Be-Healthy

Pooja Rathee

2022-04-08

First we install required packages and go through it

Read csv file

```
daily_calories <- read_csv("data/dailyCalories_merged.csv")

## Rows: 940 Columns: 3

## -- Column specification ------

## Delimiter: ","

## chr (1): ActivityDay

## dbl (2): Id, Calories

##

## i Use 'spec()' to retrieve the full column specification for this data.

## i Specify the column types or set 'show_col_types = FALSE' to quiet this message.

weight_log <- read.csv("data/weightLogInfo_merged.csv")</pre>
```

Take a look at the daily calories data

head(daily_calories)

```
## # A tibble: 6 x 3
##
             Id ActivityDay Calories
          <dbl> <chr>
## 1 1503960366 4/12/2016
                                1985
## 2 1503960366 4/13/2016
                                1797
## 3 1503960366 4/14/2016
                                1776
## 4 1503960366 4/15/2016
                                1745
## 5 1503960366 4/16/2016
                                1863
## 6 1503960366 4/17/2016
                                1728
```

Identify all the columns in daily_activity

```
colnames(daily_calories)
## [1] "Id" "ActivityDay" "Calories"
```

Take a look at the weight_log

```
head(weight_log)
              Ιd
                                    Date WeightKg WeightPounds Fat
                                                                        BMI
## 1 1503960366 5/2/2016 11:59:59 PM
                                              52.6 115.9631 22 22.65
## 2 1503960366 5/3/2016 11:59:59 PM
                                             52.6
                                                       115.9631 NA 22.65
## 3 1927972279 4/13/2016 1:08:52 AM
                                             133.5
                                             133.5 294.3171 NA 47.54
56.7 125.0021 NA 21.45
57.3 126.3249 NA 21.69
72.4 159.6147 25 27.45
                                                        294.3171 NA 47.54
## 4 2873212765 4/21/2016 11:59:59 PM
## 5 2873212765 5/12/2016 11:59:59 PM
## 6 4319703577 4/17/2016 11:59:59 PM
     IsManualReport
                             LogId
## 1
               True 1.462234e+12
## 2
               True 1.462320e+12
              False 1.460510e+12
## 3
## 4
                True 1.461283e+12
## 5
                True 1.463098e+12
## 6
                True 1.460938e+12
```

Idenify all the columns in weight log

Understanding some summary statistics

```
n_distinct(daily_calories$Id)

## [1] 33

n_distinct(weight_log$Id)

## [1] 8
```

Calculate the observations

```
nrow(daily_calories)

## [1] 940

nrow(weight_log)

## [1] 67
```

summary statistics of daily calories

```
daily_calories %>%
  select(Id,
         ActivityDay,
         Calories) %>%
  summary()
```

```
## Id ActivityDay Calories
## Min. :1.504e+09 Length:940 Min. : 0
## 1st Qu.:2.320e+09 Class :character 1st Qu.:1828
## Median :4.445e+09 Mode :character Median :2134
## Mean :4.855e+09 Mean :2304
## 3rd Qu.:6.962e+09 3rd Qu.:2793
## Max. :8.878e+09 Max. :4900
```

For the weight_log dataframe

```
weight_log %>%
select(Id,
Date,
WeightKg, BMI,Fat) %>%
summary()
```

```
BMI
##
          Id
                             Date
                                                 WeightKg
           :1.504e+09
##
                         Length:67
                                                     : 52.60
                                                                       :21.45
                                             Min.
                                                               Min.
    1st Qu.:6.962e+09
                                             1st Qu.: 61.40
                                                               1st Qu.:23.96
##
                         Class : character
    Median :6.962e+09
                                             Median : 62.50
                                                               Median :24.39
##
                         Mode :character
                                                    : 72.04
##
           :7.009e+09
                                             Mean
                                                               Mean
                                                                       :25.19
##
    3rd Qu.:8.878e+09
                                             3rd Qu.: 85.05
                                                               3rd Qu.:25.56
##
    Max.
           :8.878e+09
                                             Max.
                                                     :133.50
                                                               Max.
                                                                       :47.54
##
##
         Fat
##
           :22.00
    Min.
    1st Qu.:22.75
    Median :23.50
##
    Mean
           :23.50
##
    3rd Qu.:24.25
##
##
    Max.
           :25.00
           :65
##
    NA's
```

ggplot(data=daily_calories, aes(x=ActivityDay, y=Calories, fill=Id)) + geom_point()+
labs(title ="Relationship between ActivityDay and Calories Intake")

Relationship between ActivityDay and Calories Intake

plotting the graph for weight_log

```
ggplot(data=weight_log, aes(x=Date, y=BMI, fill=Id)) + geom_point() +
labs(title = "Relationship between Date and BMI rate as per Id's")
```


What could these trends tell you about how to help market this product? Or areas where you might want to explore further?

Merging these two datasets together

How Calories intake and BMI rate influences health?

```
combined_data <- merge(weight_log, daily_calories, by="Id")
ggplot(data=combined_data,aes(x=Calories, y=BMI)) +
   geom_line()</pre>
```


How many participants are there in data

```
ggplot(data=combined_data,aes(x=Id, y=BMI)) +
  geom_line()
```


n_distinct(combined_data\$Id)

[1] 8

There were more participant Ids in the daily calories dataset that have been filtered out using merge.