University of Hawai'i

Last name:			
T			
First name:		 	

Question:	1	2	3	4	Total
Points:	15	15	15	5	50
Score:					

Instructions:

- Write your complete name on your copy.
- Answer all 4 questions below.
- Write your answers directly on the questionnaire.
- Show ALL your work to have full credit.
- Draw a square around your final answer.
- Return your copy when you're done or at the end of the 50min period.
- No electronic devices allowed during the exam.
- Scientific calculator allowed only (no graphical calculators).
- Turn off your cellphone(s) during the exam.
- Lecture notes and the textbook are not allowed during the exam.

Your	Signature:	

_ (15 pts)

Let $T: \mathbb{R}^3 \to \mathbb{R}^3$ be defined by T(x, y, z) = (2y, z, z).

- (a) (5 Pts) Show that T is a linear transformation.
- (b) (5 Pts) Find the kernel of T and its dimension.
- (c) (5 Pts) Using the Dimension Theorem, deduce the rank of T.

Let $V = \mathbb{R}^3$. Let B be the standard basis $\{(1,0,0),(0,1,0),(0,0,1)\}$ and let the set $D = \{(1,2,0),(0,-1,2),(0,2,0)\}$ be another basis of \mathbb{R}^3 .

- (a) (10 Pts) Knowing that
 - (1,0,0) = a(1,2,0) + b(0,-1,2) + c(0,2,0), where a = 1, b = 0, c = -1;
 - (0,1,0) = a(1,2,0) + b(0,-1,2) + c(0,2,0), where a = 0, b = 0, c = 1/2;
 - (0,0,1) = a(1,2,0) + b(0,-1,2) + c(0,2,0), where a = 0, b = 1/2, c = 1/4;

Find the change matrix $P_{D \leftarrow B}$. Justify carefully your answer.

(b) (5 Pts) Let T(x, y, z) = (2y, z, z). Find the matrix representation of T on the basis B, that is $M_B(T)$.

Let $U = \text{span}\{(-1,0,3),(0,-3,2)\}.$

- (a) (3 Pts) Are (-1,0,3) and (0,-3,2) orthogonal?
- (b) (5 Pts) What is the dimension of U. Justify carefully your answer.
- (c) (5 Pts) Using the Gram-Schmidt process, transform the set of vectors $\{(-1,0,3),(0,-3,2)\}$ in a set of orthogonal vectors F.
- (d) (2 Pts) Illustrate visually the Gram-Schmidt orthogonalization process for two vectors in \mathbb{R}^2 .

Assume that $T: V \to \mathbb{R}^2$ is a linear transformation where V is a vector space and \mathbb{R} is the vector space of real numbers. Let $\{\mathbf{v_1}, \mathbf{v_2}, \mathbf{v_3}\}$ be a basis of V.

- (a) (1 Pt) If $T(\mathbf{v_1}) = (2,2), T(\mathbf{v_2}) = (1,2)$ and $T(\mathbf{v_3}) = (2,1),$ show that $-3\mathbf{v_1} + 2\mathbf{v_2} + 2\mathbf{v_3} \in (2,1)$ $\ker T$. Explain carefully your answer.
- (b) (4 Pts) If $T(\mathbf{v_1})$, $T(\mathbf{v_2})$ and $T(\mathbf{v_3})$ are defined as in part (a), find the nullity of T. Explain carefully your answer.