

DATA QUERYING PROJECT

TEAM-3 MEMBERS:

BURCU MADEN RASHA BURHANULDEEN KEVAL LATHIYA

12-05-2022

Table of Contents

BUSINESS CONTEXT	3
TARGET QUESTION	3
LEVEL OF OBSERVATION	3
VARIABLES	4
#	.4
Variable Name	4
VARIABLE DESCRIPTION	
SAMPLE DATA VALUES	4
Data Type	4
Source of Data	
Variable Role (Predictor / Predicted)	4
DETAILS ABOUT SOURCE OF DATA	4

Business Context

Adventure Works is a global firm specializing in multi-facets goods such as manufacturing and selling bikes, components, clothing, and accessories to 19820 customers in 10 different territories, including the US, Europe, and the Pacific. The company employs more than 1000 employees, most of which are sales contacts who work in the stores and count to 753 employees.

Adventure Works sells 504 unique products in 4 categories and 37 subcategories online and in 701 retail stores. The main market of Adventure Works is the US which has five territories where the company makes up more than 60% of sales on an annual basis. Although the company has many retail stores, it earned 27% of its revenue from online shopping. In 2011-2013, Adventure Works grew rapidly and increased its revenue nearly four times; however, in 2014, the company lost more than 50% of its revenue, which was approximately 20 million Dollars.

Target Question

In this study, we will attempt to formulate a cohesive analysis of the impacts that cause the decrease and increase in sales within the firm's US territories, given that the US market is the firm's primary selling market. The change in the revenue per territory will be the essential part of this study to help the company better understand its market and the effects that different factors could have on its overall sales.

We are planning to analyze the product portfolio of Adventure Works to determine the highest and lowest-performing products so that the company can make a robust decision of whether to withdraw certain products or increase the manufacturing of others. Moreover, we will review the revenue changes between seasons and highlight any special offer products and whether they were a driving force for the sales or not.

"What is the impact of online sales, number of stores, and product types in terms of category/subcategory on Adventure Works' revenue in different US territories?"

Level of Observation

We mainly focus on the territories within the US and how their total sales and revenues change depending on the variables applied to them. Therefore, we are planning to territory-level observation in the research.

Variables

Table 1: Variables

#	Variable Name	Variable Description	Sample Data Values	Data Type	Source of Data	Variable Role (Predictor / Predicted)
1	% of the company revenue in each territory	Measure the sales activities of the company in each territory	16.85% revenue for territory 4	decimal	Sales.S ales order detail	Predicted
2	% of online sales	measure the impact of the online sales in total revenue in the territories.	30.75% of revenue coming from online shopping for territory 4	decimal	Sales.s ales order header	predictor
3	% of the sales of each product / product category / subcategory	Measure the impact of the products to the company revenue Help find the most – least popular products in each territory to withdraw or continue to sell	4.68% of territory 4 revenue comes from product 782 (productid)	decimal	Producti on.prod uct + sales. Sales order detail	predictor
4	% sales in the different seasons	Measure the impact of seasonality on total sales in each territory For ex: territory 2 reach its highest sales in fall season with x% average revenue in 2014	Territory 4's 26.39% of sales is in fall season	decimal	sales order header	predictor
5	% of average sales in product category in the different seasons		Sales of bike were 50% in average in spring season for territory 4	decimal	sales order header + producti on.prod uct	predictor
6	Number of stores	compare the difference in the number of stores between the territories and measure its effect on the company revenue	With 115 stores, territory 4 has a greater number of stores	smallint	sales store	predictor

Details about Source of Data

- 1. (% of the company revenue in each territory) sales order detail table includes unit price and quantity information. To analyze each territory, we merged sales stores, customer, sales order header and sales order detail tables
- (% of the sales of each product / product category / subcategory) We merged product, sales order detail and sales order header tables to analyze sales of per product in each territory by using inner join function. For further analysis, we will use inner join function to combine product category and product subcategory tables
- 5. (% of sales in product category in the different seasons) We merged product, sales order detail and sales order header tables to analyze sales of per product in each territory by using inner join function in different seasons. For further analysis, we will use inner join function to combine product category and product subcategory tables.
- 6. (Number of stores) For number of stores in each territory, we merged store, customer, territory data tables.

Descriptive Statistics

Revenue is a predicted (dependent variable) in this study. To conduct analysis, revenue data was normalized. We analyzed each US territory revenue per year. We had 20 different observations for revenue including 5 territory and 4 years.

According to descriptive statistics, the mean of revenue is 0.29 and the median is approximately 0.25. The standard deviation indicates how the data is close to the mean which is 0.26 in our analysis. The data appear to be skewed to the right (positive), which explains why the mean is greater than the median. Revenue has positive kurtosis with 1.89 which indicates that the distribution has heavier tails than the normal distribution.

Table 2: Descriptive Statistics for Revenue

Revenue							
Mean	0.294009921						
Standard Error	0.058881314						
Median	0.246343165						
Mode	-						
Standard Deviation	0.263325243						
Sample Variance	0.069340183						
Kurtosis	1.890077523						
Skewness Count	1.434610707 20						

We analyzed seasonality by looking each year's revenue considering seasons. To follow consumers' demand and trend of the year appropriately, we analyzed winter season by looking previous year December data and following year January and February data. (For example, for year 2012 Winter season, we used December 2011, January 2012 and February 2012.)

According to analysis, spring season showed highest mean. It shows that consumers bought more bicycle or related equipment in spring season. All standard deviations were quite similar between 0.03-0.04. While fall season and summer had negative (left) skewness, spring and winter season had positive (right skewness). All seasons showed negative kurtosis which indicated that the distribution has lighter tails than the normal distribution.

Table 3: Descriptive Statistics for Seasonality

Descriptive Statistics	Fall Season	Spring Season	Summer Season	Winter Season
Mean	0.246166935	0.291381399	0.247437074	0.195167219
Standard Error	0.040001467	0.04849727	0.03410752	0.032774942
Median	0.245078414	0.249888268	0.292537438	0.189529529
Mode	0	0	0	0
Standard Deviation	0.178891999	0.216886385	0.152533466	0.146573995
Sample Variance	0.032002347	0.047039704	0.023266458	0.021483936
Kurtosis	-0.905137042	-0.81618286	-0.743891189	-1.146529058
Skewness	-0.007762746	0.61978738	-0.938371749	0.030724635
Range	0.546054946	0.619802907	0.416615624	0.421744598
Minimum	0	0.019225399	0	0
Maximum	0.546054946	0.639028306	0.416615624	0.421744598
Count	20	20	20	20

To understand the impact of online sales and number of stores in revenue, we analyzed the % of online sales and number of stores in each territory.

Online sales had approximately 0.099 mean and 0.03 standard deviation while number of stores had 0.05 mean and 0.004 standard deviation. Both variables have positive skewness and negative kurtosis.

Table 4: Descriptive Statistics for Online Sales & Number of Stores

Descriptive Statistics	Online Sales	Number of Stores
Mean	0.099145	0.05
Standard Error	0.029763532	0.00438057
Median	0.00205	0.046755725
Mode	0	0.044847328
Standard Deviation	0.13310656	0.019590505
Sample Variance	0.017717356	0.000383788
Kurtosis	-0.350474934	-0.017662583
Skewness	0.965364677	0.661501799
Range	0.4032	0.073473282
Minimum	0	0.020992366
Maximum	0.4032	0.094465649
Count	20	20

To analyze the product's impact on territory revenue, we analyzed highly preferred subcategory and category revenues.

Highly preferred subcategories were x and y in each year and each territory. However, data highlighted that company changed its product portfolio frequently. Each year highly preferred product was changed, and previous years' preferred products were out of list.

In terms of highly preferred subcategories, the mean was 0.48 and standard error was 0.03. It had positive skewed and negative kurtosis.

For highly preferred product, mean was 0.07 and standard error was 0.01. It had positive skewness and kurtosis.

Table 5: Descriptive Statistics for Highly Preferred Product Subcategory/Product

Descriptive Statistics	Highly Preferred Subcategory	Highly Preferred Product
Mean	0.481283565	0.074770022
Standard Error	0.034750553	0.010261018
Median	0.452784122	0.061849706
Mode	-	-
Standard Deviation	0.155409199	0.045888669
Sample Variance	0.024152019	0.00210577
Kurtosis	-0.060736655	1.104844043
Skewness	0.623073217	1.177430371
Range	0.561199285	0.167333686
Minimum	0.291875995	0.021674345
Maximum	0.85307528	0.18900803
Count	20	20

Regression Analysis

To understand the relationship between dependent and independent analysis we conducted regression analysis. Regression analysis helped us interpret which independent variable can affect mostly, which can be eliminated, how variables interact each other and how the unit change in the independent variable impact dependent variable.

Regression Statistics, ANOVA table and Coefficients table were analyzed in detail. In model summary the value of adjusted R square was interpreted to show whether adding additional predictors improve a regression model or not by considering the values of substantial (0.75), moderate (0.5) and weak (0.25). In the ANOVA table, the statistically significance of the independent variables are analyzed with p-value < 0.05.

The coefficient table provided coefficient (β) values and p-values (significance) for each variable. The p-value tests the null hypothesis whether the variable has a significant effect on the dependent variable or not. For statistically significant variables, coefficient (β) is analyzed that shows what is the impact on dependent variable if there is one unit change in independent variables.

We run regression analysis two times. In second regression analysis we eliminated the independent variable with highest p-value.

Table 6: 1st Regression Analysis Results

Regression Statistics						
Multiple R	0.98879575					
R Square	0.97771703					
Adjusted R Square	0.95766236					
Standard Error	0.0541821					
Observations	20					

ANOVA

	df	SS	MS	F	Significance F
Regression	9	1.28810648	0.14312294	48.75257679	4.39725E-07
Residual	10	0.029357	0.0029357		
Total	19	1.31746349			

	Coefficients	Standard Error	t Stat	P-value	Lower 95%	Upper 95%	Lower 95.0%	Upper 95.0%
Intercept	-3.7478666	1.330028668	-2.8178841	0.018226733	6.711355198	0.784378101	6.711355198	- 0.784378101
territory	0.00648089	0.018838546	0.34402299	0.737953298	0.035494004	0.04845579	0.035494004	0.04845579
fall season revenue % spring season	3.60828384	1.460114847	2.4712329	0.033035054	0.354945222	6.861622461	0.354945222	6.861622461
revenue %	3.03910979	1.231773418	2.46726366	0.033260313	0.294547584	5.783672004	0.294547584	5.783672004
summer season revenue %	2.24076358	1.111583083	2.01583095	0.071475953	0.235997873	4.717525038	0.235997873	4.717525038
winter season	2.24070330	1.111303003	2.01303093	0.07 147 3933	0.233991013	4.717323030	0.233997073	4.717323030
revenue % Online	3.23900066	1.41037983	2.29654494	0.044515263	0.096478566	6.381522759	0.096478566	6.381522759
sales %	-0.5748585	0.203846901	-2.82005	0.01815915	1.029057654	0.120659254	1.029057654	0.120659254
Number of Stores %	6.60929134	3.083501237	2.14343723	0.057699616	0.261177562	13.47976025	0.261177562	13.47976025
subcategory revenue % highly preferred product	0.91634701	0.296485925	3.09069311	0.01143046	0.255735198	1.576958814	0.255735198	1.576958814
revenue %	4.64846648	1.329558618	3.49624786	0.00576252	1.686025265	7.61090769	1.686025265	7.61090769

According to regression statistics table, adjusted R square was 95.8% which means that 95.8% of the variance in the dependent variable (Revenue) can be explained by the independent variables (Territory, Seasonality, Online Sales, Number of Stores, Highly Preferred Subcategory and Product).

The ANOVA table shows that there were statistically significant differences between the means of factors (independent variables) and the constant having a significance value.

Setting up the test, the null hypothesis implies that the variables presented have no significance determination on the revenue. The alternative hypothesis, on the other hand, implies that the variables presented do have a significant impact on the revenue. The result of regression showed that territory, revenue percentage in summer season and number of stores with higher than 0.05 p-value did not significant impact on revenue. On the other hand, revenue percentage in fall, spring and winter seasons, online sales and highly preferred subcategory and product had significant impact on the dependent value (revenue) with less than 0.05 p-value. Since the p-values for these variables are less than the significance level, the null hypotheses were rejected.

Territory, as having the highest p-value, was eliminated from the study and regression analysis repeated.

Table 7: 2st Regression Analysis Results

Regression Statistics						
Multiple R	0.988662382					
R Square	0.977453306					
Adjusted R Square	0.96105571					
Standard Error	0.051965413					
Observations	20					

ANOVA

	df	SS	MS	F	Significance F
Regression	8	1.287759039	0.16096988	59.60955055	5.70313E-08
Residual	11	0.029704446	0.002700404		
Total	19	1.317463485			

	Coefficients	Standard Error	t Stat	P-value	Lower 95%	Upper 95%	Lower 95.0%	Upper 95.0%
Intercept	-	0.787999245	-	0.001256887	-	-1.6536748	-	-1.6536748
	3.388049444		4.299559251		5.122424089		5.122424089	
fall season revenue %	3.25592947	0.998057346	3.262266926	0.007568439	1.059220062	5.452638878	1.059220062	5.452638878
spring season revenue %	2.72496784	0.792880492	3.436795162	0.005556008	0.979849643	4.470086037	0.979849643	4.470086037
summer season revenue %	1.94468525	0.674726417	2.882183359	0.014912924	0.45962242	3.42974808	0.45962242	3.42974808
winter season revenue %	2.850872089	0.811733152	3.512080395	0.004865758	1.064259468	4.63748471	1.064259468	4.63748471
Online sales %	-0.56097625	0.19163828	- 2.927266154	0.013757522	0.982769259	-0.13918324	0.982769259	-0.13918324
Number of Stores %	7.496429784	1.621452203	4.623281382	0.000736424	3.927637547	11.06522202	3.927637547	11.06522202
subcategory revenue %	0.851507791	0.219506868	3.879185191	0.002566966	0.368376432	1.33463915	0.368376432	1.33463915
highly preferred product revenue %	4.279095145	0.752094434	5.689571618	0.000140338	2.623746457	5.934443832	2.623746457	5.934443832

In second regression analysis, adjusted R square increased to 96.1% which means that 95.8% of the variance in the dependent variable (Revenue) can be explained by the independent variables (Territory, Seasonality, Online Sales, Number of Stores, Highly Preferred Subcategory and Product).

The ANOVA table shows that there were statistically significant differences between the means of factors (independent variables) and the constant having a significance value.

All hypotheses had less than 0.05 p-value which means that seasonality (revenue percentage in fall, spring, summer, winter seasons) online sales and highly preferred subcategory and product had significant impact on the dependent value (revenue) with less than 0.05 p-value. Since the p-values for these variables are less than the significance level, the null hypotheses were rejected.

Conclusion

In this study, we analyzed Adventure Works sales data in detail by using SQL and excel to understand the decline in the revenue and its reason. Although company showed incremental growth until 2014, in year 2014 company lost 50% of its revenue. To understand the downgrade of the company, we needed to understand important factors in revenue and determined independent variables accordingly online sales, number of stores, product type, seasonality, and shipping time on revenue for US territories. We conducted our analysis in territory level with the reason that company has many territories, and each territory might have different consumer and sales structures.

With the help of SQL, we analyzed dependent and independent variables for each territory and prepared a data set. Independent variable of shipping time was excluded from the study that all territories have same average shipping time which should not be the main factor of difference revenues in each territory and decline.

To understand the mean level, standard deviation and skewness of variables, descriptive analyses were conducted, and results were discussed in detail in 'Descriptive Statistics' part.

To understand the impact of independent variables on dependent variable, regression analysis was conducted. Regression analysis results showed that all independent variables have significant impact on dependent variable of each territory revenue.

Appendices

1. SQL Queries

• The Query below gives output for revenue generated by each territories in each year and also shows the territory revenue as the percentage of total

```
select year (S.ModifiedDate) as year,S.TerritoryID,
      sum(OrderOty*UnitPrice-(OrderOty*UnitPriceDiscount)) as 'US revenue',
      sum(OrderQty*UnitPrice-(OrderQty*UnitPriceDiscount))/
(select sum(OrderQty*UnitPrice-(OrderQty*UnitPriceDiscount)) as revenue
             from Sales SalesOrderDetail
             JOIN sales.salesorderheader
            Sales.SalesOrderDetail.salesorderid=sales.salesorderheader.salesorderid
where sales.salesorderheader.TerritoryID < 6 AND
YEAR(Sales.SalesOrderDetail.ModifiedDate) = YEAR(S.ModifiedDate))*100 as 'Percentage of
US revenue'
from Sales.SalesOrderDetail
JOIN sales sales order header S
ON Sales.SalesOrderDetail.salesorderid = S.salesorderid
where S.TerritoryID < 6</pre>
group by year (S.ModifiedDate), S.TerritoryID
order by year (S.ModifiedDate), 'Percentage of US revenue' DESC
```

 The query to generate total US sales along with how much of it was contributed by online sale is as below:

```
select year (S.ModifiedDate) as year, S. TerritoryID,
       sum(OrderQty*UnitPrice-(OrderQty*UnitPriceDiscount)) as 'US revenue',
      (select sum(OrderQty*UnitPrice-(OrderQty*UnitPriceDiscount))
             from Sales.SalesOrderDetail
             JOIN sales.salesorderheader
             ON Sales.SalesOrderDetail.salesorderid =
             sales.salesorderheader.salesorderid
             where sales.salesorderheader.TerritoryID < 6</pre>
                    AND sales.salesorderheader.OnlineOrderFlag = 1
                    AND YEAR(sales.salesorderheader.ModifiedDate) = YEAR(S.ModifiedDate)
                    AND sales.salesorderheader.TerritoryID = S.TerritoryID)/
      (sum(OrderQty*UnitPrice-(OrderQty*UnitPriceDiscount)))*100 AS 'Online sale'
from Sales.SalesOrderDetail
JOIN sales.salesorderheader S ON Sales.SalesOrderDetail.salesorderid = S.salesorderid
where S.TerritoryID < 6
group by year (S.ModifiedDate), S.TerritoryID
order by year (S.ModifiedDate), 'Online sale' DESC
```

The guery for subcategory wise revenue generated by each territory in each year:

• The guery for revenue generated in each season of the each year:

```
select o.TerritoryID,
       (select sum((sales.SalesOrderDetail.OrderOty)*(sales.SalesOrderDetail.UnitPrice)
       -((sales.SalesOrderDetail.OrderQty)*sales.SalesOrderDetail.UnitPriceDiscount))
              from sales.SalesOrderHeader join sales.SalesOrderDetail
              on sales.salesorderheader.SalesOrderID =sales.SalesOrderDetail.SalesOrderID
             where sales.salesorderheader.OrderDate between '2011-06-01 00:00:00.000'
                    and '2011-09-01 00:00:00.000' and
                    o.TerritoryID = sales.SalesOrderHeader.TerritoryID) summer_2011,
       (select sum((sales.SalesOrderDetail.OrderOty)*(sales.SalesOrderDetail.UnitPrice)
       -((sales.SalesOrderDetail.OrderOty)*sales.SalesOrderDetail.UnitPriceDiscount))
              from sales.SalesOrderHeader join sales.SalesOrderDetail
             on sales.salesorderheader.SalesOrderID =sales.SalesOrderDetail.SalesOrderID
             where sales.salesorderheader.OrderDate between '2012-06-01 00:00:00.000'
                    and '2012-08-31 00:00:00.000' and
                     o.TerritoryID = sales.SalesOrderHeader.TerritoryID) summer 2012,
       (select sum((sales.SalesOrderDetail.OrderOty)*(sales.SalesOrderDetail.UnitPrice)-
       ((sales.SalesOrderDetail.OrderQty)*sales.SalesOrderDetail.UnitPriceDiscount))
              from sales.SalesOrderHeader join sales.SalesOrderDetail
             on sales.salesorderheader.SalesOrderID =sales.SalesOrderDetail.SalesOrderID
             where sales.salesorderheader.OrderDate between '2013-06-01 00:00:00.000'
                    and '2013-08-31 00:00:00.000' and o.TerritoryID =
                    sales.SalesOrderHeader.TerritoryID) summer 2013,
       (select sum((sales.SalesOrderDetail.OrderQty)*(sales.SalesOrderDetail.UnitPrice)-
       ((sales.SalesOrderDetail.OrderQty)*sales.SalesOrderDetail.UnitPriceDiscount))
              from sales.SalesOrderHeader join sales.SalesOrderDetail
              on sales.salesorderheader.SalesOrderID =sales.SalesOrderDetail.SalesOrderID
             where sales sales orderheader. OrderDate between '2014-06-01 00:00:00.000'
                    and '2014-08-31 00:00:00.000' and o.TerritoryID =
                    sales.SalesOrderHeader.TerritoryID) summer 2014,
       (select sum((sales.SalesOrderDetail.OrderQty)*(sales.SalesOrderDetail.UnitPrice)-
       ((sales.SalesOrderDetail.OrderQty)*sales.SalesOrderDetail.UnitPriceDiscount))
              from sales.SalesOrderHeader join sales.SalesOrderDetail
             on sales.salesorderheader.SalesOrderID =sales.SalesOrderDetail.SalesOrderID
             where sales.salesorderheader.OrderDate between '2010-12-01 00:00:00.000'
                    and '2011-02-28 00:00:00.000' and o.TerritoryID =
                    sales.SalesOrderHeader.TerritoryID) winter 2011,
       (select sum((sales.SalesOrderDetail.OrderQty)*(sales.SalesOrderDetail.UnitPrice)-
       ((sales.SalesOrderDetail.OrderQty)*sales.SalesOrderDetail.UnitPriceDiscount))
              from sales.SalesOrderHeader join sales.SalesOrderDetail
              on sales.salesorderheader.SalesOrderID =sales.SalesOrderDetail.SalesOrderID
             where sales.salesorderheader.OrderDate between '2011-12-01 00:00:00.000'
```

```
and '2012-02-28 00:00:00.000' and o.TerritoryID =
             sales.SalesOrderHeader.TerritoryID) winter 2012,
(select sum((sales.SalesOrderDetail.OrderQty)*(sales.SalesOrderDetail.UnitPrice)-
((sales.SalesOrderDetail.OrderQty)*sales.SalesOrderDetail.UnitPriceDiscount))
      from sales.SalesOrderHeader join sales.SalesOrderDetail
      on sales.salesorderheader.SalesOrderID =sales.SalesOrderDetail.SalesOrderID
      where sales.salesorderheader.OrderDate between '2012-12-01 00:00:00.000'
             and '2013-02-28 00:00:00.000' and o.TerritoryID =
             sales.SalesOrderHeader.TerritoryID) winter 2013,
(select sum((sales.SalesOrderDetail.OrderOty)*(sales.SalesOrderDetail.UnitPrice)-
((sales.SalesOrderDetail.OrderQty)*sales.SalesOrderDetail.UnitPriceDiscount))
      from sales.SalesOrderHeader join sales.SalesOrderDetail
      on sales.salesorderheader.SalesOrderID =sales.SalesOrderDetail.SalesOrderID
      where sales.salesorderheader.OrderDate between '2013-12-01 00:00:00.000'
             and '2014-02-28 00:00:00.000' and o.TerritoryID =
             sales.SalesOrderHeader.TerritoryID) winter_2014,
(select sum((sales.SalesOrderDetail.OrderOty)*(sales.SalesOrderDetail.UnitPrice)-
((sales.SalesOrderDetail.OrderOty)*sales.SalesOrderDetail.UnitPriceDiscount))
      from sales.SalesOrderHeader join sales.SalesOrderDetail
      on sales.salesorderheader.SalesOrderID =sales.SalesOrderDetail.SalesOrderID
      where sales.salesorderheader.OrderDate between '2011-03-01 00:00:00.000'
             and '2011-05-31 00:00:00.000' and o.TerritoryID =
             sales.SalesOrderHeader.TerritoryID) spring 2011,
(select sum((sales.SalesOrderDetail.OrderQty)*(sales.SalesOrderDetail.UnitPrice)-
((sales.SalesOrderDetail.OrderQty)*sales.SalesOrderDetail.UnitPriceDiscount))
      from sales.SalesOrderHeader join sales.SalesOrderDetail
      on sales.salesorderheader.SalesOrderID =sales.SalesOrderDetail.SalesOrderID
      where sales.salesorderheader.OrderDate between '2012-03-01 00:00:00.000'
             and '2012-05-31 00:00:00.000' and o.TerritoryID =
             sales.SalesOrderHeader.TerritoryID) spring_2012,
(select sum((sales.SalesOrderDetail.OrderQty)*(sales.SalesOrderDetail.UnitPrice)-
((sales.SalesOrderDetail.OrderQty)*sales.SalesOrderDetail.UnitPriceDiscount))
      from sales.SalesOrderHeader join sales.SalesOrderDetail
      on sales.salesorderheader.SalesOrderID =sales.SalesOrderDetail.SalesOrderID
      where sales.salesorderheader.OrderDate between '2013-03-01 00:00:00.000'
             and '2013-05-31 00:00:00.000' and o.TerritoryID =
             sales.SalesOrderHeader.TerritoryID) spring 2013,
(select sum((sales.SalesOrderDetail.OrderQty)*(sales.SalesOrderDetail.UnitPrice)-
((sales.SalesOrderDetail.OrderQty)*sales.SalesOrderDetail.UnitPriceDiscount))
      from sales.SalesOrderHeader join sales.SalesOrderDetail
      on sales.salesorderheader.SalesOrderID =sales.SalesOrderDetail.SalesOrderID
      where sales.salesorderheader.OrderDate between '2014-03-01 00:00:00.000'
             and '2014-05-31 00:00:00.000' and o.TerritoryID =
             sales.SalesOrderHeader.TerritoryID) spring 2014,
(select sum((sales.SalesOrderDetail.OrderQty)*(sales.SalesOrderDetail.UnitPrice)-
((sales.SalesOrderDetail.OrderQty)*sales.SalesOrderDetail.UnitPriceDiscount))
      from sales.SalesOrderHeader join sales.SalesOrderDetail
      on sales.salesorderheader.SalesOrderID =sales.SalesOrderDetail.SalesOrderID
      where sales.salesorderheader.OrderDate between '2011-09-01 00:00:00.000'
             and '2011-11-30 00:00:00.000' and o.TerritoryID =
             sales.SalesOrderHeader.TerritoryID) fall 2011,
(select sum((sales.SalesOrderDetail.OrderQty)*(sales.SalesOrderDetail.UnitPrice)-
((sales.SalesOrderDetail.OrderOty)*sales.SalesOrderDetail.UnitPriceDiscount))
      from sales.SalesOrderHeader join sales.SalesOrderDetail
      on sales.salesorderheader.SalesOrderID =sales.SalesOrderDetail.SalesOrderID
      where sales.salesorderheader.OrderDate between '2012-09-01 00:00:00.000'
             and '2012-11-30 00:00:00.000' and o.TerritoryID =
             sales.SalesOrderHeader.TerritoryID) fall_2012,
```

```
(select sum((sales.SalesOrderDetail.OrderQty)*(sales.SalesOrderDetail.UnitPrice)-
       ((sales.SalesOrderDetail.OrderQty)*sales.SalesOrderDetail.UnitPriceDiscount))
             from sales.SalesOrderHeader join sales.SalesOrderDetail
             on sales.salesorderheader.SalesOrderID =sales.SalesOrderDetail.SalesOrderID
             where sales.salesorderheader.OrderDate between '2013-09-01 00:00:00.000'
                    and '2013-11-30 00:00:00.000' and o.TerritoryID =
                    sales.SalesOrderHeader.TerritoryID) fall 2013,
       (select sum((sales.SalesOrderDetail.OrderOty)*(sales.SalesOrderDetail.UnitPrice)-
       ((sales.SalesOrderDetail.OrderOty)*sales.SalesOrderDetail.UnitPriceDiscount))
             from sales.SalesOrderHeader join sales.SalesOrderDetail
             on sales.salesorderheader.SalesOrderID =sales.SalesOrderDetail.SalesOrderID
             where sales.salesorderheader.OrderDate between '2014-09-01 00:00:00.000'
                    and '2014-11-30 00:00:00.000' and o.TerritoryID =
                    sales.SalesOrderHeader.TerritoryID) fall 2014
from sales.SalesOrderHeader o join sales.SalesOrderDetail
on o.SalesOrderID = sales.SalesOrderDetail.SalesOrderID
where o.TerritoryID<6
group by o.TerritoryID
```

The query below shows the number of stores in each territory in each year along with revenue

```
select YEAR(SalesOrderHeader.OrderDate) 'Year', sales.salesorderheader.TerritoryID,
       COUNT(distinct(storeid)) 'Number of stores',
       sum(OrderOty*UnitPrice-(OrderOty*UnitPriceDiscount)) as 'Revenue',
 (select sum(OrderOty*UnitPrice-(OrderOty*UnitPriceDiscount)) as 'Revenue'
       from sales.salesorderheader s
       join Sales.Customer on s.CustomerID = Sales.Customer.CustomerID
       join Sales.SalesOrderDetail ON Sales.SalesOrderDetail.salesorderid =
              s.salesorderid
       where s.TerritoryID < 6 and OnlineOrderFlag =1 and s.TerritoryID =</pre>
              sales.salesorderheader.TerritoryID and
              YEAR(s.OrderDate) = year(sales.salesorderheader.OrderDate)
       group by YEAR(s.OrderDate),s.TerritoryID) 'online sales',
(select sum(OrderQty*UnitPrice-(OrderQty*UnitPriceDiscount)) as 'Revenue'
       from sales.salesorderheader s
       join Sales.Customer on s.CustomerID = Sales.Customer.CustomerID
       join Sales.SalesOrderDetail ON Sales.SalesOrderDetail.salesorderid =
              s.salesorderid
       where s.TerritoryID < 6 and OnlineOrderFlag =0 and s.TerritoryID =</pre>
              sales.salesorderheader.TerritoryID and
              YEAR(s.OrderDate) = year(sales.salesorderheader.OrderDate)
       group by YEAR(s.OrderDate),s.TerritoryID) 'offline sales'
from sales.salesorderheader
join Sales.Customer on Sales.SalesOrderHeader.CustomerID = Sales.Customer.CustomerID
join Sales.SalesOrderDetail ON Sales.SalesOrderDetail.salesorderid =
sales.salesorderheader.salesorderid
where sales.salesorderheader.TerritoryID < 6</pre>
group by YEAR(SalesOrderHeader.OrderDate), sales.salesorderheader.TerritoryID
order by YEAR(SalesOrderHeader.OrderDate),COUNT(distinct(storeid)) desc
```

2. Data Used in Analyses

Raw Data											
productID revenue	SubCategory ID	sub_category	subcategory revenue	Online sales %	Number of Stores	Whole US revenue by territory					
235506.582	1	MountainBikes	1483257.9	20.91	32	2307294.96					
75143.67	2	RoadBikes	534564.391	0	22	626632.143					
92887.4468	1	MountainBikes	582426.001	0	26	1000918.84					
257635.44	2	RoadBikes	1569093.43	27.98	47	2791392.96					
184678.973	1	MountainBikes	1152949.64	0	34	1642280.52					
205319.637	1	MountainBikes	2394026.46	18.62	62	4382547.85					
116828.069	2	RoadBikes	1601488.83	0	37	2635333.93					
82373.7463	2	RoadBikes	1523136.28	0	51	2734622.05					
263344.043	2	RoadBikes	4461947.9	15.9	88	7718695.74					
122037.998	1	MountainBikes	1328276.38	0.05	61	2772935.3					
393786.247	1	MountainBikes	2320801.27	20.16	73	5983781.61					
143298.914	2	RoadBikes	1185971.38	0.14	45	2780356.68					
142112.117	2	RoadBikes	1250500.19	0.09	51	2984893.07					
436097.275	2	RoadBikes	3540227.94	20.26	99	9261523.77					
123197.198	2	RoadBikes	937819.921	0.09	63	2437471.52					
182130.166	1	MountainBikes	1053470.95	32.7	61	3499010.6					
63480.4668	2	RoadBikes	291059.582	0.27	37	920715.25					
50009.106	2	RoadBikes	370393.254	0.01	36	1215255.84					
214367.076	1	MountainBikes	1326325.89	40.32	76	4544141.73					
66095.712	2	RoadBikes	321861.786	0.79	47	1067714.53					

Normalized Data											
										higly	
	revenu		fall	spring	summer	winter	Onli	Number	subcate	preferre	
year	е	territ	season	season	season	season	ne	of	gory	d	
your	normali	ory	revenu	revenue	revenue	revenue	sale	Stores	revenue	product	
	zed		e %	%	%	%	s %	%	%	revenue	
	0.4040		0.5007	0.04047	0.00000		0.00	0.00050	0.04005	%	
2011	0.1946 3624	1	0.5067	0.04217	0.36360 4192	0	0.20 91	0.03053	0.64285	0.10207	
2011	3024		3726 0.4562	3019 0.03446	0.41661	0	91	4351 0.02099	578 0.85307	0427 0.03256	
2011	0	2	3073	7408	5624	0	0	2366	528	7865	
2011	0.0433		0.5460	0.01922	0.38564	<u> </u>	0	0.02480	0.58189	0.04025	
2011	4585	3	5495	5399	4805	0	0	916	1338	8159	
	0.2506		0.4845	0.03609	0.40337		0.27	0.04484	0.56211	0.11166	
2011	9925	4	9312	5073	0148	0	98	7328	8432	125	
	0.1176		0.4262	0.08473	0.37243			0.03244	0.70204	0.08004	
2011	2144	5	3896	8382	5694	0	0	2748	1839	1337	
	0.4349		0.2216	0.27710	0.26613	0.24653	0.18	0.05916	0.54626	0.08898	
2012	6964	1	8853	056	6225	2111	62	0305	3622	7165	
2010	0.2326		0.3049	0.22293	0.36077	0.10898		0.03530	0.60769	0.05063	
2012	2617	2	8576	837	0637	7627	0	5344	8634	4215	
2012	0.2441 2465	2	0.2422	0.28932 9488	0.28082 902	0.17035 8967	0	0.04866 4122	0.55698 2375	0.03570 1437	
2012	0.8213	3	0546 0.2479	0.24878	0.33461	0.17303	0.15	0.08396	0.57807	0.11413	
2012	263	4	5137	261	4094	7223	9	9466	0.57807	5404	
2012	0.2485		0.2182	0.25099	0.26900	0.24194	0.00	0.05820	0.47901	0.05289	
2012	6168	5	6284	3927	6239	0377	0.00	6107	4559	224	
	0.6204	, i	0.3233	0.18996	0.33001	0.13813	0.20	0.06965	0.38784	0.17067	
2013	0726	1	7885	0921	0402	8225	16	6489	8592	0094	
	0.2494		0.1958	0.25659	0.27224	0.27531	0.00	0.04293	0.42655	0.06210	
2013	2114	2	514	5161	169	1752	14	8931	3684	689	
	0.2731		0.2535	0.24196	0.30061	0.20384	0.00	0.04866	0.41894	0.06159	
2013	0834	3	8132	5657	0215	2807	09	4122	3045	2523	
0040			0.2621	0.26279	0.28446	0.17521	0.20	0.09446	0.38225	0.18900	
2013	1 0 0007	4	8307	0237	4661	6252	26	5649	1131	803	
2013	0.2097 1188	5	0.2333 9508	0.24642 862	0.30356 244	0.21661 3864	0.00 09	0.06011 4504	0.38475 113	0.05339 4646	
2013	0.3326	3	9306	0.63462	0.00275	0.40395	0.32	0.05820	0.30107	0.07893	
2014	4789	1	0	3436	8526	995	7	6107	6811	6664	
2017	0.0340	<u> </u>		0.63542	3020	0.36457	0.00	0.03530	0.31612	0.02751	
2014	5753	2	0	2018	0	7982	27	5344	3342	294	
	0.0681			0.57825		0.42174	0.00	0.03435	0.30478	0.02167	
2014	6805	3	0	5402	0	4598	01	1145	6238	4345	
	0.4536			0.63902	0.00196	0.39990	0.40	0.07251	0.29187	0.09290	
2014	837	4	0	8306	0141	336	32	9084	5995	8397	
1	0.0510			0.63671	0.00010	0.36317	0.00	0.04484	0.30144	0.02864	
2014	814	5	0	3981	6733	9287	79	7328	9289	6408	