MS 101

DC Motors

K. Chatterjee, D. Chakraborty, B. G. Fernandes J. John, P. C. Pandey, N. S Shiradkar, K. R. Tuckley

EE Department IIT Bombay, Mumbai

Field of the stator (by virtue of permanent magnets): BO Motor also known as 'permanent magnet dc motor'

Conductor carrying current when placed in a magnetic field experience Mechanical force.

Fleming's Left Hand Rule

- nepresents current going into the plane of the slide
 - represents current coming out of the plane of the slide

$$F = BI_a L \sin \theta$$

$$\theta = 90^{0}$$

$$T \propto \emptyset I_a$$

$$T = K_e \emptyset I_a$$

F = force experienced by a conductor

B = Flux density

 I_a = Current through armature conductors

L = length of a conductor

 $\theta = ext{angle between the length of the}$ conductor and the magnetic field

 \emptyset = Flux per pole

T =torque developed by the motor

 K_e = Proportionality constant = Machine Constant

$$F = BIL \sin \theta$$

$$\theta = 90^{0}$$

$$T \propto \emptyset I_{a}$$

$$T = K_{e} \emptyset I_{a}$$

If the polarity of V_a is reversed, the direction of torque developed will get reversed, and hence the direction of speed of rotation will also get reversed

Contradiction from Faraday's Law

$$E_b = 2BLv\sin\theta$$

$$E_b \propto \phi \omega$$

v =linear velocity of a conductor

 ω = angular speed in rad/s

E_b is known as the back emf

Fleming's right hand rule assigns the polarity of induced voltage, E_b

Fleming's Right Hand Rule

A Realistic DC Machine

DC Motor: Steady state model and behaviour

For Sep. Excited Motor or BO Motor

$$V_a = E_b + I_a R_a$$

$$E_b = K_e \emptyset \omega$$

$$T = K_e \emptyset I_a$$

$$\omega = \frac{V_a}{K_e \emptyset} - \frac{R_a}{K_e \emptyset} I_a$$

Or

$$\omega = \frac{V_a}{K_e \emptyset} - \frac{R_a}{(K_e \emptyset)^2} T$$

Speed – Torque Characteristic

Motor-Load Interaction

We have already derived:

$$\omega = \frac{V_a}{K_e \emptyset} - \frac{R_a}{(K_e \emptyset)^2} T \quad --- \quad (B)$$

The equations (A) and (B) represent the model of a dc motor while driving a certain load having torque, T_i (ω)

Implementation of Speed/Position control

$$\omega = \frac{V_a}{K_e \emptyset} - \frac{R_a}{(K_e \emptyset)^2} T$$

Applied voltage, V_a needs to be varied

 This is accomplished by applying PWM (Pulse Width Modulated) pulses instead of applying a constant dc voltage

Control of Speed by PWM

Diode, D provides a path for the inductive current to flow when S is turned off.

$$\overline{V_a} = V \frac{\tau_{on}}{T}$$

By varying t_{on} magnitude of V_a is varied

Speed Reversal

To operate in the reverse direction:

To operate in a particular direction:

S₂ is kept on while S₃ and S₄ are kept off. S₁ is operated in PWM to control speed in this direction

 S_4 is kept on while S_1 and S_2 are kept off. S_3 is operated in PWM to control speed in the reverse direction

Reference Book:

Fundamentals of Electrical Engineering by Leonard S. Bobrow, Oxford Unversity Press.

