Scilab Textbook Companion for Fluid Mechanics For Chemical Engineers by N. D. Nevers 1

Created by
Kanad Yeshwant Rajwade
Chemical Engineering
Chemical Engineering
Visvesvaraya National Institute of Tech., Nagpur
College Teacher
Sachin Mandavgane
Cross-Checked by
Lavitha Pereira

May 25, 2016

¹Funded by a grant from the National Mission on Education through ICT, http://spoken-tutorial.org/NMEICT-Intro. This Textbook Companion and Scilab codes written in it can be downloaded from the "Textbook Companion Project" section at the website http://scilab.in

Book Description

Title: Fluid Mechanics For Chemical Engineers

Author: N. D. Nevers

Publisher: Tata McGraw Hill Education, New Delhi

Edition: 3

Year: 2011

ISBN: 978-1-25-900238-0

Scilab numbering policy used in this document and the relation to the above book.

Exa Example (Solved example)

Eqn Equation (Particular equation of the above book)

AP Appendix to Example(Scilab Code that is an Appednix to a particular Example of the above book)

For example, Exa 3.51 means solved example 3.51 of this book. Sec 2.3 means a scilab code whose theory is explained in Section 2.3 of the book.

Contents

Lis	st of Scilab Codes	4
1	Introduction	5
2	Fluid statics	9
3	The balance equation and mass balance	2 1
4	The first law of thermodynamics	26
5	Bernoulli Equation	30
6	Fluid friction in steady on dimentional flow	38
7	The momentum balance	46
8	One dimentional high velocity gas flow	54
10	Pumps compressors and turbines	62
11	Flow through porous media	68
12	Gas liquid flow	7 1
13	Non newtonian fluid flow in circular pipes	72
15	Two and three dimentional fluid mechanics	7 5
17	The houndary layer	76

18 Turbulence	79
19 Mixing	81
20 Computational fluid dynamics	86

List of Scilab Codes

Exa 1.1	Mass
Exa 1.2	Shear stress
Exa 1.3	Surface tension
Exa 1.4	speed conversion
Exa 1.5	Time conversion
Exa 1.6	Acceleration
Exa 1.7	Electrolysis
Exa 2.1	Specific weight
Exa 2.2	Pressure at depth
Exa 2.3	Gauge pressure
Exa 2.4	Density of air
Exa 2.5	Pressure at height
Exa 2.6	Pressure
Exa 2.7	Pressure
Exa 2.8	Force
Exa 2.9	Thickness
Exa 2.10	Thickness
Exa 2.11	Payload
Exa 2.12	Fraction of block inside water
Exa 2.13	Gauge pressure
Exa 2.14	Pressure difference
Exa 2.15	Gauge pressure
Exa 2.16	Pressure difference
Exa 2.17	Gauge pressure
Exa 2.18	Angle
Exa 2.19	Height of liquid
Exa 2.20	Thickness
Exa. 3.4	volumetric flow rate

Exa 3.5	Velocity and Mass flow rate	21
Exa 3.6	Velocity and Mass flow rate	22
Exa 3.7	Time required	23
Exa 3.8	Steady state pressure	23
Exa 3.9	Velocity of rising water	23
Exa 3.11	volumetric flow rate	24
Exa 4.1	Change in potential energy	26
Exa 4.2	Kinetic energy	26
Exa 4.3	Kinetic energy	27
Exa 4.4	Change in internal energy	27
Exa 4.5	Work	28
Exa 4.6	Mass consumed in nuclear reactor	28
Exa 5.1	Increase in temperature	30
Exa 5.2	Velocity	30
Exa 5.3	Velocity	31
Exa 5.4	Velocity	31
Exa 5.5	Velocity	32
Exa 5.6	Velocity	32
Exa 5.7	Velocity	32
Exa 5.8	volumetric flow rate	33
Exa 5.9	volumetric flow rate	34
Exa 5.10	Pressure difference	34
Exa 5.11	volumetric flow rate	35
Exa 5.12	Absolute pressure	35
Exa 5.13	Pressure at throat	36
Exa 6.1	Pressure drop	38
Exa 6.2	Viscosity	39
Exa 6.3	Fanning friction factor	39
Exa 6.4	Gauge pressure	40
Exa 6.5	volumetric flow rate	40
Exa 6.6	Pressure difference	41
Exa 6.8	Power	42
Exa 6.9	Pressure drop	42
Exa 6.10	Pressure difference	43
Exa 6.11	Pressure drop	43
Exa 6.12	Pressure drop	44
Exa 6.13	Leakage rate	44
Exa 7.2	Velocity	46

Exa 7.3	Force
Exa 7.4	Force
Exa 7.5	Force
Exa 7.6	Force
Exa 7.7	Support forces
Exa 7.8	Thrust
Exa 7.9	Specific impulse
Exa 7.10	Mass flow rate
Exa 7.12	Velocity
Exa 7.15	Velocity
Exa 7.16	Verticle downward velocity 51
Exa 7.17	ratio of weight of aircraft to engine
Exa 7.18	Torque
Exa 8.1	Speed of sound
Exa 8.2	Speed of sound
Exa 8.3	Temperature of gas
Exa 8.4	Speed of sound
Exa 8.5	Pressure and density
Exa 8.6	Cross sectional area
Exa 8.7	Cross sectional area
Exa 8.8	Cross sectional area
Exa 8.9	Temperature of gas
Exa 8.12	Temperature and pressure of gas 60
Exa 8.13	Temperature and velocity of air 60
Exa 8.14	Ratio of area of nozzle 61
Exa 10.1	Efficiency of pump
Exa 10.2	Elevation
Exa 10.3	Work
Exa 10.4	Work
Exa 10.5	Pump head
Exa 10.6	Pump head
Exa 10.7	Pressure rise
Exa 10.8	Efficiency of compressor
Exa 11.1	volumetric flow rate
Exa 11.2	Pressure gradient
Exa 11.3	Permeability
Exa 12.1	Eta and slip velocity
Exa 13.1	Pressure gradient
	7

Exa 13.3	Fanning friction factor and reynolds number by power
	law
Exa 13.4	Pressure gradient
Exa 13.5	Headstrom Reynold number and fanning friction factor
Exa 15.4	Time required
Exa 17.1	Boundary layer thickness
Exa 17.2	Force
Exa 17.3	Laminar sublayer and buffer layer
Exa 17.4	Boundary layer thickness and drag
Exa 18.2	Energy per unit mass and dissipation rate
Exa 18.3	Turbulence
Exa 18.4	Kolmogorov scale
Exa 18.7	turbulent kinematic viscosity
Exa 19.1	Time required for mixing
Exa 19.2	Power required
Exa 19.3	Impeller speed
Exa 19.4	Time required for blending
Exa 19.5	Concentration
Exa 19.6	Concentration
Exa 19.7	Extent of mixing
Exa 19.8	width of jet and entrainment ratio
Exa 19.9	Concentration
Exa 20.1	fist and second derivative of fluid flow
Exa 20.3	Grid velocities

Chapter 1

Introduction

Scilab code Exa 1.1 Mass

Scilab code Exa 1.2 Shear stress

```
1 clc
2 //Example 1.2
3 // Calculate the shear stress at the surface of the
      inner cylinder
4 D1=25.15 / mm
5 D2 = 27.62 / mm
6 dr = 0.5*(D2-D1)/mm
7 f = 10 / rpm
8 Vo = (\%pi) *D1*f/60/mm/s
9 //Let D denote d/dr
10 DV=Vo/dr//s^-1
11 tow=0.005/Nm
12 L = 92.37 / mm
13 s=2*tow/D1^2/(\%pi)/L*10^6//N/m^2
14 printf ("The stress at the surface of the inner
      cylinder is %f N/m^2",s);
```

Scilab code Exa 1.3 Surface tension

```
1 clc
2 //problem on surface tension
3 l=0.10;//m (length of sliding part)
4 f=0.00589;//N (pull due to 0.6 gm of mass)
5 f_onefilm=f/2;//N
6 //surface tension=(force for one film)/(length)
7 sigma=f_onefilm/l;
8 disp("The surface tension of fluid is")
9 disp(sigma)
10 disp("N/m")
```

Scilab code Exa 1.4 speed conversion

```
1 clc
```

```
2 //Example 1.4
3 //Convert 327 miles/hr into ft/s
4 V=327//miles/hr
5 //1 mile = 5280 ft
6 //1 hour = 3600 sec
7 V1=V*(5280/3600)//ft/s
8 printf("327 miles/hr = %f ft/s",V1);
```

Scilab code Exa 1.5 Time conversion

```
1 clc
2 //Example 1,5
3 //Convert 2.6 hours into seconds
4 t=2.6//hr
5 //1 hr = 3600 s
6 t1=2.6*3600//s
7 printf("2.6 hours = %f seconds",t1);
```

Scilab code Exa 1.6 Acceleration

```
1 clc
2 //Example 1.6
3 //Calculate the acceleration in ft/min^2
4 m=10//lbm
5 F=3.5//lbf
6 //1 lbf.s^2 = 32.2 lbm.ft
7 //1 min = 60 sec
8 a=(F/m)*32.2*60^2//ft/min^2
9 printf("The acceleration provided is %f ft/min^2",a);
```

Scilab code Exa 1.7 Electrolysis

```
1 clc
2 //Example 1.7
3 //Calculate the wt of metallic aluminium deposited
    in an electrolytic cell
4 I=50000//Ampere or Coulumbs/sec
5 //1 hr = 3600 sec
6 I1=50000*3600//C/hr
7 //96500 C = 1 gm.eq
8 //1 mole of aluminium = 3 gm.eq
9 //1 mole of aluminium = 27 gm
10 m=I1*(1/96500)*(27/3)/1000//Kg/hr
11 printf("the wt of metallic aluminium deposited in an electrolytic cell is %f Kg/hr",m);
```

Chapter 2

Fluid statics

Scilab code Exa 2.1 Specific weight

```
1 clc
2 g=32.2; //ft/s^2
3 rho_water=62.3; //lbm/ft^3
4 //specific weoight=(density)*(acceleration due to gravity)
5 specific_wt=rho_water*g; //lbm.ft/ft^3.s^2
6 //1 lbf=32.2 lbm.ft/s^2
7 specific_wt=specific_wt/32.2; //lbf/ft^3
8 disp("Specific weight of water is")
9 disp(specific_wt)
10 disp("lbf/ft^3")
```

Scilab code Exa 2.2 Pressure at depth

```
1 clc
2 //calc pressure at depth of 304.9m
3 d=304.9; //m
4 rho_water=1024; //Kg/m^3
```

Scilab code Exa 2.3 Gauge pressure

Scilab code Exa 2.4 Density of air

```
1 clc
2 //calc of density of air at a certain height
3 p_atm=14.7;//psia
4 T=289;//K
```

```
5 //P2 = P1 * exp^(-(acc. due to gravity) * (mass of air) * (
      height)/(universal gas const.)/(temp.))
6 g=9.81; //m/s^2
7 R=8314; //N.m^2/Kmol/K
8 / \text{for height of } 1000 \text{ ft} = 304.8 \text{m}
9 h = 304.8; /m
10 p_1000=14.7*exp(-g*29*h/R/289);
11 disp("pressure at 1000ft is")
12 disp(p_1000)
13 disp("psia")
14 // \text{for height of } 10000 \text{ ft} = 3048 \text{m}
15 h=3048; //m
16 p_10000 = p_atm * exp(-g*29*h/R/289);
17 disp("pressure at 10000ft is")
18 disp(p_10000)
19 disp("psia")
20 // \text{for height of } 100000 \text{ ft} = 30480 \text{m}
21 h=30480; //m
p_100000 = 14.7 * exp(-g*29*h/R/289);
23 disp("pressure at 100000ft is")
24 disp(p_100000)
25 disp("psia")
```

Scilab code Exa 2.5 Pressure at height

```
1 clc
2 //calc pressuer at different heights considering on
          density change in air
3 p_atm=14.7; // psia
4 g=9.81; //m/s^2
5 //P2=P1*[1-(acc. due to gravity)*(mass of air)*(
          height)/(univ. gas const.)/(temp.)]
6 T=289; //K
7 R=8314//N.m^2/Kmol/K
8 // for height of 1000 ft = 304.8m
```

```
9 h=304.8/m
10 p_1000=p_atm*[1-g*29*h/R/T];
11 disp("pressure at 1000ft is")
12 disp(p_1000)
13 disp("psia")
14 // \text{for height of } 10000 \text{ ft} = 3048 \text{m}
15 h = 3048 / m
16 p_10000=p_atm*[1-g*29*h/R/T];
17 disp("pressure at 10000ft is")
18 disp(p_10000)
19 disp("psia")
20 // \text{for height of } 100000 \text{ ft} = 30480 \text{m}
21 h = 30480 / m
22 p_100000 = p_atm*[1-g*29*h/R/T];
23 disp("pressure at 100000ft is")
24 disp(p_100000)
25 disp("psia")
26 //NOTE that the pressure comes out to be negative at
       100000ft justifying that density of air changes
      with altitude
```

Scilab code Exa 2.6 Pressure

Scilab code Exa 2.7 Pressure

Scilab code Exa 2.8 Force

```
1 clc
2 //calc the total force on a lock gate
3 //lock gate has water on one side and air on the
    other at atm. pressure
4 w=20;//m (width of the lock gate)
5 h=10;//m (height of the lock gate)
6 p_atm=1;//atm
7 rho_water=1000;//Kg/m^3
8 g=9.81//m/s^2
9 //for a small strip of dx height at the depth of x
    on the lock gate
```

Scilab code Exa 2.9 Thickness

```
1 clc
2 //calc thickness of an oil storage
3 sigma_tensile=20000; //lbf/in^2 (tensile stress is normally 1/4 rupture stress)
4 //max pressure is observed at the bottom of the storage
5 p_max=22.9; //lbf/in^2
6 //diameter of storaeg tank = 120ft =1440in
7 d=1440; //in
8 t=(p_max)*d/sigma_tensile/2; //in
9 disp("Thickness of the storage tank is")
10 disp(t)
11 disp("in")
```

Scilab code Exa 2.10 Thickness

1 clc

```
//calc thickness of a storage tank
p_working=250; //lbf/in^2
//diameter of the cylinder = 10ft = 120in
d=120; //in
sigma_tensile=20000; //lbf/in^2
t=p_working*d/sigma_tensile/2; //in
disp("Thichness of the storage tank is")
disp(t)
disp("in")
```

Scilab code Exa 2.11 Payload

```
1 clc
2 //calc payload of a helium balloon
3 p_atm=1; //atm
4 T=293; //K
5 d=3; //m (diameter of the balloon)
6 //buoyant force=(density of air)*g*(volume of
      balloon)
7 //weight of balloon = (density of helium)*g*(volume
      of balloon)
8 // density for gases = PM/RT
9 //payload of balloon = buoyant force - weight
10 V_balloon=(\%pi)*d^3/6;//m^3
11 R=8.2*10^(-2); //\text{m}^3.\text{atm/mol/K}
12 M_air=29; //Kg/Kmol
13 M_he=4; //Kg/Kmol
14 g=9.81; //m/s^2
15 payload=(V_balloon)*g*p_atm*(M_air-M_he)/R/T;//N
16 disp ("Payload of the balloon is")
17 disp(payload)
18 disp("N")
```

Scilab code Exa 2.12 Fraction of block inside water

```
1 clc
2 //wooden block floating in two phase mix of water
        and gasoline
3 //calc fraction of block in water
4 SG_wood=0.96; // Specific gravity
5 SG_gasoline=0.72;
6 //Let r be the ratio - V_water/V_wood
7 r=(SG_wood-SG_gasoline)/(1-SG_gasoline);
8 disp("Fraction of wood in water")
9 disp(r)
```

Scilab code Exa 2.13 Gauge pressure

Scilab code Exa 2.14 Pressure difference

1 clc

Scilab code Exa 2.15 Gauge pressure

Scilab code Exa 2.16 Pressure difference

```
1 clc
2 //calc pressure diff at the mouth of the fire place
```

```
3 g=32.2; //ft/s^2
4 h=20; //ft (height of fireplace)
5 rho_air=0.075; //lbm/ft^3
6 T_air=293; //K (surrounding temperature)
7 T_fluegas=422; //K
8 p_diff=g*h*(rho_air)*[1-(T_air/T_fluegas)]/32.2/144; //lbf/in^2
9 disp("The pressure difference is")
10 disp(p_diff)
11 disp("lbf/in^2")
```

Scilab code Exa 2.17 Gauge pressure

```
1 clc
2 rho_water=1000; //\text{Kg/m}^3
3 \text{ g=9.81; } //\text{m/s}^2
4 h=5; //m (depth of water)
5 //for elevator not accelerated
6 p_gauge=(rho_water)*g*h/1000; //KPa
7 disp("THe gauge pressure is")
8 disp(p_gauge)
9 disp("KPa")
10 //for elevator accelerated at 5m/s<sup>2</sup> in upward
      direction
11 a=5; //m/s^2
12 p_gauge=(rho_water)*(g+a)*h/1000; //KPa
13 disp("THe gauge pressure is")
14 disp(p_gauge)
15 disp("KPa")
16 //for elevator accelerated at 5m/s<sup>2</sup> in downward
      direction
17 a=5; //m/s^2
18 p_{gauge}=(rho_{water})*(g-a)*h/1000; //KPa
19 disp("THe gauge pressure is")
20 disp(p_gauge)
```

```
21 disp("KPa")
```

Scilab code Exa 2.18 Angle

```
1 clc
2 //angle free surface makes with the horizontal in an accelerated body
3 a=1;//ft/s^2
4 g=32.2;//ft/s^2
5 theta=atan(a/g);//radians
6 theta=theta*180/%pi;//degrees
7 disp("The angle made by free surface with the horizontal is")
8 disp(theta)
9 disp("degrees")
```

Scilab code Exa 2.19 Height of liquid

```
1 clc
2 //calc the height to which liq in a cylinder rises
        when rotated
3 f=78/60; //rps
4 r=0.15; //m
5 g=9.81; //m/s^2
6 //omega=2*(%pi)*f
7 z=[(2*(%pi)*f)^2]*r^2/2/g; //m
8 disp("The liquid in the cylinder rises to a height of")
9 disp(z)
10 disp("m")
```

Scilab code Exa 2.20 Thickness

Chapter 3

The balance equation and mass balance

Scilab code Exa 3.4 volumetric flow rate

```
1 clc
2 //Calculate vol. flow rate, mass flow rate and
        average vel of gasoline through pipe
3 V=15; //gal volume of gasoline
4 t=2; //min
5 rho_water=62.3; //lbm/ft^3
6 sg=0.72; //specific gravity
7 q=(15/2)*(0.1336/60) //ft^3/s vol. flow rate
8 printf("volumetric flow rate is %f ft^3/s\n",q);
9 m=q*sg*rho_water//lbm/s
10 printf("Mass flow rate is %f lbm/s\n",m);
11 d=1; //in diameter of pipe
12 a=((%pi)*d^2/4)/144; //ft^2 area of pipe
13 v_avg=q/a//ft/s
14 printf("The average velocity is %f ft/s",v_avg);
```

Scilab code Exa 3.5 Velocity and Mass flow rate

```
1 clc
2 //Example 3.5
3 //calculate velocity and mass flow rate of natural
        in a pipe
4 d1=2; //ft diameter of pipe at position 1
5 a1=(%pi)/4*d1^2; //ft^2
6 v1=50; //ft/s vel of gas at position 1
7 rho1=2.58; //lbm/ft^3 density of gas at position 1
8 d2=3; //ft diameter of pipe at position 2
9 a2=(%pi)/4*d2^2;
10 rho2=1.54; //lbm/ft^3 density at position 2
11 v2=(rho1/rho2)*(a1/a2)*v1//ft/s
12 printf("Velocity is %f ft/s\n",v2);
13 m=rho1*v1*a1//lbm/s mass flow rate
14 printf("The mass flow rate is %f lbm/s",m);
```

Scilab code Exa 3.6 Velocity and Mass flow rate

```
1 clc
2 //Example 3.6
3 //calculate the mass flow rate, volumetric flow rate
       and velocity of waterin a pipe
4 d1=0.25; //m diameter of pipe at position 1
5 \text{ v1=2}; //\text{m/s} \text{ velocity}
6 rho=998.2; // \text{kg/m}^3
                         density of water
7 a1=(\%pi)/4*d1^2;//m^2
8 d2=0.125//m diameter of pipe at position 2
9 a2=(\%pi)/4*d2^2;//m^2
10 m=rho*a1*v1//kg/s mass flow rate
11 printf ("Mass flow rate is \%f kg/s\n",m);
12 q=m/rho//m^3/s volumetric flow rate
13 printf ("The volumetric flow rate is \%f m<sup>3</sup>/s\n",q);
14 v2 = (a1/a2) * v1//m/s velocity
```

```
15 printf("Velocity of water is %f m/s", v2);
```

Scilab code Exa 3.7 Time required

```
1 clc
2 //Example 3.7
3 //calulate the time required
4 p_initial=1;//atm pressure initially
5 p_final=0.0001;//atm pressure finally
6 V=10;//ft^3 volume of system
7 q=1;//ft^3/min vol. flow rate
8 t=(V/q)*log(p_initial/p_final)//min
9 printf("The time required is %f min",t);
```

Scilab code Exa 3.8 Steady state pressure

```
1 clc
2 //Example 3.8
3 //calculate the final or steady state pressure in tank
4 m_in=0.0001; //lbm/min
5 q_out=1; //ft^3/min
6 rho_sys=m_in/q_out//lbm/ft^3
7 rho_air=0.075; //lbm/ft^3
8 p_initial=1; //atm
9 p_steady=p_initial*(rho_sys/rho_air) //atm
10 printf("The steady state pressure is %f atm", p_steady);
```

Scilab code Exa 3.9 Velocity of rising water

```
1 clc
2 //Example 3.9
3 //calculate how fast the level of water is rising or
       falling in a cylindrical tank
4 d=3; //m diameter of tank
5 a=(\%pi)*d^2/4;//m^2
6 d_in=0.1; //m inner diameter of inflow pipe
7 \, d_out = 0.2; //m
8 \text{ v_in=2}; //m/s
9 \text{ v_out=1; } //\text{m/s}
10 q_{in} = ((\%pi)*d_{in}^2/4)*v_{in}; //m^3/s
11 q_out = ((\%pi)*d_out^2/4)*v_out; //m^3/s
12 //let D represent d/dt
13 DV=q_in-q_out; //\text{m}^3/\text{s}
14 \text{ if } DV > 1 \text{ then}
     printf("The water level in tank is rising\n");
15
16 else if DV<1 then
        printf("The water level in tank is falling \n");
17
18
19
          printf("No accumulation\n");
20
          end
21 //let h be the height of water in tank
22 Dh=DV/a/m/s
23 printf("The rate of level of water is rising or
      falling in a cylindrical tank is %f m/s",Dh);
```

Scilab code Exa 3.11 volumetric flow rate

```
1 clc
2 //Example 3.11
3 //calculate flow rate of ventilation air supply
4 q=5/8; //kg/hr mass evaporation rate of benzene
5 c=1.3*10^(-6); //kg/m^3 concentration of benzene
6 Q=q/c/3600//m^3/s
7 printf("The flow rate of ventilation air supply is
```

 $\%f~m^3/s"$,Q);

Chapter 4

The first law of thermodynamics

Scilab code Exa 4.1 Change in potential energy

```
1 clc
2 //Example 4.1
3 //calculate change in pot. energy per unit mass and total change in pot. energy
4 g=9.81; //m/s^2 acc. due to gravity
5 dh=23; //m change in height
6 dpe=g*dh//m^2/s^2 change in pot energy per unit mass
7 printf("change in pot. energy per unit mass is %f m ^2/s^2\n",dpe);
8 m=10; //kg
9 dPE=m*dpe//kgm^2/s^2 or J change in pot. energy
10 printf("The total change in potential energy is %f J ",dPE);
```

Scilab code Exa 4.2 Kinetic energy

```
1 clc
2 //Example 4.2
3 //calculate the kinetic energy of bullet
4 m=0.01;//lbm mass of bullet
5 v=2000;//ft/s
6 KE=(m*v^2/2)*(1.356/32.2)//J
7 printf("the kinetic energy of bullet is %f J",KE);
```

Scilab code Exa 4.3 Kinetic energy

Scilab code Exa 4.4 Change in internal energy

Scilab code Exa 4.5 Work

Scilab code Exa 4.6 Mass consumed in nuclear reactor

```
1 clc
2 //Example 4.6
3 //calculate the mass consumed in a nuclear reactor
    per unit time
4 //let D=d/dt
5 DQ=-13*10^8;//J/s
6 DW=7*10^8;//J/s
7 //Dm=(DQ-DW)/c^2 where c is velocity of light sice E
    =mc^2
```

```
8 c=3*10^8; //m/s
9 c1=3; // velocity of light without power
10 pow=8//power of 10 in speed of light
11 Dm=(DW-DQ)/c/c1//kg/s
12 printf("the mass consumed in a nuclear reactor per unit time is %f * 10^(-%d) kg/s", Dm, pow);
```

Chapter 5

Bernoulli Equation

Scilab code Exa 5.1 Increase in temperature

```
1 clc
2 //Example 5.1
3 //Calculate the increase in temperature due to
    falling water of waterfall
4 g=9.81; //m/s^2 acc. due to gravity
5 dz=100; //m Height of waterfall
6 du=g*dz; //J/kg Change in internal energy
7 Cv=4184; //J/kg/K;
8 dT=du/Cv//K Change in temperature
9 printf("Change in temperature is %f K or degree centigrade", dT);
```

Scilab code Exa 5.2 Velocity

```
4 T=528; //R Rankine scale
5 R=10.73; // psi.ft^3/R/lbmol universal gas constant
6 p=14.71; // psi
7 p_atm=14.7; // psi
8 M=29; //lbm/lbmol
9 // considering the velocity at the start of the nozzle is negligible
10 v=((2*R*T/p/M)*(p-p_atm)*(144*32.2))^0.5; // ft/s
11 printf("Velocity of the air flowing out of the pipe %f ft/s",v);
```

Scilab code Exa 5.3 Velocity

```
1 clc
2 //Example 5.3
3 //Calculate the velocity of water flowing out of a nozzle at the bottom of a tank
4 g=32.2; //ft/s^2
5 h=30; //ft height tank
6 //considering the velocity of water at the top of the tank is negligible
7 v=(2*g*h)^0.5; //ft/s
8 printf("The velocity of the water flowing out through the nozzle is %f ft/s",v);
```

Scilab code Exa 5.4 Velocity

```
1 clc  
2 //Example 5.4  
3 //calculate velocity of water flowing out of nozzle  
4 A_nozzle=1//ft^2  
5 A_tank=4//ft^2  
6 g=32.2//ft/s^2
```

```
7 h=30//ft
8 v=(2*g*h/(1-(A_nozzle/A_tank)^2))^0.5//ft/s
9 printf("The velocity of water flowing out of nozzle is %f ft/s",v);
```

Scilab code Exa 5.5 Velocity

```
1 clc
2 //Example 5.5
3 //calculate the velocity of water flowing out of a nozzle
4 g=32.2//ft/s^2
5 h=30//ft
6 M_air=29//dimentionless (molecular weight)
7 M_CO2=44//dimentionless (molecular weight)
8 v=(2*g*h*(1-(M_air/M_CO2)))^0.5//ft/s
9 printf("The velocity of water flowing out of nozzle is %f ft/s",v);
```

Scilab code Exa 5.6 Velocity

```
1 clc
2 //Example 5.6
3 //calculate velocity of sailboat using pitot tube
4 h=1//m height of water above the water level
5 g=9.81//m/s^2
6 v=(2*g*h)^0.5//m/s
7 printf("The velocity of sailboat is %f m/s",v);
```

Scilab code Exa 5.7 Velocity

```
1 clc
2 //Example 5.7
3 //Calculate velocity of air flowing through an air
          duct
4 dP=0.05//psi or lbf/in^2
5 rho_air=0.075//lbm/ft^3
6 //1ft = 12in
7 //1 lbf.s^2 = 32.2 lbm.ft
8 v=(2*dP*144*32.2/rho_air)^0.5//ft/s
9 printf("The velocity of air in the air duct is %f ft
          /s",v);
```

Scilab code Exa 5.8 volumetric flow rate

```
1 clc
\frac{2}{\text{Example 5.8}}
3 //calculate volumetric flow rate using a venturi-
      meter
4 dP=1//psi
5 rho_water=62.3//lbm/ft^3
6 d1=1//ft area at pt 1 in venturimeter
7 A1=(\%pi)*d1^2/4//ft^2
8 d2=0.5//ft
9 A2=(\%pi)*d2^2/4//ft^2
10 //1 \, \text{ft} = 12 \, \text{in}
11 //1 \text{ lbf.s}^2 = 32.2 \text{ lbm.ft}
v = ((2*dP*144*32.2/rho_water)/(1-(A2/A1)^2))^0.5//ft/
13 printf("The velocity of the water flowing through
      venturimeter is \%f ft/s\n",v);
14 q = v * A2 // ft ^3/s
15 printf ("The volumetric flow rate of water is %f ft
      ^3/s",q);
```

Scilab code Exa 5.9 volumetric flow rate

```
1 clc
2 //Example 5.9
3 //calculate actual volumetric flow rate using a
      venturi-meter
4 dP=1//psi
5 rho_water=62.3//lbm/ft^3
6 d1=1//ft area at pt 1 in venturimeter
7 A1=(\%pi)*d1^2/4//ft^2
8 d2=0.5//ft
9 A2=(\%pi)*d2^2/4//ft^2
10 //1 \, \text{ft} = 12 \, \text{in}
11 //1 \, lbf.s^2 = 32.2 \, lbm.ft
12 v_{th} = ((2*dP*144*32.2/rho_water)/(1-(A2/A1)^2))^0.5//
      ft/s
13 Cv = 0.984 / dimentionless
14 v_act=Cv*v_th//ft/s actual velocity
15 printf("The velocity of the water flowing through
      venturimeter is \%f ft/s\n",v_act);
16 q=v_act*A2//ft^3/s
17 printf("The volumetric flow rate of water is %f ft
      ^3/s",q);
```

Scilab code Exa 5.10 Pressure difference

```
1 clc
2 //Example 5.10
3 //Calculate the pressure difference in a pipe
4 v1=1//m/s
5 d1=0.4//m
6 A1=(%pi)*d1^2/4//m^2
```

```
7 d2=0.2//m
8 A2=(%pi)*d2^2/4//m^2
9 v2=A1*v1/A2//m/s
10 Cv=0.62//dimentionless
11 rho_water=998.2//kg/m^3
12 dP=(rho_water*v2^2/2/Cv^2)*(1-(A2/A1)^2)/1000//KPa
13 printf("The pressure difference in the pipe is %f KPa",dP);
```

Scilab code Exa 5.11 volumetric flow rate

```
1 clc
2 //Example 5.11
3 //Calculate the flow rate of helium with rotameter
        caliberated with nitogen
4 M_N2=28//dimentionless
5 M_He=4//dimentionless
6 //Density is proportional to molecular weight
7 q_N2=100//cm^3/min
8 q_He=q_N2*(M_N2/M_He)^0.5//cm^3/min
9 printf("The flow rate of Helium is %f cm^3/min",q_He
    );
```

Scilab code Exa 5.12 Absolute pressure

```
1 clc
2 //Example 5.12
3 //Calculate the absolute pressure at the top of a inverted manometer tube
4 p_atm=14.7//lbf/in^2
5 g=32.2//ft/s^2
```

```
6 //one end of the inverted manometer is immersed in a
       tank and the other end is open to atmosphere 10
      ft below tank level
7 //pt 1 is at tank water level, pt 2 is at top of
     inverted manometer and pt3 is at the other end of
       manometer
8 \, dh = 10 / / ft
9 v3 = (2*g*dh)^0.5 //ft/s
10 p1=p_atm//lbf/in^2
11 rho_water=62.3//lbm/ft^3
12 // Difference of height between pt 1 and pt 2 is 40
      ft
13 \, dh1 = 40 / / dft
14 p2=p1-(rho_water*v3^2/2/32.2/144)-(rho_water*g*dh1)
      /32.2/144//lbf/in^2
15 printf("The absolute pressure at the top of the
      inverted manometer is %f lbf/in^2",p2);
```

Scilab code Exa 5.13 Pressure at throat

```
1 clc
2 //Example 5.13
3 //Calculate pressure at the throat in a venturimeter
4 dP=10//psi or lbf/in^2
5 rho_water=62.3//lbm/ft^3
6 //1ft = 12in
7 //1 lbf.s^2 = 32.2 lbm.ft
8 v3=(2*dP*144*32.2/rho_water)^0.5//ft/s
9 printf("The velocity of water after the throat is %f ft/s\n",v3);
10 ratio_A=0.5//dimentionless (ratio of throat area to pipe area)
11 v2=v3/ratio_A//ft/s
12 printf("The velocity of water at the throat is %f ft/s\n",v2);
```

```
13 P1=24.7//psia
14 rho_water=62.3//lbm/ft^3
15 P2=P1-(rho_water)*v2^2/32.2/144/2//psia
16 printf("The pressure of water at the throat is %f psia",P2);
```

Chapter 6

Fluid friction in steady on dimentional flow

Scilab code Exa 6.1 Pressure drop

```
1 clc
2 //Example 6.1
3 //calculate the drop in pressure per unit length in
      a pipe
4 q=50//gal/min flow rate
5 d=3.068//in inner diameter
6 a=(\%pi)*(3.068/12)^2/4/ft^2
7 //1 \text{ ft } ^3 = 7.48 \text{ gal}
8 / 1 \min = 60 \text{ sec}
9 v_avg=q/a/60/7.48//ft/s
10 mew = 50 / cP
11 //1 \text{ cP} = 0.000672 \text{ lbm/ft/s}
12 rho = 62.3 / lbm / ft^3
13 R=(d/12)*v_avg*rho/(mew*0.000672)//dimentionless
      reynold's no.
14 if (R<2000)
     printf("Laminar flow\n");
15
16 else
     printf("Turbulent flow\n");
```

Scilab code Exa 6.2 Viscosity

```
clc
//Example 6.2
//calculate viscosity of fluid using a viscometer
rho=1050//Kg/m^3
g=9.81//m/s^2
dz=0.12//m change in height
d=0.001//m inner diameter of capillary of viscometer
q=10^(-8)//m^3/s
dx=0.1//m length of capillary
mew=(rho*g*dz*(%pi)*d^4)*1000/128/(q*dx)//cP
printf("The viscosity of the fluid is %f cP", mew);
```

Scilab code Exa 6.3 Fanning friction factor

```
1 clc
2 //Example 6.3
3 //Calculate the fanning friction factor
4 R=10^5//dimentionless reynold's no.
5 ratio_ED=0.0002//dimentionless
```

```
6 f=0.001375*(1+(20000*ratio_ED+10^6/R)^(1/3))//
          dimentionless
7 printf("The fanning friction factor is %f",f);
```

Scilab code Exa 6.4 Gauge pressure

```
1 clc
2 //Example 6.4
3 // Calculate the gauge pressure in the tank
4 q=300//gal/min flow rate
5 d=3.068//in inner diameter
6 a=(\%pi)*(3.068/12)^2/4/ft^2
7 //1 \text{ ft } ^3 = 7.48 \text{ gal}
8 / 1 \min = 60 \text{ sec}
9 v_avg=q/a/60/7.48//ft/s
10 f=0.0091//dimentionless fanning friction factor
11 dx = 3000 / / ft
12 rho = 62.3 / lbm / ft^3
13 dp=4*f*(dx/(d/12))*rho*(v_avg^2/2)/32.2/144//lbf/in
      ^2 or psi
14 printf ("The gauge pressure in the tank is %f psi", dp
      );
```

Scilab code Exa 6.5 volumetric flow rate

```
8 dz=10//m difference in water level
9 g=9.81//m/s^2
10 v=((2*g*dz/4/f)*d/dx)^0.5//m/s
11 printf("The velocity of gasoline through pipe is %f m/s\n",v);
12 q=A*v//m^3/s
13 printf("The volumteric flow arte od gasoline through the pipe is %f m^3/s",q);
```

Scilab code Exa 6.6 Pressure difference

```
1 clc
2 //Example 6.6
3 // Calculate pressure difference across the duct
4 p=14.75//lbf/in^2
5 \text{ M}=29//\text{lbm}/\text{lbmol}
6 R=10.73 // lbf \cdot ft^3/(in^2 \cdot lbmol \cdot R)
7 T=500//R Rankine temperature scale
8 rho=p*M/(R*T)/\frac{1}{bm}/ft<sup>3</sup>
9 q = 500 / ft^3 / min
10 d = 1 / / ft
11 A = (\%pi)*d^2/4//ft^2
12 v = (q/60)/A//ft/s
13 mew = 0.017 / cP
14 //1cP = 0.000672 lbm/ft/s
15 R=d*v*rho/(mew*0.000672)//dimentionless reynold's no
16 f=0.00465//fanning friction factor
17 dx = 800 // ft lenght of duct
18 / 1 \text{ ft} = 12 \text{ in}
19 / 1 \, lbf.s^2 = 32.2 \, lbm.ft
20 dP=rho*(4*f*(dx/d)*(v^2/2))/32.2/144//lbf/in^2
21 printf("The pressure drop across the duct is %f lbf/
      in^2",dP);
```

Scilab code Exa 6.8 Power

```
1 clc
2 //Example 6.8
3 //Calculate the pump power required
4 q=200//gal/min
5 rho=62.3//lbm/ft^3
6 //1 ft^3 = 7.48 gal
7 m=(q/60)*rho/7.48//lbm/s
8 dx=2000//ft
9 dp=3.87//psi/100ft
10 F=(dp/100)*dx/rho*32.2*144//ft
11 //1 hp = 550 lbf.ft/s
12 Po=F*m/550//hp
13 printf("The pump power required is %f hp",Po);
```

Scilab code Exa 6.9 Pressure drop

```
1 clc
2 //Example 6.9
3 //Calculate the drop in pressure per unit length in a pipe
4 dp=0.1//psi
5 dx=800//ft
6 //let D represent d/dx
7 //1 psi = 6895 Pa
8 //1 m = 3.28 ft
9 Dp=(dp/dx)*6895*3.28//Pa/m
10 printf("The drop in pressure per unit length in the pipe is %f Pa/m", Dp);
```

Scilab code Exa 6.10 Pressure difference

```
1 clc
2 //Example 6.10
3 //Calculate the pressure difference created due to
        expansion and contraction
4 rho=62.3//lbm/ft^3
5 K=1.5//dimentionless
6 v=13//ft/s
7 //1 ft = 12 in
8 //1 lbf.s^2 = 32.2 lbm.ft
9 dp=rho*K*(v^2/2)/32.2/144//lbf/in^2
10 printf("The pressure drop due to expansion and contraction is %f lbf/in^2",dp);
```

Scilab code Exa 6.11 Pressure drop

```
1 clc
2 //Example 6.11
3 //Calculate the pressure drop in the pipe due to
    fittings
4 dx=3000//ft actual length of pipe
5 dx1=281//ft equivalent length of fittings
6 p=484//psi
7 dx_total=dx+dx1//ft
8 dp_total=p*(dx_total/dx)//psi
9 dp_vnf=dp_total-p//psi pressure drop fue to valves
    and fittings
10 printf("The pressure drop due to valves and fittings
    is %f psi",dp_vnf);
```

Scilab code Exa 6.12 Pressure drop

```
1 clc
2 //Example 6.12
3 //Calculate pressure drop due to valves and fittings
4 K=27.56//deimentionless
5 rho=62.3//lbm/ft^3
6 v=13//ft/s
7 //1 ft = 12 in
8 //1 lbf.s^2 = 32.2 lbm.ft
9 dp=rho*K*(v^2/2)/32.2/144//psi
10 printf("THe pressure drop due to valves and fittings is %d psi",dp);
```

Scilab code Exa 6.13 Leakage rate

```
1 clc
2 //Example 6.13
3 // Calculate the gasoline leakage rate through a seal
4 p=100 // lbf / in^2
5 l=1//in length od seal in direction of leak
6 mew=0.6//cP
7 d=0.25//in diameter of valve stem
8 t=0.0001//in thickness of valva stem
9 //1 \text{ cP} = 0.0000209 \text{ lbf.s/ft}^2
10 //1 \text{ ft} = 12 \text{ in}
11 q=(p/1)*(1/12/mew)*(\%pi)*d*t^3/0.0000209*144*3600//
      in^3/hr
12 printf("The volumetric leakage rate of gasoline is
      \%f in ^3/hr n, q);
13 rho = 0.026 / lbm / in^3
14 \text{ m=q*rho}//\text{lbm/hr}
```

Chapter 7

The momentum balance

Scilab code Exa 7.2 Velocity

```
1 clc
2 //Example 7.2
3 //Calulate the final velocity of duck after being
    hit by a bullet
4 m_duck=3//lbm
5 v_duck=-15//ft/s due west
6 m_bullet=0.05//lbm
7 v_bullet=1000//ft/s due east
8 //total initial momentum = final momentum
9 v_sys=((m_duck*v_duck)+(m_bullet*v_bullet))/(m_duck+m_bullet)//ft/s
10 printf("The final velocity of the duck is %f ft/s", v_sys);
```

Scilab code Exa 7.3 Force

```
1 clc
2 //Example 7.3
```

Scilab code Exa 7.4 Force

```
1 clc
2 //Example 7.4
3 //calculate the force required to hold of water from a hoze
4 rho=998.2//Kg/m^3
5 q=0.01//m^3/s
6 v_initial=30//m/s
7 v_final=-15//m/s
8 F=q*rho*(v_final-v_initial)//N
9 printf("The force required to hold of water from a hoze %f N",F);
```

Scilab code Exa 7.5 Force

```
1 clc
2 //Example 7.5
3 //Calculate the force exerted on the flange when the
      valve of the nozzle is closed
4 //Let the gauge pressure be denoted by Pg
5 Pg=100//lbf/in^2
6 A=10//in^2
```

```
7 //F_bolts = -F_liq-F_atm
8 //F_bolts = -(Pg + P_atm)A - (-P_atm.A)
9 //F_bolts = -Pg.A
10 F_bolts=-Pg*A
11 printf("The force exerted on the flange when the valve of the nozzle is closed is %f lbf",F_bolts)
;
```

Scilab code Exa 7.6 Force

```
1 clc
2 //Example 7.6
3 //Calculate the force exerted on the flange
4 dP=100//lbf/in^2
5 A_out=1//in^2
6 rho=62.3//lbm/ft^3
7 ratio_A=0.1//dimentionless
8 //1 ft = 12 in
9 //1 lbf.s^2 = 32.2 lbm.ft
10 v_out=(2*dP/rho/(1-ratio_A^2)*32.2*144)^0.5//ft/s
11 v_in=12.3//ft/s
12 m=rho*A_out*v_out/144//lbm/s
13 F=m*(v_out-v_in)/32.2//lbf
14 printf("The force exerted on the flange is %f lbf",F
);
```

Scilab code Exa 7.7 Support forces

```
1 clc
2 //Example 7.7
3 //Calculate the support forces in x and y direction
    in a 90 degree bend tube
4 p1=200//KPa
```

```
5  A=0.1//m^2
6  m=500//Kg/s
7  rho=998.2//Kg/m^3
8  q=m/rho//m^3/s
9  v=q/A//m/s
10  Vx_initial=v//m/s
11  Vx_final=0//m/s
12  Vy_initial=0//m/s
13  Vy_final=-v//m/s
14  Fx=m*(Vx_final-Vx_initial)-p1*1000*A//N
15  printf("The support force in the x direction is %f N \n",Fx);
16  Fy=m*(Vy_final-Vy_initial)-p1*1000*A//N
17  printf("The support force in the y direction is %f N ",Fy);
```

Scilab code Exa 7.8 Thrust

```
1 clc
2 //Example 7.8
3 //Calculate the thrust on a rocket
4 m=1000//Kg/s
5 v_out=-3000//m/s its in the negative y direction
6 v_in=0//m/s
7 A=7//m^2
8 P=35000//Pa
9 F_thrust=(-m*(v_out-v_in)+P*A)/1000000//MN
10 printf("The thrust on the rocket is %f MN",F_thrust)
;
```

Scilab code Exa 7.9 Specific impulse

1 clc

```
//Example 7.9
//Calculate the specific impulse for a rocket
Vy_exh=-3000//m/s in negative y direction
Isp=-Vy_exh/1000//KN.s/Kg
printf("The specific impulse on the rocket is %f KN.s/Kg", Isp);
```

Scilab code Exa 7.10 Mass flow rate

```
1 clc
2 //Example 7.10
3 //Calculate the Mass air flow rate required by a jet engine
4 F_thrust=20000//lbf
5 Vx_out=1350//ft/s
6 Vx_in=0//ft/s
7 //1 lbf.s^2 = 32.2 lbm.ft
8 m=F_thrust/(Vx_out-Vx_in)*32.2//lbm/s
9 printf("The mass air flow rate required by a jet engine is %f lbm/s",m);
```

Scilab code Exa 7.12 Velocity

Scilab code Exa 7.15 Velocity

```
1 clc
2 //Example 7.15
3 // Calculate the velocity and height of flow in an
     open channel
4 v1 = 4 / / ft / s
5 g=32.2//ft/s^2
6 z1=0.0005//ft
7 Fr=v1^2/(g*z1)//dimentionless (Fraude number)
8 ratio_z=-0.5+(0.25+2*Fr)^0.5//dimentionless
9 / ratio_z = z2/z1
10 z2=ratio_z*z1//ft
11 printf("The height of flow in open channel is %f ft\
     n",z2);
12 v2=v1/(ratio_z)//ft/s
13 printf("The velocity of flow in open channel is %f
      ft/s", v2);
```

Scilab code Exa 7.16 Verticle downward velocity

```
1 clc
2 //Example 7.16
3 //calculate the verticle downward velocity of air
    hitting an aircraft wing
4 l=15//m length of wing
5 b=3//m thickness of wing
6 A=1*b//m^2 area of the colliding surface of the wing
7 rho_air=1.21//Kg/m^3
```

```
8 Vx=50//m/s
9 m=rho_air*A*Vx//Kg/s
10 Fy=9810//N Weight of the aircraft
11 Vy=Fy/m//m/s
12 printf("The verticle downward velocity of air hitting the aircraft wing is %f m/s", Vy);
```

Scilab code Exa 7.17 ratio of weight of aircraft to engine

```
1 clc
2 //Example 7.17
3 // Calculate the ratio of the total weight of the
     aircraft to the weight of engine
4 //Let ratio of weight to thrust be denoted by r1
5 //Let ratio of thrust to the engine weight be
     denoted by r2
6 r1=10//dimentionless
7 r2=2//dimentionless
8 //weight/engine wt = (weight/thrust)*(thrust/engine
     wt)
9 //let ratio of total wt to engine wt be denoted by
     r3
10 r3=r1*r2//dimentionless
11 printf("The ratio of the total weight of the
     aircraft to the weight of engine is %f",r3);
```

Scilab code Exa 7.18 Torque

```
5    rho=8.33//lbm/gal
6    m=rho*q//lbm/min
7    f=1800//rev/min frequency of impeller
8    omega=2*(%pi)*f//rad/min
9    r_in=1/12//ft
10    r_out=6/12//ft
11    //1    min = 60    sec
12    //1 lbf.s^2 = 32.2 lbm.ft
13    tou=m*omega*(r_out^2-r_in^2)/32.2/3600//lbf.ft
14    printf("The torque exerted on the rotor is %f lbf.ft
        ",tou);
```

Chapter 8

One dimentional high velocity gas flow

Scilab code Exa 8.1 Speed of sound

```
1 clc
2 //Example 8.1
3 // Calculate the speed of sound in water amd steel at
       20 C
4 //for steel
5 \text{ K_steel=1.94*10^11//Pa}
6 \text{ rho\_steel} = 7800 / \text{Kg.m}^3
7 c_steel=(K_steel/rho_steel)^0.5/1000/Km/s
8 printf("the speed of sound in steel at 20 C is %f km
      /s \ n",c_steel);
9 //for water
10 K_{\text{water}}=3.14*10^5//lbf/in^2
11 rho_water=62.3//lbm/ft^3
12 //1 ft = 12 in
13 / 1  lbf.s<sup>2</sup> = 32.2 lbm.ft
14 c_water=(K_water/rho_water*144*32.2)^0.5/ft/s
15 printf("the speed of sound in water at 20 C is %f ft
      /s",c_water);
```

Scilab code Exa 8.2 Speed of sound

```
1 clc
2 //Example 8.2
3 //Calculate the speed of sound in air at 20 C
4 R=10.73//lbf.ft^3/in^2/lbmol/R
5 //1 ft = 12 in
6 //1 lbf.s^2 = 32.2 lbm.ft
7 R1=(R*144*32.2)^0.5//ft/s*(lbm/lbmol/R)^0.5
8 k=1.4//dimentionless
9 T=528//R (Rankine temperature scale)
10 M=29//lbm/lbmol
11 c=R1*(k*T/M)^0.5//ft/s
12 printf("the speed of sound in air at 20 C is %f ft/s ",c);
```

Scilab code Exa 8.3 Temperature of gas

```
1 clc
2 //Example 8.3
3 //Calculate the temperature of the gas where is mach number is 2
4 Ma=2//dimentionless (Mach number)
5 k=1.4//dimentionless
6 T1=528//R (Rankine temperature scale)
7 T2=T1/((Ma^2*(k-1)/2)+1)//R (Rankine temperature scale)
8 printf("The temperature of the gas when mach number is 2 is %f R",T2);
```

Scilab code Exa 8.4 Speed of sound

```
1 clc
2 //Example 8.4
3 // Calculate the speed of sound in air at 20 C
4 R=10.73//lbf.ft^3/(in^2.lbmol.R)
5 / 1 ft = 12 in
6 ////1 \text{ lbf.s}^2 = 32.2 \text{ lbm.ft}
7 R_root = (R*144*32.2) \cdot 0.5 / ft / s*(lbm/lbmol.R) \cdot 0.5
8 Ma=2//dimentionless (Mach number)
9 k=1.4//dimentionless
10 T=298//R (Rankine temperature scale)
11 M=29/lbm/lbmol
12 c=R_root*(k*T/M)^0.5//ft/s
13 printf("%f",c);
14 \text{ v=c*Ma//ft/s}
15 printf("The speed of sound in air at 20 C is %f ft/s
      ",v);
```

Scilab code Exa 8.5 Pressure and density

```
1 clc
2 //Example 8.5
3 //Calculate the pressure and density at a pt where
    temperature ratio is 1.8 and initial pressure and
    density are given
4 ratio_T=1.8//dimentionless
5 P1=2//bar
6 k=1.4//dimentionless
7 P2=P1/ratio_T^(k/(k-1))//bar
8 printf("The pressure where temperature ratio is 1.8
    and initial pressure is 2 bar is %f bar\n",P2);
9 rho1=2.39//Kg/m^3
10 rho2=rho1/ratio_T^(1/(k-1))//Kg/m^3
11 printf("The density where temperature ratio is 1.8
```

```
and initial density is 2.39 \text{ Kg/m}^3 is \% f \text{ Kg/m}^3", rho2);
```

Scilab code Exa 8.6 Cross sectional area

```
1 clc
2 //Example 8.6
3 // Calculate the cross sectional area, pressure,
      temperature and mach number at a pt in duct where
       air velocity is 1400 ft/s
4 P1 = 30 // psia
5 T1=660//R (Rankine temperature scale)
6 m=10//lbm/s mass flow rate
7 v1 = 1400 / / ft / s
8 R=4.98*10^4//(ft^2/s^2)*(lbm/lbmol.R)^0.5
9 k=1.4//dimentionless
10 \text{ M}=29/\text{lbm/lbmol}
11 T2=T1-v1^2*((k-1)/k)*M/2/R//R (Rankine temperature
      scale)
12 printf ("The temperature at the pt in the duct where
      air velocity is 1400 \text{ ft/s} is \% f \text{ R/n}, T2);
13 c=223*(k*T2/M)^0.5/ft/s
14 Ma=v1/c//dimentionless (Mach number)
15 printf ("The mach number at the pt in the duct where
      air velocity is 1400 \text{ ft/s} is \%f \ n", Ma);
16 P2=P1/(T1/T2)^(k/(k-1))/psia
17 printf ("The pressure at the pt in the duct where air
       velocity is 1400 \text{ ft/s} is \% \text{f psia} \n", P2);
18 / 1  lbf.s<sup>2</sup> = 32.2 lbm.ft
19 A0=m/(P1*(M*k)^0.5*32.2/223/(T1)^0.5/((k-1)/2+1)^((k-1)/2+1)^*
      +1)/2/(k-1)))//in^2
20 ratio_A = ((Ma^2*(k-1)/2+1)/((k-1)/2+1))^((k+1)/2/(k+1)/2)
      -1))/Ma//dimentionless
21 A=ratio_A*A0//in^2
22 printf("The cross sectional at the pt in the duct
```

Scilab code Exa 8.7 Cross sectional area

```
1 clc
2 //Example 8.7
3 // Calculate the cross sectional area, pressure,
      temperature and mach number at a pt in duct where
       air velocity is 1400 ft/s
4 P1 = 30 // psia
5 T1=660//R (Rankine temperature scale)
6 ratio_T=0.83333//dimentionless
7 m=10//lbm/s mass flow rate
8 v1 = 1400 // ft /s
9 R=4.98*10^4//(ft^2/s^2)*(lbm/lbmol.R)^0.5
10 k=1.4//dimentionless
11 M=29/lbm/lbmol
12 T2=T1*ratio_T//R (Rankine temperature scale)
13 printf("The temperature at the pt in the duct where
      air velocity is 1400 \text{ ft/s} is \% f \text{ R/n}, T2);
14 c=223*(k*T2/M)^0.5//ft/s
15 Ma=v1/c//dimentionless (Mach number)
16 printf ("The mach number at the pt in the duct where
      air velocity is 1400 \text{ ft/s} is \%f \ n", Ma);
17 ratio_t=0.7528//dimentionless
18 ratio_P=0.3701//dimentionless
19 ratio_A=1.0587//dimentionless
20 T=T1*ratio_t//R (Rankine temperature scale)
21 printf("T=\%f \setminus n", T);
22 P=P1*ratio_P//psia
23 printf("P=\%f",P);
```

Scilab code Exa 8.8 Cross sectional area

```
1 clc
  2 //Example 8.8
  3 // Calculate the cross sectional area, pressure,
                    temperature and mach number at a pt in duct where
                        air velocity is 1400 ft/s
  4 P1 = 30 // psia
  5 T1=660//R (Rankine temperature scale)
  6 m=10//lbm/s mass flow rate
  7 v1 = 4000 / / ft / s
  8 R=4.98*10^4//(ft^2/s^2)*(lbm/lbmol.R)^0.5
  9 k=1.4//dimentionless
10 \text{ M}=29/\text{lbm/lbmol}
11 T2=T1-v1^2*((k-1)/k)*M/2/R//R (Rankine temperature
                     scale)
12 printf ("The temperature at the pt in the duct where
                     air velocity is 1400 \text{ ft/s} is \% f \text{ R/n}, T2);
13 c=223*(k*T2/M)^0.5//ft/s
14 Ma=v1/c//dimentionless (Mach number)
15 P2=P1/(T1/T2)^{(k/(k-1))}/psia
16 / 1 \, lbf.s^2 = 32.2 \, lbm.ft
17 A0=m/(P1*(M*k)^0.5*32.2/223/(T1)^0.5/((k-1)/2+1)^((k-1)/2+1)^((k-1)/2+1)^((k-1)/2+1)^((k-1)/2+1)^((k-1)/2+1)^((k-1)/2+1)^((k-1)/2+1)^((k-1)/2+1)^((k-1)/2+1)^((k-1)/2+1)^((k-1)/2+1)^((k-1)/2+1)^((k-1)/2+1)^((k-1)/2+1)^((k-1)/2+1)^((k-1)/2+1)^((k-1)/2+1)^((k-1)/2+1)^((k-1)/2+1)^((k-1)/2+1)^((k-1)/2+1)^((k-1)/2+1)^((k-1)/2+1)^((k-1)/2+1)^((k-1)/2+1)^((k-1)/2+1)^((k-1)/2+1)^((k-1)/2+1)^((k-1)/2+1)^((k-1)/2+1)^((k-1)/2+1)^((k-1)/2+1)^((k-1)/2+1)^((k-1)/2+1)^((k-1)/2+1)^((k-1)/2+1)^((k-1)/2+1)^((k-1)/2+1)^((k-1)/2+1)^((k-1)/2+1)^((k-1)/2+1)^((k-1)/2+1)^((k-1)/2+1)^((k-1)/2+1)^((k-1)/2+1)^((k-1)/2+1)^((k-1)/2+1)^((k-1)/2+1)^((k-1)/2+1)^((k-1)/2+1)^((k-1)/2+1)^((k-1)/2+1)^((k-1)/2+1)^((k-1)/2+1)^((k-1)/2+1)^((k-1)/2+1)^((k-1)/2+1)^((k-1)/2+1)^((k-1)/2+1)^((k-1)/2+1)^((k-1)/2+1)^((k-1)/2+1)^((k-1)/2+1)^((k-1)/2+1)^((k-1)/2+1)^((k-1)/2+1)^((k-1)/2+1)^((k-1)/2+1)^((k-1)/2+1)^((k-1)/2+1)^((k-1)/2+1)^((k-1)/2+1)^((k-1)/2+1)^((k-1)/2+1)^((k-1)/2+1)^((k-1)/2+1)^((k-1)/2+1)^((k-1)/2+1)^((k-1)/2+1)^((k-1)/2+1)^((k-1)/2+1)^((k-1)/2+1)^((k-1)/2+1)^((k-1)/2+1)^((k-1)/2+1)^((k-1)/2+1)^((k-1)/2+1)^((k-1)/2+1)^((k-1)/2+1)^((k-1)/2+1)^((k-1)/2+1)^((k-1)/2+1)^((k-1)/2+1)^((k-1)/2+1)^((k-1)/2+1)^((k-1)/2+1)^((k-1)/2+1)^((k-1)/2+1)^((k-1)/2+1)^((k-1)/2+1)^((k-1)/2+1)^((k-1)/2+1)^((k-1)/2+1)^((k-1)/2+1)^((k-1)/2+1)^((k-1)/2+1)^((k-1)/2+1)^((k-1)/2+1)^((k-1)/2+1)^((k-1)/2+1)^((k-1)/2+1)^((k-1)/2+1)^((k-1)/2+1)^((k-1)/2+1)^((k-1)/2+1)^((k-1)/2+1)^((k-1)/2+1)^((k-1)/2+1)^((k-1)/2+1)^((k-1)/2+1)^((k-1)/2+1)^((k-1)/2+1)^((k-1)/2+1)^((k-1)/2+1)^((k-1)/2+1)^((k-1)/2+1)^((k-1)/2+1)^((k-1)/2+1)^((k-1)/2+1)^((k-1)/2+1)^((k-1)/2+1)^((k-1)/2+1)^((k-1)/2+1)^((k-1)/2+1)^((k-1)/2+1)^((k-1)/2+1)^((k-1)/2+1)^((k-1)/2+1)^((k-1)/2+1)^((k-1)/2+1)^((k-1)/2+1)^((k-1)/2+1)^((k-1)/2+1)^((k-1)/2+1)^((k-1)/2+1)^((k-1)/2+1)^((k-1)/2+1)^((k-1)/2+1)^((k-1)/2+1)^((k-1)/2+1)^((k-1)/2+1)^((k-1)/2+1)^((k-1)/2+1)^((k-1)/2+1)^((k-1)/2+1)^((k-1)/2+1)^((k-1)/2+1)^((k-1)/2+1)^((k-1)/2+1)^((k-1)/2+1)^((k-1)/2+1)^((k-1)/2+1)^((k-1)/2+1)^((k-1)/2+1)^((k-1)/2+1)^((k-1)/2+1)^
                    +1)/2/(k-1)))//in^2
18 ratio_A = ((Ma^2*(k-1)/2+1)/((k-1)/2+1))^((k+1)/2/(k+1)/2)
                    -1))/Ma//dimentionless
19 A=ratio_A*A0//in^2
```

Scilab code Exa 8.9 Temperature of gas

```
1 clc
2 //Example 8.9
3 //Calculate the temperatures at different pts in a
          duct with different mach numbers
4 //for mach number=0.5
5 ratio_T=0.9524//dimentionless
6 T1=293.15//K
```

```
7 T2=T1/ratio_T//K
8 printf("The temperature at the pt in the duct where
    mach number is 0.5 is %f K\n",T2);
9 //for mach number 2
10 ratio_t=0.5556//dimentionless
11 t2=293.15//K
12 t1=t2*ratio_t//K
13 printf("The temperature initially at the start of
    the nozzle is %f K",t1);
```

Scilab code Exa 8.12 Temperature and pressure of gas

Scilab code Exa 8.13 Temperature and velocity of air

```
1 clc
2 //Example 8.13
3 //Calculate temperature and the velocity of air
  inside the shock wave
```

```
//Let subscript y denote air inside the shock wave
and x denote the air outside the shock wave

tratio_T=1.2309//dimentionless

Tx=528/R (Rankine temperature scale)

Ty=ratio_T*Tx//R (Rankine temperature scale)

printf("temperature of air inside the shock wave is
%f R\n",Ty);

My=0.7558//dimentionless

cy=1249//ft/s

Vy=My*cy//ft/s

printf("the velocity of air inside the shock wave is
%f ft/s",Vy);
```

Scilab code Exa 8.14 Ratio of area of nozzle

```
1 clc
2 //Example 8.14
3 //Calculate the ratio of area of throat to area of a certain point
4 A_throat=1//in^2
5 A_exit=1.5//in^2
6 ratio_A=2.2385//dimentionless
7 ratio_A1=ratio_A*(A_throat/A_exit)//dimentionless
8 printf("the ratio of area of throat to area of a certain point is %f", ratio_A1);
```

Chapter 10

Pumps compressors and turbines

Scilab code Exa 10.1 Efficiency of pump

```
1 clc
2 //Example 10.1
3 //Calculate the efficiency of a pump
4 Q=50//gal/min
5 P1=30//psia Or lbf/in^2
6 P2=100//psia Or lbf/in^2
7 dP=P2-P1//psia Or lbf/in^2
8 power=2.8//hp
9 //1 ft = 12 in
10 //1 hp.min = 33000 lbf.ft
11 //1 gal = 231 in^3
12 eta=(Q*dP/power)*(1/33000)*231*(1/12)//dimentionless
13 printf("The efficiency of the pump is %f",eta);
```

Scilab code Exa 10.2 Elevation

```
1 clc
2 //Example 10.2
3 // Calculate the maximum elevation above the lowest
      water level in sump at which pump inlet can be
      placed
4 P1=3.72//psia \ 0r \ lbf/in^2
5 P2=14.5//psia \ 0r \ lbf/in^2
6 \text{ dP=P2-P1}//\text{psia} \text{ 0r lbf/in}^2
7 rho = 61.3 / lbm / ft^3
8 \text{ g} = 32.2 // \text{ft/s}^2
9 / 1 \text{ ft} = 12 \text{ in}
10 //1 \text{ lbf.s}^2 = 32.2 \text{ lbm.ft}
11 h_loss=4//ft
12 v = 10 // ft / s
13 h_{max}=(dP/rho/g)*144*32.2-(v^2/2/g)-h_{loss}//ft
14 printf ("the maximum elevation above the lowest water
        level in sump at which pump inlet can be placed
      is \%f ft", h_max);
```

Scilab code Exa 10.3 Work

```
1 clc
2 //Example 10.3
3 //Calculate the work requird per pound mole for a
        100% efficient isothermal and adiabatic
        compressor
4 R=1.987//Btu/lbmol/R (universal gas constant)
5 T=528//R (Rankine temperature scale)
6 ratio_P=10//dimentionless
7 //for isothermal compressor
8 W1=R*T*log(ratio_P)//Btu/lbmol
9 printf("The work required per pound mole for a 100
        percent efficient isothermal compressor is %f",
        W1);
10 printf("Btu/lbmol\n");
```

```
//for adiabatic compressor
gama=1.4//dimentionless
W2=(gama/(gama-1))*R*T*(ratio_P^((gama-1)/gama)-1)//
Btu/lbmol
printf("The work required per pound mole for a 100 percent efficient adiabatic compressor is %f ",W2);
printf("Btu/lbmol");
```

Scilab code Exa 10.4 Work

Scilab code Exa 10.5 Pump head

```
1 clc
2 //Example 10.5
3 //Calculate the pump head
4 N=1750//rev/min
```

```
5 / 1 \min 60 \sec
6 omega=2*(\%pi)*N/60//radians/sec
7 Q = 100 // gal/min
8 / 1 \text{ gallon} = 231 \text{ in } 3
9 / 1 \text{ ft } = 12 \text{ in}
10 //1 \min = 60 \text{ sec}
11 d_inlet = 2.067//ft
12 A_inlet=(\%pi)/4*(d_inlet^2)//ft^2
13 V1=(Q/A_inlet)*231/60/12//ft/s
14 d_outlet = 1.61 / ft
15 A_outlet=(\%pi)/4*(d_outlet^2)//ft^2
16 V2=(Q/A_outlet)*231/60/12//ft/s
17 g=32.2//ft/s^2
18 d_{inner=0.086//ft}
19 d_{outer} = 0.336 / / ft
20 h=(omega)^2/g*((d_outer^2)-(d_inner)^2)+(V2^2-V1^2)
      /2/g//ft
21 printf("The pump head is %f ft",h);
```

Scilab code Exa 10.6 Pump head

```
1 clc
2 //Example 10.6
3 //Calculate the pump head
4 rho=62.3//lbm/ft^3
5 g=32.2//ft/s^2
6 v=18.46//ft/s
7 //1 lbf/s^2 = 32.2 lbm.ft
8 h=(v^2/2)*32.2/rho/g//ft
9 printf("The pump head is %f ft",h);
```

Scilab code Exa 10.7 Pressure rise

Scilab code Exa 10.8 Efficiency of compressor

```
1 clc
2 //Example 10.8
3 // Calculate the efficiency of a compressor and the
      change respective change in temperature
4 m=100/Kg/hr
5 \text{ M}=29/\text{gm/mol}
6 gama=1.4//dimentionless
7 R=8.314 / J/mol/K
8 T = 293.15 / K
9 ratio_P=4//dimentionless
10 Po=(m/M)*R*T*(gama/(gama-1))*((ratio_P)^((gama-1))
      gama) -1) /3600 / kW
11 P_real=5.3/kW
12 eta=Po/P_real//dimentionless
13 printf("The efficiency of the compressor is %f\n",
      eta);
14 Cp = 29.1 / J / mol / K
15 dT_real=P_real*(M/m)*3600/Cp//K
16 printf("dT_real = \%f K n", dT_real);
```

```
17 dT_isentropic=Po*(M/m)*3600/Cp//K
18 printf("dT_isentropic = \%f K",dT_isentropic);
```

Flow through porous media

Scilab code Exa 11.1 volumetric flow rate

```
1 clc
2 //Example 11.1
3 // Calculate the volumetric flow rate
4 g=32.2//ft/s^2
5 dz = 1.25 // ft
6 Dp=0.03//in (Diameter of particle)
7 eta=0.33//dimentionless
8 rho = 62.3 / lbm / ft^3
9 \text{ mew} = 1.002 / / cP
10 dx = 1 / / ft
11 //1 cP. ft.s = 6.72*10^{(-4)}/lbm
12 / 1 ft = 12 in
13 Vs=g*dz*(Dp/12)^2*eta^3*rho/(150*mew*(1-eta)^2*dx
      *6.72*10^(-4))//ft/s
14 printf("The velocity of water is \%f ft/s\n", Vs);
15 d=2//in (diameter of pipe)
16 A = (\%pi)/4*(d/12)^2//ft^2
17 Q=Vs*A//ft^3/s
18 printf("The volumetric flow rate is \%f ft^3/sn",Q);
19 R = (Dp/12) *Vs*rho/(mew*6.72*10^(-4)*(1-eta))//
      dimentionless (Reynold's number)
```

Scilab code Exa 11.2 Pressure gradient

Scilab code Exa 11.3 Permeability

```
1 clc
2 //Example 11.3
3 //Calculate the permeability
4 Q=1//ft^3/min
5 mew=0.018//cP
6 dx=0.5//in
7 A=1//ft^2
8 dP=2//lbf/in^2
9 //1 ft = 12 in
10 //1 min = 60 sec
11 //1 ft^2.cP = 2.09*10^(-5) lbf.s
12 //1 darcy = 1.06*10^(-11) ft^2
```

```
13 k=(Q*mew*(dx/12)/A/dP)*(1/144)*2.09*10^(-5)*(1/60)
         *(1/(1.06*10^(-11)))//darcy
14 printf("The permeability is %f darcy",k);
```

Gas liquid flow

Scilab code Exa 12.1 Eta and slip velocity

```
1 clc
2 //Example 12.1
3 //Calculate the eta and slip velocity
4 ratio_Q=10//dimentionless (ratio of Qg to Ql)
5 x=3.5/ratio_Q//dimentionless
6 eta=1/(1+x)//dimentionless
7 printf("Eta = %f\n",eta);
8 Vl=2.06//ft/s
9 Vl_avg=Vl/(1-eta)//ft/s
10 Vg_avg=ratio_Q*Vl/eta//ft/s
11 V_slip=Vg_avg-Vl_avg//ft/s
12 printf("The slip velocity is %f ft/s",V_slip);
```

Non newtonian fluid flow in circular pipes

Scilab code Exa 13.1 Pressure gradient

```
1 clc
2 //Example 13.1
3 //Calculate the pressure gradient
4 v=1//ft/s
5 d=0.5//ft
6 A=(%pi)/4*d^2//ft^2
7 Q=v*A//ft^3/s
8 //Let DP denote the pressure gradient
9 n=0.41//dimentionless
10 K=0.66//kg/m/s
11 //1 m = 3.281 ft
12 Q1=Q/3.281^3//m^3/s
13 d1=d/3.281//m
14 DP=(Q1*8*(3*n+1)/(n*(%pi)*d1^3))^n*(4*K/d1)//Pa/m
15 printf("The pressure gradient is %f Pa/m",DP);
```

Scilab code Exa 13.3 Fanning friction factor and reynolds number by power law

```
1 clc
2 //Example 13.3
3 // Calculate the fanning friction factor and reynolds
      number by power law
4 DP=61.3//Pa/m (pressure gradient)
5 D=0.152 / m
6 V_avg=0.305/m/s
7 rho=1000//kg/m^3
8 f=DP*D/(4*rho*V_avg^2/2)/dimentionless
9 printf("The fanning friction factor is %f\n",f);
10 n=0.41//dimentionless
11 K=0.66//dimentionless
12 R_pl=8*rho*V_avg^(2-n)*D^n/(K*(2*(3*n+1)/n)^n)//
      dimentionless
13 printf("The reynolds number is \%f \ n", R_pl);
14 if (R_pl < 2000)
       printf("The flow is Laminar");
15
16 else
17
       printf("The flow is turbulent");
18 end
```

Scilab code Exa 13.4 Pressure gradient

```
1 clc
2 //Example 13.4
3 //Calculate the pressure gradient
4 D=0.152//m
5 V_avg=3.04//m/s
6 rho=1000//kg/m^3
7 n=0.41//dimentionless
8 K=0.66//dimentionless
9 R_pl=8*rho*V_avg^(2-n)*D^n/(K*(2*(3*n+1)/n)^n)//
```

dimentionless 10 printf("The reynolds number is %f\n",R_pl); 11 f=0.004//dimentionless (fanning friction factor) 12 //Let DP denote the pressure gradient 13 DP=4*f*(rho/D)*(V_avg^2/2)/1000//KPa/m 14 printf("The pressure gradient is %f KPa/m",DP);

Scilab code Exa 13.5 Headstrom Reynold number and fanning friction factor

```
1 clc
2 //Example 13.5
3 // Calculate the headstrom , reynold numbers and the
      fanning friction factor
4 tow_yield=3.8//Pa
5 \text{ mew} = 0.00686 / / Pa.s
6 D=0.0206 / m
7 rho=1530 / / kg / m^3
8 V = 3.47 / m/s
9 He=tow_yield*D^2*rho/mew^2//dimentionless (headstrom
       number)
10 printf("The headstrom number is \%f \setminus n", He);
11 R=D*V*rho/mew//dimentionless (reynolds number)
12 printf("The reynolds number is \%f \setminus n", R);
13 dP = 11069 / Pa/m
14 f=dP*D/(4*rho*V^2/2)//dimentionless (fanning
      friction factor)
15 printf("The fanning friction factor is %f",f);
```

Two and three dimentional fluid mechanics

Scilab code Exa 15.4 Time required

The boundary layer

Scilab code Exa 17.1 Boundary layer thickness

```
1 clc
2 //Example 17.1
3 // Calculate the boundary layer thickness
4 //for the aeroplane
5 v=1.61*10^{(-4)}/ft^2/s
6 x = 2 / / ft
7 V = 200 // \text{miles/hr}
8 / 1 \text{ mile} = 5280 \text{ ft}
9 / 1 \text{ hr} = 3600 \text{ sec}
10 delta_aeroplane=5*(v*x/(V*5280/3600))^0.5
11 printf("The boundary layer thickness for the
       aeroplane is %f ft\n",delta_aeroplane);
12 // for the boat
13 v1=1.08*10^{(-5)} // ft^2/s
14 \times 1 = 2 / / ft
15 V1=10//\text{miles/hr}
16 //1 \text{ mile} = 5280 \text{ ft}
17 //1 \text{ hr} = 3600 \text{ sec}
18 delta_boat=5*(v1*x1/(V1*5280/3600))^0.5
19 printf ("The boundary layer thickness for the boat is
        %f ft n, delta_boat);
```

Scilab code Exa 17.2 Force

```
1 clc
2 //Example 17.2
3 // Calculate the force required to tow a square metal
       plate by a boat
4 rho_water=998.2//\text{Kg/m}^3
5 V = 15 / / km / hr
6 v=1.004*10^{(-6)}/m^2/s
7 l=1/m length of plate
8 / 1 \text{ km} = 1000 \text{ m}
9 / 1 \text{ hr} = 3600 \text{ s}
10 Rx = (V*1000/3600)*1/v/dimentionless (reynold's
      number)
11 Cf=1.328/Rx^0.5//dimentionless
12 F=Cf*rho_water*(V*1000/3600)^2/N
13 printf("The force required to tow the square plate
      is %f N",F);
```

Scilab code Exa 17.3 Laminar sublayer and buffer layer

```
1 clc
2 //Example 17.3
3 //Calculate the distance between the wall and edge
    of the laminar sublayer and buffer layer
4 V=10//ft/s
5 l=0.25//ft
6 v=1.08*10^(-5)//ft^2/s
7 R=V*1/v//dimentionless (reynold's number)
8 f=0.0037//dimentionless (fanning friction factor)
9 u1=V*(f/2)^0.5//ft/s
```

```
10 u01=5//dimentionless
11 y01=5//dimentionless
12 r1=y01*v/u1//ft
13 printf("the distance between the wall and edge of the laminar sublayer is %f ft\n",r1);
14 //for buffer layer
15 u02=12//dimentionless
16 y02=26//dimentionless
17 r2=y02*v/u1//ft
18 printf("the distance between the wall and edge of the buffer layer is %f ft",r2);
```

Scilab code Exa 17.4 Boundary layer thickness and drag

```
1 clc
2 //Example 17.4
3 // Calculate the boundary layer thickness and the
      drag on the plate
4 V = 50 / / ft / s
5 1 = 20 / / ft
6 b=1//ft
7 v=1.08*10^{(-5)}/ft^2/s
8 R=V*1/v//dimentionless (reynold's number)
9 delta=0.37*1/R^0.2/ft
10 printf("The boundary layer thichness at the end of
      the plate is \%f ft\n", delta);
11 Cf = 0.072/R^0.2/dimentionless
12 rho_water=62.3//lbm/ft^3
13 V = 50 / / ft / s
14 //let A be the area of contact
15 A=2*1*b//ft^2
16 / 1 \, lbf.s^2 = 32.2 \, lbm.ft
17 F=(1/2)*Cf*rho_water*V^2*A/32.2//lbf
18 printf("The drag on the plate is %f lbf",F);
```

Turbulence

Scilab code Exa 18.2 Energy per unit mass and dissipation rate

```
1 clc
2 //Example 18.2
3 //Calculate the energy per unit mass and heat
    dissipation rate
4 v=0.82//m/s
5 energy_per_unit_mass=v^2/2//J/Kg
6 printf("The energy per unit mass is %f J/Kg\n",
    energy_per_unit_mass);
7 //Let dissipation rate be denoted by eta
8 //Let D denote d/dL
9 DP=0.0286//Pa/m
10 rho=1.2//Kg/m^3
11 eta=DP*v/rho//m^2/s^3 or J/Kg/s
12 printf("The heat dissipation rate is %f J/Kg/s",eta)
    ;
```

Scilab code Exa 18.3 Turbulence

```
1 clc
2 //Example 18.3
3 //Calculate the value of k
4 Vx_rms=9.5//cm/s
5 Vy_rms=5//cm/s
6 k=(1/2)*((Vx_rms/100)^2+(Vy_rms/100)^2)//J/Kg
7 printf("k = %f J/Kg",k);
```

Scilab code Exa 18.4 Kolmogorov scale

```
1 clc
2 //Example 18.4
3 //Calculate the Kolmogorov scale
4 v=1.613*10^(-4)//ft^2/s
5 eta=0.21//ft^2/s^3
6 kolmogorov_scale=(v^3/eta)^0.25//ft
7 printf("The Kolmogorov scale is %f ft", kolmogorov_scale);
```

Scilab code Exa 18.7 turbulent kinematic viscosity

```
1 clc
2 //Example 18.7
3 //Calculate the value of turbulent kinematic
    viscosity
4 K=0.00576//m^2/s^2
5 eta=0.0196//m^2/s^3
6 C_mew=0.09//dimentionless
7 v_t=C_mew*(0.00576)^2/(0.0196)//m^2/s
8 printf("the value of turbulent kinematic viscosity
    is %f m^2/s",v_t);
```

Mixing

Scilab code Exa 19.1 Time required for mixing

Scilab code Exa 19.2 Power required

```
1 clc
2 //Example 19.2
3 //Calculate the power required to run an impeller
4 D_tank=3//ft
5 D_impeller=D_tank/3//ft
6 N=4//rps
7 v=1.077*10^(-5)//ft^2/s
```

```
8 R_impeller=N*D_impeller^2//dimentionless (reynold's number)
9 //1 lbf.s^2 = 32.2 lbm.ft
10 //1 hp.s = 550 lbf.ft
11 rho_water=62.3//lbm/ft^3
12 P=5*rho_water*N^3*D_impeller^5/32.2/550//hp
13 printf("The power required to run an impeller is %f hp",P);
```

Scilab code Exa 19.3 Impeller speed

Scilab code Exa 19.4 Time required for blending

Scilab code Exa 19.5 Concentration

```
1 clc
2 //Example 19.5
3 //Calculate how far is the concentration of 0.1\%
      from initial interface and the volume mixed
4 c=0.1/percent
5 c_interface=50//percent
6 c_original=0//percent
7 ratio_c=(c-c_interface)/(c_original-c_interface)//
      dimentionless
8 / \text{erf}(0.998) = 2.15
9 //time required forfluid to travel 700 miles at 8ft/
      s is 4.57*10<sup>5</sup> sec
10 t=4.57*10^5/s
11 D=2*10^(-9)/m^2/s
12 x=2*2.15*(D*t)^0.5/m
13 printf("x=\%f m\n",x);
14 v0=0.355//ft^3 of liquid/ft of pipe
15 //1 \text{ m} = 3.281 \text{ ft}
16 V_{mixed=2*(3.281*x)*v0//ft^3}
17 printf("the mixed volume is %f ft^3", V_mixed);
```

Scilab code Exa 19.6 Concentration

```
1 clc
2 //Example 19.6
```

```
// Calculate how far is the concentration of 0.1%
    from initial interface and the volume mixed

v=8//ft/s

f=0.0039//dimentionless (fanning friction factor)

Lurbulent=0.665*v*3.57*(f)^0.5//ft^2/s

//time required forfluid to travel 700 miles at 8ft/
    s is 4.57*10^5 sec

t=4.57*10^5//s

x=2*2.15*(D_turbulent*t)^0.5//ft

printf("x=%f m\n",x);

v=0.355//ft^3 of liquid/ft of pipe

V_mixed=2*x*v0//ft^3

printf("the mixed volume is %f ft^3",V_mixed);
```

Scilab code Exa 19.7 Extent of mixing

```
1 clc
2 //Example 19.7
3 //Calculate how far downstream does the dye become uniformly distributed throughout the fluid
4 f=0.0039//dimentionless (fanning friction factor)
5 D=0.665//ft
6 L=D*0.56/(f)^0.5//ft
7 printf("L = %f ft",L);
```

Scilab code Exa 19.8 width of jet and entrainment ratio

```
1 clc  
2 //Example 19.8  
3 //Calculate the width of jet and entrainment ratio  
4 Vo=40//ft/s  
5 Do=1//ft  
6 x=10//ft
```

```
7 K=6.2//dimentionless
8 V_centerline=Vo*K*(Do/x)//ft/s
9 alpha=20//degrees
10 Dx=Do*(1+(x/Do)*sin(alpha*%pi/180))//ft
11 printf("The jet diameter is %f ft\n",Dx);
12 //Let entrainment ratio be r
13 r=0.62*(x/Do)^0.5//dimentionless
14 printf("The entrainment ratio is %f",r);
```

Scilab code Exa 19.9 Concentration

```
1 clc
2 //Example 19.9
3 //Calculate the SO2 concentration at the centerline
4 Q=20//gm/s
5 u=3//m/s
6 sigma_y=30//m
7 sigma_z=20//m
8 y=60//m
9 z=20//m
10 H=0//m
11 c=Q/(2*%pi*u*sigma_y*sigma_z)*exp(-((y^2/2/sigma_y^2)+((z-H)^2/2/sigma_z^2)))//gm/m^3
12 printf("the SO2 concentration at the centerline is %f gm/m^3",c);
```

Computational fluid dynamics

Scilab code Exa 20.1 fist and second derivative of fluid flow

```
1 clc
2 //Example 20.1
3 // Calculate first derivative and second derivative
      of the fluid flow
4 y_fd2=0.4336/m
5 \text{ y_fd1=0.4375//m}
6 delta_yfd=y_fd2-y_fd1/m
7 \text{ x_fd2=0.75//m}
8 x = 0.5 / m
9 delta_xfd=x_fd2-x//m
10 y_bd2=0.4375/m
11 y_bd1=0.2461/m
12 delta_ybd=y_bd2-y_bd1//m
13 \text{ x\_bd1} = 0.25 / \text{/m}
14 delta_xbd=x-x_bd1//m
15 //Let D denote d/dx and D2 denote d^2/dx^2
16 Dy_fd=delta_yfd/delta_xfd//dimentionless
17 Dy_bd=delta_ybd/delta_xbd//dimentionless
18 Dy=(Dy_fd+Dy_bd)/2//dimentionless
19 printf("The first derivative of fluid flow is \%f\n",
      Dy);
```

Scilab code Exa 20.3 Grid velocities

```
1 clc
2 //Example 20.3
3 // Calculate the grid velocities
4 v=1.077*10^{(-5)} / ft^2/s
5 t=2//sec
6 \, dy = 0.01 // ft
7 w=v*t/dy^2//dimentionless
8 //Let Vij represent velocity through the i, j grid
9 V00=5/ft/s
10 V10=5//ft/s
11 V01=0//ft/s
12 \text{ VO2=0} / / \text{ft} / \text{s}
13 V12=0 //ft/s
14 V11=V01+w*(V00-2*V01+V02)//ft/s
15 V21 = V11 + w * (V10 - 2 * V11 + V12) // ft /s
16 printf ("The grid velocity for 2,1 is \%f ft/s\n", V21)
17 V13=0//ft/s
18 V22=V12+w*(V11-2*V12+V13)//ft/s
19 printf("The grid velocity for 2,2 is %f ft/s\n", V22)
```