Паскалова теорема

Алекса Вучковић

Нека су A, B, C, D, E, F тачке на кругу. Праве AB и DE секу се у L, праве BC и EF у M, а CD и FA у N. Тада су тачке L, M, N колинеарне.

Доказ:

Нека се AB и CD секу у X, CD и EF у Y, а EF и AB у Z. Тачке L, M, N леже на страницама троугла ХҮΖ, па можемо да применимо Менелајеву теорему: треба показати Радимо са \overline{NY} · \overline{MZ} ΔXYZ као базним троуглом. Знамо да су тачке L,D,E на правој, па Менелајева теорема даје $\frac{XD}{DY}\cdot\frac{YE}{EZ}\cdot\frac{ZL}{LX}=-1.$ И тачке C,M,B су $\frac{XD}{DY} \cdot \frac{YE}{EZ} \cdot \frac{ZL}{LX} = -1. \quad \text{И тачке } C, M, B \text{ су}$ Слика 1. колинеарне, па имамо и $\frac{XC}{CY} \cdot \frac{YM}{MZ} \cdot \frac{ZB}{BX} = -1.$ Најзад, тачке N, F, A су колинеарне, па

је $\frac{XN}{NY} \cdot \frac{YF}{FZ} \cdot \frac{ZA}{AX} = -1$. Множењем ове три једнакости, користећи једнакости потенције $XD \cdot XC = XB \cdot XA, YD \cdot YC = YF \cdot YE$ и $ZF \cdot ZE = ZB \cdot ZA$, добијамо оно што нам треба.

Паскалова теорема очигледно не захтева да ABCDEF буде конвексан шестоугао, тако да су сви распореди тачака дозвољени. Можемо да посматрамо и дегенерисане случајеве, када су неке две праве паралелне или се неке две тачке поклапају. На пример, ако је A = B, за праву AB узимамо тангенту на круг у A.

Задаци:

- 1. Нека је P тачка у унутрашњости троугла ABC. Означимо са P_1 и P_2 редом подножја нормала из P на AC и BC, и са Q_1 и Q_2 редом подножја нормала из C на AP и BP. Доказати да се праве Q_1P_2 , Q_2P_1 и AB секу у једној тачки.
- 2. Троугао ABC је уписан у круг Γ . Одабрана је тачка M на симетрали угла A, унутар троугла. Праве AM, BM и CM поново секу у A_1 , B_1 и C_1 редом. Нека права A_1C_1 сече AB у P, а A_1B_1 сече AC у Q. Доказати да је $PQ \parallel BC$.
- 3. У троуглу ABC, тачке D и E на правој AB су такве да је D-A-B-E и AD=AC, BE=BC. Означимо са M и N редом средишта лукова AC и BC описаног круга ΔABC који не садрже треће теме. Праве DM и CA се секу у P, а праве EN и CB се секу у Q. Доказати да центар уписаног круга I троугла ABC лежи на правој PQ.

Решења:

- 1. Тачке P_1 , P_2 , Q_1 , Q_2 леже на кругу над пречником PC. По Паскаловој теореми у шестоуглу $P_1PP_2Q_1CQ_2$, тачке пресека парова правих P_1C , PQ_1 (пресек A), P_1Q_2 , P_2Q_1 (пресек X) и PQ_2 , P_2C (пресек B) су колинеарне.
- P₁
 Q₂ P
 A

Слика 2.

2. На основу Паскалове теореме на шестоуглу $BACC_1A_1B_1$, тачке P, Q и $M=BB1\cap CC1$ су колинеарне. Даље, по услову задатка, A_1 је средиште лука BC, па је тангента t у A_1 паралелна BC. Сада применимо Паскалову теорему на $ABCC_1A_1A_1$: тачке $P=AB\cap A_1C_1,\ M=AA_1\cap CC_1$ и бесконачна тачка $t\cap BC$ су на правој, тј. праве t, BC и PM припадају истом прамену, што значи да је $PM \parallel BC$, дакле $PQ \parallel BC$.

Слика 3.

3. Нека BM и AN секу наспрамне странице троугла редом у K и L. Из сличности троуглова BCM и BKA ($\triangleleft BMC = \triangleleft BAK$, $\triangleleft CBM = \triangleleft KBA$) имамо $BK \cdot BM = BA \cdot BC$; осим тога, због $CD \cap AL$ важи $\frac{BA}{BD} = \frac{BL}{BC}$. Следи $BK \cdot BM = BL \cdot BD$, што заједно са $\triangleleft DBM = \triangleleft KBL$ даје $\triangle BDM \sim \triangle BKL$. Аналогно, $\triangle AEN \sim \triangle ALK$. Нека се праве DM и EN секу у R. Добијене сличности дају $\triangleleft RDE = \triangleleft MDB = \triangleleft LKB$ и $\triangleleft DER = \triangleleft AEN = \triangleleft ALK$, тако да је $\triangleleft NRM = 180^{\circ} - \triangleleft RDE - \triangleleft DER =$

Слика 4.

 $180 - \triangleleft LKB - \triangleleft ALK = \triangleleft KIL = \triangleleft BIA = 180^{\circ} - \triangleleft IAB - \triangleleft ABI = 180^{\circ} - \triangleleft CAN - \triangleleft MBC = \triangleleft NCM$ (углови су оријентисани). Према томе, R је на описаном кругу $\triangle ABC$. Сада колинеарност тачака I, P, Q следи из Паскалове теореме за тачке A, B, R; M, N, C.

Литература

[1] Д. Ђукић, Паскалова теорема, пол и полара, https://imomath.com/srb/dodatne/paskalova%20teorema_ddj.pdf