INFORMATIKA

EMELT SZINTŰ GYAKORLATI VIZSGA

2016. május 10. 8:00

A gyakorlati vizsga időtartama: 240 perc

Beadott dokumentumok	
Piszkozati pótlapok száma	
Beadott fájlok száma	

A beadott fájlok neve

EMBERI ERŐFORRÁSOK MINISZTÉRIUMA

1	r c1	1,
ı	Informatika	— emelt szint

Azonosító								
jel:								

Fontos tudnivalók

A gyakorlati feladatsor megoldásához **240 perc** áll rendelkezésére.

A vizsgán **használható eszközök**: a vizsgázó számára kijelölt számítógép, papír, toll, ceruza, vonalzó, lepecsételt jegyzetlap.

A feladatlap belső oldalain és a jegyzetlapon készíthet **jegyzeteket**, ezeket a vizsga végén be kell adni, de tartalmukat nem fogják értékelni.

A feladatokat tetszőleges sorrendben megoldhatja.

Felhívjuk a figyelmet a **gyakori** (10 percenkénti) **mentésre**, és feltétlenül javasoljuk a mentést minden esetben, mielőtt egy másik feladatba kezd.

Vizsgadolgozatát a feladatlapon található **azonosítóval megegyező** nevű **vizsgakönyvtárba** kell mentenie! Ellenőrizze, hogy a feladatlapon található kóddal megegyező nevű könyvtár elérhető-e, ha nem, még a vizsga elején jelezze a felügyelő tanárnak!

Munkáit a **vizsgakönyvtárába mentse**, és a vizsga végén **ellenőrizze**, hogy minden megoldás a megadott könyvtárban van-e, mert csak ezek értékelésére van lehetőség! Ellenőrizze, hogy a beadandó állományok olvashatók-e, mert a nem megnyitható állományok értékelése nem lehetséges!

Amennyiben az adatbázis-kezelés feladatát LibreOffice Base alkalmazásban oldja meg, a táblamódosító lekérdezéseket leíró SQL-parancsokat vagy a LibreOffice Base adatbázis-állomány részeként vagy pedig egy külön szövegállományban kell beadnia. Szövegfájl beadása esetén a szövegfájl neve egyértelműen utaljon a tartalmára (például SQL-parancsok.txt), valamint az állományban a parancs mellett szerepeltesse az előírt lekérdezésnevet!

A beadott program csak abban az esetben értékelhető, ha a vizsgázó létrehozta a választott programozási környezetnek megfelelő forrásállomány(oka)t a vizsgakönyvtárában, és az tartalmazza a részfeladatok megoldásához tartozó forráskódot.

A forrásfájlokat a vizsgakönyvtárban találja.

Javasoljuk, hogy a feladatokat először **olvassa végig**, utána egyenként oldja meg az egyes részfeladatokat!

Amennyiben számítógépével **műszaki probléma** van, jelezze a felügyelő tanárnak! A jelzés ténye és a megállapított hiba jegyzőkönyvezésre kerül. A kiesett idővel a vizsga ideje hosszabb lesz. Amennyiben a hiba mégsem számítógépes eredetű, a javító tanár értékeléskor köteles figyelembe venni a jegyzőkönyv esetleírását. (A rendszergazda nem segítheti a vizsgázót a dolgozat elkészítésében.)

A vizsga végén a feladatlap első oldalán Önnek fel kell tüntetnie a **vizsgakönyvtárban és al-könyvtáraiban található, Ön által előállított és beadott fájlok számát, illetve azok nevét**. A vizsga végeztével addig ne távozzon, amíg ezt meg nem tette, és a felügyelő tanárnak ezt be nem mutatta!

Kérjük, jelölje be, hogy mely operációs rendszeren dolgozik, és melyik programozási környezetet használja!

Operációs rendszer:	O Windows	O Linux
Programozási környezet:		
O FreePascal	O GCC	O Visual Studio 2013 Express
O Lazarus	O Perl 5	0
O JAVA SE	O Python	0
	•	

gyakorlati vizsga 1611 2 / 12 2016. május 10.

Informatika — emelt szint	Azonosító jel:									ľ
---------------------------	-------------------	--	--	--	--	--	--	--	--	---

1. Nemeuklideszi geometria

Az általános iskolában megismert euklideszi geometriában egy egyenessel egy külső ponton át pontosan egy párhuzamos húzható. Bolyai és Lobacsevszkij a XIX. század elején egymástól függetlenül megalkotta az első nemeuklideszi geometriát, amelyben egy egyeneshez egy rajta kívül fekvő ponton át több párhuzamos is húzható.

Feladata egy matematika tankönyv Geometria c. részének a nemeuklideszi geometriát bemutató fejezetének elkészítése az alábbi leírásnak és a mintának megfelelően. Ehhez használja fel a nem. txt UTF-8 kódolású szöveges állományt, valamint a bolyai.jpg és a harom.gif nevű képeket!

- 1. Hozza létre szövegszerkesztő program segítségével nemeukl nevű dokumentumot a program alapértelmezett formátumában a források felhasználásával! A dokumentumban ne legyenek felesleges szóközök és üres bekezdések!
- 2. A dokumentum legyen álló tájolású és 17,6×25 cm-es lapméretű! A bal, a jobb, az alsó és a felső margót állítsa 1,5 cm-re!
- 3. A dokumentum minden karaktere legyen Times New Roman (Nimbus Roman) betűtípusú! Ahol a feladat nem kér mást, a szöveg betűmérete 11 pontos, a bekezdések sorköze egyszeres, a bekezdések előtt 0 pontos, a bekezdések után 6 pontos térköz legyen!
- 4. A fejezet címe legyen 16 pontos betűméretű, félkövér és dőlt betűstílusú, valamint kövesse 18 pontos térköz! A négy alcím legyen 13 pontos betűméretű, félkövér betűstílusú, előtte 18 pontos, utána 12 pontos térközzel!
- 5. A főcímet követő bevezető szöveg bal behúzása legyen 2 cm-es, betűstílusa pedig dőlt! Az egyes bekezdések igazítását a mintának megfelelően állítsa be!
- 6. A mintának megfelelően, a bevezető utáni szövegben az egyes matematikusok vezetéknevének első előfordulását ("Eukleidész", "Bolyai", "Lobacsevszkij", "Saccheri", "Lambert", "Riemann", "Klein") állítsa kiskapitális betűstílusúra!
- 7. A mintának megfelelően alkalmazzon az első alcím alatti részben két bekezdésre felsorolást, a harmadik alcím alatti részben pedig többszintű számozást! A számozott lista elemei között ne jelenjen meg térköz!
- 8. A nyers szövegben néhány esetben az "*alpha*" szó szerepel az α szimbólum helyett, továbbá a "*PI*" szó a Π, és a "*pi*" szó a π görög betű helyett. Végezze el a megfelelő cseréket!
- 9. Szúrja be a mintának megfelelő helyre az oldalarányok megtartásával 4 cm szélesre átméretezve a *bolyai.jpg* képet! A képet igazítsa a bal margóhoz, a képaláírás szövege pedig a mintának megfelelő igazítással, tördeléssel és betűstílussal a "Bolyai János (1802-1860)" szöveg legyen!
- 10. Az utolsó bekezdés utolsó szavához illessze be lábjegyzetként a "Készítette Hack Frigyes" szöveget!
- 11. Szúrja be az utolsó bekezdés után középre igazítva a harom. gif képet az oldalarányok megtartásával 12 cm szélesre átméretezve!

A feladat folytatása a következő oldalon található.

gyakorlati vizsga 1611 3 / 12 2016. május 10.

nformatika — emelt szint Azonosíto jel:																
--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--

- 12. Alakítsa ki az élőfejet és az élőlábat a mintának megfelelő módon a páratlan oldalakon jobbra, a páros oldalakon balra zártan! Az élőfej szövege a "Geometria" szó legyen dőlt betűstílussal, az élőlábban pedig az oldalszám szerepeljen 187-tel kezdődően! Az élőfejet vékony fekete vonal válassza el a szövegtörzstől!
- 13. Alkalmazzon a teljes dokumentumban automatikus elválasztást! Gondoskodjék továbbá arról, hogy a második és harmadik oldal a mintának megfelelő helyen kezdődjön!
- 14. Hozza létre a szövegszerkesztő program eszközeinek segítségével az első oldal alján szereplő ábrát a mintának és az alábbi leírásnak megfelelően!
 - a. Az ábrán szereplő valamennyi alakzat fekete színű, és a vízszintes egyenes kivételével 1 pontos vonalvastagságú.
 - b. A vízszintes egyenes 10 cm hosszú és 2-3 pont vonalvastagságú. A rá merőleges függőleges egyenes 6 cm hosszúságú, szaggatott vonalstílusú.
 - c. Az A-val és B-vel jelölt pontok 0,3 cm átmérőjű, szegély nélküli kitöltött körök, távolságuk 4 és 5 cm között van.
 - d. A három további egyenes mindegyike átmegy az A-val jelölt ponton, kettő metszi a vízszintes egyenest, egynek pedig nincs vele közös pontja.
 - e. A szögeket szaggatott körívek jelzik, a felső körív nyílban végződik. Az ívekhez tartozó körök átmérője 2 és 3 cm között van.
 - f. Az ábrán lévő feliratok valamennyien egy-egy szövegdobozban vannak és félkövér betűstílusúak.

30 pont

Minta:

Nemeuklideszi geometria

A gonutria rendezerek-geometriak – az alapaziebon neglogalmazoit premiazszekban kilohobzarek. Az etkildeszi gonnetria axiomarnikarekridi elukri alapokra pitut urnikarekreke közön kiven nomialitakezi gonnetriakuik
Elenne cake a kaikin iplokesen Bohot-Loboxarekejelik geometriai illettik
az elnevzeket, de kaikib ijahb gonnetrikati ta talditak.

Az euklideszi párhuzamosság

EUKLEIDESZ az Ellennek I. konyveben definiálja az egyunesek párhuzamosságát:

2. zármáció Két egyenes párhuzamos. In azok egy sikhan fekszenek és mindiet
inávban neglosszábbíva nem nesztkegymás.

Az évezdes problémá tokzó 5. posztalátum pedig kimondja, hogy:

- Ha egy gyenes ítgy ntesz két egyenes; hogy az egyt oldáni kelekző belső szógek
osszage kisebb két derdészógul, akkor e két egyenes a metszőnek ezen oldálán meghosszabbíva metszi egymaset kival févő i pont korli forgatot egyenesek krózil az a
BC párhuzamos az AM-mel amokyté elpatan tele. Mist fogalmazásban a forgatot egyenesek krózil az a
BC párhuzamos az AM-mel amokyté elpatan tele. Mist fogalmazásban a forgatot egyenesek krózil az a
nák, vagy egyszerűbben aszimpotának nevezte.

Azonosító								
JC1.								

Minta a Nemeuklideszi geometria feladathoz:

Bolyai János (1802-1860)

ismert, hogy a háromszógek szógeinek ősszege is aszerint egyenlő vagy kisebb két derekszógnél, hogy a síkja euklideszi vagy hiper-bolikus. kénél következik be ez az elpattanás. A két kutató ezt a szöget a párhuzamosság szögének nevezte. Mindketten eljutottak annak felismeréséig, hogy a párhuzamossági szőg a B pont és az AM Kettejük munkája között csupán annyi a lényeges különbség, hogy Lobacsevszkij a definíciót követően szétválasztja a két lehetséges esetet és az euklideszitől eltérő hiperbolikus geometria tételeit, míg Bolyai a két esetet együtt kezelve a kétféle geometria közös részét, az abszolút geometria tételeit dolgozta ki. Az az eredmény is közkísérlettel nem lehet eldönteni, hogy mikor, az lpha szög milyen érté-Mivel a forgatott egyenes egyre távolabb metszi az AM egyenest. egyenes közötti távolsággal összefüggésben van: $\Pi(\alpha)$

A hiperbolikus elnevezést a párhuzamos egyenes és a hiperbola ro-konitása magyarázza. E geometriában a párhuzamosok közötti távolság csókken, aszimptoti-kusan közelednek egymáshoz. Ugyancsak fontos különbséget jelent, hogy a balra forgatott egyenes által meghatározott párhuzamos nem azonos a jobbra forgatottal

Egy harmadik párhuzamosság

posztulátum elhagyásával kapott maradék axiómákból következik (bizonyítható), hogy a párhuzamosság szőge nem lehet derékszőgnél nagyobb, s ennek következménye, hogy a há-romszógek szógeinek ősszege sem lehet két derékszógnél nagyobb. A paralellákkal foglalkozó Gerolamo SACCHERI (1667-1733) és Johann Heinrich LAMBERT (1728-1777) eljutottak egy olyan felismerésig, hogy ezt a lehetőséget sem szabad elvetni. Meg kell vizsgálni olyan geometriai rendszerek lehetőségét is, amelyekben a szőgősszeg nagyobb 2π-nél. Mivel ez a maradék axiómáknak ellentmond, további axiómá(ka)i kell megváltoztatni, elhagyni vagy másokkal helyettesíteni. Georg Friedrich Bernhard RIEMANN (1826–1866) két ilyen változtatás lehetőségét mutatta meg, s ezzel két újabb nemeuklideszi rendszert konstruált

- Egyszeres elliptikus geometria:
- Az egyenes nem választja el egymástól a két félsík pontjait Két egyenesnek mindig van egy közös pontja.
 - a) Az egyenes nem választja e
 b) Két egyenesnek mindig var Kétszeres elliptikus geometria:
- Az egyenes elválasztja a két félsik pontjait. Két egyenesnek pontosan két közös pontja van. a

Az elliptikus geometria az euklideszi gömbfelületén érvényes szférikus geometriával rokon. A hiperbolikus geometria a pszeudoszféra felületi geometriájával modellezhető.

188

A három geometria összevetése

rájának összekapcsolása, mely ez utóbbiak ideális pontjainak száma és az egyenesíhez külső pontból húzható párhuzamosok száma közötti aralógiára utal. Ennek nyomán használjuk ezekt a jelzőket az Eukleidész (parabolikus), a Bolyai-Lobacsevszkij (hiperbólikus) és a Riemam Felix KLEINTŐL (1849–1925) származik a háromféle geometria és a kúpszeletek nomenklatú-(elliptikus) nevéhez kapcsolt geometriák megkülönböztetésére

Készítette Hack Frigyes

189

Ge ome tria

2. Mobilparkolás

A TKA Zrt. ügynökei autóikkal folyamatosan keresik fel cégük ügyfeleit a fővárosban. A parkolási díjak egyszerűbb elszámolása érdekében a cég egy mobiltelefonos alkalmazást fejlesztett ki, amellyel a cég dolgozói rögzítik a parkolás kezdetét és végét. A napi adatokat a cégvezetés egy táblázatban kapja meg, amely tartalmazza a gépkocsi rendszámát, a parkolás kezdetét, a parkolás végét, valamint a parkolási zóna számát. A parkolási zóna száma adja meg, hogy az adott helyen mennyi az óránkénti parkolási díj.

Feladata egy adott nap parkolási adatainak összesítése. Rendelkezésére áll két, tabulátorokkal tagolt, UTF-8 kódolású fájl: a parkolas.txt, amely az aznapi adatokat, és a dijak.txt, amely a zónákhoz tartozó tarifákat tartalmazza. Az állományban található tarifák óránként és forintban értendők.

A megoldás során vegye figyelembe a következőket:

- Segédszámításokat az adatokat tartalmazó utolsó oszloptól jobbra végezhet.
- Amennyiben lehetséges, a megoldás során képletet, függvényt, hivatkozást használjon, hogy az alapadatok módosítása esetén is a kívánt eredményeket kapja!
- Ha egy részfeladatban fel akarja használni egy korábbi részfeladat eredményét, de azt nem sikerült teljesen megoldania, használja a megoldását úgy, ahogy van, vagy írjon be valószínűnek tartott adatokat! Így ugyanis pontokat kaphat erre a részfeladatra is.
- 1. Töltse be táblázatkezelő program egyik munkalapjára az *A1*-es cellától kezdve a *parkolas.txt* fájl adatait, majd a munkalapot nevezze át "adatok"-ra! A munkafüzet egy másik munkalapjára töltse be ugyancsak az *A1*-es cellától kezdve a *dijak.txt* adatfájlt, és ezt a munkalapot nevezze át "dijszabas"-ra! A munkafüzetet mentse *mobil* néven a táblázatkezelő program alapértelmezett formátumában!
- 2. Határozza meg az *adatok* munkalapon másolható függvény segítségével a *Tarifa* oszlop celláiban a *dijszabas* munkalap adatait felhasználva az adott zónához tartozó óránkénti parkolási díj mértékét!
- 3. Képlet segítségével számítsa ki az *Időtartam* oszlopban a parkolás időtartamát, a *Díj* oszlopban pedig egész számra kerekítve a parkolási idő után fizetendő díjat! A parkolási díj egyenes arányos a felhasznált időtartammal. Például 280 Ft-os óránkénti parkolási díj esetén 1:39:18 (azaz 1 óra 39 perc 18 másodperc) után 463 Ft fizetendő.
- 4. Az *I3:K20* táblázatban képlet segítségével végezze el a következő számításokat! Határozza meg a *J3:J20* tartomány celláiban autónként az aznapi parkolások számát! A *K3:K20* tartomány celláiban pedig számítsa ki autónként a *Díj* oszlopban kiszámolt parkolási díjak összegét!
- 5. A *Fizetendő* cím mellett, a *K21*-es cellában képlet segítségével számítsa ki a mobilparkolást szolgáltató cégnek fizetendő teljes összeget! Ez az összeg az egyes autókra időarányosan számolt parkolási díjak összege, amelyhez hozzá kell adni minden parkolás után a tranzakciós díjat is. Az egy parkolásra jutó tranzakciós díjat a *dijszabas* munkalap *B9*-es cellájában találja. Ügyeljen arra, hogy a fizetendő összeg helyes legyen a tranzakciós díj módosulása esetén is!

gyakorlati vizsga 1611 6 / 12 2016. május 10.

Informatika — emelt szint Azonosító jel:																
--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--

- 6. Határozza meg képlet segítségével a *K24*-es cellában, hogy milyen rendszámú autó után kell a legnagyobb parkolási összeget fizetni aznap! A *K25*-ös cellában adja meg ezt az összeget! (Az adatok meghatározásánál a tranzakciós díjat nem kell figyelembe vennie, és feltételezheti, hogy pontosan egy ilyen autó van.)
- 7. Az *adatok* munkalapon az *E*, *G* és *K* oszlopok számértékei tizedesjegyek nélkül, pénznem formátumban jelenjenek meg! Az *I2:K21* tartomány formázását a mintának megfelelően alakítsa ki!

15 pont

Minta:

	А	В	С	D	E	F	G	Н	I	J	K
1	Rendszám	Érkezés	Indulás	Zóna	Tarifa	Időtartam	Díj				
2	TKA-06	8:00:37	9:39:55	3	280 Ft	1:39:18	463 Ft		Rendszám	Darab	Összeg
3	TKA-03	8:02:13	8:39:44	1	### Ft	0.37.30	□ Ft		TKA-01	4	1 033 Ft
4	TKA-17	8:05:23	8:43:06	6	#300 Ft	0.37.43	### Ft		TKA-02	(6)	1 etter Ft
5	TKA-04	8:06:24	9:25:54	2	### Ft	1, 100, 340	### Ft		TKA-03		1 311 Ft
6	TKA-02	8:12:28	8:42:46	3	⊒##D Ft	0.30.08	∌#⊪ Ft		TKA-04	3	11 (1188) Ft
7	TKA-08	8:19:05	10:15:13	3	### Ft	3.56.06	₩## Ft		TKA-05	3	1 3 1 Ft
8	TKA-16	8:21:18	8:48:46	3	JHID Ft	0.27.28	II.J# Ft		TKA-06	(6)	3 HHIII Ft
9	TKA-11	8:21:34	8:54:37	6	#(31) Ft	0.33.03	### Ft		TKA-07	3	1 4457 Ft
10	TKA-05	8:25:01	9:18:17	6	#EM Ft	0.53.06	#/# Ft		TKA-08	*	11 (HIIII) Ft
11	TKA-09	8:35:32	9:02:10	5	###D Ft	0.36.38	ham Ft		TKA-09	4	1 // Ft
12	TKA-03	8:50:14	9:48:27	3	### Ft	0.58.13	### Ft		TKA-10	*	8 3578 Ft
13	TKA-18	8:51:16	9:37:08	1	### Ft	0.45.52	11.566 Ft		TKA-11	*	(SHEE) Ft
14	TKA-07	9:00:02	10:14:08	4	3,310 Ft	1.0806	### Ft		TKA-12	3.	13 79810 Ft
15	TKA-10	9:01:13	9:39:55	6	#(31) Ft	0.38.42	### Ft		TKA-13	3	### Ft
16	TKA-12	9:05:08	9:58:53	2	### Ft	0.53.45	### Ft		TKA-14	2	13 394131 Ft
17	TKA-17	9:06:48	10:14:52	5	3880 Ft	1.00004	### Ft		TKA-15	-	II (IIII) Ft
18	TKA-01	9:06:54	11:06:33	1	### Ft	1.59.39	SHID Ft		TKA-16	3.	11 3815 Ft
19	TKA-11	9:17:42	9:31:20	1	1//1 Ft	0.13.38	##D Ft		TKA-17	7/	# ONLINE Ft
20	TKA-14	9:19:47	11:09:59	5	3880 Ft	1.50 1.2	(1188) Ft		TKA-18	7	11 (00875) Ft
21	TKA-16	9:19:55	11:17:55	4	3,340 Ft	3.58.00	### Ft		Fizeten		33-866 Ft
1	L-~~~		Ç	~~~							

Forrás:

1. Nemeuklideszi geometria

https://hu.wikipedia.org/wiki/Nemeuklideszi_geometria http://matematica.unibocconi.it/sites/default/files/-Janos_Bolyai,.jpg Utolsó letöltés: 2016.01.03

3. Bányászati területek

Bányászati területek Magyarországon: http://www.mbfh.hu/home/html/index.asp?msid=1&sid=0&hkl=146&lng=1 Utolsó letöltés: 2015.12.10.

gyakorlati vizsga 1611 7 / 12 2016. május 10.

Azonosító								
jel:								

3. Bányászati területek

A magyarországi hatósági engedéllyel rendelkező bányászati területek néhány adata áll rendelkezésünkre a telek.txt, a kapcsolo.txt és a nyersanyag.txt állományokban. A területek között nem szerepelnek a fosszilis energiahordozók bányáinak adatai.

1. Készítsen új adatbázist *mbt* néven! A mellékelt állományokat importálja az adatbázisba a fájlnévvel azonos táblanéven! Az állományok tabulátorral tagolt, UTF-8 kódolású szövegfájlok, az első soruk a mezőneveket tartalmazza. A létrehozás során állítsa be a megfelelő típusokat és a kulcsokat!

Táblák:

telek (id, telepules, muvmod, allapot, fedoszint, fekuszint)

id A bányatelek azonosítója (szám), ez a kulcs

település neve, amelyhez a bánya tartozik (szöveg)

muvmod A bánya művelési módja (szöveg), értéke külfejtés, mélyművelés, mélyfúrás,

külfejtés és mélyművelés lehet

allapot A bányászati tevékenység jellege (szöveg), értéke M, S, T és B lehet –

működő (M), szünetelő (S), tájrendező (T) és bezárt (B) – állapota szerint

fedoszint Fedőszint, ami a nyersanyagréteg felső szintje két tizedes pontossággal

méterben megadva a tengerszinthez képest (szám)

fekuszint Feküszint, ami a nyersanyagréteg alsó szintje két tizedes pontossággal

méterben megadva a tengerszinthez képest (szám)

kapcsolo (telekid, nyersanyagid)

telekid A bányatelek azonosítója (szám), kulcs

nyersanyagid Az ásványi nyersanyag azonosítója (szám), kulcs

nyersanyag (id, nev)

id Az ásványi nyersanyag azonosítója (szám), ez a kulcs

nev Az ásványi nyersanyag neve (szöveg)

A következő feladatok megoldásánál a lekérdezéseket és a jelentést a zárójelben olvasható néven mentse! Ügyeljen arra, hogy a lekérdezésben pontosan a kívánt mezők szerepeljenek, felesleges mezőt ne jelenítsen meg!

2. Sorolja fel lekérdezés segítségével azoknak a településeknek a nevét, ahol van szünetelő állapotú bányászati telek! A listát a művelési mód, azon belül a településnevek szerinti sorrendben jelenítse meg a minta szerint! (2szunet)

$\begin{array}{ccc} Informatika -\!$															
--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--

- 3. Lekérdezés segítségével határozza meg, hogy a tengerszint alatti bányákból mit bányásznak! Csak azokat a bányákat vegye figyelembe, amelyek teljes egészében a tengerszint alatt vannak! A listában minden név egyszer jelenjen meg! (*3negativ*)
- 4. A dolomit az építőipar széles körben alkalmazott nyersanyaga. Sorolja fel lekérdezés segítségével a működő dolomitbányák települését, fedőszintjét és feküszintjét! A "*dolomit*" a nyersanyag nevében tetszőlegesen szerepelhet. (*4dolomit*)
- 5. Lekérdezés segítségével írassa ki az első három legvastagabb rétegű, a nevében kavicsot tartalmazó nyersanyagot termelő bányatelek települését! Adja meg a település nevét, az ásványi nyersanyagréteg vastagságát és a nyersanyag nevét! (*5kavics*)
- 6. Adja meg a bányák közül azokat, ahol 450 és 550 méter közötti (a határokat is beleértve) tengerszint feletti magasságból nyersanyag termelhető ki! A listában a bánya települése és a bányászott nyersanyag jelenjen meg! (*6magas*)
- 7. Lekérdezés segítségével határozza meg, hogy melyik ásványi nyersanyagot bányásszák a legtöbb bányatelken! Írassa ki a nyersanyag nevét és a bányatelkek számát! Ha több ilyen van, akkor elegendő csak egyet megjeleníteni. (*7sok*)
- 8. Sok településen bezárnak bányákat, mert vagy kimerülnek, vagy a tájat túlságosan átrendezik, csúfítják. Vajon vannak-e olyan települések, ahol minden bányát bezártak? Készítsen lekérdezést, amellyel megkaphatja ezeket a településneveket, ha az alábbi lekérdezésbe a pontok helyére beilleszti! (*8bezar*)

SELECT telepules FROM telek WHERE telepules NOT IN (...)

9. Az agyag többféle minőségben és formában szerepel a bányászott nyersanyagok között. Készítsen jelentést, amely megjeleníti az "agyag" szórészletet tartalmazó nyersanyagok nevét, és az azokat kitermelő bányatelkek településnevét és állapotát! A jelentésben az állapottól függetlenül minden bánya szerepeljen! A felsorolás legyen a nyersanyag neve szerint csoportosítva a mintának megfelelően! A lista a nyersanyag neve, majd a település neve szerint rendezve jelenjen meg! A jelentés létrehozását lekérdezéssel vagy ideiglenes táblával készítse elő! A jelentés elkészítésekor a mintából a mezők sorrendjét, a címet és a fejléc tartalmát vegye figyelembe! A jelentés formázásában a mintától eltérhet. (9agyag)

30 pont

gyakorlati vizsga 1611 9 / 12 2016. május 10.

Azonosító								
jel:								

4. Ötszáz

Egy apróságokat árusító boltban minden árucikk darabja 500 Ft. Ha egy vásárlás során valaki egy adott árucikkből több darabot is vesz, a második ára már csak 450 Ft, a harmadik pedig 400 Ft, de a negyedik és további darabok is ennyibe kerülnek, tehát az ár a harmadik ugyanazon cikk vásárlása után már nem csökken tovább.

A pénztárhoz menők kosarában legalább 1 és legfeljebb 20 darab árucikk lehet. A kosarak tartalmát a penztar.txt fájl írja le, amelyben soronként egy-egy árucikk neve vagy az F karakter szerepel. A fájlban legfeljebb 1000 sor lehet. Az F karakter azt jelzi, hogy az adott vásárlónak nincs már újabb árucikk a kosarában, fizetés következik. Az árucikkek neve ékezet nélküli, több szóból is állhat, hossza legfeljebb 30 karakter.

Példa a penztar. txt fájl első néhány sorára:

```
toll
F
colostok
HB ceruza
HB ceruza
colostok
toll
szatyor
csavarkulcs
doboz
F
```

A példa alapján az első vásárló összesen 1 tollat vásárolt, ezért összesen 500 Ft-ot kell fizetnie. A második vásárlás során hatféle árucikket vásároltak – a HB ceruzából és a colostokból többet is –, összesen 3900 Ft értékben.

Készítsen programot, amely a penztar.txt állomány adatait felhasználva az alábbi kérdésekre válaszol! A program forráskódját mentse otszaz néven! (A program megírásakor a felhasználó által megadott adatok helyességét, érvényességét nem kell ellenőriznie, és feltételezheti, hogy a rendelkezésre álló adatok a leírtaknak megfelelnek.)

A képernyőre írást igénylő részfeladatok eredményének megjelenítése előtt írja a képernyőre a feladat sorszámát (például: 3. feladat:)! Ha a felhasználótól kér be adatot, jelenítse meg a képernyőn, hogy milyen értéket vár! Az ékezetmentes kiírás is elfogadott.

- 1. Olvassa be és tárolja el a penztar. txt fájl tartalmát!
- 2. Határozza meg, hogy hányszor fizettek a pénztárnál!
- 3. Irja a képernyőre, hogy az első vásárlónak hány darab árucikk volt a kosarában!
- 4. Kérje be a felhasználótól egy vásárlás sorszámát, egy árucikk nevét és egy darabszámot! A következő három feladat megoldásánál ezeket használja fel!

Feltételezheti, hogy a program futtasásakor csak a bemeneti állományban rögzített adatoknak megfelelő vásárlási sorszámot és árucikknevet ad meg a felhasználó.

- 5. Határozza meg, hogy a bekért árucikkből
 - a. melyik vásárláskor vettek először, és melyiknél utoljára!
 - b. összesen hány alkalommal vásároltak!

Informatika — emelt szint Azonosító jel:																
--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--

- 6. Határozza meg, hogy a bekért darabszámot vásárolva egy termékből mennyi a fizetendő összeg! A feladat megoldásához készítsen függvényt *ertek* néven, amely a darabszámhoz a fizetendő összeget rendeli!
- 7. Határozza meg, hogy a bekért sorszámú vásárláskor mely árucikkekből és milyen mennyiségben vásároltak! Az árucikkek nevét tetszőleges sorrendben megjelenítheti.
- 8. Készítse el az osszeg. txt fájlt, amelybe soronként az egy-egy vásárlás alkalmával fizetendő összeg kerüljön a kimeneti mintának megfelelően!

45 pont

Minta a szöveges kimenetek kialakításához:

```
2. feladat
A fizetések száma: 141
3. feladat
Az első vásárló 1 darab árucikket vásárolt.
4. feladat
Adja meg egy vásárlás sorszámát! 2
Adja meg egy árucikk nevét! kefe
Adja meg a vásárolt darabszámot! 2
5. feladat
Az első vásárlás sorszáma: 5
Az utolsó vásárlás sorszáma: 139
32 vásárlás során vettek belőle.
6. feladat
2 darab vételekor fizetendő: 950
7. feladat
1 toll
1 szatyor
1 doboz
1 csavarkulcs
2 colostok
2 HB ceruza
```

Részlet az osszeg. txt fájlból:

```
1: 500
2: 3900
3: 2300
4: 1000
5: 2500
6: 2900
7: 950
```

11 / 12 2016. május 10.

Informatika — emelt szint	Azonosító jel:							

	maximális pontszám	elért pontszám
Szövegszerkesztés, prezentáció, grafika, weblapkészítés 1. Nemeuklideszi geometria	30	
Táblázatkezelés 2. Mobilparkolás	15	
Adatbázis-kezelés 3. Bányászati területek	30	
Algoritmizálás, adatmodellezés 4. Ötszáz	45	
A gyakorlati vizsgarész pontszáma	120	

	javító tanár	
Dátum:		

	elért pontszám egész számra kerekítve	programba beírt egész pontszám
Szövegszerkesztés, prezentáció, grafika, weblapkészítés		
Táblázatkezelés		
Adatbázis-kezelés		
Algoritmizálás, adatmodellezés		

javító tanár	jegyző