

Search space optimisation for procedural content generators

Harald De Bondt

Problem statement

- Content creation problem
 - o Unscalable
 - Expensive
- Procedural Content Generation (PCG)
 - Automation
 - Variety
 - Replayability
- Research problem in PCG
 - Controllability
 - Intuitive configuration
 - Expressiveness
 - Avoid bias due to implementation

Related work Controllability in PCG

- Expressiveness ↔ Controllability
- Control types: Bottom-up vs top-down
 - How vs what is generated
 - Feed-forward vs iterative
 - Local control vs global
- Examples
 - Constructive
 - Declarative
 - Search-based
 - Probabilistic
 - Learning

NG AND ECTURE

Methodology

- Maximise expressiveness
 - Uniform sampling from optimised model ↔ optimised search algorithm

Two processes

Search space optimisation for procedural content generators – Harald De Bondt - 23/06/2016 Faculty of Engineering and Architecture

Generative process:

Initialization

Top-down

Fitness functions

Function F(chairA,table)= dist(chairA.position,table.position) > 2

> Function D(chairA,chairB) cos(4*(chairA.rotation-chairB.rotation) = 0

Bottom-up

Probabilistic model

Table:

Random orientation = [0,360] Static position = [1,2]

nr ChairA = [3,6]

nr_ChairB = [1,4]

Parent node

Chair type A:

Random orientation = [0,360] Random position = [(-6,6),(8,20)] Chair type B:

Static rotation = 90

Random position = [(-2,10),(0,3)]

Random scale = [1,3]

Generative process:

Sampling (uniform)

Learning process

- Optimisation of the generative process → learning problem (synthetic data)
- Components
 - Preprocessing
 - Retraining
 - Probabilistic model
 - Learning Algorithm

Learning process: components Probabilistic model

- Probabilistic model compatible with generation process
 - Hierarchical Gaussian Mixture Models (GMM)
 - Conditional relation
 - Parent and child
 - Child and it's siblings
 - Multiple-instance learning (varying object count)
- Optimisations
 - Variable sibling order
 - Marginalisation

Search space optimisation for procedural content generators – Harald De Bondt - 23/06/2016 Faculty of Engineering and Architecture

ARCHITECTURE

Learning process: components Learning algorithm

- Supervised learning
 - Fit GMM based on sample and fitness data
 - EM algorithm (unsupervised)
- Incorporate fitness in EM
 - Weighted density estimation (WDE)
 - Likelihood ~ fitness
 - Regression → P(Variables|Fitness)

Evaluation and discussion

- Measuring expressiveness is open problem [1]
- Elaborate evaluation of simplified case (2 dimensional)
 - Expressiveness relative to fitness
 - Sampling Performance using heatmaps
- Simplified evaluation of multiple cases (>3 dimensional)
 - Visualized expressiveness
 - Sampling Performance using Average Fitness Gain
 - Runtime complexity/computational time

Simplified case:

Expressiveness results

		Predicted condition	
	Total population	Predicted condition positive	Predicted condition negative
True condition	Condition positive	True positive: 89 %	False negative: 11 %
	Condition negative	False positive: 15 %	True negative: 85 %

Fig. 5. GMM surface area coverage

JRE

Simplified case:

Sampling performance results

Fig. 3. Heat-map for naive sampling

Fig. 4. Heat-map for sampling from trained model

Average acceptance rate:

Naive: 70%

Optimised: 86%

Multiple cases

- Evaluation of 15 parameters in the methodology
- Generality: 5 separate fitness functions
 - Functions derived from constraints in architectural context [1]

	Hierarchical relation	Analytic family	
Minimum polygon overlap	pairwise	geometric	
Target surface ratio	absolute	geometric	
target distance	pairwise	distance based	
Minimum centroid difference	absolute	geometric/distance based	
Closest side alignment	pairwise	goniometric/geometric	

[1] P. Merrell, E. Schkufza, Z. Li, M. Agrawala, and V. Koltun, "Interactive furniture layout using interior design guidelines," ACM Trans. Graph., vol. 30, no. 4, p. 1, 2011.

Multiple cases: Visualized expressiveness

TURE

With weighted density estimation

With regression

ARCHITECTURE

Multiple cases: Results Summary

- Most significant parameters
 - Number of training samples ↑
 - Increase expressiveness and sampling performance ↑
 - Marginalisation ↑
 - Reduce computation time ↓
 - Expressiveness
- Optimised fitness functions (%)
 - Minimum polygon overlay: 100%
 - o Target distance: 22%
 - Minimum centroid difference: 45%

Conclusion and Future work

- Novel expressiveness metric
- New approach as alternative for current PCG solutions
 - Combines top-down and bottom-up control
 - Automatic search space optimise
 - Minimal decrease in expressiveness
- Optimisation not significant enough
- Possible paths for future research:
 - Evaluate more complex fitness functions
 - Train on data from optimised search algorithm
 - E.g Markov chain Monte Carlo
 - A more elaborate probabilistic model
 - Learn hierarchical structure from the data