	- 2
<u>Квадрат</u>	$S = \alpha^2$
	$S = \frac{1}{2}d^2$
	$S = a \cdot b$
<u>Прямоугольник</u>	$S = \frac{1}{2}d^2 \sin \alpha$, $\alpha - y$ гол между диагоналями
	$S = p \cdot r$, где r - радиус вписанной
	окружности
	$S = \frac{abc}{4R}$, где R - радиус описанной
<u>Треугольник</u>	окружности
A	$a^2 = b^2 + c^2 - 2 \cdot a \cdot b \cdot \cos A$, meopema
C A B	косинусов
	$S = \frac{1}{2} a \cdot h$
	$S = \sqrt{p \cdot (p-a) \cdot (p-b) \cdot (p-c)}, \ \epsilon \partial e \ p = \frac{a+b+c}{2}$
	2
	$S = \frac{1}{2}b \cdot c \cdot \sin A$
Параллелограмм	$S = a \cdot h$
B	$S = a \cdot b \cdot sinA$
$b h d_1 d_2$	$S = \frac{1}{2}d_1 \cdot d_2 \cdot \sin \alpha$
A a D	2
	$S = a \cdot h$
<u>Ромб</u>	$S = 2 \cdot a \cdot r$, где r - радиус вписанной
a B	окружности
$A \longrightarrow C$	$S = a^2 \cdot \sin A$
$\frac{1}{2}$	$S = \frac{d_1 \cdot d_2}{c}$
U	$\frac{3-\frac{1}{2}}{2}$

<u>Произвольный</u> четырехугольник

$$S = \frac{d_1 \cdot d_2 \cdot \sin \alpha}{2}$$

Окружность

$$L = \frac{\pi R}{180} \cdot \alpha - \partial$$
лина дуги $C = 2 \cdot \pi \cdot R = \pi \cdot d - \partial$ лина окружности $S = \frac{\pi R^2}{360} \cdot \alpha$, площадь сектора

 $S = \pi R^2$, площадь окружности

- 1.Вписанный угол равен половине градусной меры дуги, на которую опирается.
- 2. Вписанные углы, опирающиеся на одну и ту же дугу, равны.

Центральный угол равен градусной мере дуги, на которую опирается.

- 1. Касательная к окружности перпендикулярна к радиусу, проведенные в точку касания.
- 2. Отрезки касательных к окружности, проведенных из одной точки, равны и составляют равные углы с прямой, проходящей через эту точку и центр окружности.

Квадрат длины отрезка касательной р<mark>авен</mark> произведению длин отрезков секущей.

$$a^2 = b \cdot (b+c)$$

Произведение отрезков, на которые делится одна из двух пересекающихся секущих, равно произведению отрезков другой секущей.

$$a \cdot (a+b) = c \cdot (c+d)$$

<u>Прямоугольный</u> <u>треугольник</u>

$$c^2 = a^2 + b^2$$
 - теорема Пифагора

$$sinA = \frac{CB}{AB}$$

$$cosA = \frac{AC}{AB}$$

$$tgA = \frac{CB}{AC}$$

$$ctgA = \frac{AC}{CB}$$

EASY-GAME-EXAM