دانشکده کامپیوتر دانشگاه علم و صنعت طراحی سیستم های دیجیتال

تكليف شماره ٢

۱- طراحی بانک ثبات طبق جدول زیر

Data Registers	D0 ~ D3	4 fast registers to perform arithmetic
Address Registers	A0 ~ A3	4 register to access the memory
Base Address	BA	Base address
Program counter	PC	Program counter
Status register	SR	Status register
Zero register	Zero	Always equal to the
		Zero
High register	Hi	Contain high part (16
		bit) of 32 bit multiply
		product
Low register	Lo	Contain low part (16
		bit) of 32 bit multiply
		product

شماره ثبات ها برای انتخاب به صورت زیر است:

Name	Register number	usage
Zero	0	The constant value 0
D0 ~ D3	1-4	Data registers
A0 ~ A3	5-8	Address register
SR	9	Status register
BA	10	Base Address
PC	11	Program Counter
Hi	12	High part for multiply
Lo	13	Low part for multiply

۲- طراحی مموری:

از آنجایی که باس سی پی یو مورد نظر ۱۶ بیتی ست ورودی های حافظه نیز ۱۶ بیت میباشد. اما عرض بلاک های حافظه ی مد نظر ما ۸ بیتی (۱ بایتی) می باشد. برای مثال اگه سی پی یو بر روی ورودی آدرس عدد ۳ را قرار دهد شما مستلزم به بر گرداندن مقادیر موجود در خانه های ۶ و ۷ میباشید.

خروجی مموری نیز ۱۶ بیتی می باشد.

و اما نحوه طراحی در یک فایل ماژولی به نام مموری بسازید که ورودی و خروجی آن ۸ بیت است. در یک فایل دیگر نیز ماژولی طراحی کنید که از ماژول قبلی استفاده میکند و ورودی خروجی ۱۶ بیتی دارد

** ورودی ها و خروجی ها در تصویر بالا کامل نیست

در ورودی مموری پایه های write-enable و کلاک را داریم. در خروجی یک پایه به نام تریگر داریم که همزمان با آماده شدن و قرار گرفتن داده در خروجی یا پس از نوشته شدن در حافظه ۱ شده و تا لبه ی پایین رونده ی کلاک بعدی ۱ میماند

** نکته ی قابل توجه آن است شما مجاز به ساختن دو حافظه نیستید. یعنی در هر کلاک حداکثر محتوای یک خانه قابل خواندن یا تغییر است.

طول حافظه 4KB مى باشد كه 1KB اول آن مربوط به دستورات است. و مابقى براى داده.

مهلت تحویل ۱۸ آبان ماه ساعت ۱۲