

🗀 : Exercices de cours à faire avant le TD et qui ne seront pas corrigés en séances

■ : Exercices à préparer avant le TD et qui seront corrigés en séance

■ : Exercices non corrigés en TD (plus difficiles), pour réviser & s'entraîner

N'hésitez pas à demander des éclaircissements auprès de vos enseignant es.

1 Le gaz parfait : description quantique et limite classique

Une particule quantique dans une boîte

Une particule de masse m (sans spin) est confinée dans une enceinte cubique de dimension linéaire L et de volume $V = L^3$. Son énergie est donnée par

$$E = \frac{\hbar^2 \pi^2}{2mL^2} (n_x^2 + n_y^2 + n_z^2) \tag{1}$$

où n_x , n_y et n_z sont trois nombres entiers positifs associés aux trois degrés de liberté de la particule.

On cherche à évaluer sommairement la façon dont le nombre de micro-états $\Omega(V, E)$ varie avec E et V. Pour cela, on se place dans l'approximation des grands nombres quantiques, de telle façon que l'énergie varie quasi continûment avec les nombres quantiques associés. La fonction $\Omega(V, E)$ est alors elle-même une fonction presque continue de E.

- 1 On considère tout d'abord le cas d'une particule dans une boîte à une dimension de taille L. À partir de l'expression (1) des niveaux d'énergie de la particule évaluer le nombre d'états $\Phi(L,E)$ d'énergie inférieure ou égale à E. En déduire l'expression de la densité $\rho(L,E)$ d'états compris entre les énergies E et $E + \delta E$ avec $\delta E \ll E$, ainsi que $\Omega(L,E)$.
- 2 Obtenir la densité d'états $\rho(L, E)$ en deux puis trois dimensions quantiquement.
- 3 Calculer le nombre de micro-états accessibles pour un atome d'argon de masse molaire $M=40~{\rm g.mol^{-1}}$ d'énergie comprise entre E et $E+\delta E$, où $E=6\times 10^{-21}~{\rm J}$ et $\delta E=10^{-31}~{\rm J}$, dans un volume d'un litre.

Le gaz parfait quantique

L'enceinte contient N particules sans interaction et supposées discernables. Malgré cette hypothèse, nous allons étudier ce système dans le cadre de la mécanique quantique.

- 4 Montrer que ce gaz parfait est équivalent à une particule évoluant dans un espace à 3N dimensions. Calculer $\Phi(N, V, E)$ et $\rho(N, V, E)$ en vous inspirant du cas d'une particule seule.
- 5 En déduire l'entropie de ce gaz.
- 6 Calculer la température et la pression du gaz parfait. Vérifier que vous retoruver l'équation d'état bien connue.