SPRING 2017 – EXAM 2 Wednesday, March 8, 2017

Name:	tischer	

For all problems, state the assumptions and write complete sentences for explanations.

PROBLEM 4 (35 Points)

The link shown in the Figure below represents a model of the suspension system for the a certain FSAE car. All dimensions are shown in inches. All elements have a hollow circular cross section where the outside diameter is ½ inches and the inside diameter is ¼ inches. The joints are made of 1/8-inch pins working in double shear The ground reaction force W is 500 lb. Assume steel for all elements.

Do the following:

- a. Calculate all the reaction forces and all the forces on the members.
- b. Verify the answers by providing an FBD showing all the forces involved.
- c. Obtain the maximum shear stress at the pins.
- d. Identify the non-vertical elements under compression loads and obtain their critical load.
- e. State whether the non-vertical element will buckle or not. Explain.

For the vertical L-shaped member do the following:

- f. Obtain the shear force and bending moment using singularity functions.
- g. Draw the shear force and bending moment diagrams.
- h. Identify the region with the largest shear force and obtain the maximum shear stress.
- i. Identify the region with the largest bending moment and obtain the normal stress due to bending.
- j. Include the effect of the 1/8-inch holes to correct the value obtained in the previous part. Use graphs from the textbook.
- k. If possible, select a steel material that will withstand the previous calculated load.

If a 10-inch diameter tire is attached to the end of the L-shaped member and the coefficient of kinetic friction is 0.25, do the following:

- I. Calculate the torque acting on the horizontal part of the member.
- m. Calculate the shear stress on the member due to the torque.
- n. Obtain the angular deformation of the member.

PROBLEM 5 (10 Points)

Obtain the safety factor for the skin of a 4-engine Airbus airplane by doing the following:

- a. Obtain the corresponding dimensions.
- b. Identify the model theory needed to calculate stresses. Explain why this was selected.
- c. Estimate the associated pressure.
- d. Calculate the relevant stress(es). Explain why they were chosen.
- e. Compare the stress(es) to the yield strength of the material.

PROBLEM 5 (15 Points)

Pipe bursting at low temperatures is a common problem due to the pressure that ice exert on pipes. The chart below shows the dimensions for Schedule 80 PVC dimensions. Perform the analysis for a pipe with a nominal size of 3/8 inches.

Do the following:

- a. Obtain the corresponding dimensions.
- b. Identify the model theory needed to calculate stresses. Explain why this was selected.
- c. Obtain the maximum radial stress that can be applied to the pipe under yielding.
- d. Obtain the maximum tangential stress that can be applied to the pipe under yielding.
- e. Obtain the maximum axial stress that can be applied to the pipe under yielding.
- f. Compare the values obtained in parts d, e and f to the recommended maximum water pressure.

Schedule 80 PVC Pipe Dimensions

No	ominal Pipe Size (in)	O.D.	Average I.D.	Min. Wall	Nominal Wt./ft.	Maximum W.P. PSI*
	1/8	0.405	0.195	0.095	0.068	1230
	1/4	0.540	0.282	0.119	0.115	1130
	3/8	0.675	0.403	0.126	0.158	920
	1/2	0.840	0.526	0.147	0.232	850
	3/4	1.050	0.722	0.154	0.314	690
	1	1.315	0.936	0.179	0.461	630
	1-1/4	1.660	1.255	0.191	0.638	520
	1-1/2	1.900	1.476	0.200	0.773	470
	2	2.375	1.913	0.218	1.070	400
	2-1/2	2.875	2.29	0.276	1.632	420
	3	3.500	2.864	0.300	2.186	370
	4	4.500	3.786	0.337	3.196	320
	6	6.625	5.709	0.432	6.102	280
	8	8.625	7.565	0.500	9.269	250
	10	10.750	9.493	0.593	13.744	230
	12	12.750	11.294	0.687	18.909	230
	14	14.000	12,41	0.750	22.681	220
	16	16.000	14.213	0.843	29.162	220
	18	18.000	16.014	0.937	36.487	220
	20	20.000	17.814	1.031	44.648	220
	24	24.000	21.418	1.218	63.341	210

(Te) The non vertical element will not buckle because the compressive load, 2170 lbs, is less than the critical load, 16,463 lbs.

Wall + hickness & to To

.125 & ~ to .25

The considering the stress concentration, we need Tys > 229 ks:

Available candidates are:
$$\begin{cases} 4140 & Q+T @ 400°F \\ 4340 & Q+T @ 600°F \\ 4440 & Q+T & 400°F \\ 4440 & 4440 & 4440 \\$$

$$F_{F} = \mathcal{U}_{K} N = (0.25)(500) = 12511$$

$$T = F_{0}d = (125)(5'') = 625 \text{ in . 1bs} = T / L$$

$$T_{max} = T_{C} = \frac{(625)(25)}{0.00575} \qquad J_{0} = \frac{47}{32}(0^{4} - d^{4})$$

= 27162 psi,

Gengmeeny toolbox.com

= 0,00575

$$(4n)$$
 $0 = Tl = (625)(3)$ = 0.0291 rad
 \overline{JG} $(0.00575)(11.2 \times 10^6)$
 $0 = 1.67$ angular
deformation

(6d) $\delta_t = \frac{\rho \cdot r \cdot ^2 - \rho_0 \cdot r \cdot ^2}{r_0^2 - r \cdot ^2} + \frac{r \cdot ^2 r_0^2 \left(\rho_i - \rho_0 \right)}{r_0^2 \left(r_0^2 - r \cdot ^2 \right)}$ (Tys = 8000 PSi Gengmeening toolbox, com 8000= P:(20152) - 14.7(.33752) + .20152,33752(p:-14.7) thermoplastics .20152 (.33752-,20152) Max tensile tangential solve for P: -> P:= 3817 psi/@ yield strength @ (= (i Using given max PSI, p:=920 $\sigma_{t} = \frac{920(.2015^{2}) - 14.7(.3375^{2})}{.3375^{2} - .2015^{2}} + \frac{(.2015^{2})(.3375^{2})/(920 - 14.7)}{.2015^{2}(.3375^{2} - .2015^{2})}$ 5+ (P: =920) = 1893.5 psi) $\sigma_{a} = \sigma_{ys} = 8000 ps; = P:(.2015^{2}) - 14.7(.3375^{2})$ 1 ,3375 2 , 20152 p:= 14,485 psi @ yield Using given most P = 920 psi Oa = 920(20152)-14.7(.33752)= 486.7 ps: σα (p; =920) = 486.7 psi part &) the max internal pressure was 10,442ps;, when considering the table's max pi was 920 ps; radial Failure This gives a SF of 11.35 part of the max internal pressure was 3817 ps; when considering the table's max p; was 920 ps; tangential Failure (bursting) (bursting) This gives a SF of 4.15 part & The max Pi was 14,485 ps; - when considering axial The table's mar Pi was 920 ps; this would happen in This gives a SF of 15.74 rare cases, like explained The most likely failure would be due to tangential forces, making the pipe burst open. The overall Safety Factor provided for 3/8" schedule 80 fuc pipe is 4.15. It was not calculated if expanding ice would apply a greater pressure, than the recommended max pressure or pressure at Failure. Note that, at Freezemy temp, the mechanical properties may change - changing the SE.