Finding Optimal f-Functions

Caleb Leedy

8 February 2024

Summary

This document takes the case of observing three variables (X_1, X_2, Y) under nonmonotone missingness and discusses the optimal function f_1 , f_2 , and f_3 under a simple random sampling design.

Notation and Problem Setup

Consider the case where $Z=(X_1,X_2,Y)$ and we want to estimate the parameter $\theta=E[Y]$. Suppose that we have a finite population of size N. Instead of observing the entire data set we observe the segments in Table 1. Each of the segments is a simple random sample of size n and independent from the other segments. Hence this means that the first order selection probability $\pi_i=\pi=n/N$ for every i.

Table 1: This table identifies which variables are observed in each segment. Since X_1 is always observed, the subscript for each segment identifies which of variables X_2 and Y are in the segment based on the position of a 1.

Segment	Variables Observed
$\overline{A_{00}}$	X_1
A_{10}	X_1, X_2
A_{01}	X_1, Y
A_{11}	X_1,X_2,Y

As an analyst, we can choose functions f_1, f_2, f_3 such that g = Zf + e where

$$\begin{split} g_1^{(11)} &= n^{-1} \sum_{i=1}^n \frac{\delta_{11}}{\pi_{11}} f_1(x_{1i}) \\ g_2^{(11)} &= n^{-1} \sum_{i=1}^n \frac{\delta_{11}}{\pi_{11}} f_2(x_{2i}) \\ g_3^{(11)} &= n^{-1} \sum_{i=1}^n \frac{\delta_{11}}{\pi_{11}} f_3(y_i) \\ g_1^{(10)} &= n^{-1} \sum_{i=1}^n \frac{\delta_{10}}{\pi_{10}} f_1(x_{1i}) \\ g_2^{(10)} &= n^{-1} \sum_{i=1}^n \frac{\delta_{10}}{\pi_{10}} f_2(x_{2i}) \\ g_1^{(01)} &= n^{-1} \sum_{i=1}^n \frac{\delta_{01}}{\pi_{01}} f_1(x_{1i}) \\ g_3^{(01)} &= n^{-1} \sum_{i=1}^n \frac{\delta_{01}}{\pi_{00}} f_2(y_i) \\ g_1^{(00)} &= n^{-1} \sum_{i=1}^n \frac{\delta_{00}}{\pi_{00}} f_1(x_{1i}) \end{split}$$

where

$$\hat{g} = \begin{bmatrix} g_1^{(11)} \\ g_2^{(11)} \\ g_3^{(11)} \\ g_1^{(10)} \\ g_2^{(10)} \\ g_2^{(01)} \\ g_3^{(01)} \\ g_3^{(01)} \\ g_1^{(00)} \end{bmatrix}, Z = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{bmatrix}, E[e] = 0, \text{ and } Var(e) = V.$$

For now assume that V is known. Due to the construction of g, we know that

$$V = \begin{bmatrix} V_{11} & 0 & 0 & 0 \\ 0 & V_{10} & 0 & 0 \\ 0 & 0 & V_{01} & 0 \\ 0 & 0 & 0 & V_{00} \end{bmatrix}$$

where

$$V_{11} = N^{-1}\pi^{-1}\mathrm{Cov}(f,f), V_{10} = N^{-1}\pi^{-1}\begin{bmatrix} \mathrm{Cov}(f_1,f_1) & \mathrm{Cov}(f_1,f_2) \\ \mathrm{Cov}(f_1,f_2) & \mathrm{Cov}(f_2,f_2) \end{bmatrix},$$

$$V_{01} = N^{-1}\pi^{-1} \begin{bmatrix} \operatorname{Cov}(f_1, f_1) & \operatorname{Cov}(f_1, f_3) \\ \operatorname{Cov}(f_1, f_3) & \operatorname{Cov}(f_3, f_3) \end{bmatrix}, \text{ and } V_{00} = N^{-1}\pi^{-1}\operatorname{Cov}(f_3, f_3).$$

Previously, we have shown that the optimal estimator is the GLS estimator $\hat{f}=(Z'V^{-1}Z)^{-1}Z'V^{-1}g$ and by linear model theory $\mathrm{Var}(\hat{f})=(Z'V^{-1}Z)^{-1}$ since $\mathrm{Var}(g)=V$ by construction.