Zusammenfassung Numerik III

30. November 2012

Inhaltsverzeichnis

1	Einführung	2
	1.1 Klassifikation von partiellen DGLs	2
	1.2 Typeneinteilung für PDEs 2. Ordnung	2
2	Klassische Lösung elliptischer PDEs	3

1 Einführung

1.1 Klassifikation von partiellen DGLs

Definition (Partielle DGL).

Sei $\Omega \subset \mathbb{R}^n$ offen. Eine partielle DGL k-ter Ordnung hat
die Form

$$F(x, u, D u, D^2 u, ..., D^k u) = 0,$$
 (PDE (*))

wobei

$$F: \Omega \times R \times R^n \times \cdots \times R^{n^k} \to R$$

gegeben und $u:\Omega\to R$ gesucht.

Definition (Klassifikation PDEs).

1. PDE (*) heißt linear, wenn sie die Form

$$\sum_{|\alpha| \le k} a_{\alpha}(x) D^{\alpha} u = f(x)$$

hat, wobei $a_{\alpha}: \Omega \to R, f: \Omega \to R$ gegeben.

2. PDE (*) heißt semilinear, wenn sie die Form

$$\sum_{|\alpha|=k} a_{\alpha}(x) D^{\alpha} u + a_0(x, u, D u, \dots, D^{k-1} u) = 0$$

hat, wobei $a_{\alpha}:\Omega\to R, a_0:\Omega\times R\times R^n\times\cdots\times R^{n^{k-1}}\to R$ gegeben.

3. PDE (*) heißt quasilinear, wenn sie die Form

$$\sum_{|\alpha|=k} a_{\alpha}(x, u, D u, \dots, D^{k-1} u) D^{\alpha} u + a_{0}(x, u, D u, \dots, D^{k-1} u) = 0$$

hat, wobei $a_{\alpha}, a_0: \Omega \times R \times R^n \times \cdots \times R^{n^{k-1}} \to R$ gegeben.

4. PDE (*) heißt nichtlinear, wenn sie nicht von Typ 1.–3. ist.

1.2 Typeneinteilung für PDEs 2. Ordnung

Definition.

Setze
$$p_i := \partial_{x_i} u, \, p_{ij} := \partial_{x_i} \partial_{x_J} u.$$

$$F(x, u, p_1, \dots, p_n, p_{11}, \dots, p_{nn}) = 0$$
 (PDE (**))

hei1ßt PDE 2. Ordnung.

$$M(x) := \begin{pmatrix} \partial_{p_{11}} F & \dots & \partial_{p_{1n}} F \\ \vdots & \ddots & \vdots \\ \partial_{p_{n1}} F & \dots & \partial_{p_{nn}} F \end{pmatrix}$$

Definition.

PDE (**) hei1ßt

- 1. elliptisch in x, falls M(x) positiv oder negativ definit ist.
- 2. parabolisch in x, falls genau ein Eigenwert von M(x) gleich 0 ist und alle anderengleiches Vorzeichen haben.
- 3. hyperbolisch in x, falls genau ein Eigenwert von M(x) ein anderes Vorzeichen hat, als alle anderen.

Beispiel.

- 1. Poission-Gleichung mit $M = \begin{pmatrix} -1 & & \\ & \ddots & \\ & & -1 \end{pmatrix}$ ist elliptisch.
- 2. Wärmeleitungs-Gleichung mit $M=\begin{pmatrix} -1&&&&\\ &\ddots&&&\\ &&-1&&\\ &&&0 \end{pmatrix}$ ist parabolisch.
- 3. Wellengleichung mit $M=\begin{pmatrix} -1&&&&\\ &\ddots&&&\\ &&-1&\\ &&&1 \end{pmatrix}$ ist hyperbolisch.

2 Klassische Lösung elliptischer PDEs

Definition (Funktionenräume).

Sei $\Omega \subset \mathbb{R}^n$ offen, zusammenhängend, beschränkt.

1. $C(\bar{\Omega},R^m)$ ist Raum aller auf $\bar{\Omega}$ stetigen Funktionen nach $R^m.$ $C(\bar{\Omega}):=C(\bar{\Omega},R).$

$$\|u\|_{C(\bar{\Omega},R^m)}:=\sup_{x\in\bar{\Omega}}\|u(x)\|\,.$$

2. $C^k(\bar{\Omega}, R^m)$ mit $k \in N$ ist Raum aller auf Ω k-mal stetig differenzierbarenFunktionen, die zusammen mit ihren Ableitungen bis Ordnung k stetig auf $\bar{\Omega}$ fortgesetzt werdenkönnen.

$$||u||_{C^k(\bar{\Omega},R^m)} := \sum_{|\alpha| \le k} ||D^{\alpha} u||_{C(\bar{\Omega},R^m)}.$$

3. $C^{0,\alpha}(\bar{\Omega},R^m)=\{u\in C(\bar{\Omega},R^m): \|u\|_{C^{0,\alpha}(\bar{\Omega},R^m)}<\infty\}$ mit

$$||u||_{C^{0,\alpha}(\bar{\Omega},R^m)} := \sup_{x \neq y \in \bar{\Omega}} \frac{||u(x) - u(y)||}{||x - y||^{\alpha}},$$

und $\alpha \in [0,1]$ ist Raum aller gleichmäßig Hölder stetigen Funktionen zum Exponent α .

 $4. \ C^{k,\alpha}(\bar{\Omega},R^m):=\{u\in C^k(\bar{\Omega},R^m):\ \mathbf{D}^{\gamma}\,u\in C^{0,\alpha}(\bar{\Omega},R^m), |\gamma|=k\}$

Bemerkung.

$$C^{k,0} = C^k, C^{k,1} \neq C^{k+1}.$$