REAL ANALYSIS: LECTURE 4

SEPTEMBER 18TH, 2023

1. Preliminaries

So, where were we. Last class we began listing properties (axioms) of \mathbb{R} , and we wish to continue until we *uniquely define* \mathbb{R} . To recap, here's the axioms we've written already:

- (A1) $\exists + : \mathbb{R} \times \mathbb{R} \to \mathbb{R}$
- (A2) + is associative
- (A3) + is commutative
- (A4) \exists additive identity, denoted 0
- (A5) \exists additive inverses. We'll denote the additive inverse of x by -x. Notice the word "the" is only allowed since we proved additive inverses are unique.

We call any set G with an operation + that satisfies (A1)-(A5) is called an **abelian group**. You will study this much more in abstract algebra. In fact, (A6) - (A10) is basically the exact repeat for an operation \cdot (multiplication).

- (A6) $\exists \cdot : \mathbb{R} \times \mathbb{R} \to \mathbb{R}$
- (A7) · is associative
- (A8) · is commutative
- (A9) \exists multiplicative identity, denoted 1 (with $1 \neq 0$: otherwise \mathbb{R} could be 0).
- (A10) For every $x \neq 0, \exists$ a multiplicative inverse. We'll denote the multiplicative inverse of x by x^{-1} (or $\frac{1}{x}$).

Finally, we have a property connecting + and \cdot , know as the distributive property:

(A11) Distributive property: $x \cdot (y+z) = x \cdot y + x \cdot z$.

Any set F with two operations + and \cdot that satisfy (A1) - (A11) is called a **field**.

Here Emily asked an interesting question: does (A11) tell us that (meta-analytically) multiplication is repeated addition, i.e. that $2 \cdot 2 = 2 \cdot (1+1) = 2 \cdot 1 + 2 \cdot 1 = 2+2$. In fact, it tells us even more! For example, $\pi \cdot e$ still somehow retains this connection with addition, though the intuition isn't as clear.

Ok, let's use these axioms to prove something analytically:

Proposition 1. If S satisfies (A1) - (A11) (i.e. if S is a field), then

$$x \cdot 0 = 0 \ \forall x \in S$$

Take 1: (False Proof!)

Proof. Suppose $\exists x \in S \text{ s.t. } x \cdot 0 \neq 0$. Choose $y \in S$. The

$$x \cdot (y + -y) \neq 0$$
 for some $y \in S$
$$x \cdot y + x \cdot (-y) \neq 0$$
 by (A11)
$$x \cdot y + -x \cdot y \neq 0$$
 hmm...

but xy + -(xy) = 0 by definition of additive inverse. Ideally this would be the contradiction we wanted, but Annie realized that we can't assume (and never proved) $-(x \cdot y) = x \cdot -y$. In other words, we want to be able to "pull out" the negative sign, i.e. that $-y = -1 \cdot y$. Ok, let's try again.

Take 2.0 (Yana's Correct Proof!):

Proof.

$$x \cdot 0 = x(0+0) \qquad \text{since } 0 = 0+0 \\ x \cdot 0 = x \cdot 0 + x \cdot 0 \qquad \text{by distributing} \\ -(x \cdot 0) + x \cdot 0 = (x \cdot 0 + x \cdot 0) + -(x \cdot 0) \qquad \text{by adding additive inverses} \\ 0 = (x \cdot 0 + x \cdot 0) + -(x \cdot 0) \qquad \text{definition of additive inverses} \\ 0 = (x \cdot 0) + (x \cdot 0 + -(x \cdot 0)) \qquad \text{by associativity} \\ 0 = x \cdot 0 + 0 \qquad \text{by definition of additive inverse} \\ 0 = x \cdot 0 \qquad \text{by definition of additive inverse} \\ 0 = x \cdot 0 \qquad \text{by definition of additive inverse} \\ 0 = x \cdot 0 \qquad \text{by definition of additive inverse} \\ 0 = x \cdot 0 \qquad \text{by definition of additive inverse} \\ 0 = x \cdot 0 \qquad \text{by definition of additive inverse} \\ 0 = x \cdot 0 \qquad \text{by definition of additive inverse} \\ 0 = x \cdot 0 \qquad \text{by definition of additive inverse} \\ 0 = x \cdot 0 \qquad \text{by definition of additive inverse} \\ 0 = x \cdot 0 \qquad \text{by definition of additive inverse} \\ 0 = x \cdot 0 \qquad \text{by definition of additive inverse} \\ 0 = x \cdot 0 \qquad \text{by definition of additive inverse} \\ 0 = x \cdot 0 \qquad \text{by definition of additive inverse} \\ 0 = x \cdot 0 \qquad \text{by definition of additive inverse} \\ 0 = x \cdot 0 \qquad \text{by definition of additive inverse} \\ 0 = x \cdot 0 \qquad \text{by definition of additive inverse} \\ 0 = x \cdot 0 \qquad \text{by definition of additive inverse} \\ 0 = x \cdot 0 \qquad \text{by definition of additive inverse} \\ 0 = x \cdot 0 \qquad \text{by definition of additive inverse} \\ 0 = x \cdot 0 \qquad \text{by definition of additive inverse} \\ 0 = x \cdot 0 \qquad \text{by definition of additive inverse} \\ 0 = x \cdot 0 \qquad \text{by definition of additive inverse} \\ 0 = x \cdot 0 \qquad \text{by definition of additive inverse} \\ 0 = x \cdot 0 \qquad \text{by definition of additive inverse} \\ 0 = x \cdot 0 \qquad \text{by definition of additive inverse} \\ 0 = x \cdot 0 \qquad \text{by definition of additive inverse} \\ 0 = x \cdot 0 \qquad \text{by definition of additive inverse} \\ 0 = x \cdot 0 \qquad \text{by definition of additive inverse} \\ 0 = x \cdot 0 \qquad \text{by definition of additive inverse} \\ 0 = x \cdot 0 \qquad \text{by definition of additive inverse} \\ 0 = x \cdot 0 \qquad \text{by definition of additive inverse} \\ 0 = x \cdot 0 \qquad \text{by definition of additive inverse} \\ 0 = x \cdot 0 \qquad \text{by definition of additive inverse} \\ 0 = x \cdot 0 \qquad \text{by definition of additive inverse} \\ 0 = x \cdot 0 \qquad \text{by$$

Notice that we use distributivity. Intuitively we *had* to use distributivity, since distributivity connects + and \cdot , and this proposition does the same. Here's an example of something that doesn't fulfill (A11) that also doesn't fulfill the above proposition:

Example 1. Consider $S = \{0, 1\}$ where + is addition mod 2 and \cdot is such that

- (1) $0 \cdot 0 = 1$
- (2) $0 \cdot 1 = 0$
- (3) $1 \cdot 0 = 0$
- (4) $1 \cdot 1 = 1$

It turns out S as defined satisfies (A1) - (A10) but *fails* (A11) (check this yourself!). However here $0 \cdot 0 = 1 \neq 0$, which means the above proposition doesn't hold.

So, did we define \mathbb{R} . Nope, there's still lots of stuff that satisfy (A1)-(A11) (i.e. \mathbb{R} isn't the only field). Examples of Fields:

- (1) \mathbb{R} under usual $+, \cdot$
- (2) \mathbb{Q} under usual $+, \cdot$
- (3) $\mathbb{Z} \pmod{2}$ under $+, \cdot \pmod{2}$
- (4) $\mathbb{Z} \pmod{7}$ under $+, \cdot \pmod{7}$

Here \mathbb{Z} (mod 7) means the set \mathbb{Z} (mod 7) = $\{0,1,2,3,4,5,6\}$ and a+b (mod 7) means add a+b normally (if a=6,b=4 then a+b=10) then subtract 7 until you get to something in the set $10-7=3\in\mathbb{Z}$ (mod 7). Multiplication modulo 7 is exactly analogous. If a=6,b=4 then $a\cdot b=24$ then subtract 7 three times to get to $24-7-7-7=3\in\mathbb{Z}$ (mod 7), which means $a\cdot b$ (mod 7) = 3. Ok, so we're not done yet. Let's keep going.

2. Order Axiom

Recall our intuition about the next axioms has to do with relations between two arbitrary numbers. Specifically, given $x, y \in \mathbb{R}$, one of x or y is at least as large as the other. Formally, there is a **trichotomy**: exactly one of

- (1) x > y
- (2) x = y
- (3) x < y

holds. We can't literally use this as (A12) since we have no idea what > means, but let's try to capture it.

Intuition 1. What do > and < mean? Here's some initial thoughts:

- (1) $x > y \iff x y$ is positive
- (2) $x < y \iff x y$ is negative (i.e. y x is positive)
- (3) $x = y \iff x y = 0$.

This indicates that is suffices to define **positive**. Let's do this.

Axiom 12 (A12): $\exists \mathbb{P} \subseteq \mathbb{R}$ s.t.

- (i) \mathbb{P} is closed under + and \cdot
- (ii) Trichotomy: $\forall x \in \mathbb{R}$ exactly one of the following hold
 - (a) $x \in \mathbb{P}$
 - (b) $-x \in \mathbb{P}$
 - (c) x = 0

We can extend this to establish some notation. If $x \in \mathbb{P}$ then x is positive. If $-x \in \mathbb{P}$ then x is negative. If x > 0 then x is positive.

Now, our first theorem. Get ready for some real math:

Theorem 1. 1 > 0.

Ok, before jumping into a proof let's brainstorm:

Intuition 2. Lexi suggested it's possible to use the fact that 1 (something we know isn't 0). Thus $1 \in \mathbb{P}$ or $-1\mathbb{P}$. Edith also noticed that, for every positive number $x, 1 \cdot x \in \mathbb{P}$.

Miles used a lemma to complete the proof:

Proof. Here's a lemma we will take for granted for now.

Lemma 1.
$$-1 \cdot -1 = -(-1)$$
.

With this, let's try to prove 1 > 0. Suppose $-1 \in \mathbb{P}$. By the above lemma, $-1 \cdot -1 = -(-1) = 1$ (since additive inverses are unique!). Since \mathbb{P} is closed, $-1 \cdot -1 = 1 \in \mathbb{P}$, which contradicts trichotomy (more than one hold). The lemma is proved in the book.

We claim that \mathbb{Z} (mod 2) doesn't satisfy (A12), i.e. it doesn't have order.