

Post-Quantum TLS without handshake signatures

Sofía Celi¹, Armando Faz Hernández¹, Peter Schwabe^{2,4},
Douglas Stebila³, Thom Wiggers⁴

¹ Cloudflare ² MPI Security and Privacy
³ University of Waterloo ⁴ Radboud University

TLS 1.3

TLS 1.3 Handshake

Client		Server
	TCP SYN	static (sig): pk _S , sk _S
_	TCP SYN-ACK	·
$x \leftarrow \mathbb{Z}_q$	g^x	
		$y \leftarrow \mathbb{Z}_q$
		$y \leftarrow \mathbb{Z}_q$ ss $\leftarrow g^{xy}$
		$K \leftarrow KDF(ss)$
g^y , AEAD $_K$ (cei	$t[pk_S]$ Sig(sk _S , transcript)) key confirmation)
•	$AEAD_{K'}$ (key confirmation	on)
	$AEAD_{K''}(application\;da)$	ta)
	$AEAD_{K'''}(application\;da$	ta)

■ Key exchange: Diffie—Hellman

Authentication: Signatures

Post-Quantum TLS 1.3 Handshake

- Key exchange: Post-Quantum Key-Encapsulation Mechanisms
- Authentication: Post-Quantum Signatures

Problem

Post-Quantum signatures are...

Problem

Post-Quantum signatures are...

- quite a bit bigger than KEMs
- quite a bit slower than KEMs
- quite a bit of extra code

Use PQ KEMs for authentication instead

- (pk, sk) ← KEM.Keygen()
- (ss, ct) ← KEM.Encapsulate(pk)
- ss ← KEM.Decapsulate(ct, sk)

Example

- (pk, sk) ← KEM.Keygen()
- (ss, ct) \leftarrow KEM.Encapsulate(pk)
- ss ← KEM.Decapsulate(ct, sk)

Example

- (pk, sk) ← KEM.Keygen()
- (ss, ct) ← KEM.Encapsulate(pk)
- ss ← KEM.Decapsulate(ct, sk)

Example

- (pk, sk) ← KEM.Keygen()
- (ss, ct) ← KEM.Encapsulate(pk)
- ss ← KEM.Decapsulate(ct, sk)

Example

KEM authentication in TLS

Problem 8 1

- In TLS, the client doesn't already have the public key of the server!
- To put this in TLS 1.3, we need an extra roundtrip!
- TLS 1.3 tried very hard to finish the handshake a single roundtrip.

KEM authentication in TLS

Problem

- In TLS, the client doesn't already have the public key of the server!
- To put this in TLS 1.3, we need an extra roundtrip!
- TLS 1.3 tried very hard to finish the handshake a single roundtrip.

Solution

Implicitly authenticated key exchange: the client encapsulates to the server's long-term public key but does not wait until they get the MAC before sending data!

KEM authentication in TLS

Problem

- In TLS, the client doesn't already have the public key of the server!
- To put this in TLS 1.3, we need an extra roundtrip!
- TLS 1.3 tried very hard to finish the handshake a single roundtrip.

Solution

Implicitly authenticated key exchange: the client encapsulates to the server's long-term public key but does not wait until they get the MAC before sending data!

Seen in HMQV (DH), BCGP09 & FSXY12 (KEMs), ..., Signal, Noise, Wireguard, ...

KEMTLS

- Ephemeral key exchange
- Static-KEM authentication
- Combine shared secrets
- Allow client to send application data before receiving server's key confirmation

Client

Server

static (KEM_s): pk_S, sk_S

TCP SYN

TCP SYN-ACK

$$(\mathsf{pk}_e, \mathsf{sk}_e) \leftarrow \mathsf{KEM}_e.\mathsf{Keygen}()$$

pk

 $(ss_e, ct_e) \leftarrow KEM_e$. Encapsulate (pk_e) $K_1, K_1' \leftarrow \mathsf{KDF}(\mathsf{ss}_e)$

 ct_e , AEAD $_{K_1}$ (cert[pks])

 $ss_e \leftarrow KEM_e$. Decapsulate(ct_e, sk_e)

$$K_1, K_1' \leftarrow \mathsf{KDF}(\mathsf{ss}_e)$$

 $(ss_S, ct_S) \leftarrow KEM_s$. Encapsulate(pk_S)

ct_e , AEAD $_{K_1}$ (cert[pk $_S$])

 $ss_e \leftarrow KEM_e.Decapsulate(ct_e, sk_e)$

 $K_1, K_1' \leftarrow \mathsf{KDF}(\mathsf{ss}_e)$

 $(ss_S, ct_S) \leftarrow KEM_s.Encapsulate(pk_S)$

 $AEAD_{K'_1}(ct_S)$

 $ss_S \leftarrow KEM_s$. Decapsulate(ct_S, sk_S)

 $K_2, K_2', K_2'', K_2''' \leftarrow \mathsf{KDF}(\mathsf{ss}_e \| \mathsf{ss}_S)$

 $AEAD_{K_2}$ (key confirmation), $AEAD_{K'_2}$ (application data)

 $AEAD_{K_2''}$ (key confirmation)

 $AEAD_{K_2'''}$ (application data)

KEMTLS

- Ephemeral key exchange
- Static-KEM authentication
- Combine shared secrets
- Allow client to send application data before receiving server's key confirmation

Choosing algorithms

Ephemeral Key Exchange

- ~ IND-CCA KEM
- Ideally fast with small pk + ct

KEM for server authentication

- IND-CCA KEM
- Ideally fast with small pk + ct

Choosing algorithms

Ephemeral Key Exchange

- ~ IND-CCA KEM
- Ideally fast with small pk + ct

KEM for server authentication

- IND-CCA KEM
- Ideally fast with small pk + ct

Root CA certificate

- Already present on client
- Only care about signature size

Choosing algorithms

Ephemeral Key Exchange

- ~ IND-CCA KEM
- Ideally fast with small pk + ct

KEM for server authentication

- IND-CCA KEM
- Ideally fast with small pk + ct

Intermediate CA certificate

Small public key + signature size

Root CA certificate

- Already present on client
- Only care about signature size

Comparison¹

Labels ABCD:

A = ephemeral KEM

B = leaf certificate

C = intermediate CA

D = root CA

Dilithium Falcon GeMSS Kyber NTRU SIKE XMSS.

¹Rustls with AVX2 implementations. Emulated network: latency 31.1 ms, 1000 Mbps, no packet loss. Average of 100000 iterations.

Observations on emulated experiments

- Size-optimized KEMTLS requires < 1/2 communication of size-optimized PQ signed-KEM
- Speed-optimized KEMTLS uses 90% fewer server CPU cycles and still reduces communication
 - NTRU KEX (27 μs) 10x faster than Falcon signing (254 μs)
- No extra round trips required until client starts sending application data
- Smaller trusted code base (no signature generation on client/server)

Real world measurements

ft. Cloudflare

Experimenting in the real world

- Experimental implementation in Go standard library TLS
- Branch https://github.com/cloudflare/go/tree/cf-pq-kemtls
- Based on Delegated Credentials (draft-ietf-tls-subcerts)
- Also implements client authentication

Experimenting in the real world

- Experimental implementation in Go standard library TLS
- Branch https://github.com/cloudflare/go/tree/cf-pq-kemtls
- Based on Delegated Credentials (draft-ietf-tls-subcerts)
- Also implements client authentication

We intend to do measurements on real networks

- between Cloudflare DCs
- Measure more aspects than just handshake time
- **???**

Hope to report more soon

Post-Quantum TLS without Handshake signatures

- Implicit authentication via KEMs
- Preserve client ability to do request after 1RTT
- Saves bytes on the wire and server CPU cycles
- ACM CCS 2020 doi: 10.1145/3372297.3423350
- Full version with proofs: ia.cr/2020/534

Cloudflare is helping us investigate KEMTLS in the **real world**. Experimental implementation in branch cf-pq-kemtls at github.com/cloudflare/go.

Hopefully results soon $^{\text{TM}}$ — keep an eye on the Cloudflare Research Blog.

Appendix

FAQ

- Client authentication?
 - We provide a sketch in Appendix D, but mostly leave it for future work
 - Naive way does require a full additional round-trip
- What about TLS 1.3 0-RTT?
 - 0-RTT is for resumption. You can do the same thing in KEMTLS.
 - We see opportunities for more efficient handshakes when resuming or in scenarios with pre-distributed KEM public keys.
- Server can't send application data in its first TLS flow. Will that break HTTP/3 where the server sends a SETTINGS frame?
 - Could be included in an extension as a server-side variant of ALPN
- How do you do certificate lifecycle management (issuance, revocation) with KEM public keys?
 - At first glance many of these issues seem non-trivial: currently these assume the public key can be used for signatures in some way
 - Another good direction for future work

Communications sizes

		Abbrv.	KEX (pk+ct)	Excluding i HS auth (ct/sig)	ntermediate C Leaf crt. subject (pk)	A certificate Leaf crt. (signature)	Sum excl. int. CA cert.	Including in Int. CA crt. subject (pk)	ntermediate C Int. CA crt. (signature)		Root CA (pk)	Sum TCP pay- loads of TLS HS (incl. int. CA crt.)
	TLS 1.3	ERRR	ECDH (X25519) 64	RSA-2048 256	RSA-2048 272	RSA-2048 256	848	RSA-2048 272	RSA-2048 256	1376	RSA-2048 272	2711
(Signed KEX)	Min. incl. int. CA cert.	SFXG	SIKE 405	Falcon 690	Falcon 897	XMSS ^{MT} 979	2971	XMSS ^{MT} 32	GeMSS 32	3035	GeMSS 352180	4056
3 (Signe	Min. excl. int. CA cert.	SFGG	SIKE 405	Falcon 690	Falcon 897	GeMSS 32	2024	GeMSS 352180	GeMSS 32	354236	GeMSS 352180	355737
TLS 1.	Assumption: MLWE+MSIS	KDDD	Kyber 1536	Dilithium 2044	Dilithium 1184	Dilithium 2044	6808	Dilithium 1184	Dilithium 2044	10036	Dilithium 1184	11094
	Assumption: NTRU	NFFF	NTRU 1398	Falcon 690	Falcon 897	Falcon 690	3675	Falcon 897	Falcon 690	5262	Falcon 897	6227
	Min. incl. int. CA cert.	SSXG	SIKE 405	SIKE 209	SIKE 196	XMSS ^{MT} 979	1789	XMSS ^{MT} 32	GeMSS 32	1853	GeMSS 352180	2898
(TLS	Min. excl. int. CA cert.	SSGG	SIKE 405	SIKE 209	SIKE 196	GeMSS 32	842	GeMSS 352180	GeMSS 32	353054	GeMSS 352180	354578
KEMTL	Assumption: MLWE+MSIS	KKDD	Kyber 1536	Kyber 736	Kyber 800	Dilithium 2044	5116	Dilithium 1184	Dilithium 2044	8344	Dilithium 1184	9398
	Assumption: NTRU	NNFF	NTRU 1398	NTRU 699	NTRU 699	Falcon 690	3486	Falcon 897	Falcon 690	5073	Falcon 897	6066

Time measurements

_	Computation time for asymmetric crypto Excl. int. CA cert. Incl. int. CA cert.		Handshake time (31.1 ms latency, 1000 Mbps bandwidth) Excl. int. CA cert. Incl. int. CA cert.			ert.	Handshake time (195.6 ms latency, 10 Mbps bandwidth) Excl. int. CA cert. Incl. int. CA cert.				ert.					
	Clien	Server	Client	Server	Client sent req.	Client recv. resp.	Server HS done	Client sent req.	Client recv. resp.	Server HS done	Client sent req.	Client recv. resp.	Server HS done	Client sent req.	Client recv. resp.	Server HS done
TLS 1.3	ERRR 0.13- SFXG 40.05- SFGG 34.10- KDDD 0.08- NFFF 0.14-	21.676 21.676 0.087	0.150 40.094 34.141 0.111 0.181	0.629 21.676 21.676 0.087 0.254	66.4 165.8 154.9 64.3 65.1	97.6 196.9 186.0 95.5 96.3	35.4 134.0 123.1 33.3 34.1	66.6 166.2 259.0 64.8 65.6	97.8 197.3 290.2 96.0 96.9	35.6 134.4 227.1 33.8 34.7	397.1 482.1 473.7 411.6 398.1	593.3 678.4 669.8 852.4 662.2	201.3 285.8 277.5 446.1 269.2	398.2 482.5 10936.3 415.9 406.7	594.3 678.8 11902.5 854.7 842.8	202.3 286.2 10384.1 448.0 443.5
KEMTLS	SSXG 61.45 SSGG 55.50 KKDD 0.06 NNFF 0.11	3 41.712 0 0.021	61.493 55.540 0.091 0.158	41.712 41.712 0.021 0.027	202.1 190.4 63.4 63.6	268.8 256.6 95.0 95.2	205.6 193.4 32.7 32.9	202.3 293.3 63.9 64.2	269.1 359.5 95.5 95.8	205.9 296.3 33.2 33.5	505.8 496.8 399.2 396.2	732.0 723.0 835.1 593.4	339.7 330.8 439.9 200.6	506.1 10859.5 418.9 400.0	732.4 11861.0 864.2 835.6	340.1 10331.7 447.6 440.2

	-	ation time f	-	etric crypto t. CA cert.		shake tin cl. int. C
	Client	Server	Client	Server	Client sent rea.	Client recv. res
					oont roq.	1007.100
ERRF	? 0.134	0.629	0.150	0.629	66.4	97
	40.058	21.676	40.094	21.676	165.8	196
SFGG	34.104	21.676	34.141	21.676	154.9	186
	0.080	0.087	0.111	0.087	64.3	95
NFFF	0.141	0.254	0.181	0.254	65.1	96
	61.456	41.712	61.493	41.712	202.1	268
≓ ssgc	55.503	41.712	55.540	41.712	190.4	256
SSGC WE KKDE WINNER	0.060	0.021	0.091	0.021	63.4	95
₩ NNFF	0.118	0.027	0.158	0.027	63.6	95

	1		•	• •	•	,	1
t.	Exc	cl. int. CA co	ert.	Inc	cl. int. CA ce	ert.	
r	Client	Client	Server	Client	Client	Server	Clie
	sent req.	recv. resp.	HS done	sent req.	recv. resp.	HS done	sent r
329	66.4	97.6	35.4	66.6	97.8	35.6	39
76	165.8	196.9	134.0	166.2	197.3	134.4	48
76	154.9	186.0	123.1	259.0	290.2	227.1	47
87	64.3	95.5	33.3	64.8	96.0	33.8	41
254	65.1	96.3	34.1	65.6	96.9	34.7	39
12	202.1	268.8	205.6	202.3	269.1	205.9	50
² 12	190.4	256.6	193.4	293.3	359.5	296.3	49
21	63.4	95.0	32.7	63.9	95.5	33.2	39
)27	63.6	95.2	32.9	64.2	95.8	33.5	39
İ							
1							ļ

Handshake time (31.1 ms latency, 1000 Mbps bandwidth)

oto

idth) t.		Handshake time (195.6 ms latency, 10 Mbps bandwidth) Excl. int. CA cert. Incl. int. CA cert.					
Server HS done	Client sent req.	Client recv. resp.	Server HS done	Client sent req.	Client recv. resp.	Server HS done	
35.6	397.1	593.3	201.3	398.2	594.3	202.3	
134.4	482.1	678.4	285.8	482.5	678.8	286.2	
227.1	473.7	669.8	277.5	10936.3	11902.5	10384.1	
33.8	411.6	852.4	446.1	415.9	854.7	448.0	
34.7	398.1	662.2	269.2	406.7	842.8	443.5	
205.9	505.8	732.0	339.7	506.1	732.4	340.1	
296.3	496.8	723.0	330.8	10859.5	11861.0	10331.7	
33.2	399.2	835.1	439.9	418.9	864.2	447.6	
33.5	396.2	593.4	200.6	400.0	835.6	440.2	

KEMTLS in more detail

The client sends data before receiving ServerFinished.

The client sends data before receiving ServerFinished.

- Can't downgrade to signed TLS 1.3
 - TLS 1.3 handshake signature stops the attack

The client sends data before receiving ServerFinished.

- Can't downgrade to signed TLS 1.3
 - TLS 1.3 handshake signature stops the attack
- Active adversary might try to downgrade first client-to-server flow
- Only to whatever algorithms the client advertised in ClientHello
 - Don't support pre-quantum in KEMTLS

The client sends data before receiving ServerFinished.

- Can't downgrade to signed TLS 1.3
 - TLS 1.3 handshake signature stops the attack
- Active adversary might try to downgrade first client-to-server flow
- Only to whatever algorithms the client advertised in ClientHello
 - Don't support pre-quantum in KEMTLS
- The handshake will no longer sucessfully complete
 - ServerFinished reveals the downgrade unless MAC, KEM, KDF or hash are broken at time of attack
 - Once SF is received: retroactive full downgrade resilience
 - You also get upgraded from weak to full forward secrecy at this stage

TLS 1.3 Handshake

Client		Server
	TCP SYN	static (sig): pk _S , sk _S
_	TCP SYN-ACK	·
$x \leftarrow \mathbb{Z}_q$	g^x	
		$y \leftarrow \mathbb{Z}_q$
		$y \leftarrow \mathbb{Z}_q$ ss $\leftarrow g^{xy}$
		$K \leftarrow KDF(ss)$
g^y , AEAD $_K$ (cei	$t[pk_S]$ Sig(sk _S , transcript)) key confirmation)
•	$AEAD_{K'}$ (key confirmation	on)
	$AEAD_{K''}(application\;da)$	ta)
	$AEAD_{K'''}(application\;da$	ta)

■ Key exchange: Diffie—Hellman

Authentication: Signatures

Post-Quantum TLS 1.3 Handshake

- Key exchange: Post-Quantum Key-Encapsulation Mechanisms
- Authentication: Post-Quantum Signatures

KEMTLS

- Ephemeral key exchange
- Static-KEM authentication
- Combine shared secrets
- Allow client to send application data before receiving server's key confirmation

Post-Quantum TLS without Handshake signatures

- Implicit authentication via KEMs
- Preserve client ability to do request after 1RTT
- Saves bytes on the wire and server CPU cycles
- ACM CCS 2020 doi: 10.1145/3372297.3423350
- Full version with proofs: ia.cr/2020/534

Cloudflare is helping us investigate KEMTLS in the **real world**. Experimental implementation in branch cf-pq-kemtls at github.com/cloudflare/go.

Hopefully results soon $^{\text{TM}}$ — keep an eye on the Cloudflare Research Blog.