HW2 Report

109550167 陳唯文

1. Preprocessing

在這次的作業,我總共使用了下列 4 個 preprocess 的方式

- i. 移除 stopword:使用 nltks 内的 stopword 列表將句子中的部分單字去除
- ii. 移除標點符號和 html 標籤:將句子中的標點符號和 html 標籤如

 以空格取代
- iii. 去除多餘的空白,並將每個字元都轉為小寫
- iv. Lemmatization: 詞性還原,首先使用 pos_tag 判斷每個詞的詞性,再配合 nltk.stem 內的 WordNetLemmatizer 使用。還原後的範例結果如下watching -> watch ate -> eat

prettier -> pretty

cars ->car

Example sentence

Original:

After Preprocessing:

one reviewer mention watch 1 oz episode hook

2. Number of Feature

Number of feature	F1-score	Precision	Recall
350	0.6885	0.6963	0.6907
500	0.7033	0.7108	0.7053
800	0.7194	0.728	0.7214
1000	0.7312	0.7412	0.7334
1250	0.7381	0.7487	0.7403

1500	0.7468	0.7575	0.7489
2000	0.6647	0.6791	0.6693

上面的表格為經過 preprocessing 後的資料更改不同數量的 feature 結果。如同上方表格所示,隨著 feature number 不斷升高,F1-score 的表現也越來越好,然後在 feature number = 1500 時,達到最佳的 F1-score。但當 feature number 增加到 2000 之後,F1-score 便大幅度下降。這可能是因為 feature 越多,越能夠幫助 bigram 模型判斷 sentiment,但當 feature 達到一定數量時,繼續增加的 feature 反而會變成多餘的資訊,並使 bigram model 無法準確的判斷。

3. Comparison

Model	preprocess	F1-score	Precision	Recall
Bert	0	0.9317	0.9324	0.9311
Bert	1	0.9026	0.9047	0.9027
Bigram	0	0.7057	0.7088	0.7065
Bigram	1	0.7033	0.7108	0.7053

從實驗出的結果可以發現 Bert 在每個方面的表現皆是遠勝於 Bigram 模型的。可能是因為 Bert 是一個深度雙向的模型,可以根據不同的上下文產生不同的詞向量,使它能夠更加精確的判斷一段話的情緒。而相較之下,我們寫的 Bigram 模型只是利用相鄰詞彙的機率,統計出機率較大的字詞組合,對於整段話的邏輯和語意辨識並沒有太大的幫助。從兩個模型的執行時間也可以知道 Bert 的計算量應該是遠遠超過 N-gram 模型的。

4. Discussion

a. Can bi-gram model outperform DistilBert?

不行。由於 Bert 在進行訓練時還會考慮到上下文的關係,並能分辨具有不同意義的相同的詞彙,產生不同分類。而 bi-gram 模型只會考慮到前一個詞出現時的條件機率,對語意的辨識自然不如 Bert。

b. Can bi-gram consider long-term dependencies?

不行。如同上一題提到的,bi-gram 模型只會考慮相鄰兩個詞出現的機率,因此當句子越長,越前面的詞彙對於當前詞彙的影響越會降低,而且 N-gram 模型也沒有透過前後文分辨語意的能力。

c. Would the preprocessing method improve the performance of the bi-gram model?

	Perplexity	F1-score
全部 preprocess	31.726	0.7033
不做任何 preprocessing	45.901	0.7057
保留 stopword	60.933	0.7166
不做詞性還原	21.942	0.7004
保留標點符號	38.271	0.6973

由上面的表格可以得知,不同的 preprocessing method 確實可以改變 bi-gram model 的表現,甚至可以透過採用不同組合的 preprocessing 方法得出最佳的 F1-score。而從實做出來的結果,發現當保留 stopword 時會有最佳的 F1-socre,可能是因為常用詞彙的增加,使判斷的結果較之前精確。保留標點符號時的 F1-score 則是最差的,從這裡可以推論去除多餘的資訊,也就是 preprocessing,對於模型的精確度增加確實有它的必要性。

但從結果也可以發現,perplexity 和 F1-score 的好與壞沒有相當的關連性,而這或許是因為 perplexity 的大小是用機率來判斷一個句子出現的可能性,也就是句子的通順程度,因此對判斷 sentiment 並沒有太大的關聯。

d. If you convert all words that appeared less than 10 times as [UNK], would it in general increase or decrease the perplexity on the previously unseen data compared

to an approach that converts only a fraction of the words that appeared just once as [UNK]? Why or why not?

Perplexity 會降低,因為將出現頻率較低的詞轉換成 [UNK],使得相乘的機率提高,entropy 降低,最後的 perplexity 也會降低

此方法相較於將只出現一次的詞轉為[UNK]會更有效,因為將無效詞的範圍提高,會將更多低頻率的詞減少,相乘的機率也會因此提高。

5.Problem

在寫這次的 hw 一開始遇到的困難就是要先去搞懂 Bert 跟 N-gram model 的功能,使用的目的和演算法,才能慢慢了解我們這次 hw 的目標和應該要實行哪些 function,如果沒有先去查好資料,很容易不懂自己現在寫的東西應該具備什麼樣的功能。還有一開始在寫 part1 時不太了解 model 跟 feature 應該要回傳什麼東西,因此卡了一段時間,幸好網路上有蠻多資料在講解 n-gram,而且在寫的過程也會對整個模型更加熟悉,所以經過慢慢摸索之後,終於完成這次的HW。