P1 de Álgebra Linear I -2010.2

3 de Setembro de 2010

GABARITO

Questão 1) Considere os vetores de \mathbb{R}^3

$$\overrightarrow{v}_1 = (1, 2, 0)$$
 e $\overrightarrow{v}_2 = (0, 2, 1)$.

a) Determine, se possível, um vetor \overrightarrow{w} tal que

$$\overrightarrow{v}_1 \times \overrightarrow{w} = (2, -1, 1)$$
 e $\overrightarrow{v}_2 \times \overrightarrow{w} = (-1, 1, -2)$.

- **b)** Determine, se possível, um vetor \overrightarrow{u} cujo módulo seja 5 e que seja perpendicular aos vetores \overrightarrow{v}_1 e \overrightarrow{v}_2 (isto é, $\overrightarrow{v}_1 \cdot \overrightarrow{u} = 0 = \overrightarrow{v}_2 \cdot \overrightarrow{u}$).
- c) Determine um vetor \overrightarrow{a} paralelo a \overrightarrow{v}_1 tal que o vetor

$$\overrightarrow{b} = \overrightarrow{v}_2 - \overrightarrow{a}$$

seja perpendicular a \overrightarrow{v}_1 .

Observe que o vetor \overrightarrow{a} é a projeção ortogonal de \overrightarrow{v}_2 em \overrightarrow{v}_1 . Aconselhamos fazer uma figura.

Resposta:

(a) Suponha que $\overrightarrow{w}=(x,y,z)$. As coordenadas de \overrightarrow{w} devem verificar as equações

$$\begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 1 & 2 & 0 \\ x & y & z \end{vmatrix} = (2, -1, 1) \quad \mathbf{e} \quad \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 0 & 2 & 1 \\ x & y & z \end{vmatrix} = (-1, 1, -2).$$

Desenvolvendo os determinantes obtemos

$$(2z, -z, -2x + y) = (2, -1, 1),$$
 $(2z - y, x, -2x) = (-1, 1, -2).$

Simplificando obtemos o sistema linear

$$z = 1$$
, $2x - y = -1$, $2z - y = -1$, $x = 1$.

Este sistema tem como solução $x=1,\,y=3$ e z=1. Portanto $\overrightarrow{w}=(1,3,1)$.

(b) O vetor \overrightarrow{u} deve ser ortogonal a
os vetores \overrightarrow{v}_1 e \overrightarrow{v}_2 . Portanto deve ser paralelo ao vetor

$$\left| \begin{array}{ccc} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 1 & 2 & 0 \\ 0 & 2 & 1 \end{array} \right| = (2, -1, 2).$$

Isto é, o vetor \overrightarrow{u} é da forma t(2,-1,2). Devemos determinar t para que o vetor tenha módulo 5:

$$\sqrt{t^2(4+1+4)} = 3|t| = 5, \quad t = \pm \frac{5}{3}.$$

Portanto

$$\overrightarrow{u} = \frac{5}{3}(2, -1, 2) = \left(\frac{10}{3}, \frac{-5}{3}, \frac{10}{5}\right), \quad \overrightarrow{u} = -\frac{5}{3}(2, -1, 2) = \left(\frac{-10}{3}, \frac{5}{3}, \frac{-10}{3}\right).$$

(c) Como o vetor \overrightarrow{a} é paralelo a \overrightarrow{v}_1 temos que $\overrightarrow{a} = t$ \overrightarrow{v}_1 para algum $t \in \mathbb{R}$. Como \overrightarrow{b} deve ser perpendicular a \overrightarrow{v}_1 temos que

$$\overrightarrow{b} \cdot \overrightarrow{v}_1 = (\overrightarrow{v}_2 - t \overrightarrow{v}_1) \cdot \overrightarrow{v}_1 = \overrightarrow{v}_2 \cdot \overrightarrow{v}_1 - t (\overrightarrow{v}_1 \cdot \overrightarrow{v}_1) = 0,$$

Portanto,

$$t = \frac{\overrightarrow{v}_2 \cdot \overrightarrow{v}_1}{\overrightarrow{v}_1 \cdot \overrightarrow{v}_1} = \frac{4}{5}.$$

Temos que

$$\overrightarrow{a} = \frac{4}{5}(1, 2, 0).$$

Questão 2) Considere as retas r_1 e r_2 de \mathbb{R}^3 cujas equações paramétricas são

$$r_1: (1+t, 2t, 1-2t), t \in \mathbb{R},$$

$$r_2: (a+2t, 1+t, 10+t), t \in \mathbb{R},$$

a reta r_3 de equação cartesiana

$$r_3$$
:
$$\begin{cases} x + y + z = 3, \\ x - y + 2z = 1 \end{cases}$$

e o plano π de equação cartesiana

$$\pi$$
: $x + y + 2z = 4$.

- a) Determine o valor de a para que as retas r_1 e r_2 se interceptem em um ponto. Determine o ponto P de interseção das retas r_1 e r_2 .
- b) Determine a equação cartesiana do plano ϱ que contém as retas r_1 e r_2 . (Observe que para resolver este item v. não necessita resolver o item anterior).
- c) Determine equações paramétricas da reta r_3 .
- d) Determine o ponto Q de interseção da reta r_1 e o plano π .

Resposta:

(a) Devemos resolver o sistema linear

$$1+t = a + 2s,$$

 $2t = 1 + s,$
 $1-2t = 10 + s.$

Somando as duas últimas equações obtemos

$$1 = 11 + 2s$$
, $s = -5$.

Portanto, substituindo na segunda equação, t=-2. Da primeira equação obtemos

$$1 - 2 = a - 10, \quad a = 9.$$

O ponto de interseção é obtido fazendo t = -2 (ou s = -5), obtemos

$$P = (-1, -4, 5).$$

(b) Os vetores diretores das retas r_1 e r_2 , $\overrightarrow{v}_1 = (1, 2, -2)$ e $\overrightarrow{v}_2 = (2, 1, 1)$, respectivamente, são paralelos ao plano ϱ . Portanto são ortogonais ao vetor normal \overrightarrow{n} do plano. Assim temos que \overrightarrow{n} é paralelo a

$$\begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 1 & 2 & -2 \\ 2 & 1 & 1 \end{vmatrix} = (4, -5, -3).$$

Portanto, a equação cartesiana do plano ρ é da forma

$$4x - 5y - 3z = d$$
.

Como o ponto (1,0,1) da reta r_1 pertence ao plano temos

$$4 - 3 = d$$
, $d = 1$.

Logo

$$\varrho$$
: $4x - 5y - 3z = 1$.

(c) Consideramos o sistema

$$x + y + z = 3$$
, $x - y + 2z = 1$.

somando as quações temos 2x + 3z = 4. Isto é

$$x = 2 - 3/2z$$
.

Escolhendo z como parâmetro temos

$$z = t, \qquad x = 2 - 3/2t$$

e

$$y = 3 - z - x = 3 - t - 2 + 3/2t = 1 + 1/2t$$

Portanto, fazendo t = 2s

$$x = 2 - 3s$$
, $y = 1 + s$, $z = 2s$, $s \in \mathbb{R}$.

Observe que o vetor diretor da reta é (-3,1,2) que é perpendicular aos vetores normais dos planos que determinam a reta r_3 (os vetores (1,1,1) e (1,-1,2)). Observe também que o ponto (2,1,0) pertence aos dois planos.

(d) Temos que verificar para que valor de t o ponto (1+t, 2t, 1-2t) verifica a equação x+y+2z=4. Substituindo,

$$(1+t) + (2t) + 2(1-2t) = 4,$$
 $-t+3=4,$ $t=-1.$

Obtemos Q = (0, -2, 3).

Questão 3) Considere os pontos

$$P = (1, 2, 0)$$
 e $Q = (2, 1, 1),$

a reta r cujas equações paramétricas são

$$r: (1+t, 2+t, 2t), t \in \mathbb{R}$$

e o plano ρ cuja equação cartesiana é

$$\rho$$
: $x + 2y + 3z = 6$.

- a) Determine explicitamente <u>todos</u> os pontos M da reta r tal que a área do triângulo Δ de vértices P,Q e M seja 2.
- b) A equação cartesiana do plano η que contém a reta r e o ponto Q.
- c) Considere os pontos

$$A = (1, 1, 1)$$
 e $B = (0, 0, 2)$

do plano ρ . Determine um ponto C do plano ρ tal que os pontos A, B e C formem um triângulo retângulo isósceles T cujos catetos são AB e AC.

Determine a área do triângulo T. (Para responder a esta última parte do item v. não necessita resolver a primeira parte ...).

Resposta:

a) Observe que $\overrightarrow{PQ} = (1, -1, 1)$. Considere um ponto X = (1 + t, 2 + t, 2t) da reta r e o vetor $\overrightarrow{PX} = (t, t, 2t)$. A área do triângulo determinado pelos vértices P, X e Q é

$$\frac{1}{2} \left| \overrightarrow{PX} \times \overrightarrow{PQ} \right| = (t, t, 2t) \times (1, -1, 1).$$

Temos

$$\overrightarrow{PX} \times \overrightarrow{PQ} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ t & t & 2t \\ 1 & -1 & 1 \end{vmatrix} = (3t, t, -2t).$$

O módulo deste vetor é $|t|\sqrt{14}$. Portanto, para obter X=M devemos escolher t tal que

$$2 = \frac{|t|\sqrt{14}}{2}, \quad t = \pm \frac{4}{\sqrt{14}}.$$

Portanto, há duas possibilidades para o ponto M,

$$M = \left(1 + \frac{4}{\sqrt{14}}, 2 + \frac{4}{\sqrt{14}}, \frac{8}{\sqrt{14}}\right), \qquad M = \left(1 - \frac{4}{\sqrt{14}}, 2 - \frac{4}{\sqrt{14}}, \frac{-8}{\sqrt{14}}\right).$$

b) Observe que o vetor diretor da reta $\overrightarrow{v} = (1, 1, 2)$ e o vetor $\overrightarrow{PQ} = (1, -1, 1)$ são paralelos ao plano η . Portanto, os vetores normais do plano são paralelos ao vetor

$$\begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 1 & 1 & 2 \\ 1 & -1 & 1 \end{vmatrix} = (3, 1, -2).$$

Logo a equação cartesiana do plano η é da forma

$$\eta: 3x + y - 2z = d.$$

Determinamos d pela condição $Q = (2, 1, 1) \in \eta$:

$$6+1-2=5=d$$
.

Assim obtemos

$$\eta$$
: $3x + y - 2z = 5$.

c) Considere o ponto C e o vetor \overrightarrow{AC} . Observe que:

- como o segmento AC está contido no plano ρ o vetor \overrightarrow{AC} ele é perpendicular ao vetor normal do plano (1,2,3),
- como o segmento AC é um cateto do triângulo retângulo ele é perpendicular ao outro cateto, assim os vetores \overrightarrow{AC} e $\overrightarrow{BA} = (1, 1, -1)$ são perpendiculares.

Portanto, o vetor \overrightarrow{AC} é paralelo a

$$(1,2,3) \times (1,1,-1) = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 1 & 2 & 3 \\ 1 & 1 & -1 \end{vmatrix} = (-5,4,-1).$$

Assim obtemos que o ponto C está na reta que contém o ponto A e é paralela ao vetor (5, -4, 1). Portanto

$$C = (1 + 5t, 1 - 4t, 1 + t)$$

para algum t. Também temos que $\overrightarrow{AC} = (5\,t, -4\,t, t)$. Devemos escolher t de forma

$$|\overrightarrow{AC}| = |t|\sqrt{25 + 16 + 1} = |t|\sqrt{42} = |\overrightarrow{AB}| = |(-1, -1, 1)| = \sqrt{3}.$$

Isto é

$$t = \pm \frac{\sqrt{3}}{\sqrt{42}} = \pm \frac{1}{\sqrt{14}}.$$

Portanto,

$$C = \left(1 + \frac{5}{\sqrt{14}}, 1 - \frac{4}{\sqrt{14}}, 1 + \frac{1}{\sqrt{14}}\right) \quad \text{ou}$$

$$C = \left(1 - \frac{5}{\sqrt{14}}, 1 + \frac{4}{\sqrt{14}}, 1 - \frac{1}{\sqrt{14}}\right).$$

Finalmente, a área dum triângulo retñagulo é o produto dos catetos divido por dois. Portanto,

$$\frac{|\overrightarrow{AB}| |\overrightarrow{AC}|}{2} = \frac{|\overrightarrow{AB}|^2}{2} = \frac{3}{2}.$$