

Agile Modeling of Component Connections for Simulation and Design of Complex Vehicle Structures

Matthew P. Castanier, David A. Lamb, and David J. Gorsich

U.S. Army

Tank Automotive Research, Development, and Engineering Center (TARDEC)

Warren, MI

Keychun Park

University of Michigan
Department of Mechanical Engineering
Ann Arbor, MI

maintaining the data needed, and including suggestions for reducin	completing and reviewing the collect g this burden, to Washington Headq ould be aware that notwithstanding	ction of information. Send commer quarters Services, Directorate for In	ts regarding this burden estim formation Operations and Rep	ate or any other aspect orts, 1215 Jefferson Da	avis Highway, Suite 1204, Arlington
1. REPORT DATE 22 APR 2009		2. REPORT TYPE N/A		3. DATES COVERED	
4. TITLE AND SUBTITLE Agile Modeling of Component Connections for Simulation and Design of Complex Vehicle Structures				5a. CONTRACT NUMBER	
				5b. GRANT NUMBER	
				5c. PROGRAM ELEMENT NUMBER	
6. AUTHOR(S) Matthew P. Castanier; David A. Lamb; David J. Gorsich; Keychun Park				5d. PROJECT NUMBER	
				5e. TASK NUMBER	
				5f. WORK UNIT NUMBER	
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) US Army RDECOM-TARDEC 6501 E 11 Mile Rd Warren, MI 48397-5000				8. PERFORMING ORGANIZATION REPORT NUMBER 19805Rc	
9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)				10. SPONSOR/MONITOR'S ACRONYM(S) TACOM/TARDEC	
				11. SPONSOR/MONITOR'S REPORT NUMBER(S) 19805RC	
12. DISTRIBUTION/AVAI Approved for pub	LABILITY STATEMENT lic release, distribut	tion unlimited			
	otes ociety of Automotiv document contains		World Congress	, Detroit, MI	, USA, 20-23 April
14. ABSTRACT					
15. SUBJECT TERMS					
16. SECURITY CLASSIFIC		17. LIMITATION	18. NUMBER	19a. NAME OF	
a. REPORT unclassified	b. ABSTRACT unclassified	c. THIS PAGE unclassified	OF ABSTRACT SAR	OF PAGES 18	RESPONSIBLE PERSON

Report Documentation Page

Form Approved OMB No. 0704-0188

Overview

- Background and Motivation
- Methods for joining topology optimization
- **Numerical Results**
- **■** Conclusions

Motivation

- How to Join the components ?
 - "... 4,608 spot welds on the [vehicle], which had just 1.4 m of laser welding..."

 By Dr. Klaus Loeffler, Director, Joining Processes, Volkswagen AG,
 - -- Automotive Design and Production, May 4, 2007

"... more than 4,000 spot welds connect some 300 body panels on a typical mid-sized car to form the basic vehicle structure, ..."

Reduced order modeling

- Divide structure into substructures (components)
- Use component mode synthesis (CMS) to generate reduced-order models (ROMs)
 - ROM size << FEM size due to modal analysis for each component
 - 2. ROM retains physical (FE) DOF at interface between components

Joining modeling & design approach

- Divide structure into components such that interface between components includes potential joining locations
 - ROM retains physical (FE) DOF for potential joining locations
- Treat connections between two components as joining design variables (joining is treated like a "third component")
 - Continuous variable: e.g., spring with varying stiffness
 - Discrete variable: connection is on or off
- Perform joining design optimization to achieve system-level performance requirements

Previous joining design research

- System level topology optimization in full order model : Extension of the component topology optimization (Bensøe and Kikuchi , (1988))
 - Chirehdast and Jian (1996)
 - Optimal design of spot-weld and adhesive bond patterns for static compliance
 - Chickermane and Gea (1997)
 - Multi-component structural systems for optimal layout topology and joint locations for static compliance
- Interface design via ROM
 - > Jiang, Cui, Ma, and Hadi (2005)
 - Optimal mount position and mount properties via size optimization
- Objectives of this work:

- Use ROM to perform fast system-level analysis and joining design optimization
- 2. Optimize joining for static and dynamic structural response objectives while constraining maximum joining area

Structural Topology Optimization

Design Domain Modeling

- Homogenization Method Bensøe and Kikuchi
 - ✓ Relatively stable, but slow
- SIMP (Solid Isotropic Material with Penalization) Bensøe and Sigmund
 - ✓ Relatively fast, small number of design variables

Optimization Methods

- OC (Optimality Criteria) Karush, Khun and Tucker
 - ✓ KKT Condition and Nonlinear Solver
- MOC (Modified OC) Ma, Kikuchi, and Hagiwara ('93)
 - ✓ Shifted Lagrangian in OC
- MMA (Method of Moving Asymptotes) K. Svanberg ('87)
 - ✓ Convex Linearization with Asymptotes of Objective and Constraints

Joining modeling in FEA

Dominant Joining (Spot-Welding) modeling

World Congress

Joining modeling in current study

■ Topology optimization for joining (Design domain modeling + Optimizer) in ROM Leading to "0-1" design

> 3D Spring with continuous variables

$$\mathbf{K_s} = \left[egin{array}{ccc} \mathbf{k_s} & -\mathbf{k_s} \ -\mathbf{k_s} & \mathbf{k_s} \end{array}
ight]$$

$$\mathbf{k_s} = \mathbf{k_y} \, \mathbf{Diag}([\alpha_k \, \mathbf{1} \, \alpha_k])$$

- Design domain modeling
 - ✓ SIMP (Solid Isotropic Material with Penalization)

$$\mathbf{K}_e =
ho_e^p \left[egin{array}{ccc} \mathbf{k}_s & -\mathbf{k}_s \ -\mathbf{k}_s & \mathbf{k}_s \end{array}
ight] =
ho_e^p \mathbf{K}_s^0 \qquad \sum_{e=1}^{n_{var}}
ho_e = V \leq N$$

- Topology Optimizer
 - ✓ MMA (Method of Moving Asymptote) K. Svanberg ('87)

MOC (Modified OC) – Z.-D. Ma, N. Kikuchi, I.Hagiwara ('93) Applicability both dynamic and static problems

Structure used for numerical results

Optimization: static case

Joining topology optimization for minimizing static compliance

$$\min_{\boldsymbol{\rho}} c(\boldsymbol{\rho}) = \sum_{load=1}^{l_n} \mathbf{f}^{\mathbf{T}} \mathbf{U} = \sum_{load=1}^{l_n} \mathbf{U}^{\mathbf{T}} \mathbf{K}_{st} \mathbf{U} \qquad \mathbf{K}_{st} = \mathbf{K}^0 + \mathbf{A}_{e=1}^{n_{var}} \rho_e^p \begin{bmatrix} \mathbf{k}_s - \mathbf{k}_s \\ -\mathbf{k}_s & \mathbf{k}_s \end{bmatrix}$$

$$s.t.: g(\boldsymbol{\rho}) = \sum_{e=1}^{n_{var}} \rho_e - N \le 0; \quad 0 < \rho_{min} \le \rho_e \le 1$$

- ightharpoonup Fast evaluation via reduced order modeling for $\mathbf{K_{st}U} = \mathbf{f}$
- OC method (Bensøe and Kikuchi ,1988)

Define Lagrangian Stationary condition Design sensitivity
$$\mathcal{L} = c(\boldsymbol{\rho}) + \Lambda g(\boldsymbol{\rho})$$

$$B_K = -\Lambda_K^{-1} \frac{\partial c/\partial \rho_e}{\partial g/\partial \rho_e}$$

$$\frac{\partial c(\boldsymbol{\rho})}{\partial \rho_e} = -p\rho_e^{p-1} \mathbf{u}_e^{\mathrm{T}} \mathbf{K}_s^0 \mathbf{u}_e$$

$$\text{Update Rule} \qquad \rho_{K+1} = \begin{cases} \max\{(1-\zeta)\rho_K, \rho_{min}\} & \text{if} \quad \rho_K B_K^{\eta} \leq \max\{(1-\zeta)\rho_K, \rho_{min}\}, \\ \min\{(1+\zeta)\rho_K, 1\} & \text{if} \quad \min\{(1+\zeta)\rho_K, 1\} \leq \rho_K B_K^{\eta}, \\ \rho_K B_K^{\eta} & \text{otherwise.} \end{cases}$$

Optimization results: static case

■ Resulting Joining Topology

Optimization: dynamic case

Joining topology optimization for minimizing dynamic compliance

$$\min_{\rho} \int_{l_{out}}^{f_{high}} \sum_{load=1}^{l_n} |\mathbf{f}^{\mathbf{T}} \mathbf{U}(\rho)| d\mathbf{f} \qquad \mathbf{K}_{st} = \mathbf{K}^0 + \mathbf{A}_{e=1}^{n_{var}} \rho_e^p \begin{bmatrix} \mathbf{k}_{s} & -\mathbf{k}_{s} \\ -\mathbf{k}_{s} & \mathbf{k}_{s} \end{bmatrix} \\
s.t.: \quad g(\rho) = \sum_{e=1}^{n_{var}} \rho_e - N \le 0; \quad 0 < \rho_{min} \le \rho_e \le 1$$

- ightharpoonup Fast evaluation via reduced order modeling for $\mathbf{M}\ddot{\mathbf{U}} + \mathbf{K}\mathbf{U} = \mathbf{f}_{\mathbf{ext}}$
- Modified OC method (Ma, et al.,1992)

$$\mathcal{L} = (c(\boldsymbol{\rho}) - \mu g(\boldsymbol{\rho})) + (\Lambda + \mu)g(\boldsymbol{\rho}) \qquad B_{K,MOC} = \tilde{\Lambda}_K^{-1} \left[\mu_K - (\frac{\partial c/\partial \rho_e}{\partial g/\partial \rho_e}) \right] \qquad \frac{\partial c(\boldsymbol{\rho})}{\partial \rho_e} = -sgn(\mathbf{f}^T \mathbf{U})p\rho_e^{p-1}\mathbf{u}_e^T \mathbf{K}_s^0 \mathbf{u}_e$$

$$= \tilde{c} + \tilde{\Lambda}g(\boldsymbol{\rho}) \qquad \qquad \mu > \max_{e=1,n_{var}} \frac{\partial c/\partial \rho_e}{\partial g/\partial \rho_e}$$

$$\rho_{K+1} = \begin{cases} \max\{(1-\zeta)\rho_K, \rho_{min}\} & \text{if} \quad \rho_K B_K^{\eta} \leq \max\{(1-\zeta)\rho_K, \rho_{min}\}, \\ \min\{(1+\zeta)\rho_K, 1\} & \text{if} \quad \min\{(1+\zeta)\rho_K, 1\} \leq \rho_K B_K^{\eta}, \\ \rho_K B_K^{\eta} & \text{otherwise.} \end{cases}$$

Opt. results: single-freq. excitation

■ Joining Topology for $N \le 20$

Oscillation in obj. history for higher frequencies

Natural freqs during optimization

■ Smooth Convergence Case ($f_{ext} < 60 \text{ Hz}$ Non-Smooth Case ($f_{ext} \ge 60 \text{ Hz}$)

Opt. results: 50-100 Hz excitation

Resulting topology and response

Modes during optimization

Natural frequencies during optimization

Initial configuration

Final configuration

Summary

- Component mode synthesis approach was used to:
 - ➤ Generate small ROMs for fast system-level analysis
 - Retain joining locations as physical DOF for design purposes
- Topology optimization was applied to joining design to achieve system-level structural performance targets
- Optimization results were obtained for a simple example structure
 - > Static case
 - Dynamic case -- challenges noted for optimization for dynamic performance

