

Version 06/24-7

Consolidated Academic Administration Plan for the Course Big Data Analytics (Core) Sem. 7 – Program Computer Engineering 2024-25-Odd Semester

Faculty - Prof. Santosh Tamboli (Cluster Mentor) & Pankaj Vanwari

The academic resources available in VIT -

VMIS (ERP)	V-Refer and V-Live	VIT Library	VAC & MOOC Courses	
Institute & Department	Former IA question papers and	Former IA question papers	Value Added Courses	
Vision and Mission	solutions (prepared by faculty)	solutions - hardcopy	(VAC) are conducted	
Program Educational	MU end semester examination	MU end semester exam	throughout the semester	
Objectives (PEO)	question papers and solutions	question paper & solutions	& in the semester break -	
Objectives (FEO)	(prepared by faculty)	- by faculty, hardcopy	Enrol for the VACs	
Program Specific Outcome (PSO)	Class notes and Digital Content for the subject (scanned / typed by faculty)	All text books, reference books, e -books mentioned in the syllabus & AAP	Online courses from NPTEL, Coursera etc. are pursued throughout the	
Program Outcome (PO)	Comprehensive question bank, EQ, GQ, PPT, Class Test papers	Technical journals and magazines for reference	semester - Register for the course & get certified	
Departmental	Academic Administration Plan &	VIT library is member of IIT	Watch former lectures	
Knowledge Map	Beyond Syllabus Activity report	Bombay Library	captured in LMS at VIT	

1.a Course Objectives (Write in detail – as per NBA guidelines)

Cognitive	What do you want students to know?	To know the basic concepts of networking and its topological design and mathematical functions like modulo arithmetic.		
Affective	What do you want students to think / care about?	To understand how various supporting tools in providing assurance concerning privacy and integrity of information.		
Behavioural	What do you want students to be able to do?	To provide skills to design security protocols for recognizing security problems and use of various cryptographic & security algorithms for real time applications.		

Advice to Students:

Attend every class!!! Missing even one class can have a substantial effect on your ability to understand the course. Be prepared to think and concentrate, in the class and outside. I will try to make the class very interactive. Participate in the class discussions. Ask questions when you don't understand something. Keep up with the class readings. Start assignments and homework early. Meet me in office hour to discuss ideas, solutions or to check if, what you understand is correct.

The v-Refer Link

http://vidyalankarlive.com/vrefer/index.php/apps/files/?dir=/vRefer/CMPN/SEM%20VII/2024-25/BDA/PV&fileid=821880

https://teams.microsoft.com/l/team/19%3AbelZSzL-

 $\underline{N46Vx63b18M4lxzS7T2B\ 6keojrigkVfkl01\%40thread.tacv2/conversations?groupId=c751066d-d065-4bba-8340-2351569e9da8\&tenantId=c7b00d7f-ad99-442a-b12f-c2c912044fdc}$

Collaboration Policy:

We encourage discussion between students regarding the course material. However, no discussion of any sort is allowed with anyone on the assignment and homework for the class. If you find solution to some problems in a book or on the internet, you may use their idea for the solution; provided you acknowledge the source (name and page in the book or the website, if the idea is found on the internet). Even though you are allowed to use ideas from another source, you must write the solution in your own words. If you are unsure whether or not certain kinds of collaboration is possible please ask the teacher.

1.b Course Outcome (CO) Statements and Module-Wise Mapping (follow NBA guideline)

CO No.	Statements	Related Module/s
CO1	Understand the building blocks of Big Data Analytics	1
CO2	Apply fundamental enabling techniques like Hadoop and Map Reduce in solving real world problems	2
CO3	Understand different NoSQL systems and handles big data.	3
CO4	Apply advanced techniques for emerging applications like stream analytics.	4
CO5	Achieve adequate perspectives of big data analytics in various applications like recommender systems, social media applications etc	5
CO6	Apply statistical computing techniques and graphics for analysing big data.	6

1.c Mapping of COs with POs (mark S: Strong, M: Moderate, W: Weak, Dash '-': not mapped) (List of POs is available in V-refer)

	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12
CO 1	S	М	-	-	М	-	-	-	_	-	-	1
CO 2	М	М	S	-	S	-	-	-	-	-	-	1
CO 3	-	М	W	-	S	-	-	-	-	-	-	2
CO 4	-	S	S	М	W	-	-	-	-	-	-	-
CO 5	М	S	М	S	М	-	-	-	S	-	-	2
CO 6	М	S	S	М	S	-	-	-	М	-	-	2

1.d Mapping of COs with PSOs (mark S: Strong, M: Moderate, W: Weak, Dash '-':not mapped)

	PSO 1	PSO 2	PSO 3	PSO 4
CO 1	М	W	W	-
CO 2	М	W	W	-
CO 3	М	W	W	-

CO 4	М	W	-	-
CO 5	S	W	М	-
CO6	S	W	W	-

1.e Teaching and Examination Scheme (As specified by the University) for the Course

Categories	Humanities and Social Sciences	Basic Science	Engineering Science	Professional Core	General Education	Professional Elective	Project/ Internship	Open Elective
Tick suitable category				√				

Subject Code	Subject Name	Tea	aching Sche	me Credits Assigned				
Subject Code	Subject Name	Theory	Practical	Tutorial	Theory	TW/Practical	Tutorial	Total
CSC702	Big Data Analytics	3	-	-	3	-	-	3
CSL702	Big Data Analytics Lab	-	2	-	-	1	-	1

		Examination Scheme							
	Subject Name	Theory			Practic				
Subject Code		ISA	MSE	ESE	ISA	ESE	Total		
CSC702	Big Data Analytics	20	30	50	-	-	-		
CSL702	Big Data Analytics Lab	-	-	-	25	25	50		

1.f Faculty-Wise Distribution of all Lecture-Practical-Tutorial Hours for the Course

Divisions	Lecture		Practical (Hrs.)			Tutorial (Hrs.)			
	(Hrs.)	Batch 1	Batch 2	Batch 3	Batch 4	Batch 1	Batch 2	Batch 3	Batch 4
A	PV (3)	UMK(2)	PV (2)	PV (2)	PV (2)	-	-	-	-
В	PV (3)	UMK(2)	PV (2)	PV (2)	PV (2)	-	-	-	-

1.g Office Hours (Faculty will be available in office in this duration for solving students' query)

Division	Day	Time (at least 1 Hr. / Division)	Venue (Office Room No.)
Α	Thursday	03:45 PM to 04:45 PM	M209
В	Friday	03:45 PM to 04:45 PM	M209

Syllabus : Module Wise Teaching Hours and % Weightage in University Question Paper

2.a

Module No.	Module Title and Brief Details	Teaching Hrs. for each module	% Weightage in University Question Papers
1	Introduction to Big Data and Hadoop: 1.1 Introduction to Big Data - Big Data characteristics and Types of Big Data 1.2 Traditional vs. Big Data business approach 1.3 Case Study of Big Data Solutions 1.4 Concept of Hadoop, Core Hadoop Components; Hadoop Ecosystem	02	5%
Learning Outcome	Differentiate between traditional and big data business approach. Discurdance characteristics of big data.	ss various types	of big data. Explair
2	Hadoop HDFS and MapReduce: 2.1 Distributed File Systems: Physical Organization of Compute Nodes, Large Scale File-System Organization. 2.2 MapReduce: The Map Tasks, Grouping by Key, The Reduce Tasks, Combiners, Details of MapReduce Execution, Coping with Node Failures. 2.3 Algorithms Using MapReduce: Matrix-Vector Multiplication by MapReduce, Relational-Algebra Operations, Computing Selections by MapReduce, Computing Projections by MapReduce, Union, Intersection, and Difference by MapReduce 2.4 Hadoop Limitations	08	21%
Learning Outcome	Perform Matrix multiplication using MapReduce. Compute project MapReduce with an example. Discuss the Distributed File systems.	tions using M	apReduce. Explaii
3	NoSQL: 3.1 Introduction to NoSQL, NoSQL Business Drivers 3.2 NoSQL Data Architecture Patterns: Key-value stores, Graph stores, Column family (Bigtable)stores, Document stores, Variations of NoSQL architectural patterns, NoSQL Case Study 3.3 NoSQL solution for big data, Understanding the types of big data problems; Analyzing big data with a shared-nothing architecture; Choosing distribution models: master-slave versus peer-to-peer; NoSQL systems to handle big data problems.	11	26%
Learning Outcome	Explain NoSQL in detail. Discuss a case study on NoSQL. Explain a NoSQ data with shared-nothing architecture.	(L solution for b	ig data. Analyze bi
4	Mining Data Streams: 4.1 The Stream Data Model: A Data-Stream-Management System, Examples of Stream Sources, Stream Queries, Issues in Stream Processing. 4.2 Sampling Data techniques in a Stream 4.3 Filtering Streams: Bloom Filter with Analysis. 4.4 Counting Distinct Elements in a Stream, CountDistinct Problem, Flajolet-Martin Algorithm, Combining Estimates, Space Requirements 4.5 Counting Ones in a Window: The Cost of Exact Counts, The Datar-Gionis-Indyk-Motwani Algorithm, Query Answering in the DGIM Algorithm, Decaying Windows.	11	28%
Learning Outcome	Give examples of stream sources. Explain the issues in stream processing techniques in a Stream. Explain Bloom filter in detail. Explain DGIM algor	-	s Sampling Data
5	Real-Time Big Data Models 5.1 A Model for Recommendation Systems, Content-Based Recommendations, Collaborative Filtering 5.2 Case Study: Product Recommendation 5.3 Social Networks as Graphs, Clustering of Social-Network Graphs, Direct Discovery of Communities in a social graph	04	10%

	Total	39	100		
Outcome	Explain applications of Data visualization.				
Learning	Differentiate between Python and R language. Explain variables in R. How	to handle da	ta in R workspace.		
	6.3 Data Visualization: Types, Applications				
	in R				
	Processing Data in R, Using functions instead of script, built-in functions				
	6.2 Reading datasets and Exporting data from R, Manipulating and				
	Accessing help and documentation in R				
6	users, Handling data in R workspace, Executing Scripts, Creating Plots,	04	10%		
	Calculating Values in R, Creating and using Objects, Interacting with				
	Storing and				
	Handling, Basic Expressions in R, Variables in R, Working with Vectors,				
	6.1 Exploring Basic features of R, Exploring RGUI, Exploring RStudio,				
	Data Analytics with R:				
Outcome	Discuss a case study on product recommendation.				
Learning	Explain need of recommendation systems. Differentiate between Content-based and Collaborative filtering.				

2.5 Prerequisite Courses

	No.	Semester Name of the Course		Topic/s	
1 4 Database Management System Data Consist		Data Consistency			
	2	5	Data Warehousing and Mining	Data Analysis	

2.c Relevance to Future Courses

1	No.	Semester	Name of the Course		
	1	8	Applied Data Science		
	2	8	Social Media Analytics		

Identify real life scenarios/examples which uses the knowledge of the subject (Discussion on how to prepare examples and case studies e.g. <u>"Boeing Plane": C Programming Language – Intro to Computer Science – Harvard's CS50 (2018) – Bing video</u>)

Real Life Scenario	Concept Used	
E-commerce and Retail	Recommendation system	
Healthcare	Data Visualization	
Social Media Platforms	Community detection algorithms	

Past Results – Division-Wise

Details	Target – Dec 2024	Dec 2023	Dec 2022	Dec 2021
Course Passing % – Average of 2 Divisions	100	100	100	100

Marks Obtained by Course Topper	75	76	77	77
(mark/80)				

	Division A		Division B	
Year	Initials of Teacher	% Result	Initials of Teacher	% Result
Dec 2023	РЈР	100	РЈР	100
Dec 2022	PV	100	РЈР	100
Dec 2021	PV	100	PV	100

4 All the Learning Resources – Books and E-Resources

4.a List of Text Books (T – Symbol for Text Books) to be Referred by Students

Sr. No	Text Book Titles	Author/s	Publisher	Edition	Module Nos.
1	Mining of Massive Datasets	Anand Rajaraman and Jeff Ullman	Cambridge University Press	2010	1,2,4,5
2	Hadoop in Practice	Alex Holmes	Manning Press	2012	1, 2
3	Making Sense of NoSQL	Dan McCreary and Ann Kelly	Manning Press	2014	3
4	Big Data Black Book	EMC Educational Services	Wiley	2020	6

4.b List of Reference Books (R – Symbol for Reference Books) to be Referred by Students

Sr. No	Reference Book Titles	Author/s	Publisher	Edition	Module Nos.
1	Taming the Big Data Tidal Wave: Finding Opportunities in Huge Data Streams with Advanced Analytics	Bill Franks	Wiley	2012	1
2	Hadoop in Action	Chuck Lam	Dreamtech Press	2011	1, 2, 3
3	Big Data, Data Mining, and Machine Learning: Value Creation for Business Leaders and Practitioners	Jared Dean	Wiley	2014	5, 6
4	Data Mining: Concepts and Techniques	Jiawei Han and Micheline Kamber	Morgan Kaufmann	2010	4
5	Data Mining and Knowledge Discovery Handbook	Lior Rokach and Oded Maimon	Springer	2010	6
6	Hadoop The Definitive Guide	Tom White	O'Reilly	2018	2, 3

4.c List of E - Books (E - Symbol for E-Books) to be Referred by Students

Sr. No	E- Book Titles	Author/s	Publisher	Edition	Module Nos.
1	Big Data Analytics with R and Hadoop	Vignesh Prajapati	PACKT	2013	1, 2, 3

Reading latest / top rated research papers (at least 5 papers)

		<u> </u>		1
Name of Paper	Name of Authors	Publis	hed in	Problem Statement
	(Background)	Date	Journal	
A Thematic Travel Recommendation System Using an Augmented Big Data Analytical Model	Suriya Priya R. Asaithambi, Ramanathan Venkatraman and Sitalakshmi Venkatraman	7 February 2023	Technologies, MDPI	This paper proposes an end-to-end prototype Travel Recommendation System to evaluate their proposed big data-based recommendation model using augmented user-centric data analytics of various themes and arguments with relevant current environment details of potential destinations.
Large Language Models as Recommendation Systems in Museums	Georgios Trichopoulos, Markos Konstantakis, Georgios Alexandridis and George Caridakis	10 September 2023	Electronics, MDPI	This paper proposes the utilization of large language models as recommendation systems for museum visitors. Generative Pretrained Transformer 4, a knowledge-based large language model is finetuned and turned into a context-aware recommendation system, adapting its suggestions based on user input and specific contextual factors such as location, time of visit, and other relevant parameters.
Movie Recommender System Using Parameter Tuning of User and Movie Neighbourhood via Co-Clustering	Sonu Airen and Jitendra Agrawal	2023	Procedia Computer Science, Elsevier	The focus of this paper is Partitional Weighted co-clustering for Movie Recommender System. The primary objective of this research article is to fine tune the parameters of user and movie neighborhoods by setting different values for row clusters number and column clutsers number parameters of co-clustering.
Social media content classification and community detection using deep learning and graph analytics	Mohsan Ali, Mehdi Hassan, Kashif Kifayat, Jin Young Kim, Saqib Hakak e, Muhammad Khurram Khan	2022	Technological Forecasting and Social Change, Elsevier	This study proposes novel deep learning and graph-based approaches to identifying hate content, followed by approaches to detecting communities and exploring social media to detect hate content. Twitter is used as a case study, and tweets are extracted and annotated by linguistic experts to develop a dataset for experimentation and validation.
A hybrid personality-aware	Sahraoui Dhelim,	2022	Journal of Ambient	In this paper, we study and compare four personality-aware

recommendation	Liming Chen,	Intelligence	recommendation systems based on
system based on	Nyothiri	and	different personality models, namely
personality	Aung,	Humanized	Big-Five traits model, Eysenck model
traits and types	Wenyin	Computing,	and HEXACO model from the
models	Zhang	Springer	personality traits theory, and Myers-
	and		Briggs Type Indicator (MPTI) from
	Huansheng		the personality types of theory. They
	Ning		also propose a hybrid personality
			model for recommendation that
			takes advantage of the personality
			traits models, as well as the
			personality types models.

4.e Based on research paper an identify the current Problem statement

			Used in				
Problem Statement	Quiz	Assignment	Lab	Mini Project	Poster Presentation	Test	Any Other
Develop hybrid recommender built using various Spark models such as naïve Bayes classifier, trigonometric functions, deep learning convolutional neural network (CNN), time series, and NLP with sentiment scores using AFINN.		✓		√			
Develop a recommendation system using LLMs. You can perform fine-tuning of GPT-4 through the incorporation of contextual information and user instructions during the training process.		✓		√			
Develop a system to for content classification and community detection on any social media platform. LSTM-GRU model can be fine-tuned to classify hate content into six categories. The Girvan–Newman algorithm can be employed community detection.		✓		√			

4.f Identify Companies / Industries which use the knowledge of the subject and thus may provide Internships and final Placements

	To be / Contacted for				
Name of the Company	Student Internship	Student Final Placement	Faculty Internship		
JPMorgan Chase	√	√			
Capgemini	√	√			

4.g Identify suitable relevant TOP Guest Speakers from Industry (CS50 Lecture by Mark Zuckerberg - 7 December 2005 - YouTube)

Name of the Identified Guest Speaker	Designation	Name of the Company
Dr Anuradha Bhatia	Head - Data	Standard Chartered
	Analytics & Al	
Mustafa Fatakdawala	Data Scientist	TCS

4.h Projects, Hackathons, IVs etc..]

Name of the Relevant Technical Competition	Organized by	Date of the Event
Identified to participate		
HR Analytics	Analytics Vidhya	28-01-2019 10:00 AM to 31-
		12-2024 11:59 PM
Big Data and Artificial Intelligence	University of Hyderabad,	December 17-20, 2024
Conference (BDA)	Telangana, India	

Identify faculty in TOP schools / Universities who are teaching same / similar subject and develop rapport e.g. Exchange Lecture Material (Assignments / Tests / Project etc..), Joint Paper Publication

4.i

	Name of the		Type of Collaboration			
University	Course	Name of Faculty Exchange of Lecture Material		Joint Publication/ Research	Other	
IIT Patna	Big Data	Prof. Rajiv			√	
	Computing	Misra				

4.j Module Best Available in - <u>Title</u> best resource [from 4.a to 4.d in this AAP] & give details

Module	Title of the		Mention the Tile			
No.	Module	Web Link	Journal	E- Journal	Magazine	Other Resource
1	Introduction to Big Data and Hadoop	https://towardsdatascience.com/ https://www.inderscience.com/jhome.php?jcode=ijbdi https://www.frontiersin.org/journals/big-data https://www.sciencedirect.com/journal/big-data- research https://journalofbigdata.springeropen.com/	Journal of Big Data	Frontiers in Big Data	Big Data Quarterly - The Big Data Magazine	
2	Hadoop HDFS and MapReduce	https://towardsdatascience.com/ https://www.inderscience.com/jhome.php?jcode=ijbdi https://www.frontiersin.org/journals/big-data https://www.sciencedirect.com/journal/big-data- research https://journalofbigdata.springeropen.com/	Big Data Research	Frontiers in Big Data	Big Data Quarterly - The Big Data Magazine	
3	NoSQL	https://towardsdatascience.com/ https://www.inderscience.com/jhome.php?jcode=ijbdi https://www.frontiersin.org/journals/big-data https://www.sciencedirect.com/journal/big-data- research	Journal of Big Data	Frontiers in Big Data	Big Data Quarterly - The Big Data Magazine	

		https://journalofbigdata.springeropen.com/				
4	Mining Data Streams	https://towardsdatascience.com/ https://www.inderscience.com/jhome.php?jcode=ijbdi https://www.frontiersin.org/journals/big-data https://www.sciencedirect.com/journal/big-data- research https://journalofbigdata.springeropen.com/	Big Data Research	Frontiers in Big Data	Big Data Quarterly - The Big Data Magazine	
5	Real-Time Big Data Models	https://towardsdatascience.com/ https://www.inderscience.com/jhome.php?jcode=ijbdi https://www.frontiersin.org/journals/big-data https://www.sciencedirect.com/journal/big-data- research https://journalofbigdata.springeropen.com/	Journal of Big Data	Frontiers in Big Data	Big Data Quarterly - The Big Data Magazine	
6	Data Analytics with R	https://towardsdatascience.com/ https://www.inderscience.com/jhome.php?jcode=ijbdi https://www.frontiersin.org/journals/big-data https://www.sciencedirect.com/journal/big-data- research https://journalofbigdata.springeropen.com/	Big Data Research	Frontiers in Big Data	Big Data Quarterly - The Big Data Magazine	

4.k Referred to any top-rated university in that subject for content

University	Name of the Course	Name of Faculty	Date of Delivery of the Course	Remarks
IIT Patna	Big Data Computing	Prof. Rajiv Misra	21 Aug 2023	

Faculty received any certification related to this subject. List of Certifications Identified / Done

C	Certifying Agency	No. of	Level of t	the Course	Certification		Daniela	
Course		Hours	Introductory	Advance Skill Development	Done on	Proposed to be on	Remarks	
Introduct ion to R	Infosys Springboard	15	✓		11 Nov 2022			
Big Data Computi ng	NPTEL	8 weeks	√			Nov 2024		

4.m Completed subject wise/cluster wise training with cluster mentor. List of relevant Refresher Course Identified / Done

	Certifying Agency (As suggested by	Certification			
Course	DAB/Cluster Mentor/Industry/ University other than MU)	Done on	Proposed to be on	Remarks	
Pedagogy					
PBL	Introduction to R by Infosys Springboard	11 Nov 2022			

Sub.		
Content Training		
Training		

4.n Best Practices Identified and adopted

No.	ltem		Best Practices Identified	
		Standford	Univ. 2	Univ. 3
1	Microsite	https://web.stanford.edu/cl ass/cs246/	1	Microsite
2	Video Lectures	https://www.youtube.com/ watch?v=jofiaetm5bY	2	Video Lectures
3	Assignments		3	Assignments
4	Mini Project	https://colab.research.goog le.com/drive/1ntuhHz0ohw g- 0CQWFU1I2oqWB4gbE72T ?usp=sharing	4	Mini Project
5	Assessment Metric		5	Assessment Metric
6	Quizzes		6	Quizzes
7	Labs/ Practical (PBL)		7	Labs/ Practical (PBL)
8	Tests		8	Tests
9	Peer Assessment		9	Peer Assessment
10	Any Other		10	Any Other

4.0 Web Links for Online Notes/YouTube/VIT Digital Content/VIT Lecture Capture/NPTEL Videos

Students can view lectures by VIT professors, captured through LMS 'Lecture Capture' in VIT campus for previous years.

No.	Websites / Links	Module Nos.
1	https://onlinecourses.nptel.ac.in/noc23 cs112/preview	All
2	https://infyspringboard.onwingspan.com/	1, 2, 3, 4

4.p Recommended MOOC Courses like Coursera / NPTEL / MIT-OCW / edX/VAC etc.

Sr.	MOOC Course Link	Course conducted by – Person	Course	Certificate
No.		/ University / Institute /	Duration	(Y / N)
		Industry		
1	https://onlinecourses.nptel.ac.in/noc23_cs112/preview	NPTEL	8 weeks	N
2	https://infyspringboard.onwingspan.com/	cognitive class.ai	36 hrs	N
3	https://www.mygreatlearning.com/academy/learn- for-free/courses/mastering-big-data-analytics	mygreatlearning	19 hrs	N

5 Consolidated Course Lesson Plan

	From (date/month/year)	From (date/month/year)	Total Number of Weeks
	` ' ' ' '	, , , , ,	

Semester Duration	08/07/2024	18/10/2024	15	

Week	Lecture no.	Module No.	Lecture Topics / MSE / BSA planned to be covered	Actual date of Completion	COs	Recommended Prior Viewing / Reading		
Week	Lectu	Модг	Bort planned to be covered	(Handwritten)	Mapped	Lecture No. (on LMS)	Chapter No./ Books/ Web Site	
1	1,2	1	Introduction to Big Data and Hadoop 1.1 Introduction to Big Data 1.2 Big Data characteristics, types of Big Data		CO1		R1, Chp 1, Pg. No. 4-27	
	3	1	1.3 Traditional vs. Big Data business approach1.4 Case Study of Big Data Solutions		CO1		R2, Chp 3, Pg. No. 37- 60	
	4,5	1	1.5 Concept of Hadoop 1.6 Core Hadoop Components; Hadoop Ecosystem Pop Quiz		CO1		R1, Chp 1, Pg. No. 4-27	
2	6	2	Hadoop HDFS and MapReduce 2.1 Distributed File Systems: Physical Organization of Compute Nodes, Large-Scale File-System Organization		CO2		R7, Part II, Pg. No. 141- 279	
3	7,8	2	2.2 MapReduce: The Map Tasks, Grouping by Key, The Reduce Tasks, Combiners, Details of MapReduce Execution, Coping with Node Failures		CO2		R7, Part II, Pg. No. 141- 279	
	9	2	2.3 Algorithms Using MapReduce: Matrix-Vector Multiplication by MapReduce, Relational-Algebra Operations		CO2		R7, Part II, Pg. No. 141- 279	
4	10,11	2	Computing Selections by MapReduce, Computing Projections by MapReduce,		CO2		R7, Part II, Pg. No. 141- 279	

	e no.	le No.	Lecture Topics / MSE /	Actual date of	COs	Recommended Prior Viewing / Reading		
Week	Lecture no.	Module No.	BSA planned to be covered	Completion (Handwritten)	Mapped	Lecture No. (on LMS)	Chapter No./ Books/ Web Site	
			Union, Intersection, and Difference by MapReduce					
	12	2	2.4 Hadoop Limitations Guest Lecture		CO2		R7, Part II, Pg. No. 141- 279	
	NoSQL 3.1 Introduction to NoSQL, NoSQL Business Drivers			CO3		Chp 4/ Pg. No. 62-95/ T3		
5	15	3	3.2 NoSQL Data Architecture Patterns: Key-value stores, Graph stores, Column family (Bigtable)stores, Document stores, Variations of NoSQL architectural patterns, NoSQL Case Study		CO3		Chp 4/ Pg. No. 62-95/ T3	
			MSE					
6			MSE					
		3	3.3 NoSQL solution for big data, Understanding the types of big data problems; Analyzing big data with a shared-nothing architecture; Choosing distribution models: masterslave versus peer-to-peer; NoSQL systems to handle big data problems.		CO3		Chp 4/ Pg. No. 62-95/ T3	
	18	4	Mining Data Streams: 4.1 The Stream Data Model: A Data-Stream-Management System, Examples of Stream Sources, Stream Queries, Issues in Stream Processing		CO4		Chp 4/ Pg. 123/ T1	

Week	Lecture no.	Module No.	Lecture Topics / MSE / BSA planned to be covered	Actual date of Completion (Handwritten)	COs Mapped	Prior	mmended Viewing / eading Chapter No./ Books/ Web
	19,20	4	4.2 Sampling Data techniques in a Stream		CO4	LMS)	Site Chp 4/ Pg 127/ T1
8	21	4	4.3 Filtering Streams: Bloom Filter with Analysis		CO4		Chp 4/ Pg 130/ T1
9	a Stream, Con 22,23 4 Problem, Flaj Algorithm, Comb Space Requ		4.4 Counting Distinct Elements in a Stream, Count-Distinct Problem, Flajolet-Martin Algorithm, Combining Estimates, Space Requirements		CO4		Chp 4/ Pg 133/ T1
	24	4	4.5 Counting Frequent Items in a Stream, Sampling Methods for Streams, Frequent Itemsets in Decaying Windows		CO4		Chp 6/ Pg 191-224/ T1
10	25,26	4	4.6 Counting Ones in a Window: The Cost of Exact Counts, The Datar-Gionis-Indyk-Motwani Algorithm,		CO4		Chp 4/ Pg 142-149/ T1
	27	4	Query Answering in the DGIM Algorithm, Decaying Windows		CO4		Chp 3/ Pg87-92/ T1
11	28,29	5	Real-Time Big Data Models 5.1 A Model for Recommendation Systems, Content-Based Recommendations, Collaborative Filtering		CO 5		Chp 7/ Pg 249-255/ T1
	30	5	5.2 Case Study: Product Recommendation		CO5		Chp 7/ Pg 256-265/ T1

Week	Lecture no.	Module No.	Lecture Topics / MSE / BSA planned to be covered	Actual date of Completion (Handwritten)	COs Mapped	Prior R Lecture No. (on	mmended Viewing / eading Chapter No./ Books/ Web
12	31,32	5	5.3 Social Networks as Graphs, Clustering of Social-Network Graphs,		CO5	LMS)	Site Chp 7/ Pg 256-265/ T1
	33	5	Direct Discovery of Communities in a social graph		CO5		Chp 5/ Pg 154-186/ T1
13	34,35	6	Data Analytics with R 6.1 Exploring Basic features of R, Exploring RGUI, Exploring RStudio, Handling Basic Expressions in R, Variables in R, Working with Vectors, Storing and Calculating Values in R,		CO6		Chp 5/ Pg 154-186/ T1
	36	6	Creating and using Objects, Interacting with users, Handling data in R workspace, Executing Scripts, Creating Plots, Accessing help and documentation in R		CO6		Chp 9/ Pg 292-311/ T1
14	37,38	6	6.2 Reading datasets and Exporting data from R, Manipulating and Processing Data in R, Using functions instead of script, built-in functions in R		CO6		Chp 10/ Pg 325-337/ T1
	39	6	6.3 Data Visualization: Types, Applications		CO6		Chp 10/ Pg 338/ T1
15							

6 Rubric for Grading and Marking of Term Work (inform students at the beginning of semester)

TI	heory (ISA=20)		Pract	ical (ISA= 25)		Tatal
Class Participation	Certification	10 Assignments	Lab Participation	Lab work	Mini Project	Total
05	05	10	05	10	10	45

7 Assignments / Tutorials Details

Assignment/ Tutorial No.	Title of the Assignments / Tutorials	СО Мар	Assignment/ Tutorials given to Students on	Week of Submission
1	Hadoop Ecosystem and Case Study	CO1	Week 2	Week 3
2	Pop Quiz on Hadoop components	CO1	Week 4	Week 4
3	Take Home Test on designing map reduce algorithms	CO2	Week 5	Week 6
4	Video Quiz on NoSQL	CO3	Week 6	Week 6
5	Poster Presentation on latest NoSQL platforms	CO3	Week 7	Week 9
6	Open Book Test on Stream Analysis	CO4	Week 8	Week 8
7	Pop Quiz on Prerequisites from Data Mining	CO5	Week 9	Week 9
8	Summary of landmark papers	All	Week 10	Week 11
9	Technical Paper Review	All	Week 11	Week 13
10	Student Seminar	All	Week 12	Week 13
11	Certification	All	22/07/2024	Week 14

Analysis of Assignment / Tutorial Questions and Related Resources

No.		-	Type* (√)			Based on #			Question Type (√)	
Assignment / Tutorial No.	Week No.	R	PQ	ОВТ	Module No.	Text Book	Reference Book	Other Learning Resource	MU EQ	Thought Provoking
1	2	√			1	√			√	
2	4		√		1		√		√	
3	5	√			2	√			√	
4	6		√		3			√	√	
5	7	√			3			√		√
6	8			√	4	√			√	
7	9		√		5	√			√	
8	10	√			All			√		√
9	11	√			All			V		√
10	12	√			All			V		√
11	3	√			All			V	√	

^{*} Tick (√) the Type of the Assignment: Regular (R); Pop Quiz (PQ); Open Book Test for TE/BE/ME (OBT)

In Semester Assessment (ISE) / Other Class Test / Open Book Test (OBT)/Take Home Test (THT) Details

Tests	Test Dates	Module No.	СО Мар	MSE Question Paper Pattern	Policy
MSE1 -		1 and 2	CO1 and CO2	Q1. 3 questions of 5 marks (attempt any 2) Q.2 and Q.3. 2 questions of 10 marks (attempt any 1)	40:30:30
MSE2	-	3, 4 and 5	CO3, CO4 and CO5	Q1. 3 questions of 5 marks (attempt any 2) Q.2 and Q.3. 2 questions of 10 marks (attempt any 1)	40:30:30
Pop Quiz	Week 4 and 9	1 and 5	CO1 and CO5		
Open Book Test	Week 8	4	CO4		
Take Home Test	Week 5	2	CO2		
Class tests / prelims					

[#] Write number for text book, reference book, other learning resource from this AAP – from Points 4.a to 4.d

Class tests / prelims			
Any other test/exams			

^{*} Failures of IA test (IA1+IA2) shall appear for IA test in the next semester. There is no provision for re-test in the same semester.

9.a Practical Activities

Practical	Module No.	Title of the Experiments	Type of Experiment		Topics to	СО
No.			PBL	Newly Added	be highlighted	Мар
1	1	Set up a Hadoop cluster and verify its functionality.			Hadoop	CO1
2	2	Create directories and files in HDFS and perform read/write operations			HDFS	CO2
3	2	Develop and execute a simple MapReduce program to determine average sales of each product category.		V	MapReduce	CO2
4	3	To install and configure MongoDB to execute NoSQL commands			NoSQL	CO3
5	4	Data Stream Algorithms Implementation (any one): DGIM/ Bloom Filter / Flajolet Martin			Mining Data Streams	CO4
6	6	Clustering algorithm (eg. CURE)		√	Any Lang	CO5
7	6	Social Network Analysis	V		R	CO6
8	4 to 6	Mini Project: One real life large data application to be implemented.	V		Mini Project	All

10 Beyond Syllabus Activities for Gap Mitigation

No.	Type of the Activity	Activities	Number of beneficiaries	Other Details – guest profile, feedback, mark sheet, report
		1- Guest Lectures by Industry Expert	NA	
	Experiential learning/Interaction	2- Workshops	NA	
1	with Outside World	3- Mini Project	Υ	
		4- Industrial Visit	NA	
		5- Any other activity	NA	

		C D	I	
	Collaborative & Group Activity	6- Poster Presentation	Υ	
		7- Minute Papers	Υ	
		8- Students Seminars	Y	
2		9- Students Debates	NA	
		10- Panel Discussion /		
		Mock GD	NA	
		11- Mock Interview	NA	
		12- Any other activity	NA	
	Co-Curricular Activity	13- Informative videos (NPTEL/Youtube /TEDx/ MIT OW/edX)	Y	
3		14- Lecture Capture Usage	Y	
		15- Any other activity	NA	
		16- Class Tests/ Weekly Tests	NA	
		17- Pop Quiz	Y	
	Tests &	18- Mobile App Based		
4	Assessments	Quiz	NA	
		19- Open Book Test	NA	
		20- Take Home Test	Υ	
		21- Any other activity	NA	

AAP/ Lecture Guide

No.	Programme	Course	Uploaded on V-refer	Date
1	CMPN	BDA	Yes	29/07/2024
2				
3				

^{*} Do not delete any activity. Give details for planned events. Write 'NA' for activity Not Planned.

	stration Plan Prepared by (ment		ty names with signature)
lease write below your name a	ind sign with date of the externa	l cluster mentor meeting	
Pankaj Vanwari	Faculty	12	Faculty 3
		Prof. Santosh Tamboli	Dr. Sachin Bojewar
External Industry Mentor	External Academic Mentor	VIT Cluster Mentor	CMPN HOD