```
QII
I. M
Let
lim
```

Maf of Poisson: $m(t) = \exp(\lambda(e^{t-1}))$ of Bhomial: $m(t) = (1-p+pet)^n$

let p= n in the BM MGF

 $\lim_{h\to\infty} m(t) = \lim_{h\to\infty} (1 - \frac{\lambda}{h} + \frac{\lambda}{h} e^t)^h$

lim (1+ x) = ex

= | (| 4 / (et - |)) | n-7=

= ex(et-1) => MAF of Coisson

» o Poisson (λ) ~ Bin(n, n) as n-200

2.

a) Let X_{1} , $X_{36} \stackrel{\text{id}}{\sim} E_{XP}(1)$ $E(X_{i}) = \frac{1}{4} = 1$ $V(X_{i}) = \frac{1}{4} = 1$ $V(X_{i}) = \frac{1}{4} = 1$ $V(X_{36}) = \sum_{i=1}^{4} V(X_{i}) = 36$ $V(X_{36}) = \sum_{i=1}^{4} V(X_{i}) = 36$ $V(X_{36}) = \sum_{i=1}^{4} V(X_{i}) = 36$

 $P(\chi_{36} > 45) = P(\chi_{36} - M > 45 - 36) \approx P(Z > 4.5)$ = 0.0668072

b) X20 ~ Gamma (36, 1) as Xi are iid~Exp(1).

P(X36>48)=0.0742175 by wolfram alpha