Department of Computer Science Data Structures (CSC211) Final Exam First Semester 2006-07 Date: 6/1/1428H

Time: 3 hours Marks: 100

Question 1 (25 marks)

You are to analyze a page of text to determine the occurrence of words that are palindromes (a palindrome is a word which reads the same forward and backward e.g. mom, civic, madam, etc.). Assume that maximum possible length of a palindrome is 15. Following operations are to be performed. (i) Determining the total number of palindromes of a particular length occurring in the page, (ii) determining the total number of occurrences of a particular palindrome, and (iii) printing out the locations of the occurrences of a palindrome (location of a palindrome is its line number).

- (a) Suggest *two different* data structures (or ADTs) for the above task by drawing the graphical representation of each data structure and labeling it clearly.
- (b) What would be the (worst case) time complexity of the above operations for each of the data structures you suggested?

Question 2. (15 marks)

Write a new method for the binary search tree class (BST) that takes two keys, *low* and *high*, and prints all elements X that are in the range specified by *low* and *high*.

void printBetween(int low, int high)

Question 3. (15 marks)

- (a) Convert the following array of integers into a min-heap and show the resulting heap as an array and as a tree. The array is {10, 12, 1, 14, 6, 5, 8, 15, 3, 9, 7, 4, 11, 13, 2}. State the operation you used to convert it into a heap.
- (b) From the heap you obtained above delete the minimum element (deleteMin) twice and show the result after each deletion as an array.

Question 4. (15 marks)

Use the hash function H(key) = key mod 10 to store the sequence of integers: 4371, 1323, 6173, 4199, 4344, 9679, 1989 in a hash table of TableSize = 10. Show the resulting hash table when using:

- (a) Linear rehashing
- (b) External chaining
- (c) Coalesced chaining with cellar size of five and hash function $H(key) = key \mod 5$.

Question 5. (15 marks)

- (i) In the AVL tree shown below insert key 4 and show the resulting tree.
- (ii) From the AVL tree shown below delete key 1 and show the resulting tree.

Question 6. (15 marks)

(a) Insert key 19 in the B+-tree of order 3 shown below and show the resulting tree on a separate diagram.

(b) From the B+-tree of order 3 shown below: (i) first delete key 25 and show the resulting tree in a separate diagram, (ii) next delete key 10 from the tree you obtained in (i) and show the resulting tree in a separate diagram.

Using Sift down

Q 3-C 10/12/1/14/6/5/8/15/3/9/ 7 8 9 10/12/1/14/6/2 2/15/3/9/7/5/11/13/8 10/12/10/16/4/2/15/3/9/7/5/11/13/8 10/12/1/3/6/4/2/15/14/9/7/5/11/13/8/ 9 10 7 13/6/4/2/15/14/9 7 8 9 10 11 4/2/15/14/9/7/ 3/0/12/6 14/ 8 9 1 | 3 | 2 | 12 | 6 | 4 | 8 | 15 | 14 | 9 | 7 | 5 | 11 | 13 | 10 |

(14)

Q6-9 Original Thee: order=3

1945

9,20,30 35,37,39 45,49,50 Insent 19 9, 19, 20, 30 35, 37, 39 45, 49,50 9,19 20,30 35,37,39 45,49,50 20 45 45,49,50

orisinal tree order = 3 20 35,39,50 8,10 9,15 35,39,50 8,16 clelete 10 20 B 39,50 8,9,15

15