 <i>Cui M., Wu C., Zhang J., Zhang C., Li R., Wai-Chi Chan E., Wu C., Chen S</i> *. (2017). Distinct mechanisms of acquisition of mcr-1 -bearing plasmid by Salmonella strains recovered from animals and	5.191	Cor	10	
	characterization of CTX-M-14 and CTX-M-15 β-lactamases by in vitro DNA shuffling. <i>Antimicrobial Agents and Chemotherapy</i> , v.61, n.12. https://doi.org/10.1128/AAC.00891-17 <i>Cui M., Wu C., Zhang J., Zhang C., Li R., Wai-Chi Chan E., Wu C., Chen S*</i> . (2017). Distinct mechanisms of acquisition of mcr-1 -bearing plasmid by Salmonella strains recovered from animals and food samples. <i>Scientific Reports</i> , v.7, n.1.				
	characterization of CTX-M-14 and CTX-M-15 β-lactamases by in vitro DNA shuffling. <i>Antimicrobial Agents and Chemotherapy</i> , v.61, n.12. https://doi.org/10.1128/AAC.00891-17 <i>Cui M., Wu C., Zhang J., Zhang C., Li R., Wai-Chi Chan E., Wu C., Chen S</i> *. (2017). Distinct mechanisms of acquisition of mcr-1-bearing plasmid by Salmonella strains recovered from animals and food samples. <i>Scientific Reports</i> , v.7, n.1. https://doi.org/10.1038/s41598-017-01810-4				
	characterization of CTX-M-14 and CTX-M-15 β-lactamases by in vitro DNA shuffling. <i>Antimicrobial Agents and Chemotherapy</i> , v.61, n.12. https://doi.org/10.1128/AAC.00891-17 <i>Cui M., Wu C., Zhang J., Zhang C., Li R., Wai-Chi Chan E., Wu C., Chen S</i> *. (2017). Distinct mechanisms of acquisition of mcr-1-bearing plasmid by Salmonella strains recovered from animals and food samples. <i>Scientific Reports</i> , v.7, n.1. https://doi.org/10.1038/s41598-017-01810-4 <i>Wong M.HY., Chan E.WC., Chen S</i> *. (2017). IS26-mediated				
100	characterization of CTX-M-14 and CTX-M-15 β-lactamases by in vitro DNA shuffling. <i>Antimicrobial Agents and Chemotherapy</i> , v.61, n.12. https://doi.org/10.1128/AAC.00891-17 <i>Cui M., Wu C., Zhang J., Zhang C., Li R., Wai-Chi Chan E., Wu C., Chen S*</i> . (2017). Distinct mechanisms of acquisition of mcr-1 -bearing plasmid by Salmonella strains recovered from animals and food samples. <i>Scientific Reports</i> , v.7, n.1. https://doi.org/10.1038/s41598-017-01810-4 <i>Wong M.HY., Chan E.WC., Chen S*</i> . (2017). IS26-mediated formation of a virulence and resistance plasmid in Salmonella	4.379	Cor	10	A
	characterization of CTX-M-14 and CTX-M-15 β-lactamases by in vitro DNA shuffling. <i>Antimicrobial Agents and Chemotherapy</i> , v.61, n.12. https://doi.org/10.1128/AAC.00891-17 <i>Cui M., Wu C., Zhang J., Zhang C., Li R., Wai-Chi Chan E., Wu C., Chen S*</i> . (2017). Distinct mechanisms of acquisition of mcr-1 -bearing plasmid by Salmonella strains recovered from animals and food samples. <i>Scientific Reports</i> , v.7, n.1. https://doi.org/10.1038/s41598-017-01810-4 <i>Wong M.HY., Chan E.WC., Chen S*</i> . (2017). IS26-mediated formation of a virulence and resistance plasmid in Salmonella Enteritidis. <i>Journal of Antimicrobial Chemotherapy</i> , v.72, n.10,				
100	characterization of CTX-M-14 and CTX-M-15 β-lactamases by in vitro DNA shuffling. <i>Antimicrobial Agents and Chemotherapy</i> , v.61, n.12. https://doi.org/10.1128/AAC.00891-17 <i>Cui M., Wu C., Zhang J., Zhang C., Li R., Wai-Chi Chan E., Wu C., Chen S*</i> . (2017). Distinct mechanisms of acquisition of mcr-1 -bearing plasmid by Salmonella strains recovered from animals and food samples. <i>Scientific Reports</i> , v.7, n.1. https://doi.org/10.1038/s41598-017-01810-4 <i>Wong M.HY., Chan E.WC., Chen S*</i> . (2017). IS26-mediated formation of a virulence and resistance plasmid in Salmonella	4.379	Cor	10	A
100	characterization of CTX-M-14 and CTX-M-15 β-lactamases by in vitro DNA shuffling. <i>Antimicrobial Agents and Chemotherapy</i> , v.61, n.12. https://doi.org/10.1128/AAC.00891-17 <i>Cui M., Wu C., Zhang J., Zhang C., Li R., Wai-Chi Chan E., Wu C., Chen S*</i> . (2017). Distinct mechanisms of acquisition of mcr-1 -bearing plasmid by Salmonella strains recovered from animals and food samples. <i>Scientific Reports</i> , v.7, n.1. https://doi.org/10.1038/s41598-017-01810-4 <i>Wong M.HY., Chan E.WC., Chen S*</i> . (2017). IS26-mediated formation of a virulence and resistance plasmid in Salmonella Enteritidis. <i>Journal of Antimicrobial Chemotherapy</i> , v.72, n.10,	4.379	Cor	10	A
100	characterization of CTX-M-14 and CTX-M-15 β-lactamases by in vitro DNA shuffling. <i>Antimicrobial Agents and Chemotherapy</i> , v.61, n.12. https://doi.org/10.1128/AAC.00891-17 <i>Cui M., Wu C., Zhang J., Zhang C., Li R., Wai-Chi Chan E., Wu C., Chen S</i> *. (2017). Distinct mechanisms of acquisition of mcr-1-bearing plasmid by Salmonella strains recovered from animals and food samples. <i>Scientific Reports</i> , v.7, n.1. https://doi.org/10.1038/s41598-017-01810-4 <i>Wong M.HY., Chan E.WC., Chen S</i> *. (2017). IS26-mediated formation of a virulence and resistance plasmid in Salmonella Enteritidis. <i>Journal of Antimicrobial Chemotherapy</i> , v.72, n.10, p.2750-2754. https://doi.org/10.1093/jac/dkx238	4.379 5.790	Cor	20	A A+
100	characterization of CTX-M-14 and CTX-M-15 β-lactamases by in vitro DNA shuffling. <i>Antimicrobial Agents and Chemotherapy</i> , v.61, n.12. https://doi.org/10.1128/AAC.00891-17 <i>Cui M., Wu C., Zhang J., Zhang C., Li R., Wai-Chi Chan E., Wu C., Chen S*</i> . (2017). Distinct mechanisms of acquisition of mcr-1-bearing plasmid by Salmonella strains recovered from animals and food samples. <i>Scientific Reports</i> , v.7, n.1. https://doi.org/10.1038/s41598-017-01810-4 <i>Wong M.HY., Chan E.WC., Chen S*</i> . (2017). IS26-mediated formation of a virulence and resistance plasmid in Salmonella Enteritidis. <i>Journal of Antimicrobial Chemotherapy</i> , v.72, n.10, p.2750-2754. https://doi.org/10.1093/jac/dkx238 <i>Chen K., Chan E.WC., Xie M., Ye L., Dong N., Chen S*</i> . (2017). Widespread distribution of mcr-1-bearing bacteria in the ecosystem,	4.379	Cor	10	A
100	characterization of CTX-M-14 and CTX-M-15 β-lactamases by in vitro DNA shuffling. <i>Antimicrobial Agents and Chemotherapy</i> , v.61, n.12. https://doi.org/10.1128/AAC.00891-17 <i>Cui M., Wu C., Zhang J., Zhang C., Li R., Wai-Chi Chan E., Wu C., Chen S*</i> . (2017). Distinct mechanisms of acquisition of mcr-1-bearing plasmid by Salmonella strains recovered from animals and food samples. <i>Scientific Reports</i> , v.7, n.1. https://doi.org/10.1038/s41598-017-01810-4 <i>Wong M.HY., Chan E.WC., Chen S*</i> . (2017). IS26-mediated formation of a virulence and resistance plasmid in Salmonella Enteritidis. <i>Journal of Antimicrobial Chemotherapy</i> , v.72, n.10, p.2750-2754. https://doi.org/10.1093/jac/dkx238 <i>Chen K., Chan E.WC., Xie M., Ye L., Dong N., Chen S*</i> . (2017). Widespread distribution of mcr-1-bearing bacteria in the ecosystem, 2015 to 2016. <i>Eurosurveillance</i> , v.22, n.39.	4.379 5.790	Cor	20	A A+
100	characterization of CTX-M-14 and CTX-M-15 β-lactamases by in vitro DNA shuffling. <i>Antimicrobial Agents and Chemotherapy</i> , v.61, n.12. https://doi.org/10.1128/AAC.00891-17 <i>Cui M., Wu C., Zhang J., Zhang C., Li R., Wai-Chi Chan E., Wu C., Chen S</i> *. (2017). Distinct mechanisms of acquisition of mcr-1-bearing plasmid by Salmonella strains recovered from animals and food samples. <i>Scientific Reports</i> , v.7, n.1. https://doi.org/10.1038/s41598-017-01810-4 <i>Wong M.HY., Chan E.WC., Chen S</i> *. (2017). IS26-mediated formation of a virulence and resistance plasmid in Salmonella Enteritidis. <i>Journal of Antimicrobial Chemotherapy</i> , v.72, n.10, p.2750-2754. https://doi.org/10.1093/jac/dkx238 <i>Chen K., Chan E.WC., Xie M., Ye L., Dong N., Chen S</i> *. (2017). Widespread distribution of mcr-1-bearing bacteria in the ecosystem, 2015 to 2016. <i>Eurosurveillance</i> , v.22, n.39. https://doi.org/10.2807/1560-7917.ES.2017.22.39.17-00206	4.379 5.790	Cor	20	A A+
100	characterization of CTX-M-14 and CTX-M-15 β-lactamases by in vitro DNA shuffling. <i>Antimicrobial Agents and Chemotherapy</i> , v.61, n.12. https://doi.org/10.1128/AAC.00891-17 <i>Cui M., Wu C., Zhang J., Zhang C., Li R., Wai-Chi Chan E., Wu C., Chen S</i> *. (2017). Distinct mechanisms of acquisition of mcr-1-bearing plasmid by Salmonella strains recovered from animals and food samples. <i>Scientific Reports</i> , v.7, n.1. https://doi.org/10.1038/s41598-017-01810-4 <i>Wong M.HY., Chan E.WC., Chen S</i> *. (2017). IS26-mediated formation of a virulence and resistance plasmid in Salmonella Enteritidis. <i>Journal of Antimicrobial Chemotherapy</i> , v.72, n.10, p.2750-2754. https://doi.org/10.1093/jac/dkx238 <i>Chen K., Chan E.WC., Xie M., Ye L., Dong N., Chen S</i> *. (2017). Widespread distribution of mcr-1-bearing bacteria in the ecosystem, 2015 to 2016. <i>Eurosurveillance</i> , v.22, n.39. https://doi.org/10.2807/1560-7917.ES.2017.22.39.17-00206 <i>Li R., Ye L., Wong M.H.Y., Zheng Z., Chan E.W.C., Chen S</i> *.	4.379 5.790	Cor	20	A A+
100 99 98	characterization of CTX-M-14 and CTX-M-15 β-lactamases by in vitro DNA shuffling. <i>Antimicrobial Agents and Chemotherapy</i> , v.61, n.12. https://doi.org/10.1128/AAC.00891-17 <i>Cui M., Wu C., Zhang J., Zhang C., Li R., Wai-Chi Chan E., Wu C., Chen S*</i> . (2017). Distinct mechanisms of acquisition of mcr-1 -bearing plasmid by Salmonella strains recovered from animals and food samples. <i>Scientific Reports</i> , v.7, n.1. https://doi.org/10.1038/s41598-017-01810-4 <i>Wong M.HY., Chan E.WC., Chen S*</i> . (2017). IS26-mediated formation of a virulence and resistance plasmid in Salmonella Enteritidis. <i>Journal of Antimicrobial Chemotherapy</i> , v.72, n.10, p.2750-2754. https://doi.org/10.1093/jac/dkx238 <i>Chen K., Chan E.WC., Xie M., Ye L., Dong N., Chen S*</i> . (2017). Widespread distribution of mcr-1-bearing bacteria in the ecosystem, 2015 to 2016. <i>Eurosurveillance</i> , v.22, n.39. https://doi.org/10.2807/1560-7917.ES.2017.22.39.17-00206 <i>Li R., Ye L., Wong M.H.Y., Zheng Z., Chan E.W.C., Chen S*</i> . (2017). Evolution and comparative genomics of pAQU-like	4.379 5.790 6.307	Cor	10 20 37	A+ A+
100	characterization of CTX-M-14 and CTX-M-15 β-lactamases by in vitro DNA shuffling. <i>Antimicrobial Agents and Chemotherapy</i> , v.61, n.12. https://doi.org/10.1128/AAC.00891-17 <i>Cui M., Wu C., Zhang J., Zhang C., Li R., Wai-Chi Chan E., Wu C., Chen S</i> *. (2017). Distinct mechanisms of acquisition of mcr-1 -bearing plasmid by Salmonella strains recovered from animals and food samples. <i>Scientific Reports</i> , v.7, n.1. https://doi.org/10.1038/s41598-017-01810-4 <i>Wong M.HY., Chan E.WC., Chen S</i> *. (2017). IS26-mediated formation of a virulence and resistance plasmid in Salmonella Enteritidis. <i>Journal of Antimicrobial Chemotherapy</i> , v.72, n.10, p.2750-2754. https://doi.org/10.1093/jac/dkx238 <i>Chen K., Chan E.WC., Xie M., Ye L., Dong N., Chen S</i> *. (2017). Widespread distribution of mcr-1-bearing bacteria in the ecosystem, 2015 to 2016. <i>Eurosurveillance</i> , v.22, n.39. https://doi.org/10.2807/1560-7917.ES.2017.22.39.17-00206 <i>Li R., Ye L., Wong M.H.Y., Zheng Z., Chan E.W.C., Chen S</i> *. (2017). Evolution and comparative genomics of pAQU-like conjugative plasmids in Vibrio species. <i>Journal of Antimicrobial</i>	4.379 5.790	Cor	20	A A+
100 99 98	characterization of CTX-M-14 and CTX-M-15 β-lactamases by in vitro DNA shuffling. <i>Antimicrobial Agents and Chemotherapy</i> , v.61, n.12. https://doi.org/10.1128/AAC.00891-17 <i>Cui M., Wu C., Zhang J., Zhang C., Li R., Wai-Chi Chan E., Wu C., Chen S*</i> . (2017). Distinct mechanisms of acquisition of mcr-1-bearing plasmid by Salmonella strains recovered from animals and food samples. <i>Scientific Reports</i> , v.7, n.1. https://doi.org/10.1038/s41598-017-01810-4 <i>Wong M.HY., Chan E.WC., Chen S*</i> . (2017). IS26-mediated formation of a virulence and resistance plasmid in Salmonella Enteritidis. <i>Journal of Antimicrobial Chemotherapy</i> , v.72, n.10, p.2750-2754. https://doi.org/10.1093/jac/dkx238 <i>Chen K., Chan E.WC., Xie M., Ye L., Dong N., Chen S*</i> . (2017). Widespread distribution of mcr-1-bearing bacteria in the ecosystem, 2015 to 2016. <i>Eurosurveillance</i> , v.22, n.39. https://doi.org/10.2807/1560-7917.ES.2017.22.39.17-00206 <i>Li R., Ye L., Wong M.H.Y., Zheng Z., Chan E.W.C., Chen S*</i> . (2017). Evolution and comparative genomics of pAQU-like conjugative plasmids in Vibrio species. <i>Journal of Antimicrobial Chemotherapy</i> , v.72, n.9, p.2503-2506.	4.379 5.790 6.307	Cor	10 20 37	A+ A+
100 99 98	characterization of CTX-M-14 and CTX-M-15 β-lactamases by in vitro DNA shuffling. <i>Antimicrobial Agents and Chemotherapy</i> , v.61, n.12. https://doi.org/10.1128/AAC.00891-17 Cui M., Wu C., Zhang J., Zhang C., Li R., Wai-Chi Chan E., Wu C., Chen S*. (2017). Distinct mechanisms of acquisition of mcr-1-bearing plasmid by Salmonella strains recovered from animals and food samples. <i>Scientific Reports</i> , v.7, n.1. https://doi.org/10.1038/s41598-017-01810-4 Wong M.HY., Chan E.WC., Chen S*. (2017). IS26-mediated formation of a virulence and resistance plasmid in Salmonella Enteritidis. <i>Journal of Antimicrobial Chemotherapy</i> , v.72, n.10, p.2750-2754. https://doi.org/10.1093/jac/dkx238 Chen K., Chan E.WC., Xie M., Ye L., Dong N., Chen S*. (2017). Widespread distribution of mcr-1-bearing bacteria in the ecosystem, 2015 to 2016. Eurosurveillance, v.22, n.39. https://doi.org/10.2807/1560-7917.ES.2017.22.39.17-00206 Li R., Ye L., Wong M.H.Y., Zheng Z., Chan E.W.C., Chen S*. (2017). Evolution and comparative genomics of pAQU-like conjugative plasmids in Vibrio species. <i>Journal of Antimicrobial Chemotherapy</i> , v.72, n.9, p.2503-2506. https://doi.org/10.1093/jac/dkx193	4.379 5.790 6.307	Cor	10 20 37	A+ A+
100 99 98	characterization of CTX-M-14 and CTX-M-15 β-lactamases by in vitro DNA shuffling. <i>Antimicrobial Agents and Chemotherapy</i> , v.61, n.12. https://doi.org/10.1128/AAC.00891-17 <i>Cui M., Wu C., Zhang J., Zhang C., Li R., Wai-Chi Chan E., Wu C., Chen S*</i> . (2017). Distinct mechanisms of acquisition of mcr-1-bearing plasmid by Salmonella strains recovered from animals and food samples. <i>Scientific Reports</i> , v.7, n.1. https://doi.org/10.1038/s41598-017-01810-4 <i>Wong M.HY., Chan E.WC., Chen S*</i> . (2017). IS26-mediated formation of a virulence and resistance plasmid in Salmonella Enteritidis. <i>Journal of Antimicrobial Chemotherapy</i> , v.72, n.10, p.2750-2754. https://doi.org/10.1093/jac/dkx238 <i>Chen K., Chan E.WC., Xie M., Ye L., Dong N., Chen S*</i> . (2017). Widespread distribution of mcr-1-bearing bacteria in the ecosystem, 2015 to 2016. <i>Eurosurveillance</i> , v.22, n.39. https://doi.org/10.2807/1560-7917.ES.2017.22.39.17-00206 <i>Li R., Ye L., Wong M.H.Y., Zheng Z., Chan E.W.C., Chen S*</i> . (2017). Evolution and comparative genomics of pAQU-like conjugative plasmids in Vibrio species. <i>Journal of Antimicrobial Chemotherapy</i> , v.72, n.9, p.2503-2506. https://doi.org/10.1093/jac/dkx193 <i>Lin D., Chen K., Xie M., Ye L., Chan E.WC., Chen S*</i> . (2017).	4.379 5.790 6.307	Cor	10 20 37	A+ A+
100 99 98	characterization of CTX-M-14 and CTX-M-15 β-lactamases by in vitro DNA shuffling. <i>Antimicrobial Agents and Chemotherapy</i> , v.61, n.12. https://doi.org/10.1128/AAC.00891-17 <i>Cui M., Wu C., Zhang J., Zhang C., Li R., Wai-Chi Chan E., Wu C., Chen S*</i> . (2017). Distinct mechanisms of acquisition of mcr-1-bearing plasmid by Salmonella strains recovered from animals and food samples. <i>Scientific Reports</i> , v.7, n.1. https://doi.org/10.1038/s41598-017-01810-4 <i>Wong M.HY., Chan E.WC., Chen S*</i> . (2017). IS26-mediated formation of a virulence and resistance plasmid in Salmonella Enteritidis. <i>Journal of Antimicrobial Chemotherapy</i> , v.72, n.10, p.2750-2754. https://doi.org/10.1093/jac/dkx238 <i>Chen K., Chan E.WC., Xie M., Ye L., Dong N., Chen S*</i> . (2017). Widespread distribution of mcr-1-bearing bacteria in the ecosystem, 2015 to 2016. <i>Eurosurveillance</i> , v.22, n.39. https://doi.org/10.2807/1560-7917.ES.2017.22.39.17-00206 <i>Li R., Ye L., Wong M.H.Y., Zheng Z., Chan E.W.C., Chen S*</i> . (2017). Evolution and comparative genomics of pAQU-like conjugative plasmids in Vibrio species. <i>Journal of Antimicrobial Chemotherapy</i> , v.72, n.9, p.2503-2506. https://doi.org/10.1093/jac/dkx193 <i>Lin D., Chen K., Xie M., Ye L., Chan E.WC., Chen S*</i> . (2017). Effect of ceftiofur and enrofloxacin on E. coli sub-population in pig	4.379 5.790 6.307	Cor	10 20 37	A+ A+
100 99 98 97	characterization of CTX-M-14 and CTX-M-15 β-lactamases by in vitro DNA shuffling. <i>Antimicrobial Agents and Chemotherapy</i> , v.61, n.12. https://doi.org/10.1128/AAC.00891-17 <i>Cui M., Wu C., Zhang J., Zhang C., Li R., Wai-Chi Chan E., Wu C., Chen S*</i> . (2017). Distinct mechanisms of acquisition of mcr-1-bearing plasmid by Salmonella strains recovered from animals and food samples. <i>Scientific Reports</i> , v.7, n.1. https://doi.org/10.1038/s41598-017-01810-4 <i>Wong M.HY., Chan E.WC., Chen S*</i> . (2017). IS26-mediated formation of a virulence and resistance plasmid in Salmonella Enteritidis. <i>Journal of Antimicrobial Chemotherapy</i> , v.72, n.10, p.2750-2754. https://doi.org/10.1093/jac/dkx238 <i>Chen K., Chan E.WC., Xie M., Ye L., Dong N., Chen S*</i> . (2017). Widespread distribution of mcr-1-bearing bacteria in the ecosystem, 2015 to 2016. <i>Eurosurveillance</i> , v.22, n.39. https://doi.org/10.2807/1560-7917.ES.2017.22.39.17-00206 <i>Li R., Ye L., Wong M.H.Y., Zheng Z., Chan E.W.C., Chen S*</i> . (2017). Evolution and comparative genomics of pAQU-like conjugative plasmids in Vibrio species. <i>Journal of Antimicrobial Chemotherapy</i> , v.72, n.9, p.2503-2506. https://doi.org/10.1093/jac/dkx193 <i>Lin D., Chen K., Xie M., Ye L., Chan E.WC., Chen S*</i> . (2017). Effect of ceftiofur and enrofloxacin on E. coli sub-population in pig gastrointestinal tract. <i>Journal of Global Antimicrobial Resistance</i> ,	4.379 5.790 6.307	Cor Cor	10 20 37 6	A+ A+
99 98 97 96	characterization of CTX-M-14 and CTX-M-15 β-lactamases by in vitro DNA shuffling. <i>Antimicrobial Agents and Chemotherapy</i> , v.61, n.12. https://doi.org/10.1128/AAC.00891-17 <i>Cui M., Wu C., Zhang J., Zhang C., Li R., Wai-Chi Chan E., Wu C., Chen S*</i> . (2017). Distinct mechanisms of acquisition of mcr-1-bearing plasmid by Salmonella strains recovered from animals and food samples. <i>Scientific Reports</i> , v.7, n.1. https://doi.org/10.1038/s41598-017-01810-4 <i>Wong M.HY., Chan E.WC., Chen S*</i> . (2017). IS26-mediated formation of a virulence and resistance plasmid in Salmonella Enteritidis. <i>Journal of Antimicrobial Chemotherapy</i> , v.72, n.10, p.2750-2754. https://doi.org/10.1093/jac/dkx238 <i>Chen K., Chan E.WC., Xie M., Ye L., Dong N., Chen S*</i> . (2017). Widespread distribution of mcr-1-bearing bacteria in the ecosystem, 2015 to 2016. <i>Eurosurveillance</i> , v.22, n.39. https://doi.org/10.2807/1560-7917.ES.2017.22.39.17-00206 <i>Li R., Ye L., Wong M.H.Y., Zheng Z., Chan E.W.C., Chen S*</i> . (2017). Evolution and comparative genomics of pAQU-like conjugative plasmids in Vibrio species. <i>Journal of Antimicrobial Chemotherapy</i> , v.72, n.9, p.2503-2506. https://doi.org/10.1093/jac/dkx193 <i>Lin D., Chen K., Xie M., Ye L., Chan E.WC., Chen S*</i> . (2017). Effect of ceftiofur and enrofloxacin on E. coli sub-population in pig	4.379 5.790 6.307	Cor Cor	10 20 37 6	A+ A+

	has stained in a flored has a new a Incoming hash air a				
	characterization of broad-host-range IncQ plasmids harboring blaVEB-18 in Vibrio species. <i>Antimicrobial Agents and</i>				
	1				
	<i>Chemotherapy</i> , v.61, n.7. https://doi.org/10.1128/AAC.00708-17 <i>Cai J., Cheng Q., Shen Y., Gu D., Fang Y., Chan E.WC., Chen S</i> *.				
	(2017). Genetic and functional characterization of blaCTX-M-199, a				
	novel tazobactam and sulbactam resistance-encoding gene located in				
94		5.191	Cor	11	A+
	a conjugative mcr-1-bearing IncI2 plasmid. Antimicrobial Agents				
	and Chemotherapy, v.61, n.7.				
	https://doi.org/10.1128/AAC.00562-17				
	Liu X., Li R., Zheng Z., Chen K., Xie M., Chan E.WC., Geng S.,				
	<u>Chen S</u> *. (2017). Molecular characterization of Escherichia coli isolates carrying MCR-1, FOSA3, and extended-spectrum-β				
93	1	5.191	Cor	14	A+
	lactamase genes from food samples in China. Antimicrobial Agents				
	and Chemotherapy, v.61, n.6.				
	https://doi.org/10.1128/AAC.00064-17				
	Ye W., Guo J., Bao X., Chen T., Weng W., <u>Chen S</u> *., Yang M.				
02	(2017). Rapid and sensitive detection of bacteria response to	2 622	Com	10	D
92	antibiotics using nanoporous membrane and graphene quantum dot	3.623	Cor	18	В
	(GQDs)-based electrochemical biosensors. <i>Materials</i> , v.10, n.6.				
	https://doi.org/10.3390/ma10060603				
	Qiao J., Zhang Q., Alali W.Q., Wang J., Meng L., Xiao Y., Yang H.,				
	Chen S., Cui S., Yang B. (2017). Characterization of				
91	extended-spectrum β-lactamases (ESBLs)-producing Salmonella in	5.277	Co	27	A
	retail raw chicken carcasses. <i>International Journal of Food</i>				
	Microbiology, v.248, p.72-81.				
	https://doi.org/10.1016/j.ijfoodmicro.2017.02.016				
	Zhang R., Liu L., Zhou H., Chan E.W., Li J., Fang Y., Li Y., Liao K.,				
00	Chen S*. (2017). Nationwide Surveillance of Clinical	0 1 4 2	Can	102	A .
90	Carbapenem-resistant Enterobacteriaceae (CRE) Strains in China.	8.143	Cor	182	A+
	EBioMedicine, v.19, p.98-106.				
	https://doi.org/10.1016/j.ebiom.2017.04.032				
	Cui M., Zhang J., Gu Z., Li R., Chan E.WC., Yan M., Wu C., Xu X.,				
90	Chen S*. (2017). Prevalence and molecular characterization of	5 101	Can	20	A .
89	mcr-1-positive salmonella strains recovered from clinical specimens	5.191	Cor	20	A+
	in China. Antimicrobial Agents and Chemotherapy, v.61, n.5.				
	https://doi.org/10.1128/AAC.02471-16				
	Zhang R., Chan E.WC., Zhou H., <u>Chen S</u> *. (2017). Prevalence and				
88	genetic characteristics of carbapenem-resistant Enterobacteriaceae	25.071	Cor	18	A++
	strains in China. The <i>Lancet Infectious Diseases</i> , v.17, n.3,				
	p.256-257. https://doi.org/10.1016/S1473-3099(17)30072-5				
	Li R., Xie M., Lv J., Wai-Chi Chan E., <u>Chen S</u> *. (2017). Complete				
07	genetic analysis of plasmids carrying mcr-1 and other resistance	5 700	Can	15	A .
87	genes in an Escherichia coli isolate of animal origin. The <i>Journal of</i>	5.790	Cor	45	A+
	antimicrobial chemotherapy, v.72, n.3, p.696-699.				
	https://doi.org/10.1093/jac/dkw509				
	Guo J., Chan E.W.C., Chen S*., Zeng Z*. (2017). Development of a				
86	novel quantum dots and graphene oxide based fret assay for rapid	5.640	Cor	11	A
	detection of inva gene of Salmonella. <i>Frontiers in Microbiology</i> ,				
	v.8, n.JAN. https://doi.org/10.3389/fmicb.2017.00008				
	Lin D., Xie M., Li R., Chen K., Chan E.WC., Chen S*. (2017).				
0.5	IncFII conjugative plasmid-mediated transmission of blaNDM-1	5 101	Carr	0	A .
85	elements among animal-borne Escherichia coli strains.	5.191	Cor	9	A+
	Antimicrobial Agents and Chemotherapy, v.61, n.1.				
	https://doi.org/10.1128/AAC.02285-16			l	

84	Jin K., Po K.H.L., Wang S., Reuven J.A., Wai C.N., Lau H.T., Chan T.H., <u>Chen S</u> *., Li X*. (2017). Synthesis and structure-activity relationship of teixobactin analogues via convergent Ser ligation. Bioorganic and Medicinal Chemistry , v.25, n.18, p.4990-4995. https://doi.org/10.1016/j.bmc.2017.04.039	3.641	Cor	27	B+
83	Li R., Xie M., Zhang J., Yang Z., Liu L., Liu X., Zheng Z., Chan E.WC., <u>Chen S</u> *. (2017). Genetic characterization of mcr-1-bearing plasmids to depict molecular mechanisms underlying dissemination of the colistin resistance determinant. <i>Journal of Antimicrobial Chemotherapy</i> , v.72, n.2, p.393-401. https://doi.org/10.1093/jac/dkw411	5.790	Cor	108	A
82	Chan KF., Sun N., Yan SC., Wong I.L.K., Lui HK., Cheung KC., Yuan J., Chan FY., Zheng Z., Chan E.W.C., Chen S., Leung YC., Chan T.H., Wong KY. (2017). Efficient Synthesis of Amine-Linked 2,4,6-Trisubstituted Pyrimidines as a New Class of Bacterial FtsZ Inhibitors. ACS Omega, v.2, n.10, p.7281-7292. https://doi.org/10.1021/acsomega.7b00701	3.512	Co	14	В
	2016				
81	Hu M., Guo J., Cheng Q., Yang Z., Chan E.W.C., Chen S*., Hao Q. (2016). Crystal Structure of Escherichia coli originated MCR-1, a phosphoethanolamine transferase for Colistin Resistance. Scientific Reports, v.6. https://doi.org/10.1038/srep38793	4.379	Cor	35	A
80	Wong, M. H., Kan, B., Chan, E. W., Yan, M., Chen, S*., IncI1 plasmids carrying various blaCTX-M genes contribute to ceftriaxone resistance in Salmonella enterica serovar Enteritidis in China. 1 Feb 2016. Antimicrobial Agents and Chemotherapy. 60, 2, p. 982-989	5.191	Cor	13	A+
79	Li R., Ye L., Zheng Z., Chan E.W.C., <u>Chen S</u> *. (2016). Genetic characterization of a blaVEB-2-carrying plasmid in Vibrio parahaemolyticus. <i>Antimicrobial Agents and Chemotherapy</i> , v.60, n.11, p.6965-6968. https://doi.org/10.1128/AAC.01749-16	5.191	Cor	6	A+
78	Wong M.HY., Chan E.WC., Xie L., Li R., Chen S*. (2016). IncHI2 plasmids are the key vectors responsible for oqxAB transmission among Salmonella species. Antimicrobial Agents and Chemotherapy, v.60, n.11, p.6911-6915. https://doi.org/10.1128/AAC.01555-16	5.191	Cor	21	A+
77	Wong M.H., Xie M., Xie L., Lin D., Li R., Zhou Y., Chan E.W., Chen S*. (2016). Complete sequence of a F33: A-: B- conjugative plasmid carrying the oqxAB, fosA3, and blaCTX-M-55 elements from a Foodborne Escherichia coli strain. Frontiers in Microbiology, v.7, n.OCT. https://doi.org/10.3389/fmicb.2016.01729	5.640	Cor	6	A
76	He D., Chiou J., Zeng Z., Chan E.WC., Liu JH., Chen S*. (2016). Comparative characterization of CTX-M-64 and CTX-M-14 provides insights into the structure and catalytic activity of the CTX-M class of enzymes. Antimicrobial Agents and Chemotherapy, v.60, n.10, p.6084-6090. https://doi.org/10.1128/AAC.00917-16	5.191	Cor	8	A+
75	Jin K., Sam I.H., Po K.H.L., Lin D., Ghazvini Zadeh E.H., <u>Chen S.</u> , Yuan Y., Li X. (2016). Total synthesis of teixobactin. <i>Nature Communications</i> , v.7. https://doi.org/10.1038/ncomms12394	14.919	Cor	78	A+
74	Huang Y., Yu X., Xie M., Wang X., Liao K., Xue W., Chan E.WC., Zhang R., <u>Chen S</u> *. (2016). Widespread dissemination of carbapenem-resistant Escherichia coli sequence type 167 strains harboring blaNDM-5 in clinical settings in China. <i>Antimicrobial</i>	5.191	Cor	49	A+

					1
	Agents and Chemotherapy , v.60, n.7, p.4364-4368. https://doi.org/10.1128/AAC.00859-16				
	Ye L., Li R., Lin D., Zhou Y., Fu A., Ding Q., Chan E.W.C., Yao W.,				
	Chen S *. (2016). Characterization of an IncA/C multidrug resistance				
73	plasmid in Vibrio alginolyticus. Antimicrobial Agents and	5.191	Cor	17	A+
	Chemotherapy, v.60, n.5, p.3232-3235.				
	https://doi.org/10.1128/AAC.00300-16				
	Zhang R., Gu DX., Huang YL., Chan E.WC., Chen GX., Chen				
	S *. (2016). Comparative genetic characterization of				
72	Enteroaggregative Escherichia coli strains recovered from clinical	4.360	Cor	28	A
'-	and non-clinical settings. <i>Scientific Reports</i> , v.6.	500	001	20	
	https://doi.org/10.1038/srep24321				
	<i>Xie M., Lin D., Chen K., Chan E.W.C., Yao W., Chen S*.</i> (2016).				
	Molecular characterization of Escherichia coli strains isolated from				
71	retail meat that harbor blaCTX-M and fosA3 genes. <i>Antimicrobial</i>	5.191	Cor	19	A+
/ 1		3.191	Coi	19	A
	Agents and Chemotherapy, v.60, n.4, p.2450-2455.				
	https://doi.org/10.1128/AAC.03101-15				
	Po K.H.L., Chan E.W.C., <u>Chen S</u> *. (2016). Mutational analysis of				
	quinolone resistance protein QnrVC7 provides novel insights into	7 101	~	_	
70	the structure-activity relationship of Qnr proteins. Antimicrobial	5.191	Cor	2	A+
	Agents and Chemotherapy, v.60, n.3, p.1939-1942.				
	https://doi.org/10.1128/AAC.01805-15				
	Guo J., Chan E.W.C., <u>Chen S*.</u> (2016). Comparative				
	characterization of botulinum neurotoxin subtypes F1 and F7				
69	featuring differential substrate recognition and cleavage	3.033	Cor	2	В
	mechanisms. <i>Toxicon.</i> , v.111, p.77-85.				
	https://doi.org/10.1016/j.toxicon.2015.12.020				
	Zhang R., Huang Y., Chan E.W.C., Zhou H., <u>Chen S</u> *. (2016).				
68	Dissemination of the mcr-1 colistin resistance gene. The <i>Lancet</i>	25.071	Cor	25	A++
00	Infectious Diseases, v.16, n.3, p.291-292.	23.071	Coi	23	A^{++}
	https://doi.org/10.1016/S1473-3099(16)00062-1				
	Chen S*., Barbieri J.T. (2016). Solubility of the catalytic domains of				
67	Botulinum neurotoxin serotype e subtypes. <i>Protein Expression and</i>			4	
67	Purification, v.118, p.18-24.	1.650 Cor	1	В	
	https://doi.org/10.1016/j.pep.2015.10.003				
	Guo J., Chan E.W.C., Chen S*. (2016). Mechanism of substrate				
66	recognition by the novel Botulinum Neurotoxin subtype F5.	4.360	Cor	5	A
	Scientific Reports, v.6. https://doi.org/10.1038/srep19875		201		
	Li R., Chan E.WC., Chen S*. (2016). Characterisation of a				
	chromosomally-encoded extended-spectrum β-lactamase gene				
65	blaPER-3 in Aeromonas caviae of chicken origin. <i>International</i>	5.283	Cor	2	A
	Journal of Antimicrobial Agents, v.47, n.1, p.103-105.	3.203	Coi	_	11
	https://doi.org/10.1016/j.ijantimicag.2015.10.018				
	Li R., Chiou J., Chan E.WC., <u>Chen S</u> *. (2016). A novel PCR-based				
	approach for accurate identification of Vibrio parahaemolyticus.				
64	Frontiers in Microbiology, v.7, n.JAN.	5.640	Cor	17	A
	https://doi.org/10.3389/fmicb.2016.00044				
	Zhang R., Lin D., Chan E.WC., Gu D., Chen GX., Chen S*.				
(2	(2016). Emergence of carbapenem-resistant serotype K1	[_ 101		112	
63	hypervirulent Klebsiella pneumoniae strains in China. <i>Antimicrobial</i>	5.191	Cor	113	A+
	Agents and Chemotherapy, v.60, n.1, p.709-711.				
	https://doi.org/10.1128/AAC.02173-15				

	2015				
62	Lin D, <u>Chen S</u> *: (2015) First detection of conjugative plasmid-borne fosfomycin resistance gene fosA3 in Salmonella isolates of food origin. <i>Antimicrobial agents and chemotherapy</i> 2015, 59(2):1381-1383.	5.191	Cor	11	A+
61	Guo J., Wang J., Gao S., Ji B., Waichi Chan E., <u>Chen S</u> *. (2015). Substrate-based inhibitors exhibiting excellent protective and therapeutic effects against Botulinum Neurotoxin A intoxication. Scientific Reports , v.5. https://doi.org/10.1038/srep16981	4.360	Cor	5	A
60	Lin D., Chen K., Wai-Chi Chan E., Chen S*. (2015). Increasing prevalence of ciprofloxacin-resistant food-borne Salmonella strains harboring multiple PMQR elements but not target gene mutations. Scientific Reports, v.5. https://doi.org/10.1038/srep14754	4.360	Cor	37	A
59	He D., Chiou J., Zeng Z., Liu L., Chen X., Zeng L., Chan E.W.C., Liu JH., Chen S*. (2015). Residues distal to the active site contribute to enhanced catalytic activity of variant and hybrid β-lactamases derived from CTX-M-14 and CTX-M-15. Antimicrobial Agents and Chemotherapy, v.59, n.10, p.5976-5983. https://doi.org/10.1128/AAC.04920-14	5.191	Cor	21	A+
58	<i>Liu M.</i> , <u>Chen S*.</u> (2015). A novel adhesive factor contributing to the virulence of Vibrio parahaemolyticus. <i>Scientific Reports</i> , v.5. https://doi.org/10.1038/srep14449	4.360	Cor	22	A
57	Wong M.HY., Liu L., Yan M., Chan E.WC., Chen S*. (2015). Dissemination of IncI2 plasmids that harbor the blaCTX-M element among clinical Salmonella isolates. Antimicrobial Agents and Chemotherapy, v.59, n.8, p.5026-5028. https://doi.org/10.1128/AAC.00775-15	5.191	Cor	25	A+
56	<i>Guo J.</i> , <i>Chen S</i> *. (2015). Expression and biochemical characterization of light chains of Botulinum neurotoxin subtypes F5 and F7. <i>Protein Expression and Purification</i> , v.111, p.87-90. https://doi.org/10.1016/j.pep.2015.01.014	1.650	Cor	7	В
55	Li R., Lin D., Chen K., Wong M.H.Y., <u>Chen S</u> *. (2015). First detection of AmpC β-lactamase blaCMY-2 on a conjugative IncA/C plasmid in a Vibrio parahaemolyticus isolate of food origin. Antimicrobial Agents and Chemotherapy, v.59, n.7, p.4106-4111. https://doi.org/10.1128/AAC.05008-14	5.191	Cor	26	A+
54	<i>Guo J., Wang J., Chan E.W.,</i> <u>Chen S</u> *. (2015). Exploration of endogenous substrate cleavage by various forms of botulinum neurotoxins. <i>Toxicon</i> , v.100, p.42-45. https://doi.org/10.1016/j.toxicon.2015.04.008	3.033	Cor		В
53	Chan CY., Guo J., Sun C., Tsang MK., Tian F., Hao J., Chen S*., Yang M. (2015). A reduced graphene oxide-Au based electrochemical biosensor for ultrasensitive detection of enzymatic activity of botulinum neurotoxin A. Sensors and Actuators, B: Chemical, v.220, p.131-137. https://doi.org/10.1016/j.snb.2015.05.052	7.460	Cor	29	A+
52	Chiou J., Wan S., Chan KF., So PK., He D., Chan E.WC., Chan TH., Wong KY., Tao J., Chen S*. (2015). Ebselen as a potent covalent inhibitor of New Delhi metallo-β-lactamase (NDM-1). Chemical Communications, v.51, n.46, p.9543-9546. https://doi.org/10.1039/c5cc02594j	6.222	Cor	78	A
51	Po K.H.L., Wong M.H.Y., <u>Chen S</u> *. (2015). Identification and	5.283	Cor	5	A

	characterisation of a novel plasmid-mediated quinolone resistance				
	gene, qnrVC7, in Vibrio cholerae of seafood origin. <i>International</i>				
	Journal of Antimicrobial Agents, v.45, n.6, p.667-668.				
	https://doi.org/10.1016/j.ijantimicag.2015.02.002				
	Shi J., Guo J., Bai G., Chan C., Liu X., Ye W., Hao J., Chen S, Yang				
	M. (2015). A graphene oxide based fluorescence resonance energy				
50	transfer (FRET) biosensor for ultrasensitive detection of botulinum	10.618	Co	43	A+
30	neurotoxin A (BoNT/A) enzymatic activity. <i>Biosensors and</i>	10.016		43	A
	Bioelectronics, v.65, p.238-244.				
	https://doi.org/10.1016/j.bios.2014.10.050				
	<i>Chiou J., Li R.,</i> <u>Chen S</u> *. (2015). CARB-17 family of β-lactamases				
49	mediates intrinsic resistance to penicillins in Vibrio	5.191	Con		A _
49	parahaemolyticus. Antimicrobial Agents and Chemotherapy, v.59,	3.191	Cor	26	A+
	n.6, p.3593-3595. https://doi.org/10.1128/AAC.00047-15				
	Wong M.HY., Chan E.W.C., Chen S*. (2015). Isolation of				
40	carbapenem-resistant Pseudomonas spp. from food. <i>Journal of</i>	4.025		(D.
48	Global Antimicrobial Resistance, v.3, n.2, p.109-114.	4.035	Cor	6	B+
	https://doi.org/10.1016/j.jgar.2015.03.006				
	Wong M.H.Y., Chan E.W.C., <u>Chen S</u> *. (2015). Evolution and				
	dissemination of OqxAB-like efflux pumps, an emerging quinolone				
47	resistance determinant among members of Enterobacteriaceae.	5.191	Cor	31	A+
'	Antimicrobial Agents and Chemotherapy, v.59, n.6, p.3290-3297.	0.171			
	https://doi.org/10.1128/AAC.00310-15				
	Wong M.HY., Li Y., Chan E.WC., <u>Chen S</u> *. (2015). Functional				
	categorization of carbapenemase- mediated resistance by a combined				
46	genotyping and two-tiered Modified Hodge Test approach.	5.640	Cor	4	A
	Frontiers in Microbiology, v.6, n.MAR.	2.0.0		•	11
	https://doi.org/10.3389/fmicb.2015.00293				
	Li R., Wong M.H.Y., Zhou Y., Chan E.WC., <u>Chen S</u> *. (2015).				
	Complete nucleotide sequence of a conjugative plasmid carrying				
45	blaPER-1. Antimicrobial Agents and Chemotherapy, v.59, n.6,	5.191	Cor	9	A+
	p.3582-3584. https://doi.org/10.1128/AAC.00518-15				
	Huang Y., Li J., Gu D., Fang Y., Chan E.W., Chen S*., Zhang R.				
	(2015). Rapid detection of K1 hypervirulent Klebsiella pneumoniae				
44	by MALDI-TOF MS. <i>Frontiers in Microbiology</i> , v.6, n.DEC.	5.640	Cor	8	A
	https://doi.org/10.3389/fmicb.2015.01435				
	Wang X., Chen G., Wu X., Wang L., Cai J., Chan E.W., <u>Chen S</u> *.,				
	Zhang R. (2015). Increased prevalence of carbapenem resistant				
	Enterobacteriaceae in hospital setting due to cross-species				
43	transmission of the blaNDM-1 element and clonal spread of	5.640	Cor	45	A
	progenitor resistant strains. <i>Frontiers in Microbiology</i> , v.6, n.MAY.				
	https://doi.org/10.3389/fmicb.2015.00595				
	μιμρο.// αοι.οιg/ 10.5567/ HIIICO.2015.00555	<u> </u>			1
	2014				
	Guo J., Xu C., Li X., <u>Chen S</u> *. (2014). A simple, rapid and sensitive		[T		
42	FRET assay for botulinum neurotoxin serotype B detection. <i>PLoS</i>	3.240	Cor	7	B+
	<i>ONE</i> , v.9, n.12. https://doi.org/10.1371/journal.pone.0114124				
	Rao L., Lv L., Zeng Z., Chen S., He D., Chen X., Wu C., Wang Y.,				
	Yang T., Wu P., Liu Y., Liu JH. (2014). Increasing prevalence of				
A 1	extended-spectrum cephalosporin-resistant Escherichia coli in food	2 202		75	
41	animals and the diversity of CTX-M genotypes during 2003-2012.	3.293	Co	75	A+
	Veterinary Microbiology, v.172, n.03-Apr-19, p.534-541.				
	https://doi.org/10.1016/j.vetmic.2014.06.013				
40	Chen S*. (2014). Clostridial neurotoxins: Mode of substrate	3.272	1st /Cor	5	В
			1		1

		ı			1	
	recognition and novel therapy development. Current Protein and					
	Peptide Science , v.15, n.5, p.490-503.					
	https://doi.org/10.2174/13892037113146660086					
	Chiou J., Leung T.YC., <u>Chen S</u> *. (2014). Molecular mechanisms of					
39	substrate recognition and specificity of New Delhi	5 101	Can	27	A .	
39	metallo-β-lactamase. <i>Antimicrobial Agents and Chemotherapy</i> ,	5.191	Cor	27	A+	
	v.58, n.9, p.5372-5378. https://doi.org/10.1128/AAC.01977-13					
	Wong M.H., Chan E.W., Liu L.Z., <u>Chen S</u> *. (2014). PMQR genes					
	oqxAB and aac(6')Ib-cr accelerate the development of					
38		5.640	Cor	41	A	
	fluoroquinolone resistance in salmonella Typhimurium. <i>Frontiers in</i>					
	<i>Microbiology</i> , v.5, n.SEP. https://doi.org/10.3389/fmicb.2014.00521					
	Lin D., Yan M., Lin S., Chen S*. (2014). Increasing prevalence of					
37	hydrogen sulfide negative Salmonella in retail meats. <i>Food</i>	5.640	Cor	37	A+	
	<i>Microbiology</i> , v.43, p.1-4. https://doi.org/10.1016/j.fm.2014.04.010					
	Wong M.H.Y., Yan M., Chan E.W.C., Biao K., Chen S*. (2014).					
	Emergence of clinical Salmonella enterica serovar typhimurium					
36	isolates with concurrent resistance to ciprofloxacin, ceftriaxone, and	5.191	Cor	68	A+	
	azithromycin. Antimicrobial Agents and Chemotherapy, v.58, n.7,	0.171		00		
	p.3752-3756. https://doi.org/10.1128/AAC.02770-13					
	Lin D., Chen K., Li R., Liu L., Guo J., Yao W., <u>Chen S</u> *. (2014).					
35	Selection of target mutation in rat gastrointestinal tract E. coli by	5.640	Cor	8	A	
	minute dosage of enrofloxacin. Frontiers in Microbiology, v.5,					
	n.SEP. https://doi.org/10.3389/fmicb.2014.00468					
	Wang Y., Chan FY., Sun N., Lui HK., So PK., Yan SC., Chan					
	KF., Chiou J., Chen S., Abagyan R., Leung YC., Wong KY.					
24	(2014). Structure-based design, synthesis, and biological evaluation	2 017		1.6		
34	of isatin derivatives as potential glycosyltransferase inhibitors.	2.817	Co	16	В	
	Chemical Biology and Drug Design, v.84, n.6, p.685-696.					
	https://doi.org/10.1111/cbdd.12361					
	2013					
	Ye W., Guo J., Chen S*., Yang M. (2013). Nanoporous membrane					
	based impedance sensors to detect the enzymatic activity of	6.331 Cor	_		_	
33	botulinum neurotoxin A. <i>Journal of Materials Chemistry B</i> , v.1,		Cor	15	B+	
	n.47, p.6544-6550. https://doi.org/10.1039/c3tb21152e					
-	Liu M., Wong M.H.Y., Chen S*. (2013). Molecular characterisation					
22	of a multidrug resistance conjugative plasmid from Vibrio	5 101		20		
32	parahaemolyticus. International Journal of Antimicrobial Agents,	5.191	Cor	30	A	
	v.42, n.6, p.575-579.					
	https://doi.org/10.1016/j.ijantimicag.2013.08.014					
	Guo J., Pan X., Zhao Y., Chen S*. (2013). Engineering Clostridia					
31	Neurotoxins with elevated catalytic activity. <i>Toxicon</i> , v.74,	3.003	Cor	10	В	
	p.158-166. https://doi.org/10.1016/j.toxicon.2013.08.055					
	Guo J., Chen S*. (2013). Unique substrate recognition mechanism					
	of the botulinum neurotoxin D light chain. Journal of Biological			_	_	
30	Chemistry, v.288, n.39, p.27881-27887.	5.157	Cor	8	B+	
	https://doi.org/10.1074/jbc.M113.491134					
	Wong M.H.Y., Yan M., Chan E.W.C., Liu L.Z., Kan B., <u>Chen S</u> *.					
	<u></u>					
20	(2013). Expansion of salmonella enterica serovar typhimurium ST34	5 101		2.1		
29	clone carrying multiple resistance determinants in China.	5.191	5.191 Cor	31	A+	
	Antimicrobial Agents and Chemotherapy, v.57, n.9, p.4599-4601.					
28	https://doi.org/10.1128/AAC.01174-13 <i>Liu M., Wong M.H.Y.</i> , <i>Chen S*</i> . (2013). Mechanisms of	5.283	Cor	8	A	

	fluoroquinolone resistance in Vibrio parahaemolyticus.					
	International Journal of Antimicrobial Agents, v.42, n.2,					
	p.187-188. https://doi.org/10.1016/j.ijantimicag.2013.04.024					
	Wong M.H.Y., Wan H.Y., Chen S*. (2013). Characterization of					
27	multidrug-resistant proteus mirabilis isolated from chicken	2 171	Can	1.6	D	
21	carcasses. Foodborne Pathogens and Disease, v.10, n.2, p.177-181.	3.171	Cor	16	В	
	https://doi.org/10.1089/fpd.2012.1303					
	Liu M., Chen S*. (2013). Draft genome sequence of Vibrio					
26	parahaemolyticus V110, isolated from shrimp in Hong Kong.	37.4		1.0		
26	Genome Announcements, v.1, n.3.	NA	Cor	10	В	
	https://doi.org/10.1128/genomeA.00300-13					
	Wong M.H.Y., Chen S*. (2013). First detection of oqxAB in					
2.5	Salmonella spp. isolated from food. Antimicrobial Agents and			2.4		
25	<i>Chemotherapy</i> , v.57, n.1, p.658-660.	5.191	Cor	34	A+	
	https://doi.org/10.1128/AAC.01144-12					
	Liu M., Yan M., Liu L., Chen S*. (2013). Characterization of a novel					
	zinc transporter znuA acquired by vibrio parahaemolyticus through					
24	horizontal gene transfer. Frontiers in Cellular and Infection	5.293	Cor	8	B+	
	<i>Microbiology</i> , v.4, n.OCT.					
	https://doi.org/10.3389/fcimb.2013.00061					
	Wong M.H.Y., Zeng L., Liu J.H., Chen S*. (2013). Characterization					
	of Salmonella food isolates with concurrent resistance to ceftriaxone				_	
23	and ciprofloxacin. Foodborne Pathogens and Disease, v.10, n.1,	3.171	Cor	22	В	
	p.42-46. https://doi.org/10.1089/fpd.2012.1266					
	2012					
	<i>Chen S*</i> . (2012). Clinical uses of botulinum neurotoxins: Current					
22	indications, limitations and future developments. <i>Toxins</i> , v.4, n.10,	4.546	1st /Cor	84	В	
	p.913-939. https://doi.org/10.3390/toxins4100913					
	Wong M.H.Y., Liu M., Wan H.Y., <i>Chen S</i> *. (2012).					
21	Characterization of extended-spectrum-β-lactamase-producing	5 101		20		
21	Vibrio parahaemolyticus. Antimicrobial Agents and Chemotherapy,	5.191	5.191 Cor	Cor	or 39	A+
	v.56, n.7, p.4026-4028. https://doi.org/10.1128/AAC.00385-12					
	Zheng H., Zeng Z., Chen S., Liu Y., Yao Q., Deng Y., Chen X., Lv L.,					
	Zhuo C., Chen Z., Liu JH. (2012). Prevalence and characterisation					
20	of CTX-M β-lactamases amongst Escherichia coli isolates from	5 202		100		
20	healthy food animals in China. <i>International Journal of</i>	5.283	Co	123	A	
	Antimicrobial Agents, v.39, n.4, p.305-310.					
	https://doi.org/10.1016/j.ijantimicag.2011.12.001					
	Chen S*., Karalewitz A.P.A., Barbieri J.T. (2012). Insights into the					
10	different catalytic activities of Clostridium neurotoxins.	2.162	1 st /	1.0		
19	Biochemistry , v.51, n.18, p.3941-3947.	3.162	Cor	18	В	
	https://doi.org/10.1021/bi3000098					
	Chen S.* (2012) Substrate Specificity and Kinetics of Bacterial					
18	Transmembrane Transporters. Journal of Membrane Science and	NA	1st /Cor		В	
	Technology. 2012, 2: 3.					
	2011		1			
	Day V H. I. Chan C 7han H 7 7 1: V C V M					
	Deng Y., He L., Chen S., Zheng H., Zeng Z., Liu Y., Sun Y., Ma J.,					
17	Chen Z., Liu JH. (2011). F33:A-:B- and F2:A-:B- plasmids mediate	5.191	Co	44	A+	
	dissemination of rmtB-bla CTX-M-9 group genes and rmtB-qepA in					
1	Enterobacteriaceae isolates from pets in China. <i>Antimicrobial</i>		1			

https://doi.org/10.1128/AAC.00133-11 Chen S**, Barbieri J.T. (2011). Association of botulinum neurotoxin serotype a light chain with plasma membrane-bound SNAP-25. Journal of Biological Chemistry, v.286, n.17, p.15067-15072. https://doi.org/10.1074/jbc.M111.224493 Chen S., Wan H.Y. (2011). Molecular mechanisms of substrate recognition and specificity of botulinum neurotoxin serotype F. Biochemical Journal, v.433, n.2, p.277-284. https://doi.org/10.1042/Bl20101310 Deng Y., Zeng Z., Chen S., He L., Liu Y., Wu C., Chen Z., Yao Q., Hou J., Yang T., Liu JH. (2011). Dissemination of IncFII plasmids carrying rmtB and qepA in Escherichia coli from pigs, farm workers and the environment. Clinical Microbiology and Infection, v.17, n.11, p.1740-1745. https://doi.org/10.1111/j.1469-0691.2011.03472.x Before 2010 Zhao J., Chen Z., Chen S., Deng Y., Liu Y., Tian W., Huang X., Wu C., Sun Y., Sun Y., Zeng Z., Liu JH. (2010). Prevalence and dissemination of oqxAB in Escherichia coli isolates from animals, farmworkers, and the environment. Antimicrobial Agents and Chemotherapy, v.54, n.10, p.4219-4224. https://doi.org/10.1128/AAC.00139-10 Sun Y., Zeng Z., Chen S., Ma J., He L., Liu Y., Deng Y., Lei T., Zhao J., Liu JH. (2010). High prevalence of blaCTX-M extended-spectrum β-lactamase genes in Escherichia coli isolates from pets and emergence of CTX-M-64 in China. Clinical Microbiology and Infection, v.16, n.9, p.1475-1481. https://doi.org/10.1111/j.1469-0691.2010.03127.x Chen S., Barbieri J.T. (2009). Engineering botulinum neurotoxin to extend therapeutic intervention. Proceedings of the National Academy of Sciences of the United States of America, v.106, n.23, p.9180-9184. https://doi.org/10.1073/pnas.0903111106 Chen S., Hall C., Barbieri J.T. (2008). Substrate recognition of VAMPL-2 by botulingm pourotypin B and teams neurotoxin to						
16 serotype a light chain with plasma membrane-bound SNAP-2-5. Journal of Biological Chemistry, v. 286, n.17, p.15067-15072. https://doi.org/10.1074/jbc.M111.224493 Chen S., Wan H.Y. (2011). Molecular mechanisms of substrate recognition and specificity of botulinum neurotoxin serotype F. Biochemical Journal, v. 433, n.2, p.277-284. https://doi.org/10.1042/BJ20101310 Deng Y., Zeng Z., Chen S., He L., Liu Y., Wu C., Chen Z., Yao Q., Hou J., Yang T., Liu JH. (2011). Dissemination of IneFII plasmids carrying mtB and epah in Escherichia coli from pigs, farm workers and the environment. Clinical Microbiology and Infection, v.17, n.11, p.1740-1745. https://doi.org/10.1111/j.1469-0691.2011.03472.x Before 2010 Zhao J., Chen Z., Chen S., Deng Y., Liu Y., Tian W., Huang X., Wu C., Sun Y., Sun Y., Zeng Z., Liu JH. (2010). Prevalence and dissemination of oqxAB in Escherichia coli isolates from animals, farmworkers, and the environment. Antimicrobial Agents and Chemotherapy, v.54, n.10, p.4219-4224. https://doi.org/10.1128/AC.00139-10 Sun Y., Zeng Z., Chen S., Ma J., He L., Liu Y., Deng Y., Lei T., Zhao J., Liu JH. (2010). High prevalence of blaCTX-M extended-spectrum P-lactamase genes in Escherichia coli isolates from pets and emergence of CTX-M-64 in China. Clinical Microbiology and Infection, v.16, n.9, p.1475-1481. https://doi.org/10.1111/j.1469-0691.2010.03127.x Chen S., Barbieri J.T. (2009). Engineering botulinum neurotoxin to extend therapeutic intervention. Proceedings of the National Academy of Sciences of the United States of America, v.106, n.23, p.180-9180-9184. https://doi.org/10.1074/jbc.M00611200 Chen S., Barbieri J.T. (2007). Multiple pocket recognition of SNAP2-5 by botulinum neurotoxin is and tetauns neurotoxin. Journal of Biological Chemistry, v.283, n.30, p.2115-21159. https://doi.org/10.1074/jbc.M00611200 Chen S., Earbieri J.T. (2007). Multiple pocket recognition of SNAP2-5 by botulinum neurotoxin scrotype E. Journal of Biological Chemistry, v.282, n.13, p.9621-9627. https://doi.o		Agents and Chemotherapy , v.55, n.10, p.4926-4929. https://doi.org/10.1128/AAC.00133-11				
16 serotype a light chain with plasma membrane-bound SNAP-2-5. Journal of Biological Chemistry, v. 286, n.17, p.15067-15072. https://doi.org/10.1074/jbc.M111.224493 Chen S., Wan H.Y. (2011). Molecular mechanisms of substrate recognition and specificity of botulinum neurotoxin serotype F. Biochemical Journal, v. 433, n.2, p.277-284. https://doi.org/10.1042/BJ20101310 Deng Y., Zeng Z., Chen S., He L., Liu Y., Wu C., Chen Z., Yao Q., Hou J., Yang T., Liu JH. (2011). Dissemination of IneFII plasmids carrying mtB and epah in Escherichia coli from pigs, farm workers and the environment. Clinical Microbiology and Infection, v.17, n.11, p.1740-1745. https://doi.org/10.1111/j.1469-0691.2011.03472.x Before 2010 Zhao J., Chen Z., Chen S., Deng Y., Liu Y., Tian W., Huang X., Wu C., Sun Y., Sun Y., Zeng Z., Liu JH. (2010). Prevalence and dissemination of oqxAB in Escherichia coli isolates from animals, farmworkers, and the environment. Antimicrobial Agents and Chemotherapy, v.54, n.10, p.4219-4224. https://doi.org/10.1128/AC.00139-10 Sun Y., Zeng Z., Chen S., Ma J., He L., Liu Y., Deng Y., Lei T., Zhao J., Liu JH. (2010). High prevalence of blaCTX-M extended-spectrum P-lactamase genes in Escherichia coli isolates from pets and emergence of CTX-M-64 in China. Clinical Microbiology and Infection, v.16, n.9, p.1475-1481. https://doi.org/10.1111/j.1469-0691.2010.03127.x Chen S., Barbieri J.T. (2009). Engineering botulinum neurotoxin to extend therapeutic intervention. Proceedings of the National Academy of Sciences of the United States of America, v.106, n.23, p.180-9180-9184. https://doi.org/10.1074/jbc.M00611200 Chen S., Barbieri J.T. (2007). Multiple pocket recognition of SNAP2-5 by botulinum neurotoxin is and tetauns neurotoxin. Journal of Biological Chemistry, v.283, n.30, p.2115-21159. https://doi.org/10.1074/jbc.M00611200 Chen S., Earbieri J.T. (2007). Multiple pocket recognition of SNAP2-5 by botulinum neurotoxin scrotype E. Journal of Biological Chemistry, v.282, n.13, p.9621-9627. https://doi.o						
Dournal of Biological Chemistry, v.286, n.17, p.15067-15072. https://doi.org/10.1074/jbc.M111.224493 Chem.S., Wan H.Y. (2011). Molecular mechanisms of substrate recognition and specificity of botulinum neurotoxin serotype F. Biochemical Journal, v. A33, n.2, p.277-284. https://doi.org/10.1042/BJ20101310 Deng Y., Zeng Z., Chen.S., He L. Liu Y., Wu C., Chen Z., Yao Q., Hou J., Yang T., Liu-J.H. (2011). Dissemination of IncFII plasmids arrying mtB and qepA in Escherichia coli from pigs, farm workers and the environment. Clinical Microbiology and Infection, v.17, n.11, p.1740-1745. https://doi.org/10.1111/j.1469-0691.2011.03472.x Before 2010 Zhao J., Chen Z., Chen S., Deng Y., Liu Y., Tian W., Huang X., Wu C., San Y., Sur, Y. Eng Z., Liu JH. (2010). Prevalence and dissemination of oqxAB in Escherichia coli isolates from animals, farmworkers, and the environment. Antimicrobial Agents and Chemotherapy. v.54, n.10, p. 4219-4224. https://doi.org/10.1128/AAC.00139-10 Sun Y., Zeng Z., Chen S., Ma J., He L., Liu Y., Deng Y., Lei T., Zhao J., Liu JH. (2010). High prevalence of blaCTX-M extended-spectrum β-lactamase genes in Escherichia coli isolates from pets and emergence of CTX-M-64 in China. Clinical Microbiology and Infection. v.16, n.9, p.1475-1481. https://doi.org/10.1111/j.1469-0691.2010.03127.x Chen S., Barbieri J.T. (2009). Engineering botulinum neurotoxin to extend therapeutic intervention. Proceedings of the National Academy of Sciences of the United States of America, v.106, n.23, p.9180-9184. https://doi.org/10.1074/jbc.M800611200 Chen S., Barbieri J.T. (2007). Multiple pocket recognition of VAMP-9. J. Barbieri J.T. (2007). Multiple pocket recognition of SNAP25 by botulinum neurotoxin serotype E., Journal of Biological Chemistry, v.282, n.35, p.2540-25547. https://doi.org/10.1074/jbc.M610212000 Chen S., Rarbieri J.T. (2007). Multiple pocket recognition by botulinum neurotoxin serotype A. Journal of Biological Chemistry, v.282, n.35, p.25540-25547. https://doi.org/10.1074/jbc.M61021074						_
https://doi.org/10.1074/jbc.M11.224493 Chen S., Wan H.Y. (2011). Molecular mechanisms of substrate recognition and specificity of botulinum neurotoxin serotype F. Biochemical Journal, v.433, n.2, p.277-284. https://doi.org/10.1042/BJ201031310 Deng Y., Zeng Z., Chen S., He L., Liu Y., Wu C., Chen Z., Yao Q., Hou J., Yang T., Liu JH. (2011). Dissemination of IneFII plasmids earrying mflB and qep A in Escherichia coli from pigs. farm workers and the environment. Clinical Microbiology and Infection, v.17, n.11, p.1740-1745. https://doi.org/10.1111/j.1469-0691.2011.03472.x Before 2010 Zhao J., Chen Z., Chen S., Deng Y., Liu Y., Tian W., Huang X., Wu C., Sun Y., Sun Y., Zeng Z., Liu JH. (2010). Prevalence and dissemination of ogxAB in Escherichia coli isolates from animals, farmworkers, and the environment. Antimicrobial Agents and Chemotherapy, v.54, n.10, p.4219-4224. https://doi.org/10.1118/AAC.00139-10 Sun Y., Zeng Z., Chen S., Ma J., He L., Liu Y., Deng Y., Lei T., Zhao J., Liu JH. (2010). High prevalence of blaCTX-M. extended-spectrum β-lactamase genes in Escherichia coli isolates from pets and emergence of CTX-M-64 in China. Clinical Microbiology and Infection, v.16, n.9, p.1475-1481. https://doi.org/10.1114/149-0691.2010.03127x Chen S., Barbieri J.T. (2009). Engineering botulinum neurotoxin to extend therapeutic intervention. Proceedings of the National Academy of Sciences of the United States of America, v.106, n.23, p.9180-9184. https://doi.org/10.1073/pnas.0903111106 Chen S., Barbieri J.T. (2007). Multiple pocket recognition of VAMP-2 by botulinum neurotoxin B and tetanus neurotoxin. Journal of Biological Chemistry, v.283, n.30, p.21153-21159. https://doi.org/10.1074/jbc.M9010611200 Chen S., Kim JJ.P., Barbieri J.T. (2007). Mechanism of substrate recognition by botulinum neurotoxin serotype A. Journal of Biological Chemistry, v.282, n.35, p.5540-25540-	16		5.157	1 st /Cor	31	B+
Chen S., Wan H.Y. (2011). Molecular mechanisms of substrate recognition and specificity of botulinum neurotoxin serotype F. 3.857 1st /Cor 14 B B Biochemical Journal, v.433, n.2, p.277-284. https://doi.org/10.1042/BJ20101310 Deng Y. Zeng Z., Chen S. He L., Liu Y., Wu C., Chen Z., Yao Q., Hou J., Yang T., Liu JH. (2011). Dissemination of IncFII plasmids aarying mtlB and qepA in Escherichia coli from pigs, farm workers and the environment. Clinical Microbiology and Infection, v.17, n.11, p.1740-1745. https://doi.org/10.1111/j.1469-0691.2011.03472.x Before 2010 Shape Y., Chen Z., Chen S., Deng Y., Liu Y., Tian W., Huang X., Wu C., Sun Y., Sun Y., Zeng Z., Liu JH. (2010). Prevalence and dissemination of oqxAB in Escherichia coli isolates from animals, farmworkers, and the environment. Antimicrobial Agents and Chemotherapy, v.54, n.10, p.4219-4224. https://doi.org/10.1128/AAC.00139-10						
15 recognition and specificity of botulinum neurotoxin serotype F. Biochemical Journal, v433, n.2, p.277-284. https://doi.org/10.1042/BJ20101310 Deng Y, Zeng Z, Chen S, He L, Liu Y, W C., Chen Z, Yao Q, Hou J, Yang T, Liu J-H. (2011). Dissemination of IneFII plasmids carrying mtB and qepA in Escherichia coli from pigs, farm workers and the environment. Clinical Microbiology and Infection, v.17, n.11, p.1740-1745. https://doi.org/10.1111/j.1469-0691.2011.03472.x Before 2010 Zhao J, Chen Z, Chen S, Deng Y, Liu Y, Tian W, Huang X, Wu C., Sun Y, Sun Y, Zeng Z, Liu J-H, (2010) Prevalence and dissemination of oqxAB in Escherichia coli isolates from animals, farmworkers, and the environment. Antimicrobial Agents and Chemotherapy, v.54, n.10, p.4219-4224. https://doi.org/10.1128/AAC.00139-10 Sim Y, Zeng Z, Chen S, Ma J, He L, Liu Y, Deng Y, Lei T, Zhao J, Liu J-H. (2010). High prevalence of blaCTX-M extended-spectrum P-lactamase genes in Escherichia coli isolates from pets and emergence of CTX-M-64 in China. Clinical Microbiology and Infection. v.16, n.9, p.1475-1481. https://doi.org/10.1111/j.1469-0691.2010.03127.x Chen S, Barbieri J.T. (2009). Engineering botulinum neurotoxin to extend therapeutic intervention. Proceedings of the National Academy of Sciences of the United States of America, v.106, n.23, p.9180-9184. https://doi.org/10.1073/pnas.0903111106 Chen S, Barbieri J.T. (2007). Multiple pocket recognition of VAMP-2 by botulinum neurotoxin B and tetanus neurotoxin. Journal of Biological Chemistry, v.283, n.30, p.21153-21159. https://doi.org/10.1074/jbc.M701922200 Chen S, Barbieri J.T. (2007). Multiple pocket recognition of SNAP25 by botulinum neurotoxin serotype E. Journal of Biological Chemistry, v.282, n.35, p.25540-25547. https://doi.org/10.1074/jbc.M701922200 Chen S, Ciu S, McDermot P.F., Zhao S, White D.G., Paulsen I., Meng J. (2007). Contribution of target gene mutations and efflux to decreased susceptibility of Salmonella enterica serovar typhimurium to fluoroquinolones and other antimicrobi						
Sinchemical Journal, v. 433, n.2, p.277-284, https://doi.org/10.1042/BJ20101310 Deng Y, Zeng Z, Chen S, He L, Liu Y, Wu C., Chen Z, Yao Q., Hou J, Yang T, Liu J-H. (2011). Dissemination of IneFII plasmids carrying mtB and qepA in Escherichia coli from pigs, farm workers and the environment. Clinical Microbiology and Infection, v.17, h.11, p.1740-1745. https://doi.org/10.1111/j.1469-0691.2011.03472.x Before 2010		recognition and specificity of botulinum neurotoxin serotype F.				_
https://doi.org/10.1042/B120101310 Deng Y, Zeng Z, Chen S, He L., Liu Y, Wu C., Chen Z, Yao Q., Hou J., Yang T., Liu JH. (2011). Dissemination of IncFII plasmids arrying rmlB and qepA in Escherichia coli from pigs, farm workers and the environment. Clinical Microbiology and Infection, v.17, n.11, p.1740-1745. https://doi.org/10.1111/j.1469-0691.2011.03472.x Before 2010 Zhao J., Chen Z., Chen S., Deng Y., Liu Y., Tian W., Huang X., Wu C., Sun Y., Sun Y., Zeng Z., Liu JH. (2010). Prevalence and dissemination of oqxAB in Escherichia coli isolates from animals, farmworkers, and the environment. Antimicrobial Agents and Chemotherapy, v.54, n.10, p.4219-4224. https://doi.org/10.1124/AAC.00139-10 Sun Y., Zeng Z., Chen S., Ma J., He L., Liu Y., Deng Y., Lei T., Zhao J., Liu JH. (2010). High prevalence of blaCTX-M extended-spectrum B-lactamase genes in Escherichia coli isolates from pets and emergence of CTX-M-64 in China. Clinical Microbiology and Infection, v.16, n.9, p.1475-1481. https://doi.org/10.1111/j.1469-0691.2010.03127.x Chen S., Barbieri J.T. (2009). Engineering botulinum neurotoxin to extend therapeutic intervention. Proceedings of the National Academy of Sciences of the United States of America, v.106, n.23, p.9180-9184. https://doi.org/10.1073/pnas.0903111106 Chen S., Barbieri J.T. (2009). Substrate recognition of VAMP-2 by botulinum neurotoxin B and tetanus neurotoxin. Journal of Biological Chemistry, v.283, n.30, p.21153-21159. https://doi.org/10.1074/jbc.M800611200 Chen S., Barbieri J.T. (2007). Multiple pocket recognition of Sen S., Barbieri J.T. (2007). Multiple pocket recognition of Sen S., Barbieri J.T. (2007). Mechanism of substrate recognition by botulinum neurotoxin serotype E. Journal of Biological Chemistry, v.282, n.33, p.2540-25547. https://doi.org/10.1074/jbc.M701922200 Chen S., Kim JJ.P., Barbieri J.T. (2007). Mechanism of substrate recognition by botulinum neurotoxin serotype R. Journal of Biological Chemistry, v.282, n.31, p.9621-9627. https://doi.org/10.1074/jbc.M7019	15		3.857	1 st /Cor	14	В
Deng Y, Zeng Z, Chen S, He L., Liu Y, Wu C, Chen Z, Yao Q, Hou J, Yang T, Liu JH. (2011). Dissemination of IneFII plasmids carrying rmtB and qepA in Escherichia coli from pigs, farm workers and the environment. Clinical Microbiology and Infection, v.17, n.11, p.1740-1745. https://doi.org/10.1111/j.1469-0691.2011.03472.x Before 2010						
Hou J., Yang T., Liu JH. (2011). Dissemination of IncFII plasmids carrying mtB and qepA in Escherichia coli from pigs, farm workers and the environment. Clinical Microbiology and Infection, v.17, https://doi.org/10.1111/j.1469-0691.2011.03472.x Before 2010						
Column C						
and the environment. Clinical Microbiology and Infection, v.17, https://doi.org/10.1111/j.1469-0691.2011.03472.x Before 2010 Zhao J., Chen Z., Chen S., Deng Y., Liu JH. (2010). Prevalence and dissemination of oqxAB in Escherichia coli isolates from animals, farmworkers, and the environment. Antimicrobial Agents and Chemotherapy, v.54, n.10, p.4219-4224. https://doi.org/10.1128/AAC.00139-10 Sun Y., Zeng Z., Chen S., Ma J., He L., Liu Y., Deng Y., Lei T., Zhao J., Liu JH. (2010). High prevalence of blaCTX-M extended-spectrum β-lactamase genes in Escherichia coli isolates from pets and emergence of CTX-M-64 in China. Clinical Microbiology and Infection, v.16, n.9, p.1475-1481. https://doi.org/10.1111/j.1469-0691.2010.03127.x Chen S., Barbieri J.T. (2009). Engineering botulinum neurotoxin to extend therapeutic intervention. Proceedings of the National Academy of Sciences of the United States of America, v.106, n.23, p.9180-9184. https://doi.org/10.1073/pnas.0903111106 Chen S., Itall C., Barbieri J.T. (2008). Substrate recognition of VAMP-2 by botulinum neurotoxin B and tetamus neurotoxin. Journal of Biological Chemistry, v.283, n.30, p.21153-21159. https://doi.org/10.1074/jbc.M06011200 Chen S., Barbieri J.T. (2007). Multiple pocket recognition of SNAP25 by botulinum neurotoxin serotype E. Journal of Biological Chemistry, v.282, n.35, p.25540-25547. https://doi.org/10.1074/jbc.M019122200 Chen S., Kim JJ.P., Barbieri J.T. (2007). Mechanism of substrate recognition by botulinum neurotoxin serotype E. Journal of Biological Chemistry, v.282, n.13, p.9621-9627. https://doi.org/10.1074/jbc.M011211200 Chen S., Cui S., McDermott P.F., Zhao S., White D.G., Paulsen I., Meng J. (2007). Contribution of target gene mutations and efflux to decreased susceptibility of Salmonella enterica serovar typhimurium to fluoroquinolones and other antimicrobials. Antimicrobial Agents and Chemotherapy, v.51, n.2, p.535-542. https://doi.org/10.1128/AAC.00600-06						
Before 2010 Zhao J., Chen S., Deng Y., Liu Y., Tian W., Huang X., Wu C., Sun Y., Sun Y., Zeng Z., Liu JH. (2010). Prevalence and dissemination of oqxAB in Escherichia coli isolates from animals, farmworkers, and the environment. Antimicrobial Agents and Chemotherapy, v.54, n.10, p.4219-4224. https://doi.org/10.1128/AAC.00139-10 Sun Y., Zeng Z., Chen S., Ma J., He L., Liu Y., Deng Y., Lei T., Zhao J., Liu JH. (2010). High prevalence of blaCTX-M extended-spectrum β-lactamase genes in Escherichia coli isolates from pets and emergence of CTX-M-64 in China. Clinical Microbiology and Infection. v.16, n.9, p.1475-1481. https://doi.org/10.1111/j.1469-0691.2010.03127.x Chen S., Barbieri J.T. (2009). Engineering botulinum neurotoxin to extend therapeutic intervention. Proceedings of the National Academy of Sciences of the United States of America, v.106, n.23, p.9180-9184. https://doi.org/10.1073/pnas.0903111106 Chen S., Hall C., Barbieri J.T. (2008). Substrate recognition of VAMP-2 by botulinum neurotoxin B and tetanus neurotoxin. Journal of Biological Chemistry, v.283, n.30, p.21153-21159. https://doi.org/10.1074/jbc.M800611200 Chen S., Barbieri J.T. (2007). Multiple pocket recognition of SNAP25 by botulinum neurotoxin serotype E. Journal of Biological Chemistry, v.282, n.35, p.25540-25547. https://doi.org/10.1074/jbc.M701922200 Chen S., Kim JJ.P., Barbieri J.T. (2007). Mechanism of substrate recognition by botulinum neurotoxin serotype E. Journal of Biological Chemistry, v.282, n.35, p.26540-25547. https://doi.org/10.1074/jbc.M611211200 Chen S., Kim JJ.P., Barbieri J.T. (2007). Mechanism of substrate recognition by botulinum neurotoxin serotype E. Journal of Biological Chemistry, v.282, n.31, p.9621-9627. https://doi.org/10.1074/jbc.M611211200 Chen S., Cui S., McDermout P.F., Chao S., White D.G., Paulsen I., Meng J. (2007). Contribution of target gene mutations and efflux to decreased susceptibility of Salmonella enterica serovar typhimurium to fluoroquinolones and other antimicrobials. Antimicrobial A	14		7.117	Co	40	A+
Before 2010 Zhao J., Chen Z., Chen S., Deng Y., Liu Y., Tian W., Huang X., Wu C., Sun Y., Sun Y., Zeng Z., Liu JH. (2010). Prevalence and dissemination of oqxAB in Escherichia coli isolates from animals, farmworkers, and the environment. Antimicrobial Agents and Chemotherapy, v.54, n.10, p.4219-4224, https://doi.org/10.1128/AAC.00139-10 Sun Y., Zeng Z., Chen S., Ma J., He L., Liu Y., Deng Y., Lei T., Zhao J., Liu JH. (2010). High prevalence of blaCTX-M extended-spectrum β-lactamase genes in Escherichia coli isolates from pets and emergence of CTX-M-64 in China. Clinical Microbiology and Infection, v.16, n.9, p.1475-1481. https://doi.org/10.1111/j.1469-0691.2010.03127.x Chen S., Barbieri J.T. (2009). Engineering botulinum neurotoxin to extend therapeutic intervention. Proceedings of the National Academy of Sciences of the United States of America, v.106, n.23, p.9180-9184. https://doi.org/10.1073/pnas.0903111106 Chen S., Hall C., Barbieri J.T. (2008). Substrate recognition of VAMP-2 by botulinum neurotoxin B and tetanus neurotoxin. Journal of Biological Chemistry, v.283, n.30, p.21153-21159. https://doi.org/10.1074/jbc.M800611200 Chen S., Barbieri J.T. (2007). Multiple pocket recognition of SNAP25 by botulinum neurotoxin serotype E. Journal of Biological Chemistry, v.282, n.35, p.25540-25547. https://doi.org/10.1074/jbc.M701922200 Chen S., Kim JJ.P., Barbieri J.T. (2007). Mechanism of substrate recognition by botulinum neurotoxin serotype E. Journal of Biological Chemistry, v.282, n.13, p.9621-9627. https://doi.org/10.1074/jbc.M611211200 Chen S., Cui S., McDermott P.F., Zhao S., White D.G., Paulsen I., Meng J. (2007). Contribution of target gene mutations and efflux to decreased susceptibility of Salmonella enterica serovar typhimurium to fluoroquinolones and other antimicrobials. Antimicrobial Agents and Chemotherapy, v.51, n.2, p.535-542. https://doi.org/10.1128/AAC.00600-06						
Zhao J., Chen Z., Chen S., Deng Y., Liu Y., Tian W., Huang X., Wu C., Sun Y., Sun Y., Zeng Z., Liu JH. (2010). Prevalence and dissemination of ogxAB in Escherichia coli isolates from animals, farmworkers, and the environment. Antimicrobial Agents and Chemotherapy, v.54, n.10, p.4219-4224. https://doi.org/10.1128/AAC.00139-10 Sun Y., Zeng Z., Chen S., Ma J., He L., Liu Y., Deng Y., Lei T., Zhao J., Liu JH. (2010). High prevalence of blaCTX-M extended-spectrum β-lactamase genes in Escherichia coli isolates from pets and emergence of CTX-M-64 in China. Clinical Microbiology and Infection. v.16, n.9, p.1475-1481. https://doi.org/10.1111/j.1469-0691.2010.03127.x Chen S., Barbieri J.T. (2009). Engineering botulinum neurotoxin to extend therapeutic intervention. Proceedings of the National Academy of Sciences of the United States of America, v.106, n.23, p.9180-9184. https://doi.org/10.1073/pnas.0903111106 Chen S., Hall C., Barbieri J.T. (2008). Substrate recognition of VAMP-2 by botulinum neurotoxin B and tetanus neurotoxin. Journal of Biological Chemistry, v.283, n.30, p.21153-21159. https://doi.org/10.1074/jbc.M800611200 Chen S., Barbieri J.T. (2007). Multiple pocket recognition of SNAP25 by botulinum neurotoxin serotype E. Journal of Biological Chemistry, v.282, n.35, p.2540-25547. https://doi.org/10.1074/jbc.M60121200 Chen S., Kim JJ.P., Barbieri J.T. (2007). Mechanism of substrate recognition by botulinum neurotoxin serotype A. Journal of Biological Chemistry, v.282, n.13, p.9621-9627. https://doi.org/10.1074/jbc.M611211200 Chen S., Ciu S., McDermott P.F., Zhao S., White D.G., Paulsen I., Meng J. (2007). Contribution of target gene mutations and efflux to decreased susceptibility of Salmonella enterica serovar typhimurium to fluoroquinolones and other antimicrobials. Antimicrobial Agents and Chemotherapy, v.51, n.2, p.535-542. https://doi.org/10.1128/AAC.00600-06						
Zhao J., Chen Z., Chen S., Deng Y., Liu Y., Tian W., Huang X., Wu C., Sun Y., Sun Y., Zeng Z., Liu JH. (2010). Prevalence and dissemination of oqxAB in Escherichia coli isolates from animals, farmworkers, and the environment. Antimicrobial Agents and Chemotherapy, v. 54, n. 10, p. 4219-4224. https://doi.org/10.1128/AAC.00139-10 Sun Y., Zeng Z., Chen S., Ma J., He L., Liu Y., Deng Y., Lei T., Zhao J., Liu JH. (2010). High prevalence of blaCTX-M extended-spectrum Paleatemase genes in Escherichia coli isolates from pets and emergence of CTX-M-64 in China. Clinical Microbiology and Infection, v. 16, n. 9, p. 1475-1481. https://doi.org/10.1111/j.1469-0691.2010.03127.x Chen S., Barbieri J.T. (2009). Engineering botulinum neurotoxin to extend therapeutic intervention. Proceedings of the National Academy of Sciences of the United States of America, v. 106, n. 23, p. 9180-9184. https://doi.org/10.1073/pnas.0903111106 Chen S., Hall C., Barbieri J.T. (2008). Substrate recognition of VAMP-2 by botulinum neurotoxin B and tetanus neurotoxin. Journal of Biological Chemistry, v. 283, n. 30, p. 21153-21159. https://doi.org/10.1074/jbc.M800611200 Chen S., Barbieri J.T. (2007). Multiple pocket recognition of SNAP25 by botulinum neurotoxin serotype E. Journal of Biological Chemistry, v. 282, n. 35, p. 2554-25547. https://doi.org/10.1074/jbc.M611211200 Chen S., Kim JJ.P., Barbieri J.T. (2007). Mechanism of substrate recognition by botulinum neurotoxin serotype A. Journal of Biological Chemistry, v. 282, n. 13, p. 9621-9627. https://doi.org/10.1074/jbc.M611211200 Chen S., Cui S., McDermott P.F., Jaho S., White D.G., Paulsen I., Meng J. (2007). Contribution of target gene mutations and efflux to decreased susceptibility of Salmonella enterica serovar typhimurium to fluoroquinolones and other antimicrobials. Antimicrobial Agents and Chemotherapy, v. 51, n. 2, p. 535-542. https://doi.org/10.1128/AAC.00600-06						
C., Sun Y., Sun Y., Zeng Z., Liu JH. (2010). Prevalence and dissemination of oqxAB in Escherichia coli isolates from animals, farmworkers, and the environment. Antimicrobial Agents and Chemotherapy, v.54, n.10, p.4219-4224. https://doi.org/10.1128/AAC.00139-10 Sun Y., Zeng Z., Chen S., Ma J., He L., Liu Y., Deng Y., Lei T., Zhao J., Liu JH. (2010). High prevalence of blaCTX-M extended-spectrum β-lactamase genes in Escherichia coli isolates from pets and emergence of CTX-M-64 in China. Clinical Microbiology and Infection, v.16, n.9, p.1475-1481. https://doi.org/10.1111/j.1469-0691.2010.03127.x Chen S., Barbieri J.T. (2009). Engineering botulinum neurotoxin to extend therapeutic intervention. Proceedings of the National Academy of Sciences of the United States of America, v.106, n.23, p.9180-9184. https://doi.org/10.1073/pnas.0903111106 Chen S., Hall C., Barbieri J.T. (2008). Substrate recognition of VAMP-2 by botulinum neurotoxin B and tetanus neurotoxin. Journal of Biological Chemistry, v.283, n.30, p.21153-21159. https://doi.org/10.1074/jbc.M800611200 Chen S., Barbieri J.T. (2007). Multiple pocket recognition of SNAP25 by botulinum neurotoxin serotype E. Journal of Biological Chemistry, v.282, n.35, p.25540-25547. https://doi.org/10.1074/jbc.M701922200 Chen S., Kim JJ.P., Barbieri J.T. (2007). Mechanism of substrate recognition by botulinum neurotoxin serotype A. Journal of Biological Chemistry, v.282, n.13, p.9621-9627. https://doi.org/10.1074/jbc.M6112100 Chen S., Cui S., McDermott P.F., Zhao S., White D.G., Paulsen I., Meng J. (2007). Contribution of target gene mutations and efflux to decreased susceptibility of Salmonella enterica serovar typhimurium to fluoroquinolones and other antimicrobials. Antimicrobial Agents and Chemotherapy, v.51, n.2, p.535-542. https://doi.org/10.1128/AAC.00600-06		Before 2010				
dissemination of oqxAB in Escherichia coli isolates from animals, farmworkers, and the environment. Antimicrobial Agents and Chemotherapy, v. 54, n. 10, p. 4219-4224. https://doi.org/10.1128/AAC.00139-10 Sun Y., Zeng Z., Chen S., Ma J., He L., Liu Y., Deng Y., Lei T., Zhao J., Liu JH. (2010). High prevalence of blaCTX-M extended-spectrum β-lactamase genes in Escherichia coli isolates from pets and emergence of CTX-M-64 in China. Clinical Microbiology and Infection, v. 16, n. 9, p. 1475-1481. https://doi.org/10.1111/j.1469-0691.2010.03127.x Chen S., Barbieri J.T. (2009). Engineering botulinum neurotoxin to extend therapeutic intervention. Proceedings of the National Academy of Sciences of the United States of America, v. 106, n. 23, p. 9180-9184. https://doi.org/10.1073/pnas.0903111106 Chen S., Hall C., Barbieri J.T. (2008). Substrate recognition of VAMP-2 by botulinum neurotoxin B and tetanus neurotoxin. Journal of Biological Chemistry, v. 283, n. 30, p. 21153-21159. https://doi.org/10.1074/jbc.M800611200 Chen S., Barbieri J.T. (2007). Multiple pocket recognition of SNAP25 by botulinum neurotoxin serotype E. Journal of Biological Chemistry, v. 282, n. 35, p. 25540-25547. https://doi.org/10.1074/jbc.M701922200 Chen S., Kim JJ.P., Barbieri J.T. (2007). Mechanism of substrate recognition by botulinum neurotoxin serotype A. Journal of Biological Chemistry, v. 282, n. 13, p. 9621-9627. https://doi.org/10.1074/jbc.M611211200 Chen S., Cui S., McDermott P.F., Zhao S., White D.G., Paulsen I., Meng J. (2007). Contribution of target gene mutations and efflux to decreased susceptibility of Salmonella enterica serovar typhimurium to fluoroquinolones and other antimicrobials. Antimicrobial Agents and Chemotherapy, v. 51, n. 2, p. 535-542. https://doi.org/10.128/AAC.00600-06						
farmworkers, and the environment. Antimicrobial Agents and Chemotherapy, v.54, n.10, p.4219-4224. https://doi.org/10.1128/AAC.00139-10 Sun Y., Zeng Z., Chen S., Ma J., He L., Liu Y., Deng Y., Lei T., Zhao J., Liu JH. (2010). High prevalence of blaCTX-M extended-spectrum β-lactamase genes in Escherichia coli isolates from pets and emergence of CTX-M-64 in China. Clinical Microbiology and Infection. v.16, n.9, p.1475-1481. https://doi.org/10.1111/j.1469-0691.2010.03127.x Chen S., Barbieri J.T. (2009). Engineering botulinum neurotoxin to extend therapeutic intervention. Proceedings of the National Academy of Sciences of the United States of America, v.106, n.23, p.9180-9184. https://doi.org/10.1073/pnas.0903111106 Chen S., Hall C., Barbieri J.T. (2008). Substrate recognition of VAMP-2 by botulinum neurotoxin B and tetanus neurotoxin. Journal of Biological Chemistry, v.283, n.30, p.21153-21159. https://doi.org/10.1074/jbc.M800611200 Chen S., Barbieri J.T. (2007). Multiple pocket recognition of SNAP25 by botulinum neurotoxin serotype E. Journal of Biological Chemistry, v.282, n.35, p.25540-25547. https://doi.org/10.1074/jbc.M701922200 Chen S., Kim JJ.P., Barbieri J.T. (2007). Mechanism of substrate recognition by botulinum neurotoxin serotype A. Journal of Biological Chemistry, v.282, n.39, p.9621-9627. https://doi.org/10.1074/jbc.M611211200 Chen S., Cui S., McDermont P.F., Zhao S., White D.G., Paulsen I., Meng J. (2007). Contribution of target gene mutations and efflux to decreased susceptibility of Salmonella enterica serovar typhimurium to fluoroquinolones and other antimicrobials. Antimicrobial Agents and Chemotherapy, v.51, n.2, p.535-542. https://doi.org/10.1128/AAC.00600-06		, ,				
tarmworkers, and the environment. Antimicrobial Agents and Chemotherapy, v.54, n.10, p.4219-4224. https://doi.org/10.1128/AAC.00139-10 Sun Y., Zeng Z., Chen S., Ma J., He L., Liu Y., Deng Y., Lei T., Zhao J., Liu JH. (2010). High prevalence of blacTX-M extended-spectrum β-lactamase genes in Escherichia coli isolates from pets and emergence of CTX-M-64 in China. Clinical Microbiology and Infection. v.16, n.9, p.1475-1481. https://doi.org/10.1111/j.1469-0691.2010.03127.x Chen S., Barbieri J.T. (2009). Engineering botulinum neurotoxin to extend therapeutic intervention. Proceedings of the National Academy of Sciences of the United States of America, v.106, n.23, p.9180-9184. https://doi.org/10.1073/pnas.0903111106 Chen S., Hall C., Barbieri J.T. (2008). Substrate recognition of VAMP-2 by botulinum neurotoxin B and tetanus neurotoxin. Journal of Biological Chemistry, v.283, n.30, p.21153-21159. https://doi.org/10.1074/jbc.M800611200 Chen S., Barbieri J.T. (2007). Multiple pocket recognition of SNAP25 by botulinum neurotoxin serotype E. Journal of Biological Chemistry, v.282, n.35, p.25540-25547. https://doi.org/10.1074/jbc.M701922200 Chen S., Kim JJ.P., Barbieri J.T. (2007). Mechanism of substrate recognition by botulinum neurotoxin serotype A. Journal of Biological Chemistry, v.282, n.13, p.9621-9627. https://doi.org/10.1074/jbc.M611211200 Chen S., Cui S., McDermout P.F., Zhao S., White D.G., Paulsen I., Meng J. (2007). Contribution of target gene mutations and efflux to decreased susceptibility of Salmonella enterica serovar typhimurium to fluoroquinolones and other antimicrobials. Antimicrobial Agents and Chemotherapy, v.51, n.2, p.535-542. https://doi.org/10.1128/AAC.00600-06	13		5 191	Co	119	A+
https://doi.org/10.1128/AAC.00139-10 Sum Y., Zeng Z., Chen S., Ma J., He L., Liu Y., Deng Y., Lei T., Zhao J., Liu JH. (2010). High prevalence of blaCTX-M extended-spectrum β-lactamase genes in Escherichia coli isolates from pets and emergence of CTX-M-64 in China. Clinical Microbiology and Infection. v.16, n.9, p.1475-1481. https://doi.org/10.1111/j.1469-0691.2010.03127.x Chen S., Barbieri J.T. (2009). Engineering botulinum neurotoxin to extend therapeutic intervention. Proceedings of the National Academy of Sciences of the United States of America, v.106, n.23, p.9180-9184. https://doi.org/10.1073/pnas.0903111106 Chen S., Hall C., Barbieri J.T. (2008). Substrate recognition of VAMP-2 by botulinum neurotoxin B and tetanus neurotoxin. Journal of Biological Chemistry, v.283, n.30, p.21153-21159. https://doi.org/10.1074/jbc.M800611200 Chen S., Barbieri J.T. (2007). Multiple pocket recognition of SNAP25 by botulinum neurotoxin serotype E. Journal of Biological Chemistry, v.282, n.35, p.25540-25547. https://doi.org/10.1074/jbc.M701922200 Chen S., Kim JJ.P., Barbieri J.T. (2007). Mechanism of substrate recognition by botulinum neurotoxin serotype A. Journal of Biological Chemistry, v.282, n.13, p.9621-9627. https://doi.org/10.1074/jbc.M611211200 Chen S., Cui S., McDermott P.F., Zhao S., White D.G., Paulsen I., Meng J. (2007). Contribution of target gene mutations and efflux to decreased susceptibility of Salmonella enterica serovar typhimurium to fluoroquinolones and other antimicrobials. Antimicrobial Agents and Chemotherapy, v.51, n.2, p.535-542. https://doi.org/10.1128/AAC.00600-06	13		3.171		117	1 1
Sun Y., Zeng Z., Chen S., Ma J., He L., Liu Y., Deng Y., Lei T., Zhao J., Liu JH. (2010). High prevalence of blaCTX-Me extended-spectrum β-lactamase genes in Escherichia coli isolates from pets and emergence of CTX-M-64 in China. Clinical Microbiology and Infection, v.16, n.9, p.1475-1481. https://doi.org/10.1111/j.1469-0691.2010.03127.x Chen S., Barbieri J.T. (2009). Engineering botulinum neurotoxin to extend therapeutic intervention. Proceedings of the National Academy of Sciences of the United States of America, v.106, n.23, p.9180-9184. https://doi.org/10.1073/pnas.0903111106 Chen S., Hall C., Barbieri J.T. (2008). Substrate recognition of VAMP-2 by botulinum neurotoxin B and tetanus neurotoxin. Journal of Biological Chemistry, v.283, n.30, p.21153-21159. https://doi.org/10.1074/jbc.M800611200 Chen S., Barbieri J.T. (2007). Multiple pocket recognition of SNAP25 by botulinum neurotoxin serotype E. Journal of Biological Chemistry, v.282, n.35, p.25540-25547. https://doi.org/10.1074/jbc.M701922200 Chen S., Kim JJ.P., Barbieri J.T. (2007). Mechanism of substrate recognition by botulinum neurotoxin serotype A. Journal of Biological Chemistry, v.282, n.13, p.9621-9627. https://doi.org/10.1074/jbc.M611211200 Chen S., Cui S., McDermott P.F., Zhao S., White D.G., Paulsen I., Meng J. (2007). Contribution of target gene mutations and efflux to decreased susceptibility of Salmonella enterica serovar typhimurium to fluoroquinolones and other antimicrobials. Antimicrobial Agents and Chemotherapy, v.51, n.2, p.535-542. https://doi.org/10.1128/AAC.00600-06						
1. Liu JH. (2010). High prevalence of blaCTX-M extended-spectrum β-lactamase genes in Escherichia coli isolates from pets and emergence of CTX-M-64 in China. Clinical Microbiology and Infection, v.16, n.9, p.1475-1481. https://doi.org/10.1111/j.1469-0691.2010.03127.x Chen S., Barbieri J.T. (2009). Engineering botulinum neurotoxin to extend therapeutic intervention. Proceedings of the National Academy of Sciences of the United States of America, v.106, n.23, p.9180-9184. https://doi.org/10.1073/pnas.0903111106 Chen S., Hall C., Barbieri J.T. (2008). Substrate recognition of VAMP-2 by botulinum neurotoxin B and tetanus neurotoxin. Journal of Biological Chemistry, v.283, n.30, p.21153-21159. https://doi.org/10.1074/jbc.M800611200 Chen S., Barbieri J.T. (2007). Multiple pocket recognition of SNAP25 by botulinum neurotoxin serotype E. Journal of Biological Chemistry, v.282, n.35, p.25540-25547. https://doi.org/10.1074/jbc.M701922200 Chen S., Kim JJ.P., Barbieri J.T. (2007). Mechanism of substrate recognition by botulinum neurotoxin serotype A. Journal of Biological Chemistry, v.282, n.13, p.9621-9627. https://doi.org/10.1074/jbc.M611211200 Chen S., Cui S., McDermott P.F., Zhao S., White D.G., Paulsen I., Meng J. (2007). Contribution of target gene mutations and efflux to decreased susceptibility of Salmonella enterica serovar typhimurium to fluoroquinolones and other antimicrobials. Antimicrobial Agents and Chemotherapy, v.51, n.2, p.535-542. https://doi.org/10.1128/AAC.00600-06						
textended-spectrum β-lactamase genes in Escherichia coli isolates from pets and emergence of CTX-M-64 in China. Clinical Microbiology and Infection, v.16, n.9, p.1475-1481. https://doi.org/10.1111/j.1469-0691.2010.03127.x Chen S., Barbieri J.T. (2009). Engineering botulinum neurotoxin to extend therapeutic intervention. Proceedings of the National Academy of Sciences of the United States of America, v.106, n.23, p.9180-9184. https://doi.org/10.1073/pnas.0903111106 Chen S., Hall C., Barbieri J.T. (2008). Substrate recognition of VAMP-2 by botulinum neurotoxin B and teatanus neurotoxin. Journal of Biological Chemistry, v.283, n.30, p.21153-21159. https://doi.org/10.1074/jbc.M800611200 Chen S., Barbieri J.T. (2007). Multiple pocket recognition of SNAP25 by botulinum neurotoxin serotype E. Journal of Biological Chemistry, v.282, n.35, p.25540-25547. https://doi.org/10.1074/jbc.M701922200 Chen S., Kim JJ.P., Barbieri J.T. (2007). Mechanism of substrate recognition by botulinum neurotoxin serotype A. Journal of Biological Chemistry, v.282, n.13, p.9621-9627. https://doi.org/10.1074/jbc.M611211200 Chen S., Cui S., McDermott P.F., Zhao S., White D.G., Paulsen I., Meng J. (2007). Contribution of target gene mutations and efflux to decreased susceptibility of Salmonella enterica serovar typhimurium to fluoroquinolones and other antimicrobials. Antimicrobial Agents and Chemotherapy, v.51, n.2, p.535-542. https://doi.org/10.1128/AAC.00600-06						
from pets and emergence of CTX-M-64 in China. Clinical Microbiology and Infection, v.16, n.9, p.1475-1481. https://doi.org/10.1111/j.1469-0691.2010.03127.x Chen S., Barbieri J.T. (2009). Engineering botulinum neurotoxin to extend therapeutic intervention. Proceedings of the National Academy of Sciences of the United States of America, v.106, n.23, p.9180-9184. https://doi.org/10.1073/pnas.0903111106 Chen S., Hall C., Barbieri J.T. (2008). Substrate recognition of VAMP-2 by botulinum neurotoxin B and tetanus neurotoxin. Journal of Biological Chemistry. v.283, n.30, p.21153-21159. https://doi.org/10.1074/jbc.M800611200 Chen S., Barbieri J.T. (2007). Multiple pocket recognition of SNAP25 by botulinum neurotoxin serotype E. Journal of Biological Chemistry. v.282, n.35, p.25540-25547. https://doi.org/10.1074/jbc.M701922200 Chen S., Kim JJ.P., Barbieri J.T. (2007). Mechanism of substrate recognition by botulinum neurotoxin serotype A. Journal of Biological Chemistry, v.282, n.13, p.9621-9627. https://doi.org/10.1074/jbc.M611211200 Chen S., Cui S., McDermott P.F., Zhao S., White D.G., Paulsen I., Meng J. (2007). Contribution of target gene mutations and efflux to decreased susceptibility of Salmonella enterica serovar typpimurium to fluoroquinolones and other antimicrobials. Antimicrobial Agents and Chemotherapy, v.51, n.2, p.535-542. https://doi.org/10.1128/AAC.00600-06		` / • 1				
Irom pets and emergence of CTx-M-64 in China. Climical Microbiology and Infection, v.16, n.9, p.1475-1481. https://doi.org/10.1111/j.1469-0691.2010.03127.x	12		8.067	Co	123	A+
https://doi.org/10.1111/j.1469-0691.2010.03127.x Chen S., Barbieri J.T. (2009). Engineering botulinum neurotoxin to extend therapeutic intervention. Proceedings of the National Academy of Sciences of the United States of America, v.106, n.23, p.9180-9184. https://doi.org/10.1073/pnas.0903111106 Chen S., Hall C., Barbieri J.T. (2008). Substrate recognition of VAMP-2 by botulinum neurotoxin B and tetanus neurotoxin. Journal of Biological Chemistry, v.283, n.30, p.21153-21159. https://doi.org/10.1074/jbc.M800611200 Chen S., Barbieri J.T. (2007). Multiple pocket recognition of SNAP25 by botulinum neurotoxin serotype E. Journal of Biological Chemistry, v.282, n.35, p.25540-25547. https://doi.org/10.1074/jbc.M701922200 Chen S., Kim JJ.P., Barbieri J.T. (2007). Mechanism of substrate recognition by botulinum neurotoxin serotype A. Journal of Biological Chemistry, v.282, n.13, p.9621-9627. https://doi.org/10.1074/jbc.M611211200 Chen S., Cui S., McDermott P.F., Zhao S., White D.G., Paulsen I., Meng J. (2007). Contribution of target gene mutations and efflux to decreased susceptibility of Salmonella enterica serovar typhimurium to fluoroquinolones and other antimicrobials. Antimicrobial Agents and Chemotherapy, v.51, n.2, p.535-542. https://doi.org/10.1128/AAC.00600-06	12		0.007		123	11.
Chen S., Barbieri J.T. (2009). Engineering botulinum neurotoxin to extend therapeutic intervention. Proceedings of the National Academy of Sciences of the United States of America, v.106, n.23, p.9180-9184. https://doi.org/10.1073/pnas.0903111106 Chen S., Hall C., Barbieri J.T. (2008). Substrate recognition of VAMP-2 by botulinum neurotoxin B and tetanus neurotoxin. 5.157 1st 53 B+						
extend therapeutic intervention. Proceedings of the National Academy of Sciences of the United States of America, v.106, n.23, p.9180-9184. https://doi.org/10.1073/pnas.0903111106 Chen S., Hall C., Barbieri J.T. (2008). Substrate recognition of VAMP-2 by botulinum neurotoxin B and tetanus neurotoxin. Journal of Biological Chemistry, v.283, n.30, p.21153-21159. https://doi.org/10.1074/jbc.M800611200 Chen S., Barbieri J.T. (2007). Multiple pocket recognition of SNAP25 by botulinum neurotoxin serotype E. Journal of Biological Chemistry, v.282, n.35, p.25540-25547. https://doi.org/10.1074/jbc.M701922200 Chen S., Kim JJ.P., Barbieri J.T. (2007). Mechanism of substrate recognition by botulinum neurotoxin serotype A. Journal of Biological Chemistry, v.282, n.13, p.9621-9627. https://doi.org/10.1074/jbc.M611211200 Chen S., Cui S., McDermott P.F., Zhao S., White D.G., Paulsen I., Meng J. (2007). Contribution of target gene mutations and efflux to decreased susceptibility of Salmonella enterica serovar typhimurium to fluoroquinolones and other antimicrobials. Antimicrobial Agents and Chemotherapy, v.51, n.2, p.535-542. https://doi.org/10.1128/AAC.00600-06						
Academy of Sciences of the United States of America, v.106, n.23, p.9180-9184. https://doi.org/10.1073/pnas.0903111106 Chen S., Hall C., Barbieri J.T. (2008). Substrate recognition of VAMP-2 by botulinum neurotoxin B and tetanus neurotoxin. Journal of Biological Chemistry, v.283, n.30, p.21153-21159. https://doi.org/10.1074/jbc.M800611200 Chen S., Barbieri J.T. (2007). Multiple pocket recognition of SNAP25 by botulinum neurotoxin serotype E. Journal of Biological Chemistry, v.282, n.35, p.25540-25547. https://doi.org/10.1074/jbc.M701922200 Chen S., Kim JJ.P., Barbieri J.T. (2007). Mechanism of substrate recognition by botulinum neurotoxin serotype A. Journal of Biological Chemistry, v.282, n.13, p.9621-9627. https://doi.org/10.1074/jbc.M611211200 Chen S., Cui S., McDermott P.F., Zhao S., White D.G., Paulsen I., Meng J. (2007). Contribution of target gene mutations and efflux to decreased susceptibility of Salmonella enterica serovar typhimurium to fluoroquinolones and other antimicrobials. Antimicrobial Agents and Chemotherapy, v.51, n.2, p.535-542. https://doi.org/10.1128/AAC.00600-06						
Academy of Sciences of the United States of America, V.106, n.23, p.9180-9184. https://doi.org/10.1073/pnas.0903111106 Chen S., Hall C., Barbieri J.T. (2008). Substrate recognition of VAMP-2 by botulinum neurotoxin B and tetanus neurotoxin. Journal of Biological Chemistry, v.283, n.30, p.21153-21159. https://doi.org/10.1074/jbc.M800611200 Chen S., Barbieri J.T. (2007). Multiple pocket recognition of SNAP25 by botulinum neurotoxin serotype E. Journal of Biological Chemistry, v.282, n.35, p.25540-25547. https://doi.org/10.1074/jbc.M701922200 Chen S., Kim JJ.P., Barbieri J.T. (2007). Mechanism of substrate recognition by botulinum neurotoxin serotype A. Journal of Biological Chemistry, v.282, n.13, p.9621-9627. https://doi.org/10.1074/jbc.M611211200 Chen S., Cui S., McDermott P.F., Zhao S., White D.G., Paulsen I., Meng J. (2007). Contribution of target gene mutations and efflux to decreased susceptibility of Salmonella enterica serovar typhimurium to fluoroquinolones and other antimicrobials. Antimicrobial Agents and Chemotherapy, v.51, n.2, p.535-542. https://doi.org/10.1128/AAC.00600-06	11	1	11.205	1 st	57	A+
Chen S., Hall C., Barbieri J.T. (2008). Substrate recognition of VAMP-2 by botulinum neurotoxin B and tetanus neurotoxin. Journal of Biological Chemistry, v.283, n.30, p.21153-21159. https://doi.org/10.1074/jbc.M800611200	• •		11.200	1		
VAMP-2 by botulinum neurotoxin B and tetanus neurotoxin. Journal of Biological Chemistry, v.283, n.30, p.21153-21159. https://doi.org/10.1074/jbc.M800611200 Chen S., Barbieri J.T. (2007). Multiple pocket recognition of SNAP25 by botulinum neurotoxin serotype E. Journal of Biological Chemistry, v.282, n.35, p.25540-25547. https://doi.org/10.1074/jbc.M701922200 Chen S., Kim JJ.P., Barbieri J.T. (2007). Mechanism of substrate recognition by botulinum neurotoxin serotype A. Journal of Biological Chemistry, v.282, n.13, p.9621-9627. 5.157 1st 69 B+ Biological Chemistry, v.282, n.13, p.9621-9627. https://doi.org/10.1074/jbc.M611211200 Chen S., Cui S., McDermott P.F., Zhao S., White D.G., Paulsen I., Meng J. (2007). Contribution of target gene mutations and efflux to decreased susceptibility of Salmonella enterica serovar typhimurium to fluoroquinolones and other antimicrobials. Antimicrobial Agents and Chemotherapy, v.51, n.2, p.535-542. https://doi.org/10.1128/AAC.00600-06						
Journal of Biological Chemistry, v.283, n.30, p.21153-21159. https://doi.org/10.1074/jbc.M800611200						
https://doi.org/10.1074/jbc.M800611200 Chen S., Barbieri J.T. (2007). Multiple pocket recognition of SNAP25 by botulinum neurotoxin serotype E. Journal of Biological Chemistry, v.282, n.35, p.25540-25547. https://doi.org/10.1074/jbc.M701922200 Chen S., Kim JJ.P., Barbieri J.T. (2007). Mechanism of substrate recognition by botulinum neurotoxin serotype A. Journal of Biological Chemistry, v.282, n.13, p.9621-9627. https://doi.org/10.1074/jbc.M611211200 Chen S., Cui S., McDermott P.F., Zhao S., White D.G., Paulsen I., Meng J. (2007). Contribution of target gene mutations and efflux to decreased susceptibility of Salmonella enterica serovar typhimurium to fluoroquinolones and other antimicrobials. Antimicrobial Agents and Chemotherapy, v.51, n.2, p.535-542. https://doi.org/10.1128/AAC.00600-06	10		5 157 1	157 1st	53	B+
Chen S., Barbieri J.T. (2007). Multiple pocket recognition of SNAP25 by botulinum neurotoxin serotype E. Journal of Biological Chemistry, v.282, n.35, p.25540-25547. S.157 List S.157 List S.157 List B+	_		,			
9 SNAP25 by botulinum neurotoxin serotype E. <i>Journal of Biological Chemistry</i> , v.282, n.35, p.25540-25547. https://doi.org/10.1074/jbc.M701922200 8 Chen S., Kim JJ.P., Barbieri J.T. (2007). Mechanism of substrate recognition by botulinum neurotoxin serotype A. <i>Journal of Biological Chemistry</i> , v.282, n.13, p.9621-9627. https://doi.org/10.1074/jbc.M611211200 Chen S., Cui S., McDermott P.F., Zhao S., White D.G., Paulsen I., Meng J. (2007). Contribution of target gene mutations and efflux to decreased susceptibility of Salmonella enterica serovar typhimurium to fluoroquinolones and other antimicrobials. <i>Antimicrobial Agents and Chemotherapy</i> , v.51, n.2, p.535-542. https://doi.org/10.1128/AAC.00600-06						
Chemistry, v.282, n.35, p.25540-25547. https://doi.org/10.1074/jbc.M701922200 Chen S., Kim JJ.P., Barbieri J.T. (2007). Mechanism of substrate recognition by botulinum neurotoxin serotype A. Journal of Biological Chemistry, v.282, n.13, p.9621-9627. https://doi.org/10.1074/jbc.M611211200 Chen S., Cui S., McDermott P.F., Zhao S., White D.G., Paulsen I., Meng J. (2007). Contribution of target gene mutations and efflux to decreased susceptibility of Salmonella enterica serovar typhimurium to fluoroquinolones and other antimicrobials. Antimicrobial Agents and Chemotherapy, v.51, n.2, p.535-542. https://doi.org/10.1128/AAC.00600-06						
Chemistry, v.282, n.35, p.25340-25347. https://doi.org/10.1074/jbc.M701922200	9		5.157	1 st	41	B+
Recognition by botulinum neurotoxin serotype A. Journal of Biological Chemistry, v.282, n.13, p.9621-9627. https://doi.org/10.1074/jbc.M611211200 Chen S., Cui S., McDermott P.F., Zhao S., White D.G., Paulsen I., Meng J. (2007). Contribution of target gene mutations and efflux to decreased susceptibility of Salmonella enterica serovar typhimurium to fluoroquinolones and other antimicrobials. Antimicrobial Agents and Chemotherapy, v.51, n.2, p.535-542. https://doi.org/10.1128/AAC.00600-06			01107			
Recognition by botulinum neurotoxin serotype A. <i>Journal of Biological Chemistry</i> , v.282, n.13, p.9621-9627. https://doi.org/10.1074/jbc.M611211200 Chen S., Cui S., McDermott P.F., Zhao S., White D.G., Paulsen I., Meng J. (2007). Contribution of target gene mutations and efflux to decreased susceptibility of Salmonella enterica serovar typhimurium to fluoroquinolones and other antimicrobials. <i>Antimicrobial Agents and Chemotherapy</i> , v.51, n.2, p.535-542. https://doi.org/10.1128/AAC.00600-06						
Biological Chemistry, v.282, n.13, p.9621-9627. https://doi.org/10.1074/jbc.M611211200 Chen S., Cui S., McDermott P.F., Zhao S., White D.G., Paulsen I., Meng J. (2007). Contribution of target gene mutations and efflux to decreased susceptibility of Salmonella enterica serovar typhimurium to fluoroquinolones and other antimicrobials. Antimicrobial Agents and Chemotherapy, v.51, n.2, p.535-542. https://doi.org/10.1128/AAC.00600-06						
https://doi.org/10.1074/jbc.M611211200 Chen S., Cui S., McDermott P.F., Zhao S., White D.G., Paulsen I., Meng J. (2007). Contribution of target gene mutations and efflux to decreased susceptibility of Salmonella enterica serovar typhimurium to fluoroquinolones and other antimicrobials. Antimicrobial Agents and Chemotherapy, v.51, n.2, p.535-542. https://doi.org/10.1128/AAC.00600-06	8		5.157	1 st	69	B+
Chen S., Cui S., McDermott P.F., Zhao S., White D.G., Paulsen I., Meng J. (2007). Contribution of target gene mutations and efflux to decreased susceptibility of Salmonella enterica serovar typhimurium to fluoroquinolones and other antimicrobials. Antimicrobial Agents and Chemotherapy, v.51, n.2, p.535-542. https://doi.org/10.1128/AAC.00600-06	Ü		5.157		0,7	
Meng J. (2007). Contribution of target gene mutations and efflux to decreased susceptibility of Salmonella enterica serovar typhimurium to fluoroquinolones and other antimicrobials. <i>Antimicrobial Agents</i> and Chemotherapy, v.51, n.2, p.535-542. https://doi.org/10.1128/AAC.00600-06						
decreased susceptibility of Salmonella enterica serovar typhimurium to fluoroquinolones and other antimicrobials. <i>Antimicrobial Agents</i> and Chemotherapy, v.51, n.2, p.535-542. https://doi.org/10.1128/AAC.00600-06						
to fluoroquinolones and other antimicrobials. <i>Antimicrobial Agents</i> and Chemotherapy, v.51, n.2, p.535-542. https://doi.org/10.1128/AAC.00600-06						
to fluoroquinolones and other antimicrobials. Antimicrobial Agents and Chemotherapy, v.51, n.2, p.535-542. https://doi.org/10.1128/AAC.00600-06	7	* *	5.191	1 st	106	A+
https://doi.org/10.1128/AAC.00600-06	,		2.171	•	100	
6 Fu Z., Chen S., Baldwin M.R., Boldt G.E., Crawford A., Janda K.D., 2.865 Co 48 B						
	6	Fu Z., Chen S., Baldwin M.R., Boldt G.E., Crawford A., Janda K.D.,	2.865	Co	48	B

	Barbieri J.T., Kim JJ.P. (2006). Light chain of botulinum				
	neurotoxin serotype A: Structural resolution of a catalytic				
	intermediate. <i>Biochemistry</i> , v.45, n.29, p.8903-8911.				
	https://doi.org/10.1021/bi060786z				
	<i>Chen S.</i> , <i>Barbieri J.T. (2006)</i> . Unique substrate recognition by				
5	botulinum neurotoxins serotypes A and E. <i>Journal of Biological</i>	5.157	1 st	84	B+
3	<i>Chemistry</i> , v.281, n.16, p.10906-10911.	3.137	1	04	$\mathbf{D}^{ op}$
	https://doi.org/10.1074/jbc.M513032200				
	Chen S., Zhao S., McDermott P.F., Schroeder C.M., White D.G.,				
	Meng J. (2005). A DNA microarray for identification of virulence				
4	and antimicrobial resistance genes in Salmonella serovars and	1.951	1^{st}	60	В
	Escherichia coli. <i>Molecular and Cellular Probes</i> , v.19, n.3,				
	p.195-201. https://doi.org/10.1016/j.mcp.2004.11.008				
	Yang H., <u>Chen S</u> ., White D.G., Zhao S., McDermott P., Walker R.,				
	Meng J. (2004). Characterization of multiple-antimicrobial-resistant				
3	Escherichia coli isolates from diseased chickens and swine in China.	5.948	Co	185	A
	Journal of Clinical Microbiology, v.42, n.8, p.3483-3489.				
	https://doi.org/10.1128/JCM.42.8.3483-3489.2004				
	Chen S., Zhao S., White D.G., Schroeder C.M., Lu R., Yang H.,				
	McDermott P.F., Ayers S., Meng J. (2004). Characterization of				
2	Multiple-Antimicrobial-Resistant Salmonella Serovars Isolated from	4.792	1^{st}	304	B+
	Retail Meats. Applied and Environmental Microbiology, v.70, n.1,				
	p.1-7. https://doi.org/10.1128/AEM.70.1.1-7.2004				
	White D.G., Zhao S., Sudler R., Ayers S., Friedman S., Chen S.,				
	McDermott P.F., McDermott S., Wagner D.D., Meng J. (2001). The				
1	isolation of antibiotic-resistant salmonella from retail ground meats.	91.245	Co	387	A++
	New England Journal of Medicine, v.345, n.16, p.1147-1154.				
	https://doi.org/10.1056/NEJMoa010315				

Book Chapter

- 1. Chen, S., Barbieri, J.T. Light Chains of the Botulinum neurotoxins. *Neurotoxin*. Edited by Keith Foster, Springer, CO, UK, 2013.
- Chen, S.* Clostridial Neurotoxins as therapeutics. *Microbial Toxins-Genetics, Molecular Biology and Novel Applications*. Edited by Thomas Proft, The Horizon Scientific Press, UK 2013.

V) RESEARCH GRANTS

I have obtained over HKD 60 million research funding since I established my lab in Hong Kong in 2009 with most of the funding being external funding from UGC, HMRF and mainland government. I have currently HKD ~22.977 million ongoing research funding in CityU. Some of these funding were transferred from HK PolyU, while most of which were obtained after joining CityU in the past year. I want to stress out that in addition to the funding obtained in 2020-2021, my Theme Based Research proposal has been shortlisted for interview in the past two consecutive years, which is the first in CityU. I will continue to improve it and aim to get it funded in the near future. The detail funding information is shown as follow:

No.	Role	Title	Duration	Funding Agent / number	Amounts (HKD millions)
		Ongoing projects (~22.977	millions)		

41	PI	China Including Hong Kong SAR	01/21-01/23	9610501/ CityU	0.600
40	PI	Evolution of virulence plasmids and their role in clinical adaptation and virulence expression of ST11 carbapenemresistant Klebsiella pneumoniae	11/21-10/24	11100321/GRF	1.126
39	PI	開發治療耐藥菌的新治療方案	04/21 - 03/24	9680296/MFPRC	RMB 2.500
38	PI	大宗食品中高污染致病性蠟樣芽孢杆菌危害 形成與防控分子機制	05/21 - 11/25	9240057/廣東省 基礎與應用基礎 研究重大項目	5.427/6.500
37	Co-PI	Pseudaminic Acid	06/21-05/24	/CRF	1.00/4.55
36		Development of Glycopeptide-based Anti SARS-CoV-2 Vaccines	06/21-05/24	C7147-20G / CRF	1.500/5.956
35		Establishment of a Metagenomic Database of Deep Sea Microorganisms in South China Sea	01/21 - 12/22	9231422 /HK South China Sea project	0.600
34		Discovery of Novel Antibiotics from Lactic Acid Bacteria	08/19 – 08/22	SGP/CityU / 9380110	4.000
33	Co-I	Mechanistic Study on Inhibition of Ebselen, AMA and Captopril towards New Delhi Metallo-β-lactamase (NDM-1) by Mass Spectrometry	01/18 – 12/20	GRF / 15304117	0.522898
32	Co-PI	Novel Antibiotics from Genome Mining and Diversityoriented Synthesis	06/20 – 06/23	CRF / C6026-19GF	0.6/5.250
31	PC	Development of a colistin / adjuvant antimicrobial regimen that exhibits low toxicity and high efficacy in combating multidrug-resistant bacterial pathogens	06/19 – 06/23	RIF / R5011-18F	5.95952
30	PI	Deciphering the Mechanisms of Action of Phosphoethanolamine Transferase, MCR-1, A Colistine Resistance Protein and Development of Transitional State Inhibitors	04/19 – 04/23	NSFC-RGC, N_PolyU521/18	0.998717
29	Co-PI	Metabolic outcome and mechanisms of antibiotic resistance development of animal antimicrobial drugs	01/18 - 12/20	MOST 13•5 R&D /2018YFD 0500300	RMB 0.5/14.130
28	PI	Development of rapid and sensitive detection methods for Salmonella and norovirus	10/18 – 09/21	Shenzhen BRF / 20170410 160041091	RMB 3.000
		Completed projects (over	40millions)		
27	P(Development of novel inhibitors targeting the resistance mechanisms of clinical superbugs	06/17 - 06/20	CRF / C5026-16G	7.1158
26		Synthesis and functional optimization of novel FtsZ inhibitors as potent efficacy booster	01/16 – 06/19	GRF / 15100115	0.691052

		T		I	
		agents for anti-MRSA β-lactam antibiotics			
25	Co-I	Elucidation of anti-hypertension mechanism by a novel Lactobacillus rhamnosus strain in the DOCA-salt hypertensive rats:from the point of view of alteration of gut microbiome	09/18 – 08/20	HMRF / 15161391	1.063
24	Co-I	Evaluation of anxiolytic and antidepressant effects of colonspecific delivery and control-release of probiotics on brain and isulphid using a mouse model of social defeat stress	08/18 – 07/20	HMRF / 05161016	1.197
23	Co-PI	Total synthesis and medicinal chemistry of cyclic peptide-based antibacterial compounds: an integrative programme for novel antibiotic development	05/16 - 04/ 19	CRF / C7038-15G	4.600
22	Co-I	Dissecting the molecular mechanism of Nck-mediated signal transduction in actin pedestal formation by enteropathogenic Escherichia coli infection	08/16 – 07/18	HMRF / 15140052	1.198
21	PI	Re-defining the molecular basis of carbapenem resistance in clinical <i>Acinetobacter baumannii</i> isolates	07/16 – 07/18	HMRF / 15141322	1.200
20	Co-PI	Surveillance and origin investigation of foodborne pathogens in Hong Kong and Guangdong Province	01/15 — 01/17	Guangdong PSTB	2.000
19	Co-PI	Development of foodborne pathogens conserved surface proteins based rapid detection platform	01/15 - 01/18	Guangdong MSTIB	RMB 1.000
18	PI	Establishment of Shenzhen Key Laboratory for Food Biological Safety Control	12/15 — 12/18	Shenzhen MSTIC /ZDSY201405 09142430241	3.780
17	PI	Development of novel tridenate inhibitors targeting to active site residues and Zin ions of NDM-1	07/15 — 07/17	HMRF / 14130432	0.997
16	PI	Characterization the role of OqxAB in Salmonella virulence and antimicrobial resistance	07/15 — 07/17	HMRF / 14130402	0.997
15	PI	Mechanisms of substrate recognition and specificity of B2 and B1 subclass of metallo-β-lactamases: insights into their different spectrums of substrate specificity	07/15 — 07/17	HMRF / 14130422	0.997
14	PI	Molecular mechanisms of bacterial response to antibiotic in animal GI tract, Chinese Basic Research and Development (973) Program	01/13 – 12/17	MOST / 2013CB127201	6.650
13	PI	Matching fund for Chinese Basic Research and Development (973) Program	12/12 – 08/17	PolyU	1.000
12	PI	Matching fund for the Establishment of Shenzhen Key Laboratory for Food Biological Safety Control	01/15 – 01/17	PolyU	3.780

11	PI	Large equipment grant for establishment of platform for Microbiota research	01/15 - 01/17	PolyU	7.800
10	Co-PI	Development of daptomycin-based next-generation antibiotics to combat multidrug-resistant bacteria. Health and Medical Research Fund	01/14 — 12/15	HMRF /13121182	0.992
9	PI	Genomic and Transcriptomic Analyses of the Salmonella Virulence Regulatory Network	01/14 - 01/16	HMRF / 13121412	0.992
8	PI	Molecular mechanisms of fluoroquinolone and expanded-spectrum cephalosporin resistance in Vibrio parahaemolyticus	01/14 - 12/15	HMRF / 13121422	0.992
7	PI	Development of Rapid Assay Platform for Salmonella Detection in Food	06/12 -12/15	PolyU / G- YK68	0.25
6	PI	Molecular mechanisms of carbapenem resistance in emerging Gram-negative human pathogens in Hong Kong	01/13 -12/14	HMRF /12111612	0.992
5	PI	Development of peptide and peptidomimetic inhibitors for botulinum neurotoxin A	01/10 - 12/13	RGC / 560211	0.750
4	Co-PI	Mechanisms of Action and Substrate Recognition of BlaIMP Family of Metallo β-lactamase	08/11 - 08/13	PolyU /G-YX5L	0.624
3	PI	Mechanisms of Intracellular Localization of the Light Chain (LC) of Botulinum Neurotoxin Serotype A	09/10 – 09/13	PolyU /A-PK05	0.118969
2	PI	Mechanisms of Substrate Recognition and Specificity of Botulinum Neurotoxin Serotype F / G-YJ15,	05/10 – 07/13	PolyU	0.2615
1		Isolation and Characterization of Vibrio Paraheamolyticus from Sea Food in Hong Kong	09/09 - 12/11	PolyU / G-U662	0.3

MSTIC, Shenzhen Municipal Science and Technology Innovation Council;

MSTIB, Guangzhou Municipal Science and Technology and Information Bureau;

PST, Guangdong Provincial Science and Technology Bureau;

BRFSZ, Basic Research Fund of Shenzhen City.

VI) PATENTS

- 1. Engineering Botulinum Neurotoxin. US Patent Serial No. 61/169,031, (2011). EU Patent Serial No. 20120039941 (2012), licensed by Syntaxin Ltd. Oxon, UK in 2012.
- 2. Engineering botulinum neurotoxin with elevated activity. US patent provisional No. 61868560. PCT/CN2014/084725
- 3. Method to develop fluorescent labelled *E. coli* capable of colonization in animal GI tract, China patent: 201410462647.6
- 4. Methods to develop non-fluorescent labelled, tracable E. coli, China patent: 201410461450.0
- 5. Development of combinational therapy based on different serotypes of BoNT, China patent: 201510306128.5
- 6. Potent peptide-based inhibitors against BoNT/A, China patent: 201510623351.2
- 7. A test strip for detecting broad spectrum Salmonella in food and preparation thereof, China patent: 201711351523.0
- 8. A toxin sensor based on an organic photoelectrochemical transistor and a preparation method thereof, China patent: 201711464221.4

- 9. A biosensor for Norovirus detection and its preparation and use, China patent: 201711351548.0
- 10. A biosensor for detection of Salmonella and its preparation and use, China patent: 201711348592.6
- 11. HKU/ref: IP00761 (PolyU ref: PAT-1139): New cyclic peptided-based antibacterial agent.
- 12. United States provisional application 62/642,080, filed on March 13, 2018: Repurposing cetylpyridinium chloride and domiphen bromide as phosphoethanolamine transferase inhibitor-based adjuvants that significantly potentiate colistin activity and resensitize mcr-1-bearing bacterial pathogens
- 13. United States Provisional Application Number 62/642,053, filed on March 3, 2018: 1,2-BENZISOSELENAZOL-3(2H)-ONE derivatives as carbapenem antibiotic adjuvants

VII) EDITORIAL BOARD AND AD HOC REVIEWER

- 1. Associate Editor, *Frontiers in Microbiology*, Swiss Federal Institute of Technology in Lausanne, Switzerland, since 2019.
- 2. Associate Editor, *Annals of Clinical Microbiology and Antimicrobials*, BMC and Springer Nature, since 2018
- 3. Associate Editor, Scientific Reports, Nature Publishing Group, Springer Nature, since 2017.
- 4. Associate Editor, *PeerJ*, PeerJ, Inc, since 2017.
- 5. Editorial board member, *The Journal of Membrane Science and technology*, OMICS Publishing Group, USA since 2010.
- 6. Ad Hoc Reviewer, The Lancet Infectious Diseases, Nature Microbiology, Nature Communications, The Lancet Global Health, EBioMedicine, Emerging Microbes and Infections, Eurosurveillance, Journal of Antimicrobial Chemotherapy, Antimicrobial Agent and Chemotherapy, PloS ONE, Scientific Reports, International Journal of Antimicrobial Agents, Toxins, Toxicon, Pediatrics, Frontiers in Microbiology, BMC Infectious Diseases, Food Microbiology, Current Applied Physics, Human Vaccines & Immunotherapeutics, African Journal of Microbial Research, Endocrine, Metabolic & Immune Disorders- Drug Targets, et al.

VIII) INVITED TALKS AND LECTURES (SELECTED)

- 1. Sheng CHEN, 2010 International Symposium on the Food Safety of Animal Origin: Detection and Control. Beijing China, June 2-6, 2010
- 2. Sheng CHEN, University 100 year's anniversary talk series, College of Agriculture Biotechnology, South China Agriculture university, Guangzhou, China, 06/03/2011
- 3. Sheng CHEN, College of Food Science and Technology, China Agriculture university, Beijing, China, 04/06/2013
- 4. Sheng CHEN, College of Food Science and technology, Jiangnan University, Wuxi, China, 08/04/2013
- 5. Sheng CHEN, College of Animal Science, Nanjing Agriculture University, Nanjing, China, 08/03/2014.
- 6. Sheng CHEN, Institute of Food Safety and Monitoring Technology, Jiangsu Academy of Agricultural Sciences, 08/07/2014
- 7. Sheng CHEN, College of Life Science, Sichuan University, Nanjing, China, 11/19/2014.
- 8. Sheng CHEN, College of Veterinary Medicine, South China Agriculture university, Guangzhou, China, June, 2014
- 9. Sheng CHEN, College of Veterinary Medicine, Jilin University, 11/15/2015.
- 10. Sheng CHEN, Department of Clinical Medicine, School of Medicine, Zhejiang University, Hangzhou, China, 11/19/2015.

- 11. Sheng CHEN, International conference on Global Food Safety and Antimicrobial Resistance, Shenzhen, China, 14~17/11/2016
- 12. Sheng Chen, The 5th China Food Safety Summit, Guangdong, China. 08/12/2016
- 13. Sheng Chen, Integral Conversation, Guilin, 09-11/11/2017
- 14. Sheng Chen, The 6th China Food Safety Summit, Xian, China. 10/12/2018
- 15. Sheng CHEN, College of Life Science, Northwesten University, Xian China, 10/2018
- 16. Sheng CHEN, College of veterinary Medicine, South China Agricultural University, Guangzhou, China, 11/2018
- 17. Sheng CHEN, TOXINS 2019, International Neurotoxin Association, as organizer and Section Chair, Copenhagen Denmark, 01/2019
- 18. Sheng CHEN, Hospital Authority Convention 2019, Convention and Exhibition Center, Hong Kong, 05/2019
- 19. Sheng CHEN, 2nd Huaxia Clinical Microbiology and Infection Congress & 8th Perking-Hong Kong Infection and Clinical Microbiology Congress, Zhengzhou, China, 11/2019
- 20. Sheng CHEN, College of Veterinary Medicine, Henan Agriculture University, Zhengzhou, China, 11/2019