階数3の等質開凸錐の線形非同値類について

On linearly non-isomorphism classes of homogeneous cones of rank 3

Hideto Nakashima

Kyushu University

January 7, 2018

Workshop on Representation Theory

Motivation

Theorem 1 (Ishi 2006).

Any homogeneous cone can be described in a matrix form as

$$\left\{ x = \begin{pmatrix} x_1 I_{n_1} & {}^{t}X_{21} & \cdots & {}^{t}X_{r1} \\ X_{21} & x_2 I_{n_2} & {}^{t}X_{r2} \\ \vdots & \ddots & \vdots \\ X_{r1} & X_{r2} & \cdots & x_r I_{n_r} \end{pmatrix}; \quad x_1, \dots, x_r \in \mathbb{R}, \\ X_{kj} \in \mathcal{V}_{kj} \ (j < k) \right\}.$$

Here, \mathcal{V}_{kj} are vector subspaces of $\mathrm{Mat}(n_k,n_j;\,\mathbb{R})$ satisfying

$$X_{kj} X_{ji} \in \mathcal{V}_{ki}, \quad X_{ki} {}^t X_{ji} \in \mathcal{V}_{kj}, \quad X_{kj} {}^t X_{kj} \in \mathbb{R} I_{n_k}$$

for $X_{kj} \in \mathcal{V}_{kj}$.

We want to know more concrete structures of \mathcal{V}_{kj} 's.

Examples

 $ightharpoonup \Omega = \operatorname{Herm}(3, \mathbb{C})^*$ is linearly isomorphic to

$$\left\{X = \begin{pmatrix} a & 0 & y_1 & -y_2 & z_1 \\ 0 & a & y_2 & y_1 & z_2 \\ y_1 & y_2 & b & 0 & x_1 \\ -y_2 & y_1 & 0 & b & x_2 \\ z_1 & z_2 & x_1 & x_2 & c \end{pmatrix}; X \text{ is positive definite} \right\}.$$

 $ightharpoonup \Omega = \operatorname{Herm}(3, \mathbb{H})^*$ is linearly isomorphic to

$$\left\{X = \begin{pmatrix} aI_4 & R_y & \boldsymbol{z} \\ {}^tR_y & bI_4 & \boldsymbol{x} \\ {}^t\boldsymbol{z} & {}^t\boldsymbol{x} & c \end{pmatrix}; X \text{ is positive definite} \right\}.$$

Here, we identify \mathbb{H} with \mathbb{R}^4 via the standard basis and R_{α} ($\alpha \in \mathbb{H}$) is a right multiplication op. of quaternion.

One parameter family

▶ Vinberg (1963, p. 397) says

"If $n_{12} = n_{23} = 2$, $n_{13} = 4$, then we obtain a one-parameter family of non-isomorphic T-algebras. It corresponds to a one-parameter family of nonisomorphic convex homogeneous cones of dimension 11."

The following question arises naturally.

How do we realize such cones with parameters in a matrix form?

▶ This question is answered by Yamasaki–Nomura 2015.

One parameter family

Theorem 2 (Yamasaki-Nomura 2015).

The one-parameter family of non-isomorphic homogeneous cones can be realized in a matrix form as

$$\Omega_{\lambda} := \left\{ \begin{pmatrix} aI_4 & X_{\lambda}(\boldsymbol{y}) & \boldsymbol{z} \\ {}^tX_{\lambda}(\boldsymbol{y}) & bI_2 & \boldsymbol{x} \\ {}^t\boldsymbol{z} & {}^t\boldsymbol{x} & c \end{pmatrix}; & \boldsymbol{x}, \boldsymbol{y} \in \mathbb{R}^2 \\ & \boldsymbol{z} \in \mathbb{R}^4 \end{pmatrix} \cap \mathcal{S}_7^*,$$

where $X_{\lambda}(\boldsymbol{y})$ $(\lambda \in [0,1])$ is defined as

$$X_{\lambda}(oldsymbol{y}) := egin{pmatrix} y_1 & \lambda y_2 \ y_2 & -\lambda y_1 \ 0 & \lambda' y_2 \ 0 & \lambda' y_1 \end{pmatrix} \quad egin{bmatrix} oldsymbol{y} = egin{pmatrix} y_1 \ y_2 \end{pmatrix}, \ \lambda' := \sqrt{1-\lambda^2}. \end{pmatrix}$$

Here, $S_7^* = \{X \in \text{Sym}(7, \mathbb{R}); X \text{ is positive definite}\}.$

What we consider

In this talk, we shall deal with homogeneous cones of rank 3.

Problem. Let Ω be a homogeneous cone of rank 3.

- 1. Describe Ω in a matrix form similar to Yamasaki–Nomura.
- 2. Determine a parameter set Λ of inequivalent classes, e.g. $\Lambda \simeq [0,1]$ in the case of Yamasaki–Nomura.

Today's topic.

- 1. Give a method to describe Ω in the matrix form.
- 2. Give an explicit formula of the parameter sets Λ for lower rank cases.

Notations

- ▶ *V* : a finite-dimensional real vector space,
- $ightharpoonup \Omega$: a homogeneous cone of rank 3 in V.
 - One has the normal decomposition of V:

$$V = \begin{pmatrix} \mathbb{R}c_1 & V_{21} & V_{31} \\ V_{21} & \mathbb{R}c_2 & V_{32} \\ V_{31} & V_{32} & \mathbb{R}c_3 \end{pmatrix}, \quad n_{kj} = \dim V_{kj}.$$

- ▶ Then, we call Ω a homogeneous cone of type (n_{32}, n_{21}, n_{31}) .
- ▶ $N = V_{32} \oplus V_{21} \oplus V_{31}$: the corresponding N-algebra.
- $ightharpoonup r, s, n \in \mathbb{N}: \quad r \leftrightarrow n_{32}, \quad s \leftrightarrow n_{21}, \quad n \leftrightarrow n_{31}.$

$$\begin{split} \mathcal{S}_m^* &:= \{x \in \operatorname{Sym}(m,\mathbb{R}); \ x \text{ is positive definite} \}\,, \\ \overline{\mathcal{S}_m^*} &:= \{x \in \operatorname{Sym}(m,\mathbb{R}); \ x \text{ is positive semi-definite} \}\,, \\ \operatorname{Alt}_m &:= \{X \in \operatorname{Mat}(m,\mathbb{R}); \ ^tX = -X\}\,. \end{split}$$

Isomorphic classes

Homogeneous cones of rank 3

N-algebras of rank 3

 \updownarrow (Definition of N-algebras)

Bilinear products
$$ullet$$
 s.t. $\|oldsymbol{x}_{32}ulletoldsymbol{x}_{21}\|_{31} = \|oldsymbol{x}_{32}\|_{32} imes \|oldsymbol{x}_{21}\|_{21}$

 \updownarrow (Fix an ONB of N-algebras, Kaneyuki–Tsuji 1974)

Structure constants of the product ullet correspond to $\left(I_{n_{32}\times n_{21}}+\operatorname{Alt}_{n_{32}}\otimes\operatorname{Alt}_{n_{21}}\right)\cap\overline{\mathcal{S}_{n_{32}\times n_{21}}^*}$

Analysis of the bilinear product •

- $lackbox \{m{e}^a_{kj}\}_a\colon \mathsf{ONB} \;\mathsf{of}\; V_{kj}$
- $igraphi^{ab}_c$: the structure constants of ullet: $e^a_{32} ullet e^b_{21} = \sum_{c=1}^{n_{31}} \beta^{ab}_c e^c_{31}$.

The norm condition yields that, if $a \neq a'$ or $b \neq b'$ in (ii),

(i)
$$\sum_{c=1}^{n_{31}} (\beta_c^{ab})^2 = 1$$
 (ii) $\sum_{c=1}^{n_{31}} (\beta_c^{ab} \beta_c^{a'b'} + \beta_c^{ab'} \beta_c^{a'b}) = 0$.

▶ (ij): double indices, put in the lexicographic order $(1 \le i \le n_{32} \text{ and } 1 \le j \le n_{21})$

The above equations show that $B:=(\beta_c^{ab})_{(ab)\times c}$ satisfies

$$B^t B \in \left(I_{n_{32} \times n_{21}} + \operatorname{Alt}_{n_{32}} \otimes \operatorname{Alt}_{n_{21}}\right) \cap \overline{\mathcal{S}_{n_{32} \times n_{21}}^*}.$$

Analysis of the bilinear product •

Define. For $r, s, n \in \mathbb{N}$, we set

$$\mathcal{A}^*(r,s) := (I_{r \times s} + \operatorname{Alt}_r \otimes \operatorname{Alt}_s) \cap \overline{\mathcal{S}_{r \times s}^*},$$

$$\mathcal{B}(r,s;n) := \{ B \in \operatorname{Mat}(rs,n; \mathbb{R}); \ B^t B \in \mathcal{A}^*(r,s) \}.$$

- $ightharpoonup \Omega$: homogeneous cone of type (r, s, n)
- \Rightarrow $N = V_{32} \oplus V_{21} \oplus V_{31}$: the corresponding N-algebra of rank 3
- \Rightarrow •: $V_{32} \times V_{21} \rightarrow V_{31}$: the product of the N-algebra
- $\Rightarrow B = (\beta_c^{ab})_{(ab) \times c}$: matrix of structure constants w.r.t. \bullet
- $\Rightarrow B^t B \in \mathcal{A}^*(r,s) \qquad \Leftrightarrow \qquad B \in \mathcal{B}(r,s;n)$

Analysis of the bilinear product •

- ► Conversely, take $B = \begin{pmatrix} B_1 \\ \vdots \\ B_n \end{pmatrix} \in \mathcal{B}(r,s;n)$, $B_i \in \mathrm{Mat}(s,n;\mathbb{R})$.
- ► Put

$$X_B(\boldsymbol{y}) := {}^t\!B \cdot (I_r \otimes \boldsymbol{y}) = ({}^t\!B_1 \boldsymbol{y}, \dots, {}^t\!B_r \boldsymbol{y})$$

and define a bilinear map ullet: $\mathbb{R}^r imes \mathbb{R}^s o \mathbb{R}^n$ by

$$\boldsymbol{x} \bullet \boldsymbol{y} := X_B(\boldsymbol{y}) \boldsymbol{x} \quad (\boldsymbol{x} \in \mathbb{R}^r, \ \boldsymbol{y} \in \mathbb{R}^s).$$

- Namely, $X_B(y)$ is a right multiplication operator.
- ▶ Then, one has $\|x \bullet y\|_{31} = \|x\|_{32} \times \|y\|_{21}$.
 - $\Rightarrow \exists \ \Omega$: a homogeneous cone of type (r, s, n).

Matrix realizations

Theorem 3.

Assume that $\mathcal{B}(r,s;n) \neq \emptyset$. Associated with $B \in \mathcal{B}(r,s;n)$, there exists a homogeneous cone of type (r, s, n) which is isomorphic to

$$\Omega_B := \left\{ X = \begin{pmatrix} aI_n & X_B(\boldsymbol{y}) & \boldsymbol{z} \\ {}^tX_B(\boldsymbol{y}) & bI_r & \boldsymbol{x} \\ {}^t\boldsymbol{z} & {}^t\boldsymbol{x} & c \end{pmatrix}; & \boldsymbol{x} \in \mathbb{R}^r, \ \boldsymbol{y} \in \mathbb{R}^s \\ \boldsymbol{z} \in \mathbb{R}^n & \boldsymbol{z} \in \mathbb{R}^n \end{pmatrix},$$

where $X_B(\mathbf{y}) = {}^t\!B \cdot (I_r \otimes \mathbf{y}) \in \mathrm{Mat}(n,r;\mathbb{R}).$

When are two $B, B' \in \mathcal{B}(r, s; n)$ mutually linearly isomorphic?

12 / 41

Linearly isomorphic classes

Let $N = V_{32} \oplus V_{21} \oplus V_{31}$ be an N-algebra of rank 3 with $n_{kj} \geq 1$.

Lemma (Vinberg 1963). Two N-algebras N, N' are isomorphic if and only if one has $n_{kj}=n'_{kj}$ and there exist an algebra isomorphism $k\colon N\to N'$ s.t.

 $k|_{V_{kj}}: V_{kj} \longrightarrow V'_{kj}$ are norm preserving maps.

Namely, it is sufficient to consider only orthogonal transformations.

Lemma. Let \bullet be the product satisfying the norm condition, and let B, B' be matrices of structure constants of \bullet with respect to ONBs $\{e^a_{kj}\}$ and $\{f^a_{kj}\}$. Then, $\exists k_{kj} \in O(n_{kj})$ s.t.

$$B' = {}^{t}(k_{32} \otimes k_{21})B k_{31}.$$

Linearly isomorphic classes

Therefore, one has the following

Theorem 4.

Assume that $r, s, n \ge 1$. Two homogeneous cones Ω_B and $\Omega_{B'}$ of type (r, s, n) are linearly isomorphic if and only if

$$\exists k \in O(r), \ k' \in O(s) \text{ and } k'' \in O(n) \text{ s.t. } B' = {}^t(k \otimes k')B\,k''.$$

The parameter set Λ can be described symbolically as

$$\Lambda \simeq (O(r) \times O(s)) \backslash \mathcal{B}(r, s; n) / O(n).$$

Linearly isomorphic classes

Theorem 5.

Assume that $r, s, n \ge 1$ and $\mathcal{B}(r, s; n) \ne \emptyset$. Then, mutually linearly inequivalent homogeneous cones of type (r, s, n) are realized as

$$\Omega_B := \left\{ X = \begin{pmatrix} aI_n & X_B(\boldsymbol{y}) & \boldsymbol{z} \\ {}^tX_B(\boldsymbol{y}) & bI_r & \boldsymbol{x} \\ {}^t\boldsymbol{z} & {}^t\boldsymbol{x} & c \end{pmatrix}; \begin{array}{l} X \gg 0, \\ a, b, c \in \mathbb{R}, \\ \boldsymbol{x} \in \mathbb{R}^r, \ \boldsymbol{y} \in \mathbb{R}^s \\ \boldsymbol{z} \in \mathbb{R}^n \end{array} \right\},$$

with a parameter $B \in \Lambda \simeq (O(r) \times O(s)) \setminus \mathcal{B}(r, s; n) / O(n)$.

Problem. For given r, s, n, determine the parameter set $\Lambda \simeq (O(r) \times O(s)) \backslash \mathcal{B}(r, s; n) / O(n)$ concretely.

Parameter sets Λ

Recall that $B \in \mathcal{B}(r, s; n)$ satisfies $B^t B \in \mathcal{A}^*(r, s)$.

1. Consider the orbit decomposition w.r.t the following action:

$$\rho(k_1,k_2)X:={}^t(k_1\otimes k_2)X(k_1\otimes k_2),$$

where $k_1 \in O(r)$, $k_2 \in O(s)$ and $X \in \mathcal{A}^*(r,s)$.

- ▶ Denote the set of representatives by $\mathcal{A}^*(r,s)/(O(r)\times O(s))$.
- 2. Take X in $\mathcal{A}^*(r,s)/(O(r)\times O(s))$. Then, X is decomposed as

$$X = (Lk)^t (Lk) \quad \begin{cases} L \text{ is lower triangular,} \\ k \text{ is orthogonal.} \end{cases}$$

The representative of $(O(r) \times O(s)) \setminus \mathcal{B}(r, s; n) / O(n)$ can be taken as lower triangular (Diagonal entries may 0 in general).

Parameter sets Λ

$$\blacktriangleright \text{ Write } B = \begin{pmatrix} B_{11} & O \\ B_{21} & B_{22} \\ \vdots & \vdots & \ddots \\ B_{r1} & B_{r2} & \cdots \end{pmatrix}, \text{ where } B_{kj} \in \operatorname{Mat}(s, \mathbb{R}).$$

▶ Since $B^tB \in \mathcal{A}^*(r,s)$, there exist $X_{kj} \in Alt_s$ such that

$$\begin{pmatrix} B_{11}{}^{t}B_{11} & B_{11}{}^{t}B_{21} & \cdots \\ B_{21}{}^{t}B_{11} & \ddots & \\ \vdots & & \ddots \end{pmatrix} = \begin{pmatrix} I_{s} & -X_{21} & \cdots \\ X_{21} & I_{s} & \\ \vdots & & \ddots \end{pmatrix} \in \mathcal{A}^{*}(r,s).$$

► This implies that

$$B_{11}{}^{t}B_{11} = I_s$$
, and $B_{k1}{}^{t}B_{11} = X_{k1}$ $(k = 2, ..., r)$.

▶ Since B_{11} is lower triangular, we have

$$B_{11} = I_s$$
 and $B_{k1} \in Alt_s$ $(k = 2, ..., r)$.

Parameter sets Λ

- ▶ B is described as $\begin{pmatrix} I_s & O & \cdots \\ B_{21} & B_{22} & \cdots \\ \vdots & \ddots \end{pmatrix}$.
- ▶ If we write $X_B(\boldsymbol{y}) = (\widetilde{\boldsymbol{y}}_1, \dots, \widetilde{\boldsymbol{y}}_r)$, then we have $\widetilde{\boldsymbol{y}}_1 = \begin{pmatrix} \boldsymbol{y} \\ \boldsymbol{0} \end{pmatrix}$.

Namely, $X_B(y)$ is of the form

$${}^{t}X_{B}(\boldsymbol{y}) = \begin{pmatrix} y_{1} & \cdots & y_{s} & 0 & \cdots & 0 \\ * & \cdots & * & \cdots & \cdots \\ * & \cdots & * & \cdots & \cdots \end{pmatrix}.$$

We cannot derive more information in a general scheme, and so in what follows we shall consider lower dimensional cases.

Settings

Associated with $B\in \mathcal{B}(r,s;\,n)$, we have a homogeneous cone of type (r,s,n) isomorphic to

$$\Omega_B := \left\{ X = \begin{pmatrix} aI_n & X_B(\boldsymbol{y}) & \boldsymbol{z} \\ {}^tX_B(\boldsymbol{y}) & bI_r & \boldsymbol{x} \\ {}^t\boldsymbol{z} & {}^t\boldsymbol{x} & c \end{pmatrix}; \begin{array}{l} X \gg 0, \\ a,b,c \in \mathbb{R}, \\ \boldsymbol{x} \in \mathbb{R}^r, \ \boldsymbol{y} \in \mathbb{R}^s \\ \boldsymbol{z} \in \mathbb{R}^n \end{array} \right\},$$

For given triplet (r, s, n), we consider the following.

1. Determine the parameter set Λ ;

$$\Lambda \simeq (O(r) \times O(s)) \backslash \mathcal{B}(r, s; n) / O(n).$$

2. Describe $X_B(y)$ explicitly for $B \in \Lambda$.

$$(r, s, n) = (2, 2, 4)$$

The case of Yamasaki-Nomura

lacksquare Set $J=egin{pmatrix} 0 & -1 \ 1 & 0 \end{pmatrix}$. The space $\mathcal{A}^*(2,2)$ is given as

$$\begin{split} \mathcal{A}^*(2,2) &= \left\{ X_{\lambda} = \begin{pmatrix} I_2 & -\lambda J \\ \lambda J & I_2 \end{pmatrix}; \ X_{\lambda} \text{ is positive semi-definite} \right\} \\ &= \left\{ X_{\lambda} = \begin{pmatrix} I_2 & -\lambda J \\ \lambda J & I_2 \end{pmatrix}; \ \lambda \in [-1,1] \right\}. \end{split}$$

- ▶ Since $g_{X_{\lambda}}(t) = ((t-1)^2 \lambda^2)^2$, the eigenvalues are $1 \pm \lambda$.
- ▶ The action of O(2) on Alt_2 is equivalent to $\{\pm 1\}$ on λ , so that

$$\mathcal{A}^*(2,2)/(O(2)\times O(2)) = \left\{ X_{\lambda} = \begin{pmatrix} I_2 & -\lambda J \\ \lambda J & I_2 \end{pmatrix}; \ \lambda \in [0,1] \right\}.$$

$$(r, s, n) = (2, 2, 4)$$

The case of Yamasaki-Nomura

- ▶ Set $B = \begin{pmatrix} I_2 & O \\ aJ & L \end{pmatrix}$, $L \in \operatorname{Mat}(2, \mathbb{R})$: lower triangular.
- ► Take $X_{\lambda} \in \mathcal{A}^*(2,2)/(O(2) \times O(2))$ ($\lambda \in [0,1]$).

$$B^{t}B = X_{\lambda} \iff \begin{pmatrix} I_{2} & -aJ \\ aJ & a^{2}I_{2} + L^{t}L \end{pmatrix} = \begin{pmatrix} I_{2} & -\lambda J \\ \lambda J & I_{2} \end{pmatrix}.$$

▶ Therefore, one has $a = \lambda$ and since L is lower triangular,

$$L^{t}L = (1 - \lambda^{2})I_{2} \implies L = \begin{pmatrix} \sqrt{1 - \lambda^{2}} & 0\\ 0 & \sqrt{1 - \lambda^{2}} \end{pmatrix}.$$

We have
$$B = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & -\lambda & \lambda' & 0 \\ \lambda & 0 & 0 & \lambda' \end{pmatrix}$$
 where $\lambda' := \sqrt{1 - \lambda^2}$.

$$(r, s, n) = (2, 2, 4)$$

The case of Yamasaki-Nomura

$$\blacktriangleright \text{ We have } B = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & -\lambda & \lambda' & 0 \\ \lambda & 0 & 0 & \lambda' \end{pmatrix}.$$

▶ Then, $X_B(\boldsymbol{y}) = {}^t\!B \cdot (I_2 \otimes \boldsymbol{y})$ is calculated as

$$X_B(\boldsymbol{y}) = \begin{pmatrix} 1 & 0 & 0 & \lambda \\ 0 & 1 & -\lambda & 0 \\ 0 & 0 & \lambda' & 0 \\ 0 & 0 & 0 & \lambda' \end{pmatrix} \begin{pmatrix} y_1 & 0 \\ y_2 & 0 \\ 0 & y_1 \\ 0 & y_2 \end{pmatrix} = \begin{pmatrix} y_1 & \lambda y_2 \\ y_2 & -\lambda y_1 \\ 0 & \lambda' y_1 \\ 0 & \lambda' y_2 \end{pmatrix}.$$

lacksquare In Yamasaki–Nomura, $X_{\lambda}(oldsymbol{y})$ is given as

$$X_{\lambda}(\boldsymbol{y}) = \begin{pmatrix} y_1 & \lambda y_2 \\ y_2 & -\lambda y_1 \\ 0 & \lambda' y_2 \\ 0 & \lambda' y_1 \end{pmatrix} \because \text{they take } B = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & -\lambda & 0 & \lambda' \\ \lambda & 0 & \lambda' & 0 \end{pmatrix}.$$

$$(r, s, n) = (2, 2k, 4k)$$

For $\lambda=(\lambda_1,\dots,\lambda_k)$, we set $\lambda':=\left(\sqrt{1-\lambda_1^2},\dots,\sqrt{1-\lambda_k^2}\right)$ and

$$d_{\lambda} := \operatorname{diag}(\lambda_1, \dots, \lambda_k), \quad J_{\lambda} = \begin{pmatrix} O & -d_{\lambda} \\ d_{\lambda} & O \end{pmatrix}.$$

Proposition 6.

In this case, we have, for $oldsymbol{y} = egin{pmatrix} oldsymbol{y}_1 \\ oldsymbol{y}_2 \end{pmatrix} \in \mathbb{R}^{2k}$,

$$\Lambda = \left\{ \boldsymbol{\lambda} \in \mathbb{R}^k; \ 0 \le \lambda_1 \le \lambda_2 \le \dots \le \lambda_k \le 1 \right\},\,$$

$$X_B(\boldsymbol{y}) = egin{pmatrix} \boldsymbol{y}_1 & d_{\boldsymbol{\lambda}} \boldsymbol{y}_2 \\ \boldsymbol{y}_2 & -d_{\boldsymbol{\lambda}} \boldsymbol{y}_1 \\ \mathbf{0} & d_{\boldsymbol{\lambda}'} \boldsymbol{y}_1 \\ \mathbf{0} & d_{\boldsymbol{\lambda}'} \boldsymbol{y}_2 \end{pmatrix} \in \operatorname{Mat}(4k, 2; \mathbb{R}).$$

$$(r, s, n) = (2, 2k, 4k)$$

▶ The space $(I_{4k} + \text{Alt}_2 \otimes \text{Alt}_{2k})/(O(2) \times O(2k))$ is given as

$$\left\{X = \begin{pmatrix} I_{2k} & -J_{\lambda} \\ J_{\lambda} & I_{2k} \end{pmatrix}; \ 0 \le \lambda_1 \le \lambda_2 \le \dots \le \lambda_k \right\}.$$

- ▶ Thus, we have $\Lambda = \left\{ \pmb{\lambda} \in \mathbb{R}^k; \ 0 \leq \lambda_1 \leq \lambda_2 \leq \dots \leq \lambda_k \leq 1 \right\}$.
- ▶ Let $B = \begin{pmatrix} I_{2k} & O \\ J_{\lambda} & L \end{pmatrix}$ $L \in \operatorname{Mat}(2k, \mathbb{R})$: lower triangular.
- ► Take $X_{\lambda} \in \mathcal{A}^*(2,2k)/(O(2) \times O(2k))$ $(\lambda \in \Lambda)$.

$$B^t B = X_{\lambda} \quad \Longleftrightarrow \quad \begin{pmatrix} I_{2k} & -J_{\lambda} \\ J_{\lambda} & L^t L - J_{\lambda}^2 \end{pmatrix} = \begin{pmatrix} I_{2k} & -J_{\lambda} \\ J_{\lambda} & I_{2k} \end{pmatrix}.$$

▶ Therefore, one has $L = \begin{pmatrix} d_{\lambda'} & O \\ O & d_{\lambda'} \end{pmatrix}$.

$$(r, s, n) = (2, 2k, 4k)$$

This shows that $B = \begin{pmatrix} I_k & O & O & O \\ O & I_k & O & O \\ O & -d_{\pmb{\lambda}} & d_{\pmb{\lambda}'} & O \\ d_{\pmb{\lambda}} & O & O & d_{\pmb{\lambda}'} \end{pmatrix}$, and hence we have

$$X_B(\boldsymbol{y}) = egin{pmatrix} \boldsymbol{y}_1 & d_{\boldsymbol{\lambda}} \boldsymbol{y}_2 \ \boldsymbol{y}_2 & -d_{\boldsymbol{\lambda}} \boldsymbol{y}_1 \ 0 & d_{\boldsymbol{\lambda}'} \boldsymbol{y}_1 \ 0 & d_{\boldsymbol{\lambda}'} \boldsymbol{y}_2 \end{pmatrix}, \quad \boldsymbol{y} = egin{pmatrix} \boldsymbol{y}_1 \ \boldsymbol{y}_2 \end{pmatrix} \in \mathbb{R}^{2k}.$$

We can give an explicit description for any triplet (2, s, n).

$$(r, s, n) = (3, 3, n)$$

Proposition 7.

In this case, we have

$$\Lambda = \left\{ \boldsymbol{\lambda} = (\lambda_1, \lambda_2, \lambda_3); \quad \begin{array}{l} 0 \le \lambda_1 \le \lambda_2 \le \lambda_3 \le 1, \\ \lambda_1^2 + \lambda_2^2 + \lambda_3^2 - 2\lambda_1 \lambda_2 \lambda_3 \le 1 \end{array} \right\}$$

$$V_{\boldsymbol{\lambda}}(\boldsymbol{\alpha}) \text{ is of the form}$$

and ${}^t\!X_{\boldsymbol{\lambda}}(\boldsymbol{y})$ is of the form

$$\begin{pmatrix} y_1 & y_2 & y_3 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & \lambda_1 y_3 & -\lambda_1 y_2 & y_1 & \lambda_1' y_2 & \lambda_1' y_3 & 0 & 0 & 0 \\ -\lambda_2 y_3 & 0 & \lambda_2 y_1 & \lambda_3 y_2 & -\gamma_{\lambda} y_1 & 0 & \delta_{\lambda} y_1 & \lambda_3' y_2 & \lambda_2' y_3 \end{pmatrix}.$$

Here, if $\lambda_1=1$ then $\gamma_{\lambda}=\delta_{\lambda}=0$, and otherwise one has

$$\gamma_{\pmb{\lambda}} = \frac{\lambda_3 - \lambda_1 \lambda_2}{\sqrt{1 - \lambda_1^2}}, \qquad \delta_{\pmb{\lambda}} = \frac{\sqrt{1 - \lambda_1^2 - \lambda_2^2 - \lambda_3^2 + 2\lambda_1 \lambda_2 \lambda_3}}{\sqrt{1 - \lambda_1^2}}.$$

$$(r, s, n) = (3, 3, n)$$

- ▶ Put $G = O(3) \times O(3)$ and identify $Alt_3 \otimes Alt_3$ with $Mat(3, \mathbb{R})$.
- ightharpoonup We consider an action of G on $\mathrm{Mat}(3,\mathbb{R})$ defined by

$$\kappa(k_1, k_2)M := {}^tk_1Mk_2 \quad \begin{cases} (k_1, k_2) \in G, \\ M \in \operatorname{Mat}(3, \mathbb{R}). \end{cases}$$

Put $D:=\{\boldsymbol{\lambda}=(\lambda_1,\lambda_2,\lambda_3)\in\mathbb{R}^3;\ 0\leq\lambda_1\leq\lambda_2\leq\lambda_3\}.$ The G-orbit of $\mathrm{Mat}(3,\mathbb{R})$ w.r.t. κ is given as

$$\operatorname{Mat}(3,\mathbb{R}) = \bigsqcup_{\lambda \in D} \kappa(G) \begin{pmatrix} 0 & 0 & \lambda_3 \\ 0 & \lambda_2 & 0 \\ \lambda_1 & 0 & 0 \end{pmatrix} \quad \text{(disjoint union)}.$$

▶ The action κ is equivalent to the action of G on $\mathcal{A}(3,3)$.

cf.
$${}^{t}k \begin{pmatrix} 0 & -z & y \\ z & 0 & -x \\ -y & x & 0 \end{pmatrix} k \longleftrightarrow {}^{t}k \begin{pmatrix} x \\ y \\ z \end{pmatrix} \quad k \in O(3).$$

$$(r, s, n) = (3, 3, n)$$

Let us consider the element $X_{\lambda} \in \mathcal{A}^*(3,3)/(O(3) \times O(3))$ defined by

$$X_{\lambda} = \begin{pmatrix} I_3 & -\lambda_1 \mathcal{X} & \lambda_2 \mathcal{Y} \\ \lambda_1 \mathcal{X} & I_3 & -\lambda_3 \mathcal{Z} \\ -\lambda_2 \mathcal{Y} & \lambda_3 \mathcal{Z} & I_3 \end{pmatrix}.$$

Here, \mathcal{X} , \mathcal{Y} and \mathcal{Z} are alternative matrices defined by

$$\mathcal{X} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & -1 \\ 0 & 1 & 0 \end{pmatrix}, \quad \mathcal{Y} = \begin{pmatrix} 0 & 0 & -1 \\ 0 & 0 & 0 \\ 1 & 0 & 0 \end{pmatrix}, \quad \mathcal{Z} = \begin{pmatrix} 0 & -1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}.$$

Note that X_{λ} corresponds to $\begin{pmatrix} 0 & 0 & \lambda_3 \\ 0 & \lambda_2 & 0 \\ \lambda_1 & 0 & 0 \end{pmatrix}$.

$$(r, s, n) = (3, 3, n)$$

▶ The characteristic polynomial of X_{λ} is calculated as

$$((t-1)^2 - \lambda_1^2)^2 \times ((t-1)^2 - \lambda_2^2)^2 \times ((t-1)^2 - \lambda_3^2)^2 \times \left((t-1)^3 - (\lambda_1^2 + \lambda_2^2 + \lambda_3^2)(t-1) - 2\lambda_1\lambda_2\lambda_3\right).$$

- ► Set $f_{\lambda}(t) := (t-1)^3 (\lambda_1^2 + \lambda_2^2 + \lambda_3^2)(t-1) 2\lambda_1\lambda_2\lambda_3$.
- ▶ We note that

$$f_{\lambda}(t) = \det \left(tI_3 - \begin{pmatrix} 1 & \lambda_1 & \lambda_2 \\ \lambda_1 & 1 & \lambda_3 \\ \lambda_2 & \lambda_3 & 1 \end{pmatrix} \right).$$

- ▶ The eigenvalues are $1 \pm \lambda_i$ (i = 1, 2, 3) and roots of $f_{\lambda}(t)$.
- \triangleright Since X_{λ} is positive semi-definite, one has

$$\lambda_i \in [-1, 1] \quad (i = 1, 2, 3).$$

$$(r, s, n) = (3, 3, n)$$

We investigate roots of $f_{\lambda}(t)$.

- ► Set $g_{\lambda}(x) := f_{\lambda}(x+1) = x^3 (\lambda_1^2 + \lambda_2^2 + \lambda_3^2)x 2\lambda_1\lambda_2\lambda_3$.
- Obviously, we have

 X_{λ} is positive semi-definite \iff (all roots of $g_{\lambda}(x) \ge -1$.

▶ Let α be the positive root of $g'_{\lambda}(x)$.

(i)
$$g_{\lambda}(-1) \leq 0$$
,

(ii)
$$g_{\lambda}(\alpha) \leq 0$$
,

(iii)
$$g_{\lambda}(-\alpha) \geq 0$$

(iv)
$$\alpha < 1$$
.

$$(r,s,n) = (3,3,n)$$

 $g_{\lambda}(x) = x^3 - (\lambda_1^2 + \lambda_2^2 + \lambda_3^2)x - 2\lambda_1\lambda_2\lambda_3.$

▶ The condition (i) $g_{\lambda}(-1) \leq 0$ implies that

$$\lambda_1^2 + \lambda_2^2 + \lambda_3^2 - 2\lambda_1\lambda_2\lambda_3 \le 1.$$

▶ The conditions (ii) $g_{\lambda}(\alpha) \leq 0$ and (iii) $g_{\lambda}(-\alpha) \geq 0$:

$$\alpha = \frac{\sqrt{\lambda_1^2 + \lambda_2^2 + \lambda_3^2}}{\sqrt{3}}, \quad g(\varepsilon \alpha) = -2\varepsilon(\alpha^3 + \lambda_1 \lambda_2 \lambda_3),$$

where $\varepsilon = \pm 1$. Namely, the condition (iv) $\alpha \le 1$ always holds.

▶ By the inequality of arithmetic and geometric means, we have

$$\alpha^3 = \left(\frac{\lambda_1^2 + \lambda_2^2 + \lambda_3^2}{3}\right)^{\frac{3}{2}} \ge |\lambda_1 \lambda_2 \lambda_3|,$$

which implies two conditions (ii) and (iii) are always satisfied.

$$(r, s, n) = (3, 3, n)$$

Therefore, we obtain

$$\Lambda := \left\{ \boldsymbol{\lambda} = (\lambda_1, \lambda_2, \lambda_3); \quad \begin{array}{l} 0 \leq \lambda_1 \leq \lambda_2 \leq \lambda_3 \leq 1, \\ \lambda_1^2 + \lambda_2^2 + \lambda_3^2 - 2\lambda_1\lambda_2\lambda_3 \leq 1 \end{array} \right\}.$$

A simple calculation yields that ${}^tX_{\lambda}(y)$ is of the form

$$\begin{pmatrix} y_1 & y_2 & y_3 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & \lambda_1 y_3 & -\lambda_1 y_2 & y_1 & \lambda_1' y_2 & \lambda_1' y_3 & 0 & 0 & 0 \\ -\lambda_2 y_3 & 0 & \lambda_2 y_1 & \lambda_3 y_2 & -\gamma_{\lambda} y_1 & 0 & \delta_{\lambda} y_1 & \lambda_3' y_2 & \lambda_2' y_3 \end{pmatrix}.$$

Here, if $\lambda_1=1$ then $\gamma_{\lambda}=\delta_{\lambda}=0$, and otherwise one has

$$\gamma_{\lambda} = \frac{\lambda_3 - \lambda_1 \lambda_2}{\sqrt{1 - \lambda_1^2}}, \qquad \delta_{\lambda} = \frac{\sqrt{1 - \lambda_1^2 - \lambda_2^2 - \lambda_3^2 + 2\lambda_1 \lambda_2 \lambda_3}}{\sqrt{1 - \lambda_1^2}}.$$

$$(r, s, n) = (3, 3, n)$$

Proposition 8.

Put
$$\Lambda' = \{ \boldsymbol{\lambda}; \ \lambda_1^2 + \lambda_2^2 + \lambda_3^2 - 2\lambda_1\lambda_2\lambda_3 = 1 \}.$$

One has
$$\operatorname{rank} X_{\lambda} = \begin{cases} 4 & (\lambda = (1, 1, 1)) \\ 8 & (\lambda \in \Lambda' \setminus \{(1, 1, 1)\}) \\ 9 & (\lambda \in \Lambda \setminus \Lambda') \end{cases}$$

Note that ${}^tX_{\lambda}(y)$ is of the form

$$\begin{pmatrix} y_1 & y_2 & y_3 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & \lambda_1 y_3 & -\lambda_1 y_2 & y_1 & \lambda'_1 y_2 & \lambda'_1 y_3 & 0 & 0 & 0 \\ -\lambda_2 y_3 & 0 & \lambda_2 y_1 & \lambda_3 y_2 & -\gamma_{\lambda} y_1 & 0 & \delta_{\lambda} y_1 & \lambda'_3 y_2 & \lambda'_2 y_3 \end{pmatrix}.$$

$$(r, s, n) = (3, 4, n)$$

In this case, we do not have a complete answer yet.

Set $G = O(3) \times O(4)$ and identify $Alt_3 \otimes Alt_4$ with $Mat(6, 3; \mathbb{R})$. We consider the action τ of G on $Mat(6, 3; \mathbb{R})$ defined by

$$\tau(k_1, k_2)M := \rho_4(k_1)Mk_2 \quad \begin{cases} (k_1, k_2) \in G, \\ M \in \text{Mat}(6, 3; \mathbb{R}), \end{cases}$$

where ρ_4 is the action of O(4) on Alt_4 :

$$\rho_4(k)X := {}^t kXk \quad (k \in O(4), \ X \in Alt_4).$$

Since the Dynkin diagram of $\mathfrak{so}(4,\mathbb{R}) \simeq \mathrm{Alt}_4$ is \bigcirc , $\mathfrak{so}(4,\mathbb{R})$ can be decomposed into two 3-dimensional ideals.

$$(r, s, n) = (3, 4, n)$$

 \mathbb{H} : the ring of quaternions, $\{1,i,j,k\}$: its standard basis. We identify \mathbb{H} with \mathbb{R}^4 through the standard basis.

$$L_{\alpha}w := \alpha w, \quad R_{\alpha}w := w\alpha \quad (\alpha, w \in \mathbb{H}).$$

Lemma (cf. Helgason 1978).

The following set form a basis of $so(4,\mathbb{R}) \simeq Alt_4$:

$$\{L_i, L_j, L_k, {}^tR_i, {}^tR_j, {}^tR_k\}.$$

Moreover, the following two subspaces are ideals of $so(4,\mathbb{R})$:

$$\operatorname{Span}(L_i, L_j, L_j)$$
, $\operatorname{Span}({}^tR_i, {}^tR_j, {}^tR_k)$.

These are both isomorphic to $\mathfrak{so}(3,\mathbb{R})$.

$$(r, s, n) = (3, 4, n)$$

- ▶ We take this basis of Alt₄.
- ▶ The action of O(4) on Alt_4 is described by $k_1, k_2 \in O(3)$ as

$$\begin{pmatrix} {}^t k_1 & O \\ O & {}^t k_2 \end{pmatrix} \begin{pmatrix} \boldsymbol{x}_1 \\ \boldsymbol{x}_2 \end{pmatrix}, \quad \begin{pmatrix} \boldsymbol{x}_1 \\ \boldsymbol{x}_2 \end{pmatrix} \in \mathbb{R}^6 \simeq \mathrm{Alt}_4.$$

▶ The representative of the action of G on $Mat(6,3; \mathbb{R})$ is

$$\begin{pmatrix} d_1 & 0 & 0 \\ 0 & d_2 & 0 \\ 0 & 0 & d_3 \\ b_{11} & b_{12} & b_{13} \\ 0 & b_{22} & b_{23} \\ 0 & 0 & b_{33} \end{pmatrix}.$$

$$(r, s, n) = (3, 4, n)$$

We consider for the case

$$M = \begin{pmatrix} D_1 \\ D_2 \end{pmatrix} \quad \begin{cases} D_1 = \text{diag}(a_1, a_2, a_3), \\ D_2 = \text{diag}(b_1, b_2, b_3). \end{cases}$$

Namely, we consider the following element in $I_{12} + \mathrm{Alt}_3 \otimes \mathrm{Alt}_4$:

$$X_{\lambda} = \begin{pmatrix} I_4 & a_3{}^tL_k + b_3R_k & a_2L_j + b_2{}^tR_j \\ a_3L_k + b_3{}^tR_k & I_4 & a_1{}^tL_i + b_1R_i \\ a_2{}^tL_j + b_2R_j & a_1L_i + b_1{}^tR_i & I_4 \end{pmatrix}.$$

In this case, we can calculate its characteristic polynomial $g_{X_{\pmb{\lambda}}}(t)$ explicitly.

$$(r, s, n) = (3, 4, n)$$

- ▶ Put $P[\alpha, \beta, \gamma](x) := x^3 (\alpha^2 + \beta^2 + \gamma^2)x 2\alpha\beta\gamma$.
- $g_{X_{\lambda}}(t)$ is factorized into the following four polynomials:

$$P[a_1 + b_1, a_2 - b_2, a_3 - b_3](t - 1),$$

$$P[a_1 - b_1, a_2 + b_2, a_3 - b_3](t - 1),$$

$$P[a_1 - b_1, a_2 - b_2, a_3 + b_3](t - 1),$$

$$P[a_1 + b_1, a_2 + b_2, a_3 + b_3](t - 1).$$

▶ If we set $b_1 = b_2 = b_3 = 0$, then one has

$$g_{X_{\lambda}}(t) = ((t-1)^3 - (a_1^2 + a_2^2 + a_3^2)(t-1) - 2a_1a_2a_3)^4.$$

▶ If D_2 is not diagonal, then the characteristic polynomial of X_{λ} can not be factored in general.

$$(r, s, n) = (3, 4, n)$$

$$\mathsf{Set}\ \Lambda := \left\{ (a_1, a_2, a_3); \quad \begin{aligned} 0 &\leq a_3 \leq a_2 \leq a_1 \leq 1, \\ a_1^2 + a_2^2 + a_3^2 - 2a_1a_2a_3 \leq 1 \end{aligned} \right\}.$$

Proposition 9. For $\lambda \in \Lambda$, one has

$$X_{\lambda}(\boldsymbol{y}) = \begin{pmatrix} \boldsymbol{y} & a_3{}^t L_k \boldsymbol{y} & a_2 L_j \boldsymbol{y} \\ \boldsymbol{0} & a_3' \boldsymbol{y} & \gamma_{\lambda}{}^t L_i \boldsymbol{y} \\ \boldsymbol{0} & \boldsymbol{0} & \delta_{\lambda} \boldsymbol{y} \end{pmatrix} \quad (\boldsymbol{y} \in \mathbb{R}^4),$$

where $\gamma_{\pmb{\lambda}}$ and $\delta_{\pmb{\lambda}}$ are constants given as

$$\gamma_{\lambda} = \frac{a_1 - a_2 a_3}{\sqrt{1 - a_3^2}}, \quad \delta_{\lambda} = \frac{\sqrt{1 - (a_1^2 + a_2^2 + a_3^2) + 2a_1 a_2 a_3}}{\sqrt{1 - a_3^2}}.$$

$$(r, s, n) = (3, 4, n)$$

▶ One can calculate similarly for general $a_1, a_2, a_3, b_1, b_2, b_3$.

$$X_{\pmb{\lambda}}(\pmb{y}) = \begin{pmatrix} y_1 & \beta_3 y_4 & -\beta_2 y_3 \\ y_2 & \alpha_3 y_3 & \alpha_2 y_4 \\ y_3 & -\alpha_3 y_2 & \beta_2 y_1 \\ y_4 & -\beta_3 y_1 & -\alpha_2 y_2 \\ 0 & \beta_3' y_1 & \gamma_{\beta_1 \alpha_2 \beta_3} y_2 \\ 0 & \alpha_3' y_2 & -\gamma_{\beta_1 \beta_2 \alpha_3} y_1 \\ 0 & \alpha_3' y_3 & \gamma_{\alpha_1 \alpha_2 \alpha_3} y_4 \\ 0 & \beta_3' y_4 & -\gamma_{\alpha_1 \alpha_2 \beta_3} y_3 \\ 0 & 0 & \delta_{\beta_1 \beta_2 \alpha_3} y_1 \\ 0 & 0 & \delta_{\beta_1 \beta_2 \alpha_3} y_1 \\ 0 & 0 & \delta_{\alpha_1 \beta_2 \beta_3} y_2 \\ 0 & 0 & \delta_{\alpha_1 \beta_2 \beta_3} y_3 \\ 0 & 0 & \delta_{\alpha_1 \beta_2 \beta_3} y_3 \\ 0 & 0 & \delta_{\alpha_1 \alpha_2 \alpha_3} y_4 \end{pmatrix} \qquad (\alpha_1, \alpha_2, \alpha_3) \in \Lambda, \\ (\beta_1, \alpha_2, \beta_3) \in \Lambda, \\ (\beta_1, \beta_2, \alpha_3) \in \Lambda \\ (\beta_1, \beta_2, \alpha_3) \in \Lambda \end{pmatrix}$$

$$\gamma_{abc} := \frac{a - bc}{\sqrt{1 - c^2}}, \quad \delta_{abc} := \frac{\sqrt{1 - (a^2 + b^2 + c^2) + 2abc}}{\sqrt{1 - c^2}}$$

Future works

- ightharpoonup Complete calculation for the case (3,4,n).
- **Explore** a geometric interpretation of Λ .
- For general (r, s, n).
- Consider higher-rank homogeneous cones.
- ▶ Determine the best possibility n for the triplet (16, 16, n).
- ► Change coefficient fields (rings). What happens?