Problem 58

The 1 H and 13 C{ 1 H} NMR spectra of quinidine ($C_{20}H_{24}N_{2}O_{2}$) recorded in DMSO- d_{6} solution at 298 K and 600 MHz are given below.

The ¹H NMR spectrum has signals at δ 1.38 (m, 1H), 1.43 (m, 2H), 1.68 (m, 1H), 1.94 (m, 1H), 2.17 (m, 1H), 2.53 (m, 1H), 2.63 (m, 1H), 2.70 (m, 1H), 3.00 (m, 1H), 3.06 (m, 1H), 3.90 (s, 3H), 5.05 (m, 1H), 5.08 (m, 1H), 5.32 (dd, J= 4.7, 6.2 Hz, 1H), 5.73 (d, J= 4.7 Hz, 1H), 6.10 (ddd, J= 7.5, 10.2, 17.5 Hz, 1H), 7.39 (dd, J= 2.8, 9.3 Hz, 1H), 7.48 (d, J= 2.8 Hz, 1H), 7.53 (d, J= 4.4 Hz, 1H), 7.94 (d, J= 9.3 Hz, 1H) and 8.69 (d, J= 4.4 Hz, 1H) ppm.

The 13 C{ 1 H} NMR spectrum has signals at δ 23.1, 26.2, 27.8, 39.8, 48.4, 49.1, 55.3, 60.5, 70.7, 102.3, 114.2, 118.9, 120.9, 126.9, 131.0, 141.2, 143.8, 147.4, 149.4 and 156.7 ppm.

The 2D ¹H–¹H COSY, multiplicity-edited ¹H–¹³C HSQC, ¹H–¹³C HMBC and ¹H–¹H NOESY spectra are given on the following pages. Use these spectra to assign the ¹H and ¹³C{¹H} resonances for this compound.

 1 H NMR Expansion Spectrum (DMSO- d_{6} , 600 MHz)

¹H NMR Expansion Spectrum (DMSO-*d*₆, 600 MHz)

¹H NMR Expansion Spectrum (DMSO-*d*₆, 600 MHz)

 $^{13}\text{C}\{^1\text{H}\}$ NMR Expansion Spectrum (DMSO- $d_6,\,150~\text{MHz})$

Proton	Chemical Shift (ppm)	Carbon	Chemical Shift (ppm)
H ₁		C ₁	
H ₂		C_2	
		C ₃	
		C ₄	
H ₅		C ₅	
		C_6	
H ₇		C ₇	
H ₈		C ₈	
		C ₉	
H ₁₀		C ₁₀	
H ₁₁		C ₁₁	
H _{12a}		C ₁₂	
H _{12b}			
H ₁₃		C ₁₃	
H _{14a}		C ₁₄	
H _{14b}			
H _{15a}		C ₁₅	
H _{15b}			
H _{16a}		C ₁₆	
H _{16b}			
H ₁₇		C ₁₇	
H ₁₈		C ₁₈	
H _{19a}		C ₁₉	
H _{19b}			
H ₂₀		C ₂₀	
ОН			